Overview of the Generalized Linear Model

Shubham Gupta

July 4, 2019

1 Introduction

• We will apply the concepts of Bayesian analysis(inference, MCMC, etc) to a more complex family of models called **generalized linear models** which consists of models such as t-tests, analysis of variance(ANOVA). multiple regression, logistic regression, log-linear models, etc.

2 Types of Variables

- Two main types of variables: **Predictor** and **Predicted** variables.
- Likelihood function expresses probability of values for the **predicted** variable as a function of values of the **predictor** variable.
- Predictor variables are called **depdendant** variables.
- Predicted variables are called **independant** variables.

2.1 Scale types

- Main types are:
 - Metric
 - Ordinal
 - Nominal
 - Count

3 Linear combination of predictors

• GLM expresses influence of predictors as their weighted sum.

3.1 Linear function of a single metric predictor

• Linear functions preserver proportinality.

$$y = \beta_0 + \beta_1 x.$$

• This type of equation is called an **affine**.

3.2 Additive combination of metric predictors

• Add predictor variables for combined effect.

$$y = \beta_0 + \sum_{k=1}^K \beta_k x_k.$$

3.3 Non additive interaction of metric predictors

• Even if the interactions between two predictors are **not linear**, a new feature(like their product or sum) can help make the dataset linear.

3.4 Nominal Predictors

3.4.1 Linear model for a single nominal predictor

• Also called as **one hot encoding**. Split the nomial variables into multiple columns to model the problem.

$$y = \beta_0 + \beta_{[1]}x_{[1]} + \beta_{[2]}x_{[2]} + \dots$$

 $y = \beta_0 + \vec{\beta}.\vec{x}.$

3.4.2 Additive combination of nominal predictors

• Effect of multiple nominal predictors combinations can be represented by:

$$y = \beta_0 + \sum_n \beta_{1[j]} x_{1[j]} + \sum_n \beta_{2[k]} x_{2[k]} + \dots$$

3.4.3 Nonadditive interaction of nominal predictors

- \vec{x}_{1x2} refers to a particular combination of values from $\vec{x_1}$ and $\vec{x_2}$.
- Nonadditive interaction is represented by:

$$y = \beta_0 + \beta_{[1]} x_{[1]} + \beta_{[2]} x_{[2]} + \vec{\beta_{1x2}} \cdot \vec{x_{1x2}}.$$

 $\textbf{Table 15.1} \ \ \text{For the generalized linear model: typical linear functions lin}(x) \ \ \text{of the predictor variables} \ x, \ \text{for various scale types of} \ x$

Scale type of predictor x					
		Metric		Nominal	
Single group	Two groups	Single predictor	Multiple predictors	Single factor	Multiple factors
$oldsymbol{eta}_0$	$\beta_{x=1}$ $\beta_{x=2}$	$\beta_0 + \beta_1 x$	$\beta_0 + \sum_k \beta_k x_k + \sum_{j,k} \beta_{j \times k} x_{j \times k} + \begin{bmatrix} \text{higher order} \\ \text{interactions} \end{bmatrix}$	$\beta_0 + \overrightarrow{\beta} \cdot \overrightarrow{x}$	$\begin{vmatrix} \beta_0 \\ + \sum_k \overrightarrow{\beta}_k \cdot \overrightarrow{x}_k \\ + \sum_{j,k} \overrightarrow{\beta}_{j \times k} \cdot \overrightarrow{x}_{j \times k} \\ + \begin{bmatrix} \text{higher order} \\ \text{interactions} \end{bmatrix}$

The value lin(x) is mapped to the predicted data by functions shown in Table 15.2.

Figure 1: Typical linear functions

3.5 Linking from combined predictors to noisy predicted data

3.5.1 From predictors to predicted central tendency

• Preditor variables need to be mapped to predicted variable. This is called (inverse) link function.

$$y = f(lin(x)).$$

ullet f is also called **mean** function as it generally represents the central measure of the data.

3.5.2 Logistic function

• Logistic function can be written as:

$$y = \frac{1}{1 + \exp^{-x}}.$$

- The value ranges between 0 and 1.
- It can be expressed with gain γ and threshold θ .
 - $-\theta$ Point on x-axis for which y=0.5.
 - $-\gamma$ indicates how steeply logistic function rises through a point.

$$y = logistic(x; y, \theta) = \frac{1}{1 + \exp(-y(x - \theta))}$$

Figure 15.6 Examples of logistic functions of a single variable. The left panel shows logistics with the same gain but different thresholds. The right panel shows logistics with the same threshold but different gains.

Figure 2: Threshold and Gain values for logistic function

• For logistic function with multiple variables, we will use the normalized form:

$$y = logistic(y \sum_{k} w_k x_k - \theta)).$$

• It also has the following condition:

$$(\sum_{k} w_k^2)^{\frac{1}{2}} = 1.$$

Figure 15.7 Examples of logistic functions of two variables. Top two panels show logistics with the same gain and threshold, but different coefficients on the predictors. The left two panels show logistics with the same coefficients on the predictors, but different gains and thresholds. The lower right panel shows a case with a negative coefficient on the first predictor.

Figure 3: Logistic functions of two variables

- Coefficients of x_1 and x_2 determine the **oritentation** of the cliff.
- Threshold θ determines the **position** of the logistical cliff.
- Gain γ determines steepness of the logistical cliff.
- Inverse of logistic function is called **logit** function.

For
$$0$$

3.5.3 The cumulative normal function

- Generally used when we can model a variable as continous with normally distributed variability.
- Denoted as: $\phi(x; \mu, \sigma)$

- $\bullet \ mu$ is similar to threshold (θ) of logistic function.
- σ is the inverse of gamma(γ) value in logistic function i.e smaller value of $\sigma \implies$ steeper cumulative normal.

Figure 4: Cumalative normal

 \bullet Inverse of cumulative normal is called \mathbf{probit} function. Probit maps value between 0.0 and 1.0