Question Number	Answer		Mark
3(a)(i)	Values of log <i>P</i> correct to 2 d.p.	(1)	
	Values of $\frac{1}{\tau}$ correct to 5 d.p.		
	Or		
	Values of $\frac{1}{T}$ correct to 2 d.p. if written in standard form	(1)	
	Axes labelled: y as log (P / kPa) and x as $\frac{1}{T} / K^{-1}$	(1)	
	Most appropriate scales chosen	(1)	
	Values plotted accurately	(1)	
	Best fit line drawn	(1)	6
3(a)(ii)	Calculation of gradient using large triangle shown	(1)	
	Gradient = $(-) 2.2 \times 10^3$	(1)	
	Gradient given to 2 or 3 s.f. and negative	(1)	3
	Example of calculation		
	gradient = $(2.34 - 1.00) / (2.60 - 3.20) \times 10^{-3} = 0.34 / - 0.60 \times 10^{-3}$		
	= -2230		
3(a)(iii)	Use of gradient – () X	(1)	
	Use of gradient = $(-)\frac{1}{2.30k}$	(1)	
	Correct value of X [e.c.f. (a)(ii)]	(1)	3
	X given to 2 or 3 s.f.		
	Example of calculation		
	$X = \text{gradient} \times (-2.30k) = -2230 \times (-2.30 \times 1.38 \times 10^{-23} \text{ J K}^{-1})$		
	$= 7.08 \times 10^{-20} (\mathrm{J})$		
3(b)	Value of $\frac{1}{T}$ interpolated from graph	(1)	
	Correct T calculated	(1)	
	Conversion of T to $^{\circ}$ C, given to 2 or 3 s.f.	(1)	3
	Example of calculation		
	$(\text{Log } P = \log (100) = 2)$		
	$\frac{1}{T} = 2.75 \times 10^{-3} \mathrm{K}^{-1}$		
	$T = 1 / 2.75 \times 10^{-3} = 364 \text{ K}$		
	boiling point = $364 - 273 = 91$ (°C)		

15

Total for question 3