

PAT-NO: JP411125827A

DOCUMENT-IDENTIFIER: JP 11125827 A

TITLE: PRODUCTION OF LIQUID CRYSTAL CELL AND
END-SEALER USED
FOR THE PROCESS

PUBN-DATE: May 11, 1999

INVENTOR-INFORMATION:

NAME	COUNTRY
OBARA, TAKANORI	N/A
YOSHIDA, KAZUO	N/A

ASSIGNEE-INFORMATION:

NAME	COUNTRY
ADVANCED DISPLAY INC	N/A
MITSUBISHI ELECTRIC CORP	N/A

APPL-NO: JP09289587

APPL-DATE: October 22, 1997

INT-CL (IPC): G02F001/1339, G02F001/13

ABSTRACT:

PROBLEM TO BE SOLVED: To make it possible to pressurize liquid crystal cells

in the state of housing these cells into a cassette and to easily regulate pressurizing force by the pressure of gas by including a stage for inserting pressurizing bodies 1 having hoses for gas injection into the side parts of liquid crystal cells and a stage, etc., for reducing the pressure of the pressurizing bodies after applying end-sealing materials to injection ports.

SOLUTION: When the cassette 3 housed with the liquid crystal cells P injected with liquid crystals of the amt. more than the necessary amt. into respective slits is transported, the pressurizing bodies 1 are inserted between the side plates 11 of the cassette 3 and the liquid crystal cells P and between the liquid crystal cells P and the liquid crystal cells P. The air is then fed to the pressurizing bodies 1 from the hoses 2 and the liquid crystal cells P are pressurized for a certain specified time. After the specified period of time, the liquid crystals in the injection ports of the liquid crystal cells P are wiped away by wiping materials, etc., and the coating application of the end-sealing materials is executed. When valves are opened after the coating application of the end-sealing materials, the pressure of the pressurizing bodies 1 decreases by as much as the volumetric component of the hoses 2 between the valves and the valves. As a result, the end-sealing materials are withdrawn in the specified amt. into the liquid crystal cells P and the end-sealing of the liquid crystal cells P is executed.

COPYRIGHT: (C)1999,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-125827

(43)公開日 平成11年(1999)5月11日

(51)Int.Cl.⁶
G 0 2 F 1/1339
1/13 譲別記号
5 0 5
1 0 1

F I
G 0 2 F 1/1339
1/13 譲別記号
5 0 5
1 0 1

審査請求 未請求 請求項の数14 O.L (全 6 頁)

(21)出願番号 特願平9-289587

(22)出願日 平成9年(1997)10月22日

(71)出願人 595059056
株式会社アドバンスト・ディスプレイ
熊本県菊池郡西合志町御代志997番地
(71)出願人 000006013
三菱電機株式会社
東京都千代田区丸の内二丁目2番3号
(72)発明者 小原 隆憲
熊本県菊池郡西合志町御代志997番地 株
式会社アドバンスト・ディスプレイ内
(72)発明者 吉田 和夫
東京都千代田区丸の内二丁目2番3号 三
菱電機株式会社内
(74)代理人 弁理士 朝日奈 宗太 (外1名)

(54)【発明の名称】 液晶セルの製法および該製法に用いる封止装置

(57)【要約】

【課題】 カセットに液晶セルを収納した状態のままで加圧できるとともに、気体の圧力により容易に加圧力を調整でき、さらに加圧状態のまま搬送することが容易にできる液晶セルの製法を提供する。

【解決手段】 シール材を介して貼り合わされた透光性基板に注入された液晶を封止する液晶セルの製法であって、カセットに収納された液晶セルに必要量よりも多量の液晶を注入し、そののち該液晶セルの側部に気体注入用ホースを有する加圧体を挿入する工程と、該加圧体に気体を注入し、前記液晶セルの注入口から余剰液晶を押し出す工程と、該注入口に封止材を塗布したのち、前記加圧体を減圧する工程と、該封止材を硬化する工程を含んでいる。

【特許請求の範囲】

【請求項1】 シール材を介して貼り合わされた透光性基板に注入された液晶を封止する液晶セルの製法であつて、カセットに収納された液晶セルに必要量よりも多量の液晶を注入し、そののち該液晶セルの側部に気体注入用ホースを有する加圧体を挿入する工程と、該加圧体に気体を注入し、前記液晶セルの注入口から余剰液晶を押し出す工程と、該注入口に封止材を塗布したのち、前記加圧体を減圧する工程と、該封止材を硬化する工程を含む液晶セルの製法。

【請求項2】 シール材を介して貼り合わされた透光性基板に注入された液晶を封止する液晶セルの製法であつて、液晶セルを複数収納しうるカセットに、必要量よりも多量の液晶を注入した液晶セルと、気体注入用ホースを有するとともに該液晶セルの形状に合った大きさの加圧体とをそれぞれ挿入したのち、該加圧体により前記液晶セルを加圧し、該液晶セルの注入口から余剰の液晶を押し出したのち、該注入口を封止する液晶セルの製法。

【請求項3】 前記加圧体に気体を注入することにより、全ての液晶セルを同時に加圧する請求項1または2記載の製法。

【請求項4】 前記加圧体に供給する気圧を調整することにより、液晶セルへの加圧力を調節する請求項1、2または3記載の製法。

【請求項5】 前記加圧体に形成される気体供給口に連結される気体注入用ホースに第1のバルブを設け、該バルブを閉じたのち、前記気体注入用ホースと加圧体を切り離し、ついで各液晶セルの加圧を保持しつつ、該液晶セルを収納したカセットを、注入口に封止材を塗布する工程へ搬送する請求項1、2、3または4記載の製法。

【請求項6】 前記第1のバルブより上流側の気体注入用ホースの部位に第2のバルブを設け、当該2個のバルブのあいだの気体注入用ホース内の容量分だけ加圧体の加圧力を低減させることにより、封止材を注入口内に吸引する請求項5記載の製法。

【請求項7】 前記加圧体に形成される気体供給口に気体注入用ホースを着脱自在にするカプラーを設け、高圧力用ホースを接続することにより、加圧体を高圧力にしたのち、注入口に封止材を塗布し、ついで前記カプラーから高圧力用ホースを外し、該カプラーに低圧力の気体注入用ホースを接続することにより、前記加圧体の加圧力を低減させ、封止材を注入口内に吸引する請求項1、2、3または4記載の製法。

【請求項8】 前記カセット内に収納される、カセットの一側面と液晶セルとのあいだおよび液晶セルと液晶セルとのあいだの加圧体に代えて、金属板に緩衝材を貼り付けた緩衝体を挿入し、前記カセットの他方の側面と液晶セルとのあいだに挿入される加圧体の加圧力により、各液晶セルの形状を前記緩衝体の形状に合わせる請求項1、2、3、4、5、6または7記載の製法。

【請求項9】 シール材を介して貼り合わされた透光性基板に注入された液晶を封止する液晶セルの封止装置であつて、前記液晶セルと同形状の加圧体と、該加圧体に気体を注入する気体注入用ホースと、前記加圧体を収納しうるカセットと、気体供給装置からなる液晶セルの封止装置。

【請求項10】 前記加圧体の加圧力を調整する圧力調節手段を備えてなる請求項9記載の封止装置。

【請求項11】 前記加圧体に形成される気体供給口に第1のバルブが連結されるとともに、前記気体注入用ホースの上流側の部位に第2のバルブが連結されてなる請求項10記載の封止装置。

【請求項12】 前記加圧体に形成される気体供給口に気体注入用ホースが着脱自在に取り付けられるカプラーが連結されてなる請求項9または10記載の封止装置。

【請求項13】 金属板に緩衝材を貼り付けた緩衝体を備えてなる請求項9、10、11または12記載の封止装置。

【請求項14】 前記加圧体の側端部が、前記カセットの側板に形成される係止突起に案内されるようにV字溝に形成されてなる請求項9、10、11、12または13記載の封止装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は液晶セルの製法および該製法に用いる封止装置に関する。さらに詳しくは、液晶セルを収納するカセット内で液晶セルの注入口を封止することができる液晶セルの製法および該製法に用いる封止装置に関する。

【0002】

【従来の技術】従来より、液晶セルの液晶層の層厚を均一にする方法として、たとえば液晶セルに必要量よりも多量の液晶を注入したのち、該液晶セルを加圧して余剰の液晶を押し出し、そののち注入口を封止する方法がある（特開平5-40270号公報参照）。かかる製造方法における液晶セルの加圧は、搬送に用いられるカセットから液晶セルを1枚ずつ取り出したのち、枠組された固定台の上部および下部に固定される加圧部のあいだに配置し、ついで該加圧部に封入した気体により、液晶セルの両側から行なうようにしている。

【0003】

【発明が解決しようとする課題】しかしながら、前記従来の加圧方法では、液晶セルをカセットから出す必要があるため、人手が掛かるとともに、液晶セルに静電気が発生し、表面に異物が付着する問題がある。また液晶セルの加圧中は、搬送ができないため、作業性がわるいという問題がある。

【0004】本発明は、叙上の事情に鑑み、カセットに液晶セルを収納した状態のままで加圧できるとともに、気体の圧力により容易に加圧力を調整でき、さらに加圧

状態のまま搬送することができる液晶セルの製法および該製法に用いる封止装置を提供することを目的とする。

【0005】

【課題を解決するための手段】本発明の液晶セルの製法は、シール材を介して貼り合わされた透光性基板に注入された液晶を封止する液晶セルの製法であって、カセットに収納された液晶セルに必要量よりも多量の液晶を注入し、そのうち該液晶セルの側部に気体注入用ホースを有する加圧体を挿入する工程と、該加圧体に気体を注入し、前記液晶セルの注入口から余剰液晶を押し出す工程と、該注入口に封止材を塗布したのち、前記加圧体を減圧する工程と、該封止材を硬化する工程を含むことを特徴としている。

【0006】また本発明の液晶セルの製法は、シール材を介して貼り合わされた透光性基板に注入された液晶を封止する液晶セルの製法であって、液晶セルを複数収納しうるカセットに、必要量よりも多量の液晶を注入した液晶セルと、気体注入用ホースを有するとともに該液晶セルの形状に合った大きさの加圧体とをそれぞれ挿入したのち、該加圧体により前記液晶セルを加圧し、該液晶セルの注入口から余剰の液晶を押し出したのち、該注入口を封止することを特徴としている。

【0007】さらに本発明の液晶セルの製法に用いる封止装置は、シール材を介して貼り合わされた透光性基板に注入された液晶を封止する液晶セルの製法であって、前記液晶セルと同形状の加圧体と、該加圧体に気体を注入する気体注入用ホースと、前記加圧体を収納しうるカセットと、気体供給装置からなることを特徴としている。

【0008】

【発明の実施の形態】以下、添付図面に基づいて、本発明の液晶セルの製法および該製法に用いる封止装置を説明する。

【0009】図1は、本発明の封止装置の一実施の形態を示す部分斜視図、図2は加圧体の一実施の形態を示す斜視図、図3は図1におけるカセットに液晶セルと加圧体を挿入した状態を示す正面図、図4は図3におけるカセットの平面図、図5は図3におけるカセットのコーナー部分の拡大図、図6は加圧体の他の実施の形態を示す斜視図、図7は本発明の封止装置の他の実施の形態を示す正面図、図8は図7におけるカセットの平面図、図9は図8におけるカセットのコーナー部分の拡大図である。

【0010】本発明の製法は、たとえば薄膜トランジスタ(TFT)を用いたアクティブマトリックスタイプの液晶セルを製造するばかりに用いることができる。かかる液晶セルは、TFTアレイが形成された透光性ガラス基板と、カラーフィルターが形成された透光性ガラス基板とをシール材を介して貼り合わせたのち、両基板の隙

間に液晶を注入し(以下、液晶を注入したものも単に、液晶セルという)、ついで液晶の注入口を封止したものである。

【0011】図1に示すように、液晶セルの封止装置は、液晶セルと同形状の中空状加圧体1と、該加圧体1に気体を注入する気体注入用ホース2と、前記加圧体1を複数収納しうるカセット3と、ポンプなどの気体供給装置(図示せず)から構成されている。

【0012】そして液晶セルに過負荷が掛からないように、加圧体1の加圧力を調整する、リリース弁などの圧力調節手段を備えるのが好ましい。

【0013】本実施の形態における加圧体1では、図2に示すように、気体供給口4に第1のバルブ5と前記ホース2の上流側の部位に第2のバルブ6が連結されたものを用いている。

【0014】前記カセット3には、2列の収納部7が形成され、各収納部7に液晶セルを、たとえば40枚程度均等に並べて収納できるように、両側板8のあいだには、係止突起9により、セル挿入用スリット10が設けられている。

【0015】つぎに本発明の製法を説明する。まず図3～4に示すように、必要量よりも多量の液晶を注入した液晶セルPが各スリット10に収納されたカセット3が搬送されると、カセット3の側板11と液晶セルPとのあいだ、および液晶セルPと液晶セルPとのあいだに加圧体1を挿入する。このばあい、図5に示すように加圧体1の挿入が容易に行なえるように、加圧体1の側端部1aには、係止突起9に案内されるV字溝12が形成されている。

【0016】ついでホース2より加圧体1にエアーを送り、液晶セルをある一定時間加圧する。これにより、液晶層の均一な液晶セルをううことができる。

【0017】一定時間経過後、液晶セルの注入口Paの液晶をワイプ材などで拭き取り、封止材の塗布を行なう。その際、バルブ5を閉じて(図2参照)、ホース2を加圧体1と切り離すことで、液晶セルPを加圧したまま封止材塗布工程まで搬送することができる。

【0018】前記加圧体1よりホース2を切り離す際に、バルブ5を閉めたのち、ホース2を一度真空引きして、バルブ6を閉めると、バルブ5とバルブ6のあいだのホース2内は真空状態になる。

【0019】前記封止材塗布後に前記バルブ5を開くと、バルブ5とバルブ6のあいだのホース2内の容量分だけ加圧体1の圧力が減少する。これにより、前記加圧体1の加圧力が低下し、前記封止材がある一定量液晶セル内に引き込まれ、液晶セルの封止ができる。

【0020】封止材をある一定量液晶セル内に引き込まれたのち、紫外線による封止材硬化工程へ液晶セルが収納されたカセット3を搬送し紫外線硬化を行ない、その後のち前記バルブ6を開き、前記加圧体1内のエアーを抜

いて、加圧体1をカセット3より抜き取る。

【0021】なお、本実施の形態では、加圧体に第1と第2のバルブが連結されているが、本発明においては、これに限定されるものではなく、図6に示すように、気体供給口4に開閉弁を有するカプラー13を取り付け、ホース2を着脱自在にすることができる。かかるカプラー13が取り付けられた加圧体14を用いるばあい、前記液晶セルへの液晶注入終了後、高圧の気体を送るための高圧力用ホース2aよりカプラー13を介して加圧体14にエアーを送り、液晶セルをある一定時間加圧する。

【0022】一定時間経過後、前記カプラー13より前記ホース2aを抜き取り、液晶拭き取りおよび封止材塗布工程へ搬送し、液晶拭き取りと封止材の塗布を行なうことができる。

【0023】前記封止材塗布後に前記液晶セルの加圧際にホース2aより送ったエアーパークよりも低い圧力の気体を送るための低圧力用ホースをカプラー13に接続すると、加圧体14内の圧力は低圧力用ホースより送られるエアーパークまで低下し、加圧体14の液晶セルの加圧力が減少する。これにより、前記封止材がある一定量だけ液晶セル内に引き込まれ、液晶セルの封止ができる。なお、塗布終了後の紫外線による封止材硬化工程へカセットを搬送する際は、再度低圧力用ホースをカプラー13より抜き取って行なう。

【0024】つぎの本発明の他の実施の形態を説明する。前記実施の形態では、加圧体をカセットに収納された液晶セルの数Nに1個足した数だけ挿入したが、本実施の形態では、図7～8に示すように、1個の加圧体1を用い、その他は、たとえばアルミニウムなどの金属板と、ゴム、スポンジなどの緩衝材を貼り合わせた緩衝体15を用いている。

【0025】前記カセット3に設けられた液晶セル同士を均等に並べるためのスリット10および液晶セルP間に前記緩衝体15を入れる。これにより、加圧時、緩衝体の形状に沿った液晶セルを容易に製造できる。

【0026】なお、カセットの形状が図9のように一番外にもセル挿入用スリットが形成されているばあい、一番外の緩衝材15aの厚さは、前記スリット10のピッチ幅X1より液晶セルPの厚さaを引いた幅より厚くなるものを用い、その他の液晶セルPと液晶セルPとのあいだに用いる緩衝材15の厚さは、加圧状態において前記スリット10のピッチ幅X1より液晶セルの厚さaを引いた幅と同じものを用いる。

【0027】本実施の形態では、予め液晶注入工程で必要量よりも多量の液晶を注入した液晶セルを収納したカセットに加圧体を挿入させるため、液晶注入で用いたカセットから液晶セルを取り出す（移し替える）手間などを省くことができる。

【0028】なお、本実施の形態では、液晶を注入した液晶セルが収納されているカセットに加圧体を挿入しているが、本発明はこれに限定されるものではなく、必要量よりも多量の液晶を注入した液晶セルと加圧体をカセットに挿入するようにしてもよい。

【0029】

【発明の効果】以上説明したとおり、本発明によれば、カセットに収納された液晶セルをカセットに収納させたまま加圧することができ、また液晶セルを加圧したまま

10 搬送を容易に行なうことができる。また2個のバルブをホースに連結し、各バルブを開閉させることで、またはカプラーを取り付けることにより異なる圧力のホースに接続することで加圧体の加圧力を容易に変化できる。また液晶層の層厚が均一の液晶セルを製造する際に、カセットより液晶セルを取り出す工程を省くことができ、静電気の発生を抑え、装置処理能力が大幅に向上するとともに、装置が安価にでき、省スペース化を図ることができる。さらに緩衝体を用いることにより、加圧時、緩衝体の形状に沿った液晶セルを容易に製造できる。

20 【図面の簡単な説明】

【図1】本発明の封止装置の一実施の形態を示す部分斜視図である。

【図2】加圧体の一実施の形態を示す斜視図である。

【図3】図1におけるカセットに液晶セルと加圧体を挿入した状態を示す正面図である。

【図4】図3におけるカセットの平面図である。

【図5】図3におけるカセットのコーナー部分の拡大図である。

【図6】加圧体の他の実施の形態を示す斜視図である。

30 【図7】本発明の封止装置の他の実施の形態を示す正面図である。

【図8】図7におけるカセットの平面図である。

【図9】図8におけるカセットのコーナー部分の拡大図である。

【符号の説明】

1、14 加圧体

2 気体注入用ホース

3 カセット

4 気体供給口

40 5 第1のバルブ

6 第2のバルブ

7 収納部

8、11 側板

9 係止突起

10 セル挿入用スリット

12 V字溝

13 カプラー

P 液晶セル

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

