Estimating variance

David L Miller

Now we can make predictions

Now we are dangerous.

Predictions are useless without uncertainty

- We are doing statistics
- We want to know about uncertainty
- This is the most useful part of the analysis

What do we want the uncertainty for?

- Variance of total abundance
- Map of uncertainty (coefficient of variation)

Where does uncertainty come from?

Sources of uncertainty

- Detection function
- GAM parameters

Let's think about smooths first

Uncertainty in smooths

- Dashed lines are +/- 2 standard errors
- How do we translate to \hat{N} ?

Back to bases

- Before we expressed smooths as:
 - $s(x) = \sum_{k=1}^{K} \beta_k b_k(x)$
- Theory tells us that:
 - $-\beta \sim N(\hat{\beta}, V_{\beta})$
 - lacksquare where $\mathbf{V}_{oldsymbol{eta}}$ is a bit complicated
- Apply parameter variance to \hat{N}

Predictions to prediction variance (roughly)

- ullet "map" data onto fitted values ${f X}{m eta}$
- ullet "map" prediction matrix to predictions $\mathbf{X}_{\mathsf{p}}oldsymbol{eta}$
- ullet Here \mathbf{X}_p need to take smooths into account
- ullet pre-/post-multiply by ${f X}_p$ to "transform variance"

$$\blacksquare \Rightarrow \mathbf{X}_{p}^{T} \mathbf{V}_{\beta} \mathbf{X}_{p}$$

link scale, need to do another transform for response

Adding in detection functions

GAM + detection function uncertainty

(Getting a little fast-and-loose with the mathematics)

From previous lectures we know:

$$CV^2(\hat{N}) \approx CV^2(GAM) +$$
 $CV^2(\text{detection function})$

Not that simple...

- Assumes detection function and GAM are independent
- Maybe this is okay?

A better way (for some models)

- Include the detectability as a "fixed" term in GAM
- Mean effect is zero
- Variance effect included
- Uncertainty "propagated" through the model
- Details in bibliography (too much to detail here)

That seemed complicated...

R to the rescue

In R...

- Functions in dsm to do this
- dsm.var.gam
 - assumes spatial model and detection function are independent
- dsm.var.prop
 - propagates uncertainty from detection function to spatial model
 - only works for count models (more or less)

Variance of abundance

Using dsm.var.prop

```
dsm_tw_var <- dsm.var.prop(dsm_all_tw_rm, predgrid,
  off.set=predgrid$off.set)
  summary(dsm_tw_var)</pre>
```

```
Summary of uncertainty in a density surface model calculated by variance propagation.

Quantiles of differences between fitted model and variance model Min. 1st Qu. Median Mean 3rd Qu. Max. -4.665e-04 -3.535e-05 -4.358e-06 -3.991e-06 2.095e-06 1.232e-03

Approximate asymptotic confidence interval:

5% Mean 95%

1460.721 2491.914 4251.075

(Using delta method)
```

Point estimate : 2491.914 Standard error : 691.8776 Coefficient of variation : 0.2776

Variance of abundance

Now using dsm.var.gam

```
dsm_tw_var_ind <- dsm.var.gam(dsm_all_tw_rm, predgrid,
  off.set=predgrid$off.set)
  summary(dsm_tw_var_ind)</pre>
Summary of uncertainty in a density surface model calculated
  analytically for GAM, with delta method
```

Approximate asymptotic confidence interval: 5% Mean 95% 1538.968 2491.864 4034.773

(Using delta method)

Point estimate : 2491.864
Standard error : 331.1575
CV of detection function : 0.211327
CV from GAM : 0.1329
Total coefficient of variation : 0.2496

Plotting - data processing

- Calculate uncertainty per-cell
- dsm.var.* thinks predgrid is one "region"
- Need to split data into cells (using split())
- (Could be arbitrary sets of cells, see exercises)
- Need width and height of cells for plotting

Plotting (code)

```
predgrid$width <- predgrid$height <- 10*1000
predgrid_split <- split(predgrid, 1:nrow(predgrid))
head(predgrid_split,3)</pre>
```

CV plot


```
p <- plot(dsm_tw_var_map,
observations=FALSE, plot=FALSE)
+
          coord_equal() +
          scale_fill_viridis()
print(p)</pre>
```

Interpreting CV plots

- Plotting coefficient of variation
- Standardise standard deviation by mean
- $CV = se(\hat{N})/\hat{N}$ (per cell)
- Can be useful to overplot survey effort

Effort overplotted

Recap

- How does uncertainty arise in a DSM?
- Estimate variance of abundance estimate
- Map coefficient of variation

Let's try that!