Les graphes

I. Graphes non orientés

1. Généralités

Définitions.

- \bullet Un graphe *non orienté* G est un ensemble de *sommets* reliés par des arêtes.
- Deux sommets reliés par une arête sont adjacents.
- Une arête est une **boucle** si elle relie un sommet à **lui-même**.
- L'ordre d'un graphe est le nombre total de ses sommets.
- On appelle *degré* d'un sommet le nombre d'arêtes dont ce sommet est une extrémité (les boucles étant comptées deux fois). Ce degré vaut 0 si ce sommet est *isolé*.
- Un graphe est *simple* si deux sommets distincts sont joints par *au plus* une arête et s'il est *sans boucle*.
- Un sous-graphe G' d'un graphe G est un graphe constitué de certains sommets de G ainsi que des arêtes qui relient ces sommets.

Exercice 1.5. On considère le graphe ci-dessous :

- 1. Quel est l'ordre du graphe?
- 2. Ce graphe est-il simple? Justifier.
- 3. À l'aide d'un tableau, déterminer le degré de chacun des sommets du graphe.
- 4. Les sommets A et D sont-ils adjacents? Justifier. Même question pour D et E.
- 5. Dessiner le sous-graphe ACDE. Quel est son ordre et combien possède-t-il d'arêtes?

Théorème

Dans un graphe $simple \ non-orient\'e$, la somme des degrés des sommets égal au double du nombre d'arêtes.

Démonstration

Lorsqu'on additionne les degrés des sommets, une arête est comptée deux fois, une pour chaque extrémité.

Corollaire

Dans un graphe *simple non- orienté*, le nombre de sommets de degré *impair* est *pair*.

Démonstration

Soit p la somme des degrés des sommets pairs et m la somme des degrés des sommets impairs.

m+p est égal à la somme des degrés des sommets c'est donc un nombre pair donc m est un nombre pair.

Or une somme d'entiers impairs est paire si, et seulement si, il y a un nombre pair de termes

On en déduit que le nombre de sommets impairs est un entier pair.

2. Graphe complet

Définition.

Un graphe non-orienté est *complet* si *tous* ses sommets sont deux à deux *adjacents*.

Graphe complet d'ordre 3

Graphes complets d'ordre 4

Graphe complet d'ordre 5

II. Parcourir un graphe non-orienté

1. Chaîne

Définitions.

- Dans un graphe non-orienté, une *chaîne* est une suite de sommets dans laquelle deux sommets consécutifs sont *adjacents*.
- \bullet La longueur d'une chaîne est le $nombre\ d'arêtes$ qui composent la chaîne.
- Une chaîne est *fermée* si le premier et dernier sommet sont *confondus*.
- Un *cycle* est une chaîne fermée dont les arêtes sont *distinctes*.
- Un graphe est dit *connexe* si deux sommets distincts quelconques de ce graphe peuvent être reliés par une arête.

Exemple. On considère le graphe suivant :

- \bullet Ce graphe est d'ordre 6 mais est non connexe car il n'existe pas de chaîne reliant les sommets F et C.
- La chaîne A E D C A est un cycle de longueur 4.

2. Chaîne eulérienne

Définitions.

- Une chaîne eulérienne est une chaîne qui contient chaque arête du graphe une et une seule fois.
- Un *cycle eulérien* est une chaîne eulérienne *fermée*.

Théorème

Dans le cas d'un graphe non-orienté, un graphe *connexe* admet une *chaîne eulérienne* si et seulement si le nombre de sommets de *degré impair* vaut 0 ou 2. Ce théorème porte le nom d'Euler.

Corollaire

- Un graphe *connexe* admet un *cycle eulérien* si et seulement si *tous* ses sommets sont de degré *pair*.
- Un graphe ayant plus de deux sommets de degré impair ne possède pas de chaîne eulérienne.

Exercice 2.5.

Le graphe suivant modélise le plan d'une zone résidentielle. Les arêtes du graphe représentent les rues et les sommets du graphe les carrefours.

- 1. Donner l'ordre du graphe puis le degré de chacun des sommets.
- 2. Un piéton peut-il parcourir toutes ces rues sans emprunter plusieurs fois la même rue :
 - (a) en partant d'un carrefour et en revenant à son point de départ ? Justifier la réponse.
 - (b) en partant d'un carrefour et en arrivant à un carrefour différent? Justifier la réponse.

III. Graphes orientés

1. Définition et exemples

Définition.

Un graphe est *orienté* lorsque ses arêtes sont définies par une origine et une extrémité. Dans ce cas, les arêtes sont aussi appelées *arcs* et on parle de degré entrant d'un sommet pour le nombre d'arcs dirigés vers le sommet et de degré sortant pour le nombre d'arcs partant du sommet.

Exemple d'un graphe orienté d'ordre 6 non simple.

Remarque. Les définitions et les propriétés relatives aux graphes non-orientés s'appliquent dans le cas d'un graphe orienté, excepté la notion de graphe complet et théorème d'Euler.

2. Matrice d'adjacence d'un graphe

Définition.

La matrice associée à un graphe, orienté ou non, d'ordre n est la matrice de taille n, où le terme de la i-ème ligne et de la j-ème colonne est égal au au nombre d'arêtes reliant les sommets i et j. Cette matrice est appelée *matrice d'adjacence* du graphe.

Exemples.

1. Cas d'un graphe orienté:

2. Cas d'un graphe non orienté:

La matrice d'adjacence d'un graphe non-orienté est toujours symétrique et la diagonale de cette matrice ne comporte que des zéros.

Propriété.

On considère un graphe d'ordre n et on note M sa matrice d'adjacence.

Le nombre de chemins de longueur p reliant deux sommets i et j est donné par le terme de la i-ème ligneet de la j-ème colonne de la matrice M^p noté m_{ij}^p .

Exercice 3.5.

On considère le graphe Γ ci-dessous.

- 1. Donner la matrice M associée au graphe Γ (les sommets seront rangés dans l'ordre alphabétique).
- 2. On donne:

$$M^{3} = \begin{pmatrix} 2 & 7 & 1 & 3 & 4 & 8 & 5 & 3 \\ 7 & 4 & 6 & 1 & 10 & 8 & 3 & 4 \\ 1 & 6 & 0 & 4 & 1 & 3 & 1 & 3 \\ 3 & 1 & 4 & 0 & 6 & 3 & 1 & 1 \\ 4 & 10 & 1 & 6 & 4 & 8 & 3 & 7 \\ 8 & 8 & 3 & 3 & 8 & 6 & 2 & 8 \\ 5 & 3 & 1 & 1 & 3 & 2 & 0 & 5 \\ 3 & 4 & 3 & 1 & 7 & 8 & 5 & 2 \end{pmatrix}.$$

Déterminer, en justifiant, le nombre de chaînes de longueur 3 reliant B à H. Les citer toutes.