Семинар #4: Типы данных. Домашнее задание.

Основные типы и их обычные размеры на 64-х битных системах

ТИП	размер (байт)	диапазон значений $(2^{\#bits})$	спецификатор
char	1	от -128 до 127	%hhi
short	2	от -32768 до 32767	$\%\mathrm{hi}$
int	4	примерно от -2-х миллиардов до 2-х миллиардов	$\%\mathrm{i}$
long	4 или 8	такой же как у int или long long в зависимости от системы	%li
long long	8	примерно от -10^{19} до 10^{19}	%lli
unsigned char	1	от 0 до 255	$\% \mathrm{hhu}$
unsigned short	2	от 0 до 65535	$\%\mathrm{hu}$
unsigned int	4	от 0 до $2^{32} \approx 4 * 10^9$	$\%\mathrm{u}$
unsigned long	4 или 8	такой же как y unsigned int или unsigned long long	%lu
unsigned long long	8	от 0 до $2^{64} \approx 2*10^{19}$	%llu
$\operatorname{size_t}$	8	от 0 до $2^{64} \approx 2 * 10^{19}$	$\%\mathrm{zu}$

тип	размер (байт)	значимые цифры	диапазон экспоненты	спецификатор
float	4	6	от -38 до 38	%f
double	8	15	от -308 до 308	%lf
long double	от 8 до 16	≥ 15	не хуже чем у double	%Lf
печать только 3-х чисел после запятой	-	-	-	%.3f
печать без нулей на конце	-	-	-	$\%\mathrm{g}$
печать в научной записи	-	-	-	%e

тип	размер (байт)	спецификатор
указатель	8	%p

Задача 1: Факториал

Для вычисления факториала была написана следующая простая программа.

```
#include <stdio.h>
int fact(int n)
{
    int result = 1;
    for (int i = 1; i <= n; ++i)
        result *= i;
    return result;
}
int main()
{
    int k;
    scanf("%i", &k);
    printf("%i\n", fact(k));
}</pre>
```

Однако, выяснилось, что эта программа правильно работает только для k от 0 до 12. При больших k программа выдаёт неверный ответ. Почему это происходит? Немного измените программу, чтобы она работала для k до 20 включительно.

вход	выход
5	120
13	6227020800
17	355687428096000
20	2432902008176640000

Задача 2: Размещения

В комбинаторике размещением (из n по k) A_n^k называется упорядоченный набор из k различных элементов из некоторого множества различных n элементов. Размещения вычисляются следующим образом: $A_n^k = \frac{n!}{(n-k)!}$. Напишите программу, которая будет вычислять размещения при условии, что $A_n^k < 2^{64}$. Проверьте вашу функцию на следующих значениях:

вход	выход
5 2	20
20 10	670442572800
30 12	41430393164160000
60 11	13679492361575040000

Задача 3: Часть года

Напишите функцию, float yearfrac(int year, int day) которая принимает номер года year и номер дня с начала года day и возвращает прошедшую долю года.

year day	yearfrac(year, day)
2019 300	0.82192
2019 100	0.27397
2020 100	0.27322

Задача 4: Объём п-мерного шара

Формула для n-мерного объёма n-мерного шара имеет вид:

$$V_n(R) = \begin{cases} \frac{2(\frac{n-1}{2})! \cdot (4\pi)^{\frac{n-1}{2}}}{n!} R^n, & \text{если } n-\text{нечётное} \\ \frac{\pi^{\frac{n}{2}}}{\frac{n}{2}!} R^n, & \text{если } n-\text{чётное} \end{cases}$$

Напишите программу, которая по заданному n будет вычислять отношение объёма n-мерного куба к объёму вписанному в него n-мерного шара, то есть $\frac{(2R)^n}{V_n(R)}$. Вам может понадобиться функция роw из библиотеки math.h.

вход	выход
1	1
2	1.27324
3	1.909859
6	12.384589
10	401.542796
15	85905.301384

Задача 5: Вычисление π

Известно, что число π можно вычислить с помощью следующего ряда:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{2i-1}$$

Используйте эту формулу, чтобы вычислить приблизительно число π . На вход должно подаваться целое число \mathbf{n} - число членов суммируемой последовательности, а вам нужно вычислить приближённое значение:

$$\pi \approx 4 \cdot \sum_{i=1}^{n} \frac{(-1)^{i+1}}{2i-1}$$

Задача 5: Гамма-функция

Гамма-функция – это обобщение понятия факториала на вещественные числа. Определяется следующим образом:

$$\Gamma\left(x\right) = \int_{0}^{\infty} t^{x-1}e^{-t}dt$$

Легко вывести, что $\Gamma(n)=(n-1)!$ для натуральных n. Написать функцию, double gamma(double x), которая будет вычислять значение гамма-функции в точке x, при x>1. Для вычисления интеграла использовать метод трапеций с шагом step = 1e-2. Суммирование продолжать до тех пор пока площадь трапеции превышает eps = 1e-8 (то есть 10^{-8}). step и eps задать как константы. Понадобятся функции pow и exp из библиотеки math.h.

вход	выход
2	1.0
6	120.0
20	1.21645e+17
1.5	0.88623
2.5	1.32934
4.14159	7.188082

Задача 6: Угол

На вход программе поступают компоненты двух векторов. Нужно найти угол между ними в градусах.

вход	выход
1 0	90
0 1	
1 0	45
1 1	
-1 0	135
1 1	
-2 8	74.2913
7 4	

Угол α между векторами можно найти из формул для скалярного произведения:

$$\vec{v} \cdot \vec{u} = |\vec{v}| |\vec{u}| \cos(\alpha)$$

$$\vec{v} \cdot \vec{u} = v_x u_x + v_y u_y$$

Вам могут понадобиться следующие функции:

```
double sqr(double x) {
    return x * x;
}
double distance(double x1, double y1, double x2, double y2) {
    return sqrt(sqr(x1 - x2) + sqr(y1 - y2));
}
double length(double x, double y) {
    return distance(x, y, 0, 0);
}
double scalar_product(double x1, double y1, double x2, double y2) {
    return x1 * x2 + y1 * y2;
}
const double pi = 3.14159265359;
double to_degrees(double rad) {
    return rad * 180 / pi;
}
```

Задача 7: Два круга

Напишите программу, которая проверяет пересекаются ли 2 круга. Программа должна принимать на вход координаты центров кругов и их радиусы в следующем порядке:

и печатать следующее:

- Do not intersect если окружности не пересекаются (нет ни одной общей точки).
- Touch если круги касаются друг друга (с точностью $\epsilon = 10^{-5}$).
- Intersect если круги пересекаются

вход	выход
0 0 1	Touch
0 2 1	
0 0 1	Intersect
1 1 1	
0 0 3	Do not intersect
5 5 4	
0 0 4	Intersect
5 5 4	
-2 1 4	Touch
2 4 1	

Задача 8: Бинарный поиск на вещественных числах

Пусть у нас есть монотонно возрастающая функция f(x), а наша задача заключается в том, чтобы найти решение уравнения f(x) = 0 на отрезке (l, h). Причём f(l) < 0, а f(h) > 0.

Для решения этой задачи можно применить метод бинарного поиска. Для этого находим значение функции в центре отрезка, то есть в точке $m=\frac{l+h}{2}$. Если в этой точке функция положительна или равна нулю, то изменяем значение h=m. Если же в этой точке функция отрицательна, то изменяем значение l=m. Таким образом отрезок, на котором находится решение был уменьшен в 2 раза. Повторяем эту процедуру до тех пор пока длина отрезка не станет меньше чем $\epsilon=10^{-8}$.

Напишите программу, которая будет решать эту задачу. Функция f(x) и значения l и h должны задаваться в тексте программы.

f(x), 1, h	выход
$f(x) = x^2 - 2$	1.41421
1 = 0, h = 2	
$f(x) = x^2 - 7$	2.64575
1 = 0, h = 7	
$f(x) = x^5 + 2x^4 + 5x^2 + 4x - 500$	3.05614
1 = 0, h = 10	
$f(x) = e^x \ln(x) - 7$	2.1896095
1 = 1, h = 5	