数学分析B2汪老师班第三周作业答案参考

9.2:21,22,23,24,36(2),(5),38

21.求函数 u = xyz 在点 (1, 2, -1) 沿方向 l = (3, -1, 1) 的方向微商 . 根据方向微商的计算公式

$$\frac{\partial u}{\partial \boldsymbol{l}} = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right) \cdot \frac{\boldsymbol{l}}{|\boldsymbol{l}|} = (-2, -1, 2) \cdot \frac{(3, -1, 1)}{\sqrt{11}} = -\frac{3\sqrt{11}}{11}$$

22.试求函数 $z=\arctan\frac{y}{x}$ 在圆 $x^2+y^2-2x=0$ 上一点 $P\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$ 处沿该圆周逆时针方向上的方向微商 .

$$\mathbf{l} = \left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right) \quad \mathbf{grad}(z) = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

则在 $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ 点的方向微商为:

$$\mathbf{grad}(z) \cdot \vec{l}_{x=\frac{1}{2},y=\frac{\sqrt{3}}{2}} = \frac{1}{2}$$

23.求函数 $u=x^2+2y^2+3z^2+xy+3x-2y-6z$ 在点 (1,1,-1) 的梯度和最大方向微商 .

$$u'_x = 2x + y + 3, u'_y = x + 4y - 2, u'_z = 6z - 2$$

$$u_x'(1,1,-1) = 6, u_y'(1,1,-1) = 4, u_z'(1,1,-1) = -12$$

 $\operatorname{\mathbf{grad}}(u)|_{(1,1,-1)} = (6,3,-12)$

$$\left(\frac{\partial f}{\partial \vec{e}}\right)_{\text{max}} = |\operatorname{gradu}|_{(1,1,-1)}| = 3\sqrt{21}$$

24. 设 r = xi + yj + zk, r = |r|, 试求 (1) grad $\frac{1}{r^2}$; (2) grad $\ln r$.

(1) 由
$$\frac{1}{r^2} = \frac{1}{x^2 + y^2 + z^2}$$
 有

$$\begin{split} \frac{\partial \frac{1}{r^2}}{\partial x} &= -\frac{2x}{\left(x^2 + y^2 + z^2\right)^2} = -\frac{2x}{r^4}, \\ \frac{\partial \frac{1}{r^2}}{\partial y} &= -\frac{2y}{\left(x^2 + y^2 + z^2\right)^2} = -\frac{2y}{r^4}, \\ \frac{\partial \frac{1}{r^2}}{\partial z} &= -\frac{2z}{\left(x^2 + y^2 + z^2\right)^2} = -\frac{2z}{r^4}, \end{split}$$

所以 $\operatorname{grad} \frac{1}{r^2} = -\frac{2}{r^4} \mathbf{r}$

(2) 由 $\ln r = \frac{1}{2} \ln (x^2 + y^2 + z^2)$ 易有 grad $\ln r = \frac{1}{r^2} \mathbf{r}$.

36.求下列复合函数的微分 du

- (2) $u = f(\xi, \eta), \xi = xy, \eta = \frac{x}{\eta}$;
- (5) $u = f(\xi, \eta, \zeta), \xi = x^2 + y^2, \eta = x^2 y^2, \zeta = 2xy$.
- (2) $du = \left(f_1'y + \frac{f_2'}{y}\right) dx + \left(f_1'x \frac{xf_2'}{y^2}\right) dy.$
- (5) $du = (2xf_1' + 2xf_2' + 2yf_3') dx + (2yf_1' 2yf_2' + 2xf_3') dy$.
- **38.**求直角坐标和极坐标的坐标变换 $x=x(r,\theta)=r\cos\theta, y=y(r,\theta)=r\sin\theta$ 的 Jacobi 行列式. 由题意得:

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix}$$

又知:

$$\frac{\partial x}{\partial r} = \cos \theta, \frac{\partial x}{\partial \theta} = -r \sin \theta, \frac{\partial y}{\partial r} = \sin \theta, \frac{\partial y}{\partial \theta} = r \cos \theta$$

代入得:

$$\frac{\partial(x,y)}{\partial(r,\theta)} = r\cos^2\theta + r\sin^2\theta = r$$

9.4:3,4,8(1),(4),9,11,16(1),17(2)

3.证明曲线 $x = a \cos t, y = a \sin t, z = bt$ 的切线与 Oz 轴成定角.

$$\mathbf{r}'(t) = (-a\sin t, a\cos t, b) \ \mathbf{k} = (0, 0, 1)$$

$$\cos \theta = \frac{r' \cdot k}{|r'| \cdot |k|} = \frac{b}{\sqrt{a^2 + b^2}}$$
 为常数

- :. 曲线的切线与 Oz 轴夹角为常值
- **4.** 设 $r = \left(\frac{t}{1+t}, \frac{1+t}{t}, t^2\right)(t>0)$,判断它是不是简单曲线 ,是不是光滑曲线 ,并求出它在 t=1 时的切线方程和法平面方程 .

x(t)在t > 0时单调,且x'(t), y'(t), z'(t)均连续,故r是简单曲线也是光滑曲线.

$$m{r}'(t) = \left(rac{1}{(1+t)^2}, -rac{1}{t^2}, 2t
ight)$$

将 t=1 代入得切线的方向向量 $\vec{v}=(\frac{1}{4},-1,2)$, 又 $r(1)=(\frac{1}{2},2,1)$.

从而切线方程: $\frac{4x-2}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$.

法平面方程: $\frac{1}{4}x - y + 2z - \frac{1}{8} = 0$.

8.求下列曲面在指定点的切平面和法线方程.

- (1) $z = \sqrt{x^2 + y^2} xy$, 在点 (3, 4, -7);
- (4) $4 + \sqrt{x^2 + y^2 + z^2} = x + y + z$, \angle E \angle E (2, 3, 6).
- (1) $\boldsymbol{n} = (17, 11, 5), \quad \boldsymbol{\pi} : 17x + 11y + 5z 60 = 0 \quad \frac{x-3}{17} = \frac{y-4}{11} = \frac{z+7}{5}$
- (4) $\mathbf{n} = (5, 4, 1), \quad \boldsymbol{\pi} : 5x + 4y + z 28 = 0 \quad \frac{x-2}{5} = \frac{y-3}{4} = \frac{z-6}{1}$
- **9.**求椭球面 $x^2 + 2y^2 + z^2 = 1$ 上平行于平面 x y + 2z = 0 的切平面方程.

 $x^2 + 2y^2 + z^2 = 1$ 在点 $(x_0, y_0 z_0)$ 处切平面方程为 $x_0 x + 2y_0 y + z_0 z = 1$ 平面 x - y + 2z = 0 法向量 (1. -1.2),故 $(x_0, 2y_0, z_0) = \lambda(1, -1, 2)$

$$x_0^2 + 2y_0^2 + z_0^2 = 1 \Longrightarrow \lambda = \pm \frac{\sqrt{22}}{11}$$

故切平面
$$\left(x - \frac{\sqrt{22}}{11}\right) - \left(y + \frac{\sqrt{22}}{22}\right) + 2\left(z - \frac{2\sqrt{22}}{11}\right) = 0$$
 $\dot{x}'\left(x + \frac{\sqrt{2}}{11}\right) - \left(y - \frac{\sqrt{22}}{22}\right) + 2\left(z + \frac{2\sqrt{22}}{11}\right) = 0$

11.求椭球面 $x^2+2y^2+3z^2=21$ 上某点 M 处的切平面 π 的方程 ,使 π 过已知直线 $L:\frac{x-6}{2}=\frac{y-3}{1}=\frac{2z-1}{-2}$.

 M_0 . 处切平面方程 $x_0x + 2y_0y + 3z_0z = 21$

 π 过直线(π 过点($6,3,\frac{1}{2}$)且 π 的法向量垂直于(2,1,-1)) \Longrightarrow $\begin{cases} 6x_0 + 6y_0 + \frac{3}{2}z_0 = 21\\ 2x_0 + 2y_0 - 3z_0 = 0 \end{cases}$

$$x_0^2 + 2y_0^2 + 3z_0^2 = 21 \Longrightarrow (x_0, y_0, z_0) = (3, 0, 2), (1, 2, 2)$$

 $\pi: x + 2z = 7$ $\pi: x + 4y + 6z = 21$

16.求下列平面曲线在给定点的切线和法线方程

(1)
$$x^3y + xy^3 = 3 - x^2y^2$$
, 在点 (1,1);

 $3x^2ydx + x^3dy + y^3dx + 3xy^2dy = -2xy^2dx - 2x^2ydy$

$$\frac{dy}{dx} = -\frac{y^3 + 2xy^2 + 3x^2y}{3xy^2 + 2x^2y + x^3} \Longrightarrow \frac{dy}{dx}\Big|_{(1,1)} = -1$$

切线:y = -x + 2 法线:y = x

17(2)求下列曲线在给定点的切线和法平面方程

$$\begin{cases} 2x^2 + 3y^2 + z^2 = 47, \\ x^2 + 2y^2 = z \end{cases}$$
 在点 $(-2, 1, 6)$.
$$F(x, y, z) \triangleq 2x^2 + 3y^2 + z^2 - 47 \quad G \triangleq = x^2 + 2y^2 - z$$

$$\nabla F(-2, 1, 6) = (-8, 6, 12)$$

$$\nabla G(-2, 1, 6) = (-4, 4, -1)$$

$$\tau = \nabla F \times \nabla G = (-54, -56, -8)$$
 切线: $\frac{x+2}{27} = \frac{y-1}{28} = \frac{z-6}{4}$ 法平面: $27(x+2) + 28(y-1) + 4(z-6) = 0$

9.5:2(2),3,4(1),(3),(7),7(1),(3),(4)

- **2.**求下列函数由点 (x_0, y_0) 变到 $(x_0 + h, y_0 + k)$ 时函数的增量.
- (2) $f(x,y) = x^2y + xy^2 2xy, (x_0, y_0) = (1, -1).$ $h^2 + hk^2 + k^2 - h^2 - 2hk + h - 3k$
- 3.对于函数 $f(x,y) = \sin \pi x + \cos \pi y$,用中值定理证明 ,存在一个数 $\theta, 0 < \theta < 1$ 使得

$$\frac{4}{\pi} = \cos\frac{\pi\theta}{2} + \sin\left[\frac{\pi}{2}(1-\theta)\right]$$

 $f(x_0 + h, y_0 + k) - f(x_0, y_0) = f'_x(x_0 + \theta h, y_0 + \theta k) h + f'_y(y_0 + \theta h, y_0 + \theta k) k$ $\Leftrightarrow x_0 = 0, y_0 = -\frac{1}{2} \quad h = k = \frac{1}{2}$

4.求下列函数的Taylor公式,并指出展开式成立的区域.

- (1) $f(x,y) = e^x \ln(1+y)$ 在点 (0,0), 直到三阶为止;
- (3) $f(x,y) = \frac{1}{1-x-y+xy}$ 在点 (0,0), 直到 n 阶为止;
- (7) $f(x,y) = 2x^2 xy y^2 6x 3y + 5$ 在点 (1,-2) 的 Taylor 展开式.
- (1) 成立区域: $\{(x,y) \mid y > -1\}$.

$$f(x,y) = \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o\left(x^3\right)\right) \left(y - \frac{1}{2}y^2 + \frac{1}{3}y^3 + o\left(y^3\right)\right)$$
$$= y + xy - \frac{1}{2}y^2 + \frac{1}{2}x^2y - \frac{1}{2}xy^2 + \frac{1}{3}y^3 + o\left(\rho^3\right)$$

(3) 成立区域: $\{(x,y) \mid x < -1, y < -1\}$.

$$f(x,y) = \frac{1}{(1-x)(1-y)} = \left(\sum_{i=0}^{n} x^{i} + o(x^{n})\right) \left(\sum_{i=0}^{n} y^{i} + o(y^{n})\right)$$
$$= \sum_{k=0}^{n} \sum_{i=0}^{k} x^{i} y^{k-i} + o(\rho).$$

(7) 成立区域: \mathbb{R}^2 . 配方得:

$$f(x,y) = 2(x-1)^2 - (y+2)^2 - (x-1)(y+2) + 5.$$

7. 求下列函数的极值.

(1)
$$f(x,y) = xy + \frac{50}{x} + \frac{20}{y}(x > 0, y > 0);$$

(3)
$$f(x,y) = e^{2x} (x + 2y + y^2);$$

$$(4) (x^2 + y^2)^2 = a^2 (x^2 - y^2)$$
, 求隐函数 $y = y(x)$ 的极值 .

(1)
$$\frac{\partial f}{\partial x} = y - \frac{50}{x^2}, \frac{\partial f}{\partial y} = x - \frac{20}{y^2}, \frac{\partial^2 f}{\partial x^2} = \frac{100}{x^3}, \frac{\partial^2 f}{\partial x \partial y} = 1, \frac{\partial^2 f}{\partial y^2} = \frac{40}{y^3}.$$

$$\Leftrightarrow \frac{\partial f}{\partial x} = 0, \frac{\partial f}{\partial y} = 0,$$

可解得
$$x = 5, y = 2$$

当
$$x > 0, y > 0$$
 时, $Q(h, k) = 0.8h^2 + 2hk + 5k^2$ 是正定的,

因此
$$(x,y) = (5,2)$$
 是小极值点,极小值为 30.

(3)
$$\frac{\partial f}{\partial x} = 2e^{2x}(x+2y+y^2) + e^{2x}, \frac{\partial f}{\partial x} = e^{2x}(2+2y)$$

$$\begin{array}{l} (3) \ \frac{\partial f}{\partial x}=2e^{2x}\left(x+2y+y^2\right)+e^{2x}, \\ \frac{\partial^2 f}{\partial y}=e^{2x}(2+2y) \\ \frac{\partial^2 f}{\partial x^2}=e^{2x}\left(4x+8y+4y^2+\ 4\right), \\ \frac{\partial^2 f}{\partial x\partial y}=e^{2x}(4+4y), \\ \frac{\partial^2 f}{\partial y^2}=2e^{2x}. \end{array}$$

令
$$\frac{\partial f}{\partial x} = 0$$
, $\frac{\partial f}{\partial y} = 0$, 可解得 $x = 0.5$, $y = -1$.

由于
$$Q(h,k) = e(2h^2 + 2k^2)$$
 是正定的,因此 $(x,y) = (0.5,-1)$ 是极小值点,极小值为 $-\frac{e}{2}$

(4)
$$\exists f(x,y) = (x^2 + y^2)^2 - a^2(x^2 - y^2)$$

因此
$$\frac{dy}{dx} = -\frac{2x(x^2+y^2)-a^2x}{2y(x^2+y^2)+a^2y} = 0 \Leftrightarrow x = 0$$
, 或 $2(x^2+y^2) = a^2$.

若
$$x=0$$
, 那么 $f(x,y)=0 \rightarrow y=0$, 从而 $\frac{\partial f}{\partial y}=0$, 这说明 $y(x)$ 不存在 .

若
$$2(x^2+y^2)=a^2$$
, 那么 $f(x,y)=0 \to x^2=\frac{3}{8}a^2, y^2=\frac{1}{8}a^2, a\neq 0$. 再通过计算 $\frac{d^2y}{dx^2}$

可知,
$$\left(\pm\sqrt{\frac{3}{8}}|a|,\pm\sqrt{\frac{1}{8}}|a|\right)$$
 是极值点, y 极大值为 $\sqrt{\frac{1}{8}}|a|$),极小值为 $-\sqrt{\frac{1}{8}}|a|$