REC'D 18 FEB 2003

PCT/KR 0 3 / 0 0 1 3 1 RO/KR 21. 0 1.2003

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출원 번호

10-2002-0011648

Application Number

출 원 년 월 일 Date of Application 2002년 03월 05일

MAR 05, 2002

출 원 Applicant(s) 인 : 김범준

KIM BUM JOON

2003 01 21

년 월. 일

특

허

청

COMMISSIONER 記题的

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【제출일자】 2002.03.05

【발명의 명칭】 미코박테리움속 균주의 h s p 65 유전자 분절 및 이를 이

용한 미코박테리움속 균주의 동정방법

【발명의 영문명칭】 HSP 65 GENE FRAGMENTS AND METHOD OF IDENTIFYING

MYCOBATERIAL SPECIES WITH THE SAME

【출원인】

[성명] 김범준

【출원인코드】 4-2001-033138-7

【대리인】

【명칭】 유미특허법인

【대리인코드】 9-2001-100003-6

【지정된변리사】 원영호

【포괄위임등록번호】 2001-048489-7

【발명자】

【성명】 김범준

【출원인코드】 4-2001-033138-7

【발명자】

【성명】 국윤호

【출원인코드】 4-1998-030545-3

【발명자】

【성명의 국문표기】 변경히

【성명의 영문표기】 BYUN,KYUNG HEE

【주민등록번호】 760421-2932717

【우편번호】 690-022

【주소】 제주도 제주시 이도2동 고덕하이츠빌라 203호

【국적】 KR

【발명자】

【성명의 국문표기】 이경갑

【성명의 영문표기】 LEE,KYOUNG KAP

【주민등록번호】 560529-1067012

【우편번호】 690-170

【주소】 제주도 제주시 연동 1399 연동대림아파트 104동 202호

【국적】 KR

【심사청구】 청구

【핵산염기 및 아미노산 서열목록】

【서열목록의 전자파일】 첨부

【취지】 특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대

리인 유미특허법

인 (인)

【수수료】

[기본출원료] 20 면 29,000 원

【가산출원료】53면53,000원

 【우선권주장료】
 0
 건
 0
 원

 [심사청구료]
 5
 항
 269,000
 원

【합계】 351,000 원

【감면사유】 개인 (70%감면)

【감면후 수수료】 105,300 원

【첨부서류】 1. 요약서·명세서(도면)_1통

[요약서]

[요약]

본 발명은 미코박테리움속 hsp 65 유전자의 604-bp 분절을 나타내는 폴리뉴클레오타이드, 및 이들을 이용한 미코박테리움속 균주를 동정하는 방법에 관한 것이다. 본 발명의 hsp 65 유전자의 604-bp 분절은 비교염기서열 분석방법, 프로브혼성화법, 및 PCR-RFLP등의 방법에 이용가능하고, hsp 65 유전자의 604-bp 분절을 이용한 동정법은 생장속도가 느리고 다양한 균주가 존재한다는 문제점, 그리고 물질위주 동정 및 16s rDNA 동정이 갖는 문제점을 해결하여, 간편하고, 경제적이고 정확성이 높은 동정방법을 제공한다는 장점이 있어, 향후 미코박테리움속 균주의 동정에 널리 이용될 수 있다.

【대표도】

도 1

【색인어】

미코박테리움속, heat shock protein 65, 604 bp 분절, 동정, 탐지

【명세서】

【발명의 명칭】

미코박테리움속 균주의 h s p 65 유전자 분절 및 이를 이용한 미코박테리움속 균주의 동정방법{HSP 65 GENE FRAGMENTS AND METHOD OF IDENTIFYING MYCOBATERIAL SPECIES WITH THE SAME}

【도면의 간단한 설명】

도 1은 본 발명에 따른 hsp 65 유전자 분절 및 프라이머의 위치를 나타내는 모식도이다.

도 2는 미코박테리움속 표준균주의 hsp 65 유전자의 증폭산물을 분석한 결과를 나타내는 사진이다.

도 3은 본 발명에서 분석한 미코박테리움속 표준균주 50주의 계통도를 나타낸다.

도 4a 내지 4d는 본 발명에서 분석한 미코박테리아 임상 분리 균주의 hsp 65 유전자 분절(604-bp)의 비교 염기서열 분석방법에 의한 동정결과를 나타낸다.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 미코박테리움속 균주의 hsp 65 (Heat Shock Protein 65) 유전자 분절, 및 이를 이용한 미코박테리움속 균주의 동정방법에 관한 것이다.
- 이코박테리움(Mycobacterium)속(屬)에는 결핵, 우형결핵(牛形結核), 나병(癩病)과 같이 사람과 동물에 심각한 질병을 일으키는 균주(species)뿐 아니라, 기회감염균으로

일컬어지는 균주, 그리고 자연환경에서 볼 수 있는 사물(死物)기생 균주(saprophytic species) 등 현재까지 약 72종(species)이 알려져 있으며, 그 중 인체질환과 관련된 것이 25여종에 이르는 것으로 알려져 있다.

- 지 미코박테리아 감염증 가운데 가장 많은 질병은 결핵(Tuberculosis)으로, 강한 병원성을 갖는 결핵균군(群)(M.tuberculosis complex: TB complex)으로 구분되는 M. tuberculosis, M. bovis, M. africanum, M. microti의 4종이 원인균이며, 이 중 결핵균 (M. tuberculosis)이 가장 흔하고 중요한 원인균으로 알려져 있다. 결핵은 항 결핵제의 효율적인 사용으로 1980년대 말까지는 계속 감소하는 추세였으나, 1990년대에 내성결핵 균의 증가와 후천성면역결핍증 환자의 증가 등으로 선진국에서는 점차 증가세에 있다.특히 국내는 IMF 구제금융시기에 노숙자의 증가 등으로 현재 결핵으로 인한 사망이 감염질환 중에서 가장 높고 연 3000명 이상이 결핵으로 인해 사망한다고 보고되고 있다.
- * 비결핵항산성균 (Mycobacteria Other than Mycobacterium tuberculosis, MOTT 또는 nontuberculous mycobacteria, NTM)은 임상적으로 대부분 면역저하 환자나 노약자에서 질병을 일으키고 임상소견은 결핵과 유사하다. 비록 국내에는 상대적으로 결핵에 비해 발생율이 현저하게 낮지만 생활환경에 널리 분포하고 있어서, 임상가검물로부터 분리되어도 병원성 여부를 판단하기 힘들어 진단이 쉽지 않고, 또한 대부분의 항 결핵제에 약제 내성을 보여 치료가 어려우며, 재발율도 높은 것으로 알려져 있다. 또한 이러한 비결핵항산성균은 면역 기능의 저하가 없는 환

자에게도 질병을 일으키는 사실이 보고되었다. 지난 10년간 미국에서 발생한 미코박테리아증의 발생 빈도를 보면 결핵이 전체의 50% 정도를 차지하고 비결핵항산성균증이 나머지 50%를 차지하고 있다. 1980년 이후에 HIV(Human immunodeficiency virus) 감염이확산되면서, 비결핵항산성균이 면역저하 환자에서 전신적인 파종성 감염을 일으킨다는 것이 알려져 비결핵항산성균에 대한 관심이 높아지고 있다.

- 미코박테리움속 균주는 각 종에 따라 항결핵제 내성 패턴이 서로 다르기 때문에, 약제 및 치료 방법이 서로 다른 경우가 많다(Wolinsky E: Mycobacterial diseases other than tuberculosis. Clin Infect Dis 15: 1-10, 1992). 따라서, 미코박테리움 속 균주 를 종수준별로 감별 및 동정하는 것이 필요하다.
- 미코박테리움속 균주를 탐지 또는 동정하기 위한 방법증 하나인 생화학적 동정 방법은 미코박테리움속 균주의 발육 속도가 느리기 때문에 시간이 오래 걸리고 숙련된 사람이 필요하다는 단점이 있다. 고성능액체크로마토그래피(High-performance lipid chromatography(HPLC)) 및 박충액체크로마토그래피(Thin layer lipid chromatography(TLC))를 이용한 세포벽의 지질 분석에 의한 동정방법은 역시 수행하기 까다롭고 비용이 많이 드는 단점이 있어 소수의 실험실에서만 이용하고 있다. 기존의 미코박테리움속 균주 동정 방법은 이를 균의 발육속도가 느리다는 생물학적인 특성 때문에 진단 및 동정하는 데에 있어서 시간이 많이 소요되므로(완속발육균의 경우 약 2-3개월 소요), 결국 임상적으로 치료시기를 놓칠 수 있는 문제점이 있다(Nolte FS, Metchock B: Mycobacterium, In Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (ed.), Manual of clinical microbiology. American Society for Microbiology, Washington, D.C. 400-437, 1995.).

미코박테리움속 균주 동정을 위한 분자생물학적인 방법의 개발에 있어서 주요 표적으로 가장 널리 사용되고 있는 시계분자는 16S rDNA이다. 1990년도에 미코박테리움속 표준 균주의 16S rDNA의 염기서열이 결정되고 이들이 미코박테리움속 균주 간의 계통학적 관계를 잘 나타낸다는 보고 이후에, 현재까지 이를 이용한 여러 가지 동정 방법(비교염기서열 분석방법, 프로브혼성화법, PCR-RFLP)이 개발되고, 이들 방법을 이용한 연구가 많이 이루어져 있다. 그러나 16S rRNA를 시계분자로 방법은 명백한 병원성균인 미코박테리움 칸사시(M. kansasii)와 비병원성 균인 미코박테리움 가스트리(M. gastri)와의염기서열이 100% 일치하기 때문에 이 두종을 감별하지 못하며, 또한 신속발육 미코박테리아나 미코박테리움 테래 복합체(M. terrae complex)와 같은 균은 한 개체에 16S rDNA을 코당하는 여러 유전자가 존재하고 이들의 염기서열이 서로 다르기 때문에 직접염기서열 분석 방법에 의해 염기서열을 결정하지 못하고 이 들 유전자를 vector에 클로닝 한후 분석해야 하기 때문에 시간과 비용면에서 효율적이지 못하다는 단점이 있다.

16S rDNA 이외에 대체 시계분자로서 dnaJ 분자와 23S rDNA을 이용한 방법 등이 . 1994년에 발표되었지만, 이 들은 각각 균주간의 계통학적 관계를 나타내는 데에 있어서의 문제점, 염기서열의 보존성 등의 문제점 등 때문에 현재 거의 진단표적으로서 이용되지 않고 있다(Victor TC, Jordaan AM, Van Schalkwyk EJ, Coetzee GJ, Van Helden PD. Strain-specific variation in the dnaJ gene of mycobacteria. J Med Microbiol. 44(5):332-339, 1996). 또한 1993년에 Telenti A 등에 의해서 hsp 65 유전자 분절을 표적으로 하는 폴리머라제 사슬 반응 및 제한효소절단 (Polymerase Chain Reaction-Restriction Enzyme Length Polymorphism, PCR-RFLP)에 의한 균 동정방법이 개발되어 널리 이용되고 있으나, 염기서열 분석은 신속발육균의 몇 개의 중에 대해서만 분

석되었고, 따라서 DNA 칩이나, 프로브-혼성화용으로는 진단방법이 개발되지 않은 상태이다(Telenti A, Marchesi F, Balz M, Bally F, Bottger EC, Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol. 31(2):175-8. 1993). 국내에서는 미코박테리움 속 균주 동정을 주로 기존의 생화학적인 동정 방법에 의존하고 있다. 따라서, 동정까지의 시간이 오래 걸리기 때문에 치료시기를 놓칠 수 있는 문제점이 있다.

출력 일자: 2003/2/4

【발명이 이루고자 하는 기술적 과제】

- <13> 상기와 같은 문제점을 해결하고자, 본 발명은 미코박테리움속 균주의 hsp 65 분절을 제공하는 것이다.
- 본 발명은 미코박테리움속 표준균주의 hsp 65 유전자 분절을 1종 이상 포함하는, 미코박테리움속 균주의 탐지 또는 동정을 위한 뉴클레오타이드 세트를 제공하고자 한다.
- 본 발명의 또다른 목적은 상기 hsp 65의 분절을 이용하여 미코박테리움속 균주의 탐지 또는 동정하는 방법을 제공하고자 한다.

【발명의 구성 및 작용】

- <16> 상기와 같은 목적을 달성하기 위하여, 본 발명은
- SEQ ID NO: 1 내지 SEQ ID NO: 54에 나타난 염기서열로 이루어진 군에서 선택되며, 미코박테리움속 균주의 hsp 65의 604-bp 분절을 나타내는 폴리뉴클레오타이드에 관한 것 이다.

본 발명은 SEQ ID NO: 1 내지 SEQ ID NO: 54에 나타난 염기서열로 이루어진 군에서 선택된 1종 이상의 미코박테리움 균주의 hsp 65의 604-bp 분절을 포함하는, 미코박테라 움속 균주의 탐지 또는 동정을 위한 뉴클레오타이드 세트에 관한 것이다.

- <19> 또한, 본 발명은
- (1) 미코박테리움속 균주의 hsp 65의 604-bp 분절을 특이적으로 증폭시키는 프라이 머를 이용하여, 목적 균주의 hsp 65 유전자 분절을 증폭하고,
- (2) 상기 증폭된 hsp 65 유전자 분절의 염기서열을 분석하고.
- (3) 단계 (2)에서 얻어진 염기서열과 표준균주의 hsp 65 유전자 604-bp 분절의 염기서열을 비교하는 단계를 포함하는, hsp 65 유전자 분절을 이용한 미코박테리움속 균주의 탐지 또는 동정방법에 관한 것이다.
- 지고박테리움속 균주의 동정 및 분류방법상의 문제점을 감안하여, 본 발명자들은 모든 미코박테리움속 균주의 PCR 증폭에 사용되는 프라이머쌍을 이용하여, 표준균주를 대상으로 새로운 시계분자인 hsp 65 유전자 604-bp 분절의 염기서열을 분석하여 데이터 베이스를 구축하였다. 또한, 목적 균주의 hsp 65 유전자 분절을 증폭하여, 상기 데이터 베이스와 비교 분석함으로써 새로운 미코박테리움속 균주의 탐지 또는 동정방법을 개발하게 되었다.
- <24> 이하에서 본 발명을 더욱 자세히 설명하고자 한다.
- 본 발명은 미코박테리움속 균주를 탐지 또는 동정하기 위한 hsp 65 유전자 분절을 나타내는 폴리뉴클레오타이드에 관한 것이다.

본 발명에서 미코박테리움속 균주의 동정을 위한 시계분자로서 결핵균의 1623-bp 전체 유전자 중에서 163번째 염기서열부터 806-bp번째의 염기서열 총 644-bp의 염기서열을 사용하였으며, 프라이머 40-bp을 제외하면 604-bp서열이며, 이는 기존에 Telenti 등이 이용한 439bp의 유전자 분절과는 다른 부위의 분절이다(도 1). 바람직하게는, 본 발명은 SEQ ID NO:1 내지 SEQ ID NO:54에 기재된 염기서열을 폴리뉴클레오타이드이다. 54주의 미코박테리움속 표준균주의 hsp 65 604-bp 유전자 분절의 염기서열은 Genbank 검색상에서 모두 새로운 염기서열로 밝혀졌다.

본 발명에 따른 폴리뉴클레오타이드를 이용하여 여러 가지 동정 방법, 예컨대 비교 염기서열 분석방법, 프로브 혼성화법 및 PCR-RFLP에 따라 미코박테리움속 균주를 동정할 수 있다. 상기 비교염기서열 분석방법, 프로브혼성화법 및 PCR-RFLP방법은 본 기술분 야에 속하는 전문가에게 알려진 방법에 따라 실시할 수 있으며, 예컨대 시계분자로서 16s rRNA를 사용하여 분석하는 방법을 모두 본 발명의 폴리뉴클레오타이드를 이용하는 방법에 적용가능하다.

본 발명에서 미코박테리움속 균주의 hsp 65 유전자를 증폭하기 위한 바람직한 프라이머쌍을 얻기 위해서, 본 발명자들은 미코박테리움 속 균주중에서 전체 1623 bp의 hsp 65 유전자의 염기서열이 분석된 M. tuberculosis (GenBank No. M15467) 및 M. avium (GenBank No. AF281650) 2주와 이들과 계통학적으로 가장 유사한 Tsukamurella 속 균주인 T. paurometabola (GenBank No. AF352578)1 주을 포함하여 총 3주의 염기서열을 분석하여 모든 미코박테리움 속 균주를 증폭시킬 수 있는 프라이머쌍을 제조한다. 각각 결핵균의 hsp 65 염기서열 중에서 163번째부터 182번째까지의 총 20개의 염기로 구성된 정방향 프라이머와 787번째 염기서열부터 806 번째 염기로 구성되는 총 20개의 염기로 구

성된 역방향 프라이머를 사용할 수 있다. 또한, 미코박테리움속 균주의 hsp 65 유전자의 664bp 유전자 분절을 증폭하기 위해서 상기 프라이머쌍을 다소 변경하거나 상기 프라이머 서열을 포함하는 서열을 프라이머 서열도 또한 본 발명에 사용할 수 있음은 본 발명이 속하는 분야의 통상의 지식을 가진 기술자에게 자명할 것이다. 상기 프라이머쌍부위는 미코박테리움 속 균주에 속하는 M. tuberculosis와 M. avium와 100% 염기서열 상동성을 보일 뿐만 아니라 다른 속 균주인 Tsukamurella paurometabola 와도 100% 상동성을 보이는 계통학적으로 보존된 부위를 사용하였다. 바람직하게는, 정방향 프라이머 서열은 5'-ATCGCCAAGGAGATCGAGCT-3'이고 이를 SEQ ID NO: 55에 나타냈으며 HSPF3로 명명하였다. 또한, 역방향 프라이머 서열은 5'-AAGGTGCCGCGGATCTTGTT-3'이고 이를 SEQ ID NO: 56에 나타냈으며 HSPR4로 명명하였다. 본 발명에 사용된 시계분자인 hsp 65 분절과 프라이머위치를 도 1에 개략적으로 표시하고 있다.

지로막테리움속 균주의 탐지 또는 동정을 위한 데이터베이스 구축을 위해서, 하기 표 1에 나타난 균주들을 표준균주로 선정하였다. American Type Culture Collection(ATCC)에서 분양받은 47주의 미코박테리움 속 표준균주, 대한민국, 서울에 소재한 가톨릭의과대학의 나병연구소로부터 분양받은 M. leprae의 표준균주 (Thai 53 strains)의 DNA, 및 V Vincent로부터 분양받은 2 개의 M. kansasii 표준균주 (type II, III)를 포함하여 DNA 총 50주의 미코박테리움속 표준 균주를 대상으로 hsp 65 유전자분절의 염기서열을 분석하였다. 또한 미코박테리움속 균주와 계통분류학적으로 가장 유사한 추카무렐라(Tsukamurella) 3주를 German Collection of Microorganisms and Cell Cultures로부터 분양받고 또한 노카르디아(Nocardia) 1 주를 ATCC로부터 분양받아 hsp 65 유전자 분절의 염기서열을 분석하였다(표 1).

<30> 【班 1】

<31>

<u> </u>							
No	종명	<u> </u>	No				
1	M. abscessus	CAP97E-03		종명	균주		
2	M. africanum	ATCC 25420	26	M. kansasii Type III	V. Vincent		
3	M. asiaticum		27	M. leprae	Thai 53		
4	M. aichiense	ATCC 25276	28	M. malmoense	ATCC 29571		
5	M. avium	ATCC 27280	29	M. marinum	ATCC 927		
6	·	ATCC 25291	30	M. mucogenicum	ATCC 49650		
7	M. bovis	ATCC 19210	31	M. neoaurum	ATCC 25795		
8	M. bovis BCG	French strain	32	M. nonchromogenicum	ATCC 19530		
9	M. celatum Type I	ATCC 51131	33	M. paratuberculosis	ATCC 19698		
10	M. celatum Type II	ATCC 51130	34	M. phlei	ATCC 11758		
	M. chelonae	ATCC 35749	35	M. peregrinum	ATCC 14467		
11	M. chitae	ATCC 19627	36	M. scrofulaceum	ATCC 19981		
12	M. microti	ATCC 19422	37	M. senegalense	ATCC 35796		
13	M. flavescens	ATCC 14474	38	M. shimoidei	ATCC 27962		
14	M. fortuitum 6841	ATCC 6841	39	M. simiae	ATCC 25275		
15	M. fortuitum 49403	ATCC 49403	40	M. smegmatis	ATCC 19420		
16	M. fortuitum 49404	ATCC 49404	41	M. szulgai	ATCC 35799		
17	M. gastri	ATCC 15754	42	M. terrae	ATCC 35799		
18	M. genavense	ATCC 51233	43	M. thermoresitibile	ATCC 19753		
19	M. gordonae	ATCC 14470	44	M. triviale			
20	M. haemophilum	ATCC 29548	45	M. tuberculosis	ATCC 23292		
21	M. interjectum	ATCC 51457	46	M. ulcerans	ATCC 27294		
22	M. intermedium	ATCC 51848	47		ATCC 19423		
23	M. intracellulare	ATCC 13950	48	M. vaccae	ATCC 15483		
24	M. kansasii Type I	ATCC 12478	49	M. wolinskyi	ATCC 700010		
25	M. kansasii Type II	V. Vincent	50	M. parafortuitum	ATCC 19686		
University In the North							
1	T. paurometabola	DSM 20162	2				
3	T. pulmonis	DSM 44142		T. tyrosinosolvens	DSM 44234		
لــــــــــــــــــــــــــــــــــــــ	2. parmon13	DOM 44147	4	N. carnea	ATCC 6847		

어떤 부위가 동정 및 진단의 표적으로 적합하기 위해서는 이 부위가 세균사이의 계통적 관계를 잘 나타내는 시계분자 인지를 살펴보아야 한다. 어떤 유전자가 세균의 계통적 관계를 잘 반영하는 시계분자가 되기 위해서는 일정한 요건을 만족해야 한다. 첫째로, 표적 유전자가 모든 세균에서 기능적으로 필수적이고 보존되어야 한다. 둘째로, 표적 유전자의 유전자 변이가 진화를 반영하는 시간적 요소에 의해서만 일어나야 한다. 즉, 균주간 선택압(selection pressure)에 의한 lateral transfer에 의한 염기서열 변이가 일어나지 않는다. 셋째로, 표적유전자는 균의 계통적 관계를 나타내기에 적절한 속

간 다양성(interspecies variation)과 같은 속내의 균주 사이의 보존성(intraspecies conservation)을 보여야 한다. 본 발명의 hsp 65 유전자의 604-bp 분절은 이러한 시계 분자의 조건에 적합함을 알 수 있다.

<32> 미코밖테리움속 표준균주 50 주를 포함한 총 54 주의 표준균주의 염기서열을 직접 염기서열 분석 방법으로 분석한 후 얻어진 결과를 다정렬 (multialignment)하여 서로의 염기서열을 비교해 본 결과, 54 주 표준균주는 결핵균군속 균주 5주 즉 미코박테리움 아 프리카넘(M. af ricanum), 미코박테리움 보비스(M. bovis), 미코박테리움 보비스 BCG(M.bovis BCG), 미코막테리움 미크로티(M. microti), 미코박테리움 투베르쿨로시스(M. tuberculosis)를 제외한 나머지 균주들은 모두 다른 염기서열을 가지고 있음을 확인할 수 있었다. 각 종간 염기서열 다양성 (interspecies variation)을 보여준다. 염기서열 이 같은 것으로 분석된 결핵균군 5 주는 16S rDNA나 혹은 rpoB 유전자 분절을 비롯한 다 른 염기서열 분석방법으로도 모두 같은 염기서열을 보인다고 알려져 있기 때문에 이 들 은 서로 동일한 종(speci\es)이라고 보고되고 있다. 시계분자는 먼저 각 균주 간의 염기 서열 다양성이 선행되어야√하는 데 본 실험에서 그 조건을 충족시킴을 확인할 수 있었다. 둘째, 54 주의 염치서열 모두 다정렬상에서 염기서열 삽입(insertion)이나, 결 실(deletion)없이 모두 604-bh의 염기를 코딩하고 있었다. 즉, 다정렬 상에서 어떠한 갭(gap)도 존재하지 않는다는 √1실이다. 16S rDNA는 정렬상에서 높은 빈도로 갭이 존재 한다. 다정렬할 때 일반적으로 \갭은 그 부위에 해당되는 정렬된 유전자를 전부 제거하 여 분석하는 경향이 있기 때문에 전체적인 계통수를 구축하는 데에 오류를 일으킬 확률 이 높다고 알려져 있다. 따라서 본 발명에서 사용된 hsp 65 유전자의 염기서열을 이용 한 균주 동정 방법의 우수성을 다시 한 번 확인할 수 있다.

따라서 본 발명의 hsp 65 604-bp 영역이 시계분자로서 적절한지를 알아보기 위해서, 여러 가지 미코박테리움속 균주의 hsp 65 604-bp 분절의 염기서열을 취하여 계통도를 작성한다. 또한, 상기 염기서열를 이용하여 이미 다른 방법으로 동정된 미코박테리움속 균주를 정확히 구분됨을 확인할 수 있다.

본 발명에서 분석된 미코박테리움속 표준균주의 계통수는 미코박테리아의 자연적인 특성을 잘 반영하는 계통수이다. 즉 미코박테리움속 표준균주 50 주가 T.

paurometabola을 outgroup으로 할 때 하나의 큰 그룹을 형성함을 확인할 수 있었다(도 3). 또한 완속발육균과 신속발육균이 서로 완전히 다른 그룹을 형성하고 있음을 확인하였고, 명백한 절대병원성균인 M. tuberculosis와 M. leprae가 서로 같은 분절을 형성하고, 또한 비결핵항산성균주 중에서 가장 빈번히 분리되고, 또한 생화학적인 특성이 거의 비슷한 M. avium과 M. intracellulare가 서로 같은 분절을 형성하는 등 미코박테리아의 일반적인 특성을 잘 반영하고 있음을 확인하였다. 또한 본 계통수의 가장 큰 특성은 16S rDNA 분석방법으로는 100% 염기서열 상동성을 보이기 때문에 감별이 불가능한 M. kansasii와 M. gastri 와의 구별뿐만 아니라, M. kansasii 사이에서의 아종(subspecies)까지의 구별도 가능함을 확인하였다(즉, M. kansasii Type I, II, III의 염기서열이 서로 차이를 보이고 있다). 완속발육균과 신속발육균이 서로 다른 그룹으로 분지되고 결핵균과 나병균 같은 절대병원성균이 서로 같은 그룹으로 분지되는 등 미코박테리움 속 균주의 계통학적인 관계를 잘 반영하고 있다.

또한, 본 발명은 미코박테리움속 균주의 hsp 65 604-bp 분절을 이용하여 미코박테리움속 균주를 동정하는 방법을 제공한다.

<36> 더욱 자세하게는, 본 발명은

- (1) 미코박테리움속 균주의 hsp 65의 604-bp 분절을 특이적으로 증폭시키는 프라이 머를 이용하여, 목적 균주의 hsp 65 유전자 분절을 증폭하고,
- <38> (2) 상기 증폭된 hsp 65 유전자 분절의 염기서열을 분석하고,
- (3) 단계 (2)에서 얻어진 염기서열과 표준균주의 hsp 65 604-bp 분절의 염기서열을 비교하는 단계를 포함하는, hsp 65 유전자 분절을 이용한 미코박테리움속 균주의 탐지 또는 동정방법에 관한 것이다.
- '40' 바람직하게는, 상기 단계 (3)에서 목적균주의 hsp 65 604-bp 분절의 염기서열과, 상기 미코박테리움 표준균주의 hsp 65 604-bp 폴리뉴클레오타이드 세트의 염기서열에 대입하여 다정렬(multialignment)한 후에 계통도를 완성하여 미코박테리움속 균주를 탐지 또는 동정할 수 있다.
- 비교염기서열 분석방법에 따르면, 본 발명은 모든 미코박테리움속 균주의 hsp 65 증폭용 프라이머, 바람직하게는 SEQ ID NO: 55 및 SEQ ID NO: 56에 나타난 염기서열을 갖는 프라이머쌍을 이용하여 미코박테리움속 표준균주의 hsp 65 분절을 증폭하고, 증폭된 644-bp 분절의 염기서열을 분석하여 데이터베이스를 구축한다. 프라이머 부위를 제외한 54종 표준균주의 hsp 65 604-bp 분절의 염기서열을 분석한 후 다정렬 (multi-alignment)하여 얻어진 염기서열을 데이터베이스화한다. 본 발명에서 사용한 표준균주의 hsp 65 유전자의 604-bp 분절의 염기서열을 SEQ ID NO:1 내지 SEQ ID NO:54에 나타냈다. 이렇게 구축된 데이터베이스를 이용하여 표준 균주 이외의 임상분리 균주를 대상으로 하여 비교염기서열 분석을 수행하여 동정을 실시한다.

또한, 본 발명에서 목적 균주의 hsp 65 유전자 분절의 염기서열과 표준균주의 hsp 65 유전자 분절의 염기서열의 상동성을 기준으로 결정할 수 있다. 다만, 각 균주의 상동성의 범위가 서로 상이하기 때문에 각 균주에 특이적인 상동성 범위를 기준으로 동정에 사용할 수 있으며, 예컨대, M. gordonae인 경우에는 상동성 범위가 넓고 M. tuberculosis인 경우에는 범위가 좁다. 본 발명에서 목적균주의 hsp 65 604-bp 유전자분절의 염기서열을 표준균주의 hsp 604-bp 유전자 분절의 염기서열에 대입하여 다정렬후 계통도를 완성하여 결정할 수 있다.

<43> 본 발명에서 구축된 50 주의 미코박테리움 속 표준 균주의 604-bp hsp 65 유전자 분절의 염기서열 데이터베이스가 실제로 임상분리 균주 동정에 적용될 수 있는 지를 알 아보기 위하여 결핵연구원에서 생화학적인 방법, 예컨대 고체배지에서 색소형성, 최적 성장 온도, 카탈라제(catalase), 철 섭취(Iron uptake), p-니트로벤조산(p-nitrobenzoic acid)를 첨가한 배지에서 성장 정도, 트윈 80 가수분해 시험, 텔루이트(Tellulite) 환원 시험, 5% NaCl에서의 성장 정도, 니아신(Niacin) 생산, 니트레이트(Nitrate)환원시험, 유레이즈(Urease) 생산 시험 등을 수행하여 동정이 완료된 38 주의 미코박테리움 속 임 상 분리 균주를 대상으로 선택하여 다음 표2에 나타냈으며, 이들 38주를 대상으로 맹검 시험법(blind test)을 수행하였다. 임상분리 미코박테리아는 결핵균 10주와 비결핵항산 성균 28 주를 포함하여 총 38 주의 균주를 대상으로 비교염기서열 분석방법을 수행하여 균 동정에 이용하였다(표2). 하기 표2에서 균주항목에 표시된 번호는 결핵연구원에서 임 의로 부여한 번호이다. 또한, 생화학검사결과는 결핵연구원에서 수행한 생화학적 동정 법에 의한 균동정 결과이고, hsp 65 유전자 분석결과는 본 발명의 방법으로 동정한 균동 정 결과를 나타낸다.

<44>【班 2】

본 발명의 일]상 분리 균주 ┃ 균주		
No.	균수	생화학 검사 결과	hsp 65 유전자 분석 결과
1	KIT 77009	M. tuberculosis	M. tuberculosis
2	KIT 77710	M. tuberculosis	M. tuberculosis
3	KIT 77712	M. tuberculosis	M. tuberculosis
4	KIT 77714	M. tuberculosis	M. tuberculosis
5	KIT 77719	M. tuberculosis	M. tuberculosis
6	KIT 77720	M. tuberculosis	M. tuberculosis
7	KIT 77721	M. tuberculosis	M. tuberculosis
8	KIT 77722	M. tuberculosis	M. tuberculosis
9	KIT 77723	M. tuberculosis	M. tuberculosis
10	KIT 77725	M. tuberculosis	M. tuberculosis
11	KIT 41105	M. avium complex	M. intracellulare
12	KIT 41110	M. avium complex	M. avium
13	KIT 41111	M. avium complex	M. intracellulare
14	KIT 41115 -	M. avium complex	M. intracellulare
15	KIT 30101	M. scrofulaceum	M. scrofulaceum
16	KIT 30102	M. scrofulaceum	M. scrofulaceum
17	KIT 20118	M. kansasii	<i>M. kansasii</i> Type I
18	KIT 20119	M. kansasii	<i>M. kansasii</i> Type I
19	KIT 20120	M. kansasii	<i>M. kansasii</i> Type I
20	KIT 47101	M. terrae complex	M. nonchromogenicum
21	KIT 47102	M. terrae complex	M. nonchromogenicum
22	KIT 47103	M. terrae complex	M. nonchromogenicum
23	KIT 47104	M. terrae complex	M. nonchromogenicum
24	KIT 32101	M. gordonae	M. gordonae
25	KIT 32104	M. gordonae	M. gordonae
26	KIT 32105	M. gordonae	M. gordonae
27	KIT 32106	M. gordonae	M. gordonae
28	KIT 31102	M. szulgai	M. szulgai
29	KIT 31103	M. szulgai	M. szulgai
30	KIT 31106	M. szulgai	M. szulgai
31	KIT 31107	M. szulgai	M. szulgai
32	KIT 21101	M. marinum	M. marinum
33	KIT 60108	M. fortuitum complex	M. fortuitum 6841
34	KIT 60109	M. fortuitum complex	M. fortuitum 6841
35	KIT 60110	M. fortuitum complex	M. fortuitum 6841
36	KIT 60111	M. fortuitum complex	M. fortuitum 6841
37	KIT 61104	M. chelonae complex	M. abscessus
38	KIT 61105	M. chelonae complex	M. abscessus

작 임상 분리균주의 DNA의 염기서열을 분석한 후 데이터베이스에 대입하여 다정렬후 계통수를 완성하여 보았다. 그 결과 38 주의 균주를 모두 100% 민감도와 특이도로

<48>

출력 일자: 2003/2/4

종수준으로 동정할 수 있음을 확인하였다(표2 및 도4). 이하에서 그 결과를 상세히 설명하고자 한다.

A. 미코박테리움 투베르쿨로시스(M. tuberculosis) 검체의 동정

이 결핵균을 본 발명에서 구축된 미코박테리움속 표준균주 데이터베이스로 동정해 본 결과 20주 모두 결핵균으로 동정됨을 확인할 수 있었다(표 2, 도 4c). 이 들 임상분리 결핵균 20 주의 hsp 65 유전자의 605-bp 염기서열은 표준 균주인 M. tuberculosis ATCC 27284의 hsp 65 유전자의 605-bp 염기서열은 100% 염기서열 상동성을 보임을 확인할 수 있었다. 시계분자로 기존에 가장 널리 사용되는 16S rDNA는 항결핵제 중의 하나인 스트 랩토마이신의 내성과 관련되어 있고, 또한 rpoB 유전자는 항결핵제인 리팜핀에 대한 내성과 연관되어 있다. 따라서 이들 항결핵제에 내성을 획득한 결핵균은 이들 표적에 돌연변이를 일으킬 수 있지만 본 발명의 표적으로 사용한 hsp 65 유전자에는 다른 표적 유전자와 달리 항결핵제의 내성과 관련이 있는 유전자가 아니며, 이 유전자에서는 이러한 돌연변이가 일어나지 않는다. 따라서, 이러한 항결핵제에 대한 선택압에 대해 본 발명에 따른 hsp 65 604-bp 분절이 훨씬 안정적이라 할 수 있다.

B. 미코박테리움 아비움 복합체(*M. avium* complex)의 임상 분리 균주의 동정

'49' 비결핵항산성 균주중에서 가장 빈번하게 분리되어지는 미코박테리움 아비움 복합체임상 분리 균주를 4 주를 대상으로 균 동정을 수행해 본 결과 이들 중 3주는 미코박테리움 인트라셀룰라레(M. intracellulare)이고, 1 주는 미코박테리움 아비움으로 동정할수 있었다. 생화학적인 방법으로는 이들 두 균주의 생화학적인 특성이 서로 같기 때문

에 미코박테리움 아비움 복합체에 속하는 미코박테리움 인트라셀룰라레와 미코박테리움 아비움을 서로 구별하여 동정하지 못하지만, 본발명에 따른 방법은 이들 균주를 모두 종 수준으로 감별할 수 있다. 본 발명의 방법에 의해 미코박테리움 아비움으로 동정된 1 주(KIT 41110)는 표준 균주인 M. avium ATCC 25281과 염기서열을 비교하여 보았을 때 전 체 604-bp 중에서 3 개의 염기에서 다른 즉 99.5% 염기서열 상동성을 보임을 확인할 수 있었다. M: intracellualre로 동정된 3주(KIT 41105, 41111, 41115)와 표준균주인 ATCC 13850 4주의 염기서열의 상동성을 비교하여 보았을 때 서로 99.0 ~ 99.8%의 염기서 열 상동성을 보임을 확인할 수 있었다. 이러한 사실은 M. avium complex 균주 중에서 M. avium에 비해 M. intracellualre가 서로 다른 여러 개의 유전형으로 이루어진다는 사 실, 즉 M. intracellulare의 균주간에는 생물학적 이질성(heterogeneity)이 존재한다는 기존의 보고와 일치한다(Devallois A, Picardeau M, Paramasivan CN, Vincent V, Rastogi N: Molecular characterization of Mycobacterium avium complex isolates giving discordant results in AccuProbe tests by PCR-restriction enzyme analysis, 16s rRNA sequencing, and DT1-DT6 PCR. J Clin Microbiol 1997 35: 2767-2772).

C. 미코박테리움 스크로풀라세움(M. scrofulaceum) 임상분리 균주의 동정

본 발명에 의한 방법에 의해 M. scrofulaceum로 동정된 임상분리균은 모두 2 주 (KIT 30101, 30102)이었고(도 4b), 이들의 염기서열과 표준균주인 M. scrofulaceum ATCC 19981의 염기서열 총 3주의 염기서열의 상동성을 비교하여 본 결과 모두 99.8 ~ 100%의 높은 염기서열 상동성을 나타냄을 확인하였다.

D. M. kansasii 임상분리 균주의 동정

<52>

<53> $\it M.~kansasii$ 는 비록 비결핵항산성균 중에서 전세계적으로 $\it M.~avium~complex~분리균$ 주 다음의 높은 빈도로 분리되어지는 균주로 알려져 있고, 또한 이들의 병원성은 비결핵 항산성균 중에서 가장 높은 것으로 알려져 있다. 그렇지만 이들은 가장 대표적인 진단 표적인 16S rDNA의 염기상에서 비병원성균인 M. gastri와 100% 염기서열 상동성을 보이 기 때문에 이 표적유전자를 이용한 방법으로는 이 두균의 감별이 불가능하다. 또한 M. kansasii는 최소한 5 개 이상의 아종으로 구성되어 있다고 알려져 있고 이들 중에서 유 형 I과 유형 II가 임상 검체로부터 분리된다고 보고되고 있다. 본 발명에서 구축된 데 이터베이스를 이용하여 임상분리 균주를 동정한 결과 모두 3 개의 균주가 M. kansasii로 동정되어, 생화학적인 분석법의 결과와 일치하는 결과이다. 본 발명에서 구축된 hsp 65 유전자 분절을 이용한 미코박테리움속 균주 동정 방법의 가장 큰 특징은 이들 M. kansasii를 M. gastri와 감별이 가능할 뿐만 아니라, 심지어 M. kansasii의 아종 수준으 로도 동정이 가능하다는 것이다. 본 실험에서 분석한 3 주의 M. kansasii 임상분리 균 주 (KIT 20118, 20119, 20120)는 모두 100% 염기서열 상동성을 보이며 *M. kansasii* Type I ATCC 12478으로 동정됨을 확인할 수 있었다(도 4c).

E. M. gordonae, M. szulgai, M. marinum, M. terrae complex 임상분리 균주의 동

본 발명에 의해 구축된 데이터베이스를 이용하여 동정하여 본 결과 4 개의 균주가 (KIT 32101, 32104, 32105, 32106) M. gordonae로 동정되었다(도 4a, 표 2). 이들임상 분리 균주 4주 상호간 염기서열을 비교해 보면 99.2-99.8% 까지의 높은 염기서열상동성을 나타내지만, 이들 균주를 표준 균주인 M. gordonae ATCC 14470과 염기서열의상동성을 비교 분석하여 본 결과 이들은 95.5-96.3%으로 동일안 종내에서 상당히 낮은

상동성을 보여주었다. 이러한 사실은 *M. gordonae* 종안에 이질성가 존재한다는 기존의보고와 일치하는 결과이다(Abed Y, Bollet C, de Micco P. Identification and strain differentiation of Mycobacterium species on the basis of DNA 16S-23S spacer region polymorphism. Res Microbiol. 1995 146(5): 405-13). 즉, 같은 지역에서 분리된 4 주의 임상분리 균주는 높은 상동성을 보임에 반하여 다른 지역에서 유래된 표준균주와는 상당한 염기서열 차이를 보여준다는 것을 확인할 수 있었다.

- 네이터베이스를 이용한 결과, 4 개의 균주가 (KIT 31102, 31103, 31106, 31107) M. szulgai로 동정되었고, 이 결과는 생화학적인 검사결과와 일치하였다(도 4a, 표 2). 이들 염기서열과 표준균주인 M. szulgai ATCC 35799의 염기서열을 서로 비교하여 본 결과모두 99.5-100% 까지의 높은 염기서열 상동성을 보여주었다.
- 본 데이터베이스에 의해 1 개의 균주가 M. marinum으로 동정되었고, 이 결과는 생화학적인 검사결과와 일치하였다(도 4a 및 표 2). 이 균주의 염기서열을 표준균주인 M. marinum ATCC 927의 염기서열과 서로 비교하여 보았을 때 99.3%의 염기서열 상동성을 보여주었다.
- M. terrae complex는 일반적으로 인간에게 병을 일으키지 않는 부생균으로 알려져 있고, 본 발명의 표준 균주 데이터베이스에 포함되어 있는 3 균주(M. terrae, M. triviale, M. nonchromogenicum)을 포함하여 여러 분류가 되어 있지 않

은 여러 균주로 구성되어 있다고 알려져 있다. 본 데이터베이스로 4 주가 M. terrae complex 중에서 M. nonchromogenicum으로 동정되었고, 이 결과는 생화학적인 검사결과에서 M. terrae complex로 동정된 결과와 100% 일치하는 결과를 보여주었다. 이들 균주를 표준균주인 M. nonchromogenicum ATCC 19530의 염기서열과 서로 비교하였을 때 이들은 95.0-100%까지의 염기서열 상동성을 보여주었다. 이러한 사실은 M. terrae complex 균주 사이에 이질성가 있다는 기존의 보고와 일치하는 결과이다.

- <u>F. 신속발육균인 M. fortuitum complex와 M. chelonae complex 임상분리 균주의 동</u>
- 본 발명에서 얻어진 미코박테리움속 표준균주의 데이터베이스에 의해 2 주(KIT 61104, 61105)가 M. chelonae complex 균주중에 하나인 M. abscessus로 동정되었다. 이러한 결과는 생화학적인 결과와 일치하였으나, 생화학적인 동정 방법으로는 M. chelonae complex에 속하는 M. chelonae 와 M. abscessus를 서로 감별할 수 없었다. 그러나, hsp 65 유전자 염기서열 데이터베이스를 이용한 방법으로 이들의 감별이 가능하였다. 이두 균주의 염기서열을 표준균주인 M. abscessus CAP97E-03와 비교하였을 때 98.4-99.5% 까지의 염기서열 상동성을 보여주었다.
- *61> M. fortuitum은 본 방법에 의해 4 주가 동정되었고, 이는 생화학적인 결과와 일치하였다. M. fortuitum complex는 여러 가지 균주로 구성되어 있으며, 표준균주로는 M. fortuitum ATCC 6841, M. fortuitum ATCC 49403, M. fortuitum ATCC 49404, 및 M. peregrinum으로 구성되어 있는데 본 발명의 방법으로 4주 모두 M. fortuitum ATCC 6841로 동정됨을 확인할 수 있었다. 임상 분리 균주 4주의 염기서열을 M. fortuitum ATCC 6841과 비교하였을 때 99.4 ~ 100% 가지의 염기서열 상동성을 보임을 확인할 수 있었다.

<62> [실시예]

<63> 실시예 1: 표준 균주의 hsp 65의 644bp 분절의 제조

<64> <u>1-1) 균주 선정</u>

상기 표 1에 나타난 균주들을 표준균주로 사용하였다. ATCC에서 분양받은 47주의 미코박테리움속 균주, 가톨릭의과대학의 나병연구소로부터 분양받은 M. leprae의 표준균주(Thai 53 strains), V Vincent로부터 분양받은 2 주의 M. kansasii 표준균주(type II, III)를 포함하여 총 50주의 미코박테리움속 표준균주로 정하였다. 또한, Tsukamurella 3주를 German Collection of Microorganisms and Cell Cultures로부터 분양았고, Nocardia 1 주를 ATCC로부터 분양받아 hsp 65 유전자 분절의 염기서열을 분석하였다.

<66> <u>1-2) DNA 추출</u>

비드 비터 폐놀(Bead beater phenol, (BB/P)) 방법을 이용하여 표준균주 및 임상분 리균주의 DNA를 추출하였다. 균의 집락을 따내, TEN 완충액 (Tris-HCl 10 mM, EDTA 1 mM, NaCl 100 mM: pH 8.0)에 부유시킨 후에 직경 0.1 mm 초자구 (diameter 0.1 mm; Biospec Products, Bartlesville, Okla., U.S.A.) 100 \(\mu\) (packing volume)와 폐놀:클로 로포름:이소프로필알콜 (50:49:1) 혼합용액 100 \(\mu\)를 함께 부유시켜 미니비터(mini beater)로 1분간 진탕하여 균체를 파쇄하였다. 균파쇄액은 12000 rpm으로 5 분간 원심분리하고 상등액 (100 \(\mu\))을 새로운 튜브에 옮긴 후, 60 \(\mu\)의 이소프로필알콜을 섞고, 다시 15000 rpm으로 15 분간 원심분리하였다. 침전물은 70% 에탄을로 세척한 후 TE (pH 8.0, 10 mM Tris-HCl, 1 mM EDTA) 완충액 60 \(\mu\)로 DNA를 회수하였다.

<68> <u>1-3) hsp 65 유전자 증폭을 위한 프라이머 제조</u>

또는 미코박테리움 속 균주의 hsp 65 유전자 분절을 증폭시킬 수 있는 특이적인 정방향 프라이머(HSPF3)와 역방향 프라이머(HSPR4)를 제조하여 사용하였다. 미코박테리움속 균주 중에서 다른 목적으로 전체 1623-bp hsp 65 유전자의 염기서열이 분석된 M. tuberculosis (GenBank No. M15467), M. avium (GenBank No. AF281650) 2주의 염기서열과 계통학적으로 가장 유사한 Tsukamurella속 균주인 추가무렐라 파우라로메탈볼라(T. paurometabola)(GenBank No. AF352578) 1 주의 총 3주의 염기서열을 분석하여 모든 미코박테리움속 균주를 증폭시킬 수 있는 프라이머쌍을 제조하였다(도 1). SEQ ID NO: 1 및 2에서 본 발명의 바람직한 프라이머를 나타냈고, 도 1에 위치를 도시하였다.

<70> 역방향 프라이머: HSPF3

<71> 5' -ATCGCCAAGGAGATCGAGCT-3'

<72> 역방향 프라이머: HSPR4

<73> 5' -AAGGTGCCGCGGATCTTGTT-3'

<74> 1-4) 중합효소연쇄반응에 의한 hsp 65 유전자 증폭

PCR 반응은 2U의 Taq 폴리머라제, 10 mM dNTP, 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl₂을 포함하는 AccuPower PCR PreMix (Bioneer, Korea)를 이용한다. 1-2)에서 추출한 주형 DNA 50 ng, 상기 1-3)에서 제조된 프라이머 HSPF3 및 HSPR4를 각각 20 pmol씩넣고, 증류수를 최종 부피가 20 μℓ가 되도록 첨가하여 혼합물을 만들었다. PCR은 첫 번째 변성은 95℃로 5분, 30 주기로 변성하고, 95℃ 1분 아닐링, 62℃ 45초 연장, 72℃ 1분 30초, 최종 연장은 72℃ 5분으로 수행하였다(Model 9600 thermocycler, Perkin-Elmer

0020011648

cetus). 중합효소 연쇄반응 후, 1% 아가로스젤에 전기영동하여 644-bp의 반응산물을 확인하였다.

- 중합효소 연쇄반응 후, 1% 아가로스 젤에 전기영동하여 644 bp의 반응산물을 확인하였으며, 그 결과를 도 2에 나타냈다. 제 2도에서 나타낸 바와 같이, 본 실험에서 사용한 표준균주와 198 주의 임상분리 균주는 644-bp의 유전자 분절을 생산함을 확인할 수있었다. 따라서, 본 발명에서 제조한 프라이머 쌍을 이용한 PCR은 모든 미코박테리움속 균주를 증폭시킬 수 있는 시스템이라고 할 수 있다. 도 2에서 패널A는 표준균주의 DNA 증폭산물을 나타낸 것으로서 구체적으로 다음과 같다.
- <??> 레인M: 174를 HaeIII 제한효소로 절단한 DNA 크기마커,
- <78> 1: M. tuberculosis, 2: M. bovis,
- <79> 3: M. africanum, 4: M. avium,
- <80> 5: M. intracellulare, 5: M. scrofulaceum,
- <81> 6: M. gordonae, 7: M. szulgai,
- <82> 8. M. marinum, 9: M. ulcerans,
- <83> 10: M. celatum Type I, 11. M. genavense,
- <84> 12. M. malmoense, 13. M. fortuitum 6841,
- <85> 14: M. abscessus, 15: M. chelonae,
- <86> 16: M. peregrinum.
- <87> 도 2에서 패널B는 국내 임상분리 균주의 DNA 증폭산물을 나타낸 것으로서 구체적으로 다음과 같다:

- <88> 레인 M: 174을 HaeIII 제한효소로 절단한 DNA 크기마커,
- <89> 레인 1-4: Tbc M. tuberculosis 임상분리 균주,
- <90> 레인 5-7: Mac M. avium complex의 임상분리 균주.
- <91> 레인 8-10: Kac M. kansasii의 임상분리 균주.
- <92> 레인 11-13: Foc M. fortuitum의 임상분리 균주.
- <93> 레인 14-16: Chc M. chelonae 의 임상분리 균주이다.
- <94> 1-5) 중합효소 연쇄반응 산물의 정제
- 95 1% 아가로스젤에 전기영동한 후에, PCR 증폭 산물 644-bp의 반응산물 부위의 젤을 잘라내서 새로운 튜브에 옮겨 DNA을 추출하였다. DNA 추출 및 정제는 Qiaex system(Qiagen, Germany)을 이용하였다. 젤 용해용액(Gel solubilizing solution) QX1 500 μ은 젤을 포함한 튜브에 첨가한 후 50℃에 15분간 방치하여 젤을 완전히 녹인다. 그 후 젤 비드를 10μ은 첨가하여 완전히 섞은 후에 50℃에 15분간 방치하였다. 그 사이 1분 간격으로 튜브를 10초씩 vortex를 수행하여 비드가 골고루 퍼지도록 하였다. 이후 QX1으로 1회, QF로 2회 세척한 후 45℃에서 10분간 말린 후 TE 완충액 20 μℓ로 DNA을 회수하였다.
- <96> 실시예 2: hsp 65유전자 분절의 염기서열 분석
- 역기서열 분석방법은 정방향 프라이머 HSPF3와 역방햐 프라이머 HSPR4를 사용하여.
 양쪽으로 염기서열을 분석하였고, 프라이머 부위 40-bp를 제외한 총 604-bp (결핵균의
 hsp 65 유전자를 기준으로 183 번째부터 806 번째 까지의 총 604 개의 염기서열)의 염기서열을 결정하였다.

자동 염기서열 분석은 젤 용출산물을 주형 DNA로 사용하였다. 주형DNA 1060 ng, 프라이머 1.2 pmol, BigDye Terminator Cycle Sequencing kit (PE Appied Biosystems) 2 세을 섞고, 증류수를 첨가하여 총 부피 10 세로 제조하였다. 반응은 Perkin Elmer Cetus 9600을 사용하여, 95℃ 10 초, 60℃ 10 초, 60℃ 4 분으로 25 주기로 실시하였다. 반응이 끝난 시료에 에탄올을 첨가하여 DNA를 침전시켜 정제하였다. 즉, 증류수 180 세, 3 M 소디움아세테이트 10 세를 첨가하여 총 200 세로 만든 후, 이 혼합물에 2배 부피의 100 % 에탄을을 첨가하여 잘 섞은 다음 15000 rpm으로 20분간 원심분리하여 DNA를 침전시켰다. 그 후 70% 에탄을 500 세을 첨가한 후 15000 rpm으로 20분간 원심분리하여 DNA를 세척하였다. 그 후 DNA를 탈이은 포름이미드(PE Appied Biosystems)로 회수하였다. 이렇게 정제된 DNA를 95℃로 5분간 반응하여 단일가닥 DNA로 만든 후, ABI 3100 system을 이용하여 2시간 30분 동안 전기영동하여 염기서열을 분석하였다.

스99 그 결과, 54 주의 표준 균주의 604-bp hsp 65 유전자 염기서열은 Genbank 검색상에서 모두 새로운 염기서열임을 확인할 수 있었다.

<100> 실시예 3: hsp 65 604-bp 유전자 분절의 염기서열배열 및 계통수 작성 <101> 3-1) 염기서열배열

지동 염기서열 분석방법에 의해 분석되어진 54주의 표준균주의 hsp 65 604-bp의 염기서열배열을 Dnastar소프트웨어의 Megalign 프로그램을 이용하여 다정렬 (multialignment)하고 hsp 65 유전자의 염기서열의 데이터베이스를 구축하였다. 다정렬은 일단 604-bp염기서열을 Megalign 프로그램에서 301개의 아미노산으로 번역시킨 후,이 아미노산을 대상으로 Megalign 프로그램안의 Clustal Method 방법으로 다정렬키는 것

이다. 이렇게 정렬된 101개의 아미노산을 다시 604개의 염기서열로 변화시켜 미코박테리움 동정 데이터베이스를 구축하였다.

- (103) 표준균주 염기서열 각각에 대한 염기서열 상동성은 다정렬된 데이터베이스를 Megalign 프로그램 안의 서열거리(sequence distance)를 이용하여 분석하였다.
- 이 기서열 분석 방법으로 분석한 항 후 얻어진 결과를 다정렬 (multialignment) 하여 서로 의 염기서열을 비교해 본 결과, 첫째 54 주 표준균주는 결핵균군속 균주 5주 즉 M. africanum, M. bovis, M. bovis BCG, M. microti, M. tuberculosis를 제외한 나머지 균주들은 모두 다른 염기서열을 가지고 있음을 확인할 수 있었다.

<105> 3-2) 계통수 작성

미코박테리움속 표준균주 사이의 계통학적 관계(phylogenetic relationship)는 계통수 (phylogenetic tree)를 완성하여 분석하였다. 계통수는 MEGA 소프트웨어를 이용하여 구축되었다. 다정렬된 50주의 미코박테리움 속 표준균주의 604-bp 염기서열을 T. paurometabola 의 604-bp의 hsp 65 유전자 염기서열을 outgroup으로 사용하여 Juke-Cantor distance estimation 방법과 pair wise deletion 방법에 기초를 둔 Neighbor-Joining 계통수를 구축하였다. Bootstrap 분석은 100 복제로 수행되었다.

<107> 미코박테리아 균주 50 주가

T. paurometabola을 outgroup 으로 할 때 하나의 큰 그룹을 형성하고, 완속발육군과 신속발육군이 서로 완전히 다른 그룹을 형성하고 있음을 확인하였고, 명백한 절대병원성군인 M. tuberculosis와 M. leprae가 서로 같은 분절을 형성하고, 또한 비결핵항산성군주중에서 가장 빈번히 분리되고, 또한 생화학적인 특성이 거의 비슷한 M. avium과 가 서로 같은 분절을 형성하는 등 미코박테리아의 일반적인 특성을 잘 반영하고 있음을 확인하였다. 또한 본 계통수의 가장 큰 특성은 16S rDNA 분석방법으로는 100% 염기서열 상동성을 보이기 때문에 감별이 불가능한 M. kansasii와 M. gastri 와의 구별 뿐만 아니라, M. kansasii 사이에서의 subspecies 가지의 구별도 가능함을 확인하였다 (즉 M. kansasii

<108> 실시예 4: 표준균주 데이터베이스를 이용한 비교염기서열 분석방법에 의한 임상 분리 균주 동정 실시

하기 표 2에 나타난 바와 같이, 결핵연구원(대한민국, 서울)에서 생화학적인 방법에 의해 균동정이 완료된 결핵균 10 주와 비결핵항산성균 28 주를 포함하여 총 38 주의 균주를 임상분리균주로 하였다.

임상분리균주의 DNA 분리, PCR에 의한 증폭, 및 정제방법은 실시예 1-2) 내지 1-5)에 기재된 방법과 동일하게 수행하고, 실시예 2와 동일한 방법으로 각 임상분리균주의 hsp 65 604-bp 분절의 염기서열을 분석하였다. 표준균주 54 주의 염기서열이 축적되어 있는 Dnastar 소프트웨어의 Megalign 프로그램에 대입한 후 실시예 3에 기재된 방법으로 다정렬을 수행한 후, Mega 소프트웨어의 Neighbor-Joining 방법으로 계통수를 완성하여 균 동정을 실시하였다. 그 결과는 상기 표 2에 나타난 것과 같았다.

- *** 표 2 및 도 4a, 4b, 4c 및 4d에 나타냈으며, 38 주의 균주는 모두 100% 민감도와 특이도를 가지고 종수준으로 동정함을 확인할 수 있었다.도 4a, 4b, 4c, 및 4d에 대해서는 다음과 같다.
- <112> 도 4a: M. gordonae 4 주 (KIT 32101, 32104, 32105, 32106), M. szulgai 4 주(KIT 31102, 31103, 31106, 31107) 및 M. marinum 1주 (KIT 21101)의 동정
- <113> 도 4b: M. scrofulaceum 2 주 (KIT 30101, 30102) 및 M. avium complex 4 주(KIT 41105, 41110, 41111, 41115)의 동정
- <114> 도 4c: M. tuberculosis 1주 (KIT 77710), M. kansasii 3 주 (KIT 20118, 20119, 20120) 및 M. terrae complex 4주(KIT 47101, 47102, 47103, 47104)의 동정
- <115> 도 4d: M. chelonae complex 2 주 (KIT 61104, 61105) 및 M. fortuitum 4 주(KIT 60108, 60109, 60110, 60111)의 동정.
- (116) a) M. tuberculosis 검체의 동정과 관련하여, 20 주 모두 결핵균으로 동정됨을 확인할 수 있었다 (표2 및 도 4b). 이 들 임상분리 결핵균 20 주의 염기서열은 표준 균주인 M. tuberculosis ATCC 27284와 100% 염기서열 상동성을 보임을 확인할 수 있었다.
- b) M. avium complex 임상 분리 균주의 동정과 관련하여, M. avium complex 임상 분리 균주 4 주를 대상으로 균 동정을 수행해 본 결과 이들 중 3 주는 M. intracellulare와 1 주는 M. avium으로 동정할 수 있었다. 본 발명에 의해 개발된 방법으로 M. avium으로 동정된 1 주 (KIT 41110)는 표준 균주인 M. avium ATCC 25281과 염기서열을 비교하여 보았을 때 전체 604-bp 중에서 3 개의 염기에서 다른 즉 99.5% 염기서열 상동성을 보임을 확인할 수 있었다. M. intracellualre로 동정된 3주 (KIT 41105,

41111, 41115)와 표준균주인 M. intracellulare ATCC 13850 4 주의 염기서열의 상동성을 비교하여 보았을 때 서로 99.0-99.8%의 염기서열 상동성을 보임을 확인할 수 있었다.

- c) M. scrofulaceum 임상분리 균주의 동정과 관련하여, M. scrofulaceum으로 동정된 임상분리균은 모두 2 주 (KIT 30101, 30102)이었고(도 4b), 이들의 염기서열과 표준 균주인 M. scrofulaceum ATCC 19981의 염기서열 총 3주의 염기서열의 상동성을 비교하여본 결과 모두 99.8-100%의 높은 염기서열 상동성을 보임을 확인하였다.
- (*119** d) M. kansasii 임상분리 균주의 동정과 관련하여, 모두 3 개의 균주가 M. kansasii로 동정되었다. 이 결과는 생화학적인 결과와 일치하는 결과이다. 본 실험에서 분석된 3 주의 M. kansasii 임상분리 균주 (KIT 20118, 20119, 20120)는 모두 100% 역기서열 상동성을 보이며 M. kansasii Type I ATCC 12478으로 동정됨을 확인할 수 있었다(도 4c).
- e) M. gordonae, M. szulgai, M. marinum, M. terrae complex 임상분리 균주의 동정과 관련하여, 4 개의 균주가 (KIT 32101, 32104, 32105, 32106) M. gordonae로 동정되었다(도 4a 및 표 2). 이들 임상 분리 균주 4 주의 염기서열 서로 비교해 보면 서로 99.2-99.8% 까지의 높은 염기서열 상동성을 보여 주지만, 이 들 균주를 표준 균주인 M. gordonae ATCC 14470과 염기서열의 상동성을 비교 분석하여 본 결과 이들은 95. 5-96.3% 까지의 같은 중 안의 균으로서는 상당히 낮은 상동성을 보여주었다.
- 데이터베이스를 이용한 결과 4 개의 균주가 (KIT 31102, 31103, 31106, 31107) M.
 szulgai로 동정되었고, 이 결과는 생화학적인 검사결과와 일치하였다(도 4a, 및 표 2).
 이들 염기서열과 표준 균주인 M. szulgai ATCC 35799의 염기서열을 서로 비교하여 본 결과 모두 99.5-100% 까지의 높은 염기서열 상동성을 보여주었다.

본 발명에 따른 데이터베이스에 의해 1 개의 균주가 M. marinum으로 동정되었고,
이 결과는 생화학적인 검사결과와 일치하였다(도 4a, 표 2). 이 균주의 염기서열을 표준 균주인 M. marinum ATCC 927의 염기서열과 서로 비교하여 보았을 때 99.3%의 염기서열 상동성을 보여주었다.

본발명에 따른 데이터베이스로 4 주가 M. terrae complex 중에서 M. nonchromogenicum으로 동정되었고, 이 결과는 생화학적인 검사결과에서 M. terrae complex로 동정된 결과와 100% 일치하는 결과를 보여주었다. 이들 균주를 표준균주인 M. nonchromogenicum ATCC 19530의 염기서열과 서로 비교하였을 때 이 들은 95.0-100%까지의 염기서열 상동성을 보여 주었다. 이러한 사실은 M. terrae complex 균주 사이에 heterogeneity가 있다는 기존의 보고와 일치하는 결과이다.

f) 신속발육균인 M. fortuitum complex와 M. chelonae complex 임상분리 균주의 동정과 관련하여, 본발명의 데이터베이스에 의해 2 주 (KIT 61104, 61105)가 M. chelonae complex 균주 중에 하나인 M. abscessus로 동정되었다. 이러한 결과는 생화학적인 결과와 일치하였으나, 생화학적인 동정 방법으로는 M. chelonae complex에 속하는 M. chelonae 와 M. abscessus를 서로 감별할 수 없었다. 그러나, hsp 65 유전자 염기서열 데이터베이스를 이용한 방법으로 이 들의 감별이 가능하였다. 이 두 균주의 염기서열을 표준 균주인 M. abscessus CAP97E-03와 비교하였을 때 98.4-99.5% 까지의 염기서열 상동성을 보여주었다.

*125> M. fortuitum은 본 방법에 의해 4 주가 동정되었고, 역시 생화학적인 결과와 일치하였다. 표준균주로는 M. fortuitum ATCC 6841, M. fortuitum ATCC 49403, M. fortuitum ATCC 49404 및 M. peregrinum으로 구성되어 있는데 본 방법으로는 4 주 모두 M.

fortuitum ATCC 6841로 동정됨을 확인할 수 있었다. 임상 분리 균주 4주의 염기서열을 ATCC 6841과 비교하였을 때 99.4-100% 가지의 염기서열 상동성을 보임을 확인할 수 있었다.

【발명의 효과】

본 발명은 미코박테리움속 균주의 동정에 이용될 수 있는 hsp 65 유전자의 604-bp 분절을 나타내는 폴리뉴클레오타이드를 제공하여, 비교염기서열 분석방법, 프로브혼성화법, 및 PCR-RFLP등의 방법에 이용가능하고, 또한, hsp 65 유전자의 604-bp 분절을 이용한 동정법은 이들을 이용한 미코박테리움속의 균주를 동정하는 방법을 제공하여, 생장속도가 느리고 다양한 균주가 존재한다는 문제점, 그리고 물질위주 동정 및 16s rDNA 동정이 갖는 문제점을 해결하여, 간편하고, 경제적이고 정확성이 높은 동정방법을 제공한다는 장점이 있다.

【특허청구범위】

【청구항 1】

SEQ ID NO: 1 내지 SEQ ID NO: 54에 나타난 염기서열로 이루어진 군에서 선택되며, 미코박테리움속 균주의 hsp 65 유전자의 604-bp 분절을 나타내는 폴리뉴클레오타이드.

【청구항 2】

SEQ ID NO: 1 내지 SEQ ID NO: 54에 나타난 염기서열로 이루어진 군에서 선택된 1종 이상의 미코박테리움 균주의 hsp 65의 604bp 분절을 포함하는, 미코박테리움속 균주의 탐지 또는 동정을 위한 뉴클레오타이드 세트.

【청구항 3】

- (1) 미코박테리움속 균주의 hsp 65 유전자의 604-bp 분절을 특이적으로 증폭시키는 프라이머를 이용하여, 목적 균주의 hsp 65 유전자 분절을 증폭하고,
 - (2) 상기 증폭된 hsp 65 유전자 분절의 염기서열을 분석하고,
- (3) 단계 (2)에서 얻어진 목적 균주의 hsp 65 604-bp 분절의 염기서열과, 미코박테리움 표준균주의 hsp 65 604-bp 분절의 염기서열을 비교하여, 미코박테리움속 균주의 탐지 또는 동정하는 방법.

【청구항 4】

제 3 항에 있어서, 상기 프라이머는 SEQ ID NO: 55 내지 SEQ ID NO: 56에 나타난 서열을 갖는 프라이머쌍인 방법.

【청구항 5】

제 3 항에 있어서, 상기 단계 (3)에서 목적균주의 hsp 65 유전자 604-bp 분절의 염기서열과, 제 2항에 따른 폴리뉴클레오타이드 세트의 염기서열에 대입하여 다정렬 (multialignment)한 후에 계통도를 완성하여 미코박테리움속 균주을 탐지 또는 동정하는 방법.

[도 2]

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Scale: each - is approximately equal to the distance of 1,386123

【서열목록】

<110>	KIM, Bum-Joo	on <120>	HSP 65 GENE	FRAGMENTS,	AND METHOD	OF IDENTIFY	'ING
MYCOBACTE	CRIAL	SPECIES W	ITH THE SAM	E <160>	56 <170>	KopatentIn	1.71 <
210> 1	l <211> 60)4 <212>	DNA <213>	Mycobacte	erium absces	sus <400>	1
ggaggaccc	g tacgagaaga	tcggcgctga	gctggtcaag	gaagttgcca	agaagaccga	60	
cgacgtcgc	g ggtgacggca	ccaccaccgc	caccgtgctc	gcccaggctc	tggtcaagga	120	
aggtctgcg	t aacgtcgccg	ccggcgccaa	cccgctcggc	ctgaagcgcg	gtatcgagaa	180	
ggccgtcga	g aaggtcaccg	agacgctgct	gaagagcgcc	aaggaggtcg	agaccaagga	240	
gcagatcgc	g gccacggccg	gtatctccgc	gggcgaccag	tccatcggcg	acctgatcgc	300	

cgaggccatg gacaaggttg gtaacgaggg tgtcatcacc gtcgaggagt cca	acacctt 360
cggcctgcag ctggagctca ccgagggtat gcgcttcgac aagggctaca tct	cgggcta 420
cttcgtgacc gacgccgagc gtcaggaagc cgtcctggag gatccctaca tcc	tgctggt 480
cagctccaag gtgtcgaccg tcaaggatct gcttccgttg ctggagaagg tca	ttcaggc 540
cggcaagccg ctgctgatca tcgccgagga cgtcgagggc gaggctctct cca	ctctggt 600 cgtc
604 <210> 2 <211> 604 <212> DNA <213> Mycobac	terium africanum <400>
2 ggaggatccg tacgagaaga tcggcgccga gctggtcaaa gaggtagcca a	gaagaccga 60
tgacgtcgcc ggtgacggca ccacgacggc caccgtgctg gcccaggcgt tgg	ttcgcga 120
gggcctgcgc aacgtcgcgg ccggcgccaa cccgctcggt ctcaaacgcg gca	tcgaaaa 180
ggccgtggag aaggtcaccg agaccctgct caagggggcgcc aaggaggtcg aga	ccaagga 240
gcagattgcg gccaccgcag cgatttcggc gggtgaccag tccatcggtg acc	tgatcgc 300
cgaggcgatg gacaaggtgg gcaacgaggg cgtcatcacc gtcgaggagt cca	acacctt 360
tgggctgcag ctcgagctca ccgagggtat gcggttcgac aagggctaca tct	cggggta 420
cttcgtgacc gacccggagc gtcaggaggc ggtcctggag gacccctaca tcc	tgctggt 480
cagctccaag gtgtccactg tcaaggatct gctgccgctg ctcgagaagg tca	tcggagc 540
cggtaagccg ctgctgatca tcgccgagga cgtcgagggc gaggcgctgt cca	ccctggt 600 cgtc
604 <210> 3 <211> 604 <212> DNA <213> Mycobac	terium asiaticum <400>
3 ggaggacccg tacgagaaga tcggcgccga gctggtcaag gaagtcgcca a	gaagaccga 60
cgacgtggcc ggtgacggca ccacgacggc caccgtgctg gcacaggcgc tgg	tcaagga 120
gggcctgcgc aacgttgccg caggcgccaa cccgctgggc ctgaagcgcg gca	tcgagaa 180
ggccgtcgag aaggtcaccc agaccctgct cagctcggcc aaggacgtcg aga	ccaagga 240

gcagatcgcg gccaccgcgg gtatttccgc gggcgaccag tcgatcggcg acctgatcgc	300
cgaggcgatg gacaaagtcg gcaacgaggg tgtcatcacc gtcgaggagt ccaacacctt	360
cggcctgcag ctcgagctca ccgagggcat gcggttcgac aagggttaca tctcgggcta	420
cttcgtcacc gacgccgagc gtcaggaagc cgtcctggag gacccctaca tcctgctggt	480
ttccagcaag gtgtcgaccg tcaaggacct gctgccgctg ctggagaagg tcatccaggc	540
cggcaagccg ctgctgatca tcgccgagga cgtcgagggc gaggcgctgt ccaccctggt	600 cgtc
604 <210> 4 <211> 604 <212> DNA <213> Mycobacterium aichie	nse <400>
4 cgaggacccg tacgagaaga tcggcgctga gctggtcaag gaagtcgcca agaagactga	60
cgatgtcgcg ggcgacggca ccaccaccgc caccgtgctc gctcaggctc tggttcgcga	120
aggtctgcgc aacgtcgctg ccggcgccaa cccgctcggc ctgaagcgcg gcatcgagaa	180
ggccgtcgag aagatcaccg agacgctcct caagagcgcc aaggaggtcg agaccaagga	240
ccagatcgcg gccaccgccg ggatctccgc gggcgaccag accatcggtg acctgatcgc	300
cgaggccatg gacaaggtcg gcaacgaggg tgtcatcacc gtcgaggagt cgaacacctt	360
cggcctgcag ctcgagctca ccgagggtat gcgcttcgac aagggctaca tctcgggtta	420
cttcgtgacc gacgccgagc gtcaggaagc ggtcctcgag gatccgtaca tcctgctggt	480
gtcgtcgaag gtctcgaccg tcaaggacct gcttcccttg ctggagaagg tcattcagtc	540
gggcaagccg ctgctgatca tcgccgagga cgtcgagggc gaagccctgt ccaccctggt	600 ggtc
604 <210> 5 <211> 604 <212> DNA <213> Mycobacterium avium	<400> 5
ggaggacccg tacgagaaga tcggcgccga gctggtcaag gaagtcgcca agaagaccga	60
cgacgtcgcc ggtgacggca cgacgacggc cacggtgctc gcccaggcgt tggtccgcga	120
gggcctgcgc aacgtcgcgg ccggcgccaa cccgctgggt ctcaagcgcg gcatcgagaa	180

ggccgtcgag	aaggtcaccg	agaccctgct	caagtcggcc	aaggaggtcg	agaccaagga	240	
ccagatcgct	gccaccgcgg	ccatctccgc	gggcgaccag	tcgatcggcg	acctgatcgc	300	
cgaggcgatg	gacaaggtcg	gcaacgaggg	cgtcatcacc	gtcgaggagt	ccaacacctt	360	
cggcctgcag	ctcgagctca	ccgagggtat	gcggttcgac	aagggttaca	tctcgggcta	420	
cttcgtcacc	gacgccgagc	gtcaggaagc	cgtcctcgag	gatccgttca	tcctgctggt	480	
cagctccaag	gtctcgaccg	tcaaggacct	gctgccgctg	ctggagaagg	tcatccaggc	540	
cggcaagccg	ctgctgatca	tcgccgagga	cgtcgagggc	gaggccctgt	ccaccctggt	600	cgtc
604 <210>	6 <211>	604 <212	> DNA <2	213> Mycc	bacterium bovi	s <400>	6
ggaggatccg	tacgagaaga	tcggcgccga	gctggtcaaa	gaggtagcca	agaagaccga	60	
tgacgtcgcc	ggtgacggca	ccacgacggc	caccgtgctg	gcccaggcgt	tggttcgcga	120	
gggcctgcgc	aacgtcgcgg	ccggcgccaa	cccgctcggt	ctcaaacgcg	gcatcgaaaa	180	
ggccgtggag	aaggtcaccg	agaccctgct	caagggcgcc	aaggaggtcg	agaccaagga	240	
gcagattgcg	gccaccgcag	cgatttcggc	gggtgaccag	tccatcggtg	acctgatcgc	300	
cgaggcgatg	gacaaggtgg	gcaacgaggg	cgtcatcacc	gtcgaggagt	ccaacacctt	360	
tgggctgcag	ctcgagctca	ccgagggtat	gcggttcgac	aagggctaca	tctcggggta	420	
cttcgtgacc	gacccggagc	gtcaggaggc	ggtcctggag	gacccctaca	tcctgctggt	480	
cagctccaag	gtgtccactg	tcaaggatct	gctgccgctg	ctcgagaagg	tcatcggagc	540	
cggtaagccg	ctgctgatca	tcgccgagga	cgtcgagggc	gaggcgctgt	ccaccctggt	600	cgtc
604 <210>	7 <211>	604 <212	> DNA <2	213> Mycc	baterium bovis	BCG <40	00> 7
ggaggatccg	tacgagaaga	tcggcgccga	gctggtcaaa	gaggtagcca	agaagaccga	60	
tgacgtcgcc	ggtgacggca	ccacgacggc	caccgtgctg	gcccaggcgt	tggttcgcga	120	

60

gggcctgcgc aacgtcgcg	g ccggcgccaa	cccgctcggt	ctcaaacgcg	gcatcgaaaa	180
ggccgtggag aaggtcacc	g agaccctgct	caagggcgcc	aaggaggtcg	agaccaagga	240
gcagattgcg gccaccgca	g cgatttcggc	gggtgaccag	tccatcggtg	acctgatcgc	300
cgaggcgatg gacaaggtg	g gcaacgaggg	cgtcatcacc	gtcgaggagt	ccaacacctt	360
tgggctgcag ctcgagctc	a ccgagggtat	gcggttcgac	aagggctaca	tctcggggta	420
cttcgtgacc gacccggag	c gtcaggaggc	ggtcctggag	gacccctaca	tcctgctggt	480
cagetecaag gtgtecact	g tcaaggatct	gctgccgctg	ctcgagaagg	tcatcggagc	540
cggtaagccg ctgctgatc	a tcgccgagga	cgtcgagggc	gaggcgctgt	ccaccctggt	600 cgtc
604 <210> 8 <211>	604 <212	> DNA <2	213> Mycc	obacterim celatum'	Type 1 <400>
8 ggaggacccc tac	gaaaaga tcggo	cgccga gctg	gtcaag gaag	tegeca agaagaeega	60
cgacgtcgcg ggtgacggt	a cgacgacggc	cacggtgctg	gcccaggcgc	tggtcaagga	120
cgacgtcgcg ggtgacggt gggcctgcgc aacgtcgcc					120 180
	g ccggcgccaa	cccgctcggc	ctgaagcgcg	gcatcgagaa	
gggcctgcgc aacgtcgcc	g ccggcgccaa g agacgctgct	cccgctcggc	ctgaagcgcg aaggaggtcg	gcatcgagaa agaccaagga	180
gggcctgcgc aacgtcgcc ggccgtcgag aaggtcacc	g ccggcgccaa g agacgctgct g ccatctccgc	cccgctcggc caagggcgcc cggcgaccag	ctgaagcgcg aaggaggtcg tcgatcggcg	gcatcgagaa agaccaagga acctgatcgc	180
gggcctgcgc aacgtcgcc ggccgtcgag aaggtcacc gcagattgct gccaccgcg	g ccggcgccaa g agacgctgct g ccatctccgc g gcaacgaggg	cccgctcggc caagggcgcc cggcgaccag cgtcatcacc	ctgaagcgcg aaggaggtcg tcgatcggcg gtcgaggagt	gcatcgagaa agaccaagga acctgatcgc ccaacacctt	180 ,240 300
gggcctgcgc aacgtcgcc ggccgtcgag aaggtcacc gcagattgct gccaccgcg cgaggccatg gacaaggtc	g ccggcgccaa g agacgctgct g ccatctccgc g gcaacgaggg a ccgagggtat	cccgctcggc caagggcgcc cggcgaccag cgtcatcacc gcgcttcgac	ctgaagcgcg aaggaggtcg tcgatcggcg gtcgaggagt aagggctaca	gcatcgagaa agaccaagga acctgatcgc ccaacacctt tctcgggtta	180 ,240 300 360
gggcctgcgc aacgtcgcc ggccgtcgag aaggtcacc gcagattgct gccaccgcg cgaggccatg gacaaggtc cggcctgcag ctcgagctc	g ccggcgccaa g agacgctgct g ccatctccgc g gcaacgaggg a ccgagggtat c gtcaggaggc	cccgctcggc caagggcgcc cggcgaccag cgtcatcacc gcgcttcgac ggtgctcgag	ctgaagcgcg aaggaggtcg tcgatcggcg gtcgaggagt aagggctaca gagccgtaca	gcatcgagaa agaccaagga acctgatcgc ccaacacctt tctcgggtta tcctgctggt	180 ,240 300 360 420
gggcctgcgc aacgtcgcc ggccgtcgag aaggtcacc gcagattgct gccaccgcg cgaggccatg gacaaggtc cggcctgcag ctcgagctc cttcgtcacc gacgccgag	g ccggcgccaa g agacgctgct g ccatctccgc g gcaacgaggg a ccgagggtat c gtcaggaggc g tcaaggacct	cccgctcggc caagggcgcc cggcgaccag cgtcatcacc gcgcttcgac ggtgctcgag gcttccgctg	ctgaagcgcg aaggaggtcg tcgatcggcg gtcgaggagt aagggctaca gagccgtaca ctggagaagg	gcatcgagaa agaccaagga acctgatcgc ccaacacctt tctcgggtta tcctgctggt tcatccaggc	180 ,240 300 360 420 480

9 ggaggacccc tacgagaaga tcggcgccga gctggtcaag gaagtcgcca agaagaccga

cgacgtcgcg	ggtgacggta	cgacgacggc	caccgtgctg	gcccaggcgc	tggtcaagga	120
aggcctgcgc	aacgtcgccg	ccggtgccaa	cccgctcggc	ctgaagcgcg	gtatcgagaa	180
ggccgtcgag	aaggtcaccg	agacgctgct	caagggcgcc	aaggaggt cg	agaccaagga	240
gcagatcgct	gccaccgcgg	ccatctccgc	cggtgaccag	tcgatcggcg	acctgatcgc	300
cgaggcgatg	gacaaggtcg	gcaacgaggg	cgtcatcacc	gtcgaggagt	ccaacacctt	360
cggcctgcag	ctcgagctca	ccgagggtat	gcgcttcgac	aagggctaca	tctcgggtta	420
cttcgtcacc	gacgccgagc	gtcaggaggc	ggtgctcgag	gagccctaca	tcctgctggt	480
cagctccaag	gtgtcgacgg	tcaaggatct	gctgccgctg	ctggagaagg	tcatccaggc	540
cggcaagccg	ctgctgatca	tcgccgagga	cgtcgagggt	gaggcgttga	gcaccctggt	600 cgtc
604 <210>	10 <211>	604 <21	2> DNA <	:213> Myc	cobacterium chelona	ae <400>
10 ggaggac	ccg tacgagaa	aga teggeget	ga gctggtca	ag gaagttgo	cca agaagactga	60
						00
cgacgtcgcg	ggtgacggca					120
		ctactaccgc	caccgtgctt	gcccaggctc	tggtcaagga	
aggtctgcgt	ggtgacggca	ctactaccgc ccggcgccaa	caccgtgctt	gcccaggctc ctgaagcgcg	tggtcaagga gcatcgagaa	120
aggtctgcgt ggccgtggag	ggtgacggca aacgtcgctg	ctactaccgc ccggcgccaa gctctctgct	caccgtgctt cccgctcggc ggactccgcc	gcccaggctc ctgaagcgcg aaggagatcg	tggtcaagga gcatcgagaa acaccaagga	120 180
aggtctgcgt ggccgtggag gcagatcgcg	ggtgacggca aacgtcgctg gccgtcacca	ctactaccgc ccggcgccaa gctctctgct gcatctccgc	caccgtgctt cccgctcggc ggactccgcc gggtgaccag	gcccaggctc ctgaagcgcg aaggagatcg tccatcggtg	tggtcaagga gcatcgagaa acaccaagga atctgatcgc	120 180 240
aggtctgcgt ggccgtggag gcagatcgcg cgaggccatg	ggtgacggca aacgtcgctg gccgtcacca gccaccgcgg	ctactaccgc ccggcgccaa gctctctgct gcatctccgc gcaacgaggg	caccgtgctt cccgctcggc ggactccgcc gggtgaccag tgtcatcacc	gcccaggctc ctgaagcgcg aaggagatcg tccatcggtg gtcgaggagt	tggtcaagga gcatcgagaa acaccaagga atctgatcgc ccaacacctt	120 180 240 300
aggtctgcgt ggccgtggag gcagatcgcg cgaggccatg cggcctgcag	ggtgacggca aacgtcgctg gccgtcacca gccaccgcgg gacaaggtcg	ctactaccgc ccggcgccaa gctctctgct gcatctccgc gcaacgaggg ccgagggcat	caccgtgctt cccgctcggc ggactccgcc gggtgaccag tgtcatcacc gcgcttcgac	gcccaggctc ctgaagcgcg aaggagatcg tccatcggtg gtcgaggagt aagggctaca	tggtcaagga gcatcgagaa acaccaagga atctgatcgc ccaacacctt tctcgggtta	120 180 240 300 360
aggtctgcgt ggccgtggag gcagatcgcg cgaggccatg cggcctgcag cttcgtgacc	ggtgacggca aacgtcgctg gccgtcacca gccaccgcgg gacaaggtcg ctggagctca	ctactaccgc ccggcgccaa gctctctgct gcatctccgc gcaacgaggg ccgagggcat gtcaggaagc	caccgtgctt cccgctcggc ggactccgcc gggtgaccag tgtcatcacc gcgcttcgac cgtcctggag	gcccaggctc ctgaagcgcg aaggagatcg tccatcggtg gtcgaggagt aagggctaca gatccctaca	tggtcaagga gcatcgagaa acaccaagga atctgatcgc ccaacacctt tctcgggtta tcctgctggt	120 180 240 300 360 420
aggtctgcgt ggccgtggag gcagatcgcg cgaggccatg cggcctgcag cttcgtgacc cagctccaag	ggtgacggca aacgtcgctg gccgtcacca gccaccgcgg gacaaggtcg ctggagctca gacgccgagc	ctactaccgc ccggcgccaa gctctctgct gcatctccgc gcaacgaggg ccgagggcat gtcaggaagc tcaaggacct	caccgtgctt cccgctcggc ggactccgcc gggtgaccag tgtcatcacc gcgcttcgac cgtcctggag acttcccttg	gcccaggctc ctgaagcgcg aaggagatcg tccatcggtg gtcgaggagt aagggctaca gatccctaca ctggagaagg	tggtcaagga gcatcgagaa acaccaagga atctgatcgc ccaacacctt tctcgggtta tcctgctggt tcatccaggg	120 180 240 300 360 420 480

ggaggacccg tacgagaaga tcggcgccga gctggtcaag gaagtcgcca agaagactga	60
cgacgtcgcc ggcgacggca ccaccaccgc caccgttctg gcccaggcgc tggttcgcga	120
aggtctgcgc aacgtcgcgg ccggcgccaa cccgctcggc ctgaagcgcg gcatcgagaa	180
ggccgtcgag accgtctcgg agaacctgct caagtcggcc aaggaggtcg agaccaagga	240
gcagatcgcc gccaccgccg ggatctccgc gggcgacacc accatcggtg acctgatcgc	300
cgaggccatg gacaaggtgg gcaacgaggg tgtcatcacc gtcgaggagt ccaacacctt	360
cggcctgcag ctggagctca ccgagggcat gcgcttcgac aagggctaca tctcgggcta	420
ctfcgtgacc gacgccgagc gtcaggaagc cgtcctggag gatccctaca tcctgctggt	480
cagctcgaag atctcgaccg tcaaggacct gctgccgctg ctggagaagg tcatccagtc	540
cggcaagccg ctgctgatca tcgccgagga cgtcgagggc gaggccctgt cgaccctggt	600 ggtc
604 <210> 12 <211> 604 <212> DNA <213> Mycobacterium micro	oti <400>
12 ggaggatccg tacgagaaga tcggcgccga gctggtcaaa gaggtagcca agaagaccga	. 60
12 ggaggatccg tacgagaaga tcggcgccga gctggtcaaa gaggtagcca agaagaccga tgacgtcgcc ggtgacggca ccacgacggc caccgtgctg gcccaggcgt tggttcgcga	•
	. 60
tgacgtcgcc ggtgacggca ccacgacggc caccgtgctg gcccaggcgt tggttcgcga	60 120
tgacgtcgcc ggtgacggca ccacgacggc caccgtgctg gcccaggcgt tggttcgcga gggcctgcgc aacgtcgcgg ccggcgccaa cccgctcggt ctcaaacgcg gcatcgaaaa	60 120 180
tgacgtcgcc ggtgacggca ccacgacggc caccgtgctg gcccaggcgt tggttcgcga gggcctgcgc aacgtcgcgg ccggcgccaa cccgctcggt ctcaaacgcg gcatcgaaaa ggccgtggag aaggtcaccg agaccctgct caagggcgcc aaggaggtcg agaccaagga	60 120 180 240
tgacgtcgcc ggtgacggca ccacgacggc caccgtgctg gcccaggcgt tggttcgcga gggcctgcgc aacgtcgcgg ccggcgccaa cccgctcggt ctcaaacgcg gcatcgaaaa ggccgtggag aaggtcaccg agaccctgct caagggcgcc aaggaggtcg agaccaagga gcagattgcg gccaccgcag cgatttcggc gggtgaccag tccatcggtg acctgatcgc	60 120 180 240 300
tgacgtcgcc ggtgacggca ccacgacggc caccgtgctg gcccaggcgt tggttcgcga gggcctgcgc aacgtcgcgg ccggcgccaa cccgctcggt ctcaaacgcg gcatcgaaaa ggccgtggag aaggtcaccg agaccctgct caagggcgcc aaggaggtcg agaccaagga gcagattgcg gccaccgcag cgatttcggc gggtgaccag tccatcggtg acctgatcgc cgaggcgatg gacaaggtgg gcaacgaggg cgtcatcacc gtcgaggagt ccaacacctt	60 120 180 240 300 360
tgacgtcgcc ggtgacggca ccacgacggc caccgtgctg gcccaggcgt tggttcgca gggcctgcgc aacgtcgcgg ccggcgccaa cccgctcggt ctcaaacgcg gcatcgaaaa ggccgtggag aaggtcaccg agaccctgct caagggcgcc aaggaggtcg agaccaagga gcagattgcg gccaccgcag cgatttcggc gggtgaccag tccatcggtg acctgatcgc cgaggcgatg gacaaggtgg gcaacgaggg cgtcatcacc gtcgaggagt ccaacacctt tgggctgcag ctcgagctca ccgagggtat gcggttcgac aagggctaca tctcggggta	60 120 180 240 300 360 420

13 <211> 604 <212> DNA <213> 604 <210> Mycobaterium flavescens <400> 60 13 ggaggacccg tacgagaaga tcggcgctga gctggtcaag gaagtcgcca agaagaccga 120 cgacgtcgcg ggcgacggca ccaccaccgc caccgtgctg gcccaggcgc tcgtgcgcga 180 gggtctgcgc aacgtcgcgg ccggcgccaa cccgatggcg ctgaagcgcg gtatcgagaa 240 ggccgtcgag aaggtcaccg agacgctgct gaagtcggcc aaggaggtcg agaccaagga 300 gcagateget gccacegeeg egatetegge gggegacace cagateggea agetgatege 360 cgaggccatg gacaaggtcg gcaacgaggg tgtcatcacc gttgaggagt ccaacacctt 420 cgggctgcag ctcgagctca ccgagggtat gcgcttcgac aagggctaca tctcgggtta cttcgtgacc gacgccgagc gtcaggaagc ggtcctcgag gatccctgca tcctgctcgt 480 gtcgtccaag gtgtcgaccg tcaaggatct gctcccgttg ctggagaagg tcattcaggc 540 cggcaagccg gtgctgatca tcgccgagga cgtcgagggt gaggccctgt cgaccctggt 600 ggtc 604 <210> 604 <212> 14 <211> DNA <213> Mycobaterium fortuitum 6841 <400> 14 ggaggacccg tacgagaaga tcggcgctga gctcgtcaaa gaggtcgcca agaagaccga 120 60 cgacgtcgcg ggcgacggca ccaccaccgc caccgttctg gcacaggccc tggttcgtga 180 aggtctgcgc aacgtcgctg ccggcgccaa cccgctcggc ctgaagcgcg gcatcgagaa 240 ggccgtcgag aaggtcaccg agacgctgct gaagagcgcc aaggaggtgg agaccaagga 300 gcagatcgct gccaccgccg gtatctccgc cggtgaccag tccatcggtg acctgatcgc 360 cgaggccatg gacaaggtcg gcaacgaggg tgtcatcacc gtcgaggaga gcaacacctt 420 eggeetgeag etggagetea eegggggtat gegettegae aagggetaea tetegggeta cttcgtgacc gacgccgagc gtcaggaagc cgtcctggag gatccctaca tcctgctggt 480 540 cagctccaag gtctcgaccg tcaaggacct gctgccgctg ctggagaagg tcatccagtc

cggcaagccg ctgctgatca tcgccgagga cgtcgagggc gaagccctgt cgaccctggc 600 ggtc Mycobacterium fortuitum 49403 < 604 <212> DNA <213> 604 <210> 15 <211> 15 ggaggacccg tacgagaaga tcggcgctga gctcgtcaaa gaggtcgcca agaagaccga 400> 120 60 cgacgtcgcg ggcgacggca ccaccaccgc caccgttctg gcccaggccc tggttcgcga 180 aggtctgcgc aacgtcgctg ccggcgccaa cccgctcggc ctgaagcgcg gcatcgagaa 240 ggccgtcgag aaggtcaccg agacgctgct gaagagcgcc aaggaggtgg agaccaagga 300 gcagatcgct gccaccgccg gtatctccgc cggtgaccag tccatcggtg acctgatcgc 360 cgaggccatg gacaaggtcg gcaacgaggg tgtcatcacc gtcgaggaga gcaacacctt 420 cggcctgcag ctggagctca ccgagggtat gcgcttcgac aagggctaca tctcgggtta 480 cttcgtgacc gacgccgagc gtcaggaagc cgtcctggag gatccctaca tcctgctggt 540 cagctccaag gtctcgaccg tcaaggacct gctgccgctg ctggagaagg tcatccagtc 600 ggtc cggcaagccg ctgctgatca tcgccgagga cgtcgagggc gaagccctgt ccaccctggt Mycobacterium fortuitum 49404 < 16 <211> 604 <212> DNA <213> 604 <210> 16 ggaggacccg tacgagaaga tcggcgcaga gctggtcaag gaagtcgcca agaagactga 400> 120 60 cgacgtcgca ggcgacggca ccaccacggc caccgtgctc gcccaggctc tggttcgcga 180 aggtctgcgc aacgtcgcag ccggcgccaa cccgctcggc ctgaagcgcg gcatcgagaa 240 ggctgtcggg gccgtcaccc agacgctgct gaagtccgcc aaggaggtgg agaccaagga 300 gcagatcgct gccaccgccg cgatctccgc cggtgacgtc cagatcggcg agctcatcgc 360 cgaggccatg gacaaggtcg gcaacgaggg tgtcatcacc gtcgaggagt cgaacacctt 420 cggcctgcag ctggagctca ccgagggtat gcgcttcgac aagggctaca tctcgggtta 480 cttcgtgacc gacgccgagc gtcaggaagc ggtcctcgag gatccgtaca tcctgctcgt

ctcgtcgaag gtctcgacgg	tcaaggacct	gctgcccctg	ctggagaagg	tcatccaggc	540
cggcaagccg ctgctgatca	tcgccgagga	cgtcgagggc	gaagccctgt	ccaccctggt	600 ggtc
604 <210> 17 <211>	604 <21	2> DNA <	<213> Myc	cobacterium gastri	<400> 17
ggaggacccg tacgagaaga	tcggcgccga	gctggtcaag	gaagtcgcca	agaagaccga	60
cgacgtcgcc ggcgacggca	ccaccacggc	caccgtgctc	gcgcaggcgc	tggtcaagga	120
gggcctgcgc aacgtcgcgg	ccggcgccaa	cccgctgggc	ctgaagcgcg	gcatcgagaa	180
ggccgtcgag aaggtcaccg	agacgctgct	caagggcgcc	aaggaggtcg	agaccaagga	240
gcagatcgcg gccaccgcgg	ccatctccgc	cggtgaccag	tcgatcggcg	acctgatcgc	300
cgaggcgatg gacaaggtgg	gcaacgaggg	tgtcatcacc	gtcgaggagt	ccaacacctt	360
cggcctgcag ctcgagctca	ccgagggcat	gcggttcgac	aagggctaca	tctccggcta	420
cttcgtcacc gacgctgagc	gtcaggaagc	tgttctggag	gacccctaca	tcctgctggt .	480
cagetegaag gtetegaeeg	g tcaaggacct	gctgccgctg	g ttggagaagg	tcatccaggc	540
gggcaagccg ctgctgatca	a tcgccgagga	cgtcgaggg	gaggcgctgt	ccaccctggt	600 cgtc
604 <210> 18 <211	> 604 <2	12> DNA	<213> My	cobacterium genave	ense <400>
18 ggaggacccc tacgag	aaga teggege	tga gctggto	caag gaagtcg	cca agaagaccga	60
cgacgtcgcc ggtgacggc	a ccacgacggo	: caccgtgcto	c gctcaggcgc	tcgtcaagga	120
gggcctgcgc. aacgtggcg	g ccggcgccaa	cccgctggg	ctcaagcgcg	g gcatcgagaa	180
ggccgtcgaa aaggtcacc	g agacgctgct	gaagtcggc	c aaggatgtcg	g agaccaagga	240
ccagateget gecacegee	g cgatttccgc	gggcgacca	g tcgatcggcg	g acctgatcgc	300
cgaggcgatg gacaaggtc	g gcaacgaggg	g cgtcatcac	c gtcgaggagt	ccaacacctt	360
cgggctgcag ctcgagctc	a ccgagggtat	gcgcttcga	c aagggctaca	a tctcgggcta	420

cttcgtcacc gacgccgagc gtcagga	agc cgtcctggag gacccgt	tca tcctgctggt	480
cagctccaag gtgtcgacgg tcaagga	cct gctgccgctg ctggagz	nagg tcatccaggc	540
cggcaagccg ctgctgatca tcgccga	gga cgtcgagggc gaggcgc	ctga gcaccctggt	600 cgtc
604 <210> 19 <211> 603	<212> DNA <213>	Mycobacterium gordon	aae <400>
19 gaggacccgt acgagaagat cgg	gctgag ctggtcaagg aag	tcgccaa gaagaccgac	60
gacgttgccg gcgacggcac gacgacg	ggcg accgtgctgg cgcagg	cact ggtcaaggaa	120
ggcctgcgca acgtagccgc cggcgc	caac ccgctggggc tgaagc	gcgg catcgagaag	180
gccgtggaga aggtcaccca gaccct	gctc agctcggcca aggacg	tcga gaccaaggag	240
cagategegg ccaeegeggg catete	cgcg ggtgaccagt cgatcg	gtga cctgátcgcc	300
gaggcgatgg acaaggtcgg caacga	gggc gtcatcaccg tcgagg	agtc caacaccttc	360
ggcctgcagc tcgagctgac cgaggg	catg cggttcgaca agggct	acat ctcgggctac	420
ttcgtcaccg acgccgagcg tcagga	agcc gtcctggaag acccct	acat cctgctggtg	480
tccagcaagg tgtcgaccgt gaagga	cctg ctgccgctgc tggaga	aggt cattcagggt	540
ggcaagccgc tgctgatcat cgccga	ggac gtcgagggcg aagcgc	tgtc gaccctggtc	600 gtc
603 <210> 20 <211> 604	4 <212> DNA <213>	Mycobacterium haemo	philum <400>
20 ggaggacccg tacgagaaga tcg	gcgccga gctggtcaag gaa	ngtcgcca agaagaccga	60
cgacgtcgct ggtgatggca ccacga	cggc gacggtgctg gctcag	gcgc tggtcaaaga	120
gggcctgcgt aacgtcgcgg ccggcg	ccaa cccgctgggt ctcaag	gcgcg gcatcgagaa	180
ggcggtcgag aagatcaccg agacgo	tgct caagggcgcc aaggag	ggtcg agaccaagga	240
ccaaattgcg gccaccgcag cgatct	cggc gggtgaccag tcgato	eggeg acctgatege	300
cgaggcgatg gacaaggtcg gcaacg	aggg cgtcatcacc gtcgag	ggagt ccaacacctt	360

·. . .

cggcctgcag ctcgagctca	a ccgagggcat	gcggttcgat	aagggctaca	tctcgggcta	420
cttcgtcacc gacgccgag	c gccaggaagc	cgtcctggag	gacccctaca	tcctgctggt	480
cagctccaag gtgtcgacc	g tcaaggacct	gctgccactg	ttggagaagg	tcatccaggc	540
cggcaagccg ctgctgatca	a tcgccgagga	cgtcgagggc	gaggcgctgt	ccaccctggt	600 cgtc
604 <210> 21 <211	> 603 <21	.2> DNA <	<213> Myc	cobacterium interj	ectum <400>
21 gaggacccgt acgaga	agat cggcgcc	gag ctggtca	agg aagtcgc	caa gaagaccgac	60
gacgtcgccg gtgacggca	c gacgacggcc	acggtgctgg	cccaggccct	ggtcaaggag	120
ggcctgcgca acgtcgcgg	c cggcgccaac	ccgccggcgc	tcaagcgcgg	catcgaaaag	180
gccgtcgaga aggtcaccg	a gaccctgctg	aagtcggcca	aggatgtcga	gaccaaggag	240
cagategeeg egacegeeg	c gatctccgcg	ggcgaccagt	cgatcggcga	cctcatcgcc	300
gaggcgatgg acaaggtcg	g caacgagggc	gtcatcaccg	tcgaggagtc	caacaccttc	360
ggcctgcagc tcgagctca	c cgagggcatg	cggttcgaca	agggctacat	ctcgggctac	420
ttcgtcaccg acgccgagc	g tcaggaagcg	gtcctcgagg	acccctacat	cctgctggtc	480
agctcgaagg tgtcgacgg	t caaggacctg	ttgccgctgc	tggagaaggt	catccaggcc	540
ggcgagccgc tgttgatca	t cgccgaggac	gtcgagggcg	gaggcgctgtc	caccctggtc	600 gtc
603 <210> 22 <211	l> 604 <2	12> DNA	<213> My	cobacterium intern	medium <400>
22 ggaggacccg tacgag	aaga teggege	cga gctggto	aag gaagttg	cca agaagacgga	60
cgacgtcgcc ggtgacggc	a ccacgacggo	: caccgtgctc	gcccaggcgc	tggtgcgcga	120
gggtctgcgc aatgtcgct	g ccggtgccaa	cccgctgago	ctgaagcgcg	g gtatcgagaa	180
ggcagtcgag aaggtcacc	g agaccctgct	caagtcggc	c aaggaggtcg	g agaccaagga	240
ccagateget gecacegea	g cgatttccgc	gggggaccag	g tcgatcggcg	g acctgatcgc	300

cgaggcgatg gacaaggtcg gcaacgaggg tgtcatcacc gtcgaggagt ccaacacctt 360 420 cggcctgcag cttgagctca ccgagggtat gcggttcgac aagggttaca tctcgggcta 480 cttcgtcacc gacgccgagc gtcaggaagc cgtcctggaa gacccgtaca tcctgctggt 540 cagctccaag gtttcgacgg tcaaggacct gctcccgctg ctggagaagg tcattcaggc cggcaagccg ctgctgatca tcgccgagga cgtcgagggc gaggcgctga gcaccctggt 600 cgtc DNA <213> Mycobacterium intracellulare 604 <212> 604 <210> 23 <211> 23 ggaggacccg tacgagaaga tcggcgccga gctggtcaag gaagtcgcca agaagaccga <400> 60 cgacgtegee ggtgacggea cgacgacgge caeggtgetg geteaggegt tggteegea 120 180 gggcctgcgt aacgtcgccg ccggcgccaa cccgctgggt ctcaagcgcg gcatcgagaa 240 ggccgtcgag aaggtcaccg agaccctgct caagtcggcc aaggaggtcg agaccaagga 300 ccagatcgct gccaccgcgg cgatttcggc gggcgaccag tcgatcggtg acctcatcgc 360 cgaggggatg gacaaggtcg gcaacgaggg cgtcatcacc gtcgaggagt ccaacacctt 420 cggcctgcag ctcgagctca ccgagggcat gcggttcgac aagggctaca tctcgggcta 480 cttcgtcacc gacgccgagc gtcaggaagc ggtcctcgag gaccccttca tcctgctggt cagctccaag gtgtcgacgg tcaaggacct gctgccgctg ctggagaagg tcatccaggc 540 cggcaagccg ctgctgatca tcgccgagga cgtcgagggt gaggctctga gcaccctggt 600 cgtc Mycobaterium kansasii Type I DNA <213> 24 <211> 604 <212> 604 <210> 24 ggaggacccg tacgagaaga tcggcgccga gctggtcaag gaagtcgcca agaagaccga 120 60 cgacgtcgct ggcgacggca ccaccacggc caccgtgctt gcgcaggcgc tggtcaaaga 180 gggcctgcgc aacgtcgcgg ccggcgccaa cccgctgggc ctcaagcgcg gcatcgagaa 240 ggccgtcgag aaggtcaccg agacgctgct caagggcgcc aaggaggtcg agaccaagga

1 1 a c

						,
gcagatcgcg	gcgaccgcgg	ccatctccgc	cggcgaccag	tcgatcggcg	acctgatcgc	300
cgaggcgatg	gacaaggtcg	gcaacgaggg	tgtcatcacc	gtcgaggagt	ccaacacctt	360
cggcctgcaa	ctcgagctca	ccgagggcat	gcggttcgac	aagggttaca	tctccggcta	420
cttcgtcacc	gacgccgagc	gtcaggaagc	ggttctggag	gacccctaca	tcctgctggt	480
cagctcgaag	gtatcgacgg	tcaaggacct	gctgccgctg	ctggagaagg	tcatccaggc	540
cggcaagccg	ctgctgatca	tcgccgagga	cgtcgagggc	gaggcgctgt	ccaccctggt	600 cgtc
604 <210>	25 <211>	604 <21	.2> DNA <	<213> Myc	cobaterium kansasii	Type II <
400> 25	ggaggacccg	tacgagaaga	teggegeega	gctggtcaag	gaagt cgcca agaaga	ccga
60 cgacgtc	gcc ggcgacg	gca ccaccac	ggc cactgtg	ctc gcgcagg	cgt tggtcaaaga	120
gggcctgcgc	aacgtcgcgg	ccggcgccaa	cccactgggc	ctgaagcgcg	gcatcgagaa	180
ggcagtcgag	aaggtcaccg	agacgctgct	caagggcgcc	aaggaggtcg	agaccaagga	240
gcagatcgct	gccaccgcgg	ccatctccgc	gggtgaccag	tcgatcggcg	acctgatcgc	300
cgaggcgatg	gacaaggtgg	gcaacgaggg	tgtcatcacc	gtcgaggagt	ccaacacctt	360
cggcctgcag	ctcgagctca	ccgagggtat	gcggttcgac	aagggctaca	tctccggcta	420
cttcgtcacc	gacgccgagc	gtcaggaagc	agttctggag	gacccctaca	tcctgctggt	480
cagctccaag	gtgtccaccg	tcaaggacct	gctgccgctg	ctggagaagg	tcatccaggc	540
cggcaagccg	g ctgctgatca	tcgccgagga	cgtcgagggc	gaggcgctgt	ccaccctggt	600 cgtc
604 <210>	26 <211:	> 604 <2	12> DNA	<213> My	cobaterium kansasi	i Type III <
400> 26	ggaggacccg	g tacgagaaga	tcggcgccga	a gctggtcaag	g gaagtcgcca agaaga	accga
60 cgacgto	gcc ggcgacg	ggca ccaccad	ggc cactgtg	gctc gcgcagg	gcgc tcgtcaagga	120
gggcctgcgc	c aacgtggcgg	g ccggcgccaa	cccgctggg	ctgaagcgcg	g gcatcgagaa	180

ggccgtcgag	aaggtcaccg	agaccttgtt	caagggtgcc	aaggaggtcg	agaccaagga	240	
gcagatcgcg	gccaccgcgg	ccatctcggc	cggtgaccag	tcgattggcg	acctgatcgc	300	
cgaggcgatg	gacaaggtag	gcaacgaggg	tgtcatcacc	gtcgaggagt	ccaacacctt	360	
aggcctgcag	ctcgagctca	ccgagggtat	gcgctttgac	aagggctaca	tctccggcta	420	
cttcgtcacc	gacgccgagc	gtcaggaagc	agtgctggaa	gacccctaca	tcctgctggt	480	
cagctccaag	gtgtcgacgg	tcaaggacct	gctgccgctg	ctggagaagg	tcatccaggc	540	
cggcaagccg	ctgctgatca	tcgccgagga	cgtcgagggt	gaggctttga	gcaccctggt	600 cgtg	
604 <210>	27 <211>	604 <21	.2> DNA <	<213> My	cobacterium lepra	e <400> · 27	
ggaggacccg	tacgagaaga	ttggcgctga	gttggtcaag	gaagtcgcca	agaagacaga	60	
tgacgtcgcc	ggtgatggca	ccacgacggc	caccgtgctg	gcccaggcat	tggtcaaaga	120	
gggcctacgc	aacgtcgcgg	ccggcgccaa	cccgctaggt	ctcaagcgtg	gcatcgagaa	180	
agctgtcgat	aaggtaactg	agactctgct	caaggacgct	aaggaggtcg	aaaccaagga	240	
acaaattgct	gccactgcag	cgatttcggc	gggtgaccag	tcgatcggtg	atctgatcgc	300	
cgaggcgatg	gacaaggttg	gcaacgaggg	tgttatcacc	gtcgaggaat	ccaacacctt	360	
cggtctgcag	ctcgagctca	ccgagggaat	gcggttcgac	aagggctaca	tttcgggcta	420	
cttcgtcacc	gacgccgago	gtcaggaagc	tgtcctagag	gagccctaca	tccttctggt	480	
cagctccaaa	gtgtctaccg	g tcaaggacct	gctgccgctg	ctagagaagg	tcatccaggc	540	
cggcaagtcg	g ctgctgatca	ttgctgagga	tgtcgagggt	gaggcgttgt	ctaccctggt	600 cgtc	
604 <210>	28 <211:	> 604 <2	12> DNA	<213> My	cobacterium malmo	ense <400>	
28 ggaggad	ccg tacgaga	aaga teggege	cga gctggto	aag gaagtcg	cca agaagaccga	60	
cgacgtggc	ggtgacggca	a cgacgacggo	caccgtgctg	gegeaggege	tggtcaaaga	120	

gggcctgcgc	aacgtcgcgg	ccggtgccaa	cccgctcagc	ctcaagcgcg	gcatcgagaa	180
ggcggtcgag	aaggtcaccg	agaccctgct	caagtcggcc	aaggaggtcg	agaccaagga	240
gcagatcgcc	gcgaccgccg	cgatctcggc	gggcgaccag	tcgatcggtg	acctgatcgc	300
cgaggcgatg	gacaaggtcg	gcaacgaggg	cgtcctcacc	gtcgaggagt	ccaacacctt	360
cggcctgcag	ctcgagctca	ccgagggcat	gcggttcgac	aagggctaca	tctcgggcta	420
cttcgtcacc	gaccccgagc	gtcaggaagc	ggtcctggag	gacccctaca	tcctgctggt	480
cagctccaag	gtgtcgacgg	tcaaggacct	gctgccgctg	ctggagaagg	tcattcaggc	540
cggcaagccg	čtgctgaťcá	tcgccgagga	cgtcgagggc	gaggcgctct	ccaccctggt	600 cgtc
604 <210>	29 <211>	604 <22	12> DNA <	<213> My	cobacterium marin	um <400>
29 ggaggac	ccg tacgaga	aga teggege	tga gctggtc	aag gaagttg	cca agaagaccga	60
cgacgtggcc	ggtgacggca	cgacgacggc	caccgtgctg	gcccaggcgc	tggtcaagga	120
aggcctgcgc	aacgttgcgg	ccggtgccaa	cccgctcggt	ctgaagcgcg	gcatcgagaa	180
ggcagtcgag	aaggtcaccg	gagaccttgct	caagtcggcc	aaagaggtcg	agaccaagga	240
gcagatcgcg	gcgaccgcag	ccatctccgc	cggcgaccag	tcgatcggcg	acctgatcgc	300
cgaggcgatg	gacaaggtgg	g gcaacgaggg	gcgtcatcaco	: gtcgaggagt	ccaacacctt	360
cggcctgcag	g ctcgagctca	a ccgaggggat	gcggttcgac	aagggctaca	tctcgggcta	420
cttcgtcacc	gacgccgago	c gtcaggaago	ggtcctggag	g gacccctaca	tcctgctggt	480
cagttccaag	g gtgtccaccg	g tgaaggacct	gctgccgctg	g ctggagaagg	gtcattcaggg	540
cggcaagccg	g ctgctgatca	a tcgccgagga	a cgtcgaggg	gaggcgctgt	ccaccctggt	600 cgtc
604 <210>	30 <211	> 604 <2	212> DNA	<213> My	cobacterium mucog	genicum <400>
30 ggagga	cccg tacgaga	aaga teggeg	ctga gctggto	caag gaagttg	gcca agaagacgga	60

cgacgtcgct	ggcgacggca	ccaccaccgc	caccgtgctg	gcccaggccc	tggttcgcga	120
aggcctgcgc	aacgtcgctg	ccggcgccaa	cccgctcggc	ctgaagcgcg	gcatcgagaa	180
ggccgtcgag	gctgtcacca	agggcctgct	ggcttccgcc	aaggaggtcg	agaccaagga	240
gcagatcgct	gccaccgccg	ggatctcggc	cggtgaccag	tccatcggcg	acctgatcgc	300
cgaggccatg	gacaaggtcg	gcaacgaggg	tgtcatcacc	gtcgaggaga	gcaacacctt	360
cggcctgcag	ctggagctca	ccgágggtat	gcgcttcgac	aagggctaca	tctcgggtta	420
cttcgtgaçc	gacgccgagc	gtcaggaagc	ggtcctcgag	gacccgttca	tcctgctggt	480
cagctcgaag	atctcgaccg	tcaaggacct	gctgccgctg	ctggagaagg	tcatccagtc	540
gggcaagccg	ctgctgatca	tcgccgagga	cgtcgagggc	gaagccctgt	cgaccctggt	600 cgtc
604 <210>	31 <211>	604 <21	.2> DNA <	<213> My	cobacterium n	neoaurum <400>
31 σσασσας	aaa taagaga					CO
OI EEREEAC	ccg Lacgaga	aga teggege	cga gctggtc	aaa gaggtcg	cca agaagaccg	ga 60
	ggcgacggca			·		120
tgacgtcgcg	ggcgacggca	ccaccaccgc	caccgtgctg	gcccaggccc		
tgacgtcgcg aggtctgcgc	ggcgacggca	ccaccaccgc	caccgtgctg	gcccaggccc	tggttcgcga	120
tgacgtcgcg aggtctgcgc ggccgtcgcg	ggcgacggca	ccaccaccgc ccggcgccaa agcgcctgct	caccgtgctg ccccctcggc ctcgaccgcc	gcccaggccc ctgaagcgcg aaagaggtcg	tggttcgcga gcatcgagaa agaccaagga	120 180
tgacgtcgcg aggtctgcgc ggccgtcgcg gcagatcgct	ggcgacggca aacgtcgcgg gccgtcaccg	ccaccaccgc ccggcgccaa agcgcctgct gcatctccgc	caccgtgctg ccccctcggc ctcgaccgcc cggtgaccag	gcccaggccc ctgaagcgcg aaagaggtcg tcgatcggtg	tggttcgcga gcatcgagaa agaccaagga	120 180 240
tgacgtcgcg aggtctgcgc ggccgtcgcg gcagatcgct cgaggcgctg	ggcgacggca aacgtcgcgg gccgtcaccg gccaccgcgg	ccaccaccgc ccggcgccaa agcgcctgct gcatctccgc gcaacgaggg	caccgtgctg cccctcggc ctcgaccgcc cggtgaccag tgtcatcacc	gcccaggccc ctgaagcgcg aaagaggtcg tcgatcggtg gtcgaggagt	tggttcgcga gcatcgagaa agaccaagga acctgatcgc	120 180 240
tgacgtcgcg aggtctgcgc ggccgtcgcg gcagatcgct cgaggcgctg cggcctgcag	ggcgacggca aacgtcgcgg gccgtcaccg gccaccgcgg	ccaccaccgc ccggcgccaa agcgcctgct gcatctccgc gcaacgaggg ccgagggtat	caccgtgctg cccctcggc ctcgaccgcc cggtgaccag tgtcatcacc	gcccaggccc ctgaagcgcg aaagaggtcg tcgatcggtg gtcgaggagt aagggctaca	tggttcgcga gcatcgagaa agaccaagga acctgatcgc ccaacacctt tctcgggtta	120 180 240 300 360
tgacgtcgcg aggtctgcgc ggccgtcgcg gcagatcgct cgaggcgctg cggcctgcag cttcgtgacc	ggcgacggca aacgtcgcgg gccgtcaccg gccaccgcgg gacaaggtcg ctggagctca gacgccgagc	ccaccaccgc ccggcgccaa agcgcctgct gcatctccgc gcaacgaggg ccgagggtat gtcaggaagc	caccgtgctg cccctcggc ctcgaccgcc cggtgaccag tgtcatcacc gcgcttcgac	gcccaggccc ctgaagcgcg aaagaggtcg tcgatcggtg gtcgaggagt aagggctaca	tggttcgcga gcatcgagaa agaccaagga acctgatcgc ccaacacctt tctcgggtta	120 180 240 300 360 420
tgacgtcgcg aggtctgcgc ggccgtcgcg gcagatcgct cgaggcgctg cggcctgcag cttcgtgacc cagctccaag	ggcgacggca aacgtcgcgg gccgtcaccg gccaccgcgg gacaaggtcg ctggagctca gacgccgagc	ccaccaccgc ccggcgccaa agcgcctgct gcatctccgc gcaacgaggg ccgagggtat gtcaggaagc tcaaggacct	caccgtgctg cccctcggc ctcgaccgcc cggtgaccag tgtcatcacc gcgcttcgac cgtcctggag gctgccgctg	gcccaggccc ctgaagcgcg aaagaggtcg tcgatcggtg gtcgaggagt aagggctaca gatccctaca	tggttcgcga gcatcgagaa agaccaagga acctgatcgc ccaacacctt tctcgggtta tcctgctggt	120 180 240 300 360 420 480

32 ggaggatccc tacgagaaga tcggcgctga gctggtcaaa gaggtcgcca agaagactga 400> 120 60 cgacgtcgcg ggtgacggca ccaccaccgc caccgtgctc gcccaggccc tggtcaagga 180 aggcctgcgc aacgtggccg ccggcgccaa cccgctgggt ctgaagcgcg gcatcgagaa 240 ggccgttgag aaggtcacct cgaccctgct ggcttcggcc aaggaggtcg agaccaagga 300 gcagatcgcg gccaccgccg gtatctccgc gggtgaccag agcatcggtg acctgatcgc 360 cgaggccatg gacaaggtcg gcaacgaagg tgtcatcacc gtcgaggagt ccaacacctt 420 cggcctgcag ctggagctca ccgagggcat gcgcttcgac aagggctaca tctcgggtta cttcgtgacc gacgccgagc gtcaggaagc cgtcctggag gacccctaca tcctgctggt 480 cagctcgaag atctcgaccg tcaaggacct gctgcccttg ctggagaagg tcatccagtc 540 600 cgtg cggcaagccg ttgctgatca tcgccgagga cgtcgagggc gaggccctgt cgaccctggt Mycobaterium paratuberculosis < 604 <210> 33 <211> 604 <212> DNA <213> 33 ggaggacccg tacgagaaga tcggcgccga gctggtcaag gaagtcgcca agaagaccga 400> 120 60 cgacgtcgcc ggtgacggca cgacgacggc cacggtgctc gcccaggcgt tggtccgcga 180 gggcctgcgc aacgtcgcgg ccggcgccaa cccgctgggt ctcaagcgcg gcatcgagaa 240 ggccgtcgag aaggtcaccg agaccctgct caagtcggcc aaggaggtcg agaccaagga 300 ccagatcgct gccaccgcgg ccatctccgc gggcgaccag tcgatcggcg acctgatcgc 360 cgaggcgatg gacaaggtcg gcaacgaggg cgtcatcacc gtcgaggagt ccaacacctt 420 cggcctgcag ctcgagctca ccgagggtat gcggttcgac aagggttaca tctcgggcta 480 cttcgtcacg gacgccgagc gtcaggaagc ggtcctcgag gacccgttca tcctgctggt 540 cagctccaag gtctcgaccg tcaaggacct gctgccgctg ctggagaagg tcatccaggc 600 cgtc cggcaagecg ctgctgatca tcgccgagga cgtcgagggc gaggccctgt ccaccctggt

				•				
604	<210>	34 <211>	604 <21	2> DNA	<213> My	cobaterium ph	lei <400>	34
cga	ggatccg	tacgagaaga	tcggcgccga	gctggtcaaa	gaggtcgcca	agaagaccga	60	
cga	tgtcgcg	ggtgacggca	ccaccaccgc	caccgtcctg	gcccaggcgc	tggtgcgcga	120	
ggg	tctgcgc	aacgttgccg	ccggcgccaa	cccgatggct	ctgaagcgcg	gtatcgagaa	180	
ggo	cgtcgag	aaggtcaccg	agaccctgct	gaagtcggc	c aaggaggtcg	agaccaagga	240	
gca	agatcgct	tcgaccgccg	cgatctcggc	cggcgacac	cagateggeg	agctgatcgc	300	
cga	aggccatg	gacaaggtcg	gcaacgaggg	tgtcatcac	c gtcgaggaga	gcaacacctt	360	
cg	gcctgcag	ctggagctca	ccgagggtat	gcgcttcga	c aagggctaca	tctcgggtta	420	
ct	tcgtgacc	gacgccgagc	gtcaggaagc	cgtcctcga	g gatccgtaca	tcctgctggt	480	
gt	cgggcaag	gtctcgaccg	tcaaggacct	gctgccgct	g ctggagaagg	g tcatccagtc	540	
gg	gcaagccg	ctgctgatca	tcgccgagga	cgtcgaggg	c gaggccctgt	cgaccctggt	600	cgtg .
60	4 <210>	35 <211>	604 <2	12> DNA	<213> My	cobacterium :	peregrinum	<400>
35	ggaggac	ccg tacgaga	aga tcggcgc	tga gctggt	caaa gaggtc	gcca agaagacc	ga	60
cg	acgt cgcg	ggtgacggca	ccaccaccgo	caccgttct	g gcccaggcc	c tggttcgcga	120	
ag	gtctgcgc	aacgtcgctg	ccggcgccaa	cccgctcgg	c ctgaagcgc	g gcatcgagaa	180	
gg	ctgtcgag	g aaggtcaccg	gagaccctcct	gaagtccgc	c aaggaggtg	g agaccaagga	240	
go	agatcgct	gccaccgccg	gtatctccg	c cggagacca	ng tccatcggc	g acctgatcgc	300	
Cg	gaggccatg	g gacaaggtcg	g gcaacgaggg	g tgtcatcad	cc gtcgaggag	a gcaacacctt	360	
Cg	ggctgcag	g ctggagctca	a ccgagggca	t gcgcttcga	ac aagggctac	a tctcgggcta	420	•
ct	tcgtgac	gacgccgago	gtcaggaag	c cgtcctgg	ag gatccctac	a tcctgctggt	480)
ca	ngctcgaag	g atctcgaccg	g tcaaggacc	t gctgccgc	tg ctggagaag	g tcatccagtc	540)

300

360

420

480

cggcaagccg ctgctgatca tcgccgagga cgtcgagggc gaagccctgt cgaccctggt 600 ggtc 604 <210> 604 <212> DNA <213> Mycobacterium scrofulaceum <400> 36 <211> 36 ggaggacccg tacgagaaga tcggcgccga gctggtcaag gaagtcgcca agaagaccga 60 120 cgacgtcgcc ggtgacggca cgacgacggc cacggtgctg gcccaggcgc tggtcaagga 180 gggcctgcgc aacgtcgcgg cgggcgccaa cccgctgagc ctcaagcgcg gcatcgagaa 240 ggcggtcgag aaggtcaccg agaccctgct caagtcggcc aaggaggtcg agaccaagga 300 ccagatcgcc gccaccgcgg cgatttcggc gggcgaccag tcgatcggcg acctgatcgc 360 cgaggcgatg gacaaggtcg gcaacgaggg cgtcatcacc gtcgaggagt ccaacacctt 420 cggcctgcag ctcgagctca ccgagggcat gcggttcgac aagggctaca tctcgggcta 480 cttcgtcacc gacgccgagc ggcaggaagc ggtcctggag gacccctaca tcctgctggt 540 cagctcgaag gtgtcgacgg tcaaggacct gctgccgctg ttggagaagg tcatccaggc 600 cgtc cggcaagccg ctgctgatca tcgccgagga cgtcgagggc gaggcgcttt ccaccctggt DNA <213> Mycobacterium senegalense <400> 604 <210> 37 <211> 604 <212> 60 37 ggaggacccg tacgagaaga tcggcgctga gctggtcaag gaagtcgcca agaagactga 120 cgacgtcgcg ggtgacggca ccaccaccgc caccgttctg gcccaggccc tggttcgtga 180 aggtctgcgt aacgtcgctg ccggcgccaa cccgctcggc ctgaagcgcg gcatcgagaa 240 ggccgtcgag aaggtcaccg agacgctgct caagagcgcc aaggaggtgg agaccaagga

gcagatcgct gccaccgccg cgatctcggc gggcgacacc cagatcggca agctgatcgc

cgaggccatg gacaaggtcg gcaacgaggg tgtcatcacc gttgaggagt ccaacacctt

cgggctgcag ctcgagctca ccgagggtat gcgcttcgac aagggctaca tctcgggtta

cttcgtgacc gacgccgagc gtcaggaagc ggtcctcgag gatccctgca tcctgctcgt

gtcgtccaag gtgtcgaccg tcaaggatct gctcccgttg ctggagaagg tcattcaggc 540 cggcaagccg gtgctgatca tcgccgagga cgtcgagggt gaggccctgt cgaccctggt 600 ggtc 604 <210> . DNA <213> Mycobacterium shimoidei <400> 38 <211> 604 <212> 60 38 ggaggacccg tacgagaaga tcggcgccga gctggtcaag gaagtcgcca agaagaccga 120 cgacgtcgcc ggtgacggca ccaccaccgc caccgtgctg gcccaggcgc tggtccacga 180 ggggctgcgc aacgtcgcgg ccggtgccaa cccgctcagc ctgaaacgcg gtatcgagaa 240 ggccgttgag aaggtcaccg agaccttgct caagggcgcc aaggaagtcg agaccaagga 300 gcagatcgcg gccacggcgg ccatctccgc cggtgaccag tcgatcgcg acctgatcgc cgaggcgatg gacaaggtcg gcaacgaggg cgtcatcacc gtcgaggagt ccaacacctt 360 cggcctgcag ctcgagctca ccgagggtat gcggttcgac aagggctaca tttcgggtta 420 480 cttcgtcacc gacgccgagc gtcaggaggc tgtgctcgag gagccctaca tcctgctggt 540 cagctccaag gtgtcgacgg tcaaggacct gctgccgctg ctggagaagg tcatgcaggc cggcaagccg ctgctgatca tcgccgagga cgtcgagggc gaggctttga gcaccctggt 600 cgtc Mycobacterium simiae <400> 604 <210> 39 <211> 604 <212> DNA <213> 39 60 ggaggacccc tacgagaaga tcggcgctga gctggtcaag gaagtcgcca agaagaccga 120 cgacgtcgcc ggtgacggca ccacgacggc caccgtgctc gctcaggcgc tcgtcaagga 180 gggcctgcgc aacgtggcgg ccggcgccaa cccgctgggc ctcaagcgcg gcatcgagaa 240 ggccgtcgaa aaggtcaccg agacgctgct gaagtcggcc aaggatgtcg agaccaagga 300 ccagatcgct gccaccgccg cgatttccgc gggcgaccag tcgatcggcg acctgatcgc 360 cgaggcgatg gacaaggtcg gcaacgaggg cgtcatcacc gtcgaggagt ccaacacctt 420 cgggctgcag ctcgagctca ccgagggtat gcgcttcgac aagggctaca tctcgggcta

· · · · · · · · · · · · · · · · · · ·	
cttcgtcacc gacgccgagc gtcaggaagc cgtcctggag gacccgttca tcctgctggt	480
cagctccaag gtgtcgacgg tcaaggacct gctgccgctg ctggagaagg tcatccaggc	540
cggcaagccg ctgctgatca tcgccgagga cgtcgagggc gaggcgctga gcaccctggt	600 cgtc
604 <210> 40 <211> 604 <212> DNA <213> Mycobacterium smegma	tis <400>
40 cgaggacccc tacgagaaga tcggtgctga gctcgtcaaa gaggtcgcca agaagaccga	60
cgatgtcgct ggcgacggca ccaccaccgc caccgtcctg gctcaggccc tggttcgcga	120
aggcctgcgc aacgtcgctg ccggcgccaa cccgctcggc ctgaagcgcg gcatcgagaa	180
ggccgtcgag aaggtcaccg agaccctgct gaagtccgcc aaggaggtgg agaccaagga	240 -
gcagatcgct gccaccgccg gtatctccgc cggtgaccag tccatcggcg acctgatcgc	300
cgaggccatg gacaaggtcg gcaacgaggg tgtcatcacc gtcgaggagt ccaacacctt	360
cggcctgcag ctcgagctca ccgagggtat gcgcttcgac aagggctaca tctcgggtta	420
cttcgtgacc gacgccgagc gtcaggaagc ggtcctcgag gatccctaca tcctgctggt	480
cagctcgaag gtctcgaccg tcaaggacct gctgccgctg ctggagaagg tcatccagtc	540
cggcaagccg ctgctgatca tcgccgagga cgtcgagggc gaagccctgt cgaccctggt	600 ggtc
604 <210> 41 <211> 604 <212> DNA <213> Mycobacterium szulg	ai <400>
41 ggaggacccg tacgagaaga tcggcgccga gctggtcaag gaagttgcca agaagaccga	60
cgacgtcgcc ggtgacggca cgacgacggc caccgtgttg gcccaggcgc tggtcaagga	120
gggcctgcgc aacgtagcgg ccggcgccaa cccgctgggt ctcaagcgcg gcatcgagaa	180
ggccgtcgag aagatcaccg agaccctgct caagtcggct aaggacgtcg agaccaagga	240
gcagatcgcg gccaccgcgg ccatctccgc gggcgaccag tcgatcggcg acttgatcgc	300
cgaggcgatg gacaaggtcg gcaatgaggg cgtcatcacc gtcgaggagt ccaacacctt	360

cggcctgcag ctcgagctca ccgagggcat gcggttcgac aagggctaca tctcgggcta	420
cttcgtcacc gacgccgagc gtcaggaggc cgtcctcgag gacccttaca tcctgttggt	480
cgcctccaag gtgtcgacgg tcaaggacct gttgccgctg ctggagaagg tcatccaggg	540
cggcaagccg ctgctgatca tcgccgagga cgtcgagggc gaggctttga gcaccctggt	600 cgtc
604 <210> 42 <211> 604 <212> DNA <213> Mycobacterium ter	rae <400> 42
ggaggacccc tacgagaaga tcggcgccga gctggtcaaa gaggtcgcca agaagaccga	60
cgatgtcgcc ggtgacggca ccaccacggc caccgtgctg gcacaggcgc tggtcaagga	120
aggcctgcgc aacgtggccg ccggcgccaa cccgctggcc ctgaagcgcg gcatcgagaa	180
ggccgtcgag aaggtctccg agaccctgct gaaggacgcc aaggaggtcg agaccaagga	240
gcagatcgcg gctaccgccg ggatctccgc gggcgaccag tccatcggtg acctgatcgc	300
cgaggcgatg gacaaggtcg gcaacgaggg tgtcatcacc gtcgaggagt ccaacacctt	360
cggcctgcag ctggagctca ccgagggtat gcgcttcgac aagggctaca tctcgggtta	420
cttcgtcacc gacgccgacc gtcaggaagc ggttctcgag gacccctaca tcctgctggt	480
cagctccaag atctcgacgg tcaaggacct gctcccactg ctggagaagg tcattcaggg	540
cggtaagccg ctgctgatca tcgccgagga cgtcgagggc gaggccctgt ccaccctggt	600 ggtc
604 <210> 43 <211> 604 <212> DNA <213> Mycobacterium the	ermoresistibile
<400> 43 ggaggacccc tacgagaaga tcggcgctga gctggtcaag gaagtcgcca a	gaagaccga
60 cgacgtcgcc ggcgacggca ccaccaccgc caccgtcctg gctcaggcgc tggtgaagga	. 120
aggtttgcgc aacgtcgcgg ccggggccaa cccgctcgct ctgaagcgcg gcatcggagc	180
cgctgtcgag aaggtcaccg agaccctgct caagtcggcc aaggaggtcg agaccaagga	240
gcagatcgcc aacaccgccg cgatctcggc cggcgaccag cagaccggtg agctgatcgc	300

cgaggcgatg gacaaggtcg gcaacgaggg tgtcatcacc gtcgaggagt cgcagacctt	360
cggtctgcag ctcgagctca ccgagggtat gcgcttcgac aagggctaca tctcggggta	420
cttcgtgacc gacgcggagc ggcaggaagc cgttctggag gatccctaca tcctgctggt	480
cagctcgaag gtctcgactg tcaaggatct gctgccgctg ctggagaagg tcatccagtc	540
cggcaggccg ctgctgatca tcgccgagga cgtcgaaggc gaggcgctgt cgaccctggt	600 cgtc
604 <210> 44 <211> 604 <212> DNA <213> Mycobacterium trivi	ale <400>
44 ggaggacccg tacgagaaga tcggcgccga gctggtcaag gaagtcgcca agaagaccga	60
cgatgtcgcc ggtgacggca ccaccacggc caccgtgctc gcccaggcgc tggtgcgcga	120
gggcctgcgc aacgtcgccg cgggcgccaa cccgatgggc ctgaagcgcg gcatcgaggc	180
ggccaccgag aagatcgccg agaccctgct caagggcgcc aaagaggtgg agaccaagga	240
gcagatcgct gccaccgccg ggatctccgc cggggacagc tccatcggtg agctgatcgc	300
cgaggcgatg gacaaggtcg gcaacgaggg tgtcatcacc gtcgaggagg cccagacctt	360
cggcctgcag ctcgagctca ccgagggtat gcgcttcgac aagggctaca tctccggcta	420
cttcgtcacc gacgccgagc gtcaggaggc cgtgctggag gacccctaca tcctgctggt	480
gtccggcaag gtgtccaccg tcaaggacct gcttccgctg ctggagaagg tcatccagtc	540
cggcaagccg ctgctgatca tcgccgagga cgtcgagggc gaggcgctgt cgaccctggt	600 ggtc
604 <210> 45 <211> 604 <212> DNA <213> Mycobacterium tube	erculosis <400>
45 ggaggatccg tacgagaaga tcggcgccga gctggtcaaa gaggtagcca agaagac	cga 60
tgacgtcgcc ggtgacggca ccacgacggc caccgtgctg gcccaggcgt tggttcgcga	120
gggcctgcgc aacgtcgcgg ccggcgccaa cccgctcggt ctcaaacgcg gcatcgaaaa	180
ggccgtggag aaggtcaccg agaccctgct caaggggcgcc aaggaggtcg agaccaagga	240

gcagattgcg gcca	ccgcag cgattto	ggc gggtgaccag	tccatcggtg	acctgatcgc	300	
cgaggcgatg gaca	aggtgg gcaacga	ggg cgtcatcacc	gtcgaggagt	ccaacacctt	360 .	
tgggctgcag ctcg	agctca ccgaggg	tat gcggttcgac	aagggctaca	tctcggggta	420	
cttcgtgacc gacc	cggagc gtcagga	nggc ggtcctggag	gacccctaca	tcctgctggt	480	
cagctccaag gtgt	ccactg tcaagga	ntct gctgccgctg	ctcgagaagg	tcatcggagc	540	
cggtaagccg ctgc	tgatca tcgccga	agga cgtcgagggo	gaggcgctgt	ccaccctggt	600 cgtc	
604 <210> 46	6 <211> 604	<212> DNA	<213> Myc	cobacterium ulceran	ıs <400>	
46 ggaggacccg t	acgagaaga ttg	gcgctga gctggtc	aag gaagttgo	cca agaagaccga	60	
cgacgtggcc ggtg	gacggca cgacga	egge cacegtgetg	gcccaggcgc	tggtcaagga	120	
aggcctgcgc aacg	gttgcgg ccggtg	ccaa cccgctcggt	ctgaagcgcg	gcatcgagaa	180	
ggcagtcgag aagg	gtcaccg agaccc	tgct caaatcggco	c aaagaggtcg	agaccaagga	240	
gcagatcgcg gcga	accgcag ccatct	ccgc cggcgaccag	g tcgatcggcg	acctgatcgc	300	
cgaggcgatg gaca	aaggtgg gcaacg	aggg cgtcatcac	c gtcgaggagt	ccaacacctt	360	
cggcctgcag ctcg	gagctca ccgagg	ggat gcggttcga	c aagggctaca	tctcgggcta	420	
cttcgtcacc gacg	gccgagc gtcagg	aagc ggtcctgga	g gacccctaca	tcctgctggt	480	
cagctccaag gtg	tccaccg tcaagg	acct gctgccgct	g ctggagaagg	tcattcaggg	540	
cggcaagccg ctg	ctgatca tcgccg	agga cgtcgaggg	c gaggcgctgt	ccaccctggt	600 cgtc	
604 <210> 4	7 <211> 604	4 <212> DNA	<213> My	cobacterium vaccae	<400>	47
ggaggacccg tac	gagaaga tcggcg	ctga gctggtcaa	a gaggtcgcca	agaagaccga	60	
cgacgtcgcg ggc	gacggta ccacca	ccgc caccgtgct	c gctcaggctc	tggttcgcga	120	
aggcctgcgc aac	gtcgcag ccggcg	ccaa cccgctcgg	c ctcaagcgtg	gcatcgagaa	180	

	•					
ggctgtcgag	gctgtcaccc	agtcgctgct	gaagtcggcc	aaggaggtcg	agaccaagga	240
gcagatttct	gccaccgcgg	cgatctccgc	cggcgacacc	cagat cggcg	agctcatcgc	300
cgaggccatg	gacaaggtcg	gcaacgaggg	tgtcatcacc	gtcgaggagt	cgaacacctt	360
cggcctgcag	ctcgagctca	ccgagggtat	gcgcttcgac	aagggctaca	tctcgggtta	420
cttcgtgacc	gacgccgagc	gccaggaagc	cgtcctggag	gatccctaca	tcctgctggt	480
cagctccaag	gtgtcgaccg	tcaaggatct	gctcccgctg	ctggagaagg	tcatccaggc	540
cggcaagccg	ctgctgatca	tcgccgagga	cgtcgagggc	gaggccctgt	ccacgctggt	600 ggtc
604 <210>	48 <211>	604 <21	12> DNA <	<213> My	cobacterium wolins	kyi <400>
48 ggaggac	ccg tacgaga	aga teggege	tga gctggtc	aaa gaggtcg	cca agaagaccga	60
cgacgtcgcc	ggcgacggca	ccaccaccgc	caccgttttg	gcccaggctc	tggttcgcga	120
aggtctgcgc	aacgtcgcgg	ccggcgccaa	cccgctcggc	ctgaagcgcg	gcatcgagaa	180
ggccgtcgag	aaggtcaccg	agacgctgct	gaagagcgcc	aaggaggtgg	agaccaagga	240
gcagatcgct	gccaccgccg	gtatctccgc	cggtgaccag	tccatcggcg	acctgatcgc	300
cgaggccatg	gacaaggtcg	gcaacgaggg	tgtcatcacc	gtcgaggaga	gcaacacctt	360
cggcctgcag	ctggagctca	ccgagggtat	gcgcttcgac	aagggctaca	tctcgggtta	420
cttcgtgacc	gacgccgago	gtcaggaagc	cgtcctcgag	gatccctaca	tcctgctggt	480
cagctcgaag	gcctcgaccg	g tcaaggacct	gctgccgctg	ctggagaagg	tcatccagtc	540
cggcaagccg	ctgctgatca	tcgccgagga	cgtcgaggg	gaggccctgt	cgaccctggt	600 ggtc
604 <210>	49 <211:	> 604 <2	12> DNA	<213> My	cobacterium parafo	ortuitum
<400>	19 ggaggacco	cg tacgagaag	ga teggegetį	ga gctggtcaa	aa gaggtcgcca agaa	gaccga
60 cgacgto	gcg ggcgacg	ggca ccaccad	cgc caccgtg	gctc gctcagg	gccc tggttcgcga	· 120

aggtctgcgc aacgtcgcag ccggcgc	caa cccgctcggc ctcaagcgtg	gcatcgagaa	180
ggctgtcgag gctgtcaccc agggtct	gct gaagtcggcc aaggaggtcg	g agaccaagga	240
gcagatcgct gccaccgccg cgatcto	ccgc cggcgacacc cagatcggcg	g agctcatcgc	300
cgaggccatg gacaaggtcg gcaacga	aggg tgtcatcacc gtcgaggag	cgaacacctt	360
cggcctgcag ctggagctca ccgaagg	gcat gcgcttcgac aagggctac	a tctcgggtta	420
cttcgtgacc gacgccgagc gtcagga	aagc cgtcctggag gatccctac	a ttctgctggt	480
cagctccaag atctcgacgg tcaagg	acct gctgccgctg ctggagaag	g tcatccagtc	540
cggcaagccg ctgctgatca tcgccg	agga cgtcgagggc gaagccctg	t cgaccctggt	600 ggtc
604 <210> 50 <211> 604	<212> DNA <213> M	ycobacterium farcin	ogenes <400>
50 ggaggacccg tacgagaaga	tcggcgctga gctcgtcaaa ga	ggtcgcca agaagaccga	60
cgacgtcgcg ggcgacggca ccacca	ccgc caccgttctg gcccaggcc	c tggttcgcga	120
aggtctgcgc aacgtcgctg ccggcg	ccaa cccgctcggc ctgaagcgc	g gcatcgagaa	180
ggccgtcgag aaggtcaccg agacgc	tgct caagagcgcc aaggaggtg	g agaccaagga	240
gcagatcgct gccaccgccg gtatct	ccgc cggtgaccag tccatcggt	g acctgatcgc	300
cgaggccatg gacaaggtcg gcaacg	aggg tgtcatcacc gtcgaggag	ga gcaacacctt	360
cggcctgcag ctggagctca ccgagg	gtat gcgcttcgac aagggctad	a tctcgggtta	420
cttcgtgacc gacgccgagc gtcagg	gaage egteetggag gateectae	ca tcctgctggt	480
cagetecaag gtetegaceg teaagg	gatet getgeegetg etggagaag	gg tcatccagtc	540
cggcaagccg ctgctgatca tcgccg	gagga cgtcgagggc gaagccctg	gt ccaccctggt	600 ggtc
604 <210> 51 <211> 60	4 <212> DNA <213>	Sukamurella paurome	etabola <400>
51 cgaggatccc tacgagaaga	a teggegeega getegteaag ga	aggtcgcca agaagaccg	a 60

cgacgtcgcg ggcgacggca ccaccaccgc caccgttctg gcccaggcgc tcgtgcgcga	120
gggtctgcgc aacgtggctg cgggtgcgaa cccgctgggc ctcaagcggg gcatcgagaa	180
ggccgtcgag gccgtgaccg agcacctgct caaggaggcc aaggaggtcg agaccaagga	240
gcagatcgct gctaccgcgg gcatctcggc cggcgacccc gccatcggtg agctcatcgc	300
cgaggccatg gacaaggtcg gcaaggaagg cgtcatcacc gtcgaggaga gcaacacctt	360
cggtctccag ctggagctca ccgagggcat gcgcttcgac aagggcttca tctccggcta	420
cttcgccacc gacgccgagc gtcaggaggc cgtgctcgag gacgcctaca tcctgctcgt	480
gtcgagcaag atctcgaccg tgaaggacct gctgccgctg ctggagaagg tcatccagtc	··540
gggcaagccg ctcgcgatca tcgccgagga cgtcgagggc gaggccctgt cgacgctcat	600 cgtc
604 <210> 52 <211> 604 <212> DNA <213> Tsukamurella tyrosi	nosolvens
<400> 52 cgaggatccc tacgagaaga tcggcgccga gctcgtcaag gaggtcgcca aga	agaccga
60 cgacgtcgcg ggcgacggca ccaccaccgc caccgttctg gcccaggcgc tcgtgcgcga	120
gggcctgcgc aacgtggccg cgggcgcgaa cccgctgggc ctcaagcggg gcatcgagaa	180
ggccgtcgag gccgtctccg agcacctgct gaaggccgcc aaggaggtcg agaccaagga	240
gcagatcgct gctaccgcgg gcatctcggc cggcgacccc gccatcggtg agctcatcgc	300
cgaggccatg gacaaggtcg gcaaggaagg cgtcatcacc gtcgaggaga gcaacacctt	360
cggcctccag ctggagctca ccgagggcat gcgcttcgac aagggcttca tctcgggcta	420
cttcgccacc gacgccgagc gtcaggaggc cgtgctcgag gacgcctacg tgctgctcgt	480
cgccggcaag atctcgaccg tcaaggacct gctgccgctg ctggagaagg tcatccagtc	540
gggcaagccg ctcgcgatca tcgccgagga cgtcgagggc gaggccctgt cgacgctcat	600 cgtc
604 <210> 53 <211> 604 <212> DNA <213> Tsukamurella pulmo	onis <400>

0020011648

53 cgaggatccc tacgagaaga tcggcgccga gctcgtcaag gaggtcgcca agaagaccga	60
cgacgtcgcg ggcgacggca ccaccaccgc caccgttctg gcccaggcgc tcgtgcgcga	120
gggtctgcgg aacgtggccg cgggcgcgaa cccgctgggc ctcaagcggg gcatcgagaa	180
ggcggtcgac gccgtcaccg agcacctgct gaaggccgcc aaggaggtcg agaccaagga	240
gcagatcgct gctaccgcgg gcatctcggc cggcgacccc gccatcggtg agctcatcgc	300
cgaggccatg gacaaggtcg gcgaggaagg cgtcatcacc gtcgaggaga gcaacacctt	360
cggtctccag ctggagctga ccgagggcat gcgcttcgac aagggcttca tctcgggcta	420
cttcgccacc gacgcggagc gccaggaggc cgtcctcgag gacgcctacg tgctgctcgt	480
ctcgggcaag atctcgaccg tcaaggacct gctgccgctg ctggagaagg tcatccagtc	540
gggcaagccg ctcgcgatca tcgccgagga cgtcgagggc gaggccctgt cgacgctcat	600 cgtc
604 <210> 54 <211> 604 <212> DNA <213> Nocardia carnea <40	00> 54
cgaggatccc tacgagaaga tcggcgccga gctggtcaag gaagtcgcca agaagaccga	60
cgacgtcgcg ggcgacggca ccaccaccgc caccgtgctc gcccaggcgc tggtgcgcga	120
gggtctgcgc aacgtggccg cgggcgcgaa cccgctgggc ctcaagcgca gcatcgagaa	180
ggccgtcgag gccgtgaccg ccaagctgct cgacaccgcc aaggaggtcg agaccaagga	240
gcagatcgcc gccaccgcgg gcatctccgc gggcgacgcg tccatcggtg agctgatcgc	300
cgaggccatg gacaaggtcg gcaaggaagg cgtcatcacc gtcgaggaga gcaacacctt	360
cggcctccag ctggagctga ccgagggcat gcgcttcgac aagggctaca tctccggcta	420
cttcgtgacc gatcccgagc gtcaggaagc ggtcctcgag gatccctaca tcctgctcgt	480
cggctcgaag gtctccaccg tcaaggacct gctgccgctg ctggagaagg tcatccaggc	540
cggcaagccg ctgctgatca tcgccgagga cgtcgagggc gaggccctgt cgaccctggt	600 cgtg

0020011648

출력 일자: 2003/2/4

604 <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223>

HSPF3 <400> 55 atcgccaagg agatcgagct

20 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> <223>

HSPR3 <400> 56 aaggtgccgc ggatcttgtt

20