FGA0137 Sistemas de Banco de Dados 1

Prof. Maurício Serrano

Material original: Profa. Elaine Parros Machado de Sousa Prof. Jose Fernando Rodrigues Junior

Introdução a Sistemas de Bancos de Dados

Módulo 1

Motivação

- Lawrence Joseph Ellison Oracle
 - Homem mais rico do mundo (2000)
 - 9° americano mais rico (2022)
 - 10° pessoa mais rica do mundo (2022)
 - Bloomberg Billionaires Index e Forbes
 - \$108 bi em 2022
 - \$57 bi em 2018

Agenda

- Cronologia
- Evolução dos Sistemas de Informação
- Conceitos Básicos
- SGBDs

- Primeiros computadores.
- Programação em linguagem de máquina
- Surgimento de SOs e Linguagens
- Surgimento de Estruturas de Dados
- Sistemas de arquivos com acesso aleatório

1959: Sistema RAMAC (IBM)

- CODASYL: consórcio da indústria → COBOL
- Conceituação de SGBD e modelos de dados
- Primeiro SGBD comercialmente disponível
- Modelo Hierárquico:

IMS - IBM

Integração com a linguagem **COBOL**Ainda **em uso corrente**

- Proposta do Modelo Relacional
- Surgimento de protótipos de SGBD
 - INGRES (UC Berkeley)
 - Sistema R (IBM)
- Proposta do MER

Modelo Entidade-Relacionamento (MER)

Primeiro SGBDR de grande porte disponível
DB2 – IBM:

- Surge SQL vinculada ao Sistema R da IBM
- SQL torna-se padrão
- Primeiros Modelos Orientados a Objetos

- SGBDs orientados a objetos
 - 02
 - ObjectStore
 - Objectivity/DB
 - Jasmine
- SGBDs objeto-relacionais
 - Oracle8, Oracle9, Oracle10g, Oracle 11g
 - PostGreSQL
 - Informix

- NOSQL orientados a documentos
 - MongoDB
 - CouchDB
 - Amazon SimpleDB
 - Lotus Notes
- NOSQL em grafos
 - Neo4J
 - Infinite Graph
 - FlockDB

Evolução dos Sistemas de Informação

Sistemas de Informação baseados em gerenciamento de arquivos:

- Cada unidade da organização possui seus programas e arquivos
- Programas curtos para tarefas específicas
- Dados armazenados em disco
- Cada arquivo usa uma estrutura de dados

REDUNDÂNCIA 📛 INCONSISTÊNCIA

Aplicação de Produção

Arquivos de Dados de Produção

Aplicação de Vendas

Arquivos de Dados de Vendas

Aplicação de Compras

Arquivos de Dados de Compras

Consistência de Dados

 Consistência é o "estado ou caráter do que é coerente, do que tem solidez, veracidade, credibilidade, estabilidade, realidade".

 Se determinada informação é replicada (redundância), seu valor é sempre o mesmo.

SIs baseados em arquivos

Problemas?

- Redundância e inconsistência de dados
- Dificuldade de acesso aos dados
- Isolamento de dados
- Anomalias no acesso concorrente
- Segurança

SIs baseados em arquivos

- Dados gravados em disco usando
 ESTRUTURAS DE DADOS
- Acesso requer conhecimento destas estruturas ⇒ DEPENDÊNCIA DE DADOS.

Dependência dos Dados

- Vários programas compartilhando os mesmos dados
- Todos devem conhecer e manipular as mesmas estruturas
- ACOPLAMENTO FORTE
- E se houver uma alteração na estrutura de dados?

TODOS OS PROGRAMAS TERÃO QUE SER ALTERADOS

Independência dos Dados

Como tornar os programas INDEPENDENTES da estrutura de dados?

CRIANDO UM SISTEMA QUE GERENCIE A ESTRUTURA

Independência dos Dados

SISTEMA DE GERENCIAMENTO DE BANCO DE DADOS (SGBD)

SGBD

Composto por:

- Conjunto de Dados
 - Bases de Dados, Tabelas e Índices, Tuplas
- Conjunto de programas
 - Acesso e manipulação dos dados

SGBD

É um sistema de propósito geral:

- Mantém um conjunto lógico e organizado de dados
- Armazena grandes volumes de dados
- Permite busca e atualização dos dados
- É eficiente
- É autônomo em relação às aplicações

SGBDs

Requisitos Fundamentais:

- Segurança
 - Física (mais comum no passado)
 - Lógica
 - *Usernames* e *passwords*
 - Perfis de usuário
- Integridade
 - Consistência
 - Validade

SGBDs

Restrições de integridade:

- Definem o que é válido e o que não é válido
- Exemplos:
 - Um funcionário não pode pertencer a mais do que um departamento
 - O preço de venda de um produto deverá ser superior ao seu custo
 - O código de cada produto deve ser único

SGBDs

Requisitos Fundamentais:

- Recuperação / Tolerância a falhas
 - Transações atômicas
 - Registros de Log
 - Backup
- Controle da concorrência

Componentes de um SGBD

1) Modelagem:

- Modelo Entidade/Relacionamento
- Modelo Relacional
- 2) Definição:
- SQL DDL
- 3) Instanciação:
- SQL DDL/DML
- 4) Uso:
- SQL DML

Pragmatismo!

- A interface dos bancos de dados é definida pela linguagem declarativa SQL (DDL + DML)
- Procedural vs Declarativo
 - Procedural: exige especificação de <u>quais</u> dados são necessários, e <u>como</u> obtê-los
 - requer uma sequência específica de operações a serem executadas
 - ex.: linguagens de programação como C e Pascal, e a linguagem de projeto de bancos de dados álgebra relacional
 - Não-Procedural (Declarativo): exige apenas especificação de <u>quais</u> dados são necessários, e <u>não</u> de como obtê-los

SQL - Data Definition Language (DDL)

- Conjunto de comandos para definição do <u>esquema</u> da base de dados
- Principais elementos:
 - create
 - alter
 - drop
- Compilador/Interpretador DDL

SQL - Data Manipulation Language (DML)

- Conjunto de comandos para manipulação dos dados de maneira <u>compatível</u> com o esquema
- Principais elementos:
 - select
 - insert
 - delete
 - update
- Compilador/Interpretador DML

Metadados ou Dicionário de Dados:

- banco de dados do sistema
- armazena descrição do esquema
- armazena metadados
- armazena restrições de segurança e integridade
- outras denominações:
 - catálogo de dados
 - diretório de dados

