Kernel methods in machine learning — Homework 1

Hugo Cisneros

March 13th, 2019

Exercise 1. Kernels

1.1 K is symmetric since

$$\forall x, y \in \mathbb{R}^2 K(y, x) = \cos(-(x - y)) = \cos(x - y) = K(x, y)$$

and because for all sequences of (x_i) and (a_i) of \mathbb{R}

$$\sum_{i} \sum_{j} a_i a_j \cos(x_i - x_j) = \sum_{i} \sum_{j} a_i a_j (\cos x_i \cos x_j + \sin x_i \sin x_j)$$
$$= \left(\sum_{i} a_i \cos x_i\right)^2 + \left(\sum_{i} a_i \sin x_i\right)^2 \ge 0$$

K is p.d.

1.2 K is clearly symmetric and $\forall x, y \in \mathcal{X}$,

$$K(x,y) = \frac{1}{1-x^T y}$$

$$= \lim_{n\to\infty} \sum_{k=0}^n (x^T y)^k$$
 (converges because by C-S $|x^T y| \le ||x||_2 ||y||_2 < 1$)

Since all powers of the linear kernel are p.d. kernels, and a sum of p.d. kernels is a p.d. kernel, the above sum is a p.d. kernel for all n. Therefore, K is p.d. as a point-wise limit of a sequence of p.d. kernels.

1.3 The kernel K is symmetric because the intersection is a commutative operation.

$$\begin{split} \sum_{i=1}^n a_i a_j (P(A_i \cap A_j) - P(A_i) P(A_j)) &= \sum_{i=1}^n a_i a_j (\mathbb{E}[\mathbb{1}_{A_i \cap A_j}] - \mathbb{E}[\mathbb{1}_{A_i}] \mathbb{E}[\mathbb{1}_{A_j}]) \\ &= \mathbb{E}\left[\sum_{i=1}^n a_i a_j \mathbb{1}_{A_i} \mathbb{1}_{A_j}\right] - \sum_{i=1}^n \mathbb{E}[a_i \mathbb{1}_{A_i}] \mathbb{E}[a_j \mathbb{1}_{A_j}] \\ &= \mathbb{E}\left[\left(\sum_{i=1}^n a_i \mathbb{1}_{A_i}\right)^2\right] - \left(\sum_{i=1}^n a_i \mathbb{E}[\mathbb{1}_{A_i}]\right)^2 \end{split}$$

By Jensen's inequality, the above quantity is positive because the function $\phi:(X_1,...,X_n)\mapsto (\sum_{i=1}^n a_iX_i)^2$ is convex. Therefore, K is p.d..

1.4

1.5

Exercise 2. RKHS

2.1 $\alpha K_1 + \beta K_2$ is **p.d.** as sum of p.d. kernels and because α and β are positive scalars. Let \mathcal{H}_1 and \mathcal{H}_2 be their respective RKHS.

Since, K_1 and K_2 are p.d., by Aronszajn's theorem there exist Φ_1, Φ_2 mappings from \mathcal{X} to \mathcal{H}_1 and \mathcal{H}_2 such that $\forall x, y \in \mathbb{R}^2$

$$K(x,y) \triangleq \alpha K_1(x,y) + \beta K_2(x,y)$$

$$= \langle \sqrt{\alpha} \Phi_1(x), \sqrt{\alpha} \Phi_1(y) \rangle_{\mathcal{H}_1} + \langle \sqrt{\beta} \Phi_2(x), \sqrt{\beta} \Phi_2(y) \rangle_{\mathcal{H}_2}$$

$$= \langle \Phi(x), \Phi(y) \rangle_{\mathcal{H}}$$

Where $\langle ., . \rangle_{\mathcal{H}}$ is defined above and

$$\Phi: \mathcal{X} \to \mathcal{H} \triangleq \sqrt{\alpha} \mathcal{H}_1 + \sqrt{\beta} \mathcal{H}_2$$
$$x \mapsto \sqrt{\alpha} \Phi_1(x) + \sqrt{\beta} \Phi_2(x)$$

 $\langle .,. \rangle_{\mathcal{H}}$ is clearly an inner product. And for any $(x_n)_{n \in \mathbb{N}}$ sequence of \mathcal{H} , we have that $\forall n \in \mathbb{N}, x_n = \sqrt{\alpha}x_{1,n} + \sqrt{\beta}x_{2,n}$ and $\forall n, m \in \mathbb{N}$

$$||x_{n} - x_{m}||_{\mathcal{H}}^{2} = ||\sqrt{\alpha}(x_{1,n} - x_{1,m}) + \sqrt{\beta}(x_{2,n} - x_{2,m})||_{\mathcal{H}}^{2}$$

$$= \langle \sqrt{\alpha}(x_{1,n} - x_{1,m}) + \sqrt{\beta}(x_{2,n} - x_{2,m}), \sqrt{\alpha}(x_{1,n} - x_{1,m}) + \sqrt{\beta}(x_{2,n} - x_{2,m})\rangle_{\mathcal{H}}$$

$$= \alpha \langle x_{1,n} - x_{1,m}, x_{1,n} - x_{1,m}\rangle_{\mathcal{H}_{1}} + \beta \langle x_{2,n} - x_{2,m}, x_{2,n} - x_{2,m}\rangle_{\mathcal{H}_{2}} \quad \text{(by definition of } \langle ., . \rangle_{\mathcal{H}})$$

$$= \alpha ||x_{1,n} - x_{1,m}||_{\mathcal{H}_{1}}^{2} + \beta ||x_{2,n} - x_{2,m}||_{\mathcal{H}_{2}}^{2}$$

Therefore, if (x_n) is a Cauchy sequence, $(x_{1,n})$ and $(x_{2,n})$ are also Cauchy sequences. Because \mathcal{H}_1 and \mathcal{H}_2 are Hilbert spaces, the two sequences converge and (x_n) converges. \mathcal{H} is a Hilbert space.

Let's consider the functions $K_x: t \mapsto K(x,t) = \alpha K_1(x,t) + \beta K_2(x,t)$ for $x \in \mathcal{X}$

Let, $f \in \mathcal{H}$, $x \in \mathcal{X}$. f can be written $f = \sqrt{\alpha} f_1 + \sqrt{\beta} f_2$ with $f_1 \in \mathcal{H}_1$ and $f_2 \in \mathcal{H}_2$.

$$f(x) = \sqrt{\alpha} f_1(x) + \sqrt{\beta} f_2(x)$$

$$= \sqrt{\alpha} \langle f_1, K_{1,x} \rangle_{\mathcal{H}_1} + \sqrt{\beta} \langle f_2, K_{2,x} \rangle_{\mathcal{H}_2}$$

$$= \langle f, K_x \rangle_{\mathcal{H}}$$

2.2

Exercise 3. RKHS

3.1 \mathcal{H} is Hilbert:

 \mathcal{H} is a vector space of functions. $\langle ., . \rangle_{\mathcal{H}}$ is a symmetric bilinear form verifying $\forall f, \langle f, f \rangle_{\mathcal{H}} \geq 0$.

Since f is absolutely continuous, it has a derivative almost everywhere and the following equality holds $\forall x \in [0,1]$

$$|f(x)|^2 = \left| f(0) + \int_0^x f'(x) dx \right|^2$$

$$= \left| \int_0^x f'(x) dx \right|^2$$

$$\leq x \cdot \int_0^x f'(u)^2 du = x \cdot \langle f, f \rangle_{\mathcal{H}}$$

$$(f(0) = 0)$$

 $\langle f, f \rangle_{\mathcal{H}} \implies f = 0$ and $\langle ., . \rangle_{\mathcal{H}}$ is therefore and inner product. \mathcal{H} is a pre-Hilbert space with $\langle ., . \rangle_{\mathcal{H}}$ as inner product.

Let (f_n) a Cauchy sequence of \mathcal{H} . (f'_n) is a Cauchy sequence of $L^2([0,1])$ which is complete. Therefore it converges to a function $g \in L^2([0,1])$.

Since for all (n,m), $x \in [0,1]$, $|f_n(x) - f_m(x)|^2 \le x \cdot ||f_n - f_m||_{\mathcal{H}}^2$, the sequence $f_n(x)$ is Cauchy for any x and converges to a real number f(x). And since $f(x) = \lim_{\infty} f_n(x) = \lim_{\infty} \int_0^x f_n'(u) du = \int_0^x g(u) du$, f is absolutely continuous and f' = g almost everywhere. Moreover, $f' \in L^2([0,1])$ and $f(0) = \lim_{\infty} f_n(0) = 0$.

Finally, $||f_n - f||_{\mathcal{H}} = ||f'_n - g||_{L^2([0,1])} \to 0$ and $f \in \mathcal{H}$. \mathcal{H} is complete, therefore \mathcal{H} is a Hilbert space.

Reproducing property:

We will now show that \mathcal{H} is the RKHS with corresponding kernel $K:(x,y)\to \min(x,y)$ on [0,1].

For $x \in [0,1]$, the function $K_x = \min(x,\cdot)$ is differentiable except on the singleton x which has a null measure, it is absolutely continuous. Its derivative is square integrable and $\min(x,0) = 0$, therefore K_x is in \mathcal{H} for all x.