Cybersecurity Home Lab Setup using Proxmox VE

Overview

This document outlines the setup and configuration of a home cybersecurity lab using Proxmox VE, hosted on an old HP Pavilion laptop. The purpose of this lab is to provide a safe and isolated environment for cybersecurity testing, training, and virtual machine management.

Host System Specifications

- Laptop: HP Pavilion (circa 2017)

- RAM: 16 GB DDR4 - Storage: 1 TB SSD

- OS: Proxmox VE 8 (installed on bare metal)

Initial Setup

The setup began by downloading the Proxmox VE ISO and creating a bootable USB using Rufus. The installer was accessed by booting from the USB, and Proxmox was installed on the internal SSD using the graphical interface. A static IP was configured during installation.

Networking Issue and Resolution

After installation, the Proxmox machine showed no Ethernet connectivity. The onboard Ethernet card was detected via `lspci`, but no interface appeared in `ip a` because the Realtek driver was missing.

To resolve this, a USB-to-Ethernet adapter was purchased and plugged into the Proxmox machine. The interface `enx...` appeared and a static IP was temporarily assigned using:

ip addr add 192.168.8.100/24 dev enxXXXXXXX ip link set enxXXXXXXX up

Private LAN with Travel Router

To avoid using the shared student residence network, a GL.iNet GL-SFT1200 (Opal) travel router was used to create a secure LAN. The Proxmox machine (via the USB Ethernet adapter) was connected to a LAN port on the router. The management laptop connected to the router via Wi-Fi.

The travel router used the default IP range `192.168.8.0/24`, assigning an IP to the laptop and allowing direct access to the Proxmox Web UI from the browser at:

https://192.168.8.100:8006

Persistent Network Configuration

To make the USB Ethernet interface persistent and bridge it with Proxmox's virtual network bridge `vmbr0`, the following configuration was added to `/etc/network/interfaces`:

```
auto lo
iface lo inet loopback

auto enxXXXXXXX
iface enxXXXXXXX inet manual

auto vmbr0
iface vmbr0 inet static
address 192.168.8.100
netmask 255.255.255.0
gateway 192.168.8.1
bridge_ports enxXXXXXXX
bridge_stp off
bridge_fd 0
```

Virtual Machine Setup (Kali Linux)

The Kali Linux installer ISO was downloaded from the official site. In the Proxmox Web UI, it was uploaded via:

Datacenter > <node> > local > ISO Images > Upload

To create the VM:

- 1. Click 'Create VM'
- 2. Name the VM and select the Kali ISO
- 3. Use defaults for System and BIOS
- 4. Allocate CPU, RAM, and Disk
- 5. Use bridge 'vmbr0' for networking
- 6. Finish and start the VM

Installation was completed through the Console tab.

Virtual Machine Setup (Ubuntu Server)

An Ubuntu Server virtual machine was also created to simulate common server environments. The ISO was downloaded from the official Ubuntu site and uploaded to Proxmox via:

Datacenter > <node> > local > ISO Images > Upload

The VM was created with the following steps:

- 1. Click 'Create VM'
- 2. Set a name and select the Ubuntu ISO
- 3. Choose system defaults (BIOS/UEFI)
- 4. Allocate appropriate CPU cores, RAM, and disk space
- 5. Ensure network interface is bridged via `vmbr0`
- 6. Complete the wizard and install Ubuntu using the Console

Conclusion

This home lab demonstrates the ability to configure bare-metal virtualization, troubleshoot hardware-level networking issues, and create a secure environment for cybersecurity learning and testing. Future plans include adding Windows VMs, vulnerable apps, and log aggregation tools like ELK or Wazuh.