1

Assignment I Sequence Detector Using D Flip Flop

Sinkona Chinthamalla - FWC22054

CONTENTS

I Components 1 II Hardware 1 III Finite State Machine 1

Abstract—This manual shows how to use the 7474 D-Flip Flop IC to detect the sequence 1001.

I. COMPONENTS

Components	Value	Quantity
Resistor	220 Ohm	1
Arduino	UNO	1
Seven Segment Display		1
Decoder	7447	1
Flip Flop	7474	1
Bread Board		1
Jumper Wires		20

II. HARDWARE

- 1) Make connections between the seven segment display in Fig 1 and the 7447 IC in Fig 2 as shown in Table I
- 2) Connect the Arduino, 7447 IC and the 7474 IC according to Table 2 and Fig 3.
- 3) Input is given from Arduino D8.

7447	a'	b'	c'	d'	e'	f'	g'
Display	a	b	c	d	e	f	g

Table I: Connection Table

III. FINITE STATE MACHINE

1) A sequential detector is a sequential state machine that takes an input string of bits

Figure 1: Seven Segment Display

- and generates an output 1 whenever the target sequence has been detected.
- 2) The Input is changed to 0 and 1 to display the Next state.
- 3) The LED glows when the sequence 1001 is detected.

Figure 2: Pin Diagram of 7447 IC

Figure 3: Pin Diagram of 7474 IC

Figure 4: State Diagram

$X \setminus$	00	01	11	10	
0	0	0	0	1	
1	1	1	1	1	
	Q =	AB'	+X		(2)
X A	B 00	01	11	10	
0	0	0	0	0	
1	0	0	1	0	
	Y	= AB	gX		(3)

	INF	PUT		OUT	PUT		CLOCK					
	P	Q	D	С	В	A			5V			
Arduino	D6	D7	D2	D3	D4	D5	D	13				
7474	2	12			9	5	CLK1	CLK2	1	4	10	13
7447					1	7					16	

Table II: Connection Table

Present State	Input	Next State	Output
A B	X	P Q	Y
0 0	0	0.0	0
0.0	1	0 1	0
0 1	0	0 1	0
0 1	1	0 1	0
1 0	0	1 1	0
1 0	1	0 1	0
1 1	0	0 0	0
1 1	1	0 1	1

Table III: State Table

$\setminus A$.	B			
$X \setminus$	00	01	11	10
0	0	1	0	1
1	0	0	0	0

$$P = A'BX' + AB'X' \tag{1}$$

Conclusion

The detection of 1001 sequence using D-Flip flop is implemented using

https://github.com/SinkonaChinthamalla/fwc/blob/main/ide/code.cpp