Grammar-Based Concept Alignment for Domain-Specific Machine Translation

08.09.2021

Arianna Masciolini and Aarne Ranta

Context

➡ GF is well suited for domain-specific MT systems, where precision is more important than coverage, as it provides strong guarantees of grammatical correctness

Context

- **□** GF is well suited for **domain-specific MT** systems, where precision is more important than coverage, as it provides strong guarantees of grammatical correctness
- in such systems, **lexical exactness** is as important as grammaticality

Context

- **□** GF is well suited for **domain-specific MT** systems, where precision is more important than coverage, as it provides strong guarantees of grammatical correctness
- in such systems, **lexical exactness** is as important as grammaticality
 - need for high-quality translation lexica preserving semantics and morphological correctness

The problem

- manually building a translation lexicon
 - is time consuming
 - requires significant linguistic knowledge

The problem

- manually building a translation lexicon
 - is time consuming
 - requires significant linguistic knowledge
- desire to automate this process at least in part

The problem

- manually building a translation lexicon
 - is time consuming
 - requires significant linguistic knowledge
- desire to automate this process at least in part
 - possible when example parallel data are available

A parallel corpus

From Lewis Carroll, *Alice's adventures in Wonderland*. Parallel text at paralleltext.io

Alignment

Word alignment:

Alignment

Word alignment:

Phrase alignment:

Standard approaches are statistical (IBM models).

pros:

- pros:
 - easy to use

- pros:
 - easy to use
 - can handle noisy data

- pros:
 - easy to use
 - can handle noisy data
 - fast on large corpora

- pros:
 - easy to use
 - can handle noisy data
 - fast on large corpora
- cons:

- pros:
 - easy to use
 - can handle noisy data
 - fast on large corpora
- cons:
 - require large amounts of raw data

- pros:
 - easy to use
 - can handle noisy data
 - fast on large corpora
- cons:
 - require large amounts of raw data
 - correspondences between strings

- pros:
 - easy to use
 - can handle noisy data
 - fast on large corpora
- cons:
 - require large amounts of raw data
 - lacktriangle correspondences between strings o no morphological info

- pros:
 - easy to use
 - can handle noisy data
 - fast on large corpora
- cons:
 - require large amounts of raw data
 - lacktriangle correspondences between strings o no morphological info
 - "fixed" level of abstraction (word, phrase or sentence)

Grammar-based approaches

TODO: - relation to prev syntax-based work

Our approach

TODO: main features and advantages

Concept Alignment

```
TODO: definitions: - concepts: ... - alignment: ...
```

Grammatical Framework

- formalism/programming language to write **multilingual** $\mathbf{grammars} \rightarrow \mathbf{solves}$ problem 1
 - one abstract syntax
 - multiple concrete syntaxes

Grammatical Framework

- formalism/programming language to write **multilingual** grammars \rightarrow solves problem 1
 - one abstract syntax
 - multiple concrete syntaxes
- compilation-like approach to translation → good, grammaticality-preserving target language generation
- but: problem 2 persist

Universal Dependencies

! framework for cross-linguistically consistent grammatical annotation → same "multilingual" approach as GF

Universal Dependencies

- framework for cross-linguistically consistent grammatical annotation → same "multilingual" approach as GF
- based on *dependency*, as opposed to constituency, relation
 - **dependency**: word-to-word correspondence
 - head
 - dependent in some relation with the head

Universal Dependencies

- framework for cross-linguistically consistent grammatical annotation → same "multilingual" approach as GF
- based on *dependency*, as opposed to constituency, relation
 - dependency: word-to-word correspondence
 - head
 - dependent in some relation with the head
- lacktriangle easier target for a parser (e.g. UDPipe) ightarrow solves problem 2
- but: cannot be used for target language generation

Solution: UD + GF

Concept Extraction

Extraction algorithm

♦ ⟨the boat, il treno⟩

 $ightharpoonup \langle the boat, il treno \rangle
ightarrow * \langle boat, treno \rangle$

- lacktriangle \langle the boat, il treno $angle
 ightarrow st \langle$ boat, trenoangle
- **▶** ⟨missed the boat, perso il treno⟩

- 【the boat, il treno》→ *⟨boat, treno》
- $ightharpoonup \langle missed the boat, perso il treno
 angle
 ightarrow \langle missed, ha perso
 angle$

- $lap{1}{\bullet}$ \langle the boat, il treno $\rangle
 ightarrow *\langle$ boat, treno \rangle
- \uparrow (missed the boat, perso il treno) \rightarrow (missed, ha perso) (including the auxiliary)

Alignment criteria

TODO: list them all

▶ ⟨she missed the boat, ha perso il treno⟩

- ⟨she missed the boat, ha perso il treno⟩
- (missed the boat, perso il treno)

- ⟨she missed the boat, ha perso il treno⟩
- \(\perc{m}\) issed the boat, perso il treno\(\right)\)
- *\the boat, il treno\

- ▶ ⟨she missed the boat, ha perso il treno⟩
- ▶ ⟨missed the boat, perso il treno⟩
- *\the boat, il treno\
- **▶** ⟨the, il⟩

more reliable ignoring function words

- more reliable ignoring function words
- in this case, basically same results as when matching labels

- more reliable ignoring function words
- in this case, basically same results as when matching labels
- can increase recall when labels do not coincide

- more reliable ignoring function words
- in this case, basically same results as when matching labels
- can increase recall when labels do not coincide
- can increase precision if used in conjunction with labels

Divergence: systematic cross-linguistic distinction.

Divergence: systematic cross-linguistic distinction.

- **t** categorial
 - ★ ⟨Gioara listens distractedly, Gioara lyssnar distraherad⟩
 - **→** ⟨Herbert completed his **doctoral** thesis, Herbert ha completato la sua tesi **di dottorato**⟩

Divergence: systematic cross-linguistic distinction.

- categorial
 - **❖** ⟨Gioara listens **distractedly**, Gioara lyssnar **distraherad**⟩
 - (Herbert completed his doctoral thesis, Herbert ha completato la sua tesi di dottorato)
- conflational
 - (Filippo is interested in game development, Filippo är intresserad av spelutveckling)

Divergence: systematic cross-linguistic distinction.

- categorial
 - **❖** ⟨Gioara listens **distractedly**, Gioara lyssnar **distraherad**⟩
 - (Herbert completed his doctoral thesis, Herbert ha completato la sua tesi di dottorato)
- conflational
 - ⟨Filippo is interested in game development, Filippo är intresserad av spelutveckling⟩
- structural
 - ⟨I called Francesco, Ho telefonato a Francesco⟩

Divergence: systematic cross-linguistic distinction.

- categorial
 - **❖** ⟨Gioara listens **distractedly**, Gioara lyssnar **distraherad**⟩
 - (Herbert completed his doctoral thesis, Herbert ha completato la sua tesi di dottorato)
- conflational
 - **►** ⟨Filippo is interested in **game development**, Filippo är intresserad av **spelutveckling**⟩
- structural
 - **▶** ⟨I called **Francesco**, Ho telefonato **a Francesco**⟩
- head swapping
 - Anna usually goes for walks, Anna brukar promenera

Divergence: systematic cross-linguistic distinction.

- categorial
 - **❖** ⟨Gioara listens **distractedly**, Gioara lyssnar **distraherad**⟩
 - (Herbert completed his doctoral thesis, Herbert ha completato la sua tesi di dottorato)
- conflational
 - ⟨Filippo is interested in game development, Filippo är intresserad av spelutveckling⟩
- structural
 - \(\lambda \) called \(\begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \lambda \\ \begin{aligned} \begin{al
- head swapping
 - ⟨Anna usually goes for walks, Anna brukar promenera⟩
- thematic
 - Yana likes books, A Yana piacciono i libri

Known alignment

allows using CA in conjunction with statistical tools

Known alignment

- allows using CA in conjunction with statistical tools
- iterative application

Searching for specific patterns

gf-ud pattern matching allows looking for specific syntactic patterns

Searching for specific patterns

- gf-ud pattern matching allows looking for specific syntactic patterns
- possible generalization via pattern replacement

Searching for specific patterns

- gf-ud pattern matching allows looking for specific syntactic patterns
- possible generalization via pattern replacement

Example predication patterns:

- ⟨she missed the boat, ha perso il treno⟩ → ⟨[subj] missed [obj], ha perso [obj]⟩
- lacktriangledown \langle she told you that, hon berättade det för digangle ightarrow \langle [subj] told [iobj] [obj],[subj] berättade [obj] för [obl] \rangle

Grammar rules generation (TODO: shorten!)

aligned UD trees

- aligned UD trees
- dependency configurations for gf-ud

- aligned UD trees
- dependency configurations for gf-ud
- morphological dictionaries

- aligned UD trees
- dependency configurations for gf-ud
- morphological dictionaries
- extraction grammar

Morphological dictionaries

Purely morphological unilingual dictionaries.

Morphological dictionaries

Purely morphological unilingual dictionaries.

```
Example:
...
lin morphologic_A =
   mkAMost "morphologic" "morphologicly";
lin morphological_A =
   mkAMost "morphological" "morphologically";
lin morphology_N =
   mkN "morphology" "morphologies";
...
```

Extraction grammar

Defines the syntactic categories and functions to build lexical entries.

Extraction grammar

Defines the syntactic categories and functions to build lexical entries.

Example (prepositional NPs):

PrepNP : Prep -> NP -> PP # case head

Lexical rules

```
Abstract:
```

```
fun in_the_field__inom_området_PP : PP ;
```

Lexical rules

```
Abstract:

fun in_the_field__inom_området_PP : PP ;

English concrete:

lin in_the_field__inom_område_PP =

PrepNP in_Prep (DetCN the_Det (UseN field_N))
```

Evaluation

Evaluation 27/35

Data

Evaluation 28/35

Evaluating extraction

TODO: strategy

Evaluation 29/35

Results on manually annotated tree-

TODO: table 1

Evaluation 30/35

Results on raw text

TODO: table 2

Evaluation 31/35

MT experiments

TODO: strategy

Evaluation 32/35

Results

TODO: tables 3-4or just 3 + comments

Evaluation 33/35

Conclusions

Evaluation 34/35

Future work

Evaluation 35/35