CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

Course	Number	Sections
Mathematics	205	All
Examination	Date	Duration
Midterm	23 October 2016	$1\ \mathrm{h}\ 30\ \mathrm{min}$
Special	Only approved calculators are allowed	
Instructions:	Show all your work for full marks	

[Marks]

[11] **1.** (a) Write the sigma notation formula for the right Riemann sum R_n of the function $f(x) = 4 - x^2$ on the interval [0,2] using n subintervals of equal length, and calculate the definite integral $\int_0^2 f(x) dx$ as the limit of R_n at $n \to \infty$.

(Reminder:
$$\sum_{k=1}^{n} k = n(n+1)/2$$
, $\sum_{k=1}^{n} k^2 = n(n+1)(2n+1)/6$)

- (b) Use the Fundamental Theorem of Calculus to calculate the derivative of $F(x) = \int_{e^{-x}}^{x} \ln(t^2 + 1) dt$
- [15] 2. Calculate the following indefinite integrals

(a)
$$\int \frac{3x^3}{\sqrt{16-x^2}} dx$$
 (b) $\int \frac{x^2+3}{x^2-2x+5} dx$ (c) $\int \frac{2^x}{2^{2x}-4} dx$

- [6] **3.** Find the antiderivative F(x) of $f(x) = \frac{\sec^2(x)}{\sec^2(x) + 3}$ such that F(0) = 0.
- [12] 4. Evaluate the following definite integrals (give the exact values, do not approximate):

(a)
$$\int_{0}^{4} \frac{x^{2}}{\sqrt{2x+1}} dx$$
 (b) $\int_{0}^{1} x^{2} \cos(\pi x) dx$

- [6] **5.** Find the area enclosed by the graphs of the functions $f(x) = x^2 3x 5$ and g(x) = 3 x.
- [3] Bonus question. Given that

$$\int_{0}^{\pi} \left[f(x) + f''(x) \right] \sin x dx = 2$$
 and $f(\pi) = 1$, find $f(0)$