

Республиканская юниорская олимпиада для юниоров по химии Областной этап (2021-2022). Официальный комплект решений 8 класса

1																	18
1 H 1.008	2											13	14	15	16	17	2 He _{4.003}
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Αl	Si	Р	S	CI	Ar
22.99	24.31											26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28 N.I.:	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu 63.55	Z n 65.38	Ga	Ge	As	Se	Br	Kr
39.10 37	40.08	44.96 39	47.87 40	50.94 41	52.00 42	54.94 43	55.85 44	58.93 45	58.69 46	47	48	69.72 49	72.63 50	74.92 51	78.97 52	79.90 53	83.80
	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd		Cd	In	Sn	Sb	Te	53 	Xe
Rb 85.47	87.62	I 88.91	∠I 91.22	92.91	95.95	10	101.1	102.9	106.4	Ag	112.4	111 114.8	118.7	121.8	127.6	I 126.9	131.3
55	56	00.01	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	57-71	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3		178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0		-	-
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	89- 103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			138.9	140.1	140.9	144.2	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			-	232.0	231.0	238.0	-	-	-	-	-	-	-	-	-	-	-

qazcho.kz 2/12

Задача №1. Коллекционер монет (Мужубаев Ә.)

1	2	3	4	"Всего
2	2	2	4	10

Осенью 2020 года Национальный Банк Казахстана выпустил серию монет "Jeti Qazyna" номиналом 100 тенге, основной фишкой которых является то, что на них изображены символы из легенды о семи сокровищах кочевника: мужественность, умная и красивая жена, преданная собака, всесторонние знания, хорошее ружье, быстроногий скакун и охотничий беркут.

В официальной документации сообщается, что толщина монеты составляет 1.95 миллиметра, диаметр - 24.5 миллиметра, а масса - 6.65 грамм.

1. Рассчитайте плотность монеты. Ответ приведите в $\frac{\Gamma}{CM^3}$. Покажите свои расчеты.

Рассчитаем объем монеты:

$$V = \pi r^2 h = 3.14 * \left(\frac{2.45}{2}\right)^2 * 0.195 = 0.919 \ cm^3$$

Тогда плотность:

$$p = \frac{m}{v} = \frac{6.65}{0.919} = 7.24 \frac{\Gamma}{\text{CM}^3}$$

1 балл за значение объема

1 балл за значение плотности

Всего – 2 балла за пункт

Коллекционер редких монет Антон побывал на презентации серии "Jeti Qazyna" и узнал о химическом составе этих монет. Оказалось, монеты выполнены из сплава Нибрасс/Нейзильбер, состоящий из меди, никеля и цинка. В ходе презентации он составил табличку с процентным содержанием каждого из металлов.

Металл	Содержание
Cu	
Ni	
Zn	12%

К сожалению, придя домой, он пролил кофе на свои записи, но решил восстановить их, проведя эксперимент в лаборатории. Для этого он опустил монету в стакан с раствором разбавленной серной кислоты. Начали выделяться пузырьки газа. После окончания реакции масса не растворившегося остатка составила 3.86 грамм.

2. Запишите реакции, которые происходили при растворении монеты.

gazcho.kz 3/12

Из трех металлов, только никель и цинк растворяются в разбавленной серной кислоте. Медь в эту реакцию не вступает:

$$Ni + H_2SO_4 \rightarrow NiSO_4 + H_2$$

 $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$

По 1 баллу за каждое уравнение.

Всего - 2 балла за пункт.

3. Дополните таблицу недостающими данными.

Не растворившийся остаток – медь. Тогда, можно рассчитать ее массовую долю:

$$\omega(Cu) = \frac{3.86}{6.65} * 100\% = 58.05\%$$

Следовательно, можно рассчитать массовую долю никеля:

$$\omega(Ni) = 100\% - 58.05\% - 12\% = 29.95\%$$

1 балл за массовую долю меди

1 балл за массовую долю никеля

Всего – 2 балла за пункт

4. Какой объем газа выделился при проведении опыта? Покажите расчеты.

Газы выделялись в следующих реакциях:

$$Ni + H_2SO_4 \rightarrow NiSO_4 + H_2$$

 $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$

Из уравнений видно, что количество образовавшегося водорода равно количеству растворившихся металлов.

$$n(H_2) = n(Zn) + n(Ni)$$

$$n(Zn) = \frac{m(Zn)}{M(Zn)} = \frac{w(Zn)*m(\mathrm{монеты})}{M(Zn)} = \frac{0.12*6.65}{65.38} = 0.0122 \,\mathrm{моль}$$
 $n(Zn) = \frac{m(Ni)}{M(Ni)} = \frac{w(Ni)*m(\mathrm{монеты})}{M(Ni)} = \frac{0.2995*6.65}{58.69} = 0.0340 \,\mathrm{моль}$

$$n(H_2) = 0.0117 + 0.0294 = 0.0461$$
 моль

$$V(H_2) = 0.461 * 22.4 = 1.033$$
 литр

1 балл за расчет химического количества никеля

1 балл за расчет химического количества цинка

1 балл за расчет химического количества водорода

1 балл за расчет химического объема водорода

Всего – 4 балла за пункт

Задача №2. Газы (Мужубаев Ә.)

1	2	3	4	"Всего
2	3	2	4	11

Уравнение Менделеева – Клапейрона позволяет установить взаимосвязь между тремя основными макроскопическими параметрами идеальных газов – температурой, давлением и объемом. Выглядит оно следующим образом:

$$PV = nRT$$

Р- давление, Па

V- объем, м³

п- количество вещества, моль

R- универсальная газовая постоянная, $8.314 \frac{Дж}{моль*K}$

T- термодинамическая температура, К

Один из газообразных оксидов азота плотностью $1.453~\mathrm{г/л}$ обладает давлением равным $120~\mathrm{к}\Pi$ а при $298\mathrm{K}$.

1. Используя уравнение Менделеева-Клапейрона, рассчитайте молярную массу оксида и установите его химическую формулу.

Преобразуем уравнение Менделеева-Клапейрона:

$$PV = nRT$$

$$PV = \frac{m}{M}RT$$

$$PM = \frac{m}{V}RT$$

$$M = \frac{\rho RT}{P}$$

$$M = \frac{\rho RT}{P} = \frac{1.453 * 8.314 * 298}{120} = 30 \frac{\Gamma}{\text{моль}}$$

Из оксидов азота такой молярной массе соответствует NO.

1 балл за расчет молярной массы

1 балл за определения формулы

Всего – 2 балла за пункт

2. Рассчитайте плотность смеси H_2 и O_2 при 298 К и давлении 2 атм, если мольная доля кислорода в смеси 10%. Считайте газы идеальными. Ответ приведите в г/л.

Найдем сколько какое количество газов приходится на один литр:

$$PV = nRT$$
$$\frac{P}{RT} = \frac{n}{V}$$

$$\frac{P}{RT} = \frac{n}{V} = \frac{2*101.325}{8.314*298} = 0.0818$$
 моль/л

Если на один литр приходится 0.0818 моль, то 10% принадлежат кислороду, а остальное водороду.

$$n(O_2) = 0.00818$$
 моль $n(H_2) = 0.0736$ моль

qazcho.kz 5/12

Тогда масса одного литра смеси

$$m_{\text{смеси}} = 0.0736 * 2 + 0.00818 * 32 = 0.409 \frac{\Gamma}{\pi}$$

1 балл за нахождение суммарного количества вещества газов на литр смеси

0.5 балл за нахождение количества водорода на литр смеси

0.5 балл за нахождение количества кислорода на литр смеси

1 балл за нахождение плотности

Всего – 3 балла за пункт

Принимаются и альтернативные ходы решения, приводящие к верному ответу

Стоит отметить, что уравнение было выведено на основе следующих постулатов:

- Молекулы газов не сталкиваются с друг-другом
- Между частицами газа нет гравитационных или электростатических взаимодействий
- Собственный объем молекул газа пренебрежимо мал

Хоть это уравнение и описывает поведение многих газов при низких давлениях и высоких температурах, для других условий его соответствие с экспериментальными данными намного хуже. Для более точного определения поведения газов при низких температурах была предложена модель Ван-дер-Ваальса. Уравнение, соответствующее модели выглядит следующим образом:

$$(P + \frac{an^2}{V^2})(V - bn) = nRT$$

где:

a - постоянная величина, которая является поправкой, учитывающей силы притяжений между молекулами.

b — постоянная величина, которая является поправкой, учитывающей существенный объем молекул газа.

Ниже приведены показатели для трех газов: хлороводород, диоксид азота и диоксид серы.

	$a\left(\frac{\kappa\Pi a*литр^2}{{}_{MOЛЬ}^2}\right)$	$b\left(\frac{_{ m моль}}{_{ m моль}}\right)$
HCl	371.6	0.04081
NO_2	535.4	0.04424
SO_2	680.3	0.05636

3. Поведение какого из газов из таблицы будет меньше всего описываться моделью идеального газа? Ответ поясните.

Для ответа на этот вопрос нужно проанализировать то, как коэффициенты а и b изменяют уравнение Ван-дер-Ваальса.

Для этого представим, что а и b будут иметь пренебрежимо малые значения, тогда:

$$P + \frac{an^2}{V^2} \approx P$$
$$(V - bn) \approx V$$

Видно, что при малых значениях а и b уравнение Ван-Дер-Ваальса будет принимать форму уравнение Менделеева-Клапейрона. Тогда, газ, для которого соответствующие значения а и b минимальны, будет вести себя как идеальный. Тогда, у газа с наибольшими значениями а и b будут большие отклонения от модели идеального газа. Значит, ответ – SO_2

1 балл за ответ

1 балл за пояснение

Всего – 2 балла за пункт

4. Для определения отклонений от модели идеального газа, в отдельные сосуды объемом 0.01 м³ при температурах —80°С и 25 °С поместили по 1 моль *HCl*. Рассчитайте давление используя модели идеального и реального газа и выразите разницу в процентах от идеальной модели. Сделайте вывод о зависимости отклонения от температуры.

Выразим давление из обоих уравнений:

$$P = \frac{nRT}{V}$$

$$P = \frac{nRT}{V - nh} - \frac{an^2}{V^2}$$

Рассчитаем давление при -80C:

По модели идеального газа:

$$P = \frac{nRT}{V} = \frac{1*8.314*(-80+273)}{10} = 160.46 \text{ кПа}$$

По модели реального газа:

$$P = \frac{nRT}{V - nb} - \frac{an^2}{V^2} = \frac{1*8.314*(-80 + 273)}{10 - 1*0.04081} - \frac{371.6*1^2}{10^2} = 157.4$$
κΠα

Отклонение:

$$\frac{160.46 - 157.4}{160.46} * 100\% = 1.91\%$$

Рассчитаем давление при 25С:

По модели идеального газа:

$$P = \frac{nRT}{V} = \frac{1*8.314*(25+273)}{10} = 247.8 \text{ кПа}$$

По модели реального газа:

$$P = \frac{nRT}{V - nb} - \frac{an^2}{V^2} = \frac{1 * 8.314 * (25 + 273)}{10 - 1 * 0.04081} - \frac{371.6 * 1^2}{10^2} = 245 \text{ кПа}$$

Отклонение:

$$\frac{247.8 - 245}{247.8} * 100\% = 1.13\%$$

Вывод: отклонение уменьшается с повышением температуры

- 0.5 баллов за расчет давления HCl при -80C по уравнению Менделеева-Клапейрона
- 0.5 баллов за расчет давления HCl при -80C по уравнению Ван-Дер-Ваальса
- 0.5 баллов за расчет отклонения при -80C
- 0.5 баллов за расчет давления *HCl* при 25*C* по уравнению Менделеева-Клапейрона
- 0.5 баллов за расчет давления НСІ при 25С по уравнению Ван-Дер-Ваальса
- 0.5 баллов за расчет отклонения при 25С

1 балл за правильный вывод о зависимости.

Всего – 4 балла за пункт

Примечание: рассчитать отклонение можно по формуле ниже:

$$\sigma = \frac{|P_{\text{идеальный}} - P_{\text{реальный}}|}{P_{\text{идеальный}}} * 100\%$$

Задача №3. Химия элемента Х (Мужубаев Ә.)

1	2	Всего
5	4	9

В нижеприведенной схеме зашифрованы вещества, каждое из которых содержит элемент X.

Массовая доля атомов Х в каждом из них приведена в таблице:

Вещество	ω(X)
Б	36.78 %
Е	46.60%
К	34.40%
Л	44.03%
A	69.94%
Γ	77.73%
В	38.83%
Д	24.95%

- 1. Расшифруйте все вещества в схеме, если известно, что:
 - В атоме X есть 6 электронов, которые находятся на d-подуровне.
 - Вещества А и Г относятся к одному классу соединений.

- В молекуле вещества Е содержится три атома.
- Массовая доля хрома в Д равна 46.46%.
- В соединении А атомы X находятся в степени окисления +3.
- При нагревании вещество В разлагается на три оксида.
- Вещества А, Г, Е, К, Л являются бинарными.

Из описания электронного строения атома Х понимаем, что металл – Fe.

Тогда, становится очевидным, что соединение А является оксидом металла, так как реакция получения X из А является классическим восстановлением оксидов металлов для получения чистых металлов. Учитывая, что степень окисления в нем +3 – делаем однозначный вывод о том, что \mathbf{A} - $\mathbf{Fe}_2\mathbf{0}_3$.

Массовая доля железа в нем так же сходится со значением в таблице. Известно, что железо растворяется в кислотах и образуя соли Fe^{2+} . Тогда, **Б** - $FeSO_4$.

При добавлении оксалата натрия к сульфату железа, произойдет обычная реакция обмена с образованием осадка оксалата железа. Тогда, \mathbf{B} - $\mathbf{FeC_2O_4}$.

По условию, оксалат железа разлагается на три оксида. Учитывая, что вещество Γ является бинарным и является оксидом, можно узнать формулу Γ из численных данных. Железо образует три оксида - Fe_2O_3 , FeO и Fe_3O_4 . Предварительно, мы установили, что A - Fe_2O_3 , тогда выбор стоит между FeO и Fe_3O_4 , где массовой доле из таблицы соответствует только FeO. Тогда, Γ - FeO.

Соединение Д содержит хром и железо. При этом сумма их массовых долей составляет:

$$46.46\% + 24.95\% = 71.41\%$$

Так как реагировали оксид железа и оксид хрома, можно сделать вывод, что оставшаяся масса принадлежит атомам кислорода:

$$w(0) = 100\% - 71.41\% = 28.59\%$$

Составим мольные соотношения:

$$\frac{28.59}{16.00} : \frac{46.46}{51.99} : \frac{24.95}{55.85}$$

Простейшая формула Д - $FeCr_2O_4$. Это хромит железа. **Тогда,** Д - $Fe(CrO_2)_2$ Получаем, что вещество содержит в себе 2 атома натрия, 3 атома кислорода и 2 атома серы — это тиосульфат натрия:

В условии задачи сказано, что Е является бинарным и содержит три атома. Учитывая, что в реакцию вступили железо и сера, образовалось соединение состава Fe_xS_y . Тогда, справедливы уравнения:

$$x + y = 3$$

gazcho.kz 9/12

$$\frac{55.85x}{55.85x + 32y} = 0.466$$

Решая систему уравнений, получаем x = 1, y = 2. Тогда, **E** - **FeS**₂.

Вещество К является бинарным и точно содержит железо. Так как он образуется в реакции FeS_2 с Cl_2 , логично предположить, что это хлорид железа состава $FeCl_x$. Тогда, справедливо уравнение:

$$\frac{55.85}{55.85 + x * 35.45} = 0.344$$

x = 3. Тогда, **К** - $FeCl_3$.

Добавление железа к хлориду железа (III) приводит к образованию хлорида железа (II). Тогда, Π - $FeCl_2$.

- 0.5 баллов за определение Х
- 0.5 баллов за определение А
- 0.5 баллов за определение Б
- 0.5 баллов за определение В
- 0.5 баллов за определение Г
- 0.5 баллов за определение Д
- 1 балл за определение Е
- 0.5 баллов за определение К
- 0.5 баллов за определение Л
- Всего 5 баллов за пункт
 - 2. Запишите уравнения всех реакций, представленных в схеме.
 - 1) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
 - 2) $Fe + 2S \rightarrow FeS_2$
 - 3) $2FeS_2 + 5Cl_2 \rightarrow 2FeCl_3 + 2S_2Cl_2$
 - 4) $2FeCl_3 + Fe \rightarrow 3FeCl_2$
 - 5) $Fe + H_2SO_4 \rightarrow FeSO_4 + H_2$
 - 6) $FeSO_4 + Na_2C_2O_4 \rightarrow FeC_2O_4 + Na_2SO_4$
 - 7) $FeC_2O_4 \rightarrow FeO + CO_2 + CO$
 - 8) $FeO + Cr_2O_3 \rightarrow Fe(CrO_2)_2$
 - 0.5 балла за реакцию 1.
 - 0.5 балла за реакцию 2.
 - 0.5 балл за реакцию 3.
 - 0.5 балла за реакцию 4.
 - 0.5 балла за реакцию 5.
 - 0.5 балла за реакцию 6.
 - 0.5 балла за реакцию 7.
 - 0.5 балла за реакцию 8.

Всего – 4 баллов за пункт

Задача №4. Неизвестные вещества (Бекхожин Ж.)

1	2	3	"Всего
2	0.5	7.5	10

При промышленном производстве серной кислоты токсичный газ \mathbf{A} , состоящий из двух элементов, смешивают над катализатором с газом \mathbf{b} , являющимся простым веществом, при этом образуя газ \mathbf{b} , который тоже состоит из двух элементов.

1. Зная, что газ $\bf B$ является довольно реакционноспособным и составляет около 20% нашей атмосферы, а массовые доли элемента, из которого состоит $\bf B$ в газах $\bf A$ и $\bf B$ составляют 50% и 40%, соответственно, расшифруйте три газа и запишите уравнение реакции, описанной выше

$${f A}$$
 - SO_2 , ${f B}$ - O_2 , ${f B}$ - SO_3 $2SO_2+O_2 o 2SO_3$ (0.5 балла за каждый газ и реакцию)

В теории, газ **B** можно напрямую смешивать с водой и получать серную кислоту. Однако при этой реакции выделяется слишком много тепла и образуется трудноулавливаемый аэрозоль. Поэтому в промышленности **B** смешивают с концентрированной серной кислоты с образованием олеума, формально являющимся раствором **B** в чистой серной кислоте, который можно записать как H_2SO_4*B . Олеум затем разбавляют водой до нужной концентрации, таким образом получая больший объем серной кислоты.

2. Запишите реакцию В с водой.

$$SO_3 + H_2O \rightarrow H_2SO_4$$
 (0.5 балла)

3. Смесь воды и серной кислоты, в которой массовая доля серной кислоты составляет 98%, объемом 234 мл и плотностью 1.8365 г/мл, насытили газом **B**, при этом конечная масса олеума составила 657 г. Затем к полученному олеуму добавили воды, получив в конце 100% серную кислоту плотностью 1.8305 г/мл. Рассчитайте массу и количество вещества поглощенного олеума через разницу масс до и после пропускания **B**, рассчитайте количество вещества воды в изначальной 98% кислоте, из этого получите количество вещества оставшегося **B** после реагирования с водой. Затем, рассчитайте объем воды, который необходим чтобы растворенный **B** перевести в чистую серную кислоту и найдите конечный объем 100% серной кислоты. Плотность воды возьмите как 1 г/мл.

Масса и количество вещества поглощенного В:

$$m_{SO_3} = \Delta m = m_2 - m_1 = m_2 - \rho_1 V_1 = 657 - 234 * 1.8365 = 227.26$$
 г (1.5 балла)

qazcho.kz 11/12

$$n_{SO_3} = \frac{m_{SO_3}}{M_{SO_3}} = \frac{227.26}{32.065 + 4 * 15.999} = 2.8385$$
 моль
$$\tag{1 балл}$$

Количество вещества воды в 98% серной кислоте и количество вещества оставшегося **В** после реакции с этой водой:

$$n_{H_2O} = rac{m_{H_2O}}{M_{H_2O}} = rac{
ho_1 V_1 * \omega}{M_{H_2O}} = rac{234 * 1.8365 * (1 - 0.98)}{15.999 + 2 * 1.008} = 0.477 \, ext{моль}$$
 (1 балл)
$$n'_{SO_3} = n_{SO_3} - n_{H_2O} = 2.8385 - 0.477 = 2.361 \, ext{моль}$$
 (1.5 балла)

Объем воды, которую необходимо добавить к олеуму и конечный объем 100% серной кислоты:

$$V_{H_2O} = rac{n'_{SO_3}*M_{H_2O}}{
ho_{H_2O}} = rac{2.361*18.015}{1} = 42.53 \,\mathrm{m}$$
л $(1 \,\mathrm{балл})$ $V_{H_2SO_4} = rac{m}{
ho_{H_2SO_4}} = rac{m_2 + n'_{SO_3}*M_{H_2O}}{
ho_{H_2SO_4}} = rac{657 + 42.53}{1.8305} = 382.15 \,\mathrm{m}$ л $(1.5 \,\mathrm{баллa})$

qazcho.kz 12/12