Univ Lyon, Université Claude Bernard Lyon 1, Univ Gustave Eiffel, IFSTTAR, LBMC UMR_T9406

EquiSim User's Manual

Toufik BENTALEB

February 24, 2021

Abstract

This manual is intended to help users to run and to know how and where they can perform any modification in the EquiSim software tool. This software tool was developed to allow human balance prevention and recovery to be performed using MATLAB and using linear model predictive control (LMPC) algorithm. A "Quick Start" approach to using this software will be presented, along with a detailed section containing full explanations and examples for using this tool.

Contents

6	The simulation case	8
5	Script files 5.1 script_constant	7
4	Getting started with software 4.1 The main function	4
3	How files are organised	3
2	System Requirements	3
1	Introduction	3

1 Introduction

The aim of this document is to help users to use the MATLAB software tool for human/robot balance prevention and recovery. It is intended to provide all necessary information in a simple way. A "Quick Start" approach to using this tool will be presented, along with a detailed. The EquiSim user's manual contains a thorough description of all files in the software tool.

2 System Requirements

In order to get the code to execute properly, the following programs are required:

- 1. The program has been developed for use in the MATLAB environment and it is running perfectly on MATLAB 2017b (MATLAB 9.03.0).
- 2. To solve the quadratic programming problem using quadprog function the OPTIMIZATION TOOLBOX is required.

3 How files are organised

The folder EquiSim_folder contains all files necessary of the software tool, were divided into many categories:

- The main Matlab script file main EquiSim.m to run the program.
- The folder core_test contains classdef, function, and script folders because the software was built using Object-Oriented (OO) techniques.
- The folder core_MPC contains classdef, function, and script folders.
- The folder core_physical_model contains classdef, function, and script folders.
- The folder results contains results graphs, for the test performed, in format of *.JPG, *.EPS and *.PDF.

4 Getting started with software

This section will take you through one example in order to get you started with the MATLAB software tool for human/robot balance prevention and recovery.

4.1 The main function

The function main_EquiSim.m is the only function visible in the file EquiSim_folder to run the software, and you can call it from the command line. Shown below (Fig. 1) is a part of the main function and their parameters are described in the Table ?? and Table ??.

```
1 clear all, close all, clc,
2 path(pathdef); %clear the pathdef of include library
4 %addpath script/
5 addpath core_physical_model/function/ core_physical_model/classdef/ ...
      core_physical_model/script/
6 addpath core_test/function/ core_test/classdef/
7 addpath core_MPC/classdef/ core_MPC/classdef/linear_trajectories/ ...
      core_MPC/function/ core_MPC/script/
9 robot_type='human';
phase_duration_type='phase_duration_01';
11 walking_type=4;
12 cop_ref_type='ankle_center';
13 polyhedron_position='waist_center';
14 kinematic_limit='hexagonTranslation';
15 COM_form='comPolynomial';
17 run('core_test_all_axis/script/script_constant.m')
18 run('core_test_all_axis/script/script_init_storage_qp_result.m')
run('core_physical_model/script/script_init_storage_physical_model.m')
20 run('core_physical_model/script/script_init_storage_sensor_dynamics.m')
23 .
```

Figure 1: File saved as main_EquiSim.m

File/Variable/String	Description
robot_type	Name of a m-file script that contains the physical properties
	of a human or robot bodies:
	$robot_type="human" \rightarrow human model.$
	$robot_type="hrp4" \rightarrow hrp4 robot model.$
	$robot_type="hrp2" \rightarrow hrp2 robot model.$
	robot_type="human" was chosen as a case study.
	The "human" string is used to call the m-file script human.m.
	The default Center of Mass (CoM) height h_com.
	COM height limits to the floor with respect to h^{com} are
	h_{max}^{com} and h_{min}^{com} .
	Initial standing state default with release angle θ ,
	$\omega_0 = \sqrt{(g/(h^{com} \cdot \cos(\theta)))}$ and $\zeta_0 = 1/\omega_0^2$
	where g is the gravity.
	The parameters in the file are:
	$x_0^{com} = [h^{com} \cdot \sin(\theta); 0; ((h^{com} \cdot \sin(\theta))/\zeta_0)];$
	$y_0^{com} = [0; 0; 0];$
	$z_0^{com} = [h^{com} \cdot \cos(\theta); 0; 0];$
	The feet initial positions: $x_{r,0}^{step}$, $y_{r,0}^{step}$, $x_{l,0}^{step}$, and $y_{l,0}^{step}$.
phase_duration_type	Name of a script file that contains the duration
	and sampling time of the phases:
	$phase_duration_r \rightarrow Swing phase of the right foot.$
	$phase_duration_1 \rightarrow Swing phase of the left foot.$
	$phase_duration_b \rightarrow Double support phase.$
	$phase_duration_RT \rightarrow Reaction time.$
	phase_duration_APA→ Anticipatory postural
	adjustments (APA) phase.
	phase_duration_start→Starting phase.
	$phase_duration_stop ightarrow Stop phase.$
	$N_r \rightarrow \text{Right foot swing phase sampling time.}$
	$N1 \rightarrow$ Left foot swing phase sampling time.
	$\mathbb{N}_{-b} \rightarrow \text{Double support phase sampling time.}$
	$N_RT \rightarrow$ sampling time of the reaction time.
	N_APA→ Anticipatory postural
	adjustments (APA) phase sampling time.

Table 1: The constant parameters of the simulation case (part 1) $\,$

File/Variable/String	Description
walking_type	to select which type of walking area
	$walking_type \rightarrow walking flat.$
	$walking_type \rightarrow walking airbus stairs.$
	$walking_type \rightarrow walking flat quick.$
	walking_type→ walking walking flat fixed foot step positions.
	walking_type→ walking airbus stairs fixed foot step positions.
cop_ref_type	translate the step position to the
	cop_ref_type→ 'ankle_center' Center of pressure reference
	centered on the ankle.
	cop_ref_type→ 'foot_center' Center of pressure reference
	centered on the middle of the foot.
polyhedron_position	Polyhedron centered:
	$ exttt{polyhedron_position} ightarrow ext{'ankle_center'} ext{ on the ankle.}$
	polyhedron_position→ 'foot_center' hexagon kinematic
	limits.
	$ exttt{polyhedron_position} ightarrow$ 'hexagonTranslation' $ ext{hexagon}$
	kinematic limits with translation.
kinematic_limit	The kinematic limit:
	$\mathtt{kinematic_limit} o$ '' very simple polyhedron.
	$\mathtt{kinematic_limit} ightarrow$ 'hexagon' on the middle of the foot.
	$ ext{kinematic_limit} ightarrow ext{'waist_center'} ext{ on the middle of the}$
	waist.
COM_form	COM trajectory form:
	$\mathtt{COM_form} ightarrow$ 'comPolynomial' COM with piece-wise jerk.
	$\mathtt{COM_form} ightarrow$ 'comExponential' ZMP with piece-wise velocity.
	COM_form→ 'comPolyExpo' COM with polynomial of
	exponential.
firstSS	First-foot stepping:
	firstSS→ 'r' Right foot.
	firstSS→ 'l' Left foot.
	firstSS→ 'b' Both feet.
nb_foot_step	Number of steps.

Table 2: The constant parameters of the simulation case (part 2) $\,$

5 Script files

In the beginning, the main function main_EquiSim calls many other scripts to load human model parameters, creating the experiment test, preparation of storage data from tree type of physical models such as the model used in MPC controller, the physical model without noise, and the physical model with noise.

5.1 script_constant

First, this script m-file calls the object-oriented script classdef_create_robot to define the human model parameters

Parameters	Description
h_{-} com	CoM height
nb_foot_step	Number of steps.

Table 3: The constant parameters classdef_create_robot

- 5.2 script_init_storage_qp_result
- **5.3** script_init_storage_physical_model
- **5.4** script_init_storage_sensor_dynamics

6 The simulation case

Figure 2: bode diagram