Wstęp do Modelu Standardowego – zadania 3

- 1. Ile jest i jakie są możliwe ładunki mezonów złożonych z pary $q\bar{q}$ i barionów złożonych z trzech kwarków, jeśli dysponujemy kwarkami u, d, s?
- 2. (*Dyskusja*) W przyrodzie możemy spotkać dwa rodzaje momentu pędu: jeden związany z ruchem jednego ciała z układu względem drugiego (orbitalny moment pędu *L*), drugi z własnym obrotem ciała (spin *S*).

W mechanice klasycznej można zmierzyć jednocześnie wszystkie współrzędne momentu pędu.

W mechanice kwantowej można zmierzyć kwadrat długości momentu pędu i jedną współrzędną, przyjmuje się, że 3-cią współrzędną. Wynikiem są skwanowane wartości: $l(l+1)\hbar^2$ (dla operatora \hat{L}^2 i $m_l\hbar$ (gdzie $m_l=-l,-l+1...-1,0$, 1,...,l-1,l) dla operatora \hat{L}_z .

Podobnie dla spinu – mierzymy S^2 i S_z , a wynikiem są odpowiednio: $s(s+1)\hbar^2$ i $m_s\hbar$ (gdzie $m_l=-s,-s+1...-1,0,1,...,s-1,s$), a $s=0,\frac{1}{2},1,\frac{3}{2},2,\frac{5}{2}...$).

Leptony, czy układ dwóch lub trzech kwarków mają określone spiny, ale moment pędu może przyjąć dowolną (byle skwantowaną) wartość.

3. Stan spinowy cząstki można zapisać używając braketów: $|s m_s\rangle$, np. stan spinowy elektronu lub kwarka o spinie 1/2 z trzecią składową 1/2, czyli stan \uparrow , zapisujemy jako: $\left|\frac{1}{2}\frac{1}{2}\right\rangle$. A zatem układ $\uparrow\uparrow$ dwóch kwarków o spinach 1/2, z trzecią składową 1/2 zapiszemy jako:

$$\left|\frac{1}{2}\frac{1}{2}\right\rangle \left|\frac{1}{2}\frac{1}{2}\right\rangle = \left|1\right\rangle$$

Proszę znaleźć i zapisać pozostałe stany spinowe dwóch kwarków.

4. Proszę określić, jaki może być całkowity moment pędu mezonów i barionów, które złożone są odpowiednio z dwóch i trzech kwarków.

Całkowity moment pędu cząstki jest to wektorowa suma jej spinu i momentu pędu: $\vec{J} = \vec{L} + \vec{S}$, ale jak dodajemy te wektory? W mechanice kwantowej nie znamy przecież wszystkich współrzędnych?

Używając braketów, zapytamy: jakie są możliwe momenty pędu $|jm\rangle$ układu złożonego ze stanów $|j_1 m_1\rangle$ oraz $|j_2 m_2\rangle$? Trzecie składowe dodają się łatwo: $m=m_1+m_2$, ale co z długością całkowitego momentu pędu $\vec{J}=\vec{J}_1+\vec{J}_2$?

Jak \vec{J}_1 i \vec{J}_2 są równoległe, ich długości się dodadzą, gdy antyrównolegle – odejmą. Czyli długość \vec{J} może on przyjąć każdą całkowitą wartość j z przedziału: $j=|j_1-j_2|,|j_1-j_2|+1,...,0,|j_1+j_2|-1,|j_1+j_2|$.

Odpowiedź na pytanie z początku zadania jest intuicyjna, gdy kwarki mają zerowy orbitalny moment pędu *L*. W przypadku ogólnym konieczna jest znajomość znajdywania tych stanów przy pomocy tablic ze współczynnikami Clebsha-Gorgana*.

- 5. Kwarki u i d mają izospin $I=\frac{1}{2}$ oraz trzecią składową izospinu $I_3=+\frac{1}{2}$ (kwarki u i \bar{d}) lub $I_3=-\frac{1}{2}$ (kwarki d i \bar{u}). Jaki całkowity izospin mogą mieć mezony złożone z kwarków u i d? Odpowiednie współczynniki można otrzymać z tablic współczynników Clebsha-Gordana, analogicznie jak dla spinów. Proszę napisać postacie funkcji falowych tych mezonów i przypisać im fizyczne cząstki z multipletu o 0^- . Pamiętać należy tu o pewnej konwencji*, która powoduje, że funkcja falowa jednego z tych kwarków ma znak przeciwny do funkcji antykwarka.
 - * zmiana $q \to \bar{q}$ jest równoważna działaniu operatora parzystości ładunkowej \hat{C} : $\hat{C}|u\rangle = e^{i\phi}|\bar{u}\rangle$. Konwencja Condona-Shortleya oznacza, że przemiany lekkich kwarków mają znaki odpowiednio: $|u\rangle \to -|\bar{u}\rangle$, $|d\rangle \to +|\bar{d}\rangle$.
- 6. Rozpatrujemy silne oddziaływania w rozpraszaniu pionów na protonach: $\pi + N \rightarrow \pi + N$.
 - a) Proszę wypisać możliwe stany izospinowe w tych procesach. Matematyka izospinu jest taka sama, jak spinu, tzn, wiedząc, że piony mają izospin I=0 i trzy możliwe wartości $I_3=-1,0,+1$, a nukleony $I=\frac{1}{2}$ i $I_3=-\frac{1}{2}$, + $\frac{1}{2}$, używając współczynników Clebsha-Gordana dodajemy izospiny analogicznie jak spiny.