Week 1

the Laplace Transform

Example of transformations:

Let's ponder for a moment some of the many fantastic transformations we've studied in the past:

- 1. $f(x) = x^2$
- $2. \ \frac{d}{dx}x^2 = 2x$
- 3. $\int x^2 dx = \frac{1}{3}x^3 + C$
- 4. $\int_0^3 x^2 dx = g$

Definition of the Laplace Transform:

For a function f(t),

$$L\{f(t)\} = \int_0^\infty f(t)e^{-st}dt, s > 0$$

where $L\{f(t)\}$ is a function of s.

Remark: L provides an efficient method to solve ODEs.

Theorem 1.1 Linearity of the Laplace transform

For a, b constants, and f, g functions, The Laplace transform satisfies

$$L\{af(t) + bg(t)\} = aL\{f(t)\} + bL\{g(t)\}$$

Definition of the kernel:

 e^{-st} is called the **kernel** of the Laplace transform.

Definition of the domain:

The **domain** of $F(s) = L\{f(t)\}$ is the set of values of s such that F(s) converges.

Example of computing $L\{t\}$:

Recall integration by parts: $\int u dv = uv - \int v du$

$$\begin{split} L\{t\} &= \int_0^\infty t e^{-st} dt \\ &= \lim_{\beta \to \infty} \int_0^\beta t e^{-st} dt \\ &= \lim_{\beta \to \infty} t \left(-\frac{1}{s} \right) e^{st} |_0^\beta - \int_0^\beta \left(-\frac{1}{s} e^{-st} dt \right) \\ &= \lim_{\beta \to \infty} -\frac{\beta}{s} e^{s\beta} + \frac{1}{s} \int_0^\beta e^{-st} dt \\ &= \lim_{\beta \to \infty} -\frac{\beta}{s} e^{-s\beta} + \frac{1}{s} \left[-\frac{1}{s} e^{-st} \right]_0^\beta \\ &= \lim_{\beta \to \infty} -\frac{\beta}{s} e^{-s\beta} + \frac{1}{s^2} \left[1 - e^{s\beta} \right] \\ &= \frac{1}{s^2} \end{split}$$

Wow, that computation sucked! Luckily, we will be given formula sheets to speed up these calculations. This is because the objective of this class is to solve ODEs using Laplace as a tool, not to practice computing integration by parts.

Theorem 1.2 Laplace transformations of power functions

We have, in general, $L\{t^p\}=\int_0^\infty t^p e^{-st}dt=\frac{1}{s^{p+1}}\int_0^\infty x^p e^-xdx$ where x=st. So

$$L\{t^p\} = \frac{1}{s^{p+1}}\Gamma(p+1)$$

Theorem 1.3 Properties of the Gamma function

- 1. When p > 0, $\Gamma(p+1) = p\Gamma(p)$ (Recurrence Relation)
- 2. When $p\in\mathbb{N},$ $\Gamma(p)=(p-1)!$ (Generalization of Factorial)
- 3. When $p \leq 0$ and $p \in \mathbb{Z}$, $\Gamma(p)$ does not exist
- 4. When p<0 and $p\notin\mathbb{Z},$ use successive applications of the Recurrence Relation $\Gamma(p)=\frac{1}{p}\Gamma(p+1)$