## **ESTUDIO PREVIO SESIÓN 4**



b.

\* C:\Users\34608\Documents\Ingeniería Informática\4o AÑO\1er Cuatri\CIREL\PRÁCTICAS\Práctica1\Draft... --- Operating Point ---V(n001): 10 voltage 1.75439 V(a): voltage V(n002): 0 voltage 1.75439e-019 device current I(C1): 0.00175439 device\_current I(R2): I(R1): 0.00175439 device current I(V2): 1.75439e-019 device current -0.00175439 I(V1): device current

V(a) = 1.75439

Valor teórico:

Aplicamos Ley de Nodos de Kirchhoff al circuito y obtenemos la siguiente ecuación:  $10\text{-Va} / 4700 + 2\text{-Va}/0 = \text{Va}/1000 \rightarrow 10\text{-Va} = \text{Va}*4.7 \rightarrow 5.7\text{Va} = 10 \rightarrow \text{Va} = 1.75438\text{V}$ . Nota: el condensador al trabajar en continua, lo tendremos como circuito abierto.

c.

| Freq   | V(a)/2     |
|--------|------------|
| 10Hz   | -45.71dB   |
| 100Hz  | -25.72dB   |
| 1KHz   | -6.74dB    |
| 10KHz  | -158.85mdB |
| 100KHz | -1.61mdB   |
| 1MHz   | -16.18udB  |
| 10MHz  | -161.8ndB  |

Los valores de la tabla son los obtenidos al simular el circuito propuesto, hemos obtenido esos valores para V(a)/2 para cada correspondiente frecuencia.



Podemos concluir que es un filtro a paso alta por la forma en la que crece la línea continua.

#### **Valores teóricos**

Req = R1 en paralelo con R2  $\rightarrow$  R1\*R2/R1+R2 = 4700\*1000 / 4700+1000 = 824.56  $\Omega$ 

$$Gv = Vout / Vin \rightarrow Gv(db) = 20 * log(|Gv|) || w=2*pi*f$$

#### Para Freq = 10Hz

Va / 2 = 2 / 
$$\sqrt{1+1/(2*pi*10*824,56*10^{-7})^2}$$
 = 5.18x10<sup>-3V</sup> = **-45.71dB**

## Para Freq = 100Hz

Va / 2 = 2 / 
$$\sqrt{1+1/(2*pi*100*824,56*10^{-7})^2}$$
 = 0.0517V = **-25.73dB**

## Para Freq = 1KHz

Va / 2 = 2 / 
$$\sqrt{1+1/(2*pi*1000*824,56*10^{-7})^2}$$
 = 0.46V = -6,74dB

## Para Freq = 10KHz

Va / 2 = 2 / 
$$\sqrt{1+1/(2*pi*10000*824,56*10^{-7})^2}$$
 = 0.9818V = -0.16dB

#### Para Freq = 100KHz

Va / 2 = 2 /  $\sqrt{1+1/(2*pi*100000*824,56*10^{-7})^2}$  = 0.999V = **-8.7x10**<sup>-3</sup>**dB** 

## Para Freq = 1MHz

Va / 2 = 2 /  $\sqrt{1+1/(2*pi*100000000*824,56*10^{-7})^2}$  = 0.99999999V = -8.68x10<sup>-15</sup>dB

## Para Freq = 10MHz

 $Va/2 = 2/V1+1/(2*pi*100000000000*824,56*10^{-7})^2 = 1V = 0dB$ 

Podemos observar que los valores obtenidos teóricamente, son los mismos o muy parecidos a los obtenidos por simulación. Si alguno varía más de lo normal, ha sido por los decimales que no se han incluido.

## **MONTAJE EXPERIMENTAL**

<u>a</u>

| frecuencia(Hz) | V <sub>a</sub>   (V) | V <sub>2</sub>  (V) | $A_v =  V_a / V_2 $ | δt (s)    |
|----------------|----------------------|---------------------|---------------------|-----------|
| 50Hz           | 0,052                | 2                   | 0,026               | 0,0056    |
| 60Hz           | 0,06                 | 2                   | 0,08                | 0,0047    |
| 70Hz           | 0,073                | 2                   | 0,0365              | 0,0036    |
| 80Hz           | 0,081                | 2                   | 0,0405              | 0,0028    |
| 90Hz           | 0,094                | 2                   | 0,047               | 0,0016    |
| 800Hz          | 0,73                 | 2                   | 0,365               | 0,000239  |
| 900Hz          | 0,81                 | 2                   | 0,405               | 0,000220  |
| 1KHz           | 0,9                  | 2                   | 0,45                | 0,000200  |
| 5KHz           | 1,77                 | 2                   | 0,885               | 0,000016  |
| 10KHz          | 1,82                 | 2                   | 0,91                | 0,000006  |
| 20KHz          | 2                    | 2                   | 1                   | 0,000004  |
| 25KHz          | 2                    | 2                   | 1                   | 0,000004  |
| 30KHz          | 2                    | 2                   | 1                   | 0,000002  |
| 40KHz          | 2                    | 2                   | 1                   | 0,0000006 |
| 50Khz          | 2                    | 2                   | 1                   | 0,0000002 |

Representación de la ganancia frente a la frecuencia en escala logarítmica

# ejeX: frecuencias(Hz)

ejeY: ganancia en Voltios



# Representación de la ganancia frente a la frecuencia en escala logarítmica

ejeX: frecuencias(Hz)

ejeY: ganancia en dB



### b.

| frecuencia(Hz) | $(\delta t (s)/2pi)$  |
|----------------|-----------------------|
| 50Hz           | 8,79x10 <sup>-4</sup> |
| 60Hz           | 7,38x10 <sup>-4</sup> |
| 70Hz           | 5,65x10 <sup>-4</sup> |
| 80Hz           | 4,45x10 <sup>-4</sup> |
| 90Hz           | 2,54x10 <sup>-4</sup> |
| 800Hz          | 3,8x10 <sup>-5</sup>  |
| 900Hz          | 3,5x10 <sup>-5</sup>  |
| 1KHz           | 3,18x10 <sup>-5</sup> |
| 5KHz           | 2,54x10 <sup>-6</sup> |
| 10KHz          | 9,54x10 <sup>-7</sup> |
| 20KHz          | 6,36x10 <sup>-7</sup> |
| 25KHz          | 6,36x10 <sup>-7</sup> |
| 30KHz          | 3,18x10 <sup>-7</sup> |
| 40KHz          | 9,54x10 <sup>-8</sup> |
| 50Khz          | 3,18x10 <sup>-8</sup> |

# Representación de la ganancia frente a la frecuencia en escala logarítmica

ejeX: frecuencias(Hz)

ejeY: diferencia de fase(grados)



**c.** Podemos observar, comparando con los valores teóricos y simulados, que a frecuencias altas, que el desfase temporal sigue una tendencia descendente y la ganancia en decibelios, ascendente. Los valores obtenidos en el laboratorio, comparados con los ya simulados y calculados coinciden en su gran parte. Algunas no coincidencias pueden darse por el error de los instrumentos utilizados. La "rara" representación de las gráficas es debido a que con más valores de la frecuencia, se obtendrían unas representaciones más exactas. De todas formas, se puede observar una tendencia muy parecida a la ya obtenida previamente.



Obtenemos la línea de tendencia y sacamos su ecuación.

 $y = 4,4857\ln(x) - 45,638$ 

Fc =  $1 / 2piRC \rightarrow$  Al sustituir, nuestra frecuencia de corte tendría que valer 1930Hz aproximadamente.