IoT 4211: Sensor Technology

Pressure Measurement Bressnre Measurement

Pressure Measurement Static and Dynamic Pressure

Absolute, Gauge and Vacuum Pressure

Pressure Measuring Terms

Units of Pressure Measurement

Contents

Manometers

Mercury Barometer

U tube Manometer

Inclined Limb Manometer

Characteristics of Manometer Fluids

Advantages and Disadvantages of Manometers

Deflection of Elastic Elements – Force-summing devices

Bourdon Tube Pressure Gauge

Spring and Piston Type Pressure Gauge

Bellows

Capsule Type Pressure Gauge

Diaphragm Pressure Gauge

Pressure Gauge Installation

Pressure Gauge Selection

Contents

Secondary Transducers

Resistive Pressure Transducer

Inductive Pressure Transducer

Capacitive Pressure Transducer

Photoelectric Pressure Transducer

Piezoelectric Pressure Transducer

Contents

Pressure Transmitter • Static Pressure

Due to weight of the molecules "pressing down"

• Dynamic Pressure

Relative movement when a body is moving through air

Static and Dynamic Pressure

ABSOLUTE, GAUGE AND VACUUM PRESSURE

Pressure Measuring Terms

Absolute Pressure

Measured above total vacuum or zero absolute. Zero absolute represents total lack of pressure.

Atmospheric Pressure

The pressure exerted by the earth's atmosphere. Atmospheric pressure at sea level is 14.696 psia. The value of atmospheric pressure decreases with increasing altitude.

Barometric Pressure

Same as atmospheric pressure.

Gauge Pressure

The pressure above atmospheric pressure. Represents positive difference between measured pressure and existing atmospheric pressure. Can be converted to absolute by adding actual atmospheric pressure value.

Differential Pressure

The difference in magnitude between some pressure value and some reference pressure. In a sense, absolute pressure could be considered as a differential pressure with total vacuum or zero absolute as the reference. Likewise, gauge pressure (defined above) could be considered as Differential Pressure with atmospheric pressure as the reference.

Pressure Units

Unit abbreviation	Name of unit	Pa = N/m ²	bar	kp/m ² = mm WS	m WS	kp/cm ² = at	p/cm ²
$1 \text{ Pa} = 1 \text{ N/m}^2$	Pascal	1	0.00001	0.10197	0.0001	0.00001	0.0102
1 bar	bar	100000	1	10197.2	10.1972	1.01972	1019.72
1 kp/m²	millimeter hydrostatic head	9.80665	-	1	0.001	0.0001	0.1
1 m WC	meter hydrostatic head	9806.65	0.09807	100	1	0.1	100
1 kp/cm ² = 1 a	technical atmosphere	98066.5	0.98067	10000	10	1	1000
1 p/cm ²		98.0665	0.00098	10	0.01	0.0001	1
1 atm	physical atmosphere	101325	1.01325	10332.3	10.3323	1.03323	1033.23
1 Torr = 1 mm Hg	millimeter column of mercury	133.322	0.00133	13.5951	0.013595	0.00136	1.35951
1 lbf/in²	pound-force per square inch	6894.76	0.06895	703.07	0.70307	0.07031	70.307
1 lbf/ft²	pound-force per square foot	47.8803	0.00048	4.88243	0.00488	0.00048	0.48824
1 in Hg	inch column of mercury	3386.39	0.03386	345.316	0.34532	0.03453	34.5316

Mercury Barometer

- Pressure applied by the mercury at the bottom of the column is equal to atmospheric pressure.
- Pressure is expressed in height (760 mm Hg), also known as pressure head.

Atmospheric Pressure Measurement

U-tube Manometer

- Difference of the heights between two columns shows the differential pressure.
- Gauge pressure can be measured in this was if one column is exposed to atmosphere.

Differential Pressure Measurement

Inclined Limb Manometer

- One of the limb is inclined.
- Sensitivity of the instrument increases.

Manometers

Characteristics of Manometer Fluids:

- 1. It should not wet the wall of the container.
- 2. It should not absorb gas or chemically react with it.
- 3. It should be reasonably high density so that the pressure balancing column stays within a desirable limit.
- 4. It should have low vapor pressure at the operating temperature.
- 5. It should freely move in the limbs of the manometer.
- 6. It should not be compressible.

Manometers

Advantages:

- 1. Manometers are considered as standard of pressure by many standardizing institutions..
- 2. They are simple and low-cost devices.
- 3. Suitable sensors such as capacitance or sonar devices can be used to provide better precision in their readouts.

Disadvantages:

Higher pressure measurements with manometers are impractical because of the length of liquid columns involved.

Problem-1: Two pipes on the same elevation convey water and oil of specific gravity 0.88 respectively. They are connected by a U-tube manometer with the manometric liquid having a specific gravity of 1.25. If the manometric liquid in the limb connecting the water pipe is 2 m higher than the other find the pressure difference in two pipes.

Problem-1: Two pipes on the same elevation convey water and oil of specific gravity 0.88 respectively. They are connected by a U-tube manometer with the manometric liquid having a specific gravity of 1.25. If the manometric liquid in the limb connecting the water pipe is 2 m higher than the other find the pressure difference in two pipes.

Solution:

Given data:

Height difference = 2 m

Specific gravity of oil = 0.88

Specific gravity of manometric liquid = 1.25

Equating pressure head at section (A-A)

$$P_{A} + 2 \times 1.25 \rho_{W} g + (h-2) \rho_{W} g = P_{B} + h \times 0.88 \rho_{W} g$$

Substituing h = 5 m and density of water 998.2 kg/m³ we have $P_A - P_B = 10791$

Problem-2: A two liquid double column enlarged-ends manometer is used to measure pressure difference between two points. The basins are partially filled with liquid of specific gravity 0.75 and the lower portion of U-tube is filled with mercury of specific gravity 13.6. The diameter of the basin is 20 times higher than that of the U-tube. Find the pressure difference if the U-tube reading is 25 mm and the liquid in the pipe has a specific weight of 0.475 N/m³.

Problem-2: A two liquid double column enlarged-ends manometer is used to measure pressure difference between two points. The basins are partially filled with liquid of specific gravity 0.75 and the lower portion of U-tube is filled with mercury of specific gravity 13.6. The diameter of the basin is 20 times higher than that of the U-tube. Find the pressure difference if the U-tube reading is 25 mm and the liquid in the pipe has a specific weight of 0.475 N/m³.

Solution: Given data: U-tube reading 25 mm

> Specific gravity of liquid in the basin 0.75 Specific gravity of Mercury in the U-tube 13.6

As the volume displaced is constant, we have,

$$Y = 25 \frac{\alpha}{A} = 25 \times \frac{1}{20^2}$$

 $Y = 25 \frac{a}{A} = 25 \times \frac{1}{20^2}$ [a, A -- Cross-Section of tube and basin, respectively]

$$P_1 + X = 0.475 + (Z+Y)\rho_w g \times 0.75 + 25 \times 13.6 \rho_w g$$
$$= P_2 + (X+Y) + 0.475 + (Z+25) \times 0.75 \rho_w g$$

Put the value of Y while X and Z cancel out. Answer: 3.151 kPa