Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

CLASE 7 - 26/08/2025

Sucesiones

Definición 3.1

Una sucesión es una función de naturales en los reales $a: \mathbb{N} \to \mathbb{R}$. Al elemento enésimo de la sucesión, es decir a(n), se lo denota a_n , y a toda la sucesión $(a_n)_{n\in\mathbb{N}}$. Muchas veces hacemos un abuso de notación y nos referimos a la sucesión entera simplemente como a_n , en estos casos nos vamos a basar en el contexto para entender a que nos estamos refiriendo.

Ejemplos 3.2

- 1. $a_n = \frac{1}{n}$ Sus elementos son $\{1, \frac{1}{2}, \frac{1}{3}, ...\}$
- $2. \ a_n = 1 \quad \forall n$
 - Sus elementos son {1}
- 3. $a_n = (-1)^n$
 - Sus elementos son $\{-1,1\}$
- 4. $a_n = n$
 - Sus elementos son $\{1, 2, 3, ...\}$

Es importante notar que al listar sus elementos como un conjunto, perdemos por ejemplo el órden de los mismos en la sucesión. En general el comportamiento que más nos va a importar de una sucesión es lo que pasa con ella "en el infinito", para eso, veamos la definición de límite.

Definición 3.3

Decimos que la sucesión a_n tiene límite $L \in \mathbb{R}$, y lo denotamos $\lim_{n \to \infty} a_n = L$ sii:

• $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0 : a_n \in E(L, \varepsilon)$

Recordemos que el entorno $E(L,\varepsilon)$ es el conjunto de puntos $x\in\mathbb{R}$ tales que $|x-L|<\varepsilon$.

Es decir, que para cualquier valor de ε positivo, existe un valor natural n_0 , tal que para cualquier n mayor a dicho valor, el valor de la sucesión a_n está en un entorno de centro L y radio ε .

Figura 1

Figure 1: Figura 1

Ejemplo

En el ejemplo que vimos anteriormente, con la sucesión $a_n = \frac{1}{n}$, vemos que a medida que n crece, a_n va decreciendo. Probemos que su límite es 0. Tomamos $\varepsilon > 0$ cualquiera, lo que queremos probar es que $a_n \in E(0,\varepsilon)$, que es lo mismo que:

- $|a_n 0| < \varepsilon$, es decir que: $\frac{1}{n} < \varepsilon$

Observemos (despejando) que esto último, se cumple sii:

• $n > \frac{1}{\varepsilon}$

Por lo tanto, tomando $n_0 = \left[\frac{1}{\varepsilon}\right] + 1$, tenemos resuelto el ejercicio.

Proposición 3.4

Si existe el límite de a_n , entonces es único.

Demostración

Supongamos que existen dos límites distintos L y L'. Por lo tanto tenemos que:

- $\forall \varepsilon > 0: \exists n_1 \in \mathbb{N} \text{ tal que } \forall n > n_1: a_n \in E(L, \varepsilon)$
- $\forall \varepsilon > 0 : \exists n_2 \in \mathbb{N} \text{ tal que } \forall n > n_2 : a_n \in E(L', \varepsilon)$

Tomemos $n_0=\max\{n_1,n_2\}$ y $\varepsilon=\frac{|L-L'|}{2}$ de modo que $E(L,\varepsilon)\cap E(L',\varepsilon)=\emptyset$. Como los dos son límites, a partir de n_0 sabemos que a_n tiene que pertenecer a ambos:

- $E(L,\varepsilon)$, y
- $E(L',\varepsilon)$

Pero esto es imposible pues son disjuntos. Con esto concluimos que L=L' y por lo tanto el límite es único.