```
In [1]: import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    import numpy as np
    import pandas as pd
    import tensorflow as tf
    from tensorflow import keras
    from sklearn.model_selection import train_test_split, StratifiedKFold
    from sklearn.preprocessing import StandardScaler
    from sklearn.utils.class_weight import compute_class_weight
    from sklearn.metrics import accuracy_score, precision_score, recall_score,
    import matplotlib.pyplot as plt
    import seaborn as sns
```

/Users/mengjiayu/opt/anaconda3/lib/python3.8/site-packages/pandas/core/computation/expressions.py:20: UserWarning: Pandas requires version '2.7.3' or newer of 'numexpr' (version '2.7.1' currently installed). from pandas.core.computation.check import NUMEXPR_INSTALLED

In [2]: df = pd.read_csv('output_dataset.csv')

In [5]: whole

Out[5]:

	Total Bilirubin	Alkphos Alkaline Phosphotase	Sgpt Alamine Aminotransferase	Sgot Aspartate Aminotransferase	Total Protiens	ALB Albumin	All Glo
0	0.530628	187.0	2.833213	2.944439	6.8	3.3	
1	2.476538	690.0	4.174387	4.615121	7.5	3.2	
2	2.116256	490.0	4.110874	4.234107	7.0	3.3	
3	0.693147	182.0	2.772589	3.044522	6.8	3.4	
4	1.589235	195.0	3.332205	4.094345	7.3	2.4	
•••							
30686	1.163151	610.0	2.890372	3.367296	7.3	2.6	
30687	1.360977	482.0	3.135494	3.555348	7.0	2.4	
30688	2.054124	542.0	4.762174	4.204693	6.4	3.1	
30689	1.064711	231.0	2.833213	4.025352	4.6	1.8	
30690	1.410987	253.0	4.394449	6.007239	6.8	3.9	

30691 rows × 11 columns

In []:

In []:

```
# Prepare features and target variable
In [6]:
                feature_cols = ['Total Bilirubin', 'Alkphos Alkaline Phosphotase',
                                                'Sgpt Alamine Aminotransferase', 'Sgot Aspartate Aminotrans' 'Total Protiens', 'ALB Albumin', 'A/G Ratio Albumin and Glok
                                                'Bilirubin Ratio', 'SGOT/SGPT Ratio', 'Protien Ratio']
                X = df[feature cols]
                y = df['Result']
                # Convert target labels: 2 → 0 (Non-Disease), 1 → 1 (Disease)
                y = (y == 1).astype(int)
                # Train-test split (80:20)
                X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rain_test_split(X, y, test_size=0.2, rain_test_sp
                # Standardize Numeric Features
                scaler = StandardScaler()
                X_train = scaler.fit_transform(X_train)
                X test = scaler.transform(X test)
                # Compute Correct Class Weights
                 class_weights = compute_class_weight('balanced', classes=np.array([0, 1]), y
                class_weights_dict = {0: class_weights[0], 1: class_weights[1]} # Ensure or
                # Function to Build FNN Model
                def build fnn model(hidden units=128, dropout rate=0.3, learning rate=0.001)
                        model = keras.Sequential([
                                keras.layers.Dense(hidden_units, activation='relu', input_shape=(X_1
                                keras.layers.BatchNormalization(),
                                keras.layers.Dropout(dropout_rate),
                                keras.layers.Dense(hidden_units // 2, activation='relu'),
                                keras.layers.Dense(hidden_units // 4, activation='relu'),
                                keras.layers.Dense(1, activation='sigmoid') # Binary classification
                        ])
                        model.compile(optimizer=keras.optimizers.Adam(learning rate=learning rat
                                                   loss='binary_crossentropy',
                                                   metrics=['accuracy'])
                         return model
                # Hyperparameter tuning with Stratified K-Fold Cross Validation
                best_model = None
                best score = 0
                kf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
                for units in [64, 128, 256]: # Wider range of neurons
                        for dropout in [0.1, 0.3, 0.5]: # More dropout variations
                                for lr in [0.001, 0.0005, 0.0001]: # Test higher and lower learning
                                        fold_scores = []
                                        for train_idx, val_idx in kf.split(X_train, y_train):
                                               X_train_fold, X_val_fold = X_train[train_idx], X_train[val_
                                               y_train_fold, y_val_fold = y_train.iloc[train_idx], y_train
                                                model = build_fnn_model(hidden_units=units, dropout_rate=dreet)
                                                # Add Early Stopping to prevent overfitting
                                                early_stopping = keras.callbacks.EarlyStopping(monitor='val)
                                               history = model.fit(X_train_fold, y_train_fold, epochs=50, K
                                                                                      validation_data=(X_val_fold, y_val_fold)
                                                                                       class_weight=class_weights_dict)
```

```
val_loss, val_acc = model.evaluate(X_val_fold, y_val_fold, v
fold_scores.append(val_acc)

avg_score = np.mean(fold_scores)
print(f"Units: {units}, Dropout: {dropout}, LR: {lr} -> Avg Val

if avg_score > best_score:
    best_score = avg_score
    best_model = model # Save the best model dynamically

# Train the best model on full training data
print("\n Best Model Found - Training on Full Training Data...")
final_model = best_model

history = final_model.fit(X_train, y_train, epochs=50, batch_size=32, verbos callbacks=[keras.callbacks.EarlyStopping(monitor= class_weight=class_weights_dict)
```

```
Units: 64, Dropout: 0.1, LR: 0.001 -> Avg Val Accuracy: 0.9695
Units: 64, Dropout: 0.1, LR: 0.0005 -> Avg Val Accuracy: 0.9744
Units: 64, Dropout: 0.1, LR: 0.0001 -> Avg Val Accuracy: 0.8991
Units: 64, Dropout: 0.3, LR: 0.001 -> Avg Val Accuracy: 0.9457
Units: 64, Dropout: 0.3, LR: 0.0005 -> Avg Val Accuracy: 0.9375
Units: 64, Dropout: 0.3, LR: 0.0001 -> Avg Val Accuracy: 0.8414
Units: 64, Dropout: 0.5, LR: 0.001 -> Avg Val Accuracy: 0.8733 Units: 64, Dropout: 0.5, LR: 0.0005 -> Avg Val Accuracy: 0.8753
Units: 64, Dropout: 0.5, LR: 0.0001 -> Avg Val Accuracy: 0.7628
Units: 128, Dropout: 0.1, LR: 0.001 -> Avg Val Accuracy: 0.9869
Units: 128, Dropout: 0.1, LR: 0.0005 -> Avg Val Accuracy: 0.9841
Units: 128, Dropout: 0.1, LR: 0.0001 -> Avg Val Accuracy: 0.9621
Units: 128, Dropout: 0.3, LR: 0.001 -> Avg Val Accuracy: 0.9845
Units: 128, Dropout: 0.3, LR: 0.0005 -> Avg Val Accuracy: 0.9810
Units: 128, Dropout: 0.3, LR: 0.0001 -> Avg Val Accuracy: 0.9359
Units: 128, Dropout: 0.5, LR: 0.001 -> Avg Val Accuracy: 0.9709
Units: 128, Dropout: 0.5, LR: 0.0005 -> Avg Val Accuracy: 0.9652
Units: 128, Dropout: 0.5, LR: 0.0001 -> Avg Val Accuracy: 0.8713
Units: 256, Dropout: 0.1, LR: 0.001 -> Avg Val Accuracy: 0.9846
Units: 256, Dropout: 0.1, LR: 0.0005 -> Avg Val Accuracy: 0.9873
Units: 256, Dropout: 0.1, LR: 0.0001 -> Avg Val Accuracy: 0.9862
Units: 256, Dropout: 0.3, LR: 0.001 -> Avg Val Accuracy: 0.9857
Units: 256, Dropout: 0.3, LR: 0.0005 -> Avg Val Accuracy: 0.9865
Units: 256, Dropout: 0.3, LR: 0.0001 -> Avg Val Accuracy: 0.9803 Units: 256, Dropout: 0.5, LR: 0.001 -> Avg Val Accuracy: 0.9845
Units: 256, Dropout: 0.5, LR: 0.0005 -> Avg Val Accuracy: 0.9815
Units: 256, Dropout: 0.5, LR: 0.0001 -> Avg Val Accuracy: 0.9583
 Best Model Found - Training on Full Training Data...
Epoch 1/50
768/768 [============] - 1s 2ms/step - loss: 0.0613 - acc
uracy: 0.9805 - val loss: 0.0478 - val accuracy: 0.9879
Epoch 2/50
uracy: 0.9828 - val_loss: 0.0529 - val_accuracy: 0.9860
Epoch 3/50
uracy: 0.9808 - val_loss: 0.0527 - val_accuracy: 0.9871
Epoch 4/50
uracy: 0.9835 - val_loss: 0.0550 - val_accuracy: 0.9847
Epoch 5/50
768/768 [============ ] - 1s 2ms/step - loss: 0.0485 - acc
uracy: 0.9837 - val_loss: 0.0540 - val_accuracy: 0.9879
Epoch 6/50
uracy: 0.9860 - val_loss: 0.0631 - val_accuracy: 0.9871
# Units: 256, Dropout: 0.1, LR: 0.0005 -> Avg Val Accuracy: 0.9873
final_model.summary()
```

Model: "sequential_99"

Layer (type)	Output Shape	Param #
dense_396 (Dense)	(None, 256)	2816
<pre>batch_normalization_99 (Ba tchNormalization)</pre>	(None, 256)	1024
dropout_99 (Dropout)	(None, 256)	0
dense_397 (Dense)	(None, 128)	32896
dense_398 (Dense)	(None, 64)	8256
dense_399 (Dense)	(None, 1)	65

Total params: 45057 (176.00 KB)
Trainable params: 44545 (174.00 KB)
Non-trainable params: 512 (2.00 KB)

```
In [8]: # Save the Final Model
final_model.save("fnn_model.h5")
```

/Users/mengjiayu/opt/anaconda3/lib/python3.8/site-packages/keras/src/engin e/training.py:3000: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend usi ng instead the native Keras format, e.g. `model.save('my_model.keras')`. saving_api.save_model(

```
In [14]: # Get Final Training Accuracy (Last Epoch)
    train_accuracy = history.history['accuracy'][-1]

# Get Mean Cross-Validation Accuracy from Best Model
    cv_accuracy = best_score

accuracy_df = pd.DataFrame({
        "Metric": ["Train Accuracy", "Mean CV Accuracy"],
        "Value": [train_accuracy, cv_accuracy]
})

accuracy_df
```

```
        Out [14]:
        Metric
        Value

        0
        Train Accuracy
        0.986030

        1
        Mean CV Accuracy
        0.987251
```

```
In [9]: # Model Testing (Predictions)
y_pred_prob = final_model.predict(X_test) # Get probabilities
y_pred = (y_pred_prob > 0.5).astype(int) # Convert probabilities to class

# Model Evaluation
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
roc_auc = roc_auc_score(y_test, y_pred_prob)

# Confusion Matrix
conf_matrix = confusion_matrix(y_test, y_pred)
```

```
# Print Evaluation Results in Tabular Form
metrics_df = pd.DataFrame({
    "Metric": ["Accuracy", "Precision", "Recall", "F1 Score", "ROC-AUC"],
    "Value": [accuracy, precision, recall, f1, roc_auc]
print("\n Model Evaluation Metrics:")
print(metrics df)
# Classification Report
print("\n Classification Report:")
print(classification_report(y_test, y_pred))
# Plot Metrics Curves (Loss & Accuracy)
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Training vs. Validation Loss')
plt.legend()
plt.subplot(1,2,2)
plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.title('Training vs. Validation Accuracy')
plt.legend()
plt.show()
# Confusion Matrix Heatmap
plt.figure(figsize=(6,5))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Note
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
# Precision-Recall Curve
precision_vals, recall_vals, _ = precision_recall_curve(y_test, y_pred_prob)
plt.figure(figsize=(6,5))
plt.plot(recall_vals, precision_vals, marker='.', label="FNN Model")
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.title("Precision-Recall Curve")
plt.legend()
plt.grid()
plt.show()
# ROC Curve
fpr, tpr, _ = roc_curve(y_test, y_pred_prob)
plt.figure(figsize=(6,5))
plt.plot(fpr, tpr, marker='.', label=f"FNN Model (AUC = {roc_auc:.3f})")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve")
plt.legend()
plt.grid()
plt.show()
```

Model Evaluation Metrics: Metric Value Accuracy 0.987946 1 Precision 0.992234 2 0.990876 Recall 3 F1 Score 0.991554 ROC-AUC 0.996445

Classification Report:

	precision	recall	f1-score	support
0	0.98	0.98	0.98	1755
1	0.99	0.99	0.99	4384
accuracy			0.99	6139
macro avg	0.98	0.99	0.99	6139
weighted avg	0.99	0.99	0.99	6139

loaded_model = load_model("fnn_model.h5")

```
In [15]: # Extract final training accuracy
    train_accuracy = history.history['accuracy'][-1]
    print(f"Final Training Accuracy: {train_accuracy:.4f}")
    # Evaluate model on the test set
    test_loss, test_accuracy = final_model.evaluate(X_test, y_test, verbose=0)
    print(f"Test Accuracy: {test_accuracy:.4f}")

Final Training Accuracy: 0.9860
Test Accuracy: 0.9879

In []:

In []:

In []:
In []:
```

loaded_model.summary()