1. Понятие энтропии случайной величины. Основные свойства энтропии

Энтропия H(U) – это средняя «неожиданность» (или «сюрприз») при наблюдении исходов случайной величины U.

- Представьте, что вы отгадываете, какой из N цветных шариков вытащат из коробки. Чем более равномерно распределены шансы тем больше «неожиданности» в каждом вытягивании.
- Математически:

$$H(U) = \sum_u p(u) \, \log_2 rac{1}{p(u)}.$$

- Свойства:
 - \circ Ненегативность: H(U) ≥ 0;
 - Максимум при равновероятном распределении: если все p(u)=1/|U|, то $H(U)=\log_2|U|$;
 - **Аддитивность для независимых**: если X и Y независимы, H(X,Y)=H(X)+H(Y).

2. Понятие $H_n(U)$ и связь H(U), $U \sim p$ и $H_n(U)$

Здесь $H_n(U)$ обычно означает энтропию при «неправильном» распределении q, то есть

$$H_q(U) = -\sum_u p(u)\,\log_2 q(u).$$

- Это «перекрёстная энтропия», которая показывает, сколько бит понадобится, если кодировать с распределением q вместо истинного p.
- Связь:

$$H_q(U) = H(U) + D_{\mathrm{KL}}(p||q),$$

где $D_{k} \ _{1}(p\|q)$ – дивергенция Кульбака–Лейблера (см. вопрос 3).

3. Условная энтропия и дивергенция Кульбака—Лейблера. Свойства условной энтропии

• Условная энтропия Н(X|Y) – средняя неопределённость X при известном Y:

$$H(X|Y) = \sum_y p(y)\, H(X|Y=y).$$

• Дивергенция D_{kl}(p||q) измеряет «расстояние» между распределениями р и q:

$$D_{ ext{KL}}(p\|q) = \sum_x p(x) \log_2 rac{p(x)}{q(x)}.$$

- Свойства H(X|Y):
 - \circ Ненегативность: H(X|Y) ≥ 0;
 - H(X|Y) ≤ H(X): знание Y не увеличивает неопределённость про X;
 - \circ Аддитивность: H(X,Y)=H(Y)+H(X|Y).

4. Совместная энтропия. Энтропия системы независимых СВ. Свойства совместной энтропии

• Совместная энтропия H(X,Y) — мера «сюрприза» при паре (X,Y):

$$H(X,Y) = -\sum_{x,y} p(x,y) \log_2 p(x,y).$$

- Если X и Y независимы, то $p(x,y)=p(x)p(y) \Rightarrow H(X,Y)=H(X)+H(Y)$.
- Свойства: симметрия H(X,Y)=H(Y,X), и связь с условной: H(X,Y)=H(Y)+H(X|Y).

5. Понятие взаимной информации

I(X;Y) показывает, сколько информации об X даёт наблюдение Y:

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X).$$

- Аналог: перекрёстное пересечение двух кругов «информации» X и Y.
- I(X;Y)≥0 и равно нулю, если X и Y независимы.

6. Базовые свойства взаимной информации

• **Ненегативность**: I(X;Y) ≥ 0.

• Симметрия: I(X;Y)=I(Y;X).

• Аддитивность для независимых пар: если $(X_1,Y_1) \perp (X_2,Y_2)$, то $I((X_1,X_2);(Y_1,Y_2))=I(X_1;Y_1)+I(X_2;Y_2)$.

7. Выпуклость дивергенции Кульбака-Лейблера

Функция (р,q)→D_{k l} (р∥q) выпукла по своей паре распределений:

$$D_{\mathrm{KL}}(\lambda p_1 + (1-\lambda)p_2\|\lambda q_1 + (1-\lambda)q_2) \leq \lambda D_{\mathrm{KL}}(p_1\|q_1) + (1-\lambda)D_{\mathrm{KL}}(p_2\|q_2).$$

Интуиция: «смешанный» подход не даёт больше расхождения, чем смешение отдельных дивергенций.

8. Закон больших чисел

Если $X_1, ..., X_n$ — iid с математическим ожиданием μ , то

$$rac{1}{n}\sum_{i=1}^n X_i \stackrel{p}{\longrightarrow} \mu,$$

то есть среднее по выборке сходится к истинному среднему при n→∞.

9. АЕР-теорема

Асимптотическая равномерная вероятность (Asymptotic Equipartition Property) говорит, что для большого n подавляющее число последовательностей длины n имеют вероятность примерно 2^{-nH}, где H — энтропия источника. Тем самым «типичное множество» содержит почти всю массу вероятности.

10. Определение типичного множества. Основные свойства типичных множеств

• Типичное множество A_n^ε – все последовательности х^n, чья эмпирическая энтропия близка к H:

$$\left|-rac{1}{n}\log p(x^n)-H
ight|$$

Свойства:

- ∘ Высокая вероятность: $P(X^n ∈ A_n^s) \to 1$;
- Мощность ≈ 2^{nH};
- ∘ Почти равные вероятности внутри A_n^ε.

11. Мощность типичного множества

|A_n^ε|≈2^{nH}. То есть количество «типичных» последовательностей растёт экспоненциально с n, с показателем H.

12. Теорема о вероятности типичного множества

P(X^n∈A_n^ε) ≥1−δ для любых ε>0 и достаточно большого n. Это гарантирует, что почти все наблюдаемые последовательности будут «типичными».

13. Теорема Шеннона о кодировании источника

Для дискретного источника U с энтропией H(U):

- Прямая часть: можно построить код длины ≈nH бит/символ с малой вероятностью ошибки декодирования.
- Обратная часть: нельзя сделать среднюю длину меньше H(U).

14. Понятие высоковероятного множества. Связь типичного множества и высоковероятного множества

Высоковероятное множество – любой набор Xⁿ с P(Xⁿ) ≥1−ε. Типичное множество – пример высоковероятного с дополнительно почти равными вероятностями внутри.

15. Понятие префиксного и однозначно-декодируемого кода

- **Префиксный код**: ни один кодовыйword не является началом другого (пример: коды Хаффмана).
- Однозначно-декодируемый: любую последовательность кодов можно разбить лишь одним способом. Префиксность ⇒ однозначность.

16. Кодирование источника с диадическим распределением

Диадическое распределение: p(u)=2^{-k} для целых k. Тогда можно строить простые двоичные коды, длина которых целочисленна.

17. Свойства диадического распределения

- Длины кода l(u)=-log₂p(u) целочисленны;
- Средняя длина равна энтропии: EL=H(U).

18. Коды Шеннона

Шеннон предложил код, где каждому символу и даётся длина Г−log₂p(u) l. Это гарантирует EL<H(U)+1.

19. Неравенство Крафта

Для префиксных кодов длины $I_1,...,I_m$ должно выполняться

$$\sum_{i=1}^m 2^{-l_i} \leq 1.$$

Обратное также верно: любое множество длин, удовлетворяющее этому неравенству, задаёт префиксный код.

20. Коды Хаффмана. Оптимальность кодов Хаффмана

Хаффман строит префиксный код, минимизирующий среднюю длину для заданных p(u). Он объединяет наименее вероятные символы рекурсивно. Оптимальность гарантируется жадным алгоритмом.

21. Понятие кодовой схемы. Достижимая скорость передачи кодовой схемы

Кодовая схема = выбор кодов для блоков символов + правила кодирования/декодирования. Достижимая скорость R = (число информационных бит)/(число переданных символов).

22. Пропускная способность канала. Примеры

С – максимальная скорость передачи через канал при произвольно малой ошибке.

• Для двоичного симметричного канала (BSC с вероятностью ошибки т):

$$C=1-H_2(au),$$

где H₂ – бинарная энтропия.

23. Пропускная способность двоичного симметричного канала

См. предыдущий пункт: $C_BSC(\tau)=1-H_2(\tau)$.

24. Пропускная способность двоичного стирающего канала

Для ВЕС (вероятность «стирания» ε):

$$C=1-\varepsilon$$
,

потому что при стирании бит просто исчезает и требует повторной передачи.

25. Дифференциальная энтропия и взаимная информация. Их свойства

• Дифференциальная энтропия h(X) для непрерывной X с плотностью f(x):

$$h(X) = -\int f(x) \log_2 f(x) \, dx.$$

• Взаимная информация I(X;Y)=h(X)-h(X|Y) сохраняет те же свойства (ненегативность, симметрию).

26. Энтропия нормального распределения

Для X~N(μ,σ²):

$$h(X) = rac{1}{2} \log_2(2\pi e \sigma^2).$$

Это максимальная дифференциальная энтропия при данном разбросе σ^2 .

27) Совместные типичные последовательности и их свойства

Представьте, что у вас есть две игрушки — мячик **X** и машинка **Y**, и они прыгают и едут вместе. Совместные типичные последовательности — это такие «пары движений» (мячик вверх/машинка вперёд) длины n, которые «обычно» случаются вместе и очень вероятны, если наблюдать много раз.

- Высокая вероятность: почти все наблюдаемые пары попадают в это множество.
- Размер ≈ 2^{nH(X,Y)}: число таких «обычных» пар растёт экспоненциально.
- Почти равные вероятности: внутри множества каждая пара движений почти одинаково вероятна.

28) Прямая теорема Шеннона

Шеннон сказал: если ты хочешь передать буквы алфавита по трубе с шумом, и скорость передачи **R** меньше пропускной способности **C**, то можно придумать способ кодировать так, что ошибок почти не будет.

- При **R < C** существует код, где вероятность ошибки ≤ ε (сколько угодно малое).
- Это «прямая» (achievability): как построить хороший код.

29) Неравенство Фано

Когда вы стараетесь отгадать, что нарисовано на картинке (X) по подсказке (Y), Фано говорит, что если ошибки P_e велики, то условная энтропия H(X|Y) тоже большая, то есть

$$H(X|Y) \leq H_2(P_{
m e}) + P_{
m e} \log_2(|X| - 1).$$

Интуитивно: чем чаще вы ошибаетесь, тем более неопределённым остаётся X после Y.

30) Обратная теорема Шеннона

Это «конверсе»: если **R > C**, то никакие хитрые коды не помогут — **ошибки не уйдут**.

31) Понятие линейного кода. Базисные матрицы линейного кода

Линейный код — это набор бинарных слов (кодов), которые могут складываться как векторы.

- Генераторная матрица **G**: каждая строка базис, и любая комбинация строк даёт кодовое слово.
- Проверочная матрица H: если умножить кодовое слово на H^T, получится ноль это гарантия, что слово «правильное».

32) Конструкция полярного кода

Полярный код «разделяет» канал на хорошие и плохие-точки:

- 1. Берём n=2ⁿ битов,
- 2. Применяем особое преобразование (точка-байточный XOR-плетёнка),
- 3. «Хорошие» биты передаём информацией, «плохие» фиксируем нулями.

33) Кодирование полярного кода

Чтобы закодировать:

- 1. Собираем в вектор и длины n: информационные биты на «хороших» позициях, нули на «плохих».
- 2. Умножаем и на матрицу конструктора (Kronecker-произведение базиса).

34) SC-декодирование полярного кода

SC = successive cancellation. Декодируем биты один за другим, используя уже принятые ранее решения, двигаясь слева направо.

35) SCL-декодирование полярного кода

SCL = successive cancellation list. Похож на SC, но держит несколько (L) самых «правдоподобных» вариантов промежуточных решений, чтобы снизить количество ошибок.

36) Сжимающий код, понятие R(D), D®, Rate-Distortion

Когда мы кодируем картинки с потерями, появится «искажение» D и скорость R (бит/символ).

- **R(D)** минимальная скорость, при которой среднее искажение ≤ D.
- **D**® минимально достижимое искажение при скорости R.

37) Вывод формулы R(D) для X~Ber§

Для случайного бита с P(1)=р и H_2 — бинарная энтропия:

$$R(D) = H_2(p) - H_2(D),$$

для 0≤D≤min(p,1-p).

38) Вывод формулы R(D) для нормальной СВ

Для $X \sim N(0,\sigma^2)$ и среднеквадратичного искажения D:

$$R(D) = rac{1}{2} \log_2 rac{\sigma^2}{D}, \quad 0 < D < \sigma^2.$$

39) Вывод R(D) для векторной нормальной СВ

Если X — вектор из k независимых $N(0,\sigma_i^2)$, то

$$R(D) = rac{1}{2} \sum_{i=1}^k \log_2 rac{\sigma_i^2}{D_i},$$

где ∑D_i = D, оптимальное распределение искажений.

40) Теорема о выпуклости R(D)

R(D) — выпуклая функция D: смешивая две схемы с (R_1,D_1) и (R_2,D_2) , можно получить скорость $\leq \lambda R_1 + (1-\lambda)R_2$ при искажении $\lambda D_1 + (1-\lambda)D_2$.

41) Доказательство обратной теоремы Шеннона для сжимающего кода

Конверсе: если R<R(D), то при любом коде среднее искажение E[d(X, X)] будет > D. Это доказывается через оценки энтропии и KL-дивергенцию.

42) Понятие ε-типичных искажений и множеств, их основные свойства

Как типичное множество для сообщений, но для пар (x,\hat{y}) :

- В нём находятся «обычные» пары, где среднее искажение близко к D.
- Высокая вероятность: $P((X^n, \hat{Y}^n) \in A^n_{\epsilon}) \rightarrow 1$.
- Мощность ≈2^{nR(D)}.

43) Доказательство прямой теоремы Шеннона для сжимающего кода

Achievability: берём случайную «книгу кодов» из типичных Ŷ^n, находим для каждого х^n пару с искажением ≤ D. Вероятность успеха → 1, и нужно ≈2^{nR(D)} кодов.

44) Сильно типичные последовательности и их свойства

Сильная типичность следит не только за общей вероятностью, но и за частотами каждого символа:

- Для каждого символа а частота ≈ p(a) с погрешностью ε.
- Множество сильной типичности тоже имеет P→1 и размер ≈2^{nH}.

45) Доказательство достижимости R(D) для сильно типичных последовательностей

Как и в обычном кодировании с потерями, но подставляем сильную типичность, чтобы жёстко контролировать частоты искажения. Это делает доказательство более строгим, сохраняя нужный объём кодов ≈2^{nR(D)}.