PMR3201 - Computação para Automação Exercício Programa 2 - 2019

Algoritmo de caminho mínimo - Transporte logístico multimodal

Prof. Dr. Thiago de Castro Martins Prof. Dr. Marcos de Sales Guerra Tsuzuki Prof. Dr. Newton Maruyama Prof. Dr. Rafael Traldi Moura

Deadline: 09/05/2019 - 23h59min (SISTEMA MOODLE)

1 Introdução

A primeira evidência de que se tem notícia quanto à aplicação de grafos remonta ao ano 1736 em que Leonhard Euler fez uso deles para solucionar o agora clássico problema da ponte de Kögnisberg. Na cidade de Kögnisberg, Prússia Oriental, o rio Pregal flui em torno da ilha de Kneiphof, dividindo-se em seguida em duas partes.

Figura 1: (a) Seção do rio Pregal em Kögnisberg. (b) Representação através de grafo.

Assim sendo, existem quatro áreas de terra que ladeiam o rio (Vide Figura 1). Essas áreas de terra estão interligadas por sete pontes, (a ... g). As áreas de terra estão assinaladas pelas letras (A ... D). O problema da ponte de Kögnisberg consiste em determinar se ao partir de alguma área de terra é possível atravessar todas as pontes exatamente uma única vez para em seguida, retornar à area de terra inicial. Um caminho possível consistiria em iniciar na área de terra B, atravessar a ponte a para a ilha a; pegar a ponte a para chegar à area de terra a, atravessar a ponte a, chegando a a; cruzar a ponte a até a; cruzar a ponte a até a e a ponte a foregando a a.

Esse caminho não atravessa precisamente todas as pontes uma única vez, nem tão pouco retorna à área *B*. Euler provou que era impossível atravessar cada ponte uma única vez e retornar ao ponto inicial.

Esse problema pode ser resolvido representando as áreas de terra como vértices e as pontes como arcos de um grafo (na verdade um multigrafo) conforme ilustrado na Figura 1. Definindo o grau de um vértice como sendo o número de arcos que lhe são incidentes, Euler mostrou que existe um caminho com ponto de início em qualquer vértice, que passa através de cada arco exatamente uma vez e termina no vértice inicial contanto que seja de valor par o grau do vértice. O caminho que cumprir essas condições é dito Euleriano e o que não cumprir é dito não Euleriano.

Não existe nenhum caminho Euleriano no caso das pontes de Kögnisberg, uma vez que todos os vértices tem grau ímpar.

Um link para o artigo original é apresentado aqui http://www.math.dartmouth.edu/~euler/docs/originals/E053.pdf

Muitos outros problemas podem ser naturalmente formulados através de grafos. Por exemplo, pode-se tentar estabelecer

qual é a menor distância entre duas cidades sendo que existem vários caminhos alternativos passando por cidades distintas. No

Figura 2: Exemplos de grafos.

projeto de trilhas de conexão de componentes em placas de circuito impresso é possível determinar trilhas de tal forma a serem de menor comprimento possível e sem que haja colisão entre elas. Na representação das atividades que compõem um projeto em larga escala é possível calcular qual o tempo total de projeto dado o tempo requerido para cada sub-tarefa e a sequência em que as sub-tarefas devem ser executadas. Além dessas áreas citadas, os grafos desempenham papel importante na análise de circuitos elétricos, modelagem e análise de sistemas de manufatura, etc.

2 Terminologia e Notação

Um grafo G é uma coleção de vértices V e arcos E. Cada arco pode ser representada através de um par de vértices. V(G) e E(G) são respectivamente o conjunto de vértices e arcos do grafo G(V,E).

Um grafo *não direcionado* não possui direção especial em relação aos vértices que representam qualquer arco. Assim sendo, os pares (v_1, v_2) e (v_2, v_1) representam o mesmo arco.

Num grafo *direcionado* cada arco é representado por um vértice inicial e um vértice final. Por exemplo, (v_1, v_2) onde v_1 é o vértice de início e v_2 é o vértice final. Dessa forma, os pares (v_1, v_2) e (v_2, v_1) representam arcos diferentes. Muitas vezes existe um peso $w_{(v_1, v_2)}$ associado a cada arco que pode ser entendido como custo, distância, etc. de acordo com a aplicação.

Um grafo pode ser representado graficamente através da utilização de círculos para a representação dos vértices e linhas conectando os vértices representando os arcos. A Figura 2 ilustra três grafos G_1 , G_2 e G_3 . Os grafos G_1 e G_2 são *não direcionados* enquanto que G_3 é um grafo *direcionados*. O grafo G_2 é também uma árvore. As árvores podem ser definidas como casos especiais de grafos.

3 Algoritmo de caminho mínimo - Dijkstras's Algorithm

A aplicação mais frequente de grafos é a utilização de algoritmos para se encontrar o caminho mínimo entre os vértices em um grafo direcionado ou não direcionado com pesos positivos.

O grafo pode representar as fases de um projeto de construção civil com os pesos dos arcos interpretados como custos. O problema é frequentemente descrito como a descoberta do caminho de custo mínimo entre um determinado vértice e todos os outros. Esse algoritmo foi primeiramente descrito por Edsger W. Dijkstra e por isso leva o seu nome.

Em um problema com V vértices inicialmente deve-se descobrir um conjunto de vértices dos quais são conhecidas as menores distâncias em relação ao vértice inicial aqui denominado 1; esse conjunto de vértices será denominado S. O vértice 1 é por *default* o primeiro vértice a ser colocado no conjunto S. Obviamente o caminho mais curto entre o vértice 1 e o mesmo é zero.

O algoritmo se desenrola num processo de duas etapas, adicionando vértices no conjunto S até que todos pertençam a ele:

- 1. Pegue um vértice que não se encontra em S, denomine-o M, e para o qual a distância entre 1 a M é mínimo. Adicione M em S.
- 2. Para cada vértice ainda não em S, verifique se a distância entre esse vértice e o vértice 1 pode ser encurtada utilizando o vérticeM. Se é possível então atualize o elemento correspondente no array Dist[].

Adicionalmente, deve ser criado um array Path[] que contêm para cada vértice, o vértice que é o seu antecessor para o caminho mais curto a partir do vértice 1.

Esse algoritmo pode ser descrito da seguinte forma:

```
S := {1};
inicialize o array Dist[] com o peso dos arcos conectados ao vértice 1;
para i := 1 até V-1 faça:
    {
      escolha um vértice M, que não esteja em S para o qual Dist[M] é minimo;
      adicione o vertice M ao conjunto S;
      para cada vertice J ainda não em S faça:
            Dist[J] := min(Dist[J], Dist[M]+Edge[M,J]);
            Path[J] := M
      }
```

Para melhor entendimento desse algoritmo apresenta-se um exemplo considerando o grafo direcionado ilustrado na Figura

Figura 3: Grafo direcionado.

Os passos de execução do algoritmo podem ser resumidos através da Tabela 1 a seguir:

3.

Iter	S	M	Dist[2]	Dist[3]	Dist[4]	Dist[5]	Dist[6]
Inicial	{1}	-	30	Infinito	50	40	100
1	{1,2}	2	30	70	50	40	100
2	{1,2,5}	5	30	70	50	40	100
3	{1,2,5,4}	4	30	60	50	40	100
4	{1,2,5,4,3}	3	30	60	50	40	90
5	{1,2,5,4,3,6}	6	30	60	50	40	90

Tabela 1: Execução do algoritmo passo a passo.

Os elementos do array Dist[] são inicializados como sendo os pesos dos arcos conectados ao vértice 1. O peso do arco não existente entre o vértice 1 e 3 é colocado como infinito. Nesse ponto temos S={1}.

A primeira iteração procura um vértice que não está em S para o qual o valor correspondente de Dist[] seja o menor. Ou seja, o vértice 2, então S={1,2}. No segundo passo da iteração checa-se se é possível encurtar a distância entre o vértice 1 e um outro vértice utilizando-se do novo vértice que foi incorporado em S. A resposta é afirmativa pois para se chegar em 3 se utilizando do vértice 2 a distância cai de infinito para 70. O conteúdo de Dist[3] deve ser atualizado adequadamente. Nenhuma outra distância pode ser encurtada utilizando-se do vértice 2.

A segunda iteração descobre que entre os vértices que não pertencem a S, o vértice 5 é o que tem a menor distância. O vértice 5 deve então ser acrescentado a S, então S={1,2,5}. Nenhum caminho para outros vértices pode ter a sua distância encurtada através da utilização do vértice 5.

A terceira iteração determina que o vértice 4 tem o menor valor de Dist[] entre os vértices que não estão em S, então temos S={1,2,5,4}. Agora percebemos que é possível encurtar o caminho entre 1 e 3 através do vértice 4.

Na quarta iteração o vértice 3 é adicionado no conjunto S={1,2,5,4,3}, e descobre-se que é possível encurtar o caminho entre 1 e 6 através do vértice 3 passando pelo vértice 4.

A última iteração adiciona 6 em S. Todos os vértices agora passam para o conjunto S, significando que foram achados todos os menores caminhos entre o vértice 1 e os outros vértices.

4 Representação de grafos na linguagem Python

Um grafo pode ser representado de diversas formas, por exemplo, como array ou como listas.

Para esse EP você deverá utilizar *dicionários*, um tipo de dado da linguagem Python, que é bastante conveniente para a representação de grafos.

Por exemplo, um grafo não direcionado sem peso com 5 vértices e 5 arcos é descrito a seguir:

- · A -> C
- B → C, E
- · C -> A, B, D, E
- · D -> C
- · E -> C, B

pode ser representado como dicionário através da seguinte forma:

Figura 4: Grafo não direcionado sem peso

Figura 5: Grafo não direcionado com peso

Para o caso do grafo não direcionado com peso, ilustrado na Figura 5, a representação na linguagem Python através de *dicionário* pode ser realizada como abaixo:

O conteúdo do dicionário pode ser acessado da seguinte forma:

```
In [20]: graph['C']
Out[20]: {'A': 10, 'B': 25, 'D': 12, 'E': 15}
In [21]: graph['C']['B']
Out[21]: 25
```

5 Especificação do problema

O problema mais simples de logística terrestre é a escolha de um caminho que miniza a distância percorrida entre dois pontos. Como exemplo, apresenta-se, na Figura 6, um grafo hipotético onde os vértices representam as capitais dos estados do Brasil e os arcos com peso representam as rodovias e ferrovias e suas respectivas distâncias. As ferrovias quando existem são representadas em azul e são paraleas às rodovias.

Na Figura 6 os vértices do grafo são identificados por *labels* (A . . . W). As correspondências *label*-cidade são apresentadas a seguir:

- · A: Porto Alegre, B: Florianópolis, C: Curitiba,
- · D: São Paulo, E: Rio de Janeiro, F: Campo Grande,
- · G: Belo Horizonte, H: Vitória, I: Cuiabá,
- · J: Goiânia, K: Salvador, L: Rio Branco,
- · M: Porto Velho, N: Palmas, O: Aracaju,
- · P: Maceió, Q: Recife, R: João Pessoa,
- · S: Natal, T: Fortaleza, U: Teresina,
- · V: São Luis, X: Belém, Y: Macapá,
- · Z: Manaus. W: Boa Vista.

Uma empresa de operações logísticas de transporte rodoviário estabelece roteirizações que minimizam o caminho a ser percorrido. Eventualmente, caminhos mais longos podem ser vantajosos devido à velocidade máxima permitida, custo de combustível, custo de pedágio, etc. mas de uma maneira geral as operações logísticas unimodais tem a distância percorrida diretamente correlacionada ao tempo gasto e ao custo total da operação.

Em um sistema multimodal usualmente se estabelece um trade-off entre Tempo total $TT \times Custo$ total CT. As lojas online internacionais oferecem como opção ao consumidor a escolha de diferentes opções de frete com diferentes preços incluindo a opção de escolha de diferentes empresas de logística de transporte.

Dentro desse contexto é proposto aqui um problema de logística de transporte multimodal onde existem dois modais: um sistema rodoviário e um sistema ferroviário. O sistema rodoviário atinge todos as capitais dos estados mas o sistema ferroviário só cobre uma parte do território nacional.

Para cada trecho rodoviário ou ferroviário representado por um arco é atribuído um conjunto de pesos, i.e., um par de valores $(t_{\alpha\beta},c_{\alpha\beta})$, onde $t_{\alpha\beta}$ é o tempo de percurso e $c_{\alpha\beta}$ o custo do percurso entre os vértices α e β .

Deseja-se descobrir qual o caminho entre dois vértices que resulta no menor tempo total $TT_{\alpha\beta}$ e o caminho que resulta no menor custo total $CT_{\alpha\beta}$

A seguir apresenta-se os trechos rodoviários e os pesos $(t_{\alpha\beta}, c_{\alpha\beta})$ correspondentes:

Figura 6: Grafo representando as capitais dos estados e suas interconexões rodoviárias e ferroviárias. Ferrovias em azul são paralelas às rodovias.

1	. (A,B): (3.5, 200)	15.	(I,Z): (1500, 1000)	29.	(T,U): (5, 200)
2	. (B,C): (2.5, 200)	16.	(J,N): (7.5, 500)	30.	(U,V): (3, 200)
3	. (C,D): (3.5, 200)	17.	(G,J): (6,500)	31.	(V,X): (4.8, 200)
4	. (C,F): (7.5, 500)	18.	(N,P): (12.5, 1000)	32.	(X,Z): (13, 100)
5	. (D,E:) (4,200)	19.	(N,V): (8.5, 500)	33.	(Z,Y): (11, 1000)
6	. (E,G): (3,200)	20.	(N,M): (17.5, 1500)	34.	(Z,W): (6, 500)
7	. (E,H): (3.5, 200)	21.	(N,S): (15, 1000)	35.	(Z,M): (7.5, 500)
8	. (G,H): (3, 200)	22.	(H,K): (8,500)		
9	. (G,K): (10,500)	23.	(K,O): (2.5, 200)	36.	(Z,L): (7,500)
10	. (G,N): (11,1000)	24.	(O,P): (2.2,200)	37.	(L,M): (4.8, 200)
11	. (G,J): (6,500)	25.	(P,Q): (2,200)	38.	(I,N): (11,1000)
12	. (F,J): (7.5, 500)	26.	(Q,R): (1,200)	39.	(J,D): (8.6, 500)
13	. (F,I): (7.5, 500)	27.	(R,S): (0.8, 200)	40.	(J,P): (16.5, 1500)
14	. (I,M): (11,1000)	28.	(S,T): (4, 200)	41.	(U,Q): (8.5, 500)

A seguir apresenta-se os trechos ferroviários e os pesos $(t_{\alpha\beta}, c_{\alpha\beta})$ correspondentes:

1. (D,E): (8, 200)	6. (N,V): (17, 300)
2. (E,G): (6,200)	7. (N,M): (35, 500)
3. (J,N): (15, 300)	
4. (G,J): (12, 300)	8. (J,D): (17.4, 300)
5. (N,P): (25, 300)	9. (N,S): (30,400)

5.1 Representação de diferentes modais

Os diferentes modais podem ser representados como se fossem grafos distintos. Podemos representar os vértices da malha rodoviária acrescentando a letra R aos *labels*: {AR,...,WR}. Da mesma, forma os vértices da malha ferroviária são representados através do seguinte conjunto de *labels* {DT,ET,GT,JT,MT,NT,PT,VT}.

Os dois grafos podem ser representados numa mesma estrutura já que DR e DT por exemplo são interpretados como vértices distintos muito embora se referem ao mesmo local. Para cada par de vértices representando o mesmo local dois arcos unidirecionais cujos pesos representam o custo de troca de modal.

Por exemplo, vamos supor o grafo hipotético aonde $\{AT,BT,CT\}$ são os vértices que definem uma malha ferroviária e $\{BR,DR,ER\}$ os vértices de uma malha rodoviária. A mudança de modal só pode ser feita através dos vértices BR e BT. Existe um custo de mudança de modal distinto para cada direção. Para uma mudança do modal rodoviário (BR) para o modal ferroviário (BT) existe um custo p enquanto que o custo é q no sentido inverso.

Através dessa representação é possível utilizar o algoritmo de Djkistra como apresentado acima. Uma possível representação na linguagem Python é apresentada a seguir:

Figura 7: Exemplo de grafo com mudança de modal em (BT,BR).

```
'ER' : {'BR':w}
```

Para o modelo do sistema multimodal proposto existem pesos fixos de tempo e custo para a troca da carga da parte rodoviária para a parte ferroviária por exemplo para um nó B que possui conexão rodoviária e ferroviária:

```
• (BR,BT): (t_{BR,BT}, c_{BR,BT}) = (6, 100).
```

E pesos distintos para o sentido inverso:

• (BT,BR): $(t_{BT,BR}, c_{BT,BR}) = (2,50)$.

Os pesos podem ser interpretados como o custo logístico de tempo e monetário para fazer a mudança de modal.

6 Para você fazer

Os seguintes passos devem estar presentes no seu programa:

1. Estrutura de dados: o tipo de dado para representação de grafos será a classe denominada Grafo.

A classe Grafo deverá utilizar um dicionário de dicionários para a representação do grafo. Para cada elemento do dicionário, que representa um vértice, deve ser armazenado um array contendo as informações de tempo e custo: $[t_{\alpha\beta}, c_{\alpha\beta}]$.

Além do método constructor, os seguintes métodos devem constar:

- (a) AcrescentaVertice(v): Acrescenta um novo vértice v.
- (b) RemoveVertice(v): Remove o vértice v (Obs: não deve remover se houverem arcos conectados ao vértice).
- (c) AcrescentaArco(v1,v2,w): Acrescenta um novo arco entre os vértices v1 e v2 com peso dado por w=[t,c].
- (d) RemoveArco(v1,v2): remove o arco entre v1 e v2.
- (e) Path <- AchaCaminhoMenorTempo(v1,v2): acha o caminho de menor tempo total entre v1 e v2, Path é uma lista que contêm a sequencia dos vértices a serem visitados.
- (f) Path <- AchaCaminhoMenorCusto(v1,v2): acha o caminho de menor custo total entre v1 e v2, Path é uma lista que contêm a sequencia dos vértices a serem visitados.
- (g) ImprimeGrafo(): imprime na tela uma representação alfanumérica do seu grafo, por exemplo:

```
A -> C:[10,1]
B -> C:[25,3] E:[30,7]
C -> A:[10,2] B:[25,3] D:[12,6] E:[15,1]
D -> C:[12,5]
E -> C:[12,1] B:[30,2]
```

- 2. Algoritmo de menor tempo/custo: você deve implementar o algoritmo de Djikstra.
- 3. Entrada de dados: o grafo em questão deve ser lido de um arquivo. Nesse arquivo cada linha representa um arco com o seu vértice inicial e final e o seu peso. A seguir apresenta-se um exemplo:

```
A C:[10,1]
B C:[25,3] E:[30,7]
C A:[10,2] B:[25,3] D:[12,6] E:[15,1]
D C:[12,5]
E C:[12,1] B:[30,2]
```

- 4. Utilizando a infraestrutura descrita acima construa o seu programa principal de modo a responder as seguintes perguntas:
 - (a) Qual o menor tempo total para a logística de transporte de carga entre as seguintes capitais:
 - · A Y,
 - · G Y,
 - · D U,
 - · Q J,
 - · V K.
 - · L H,
 - · T W,
 - · X K,

Deve ser indicado o caminho percorrido e qual modal utilizado em cada trecho incluindo o tempo e custo associado.

- (b) Idem para o menor custo total.
- 5. As respostas devem ser impressas na tela e também em um arquivo em formato ASCII.
- $6.\;\;$ O código fonte do seu programa deve ser submetido no sistema Moodle.
- 7. DEADLINE: 09/05/2019 23h59min.

7 Referências

- 1. Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001). "Section 24.3: Dijkstra's algorithm". Introduction to Algorithms (Second ed.). MIT Press and McGraw-Hill. pp. 595-601. ISBN 0-262-03293-7.
- 2. Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs". Numerische Mathematik. 1: 269–271.