

Rafbók

REIT rafeindatækni 4. kafli AC-rásir með díóðum Flemming Madsen

Þetta hefti er án endurgjalds á rafbókinni.

www.rafbok.is

Allir rafiðnaðarmenn og rafiðnaðarnemar geta fengið aðgang án endurgjalds að rafbókinni.

Heimilt er að afrita textann til fræðslu í skólum sem reknir eru fyrir opinbert fé án leyfis höfundar eða Rafmenntar, fræðsluseturs rafiðnaðarins. Hvers konar sala á textanum í heild eða að hluta til er óheimil nema að fengnu leyfi höfundar og Rafmenntar.

Höfundur er Flemming Madsen.

Umbrot í rafbók og teikningar Bára Laxdal Halldórsdóttir.

Vinsamlegast sendið leiðréttingar og athugasemdir til höfundar Flemmings Madsen <u>flemmma@icloud.com</u> eða til Báru Laxdal Halldórsdóttur á netfangið <u>bara@rafmennt.is</u>

Efnisyfirlit	
Formúlur og útskýringar fyrir afriðunardæmin	3
Dæmi 4.1	6
Dæmi 4.2	6
Dæmi 4.3	6
Dæmi 4.4	7
Dæmi 4.5	7
Dæmi 4.6	7
Dæmi 4.7	8
Dæmi 4.8	8
Dæmi 4.9	9
Dæmi 4.10	9
Dæmi 4.11	10
Dæmi 4.12	11
Dæmi 4.13	12
Dæmi 4.14	13
Dæmi 4.15	14
Dæmi 4.16	15
Dæmi 4.17	15
Dæmi 4.18	16

Formúlur og útskýringar fyrir afriðunardæmin

Svörin við öllum útreikningum eru miðuð við þetta formúlublað.

Skammstafanir sem notaðar eru í formúlunum:

urms er notað fyrir vinnugildi ac-spennunnar sem á að afriða.

Ud er notað fyrir spennufallið yfir afriðunardíóðu = 0,7 V (kísildíóða).

t er tíminn sem líður á milli upphleðslu þéttis. Einföld afriðun = 20 ms, tvöföld = 10 ms.

up er notað fyrir toppgildi ac-spennunnar sem á að afriða.

ugpp er notað fyrir topp-toppgildi gáruspennunnar.

Iá er notað fyrir dc-strauminn gegnum álagið á útgangi spennugjafans.

Udcút er dc-meðalspennan út úr spennugjafanum eftir afriðun.

Hálfbylgju-afriðun:

$$fg\acute{a}ru = \frac{1}{t} = \frac{1}{20m} = 50Hz$$

$$upgg = t \cdot \frac{I\acute{a}}{C}$$

$$UDC\acute{u}t = up - Ud - 0.5ugpp = Urms \cdot \sqrt{2} - 0.7 - 0.5ugpp$$

Heilbylgju-afriðun með díóðubrú:

$$fg\'{a}ru = \frac{1}{t} = \frac{1}{10m} = 100Hz$$

$$upgg = t \cdot \frac{I\acute{a}}{C}$$

$$UDC\acute{u}t = up - 2Ud - 0.5ugpp = Urms \cdot \sqrt{2} - 1.4 - 0.5ugpp$$

Heilbylgju-afriðun með miðpunktstengingu:

$$fg\acute{a}ru = \frac{1}{t} = \frac{1}{10m} = 100Hz$$

$$upgg = t \cdot \frac{I\acute{a}}{C}$$

$$UDC\acute{u}t = up - Ud - 0.5ugpp = Urms \cdot \sqrt{2} - 0.7 - 0.5ugpp$$

Heilbylgju-spennutvöföldun:

$$fgcupartarrow rule = rac{1}{t} = 100Hz$$

$$ugpp = t \cdot rac{Icupartarrow}{0,5C} = 10m \cdot rac{Icupartarrow}{0,5C}$$

$$Udccuput = 2 \cdot (up - Ud - 0,5ugpp)$$

$$Udccupartarrow t = 2 \cdot (\sqrt{2} \cdot urms - Ud - 0,5ugpp)$$

Hálfbylgjuspennutvöföldun:

$$fg\acute{a}ru = \frac{1}{t} = 50Hz$$

$$Udc$$
ú $t = 2\sqrt{2} \cdot urms$

Hálfbylgju-

spennumargföldun

(tengimynd sýnir þreföldunarrás):

$$fg\'{a}ru = \frac{1}{t} = 50Hz$$

N er fjöldi díóða;

$$Udc\acute{u}t = N \cdot \sqrt{2} \cdot urms$$

Stjörnutengd hálfbylgju-

3 fasa afriðun:

$$fg$$
ár $u = 3 \cdot f = 150Hz$

$$ugpp = 0.5 \cdot up = 0.71 \cdot urms$$

$$Udc\acute{\mathbf{u}}t=0.827\cdot up\cdot \sqrt{3}=1.17\cdot urms$$

Stjörnutengd heilbylgju-

3 fasa afriðun:

$$fg$$
ár $u = 6 \cdot f = 300Hz$

$$ugpp = 0.134 \cdot up = 0.19 \cdot urms$$

$$Udc$$
ú $t = 0.95 \cdot up \cdot \sqrt{3} = 2.32 \cdot urms$

Dæmi 4.1

- A. Reiknaðu út hve mörg Ω forviðnámið á að vera.
 Spennan yfir ljósdíóðuna í leiðniátt er 1,9 V.
- B. Reiknaðu út hve mörg wött viðnámið á að þola.

Dæmi 4.2

- A. Teiknaðu ljósdíóðurás sem blikkar ekki. Rásin á að tengjast við 48 V ac og spennan yfir ljósdíóðuna í leiðniátt er 1,6 V og straumurinn í gegnum díóðuna er 12 mA.
- B. Reiknaðu út viðnámið sem á að tengja inni í rásinni.

Dæmi 4.3

A. Reiknaðu út meðalspennuna yfir viðnámið.

Ath.
$$U_{me\delta al} = U_{RMS} \cdot 0,45$$
.

- B. Reiknaðu út aflið sem viðnámið á að þola.
- C. Reiknaðu út hve mörg volt díóðan þarf að þola í hindrunarátt.

Dæmi 4.4

- A. Reiknaðu út stærð viðnámsins (Rf).
- B. Teiknaðu inn í rásina íhlutinn sem vantar.

Dæmi 4.5

- A. Reiknaðu út hve mörg volt Upp gáruspennan er.
- B. Reiknaðu út hve mörg volt meðalspennan er yfir viðnámið.

- A. Reiknaðu út hvað voltmælirinn sýnir.
- B. Reiknaðu út hve mörg volt (PIV) díóðan á að geta þolað í hindrunarátt.
- C. Hve mörg volt er Upp gáruspennan?

Dæmi 4.7

- A. Hve mörg volt Upp og Hz er gáruspennan?
- B. Reiknaðu út meðalútgangsspennu rásarinnar.
- C. Hve mörg volt (PIV) er spennan yfir díóðuna þegar hún er mest? Sýndu útreikninga.
- D. Reiknaðu út hve mörg wött spennugjafinn tekur frá rafveitunni. Ekkert tap er reiknað inn í dæmið.

- A. Reiknaðu út hve mörg volt Upp gáruspennan er yfir þéttinn.
- B. Reiknaðu út spennuna yfir þéttinn.
- C. Reiknaðu út hve mörg Hz gáruspennan yfir þéttinn er.

Dæmi 4.9

- A. Reiknaðu út hve mörg volt Upp gáruspenna rásarinnar er.
- B. Reiknaðu út hve mörg volt RMS-útgangsspennan úr spennunum er.
- C. Hve margra volta bakspennu þurfa díóðurnar að þola? Sýndu útreikning.
- D. Reiknaðu út hve mörg A straumurinn í eftirvafinu er.

Visbending $P_R = P_{eftirvaf}$.

- E. Hve mörg A er straumurinn í forvafinu á spennubreytinum?
- F. Hve mörg VA þarf spennubreytirinn að vera?

- A. Reiknaðu út hve mörg volt Upp gáruspennan er yfir þéttinn.
- B. Reiknaðu út hve mörg volt meðalspennan yfir viðnámið er.
- C. Hve mörg volt á spennan yfir eftirvafið á spennubreytinum að vera?
- D. Reiknaðu út hve mörg VA spennubreytirinn á að vera.

- A. Reiknaðu út gáruspennuna yfir álagsviðnámið.
- B. Reiknaðu út hve mörg V spennan yfir viðnámið er (útgangsspenna rásarinnar).
- C. Hve mörg V (PIV) þurfa díóðurnar að þola í hindrunarátt? Sýndu útreikning.
- D. Hve mörg Hz er gáruspennan?
- E. Reiknaðu út hve mörg Ω álagsviðnámið er.

- A. Reiknaðu út hve mörg volt Upp gáruspennan er.
- B. Reiknaðu út hve mörg volt spennan yfir hvorn helming eftirvafsins á spennubreytinum er.
- C. Reiknaðu út hve mörg VA spennubreytirinn á að vera.
- D. Reiknaðu út hve mörg A spennubreytirinn á að þola á eftirvafinu.
- E. Reiknaðu út hve mörg A öryggið F1 á að vera. Öryggið er reiknað sem næst straumnum í forvafinu. Í tækjum raunveruleikans er það 1,5–2 sinnum stærra.
- F. Hver er mismunurinn á öryggi merktu 2AT og öðru sem er merkt 2AF?
- G. Skrifaðu upp upplýsingar fyrir spennubreytinn í dæminu, þannig að hægt væri að búa til spennubreyti eftir upplýsingunum.

Dæmi 4.13

Tengimynd af hleðslutæki með blýrafgeymi tengdan við útganginn.

- A. Hve mörg Hz er gáruspennan?
- B. Reiknaðu út hve mörg volt spennan er á milli A og B. Ath. að Umeðal = 0,9 · Urms fyrir heilbylgjuafriðaða spennu.
- C. Hve mörg volt Upp er gáruspennan?
- D. Reiknaðu út hve mörg W álagið er á eftirvafi spennisins miðað við tengimyndina.
- E. Reiknaðu út hve mörg A mesti straumurinn í forvafi spennisins er ef hámarksstraumurinn sem hleðslutækið gefur frá sér er 7,5 A. Reiknaðu með samtals 11% tapi í afriðli og spenni.
- F. Hvaða afleiðingar hefur það ef önnur díóðan rofnar?
- G. Hvaða afleiðingar hefur það ef önnur díóðan skammhleypir?

- A. Reiknaðu út hve mörg volt útgangsspennan Uút er.
- B. Hve mörg Hz er gáruspennan yfir efri 4700 μF þéttinn?
- C. Hve mörg Hz er gáruspennan á útgangspennuna Uút?
- D. Reiknaðu út hve margra volta bakspennu (PIV) díóðurnar eiga að þola.
- E. Hámarksútgangsstraumur rásarinnar er 800 mA. Reiknaðu út hve mörg A straumurinn er í eftirvafi spennisins.
- F. Reiknaðu út hve mörg A öryggið F1 á að vera að lágmarki.
- G. Skráðu allar upplýsingar sem þarf til að panta nýjan spennubreyti.
- H. Hvað er rásatengingin á myndinni kölluð?
- I. Hvers vegna er rofinn alltaf tengdur aftan við öryggið?

- A. Merktu plústengingu, jörð og mínustengingu inn á tengimyndina.
- B. Reiknaðu út hve mörg V +/- spennugjafinn er. Gáruspennan er reiknuð sem 0V Upp.
- C. Hve mörg Hz er gáruspennan yfir hvorn þétti?
- D. Reiknaðu út hve mörg volt Upp gáruspennan er með 1,2 A álagsstraum á hvorn helming spennugjafans.
- E. Reiknaðu út hve mörg Ω viðnámið er í álaginu, sem tengd eru við spennugjafann, ef útgangsstraumurinn er 1,2 A á hvorn helming.
- F. Reiknaðu út hve mörg A útgangsstraumurinn má vera að hámarki svo það myndist ekki yfirálag á spennubreytinn.
- G. Framleiðandi mælir með 1,6 AT öryggi í forvafið. Reiknaðu út hve mörgum sinnum það er meira en hámarksstraumurinn sem má fara um spennubreytinn að jafnaði.
- H. Hver er tilgangurinn með öryggi?
- I. Þumalputtareglan er að nota díóðubrú sem þolir verulega meiri straum en rennur í rásina. Í okkar tilfelli er það 8 A díóðubrú. Hve mörg A er hámarksstraumurinn (I_{fm} = Repetitive peak forward current) sem slík brú þolir í afriðunarrás með 50Hz riðstraumi?

Dæmi 4.16

- A. Reiknaðu út Udcút ef urms er 18 V.
- B. Hve mörg Hz er gáruspenna rásarinnar?
- C. Hvernig er hægt að 20falda peak-gildi rms-spennunnar?
- D. Útskýrðu hvers vegna ekki er æskilegt að taka háa strauma út úr rásinni.

- A. Reiknaðu út hve mörg V eru á milli fasa (á milli A og B) á alternatornum. Meðalspennan yfir straumúttakið er 28,4 V.
- B. Reiknaðu út hve mörg V spennan er yfir vöfin hvert fyrir sig (á milli A og C) á alternatornum.
- C. Reiknaðu út hve mörg volt Upp gáruspennan er.
- D. Reiknaðu út hve mörg Hz gáruspennan er ef alternatorinn gefur út 116 Hz riðspennu.

Dæmi 4.18

Teiknaðu skjámyndirnar sem sveiflusjáin myndi sýna ef hún væri tengd yfir 1 k Ω viðnámið.

Í öllum dæmunum er sveiflusjáin stillt eins og textinn fyrir neðan skjámyndina sýnir.

A.

B.

C.

- D. Athugaðu að 0V-línan er neðst á sveiflusjámyndinni.
- a) Hver er gáruspennan Upp?
- b) Hver er tíðni gáruspennunnar?
- c) Hver er meðalútgangsspennan Udcút?

