Dalszy rozwój algorytmu uczenia maszynowego dla ciagłej klasyfikacji stanu CP bozonu Higgsa w rozpadzie $H \to \tau \tau$

Jacek Kurek January 17, 2020

1 Wstep

Notka opisuje działania podjete podczas pracy nad rozwojem i poprawa wydajności opartych na sieciach neuronowych algorytmów wyznaczania stanu CP bozonu Higgsa.

W trakcie pracy przy projekcie zajmowałem sie zarówno poprawianiem technicznej strony kodu, a wiec refactoringiem, usuwaniem powtórzeń czy dodaniem testów jednostkowych, jak i rozwijaniem poszczególnych metod podejścia do problemu.

Kod projektu implementuje różnorodne podejścia do klasyfikacji zdarzeń obserwowanych, w trakcie pracy w celu porównywania poszczególnych metod w jednolity sposób korzystałem z metryk (dajacych sie określić w każdym przypadku) dotyczacych odległości przewidywanego kata mieszania od właściwego dla danego przypadku, nawet jeżeli metoda nie używa tego kata explicite w funkcji kosztu.

2 Regresja do kata mieszania ϕ_{CP}

Pierwsza zbadana metoda była regresja do kata mieszania - użyta funkcja kosztu był bład średniokwadratowy. Metoda posiadała poważny problem który zaobserwować można na załaczonym wykresie przedstawiajacym histogram wygenerowanych zdarzeń, oraz histogram zdarzeń przewidzianych przez sieć:

Figure 1: Wartość kata mieszania dla wygenerowanych i przewidzianych zdarzeń bez użycia metryki okregu

Jak można zaobserwować, sieć w znaczacym stopniu preferuje pośrednie wartości kata, nie przewiduje nigdy wartości skrajnych.

Aby wyjaśnić to zachowanie, należy zauważyć, że wykorzystany tutaj bład średniokwadratowy nie bierze pod uwage faktu, iż wartości 2π oraz 0 sa w istocie tymi samymi wartościami. W efekcie wprowadza to niepożadana nieciagłość i ściaga wyniki ku środkowi. Należało wiec wykorzystać metode która weźmie pod uwage topologie przestrzeni wyjściowej.

Do porównania odległości dwóch katów użyto funkcji $d(\phi,\varphi)=1-\cos(\phi-\varphi)$ która opisuje odległość euklidesowa dwóch punktów na okregu jednostkowym o współrzednych katowych ϕ , φ . Efekt można zaobserwować na nastepujacym wykresie.

Figure 2: Wartość kata mieszania dla wygenerowanych i przewidzianych zdarzeń przy użyciu metryki okregu

Wraz z użyciem tego usprawnienia, poprawiły sie metryki opisujace poprawność przewidywań realizowanych przez sieć neuronowa:

	Przed usprawnieniem	Po usprawnieniu
Średni bład przewidywania (rad)	0.574	0.435
Odchylenie standardowe (rad)	0.904	0.692

Table 1: Porównanie rezultatów przed i po zastosowaniu poprawek

3 Regresja do funkcji wagowej

Przypominajac, dla pojedynczego eventu można ustalić funkcje $w:[0;2\pi]\to R$ postaci

$$w(\phi) = A + B\cos\phi + C\cos\phi$$

zaś wartość ϕ_{CP} jest połowa wartości kata ϕ dla której funkcja osiaga maksimum.

 ${\bf W}$ tej metodzie na podstawie danych z eventu, przewidujemy zdyskretyzowany wykres funkcji wdla pewnej ustalonej liczby klasc. Jako funkcje kosztu używamy różnicy średniokwadratowej.

Metoda nie uczyła sie poprawnie, generujac wyniki charakteryzujace sie wartościami parametrów $B,\,C$ bliskimi zeru:

Figure 3: Przykładowy wykres przewidywanej funkcji wagowej wzgledem oczekiwanej

Uwage zwracał jednak fakt, że parametr A - wartość średnia funkcji, był dobrze ustalany. Na podstawie tej obserwacji, zaproponowana została metoda dostepna w kodzie przy użyciu flagi "-delete-c", w której dane trenowane sa po normalizacji:

$$W(\phi) = w(\phi) - \frac{\int_0^{2\pi} w(\varphi)d\varphi}{2\pi}$$

W efekcie, w istotnym stopniu poprawiły sie zdolności predykcyjne. Poniższa tabela podsumowuje osiagniete dokładności w zależności od użyca dropoutu i flagi "–delete-c"

Figure 4: Przykładowy wykres przewidywanej funkcji wagowej wzgledem oczekiwanej przy użyciu flagi –delete-c

	-delete-c	bez –delete-c
Dropout 20	0.548	1.531
Dropout 0	0.233	0.243

Table 2: Średni bład przewidywania dla przypadków (rad)

	-delete-c	bez –delete-c
Dropout 20	0.810	1.778
Dropout 0	0.420	0.440

Table 3: Odchylenie standardowe dla przypadków (rad)

4 Wyznaczanie parametrów funkcji wagowej poprzez dyskretyzacje

Funckja wagowa postaci

$$w(\phi) = A + B\cos\phi + C\sin\phi$$

może być wyznaczana poprzez dyskretyzacje przestrzenii możliwych parametrów $A,B,C.\,$

W tym podejściu, używamy trzech instancji sieci, każda uczy sie jednego z parametrów. Problem który należało rozwiazać, zwiazany był z rozkładem parametrów przewidywanym przez sieć. Poniższy wykres pokazuje rozkład parametru A wyznaczony przez sieć, wraz z rozkładem tegoż parametru zawartym w danych wejściowych

Figure 5: Rozkład parametru A

Problem staje sie jeszcze lepiej widoczny, jeśli spojrzymy na rozkład błedu:

Figure 6: Bład przewidywania

Isotne i powtarzalne różnice w przewidywaniach i rozkładach generowanych przez sieć neuronowa sugeruja potencjalny bład implementacyjny. W ramach podjetych działań kod odpowiedzialny za generowanie danych w tym modelu został przejrzany, niestety nie przyniosło to spodziewanych rezultatów. Rekomendowanym rozwiazaniem jest ponowna implementacja rozwiazania, włacznie z kodem odpowiedzialnym za dyskretyzacje parametrów wejściowych.