

GenCore version 5.1.6
Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: February 26, 2004, 00:47:23 ; Search time 3410.29 Seconds
(without alignments)
17679.337 Million cell updates/sec

Title: US-09-989-981A-3

Perfect score: 2019

Sequence: 1 atggctgagaaaacccaaaga.....agtcaattcaagactggta 2019

Scoring table: IDENTITY_NUC
Gapop 10.0 , Gapext 1.0

Searched: 27513289 seqs, 14931090276 residues

Total number of hits satisfying chosen parameters: 55026578

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : EST:
1: em_estba:
2: em_esthum:
3: em_estin:
4: em_estmu:
5: em_estov:
6: em_estpl:
7: em_estro:
8: em_htc:
9: gb_est1:
10: gb_est2:
11: gb_htc:
12: gb_est3:
13: gb_est4:
14: gb_est5:
15: em_estfun:
16: em_estom:
17: em_gss_hum:
18: em_gss_inv:
19: em_gss_pln:
20: em_gss_vrt:
21: em_gss_fun:
22: em_gss_mam:
23: em_gss_mus:
24: em_gss_pro:
25: em_gss_rod:
26: em_gss_phg:
27: em_gss_vrl:

28: gb_gss1:
 29: gb_gss2:
 *

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Query					Description
	Score	Match	Length	DB	ID	
1	2006	99.4	3623	11	AK004871	AK004871 Mus muscu
2	1700	84.2	2417	11	AK050938	AK050938 Mus muscu
3	714.2	35.4	849	12	BI330745	BI330745 602982409
4	549	27.2	549	10	BF660076	BF660076 maa27c08.
5	498	24.7	583	13	BY705076	BY705076 BY705076
6	448.2	22.2	463	9	AA537862	AA537862 vj35a03.r
7	446	22.1	510	10	BB610072	BB610072 BB610072
8	442	21.9	511	9	AI157365	AI157365 ui45h01.y
9	422.4	20.9	500	9	AI151811	AI151811 ui46c10.y
10	398	19.7	398	9	AI597406	AI597406 vj35a03.y
11	303.4	15.0	586	11	AK008188	AK008188 Mus muscu
12	298.4	14.8	581	13	BY708144	BY708144 BY708144
c 13	280.8	13.9	781	14	CB502603	CB502603 ssalmge50
c 14	275.8	13.7	435	9	AI574075	AI574075 uj67h11.y
c 15	254	12.6	334	13	BX482362	BX482362 DKFZp686F
c 16	250.4	12.4	640	14	CD739823	CD739823 4028769 1
c 17	244	12.1	691	13	BX481838	BX481838 DKFZp686M
c 18	179	8.9	916	29	CG323718	CG323718 OG0DQ45TH
c 19	177.4	8.8	709	29	CC695831	CC695831 OGULO23TV
c 20	175.8	8.7	685	28	AZ339049	AZ339049 1M0070C22
c 21	172.6	8.5	762	29	CC659228	CC659228 OGUFF57TV
c 22	172.6	8.5	821	28	BZ650554	BZ650554 OGCBA89TC
c 23	170.4	8.4	826	29	CG214497	CG214497 OG1BM08TV
c 24	168	8.3	891	29	CG368338	CG368338 OG3BP65TV
c 25	166.8	8.3	861	29	CG262933	CG262933 OG1DH53TV
c 26	165.6	8.2	776	29	CG327545	CG327545 OGWFJ96TV
c 27	164	8.1	345	14	CD730599	CD730599 4038931 1
c 28	158	7.8	909	29	CG268466	CG268466 OG2BT15TH
c 29	157	7.8	833	10	BF620684	BF620684 HVSMEc002
c 30	151.6	7.5	435	13	BX099922	BX099922 BX099922
c 31	151.6	7.5	912	29	CC604602	CC604602 OGUFQ75TH
c 32	151.4	7.5	694	13	CA140253	CA140253 SCEZRT202
c 33	150.6	7.5	303	10	BB870338	BB870338 BB870338
c 34	149.8	7.4	837	29	CC710016	CC710016 OGVBI31TH
c 35	149.6	7.4	849	29	CG270361	CG270361 OGWFST0TH
c 36	149.6	7.4	857	29	CG271003	CG271003 OG0EJ71TV
c 37	149	7.4	447	12	BI145065	BI145065 602909138
c 38	147.6	7.3	839	29	CG262656	CG262656 OG1AN46TH
c 39	145.4	7.2	564	14	T84531	T84531 yd53b02.r1
c 40	143.2	7.1	596	14	CA192267	CA192267 SCCCST3C0
c 41	142.8	7.1	560	9	AU192604	AU192604 AU192604
c 42	142	7.0	816	12	BG299523	BG299523 HVSMEc002
c 43	141.6	7.0	936	10	BF162656	BF162656 601769307
c 44	134.6	6.7	905	29	CG224339	CG224339 OGYAG39TV
c 45	134	6.6	490	28	BZ614705	BZ614705 ig46b01.g

ALIGNMENTS

RESULT 1
AK004871

LOCUS AK004871 3623 bp mRNA linear HTC 20-SEP-2003

DEFINITION Mus musculus adult male liver cDNA, RIKEN full-length enriched library, clone:1300003C16 product:ATP-BINDING CASSETTE, SUB-FAMILY G, MEMBER 8 (STEROLIN-2) homolog [Mus musculus], full insert sequence.

ACCESSION AK004871

VERSION AK004871.1 GI:12836380

KEYWORDS HTC; CAP trapper.

SOURCE Mus musculus (house mouse)

ORGANISM Mus musculus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.

REFERENCE 1

AUTHORS Carninci, P. and Hayashizaki, Y.

TITLE High-efficiency full-length cDNA cloning

JOURNAL Meth. Enzymol. 303, 19-44 (1999)

MEDLINE 99279253

PUBMED 10349636

REFERENCE 2

AUTHORS Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibata, K., Itoh, M., Konno, H., Okazaki, Y., Muramatsu, M. and Hayashizaki, Y.

TITLE Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes

JOURNAL Genome Res. 10 (10), 1617-1630 (2000)

MEDLINE 20499374

PUBMED 11042159

REFERENCE 3

AUTHORS Shibata, K., Itoh, M., Aizawa, K., Nagaoka, S., Sasaki, N., Carninci, P., Konno, H., Akiyama, J., Nishi, K., Kitsunai, T., Tashiro, H., Itoh, M., Sumi, N., Ishii, Y., Nakamura, S., Hazama, M., Nishine, T., Harada, A., Yamamoto, R., Matsumoto, H., Sakaguchi, S., Ikegami, T., Kashiwagi, K., Fujiwake, S., Inoue, K., Togawa, Y., Izawa, M., Ohara, E., Watahiki, M., Yoneda, Y., Ishikawa, T., Ozawa, K., Tanaka, T., Matsuura, S., Kawai, J., Okazaki, Y., Muramatsu, M., Inoue, Y., Kira, A. and Hayashizaki, Y.

TITLE RIKEN integrated sequence analysis (RISA) system--384-format sequencing pipeline with 384 multicapillary sequencer

JOURNAL Genome Res. 10 (11), 1757-1771 (2000)

MEDLINE 20530913

PUBMED 11076861

REFERENCE 4

AUTHORS The RIKEN Genome Exploration Research Group Phase II Team and the FANTOM Consortium.

TITLE Functional annotation of a full-length mouse cDNA collection

JOURNAL Nature 409, 685-690 (2001)

REFERENCE 5

AUTHORS The FANTOM Consortium and the RIKEN Genome Exploration Research Group Phase I & II Team.

TITLE Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs

JOURNAL Nature 420, 563-573 (2002)

REFERENCE 6 (bases 1 to 3623)
 AUTHORS Adachi,J., Aizawa,K., Akahira,S., Akimura,T., Arai,A., Aono,H.,
 Arakawa,T., Bono,H., Carninci,P., Fukuda,S., Fukunishi,Y.,
 Furuno,M., Hanagaki,T., Hara,A., Hayatsu,N., Hiramoto,K.,
 Hiraoka,T., Hori,F., Imotani,K., Ishii,Y., Itoh,M., Izawa,M.,
 Kasukawa,T., Kato,H., Kawai,J., Kojima,Y., Konno,H., Kouda,M.,
 Koya,S., Kurihara,C., Matsuyama,T., Miyazaki,A., Nishi,K.,
 Nomura,K., Numazaki,R., Ohno,M., Okazaki,Y., Okido,T., Owa,C.,
 Saito,H., Saito,R., Sakai,C., Sakai,K., Sano,H., Sasaki,D.,
 Shibata,K., Shibata,Y., Shinagawa,A., Shiraki,T., Sogabe,Y.,
 Suzuki,H., Tagami,M., Tagawa,A., Takahashi,F., Tanaka,T.,
 Tejima,Y., Toya,T., Yamamura,T., Yasunishi,A., Yoshida,K.,
 Yoshino,M., Muramatsu,M. and Hayashizaki,Y.
 TITLE Direct Submission
 JOURNAL Submitted (10-JUL-2000) Yoshihide Hayashizaki, The Institute of
 Physical and Chemical Research (RIKEN), Laboratory for Genome
 Exploration Research Group, RIKEN Genomic Sciences Center (GSC),
 RIKEN Yokohama Institute; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama,
 Kanagawa 230-0045, Japan (E-mail:genome-res@gsc.riken.go.jp,
 URL:<http://genome.gsc.riken.go.jp/>, Tel:81-45-503-9222,
 Fax:81-45-503-9216)
 COMMENT Please visit our web site (<http://genome.gsc.riken.go.jp/>) for
 further details.
 cDNA library was prepared and sequenced in Mouse Genome
 Encyclopedia Project of Genome Exploration Research Group in Riken
 Genomic Sciences Center and Genome Science Laboratory in RIKEN.
 Division of Experimental Animal Research in Riken contributed to
 prepare mouse tissues. First strand cDNA was primed with a primer
 [5' GAGAGAGAGAGCGGCCGCACTCGAGTTTTTTTTTTVN 3'], cDNA was
 prepared by using trehalose thermo-activated reverse transcriptase
 and subsequently enriched for full-length by cap-trapper. Second
 strand cDNA was prepared with the primer adapter of sequence[5'
 GAGAGAGAGAAGGATCCAAGAGCTCAATTAAATTAAACCCCCCCCCC 3']. cDNA was
 cleaved with XhoI and SstI. Cloning sites, 5' end: SstI; 3' end:
 XhoI. Host: SOLR.
 FEATURES Location/Qualifiers
 source 1. .3623
 /organism="Mus musculus"
 /mol_type="mRNA"
 /strain="C57BL/6J"
 /db_xref="FANTOM_DB:1300003C16"
 /db_xref="MGI:1896857"
 /db_xref="taxon:10090"
 /clone="1300003C16"
 /sex="male"
 /tissue_type="liver"
 /clone_lib="RIKEN full-length enriched mouse cDNA library"
 /dev_stage="adult"
 CDS 69. .2090
 /note="unnamed protein product; ATP-BINDING CASSETTE,
 SUB-FAMILY G, MEMBER 8 (STEROLIN-2) homolog [Mus musculus]
 (SWISSPROT|Q9DBM0, evidence: FASTY, 92%ID, 96.7%length,
 match=1796)
 /putative"
 /codon_start=1
 /protein_id="BAB23630.1"
 /db_xref="GI:12836381"

/translation="MAEKTKEETQLWNGTVLQDASQGLQDSLFSSESDNSLYFTYSGQ
 SNTLEVRLTYQVDIASQVPWFELAQFKI PWRSHSSQDSCELGIRNLSFKVRSGQML
 AIIGSSGCRASLLDVITGRGHGKMKSGQI WINGQPSTPQLVRKCVAHVRQHDQLLP
 NLTVRETLAFIAQMRLPRTFSQAQRDKRVEDVIAELRLRQCANTRVGNTYVRGVSGGE
 RRRVSIGVQLLWNPGILLDEPTSGLDSFTAHLVTTSLAKGNRLVLI SLHQPRS
 IFRLFDLVLMLMTSGTPYLGAQQMVOYFTSIGHPCPRYSNPADFYVDLTSIDRRSKE
 REVATVEKAQSLAALFLEKVQGFDDFLWKA EAKELNTSTHTVSLTLDQDCTGTA
 PGMIEQFSTLIRRQISNDFRDLPTLLIHSEACLMSLIIGFLYYGHGAKQLSFMDTAA
 LLFMIGALIPFNVIDVVSKCHSERSMLYYELEDGLYTAGPYFFAKILGELPEHCAYV
 IIYAMPIWLTNLRPVPELFLLHFLLWLVVFCCRTMALAASAMLPFHMSFFCNAL
 YNSFYLTAGFMINLDNLWIVPAWISKLSFLRWCFSGLMQIQFNGHLYTTQIGNFTFSI
 LGDTMISAMDLNSHPLYAIYLIVIGISYGFLLFYYLSQLKLKQKSIQDW"

polyA_signal 3605. .3610
/note="putative"
polyA_site 3623
/note="putative"

ORIGIN

Query Match	99.4%	Score	2006	DB	11	Length	3623;
Best Local Similarity	99.9%	Pred. No.	0				
Matches	2019	Conservative	0	Mismatches	0	Indels	3; Gaps 1;

Qy 1 ATGGCTGAGAAAACCAAGAAGAGACCCAGCTGTGGAATGGACTGTACTTCAGGATGCT 60
 |||||||
 Db 69 ATGGCTGAGAAAACCAAGAAGAGACCCAGCTGTGGAATGGACTGTACTTCAGGATGCT 128
 |||||
 Qy 61 TC---GGGCCTCCAGGACAGCTTGTCTCCTCGGAAAGTGACAACAGTCTGTACTTCACC 117
 |||||
 Db 129 TCGCAGGGCCTCCAGGACAGCTTGTCTCCTCGGAAAGTGACAACAGTCTGTACTTCACC 188
 |||||
 Qy 118 TACAGTGGTCAGTCCAACACTCTGGAGGTAGAGATCTCACCTACCAGGTGGACATGCC 177
 |||||
 Db 189 TACAGTGGTCAGTCCAACACTCTGGAGGTAGAGATCTCACCTACCAGGTGGACATGCC 248
 |||||
 Qy 178 TCTCAGGTGCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCTGGAGGTCTCATAGC 237
 |||||
 Db 249 TCTCAGGTGCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCTGGAGGTCTCATAGC 308
 |||||
 Qy 238 AGCCAAGACTCCTGTGAGCTGGCATCCGAAATCTAACGCTCAAAGTGAGGAGTGGACAG 297
 |||||
 Db 309 AGCCAAGACTCCTGTGAGCTGGCATCCGAAATCTAACGCTCAAAGTGAGGAGTGGACAG 368
 |||||
 Qy 298 ATGCTGGCCATCATAGGGAGCTCAGGCTGGGGAGAGCCTCACTACTCGACGTGATCACA 357
 |||||
 Db 369 ATGCTGGCCATCATAGGGAGCTCAGGCTGGGGAGAGCCTCACTACTCGACGTGATCACA 428
 |||||
 Qy 358 GGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGT 417
 |||||
 Db 429 GGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGT 488
 |||||
 Qy 418 ACGCCTCAGCTGGTGGAGGAAGTGCCTTGCCTGCAGCATGACCAACTGCTGCC 477
 |||||
 Db 489 ACGCCTCAGCTGGTGGAGGAAGTGCCTTGCCTGCAGCATGACCAACTGCTGCC 548
 |||||
 Qy 478 AACCTGACCGTCAGAGAGACCTGGCTTCATTGCCAGATGCCCTGCCAGGACCTTC 537
 |||||
 Db 549 AACCTGACCGTCAGAGAGACCTGGCTTCATTGCCAGATGCCCTGCCAGGACCTTC 608

Qy	1378	TTCAATGTCATCCTGGATGTCGTCTCCAAATGTCACTCGGAGAGGTCAATGCTGTACTAT	1437
Db	1449	TTCAATGTCATCCTGGATGTCGTCTCCAAATGTCACTCGGAGAGGTCAATGCTGTACTAT	1508
Qy	1438	GAGCTGGAAGACGGGCTGTACACTGCTGGTCTTATTCTTGCCAAGATCCTAGGAGAA	1497
Db	1509	GAGCTGGAAGACGGGCTGTACACTGCTGGTCTTATTCTTGCCAAGATCCTAGGAGAA	1568
Qy	1498	TTGCCGGAGCACTGTGCCTACGTACATCATACGCGATGCCCATCTACTGGCTGACAAAC	1557
Db	1569	TTGCCGGAGCACTGTGCCTACGTACATCATACGCGATGCCCATCTACTGGCTGACAAAC	1628
Qy	1558	CTGCGGCCCGTGCCTGAGCTTCCCTACACTTCCGTGCTCGTGTGGTTGGTGGTCTTC	1617
Db	1629	CTGCGGCCCGTGCCTGAGCTTCCCTACACTTCCGTGCTCGTGTGGTTGGTGGTCTTC	1688
Qy	1618	TGCTGCAGGACCATGGCCCTGGCTGCCTCTGCCATGCTGCCACCTCACATGTCCCTCC	1677
Db	1689	TGCTGCAGGACCATGGCCCTGGCTGCCTCTGCCATGCTGCCACCTCACATGTCCCTCC	1748
Qy	1678	TTCTTCTGCAATGCCCTCTACAACCTCCTTACCTTACTGCCGGCTTCATGATAAACTTG	1737
Db	1749	TTCTTCTGCAATGCCCTCTACAACCTCCTTACCTTACTGCCGGCTTCATGATAAACTTG	1808
Qy	1738	GACAACCTGTGGATAGTGCCTGCATGGATCTCCAAGCTGTCGTTCTCCGGTGGTGGTCTTC	1797
Db	1809	GACAACCTGTGGATAGTGCCTGCATGGATCTCCAAGCTGTCGTTCTCCGGTGGTGGTCTTC	1868
Qy	1798	TCGGGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTTC	1857
Db	1869	TCGGGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTTC	1928
Qy	1858	ACCTTCTCCATCCTGGAGACACGATGATCAGTGCATGGACCTGAACCTCGCATCCACTC	1917
Db	1929	ACCTTCTCCATCCTGGAGACACGATGATCAGTGCATGGACCTGAACCTCGCATCCACTC	1988
Qy	1918	TATGCGATCTACCTCATTGTCATCGGCATCAGCTACGGCTCCTGTTCTGTACTATCTA	1977
Db	1989	TATGCGATCTACCTCATTGTCATCGGCATCAGCTACGGCTCCTGTTCTGTACTATCTA	2048
Qy	1978	TCCTTGAAGCTCATCAAACAGAAGTCATTCAAGACTGGTGA	2019
Db	2049	TCCTTGAAGCTCATCAAACAGAAGTCATTCAAGACTGGTGA	2090

RESULT 2

AK050938

LOCUS AK050938 2417 bp mRNA linear HTC 20-SEP-2003
 DEFINITION Mus musculus 9 days embryo whole body cDNA, RIKEN full-length enriched library, clone:D030040P06 product:ATP-BINDING CASSETTE, SUB-FAMILY G, MEMBER 8 (STEROLIN-2) homolog [Mus musculus], full insert sequence.
 ACCESSION AK050938
 VERSION AK050938.1 GI:26094211
 KEYWORDS HTC; CAP trapper.
 SOURCE Mus musculus (house mouse)
 ORGANISM Mus musculus

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.

REFERENCE 1
AUTHORS Carninci,P. and Hayashizaki,Y.
TITLE High-efficiency full-length cDNA cloning
JOURNAL Meth. Enzymol. 303, 19-44 (1999)
MEDLINE 99279253
PUBMED 10349636

REFERENCE 2
AUTHORS Carninci,P., Shibata,Y., Hayatsu,N., Sugahara,Y., Shibata,K., Itoh,M., Konno,H., Okazaki,Y., Muramatsu,M. and Hayashizaki,Y.
TITLE Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes
JOURNAL Genome Res. 10 (10), 1617-1630 (2000)
MEDLINE 20499374
PUBMED 11042159

REFERENCE 3
AUTHORS Shibata,K., Itoh,M., Aizawa,K., Nagaoka,S., Sasaki,N., Carninci,P., Konno,H., Akiyama,J., Nishi,K., Kitsunai,T., Tashiro,H., Itoh,M., Sumi,N., Ishii,Y., Nakamura,S., Hazama,M., Nishine,T., Harada,A., Yamamoto,R., Matsumoto,H., Sakaguchi,S., Ikegami,T., Kashiwagi,K., Fujiwake,S., Inoue,K., Togawa,Y., Izawa,M., Ohara,E., Watahiki,M., Yoneda,Y., Ishikawa,T., Ozawa,K., Tanaka,T., Matsuura,S., Kawai,J., Okazaki,Y., Muramatsu,M., Inoue,Y., Kira,A. and Hayashizaki,Y.
TITLE RIKEN integrated sequence analysis (RISA) system--384-format sequencing pipeline with 384 multicapillary sequencer
JOURNAL Genome Res. 10 (11), 1757-1771 (2000)
MEDLINE 20530913
PUBMED 11076861

REFERENCE 4
AUTHORS The RIKEN Genome Exploration Research Group Phase II Team and the FANTOM Consortium.
TITLE Functional annotation of a full-length mouse cDNA collection
JOURNAL Nature 409, 685-690 (2001)

REFERENCE 5
AUTHORS The FANTOM Consortium and the RIKEN Genome Exploration Research Group Phase I & II Team.
TITLE Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs
JOURNAL Nature 420, 563-573 (2002)

REFERENCE 6 (bases 1 to 2417)
AUTHORS Adachi,J., Aizawa,K., Akimura,T., Arakawa,T., Bono,H., Carninci,P., Fukuda,S., Furuno,M., Hanagaki,T., Hara,A., Hashizume,W., Hayashida,K., Hayatsu,N., Hiramoto,K., Hiraoka,T., Hirozane,T., Hori,F., Imotani,K., Ishii,Y., Itoh,M., Kagawa,I., Kasukawa,T., Katoh,H., Kawai,J., Kojima,Y., Kondo,S., Konno,H., Kouda,M., Koya,S., Kurihara,C., Matsuyama,T., Miyazaki,A., Murata,M., Nakamura,M., Nishi,K., Nomura,K., Numazaki,R., Ohno,M., Ohsato,N., Okazaki,Y., Saito,R., Saitoh,H., Sakai,C., Sakai,K., Sakazume,N., Sano,H., Sasaki,D., Shibata,K., Shinagawa,A., Shiraki,T., Sogabe,Y., Tagami,M., Tagawa,A., Takahashi,F., Takaku-Akahira,S., Takeda,Y., Tanaka,T., Tomaru,A., Toya,T., Yasunishi,A., Muramatsu,M. and Hayashizaki,Y.
TITLE Direct Submission
JOURNAL Submitted (16-JUL-2001) Yoshihide Hayashizaki, The Institute of Physical and Chemical Research (RIKEN), Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC),

RIKEN Yokohama Institute; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama,
Kanagawa 230-0045, Japan (E-mail:genome-res@gsc.riken.go.jp,
URL:<http://genome.gsc.riken.go.jp/>, Tel:81-45-503-9222,
Fax:81-45-503-9216)

COMMENT
cDNA library was prepared and sequenced in Mouse Genome Encyclopedia Project of Genome Exploration Research Group in Riken Genomic Sciences Center and Genome Science Laboratory in RIKEN. Division of Experimental Animal Research in Riken contributed to prepare mouse tissues.
Please visit our web site for further details.
URL:<http://genome.gsc.riken.go.jp/>
URL:<http://fantom.gsc.riken.go.jp/>.

FEATURES Location/Qualifiers
source 1. .2417
/organism="Mus musculus"
/mol_type="mRNA"
/strain="C57BL/6J"
/db_xref="FANTOM_DB:D030040P06"
/db_xref="MGI:2418860"
/db_xref="taxon:10090"
/clone="D030040P06"
/tissue_type="whole body"
/clone_lib="RIKEN full-length enriched mouse cDNA library"
/dev_stage="9 days embryo"
misc_feature 1. .2417
/note="ATP-BINDING CASSETTE, SUB-FAMILY G, MEMBER 8
(STEROLIN-2) homolog [Mus musculus] (SWISSPROT|Q9DBM0,
evidence: FASTY, 92%ID, 96.7%length, match=1796)"

ORIGIN

Query Match	84.2%	Score	1700	DB	11	Length	2417;		
Best Local Similarity	100.0%	Pred. No.	0;						
Matches	1700;	Conservative	0;	Mismatches	0;	Indels	0;	Gaps	0;

Qy 320 CAGGCTGCGGGAGAGCCTCACTACTCGACGTGATCACAGGCAGAGGCCACGGTGGCAAGA 379
 |||||||
Db 184 CAGGCTGCGGGAGAGCCTCACTACTCGACGTGATCACAGGCAGAGGCCACGGTGGCAAGA 243

Qy 380 TGAAATCAGGACAAATTGGATAATGGCAACCCAGTACGCCTCAGCTGGTGAGGAAGT 439
 |||||||
Db 244 TGAAATCAGGACAAATTGGATAATGGCAACCCAGTACGCCTCAGCTGGTGAGGAAGT 303

Qy 440 GCGTTGCGCATGTGCGGCAGCATGACCAACTGCTGCCAACCTGACCGTCAGAGAGACCC 499
 |||||||
Db 304 GCGTTGCGCATGTGCGGCAGCATGACCAACTGCTGCCAACCTGACCGTCAGAGAGACCC 363

Qy 500 TGGCTTCATTGCCAGATGCGCCTGCCAGGACCTCTCCAGGCCAGCGTGACAAAC 559
 |||||||
Db 364 TGGCTTCATTGCCAGATGCGCCTGCCAGGACCTCTCCAGGCCAGCGTGACAAAC 423

Qy 560 GGGTGGAAGACGTAATGCCGAGCTGCGGCTGCGGCAGTGCACCAACACCAGAGTGGGCA 619
 |||||||
Db 424 GGGTGGAAAGACGTAATGCCGAGCTGCGGCTGCGGCAGTGCACCAACACCAGAGTGGGCA 483

Qy 620 ACACGTATGTACGTGGGGTGTCCGGGGTGAGCGCCGACGAGTGAGCATGGGGTGCAGC 679
 |||||||
Db 484 ACACGTATGTACGTGGGGTGTCCGGGGTGAGCGCCGACGAGTGAGCATGGGGTGCAGC 543

Qy	680	TCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACTTCTGGCCTCGACAGCTCA	739
Db	544	TCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACTTCTGGCCTCGACAGCTCA	603
Qy	740	CAGCCCACAATCTGGTGACAACCTTGTCCGCCTGGCCAAGGGCACAGGCTGGTCTCA	799
Db	604	CAGCCCACAATCTGGTGACAACCTTGTCCGCCTGGCCAAGGGCACAGGCTGGTCTCA	663
Qy	800	TCTCCCTCACCAGCCTCGCTCTGACATCTCAGGCTATTGACCTGGTCTCTGATGA	859
Db	664	TCTCCCTCACCAGCCTCGCTCTGACATCTCAGGCTATTGACCTGGTCTCTGATGA	723
Qy	860	CATCTGGCACCCCTATCTACCTGGGGCGGCCAGCAATGGTGCAGTACTTCACATCCA	919
Db	724	CATCTGGCACCCCTATCTACCTGGGGCGGCCAGCAATGGTGCAGTACTTCACATCCA	783
Qy	920	TTGGCCACCCTGTCCCTCGCTATAGCAACCCCTGCGGACTTCTACGTGGACTTGACCAGCA	979
Db	784	TTGGCCACCCTGTCCCTCGCTATAGCAACCCCTGCGGACTTCTACGTGGACTTGACCAGCA	843
Qy	980	TCGACAGACGCAGCAAAGAACGGGAGGTGGCCACCGTGGAGAAGGCACAGTCTTGCAG	1039
Db	844	TCGACAGACGCAGCAAAGAACGGGAGGTGGCCACCGTGGAGAAGGCACAGTCTTGCAG	903
Qy	1040	CCCTGTTCTAGAAAAGTACAAGGCTTGATGACTTTCTGTGAAAGCTGAGGCAAAGG	1099
Db	904	CCCTGTTCTAGAAAAGTACAAGGCTTGATGACTTTCTGTGAAAGCTGAGGCAAAGG	963
Qy	1100	AACTCAACACAAGCACCCACACAGTCAGCCTGACCCCTCACACAGGACACTGACTGTGGGA	1159
Db	964	AACTCAACACAAGCACCCACACAGTCAGCCTGACCCCTCACACAGGACACTGACTGTGGGA	1023
Qy	1160	CTGCTGTTGAGCTGCCGGGATGATAGAGCAGTTTCCACCTGATCCGTCGTCACTT	1219
Db	1024	CTGCTGTTGAGCTGCCGGGATGATAGAGCAGTTTCCACCTGATCCGTCGTCACTT	1083
Qy	1220	CCAATGACTTCCGGGACCTGCCACGCTGCTCATTCATGGTCGGAAGCCTGCCTGATGT	1279
Db	1084	CCAATGACTTCCGGGACCTGCCACGCTGCTCATTCATGGTCGGAAGCCTGCCTGATGT	1143
Qy	1280	CCCTCATCATTGGCTCCTTACTACGGCATGGGCCAAGCAGCTCTCCTCATGGACA	1339
Db	1144	CCCTCATCATTGGCTCCTTACTACGGCATGGGCCAAGCAGCTCTCCTCATGGACA	1203
Qy	1340	CAGCAGCCCTCCTCTCATGATAAGGGCGCTCATTCTTCAATGTCATCCTGGATGTCG	1399
Db	1204	CAGCAGCCCTCCTCTCATGATAAGGGCGCTCATTCTTCAATGTCATCCTGGATGTCG	1263
Qy	1400	TCTCCAAATGTCACTCGGAGAGGTCAATGCTGTACTATGAGCTGGAAGACGGCTGTACA	1459
Db	1264	TCTCCAAATGTCACTCGGAGAGGTCAATGCTGTACTATGAGCTGGAAGACGGCTGTACA	1323
Qy	1460	CTGCTGGTCCTTATTCTTGCCTAGGAGAATTGCCGGAGCACTGTGCCTACG	1519
Db	1324	CTGCTGGTCCTTATTCTTGCCTAGGAGAATTGCCGGAGCACTGTGCCTACG	1383

Qy	1520	TCATCATCTACGCGATGCCATCTACTGGCTGACAAACCTGCAGGCCGTGCCTGAGCTCT	1579
Db	1384	TCATCATCTACGCGATGCCATCTACTGGCTGACAAACCTGCAGGCCGTGCCTGAGCTCT	1443
Qy	1580	TCCTTCTACACTCCTGCTCGTGTGGTTGGTGGTCTTCTGCTGCAGGACCATGCCCTGG	1639
Db	1444	TCCTTCTACACTCCTGCTCGTGTGGTTGGTGGTCTTCTGCTGCAGGACCATGCCCTGG	1503
Qy	1640	CTGCCTCTGCCATGCTGCCACCTCCACATGTCCTCCTCTTGCAATGCCCTACA	1699
Db	1504	CTGCCTCTGCCATGCTGCCACCTCCACATGTCCTCCTCTTGCAATGCCCTACA	1563
Qy	1700	ACTCCTTCTACCTTACTGCCGGCTTCATGATAAACTGGACAACCTGTGGATAGTGCCTG	1759
Db	1564	ACTCCTTCTACCTTACTGCCGGCTTCATGATAAACTGGACAACCTGTGGATAGTGCCTG	1623
Qy	1760	CATGGATCTCCAAGCTGCGTCTCCGGTGGTGGTCTCGGGGCTGATGCAGATTCAAT	1819
Db	1624	CATGGATCTCCAAGCTGCGTCTCCGGTGGTGGTCTCGGGGCTGATGCAGATTCAAT	1683
Qy	1820	TTAATGGACACCTTACACCACACAAATCGGCAACTTCACCTCTCCATCCTCGGAGACA	1879
Db	1684	TTAATGGACACCTTACACCACACAAATCGGCAACTTCACCTCTCCATCCTCGGAGACA	1743
Qy	1880	CGATGATCAGTGCATGGACCTGAACCTCGCATCCACTCTATGCGATCTACCTCATTGTCA	1939
Db	1744	CGATGATCAGTGCATGGACCTGAACCTCGCATCCACTCTATGCGATCTACCTCATTGTCA	1803
Qy	1940	TGGGCATCAGCTACGGCTTCCTGTTCTGTACTATCTATCCTGAAGCTCATCAAACAGA	1999
Db	1804	TGGGCATCAGCTACGGCTTCCTGTTCTGTACTATCTATCCTGAAGCTCATCAAACAGA	1863
Qy	2000	AGTCAATTCAAGACTGGTGA	2019
Db	1864	AGTCAATTCAAGACTGGTGA	1883

RESULT 3

BI330745

LOCUS BI330745 849 bp mRNA linear EST 30-JUL-2001
 DEFINITION 602982409F1 NCI_CGAP_Li9 Mus musculus cDNA clone IMAGE:5135115 5',
 mRNA sequence.
 ACCESSION BI330745
 VERSION BI330745.1 GI:15015402
 KEYWORDS EST.
 SOURCE Mus musculus (house mouse)
 ORGANISM Mus musculus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
 REFERENCE 1 (bases 1 to 849)
 AUTHORS NIH-MGC <http://mgc.nci.nih.gov/>.
 TITLE National Institutes of Health, Mammalian Gene Collection (MGC)
 JOURNAL Unpublished (1999)
 COMMENT Contact: Robert Strausberg, Ph.D.
 Email: cgapbs-r@mail.nih.gov
 Tissue Procurement: Jeffrey E. Green, M.D.
 cDNA Library Preparation: Life Technologies, Inc.

cDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL)
DNA Sequencing by: Incyte Genomics, Inc.
Clone distribution: MGC clone distribution information can be
found through the I.M.A.G.E. Consortium/LLNL at:
<http://image.llnl.gov>
Plate: LLAM11332 row: a column: 04
High quality sequence stop: 758.

FEATURES Location/Qualifiers
source 1. .849
/organism="Mus musculus"
/mol_type="mRNA"
/strain="FVB/N"
/db_xref="taxon:10090"
/clone="IMAGE:5135115"
/lab_host="DH10B (T1 phage-resistant)"
/clone_lib="NCI_CGAP_Li9"
/note="Organ: liver; Vector: pCMV-SPORT6; Site_1: NotI;
Site_2: SalI; Cloned unidirectionally. Primer: Oligo dT.
Average insert size 1.9 kb. Constructed by Life
Technologies. Note: this is a NCI_CGAP Library."

ORIGIN

Query Match 35.4%; Score 714.2; DB 12; Length 849;
Best Local Similarity 95.9%; Pred. No. 1.9e-163;
Matches 799; Conservative 0; Mismatches 23; Indels 11; Gaps 6;

Qy	891	GCAGCAAATGGTGCAGTACCCATGCCATTGGCCACCCCTTGTCCCGCTATAGCAACCC	950
Db	1	GCAGCAAATGGTGCAGTACCCATGCCATTGGCCACCCCTTGTCCCGCTATAGCAACCC	60
Qy	951	TGCGGACTTCTACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGGAGGTGGC	1010
Db	61	TGCGGACTTCTACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGGAGGTGGC	120
Qy	1011	CACCGTGGAGAAGGCACAGTCTCTTGCAGCCCTGTTCTAGAAAAGTACAAGGCTTTGA	1070
Db	121	CACCGTGGAGAAGGCACAGTCTCTTGCAGCCCTGTTCTAGAAAAGTACAAGGCTTTGA	180
Qy	1071	TGACTTTCTGTGGAAAGCTGAGGCAAAGGAACCTAACACACAAGCACCCACACAGTCAGCCT	1130
Db	181	TGACTTTCTGTGGAAAGCTGAGGCAAAGGAACCTAACACACAAGCACCCACACAGTCAGCCT	240
Qy	1131	GACCCTCACACAGGACACTGACTGTGGACTGCTGTTGAGCTGCCCGGGATGATAGAGCA	1190
Db	241	GACCCTCACACAGGACACTGACTGTGGACTGCTGTTGAGCTGCCCGGGATGATAGAGCA	300
Qy	1191	GTTTCCACCCGTATCCGTCGTAGATTCCAATGACTTCCGGACCTGCCACGCTGCT	1250
Db	301	GTTTCCACCCGTATCCGTCGTAGATTCCAATGACTTCCGGACCTGCCACGCTGCT	360
Qy	1251	CATTCATGGTCGGAAGCCTGCCTGATGTCCCTCATCATTGGCTTCTTACTACGGCCA	1310
Db	361	CATTCATGGTCGGAAGCCTGCCTGATGTCCCTCATCATTGGCTTCTTACTACGGCCA	420
Qy	1311	TGGGGCCAAGCAGCTCTCCTCATGGACACAGCAGCCCTCCTCTCATGATAGGGCGCT	1370
Db	421	TGGGGCCAAGCAGCTCTCCTCATGGACACAGCAGCCCTCCTCTCATGATAGGGCGCT	480

RESULT 4

DEFINITION BF660076 549 bp mRNA linear EST 20-DEC-2000
LOCUS maa27c08.y1 NCI_CGAP_Li10 Mus musculus cDNA clone IMAGE:3812342 5'
DEFINITION similar to TR:Q9VQN4 Q9VQN4 CG9664 PROTEIN. ;, mRNA sequence.
ACCESSION BF660076
VERSION BF660076.1 GI:11925210
KEYWORDS EST.
SOURCE Mus musculus (house mouse)
ORGANISM Mus musculus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE 1 (bases 1 to 549)
AUTHORS NCI-CGAP <http://www.ncbi.nlm.nih.gov/ncicgap>.
TITLE National Cancer Institute, Cancer Genome Anatomy Project (CGAP),
Tumor Gene Index
JOURNAL Unpublished (1997)
COMMENT Other_ESTs: maa27c08.x1
Contact: Robert Strausberg, Ph.D.
Email: cgapbs-r@mail.nih.gov
Tissue Procurement: Jeffrey E. Green, M.D.
cDNA Library Preparation: Life Technologies, Inc.
cDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL)
DNA Sequencing by: Washington University Genome Sequencing Center
Clone distribution: NCI-CGAP clone distribution information can be
found through the I.M.A.G.E. Consortium/LLNL at:
<http://image.llnl.gov>

MGI:1454454
Seq primer: -40RP from Gibco
High quality sequence stop: 435.

FEATURES
source Location/Qualifiers
1. .549
/organism="Mus musculus"
/mol_type="mRNA"
/db_xref="taxon:10090"
/clone="IMAGE:3812342"
/sex="female"
/dev_stage="10 weeks"
/lab_host="DH10B (T1 phage-resistant)"
/clone_lib="NCI_CGAP_Li10"
/note="Organ: liver; Vector: pCMV-SPORT6; Site_1: NotI;
Site_2: SalI; Cloned unidirectionally. Primer: Oligo dT.
Average insert size 1.6 kb. Library constructed by Life
Technologies."

ORIGIN

Query Match 27.2%; Score 549; DB 10; Length 549;
Best Local Similarity 100.0%; Pred. No. 3.9e-123;
Matches 549; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy	1462	GCTGGTCCTATTCCTTGCCTAGGAGAATTGCCGGAGCACTGTGCCTACGTC 	1521
Db	1	GCTGGTCCTATTCCTTGCCTAGGAGAATTGCCGGAGCACTGTGCCTACGTC 	60
Qy	1522	ATCATCTACGCGATGCCCATCTACTGGCTGACAAACCTGCAGGAGCACTGTGCCTACGTC 	1581
Db	61	ATCATCTACGCGATGCCCATCTACTGGCTGACAAACCTGCAGGAGCACTGTGCCTACGTC 	120
Qy	1582	CTTCTACACTTCCTGCTCGTGTGGTTGGTGGTCTTCTGCTGCAGGACCATGCCCTGGCT 	1641
Db	121	CTTCTACACTTCCTGCTCGTGTGGTTGGTGGTCTTCTGCTGCAGGACCATGCCCTGGCT 	180
Qy	1642	GCCTCTGCCATGCTGCCAACCTCACATGTCCTCCTCTGCAATGCCCTACAAAC 	1701
Db	181	GCCTCTGCCATGCTGCCAACCTCACATGTCCTCCTCTGCAATGCCCTACAAAC 	240
Qy	1702	TCCCTCTACCTTACTGCCGGCTTATGATAAAACTTGGACAAACCTGTGGATAGTGCCTGCA 	1761
Db	241	TCCCTCTACCTTACTGCCGGCTTATGATAAAACTTGGACAAACCTGTGGATAGTGCCTGCA 	300
Qy	1762	TGGATCTCCAAGCTGCGTCCCTCGGTGGTGGTCTCGGGGCTGATGCAGATTCAATT 	1821
Db	301	TGGATCTCCAAGCTGCGTCCCTCGGTGGTGGTCTCGGGGCTGATGCAGATTCAATT 	360
Qy	1822	AATGGACACCTTACACCACACAAATCGGCAACTTCACCTCTCCATCCTGGAGACAG 	1881
Db	361	AATGGACACCTTACACCACACAAATCGGCAACTTCACCTCTCCATCCTGGAGACAG 	420
Qy	1882	ATGATCAGTGCCTGGACCTGAACCTCGCATCCACTCTATGCGATCTACCTCATTGTCATC 	1941
Db	421	ATGATCAGTGCCTGGACCTGAACCTCGCATCCACTCTATGCGATCTACCTCATTGTCATC 	480
Qy	1942	GGCATCAGCTACGGCTCCTGTTCTGTACTATCTATCCTGAAGCTCATCAAACAGAAG 	2001
Db	481	GGCATCAGCTACGGCTCCTGTTCTGTACTATCTATCCTGAAGCTCATCAAACAGAAG 	540
Qy	2002	TCAATTCAA 2010	

|||||||
Db 541 TCAATTCAA 549

RESULT 5
BY705076
LOCUS BY705076 583 bp mRNA linear EST 16-DEC-2002
DEFINITION BY705076 RIKEN full-length enriched, adult male liver *Mus musculus* cDNA clone 1300003C16 5', mRNA sequence.
ACCESSION BY705076
VERSION BY705076.1 GI:27116215
KEYWORDS EST.
SOURCE *Mus musculus* (house mouse)
ORGANISM *Mus musculus*
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; *Mus*.
REFERENCE 1 (bases 1 to 583)
AUTHORS Okazaki,Y., Furuno,M., Kasukawa,T., Adachi,J., Bono,H., Kondo,S.,
Nikaido,I., Osato,N., Saito,R., Suzuki,H., Yamanaka,I.,
Kiyosawa,H., Yagi,K., Tomaru,Y., Hasegawa,Y., Nogami,A.,
Schonbach,C., Gojobori,T., Baldarelli,R., Hill,D.P., Bult,C.,
Hume,D.A., Quackenbush,J., Schriml,L.M., Kanapin,A., Matsuda,H.,
Batalov,S., Beisel,K.W., Blake,J.A., Bradt,D., Brusic,V.,
Chothia,C., Corbani,L.E., Cousins,S., Dalla,E., Dragani,T.A.,
Fletcher,C.F., Forrest,A., Frazer,K.S., Gaasterland,T.,
Gariboldi,M., Gissi,C., Godzik,A., Gough,J., Grimmond,S.,
Gustincich,S., Hirokawa,N., Jackson,I.J., Jarvis,E.D., Kanai,A.,
Kawai,H., Kawasawa,Y., Kedzierski,R.M., King,B.L., Konagaya,A.,
Kurochkin,I.V., Lee,Y., Lenhard,B., Lyons,P.A., Maglott,D.R.,
Maltais,L., Marchionni,L., McKenzie,L., Miki,H., Nagashima,T.,
Numata,K., Okido,T., Pavan,W.J., Pertea,G., Pesole,G.,
Petrovsky,N., Pillai,R., Pontius,J.U., Qi,D., Ramachandran,S.,
Ravasi,T., Reed,J.C., Reed,D.J., Reid,J., Ring,B.Z., Ringwald,M.,
Sandelin,A., Schneider,C., Semple,C.A., Setou,M., Shimada,K.,
Sultana,R., Takenaka,Y., Taylor,M.S., Teasdale,R.D., Tomita,M.,
Verardo,R., Wagner,L., Wahlestedt,C., Wang,Y., Watanabe,Y.,
Wells,C., Wilming,L.G., Wynshaw-Boris,A., Yanagisawa,M., Yang,I.,
Yang,L., Yuan,Z., Zavolan,M., Zhu,Y., Zimmer,A., Carninci,P.,
Hayatsu,N., Hirozane-Kishikawa,T., Konno,H., Nakamura,M.,
Sakazume,N., Sato,K., Shiraki,T., Waki,K., Kawai,J., Aizawa,K.,
Arakawa,T., Fukuda,S., Hara,A., Hashizume,W., Imotani,K., Ishii,Y.,
Itoh,M., Kagawa,I., Miyazaki,A., Sakai,K., Sasaki,D., Shibata,K.,
Shinagawa,A., Yasunishi,A., Yoshino,M., Waterston,R., Lander,E.S.,
Rogers,J., Birney,E. and Hayashizaki,Y.
TITLE Analysis of the mouse transcriptome based on functional annotation
of 60,770 full-length cDNAs
JOURNAL Nature 420, 563-573 (2002)
MEDLINE 22354683
PUBMED 12466851
COMMENT Contact: Yoshihide Hayashizaki
Laboratory for Genome Exploration Research Group, RIKEN Genomic
Sciences Center(GSC), Yokohama Institute
The Institute of Physical and Chemical Research (RIKEN)
1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
Tel: 81-45-503-9222
Fax: 81-45-503-9216
Email: genome-res@gsc.riken.go.jp,

URL:<http://genome.gsc.riken.go.jp/>
 Adachi,J., Aizawa,K., Akimura,T., Arakawa,T., Carninci,P.,
 Fukuda,S., Hashizume,W., Hayashida,K., Hirozane,T., Hori,F.,
 Imotani,K., Ishii,Y., Itoh,M., Kagawa,I., Kawai,J., Kojima,Y.,
 Kondo,S., Konno,H., Koya,S., Miyazaki,A., Murata,M., Nakamura,M.,
 Nomura,K., Numazaki,R., Ohno,M., Ohsato,N., Saito,R., Sakazume,N.,
 Sano,H., Sasaki,D., Sato,K., Shibata,K., Shiraki,T., Tagami,M.,
 Takeda,Y., Waki,K., Watahiki,A., Muramatsu,M. and Hayashizaki,Y.
 Direct Submission
 Computational Analysis of Full-Length Mouse cDNAs Compared with
 Human Genome Sequences Mamm. Genome. 12, 673-677 (2001)
 Normalization and subtraction of cap-trapper-selected cDNAs to
 prepare full-length cDNA libraries for rapid discovery of new
 genes. Genome Res. 10 (10), 1617-1630 (2000)
 RIKEN integrated sequence analysis (RISA) system--384-format
 sequencing pipeline with 384 multicapillary sequencer. Genome Res.
 10 (11), 1757-1771 (2000)
 Computer-based methods for the mouse full-length cDNA
 encyclopedia: real-time sequence clustering for construction of a
 nonredundant cDNA library. Genome Res. 11 (2), 281-289 (2001)
 cDNA library was prepared and sequenced in Mouse Genome
 Encyclopedia Project of Genome Exploration Research Group in Riken
 Genomic Sciences Center and Genome Science Laboratory in RIKEN.
 Division of Experimental Animal Research in Riken contributed to
 prepare mouse tissues.
 Please visit our web site (<http://genome.gsc.riken.go.jp>) for
 further details.

FEATURES Location/Qualifiers
source 1. .583
 /organism="Mus musculus"
 /mol_type="mRNA"
 /strain="C57BL/6J"
 /db_xref="taxon:10090"
 /clone="1300003C16"
 /sex="male"
 /tissue_type="liver"
 /dev_stage="adult"
 /clone_lib="RIKEN full-length enriched, adult male liver"

ORIGIN

Query Match 24.7%; Score 498; DB 13; Length 583;
 Best Local Similarity 99.4%; Pred. No. 1.2e-110;
 Matches 511; Conservative 0; Mismatches 0; Indels 3; Gaps 1;

Qy	1 ATGGCTGAGAAAACCAAGAAGAGACCCAGCTGTGGATGGACTGTACTTCAGGATGCT	60
Db	69 ATGGCTGAGAAAACCAAGAAGAGACCCAGCTGTGGATGGACTGTACTTCAGGATGCT	128
Qy	61 TC---GGGCCTCCAGGACAGCTTGTTCCTCGGAAAGTGACAACAGTCTGTACTTCACC	117
Db	129 TCGCAGGGCCTCCAGGACAGCTTGTTCCTCGGAAAGTGACAACAGTCTGTACTTCACC	188
Qy	118 TACAGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATGCC	177
Db	189 TACAGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATGCC	248
Qy	178 TCTCAGGTGCCTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGC	237

Db	249	TCTCAGGTGCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCTGGAGGTCTCATAGC	308
Qy	238	AGCCAAGACTCCTGTGAGCTGGCATCCGAAATCTAAGCTTCAAAGTGAGGAGTGGACAG	297
Db	309	AGCCAAGACTCCTGTGAGCTGGCATCCGAAATCTAAGCTTCAAAGTGAGGAGTGGACAG	368
Qy	298	ATGCTGGCCATCATAGGGAGCTCAGGCTGCGGGAGAGCCTCACTACTCGACGTGATCACA	357
Db	369	ATGCTGGCCATCATAGGGAGCTCAGGCTGCGGGAGAGCCTCACTACTCGACGTGATCACA	428
Qy	358	GGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGT	417
Db	429	GGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGT	488
Qy	418	ACGCCTCAGCTGGTGAGGAAGTGCCTTGCATGTGCGGAGCAGCATGACCAACTGCTGCC	477
Db	489	ACGCCTCAGCTGGTGAGGAAGTGCCTTGCATGTGCGGAGCAGCATGACCAACTGCTGCC	548
Qy	478	AACCTGACCGTCAGAGAGACCCCTGGCTTCATTG	511
Db	549	AACCTGACCGTCAGAGAGACCCCTGGCTTCATTG	582

RESULT 6

AA537862
LOCUS AA537862 463 bp mRNA linear EST 29-JUL-1997
DEFINITION vj35a03.rl Stratagene mouse diaphragm (#937303) Mus musculus cDNA
clone IMAGE:930988 5', mRNA sequence.
ACCESSION AA537862
VERSION AA537862.1 GI:2283855
KEYWORDS EST.
SOURCE Mus musculus (house mouse)
ORGANISM Mus musculus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE 1 (bases 1 to 463)
AUTHORS Marra,M., Hillier,L., Allen,M., Bowles,M., Dietrich,N., Dubuque,T.,
Geisel,S., Kucaba,T., Lacy,M., Le,M., Martin,J., Morris,M.,
Schellenberg,K., Steptoe,M., Tan,F., Underwood,K., Moore,B.,
Theising,B., Wylie,T., Lennon,G., Soares,B., Wilson,R. and
Waterston,R.
TITLE The WashU-HHMI Mouse EST Project
JOURNAL Unpublished (1996)
COMMENT Contact: Marra M/Mouse EST Project
WashU-HHMI Mouse EST Project
Washington University School of MedicineP
4444 Forest Park Parkway, Box 8501, St. Louis, MO 63108
Tel: 314 286 1800
Fax: 314 286 1810
Email: mouseest@watson.wustl.edu
This clone is available royalty-free through LLNL ; contact the
IMAGE Consortium (info@image.llnl.gov) for further information.
MGI:535908
Seq primer: -28m13 rev1 ET from Amersham
High quality sequence stop: 393.
FEATURES Location/Qualifiers

source 1. .463
 /organism="Mus musculus"
 /mol_type="mRNA"
 /db_xref="taxon:10090"
 /clone="IMAGE:930988"
 /tissue_type="diaphragm"
 /dev_stage="adult"
 /lab_host="SOLR (kanamycin resistant)"
 /clone_lib="Stratagene mouse diaphragm (#937303)"
 /note="Organ: diaphragm; Vector: pBluescript SK-; Site_1:
 EcoRI; Site_2: XhoI; Cloned unidirectionally from mRNA
 prepared from diaphragm muscle. Primer: Oligo dT. Average
 insert size: 1.5 kb. Uni-ZAP XR Vector; ~5' adaptor
 sequence: 5' GAATTCTGGCACGAG 3' ~3' adaptor sequence: 5'
 CTCGAGTTTTTTTTTTTTTTTT 3'"

ORIGIN

Query Match 22.2%; Score 448.2; DB 9; Length 463;
 Best Local Similarity 98.3%; Pred. No. 1.7e-98;
 Matches 453; Conservative 0; Mismatches 8; Indels 0; Gaps 0;

Qy	1018	GAGAAGGCACAGTCTCTGCAGCCCTGTTCTAGAAAAAGTACAAGGCTTGATGACTTT	1077
Db	1	GAGAAGGCACAGTCTCTGCAGCCCTGTTCTAGAAAAAGTACAAGGCTTGATGACTTT	60
Qy	1078	CTGTGGAAAGCTGAGGCAAAGGAACCTAACACAAAGCACCCACACAGTCAGCCTGACCCTC	1137
Db	61	CTGTGGAAAGCTGAGGCAAAGGAACCTAACACAAAGCACCCACACAGTCAGCCTGACCCTC	120
Qy	1138	ACACAGGACACTGACTGTGGACTGCTGTTGAGCTGCCGGGATGATAGAGCAGTTTCC	1197
Db	121	ACACAGGACACTGACTGTGGACTGCTGTTGAGCTGCCGGGATGATAGAGCAGTTTCC	180
Qy	1198	ACCTGATCCGTCGTCAAGATTCCAATGACTTCCGGGACCTGCCACGCTGCTCATTCAT	1257
Db	181	ACCTGATCCGTCGTCAAGATTCCAATGACTTCCGGGACCTGCCACGCTGCTCATTCAT	240
Qy	1258	GGGTCGGAAGCCTGCCTGATGTCCCTCATCATTGGCTTCTTACTACGGCCATGGGCC	1317
Db	241	GGGTCGGAAGCCTGCCTGATGTCCCTCATCATTGGCTTCTTACTACGGCCATGGGCCA	300
Qy	1318	AAGCAGCTCTCCTTCATGGACACAGCAGCCCTCCTTCTCATGATAAGGGCGCTCATTCC	1377
Db	301	GAGCAGCTCTCCTTCATGGACACAGCAGCCCTCCTTCTCATGATAAGGGCGCTCATTCC	360
Qy	1378	TTCAATGTCATCCTGGATGTCGTCTCAAATGTCACTCGGAGAGGTCAATGCTGTACTAT	1437
Db	361	TTCAATGTCATCCTGGATGTCGTCTCAAATGTCACTCGGAGAGGTCAATGCTGTACTAT	420
Qy	1438	GAGCTGGAAGACGGGCTGTACACTGCTGGTCTTATTTCTT	1478
Db	421	GAGCTGGAAGACGGGCTGTACACTGCCAATACATATTTCTT	461

RESULT 7

BB610072

LOCUS BB610072

510 bp mRNA linear EST 26-OCT-2001

DEFINITION BB610072 RIKEN full-length enriched, adult male liver *Mus musculus* cDNA clone 1300007N20 5', mRNA sequence.

ACCESSION BB610072

VERSION BB610072.1 GI:16451685

KEYWORDS EST.

SOURCE *Mus musculus* (house mouse)

ORGANISM *Mus musculus*
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; *Mus*.
1 (bases 1 to 510)

REFERENCE

AUTHORS Arakawa,T., Carninci,P., Fukuda,S., Furuno,M., Hanagaki,T.,
Hara,A., Hiramoto,K., Hori,F., Ishii,Y., Ito,M., Kawai,J.,
Konno,H., Kouda,M., Koya,S., Matsuyama,T., Miyazaki,A., Nomura,K.,
Ohno,M., Okazaki,Y., Okido,T., Saito,R., Sakai,C., Sakai,K.,
Sano,H., Sasaki,D., Shibata,K., Shinagawa,A., Shiraki,T.,
Sogabe,Y., Suzuki,H., Tagami,M., Tagawa,A., Takahashi,F.,
Takeda,Y., Tanaka,T., Toya,T., Muramatsu,M. and Hayashizaki,Y.

TITLE RIKEN Mouse ESTs (Arakawa,T., et al. 2001)

JOURNAL Unpublished (2001)

COMMENT Contact: Yoshihide Hayashizaki
Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center(GSC), Yokohama Institute
The Institute of Physical and Chemical Research (RIKEN)
1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
Tel: 81-45-503-9222
Fax: 81-45-503-9216
Email: genome-res@gsc.riken.go.jp,
URL:<http://genome.gsc.riken.go.jp/>
Carninci,P., Shibata,Y., Hayatsu,N., Sugahara,Y., Shibata,K.,
Itoh,M., Konno,H., Okazaki,Y., Muramatsu,M. and Hayashizaki,Y.
Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes. *Genome Res.* . 10 (10), 1617-1630 (2000)
wagi,K., Fujiwake,S., Inoue,K., Togawa,Y., Izawa,M., Ohara,E.,
Watahiki,M., Yoneda,Y., Ishikawa,T., Ozawa,K., Tanaka,T.,
Matsuura,S., Kawai,J., Okazaki,Y., Muramatsu,M., Inoue,Y., Kira,A.
and Hayashizaki,Y.
RIKEN integrated sequence analysis (RISA) system--384-format sequencing pipeline with 384 multicapillary sequencer. *Genome Res.* . 10 (11), 1757-1771 (2000)
Konno,H., Fukunishi,Y., Shibata,K., Itoh,M., Carninci,P.,
Sugahara,Y. and Hayashizaki,Y.
Computer-based methods for the mouse full-length cDNA encyclopedia: real-time sequence clustering for construction of a nonredundant cDNA library. *Genome Res.* . 11 (2), 281-289 (2001)
Kondo,S., Shinagawa,A., Saito,T., Kiyosawa,H., Yamanaka,I.,
Aizawa,K., Fukuda,S., Hara,A., Itoh,M., Kawai,J., Shibata,K. and Hayashizaki,Y.
Computational Analysis of Full-Length Mouse cDNAs Compared with Human Genome Sequences. *Mamm. Genome.* 12, 673-677 (2001)
Please visit our web site (<http://genome.gsc.riken.go.jp>) for further details.
e mouse tissues.

FEATURES Location/Qualifiers

source 1..510
/organism="Mus musculus"
/mol_type="mRNA"

/strain="C57BL/6J"
/db_xref="taxon:10090"
/clone="1300007N20"
/sex="male"
/tissue_type="liver"
/dev_stage="adult"
/clone_lib="RIKEN full-length enriched, adult male liver"

ORIGIN

Query Match 22.18; Score 446; DB 10; Length 510;
Best Local Similarity 100.08; Pred. No. 6.1e-98;
Matches 446; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 ATGGCTGAGAAAACCAAAAGAAGAGACCCAGCTGTGAATGGACTGTACTTCAGGATGCT 60
Db 64 ATGGCTGAGAAAACCAAAAGAAGAGACCCAGCTGTGAATGGACTGTACTTCAGGATGCT 123

Qy 61 TCGGGCCTCCAGGACAGCTTGTCTCCTCGGAAAGTGACAACAGTCTGTACTTCACCTAC 120
Db 124 TCGGGCCTCCAGGACAGCTTGTCTCCTCGGAAAGTGACAACAGTCTGTACTTCACCTAC 183

Qy 121 AGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATCGCCTCT 180
Db 184 AGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATCGCCTCT 243

Qy 181 CAGGTGCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGCAGC 240
Db 244 CAGGTGCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGCAGC 303

Qy 241 CAAGACTCCTGTGAGCTGGCATCCGAAATCTAACGCTCAAAGTGAGGAGTGGACAGATG 300
Db 304 CAAGACTCCTGTGAGCTGGCATCCGAAATCTAACGCTCAAAGTGAGGAGTGGACAGATG 363

Qy 301 CTGGCCATCATAGGGAGCTCAGGCTGCGGGAGAGCCTCACTACTCGACGTGATCACAGGC 360
Db 364 CTGGCCATCATAGGGAGCTCAGGCTGCGGGAGAGCCTCACTACTCGACGTGATCACAGGC 423

Qy 361 AGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGTACG 420
Db 424 AGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGTACG 483

Qy 421 CCTCAGCTGGTGAGGAAGTGCCTTGC 446
Db 484 CCTCAGCTGGTGAGGAAGTGCCTTGC 509

RESULT 8

AI157365

LOCUS AI157365 511 bp mRNA linear EST 30-SEP-1998
DEFINITION ui45h01.y1 Sugano mouse embryo mRNA Mus musculus cDNA clone
IMAGE:1885393 5', mRNA sequence.
ACCESSION AI157365
VERSION AI157365.1 GI:3685834
KEYWORDS EST.
SOURCE Mus musculus (house mouse)
ORGANISM Mus musculus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

REFERENCE Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
 AUTHORS 1 (bases 1 to 511)
 Marra, M., Hillier, L., Allen, M., Bowles, M., Dietrich, N., Dubuque, T.,
 Geisel, S., Kucaba, T., Lacy, M., Le, M., Martin, J., Morris, M.,
 Schellenberg, K., Steptoe, M., Tan, F., Underwood, K., Moore, B.,
 Theising, B., Wylie, T., Lennon, G., Soares, B., Wilson, R. and
 Waterston, R.
 TITLE The WashU-HHMI Mouse EST Project
 JOURNAL Unpublished (1996)
 COMMENT Contact: Marra M/Mouse EST Project
 WashU-HHMI Mouse EST Project
 Washington University School of MedicineP
 4444 Forest Park Parkway, Box 8501, St. Louis, MO 63108
 Tel: 314 286 1800
 Fax: 314 286 1810
 Email: mouseest@watson.wustl.edu
 This clone is available royalty-free through LLNL ; contact the
 IMAGE Consortium (info@image.llnl.gov) for further information.
 MGI:969717
 Seq primer: custom primer used
 High quality sequence stop: 480.
 FEATURES Location/Qualifiers
 source 1. .511
 /organism="Mus musculus"
 /mol_type="mRNA"
 /strain="C57BL"
 /db_xref="taxon:10090"
 /clone="IMAGE:1885393"
 /dev_stage="embryo, 14 dpc"
 /lab_host="DH10B"
 /clone_lib="Sugano mouse embryo mewa"
 /note="Vector: pME18S-FL3; Site_1: DraIII (CACTGTGTG);
 Site_2: DraIII (CACCATGTG); 1st strand cDNA was primed
 with an oligo(dT) primer [ATGTGGCCTTTTTTTTTTT];
 double-stranded cDNA was ligated to a DraIII adaptor
 [TGTTGGCCTACTGG], digested and cloned into distinct DraIII
 sites of the pME18S-FL3 vector (5' site CACTGTGTG, 3' site
 CACCATGTG). XhoI should be used to isolate the cDNA
 insert. Size selection was performed to exclude fragments
 <1.5kb. Library constructed by Dr. Sumio Sugano
 (University of Tokyo Institute of Medical Science).
 Custom primers for sequencing: 5' end primer
 CTTCTGCTCTAAAGCTGCG and 3' end primer
 CGACCTGCAGCTCGAGCACA."
 ORIGIN
 Query Match 21.9%; Score 442; DB 9; Length 511;
 Best Local Similarity 99.3%; Pred. No. 5.9e-97;
 Matches 455; Conservative 0; Mismatches 0; Indels 3; Gaps 1;
 Qy 1 ATGGCTGAGAAAACCAAAGAAGAGACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT 60
 |||||||
 Db 54 ATGGCTGAGAAAACCAAAGAAGAGACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT 113
 Qy 61 TC---GGGCCTCCAGGACAGCTTGTCTCCTCGGAAAGTGACAACAGTCTGTACTTCACC 117
 |||
 Db 114 TCGCAGGGCCTCCAGGACAGCTTGTCTCCTCGGAAAGTGACAACAGTCTGTACTTCACC 173

Qy	118 TACAGTGGTCAGTCCAACACTCTGGAGGTAGAGATCTCACCTACCAGGTGGACATGCC	177
Db	174 TACAGTGGTCAGTCCAACACTCTGGAGGTAGAGATCTCACCTACCAGGTGGACATGCC	233
Qy	178 TCTCAGGTGCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCTGGAGGTCTCATAGC	237
Db	234 TCTCAGGTGCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCTGGAGGTCTCATAGC	293
Qy	238 AGCCAAGACTCCTGTGAGCTGGGATCCGAAATCTAAGCTCAAAGTGAGGAGTGGACAG	297
Db	294 AGCCAAGACTCCTGTGAGCTGGGATCCGAAATCTAAGCTCAAAGTGAGGAGTGGACAG	353
Qy	298 ATGCTGGCATCATAGGGAGCTCAGGCTGCGGGAGAGCCTCACTACTCGACGTGATCACA	357
Db	354 ATGCTGGCATCATAGGGAGCTCAGGCTGCGGGAGAGCCTCACTACTCGACGTGATCACA	413
Qy	358 GGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGT	417
Db	414 GGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGT	473
Qy	418 ACGCCTCAGCTGGTGAGGAAGTGCCTGCATGTGCG	455
Db	474 ACGCCTCAGCTGGTGAGGAAGTGCCTGCATGTGCG	511

RESULT 9

AI151811

LOCUS AI151811 500 bp mRNA linear EST 30-SEP-1998
 DEFINITION ui46c10.y1 Sugano mouse embryo mewa Mus musculus cDNA clone
 IMAGE:1885458 5', mRNA sequence.
 ACCESSION AI151811
 VERSION AI151811.1 GI:3680280
 KEYWORDS EST.
 SOURCE Mus musculus (house mouse)
 ORGANISM Mus musculus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
 REFERENCE 1 (bases 1 to 500)
 AUTHORS Marra,M., Hillier,L., Allen,M., Bowles,M., Dietrich,N., Dubuque,T.,
 Geisel,S., Kucaba,T., Lacy,M., Le,M., Martin,J., Morris,M.,
 Schellenberg,K., Steptoe,M., Tan,F., Underwood,K., Moore,B.,
 Theising,B., Wylie,T., Lennon,G., Soares,B., Wilson,R. and
 Waterston,R.
 TITLE The WashU-HHMI Mouse EST Project
 JOURNAL Unpublished (1996)
 COMMENT Contact: Marra M/Mouse EST Project
 WashU-HHMI Mouse EST Project
 Washington University School of MedicineP
 4444 Forest Park Parkway, Box 8501, St. Louis, MO 63108
 Tel: 314 286 1800
 Fax: 314 286 1810
 Email: mouseest@watson.wustl.edu
 This clone is available royalty-free through LLNL ; contact the
 IMAGE Consortium (info@image.llnl.gov) for further information.
 MGI:969782
 Seq primer: custom primer used

High quality sequence stop: 499.
FEATURES Location/Qualifiers
source 1..500
/organism="Mus musculus"
/mol_type="mRNA"
/strain="C57BL"
/db_xref="taxon:10090"
/clone="IMAGE:1885458"
/dev_stage="embryo, 14 dpc"
/lab_host="DH10B"
/clone_lib="Sugano mouse embryo mewa"
/note="Vector: pME18S-FL3; Site_1: DraIII (CACTGTGTG);
Site_2: DraIII (CACCATGTG); 1st strand cDNA was primed
with an oligo(dT) primer [ATGTGGCCTTTTTTTTTTT];
double-stranded cDNA was ligated to a DraIII adaptor
[TGTTGGCCTACTGG], digested and cloned into distinct DraIII
sites of the pME18S-FL3 vector (5' site CACTGTGTG, 3' site
CACCATGTG). XbaI should be used to isolate the cDNA
insert. Size selection was performed to exclude fragments
<1.5kb. Library constructed by Dr. Sumio Sugano
(University of Tokyo Institute of Medical Science).
Custom primers for sequencing: 5' end primer
CTTCTGCTCTAAAGCTGCG and 3' end primer
CGACACTGCAGCTCGAGCACA."

ORIGIN

```

Query Match           20.9%; Score 422.4; DB 9; Length 500;
Best Local Similarity 99.1%; Pred. No. 3.6e-92;
Matches 436; Conservative 0; Mismatches 1; Indels 3; Gaps 1;

Qy      1 ATGGCTGAGAAAACCAAAGAAGAGACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT 60
        ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| |||||
Db      61 ATGGCTGAGAAAACCAAAGAAGAGACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT 120
Qy      61 TC---GGGCCTCCAGGACAGCTTGTTCCTCGGAAAGTGACAACAGTCTGTACTTCACC 117
        ||| ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| |||||
Db      121 TCGCAGGGCCTCCAGGACAGCTTGTTCCTCGGAAAGTGACAACAGTCTGTACTTCACC 180
Qy      118 TACAGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATGCC 177
        ||||||| .||||| ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| |||||
Db      181 TACAGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATGCC 240
Qy      178 TCTCAGGTGCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCTGGAGGTCTCATAGC 237
        ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| |||||
Db      241 TCTCAGGTGCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCTGGAGGTCTCATAGC 300
Qy      238 AGCCAAGACTCCTGTGAGCTGGCATCCGAAATCTAAGCTTCAAAGTGAGGAGTGGACAG 297
        ||||||| .||||| ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| |||||
Db      301 AGCCAAGACTCCTGTGAGCTGGCATCCGAAATCTAAGCTTCAAAGTGAGGAGTGGACAG 360
Qy      298 ATGCTGCCATCATAGGGAGCTCAGGCTGCGGGAGAGCCTCACTACTCGACGTGATCACA 357
        ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| |||||
Db      361 ATGCTGCCATCATAGGGAGCTCAGGCTGCGGGAGAGCCTCACTACTCGACGTGATCACA 420
Qy      358 GGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAATTGGATAATGGCAACCCAGT 417
        ||||||| .||||| ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| |||||
Db      421 GGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAATTGGATAATGGCAACCCAGT 480

```

QY 418 ACGCCTCAGCTGGTGAGGAA 437
 ||||||||||||||| |||
Db 481 ACGCCTCAGCTGGTGAGGAA 500

RESULT 10
AI597406

LOCUS AI597406 398 bp mRNA linear EST 21-APR-1999
DEFINITION vj35a03.y1 Stratagene mouse diaphragm (#937303) Mus musculus cDNA
clone IMAGE:930988 5', mRNA sequence.
ACCESSION AI597406
VERSION AI597406.1 GI:4606454
KEYWORDS EST.
SOURCE Mus musculus (house mouse)
ORGANISM Mus musculus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE 1 (bases 1 to 398)
AUTHORS Marra,M., Hillier,L., Kucaba,T., Martin,J., Beck,C., Wylie,T.,
 Underwood,K., Steptoe,M., Theising,B., Allen,M., Bowers,Y.,
 Person,B., Swaller,T., Gibbons,M., Pape,D., Harvey,N., Schurk,R.,
 Ritter,E., Kohn,S., Shin,T., Jackson,Y., Cardenas,M., McCann,R.,
 Waterston,R. and Wilson,R.
TITLE The WashU-NCI Mouse EST Project 1999
JOURNAL Unpublished (1999)
COMMENT Contact: Marra M/WashU-NCI Mouse EST Project 1999
 Washington University School of Medicine
 4444 Forest Park Parkway, Box 8501, St. Louis, MO 63108, USA
 Tel: 314 286 1800
 Fax: 314 286 1810
 Email: mouseest@watson.wustl.edu
 This clone is available royalty-free through LLNL ; contact the
 IMAGE Consortium (info@image.llnl.gov) for further information.
 MGI:535908
 This read is a RESEQUENCE of a previously sequenced mouse clone
 This read has been verified (found to hit its original self in the
 correct orientation)
 Seq primer: -40RP from Gibco
 High quality sequence stop: 374.
FEATURES Location/Qualifiers
source 1. .398
 /organism="Mus musculus"
 /mol_type="mRNA"
 /db_xref="taxon:10090"
 /clone="IMAGE:930988"
 /tissue_type="diaphragm"
 /dev_stage="adult"
 /lab_host="SOLR (kanamycin resistant)"
 /clone_lib="Stratagene mouse diaphragm (#937303)"
 /note="Organ: diaphragm; Vector: pBluescript SK-; Site_1:
 EcoRI; Site_2: XhoI; Cloned unidirectionally from mRNA
 prepared from diaphragm muscle. Primer: Oligo dT. Average
 insert size: 1.5 kb. Uni-ZAP XR Vector; ~5' adaptor
 sequence: 5' GAATTCTGGCACGAG 3' ~3' adaptor sequence: 5'
 CTCGAGTTTTTTTTTTTTTTTT 3'"

ORIGIN

RESULT 11

AK008188
LOCUS AK008188 586 bp mRNA linear HTC 20-SEP-2003
DEFINITION Mus musculus adult male small intestine cDNA, RIKEN full-length enriched library, clone:2010011G12 product:ATP-BINDING CASSETTE, SUB-FAMILY G, MEMBER 8 (STEROLIN-2) homolog [Mus musculus], full insert sequence.
ACCESSION AK008188
VERSION AK008188.1 GI:12842221
KEYWORDS HTC; CAP trapper.
SOURCE Mus musculus (house mouse)
ORGANISM Mus musculus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE 1
AUTHORS Carninci,P. and Hayashizaki,Y.
TITLE High-efficiency full-length cDNA cloning
JOURNAL Meth. Enzymol. 303, 19-44 (1999)
MEDLINE 99279253
PUBMED 10349636
REFERENCE 2
AUTHORS Carninci,P., Shibata,Y., Hayatsu,N., Sugahara,Y., Shibata,K., Itoh,M., Konno,H., Okazaki,Y., Muramatsu,M. and Hayashizaki,Y.

TITLE Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes
JOURNAL Genome Res. 10 (10), 1617-1630 (2000)
MEDLINE 20499374
PUBMED 11042159
REFERENCE 3
AUTHORS Shibata,K., Itoh,M., Aizawa,K., Nagaoka,S., Sasaki,N., Carninci,P., Konno,H., Akiyama,J., Nishi,K., Kitsunai,T., Tashiro,H., Itoh,M., Sumi,N., Ishii,Y., Nakamura,S., Hazama,M., Nishine,T., Harada,A., Yamamoto,R., Matsumoto,H., Sakaguchi,S., Ikegami,T., Kashiwagi,K., Fujiwake,S., Inoue,K., Togawa,Y., Izawa,M., Ohara,E., Watahiki,M., Yoneda,Y., Ishikawa,T., Ozawa,K., Tanaka,T., Matsuura,S., Kawai,J., Okazaki,Y., Muramatsu,M., Inoue,Y., Kira,A. and Hayashizaki,Y.

TITLE RIKEN integrated sequence analysis (RISA) system--384-format sequencing pipeline with 384 multicapillary sequencer
JOURNAL Genome Res. 10 (11), 1757-1771 (2000)
MEDLINE 20530913
PUBMED 11076861
REFERENCE 4
AUTHORS The RIKEN Genome Exploration Research Group Phase II Team and the FANTOM Consortium.
TITLE Functional annotation of a full-length mouse cDNA collection
JOURNAL Nature 409, 685-690 (2001)
REFERENCE 5
AUTHORS The FANTOM Consortium and the RIKEN Genome Exploration Research Group Phase I & II Team.
TITLE Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs
JOURNAL Nature 420, 563-573 (2002)
REFERENCE 6 (bases 1 to 586)
AUTHORS Adachi,J., Aizawa,K., Akahira,S., Akimura,T., Arai,A., Aono,H., Arakawa,T., Bono,H., Carninci,P., Fukuda,S., Fukunishi,Y., Furuno,M., Hanagaki,T., Hara,A., Hayatsu,N., Hiramoto,K., Hiraoka,T., Hori,F., Imotani,K., Ishii,Y., Itoh,M., Izawa,M., Kasukawa,T., Kato,H., Kawai,J., Kojima,Y., Konno,H., Kouda,M., Koya,S., Kurihara,C., Matsuyama,T., Miyazaki,A., Nishi,K., Nomura,K., Numazaki,R., Ohno,M., Okazaki,Y., Okido,T., Owa,C., Saito,H., Saito,R., Sakai,C., Sakai,K., Sano,H., Sasaki,D., Shibata,K., Shibata,Y., Shinagawa,A., Shiraki,T., Sogabe,Y., Suzuki,H., Tagami,M., Tagawa,A., Takahashi,F., Tanaka,T., Tejima,Y., Toya,T., Yamamura,T., Yasunishi,A., Yoshida,K., Yoshino,M., Muramatsu,M. and Hayashizaki,Y.

TITLE Direct Submission
JOURNAL Submitted (10-JUL-2000) Yoshihide Hayashizaki, The Institute of Physical and Chemical Research (RIKEN), Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (E-mail:genome-res@gsc.riken.go.jp, URL:<http://genome.gsc.riken.go.jp/>, Tel:81-45-503-9222, Fax:81-45-503-9216)

COMMENT Please visit our web site (<http://genome.gsc.riken.go.jp/>) for further details.
cDNA library was prepared and sequenced in Mouse Genome Encyclopedia Project of Genome Exploration Research Group in Riken Genomic Sciences Center and Genome Science Laboratory in RIKEN. Division of Experimental Animal Research in Riken contributed to prepare mouse tissues. First strand cDNA was primed with a primer

[5' GAGAGAGAGAAGGATCCAAGAGCTTTTTTTTTTVN 3'], cDNA was prepared by using trehalose thermo-activated reverse transcriptase and subsequently enriched for full-length by cap-trapper. cDNA went through one round of normalization to Rot = 5.0 and subtraction to Rot = 20.0. Second strand cDNA was prepared with the primer adapter of sequence[5'

GAGAGAGAGATTCTCGAGTTAATTAAATTAATCCCCCCCCCC 3']. cDNA was cleaved with XbaI and SstI. Cloning sites, 5' end: XbaI; 3' end: SstI.

Host: SOLR.

FEATURES	Location/Qualifiers
source	1. .586 /organism="Mus musculus" /mol_type="mRNA" /strain="C57BL/6J" /db_xref="FANTOM_DB:2010011G12" /db_xref="MGI:1897592" /db_xref="taxon:10090" /clone="2010011G12" /sex="male" /tissue_type="small intestine" /clone_lib="RIKEN full-length enriched mouse cDNA library" /dev_stage="adult"
CDS	<1. .306 /note="unnamed protein product; ATP-BINDING CASSETTE, SUB-FAMILY G, MEMBER 8 (STEROLIN-2) homolog [Mus musculus] (SWISSPROT Q9DBM0, evidence: FASTY, 92%ID, 96.7%length, match=1796) putative" /codon_start=1 /protein_id="BAC25204.1" /db_xref="GI:26359608" /translation="PAGFMINLDNLWIVPAWISKLSFLRWCFSGVMQIQFNGHLYTTQI GNETESTLGDFTMSAMDLNSHPLYAIYLLIVIGISYGFLFLYYLSLKLKOKSIQDW"

ORIGIN

Query Match 15.0%; Score 303.4; DB 11; Length 586;
 Best Local Similarity 99.7%; Pred. No. 5.5e-63;
 Matches 304; Conservative 0; Mismatches 1; Indels 0; Gaps 0;

Qy 1715 CTGCCGGCTTCATGATAAACTTGGACAAACCTGTGGATAGTGCCTGCATGGATCTCCAAGC 1774

QY 1775 TGTCGTTCCCTCCGGTGGTGCTTCTCGGGGCTGATGCAGATTCAATTAAATGGACACCTTT 1834

Qu 1835 ACACCAACACAAATCGGCAACTTACCTTCTCCATCCTCGGAGACACGATGATCAGTGCCA 1894

Db 122 ACACCACACAAATCGGCAACTTCACCTTCTCCATCCTCGGAGACACGATGATCAGTGCCA 181

Db 182 TGGACCTGAACTCGCATCCACTCTATGCGATCTACCTCATTGTATCGGCATCAGCTACG 241

Qy 1955 GCTTCCTGTTCTGTACTATCTATCCTGAAGCTCATCAAACAGAAGTCAATTCAAGACT 2014
|||||

Db 242 GCTTCCTGTTCTGTACTATCTATCCTTGAAGCTCATCAACAGAAGTCAATTCAAGACT 301

Qy 2015 GGTGA 2019
|||||
Db 302 GGTGA 306

RESULT 12

BY708144

LOCUS BY708144 581 bp mRNA linear EST 16-DEC-2002

DEFINITION BY708144 RIKEN full-length enriched, adult male small intestine Mus musculus cDNA clone 2010011G12 5', mRNA sequence.

ACCESSION BY708144

VERSION BY708144.1 GI:27119328

KEYWORDS EST.

SOURCE Mus musculus (house mouse)

ORGANISM Mus musculus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.

REFERENCE 1 (bases 1 to 581)

AUTHORS Okazaki,Y., Furuno,M., Kasukawa,T., Adachi,J., Bono,H., Kondo,S., Nikaido,I., Osato,N., Saito,R., Suzuki,H., Yamanaka,I., Kiyosawa,H., Yagi,K., Tomaru,Y., Hasegawa,Y., Nogami,A., Schonbach,C., Gojobori,T., Baldarelli,R., Hill,D.P., Bult,C., Hume,D.A., Quackenbush,J., Schriml,L.M., Kanapin,A., Matsuda,H., Batalov,S., Beisel,K.W., Blake,J.A., Bradt,D., Brusic,V., Chothia,C., Corbani,L.E., Cousins,S., Dalla,E., Dragani,T.A., Fletcher,C.F., Forrest,A., Frazer,K.S., Gaasterland,T., Gariboldi,M., Gissi,C., Godzik,A., Gough,J., Grimmond,S., Gustincich,S., Hirokawa,N., Jackson,I.J., Jarvis,E.D., Kanai,A., Kawaji,H., Kawasawa,Y., Kedzierski,R.M., King,B.L., Konagaya,A., Kurochkin,I.V., Lee,Y., Lenhard,B., Lyons,P.A., Maglott,D.R., Maltais,L., Marchionni,L., McKenzie,L., Miki,H., Nagashima,T., Numata,K., Okido,T., Pavan,W.J., Pertea,G., Pesole,G., Petrovsky,N., Pillai,R., Pontius,J.U., Qi,D., Ramachandran,S., Ravasi,T., Reed,J.C., Reed,D.J., Reid,J., Ring,B.Z., Ringwald,M., Sandelin,A., Schneider,C., Semple,C.A., Setou,M., Shimada,K., Sultana,R., Takenaka,Y., Taylor,M.S., Teasdale,R.D., Tomita,M., Verardo,R., Wagner,L., Wahlestedt,C., Wang,Y., Watanabe,Y., Wells,C., Wilming,L.G., Wynshaw-Boris,A., Yanagisawa,M., Yang,I., Yang,L., Yuan,Z., Zavolan,M., Zhu,Y., Zimmer,A., Carninci,P., Hayatsu,N., Hirozane-Kishikawa,T., Konno,H., Nakamura,M., Sakazume,N., Sato,K., Shiraki,T., Waki,K., Kawai,J., Aizawa,K., Arakawa,T., Fukuda,S., Hara,A., Hashizume,W., Imotani,K., Ishii,Y., Itoh,M., Kagawa,I., Miyazaki,A., Sakai,K., Sasaki,D., Shibata,K., Shinagawa,A., Yasunishi,A., Yoshino,M., Waterston,R., Lander,E.S., Rogers,J., Birney,E. and Hayashizaki,Y.

TITLE Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs

JOURNAL Nature 420, 563-573 (2002)

MEDLINE 22354683

PUBMED 12466851

COMMENT Contact: Yoshihide Hayashizaki
Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center(GSC), Yokohama Institute
The Institute of Physical and Chemical Research (RIKEN)
1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan

Tel: 81-45-503-9222
Fax: 81-45-503-9216
Email: genome-res@gsc.riken.go.jp,
URL:<http://genome.gsc.riken.go.jp/>

Adachi,J., Aizawa,K., Akimura,T., Arakawa,T., Carninci,P., Fukuda,S., Hashizume,W., Hayashida,K., Hirozane,T., Hori,F., Imotani,K., Ishii,Y., Itoh,M., Kagawa,I., Kawai,J., Kojima,Y., Kondo,S., Konno,H., Koya,S., Miyazaki,A., Murata,M., Nakamura,M., Nomura,K., Numazaki,R., Ohno,M., Ohsato,N., Saito,R., Sakazume,N., Sano,H., Sasaki,D., Sato,K., Shibata,K., Shiraki,T., Tagami,M., Takeda,Y., Waki,K., Watahiki,A., Muramatsu,M. and Hayashizaki,Y.

Direct Submission

Computational Analysis of Full-Length Mouse cDNAs Compared with Human Genome Sequences Mamm. Genome. 12, 673-677 (2001)

Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes. Genome Res. 10 (10), 1617-1630 (2000)

RIKEN integrated sequence analysis (RISA) system--384-format sequencing pipeline with 384 multicapillary sequencer. Genome Res. 10 (11), 1757-1771 (2000)

Computer-based methods for the mouse full-length cDNA encyclopedia: real-time sequence clustering for construction of a nonredundant cDNA library. Genome Res. 11 (2), 281-289 (2001)

cDNA library was prepared and sequenced in Mouse Genome Encyclopedia Project of Genome Exploration Research Group in Riken Genomic Sciences Center and Genome Science Laboratory in RIKEN. Division of Experimental Animal Research in Riken contributed to prepare mouse tissues.

Please visit our web site (<http://genome.gsc.riken.go.jp>) for further details.

FEATURES	Location/Qualifiers
source	1. .581 /organism="Mus musculus" /mol_type="mRNA" /db_xref="taxon:10090" /clone="2010011G12" /sex="male" /tissue_type="small intestine" /dev_stage="adult" /lab_host="SOLR" /clone_lib="RIKEN full-length enriched, adult male small intestine" /note="Site_1: XhoI; Site_2: SstI; cDNA library was prepared and sequenced in Mouse Genome Encyclopedia Project of Genome Exploration Research Group in Riken Genomic Sciences Center and Genome Science Laboratory in RIKEN. Division of Experimental Animal Research in Riken contributed to prepare mouse tissues. 1st strand cDNA was primed with a primer [5' GAGAGAGAGAGCGGCCGCAACTCGAGTTTTTTTTTTVN 3'], cDNA was prepared by using trehalose thermo-activated reverse transcriptase and subsequently enriched for full-length by cap-trapper. cDNA went through one round of normalization to Rot = 5.0 and subtraction to Rot = .20.0. Second strand cDNA was prepared with the primer adapter of sequence [5' GAGAGAGAGAGCGGCCGCAATTAAATTCTCGAGTTAATTAAATCCCCCCCCCCC 3']. cDNA was cleaved with XhoI and SstI."

ORIGIN

Query Match 14.8%; Score 298.4; DB 13; Length 581;
Best Local Similarity 99.7%; Pred. No. 9.1e-62;
Matches 299; Conservative 0; Mismatches 1; Indels 0; Gaps 0;

Qy 1720 GGCTTCATGATAAACTTGGACAAACCTGTGGATAGTCGCCTGCATGGATCTCCAAGCTGTCG 1779
Db 1 GGCTTCATGATAAACTTGGACAAACCTGTGGATAGTCGCCTGCATGGATCTCCAAGCTGTCG 60

Qy 1780 TTCCCTCCGGTGGTGCTTCTCGGGGCTGATGCAGATTCAATTAAATGGACACCTTACACC 1839
Db 61 TTCCCTCCGGTGGTGCTTCTCGGGGGTGATGCAGATTCAATTAAATGGACACCTTACACC 120

Qy 1840 ACACAAATCGGCAACTTCACCTCTCCATCCTCGGAGACACGATGATCAGTGCCATGGAC 1899
Db 121 ACACAAATCGGCAACTTCACCTCTCCATCCTCGGAGACACGATGATCAGTGCCATGGAC 180

Qy 1900 CTGAACTCGCATCCACTCTATGCATCTACCTCATTGTCATCGGCATCAGCTACGGCTTC 1959
Db 181 CTGAACTCGCATCCACTCTATGCATCTACCTCATTGTCATCGGCATCAGCTACGGCTTC 240

Qy 1960 CTGTTCCCTGTACTATCTATCCTGAAGCTCATCAAACAGAAGTCATTCAAGACTGGTGA 2019
Db 241 CTGTTCCCTGTACTATCTATCCTGAAGCTCATCAAACAGAAGTCATTCAAGACTGGTGA 300

RESULT 13

CB502603/c

LOCUS CB502603 781 bp mRNA linear EST 16-MAY-2003
DEFINITION ssalme503002 gut *Salmo salar* cDNA, mRNA sequence.
ACCESSION CB502603
VERSION CB502603.1 GI:29313829
KEYWORDS EST.
SOURCE *Salmo salar* (Atlantic salmon)
ORGANISM *Salmo salar*
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Actinopterygii; Neopterygii; Teleostei; Euteleostei;
Protacanthopterygii; Salmoniformes; Salmonidae; *Salmo*.
REFERENCE 1 (bases 1 to 781)
AUTHORS GRASP Consortium, Davidson,W.S., Koop,B.F. and
<http://web.uvic.ca/cbr/grasp>.
TITLE A survey of *Salmo salar* transcripts from high complexity cDNA
libraries
JOURNAL Unpublished (2002)
COMMENT Contact: Koop BF
Centre for Biomedical Research
University of Victoria
PO Box 3020 STN CSC, Victoria BC, V8W 3N5, Canada
Tel: 250 472 4067
Fax: 250 472 4075
Email: bkoop@uvic.ca
Genome Sciences Centre, BC Cancer Agency cDNA preparation,
sequencing and bioinformatics: Y Butterfield, R Kirkpatrick, J
Asano, N Girn, R Guin, D Lee, S Lee, T Olson, P Pandoh, A Prahbu, D
Smailus, L Spence, J Stott, S Taylor, G Yang, J Schein, S Jones and
M Marra.

Db 229 GTAGTGGCTTCATGCTCTACTACCTATCACTCAAATTCAAGCAGAAGTCCAGC 170

Qy 2008 CAAGACTGGTGA 2019

|| |||||||||

Db 169 CAGGACTGGTGA 158

RESULT 14

AI574075

LOCUS AI574075 435 bp mRNA linear EST 29-MAR-1999
DEFINITION uj67h11.y1 Sugano mouse liver mlia Mus musculus cDNA clone
IMAGE:1925061 5', mRNA sequence.
ACCESSION AI574075
VERSION AI574075.1 GI:4537449
KEYWORDS EST.
SOURCE Mus musculus (house mouse)
ORGANISM Mus musculus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE 1 (bases 1 to 435)
AUTHORS Marra,M., Hillier,L., Kucaba,T., Martin,J., Beck,C., Wylie,T.,
Underwood,K., Steptoe,M., Theising,B., Allen,M., Bowers,Y.,
Person,B., Swaller,T., Gibbons,M., Pape,D., Harvey,N., Schurk,R.,
Ritter,E., Kohn,S., Shin,T., Jackson,Y., Cardenas,M., McCann,R.,
Waterston,R. and Wilson,R.
TITLE The WashU-NCI Mouse EST Project 1999
JOURNAL Unpublished (1999)
COMMENT Contact: Marra M/WashU-NCI Mouse EST Project 1999
Washington University School of Medicine
4444 Forest Park Parkway, Box 8501, St. Louis, MO 63108, USA
Tel: 314 286 1800
Fax: 314 286 1810
Email: mouseest@watson.wustl.edu
This clone is available royalty-free through LLNL ; contact the
IMAGE Consortium (info@image.llnl.gov) for further information.
MGI:981353
Seq primer: custom primer used
High quality sequence stop: 432.
FEATURES Location/Qualifiers
source 1. .435
/organism="Mus musculus"
/mol_type="mRNA"
/strain="C57BL"
/db_xref="taxon:10090"
/clone="IMAGE:1925061"
/sex="female"
/dev_stage="adult"
/lab_host="DH10B"
/clone_lib="Sugano mouse liver mlia"
/note="Organ: liver; Vector: pME18S-FL3; Site_1: DraIII
(CACTGTGTG); Site_2: DraIII (CACCATGTG); 1st strand cDNA
was primed with an oligo(dT) primer
[ATGTGGCCTTTTTTTTTTT]; double-stranded cDNA was
ligated to a DraIII adaptor [TGTTGGCCTACTGG], digested
and cloned into distinct DraIII sites of the pME18S-FL3
vector (5' site CACTGTGTG, 3' site CACCATGTG). XhoI should
be used to isolate the cDNA insert. Size selection was

performed to exclude fragments <1.5kb. Library constructed by Dr. Sumio Sugano (University of Tokyo Institute of Medical Science). Custom primers for sequencing: 5' end primer CTTCTGCTCTAAAGCTGCG and 3' end primer CGACCTGCAGCTCGAGCACA."

ORIGIN

Query Match 13.7%; Score 275.8; DB 9; Length 435;
Best Local Similarity 99.3%; Pred. No. 2.6e-56;
Matches 277; Conservative 0; Mismatches 2; Indels 0; Gaps 0;

Qy 1 ATGGCTGAGAAAACCAAAAGAAGAGACCCAGCTGTGGAATGGACTGTACTTCAGGATGCT 60
Db |||||||
Qy 2 ATGGCTGAGAAAACCAAAAGAAGAGACCCAGCTGTGGAATGGACTGTACTTCAGGATGCT 61
Db |||||||
Qy 61 TCGGGCCTCCAGGACAGCTTGTCTCCTCGGAAAGTGACAACAGTCTGTACTTCACCTAC 120
Db |||||||
Qy 62 TCGGGCCTCCAGGACAGCTTGTCTCCTCGGAAAGTGACAACAGTCTGTACTTCACCTAC 121
Db |||||||
Qy 121 AGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATCGCCTCT 180
Db |||||||
Qy 122 AGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATCGCCTCT 181
Db |||||||
Qy 181 CAGGTGCCTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGCAGC 240
Db |||||||
Qy 182 CAGGTGCCTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGCAGC 241
Db |||||||
Qy 241 CAAGACTCCTGTGAGCTGGCATCCGAAATCTAACGTTTC 279
Db |||||||
Qy 242 CAAGACTCCTGTGAGCTGGCATCCGAAATCTAACACTTC 280

RESULT 15

BX482362

LOCUS BX482362 334 bp mRNA linear EST 04-SEP-2003
DEFINITION DKFZp686F02230_r1 686 (synonym: hlcc3) Homo sapiens cDNA clone
DKFZp686F02230 5', mRNA sequence.
ACCESSION BX482362
VERSION BX482362.1 GI:31942182
KEYWORDS EST.
SOURCE Homo sapiens (human)
ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 334)
AUTHORS Koehrer,K., Beyer,A., Mewes,H.W., Weil,B., Amid,C., Osanger,A.,
Fobo,G., Han,M. and Wiemann,S.
TITLE EST (Koehrer,K., Beyer,A., Mewes,H.W., Weil,B., Amid,C., et al.)
JOURNAL Unpublished (2003)
COMMENT Contact: MIPS
MIPS
Ingolstaedter Landstr.1, D-85764 Neuherberg, Germany
This is the 5' sequence of the clone insert
Clone from S. Wiemann, Molecular Genome Analysis, German Cancer Research Center (DKFZ); Email s.wiemann@dkfz-heidelberg.de;
sequenced by BMFZ (Biomedical Research Center at the Heinrich-Heine-University, Duesseldorf/Germany) within the cDNA sequencing

consortium of the German Genome Project. No s1 sequence available. This clone (DKFZp686F02230) is available at the RZPD in Berlin. Please contact the RZPD: Ressourcenzentrum, Heubnerweg 6, 14059 Berlin-Charlottenburg, GERMANY; Email: clone@rzpd.de.

FEATURES Location/Qualifiers
source 1. .334
/organism="Homo sapiens"
/mol_type="mRNA"
/db_xref="taxon:9606"
/clone="DKFZp686F02230"
/dev_stage="adult"
/lab_host="DH10B"
/clone_lib="686 (synonym: hlcc3)"
/note="Vector: pTripleX2; Site_1: SfiIA; Site_2: SfiIB;
cDNA-collection"

ORIGIN

Query Match 12.6%; Score 254; DB 13; Length 334;
 Best Local Similarity 85.0%; Pred. No. 4.7e-51;
 Matches 284; Conservative 0; Mismatches 50; Indels 0; Gaps 0;

Qy 1189 CAGTTTCCACCCTGATCGTCGTACAGATTCCAATGACTTCGGGACCTGCCAACGCTG 1248
||||||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Qy 1249 CTCATTGATGGTCGGAAGCCTGCCTGATGTCCCTCATCATTGGCTTCCTTACTACGGC 1308
||||| ||||| ||||| ||||| ||||| ||||| | | ||||| ||||| ||| | | |

Qy 1309 CATGGGCCAAGCAGCTCCTTCATGGACACAGCAGCCCTCTTCACTGATAGGGCG 1368

Oy 1369 CTCATTCTTTCAATGTCATCCTGGATGTCGTCTCAAATGTCACTCGGAGAGGTCAATG 1428

Db 181 CTCATCCCTTCAACGTATTCTGGATGTCATCTCAAATGTTACTCAGAGAGGGCAATG 240

QY 1425 CTGACTATGACCTGAGCACCCTGTACACTGGTCCATATTCTTGCAAGATC 300
Db 241 CTTTACTATGAACCTGGAAGACGGGCTGTACACCCTGGTCCATATTCTTGCAAGATC

Qy	1489	CTAGGAGAATTGCCGGAGCACTGTGCCTACGTCA	1522
Db	301	CTCGGGGAGCTTCCGGAGCACTGTGCCTACATCA	334

Search completed: February 26, 2004, 09:39:24
Job time : 3419.29 secs

GenCore version 5.1.6
Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: February 26, 2004, 00:40:23 ; Search time 5185.97 Seconds
(without alignments)
16874.299 Million cell updates/sec

Title: US-09-989-981A-3

Perfect score: 2019

Sequence: 1 atggctgagaaaaccaaaga.....agtcaattcaagactggta 2019

Scoring table: IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

Searched: 3470272 seqs, 21671516995 residues

Total number of hits satisfying chosen parameters: 6940544

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : GenEmbl:*

1: gb_ba:*

2: gb_htg:*

3: gb_in:*

4: gb_om:*

5: gb_ov:*

6: gb_pat:*

7: gb_ph:*

8: gb_pl:*

9: gb_pr:*

10: gb_ro:*

11: gb_sts:*

12: gb_sy:*

13: gb_un:*

14: gb_vi:*

15: em_ba:*

16: em_fun:*

17: em_hum:*

18: em_in:*

19: em_mu:*

20: em_om:*

21: em_or:*

22: em_ov:*

23: em_pat:*

24: em_ph:*

25: em_pl:*

26: em_ro:*

27: em_sts:*

```

28: em_un:*
29: em_vi:*
30: em_htg_hum:*
31: em_htg_inv:*
32: em_htg_other:*
33: em_htg_mus:*
34: em_htg_pln:*
35: em_htg_rod:*
36: em_htg_mam:*
37: em_htg_vrt:*
38: em_sy:*
39: em_htgo_hum:*
40: em_htgo_mus:*
41: em_htgo_other:*

```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query				Description
		Match	Length	DB	ID	
1	2019	100.0	2019	6	AX685731	AX685731 Sequence
2	2019	100.0	2284	10	AY196216	AY196216 Mus muscu
3	2006	99.4	3674	10	AF324495	AF324495 Mus muscu
4	1999.8	99.0	2285	10	AY196215	AY196215 Mus muscu
5	1727.8	85.6	4829	10	AF351785	AF351785 Rattus no
6	1430	70.8	2669	6	AX685735	AX685735 Sequence
7	1428.4	70.7	2022	9	AF320294	AF320294 Homo sapi
8	1428.4	70.7	2679	9	AF324494	AF324494 Homo sapi
9	743.8	36.8	3239	6	AX478099	AX478099 Sequence
c 10	302.2	15.0	204584	10	AC122243	AC122243 Mus muscu
11	275.8	13.7	1387	10	F351799S06	AF351804 Mus muscu
12	270.6	13.4	1378	10	F351799S11	AF351809 Mus muscu
13	264.8	13.1	237445	2	AC120701	AC120701 Rattus no
c 14	264.8	13.1	312858	2	AC112747	AC112747 Rattus no
c 15	264.2	13.1	40929	10	AY145899	AY145899 Rattus no
16	245.2	12.1	1470	10	F351799S04	AF351802 Mus muscu
17	225.8	11.2	207760	2	AC146286	AC146286 Callicebu
18	225.6	11.2	660	9	F351812S06	AF351817 Homo sapi
19	225.6	11.2	127066	9	AC084265	AC084265 Homo sapi
20	225.6	11.2	139342	9	AC108476	AC108476 Homo sapi
c 21	222.4	11.0	202533	2	AC146464	AC146464 Saimiri s
22	219.4	10.9	178016	2	AC146787	AC146787 Aotus nan
23	219.4	10.9	185045	2	AC146466	AC146466 Callithri
c 24	216.8	10.7	159346	2	AC145533	AC145533 Lemur cat
c 25	212	10.5	68166	2	AC084712	AC084712 Homo sapi
26	206.2	10.2	1292	9	F351812S11	AF351822 Homo sapi
27	205.2	10.2	642	10	F351799S09	AF351807 Mus muscu
28	205.2	10.2	182261	2	AC087053	AC087053 Homo sapi
29	199.2	9.9	1920	6	AX456519	AX456519 Sequence
30	199.2	9.9	2340	6	AX320883	AX320883 Sequence
31	199.2	9.9	2340	6	AX685733	AX685733 Sequence
32	199.2	9.9	2340	9	AF320293	AF320293 Homo sapi
33	199.2	9.9	2516	6	AX456520	AX456520 Sequence

34	199.2	9.9	2740	9	AF312715	AF312715 Homo sapi
35	195	9.7	2035	6	AX456526	AX456526 Sequence
36	195	9.7	2470	10	AF312714	AF312714 Rattus no
37	189.4	9.4	159346	2	AC145533	AC145533 Lemur cat
38	188.2	9.3	2351	10	AY195872	AY195872 Mus muscu
39	188.2	9.3	2351	10	AY195873	AY195873 Mus muscu
40	186.6	9.2	1915	6	AX456523	AX456523 Sequence
41	186.6	9.2	1959	6	AX685729	AX685729 Sequence
42	186.6	9.2	2258	6	AX320881	AX320881 Sequence
43	186.6	9.2	2354	6	AX456524	AX456524 Sequence
44	186.6	9.2	2354	10	AF312713	AF312713 Mus muscu
c 45	185	9.2	64889	2	AC120532	AC120532 Oryza sat

ALIGNMENTS

RESULT 1

AX685731

LOCUS AX685731 2019 bp DNA linear PAT 29-MAR-2003
 DEFINITION Sequence 3 from Patent WO02081691.
 ACCESSION AX685731
 VERSION AX685731.1 GI:29371740
 KEYWORDS .
 SOURCE Mus musculus (house mouse)
 ORGANISM Mus musculus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
 REFERENCE 1
 AUTHORS Hobbs, H.H., Shan, B., Barnes, R. and Tian, H.
 TITLE Abcg5 and abcg8: compositions and methods of use
 JOURNAL Patent: WO 02081691-A 3 17-OCT-2002;
 Tularik Inc. (US) ; BOARD OF REGENTS UNIVERSITY OF TEXAS SYSTEM
 (US)
 FEATURES Location/Qualifiers
 source 1. .2019
 /organism="Mus musculus"
 /mol_type="unassigned DNA"
 /db_xref="taxon:10090"
 CDS 1. .2019
 /note="unnamed protein product; mouse ABCG8 (mABCG8)"
 /codon_start=1
 /protein_id="CAD86571.1"
 /db_xref="GI:29371741"
 /db_xref="REMTREMBL:CAD86571"
 /translation="MAEKTKEETQLWNGTVLQDASGLQDSLFSSESDNSLYFTYSGQS
 NTLEVRDLTYQVDIASQVPWFEQLAQFKIPWRSHSSQDSCELGIRNLSPKVRSGQMLA
 IIGSSGCGRASLLDVITGRGHGGMKMGSQIWINQQPSTPQLVRKCAHVVRQHDQLLPN
 LTVRETLAFIAQMRLPRTFSQAQRDKRVEDVIAELRLRQCANTRGNTYVRGVSGGER
 RRVSIGVQLLNPGILILDEPTSGLDSFTAHLNLVTTLSSLRAKGNNRLVLISLHQPRSDF
 FRLFDLVLLMTSGTPIYLGAQQMVQYFTSIGHPCPRYSNPADFYVDLTSIDRRSKER
 EVATVEKAQSLAALFLEKVQGFDDFLWKAEEAKELNTSTHTVSLTLTQDTDCGTAVELP
 GMIEQFSTLIRRQISNDFRDLPTLIIHGSEACLMSLIIGFLYYGHGAKQLSFMDTAAL
 LFMIGALIPFNVIDVVSCKHSERSMLYYELEDGLYTAGPYFFAKILGELPEHCAYVI
 IYAMPIYWLTNLRPVPELFLLHFLVVWLVVFCCRTMALAASAMLPTFHMSSFFCNALY
 NSFYLTAGFMINLDNLWIVPAWISKLSFLRWCFSGLMQIQFNGHLYTTQIGNFTFSIL
 GDTMISAMDLNSHPLYAIYLIVIGISYGFFLYYLSLKLKQKSIQDW"

ORIGIN

Query Match 100.0%; Score 2019; DB 6; Length 2019;
 Best Local Similarity 100.0%; Pred. No. 0;
 Matches 2019; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy	1 ATGGCTGAGAAAACCAAGAAGAGACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT 60
Db	1 ATGGCTGAGAAAACCAAGAAGAGACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT 60
Qy	61 TCGGGCCTCCAGGACAGCTTGTCTCCTCGAAAGTGACAACAGTCTGTACTTCACCTAC 120
Db	61 TCGGGCCTCCAGGACAGCTTGTCTCCTCGAAAGTGACAACAGTCTGTACTTCACCTAC 120
Qy	121 AGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATGCCTCT 180
Db	121 AGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATGCCTCT 180
Qy	181 CAGGTGCCTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGCAGC 240
Db	181 CAGGTGCCTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGCAGC 240
Qy	241 CAAGACTCCTGTGAGCTGGCATCCGAAATCTAACGTTCAAAGTGAGGAGTGGACAGATG 300
Db	241 CAAGACTCCTGTGAGCTGGCATCCGAAATCTAACGTTCAAAGTGAGGAGTGGACAGATG 300
Qy	301 CTGGCCATCATAGGGAGCTCAGGCTGCAGGAGAGCCTCACTACTCGACGTGATCACAGGC 360
Db	301 CTGGCCATCATAGGGAGCTCAGGCTGCAGGAGAGCCTCACTACTCGACGTGATCACAGGC 360
Qy	361 AGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAAATGGCAACCCAGTACG 420
Db	361 AGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAAATGGCAACCCAGTACG 420
Qy	421 CCTCAGCTGGTGAGGAAGTGCCTGCGCATGTGCGCAGCATGACCAACTGCTGCCAAC 480
Db	421 CCTCAGCTGGTGAGGAAGTGCCTGCGCATGTGCGCAGCATGACCAACTGCTGCCAAC 480
Qy	481 CTGACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATGCGCTGCCAGGACCTCTCC 540
Db	481 CTGACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATGCGCTGCCAGGACCTCTCC 540
Qy	541 CAGGCCAGCGTGACAAACGGTGGAAAGACGTAATGCCGAGCTGCGCTGCCAGTGC 600
Db	541 CAGGCCAGCGTGACAAACGGTGGAAAGACGTAATGCCGAGCTGCGCTGCCAGTGC 600
Qy	601 GCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGCGCCGACGA 660
Db	601 GCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGCGCCGACGA 660
Qy	661 GTGAGCATTGGGTGCAGCTCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACT 720
Db	661 GTGAGCATTGGGTGCAGCTCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACT 720
Qy	721 TCTGGCCTCGACAGCTCACAGCCCACAATCTGGTACAACCTGTCCCGCTGGCAAG 780
Db	721 TCTGGCCTCGACAGCTCACAGCCCACAATCTGGTACAACCTGTCCCGCTGGCAAG 780

Qy	781	GGCAACAGGCTGGTGCATCTCCCTCCACCAGCCTCGCTCTGACATCTCAGGCTATT 840
Db	781	GGCAACAGGCTGGTGCATCTCCCTCCACCAGCCTCGCTCTGACATCTCAGGCTATT 840
Qy	841	GACCTGGTCCTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGCGCAGCAAATG 900
Db	841	GACCTGGTCCTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGCGCAGCAAATG 900
Qy	901	GTGCAGTACTTCACATCCATTGGCCACCCTTGTCCCTCGCTATAGCAACCCCTGCGGACTTC 960
Db	901	GTGCAGTACTTCACATCCATTGGCCACCCTTGTCCCTCGCTATAGCAACCCCTGCGGACTTC 960
Qy	961	TACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGAGGTGCCACCGTGGAG 1020
Db	961	TACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGAGGTGCCACCGTGGAG 1020
Qy	1021	AAGGCACAGTCTCTTGAGCCCTGTTCTAGAAAAAGTACAAGGCTTGATGACTTTCTG 1080
Db	1021	AAGGCACAGTCTCTTGAGCCCTGTTCTAGAAAAAGTACAAGGCTTGATGACTTTCTG 1080
Qy	1081	TGGAAAGCTGAGGCAAAGGAACCTAACACACAAGCACCCACACAGTCAGCCTGACCCCTCACA 1140
Db	1081	TGGAAAGCTGAGGCAAAGGAACCTAACACACAAGCACCCACACAGTCAGCCTGACCCCTCACA 1140
Qy	1141	CAGGACACTGACTGTGGACTGCTGTTGAGCTGCCCGGGATGATAGAGCAGTTTCCACC 1200
Db	1141	CAGGACACTGACTGTGGACTGCTGTTGAGCTGCCCGGGATGATAGAGCAGTTTCCACC 1200
Qy	1201	CTGATCCGTCGTCAGATTCCAATGACTTCCGGACCTGCCACGCTGCTCATTGATGGG 1260
Db	1201	CTGATCCGTCGTCAGATTCCAATGACTTCCGGACCTGCCACGCTGCTCATTGATGGG 1260
Qy	1261	TCGGAAGCCTGCCTGATGTCCTCATCATTGGCTCCTTACTACGGCCATGGGGCAAG 1320
Db	1261	TCGGAAGCCTGCCTGATGTCCTCATCATTGGCTCCTTACTACGGCCATGGGGCAAG 1320
Qy	1321	CAGCTCTCCTTCATGGACACAGCAGCCCTCCTTCATGATAGGGCGCTCATTCTTC 1380
Db	1321	CAGCTCTCCTTCATGGACACAGCAGCCCTCCTTCATGATAGGGCGCTCATTCTTC 1380
Qy	1381	AATGTCATCCTGGATGTCGTCTCAAATGTCACTCGGAGAGGTCAATGCTGTACTATGAG 1440
Db	1381	AATGTCATCCTGGATGTCGTCTCAAATGTCACTCGGAGAGGTCAATGCTGTACTATGAG 1440
Qy	1441	CTGGAAAGACGGGCTGTACACTGCTGGCCTATTCTTGCCTAGGAGAATTG 1500
Db	1441	CTGGAAAGACGGGCTGTACACTGCTGGCCTATTCTTGCCTAGGAGAATTG 1500
Qy	1501	CCGGAGCACTGTGCCTACGTACATCTACCGCATGCCACTACTGGCTGACAAACCTG 1560
Db	1501	CCGGAGCACTGTGCCTACGTACATCTACCGCATGCCACTACTGGCTGACAAACCTG 1560
Qy	1561	CGGCCCGTGCCTGAGCTTCTCTACACTCCTGCTCGTGTGGTTGGTGGTCTTCTGC 1620
Db	1561	CGGCCCGTGCCTGAGCTTCTCTACACTCCTGCTCGTGTGGTTGGTGGTCTTCTGC 1620

Qy	1621	TGCAGGACCATGGCCCTGGCTGCCCTGCCATGCTGCCACCTTCACATGTCCCTCCTTC	1680
Db	1621	TGCAGGACCATGGCCCTGGCTGCCCTGCCATGCTGCCACCTTCACATGTCCCTCCTTC	1680
Qy	1681	TTCTGCAATGCCCTCTACAACACTCCTTACACCTACTGCCGGCTTCATGATAAACTGGAC	1740
Db	1681	TTCTGCAATGCCCTCTACAACACTCCTTACACCTACTGCCGGCTTCATGATAAACTGGAC	1740
Qy	1741	AACCTGTGGATAGTGCTGCATGGATCTCCAAGCTGTCGTTCCCTCCGGTGGTGCCTCG	1800
Db	1741	AACCTGTGGATAGTGCTGCATGGATCTCCAAGCTGTCGTTCCCTCCGGTGGTGCCTCG	1800
Qy	1801	GGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTTCACC	1860
Db	1801	GGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTTCACC	1860
Qy	1861	TTCTCCATCCTCGGAGACACGATGATCAGTGCATGGACCTGAACTCGCATCCACTCTAT	1920
Db	1861	TTCTCCATCCTCGGAGACACGATGATCAGTGCATGGACCTGAACTCGCATCCACTCTAT	1920
Qy	1921	GCGATCTACCTCATTGTCATCGGCATCAGCTACGGCTCCTGTTCTGTACTATCTATCC	1980
Db	1921	GCGATCTACCTCATTGTCATCGGCATCAGCTACGGCTCCTGTTCTGTACTATCTATCC	1980
Qy	1981	TTGAAGCTCATCAAACAGAAGTCAATTCAAGACTGGTGA	2019
Db	1981	TTGAAGCTCATCAAACAGAAGTCAATTCAAGACTGGTGA	2019

RESULT 2

AY196216

LOCUS AY196216 2284 bp mRNA linear ROD 01-JUN-2003
 DEFINITION Mus musculus strain PERA/Ei ATP-binding cassette sub-family G member 8 (Abcg8) mRNA, complete cds.
 ACCESSION AY196216
 VERSION AY196216.1 GI:31322261
 KEYWORDS .
 SOURCE Mus musculus (house mouse)
 ORGANISM Mus musculus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
 REFERENCE 1 (bases 1 to 2284)
 AUTHORS Wittenburg,H., Lyons,M.A., Li,R., Churchill,G.A., Carey,M.C. and Paigen,B.
 TITLE Primary Roles of FXR and ABCG5/ABCG8 in Cholesterol Gallstone Susceptibility: Evidence from a Cross of PERA/Ei and I/Ln Inbred Mice
 JOURNAL Unpublished
 REFERENCE 2 (bases 1 to 2284)
 AUTHORS Lyons,M.A., Wittenburg,H., Walsh,K.A., Carey,M.C. and Paigen,B.
 TITLE Direct Submission
 JOURNAL Submitted (12-DEC-2002) The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
 FEATURES Location/Qualifiers
 source 1. .2284
 /organism="Mus musculus"
 /mol_type="mRNA"

```

                /strain="PERA/Ei"
                /db_xref="taxon:10090"
                /chromosome="17"
                /map="55 cM"
                /sex="male"
                /tissue_type="liver"
gene          1. .2284
                /gene="Abcg8"
CDS           102. .2120
                /gene="Abcg8"
                /note="ATP-dependent canalicular cholesterol transporter;
white subfamily"
                /codon_start=1
                /product="ATP-binding cassette sub-family G member 8"
                /protein_id="AAO45096.1"
                /db_xref="GI:31322262"
                /translation="MAEKTKEETQLWNGTVLQDASGLQDSLFSSESDNSLYFTYSGQS
NTLEVRLTYQVDIASQVPWFQLAQFKIPWRSHSQDSELGIRNLSFKVRSGQMLA
IIGSSGCGRASLLDVITGRGHGGKMKSGQIWINQGPSTPQLVRKCVAHVRQHDQLLPN
LTVRETLAFIAQMRLPRTFSQAQRDKRVEDVIAELRLRQCANTRVGNTYVRGVSGGER
RRVSIGVQLLNPGILILDEPTSGLDSFTAHLVTTSLAKGNRVLISLHQPRSIDI
FRLFDLVLLMTSGTPYLGAAQQMVQYFTSIGHPCPRYSNPADFYVDLTSIDRRSKER
EVATVEKAQSLAALFLEKVQGFDDFLWKAEEAKELNTSTHTVSLLTQDTDCGTAVELP
GMIEQFSTLIRRQISNDFRDLPTLILIHGSEACLMSLIIGFLYGHGAKQLSFMDTAAL
LFMIGALIPFNVIDVVSKCHSERMLYYELEDGLYTAGPYFFAKILGELPEHCAYVI
IYAMPIYWLTNLRPVPELFLLHFLLVWLVVFCCRTMALAASAMLPTFHMSFFCNALY
NSFYLTAGFMINLDNLWIVPAWISKLSFLRWCFSGLMQIQFNGHLYTTQIGNFTFSIL
GDTMISAMDLNSHPLYAIYLIVIGISYGFLLFYYLSSLKLIKQKSIQDW"

```

ORIGIN

Query Match	100.0%	Score	2019;	DB	10;	Length	2284;		
Best Local Similarity	100.0%	Pred. No.	0;						
Matches	2019;	Conservative	0;	Mismatches	0;	Indels	0;	Gaps	0;
Qy	1	ATGGCTGAGAAAACCAAAGAACAGAGACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT	60						
Db	102	ATGGCTGAGAAAACCAAAGAACAGAGACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT	161						
Qy	61	TCGGGCCTCCAGGACAGCTTGTTCCTCGGAAAGTGACAACAGTCTGTACTTCACCTAC	120						
Db	162	TCGGGCCTCCAGGACAGCTTGTTCCTCGGAAAGTGACAACAGTCTGTACTTCACCTAC	221						
Qy	121	AGTGGTCAGTCCAACACTCTGGAGGTAGAGATCTCACCTACCAGGTGGACATGCCCTCT	180						
Db	222	AGTGGTCAGTCCAACACTCTGGAGGTAGAGATCTCACCTACCAGGTGGACATGCCCTCT	281						
Qy	181	CAGGTGCCTGGTTGAGCAGCTGGCTCAGTTCAAGATACCCTGGAGGTCTCATAGCAGC	240						
Db	282	CAGGTGCCTGGTTGAGCAGCTGGCTCAGTTCAAGATACCCTGGAGGTCTCATAGCAGC	341						
Qy	241	CAAGACTCCTGTGAGCTGGCATCCGAAATCTAAGCTCAAAGTGAGGAGTGGACAGATG	300						
Db	342	CAAGACTCCTGTGAGCTGGCATCCGAAATCTAAGCTCAAAGTGAGGAGTGGACAGATG	401						
Qy	301	CTGGCCATCATAGGGAGCTCAGGCTCGGGAGAGCCTCACTACTCGACGTGATCACAGGC	360						
Db	402	CTGGCCATCATAGGGAGCTCAGGCTCGGGAGAGCCTCACTACTCGACGTGATCACAGGC	461						

Qy	361	AGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAAATGGCAACCCAGTACG	420
Db	462	AGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAAATGGCAACCCAGTACG	521
Qy	421	CCTCAGCTGGTGAGGAAGTGCCTGCGATGTGCGGCAGCATGACCAACTGCTGCCAAC	480
Db	522	CCTCAGCTGGTGAGGAAGTGCCTGCGATGTGCGGCAGCATGACCAACTGCTGCCAAC	581
Qy	481	CTGACCCTCAGAGAGACCCCTGGCTTCATTGCCAGATGCGCTGCCAGGACCTCTCC	540
Db	582	CTGACCCTCAGAGAGACCCCTGGCTTCATTGCCAGATGCGCTGCCAGGACCTCTCC	641
Qy	541	CAGGCCACCGTGACAAACGGGTGGAAGACGTAATGCCGAGCTGCCAGTGCAGTGC	600
Db	642	CAGGCCACCGTGACAAACGGGTGGAAGACGTAATGCCGAGCTGCCAGTGCAGTGC	701
Qy	601	GCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTAGCGCCGACGA	660
Db	702	GCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTAGCGCCGACGA	761
Qy	661	GTGAGCATTGGGTGCAGCTCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACT	720
Db	762	GTGAGCATTGGGTGCAGCTCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACT	821
Qy	721	TCTGGCCTCGACAGCTTCACAGCCCACAATCTGGTACACCTTGTCCCCCTGGCAAG	780
Db	822	TCTGGCCTCGACAGCTTCACAGCCCACAATCTGGTACACCTTGTCCCCCTGGCAAG	881
Qy	781	GGCAACAGGCTGGTGCTCATCTCCCTCCACAGCCTCGCTCTGACATCTCAGGCTATT	840
Db	882	GGCAACAGGCTGGTGCTCATCTCCCTCCACAGCCTCGCTCTGACATCTCAGGCTATT	941
Qy	841	GACCTGGCCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGCGCAGCAAATG	900
Db	942	GACCTGGCCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGCGCAGCAAATG	1001
Qy	901	GTGCAGTACTTCACATCCATTGGCACCCCTGTCCCTCGCTATAGCAACCTGCCGGACTTC	960
Db	1002	GTGCAGTACTTCACATCCATTGGCACCCCTGTCCCTCGCTATAGCAACCTGCCGGACTTC	1061
Qy	961	TACGTGGACTTGACCAGCATCGACAGACGCAAGAACGGGAGGTGGCCACCGTGGAG	1020
Db	1062	TACGTGGACTTGACCAGCATCGACAGACGCAAGAACGGGAGGTGGCCACCGTGGAG	1121
Qy	1021	AAGGCACAGTCTTGCAGCCCTGTTCTAGAAAAAGTACAAGGCTTGATGACTTCTG	1080
Db	1122	AAGGCACAGTCTTGCAGCCCTGTTCTAGAAAAAGTACAAGGCTTGATGACTTCTG	1181
Qy	1081	TGGAAAGCTGAGGCAAAGGAACCTAACACACAAGCACAGTCAGCCTGACCCCTACA	1140
Db	1182	TGGAAAGCTGAGGCAAAGGAACCTAACACACAAGCACAGTCAGCCTGACCCCTACA	1241
Qy	1141	CAGGACACTGACTGTGGGACTGCTGTTGAGCTGCCGGATGATAGAGCAGTTTCCACC	1200
Db	1242	CAGGACACTGACTGTGGGACTGCTGTTGAGCTGCCGGATGATAGAGCAGTTTCCACC	1301

Qy	1201	CTGATCCGTCGTCAATTCCAAATGACTTCCGGGACCTGCCACGCTGCTCATTGATGGG 1260
Db	1302	CTGATCCGTCGTCAATTCCAAATGACTTCCGGGACCTGCCACGCTGCTCATTGATGGG 1361
Qy	1261	TCGGAAGCCTGCCTGATGCCCTCATCATTGGCTCCTTACTACGGCCATGGGCAAG 1320
Db	1362	TCGGAAGCCTGCCTGATGCCCTCATCATTGGCTCCTTACTACGGCCATGGGCAAG 1421
Qy	1321	CAGCTCTCCTCATGGACACAGCAGCCCTCCTTCTGATAGGGCGCTCATTCTTC 1380
Db	1422	CAGCTCTCCTCATGGACACAGCAGCCCTCCTTCTGATAGGGCGCTCATTCTTC 1481
Qy	1381	AATGTCATCCTGGATGTCGTCTCAAATGTCACTCGGAGAGGTCAATGCTGTACTATGAG 1440
Db	1482	AATGTCATCCTGGATGTCGTCTCAAATGTCACTCGGAGAGGTCAATGCTGTACTATGAG 1541
Qy	1441	CTGGAAGACGGGCTGTACACTGCTGGTCTTATTCTTGCAAGATCCTAGGAGAATTG 1500
Db	1542	CTGGAAGACGGGCTGTACACTGCTGGTCTTATTCTTGCAAGATCCTAGGAGAATTG 1601
Qy	1501	CCGGAGCACTGTGCCTACGTACATCTACGCGATGCCATCTACTGGTGACAAACCTG 1560
Db	1602	CCGGAGCACTGTGCCTACGTACATCTACGCGATGCCATCTACTGGTGACAAACCTG 1661
Qy	1561	CGGCCGTCGCTGAGCTCTCCTTCTACACTTCCTGCTCGTGGTTGGTGGTCTTC 1620
Db	1662	CGGCCGTCGCTGAGCTCTCCTTCTACACTTCCTGCTCGTGGTTGGTGGTCTTC 1721
Qy	1621	TGCAGGACCATGGCCCTGGCTGCCCTGCCATGCTGCCACCTCCACATGTCCTC 1680
Db	1722	TGCAGGACCATGGCCCTGGCTGCCCTGCCATGCTGCCACCTCCACATGTCCTC 1781
Qy	1681	TTCTGCAATGCCCTACAACCTTCTACCTTACTGCCGGCTCATGATAAACTTGGAC 1740
Db	1782	TTCTGCAATGCCCTACAACCTTCTACCTTACTGCCGGCTCATGATAAACTTGGAC 1841
Qy	1741	AACCTGTGGATAGTGCCTGCATGGATCTCAAGCTGTCGTTCCGGTGGTCTTC 1800
Db	1842	AACCTGTGGATAGTGCCTGCATGGATCTCAAGCTGTCGTTCCGGTGGTCTTC 1901
Qy	1801	GGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTTCACC 1860
Db	1902	GGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTTCACC 1961
Qy	1861	TTCTCCATCCTCGGAGACACGATGATCAGTGCCTGGACCTGAACCTCGCATCCACTCTAT 1920
Db	1962	TTCTCCATCCTCGGAGACACGATGATCAGTGCCTGGACCTGAACCTCGCATCCACTCTAT 2021
Qy	1921	GCGATCTACCTCATTGTATCGGCATCAGCTACGGCTTCTGTTCTGTACTATCTATCC 1980
Db	2022	GCGATCTACCTCATTGTATCGGCATCAGCTACGGCTTCTGTTCTGTACTATCTATCC 2081
Qy	1981	TTGAAGCTCATCAAAACAGAAGTCATTCAAGACTGGTGA 2019
Db	2082	TTGAAGCTCATCAAAACAGAAGTCATTCAAGACTGGTGA 2120

RESULT 3

AF324495

LOCUS AF324495 3674 bp mRNA linear ROD 07-AUG-2001
DEFINITION Mus musculus sterolin-2 (Abcg8) mRNA, complete cds.
ACCESSION AF324495
VERSION AF324495.1 GI:15088541
KEYWORDS .
SOURCE Mus musculus (house mouse)
ORGANISM Mus musculus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE 1 (bases 1 to 3674)
AUTHORS Lu, K., Lee, M.H., Hazard, S., Brooks-Wilson, A., Hidaka, H., Kojima, H.,
Ose, L., Stalenhoef, A.F., Miettinen, T., Bjorkhem, I., Bruckert, E.,
Pandya, A., Brewer, H.B. Jr., Salen, G., Dean, M., Srivastava, A. and
Patel, S.B.
TITLE Two genes that map to the STSL locus cause sitosterolemia: genomic
structure and spectrum of mutations involving sterolin-1 and
sterolin-2, encoded by ABCG5 and ABCG8, respectively
JOURNAL Am. J. Hum. Genet. 69 (2), 278-290 (2001)
MEDLINE 21344600
PUBMED 11452359
REFERENCE 2 (bases 1 to 3674)
AUTHORS Lu, K., Lee, M.-H. and Patel, S.B.
TITLE Direct Submission
JOURNAL Submitted (29-NOV-2000) Division of Endocrinology, Diabetes and
Medical Genetics, Medical University of South Carolina, 114 Doughty
Street, STB541, Charleston, SC 29403, USA
FEATURES Location/Qualifiers
source 1. .3674
/organism="Mus musculus"
/mol_type="mRNA"
/strain="C57BL/6"
/db_xref="taxon:10090"
/tissue_type="liver"
gene 1. .3674
/gene="Abcg8"
CDS 102. .2123
/gene="Abcg8"
/note="ABCG8"
/codon_start=1
/product="sterolin-2"
/protein_id="AAK84079.1"
/db_xref="GI:15088542"
/translation="MAEKTKETQLWNGTVLQDASQGLQDSLFSSESDNSLYFTYSGQ
SNTLEVRLDTYQVDIASQVPWFEOQLAQFKIPWRSHSSQDSCELGIRNLSPFKVRSGQML
AIIGSSGCRASLLDVITGRGHGGKMKGQIWINQGPSTPQLVRKCAHVQRQHDQLLP
NLTVRRETIAQMRLPRTFSQAQRDKRVEDVIAELRLRQCANTRVGNTYVRGVSGGE
RRRVSIGVQLLNPGILILDEPTSGLDSFTAHLVTTLSRLAKGNRLVLISLHQPRSD
IFRLFDLVLMTSGTPYLGAAQMVQYFTSIGHPCPRYSNPADFYVDLTSIDRRSKE
REVATVEKAQSLAALFLEKVQGFDDFLWKAEEAKELNTSTHTVSLTLDQDTCGTAVEL
PGMIEQFSTLIRRQISNDFRDLPTLLIHGSEACLMSLIIGFLYYGHGAKQLSFMDTAA
LIFMIGALIPFNVIDVVSCKHSERSMLYYELEDGLYTAGPYFFAKILGELPEHCAYV
IIYAMPIYWLTNLRPVPELFLLHFLLVWLVFCCRTMALAASAMLPTFHMSSFFCNAL
YNSFYLTAGFMINLDNLWIVPAWISKLSFLRWCFSGLMQIQFNGHLYTTQIGNFTFSI
LGDTMISAMDLNSHPLYAIYLIVIGISYGFLLYYLSLKLKIKQKSIQDW"

ORIGIN

Query Match 99.4%; Score 2006; DB 10; Length 3674;
Best Local Similarity 99.9%; Pred. No. 0;
Matches 2019; Conservative 0; Mismatches 0; Indels 3; Gaps 1;

Qy	1 ATGGCTGAGAAAACCAAAGAAGAGACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT	60
Db	102 ATGGCTGAGAAAACCAAAGAAGAGACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT	161
Qy	61 TC---GGGCCTCCAGGACAGCTTGTCTCCTCGGAAAGTGACAACAGTCTGTACTTCACC	117
Db	162 TCGCAGGGCCTCCAGGACAGCTTGTCTCCTCGGAAAGTGACAACAGTCTGTACTTCACC	221
Qy	118 TACAGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATGCC	177
Db	222 TACAGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATGCC	281
Qy	178 TCTCAGGTGCCCTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGC	237
Db	282 TCTCAGGTGCCCTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGC	341
Qy	238 AGCCAAGACTCCTGTGAGCTGGCATCCGAAATCTAACGCTCAAAGTGAGGAGTGGACAG	297
Db	342 AGCCAAGACTCCTGTGAGCTGGCATCCGAAATCTAACGCTCAAAGTGAGGAGTGGACAG	401
Qy	298 ATGCTGGCCATCATAGGGAGCTCAGGCTGGGGAGAGCCTCACTACTCGACGTGATCACA	357
Db	402 ATGCTGGCCATCATAGGGAGCTCAGGCTGGGGAGAGCCTCACTACTCGACGTGATCACA	461
Qy	358 GGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGT	417
Db	462 GGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGT	521
Qy	418 ACGCCTCAGCTGGTAGGAAAGTGCCTGCCTGCAGCATGACCAACTGCTGCC	477
Db	522 ACGCCTCAGCTGGTAGGAAAGTGCCTGCCTGCAGCATGACCAACTGCTGCC	581
Qy	478 AACCTGACCGTCAGAGAGACCTGGCTTCATTGCCAGATGCCCTGCCAGGACCTTC	537
Db	582 AACCTGACCGTCAGAGAGACCTGGCTTCATTGCCAGATGCCCTGCCAGGACCTTC	641
Qy	538 TCCCAGGCCAGCGTGACAAACGGGTGGAAGACGTAATGCCGAGCTGGCTGCCAG	597
Db	642 TCCCAGGCCAGCGTGACAAACGGGTGGAAGACGTAATGCCGAGCTGGCTGCCAG	701
Qy	598 TCGGCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGGCCGA	657
Db	702 TCGGCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGGCCGA	761
Qy	658 CGAGTGAGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCC	717
Db	762 CGAGTGAGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCC	821
Qy	718 ACTTCTGGCCTCGACAGCTCACAGCCCACAATCTGGTGACAACCTTGTCCCGCCTGGCC	777
Db	822 ACTTCTGGCCTCGACAGCTCACAGCCCACAATCTGGTGACAACCTTGTCCCGCCTGGCC	881

Qy	778	AAGGGCAACAGGCTGGTGCTCATCTCCCTCACCAGCCTCGCTTGACATCTCAGGCTA	837
Db	882	AAGGGCAACAGGCTGGTGCTCATCTCCCTCACCAGCCTCGCTTGACATCTCAGGCTA	941
Qy	838	TTTGACCTGGTCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGGCAGCAA	897
Db	942	TTTGACCTGGTCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGGCAGCAA	1001
Qy	898	ATGGTGCAGTACTTCACATCCATTGCCACCCCTGTCCCTCGCTATAGCAACCCCTGCGGAC	957
Db	1002	ATGGTGCAGTACTTCACATCCATTGCCACCCCTGTCCCTCGCTATAGCAACCCCTGCGGAC	1061
Qy	958	TTCTACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGAGGTGGCCACCGTG	1017
Db	1062	TTCTACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGAGGTGGCCACCGTG	1121
Qy	1018	GAGAAGGCACAGTCTTGCAGCCCTGTTCTAGAAAAAGTACAAGGCTTGATGACTTT	1077
Db	1122	GAGAAGGCACAGTCTTGCAGCCCTGTTCTAGAAAAAGTACAAGGCTTGATGACTTT	1181
Qy	1078	CTGTGGAAAGCTGAGGCAAAGGAACCTAACACACAAGCACCCACACAGTCAGCCTGACCTC	1137
Db	1182	CTGTGGAAAGCTGAGGCAAAGGAACCTAACACACAAGCACCCACACAGTCAGCCTGACCTC	1241
Qy	1138	ACACAGGACACTGACTGTGGACTGCTGTTGAGCTGCCGGGATGATAGAGCAGTTTCC	1197
Db	1242	ACACAGGACACTGACTGTGGACTGCTGTTGAGCTGCCGGGATGATAGAGCAGTTTCC	1301
Qy	1198	ACCTGATCCGTCGTCAAGATTCCAATGACTTCCGGGACCTGCCACGCTGCTCATTCA	1257
Db	1302	ACCTGATCCGTCGTCAAGATTCCAATGACTTCCGGGACCTGCCACGCTGCTCATTCA	1361
Qy	1258	GGGTCGGAAGCCTGCCTGATGTCCCTCATCATTGGCTCCTTACTACGCCATGGGC	1317
Db	1362	GGGTCGGAAGCCTGCCTGATGTCCCTCATCATTGGCTCCTTACTACGCCATGGGC	1421
Qy	1318	AAGCAGCTCCTTCATGGACACAGCAGCCCTCCTCTCATGATAGGGCGCTCATTCC	1377
Db	1422	AAGCAGCTCCTTCATGGACACAGCAGCCCTCCTCTCATGATAGGGCGCTCATTCC	1481
Qy	1378	TTCAATGTCATCCTGGATGTCGCTCCAAATGTCACTCGGAGAGGTCAATGCTGTACTAT	1437
Db	1482	TTCAATGTCATCCTGGATGTCGCTCCAAATGTCACTCGGAGAGGTCAATGCTGTACTAT	1541
Qy	1438	GAGCTGGAAGACGGGCTGTACACTGCTGGCCTTATTCTTGCCAAGATCCTAGGAGAA	1497
Db	1542	GAGCTGGAAGACGGGCTGTACACTGCTGGCCTTATTCTTGCCAAGATCCTAGGAGAA	1601
Qy	1498	TTGCCGGAGCACTGTGCCTACGTCATCATCACGCGATGCCATCTACTGGCTGACAAAC	1557
Db	1602	TTGCCGGAGCACTGTGCCTACGTCATCATCACGCGATGCCATCTACTGGCTGACAAAC	1661
Qy	1558	CTGCCGGCCCGTGCCTGAGCTCTCCTTCTACACTTCCCTGCTCGTGTGGTGGTGGTCTC	1617
Db	1662	CTGCCGGCCCGTGCCTGAGCTCTCCTTCTACACTTCCCTGCTCGTGTGGTGGTGGTCTC	1721
Qy	1618	TGCTGCAGGACCATGCCCTGGCTGCCTTGCCATGCTGCCACCTCCACATGTCCCTCC	1677

```

Db      ||||||| 1722 TGCTGCAGGACCATGCCCTGGCTGCCTCTGCCATGCTGCCACCTCCACATGTCC 1781
Qy      1678 TTCTTCTGCAATGCCCTACAACTCCTTACCTTACTGCCGGCTCATGATAAACTTG 1737
Db      ||||||| 1782 TTCTTCTGCAATGCCCTACAACTCCTTACCTTACTGCCGGCTCATGATAAACTTG 1841
Qy      1738 GACAACCTGTGGATAGTGCCTGCATGGATCTCCAAGCTGTCGTTCCCGGTGGTCTTC 1797
Db      ||||||| 1842 GACAACCTGTGGATAGTGCCTGCATGGATCTCCAAGCTGTCGTTCCCGGTGGTCTTC 1901
Qy      1798 TCGGGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTTC 1857
Db      ||||||| 1902 TCGGGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTTC 1961
Qy      1858 ACCTTCTCCATCCTCGGAGACACGATGATCAGTGCATGGACCTGAACTCGCATCCACTC 1917
Db      ||||||| 1962 ACCTTCTCCATCCTCGGAGACACGATGATCAGTGCATGGACCTGAACTCGCATCCACTC 2021
Qy      1918 TATGCGATCTACCTCATTGTACGGCATCAGCTACGGCTTCTGTTCTGTACTATCTA 1977
Db      ||||||| 2022 TATGCGATCTACCTCATTGTACGGCATCAGCTACGGCTTCTGTTCTGTACTATCTA 2081
Qy      1978 TCCTTGAAGCTCATCAAACAGAAGTCATTCAAGACTGGTGA 2019
Db      ||||||| 2082 TCCTTGAAGCTCATCAAACAGAAGTCATTCAAGACTGGTGA 2123

```

RESULT 4

AY196215

LOCUS AY196215 2285 bp mRNA linear ROD 01-JUN-2003
 DEFINITION Mus musculus strain I/LnJ ATP-binding cassette sub-family G member 8 (Abcg8) mRNA, complete cds.
 ACCESSION AY196215
 VERSION AY196215.1 GI:31322259
 KEYWORDS .
 SOURCE Mus musculus (house mouse)
 ORGANISM Mus musculus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
 REFERENCE 1 (bases 1 to 2285)
 AUTHORS Wittenburg,H., Lyons,M.A., Li,R., Churchill,G.A., Carey,M.C. and Paigen,B.
 TITLE Primary Roles of FXR and ABCG5/ABCG8 in Cholesterol Gallstone Susceptibility: Evidence from a Cross of PERA/Ei and I/Ln Inbred Mice
 JOURNAL Unpublished
 REFERENCE 2 (bases 1 to 2285)
 AUTHORS Lyons,M.A., Wittenburg,H., Walsh,K.A., Carey,M.C. and Paigen,B.
 TITLE Direct Submission
 JOURNAL Submitted (12-DEC-2002) The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
 FEATURES Location/Qualifiers
 source 1. .2285
 /organism="Mus musculus"
 /mol_type="mRNA"
 /strain="I/LnJ"

```

                /db_xref="taxon:10090"
                /chromosome="17"
                /map="55 cM"
                /sex="male"
                /tissue_type="liver"
gene          1. .2285
                /gene="Abcg8"
CDS           102. .2120
                /gene="Abcg8"
                /note="ATP-dependent canalicular cholesterol transporter;
white subfamily"
                /codon_start=1
                /product="ATP-binding cassette sub-family G member 8"
                /protein_id="AAO45095.1"
                /db_xref="GI:31322260"
                /translation="MAEKTKEETQLWNGTVLQDASGLQDSLFSSESDNSLYFTYSGQS
NTLEVRDLTYQVDIASQVPWFQIQLAQFKIPWRSHSSQDSCELGIRNLSFKVRSGQMLA
IIGSSGCGRASLLDVITGRGHGGKMKSGQIWINQQPSTPQLVRKCAHVRQHDQLLPN
LTVRETLAFIAQMRLPRTFSQAQRDKRVEDVIAELRLRQCANTRVGNTYVRGVSGGER
RRVSIGVQLLNPGILILDEPTSGLDSFTAHLNLVTTLSSLAKGNRLVLISLHQPRSIDI
FRLFSDLVLLMTSGTPIYLGAQQMVQYFTSIGHPCPRYSNPADFYVDLTSIDRRSKER
EVATVEKAQSLAALFLEKVQGFDDFLWKAEEAKELNTSTHTVSLTLTQDTDCGTAAELP
GMIEQFSTLIRRQISNDFRDLPTILLIHSEACIIMSLIIGFLYYGHGAKQLSFMDTAAL
LFMIGALIPFNVIIDVVSKCHSERSMLYYELEDGLYTAGPYFFAKILGELPEHCAYVI
IYAMPIYWLTNLRPVPEFLLHLLVWLVVFCRTMALAASAMLPTFHMSFFCNALY
NSFYLTAGFMINLDNLWIVPAWISKLSFLRWCFSGLMQIQFNGHLYTTQIGNFTFSIL
GDTMISAMDLNSHPLYAIYLIVIGISYGFLEYYLSLKLIKQKSIQDW"

```

ORIGIN

Query Match 99.0%; Score 1999.8; DB 10; Length 2285;
Best Local Similarity 99.4%; Pred. No. 0;
Matches 2007; Conservative 0; Mismatches 12; Indels 0; Gaps 0;

Qy	1 ATGGCTGAGAAAACCAAAGAAGAGACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT	60
Db	102 ATGGCTGAGAAAACCAAAGAAGAGACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT	161
Qy	61 TCGGGCCTCCAGGACAGCTTGTTCCTCGAAAGTGACAACAGTCTGTACTTCACCTAC	120
Db	162 TCGGGCCTCCAGGACAGCTTGTTCCTCGAAAGTGACAACAGTCTGTACTTCACCTAC	221
Qy	121 AGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATCGCCTCT	180
Db	222 AGCGGTCACTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATCGCCTCT	281
Qy	181 CAGGTGCCTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGCAGC	240
Db	282 CAGGTGCCTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGCAGC	341
Qy	241 CAAGACTCCTGTGAGCTGGCATCCGAAATCTAACGCTAAAGTGAGGAGTGGACAGATG	300
Db	342 CAAGACTCCTGTGAGCTGGCATCCGAAATCTAACGCTAAAGTGAGGAGTGGACAGATG	401
Qy	301 CTGGCCATCATAGGGAGCTCAGGCTGCAGGAGAGCCTCACTACTCGACGTGATCACAGGC	360
Db	402 CTGGCCATCATAGGGAGCTCAGGCTGCAGGAGAGCCTCACTACTCGACGTGATCACAGGC	461

Qy	361	AGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAAATGGCAACCCAGTACG	420
Db	462	AGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAAACGGCAACCCAGTACG	521
Qy	421	CCTCAGCTGGTGGAGGAAGTGCCTGCGCATGTGCGGCAGCATGACCAACTGCTGCCAAC	480
Db	522	CCTCAGCTGGTGGAGGAAGTGCCTGCGCATGTGCGGCAGCATGACCAACTGCTGCCAAC	581
Qy	481	CTGACCCTCAGAGAGACCCCTGGCTTCATTGCCAGATGCGCCTGCCAGGACCTCTCC	540
Db	582	CTGACCCTCAGAGAGACCCCTGGCTTCATTGCCAGATGCGCCTGCCAGGACCTCTCC	641
Qy	541	CAGGCCAGCGTGACAAACGGGTGGAAGACGTAATGCCGAGCTGCCAGTGCAGTGC	600
Db	642	CAGGCCAGCGTGACAAACGGGTGGAAGACGTAATGCCGAGCTGCCAGTGCAGTGC	701
Qy	601	GCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGGCCGACGA	660
Db	702	GCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGGCCGACGA	761
Qy	661	GTGAGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACT	720
Db	762	GTGAGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACT	821
Qy	721	TCTGGCTCGACAGCTCACAGCCCACAATCTGGTACAAACCTTGTCCCGCTGGCAAG	780
Db	822	TCTGGCTCGACAGCTCACAGCCCACAACCTGGTACAAACCTTGTCCCGCTGGCAAG	881
Qy	781	GGCAACAGGCTGGTGCATCTCCCTCCACCAGCCTCGCTCTGACATCTCAGGCTATT	840
Db	882	GGCAACAGGCTGGTGCATCTCCCTCCACCAGCCTCGCTCTGACATCTCAGGCTATT	941
Qy	841	GACCTGGTCCTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGGCGAGCAAATG	900
Db	942	GACCTGGTCCTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGGCGAGCAAATG	1001
Qy	901	GTGCAGTACTTCACATCCATTGGCACCCCTTGTCCCTCGCTATAGCAACCTGCGGACTTC	960
Db	1002	GTGCAGTACTTCACATCCATTGGCACCCCTTGTCCCTCGCTATAGCAACCTGCGAGACTTC	1061
Qy	961	TACGTGGACTTGACCAGCATCGACAGACGAGCAGCAAAGAACGGGAGGTGGCCACCGTGGAG	1020
Db	1062	TACGTGGACTTGACCAGCATCGACAGACGAGCAGCAAAGAACGGGAGGTGGCCACCGTGGAG	1121
Qy	1021	AAGGCACAGTCTTGCAGCCCTGTTCTAGAAAAAGTACAAGGCTTGATGACTTCTG	1080
Db	1122	AAGGCACAGTCTTGCAGCCCTGTTCTAGAAAAAGTGCAGGCTTGATGACTTCTG	1181
Qy	1081	TGGAAAGCTGAGGCAAAGGAACCTAACACACAAGTCAGCCTGACCCCTCACA	1140
Db	1182	TGGAAAGCTGAGGCAAAGGAACCTAACACACAAGTCAGCCTGACCCCTCACA	1241
Qy	1141	CAGGACACTGACTGTGGACTGCTGTTGAGCTGCCGGGATGATAGAGCAGTTCCACC	1200
Db	1242	CAGGACACTGACTGTGGACTGCTGCTGAGCTGCCGGGATGATAGAGCAGTTCCACC	1301
Qy	1201	CTGATCCGTCGTCAATTCCAATGACTTCCGGGACCTGCCACGCTGCTCATTGATGGG	1260

Db	1302 CTGATCCGTCGTCAGATTCCAATGACTTCCGGACCTGCCACGCTGCTCATTGATGGG 1361
Qy	1261 TCGGAAGCCTGCCTGATGTCCCTCATCATTGGCTTACTACGGCCATGGGGCAAG 1320
Db	1362 TCGGAAGCCTGCCTGATGTCCCTCATCATTGGCTTACTACGGCCATGGGGCAAG 1421
Qy	1321 CAGCTCTCCTTATGGACACAGCAGCCCTCCTCTCATGATAGGGCGCTCATTCTTC 1380
Db	1422 CAGCTCTCCTTATGGACACGGCAGCCCTCCTCTCATGATAGGGCGCTCATTCTTC 1481
Qy	1381 AATGTCATCCTGGATGTCGTCCTCAAATGTCACTCGGAGAGGTCAATGCTGTACTATGAG 1440
Db	1482 AATGTCATCCTGGATGTCGTCCTCAAATGTCACTCGGAGAGGTCAATGCTGTACTATGAG 1541
Qy	1441 CTGGAAGACGGGCTGTACACTGCTGGCCTTATTCTTGCCAAGATCCTAGGAGAATTG 1500
Db	1542 CTGGAAGACGGGCTGTACACTGCTGGCCTTATTCTTGCCAAGATCCTAGGAGAATTG 1601
Qy	1501 CCGGAGCACTGTGCCTACGTACATCTACGCGATGCCATCTACTGGCTGACAAACCTG 1560
Db	1602 CCGGAGCACTGTGCCTACGTACATCTACGCGATGCCATCTACTGGCTGACAAACCTG 1661
Qy	1561 CGGCCCGTGCCTGAGCTCTCCTTCTACACTTCCTGCTCGTGTGGTGGTCTTCTGC 1620
Db	1662 CGGCCCGTGCCTGAGCTCTCCTTCTACACTACTGCTGTGTGGTGGTGGTCTTCTGC 1721
Qy	1621 TGCAGGACCAGGCCCTGGCTGCCCTGCCATGCTGCCAACCTCACATGTCCTCTTC 1680
Db	1722 TGCAGGACCAGGCCCTGGCTGCCCTGCCATGCTGCCAACCTCACATGTCCTCTTC 1781
Qy	1681 TTCTGCAATGCCCTCTACAACCTCCTTACCTTACTGCCGGCTTATGATAAACTGGAC 1740
Db	1782 TTCTGCAATGCCCTCTACAACCTCCTTACCTTACCGCCGGCTTATGATAAACTGGAC 1841
Qy	1741 AACCTGTGGATAGTGCCTGCATGGATCTCAAGCTGTCGTTCTCCGGTGGTGTCTCG 1800
Db	1842 AACCTGTGGATAGTGCCTGCATGGATATCCAAGCTGTCGTTCTCCGGTGGTGTCTCG 1901
Qy	1801 GGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTCACC 1860
Db	1902 GGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTCACC 1961
Qy	1861 TTCTCCATCCTCGGAGACACGATGATCAGTGCATGGACCTGAACTCGCATCCACTCTAT 1920
Db	1962 TTCTCCATCCTCGGAGACACGATGATCAGTGCATGGACCTGAACTCGCATCCACTCTAT 2021
Qy	1921 GCGATCTACCTCATTGTCATGGCATCAGCTACGGCTTCTGTTCTGTACTATCTATCC 1980
Db	2022 GCGATCTACCTCATTGTCATGGCATCAGCTACGGCTTCTGTTCTGTACTATCTATCC 2081
Qy	1981 TTGAAGCTCATCAAACAGAAGTCATTCAAGACTGGTGA 2019
Db	2082 TTGAAGCTCATCAAACAGAAGTCATTCAAGACTGGTGA 2120

AF351785
LOCUS AF351785 4829 bp mRNA linear ROD 26-AUG-2002
DEFINITION *Rattus norvegicus* sterolin-2 (*Abcg8*) mRNA, complete cds.
ACCESSION AF351785
VERSION AF351785.2 GI:22477145
KEYWORDS .
SOURCE *Rattus norvegicus* (Norway rat)
ORGANISM *Rattus norvegicus*
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae;
Rattus.
REFERENCE 1 (bases 1 to 4829)
AUTHORS Lu,K., Lee,M.H., Hazard,S., Brooks-Wilson,A., Hidaka,H., Kojima,H.,
Ose,L., Stalenhoef,A.F., Miettinen,T., Bjorkhem,I., Bruckert,E.,
Pandya,A., Brewer,H.B. Jr., Salen,G., Dean,M., Srivastava,A. and
Patel,S.B.
TITLE Two genes that map to the STSL locus cause sitosterolemia: genomic
structure and spectrum of mutations involving sterolin-1 and
sterolin-2, encoded by ABCG5 and ABCG8, respectively
JOURNAL Am. J. Hum. Genet. 69 (2), 278-290 (2001)
MEDLINE 21344600
PUBMED 11452359
REFERENCE 2 (bases 1 to 4829)
AUTHORS Lu,K., Yu,H., Lee,M. and Patel,S.B.
TITLE Molecular cloning, genomic structure, and characterization of novel
mouse head-to-head tandem ABC transporters
JOURNAL Unpublished
REFERENCE 3 (bases 1 to 4829)
AUTHORS Lu,K., Lee,M. and Patel,S.B.
TITLE Direct Submission
JOURNAL Submitted (21-FEB-2001) Division of Endocrinology, Diabetes and
Medical Genetics, Medical University of South Carolina, 114 Doughty
St, STB 541, Charleston, SC 29407, USA
REFERENCE 4 (bases 1 to 4829)
AUTHORS Lu,K., Yu,H., Lee,M. and Patel,S.B.
TITLE Direct Submission
JOURNAL Submitted (26-AUG-2002) Division of Endocrinology, Diabetes and
Medical Genetics, Medical University of South Carolina, 114 Doughty
St, STB 541, Charleston, SC 29403, USA
REMARK Sequence update by submitter
COMMENT On Aug 26, 2002 this sequence version replaced gi:15148516.
FEATURES Location/Qualifiers
source 1. .4829
/organism="Rattus norvegicus"
/mol_type="mRNA"
/strain="Sprague-Dawley"
/db_xref="taxon:10116"
gene 1. .4829
/gene="Abcg8"
CDS 111. .2129
/gene="Abcg8"
/codon_start=1
/product="sterolin-2"
/protein_id="AAK84831.2"
/db_xref="GI:22477146"
/translation="MAEKTKETQLWNGTVLQDASSLQDSVFSSESNDNSLYFTYSGQS
NTLEVRDLTYQVDMASQVPWFELAQFKLPWRSRGSQDSWDLGIRNLISFKVRSGQMLA

IIGSAGCGRATLLDVITGRDHGGKMKSGQIWINQQPSTPQLIQKCVAHVRQQDQLLPN
 LTVRETLTFAQMRLPKTSQAQRDKRVEDVIAELRLRQCANTRVGNTYVRGVSGGER
 RRVSIGVQLLWNPGLILDEPTSGLDSFTAHLNVRTSLAKGNRLVLISLHQPRSIDI
 FRLFDLVLLMTSGTPYLGVQAQHMVQYFTSIGYPCPRTSNPADFYVDLTSIDRRSKEQ
 EVATMEKARLLAALFLEKVQGFDDFLWKAEEKSLDTGTYAVSQTLTQDTNCGTAAELP
 GMIOQFTTLIRRQISNDFRDLPLTFIHGAECMSLIIGFLYYGHADKPLSFMDMAAL
 LFMIGALIPFNVI LDVVSKCHSERSLYYELEDGLYTAGPYFFAKVLGELPEHCAYVI
 IYGMPIYWLTNLRPGEFLLLHFMLLWLVFCCRTMALAASAMLPTFHMSFCCNALY
 NSFYLTAGFMINLNNLWIVPAWISKMSFLRWCFSGLMQIQFNIGHIYTQIGNLTFSPV
 GDAMVTAMDLN SHPLYAIYLIVIGISCGFLSLYLSLKFIQKSIQDW"

ORIGIN

Query Match 85.6%; Score 1727.8; DB 10; Length 4829;
 Best Local Similarity 91.0%; Pred. No. 0;
 Matches 1837; Conservative 0; Mismatches 182; Indels 0; Gaps 0;

Qy	1 ATGGCTGAGAAAACCAAAGAAGAGACCCAGCTGTGAATGGGACTGTACTTCAGGATGCT	60
Db	111 ATGGCTGAGAACGACAAAGAGGAGACCCAGCTGTGAACGGGACTGTACTCCAGGATGCT	170
Qy	61 TCGGGCCTCCAGGACAGCTTGTCTCCTCGGAAAGTGACAACAGTCTGTACTTCACCTAC	120
Db	171 TCAAGCCTCCAGGACAGCGTGTCTCCTCTGAAAGTGACAACAGCCTCTACTTCACCTAC	230
Qy	121 AGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGTGGACATGCCCTCT	180
Db	231 AGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGTGGACATGCCCTCT	290
Qy	181 CAGGTGCCTGGTTGAGCAGCTGGCTCAGTTCAAGATACCCTGGAGGTCTCATAGCAGC	240
Db	291 CAGGTGCCTGGTTGAGCAGCTGGCTCAGTTCAAGTACCGTGGAGGTCTCGCGGCAGC	350
Qy	241 CAAGACTCCTGTGAGCTGGCATCCGAAATCTAACGTTCAAAGTGAGGAGTGGACAGATG	300
Db	351 CAGGACTCCTGGATCTGGCATCCGAAATCTGAGCTTCAAAGTGAGGAGTGGACAGATG	410
Qy	301 CTGGCCATCATAGGGAGCTCAGGCTCGGGAGAGCCTCACTACTCGACGTGATCACAGGC	360
Db	411 CTGGCTATCATAGGGAGCGCAGGCTCGGGAGAGCCACATTACTCGACGTTATCACAGGC	470
Qy	361 AGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAAATGGCAACCCAGTACG	420
Db	471 AGAGACCATGGTGGCAAGATGAAATCAGGACAAATCTGGATAAACGGCAACCCAGCAGC	530
Qy	421 CCTCAGCTGGTGGAGGAAGTGCCTGGCATGTGCGCAGCATGACCAACTGCTGCCAAC	480
Db	531 CCTCAGCTGATACAGAAGTGTGGCACATGTGCGCCAGCAAGACCAGCTGCTCCCCAAT	590
Qy	481 CTGACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATGCCCTGCCAGGACCTCTCC	540
Db	591 CTGACTGTCAGAGAGACCCCTGACTTCATGCCAGATGCCCTGCCAAGACCTCTCT	650
Qy	541 CAGGCCAGCGTGACAAACGGGTGGAAGACGTAATGCCAGCTGCCAGTGCAGTGC	600
Db	651 CAGGCCAGCGAGACAAACGGGTGGAAGACGTAATGCCAGTGCAGTGCAGTGC	710
Qy	601 GCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGCGCCGACGA	660

Db	711	GCCAAACACCCCGCGTGGCAACACATACGTACGCGGGGTGTCCGGGGCGAGCGCCGAAGA	770
Qy	661	GTGAGCATTGGGGTGCAGCTCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACT	720
Db	771	GTGAGCATTGGGGTGCAGCTCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACT	830
Qy	721	TCTGGCCTCGACAGCTCACAGCCCACAAATCTGGTGACAACCTTGTCCCGCCTGGCCAAG	780
Db	831	TCCGGCCTCGACAGCTCACACACCTGGTGAGAACTTGTCCCGCCTGGCCAAGA	890
Qy	781	GGCAACAGGGCTGGTGCTCATCTCCCTCACAGCCTCGCTCTGACATCTTCAGGCTATTT	840
Db	891	GGCAACAGGGCTGGTGCTCATCTCCCTCACAGCCTCGCTCTGACATCTTCAGGCTATTT	950
Qy	841	GACCTGGTCCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGGCCAGCAAATG	900
Db	951	GACCTGGTCCTTCTGATGACGTCTGGCACCCCTATCTACCTGGGGTGGCACAGCACATG	1010
Qy	901	GTGCAGTACTTCACATCCATTGGCACCCCTGTCTCGCTATAGCAACCCGTGGACTTC	960
Db	1011	GTGCAGTACTTACATCAATTGGCTACCCTGTCTCGCTACAGCAACCCGTGACTTC	1070
Qy	961	TACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGGAGGTGGCCACCGTGGAG	1020
Db	1071	TACGTGGACTTGACAGCATTGACAGGCGCAGCAAAGAACAGGAGGTGGCCACCATGGAG	1130
Qy	1021	AAGGCACAGTCTTGCAGCCCTGTTCTAGAAAAAGTACAAGGTTGATGACTTCTG	1080
Db	1131	AAGGCTCGATTACTTGCAGCCTTGTCTAGAAAAAGTGCAGGCTTGACGACTTCTG	1190
Qy	1081	TGGAAAGCTGAGGCAAAGGAACACTAACACAAAGCACCCACACAGTCAGCCTGACCCCTACA	1140
Db	1191	TGGAAAGCTGAGGCAAAGAGTCTCGACACAGGCACCTATGCAGTCAGCCAGACCCCTACA	1250
Qy	1141	CAGGACACTGACTGGGACTGCTGTTGAGCTGCCCGGGATGATAAGCAGTTTCCACC	1200
Db	1251	CAGGACACCAACTGTGGAACTGCTGCTGAGCTGCCCGGGATGATAACAGCAGTTTACCAACC	1310
Qy	1201	CTGATCCGTGTCAGATTCCAATGACTTCCGGACCTGCCACGCTGCTCATTGATGGG	1260
Db	1311	CTGATCCGTGTCAGATTCCAATGACTTCCGGACCTGCCACCGCTGTTCATCCATGGA	1370
Qy	1261	TCGGAAGCCTGCCTGATGTCCTCATCATTGGCTTCTTACTACGGCCATGGGCCAAG	1320
Db	1371	GCAGAAGCCTGCCTGATGTCCTCATCATTGGCTTCTTACTACGGCCACGCAGACAAG	1430
Qy	1321	CAGCTCTCCTTATGGACACAGCAGCCCTCCTTCTCATGATAAGGGCGCTCATTCTTC	1380
Db	1431	CCGCTCTCCTTATGGACATGGCAGCCCTCCTGTTCTCATGATAAGGAGCACTCATTCTTT	1490
Qy	1381	AATGTCATCCTGGATGTCGTCTCAAATGTCAGTCGGAGAGGTCAATGCTGTACTATGAG	1440
Db	1491	AATGTCATTCTGGATGTCGTCTCAAATGTCAGTCGGAGCGGGTCGCTGTACTATGAA	1550
Qy	1441	CTGGAAGACGGGCTGTACACTGCTGGCCTTATTCTTGCAGATCCTAGGAGAATTG	1500

Db	1551	CTGGAGGACGGACTGTACACTGCTGGTCCTTATTCTTGCAAGGTCCCGTGAGCTG	1610
Qy	1501	CCGGAGCACTGTGCCTACGTCATCATCTACGCGATGCCCATCTACTGGCTGACAAACCTG	1560
Db	1611	CCAGAGCACTGTGCCTATGTCATCATCTATGGGATGCCCATCTACTGGCTGACCAACCTG	1670
Qy	1561	CGGCCCGTGCCTGAGCTCTCCTCTACACTTCCTGCTCGTGTGGTTGGTGGTCTCTGC	1620
Db	1671	CGGCCAGGGCCTGAGCTCTCCTGCACTTCATGCTTCTGTGGCTGGTGGTCTGC	1730
Qy	1621	TGCAGGACCATGGCCCTGGCTGCCTCTGCCATGCTGCCAACCTCACATGTCCCTCCTTC	1680
Db	1731	TGCAGGACCATGGCCCTGGCCGCCTCTGCCATGCTGCCAACCTCACATGTCCCTCCTTC	1790
Qy	1681	TTCTGCAATGCCCTCTACAACCTCTTACCTTACTGCCGGCTTCATGATAAAACTGGAC	1740
Db	1791	TGCTGCAACGCTCTACAACCTCTTACCTTACGGCTGGCTCATGATAAAACTGAAC	1850
Qy	1741	AACCTGTGGATAGTGCCTGCATGGATCTCCAAGCTGTCGTTCTCCGGTGGTGGCTCTCG	1800
Db	1851	AACCTGTGGATAGTACCTGCATGGATTCCAAGATGTCGTTCTCCGGTGGTGGCTCTCA	1910
Qy	1801	GGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTCACC	1860
Db	1911	GGGCTGATGCAGATTCAAGTTAAATGGACACATTACACCACGCAGATCGGCAACCTCACC	1970
Qy	1861	TTCTCCATCCTCGGAGACACGATGATCAGTGCCTGGACCTGAACTCGCATCCACTCTAT	1920
Db	1971	TTCTCCGTCCCCGGAGACGCATGGCACTGCCATGGACCTGAACTCACATCCTCTTAT	2030
Qy	1921	GCGATCTACCTCATTGTCATCGGCATCAGCTACGGCTTCTGTACTATCTATCC	1980
Db	2031	GCGATCTACCTCATCGTCATTGGCATCAGCTGTGGCTTCTGTCCCTGTATTATCTGTCC	2090
Qy	1981	TTGAAGCTCATCAAACAGAAGTCAATTCAAGACTGGTGA	2019
Db	2091	TTGAAGTTCATCAAACAGAAGTCAATTCAAGATTGGTGA	2129

RESULT 6

AX685735

LOCUS AX685735 2669 bp DNA linear PAT 29-MAR-2003
DEFINITION Sequence 7 from Patent WO02081691.
ACCESSION AX685735
VERSION AX685735.1 GI:29371744
KEYWORDS .
SOURCE Homo sapiens (human)
ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1
AUTHORS Hobbs, H.H., Shan, B., Barnes, R. and Tian, H.
TITLE Abcg5 and abcg8: compositions and methods of use
JOURNAL Patent: WO 02081691-A 7 17-OCT-2002;
Tularik Inc. (US) ; BOARD OF REGENTS UNIVERSITY OF TEXAS SYSTEM
(US)
FEATURES Location/Qualifiers

```

source 1. .2669
/organism="Homo sapiens"
/mol_type="unassigned DNA"
/db_xref="taxon:9606"
CDS 100. .2121
/note="unnamed protein product; human ABCG8 (hABCG8)"
/codon_start=1
/protein_id="CAD86573.1"
/db_xref="GI:29371745"
/db_xref="REMTREMBL:CAD86573"
/translation="MAGKAAEERGLPKGATPQDTSGLQDRLFSSESDNLSLYFTYSQPN
NTLEVRDLNQVQDLASQVPWFQLAQFKMPWTSPSCQNSCELGIQNLSFKVRSGQMLA
IIGSSGCRASLLDVITGRGHGGKIKSGQIWINGQPSPQLVRKCVAHVRQHNQLLPN
LTVRETLAFIAQMRLPRTFSQAQRDKRVEDVIAELRLRQCADTRVGNMYVRLSGGER
RRVSIGVQLLWNPGILILDEPTSGLDSFTAHLNVKTLSSLRAKGNRVLISIHQPRSDI
FRLFSDLVLLMTSGTPYLGAQHMVQYFTAIGYPCPYRSPNPADFYVDLTSIDRRSREQ
ELATREKAQS LAALFLEKVRDLDLFLWKAETKDLDEDTCVESSVTPLDTNCLPSPTKM
PGAVQQFTTLIRRQISNDFRDLPTLIIHGAEACLMSMTIGFLYFGHGSIQLSFMDTAA
LLFMIGALIPFNVIDVISKCYSERAMLYYELEDGLYTTPGYFFAKILGELPEHCAYI
IIYGMPTYWLANLRPGLQPFLLHFLLVWLVVFCRIMALAAAALLPTFHMASFFSNAL
YNSFYLAGGFMINLSSLWTVPAWISKVSFLRCFEGLMKIQFSRTYKMPPLGNLTIAV
SGDKILSAMELDSYPLYAIYLIVIGLSSGFMVLYVSLRFIKQKPSQDW"

ORIGIN

Query Match 70.8%; Score 1430; DB 6; Length 2669;
Best Local Similarity 82.0%; Pred. No. 0;
Matches 1659; Conservative 0; Mismatches 360; Indels 3; Gaps 1;

Qy 1 ATGGCTGAGAAAACCAAAGAAGAGACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT 60
||| ||| | ||| | ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |
Db 100 ATGGCCGGGAAGGCAGGGCAGAGGAGAGAGGGCTGCCGAAAGGGCCACTCCCCAGGATACC 159

Qy 61 TCGGGCCTCCAGGACAGCTTGTCTCCTCGGAAAGTGACAACAGTCTGTACTTCACCTAC 120
||||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |
Db 160 TCGGGCCTCCAGGATAGATTGTCTCCTCTGAAAGTGACAACAGCCTGTACTTCACCTAC 219

Qy 121 AGTGGTCAGTCAAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATCGCCTCT 180
||||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |
Db 220 AGTGGCCAGCCAACACCCCTGGAGGTCAAGAGACCTCAACTACCAGGTGGACCTGGCCTCT 279

Qy 181 CAGGTGCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCTGGAGGTCTCATAGCAGC 240
||||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |
Db 280 CAGGTCCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATGCCCTGGACATCTCCAGCTGC 339

Qy 241 CAAGACTCCTGTGAGCTGGCATCCGAAATCTAAGCTCAAAGTGAGGAGTGGACAGATG 300
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |
Db 340 CAGAATTCTTGTGAGCTGGCATCCAGAACCTAAAGCTCAAAGTGAGAAGTGGCAGATG 399

Qy 301 CTGGCCATCATAGGGAGCTCAGGCTCGGGAGAGCCTCACTACTCGACGTGATCACAGGC 360
||||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |
Db 400 CTGGCCATCATAGGGAGCTCAGGTTGTGGAGAGCCTCTGCTAGATGTGATCACTGGC 459

Qy 361 AGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGTACG 420
||||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |
Db 460 CGAGGTACGGCGGAAGATCAAGTCAGGCCAGATCTGGATCAATGGCAGCCAGCTCG 519

Qy 421 CCTCAGCTGGTGGAGAAGTGCCTGCGCATGTGCGGAGCATGACCAACTGCTGCCAAC 480

```

Db	520	CCTCAGCTGGTGAGGAAGTGTGTCGCCACGTGCCAGCACAAACCAGCTGCTCCCCAAC	579
Qy	481	CTGACCGTCAGAGAGACCCCTGGCTTTATTGCCAGATGCGCTGCCAGGACCTCTCC	540
Db	580	TTGACTGTGCGAGAGACCTGGCCTTCATTGCCAGATGCGGCTGCCAGAACCTCTCC	639
Qy	541	CAGGCCAGCGTGACAAACGGTGGAAAGACGTAATGCCAGCTGCCAGTGCAGTGC	600
Db	640	CAGGCCAGCGTGACAAAAGGGTGGAGGACGTGATCGGGAGCTGCCAGTAGGCAGTGC	699
Qy	601	GCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCGGGGTGGAGCGCCAGCA	660
Db	700	GCTGACACCCCGCGTGGCAACATGTACGTGCCGGGGTGTGCCGGGGTGGAGCGCAGGAGA	759
Qy	661	GTGAGCATTGGGTGCAGCTCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACT	720
Db	760	GTCAGCATTGGGTGCAGCTCTGTGGAACCCAGGAATCCTTATTCTGACGAACCCACC	819
Qy	721	TCTGGCCTCGACAGCTTACAGCCCACAATCTGGTACAACCTGTCCGCCGGCAAG	780
Db	820	TCTGGCCTCGACAGCTTACAGCCCACAACCTGGTGAAGACCTGTCCAGGCTGGCAAA	879
Qy	781	GGCAACAGGCTGGTGCATCTCCCTCACAGCCTCGCTGACATCTCAGGCTATTT	840
Db	880	GGCAACCCGGCTGGTGCATCTCCCTCACAGCCTCGCTGACATCTCAGGCTGT	939
Qy	841	GACCTGGCCTTCTGATGACATCTGGCACCCCATCTACCTGGGGCGGCGAGCAAATG	900
Db	940	GATCTGGCCTCCTGATGACGCTGTCGGCACCCCATCTACTTAGGGGCGGGCCAGCACATG	999
Qy	901	GTGAGTACTTCACATCCATTGCCACCCCTGTCCCTCGCTAGCAACCTGCGACTTC	960
Db	1000	GTCCAGTATTCACAGCCATCGGCTACCCCTGTCCCTCGCTACAGCAATCTGCTGACTTC	1059
Qy	961	TACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGAGGTGGCCACCGTGGAG	1020
Db	1060	TATGTGGACCTGACCAGCATTGACAGGGCAGCAGAGAGCAGGAATTGGCCACCAAGGGAG	1119
Qy	1021	AAGGCACAGTCTTGCAGCCCTGTTCTAGAAAAGTACAAGGCTTGATGACTTCTG	1080
Db	1120	AAGGCTCAGTCACTCGCAGCCCTGTTCTAGAAAAGTGCCTGACTTAGATGACTTCTA	1179
Qy	1081	TGGAAAGCTGAGGCAAAGGAACTCAACACAAGCACCCACACAGTCAGCCTGACCCCTACA	1140
Db	1180	TGGAAAGCAGAGACGAAGGATCTTGACGAGGACACCTGTGTGAAAGCAGCGTGACCCCA	1239
Qy	1141	CAGGACACTGACTG---TGGGACTGCTGTTGAGCTGCCGGATGATAGAGCAGTTTCC	1197
Db	1240	CTAGACACCAACTGCCCTCCGAGTCCTACGAAGATGCCTGGGCGGTGCAGCAGTTACG	1299
Qy	1198	ACCCTGATCCGTCGTCAGATTCCAATGACTTCCGGACCTGCCACGCTGCTCATTCA	1257
Db	1300	ACGCTGATCCGTCGTCAGATTCCAACGACTTCCGAGACCTGCCACCCCTCATCCAT	1359
Qy	1258	GGGTCGGAAGCCTGCCGTGATGTCCTCATCATTGGCTTCCTTACTACGCCATGGGCC	1317

Db 1360 GGGGCGGAGGCCTGTCATGTCAATGACCATCGGCTCCTCTATTTGCCATGGGAGC 1419
 Qy 1318 AAGCAGCTCCCTCATGGACACAGCAGCCCTCCTCTCATGATAAGGGCGCTCATTCC 1377
 | ||||||| ||||| ||||| ||||| ||||| || | ||||| |||
 Db 1420 ATCCAGCTCCCTCATGGATACAGCCGCCCTTGTCATGATCGGTGCTCTCATCCCT 1479
 Qy 1378 TTCAATGTCATCCTGGATGTCGTCCTCAAATGTCACTCGGAGAGGTCAATGCTGTACTAT 1437
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 Db 1480 TTCAACGTCATTCTGGATGTCATCTCAAATGTTACTCAGAGAGGGCAATGCTTACTAT 1539
 Qy 1438 GAGCTGGAAGACGGGCTGTACACTGCTGGTCCTTATTCTTGCCAAGATCCTAGGAGAA 1497
 ||| ||||| ||||| ||||| ||||| ||||| ||||| |||
 Db 1540 GAACTGGAAGACGGGCTGTACACCACTGGTCCATATTCTTGCCAAGATCCTCGGGGAG 1599
 Qy 1498 TTGCCGGAGCACTGTGCCAACGTACATCTACCGCGATGCCCATCTACTGGCTGACAAAC 1557
 | ||||| ||||| ||||| ||||| ||||| ||||| ||||| | |||
 Db 1600 CTTCCGGAGCACTGTGCCAACATCATCTACGGGATGCCACCTACTGGCTGGCCAAC 1659
 Qy 1558 CTGCGGCCCGTGCCTGAGCTCTCCTCTACACTTCCTGCTCGTGTGGTGGTGGTCTTC 1617
 ||| ||||| | ||| ||||| ||| ||||| ||||| ||||| |||||
 Db 1660 CTGAGGCCAGGCCCTCAGCCCTCCTGCTGCACCTCCTGCTGGTGTGGCTGGTGGTCTTC 1719
 Qy 1618 TGCTGCAGGACCATGGCCCTGGCTGCCCTGCCATGCTGCCACCTTCCACATGTCCTCC 1677
 ||| ||||| ||||| ||||| ||| ||||| ||||| ||||| |||||
 Db 1720 TGTTGCAGGATTATGCCCTGGCGCCGCCCTGCTCCCCACCTTCCACATGGCCTCC 1779
 Qy 1678 TTCTTCTGCAATGCCCTTACAACCTCCTTACCTTACTGCGGCTTCATGATAAACTTG 1737
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 Db 1780 TTCTTCAGCAATGCCCTTACAACCTCCTTACCTCGCCGGGGGCTTCATGATAAACTTG 1839
 Qy 1738 GACAACCTGTGGATAGTGCCTGCATGGATCTCAAGCTGTCGTTCCCTCCGGTGGTCTTC 1797
 ||| ||||| ||||| ||| ||||| ||||| ||||| ||||| |||
 Db 1840 AGCAGCCTGTGGACAGTGCCCGCTGGATTCCAAAGTGTCTCTGCGGTGGTGTGTTT 1899
 Qy 1798 TCGGGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTTC 1857
 ||||| ||||| ||| ||| ||| ||| ||| ||| |||
 Db 1900 GAAGGGCTGATGAAGATTCAAGTCAGTCAGCAGAAGAACTTATAAAATGCCCTCGGGAACCTC 1959
 Qy 1858 ACCTTCTCCATCCTCGGAGACAGCATGATCAGTGCATGGACCTGAACCTCGCATCCACTC 1917
 ||| ||| ||| ||||| ||| ||||| ||||| ||||| ||| |||
 Db 1960 ACCATCGCGGTCTCAGGAGATAAAATCCTCAGTGCATGGAGCTGGACTCGTACCCCTTC 2019
 Qy 1918 TATGCATCTACCTCATTGTCATGGCATCAGCTACGGCTTCTGTTCTGTACTATCTA 1977
 ||| ||||| ||||| ||||| ||||| ||| ||||| ||||| |||
 Db 2020 TACGCCATCTACCTCATCGTCATTGGCCTCAGCGGTGGCTCATGGTCTGTACTACGTG 2079
 Qy 1978 TCCTTGAAGCTCATCAAAACAGAAGTCAATTCAAGACTGGTGA 2019
 ||||| ||| ||||| ||||| ||| ||||| |||||
 Db 2080 TCCTTAAGGTTCATCAAAACAGAAGCAAGTCAAGACTGGTGA 2121

RESULT 7

AF320294

LOCUS AF320294 2022 bp mRNA linear PRI 13-DEC-2000
 DEFINITION Homo sapiens ABCG8 (ABCG8) mRNA, complete cds.
 ACCESSION AF320294
 VERSION AF320294.1 GI:11692801

KEYWORDS .
 SOURCE Homo sapiens (human)
 ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 REFERENCE 1 (bases 1 to 2022)
 AUTHORS Berge,K.E., Tian,H., Graf,G.A., Yu,L., Grishin,N.V., Schultz,J.,
 Kwiterovich,P., Shan,B., Barnes,R. and Hobbs,H.H.
 TITLE Accumulation of Dietary Cholesterol in Sitosterolemia Caused by
 Mutations in Adjacent ABC Transporters
 JOURNAL Science (2001) In press
 REFERENCE 2 (bases 1 to 2022)
 AUTHORS Berge,K.E., Tian,H., Graf,G.A., Yu,L., Grishin,N.V., Schultz,J.,
 Kwiterovich,P., Shan,B., Barnes,R. and Hobbs,H.H.
 TITLE Direct Submission
 JOURNAL Submitted (09-NOV-2000) Molecular Genetics, University of Texas,
 Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd.,
 Dallas, TX 75390-9046, USA
 FEATURES Location/Qualifiers
 source 1. .2022
 /organism="Homo sapiens"
 /mol_type="mRNA"
 /db_xref="taxon:9606"
 gene 1. .2022
 /gene="ABCG8"
 CDS 1. .2022
 /gene="ABCG8"
 /note="ATP-binding cassette, subfamily G, member 8"
 /codon_start=1
 /product="ABCG8"
 /protein_id="AAG40004.1"
 /db_xref="GI:11692802"
 /translation="MAGKAAERGLPKGATPQDTSGLQDRLFSSESDNSLYFTYSGQP
 NTLEVRDLNYQVDLASQVPWFEQLAQFKMPWTSPSCQNSELGIQNLNSFKVRSGQMLA
 IIGSSGCGRASLLDVITGRGHGGKIKSGQIWINGQPSSPQLVRKCAHVRQHNQLLPN
 LTVRETLAFIAQMRLPRTFSQAQRDKRVEDVIAELRLRQCADTRVGNMYVRGLSGGER
 RRVSIGVQLLWNPGILILDEPTSGLDSFTAHLNVKTLSRLAKGNRLVLISLHQPRSIDI
 FRLFSDLVLLMTSGTPYIYLGAQHMVQYFTAIGYPCPRYSNPADFYVDLTSIDRRSREQ
 ELATREKAQSLAALFLEKVRDLDDFLWKAETKLDDETCVESSVTPLDTNCLPSPTKM
 PGAVQQFTTLLIRRQISNDFRDLPTLIIHGAEACLMSMTIGFLYFGHGSIQLSFMDTAA
 LLFMIGALIPFNVIDVSKCYSERAMLYYELEDGLYTGTGPYFFAKILGELPEHCAYI
 IIYGMPTYWLANLRPGLQPFLHHFLVWLUVFCCRIMALAAAALLPTFHMASFFSNAL
 YNSFYLAGGFMINLSSLWTVPAWISKVSLRWCFCGLMKIQFSRRTYKMPLGNLTIAV
 SGDKILSVMEELDSYPLYAIYLIVIGLSSGMVLYVSLRFIKQKPSQDW"

ORIGIN

Query Match 70.7%; Score 1428.4; DB 9; Length 2022;
 Best Local Similarity 82.0%; Pred. No. 0;
 Matches 1658; Conservative 0; Mismatches 361; Indels 3; Gaps 1;

QY	1 ATGGCTGAGAAAACCAAAGAACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT	60
Db	1 ATGGCCGGGAAGGCAGGGCTGCCAAAGGGGCCACTCCCCAGGATACC	60
QY	61 TCGGGCCTCCAGGACAGCTTGTCTCCTCGGAAAGTGACAACAGTCTGTACTTCACCTAC	120
Db	61 TCGGGCCTCCAGGATAGATTGTTCTCCTCTGAAAGTGACAACAGCCTGTACTTCACCTAC	120

Qy	121	AGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATCGCCTCT	180
Db	121	AGTGGCCAGGCCAACACCCCTGGAGGTCAAGAGACCTCAACTACCAGGTGGACCTGGCCTCT	180
Qy	181	CAGGTGCCTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGCAGC	240
Db	181	CAGGTCCCTGGTTGAGCAGCTGGCTCAGTTCAAGATGCCCTGGACATCTCCCAGCTGC	240
Qy	241	CAAGACTCCTGTGAGCTGGGCATCCGAAATCTAAGCTCAAAGTGAGGAGTGGACAGATG	300
Db	241	CAGAATTCTTGTGAGCTGGGCATCCAGAACCTAAAGCTCAAAGTGAGAAGTGGCAGATG	300
Qy	301	CTGGCCATCATAGGGAGCTCAGGCTGCAGGGAGAGCCTCACTACTCGACGTGATCACAGGC	360
Db	301	CTGGCCATCATAGGGAGCTCAGGTTGTGGAGAGCCTCCTGCTAGATGTGATCACTGGC	360
Qy	361	AGAGGCCACGGTGGCAAGATGAAATCAGGACAATTGGATAAATGGCAACCCAGTACG	420
Db	361	CGAGGTCACGGCGGCAAGATCAAGTCAGGCCAGATCTGGATCAATGGCAGCCCAGCTCG	420
Qy	421	CCTCAGCTGGTGAGGAAGTGCCTGCGCATGTGCGGCACTGACCAACTGCTGCCAAC	480
Db	421	CCTCAGCTGGTGAGGAAGTGTGTGGCCACGTGCGCCAGCACAAACCAGCTGCTCCCCAAC	480
Qy	481	CTGACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATGCGCTGCCAGGACCTTCTCC	540
Db	481	TTGACTGTGCGAGAGACCTTGGCTTCATTGCCAGATGCGCTGCCAGAACCTTCTCC	540
Qy	541	CAGGCCAGCGTGACAAACGGGTGGAAGACGTAATGCCGAGCTGCCAGTGCAGTGC	600
Db	541	CAGGCCAGCGTGACAAAAGGGTGGAGGACGTGATGCCAGCTGCCAGTAGGCAGTGC	600
Qy	601	GCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGGCCGACGA	660
Db	601	GCTGACACCCCGCGTGGCAACATGTACGTGCCGGGTTGTCGGGGTGAGCGCAGGAGA	660
Qy	661	GTGAGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACT	720
Db	661	GTCAGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATCCTTATTCTCGACGAACCCACC	720
Qy	721	TCTGGCTCGACAGCTTCACAGCCCACAATCTGGTACAACCTTGTCCCGCTGGCAAG	780
Db	721	TCTGGGCTCGACAGCTTCACAGCCCACAACCTGGTAAGACCTTGTCCAGGCTGGCAA	780
Qy	781	GGCAACAGGCTGGTGCTCATCTCCCTCCACAGCCTCGCTCTGACATCTCAGGCTATT	840
Db	781	GGCAACCGGCTGGTGCTCATCTCCCTCCACAGCCTCGCTCTGACATCTCAGGCTGTT	840
Qy	841	GACCTGGTCCTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGCGCAGCAAATG	900
Db	841	GATCTGGTCCTCCTGATGACGTGGCACCCCACTACTTAGGGCGGCCAGCACATG	900
Qy	901	GTGCAGTACCTCACATCCATTGGCACCCCTGTCCCTCGCTATAGCAACCCTGCGGACTTC	960
Db	901	GTCCAGTATTTCACAGCCATCGGCTACCCCTGTCCCTCGCTACAGCAATCCTGCTGACTTC	960

Qy	961	TACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGGAGGTGGCCACCGTGGAG	1020
Db	961	TATGTGGACCTGACCAGCATTGACAGGCGCAGCAGAGAGCAGGAATTGGCCACCAGGGAG	1020
Qy	1021	AAGGCACAGTCTCTTGCAGCCCTGTTCTAGAAAAAGTACAAGGCTTGATGACTTCTG	1080
Db	1021	AAGGCTCAGTCACTCGCAGCCCTGTTCTAGAAAAAGTGCCTGACTTAGATGACTTCTA	1080
Qy	1081	TGGAAAGCTGAGGCAAAGGAACCAACACAAGCACCCACACAGTCAGCCTGACCCCTCACA	1140
Db	1081	TGGAAAGCAGAGACGAAGGATCTGACGAGGACACCTGTGTGAAAGCAGCGTGACCCCA	1140
Qy	1141	CAGGACACTGACTG---TGGGACTGCTGTTGAGCTGCCCGGGATGATAGAGCAGTTTCC	1197
Db	1141	CTAGACACCAAATGCCTCCCGAGTCCTACGAAGATGCCTGGGGCGGTGCAGCAGTTACG	1200
Qy	1198	ACCCGTATCCGTCGTCAAGATTCCAATGACTTCCGGGACCTGCCACGCTGCTCATTCA	1257
Db	1201	ACGCTGATCCGTCGTCAAGATTCCAACGACTTCCGAGACCTGCCACCTCCTCATCCAT	1260
Qy	1258	GGGTCGGAAGCCTGCCTGATGTCCCTCATCATTGGCTTCTTACTACGGCCATGGGCC	1317
Db	1261	GGGGCGGAGGCCTGTCTGATGTCAATGACCATGGCTTCTATTTGCCATGGGAGC	1320
Qy	1318	AAGCAGCTCCTTCATGGACACAGCAGCCCTCCTCTTCACTGATAAGGGCGCTCATTCC	1377
Db	1321	ATCCAGCTCCTTCATGGATAACAGCCGCCCTTGTTCATGATCGGTGCTCTCATCCCT	1380
Qy	1378	TTCAATGTCATCCTGGATGTCGCTCCTAAATGTCACTCGGAGAGGTCAATGCTGTACTAT	1437
Db	1381	TTCAACGTCATTCTGGATGTCATCTCAAATGTTACTCAGAGAGGGCAATGCTTACTAT	1440
Qy	1438	GAGCTGGAAGACGGGCTGTACACTGCTGGCCTTATTCTTTGCCAAGATCCTAGGAGAA	1497
Db	1441	GAACCTGGAAGACGGGCTGTACACCACTGGTCCATATTCTTTGCCAAGATCCTCGGGGAG	1500
Qy	1498	TTGCCGGAGCACTGTGCCCTACGTACATCTACCGATGCCCATCTACTGGCTGACAAAC	1557
Db	1501	CTTCCGGAGCACTGTGCCCTACATCATCTACGGATGCCACCTACTGGCTGGCAAC	1560
Qy	1558	CTGCGGCCCGTGCCTGAGCTCTCCCTCTACACTCCCTGCTCGTGGTGGTGGTCTTC	1617
Db	1561	CTGAGGCCAGGCCCTCCAGCCCTCCTGCTGCACCTCCTGCTGGTGTGGCTGGTCTTC	1620
Qy	1618	TGCTGCAGGACCATGCCCTGGCTGCCCTGCCATGCTGCCACCTCCACATGCTCCTCC	1677
Db	1621	TGTTGCAGGATTATGCCCTGGCCCGCCGCCCCCTGCTCCCCACCTCCACATGGCCTCC	1680
Qy	1678	TTCTTCTGCAATGCCCTCTACAACTCCTTACCTTACTGCCGGCTTCATGATAAACTTG	1737
Db	1681	TTCTTCAGCAATGCCCTCTACAACTCCTTACCTCGCCGGGGCTCATGATAAACTTG	1740
Qy	1738	GACAACCTGTGGATAGTGCCTGCATGGATCTCAAGCTGTCGTTCTCCGGTGGTCTTC	1797
Db	1741	AGCAGCCTGTGGACAGTGCCTCGCGCGTGGATTCCAAAGTGTCTTCTGCGGTGGTGT	1800
Qy	1798	TCGGGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTTC	1857

RESULT 8

AF324494
LOCUS AF324494 2679 bp mRNA linear PRI 07-AUG-2001
DEFINITION Homo sapiens sterolin-2 (ABCG8) mRNA, complete cds.
ACCESSION AF324494
VERSION AF324494.1 GI:15088539
KEYWORDS .
SOURCE Homo sapiens (human)
ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 2679)
AUTHORS Lu,K., Lee,M.H., Hazard,S., Brooks-Wilson,A., Hidaka,H., Kojima,H., Ose,L., Stalenhoef,A.F., Miettinen,T., Bjorkhem,I., Bruckert,E., Pandya,A., Brewer,H.B. Jr., Salen,G., Dean,M., Srivastava,A. and Patel,S.B.
TITLE Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively
JOURNAL Am. J. Hum. Genet. 69 (2), 278-290 (2001)
MEDLINE 21344600
PUBMED 11452359
REFERENCE 2 (bases 1 to 2679)
AUTHORS Lu,K., Lee,M.-H. and Patel,S.B.
TITLE Direct Submission
JOURNAL Submitted (29-NOV-2000) Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, 114 Doughty Street, STB541, Charleston, SC 29403, USA
FEATURES Location/Qualifiers
source 1. .2679
/organism="Homo sapiens"
/mol_type="mRNA"
/db_xref="taxon:9606"
/chromosome="2"
/map="2p21; between D2S2294 and D2S2298"
/tissue_type="liver"
gene 1. .2679
/gene="ABCG8"
CDS 91. .2112
/gene="ABCG8"
/codon_start=1

```

        /product="sterolin-2"
        /protein_id="AAK84078.1"
        /db_xref="GI:15088540"
        /translation="MAGKAAEERGLPKATPQDTSGLQDRLFSSESDNSLYFTYSGQP
NTLEVRDLNCQVDLASQVPWFEQLAQFKMPWTSPCQNSELGIQNLISFKVRSGQMLA
IIGSSGCGRASLLDVITGRGHGGKIKSGQIWINGQPSSPQLVRKCAHVRQHNQLLPN
LTVRETLAFTAQMRLPRTFSQAQRDKRVEDVIAELRLRQCADTRVGNMYVRGLSGGER
RRVSIGVQLLWNPGILILDEPTSGLDSFTAHLNVKTLRLAKGNRLVLISLHQPRSIDI
FRLFDLVLLMTSGTPYLGAQHMVQYFTAIGYPCPRYSNPADFYVDLTSIDRRSREQ
ELATREKAQSLAALFLEKVRDLDLFLWKAETKDLDEDTCVESSVTPLDTNCLPSPTKM
PGAVQQFTTLIRRQIISNDFRDLPTLLIHGAEACLMSMTIGFLYFGHGSIQLSFMDTAA
LLFMIGALIPFNVIDVSKCYSERAMLYYELEDGLYTTGPYFFAKILGELPEHCAYI
IIYGMPTYWLANLRPGLQPFLLHFLLVWLVVFCRIMALAAAALLPTFHMASFFSNAL
YNSFYLAGGFMINLSSLWTVPAWISKVSFLRWCFEGLMKIQFSRRTYKMPLGNLTIAV
SGDKILSAMELDSYPLYAIYLIVIGLSSGFMVYYVSLRFIKQKPSQDW"

```

ORIGIN

Query Match	70.7%	Score 1428.4;	DB 9;	Length 2679;
Best Local Similarity	82.0%	Pred. No. 0;		
Matches 1658;	Conservative 0;	Mismatches 361;	Indels 3;	Gaps 1;
Qy	1 ATGGCTGAGAAAACCAAAGAAGAGACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT	60		
Db	91 ATGGCCGGGAAGGCAGGGCAGAGGGAGAGAGGGCTGCCGAAAGGGGCCACTCCCCAGGATACC	150		
Qy	61 TCGGGCCTCCAGGACAGCTTGTCTCCTCGAAAGTGACAACAGTCTGTACTTCACCTAC	120		
Db	151 TCGGGCCTCCAGGATAGATTGTTCTCCTCTGAAAGTGACAACAGCCTGTACTTCACCTAC	210		
Qy	121 AGTGGTCAGTCCAACACTCTGGAGGTAGAGATCTCACCTACCAGGTGGACATGCCCTCT	180		
Db	211 AGTGGCCAGCCAACACCCCTGGAGGTAGAGACCTCAACTGCCAGGTGGACCTGGCCTCT	270		
Qy	181 CAGGTGCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGCAGC	240		
Db	271 CAGGTCCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATGCCCTGGACATCTCCAGCTGC	330		
Qy	241 CAAGACTCCTGTGAGCTGGCATCCGAAATCTAAGCTCAAAGTGAGGAGTGGACAGATG	300		
Db	331 CAGAATTCTTGTGAGCTGGCATCCAGAACCTAAAGCTCAAAGTGAGAAGTGGCAGATG	390		
Qy	301 CTGGCCATCATAGGGAGCTCAGGCTGGGAGAGCCTCACTACTCGACGTGATCACAGGC	360		
Db	391 CTGGCCATCATAGGGAGCTCAGGTGTGGAGAGCCTCCTGCTAGATGTGATCACTGGC	450		
Qy	361 AGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAAATGGCAACCCAGTACG	420		
Db	451 CGAGGTACGGCGGCAAGATCAAGTCAGGCCAGATCTGGATCAATGGCAGCCCAGCTCG	510		
Qy	421 CCTCAGCTGGTGAGGAAGTGCCTGCGCATGTGCGCAGCATGACCAACTGCTGCCAAC	480		
Db	511 CCTCAGCTGGTGAGGAAGTGTGTGGCCACGTGCGCCAGCACAAACAGCTGCTCCCAAC	570		
Qy	481 CTGACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATGCCCTGCCAGGACCTTCTCC	540		
Db	571 TTGACTGTGCGAGAGACCTTGGCCTTCATTGCCAGATGCCCTGCCAGAACCTTCTCC	630		

Qy	541	CAGGCCAGCGTGACAAACGGGTGGAAGACGTAATCGCCAGCTGCGCTGCGCAGTGC	600
Db	631	CAGGCCAGCGTGACAAAAGGGTGGAGGACGTGATCGGGAGCTGCGCTTAGGCAGTGC	690
Qy	601	GCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCGGGGTGAAGCGCCGACGA	660
Db	691	GCTGACACCCCGCGTGGCAACATGTACGTGCGGGGTGTCGGGGTGAAGCGCAGGAGA	750
Qy	661	GTGAGCATTGGGTGCAGCTCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACT	720
Db	751	GTCAGCATTGGGTGCAGCTCTGTGGAACCCAGGAATCCTTATTCTGACGAACCCACC	810
Qy	721	TCTGGCCTCGACAGCTTCACAGCCCACAATCTGGTACAACCTGTCCGCCTGGCCAAG	780
Db	811	TCTGGGCTCGACAGCTTCACAGCCCACAACCTGGTGAAGACCTGTCCAGGCTGGCCAAA	870
Qy	781	GGCAACAGGCTGGTGCTCATCTCCCTCACAGCCTCGCTGACATCTTCAGGCTATTT	840
Db	871	GGCAACCCGGCTGGTGCTCATCTCCCTCACAGCCTCGCTGACATCTTCAGGCTGTTT	930
Qy	841	GACCTGGCCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGGCCAGCAAATG	900
Db	931	GATCTGGCCTCCTGATGACGCTGACAGCCCCATCTACTTAGGGCGGCCAGCACATG	990
Qy	901	GTGCAGTACTTCACATCCATTGCCACCCCTGTCCCTGCTATAGCAACCCGTGGACTTC	960
Db	991	GTCCAGTATTCACAGCCATCGGCTACCCCTGTCCCTGCTACAGCAATCTGCTGACTTC	1050
Qy	961	TACGTGGACTTGACCAGCATCGACAGACGCAAGAACGGAGGTGGCCACCGTGGAG	1020
Db	1051	TATGTGGACCTGACCAGCATTGACAGGCCAGCAGAGAGCAGGAATTGGCCACCAGGGAG	1110
Qy	1021	AAGGCACAGTCTTGTGAGCCCTGTTCTAGAAAAAGTACAAGGCTTGATGACTTCTG	1080
Db	1111	AAGGCTCAGTCACTCGCAGCCCTGTTCTAGAAAAAGTGCCTGACTTAGATGACTTCTA	1170
Qy	1081	TGGAAAGCTGAGGCAAAGGAACTCAACACAAGCACCCACACAGTCAGCCTGACCCCTACA	1140
Db	1171	TGGAAAGCAGAGACGAAGGATCTGACGAGGACACCTGTGTGAAAGCAGCGTACCCCA	1230
Qy	1141	CAGGACACTGACTG---TGGACTGCTGTTGAGCTGCCGGATGATAGAGCAGTTTCC	1197
Db	1231	CTAGACACCAACTGCCCTCCGAGTCCTACGAAGATGCCTGGGCGGTGCAGCAGTTACG	1290
Qy	1198	ACCTGATCCGTCGTCAAGATTCCAATGACTTCCGGACCTGCCACGCTGCTCATTCA	1257
Db	1291	ACGCTGATCCGTCGTCAAGATTCCAACGACTTCCGAGACCTGCCACCCCTCATCCAT	1350
Qy	1258	GGGTCGGAAGCCTGCCGTATGTCCTCATCATTGGCTCCTTACTACGCCATGGGCC	1317
Db	1351	GGGGCGGAGGCCTGCTGATGTCATGACCATCGGCTCCTATTTGCCATGGGAGC	1410
Qy	1318	AAGCAGCTCTCCTCATGGACACAGCAGCCCTCTTCATGATAGGGCGCTCATTCC	1377
Db	1411	ATCCAGCTCTCCTCATGGATAACAGCCGCCCTTGTTCATGATCGGTGCTCATCCCT	1470
Qy	1378	TTCAATGTCATCCTGGATGTCGTCTCAAATGTCACTCGGAGAGGTCAATGCTGTACTAT	1437

Db	1471	TTCAACGTCATTCTGGATGTACACTCTCAAATGTTACTCAGAGAGGGCAATGCTTACTAT	1530
Qy	1438	GAGCTGGAAGACGGGCTGTACACTGCTGGCCTTATTCTTGCAAGATCCTAGGAGAA	1497
Db	1531	GAACTGGAAGACGGGCTGTACACCCTGGTCCATATTCTTGCAAGATCCTCGGGGAG	1590
Qy	1498	TTGCCGGAGCACTGTGCCTACGTACATCATCTACGGATGCCATCTACTGGTGACAAC	1557
Db	1591	CTTCCGGAGCACTGTGCCTACATCATCTACGGGATGCCACCTACTGGTGACAAAC	1650
Qy	1558	CTGCGGCCGTGCCTGAGCTTCCTTACACTCCTGCTCGTGTGGTGGTCTTC	1617
Db	1651	CTGAGGCCAGGCCTCCAGCCCTCCTGCTGCACCCCTGCTGGTGTGGCTGGTGGTCTTC	1710
Qy	1618	TGCTGCAGGACCATGCCCTGGCTGCCTTGCCATGCTGCCACCTTCCACATGCTCC	1677
Db	1711	TGTTGCAGGATTATGCCCTGGCGCCGCGCCCTGCTCCCCACCTTCCACATGGCTCC	1770
Qy	1678	TTCTTCTGCAATGCCCTACAACTCCTTACCTACTGCCGGTTCATGATAAACTTG	1737
Db	1771	TTCTTCAGCAATGCCCTACAACTCCTTACCTGCCGGGGCTTCATGATAAACTTG	1830
Qy	1738	GACAACCTGTGGATAGTGCCTGCATGGATCTCAAGCTGTCGTTCCGGTGGTCTTC	1797
Db	1831	AGCAGCCTGTGGACAGTGCCCGCTGGATTCAAAGTGTCCCTGCGGTGGTGT	1890
Qy	1798	TCGGGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTTC	1857
Db	1891	GAAGGGCTGATGAAGATTCAAGTTAGCAGTGCAGAAGAACTTATAAAATGCCCTCGGGAACCTC	1950
Qy	1858	ACCTTCTCCATCCTCGGAGACACGATGATCAGTGCCTGGACCTGAACTCGCATCCACTC	1917
Db	1951	ACCATCGGGCTCAGGAGATAAAATCCTCAGTGCCTGGAGCTGGACTCGTACCCCTC	2010
Qy	1918	TATGCGATCTACCTCATTGTCATCGGCATCAGCTACGGCTTCCTGTTCTGTACTATCTA	1977
Db	2011	TACGCCATCTACCTCATCGTCATTGGCCTCAGCGGTGGCTCATGGTCTGTACTACGTG	2070
Qy	1978	TCCTTGAAGCTCATCAAACAGAAGTCAATTCAAGACTGGTGA	2019
Db	2071	TCCTTAAAGGTTCATCAAACAGAAGAACCAAGTCAAGACTGGTGA	2112

RESULT 9

AX478099

LOCUS AX478099 3239 bp DNA linear PAT 12-AUG-2002
DEFINITION Sequence 29 from Patent WO0240541.
ACCESSION AX478099
VERSION AX478099.1 GI:22217059
KEYWORDS .
SOURCE Homo sapiens (human)
ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1
AUTHORS Tang, Y.T., Yue, H., Nguyen, D.B., Hafalia, A.J., Elliott, V.S., Lu, Y.,

Walia,N.K., Yao,M.G., Baughn,M.R., Gandhi,A.R., Ding,L.,
Sanjanwala,M., Ramkumar,J., Arvizu,C., Gietzen,K.J., Lal,P.G.,
Azimzai,Y., Khan,F.A., Thangavelu,K., Thornton,M., Lu,D.A.,
Tribouley,C.M., Warren,B.A., Ison,C.H., Das,D., Raumann,B.E.,
Policky,J.L. and Kearney,L.

TITLE Transporters and ion channels
JOURNAL Patent: WO 0240541-A 29 23-MAY-2002;
Incyte Genomics, Inc. (US)
FEATURES Location/Qualifiers
source 1. .3239
/organism="Homo sapiens"
/mol_type="unassigned DNA"
/db_xref="taxon:9606"
/note="Incyte ID No: 6585710CB1"

ORIGIN

Query Match 36.8%; Score 743.8; DB 6; Length 3239;
Best Local Similarity 78.9%; Pred. No. 1e-160;
Matches 899; Conservative 0; Mismatches 237; Indels 3; Gaps 1;

Qy 884 GGGCGGCGCAGCAAATGGTGCAGTACCCATTGCCACCCTGTCCTCGCTATA 943
Db 12 GGGCGGCCAGCACATGGTCCATTATTCACAGCCATGGCTACCCCTGTCCTCGCTACA 71

Qy 944 GCAACCCCTGCCGACTTCTACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGG 1003
Db 72 GCAATCCTGCTGACTTCTATGTGGACCTGACCAGCATTGACAGGCGCAGCAGAGCAGG 131

Qy 1004 AGGTGCCACCGTGGAGAAGGCACAGTCTCTGCAGCCCTGTTCTAGAAAAAGTACAAG 1063
Db 132 AATTGCCACCAAGGGAGAAGGCTAGTCACTCGCAGCCCTGTTCTAGAAAAAGTGCCTG 191

Qy 1064 GCTTGATGACTTCTGTGGAAAGCTGAGGCAAAGGAACCTAACACACAAGCACCCACACAG 1123
Db 192 ACTTAGATGACTTCTATGGAAAGCAGAGACGAAGGATCTTGACGAGGACACCTGTGTGG 251

Qy 1124 TCAGCCTGCCCTCACACAGGACACTGACTG---TGGGACTGCTGTTGAGCTGCCGGGA 1180
Db 252 AAAGCAGCGTGACCCACTAGACACCAACTGCCTCCGAGTCCTACGAAGATGCCTGGGG 311

Qy 1181 TGATAGAGCAGTTTCCACCCCTGATCCGTCGTAGATTCCAATGACTTCCGGGACCTGC 1240
Db 312 CGGTGCAGCAGTTACGACGCTGATCCGTCGTAGATTCCAACGACTTCCGAGACCTGC 371

Qy 1241 CCACGCTGCTCATTCATGGTCGGAAGCCTGCCGTATGCCCTCATCATTGGCTTCTTT 1300
Db 372 CCACCCCTCTCATCCATGGGGCGGAGGCCTGCTGATGTCATGACCATCGGCTTCTCT 431

Qy 1301 ACTACGGCCATGGGGCCAAGCAGCTCTCCTCATGGACACAGCAGCCCTCTTCAATG 1360
Db 432 ATTTTGGCCATGGGAGCATTCCAGCTCTCCTTCAATGGATACAGCCGCCCTCTGTTCAATG 491

Qy 1361 TAGGGGCGCTCATTCTTCAATGTCATCCTGGATGTCGTCTCAAATGTCACTCGGAGA 1420
Db 492 TCGGTGCTCTCATCCCTTCAACGTCATTCTGGATGTCATCTCCAAATGTTACTCAGAGA 551

Qy 1421 GGTCAATGCTGTACTATGAGCTGGAAGACGGGCTGTACACTGCTGGCCTTATTCTTTG 1480

Db	552	GGGCAATGCTTACTATGAACGTGGAAAGACGGGCTGTACACCACGGCCATATTCTTG	611
Qy	1481	CCAAGATCCTAGGAGAATTGCCGGAGCACTGTGCCTACGTACATCATACGCGATGCCA	1540
Db	612	CCAAGATCCTCGGGGAGCTTCCGGAGCACTGTGCCTACATCATACGCGATGCCA	671
Qy	1541	TCTACTGGCTGACAAACCTGCAGCCCGTGCCTGAGCTTCCTCTACACTCCTGCTCG	1600
Db	672	CCTACTGGCTGGCAAACCTGAGGCCAGGCCTCCAGCCCTCCTGCTGCACCTCCTGCTGG	731
Qy	1601	TGTGGTTGGTGGTCTCTGCTGCAGGACATGGCCCTGGCTGCCTGCCATGCTGCCA	1660
Db	732	TGTGGCTGGTGGTCTCTGTCAGGATTATGCCCTGGCCGCCGGCCCTGCTCCCCA	791
Qy	1661	CCTTCCACATGTCCTCCTTCTGCAATGCCCTACAACTCCTTACCTTACTGCCG	1720
Db	792	CCTTCCACATGGCCTCCTTCAGCAATGCCCTACAACTCCTTACCTGCCGGGG	851
Qy	1721	GCTTCATGATAAAACTTGGACAACCTGTGGATAGTGCCTGCATGGATCTCAAGCTGTCGT	1780
Db	852	GCTTCATGATAAAACTTGAGCAGCCTGTGGACAGTGCCCGGTGGATTCCAAAGTGTCC	911
Qy	1781	TCCTCCGGTGGTGCCTCTCGGGGCTGATGCAGATTCAATTAAATGGACACCTTACACCA	1840
Db	912	TCCTGCAGGTGGTGTGAAGGGCTGATGAAGATTCAAGCAGAAAGAACTTATAAAA	971
Qy	1841	CACAAATCGGCAACTTCACCTCTCCATCCTCGGAGACACGATGATCAGTGCATGGACC	1900
Db	972	TGCCTCTCGGGAACCTCACCATCGGGTCTCAGGAGATAAAATCCTCAGTGCATGGAGC	1031
Qy	1901	TGAACTCGCATCCACTCTATGCGATCTACCTCATTGTCATCGGCATCAGCTACGGCTCC	1960
Db	1032	TGGACTCGTACCCCTCTACGCCATCTACCTCATCGTCATTGGCCTCAGCGGTGGCTCA	1091
Qy	1961	TGTTCCGTACTATCTATCCTGAAGCTCATCAAACAGAAGTCAAATCAAGACTGGTGA	2019
Db	1092	TGGTCCTGTACTACGTGTCCTAACGGTCATCAAACAGAACCAAGTCAGACTGGTGA	1150

RESULT 10

AC122243/c

LOCUS AC122243 204584 bp DNA linear ROD 04-NOV-2003
 DEFINITION Mus musculus chromosome 17 clone RP23-148C10, complete sequence.
 ACCESSION AC122243
 VERSION AC122243.3 GI:38154054
 KEYWORDS HTG.
 SOURCE Mus musculus (house mouse)
 ORGANISM Mus musculus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
 REFERENCE 1 (bases 1 to 204584)
 AUTHORS Wilson, R.K.
 TITLE The sequence of Mus musculus clone
 JOURNAL Unpublished
 REFERENCE 2 (bases 1 to 204584)
 AUTHORS McPherson, J.D. and Waterston, R.H.

TITLE Direct Submission
JOURNAL Submitted (23-MAY-2002) Genome Sequencing Center, 4444 Forest Park Parkway, St. Louis, MO 63108, USA
REFERENCE 3 (bases 1 to 204584)
AUTHORS Wilson,R.K.
TITLE Direct Submission
JOURNAL Submitted (06-SEP-2003) Genome Sequencing Center, 4444 Forest Park Parkway, St. Louis, MO 63108, USA
REFERENCE 4 (bases 1 to 204584)
AUTHORS Wilson,R.K.
TITLE Direct Submission
JOURNAL Submitted (04-NOV-2003) Genome Sequencing Center, 4444 Forest Park Parkway, St. Louis, MO 63108, USA
COMMENT On Nov 4, 2003 this sequence version replaced gi:34495085.

----- Genome Center -----
Center: Washington University Genome Sequencing Center
Center code: WUGSC
Web site:<http://genome.wustl.edu>
Contact: submissions@watson.wustl.edu
----- Project Information -----
Center project name: M BA0148C10

FEATURES	Location/Qualifiers
source	1. .204584 /organism="Mus musculus" /mol_type="genomic DNA" /db_xref="taxon:10090" /chromosome="17" /clone="RP23-148C10"

ORIGIN

Query Match 15.0%; Score 302.2; DB 10; Length 204584;
 Best Local Similarity 80.1%; Pred. No. 9.4e-59;
 Matches 411; Conservative 0; Mismatches 8; Indels 94; Gaps 1;

Qy 559 CGGGTGGAAAGACGTAATCGCCGAGCTGCGGCTGCGGCAGTGCGCCAACACCAGAGTGGGC 618
| |||||||
Db 204178 CAGGTGGAAAGACGTAATCGCCGAGCTGCGGCTGCGGCAGTGCGCCAACACCAGAGTGGC
204119

Qy 619 AACACGTATGTACGTGGGGTGTCCGGGGTGAGCGCCGACGAGTGAGCATTGGGGTGCAG 678
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||
Db 204118 AACACGTATGTACGTGGGGTGTCCGGGGTGAGCGCCGACGAGTGAGCATTGGGGTGCAG
204059

Qy 679 CTCCTGTGGAA----- 689
|||
Db 204058 CTCCTGTGGAACCCAGGTGAGGCCTGGAACCTGAGGGGTGAAAACCTGAGCCTACAACC
203999

```

Qy      690 -----CCCAGGAATCCTCAT 704
                   ||||||| ||||| |||||
Db      203998 TGTCCGGCAGCGGCAGCGTGGTCATTGGACTCCCTGTGCAATATCCCCAGGAATCCTCAT
203939

```

Qy 705 TCTGGATGAACCCACTTCTGGCCTCGACAGCTTCACAGCCCACAATCTGGTGACAACTT 764

```

Db      203938 TCTGGATGAACCCACTCTGGCCTCGACAGCTCACAGCCCACAATCTGGTGACAACCTT
203879

Qy      765 GTCCCGCCTGGCCAAGGGCAACAGGCTGGTGCATCTCCCTCCACCAGCCTCGCTCTGA 824
Db      203878 GTCCCGCCTGGCCAAGGGCAACAGGCTGGTGCATCTCCCTCCACCAGCCTCGCTCTGA
203819

Qy      825 CATCTTCAGGCTATTGACCTGGCCTTCTGATGACATCTGGCACCCCTATCTACCTGGG 884
Db      203818 CATCTTCAGGCTATTGACCTGGCCTTCTGATGACATCTGGCACCCCTATCTACCTGGG
203759

Qy      885 GGC GGCG CAGCAAATGGTGCAGTACTTCACATCCATTGCCACCCCTGTCCCTCGCTATA 944
Db      203758 GGC GGCG CAGCAAATGGTGCAGTACTTCACATCCATTGCCACCCCTGTCCCTCGCTATA
203699

Qy      945 CAACCCTGCGGACTTCTACGTGGACTTGACCAAG 977
Db      203698 CAACCCTGCGGACTTCTACGGTGAGTGGTAAAG 203666

```

RESULT 11

F351799S06

LOCUS F351799S06 1387 bp DNA linear ROD 23-AUG-2002
DEFINITION Mus musculus sterolin 2 (Abcg8) gene, exon 6.
ACCESSION AF351804
VERSION AF351804.1 GI:18996442
KEYWORDS .
SEGMENT 6 of 13
SOURCE Mus musculus (house mouse)
ORGANISM Mus musculus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE 1 (bases 1 to 1387)
AUTHORS Lu,K., Lee,M.-H., Yu,H., Zhou,Y., Sandell,S.A., Salen,G. and
Patel,S.B.
TITLE Molecular cloning, genomic organization, genetic variations, and
characterization of murine sterolin genes Abcg5 and Abcg8
JOURNAL J. Lipid Res. 43 (4), 565-578 (2002)
MEDLINE 21904563
PUBMED 11907139
REFERENCE 2 (bases 1 to 1387)
AUTHORS Lu,K., Zhou,Y., Lee,M.-H. and Patel,S.B.
TITLE Direct Submission
JOURNAL Submitted (21-FEB-2001) Division of Endocrinology, Diabetes and
Medical Genetics, Medical University of South Carolina, 114 Doughty
St., STB 541, Charleston, SC 29403, USA
FEATURES Location/Qualifiers
source 1..1387
/organism="Mus musculus"
/mol_type="genomic DNA"
/strain="129/Sv"
/db_xref="taxon:10090"
/chromosome="17"

```

        /map="between Mit41 and Mit189"
        /clone="329B11"
exon      57. .326
        /gene="Abcg8"
        /number=6

```

ORIGIN

```

Query Match          13.7%; Score 275.8; DB 10; Length 1387;
Best Local Similarity 97.2%; Pred. No. 9.7e-53;
Matches 280; Conservative 0; Mismatches 8; Indels 0; Gaps 0;

Qy      690 CCCAGGAATCCTCATTCTGGATGAACCCACTTCTGGCCTCGACAGCTTCACAGCCCACAA 749
         ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      52  CCCAGGAATCCTCATTCTGGATGAACCCACTTCTGGCCTCGACAGCTTCACAGCCCACAA 111

Qy      750 TCTGGTGACAACCTTGTCCCCGCTGGCCAAGGGCAACAGGCTGGTGCTCATCTCCCTCCA 809
         ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      112 TCTGGTGACAACCTTGTCCCCGCTGGCCAAGGGCAACAGGCTGGTGCTCATCTCCCTCCA 171

Qy      810 CCAGCCTCGCTCTGACATCTCAGGCTATTGACCTGGCCTTCTGATGACATCTGGCAC 869
         ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      172 CCAGCCTCGCTCTGACATCTCAGGCTATTGACCTGGCCTTCTGATGACNTCTGGCAC 231

Qy      870 CCCTATCTACCTGGGGCGGCAGCAAATGGTGAGTACTTCACATCCATTGCCACCC 929
         ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      232 CCCTATCTACCTGGGGCGGCAGCAAATGGTGAGTACTTCACATCCATTGCCACCC 291

Qy      930 TTGTCCCTCGCTATAGCAACCCTGCGGACTTCTACGTGGACTTGACCAG 977
         ||||||| | | | | | | | | | | | | | | | | | | | | | | | |
Db      292 TTGTCCCTCGCTATAGCAACCCTGCGGACTTCTACGGTGAGTGGTAAAG 339

```

RESULT 12

```

F351799S11
LOCUS      F351799S11          1378 bp    DNA     linear   ROD 23-AUG-2002
DEFINITION Mus musculus sterolin 2 (Abcg8) gene, exon 11.
ACCESSION  AF351809
VERSION    AF351809.1  GI:18996447
KEYWORDS
SEGMENT    11 of 13
SOURCE     Mus musculus (house mouse)
ORGANISM   Mus musculus
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE  1 (bases 1 to 1378)
AUTHORS   Lu,K., Lee,M.-H., Yu,H., Zhou,Y., Sandell,S.A., Salen,G. and
            Patel,S.B.
TITLE     Molecular cloning, genomic organization, genetic variations, and
            characterization of murine sterolin genes Abcg5 and Abcg8
JOURNAL   J. Lipid Res. 43 (4), 565-578 (2002)
MEDLINE   21904563
PUBMED   11907139
REFERENCE 2 (bases 1 to 1378)
AUTHORS   Lu,K., Zhou,Y., Lee,M.-H. and Patel,S.B.
TITLE     Direct Submission
JOURNAL   Submitted (21-FEB-2001) Division of Endocrinology, Diabetes and
            Medical Genetics, Medical University of South Carolina, 114 Doughty
```

St., STB 541, Charleston, SC 29403, USA
FEATURES
 source Location/Qualifiers
 1. .1378
 /organism="Mus musculus"
 /mol_type="genomic DNA"
 /strain="129/Sv"
 /db_xref="taxon:10090"
 /chromosome="17"
 /map="between Mit41 and Mit189"
 /clone="329B11"
 exon 415. .682
 /gene="Abcg8"
 /number=11

ORIGIN

Query Match 13.4%; Score 270.6; DB 10; Length 1378;
 Best Local Similarity 88.3%; Pred. No. 1.5e-51;
 Matches 294; Conservative 0; Mismatches 39; Indels 0; Gaps 0;

 Qy 1484 AGATCCTAGGAGAATTGCCGGAGCACTGTGCCTACGTACATCTACGCGATGCCATCT 1543
 |||||||
 Db 413 AGATCCTAGGAGAATTGCCGGAGCACTGTGCCTACGTACATCTACGCGATGCCATCT 472

 Qy 1544 ACTGGCTGACAAACCTGCAGCCCGTGCCTGAGCTCTCCTTACACTCCTGCTCGTGT 1603
 |||||||
 Db 473 ACTGGCTGACAAACCTGCAGCCCGTGCCTGAGCTCTCCTTACACTCCTGCTCGTGT 532

 Qy 1604 GGTTGGTGGTCTTCTGCTGCAGGACCATGGCCCTGGCTGCCTTGCCATGCTGCCACCT 1663
 |||||||
 Db 533 GGTTGGTGGTCTTCTGCTGCAGGACCATGGCCCTGGCTGCCTTGCCATGCTGCCACCT 592

 Qy 1664 TCCACATGTCCTCCTTCTGCAATGCCCTACAACTCCTTACCTTACTGCCGGCT 1723
 |||||||
 Db 593 TCCACATGTCCTCCTTCTGCAATGCCCTACAACTCCTTACCTTACTGCCGGCT 652

 Qy 1724 TCATGATAAACCTGGACAACCTGTGGATAGTGCCTGCATGGATCTCAAGCTGTCGTTCC 1783
 |||||||
 Db 653 TCATGATAAACCTGGACAACCTGTGGATAGGTGAGGCCTGCTGCCAACCCCCCGCCCC 712

 Qy 1784 TCCGGTGGTGCTCTCGGGGCTGATGCAGATTC 1816
 | ||| ||| ||| ||| |||
 Db 713 CTTAGCCAAGCGTCTGTAGGCCTCTGTGGCTGC 745

RESULT 13

AC120701
LOCUS AC120701 237445 bp DNA linear HTG 21-SEP-2002
DEFINITION Rattus norvegicus clone CH230-65H6, *** SEQUENCING IN PROGRESS ***,
 4 unordered pieces.
ACCESSION AC120701
VERSION AC120701.4 GI:23265381
KEYWORDS HTG; HTGS_PHASE1; HTGS_DRAFT; HTGS_ENRICHED.
SOURCE Rattus norvegicus (Norway rat)
ORGANISM Rattus norvegicus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae;
 Rattus.

REFERENCE 1 (bases 1 to 237445)
AUTHORS Muzny,D.Marie., Metzker,M.Lee., Abramzon,S., Adams,C., Alder,J., Allen,C., Allen,H., Alsbrooks,S., Amin,A., Anguiano,D., Anyalebechi,V., Aoyagi,A., Ayodeji,M., Baca,E., Baden,H., Baldwin,D., Bandaranaike,D., Barber,M., Barnstead,M., Benahmed,F., Biswalo,K., Blair,J., Blankenburg,K., Blyth,P., Brown,M., Bryant,N., Buhay,C., Burch,P., Burrell,K., Calderon,E., Cardenas,V., Carter,K., Cavazos,I., Ceasar,H., Center,A., Chacko,J., Chavez,D., Chen,G., Chen,R., Chen,Y., Chen,Z., Chu,J., Cleveland,C., Cockrell,R., Cox,C., Coyle,M., Cree,A., D'Souza,L., Davila,M.L., Davis,C., Davy-Carroll,L., De Anda,C., Dederich,D., Delgado,O., Denson,S., Deramo,C., Ding,Y., Dinh,H., Divya,K., Draper,H., Dugan-Rocha,S., Dunn,A., Durbin,K., Duval,B., Eaves,K., Egan,A., Escotto,M., Eugene,C., Evans,C.A., Falls,T., Fan,G., Fernandez,S., Finley,M., Flagg,N., Forbes,L., Foster,M., Foster,P., Fraser,C.M., Gabisi,A., Ganta,R., Garcia,A., Garner,T., Garza,M., Gebregeorgis,E., Geer,K., Gill,R., Grady,M., Guerra,W., Guevara,W., Gunaratne,P., Haaland,W., Hamil,C., Hamilton,C., Hamilton,K., Harvey,Y., Havlak,P., Hawes,A., Henderson,N., Hernandez,J., Hernandez,R., Hines,S., Hladun,S.L., Hodgson,A., Hogues,M., Hollins,B., Howells,S., Hulyk,S., Hume,J., Idlebird,D., Jackson,A., Jackson,L., Jacob,L., Jiang,H., Johnson,B., Johnson,R., Jolivet,A., Karpathy,S., Kelly,S., Kelly,S., Khan,Z., King,L., Kovar,C., Kowis,C., Kraft,C.L., Lebow,H., Levan,J., Lewis,L., Li,Z., Liu,J., Liu,J., Liu,W., Liu,Y., London,P., Longacre,S., Lopez,J., Lorenshewa,L., Loulseged,H., Lozano,R.J., Lu,X., Ma,J., Maheshwari,M., Mahindartne,M., Mahmoud,M., Malloy,K., Mangum,A., Mangum,B., Mapua,P., Martin,K., Martin,R., Martinez,E., Mawhinney,S., McLeod,M.P., McNeill,T.Z., Meenen,E., Milosavljevic,A., Miner,G., Minja,E., Montemayor,J., Moore,S., Morgan,M., Morris,K., Morris,S., Munidasa,M., Murphy,M., Nair,L., Nankervis,C., Neal,D., Newton,N., Nguyen,N., Norris,S., Nwaokelemech,O., Okwuonu,G., Olarnpunsagoon,A., Pal,S., Parks,K., Pasternak,S., Paul,H., Perez,A., Perez,L., Pfannkoch,C., Plopper,F., Poindexter,A., Popovic,D., Primus,E., Pu,L.-L., Puazo,M., Quiroz,J., Rachlin,E., Reeves,K., Regier,M.A., Reigh,R., Reilly,B., Reilly,M., Ren,Y., Reuter,M., Richards,S., Riggs,F., Rives,C., Rodkey,T., Rojas,A., Rose,M., Rose,R., Ruiz,S.J., Sanders,W., Savery,G., Scherer,S., Scott,G., Shatsman,S., Shen,H., Shetty,J., Shvartsbeyn,A., Sisson,I., Sitter,C.D., Smajs,D., Sneed,A., Sodergren,E., Song,X.-Z., Sorelle,R., Sosa,J., Steimle,M., Strong,R., Sutton,A., Svatek,A., Tabor,P., Taylor,C., Taylor,T., Thomas,N., Thomas,S., Tingey,A., Trejos,Z., Usmani,K., Valas,R., Vera,V., Villasana,D., Waldron,L., Walker,B., Wang,J., Wang,Q., Wang,S., Warren,J., Warren,R., Wei,X., White,F., Williams,G., Willson,R., Wleczek,R., Wooden,H., Worley,K., Wright,D., Wright,R., Wu,J., Yakub,S., Yen,J., Yoon,L., Yoon,V., Yu,F., Zhang,J., Zhou,J., Zhou,X., Zhao,S., Dunn,D., von Niederhausern,A., Weiss,R., Smith,D.R., Holt,R.A., Smith,H.O., Weinstock,G. and Gibbs,R.A.
TITLE Direct Submission
JOURNAL Unpublished
REFERENCE 2 (bases 1 to 237445)
AUTHORS Worley,K.C.
TITLE Direct Submission
JOURNAL Submitted (09-MAY-2002) Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One

REFERENCE Baylor Plaza, Houston, TX 77030, USA
3 (bases 1 to 237445)

AUTHORS Rat Genome Sequencing Consortium.

TITLE Direct Submission

JOURNAL Submitted (21-SEP-2002) Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA

COMMENT On Sep 21, 2002 this sequence version replaced gi:21908396.
The sequence in this assembly is a combination of BAC based reads and whole genome shotgun sequencing reads assembled using Atlas (<http://www.hgsc.bcm.tmc.edu/projects/rat/>). As a result, the sequence may extend beyond the ends of the clone and there may be contigs that consist entirely of whole genome shotgun sequence reads. Both end sequences and whole genome shotgun sequence only contigs will be indicated in the feature table.

Genome Center
Center: Baylor College of Medicine
Center code: BCM
Web site: <http://www.hgsc.bcm.tmc.edu/>
Contact: hgsc-help@bcm.tmc.edu

Project Information
Center project name: GXQV
Center clone name: CH230-65H6

Summary Statistics
Assembly program: Phrap; version 0.990329
Consensus quality: 209781 bases at least Q40
Consensus quality: 213033 bases at least Q30
Consensus quality: 214997 bases at least Q20
Estimated insert size: 233017; sum-of-contigs estimation
Quality coverage: 4x in Q20 bases; sum-of-contigs estimation

* NOTE: Estimated insert size may differ from sequence length
* (see http://www.hgsc.bcm.tmc.edu/docs/Genbank_draft_data.html).
* NOTE: This is a 'working draft' sequence. It currently
* consists of 4 contigs. The true order of the pieces
* is not known and their order in this sequence record is
* arbitrary. Gaps between the contigs are represented as
* runs of N, but the exact sizes of the gaps are unknown.
* This record will be updated with the finished sequence
* as soon as it is available and the accession number will
* be preserved.
* 1 233866: contig of 233866 bp in length
* 233867 233966: gap of unknown length
* 233967 235011: contig of 1045 bp in length
* 235012 235111: gap of unknown length
* 235112 236137: contig of 1026 bp in length
* 236138 236237: gap of unknown length
* 236238 237445: contig of 1208 bp in length.

FEATURES Location/Qualifiers

source 1. .237445
/organism="Rattus norvegicus"
/mol_type="genomic DNA"
/db_xref="taxon:10116"
/clone="CH230-65H6"

misc_feature 1. .1326
/note="wgs_end_extension
clone_end:T7"

```

misc_feature      8065. .8944
/note="clone_boundary
clone_end:T7
site:EcoRI
end_sequence:BH350813"
misc_feature      complement(232953. .233569)
/note="clone_boundary
clone_end:Sp6
site:EcoRI
end_sequence:BH350815"

```

ORIGIN

```

Query Match          13.1%; Score 264.8; DB 2; Length 237445;
Best Local Similarity 76.3%; Pred. No. 4e-50;
Matches 380; Conservative 0; Mismatches 32; Indels 86; Gaps 1;

Qy      559 CGGGTGGAAAGACGTAATGCCGAGCTGCGCTGCGCAGTGCGCCAACACCAGAGTGGC 618
        | ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      146962 CAGGTGGAAAGACGTGATTGCGGAGCTGCGCTGCGCAGTGCGCCAACACCCGCGTGGC
147021

Qy      619 AACACGTATGTACGTGGGTGTCCGGGGGTGAGCGCCGACGAGTGAGCATGGGTGCAG 678
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      147022 AACACATACGTACGCCGGGTGTCCGGGGCGAGCGCCGAAGAGTGAGCATGGGTGCAG
147081

Qy      679 CT CCT GTGGAA----- 689
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      147082 CT CCT GTGGAAACCCAGGTGAGGCCTGGAACCTGAGGGCGAGGACCTGAGCCTACAACC
147141

Qy      690 -----CCCAGGAATCCTCATTCTGGATG 712
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      147142 TGTCCGGCGTGGTCACTGGCTCCCTGTGCGATACCCCCAGGAATCCTCATCCTGGATG
147201

Qy      713 AACCCACTCTGCCCTCGACAGCTCACAGCCCACAATCTGGTGACAACCTGTCCGCC 772
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      147202 AACCCACTCCGGCCTCGACAGCTCACCGCTCACAAACCTGGTGAGAACTTGTCCGCC
147261

Qy      773 TGGCCAAGGGCAACAGGCTGGTGCTCATCTCCCTCCACCAGCCTCGCTCTGACATCTCA 832
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      147262 TGGCCAAGGGCAACAGGCTGGTGCTCATCTCCCTCCACCAGCCTCGCTCTGACATCTCA
147321

Qy      833 GGCTATTTGACCTGGCCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGGC 892
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      147322 GGCTATTTGACCTGGCCTTCTGATGACGTCTGGCACCCCTATCTACCTGGGGTGCGAC
147381

Qy      893 AGCAAATGGTGCACTTACATCCATTGCCACCCCTGTCCTCGCTATAGCAACCTG 952
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      147382 AGCACATGGTGCACTTACATCAATTGGCTACCCCTGTCCTCGCTACAGCAACCTG
147441

Qy      953 CGGACTTCTACGTGGACT 970

```

| | | | | | | | | | | |
Db 147442 CTGACTTCTACGGTGAGT 147459

RESULT 14
AC112747/c
LOCUS AC112747 312858 bp DNA linear HTG 08-OCT-2002
DEFINITION Rattus norvegicus clone CH230-359E1, *** SEQUENCING IN PROGRESS
***, 8 unordered pieces.
ACCESSION AC112747
VERSION AC112747.3 GI:23270105
KEYWORDS HTG; HTGS_PHASE1; HTGS_DRAFT; HTGS_ENRICHED.
SOURCE Rattus norvegicus (Norway rat)
ORGANISM Rattus norvegicus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae;
Rattus.
REFERENCE 1 (bases 1 to 312858)
AUTHORS Muzny,D.Marie., Metzker,M.Lee., Abramzon,S., Adams,C., Alder,J.,
Allen,C., Allen,H., Alsbrooks,S., Amin,A., Anguiano,D.,
Anyalebechi,V., Aoyagi,A., Ayodeji,M., Baca,E., Baden,H.,
Baldwin,D., Bandaranaike,D., Barber,M., Barnstead,M., Benahmed,F.,
Biswalo,K., Blair,J., Blankenburg,K., Blyth,P., Brown,M.,
Bryant,N., Buhay,C., Burch,P., Burrell,K., Calderon,E.,
Cardenas,V., Carter,K., Cavazos,I., Ceasar,H., Center,A.,
Chacko,J., Chavez,D., Chen,G., Chen,R., Chen,Y., Chen,Z., Chu,J.,
Cleveland,C., Cockrell,R., Cox,C., Coyle,M., Cree,A., D'Souza,L.,
Davila,M.L., Davis,C., Davy-Carroll,L., De Anda,C., Dederich,D.,
Delgado,O., Denson,S., Deramo,C., Ding,Y., Dinh,H., Divya,K.,
Draper,H., Dugan-Rocha,S., Dunn,A., Durbin,K., Duval,B., Eaves,K.,
Egan,A., Escotto,M., Eugene,C., Evans,C.A., Falls,T., Fan,G.,
Fernandez,S., Finley,M., Flagg,N., Forbes,L., Foster,M., Foster,P.,
Fraser,C.M., Gabisi,A., Ganta,R., Garcia,A., Garner,T., Garza,M.,
Gebregeorgis,E., Geer,K., Gill,R., Grady,M., Guerra,W., Guevara,W.,
Gunaratne,P., Haaland,W., Hamil,C., Hamilton,C., Hamilton,K.,
Harvey,Y., Havlak,P., Hawes,A., Henderson,N., Hernandez,J.,
Hernandez,R., Hines,S., Hladun,S.L., Hodgson,A., Hogues,M.,
Hollins,B., Howells,S., Hulyk,S., Hume,J., Idlebird,D., Jackson,A.,
Jackson,L., Jacob,L., Jiang,H., Johnson,B., Johnson,R., Jolivet,A.,
Karpathy,S., Kelly,S., Khan,Z., King,L., Kovar,C.,
Kowis,C., Kraft,C.L., Lebow,H., Levan,J., Lewis,L., Li,Z., Liu,J.,
Liu,J., Liu,W., Liu,Y., London,P., Longacre,S., Lopez,J.,
Lorensuhewa,L., Loulseged,H., Lozano,R.J., Lu,X., Ma,J.,
Maheshwari,M., Mahindartne,M., Mahmoud,M., Malloy,K., Mangum,A.,
Mangum,B., Mapua,P., Martin,K., Martin,R., Martinez,E.,
Mawhinney,S., McLeod,M.P., McNeill,T.Z., Meenen,E.,
Milosavljevic,A., Miner,G., Minja,E., Montemayor,J., Moore,S.,
Morgan,M., Morris,K., Morris,S., Munidasa,M., Murphy,M., Nair,L.,
Nankervis,C., Neal,D., Newton,N., Nguyen,N., Norris,S.,
Nwaokelemech,O., Okwuonu,G., Olarnpunsagoon,A., Pal,S., Parks,K.,
Pasternak,S., Paul,H., Perez,A., Perez,L., Pfannkoch,C.,
Plopper,F., Poindexter,A., Popovic,D., Primus,E., Pu,L.-L.,
Puazo,M., Quiroz,J., Rachlin,E., Reeves,K., Regier,M.A., Reigh,R.,
Reilly,B., Reilly,M., Ren,Y., Reuter,M., Richards,S., Riggs,F.,
Rives,C., Rodkey,T., Rojas,A., Rose,M., Rose,R., Ruiz,S.J.,
Sanders,W., Savery,G., Scherer,S., Scott,G., Shatsman,S., Shen,H.,
Shetty,J., Shvartsbeyn,A., Sisson,I., Sitter,C.D., Smajs,D.,

Sneed,A., Sodergren,E., Song,X.-Z., Sorelle,R., Sosa,J.,
Steimle,M., Strong,R., Sutton,A., Svatek,A., Tabor,P., Taylor,C.,
Taylor,T., Thomas,N., Thomas,S., Tingey,A., Trejos,Z., Usmani,K.,
Valas,R., Vera,V., Villasana,D., Waldron,L., Walker,B., Wang,J.,
Wang,Q., Wang,S., Warren,J., Warren,R., Wei,X., White,F.,
Williams,G., Willson,R., Wleczek,R., Wooden,H., Worley,K.,
Wright,D., Wright,R., Wu,J., Yakub,S., Yen,J., Yoon,L., Yoon,V.,
Yu,F., Zhang,J., Zhou,J., Zhou,X., Zhao,S., Dunn,D., von
Niederhausern,A., Weiss,R., Smith,D.R., Holt,R.A., Smith,H.O.,
Weinstock,G. and Gibbs,R.A.

TITLE Direct Submission
JOURNAL Unpublished
REFERENCE 2 (bases 1 to 312858)
AUTHORS Worley,K.C.
TITLE Direct Submission
JOURNAL Submitted (24-FEB-2002) Human Genome Sequencing Center, Department
of Molecular and Human Genetics, Baylor College of Medicine, One
Baylor Plaza, Houston, TX 77030, USA
REFERENCE 3 (bases 1 to 312858)
AUTHORS Rat Genome Sequencing Consortium.
TITLE Direct Submission
JOURNAL Submitted (08-OCT-2002) Human Genome Sequencing Center, Department
of Molecular and Human Genetics, Baylor College of Medicine, One
Baylor Plaza, Houston, TX 77030, USA
COMMENT On Sep 23, 2002 this sequence version replaced gi:21738477.
The sequence in this assembly is a combination of BAC based reads
and whole genome shotgun sequencing reads assembled using Atlas
(<http://www.hgsc.bcm.tmc.edu/projects/rat/>). Each contig described
in the feature table below represents a scaffold in the Atlas
assembly (a 'contig-scaffold'). Within each contig-scaffold,
individual sequence contigs are ordered and oriented, and separated
by sized gaps filled with Ns to the estimated size. The sequence
may extend beyond the ends of the clone and there may be sequence
contigs within a contig-scaffold that consist entirely of whole
genome shotgun sequence reads. Both end sequences and whole genome
shotgun sequence only contigs will be indicated in the feature
table.

Genome Center
Center: Baylor College of Medicine
Center code: BCM
Web site: <http://www.hgsc.bcm.tmc.edu/>
Contact: hgsc-help@bcm.tmc.edu

Project Information
Center project name: GRAX
Center clone name: CH230-359E1

Summary Statistics
Assembly program: Phrap; version 0.990329
Consensus quality: 241372 bases at least Q40
Consensus quality: 245333 bases at least Q30
Consensus quality: 248022 bases at least Q20
Estimated insert size: 276767; sum-of-contigs estimation
Quality coverage: 4x in Q20 bases; sum-of-contigs estimation

* NOTE: Estimated insert size may differ from sequence length
* (see http://www.hgsc.bcm.tmc.edu/docs/Genbank_draft_data.html)
* NOTE: This sequence may represent more than one clone.
* NOTE: This is a 'working draft' sequence. It currently

* consists of 8 contigs. The true order of the pieces
* is not known and their order in this sequence record is
* arbitrary. Gaps between the contigs are represented as
* runs of N, but the exact sizes of the gaps are unknown.
* This record will be updated with the finished sequence
* as soon as it is available and the accession number will
* be preserved.

* 1 155105: contig of 155105 bp in length
* 155106 155205: gap of unknown length
* 155206 221765: contig of 66560 bp in length
* 221766 221865: gap of unknown length
* 221866 290378: contig of 68513 bp in length
* 290379 290478: gap of unknown length
* 290479 293724: contig of 3246 bp in length
* 293725 293824: gap of unknown length
* 293825 305790: contig of 11966 bp in length
* 305791 305890: gap of unknown length
* 305891 307341: contig of 1451 bp in length
* 307342 307441: gap of unknown length
* 307442 309768: contig of 2327 bp in length
* 309769 309868: gap of unknown length
* 309869 312858: contig of 2990 bp in length.

FEATURES

	Location/Qualifiers
JRES	
source	1. .312858 /organism="Rattus norvegicus" /mol_type="genomic DNA" /db_xref="taxon:10116" /clone="CH230-359E1"
misc_feature	159838. .161520 /note="wgs_contig"
misc_feature	166727. .168287 /note="wgs_contig"
misc_feature	190162. .191648 /note="wgs_contig"
misc_feature	234118. .235251 /note="wgs_contig"
misc_feature	290479. .292119 /note="wgs contig"

ORIGIN

Query Match 13.1%; Score 264.8; DB 2; Length 312858;
Best Local Similarity 76.3%; Pred. No. 4.1e-50;
Matches 380; Conservative 0; Mismatches 32; Indels 86; Gaps 1;

||||||| ||||| |||||
 Db 82048 TGTCCGGCGTGGTCACTGGGCTCCTGTGCGATACCCCCCAGGAATCCTCATCCTGGATG 81989
 Qy 713 AACCCACTTCTGGCCTCGACAGCTTCACAGCCCACAATCTGGTGACAACCTTGTCCCGCC 772
 ||||||| ||||| |||||
 Db 81988 AACCCACTTCCGGCCTCGACAGCTTCACCGCTCACAAACCTGGTGAGAACCTTGTCCCGCC 81929
 Qy 773 TGGCCAAGGGCAACAGGCTGGTGCTCATCTCCCTCCACCAGCCTCGCTCTGACATCTTCA 832
 |||||
 Db 81928 TGGCCAAGGGCAACAGGCTGGTGCTCATCTCCCTCCACCAGCCTCGCTCTGACATCTTCA 81869
 Qy 833 GGCTATTGACCTGGCCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGGC 892
 |||||||
 Db 81868 GGCTATTGACCTGGCCTTCTGATGACGTCTGGCACCCCTATCTACCTGGGGTGGCAC 81809
 Qy 893 AGCAAATGGTGCAGTACTTCACATCCATTGCCACCCCTGTCCCTCGCTATAGCAACCCTG 952
 |||||
 Db 81808 AGCACATGGTGCAGTACTTACATCAATTGGCTACCCTGTCCCTCGCTACAGCAACCCTG 81749
 Qy 953 CGGACTTCTACGTGGACT 970
 | ||||| |||||
 Db 81748 CTGACTTCTACGGTGAGT 81731

RESULT 15

AY145899/c

LOCUS AY145899 40929 bp DNA linear ROD 12-NOV-2002
 DEFINITION Rattus norvegicus sterolin 2 (Abcg8) and sterolin 1 (Abcg5) genes,
 complete cds.
 ACCESSION AY145899
 VERSION AY145899.1 GI:24935208
 KEYWORDS .
 SOURCE Rattus norvegicus (Norway rat)
 ORGANISM Rattus norvegicus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae;
 Rattus.
 REFERENCE 1 (bases 1 to 40929)
 AUTHORS Yu,H., Lu,K., Lee,M., Pandit,B. and Patel,s.B.
 TITLE The rat Abcg5 and Abcg8: characterization, chromosomal assignment
 and genetic variation in sitosterolemic rats
 JOURNAL Unpublished
 REFERENCE 2 (bases 1 to 40929)
 AUTHORS Yu,H., Lu,K., Lee,M., Pandit,B. and Patel,s.B.
 TITLE Direct Submission
 JOURNAL Submitted (29-AUG-2002) Endocrinology, Diabetes and Medical
 Genetics, Medical University of South Carolina, 114 Doughty Street,
 STR 541, Charleston, SC 29403, USA
 FEATURES Location/Qualifiers
 source 1. .40929
 /organism="Rattus norvegicus"
 /mol_type="genomic DNA"
 /strain="Sprague-Dawley"
 /db_xref="taxon:10116"
 gene complement(<4136. .>20831)
 /gene="Abcg8"
 mRNA complement(join(<4136. .4273,4361. .4488,5693. .5960,

6513. .6589,6754. .6953,8189. .8269,8350. .8512,10772.
.11041,
11129. .11261,11647. .11885,15513. .15669,17473. .17574,
20769. .>20831))
/gene="Abcg8"
/product="sterolin 2"
CDS complement(join(4136. .4273,4361. .4488,5693. .5960,
6513. .6589,6754. .6953,8189. .8269,8350. .8512,10772.
.11041,
11129. .11261,11647. .11885,15513. .15669,17473. .17574,
20769. .20831))
/gene="Abcg8"
/note="ATP-binding cassette sub-family G (WHITE) member 8"
/codon_start=1
/product="sterolin 2"
/protein_id="AAN64276.1"
/db_xref="GI:24935210"
/translation="MAEKTKEETQIWNNGTVLQDASSLQDSVFSSESNDNSLYFTYSGQS
NTLEVRDLTYQVDMASQVPWFQQLAQFKLPWRSRGSDSWDLGIRNLSFKVRSGQMLA
IIGSAGCGRATLLDVITGRDHGGKMKSGQIWINGQPSTPQLIQKCVAHVRQQDQLLPN
LTVRETLTFIAQMRLPKTSQAQRDKRVEDVIAELRLRQCANTRVGNTYVRGVSGGER
RRVSIGVQLLNPGILILDEPTSGLDSFTAHLNLVRTSLAKGNRLVLISLHQPRSDI
FRLFDLVLMLMTSGTPIYLGVAQHMVQYFTSIGYPCPRYSNPADFYVDLTSIDRRSKEQ
EVATMEKARRLLAALFLEKVQGFDDFLWKAEEAKSLDTGTYAVSQTLTQDTNCGTAAELP
GMIQQFTTLIRRQISNDFRDLPTLFIHGAECIMSLIIGFLYYGHADKPLSFMDMAAL
LFMIGALIPFNVIILDVVSKCHSERSLLYYELEDGLYTAGPYFFAKVLGELPEHCAYVI
IYGMPIYWLTNLRPGPELFLLHFMLLWLUVFCCRTMALAASAMLPTFHMSFCCNALY
NSFYLTAGFMINNNLWIVPAWISKMSFLRWCFSGLMQIQFNGHIYTTQIGNLTFSPV
GDAMVTAMDILNSHPLYAIYLIVIGISCGFLSILYLSLKFIKQKSIQDW"
gene <21211. .>40564
/gene="Abcg5"
mRNA join(<21211. .21356,21968. .22089,24726. .24862,24949.
.25047,
27388. .27520,28838. .28977,29879. .30008,30715. .30928,
31032. .31237,32869. .33007,35821. .36006,38553. .38665,
40371. .>40564)
/gene="Abcg5"
/product="sterolin 1"
CDS join(21211. .21356,21968. .22089,24726. .24862,24949.
.25047,
27388. .27520,28838. .28977,29879. .30008,30715. .30928,
31032. .31237,32869. .33007,35821. .36006,38553. .38665,
40371. .40564)
/gene="Abcg5"
/note="ATP-binding cassette sub-family G (WHITE) member 5"
/codon_start=1
/product="sterolin 1"
/protein_id="AAN64275.1"
/db_xref="GI:24935209"
/translation="MSELPFLSPEGARGPHNNRGSQSSLEEGSVTGSEARHSLGVNV
SFSVSNRVGPWWNIKSCQQKWDRKILKDVSILYIESGQTMICILGSSSGKTTLLDAISG
RLRRTGTLEGEVFVNCGCELRRDQFQDCVSYLLQSDVFLSSLTVRETLRYTAMLALRSS
SADFYDKKVEAVLTELSSLHVADQMIGNYNFGGISSGERRRVSIAAQLLQDPKVMMLD
EPTTGLDCMTANHVLLVELARRNRIVIVTIHQPRSELFHHFDKIAILTYGELVFCG
TPEEMLGFFNNCGYPCEHSNPFDYMDLTSVDTQSREIEITYKRVQMLAFRQSD
ICHKILENIERTRHLKTLPMVPFKTKNPPGMFCKLGVLRRVTRNLMRNKQVIVMLV
QNLIMGLFLIFYLLRVQNMLKGAVQDRVGLLYQLVGATPYTGMLNAVNLFPMLRAVS

DQESQDGLYQKWQMMLAYVLHALPFSIVATVI FSSVCYWTLGLYPEVARFGYFSAALL
APHLIGEFLTLVLLGMVQNPNI VNSIVALLSISGLLIGSGFIRNIEMPIPLKILGYF
TFQKYCCEILVVNEFYGLNFTCGGSNTSPNNPMCSMTQGIQFIEKTCPGATSRTTN
FLILYSFIPTLVILGMVFKVRDYLISR"

ORIGIN

Query Match 13.1%; Score 264.2; DB 10; Length 40929;
Best Local Similarity 68.2%; Pred. No. 5.2e-50;
Matches 429; Conservative 0; Mismatches 113; Indels 87; Gaps 1;

Qy 429 GGTGAGGAAGTGCCTTGCGCATGTGCGGCAGCATGACCAACTGCTGCCAACCTGACCGT 488
|
Db 11394 GGTGGGGGTGGGGGTGGGGGAGTTGCCAAACAAATGCTGCAGGGAAATGAAGTG 11335

Qy 489 CAGAGAGACCCTGGCTTCATTGCCAGATGCCCTGCCAGGACCTCTCCAGGCCA 548
|
Db 11334 CAGAAGAACCTTCCTGGCATTAAAGTGAAGAAGTTGCCCTGGACGCTCGTAATGCTC 11275

Qy 549 GCGTGACAAACGGGTGGAAGACGTAAATGCCAGCTGCCAGGACGTGCGCCAAACAC 608
|
Db 11274 AGCCTGCCCTCAGGTGGAAGACGTGATTGCCAGCTGCCAGTGCAGGCCAAACAC 11215

Qy 609 CAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGCGCCGACGAGTGAGCAT 668
|
Db 11214 CCGCGTGGCAACACATACTACGTACGCCGGGTGTCCGGGGCGAGCGCCGAAGAGTGAGCAT 11155

Qy 669 TGGGTGCAGCTCCTGTGGAA----- 689
|
Db 11154 CGGGGTGCAGCTCCTGTGGAACCCAGGTGAGGCCTGGAACCTGAGGGCGAGGACCTGA 11095

Qy 690 -----CCCAGGAATCCT 701
|
Db 11094 GCCTACAACCTGTCCGGCGTGGTCACTGGCTTCCCTGTGCGATACCCCCAGGAATCCT 11035

Qy 702 CATCTGGATGAACCCACTTCTGGCCTCGACAGCTTACAGCCCACAATCTGGTGACAAC 761
|
Db 11034 CATCCTGGATGAACCCACTTCCGGCCTCGACAGCTTACCGCTCACAACTGGTGAGAAC 10975

Qy 762 CTTGTCCCGCCTGGCAAGGGCAACAGGCTGGTGTCACTCCCTCCACCAGCCTCGCTC 821
|
Db 10974 TTTGTCCCGCCTGGCAAAGGCAACAGGCTGGTGTCACTCCCTCCACCAGCCTCGCTC 10915

Qy 822 TGACATCTTCAGGCTATTGACCTGGCTTCTGATGACATCTGGCACCCCTATCTACCT 881
|
Db 10914 TGACATCTTCAGGCTATTGACCTGGCTTCTGATGACGTCTGGCACCCCTATCTACCT 10855

Qy 882 GGGGGCGGCGCAGCAAATGGTGCAGTACTTCACATCCATTGCCACCCCTGTCTCGCTA 941
|
Db 10854 GGGGGTGGCACAGCACATGGTGCAGTACTTACATCAATTGGCTACCCCTGTCTCGCTA 10795

Qy 942 TAGCAACCCTGCAGACTTCTACGTGGACT 970
|
Db 10794 CAGCAACCCTGCTGACTTCTACGGTGAGT 10766

Search completed: February 26, 2004, 06:21:11
Job time : 5199.97 secs

GenCore version 5.1.6
Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: February 26, 2004, 00:39:18 ; Search time 511.357 Seconds
(without alignments)
16773.223 Million cell updates/sec

Title: US-09-989-981A-3

Perfect score: 2019

Sequence: 1 atggctgagaaaaccaaaga.....agtcaattcaagactggta 2019

Scoring table: IDENTITY_NUC
Gapop 10.0 , Gapext 1.0

Searched: 3373863 seqs, 2124099041 residues

Total number of hits satisfying chosen parameters: 6747726

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : N_Geneseq_29Jan04:
1: geneseqn1980s:
2: geneseqn1990s:
3: geneseqn2000s:
4: geneseqn2001as:
5: geneseqn2001bs:
6: geneseqn2002s:
7: geneseqn2003as:
8: geneseqn2003bs:
9: geneseqn2003cs:
10: geneseqn2004s:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result	Query					Description
	No.	Score	Match	Length	DB	
1	2019	100.0	2019	7	AAD48881	Aad48881 Mouse ABC
2	2004.4	99.3	2564	6	ABN90022	Abn90022 Mouse clo
3	1430	70.8	2669	7	AAD48883	Aad48883 Human ABC
4	743.8	36.8	3239	6	ABK83218	Abk83218 Human tra
5	229.2	11.4	580	4	AAH98911	Aah98911 Arabidops
6	199.2	9.9	1920	6	ABK51681	Abk51681 DNA encod
7	199.2	9.9	2340	6	AAD22009	Aad22009 Human sit

8	199.2	9.9	2340	7	AAD48882	Aad48882 Human ABC	
9	199.2	9.9	2516	6	ABK51682	Abk51682 Human ABC	
10	195	9.7	2035	6	ABK51686	Abk51686 cDNA enco	
11	186.6	9.2	1915	6	ABK51684	Abk51684 DNA encod	
12	186.6	9.2	1959	7	AAD48880	Aad48880 Mouse ABC	
13	186.6	9.2	2258	6	AAD22008	Aad22008 Mouse sit	
14	186.6	9.2	2354	6	ABK51685	Abk51685 Mouse ABC	
15	176	8.7	1069	6	ABK51687	Abk51687 cDNA enco	
16	137.8	6.8	2525	3	AAZ98625	Aaz98625 Silkworm	
17	137	6.8	2025	6	ABA94371	Aba94371 Murine BC	
18	133.6	6.6	363	6	ABN16253	Abn16253 Human ORF	
19	132.4	6.6	1968	6	AAL42412	Aal42412 Human BCR	
20	132.4	6.6	1968	9	ADC54181	Adc54181 Human bre	
21	132.4	6.6	1998	6	AAL42414	Aal42414 Human BCR	
22	132.4	6.6	2027	6	ABK49901	Abk49901 cDNA enco	
23	132.4	6.6	2053	6	ABK49911	Abk49911 cDNA enco	
24	132.4	6.6	2247	6	ABA94383	Aba94383 Human BCR	
25	132.4	6.6	2418	2	AAZ06360	Aaz06360 Breast Ca	
26	132.4	6.6	2574	4	AAF27724	Aaf27724 Human tra	
27	132.4	6.6	2574	8	ADA10916	Ada10916 Human cDN	
28	132.4	6.6	2718	7	ACC80605	Acc80605 Human ABC	
29	132.4	6.6	2719	3	AAZ94760	Aaz94760 Human ATP	
30	132.4	6.6	2719	3	AAA27938	Aaa27938 ATP-bind	
31	132.4	6.6	2719	6	ABA94369	Aba94369 Human BCR	
32	132.4	6.6	2883	6	ABZ35528	Abz35528 Human gen	
33	130.8	6.5	1998	6	AAL42413	Aal42413 Human BCR	
34	125.8	6.2	2446	3	AAC37975	Aac37975 Arabidops	
35	119.4	5.9	727	4	AAH07859	Aah07859 Human cDN	
36	119.4	5.9	2077	4	AAH15008	Aah15008 Human cDN	
37	117.8	5.8	2352	4	ABL05135	Ab105135 Drosophil	
38	117.2	5.8	2930	3	AAZ94747	Aaz94747 Human ATP	
39	117.2	5.8	2930	6	ABL63321	Ab163321 Breast ca	
40	117	5.8	3201	6	ABV74352	Abv74352 Human ABC	
41	114	5.6	2133	9	ADE47651	Ade47651 Human NOV	
42	107	5.3	2921	7	ABV75074	Abv75074 Human Dev	
43	106.4	5.3	4646	7	ADA68676	Ada68676 Spirodela	
44	105.4	5.2	2894	7	ACD13444	Acd13444 Human DNA	
c	45	105	5.2	6043	7	AAD48884	Aad48884 ABCG5-ABC

ALIGNMENTS

RESULT 1

AAD48881

ID AAD48881 standard; DNA; 2019 BP.

XX

AC AAD48881;

XX

DT 24-MAR-2003 (first entry)

XX

DE Mouse ABCG8 DNA.

XX

KW ABC family cholesterol transporter; ABCG8; sterol-related disorder;

KW sitosterolaemia; hyperlipidaemia; hypercholesterolaemia; gall stone;

KW HDL deficiency; atherosclerosis; nutritional deficiency; gene therapy;

KW mouse; ATP-binding cassette; sitosterolaemia susceptibility gene; SSG;

KW ABCG5; gene; ds.

XX

OS Mus sp.

XX

FH Key Location/Qualifiers

FT CDS 1. .2019

FT /*tag= a

FT /product= "mABCG8 protein"

FT /transl_except= (pos:1318. .1320, aa:Leu)

XX

PN WO200281691-A2.

XX

PD 17-OCT-2002.

XX

PF 20-NOV-2001; 2001WO-US043823.

XX

PR 20-NOV-2000; 2000US-0252235P.

PR 28-NOV-2000; 2000US-0253645P.

XX

PA (TULA-) TULARIK INC.

PA (TEXA) UNIV TEXAS SYSTEM.

XX

PI Hobbs HH, Shan B, Barnes R, Tian H;

XX

DR WPI; 2003-058548/05.

DR P-PSDB; AAE31703.

XX

PT New ABCG8 polypeptides and nucleic acids, useful for treating sterol-related disorders e.g. sitosterolemia, hypercholesterolemia, hyperlipidemia, gall stones, HDL deficiency, atherosclerosis, or nutritional deficiencies.

XX

PS Claim 13; Page 75; 94pp; English.

XX

CC The invention relates to ATP-binding cassette (ABC) family cholesterol transporter, ABCG8 polypeptides and polynucleotides. The invention also provides ABCG5 polypeptides and polynucleotides. ABCG5 gene is also known as sitosterolaemia susceptibility gene (SSG). Sequences of the invention are useful for treating or preventing sterol-related disorders such as sitosterolaemia, hyperlipidaemia, hypercholesterolaemia, gall stones, HDL deficiency, atherosclerosis and nutritional deficiencies. They are also useful in gene therapy. The present sequence is mouse ABCG8 DNA

XX

SQ Sequence 2019 BP; 444 A; 598 C; 510 G; 467 T; 0 U; 0 Other;

Query Match 100.0%; Score 2019; DB 7; Length 2019;
Best Local Similarity 100.0%; Pred. No. 0;
Matches 2019; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 ATGGCTGAGAAAACCAAGAAGAGACCCAGCTGTGGAATGGACTGTACTTCAGGATGCT 60
Db 1 ATGGCTGAGAAAACCAAGAAGAGACCCAGCTGTGGAATGGACTGTACTTCAGGATGCT 60

Qy 61 TCGGGCCTCCAGGACAGCTTGTCTCCTCGGAAAGTGACAACAGTCTGTACTTCACCTAC 120
Db 61 TCGGGCCTCCAGGACAGCTTGTCTCCTCGGAAAGTGACAACAGTCTGTACTTCACCTAC 120

Qy	121	AGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATCGCCTCT	180
Db	121	AGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATCGCCTCT	180
Qy	181	CAGGTGCCTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGCAGC	240
Db	181	CAGGTGCCTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGCAGC	240
Qy	241	CAAGACTCCTGTGAGCTGGCATCCGAAATCTAAGCTCAAAGTGAGGAGTGGACAGATG	300
Db	241	CAAGACTCCTGTGAGCTGGCATCCGAAATCTAAGCTCAAAGTGAGGAGTGGACAGATG	300
Qy	301	CTGGCCATCATAGGGAGCTCAGGCTGCAGGAGAGCCTCACTACTCGACGTGATCACAGGC	360
Db	301	CTGGCCATCATAGGGAGCTCAGGCTGCAGGAGAGCCTCACTACTCGACGTGATCACAGGC	360
Qy	361	AGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAAATGGCAACCCAGTACG	420
Db	361	AGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAAATGGCAACCCAGTACG	420
Qy	421	CCTCAGCTGGTGAGGAAGTGCCTGCGCATGTGCGGAGCATGACCAACTGCTGCCAAC	480
Db	421	CCTCAGCTGGTGAGGAAGTGCCTGCGCATGTGCGGAGCATGACCAACTGCTGCCAAC	480
Qy	481	CTGACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATGCCCTGCCAGGACCTCTCC	540
Db	481	CTGACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATGCCCTGCCAGGACCTCTCC	540
Qy	541	CAGGCCAGCGTGACAACGGTGGAGACGTAATGCCAGCTGCCAGTGCAGCAGTGC	600
Db	541	CAGGCCAGCGTGACAACGGTGGAGACGTAATGCCAGCTGCCAGTGCAGCAGTGC	600
Qy	601	GCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGGCCGACGA	660
Db	601	GCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGGCCGACGA	660
Qy	661	GTGAGCATTGGGTGCAGCTCCTGTGGAAACCCAGGAATCCTCATTCTGGATGAACCCACT	720
Db	661	GTGAGCATTGGGTGCAGCTCCTGTGGAAACCCAGGAATCCTCATTCTGGATGAACCCACT	720
Qy	721	TCTGGCTCGACAGCTTCACAGCCCACAATCTGGTACAACCTTGTCCCGCTGGCAAG	780
Db	721	TCTGGCTCGACAGCTTCACAGCCCACAATCTGGTACAACCTTGTCCCGCTGGCAAG	780
Qy	781	GGCAACAGGCTGGTGCTCATCTCCCTCCACAGCCTCGCTCTGACATCTCAGGCTATT	840
Db	781	GGCAACAGGCTGGTGCTCATCTCCCTCCACAGCCTCGCTCTGACATCTCAGGCTATT	840
Qy	841	GACCTGGTCCTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGCGCAGCAAATG	900
Db	841	GACCTGGTCCTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGCGCAGCAAATG	900
Qy	901	GTGCAGTACTTCACATCCATTGGCCACCCCTGTCCCTCGCTATAGCAACCTGCAGACTTC	960
Db	901	GTGCAGTACTTCACATCCATTGGCCACCCCTGTCCCTCGCTATAGCAACCTGCAGACTTC	960
Qy	961	TACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGAGGTGGCCACCGTGGAG	1020

Db ||||||| 961 TACGTGGACTTGACCAGCATCGACAGACGCAAGAACGGGAGGTGCCACCGTGGAG 1020
Qy 1021 AAGGCACAGTCTCTTGCAGCCCTGTTCTAGAAAAAGTACAAGGCTTGATGACTTTCTG 1080
Db ||||||| 1021 AAGGCACAGTCTCTTGCAGCCCTGTTCTAGAAAAAGTACAAGGCTTGATGACTTTCTG 1080
Qy 1081 TGGAAAGCTGAGGCAAAGGAACCAACACAAGCACCCACACAGTCAGCCTGACCCTCACA 1140
Db ||||||| 1081 TGGAAAGCTGAGGCAAAGGAACCAACACAAGCACCCACACAGTCAGCCTGACCCTCACA 1140
Qy 1141 CAGGACACTGACTGTGGACTGCTGTTGAGCTGCCGGATGATAGAGCAGTTCCACC 1200
Db ||||||| 1141 CAGGACACTGACTGTGGACTGCTGTTGAGCTGCCGGATGATAGAGCAGTTCCACC 1200
Qy 1201 CTGATCCGTCGTCAAGATTCCAATGACTTCCGGACCTGCCACGCTGCTCATTGATGGG 1260
Db ||||||| 1201 CTGATCCGTCGTCAAGATTCCAATGACTTCCGGACCTGCCACGCTGCTCATTGATGGG 1260
Qy 1261 TCGGAAGCCTGCCTGATGTCCTCATCATTGGCTCCTTACTACGGCCATGGGCCAAG 1320
Db ||||||| 1261 TCGGAAGCCTGCCTGATGTCCTCATCATTGGCTCCTTACTACGGCCATGGGCCAAG 1320
Qy 1321 CAGCTCTCCTTCATGGACACAGCAGCCCTCCTTACTACGGCCATGGGCCAAG 1380
Db ||||||| 1321 CAGCTCTCCTTCATGGACACAGCAGCCCTCCTTACTACGGCCATGGGCCAAG 1380
Qy 1381 AATGTCATCCTGGATGTCGTCTCAAATGTCACTCGGAGAGGTCAATGCTGTACTATGAG 1440
Db ||||||| 1381 AATGTCATCCTGGATGTCGTCTCAAATGTCACTCGGAGAGGTCAATGCTGTACTATGAG 1440
Qy 1441 CTGGAAGACGGGCTGTACACTGCTGGTCCTTATTCTTGCCAAGATCCTAGGAGAATTG 1500
Db ||||||| 1441 CTGGAAGACGGGCTGTACACTGCTGGTCCTTATTCTTGCCAAGATCCTAGGAGAATTG 1500
Qy 1501 CCGGAGCACTGTGCCTACGTCACTACGGCATGCCATCTACTGGCTGACAAACCTG 1560
Db ||||||| 1501 CCGGAGCACTGTGCCTACGTCACTACGGCATGCCATCTACTGGCTGACAAACCTG 1560
Qy 1561 CGGCCCGTGCCTGAGCTCTCCTCTACACTTCCGTGCTGTTGGTGGTGGTCTTCTGC 1620
Db ||||||| 1561 CGGCCCGTGCCTGAGCTCTCCTCTACACTTCCGTGCTGTTGGTGGTGGTCTTCTGC 1620
Qy 1621 TGCAGGACCATGGCCCTGGCTGCCTTGCCATGCTGCCACCTCCACATGTCCTCCTTC 1680
Db ||||||| 1621 TGCAGGACCATGGCCCTGGCTGCCTTGCCATGCTGCCACCTCCACATGTCCTCCTTC 1680
Qy 1681 TTCTGCAATGCCCTACAACCTCCTTACCTTACTGCCGGCTCATGATAAACTTGGAC 1740
Db ||||||| 1681 TTCTGCAATGCCCTACAACCTCCTTACCTTACTGCCGGCTCATGATAAACTTGGAC 1740
Qy 1741 AACCTGTGGATAGTGCCTGCATGGATCTCCAAGCTGTCGTTCCCTCCGGTGGTCTCG 1800
Db ||||||| 1741 AACCTGTGGATAGTGCCTGCATGGATCTCCAAGCTGTCGTTCCCTCCGGTGGTCTCG 1800
Qy 1801 GGGCTGATGCAGATTCAATTAAATGGACACCTTACACCAACAAATCGGCAACTTCACC 1860
Db |||||||

Db 1801 GGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTTCACC 1860
Qy 1861 TTCTCCATCCTCGGAGACACGATGATCAGTGCATGGACCTGAACCTCGCATCCACTCTAT 1920
|||
Db 1861 TTCTCCATCCTCGGAGACACGATGATCAGTGCATGGACCTGAACCTCGCATCCACTCTAT 1920
Qy 1921 GCGATCTACCTCATTGTCAATCGGCATCAGCTACGGCTCCTGTTCCGTACTATCTATCC 1980
|||
Db 1921 GCGATCTACCTCATTGTCAATCGGCATCAGCTACGGCTCCTGTTCCGTACTATCTATCC 1980
Qy 1981 TTGAAGCTCATCAAACAGAAGTCAATTCAAGACTGGTGA 2019
|||
Db 1981 TTGAAGCTCATCAAACAGAAGTCAATTCAAGACTGGTGA 2019

RESULT 2
ABN90022
ID ABN90022 standard; cDNA; 2564 BP.
XX
AC ABN90022;
XX
DT 16-AUG-2002 (first entry)
XX
DE Mouse clone IMX3_67 extended sequence.
XX
KW Mouse; antiinflammatory; gene therapy; ileitis; DST; ss; TOGA;
KW digital sequence tag; total gene expression analysis.
XX
OS Mus musculus.
XX
PN WO200231114-A2.
XX
PD 18-APR-2002.
XX
PF 11-OCT-2001; 2001WO-US032091.
XX
PR 11-OCT-2000; 2000US-0239483P.
XX
PA (DIGI-) DIGITAL GENE TECHNOLOGIES INC.
XX
PI Viney JL, Sims JE, Dubose RF, Baum PR, Hasel KW, Hilbush BS;
XX
DR WPI; 2002-426279/45.
XX
PT New isolated nucleic acid molecules that are associated with ileitis, for
PT preventing, treating, modulating and diagnosing ileitis in a mammalian
PT subject.
XX
PS Claim 1; Page 266-268; 273pp; English.
XX
CC The invention relates to a novel isolated nucleic acid molecule
CC comprising a polynucleotide having one of 90 polynucleotide sequences,
CC given in the specification. The polynucleotides of the invention have
CC antiinflammatory activity, and may have a use in gene therapy. The
CC polynucleotide or a polypeptide encoded by it is used for preventing,
CC treating, modulating or ameliorating a medical condition such as ileitis.
CC The polypeptide or polynucleotide is also useful for manufacturing a

CC medicament for treating ileitis. The sequence represents a an extended
CC cDNA digital sequence tag obtained from a mouse clone by the TOGA (total
CC gene expression analysis) method

XX

SQ Sequence 2564 BP; 623 A; 722 C; 638 G; 581 T; 0 U; 0 Other;

Query Match 99.3%; Score 2004.4; DB 6; Length 2564;
Best Local Similarity 99.8%; Pred. No. 0;
Matches 2018; Conservative 0; Mismatches 1; Indels 3; Gaps 1;

Qy 1 ATGGCTGAGAAAACCAAAGAAGAGACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT 60
|||
Db 35 ATGGCTGAGAAAACCAAAGAAGAGACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT 94

Qy 61 TC---GGGCCTCCAGGACAGCTTGTTCCTCGGAAAGTGACAACAGTCTGTACTTCACC 117
|||
Db 95 TCGCAGGGCCTCCAGGACAGCTTGTTCCTCGGAAAGTGACAACAGTCTGTACTTCACC 154

Qy 118 TACAGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATGCC 177
|||
Db 155 TACAGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATGCC 214

Qy 178 TCTCAGGTGCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCTGGAGGTCTCATAGC 237
|||
Db 215 TCTCAGGTGCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCTGGAGGTCTCATAGC 274

Qy 238 AGCCAAGACTCCTGTGAGCTGGCATCCGAAATCTAACGTTCAAAGTGAGGAGTGGACAG 297
|||
Db 275 AGCCAAGACTCCTGTGAGCTGGCATCCGAAATCTAACGTTCAAAGTGAGGAGTGGACAG 334

Qy 298 ATGCTGGCCATCATAGGGAGCTCAGGCTGCCGGAGAGCCTCACTACTCGACGTGATCACA 357
|||
Db 335 ATGCTGGCCATCATAGGGAGCTCAGGCTGCCGGAGAGCCTCACTACTCGACGTGATCACA 394

Qy 358 GGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGT 417
|||
Db 395 GGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGT 454

Qy 418 ACGCCTCAGCTGGTAGGAAAGTGCCTGCATGTGCCAGCATGACCAACTGCTGCC 477
|||
Db 455 ACGCCTCAGCTGGTAGGAAAGTGCCTGCATGTGCCAGCATGACCAACTGCTGCC 514

Qy 478 AACCTGACCGTCAGAGAGACCCCTGGTTTCATTGCCAGATGCCCTGCCAGGACCTTC 537
|||
Db 515 AACCTGACCGTCAGAGAGACCCCTGGTTTCATTGCCAGATGCCCTGCCAGGACCTTC 574

Qy 538 TCCCAGGCCACGGTGAACAAACGGGTGGAAGACGTAATGCCAGCTGCCAGGACCTTC 597
|||
Db 575 TCCCAGGCCACGGTGAACAAACGGGTGGAAGACGTAATGCCAGCTGCCAGGACCTTC 634

Qy 598 TGCGCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAAGCGCCGA 657
|||
Db 635 TGCGCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAAGCGCCGA 694

Qy 658 CGAGTGAGCATTGGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCC 717
|||
Db 695 CGAGTGAGCATTGGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCC 754

Qy	718	ACTTCTGGCCTCGACAGCTTCACAGCCCACAATCTGGTGACAACCTTGTCCCCCTGGCC	777
Db	755	ACTTCTGGCCTCGACAGCTTCACAGCCCACAATCTGGTGACAACCTTGTCCCCCTGGCC	814
Qy	778	AAGGGCAACAGGCTGGTGCTCATCTCCCTCACCGAGCCTCGCTTGACATCTCAGGCTA	837
Db	815	AAGGGCAACAGGCTGGTGCTCATCTCCCTCACCGAGCCTCGCTTGACATCTCAGGCTA	874
Qy	838	TTTGACCTGGTCCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGGCAGCAA	897
Db	875	TTTGACCTGGTCCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGGCAGCAA	934
Qy	898	ATGGTGCAGTACTTCACATCCATTGGCCACCCCTGTCTCGTATAGCAACCCGCGGAC	957
Db	935	ATGGTGCAGTACTTCACATCCATTGGCCACCCCTGTCTCGTATAGCAACCCGCGGAC	994
Qy	958	TTCTACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGGAGGTGGCACCGTG	1017
Db	995	TTCTACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGGAGGTGGCACCGTG	1054
Qy	1018	GAGAAGGCACAGTCTTGCAGCCCTGTTCTAGAAAAAGTACAAGGCTTGATGACTTT	1077
Db	1055	GAGAAGGCACAGTCTTGCAGCCCTGTTCTAGAAAAAGTACAAGGCTTGATGACTTT	1114
Qy	1078	CTGTGGAAAGCTGAGGCAAAGGAACTCAACACAAGCACCCACACAGTCAGCCTGACCCCTC	1137
Db	1115	CTGTGGAAAGCTGAGGCAAAGGAACTCAACACAAGCACCCACACAGTCAGCCTGACCCCTC	1174
Qy	1138	ACACAGGACACTGACTGTGGACTGCTGTTGAGCTGCCGGGATGATAGAGCAGTTTCC	1197
Db	1175	ACACAGGACACTGACTGTGGACTGCTGTTGAGCTGCCGGGATGATAGAGCAGTTTCC	1234
Qy	1198	ACCTGATCCGTCGTCAAGATTCCAATGACTTCCGGACCTGCCACGCTGCTCATTCA	1257
Db	1235	ACCTGATCCGTCGTCAAGATTCCAATGACTTCCGGACCTGCCACGCTGCTCATTCA	1294
Qy	1258	GGGTCGGAAGCCTGCCTGATGTCCCTCATCATTGGCTCCTTACTACGGCCATGGGCC	1317
Db	1295	GGGTCGGAAGCCTGCCTGATGTCCCTCATCATTGGCTCCTTACTACGGCCATGGGCC	1354
Qy	1318	AAGCAGCTCCTTCATGGACACAGCAGCCCTCTTCTCATGATAAGGGCGCTCATTCT	1377
Db	1355	AAGCAGCTCCTTCATGGACACAGCAGCCCTCTTCTCATGATAAGGGCGCTCATTCT	1414
Qy	1378	TTCAATGTCATCCTGGATGTCGTCCTCAAATGTCACTCGGAGAGGTCAATGCTGTACTAT	1437
Db	1415	TTCAATGTCATCCTGGATGTCGTCCTCAAATGTCACTCGGAGAGGTCAATGCTGTACTAT	1474
Qy	1438	GAGCTGGAAGACGGCTGTACACTGCTGGCCTTATTCTTGCCAAGATCCTAGGAGAA	1497
Db	1475	GAGCTGGAAGACGGCTGTACACTGCTGGCCTTATTCTTGCCAAGATCCTAGGAGAA	1534
Qy	1498	TTGCCGGAGCACTGTGCCTACGTCATCATCACGCGATGCCCATCTACTGGCTGACAAAC	1557
Db	1535	TTGCCGGAGCACTGTGCCTACGTCATCATCACGCGATGCCCATCTACTGGCTGACAAAC	1594

Qy	1558	CTGCGGCCGTGCCTGAGCTCTCCTTACACTCCTGCTCGTGGTTGGTGGTCTTC	1617
Db	1595	CTGCGGCCGTGCCTGAGCTCTCCTTACACTCCTGCTCGTGGTTGGTGGTCTTC	1654
Qy	1618	TGCTGCAGGACCATGGCCCTGGCTGCCTCTGCCATGCTGCCAACCTCCACATGTCC	1677
Db	1655	TGCTGCAGGACCATGGCCCTGGCTGCCTCTGCCATGCTGCCAACCTCCACATGTCC	1714
Qy	1678	TTCTTCTGCAATGCCCTACAACTCCTTACCTTACTGCCGGCTTCATGATAAACTTG	1737
Db	1715	TTCTTCTGCAATGCCCTACAACTCCTTACCTTACTGCCGGCTTCATGATAAACTTG	1774
Qy	1738	GACAACCTGTGGATAGTGCCTGCATGGATCTCCAAGCTGCGTCCCTCCGGTGGTCTTC	1797
Db	1775	GACAACCTGTGGATAGTGCCTGCATGGATCTCCAAGCTGCGTCCCTCCGGTGGTCTTC	1834
Qy	1798	TCGGGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATGGCAACTTC	1857
Db	1835	TCGGGTGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATGGCAACTTC	1894
Qy	1858	ACCTTCTCCATCCTCGGAGACACGATGATCAGTGCATGGACCTGAACCTGCATCCACTC	1917
Db	1895	ACCTTCTCCATCCTCGGAGACACGATGATCAGTGCATGGACCTGAACCTGCATCCACTC	1954
Qy	1918	TATGCGATCTACCTCATTGTCATCGGCATCAGCTACGGCTTCCTGTTCTGTACTATCTA	1977
Db	1955	TATGCGATCTACCTCATTGTCATCGGCATCAGCTACGGCTTCCTGTTCTGTACTATCTA	2014
Qy	1978	TCCTTGAAGCTCATAAACAGAAGTCAATTCAAGACTGGTGA	2019
Db	2015	TCCTTGAAGCTCATAAACAGAAGTCAATTCAAGACTGGTGA	2056

RESULT 3

AAD48883

ID AAD48883 standard; DNA; 2669 BP.

XX

AC AAD48883;

XX

DT 24-MAR-2003 (first entry)

XX

DE Human ABCG8 DNA.

XX

KW ABC family cholesterol transporter; ABCG8; sterol-related disorder;
 KW sitosterolaemia; hyperlipidaemia; hypercholesterolaemia; gall stone;
 KW HDL deficiency; atherosclerosis; nutritional deficiency; gene therapy;
 KW human; ATP-binding cassette; sitosterolaemia susceptibility gene; SSG;
 KW ABCG5; gene; ds.

XX

OS Homo sapiens.

XX

FH Key Location/Qualifiers

FT CDS 100..2121

FT /*tag= a

FT /product= "hABCG8 protein"

XX

PN WO200281691-A2.

XX
PD 17-OCT-2002.
XX
PF 20-NOV-2001; 2001WO-US043823.
XX
PR 20-NOV-2000; 2000US-0252235P.
PR 28-NOV-2000; 2000US-0253645P.
XX
PA (TULA-) TULARIK INC.
PA (TEXA) UNIV TEXAS SYSTEM.
XX
PI Hobbs HH, Shan B, Barnes R, Tian H;
XX
DR WPI; 2003-058548/05.
DR P-PSDB; AAE31705.
XX
PT New ABCG8 polypeptides and nucleic acids, useful for treating sterol-related disorders e.g. sitosterolemia, hypercholesterolemia, hyperlipidemia, gall stones, HDL deficiency, atherosclerosis, or nutritional deficiencies.
XX
PS Claim 13; Page 80; 94pp; English.
XX
CC The invention relates to ATP-binding cassette (ABC) family cholesterol transporter, ABCG8 polypeptides and polynucleotides. The invention also provides ABCG5 polypeptides and polynucleotides. ABCG5 gene is also known CC as sitosterolaemia susceptibility gene (SSG). Sequences of the invention are useful for treating or preventing sterol-related disorders such as CC sitosterolaemia, hyperlipidaemia, hypercholesterolaemia, gall stones, HDL CC deficiency, atherosclerosis and nutritional deficiencies. They are also CC useful in gene therapy. The present sequence is human ABCG8 DNA
XX
SQ Sequence 2669 BP; 595 A; 768 C; 722 G; 584 T; 0 U; 0 Other;

Query Match 70.8%; Score 1430; DB 7; Length 2669;
Best Local Similarity 82.0%; Pred. No. 0;
Matches 1659; Conservative 0; Mismatches 360; Indels 3; Gaps 1;

Qy 1 ATGGCTGAGAAAACCAAAGAAGAGACCCAGCTGTGGAATGGGACTGTACTTCAGGATGCT 60
Db 100 ATGGCCGGGAAGGCAGGGCTGCCAAAGGGGCCACTCCCCAGGATACC 159

Qy 61 TCGGGCCTCCAGGACAGCTTCTCCTCGAAAGTGACAACAGTCTGTACTTCACCTAC 120
Db 160 TCGGGCCTCCAGGATAGATTGTTCTCCTCTGAAAGTGACAACAGCCTGTACTTCACCTAC 219

Qy 121 AGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATGCCCTCT 180
Db 220 AGTGGCCAGCCAACACCCCTGGAGGTCAAGAGACCTCAACTACCAGGTGGACCTGGCCTCT 279

Qy 181 CAGGTGCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGCAGC 240
Db 280 CAGGTCCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATGCCCTGGACATCTCCCAGCTGC 339

Qy 241 CAAGACTCCTGTGAGCTGGCATCCGAAATCTAAGCTCAAAGTGAGGAGTGGACAGATG 300
Db 340 CAGAATTCTTGTGAGCTGGCATCCAGAACCTAAAGCTCAAAGTGAGAAGTGGCAGATG 399

Qy	301	CTGGCCATCATAGGGAGCTCAGGCTGCAGGAGAGCCTCACTACTCGACGTGATCACAGGC	360
Db	400	CTGGCCATCATAGGGAGCTCAGGTTGTGGGAGAGCCTCCTGCTAGATGTGATCACTGGC	459
Qy	361	AGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAAATGGCAACCCAGTAGCG	420
Db	460	CGAGGTACGGCGGCAAGATCAAGTCAGGCCAGATCTGGATCAATGGCAGGCCAGCTCG	519
Qy	421	CCTCAGCTGGTGAGGAAGTGCCTGCAGTGCGCATGACCAACTGCTGCCAAC	480
Db	520	CCTCAGCTGGTGAGGAAGTGTGTGGCCCACGTGCGCCAGCACACCAGCTGCTCCCCAAC	579
Qy	481	CTGACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATGCCCTGCCAGGACCTCTCC	540
Db	580	TTGACTGTGCGAGAGACCTTGGCCTTCATTGCCAGATGCCCTGCCAGAACCTCTCC	639
Qy	541	CAGGCCAGCGTGACAAACGGGTGGAAGACGTAATGCCGAGCTGCCCTGCCAGTGC	600
Db	640	CAGGCCAGCGTGACAAAAGGGTGGAGGACGTGATGCCGAGCTGCCCTAGGCAGTGC	699
Qy	601	GCCAACACCAAGAGTGGCAACACGTATGTACGTGGGGTGTCCGGGGTGAGGCCGACGA	660
Db	700	GCTGACACCCCGCGTGGCAACATGTACGTGCCGGGGTTGTGGGGGGTGAGCGCAGGAGA	759
Qy	661	GTGAGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATCCTATTCTGGATGAAACCCACT	720
Db	760	GTCAGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATCCTTATTCTGACGAAACCCACC	819
Qy	721	TCTGGCCTCGACAGCTTCACAGCCCACAATCTGGTGACAACCTGTCCGCCGGCAAG	780
Db	820	TCTGGGCTCGACAGCTTCACAGCCCACAACCTGGTAAGACCTTGCCAGGCTGGCAA	879
Qy	781	GGCAACAGGCTGGTGCTCATCTCCCTCCACCAGCCTCGCTTGACATCTTCAGGCTATT	840
Db	880	GGCAACCGGCTGGTGCTCATCTCCCTCCACCAGCCTCGCTTGACATCTTCAGGCTGTT	939
Qy	841	GACCTGGCCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGGCAGCAAATG	900
Db	940	GATCTGGCCTCCTGATGACGTGGCACCCCATCTACTTAGGGCGGCCAGCACATG	999
Qy	901	GTGCACTTACATCCATTGGCACCCCTGTCCCTCGCTATAGCAACCTGCCGGACTTC	960
Db	1000	GTCCAGTATTTCACAGCCATCGGCTACCCCTGTCCCTCGCTACAGCAATCCTGCTGACTTC	1059
Qy	961	TACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGGAGGTGGCCACCGTGGAG	1020
Db	1060	TATGTGGACCTGACCAGCATTGACAGGGCGCAGCAGAGAGCAGGAATTGGCCACCAGGGAG	1119
Qy	1021	AAGGCACAGTCTTGCAGCCCTGTTCTAGAAAAAGTACAAGGTTGATGACTTCTG	1080
Db	1120	AAGGCTCAGTCACTCGCAGCCCTGTTCTAGAAAAAGTGCCTGACTTAGATGACTTCTA	1179
Qy	1081	TGGAAAGCTGAGGCAAAGGAACCTAACACAAAGCACCCACACAGTCAGCCTGACCCTACA	1140
Db	1180	TGGAAAGCAGAGACGAAGGATCTTGACGAGGACACCTGTGTGGAAAGCAGCGTGACCCCA	1239

Qy	1141	CAGGACACTGACTG--TGGGACTGCTGTTGAGCTGCCCGGGATGATAGAGCAGTTTCC	1197
Db	1240	CTAGACACCAACTGCCTCCCAGTCCTACGAAGATGCCTGGGGCGGTGCAGCAGTTACG	1299
Qy	1198	ACCCGTGATCCCGTCAGATTCCAATGACTTCCGGACCTGCCACGCTGCTCATTCA	1257
Db	1300	ACGCTGATCCCGTCAGATTCCAACGACTTCCGAGACCTGCCACCCCTCATCCAT	1359
Qy	1258	GGGTCGGAAGCCTGCCTGATGTCCTCATCATTGGCTTCTTACTACGGCATGGGCC	1317
Db	1360	GGGGCGGAGGCCTGTCATGTCATGACCATCGGCTCCTCATTTGCCATGGGAGC	1419
Qy	1318	AAGCAGCTCCCTCATGGACACAGCAGCCCTCTTCACTGATAGGGCGCTCATTCC	1377
Db	1420	ATCCAGCTCCCTCATGGATAACAGCCGCCCTTGTCATGATCGGTGCTCATCCCT	1479
Qy	1378	TTCAATGTCATCCTGGATGTCGCTCCAAATGTCACTCGGAGAGGTCAATGCTGTACTAT	1437
Db	1480	TTCAACGTCATTCTGGATGTCATCTCAAATGTTACTCAGAGAGGGCAATGCTTACTAT	1539
Qy	1438	GAGCTGGAAGACGGGCTGTACACTGCTGGCCTTATTCTTGCCAAGATCCTAGGAGAA	1497
Db	1540	GAACTGGAAGACGGGCTGTACACCCTGGTCCATATTCTTGCCAAGATCCTCGGGGAG	1599
Qy	1498	TTGCCGGAGCACTGTGCCCTACGTACATCTACCGCATGCCATCTACTGGCTGACAAAC	1557
Db	1600	CTTCCGGAGCACTGTGCCCTACATCATCTACGGATGCCACCTACTGGCTGGCAAC	1659
Qy	1558	CTGCCGGCCCGTGCCTGAGCTCTCCTCTACACTCCCTGCTCGTGGTTGGTGGCTTC	1617
Db	1660	CTGAGGCCAGGCCTCCAGCCCTCCTGCTGCACTCCTGCTGGTGTGGCTGGTGGCTTC	1719
Qy	1618	TGCTGCAGGACCATGGCCCTGGCTGCCCTGCCATGCTGCCACCTTCCACATGTCCTCC	1677
Db	1720	TGTTGCAGGATTATGCCCTGGCCCGCCGCGCCCTGCTCCCCACCTTCCACATGGCCTCC	1779
Qy	1678	TTCTTCTGCAATGCCCTACAAACTCCTTACCTTACTGCCGCTCATGATAAATTG	1737
Db	1780	TTCTTCAGCAATGCCCTACAAACTCCTTACCTCGCCGGGGCTCATGATAAATTG	1839
Qy	1738	GACAACCTGTGGATAGTGCCTGCATGGATCTCAAAGCTGCGTCCCTCCGGTGGTGCTTC	1797
Db	1840	AGCAGCCTGTGGACAGTGCCCGCGTGGATTCCAAGTGTCCCTCCTGCGGTGGTGTGTTT	1899
Qy	1798	TCGGGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTTC	1857
Db	1900	GAAGGGCTGATGAAGATTCAAGTTCAGCAGAAGAACTTATAAAATGCCCTCGGGAACCTC	1959
Qy	1858	ACCTTCTCCATCCTCGGAGACACGATGATCAGTGCCTGCCATGGACCTGAACCTCGCATCCACTC	1917
Db	1960	ACCATCGCGGTCTCAGGAGATAAAATCCTCAGTGCCTGCCATGGAGCTGGACTCGTACCCCTCTC	2019
Qy	1918	TATGCGATCTACCTCATTGTCATCGGCATCAGCTACGGCTTCTGTTCTGTACTATCTA	1977
Db	2020	TACGCCATCTACCTCATCGTCATTGGCCTCAGCGGTGGCTCATGGTCTGTACTACGTG	2079
Qy	1978	TCCTTGAAGCTCATCAAACAGAAGTCATTCAAGACTGGTGA	2019

Db ||||| | | ||||||||||| ||| |||||||||||
2080 TCCTTAAGGTTCATCAACAGAAACCAAGTCAAGACTGGTGA 2121

RESULT 4
ABK83218
ID ABK83218 standard; cDNA; 3239 BP.
XX
AC ABK83218;
XX
DT 27-AUG-2002 (first entry)
XX
DE Human transporter and ion channel, TRICH9, Incyte ID 6585710CB1, cDNA.
XX
KW Human; ss; gene; transporter and ion channel; TRICH; transport disorder;
KW neurological disorder; muscle disorder; immunological disorder; cancer;
KW scleroderma; systemic lupus erythematosus; allergy; leukaemia;
KW cell proliferative disorder; cervical cancer; breast cancer;
KW neurodegenerative disorder; Parkinson's disease; Alzheimer's disease;
KW myotonic dystrophy; catatonia; endocrine disorder; diabetes;
KW Grave's disease; gastrointestinal disorder; Crohn's disease;
KW renal disorder; Good pasture's syndrome; viral infection; cirrhosis;
KW bacterial infection; fungal infection; parasitic infection;
KW protozoal infection; helminthic infection; cardiovascular disorder;
KW atherosclerosis; hepatic disease.
XX
OS Homo sapiens.
XX
PN WO200240541-A2.
XX
PD 23-MAY-2002.
XX
PF 25-OCT-2001; 2001WO-US046055.
XX
PR 27-OCT-2000; 2000US-0243989P.
PR 03-NOV-2000; 2000US-0245904P.
PR 09-NOV-2000; 2000US-0247673P.
PR 17-NOV-2000; 2000US-0249661P.
PR 20-NOV-2000; 2000US-0252232P.
PR 01-DEC-2000; 2000US-0250790P.
XX
PA (INCY-) INCYTE GENOMICS INC.
XX
PI Tang YT, Yue H, Nguyen DB, Hafalia AJA, Elliott VS, Lu Y;
PI Walia NK, Yao MG, Baughn MR, Gandhi AR, Ding L, Sanjanwala M;
PI Ramkumar J, Arvizu C, Gietzen KJ, Lal PG, Azimzai Y, Khan FA;
PI Thangavelu K, Thornton M, Lu DAM, Tribouley CM, Warren BA, Ison CH;
PI Das D, Raumann BE, Policky JL, Kearney L;
XX
DR WPI; 2002-463570/49.
DR P-PSDB; ABG61539.
XX
PT New transporters and ion channels (TRICH) polypeptides, useful for
PT diagnosing, preventing, and treating disorders associated with an
PT abnormal expression or activity of TRICH, e.g. immunological, muscular or
PT renal disorders.
XX

PS Claim 5; Page 167-168; 178pp; English.

XX

CC The invention relates to human transporters and ion channels (TRICH)
CC polypeptides, a naturally occurring amino acid sequence 90 % identical to
CC TRICH, a biologically active fragment of TRICH or an immunogenic fragment
CC of TRICH. Also included are an isolated polynucleotide encoding TRICH, a
CC recombinant polynucleotide comprising a promoter sequence operably linked
CC to the TRICH polynucleotide, a cell transformed with the recombinant
CC polynucleotide, a transgenic organism comprising the recombinant
CC polynucleotide, an isolated antibody that binds specifically to TRICH,
CC and screening for compounds which bind to TRICH, modulate TRICH, modulate
CC TRICH expression or are ant/agonists of TRICH. The polypeptides are
CC useful for diagnosing, treating, and preventing transport, neurological,
CC muscle, immunological disorders (e.g. scleroderma, systemic lupus
CC erythematosus, allergies), cell proliferative disorders such as cancers
CC (e.g. leukaemia, cervical or breast cancers), neurodegenerative disorders
CC (e.g. Parkinson's disease, Alzheimer's disease), muscular disorders (e.g.
CC myotonic dystrophy, catatonia), endocrine disorders (e.g. diabetes,
CC Grave's disease), gastrointestinal disorders (e.g. Crohn's disease),
CC renal disorders (e.g. Good pasture's syndrome), viral, bacterial, fungal,
CC parasitic, protozoal and helminthic infections, cardiovascular disorders
CC (e.g. atherosclerosis), or hepatic diseases (e.g. cirrhosis) and many
CC other diseases and disorders detailed in the specification. They can also
CC be used in assessing the effects of exogenous compounds on the expression
CC of nucleic acid and amino acid sequences of transporters and ion
CC channels. TRICH or its fragments may also be used in screening for
CC compounds that specifically bind to and modulate the activity of TRICH.
CC The polynucleotides can be used to create knock-in humanised animals or
CC transgenic animals to model human disease. The present sequence encodes a
CC TRICH protein

XX

SQ Sequence 3239 BP; 784 A; 822 C; 796 G; 837 T; 0 U; 0 Other;

Query Match 36.8%; Score 743.8; DB 6; Length 3239;
Best Local Similarity 78.9%; Pred. No. 4.3e-190;
Matches 899; Conservative 0; Mismatches 237; Indels 3; Gaps 1;

Qy 884 GGGCGGCCGAGCAAATGGTGCAGTACTTCACATCCATTGGCCACCCTTGTCCCTCGCTATA 943
Db 12 GGGGCGGCCAGCACATGGTCCATTATTCACAGCCATGGCTACCCCTGTCCCTCGCTACA 71

Qy 944 GCAACCCTGCGGACTTCTACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGG 1003
Db 72 GCAATCCTGCTGACTTCTATGTGGACCTGACCAGCATTGACAGGGCAGCAGAGAGCAGG 131

Qy 1004 AGGTGGCCACCGTGGAGAAGGCACAGTCTCTTGAGCCCTGTTCTAGAAAAAGTACAAG 1063
Db 132 AATTGGCCACCAGGGAGAAGGCTCAGTCACTCGCAGCCCTGTTCTAGAAAAAGTGC GTG 191

Qy 1064 GCTTTGATGACTTCTGTGGAAAGCTGAGGCAAAGGAACCTAACACACAAGCACCCACACAG 1123
Db 192 ACTTAGATGACTTCTATGGAAAGCAGAGACGAAGGATCTTGACGAGGACACCTGTGTGG 251

Qy 1124 TCAGCCTGACCCCTCACACAGGACACTGACTG---TGGGACTGCTGTTGAGCTGCCCGGG 1180
Db 252 AAAGCAGCGTGACCCCACTAGACACCAACTGCCTCCCGAGTCCTACGAAGATGCCTGGGG 311

RESULT 5
AAH98911
ID AAH98911 standard; cDNA; 580 BP.
XX
AC AAH98911;
XX
DT 12-OCT-2001 (first entry)
XX
DE Arabidopsis EST-derived coding sequence SEQ ID NO: 768.
XX
KW Human; sheep; pig; cow; fruit fly; yeast; hamster; macaque; horse;
KW tomato; monkey; dog; sea urchin; expressed sequence tag; EST;
KW diagnostics; forensic test; gene mapping; genetic disorder; biodiversity;
KW gene therapy; nutrition; ss.
XX
OS Arabidopsis thaliana.
XX
PN WO200154477-A2.
XX
PD 02-AUG-2001.
XX
PF 25-JAN-2001; 2001WO-US002687.
XX
PR 25-JAN-2000; 2000US-00491404.
PR 17-JUL-2000; 2000US-00617746.
PR 03-AUG-2000; 2000US-00631451.
PR 15-SEP-2000; 2000US-00663870.
XX
PA (HYSE-) HYSEQ INC.
XX
PI Tang YT, Liu C, Zhou P, Qian XB, Wang Z, Chen R, Asundi V;
PI Cao Y, Drmanac RA, Zhang J, Werhman T;
XX
DR WPI; 2001-476164/51.
DR P-PSDB; AAM24252.
XX
PT Isolated polypeptide for treatment of diseases, diagnostics, raising
PT antibodies and research use.
XX
PS Claim 1; Page 664; 1275pp; English.
XX
CC The present invention provides the protein and coding sequences of novel
CC proteins from a variety of organisms, including human, dog, cat, horse,
CC cow, pig, hamster, monkey, macaque, yeast, bacteria, fruit fly, sea
CC urchin and tomato. These were derived from expressed sequence tags (ESTs)
CC from the organism of interest. They can be used in diagnostics,
CC forensics, gene mapping, identification of mutations, to assess
CC biodiversity and for nutritional purposes. The present sequence is a cDNA
CC of the invention
XX
SQ Sequence 580 BP; 146 A; 154 C; 116 G; 164 T; 0 U; 0 Other;

Query Match 11.4%; Score 229.2; DB 4; Length 580;
Best Local Similarity 84.3%; Pred. No. 2.2e-51;
Matches 258; Conservative 0; Mismatches 48; Indels 0; Gaps 0;

Qy 1407 ATGTCACTCGGAGAGGTCAATGCTGTACTATGAGCTGGAAGACGGGCTGTACACTGCTGG 1466

Db	275	AGGTTACTCAGAGAGGGCAATGCTTACTATGAACGTGAAAGACGGGCTGTACACCACTGG	334
Qy	1467	TCCTTATTCTTGCCAAGATCCTAGGAGAATTGCCGGAGCACTGTGCCTACGTACATCAT	1526
Db	335	TCCATATTCTTGCCAAGATCCTCGGCGAGCTCCGGAGCACTGTGCCTACATCATCAT	394
Qy	1527	CTACCGGATGCCCATCTACTGGCTGACAAACCTGCAGGCCGTGCCTGAGCTCTCCTCT	1586
Db	395	CTACGGGATGCCACCTACTGGCTGCCAACCTGAGGCCAGGCCCTCCAGGCCCTCCTGCT	454
Qy	1587	ACACTTCCTGCTCGTGGTTGGTGGTCTTCTGCTGCAGGACCATGCCCTGGCTGCCTC	1646
Db	455	GCACTTCCTGCTGGAGTGGCTGGCGGTCTCTGTTGCAAGATTATGGCCTGCCCGC	514
Qy	1647	TGCCATGCTGCCACCTCCACATGTCCTCCTCTGCAATGCCCTACAACCTCCT	1706
Db	515	GGGCCTGCTCCCCACCTTACACATGCCCTCCTCAGCAATGCCCTACAACTGCTT	574
Qy	1707	CTACCT 1712	
Db	575	CTACCT 580	

RESULT 6

ABK51681

ID ABK51681 standard; DNA; 1920 BP.

XX

AC ABK51681;

XX

DT 30-JUL-2002 (first entry)

XX

DE DNA encoding human ABCG5 protein.

XX

KW Human; ABCG5; ATP-binding cassette gene 5; sitosterolemia; cholesterol;

KW arteriosclerosis; heart disease; hypersterolemia; Alzheimer's disease;

KW chromosome 2p21; ds.

XX

OS Homo sapiens.

XX

FH Key Location/Qualifiers

FT CDS 1. .1920

FT /*tag= a

FT /product= "Human ABCG5 protein"

FT /transl_except= (pos: 4. .9, aa: GDLSSLTPGGSMGL)

FT /note= "This sequence contains 13 exons"

XX

PN WO200227016-A2.

XX

PD 04-APR-2002.

XX

PF 25-SEP-2001; 2001WO-US029859.

XX

PR 25-SEP-2000; 2000US-0235268P.

XX

PA (USSH) US DEPT HEALTH & HUMAN SERVICES.

PA (PATE/) PATEL S B.

PA (DEAN/) DEAN M.
XX
PI Patel SB, Dean M;
XX
DR WPI; 2002-416483/44.
DR P-PSDB; AAU98984.

PT Novel mammalian ATP-binding cassette gene 5 polypeptide, and the nucleic acid encoding the polypeptide, useful for treating sitosterolemia, arteriosclerosis and heart diseases.

XX
PS Claim 38; Page 36-37; 66pp; English.

The present invention relates to a new mammalian ATP-binding cassette gene 5 (ABCG5) polypeptide. The invention is useful for identifying a predisposition for developing sitosterolemia, arteriosclerosis or heart disease. The molecules of the invention are also useful for identifying a compound which alters ABCG5 activity level comprising contacting a cell culture or mammal which have ABCG5 polypeptide with a compound and measuring ABCG5 biological activity in the cell culture or in mammal, where an increase or decrease in ABCG5 biological activity compared to ABCG5 biological activity in a control cell culture or mammal not contacted with the compound, identifies a compound that increases or decreases ABCG5 activity respectively. The cell culture or mammal comprises a mutated ABCG5 polypeptide or a wild type polypeptide. The ABCG5 biological activity, or level of ABCG5 mRNA, or level of the polypeptide in a cell culture or mammal is also compared with that of a second cell culture or mammal comprising a wild type ABCG5 polypeptide. Stimulation of ABCG5 activity is useful for treating or preventing hypersterolemia, arteriosclerosis, heart disease and/or Alzheimer's disease. The method of the invention is useful for increasing cholesterol excretion and/or decreasing cholesterol adsorption. The present nucleic acid sequence represents the human ABCG5 gene located on chromosome 2p21. This sequence encodes the human ABCG5 protein of the invention.

xx
xx S page 1620 EPG: 442 A: 593 C: 486 G: 481 T: 0 U: 0 Other:

Query Match 9.9%; Score 199.2; DB 6; Length 1920;
Best Local Similarity 54.0%; Pred. No. 5e-43;
Matches 430; Conservative 0; Mismatches 363; Indels 3; Gaps 1;

Qy 294 ACAGATGCTGGCCATCATAGGGAGCTCAGGCTGCAGGAGAGCCTCACTACTCGACGTGAT 353

Db 201 GCAGATCATGTGCATCCTAGGAAGCTCAGGCTCCGGGAAACACGCTGCTGGACGCCAT 260
Qv 354 CACAGGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACC 413

Db 261 GTCCGGGAGGCTGGGGCGCGCGGGGACCTTCCTGGGGGAGGTGTATGTAAACGGCCGGC 320

Db 321 GCTGCGCCGGGAGCAGTTCCAGGACTGCTTCTCCTACGTCTGCAGAGCAGACACCCTGCT 380

Qy	474	GCCCAACCTGACCGTCAGAGAGACCCTGGCTTCATTGCCAGATGCGCCTGCCAGGAC	533
Db	381	GAGCAGCCTCACCGTGCAGACGCTGACTACACCGCGCTGCTGGCCATCCGCCCGGG	440
Qy	534	CTTCTCCCAGGCCAGCGTGACAAACGGGTGGAAGACGTAATGCCAGCTGCCCTGCG	593
Db	441	CAATCCCAGCTCCTTC---AGAAGAAGGTGGAGGCCGTATGGCAGAGCTGAGTCTGAG	497
Qy	594	GCAGTGCGCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGCG	653
Db	498	CCATGTGGCAGACCGACTGATGGCAACTACAGCTGGGGGCATTCCACGGGTGAGCG	557
Qy	654	CCGACGAGTGAGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGA	713
Db	558	GCGCCGGGTCTCCATCGCAGCCCAGCTGCTCCAGGATCTAACGGTCATGCTGTTGATGA	617
Qy	714	ACCCACTTCTGCCCTGACAGCTTCACAGCCCACAATCTGGTGACAACCTGTCCGCCT	773
Db	618	GCCAACCACAGGCCCTGGACTGCATGACTGCTAACATCAGATTGTCGTCCCTGGTGGAACT	677
Qy	774	GGCCAAGGGCAACAGGCTGGTGCTCATCTCCCTCCACCAGCCTCGCTGACATCTTCAG	833
Db	678	GGCTCGAGGAACCGAATTGTGGTTCTCACCAATTACAGCCCCGTTCTGAGCTTTCA	737
Qy	834	GCTATTGACCTGGCCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGGCAC	893
Db	738	GCTTTGACAAAATTGCCATCCTGAGCTCGGAGAGCTGATTCTGTGGCACGCCAGC	797
Qy	894	GCAAATGGTGCAGTACTTCACATCCATTGCCACCCTGTCCTCGCTATAGCAACCTGC	953
Db	798	GGAAATGCTTGATTCTTCAATGACTGCGGTTACCCCTGTCCTGAACATTCAAACCTTT	857
Qy	954	GGACTTCTACGTGGACTTGACCAAGCATCGACAGACGAGCAGCAAAGAACGGAGGTGGCAC	1013
Db	858	TGACTTCTATATGGACCTGACGTAGTGGATAACCAAAGCAAGGAACGGAAATAGAAC	917
Qy	1014	CGTGGAGAAGGCACAG 1029	
Db	918	CTCCAAGAGAGTCCAG 933	

RESULT 7

AAD22009

ID AAD22009 standard; DNA; 2340 BP.

xx

AC AAD22009;

xx

DT 12-FEB-2002 (first entry)

xx

DE Human sitosterolaemia susceptibility gene (SSG).

xx

KW Human; sitosterolaemia susceptibility gene; SSG; arteriosclerosis;
KW sterol-related disorder; hyperlipidaemia; hypercholesterolaemia; therapy;
KW gall stone; coronary heart disease; cardiovascular disease; arthritis;
KW xanthoma; haemolytic anaemia; transgenic animal; chromosome 2p21; ds.

xx

OS *Homo sapiens*.

XX
FH Key Location/Qualifiers
FT CDS 107. .2062
FT /*tag= a
FT /product= "Human SSG protein"
XX
PN WO200179272-A2.
XX
PD 25-OCT-2001.
XX
PF 18-APR-2001; 2001WO-US012758.
XX
PR 18-APR-2000; 2000US-0198465P.
PR 15-MAY-2000; 2000US-0204234P.
XX
PA (TULA-) TULARIK INC.
XX
PI Tian H, Schultz J, Shan B;
XX
DR WPI; 2002-017598/02.
DR P-PSDB; AAE13290.
XX
PT Novel sitosterolemia susceptibility gene polypeptide and polynucleotide,
PT useful for screening a compound that increases the level of expression or
PT activity of SSG polypeptide for treating sterol-related disorder.
XX
PS Claim 8; Fig 8; 105pp; English.
XX
CC The invention relates to an isolated Sitosterolaemia Susceptibility Gene
CC (SSG) polypeptide. SSG is a member of adenosine triphosphate (ATP)
CC binding cassette (ABC) family cholesterol transporter. SSG is useful for
CC identifying a compound useful in the treatment or prevention of a sterol-
CC related disorder, including sitosterolaemia, hyperlipidaemia,
CC hypercholesterolaemia, gall stones, HDL deficiency, atherosclerosis or
CC nutritional deficiencies. SSG is also useful for treating cholesterol-
CC associated diseases or conditions including coronary heart disease and
CC other cardiovascular diseases, and sitosterolaemia-associated condition
CC including arthritis, xanthomas and chronic haemolytic anaemia. SSG
CC expression cassette is useful in the production of transgenic non-human
CC animals. SSG genes and their homologues are useful as tools for a number
CC of applications including diagnosing sitosterolaemia and other
CC cardiovascular disorders, for forensics and paternity determinations, and
CC for treating any of a large number of SSG associated diseases. The
CC present sequence is human SSG DNA. Human SSG is located on chromosome
CC 2p21
XX
SQ Sequence 2340 BP; 541 A; 601 C; 598 G; 600 T; 0 U; 0 Other;

Query Match 9.9%; Score 199.2; DB 6; Length 2340;
Best Local Similarity 54.0%; Pred. No. 5.4e-43;
Matches 430; Conservative 0; Mismatches 363; Indels 3; Gaps 1;

Qy 234 TAGCAGCCAAGACTCCTGTGAGCTGGCATCCGAAATCTAAGCTTCAAAGTGAGGGAGTGG 293
Db 283 TTGCCGGCAGCAGTGGACCAGGCAGATCCTCAAAGATGTCTCCTTGTACGTGGAGAGCGG 342
Qy 294 ACAGATGCTGCCATCATAGGGAGCTCAGGCTGCGGGAGAGCCTCACTACTCGACGTGAT 353

Db	343	GCAGATCATGTGCATCCTAGGAAGCTCAGGCTCGGGAAAACCACGCTGCTGGACGCCAT	402
Qy	354	CACAGGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACC	413
Db	403	GTCCGGGAGGCTGGGGCGCGGGGACCTCCTGGGGGAGGTGTATGTGAACGGCGGGC	462
Qy	414	CAGTACGCCCTCAGCTGGTGAGGAAGTGCCTGCATGTGCGCAGCATGACCAAATGCT	473
Db	463	GCTGCGCCGGGAGCAGTTCCAGGACTGCTCCTACGTCCCTGAGAGGCACACCCCTGCT	522
Qy	474	GCCCAACCTGACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATGCGCTGCCAGGAC	533
Db	523	GAGCAGCCTACCGTGCAGACGCTGCACTACACCGCCTGCTGGCATCCGCCGG	582
Qy	534	CTTCTCCCAGGCCAGCGTGACAAACGGGTGGAAGACGTAATGCCAGCTGCCAGGAC	593
Db	583	CAATCCGGCTCTTC---AGAAGAAGGTGGAGGCCGTATGGCAGAGCTGAGTCTGAG	639
Qy	594	GCAGTGCACACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGGCG	653
Db	640	CCATGTGGCAGACCGACTGATTGCAACTACAGCTGGGGGCATTCCACGGGTGAGCG	699
Qy	654	CCGACGAGTGAGCATGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTGGATGA	713
Db	700	GCGCCGGGCTCCATCGCAGCCCAGCTGCTCCAGGATCTAAGGTATGCTGTTGATGA	759
Qy	714	ACCCACTCTGGCCTCGACAGCTCACAGCCCACAATCTGGTGACAACCTTGTCCGCCT	773
Db	760	GCCAACCACAGGCCTGACTGCATGACTGCTAATCAGATTGTCGTCCTGTTGGAAC	819
Qy	774	GGCCAAGGGCAACAGGCTGGTGCTCATCTCCCTCACAGCCTCGCTGACATCTCAG	833
Db	820	GGCTCGCAGGAACCGAATTGTGGTTCTCACCAATTACCAGCCCCGTTCTGAGCTTTCA	879
Qy	834	GCTATTGACCTGGCCTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGCGCA	893
Db	880	GCTCTTGACAAAATTGCCATCCTGAGCTCGGAGAGCTGATTTCTGTGGCACGCCAGC	939
Qy	894	GCAAATGGTGCAGTACTTCACATCCATTGGCACCCCTTGTCTCGCTATAGCAACCCCTGC	953
Db	940	GGAAATGCTTGATTTCTCAATGACTGCGGTTACCCCTGTCTGAACATTCAAACCCCTT	999
Qy	954	GGACTTCTACGTGGACTTGACCAGCATCGACAGACGCGAGCAAAGAACGGAGGTGGCCAC	1013
Db	1000	TGACTTCTATATGGACCTGACGTCACTGGATACCAAAGCAAGGAACGGAAATAGAAC	1059
Qy	1014	CGTGGAGAAGGCACAG	1029
Db	1060	CTCCAAGAGAGTCCAG	1075

RESULT 8

AAD48882

ID AAD48882 standard; DNA; 2340 BP.

XX

AC AAD48882;

XX
DT 24-MAR-2003 (first entry)
XX
DE Human ABCG5 DNA.
XX
KW ABC family cholesterol transporter; ABCG8; sterol-related disorder;
KW sitosterolaemia; hyperlipidaemia; hypercholesterolaemia; gall stone;
KW HDL deficiency; atherosclerosis; nutritional deficiency; gene therapy;
KW human; ATP-binding cassette; sitosterolaemia susceptibility gene; SSG;
KW ABCG5; gene; ds.
XX
OS Homo sapiens.
XX
FH Key Location/Qualifiers
FT CDS 107. .2062
FT /*tag= a
FT /product= "hABCG5 protein"
XX
PN WO200281691-A2.
XX
PD 17-OCT-2002.
XX
PF 20-NOV-2001; 2001WO-US043823.
XX
PR 20-NOV-2000; 2000US-0252235P.
PR 28-NOV-2000; 2000US-0253645P.
XX
PA (TULA-) TULARIK INC.
PA (TEXA) UNIV TEXAS SYSTEM.
XX
PI Hobbs HH, Shan B, Barnes R, Tian H;
XX
DR WPI; 2003-058548/05.
DR P-PSDB; AAE31704.
XX
PT New ABCG8 polypeptides and nucleic acids, useful for treating sterol-
related disorders e.g. sitosterolemia, hypercholesterolemia,
hyperlipidemia, gall stones, HDL deficiency, atherosclerosis, or
nutritional deficiencies.
XX
PS Claim 11; Page 77; 94pp; English.
XX
CC The invention relates to ATP-binding cassette (ABC) family cholesterol
CC transporter, ABCG8 polypeptides and polynucleotides. The invention also
CC provides ABCG5 polypeptides and polynucleotides. ABCG5 gene is also known
CC as sitosterolaemia susceptibility gene (SSG). Sequences of the invention
CC are useful for treating or preventing sterol-related disorders such as
CC sitosterolaemia, hyperlipidaemia, hypercholesterolaemia, gall stones, HDL
CC deficiency, atherosclerosis and nutritional deficiencies. They are also
CC useful in gene therapy. The present sequence is human ABCG5 DNA
XX
SQ Sequence 2340 BP; 541 A; 601 C; 598 G; 600 T; 0 U; 0 Other;

Query Match 9.9%; Score 199.2; DB 7; Length 2340;
Best Local Similarity 54.0%; Pred. No. 5.4e-43;
Matches 430; Conservative 0; Mismatches 363; Indels 3; Gaps 1;

Qy	234	TAGCAGCCAAGACTCCTGTGAGCTGGGCATCCGAAATCTAACGCTCAAAGTGAGGAGTGG	293
Db	283	TTGCCGGCAGCAGTGGACCAGGCAGATCCTCAAAGATGTCTCCTGTACGTGGAGAGCGG	342
Qy	294	ACAGATGCTGCCCATCATAGGGAGCTCAGGCTGCAGGAGAGCCTCACTACTCGACGTGAT	353
Db	343	GCAGATCATGTGCATCCTAGGAAGCTCAGGCTCCGGAAAACCACGCTGCTGGACGCCAT	402
Qy	354	CACAGGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAAATGGCAACC	413
Db	403	GTCCGGGAGGCTGGGGCGCGCGGGGACCTTCCTGGGGGAGGTGTATGTGAAACGGCCGGC	462
Qy	414	CAGTACGCCCTCAGCTGGTGAGGAAGTGCCTTGCATGTGCAGCATGACCAACTGCT	473
Db	463	GCTGCGCCGGGAGCAGTCCAGGACTGCCTCTCCTACGTCTGCAGAGCGACACCCCTGCT	522
Qy	474	GCCCAACCTGACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATGCGCTGCCAGGAC	533
Db	523	GAGCAGCCTCACCGTGCAGACGCTGCACTACACCGCGCTGCTGGCCATCCGCCCGG	582
Qy	534	CTTCTCCCAGGCCAGCGTGACAAACGGGTGGAAGACGTAATGCCAGCTGCCAGGCTGCG	593
Db	583	CAATCCGGCTCCTTCC---AGAAGAAGGTGGAGGCCGTATGGCAGAGCTGAGTCTGAG	639
Qy	594	GCAGTGCAGCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGCG	653
Db	640	CCATGTGGCAGACCGACTGATTGGCAACTACAGCTGGGGGCATTCCACGGGTGAGCG	699
Qy	654	CCGACGAGTGAGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGA	713
Db	700	GCGCCGGGTCTCCATCGCAGCCAGCTGCTCCAGGATCTAAAGGTATGCTGTTGATGA	759
Qy	714	ACCCACTTCTGCCCGACAGCTTACAGCCCACAATCTGGTGACAACCTTGTCCGCCCT	773
Db	760	GCCAACCACAGGCCCTGGACTGCATGACTGCTAACATTGAGCTGGCCTCCTGGTGGAACT	819
Qy	774	GGCCAAGGGCAACAGGCTGGTGCTCATCTCCCTCCACAGCCTCGCTGACATCTTCAG	833
Db	820	GGCTCGCAGGAACCGAATTGTGGTCTCACCAATTGAGCCCCGTTCTGAGCTTTCA	879
Qy	834	GCTATTGACCTGGCCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGCGCA	893
Db	880	GCTCTTGACAAAATTGCCATCCTGAGCTCGGAGAGCTGATTCTGTGGCACGCCAGC	939
Qy	894	GCAAATGGTGCAGTACTTCACATCCATTGCCACCCCTTGTCCCTCGCTATAGCAACCC	953
Db	940	GGAAATGCTTGATTCTTCAATGACTGCCTGAGCTGGAGAGCTGATTCTGTGGCACGCCAGC	999
Qy	954	GGACTTCTACGTGGACTTGACCAAGCATCGACAGACGCAGCAAAGAACGGGAGGTGGCCAC	1013
Db	1000	TGACTTCTATATGGACCTGACGTCACTGGATACCCAAAGCAAGGAACGGGAAATAGAAC	1059
Qy	1014	CGTGGAGAAGGCACAG	1029
Db	1060	CTCCAAGAGAGTCCAG	1075

RESULT 9
ABK51682
ID ABK51682 standard; cDNA; 2516 BP.
XX
AC ABK51682;
XX
DT 30-JUL-2002 (first entry)
XX
DE Human ABCG5 cDNA sequence.
XX
KW Human; ABCG5; ATP-binding cassette gene 5; sitosterolemia; cholesterol;
KW arteriosclerosis; heart disease; hypersterolemia; Alzheimer's disease;
KW chromosome 2p21; ss.
XX
OS Homo sapiens.
XX
PN WO200227016-A2.
XX
PD 04-APR-2002.
XX
PF 25-SEP-2001; 2001WO-US029859.
XX
PR 25-SEP-2000; 2000US-0235268P.
XX
PA (USSH) US DEPT HEALTH & HUMAN SERVICES.
PA (PATE/) PATEL S B.
PA (DEAN/) DEAN M.
XX
PI Patel SB, Dean M;
XX
DR WPI; 2002-416483/44.
XX
PT Novel mammalian ATP-binding cassette gene 5 polypeptide, and the nucleic
PT acid encoding the polypeptide, useful for treating sitosterolemia,
PT arteriosclerosis and heart diseases.
XX
PS Example 3; Page 37-38; 66pp; English.
XX
CC The present invention relates to a new mammalian ATP-binding cassette
CC gene 5 (ABCG5) polypeptide. The invention is useful for identifying a
CC predisposition for developing sitosterolemia, arteriosclerosis or heart
CC disease. The molecules of the invention are also useful for identifying a
CC compound which alters ABCG5 activity level comprising contacting a cell
CC culture or mammal which have ABCG5 polypeptide with a compound and
CC measuring ABCG5 biological activity in the cell culture or in mammal,
CC where an increase or decrease in ABCG5 biological activity compared to
CC ABCG5 biological activity in a control cell culture or mammal not
CC contacted with the compound, identifies a compound that increases or
CC decreases ABCG5 activity respectively. The cell culture or mammal
CC comprises a mutated ABCG5 polypeptide or a wild type polypeptide. The
CC ABCG5 biological activity, or level of ABCG5 mRNA, or level of the
CC polypeptide in a cell culture or mammal is also compared with that of a
CC second cell culture or mammal comprising a wild type ABCG5 polypeptide.
CC Stimulation of ABCG5 activity is useful for treating or preventing
CC hypersterolemia, arteriosclerosis, heart disease and/or Alzheimer's
CC disease. The method of the invention is useful for increasing cholesterol
CC excretion and/or decreasing cholesterol adsorption. The present nucleic

CC ac sequence represents the cDNA sequence of human ABCG5 gene located on
CC chromosome 2p21
XX
SQ Sequence 2516 BP; 601 A; 631 C; 636 G; 648 T; 0 U; 0 Other;

Query Match 9.9%; Score 199.2; DB 6; Length 2516;
Best Local Similarity 54.0%; Pred. No. 5.6e-43;
Matches 430; Conservative 0; Mismatches 363; Indels 3; Gaps 1;

Qy 234 TAGCAGCCAAGACTCCTGTGAGCTGGCATCGAAATCTAAGCTCAAAGTGAGGAGTGG 293
 |
Db 317 TTGCCGGCAGCAGTGGACCAGGCAGATCCTCAAAGATGTCTCCTGTACGTGGAGAGCGG 376

Qy 294 ACAGATGCTGGCCATCATAGGGAGCTCAGGCTGCGGGAGAGCCTCACTACTCGACGTGAT 353
 |
Db 377 GCAGATCATGTGCATCCTAGGAAGCTCAGGCTCCGGAAAACCACGCTGCTGGACGCCAT 436

Qy 354 CACAGGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAATTGGATAAAATGGCAACCC 413
 |
Db 437 GTCCGGGAGGCTGGGGCGCGCGGGGACCTCCTGGGGGAGGTGTATGTGAACGGCCGGC 496

Qy 414 CAGTACGCCTCAGCTGGTGAGGAAGTGCCTGCAGCATGTGCAGCATGACCAACTGCT 473
 |
Db 497 GCTGCGCCGGGAGCAGTCCAGGACTGCTTCTCCTACGTCTGCAGAGCGACACCCCTGCT 556

Qy 474 GCCCAACCTGACCGTCAGAGAGACCCCTGGCTTTCATTGCCAGATGCGCTGCCAGGAC 533
 |
Db 557 GAGCAGCCTCACCGTGCAGACGCTGCACATACACCGCGCTGCTGGCCATCGCCCGG 616

Qy 534 CTTCTCCCAGGCCACCGTCAGAGAGACCCCTGGCTTTCATTGCCAGATGCGCTGCCAGGAC 593
 |
Db 617 CAATCCCGGCTCCTTCC---AGAAGAAGGTGGAGGCCGTATGGCAGAGCTGAGTCTGAG 673

Qy 594 GCAGTGCACACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGGTGAGCG 653
 |
Db 674 CCATGTGGCAGACCGACTGATTGGCAACTACAGCTGGGGGATTCCACGGGTGAGCG 733

Qy 654 CCGACGAGTGAGCATGGGTGCAGCTCTGTGGAACCCAGGAATCCTCATTCTGGATGA 713
 |
Db 734 GCGCCGGGTCTCCATCGCAGCCCAGCTGCTCCAGGATCTAACGGTATGCTGTTGATGA 793

Qy 714 ACCCACTCTGGCTCGACAGCTTACAGCCCACAATCTGGTACAACCTGTCCCGCCT 773
 |
Db 794 GCCAACCCACAGGCCCTGGACTGCATGACTGCTAACGATTGTCGTCCCTGGTGGAACT 853

Qy 774 GGCCAAGGGCAACAGGGCTGGTGTCTCATCTCCCTCCACAGCCTCGCTGTGACATCTTCA 833
 |
Db 854 GGCTCGCAGGAACCGAATTGTGGTCTCACCAATTACCGCCCCGTTCTGAGCTTTCA 913

Qy 834 GCTATTGACCTGGCCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGGGCGCA 893
 |
Db 914 GCTCTTGACAAAATTGCCATCCTGAGCTCGGAGAGCTGATTCTGTGGCACGCCAGC 973

Qy 894 GCAAATGGTGCAGTACTTCACATCCATTGCCACCCCTTGTCTCGCTATAGCAACCCCTGC 953
 |
Db 974 GGAAATGCTTGATTCTTCATGACTGCTGGTTACCCCTGTGCTGAACATTCAAACCCCTT 1033

QY 954 GGACTTCTACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGAGGTGCCAC 1013
||| |||||
Db 1034 TGACTTCTATATGGACCTGACGTCACTGGATACCCAAAGCAAGGAACGGAAATAGAAC 1093
|
QY 1014 CGTGGAGAAGGCACAG 1029
|
Db 1094 CTCCAAGAGAGTCCAG 1109

RESULT 10

ABK51686

ID ABK51686 standard; cDNA; 2035 BP.

XX

AC ABK51686;

XX

DT 07-AUG-2003 (revised)

DT 30-JUL-2002 (first entry)

XX

DE cDNA encoding rat ABCG5 protein.

XX

KW Rat; ABCG5; ATP-binding cassette gene 5; sitosterolemia; cholesterol; ss;
KW arteriosclerosis; heart disease; hypersterolemia; Alzheimer's disease.

XX

OS Rattus sp.

XX

FH Key Location/Qualifiers

FT CDS 8 . 1965

FT /*tag= a

FT /product= "Rat ABCG5 protein"

XX

PN WO200227016-A2.

XX

PD 04-APR-2002.

XX

PF 25-SEP-2001; 2001WO-US029859.

XX

PR 25-SEP-2000; 2000US-0235268P.

XX

PA (USSH) US DEPT HEALTH & HUMAN SERVICES.

PA (PATE/) PATEL S B.

PA (DEAN/) DEAN M.

XX

PI Patel SB, Dean M;

XX

DR WPI; 2002-416483/44.

DR P-PSDB; AAU96986.

XX

PT Novel mammalian ATP-binding cassette gene 5 polypeptide, and the nucleic
PT acid encoding the polypeptide, useful for treating sitosterolemia,
PT arteriosclerosis and heart diseases.

XX

PS Example 3; Page 45-46; 66pp; English.

XX

CC The present invention relates to a new mammalian ATP-binding cassette
CC gene 5 (ABCG5) polypeptide. The invention is useful for identifying a
CC predisposition for developing sitosterolemia, arteriosclerosis or heart
CC disease. The molecules of the invention are also useful for identifying a

CC compound which alters ABCG5 activity level comprising contacting a cell
CC culture or mammal which have ABCG5 polypeptide with a compound and
CC measuring ABCG5 biological activity in the cell culture or in mammal,
CC where an increase or decrease in ABCG5 biological activity compared to
CC ABCG5 biological activity in a control cell culture or mammal not
CC contacted with the compound, identifies a compound that increases or
CC decreases ABCG5 activity respectively. The cell culture or mammal
CC comprises a mutated ABCG5 polypeptide or a wild type polypeptide. The
CC ABCG5 biological activity, or level of ABCG5 mRNA, or level of the
CC polypeptide in a cell culture or mammal is also compared with that of a
CC second cell culture or mammal comprising a wild type ABCG5 polypeptide.
CC Stimulation of ABCG5 activity is useful for treating or preventing
CC hypersterolemia, arteriosclerosis, heart disease and/or Alzheimer's
CC disease. The method of the invention is useful for increasing cholesterol
CC excretion and/or decreasing cholesterol adsorption. The present nucleic
CC acid sequence encodes the rat ABCG5 protein of the invention. (Updated on
CC 07-AUG-2003 to correct OS field.)

xx

SO Sequence 2035 BP: 481 A: 533 C: 537 G: 484 T: 0 U: 0 Other:

RESULT 11

ABK51684

ID ABK51684 standard; DNA; 1915 BP.

xx

AC ABK51684;

xx

DT 30-JUL-2002 (first entry)

xx

DE DNA encoding mouse ABCG5 protein.

xx

KW Mouse; ABCG5; ATP-binding cassette gene 5; sitosterolemia; cholesterol; KW arteriosclerosis; heart disease; hypersterolemia; Alzheimer's disease; KW ds.

xx

OS

EW Key Location/Qualifiers

FH Key Location
ET GDS 1 1815

FT CBS 1. 1915
ET /*tag= a

FT /partial

```
FT          /product= "Mouse ABCG5 protein"
FT          /transl_except= (pos: 1912..1915, aa: LGIVIFKVRDYLISR)
FT          /note= "This sequence lacks a stop codon"
```

Note— This sequence lacks a stop codon

XX

PN WO200227018-A2.

xx

PD 04-APR-2002.

xx

FF 25-SEF-2001, 2001WO-03029655.
VV

xx
BD

TR 25 SEP 2000, 200005 02552001.

PA

THE USSR IS DEFTLY HELD IN A HOLLOW SERVICES.

PA (PATE/) PATEL S B.

PA (DEAN /) DEAN M.

xx

PI Patel SB, Dean M;

xx

DR WPI: 2002-416483/44.

DR P-PSDB: AAU96985.

xx

PT Novel mammalian ATP-binding cassette gene 5 polypeptide, and the nucleic acid encoding the polypeptide, useful for treating sitosterolemia, arteriosclerosis and heart diseases.

-
xx

PS Example 3: Page 42-43; 66pp; English.

xx

The present invention relates to a new mammalian ATP-binding cassette gene 5 (ABCG5) polypeptide. The invention is useful for identifying a predisposition for developing sitosterolemia, arteriosclerosis or heart disease. The molecules of the invention are also useful for identifying a compound which alters ABCG5 activity level comprising contacting a cell culture or mammal which have ABCG5 polypeptide with a compound and measuring ABCG5 biological activity in the cell culture or in mammal, where an increase or decrease in ABCG5 biological activity compared to ABCG5 biological activity in a control cell culture or mammal not contacted with the compound, identifies a compound that increases or decreases ABCG5 activity respectively. The cell culture or mammal comprises a mutated ABCG5 polypeptide or a wild type polypeptide. The ABCG5 biological activity, or level of ABCG5 mRNA, or level of the polypeptide in a cell culture or mammal is also compared with that of a second cell culture or mammal comprising a wild type ABCG5 polypeptide. Stimulation of ABCG5 activity is useful for treating or preventing hypersterolemia, arteriosclerosis, heart disease and/or Alzheimer's disease. The method of the invention is useful for increasing cholesterol excretion and/or decreasing cholesterol adsorption. The present nucleic acid sequence encodes the mouse ABCG5 protein of the invention.

xx

Sequence 1915 BP; 453 A; 502 C; 484 G; 476 T; 0 U; 0 Other;

Query Match 9.2%; Score 186.6; DB 6; Length 1915;
 Best Local Similarity 53.1%; Pred. No. 1.3e-39;
 Matches 421; Conservative 0; Mismatches 369; Indels 3; Gaps 1;

Qy 321 AGGCTGCGGGAGAGCCTCACTACTCGACGTGATCACAGGCAGAGGCCACGGTGGCAAGAT 380

Db 267 AGGCTCAGGGAAAGACCACGCTGCTGGACGCCATCTCCGGGAGGCTGCGGCGCACTGGGAC 326

Db 327 CCTGGAAAGGGAGGTGTTGTGAATGGCTGCGAGCTGCGCAGGGACCAGTTCCAAGACTG 386

RESULT 12

AAD48880

ID AAD48880 standard; DNA; 1959 BP.

xx

AC AAD48880;

xx

DT 24-MAR-2003 (first entry)

xx

DE Mouse ABCG5 DNA.

xx

KW ABC family cholesterol transporter; ABCG8; sterol-related disorder;
KW sitosterolaemia; hyperlipidaemia; hypercholesterolaemia; gall stone;
KW HDL deficiency; atherosclerosis; nutritional deficiency; gene therapy;
KW mouse; ATP-binding cassette; sitosterolaemia susceptibility gene; SSG;
KW ABCG5; gene; ds.

OS Mus sp.
XX
FH Key Location/Qualifiers
FT CDS 1. .1591
FT /*tag= a
FT /product= "mABCG5 protein"
XX
PN WO200281691-A2.
XX
PD 17-OCT-2002.
XX
PF 20-NOV-2001; 2001WO-US043823.
XX
PR 20-NOV-2000; 2000US-0252235P.
PR 28-NOV-2000; 2000US-0253645P.
XX
PA (TULA-) TULARIK INC.
PA (TEXA) UNIV TEXAS SYSTEM.
XX
PI Hobbs HH, Shan B, Barnes R, Tian H;
XX
DR WPI; 2003-058548/05.
DR P-PSDB; AAE31702.
XX
PT New ABCG8 polypeptides and nucleic acids, useful for treating sterol-
PT related disorders e.g. sitosterolemia, hypercholesterolemia,
PT hyperlipidemia, gall stones, HDL deficiency, atherosclerosis, or
PT nutritional deficiencies.
XX
PS Claim 11; Page 73; 94pp; English.
XX
CC The invention relates to ATP-binding cassette (ABC) family cholesterol
CC transporter, ABCG8 polypeptides and polynucleotides. The invention also
CC provides ABCG5 polypeptides and polynucleotides. ABCG5 gene is also known
CC as sitosterolaemia susceptibility gene (SSG). Sequences of the invention
CC are useful for treating or preventing sterol-related disorders such as
CC sitosterolaemia, hyperlipidaemia, hypercholesterolaemia, gall stones, HDL
CC deficiency, atherosclerosis and nutritional deficiencies. They are also
CC useful in gene therapy. The present sequence is mouse ABCG5 DNA
XX
SQ Sequence 1959 BP; 468 A; 506 C; 495 G; 490 T; 0 U; 0 Other;

Query Match 9.2%; Score 186.6; DB 7; Length 1959;
Best Local Similarity 53.1%; Pred. No. 1.3e-39;
Matches 421; Conservative 0; Mismatches 369; Indels 3; Gaps 1;

Qy 261 CATCCGAAATCTAACGCTCAAAGTGAGGAGTGGACAGATGCTGGCCATCATAGGGAGCTC 320
Db 207 CCTCAAAGATGTCTCCTTGTACATCGAGAGTGGCCAGATTATGTGCATCTTAGGCAGCTC 266

Qy 321 AGGCTGCAGGGAGAGCCTCACTACTCGACGTGATCACAGGCAGAGGCCACGGTGGCAAGAT 380
Db 267 AGGCTCAGGGAAAGACCACGCTGCTGGACGCCATCTCCGGGAGGCTGCAGGCAGCTGGGAC 326

Qy 381 GAAATCAGGACAAATTGGATAAAATGGGCAACCCAGTACGCCCTCAGCTGGTGAGGAAGTG 440
Db 327 CCTGGAAGGGGAGGTGTTGTGAATGGCTGCGAGCTGCGCAGGGACCAGTTCCAAGACTG 386

RESULT 13

AAD22008

ID AAD22008 standard; DNA; 2258 BP.

xx

AC AAD22008;

xx

DT 12-FEB-2002 (first entry)

xx

DE Mouse sitosterolaemia susceptibility gene (SSG).

XX

KW Mouse; sitosterolaemia susceptibility gene; SSG; atherosclerosis;

KW sterol-related disorder; hyperlipidaemia; hypercholesterolaemia; therapy;
KW gall stone; coronary heart disease; cardiovascular disease; arthritis;
KW xanthoma; haemolytic anaemia; transgenic animal; chromosome 17; ds.
XX
OS Mus sp.
XX
FH Key Location/Qualifiers
FT CDS 47. .2005
FT /*tag= a
FT /product= "Mouse SSG protein"
XX
PN WO200179272-A2.
XX
PD 25-OCT-2001.
XX
PF 18-APR-2001; 2001WO-US012758.
XX
PR 18-APR-2000; 2000US-0198465P.
PR 15-MAY-2000; 2000US-0204234P.
XX
PA (TULA-) TULARIK INC.
XX
PI Tian H, Schultz J, Shan B;
XX
DR WPI; 2002-017598/02.
DR P-PSDB; AAE13289.
XX
PT Novel sitosterolemia susceptibility gene polypeptide and polynucleotide,
PT useful for screening a compound that increases the level of expression or
PT activity of SSG polypeptide for treating sterol-related disorder.
XX
PS Claim 8; Fig 7; 105pp; English.
XX
CC The invention relates to an isolated Sitosterolaemia Susceptibility Gene
CC (SSG) polypeptide. SSG is a member of adenosine triphosphate (ATP)
CC binding cassette (ABC) family cholesterol transporter. SSG is useful for
CC identifying a compound useful in the treatment or prevention of a sterol-
CC related disorder, including sitosterolemia, hyperlipidaemia,
CC hypercholesterolemia, gall stones, HDL deficiency, atherosclerosis or
CC nutritional deficiencies. SSG is also useful for treating cholesterol-
CC associated diseases or conditions including coronary heart disease and
CC other cardiovascular diseases, and sitosterolemia-associated condition
CC including arthritis, xanthomas and chronic haemolytic anaemia. SSG
CC expression cassette is useful in the production of transgenic non-human
CC animals. SSG genes and their homologues are useful as tools for a number
CC of applications including diagnosing sitosterolemia and other
CC cardiovascular disorders, for forensics and paternity determinations, and
CC for treating any of a large number of SSG associated diseases. The
CC present sequence is mouse SSG DNA. Mouse SSG is located on chromosome 17
XX
SQ Sequence 2258 BP; 549 A; 579 C; 567 G; 563 T; 0 U; 0 Other;

Query Match 9.2%; Score 186.6; DB 6; Length 2258;
Best Local Similarity 53.1%; Pred. No. 1.4e-39;
Matches 421; Conservative 0; Mismatches 369; Indels 3; Gaps 1;

Qy 261 CATCCGAAATCTAAGCTCAAAGTGAGGAGTGGACAGATGCTGGCCATCATAGGGAGCTC 320

Db	253	CCTCAAAGATGTCTCCTTGTACATCGAGAGTGGCCAGATTATGTGCATCTTAGGCAGCTC	312
Qy	321	AGGCTGCGGGAGAGCCTCACTACTCGACGTGATCACAGGCAGAGGCCACGGTGGCAAGAT	380
Db	313	AGGCTCAGGGAAAGACCACGCTGTCGGACGCCATCTCCGGGAGGCTGCGCGCACTGGGAC	372
Qy	381	GAAATCAGGACAAATTGGATAAATGGCAACCCAGTACGCCCTCAGCTGGTGAGGAAGTG	440
Db	373	CCTGGAAGGGGAGGTGTTGTGAATGGCTGCGAGCTGCCAGGGACCAGTCCAAGACTG	432
Qy	441	CGTTGCGCATGTGCGGCAGCATGACCAACTGCTGCCAACCTGACCGTCAGAGAGACCT	500
Db	433	CTTCTCCTACGTCTGCAGAGCGACGTTTCTGAGCAGCCTCACTGTGCGCGAGACGT	492
Qy	501	GGCTTTCATTGCCAGATGCGCCTGCCAGGACCTTCTCCAGGCCAGCGTGACAAACG	560
Db	493	GCGATACACAGC---GATGCTGGCCCTCTGCCGCAGCTCCGCGGACTTCTACAACAAGAA	549
Qy	561	GGTGGAAAGCGTAATCGCCGAGCTGCGGCTGCGCAGTGCGCCAACACCAGAGTGGCAA	620
Db	550	GGTAGAGGCAGTCATGACAGAGCTGAGCCTGAGCCACGTGGCGGACCAAATGATTGGCAG	609
Qy	621	CACGTATGTACGTGGGGTGTCCGGGGTGAGCGCCGACGAGTGAGCATTGGGTGCAGCT	680
Db	610	CTATAATTGGGGAAATTCCAGTGGCGAGCGGCCAGTTCATCGCAGCCAACT	669
Qy	681	CCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACTTCTGCCCTGACAGCTTCAC	740
Db	670	CCTTCAGGACCCCCAAGGTATGATGCTAGATGAGCCAACCACAGGACTGGACTGCATGAC	729
Qy	741	AGCCCACAATCTGGTACAACCTTGTCCGCCCTGGCAAGGGCAACAGGCTGGTCTCAT	800
Db	730	TGCAAATCAAATTGTCCCTCTGGCTGAGCTGGCTCGCAGGGACGAATTGTGATTGT	789
Qy	801	CTCCCTCCACCAGCCTCGCTCTGACATCTTCAGGCTATTGACCTGGTCCTCTGATGAC	860
Db	790	CACCATCCACCAGCCTCGCTCTGAGCTCTCCAACACTTCGACAAAATTGCCATCCTGAC	849
Qy	861	ATCTGGCACCCCTATCTACCTGGGGCGGCCAGCAAATGGTCAGTACTTCACATCCAT	920
Db	850	TTACGGAGAGTTGGTGTCTGTGGCACCCCAGAGGAGATGCTTGGCTTCTCAATAACTG	909
Qy	921	TGGCCACCCCTGTCCCTCGCTATAGCAACCCCTGGGACTTCTACGTGGACTTGACCAGCAT	980
Db	910	TGGTTACCCCTGTCCCTGAACATTCCAATCCCTTGATTTACATGGACTTGACATCAGT	969
Qy	981	CGACAGACGCAGCAAAGAACGGGAGGTGGCCACCGTGAGAAGGCACAGTCTTGCAGC	1040
Db	970	GGACACCCAAAGCAGAGAGCGGGAAATAGAAACGTACAAGCGAGTACAGATGCTGGAATG	1029
Qy	1041	CCTGTTCTAGAA 1053	
Db	1030	TGCCTTCAAGGAA 1042	

ABK51685
ID ABK51685 standard; cDNA; 2354 BP.
XX
AC ABK51685;
XX
DT 30-JUL-2002 (first entry)
XX
DE Mouse ABCG5 cDNA sequence.
XX
KW Mouse; ABCG5; ATP-binding cassette gene 5; sitosterolemia; cholesterol;
KW arteriosclerosis; heart disease; hypersterolemia; Alzheimer's disease;
KW ss.
XX
OS Mus sp.
XX
PN WO200227016-A2.
XX
PD 04-APR-2002.
XX
PF 25-SEP-2001; 2001WO-US029859.
XX
PR 25-SEP-2000; 2000US-0235268P.
XX
PA (USSH) US DEPT HEALTH & HUMAN SERVICES.
PA (PATE/) PATEL S B.
PA (DEAN/) DEAN M.
XX
PI Patel SB, Dean M;
XX
DR WPI; 2002-416483/44.
XX
PT Novel mammalian ATP-binding cassette gene 5 polypeptide, and the nucleic acid encoding the polypeptide, useful for treating sitosterolemia, arteriosclerosis and heart diseases.
XX
PS Example 3; Page 45; 66pp; English.
XX
CC The present invention relates to a new mammalian ATP-binding cassette gene 5 (ABCG5) polypeptide. The invention is useful for identifying a predisposition for developing sitosterolemia, arteriosclerosis or heart disease. The molecules of the invention are also useful for identifying a compound which alters ABCG5 activity level comprising contacting a cell culture or mammal which have ABCG5 polypeptide with a compound and measuring ABCG5 biological activity in the cell culture or in mammal, where an increase or decrease in ABCG5 biological activity compared to ABCG5 biological activity in a control cell culture or mammal not contacted with the compound, identifies a compound that increases or decreases ABCG5 activity respectively. The cell culture or mammal comprises a mutated ABCG5 polypeptide or a wild type polypeptide. The ABCG5 biological activity, or level of ABCG5 mRNA, or level of the polypeptide in a cell culture or mammal is also compared with that of a second cell culture or mammal comprising a wild type ABCG5 polypeptide. Stimulation of ABCG5 activity is useful for treating or preventing hypersterolemia, arteriosclerosis, heart disease and/or Alzheimer's disease. The method of the invention is useful for increasing cholesterol excretion and/or decreasing cholesterol adsorption. The present nucleic acid sequence represents the cDNA sequence of the mouse ABCG5 gene of the

CC invention

XX

SQ Sequence 2354 BP; 573 A; 604 C; 594 G; 583 T; 0 U; 0 Other;

Query Match 9.2%; Score 186.6; DB 6; Length 2354;
Best Local Similarity 53.1%; Pred. No. 1.4e-39;
Matches 421; Conservative 0; Mismatches 369; Indels 3; Gaps 1;

Qy 261 CATCCGAAATCTAACGCTCAAAGTGAGGAGTGGACAGATGCTGGCCATCATAGGGAGCTC 320
|
Db 345 CCTCAAAGATGTCTCCTGTACATCGAGAGTGGCCAGATTATGTGCATCTTAGGCAGCTC 404

Qy 321 AGGCTGCAGGGAGAGCCTCACTACTCGACGTGATCACAGGCAGAGGCCACGGTGGCAAGAT 380
|
Db 405 AGGCTCAGGGAAGACCACGCTGCTGGACGCCATCTCCGGAGGCTGCGGCACACTGGGAC 464

Qy 381 GAAATCAGGACAAATTGGATAAATGGCAACCCAGTACGCCTCAGCTGGTGGAAAGTG 440
|
Db 465 CCTGGAAGGGAGGTGTTGTGAATGGCTGCGAGCTGCGCAGGGACCAGTCCAAGACTG 524

Qy 441 CGTTGCGCATGTGCGGCAGCATGACCAACTGCTGCCAACCTGACCGTCAGAGAGACCC 500
|
Db 525 CTTCTCCTACGTCTGCAGAGCAGCTTCTGAGCAGCCTCACTGTGCGCAGACGTT 584

Qy 501 GGCTTTCATTGCCAGATGCGCTGCCAGGACCTTCTCCCAGGGCCAGCGTGACAAACG 560
|
Db 585 GCGATACACAGC---GATGCTGGCCCTCTGCCGCAGCTCCGGACTTCTACAACAAGAA 641

Qy 561 GGTGGAAGACGTAATCGCCGAGCTGCGGCTGCGGAGTGCAGCAACACCAAGAGTGGGCAA 620
|
Db 642 GGTAGAGGCAGTCATGACAGAGCTGAGCCTGAGCCACGTGGCGGACCAAATGATTGGCAG 701

Qy 621 CACGTATGTACGTGGGTGTCCGGGGTGAGCGCCGACGAGTGAGCATTGGGTGCAGCT 680
|
Db 702 CTATAATTGGGGAAATTCCAGTGGCGAGCGGGCGCCGAGTTCCATCGCAGCCAACT 761

Qy 681 CCTGTGGAACCCAGGAATCCTCATTCTGGATGAAACCACTTCTGCCCTCGACAGCTTCAC 740
|
Db 762 CCTTCAGGACCCCAAGGTATGATGCTAGATGAGCCAACCACAGGACTGGACTGCATGAC 821

Qy 741 AGCCCACAATCTGGTGACAACCTTGTCCGCCCTGGCAAGGGCAACAGGCTGGTGCAT 800
|
Db 822 TGCAAATCAAATTGTCTCTCTGGCTGAGCTGGCTCGCAGGGACGAATTGTGATTGT 881

Qy 801 CTCCCTCCACCAGCCTCGCTTGACATCTTCAGGCTATTGACCTGGCCTTCTGATGAC 860
|
Db 882 CACCATCCACCAGCCTCGCTTGAGCTCTTCAACACTTCGACAAAATTGCCATCCTGAC 941

Qy 861 ATCTGGCACCCCTATCTACCTGGGGCGCGCAGCAAATGGTGAGTACTTCACATCCAT 920
|
Db 942 TTACGGAGAGTTGGTGTCTGTGGCACCCAGAGGAGATGCTTGGCTTCTCAATAACTG 1001

Qy 921 TGGCCACCCTTGTCTCGCTAGCAACCCCTGCGGACTTCTACGTGGACTTGACCAGCAT 980
|
Db 1002 TGGTTACCCCTGTCTGAACATTCCAATCCCTTGATTTACATGGACTTGACATCAGT 1061

Qy 981 CGACAGACGCAGCAAAGAACGGGAGGTGGCCACCGTGGAGAAGGCACAGTCTTGCAGC 1040

Db ||||| | ||||| ||||| ||||| | | | ||| | ||| | ||||| |||||
1062 GGACACCCAAAGCAGAGAGCGGGAAATAGAACGTACAAGCGAGTACAGATGCTGGAATG 1121
Qy 1041 CCTGTTCTAGAA 1053
 ||||| |||||
Db 1122 TGCCTTCAAGGAA 1134

RESULT 15

ABK51687

ID ABK51687 standard; cDNA; 1069 BP.

XX

AC ABK51687;

XX

DT 07-AUG-2003 (revised)

DT 30-JUL-2002 (first entry)

XX

DE cDNA encoding hamster ABCG5 protein.

XX

KW Hamster; ABCG5; ATP-binding cassette gene 5; sitosterolemia; cholesterol;

KW arteriosclerosis; heart disease; hypersterolemia; Alzheimer's disease;

KW ss.

XX

OS Cricetinae.

XX

FH Key Location/Qualifiers

FT CDS 30. .1049

FT /*tag= a

FT /partial

FT /product= "Hamster ABCG5 protein"

FT /note= "This sequence lacks both a start and stop codon"

XX

PN WO200227016-A2.

XX

PD 04-APR-2002.

XX

PF 25-SEP-2001; 2001WO-US029859.

XX

PR 25-SEP-2000; 2000US-0235268P.

XX

PA (USSH) US DEPT HEALTH & HUMAN SERVICES.

PA (PATE/) PATEL S B.

PA (DEAN/) DEAN M.

XX

PI Patel SB, Dean M;

XX

DR WPI; 2002-416483/44.

DR P-PSDB; AAU96987.

XX

PT Novel mammalian ATP-binding cassette gene 5 polypeptide, and the nucleic

PT acid encoding the polypeptide, useful for treating sitosterolemia,

PT arteriosclerosis and heart diseases.

XX

PS Example 3; Page 47; 66pp; English.

XX

CC The present invention relates to a new mammalian ATP-binding cassette
CC gene 5 (ABCG5) polypeptide. The invention is useful for identifying a

CC predisposition for developing sitostolemia, arteriosclerosis or heart
CC disease. The molecules of the invention are also useful for identifying a
CC compound which alters ABCG5 activity level comprising contacting a cell
CC culture or mammal which have ABCG5 polypeptide with a compound and
CC measuring ABCG5 biological activity in the cell culture or in mammal,
CC where an increase or decrease in ABCG5 biological activity compared to
CC ABCG5 biological activity in a control cell culture or mammal not
CC contacted with the compound, identifies a compound that increases or
CC decreases ABCG5 activity respectively. The cell culture or mammal
CC comprises a mutated ABCG5 polypeptide or a wild type polypeptide. The
CC ABCG5 biological activity, or level of ABCG5 mRNA, or level of the
CC polypeptide in a cell culture or mammal is also compared with that of a
CC second cell culture or mammal comprising a wild type ABCG5 polypeptide.
CC Stimulation of ABCG5 activity is useful for treating or preventing
CC hypersterolemia, arteriosclerosis, heart disease and/or Alzheimer's
CC disease. The method of the invention is useful for increasing cholesterol
CC excretion and/or decreasing cholesterol adsorption. The present nucleic
CC acid sequence encodes the hamster ABCG5 protein of the invention.
CC (Updated on 07-AUG-2003 to correct OS field.)
XX

SQ Sequence 1069 BP; 266 A; 282 C; 273 G; 248 T; 0 U; 0 Other;

Query Match 8.7%; Score 176; DB 6; Length 1069;
Best Local Similarity 56.5%; Pred. No. 7e-37;
Matches 348; Conservative 0; Mismatches 265; Indels 3; Gaps 1;

Qy	437	AGTGC GTT GCG CATGT GCG GCAGC ATG ACCA ACT GCT GCC CAAC CTG ACC GT CAG AG AGA G	496
Db	118	ACT GCT TCT CCCT ATGT C CT GCA GAG CGAC GTCT TCT GAG CAG TCT CAC GG TG CGAG AG AGA	177
Qy	497	CCCTGGCTTCATTGCCAGATGCGCCTGCCAGGACCTCTCCCAGGCCAGCGTGACA	556
Db	178	CGCTGCGCTACACGGCGATGCTGGCCCTCCGAGTAGCTCTCGACTTCTA---TGACA	234
Qy	557	AACGGGTGGAAGACGTAATGCCGAGCTGCCAGTGCAGTGCACACCAGAGTGG	616
Db	235	AGAAGGTAGAGGCAGTCATGGAAGAGCTAAGTCTGAGCCACGTGGCAGACCGAATGATTG	294
Qy	617	GCAACACGTATGTACGTGGGTGTCCGGGGTGAGCGCCGACGAGTGAGCATTGGGTGC	676
Db	295	GCAACTATAATTGGGGAAATTCCAGTGGCGAGCGGCCAGTCTCCATCGCAGCCC	354
Qy	677	AGCT CCT GTGGAACCCAGGAATCCTCATTGGATGAACCCACTTCTGGCCTCGACAGCT	736
Db	355	AACTCATT CAGGACCCCAAGATCATGATGTTGATGAGCCAACCAAGGACTGGACTGCA	414
Qy	737	TCACAGCCCACAATCTGGTGACAACCTTGTCCCGCCTGCCAACAGGGCACAGGCTGGTGC	796
Db	415	TGACTGCAAATCAAATTGTATCCTCCTGGCAGAGCTGGCTCGCAGGGACCGCATTGTGA	474
Qy	797	TCATCTCCCTCCACCAGCCTCGCTGTGACATCTCAGGCTATTGACCTGGCCTTCTGA	856
Db	475	TCGTCACC ATCCACCAGCCTCGCTGTGAGCTTTCAACACTTCGACAAAATTGCCATCC	534
Qy	857	TGACATCTGGCACCCCTATCTACCTGGGGCGGCGCAGCAAATGGTGCAGTACTTCACAT	916
Db	535	TGACTTACGGAGAGATGGTGTCTGTGGCACGCCGGAGGAAATGCTCGACTTCTCAATA	594

QY 917 CCATTGGCCACCCTTGTCCCTCGCTATAGCAACCCTGCGGACTTCTACGTGGACTTGACCA 976
| ||| | |||||
Db 595 GCTGTGGTTACCCTTGTCCCTGAACATTCCAACCCCTTGACTTCTACATGGACTTGACAT 654

QY 977 GCATCGACAGACGCAGCAAAGAACGGGAGGTGGCCACCGTGGAGAAAGGCACAGTCTCTTG 1036
|
Db 655 CAGTGGATAACCCAGAGCAGAGCGAGAAATAGAAACCTACAAGAGAGTCCAGATGCTCG 714

QY 1037 CAGCCCTGTTCCCTAGA 1052
|
Db 715 AATCTGCCTTCAGAGA 730

Search completed: February 26, 2004, 01:19:48

Job time : 517.357 secs

GenCore version 5.1.6
Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: February 26, 2004, 00:48:03 ; Search time 97.675 Seconds
(without alignments)
11471.161 Million cell updates/sec

Title: US-09-989-981A-3

Perfect score: 2019

Sequence: 1 atggctgagaaaaccaaaga.....agtcaattcaagactggta 2019

Scoring table: IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

Searched: 682709 seqs, 277475446 residues

Total number of hits satisfying chosen parameters: 1365418

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : Issued_Patents_NA:*

1: /cgn2_6/ptodata/2/ina/5A_COMB.seq:*

2: /cgn2_6/ptodata/2/ina/5B_COMB.seq:*

3: /cgn2_6/ptodata/2/ina/6A_COMB.seq:*

4: /cgn2_6/ptodata/2/ina/6B_COMB.seq:*

5: /cgn2_6/ptodata/2/ina/PCTUS_COMB.seq:*

6: /cgn2_6/ptodata/2/ina/backfiles1.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result	Query					Description
No.	Score	Match	Length	DB	ID	
1	132.4	6.6	2418	4	US-09-245-808-2	Sequence 2, Appli
2	63.4	3.1	7218	1	US-08-232-463-14	Sequence 14, Appl
3	62.2	3.1	4159	4	US-09-614-912-139	Sequence 139, App
4	59.4	2.9	3376	4	US-09-620-312D-918	Sequence 918, App
5	55	2.7	1977	4	US-09-614-912-143	Sequence 143, App
6	52.8	2.6	4403765	3	US-09-103-840A-2	Sequence 2, Appli
7	52.8	2.6	4411529	3	US-09-103-840A-1	Sequence 1, Appli
8	51	2.5	2031	4	US-09-614-912-137	Sequence 137, App
c 9	49.8	2.5	630	4	US-09-489-039A-932	Sequence 932, App
10	49.8	2.5	960	4	US-09-489-039A-945	Sequence 945, App
c 11	49.6	2.5	627	4	US-09-252-991A-12021	Sequence 12021, A

12	49.6	2.5	732	4	US-09-252-991A-11963	Sequence 11963, A
13	49.6	2.5	2328	4	US-09-252-991A-11890	Sequence 11890, A
c 14	49.4	2.4	705	4	US-09-252-991A-12050	Sequence 12050, A
c 15	48.6	2.4	28804	2	US-08-592-874-1	Sequence 1, Appli
c 16	48.6	2.4	28804	3	US-09-096-942-2	Sequence 2, Appli
c 17	48.6	2.4	28804	3	US-09-096-867-2	Sequence 2, Appli
18	48.4	2.4	876	4	US-09-489-039A-1001	Sequence 1001, Ap
19	46.8	2.3	996	4	US-09-252-991A-2920	Sequence 2920, Ap
c 20	46.8	2.3	1284	4	US-09-252-991A-3041	Sequence 3041, Ap
21	46.8	2.3	1476	4	US-09-252-991A-2825	Sequence 2825, Ap
22	45.8	2.3	723	4	US-09-252-991A-11541	Sequence 11541, A
c 23	45.8	2.3	1155	4	US-09-252-991A-11845	Sequence 11845, A
24	45.8	2.3	2367	4	US-09-252-991A-11600	Sequence 11600, A
c 25	44.6	2.2	435	4	US-09-252-991A-9969	Sequence 9969, Ap
26	44.6	2.2	900	4	US-09-252-991A-10183	Sequence 10183, A
c 27	44.6	2.2	1332	4	US-09-252-991A-9889	Sequence 9889, Ap
28	44.4	2.2	2752	1	US-08-430-925A-3	Sequence 3, Appli
29	44	2.2	3343	4	US-09-976-594-502	Sequence 502, App
30	43.6	2.2	1050	4	US-09-489-039A-3086	Sequence 3086, Ap
c 31	43	2.1	276	4	US-09-252-991A-4049	Sequence 4049, Ap
32	43	2.1	417	4	US-09-252-991A-3926	Sequence 3926, Ap
33	43	2.1	606	4	US-09-252-991A-3898	Sequence 3898, Ap
c 34	43	2.1	765	4	US-09-252-991A-3980	Sequence 3980, Ap
35	43	2.1	1047	4	US-08-540-650B-6	Sequence 6, Appli
36	43	2.1	1053	4	US-09-016-434-1423	Sequence 1423, Ap
37	43	2.1	1882	4	US-08-540-650B-11	Sequence 11, Appli
c 38	43	2.1	2223	4	US-09-252-991A-4015	Sequence 4015, Ap
39	43	2.1	3083	4	US-08-693-308-1	Sequence 1, Appli
40	42.8	2.1	732	4	US-09-489-039A-6450	Sequence 6450, Ap
c 41	42.4	2.1	411	4	US-09-252-991A-5107	Sequence 5107, Ap
42	42.4	2.1	1875	4	US-09-252-991A-5054	Sequence 5054, Ap
43	42.4	2.1	1962	4	US-09-252-991A-5020	Sequence 5020, Ap
c 44	42.4	2.1	2295	4	US-09-252-991A-5162	Sequence 5162, Ap
45	42.4	2.1	35081	2	US-08-752-760A-1	Sequence 1, Appli

ALIGNMENTS

RESULT 1
 US-09-245-808-2
 ; Sequence 2, Application US/09245808
 ; Patent No. 6313277
 ; GENERAL INFORMATION:
 ; APPLICANT: Doyle, L. Austin
 ; APPLICANT: Abruzzo, Lynne V.
 ; APPLICANT: Ross, Douglas D.
 ; TITLE OF INVENTION: Breast Cancer Resistance Protein (BCRP) and DNA which
 ; encodes it
 ; FILE REFERENCE: Ross UMB conversion
 ; CURRENT APPLICATION NUMBER: US/09/245,808
 ; CURRENT FILING DATE: 1999-02-05
 ; EARLIER APPLICATION NUMBER: 60/073763
 ; EARLIER FILING DATE: 1998-02-05
 ; NUMBER OF SEQ ID NOS: 7
 ; SOFTWARE: PatentIn Ver. 2.0
 ; SEQ ID NO 2

; LENGTH: 2418
; TYPE: DNA
; ORGANISM: Human MCF-7/AdrVp cells
US-09-245-808-2

Query Match 6.6%; Score 132.4; DB 4; Length 2418;
Best Local Similarity 51.9%; Pred. No. 1e-26;
Matches 348; Conservative 0; Mismatches 316; Indels 6; Gaps 2;

Qy 304 GCCATCATAGGGAGCTCAGGCTGCCGGAGAGCCTCACTACTCGACGTGATCACAGGCAGA 363
Db 467 GCCATCCTGGGACCCACAGGTGGAGGCAAATCTCGTATTAGATG---TCTTAGCTGCA 523

Qy 364 GGCCACGGTGGCAAGATGAAATCAGGACAATTGGATAATGGCAACCCAGTACGCCT 423
Db 524 AGGAAAGATCCAAGTGGATTATCTGGAGATGTTCTGATAATGGAGCACCGCGACCTGCC 583

Qy 424 CAGCTGGTGGAGGAAGTGCCTGCATGTGCCAGCATGACCAACTGCTGCCAACCTG 483
Db 584 AATTCAAATGTAATTCAAGGT---TACGTGGTACAAGATGATGTTGTGATGGGCACTCTG 640

Qy 484 ACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATGCCCTGCCAGGACCTCTCCAG 543
Db 641 ACGGTGAGAGAAAACCTACAGTTCTCAGCAGCTTCGGCTTGCAACAACTATGACGAAT 700

Qy 544 GCCCAGCGTGACAAACGGGTGGAAGACGTAATGCCAGCTGCCAGTGCAG 603
Db 701 CATGAAAAAAACGAACGGATTAACAGGGCATTCAAGAGTTAGGTCTGGATAAAAGTGGCA 760

Qy 604 AACACCAGAGTGGCAACACGTATGTACGTGGGTGTCGGGGTGAGCGCCGACGAGTG 663
Db 761 GACTCCAAGGTTGGAACTCAGTTATCGTGGTGTCTGGAGGAGAAAGAAAAGGACT 820

Qy 664 AGCATTGGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACTTCT 723
Db 821 AGTATAGGAATGGAGCTTATCACTGATCCTCCATCTGGTCTGGATGAGCCTACAAC 880

Qy 724 GGCCTCGACAGCTTCACAGCCCACAATCTGGTGACAACCTTGTCCCGCCTGCCAAGGGC 783
Db 881 GGCTTAGACTCAAGCACAGCAAATGCTGTCTTGTCTGCTGAAAGGATGTCTAACAG 940

Qy 784 AACAGGCTGGTGCTCATCTCCCTCCACCAGGCTCGCTCTGACATCTCAGGCTATTGAC 843
Db 941 GGACGAACAATCATCTTCTCCATTCACTGAGCCTCGATATTCCATCTCAAGTTGTTGAT 1000

Qy 844 CTGGTCCTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGCGCAGCAAATGGTG 903
Db 1001 AGCCTCACCTTATTGCCCTCAGGAAGACTTATGTTCCACGGGCCTGCTCAGGAGGCCTTG 1060

Qy 904 CAGTACTTCACATCCATTGCCACCCCTGTCCCTCGCTATAGCAACCCCTGCGGACTTCTAC 963
Db 1061 GGATACTTGAATCAGCTGGTTACTGTGAGGCCTATAATAACCCCTGCAGACTTCTTC 1120

Qy 964 GTGGACTTGA 973
Db 1121 TTGGACATCA 1130

RESULT 2
US-08-232-463-14
; Sequence 14, Application US/08232463
; Patent No. 5670367
; GENERAL INFORMATION:
; APPLICANT: DORNER, F.
; APPLICANT: SCHEIFLINGER, F.
; APPLICANT: FALKNER, F. G.
; TITLE OF INVENTION: RECOMBINANT FOWLPOX VIRUS
; NUMBER OF SEQUENCES: 52
; CORRESPONDENCE ADDRESS:
; ADDRESSEE: Foley & Lardner
; STREET: 1800 Diagonal Road, Suite 500
; CITY: Alexandria
; STATE: VA
; COUNTRY: USA
; ZIP: 22313-0299
; COMPUTER READABLE FORM:
; MEDIUM TYPE: Floppy disk
; COMPUTER: IBM PC compatible
; OPERATING SYSTEM: PC-DOS/MS-DOS
; SOFTWARE: PatentIn Release #1.0, Version #1.25
; CURRENT APPLICATION DATA:
; APPLICATION NUMBER: US/08/232,463
; FILING DATE:
; CLASSIFICATION: 435
; PRIOR APPLICATION DATA:
; APPLICATION NUMBER: US/07/935,313
; FILING DATE:
; APPLICATION NUMBER: EP 91 114 300.6
; FILING DATE: 26-AUG-1991
; ATTORNEY/AGENT INFORMATION:
; NAME: BENT, Stephen A.
; REGISTRATION NUMBER: 29,768
; REFERENCE/DOCKET NUMBER: 30472/114 IMMU
; TELECOMMUNICATION INFORMATION:
; TELEPHONE: (703)836-9300
; TELEFAX: (703)683-4109
; TELEX: 899149
; INFORMATION FOR SEQ ID NO: 14:
; SEQUENCE CHARACTERISTICS:
; LENGTH: 7218 base pairs
; TYPE: nucleic acid
; STRANDEDNESS: single
; TOPOLOGY: linear
; IMMEDIATE SOURCE:
; CLONE: pTZgpt-F1s
US-08-232-463-14

Query Match 3.1%; Score 63.4; DB 1; Length 7218;
Best Local Similarity 7.7%; Pred. No. 2.8e-07;
Matches 34; Conservative 227; Mismatches 178; Indels 0; Gaps 0;

Qy 1567 GTGCCTGAGCTCTTCCTTCTACACTTCCTGCTCGTGGTTGGTCTTCTGCTGCAGG 1626
| || || | |::: :::: : ::::: :: : : ::::: :: :
Db 1056 GAGCTTGCGATYY 1115

Qy	1627	ACCATGGCCCTGGCTGCCTCTGCCATGCTGCCACCTCCACATGTCCTCCTTCTTGC	1686
	:: : ::: :: : ::::: :: : :: : :: : ::::: :: : ::::: :: :		
Db	1116	YY	1175
Qy	1687	AATGCCCTCTACAACACTCCTTCTACCTTACTGCCGGCTCATGATAAAACTGGACAACCTG	1746
	: :::::: : ::: ::::: ::: : : :: : :::: : : ::: : :::		
Db	1176	YY	1235
Qy	1747	TGGATAGTGCCTGCATGGATCTCCAAGCTGTCGTTCTCCGGTGGTGCTTCGGGCTG	1806
	: : : :: : : ::: : : : :: ::::: : : ::::: ::		
Db	1236	YY	1295
Qy	1807	ATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGAACTTCACCTTCTCC	1866
	: : :: : : : ::::: : : : : : : ::::: :		
Db	1296	YY	1355
Qy	1867	ATCCTCGGAGACACGATGATCAGTGCATGGACCTGAACACTCGCATCCACTCTATGCGATC	1926
	: :::: : : : : : : : : : : : : : : : : : : :		
Db	1356	YY	1415
Qy	1927	TACCTCATTGTCATCGGCATCAGCTACGGCTTCCTGTTCTGTACTATCTATCCTTGAAG	1986
	: :::: : : : : : :		
Db	1416	YYYYYYYYYYYYYYYYYYYYGTACCAAATTCTTCTATCTTTAACTACTTGCATAGATAG	1475
Qy	1987	CTCATCAAACAGAAGTCAA	2005
Db	1476	GTAATTACAGTGATGCCTA	1494

RESULT 3

US-09-614-912-139
; Sequence 139, Application US/09614912
; Patent No. 6677502
; GENERAL INFORMATION:
; APPLICANT: Allen, Steve
; APPLICANT: Rafalski, Antoni
; APPLICANT: Orozco, Buddy
; APPLICANT: Miao, Gou-Hau
; APPLICANT: Famodu, Omolayo O.
; APPLICANT: Lee, Jian Ming
; APPLICANT: Sakai, Hajime
; APPLICANT: Weng, Zude
; APPLICANT: Caimi, Perry G
; APPLICANT: Anderson, Shawn
; TITLE OF INVENTION: Plant Metabolism Genes
; FILE REFERENCE: BB1378 US NA
; CURRENT APPLICATION NUMBER: US/09/614,912
; CURRENT FILING DATE: 2000-07-12
; PRIOR APPLICATION NUMBER: 60/143,401
; PRIOR FILING DATE: 1999-07-12
; PRIOR APPLICATION NUMBER: 60/143,412
; PRIOR FILING DATE: 1999-07-12
; PRIOR APPLICATION NUMBER: 60/146,650
; PRIOR FILING DATE: 1999-07-30
; PRIOR APPLICATION NUMBER: 60/170,906
; PRIOR FILING DATE: 1999-12-15

; PRIOR APPLICATION NUMBER: 60/172,959
; PRIOR FILING DATE: 1999-12-21
; PRIOR APPLICATION NUMBER: 60/172,946
; PRIOR FILING DATE: 1999-12-21
; NUMBER OF SEQ ID NOS: 204
; SOFTWARE: Microsoft Office 97
; SEQ ID NO 139
; LENGTH: 4159
; TYPE: DNA
; ORGANISM: Oryza sativa
US-09-614-912-139

```

Query Match           3.1%; Score 62.2; DB 4; Length 4159;
Best Local Similarity 49.1%; Pred. No. 4.5e-07;
Matches 194; Conservative 0; Mismatches 198; Indels 3; Gaps 1;

Qy      583 CTGCGGGCTGCAGTCGCACACCCAGAGTGGGCAACACAGTATGTACGTGGGGTGTCC 642
        ||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      396 CTGGGATTGGATATATGCGCGAACAGATCGTCGGCACCAGATGCAGAGGGGATCTCC 455

Qy      643 GGGGGTGAGCGCCGACGAGTGAGCATTGGGGTGCAGCTCCTGTGGAACCCAGGAATCCTC 702
        || | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      456 GGTGGTCAGAAGAACCGCGTCACCACCGGTGAGATGATTGTCGGTCCAACAAAGGTTCTA 515

Qy      703 ATTCTGGATGAACCCACTTCTGGCCTCGACAGCTCACAGCCCACAATCTGGTGACAACC 762
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      516 TTCATGGATGAGATATCAACTGGATTGGACAGCTCCACCACATTCCAGATTGTCAAATGC 575

Qy      763 TTGTCCCCG---CCTGGCCAAGGGCAACAGGCTGGTGCTCATCTCCCTCCACCAGCCTCGC 819
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      576 CTTCAGCAAATCGTGCACTTGGCGAGGCAACCATCCTCATGTCACTCCTACAACCAGCC 635

Qy      820 TCTGACATCTTCAGGCTATTGACCTGGTCTTCTGATGACATCTGGCACCCCTATCTAC 879
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      636 CCTGAGACTTTGAGCTATTGACATTACCTACTGTCAGAAGGCCAGATTGTTTAT 695

Qy      880 CTGGGGCGCGCAGCAAATGGTGCAGTACTTCACATCCATTGCCACCCCTGTCCCTCGC 939
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      696 CAGGGACCCCGCGAATACGTCCCTGAGTTCTTGAGTCATGCGGATTCCGCTGCCAGAG 755

Qy      940 TATAGCAACCCTGCGGACTTCTACGTGGACTTGAC 974
        | | | | | | | | | | | | | | | | | | | |
Db      756 CGTAAGGGTACTGCGACTTCTTCAGGAGGTGAC 790

```

RESULT 4

US-09-620-312D-918
; Sequence 918, Application US/09620312D
; Patent No. 6569662
; GENERAL INFORMATION:
; APPLICANT: Tang, Y. Tom
; APPLICANT: Liu, Chenghua
; APPLICANT: Asundi, Vinod
; APPLICANT: Zhang, Jie
; APPLICANT: Ren, Feiyan
; APPLICANT: Chen, Rui-hong
; APPLICANT: Zhao, Qing A.

; APPLICANT: Wehrman, Tom
; APPLICANT: Xue, Aidong J.
; APPLICANT: Yang, Yonghong
; APPLICANT: Wang, Jian-Rui
; APPLICANT: Zhou, Ping
; APPLICANT: Ma, Yunqing
; APPLICANT: Wang, Dunrui
; APPLICANT: Wang, Zhiwei
; APPLICANT: John Tillinghast
; APPLICANT: Drmanac, Radoje T.
; TITLE OF INVENTION: No. 6569662el Nucleic Acids and
; TITLE OF INVENTION: Polypeptides
; FILE REFERENCE: 784CIP2B
; CURRENT APPLICATION NUMBER: US/09/620,312D
; CURRENT FILING DATE: 2000-07-19
; PRIOR APPLICATION NUMBER: 09/552,317
; PRIOR FILING DATE: 2000-04-25
; PRIOR APPLICATION NUMBER: 09/488,725
; PRIOR FILING DATE: 2000-01-21
; NUMBER OF SEQ ID NOS: 1105
; SOFTWARE: pt_FL_genes Version 1.0
; SEQ ID NO 918
; LENGTH: 3376
; TYPE: DNA
; ORGANISM: Homo sapiens
; FEATURE:
; NAME/KEY: CDS
; LOCATION: (1)..(2808)
US-09-620-312D-918

Query Match 2.9%; Score 59.4; DB 4; Length 3376;
Best Local Similarity 48.4%; Pred. No. 2.4e-06;
Matches 279; Conservative 0; Mismatches 271; Indels 27; Gaps 3;

Qy	280	AAAGTGAGGAGTGGACAGATGCTGCCATCATAGGGAGCTCAGGCTGCAGGGAGAGCCTCA	339
Db	88	AAATTCTGCCGCCGGAGCTGATTGGCATCATGGGCCCTCAGGGCTGGCAAGTCTACA	147
Qy	340	CTACTCGACGTGATCACAGGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTG	399
Db	148	TTCATGAACATCTTGGCAGGATACAGGGAGTCTGGAATGAAG-----GGCAGATCCTG	201
Qy	400	ATAATGGCAACCCAGTACGCCCTCAGCTGGTAGGAAAGTGCCTGCATGTGCGCAG	459
Db	202	GTTAATGGAAGGCCACGGAGCTGAGGACCTCCGCAAGATGTCCTGCTACATCATGCAA	261
Qy	460	CATGACCAACTGCTGCCAACCTGACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATG	519
Db	262	GATGACATGCTGCCGCACCTCACGGTGGAGCCATGATGGTCTCTGCTAACCTG	321
Qy	520	CGCCTGCCAGGACCTTCTCCAGGCCAGCGTGACAAACGGGTGGAAGACGTAATGCC	579
Db	322	AAGCTGAGTGAGA-----AGCAGGAGGTGAAGAAGGAGCTGGTACAGAGATCCTGACG	375
Qy	580	GAGCTGCGCTGCCAGTGCACACCAGAGTGGCAACACGTATGTACGTGGGTG	639
Db	376	GCACGGCCTGATGTCGTGCTCCCACACGAGGACAGCC-----CTGCTC	420

Qy	640	TCCGGGGGTGAGCGCCGACGAGTGAGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATC	699
Db	421	TCTGGCGGGCAGAGGAAGCGTCTGCCATGCCCTGGAGCTGGTCAACAACCCGCCTGTC	480
Qy	700	CTCATTCTGGATGAACCCACTTCTGGCCTCGACAGCTCACAGCCCACAATCTGGTGACA	759
Db	481	ATGTTCTTGATGAGCCCACCAGTGGTCTGGATAGCGCCTCTGTTCCAAGTGGTGTCC	540
Qy	760	ACCTTGTCCCCGCTGGCCAAGGGAACAGGCTGGTGCTCATCTCCCTCCACCAGCCTCGC	819
Db	541	CTCATGAAGTCCCTGGCACAGGGGGCCGTACCATCATCTGCACCATCCACCAGCCCAGT	600
Qy	820	TCTGACATCTCAGGCTATTGACCTGGTCCTCTGA	856
Db	601	GCCAAGCTTTGAGATGTTGACAAGTGCATCTTCA	637

RESULT 5

US-09-614-912-143

; Sequence 143, Application US/09614912
; Patent No. 6677502
; GENERAL INFORMATION:
; APPLICANT: Allen, Steve
; APPLICANT: Rafalski, Antoni
; APPLICANT: Orozco, Buddy
; APPLICANT: Miao, Gou-Hau
; APPLICANT: Famodu, Omolayo O.
; APPLICANT: Lee, Jian Ming
; APPLICANT: Sakai, Hajime
; APPLICANT: Weng, Zude
; APPLICANT: Caimi, Perry G
; APPLICANT: Anderson, Shawn
; TITLE OF INVENTION: Plant Metabolism Genes
; FILE REFERENCE: BB1378 US NA
; CURRENT APPLICATION NUMBER: US/09/614,912
; CURRENT FILING DATE: 2000-07-12
; PRIOR APPLICATION NUMBER: 60/143,401
; PRIOR FILING DATE: 1999-07-12
; PRIOR APPLICATION NUMBER: 60/143,412
; PRIOR FILING DATE: 1999-07-12
; PRIOR APPLICATION NUMBER: 60/146,650
; PRIOR FILING DATE: 1999-07-30
; PRIOR APPLICATION NUMBER: 60/170,906
; PRIOR FILING DATE: 1999-12-15
; PRIOR APPLICATION NUMBER: 60/172,959
; PRIOR FILING DATE: 1999-12-21
; PRIOR APPLICATION NUMBER: 60/172,946
; PRIOR FILING DATE: 1999-12-21
; NUMBER OF SEQ ID NOS: 204
; SOFTWARE: Microsoft Office 97
; SEQ ID NO 143
; LENGTH: 1977
; TYPE: DNA
; ORGANISM: Triticum aestivum

US-09-614-912-143

```

Query Match           2.7%; Score 55; DB 4; Length 1977;
Best Local Similarity 51.4%; Pred. No. 3.1e-05;
Matches 127; Conservative 0; Mismatches 120; Indels 0; Gaps 0;

Qy      613 GTGGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGCGCCGACGAGTGAGCATTGGG 672
        ||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      248 GTTGGGCTCCCTGGAGTGAATGGTCTATCAACTGAGCAACGCAAGAGGGCTACAATTGCC 307

Qy      673 GTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACTTCTGGCCTCGAC 732
        ||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      308 GTGGAGCTTGTGCTAACCCGTCGATCATTTATGGATGAGCCAACATCTGGCTTGAT 367

Qy      733 AGCTTCACAGCCCACAATCTGGTGACAACCTTGTCCCCGCTGGCCAAGGGCAACAGGCTG 792
        ||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      368 GCTCGTGCAGCTGCAATTGTGATGAGGACTGTTAGGAACACTGTTAACACTGGCAGGACC 427

Qy      793 GTGCTCATCTCCCTCCACCAGCCTCGCTCTGACATCTCAGGCTATTTGACCTGGTCCTT 852
        || | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      428 GTTGTGTCACCATCCACCAGCCAAGTATTGACATATTGAAGCATTGATGAGCTTTTC 487

Qy      853 CTGATGA 859
        | | | | |
Db      488 TTGATGA 494

```

RESULT 6

US-09-103-840A-2
; Sequence 2, Application US/09103840A
; Patent No. 6294328
; GENERAL INFORMATION:
; APPLICANT: FLEISCHMAN, Robert D.
; APPLICANT: WHITE, Owen R.
; APPLICANT: FRASER, Claire M.
; APPLICANT: VENTER, John C.
; TITLE OF INVENTION: DNA SEQUENCES FOR STRAIN ANALYSIS IN MYCOBACTERIUM
; TITLE OF INVENTION: TUBERCULOSIS
; FILE REFERENCE: 24366-20007.00
; CURRENT APPLICATION NUMBER: US/09/103,840A
; CURRENT FILING DATE: 1998-06-24
; NUMBER OF SEQ ID NOS: 2
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 2
; LENGTH: 4403765
; TYPE: DNA
; ORGANISM: Mycobacterium tuberculosis
; FEATURE:
; OTHER INFORMATION: CDC 1551
; OTHER INFORMATION: "n" bases at various positions throughout the sequence
; OTHER INFORMATION: represent a, t, c or g
US-09-103-840A-2

05 05 105 040R Z

```

Query Match           2.6%; Score 52.6; DB 3; Length 4403763;
Best Local Similarity 49.4%; Pred. No. 0.0067;
Matches 178; Conservative 0; Mismatches 167; Indels 15; Gaps 1;

y      451 GTGCAGCATGACCAACTGCTGCCAACCTGACCGTCAGAGAGACCCCTGGCTTCATT 510
||||| |||| | |||   |||   | ||||||| | | | | ||| | |

```

```

Db      1965645 GTGCCACAGGACGACGTGGTGCACGGTCAGCTGACCGTGAAACACGCGCTGATGTATGCC
1965704

Qy          511 GCCCAGATGCCCTGCCAGGACCTCTCCAGGCCAGCGTGACAAACGGGTGGAAGAC 570
           ||||| | | ||||| | | | | | | | | | | | | | | | | | | | | | | | | |
Db      1965705 GCCGAACTACGGCTGCCGCCGACACCACCAAAGATGACCGCACCCAGGTAGTTGCCCGG
1965764

Qy          571 GTAATGCCGAGCTCGGCTCGGCAGTGCACCAACACCAGAGTGGCAACACGTATGTA 630
           || | ||| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      1965765 GTGCTCGAAGAACTCGAGATGTCCAAGCACATCGACACCAGGGTCGACAA-----
1965814

Qy          631 CGTGGGGTGTCCGGGGTGAGCGCCGACGAGTGAGCATTGGGGTGCAGCTCCTGTGGAAC 690
           | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      1965815 -----GCTGTCGGTGGTCAACGCAAGCGGGCGTCGGTGGCGCTTGAGCTGTTGACCGGG
1965869

Qy          691 CCAGGAATCCTCATCTGGATGAACCCACTTCTGGCCTCGACAGCTCACAGCCCACAAT 750
           || | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      1965870 CCGTCACTGCTGATCCTCGACGAGCCGACATCCGGCCTAGATCCTGCGCTGGACCGGGCAG
1965929

Qy          751 CTGGTGACAACCTTGTCCGCCTGGCAAGGGAACAGGCTGGTGCATCTCCCTCAC 810
           | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      1965930 GTCATGACCATGCTGCCAGTTGGCGACGCCGGTCGGGTGGTGCCTCGTGGTACCCAC
1965989

```

RESULT 7

US-09-103-840A-1
; Sequence 1, Application US/09103840A
; Patent No. 6294328
; GENERAL INFORMATION:
; APPLICANT: FLEISCHMAN, Robert D.
; APPLICANT: WHITE, Owen R.
; APPLICANT: FRASER, Claire M.
; APPLICANT: VENTER, John C.
; TITLE OF INVENTION: DNA SEQUENCES FOR STRAIN ANALYSIS IN MYCOBACTERIUM
; TITLE OF INVENTION: TUBERCULOSIS
; FILE REFERENCE: 24366-20007.00
; CURRENT APPLICATION NUMBER: US/09/103,840A
; CURRENT FILING DATE: 1998-06-24
; NUMBER OF SEQ ID NOS: 2
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 1
; LENGTH: 4411529
; TYPE: DNA
; ORGANISM: Mycobacterium tuberculosis
; OTHER INFORMATION: H37Rv
US-09-103-840A-1

Query Match 2.6%; Score 52.8; DB 3; Length 4411529;
Best Local Similarity 49.4%; Pred. No. 0.0067;
Matches 178; Conservative 0; Mismatches 167; Indels 15; Gaps 1;

Qy 451 GTGCGGCAGCATGACCAACTGCTGCCAACCTGACCGTCAGAGAGACCCTGGCTTTCATT 510

||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 Db 1974816 GTGCCACAGGACGACGTGGTGCACGGTCAGCTGACCGTGAAACACGCGCTGATGTATGCC
 1974875

 Qy 511 GCCCAGATGCGCCTGCCAGGACCTCTCCAGGCCAGCGTGACAAACGGGTGGAAGAC 570
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 Db 1974876 GCCGAACTACGGCTGCCGCCGGACACCACCAAGATGACCGCACCCAGGTAGTTGCCGG
 1974935

 Qy 571 GTAATGCCGAGCTGCCGAGTGCAGGCCAACACCAAGAGTGGCAACACGTATGTA 630
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 Db 1974936 GTGCTCGAAGAACTCGAGATGTCCAAGCACATCGACACCAGGGTCGACAA-----
 1974985

 Qy 631 CGTGGGGTGTCCGGGGTGAGCGCCGACGAGTGAGCATTGGGTGCAGCTCCTGTGAAAC 690
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 Db 1975040 -----GCTGTCGGGTGGTCAACGCAAGCGGGCTCGGTGGCGCTTGAGCTGTTGACCGGG
 1975040

 Qy 691 CCAGGAATCCTCATTCTGGATGAACCCACTCTGGCCTCGACAGCTTCACAGCCCACAAT 750
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 Db 1975041 CCGTCACTGCTGATCCTCGACGAGCCGACATCCGGCTAGATCCTGCGCTGGACCGGCAG
 1975100

 Qy 751 CTGGTGACAACCTTGTCCCCGCTGCCAAGGGCAACAGGCTGGTGCTCATCTCCCTCCAC 810
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
 Db 1975101 GTCATGACCATGCTGCCAGTTGGCGACGCCGGTGGTGCTCGTGGTTACCCAC
 1975160

RESULT 8

US-09-614-912-137
 ; Sequence 137, Application US/09614912
 ; Patent No. 6677502
 ; GENERAL INFORMATION:
 ; APPLICANT: Allen, Steve
 ; APPLICANT: Rafalski, Antoni
 ; APPLICANT: Orozco, Buddy
 ; APPLICANT: Miao, Gou-Hau
 ; APPLICANT: Famodu, Omolayo O.
 ; APPLICANT: Lee, Jian Ming
 ; APPLICANT: Sakai, Hajime
 ; APPLICANT: Weng, Zude
 ; APPLICANT: Caimi, Perry G
 ; APPLICANT: Anderson, Shawn
 ; TITLE OF INVENTION: Plant Metabolism Genes
 ; FILE REFERENCE: BB1378 US NA
 ; CURRENT APPLICATION NUMBER: US/09/614,912
 ; CURRENT FILING DATE: 2000-07-12
 ; PRIOR APPLICATION NUMBER: 60/143,401
 ; PRIOR FILING DATE: 1999-07-12
 ; PRIOR APPLICATION NUMBER: 60/143,412
 ; PRIOR FILING DATE: 1999-07-12
 ; PRIOR APPLICATION NUMBER: 60/146,650
 ; PRIOR FILING DATE: 1999-07-30
 ; PRIOR APPLICATION NUMBER: 60/170,906
 ; PRIOR FILING DATE: 1999-12-15

; PRIOR APPLICATION NUMBER: 60/172,959
; PRIOR FILING DATE: 1999-12-21
; PRIOR APPLICATION NUMBER: 60/172,946
; PRIOR FILING DATE: 1999-12-21
; NUMBER OF SEQ ID NOS: 204
; SOFTWARE: Microsoft Office 97
; SEQ ID NO 137
; LENGTH: 2031
; TYPE: DNA
; ORGANISM: Zea mays
US-09-614-912-137

```

Query Match           2.5%; Score 51; DB 4; Length 2031;
Best Local Similarity 47.6%; Pred. No. 0.00041;
Matches 150; Conservative 0; Mismatches 165; Indels 0; Gaps 0;

Qy      557 AACGGGTGGAAGACGTAATCGCCGAGCTGCGGCTGCGCAGTGCACACACCAGAGTGG 616
        ||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      424 AATTGTGGATGAAGTTATGGAACTAGTGGAGCTCGACAATCTGAGGGATGCCCTAGTTG 483

Qy      617 GCAACACGTATGTACGTGGGTGTCCGGGGTGAGCGCCGACGAGTGAGCATGGGTGC 676
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      484 GGCTACCAGGAATCACAGGGTTTCGACAGAGCAAAGAAAAAGGTTGACAATAGCCGTGG 543

Qy      677 AGCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACTTCTGGCCTCGACAGCT 736
        ||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      544 AGCTCGTTGCCAATCCATCAATCATATTATGGATGAACCAACATCAGGGCTTGATGCAA 603

Qy      737 TCACAGCCCACAATCTGGTGACAACCTTGTCCCCCTGGCAAGGGAACAGGCTGGTGC 796
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      604 GAGCTGCAGCAATTGTCATGAGAACTGTGCGGAACACAGTTGACACTGGACGGACAGTTG 663

Qy      797 TCATCTCCCTCCACCAAGCCTCGCTCTGACATCTCAGGCTATTGACCTGGCCTCTGA 856
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      664 TTTGCACAATCCATCAGCCAAGCATCGACATCTTGAATCTTTGATGAGTTGCTATTGT 723

Qy      857 TGACATCTGGCACCC 871
        | | | | | | | |
Db      724 TGAAAAGAGGAGGCC 738

```

RESULT 9

US-09-489-039A-932/c
; Sequence 932, Application US/09489039A
; Patent No. 6610836
; GENERAL INFORMATION:
; APPLICANT: Gary Breton et. al
; TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO
KLEBSIELLA
; TITLE OF INVENTION: PNEUMONIAE FOR DIAGNOSTICS AND THERAPEUTICS
; FILE REFERENCE: 2709.2004001
; CURRENT APPLICATION NUMBER: US/09/489,039A
; CURRENT FILING DATE: 2000-01-27
; PRIOR APPLICATION NUMBER: US 60/117,747
; PRIOR FILING DATE: 1999-01-29
; NUMBER OF SEQ ID NOS: 14342
; SEQ ID NO 932

; LENGTH: 630
; TYPE: DNA
; ORGANISM: Klebsiella pneumoniae
US-09-489-039A-932

Query Match 2.5%; Score 49.8; DB 4; Length 630;
Best Local Similarity 46.4%; Pred. No. 0.00048;
Matches 162; Conservative 0; Mismatches 187; Indels 0; Gaps 0;

QY 558 ACGGGTGGAAGACGTAATGCCGAGCTGCGGCTGCCAGTGCGCCAACACCAGAGTGGG 617
|
Db 476 AAGGATGCCGACCGGATCGACGAGCTGATGGCGCTGCTGGGGCTGGAGGCACGCTGCG 417

QY 618 CAACACGTATGTACGTGGGTGTCGGGGTGAGCGCCGACGAGTGAGCATGGGTGCA 677
|
Db 416 CGACCGTTACCCGCATCAGCTCTCCGGCGGCCAGCAGCAGCGGGTGGGGTGGCGCGGC 357

QY 678 GCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACTTCTGGCCTCGACAGCTT 737
|
Db 356 GCTGGCGGCAGATCCGGAGGTGCTGTTGATGGATGAGCCCTCGGCGCCCTGACCCGGT 297

QY 738 CACAGCCCACAATCTGGTGACAACCTTGTCCCGCCTGCCAAGGGCAACAGGCTGGTGCT 797
|
Db 296 GACCCGCGAGGCGCTGCAGCAGGAGATGCTGCGCATCCACCGTCTGCTGGACGGACGAT 237

QY 798 CATCTCCCTCCACCAGCCTCGCTCTGACATCTTCAGGCTATTGACCTGGTCCTTGAT 857
|
Db 236 TGTGCTGGTGACCCATGATATTGACGAAGCGCTGCGTCTGGCGGACACCTGGTGCTGAT 177

QY 858 GACATCTGGCACCCCTATCTACCTGGGGCGCGCAGCAAATGGTGCAG 906
|
Db 176 GGACGGGGCGAGGTGGTCCAGCAGGGGGCGCCGCTGGAGATGCTCCTG 128

RESULT 10
US-09-489-039A-945
; Sequence 945, Application US/09489039A
; Patent No. 6610836
; GENERAL INFORMATION:
; APPLICANT: Gary Breton et. al
; TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO
KLEBSIELLA
; TITLE OF INVENTION: PNEUMONIAE FOR DIAGNOSTICS AND THERAPEUTICS
; FILE REFERENCE: 2709.2004001
; CURRENT APPLICATION NUMBER: US/09/489,039A
; CURRENT FILING DATE: 2000-01-27
; PRIOR APPLICATION NUMBER: US 60/117,747
; PRIOR FILING DATE: 1999-01-29
; NUMBER OF SEQ ID NOS: 14342
; SEQ ID NO 945
; LENGTH: 960
; TYPE: DNA
; ORGANISM: Klebsiella pneumoniae
US-09-489-039A-945

Query Match 2.5%; Score 49.8; DB 4; Length 960;
Best Local Similarity 46.4%; Pred. No. 0.0006;

Matches 162; Conservative 0; Mismatches 187; Indels 0; Gaps 0;
 Qy 558 ACGGGTGGAAGACGTAATGCCGAGCTGCCTGCAGTGCACCAACACCAGAGTGGG 617
 | |||
 Db 336 AAGGATCGCCGACCGGATCGACGAGCTGATGGCCTGCTGGGGCTGGAGGCGACGCTGCG 395
 Qy 618 CAACACGTATGTACGTGGGGTGTCCGGGGTGAGCGCCGACGAGTGAGCATGGGGTGCA 677
 |
 Db 396 CGACCGTTACCCGCATCAGCTCTCCGGCGGCCAGCAGCAGCGGGTGGGGTGGCGCGGC 455
 Qy 678 GCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACTCTGGCCTCGACAGCTT 737
 |
 Db 456 GCTGGCGGCAGATCCGGAGGTGCTGTTGATGGATGAGCCCTTCGGCGCCCTGACCCGGT 515
 Qy 738 CACAGCCCACAATCTGGTGACAACCTTGTCCGCCTGCCAAGGGAACAGGCTGGTGCT 797
 |
 Db 516 GACCCGCGAGGCGCTGCAGCAGGAGATGCTGCGATCCACCGTCTGCTGGACGGACGAT 575
 Qy 798 CATCTCCCTCCACCAGCCTCGCTCTGACATCTCAGGCTATTGACCTGGTCTTGAT 857
 |
 Db 576 TGTGCTGGTGACCCATGATATTGACGAAGCGCTGCGCTGGCGGACACCTGGTGCTGAT 635
 Qy 858 GACATCTGGCACCCCTATCTACCTGGGGCGCGCAGCAAATGGTGCAG 906
 |
 Db 636 GGACGGGGCGAGGTGGTCCAGCAGGGGCGCCGCTGGAGATGCTCCTG 684

RESULT 11

US-09-252-991A-12021/c

; Sequence 12021, Application US/09252991A
 ; Patent No. 6551795
 ; GENERAL INFORMATION:
 ; APPLICANT: Marc J. Rubenfield et al.
 ; TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO
 PSEUDOMONAS
 ; TITLE OF INVENTION: AERUGINOSA FOR DIAGNOSTICS AND THERAPEUTICS
 ; FILE REFERENCE: 107196.136
 ; CURRENT APPLICATION NUMBER: US/09/252,991A
 ; CURRENT FILING DATE: 1999-02-18
 ; PRIOR APPLICATION NUMBER: US 60/074,788
 ; PRIOR FILING DATE: 1998-02-18
 ; PRIOR APPLICATION NUMBER: US 60/094,190
 ; PRIOR FILING DATE: 1998-07-27
 ; NUMBER OF SEQ ID NOS: 33142
 ; SEQ ID NO 12021
 ; LENGTH: 627
 ; TYPE: DNA
 ; ORGANISM: Pseudomonas aeruginosa
 US-09-252-991A-12021

Query Match 2.5%; Score 49.6; DB 4; Length 627;
 Best Local Similarity 51.3%; Pred. No. 0.00055;
 Matches 115; Conservative 0; Mismatches 109; Indels 0; Gaps 0;
 Qy 591 GCAGCAGTGCACCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGA 650
 |
 Db 583 GCAGCGCTACGGCATGCCCTGGAGCCTGCCGGCTGGTCCATGGCTGTCCATCGCGA 524

RESULT 12

US-09-252-991A-11963

; Sequence 11963, Application US/09252991A
; Patent No. 6551795
; GENERAL INFORMATION:
; APPLICANT: Marc J. Rubenfield et al.
; TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO
PSEUDOMONAS

; TITLE OF INVENTION: AERUGINOSA FOR DIAGNOSTICS AND THERAPEUTICS

; FILE REFERENCE: 107196.136

; CURRENT APPLICATION NUMBER: US/09/2

; CURRENT FILING DATE: 1999-02-18

PRIOR APPLICATION NUMBER: US 60

; PRIOR FILING DATE: 1998-02-18

; PRIOR APPLICATION NUMBER: US

PRIOR FILING DATE: 1998-07-27

; NUMBER OF SEQ ID NOS: 33142

; SEQ ID NO 11963

; LENGTH: 732

; TYPE: DNA

; ORGANISM: Pse

US-09-252-991A-

Query Match 2.5%; Sc

Best Local Similar

Query Match 2.5%; Score 49.6; DB 4; Length 732;
Best Local Similarity 51.3%; Pred. No. 0.00059;
Matches 115; Conservative 0; Mismatches 109; Indels 0; Gaps 0;

Qy 651 GCGCCGACGAGTGAGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGA 710
|
Ph 102 GCGCCGACGAGTGAGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGA 162

EEG FOR COGNITIVE FUNCTION AND DISEASE

RESULT 13

US-09-252-991A-11890

; Sequence 11890, Application US/09252991A

; Patent No. 6551795

; GENERAL INFORMATION:

; APPLICANT: Marc J. Rubenfield et al.

; TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO
PSEUDOMONAS

: TITLE OF INVENTION: AERUGINOSA FOR DIAGNOSTICS AND THERAPEUTICS

; FILE REFERENCE: 107196.136

; CURRENT APPLICATION NUMBER: US/0

CURRENT FILING DATE: 1999-02-18

PRIOR APPLICATION NUMBER: US

PRIOR FILING DATE: 1998-02-18

PRIORITY APPLICATION NUMBER: US 60/

PRIOR FILING DATE: 1998-07-21

NUMBER OF SEO ID

; SEQ ID NO 1189

LENGTH: 23

TYPE: DNA

; ORGANISM: Pseudo

```

Query Match           2.5%; Score 49.6; DB 4; Length 2328;
Best Local Similarity 51.3%; Pred. No. 0.0011;
Matches 115; Conservative 0; Mismatches 109; Indels 0; Gaps 0;

y      591 GCGGCAGTGCGCCAACACCAAGAGTGGGAAACACGTATGTACGTGGGTGTCCGGGGTGA 650
|| || | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
o      45 GCAGCGCTACGGCATGCCGCTGGAGCCTGCCCGCTGGTCATGGGCTGTCCATCGCGA 104
y      651 GCGCCGACGAGTGAGCATTGGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGA 710
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
o      105 GCGCCAGCGGGTGGAGATCGTGCCTGCCTGATGCAGGACATCCGCTGCTGATCCTCGA 164
y      711 TGAACCCACTTCTGGCCTCGACAGCTTCACAGCCCACAATCTGGTGACAACCTGTCCCC 770
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
o      165 CGAGCCGACTTCGGTGCTGACCCCACCGCGAGGCGAGGATCTCTCGTCACCCTGCGCCG 224
y      771 CCTGGCCAAGGGCAACAGGCTGGTGCTCATCTCCCTCCACCAGC 814
| | | | | | | | | | | | | | | | | | | | | | | | |
o      225 TCTTGCGGAAGAGGGCTGCAGTGTCCCTTTCATCAGCCACAAGC 268

```

RESULT 14

US-09-252-991A-12050/c

; Sequence 12050, Application US/09252991A

; Patent No. 6551795

; GENERAL INFORMATION:

; APPLICANT: Marc J. Rubenfield et al.

; TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO
PSEUDOMONAS

i TITLE OF INVENTION: AERUGINOSA FOR DIAGNOSTICS AND THERAPEUTICS

; FILE REFERENCE: 107196.136

; CURRENT APPLICATION NUMBER: US/09/252,991A

; CURRENT FILING DATE: 1999-02-18

; PRIOR APPLICATION NUMBER: US 60/074,788
; PRIOR FILING DATE: 1998-02-18
; PRIOR APPLICATION NUMBER: US 60/094,190
; PRIOR FILING DATE: 1998-07-27
; NUMBER OF SEQ ID NOS: 33142
; SEQ ID NO 12050
; LENGTH: 705
; TYPE: DNA
; ORGANISM: Pseudomonas aeruginosa
US-09-252-991A-12050

```

Query Match           2.4%; Score 49.4; DB 4; Length 705;
Best Local Similarity 54.0%; Pred. No. 0.00066;
Matches 101; Conservative 0; Mismatches 86; Indels 0; Gaps 0;

Qy      628 GTACGTGGGTGTCCGGGGT GAGCGCCGACGAGTGAGCATTGGGGTGCAGCTCCTGTGG 687
        ||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      674 GTCCATGGCTGTCCATCGGC GAGCGCCAGCGGGTGGAGATCGTGCCTGCCTGATGCAG 615

Qy      688 AACCCAGGAATCCTCATTCTGGATGAACCCACTTCTGGCCTCGACAGCTCACAGCCCAC 747
        || | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      614 GACATCCGCCTGCTGATCCTCGACGAGCCACTCGGTGCTGACCCCCACCGAGGCCGAG 555

Qy      748 AATCTGGTGACAACCTTGTCCCGCCTGGCCAAGGGCAACAGGCTGGTGCTCATCTCCCTC 807
        ||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      554 GATCTCTCGTCACCCCTGCGCCGTCTTGCGGAAGAGGGCTGCAGTGTCCCTCTCATCAGC 495

Qy      808 CACCAGC 814
        ||| | |
Db      494 CACAAGC 488

```

RESULT 15

US-08-592-874-1/c

; Sequence 1, Application US/08592874

Patent No. 5854034

GENERAL INFORMATION:

APPLICANT: POLLOCK, THOMAS J.

APPLICANT: YAMAZAKI, MOTOHIDE

APPLICANT: THORNE, LINDA

APPLICANT: MIKOŁAJCZAK, MARCIA

APPLICANT: ARMENTROUT, RICHARD W

TITLE OF INVENTION: DNA SEGMENTS AND METHODS FOR INCREASING

TITLE OF INVENTION: POLYSACCHARIDE PRODUCTION

NUMBER OF SEQUENCES: 1

CORRESPONDENCE ADDRESS:

ADDRESSEE: JULES E.

STREET: 26

CITY: NEW YO

STATE: NY

COUNTRY: USA

ZTP: 10016-2391

COMPUTER READABLE FORM:

MEDIUM TYPE: Floppy disk

MEDIUM TYPE: Floppy disk
COMPUTER: IBM PC compatible

COMPUTER: IBM PC compatible
OPERATING SYSTEM: PC-DOS/MS-DOS

OPERATING SYSTEM: PC DOS/MS DOS
SOFTWARE: PatentIn Release #1.0, Version #1.30

CURRENT APPLICATION DATA:
APPLICATION NUMBER: US/08/592,874
FILING DATE:
CLASSIFICATION: 435

PRIOR APPLICATION DATA:
APPLICATION NUMBER: US 08/377,440
FILING DATE: 24-JAN-1995

ATTORNEY/AGENT INFORMATION:
NAME: GOLDBERG, JULES E.
REGISTRATION NUMBER: 24,408

TELECOMMUNICATION INFORMATION:
TELEPHONE: 212-986-4090
TELEFAX: 212-818-9479

INFORMATION FOR SEQ ID NO: 1:
SEQUENCE CHARACTERISTICS:
LENGTH: 28804 base pairs
TYPE: nucleic acid
STRANDEDNESS: unknown
TOPOLOGY: unknown
MOLECULE TYPE: DNA (genomic)
FRAGMENT TYPE: N-terminal

US-08-392-874-1

Query Match 2.4%; Score 48.6; DB 2; Length 28804;
 Best Local Similarity 46.6%; Pred. No. 0.0074;
 Matches 156; Conservative 0; Mismatches 179; Indels 0; Gaps 0;

Search completed: February 26, 2004, 09:45:36
Job time : 114.675 secs

GenCore version 5.1.6
Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: February 27, 2004, 06:40:42 ; Search time 463.956 Seconds
(without alignments)
15698.623 Million cell updates/sec

Title: US-09-989-981A-3

Perfect score: 2019

Sequence: 1 atggctgagaaaaccaaaga.....agtcaattcaagactggta 2019

Scoring table: IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

Searched: 2353733 seqs, 1803733377 residues

Total number of hits satisfying chosen parameters: 4707466

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : Published_Applications_NA:*

1: /cgn2_6/ptodata/2/pubpna/US07_PUBCOMB.seq:*

2: /cgn2_6/ptodata/2/pubpna/PCT_NEW_PUB.seq:*

3: /cgn2_6/ptodata/2/pubpna/US06_NEW_PUB.seq:*

4: /cgn2_6/ptodata/2/pubpna/US06_PUBCOMB.seq:*

5: /cgn2_6/ptodata/2/pubpna/US07_NEW_PUB.seq:*

6: /cgn2_6/ptodata/2/pubpna/PCTUS_PUBCOMB.seq:*

7: /cgn2_6/ptodata/2/pubpna/US08_NEW_PUB.seq:*

8: /cgn2_6/ptodata/2/pubpna/US08_PUBCOMB.seq:*

9: /cgn2_6/ptodata/2/pubpna/US09A_PUBCOMB.seq:*

10: /cgn2_6/ptodata/2/pubpna/US09B_PUBCOMB.seq:*

11: /cgn2_6/ptodata/2/pubpna/US09C_PUBCOMB.seq:*

12: /cgn2_6/ptodata/2/pubpna/US09_NEW_PUB.seq:*

13: /cgn2_6/ptodata/2/pubpna/US10A_PUBCOMB.seq:*

14: /cgn2_6/ptodata/2/pubpna/US10B_PUBCOMB.seq:*

15: /cgn2_6/ptodata/2/pubpna/US10C_PUBCOMB.seq:*

16: /cgn2_6/ptodata/2/pubpna/US10_NEW_PUB.seq:*

17: /cgn2_6/ptodata/2/pubpna/US60_NEW_PUB.seq:*

18: /cgn2_6/ptodata/2/pubpna/US60_PUBCOMB.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

%

Result	Query				
No.	Score	Match	Length	DB	ID
					Description

1	2019	100.0	2019	10	US-09-989-981A-3	Sequence 3, Appli	
2	1430	70.8	2669	10	US-09-989-981A-7	Sequence 7, Appli	
3	743.8	36.8	3239	15	US-10-415-378-29	Sequence 29, Appli	
4	199.2	9.9	2340	9	US-09-837-992-4	Sequence 4, Appli	
5	199.2	9.9	2340	10	US-09-989-981A-5	Sequence 5, Appli	
6	186.6	9.2	1959	10	US-09-989-981A-1	Sequence 1, Appli	
7	186.6	9.2	2258	9	US-09-837-992-2	Sequence 2, Appli	
8	169.2	8.4	2585	12	US-10-425-114-32175	Sequence 32175, A	
9	137	6.8	2025	9	US-09-866-866A-13	Sequence 13, Appli	
10	132.4	6.6	2027	15	US-10-405-806-1	Sequence 1, Appli	
11	132.4	6.6	2053	15	US-10-405-806-12	Sequence 12, Appli	
12	132.4	6.6	2247	9	US-09-866-866A-26	Sequence 26, Appli	
13	132.4	6.6	2418	10	US-09-961-086-2	Sequence 2, Appli	
14	132.4	6.6	2574	9	US-09-981-353-34	Sequence 34, Appli	
15	132.4	6.6	2718	14	US-10-120-687-60	Sequence 60, Appli	
16	132.4	6.6	2719	9	US-09-866-866A-9	Sequence 9, Appli	
17	132.4	6.6	2883	14	US-10-101-510-639	Sequence 639, App	
18	117.2	5.8	2930	9	US-09-954-531-591	Sequence 591, App	
19	117.2	5.8	2930	14	US-10-171-581-276	Sequence 276, App	
20	117.2	5.8	2930	16	US-10-429-160-9	Sequence 9, Appli	
21	117	5.8	3201	13	US-10-072-621-5	Sequence 5, Appli	
c	22	114.4	5.7	567	15	US-10-260-238-5734	Sequence 5734, Ap
	23	114	5.6	2133	15	US-10-210-130-13	Sequence 13, Appli
	24	110.2	5.5	925	12	US-10-424-599-64406	Sequence 64406, A
	25	110.2	5.5	2028	15	US-10-369-493-27486	Sequence 27486, A
	26	105.2	5.2	3463	12	US-10-425-114-13286	Sequence 13286, A
	27	105.2	5.2	3528	12	US-10-424-599-99236	Sequence 99236, A
c	28	105	5.2	6043	10	US-09-989-981A-9	Sequence 9, Appli
	29	104.6	5.2	2512	15	US-10-104-047-825	Sequence 825, App
	30	104.4	5.2	2788	9	US-09-745-763-196	Sequence 196, App
	31	102.8	5.1	972	12	US-10-424-599-129897	Sequence 129897,
c	32	101.4	5.0	447	9	US-09-960-352-11649	Sequence 11649, A
	33	99.2	4.9	2826	12	US-10-424-599-95809	Sequence 95809, A
	34	99	4.9	2638	15	US-10-369-493-27088	Sequence 27088, A
	35	98.2	4.9	2223	9	US-09-938-842A-2262	Sequence 2262, Ap
	36	98.2	4.9	2223	11	US-09-938-842A-2262	Sequence 2262, Ap
	37	95.4	4.7	2400	13	US-10-108-605-244	Sequence 244, App
	38	95	4.7	2608	12	US-10-424-599-33340	Sequence 33340, A
	39	93.8	4.6	10330	13	US-10-001-189-68	Sequence 68, Appli
	40	92	4.6	1684	12	US-10-425-114-4362	Sequence 4362, Ap
	41	91.2	4.5	452	12	US-10-424-599-107241	Sequence 107241,
	42	90.6	4.5	2546	12	US-10-424-599-33099	Sequence 33099, A
	43	90.2	4.5	2162	12	US-10-425-114-25098	Sequence 25098, A
	44	90.2	4.5	2248	12	US-10-425-114-31870	Sequence 31870, A
c	45	90	4.5	427	9	US-09-960-352-12839	Sequence 12839, A

ALIGNMENTS

RESULT 1

US-09-989-981A-3

; Sequence 3, Application US/09989981A
; Publication No. US20030049730A1
; GENERAL INFORMATION:
; APPLICANT: Hobbs, Helen H.

; APPLICANT: Shan, Bei
; APPLICANT: Barnes, Robert
; APPLICANT: Tian, Hui
; APPLICANT: Tularik Inc.
; APPLICANT: Board of Regents, The University of Texas System
; TITLE OF INVENTION: ABCG5 and ABCG8: Compositions and Methods of Use
; FILE REFERENCE: 018781-007320US
; CURRENT APPLICATION NUMBER: US/09/989,981A
; CURRENT FILING DATE: 2002-07-23
; PRIOR APPLICATION NUMBER: US 60/252,235
; PRIOR FILING DATE: 2000-11-20
; PRIOR APPLICATION NUMBER: US 60/253,645
; PRIOR FILING DATE: 2000-11-28
; NUMBER OF SEQ ID NOS: 13
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 3
; LENGTH: 2019
; TYPE: DNA
; ORGANISM: Mus musculus
; FEATURE:
; NAME/KEY: CDS
; LOCATION: (1)..(2019)
; OTHER INFORMATION: mouse ABCG8 (mABCG8)

US-09-989-981A-3

Query Match 100.0%; Score 2019; DB 10; Length 2019;
Best Local Similarity 100.0%; Pred. No. 0;
Matches 2019; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy	1 ATGGCTGAGAAAACCAAAGAAGAGACCCAGCTGTGGAATGGACTGTACTTCAGGATGCT	60
Db	1 ATGGCTGAGAAAACCAAAGAAGAGACCCAGCTGTGGAATGGACTGTACTTCAGGATGCT	60
Qy	61 TCGGGCCTCCAGGACAGCTTGTTCCTCGGAAAGTGACAACAGTCTGTACTTCACCTAC	120
Db	61 TCGGGCCTCCAGGACAGCTTGTTCCTCGGAAAGTGACAACAGTCTGTACTTCACCTAC	120
Qy	121 AGTGGTCAGTCCAACACTCTGGAGGTCAGAGATCTCACCTACCAGGTGGACATGCCCTCT	180
Db	121 AGTGGTCAGTCCAACACTCTGGAGGTCAGAGATCTCACCTACCAGGTGGACATGCCCTCT	180
Qy	181 CAGGTGCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGCAGC	240
Db	181 CAGGTGCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATAACCCTGGAGGTCTCATAGCAGC	240
Qy	241 CAAGACTCCTGTGAGCTGGCATCCGAAATCTAAGCTCAAAGTGAGGAGTGGACAGATG	300
Db	241 CAAGACTCCTGTGAGCTGGCATCCGAAATCTAAGCTCAAAGTGAGGAGTGGACAGATG	300
Qy	301 CTGGCCATCATAGGGAGCTCAGGCTGCAGGAGAGCCTCACTACTCGACGTGATCACAGGC	360
Db	301 CTGGCCATCATAGGGAGCTCAGGCTGCAGGAGAGCCTCACTACTCGACGTGATCACAGGC	360
Qy	361 AGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGTACG	420
Db	361 AGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGTACG	420

Qy	421	CCTCAGCTGGTGAGGAAGTGCCTGCGCATGTGCGCAGCATGACCAACTGCTGCCAAC	480
Db	421		
Qy	421	CCTCAGCTGGTGAGGAAGTGCCTGCGCATGTGCGCAGCATGACCAACTGCTGCCAAC	480
Db	481	CTGACCGTCAGAGAGACCCTGGCTTCATTGCCAGATGCGCTGCCAGGACCTTCTCC	540
Db	481		
Qy	541	CAGGCCAGCGTGACAAACGGGTGGAAGACGTAATGCCAGCTGCGCTGCCAGTGC	600
Db	541		
Qy	541	CAGGCCAGCGTGACAAACGGGTGGAAGACGTAATGCCAGCTGCGCTGCCAGTGC	600
Db	601	GCCAACACCAAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGCGCCGACGA	660
Db	601		
Qy	601	GCCAACACCAAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGCGCCGACGA	660
Db	661	GTGAGCATTGGGTGCAGCTCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACT	720
Db	661		
Qy	721	TCTGGCCTCGACAGCTCACAGCCCACAATCTGGTACAACCTTGTCCGCCGGCAAG	780
Db	721		
Qy	721	TCTGGCCTCGACAGCTCACAGCCCACAATCTGGTACAACCTTGTCCGCCGGCAAG	780
Db	781	GGCAACAGGCTGGTGCATCTCCCTCCACAGCCTCGCTCTGACATCTCAGGCTATT	840
Db	781		
Qy	781	GGCAACAGGCTGGTGCATCTCCCTCCACAGCCTCGCTCTGACATCTCAGGCTATT	840
Db	841	GACCTGGCCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGGCAGCAAATG	900
Db	841		
Qy	841	GACCTGGCCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGGCAGCAAATG	900
Db	901	GTGCAGTACTTCACATCCATTGGCACCCCTGTCCCTCGCTATAGCAACCCCTGCGGACTTC	960
Db	901		
Qy	901	GTGCAGTACTTCACATCCATTGGCACCCCTGTCCCTCGCTATAGCAACCCCTGCGGACTTC	960
Db	961	TACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGGAGGTGGCCACCGTGGAG	1020
Db	961		
Qy	961	TACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGGAGGTGGCCACCGTGGAG	1020
Db	1021	AAGGCACAGTCTTGCAGCCCTGTTCTAGAAAAAGTACAAGGCTTGATGACTTCTG	1080
Db	1021		
Qy	1021	AAGGCACAGTCTTGCAGCCCTGTTCTAGAAAAAGTACAAGGCTTGATGACTTCTG	1080
Db	1081	TGGAAAGCTGAGGCAAAGGAACTCAACACAAGCACCCACACAGTCAGCCTGACCCCTACA	1140
Db	1081		
Qy	1081	TGGAAAGCTGAGGCAAAGGAACTCAACACAAGCACCCACACAGTCAGCCTGACCCCTACA	1140
Db	1141	CAGGACACTGACTGTGGACTGCTGTTGAGCTGCCGGATGATAGAGCAGTTTCCACC	1200
Db	1141		
Qy	1141	CAGGACACTGACTGTGGACTGCTGTTGAGCTGCCGGATGATAGAGCAGTTTCCACC	1200
Db	1201	CTGATCCGTCGTCAAGATTCCAATGACTTCCGGGACCTGCCACGCTGCTCATTGAGG	1260
Db	1201		
Qy	1201	CTGATCCGTCGTCAAGATTCCAATGACTTCCGGGACCTGCCACGCTGCTCATTGAGG	1260
Qy	1261	TCGGAAGCCTGCCTGATGTCCTCATCATTGGCTCCTTACTACGGCCATGGGCCAAG	1320

Db	1261	TCGGAAGCCTGCCTGATGTCCTCATCATTGGCTCCTTACTACGGCCATGGGCCAAG	1320
QY	1321	CAGCTCTCCTTCATGGACACAGCAGCCCTCCTTCATGATAGGGCGCTCATTCTTC	1380
Db	1321	CAGCTCTCCTTCATGGACACAGCAGCCCTCCTTCATGATAGGGCGCTCATTCTTC	1380
QY	1381	AATGTCATCCTGGATGTCGTCTCAAATGTCACTCGGAGAGGTCAATGCTGTACTATGAG	1440
Db	1381	AATGTCATCCTGGATGTCGTCTCAAATGTCACTCGGAGAGGTCAATGCTGTACTATGAG	1440
QY	1441	CTGGAAGACGGGCTGTACACTGCTGGTCCTTATTGCCAAGATCCTAGGAGAATTG	1500
Db	1441	CTGGAAGACGGGCTGTACACTGCTGGTCCTTATTGCCAAGATCCTAGGAGAATTG	1500
QY	1501	CCGGAGCACTGTGCCTACGTACATCATCACCGATGCCATCTACTGGTGACAAACCTG	1560
Db	1501	CCGGAGCACTGTGCCTACGTACATCATCACCGATGCCATCTACTGGTGACAAACCTG	1560
QY	1561	CGGCCCGTGCCTGAGCTCTTCTACACTTCCTGCTCGTGTGGTTGGTGGTCTTCTGC	1620
Db	1561	CGGCCCGTGCCTGAGCTCTTCTACACTTCCTGCTCGTGTGGTTGGTGGTCTTCTGC	1620
QY	1621	TGCAGGACCATGGCCCTGGCTGCCTTGCCATGCTGCCACCTCCACATGTCCTCTTC	1680
Db	1621	TGCAGGACCATGGCCCTGGCTGCCTTGCCATGCTGCCACCTCCACATGTCCTCTTC	1680
QY	1681	TTCTGCAATGCCCTCTACAACCTCTTACACTGCCGGCTTCATGATAAACTTGGAC	1740
Db	1681	TTCTGCAATGCCCTCTACAACCTCTTACACTGCCGGCTTCATGATAAACTTGGAC	1740
QY	1741	AACCTGTGGATAGTGCCTGCATGGATCTCCAAGCTGTCGTTCTCCGGTGGTGTCTCG	1800
Db	1741	AACCTGTGGATAGTGCCTGCATGGATCTCCAAGCTGTCGTTCTCCGGTGGTGTCTCG	1800
QY	1801	GGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTTCACC	1860
Db	1801	GGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTTCACC	1860
QY	1861	TTCTCCATCCTCGGAGACACGATGATCAGTGCCTGGACCTGAACTCGCATCCACTCTAT	1920
Db	1861	TTCTCCATCCTCGGAGACACGATGATCAGTGCCTGGACCTGAACTCGCATCCACTCTAT	1920
QY	1921	GCGATCTACCTCATTGTCATCGGCATCAGCTACGGCTCCTGTTCTGTACTATCTATCC	1980
Db	1921	GCGATCTACCTCATTGTCATCGGCATCAGCTACGGCTCCTGTTCTGTACTATCTATCC	1980
QY	1981	TTGAAGCTCATCAAACAGAAGTCATTCAAGACTGGTGA	2019
Db	1981	TTGAAGCTCATCAAACAGAAGTCATTCAAGACTGGTGA	2019

RESULT 2

US-09-989-981A-7

; Sequence 7, Application US/09989981A

; Publication No. US20030049730A1

; GENERAL INFORMATION:

; APPLICANT: Hobbs, Helen H.
; APPLICANT: Shan, Bei
; APPLICANT: Barnes, Robert
; APPLICANT: Tian, Hui
; APPLICANT: Tularik Inc.
; APPLICANT: Board of Regents, The University of Texas System
; TITLE OF INVENTION: ABCG5 and ABCG8: Compositions and Methods of Use
; FILE REFERENCE: 018781-007320US
; CURRENT APPLICATION NUMBER: US/09/989,981A
; CURRENT FILING DATE: 2002-07-23
; PRIOR APPLICATION NUMBER: US 60/252,235
; PRIOR FILING DATE: 2000-11-20
; PRIOR APPLICATION NUMBER: US 60/253,645
; PRIOR FILING DATE: 2000-11-28
; NUMBER OF SEQ ID NOS: 13
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 7
; LENGTH: 2669
; TYPE: DNA
; ORGANISM: Homo sapiens
; FEATURE:
; NAME/KEY: CDS
; LOCATION: (100)..(2121)
; OTHER INFORMATION: human ABCG8 (hABCG8)
US-09-989-981A-7

```

Query Match           70.8%; Score 1430; DB 10; Length 2669;
Best Local Similarity 82.0%; Pred. No. 0;
Matches 1659; Conservative 0; Mismatches 360; Indels 3; Gaps 1;

Qy      1 ATGGCTGAGAAAACCAAAGAAGAGACCCAGCTGTGGATGGGACTGTACTTCAGGATGCT 60
       ||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db     100 ATGGCCGGAAAGGCCAGAGGAGAGAGGGCTGCCGAAAGGGCCACTCCCCAGGATACC 159

Qy      61 TCAGGGCCTCCAGGACAGCTTGTCTCCTCGAAAGTGACAACAGTCTGTACTTCACCTAC 120
       ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db     160 TCAGGGCCTCCAGGATAGATTGTCTCCTCTGAAAGTGACAACAGCCTGTACTTCACCTAC 219

Qy      121 AGTGGTCAGTCCAACACTCTGGAGGTCAAGAGATCTCACCTACCAGGTGGACATCGCCTCT 180
       ||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db     220 AGTGGCCAGCCAACACCCTGGAGGTCAAGAGACCTCAACTACCAGGTGGACCTGGCCTCT 279

Qy      181 CAGGTGCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATACCCTGGAGGTCTCATAGCAGC 240
       ||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db     280 CAGGTCCCTTGGTTGAGCAGCTGGCTCAGTTCAAGATGCCCTGGACATCTCCCAGCTGC 339

Qy      241 CAAGACTCCTGTGAGCTGGCATCCGAAATCTAAGCTTCAAAGTGAGGAGTGGACAGATG 300
       || | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db     340 CAGAATTCTTGTGAGCTGGCATCCAGAACCTAAGCTTCAAAGTGAGAAGTGGCAGATG 399

Qy      301 CTGGCCATCATAGGGAGCTCAGGCTGCGGGAGAGCCTCACTACTCGACGTGATCACAGGC 360
       ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db     400 CTGGCCATCATAGGGAGCTCAGGTGAGAGAGCCTCCTGCTAGATGTGATCACTGGC 459

Qy      361 AGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGTACG 420
       ||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db     460 CGAGGTCAAGGCCAGATCAAGTCAGGCCAGATCTGGATCAATGGCAGGCCAGCTCG 519

```

Qy	421	CCTCAGCTGGTGAGGAAGTGCCTGCGCATGTGCGGCAGCATGACCAACTGCTGCCAAC	480
Db	520	CCTCAGCTGGTGAGGAAGTGTGTGGCCACGTGCGCCAGCACAAACAGCTGCTCCCCAAC	579
Qy	481	CTGACCCTCAGAGAGACCCTGGCTTCATTGCCAGATGCGCCTGCCAGGACCTTCTCC	540
Db	580	TTGACTGTGCGAGAGACCTTGGCCTTCATTGCCAGATGCGCCTGCCAGAACCTTCTCC	639
Qy	541	CAGGCCAGCGTGACAAACGGGTGGAAGACGTAATGCCGAGCTGCCAGTGCAGTGC	600
Db	640	CAGGCCAGCGTGACAAAAGGGTGGAGGACGTGATCGCGAGCTGCCAGTAGGCAGTGC	699
Qy	601	GCCAACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGCGCCGACGA	660
Db	700	GCTGACACCCCGCGTGGCAACATGTACGTGCCGGGTTGTCGGGGGTGAGCGCAGGAGA	759
Qy	661	GTGAGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACT	720
Db	760	GTCAGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATCCTTATTCTGACGAACCCACC	819
Qy	721	TCTGGCTCGACAGCTTCACAGCCCACAATCTGGTACAACCTTGTCCGCCCTGGCAAG	780
Db	820	TCTGGGCTCGACAGCTTCACAGCCCACAACCTGGTAAGACCTTGTCCAGGCTGCCAAA	879
Qy	781	GGCAACAGGCTGGTGCTCATCTCCCTCCACCAGCCTCGCTCTGACATCTCAGGCTATT	840
Db	880	GGCAACCGGCTGGTGCTCATCTCCCTCCACCAGCCTCGCTCTGACATCTCAGGCTGTT	939
Qy	841	GACCTGGCCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGCGCAGCAAATG	900
Db	940	GATCTGGCCTCCTGATGACGTCTGGCACCCCCATCTACTTAGGGCGGCCAGCACATG	999
Qy	901	GTGCAGTACTTCACATCCATTGCCACCCCTGTCCCTCGCTATAGCAACCTGCCGACTTC	960
Db	1000	GTCCAGTATTCACAGCCATCGGCTACCCCTGTCCCTCGTACAGCAATCTGCTGACTTC	1059
Qy	961	TACGTGGACTTGACCAGCATCGACAGACGAGCAAGAACGGGAGGTGGCCACCGTGGAG	1020
Db	1060	TATGTGGACCTGACCAGCATTGACAGGGCAGCAGAGAGCAGGAATTGGCCACCGAGGAG	1119
Qy	1021	AAGGCACAGTCTCTGCAGCCCTGTTCTAGAAAAAGTACAAGGTTGATGACTTCTG	1080
Db	1120	AAGGCTCAGTCACTCGCAGCCCTGTTCTAGAAAAAGTGCCTGACTTAGATGACTTCTA	1179
Qy	1081	TGGAAAGCTGAGGCAAAGGAACTCAACACAAGCACCCACACAGTCAGCCTGCCCTACA	1140
Db	1180	TGGAAAGCAGAGACGAAGGATCTTGACGAGGACACCTGTGTGGAAAGCAGCGTGACCCCA	1239
Qy	1141	CAGGACACTGACTG---TGGGACTGCTGTTGAGCTGCCGGGATGATAGAGCAGTTTCC	1197
Db	1240	CTAGACACCAACTGCCCTCCGAGTCCTACGAAGATGCCCTGGGCGGTGCAGCAGTTACG	1299
Qy	1198	ACCTGATCCGTCGTCAAGATTCCAATGACTTCCGGGACCTGCCACGCTGCTCATTCAT	1257
Db	1300	ACGCTGATCCGTCGTCAAGATTCCAACGACTTCCGAGACCTGCCACCCCTCCTCATCCAT	1359

Qy	1258	GGGTGGAAGCCTGCCTGATGTCCCTCATCATTGGCTCCTTACTACGGCCATGGGCC	1317
Db	1360	GGGGCGGAGGCCTGTCTGATGTCAATGACCACCGCTCCTCTATTGGCCATGGAGC	1419
Qy	1318	AAGCAGCTCTCCTTCATGGACACAGCAGCCCTCCTCTTCATGATAGGGCGCTCATT	1377
Db	1420	ATCCAGCTCTCCTTCATGGATACAGCCGCCCTTGTTCATGATCGGTGCTCATCCCT	1479
Qy	1378	TTCAATGTCATCCTGGATGTCGTCCTCAAATGTCACTCGGAGAGGTCAATGCTGTACTAT	1437
Db	1480	TTCAACGTCATTCTGGATGTCATCTCAAATGTTACTCAGAGAGGGCAATGCTTACTAT	1539
Qy	1438	GAGCTGGAAGACGGGCTGTACACTGCTGGCCTTATTCTTGCCAAGATCCTAGGAGAA	1497
Db	1540	GAACTGGAAGACGGGCTGTACACCACGGTCCATATTCTTGCCAAGATCCTCGGGGAG	1599
Qy	1498	TTGCCGGAGCACTGTGCCCTACGTACATCATCTACCGATGCCCATCTACTGGCTGACAAAC	1557
Db	1600	CTTCCGGAGCACTGTGCCCTACATCATCATCTACGGGATGCCCACCTACTGGCTGGCCAAC	1659
Qy	1558	CTGCGGCCCGTGCCTGAGCTCTCCTCTACACTTCTGCTCGTGGTGGTGGTCTTC	1617
Db	1660	CTGAGGCCAGGCCTCCAGCCCTCCTGCTGCACCTCCTGCTGGTGTGGCTGGTGGTCTTC	1719
Qy	1618	TGCTGCAGGACCATGGCCCTGGCTGCCTGCCCCATGCTGCCAACCTTCCACATGTCCTCC	1677
Db	1720	TGTTGCAGGATTATGGCCCTGGCCGCGGCCCTGCTCCCCACCTTCCACATGGCCTCC	1779
Qy	1678	TTCTTCTGCAATGCCCTCTACAACACTCCTTACCTTACTGCCGGCTTATGATAAACTTG	1737
Db	1780	TTCTTCAGCAATGCCCTCTACAACACTCCTTACCTCGCCGGGGCTTATGATAAACTTG	1839
Qy	1738	GACAACCTGTGGATAGTGCCTGCATGGATCTCAAGCTGTCGTTCTCCGGTGGTCTTC	1797
Db	1840	AGCAGCCTGTGGACAGTGCCTCGTGGATTCCAAAGTGTCTCCTGCCTGGTGGTTTT	1899
Qy	1798	TCGGGGCTGATGCAGATTCAATTAAATGGACACCTTACACCACACAAATCGGCAACTTC	1857
Db	1900	GAAGGGCTGATGAAGATTCAAGTTCACTGCAGCAGAAGAACTATAAAATGCCTCTCGGGAACCTC	1959
Qy	1858	ACCTTCTCCATCCTCGGAGACACGATGATCAGTGCCTGGACCTGAACCTGCATCCACTC	1917
Db	1960	ACCATCGCGGTCTCAGGAGATAAAATCCTCAGTGCCTGGAGCTGGACTCGTACCCCTCTC	2019
Qy	1918	TATGCGATCTACCTCATTGTCATCGGCATCAGCTACGGCTCCTGTTCTGTACTATCTA	1977
Db	2020	TACGCCATCTACCTCATCGTCATTGGCCTCAGCGGTGGCTTATGGCTCTGTACTACGTG	2079
Qy	1978	TCCTTGAAGCTCATCAAACAGAAGTCAATTCAAGACTGGTGA	2019
Db	2080	TCCTTAAGGTTCATCAAACAGAACCAAGTCAAGACTGGTGA	2121

RESULT 3

US-10-415-378-29

; Sequence 29, Application US/10415378

; Publication No. US20040014945A1

; GENERAL INFORMATION:
; APPLICANT: INCYTE CORPORATION; TANG, Y. Tom
; APPLICANT: YUE, Henry; NGUYEN, Dannie B.;
; APPLICANT: HAFALIA, April J.A.; ELLIOTT, Vicki S.;
; APPLICANT: LU, Yan; CHAWLA, Narinder K.;
; APPLICANT: YAO, Monique G.; BAUGHN, Mariah R.;
; APPLICANT: GANDHI, Ameena R.; DING, Li;
; APPLICANT: SANJANWALA, Madhusudan M.; RAMKUMAR, Jayalaxmi;
; APPLICANT: ARVIZU, Chandra S.; GIETZEN, Kimberly J.;
; APPLICANT: LAL, Preeti G.; AZIMZAI, Yalda;
; APPLICANT: KHAN, Farrah A.; THANGAVELU, Kavitha;
; APPLICANT: THORNTON, Michael B.; LU, Dyung Aina M.;
; APPLICANT: TRIBOULEY, Catherine M.; WARREN, Bridget A.;
; APPLICANT: ISON, H. Craig; DAS, Debopriya;
; APPLICANT: RAUMANN, Brigitte E.; POLICKY, Jennifer L.;
; APPLICANT: KEARNEY, Liam
; TITLE OF INVENTION: TRANSPORTERS AND ION CHANNELS
; FILE REFERENCE: PI-0270 USN
; CURRENT APPLICATION NUMBER: US/10/415,378
; CURRENT FILING DATE: 2003-05-07
; PRIOR APPLICATION NUMBER: PCT/US01/46055
; PRIOR FILING DATE: 2001-10-27
; PRIOR APPLICATION NUMBER: US 60/250,790
; PRIOR FILING DATE: 2000-12-01
; PRIOR APPLICATION NUMBER: US 60/252,232
; PRIOR FILING DATE: 2000-11-20
; PRIOR APPLICATION NUMBER: US 60/249,661
; PRIOR FILING DATE: 2000-11-17
; PRIOR APPLICATION NUMBER: US 60/247,673
; PRIOR FILING DATE: 2000-11-09
; PRIOR APPLICATION NUMBER: US 60/245,904
; PRIOR FILING DATE: 2000-11-03
; PRIOR APPLICATION NUMBER: US 60/243,989
; PRIOR FILING DATE: 2000-10-27
; NUMBER OF SEQ ID NOS: 40
; SOFTWARE: PERL Program
; SEQ ID NO 29
; LENGTH: 3239
; TYPE: DNA
; ORGANISM: Homo sapiens
; FEATURE:
; NAME/KEY: misc_feature
; OTHER INFORMATION: Incyte ID No. US20040014945A1 6585710CB1
US-10-415-378-29

Query Match 36.8%; Score 743.8; DB 15; Length 3239;
Best Local Similarity 78.9%; Pred. No. 7.1e-221;
Matches 899; Conservative 0; Mismatches 237; Indels 3; Gaps 1;

Qy	884	GGGC GGCGCAGCAAATGGTGCAGTACTTCACATCCATTGCCACCC TTGTCCCTCGCTATA	943
Db	12	GGGGCGGCCAGCACATGGTCCATTATTCACAGCCATGGCTACCCCTGTCCCTCGCTACA	71
Qy	944	GCAACCCTGCGGACTTCTACGTGGACTTGACCAGCATCGACAGACGCAGCAAAGAACGGG	1003
Db	72	GCAATCCTGCTGACTTCTATGTGGACCTGACCAGCATTGACAGGCGCAGCAGAGAGCAGG	131

Db	403	GTCCGGGAGGCTGGGGCGCGCGGGGACCTTCCTGGGGAGGTGTATGTGAACGGCCGGC	462
Qy	414	CAGTACGCCTCAGCTGGTGAGGAAGTGCCTGCGCATGTGCGCAGCATGACCAACTGCT	473
Db	463	GCTGCGCCGGGAGCAGTTCCAGGACTGCTTCTCCTACGTCTGCAGAGCAGACACCCTGCT	522
Qy	474	GCCCAACCTGACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATGCGCTGCCAGGAC	533
Db	523	GAGCAGCCTCACCGTGCAGACGCTGCACTACACCGCGCTGCTGGCCATCCGCCCGG	582
Qy	534	CTTCTCCCAGGCCAGCGTGACAAACGGGTGGAAGACGTAATGCCAGCTGCCCTGCG	593
Db	583	CAATCCCGGCTCCTTCC---AGAAGAAGGTGGAGGCCGTATGCCAGAGCTGAGTCTGAG	639
Qy	594	GCAGTGCGCCAACACCAAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGCG	653
Db	640	CCATGTGGCAGACCGACTGATTGGCAACTACAGCTGGGGGCATTCCACGGGTGAGCG	699
Qy	654	CCGACGAGTGAGCATTGGGTGCAGCTCTGTGAAACCCAGGAATCCTCATTCTGGATGA	713
Db	700	GCGCCGGGTCTCCATCGCAGCCAGCTGCTCCAGGATCCTAAGGTATGCTGTTGATGA	759
Qy	714	ACCCACTTCTGGCTCGACAGCTCACAGCCCACAATCTGGTGACAACCTGTCCCGCCT	773
Db	760	GCCAACCACAGGCCCTGGACTGCATGACTGCTAATCAGATTGTCGTCCTCTGGTGGAACT	819
Qy	774	GGCCAAGGGCAACAGGCTGGTGCTCATCTCCCTCACCAGCCTCGCTCTGACATCTTCAG	833
Db	820	GGCTCGAGGAACCGAATTGTGGTCTCACCAATTGAGCCCCGTTCTGAGCTTTTCA	879
Qy	834	GCTATTGACCTGGCCTTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGGGCA	893
Db	880	GCTTTGACAAAATTGCCATCCTGAGCTCGGAGAGCTGATTCTGTGGCACGCCAGC	939
Qy	894	GCAAATGGTGCAGTACTTCACATCCATTGCCACCCCTGTCCCTCGCTATAGCAACCCCTGC	953
Db	940	GGAAATGCTTGATTCTTCAATGACTGCGGTTACCTTGTCCCTGAACATTCAAACCTTT	999
Qy	954	GGACTTCTACGTGGACTTGACCAAGCATCGACAGACGCAGCAAAGAACGGAGGTGGCCAC	1013
Db	1000	TGACTTCTATATGGACCTGACGTCACTGGATAACCAAAGCAAGGAACGGAAATAGAAC	1059
Qy	1014	CGTGGAGAAGGCACAG 1029	
Db	1060	CTCCAAGAGAGTCCAG 1075	

RESULT 5

US-09-989-981A-5

; Sequence 5, Application US/09989981A

Publication No. US20030049730A1

GENERAL INFORMATION:

: APPLICANT: Hobbs, Helen H.

APPLICANT: Shan-Bei

APPLICANT: Barnes, Robert

APPLICANT: Tian Hui

; APPLICANT: Tularik Inc.
; APPLICANT: Board of Regents, The University of Texas System
; TITLE OF INVENTION: ABCG5 and ABCG8: Compositions and Methods of Use
; FILE REFERENCE: 018781-007320US
; CURRENT APPLICATION NUMBER: US/09/989,981A
; CURRENT FILING DATE: 2002-07-23
; PRIOR APPLICATION NUMBER: US 60/252,235
; PRIOR FILING DATE: 2000-11-20
; PRIOR APPLICATION NUMBER: US 60/253,645
; PRIOR FILING DATE: 2000-11-28
; NUMBER OF SEQ ID NOS: 13
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 5
; LENGTH: 2340
; TYPE: DNA
; ORGANISM: Homo sapiens
; FEATURE:
; NAME/KEY: CDS
; LOCATION: (107)..(2062)
; OTHER INFORMATION: human ABCG5 (hABCG5)
US-09-989-981A-5

```

Query Match          9.9%; Score 199.2; DB 10; Length 2340;
Best Local Similarity 54.0%; Pred. No. 6.1e-51;
Matches 430; Conservative 0; Mismatches 363; Indels 3; Gaps 1;

Qy      234 TAGCAGCCAAGACTCCTGTGAGCTGGGCATCCGAAATCTAAGCTTCAAAGTGAGGAGTGG 293
        ||||| ||| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      283 TTGCCGGCAGCAGTGGACCAGGCAGATCCTCAAAGATGTCTCCTTGTACGTGGAGAGCGG 342

Qy      294 ACAGATGCTGCCATCATAGGGAGCTCAGGCTGCCGGAGAGCCTCACTACTCGACGTGAT 353
        ||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      343 GCAGATCATGTGCATCCTAGGAAGCTCAGGCTCCGGAAAACCACGCTGCTGGACGCCAT 402

Qy      354 CACAGGCAGAGGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACC 413
        ||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      403 GTCCGGGAGGCTGGGGCGCGCGGGGACCTCCTGGGGAGGTGTATGTGAACGGCCGGC 462

Qy      414 CAGTACGCCCTCAGCTGGTGAGGAAGTGCCTGCGCATGTGCCAGCATGACCAACTGCT 473
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      463 GCTGCGCCGGGAGCAGTCCAGGACTGCTCCTACGTCCTGCAGAGCGACACCCTGCT 522

Qy      474 GCCCAACCTGACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATGCCCTGCCAGGAC 533
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      523 GAGCAGCCTCACCGTGCAGACGCTGCACTACACCGCGCTGCTGCCATCCGCCGGG 582

Qy      534 CTTCTCCCAGGCCAGCGTGACAAACGGGTGGAAGACGTAATGCCAGCTGCCCTGCG 593
        | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      583 CAATCCCCGCTCCTTCC---AGAAGAAGGTGGAGGCCGTATGGCAGAGCTGAGTCTGAG 639

Qy      594 GCAGTGCGCCAACACCAAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGCG 653
        || | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      640 CCATGTGGCAGACCGACTGATGGCAACTACAGCTGGGGGGCATTCCACGGGTGAGCG 699

Qy      654 CCGACGAGTGAGCATTGGGTGCAGCTCCTGTGAAACCCAGGAATCCTCATTCTGGATGA 713
        || | | | | | | | | | | | | | | | | | | | | | | | | |
Db      700 GCGCCGGGTCTCCATCGCAGCCCAGCTGCTCCAGGATCTAAGGTATGCTGTTGATGA 759

```

RESULT 6

US-09-989-981A-1

; Sequence 1, Application US/09989981A

Publication No. US20

GENERAL INFORMATION:

APPLICANT: Hobbs, Hel

APPICANT: Shan, Bei

; APPLICANT: Barnes, R

; APPLICANT: Tian, Hui

; APPLICANT: Tularik Inc.

; APPLICANT: Board of Regents, The University of Texas System

; TITLE OF INVENTION: ABCG5 and A

; FILE REFERENCE: 018781-007320US

; CURRENT APPLICATION NUMBER: US/0

; CURRENT FILING DATE: 2002-07-23

; PRIOR APPLICATION NUMBER: US 60/

; PRIOR FILING DATE: 2000-11-20

; PRIOR APPLICATION NUMBER:

; PRIOR FILING DATE: 2000-11-

; NUMBER OF

; SOFTWARE: Pat

; SEQ ID NO 1

; LENGTH: 1959
TYPE: RNA

; TYPE: DN

; ORGANISM:
FEATURE

FEATURE:
NAME (NEW—SRS)

; NAME/KEY: CDS
; LOCATION: (1) (1959)

; OTHER INFORMATION: mouse ABCG5 (*mABCG5*)

; OTHER INFORMATION

Query Match 9.2%; Score 186.6; DB 10; Length 1959;
 Best Local Similarity 53.1%; Pred. No. 4.8e-47;
 Matches 421; Conservative 0; Mismatches 369; Indels 3; Gaps 1;

```

  261 CATCCGAAATCTAACGCTCAAAGTGAGGAGTGGACAGATGCTGCCATCATAGGGAGCTC 320
        ||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
  207 CCTCAAAGATGTCTCCTTGTACATCGAGAGTGGCCAGATTATGTGCATCTTAGGCAGCTC 266
  321 AGGCTGCGGGAGAGCCTCACTACTCGACGTGATCACAGGCAGAGGCCACGGTGGCAAGAT 380
        ||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
  267 AGGCTCAGGGAAGACCACGCTGCTGGACGCCATCTCGGGAGGCTGCGCGCACTGGGAC 326
  381 GAAATCAGGACAAATTGGATAAAATGGCAACCCAGTACGCCCTCAGCTGGTGGAGAAGTG 440
        ||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
  327 CCTGGAAGGGGAGGTGTTGTGAATGGCTGCGAGCTGCGCAGGGACCAGTTCAGAGACTG 386
  441 CGTTGCGCATGTGCGCAGCATGACCAACTGCTGCCAACCTGACCGTCAGAGAGACCTC 500
        || | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
  387 CTTCTCCTACGTCCCTGCAGAGCGACGTTCTGAGCAGCCTACTGTGCGCGAGACGTT 446
  501 GGCTTCATTGCCAGATGCGCCTGCCAGGACCTCTCCCAGGCCAGCGTGACAAACCG 560
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
  447 GCGATACACAGC---GATGCTGCCCTCTGCCGAGCTCCGGACTTCTACAACAAGAA 503
  561 GGTGGAAGACGTAATGCCAGCTGCGCTGCCAGGACCTCTCCCAGGCCAGCGTGACAAACG 620
        ||| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
  504 GGTAGAGGCAGTCATGACAGAGCTGAGCCTGAGCCACGTGGCGACCAATGATTGGCAG 563
  621 CACGTATGTACGTGGGTGTCCGGGGTGAGCGCCAGCAGAGTGAGCATTGGGTGCAGCT 680
        | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
  564 CTATAATTGGGGAAATTCCAGTGGCGAGCGGCCAGTTCCATCGCAGCCAACT 623
  681 CCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACTTCTGGCCTCGACAGCTTCAC 740
        ||| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
  624 CCTTCAGGACCCCAAGGTATGATGCTAGATGAGCCAACCACAGGACTGGACTGCATGAC 683
  741 AGCCCCACAATCTGGTGACAACCTTGTCCGCCCTGGCCAAGGGCAACAGGCTGGTGCTCAT 800
        ||| | | | | | | | | | | | | | | | | | | | | | | | | | | |
  684 TGCAAATCAAATTGTCCTCTCTGGCTGAGCTGGCTCGCAGGGACCGAATTGTGATTGT 743
  801 CTCCCTCACCAGCCTCGCTCTGACATCTCAGGCTATTGACCTGGCCTCTGATGAC 860
        | | | | | | | | | | | | | | | | | | | | | | | | | | | |
  744 CACCATCCACCAGCCTCGCTCTGAGCTTCCAAACACTTCGACAAAATTGCCATCCTGAC 803
  861 ATCTGGCACCCCTATCTACCTGGGGCGGGCAGCAAATGGTGAGTACTTCACATCCAT 920
        | | | | | | | | | | | | | | | | | | | | | | | | | | |
  804 TTACGGAGAGTTGGTGTCTGGCACCCAGAGGAGATGCTGGCTTCTCAATAACTG 863
  921 TGGCCACCCCTGTCTCGCTATAGCAACCCCTGCGACTTCTACGTGGACTTGACAGCAT 980
        ||| | | | | | | | | | | | | | | | | | | | | | | | | |
  864 TGGTTACCCCTGTCTGAACATCCAATCCCTTGATTTCACATGGACTTGACATCAGT 923
  981 CGACAGACGCAGCAAAGAACGGGAGGTGGCCACCGTGGAGAAGGCACAGTCTCTGCAGC 1040
        ||| | | | | | | | | | | | | | | | | | | | | | | | |
  924 GGACACCCAAAGCAGAGAGCGGGAAATAGAAACGTACAAGCGAGTACAGATGCTGGAATG 983
  1041 CCTGTTCTAGAA 1053

```


Db	493 GCGATACACAGC---GATGCTGGCCCTCTGCCGAGCTCCGCGACTTCTACAACAAGAA	549
Qy	561 GGTGGAAGACGTAATGCCGAGCTGCCGAGCTGCCAAGCAGAGTGGCAA	620
Db	550 GGTAGAGGCAGTCATGACAGAGCTGAGCCTGAGCCACGTGGCGGACCAAATGATTGGCAG	609
Qy	621 CACGTATGTACGTGGGGTGTCCGGGGTGAGCGCCGACGAGTGAGCATTGGGGTGCAGCT	680
Db	610 CTATAATTGGGGAAATTCCAGTGGCGAGCGGCCGAGTTCCATCGCAGCCCCA	669
Qy	681 CCTGTGAAACCCAGGAATCCTCATCTGGATGAACCCACTTCTGCCCTGACAGCTTCAC	740
Db	670 CCTTCAGGACCCCAAGGTATGAGCTAGATGAGCCAACCACAGGACTGGACTGCATGAC	729
Qy	741 AGCCCACAATCTGGTGACAACCTGTCCCGCTGCCAACGGCAACAGGCTGGTGCAT	800
Db	730 TGCAAATCAAATTGTCCTCTGGCTGAGCTGGCTCGCAGGGACCGAATTGTGATTGT	789
Qy	801 CTCCCTCCACCAGCCTCGCTCTGACATCTCAGGCTATTGACCTGGCCTCTGATGAC	860
Db	790 CACCATCCACCAGCCTCGCTCTGAGCTTCAACACTTCGACAAAATTGCCATCCTGAC	849
Qy	861 ATCTGGCACCCCTATCTACCTGGGGCGGCCAGCAAATGGTCAGTACTCACATCCAT	920
Db	850 TTACGGAGAGTTGGTGTCTGTGGCACCCAGAGGAGATGCTGGCTTCAATAACTG	909
Qy	921 TGGCCACCCCTGTCCTCGCTATAGCAACCCCTGCCGACTTCTACGTGGACTTGACCAGCAT	980
Db	910 TGGTTACCCCTGTCCTGAACATTCAATCCCTTGATTTACATGGACTTGACATCAGT	969
Qy	981 CGACAGACGCAGCAAAGAACGGGAGGTGGCCACCGTGGAGAAGGCACAGTCTTCAGC	1040
Db	970 GGACACCCAAAGCAGAGAGCGGGAAATAGAAACGTACAAGCGAGTACAGATGCTGGAATG	1029
Qy	1041 CCTGTTCTAGAA	1053
Db	1030 TGCCTTCAAGGAA	1042

RESULT 8

US-10-425-114-32175
; Sequence 32175, Application US/10425114
; Publication No. US20040034888A1
; GENERAL INFORMATION:
; APPLICANT: Liu, Jingdong
; APPLICANT: Zhou, Yihua
; APPLICANT: Kovalic, David K.
; APPLICANT: Screen, Steven E
; APPLICANT: Tabaska, Jack E
; APPLICANT: Cao, Yongwei
; TITLE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With
; TITLE OF INVENTION: Plants and Uses Thereof for Plant Improvement
; FILE REFERENCE: 38-21(53313)B
; CURRENT APPLICATION NUMBER: US/10/425,114
; CURRENT FILING DATE: 2003-04-28

; NUMBER OF SEQ ID NOS: 73128
; SEQ ID NO 32175
; LENGTH: 2585
; TYPE: DNA
; ORGANISM: Zea mays
; FEATURE:
; OTHER INFORMATION: Clone ID: UC-ZMFLB73274A02_FLI
US-10-425-114-32175

Query Match 8.4%; Score 169.2; DB 12; Length 2585;
Best Local Similarity 53.4%; Pred. No. 1.5e-41;
Matches 382; Conservative 0; Mismatches 328; Indels 6; Gaps 1;

Qy 269 ATCTAACGTTCAAAGTGAGGAGTGGACAGATGCTGGCCATCATAGGGAGCTCAGGCTGCG 328
|
Db 582 AGCTCACCGGGTACGCCGGAGCCCCGGTCGCTGACCGCGCTCATGGGGCCCTGGGGTCCG 641

Qy 329 GGAGAGCCTCACTACTCGACGTGATCACAGGCAGAGGCCACGGTGGCAAGATGAAATCAG 388
|
Db 642 GCAAGTCCACCCTGCTCGACGCCCTGCCGGCCGCTGCCGCCAACGCCCTCCTCTCCG 701

Qy 389 GACAAATTGGATAAATGGCAACCCAGTACGCCCTCAGCTGGTGAGGAAGTGCCTTGC 448
|
Db 702 GCAACGTGCTCCTAACGG-----CCGCAAGGCCAGCTCTCCTCGGCGCCGCGCGT 755

Qy 449 ATGTGCGGCAGCATGACCAACTGCTGCCAACCTGACCGTCAGAGAGACCCCTGGCTTCA 508
|
Db 756 ACGTGACGCAGGACGACAACCTGATGGGACGCTGACGGTGCAGACGATCGGCTACT 815

Qy 509 TTGCCAGATGCCCTGCCAGGACCTTCTCCAGGCCAGCGTGACAAACGGGTGGAAG 568
|
Db 816 CGGCGCTGCTGCCGGACAAGATGCCGGAGGACAAGCGCGCTGGTGGAGG 875

Qy 569 ACGTAATGCCGAGCTGCCCTGCCAGTGCAGACCCACTTCTGCCAGCGTGACAGCTATG 628
|
Db 876 GCACCATCGTCGAGATGGGCTGCAGGACTGCGCCGACACCGTCATGGCAACTGGCACC 935

Qy 629 TACGTGGGTGTCCGGGGTGAGCGCCGACGAGTGAGCATGGGTGCAGCTCTGTGGA 688
|
Db 936 TCCGCGGGGTCAAGCGCCGGAGAAGCGCCGTCAGCATCGCTCGAGCTACTCATGC 995

Qy 689 ACCCAGGAATCCTCATTCTGGATGAACCCACTTCTGCCCTGACAGCTCACAGCCCACA 748
|
Db 996 GCCCGCGCCTCCTCTTGCTGACGAGGCCACCAGCGCCCTGACAGCTCGTCTGCC 1055

Qy 749 ATCTGGTGACAACCTTGTCCCGCCCTGGCCAAGGGCAACAGGCTGGTGCATCTCCCTCC 808
|
Db 1056 TCGTGACGCAGACGCTGCCGGGCCTGGCGAGGGACGGCAGGACGGTATTGCTTCCATCC 1115

Qy 809 ACCAGCCTCGCTCTGACATCTCAGGCTATTGACCTGGCCTCTGATGACATCTGGCA 868
|
Db 1116 ACCAGCCCAGCAGCGAGGTGTTCGAGCTCTCGACATGCTCTGCTATCCGGGGCA 1175

Qy 869 CCCCTATCTACCTGGGGCGGCCAGCAAATGGTGCAGTACTTCACATCCATTGCCACC 928
|
Db 1176 AGACCGTCTACTTCGGACAAGCATCGCAAGCATGCGAGTTGCTCAAGCCGGTTCC 1235

Qy 929 CTTGTCTCGCTATAGCAACCCCTGGGACTTCTACGTGGACTTGACCAGCATCGAC 984
 ||||||| ||||| | ||||| | ||||| | ||||| | ||||| | |||||
Db 1236 CTTGCCCGGCTCTGCAGAATCCGTCCGACCATTCTGAGGTGCGTCAAACCTGGAC 1291

RESULT 9

US-09-866-866A-13

; Sequence 13, Application US/09866866A
; Patent No. US20020102244A1
; GENERAL INFORMATION:
; APPLICANT: Sorrentino, Brian
; APPLICANT: Schuetz, John
; TITLE OF INVENTION: A Method of Identifying and/or Isolating Stem Cells
; FILE REFERENCE: 1340-1-021CIP2
; CURRENT APPLICATION NUMBER: US/09/866,866A
; CURRENT FILING DATE: 2001-08-30
; PRIOR APPLICATION NUMBER: 09/584,586
; PRIOR FILING DATE: 2000-05-31
; PRIOR APPLICATION NUMBER: PCT/US99/11825
; PRIOR FILING DATE: 1999-05-27
; PRIOR APPLICATION NUMBER: 60/086,988
; PRIOR FILING DATE: 1998-05-28
; NUMBER OF SEQ ID NOS: 27
; SOFTWARE: PatentIn version 3.0
; SEQ ID NO 13
; LENGTH: 2025
; TYPE: DNA
; ORGANISM: Mus musculus

US-09-866-866A-13

Query Match 6.8%; Score 137; DB 9; Length 2025;
Best Local Similarity 52.3%; Pred. No. 1.5e-31;
Matches 352; Conservative 0; Mismatches 315; Indels 6; Gaps 2;

Qy 304 GCCATCATAGGGAGCTCAGGCTGGGGAGAGCCTCACTACTCGACGTGATCACAGGCAGA 363
 ||||| | ||| | ||||| | ||| | ||||| | ||| | ||||| | ||| |
Db 245 GCTATTCTGGGACCCACAGGCGGAGGAAGTCCTCGTTGCTAGATGTCTTAGCAG---CA 301

Qy 364 GGCCACGGTGGCAAGATGAAATCAGGACAATTGGATAATGGCAACCCAGTACGCCT 423
 | | | | | ||| | ||| | ||| | ||| | ||| | | ||| | | ||| |
Db 302 AGGAAAGATCCAAGGGATTATCTGGAGATGTTGATAATGGAGCACC---TCAACCT 358

Qy 424 CAGCTGGTGGGAAGTGCCTTGCATGTGCGCAGCATGACCAACTGCTGCCAACCTG 483
 | | | | | ||| | ||| | ||| | ||| | ||| | | ||| | | ||| |
Db 359 GCCCATTCAAATGCTGTTAGGTTATGTGGTTCAAGATGACGTTGTATGGGCACCTG 418

Qy 484 ACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATGCCCTGCCAGGACCTCTCCCAG 543
 |
Db 419 ACAGTGAGAGAAAACCTACAGTTCTCAGCAGCTCTCGACTTCAAACAACATGAAGAAT 478

Qy 544 GCCCAGCGTGACAAACGGGTGGAAGACGTAATGCCAGCTGCCAGTGCAGGCC 603
 |
Db 479 CATGAAAAAAATGAACGGATTAACACAATCATTAAAGAGTTAGGTCTGGAAAAAGTAGCA 538

Qy 604 AACACCAGAGTGGGCAACACGTATGTACGTGGGTGTCGGGGTGAGCGCCGACGAGTG 663
 |
Db 539 GATTCTAAGGTGGAACTCAGTTATCCGTGGCATCTCTGGAGGAGAAAGAAAAGGACA 598

RESULT 10

US-10-405-806-1

; Sequence 1, Application US/10405806

; Publication No. US20030232362A1

GENERAL INFORMATION:

APPLICANT: KOMATANI, HIDEYA

APPLICANT: HARA, YOSHIKAZU

APPLICANT: KOTANI, HIDEHITO

APPLICANT: NAKAGAWA, RINA

TITLE OF INVENTION: DRUG RESISTANT GENE AND USE THEREOF

; FILE REFERENCE: 234985US0CONT

; CURRENT APPLICATION NUMBER: US/10/405,806

; CURRENT FILING DATE: 2003-04-03

; PRIOR APPLICATION NUMBER: PCT/JP01/0811

; PRIOR FILING DATE: 2001-09-18

PRIOR APPLICATION NUMBER:

PRIOR FILING DATE: 2000-10-03

; NUMBER OF

SOFTWARE: Pat

SEQ ID NO 1

LENGTH: 2027

; TYPE: DN

ORGANISM: H

FEATURE:

: NAME/KEY

; LOCATION: (45

US-10-405-806-1

Query Match 6.6%; Score 132.4; DB 15; Length 2027;
 Best Local Similarity 51.9%; Pred. No. 4e-30;
 Matches 348; Conservative 0; Mismatches 316; Indels 6; Gaps 2;

Qy	304	GCCATCATAGGGAGCTCAGGCTGCAGGAGAGCCTCACTACTCGACGTGATCACAGGCAGA	363
Db	273	GCCATCCTGGGACCCACAGGTGGAGGCAAATCTCGTTATTAGATG---TCTTAGCTGCA	329
Qy	364	GGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAAAATGGCAACCCAGTACGCC	423
Db	330	AGGAAAGATCCAAGTGGATTATCTGGAGATGTTCTGATAAAATGGAGCACCGCAGCTGCC	389
Qy	424	CAGCTGGTGGAGGAAGTGCCTTGCGCATGTGCCAGCATGCCAACCTG	483
Db	390	AATTTCAAATGTAATTCAAGGT---TACGTGGTACAAGATGATGTTGTGATGGCACTCTG	446
Qy	484	ACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATGCCCTGCCAGCACCTCTCCCAG	543
Db	447	ACGGTGAGAGAAAATTACAGTTCTCAGCAGCTCTCGGCTTGCAACAACTATGACGAAT	506
Qy	544	GCCCAGCGTGACAAACGGGTGGAAGACGTAATGCCAGCTGCCAGTGCAGCAGTGCAGC	603
Db	507	CATGAAAAAAACGAACGGATTAACAGGGTCATTCAAGAGTTAGGCTGGATAAAAGTGGCA	566
Qy	604	AACACCAGAGTGGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGCGCCGACGAGTG	663
Db	567	GACTCCAAGGTTGGAACTCAGTTATCCGTGGTGTGTCGGAGGAGAAAGAAAAGGACT	626
Qy	664	AGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACTTCT	723
Db	627	AGTATAGGAATGGAGCTTACTGATCCTCCATCTGTTCTGGATGAGCCTACAAC	686
Qy	724	GGCCTCGACAGCTTCACAGCCCACAATCTGGTACAAACCTTGTCCCGCTGGCAAGGGC	783
Db	687	GGCTTAGACTCAAGCACAGCAAATGCTGTCCTTGCTCCTGAAAGGATGCTAAGCAG	746
Qy	784	AACAGGCTGGTGCATCTCCCTCCACCAGCCTCGCTTGACATCTTCAGGCTATTGAC	843
Db	747	GGACGAACAATCATCTCTCATTCACTCAGCCTCGATATTCCATCTCAAGTTGTTGAT	806
Qy	844	CTGGTCCTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGCGCAGCAAATGGTG	903
Db	807	AGCCTCACCTTATTGGCCTCAGGAAGACTTATGTTCCACGGGCCTGCTCAGGAGGCCTTG	866
Qy	904	CAGTACTTCACATCCATTGGCCACCCCTTGTCCTCGCTATAGCAACCCCTGCCAGCAAATGGTG	963
Db	867	GGATACTTGAATCAGCTGGTTATCACTGTGAGGCCTATAATAACCCCTGCAGACTTCTTC	926
Qy	964	GTGGACTTGA 973	
Db	927	TTGGACATCA 936	

RESULT 11

US-10-405-806-12

; Sequence 12, Application US/10405806

; Publication No. US20030232362A1

; GENERAL INFORMATION:

; APPLICANT: KOMATANI, HIDEYA

; APPLICANT: HARA, YOSHIKAZU

; APPLICANT: KOTANI, HIDEHITO
; APPLICANT: NAKAGAWA, RINAKO
; TITLE OF INVENTION: DRUG RESISTANT GENE AND USE THEREOF
; FILE REFERENCE: 234985US0CONT
; CURRENT APPLICATION NUMBER: US/10/405,806
; CURRENT FILING DATE: 2003-04-03
; PRIOR APPLICATION NUMBER: PCT/JP01/08112
; PRIOR FILING DATE: 2001-09-18
; PRIOR APPLICATION NUMBER: JP2000-303441
; PRIOR FILING DATE: 2000-10-03
; NUMBER OF SEQ ID NOS: 17
; SOFTWARE: PatentIn version 3.2
; SEQ ID NO 12
; LENGTH: 2053
; TYPE: DNA
; ORGANISM: Artificial Sequence
; FEATURE:
; OTHER INFORMATION: ABCG2 482Tmutant sequence
; FEATURE:
; NAME/KEY: CDS
; LOCATION: (32)..(1999)
US-10-405-806-12

RESULT 12

US-09-866-866A-26

; Sequence 26, Application US/09866866A

Patent No. US20020102244A1

; GENERAL INFORMATION:

APPPLICANT: Sorrentino, Brian

APPLICANT: Schuetz, John

; TITLE OF INVENTION: A Method o

; FILE REFERENCE: 1340-1-021CIP2

CURRENT APPLICATION NUMBER: US/0

CURRENT FILING DATE: 2001-08-30

PRIOR APPLICATION NUMBER: 09/

PRIOR FILING DATE: 2000-05-

PRIOR APPLICATION NUMBER: PCT/US99,

PRIOR FILING DATE: 1999-05-27

PRIOR APPLICATION NUMBER: 60/

PRIOR FILING DATE: 1998-05-2

; NUMBER OF SEQ ID NOS: 27

SOFTWARE: P

; SEO ID NO 26

; LENGTH: 23

TYPE: DNA

ORGANISM: Home

US-09-866-866A-26

Query Match 6.6%; Score 132.4; DB 9; Length 2247;
Best Local Similarity 51.9%; Pred. No. 4.2e-30;
Matches 348; Conservative 0; Mismatches 316; Indels 6; Gaps 2;

Qy	304	GCCATCATAGGGAGCTCAGGCTCGGGAGAGCCTCACTACTCGACGTGATCACAGGCAGA	363
Db	422	GCCATCCTGGGACCCACAGGTGGAGGC AAATCTTCGTTATTAGATG---TCTTAGCTGCA	478
Qy	364	GGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAAATGGCAACCCAGTACGCC	423
Db	479	AGGAAAGATCCAAGTGGATTATCTGGAGATGTTCTGATAAATGGAGCACCGGACCTGCC	538
Qy	424	CAGCTGGTGAGGAAGTGC GTTGCGCATGTGCGGCAGCATGACCAACTGCTGCCAACCTG	483

Db	539 AATTCAAATGTAATTCAAGGT---TACGTGGTACAAGATGATGTTGTGATGGGCACTCTG	595
Qy	484 ACCGTCAGAGAGACCCTGGCTTCATTGCCAGATGCCCTGCCAGGACCTCTCCAG	543
Db	596 ACGGTGAGAGAGAAAACCTACAGTTCTCAGCAGCTCTCGGCTGCAACAACTATGACGAAT	655
Qy	544 GCCCAGCGTGACAAACGGGTGGAAGACGTAATGCCAGCTGCCAGTGCAGGCC 603	
Db	656 CATGAAAAAAACGAACGGATTAACAGGGTCATTCAAGAGTTAGGTCTGGATAAAAGTGGCA	715
Qy	604 AACACCAGAGTGGGCAACACGTATGTACGTGGGTGTCGGGGTGAGCGCCAGCAGTG 663	
Db	716 GACTCCAAGGTTGGAACTCAGTTATCCGTGGTGTCTGGAGGAGAAAGAAAAAGGACT	775
Qy	664 AGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACTTCT	723
Db	776 AGTATAGGAATGGAGCTTATCACTGATCCTCCATCTGTTCTGGATGAGCCTACAAC	835
Qy	724 GGCTCGACAGCTTCACAGCCCACAATCTGGTACAACCTTGTCCGCCTGCCAAGGGC	783
Db	836 GGCTTAGACTCAAGCACAGCAAATGCTGTCCTTGCTCCTGAAAGGATGCTAACAGCAG	895
Qy	784 AACAGGCTGGTGCTCATCTCCCTCACCAGCCTCGCTTGACATCTCAGGCTATTGAC	843
Db	896 GGACGAACAATCATCTCTCCATTGATCAGCCTCGATATTCCATCTCAAGTTGTTGAT	955
Qy	844 CTGGTCCTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGCGCAGCAAATGGTG	903
Db	956 AGCCTCACCTTATTGGCCTCAGGAAGACTTATGTTCCACGGGCCTGCTCAGGAGGCCTG	1015
Qy	904 CAGTACTTCACATCCATTGCCACCCCTGTCCTCGCTATAGCAACCTGCGGACTTCTAC	963
Db	1016 GGATACTTGAATCAGCTGGTTATCACTGTGAGGCCTATAATAACCCCTGCAGACTTCTTC	1075
Qy	964 GTGGACTTGA 973	
Db	1076 TTGGACATCA 1085	

RESULT 13

US-09-961-086-2

; Sequence 2, Application US/09961086

; Publication No. US20030036645A1

; GENERAL INFORMATION:

; APPLICANT: UNIVERSITY OF MARYLAND, BALTIMORE

; APPLICANT: ROSS, Douglas D.

; APPLICANT: DOYLE, L. Austin

; APPLICANT: ABRUZZO, Lynne

; TITLE OF INVENTION: BREAST CANCER RESISTANCE PROTEIN (BCRP) AND THE DNA

; TITLE OF INVENTION: WHICH ENCODES IT

; FILE REFERENCE: EP19376-019

; CURRENT APPLICATION NUMBER: US/09/961,086

; CURRENT FILING DATE: 2001-09-21

; PRIOR APPLICATION NUMBER: US 60/073,763

; PRIOR FILING DATE: 1998-02-05

; PRIOR APPLICATION NUMBER: PCT/US99/02577

; PRIOR FILING DATE: 1999-02-05
; NUMBER OF SEQ ID NOS: 7
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 2
; LENGTH: 2418
; TYPE: DNA
; ORGANISM: Homo sapiens
US-09-961-086-2

Query Match 6.6%; Score 132.4; DB 10; Length 2418;
Best Local Similarity 51.9%; Pred. No. 4.4e-30;
Matches 348; Conservative 0; Mismatches 316; Indels 6; Gaps 2;

Qy	304	GCCATCATAGGGAGCTCAGGCTGCAGGAGAGCCTCACTACTCGACGTGATCACAGGCAGA	363
Db	467	GCCATCCTGGGACCCACAGGTGGAGGCAAATCTCGTTATTAGATG---TCTTAGCTGCA	523
Qy	364	GGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGTACGCC	423
Db	524	AGGAAAGATCCAAGTGGATTATCTGGAGATGTTCTGATAATGGAGCACCGCGACCTGCC	583
Qy	424	CAGCTGGTGAGGAAGTGCCTTGCGCATGTGCGGAGCATGACCAACTGCTGCCAACCTG	483
Db	584	AATTCAAATGTAATTCAAGGT---TACGTGGTACAAGATGATGTTGTGATGGGCACTCTG	640
Qy	484	ACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATGCCCTGCCAGGACCTCTCCCAG	543
Db	641	ACGGTGAGAGAAAACCTACAGTTCTCAGCAGCTTCCGGTTGCAACAACTATGACGAAT	700
Qy	544	GCCCAGCGTGACAAACGGGTGGAAGACGTAATGCCAGCTGCCAGTGCAGGCC 603	
Db	701	CATGAAAAAAACGAAACGGATTAACAGGGTCAAGAGTTAGGTCTGGATAAAAGTGGCA	760
Qy	604	AACACCAGAGTGGCAACACGTATGTACGTGGGTGTCGGGGTGAGCGCCACGAGTG	663
Db	761	GACTCCAAGGTTGGAACTCAGTTATCCGTGGTGTCTGGAGGAGAAAGAAAAGGACT	820
Qy	664	AGCATTGGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACTTCT	723
Db	821	AGTATAGGAATGGAGCTTATCACTGATCCTCCATCTGTTCTGGATGAGCCTACAAC	880
Qy	724	GGCCTCGACAGCTTCACAGCCCACAATCTGGTGACAACCTTGTCCCGCCTGCCAAGGGC	783
Db	881	GGCTTAGACTCAAGCACAGCAAATGCTGTCCTTTGCTCCTGAAAAGGATGCTAACAG	940
Qy	784	AACAGGCTGGTGCTCATCTCCCTCCACCAGGCCCTGACATCTCAGGCTATTGAC	843
Db	941	GGACGAACAATCATCTCTCCATTCACTCAGCCTCGATATTCCATCTCAAGTTGTTGAT	1000
Qy	844	CTGGTCCTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGCGCAGCAAATGGTG	903
Db	1001	AGCCTCACCTTATTGGCCTCAGGAAGACTTATGTTCCACGGGCCTGCTCAGGAGGCCTG	1060
Qy	904	CAGTACTTCACATCCATTGGCCACCCCTGTCCCTCGCTATAGCAACCCCTGCGGACTTCTAC	963
Db	1061	GGATACTTGAATCAGCTGGTTACTCACTGAGGCCTATAATAACCCCTGCAGACTTCTTC	1120

QY 964 GTGGACTTGA 973
 ||||| | |
 DB 1121 TTGGACATCA 1130

RESULT 14

US-09-981-353-34

; Sequence 34, Application US/09981353

; Patent No. US20020160382A1

; GENERAL INFORMATION:

; APPLICANT: Lasek, Amy W.

; APPLICANT: Jones, David A.

; TITLE OF INVENTION: GENES

; FILE REFERENCE: PA-0038 US

; CURRENT APPLICATION NUMBER: US/0

; CURRENT FILING DATE: 200

; NUMBER OF SEQ ID NOS: 194
CONTINUE REFL D

; SOFTWARE: PERL Program
SEQ ID NO. 34

; SEQ ID NO
; LENGTH

; LENGTH: 23

TYPE: DNA
ORGANISM: Homo sapiens

ORGANISATION FEATURES

NAME/KEY: misc feature

OTHER INFORMATION: Incyte ID No. US20020160382A1 5517972CB1

US-09-981-353-34

Query Match 6.6%; Score 132.4; DB 9; Length 2574;
 Best Local Similarity 51.9%; Pred. No. 4.5e-30;
 Matches 348; Conservative 0; Mismatches 316; Indels 6; Gaps 2;

Qy 304 GCCATCATAGGGAGCTCAGGCTGGGGAGAGCCTCACTACTCGACGTGATCACAGGCAGA 363
||||||| ||| | ||| |

Qy 364 GGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAATGGCAACCCAGTACGCCT 423

Db 694 AGGAAAGATCCAAGTGGATTATCTGGAGATGTTCTGATAAATGGAGCACCGCGACCTGCC 753

Db 754 AATTCAAATGTAATTCAAGGT---TACGTGGTACAAGATGATGTTGTGATGGGCACTCTG 810

Db 811 ACGGTGAGAGAAAACCTACAGTTCTCAGCAGCTTCCGGCTTGCAACAACTATGACGAAT 870

544 CCCCCACCCCTGACAAAACCCCTGGAAAGACCTTAATCCCCCAGCTGGCCCTGGCCCACTGGCCC 603

Db 871 CATGAAAAAAACGAACGGATTACAGGGTCAATTCAAGAGTTAGGTCTGGATAAAAGTGGCA 930

Qy 604 AACACCAGAGTGGCAACACGTATGTACGTGGGTGTCCGGGGTGAGCGCCGACGAGTG 663

DB 931 GACTCCAAGGTTGGAACCTCAGTTATCCGTGGTGTCTGGAGGAGAAAGAAAAAGGACT 990
Qv 664 AGCATTCGGGTGCAAGCTCTGTGGAACCCAGGAATCTGATTCTGGATGAACCCACTTCT 723

Db 991 AGTATAGGAATGGAGCTTATCACTGATCCTCCATCTGTTCTGGATGAGCCTACAAC 1050
 Qy 724 GGCCTCGACAGCTTCACAGCCCACAATCTGGTGACAACCTGTCCCGCCTGGCCAAGGGC 783
 ||||| ||||| ||||||| | | | | | | | ||| | ||| | ||| | ||| | |||
 Db 1051 GGCTTAGACTCAAGCACAGCAAATGCTGTCCTTGCTCCTGAAAAGGATGTCTAACGAG 1110
 Qy 784 AACAGGCTGGTGCTCATCTCCCTCACCAGCCTCGCTCGACATCTTCAGGCTATTGAC 843
 | | | ||| ||| | ||| | ||| | ||| | ||| | ||| | ||| | ||| | |||
 Db 1111 GGACGAACAATCATCTCTCCATTCATCAGCCTCGATATTCCATCTCAAGTTGTTGAT 1170
 Qy 844 CTGGTCCTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGGCAGCAAATGGTG 903
 ||
 Db 1171 AGCCTCACCTTATTGGCCTCAGGAAGACTTATGTTCCACGGGCTGCTCAGGAGGCC 1230
 Qy 904 CAGTAATTACATCCATTGCCACCCCTGTCCCTCGCTATAGCAACCCCTGCGGACTTCTAC 963
 |||||
 Db 1231 GGATACTTGAATCAGCTGGTTATCACTGTGAGGCCTATAATAACCCCTGCAGACTTCTC 1290
 Qy 964 GTGGACTTGA 973
 ||||| | |
 Db 1291 TTGGACATCA 1300

RESULT 15

US-10-120-687-60

; Sequence 60, Application US/10120687
 ; Publication No. US20030082155A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Massachusetts General Hospital
 ; TITLE OF INVENTION: Stem Cells of the Islets of Langerhans and Their Use in
 Treating Diabetes
 ; TITLE OF INVENTION: Mellitus
 ; FILE REFERENCE: 3284/1235B
 ; CURRENT APPLICATION NUMBER: US/10/120,687
 ; CURRENT FILING DATE: 2002-04-11
 ; PRIOR APPLICATION NUMBER: US60/169082
 ; PRIOR FILING DATE: 1999-12-06
 ; PRIOR APPLICATION NUMBER: US 09/963,875
 ; PRIOR FILING DATE: 2001-09-25
 ; PRIOR APPLICATION NUMBER: US 60/215109
 ; PRIOR FILING DATE: 2000-06-28
 ; PRIOR APPLICATION NUMBER: US 60/238880
 ; PRIOR FILING DATE: 2000-10-06
 ; PRIOR APPLICATION NUMBER: US 09/731261
 ; PRIOR FILING DATE: 2000-12-06
 ; NUMBER OF SEQ ID NOS: 61
 ; SOFTWARE: PatentIn version 3.1
 ; SEQ ID NO 60
 ; LENGTH: 2718
 ; TYPE: DNA
 ; ORGANISM: Homo sapiens
 US-10-120-687-60

Query Match 6.6%; Score 132.4; DB 14; Length 2718;
 Best Local Similarity 51.9%; Pred. No. 4.7e-30;
 Matches 348; Conservative 0; Mismatches 316; Indels 6; Gaps 2;

Qy	304	GCCATCATAGGGAGCTCAGGCTCGGGAGAGCCTCACTACTCGACGTGATCACAGGCAGA	363
Db	433	GCCATCCTGGGACCCACAGGTGGAGGCAAATCTCGTTATTAGATG---TCTTAGCTGCA	489
Qy	364	GGCCACGGTGGCAAGATGAAATCAGGACAAATTGGATAAATGGCAACCCAGTACGCCT	423
Db	490	AGGAAAGATCCAAGTGGATTATCTGGAGATGTTCTGATAAATGGAGCACCGGACCTGCC	549
Qy	424	CAGCTGGTGAGGAAGTGCCTTGCGCATGTGCGGCAGCATGACCAACTGCTGCCAACCTG	483
Db	550	AATTCAAATGTAATTCAAGT---TACGTGGTACAAGATGATGTTGTGATGGCACTCTG	606
Qy	484	ACCGTCAGAGAGACCCCTGGCTTCATTGCCAGATGCCCTGCCAGGACCTCTCCCAG	543
Db	607	ACGGTGAGAGAAAACCTACAGTTCTCAGCAGCTCTCGGTTGCAACAACTATGACGAAT	666
Qy	544	GCCCAGCGTGACAAACGGGTGGAAGACGTAATGCCAGCTGCCAGTGCAGGCC	603
Db	667	CATGAAAAAAACGAACGGATTAACAGGGTCAAGAGATTAGGTCTGGATAAAGTGGCA	726
Qy	604	AACACCAGAGTGGCAACACGTATGTACGTGGGTGTCGGGGGTGAGCGCCGACGAGTG	663
Db	727	GACTCCAAGGTTGGAACTCAGTTATCCGTGGTGTCTGGAGGAGAAAAGGACT	786
Qy	664	AGCATTGGGTGCAGCTCCTGTGGAACCCAGGAATCCTCATTCTGGATGAACCCACTTCT	723
Db	787	AGTATAGGAATGGAGCTTACACTGATCCTCCATCTGTTCTGGATGAGCCTACAAC	846
Qy	724	GGCCTCGACAGCTTCACAGCCCACAATCTGGTGACAACCTTGTCCCGCTGCCAAGGGC	783
Db	847	GGCTTAGACTCAAGCACAGCAAATGCTGTCTTGTCTGCTCTGAAAGGATGTCAAGCAG	906
Qy	784	AACAGGCTGGTGCTCATCTCCCTCCACCAGCCTCGCTCTGACATCTCAGGCTATTGAC	843
Db	907	GGACGAACAATCATCTCTCCATTCACTCAGCCTCGATATTCCATCTCAAGTTGTTGAT	966
Qy	844	CTGGTCCTCTGATGACATCTGGCACCCCTATCTACCTGGGGCGCGCAGCAAATGGTG	903
Db	967	AGCCTCACCTTATTGGCCTCAGGAAGACTTATGTTCCACGGGCTGCTCAGGAGGCCTTG	1026
Qy	904	CAGTACTTCACATCCATTGGCCACCCCTGTCCCTCGCTATAGCAACCTGCGGACTTCTAC	963
Db	1027	GGATACTTGAAATCAGCTGGTTATCACTGTGAGGCCTATAATAACCCCTGCAGACTCTTC	1086
Qy	964	TGGAACATCA 973	
Db	1087	TTGGACATCA 1096	

Search completed: February 27, 2004, 07:11:35
 Job time : 467.956 secs