SY19 Automne 2011 TP 3

Théorie de la décision (Règle de Bayes et notion de rejet)

Remarque

Ne faites pas les premières parties du TP (sur la règle de Neyman Pearson et la règle de Bayes). Vous pouvez vous servir du TP 3 en SY09 pour avoir les résultats d'application de la règle de Bayes. Vous aurez à faire la partie de ce TP sur la notion de rejet.

Exercice

On considère un problème de détection de cibles dans lequel la classe ω_1 correspond aux missiles et la classe ω_2 correspond aux avions. Chaque cible est décrite par deux variables X_1 et X_2 issues de deux capteurs différents. Chaque variable suit, dans chaque classe, une loi normale avec les paramètres suivants :

$$f_{11}(x_1) \sim \mathcal{N}(-1, 1), \quad f_{21}(x_1) \sim \mathcal{N}(1, 1),$$

$$f_{12}(x_2) = f_{22}(x_2) \sim \mathcal{N}(0, 1).$$

On suppose l'indépendance conditionnelle de X_1 et X_2 . Les densités conditionnelles du vecteur $\mathbf{X} = (X_1, X_2)'$ sont donc $f_1(\mathbf{x}) = f_{11}(x_1)f_{12}(x_2)$ dans la classe ω_1 et $f_2(\mathbf{x}) = f_{21}(x_1)f_{22}(x_2)$ dans la classe ω_2 .

Dans tout cet exercice, on suppose que les distributions sont connues et ne sont donc pas estimées à partir d'un échantillon.

- 1. Montrer que les distributions f_1 et f_2 sont des distributions normales dont on précisera les vecteurs moyenne et les matrices de variance.
- 2. En utilisant la fonction myrnorm, simuler deux échantillons de taille n=300 issus des classes ω_1 et ω_2 et déterminer pour chacun des échantillons les estimations des différents paramètres de f_1 et f_2 . On effectuera ce travail pour les valeurs de n suivantes : 10,100,1000,10000,100000. Interpréter ces résultats.
- 3. Montrer que les courbes d'iso-densité sont des cercles dont on précisera les rayons.
- 4. Soit $\mathcal{A} = \{a_1, a_2\}$ les actions d'affectation aux classes ω_1 et ω_2 . Pour une règle de décision δ , on définit les probabilités d'erreur $\alpha = P(\delta(\mathbf{X}) = a_2|\omega_1)$ et $\beta = P(\delta(\mathbf{X}) = a_1|\omega_2)$. On rappelle que la règle de Neyman-Pearson minimise β sous la contrainte $\alpha \leq \alpha^*$ pour une valeur α^* fixée appelée niveau de signification.
 - (a) Montrer que la règle de Neyman-Pearson pour ce problème s'exprime en fonction d'une seule variable. Interpréter ce résultat.
 - (b) Donner l'expression de cette règle en fonction de α^* .
 - (c) Construire une fonction, qui en fonction de α^* , dessine la frontière de décision correspondante dans le plan (X_1, X_2) . Application : $\alpha^* = 0.05$ et $\alpha^* = 0.1$.
 - (d) À partir des données simulées précédemment, donner une estimation de α et β .
 - (e) Donner l'expression de la courbe COR $1 \beta = g(\alpha^*)$, et tracer cette courbe avec R.
- 5. Soient π_1 et π_2 les probabilités a priori des deux classes, et c_{lk} le coût associé au choix de l'action a_ℓ lorsque la vraie classe est ω_k . On suppose $c_{11} = c_{22} = 0$. L'ensemble \mathcal{A} des actions est le même que dans la question précédente.
 - (a) Donner l'expression de la règle de Bayes δ^* pour ce problème.
 - (b) Tracer avec R les frontières de décision correspondantes dans le plan (X_1, X_2) dans les cas suivants :
 - i. $c_{12} = c_{21} = 1, \, \pi_1 = \pi_2;$
 - ii. $c_{12} = 10$, $c_{21} = 1$, $\pi_1 = \pi_2$;
 - iii. $c_{12} = c_{21} = 1$, $\pi_2 = 10\pi_1$.
 - (c) Pour ces différents cas, et à partir des données générées précédemment, donner une estimation de $\alpha = P(\delta^*(\mathbf{X}) = a_2|\omega_1)$ et $\beta = P(\delta^*(\mathbf{X}) = a_1|\omega_2)$. Commenter ces résultats.

- 6. On suppose maintenant que l'ensemble des actions est $\mathcal{A} = \{a_0, a_1, a_2\}$, a_0 étant l'action de rejet. Les coûts sont définis de la manière suivante : $c_{11} = c_{22} = 0$, $c_{12} = c_{21} = 1$, $c_{01} = c_{02} = c_0$.
 - (a) Donner l'expression de la règle de Bayes pour ce problème.
 - (b) \square Tracer avec R les frontières de décision dans les cas suivants :

i.
$$\pi_1 = \pi_2, c_0 = 0.4;$$

ii.
$$\pi_1 = \pi_2$$
, $c_0 = 0.1$.

- (c) \square Pour ces différents cas, et à partir des données générées précédemment, donner une estimation de $\alpha = P(\delta^*(\mathbf{X}) = a_2|\omega_1)$ et $\beta = P(\delta^*(\mathbf{X}) = a_1|\omega_2)$. Commenter ces résultats.
- (d) \square Estimer de même les probabilités de rejet et d'erreur.