Compute $\left(\frac{-42}{61}\right)$.

For this, we utilize the following results.

Theorem 2.37*. Let n = 2 and gcd(a, p) = 1 with $a \in \mathbb{Z}$. Then a is a quadratic residue modulo p iff $a^{(p-1)/2} \equiv 1 \pmod{p}$.

Theorem 3.1(2). The second part of Theorem 3.1 states that if $a, b \in \mathbb{Z}$ and p an odd prime, then

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$

Theorem 3.3(2). The second part of Theorem 3.3 states that if p is an odd prime,

$$\left(\frac{2}{p}\right) = (-1)^{\left(p^2 - 1\right)/8}.$$

Theorem 3.4. The Gaussian reciprocity law. If p and q are distinct odd primes, then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}.$$

Solution: Set p=61 and note $-42=-1\cdot 2\cdot 3\cdot 7$. By Theorem 3.1(2), we have

$$\left(\frac{-42}{61}\right) = \left(\frac{-1}{61}\right) \left(\frac{2}{61}\right) \left(\frac{3}{61}\right) \left(\frac{7}{61}\right)$$

If $a=-1,\ a^{(p-1)/2}=(-1)^{30}=1\equiv 1\ (\mathrm{mod}\ 61).$ By Theorem $2.37^*,\ -1$ is a quadratic residue modulo $p=61,\ \mathrm{so}\ \left(\frac{-1}{61}\right)=1.$ If $a=2,\ \mathrm{then}$ by Theorem $3.3(2),\ \left(\frac{2}{61}\right)=(-1)^{(61^2-1)/8}=-1.$ If $a=3,\ \mathrm{by}$ Theorem $3.4,\ \left(\frac{3}{61}\right)\left(\frac{61}{3}\right)=(-1)^{\frac{2}{2}\cdot\frac{60}{2}}=1.$ Since both 3 and 61 are prime, $\left(\frac{61}{3}\right)=\pm 1,\ \mathrm{so}$ our equation becomes $\left(\frac{3}{61}\right)=\left(\frac{61}{3}\right)\cdot 1=\left(\frac{61}{3}\right).$ Theorem 2.37^* yields $61^{2/2}=61\equiv 1\ (\mathrm{mod}\ 3),\ \mathrm{so}\ \mathrm{by}\ \mathrm{definition},\ \left(\frac{61}{3}\right)=1=\left(\frac{3}{61}\right).$ If $a=7,\ \mathrm{then}\ \mathrm{Theorem}\ 3.4$ gives $\left(\frac{7}{61}\right)\left(\frac{61}{7}\right)=(-1)^{\frac{6}{2}\cdot\frac{60}{2}}=(-1)^{90}=1.$ Using a similar argument as the previous sentence gives $\left(\frac{7}{61}\right)=\left(\frac{61}{7}\right).$ Then, $61^{6/2}=61^3=226981\equiv 6\not\equiv 1\ (\mathrm{mod}\ 7),\ \mathrm{so}\ \left(\frac{61}{7}\right)=-1=\left(\frac{7}{61}\right).$ By multiplication, we have $\left(\frac{-42}{61}\right)=1.$