WHAT IS CLAIMED IS:

l	1. A method for analyzing input output (I/O) pin arrangements to			
2	determine the effect of differential pair and power and ground pin placement on signal			
3	quality comprising:			
4	constructing an array of pins;			
5	arranging a plurality of differential pairs within the array of pins to provide a			
6	pin arrangement;			
7	exciting each of the differential pairs within the pin arrangement;			
8	monitoring coupled noise on other differential pairs within the pin			
9	arrangement;			
10	analyzing the pin arrangement based upon the monitoring.			
1	2. The method of claim 1 wherein the analyzing the pin arrangement			
2	includes:			
3	generating a coupling plot based upon the monitoring; and			
4	determining cumulative coupling based upon the coupling plot.			
1	3. The method of claim 1 wherein the pin arrangement includes:			
2	maximally packed differential pairs.			
1	4. The method of claim 1 wherein the pin arrangement includes:			
2	power and ground pins as well as differential pairs.			
2	power and ground pins as wen as differential pairs.			
1	5. The method of claim 4 wherein:			
2	the differential pairs, power pins and ground pins are arranged according to a			
3	ratio of eight differential pairs per one power pin and one ground pin.			
1	6. The method of claim 4 wherein the pin arrangement includes:			
2	the differential pairs, power pins and ground pins are arranged according to a			
3	ratio of six different pairs per one power pin and one ground pin.			

I	7. The method of claim 4 wherein the pin arrangement includes:			
2	the differential pairs, power pins and ground pins are arranged according to a			
3	ratio of four differential pairs per one power pin and one ground pin.			
1	8. An apparatus for analyzing input output (I/O) pin arrangements to			
2	determine the effect of differential pair and power and ground pin placement on signal			
3	quality comprising:			
4	means for constructing an array of pins;			
5 6	means for arranging a plurality of differential pairs within the array of pins to provide a pin arrangement;			
7	means for exciting each of the differential pairs within the pin arrangement;			
8	means for monitoring coupled noise on other differential pairs within the pin			
9	arrangement;			
10	means for analyzing the pin arrangement based upon the monitoring.			
1	9. The apparatus of claim 8 wherein the means for analyzing the pin			
2	arrangement includes:			
3	means for generating a coupling plot based upon the monitoring; and			
4	means for determining cumulative coupling based upon the coupling plot.			
1	10. The apparatus of claim 8 wherein the pin arrangement includes:			
2	maximally packed differential pairs.			
1	11. The apparatus of claim 8 wherein the pin arrangement includes:			
2	power and ground pins as well as differential pairs.			
1	12. The apparatus of claim 11 wherein:			
2	the differential pairs, power pins and ground pins are arranged according to a			
3	ratio of eight differential pairs per one power pin and one ground pin.			
1	13. The apparatus of claim 11 wherein the pin arrangement includes:			
2	the differential pairs, power pins and ground pins are arranged according to a			
3	ratio of six different pairs per one power pin and one ground pin.			

1	14. The apparatus of claim 11 wherein the pin arrangement includes:		
2	the differential pairs, power pins and ground pins are arranged according to a		
3	ratio of four differential pairs per one power pin and one ground pin.		
1	15. An apparatus comprising:		
2	a processor; .		
3	a memory coupled to the processor; and		
4	a system for analyzing input output (I/O) pin arrangements to determine the		
5	effect of differential pair and power and ground pin placement on		
6	signal quality, the system being stored on the memory and executing		
7	on the processor, the system including		
8	a constructing module, the constructing module constructing an array		
9	of pins;		
10	an arranging module, the arranging module arranging a plurality of		
11	differential pairs within the array of pins to provide a pin		
12	arrangement;		
13	an exciting module, the exciting module exciting each of the		
14	differential pairs within the pin arrangement;		
15	a monitoring module, the monitoring module monitoring coupled noise		
16	on other differential pairs within the pin arrangement; and,		
17	an analyzing module, the analyzing module analyzing the pin		
18	arrangement based upon the monitoring.		
1	16. The apparatus of claim 15 wherein the analyzing module includes:		
2	a generating module, the generating module generating a coupling plot based		
3	upon the monitoring; and		
4	a determining module, the determining module determining cumulative		
5	coupling based upon the coupling plot.		
1	17. The apparatus of claim 15 wherein the pin arrangement includes:		
2	maximally packed differential pairs.		

1	18.	The apparatus of claim 15 wherein the pin arrangement includes:	
2	power and ground pins as well as differential pairs.		
1	19.	The apparatus of claim 18 wherein:	
2	the di	fferential pairs, power pins and ground pins are arranged according to a	
3		ratio of eight differential pairs per one power pin and one ground pin.	
1	20.	The apparatus of claim 18 wherein the pin arrangement includes:	
2	the di	fferential pairs, power pins and ground pins are arranged according to a	
3		ratio of six different pairs per one power pin and one ground pin.	
1	21.	The apparatus of claim 18 wherein the pin arrangement includes:	
2	the di	fferential pairs, power pins and ground pins are arranged according to a	
3		ratio of four differential pairs per one power pin and one ground pin.	