Continuity

Section 2.5

Outline

- Continuity at a Point / on an Interval
- Discontinuity
- Some Operators That Preserve Continuity
- Examples
- Properties of Continuous Functions

Continuity at a Point

▶ The limit of a function as x approaches a can often be found simply by calculating the value of the function at a. Functions with this property are called continuous at a.

1 Definition A function f is continuous at a number a if

$$\lim_{x \to a} f(x) = f(a)$$

Continuity at a Point

- lacktriangle Remark: If f(x) is continuous at x=a , then
- ▶ 1. f(a) is defined (that is , a is in the domain of f(x))
- 2. $\lim_{x \to a} f(x)$ exists
- 3. $\lim_{x \to a} f(x) = f(a)$
- Intuition: The graph of a continuous function has no hole or break.

Ex:
$$f(x) = \begin{cases} [\sqrt{x}] + cx, & \text{for } x \ge 3. \end{cases}$$
 Find constant c $\frac{|-x^2 + x + 6|}{x - 3}, & \text{for } x < 3. \end{cases}$ Such that $f(x)$ is continuous at $x = 3$.

Continuity on an Interval

2 Definition A function f is continuous from the right at a number a if

$$\lim_{x \to a^+} f(x) = f(a)$$

and f is continuous from the left at a if

$$\lim_{x \to a^{-}} f(x) = f(a)$$

3 Definition A function f is **continuous on an interval** if it is continuous at every number in the interval. (If f is defined only on one side of an endpoint of the interval, we understand *continuous* at the endpoint to mean *continuous from the right* or *continuous from the left*.)

Q: Find a function that is continuous only at one point,

Discontinuity

- If f is defined near a (i.e. f is defined on an open interval containing a, except perhaps at a), we say that f is **discontinuous at** a (or f has a **discontinuity** at a) if f is not continuous at a.
- Some types of discontinuity:
 - Removable discontinuity
 - Jump discontinuity
 - ▶ Infinite discontinuity
 - Essential discontinuity

Removable Discontinuity	lim fix) exists but fa) is x->a not defined or lim fax) = fa)	E _X :
Jump Discontinuity	lim fix) and lim fix) exist x+a- but lim fix; \(\frac{1}{2} \) lim fix) x-sa+	
Infinit Discontinuity	(im f(x) = ± ∞) x+a	
Essential Discontinuity	Near x=a fcx, varies rapidly.	

Some Operators That Preserve Continuity

- Theorem If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:
- **1.** f + g

2. f - g

3. *cf*

4. fg

- $5. \ \frac{f}{g} \quad \text{if } g(a) \neq 0$
- **8** Theorem If f is continuous at b and $\lim_{x \to a} g(x) = b$, then $\lim_{x \to a} f(g(x)) = f(b)$. In other words,

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$$

Theorem If g is continuous at a and f is continuous at g(a), then the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a.

Ex: Show that if fix) and gix) are continuous at x=a and c is a constant then f(x) + g(x), cf(x), and f(x).g(x) are continuous at x=a. If we further assume that $g(a) \neq 0$, then $\frac{f(x)}{g(x)}$ is continuous at x=a.

Remark: Theorem 8 can be proved by the precise definition of a limit. The continuity of f is necessary. In fact, there are examples such that | im g(x) = b and | im f(x) = L but lim f(g(x)) # L.

Remark: We can prove Theorem 9 by Theorem 8.

Ex: Show that lim of f(x) = n/ lim f(x).

Examples of Continuous Functions

Theorem The following types of functions are continuous at every number in their domains:

polynomials rational functions

root functions trigonometric functions

Exponential functions are also continuous on its domain. Ex: Show that sinx and cosx are continuous at x=0.

Ex: Show that sinx and cosx are continuous at any x=xo.

Sol:

Ex: Show that tanx, cotx, secx, cscx are continuous on their domains

Ex: compute
$$\lim_{x\to 1} \tan(\pi \frac{3(x-1)}{x-1})$$
.

Properties of Continuous Functions

10 The Intermediate Value Theorem Suppose that f is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that f(c) = N.

Properties of Continuous Functions

- Applications: The Intermediate Value Theorem can be used to locate roots of equations.
- Question:
- Show that a continuous 1-1 function is either increasing or decreasing. (Hence, we can show that the inverse function of any continuous function is also continuous.)

Ex: Show that $f(x) = x^2 - 3 + \frac{1}{x}$ has at least two real roots on the interval $\left[\frac{1}{3}, 2\right]$.

Ex: Does
$$f(x) = \frac{x^2+1}{x-1}$$
 have real roots on the interval $(0, 2)$?

Ex: Prove that if f(x) is continuous with domain [0,1] and range contained in [0,1] then there is some [C,1] such that f(c) = [C,1] (we call [C,1])

Review

- Write the equation which expresses that f is continuous at the point a.
- Describe some types of discontinuity.
- List operations that preserve continuity.
- List some types of continuous functions.
- State the Intermediate Value Theorem.