Cell tower: Let c be first position Greedy and optimal differ. Let t be house at a_c -1. Alg always places tower 1 mi out from uncovered house + optimal and greedy were same before c, so no tower before a_c that covers t. Then o_c and a_c must cover t. Since a_c =t+1 and $a_c \ne o_c$, $o_c < a_c$ to cover t. o_c covers all houses a_c covers then. Can exchange until O = A.

Coin change: best $(b_{50}, b_{25}, b_{10}, b_5, b_1)$, Greedy $(a_{50},...,a_1)$. Show $\sum a_i$ smaller. Since best is not greedy, some point threw will be fewer coins of some denom. **(1)** if $b_{50} < a_{50}$ then rest must make up missing 50:

 $25b_{25}+10b_{10}+5b_5+b_1\geq 50$: If $b_{25}\geq 2$ replace with half dollar, b=1 forces more dimes and nickels->replace with half dollar... **(2)** $b_{50}=a_{50}$ and $b_{25}< a_{25}$ then $10b_{10}+5b_5+b_1\geq 25$: if $b_{10}\geq 3$ replace with 1 quarter 1 nickel... repeat until $b_5=c_5$ must all be the same

Union: Sort by start index, start merging.

Huffman

for i = 1 to n - 1 do

1. $z \leftarrow allocateNode() 2. x \leftarrow lef t[z] \leftarrow DeleteMin(Q) 3. y \leftarrow right[z] \leftarrow DeleteMin(Q)$

4. $f[z] \leftarrow f[x] + f[y]$ 5. Insert(Q, z)

Proof: Lemma: Suppose x and y are two letters of lowest frequency. Then, there exists an optimal prefix code in which codewords for x and y have the same (and maximum) length and they differ only in the last bit.

Proof. Start with an optimal prefix code tree T, and modify it so x and y are sibling leaves of max depth, without increasing total cost. • In modified tree, x and y have the same code length, different only in the last bit. • Assume optimal tree does not satisfy the claim, and suppose that a and b are the two characters that are sibling leaves of max depth in T. • Without loss of generality, assume that $f(a) \le f(b)$ and $f(x) \le f(y)$ • We have $f(x) \le f(a)$ and $f(y) \le f(b)$. (x, y, a, b need not all be distinct.)

Horn:

- \bullet First transform T into T' by swapping the positions of x and a.
- Since $d_T(a) \ge d_T(x)$ and $f(a) \ge f(x)$, swap does not increase $freq \times depth$ cost:

$$\begin{split} B(T) - B(T') &= \sum_{p} [f(p)d_{T}(p)] - \sum_{p} [f(p)d'_{T}(p)] \\ &= [f(x)d_{T}(x) + f(a)d_{T}(a)] - [f(x)d'_{T}(x) + f(a)d'_{T}(a)] \\ &= [f(x)d_{T}(x) + f(a)d_{T}(a)] - [f(x)d_{T}(a) + f(a)d_{T}(x)] \\ &= [f(a) - f(x)] \times [d_{T}(a) - d_{T}(x)] \\ &> 0 \end{split}$$

- Proof of optimality
- Let T_1 be the optimal tree (induction) for $C + \{z\} \{x, y\}$.
- $\bullet\,$ We obtain our final tree T by attaching leaves x,y as children of z.
- What is the connection between costs of B(T) and $B(T_1)$?
- For all $p \neq x, y$, depth is the same in both trees, so no difference. For x, y, we have $d_T(x) = d_T(y) = d_{T_1}(z) + 1$. So, the cost increase from modifying T_1 to T is:

$$B(T) - B(T_1) = f(x) + f(y)$$

because

$$f(x)d_T(x) + f(y)d_T(y) \ = \ [f(x) + f(y)] \times [d_{T_1}(z) + 1] \ = \ f(z)d_{T_1}(z) + [f(x) + f(y)]$$

- $\bullet\,$ Next, transform T' into T'' by exchanging y and b, which also does not increase cost.
- So, we get that $B(T'') \le B(T') \le B(T)$. If T was optimal, so is T'', but in T'' x and y are sibling leaves at the max depth.
- This completes the proof of the lemma
- The rest of the argument is via contradiction. Suppose T is not an optimal prefix code, and another tree T' is claimed to be optimal, meaning B(T') < B(T).
- By previous lemma, T' has x and y as siblings. Imagine replacing parent of x, y with a new leaf z, with freq. f(z) = f(x) + f(y), and call this new tree T'_1 .
- Then,

$$B(T_1') = B(T') - f(x) - f(y) < B(T) - f(x) - f(y) < B(T_1)$$

which contradicts the claim that T_1 is an optimal prefix code for $C' = C + \{z\} - \{x, y\}$. End of proof.

FastGreedyHorn(φ): 1. Set v to False for each variable v in φ . 2. Set W := {v : v appears on the right-hand side of an empty implication}. 3. While W

 $6= \varnothing$, do: 4. Take (and delete) v from W. 5. Set v to True. 6. For each clause c where v appears on the left-hand side, do: 7. Delete v from the left-hand side of c. 8. If this makes c into an empty implication, add the variable on the right-hand side of c into W (if it is not already in W). 9. Return the current truth assignment.

Dijkstra:1. Argue that at any time d(v) is the shortest path distance to v, for all $v \in S$. 2. Consider the instant when node v is chosen by the algorithm. Let (u, v) be the edge, with $u \in S$, that is incident to v. 3. Suppose, for the sake of contradiction, that $d(u) + \cos(u, v)$ is not the shortest path distance to v. Instead a shorter path P exists to v. 4. Since that path starts at s, it has to leave S at some node. Let x be that node, and let $y \in S$ be the edge that goes from S to S. 5. So our claim is that length(P) = $d(x) + \cos(x, y) + \log h(y, v)$ is shorter than $d(u) + \cos(u, v)$. But note that the algorithm chose v over v, so it must be that $d(u) + \cos(u, v) \leq d(x) + \cos(x, y)$. 6. In addition, since length(v) > 0, this contradicts our hypothesis that v is shorter than $d(u) + \cos(u, v)$. 7. Thus, the $d(v) = d(u) + \cos(u, v)$ is correct shortest path distance.

- 1. Let S be the set of explored nodes.
- 2. Let d(u) be the shortest path distance from s to u, for each $u \in S$.
- 3. Initially $S = \{s\}, d(s) = 0$, and $d(u) = \infty$, for all $u \neq s$.
- 4. While $S \neq V$ do
 - (a) Select $v \not \in S$ with the minimum value of

$$d'(v) = \min_{(u,v),u \in S} \{d(u) + cost(u,v)\}$$

(b) Add v to S, set d(v) = d'(v).

Kruskal: (v,w) first edge that differs, Let S be all reachable from v, then w not in S or else wouldnt consider. OPT has path from v to w but not through (v,w). Since v,w disconnected in K, OPT has some edge that crosses from S to !S called (x,y). (x,y) not added to K yet since y is not reachable from v (not in S). C(x,y) > C(v,w), can swap, more optimal, contra.

Prim: Let T be the spanning tree found by Prim's algorithm and T* be the MST of G. We will prove $T = T^*$ by contradiction. Assume $T \neq T^*$. Therefore, $T - T^* \neq \emptyset$. Let (u, v) be any edge in $T - T^*$. When (u, v) was added to T, it was the least-cost edge crossing some cut (S, V - S). Since T^* is an MST, there must be a path from u to v in T^* . This path begins in S and ends in V - S, so there must be some edge (x, y) along that path where $x \in S$ and $y \in V - S$. Since (u, v) is the leastcost edge crossing (S, V - S), we have c(u, v) < c(x, y). Let $T^{*'} = T^* \cup \{(u, v)\} - \{(x, y)\}$. Since (x, y) is on the cycle formed by adding (u, v), this means $T^{*'}$ is a spanning tree. However, $c(T^{*'}) = c(T^*) + c(u, v) - c(x, y) < c(T^*)$, contradicting that T^* is an MST. We have reached a contradiction, so our assumption must have been wrong. Thus $T = T^*$, so T is an MST.