Index

Α	Degree Centrality with, 83
A* algorithm	importing social graph data into, 80
Shortest Path, 56-58	importing software dependency graph data
with Neo4j, 57	into, 114
actual density, 24	importing transport dataset into, 43
acyclic graphs, 18	installing, 34
cyclic graphs vs., 22-23	Label Propagation with, 130
trees and, 23	online resources, 228
aggregateMessages, 54, 67, 86	PageRank with, 103-105
airline flight data	personalized PageRank with, 107
analyzing with Apache Spark, 166-181	Shortest Path algorithm (weighted), 54-56
delays from ORD, 170-172	Single Source Shortest Path algorithm with,
exploratory analysis, 168	67-69
fog-related delays from SFO, 172-174	Spark Graph project, 33
interconnected airports by airline, 174-181	Strongly Connected Components with, 120
popular airports, 168-170	Triangle Count with, 117
Alexa, 185	when to use, 31
algorithm-centric processing, 30	Approximate Betweenness Centrality, 160
All Pairs Shortest Path (APSP) algorithm, 40,	artificial intelligence (AI), 183
60-65	average degree, 81
sequence of operations, 60-62	average shortest path, 27
when to use, 62	Awesome Procedures on Cypher (APOC)
with Apache Spark, 62	library, 35, 148, 192, 228
with Neo4j, 63-65	
Amazon, 185	В
anti-money laundering (AML) analysis, xiv	Bacon number, 50
Apache Spark	Barabási, Albert-László, 11
about, 32-34	Betweenness Centrality algorithm, 78, 92-99
All Pairs Shortest Path algorithm with, 62	bridges and control points, 93
analyzing airline flight data with, 166-181	calculating, 93
(see also airline flight data)	when to use, 94
Breadth First Search with, 46	with Neo4j, 95-97
Closeness Centrality with, 86-88	with Yelp dataset, 159-162
Connected Components with, 125-126	binary classification, 200

bipartite graphs, 18, 25	Configuration that Outperforms a Single
Boruvka, Otakar, 70	Thread (COST), 29
Breadth First Search (BFS), 45-47	Connected Components algorithm, 109,
bridges, 93	124-127
Bridges of Königsberg problem, 2, 49	when to use, 124
bulk data import, Neo4j Import tool for,	with Apache Spark, 125-126
225-227	with Neo4j, 126
Bulk Synchronous Parallel (BSP), 30	connected graphs, 19
	context, xiv, 183
C	costs, 50, 57
cancer research, xiv	cycles, 22
Centrality algorithms, 27, 77-108	cyclic graphs, 18
Betweenness Centrality, 92-99	Cypher, 33, 166, 225
Closeness Centrality, 84-92	Cypher for Apache Spark (CAPS), 33
Degree Centrality, 81-84	
overview, 78	D
Randomized-Approximate Brandes, 98	D'Orazio, Francesco, 10
social graph data for, 79-81	damping/dampening factor, 102, 104
Chicago O'Hare International Airport (ORD),	DataFrame, 32
data in delays from, 170-172	datasets, sources for, 228
citation networks, 124	deduplication, 124
Clauset, A., 5	Degree Centrality algorithm, 78, 81-84
clique, 23	reach of a node, 81
Closeness Centrality algorithm, 78, 84-92	when to use, 82
Harmonic Centrality variation, 91	with airport data, 168-170
Wasserman Faust variation, 89-91	with Apache Spark, 83
when to use, 85	degree distribution, 81
with Apache Spark, 86-88	degree of a node, 81
with Neo4j, 88	delta-stepping algorithm, 69
Clustering Coefficient algorithm, 109	dense graphs, 18, 23
(see also Triangle Count and Clustering	density of relationships, 111
Coefficient algorithms)	Depth First Search (DFS), 48-49, 120
clusters, defined, 19	diameter of a graph, 27
Colorado Index of Complex Networks (ICON),	Dijkstra, Edsger, 50
228	Dijkstra's algorithm (see Shortest Path algo-
community detection algorithms, 27, 109-143	rithm)
Connected Components, 124-127	directed acyclic graph (DAG), 22
for link prediction, 218-223	directed graphs, 18, 21
Label Propagation algorithm, 127-133	directional relationships, xiii
Louvain Modularity, 133-143	disconnected graphs, 19
software dependency graph data for,	distance (term), 50
112-114	
Strongly Connected Components, 119-124	E
Triangle Count and Clustering Coefficient,	-
114-119	Eguíluz, Víctor M., 4
validating communities, 143	entity relationship diagram (ERD), xiii
complete graph, 23	Erdös, Paul, 51
components, defined, 19	Euler, Leonhard, 2
1 ,	Eulerian path, 49

F	representative platforms, 31-37
Facebook, 184	selecting a platform, 31
Faust, Katherine, 89	graph processing, 6-8, 30
feature extraction, 186	Graph search algorithms, 39-49
feature importance, 210	defined, 39
feature selection, 186	Graph Search algorithms, 40
feature vectors, 186	Breadth First Search, 45-47
features	Depth First Search, 48-49
connected feature extraction/selection,	transport graph data for, 41-44
185-189	graph theory, 15-28
graph algorithm features, 188	about, 15-28
graphy, 187	origins of, 2
Fischer, Michael J., 124	terminology, 15
Fleurquin, Pablo, 4	types and structures, 16
foodweb, 5	graph traversal algorithms
Freeman, Linton C., 81, 93	Breadth First Search, 45-47
1100111111, 21111011 01, 01, 50	Depth First Search, 48-49
c	graph-centric processing, 30
G	GraphFrames, 32, 103, 114
Galler, Bernard A., 124	graphs (generally)
Girvan–Newman (GN) benchmark, 143	about, 2
global clustering coefficient, 116	acyclic vs. cyclic, 18, 22-23
global patterns, 6	bipartite, 18, 25
Google	common attributes, 18
PageRank, 99	connected vs. disconnected, 19
Pregel, 30	flavors of, 18-25
Grandjean, Martin, 4	k-partite, 18, 25
graph algorithms (generally)	monopartite, 18, 24
about, 3-5	sparse vs. dense, 23
centrality, 27	undirected vs. directed, 18, 21
community detection, 27	unweighted vs. weighted, 18, 19
defined, 3	graphy datasets, 228
(see also specific algorithms)	graphy features, 187
importance of, 8-12	
in practice, 145-181	Н
pathfinding, 27	Hamiltonian path, 49
types of, 27	Harmonic Centrality closeness algorithm, 91
graph analytics	Hart, Peter, 57
about, 3-5	hop (term), 21, 50
defined, 3	hybrid transactional and analytical processing
use cases, 12	(HTAP), 7
graph compute engines, 31	(111111), /
graph databases, 31	1
graph embedding, defined, 186	
graph global, 6, 186	impurity, 211
graph local, 6, 186	in-links, 21
graph platforms	influence, 99
Apache Spark, 32-34	islands, 19
Neo4j, 34-37	
platform considerations, 29	

K	M
k-partite graphs, 18, 25	machine learning (ML)
Koblenz Network Collection (KONECT), 228	connected feature extraction/selection,
Königsberg Bridges problem, 2, 49	185-189
	graph embeddings, 186
L	graphs, context, and accuracy, 184
Label Propagation algorithm (LPA), 109,	importance of context in, 183
127-133	link prediction, 183
pull method, 128	Marchiori, M., 91
push method, 127	marketing campaigns, xiv
seed labels, 129	matplotlib, 148
semi-supervised learning, 129	maximum density, 24
when to use, 129	Minimum Spanning Tree algorithm, 40, 70-73
with Apache Spark, 130	when to use, 71
with Neo4j, 131-133	with Neo4j, 72
with Yelp dataset, 163-165	modularity, 134
label, defined, 15	(see also Louvain Modularity algorithm)
labeled property graph model, 15	calculating, 134-135
Lancichinetti-Fortunato-Radicchi (LFR)	quality-based grouping and, 134-137
benchmark, 143	money laundering, xiv
landmarks, <mark>62</mark>	monopartite graphs, 18, 24
Latora, V., 91	Moore, C., 5
leaf nodes, 22	Moore, Edward F., 45
Lee, C. Y., 45	multigraph, 17
link prediction, 190-223	
balancing/splitting data for training/testing,	N
197-199	negative weights, 51
basic graph features for, 201-213	Neo4j
coauthorship graph, 193	A* algorithm with, 57
community detection, 218-223	All Pairs Shortest Path algorithm with,
creating balanced training and testing data-	63-65
sets, 194-199	analyzing Yelp data with, 145-166
creating machine learning pipeline, 200	(see also Yelp dataset)
defined, 189	Betweenness Centrality with, 95-97
importing data into Neo4j, 192	Closeness Centrality with, 88
predicting missing links, 199	Connected Components with, 126
tools and data, 190-192	importing Citation Network Dataset into,
Triangles and Clustering Coefficient,	192
214-218	importing social graph data into, 81
literature-based discovery (LBD), xiv	importing software dependency graph data
local clustering coefficient, 115, 118	into, 114
Louvain Modularity algorithm, 109, 133-143	importing transport dataset into, 44
for link prediction, 219-221	Label Propagation with, 131-133
quality-based grouping via modularity,	local clustering coefficient with, 118
134-137 when to use, 137	Louvain Modularity with, 138-143 Minimum Spanning Tree algorithm with 72
with Neo4j, 138-143	Minimum Spanning Tree algorithm with, 72 online resources, 228
with NCOT, 130-143	PageRank with, 105-107
	Random Walk algorithm with, 74
	Random wan argonum with, /4

Randomized-Approximate Brandes with, 98	path, defined, 16
Shortest Path algorithm (unweighted),	Pathfinding algorithms, 27, 39-44
51-53	All Pairs Shortest Path, 60-65
Shortest Path algorithm (weighted), 53	Minimum Spanning Tree algorithm, 70-73
Single Source Shortest Path algorithm with,	Random Walk algorithm, 73-75
69	Shortest Path, 49-60
Strongly Connected Components with,	Single Source Shortest Path, 65-70
122-124	transport graph data for, 41-44
Triangles with, 117	weighted graphs and, 20
when to use, 32	Pearson, Karl, 73
Yen's k-Shortest Paths algorithm, 58	Personalized PageRank (PPR), 103, 107
Neo4j Algorithms library	pivotal nodes, 93
Shortest Path (unweighted), 51-53	power law, 11
Shortest Path (weighted), 53	preferential attachment, 9
Neo4j Desktop, <mark>36</mark>	Pregel, 30
Neo4j Graph Platform, 34-37	Prim's algorithm, 70
Neo4j Import tool, 225-227	product recommendation engines, 185
Network Science, 4	properties, defined, 16
networks	pseudograph, 17
graph as representation of, 3	pyspark REPL, 34
types and structures, 16	
Newman, M. E. J., 5	Q
Nilsson, Nils, 57	quality-based grouping, 134-137
node-centric processing, 30	1 7 0 1 0
nodes	R
Centrality and, 77	
defined, 2	Raghavan, Usha Nandini, 127
	Ramasco, José J., 4 random forest, 200, 213
0	random network, 18
online analytical processing (OLAP), 7	Random Walk algorithm, 40, 73-75
online learning, 229	when to use, 74
online transaction processing (OLTP), 7	with Neo4j, 74
out-links, 21	Randomized-Approximate Brandes (RA-
	Brandes) centrality algorithm, 98
P	rank sink, 102
Page, Larry, <mark>99</mark>	Raphael, Bertram, 57
PageRank, 78, 99-108	reach of a node, 81
and influence, 99	Reif, Jennifer, 37
convergence implementation, 105	relationship type, 16
formula for, 100	relationship-centric processing, 30
iteration/random surfers/rank sinks, 102	relationships (term), 1, 2
Personalized PageRank variant, 107	relationships (term), 1, 2
when to use, 103	S
with Apache Spark, 103-105	_
with fixed number of iterations, 104	San Francisco International Airport (SFO), data
with Neo4j, 105-107	in fog-related delays from, 172-174
with Yelp dataset, 154-157	scale-free network, 18
pandas library, 148	scaling law (power law), 11
Pareto distribution, 11	search engines, xiv

seed labels, 129	Traveling Salesman Problem (TSP), 49
semi-supervised learning, 129	traversal-centric processing, 30
Seven Bridges of Königsberg problem, 2, 49	trees, 23
Shortest Path algorithm, 40, 49-60	Trémaux, Charles Pierre, 48
A* algorithm, 56-58	Triangle Count and Clustering Coefficient algo-
when to use, 50	rithms, 109, 114-119
with Apache Spark (weighted), 54-56	for link prediction (machine learning exam-
with Neo4j (unweighted), 51-53	ple), 214-218
with Neo4j (weighted), 53	global clustering coefficient, 116
Yen's k-Shortest Paths variation, 58	local clustering coefficient, 115
simple graph, 16	local clustering coefficient with Neo4j, 118
Single Source Shortest Path (SSSP) algorithm,	Triangle Count with Apache Spark, 117
40, 65-70	Triangles with Neo4j, 117
with Apache Spark, 67-69	when to use, 116
with Neo4j, 69	trip planning app, 152-159
small-world network, 18	Twitter
social graph data	Label Propagation, 129
for Centrality algorithms, 79-81	Personalized PageRank, 103
importing into Apache Spark, 80	
importing into Neo4j, 81	U
social network analysis, 116	undirected graphs, 18, 21
software dependency graph data, 112-114	Union Find, 124
importing into Apache Spark, 114	unweighted graphs, 18, 19
importing into Neo4j, 114	unweighted shortest paths, 51-53
spanning trees, 23	univerginea energed pains, et ee
Spark Graph project, 33	V
Spark Graph project, 33 sparse graphs, 18, 23	V
	vertices, 2
sparse graphs, 18, 23	•
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228	vertices, 2 (see also nodes)
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16	vertices, 2
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9	vertices, 2 (see also nodes) W Wasserman Faust closeness algorithm, 89-91
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9 Strongly Connected Components (SCC) algo-	vertices, 2 (see also nodes)
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9 Strongly Connected Components (SCC) algorithm, 109, 119-124	vertices, 2 (see also nodes) W Wasserman Faust closeness algorithm, 89-91
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9 Strongly Connected Components (SCC) algorithm, 109, 119-124 when to use, 120	vertices, 2 (see also nodes) W Wasserman Faust closeness algorithm, 89-91 Wasserman, Stanley, 89
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9 Strongly Connected Components (SCC) algorithm, 109, 119-124 when to use, 120 with airport data, 175-180	vertices, 2 (see also nodes) W Wasserman Faust closeness algorithm, 89-91 Wasserman, Stanley, 89 Weakly Connected Components, 124
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9 Strongly Connected Components (SCC) algorithm, 109, 119-124 when to use, 120 with airport data, 175-180 with Apache Spark, 120	vertices, 2 (see also nodes) W Wasserman Faust closeness algorithm, 89-91 Wasserman, Stanley, 89 Weakly Connected Components, 124 weight (term), 50
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9 Strongly Connected Components (SCC) algorithm, 109, 119-124 when to use, 120 with airport data, 175-180 with Apache Spark, 120 with Neo4j, 122-124	vertices, 2 (see also nodes) W Wasserman Faust closeness algorithm, 89-91 Wasserman, Stanley, 89 Weakly Connected Components, 124 weight (term), 50 weighted graphs, 18, 19
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9 Strongly Connected Components (SCC) algorithm, 109, 119-124 when to use, 120 with airport data, 175-180 with Apache Spark, 120 with Neo4j, 122-124 structural hole, 119	vertices, 2 (see also nodes) W Wasserman Faust closeness algorithm, 89-91 Wasserman, Stanley, 89 Weakly Connected Components, 124 weight (term), 50 weighted graphs, 18, 19 Weighted Shortest Paths
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9 Strongly Connected Components (SCC) algorithm, 109, 119-124 when to use, 120 with airport data, 175-180 with Apache Spark, 120 with Neo4j, 122-124 structural hole, 119	vertices, 2 (see also nodes) W Wasserman Faust closeness algorithm, 89-91 Wasserman, Stanley, 89 Weakly Connected Components, 124 weight (term), 50 weighted graphs, 18, 19 Weighted Shortest Paths with Apache Spark, 54-56
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9 Strongly Connected Components (SCC) algorithm, 109, 119-124 when to use, 120 with airport data, 175-180 with Apache Spark, 120 with Neo4j, 122-124 structural hole, 119 subgraph, defined, 16	vertices, 2 (see also nodes) W Wasserman Faust closeness algorithm, 89-91 Wasserman, Stanley, 89 Weakly Connected Components, 124 weight (term), 50 weighted graphs, 18, 19 Weighted Shortest Paths with Apache Spark, 54-56 with Neo4j, 53
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9 Strongly Connected Components (SCC) algorithm, 109, 119-124 when to use, 120 with airport data, 175-180 with Apache Spark, 120 with Neo4j, 122-124 structural hole, 119 subgraph, defined, 16 T teleportation, 102	vertices, 2 (see also nodes) W Wasserman Faust closeness algorithm, 89-91 Wasserman, Stanley, 89 Weakly Connected Components, 124 weight (term), 50 weighted graphs, 18, 19 Weighted Shortest Paths with Apache Spark, 54-56 with Neo4j, 53
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9 Strongly Connected Components (SCC) algorithm, 109, 119-124 when to use, 120 with airport data, 175-180 with Apache Spark, 120 with Neo4j, 122-124 structural hole, 119 subgraph, defined, 16 T teleportation, 102 testing datasets, 194-199	vertices, 2 (see also nodes) W Wasserman Faust closeness algorithm, 89-91 Wasserman, Stanley, 89 Weakly Connected Components, 124 weight (term), 50 weighted graphs, 18, 19 Weighted Shortest Paths with Apache Spark, 54-56 with Neo4j, 53 weightProperty, 107
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9 Strongly Connected Components (SCC) algorithm, 109, 119-124 when to use, 120 with airport data, 175-180 with Apache Spark, 120 with Neo4j, 122-124 structural hole, 119 subgraph, defined, 16 T teleportation, 102 testing datasets, 194-199 training datasets, 194-199	vertices, 2 (see also nodes) W Wasserman Faust closeness algorithm, 89-91 Wasserman, Stanley, 89 Weakly Connected Components, 124 weight (term), 50 weighted graphs, 18, 19 Weighted Shortest Paths with Apache Spark, 54-56 with Neo4j, 53 weightProperty, 107 Y Yelp dataset
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9 Strongly Connected Components (SCC) algorithm, 109, 119-124 when to use, 120 with airport data, 175-180 with Apache Spark, 120 with Neo4j, 122-124 structural hole, 119 subgraph, defined, 16 T teleportation, 102 testing datasets, 194-199 training datasets, 194-199 training, online resources for, 229	vertices, 2 (see also nodes) W Wasserman Faust closeness algorithm, 89-91 Wasserman, Stanley, 89 Weakly Connected Components, 124 weight (term), 50 weighted graphs, 18, 19 Weighted Shortest Paths with Apache Spark, 54-56 with Neo4j, 53 weightProperty, 107 Y Yelp dataset analyzing with Neo4j, 145-166
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9 Strongly Connected Components (SCC) algorithm, 109, 119-124 when to use, 120 with airport data, 175-180 with Apache Spark, 120 with Neo4j, 122-124 structural hole, 119 subgraph, defined, 16 T teleportation, 102 testing datasets, 194-199 training datasets, 194-199 training, online resources for, 229 transitive relationships, xiii	vertices, 2 (see also nodes) W Wasserman Faust closeness algorithm, 89-91 Wasserman, Stanley, 89 Weakly Connected Components, 124 weight (term), 50 weighted graphs, 18, 19 Weighted Shortest Paths with Apache Spark, 54-56 with Neo4j, 53 weightProperty, 107 Y Yelp dataset analyzing with Neo4j, 145-166 Bellagio cross-promotion, 159-162
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9 Strongly Connected Components (SCC) algorithm, 109, 119-124 when to use, 120 with airport data, 175-180 with Apache Spark, 120 with Neo4j, 122-124 structural hole, 119 subgraph, defined, 16 T teleportation, 102 testing datasets, 194-199 training datasets, 194-199 training, online resources for, 229 transitive relationships, xiii translytics, 7	vertices, 2 (see also nodes) W Wasserman Faust closeness algorithm, 89-91 Wasserman, Stanley, 89 Weakly Connected Components, 124 weight (term), 50 weighted graphs, 18, 19 Weighted Shortest Paths with Apache Spark, 54-56 with Neo4j, 53 weightProperty, 107 Y Yelp dataset analyzing with Neo4j, 145-166 Bellagio cross-promotion, 159-162 finding influential hotel reviewers, 154-159
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9 Strongly Connected Components (SCC) algorithm, 109, 119-124 when to use, 120 with airport data, 175-180 with Apache Spark, 120 with Neo4j, 122-124 structural hole, 119 subgraph, defined, 16 T teleportation, 102 testing datasets, 194-199 training datasets, 194-199 training, online resources for, 229 transitive relationships, xiii translytics, 7 transport datasets, 41-44	vertices, 2 (see also nodes) W Wasserman Faust closeness algorithm, 89-91 Wasserman, Stanley, 89 Weakly Connected Components, 124 weight (term), 50 weighted graphs, 18, 19 Weighted Shortest Paths with Apache Spark, 54-56 with Neo4j, 53 weightProperty, 107 Y Yelp dataset analyzing with Neo4j, 145-166 Bellagio cross-promotion, 159-162 finding influential hotel reviewers, 154-159 finding similar categories, 162-166
sparse graphs, 18, 23 Stanford Network Analysis Project (SNAP), 228 strict graph, 16 Strogatz, Steven, 9 Strongly Connected Components (SCC) algorithm, 109, 119-124 when to use, 120 with airport data, 175-180 with Apache Spark, 120 with Neo4j, 122-124 structural hole, 119 subgraph, defined, 16 T teleportation, 102 testing datasets, 194-199 training datasets, 194-199 training, online resources for, 229 transitive relationships, xiii translytics, 7	vertices, 2 (see also nodes) W Wasserman Faust closeness algorithm, 89-91 Wasserman, Stanley, 89 Weakly Connected Components, 124 weight (term), 50 weighted graphs, 18, 19 Weighted Shortest Paths with Apache Spark, 54-56 with Neo4j, 53 weightProperty, 107 Y Yelp dataset analyzing with Neo4j, 145-166 Bellagio cross-promotion, 159-162 finding influential hotel reviewers, 154-159

Neo4j Import tool for, 225-227 overview, 148-151 social network, 146 travel business consulting, 157-159

trip planning app, 152-159 Yen's k-Shortest Paths algorithm, 58 Yen, Jin Y., 58