Elementary Mathematics II (Differential Equations and Dynamics) (MTH 102)

Dr. Julius Ehigie Dr. Joseph Aroloye

Application of Second Order ODEs

General Linear Ordinary Differential Equation

The general linear differential equation is given by:

$$a_0(x)\frac{d^n y}{dx^n} + a_1(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_{n-1}(x)\frac{dy}{dx} + a_n(x)y = f(x)$$

- Where $a_0(x)$, $a_1(x)$, ..., $a_n(x)$ and f(x) are given functions of x or sometimes constants.
- Where f(x) = 0, It is said to be **Homogeneous**
- Where $f(x) \neq 0$, It is said to be **Inhomogeneous**

Second Order ODE

The general linear second order ODE is given by:

$$a_0(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_2(x)y = f(x)$$

- If $a_0(x)$, $a_1(x)$, $a_2(x)$ are constants, it is called a second order ODE with constant coefficients.
 - Where f(x) = 0, It is called a **Homogeneous** Second order ODE with constant coefficients
 - Where $f(x) \neq 0$, It is called a **Inhomogeneous** Second order ODE with constant coefficients

Homogeneous Second Order ODE with Constant Coefficients

The homogeneous second order ODE with constant coefficients is given by:

$$a_0 \frac{d^2 y}{dx^2} + a_1 \frac{dy}{dx} + a_2 y = 0$$

The complementary solution (y_c) is obtained by using the trial solution

$$y = e^{mx}$$

Allowing the trial solution satisfy the second order differential equation we have the following:

$$\frac{dy}{dx} = me^{mx} \qquad \frac{d^2y}{dx^2} = m^2e^{mx}$$

Auxillary / Characteristic Equation

Substituting in the second order ODE, we obtain

$$a_0 m^2 e^{mx} + a_1 m e^{mx} + a_2 e^{mx} = 0$$

 $e^{mx} (a_0 m^2 + a_1 m + a_2) = 0$

Implies the following:

$$e^{mx} \neq 0 \qquad a_0 m^2 + a_1 m + a_2 = 0$$

- The resulting quadratic equation is known as the Characteristic equation.
- The form of the solution is dependent on the nature of solution of the characteristic equation.

Solution of Quadratic Equations

Given the quadratic equation

$$ax^{2} + bx + c = 0$$

$$\Rightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

The following are the types of roots and the condition where it occurs:

• Real and distinct Roots:
$$b^2 - 4ac > 0$$

• Equal Roots:
$$b^2 - 4ac = 0$$

• Complex Roots: $b^2 - 4ac < 0$

Solution of Second Order ODEs

Given the Characteristic equations

$$a_0 m^2 + a_1 m + a_2 = 0$$

- Obtain the roots and write the solution in the form:
- Real and distinct Roots $(m_1 \neq m_2)$

$$y = Ae^{m_1x} + Be^{m_2x}$$

• Equal Roots $(m_1 = m_2 = m)$

$$y = (A + Bx)e^{mx}$$

• Complex Roots $(m = \alpha \pm i\beta)$ $y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$ Example 1: Solve the ODE $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 0$

$$y = e^{mx}$$
 \Rightarrow $\frac{dy}{dx} = me^{mx}$ \Rightarrow $\frac{d^2y}{dx^2} = m^2e^{mx}$

Substitute in the ODE to obtain:

$$m^2 e^{mx} + 3me^{mx} + 2e^{mx} = 0$$

 $e^{mx}(m^2 + 3m + 2) = 0$

We have that $e^{mx} \neq 0$, therefore we obtain the characteristic equation

$$m^2 + 3m + 2 = 0$$

Solve by Factorization method

$$m^{2} + 3m + 2 = 0$$
$$(m+1)(m+2) = 0$$
$$\Rightarrow m = -1 \text{ or } -2$$

The roots are real and distinct, hence the solution takes the form

$$y = Ae^{-x} + Be^{-2x}$$

Example 2: Solve the ODE $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 0$

$$y = e^{mx}$$
 \Rightarrow $\frac{dy}{dx} = me^{mx}$ \Rightarrow $\frac{d^2y}{dx^2} = m^2e^{mx}$

Substitute in the ODE to obtain:

$$m^{2}e^{mx} - 6me^{mx} + 9e^{mx} = 0$$
$$e^{mx}(m^{2} - 6m + 9) = 0$$

We have that $e^{mx} \neq 0$, therefore we obtain the characteristic equation

$$m^2 - 6m + 9 = 0$$

Solve by Factorization method

$$m^{2} - 6m + 9 = 0$$
$$(m - 3)^{2} = 0$$
$$\Rightarrow m = 3 \text{ twice}$$

The roots are equal, hence the solution takes the form

$$y = (A + Bx)e^{3x}$$

Example 3: Solve the ODE $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 0$

$$y = e^{mx}$$
 \Rightarrow $\frac{dy}{dx} = me^{mx}$ \Rightarrow $\frac{d^2y}{dx^2} = m^2e^{mx}$

Substitute in the ODE to obtain:

$$m^2 e^{mx} + 4me^{mx} + 5e^{mx} = 0$$

 $e^{mx}(m^2 + 4m + 5) = 0$

We have that $e^{mx} \neq 0$, therefore we obtain the characteristic equation

$$m^2 + 4m + 5 = 0$$

Solve by Quadratic Formula

$$m = \frac{-4 \pm \sqrt{16 - 20}}{2} = \frac{-4}{2} \pm \frac{\sqrt{16 - 20}}{2}$$

$$m = -2 \pm \frac{\sqrt{-4}}{2} = -2 \pm i \frac{\sqrt{4}}{2}$$

$$m = -2 \pm i$$

The roots are complex, hence the solution takes the form

$$y = e^{-2x} (A\cos x + B\sin x)$$

Solve the following Second Order ODEs

1.
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$$

2.
$$\frac{d^2y}{dx^2} + 9y = 0$$

3.
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 25y = 0$$

$$4. \quad \frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 13y = 0$$

5.
$$4\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 37y = 0$$

Inhomogeneous Second Order ODE with Constant Coefficients

The homogeneous second order ODE with constant coefficients is given by:

$$a_0 \frac{d^2 y}{dx^2} + a_1 \frac{dy}{dx} + a_2 y = f(x).$$

The general solution:

y = complementary solution + particular solution

- The **complementary solution** is obtained from the characteristics equation of homogeneous equation.
- The particular solution is determined by RHS f(x)

Particular Solution (Method of Undetermined Coefficients)

- We shall give the rules for obtaining the particular solution of the second order ODE using the method of undetermined coefficients.
- In the following slides, we give rules for the form of the particular solution for:
 - Exponential functions (ae^{bx})
 - Trigonometric functions $(a\sin bx \& a\cos bx)$
 - Polynomials (ax^b)

Rule (Exponential): If $f(x) = ae^{bx}$

• If $f(x) = ae^{bx}$, and if the characteristic equation has m = b as a root that occurs k times, then the particular solution is of the form:

$$y_p = Ax^k e^{bx}$$

is used, where A is a constant to be determined different from A in the complementary solution.

Rule (Trigonometry): If $f(x) = a \cos bx / a \sin bx$

• If $f(x) = a \sin bx$ or $a \cos bx$, and if $m^2 + b^2$ is a factor of the characteristic equation in which this factor may occur k times, then the particular solution is of the form:

$$y_p = x^k (A\sin bx + B\cos bx)$$

where constants a and b are to determined.

Rule (Polynomials): If $f(x) = ax^b$

• If $f(x) = ax^b$, where a and b are constants, and if the characteristic equation has m = 0 as a root for which it occur k times, then the particular solution is of the form:

$$y_p = x^k (A_b x^b + A_{b-1} x^{b-1} + \dots + A_1 x + A_0)$$

where A_i , $i = 1, 2, \dots, n$ are constants.

Example 1. Solve the ODE
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{2x}$$

Characteristics equation:
$$m^2 - 3m + 2 = 0$$

 $(m-1)(m-2) = 0 \Rightarrow m = 1 \text{ or } 2$

Complementary solution $\Rightarrow y_c = Ae^x + Be^{2x}$

Particular solution with $f(x) = 1e^{2x}$

m=2 appear k=1 times

Therefore, the trial solution y_p is

$$y_p = Ax^1 e^{2x} = Axe^{2x}$$

• We seek coefficient A such that y_p satisfy the ODE

$$y'_{p} = Ae^{2x} + 2Axe^{2x}$$

$$y''_p = 4Ae^{2x} + 4Axe^{2x}$$

The ODE becomes

$$4Ae^{2x} + 4Axe^{2x} - 3(Ae^{2x} + 2Axe^{2x}) + 2(Axe^{2x}) = e^{2x}$$

Which simplifies to

$$Ae^{2x} = e^{2x} \Rightarrow A = 1$$

Therefore

$$y_p = xe^{2x}$$
$$y = y_c + y_p$$

Hence,

$$y = Ae^x + Be^{2x} + xe^{2x}$$

Example 2. Solve the ODE
$$\frac{d^2y}{dx^2} + 4y = 3\sin 2x$$

Characteristics equation:
$$m^2 + 4 = 0$$
 $\Rightarrow m = \pm 2i$

Complex root
$$(\alpha \pm i\beta) \Rightarrow e^{\alpha x} (A \cos \beta x + B \sin \beta x)$$

Complementary solution $\Rightarrow y_c = A \cos 2x + B \sin 2x$

Particular solution with $f(x) = 3 \sin 2x$

$$m^2 + 2^2$$
 appear $k = 1$ times

Therefore, the trial solution y_p is

$$y_p = x^1 (A \sin 2x + B \cos 2x) = x(A \sin 2x + B \cos 2x)$$

We seek coefficient A & B such that y_p satisfy the ODE

$$y'_{p} = x(2A\cos 2x - 2B\sin 2x) + (A\sin 2x + B\cos 2x)$$
$$y''_{p} = -4Ax\sin 2x - 4Bx\cos 2x + 4A\cos 2x - 4B\sin 2x$$

The ODE simplifies to

$$4A\cos 2x - 4B\sin 2x = 3\sin 2x$$

$$\Rightarrow 4A = 0 \qquad \Rightarrow -4B = 3$$

$$\Rightarrow A = 0 \qquad \Rightarrow B = -\frac{3}{4}$$

Therefore

$$y_p = x \left(0 \sin 2x - \frac{3}{4} \cos 2x \right) = -\frac{3}{4} x \cos 2x$$
$$y = y_c + y_p$$

Hence,

$$y = A\cos 2x + B\sin 2x - \frac{3}{4}x\cos 2x$$

Assignment / Classwork

Solve the following ODE:

1.
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 2e^{4x}$$

$$2. \quad \frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 4x^2$$

3.
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = \cos x$$

4.
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 10y = 5x + e^{-2x}$$

5.
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} = 4\sin x + 2x^2$$