Chapitre 3

Lois discrètes

1 Rappels sur les variables aléatoires

Définition : espérance, variance et écart-type

Soit X une variable aléatoire dont la loi de probabilité est résumée dans le tableau ci-dessous :

Valeur de $oldsymbol{X}$	x_1	x_2	 x_n
$P(X=x_i)$	p_1	p_2	 p_n

 \cdot L'**espérance de** X est le nombre noté E(X) défini par :

$$E(X) = p_1 x_1 + p_2 x_2 + \ldots + p_n x_n$$
noté aussi $E(X) = \sum_{i=1}^n p_i x_i.$

· La variance de X le nombre noté V(X) défini par :

$$V(X)=p_1\left(x_1-E(X)
ight)^2+p_2\left(x_2-E(X)
ight)^2+\ldots+p_n\left(x_n-E(X)
ight)^2$$
noté aussi $V(x)=\sum_{i=1}^n p_i\left(x_i-E(X)
ight)^2.$

· L'écart-type de X le nombre noté $\sigma(X)$ défini par : $\sigma(X) = \sqrt{V(X)}$.

Propriété

· On a aussi : $V(X)=E(X^2)-[E(X)]^2$. · Soit a et b deux réels. Alors : E(aX+b)=aE(X)+b et $V(aX)=a^2V(X)$.

Interprétation de l'espérance et de l'écart-type

Lors d'un jeu, l'espérance de gain représente le gain moyen que peut espérer le joueur lors d'un grand nombre de parties.

- Si ce gain moyen est **nul**, on dit que le jeu est **équitable**.
- Si ce gain moyen est **positif**, on dit que le jeu est **favorable** au joueur
- Si ce gain moyen est **négatif**, on dit que le jeu est **défavorable** au joueur.

L'écart-type du gain mesure la dispersion des gains autour du gain moyen.

Plus l'écart-type est grand, plus la variable aléatoire est dispersée et plus le degré de risque du jeu est grand.

1

2 Loi uniforme sur $\{1; 2; ...; n\}$

Définition

Soit n un entier strictement positif.

Une variable aléatoire X suit la **loi uniforme sur** $\{1;2;...;n\}$ si elle prend pour valeurs les entiers de 1 à n de manière équiprobable.

Autrement dit, une variable aléatoire X suit la **loi uniforme sur** $\{1;2;...;n\}$ si $P(X=k)=\frac{1}{n}$ pour tout entier k compris entre 1 et n.

Propriété

Soir X une variable aléatoire qui suit la loi uniforme sur $\{1\;;2\;;\dots\;;n\}$. L'espérance de X est : $E(X)=\frac{n+1}{2}$.

Preuve

Pour tout entier k compriseentre 1 et n, on a $P(X = k) = \frac{1}{n}$.

Donc
$$E(X) = \frac{1}{n} \times 1 + \frac{1}{n} \times 2 + \dots + \frac{1}{n} \times n$$

$$= \frac{1}{n} \times (1 + 2 + \dots n)$$

$$= \frac{1}{n} \times \frac{n(n+1)}{2}$$

$$E(X) = \frac{n+1}{2}$$

Exemples

- · On lance un dé équilibré à 6 faces et on définit la variable aléatoire égale au numéro de la face obtenue.
 - Cette variable aléatoire suit la loi uniforme sur $\{1; ...; 6\}$.
- · On lance une pièce non truquée. On définit la variable aléatoire égale à 1 si l'on obtient Pile et à 2 si l'on obtient Face.
 - Cette variable aléatoire suit la loi uniforme sur $\{1; 2\}$.

3 Épreuve et loi de Bernoulli

Définition

Une épreuve de Bernoulli est une expérience aléatoire à deux issues, souvent appelées succès (noté S) et échec (noté \overline{S}).

Exemple

Une urne contient des tickets gagnants ou perdants. L'expérience consistant à tirer un ticket au hasard dans l'urne et à regarder s'il est gagant ou non est une épreuve de Bernoulli (un ticket gagnant correspondant à un succès) car il y a deux issues possibles.

Jacques Bernoulli peint en 1687.

Définition

Soit $p \in]0; 1[$. La loi de la variable aléatoire X donnée dans le tableau ci-contre est appelée loi de Bernoulli de paramètre p. On la note $\mathcal{B}(p)$.

x_i	0	1	
$P(X=x_i)$	1-p	p	

Propriété

Soient $p \in]0$; 1[et X une variable aléatoire suivant une loi de Bernoulli de paramètre p. On a:

•
$$E(X) = p$$

•
$$V(X) = p(1-p)$$

$$V(X) = p(1-p)$$
 $\sigma(X) = \sqrt{p(1-p)}$

Preuve

•
$$E(X) = (1-p) \times 0 + p \times 1$$

= p

$$V(X) = (1-p) \times (0-p)^2 + p \times (1-p)^2$$

$$= p^2(1-p) + p(1-p)^2$$

$$= p(1-p)(p+1-p)$$

$$= p(1-p)$$

Exemple

On lance un dé équilibré.

X est la variable aléatoire qui prend la valeur 1 si on obtient six au lancé de dé et 0 sinon.

X suit une loi de Bernoulli de paramètre $\frac{1}{6}$.

L'espérance de X est donc $E(X) = \frac{1}{6}$.

L'écart-type de X est $\sigma(X) = \sqrt{\frac{1}{6} \times \frac{5}{6}} = \frac{\sqrt{5}}{6}.$

4 Schéma de Bernoulli

Définition

Soient n un entier strictement positif et $p \in [0]$; 1[.

L'expérience aléatoire consistant à répéter n fois de manière indépendante une épreuve de Bernoulli de paramètre p s'appelle un schéma de Bernoulli de paramètres n et p.

Exemple

On lance un dé deux fois de suite. Pour chaque lancer, le succès S est l'obtenion d'une 6. Cette expérience suit un schéma de Bernoulli de paramètres 2 et $\frac{1}{6}$.

On lance un dé trois fois de suite.

Cette expérience suit un schéma de Bernoulli de paramètres 3 et $\frac{1}{6}$.

5 Coefficients binomiaux

Définition

Soient n un entier naturel non nul et k un entier compris entre 0 et n.

Le **coefficient binomial** $\binom{n}{k}$ est le nombre de façons d'obtenir k succès dans un schéma de Bernoulli de taille n.

$$\binom{n}{k}$$
 se lit « k parmi n ».

Par convention, $\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$.

Exemple

Dans l'arbre précédent représentant un schéma de Bernoulli de paramètres $3, \frac{1}{6}$:

- Il y a un seul chemin qui comporte trois succès. Donc $\binom{3}{3} = 1$.
- Il y a trois chemins qui ne comportent qu'un succès. Donc $\binom{3}{1}=3$.

Propriétés

$$\begin{pmatrix} n \\ 0 \end{pmatrix} = 1$$
 et $\begin{pmatrix} n \\ n \end{pmatrix} = 1$.

• Symétrie des coefficients binimiaux : Pour tout entier k tel que $0 \le k \le n$, $\binom{n}{k} = \binom{n}{n-k}$.

Preuve

Dans un arbre représentant un schéma de Bernoulli de taille n:

- Un seul chemin ne réalise aucun succès donc $\binom{n}{0}=1$ et un seul chemin réalise n succès donc $\binom{n}{n}=1$.
- Il y a autant de chemins qui réalisent k succès que de chemins qui réalisent k échecs (c'està-dire n-k succès).

Propriété - Formule de Pascal (admise)

Pour tous entiers naturels n et k tels que $n \geqslant 1$ et $0 \geqslant k \geqslant n-1$,

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

Blaise PASCAL en 1691

Calcul des coefficients binomiaux à l'aide du triangle de Pascal :

On peut calculer les coefficients binomiaux de proche en proche à l'aide du tableau ci-contre :

- On convient que $\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$;
- On place des 1 sur la colonne « k=0 » du fait que $\binom{n}{0}=1$;
- . On place des 1 sur la diagonale du fait que $\binom{n}{n}=1$;
- On obtient nombre du tableau en additionant le nombre juste au-dessus et celui situé à gauche sur la ligne précédente, d'après la formule de Pascal.

n^{k}	0	1	2	3	4	5	
0	1			(n -	1)	$\int_{I}^{\infty} n^{-1}$	- 1\ <i>\</i>
1	1	1		$\binom{k}{k}$	1)+		k
2	1	2	1			= ($\binom{n}{k}$
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

6 Loi binomiale

Définition

Soient $n \in \mathbb{N}^*$ et $p \in]0$; 1[.

Soit X une variable aléatoire qui, à chaque issue d'un schéma de Bernoulli de paramètres n et p, associe le nombre de succès au cours de ces n épreuves.

La loi de probabilité de X est appelée loi binomiale de paramètres n et p. On la note $\mathcal{B}(n,p)$.

6. LOI BINOMIALE 7

Exemple

Un QCM comporte trois questions. Pour chacune d'elles, quatre réponses sont proposées dont une seule est correcte. Un élève choisit au hasard une réponse à chaque question indépendamment des autres.

La variable aléatoire X compte le nombre de bonnes réponses données par l'élève.

Épreuve de Bernoulli : Choisir au hasard une réponse à une question. Le succès est «La réponse est correcte» et $p=P(S)=\frac{1}{4}$.

Schéma de Bernoulli : On répète n=3 fois cette épreuve de Bernoulli dans des conditions d'indépendance.

Loi binomiale : La variable aléatoire X suit la loi binomiale de paramètres n=3 et $p=\frac{1}{4}$.

Loi de probabilité de X

À l'aide de l'arbre pondéré, on peut calculer la loi de probabilité de *X*.

k	0	1	2	3
P(X = k)	$\frac{27}{64}$	27 64	9 64	1 64

Représentation graphique

On représente la loi de probabilité de X à l'aide d'un diagramme en bâtons.

Propriété

Soit X une variable aléatoire suivant la loi $\mathcal{B}(n,p)$.

Pour tout entier k compris entre 0 et n, on a $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Preuve

Dans l'arbre modélisant une épreuve de Bernoulli à n épreuves, l'évènement $\{X=k\}$ est formé de $\binom{n}{k}$ issues, car il y a $\binom{n}{k}$ chemins réalisant k succès.

Ces issues ont toutes la même probabilité $p^k \ (1-p)^{n-k}$, d'aprè une propriété des arbres pondérés.

On obtient ainsi $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Exemple

Dans l'exemple précédent, X suit une loi binomiale de paramètres $3, \frac{1}{4}$.

On a:
$$P(X=2) = \binom{3}{2} \times \left(\frac{1}{4}\right)^2 \times \left(1 - \frac{1}{4}\right)^{3-2}$$

$$= 3 \times \frac{1}{16} \times \frac{3}{4}$$
$$= \frac{9}{64}$$

Propriété (admise)

Si X est une variable aléatoire qui suit une loi binomiale de paramètres n et p, alors :

•
$$E(X) = np$$

$$V(X) = np(1-p)$$

$$V(X) = np(1-p)$$
 $\sigma(X) = \sqrt{np(1-p)}$

Tutoriel vidéo pour calculer des probabilités dans le cadre d'une loi binomiale à l'aide de la calculatrice :

Intervalles de fluctuation et loi binomiale

Définition

Soient X une variable aléatoire suivant une loi binomiale et $\alpha \in [0; 1[$. Un intervalle [a;b] (avec a et b deux réels) tel que $P(a \le X \le b) \ge 1 - \alpha$ est appelé intervalle de fluctuation au seuil de $1 - \alpha$ (ou au risque α) associé à X.

Exemples

On considère une variable aléatoire X suivant la loi $\mathcal{B}(43;0,2)$ et $\alpha=0,05$ (donc $1-\alpha=0,95$).

1. On a
$$P(X \le 12) < 0.95$$
 et $P(X \le 13) \approx 0.964$ donc $P(X \le 13) \geqslant 0.95$.

Ainsi [0; 13] est un intervalle de fluctuation au seuil de $1 - \alpha = 0,95$ associé à X:

Pour la variable aléatoire X, la probabilité qu'il n'y ait pas plus de 13 succès sur les 43 répétitions est supérieure à 95 %.

2. On a
$$\frac{\alpha}{2} = 0,025$$
 et $1 - \frac{\alpha}{2} = 0,975$.

7. LOI GÉOMÉTRIOUE 9

- $P(X \le 3) \approx 0.018 \le 0.025$ et $P(X \le 4) \approx 0.051 > 0.025$.
- $P(X \le 13) \approx 0,964 < 0,975$ et $P(X \le 14) \approx 0,984 \ge 0,975$.

Ainsi $[4\ ;\ 14]$ est un intervalle de fluctuation centré au seuil de $1-\alpha=0,95$ associé à X : Pour la variable aléatoire X, la probabilité qu'il y ait entre 4 et 14 succès sur les 43 répétitions est supérieure à 95 %.

Tutoriel vidéo pour calculer des intervalles de confiance dans le cadre d'une loi binomiale à l'aide de la calculatrice :

7 Loi géométrique

Définition

On considère une épreuve de Bernoulli pour laquelle la probabilité d'un succès est p. On répète cette épreuve de Bernoulli de manière indépendante jusqu'à l'obtention du premier succès.

La variable aléatoire X donnant le nombre d'essais nécessaires pour obtenir ce succès suit la loi géométrique de paramètre p, notée $\mathcal{G}(p)$.

Exemple

On lance un dé équilibré à quatre faces numérotées de 1 à 4 jusqu'à l'obtention d'un 4.

La variable aléatoire Y donnant le nombre d'essais nécessaires pour obtenir un 4 suit la loi géométrique de paramètre p=0,25 :

- Y donne le nombre d'essais pour obtenir un succès;
- · Les lancers de dés sont indépendants;
- Ces lancers sont des épreuves de Bernoulli identiques de paramètre 0, 25.

Propriété

Soient $p \in]0$; 1[et X une variable aléatoire qui suit une loi géométrique de paramètre p. Pour tout entier naturel k non nul, $P(X=k)=p(1-p)^{k-1}$.

Preuve

On répète k fois une épreuve de Bernoulli telle que P(S) = p.

L'évènement $\{X=k\}$ est réalisé lorsque l'on obtient k-1 échecs suivi d'un succès.

Donc
$$P(X = k) = (1 - p)^{k-1} \times p$$
.

Propriété (admise)

Soient $p\in \]0$; 1[et X une variable aléatoire qui suit la loi géométrique de paramètre p. L'espérance de X est $E(X)=\frac{1}{p}$.

Exemple

Dans l'exemple précédent, Y suit la loi $\mathcal{G}(0,25)$ donc la probabilité qu'il faille cinq essais pour obtenir un 4 est :

$$P(Y = 5) (1 - 0.25)^{5-1} \times 0.25$$
$$= 0.75^{4} \times 0.25$$
$$\approx 0.08$$

L'espérance de Y est $E(Y) = \frac{1}{0.25} = 4$.

Cela signifie que si l'on recommence un grand nombre de fois cette succession d'épreuves, alors le nombre moyen d'essais à réaliser afin d'obtenir un 4 est proche de quatre.

Représentation graphique d'une loi géométrique

Pour X, variable aléatoire suivant la loi $\mathcal{G}(p)$, son diagramme en barres associé correspond à une décroissance exponentielle et p = P(X = 1) est la hauteur de la première barre.

Absence de mémoire de la loi géométrique

Propriété

Soient $p \in]0$; 1[et X une variable aléatoire qui suit la loi géométrique de paramètre p. Pour tout entier k strictement positif, $P(X > k) = (1 - p)^k$.

7. LOI GÉOMÉTRIQUE 11

Preuve

Soit X une variable aléatoire suivant une loi géométrique de paramètre p.

$$P(X > k) = 1 - P(X \le k)$$

$$= 1 - [P(X = 1) + \dots + P(X = k)]$$

$$= 1 - [p + p(1 - p) + \dots + p(1 - p)^{k-1}]$$

$$= 1 - p (1 + (1 - p) + \dots + (1 - p)^{k-1})$$

$$= 1 - p \frac{1 - (1 - p)^k}{1 - (1 - p)}$$

$$= 1 - p \frac{1 - (1 - p)^k}{p}$$

$$= 1 - (1 - (1 - p)^k)$$

$$= (1 - p)^k$$

Propriété

Soit X une variable aléatoire à valeurs dans N^* .

- Si X suit une loi géométrique, alors pour tous $k\in \mathbf{N}^*$ et $n\in \mathbf{N}^*$, $P_{X>n}(X>k+n)=P(X>k).$
- Réciproquement, si pour tous $k \in \mathbf{N}^*$ et $n \in \mathbf{N}^*$, $P_{X>n}(X>k+n)=P(X>k)$, alors X suit une loi géométrique.

Preuve

Démonstration du premier point :

Soit X une variable aléatoire suivant une loi géométrique de paramètre p.

$$P_{X>n}(X > k + n) = \frac{P(\{X > k + n\} \cap \{X > n\})}{P(X > n)}$$

$$= \frac{P(X > k + n)}{P(X > n)}$$

$$= \frac{(1 - p)^{k+n}}{(1 - p)^n}$$

$$= (1 - p)^k$$

$$= P(X > k)$$