New observations

Agent-environment interface

Q-learning update

$$Q(\underline{o_{\mathrm{prev}}}, a) = \dots + \alpha \left[R(\underline{o_{\mathrm{prev}}}, \pi(\underline{o_{\mathrm{prev}}})) + \gamma \max_{a'} Q^{\mathrm{next}}(\underline{o_{\mathrm{next}}}, a') \right]$$

All the fields are computed from Skill History except counter

New end episode in Q-learning

Q-learning: New End episode

FINAL AGENT

function end_episode

cppu9:
$$Q(o_{\mathrm{prev}},:) = [\dots 0 \dots]$$
 o_{next}

SECOND-TO-LAST AGENTS

Once end_episode has been called at least once on the last agent

cppu8:
$$Q(\dots) = \dots + Q^{\text{next}}(o_{\text{next}}, a')$$

cppu5:
$$Q(\dots) = \dots + Q^{\text{next}}(o_{\text{next}}, a')$$

Initialization in Q-learning

Q learning init.

By definition
$$rac{R_{\min}}{1-\gamma} \leq Q \leq rac{R_{\max}}{1-\gamma}$$

Q-learning update Q=(1-

 $Q = (1 - \alpha)Q^{-} + \alpha Q^{+}$ $\alpha \in (0, 1)$

Optimistic init. (spontaneously encourages exploration)

The maximum Q computed according to the Q-learning update must always be smaller than Q_opt

$$\underbrace{(1-\alpha)Q_{\rm opt} + \alpha(R_{\rm max} + \gamma Q_{\rm opt})}_{\min Q} \le Q_{\rm opt} \implies Q_{\rm opt} \ge \frac{R_{\rm max}}{1-\gamma}$$

Pessimistic init. (spontaneously discourages exploration)

The minimum Q computed according to the Q-learning update must always be larger than Q_pess

$$\underbrace{(1-\alpha)Q_{\text{pess}} + \alpha(R_{\min} + \gamma Q_{\text{pess}})}_{\max Q} \ge Q_{\text{pess}} \implies Q_{\text{pess}} \le \frac{R_{\min}}{1-\gamma}$$

Decreasing learning rate

Learning rate

Learning rate =
$$\frac{\alpha}{T^d}$$

History-based LR

T = number of interactions the agent has had with the environment (reset at the end of each episode)

Transition-based LR

 = counter of how many times the agent has seen the tuple (observation, action) for which is going to update the Q value (no reset at the end of the episode)

With
$$\alpha=0.7$$

$$d=0.3 \implies [0.7,0.57,0.50,0.46,0.43,0.41,0.39,0.37,0.36,0.35] \quad \text{<1e-3 with T} \sim 2000$$

$$d=1/0.8 \implies [0.7,0.29,0.18,0.12,0.09,0.07,0.06,0.05,0.04] \quad \text{<1e-3 with T} \sim 200$$

$$d=2 \implies [0.7,0.17,0.08,0.04,0.03,0.02,0.01,\dots] \quad \text{<1e-3 with T} \sim 30$$

Reward

In all the experiments:

- After the cppu selects an action, the reward is computed as:
 - -1 * duration of skills executed by itself (if any) + transport (related to the action chosen)

In some experiments:

- positive reward for skills means that if a skill is executed the reward is computed as before but converted to positive (by adding a scale factor of +200)
 - -1 * duration of skills executed by itself (if any) + transport (related to the action chosen) + 200

Code

Main changes

- created script for hyperparameter tuning
 - Launch multiple experiments (grid search)
 - Automatically set the desired scenario
 - o Can be used with local as well as RLlib algorithms
- created functions to compute previous/next observations
- exported skill history to save the full path of each episode (training/evaluation)
- created python script for estimating skill durations
 - introduced softmax action selection

Q-learning

- updated reward
 - Negative duration of the transport plus the duration of the executed skills (if any)
- introduced end episode

RLlib

- updated compatibility layer
 - Automatically launch and connect to the servers
 - Synchronize start/end episode
- updated reward
 - based on the full trajectory

Experiments on Scenario 1-2-3

Q-learning with epsilon-greedy policy

- ai_optimizer → riccardo/test-reprodubility-rllib → New counter for the decreasing learning rate (28 Jul 2023 15:16 cf695f9f)
- skill_runtime \rightarrow master \rightarrow Logging level cleanup (22 Jun 2023 14:19, d61f733f) ----> skill runtime v. 1.68
- skill-runtime-common → master → Logging Level Cleanup: Moving log about the number of loaded libraries to TRACE level (20 Jun 2023 16:52, bb082780)

A few technical notes on the following plots

- Training/Evaluation curves
 - y-axis = duration of the entire production (mean over multiple runs with 90% confidence interval)
- 4/5 run in the legend means 4 runs out of 5 produced the final output.
 - Unless explicitly stated, this means that the execution of 1 run failed for some reasons not related to the training process (e.g., the simulation didn't start properly or was randomly stopped)
- The baseline is the minimum-hop policy

Modified duration of skills: **50**s or **100**s All the transport are in the range 1-5s

Constant learning rate= 0.7 | gamma = 0.98 | q_init = -10000 | variable epsilon | 128 episodes | no counter in obs.

Modified duration of skills: **50**s or **100**s All the transport are in the range 1-5s

Transition-based learning rate: alpha = 0.7, variable d | gamma = 0.98 | q_init = -10000 | epsilon = 0.7 | 128 episodes | positive reward for skills

Modified duration of skills: **50**s or **100**s All the transport are in the range 1-5s

Constant learning rate= 0.7 | gamma = 0.98 | q_init = -10000 | variable epsilon | 128 episodes | positive reward for skills

Avg time of experiments

Algorithm	N. of episodes	Avg. time	Avg. time per episode
Q-learning	128	~10 m	~5 s

Experiment with PPO

- Reward is computed once the full trajectory has been collected
- This is a preliminary test (just a few episodes)

Final notes

- Refined Q-learning shows promising results in all the 3 scenarios
 - Scenario 1: baseline is most of the time outperformed, in some cases reaching the optimum path
 - Scenario 2: baseline is sometimes outperformed, but in some cases infinite loops are generated
 - Scenario 3: baseline is most of the time outperformed, but in some cases infinite loops are generated

Next steps

- Experiments with RLlib algorithms (e.g., PPO, DQN)
- Code refactoring
- Simpler output
- Reproducibility of experiments
- Save/Checkpoint models
- Migration to the production of multiple products