Type	Configuration	Pertinent Equations
Fixed-bias	Q V_{CC} R_B R_C	$I_B = \frac{V_{CC} - V_{BE}}{R_B}$ $I_C = \beta I_B, I_E = (\beta + 1)I_B$ $V_{CE} = V_{CC} - I_C R_C$
Emitter-bias	Q_{CC} R_B R_C R_E	$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E}$ $I_C = \beta I_B, I_E = (\beta + 1)I_B$ $R_i = (\beta + 1)R_E$ $V_{CE} = V_{CC} - I_C (R_C + R_E)$
Voltage-divider bias	$ \begin{array}{c} $	EXACT: $R_{Th} = R_1 R_2, E_{Th} = \frac{R_2 V_{CC}}{R_1 + R_2}$ APPROXIMATE: $\beta R_E \ge 10 R_2$ $I_B = \frac{E_{Th} - V_{BE}}{R_{Th} + (\beta + 1) R_E}$ $I_C = \beta I_B, I_E = (\beta + 1) I_B$ $V_{CE} = V_{CC} - I_C (R_C + R_E)$ $I_C = V_{CC} - I_C (R_C + R_E)$ $V_{CE} = V_{CC} - I_C (R_C + R_E)$ $V_{CE} = V_{CC} - I_C (R_C + R_E)$
Collector-feedback	R_{F} R_{C} R_{C} R_{C}	$I_B = \frac{V_{CC} - V_{BE}}{R_F + \beta (R_C + R_E)}$ $I_C = \beta I_B, I_E = (\beta + 1)I_B$ $V_{CE} = V_{CC} - I_C (R_C + R_E)$
Emitter-follower	R_{E} R_{E} $-V_{EE}$	$I_B = rac{V_{EE} - V_{BE}}{R_B + (eta + 1)R_E}$ $I_C = eta I_B, I_E = (eta + 1)I_B$ $V_{CE} = V_{EE} - I_E R_E$
Common-base	R_{E} V_{EE} V_{CC}	$I_E = \frac{V_{EE} - V_{BE}}{R_E}$ $I_B = \frac{I_E}{\beta + 1}, I_C = \beta I_B$ $V_{CE} = V_{EE} + V_{CC} - I_E(R_C + R_E)$ $V_{CB} = V_{CC} - I_C R_C$

	Onioaaea BJI Iransis	sior Ampiliters		
Configuration	Z_i	Z_o	A_{v}	A_i
Fixed-bias:	Medium (1 k Ω)	Medium $(2 k\Omega)$	High (-200)	High (100)
$R_{B} \stackrel{\circ}{\downarrow} R_{C}$	$= \boxed{R_B \ \beta r_e}$ $\cong \boxed{\beta r_e}$	$= \boxed{R_C \ r_o}$ $\cong \boxed{R_C}$	$= \boxed{-\frac{(R_C \ r_o)}{r_e}}$	$= \boxed{\frac{\beta R_B r_o}{(r_o + R_C)(R_B + \beta r_e)}}$
V_o	$(R_B \ge 10\beta r_e)$	$(r_o \ge 10R_C)$	$\cong \left -\frac{R_C}{R_C} \right $	$\cong \left[\begin{array}{c} \beta \end{array} \right]$
V_i Z_i			r_e	$(r_o \ge 10R_C,$
			$(r_o \ge 10R_C)$	$R_B \ge 10\beta r_e$
Voltage-divider bias: V_{CC}	Medium (1 k Ω)	Medium (2 k Ω)	High (-200)	High (50)
$R_1 = I_0 \downarrow R_C$	$= \boxed{R_1 \ R_2 \ \beta r_e}$	$= \boxed{R_C \ r_o}$ $\cong \boxed{R_C}$	$= \boxed{-\frac{R_C \ r_o}{r_e}}$	$= \boxed{\frac{\beta(R_1 R_2) r_o}{(r_o + R_C)(R_1 R_2 + \beta r_e)}}$
Z_{o}		$(r_o \ge 10R_C)$	$\simeq \left[-\frac{R_C}{r} \right]$	$\cong \left[\frac{\beta(R_1 \ R_2)}{R_1 \ R_2} \right]$
V_i Z_i R_2 C_E			r_e	$R_1 \ R_2 + \beta r_e$
			$(r_o \ge 10R_C)$	$(r_o \ge 10R_C)$
Unbypassed emitter bias:	High $(100 k\Omega)$	Medium (2 k Ω)	Low (-5)	High (50)
emitter bias: V_{CC}	$= \left[R_B \ Z_b \right]$	$= R_C$	$=$ $-\frac{R_C}{}$	\cong $-\frac{\beta R_B}{}$
R_B	$Z_b \cong \beta(r_e + R_E)$	(any level of r_o)	$r_e + R_E$	$=$ $R_B + Z_b$
→ → → → → → → → → → → → → → → → → → →	$\cong R_B \ \beta R_E$		\cong $-\frac{R_C}{}$	
V_o	$(R_E \gg r_e)$		R_E	
Z_i Z_i Z_i Z_i Z_i			$(R_E \gg r_e)$	
Emitter-	High (100 kΩ)	Low (20 Ω)	Low (≅1)	High (-50)
follower: R_B	$= \left[R_B \ Z_b \right]$	$= R_E \ r_e$	$=$ R_E	\cong $-\frac{\beta R_B}{}$
1,	$Z_b \cong \beta(r_e + R_E)$	$\cong r_{a}$	$R_E + r_e$	$ R_B + Z_b$
+	$\cong R_B \ \beta R_E$	C	≅ 1	
$V_i \longrightarrow I_o \longrightarrow R_E \longrightarrow V_o$	$(R_E \gg r_e)$	$(R_E \gg r_e)$		
Common-base:	$(R_E > r_e)$ Low (20Ω)	Medium (2 kΩ)	High (200)	Low (-1)
				Low (-1)
	$= R_E \ r_e \ $	$= R_C$	$\cong \left \begin{array}{c} \frac{R_C}{r_e} \end{array} \right $	≅ [-1]
$V_i \xrightarrow{Z_i} R_E$ $V_i \xrightarrow{Z_i} V_o$ $V_i \xrightarrow{Z_i} V_o$	$\cong \boxed{r_e}$			
$ = V_{EE} $	$(R_E \gg r_e)$			
Collector feedback: QV_{CC}	Medium (1 kΩ)	Medium (2 kΩ)	High (-200)	High (50)
R_F	$=$ $\frac{r_e}{1-r_e}$	$\cong R_C \ R_F$	\cong $-\frac{R_C}{}$	$=\left[\begin{array}{c} \beta R_F \\ R_F \end{array}\right]$
<i>I</i> ,	$= \left \frac{1}{\frac{1}{\beta} + \frac{R_C}{R_F}} \right $	$(r_o \ge 10R_C)$	r_e	$R_F + \beta R_C$
	$(r_o \ge 10R_C)$		$(r_o \ge 10R_C)$	$\cong \left \begin{array}{c} R_F \\ R_F \end{array} \right $
$\frac{V_i}{Z_o}$	$I_0 = IUN_C$		$(R_F \gg R_C)$	R_C
	I		<u> </u>	1

Configuration	$A_{v_L} = V_o/V_i$	Z_i	Z_o
V_{CC} R_{R_B}	$\frac{-(R_L \ R_C)}{r_e}$	$R_B \ eta r_e$	R_C
$ \begin{array}{c c} R_s & V_i \\ V_s & \overline{} & \overline{} \\ - & \underline{} & \overline{} & \overline{} \\ \end{array} $	Including r_o : $-\frac{(R_L \ R_C\ r_o)}{r_e}$	$R_B \ eta r_e$	$R_C \ r_o$
R_1 R_C R_1 R_C	$\frac{-(R_L \ R_C)}{r_e}$	$R_1 \ R_2 \ eta r_e$	R_C
$ \begin{array}{c c} R_s & V_i \\ V_s & \hline \end{array} $ $ \begin{array}{c c} R_2 & \hline \end{array} $ $ \begin{array}{c c} R_E & \hline \end{array} $ $ \begin{array}{c c} C_E & \hline \end{array} $	Including r_o : $\frac{-(R_L R_C r_o)}{r_e}$	$R_1 \ R_2 \ eta r_e$	$R_C \ r_o$
R_s	≅ 1	$R_E' = R_L R_E$ $R_1 R_2 \beta(r_e + R_E')$	$R_s' = R_s R_1 R_2$ $R_E \left(\frac{R_s'}{\beta} + r_e\right)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Including r_o : $\cong 1$	$R_1 \ R_2 \ \beta(r_e + R_E')$	$R_E \ \left(\frac{R_s'}{eta} + r_e \right) \ $
$R_s = V_i $	$\cong \frac{-(R_L \ R_C)}{r_e}$	$R_E \ r_e$	R_C
$ \begin{array}{c c} + & & \\ V_s & & \\ \hline - & & \\ - & & \\ \hline - & & \\ - & & \\ \hline - & & \\ - & & \\ \hline - & & \\ - & & \\ - & & \\ \hline - & & \\ - & $	Including r_o : $\cong \frac{-(R_L R_C r_o)}{r_e}$	$R_E \ r_e$	$R_C \ r_o$
V_{CC} R_1 R_C	$\frac{-(R_L \ R_C)}{R_E}$	$R_1 \ R_2 \ \beta(r_e + R_E)$	R_C
$\begin{array}{c c} R_s & V_i \\ V_s & Z_i \\ \end{array}$ $\begin{array}{c c} R_2 & R_E \\ \end{array}$	Including r_o : $\frac{-(R_L R_C)}{R_E}$	$R_1 \ R_2 \ \beta(r_e + R_e)$	$\cong R_C$

Configuration	$A_{\nu_L} = V_o/V_i$	Z_i	Z_o
V_{CC} R_{S} V_{i} V_{i} V_{i} V_{i}	$\frac{-(R_L \ R_C)}{R_{E_1}}$	$R_B \ eta(r_e + R_{E_1})$	R_C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Including r_o : $\frac{-(R_L R_C)}{R_{E_t}}$	$R_B \ \beta(r_e + R_E)$	$\cong R_C$
V_{CC} R_F R_C R_F R_C	$\frac{-(R_L \ R_C)}{r_e}$	$eta r_e \ rac{R_F}{ A_ u }$	R_C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Including r_o : $\frac{-(R_L \ R_C \ r_o)}{r_e}$	$eta r_e \ rac{R_F}{ A_ u }$	$R_C \ R_F\ r_o$
V_{CC} R_F R_C R_F R_C	$\frac{-(R_L \ R_C)}{R_E}$	$eta R_E \ rac{R_F}{ A_ u }$	$\cong R_C R_F$
$\begin{array}{c c} R_s & V_i \\ V_s & \hline \end{array}$ $\begin{array}{c c} R_E & \hline \end{array}$	Including r_o : $\cong \frac{-(R_L \ R_C)}{R_E}$	$\cong \beta R_E \left\ \frac{R_F}{ A_v } \right\ $	$\cong R_C R_F $

packaged system relates to the actual amplifier or network. The system of Fig. 5.61 is called a two-port system because there are two sets of terminals—one at the input and the other at the output. At this point it is particularly important to realize that

the data surrounding a packaged system is the no-load data.

This should be fairly obvious because the load has not been applied, nor does it come with the load attached to the package.

FIG. 5.61
Two-port system.