Exercise 1: Reciprocal Trigonometric Functions

1 Solve the following equations for $0^{\circ} \le x \le 360^{\circ}$.

(i) $\csc x = 1$

(iii) $\sec x = 2$

(iii) $\cot x = 4$

(iv) $\sec x = -3$

(v) $\cot x = -1$

(vi) $\csc x = -2$

2 Find the following giving your answers as fractions or in surd form. You should not need your calculator.

(i) cot 135°

(ii) sec 150°

(iii) cosec 240°

(iv) sec 210°

(v) cot 270°

(vi) cosec 225°

3 In triangle ABC, angle $A = 90^{\circ}$ and $\sec B = 2$.

(i) Find the angles B and C.

(ii) Find tan B.

(iii) Show that $1 + \tan^2 B = \sec^2 B$.

4 In triangle LMN, angle $M = 90^{\circ}$ and $\cot N = 1$.

(i) Find the angles L and N.

(ii) Find $\sec L$, $\csc L$, and $\tan L$.

(iii) Show that $1 + \tan^2 L = \sec^2 L$.

5 Malini is 1.5 m tall.

At 8 pm one evening her shadow is 6 m long.

Given that the angle of elevation of the sun at that moment is α

(i) show that $\cot \alpha = 4$

(ii) find α .

6 (i) For what values of α , where $0^{\circ} \le \alpha \le 360^{\circ}$, are $\sec \alpha$, $\csc \alpha$ and $\cot \alpha$ all positive?

(ii) Are there any values of α for which $\sec \alpha$, $\csc \alpha$ and $\cot \alpha$ are all negative? Explain your answer.

(iii) Are there any values of α for which $\sec \alpha$, $\csc \alpha$ and $\cot \alpha$ are all equal? Explain your answer.

7 Solve the following equations for $0^{\circ} \le x \le 360^{\circ}$.

(i) $\cos x = \sec x$

(ii) $\csc x = \sec x$

(iii) $2 \sin x = 3 \cot x$

(iv) $\csc^2 x + \cot^2 x = 2$

(v) $3 \sec^2 x - 10 \tan x = 0$

(vi) $1 + \cot^2 x = 2 \tan^2 x$

Exercise 2: The Pythagorean Identities

Simplify the following expressions.

$$1 \quad \frac{1 - \sec^2 A}{1 - \csc^2 A}$$

$$2 \frac{\sqrt{(1+\tan^2\theta)}}{\sqrt{(1-\sin^2\theta)}}$$

$$3 \frac{1}{\cos \theta \sqrt{(1+\cot^2 \theta)}}$$

$$4 \frac{\sin \theta}{1 + \cot^2 \theta}$$

Eliminate θ from the following pairs of equations.

$$5 x = 4 \sec \theta$$
$$y = 4 \tan \theta$$

$$6 x = a \csc \theta$$

$$y = b \cot \theta$$

7
$$x = a \sec \theta$$

 $y = b \sin \theta$

Prove the following identities.

8
$$\cot \theta + \tan \theta = \sec \theta \csc \theta$$

$$9 \frac{\cos A}{1 - \tan A} + \frac{\sin A}{1 - \cot A} = \sin A + \cos A$$

10
$$\tan^2 \theta + \cot^2 \theta = \sec^2 \theta + \csc^2 \theta - 2$$

Solve the equations for angles in the range $0 \le \theta \le 360^{\circ}$

11
$$\cot^2 \theta = \csc \theta$$

12
$$\sec^2 \theta + \tan^2 \theta = 6$$

13
$$\tan \theta + \cot \theta = 2 \sec \theta$$

14
$$\tan \theta + 3 \cot \theta = 5 \sec \theta$$

15
$$4 \sec^2 \theta - 3 \tan \theta = 5$$

16
$$4 \cot^2 \theta + 12 \csc \theta + 1 = 0$$

Exercise 3: Compound Angle Formulae

1 Use the compound-angle formulae to write the following as surds.

(i)
$$\sin 75^\circ = \sin(45^\circ + 30^\circ)$$

(ii)
$$\cos 135^\circ = \cos(90^\circ + 45^\circ)$$

(iii)
$$\tan 15^{\circ} = \tan(45^{\circ} - 30^{\circ})$$

(iv)
$$\tan 75^{\circ} = \tan(45^{\circ} + 30^{\circ})$$

2 Expand each of the following expressions.

(i)
$$\sin(\theta + 45^\circ)$$

(iii)
$$cos(\theta - 30^\circ)$$

(iii)
$$\sin(60^{\circ} - \theta)$$

(iv)
$$cos(2\theta + 45^\circ)$$

(v)
$$tan(\theta + 45^\circ)$$

(vi)
$$tan(\theta - 45^\circ)$$

3 Simplify each of the following expressions.

(i)
$$\sin 2\theta \cos \phi - \cos 2\theta \sin \theta$$

(ii)
$$\cos\phi\cos7\phi - \sin\phi\sin7\phi$$

(iii)
$$\sin 120^{\circ} \cos 60^{\circ} + \cos 120^{\circ} \sin 60^{\circ}$$

(iv)
$$\cos\theta\cos\theta - \sin\theta\sin\theta$$

4 Solve the following equations for values of θ in the range $0^{\circ} \le \theta \le 180^{\circ}$.

(i)
$$\cos(60^{\circ} + \theta) = \sin \theta$$

(ii)
$$\sin(45^{\circ} - \theta) = \cos\theta$$

(iii)
$$tan(45^{\circ} + \theta) = tan(45^{\circ} - \theta)$$

(iv)
$$2\sin\theta = 3\cos(\theta - 60^\circ)$$

(v)
$$\sin \theta = \cos(\theta + 120^{\circ})$$

5 Solve the following equations for values of θ in the range 0 ≤ θ ≤ π.
(When the range is given in radians, the solutions should be in radians, using multiples of π where appropriate.)

(i)
$$\sin\left(\theta + \frac{\pi}{4}\right) = \cos\theta$$

(ii)
$$2\cos\left(\theta - \frac{\pi}{3}\right) = \cos\left(\theta + \frac{\pi}{2}\right)$$

6 Calculators are not to be used in this question. The diagram shows three points L(-2, 1), M(0, 2) and N(3, -2) joined to form a triangle. The angles α and β and the point P are shown in the diagram.

- (i) Show that $\sin \alpha = \frac{2}{\sqrt{5}}$ and write down the value of $\cos \alpha$.
- (ii) Find the values of $\sin \beta$ and $\cos \beta$.
- (iii) Show that $\sin \angle LMN = \frac{11}{5\sqrt{5}}$
- (iv) Show that $\tan \angle LNM = \frac{11}{27}$.

Exercise 4: Double Angle Formulae

1 Solve the following equations for $0^{\circ} \le \theta \le 360^{\circ}$.

(i)
$$2\sin 2\theta = \cos \theta$$

(ii)
$$\tan 2\theta = 4 \tan \theta$$

(iii)
$$\cos 2\theta + \sin \theta = 0$$

(iv)
$$\tan \theta \tan 2\theta = 1$$

(v)
$$2\cos 2\theta = 1 + \cos \theta$$

2 Solve the following equations for $-\pi \le \theta \le \pi$.

(i)
$$\sin 2\theta = 2\sin \theta$$

(ii)
$$\tan 2\theta = 2 \tan \theta$$

(iii)
$$\cos 2\theta - \cos \theta = 0$$

(iv)
$$1 + \cos 2\theta = 2\sin^2 \theta$$

(v)
$$\sin 4\theta = \cos 2\theta$$

Hint: Write the expression in part (v) as an equation in 2θ .

3 By first writing $\sin 3\theta$ as $\sin(2\theta + \theta)$, express $\sin 3\theta$ in terms of $\sin \theta$. Hence solve the equation $\sin 3\theta = \sin \theta$ for $0 \le \theta \le 2\pi$.

- 4 Solve $\cos 3\theta = 1 3\cos\theta$ for $0^{\circ} \le \theta \le 360^{\circ}$.
- **5** Simplify $\frac{1+\cos 2\theta}{\sin 2\theta}$.
- **6** Express $\tan 3\theta$ in terms of $\tan \theta$.
- 7 Show that $\frac{1 \tan^2 \theta}{1 + \tan^2 \theta} = \cos 2\theta$.
- 8 (i) Show that $\tan\left(\frac{\pi}{4} + \theta\right) \tan\left(\frac{\pi}{4} \theta\right) = 1$.
 - (ii) Given that $\tan 26.6^\circ = 0.5$, solve $\tan \theta = 2$ without using your calculator. Give θ to 1 decimal place, where $0^\circ < \theta < 90^\circ$.
- 9 (i) Sketch on the same axes the graphs of

$$y = \cos 2x$$
 and $y = 3\sin x - 1$ for $0 \le x \le 2\pi$.

- (ii) Show that these curves meet at points whose x co-ordinates are solutions of the equation $2\sin^2 x + 3\sin x 2 = 0$.
- (iii) Solve this equation to find the values of x in terms of π for $0 \le x \le 2\pi$.

Exercise 5: The Form $r \cos(\theta \pm \alpha)$, $r \sin(\theta \pm \alpha)$

- 1 Express each of the following in the form $r\cos(\theta \alpha)$, where r > 0 and $0^{\circ} < \alpha < 90^{\circ}$.
 - (i) $\cos\theta + \sin\theta$

(ii) $20\cos\theta + 21\sin\theta$

(iii) $\cos\theta + \sqrt{3}\sin\theta$

- (iv) $\sqrt{5}\cos\theta + 2\sin\theta$
- **2** Express each of the following in the form $r\cos(\theta + \alpha)$, where r > 0 and $0 < \alpha < \frac{\pi}{2}$.
 - (i) $\cos\theta \sin\theta$

- (ii) $\sqrt{3}\cos\theta \sin\theta$
- **3** Express each of the following in the form $r\sin(\theta + \alpha)$, where r > 0 and $0^{\circ} < \alpha < 90^{\circ}$.
 - (i) $\sin\theta + 2\cos\theta$

- (ii) $2\sin\theta + \sqrt{5}\cos\theta$
- **4** Express each of the following in the form $r\sin(\theta \alpha)$, where r > 0 and $0 < \alpha < \frac{\pi}{2}$.
 - (i) $\sin\theta \cos\theta$

- (ii) $\sqrt{7}\sin\theta \sqrt{2}\cos\theta$
- **5** Express each of the following in the form $r\cos(\theta \alpha)$, where r > 0 and $-180^{\circ} < \alpha < 180^{\circ}$.
 - (i) $\cos\theta \sqrt{3}\sin\theta$

(ii) $2\sqrt{2}\cos\theta - 2\sqrt{2}\sin\theta$

(iii) $\sin\theta + \sqrt{3}\cos\theta$

(iv) $5\sin\theta + 12\cos\theta$

(v) $\sin\theta - \sqrt{3}\cos\theta$

(vi) $\sqrt{2}\sin\theta - \sqrt{2}\cos\theta$

- **6** (i) Express $5\cos\theta 12\sin\theta$ in the form $r\cos(\theta + \alpha)$, where r > 0 and $0^{\circ} < \alpha < 90^{\circ}$.
 - (ii) State the maximum and minimum values of $5\cos\theta 12\sin\theta$.
 - (iii) Sketch the graph of $y = 5\cos\theta 12\sin\theta$ for $0^{\circ} \le \theta \le 360^{\circ}$.
 - (iv) Solve the equation $5\cos\theta 12\sin\theta = 4$ for $0^{\circ} \le \theta \le 360^{\circ}$.
- 7 (i) Express $3\sin\theta \sqrt{3}\cos\theta$ in the form $r\sin(\theta \alpha)$, where r > 0 and $0 < \alpha < \frac{\pi}{2}$.
 - (iii) State the maximum and minimum values of $3\sin\theta \sqrt{3}\cos\theta$ and the smallest positive values of θ for which they occur.
 - (iii) Sketch the graph of $y = 3\sin\theta \sqrt{3}\cos\theta$ for $0 \le \theta \le 2\pi$.
 - (iv) Solve the equation $3\sin\theta \sqrt{3}\cos\theta = \sqrt{3}$ for $0 \le \theta \le 2\pi$.
- **8** (i) Express $2\sin 2\theta + 3\cos 2\theta$ in the form $r\sin(2\theta + \alpha)$, where r > 0 and $0^{\circ} < \alpha < 90^{\circ}$.
 - (ii) State the maximum and minimum values of $2\sin 2\theta + 3\cos 2\theta$ and the smallest positive values of θ for which they occur.
 - (iii) Sketch the graph of $y = 2\sin 2\theta + 3\cos 2\theta$ for $0^{\circ} \le \theta \le 360^{\circ}$.
 - (iv) Solve the equation $2\sin 2\theta + 3\cos 2\theta = 1$ for $0^{\circ} \le \theta \le 360^{\circ}$.
- **9** (i) Express $\cos \theta + \sqrt{2} \sin \theta$ in the form $r \cos(\theta \alpha)$, where r > 0 and $0^{\circ} < \alpha < 90^{\circ}$.
 - (ii) State the maximum and minimum values of $\cos \theta + \sqrt{2} \sin \theta$ and the smallest positive values of θ for which they occur.
 - (iii) Sketch the graph of $y = \cos \theta + \sqrt{2} \sin \theta$ for $0^{\circ} \le \theta \le 360^{\circ}$.
 - (iv) State the maximum and minimum values of

$$\frac{1}{3+\cos\theta+\sqrt{2}\sin\theta}$$

and the smallest positive values of θ for which they occur.

- 10 The diagram shows a table jammed in a corridor. The table is 120 cm long and 80 cm wide, and the width of the corridor is 130 cm.
 - (i) Show that $12\sin\theta + 8\cos\theta = 13$.
 - (ii) Hence find the angle θ . (There are two answers.)

- 11 (i) Use a trigonometrical formula to expand $cos(x+\alpha)$.
 - (ii) Express $y = 2\cos x 5\sin x$ in the form $r\cos(x + \alpha)$, giving the positive value of r and the smallest positive value of α .
 - (iii) State the maximum and minimum values of y and the corresponding values of x for $0^{\circ} \le x \le 360^{\circ}$.
 - (iv) Solve the equation

$$2\cos x - 5\sin x = 3$$
, for $0^{\circ} \le x \le 360^{\circ}$.

[MEI]

12 (i) Find the value of the acute angle α for which

$$5\cos x - 3\sin x = \sqrt{34}\cos(x + \alpha)$$

for all x.

Giving your answers correct to 1 decimal place,

- (ii) solve the equation $5\cos x 3\sin x = 4$ for $0^{\circ} \le x \le 360^{\circ}$
- (iii) solve the equation $5\cos 2x 3\sin 2x = 4$ for $0^{\circ} \le x \le 360^{\circ}$.

[MEI]

13 (i) Find the positive value of R and the acute angle α for which

$$6\cos x + 8\sin x = R\cos(x - \alpha).$$

(ii) Sketch the curve with equation

$$y = 6\cos x + 8\sin x$$
, for $0^{\circ} \le x \le 360^{\circ}$.

Mark your axes carefully and indicate the angle α on the x axis.

(iii) Solve the equation

$$6\cos x + 8\sin x = 4$$
, for $0^{\circ} \le x \le 360^{\circ}$.

(Iv) Solve the equation

$$8\cos\theta + 6\sin\theta = 4$$
, for $0^{\circ} \le \theta \le 360^{\circ}$.

[MEI]

14 In the diagram below, angle QPT = angle SQR = θ , angle QPR = α , PQ = a, QR = b, PR = c, angle QSR = angle QTP = 90°, SR = TU.

- (i) Show that angle PQR = 90°, and write down the length of c in terms of a and b.
- (ii) Show that PU may be written as $a\cos\theta + b\sin\theta$ and as $c\cos(\theta \alpha)$. Write down the value of $\tan\alpha$ in terms of a and b.
- (iii) In the case when a = 4, b = 3, find the acute angle α .
- (iv) Solve the equation

$$4\cos\theta + 3\sin\theta = 2$$
 for $0^{\circ} \le \theta \le 360^{\circ}$.

Exercise 6: Miscellaneous

- 1 Eliminate θ from the equations $x = \sin \theta$ and $y = \cos 2\theta$
- 2 Prove the identity $\frac{\sin 2\theta}{1 + \cos 2\theta} \equiv \tan \theta$
- 3 Prove that $\tan \left(\theta + \frac{1}{4}\pi\right) \tan \left(\frac{1}{4}\pi \theta\right) = 1$
- 4 If $\cos A = \frac{4}{5}$ and $\cos B = \frac{5}{13}$ find the possible values of $\cos (A + B)$
- 5 Eliminate θ from the equations $x = \cos 2\theta$ and $y = \cos^2 \theta$
- 6 Prove the identity $\frac{\cos \theta}{1 + \sin \theta} + \frac{1 + \sin \theta}{\cos \theta} = 2 \sec \theta$
- 7 Express $4 \sin \theta 3 \cos \theta$ in the form $r \sin (\theta \alpha)$. Hence find the maximum and minimum values of $4 \sin \theta 3 \cos \theta + 2$
- 8 Express $\sin 2\theta \cos 2\theta$ in the form $r \sin (2\theta \alpha)$. Hence find the smallest positive value of θ for which $\sin 2\theta \cos 2\theta$ has a maximum value.

- **9** Solve the equation $\cos^2 \theta \sin^2 \theta = 1$ for values of θ in the range $-\pi \le \theta \le \pi$
- **P310** Prove the identity $\cos^4 \theta \sin^4 \theta = \cos 2\theta$
- P311 Simplify the expression $\frac{1+\cos 2x}{1-\cos 2x}$
- P312 Find the values of A between 0 and 360° for which $\sin (60^{\circ} A) + \sin (120^{\circ} A) = 0$
- P313 (a) Express $2 \sin^2 \theta + 1$ in terms of $\cos 2\theta$.
 - (b) Express $4 \cos^2 2A$ in terms of $\cos 4A$ (Hint: use 2A = x)
- Find all the values of x between 0 and 180° for which $\cos x 2 \sin x = 1$
- P315 Solve the equation $3 \cos x 2 \sin x = 1$ for values of x in the range $0 \le x \le 180^{\circ}$