Willamette operational model streamflow data

1 Introduction

The Willamette operational model will simulate the regulation of 13 dams in the Willamette River Basin (Figure 1). The expected output will be outflow and hydropower production from 8 of the 13 projects. The operations also depend on the inflow values measured at certain control points along the catchment. For this reason the input to the model will be the inflow entering each reservoir as well as at the control points. In this document the data source and water balance equations used are summarized.

2 Data sources

To simulate the reservoirs operations we need to use historical inflow data to the reservoirs at the headwater and historical local flows for downstream reservoirs and control points. For the reservoirs inflow and local flows data, we will use the historical streamflows provided by BPA¹. For the control points local flows we use measurement from USGS stations².

3 Balance equations

Table 1 describes the data types used in the balance equations:

ID	Data type	Note					
5H	Average daily observed streamflow or	BPA data used to determine local flows					
	project outflow						
5A	Average daily inflow into projects	BPA data used to determine reservoirs					
	(provided by the project owners or	input					
	calculated as H- $\Delta Storage$)						
5E	Average daily evaporation at site	BPA data used to determine reservoirs					
		input					
in	average daily reservoir/station inflow	INPUT to the model to be derived from					
		data records or calculated at each time					
		step					
loc	average daily local flow (incremental flow	INPUT to the model to be derived from					
	between adjacent stations/projects)	data records					
out	average daily simulated reservoir outflow	OUTPUT to be simulated					

Table 1: Data types description

3.1 Reservoirs balance equations

Figure 3 provides a representation of the reservoirs network. In previous models of the Willamette water system (HEC-ResSim, ResSim Lite, ENVISION), only two reservoirs receive outflow from upstream projects: Lookout Point and Foster. For these two project we need to calculate the local flows (incremental flow between consecutive dams) using the balance equations 1:

 $^{^{1}} https://www.bpa.gov/p/Power-Products/Historical-Streamflow-Data/Pages/Historical-Streamflow-Data.aspx$

Figure 1: Map of the Willamette RB along with the modeled reservoirs and control points

ID	Reservoir					
HCR	Hills Creek					
LOP	Lookout Point					
DEX	Dexter					
FAL	Falls Creek					
СОТ	Cottage Grove					
DOR	Dorena					
CGR	Cougar					
BLU	Blue River					
FRN	Fern Ridge					
GPR	Green Peter					
FOS	Foster					
BCL	Big Cliff					
DET	Detroit					

ID	Control point				
SAL	Salem				
ALB	Albany				
JEF	Jefferson				
MEH	Mehama				
HAR	Harrisburg				
VID	Vida				
JAS	Jasper				
GOS	Goshen				
WAT	Waterloo				
MON	Monroe				
FOS	Foster				

Figure 2: List of reservoirs and control points IDs

$$LOP_{loc} = LOP5A - HRC5H$$

$$FOS_{loc} = FOS5A - GPR5H$$
(1)

Reservoirs Dexter and Detroit are instead treated as run-of-river type of plants (i.e., no storage, their inflow is equal to their outflow which is divided between spill and generation). Therefore, no rule curve or constraint is needed to simulate their operation (only gate specific physical constraints). Using these assumptions and the equations reported in the BPA modified streamflow description (Chapter 3.7 Willamette Basin) we can formulate the following water balance equations:

$$HCR_{in} = HCR5A$$

$$LOP_{in} = HCR_{out} + LOP_{loc} + LOP5E$$

$$DEX_{in} = LOP_{in}$$

$$FAL_{in} = FAL5A$$

$$DOR_{in} = DOR5A$$

$$CGR_{in} = CGR5A$$

$$BLU_{in} = BLU5A$$

$$FRN_{in} = FRN5M$$

$$GPR_{in} = GPR5A$$

$$FOS_{in} = GPR_{out} + FOS_{loc}$$

$$DET_{in} = DET5A$$

$$BCL_{in} = DET_{in}$$

$$(2)$$

As it's made clear in the equations, Lookout Point and Foster inflows will be calculated at each simulation step, based on the simulated upstream releases.

3.2 Control points balance equations

Some operations constraints are based on the inflow at specific control points in the catchment (in red on the map of Figure 1). Therefore the inflow at the control points needs to be calculated at

Figure 3: Willamette reservoirs network and travel times

Reservoir Name	note	SAL	ALB	JEF	MEH	HAR	VID	JAS	GOS	WAT	MON	FOS
Hills Creek Lake												
Lookout Point Lake												
Dexter Reservoir	run-of-river	Null										
Fall Creek Lake												
Dorena Lake												
Cottage Grove Lake												
Fern Ridge Reservoir												
Cougar Reservoir												
Blue River Reservoir												
Green Peter Reservoir												
Foster Reservoir												
Detroit Reservoir												
Big Cliff Reservoir	run-of-river	Null										

Figure 4: Control points/reservoirs lookup table

each simulation step by summing the simulated outflows from upstream reservoirs/stations and historical local inflows:

$$SAL_{in}(t) = ALB_{in}(t) + JEF_{in}(t) + SAL_{loc}(t)$$

$$JEF_{in}(t) = WAT_{in}(t) + MEH_{in}(t) + JEF_{loc}(t)$$

$$MEH_{in}(t) = BCL5H(t) + MEH_{loc}(t)$$

$$WAT_{in} = FOS5H(t) + WAT_{loc}(t)$$

$$ALB_{in}(t) = MON_{in}(t-1) + HAR_{in}(t-1) + ALB_{loc}(t)$$

$$MON_{in}(t) = FER5H(t) + MON_{loc}(t)$$

$$HAR_{in}(t) = VID_{in}(t)GOS_{in}(t) + JAS_{in}(t) + HAR_{loc}(t)$$

$$VID_{in}(t) = CGR5H(t) + BLU5H(t) + VID_{loc}(t)$$

$$JAS_{in}(t) = DEX5H(t) + FAL5H(t) + JAS_{loc}(t)$$

$$GOS_{in}(t) = COT5H(t) + DOR5H(t) + GOS_{loc}(t)$$

Historical local inflows can be derived from historical outflows (provided by BPA) and inflow records at USGS stations by inverting balance Equations 3. The travel times were derived from Figure 3 provided by the USACE [1]. Many reservoirs can be influenced by a single control point (e.g Salem) and many control points can be influenced by a single reservoir. Figure 3.2 reports all control points and corresponding affected reservoirs.

References

[1] USACE. Willamette basin guide standard operating procedures (sop) for reservoir control center. Technical report.