EXERCICE 1 (Cours)

Donner et prouver la propriété concernant l'inversibilité à gauche et à droite des matrices.

EXERCICE 2 (Cours)

Donner et prouver la propriété concernant l'ensemble des matrices symétriques et celui des matrices antisymétriques.

Exercice 3 (Cours)

Donner et prouver la propriété algébrique de la trace.

Exercice 4

Soit $a, b \in \mathbb{R}$ deux réels non nuls et $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$. Trouver toutes les matrices $B \in \mathcal{M}_2(\mathbb{R})$ qui commutent avec A, c'est-à-dire telles que AB = BA.

Exercice 5

Déterminer deux éléments A et B de $\mathcal{M}_2(\mathbb{R})$ tels que AB = 0 et $BA \neq 0$.

Exercice 6

On considère les matrices suivantes.

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$

- 1. Calculer A^2 puis A^3 .
- 2. En déduire la valeur de A^n pour tout $n \ge 1$.
- 3. Répondre aux mêmes questions pour B.

Exercice 7

Soit

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad B = A - I.$$

Calculer B^n pour tout $n \in \mathbb{N}$. En déduire A^n .

Exercice 8

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice nilpotente, c'est-à-dire qu'il existe $p \geq 1$ tel que $A^p = 0$. Démontrer que la matrice $I_n - A$ est inversible, et déterminer son inverse.

Exercice 9

On considère les matrices suivntes.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & -1 & -1 \end{pmatrix}$$

- 1. Calculer AB et AC. Que constante-t-on?
- 2. La matrice A peut-elle être inversible?
- 3. Trouver toutes les matrices $F \in \mathcal{M}_3(\mathbb{R})$ telles que AF = 0 (où 0 désigne la matrice nulle).

Exercice 10

Dire si les matrices suivantes sont inversibles et, le cas échéant, calculer leur inverse.

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} \quad D = \begin{pmatrix} i & -1 & 2i \\ 2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$

Exercice 11

On considère les matrices suivntes.

$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

- 1. Montrer que $A^2 = 2I_3 A$. En déduire que A est inversible et calculer A^{-1} .
- 2. Calculer $B^3 B$. En déduire que B est inversible puis déterminer B^{-1} .
- 3. Calculer $C^2 3C + 2I_3$. En déduire que C est inversible et calculer C^{-1} .

Exercice 12

Soit $n \in \mathbb{N}^*$, on note

$$\mathscr{C} = \{ M \in \mathcal{M}_n(\mathbb{R}) \mid \forall A \in \mathcal{M}_n(\mathbb{R}), \ MA = AM \}$$

le centre de $\mathcal{M}_n(\mathbb{R})$. :

- 1. Soit $D = \lambda I_n$ pour $\lambda \in \mathbb{R}$. Prouver que $D \in \mathscr{C}$.
- 2. Soit $M \in \mathscr{C}$ et $E_{i,j} = (\delta_{i,a}\delta_{j,b})_{1 \leq a,b \leq n}$ la matrice ayant un 1 seulement en position (i,j). Que peut-on déduire de la condition $ME_{i,j} = E_{i,j}M$?
- 3. En déduire que \mathscr{C} contient uniquement les matrices de la forme λI_n .