物理实验

简要报告

(2020 - 2021 学年度 春季学期)

姓名刘祖炎学号2019010485院系自动化系教师傅敏学时间2021 年 4 月 15 日

目录

1	实验目的	1
2	实验原理 2.1 热电子发射的理论依据 2.2 A 与 S 的测量与处理 2.3 发射电流 I _e 的测量 2.4 温度 T 的测量	1 1 1 2 2
3	实验仪器	2
	实验电路及实验步骤 4.1 实验电路图	3 3 4
5	实验数据处理	4
6	思考题 6.1 I_f 系统误差修正的必要性? 6.2 u_a 系统误差修正的必要性? 6.3 U'_e 是否必须化成 I'_e 再进行数据处理? 6.4 C 点是否为灯丝中点电位等效点?	7 7 7 7 8
7	实验小结	8
8	Mia	9

1. 实验目的

- 了解热电子发射的规律。
- 掌握里查孙直线法,测定阴极材料(钨)的电子逸出功的方法。
- 了解真空电子管的发展历程、电子二极管的结构及实现原理。

2. 实验原理

2.1 热电子发射的理论依据

图 1: 位能壁垒图

金属的位能壁垒图如图1所示。由于金属与真空之间有位能壁垒 W_a ,故电子若要从金属中逸出,至少需要 $W_0=W_a-W_i$ 的动能。

通过热电子发射的方法可以改变电子的能量分布,使得动能大于 W_i 的电子增多,从而使动能大于 W_a 的电子可能从金属中发射出来并观测到。

关于热电子发射,有里查孙-德西曼公式:

$$J_e = 2(1 - R_e)A_1T^2e^{-(W_a - W_i)/KT}$$

其中 J_e 为单位面积的发射电流, $A_1 = \frac{2\pi k^2 m e_0}{h^3} = 60.09 A/cm^2 K^2$ 为普适常数, R_e 为金属表面对发射电子的反射系数,T 为绝对温度。

令
$$2(1-R_e)A_1 = A$$
, 有:

$$I_e = AST^2 e^{-e_0\phi/KT} \tag{1}$$

其中 S 为阴极金属的有效发射面积。

2.2 A 与 S 的测量与处理

测量方法为里查孙直线法。

对式1进行整理,可得本次实验使用的关键公式 1:

$$\lg \frac{I_e}{T^2} = \lg AS - 5.039 \times 10^3 \frac{\phi}{T} \tag{2}$$

由式2可得, $lg\frac{L}{r}$ 与 $\frac{1}{T}$ 成线性关系,根据作图法所得的直线斜率即可得到 ϕ 。由于 A 与 S 对某一固定材料的阴极而言是常数,故 lg AS 一项只改变上述直线的截距而不影响直线的斜率,由此可避免因 A 与 S 不能准确测定的困难。

2.3 发射电流 Ie 的测量

图 2: I_e 测量原理图

发射电流的测量方式如图2所示。在加速场的作用下,阴极发射电流 I'_e 与 E_a 满足:

$$I_e' = I_e e^{4.39\sqrt{E_a}/T}$$

对上式取对数,把阳极做成圆柱形,并与阴极共轴,上式可变换为本次实验使用的关键公式 2:

$$\lg I_e' = \lg I_e + \frac{4.39}{2.303T} \frac{1}{\sqrt{r_1 \ln(r_2/r_1)}} \sqrt{u_a}$$
(3)

一般情况下,阳极电压远大于接触电位差以及其他原因引起的电位差,上式为近似结果。其中 r_1 和 r_2 分别为阴极和阳极的半径, u_a 为阳极电压。

因而,在阴极温度一定的情况下, $\lg I_e'$ 与 $\sqrt{u_a}$ 成线性关系,画出其直线并将其延长至 $u_a=0$ 处,则此时 $\lg I_e'$ 即为 $\lg I_e$ 。由此即可得所需要的的 I_e 值。

2.4 温度 T 的测量

本实验通过测量阴极加热电流来确定阴极电流。对于纯钨丝而言,已知一定的比加热电流 I_1 与阴极温度的关系。实验测得 I_f 后可由该关系,利用直线插值求出温度 T。

表 1: 钨丝电流与温度关系表

I_f/A	0.500	0.550	0.600	0.650	0.700	0.750
T/K	1726	1809	1901	1975	2059	2136

3. 实验仪器

- 实验桌号: 5号
- 直热式二极管

图 3: 实验用直热式二极管结构

- 双路直流可调电源 (输出范围 $0 \sim 150V$)
- 指针式电流表 (交直流两用,量程 1A,测灯丝电流 I_f)
- 数字电压表
- 实验面包板、元件 (可以搭建如下图所示的电路)

图 4: 实验测量电路

4. 实验电路及实验步骤

4.1 实验电路图

根据实验要求,可以设计如图5所示的实验电路图。

图 5: 设计的实验电路图

其中,电流表为灵敏电流表,用于监测灯丝电流 I_f ; 毫伏电压表带有单刀双掷开关,通过改变开关的位置可分别测量 U_e (利用电阻进行采样,实际意义为表示 I_e)、 U_a (利用 $1M\Omega$ 、 $1k\Omega$ 电阻进行分压)。实验中读取相应电表的示数,即可得出相应物理量的值。

4.2 实验步骤

- 按照电路图进行接线并检查无误。
- 在一定的灯丝温度下,测量加速电压 U_a 与阳极电流 I'_e 的关系。 U_a 从 36V 开始逐步增加,测量 6 ~ 7 组 $U_e \sim U_a$ 的值。
- 从 0.500A 开始逐步增加电源电流, 每隔 0.04A 按照上步骤完成一次测量, 电流最大值不超过 0.750A。
- 完成测量后,用计算机进行直线拟合处理数据,得到逸出功数值。

5. 实验数据处理

表2对实验直接测量的数据进行汇总整理以供进一步处理,其中记录了实验的测电流倍率、灯丝电流、每次调节的 U_a 、 U_e' 等数据。其中,温度 T/K 的计算方法为对 $I_f \sim T$ 关系表 (表1) 进行线性插值所得:

以 $I_f=0.541A$ 为例,查表可知, $I_f=0.500A$ 时,T=1726K; $I_f=0.550A$ 时,T=1809K。因而, $I_f=0.541A$ 时,灯丝温度的计算公式为:

$$T = \frac{(0.550 - 0.541) \times 1726 + (0.541 - 0.550) \times 0.500}{0.550 - 0.500} = 1794.1K$$

按此计算原理可依次计算每组实验的灯丝温度填入表2中。

表 2: 实验数据整理

——— 倍率	$I_f(A) T(K)$	$U_a U'_e$	1	2	3	4	5	6	7
	0.500A	$U_a(V)$	35.94	49.00	64.04	80.97	99.94	121.02	143.89
$\times 1$	1726.0K	$U'_e(V)$	4.21	4.30	4.40	4.48	4.56	4.67	4.78
1	0.541A	$U_a(V)$	35.83	49.08	63.92	80.88	99.93	120.90	143.99
$\times 1$	1794.1K	$U'_e(V)$	15.49	15.81	16.12	16.45	16.77	17.10	17.43
	0.580A	$U_a(V)$	35.94	48.97	63.75	79.94	100.06	121.10	143.96
×1	1864.2K	$U'_e(V)$	45.22	46.10	46.98	47.82	48.74	49.68	50.60
×10	0.620A	$U_a(V)$	36.06	47.95	63.91	81.08	100.04	121.11	144.00
× 10	1930.6K	$U'_e(V)$	12.68	12.91	13.15	13.40	13.64	13.89	14.13
×10	0.660A	$U_a(V)$	36.02	49.01	63.93	80.89	99.99	121.11	144.05
× 10	1991.8K	$U'_e(V)$	33.60	34.19	34.79	35.39	35.96	36.59	37.21
×10	0.700A	$U_a(V)$	36.10	49.09	64.03	81.04	100.12	121.03	144.01
×10	2059.0K	$U'_e(V)$	78.31	79.72	81.08	82.44	83.79	85.19	86.61

实验中,根据公式3,为使 $\sqrt{u_a}$ 间隔均匀,调节 u_a 为 $36.00 \sim 144.00$ 之间的完全平方数。

根据表2中的数据以及公式3所示的线性关系 ($\lg I'_e(U'_e)$) 与 $\sqrt{u_a}$ 成正比),对每一组 U'_e 值分别取对数 (注意若测电流倍率为 ×10,需要对测得的 U'_e 也乘以 10),利用 Excel 分别进行线性拟合,曲线图如图6所示。

图 6: 拟合 $\lg U'_e \sim \sqrt{u_a}$ 关系曲线

由图可见,当灯丝电流变化时,灯丝电流对数值 $\lg I_e' = \sqrt{u_a}$ 之间呈现理想的线性关系 (均满足相关系数 $R^2 > 0.998$),随着 I_f 的不断增大,图线向上平移。

根据图中所示结果,整理直线拟合数据以及进一步计算所需的相关数据,读取六条直线的截距以及相关系数,并整理下一步直线拟合所需的 1/T,汇总如表3所示。

组数	1	2	3	4	5	6
$I_f(A)$	0.500	0.541	0.580	0.620	0.660	0.700
$\lg U_e (\lg mV)$	0.5703	1.1392	1.6069	2.0564	2.4824	2.8505
r^2	0.9982	0.9999	0.9999	0.9998	0.9999	0.9998
$1/T(\times 10^{-4}K)$	5.794	5.574	5.364	5.180	5.021	4.857

表 3: 拟合数据整理

根据公式2,可知 $\lg \frac{u_c}{T^2}$ 与 $\frac{1}{T}$ 成线性关系 (详见思考题 3),因此,计算拟合公式2所需的数据,将数据填入表4中。

表 4: $\lg \frac{u_e}{r^2}$ 与 $\frac{1}{r}$ 关系表

组数	1	2	3	4	5	6
$1/T(\times 10^{-4}K)$	5.794	5.574	5.364	5.180	5.021	4.857
$\frac{1 \operatorname{g} \frac{u_e}{T^2} (\operatorname{lg} (A \cdot K^{-2}))}{}$	-5.904	-5.368	-4.934	-4.515	-4.116	-3.777

利用 Excel 对表4数据进行拟合,可得 $\lg \frac{u_e}{T^2} \sim \frac{1}{T}$ 关系曲线如图7所示。

图 7: 拟合 $\lg \frac{u_e}{T^2} \sim \frac{1}{T}$ 关系曲线

lg(Ue/T^2) - 1/T 关系曲线

根据拟合出的曲线,可知直线斜率 $k=-22681[\lg(A/K^2)/(1/K)]$,相关系数 $r^2=0.9994$,表明线性关系较好。

根据里查孙直线法公式2,可知该直线斜率为 $-5.039 \times 10^3 \times \phi$, ϕ 表示电子的溢出电位,由此可得:

$$\phi = \frac{-22681}{-5.039 \times 10^3} = 4.5011V$$

计算电子逸出功:

$$W_0 = e\phi = 4.5011eV = 1.602 \times 10^{-19} \times 4.5011 \approx 7.211 \times 10^{-19} J$$

查阅资料可得,钨电子逸出功标准值 $W_{0r}=7.270\times 10^{-19}J$,因此测量结果的相对误差为:

$$\Delta E = \left| \frac{W_0 - W_{0r}}{W_{0r}} \right| \times 100\% = \left| \frac{7.211 - 7.270}{7.270} \right| \times 100\% = 0.812\%$$

6. 思考题

6.1 I_f 系统误差修正的必要性?

 I_f 存在系统误差,但在实验精度下可以忽略。

分析实验电路图可知,电流表测量的电流为流过灯丝与电阻 R_3 、 R_4 的电流之和。不妨取灯丝电阻 $R_L=10\Omega$,电流源电流为实验中的最大值 $I_f=0.700A$,则由并联分流原理,流过电阻 R_3 、 R_4 的电流大约为 $I_f \times \frac{R_L}{R_2+R_4}=0.700A \times \frac{1}{361}=1.939mA$ 。

考虑实验所用的指针式交直流电流表,其准确度等级为 0.5,计算可知其最大误差为 $\Delta=5mA$,大于 I_f 的系统误差,因此无需进行修正。

6.2 u_a 系统误差修正的必要性?

 u_a 存在系统误差,但在实验精度下可以忽略。

实验中,通过电阻 R_1 、 R_2 的分压原理对毫伏电压表的量程进行扩展,读数时认为电压表读数 U_v 为 u_a 的 1000 倍,恰好满足 mV 与 V 的换算关系。

然而,事实上,考虑电阻分压原理, U_v 与 u_a 的比值为 $\frac{R_1+R_2}{R_2}=1001$ 。考虑误差 ΔU 最大时 (此时 $u_a=144V$),电压毫伏表读数为 $U_v=144mV$ 。按实际关系,可得电压表真实测量值为 $U_v=\frac{144V}{1001}=143.856mV$,产生的误差大小为 $\Delta U=0.144mV$ 。

实验所用的毫伏表为四位半毫伏表,实验测量时在小数点最后一位可能造成 $\pm 0.2 mV$ 的误差。考虑平方关系,计算可得毫伏表的最大测量误差大约为 $\pm 0.01 mV$,与 ΔU 的误差相当,因此无需进行修正。

6.3 U'_e 是否必须化成 I'_e 再进行数据处理?

不需要。

考虑实验中数据处理使用的两个重要公式:

$$\lg \frac{I_e}{T^2} = \lg AS - 5.039 \times 10^3 \frac{\phi}{T} \tag{4}$$

$$\lg I_e' = \lg I_e + \frac{4.39}{2.303T} \frac{1}{\sqrt{r_1 \ln(r_2/r_1)}} \sqrt{u_a}$$
 (5)

由于 I'_e 与 u'_e 满足 $I'_e=\frac{U'_e}{R}$, 其中 $R=2.7k\Omega$ 或 $R=270k\Omega$ 。将此关系式代入式 (5) 可得:

$$\lg u_e' = \lg I_e R + \frac{4.39}{2.303T} \frac{1}{\sqrt{r_1 \ln(r_2/r_1)}} \sqrt{u_a}$$
(6)

因此,数据处理时可以直接利用 u'_e 进行直线拟合,所得截距的物理含义为 $\lg I_e R$,不妨记为 $\lg u_e$ 。则式 (4) 可变换为:

$$\lg \frac{I_e R}{T^2} = \lg ASR - 5.039 \times 10^3 \frac{\phi}{T}$$

$$\lg \frac{u_e}{T^2} = \lg ASR - 5.039 \times 10^3 \frac{\phi}{T}$$
(7)

因此,可以利用所得直线截距 $\lg u_e$ 得到 $\lg \frac{u_e}{r^2}$ 并直接进行线性拟合,同样可求得 ϕ 的值。这样做可以避免对 I_e 的值进行计算。事实上,由于电阻 R 的值并非精确的 $2.7k\Omega$ 或 300Ω ,直接计算得到的 I_e 可能并非准确值,这样可以避免产生实验误差。

6.4 C 点是否为灯丝中点电位等效点?

理论上而言, C 点电位与灯丝中点电位有一定差异, 但在实验精度范围内可以忽略, 可以认为 C 点即为灯丝中点等效电位点。

就实验电路而言, u_a 处电阻支路 (R_1,R_2) 的存在会对 C 点产生分流作用,由此将改变两个阻值均为 $1.8k\Omega$ 电阻 (R_3,R_4) 的等电位关系。不妨取 I_f,u_a 均最大的情况进行估算,此时 $u_a=144V,I_f=0.700A,R_L=10\Omega$,灯丝中点电位值为 $0.700A\times 10\Omega\times 0.5=3.5V$ 。

此时,流过 R_1 、 R_2 的电流约为 $I_1=\frac{u_a}{R_1+R_2}=\frac{144}{1M+1K}\approx 0.144mA$,流过 R_3 、 R_4 的电流约为 $I_2=I_f\frac{10\Omega}{10\Omega+3.6k\Omega}\approx 1.939mA$,由此可知 $I_2>>I_1$,故电阻分流造成的影响可以忽略,可认为 C 点为灯丝中点电位等效点。

7. 实验小结

本次实验从操作和数据处理的角度而言难度均不大,但若想得到较好的结果,依然需要谨慎考虑,正确操作。概括而言,此次实验大致有以下几点收获。

• 正确进行实验操作

对钨丝电流 I_f 的控制是本次实验成功的关键。在测量第二组数据时,调整 I_f 到预期值后,电流表的示数无法保持在某一示数,发生了较大幅度的抖动,与之对应,毫伏电压表的示数也在很大范围内变化,这使得我无法进行读数。出现这一现象的原因一方面可能是还未等待 2-3 分钟,钨丝的温度未进入稳定状态,也可能是恒流源在这一小段内存在一定故障,无法做到稳流。我尝试略微改变恒流源的值,并等待足够的时间后,该问题得到解决,我也得以得到线性相关系数较高的数据。

此外,类似于空气比热容比的测量实验,在涉及到加热的操作时,需要注意从低温到高温逐步测量, 尽量避免先高温后低温,以免发生降温不到位的现象。

• *u'_a* 值的选取

在实验初段,我认为 u'_a 的值应当严格按照完全平方关系取值。然而很难通过调节毫伏表将 u_a 的值调准。此后,在老师的提示下,我意识到平方关系只是为了使数据点均匀的大致估算,实际上不需要严格按照此关系。在改变这一实验方式后,我的实验效率大大提高。

此外,数据分析过程中,我认识到了计算机的强大之处,尤其在传统的半对数坐标纸相对比而言,计算机直线拟合能够大大减轻我们的工作量。

• 误差分析

误差分析过程让我重温了电路知识,并对实验原理以及电路图的设计有了更深刻的认识。误差分析对任何物理实验而言都是必需的,我们需要认识到误差是否会产生、存在的误差是否会对实验结果造成影响,以使我们在实验效率与实验精度之间达到平衡。

最后,感谢老师对我们的悉心指导!

8. 附录

图 8: 数据记录表格

刘祖英 5号

测电流倍率	If/A . T/k	Ua . Ue'	,	2	3	4	5	6	7	Ue
	0.500	Ua	25.94	49.00	64.04	80.97	99.94	121.02	143.89	3.719
X1	1726.0	Ue'	4.4	4.30	4.40	4.48	4.56	4.67	4.78	P=#16
	0.541	Ua	31.83	19.08	63.92	80.88	99.93	120.90	143.99	13.778
人	1794.1	Ue'	15.19	15.81	16.12	16.45	16.77	17.10	17.43	
	0.580	Ua	35.94	48-9>	63.75	79.94	100.06	121.10	143.96	40.448
Χ1	1864.2.	Ue	45.22	46.10	46.98	47.82	48.74	49.68	50.60	
	0.620	Ua	36.06	47.95	63.91	81.08	100.04	121.11	144.00	113.868
χισ	1930-6	Ue	13.68	12.91	13.15	13.40	13.64	13.89	14.13	档
.,	0.660	Ua	36-02	49.01	63.93	80.89	99.99	12).11	144.05	303.669
Χισ	1991.8	Ue'	33.60	34.19	34.79	35.39	35.96	36.19	37.21	
X10	0.700	<i>Ua</i>	36.10	49.09	64.03	81.04	100.12	121-03	144.01	708.761
1. (A)	2059.0	"We"	78.31	79.72	81.08	82.44	83.79	85.19	86.61	
ı										
					3.5					

大いを直接: Y=-22681×+7.2477. R2=0.9994

$$\phi = \frac{22681}{5029} = 45011$$

傳統 (5)

1. 实验目的

- 用里查孙直线法测定阴极材料(钨)的电子逸出功。
- 了解热电子发射的规律,掌握逸出功的测量方法。

2. 实验原理

2.1 热电子发射的理论依据

图 1: 位能壁垒图

金属的位能壁垒图如图1所示。由于金属与真空之间有位能壁垒 W_a ,故电子若要从金属中逸出,至少需要 $W_0=W_a-W_i$ 的动能。通过热电子发射的方法可以改变电子的能量分布,使得动能大于 W_i 的电子增多,从而使动能大于 W_a 的电子可能从金属中发射出来并观测到。

关于热电子发射,有里查孙-德西曼公式:

$$J_e = 2(1 - R_e)A_1 T^2 e^{-(W_\alpha - W_i)/KT}$$

其中 J_e 为单位面积的发射电流, $A_1=\frac{2\pi k^2me_0}{h^3}=60.09A/cm^2K^2$ 为普适常数, R_e 为金属表面对发射电子的反射系数,T 为绝对温度。

$$I_e = AST^2 e^{-\epsilon_0 \phi/KT} \tag{1}$$

其中 S 为阴极金属的有效发射面积。

2.2 A 与 S 的测量与处理

测量方法为里查孙直线法。 对式1进行整理,可得:

$$\lg \frac{I_e}{T^2} = \lg AS - 5.039 \times 10^3 \frac{\phi}{T}$$

可得 $lg \stackrel{\leftarrow}{\mapsto} = \frac{1}{r}$ 成线性关系,根据作图法所得的直线斜率即可得到 ϕ 。由于 A 与 S 对某一固定材料的阴极而言是常数,故 lg AS 一项只改变上述直线的截距而不影响直线的斜率,由此可避免因 A 与 S 不能准确测定的困难。

2.3 发射电流 Ie 的测量

图 2: I_c 测量原理图

发射电流的测量方式如图2所示。在加速场的作用下,阴极发射电流 I'_e 与 E_a 满足:

$$I_e' = I_e e^{4.39\sqrt{E_a}/T}$$

对上式取对数,并把阳极做成圆柱形,并与阴极共轴,上式可变换为:

$$\lg I_e' = \lg I_e + \frac{4.39}{2.303T} \frac{1}{\sqrt{r_1 \ln(r_2/r_1)}} \sqrt{u_a}$$

一般情况下,阳极电压远大于接触电位差以及其他原因引起的电位差,上式为近似结果。其中 r_1 和 r_2 分别为阴极和阳极的半径, u_a 为阳极电压。

因而,在阴极温度一定的情况下, $\lg I'_e$ 与 $\sqrt{u_a}$ 成线性关系,画出其直线并将其延长至 $u_a=0$ 处,则此时 $\lg I'_e$ 即为 $\lg I_e$ 。由此即可得所需要的的 I_e 值。

2.4 温度 T 的测量

本实验通过测量阴极加热电流来确定阴极电流。对于纯钨丝而言,已知一定的比加热电流 I_1 与阴极温度的关系。实验测得 I_f 后可由该关系,利用直线插值求出温度 T。

表 1: 钨丝电流与温度关系表

I_f/A	0.500	0.550	0.600	0.650	0.700		
T/K	1726	1809	1901	1975	2059	2136	

3. 实验装置

图 3: 实验用直热式二极管结构

- 双路直流可调电源 (输出范围 0~150V)
- 指针式电流表 (交直流两用,量程 1A,测灯丝电流 I_f)
- 数字电压表
- 实验面包板、元件 (可以搭建如下图所示的电路)

图 4: 电压测量电路

4. 实验电路图

实验电路图如图5所示。

搭建好电路后,在一定的灯丝温度下,测量加速电压 U_a 与阳极电流 I_e' 的关系。 U_a 从 36V 开始逐步增加,测量 6 \sim 7 组 $U_e \sim U_a$ 的值。

从 0.500A 开始逐步增加电源电流, 每隔 0.04A 按照上步骤完成一次测量, 电流最大值不超过 0.700A。 完成测量后, 用直线拟合法或作图法处理数据。

图 5: 设计的实验电路图

5. 数据记录表格

I_a/A	T/K	$U_a = 36V$	49V	64V	81 <i>V</i>	100V	121 <i>V</i>	144V	1/T	U_e	r
0.50	1726	V									
0.54	1795	4	-	-1			7,				\vdash
0.58	1862									-	
0.62	1929										_
0.66	1995								13	861	
0.70	2059								5 mg/ 1		,