Model Accuracy Exploration with CIFAR-10 CSE455 Final Project

Jack Chuang, Warren Shen, Thomas Lin, John Cheng March 2022

Outline

- > Motivation
- > Previous Work & Dataset
- > Approaches and Training Results
- > Experiments for Baseline Reinforcement
- > Conclusion

Motivation

- > To participate in the CIFAR-10 Competition
- > To improve the performance of CIFAR-10 in coursework
- > To Integrate pre-exist proposals and build our own model
- > To achieve the target accuracy of 90 percent

Previous Work & Dataset

- > 8 notable proposals for CIFAR-10 from ML Compiled
- > Idea base on EfficientNet and Cutout
- > Referenced code from GitHub
- > Resources from Tensorflow and Keras
- > Dataset: CIFAR-10 from official website

Approaches and Training Results

Scaling

Coefficient

depth: $d = \alpha^{\varphi}$ width: $w = \beta^{\varphi}$

resolution: $r = y^{\varphi}$

Constraints

$$\alpha \times \beta^2 \times y^2 = 2$$

Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

Our Own Model of Baseline

> Dense Layer

Layer (type)	Output Shape
dense_83 (Dense)	(None, 16)
dense_84 (Dense)	(None, 10)
======================================	

> Convolutional Layer

```
Layer (type) Output Shape

conv2d_1 (Conv2D) (None, 32, 32, 16)

max_pooling2d (MaxPooling2D (None, 16, 16, 16))

flatten (Flatten) (None, 4096)

dense (Dense) (None, 10)

Total params: 41,418
Trainable params: 41,418
Non-trainable params: 0
```

Training Results

> Dense Layer

> Convolutional Layer

Experiments for Baseline Reinforcement

Baseline Network

- > To increase accuracy
 - Scaling
 - Baseline

- > Baseline
 - MnasNet
 - VGG19
 - ResNet34

- > MnasNet
 - Depthwise convolution
 - Every input filter has its kernel

Depthwise Convolution

- > VGG-19
 - More layers and filters!!

- > ResNet34
 - Identity mapping

	MnasNet	VGG19	ResNet34	
Accuracy	80%	84%	87%	
Total Number of parameters	21,530,851	20,051,530	41,782,666	

Regularization

- > Data Augmentation (Preprocessing)
- > Cutout
- > Dropout

Affine transformation (Preprocessing)

> Linear conversion

source: lecture 07 slide

Dropout

- > Setting hidden unit activations to zero
- > Less powerful in CNN

Cutout (Regularization)

 36.68 ± 0.57

 34.98 ± 0.29

 26.06 ± 0.22

 $\mathbf{23.94} \pm \mathbf{0.15}$

 22.46 ± 0.31

 21.96 ± 0.24

 18.8 ± 0.08

 18.41 ± 0.27

15.85

 $\textbf{15.20} \pm \textbf{0.21}$

 1.60 ± 0.05

 $\boldsymbol{1.30 \pm 0.03}$

 4.72 ± 0.21

 3.99 ± 0.13

 3.87 ± 0.08

 3.08 ± 0.16

2.86

 $\boldsymbol{2.56 \pm 0.07}$

 10.63 ± 0.26

 9.31 ± 0.18

 6.97 ± 0.22

 $\mathbf{5.54} \pm \mathbf{0.08}$

- > Hole Number
- > Hole size

0								
5 -								
10 -								
15 -				п	Г			
20 -								
25 -		۰						
30 -						$ \bot $		
ō	5	10	15	20	25	30		
Hole number = 1								

ResNet18 [5]

ResNet18 + cutout

WideResNet + cutout

Shake-shake regularization [4]

Shake-shake regularization + cutout

WideResNet [22]

Conclusion

Conclusion

- > Improved training accuracy with CIFAR-10 from 50% to 87%
- > Contributed a new model with reinforced scaling and baseline
- > Designed the model for good hardware accessibility

Thanks for Listening

Discussion

Problem encountered

- > Hardware limitation
- > Transformation between PyTorch and TensorFlow

Next Steps

- > To accomplish integration between baseline and scaling
- > To improve training accuracy to 92 percent
- > To apply transformative learning on different datasets
- > To design new layers to upgrade the EfficientNet

What difference from others? beneficial?

- > Integrated concepts from multiple papers
- > Completed a training model with fine accessibility

