UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA DEPARTAMENTO DE ING. ELECTRÓNICA

Cátedra de Técnicas Digitales II

Examen Final. 4 de Febrero de 2010.

- 1.- Se desea procesar una señal de un puente de galgas extensiométricas. La salida del puente es de 1,086 μV por cada kg de peso. Se debe poder pesar hasta 120 kg. La resolución demandada es de 100 g.
- 2.- En la señal de 1.-) se requiere especificar el número de bits del conversor a usar.
- 3.- Para usar un conversor con referencia de 10.0 V, diseñar el circuito de adaptación se señal.
- 4.- Se requiere un error total igual a 0,1%. Especifique los componentes de error admisibles en la etapa anterior.
- 5.- Diseñe con componentes discretos (transistores y compuertas) un multiplexor analógico de cuatro canales. El canal activo se comanda con la variable canal {00, 01, 10, 11} y la salida con la variable sal {0, 1}. Existirá salida cuando sal=0.
- 6.- Escriba el programa en Assembler que lea 16 veces la salida del conversor, sume cada una de las lecturas en una memoria de dimensión adecuada, y luego calcule el promedio de las lecturas.
- 7.- Mapee una memoria de 32 KB en un mapa de 1MB, de modo que no existan imágenes sino a intervalos de 64 KB.

Para aprobar el examen se requieren cuatro puntos totalmente correctos, los que deben incluir tres del conjunto de {3, 4, 5, 6, 7}

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA DEPARTAMENTO DE ING. ELECTRÓNICA

Cátedra de Técnicas Digitales II

Examen Final. 25 de febrero de 2010.

Sea una señal que admite una expresión: s(t) = 2.5sen(4.18E5t) [V].

- 1.- ¿Cuál es la frecuencia de muestreo según Nyquist?. ¿Cuál es la recomendable? ¿Cuál es el tiempo de conversión mínimo para este último caso?
- 2.- En la señal de 1.-) se requiere discriminar la amplitud a 0,5 mV. Especificar el número de bits del conversor a usar.
- 3.- Para usar un conversor de un solo cuadrante y referencia de 10.0 V, diseñar el circuito de adaptación se señal.
 - 3.1 Circuito electrónico usado
 - 3.2 Componentes para que el error introducido por el circuito sea menor a ¼ lsb.
 - 3.3 Especificación de ripple de las fuente(s) usada(s) para la misma especificación de error
- 4.- Se requiere el diseño del circuito que implemente la etapa de recepción de un canal RS 232-C a 4.8 kbps. Usar solamente componentes discretos o lógica TTL MSI. Diseñar la interfase al micro.
- 5.- Diseñe con componentes discretos (transistores y compuertas) un multiplexor analógico de dos canales. El canal activo se comanda con la variable canal {0, 1} y la salida con la variable sal {0, 1}. Existirá salida cuando sal=0.

Para aprobar se necesita tener correctos por lo menos tres puntos, que deben incluir dos del conjunto {3, 4, 5}

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA DEPARTAMENTO DE ING. ELECTRÓNICA

Cátedra de Técnicas Digitales II

Examen Final. 11 de Febrero de 2010.

1.- Se debe realizar un modulo de captura que digitalize una señal de 2KHz cada una, las mismas poseen un rango de +-0.5V

Las señales no son sinusoidales y se debe analizar hasta la 10ma armónica la captura se realiza con un ADC de 12 bits de 5.0 V de referencia Se pide

Resolución en mV de la señal Frecuencia de sampleo. Diseño de la Etapa de Adaptación de señal (ganancia, valores de resistencias)

- 2.- Diseñe un programa en assembler, que barra un vector de 1000 palabras de 16 bits con signo, encuentre el valor mínimo, y reste ese valor a cada elemento de ese mismo vector.
- 3.- Diseñe el circuito selector que mapee dos memoria una 32K x 8 y otra 16K x 8, en la parte mas baja de un mapa de 1Mb x 8 y en forma correlativas, solo se pide el circuito selector, el cual tendrá como entrada las líneas de address necesarias y como salida las dos señales de CS, las memorias se pueden mapear con imágenes.
- 4.- Se debe diseñar un canal de transmisión serial, el mismo debe soportar una flujo de datos de: 1 trama de 24 bytes cada 20ms, se debe configurar el canal en modo 8N1, definir mínima velocidad necesaria (normalizada), calcular DLL y DLM para un clock de 1,8432 Mhz
- 5.- Diseñe con componentes discretos (transistores y compuertas) un multiplexor analógico de cuatro canales. El canal activo se comanda con la variable canal {00, 01, 10, 11} y la salida con la variable sal {0, 1}. Existirá salida cuando sal=0.

Para aprobar el examen se requieren tres puntos totalmente correctos.