D) Pair with given Sum

2) Pair with given difference

3) Subarray with given Sum

4) Butainer up most water

Given a sorted integer array A A size N.

Find any pair (i,j) st. A(i) A(i)

Sola) Boute Arce

 \Rightarrow \forall pairs (i,j) check if $(A \cap A \cap A) = K$.

for $(i = 0 \text{ to } N - i) \times (j = i + i \text{ to } N - i) \times (j = i + i \text{ to } N - i) \times (A \cap A) = K$ Sense to the form (i,j): $(K - A \cap A) = K$ $(K - A \cap A) \times (K - A) \times (K -$

$$\mathcal{T}.c. = O(N^2)$$

Sinesy Seesch $\begin{cases}
\text{for } (i=0; i< N, i++) < N \\
\text{S=} i+1; \\
\text{C=} N-1; \\
\text{tayet} = k-Ali3;
\end{cases}$ (8.5.)

 $T.C. = 0 (N \log N)$ S.C. = 0(1)

3) No Pointer
4 & variables pointing to Linderes of
the array.

It where to initialise the 2 pointers ??

De Mon to more the 2 pointers.

A = [-1, 2, 3, 4, 5]

1, 8, 10, 13, 13

1, 8, 10, 13, 13

K = 11

Given a sorted integer array A of size N.

Find court / pair (i,j) st. Ali)+Alj)=(R=s Given
(i)=j) $A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 1, & 2, & 3, & 4, & 5, & 6, & 8 \end{bmatrix}$ A= 2 ((1,6), (3,5)) Distinct Elements

while (i<

while (i<

Som = A[i]+A[j];

if (som == K)
$$<$$

Count ++, i++, j--,

else if (som > tanget) $<$

i else $<$

i ++, T(!= O(w)

selve $<$

Count $<$

Till $<$

Selve $<$

Till $<$

Selve $<$

Selve $<$

Till $<$

$$4(2 = 4\times3 = 6)$$

$$\frac{4}{8}$$

Given a sorted array of size
$$N \notin an$$
integer $(K > 0)$
find any pair (i,j) s.t. $(A : j) - A : i) = = k$

$$A = \begin{cases} -s, -2, 1, 8, lo, la, ls \end{cases}$$

$$K = 11 \Rightarrow (2, 5) \Rightarrow (12-1) = 11$$

Boute Locce > Check all pais. T.C. = O(N2)

$$(Aij] - Aii] > 0 \Rightarrow Aij > Aij$$

$$(j > \underline{i})$$

Sinesy Seesch

$$\begin{cases}
\text{for } (i=0; i< N, i++) < N \\
\text{S=} i+1; \\
\text{C=} N-1; \\
\text{target} = k+A[i];
\end{cases}$$

$$\begin{cases}
\text{R.s.}
\end{cases}$$

$$T.C. = 0 (Nbg N)$$

 $S.C. = 0(1)$

De Where to initialize to pointers

$$A = \begin{cases} -5, -2, & 1, & 8, & 10, & 14, & 15 \\ i & j & k = 11 \end{cases}$$

$$K = 11$$

$$A = \begin{cases} -s, -2, 1, 8, 10, 14, 1s \end{cases}$$

$$K = 11$$

$$A = \begin{cases} -2 - (-s) = 3 < 11 \Rightarrow j + t \end{cases}$$

$$R = 4 \begin{cases} -2 - (-s) = 6 < 11 \Rightarrow j + t \end{cases}$$

$$R = 4 \begin{cases} -2 - (-s) = 6 < 11 \Rightarrow j + t \end{cases}$$

$$R = 4 \begin{cases} -2 - (-2) = 12 > 11 \Rightarrow j + t \end{cases}$$

$$R = 4 \begin{cases} -2 - (-2) = 12 > 11 \Rightarrow j + t \end{cases}$$

$$R = 4 \begin{cases} -1 = 4 < 11 \Rightarrow j + t \end{cases}$$

$$R = 4 \begin{cases} -1 = 4 < 11 \Rightarrow j + t \end{cases}$$

$$i=0$$
, $j=1$;

while $(j &s $i) \ll

$$diff = A[j]-A[i];$$

if $(diff = -K)$ $\ll$$$

selve if (diff > x) if

i++,

selve if

j++',

sectorn 2-1, -1);

$$T.C. = O(N)$$

$$S.C. = O(1)$$

Given an integer array of the elements. Check if a subarray with sum = K is present.

$$A = \begin{cases} 0 & 1 & 2 & 3 & 4 & 5 \\ 1, & 3, & 15, & 10, & 20, & 3, & 23 \end{cases}$$

) PS + Hashing

$$A = \begin{cases} 0 & 1 & 2 & 3 & 4 & 5 \\ 1, & 3, & 15, & 10, & 20, & 3, & 23 \end{cases}$$

Som
$$\{i,j\} = = K$$

$$PS(j) - PS(i-j) = = K \left(\frac{9}{i} | i = 0 \right)$$

$$(PS[j] == k) \quad (\forall i == 0)$$

Given an outeger orrey of size N. representing the height of N walls.

find any 2 walls that can form a container to ston mex amount of water

-) Volume = Aver &
- 2) The distance 5/10 every consentir well is 1 umb

Length =
$$(j-i)$$

Height = $nun (Ali)$,

Ali)

 $(j-i)$

Amount
$$f = (j-i) \times min(A[i], A[j])$$
Water

) Brute Love

Fi, j where i < j ⇒ Calculate the area \$
take mex.

 $T.(. = O(N^2)$ S.C. = O(1)

2) Optimel Solution

Amount $\int = (j-i) \times min(A[i], A[j])$ Water

Goal: Meximise amount of water.

Since we need to meximize area. We start with mer length.

A = [4, 2, 10, 6, 8, 2, 6, 2]

code
$$i=0, j=M-1;$$

$$ans = INT_{MIN}$$

ans = INT MIN while (i < j) < j aver = min $(A(i), A(j)) \times (j-i)$ ans = min (Asee, ans); if (A(i) < A(j)) < (A(j)) < (A

soction as,