Vorlesung 25 am 12.01.2023

Inhalte: Differentialrechnung 4

4 Differentialrechnung

4 Differentialrechnung1						
4.1 Differenzierbarkeit einer Funktion						
4.2 Differentiationsregeln						
4.3 Eigenschaften differenzierbarer Funktionen						
4.4 Anwendungen der Differentialrechnung						
4.4.1 Kurvendiskussionen10						
4.4.2 Extremwertprobleme14						
4.4.3 Tangente und Normale16						
4.4.4 Tangentenverfahren von Newton18						
4.5 Regeln von Bernoulli-l'Hospital						

12.01.2023

Regel von Bernoulli l'Hospital
Berechnung von Grenzwerten bei unbestimmten Ausdrücke

Berechnung von Grenzwerten bei unbestimmten Ausdrücke

Grenzwertbestimmung

Grenzwerte - bestimmbare Ausdrücke

$$\infty + \infty \rightarrow \infty$$

$$\infty \cdot \infty \rightarrow \infty$$

$$\infty \cdot \infty \to \infty$$
 $z.B. n^2 \cdot n \to \infty$

$$\infty \cdot (-\infty) \rightarrow -\infty$$

$$\infty \cdot (-\infty) \rightarrow -\infty$$
 z.B. $n^2 \cdot (-n) \rightarrow -\infty$

$$\frac{1}{\infty} \to 0$$

$$z.B. \frac{1}{n} \rightarrow 0$$

$$\frac{1}{0} \to \infty$$

$$\frac{1}{0} \to \infty \qquad z.B. \frac{1}{\frac{1}{n}} \to \infty$$

$$0^{\infty} \to 0 \qquad z.B. \left(\frac{1}{n}\right)^{n} \to 0$$

$$0^{\infty} \rightarrow 0$$

$$z.B. \left(\frac{1}{n}\right)^n \to 0$$

$$\infty_{\infty} \rightarrow \infty$$

$$\infty^{\infty} \to \infty \qquad z.B. (n)^n \to \infty$$

Grenzwerte - unbestimmte Ausdrücke

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, $0 \cdot \infty$, $\infty - \infty$, 0^0 , ∞^0 , 1^∞

Erläuterungen siehe nächste Seiten

Lösung mit Regel von Bernoulli-l'Hospital

Rückblick Unbestimmte Ausdrücke

Grenzwerte - unbestimmte Ausdrücke

Typ $\frac{0}{0}$ bedeutet $\frac{Z\ddot{a}hler \rightarrow 0}{Nenner \rightarrow 0}$

Erläuterung: Zähler → 0 würde bedeuten Wert des Ausdrucks geht gegen 0

Nenner → 0 würde bedeuten Wert des Ausdrucks geht gegen ∞

Welcher Teil des Ausdrucks ist stärker?

Beispiele:

Typ $\frac{\infty}{\infty}$ bedeutet $\frac{Z\ddot{a}hler \rightarrow \infty}{Nenner \rightarrow \infty}$

Erläuterung: Zähler → ∞ würde bedeuten Wert des Ausdrucks geht gegen ∞

Nenner → ∞ würde bedeuten Wert des Ausdrucks geht gegen 0

Welcher Teil des Ausdrucks ist stärker?

Beispiele :

$$\lim_{x \to \infty} \frac{x}{e^x} \to 0$$

$$\lim_{x \to \infty} \frac{e^x}{x} \to \infty$$

Grenzwerte - unbestimmte Ausdrücke

Typ 0^0 bedeutet $(Basis \rightarrow 0)^{Exponent \rightarrow 0}$

Erläuterung: Basis $\rightarrow 0$ würde bedeuten Wert des Ausdrucks geht gegen 0Exponent $\rightarrow 0$ würde bedeuten Wert des Ausdrucks geht gegen 1Welcher Teil des Ausdrucks ist stärker?

Beispiele:

Typ ∞^0 bedeutet $(Basis \rightarrow \infty)^{Exponent \rightarrow 0}$

Erläuterung: Basis → ∞ würde bedeuten Wert des Ausdrucks geht gegen ∞

Exponent → 0 würde bedeuten Wert des Ausdrucks geht gegen 1

Welcher Teil des Ausdrucks ist stärker?

Beispiele:

$$\lim_{x \to \infty} (e^x)^{\frac{1}{x}} \to e$$

$$\lim_{x \to \infty} (e^{x^2})^{\frac{1}{x}} \to \infty$$

$$\lim_{x \to \infty} (x)^{\frac{1}{x^2}} \to 1$$

Grenzwerte - unbestimmte Ausdrücke

Typ $\infty - \infty$ bedeutet (Ausdruck $1 \rightarrow \infty$) – (Ausdruck $2 \rightarrow \infty$)

Erläuterung: Ausdruckl schneller → ∞ alsAusdruck2 ⇒ Gesamtausdruck geht gegen ∞

Ausdruck2 schneller → ∞ alsAusdruck1 ⇒ Gesamtausdruck geht gegen −∞

Welcher Teil des Ausdrucks ist stärker?

Beispiele:

$$\lim_{x \to \infty} (x^2 - x) \to \infty$$

$$\lim_{x \to \infty} (x - x^2) \to -\infty$$

$$\lim_{x\to\infty}((\underline{x^2+1})-\underline{x^2})\to 1$$

 $\frac{-x^2}{\infty} \rightarrow 1$ Ausdruck | und 2 streben gleich schnell $\rightarrow \infty$ $\Rightarrow Gesamtausdruck geht gegen einen festen Wert$

Typ $0 \cdot \infty$ bedeutet $(Faktor1 \rightarrow 0) \cdot (Faktor2 \rightarrow \infty)$

Erläuterung: Faktor $1 \to 0$ würde bedeuten Wert des Ausdrucks geht gegen 0Faktor $2 \to \infty$ würde bedeuten Wert des Ausdrucks geht gegen ∞ Welcher Teil des Ausdrucks ist stärker?

Beispiele :

$$\lim_{x \to \infty} (\frac{1}{x})x \to 1$$

$$\lim_{x \to \infty} (\frac{1}{x^2})x \to 0$$

$$\lim_{x \to \infty} (\frac{1}{x})x^2 \to \infty$$

Grenzwerte - unbestimmte Ausdrücke

Typ 1^{∞} bedeutet $(Basis \rightarrow 1)^{(Exponent \rightarrow \infty)}$

Erläuterung: Basis → 1 bedeutet Gesamtausdruck geht gegen 1

Exponent → ∞ bedeutet Gesamtausdruck geht gegen ∞

Welcher Teil des Ausdrucks ist stärker?

Beispiele :

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x \to e$$

$$\lim_{x \to \infty} (1 + \frac{1}{x^2})^x \to 1$$

$$\lim_{x \to \infty} (1 + \frac{1}{x})^{x^2} \to \infty$$

(hilft bei der Grenzwertbestimmung bei unbestimmten Ausdrücken)

Satz 4.14: Regel von Bernoulli-l'Hospital

Es seien $f,g:[a,b] \to \mathbb{R}$ reelle stetige Funktionen, die auf (a,b) differenzierbar sind. Ferner sei $g'(x) \neq 0 \ \forall x \in (a,b)$.

$$\mathsf{lst} \ x_0 \in \big[a,b\big] \ \mathsf{mit} \ \lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = 0 = \lim_{\mathbf{x} \to \mathbf{x}_0} g(\mathbf{x})$$

und existiert $\lim_{\mathbf{x}\to\mathbf{x}_0} \frac{f'(\mathbf{x})}{g'(\mathbf{x})}$, so existiert auch $\lim_{\mathbf{x}\to\mathbf{x}_0} \frac{f(\mathbf{x})}{g(\mathbf{x})}$ und es ist

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Bemerkungen:

- 1. Die obige Regel ist für die Grenzwertbestimmung bei unbestimmten Ausdrücken " $\frac{0}{0}$ " beschrieben.
- 2. Die Regel ist ebenso anwendbar bei unbestimmten Ausdrücken " $\frac{\infty}{\infty}$ ", d.h. wenn $\lim_{x\to x_0} f(x) = \infty = \lim_{x\to x_0} g(x)$.
- 3. Die Regel ist ebenso anwendbar bei der Grenzwertberechnung für $x \to \infty \ (bzw. \infty)$.
- 4. Die weiteren unbestimmten Ausdrücke $0\cdot \infty, \ \infty-\infty, \ 0^0, \ \infty^0, \ 1^\infty,$ die bei einer Grenzwertberechnung auftreten können, werden durch Umformungen auf einen der Fälle " $\frac{0}{0}$ " oder " $\frac{\infty}{\infty}$ " zurückgeführt (\rightarrow siehe Vorlesung) und können dann ebenfalls über die Regel von Bernoulli-l'Hospital gelöst werden.
- 5. Die Regel von Bernoulli-l'Hospital kann auch mehrfach hintereinander angewendet werden.
- 6. Achtung: Zähler und Nenner getrennt ableiten!

Beispiel:

Beispiel 1: Typ o"

$$f(x) = \frac{\sin x}{x}$$

Beispiel 2: Typ, $\frac{60}{60}$ " $\lim_{x\to\infty} \frac{\chi^3}{e^{x}}$

Vorgehen:

Vorgehen:

Funktionsverlauf:

$$\lim_{X\to 0} \left(\frac{\Lambda}{X^3} - \frac{\Lambda}{\sin X} \right)$$

Vorgehen:

Zusammenfassung - Regel von Bernoulli-l'Hospital
"Umgang mit unbestimmten Ausdrücken"

Bernoulli-l'Hospital direkt anwendbar

Typ "0.00"

Vorgehen: $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)}
\end{cases}$ $\begin{cases}
\frac{f(x)}{f(x)} \cdot \frac{f(x)}{f(x)} \\
\frac{f(x)}{f(x)} \cdot \frac{f($

Тур "00 - 00"

Vorgehen: $\begin{cases}
\frac{1}{2}(x) - g(x) \\
\frac{1}{2}(x) - g(x)
\end{cases}$ $\frac{1}{2}(x) - \frac{1}{2}(x) = \frac{1}{2}(x)$

Τηρ "Ο°, Λος, ως"

Vorgehen:

lui f(x) $x \rightarrow x_0$ f(x) f(

Mittelwertsatz der Differentialrechnung Satz von Rolle

14

Satz 6.10: Mittelwertsatz der Differentialrechnung

Ist die reelle Funktion f stetig auf $\left[a,b\right]$ und differenzierbar auf $\left(a,b\right)$, so gibt es ein $x_0\in\left(a,b\right)$ mit $f'(x_0)=\frac{f(b)-f(a)}{b-a}$.

Satz 6.11: Satz von Rolle

Ist die reelle Funktion f stetig auf $\left[a,b\right]$ und differenzierbar auf $\left(a,b\right)$ und gilt f(a)=f(b) ,

so existiert ein $x_0 \in (a, b)$ mit $f'(x_0) = 0$.

Bemerkung:

Es kann auch mehrere Punkte mit einer waagerechten Tangente im Intervall geben.

Extremwertprobleme

Extremwerte

4.4.2 Extremwertprobleme

In praktischen Anwendungen der Mathematik geht es häufig darum beispielsweise Aufwände zu minimieren oder Gewinne zu maximieren. Diese zu minimierenden oder maximierenden Größen hängen in den meisten Fällen von einer oder mehreren anderen Größen ab. Problemstellungen dieses Typs werden Extremwertprobleme genannt.

Vorgehensweise zur Lösung von Extremwertproblemen:

1.Schritt:

Festlegung der zu optimierenden Größe

2.Schritt:

- Ausnutzung von Beziehungen zwischen den Variablen (Nebenbedingungen) (z.B. bekannte geometrische oder physikalische Beziehungen)
- Aufstellen der Zielfunktion

3.Schritt:

Bestimmung der Extremwerte der Zielfunktion

4.Schritt:

Untersuchung der Zielfunktion an den Rändern des Definitionsbereiches

5. Schritt:

Umsetzen der Ergebnisse der Extremwertberechnung auf die Problemstellung und Überprüfung der Lösung.

Beispiel: Extremwertprobleme

Aufgabe:

- In ein rechtwinkliges Dreieck soll ein Rechteck eingeschrieben werden
- Wie sind die Seitenlängen a und b zu wählen, damit die Fläche F des Rechtecks maximal wird?

Vorgehen:

- Fläche F beschreiben (**Zielfunktion**): $F(a,b) = a \cdot b$
- Abhängigkeiten für a und b ermitteln (Nebenbedingung)
- Verwendung der Eigenschaft, dass der Punkt (a,b) auf der eingezeichneten Gerade liegt, d.h. b kann in Abhängigkeit dieser Geradengleichung über a ausgedrückt werden.

$$b = -\frac{3}{4}a + 3$$

Fläche F (Zielfunktion einer Variablen):

$$F(a) = a \cdot \left(-\frac{3}{4}a + 3\right) = -\frac{3}{4}a^2 + 3a$$

• Bestimmen des Wertes für a,der **F(a) maximiert**

$$F'(a) = -\frac{3}{2}a + 3 = 0$$

 $\Rightarrow bei \ a = 2 \ waagerechte \ Tangente$
 $F''(2) = -\frac{3}{2} < 0 \ \Rightarrow Maximum \ mit \ F(2) = 3$
 $R\ddot{a}nder: \ F(0) = F(4) = 0 \ \Rightarrow a = 2$
 $\ddot{u}ber \ die \ Nebenbedingung \ \Rightarrow b = \frac{3}{2}$

Der maximale Flächenwert 3 ist die Hälfte der Dreiecksfläche.

Veranschaulichung des Funktionsverlaufes der Zielfunktion

Beispiel: Extremwertaufgabe

Der Querschnitt eines 25m langen Tunnels besteht aus einem Rechteck mit aufgesetztem Halbkreis (siehe Abbildung). Der Umfang der Querschnittsfläche beträgt 18m. Wie ist der Radius des Halbkreises zu wählen, damit das Tunnelvolumen möglichst groß wird?

Der Querschnitt eines 25m langen Tunnels besteht aus einem Rechteck mit aufgesetztem Halbkreis (siehe Abbildung). Der Umfang der Querschnittsfläche beträgt 18m. Wie ist der Radius des Halbkreises zu wählen, damit das Tunnelvolumen möglichst groß wird?

0. Skizze:

- 1) Zielfunktion: $V(r,h) = (2rh + \frac{\pi}{2}r^2) \cdot 25$
- 2) Nebenbedingung: $u = 2r + 2h + \pi r = 18$ \Rightarrow $2h = 18 2r \pi r$ \Rightarrow $h = 9 r \frac{\pi}{2}r$
- 3) Umformen der Zielfunktion: $V(r) = \left(r \cdot \left(18 2r \pi r\right) + \frac{\pi}{2}r^2\right) \cdot 25 = \frac{1}{25 \cdot \left(18r \left(2 + \frac{\pi}{2}\right)r^2\right)}$
- 4) Extremstelle(n): $V'(r) = 25 \cdot \left(18 2\left(2 + \frac{\pi}{2}\right) \cdot r\right) \rightarrow 25 \cdot \left(18 2\left(2 + \frac{\pi}{2}\right) \cdot r\right) = 0 \rightarrow r_E = \frac{18}{4 + \pi} \approx 2,52 \rightarrow \underline{h} \approx$
- 5) Nachweis des Maximums: $V''(r) = 25 \cdot (-4 \pi) < 0$ Maximum Antwort:

Der Radius des Halbkreises muss 2,52m groß sein.

http://www.meinelt-online.de/fos/lb3/36 extremwert lsg.pdf

12.01.2023

Tangente und Normale

Tangente und Normale

Veranschaulichung: Tangente und Normale

Definition 6.6: Normale

Eine **Normale** ist eine Gerade durch den Punkt x_0 , die auf der Tangenten an die Kurve im Punkt x_0 senkrecht steht, d.h. die Normale und die Tangente schneiden sich im Winkel $\frac{\pi}{2}(90^\circ)$.

Beispiele: Gerade und Senkrechte

6.4.3 Tangente und Normale

Satz 6.19: Tangentengleichung

Die Tangente $f_i(x)$ an die Kurve der differenzierbaren Funktion fim Punkt $(x_0, f(x_0))$ ist gegeben durch:

$$\frac{f_t(x) - f(x_0)}{x - x_0} = f'(x_0)$$
 (Punkt-Steigungsform)

bzw.

$$f_t(x) = f(x_0) + f'(x_0)(x - x_0).$$

Der Steigungswinkel ist $\varphi_{ft} = \arctan f'(x_0)$, da $f'(x_0) = \tan(\varphi_{ft})$.

Definition 6.5: Schnittwinkel

Der Schnittwinkel α der Kurven der differenzierbaren Funktionen f und g im Punkt (x_0,y_0) mit $y_0=f(x_0)=g(x_0)$ wird definiert als Schnittwinkel der Tangenten an f und g in diesem Punkt, d.h. der Differenzwinkel der Steigungswinkel der beiden Tangenten.

Einer der beiden Schnittwinkel ist gegeben durch

$$\alpha = \arctan f'(x_0) - \arctan g'(x_0)$$
.

Satz 6.20: Normalengleichung

Die Normale $f_N(x)$ der Kurve der differenzierbaren Funktion f im Punkt $(x_0,f(x_0))$ mit $f'(x_0)\neq 0$ hat

- (a) die Steigung $f_{N}^{'}(x_0) = \frac{-1}{f'(x_0)}$,
- (b) die Gleichung $f_N(x) = f(x_0) \frac{1}{f'(x_0)}(x x_0)$

Bemerkung:

Falls $f'(x_0) = 0$ ist, dann ist die Normale die senkrechte Gerade $x = x_0$.

Veranschaulichung: Tangente und Normale

Beispiel: 1. $f(x) = x^2$ 2. t(x) = 3*x-2,25 3. n(x) = -1/3*x+2,75

Numerische Verfahren zur Nullstellensuche

Newton Verfahren

Numerik - 8.2 Nichtlineare Gleichungen

Newtonverfahren

Charakteristika des Newtonverfahrens:

- nur ein Startwert
- Ableitung der Funktion wird benötigt, d.h. f muss stetig differenzierbar sein
- Nullstelle der Tangenten am Iterationswert ergibt den nächsten Iterationswert
- Verfahren ist quadratisch konvergent,
 d.h. die Anzahl der gültigen Nachkommastellen verdoppelt sich pro Iterationsschritt
- Startwert muss Konvergenzbedingung genügen, sonst kann es zu Divergenz und Oszillationen kommen.
- Rechenaufwand:
 höherer Rechenaufwand als bei den anderen Verfahren,
 pro Iterationsschritt eine Funktionsauswertung, eine
 erste Ableitung und eine Division notwendig ist.

Numerik - 8.2 Nichtlineare Gleichungen

Newtonverfahren

Herleitung der Iterationsvorschrift: $x_{k+1} := x_k - \frac{f(x_k)}{f'(x_k)}$

Beispiel:

Prof. Dr.-Ing. K. Landenfeld HAW Hamburg

Newtonverfahren

Algorithmus

Dies führt zu folgendem Verfahren:

- 1. INIT: Gegeben sei x_0
- 2. $0 \rightarrow k$
- 3. $x_{k+1} := x_k \frac{f(x_k)}{f'(x_k)}$
- 4. FALLS $f(x_{k+1}) = 0$

RETURN x_{k+1}

5. FALLS $|x_{k+1} - x_k| < \text{tol}$ RETURN x_{k+1}

- 6. $k+1 \rightarrow k$
- 7. WEITER bei 3.

http://www.math.tu-berlin.de/~numlab/index_3_pop.html

Numerik - 8.2 Nichtlineare Gleichungen

Allgemeine Formulierung des Tangentenverfahrens von Newton

Ausgehend von einem geeigneten Startwert x_0 , der die Konvergenzbedingung

$$\left| \frac{f(x_0) \cdot f''(x_0)}{\left[f'(x_0) \right]^2} \right| < 1 \text{ erfüllt,}$$

erhält man aus der Iterationsvorschrift

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, 3, \dots$$

eine Folge von Näherungswerten x_0 , x_1 , x_2 ,... für die gesuchte Lösung der Gleichung f(x) = 0.

Die Folge konvergiert mit Sicherheit gegen die gesuchte Lösung, wenn die Konvergenzbedingung für jeden dieser Näherungswerte x_i erfüllt ist.

Rückblick Bisektionsverfahren

Charakteristika des Bisektionsverfahrens:

- Intervallhalbierungsverfahren
- Startintervall muss Nullstelle enthalten.
 - d.h. Funktionswerte der Intervallgrenzen haben einen Vorzeichenwechsel
- Iteratives Verkleinern des Intervalls mit Hilfe des Intervallmittelpunktes
- · Verfahren ist linear konvergent.
- Anzahl notwendiger Iterationen n, die für eine vorgegebene Genauigkeit benötigt werden, kann vorher berechnet werden:

Show intervall [a, b]:
$$n \ge \frac{\ln(\frac{b-a}{\varepsilon})}{\ln 2}$$

 Geringer Rechenaufwand:
 Pro Iterationsschritt Auswertung eines Funktionswertes und eine Multiplikation notwendig.

Prof. Dr.-Ing. K. Landenfeld HAW Hamburg

Seite 4

Numerik - 8.2 Nichtlineare Gleichungen

Bisektionsverfahren

Algorithmus

- 1. INIT: Gegeben ist ein Intervall [a,b] mit f(a)f(b) < 0
- $2. \quad m = \frac{a+b}{2}$
- 3. FALLS f(m) = 0

RETURN m

4. FALLS |a-b| < tol

RETURN m

5. FALLS f(a)f(m) < 0

DANN WEITER bei 1. mit [a, m]

SONST WEITER bei 1. mit [m,b]

Beispiel

Prof. Dr.-Ing. K. Landenfeld HAW Hamburg

Seite

Bisektions-/Sekanten-/Newton-Verfahren für $x^2-2=0$									
k	c	Bisektionsverf.	Sekantenverf.		Newton-Verfahren				
	0	1.5000000000000000	1.000000000000000		2.000000000000000				
1	1	<u>1</u> .2500000000000000	2.0000	0000000000	<u>1</u> .500000000000000				
2	2	<u>1</u> .3750000000000000	<u>1</u> .33333	3333333333	<u>1.41</u> 666666666667				
:	3	<u>1.4</u> 375000000000000	<u>1.4</u> 285	71428571429	<u>1.41421</u> 5686274510				
4	4	<u>1.4</u> 06250000000000	<u>1.41</u> 379	93103448276	<u>1.41421356237</u> 4690				
	5	<u>1.4</u> 21875000000000	1.4142	<u>1</u> 1438474870	1.414213562373095				
(6	<u>1.414</u> 062500000000	1.4142	<u>13562</u> 688870					
7	7	<u>1.41</u> 7968750000000	1.414213562373095						
8	8	<u>1.41</u> 6015625000000							
ç	9	<u>1.41</u> 5039062500000							
10	0	<u>1.414</u> 550781250000							
11	1	<u>1.414</u> 306640625000							
12		<u>1.414</u> 184570312500		Manyaraanaardayaa dar Varfabraa					
13		<u>1.4142</u> 45605468750		Konvergenzordnung der Verfahren					
14		<u>1.41421</u> 5087890625		Bisektionsverfahren: α=1					
15	_	<u>1.414</u> 199829101562		Regula Falsi: α=1					
16		<u>1.4142</u> 07458496094		Sekantenverfahren: α=1.618					
17	-	<u>1.41421</u> 1273193359	Verfahren von Muller: α=1.839						
18	8	<u>1.414213</u> 180541992	Newtonverfahren: α=2						

nach A. Rieder http://www.mathematik.uni-karlsruhe.de/prakmath/

Prof. Dr.-Ing. K. Landenfeld HAW Hamburg

Seite 27

Numerik - 8.2 Nichtlineare Gleichungen

Bisektions-/Sekanten-/Newton-Verfahren für $x^2 - 2 = 0$								
Took day Kamyayaansayd	k	Bisektionsverf.	Sekantenverf.	Newton-Verfahren				
Test der Konvergenzord-	1	0.23879	0.192153	0.333333				
nung	2	0.59383	0.839920	0.352941				
_	3	0.34198	0.403287	0.353522				
$ x_{k+1} - \sqrt{2} $	4	0.96206	0.616685	0.00002				
$\frac{ x_{k+1} - \sqrt{2} }{ x_k - \sqrt{2} ^p}$	5	0.01971	0.476724					
	6	24.8585						
mit	7	0.47988						
p=1 Bisektion	8	0.45808						
1 *	9	0.40850						
$p = \frac{1+\sqrt{5}}{2}$ Sekante	10	0.27601						
p=2 Newton	11	0.31148						
	12	1.10523						
Library Davis non-	13	0.04760						
Unsere Rechnungen zei-	14	9.00236						
gen: Bisketionsverf. kon-	15	0.444459						
vergiert nicht mit linearer	16	0.375037						
Ordnung.	17	0.166798						
	18	1.497633						

nach A. Rieder http://www.mathematik.uni-karlsruhe.de/prakmath/

Seite 28

12.01.2023

Aufgaben

Aufgabe:

Berechnen Sie die nachfolgenden Grenzwerte mit Hilfe der Regeln von Bernoulli-l'Hospital:

- $\lim_{x\to 0}\frac{\sin(2x)}{x^2}$
- b) $\lim_{x \to \frac{\pi}{2}} \left(\frac{\pi}{2} x \right) \tan x$
- $c) \qquad \lim_{x \to 1} x^{\frac{1}{x-1}}$
- $\lim_{x \to \infty} \frac{-2x^2 + 1}{x^2 + 6}$
- $e) \qquad \lim_{x \to -\infty} \frac{-2x^2 + 1}{x^2 + 6}$

Aufgabe: Extremwertaufgabe

Vor einer Werkhalle soll ein rechteckiger Lagerplatz mit einer Fläche von 450m² angelegt werden. Dazu ist der Platz an 3 Seiten zu umzäumen, an der 4. Seite begrenzt ihn die Werkhalle. Die Abmessungen des Lagerplatzes sollen so gewählt werden, dass die Gesamtlänge des Zaunes minimal wird. Berechnen Sie für diesen Fall Länge und Breite des Platzes und die Gesamtlänge des Zaunes!

