```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

train_df = pd.read_csv(r"C:\Users\Cun\Downloads\titanic1\train.csv")
test_df = pd.read_csv(r"C:\Users\Cun\Downloads\titanic1\test.csv")

train_df.columns

test_df.columns

train_df.head()

→		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

test_df.head()

_	Pass	engerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
	1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
	2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
	3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
	4	896	3	Hirvonen Mrs Alexander (Helga F Lindgvist)	female	22 0	1	1	3101298	12 2875	NaN	S

train_df.set_index(train_df.PassengerId, inplace=True)

train_df.head()

₹		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	PassengerId												
	1	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	2	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	3	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	4	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S

train_df.drop('PassengerId', axis =1)

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
PassengerId											
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 11 columns

test_df = pd.read_csv(r"C:\Users\Cun\Downloads\titanic1\test.csv", index_col = 'PassengerId')

test_df.head()

₹	Pclass		Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	PassengerId										
	892 3		Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S

#------

train_df.info()

→	<pre><class 'pandas.core.frame.dataframe'=""> Index: 891 entries, 1 to 891 Data columns (total 12 columns):</class></pre>						
	#	Column	Non-Null Count	Dtype			
	0	PassengerId	891 non-null	int64			
	1	Survived	891 non-null	int64			
	2	Pclass	891 non-null	int64			
	3	Name	891 non-null	object			
	4	Sex	891 non-null	object			
	5	Age	714 non-null	float64			
	6	SibSp	891 non-null	int64			
	7	Parch	891 non-null	int64			
	8	Ticket	891 non-null	object			
	9	Fare	891 non-null	float64			
	10	Cabin	204 non-null	object			
	11	Embarked	889 non-null	object			
	dtyp	es: float64(2), int64(5), obj	ect(5)			
	memo	ry usage: 90.	5+ KB				

test_df.info()

<u>;</u>	<clas< th=""><th>ss 'pandas</th><th>.core.frame.Data</th><th>aFrame'></th></clas<>	ss 'pandas	.core.frame.Data	aFrame'>
	Index	k: 418 ent	ries, 892 to 130	99
	Data	columns (total 10 columns	s):
	#	Column	Non-Null Count	Dtype
	0	Pclass	418 non-null	int64
	1	Name	418 non-null	object
	2	Sex	418 non-null	object
	3	Age	332 non-null	float64
	4	SibSp	418 non-null	int64
	5	Parch	418 non-null	int64
	6	Ticket	418 non-null	object
	7	Fare	417 non-null	float64
	8	Cabin	91 non-null	object
	9	Embarked	418 non-null	object
	dtype	es: float6	4(2), int64(3),	object(5)

```
memory usage: 35.9+ KB
train_df["Survived"] = train_df["Survived"].astype("category")
train_df["Survived"].dtype
CategoricalDtype(categories=[0, 1], ordered=False, categories_dtype=int64)
train df.info()
<<class 'pandas.core.frame.DataFrame'>
    Index: 891 entries, 1 to 891
    Data columns (total 12 columns):
     # Column
                    Non-Null Count Dtype
     0 PassengerId 891 non-null int64
         Survived 891 non-null
                                    category
                     891 non-null
                    891 non-null
     3
         Name
                                    object
                    891 non-null
     4
         Sex
                                    object
                    714 non-null float64
                     891 non-null
         SibSp
                                    int64
     6
                     891 non-null
                                    int64
         Parch
                    891 non-null
     8
        Ticket
                                    object
                     891 non-null
         Fare
                                    float64
                    204 non-null
     10 Cabin
                                   object
     11 Embarked
                     889 non-null
                                    object
    dtypes: category(1), float64(2), int64(4), object(5)
    memory usage: 84.5+ KB
features = ["Pclass", "Sex", "SibSp", "Parch", "Embarked"]
def convert_cat(df, features):
    for feature in features:
       df[feature] = df[feature].astype("category")
convert_cat(train_df, features)
convert_cat(test_df, features)
train_df.info()
<<class 'pandas.core.frame.DataFrame'>
    Index: 891 entries, 1 to 891
    Data columns (total 12 columns):
                  Non-Null Count Dtype
     0 PassengerId 891 non-null int64
        Survived 891 non-null category
         Pclass
                     891 non-null
                                    category
                    891 non-null
                                    object
     3
        Name
                     891 non-null
         Age
                     714 non-null
                                    float64
                    891 non-null category
         SibSp
                    891 non-null
     7
         Parch
                                    category
     8
         Ticket
                     891 non-null
                                    object
                    891 non-null
                                    float64
        Fare
                     204 non-null
     10 Cabin
                                    object
     11 Embarked
                    889 non-null
                                    category
    dtypes: category(6), float64(2), int64(1), object(3)
```

train_df.describe (include=['category'])

memory usage: 55.1+ KB

→		Survived	Pclass	Sex	SibSp	Parch	Embarked
	count	891	891	891	891	891	889
	unique	2	3	2	7	7	3
	top	0	3	male	0	0	S
	frea	549	491	577	608	678	644

train_df["Survived"].value_counts().to_frame

cbound method Series.to_frame of Survived
 0 549
 1 342
 Name: count, dtype: int64>

train_df["Survived"].value_counts(normalize=True).to_frame()

```
0
                  0.616162
                  0.383838
         1
train_df["Sex"].value_counts().to_frame()
             count
        Sex
               577
      male
      female
               314
train_df["Sex"].value_counts(normalize=True).to_frame()
             proportion
        Sex
      male
                0.647587
      female
                0.352413
sns.countplot(data=train_df, x='Sex', hue='Survived', palette='Blues')
<Axes: xlabel='Sex', ylabel='count'>
                                                                     Survived
                                                                     0
                                                                      1
         400
         300
         200
         100
                          female
                                                            male
                                            Sex
cols= ['Sex', 'Embarked', 'Pclass', 'SibSp', 'Parch']
n_rows = 2
n_{cols} = 3
fig, ax = plt.subplots(n_rows, n_cols, figsize=(n_cols*4, n_rows*4)) # tăng kích thước hình
fig.suptitle("Survival Rate by Feature", fontsize=16, fontweight='bold') # tiêu đề chính
for r in range (0, n_rows):
    for c in range (0, n_cols):
        i = r*n_cols + c
        if i<len(cols):</pre>
           ax_i = ax[r,c]
            sns.countplot(data= train_df, x=cols[i], hue="Survived", palette="Blues", ax=ax_i)
            ax_i.set_title(f"Figure {i+1}: Survival Rate vs {cols[i]}")
            ax_i.legend(title=' ', loc='upper right', labels=['Not Survived', 'Survived'])
ax.flat[-1].set_visible(False)
plt.tight_layout
```

→▼

plt.show()

Survived

proportion

Survival Rate by Feature

sns.histplot(data=train_df, x="Age", hue='Survived', bins = 40, kde=True)
plt.show()

train_df["Fare"].describe()

	count	891.000000
	mean	32.204208
	std	49.693429
	min	0.000000
	25%	7.910400
	50%	14.454200
	75%	31.000000
	max	512.329200
	Name:	Fare, dtype: float64

 $sns.histplot(data=train_df, \ x='Fare', \ hue='Survived', \ bins=40, \ palette= \ 'Blues') \\ plt.show()$

fare_categories = ['Economics', 'Standard', 'Expensive', 'Luxury']
quartile_data = pd.qcut(train_df['Fare'], 4, labels=fare_categories)
sns.countplot(x=quartile_data, hue=train_df['Survived'], palette="Blues")


```
125 - 100 - 75 - 50 - 25 - 0 Economics Standard Expensive Luxury
```

Fare

train_df['Name'].head(10)

plt.show()

```
→ PassengerId
                                    Braund, Mr. Owen Harris
          Cumings, Mrs. John Bradley (Florence Briggs Th...
    2
    3
                                     Heikkinen, Miss. Laina
    4
               Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                   Allen, Mr. William Henry
    6
                                           Moran, Mr. James
    7
                                    McCarthy, Mr. Timothy J
    8
                             Palsson, Master. Gosta Leonard
    9
          Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)
    10
                        Nasser, Mrs. Nicholas (Adele Achem)
    Name: Name, dtype: object
```

```
import re
def extract_title(name):
    p = re.compile(r",([\w\s]+)\.")
    return p.search(name).groups(1)[0].strip()

train_df['Title'] = train_df['Name'].apply(lambda name: extract_title(name))
train_df['Title'].value_counts()
```

```
Title
Mr 517
Miss 182
Mrs 125
Master 40
```

```
Dr
     Rev
     Mlle
     Major
     Col
     the Countess
     Capt
     Ms
     Sir
     Lady
     Mme
     Don
     Jonkheer
     Name: count, dtype: int64
test_df['Title'] = test_df['Name'].apply(lambda name: extract_title(name))
test_df['Title'].value_counts()

→ Title
               240
     Mr
     Miss
                78
     Mrs
                72
     Master
                21
     Col
     Rev
     Ms
                 1
     Dr
                 1
     Name: count, dtype: int64
def group_title (title):
    if title in ['Mr','Mrs','Miss','Master']:
        return title
    elif title == "Ms":
        return "Miss"
    else:
        return "Others"
train_df['Title'] = train_df['Title'].apply(lambda title: group_title(title))
test_df['Title'] = test_df['Title'].apply(lambda title: group_title(title))
plt.show()
```

sns.countplot(data=train_df, x='Title', hue='Survived')


```
train_df['Family_Size'] = train_df['SibSp'].astype('int') + train_df['Parch'].astype('int')+1
test_df['Family_Size'] = test_df['SibSp'].astype('int') + test_df['Parch'].astype('int')+1
train_df['Family_Cat'] = pd.cut(train_df['Family_Size'], bins=[0,1,4,6,20], labels = ['Solo', 'Small', 'Medium', 'Large'])
test\_df['Family\_Cat'] = pd.cut(train\_df['Family\_Size'], \ bins=[0,1,4,6,20], \ labels = ['Solo', 'Small', 'Medium', 'Large'])
sns.countplot(data=train_df, x='Family_Cat', hue='Survived')
plt.show()
```

```
₹
```

```
Survived
350
                                                                0
                                                                 1
300
250
200
150
100
 50
  0
           Solo
                          Small
                                          Medium
                                                           Large
                                Family Cat
```

```
# Data Wrangling
num_features = ['Age', 'Fare']
cat_features = ['Sex', 'Pclass', 'Embarked', 'Title', 'Family_Cat']
feature_cols = num_features + cat_features
print(feature_cols, '\n')
['Age', 'Fare', 'Sex', 'Pclass', 'Embarked', 'Title', 'Family_Cat']
def display_missing(df, feature_cols):
   n_rows = df.shape[0]
   for col in feature_cols:
        missing_count = df[col].isnull().sum()
        if missing_count > 0:
           print(f"{col} has {missing_count* 100/n_rows:.2f}% missing values.")
display_missing(train_df, feature_cols)
→ Age has 19.87% missing values.
     Embarked has 0.22% missing values.
display_missing(test_df, feature_cols)
→ Age has 20.57% missing values.
     Fare has 0.24% missing values.
     Family_Cat has 100.00% missing values.
#age_by_sex_pclass = train_df.groupby(['Sex', 'Pclass']).median()['Age']
age_by_sex_pclass = train_df.groupby(['Sex', 'Pclass'])['Age'].median()
```

C:\Users\Cun\AppData\Local\Temp\ipykernel_27120\2357480848.py:2: FutureWarning: The default of observed=False is deprecated and will be changed to True age_by_sex_pclass = train_df.groupby(['Sex', 'Pclass'])['Age'].median()

age_by_sex_pclass

```
Sex Pclass

female 1 35.0
2 28.0
3 21.5
male 1 40.0
2 30.0
3 25.0
Name: Age, dtype: float64
```

```
\label{train_df['Age'] = train_df.groupby(['Sex', 'Pclass'])['Age'].transform(lambda x: x.fillna(x.median()))} \\
```

C:\Users\Cun\AppData\Local\Temp\ipykernel_27120\2707403057.py:1: FutureWarning: The default of observed=False is deprecated and will be changed to True train_df['Age'] = train_df.groupby(['Sex', 'Pclass'])['Age'].transform(lambda x: x.fillna(x.median()))

```
\texttt{test\_df['Age']} = \texttt{test\_df.groupby(['Sex', 'Pclass'])['Age'].transform(lambda x: x.fillna(x.median()))}
```

E:\Users\Cun\AppData\Local\Temp\ipykernel_27120\1127986851.py:1: FutureWarning: The default of observed=False is deprecated and will be changed to Truetest_df['Age'] = test_df.groupby(['Sex', 'Pclass'])['Age'].transform(lambda x: x.fillna(x.median()))

```
display_missing(test_df, feature_cols)

→ Embarked has 0.22% missing values.
     Fare has 0.24% missing values.
     Family_Cat has 100.00% missing values.
X = train_df[feature_cols]
y = train_df['Survived']
X_test = test_df[feature_cols]
from \ sklearn.preprocessing \ import \ One Hot Encoder, \ Standard Scaler
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
num_transformer = Pipeline(steps =[
    ('imputer', SimpleImputer(strategy='median')),
    ('scaler', StandardScaler())
])
cat_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')),
    ('encode', OneHotEncoder(handle_unknown= 'ignore'))
])
preprocessor = ColumnTransformer(transformers=
    ('cat', cat_transformer, cat_features)
])
preprocessor.fit(X)
<del>_</del>
                        ColumnTransformer
                                               cat
                   num
             SimpleImputer
                                         SimpleImputer
             StandardScaler
                                         OneHotEncoder
X= preprocessor.transform(X)
X_test = preprocessor.transform(X_test)
from sklearn.model_selection import train_test_split
from sklearn.metrics import precision_score, recall_score, classification_report, confusion_matrix
from \ sklearn.preprocessing \ import \ Polynomial Features
X_train, X_val, y_train, y_val = train_test_split(X,y, test_size = 0.2)
X_train.shape, X_val.shape
→ ((712, 19), (179, 19))
X_test.shape
→ (418, 19)
from \ sklearn.linear\_model \ import \ Logistic Regression
log_reg = LogisticRegression(solver='liblinear', max_iter=1000)
log_reg.fit(X_train, y_train)
₹
                      {\tt Logistic Regression}
     LogisticRegression(max_iter=1000, solver='liblinear')
```

display_missing(train_df, feature_cols)

log_reg.score(X_val, y_val)

```
y_pred = log_reg.predict(X_val)
precision_score(y_val, y_pred), recall_score(y_val, y_pred)
(0.8208955223880597, 0.7051282051282052)
print(classification_report(y_val, y_pred))
                  precision
                               recall f1-score
                                                  support
                0
                        0.79
                                  0.88
                                            0.84
                                                       101
                        0.82
                                 0.71
                                            0.76
                                                       78
                                            0.80
                                                      179
         accuracy
                        0.81
                                  0.79
                                            0.80
                                                      179
        macro avg
                                                      179
                        0.81
                                  0.80
                                            0.80
     weighted avg
poly = PolynomialFeatures(degree=5)
poly_features_X_train = poly.fit_transform(X_train)
poly_features_X_val = poly.transform(X_val)
poly_log_reg = LogisticRegression(solver='liblinear', max_iter=1000)
poly_log_reg.fit(poly_features_X_train, y_train)
                     LogisticRegression
     LogisticRegression(max_iter=1000, solver='liblinear')
poly_log_reg.score(poly_features_X_val, y_val)
0.7932960893854749
from sklearn.tree import DecisionTreeClassifier
decision_tree = DecisionTreeClassifier(criterion = 'entropy', max_depth = 8, random_state=2022)
decision_tree.fit(X_train, y_train)
₹
                              DecisionTreeClassifier
     DecisionTreeClassifier(criterion='entropy', max_depth=8, random_state=2022)
decision_tree.score(X_val, y_val)
0.770949720670391
from sklearn.model selection import cross val score
log_reg_cv = LogisticRegression(solver='liblinear', max_iter = 1000)
dt_cv = DecisionTreeClassifier(criterion = 'entropy', max_depth = 8, random_state=2022)
lr_scores = cross_val_score(log_reg_cv, X, y, scoring='accuracy', cv=5)
dt_scores = cross_val_score(dt_cv, X, y, scoring='accuracy', cv=5)
dt_scores.mean(), dt_scores.std()
(0.8069801016885318, 0.014586754299604428)
pip install xgboost
Requirement already satisfied: xgboost in c:\users\cun\anaconda3\lib\site-packages (3.0.4)
     Requirement already satisfied: numpy in c:\users\cun\anaconda3\lib\site-packages (from xgboost) (1.26.4)
     Requirement already satisfied: scipy in c:\users\cun\anaconda3\lib\site-packages (from xgboost) (1.13.1)
     Note: you may need to restart the kernel to use updated packages.
from sklearn.svm import LinearSVC, SVC
```

from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, ExtraTreesClassifier, AdaBoostClassifier

→ 0.8044692737430168

from sklearn.neighbors import KNeighborsClassifier

```
from xgboost import XGBClassifier
seed = 2023
models = [
    LinearSVC(max_iter = 12000, random_state=seed),
    SVC (random state=seed),
    KNeighborsClassifier(metric='minkowski', p=2),
    LogisticRegression(solver='liblinear', max_iter=1000),
    DecisionTreeClassifier(random_state=seed),
    RandomForestClassifier(random_state=seed),
    ExtraTreesClassifier(),
    AdaBoostClassifier(),
    XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=seed)
from \ sklearn.model\_selection \ import \ Stratified KFold
def generate_baseline_results(models, X, y, metrics, cv=5, plot_results=False):
# define k-fold:
    kfold = StratifiedKFold(cv, shuffle=True, random_state = seed)
    entries = []
    for model in models: \\
        model_name = model.__class__.__name__
        #(model_name)
        scores = cross_val_score(model, X,y, scoring=metrics, cv=kfold)
        for fold_idx, score in enumerate(scores):
            entries.append((model_name, fold_idx, score))
    cv_df = pd.DataFrame (entries, columns = ['model_name', 'fold_id', 'accuracy_score'])
    if plot_results:
        sns.boxplot(x='model_name', y='accuracy_score', data= cv_df, color='lightblue', showmeans = True)
        plt.title("Boxplot of Base-Line Model Accuracy using 5-fold cross-validation")
        plt.xticks(rotation = 45)
       plt.show()
    #Summary result:
    mean = cv_df.groupby('model_name')['accuracy_score'].mean()
    std = cv_df.groupby('model_name')['accuracy_score'].std()
    baseline_results = pd.concat([mean, std], axis = 1, ignore_index= True)
    baseline_results.columns = ['Mean', 'Standard Deviation']
    #Sort by accuracy
    baseline_results.sort_values(by=['Mean'], ascending= False, inplace= True)
    return baseline_results
    #return cv_df
generate_baseline_results(models, X, y, metrics = 'accuracy', cv=5, plot_results = True)
```

```
C:\Users\Cun\anaconda3\Lib\site-packages\sklearn\sym\_classes.py:31: FutureWarning: The default value of `dual` will change from `True` to `'auto'` in
  warnings.warn(
C:\Users\Cun\anaconda3\Lib\site-packages\sklearn\svm\_classes.py:31: FutureWarning: The default value of `dual` will change from `True` to `'auto'` in
  warnings.warn(
C:\Users\Cun\anaconda3\Lib\site-packages\sklearn\svm\_classes.py:31: FutureWarning: The default value of `dual` will change from `True` to `'auto'
  warnings.warn(
C:\Users\Cun\anaconda3\Lib\site-packages\sklearn\svm\_classes.py:31: FutureWarning: The default value of `dual` will change from `True` to `'auto'` in
  warnings.warn(
C:\Users\Cun\anaconda3\Lib\site-packages\sklearn\svm\_classes.py:31: FutureWarning: The default value of `dual` will change from `True` to `'auto'` in
  warnings.warn(
C:\Users\Cun\anaconda3\Lib\site-packages\sklearn\ensemble\_weight_boosting.py:519: FutureWarning: The SAMME.R algorithm (the default) is deprecated and
  warnings.warn(
C:\Users\Cun\anaconda3\Lib\site-packages\sklearn\ensemble\_weight_boosting.py:519: FutureWarning: The SAMME.R algorithm (the default) is deprecated and
  warnings.warn(
C:\Users\Cun\anaconda3\Lib\site-packages\sklearn\ensemble\_weight_boosting.py:519: FutureWarning: The SAMME.R algorithm (the default) is deprecated and
  warnings.warn(
C:\Users\Cun\anaconda3\Lib\site-packages\sklearn\ensemble\_weight_boosting.py:519: FutureWarning: The SAMME.R algorithm (the default) is deprecated and
  warnings.warn(
C:\Users\Cun\anaconda3\Lib\site-packages\sklearn\ensemble\_weight_boosting.py:519: FutureWarning: The SAMME.R algorithm (the default) is deprecated and
  warnings.warn(
C:\Users\Cun\anaconda3\Lib\site-packages\xgboost\training.py:183: UserWarning: [15:01:03] WARNING: C:\actions-runner\_work\xgboost\xgboost\src\learner
Parameters: { "use_label_encoder" } are not used.
  bst.update(dtrain, iteration=i, fobj=obj)
C:\Users\Cun\anaconda3\Lib\site-packages\xgboost\training.py:183: UserWarning: [15:01:03] WARNING: C:\actions-runner\_work\xgboost\xgboost\src\learner
Parameters: { "use_label_encoder" } are not used.
  bst.update(dtrain, iteration=i, fobj=obj)
C:\Users\Cun\anaconda3\Lib\site-packages\xgboost\training.py:183: UserWarning: [15:01:03] WARNING: C:\actions-runner\_work\xgboost\xgboost\src\learner
Parameters: { "use_label_encoder" } are not used.
  bst.update(dtrain, iteration=i, fobj=obj)
C:\Users\Cun\anaconda3\Lib\site-packages\xgboost\training.py:183: UserWarning: [15:01:03] WARNING: C:\actions-runner\_work\xgboost\xgboost\src\learner
Parameters: { "use_label_encoder" } are not used.
  bst.update(dtrain, iteration=i, fobj=obj)
C:\Users\Cun\anaconda3\Lib\site-packages\xgboost\training.py:183: UserWarning: [15:01:03] WARNING: C:\actions-runner\_work\xgboost\xgboost\src\learner
Parameters: { "use_label_encoder" } are not used.
```

bst.update(dtrain, iteration=i, fobj=obj)

Boxplot of Base-Line Model Accuracy using 5-fold cross-validation

from sklearn.svm import SVC import pandas as pd

```
# Chọn mô hình tốt nhất (từ bảng bạn đánh giá): SVC
best_model = SVC(kernel="rbf", C=1.0, gamma="scale", random_state=42)
# Train trên toàn bô train
best_model.fit(X_train, y_train)
# Dự đoán trên test
y_pred = best_model.predict(X_test)
# Xuất submission.csv (418 dòng + header)
submission = pd.DataFrame({
    "PassengerId": test_df.index,
                                    # lấy index thay vì test_df["PassengerId"]
    "Survived": y_pred.astype(int)
})
submission.to_csv("submission.csv", index=False, sep=",")
print("Saved submission.csv")
Saved submission.csv
                             0.827167
                                                 0.028974
            LinearSVC
                             U 838U11
                                                 0 037//2
```