

YEAR 12 MATHEMATICS SPECIALIST **SEMESTER ONE 2017**

QUESTIONS OF REVIEW 1: Polynomials & Polars

By daring & by doing

Name: answers

Friday 17^h February

Time: 30 minutes

Mark

ave 27.3

Calculator free.

[4 marks - 2 each]1.

Convert:

-2-2i to polars (r,θ^r)

b) $\frac{1}{2} \operatorname{cis} \left(\frac{2\pi}{3} \right)$ to rectangular co-ordinates

2. [4 marks - 1 each]

For z = 3 - 4i, evaluate:

b)
$$z^2$$
 $(3-4i)(3-4i) = 9-24i-16 = -7-24i$

c)
$$z \times \overline{z}$$
 $(3-4i)(3+4i) = 9+16 = 25$

d) $\frac{z}{z}$, with a real denominator

$$\frac{3+4i}{3-4i} = \frac{-7+24i}{25}$$
 $\left(\frac{3+4i}{3+4i} \right)$

3. [6 marks - 1, 2, 1, 1, 1]

If $z = 4 \operatorname{cis}\left(-\frac{\pi}{3}\right)$ and $\omega = 2 \operatorname{cis}\left(\frac{5\pi}{6}\right)$, determine, in *cis* form:

- a) ωz = 8 $\cos \frac{\pi}{2}$
- b) $\frac{z}{\omega} = 2 \operatorname{cis} \left(-\frac{7\pi}{6}\right) = 2 \operatorname{cis} \left(\frac{5\pi}{6}\right)$
- c) $\frac{z}{i}$ = 4 cus $\left(\frac{5\pi}{6}\right)$
- d) \overline{z} = $4 \operatorname{cir} \left(\frac{\pi}{3} \right)$
- e) $\frac{12}{z} = 3 \operatorname{cis}(\overline{3})$
- 4. [8 marks 1, 1, 1, 1, 1, 2, 1]

Two complex numbers, z and ω are shown on the Argand diagram. Add each of these to this diagram:

- a) 2*z*
- b) z^2
- c) ωz
- d) $\frac{\omega}{z}$
- e) $\bar{\omega}$
- f) $\frac{1}{z}$
- g) –*iω*

For
$$P(z) = z^3 - 6z^2 + az - 10$$

a) express
$$P(2)$$
 in terms of a

b) determine the remainder, in terms of a, when
$$P(z)$$
 is divided by $(z-2)$

c) evaluate
$$a$$
 if $P(2) = 0$:

d) write a polynomial expression for
$$\frac{P(z)}{z-2}$$

e) find all the roots of
$$P(z)$$

