MTH8408A

Méthodes Numériques d'Optimisation et de Contrôle Optimal

Introduction to Variational Calculus and Optimal Control

Dominique Orban dominique.orban@polymtl.ca

Mathématiques et Génie Industriel École Polytechnique de Montréal

Hiver 2017

The Problem

We seek a function $x:[0,1] \to \mathbb{R}$ that solves the problem

minimize
$$\int_0^1 f(t, x(t), \dot{x}(t)) dt$$
 subject to $x(0) = x_0, x(1) = x_1,$

where we assume that $f: \mathbb{R}^3 \to \mathbb{R}$ is continuous and has continuous partial derivatives.

Under our assumption it is possible to:

- 1. show that if x is a solution, then it is piecewise C^1 ,
- 2. give an expression of the Fréchet differential of the objective,
- 3. state first-order necessary optimality conditions.

CN1: Euler-Lagrange Conditions

Suppose $x \in \mathcal{C}^1_{\scriptscriptstyle \mathrm{PW}}([0,\,1])$ is a local minimizer over all functions in $\mathcal{C}^1_{\scriptscriptstyle \mathrm{PW}}([0,\,1])$ satisfying the fixed end-points conditions $x(0)=x_0$ and $x(1)=x_1$.

Then every smooth section of x must satisfy the second-order partial-differential equation

$$\frac{\partial f}{\partial x}(x(t), \dot{x}(t), t) - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial f}{\partial \dot{x}}(x(t), \dot{x}(t), t) = 0. \tag{1}$$

Watch out for the total derivative:

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial f}{\partial \dot{x}} = \dot{x}\frac{\partial^2 f}{\partial x \partial \dot{x}} + \ddot{x}\frac{\partial^2 f}{\partial \dot{x}^2} + \frac{\partial^2 f}{\partial t \partial \dot{x}}$$

First Integrals

1. Suppose $\partial f/\partial t=0$, then

$$\frac{\partial f}{\partial x} - \dot{x} \frac{\partial^2 f}{\partial x \partial \dot{x}} - \ddot{x} \frac{\partial^2 f}{\partial \dot{x}^2} = 0.$$

Multiplying by \dot{x} , this is the same as (check as an exercise)

$$\frac{\mathrm{d}}{\mathrm{d}t}\left[f(x,\dot{x},t)-\dot{x}\frac{\partial f}{\partial \dot{x}}(x,\dot{x},t)\right]=0, \qquad t\in[0,\,1],$$

i.e.,

$$f(x,\dot{x},t)-\dot{x}rac{\partial f}{\partial \dot{x}}(x,\dot{x},t)= ext{constant}, \qquad t\in[0,\,1].$$

2. Suppose $\partial f/\partial x = 0$, then

$$\frac{\partial f}{\partial \dot{x}}(x,\dot{x},t) = \text{constant}, \qquad t \in [0, 1].$$

Problems in Several Variables

minimize
$$\int_0^1 f(x_1, \dots, x_n, \dot{x}_1, \dots, \dot{x}_n, t) dt$$
subject to $x(0) = x_0, \ x(1) = x_1,$

where $f: \mathbb{R}^{2n+1} \to \mathbb{R}$.

Each smooth section of each x_i must satisfy the Euler-Lagrange equation:

$$\frac{\partial f}{\partial x_i}(x,\dot{x},t) - \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial f}{\partial \dot{x}_i}(x,\dot{x},t) = 0 \qquad i = 1,\ldots,n.$$

Transversality Conditions

When the endpoints or the final time is not fixed, we impose, in addition to the Euler-Lagrange conditions:

- 1. if t_i is given and $x(t_i)$ is fixed (i = 0, 1), then $x(t_i) = x_i$,
- 2. if t_i is given but $x(t_i)$ is free (i = 0, 1), then

$$\frac{\partial f}{\partial \dot{x}}(x(t_i),\dot{x}(t_i),t_i)=0,$$

3. if t_i is free (i = 0, 1) but $x(t_i) = \psi_i(t_i)$, then

$$f(x(t_i),\dot{x}(t_i),t_i)+\left(\dot{\psi}_i(t_i)-\dot{x}(t_i)\right)\frac{\partial f}{\partial \dot{x}}(x(t_i),\dot{x}(t_i),t_i)=0,$$

4. if both t_i and $x(t_i)$ are free, then

$$f(x(t_i),\dot{x}(t_i),t_i)-\dot{x}(t_i)\frac{\partial f}{\partial \dot{x}}(x(t_i),\dot{x}(t_i),t_i)=0.$$

Problems with Isoperimetric Constraints

minimize
$$\int_0^1 f(x, \dot{x}, t) dt$$

subject to
$$\int_0^1 h_i(x, \dot{x}, t) dt = 0, \quad i = 1, \dots, m,$$

$$x(0) = x_0, \ x(1) = x_1.$$

All previous results apply with f replaced by the Hamiltonian

$$H(x,\dot{x},t,\lambda) := f(x,\dot{x},t) - \sum_{i=1}^{m} \lambda_i h_i(x,\dot{x},t),$$

where the λ_i are Lagrange multipliers.

The Problem

minimize
$$h(x(t_1)) + \int_{t_0}^{t_1} f_0(x(t), u(t), t) dt$$

subject to $\dot{x}_i(t) = f_i(x(t), u(t), t), \quad i = 1, \dots, n,$
 $x_i(t_0) = x_i^0, \quad i = 1, \dots, n.$

Define the Hamiltonian

$$H(x, u, p, t) := f_0(x, u, t) + \sum_{i=1}^n p_i f_i(x, u, t),$$

where the $p_i(t)$ are called the *adjoint states*.

CN1: Minimum Principle

If $u^* \in \mathcal{C}_{\text{PW}}([t_0, t_1])^m$ is the optimal control and $x^* \in \mathcal{C}^1_{\text{PW}}([t_0, t_1])^n$ is the corresponding optimal trajectory, there must exist functions $p_i^* \in \mathcal{C}^1_{\text{PW}}([t_0, t_1])$, $i = 1, \ldots, n$, solving the adjoint equations

$$\dot{p}_i(t) = -\frac{\partial H}{\partial x_i}(x^*(t), u^*(t), p(t), t),$$

$$p_i(t_1) = \frac{\partial h}{\partial x_i}(x^*(t_1)), \quad i = 1, \dots, n,$$

such that

$$u^*(t) = \arg\min_{u \in U} H(x^*(t), u, p^*(t), t), \quad \text{for all } t \in [t_0, t_1],$$

where U is the set of feasible controls.

Moreover, if the system does not depend explicitly on t, i.e., if $\partial H/\partial t=0$, then

$$H(x^*(t), u^*(t), p^*(t)) = \text{constant}, \quad t \in [t_0, t_1].$$