DATE:26-10-2023

TEAM ID:3886

PROJECT TITLE:Air Quality Analysis in TamilNadu

IMPORTING LIBRARIES

```
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import warnings
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
```

LOADING THE DATASET

```
dataset= pd.read_csv("C:\\Users\\SANTH\\Downloads\\
cpcb_dly_aq_tamil_nadu-2014.csv")
```

DATA EXPLORATION:

```
dataset
      Stn Code Sampling Date
                                   State City/Town/Village/Area \
0
            38
                  01-02-2014 Tamil Nadu
                                                         Chennai
                  01-07-2014 Tamil Nadu
1
            38
                                                         Chennai
2
            38
                  21-01-2014 Tamil Nadu
                                                         Chennai
3
            38
                  23-01-2014 Tamil Nadu
                                                         Chennai
4
            38
                  28-01-2014 Tamil Nadu
                                                         Chennai
           . . .
                  12-03-2014 Tamil Nadu
2874
           773
                                                          Trichy
```

2875 2876 2877 2878	773 12-10-2 773 17-12-2 773 24-12-2 773 31-12-2	014 Tamil Nadu 014 Tamil Nadu		Trichy Trichy Trichy Trichy	
0 1 2 3 4	Kathivakkam, Munici Kathivakkam, Munici Kathivakkam, Munici Kathivakkam, Munici Kathivakkam, Munici	pal Kalyana Mand pal Kalyana Mand pal Kalyana Mand	apam, Chenna: apam, Chenna: apam, Chenna: apam, Chenna: apam, Chenna:		
2875 2876 2877 2878		Central Bus (Central Bus (Central Bus (Central Bus (Stand, Trichy Stand, Trichy Stand, Trichy	/ / /	
0	Tamilnadu State Pol Tamilnadu State Pol	lution Control Be lution Control Be	oard		
2 3 4	Tamilnadu State Pol Tamilnadu State Pol Tamilnadu State Pol	lution Control B	oard		
2874 2875 2876 2877 2878	Tamilnadu State Pol Tamilnadu State Pol Tamilnadu State Pol Tamilnadu State Pol Tamilnadu State Pol	lution Control Belution Control Belution Control Be	oard oard oard		
2 5	Т	ype of Location	S02 N02	RSPM/PM10	PM
2.5		Industrial Area	11.0 17.0	55.0	
NaN 1		Industrial Area	13.0 17.0	45.0	
NaN 2		Industrial Area	12.0 18.0	50.0	
NaN 3		Industrial Area	15.0 16.0	46.0	
NaN 4		Industrial Area	13.0 14.0	42.0	
NaN					
2874 NaN	Residential, Rural	and other Areas	15.0 18.0	102.0	
2875 NaN	Residential, Rural	and other Areas	12.0 14.0	91.0	
2876	Residential, Rural	and other Areas	19.0 22.0	100.0	

```
NaN
      Residential, Rural and other Areas 15.0
                                                            95.0
2877
                                                 17.0
NaN
2878
      Residential, Rural and other Areas 14.0 16.0
                                                            94.0
NaN
[2879 rows x 11 columns]
dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2879 entries, 0 to 2878
Data columns (total 11 columns):
#
     Column
                                      Non-Null Count
                                                      Dtype
- - -
     -----
                                      2879 non-null
                                                      int64
 0
     Stn Code
                                                      object
1
     Sampling Date
                                      2879 non-null
 2
     State
                                      2879 non-null
                                                      object
 3
     City/Town/Village/Area
                                      2879 non-null
                                                      object
 4
     Location of Monitoring Station 2879 non-null
                                                      object
5
                                      2879 non-null
     Agency
                                                      object
 6
     Type of Location
                                      2879 non-null
                                                      object
7
     S02
                                      2868 non-null
                                                      float64
8
     N02
                                      2866 non-null
                                                      float64
 9
     RSPM/PM10
                                      2875 non-null
                                                      float64
10
    PM 2.5
                                      0 non-null
                                                      float64
dtypes: float64(4), int64(1), object(6)
memory usage: 247.5+ KB
dataset.describe()
          Stn Code
                            S02
                                          N02
                                                 RSPM/PM10
                                                            PM 2.5
count
       2879.000000
                    2868.000000
                                 2866.000000
                                               2875,000000
                                                               0.0
        475.750261
                      11.503138
                                    22.136776
                                                 62.494261
                                                               NaN
mean
                                                 31.368745
        277.675577
                       5.051702
                                     7.128694
std
                                                               NaN
         38.000000
                       2.000000
                                     5.000000
                                                 12.000000
                                                               NaN
min
25%
        238.000000
                       8.000000
                                    17.000000
                                                 41.000000
                                                               NaN
50%
        366.000000
                      12.000000
                                    22.000000
                                                 55.000000
                                                               NaN
        764.000000
                      15.000000
                                                 78.000000
75%
                                    25.000000
                                                               NaN
max
        773.000000
                      49.000000
                                    71.000000
                                                269,000000
                                                               NaN
dataset.columns
Index(['Stn Code', 'Sampling Date', 'State', 'City/Town/Village/Area',
       'Location of Monitoring Station', 'Agency', 'Type of Location',
'S02',
       'NO2', 'RSPM/PM10', 'PM 2.5'],
      dtvpe='object')
```

DATA VISUALIZATION:

1. Histogram for SO2 levels

```
plt.figure(figsize=(10, 6))
plt.hist(dataset['S02'], bins=20, color='blue', alpha=0.7)
plt.title('Distribution of S02 Levels')
plt.xlabel('S02 Levels')
plt.ylabel('Frequency')
plt.show()
```


2.Scatter plot of NO2 vs. RSPM/PM10

```
plt.figure(figsize=(10, 6))
sns.scatterplot(x='N02', y='RSPM/PM10', data=dataset)
plt.title('Scatter Plot of N02 vs. RSPM/PM10')
plt.xlabel('N02 Levels')
plt.ylabel('RSPM/PM10 Levels')
plt.show()
```


3.Bar chart for State-wise SO2 levels

```
statewise_so2 = dataset.groupby('State')
['S02'].mean().sort_values(ascending=False)
plt.figure(figsize=(12, 6))
statewise_so2.plot(kind='bar', color='green')
plt.title('Average S02 Levels by State')
plt.xlabel('State')
plt.ylabel('Average S02 Level')
plt.ylabel('Average S02 Level')
plt.xticks(rotation=45)
plt.show()
```



```
plt.figure(figsize=(12,8))
sns.pairplot(dataset)
<seaborn.axisgrid.PairGrid at 0x207303588e0>
<Figure size 1200x800 with 0 Axes>
```


Visualising Correlation

```
dataset.corr()
                                                           PM 2.5
            Stn Code
                             S02
                                        N02
                                              RSPM/PM10
Stn Code
            1.000000
                       0.263537 -0.043257
                                               0.336190
                                                              NaN
S02
            0.263537
                       1.000000
                                   0.078246
                                               0.445152
                                                              NaN
                       0.078246
N<sub>0</sub>2
           -0.043257
                                   1.000000
                                               0.068277
                                                              NaN
RSPM/PM10
            0.336190
                       0.445152
                                   0.068277
                                               1.000000
                                                              NaN
PM 2.5
                  NaN
                             NaN
                                        NaN
                                                     NaN
                                                              NaN
```

calculating Averages:

```
so2_by_area = dataset.groupby('City/Town/Village/Area')
['S02'].mean().sort_values(ascending=False)
```

```
no2 by area = dataset.groupby('City/Town/Village/Area')
['NO2'].mean().sort values(ascending=False)
rspm pm10 by area = dataset.groupby('City/Town/Village/Area')
['RSPM/PM10'].mean().sort values(ascending=False)
print("Average S02 levels by City/Town/Village/Area:")
print(so2 by area)
print("\nAverage NO2 levels by City/Town/Village/Area:")
print(no2 by area)
print("\nAverage RSPM/PM10 levels by City/Town/Village/Area:")
print(rspm pm10 by area)
Average SO2 levels by City/Town/Village/Area:
City/Town/Village/Area
Trichv
               15.293956
Madurai
               13.319728
Chennai
               13.014042
Thoothukudi
               12.989691
Cuddalore
                8.965986
Mettur
                8.429268
Salem
                8.114504
Coimbatore
                4.541096
Name: SO2, dtype: float64
Average NO2 levels by City/Town/Village/Area:
City/Town/Village/Area
Salem
               28.664122
Madurai
               25,768707
Coimbatore
               25.325342
Mettur
               23.185366
Chennai
               22.088442
Cuddalore
               19.710884
Trichy
               18.695055
Thoothukudi
              18.512027
Name: NO2, dtype: float64
Average RSPM/PM10 levels by City/Town/Village/Area:
City/Town/Village/Area
Trichy
               85.054496
               83.458904
Thoothukudi
Salem
               62.954198
Cuddalore
               61.881757
Chennai
               58.998000
Mettur
               52.721951
Coimbatore
               49.217241
               45.724490
Madurai
Name: RSPM/PM10, dtype: float64
```

creating visualization:

```
import matplotlib.pyplot as plt
import seaborn as sns
so2 by area = dataset.groupby('City/Town/Village/Area')
['S02'].mean().sort values(ascending=False)
no2 by area = dataset.groupby('City/Town/Village/Area')
['N02'].mean().sort values(ascending=False)
rspm_pm10_by_area = dataset.groupby('City/Town/Village/Area')
['RSPM/PM10'].mean().sort values(ascending=False)
fig, axes = plt.subplots(3, 1, figsize=(10, 15))
sns.barplot(x=so2 by area.values, y=so2 by area.index, ax=axes[0],
color='blue')
axes[0].set title('Average SO2 Levels by Area')
axes[0].set xlabel('Average S02 Level')
axes[0].set ylabel('Area')
sns.barplot(x=no2 by area.values, y=no2_by_area.index, ax=axes[1],
color='red')
axes[1].set title('Average NO2 Levels by Area')
axes[1].set xlabel('Average NO2 Level')
axes[1].set ylabel('Area')
sns.barplot(x=rspm_pm10_by_area.values, y=rspm_pm10_by_area.index,
ax=axes[2], color='green')
axes[2].set title('Average RSPM/PM10 Levels by Area')
axes[2].set_xlabel('Average RSPM/PM10 Level')
axes[2].set ylabel('Area')
plt.tight layout()
plt.show()
```

