数学物理方法 CH1 作业题解答

P6 习题 1.1

- 1. 用复变量表示:
- (1) 上半平面; (2) 左半平面

解: (1) 上半平面为: Imz>0

- (2) 左半平面为Rez<0
- 4. 求下列复数的实部、虚部、模与辐角主值
- $(3) (\sqrt{3}+i)^{-3}$

解: 先将 $z = \sqrt{3} + i$ 记为指数形式, $z = \sqrt{3} + i = 2e^{i(\frac{p}{6} + 2kp)}$

$$\text{III } z^{-3} = 2^{-3} e^{-i3(\frac{p}{6} + 2kp)} = \frac{1}{8} e^{-i(\frac{p}{2} + 6kp)} = \frac{1}{8} e^{-i\frac{p}{2}} = -\frac{1}{8} i$$

其实部为 0, 虚部为 $-\frac{1}{8}$, 模为 $\frac{1}{8}$, 辐角主值为 $-\frac{p}{2}$

- 6. 计算下列数值:
- $(2) (\sqrt{3}-i)^5$

解: 先将 $z = \sqrt{3} - i$ 记为指数形式, $z = \sqrt{3} - i = 2e^{i(-\frac{p}{6} + 2kp)}$, 则

$$z^{5} = 2^{5}e^{i5(-\frac{p}{6}+2kp)} = 32e^{i(-\frac{5p}{6}+10kp)} = 32e^{-i\frac{5p}{6}} = 32[\cos(-\frac{5p}{6}) + i\sin(-\frac{5p}{6})] = -16(\sqrt{3} + i)$$

7.求解方程

$$(1)z^3-1=0$$

解:
$$z^3 = 1$$
, 则 $z = \sqrt[3]{1} = \sqrt[3]{e^{i2kp}} = e^{i\frac{2kp}{3}} = \begin{cases} e^0 = 1 \\ e^{i\frac{2p}{3}} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \end{cases}$ 分别对应 $\begin{cases} k = 0 \\ k = 1 \\ e^{i\frac{4p}{3}} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \end{cases}$

8.设流体在点z=1+2i的流速为 $v=\frac{3+i}{2-i}$,求其大小和方向.

解:即求其模及辐角主值:

$$v = \frac{3+i}{2-i} = \frac{(3+i)(2+i)}{5} = \frac{5+5i}{5} = 1+i$$
,其模为 $\sqrt{2}$,其辐角主值为 $\arg v = \frac{p}{4}$

P9 习题 1.2

2. 画出下列关系所表示的 z 点的轨迹的图形并确定它是不是区域。

(1)
$$\text{Im } z > 1 \perp |z| < 2$$

如图示阴影部分,不含边界线。满足区域的两个条件:(1)全由内点组成;(2)点集中任意两点可用全在点集中的折线连接;所以是区域。

P15 习题 1.3

2. 讨论下列函数的可微性和解析性

(1)
$$w = z^2$$

則
$$w = z^2 = (x^2 - y^2) + i2xy$$

w的实部 $u = x^2 - y^2$,虚部v = 2xy

$$\frac{\partial u}{\partial x} = 2x$$
, $\frac{\partial u}{\partial y} = -2y$, $\frac{\partial v}{\partial x} = 2y$, $\frac{\partial v}{\partial y} = 2x$

可见, w的实部和虚部有连续的一阶偏微商,且满足 C-R 条件,

所以, $w=z^2$ 在复平面可微,从而在复平面是解析的。

(2)
$$w = z \operatorname{Re} z$$

则
$$w = z \operatorname{Re} z = x^2 + ixy$$

$$w$$
的实部 $u = x^2$, 虚部 $v = xy$

$$\frac{\partial u}{\partial x} = 2x$$
, $\frac{\partial u}{\partial y} = 0$, $\frac{\partial v}{\partial x} = y$, $\frac{\partial v}{\partial y} = x$

可见,w的实部和虚部有连续的一阶偏微商,但仅在z=0点满足 C-R 条件,所以,它仅在z=0点是可微的,但是在z=0点并不解析(因为在z=0点的邻域并不满足 C-R 条件);并且在全平面均是不解析的。

3. 已知解析函数的实部或虚部,求解析函数。

(1)
$$u = x^2 - y^2 + xy$$
, $f(i) = -1 + i$

解:采用不定积分法:

$$v = \int \frac{\partial v}{\partial x} dx + g(y)$$
 1

而由 C-R 条件,
$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = 2y - x$$
 ②

所以
$$v = \int (2y - x)dx + g(y) = 2xy - \frac{1}{2}x^2 + g(y)$$
 ③

再将v对y求偏导:

一方面,由 C-R 条件,
$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = 2x + y$$
, ④

另一方面,由 ③式得:
$$\frac{\partial v}{\partial y} = 2x + \frac{dg}{dy}$$
 ⑤

曲④⑤两式得
$$\frac{dg}{dy} = y$$
 所以 $g = \frac{1}{2}y^2 + c$

所以
$$v = 2xy - \frac{1}{2}x^2 + \frac{1}{2}y^2 + c$$
 ⑥

再由已知 f(i) = -1 + i ,即当 x = 0, y = 1 时, v = 1 , 代入 ⑥式得 $c = \frac{1}{2}$

所以,
$$v = 2xy - \frac{1}{2}x^2 + \frac{1}{2}y^2 + \frac{1}{2}$$
 ⑦

$$\iiint f(z) = x^2 - y^2 + xy + i \left(2xy - \frac{1}{2}x^2 + \frac{1}{2}y^2 + \frac{1}{2}\right) = \left(1 - \frac{1}{2}i\right)z^2 + \frac{1}{2}i$$
 (8)

(2)
$$u = 2(x-1)y$$
, $f(2) = -i$

解:采用不定积分法:

$$v = \int \frac{\partial v}{\partial x} dx + g(y)$$
 1

而由 C-R 条件,
$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = -2x + 2$$
 ②

所以
$$v = \int (2-2x)dx + g(y) = 2x - x^2 + g(y)$$
 ③

再将v对y求偏导:

一方面,由 C-R 条件,
$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = 2y$$
, ④

另一方面,由 ③式得:
$$\frac{\partial v}{\partial y} = \frac{dg}{dy}$$
 ⑤

由④⑤两式得
$$\frac{dg}{dy} = 2y$$
 所以 $g = y^2 + c$

所以
$$v = 2x - x^2 + y^2 + c$$
 ⑥

再由已知 f(2) = -i , 即当 x = 2, y = 0 时, v = -1 , 代入 ⑥式得 c = -1

所以,
$$v = 2x - x^2 + y^2 - 1$$
 ⑦

$$\iiint f(z) = 2(x-1)y + i(2x - x^2 + y^2 - 1) = -i(1-z)^2$$

P22 习题 1.4

6. (2) 解方程: $e^z = 1 + i\sqrt{3}$

解: 先将 e^z 写成指数的形式: $e^z = 2e^{i(\frac{p}{3} + 2kp)}$

$$\text{If } z = Ln[2e^{i(\frac{p}{3} + 2kp)}] = \ln 2 + Lne^{i(\frac{p}{3} + 2kp)} = \ln 2 + i(\frac{p}{3} + 2kp) \qquad (k = 0, \pm 1, \pm 2...)$$

7. 判断下列函数是单值的还是多值的, 若是多值的, 是几值? 其支点是什么?

$$(1) \ z + \sqrt{z - 1} \qquad \qquad (6) \ \frac{\cos\sqrt{z}}{\sqrt{z}}$$

解: (1) 因为 z 是单值函数,而 $\sqrt{z-1}$ 是 2 值的,支点是1, ∞

所以,函数 $z+\sqrt{z+1}$ 是2值的,支点是1, ∞

(6)
$$\sqrt{z} = \sqrt{|z|}e^{i\frac{\arg z + 2kp}{2}}$$
, 记它的两个单值分支为
$$\begin{cases} w_1 = \sqrt{|z|}e^{i\frac{\arg z}{2}}\\ w_2 = \sqrt{|z|}e^{i(\frac{\arg z}{2} + p)} = -\sqrt{|z|}e^{i\frac{\arg z}{2}} = -w_1 \end{cases}$$

$$\text{III} \frac{\cos \sqrt{z}}{\sqrt{z}} = \begin{cases} \frac{\cos w_1}{w_1} \\ \frac{\cos w_2}{w_2} = \frac{\cos(-w_1)}{-w_1} = \frac{\cos(w_1)}{-w_1} \end{cases}$$

所以, $\frac{\cos\sqrt{z}}{\sqrt{z}}$ 是2值的函数,支点与 \sqrt{z} 的支点相同,是0和 ∞ .

8.设 $w = \sqrt[3]{z}$ 确定在沿负实轴割破了的z平面上,并且w(i) = -i,求w(-i).

解:根据已知,可设定 $-p < \arg z \le p$

$$w = \sqrt[3]{z} = \sqrt[3]{|z|}e^{i\frac{\arg z + 2kp}{3}}$$
 ($k = 0,1,2$),是 3 值函数,它的三个单值分支为:

$$\begin{cases} w_1 = \sqrt[3]{|z|} e^{i\frac{\arg z}{3}}, 其辐角记为f_1 = \frac{\arg z}{3}, \quad \underline{x}变化范围为 - \frac{p}{3} < f_1 \le \frac{p}{3} \\ w_2 = \sqrt[3]{|z|} e^{i\frac{(\arg z + 2p)}{3}}, \underline{x}辐角记为f_2 = \frac{(\arg z + 2p)}{3}, \quad \underline{x}变化范围为\frac{p}{3} < f_2 \le p \\ w_3 = \sqrt[3]{|z|} e^{i\frac{(\arg z + 4p)}{3}}, \underline{x}辐角记为f_3 = \frac{(\arg z + 4p)}{3}, \quad \underline{x}变化范围为p < f_3 \le \frac{5p}{3} \end{cases}$$

已知w(i)=-i,即z=i时, $w=-i=e^{i(-\frac{p}{2}+2kp)}$,w的幅角为 $-\frac{p}{2}+2kp$,其中只有

辐角 $\frac{3p}{2}$ 在上述 w_1 , w_2 , w_2 限定的范围内,它是在分支 $w_3 = \sqrt[3]{z} | e^{i\frac{(arg\,z+4p)}{3}}$ 的辐角

范围内,所以,我们应在分支 w_3 中求解w(-i).

当
$$z = -i$$
 时, $\arg z = -\frac{p}{2}$,这时,

$$w_3(-i) = e^{i\frac{(\arg z + 4p)}{3}} = e^{i\frac{7p}{6}} = -e^{i\frac{p}{6}} = -(\cos\frac{p}{6} + i\sin\frac{p}{6}) = -(\frac{\sqrt{3}}{2} + \frac{1}{2}i)$$

10. (4) 计算: Ln(1+i)

解:
$$Ln(1+i) = Ln[\sqrt{2}e^{i(\frac{p}{4}+2kp)}] = \ln\sqrt{2} + i(\frac{p}{4}+2kp)$$
 $(k=0,\pm 1,\pm 2...)$