BigML Regressões Logísticas

2023

Programa

- Regressões Logísticas
 - Logistic regressions

Regressão linear

Regressão linear

Regressão polinomial

Regressões

- Modelo de classificação
 - Categorias, true/false
 - Regressões numéricas são usadas para determinação de valores
 - O termo "regressão" em LR se refere ao funcionamento interno do algoritmo, e não à saída
- Prevê a probabilidade de uma classe
 - Ex.: 75% de probabilidade de churn ser true
 - 3 Classe com maior probabilidade é a predição
- Ajusta uma função "logit" aos dados
 - Difere de modelos que s\u00e3o mais flex\u00edveis

Função de dados discreta

Função de dados discreta

Função logística

Goal

Logistic Function

- Promissor, mas ainda não "discreta"
- Muito espaço na porção intermediária

Modelando probabilidades

Coeficientes LR

- LR calcula um "coeficiente" para cada feature
 - Negativo == correlação negativa
 - Positivo == correlação positiva
 - Maior == maior impacto da feature
 - Menor == menor impacto da feature
 - Não é a importância do campo
- Automaticamente inclui um coeficiente para "missing"
 - Se habilitado
- Classificação binária (true/false), coeficientes são complementares

Configuração

- Default Numeric / Missing Numeric
 - Replace / Learn / Ignore
- EPS
 - Erro mínimo entre passos para parada
- Stats
 - Estatísticas adicionais para campos
- Weights
 - Tratamento de classes desbalanceadas
- Bias
 - Permite um termo de interceptação

- Auto-scaling
 - Garante que todas as features numéricas contribuam igualmente
 - Usado quando campos diferem drasticamente em escalas
- Regularização
 - } L1
 - Diminuição de coeficientes individuais
 - } L2
 - Tenta aproximar todos os coeficientes a zero
 - Positivos e negativos

LR com Múltiplas Classes

- Problemas de classificação podem envolver mais de duas classes
 - Ex.: bom, regular, ruim
- Regressões Logísticas tratam múltiplas classes com one-vs-all
 - Bom / não bom
 - Regular / não regular
 - Ruim / não ruim
- Resultado final é uma combinação das regressões de cada classe individual
 - BigML faz a composição desses resultados de forma automática

- LR espera valores numéricos para realizar a regressão
- Como tratamos valores categóricos ou texto?

One-hot encoding

Classe	cor=red	cor=blue	cor=green	cor=NULL
red	1	0	0	0
blue	0	1	0	0
green	0	0	1	0
MISSING	0	0	0	1

Apenas uma feature é "hot" para cada classe Este é o default do algoritmo

Dummy Encoding

Class	color_1	color_2	color_3
red	0	0	0
blue	1	0	0
green	0	1	0
MISSING	0	0	1

Escolhe uma *reference class*

Contrast Encoding

Class	field	
red	0,5	
blue	-0,25	
green	-0,25	
MISSING	0	

"influence"
positive
negative
negative
excluded

Valores dos campos devem somar zero Variação sem essa necessidade Permite comparação entre as classes

- Qual usar?
 - One-hot é o default
 - Usar a não ser que exista uma necessidade específica
 - 3 Dummy
 - Usar quando existe um grupo de controle para os dados
 - Que se torna a classe de referência
 - Contraste
 - Permite testar hipóteses específicas de relacionamentos
 - Ex.: clientes gerando um "rating" de bom / ok / ruim

Curvilinear LR

- LR espera uma relação linear entre features e objetivos
 - 3 Na realidade, isso é bem comum
 - Relações não lineares podem impactar a qualidade do modelo
 - Quadráticas, por exemplo
- Pode ser corrigido adicionando transformações não-lineares aos dados
- Entretanto, para se saber onde aplicar as transformações é necessário:
 - Conhecimento do domínio
 - Experimentação
 - } Ambos...

LR x DT

- Logistic Regression
 - Espera uma relação linear das features
 - 3 LR traz probabilidade de uma saída discreta
 - Muitos parâmetros que podem gerar erros
 - Menor tendência a overfitting
 - Por ajustar uma curva, trabalha melhor com menor volume de dados

- Decision Tree
 - Se adapta bem a dados não-lineares
 - Classificação, regressão, multi-class
 - Poucos parâmetros para configuração, pouco risco
 - Maior tendência a overfitting
 - Por conta dos eixos perpendiculares precisa de muitos dados para ajuste

LR x DT

- Logistic Regression
 - Espera uma relação linear das features
 - 3 LR traz probabilidade de uma saída discreta
 - Muitos parâmetros que podem gerar erros
 - Menor tendência a overfitting
 - Por ajustar uma curva, trabalha melhor com menor volume de dados

- Decision Tree
 - Se adapta bem a dados não-lineares
 - Classificação, regressão, multi-class
 - Poucos parâmetros para configuração, pouco risco
 - Maior tendência a overfitting
 - Por conta dos eixos perpendiculares, precisa de muitos dados para ajuste

Obrigado

leandro@utfpr.edu.br http://lapti.ct.utfpr.edu.br

