NUME:	
PRENUME:	
GRUPA:	

INSTRUCŢIUNI

- 1. Toate problemele sunt obligatorii.
- 2. Problemele vor fi rezolvate pe coli de hârtie numerotate corespunzător, menționându-se explicit numărul problemei și subpunctul acesteia.
- 3. Pe prima pagină a rezolvării fiecarei probleme, vor fi scrise **cu litere de tipar** numele şi prenumele studentului, precum şi grupa acestuia.
- 4. Fiecare problemă trebuie să aibă cel puţin o pagină alocată rezolvării sale chiar dacă respectiva problemă nu se poate rezolva.
- 5. TIMP DE LUCRU: 150 minute, i.e. 11:00-13:30.
- 6. Rezolvările problemelor corespunzătoare acestui examen vor fi trimise prin email:
 - ca fişier PDF, împreună cu fişierul cu subiectele examenului la adresa andreea.grecu@fmi.unibuc.ro (Drd. Andreea GRECU);
 - vor avea următoarea linie de subiect:
 Examen AnNum Nume si prenume student, Grupa 3XX
- 7. Termenul limită de trimitere prin email a rezolvărilor problemelor: joi, 28 ianuarie 2021, orele 14:00.

Analiză Numerică Examen – Anul III – Subiectul#6

- I. Câte iterații, $k \in \mathbb{N}$, sunt necesare pentru a obține o aproximare numerică cu acuratețea de 10^{-5} pentru soluția ecuației f(x) = 0, unde $f: [1,2] \longrightarrow \mathbb{R}$, $f(x) = x^2 2$, prin metoda bisecției?
- II. Fie nodurile de interpolare $x_j = j$, $j = \overline{0,3}$. Dacă

$$P_{0,1}(x) = x + 1$$
, $P_{1,2}(x) = 3x - 1$, $P_{1,2,3}(1,5) = 4$, (1)

să se determine $P_{0,1,2,3}(1,5)$.

- III. Fie $f \in C^3[a, b]$, h > 0 sufficient de mic și $x \in (a, b)$ fixat.
 - (a) Determinați formula de aproximare cu diferențe finite centrale pentru f'(x) și eroarea de trunchiere asociată, $e_t(x)$.
 - (b) Estimați eroarea de trunchiere asociată, $e_t(x)$.
 - (c) Pentru orice $x \in (a, b)$, f(x) se evaluează prin reprezentarea sa în calculator în virgulă mobilă, $\tilde{f}(x)$, astfel încât această evaluare conține o eroare de rotunjire, $e_r(x)$, i.e.

$$\widetilde{f}(x) = f(x) + e_r(x)$$
, unde $|e_r(x)| \le \epsilon$, $\forall x \in (a, b)$, (2)

unde $\epsilon > 0$ este precizia mașinii și este cunoscută.

Determinați eroarea totală, i.e. $e(x) := e_t(x) + e_r(x)$, indusă ca urmare a aproximării cu diferențe finite centrale pentru f'(x) și a reprezentării în calculator a numerelor în virgulă mobilă.

- (d) Determinați valoarea optimă a lui h > 0 care minimizează eroarea totală, e(x), obținută la punctul (c).
- IV. Fie funcția pondere $w:(0,\infty)\longrightarrow \mathbb{R}, w(x)=\mathrm{e}^{-x}$.
 - (a) Folosind procedeul Gram-Schmidt, determinați polinoamele ortogonale în raport cu produsul scalar din $L^2_w(0,\infty)$, $\{\widetilde{L}_0,\widetilde{L}_1,\widetilde{L}_2\}\subset \mathbb{P}_2$ (polinoamele Laguerre).
 - (b) Determinați cea mai bună aproximare polinomială $p_2 \in \mathbb{P}_2$ în norma $\|\cdot\|_{2,w}$ a funcției

$$f: [0, \infty) \longrightarrow \mathbb{R}, \quad f(x) = e^x.$$