# Classic Edge Detection:

1<sup>st</sup> and 2<sup>nd</sup> Order Derivative Edge Detectors

C.-C. Jay Kuo University of Southern California

#### Two Main Branches of Image Processing

- Image/Video Compression
  - Still image compression 1980
    - JPEG, JPEG 2000
  - Video compression 1990-2020
    - MPEG-1, MPEG-2, MPEG-4, H.264/AVC, H.265/HEVC, H.266/VVC
- Image Understanding
  - Image analysis (low-level vision tasks)
    - Edge detection, segmentation, etc.
  - Computer vision (high-level vision tasks)
    - Object recognition, activity recognition, etc.
  - Slow progress from 1980-2010
  - Rapid progress in the last decade (leveraging a large amount of labeled data)

#### Classic Edge Detection Methods

- 1st Order Derivative Method
- 2<sup>nd</sup> Order Derivative Method
- Canny Edge Detection (1986)

# 1<sup>st</sup> Order Derivative Edge Detector (1)



### 1<sup>st</sup> Order Derivative Edge Detector (2)



# 1<sup>st</sup> Order Derivative Edge Detector (3)



# 1<sup>st</sup> Order Derivative Edge Detector (4)

$$\frac{\partial F}{\partial x} = \frac{\sin \theta}{\cos \theta} = \tan \theta$$

$$\frac{\partial F}{\partial x}$$

$$\frac{\partial F}{\partial x} = \frac{\cos \theta}{\cos \theta} = \tan \theta$$

$$\frac{\partial F}{\partial x} = \frac{\cos \theta}{\cos \theta} = \tan \theta$$

$$\frac{\partial F}{\partial x} = \frac{\cos \theta}{\cos \theta} = \cot \theta$$

$$\frac{\partial F}{\partial x} = \frac{\cos \theta}{\cos \theta} = \cot \theta$$

$$\frac{\partial F}{\partial x} = \frac{\cos \theta}{\cos \theta} = \cot \theta$$

$$\frac{\partial F}{\partial x} = \frac{\cos \theta}{\cos \theta} = \cot \theta$$

$$\frac{\partial F}{\partial x} = \frac{\cos \theta}{\cos \theta} = \cot \theta$$

$$\frac{\partial F}{\partial x} = \frac{\cos \theta}{\cos \theta} = \cot \theta$$

$$\frac{\partial F}{\partial x} = \cot \theta$$

$$\frac{\partial$$

## 1<sup>st</sup> Order Derivative Edge Detector (5)



#### 1<sup>st</sup> Order Derivative Edge Detector (6)



## 1<sup>st</sup> Order Derivative Edge Detector (7)



# 1<sup>st</sup> Order Derivative Edge Detector (8)

|                          | Operator         | Row gradient                                            | Column gradient                                                                        |
|--------------------------|------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------|
|                          |                  | [0 0 0]                                                 | 「 0 −1 0                                                                               |
|                          | Pixel difference | 0 1 -1                                                  |                                                                                        |
|                          |                  |                                                         | 0 1 0                                                                                  |
| Pratt's Book<br>Page 478 |                  | ٥ ٥ ٥ ٥ ٦                                               | Γ 0 -1 0                                                                               |
|                          | Separated        | 1 0 -1                                                  | 0 0 0                                                                                  |
|                          | pixel difference |                                                         | $   \begin{bmatrix}     0 & -1 & 0 \\     0 & 0 & 0 \\     0 & 1 & 0   \end{bmatrix} $ |
|                          |                  | [0 0 -1]                                                |                                                                                        |
|                          | Roberts          | 0 1 0                                                   | 0 1 0                                                                                  |
|                          |                  |                                                         | L 0 0 0                                                                                |
|                          |                  | [1 0 -1]                                                | [-1 -1 -1                                                                              |
|                          | Prewitt          | $\frac{1}{3}$ 1 0 -1                                    | $\frac{1}{3}$ 0 0 0                                                                    |
|                          |                  | 3 1 0 -1                                                | 3 1 1 1                                                                                |
|                          |                  | [1 0 -1]                                                | [-1 -2 -1                                                                              |
|                          | Sobel            | $\frac{1}{4}$ 2 0 -2                                    | $\frac{1}{4}$ 0 0 0                                                                    |
|                          |                  | *[ 1 0 -1 ]                                             | 4 1 2 1                                                                                |
|                          |                  | [1 0 -1]                                                | $\begin{bmatrix} -1 & -\sqrt{2} & -1 \end{bmatrix}$                                    |
|                          | Frei-Chen        | $\frac{1}{2+\sqrt{2}}   \sqrt{2}   0 - \sqrt{2}  $      | F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                |
|                          |                  | $2 + \sqrt{2} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$ | $\frac{1}{2+\sqrt{2}}\begin{bmatrix} 0 & 0 & 0 \\ 1 & \sqrt{2} & 1 \end{bmatrix}$      |

#### DSP:

- Impulse response
- Convolution

#### DIP:

- Image filter
- Correlation (or elementwise multiplication)

## 1<sup>st</sup> Order Derivative Edge Detector (9)



#### 1<sup>st</sup> Order Derivative Edge Detector (10)



## 1<sup>st</sup> Order Derivative Edge Detector (11)



#### 1<sup>st</sup> Order Derivative Edge Detector (12)

- Differencing filters often amplify noise
- To suppress noise, we have



#### 1<sup>st</sup> Order Derivative Edge Detector (13)

Example of Compound Filters

$$\mathbf{H}_{R} = \frac{1}{34} \begin{bmatrix} 1 & 1 & 1 & 0 & -1 & -1 & -1 \\ 1 & 2 & 2 & 0 & -2 & -2 & -1 \\ 1 & 2 & 3 & 0 & -3 & -2 & -1 \\ 1 & 2 & 3 & 0 & -3 & -2 & -1 \\ 1 & 2 & 3 & 0 & -3 & -2 & -1 \\ 1 & 2 & 2 & 0 & -2 & -2 & -1 \\ 1 & 1 & 1 & 0 & -1 & -1 & -1 \end{bmatrix}$$

### 1<sup>st</sup> Order Derivative Edge Detector (14)

Directional Edge
Detector

Pratt's Book Page 485



1/20/2022

17

# 1<sup>st</sup> Order Derivative Edge Detector (15)

Directional Edge Detector

> Pratt's Book Page 487



1/20/2022

# 2<sup>nd</sup> Order Derivative Edge Detector (1)



# 2<sup>nd</sup> Order Derivative Edge Detector (2)



#### 2<sup>nd</sup> Order Derivative Edge Detector (3)



# 2<sup>nd</sup> Order Derivative Edge Detector (4)



#### 2<sup>nd</sup> Order Derivative Edge Detector (6)



#### 2<sup>nd</sup> Order Derivative Edge Detector (7)

Denoising followed by edge detection



#### 2<sup>nd</sup> Order Derivative Edge Detector (8)

- Laplacian of Gaussian (LoG) filters
  - also known as (a.k.a.) the Mexican hat filter

Original Laplacian

| 0  | -1 | 0  |
|----|----|----|
| -1 | 4  | -1 |
| 0  | -1 | 0  |





| 0  | 0  | -1 | 0  | 0  |
|----|----|----|----|----|
| 0  | -1 | -2 | -1 | 0  |
| -1 | -2 | 16 | -2 | -1 |
| 0  | -1 | -2 | -1 | 0  |
| 0  | 0  | -1 | 0  | 0  |