

[1]Data Science 개요

- ✓ Data Science 정의
- ✓ Data Science 사례
- ✓ Data Science Process
- ✓ 분석도구 R

Data Science?

• 정의

컴퓨터 도구를 효율적으로 이용하고, 적절한 통계학 방법을 사용하여 실제적인 문제에 답을 내리는 활동

SE

사례 1: (국가 경제) 국가별 경제 수준과 의료 수준의 상관관계 분석

- 데이터정의(data definition)
 - 국가별 경제 수준: 일인당 GDP
 - 의료 수준 : 평균 기대 수명
- 데이터 취득(data acquisition): 갭마인더(Gapminder)
 - 나라별, 연도별 평균기대수명, 일인당 GDP, 인구수 수집데이터
- 데이터 가공(data processing)
 - 각 기관으로부터 수집된 데이터를 통합하고 필요한 변수들을 테이블로 정리
 - country: 142개의 다른 값(levels)을 가진 인자(factor) 변수
 - continent: 다섯 가지 값을 가진 인자 변수
 - year: 숫자형의 연도 변수. 1952년과 2007년 사이 5년 간격
 - lifeExp: 이 해에 태어난 이들의 평균 기대 수명
 - pop: 인구
 - gdpPercap: 일인당 국민소득(GDP per capita)

갭마인더 데이터는 위의 변수가 각 나라와 연도별로 수집된 것을 보여준다.

no.	country	continent	year	lifeExp	рор	gdpPercap
1	Afghanistan	Asia	1952	28.801	8425333	779.4453
2	Afghanistan	Asia	1957	30.332	9240934	820.8530
3	Afghanistan	Asia	1962	31.997	10267083	853.1007
1699	Zimbabwe	Africa	1982	60.363	7636524	788.8550
1700	Zimbabwe	Africa	1987	62.351	9216418	706.1573
1701	Zimbabwe	Africa	1992	60.377	10704340	693.4208

사례 1: (국가 경제) 국가별 경제 수준과 의료 수준의 상관관계 분석

Gapminder World 지표 (http://www.gapminder.org/data)

- 기대 수명(Life Expectation)
- 1 인당 소득(income per person)

사례 1: (국가 경제) 국가별 경제 수준과 의료 수준의 상관관계 분석

Gapminder World 지표를 이용한 시각화 예

• 1인당 소득수준과 인구수

국내통계자료

국가통계포털 (http://kosis.kr/index/index.do)

국내통계자료

통계자료: 국내 총 인구 수

사례2: (부동산 경제) 주택가격 예측

- 보스턴 주택 데이터세트(Boston house-price dataset) [Belsley, et al. (1980)]
- 변수 14개, 506개 데이터
 - crim: 범죄발생률
 - zn: 주거지 중 25000 ft² 이상 크기의 대형주택이 차지하는 비율
 - indus: 소매상 이외의 상업지구의 면적 비율
 - chas: 찰스강과 접한 지역은 1, 아니면 0인 더미변수(dummy variable)
 - nox: 산화질소 오염도
 - rm: 주거지당 평균 방 개수
 - age: 소유자 주거지(전세 혹은 월세가 아닌) 중 1940년 이전에 지어진 집들의 비율
 - dis: 보스턴의 5대 고용 중심으로부터의 가중 평균 거리
 - rad: 도시 순환 고속도로에의 접근 용이 지수
 - tax: 만 달러당 주택 재산세율
 - ptratio: 학생-선생 비율
 - black: 흑인 인구 비율(Bk)이 지역 평균인 0.63과 다른 정도의 제곱, 1000(Bk 0.63)²
 - lstat: 저소득 주민들의 비율 퍼센트
 - medv: 소유자 주거지(비 전세/월세) 주택 가격

사례2: (부동산 경제) 주택가격 예측

- 수치형 값을 예측하기 위해 회귀분석 사용
- 선형회귀분석(linear regression)
 - 주택가격에 영향을 주는 각 변수에 대한 가중치 곱의 합으로 예측
 - 알려지지 않은 가중치 값(β)을 추정(model fitting)

주택 가격
$$\approx \beta_0 + \beta_{\text{crim}} x_{\text{crim}} + ... + \beta_{\text{lstat}} x_{\text{lstat}}$$

주택 가격 =
$$\beta_0 + \beta_{\text{crim}} x_{\text{crim}} + ... + \beta_{\text{lstat}} x_{\text{lstat}} + 잡음$$

1. 문제 정의(problem definition)

- 현상의 이해: 탐험적 데이터 분석(Exploratory Data Analysis)
 - 각종 통계값(statistics)의 계산, 데이터 시각화, 상관도(correlation) 분석
- 현상의 일반화: 통계적 추론
- 현상의 예측: 기계 학습

<문제 정의>

- •문제의 목표는 무엇인가?
- •문제의 범위는 정확히 어디까지인가?
- •문제 해결의 성공 / 실패 기준은 무엇인가?
- •문제 해결에 있어서의 제약조건은 무었인가? (시간과 비용 등)

2. 데이터 정의(data definition)

<데이터 문제정의>

- •문제와 관련된 데이터에 포함되어야 하는 요인은 무엇인가?
- •문제 해결에 필요한 데이터를 어떻게 수집할 수 있는가?
- •데이터 처리 및 분석을 위한 최적의 방법과 도구는 무엇인가?
- •최종 결과물은 어떤 형태로 누구에게 전달되어야 하는가?

3. 실험 계획(design of experiment)

- 데이터 직접 수집하는 경우에 필요
- 표본화, 표본의 크기 결정
 - 개별항목의 속성값을 정확하게 측정
 - 관찰하려는 현상을 대표할만한 환경에서 수집
 - 관찰형 연구(Observational Study) : 자연 그대로 수집
 - 통제형 실험(Controlled Experiments): 조건에 따라 수집

4. 데이터 취득(data acquisition)

- 문제에 정의된 관심을 가지는 현상을 데이터로 만드는 과정
 - 기존 데이터셋 사용
 - 실험 계획에 따라 새로운 데이터 직접 수집
- 일관성, 유연성, 무작위성(randomness)

- 5. 데이터 가공(data processing, data wrangling)
 - 분석을 위한 표준 테이블 형태로 변환
 - 각 행은 개별 관찰 항목
 - 각 열은 개별 속성
 - 각 테이블에는 단일 유형의 데이터로 구성
 - 여러 테이블이 존재하는 경우 개별 테이블을 연결할 수 있는 공통된 속성 필요
 - 데이터의 품질 점검
 - 완전성, 정확성,일관성
 - R에서는 JSON, CSV, XML등 널리 사용되는 형식의 파일을 테이블 형태로 불러오는 라이브러리를 제공

- 6.탐색적 분석과 데이터 시각화
 (exploratory data analysis(EDA), data visualization)
 - 데이터의 분포 및 값을 검토
 - 이상값(outlier), Missing value, 속성간의 관계(상관도) 등 파악
 - 다양한 요약 통계값 (statistics), 시각화로 확인.
 - 요약 통계 지표(summary statistics)
 - 데이터의 중심 : 평균(mean) 및 중앙값(median), 최 빈값(mode)
 - 데이터의 분산도: 범위(range), 분산(variance)
 - 데이터 분포: skewness
 - 시각화(data visualization)
 - Histogram, scatter plot, box plot

7.모형화(modeling)

- 통계적 추론(statistical inference)
 - 표본을 바탕으로 모집단의 특성에 대한 결론을 유도
 - 통계이론을 바탕으로 한 현상을 일반화
- 기계학습(machine learning)
 - 데이터마이닝(data mining)
 - 지능적인 방법(기계학습 알고리즘)을 적용하여 데이터 모델링

- 예측(Prediction), 분류(Classification), 군집(clustering), 연관

규칙(Association Rule)

8. 분석 결과 정리(reporting)

그림 1-3 데이터 분석 과정에 대한 이상적 관점(왼쪽)과 현실적 관점(오른쪽)

R?

- 데이터 분석을 위한 통계 및 그래픽스를 지원하는 공개용 소프트웨어
- 1996년 뉴질랜드 Auckland 대학에서 Ross Ihaka와 Robert
 Gentleman이 개발
- CRAN(the Comprehensive R Archive Network)에서 제공:
 http://cran.r-project.org
- 사용자 제작 패키지를 통하여 확장 가능
 - 핵심적인 패키지는 R과 함께 설치
 - 다양한 분야(통계, 머신러닝, 금융, 바이오인포메틱스, 그래픽스 등)의 패키지를 제공: https://cran.r-project.org/web/packages/index.html

R특징

- 오픈 소스 기반의 객체지향 언어
- 메모리 기반으로 동작하므로 데이터 처리 속도가 빠르며 하드웨어 메모리 크기가 처리 시간에 영향을 줌.
- 모든 플랫폼(Windows, MacOS, UNIX, Linux)에서 운영 가능.
- SAS나 SPSS 등 다른 통계분석 소프트웨어에서 플러그-인 형태 등으로 R의 스크립트 이용가능.
- 다른 언어로 작성된 프로그램을 통합하는 인터페이스를 제공(C, C++, C#, Fortran, Perl, Python, JAVA)