SPC - LAB3

Paweł Szczepaniak, Marcin Gruchała, Michał Bagiński

7.11.2020

1 Wstęp

Dla obiektu o transmitancji

$$K_O(s) = \frac{1}{(s+1)^3} = \frac{1}{s^3 + 3s^2 + 3s + 1}$$

przy pobudzeniu

$$y_0(t) = 1(t)$$

zastosować reguatory P i PI oraz zbadać ich właściwości.

2 Schematy blokowe badanych układów

Rysunek 1: Schemat blokowy regulatora P.

Rysunek 2: Schemat blokowy regulatora PI.

Układem automatycznej regulacji nazywa się układ ze sprzężeniem zwrotnym, które samoczynnie zapewnia pożądany przebieg wybranych wielkości charakteryzujących proces. Schematy regulatorów P oraz PI przedstawiono powyżej. Do zbudowania obu modeli wykorzystano wbudowany blok PID Contoller.

3 Warunek stabilności UAR

Rysunek 3: Schemat blokowy układu automatycznej regulacji

Powyższy UAR opisuje transmitancja:

$$K(s) = \frac{K_r(s)K_o(s)}{1 + K_r(s)K_o(s)}$$

Aby układ automatycznej regulacji był stabilny to wszystkie pierwiastki jego równania charakterystycznego $1 + K_r(s)K_o(s)$ muszą leżeć na lewej półpłaszczyźnie zespolonej.

4 Wpływ regulatora P

Regulator P inaczej zwany regulatorem proporcjonalnym ma za zadanie wzmocnienie sygnału uchybu. Jedną z cech charakterystycznych układu z tego typu regulatorem jest to nigdy nie osiągnie on wartości zadanej. Różnica pomiędzy wartością zadaną a wartością, na której sygnał się ustabilizuje nazywa się uchybem ustalonym, czasem uchybem niezerowym. Wynika on z zasady regulatora typu P. Dla obiektów wyższego rzędu regulator typu P zawsze wprowadza dość mocne oscylacje.

Transmitancje regulatora określa się wzorem:

$$K_R(s) = k_p$$

Wartość uchybu ustalonego jest tym mniejsza im większa jest wartość wzmocnienia i można wyrazić go wyrazić za pomocą wzoru:

$$\varepsilon_{ust} = \lim_{t \to \infty} \varepsilon(t) = \lim_{s \to 0} sE(s) = \frac{1}{1 + k_p \cdot K_o(0)}$$

gdzie:

- K_p to wzmocnienie regulatora,
- K_o to wzmocnienie obiektu regulacji.

4.1 Wykresy

4.1.1 $K_p = 0.5$

Rysunek 4: Wykres odpowiedzi skokowej regulatora P dla $K_p=0.5\,$

4.1.2 $K_p = 1.5$

Rysunek 5: Wykres odpowiedzi skokowej regulatora P dla $K_p=1.5\,$

4.1.3 $K_p = 2$

Rysunek 6: Wykres odpowiedzi skokowej regulatora P dla $K_p=2\,$

4.1.4 $K_p = 3$

Rysunek 7: Wykres odpowiedzi skokowej regulatora P dla $K_p=3\,$

4.1.5 $K_p = 5$

Rysunek 8: Wykres odpowiedzi skokowej regulatora P dla $K_p=5\,$

5 Wpływ regulatora PI

Regulator PI jest zbudowany z dwóch członów:

- proporcjonalnego,
- inercyjnego (całkującego).

Jest to swego rodzaju połączenie dwóch typów regulatorów typu P oraz typu I. Połączenie to pozwala na uzyskanie pożądanych cech obu typów tych regulatorów:

- szybka reakcja na zadany sygnał wejściowy (człon proporcjonalny),
- asymptotyczne wyzerowanie się uchybu ustalonego, osiąganie sygnału zadanego przy stabilnym układzie automatycznej regulacji (człon inercyjny).

Wynika to bezpośrednio z twierdzenia Abela.

Transmitancje regulatora określa się wzorem:

$$K_R(s) = k_p(1 + \frac{1}{T_i s})$$

5.1 Wykresy

5.1.1 $K_p = 1, K_i = 1$

Rysunek 9: Wykres odpowiedzi skokowej regulatora PI dla $K_p=1,\,K_i=1$

5.1.2 $K_p = 2, K_i = 2$

Rysunek 10: Wykres odpowiedzi skokowej regulatora PI dla $K_p=2,\,K_i=2$

5.1.3 $K_p = 1, K_i = 2$

Rysunek 11: Wykres odpowiedzi skokowej regulatora PI dla $K_p=1,\,K_i=2$

5.1.4 $K_p = 3, K_i = 3$

Rysunek 12: Wykres odpowiedzi skokowej regulatora PI dla $K_p=3,\,K_i=3$

5.1.5 $K_p = 5, K_i = 1$

Rysunek 13: Wykres odpowiedzi skokowej regulatora PI dla $K_p=5,\,K_i=1$

6 Minimalizacja kryterium całkowego $\int_0^\infty \varepsilon^2(t) dt$

Zadanie polegało na zminimalizowaniu kryterium:

$$Q(k_p, k_i) = \int_0^\infty \varepsilon^2(t) dt$$

ze względu na k_i przy stałej wartości k_p . Problem ten rozwiązaliśmy za pomocą metody graficznej a do stałego k_p przypisaliśmy wartość 3.

Rysunek 14: Schemat pozwalający na zbadanie kryterium.

Na wykresie została przedstawiona wartość kryterium $Q(k_p,k_i)=\int_0^\infty \varepsilon^2(t)dt$ w przypadku gdy $k_p=3$ a wartość k_i rośnie.

Rysunek 15: Wynik przeprowadzonej symulacji.

Można zauważyć, że wartość minimalna kryterium występuje przy wartości $k_i=0.5$ i jest wtedy równa Q=1.33871.

Aby sprawdzić powyższe badania wykonane zostały wykresy y(t) dla danego układu przy różnych wartościach k_i . Przedstawione poniżej wykresy potwierdzają poprawność powyższego doświadczenia.

Rysunek 16: Wykresy przedstawiające różnie zachowania regulatora PI ze względu na wzmocnienie członu inercyjnego.

7 Wnioski

Podczas projektowania układu automatycznej regulacji dobór nastaw regulator w znaczący sposób może wpłynąć na prace układu. Zadaniem regulatora jest jest utrzymanie wartości wyjściowej na zadanym poziomie. W ćwiczeniu sprawdziliśmy działanie regulatora P oraz PI. Z badania regulatora P wynika że

wprowadza on duże oscylacje w odpowiedzi układu, odpowiedź układu jest zawsze stabilna niezależnie od regulatora P pod warunkiem że sam obiekt jest stabilny. Z badania regulatora PI wynika że w zależności od zadanej wartości k_i oraz T_i - w różnym czasie lecz zawsze - $u_{ust}=0$. Aby układu z regulatorem PI był stabilny pierwiastki równania: $s(s+1)^3+k_ps+k_i=0$ muszą znajdować się na lewej półpłaszczyźnie zespolonej Re(s)<0. Zastosowanie regulatora w układzie pozwala na otrzymanie pożądanych cech w układzie w zależności od potrzeb.

8 Kod źródłowy

labP.m

```
clear; close all;
kp = 0.5;
simout = sim('simP');
figure, hold on, grid on;
plot(simout.y0);
plot(simout.u);
plot(simout.e);
plot(simout.y);
xlabel('t [s]'), ylabel('y(t)');
legend('y_0(t)', 'u(t)', '\epsilon(t)', 'y(t)');
kp = 1.5;
simout = sim('simP');
figure, hold on, grid on;
plot(simout.y0);
plot(simout.u);
plot(simout.e);
plot(simout.y);
xlabel('t [s]'), ylabel('y(t)');
legend('y_0(t)', 'u(t)', '\epsilon(t)', 'y(t)');
kp = 2;
simout = sim('simP');
figure, hold on, grid on;
plot(simout.y0);
plot(simout.u);
plot(simout.e);
plot(simout.y);
xlabel('t [s]'), ylabel('y(t)');
legend('y_0(t)', 'u(t)', '\epsilon(t)', 'y(t)');
kp = 3;
simout = sim('simP');
figure, hold on, grid on;
plot(simout.y0);
plot(simout.u);
plot(simout.e);
plot(simout.y);
xlabel('t [s]'), ylabel('y(t)');
legend('y_0(t)', 'u(t)', '\epsilon(t)', 'y(t)');
kp = 5;
simout = sim('simP');
figure, hold on, grid on;
plot(simout.y0);
plot(simout.u);
plot(simout.e);
plot(simout.y);
xlabel('t [s]'), ylabel('y(t)');
legend('y_0(t)', 'u(t)', '\epsilon(t)', 'y(t)');
```

```
clear; close all;
kp = 1;
ki = 1;
simout = sim('simPI');
figure, hold on, grid on;
plot(simout.y0);
plot(simout.u);
plot(simout.e);
plot(simout.y);
xlabel('t [s]'), ylabel('y(t)');
legend('y_0(t)', 'u(t)', '\epsilon(t)', 'y(t)');
kp = 2;
ki = 2;
simout = sim('simPI');
figure, hold on, grid on;
plot(simout.y0);
plot(simout.u);
plot(simout.e);
plot(simout.y);
xlabel('t [s]'), ylabel('y(t)');
legend('y_0(t)', 'u(t)', '\epsilon(t)', 'y(t)');
kp = 1;
ki = 2;
simout = sim('simPI');
figure, hold on, grid on;
plot(simout.y0);
plot(simout.u);
plot(simout.e);
plot(simout.y);
xlabel('t [s]'), ylabel('y(t)');
legend('y_0(t)', 'u(t)', '\epsilon(t)', 'y(t)');
kp = 3;
ki = 3;
simout = sim('simPI');
figure, hold on, grid on;
plot(simout.y0);
plot(simout.u);
plot(simout.e);
plot(simout.y);
xlabel('t [s]'), ylabel('y(t)');
legend('y_0(t)', 'u(t)', '\epsilon(t)', 'y(t)');
kp = 5;
ki = 1;
simout = sim('simPI');
figure, hold on, grid on;
plot(simout.y0);
plot(simout.u);
plot(simout.e);
plot(simout.y);
xlabel('t [s]'), ylabel('y(t)');
legend('y_0(t)', 'u(t)', '\epsilon(t)', 'y(t)');
```

Minimalizacja kryterium.m

```
figure(1);
hold on;
xlabel('ki');
```

```
ylabel('Q(kp,ki)');
for i = 0.02:0.02:2
   k_ti = i;
   sim('PI.slx');
   plot(k_ti, ans.intQ(end), 'o', 'linewidth', 3);
end
%%%
clear;
k_ti = 1;
outsim = sim('PI', 50);
figure(2)
hold on;
grid minor;
plot(outsim.y)
k_{ti} = 0.8;
outsim = sim('PI', 50);
figure(1);
plot(outsim.y)
k_ti = 0.6;
outsim = sim('PI', 50);
figure(1);
plot(outsim.y)
k_{ti} = 0.5;
outsim = sim('PI', 50);
figure(1);
plot(outsim.y)
k_{ti} = 0.2;
outsim = sim('PI', 50);
figure(1);
plot(outsim.y)
legend('ki=1', 'ki=0.8', 'ki=0.6', 'ki=0.5', 'ki=0.2');
xlabel('t[s]');
ylabel('y(t)');
```