

Accelerating Your Innovation

Trion T20 BGA256 LAB
By Harald Werner
Version: 1.0.4

Design (simple up counter with set and stop)


```
counter.vhd X
                 □ = = n c Q Q Q
 1 — smal example design for the Trion 20 BGA256 Efinix Eval Board
       -- By Harald Werner
       -- 18.03.2020
      use ieee.std_logic_1164.all;
      use ieee.std_logic_unsigned.all;
 9 entity counter is
10 port (clk
                                                             -- clock input. external 74.25MHz clock use GPIOI_75_PLLIN
                     : in std_logic;
                     : in std logic;
                                                             -- Set signal, low active; sett all outputs to '1' (LED are low active, means all LEDs msut be OFF) GPIOL 02 SW4
12
                     : in std_logic;
                                                            -- Stop signal, low active Stop counting GPIOL_04 SW5
13
                     : out std logic vector ( 4 downto 0));
                                                            -- Output data connected to the LEDs (low active); GPIOR 153,GPIOR 118,GPIOR 117,GPIOR 105,GPIOR 104
14
      end counter:
15
16 ⊝architecture vers1 of counter is
      signal cnt: std_logic_vector ( 30 downto 0) := (others => '0');
19
20 
Begin
22 Cnt_proc : process(clk, setn)
23
24 占
                 if setn = '0' then
25
                   cnt <= (others => '1');
                   dataout <= (others => '1');
26
27 🖒
                 elsif clk'event and clk = '1' then
                   if stopn = '0' then
29
                     cnt <= cnt;
30 🖒
                   else
31
                     cnt <= cnt +1;
32
                   end if;
33
                   Dataout <= cnt(30 downto 26); --For the 75MHz external clock use 30 downto 26
34
                 end if;
35
              end process;
36
     end vers1;
37
```


Design / Board connection

- LED D3 GPIOR_104
- LED D4 GPIOR_105
- LED D6 GPIOR_117
- LED D7 GPIOR_118
- LED D8 GPIOR_153

1. Open Efinity new_project.xml

Double click on counter.vhd

The counter.vhd
 will show up in the
 Code Editor

Double click on the timing constrain counterconstrain.sdc

The counterconstrain.sdc will show up and you can see the 13ns period constrain for the 75MHz clock

Set the top entity name

Enter counter to top Module/Entity and click OK

Run the whole flow

- If the Automated flow button is grayed out click on the button to activate the automated flow.
- Click on the synthesis icon and the flow will run automnatically

Assign the top level Signals to Pins.

1. Open Interface Designer

Show GPIO Resource Assigner

Select GPIO, RMB, Create Bus

Create a Output BUS Dataout(4 downto 0)

Name: Dataout

MSB: 4

LSB: 0

Mode: output

Click Next

Set drive strength to 3; click Next

Click Finish

Adding the additional Pins clk, stopn, setn

Select GPIO
Create Block
Select GPIO
Create Block
Select GPIO
Create Block
Create Block

Select GPIO: Instance View Dataout[0]->Resource

Dataout[0] ->GPIOR_104

Select GPIO: Instance View Dataout[1]->Resource

Dataout[1] ->GPIOR_105

Select GPIO: Instance View Dataout[2]->Resource

© 2020 EIIIIIX, IIIC.

Select GPIO: Instance View Dataout[3]->Resource

Select GPIO: Instance View Dataout[4]->Resource

Change the name from the remaining Inputs: clk

Select gpio_inst6
Enter name in the
Block Editor clk
and press enter!

setn

Select gpio_inst7
Enter name in the Block Editor setn and press enter!

stopn

Select gpio_inst8
Enter name in the
Block Editor stopn
and press enter!

Assign the Resource CLK=>GPIOL_75

Assign the Resource setn=>GPIOL_02

Assign the Resource stopn=>GPIOL_04

Check the design and close the interface designer

Run the flow with clicking on placement [33]

If you have an unassigned pin, check the Placement report, go back to interface designer and fix the name and rerun the flow

Typo in Interface designer: stop instead of stopn

Check static timing

To check the static timing select routing_new_project.timing.rpt. Here you will find the constrains from the constrain file (clk:13ns) and the result

Program the Device

Open Programmer Tools->OpenProgrammer

Select Image File, Start Program to the SPI Flash (Check USB Target Trion T20 Development Board)

Problem solving

If you can not see the Trion T20 Development Board, check if you installed the corect USB driver with zadig

Simulation

- For HDL simulation you can use any VHDL simulator. The testbench is included in the design.
- Here a wave form the design with testbench with an ALDEC HDL simulator.

 If you would like to simulate the synthesized netlist, include the new_project.dbg.map.v below the outflow folder and include the simulation libraries <installation path>\Efinity\2020.1\sim_models\verilog folder instead of the RTL Design

Design Debugging

Driver Installation with zadig

- Check "List All Devices"
- Uncheck "Ignore Hubs or Composite Parents"
- Select "Trion T20 Development Board (Composite Parent)"
- Replace with libusb-win32 driver

GTKWave

Install GTKWave

 To launch GTKWave automatically after data capture from Logic Analyzer, please add "\$GTKWave_folder\$\bin\" into Path of System Variables

Auto Instantiation of the Debug core

1. Allow step-by-step project flow, and run synthesis

2. Start Debugger Wizard

Select cnt and Dataout and klick >>

Click Finish

Click OK and run the whole flow with clicking

- If the Automated flow button is grayed out click on the button to activate the automated flow.
- Click on the synthesis icon and the flow will run automnatically

41

Check static timing

To check the static timing select routing_new_project.timin g.rpt.

Here you will find the constrains from the constrain file (clk:13ns) and the result.

With the Debug core the design must meet the timing constrain to ensure correct behavior!

Open Debugger

If Debugger is not starting, please double check the driver setting with ZADIG

Program the Device via JTAG

- Select hex file from you project
- Start programming
- Connect Debugger

01

<u>□</u>=01

Define a trigger point

Select Trigger
Select Dataout

Set trigger value

- Select Value
- Enter e.g.: 10010

Set the trigger position with clicking on Capture SETUP

 Trigger position is default in the middel of the memory. Here
 @512 (of 1024)

Go back to Trigger Setup and run the Core

GTKWave will open automatically

Click on Zoom fit to see the whole content

With the RMB you can zoom in

 Place the cursor of the area of interest, press RMB and move the cursor, release RMB

You can change the trigger value and run again

- E.g: change to 00011
- Press Run

Change Radix

 To change the radix of the signal, select the signal, RMB->Data Format->Binary

Remove the debug core

Deselect the Debugger Auto Instantiation.

Click OK
Run the whole
Design flow

Information

 If you need the complete Project, extract the T20EvalBoardSolution.zip file. Here you will find the project with the I/O pin assignments.

