1. Beschleunigung: Ausrechnen und umformen. Die Formel für die Beschleunigung ist

$$a = \frac{\Delta v}{\Delta t}$$

Hier ist a die Beschleunigung, Δv ein Geschwindigkeitsunterschied und Δt die Zeit, die es dauerte, bis sich die Geschwindigkeit um Δv geändert hat.

(a) Was für eine Beschleunigung liegt von, wenn sich die Geschwindigkeit in $\Delta t=3$ s um $\Delta v=15\,\frac{\rm m}{\rm s}$ ändert? **Achtung Einheiten!**

Das ist keine Textaufgabe in dem Sinne, wir verzichten auf "gegeben" etc.

$$a = \frac{\Delta v}{\Delta t} = \frac{15 \frac{\text{m}}{\text{s}}}{3 \text{ s}} = 5 \frac{\text{m}}{\text{s}^2}$$

(b) Lösen Sie nach Δv auf. Berechnen Sie die Geschwindigkeitsänderung bei der Beschleunigung $a=5\,\frac{\rm m}{\rm s^2}$ in der Zeit $\Delta t=3\,\rm s.$ Achtung Einheiten! Lösung:

$$\begin{split} a &= \frac{\Delta v}{\Delta t} \quad \big| \, \cdot \Delta t \\ \Delta v &= a \cdot \Delta t = 5 \, \frac{\mathsf{m}}{\mathsf{s}^2} \cdot 3 \, \mathsf{s} = 15 \, \frac{\mathsf{m}}{\mathsf{s}} \end{split}$$

(c) Lösen Sie nach Δt auf. Berechnen Sie die Zeit Δt die bei einer Beschleunigung $a=5\,\frac{\rm m}{\rm s^2}$ vergeht, bis sich die Geschwindigkeit um $\Delta v=15\,\frac{\rm m}{\rm s}$ ändert. **Achtung Einheiten!** Lösung:

$$\begin{array}{c|c} \Delta v = a \cdot \Delta t & \mid : a \\ \Delta t = \frac{\Delta v}{a} = \frac{15 \frac{\rm m}{\rm s}}{5 \frac{\rm m}{\rm s^2}} = 3 \, \rm s \end{array}$$

(d) Vervollständigen Sie die Tabelle. Achten Sie auf das Vorzeichen. Achten Sie auf die Einheiten. Geben Sie den vollständigen Rechenweg an.

	Geschwindigkeits- änderung	Beschleunigungszeit	Beschleunigung
	$\Delta v = 15 \frac{\rm m}{\rm s}$	$\Delta t = 3\mathrm{s}$	$a = 5 \frac{m}{s^2}$
а	$\Delta v = 4.2 rac{\mathrm{m}}{\mathrm{s}}$	$\Delta t = 7 extsf{s}$	$\begin{vmatrix} a = \frac{\Delta v}{\Delta t} = \frac{4.2 \frac{m}{s}}{7 s} = 0.6 \frac{m}{s^2} \end{vmatrix}$
b	$\Delta v = a \cdot \Delta t = -3.6 \frac{\text{m}}{\text{s}^2} \cdot \\ 1.2 \text{s} = -4.32 \frac{\text{m}}{\text{s}}$	$\Delta t = 1,2 extsf{s}$	$a = -3.6 \frac{m}{s^2}$
С	$\Delta v = 100 \frac{\text{km}}{\text{h}} = 100 \cdot \frac{1}{3.6} \frac{\text{m}}{\text{s}} = 28,8 \frac{\text{m}}{\text{s}}$	$\Delta t = 3\mathrm{s}$	$\begin{array}{ c c c }\hline a = \frac{\Delta v}{\Delta t} = \frac{28.8 \frac{\mathrm{m}}{\mathrm{s}}}{3 \mathrm{s}} = \\ 9.6 \frac{\mathrm{m}}{\mathrm{s}^2} \end{array}$
d	$\Delta v = -9 \frac{m}{s}$	$\Delta t = \frac{\Delta v}{a} = \frac{-9\frac{1}{7}}{100} = 3 \mathrm{s}$	$a = -3 \frac{m}{s^2}$