

IoT Traffic Controller

X X

×

INTRODUCTION

In this project I used the ESP32 Microcontroller to implement a two-way traffic light controller. In addition this system includes pedestrian crossing and emergency access through Cayenne.

Inventory of project components

Installation & Testing

- Installing ESP32 board
- Testing installation
- Selecting port
- Performing a Wi-Fi scan

ESP32

Microcontroller mounted and powered ON

××

XX

ESP32 Board Installed

ESP32 Installation Test

Port Selected

ESP32 WiFi Scan


```
scan start
scan start
```

scan done
7 networks found

1: Pretty Fly for a Wi-Fi (-25)*
2: Pretty Fly for a Wi-Fi (-60)*
3: Pretty Fly for a Wi-Fi (-74)*

4: ollies wifi (-83)*

5: SpectrumSetup-00 (-87)*
6: MySpectrumWiFib0-2G (-89)*

7: SpectrumSetup-60 (-90)*

scan done 7 networks found

1: Pretty Fly for a Wi-Fi (-28)*
2: Pretty Fly for a Wi-Fi (-63)*

3: Pretty Fly for a Wi-Fi (-76)*
4: ollies wifi (-85)*

5: MySpectrumWiFib0-2G (-89)* 6: SpectrumSetup-00 (-89)*

7: SpectrumSetup-60 (-91)*

scan start

7 networks found

1: Pretty Fly for a Wi-Fi (-27)*

First Traffic light installation

+

- Initializing pins 12, 13, and 14 as output
- Creating a loop that turns each LED on and off in order of red, green, yellow

First Traffic Light

- Both sides of the breadboard are connected
- ESP32 is powered on
- Red LED1 is connected to GPIO14, Yellow LED1 connected to GPIO12, and green LED1 connected to GPIO13

×

××

X

First Traffic Light Code

- LED's assigned board pins
- Digital pins are initialized
- Loop turning LED's on and off in order red, green, yellow
- Time delay in between turning LED on and off

course project 3 | Arduino 1.8.16

File Edit Sketch Tools Help

```
course project 3
// === Faith Burnett ====
// Module #3 project
const int red LED1 = 14;
                               // The red LED1 is wired to ESP32 board pin GPI014
const int yellow LED1 = 12; // The yellow LED1 is wired to ESP32 board pin GPI012
const int green LED1 = 13; // The green LED1 is wired to ESP32 board pin GPI013
// the setup function runs once when you press reset or power the board
void setup() {
 pinMode (red LED1, OUTPUT); // initialize digital pin GPIO14 (Red LED1) as an output.
pinMode (yellow LED1, OUTPUT); // initialize digital pin GPIO12 (yellow LED1) as an output.
pinMode(green LED1, OUTPUT);
                                // initialize digital pin GPIO13 (green LED1) as an output.
// the loop function runs over and over again forever
void loop() {
 // The next three lines of code turn on the red LED1
  digitalWrite(red LED1, HIGH);
                                     // This should turn on the RED LED1
  digitalWrite(yellow_LED1 , LOW); // This should turn off the YELLOW LED1
  digitalWrite(green LED1, LOW);
                                     // This should turn off the GREEN LED1
  delay(2000);
                                   // wait for 2 seconds
  // The next three lines of code turn on the green LED1
  digitalWrite (red LED1, LOW);
                                      // This should turn off the RED LED1
  digitalWrite(yellow LED1 , LOW);
                                      // This should turn off the YELLOW LED1
  digitalWrite(green LED1, HIGH);
                                        // This should turn on the GREEN LED1
  delay(2000);
                                  // wait for 2 seconds
// The next three lines of code turn on the vellow LED1
  digitalWrite(red LED1, LOW);
                                     // This should turn off the RED LED1
```

digitalWrite(yellow LED1 , HIGH); // This should turn on the YELLOW LED1

// wait for 2 seconds

// This should turn off the GREEN LED1

digitalWrite(green_LED1, LOW);

delay(2000);

Second Traffic light installation

+

- Initializing pins 25, 26, and 27 as output
- Rework loop so that the second set of LED's cycles through red, green, yellow when the first set of LED's is on red

Second Traffic Light

 Red LED2 connected to GPIO25, yellow LED2 connected to GPIO26, and green LED2 connected to GPIO27


```
Adruino_Module_4 | Arduino 1.8.16
```

```
File Edit Sketch Tools Help
 Adruino Module 4
// === Faith Burnett ====
// Module #4 project
// Define some labels
const int red LED1 = 14; // The red LED1 is wired to ESP32 board pin GPIO14
const int vellow LED1 =12; // The vellow LED1 is wired to ESP32 board pin GPI012
const int green LED1 = 13; // The green LED1 is wired to ESP32 board pin GPI013
const int red LED2 = 25; // The red LED2 is wired to Mega board pin GPIO25
const int yellow LED2 = 26; // The yellow LED2 is wired to Mega board pin GPIO 26
const int green LED2 = 27; // The green LED2 is wired to Mega board pin GPIO 27
// the setup function runs once when you press reset or power the board
void setup() {
 pinMode (red LED1, OUTPUT); // initialize digital pin GPIO14 (Red LED1) as an output.
 pinMode (yellow LED1, OUTPUT); // initialize digital pin GPIO12 (yellow LED1) as an output.
 pinMode(green LED1, OUTPUT); // initialize digital pin GPIO13 (green LED1) as an output.
 pinMode (red LED2, OUTPUT); // initialize digital pin GPIO25 (Red LED2) as an output.
 pinMode(yellow LED2, OUTPUT); // initialize digital pin GPIO26 (yellow LED2) as an output.
 pinMode(green LED2, OUTPUT); // initialize digital pin GPIO27 (green LED2) as an output.
// the loop function runs over and over again forever
void loop() {
 // The next three lines of code turn on the red LED1
  digitalWrite(red LED1, HIGH);
                                    // This should turn on the RED LED1
  digitalWrite(yellow LED1 , LOW);
                                       // This should turn off the YELLOW LED1
  digitalWrite(green LED1, LOW);
                                       // This should turn off the GREEN LED1
delay(1000); //Extended time for Red light#1 before the Green of the other side turns ON
  // The next three lines of code turn on the green LED2 for 2 seconds
  digitalWrite (red LED2, LOW);
                                      // This should turn off the RED LED2
  digitalWrite (yellow LED2 , LOW); // This should turn off the YELLOW LED2
  digitalWrite (green LED2, HIGH); // This should turn on the GREEN LED2
  delay(2000);
                                    // wait for 2 seconds
```

Second Traffic Light Code

- Assigned second set of LED's board pins
- Second set of digital pins initialized
- Loop now iterates over the second set of LED's while first set is on red and over the first set when the second set is red
- Time delay in between turning LED's on and off

Crosswalk installation

- Initializing pin 19 as input
- Rework loop so that the second set of LED's cycles through red, green, yellow when the first set of LED's is on red

Crosswalk button

 Crosswalk button connected to GPIO19

Traffic lights working

Crosswalk lights working

Crosswalk Code

- Assigned crosswalk button board pin
- Initialized crosswalk button as input
- Added statement to loop asking if button was pressed if it was both sets go to red LED and serial monitor will display walk with a countdown 10-0
- Else loop iterates through both sets normally

Adruino Module5

```
// === Faith Burnett ====
// Module #5 project
const int red LED1 = 14: // The red LED1 is wired to ESP32 board pin GPI014
const int yellow LED1 =12; // The yellow LED1 is wired to ESP32 board pin GPIO12
const int green LED1 = 13; // The green LED1 is wired to ESP32 board pin GPI013
const int red LED2 = 25; // The red LED2 is wired to Mega board pin GPI025
const int yellow LED2 = 26; // The yellow LED2 is wired to Mega board pin GPIO 26
const int green LED2 = 27; // The green LED2 is wired to Mega board pin GPIO 27
int Xw value;
const int Xw button = 19; //Cross Walk button
// the setup function runs once when you press reset or power the board
void setup() {
pinMode (Xw button, INPUT PULLUP); // 0=pressed, 1 = unpressed button
Serial.begin(115200);
pinMode (red LED1, OUTPUT); // initialize digital pin 14 (Red LED1) as an output.
pinMode (yellow LED1, OUTPUT); // initialize digital pin 12 (yellow LED1) as an output.
pinMode (green LED1, OUTPUT); // initialize digital pin 13 (green LED1) as an output
pinMode(red LED2, OUTPUT); // initialize digital pin 25(Red LED2) as an output.
pinMode (yellow_LED2, OUTPUT); // initialize digital pin 26 (yellow LED2) as an output.
pinMode (green LED2, OUTPUT); // initialize digital pin 27 (green LED2) as an output.
// the loop function runs over and over again forever
void loop() {
  // read the cross walk button value:
  Xw value=digitalRead(Xw button);
 if (Xw_value == 0 ) { // if crosswalk button (X-button) pressed
  digitalWrite(yellow_LED1 , LOW);
                                         // This should turn off the YELLOW LED1
 digitalWrite(green LED1, LOW);
                                        // This should turn off the GREEN LED1
  digitalWrite(yellow LED2 , LOW); // This should turn off the YELLOW LED2
 digitalWrite (green LED2, LOW); // This should turn off the GREEN LED2
 for (int i=10; i>0; i--) {
Serial.print(" Count = ");
Serial.print(i);
Serial.println(" == Walk == ");
                                       // This should turn on the RED LED1
 digitalWrite(red_LED1, HIGH);
 digitalWrite(red_LED2, HIGH);
                                       // This should turn on the RED LED2
delay(500);
               //wait 0.5 seconds
 digitalWrite (red LED1, LOW);
                                      // This should turn off the RED LED1
 digitalWrite (red LED2, LOW);
                                       // This should turn off the RED LED2
delav(500):
                 //wait 0.5 seconds
1 // End of counter
```


LCD and Buzzer Installation

- Connect LCD, SDA to GPIO21, and SCL to GPIO22
- Connect buzzer to GPIO32
- Display crosswalk output on LCD

LCD Installation

- LCD connected and visible message is displayed
- Crosswalk button active and LEDs are on red while countdown is in progress

LCD Code

- LCD library LiquidCrystal installed
- Board pin added for buzzer
- Initialized digital pin for buzzer as output
- Altered the loop so that when the crosswalk button is pressed the buzzer sounds and stops once the countdown finishes
- Text now is displayed on the LCD screen

#include <LiquidCrystal I2C.h> // === Faith Burnett ==== // Module #6 project #include <Wire.h> //lcd #include <LiquidCrystal I2C.h> //lcd LiquidCrystal I2C lcd(0x27,16,2); //set the LCD address to 0x3F for a 16 chars and 2-line display // if it does not work then try 0x3F, if both addresses do not work then run the scan code below const int red LED1 = 14; // The red LED1 is wired to ESP32 board pin GPIO14 const int yellow_LED1 =12; // The yellow LED1 is wired to ESP32 board pin GPIO12 const int green LED1 = 13; // The green LED1 is wired to ESP32 board pin GPIO13 const int red LED2 = 25; // The red LED2 is wired to Mega board pin GPIO25 const int yellow LED2 = 26; // The yellow LED2 is wired to Mega board pin GPIO 26 const int green LED2 = 27; // The green LED2 is wired to Mega board pin GPIO 27 int Xw value; const int Xw button = 19: //Cross Walk button void setup() { Serial.begin(115200); pinMode (Xw button, INPUT PULLUP); // 0=pressed, 1 = unpressed button lcd.init(): // initialize the lcd lcd.backlight(): lcd.setCursor(0,0); // column#4 and Row #1 lcd.print(" === CEIS114 ==="); pinMode (bzr, OUTPUT); pinMode (red LED1, OUTPUT); // initialize digital pin 14 (Red LED1) as an output. pinMode (yellow LED1, OUTPUT); // initialize digital pinl2 (yellow LED1) as an output. pinMode (green LED1, OUTPUT); // initialize digital pin 13 (green LED1) as an output.

pinMode (red_LED2, OUTPUT); // initialize digital pin 25 (Red LED2) as an output

Emergency Button Installation

- Install Cayenne-MTQ-ESP library
- Connect emergency LED to GPIO16
- Setup the Mini Smart Router
- Add Wi-Fi network info
- Login to Cayenne and setup your device
- Add your username, password, and clientID to your code

Emergency Button

X X

X >

Emergency Button Code

- Cayenne library installed
- Assigned emergency button to board pin
- Wi-Fi setup
- Cayenne authentication completed
- Once emergency button is pressed both sets of LEDs will go to red, the buzzer sounds, the emergency light flashes, and Emergency Do Not Walk is displayed to LCD
- If emergency button is pressed while crosswalk countdown is in progress the countdown will stop and emergency operations proceed

```
File Edit Sketch Tools Help
// === Faith Burnett ====
// Final Project Component, Option#1
#define CAYENNE PRINT Serial
#include <CavenneMOTTESP32.h>
int ONOFF :
const int bzr=32;
                      // GPI032 to connect the Buzzer
 char *ssid = "xxxxxxxxxxxxxx;
 char *wifiPassword = "xxxxxxxxxxxxx;
// Cayenne authentication info. This should be obtained from the Cayenne Dashboard. Replace the xxxx
char username[] = "14738850-1be5-1led-baf6-35fab7fd0ac8";
char password[] = "26cb1bd2e12adfe4d7d777f79627a17461136920";
char clientID[] = "17b286b0-1be5-1led-baf6-35fab7fd0ac8";
//====== End of Cavenne token and SSID/PW Setting =======
 #include <Wire.h> //lcd
#include <LiquidCrystal I2C.h> //lcd
LiquidCrystal I2C lcd(0x27,16,2); //set the LCD address to 0x3F for a 16 chars and 2-line display
// if it does not work then try 0x3F. if both addresses do not work then run the scan code below
// the setup function runs once when you press reset or power the board
const int red_LED1 = 14; // The red LED1 is wired to ESP32 board pin GPIO14
const int yellow LED1 =12; // The yellow LED1 is wired to ESP32 board pin GPI012
const int green LED1 = 13; // The green LED1 is wired to ESP32 board pin GPIO13
const int red LED2 = 25; // The red LED2 is wired to Mega board pin GPIO25
const int yellow_LED2 = 26; // The yellow LED2 is wired to Mega board pin GPIO 26
const int green LED2 = 27; // The green LED2 is wired to Mega board pin GPIO 27
int Xw value:
const int Xw button = 19; //Cross Walk button
```

Serial Monitor for Emergency Button

Remote Emergency Button

X

XX

X

Conclusion

+

- Implemented a two-way traffic light controller with pedestrian crossing
- Performed testing to ensure device was functioning properly
- Wrote and altered code to add more functionality
- Setup a remote emergency button to simulate emergency personnel control over device

Challenges

- Making sure that the pin connection was the same on the breadboard as in my code
- I had several LEDs that stopped working in the middle of running my code in several portions of the project
- Setting up the remote connection for the emergency button

Skills Learned

- Problem solving
- Communication
- Components of digital devices
- Basic logic circuit building blocks utilized in digital systems
- Understanding of networking and securing digital devices

THANKS!

Do you have any questions? faithburnett@outlook.com

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**