4 (a) Define the Young modulus of a material.

(b) A metal rod is compressed, as shown in Fig. 4.1.

Fig. 4.1

The variation with compressive force F of the length L of the rod is shown in Fig. 4.2.

Fig. 4.2

Fig. 4.2 to

(i) determine the spring constant k of the rod,

$$k = \dots Nm^{-1}$$
 [2]

	otroin an aren
	strain energy =
rep	e rod in (b) has cross-sectional area A and is made of metal of Young modulus E . It is now placed by a new rod of the same original length. The new rod has cross-sectional area $A/3$ d is made of metal of Young modulus $2E$. The compression of the new rod obeys Hooke's A .
On	Fig. 4.2, sketch the variation with F of the length L for the new rod from $F=0$ to $F=90\mathrm{kN}$. [2]
	[Total: 8]

(ii) determine the strain energy stored in the rod for $F = 90 \,\text{kN}$.