Caracterización de Fotomultiplicadores de Silicio (SiPM) para Aplicaciones Espaciales

Tomás E. Ferreira Chase

Lucas Finazzi (lucasfinazzi.94@gmail.com) Federico Izraelevitch (izraelevitch@gmail.com)

ESCUELA CIENCIAY **TECNOLOGÍA**

LABORATORIO DE INTEGRACIÓN

NANOELECTRNÓNICA

(tomaschase96@gmail.com)

Departamento de física, FCEyN, UBA Laboratorio de Integración Nanoelectórnica (LINE), Escuela de Ciencia y Tecnología, Universidad de San Martín (UNSAM)

Marco: Proyecto LabOSat^[1]

Es una plataforma electrónica para llevar a cabo experimentos en ambientes hostiles.

En la actualidad se están utilizando para caracterizar memorias no volátiles en órbita dentro de satélites de Satellogic^[2].

La próxima misión incluirá novedosos fotomultiplicadores de silicio (SiPM) Sensl C-Series de 6x6 mm².

Se quieren caracterizar para diseñar correctamente la electrónica asociada y para comparar con las mediciones en orbita.

Encapsulado Oscuro

Se fabricaron encapsulados SiPM cables oscuros de 10x10 mm con el SiPM y un LED para poder estudiar el dispositivo a iluminado 0 en oscuras órbita.

Dispositivo experimental

RTD PT1000 Encapsulado Celda Peltier TEC1-4905 Conductor térmico (aluminio) Celda Peltier TEC1-12706 Radiador

Se usaron dos celdas peltier y un sistema de refrigeración líquida modificar para temperatura del encapsulado oscuro entre -40°C y 80°C.

Resistencia de quenching

Se supuso que se trata de un semiconductor intrínseco o levemente dopado, y se lo ajustó según el modelo^[4]

$$R(T) = \alpha T^{\gamma} e^{E_g/2k_B T}$$

Voltaje de ruptura

LINE

Se obtuvieron curvas I-V para distintas temperaturas con el SiPM en inversa. Para voltajes cercanos luego de la ruptura, se puede modelar la variación de la corriente como^[5]:

obtuvo lineal relacion entre el Vbr y la temperatura, con variación aproximada de 20.5 mVpor grado, compatible con el valor de la hoja de datos del fabricante.

Se midió la corriente del SiPM en inversa a 30V LED el con apagado.

Curvas $I_{SIPM}(I_{LED})$ e histéresis

0.001

0.000

Se observó histéresis en los gráficos estudiados. Finalmente se concluyó que dicha histéresis era producto de un aumento en temperatura del encapsulado a causa la disipación de potencia del LED.

Aplicando un de control temperatura se observa que la $\frac{100}{4}$ – 0.001 diferencia entre las curvas de ida y vuelta se distribuye alrededor del O. Es decir, no hay histeresis.

Conclusiones

Se desarrolló un protocolo de caracterización de SiPMs que permitirá estudiar cada componente en forma individual antes de ser integrado en las misiones satelitales.

Los parámetros estudiados fueron:

- Resistencia de quenching
- Voltaje de ruptura
- Corriente oscura

Referencias

- [1] Proyecto Labosat: http://labosat.unsam.edu.ar
- [2] Satellogic: https://www.satellogic.com/
- [3] http://sensl.com/downloads/ds/DS-MicroCseries.pdf
- [4] Ashcroft...
- [5] Nepomuk