1 Driver Amplifier

First, the Driver Amplifier was built. The associated schematic can be seen in Figure 1.

Figure 1: Circuit Schematic for the Driver Amplifier

1.1 Calculated Output Power: P_o

 P_o is calculated using the following:

$$P_o = \frac{V_{cc}^2}{n^2 R_{14}}$$

Since V_{cc} is given as 12V, $R_{14}=100\Omega$ and transformer T_1 has a turns ratio $n=\frac{14}{4}=3.5$:

$$P_o = \frac{12^2}{(3.5^2 \cdot 100)}i) = \boxed{117.5mW}$$

1.2 Measured Output Voltage: V_o

With the function generator set to 7.04MHz, and with an offset of 0.5V. The output voltage across R_{14} was measured to be \boxed{V} .

- 1.3 Calculated Delivered Power: P_d
- 1.4 System Efficiency: η
- 1.5 Amplifier Gain: G
- 1.5.1

When R_{13} is fully clockwise, the gain was found to be \Box .

1.5.2

When R_{13} is fully counter-clockwise \Box .

1.6 Miller Capacitance, C_M

(*Note:* At the end of this step, the other end of R_{11} was soldered).

2 Buffer Amplifier

Figure ??.

Figure 2: Circuit Schematic for the Buffer Amplifier