Instytut Informatyki UMCS

Katedra Oprogramowania Systemów Złożonych

Wykład 1

Przetwarzanie bezkontekstowe intensywności

dr Marcin Denkowski

AGENDA

- Wstęp
- Przegląd kursu i warunki
- Przetwarzanie bezkontekstowe
- Histogram obrazu

PRZEGLĄD KURSU

CZĘŚĆ I

- Operacje bezkontekstowe
- Teoria barw
- Filtracja obrazu
- Prymitywy geometryczne
- Przekształcenia geometryczne obrazu

CZĘŚĆ II

- Wstęp do OpenGL i GLSL
- Geometria macierzowa 3D
- Oświetlenie i cieniowanie
- Tekstury, blending, fogs
- Compute shader

OBRAZ CYFROWY

- Funkcja 2D $I_{2}(x,y) = f(x,y)$
- Funkcja 3D $I_3(x,y,z) = f(x,y,z)$
- Jednorodna dyskretna siatka punktów (raster)

$${p = (x, y)}$$

- Para {p, I(p)} jest nazywana pikselem (picture element w 2D) lub vokselem (volumetric element w 3D)
- Jeżeli {I (p)} jest pojedynczą wartością obraz monochromatyczny
- Jeżeli {I (p)} jest wektorem obraz wielokonałowy (np. kolorowy)

PRÓBKOWANIE I KWANTYZACJA

PRÓBKOWANIE

KWANTYZACJA

PRZETWARZANIE OBRAZÓW CYFROWYCH

Low Level

Input: Image
Output: Image
Examples: Noise
reduction, image
sharpening

Mid Level

Input: Image
Output: Information
Examples: Object
recognition,
segmentation

High Level

Input: Information

Output: Understanding

Examples:

Scene understanding, autononymous navigation

CYKL PRZETWARZANIA OBRAZU

OPERACJE BEZKONTEKSOWE

- Oparte na pojedynczych punktach
 - korekcja liniowa
 - korekcja nieliniowa
 - histogram obrazu
 - wyrównywanie poziomów

TEORIA BARW

- Reprezentacja koloru
- Matematyczny opis ludzkiego wrażenia
- Modele device-dependant i device-independant

FILTRACJA KONTEKSTOWA

- Filtracja przestrzenna obrazów
- Operacja splotu funkcji dyskretnych
- Filtracja splotowa obrazów
 - filtry dolno- i górnoprzepustowe
 - filtry gradientowe i krawędziowe
- Filtry nieliniowe
 - filtr medianowy
 - filtr bilateralny

TRANSFORMATY

- Operacje w dziedzinie częstotliwości
- Transformata Fouriera
 - Fast Fourier Transform (FFT)
 - operacja szybkiego splotu
- Dyskretna Transformata Kosinusowa (DCT)
 - znakowanie wodne
 - kompresja stratna
- Transformata Hougha
 - wykrywanie kształtów w obrazie

PRZEKSZTAŁCENIA GEOMETRYCZNE

Zmiana położenia punktów obrazu

$$(x, y[,z]) = T\{(v, w[,u])\}$$

Metody interpolacji

	Shifts	Rigid Body	Affine	Perspective	Nonlinear
Global					
Local					

PRZETWARZANIE ZŁOŻONE

- Rekonstrukcja
- Segmentacja obrazu
- Dopasowywanie obrazów
- Fuzja obrazów
- Rozpoznawanie wzorca

PRZETWARZANIE BEZKONTEKSTOWE

PRZEKSZTAŁCENIE BEZKONTEKSTOWE

Transformacje intensywności

$$v' = T(v)$$

gdzie: T to operator odwzorowujący v na v'

- liniowe (jasność, kontrast)
- nielinowe (negatyw, jasność)
 - potęgowe (funkcja gamma)
 - logarytmiczne
 - krzywe

$$v' = \alpha(v) + \beta$$

$$v' = \alpha v^{\gamma} + \beta$$

$$v' = \alpha \log(v) + \beta$$

$$v' = \sum a_k x^k(v)$$

LINIOWA ZMIANA JASNOŚCI

Odwzorowanie

$$T(x)=ax+b$$

NIELINIOWA ZMIANA JASNOŚCI

Odwzorowanie

$$T(x) = Ax^{\gamma}$$

Odwzorowanie GAMMA

LINIOWA ZMIANA KONTRASTU

Odwzorowanie

$$T(x) = \frac{N/2}{N/2 - c} (x - c)$$
$$T(x) = \frac{N/2 + c}{N/2} x - c$$

NIELINIOWA ZMIANA KONTRASTU

Odwzorowanie

$$T(x)=S(x)=\frac{Max(x)}{1+\exp(-\frac{\rho-\omega}{\sigma})}$$

HISTOGRAM OBRAZU

Histogram cyfrowego obrazu jest dyskretną funkcją:

$$h(i_k) = n_k$$

$$h(i_k) = n_k$$
 $n_k \in [0, L-1]$

 $i_{\nu} - k$ -ta wartość intensywności

 n_{ν} – ilość punktów o intensywności i_{ν}

Znormalizowany histogram cyfrowego obrazu jest dyskretną funkcją:

$$h_N(i_k) = \frac{n_k}{MN}$$

HISTOGRAM

Histogram - rozkład prawdopodobieństwa wystąpienia wartości intensywności i_k w obrazie

HISTOGRAM KUMULACYJNY

- Całka znormalizowanego histogramu
- Prawdopodobieństwo wystąpienia punktu o wartości

$$i_{k} \leq v$$

WŁASNOŚCI HISTOGRAMU

Suma wysokości histogramu ⇔ Ilość punków w obrazie

$$\sum_{i=0}^{K} h(i) = NM$$

Średnia wartość intensywności histogramu ⇔
 Średnia wartość intensywności obrazu

$$\overline{h} = \sum_{i=0}^{K} i_K \cdot h_N(i_k) = \frac{1}{NM} \sum_{x,y=0}^{NM} i(x,y)$$

WŁASNOŚCI HISTOGRAMU

Mediana histogramu kumulacyjnego ⇔
 Mediana intensywności obrazu

$$h_C(0.5) = \tilde{i}(x, y)$$

Wariancja histogramu

miara kontrastu obrazu

$$\sigma^2 = \sum_{k=0}^{K} (i_k - \overline{h}) \cdot h_N(i_k)$$

MOMENTY OBRAZU

 Moment - wartość oczekiwana k-tej potęgi zmiennej losowej:

$$m_n(i) = \sum_{k=0}^K h_N(k) \cdot i_k^n$$

- $m_n(i) = \sum_{k=0}^{K} h_N(k) \cdot i_k^n$ $\mu_n(i) = \sum_{k=0}^{K} h_N(k) \cdot (i_k \overline{i_k})^n$
- Pierwszy moment:

Drugi moment centralny:

 $m_{1} = \sum_{k=0}^{K} h_{N}(k) \cdot i_{k}$ $\mu_{2} = \sum_{k=0}^{K} h_{N}(k) \cdot (i_{k} - \bar{i_{k}})^{2}$

 Trzeci moment centralny: skrętność histogramu

 Czwarty moment centralny: kurtoza histogramu

$$\mu_{3} = \sum_{k=0}^{K} h_{N}(k) \cdot (i_{k} - \bar{i}_{k})^{3}$$

$$\mu_{4} = \sum_{k=0}^{K} h_{N}(k) \cdot (i_{k} - \bar{i}_{k})^{4}$$

ANALIZA HISTOGRAMU

KONTRAST OBRAZU

ANALIZA HISTOGRAMU

Średnia = 136,4

$$\sigma$$
 = 6,7
M = 135,0

Średnia =
$$108,5$$

 σ = $51,6$
M = 102

Średnia = 120,6

$$\sigma$$
 = 87,4
M = 56

ENTROPIA OBRAZU

Entropia obrazu – miara nieuporządkowania informacji

$$H = -\sum_{i=0}^{2^{n}-1} P(a_i) I(a_i) = -\sum_{i=0}^{2^{n}-1} P(a_i) \log_2 P(a_i)$$

gdzie:
$$I(E) = \log \frac{1}{P(E)} = -\log P(E)$$

P(E) - prawdopodobieństwo wystąpienia informacji

Maksymalna entropia obrazu:

$$H_{i} = -\sum_{i=0}^{2^{n}-1} P(a_{i}) \log_{2} P(a_{i}) =$$

$$-\sum_{i=0}^{2^{n}-1} P(a_{i}) \log_{2} (1/2^{n}) = +\sum_{i=0}^{2^{n}-1} (1/2^{n}) \cdot n = n$$

ENTROPIA – PRZYKŁAD

FUNKCJA TRANSFERU

Funkcja transferu, przekształcenie intensywności

$$y = T(x)$$

gdzie: T(x) – operator odwzorowania zwany LUT (Look-Up Table)

odwzorowuje jeden zakres dynamiki na inny

 Odwzorowanie punktowe – wartość wyjściowa zależy jedynie od wartości wejściowej

LOOKUP-TABLE

SKALOWANIE HISTOGRAMU – POZIOMY

- Liniowe odwzorowanie zakresu tonalnego na inny zakres
- Może być zrealizowane na zasadzie LUT

$$T(x) = \frac{2^n - 1}{x_{max} - x_{min}} x$$

ROZCIĄGANIE HISTOGRAMU

WYRÓWNYWANIE HISTOGRAMU

Żądanie:

- płaska, jednorodna, wyrównana funkcja gęstości prawdopodobieństwa
- liczba punktów pozostaje niezmieniona

WYRÓWNYWANIE HISTOGRAMU

<u>Jak zmieni się entropia obrazu?</u>

IMAGE ENHANCEMENT

IMAGE ENHANCEMENT

ZADANIA

- 1. Stwórz aplikację w Qt wczytującą i wyświetlającą obraz na formatce.
- 2. Dodaj funkcjonalność zmiany jasności i kontrastu tego obrazu.
- 3. Dodaj funkcjonalność regulacji gammy tego obrazu przy użyciu LUT.
- 4. Narysuj histogram tego obrazu.
- 5. Wyznacz wartość średnią histogramu i wariancję.