Graph-Based Dependency Parsing

Natalie Parde UIC CS 421

Graph-based Dependency Parsing

- Search through the space of possible trees for a given sentence, attempting to maximize some score
- This score is generally a function of the scores of individual subtrees within the overall tree
- Edge-factored approaches
 determine scores based on the
 scores of the edges that comprise
 the tree
 - overall_score(t) = $\sum_{e \in t} score(e)$
 - Letting *t* be a tree for a given sentence, and *e* be its edges

Why use graphbased methods for dependency parsing?

- Transition-based methods tend to have high accuracy on shorter dependency relations, but that accuracy declines as the distance between the two words increases
- This is largely due to the fact that transitionbased methods are greedy ...they can be fooled by seemingly-optimal local solutions
- Graph-based methods score entire trees, thereby avoiding that issue

Maximum Spanning Tree

Given an input sentence, construct a fully-connected, weighted, directed graph

- Vertices are input words
- Directed edges represent all possible headdependent assignments
- Weights reflect the scores for each possible head-dependent assignment, predicted by a supervised machine learning model

A maximum spanning tree represents the preferred dependency parse for the sentence, as determined by the weights

Maximum Spanning Tree: Example

Maximum Spanning Tree: Example

Two things to keep in mind....

- Every vertex in a spanning tree has exactly one incoming edge
- Absolute values of the edge scores are not critical
 - Relative weights of the edges entering a vertex are what matter!

How do we know that we have a spanning tree?

- Given a fully-connected graph G =
 (V, E), a subgraph T = (V, F) is a
 spanning tree if:
 - It has no cycles
 - Each vertex (except the root) has exactly one edge entering it

How do we know that we have a maximum spanning tree?

- If the greedy selection process produces a spanning tree, then that tree is the maximum spanning tree
- However, the greedy selection process may select edges that result in cycles
- If this happens, an alternate graph can be created that collapses cycles into new nodes, with edges that previously entered or exited the cycle now entering or exiting the new node
- The greedy selection process is then recursively applied to the new graph until a (maximum) spanning tree is found

Formal Algorithm

```
F ← []
T \leftarrow []
score' ← []
for each v in V do:
           bestInEdge \leftarrow argmax score[e]
                             e=(u,v)\in E
           F \leftarrow F \cup bestInEdge
           for each e = (u, v) \in E do:
                       score'[e] ← score[e] - score[bestInEdge]
           if T=(V,F) is a spanning tree:
                       return T
           else:
                       C \leftarrow a \text{ cycle in } F
                       G' \leftarrow collapse(G, C)
                       T' \leftarrow maxspanningtree(G', root, score') # Recursively call the current function
                       T \leftarrow expand(T', C)
                       return T
```


How do we train our model to predict edge weights?

- Similar approach to training the oracle in a transition-based parser
- Common features can include:
 - Words, lemmas, parts of speech
 - Corresponding features from contexts before and after words
 - Word embeddings
 - Dependency relation type
 - Dependency relation direction
 - Distance from head to dependent