Homework 1

MATH 543 — Linear Algebra

Name: Ali Zafari Spring 2023

1.A \mathbb{R}^n and \mathbb{C}^n

Exercise 10

$$(4, -3, 1, 7) + 2x = (5, 9, -6, 8)$$

 $2x = (5, 9, -6, 8) + (-4, +3, -1, -7)$ (Additive Inverse)
 $x = \frac{1}{2}(1, 12, -7, 1)$ (Scalar Multiplication)
 $x = (0.5, 6, -3.5, 0.5)$

Exercise 11

Assume $\lambda \in \mathbb{C}$, then we can write λ as $\lambda = a + bi$ where $a, b \in \mathbb{R}$. By using the the scalar multiplication property in \mathbb{C}^3 and the fact that two list are equal if their elements are equal in the same order, we have:

$$2a + 3b + (-3a + 2b)i = 12 - 5i \tag{1}$$

$$5a - 4b + (4a + 5b)i = 7 + 22i \tag{2}$$

$$-6a - 7b + (7a - 6b)i = -32 - 9i \tag{3}$$

from equation 1: a = 3, b = 2

from equation 2: a = 3, b = 2

from equation 3: a = 1.5176, b = 3.2706

All the three equations cannot be satisfied simultaneously.

1.B Vector Space —

Exercise 1

By additive inverse property of V:

$$-v + (-(-v)) = 0$$

$$v - v + (-(-v)) = 0 + v$$

$$(-(-v)) = 0 + v$$

$$-(-v) = v$$

Exercise 2

I. By use of scalar multiplication distributive property:

$$av = 0$$

$$av = av + (-av)$$

$$av = (a + (-a))v$$

$$av = 0v$$

$$a = 0$$

II. By use of vector addition distributive property:

$$av = 0$$

$$av = av + (-av)$$

$$av = a(v + (-v))$$

$$av = a0$$

$$v = 0$$

Exercise 4

Additive Identity. There must exist an element $0 \in V$ such that $v + 0 = v \quad \forall v \in V$, but the empty set has no element at all.

Exercise 6

By using a counterexample we will prove that $\mathbb{R} \cup \{\infty\} \cup \{-\infty\}$ is not a vector space over \mathbb{R} . Assume $\lambda, \gamma \in \mathbb{R}$ and $v = \infty$. By the distributive property of a vector space:

$$(\lambda + \gamma)\infty = \lambda\infty + \gamma\infty$$

if we set $\lambda > 0, \gamma < 0$ and $\lambda + \gamma \neq 0$:

• LHS: ∞ or $-\infty$, depending on the value of $\lambda + \gamma$

• RHS: 0

It says that the additive identity is equal to ∞ or $-\infty$. This violates property (1.25) discussed in book which tells that in a vector space the additive identity must be unique.

1.C Subspaces -

Exercise 1

- (a) $x_1 + 2x_2 + 3x_3 = 0$ is the equation of a two dimensional plane in \mathbb{F}^3 . It includes zero (0) and any linear combination of two points on this plane stays on the plane. Therefore it is a subspace of \mathbb{F}^3 .
- (b) $x_1 + 2x_2 + 3x_3 = 4$ is the equation of a two dimensional plane in \mathbb{F}^3 . It does not contain the zero (0) vector. So it is not a valid subspace of \mathbb{F}^3 .
- (c) $x_1x_2x_3 = 0$ is the equation of points on 3 separate two dimensional planes in \mathbb{F}^3 . The linear combination of two vectors chosen on 2 different planes may not necessarily stays on the planes. Therefore it is not a valid subspace of \mathbb{F}^3 .
- (d) $x_1 = 5x_3$ is a plane crossing the origin in \mathbb{F}^3 . This space contains zero and any linear combination of its elements stays in this space. Hence this is a subspace of \mathbb{F}^3 .

Exercise 4

We call the target space U. For U to be a subspace must have a unique additive identity, 0+f=f such that $0, f \in U$. The condition of vectors in this space must be satisfied even for the additive identity:

$$\int_{0}^{1} 0 = b$$

therefore we must have b = 0 for this space to be a subspace of $\mathbb{R}^{[0,1]}$. (closure on the linear combination is obvious when b = 0.)

Exercise 6

(a) In this case, $a^3 = b^3$ implies a = b, hence we will have $\{(a, b, c) \in \mathbb{R}^3 : a = b\}$ and this space includes zero and is closed on any linear combination of its members. This is a subspace of \mathbb{R}^3 .

(b) In the complex numbers case, solution to the equation $a^3 = b^3$ could also be $a = b \frac{1 \pm \sqrt{3}i}{2}$, other than the obvious a = b. If we assume b = 1, we will have two vectors $(\frac{1+\sqrt{3}i}{2}, 1, 0)$ and $(\frac{1-\sqrt{3}i}{2}, 1, 0)$ which their addition vector (1, 2, 0) does not stay in the same space. Therefore this is not a subspace of \mathbb{R}^3 .

Exercise 8

$$U = \{(x, y) \in \mathbb{R}^2 : x + y = 0 \lor x - y = 0\}$$

Exercise 10

If U_1 and U_2 are subspaces of V, they both contain zero, so their intersection at least includes zero. Any linear combination is closed on U_1 or U_2 , and since any vector in $U_1 \cap U_2$ is also a member of U_1 then the linear combination is also closed for the intersection. Finally, by having the zero and linear combination closure, $U_1 \cap U_2$ is a subspace of V.

Exercise 12

U and W are subspaces of V. We prove it in two steps:

 \Longrightarrow

Here, we assume $U \subseteq W$ and try to show that $U \cup W$ is a subspace of V. By U being a subset of W we have $U \cup W = W$. Since W is a subspace of V, then $U \cup W$ will be a subspace of V as well. (same proof can be derived when $W \subseteq U$)

 \Leftarrow

We prove it by contradiction. Assuming $U \cup W$ is a subspace of V then we try to show that neither $U \subseteq W$ nor $W \subseteq U$. By having $U \not\subseteq W$ and $W \not\subseteq U$ it is obvious that the subtract of sets are non-empty. Now let $u \in U \setminus W$ and $w \in W \setminus U$. Now assume $u + w \in U$, then we must have $u + w - u \in U$. It is a contradiction since we had assumed that $w \in W \setminus U$. The same statements can be derived when we assume $u + w \in W$. So this is a contradiction. As a result either $U \subseteq W$ or $W \subseteq U$.

Exercise 23

Counterexample: Let's have $U_1 = \{(x,0) \in \mathbb{R}^2 : x \in \mathbb{R}\}$ and $U_2 = \{(x,1) \in \mathbb{R}^2 : x \in \mathbb{R}\}$. Then by letting $W = \{(0,y) \in \mathbb{R}^2 : y \in \mathbb{R}\}$, the vector space $V = \mathbb{R}^2$ can be written as direct sums $U_1 \oplus W$ or $U_2 \oplus W$, however $U_1 \neq U_2$.

Exercise 24

 $\mathbb{R}^{\mathbb{R}}$ denotes any function $f: \mathbb{R} \to \mathbb{R}$. The function f can be written as sum of even and odd functions:

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$$
$$= f_e(x) + f_o(x)$$

where $x \in \mathbb{R}$. Since for any $f \in \mathbb{R}^{\mathbb{R}}$ there exists a unique $f_e + f_o \in U_e + U_o$, we can conclude that $\mathbb{R}^{\mathbb{R}} = U_e \oplus U_o$.

2.A Span and Linear Independence —

Exercise 3

To have a list of 3 linearly dependent vectors v_1, v_2, v_3 there should exist a nonzero set of coefficients $a_1, a_2, a_3 \in \mathbb{R}$ which make their linear combination equal to zero:

$$a_1(3,1,4) + a_2(2,-3,5) + a_3(5,9,t) = 0$$

We must choose t such that avoid trivial zero solution for a_1, a_2, a_3 . If $a_1 = 3$ and $a_2 = -2$ and $a_3 = 1$ then we can see that by letting t = 2 vectors will be linearly dependent.

Exercise 6

We know that:

$$a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 = 0$$

holds only when $a_1 = a_2 = a_3 = a_4 = 0$ $(a_1, \ldots, a_4 \in \mathbb{F})$. Then linear combination for list $v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$ will be $(b_1, \ldots, b_4 \in \mathbb{F})$:

$$b_1(v_1 - v_2) + b_2(v_2 - v_3) + b_3(v_3 - v_4) + b_4v_4 = b_1v_1 + (b_2 - b_1)v_2 + (b_3 - b_2)v_3 + b_4v_4$$
$$= a'_1v_1 + a'_2v_2 + a'_3v_3 + a'_4v_4$$

since the list v_1, \ldots, v_4 is linearly independent, the linear combination of the above will be equal to zero only if $a'_1 = a'_2 = a'_3 = a'_4 = 0$ $(a'_1, \ldots, a'_4 \in \mathbb{F})$. Therefore the list $v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$ is linearly independent as well.

Exercise 9

Counterexample: assume the list w_1, \ldots, w_m be equal to $-v_1, \ldots, -v_m$. Then list $v_1 + w_1, \ldots, v_m + w_m$ is equal to $v_1 - v_1, \ldots, v_m + -v_m$ which only contains the vector 0 and it is linearly dependent.

Exercise 11

We prove it in two steps. The list of vectors v_1, \ldots, v_m is linearly independent.

 \Longrightarrow

Now we try to prove that if $w \notin span(v_1, \ldots, v_m)$, then the list of vectors v_1, \ldots, v_m, w is linearly dependent. For the list of dependent vectors we have:

$$a_1v_1 + \dots + a_mv_m + a_{m+1}w = 0$$

where not all the a_i 's are equal to zero.

Conditioning on the value of a_{m+1} :

- if $a_{m+1} = 0$: In this case all other a_i 's must be zero which shows that v_1, \ldots, v_m, w are not linearly dependent. (contradiction)
- if $a_{m+1} \neq 0$: In this case we can write $w = -\frac{1}{a_{m+1}}(a_1v_1 + \cdots + a_mv_m)$, which tells us that $w \in span(v_1, \ldots, v_m)$, violating the hypothesis.

Therefore the list of vectors v_1, \ldots, v_m, w is linearly independent.

 \leftarrow

Proving that if the list of vectors v_1, \ldots, v_m, w is linearly independent then $w \in span(v_1, \ldots, v_m)$. From the definition of span, we know that w can be written as:

$$w = a_1 v_1 + \dots + a_m v_m$$

where $a_1, \ldots, a_m \in \mathbb{F}$. Then we can see that $a_1v_1 + \cdots + a_mv_m - w = 0$, which violates the linear independence of v_1, \ldots, v_m, w . As a result $w \notin span(v_1, \ldots, v_m)$.

Exercise 17

:'(