Úvod do množinových metód pre spoločenské vedy

Juraj Medzihorský

MEB421 Vybrané metody výzkumu v mezinárodních vztazích 13. december 2012

Program

Modelovanie v spoločenských vedách

Príčinnosť v spoločenských vedách

Čo je QCA

Postup QCA

Zdroje

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < ○

Program

Program

PLÁN MĚSTA BRNA.

Čís. 28.

Program

1 Zem správa politická. 2 Národní divadlo.

Modelovanie v spoločenských vedách

"[V]šetky modely sú nesprávne, ale niektoré sú užitočné." George E. P. Box

Cvičenie 1: zadanie

- Vyberte si vzťah medzi príčinou a výsledkom zo spoločenských vied.
- Môže to byť aj neoverená hypotéza.
- Zapíšte ho jednou vetou.

Kto zapísal vzťah, kde príčina a výsledok môžu byť len prítomné alebo chýbajúce?

Kto zapísal vzťah takto?:

 Kde je príčina P tam je aj výsledok V. Pre výsledok V stačí príčina P.

Kto zapísal vzťah takto?:

- Kde je príčina P tam je aj výsledok V. Pre výsledok V stačí príčina P.
- Bez príčiny P nie je výsledok V možný.
 Pre výsledok V je potrebná príčina P.

Kto zapísal vzťah takto?:

- Kde je príčina P tam je aj výsledok V. Pre výsledok V stačí príčina P.
- Bez príčiny P nie je výsledok V možný.
 Pre výsledok V je potrebná príčina P.
- 3. Výsledok V je všade tam a len tam kde je príčina P.

Všeobecne				
		Príčina		
		Nie	Áno	
/ýsledok	Áno	a	b	
Výs	Nie	С	d	

Dostatočnosť				
		Príčina		
		Nie	Áno	
ýsledok	Áno	✓	✓	
Výsl	Nie	\checkmark		

Nevyhnutnosť

		Príčina	
		Nie	Áno
ledok	Áno		√
Výsl	Nie	\checkmark	\checkmark

Nevyhnutnosť a dostatočnosť

		Príčina	
		Nie	Áno
sledok	Áno		✓
Výsl	Nie	\checkmark	

Množinové zobrazenie príčinnosti

Množinový zápis podmienenosti

Ak
$$\{x \in C | \mathbf{P}(x) \}$$
 a $\{x \in O | \mathbf{V}(x) \}$, tak

dostatočnosť: $C \subseteq O$, nevyhnutnosť: $C \supseteq O$, rovnocennosť: C = O.

A teda

dostatočnosť: $\emptyset = (C \cap \neg O)$, nevyhnutnosť: $\emptyset = (\neg C \cap O)$, rovnocennosť: $\emptyset = [(C \cap \neg O) \cup (\neg C \cap O)]$.

Cvičenie 2: zadanie

Zapíšte spoločenskovednú hypotézu o vzťahu medzi výsledkom a príčinou.

- · Výsledok a príčina môžu byť len prítomné, alebo chýbať.
- V prvom je príčina dostatočná pre výsledok, v druhom nevyhnutná, a v treťom dostatočná a nevyhnutná súčasne.
- Zadefinujte, čo neexistuje, ak je hypotéza pravdivá.

Rôznorodá príčinnosť

- Často predpokladáme, že rovnaký výsledok môže mať v rôznych prípadoch rôzne príčiny.
- V takom prípade môžeme hovoriť o rôznorodosti, nahraditeľnosti, či zastupiteľnosti príčin.

Zložitá príčinnosť

- Často nás zaujíma vzťah medzi výsledkom a *súborom* príčin, ktoré vzájomne ovplyvňujú svoj účinok.
- Napr. takejto formy: P_1 zapríčiňuje V iba v prítomnosti P_2 .

Zložitá príčinnosť

- Často nás zaujíma vzťah medzi výsledkom a *súborom* príčin, ktoré vzájomne ovplyvňujú svoj účinok.
- Napr. takejto formy: P_1 zapríčiňuje V iba v prítomnosti P_2 .
- Niekedy v spojení s príčinnou rôznorodosťou: V vzniká ak sú súčasne prítomné P₁ a P₂ alebo P₃ a P₄.
- V tom prípade sú P₁ až P₄ nedostačujúce nevyhnutné súčasti zastupitelných dostačujúcich konfigurácií, teda INUS podmienky.

Cvičenie 3: zadanie

Zapíšte dve hypotézy o vzťahu medzi výsledkom a príčinami.

- V prvej je príčinnost rôznorodá.
- V druhej je príčinnost zložitá.

• Zapísal niekto INUS podmienky?

- Zapísal niekto INUS podmienky?
- Zapísal niekto podmienky, ktoré su nevhnutné v kombinácii, ale nie samostatne?

- Zapísal niekto INUS podmienky?
- Zapísal niekto podmienky, ktoré su nevhnutné v kombinácii, ale nie samostatne?
- Prečo?

Množiny a spoločenskovedné metódy

Existuje niekolko spoločenskovedných metód stavajúcich na teórii množín. Líšia sa:

 Druhom logiky, na ktorej stavajú: Booleova logika, fuzzy logika, diskrétna viachodnotová logika.

Množiny a spoločenskovedné metódy

Existuje niekolko spoločenskovedných metód stavajúcich na teórii množín. Líšia sa:

- Druhom logiky, na ktorej stavajú: Booleova logika, fuzzy logika, diskrétna viachodnotová logika.
- Chápaním neistoty: deterministické, frekventistické, Bayesovské.

Množiny a spoločenskovedné metódy

Existuje niekolko spoločenskovedných metód stavajúcich na teórii množín. Líšia sa:

- Druhom logiky, na ktorej stavajú: Booleova logika, fuzzy logika, diskrétna viachodnotová logika.
- Chápaním neistoty: deterministické, frekventistické, Bayesovské.
- Deklarovaným cieľom: popisná alebo príčinná analýza.

QCA

Qualitative Comparative Analysis možno preložiť do čestiny doslovne ako Jakostní srovnávací rozbor, medzinárodne sa používa skratka QCA.

Čím QCA je

Program

- Súbor techník stavajúcich na teórii množín, na ktorom je možné postaviť komparatívnu analýzu.
- Využíva podobnosť nevyhnutnej a dostatočnej príčiny s pojmami nevyhnutnej a dostatočnej podmienky v logike.
- Štandardne sa používa na stredne veľký počet prípadov, rádovo desiatky. Možno ju použiť aj s väčším počtom prípadov.
- Má niekoľko verzií postavených na rôznych druhoch logiky.
 Najpoužívanejšia je crisp set QCA postavená na Booleovskej logike. Dalšie varianty sú fuzzy set QCA a multi value QCA.
- Niekoľko špecializovaných variant ako viacúrovňová QCA a časová QCA.

Čím QCA nie je

- Nie je úplne oddelená od iných kvantitatívnych metód. Teória množín patrí medzi základné časti modernej marematiky.
- Nie je nedeliteľným balíkom. Zložky štandardnej QCA procedúry možno nahradit alebo doplniť inými metódami.
- Nie je všeliekom na nedostatok dát.
- Rovnako ako iné metódy kladie náročné predpoklady na modely a dáta.
- Nemá jednotnú všeobecne prijatú podobu a výklad.

Postup analýzy

- 1. Získanie dát.
- 2. Spracovanie tabuľky pravdivosti.
- 3. Vyhodnotenie modelov.

1. Získanie dát

- Potrebné sú dáta kde je členstvo prípadov v množinách číselne kódované.
- V prípade Booleovskej QCA (csQCA) 1 značí, že daný prípad je členom danej množiny a 0, že jej členom nie je.
- V prípade fuzzy QCA (fsQCA) je okrem týchto dvoch hodnôt možné aj čiastočné členstvo, ktoré sa zaznačuje číslami z intervalu (0,1).
- V prípade viachodnotovej diskrétnej QCA (mvQCA) sú možné rôzne hodnoty zaznačované celými číslami.

1. Získanie dát

Vďaka stúpajúcej používanosti QCA sú dostupné viaceré dátové súbory pripravené pre QCA. Vo väčšine prípadov však používateľ musí vytvoriť vlastný dátový súbor.

Ako sa z niečoho takéhoto:

Р	
-1.83 20.64 100.43 16.13 -73.89	
4.57	

alebo takéhoto:

veľmi slabo málo silne stredne vôbec

či takéhoto:

stane:

- Tzv. kalibrácia. Na jej kvalite závisí kvalita celej analýzy.
- Množstvo procedúr na výber. Mnohé boli vyvinuté na zber klasických číselných dát, iné priamo pre QCA.
- V praxi rôzny stupeň formalizácie a priehľadnosti: od 'čiernej skrinky' kódovania po výpočet členstva v množinách pomocou vzorcov z dostupných údajov.

2. Spracovanie tabuľky pravdivosti

Analýza vyžaduje spracovanie *tabuľky prípadov* do *tabuľky pravdivosti*.

Tabuľky prípadov a pravdivosti

Príklad tabuľky prípadov:

V	Α	В	С	Krajina
0	0	0	0	GAB
1	1	1	1	DJI
1	0	0	1	KEN
0	0	1	0	UGD
1	1	1	0	MAR
1	1	1	0	CON
1	1	1	1	SAR

Tabuľky prípadov a pravdivosti

Príklad tabuľky pravdivosti:

V	Α	В	С	Počet
0	0	0	0	3
0	0	0	1	8
0	0	1	0	10
1	1	0	0	7
1	1	1	0	2
0	0	1	1	9
1	1	0	1	11
1	1	1	1	2

Tabuľky prípadov a pravdivosti

V tabuľke prípadov je

- každý riadok je jeden prípad a
- každý stĺpec označuje členstvá v jednej množine, alebo obsahuje identifikátor prípadu.

V tabuľke pravdivosti je

- každý riadok jedna kombinácia hodnôt členstiev v množinách, teda ak máme K podmienok, máme 2^K riadkov;
- každý riadok môže alebo byť členom výsledku, alebo nečlenom, alebo mať túto hodnotu prázdnu;
- zvyčajne každý riadok obsahuje informáciu o počte prípadov, ktoré do neho patria a/alebo ich zoznam.

Spracovanie tabuľky pravdivosti

- Nevyhnutnosť sa vyhodnocuje pre samostatné podmienky.
- Zjednodušenie s cieľom získať dostačujúce konfigurácie.
 Metódou hlavných implikantov, tzv. Quine–McCluskey algoritmus.
- Problém obmedzenej rozmanitosti: nie všetky konfigurácie podmienok sú pozorované. Potreba výberu predpokladov o nepozorovaných konfiguráciách.

Máme tabuľku prípadov:

V	Α	В	С
0	0	0	0
1	1	1	1
1	0	0	1
0	0	1	0
1	1	1	0
1	1	1	0
1	1	1	1

Dáta si prevedieme do tabuľky pravdivosti:

V	Α	В	С	Počet
0	0	0	0	1
?	0	0	1	0
0	0	1	0	1
?	1	0	0	0
1	1	1	0	2
?	0	1	1	0
1	1	0	1	1
1	1	1	1	2

V QCA sa často používa zjednodušený zápis:

- Množiny sa zapisujú veľkými písmenami: A, B, ..., Z.
- Množinový doplnok sa zapisuje malým písmenom: A^c je a.
- Množinový prienik sa vynecháva: $A \cap B$ je AB.
- Množinové spojenie sa zapisuje ako $+: A \cup B$ je A + B.

Zaujíma nás aké konfigurácie podmieňujú V. Súbežne s V pozorujeme tri kombinácie podmienok:

$$AbC + ABc + ABC$$

Čo môžeme zjednodušiť na:

$$AC + AB$$

keďže V pozorujeme s AB ako v prípadoch, ktoré sú členmi C aj tými, ktoré nimi nie sú.

Cvičenie 4: zadanie

1. Zjednodušte abc + Abc + aBc + Abc + AbC.

2. Rozpíšte aC + Bc.

Cvičenie 4: vyhodnotenie

- 1. Zjednodušené abc + Abc + aBc + AbC je c + Ab.
- 2. Rozpísané aC + Bc je abC + aBC + aBc + ABc.

Niekedy nepozorujeme ani jeden prípad s danou konfiguráciou podmienok. V tom prípade je daný riadok v tabuľke pravidovsti prázdny:

V	Α	В	С	Počet
?	1	0	0	0

Môžeme:

- 1. Konzervatívne neprijať žiadne predpoklady.
- 2. Rozhodnúť sa na základe iných informácií.
- 3. Predpokladať to, čo povedie k najjednoduchšiemu riešeniu.

Niekedy narážame v dátach na tzv. protichodné riadky:

V	Α	В	С	ld.
0	1	1	1	DJI
1	1	1	1	IND

V takom prípade sa musíme rozhodnúť, či danú konfiguráciu zaradíme do analýzy, a v prípade, že áno, ako ju zakódujeme v tabuľke pravdivosti.

3. Vyhodnotenie modelov

- Súhlas (consistency) miera zhody modelu s dátami.
- Pokrytie (coverage) miera pokrytia relevatnej časti pozorovaní.
- Klasické miery súhlasu a pokrytia sa zakladajú na podieloch určitej kategórie prípadov na určitej všeobecnejšej kategórii.
 Ak sú vyjadrené v % môžu nadobúdať akúkoľvek hodnotu na intervale [0, 100] a ak podielom, na intervale [0, 1]. Vyššie hodnoty ukazujú vyššiu mieru súhlasu, resp. pokrytia.

Miera súhlasu dát s nevyhnutnosťou

		Príčina		
		Nie	Áno	
ledok	Áno	a = 0	b	
Výsl	Nie	С	d	

Miera súhlasu dát s nevyhnutnosťou

Klasická miera súhlasu dát s nevyhnutnosťou sa vyjadruje v % prípadov, ktoré majú danú podmienku aj výsledok. Čím väčší podiel takýchto prípadov, tým lepšie pre podmienku. Ktorá z týchto dvoch možností je vhodnejšia?

$$\frac{b}{a+b} \tag{1}$$

$$\frac{b+c+d}{a+b+c+d} \tag{2}$$

Miera súhlasu dát s nevyhnutnosťou

Klasická miera súhlasu s nevyhnutnosťou podmienky je podiel prípadov s danou podmienkou aj výsledkom na celkovom počte prípadov s výsledkom:

$$S_{P\supseteq V}=rac{b}{a+b}.$$

Miera súhlasu dát s dostatočnosťou

		Príčina		
		Nie	Áno	
/ýsledok	Áno	а	b	
Výsl	Nie	С	d = 0	

Miera súhlasu dát s dostatočnosťou

Klasická mierka súhlasu dát s dostatočnosťou podmienky (alebo konfigurácie) je podiel prípadov s výsledkom a danou podmienkou na celkovom počte prípadov s danou podmienkou:

$$S_{P\subseteq V}=rac{b}{b+d}.$$

Miera pokrytia nevyhnutnosťou

		Príčina		
		Nie	Áno	
ýsledok	Áno	а	b	
Výsl	Nie	С	d	

Miera pokrytia nevyhnutnosťou

Klasická miera pokrytia nevyhnutnosťou je podiel prípadov s výsledkom aj danou podmienkou na celkovom počte prípadov s danou podmienkou.

$$P_{P\supseteq V}=rac{b}{b+d}.$$

Miera pokrytia nevyhnutnosťou

Triviálna nevyhnutná podmienka je taká nevyhnutná podmienka, ktorá pokrýva všetky prípady s daným výsledkom, ale súčasne aj ďaleko väčší počet prípadov bez daného výsledku.

Miera pokrytia dostatočnosťou

		Príčina		
		Nie	Áno	
ledok	Áno	a	b	
Výsl	Nie	С	d	

Miera pokrytia dostatočnosťou

Klasická mierka je podiel prípadov s podmienkou (alebo konfiguráciou) a výsledkom na celkovom počte prípadov s výsledkom:

$$P_{P\subseteq V}=rac{b}{a+b}.$$

Miera pokrytia dostatočnosťou

Jedinečné pokrytie dostatočnou podmienkou (alebo konfiguráciou) je podiel pokrytých prípadov, ktoré nie sú pokryté žiadnou inou dostatočnou podmienkou na celkovom počte prípadov s výsledkom.

Vyhodnotenie modelov v fsQCA

Vo fuzzy set QCA sa zohľadňujú všetky prípady.

Softvér

Viaceré voľne dostupné balíky:

- fs/QCA,
- Tosmana.
- knižnice QCA, QCA3 a SetMethods pre jazyk R,
- KirqST.

Tiež

• knižnica fuzzy pre komerčný balík Stata.

Komunity užvateľov

- Stránka www.compasss.org.
- E-mailové list QUAL-COMPARE a QCA-NET.

Vybraná bibliografia

Program

Ragin, Charles C. (1987). The Comparative Method: Moving Beyond Qualitative and Quantitative Strategies. University of California Press 1987.

Ragin, Charles C. (2000). *Fuzzy-Set Social Science*. University of Chicago Press.

Ragin, Charles C. (2008). *Redesigning Social Inquiry: Fuzzy Sets and Beyond*. University of Chicago Press.

Goertz, Gary and James Mahoney. (2012). A Tale of Two Cultures: Qualitative and Quantitative Research in the Social Sciences. Princeton University Press.

Schneider, Carsten.Q. and Claudius Wagemann. (2012). Set-Theoretic Methods for the Social Sciences: A Guide to Qualitative Comparative Analysis. Cambridge University Press.