CS3375: Computer Architecture Spring 2020

Homework #6 Solution

 Name only: 	
--------------------------------	--

- Release date: Apr 27th, 2020 (Monday)
- Due date: May 4th, 2020 (Monday) before the class begins (1:00 PM)
- It should be done INDIVIDUALLY; Show ALL your work
- Write your FULL name only
- Total: 10 pts
- 1. Caches are important to providing a high-performance memory hierarchy to processors. Below is a list of 32-bit memory address references, given as word addresses:

[6 pts]

a. For each of these references, identify the binary address, the tag, and the index given a direct-mapped cache with 16 one-word blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty. Show all your work.

Word Address	Binary Address			Hit/Miss	
3	0000 0011	0	3	М	
180	1011 0100	11	4	М	
43	0010 1011	2	11	М	
2	0000 0010	0	2	М	
191	1011 1111	11	15	М	
88	0101 1000	5	8	М	
190	1011 1110	11	14	М	
14	0000 1110	0	14	М	
181	1011 0101	11	5	М	
44	0010 1100	2	12	М	
186	1011 1010	11	10	М	
253	1111 1101	15	13	М	

b. For each of these references, identify the binary address, the tag, and the index given a direct-mapped cache with two-word blocks and a total size of 8 blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty. Show all your work.

Word	Binary			
Address	Address	Tag	Index	Hit/Miss

3	0000 0011	0	1	М
180	1011 0100	11	2	М
43	0010 1011	2	5	М
2	0000 0010	0	1	Н
191	1011 1111	11	7	М
88	0101 1000	5	4	М
190	1011 1110	11	7	Н
14	0000 1110	0	7	М
181	1011 0101	11	2	Н
44	0010 1100	2	6	М
186	1011 1010	11	5	М
253	1111 1101	15	6	М

2. Assume a 2-way set associative cache with 4 blocks. To solve the problems in this exercise, you may find it helpful to draw a table like the one below, as demonstrated for the address sequence "0, 1, 2, 3, 4".

Address of Memory Block Accessed	(1) 2 1 2 3	Evicted Block	Contents of Cache Blocks After Reference			
	Hit or Miss		Set 0	Set 0	Set 1	Set 1
0	Miss		Mem[0]			
1	Miss	UKA-LAKILI	Mem[0]	han alma v	Mem[1]	
2	Miss	me 2518, 31	Mem[0]	Mem[2]	Mem[1]	
3	Miss	KINEDIA P	Mem[0]	Mem[2]	Mem[1]	Mem[3
4	Miss	0	Mem[4]	Mem[2]	Mem[1]	Mem[3
					30	

Consider the following address sequence: 0, 2, 4, 8, 10, 12, 14, 16, 0

[4 pts]

- a. Assuming a least recently used (LRU) replacement policy, how many hits does this address sequence exhibit? Show all your work.
 - 0 hit

Address of	Hit		Contents of Cache Blocks After Reference			
Memory Block	or	Evicted	Set 0	Set 0	Set I	Set I
Accessed	Miss	Block				
0	Σ		0			
2	M		0	2		
4	М	0	4	2		
8	М	2	4	8		
10	М	4	10	8		
12	М	8	10	12		
14	М	10	14	12		
16	М	12	14	16		
0	M	14	0	16		

b. Assuming a most recently used (MRU) replacement policy, how many hits does this address sequence exhibit? Show all your work.

• I hit

Address of	Hit		Contents of Cache Blocks After Reference				
Memory Block	or	Evicted	Set 0	Set 0	Set I	Set I	
Accessed	Miss	Block					
0	M		0				
2	М		0	2			
4	М	2	0	4			
8	M	4	0	8			
10	M	8	0	10			
12	M	10	0	12			
14	M	12	0	14			
16	М	14	0	16			
0	Η		0	16			