

Norwegian University of Science and Technology Department of Mathematical Sciences TMA4145 Linear Methods Fall 2017

Exercise set 10

Please justify your answers! The most important part is *how* you arrive at an answer, not the answer itself.

- 1 Let M be the plane of \mathbb{R}^3 given by $x_1 + x_2 + x_3 = 0$. Find the linear mapping that is the orthogonal projection of \mathbb{R}^3 onto this plane.
- 2 Let $A \subset \mathbb{R}$ be a set.

Prove that if A is bounded from below, then there is a sequence $(a_n) \subset A$ such that $a_n \to \inf A$ as $n \to \infty$. (In other words, prove that $\inf A \in \overline{A}$.)

Similarly, if A is bounded from above, prove that there is a sequence $(a_n) \subset A$ such that $a_n \to \sup A$ as $n \to \infty$. (In other words, prove that $\sup A \in \overline{A}$.)

 $\fbox{3}$ Let T be a bounded linear operator on a Hilbert spae X. Show that the operator norm of T can be expressed in terms of the innnerproduct of X:

$$||T|| = \sup\{\langle Tx, y \rangle : x, y \in X \text{ with } ||x|| = ||y|| = 1\}.$$

- Let $M = \{x \in \ell^2 : x = (x_1, 0, x_3, 0, x_5, ...)\}$ be the subspace of odd sequences in ℓ^2 . Determine the orthogonal complement M^{\perp} . You must prove that the space you find really is the orthogonal complement of M.
- 5 Let c_f be the subspace of ℓ^2 that consists of all sequences with finitely many non-zero terms.
 - a) Show that best approximation fails for c_f .
 - b) Why does this not contradict the best approximation theorem from class?