인공지능 특허 분석:

IPC 동시 출현과 기업 및 조직 보유 특허 초록 유사도 중심

2019.05.03

<제목 차례>

제 1 장. 서론	
제 1 절. 배경	
제 2 절 과제 목적 및 방향	
1. 목적	
2. 방향	3
제 2 장 이론적 배경	
제 1 절 Chance Discovery	
1. KeyGraph ·····	
2. Polaris ·····	
제 2 절 Link Prediction ·····	5
제 3 장. 분석 방법	6
제 1 절. 인공지능 관련 IPC 및 특허 수집 ······	
1. 인공지능 IPC 수집 ······	6
2. 인공지능 특허 수집	
제 2 절. 인공지능 IPC 분석 ···································	
1. 분석 과정	
2. 분석 결과	
제 3 절. 인공지능 특허 보유 기업 및 기관 관계 분석	
1. 분석 과정 ···································	9
2. 분석 결과	
4. 단기 Ə서	11
제 4 장. 결론	12
제 1 절. 인공지능 IPC 분석	12
제 2 절. 인공지능 특허 보유 기업 및 기관 관계 분석	
[Reference]	16

제 1 장. 서론 제 1 절. 배경

- O 인공지능 기술은 4차 산업혁명을 대표하는 미래 성장 동력으로서 세계 주요국의 기술 개발 경쟁이 치열하게 전개되고 있는 분야임
- O 인공지능 기술의 산업화가 확대되면서 다양한 분야에서 큰 경제적 파급효과가 발생할 것으로 예상됨
- O 인공지능 기술에 대한 연구는 기술범위의 확정, 산업-기술 간 연결고리 등이 거의 분석된 바가 없음
- O 1976~2014년 기간에 전 세계의 인공지능 기술 전체 특허는 1976년 4건에서 시작 하여 2014년 1,384건으로 급격하게 증가하였음
- O 대한민국의 경우 세계 4위의 인공지능 특허등록 건수를 보이고 있으나, 특허 건수 측면에서 미국은 대한민국의 약 47배, 일본은 10배, 독일은 2.3배 많은 것으로 분석됨
- O 인공지능 기술 가운데 Top5 기술은 지식처리시스템, 신경망, 기계학습, AI응용부문, 퍼지로직 하드웨어로 나타나고 있음
- O 주요 인공지능 기술별 미국 대비 특허 경쟁력을 보면 한국은 미국, 일본, 독일에 비해 인공지능 응용 특허에서 낮은 수준을 기록함

그림 1 Traica 인공지능 시장 분석

O Traica의 2015년 발표 자료에 따르면 인공지능 시장을 로봇을 제외한 인지 컴퓨

터, 머신러닝, 딥러닝, Predictive APIs, 자연어처리, 이미지 인식, 음성 인식, 기타로 구분하고 있음

- O 기술별 인공지능 관련 매출액을 2015년 2억 250만 달러에서 2020년 41억 4,470 만 달러로 연 평균 82.9% 성장 할 것으로 전망
- 특히, 딥러닝 기술이 시장을 주도하여 빠르게 확산 될 것으로 전망
- O 각 인공지능 기술은 고유의 장단점이 있어, 특정 문제의 성격에 따라 다양한 기술을 조합하여 현실세계의 문제를 해결하는 것이 중요
- O 기업/ 개인은 문제 해결을 위해 데이터 및 다양한 인공지능 기술의 특정 조합으로 비즈니스 및 경제활동 영위
- O 인공지능기술이 경쟁력을 확보하기 위해서 다양한 기술 및 산업분야와의 융합은 매우 중요함
- O 인공지능 기술의 활용분야를 확대하고 창의적인 비즈니스 모델을 창출하기 위해서 는 다른 기술 분야 및 산업 분야와의 유합은 필수적임

제 2 절 과제 목적 및 방향

1. 목적

- O 인공지능 특허의 핵심 및 잠재 기회 IPC를 파악 할 수 있음
 - 인공지능 특허의 중요성이 대두되고 있지만, 아직 인공지능 특허는 개별적인 산 업분야에서 적극적으로 이용되고 있음
 - 인공지능과 다른 산업 도메인간의 관계와 추후 연결 될 수 있는 인공지능 특허 와 다른 산업 도메인 특허 간의 관계를 파악 할 수 있음
 - 인공지능 특허 내 활용되는 IPC의 조합을 통해 새로운 특허 개발 시 활용할 수 있음
- O 인공지능 특허를 중심으로, 기업 입장에서 미래의 경쟁 기업 및 협력 기업 관계를 확인 할 수 있음
 - 인공지능을 개발하는 기업들의 특허 개발 방향이 유사한 기업을 식별하여, 기업 의 추후 경쟁 기업 혹은 협력 기업을 파악 할 수 있음

2. 방향

O 인공지능 특허 내 IPC를 바탕으로 인공지능 특허들의 동향을 파악함

그림 2 인공지능 IPC 분석

- ◆ 인공지능 특허가 포함하고 있는 IPC들 간의 동시 출현 관계를 파악함
- ◆ 해당 IPC들 간의 Co-Occurrence를 바탕으로 네트워크 생성
- ◆ 네트워크 내에서 잠재 IPC를 바탕으로 새로운 Chance 도출
- 단순한 IPC 간의 관계를 넘어서, 빈도는 낮지만 중요할 수 있는 숨겨진 IPC를 발견하여, 추후 인공지능 특허 개발 시 참고 IPC로서 활용할 수 있도록 함
- O 인공지능 특허 보유 기업 및 기관의 관계를 파악

그림 3 인공지능 특허 보유 기업 및 기관 관계 분석

- 인공지능 특허 보유 기업의 특허 초록을 수집하여, 특허 초록 문서를 바탕으로 다른 인공지능 특허 보유 기업의 유사도를 수집
- 기업 및 기관 보유 특허 초록 문서 간의 유사도를 바탕으로 추후 기업 간의 경쟁 관계 혹은 협력 관계를 파악 할 수 있도록 함
- 기업 및 기관 보유 특허 초록 문서 간의 코사인 유사도를 바탕으로 Link Prediction을 실시하여, 추후 경쟁 관계가 될 가능성이 높은 기업 및 조직 관계 도출

제 2 장 이론적 배경

제 1 절 Chance Discovery

1. Keygraph

- O Chance Discovery는 인간의 의사결정이나 미래에 닥쳐올 변화에 영향을 주지만 자주 발생하지 않는 희소성 있는 사건을 발견하기 위한 연구를 의미함
- O Chance는 발생 빈도가 낮으며 인식하기 어렵지만 미래의 변화에 중요한 역할을 하게 될 가능성이 높음
- O Keygraph는 Social Network에서 Chance에 해당하는 데이터를 찾아내기 위한 알고리즘임
- O KeyGraph는 클러스터 형성 단계와 Chance 후보 발견 단계, 총 2단계로 구성되어 있음
 - 클러스터 형성 단계는 전체 데이터를 하위 데이터 집합으로 분할하는 과정으로 서, 하위 데이터 집합 내 Co-occurrence가 높을수록 그 사이의 관계가 강해지 고 이를 바탕으로 클러스터를 형성함
 - Chance 후보 발견 단계는 하나의 클러스터 내부에 존재하는 데이터 사이에, 그 데이터를 발생시키는 공통적인 원인을 찾아간다고 가정함
 - 이는 하나의 클러스터에서 집중적으로 나타나지 않고, 여러 클러스터에 걸쳐서 공통적으로 나타나는 데이터는 클러스터와 클러스터로 연결하는 분기점으로, 이를 하나의 Chance 후보로 판단함
 - 해당 Chance 후보를 '의사결정에 있어서 매우 중요한 역할을 함에도 불구하고 간과되고 있는 사건 또는 상황'으로 정의하며, 이를 파열점이라 지칭함 (Park and Yoon, 2005)

2. Polaris

- O KeyGraph를 구축하기 위한 도구로서 Yukio Ohsawa가 개발함
- O Polaris는 '기회 발견의 이중 나선 프로세스'를 기반으로 한 Chance Discovery Data-Mining Framework임
- O 데이터 시각화 결과를 해석하고 효율적인 의사결정을 할 수 있도록, 맥락적 해석을 지원함
- O 위를 바탕으로 Chance Discovery의 데이터를 시각화를 가능하게 하고, 기회 발 견의 중심적 역할을 함

제 2 절 Link Prediction

그림 4 Link Prediction

- O Social Network에서 현재 주어진 네트워크에서 빠진 링크를 예측하거나, 미래의 네트워크에 새롭게 나타날 링크를 예측하는 것을 의미함
- O Link Prediction의 방법론은 Node, Topology, Social Theory 기반 기법이 존재
 - ◆ 해당 연구에서는 Node 기반 기법을 활용하여 새로운 링크를 도출함
- O Social Network 'G(V, E) at t' 에 대해 링크가 생기거나 사라지는 것(t' > t), 빠진 링크나 관찰되지 않은 링크가 있는 것을 (at t)을 찾아내는 기법

제 3 장. 분석 방법

제 1 절. 인공지능 관련 IPC 및 특허 수집

1. 인공지능 IPC 수집

- O 2017년 미국 등록 특허 314,791건의 출원인, IPC, 초록, 발명자, 인용 정보 데이 터베이스 활용
- O 특허청 4차 산업혁명 관련 7대 기술 분야 특허 분류 체계 활용(특허청, 2018.) http://www.kipo.go.kr/kpo/user.tdf?a=user.html.HtmlApp&c=33001&catm enu=m06_07_06
 - ◆ 해당 특허분류 문서 중 '인공지능(AI)'에 포함되는 특허 IPC 734개 도출
 - ◆ 이를 해당 연구에서는 '인공지능 IPC'로 명명함

2. 인공지능 특허 수집

- O 2017년 미국 등록 특허 베이스 중 위에서 정의한 인공지능 IPC를 포함하고 있는 특허 데이터를 수집함
 - ◆ 인공지능 IPC를 포함하고 있는 특허 3,733건 추출함
 - ◆ 이를 해당 연구에서는 '인공지능 특허'로 명명함

제 2 절. 인공지능 IPC 분석

1. 분석 과정

- O 인공지능 특허와 해당 특허가 보유하고 있는 IPC를 정렬함
 - ◆ 하나의 특허에 동시에 포함되는 IPC들의 관계를 파악하도록 함
 - ◆ 개별 특허에 포함되는 IPC를 Co-occurrence로 판단함

특허 번호	IPC			
9533684	B60K-028/16	B60K-031/02	B60K-031/04	B60T-008/175
9533688	B60W-040/09	G06F-017/18		
9534956	F21V-009/00	G01J-003/28	G05B-015/02	G06Q-050/18
9535120	G01R-031/317	G01R-031/3177	G01R-031/3185	G06F-017/10
9535189	G01W-001/02	G06F-017/10		
9535419	G05B-017/00	G05B-023/02	G06F-017/10	G06F-017/11
9535450	G06F-001/12	G06F-017/21	G06F-017/22	G06F-017/24
9535552	G06F-001/32	G06F-003/01	G06F-003/044	G06F-003/0488
9535582	G06F-003/0484	G06F-011/34	G06F-017/00	G06F-017/22

표 1 특허 번호 - IPC Code의 데이터 형식

- O Polaris 프로그램을 통해서 KeyGraph Algorithm 적용
 - ◆ Polaris의 Input 데이터 형식은 '특허번호 IPC'로 위 표와 같은 형태로 전처 리하여 정렬함

2. 분석 결과

그림 6 KeyGraph Algorithm Network

O KeyGraph Algorithm을 통해 총 30개의 IPC를 도출함

G06Q-050/12, G06F-017/00, A63F-009/24, G07F-007/08, G06Q-050/00, H04Q-005/22, H04W-012/06, H04W-004/02, G06F-007/10, G06F-019/00, G06Q-050/24, H04W-004/00, G06Q-040/06, G07C-009/00, G06Q-099/00, G07C-009/02, G06K-017/077, G07B-015/06, G07F-019/00, G06K-019/07, G06Q-050/30, G10L-017/00, G06K-005/00, G06Q-050/26, G06N-007/00, G06K-019/06, G06N-003/08, G06F-003/01, G06Q-020/42, G06Q-020/12

O 위의 네트워크에서 가장 파열점이 많은 4가지 포인트 선정

- ◆ 첫 번째 포인트 파열점 IPC는 G07F-007/08, G06Q-050/00, H04Q-005/22, H04W-012/06, H04W-004/02, G06F-007/10 이며, 이를 통해서 연결되는 IPC는 G06Q-050, G07F-007/10임
- ◆ 두 번째 포인트 파열점 IPC는 G06N-007/00, G06K-019/06, G06N-003/08, G06F-003/01 이며, 이릍 통해서 연결되는 IPC는 G06K-009/32, G06G-009/34, G06Q-020/38, G06K-009/00임
- ◆ 세 번째 포인트 파열점 IPC는 G07C-009/00, G06Q-099/00, G07C-009/02 이며, 이를 통해서 연결되는 IPC는 G06Q-020/40, G06Q-020/36임

◆ 네 번째 포인트 파열점 IPC는 G06K-017/077, G07B-015/06, G07F-019/00, G06K-019/07, G06Q-050/30 이며, 이를 통해서 연결되는 IPC는 G06Q-020/36, G06Q-020/28임

제 3 절. 인공지능 특허 보유 기업 관계 분석

1. 분석 과정

- O 인공지능 특허를 보유하고 있는 기업 및 기관 데이터를 수집함
 - ◆ 해당 특허를 보유하고 있는 기업 및 기관 1,405건 추출
 - ◆ 기업 및 기관의 보유 인공지능 특허 데이터 셋 구축
 - ◆ 위 데이터 셋을 바탕으로 기업 및 기관 보유 특허 초록 데이터 추출

기업 및 기관	보유 특허 초록
Zynga Inc.	'A method for testing a new feature of an online gaming application is provided including: receiving a gaming application request from a user;
Zynga Inc.	'Software on a server and/or client device causes a view in a graphical user interface (GUI) for a game to be displayed to a user.
Zynga Inc.	'A system a machine-readable storage medium storing instructions and a computer-implemented method are described herein for a System Tuner for customizing a player s experience.
ZTE Corporation	'The present disclosure provides a method for local calling via a webpage including that: a local calling operation instruction is serialized
ZTE Corporation	'A method for calculating the number and moving direction of pedestrians is provided.
ZTE Corporation	'An intelligent guiding method and system based on a M2M system are provided.
ZTE Corporation	'An intelligent guiding method and system based on a M2M system are provided. The method includes that when receiving a service request message

표 2 기업 및 기관 - 개별 보유 특허 초록 데이터 형식

- O 기업 및 기관의 보유 특허 통합된 초록의 합 간의 유사도를 도출함
 - ◆ 기업 및 기관이 보유하고 있는 인공지능 특허를 기업 당 1개의 문서로 통합함
 - ◆ 이를 기업 및 기관의 인공지능 특허 개발 방향으로 판단함
 - 기업 및 기관의 통합된 보유 특허 초록 문서의 유사도를 통해 얼마나 기업 특허 간의 유사도, 방향성을 파악함
 - ◆ 본 연구에서는 Cosine Similarity를 활용함

	Bio Inventors & Entrepreneurs Network LLC	Children's Hospital Medical Center Corp.	Commissariat a lEnergie Atomique et aux Energies Alernatives	24/7 Customer	Oracle Intl. Corp.
Bio Inventors & Entrepreneurs Network LLC	1	0	0.002881	0.010446	0.033466
Children's Hospital Medical Center Corp.	0	1	0.136836	0.027566	0.227102
Commissariat a lEnergie Atomique et aux Energies Alernatives	0.002881	0.136836	1	0.026404	0.223438
24/7 Customer	0.010446	0.027566	0.026404	1	0.051612
Oracle Intl. Corp.	0.033466	0.227102	0.223438	0.051612	1

표 3 기업 및 기관의 초록 문서의 Cosine Similarity Matrix

- O 위의 통합 특허 초록 문서 유사도를 바탕으로 기업 및 기관 간의 Link Prediction을 수행함
 - 개별 기업 및 기관을 하나의 노드로 가정하고 생성한 네트워크에서, Link Prediction을 통해 추후에 연결될 가능성이 높은 링크를 예측 할 수 있음
 - 해당 링크가 강할수록, 기업 및 기관의 특허의 발전 및 개발 방향이 유사하다고 해석 할 수 있음

2. 분석 결과

기업1	기업2	Link Prediction	
STMicroelectronics Asia Pacific PTE Ltd-Singapore	adidas AG	0.959710341	
APIXIO	Altair Engineering	0.980089014	
Acorns Grow Incorporated	Amdocs Development Software	0.957271524	
AIRBUS OPERATIONA LIMITED	AtHoc	0.994834746	
Altek Semiconductor Corp.	AtHoc	0.972140078	
Altair Engineering	BuyMetrics	0.983893655	
Arria Data2Text Limited	BuyMetrics	0.957937255	
APTTEX CORPORATION	Canon U.S. Life Sciences	0.978652141	
Altek Semiconductor Corp.	CONCUR TECHNOLOGIES	0.955202653	
Brighterion	Continental Teves	0.954564065	
Canon U.S. Life Sciences	Data Record Science	0.958923952	

표 4 기업 간 Link Prediction

O 기업 및 기관 보유 인공지능 특허 초록 통합 문서의 코사인 유사도를 통해 Link Prediction을 활용한 결과는 위와 같음

제 4 장. 결론

1. 인공지능 IPC 분석

파열점 IPC	설명
G06Q-050/12	Hotels or restaurants
G06F-017/00	Digital computing or data processing equipment or methods, specially adapted for specific functions
A63F-009/24	Games using electronic circuits not otherwise provided for
G07F-007/08	by coded identity card or credit card
G06Q-050/00	Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism (healthcare informatics)
H04Q-005/22	the subordinate centre not permitting interconnection of subscribers connected thereto
H04W-012/06	Authentication
H04W-004/02	Services making use of the location of users or terminals information
G06F-007/10	Selecting, i.e. obtaining data of one kind from those record carriers which are identifiable by data of a second kind from a mass of ordered or randomly-distributed record carriers
G06F-019/00	Digital computing or data processing equipment or methods, specially adapted for specific applications
G06Q-050/24	Patient record management
H04W-004/00	Services specially adapted for wireless communication networks; Facilities therefor
G06Q-040/06	Investment, e.g. financial instruments, portfolio management or fund management
G07C-009/00	Individual entry or exit registers
G06Q-099/00	Subject matter not provided for in other groups of this subclass
G07C-009/02	Turnstiles with registering means(coin-freed)
G07B-015/06	Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems
G07F-019/00	Complete banking systems; Coded card-freed arrangements adapted for dispensing or receiving monies or the like and posting such transactions to existing accounts, e.g. automatic teller machines (data processing equipment for bank accounting)
G06K-019/07	with integrated circuit chips
G06Q-050/30	Transportation; Communications
G10L-017/00	Speaker identification or verification
G06K-005/00	Methods or arrangements for verifying the correctness of markings on a record carrier;Column-detection devices
G06Q-050/26	Government or public services
G06N-007/00	Computer systems based on specific mathematical models
G06K-019/06	characterised by the kind of the digital marking, e.g. shape, nature, code
G06N-003/08	Learning methods
G06F-003/01	Input arrangements or combined input and output arrangements for interaction between user and computer
G06Q-020/42	Confirmation, e.g. check or permission by the legal debtor of payment
G06Q-020/12	specially adapted for electronic shopping systems

표 5 파열점 IPC 및 해당 IPC 설명

- O 인공지능 IPC에서 잠재적이지만 추후에 기회로 작용할 수 있는 파열점 IPC는 위와 같음
- O 네트워크에서 가장 파열점이 많은 4가지 포인트 선정
 - 1차 네트워크의 파열점 IPC는 신용카드, 인증, 승인, 위치 서비스, 대량 데이터 처리 등의 특허 IPC에 해당되며, 이는 신용카드 관련 특허 데이터에서 Chance 로 확인됨
 - 2차 네트워크의 파열점 IPC는 컴퓨터 기반 수학적 모델링, 학습 방법, 컴퓨터와 사용자간의 인터랙션 등의 특허 IPC에 해당되며, 이는 수학적 컴퓨팅 모델링 관 련 특허 데이터에서 Chance로 확인됨
 - 3차 네트워크의 파열점 IPC는 금융, 투자, 개인 엔트리, 아웃 레지스터 기록 등의 특허 IPC에 해당되며, 이는 개별 이용자의 시스템 사용 기록 및 레지스터 특허 데이터에서 Chance로 확인됨
 - 4차 네트워크의 파열점 IPC는 교통수단, 뱅킹 시스템, 자동 요금 시스템, 통합 직접 회로 등의 특허 IPC에 해당되며, 이는 카드 내 회로에 관련된 특허 데이터 에서 Chance로 확인됨
- O 해당 네트워크를 기반으로 파열점 IPC와 비파열점 IPC 간의 관계를 분석함
 - 신용카드, 수학적 컴퓨팅 모델링, 개별 이용자의 시스템 사용 기록 및 레지스터, 카드 및 칩 내 회로에 관련된 특허 IPC들이 잠재적 기회로 인식됨
 - 추후 해당 IPC를 바탕으로 인공지능 특허의 고도화 혹은 다른 도메인 기술과의 결합에서 중요한 역할을 가능성이 높음

2. 인공지능 특허 보유 기업 및 기관 관계 분석

기업1	기업2	Link Prediction
KT Corporation	Zoox	0.930938803
MASTERCARD INTERNATIONAL INCORPORATED	SPIDER DATA SERVICES	0.935359226
Huawei Technologies	SmartEar	0.966128637
MASTERCARD INTERNATIONAL INCORPORATED	Rovi Guides	0.943836352
ASML Netherlands B. V.	Mazda Motor Manufacturing	0.944173721
BGC Partrners	Headwater Partners I LLC	0.945705116
Informetis Corporation	SK Telecom Company	0.960375774

표 6 기업 간 Link Prediction 결과

- O 위 표는 기업과 기업 사이의 Cosine Similarity를 통하여 생성한 네트워크의 Link Prediction 결과의 일부분임
 - 이동 통신사인 KT Corporation과 자율 주행 자동차 기업 Zoox는 추후 링크가 연결될 가능성이 높은 것으로 예상됨
 - 2019년 현재 KT의 5G 자율주행 플랫폼과 자율 주행 자동차 기업 Zoox의 특허 개발 방향이 유사한 것으로 판단됨
- O 카드사인 MASTERCARD INTERNATIONAL INCORPORATED는 예산 및 자산 관리 시스템 개발 회사인 SPIDER DATA SERVICES, LLC와 굉장히 높은 링크 연 결 가능성을 지님
 - 금융 및 자산 관련 데이터베이스 관련 특허 개발 방향에 있어 높은 유사성을 지니고 있으며, 이후 링크 연결 가능성을 통해 잠재적 경쟁자 혹은 협력자가 될 수 있다고 해석 할 수 있음
- O 휴대폰 및 전자제품 기업 Huawei Technologies와 음성인식 관련 인공지능 기업 SmartEar는 네트워크에서 추후 링크가 연결될 가능성이 굉장히 높은 것으로 판단됨
 - ◆ 전자제품과 음성인식 관련 기업의 특허 개발 방향 유사성이 높으므로 해당 분야 에서 기술의 융합이 이루어지고 있음을 확인할 수 있음

- O 금융 서비스 기업 BGC Partrners.과 스마트 모바일 기기 개발 기업 Headwater Partners I LLC는 네트워크에서 링크가 연결 될 가능성이 굉장히 높음
 - 이질적인 두 분야에서 Trading Management 위주로 특허를 개발하고 있으며 이는 추후 두 기업이 추후 협력 혹은 경쟁 관계가 될 수 있음을 의미함
- O 하드웨어 및 클라우드 시스템 관련 기업인 Informetis Corporation.과 이동통신 사 SK Telecom Company는 네트워크에서 추후 링크가 연결될 가능성이 굉장히 높은 것으로 판단됨
 - 이동 통신사와 클라우드 관련 기업의 특허 개발에 유사성을 보이면서, 이전에는 전혀 고려하지 않았던 기업들을 고려하게 됨
- O 기업 및 기관의 보유 인공지능 특허의 초록은 그들의 기술 개발과 발전 방향을 나타내는 중요한 지표로서 활용 될 수 있음
- O 전혀 다른 산업 분야의 존재하는 기업 및 기관들의 특허 유사도를 통해서 관련 개발 방향이 유사한 기업을 파악 할 수 있음
- O Link Prediction을 통하여 추후 경쟁 관계 혹은 협력 관계를 형성 할 수 있을 것으로 예상됨

[Reference]

- Lee, S., Kim, M. S., Park, Y., & Kim, C. (2016). Identification of a technological chance in product-service system using KeyGraph and text mining on business method patents. International Journal of Technology Management, 70(4), 239-256.
- Chen, L. C., Yu, T. J., & Hsieh, C. J. (2013). KeyGraph-based chance discovery for exploring the development of e-commerce topics. Scientometrics, 95(1), 257-275.
- Dongho Jang, Chungmok Lee (2018). New Link Prediction Algorithm using Generative Adversarial Network(GAN). 대한산업공학회 춘계공동학술 대회 논문집, 1634-1642.
- 서한빈, 이학연 (2018). 심층신경망 기반 링크 예측을 활용한 기술융합 예측. 한 국경영과학회 학술대회논문집, 1356-1364.
- 이영설, 조성배 (2007). 유전자 알고리즘을 이용한 KeyGraph 알고리즘의 데이터 분할. 한국정보과학회 학술발표논문집, 34(1C), 352-356.
- 고남욱, 최하영, 윤장혁 (2015). 융합기술 컨셉 생성 방법론. 대한산업공학회 추계학술대회 논문집, 880-884.
- 손권상, 구국원, 염창훈, 권오병 (2018). 인공지능 융합기술의 채택에 대한 연구 및 방향. 한국지능정보시스템학회 학술대회논문집, 11-12.
- ◆ 배영임, 신혜리 (2017). 인공지능기술의 특허네트워크 분석을 통한 융합패턴 연구. GRI 연구논총,19(1), 113-133.
- 이영설, 김경중, 조성배 (2006). 컨셉넷과 키그래프를 이용한 일상생활 요약. 한 국정보과학회 학술발표논문집,33(2B), 244-249.
- ◆ 정명철, 조성배 (2005). 키그래프 기반 스마트폰 사용자 정보 관리. 한국지능시 스템학회 학술발표 논문집, 15(2),199-202.
- ◆ 백현미, 김명숙 (2013). 특허 네트워크 분석을 통한 융합 기술 트렌드 분석. 벤처창업연구, 8(2), 11-19.
- ◆ 박재용 (2018). 특허정보를 이용한 인공지능 기술 동향 분석. 한국컴퓨터정보학 회논문지 , 23(4), 9-16.