

Statistics Ex 7.3 Q13

Answer:

Let the assumed mean be A = 50 and h = 10.

Classinterval:	$Midvalue(x_i)$:	frequency: (f_i)	$d_i = x_i - A$ $= x_i - 50$	$u_i = \frac{1}{h}(d_i)$ $= \frac{1}{10}(d_i)$	$f_i u_i$
25-35	30	6	-20	10 · 17	-12
35-45	40	10	-10	-1	-10
45-55	50	8	0	0	0
55-65	60	12	10	1	12
65-75	70	4	20	2	8
		$\sum f_i = 40$			$\sum f_i u_i = -2$

We know that mean, $\overline{X} = A + h \left(\frac{1}{N} \sum f_i u_i \right)$

Now, we have $N = \sum f_i = 40$, $\sum f_i u_i = -2$, h = 10 and A = 50

Putting the values in the above formula, we have

$$\overline{X} = A + h \left(\frac{1}{N} \sum f_i u_i \right)$$

$$= 50 + 10 \left(\frac{1}{40} \times (-2) \right)$$

$$= 50 - \frac{20}{40}$$

$$= 50 - 0.5$$

$$= 49.5$$

Hence, the mean is 49.5.

Statistics Ex 7.3 Q14

Answer:

The given series is an inclusive series. Firstly, make it an exclusive series.

Class Interval	Mid-√alue(x _i)	Frequency(f _i)	$d_i = x_i - A \\ = x_i - 42$	$u_i = \frac{d_i}{h} = \frac{d_i}{5}$	$f_i u_i$
24.5-29.5	27	14	-15	-3	-42
29.5-34.5	32	22	-10	-2	-44
34.5-39.5	37	16	-5	-1	-16
39.5-44.5	A = 42	6	0	0	0
44.5-49.5	47	5	5	1	5
49.5-54.5	52	3	10	2	6
54.5-59.5	57	4	15	3	12
		$\sum f_i = 70$			$\sum f_i u_i = -79$

Let the assumed mean be A = 42 and h = 5.

We know that mean,
$$\overline{X} = A + h \left(\frac{1}{N} \sum f_i u_i \right)$$

Now, we have
$$N = \sum f_i = 70$$
, $\sum f_i u_i = -79$, $h = 5$ and $A = 42$

Putting the values in the above formula, we have

$$\overline{X} = A + h \left(\frac{1}{N} \sum_{i} f_{i} u_{i} \right)$$

$$= 42 + 5 \left(\frac{1}{70} \times (-79) \right)$$

$$= 42 - \frac{395}{70}$$

$$= 42 - 5.6438$$

$$= 36.3571$$

Hence, the mean is 36.357.

******* END *******