Klausur zur Analysis I – Lösungsvorschläge

Universität Regensburg, Wintersemester 2013/14

Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca

20.02.2014, Bearbeitungszeit: 3 Stunden

1. Aufgabe [2 Punkte]

Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

- $(1) \ \forall x \in X : \exists y \in Y : A(x, y).$
- (2) $\exists y \in Y : \forall x \in X : A(x, y).$

Gelten folgende Implikationen für alle Aussageformen A(x, y)?

- a) $(1) \Longrightarrow (2)$
- b) $(2) \Longrightarrow (1)$

Falls nicht, geben Sie bitte ein Gegenbeispiel an.

Lösung

- a) Es gibt zwei mögliche Fälle:
 - i) Die Menge X oder die Menge Y besteht aus einem einzigen Element. In diesem Fall die Implikation $(1) \Longrightarrow (2)$ ist richtig.
 - ii) Jeder der Mengen X und Y besitzt mindestens zwei Elemente. In diesem Fall gilt die Implikation $(1) \Longrightarrow (2)$ nicht für alle Aussageformen A(x, y). Ein Gegenbeispiel ist folgendes:

 $X := \{x_0, x_1\}, Y := \{x_0, x_1\} \text{ und } A(x, y) \text{ ist die Aussage } x = y.$

Damit ist (1) richtig, da:

 $\forall x \in \{x_0, x_1\} : \exists y \in \{x_0, x_1\} : x = y,$

aber (2) ist nicht richtig, da die Negation von (2) richtig ist:

 $\forall y \in \{x_0, x_1\} : \exists x \in \{x_0, x_1\} : x \neq y.$

b) Die Implikation (2) \Longrightarrow (1) gilt für alle Aussageformen A(x,y). Wenn (2) richtig ist, dann existiert ein $y_0 \in Y$, so dass für alle $x \in X$ gilt $A(x,y_0)$. Sei $x \in X$. Dann für $y_0 \in Y$ gilt $A(x,y_0)$. Damit ist die Aussage (1) richtig:

$$\forall x \in X : \exists y_0 \in Y : A(x, y_0).$$

2. Aufgabe [3 Punkte]

Sei $x \in \mathbb{R}$ und $(x_n)_{n \in \mathbb{N}}$ eine \mathbb{R} -wertige Folge. Welche der folgenden Aussagen ist zu

$$x = \limsup_{n \to \infty} x_n \qquad (*)$$

äquivalent?

- (1) x ist der größte Häufungspunkt der Menge $\{x_n \mid n \in \mathbb{N}\}.$
- (2) $x = \lim_{m \to \infty} (\sup\{x_n \mid n \in \mathbb{N}_{\geq m}\}).$
- (3) Es gibt eine Teilfolge von $(x_n)_{n\in\mathbb{N}}$, die gegen x konvergiert, aber es gibt keine Teilfolge von $(x_n)_{n\in\mathbb{N}}$, die gegen ein $y\in\mathbb{R}$ mit y>x konvergiert.
- (4) Jede Teilfolge von $(x_n)_{n\in\mathbb{N}}$ konvergiert gegen x.

Im Falle von Aquivalenz, ist keine Begründung nötig. Für die Aussagen, die nicht äquivalent sind, geben Sie bitte ein Gegenbeispiel an.

Lösung

(1) ist nicht äquivalent zu (*). Ein Gegenbeispiel ist folgendes: Sei für alle $n \in \mathbb{N}$: $x_n := 1$. Dann gilt:

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} x_n = 1,$$

aber die Menge $\{x_n \mid n \in \mathbb{N}\} = \{1\}$ besteht nur aus einem Element und hat deshalb keine Häufungspunkte (es existiert keine reelle Zahl mit der Eigenschaft, dass jede Umgebung von dieser Zahl unendlich viele Punkte der Menge $\{1\}$ enthält).

- (2) ist äquivalent zu (*). Diese Äquivalenz wurde in einer der Zentralübungen besprochen.
- (3) ist äquivalent zu (*). Diese Äquivalenz folgt aus dem Satz 5.52 aus der Vorlesung.
- (4) ist nicht äquivalent zu (*). Ein Gegenbeispiel ist folgendes: Sei für alle $n \in \mathbb{N}$: $x_n := (-1)^n$. Dann ist $\limsup_{n \to \infty} x_n = 1$, aber die Teilfolge $(x_{2n+1})_{n \in \mathbb{N}} = (-1)_{n \in \mathbb{N}}$ konvergiert nicht gegen 1.

3. Aufgabe

[3=1+1+1 Punkte]

Gegeben sei die \mathbb{R} -wertige Folge $(a_n)_{n\in\mathbb{N}}$, definiert durch:

$$a_1 := 2, \quad \forall n \in \mathbb{N} : a_{n+1} := 2 - \frac{1}{a_n} \quad (*).$$

- a) Zeigen Sie, dass für alle $n \in \mathbb{N}$ gilt: $1 \le a_n \le 2$.
- b) Zeigen Sie, dass die Folge $(a_n)_{n\in\mathbb{N}}$ monoton fallend ist.
- c) Folgern Sie, dass die Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert und bestimmen Sie den Grenzwert.

Lösung

a) Für alle $n \in \mathbb{N}$ sei A(n) die Aussage $1 \leq a_n \leq 2$. Wir zeigen durch vollständige Induktion nach $n \in \mathbb{N}$, dass A(n) wahr ist.

Induktionsanfang: Für n = 1, ist A(1) äquivalent zu $1 \le a_1 \le 2$. Da $a_1 = 2$ sind beide Ungleichungen erfüllt.

Induktionsschritt: $A(n) \Longrightarrow A(n+1)$

Induktionsannahme: A(n) ist wahr, d. h. $1 \le a_n \le 2$.

Behauptung: A(n+1) ist wahr, d. h. $1 \le a_{n+1} \le 2$.

Beweis: Folgende Implikationen gelten:

$$1 \le a_n \le 2 \Longrightarrow \frac{1}{2} \le \frac{1}{a_n} \le 1 \Longrightarrow -1 \le -\frac{1}{a_n} \le -\frac{1}{2} \stackrel{(*)}{\Longrightarrow} 1 \le a_{n+1} \le \frac{3}{2} \Longrightarrow A(n+1).$$

Damit ist a) gezeigt.

b) Sei $n \in \mathbb{N}$. Wir berechnen die Differenz:

$$a_{n+1} - a_n \stackrel{\text{(*)}}{=} 2 - \frac{1}{a_n} - a_n = -\frac{(a_n - 1)^2}{a_n} \le 0,$$

da für alle $n \in \mathbb{N}$ gilt $(a_n - 1)^2 \ge 0$ und nach a) ist $a_n > 0$. Daraus folgt, dass für alle $n \in \mathbb{N}$ gilt $a_{n+1} < a_n$, also die Folge $(a_n)_{n \in \mathbb{N}}$ ist monoton fallend.

c) Aus a) und b) folgt, dass die Folge $(a_n)_{n\in\mathbb{N}}$ beschränkt und monoton fallend ist. Daraus folgt, dass die Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert in \mathbb{R} (siehe Proposition 5.45).

Sei a der Grenzwert von $(a_n)_{n\in\mathbb{N}}$. Aus der rekursiven Definition (*) folgt:

$$a = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \left(2 - \frac{1}{a_n} \right) \stackrel{a_n \ge 1}{=} 2 - \frac{1}{\lim_{n \to \infty} a_n} = 2 - \frac{1}{a},$$

wobei wir die Rechenregel für Limes benutzt haben. Die Gleichung $a=2-\frac{1}{a}$ ist äquivalent zu $(a-1)^2=0$ und hat die Lösung a=1. Damit ist der Grenzwert der Folge $(a_n)_{n\in\mathbb{N}}$ gleich 1.

4. Aufgabe

[3=1+1+1 Punkte]

Betrachten Sie folgende Potenzreihe:

$$\sum_{k=1}^{\infty} \left(\frac{2k+1}{k}\right)^k x^k.$$

- a) Berechnen Sie den Konvergenzradius ρ dieser Potenzreihe.
- b) Bestimmen Sie, ob für $x \in \{-\rho, \rho\}$ die Reihe konvergiert. Begründen Sie Ihre Antwort.
- c) Sei $f: \left[-\frac{7}{8}\rho; \frac{7}{8}\rho\right] \to \mathbb{R}$ definiert durch: $f(x) := \sum_{k=1}^{\infty} \left(\frac{2k+1}{k}\right)^k x^k$. Bestimmen Sie, ob die Funktion f stetig ist. Begründen Sie Ihre Antwort.

Lösung

- a) Nach der Formel aus der Vorlesung gilt: $\rho := \frac{1}{\limsup_{k \to \infty} \sqrt[k]{(\frac{2k+1}{k})^k}} = \frac{1}{\limsup_{k \to \infty} (\frac{2k+1}{k})} = \frac{1}{2}$, da $\lim_{k \to \infty} \left(2 + \frac{1}{k}\right) = 2$ und somit $\limsup_{k \to \infty} \left(\frac{2k+1}{k}\right) = 2$.
- b) In beiden Fällen divergiert die Reihe. Für $x=\rho=\frac{1}{2}$, die Reihe ist gleich $\sum\limits_{k=1}^{\infty}\left(\frac{2k+1}{k}\right)^k\left(\frac{1}{2}\right)^k=\sum\limits_{k=1}^{\infty}\left(\frac{k+1/2}{k}\right)^k$. Da für alle $k\in\mathbb{N}$ gilt: $\left(\frac{k+1/2}{k}\right)^k>1$, die Folge $\left(\frac{k+1/2}{k}\right)^k$ konvergiert nicht gegen 0 und damit

divergiert die Reihe. Für $x=-\rho=-\frac{1}{2}$ die Reihe ist gleich $\sum\limits_{k=1}^{\infty}\left(\frac{2k+1}{k}\right)^k\left(-\frac{1}{2}\right)^k=\sum\limits_{k=1}^{\infty}\left(-\frac{k+1/2}{k}\right)^k$. Die Folge $\left(-\frac{k+1/2}{k}\right)^k_{k\in\mathbb{N}}$ konvergiert nicht gegen 0 mit demselben Argument (sonst wäre auch die Folge $\left(\frac{k+1/2}{k}\right)^k_{k\in\mathbb{N}}$ eine Nullfolge, in Widerspruch zu der vorherigen Aussage). Daraus folgt, dass die Reihe $\sum\limits_{k=1}^{\infty}\left(-\frac{2k+1}{2k}\right)^k$ divergiert.

c) Sei $(f_n)_{n\in\mathbb{N}}$ die Folge der Partialsummen:

$$f_n: \left[-\frac{7}{8}\rho; \frac{7}{8}\rho\right] \to \mathbb{R}, \quad f_n(x) := \sum_{k=1}^n \left(\frac{2k+1}{k}\right)^k x^k.$$

Für $x \in \mathbb{R}$ mit $|x| \leq \frac{7}{8}\rho$ gilt:

$$|f_n(x) - f(x)| = \left| \sum_{k=n+1}^{\infty} \left(\frac{2k+1}{k} \right)^k x^k \right| \le \sum_{k=n+1}^{\infty} \left| \left(\frac{2k+1}{k} \right)^k \right| \left(\frac{7}{8} \rho \right)^k \to 0,$$

da die Reihe $\sum_{k=1}^{\infty} \left(\frac{2k+1}{k}\right)^k x^k$ konvergiert absolut auf $\left[-\frac{7}{8}\rho; \frac{7}{8}\rho\right]$.

Also konvergiert $f_n: \left[-\frac{7}{8}\rho; \frac{7}{8}\rho\right] \to \mathbb{R}$ gleichmäßig gegen $f: \left[-\frac{7}{8}\rho; \frac{7}{8}\rho\right] \to \mathbb{R}$. Daraus folgt, dass $f: \left[-\frac{7}{8}\rho; \frac{7}{8}\rho\right] \to \mathbb{R}$ eine stetige Funktion ist (siehe Satz 5.6). Sei \mathbb{R} mit dem üblichen Euklidischen Abstand d_{eukl} versehen. Sei $f : \mathbb{R} \to \mathbb{R}$ eine Abbildung.

- a) Zeigen Sie, dass $f: \mathbb{R} \to \mathbb{R}$ genau dann stetig ist, wenn folgendes gilt: für jede offene Teilmenge $X \subset \mathbb{R}$, ist $f^{\#}(X)$ eine offene Teilmenge von \mathbb{R} .
- b) Sei $A \subset \mathbb{R}$. Zeigen Sie: $f^{\#}(\mathbb{R} \setminus A) = \mathbb{R} \setminus f^{\#}(A)$.
- c) Zeigen Sie, dass $f: \mathbb{R} \to \mathbb{R}$ genau dann stetig ist, wenn folgendes gilt: für jede abgeschlossene Teilmenge $X \subset \mathbb{R}$, ist $f^{\#}(X)$ eine abgeschlossene Teilmenge von \mathbb{R} .

Lösung

- a) Es folgt aus dem Umgebungskriterium für Stetigkeit (Proposition 3.11 aus der Vorlesung) und der Definition einer Umgebung und einer offenen Menge.
 - " \Longrightarrow ": Sei $f: \mathbb{R} \to \mathbb{R}$ eine stetige Funktion. Sei X eine offene Teilmenge von \mathbb{R} . Wir zeigen, dass das Urbild von X, $f^{\#}(X)$, eine offene Teilmenge von \mathbb{R} ist. Falls $f^{\#}(X) = \emptyset$, dann ist das Urbild offen, da die leere Menge offen ist. Sonst, sei $x_0 \in f^{\#}(X)$. Nach Definition, ist $f(x_0) \in X$. Da X eine offene Menge ist, es existiert eine Umgebung U von $f(x_0)$, so dass $U \subset X$. Nach dem Umgebungskriterium für Stetigkeit , folgt aus der Stetigkeit von f in x_0 , dass $f^{\#}(U)$ ist eine Umgebung von x_0 in \mathbb{R} . Aus $U \subset X$, folgt $f^{\#}(U) \subset f^{\#}(X)$. Damit haben wir gezeigt, dass für jeden Punkt $x_0 \in f^{\#}(X)$, existiert eine Umgebung $f^{\#}(U)$ von x_0 mit $f^{\#}(U) \subset f^{\#}(X)$. Nach Definition, ist X eine offene Teilmenge von \mathbb{R} .
 - "\(\iff \text{": Sei } f: \mathbb{R} \to \mathbb{R} \) eine Funktion mit der Eigenschaft, dass für jede offene Teilmenge $X \subset \mathbb{R}$, $f^{\#}(X)$ eine offene Teilmenge von \mathbb{R} ist. Sei $x_0 \in \mathbb{R}$ beliebig fixiert. Wir zeigen mit dem Umgebungskriterium für Stetigkeit, dass f stetig in x_0 ist. Sei U eine Umgebung von $f(x_0)$. Nach der Definition einer Umgebung, es existiert ein $r \in \mathbb{R}_{>0}$, so dass der Ball $B_r(f(x_0)) \subset U$. Da dieser Ball eine offene Teilmenge von \mathbb{R} ist, gilt, nach Voraussetzung, dass $f^{\#}(B_r(f(x_0)))$ eine offene Menge ist und es gilt auch: $x_0 \in f^{\#}(B_r(f(x_0))) \subset f^{\#}(U)$. Daraus folgt, dass $f^{\#}(U)$ eine Umgebung von x_0 ist (siehe Lemma 3.9 aus der Vorlesung). Aus dem Umgebungskriterium für Stetigkeit folgt, dass f stetig in x_0 ist. Da x_0 beliebig in \mathbb{R} ist, folgt, dass die Funktion $f: \mathbb{R} \to \mathbb{R}$ überall stetig ist.
- b) Sei $x \in f^{\#}(\mathbb{R} \setminus A)$. Nach der Definition des Urbilds, ist äquivalent zu $f(x) \in \mathbb{R} \setminus A$. Es gilt auch: $f(x) \notin A \iff x \notin f^{\#}(A)$. Damit ist $f(x) \in \mathbb{R} \setminus A \iff x \in \mathbb{R} \setminus f^{\#}(A)$. Insgesamt haben wir folgende Äquivalenz gezeigt: $x \in f^{\#}(\mathbb{R} \setminus A) \iff x \in \mathbb{R} \setminus f^{\#}(A)$, also $f^{\#}(\mathbb{R} \setminus A) = \mathbb{R} \setminus f^{\#}(A)$.
- c) Wir betrachten folgende Aussagen über der Funktion $f: \mathbb{R} \to \mathbb{R}$:
 - (1) Für jede abgeschlossene Teilmenge $X \subset \mathbb{R}$, ist $f^{\#}(X)$ eine abgeschlossene Teilmenge von \mathbb{R} .
 - (2) Für jede offene Teilmenge $Y \subset \mathbb{R}$, ist $f^{\#}(\mathbb{R} \setminus Y)$ eine abgeschlossene Teilmenge von \mathbb{R} .
 - (3) Für jede offene Teilmenge $Y \subset \mathbb{R}$, ist $f^{\#}(Y)$ eine offene Teilmenge von \mathbb{R} .
 - (4) Die Funktion $f: \mathbb{R} \to \mathbb{R}$ ist eine stetige Funktion.

Die Aussage (1) ist, nach der Definition einer abgeschlossener Menge, äquivalent zu der Aussage (2). Nach b) gilt für jede Teilmenge Y: $f^{\#}(\mathbb{R}\setminus Y) = \mathbb{R}\setminus f^{\#}(Y)$, und damit die Aussage (2) äquivalent zu (3). Nach a) sind die Aussagen (3) und (4) äquivalent.

- a) Formulieren Sie den Zwischenwertsatz.
- b) Betrachten Sie die Tangensfunktion, definiert durch:

$$\tan : \left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \to \mathbb{R}, \quad \tan(x) := \frac{\sin(x)}{\cos(x)}.$$

i) Wir definieren für alle $n \in \mathbb{N}$:

$$a_n := \tan\left(\frac{\pi}{2} - \frac{1}{n}\right), \qquad b_n := \tan\left(-\frac{\pi}{2} + \frac{1}{n}\right).$$

Zeigen Sie, dass die Folge $(a_n)_{n\in\mathbb{N}}$ uneigentlich gegen $+\infty$ konvergiert und die Folge $(b_n)_{n\in\mathbb{N}}$ uneigentlich gegen $-\infty$ konvergiert.

- ii) Zeigen Sie, dass $\tan: \left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \to \mathbb{R}$ eine surjektive Funktion ist.
- iii) Begründen Sie, dass die Funktion tan : $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \to \mathbb{R}$ streng monoton ist.
- iv) Ist die Umkehrfunktion von tan : $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \to \mathbb{R}$ differenzierbar?

Erinnerung: In der Vorlesung wurde gezeigt, dass $\sin' = \cos$ und $\cos' = -\sin$.

Lösung

- a) Siehe den Zwischenwertsatz (Satz 2.1) aus der Vorlesung.
- i) Man benutzt die Stetigkeit der Funktionen sin und cos und folgende Ungleichungen für alle $n \in \mathbb{N}$: $\cos\left(\frac{\pi}{2} - \frac{1}{n}\right) > 0$ und $\cos\left(-\frac{\pi}{2} + \frac{1}{n}\right) > 0$. Da die Folge $\left(\frac{\pi}{2} - \frac{1}{n}\right)_{n \in \mathbb{N}}$ aus positiver Zahlen besteht und gegen $\frac{\pi}{2}$ konvergiert, folgt aus der Stetigkeit der Funktionen sin und cos, dass $\lim_{n\to\infty}\sin(\frac{\pi}{2}-\frac{1}{n})=1$ und $\lim_{n\to\infty}\cos(\frac{\pi}{2}-\frac{1}{n})=0. \text{ Da für alle } n\in\mathbb{N} \text{ gilt: } \cos\left(\frac{\pi}{2}-\frac{1}{n}\right)>0, \text{ es folgt:}$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\sin(\frac{\pi}{2} - \frac{1}{n})}{\cos(\frac{\pi}{2} - \frac{1}{n})} = +\infty$$

Analog folgt aus der Stetigkeit der Funktionen sin und cos, dass für die Folge $\left(-\frac{\pi}{2} + \frac{1}{n}\right)_{n \in \mathbb{N}}$, die aus negativer Zahlen besteht und gegen $-\frac{\pi}{2}$ konvergiert, gilt: $\lim_{n \to \infty} \sin(-\frac{\pi}{2} + \frac{1}{n}) = -1$ und $\lim_{n \to \infty} \cos(-\frac{\pi}{2} + \frac{1}{n}) = 0$. Da für alle $n \in \mathbb{N}$ gilt: $\cos\left(-\frac{\pi}{2} + \frac{1}{n}\right) > 0$, es folgt:

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{\sin(-\frac{\pi}{2} + \frac{1}{n})}{\cos(-\frac{\pi}{2} + \frac{1}{n})} = -\infty$$

 $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{\sin(-\frac{\pi}{2} + \frac{1}{n})}{\cos(-\frac{\pi}{2} + \frac{1}{n})} = -\infty.$ Bemerkung: Man kann auch direkt benutzen, dass für alle $n \in \mathbb{N}$ gilt: $b_n = -a_n$.

- ii) Aus i) folgt, dass die Funktion tan unbeschränkt nach unten und nach oben ist. Zusammen mit dem Zwischenwertsatz für die stetige Funktion tan, folgt dass das Bild $\tan(\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)) = \mathbb{R}$ und damit ist $\tan: \left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \to \mathbb{R}$ eine surjektive Funktion.
- iii) Man berechnet die Ableitung: \tan' : $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \to \mathbb{R}$, $\tan'(x) = \frac{1}{\cos^2(x)}$ (folgt direkt nach Anwendung der Quotientenregel, siehe Regeln 1.4 aus der Vorlesung). Da für alle $x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ gilt $\tan'(x) = \frac{1}{\cos^2(x)} > 0$, es folgt aus dem Korollar 3.5, dass die Funktion tan: $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \to \mathbb{R}$ streng monoton wachsend ist.

iv) Da tan: $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \to \mathbb{R}$ streng monoton wachsend ist, ist sie insbesondere injektiv. Die Funktion tan: $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \to \mathbb{R}$ ist differenzierbar und für alle $x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ gilt tan' $(x) = \frac{1}{\cos^2(x)} \neq 0$. Aus der Proposition 1.7 folgt, dass Umkehrfunktion von tan: $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \to \mathbb{R}$ differenzierbar ist.

- a) Bestimmen Sie, ob folgende Teilmengen offen sind und ob sie abgeschlossen sind. Begründen Sie Ihre Antwort.
 - i) $M := \bigcup_{n \in \mathbb{N}} \left(n; n + \frac{1}{2} \right) \subset (\mathbb{R}, d_{\text{eukl}}).$
 - ii) $M := \{(x, y) \in \mathbb{R}^2 \mid x = y\} \subset (\mathbb{R}^2, d_{\text{eukl}}).$
- b) Bestimmen Sie alle Häufungspunkte der folgenden Teilmenge von $(\mathbb{R}, d_{\text{eukl}})$:

$$M := [1; 2) \cup \{\sqrt{n+1} - \sqrt{n} \mid n \in \mathbb{N}\}.$$

Begründen Sie Ihre Antwort.

Lösung

- i) Behauptung: M ist eine offene und nicht abgeschlossene Teilmenge von $(\mathbb{R}, d_{\text{eukl}})$. Beweis: Für alle $n \in \mathbb{N}$ ist das Intervall $\left(n; n + \frac{1}{2}\right)$ eine offene Teilmenge von $(\mathbb{R}, d_{\text{eukl}})$. Da die Vereinigung offener Mengen eine offene Menge ist (siehe Proposition 3.10), es folgt dass M offen ist. M ist nicht eine abgeschlossene Menge, da z. B. $2 \in \mathbb{R} \setminus M$ und für alle $r \in \mathbb{R}_{>0}$, der offene Ball mit Radius r um 2, d. h. das Intervall (2-r; 2+r), hat einen nicht-leeren Durchschnitt mit der Menge M: $(2-r; 2+r) \cap M = (2; 2+r)$.
- ii) Behauptung: M ist eine abgeschlossene und nicht offene Teilmenge von $(\mathbb{R}^2, d_{\text{eukl}})$. Beweis: Die Menge M ist abgeschlossen und nicht offen in $(\mathbb{R}^2, d_{\text{eukl}})$. Wir zeigen, dass die Menge $\mathbb{R} \setminus M = \{(x,y) \in \mathbb{R}^2 \mid x \neq y\}$ offen ist. Dann folgt, nach Definition, dass M eine abgeschlossene Menge ist. Sei $(x_0, y_0) \in \mathbb{R} \setminus M$, d. h. $x_0 \neq y_0$. Es existiert $r \in \mathbb{R}_{>0}$, $r := |x_0 y_0| \frac{\sqrt{2}}{2}$, so dass:

$$B_r((x_0, y_0)) := \{(x, y) \in \mathbb{R}^2 \mid d_{\text{eukl}}((x, y), (x_0, y_0)) < r\} \subset \mathbb{R} \setminus M.$$

Das zeigt, dass die Menge $\mathbb{R} \setminus M$ offen in $(\mathbb{R}^2, d_{\text{eukl}})$ ist. Die Menge M ist nicht offen, da z. B. $0 \in M$ und für alle $r \in \mathbb{R}_{>0}$, der offene Ball mit Radius r um 0, auch das Komplement von M schneidet: $B_r(0) \cap (\mathbb{R}^2 \setminus M) \neq \emptyset$ (da z. B. $(0, \frac{r}{2}) \in B_r(0) \cap (\mathbb{R}^2 \setminus M)$).

b) Behauptung: Die Häufungspunkte der Menge M sind folgende: $[1;2] \cup \{0\}$. Beweis: Wir zeigen zuerst, dass alle diese Punkte Häufungspunkte der Menge M sind und dann, dass es keine weitere Häufungspunkte gibt. Sei $x_0 \in [1;2]$. Für alle $r \in \mathbb{R}_{>0}$, das offene Intervall $(x_0-r;x_0+r)$ enthält unendlich viele Punkte von M, da es gilt: für $x_0 \in (1;2)$ enthält $(x_0-r;x_0+r)\cap M$ das offenes Intervall $(\max\{1;x_0-r\};\min\{2;x_0+r\})$; für $x_0=1$ ist $(x_0-r;x_0+r)\cap M=(1;x_0+r]$; für $x_0=2$ ist $(x_0-r;x_0+r)\cap M=(x_0-r;2]$. Die Folge $(\sqrt{n+1}-\sqrt{n})_{n\in\mathbb{N}}$ konvergiert gegen 0:

$$\lim_{n\to\infty} (\sqrt{n+1} - \sqrt{n}) = \lim_{n\to\infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0.$$

Nach Definition der Konvergenz, folgt insbesondere, dass jede Umgebung von 0 unendlich viele Glieder der Folge $(\sqrt{n+1}-\sqrt{n})_{n\in\mathbb{N}}$ enthält. Da diese Zahlen paarweise verschieden sind, folgt dass jede Umgebung von 0 unendlich viele Punkte der Menge M enthält und damit ist 0 einen Häufungspunkt von M.

Sei $x_0 \in \mathbb{R} \setminus ([1;2] \cup \{0\})$. Es existiert ein $r \in \mathbb{R}_{>0}$, so dass $(x_0 - r; x_0 + r) \cap M$ endlich viele Punkte enthält. Falls $x_0 < 0$, kann man $r := -\frac{x_0}{2}$ wählen und falls $x_0 > 2$, $r := \frac{x_0 - 2}{2}$. In beiden Fällen gilt: $(x_0 - r; x_0 + r) \cap M = \emptyset$. Falls $0 < x_0 < 1$, gilt für $r := \min\{\frac{x_0}{2}, \frac{1 - x_0}{2}\}$, dass $(x_0 - r; x_0 + r) \cap M$ höchstens n_0 Punkte enthält, wobei n_0 ist definiert als der Index mit folgender Eigenschaft: für alle $n \in \mathbb{N}_{>n_0}$ gilt $|\sqrt{n+1} - \sqrt{n}| < x_0 - r$. Der Index n_0 existiert aus der Definition einer Nullfolge.

Sei $f: \mathbb{C} \to \mathbb{C}$ die Funktion definiert durch:

$$f(z) := z \cdot \overline{z}^2$$
.

- a) Zeigen Sie mit dem ε - δ -Kriterium, dass f stetig auf $\mathbb C$ ist.
- b) Sei $f:[0;1] \to \mathbb{R}$ die Funktion definiert durch:

$$f(x) := \begin{cases} x^2, & \text{falls } x \in [0; 1] \cap \mathbb{Q}, \\ x - \frac{1}{4}, & \text{falls } x \in [0; 1] \cap (\mathbb{R} \setminus \mathbb{Q}). \end{cases}$$

Bestimmen Sie alle Stellen im Intervall [0; 1], in denen f stetig ist.

Lösung

a) Sei $z_0 \in \mathbb{C} \setminus \{0\}$. Sei $\varepsilon > 0$. Es existiert $\delta := \min\{|z_0|, \frac{\varepsilon}{7|z_0|^2}\}$, so dass für alle $z \in \mathbb{C}$ mit $|z - z_0| \le \delta$ gilt:

$$|f(z) - f(z_0)| = |z \cdot \overline{z}^2 - z_0 \cdot \overline{z_0}^2| = |z \cdot \overline{z}^2 - z_0 \cdot \overline{z}^2 + z_0 \cdot \overline{z}^2 - z_0 \cdot \overline{z_0}^2|$$

$$\leq |\overline{z}^2||z - z_0| + |z_0||\overline{z}^2 - \overline{z_0}^2|$$

$$\leq (|z_0| + \delta)^2 \delta + |z_0|\delta(2|z_0| + \delta) \leq 7|z_0|^2 \delta \leq \varepsilon.$$

Die erste Ungleichung folgt aus der Dreiecksungleichung, die zweite Ungleichung folgt aus $|z - z_0| \le \delta$ (diese impliziert mittels der Dreiecksungleichung, dass $|z| \le |z_0| + \delta$). Die vorletzte Ungleichung folgt aus $\delta \le |z_0|$.

b) Behauptung: f ist stetig nur an der Stelle $\frac{1}{2}$. Beweis: Wir bemerken, dass $\frac{1}{2}$ die einzige Lösung der Gleichung $x^2 = x - \frac{1}{4}$ im Intervall [0;1] ist. Wir zeigen zuerst, dass an allen Stellen außer $\frac{1}{2}$, die Funktion f ist nicht stetig. Sei $x_0 \in [0;1] \setminus \{\frac{1}{2}\}$. Es genügt zwei Folgen zu finden, sie gegen x_0 konvergieren, so dass die Folgen der Werten gegen unterschiedlichen Grenzwerte konvergieren. Wir wissen, dass für jede reelle Zahl x_0 existieren eine Folge rationaler Zahlen (sei $(a_n)_{n\in\mathbb{N}}$ so eine Folge) und eine Folge irrationaler Zahlen (sei $(b_n)_{n\in\mathbb{N}}$ so eine Folge), die jeweils gegen x_0 konvergieren. Man kann diese Folgen wählen, so dass alle Glieder im Intervall [0;1] enthalten sind. Nach der Definition der Funktion f folgt für alle $n \in \mathbb{N}$:

$$f(a_n) = a_n^2 \text{ und } f(b_n) = b_n - \frac{1}{4}.$$

Daraus folgt, dass $\lim_{n\to\infty} f(a_n) = x_0^2$ und $\lim_{n\to\infty} f(a_n) = x_0 - \frac{1}{4}$. Diese Grenzwerte sind unterschiedlich, da nach Voraussetzung $x_0 \neq \frac{1}{2}$ und $\frac{1}{2}$ die einzige Lösung der Gleichung $x^2 = x - \frac{1}{4}$ ist. Aus der Definition der Folgenstetigkeit von f, folgt, dass f nicht stetig in x_0 ist.

Wir zeigen direkt mit dem ε - δ -Kriterium, dass f stetig in $\frac{1}{2}$ ist. Sei $\varepsilon > 0$. Es existiert $\delta := \min\{1, \frac{\varepsilon}{2}\}$, so dass für alle $x \in [0; 1]$ mit $\left|x - \frac{1}{2}\right| \le \delta$ gilt:

$$\left| f(x) - f\left(\frac{1}{2}\right) \right| = \begin{cases} \left| x^2 - \frac{1}{4} \right|, & \text{falls } x \in [0; 1] \cap \mathbb{Q} \\ \left| x - \frac{1}{2} \right| & \text{falls } x \in [0; 1] \cap (\mathbb{R} \setminus \mathbb{Q}) \end{cases} \le \varepsilon,$$

da $|x^2 - \frac{1}{4}| = |x - \frac{1}{2}||x + \frac{1}{2}| \le \delta(\delta + 1) \le 2\delta \le \varepsilon$. Daraus folgt, dass f stetig in $\frac{1}{2}$ ist.

- a) Sei $f : \mathbb{R} \to \mathbb{R}$ eine Funktion und $x_0 \in \mathbb{R}$. Wie ist die Differenzierbarkeit von f in x_0 definiert?
- b) Betrachten Sie folgende Funktion:

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) := \begin{cases} x^2 \sin\left(\frac{1}{x^2}\right), & \text{falls } x > 0\\ 0, & \text{falls } x \le 0. \end{cases}$$

- i) Zeigen Sie, dass f eine auf \mathbb{R} differenzierbare Funktion ist und berechnen Sie die Ableitung.
- ii) Zeigen Sie, dass $f|_{\mathbb{R}\setminus\{0\}}$ stetig differenzierbar ist.
- iii) Zeigen Sie, dass f auf \mathbb{R} nicht stetig differenzierbar ist.

Erinnerung: In der Vorlesung wurde gezeigt, dass $\sin' = \cos$.

Lösung

- a) Siehe Definition 1.1 (Kapitel 5) aus der Vorlesung.
- b) i) Es genügt zu zeigen, dass die Einschränkungen von f auf die offenen Teilmengen $(0; +\infty)$ und $(-\infty; 0)$ differenzierbar sind und dass die Funktion f an der Stelle 0 differenzierbar ist.

Die Einschränkung $f|_{(0;+\infty)}: (0;+\infty) \to \mathbb{R}, \quad f|_{(0;+\infty)}(x) = x^2 \sin\left(\frac{1}{x^2}\right)$ ist differen-

zierbar als Produkt von differenzierbaren Funktion (die Funktion $x\mapsto\sin\left(\frac{1}{x^2}\right)$ ist differenzierbar auf $(0;+\infty)$ als Verknüpfung differenzierbarer Funktionen, siehe Regeln 1.4 aus der Vorlesung). Aus der Produkt- und Kettenregel folgt für alle x>0:

$$f'(x) = 2x \sin\left(\frac{1}{x^2}\right) - \frac{2}{x}\cos\left(\frac{1}{x^2}\right)$$

Die Einschränkung $f|_{(-\infty;0)}: (-\infty;0) \to \mathbb{R}$, $f|_{(-\infty;0)}(x) = 0$ ist eine konstante Funktion und dadurch differenzierbar mit Ableitung identisch Null.

Um zu zeigen, dass die Funktion f an der Stelle 0 differenzierbar ist, betrachten wir den Differenzenquotient für $x \neq 0$:

$$\frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x} = \begin{cases} x \sin\left(\frac{1}{x^2}\right), & \text{falls } x > 0\\ 0, & \text{falls } x < 0. \end{cases}$$

Da für alle $x \in \mathbb{R}$ gilt: $|\sin(x)| \le 1$, es folgt, dass für alle $x \in \mathbb{R}$ gilt $\left| \frac{f(x) - f(0)}{x - 0} \right| \le |x|$.

Daraus folgt, dass der Grenzwert $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0}$ existiert und ist gleich 0. Damit ist f differenzierbar in 0 und f'(0) = 0.

Zusammengefasst haben wir die Ableitung von f berechnet als:

$$f' \colon \mathbb{R} \to \mathbb{R}, \quad f'(x) := \begin{cases} 2x \sin\left(\frac{1}{x^2}\right) - \frac{2}{x}\cos\left(\frac{1}{x^2}\right), & \text{falls } x > 0\\ 0, & \text{falls } x \le 0. \end{cases}$$

ii) In i) haben wir gezeigt, dass die Einschränkung $f|_{\mathbb{R}\setminus\{0\}}$ differenzierbar ist und die Ableitung ist gegeben durch:

$$f'|_{\mathbb{R}\setminus\{0\}} \colon \mathbb{R} \to \mathbb{R}, \quad f'|_{\mathbb{R}\setminus\{0\}}(x) := \begin{cases} 2x\sin\left(\frac{1}{x^2}\right) - \frac{2}{x}\cos\left(\frac{1}{x^2}\right), & \text{falls } x > 0\\ 0, & \text{falls } x < 0. \end{cases}$$

Diese Funktion ist stetig, da Stetigkeit eine lokale Eigenschaft ist und deshalb genügt es zu zeigen, dass die Einschränkungen der Funktion auf $(0; +\infty)$ und $(-\infty; 0)$ stetig sind (das folgt direkt aus der Stetigkeit der rationalen Funktionen und der trigonometrischen Funktionen sin und cos, unter Anwendung der Lemmata 1.2 und 1.3 aus Kapitel 4). Damit ist $f|_{\mathbb{R}\setminus\{0\}}$ stetig differenzierbar.

iii) Wir zeigen, dass die Ableitung $f' \colon \mathbb{R} \to \mathbb{R}$ nicht stetig in 0 ist. Daraus folgt, dass f auf \mathbb{R} nicht stetig differenzierbar ist.

Nach i), für
$$x > 0$$
 gilt: $f'(x) = 2x \sin\left(\frac{1}{x^2}\right) - \frac{2}{x}\cos\left(\frac{1}{x^2}\right)$.

Da für alle $x \in \mathbb{R}$ gilt: $|\sin(x)| \le 1$, es folgt, dass $\lim_{x \to 0} 2x \sin\left(\frac{1}{x^2}\right) = 0$. Andererseits,

der Grenzwert $\lim_{x\searrow 0} \frac{2}{x} \cos\left(\frac{1}{x^2}\right)$ existiert nicht. Um das zu zeigen, genügt es, die folgenden Nullfolgen positiver Zahlen zu betrachten: für alle $n\in\mathbb{N}$

$$a_n := \frac{1}{\sqrt{2\pi n}}, \quad b_n := \frac{1}{\sqrt{2\pi n + \frac{\pi}{2}}}.$$

Dann gilt:

$$\frac{2}{a_n}\cos\left(\frac{1}{a_n^2}\right) = 2\sqrt{2\pi n} \cdot \cos(2\pi n) = 2\sqrt{2\pi n}.$$

$$\frac{2}{b_n}\cos\left(\frac{1}{b_n^2}\right) = 2\sqrt{2\pi n + \frac{\pi}{2}}\cdot\cos\left(2\pi n + \frac{\pi}{2}\right) = 0.$$

Daraus folgt, dass der Grenzwert $\lim_{x\searrow 0} f'(x)$ existiert nicht. Damit ist f' nicht stetig in 0.

Sei $f: \mathbb{R} \to \mathbb{R}$, $f(x) := e^{-x^2}$.

- a) Berechnen Sie das Taylor-Polynom ersten Grades von f mit Entwicklungspunkt $x_0 = 1$.
- b) Zeigen Sie, dass folgende obere Schranke für alle $x \in \mathbb{R}$ mit $|x-1| \leq \frac{1}{10}$ gilt:

$$|R_1(x,1)| < 0.02 \cdot e^{-0.81}$$

wobei $R_1(x,1)$ der Rest aus dem Satz von Taylor bezeichnet. Verwenden Sie dabei die Lagrangesche Restglieddarstellung.

Lösung

i) Die erste Ableitung der Funktion f ist, nach der Kettenregel, gegeben durch:

$$f' \colon \mathbb{R} \to \mathbb{R}, \quad f'(x) = -2xe^{-x^2}.$$

Nach Definition, ist das Taylor-Polynom ersten Grades von f mit Entwicklungspunkt $x_0 = 1$ gleich:

$$T_1(f,1)(x) := f(1) + \frac{f'(1)}{1!}(x-1) = \frac{1}{e} - \frac{2}{e}(x-1).$$

ii) Die zweite Ableitung der Funktion f ist, nach der Produkt- und Kettenregel, gegeben durch:

$$f'': \mathbb{R} \to \mathbb{R}, \quad f''(x) = (4x^2 - 2)e^{-x^2}.$$

Nach dem Satz von Taylor (Satz 4.2 aus der Vorlesung) gilt für die Lagrangesche Restglieddarstellung folgendes:

$$R_1(x,1) = \frac{f''(1+\theta(x-1))}{2!}(x-1)^2$$
, für ein $\theta \in (0,1)$.

Daraus folgt:

$$|R_1(x,1)| = \left| \frac{f''(1+\theta(x-1))}{2!}(x-1)^2 \right| = |2(1+\theta(x-1))^2 - 1||(x-1)^2|e^{-(1+\theta(x-1))^2}.$$

Da $\theta \in (0, 1)$, es folgt weiter für alle $x \in \mathbb{R}$ mit $|x - 1| \le \frac{1}{10}$ folgende Abschätzung:

$$|R_1(x,1)| \le \left(2\left(\frac{11}{10}\right)^2 - 1\right) \cdot \left(\frac{1}{10}\right)^2 \cdot e^{-\left(\frac{9}{10}\right)^2} < 0,02 \cdot e^{-0.81}.$$