Grassmannian cluster algebras and machine learning

Jian-Rong Li
University of Vienna
joint work with Wen Chang, Bing Duan, Chris Fraser
and with Man-Wai Cheung, Pierre-Philippe Dechant, Yang-Hui He, Elli
Heyes, Edward Hirst

Cluster algebras

- Cluster algebras are a class of commutative algebras introduced by Fomin and Zelevinsky.
- Each cluster algebra is defined using some initial data called a seed and using a procedure called mutations.

initial seed
$$\underset{\chi_1}{\circ} \chi_2$$
 (χ,Q) , $\chi=(\chi_1,\chi_2)$, $Q=\longrightarrow$

$$A(X,Q) = \mathbb{C}\left[X_1, X_2, \frac{1+X_1}{X_2}, \frac{1+X_2}{X_2}, \frac{1+X_1+X_2}{X_2}\right]$$

mutate at vertex k, $\mu_k(Q)$ is obtained from Q by:

(1) for every
$$i \rightarrow k \rightarrow j$$
, add $i \rightarrow j$.

(2) change
$$\forall k \leftarrow t_0$$

(2) change
$$\chi$$
 to χ ,
(3) erase every χ ,
 (x_1, \dots, x_n) is changed to $(x_1, \dots, x_k', \dots, x_n)$, $\chi'_k = \frac{1}{\chi_k} \left(\prod_{i \neq k} \chi_i + \prod_{k \neq i} \chi_i\right)$

Grassmannian cluster algebras

• Let $k \leq n \in \mathbb{Z}_{>1}$ and

$$Gr(k, n) = \{k \text{ dimensional subspaces of } \mathbb{C}^n\}$$

= $\{k \times n \text{ full rank matrices}\}/\text{row operations}.$

- Scott (arXiv:math/0311148) showed that the coordinate ring $\mathbb{C}[\mathsf{Gr}(k,n)]$ has a cluster algebra structure.
- The algebra $\mathbb{C}[Gr(k, n)]$ is called a Grassmannian cluster algebra.

Grassmannian cluster algebras and physics

Recently, Grassmannian cluster algebras are found to be an important tool in scattering amplitudes in physics, see for examples,

- Arkani-Hamed, Lam, Spradlin, J. High Energ. Phys. 2021, 65 (2021),
- Chicherin, Henn, Papathanasiou, Phys.Rev.Lett. 126 (2021) 9, 091603,
- Drummond, Foster, Gürdoğan, Kalousios, J. High Energ. Phys. 2020, 146 (2020),
- Golden, Paulos, Spradlin, Volovich, J. Phys. A: Math. Theor. 47 474005,
- Henke, Papathanasiou, J. High Energ. Phys. 2021, 7 (2021).

Topics in this talk

I will talk about the following

- connections of $\mathbb{C}[Gr(k, n)]$, representations of quantum affine algebras and representations of p-adic groups.
- classification of cluster variables using tools from machine learning.

An initial seed for a Grassmannian cluster algebra

- A Plücker coordinate $P_{i_1,...,i_k} \in \mathbb{C}[Gr(k,n)]$ $(i_1 < \cdots < i_k)$: for a $k \times n$ matrix $x = (x_{ij})_{k \times n}$, $P_{i_1,...,i_k}(x)$ is the minor of x with 1st, ..., kth rows and i_1 th, ..., i_k th columns.
- The coordinate ring $\mathbb{C}[Gr(k,n)]$ has a cluster algebra structure with an initial seed given by Plücker coordinates, [arXiv:math/0311148, Scott].

An initial cluster for $\mathbb{C}[Gr(5,10)]$

An example of exchange relation

The relation

$$P_{13456}P_{24567} = P_{14567}P_{23456} + P_{12456}P_{34567}$$

is an example of exchange relation (corresponding to mutation at the vertex P_{13456} in the initial quiver). It is a Plücker relation.

 In general, exchange relations are more complicated than Plücker relations.

Representations of quantum affine algebras

- $\mathfrak{g}=$ simple Lie algebra over \mathbb{C} , I= the set of vertices of the Dynkin diagram of \mathfrak{g} .
- $U_q(\widehat{\mathfrak{g}})$ is the quantum affine algebra associated to \mathfrak{g} , $q \in \mathbb{C}^{\times}$ is not a root of unity. It is generated by $x_{i,r}^{\pm}$ $(i \in I, r \in \mathbb{Z})$, $k_i^{\pm 1}$ $(i \in I)$, $h_{i,r}$ $(i \in I, r \in \mathbb{Z} \setminus \{0\})$, $c^{\pm 1}$, subject to certain relations.
- (Chari-Pressley 1994) Every finite dimensional simple $U_q(\widehat{\mathfrak{g}})$ -module is a highest l-weight (loop-weight) module.
- The highest I-weight of a finite dimensional simple module corresponds to a unique I-tuple $(P_i(u))_{i\in I}$ of polynomials $P_i(u)\in \mathbb{C}[u],\ i\in I$, the constant term of $P_i(u)$ is 1. These polynomials are called Drinfeld polynomials.

Finite dimensional simple $U_q(\widehat{\mathfrak{g}})$ -modules

- ullet $\mathcal{P}=$ the free abelian group generated by $Y_{i,a}^{\pm 1}$, $i\in I$, $a\in\mathbb{C}^{\times}$.
- \mathcal{P}^+ = the submonoid of \mathcal{P} generated by $Y_{i,a}$, $i \in I$, $a \in \mathbb{C}^{\times}$.
- Elements in \mathcal{P}^+ are called dominant monomials.
- Every *I*-tuple of Drinfeld polynomials can be identified with a monomial in \mathcal{P}^+ . For example, ((1-au)(1-bu), 1, 1-cu) is identified with $Y_{1,a}Y_{1,b}Y_{3,c}$.
- Finite dimensional simple $U_q(\widehat{\mathfrak{g}})$ -module with highest l-weight $M \in \mathcal{P}^+$ is denoted by L(M).

q-characters of finite dimensional simple $U_q(\widehat{\mathfrak{g}})$ -modules

- Frenkel and Reshetikhin introduced the theory of q-characters of finite dimensional $U_q(\widehat{\mathfrak{g}})$ -modules.
- ullet (Frenkel-Reshetikhin 1998) The q-character of V is defined by

$$\chi_q(V) = \sum_{m \in \mathcal{P}} \dim(V_m) m \in \mathbb{Z}\mathcal{P},$$

where V_m is the l-weight space with l-weight m.

• The q-character map $\chi_q: \mathcal{K}_0(\mathcal{C}) \to \mathbb{Z}\mathcal{P}$ is an injective homomorphism, where $\mathcal{K}_0(\mathcal{C})$ is the Grothendieck ring of the category \mathcal{C} of finite dimensional $U_q(\widehat{\mathfrak{g}})$ -modules.

Examples of q-characters

In the case of $\mathfrak{g}=\mathfrak{sl}_3$,

$$\chi_q(L(Y_{1,a})) = Y_{1,a} + Y_{1,aq^2}^{-1} Y_{2,aq} + Y_{2,aq^3}^{-1} Y_{3,aq^2} + Y_{3,aq^4}^{-1},$$

$$\begin{split} \chi_q(L(Y_{2,a})) &= Y_{2,a} + Y_{1,aq} Y_{2,aq^2}^{-1} Y_{3,aq} + Y_{1,aq^3}^{-1} Y_{3,aq} \\ &+ Y_{1,aq} Y_{3,aq^3}^{-1} + Y_{1,aq^3}^{-1} Y_{2,aq^2} Y_{3,aq^3}^{-1} + Y_{2,aq^4}^{-1}. \end{split}$$

Hernandez and Leclerc's category \mathcal{C}_ℓ

- Hernandez and Leclerc in 2010 introduced a subcategory \mathcal{C}_ℓ of \mathcal{C} and they proved that the Grothendieck ring $K_0(\mathcal{C}_\ell)$ of \mathcal{C}_ℓ has a cluster algebra structure.
- From now on, we take $\mathfrak{g} = \mathfrak{sl}_k$, $I = [k-1] = \{1, \dots, k-1\}$.
- We fix $a \in \mathbb{C}^{\times}$ and denote $Y_{i,s} = Y_{i,aq^s}$, $i \in I$, $s \in \mathbb{Z}$.
- \mathcal{P}_{ℓ}^+ = the submonoid of \mathcal{P}^+ generated by $Y_{i,i-2r-2}$, $i \in I$, $r \in [0,\ell]$.
- Simple modules in \mathcal{C}_{ℓ} are of the form L(m), $m \in \mathcal{P}_{\ell}^+$.

Cluster algebra structure on the Grothendieck ring of \mathcal{C}_ℓ

• For $i \in I$, $r \in \mathbb{Z}_{\geq 1}$, $s \in \mathbb{Z}$, denote $X_{i,r}^{(s)} = Y_{i,s}Y_{i,s+2}\cdots Y_{i,s+2r-2}$. $L(X_{i,r}^{(s)})$ is called a Kirillov-Reshetikhin modules. $L(Y_{i,s})$ is called a fundamental module.

Theorem (Hernandez-Leclerc 2010)

The ring $K_0(\mathcal{C}_\ell)$ has a cluster algebra structure. The cluster variables in the initial seed of the cluster algebra are certain Kirillov-Reshetikhin modules.

The initial cluster for $K_0(\mathcal{C}_4)$

This is the initial cluster in the case of $U_q(\widehat{\mathfrak{sl}_5})$, $\ell=4$.

An example of exchange relations

• The following is an example of exchange relations in the cluster algebra $K_0(\mathcal{C}_4)$:

$$\chi_q(L(Y_{4,2}))\chi_q(L(Y_{4,0})) = \chi_q(L(Y_{4,2}Y_{4,0})) + \chi_q(L(Y_{3,1})).$$

This is a relation in the T-system of type A. T-system relations are certain relations satisfied by the q-characters of Kirillov-Reshetikhin modules.

 In general, exchange relations are more complicated than relations in T-systems.

Isomorphism of $\mathbb{C}[\mathsf{Gr}(k,n,\sim)]$ and $K_0(\mathcal{C}_\ell)$

- Define $\mathbb{C}[Gr(k,n,\sim)] = \mathbb{C}[Gr(k,n)]/\langle P_{i,i+1,\dots,i+k-1}-1, i \in [n-k+1]\rangle.$
- Denote $P^{(a,b,c)} = P_{j_1,...,j_k}$, $j_1 = b$, $j_r = j_{r-1} 1$, $r \in [2,a] \cup [a+2,k]$, $j_{a+1} j_a = c$.

Theorem (Hernandez-Leclerc 2010)

The assignments $L(X_{i,t+1}^{(i-2t-2)}) \mapsto P^{(k-i,1,t+2)}$, $i \in I$, $t \in [0,\ell]$, extends to a ring isomorphism $\Phi: K_0(\mathcal{C}_{\ell}^{\mathfrak{sl}_k}) \to \mathbb{C}[\operatorname{Gr}(k,n,\sim)]$, $n=k+\ell+1$.

Under the map Φ , Kirillov-Reshetikhin modules are sent to certain Plücker coordinates. A natural question is: what are the images of the simple modules. To answer the question, we use rectangular tableaux with k rows.

Monoid SSYT(k, [n]) of semi-standard Young tableaux

- SSYT(k, [n]) = the set consisting of the empty tableau and semi-standard Young tableaux of rectangular shape with k rows and with entries in [n].
- For $A, B \in \mathrm{SSYT}(k, [n])$, $A \cup B$ is the semi-standard tableau with k rows and the elements in the ith row are the union of elements in the ith row of A and B, $i \in [k]$.

Example

	1	3		1	7		1	1	3	7
	2	7	U	2	9	=	2	2	7	9
Ī	6	8		8	10		6	8	8	10

Monoid SSYT(k, [n]) of semi-standard Young tableaux

- We say that $A \in \operatorname{SSYT}(k,[n])$ is a trivial tableau if either A is empty or $A = \cup_j T_{i_j}$, where T_{i_j} is a one column tableau with entries $i_j, i_j + 1, \ldots, i_j + k 1, \ i_j \in \mathbb{Z}_{\geq 1}.$
 - The tableau 4 is a trivial tableau.
- For $A \in \mathrm{SSYT}(k, [n])$, denote by $\mathrm{red}(A) \subset A$ the semi-standard Young tableau with minimum number of columns such that $A = \mathrm{red}(A) \cup A'$ for some trivial tableau A'.

Monoid SSYT(k, [n]) of semi-standard Young tableaux

• For $A, B \in \text{SSYT}(k, [n])$, define $A \sim B$ if either A, B are trivial tableaux or red(A) = red(B).

• Denote $\operatorname{SSYT}(k, [n], \sim) = \operatorname{SSYT}(k, [n]) / \sim$.

Lemma

 $\operatorname{SSYT}(k,[n])$ and $\operatorname{SSYT}(k,[n],\sim)$ are commutative cancellative monoids under the multiplication " \cup ".

$\overline{\mathsf{Isomorphism}}$ of monoids $\mathcal{P}^+_{\ell,\mathfrak{sl}_k} o \mathrm{SSYT}(k,[n],\sim)$

Theorem (Chang-Duan-Fraser-L. 2020)

The isomorphism $\Phi: \mathcal{K}_0(\mathcal{C}_\ell^{\mathfrak{sl}_k}) \to \mathbb{C}[\operatorname{Gr}(k,n,\sim)]$, $n=k+\ell+1$, induces an isomorphism of monoids $\widetilde{\Phi}: \mathcal{P}_{\ell,\mathfrak{sl}_k}^+ \to \operatorname{SSYT}(k,[n],\sim)$.

$$\widetilde{\Phi}(Y_{1,-1}Y_{2,-4}Y_{1,-7}Y_{2,-6}Y_{1,-9}) = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 & 6 \\ 4 & 7 & 8 \end{bmatrix}$$

$$\widetilde{\Phi}(Y_{1,-1}Y_{1,-3}Y_{1,-5}Y_{2,-4}Y_{1,-7}^2Y_{2,-6}Y_{1,-9}^2) = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 & 6 \\ 7 & 8 & 8 \end{bmatrix}.$$

Cluster monomials in a Grassmannian cluster algebra

• Recall that $T_M = \widetilde{\Phi}(M)$ and $M_T = \widetilde{\Phi}^{-1}(T)$.

Definition

For a semi-standard tableau $T \in \mathrm{SSYT}(k, [k+\ell+1], \sim)$, $n \in \mathbb{Z}_{\geq 2}$, $\ell \in \mathbb{Z}_{\geq 1}$, we define $\mathrm{ch}(T) \in \mathbb{C}[\mathrm{Gr}(k, k+\ell+1, \sim)]$ by $\mathrm{ch}(T) = \Phi(L(M_T))$.

Corollary

The isomorphism $\Phi: K_0(\mathcal{C}_\ell^{\mathfrak{sl}_k}) \to \mathbb{C}[\operatorname{Gr}(k,k+\ell+1,\sim)]$ sends a module L(M) to $\operatorname{ch}(T_M)$ and $\Phi^{-1}(\operatorname{ch}(T)) = L(M_T)$.

Hernandez and Leclerc's conjecture about cluster monomials and real modules

- A simple $U_q(\widehat{\mathfrak{g}})$ -module M is called real if $M \otimes M$ is simple.
- A simple $U_q(\widehat{\mathfrak{g}})$ -module M is called prime if $M \cong M_1 \otimes M_2$ implies that M_1 or M_2 is trivial.
- A cluster monomial is a product of non-negative powers of cluster variables belonging to the same cluster.
- Hernandez and Leclerc in 2010 conjectured that

{cluster monomials in
$$K_0(\mathcal{C}_{\ell}^{\mathfrak{g}})$$
}
$$= \{ [L(M)] : L(M) \text{ is a real module in } \mathcal{C}_{\ell}^{\mathfrak{g}} \}. \quad (1)$$

Qin in 2017 and Kang-Kashiwara-Kim-Oh in 2018 that

```
{cluster monomials in K_0(\mathcal{C}_\ell^{\mathfrak{g}})} \subset \{[L(M)]: L(M) \text{ is a real module in } \mathcal{C}_\ell^{\mathfrak{g}}\}.
```

• The other direction of (1) is still open.

Cluster monomials in a Grassmannian cluster algebra

We call T prime (resp. real) if $L(M_T)$ is prime (resp. real).

Theorem (Chang-Duan-Fraser-L. 2020)

Every cluster monomial (resp. cluster variable) in $\mathbb{C}[Gr(k,n,\sim)]$ is of the form ch(T) for some real tableau (resp. prime real tableau) $T \in \mathrm{SSYT}(k,[n],\sim)$.

We will explain how to compute ch(T) in the following.

Representations of *p*-adic groups

- F is a non-archimedean local field with a normalized absolute value $|\cdot|$.
- Consider complex, smooth, finite length representations of $GL_n(F)$.
- Let $Irr = \bigcup_{n \geq 0} Irr GL_n(F)$ be the equivalence classes of irreducible representations.
- For representations π_1 , π_2 of $GL_{n_1}(F)$, $GL_{n_2}(F)$ respectively, $\pi_1 \times \pi_2$ is the representation of $GL_{n_1+n_2}(F)$ parabolically induced from $\pi_1 \otimes \pi_2$.
- Denote by $soc(\pi)$ the socle of π , i.e., the sum of the irreducible subrepresentations of π .

Representations of *p*-adic groups

- Fix a supercuspidal representation $\rho \in \operatorname{Irr}$. For $a \leq b$, we write $[a,b] = \{\nu^a \rho, \dots, \nu^b \rho\}$, where ν is the character $\nu(g) = |\det(g)|$, and [a,b] is called a segment.
- A multisegment is a formal finite sum $\mathbf{m} = \sum_{i=1}^{p} \Delta_i$ of segments.
- For $\Delta = \{\nu^a \rho, \dots, \nu^b \rho\}$, denote $Z(\Delta) = \operatorname{soc}(\nu^a \rho \times \dots \times \nu^b \rho)$.
- For a multisegment $\mathbf{m} = \sum_{i=1}^{p} \Delta_i (\Delta_1, \dots, \Delta_p \text{ are ordered in a certain way})$, denote $\zeta(\mathbf{m}) = \mathrm{Z}(\Delta_1) \times \dots \times \mathrm{Z}(\Delta_p)$ and $\mathrm{Z}(\mathbf{m}) = \mathrm{soc}(\zeta(\mathbf{m}))$.
- The map $\mathbf{m} \mapsto Z(\mathbf{m})$ defines a bijection between multisegments and Irr (Bernstein-Zelevinsky 1977, Zelevinsky 1980).

Representations of *p*-adic groups

- For $\lambda = (\lambda_1, \dots, \lambda_r) \in \mathbb{Z}^r$, denote by S_{λ} the subgroup of S_r consisting of elements σ such that $\lambda_{\sigma(i)} = \lambda_i$.
- For $\mu = (\mu_1, \dots, \mu_r)$, $\lambda = (\lambda_1, \dots, \lambda_r) \in \mathbb{Z}^r$, we denote $\mathbf{m}_{\mu,\lambda} = \sum_{i=1}^r [\mu_i, \lambda_i]$.
- For any $w, w' \in S_r$ and any $\mu, \lambda \in \mathbb{Z}^r$, $\mathbf{m}_{w' \cdot \mu, \lambda} = \mathbf{m}_{w \cdot \mu, \lambda}$ if and only if $w' \in S_{\lambda} w S_{\mu}$.
- For a multisegment \mathbf{m} with r terms, there exist unique weakly decreasing tuples $\mu_{\mathbf{m}}, \lambda_{\mathbf{m}} \in \mathbb{Z}^r$ and unique permutation of maximal length $w_{\mathbf{m}} \in \mathcal{S}_r$ such that $\mathbf{m} = \mathbf{m}_{w_{\mathbf{m}} \cdot \mu_{\mathbf{m}}, \lambda_{\mathbf{m}}}$.
- The element $w_{\mathbf{m}} \in \mathcal{S}_r$ is also the unique permutation of maximal length in $S_{\lambda_{\mathbf{m}}} w_{\mathbf{m}} S_{\mu_{\mathbf{m}}}$.

Arakawa-Suzuki functor

Arakawa-Suzuki functor (Arakawa-Suzuki 98) is a functor from category $\mathcal O$ to the category of finite-dimensional representations of a graded affine Hecke algebra.

Arakawa-Suzuki functor implies the following result.

Theorem (Arakawa-Suzuki 98, see also Henderson 07, Barbasch-Ciubotaru 15, Lapid-Minguez 18)

For a multisegment m with r terms,

$$[Z(\mathbf{m})] = [Z(\mathbf{m}_{w_{\mathbf{m}} \cdot \mu_{\mathbf{m}}, \lambda_{\mathbf{m}}})]$$

$$= \sum_{w' \in S_{\epsilon}} (-1)^{\ell(w'w_{\mathbf{m}})} p_{w'w_{0}, w_{\mathbf{m}}w_{0}} (1) [\zeta(\mathbf{m}_{w' \cdot \mu_{\mathbf{m}}, \lambda_{\mathbf{m}}})], \tag{1}$$

where $p_{y,y'}(q)$ $(y,y' \in S_r)$ is the Kazhdan-Lusztig polynomial and w_0 is the longest word in S_r .

Equivalence of categories

• (Chari-Pressley 1996) For $N \leq k-1$, the category of finite dimensional representations of the affine Hecke algebra $\widehat{H}_N(q^2)$ is equivalent to certain subcategory of finite dimensional representations of $U_q(\widehat{\mathfrak{sl}}_k)$. The correspondence between multisegments and dominant monomials is given by

$$[a,b] \mapsto Y_{b-a+1,a+b-1}, \qquad Y_{i,s} \mapsto \left[\frac{s-i+2}{2}, \frac{s+i}{2}\right].$$

- Denote by $M_{\mathbf{m}}$ the monomial corresponding to a multisegment \mathbf{m} and \mathbf{m}_M the multisegment corresponding to a monomial M.
- Let $M = Y_{2,0}Y_{1,-3}Y_{2,-2}Y_{1,-5}Y_{2,-6}Y_{2,-8}$. Then $\mathbf{m}_M = [0,1] + [-1,0] + [-1,-1] + [-2,-2] + [-3,-2] + [-4,-3].$
- We write $\lambda_M = \lambda_m$, $\mu_M = \mu_m$, $w_M = w_m$, where $\mathbf{m} = \mathbf{m}_M$.

q-character formula

• For any r-tuples $(\mu, \lambda) \in \mathbb{Z}^r \times \mathbb{Z}^r$, we define a multi-set:

$$\operatorname{Fund}_{M}(\mu,\lambda) = \{M_{[\mu_{i},\lambda_{i}]} : i \in [r]\}.$$

• Translating Formula (1) to the language of q-characters, we have that for any simple $U_q(\widehat{\mathfrak{sl}}_k)$ -module L(M),

$$\chi_q(L(M)) = \sum_{w' \in S_r} (-1)^{\ell(w'w_M)} p_{w'w_0, w_M w_0}(1) \prod_{M' \in \text{Fund}_M(w'\mu_M, \lambda_M)} \chi_q(L(M')).$$

where r is the number of factors $Y_{i,s}$ in M (count with multiplicities).

A formula for ch(T)

- We say that a tableau T is a fundamental tableau if T has one column and the entries of T are $\{i, i+1, \ldots, j, j+2, \ldots, k+i-1\}$ for some $i \leq j \in [n]$.
- Define $i_T = (i_1, \dots, i_r)$, $I_T = (I_1, \dots, I_r)$, where I_a is defined by $[i_a, i_a + k] \setminus \{I_a\}$ is the set of entries of the *a*th column of T.
- Define $j_T = (j_1, \ldots, j_r)$ to be the reordering of l_1, \ldots, l_r such that $j_1 \leq \ldots \leq j_r$.
- For a tableau T, define $P_T = P_{T_1} \cdots P_{T_r}$, where T_1, \dots, T_r are columns of T. P_T is called the standard monomial of T.

A formula for ch(T)

- Let T be a tableau with r columns and each column is a fundamental tableau. For $u \in S_r$, we define $P_{u:T}$ as follows.
- If $j_a \in [i_{u(a)}, i_{u(a)} + k]$ for all $a \in [r]$, then define a tableau $\alpha(u; T)$ to be the semi-standard tableau whose columns have entries $[i_{u(a)}, i_{u(a)} + k] \setminus \{j_a\}, \ a \in [r]$ and define $P_{u;T} = P_{\alpha(u;T)}$. Otherwise define $P_{u;T} = 0$.
- There exists a unique element $w_T \in S_r$ with maximal length such that $P_{w_T;T} = P_T$.
- For any tableau $T \in \mathrm{SSYT}(k,[n])$, there is a unique tableau $T' \in \mathrm{SSYT}(k,[n])$ whose columns are fundamental tableaux such that $T \sim T'$. Define $w_T = w_{T'}$.

A formula for ch(T)

• For $T \in SSYT(k, [n])$,

$$\mathsf{ch}(T) = \sum_{u \in S_r} (-1)^{\ell(uw_T)} p_{uw_0, w_T w_0}(1) P_{u; T'} \in \mathbb{C}[\mathsf{Gr}(k, n, \sim)]$$

where $T' \in \mathrm{SSYT}(k, [n])$ is the unique tableau whose columns are fundamental tableaux such that $T \sim T'$, and r is the number of columns of T'.

For example,

Mutations of tableaux

- The exchange relations become simpler when written in terms of tableaux.
- Mutation rule:

$$T'_k = T_k^{-1} \max\{\cup_{i \to k} T_i, \cup_{k \to i} T_i\}.$$

• The following is an exchange relation in $\mathbb{C}[Gr(3,8)]$:

Real modules and non-real modules

• We call a semi-standard tableau T real if the corresponding module $L(M_T)$ is real.

• Let
$$T = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \hline 5 & 6 \end{bmatrix}$$
. Then $ch(T)$ is a cluster variable and T is real.

• The following are smallest prime non-real tableaux for Gr(3,9) and Gr(4,8).

1	3	4	
2	6	7	
5	8	9	

1	2	5	
3	4	8	,
6	7	9	

1	2	3	
4	5	6	,
5	8	9	

1	3	
2	5	
4	7	,
6	8	

1	2
3	4
5	6
7	8

Cluster variables

- Not all tableaux are cluster variables.
- We use the mutation rule for tableaux to generate all cluster variables in $\mathbb{C}[\mathsf{Gr}(3,12)]$ up to 6 columns, in $\mathbb{C}[\mathsf{Gr}(4,10)]$ up to 6 columns, in $\mathbb{C}[\mathsf{Gr}(4,12)]$ up to 4 columns.

Numbers of cluster variables

	-	_	_		-	-		_	_	10
r	1	2	3	4	5	6	7	8	9	10
$N_{3,3,r}$	1	0	0	0	0	0	0	0	0	0
$N_{3,4,r}$	4	0	0	0	0	0	0	0	0	0
$N_{3,5,r}$	10	0	0	0	0	0	0	0	0	0
$N_{3,6,r}$	20	2	0	0	0	0	0	0	0	0
N _{3,7,r}	35	14	0	0	0	0	0	0	0	0
N _{3,8,r}	56	56	24	0	0	0	0	0	0	0
$N_{3,9,r}$	84	168	225	288	372	414	522	594	612	744
N _{3,10,r}	120	420	1170	3280	8200	19140				
$N_{3,11,r}$	165	924	4455	20504	77957	256553				
$N_{3,12,r}$	220	1848	13860	92980	486172	2061132				
N _{4,4,r}	1	0	0	0	0	0	0	0	0	0
N _{4,5,r}	5	0	0	0	0	0	0	0	0	0
N _{4,6,r}	15	0	0	0	0	0	0	0	0	0
N _{4,7,r}	35	14	0	0	0	0	0	0	0	0
N _{4,8,r}	70	120	174	208	296	304	420	416	536	480
$N_{4,9,r}$	126	576	2421	8622	27054	69390				
N _{4,10,r}	210	2040	17665	117930	597500	2353760				
N _{4,11,r}	330	5940	90563	980100						
N _{4,12,r}	495	15048	367479	5963856						

Table: Number of cluster variables in $\mathbb{C}[Gr(k, n)]$ of rank r.

Conjectures of cluster variables

According to the data set, we obtain the following conjectures

Conjecture

$$\begin{split} N_{3,n,3} &= 24 \binom{n}{8} + 9 \binom{n}{9}, \\ N_{3,n,4} &= 288 \binom{n}{9} + 400 \binom{n}{10} + 264 \binom{n}{11} + 48 \binom{n}{12}, \\ N_{4,n,3} &= 174 \binom{n}{8} + 855 \binom{n}{9} + 1285 \binom{n}{10} + 693 \binom{n}{11} + 123 \binom{n}{12}. \end{split}$$

Conjecture

For any tableau $T \in \mathrm{SSYT}(k,[n])$ with entries $a_1 < \ldots < a_r$ and any function $f: \{a_1,\ldots,a_r\} \to [n']$, $n' \geq n$, such that $f(a_1) < \ldots < f(a_r)$, we have that T is a cluster variable in $\mathbb{C}[\mathrm{Gr}(k,n)]$ if and only if f(T) is a cluster variable in $\mathbb{C}[\mathrm{Gr}(k,n')]$.

Apply machine learning to classify cluster variables

- We generate all semistandard Young tableaux in SSYT(k, [n]) for (k, n) = (3, 12), (4, 10), (4, 14) up to 6, 6, 4 columns respectively as numpy arrays in python.
- Using the dataset of the cluster variables, we obtain the dataset of non-cluster variables for (k, n) = (3, 12), (4, 10), (4, 14) up to 6, 6, 4 columns respectively.
- We take a part of the cluster variables and non-cluster variables as training set and the other part as testing set.

Apply machine learning to classify cluster variables

- We apply Support Vector Machines (SVM) and dense feed-forward Neural Networks (NN) to train the machine and use it to predict cluster variables.
- Accuracy is the proportion of predictions that are correctly classified.
- SVM and NN can determine the cluster variables from the full sets of semistandard Young tableaux with high accuracies, around 0.92 and 0.94 respectively.

Thank you!