1

Math-Symbols-in-LATEX-Manual

polossk

Last Update November 5, 2017

Contents

1 Constants and Useful Symbols

2	Vector and Matrix Defination	1
3	Useful Functions and Operators	2
4	Useful Aliases and Generators	2
1	Constants and Useful Symbols	
	• \mi: alias of \mathrm i, i	
	• \me: alias of \mathrm e, e	
	• \mreal: alias of \mathbb R, \mathbb{R}	
	• \mhilb: alias of \mathbb H, ℍ	
	• \mcond: alias of \mathrm {Cond.}, Cond.	
	• \mconst: alias of \mathrm {const}, const	
	• : continuous function space. eg: \mscon{(I)} gets $C(I)$	
	• \mscab: continuous function space, alias of \mscon{[a, b]}, $C[a,b]$	
	• \mslbg[]{}: lebesgue function space. eg: \mslbg{2} gets $L^2(I)$, \mslbg[{[a, b]}]{2} gets $L^2([a,b])$;ets
	• \mssbl[]{}: sobolev function space. eg: \mssbl{m} gets $H^m(I)$, \mssbl[{[a, b]}]{m} g $H^m([a,b])$	ets

2 Vector and Matrix Defination

• \mv*: Vector Notations, alias of \bm *, * could be any English characters or Greek characters. For examples, \mva gets a, and \mvalpha gets α . The alphabet looks like this: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, α , β , γ , δ , ϵ , ζ , η , θ , ι , κ , λ , μ , ν , ξ , π , ρ , σ , τ , v, ϕ , χ , ψ , ω

- \mm*: Matrix Notations, alias of \mathbf *, * could be any English characters or Greek characters. For examples, \mma gets A, and \mmsigma gets Σ. The alphabet looks like this: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, Γ, Δ, Θ, Λ, Ξ, Π, Σ, Υ, Φ, Ψ, Ω
- \mm*t: Transposed Matrix Notations, alias of \{\mathbf *}^T, * could be any English characters or Greek characters. For examples, \mma gets A, and \mmsigma gets \(\mathbf{\Sigma}\). The alphabet looks like this: A^T , B^T , C^T , D^T , E^T , F^T , G^T , H^T , I^T , J^T , K^T , L^T , M^T , N^T , O^T , P^T , Q^T , R^T , S^T , T^T , U^T , V^T , W^T , X^T , Y^T , Z^T , T^T , D^T , D
- \mvzero, \mvone, \mmzero, \mmone: Special vector and matrix notation, 0, 1, 0, 1

3 Useful Functions and Operators

- \diff: diff operator, d, $\int_0^t f(\tau) d\tau$
- \Diff: Diff operator, D, D²X = $\frac{-x_{i+1,j} + 2x_{i,j} x_{i-1,j}}{\Delta x^2}$
- **\Expect**: Expect operator, E, X = B(n, p), E X = np
- $\langle diag, \langle eig, \langle tr \rangle \rangle$ Matrix operators, diag, eig, tr, $D = \operatorname{diag} A$, $[\Lambda, V] = \operatorname{eig} A$, tr $\Lambda = \operatorname{tr} A$
- \lcm: lcm operator, lcm, lcm $(f,g) \cdot \gcd(f,g) = f \cdot g$
- \rand: random number, rand
- \mean, \var: statistics operator, mean, var, $\mu = \text{mean } X$, $\sigma^2 = \text{var } X$
- \corr: correlation operator, corr, $corr(X,Y) = (R)_{ij} = \frac{\sum_{X_i,Y_j} (X \bar{X})(Y \bar{Y})}{\sqrt{\sum_i (X \bar{X})^2 \sum_j (Y \bar{Y})^2}}$
- \conv: convolution operator, conv, $\operatorname{conv}(f,g) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau) d\tau$
- \card: cardinals operator, card, card $\{1,2,3\}=3$, card $\mathbb{R}=2^{\aleph_0}$
- \argmin, \argmax, \argopt: argmin, argmax, argopt operator, $\hat{\theta} = \operatorname*{argmin}_{\theta} J_{\theta}(x)$
- \dist: distance operator, dist, $\min \sum_{\forall s,t \in G} \text{dist}(s,t)$
- \abs{}, \norm{}: norm operator, $|x+y| \le |x| + |y|$, ||Ax + b|
- \normlp{}{}: Lp-norm operator $\left\|1\right\|_2, \left\|\mathbf{A}x+b\right\|_2, \left\|\mathbf{A}x+b\right\|_{\infty}$

4 Useful Aliases and Generators

- \fracdiffs{}: frac & diff operator, also provide \dfracdiffs{} mode. For example, \fracdiffs{x} gets $\frac{d}{dx}$, \fracdiffs{y} gets $\frac{d}{dz}$
- \fracdiffd{}{}: frac & diff operator, also provide \dfracdiffd{}{} mode. For example, \fracdiffd{u}{x} gets $\frac{du}{dx}$, \dfracdiffd{^2u}{x^2} gets $\frac{d^2u}{dx^2}$

- \fracpartials{}: frac & partial operator, also provide \dfracpartials{} mode. For example, \fracpartials{x} gets $\frac{\partial}{\partial x}$, \dfracpartials{y} gets $\frac{\partial}{\partial y}$
- \fracpartiald{}{}: frac & partial operator, also provide \dfracpartiald{}{} mode. For example, \fracpartiald{u}{x} gets $\frac{\partial u}{\partial x}$, \dfracpartiald{^2u}{x^2} gets $\frac{\partial^2 u}{\partial x^2}$
- \mclosure, \mclosuresquare, \mclosurebrace: auto height brackets, eg $\left\{ \left[\left(a^2 + b^2 \right)^2 \right]^2 \right\}$
- \mvct, \mvctz: row vector creator, eg \mvct{a}{n} gets $(a_1, a_2, ..., a_n)$, \mvctz{a}{n} gets $(a_0, a_1, ..., a_n)$
- \mvctt, \mvctzt: column vector creator, eg \mvctt{a}{n} gets $(a_1, a_2, ..., a_n)^T$, \mvctzt{a}{n} gets $(a_0, a_1, ..., a_n)^T$
- \mequlist: provided a list of equations, eg \mequlist{x + y &= 10 \\4x + 2y &= 30} gets $\begin{cases} x+y=10 \\ 4x+2y=30 \end{cases}$