Алгоритм Гёманса-Уильямсона поиска приближённо максимального разреза с точностью 0.878

Напоминание некоторых определений:

- Симметрическая матрица X называется неотрицательно определённой, если все её собственные числа неотрицательны. Обозначение $X \succeq 0$ либо X PSD-матрица
- Tr(A) след матрицы A, то есть сумма диагональных элементов
- S^n множество симметричных матриц размера $n \times n$
- S^n_+ множество симметричных неотрицательно определённых матриц размера $n \times n$
- SDP-задача это задача оптимизации (т.е. минимизации или максимизации) некоторой линейной целевой функции на множестве PSD-матриц (возможно, с некоторыми линейными ограничениями).
- Пусть Σ матрица размера $n \times n$, тогда корнем из Σ (обозначение $\sqrt{\Sigma}$) называется такая матрица A, что $A \cdot A = \Sigma$. В частности, если Σ диагональная матрица, то корень из Σ тоже диагональная матрица, причем $\left(\sqrt{\Sigma}\right)_{ii} = \sqrt{(\Sigma_{ii})}$

Постановка задачи:

Дан неориентированный граф G=(V,E) с матрицей весов $W\in S^n$, то есть W_{uv} - вес ребра между вершинами u и v. В частности, $W_{uv}=0\Leftrightarrow$ в графе нет ребра между вершинами u и v.

Найти такое подмножество вершин $S\subset V$, что сумма весов рёбер из вершин, лежащих в S, в вершины из $V\backslash S$ максимальна

Формально:

$$\max_{\mathbf{x}} \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \left(1 - x_i x_j \right)$$

т.ч.
$$x_i \in \{+1, -1\}$$

То есть x - вектор из \mathbb{R}^n такой, что если $x_i = +1$, то i-я вершина идет в первое подмножество вершин (в S), иначе, если $x_i = -1$, то i-я вершина относится ко второму множеству ($V \setminus S$)

Тогда если $x_u = x_v$, то $(1 - x_u \cdot x_v) = 0$ и вес ребра (u,v) не учитывается в сумме

Иначе, $(1-x_u\cdot x_v)=2$ и вес ребра (u,v) учитывается дважды в сумме. Кроме того, для ребра (v,u) происходит все то же самое, поэтому мы домножаем на $\frac{1}{4}$

Перепишем:

$$\max_{x_i=\pm 1} \frac{1}{4} \sum_{i,j=1}^n w_{ij} \left(1 - x_i x_j \right) = \max_{x_i=\pm 1} \frac{1}{4} \sum_{i,j=1}^n w_{ij} \left(\frac{x_i^2 + x_j^2}{2} - x_i x_j \right) =$$

Это просто потому что $\frac{x_i^2 + x_j^2}{2} = 1$. Далее, раскроем скобки

$$= \max_{x_i = \pm 1} \frac{1}{4} \left(-\sum_{i,j=1}^n w_{ij} x_i x_j + \frac{1}{2} \sum_{i=1}^n \left[\sum_{j=1}^n w_{ij} \right] x_i^2 + \frac{1}{2} \sum_{j=1}^n \left[\sum_{i=1}^n w_{ij} \right] x_j^2 \right) =$$

Обозначим $deg(i) := \sum_{j=1}^n w_{ij}$. Будем называть это число степенью вершины i. Кроме того, $D := diag(deg(1), \dots, deg(n))$. Тогда:

$$= \max_{x_i = \pm 1} \frac{1}{4} \left(-\sum_{i,j=1}^n w_{ij} x_i x_j + \frac{1}{2} \sum_{i=1}^n \deg(i) x_i^2 + \frac{1}{2} \sum_{j=1}^n \deg(j) x_j^2 \right)$$

Приводя подобные слагаемые, получаем:

$$= \max_{x_i = \pm 1} \frac{1}{4} \left(\sum_{i=1}^n \deg(i) x_i^2 - \sum_{i,i=1}^n w_{ij} x_i x_j \right) = \max_{x_i = \pm 1} \frac{1}{4} \left[\mathbf{x}^\top D \mathbf{x} - \mathbf{x}^\top W \mathbf{x} \right] = \max_{x_i = \pm 1} \frac{1}{4} \left[\mathbf{x}^\top (D - W) \mathbf{x} \right] = \max_{x_i = \pm 1} \frac{1}{4} \mathbf{x}^\top L \mathbf{x}$$

Где L=D-W - лапласиан графа

Введем

 $X := \mathbf{x}\mathbf{x}^T$

Заметим, что

 $\mathbf{x}^{\mathsf{T}} L \mathbf{x} = Tr(LX)$

Действительно,

$$(LX)_{ii} = \sum_{k=1}^{n} L_{ik} X_{ki} = \sum_{k=1}^{n} L_{ik} \mathbf{x}_k \mathbf{x}_i$$
$$Tr(LX) = \sum_{i=1}^{n} \sum_{k=1}^{n} L_{ik} \mathbf{x}_k \mathbf{x}_i$$

Кроме того, легко видеть, что:

$$\mathbf{x}^{\mathsf{T}} L \mathbf{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} L_{ij} \mathbf{x}_{i} \mathbf{x}_{j}$$

Что и требовалось.

Еще раз, мы теперь перешли к рассмотрению матрицы X

$$X_{ij} = x_i x_j, \quad x_i = \left\{ egin{array}{ll} -1, & ext{если } i \in S \\ +1, & ext{если } i \notin S \end{array}
ight.$$

Наблюдение: X — PSD матрица (ранга 1), на диагонали стоят 1. Действительно, для любой матрицы $Y \in \mathbb{R}^{m \times n}$ и для любого вектора $z \in \mathbb{R}^n$ верно:

$$z^{T} (Y^{T}Y) z = (Yz)^{T} (Yz) = ||Yz||_{2}^{2} \ge 0$$

Из этого сразу следует, что Y^TY — PSD-матрица, а после транспорнирования: YY^T — PSD-матрица. В частности, $X = \mathbf{x}\mathbf{x}^T$ PSD-матрица.

И решаем такую задачу:

$$\max_{x_i = \pm 1} \frac{1}{4} Tr(LX)$$

Но это переборная задача - её сложно решить. Поэтому мы делаем то, что называется **релаксация**. То есть мы просто заменяем текущие переборные ограничения $(x_i=\pm 1)$ на такие, чтобы задача легко решалась. Например, давайте рассматривать в качестве X все PSD-матрицы, на диагонали которых стоят единички. Тогда получим такую задачу оптимизации:

$$\max \frac{1}{4} Tr(LX)$$

$$\text{т. ч. } X \succeq 0$$

$$X_{i,i} = 1$$

Она выпуклая, так как S_+^n – выпуклое, а $X_{i,i}=1$ – это аффинное ограничение (i-й диагональный элемент матрицы легко получить просто домножением этой матрицы на матрицу M из всех нулей, кроме $M_{ii}=1$). Поскольку мы **расширили** допустимое множество для нашей задачи максимизации, то и новый максимум будет **больше**, чем исходный. Другими словами, $\mathrm{OPT} \geq \mathrm{MAXCUT}$, где OPT – оптимальное значение релаксации, а MAXCUT – ответ на исходную задачу.

Известно, что существуют эффективные алгоритмы решения SDP-задач. Формально, есть, например, метод эллипсоидов который решает эту задачу с точностью ε за $poly(N,R,log(1/\varepsilon))$, где N- длина записи данных, R- логарифм максимального размера допустимого решения. На практике применяются в том числе и некоторые другие методы (например, есть метод внутренней точки), которые достаточно быстро работают на матрицах даже порядка 1000* \star 1000*

Далее, пусть X^* - матрица-решение задачи максимизации. Тогда, так как $X^* \in S^n_+$, то существует разложение $X^* = \overline{U} \, \Sigma \overline{U}^T$, где Σ - матрица с собственными числами матрицы X^* на диагонали, а U имеет столбцами соответствующие этим собственным числам собственные векторы единичной длины (это называется SVD-разложение). Обозначим $U := \overline{U} \cdot \sqrt{\Sigma}$, Тогда

$$X^* = \overline{U} \Sigma \overline{U}^T = \left(\overline{U} \cdot \sqrt{\Sigma}\right) \left(\sqrt{\Sigma} \cdot \overline{U}^T\right) = \mathbf{U} \mathbf{U}^T$$

Давайте обозначим $\mathbf{u}_i := i$ -ая строка матрицы \mathbf{U} . Рассмотрим систему векторов $\mathbf{u}_1, \dots, \mathbf{u}_n$. Видно, что матрица $\mathbf{X}^* = \mathbf{U}\mathbf{U}^T$ — это матрица Грама этой системы векторов, то есть матрица, элементами которой являются попарные скалярные произведения данных векторов. По условию, $\mathbf{X}^*_{ii} = 1$, значит

31.12.2019

$$\forall i \ ||\mathbf{u}_i||^2 = \langle \mathbf{u}_i, \mathbf{u}_i \rangle = \mathbf{X}^*_{ii} = 1$$

То есть все векторы имеют единичную длину. Это нам пригодится далее.

Теперь мы хотим получить сам разрез. Предлагается такой алгоритм:

- 1. Сгенерировать случайный вектор $h \in \mathbb{R}^n$ на единичной сфере
- 2. $S := \{i \mid \langle h, \mathbf{u}_i \rangle \geq 0\}$, то есть $x_i = \operatorname{sign} \langle h, \mathbf{u}_i \rangle$

Мы хотим оценить точность такого алгоритма. Давайте для примера посмотрим на рисунок:

Здесь у нас есть 4 вектора \mathbf{u}_i и случайный вектор h. В таком случае, вектор $x = (x_1, x_2, x_3, x_4) = (\operatorname{sign}\langle h, \mathbf{u}_1 \rangle, \operatorname{sign}\langle h, \mathbf{u}_2 \rangle, \operatorname{sign}\langle h, \mathbf{u}_3 \rangle, \operatorname{sign}\langle h, \mathbf{u}_4 \rangle) = (+1, -1, -1, +1)$

Теперь мы хотим оценить вероятность того, что вектора x_1 и x_2 имеют разные знаки:

Можно заметить, что вероятность разных знаков у $x_1 = \operatorname{sign}\langle h, \mathbf{u}_1 \rangle$ и $x_2 = \operatorname{sign}\langle h, \mathbf{u}_2 \rangle$ равна ϑ/π , так как разделяющие прямые распределены равномерно.

Далее, оценим мат. ожидание величины разреза (вспоминая нашу изначальную формальную постановку задачи):

$$\mathbb{E}[c(X)] = \frac{1}{2} \sum_{\substack{\{i,j\} \subset V,\\i \leq i}} w_{ij} \left(1 - \mathbb{E}\left[x_i x_j \right] \right)$$

Поскольку случайная величина $x_i x_j$ принимает ровно два значения (± 1), то можно записать её мат. ожидание по определению:

$$\mathbb{E}\left[x_i x_j\right] = \frac{\vartheta}{\pi} \cdot (-1) + \left(1 - \frac{\vartheta}{\pi}\right) \cdot (+1) = 1 - 2\frac{\vartheta}{\pi}$$

Поэтому, получаем:

$$\mathbb{E}[c(x)] = \sum_{\substack{\{i,j\} \subset V, \\ i \le j}} w_{ij} \frac{\vartheta_{ij}}{\pi}$$

Теперь вспоминаем, что вектора \mathbf{u}_i имеют единичную длину, а \mathbf{X}^*- матрица Грама, поэтому:

$$\mathbf{X}^*_{ij} = \left\langle u_i, u_j \right\rangle = \cos \vartheta_{ij}$$

Далее, снова запишем мат. ожидание величины разреза, а затем домножим и разделим каждое слагаемое на $(1-\cos\vartheta_{ij})$, при это вынося $\frac{1}{2}$ знак суммы:

$$\mathbb{E}[c(x)] = \sum_{\substack{\{i,j\} \subset V, \\ i \leq j}} w_{ij} \frac{\vartheta_{ij}}{\pi} = \frac{1}{2} \sum_{\substack{\{i,j\} \subset V, \\ i \leq j}} w_{ij} \frac{2\left(1 - \cos \vartheta_{ij}\right)}{\left(1 - \cos \vartheta_{ij}\right)} \frac{\vartheta_{ij}}{\pi}$$

А теперь просто оценим эту сумму снизу, оценивая кусочек каждого из слагаемых, то есть:

31.12.2019

$$\mathbb{E}[c(x)] = \frac{1}{2} \sum_{\substack{\{i,j\} \subset V, \\ i \leq j}} w_{ij} \frac{2\left(1 - \cos \vartheta_{ij}\right)}{\left(1 - \cos \vartheta_{ij}\right)} \frac{\vartheta_{ij}}{\pi} \geqslant \min_{0 < \vartheta < \pi} \frac{2\vartheta}{(1 - \cos \vartheta)\pi} \cdot \frac{1}{2} \sum_{\substack{\{i,j\} \subset V, \\ i \leq j}} w_{ij} \left(1 - \cos \vartheta_{ij}\right)$$

Обозначим $lpha_{GW}:=\min_{0<\vartheta<\pi} rac{2\vartheta}{(1-\cos\vartheta)\pi}.$ И, вспоминая, что $\mathbf{X}^*_{ij}=\cos\vartheta_{ij}$ перепишем:

$$\mathbb{E}[c(x)] \geqslant \alpha_{\text{GW}} \frac{1}{2} \sum_{\substack{\{i,j\} \subset V,\\i \leq j}} w_{ij} \left(1 - \mathbf{X}_{ij}^*\right) = \alpha_{\text{GW}} \text{OPT}$$

Где OPT — оптимальное значение релаксации. Ясно, что OPT представляется в таком виде, ведь X^* — это решение нашей релаксации, а $\frac{1}{2}\sum_{\{i,j\}\subset V_i}w_{ij}\left(1-\mathbf{X}_{ij}^*\right)$ это и есть в точности то, что было заявлено в начале:

$$\frac{1}{4} \sum_{i,j=1}^{n} w_{ij} (1 - x_i x_j)$$

Кроме того, так как метод Goemans-Williamson'а выдаёт некоторый разрез, то, очевидно, мат. ожидание величины этого разера не может быть больше, чем истинное значение максимального разреза, то есть:

$$\mathbb{E}[c(x)] \leq \text{MAXCUT}$$

Как уже было показано ранее, выполнено:

Наконец, соединяя все неравенства вместе, получаем:

$$\alpha_{\text{GW}}\text{OPT} \leq \mathbb{E}[c(x)] \leq \text{MAXCUT} \leq \text{OPT}$$

Значение константы $\alpha_{\rm GW}$ легко вычислить и оказывается, что оно примерно равно 0.878. Таким образом, описанный алгоритм находит разрез в среднем со значением порядка 87% от максимального. Известно, что получение оценки в $\frac{16}{17}$ от оптимального значения уже является NP-сложной задачей. $\frac{16}{17}$ примерно равно 0.94. То есть, если человечество сможет найти алгоритм, который решает задачу MAXCUT с точностью всего лишь на 6% лучшей, чем описанный алгоритм, то из этого будет следовать, что P=NP.

Но до сих пор поиск алгоритма даже субэкспоненциальной сложности, который бы находил оценку лучше 0.878, является открытой проблемой.

Реализация

```
In [31]: import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import cvxpy as cvx
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
from IPython.display import display, HTML
```

Для примера, создадим полный двудольный граф на 13 вершинах: 5 вершин в одной доле и 8 в другой. Очевидно, что значение максимального разреза равно 5*8=40

```
In [45]: n = 5 + 8
# полный двудольный граф на 13 вершинах
G = nx.complete_bipartite_graph(n1=5, n2=8)
# получам лапласиан графа
L = nx.laplacian_matrix(G)
```

```
In [46]: # вычисляем значение разреза. x — вектор из +— 1
# L — лапласиан графа
def cut(x, L):
    return 0.25 * x @ L @ x
```

Известный алгоритм нахождения максимального разреза с точностью 0.5 - это просто взятие случайного разреза. Попробуем реализовать этот алгоритм на данном графе и посмотрим, что получится.

```
In [57]: # берем случайный вектор из +- 1
cut_trial = 2 * np.random.randint(0, 2, n) - 1
# вычисляем величину такого разреза
cut(cut_trial, L)
```

Out[57]: 20.0

Видно, что значение такого разреза равно 20, что как раз и есть ровно половина от истинного значения максимального разреза.

Изобразим полученный разрез. Желтые вершины лежат в одной доле, фиолетовые в другой.

In [58]: nx.draw_circular(G, node_color=cut_trial)

Теперь же, наконец, реализуем алгоритм Гёманса-Уильямсона

```
In [6]:
       # вычисляем ответ для задачи максимизации (релаксация Гёманса-Уильямсона)
        def GW solve(n, L, verbose=False):
           # X - положительно полуопределенная (PSD) матрица
           X = cvx.Variable((n, n), PSD=True)
           # целевая функция Tr(LX)/4
           obj = 0.25 * cvx.trace(L.toarray() * X)
           # ограничение: на диагонали стоят единички
           constr = [cvx.diag(X) == 1]
           # нам нужно максимизировать
           problem = cvx.Problem(cvx.Maximize(obj), constraints=constr)
           return problem.solve(verbose=verbose, solver=cvx.SCS), X
        # выводим результат решение задачи оптимизации
        result, X = GW solve(n, L, True)
        print(result)
        ______
              SCS v2.1.1 - Splitting Conic Solver
              (c) Brendan O'Donoghue, Stanford University, 2012
       Lin-sys: sparse-direct, nnz in A = 104
       eps = 1.00e-04, alpha = 1.50, max iters = 5000, normalize = 1, scale = 1.00
        acceleration_lookback = 10, rho_x = 1.00e-03
       Variables n = 91, constraints m = 104
       Cones: primal zero / dual free vars: 13
               sd vars: 91, sd blks: 1
       Setup time: 2.03e-02s
        Iter | pri res | dua res | rel gap | pri obj | dua obj | kap/tau | time (s)
            0 | 8.56e+19 1.39e+19 9.42e-01 -2.28e+21 -6.78e+19 1.70e+20 9.45e-03
           40 6.43e-07 8.16e-07 2.59e-08 -4.00e+01 -4.00e+01 1.16e-15 1.35e-02
       Status: Solved
       Timing: Solve time: 1.36e-02s
               Lin-sys: nnz in L factor: 299, avg solve time: 1.43e-06s
               Cones: avg projection time: 2.04e-04s
               Acceleration: avg step time: 2.21e-05s
       Error metrics:
       dist(s, K) = 1.7159e-09, dist(y, K*) = 1.8634e-09, s'y/|s||y| = 1.2848e-11
       primal res: |Ax + s - b|_2 / (1 + |b|_2) = 6.4337e-07
       dual res: |A'y + c|_2 / (1 + |c|_2) = 8.1579e-07
                  |c'x + b'y| / (1 + |c'x| + |b'y|) = 2.5894e-08
       rel gap:
       c'x = -40.0000, -b'y = -40.0000
        ______
       40.00000095875753
```

Действительно, получилось, что OPT ≥ MAXCUT

Теперь нам нужно восстановить сам разрез по описанному выше алгоритму:

```
# получаем сам разрез
In [7]:
         def get random GW cut(X):
             # получаем размерность
             n = X.value.shape[0]
             # получаем SVD разложение
             u, s, v = np.linalg.svd(X.value)
             # получаем матрицу Грама U
             U = u * np.sqrt(s)
             # берем случайный вектор на единичной сфере
             h = np.random.randn(n)
             unit_h = h / np.linalg.norm(h)
             # x_i = sign <h, u_i>
             gw_cut = np.sign(U @ unit_h)
             return gw_cut
         # Выводим значение полученного разреза
         cut(get_random_GW_cut(X), L)
```

Out[7]: 40.0

Как видим, алгоритм нашел действительно максимальный разрез, то есть точность получилась 100%. Изобразим этот разрез:

In [8]: nx.draw_shell(G, node_color=get_random_GW_cut(X))

Видно, что, действительно, вершины из первой доли оказались в одной части разреза, а из другой доли - в другой.

Теперь протестируем алгоритм на случайных графах.

Возьмем данные из http://biqmac.uni-klu.ac.at/biqmaclib) - по этой ссылке есть архив с описанием всех графов, которые мы будем рассматривать

Ответы здесь: http://biqmac.uni-klu.ac.at/biqmaclib.pdf) - pdf-ка с описанием всех графов и табличками с ответами

Для удобства, я вручную переписал всю нужную информацию в файлик input.txt, откуда далее считаю названия графов и ответы (то есть значения величины максимального разреза).

```
In [9]: # массив с названиями графов
names = []
# массив с ответами (MAXCUT) для каждого графа
solutions = []

# чтение данных
for line in open('input.txt'):
    values = line.strip().split()
    names.append(values[0] + '_' + values[1])
    solutions.append(int(values[2]))

# приводим в типу пр-аггау
solutions = np.asarray(solutions)
```

```
In [35]:
          # ф-ция принимает на вход название файла и возвращает
          # массив ребер графа, который описан в этом файле
          def get edges(name):
              with open(name) as f:
                   edges = f.readlines()
              edges = [edge.strip() for edge in edges][1:]
              return edges
          # возвращает pandas табличку с колонками из данных массивов
          def get df(cur names, maxs, means, cur solutions):
              pd.set_option("display.precision", 0)
              df = pd.DataFrame(
                   list(
                       zip(
                           cur names,
                           cur_solutions,
                           means,
                           means / cur_solutions * 100,
                           maxs,
                           maxs / cur_solutions * 100
                   ),
                   columns=['Название графа', 'Решение', 'GW Mean', '% Mean', 'GW Max', '% Max']
          # запускаем алгоритм для графов, которые заданы в файле
          # input.txt в строчках с номерами с start до finish
          def get results(start, finish):
              # п - количество вершин в графе
              # у нас всегда будет 100 вершин
              n = 100
              # лучшие величины разреза для каждого графа
              maxs = []
              # средние величины разреза для каждого графа
              means = []
              cur_names = names[start:finish]
              cur_solutions = solutions[start:finish]
              for name in cur_names:
                   # получаем ребра текущего графа
                   edges = get edges(name)
                   # создаем граф из них
                   G = nx.parse edgelist(edges, nodetype = int, data=(('weight',float),))
                   # получаем лапласиан этого графа
                  L = nx.laplacian matrix(G)
                   # решаем SDP задачу максимизации
                   _, X = GW_solve(n, L, False)
                   # сделаем try num попыток восстановить разрез
                   try_num = 100
                   # все полученные величины разрезов
                   cur_maxcut_values = []
                   for _ in range(try_num):
                       # получаем некоторый разрез
                       cur_cut = get_random_GW_cut(X)
                       # получаем величину этого разреза
                       cur_cut_value = cut(cur_cut, L)
                       # добавляем в массив эту величину
                       cur maxcut values.append(
                           cur_cut_value
                   # выбираем лучший из полученных разрезов
                   maxs.append(max(cur_maxcut_values))
                   # берем среднее по всем значениям
                  means.append(np.mean(cur_maxcut_values))
              # приводим массивы к типу пр-array
              maxs = np.asarray(maxs)
              means = np.asarray(means)
              # создаем табличку из данных массивов
              df = get df(cur names, maxs, means, cur solutions)
              # возвращаем эту табличку а так же среднее средних значений разреза
              # и среднее среди максимальных значений разреза
```

31.12.2019

```
return df, \
    np.mean(means / cur_solutions * 100), \
    np.mean(maxs / cur_solutions * 100)
```

GW

Запустим алгоритм на графах g05_100.i. Это графы, у которых все ребра имеют вес ровно 1, количество вершин 100, а вероятность каждого ребра равна 0.5

В таблице присутствуют следующие колонки:

- Название графа оно же имя входного файла, где описан этот граф
- Решение истинное значение величины максимального разреза
- GW Mean среднее значение величины разреза, полученное в ходе работы алгоритма (мы делаем несколько попыток восстановить разрез, используя разные случайные вектора h и потом берем среднее по всем результатам)
- % Mean (GW Mean / Peшение) * 100 то есть какая точность (в процентах) в среднем была достигнута
- GW Max аналогично GW Mean, только берем лучший из всех полученных разрезов
- % Max (GW Max / Решение) * 100 какая точность была достигнута в лучшем случае

```
In [44]: %%time
df, mean, max_mean = get_results(0, 10)
print('Средняя точность: %d%%' % mean)
print('Средняя точность (если брать лучший результат по нескольким запускам): %d%%' % max_mean)
display(df)
```

Средняя точность: 97%

Средняя точность (если брать лучший результат по нескольким запускам): 99%

	Название графа	Решение	GW Mean	% Mean	GW Max	% Max
0	g05_100.0	1430	1397	98	1416	99
1	g05_100.1	1425	1397	98	1419	100
2	g05_100.2	1432	1396	97	1423	99
3	g05_100.3	1424	1392	98	1413	99
4	g05_100.4	1440	1403	97	1432	99
5	g05_100.5	1436	1403	98	1431	100
6	g05_100.6	1434	1400	98	1428	100
7	g05_100.7	1431	1398	98	1422	99
8	g05_100.8	1432	1399	98	1423	99
9	g05_100.9	1430	1398	98	1414	99

```
CPU times: user 45.1 s, sys: 4.17 s, total: 49.3 s Wall time: 49.1 s
```

Видно, что на невзвешенных графах алгоритм получает ответ с очень высокой точностью как в среднем, так и (тем более) в лучшем случае.

Далее, запустим алгоритм на графах pm1s_100.i, это графы (как всегда на 100 вершинах) с весами ребер, выбранными случайно равномерно из $\{-1,0,1\}$ и плотностью 10% (то есть, вероятность ребра 0.1)

```
In [37]: %%time

df, mean, max_mean = get_results(10, 20)

print('Средняя точность: %d%%' % mean)

print('Средняя точность (если брать лучший результат по нескольким запускам): %d%%' % max_mean)

display(df)
```

Средняя точность: 85%

Средняя точность (если брать лучший результат по нескольким запускам): 96%

	Название графа	Решение	GW Mean	% Mean	GW Max	% Max
0	pm1s_100.0	127	109	86	122	96
1	pm1s_100.1	126	110	87	121	96
2	pm1s_100.2	125	105	84	119	95
3	pm1s_100.3	111	94	85	105	95
4	pm1s_100.4	128	111	87	125	98
5	pm1s_100.5	128	109	86	120	94
6	pm1s_100.6	122	105	86	119	98
7	pm1s_100.7	112	93	83	107	96
8	pm1s_100.8	120	101	85	119	99
9	pm1s_100.9	127	111	88	124	98

CPU times: user 24.4 s, sys: 2.16 s, total: 26.5 s Wall time: 21.7 s

Видим, что в среднем результат работы алгоритма уже не такой хороший, как в случае невзвешенного графа, но, тем не менее, довольно близок к теоретической оценке (85% против 87.8%). Однако, в лучшем случае результат по прежнему очень высокий (96% в среднем)

Далее, запустим алгоритм на графах pm1d_100.i, это графы (как всегда на 100 вершинах) с весами ребер, выбранными случайно равномерно из $\{-1,0,1\}$ и плотностью 99% (то есть, вероятность ребра 0.99)

То есть отличие от предыдущих десяти графов только в плотности.

```
In [38]: %%time

df, mean, max_mean = get_results(20, 30)

print('Средняя точность: %d%%' % mean)

print('Средняя точность (если брать лучший результат по нескольким запускам): %d%%' % max_mean)

display(df)
```

Средняя точность: 84%

Средняя точность (если брать лучший результат по нескольким запускам): 95%

	Название графа	Решение	GW Mean	% Mean	GW Max	% Max
0	pm1d_100.0	340	278	82	328	96
1	pm1d_100.1	324	272	84	306	94
2	pm1d_100.2	389	330	85	377	97
3	pm1d_100.3	400	342	86	387	97
4	pm1d_100.4	363	309	85	346	95
5	pm1d_100.5	441	382	87	417	95
6	pm1d_100.6	367	309	84	355	97
7	pm1d_100.7	361	298	83	344	95
8	pm1d_100.8	385	317	82	370	96
9	pm1d_100.9	405	343	85	386	95

CPU times: user 22.5 s, sys: 2.48 s, total: 25 s Wall time: 22.2 s

Результаты аналогичны предыдущим десяти графам, то есть изменение плотность никак не повлияло на точность.

Теперь рассмотрим графы $w09_100.i$, Граф с целочисленными весами ребер, выбранными случайно равномерно из [-10, 10] и плотностью 0.9.

```
In [39]: %%time

df, mean, max_mean = get_results(30, 40)

print('Средняя точность: %d%%' % mean)

print('Средняя точность (если брать лучший результат по нескольким запускам): %d%%' % max_mean)

display(df)
```

Средняя точность: 84%

Средняя точность (если брать лучший результат по нескольким запускам): 95%

	Название графа	Решение	GW Mean	% Mean	GW Max	% Max
0	w09_100.0	2121	1785	84	2024	95
1	w09_100.1	2096	1796	86	2033	97
2	w09_100.2	2738	2383	87	2605	95
3	w09_100.3	1990	1618	81	1863	94
4	w09_100.4	2033	1744	86	1960	96
5	w09_100.5	2433	2101	86	2338	96
6	w09_100.6	2220	1835	83	2115	95
7	w09_100.7	2252	1933	86	2117	94
8	w09_100.8	1843	1506	82	1813	98
9	w09_100.9	2043	1676	82	1997	98

CPU times: user 22.5 s, sys: 2.25 s, total: 24.8 s Wall time: 20.1 s $\,$

Результаты аналогичны предыдущим нескольким запускам, то есть изменение масштаба величины ребер не повлияло на точность

Теперь рассмотрим графы $w01_100.i$, Граф с целочисленными весами ребер, выбранными случайно равномерно из [-10, 10] и плотностью 0.1.

То есть отличается только плотность

```
In [40]: %%time
df, mean, max_mean = get_results(40, 50)
print('Средняя точность: %d%%' % mean)
print('Средняя точность (если брать лучший результат по нескольким запускам): %d%%' % max_mean)
display(df)
```

Средняя точность: 85%

Средняя точность (если брать лучший результат по нескольким запускам): 97%

	Название графа	Решение	GW Mean	% Mean	GW Max	% Max
0	w01_100.0	651	555	85	626	96
1	w01_100.1	719	629	87	714	99
2	w01_100.2	676	586	87	654	97
3	w01_100.3	813	719	88	807	99
4	w01_100.4	668	554	83	643	96
5	w01_100.5	643	550	86	618	96
6	w01_100.6	654	539	82	617	94
7	w01_100.7	725	641	88	712	98
8	w01_100.8	721	622	86	711	99
9	w01_100.9	729	629	86	698	96

CPU times: user 26 s, sys: 2.22 s, total: 28.2 s Wall time: 23 s $\,$

Результаты аналогичны

Теперь рассмотрим графы $pw05_100.i$, графы с целочисленными весами ребер, выбранными случайно равномерно из [0, 10] и плотностью 0.5.

То есть теперь все веса неотрицательные

```
In [41]: %%time

df, mean, max_mean = get_results(50, 60)

print('Средняя точность: %d%%' % mean)

print('Средняя точность (если брать лучший результат по нескольким запускам): %d%%' % max_mean)

display(df)
```

Средняя точность: 97%

Средняя точность (если брать лучший результат по нескольким запускам): 99%

	Название графа	Решение	GW Mean	% Mean	GW Max	% Max
0	pw05_100.0	8190	7981	97	8119	99
1	pw05_100.1	8045	7838	97	7977	99
2	pw05_100.2	8039	7817	97	7995	99
3	pw05_100.3	8139	7899	97	8080	99
4	pw05_100.4	8125	7921	97	8053	99
5	pw05_100.5	8169	7935	97	8078	99
6	pw05_100.6	8217	8001	97	8138	99
7	pw05_100.7	8249	8041	97	8181	99
8	pw05_100.8	8199	7991	97	8162	100
9	pw05_100.9	8099	7875	97	8044	99

CPU times: user 40.7 s, sys: 3.51 s, total: 44.2 s Wall time: 38.6 s

Здесь сразу видно, что точность в среднем резко выросла. Теперь запустим на аналогичных графах (тоже с положительными весами ребер) но с другими плотностями $(0.9\ {\rm u}\ 0.1)$ и убедимся, что, действительно, плотность не влияет на точность, а влияет наличие/отсутствие отрицательных весов у ребер.

```
In [59]: %%time

df, mean, max_mean = get_results(60, 70)

print('Средняя точность: %d%%' % mean)

print('Средняя точность (если брать лучший результат по нескольким запускам): %d%%' % max_mean)

display(df)
```

Средняя точность: 98%

Средняя точность (если брать лучший результат по нескольким запускам): 99%

	Название графа	Решение	GW Mean	% Mean	GW Max	% Max
0	pw09_100.0	13585	13370	98	13534	100
1	pw09_100.1	13417	13220	99	13331	99
2	pw09_100.2	13461	13229	98	13372	99
3	pw09_100.3	13656	13431	98	13589	100
4	pw09_100.4	13514	13286	98	13449	100
5	pw09_100.5	13574	13396	99	13530	100
6	pw09_100.6	13640	13408	98	13557	99
7	pw09_100.7	13501	13294	98	13438	100
8	pw09_100.8	13593	13363	98	13542	100
9	pw09_100.9	13658	13441	98	13622	100

CPU times: user 58.3 s, sys: 5.34 s, total: 1min 3s Wall time: 1min

```
In [60]: %%time
df, mean, max_mean = get_results(70, 80)
print('Средняя точность: %d%%' % mean)
print('Средняя точность (если брать лучший результат по нескольким запускам): %d%%' % max_mean)
display(df)
```

Средняя точность: 95%

Средняя точность (если брать лучший результат по нескольким запускам): 98%

	Название графа	Решение	GW Mean	% Mean	GW Max	% Max
0	pw01_100.0	2019	1921	95	1975	98
1	pw01_100.1	2060	1962	95	2050	100
2	pw01_100.2	2032	1924	95	1998	98
3	pw01_100.3	2067	1969	95	2045	99
4	pw01_100.4	2039	1934	95	2013	99
5	pw01_100.5	2108	1997	95	2084	99
6	pw01_100.6	2032	1946	96	2005	99
7	pw01_100.7	2074	1977	95	2066	100
8	pw01_100.8	2022	1909	94	1988	98
9	pw01_100.9	2005	1925	96	1984	99

CPU times: user 35.8 s, sys: 2.96 s, total: 38.7 s Wall time: $34.1 \ \text{s}$

Вывод

Алгоритм в среднем работает с высокой (значительно большей теоритически полученной) точностью для графов с положительными весами ребер. Для графов с произвольными весами ребер алгоритм в среднем работает с точностью близкой к теоритической. Если же брать не средний, а лучший результат по нескольким запускам, то алгоритм всегда работает с достаточно высокой точностью. Кроме того, можно заметить, что на более плотных графах алгоритм может работать дольше (это хорошо видно особенно на последних двух запусках)

Ранее мы обозначили $\alpha_{GW}:=\min_{0<\theta<\pi}\frac{2\theta}{(1-\cos\theta)\pi}$. Это число и было точностью нашего алгоритма. Покажем, что оно действительно примерно равно 0.878

```
In [19]: theta = np.linspace(0 + 1e-8, np.pi, 1e7)
min(2 * theta / ((1 - np.cos(theta)) * np.pi))
```

Out[19]: 0.8785672057848526

Список литературы

- Оригинальная статья http://www-math.mit.edu/~goemans/PAPERS/maxcut-jacm.pdf (http://www-math.mit.edu/~goemans/PAPERS/maxcut-jacm.pdf)
- Лекция (Михаил Вялый) https://youtu.be/RNYfcl3hxUk), https://docplayer.ru/58779485-Priblizhennoe-reshenie-zadach-kombinatornoy-optimizacii-algoritmy-i-trudnost-lekciya-4-sdp-relaksacii-i-algoritm-gyomansa-vilyamsona.html">https://docplayer.ru/58779485-Priblizhennoe-reshenie-zadach-kombinatornoy-optimizacii-algoritmy-i-trudnost-lekciya-4-sdp-relaksacii-i-algoritm-gyomansa-vilyamsona.html)
- Лекция (Александр Катруца) https://github.com/amkatrutsa/optimization-fivt/blob/master/13-SDP/lecture13.pdf)
 (https://github.com/amkatrutsa/optimization-fivt/blob/master/13-SDP/lecture13.pdf)
- Graphs and Graph Laplacians https://www.cis.upenn.edu/~cis515/cis515-14-graphlap.pdf
 (https://www.cis.upenn.edu/~cis515/cis515-14-graphlap.pdf)