

何松柏电子工程学院

电子电路基础

UESTC

基库放大电路及分析

问题引入

基本放大电路及分析

- ●放大电路基本概念
- ●MOSFET基本放大器
- ●放大器的大信号分析
- ●放大器的小信号分析

基库放大电路及分析

放大器基本概念

信号传输中面临的问题

信噪比误码率

放大器基本概念

信号传输中面临的问题

拓展: 放大器会引入噪声吗?

放大器基本概念

信号放大

公共端---地

放大器的基本要素

放大的对象:变化量(通常情况)

放大的本质:能量的控制与转换

放大的特征: 功率放大(电压或电流)

放大的基本要求: 不失真或失真小于一定值

怎样利用MOSFET特性构成信号放大电路?

练习7.5 (P261) 如图所示电路, 讨论晶体管工 作状态

- a) For $v_{GS} = 5V$, what value of R_{ON} makes the MOSFET i_{DS} versus v_{DS} characteristic continuous between its triode and saturation regions of operation.
- b) Plot v_R versus v_D for the circuit shown in Figure 7.4. This circuit is useful in plotting the MOSFET characteristics. Assume that $K = 1mA/V^2$ and $V_T = 1V$. Use the value of R_{ON} calculated in (a). Use a volt scale for v_D and a millivolt scale for v_R .

a) Boundary between triode and saturation regions is when $v_{DS} = v_{GS} - V_T = 5 - V_T$

At this point,
$$i_{DS} = \frac{K}{2}(5 - V_T)^2$$

$$R_{ON} = \frac{v_{DS}}{i_{DS}} = \frac{5 - V_T}{\frac{K}{2}(5 - V_T)^2}$$

$$R_{ON} = \frac{2}{K(5-V_T)}$$

b) $R_{ON} = 500\Omega$

MOSFET is in triode region for $v_D \leq 4volts$. In triode region, $v_R = \frac{v_D}{500}$. In saturation region, $v_R = 8mV$.

拓展: 负半轴存在吗?

基本放大电路

思考: 当输入正弦信号,输出还是正弦信号吗? 如何改进电路?

输出电压与输入电压关系

$$v_{\rm O} = V_S - i_D R_L$$
.

$$i_D = \frac{K(\nu_{\rm IN} - V_T)^2}{2}.$$

$$v_{\rm O} = V_{\rm S} - K \frac{(v_{\rm IN} - V_T)^2}{2} R_L.$$

非线性关系

输出电压与输入电压关系

取一组参数

$$V_S = 10 \text{ V}$$

$$K = 1 \text{ mA/V}^2$$

$$R_L = 10 \text{ k}\Omega$$

$$V_T = 1 \text{ V}.$$

$v_{\rm O} = V_S - K^{\frac{1}{2}}$	$\frac{\nu_{\rm IN} - V_T)^2}{2} K$	\mathcal{E}_L
	1.	

$$= 10 - 5(\nu_{\rm IN} - 1)^2.$$

$v_{ m IN}$	$v_{\rm OUT}$
1	10
1.4	9.2
1.5	8.8
1.8	6.8
1.9	6
2	5
2.1	4.0
2.2	2.8
2.3	1.6
2.32	1.3
2.35	0.9
2.4	~ 0

分析数据结论?

- ◆ 增益是非线性的;
- ◆ 随着输入信号增大,输入趋于?

$$v_{\text{IN}} = 2 \text{ V}$$

$$v_{\text{OUT}}^2 - 3v_{\text{OUT}} + 1 = 0.$$

٠

$$v_{\text{OUT}} = 0.4 \text{ V}$$

$$i_D = 0.4 \text{ mA}.$$

MOSFET晶体管V-I特性及基本放大电路如图

- a) Determine v_{OUT} as a function of v_{IN} for $0 \le v_{\text{IN}}$.
- b) What is the lowest value of v_{IN} for which $v_{\text{OUT}} = 0$?
- c) Assume that $V_{\rm S}=15$ V, R=15 k Ω , $V_{\rm T}=1$ V and K=2 mA/V². Graph $v_{\rm OUT}$ versus $v_{\rm IN}$ for 0 V $\leq v_{\rm IN} \leq 3$ V.
- d) On the input-output graph, identify the regions over which the MOSFET behaves as an open circuit, behaves as a short circuit, and exhibits saturated behavior.

正常使用主观题需2.0以上版本雨课堂

a) When there is current going through R, the current is limited by two quantities: either $\frac{V_S}{R}$ or $\frac{K}{2}(v_{GS} - V_T)^2$, whichever is lower. If the limit is V_S/R , then the MOSFET is in the closed-switch region. If the limit is $\frac{K}{2}(v_{GS} - V_T)^2$, then the MOSFET is in the saturation region.

open-switch region For $v_{GS} \leq V_{T}$, the MOSFET is open, therefore $v_{OUT} = V_{S}$.

saturation region When $v_{\rm GS}$ begins to exceed $V_{\rm T}$, the quantity $v_{\rm GS}-V_{\rm T}$ is still small, so the current is limited by $\frac{K}{2}(v_{\rm GS}-V_{\rm T})^2$. This current determines the output voltage, which is given by $v_{\rm OUT}=V_{\rm S}-\frac{KR}{2}(v_{\rm IN}-V_{\rm T})^2$.

closed-switch region $i_{\rm DS}$ increases until it reaches $\frac{V_{\rm S}}{R}$ at some gate voltage $V_{\rm IN_T}$. Now $v_{\rm DS}$ drops to zeros, and both $i_{\rm DS}$ and $v_{\rm DS}$ are no longer affected by the increase in $v_{\rm GS}$.

In summary,

$$v_{\text{OUT}} = \begin{cases} V_{\text{S}} & 0 \le v_{\text{IN}} \le V_{\text{T}} \\ V_{\text{S}} - \frac{KR}{2} (v_{\text{IN}} - V_{\text{T}})^2 & v_{\text{T}} \le v_{\text{IN}} \le V_{\text{IN}_{\text{T}}} \\ 0 & V_{\text{IN}_{\text{T}}} \le v_{\text{IN}} \le V_{\text{IN}_{\text{MAX}}} \end{cases}$$

b) The lowest value of $v_{\rm IN}$ for which $v_{\rm OUT}=0$ occurs when $v_{\rm IN}$ is at the *transition* between the saturation region and the closed-switch region. At this point, the saturation region current limit and the closed-switch region current limit are the same,

$$i_{\rm DS} = \frac{V_{\rm S}}{R} = \frac{K}{2} (V_{\rm IN_T} - V_{\rm T})^2$$

Solving for $V_{\text{IN}_{\text{T}}}$ we get

$$V_{\rm IN_T} = \sqrt{\frac{2V_{\rm S}}{KR}} + V_{\rm T}$$

c) Combining the results of part (a) and (b), we obtain the following equations.

$$v_{\text{OUT}} = \begin{cases} 15 & 0 \le v_{\text{IN}} \le 1\\ 15 - 15(v_{\text{IN}} - 1)^2 & 1 \le v_{\text{IN}} \le 2\\ 0 & 2 \le v_{\text{IN}} \le 3 \end{cases}$$

MOSFET放大器的偏置

◆ 问题: 输入信号幅度低于截止时,会出现什么现象? 如何解决?

截止失真

MOSFET放大器的偏置

放大器分析

大信号分析(信号幅度变化范围较大)

小信号分析(信号幅度围绕工作点 在较小的范围内变化)

UESTC

- ◆ 大信号分析主要解决的问题?
 - 1 如何得到输入输出电压的关系?

2 在放大状态下,有效输入范围,相应的输出范围?

◆ 放大区域输入输出电压的关系

大信号模型, 求解非线性方程

方法

图解方法

负载线

 $v_{DS} = V_S - i_{DS}R_L$.

$$i_{DS} = \frac{V_S}{R_L} - \frac{v_{DS}}{R_L}.$$

负载线

有效电压范围和工作点

1最低有效输入电压

lowest valid input voltage = V_T .

晶体管处于截止状态,输出电压是 -----?

2 最高有效输入电压

进入三极管区域

讨论有哪些方法?

(1) 图解, 求交点;

(2)解析,方程组求解。

问题:

- (1) 输入有效电压范围?
- (2) 输出有效电压范围?
- (3) 对应的漏极电流?

思考根据下图如何求解输入输出范围?

放大有效输入输出范围?

正常使用主观题需2.0以上版本雨课堂

放大器输入输出范围?

最大有效输入范围
$$V_T \rightarrow \frac{-1 + \sqrt{1 + 2V_S R_L K}}{R_L K} + V_T$$

最大有效输出范围

$$V_S \rightarrow \frac{-1 + \sqrt{1 + 2V_S R_L K}}{R_L K}$$
.

- ◆工作点---偏置电压,对放大器性能影响很大
- ◆ 根据放大器不同性能要求,选择工作点依据不同 (查阅资料,有哪些性能要求?)
- ◆ 放大器设计优化

例7.12(P247)

◆ 工作点有效范围

◆ 为使输入信号变化范围最大,选择有效输入范围的中点作为工作点

◆ 例

$$R_L = 10 \text{ k}\Omega$$

$$K = 1 \text{ mA}/\text{V}^2$$

$$V_S = 5 \text{ V}$$

$$V_T = 1 \text{ V}$$

◆ 输出是中点吗?

▶ BJT相关内容要求通过例7.13—7.16以及查阅资料自学。

◆ 讨论如何放大两个信号的差?对电路有什么要求?

例7.19

给出下图的输出电压表达式, 讨论如何保证晶体 管工作在饱和区

◆ 输入输出关系

$$i_{D2} = \frac{K}{8} \left(\sqrt{\frac{4I_S}{K} - (\nu_{\text{IN}1} - \nu_{\text{IN}2})^2} - \nu_{\text{IN}1} + \nu_{\text{IN}2} \right)^2$$

$$v_{\text{OUT}} = V_S - \frac{RK}{8} \left(\sqrt{\frac{4I_S}{K} - (v_{\text{IN}1} - v_{\text{IN}2})^2} - v_{\text{IN}1} + v_{\text{IN}2} \right)^2$$

◆ 讨论如何解决差为零,输出也为零

例7.21

P沟道MOSFET

分析电路,输入信号差为零,输出电压为零的条件

分析

$$v_{\text{OUT}} = \frac{R_2 K_p}{2} \left(\frac{R_1 K_n}{8} \left(\sqrt{\frac{4I_S}{K_n} - (\nu_{\text{IN}1} - \nu_{\text{IN}2})^2} - \nu_{\text{IN}1} + \nu_{\text{IN}2} \right)^2 + V_{Tp} \right)^2 - V_S.$$

输入信号差为零,输出为零的条件

$$V_S = \frac{R_2 K_p}{2} \left(\frac{R_1 I_S}{2} + V_{Tp} \right)^2.$$

源极跟随器(缓冲器)电路如图,MOSFET晶体管V-I特性如图,分析大信号特性。

- (1) 晶体管工作在饱和区,给出输出-输入关系?
- Determine the range of $v_{\rm IN}$ over which the assumption of saturated MOSFET operation holds. What is the corresponding range for $v_{\rm OUT}$?
- (3) 与例题7.10(P242)比较

分析

$$v_{\text{OUT}} = \left[\frac{\sqrt{(2/RK) + 4(v_{\text{IN}} - V_{\text{T}})} - \sqrt{2/RK}}{2} \right]^2.$$

$$V_{\rm S} \ge v_{\rm OUT} \ge 0V$$

$$V_T \le v_{IN} \le V_S + V_T$$

总结

大信号分析: 列写非线性方程, 结合图解法分析。

◆ 习题: 练习7.10 P263 问题 7.6, 7.11

建议讨论题:

问题7.3,7.4,问题7.8

何松档电子工程学院

谢谢!

