

Monolithic or Polylithic Packet Cores?

The case for specialized use-case-based mobile packet cores

Derick Linegar, Technical Solutions Architect

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated until February 24, 2023.

Agenda

- 5G Status & Deployment challenges
- 5G Monolithic Core using Slicing for Services
- Polylithic Cores as an alternative
- Example PWN Service Creation

5G Commercialization

189 operators in 68 markets launched mobile 5G

63 operators in 46 markets have plans to launch mobile 5G

5G SA Commercialization

23 operators in 17 markets operate commercial 5G SA

11 operators in 9 markets have plans to launch 5G SA service

What's Going on? Analysts' data points

- "Major 5G Standalone deployments are experiencing delays...", STL Partners, September 2022, article
- "Why is 5G SA taking so long?", LightReading, September 2022, article
- "Worsening global uncertainties and lack of 5G business cases beyond mobile broadband continue to cripple the migration to 5G SA", LightCounting, July 2022, article
- "Industry Headwinds to Decrease Mobile Core Network Market Growth", Dell'Oro Group, July 2022, report URL
- "5G SA adoption not living up to hype", LightReading, January 2022, article
- "How's 5G standalone doing in the U.S.?", Fierce Wireless, October 2021, article
- "Mobile operators failing to come up with a strong marketing story for standalone 5G", GlobalData, August 2022, article
- "Carriers With 5G Cores Remain Lonely", SDX Central, January 2022, article
- "5G: A Standalone Future?", EE Times, December 2021, article
- "5G SA Launches Remain Elusive, LightCounting Laments", LightCounting, August 2022, article

5G Cloud-Native Mobile Core based Subscriber Services

The Future for Service Creation and Business Evolution

Architectural **Improvements**

Centralized Control Plane for Mobile, Cable, Wireline on Common Infrastructure

Distributed User Plane for Optimization and Resiliency

Physical for Scale

Virtual for Agility

Integrated visibility, control: ACI, AppDynamics for Operational Insights

New Outcomes

Cross-Domain Services Expand to MNO or MVNO Enterprise Use-cases Private LTE & 5G

Use cases enabled by 5G

Cloud-Native Distributed Architecture

Scalable

Distributed

Programmable

5G Adopted New Architecture Deployment Principles

Radical Change for 3GPP Mobile Cores

5G Radio's, WiFi-6
"traditional" access
Higher Flexibility
High BW, low latency
Massive MIMO

Open Interfaces

Mobile Core Converged Core *Disaggregation*

SW-Centric

Virtualization
Cloud Native
Edge Computing
Programmable

Any Access
Common Sub Mgmt.

Converged Transport
Common Policy

Automation

Closed Loop Multi Domain Network Slicing Service Assurance

5G & WiFi-6

3GPP Mobile Core

Recipe for today's Next Generation SP Networks

3GPP 5G Architectural Deployment Tenets

Focus is on taking advantage of Cloud Native Principles

BRKSPM-2917

Typical Cloud Native Components for Mobile Cores

Sampling of Elements used

Cloud Native Constructs

- Release Engineering
- Release Automation
- Release Scheduling
- Architecture (3-tier)
- Life Cycle mgmt.
- Telemetry
- Configuration and CLI
- Data Storage

Cloud Native Components

- Docker, Kubernetes
- EFK, Prometheus, Grafana,
- ISTIO Service mesh
- Calico, Weave
- Kafka, NATS
- AppD, ConfD, etcD
- Redis,
- Helm, Tiller
- Internal (Jenkins, jFrog, GIT)

Example: Cisco 5G SA Mobile Core

Cloud Native based Common Execution Environment

Vertical stack designed specifically for high performance, low latency, GeoHA applications

Validated Kubernetes ecosystem and integrated utilities – deployed as private, onprem cloud.

Result: 5G Cloud Native Core Deployment Principle

Software Process Separation

Monolithic Software

State and application are in single process

Microservice Container Software Nsmf N4 Common Data Layer Data Store Stateless State **Applications** Data Store

Result: Loads of Micro Services

Cloud Native Pod List

- Example: The Cisco "Common Execution Environment" combines all the applications and services that are used by all network functions (such as logging, alerting, collecting of statistics etc.)
- This is not 5G per-se, just an environment that 5G NF's can use
- Pods marked with "*" in the node column run on all nodes (shortened here for visibility)

NAME	READY	NODE
alert-logger-74446c8fd6-9krdt	1/1	oam-2
alertmanager-0	1/1	oam-2
alertmanager-1	1/1	oam-3
alertmanager-2	1/1	oam-1
api-cee-oam-ops-center-846d87578-2p599	1/1	oam-1
bulk-stats-0	3/3	oam-3
bulk-stats-1	3/3	oam-1
cee-oam-product-documentation-b6b45c98-2qrnk	2/2	oam-2
core-retriever-2j2dr	2/2	*
documentation-86bcc95bd9-cb9b2	1/1	oam-3
fluentbit-2qctp	1/1	*
fluentd-6dd5ccd89b-t74wn	1/1	sess-data-3
grafana-6b4f4947db-stz49	5/5	oam-2
grafana-dashboard-metrics-b6cccb454-88ddj	1/1	serv-data-4
kube-state-metrics-6c9b445b9b-lbjbz	1/1	oam-1
logs-retriever-5qn7v	1/1	*
loki-0	1/1	sess-data-4
node-exporter-5gbrr	1/1	*
ops-center-cee-oam-ops-center-6b68b6494f-qmlwf	5/5	oam-3
path-provisioner-6sfbt	1/1	*
pgpool-647454fdb8-bxrtb	1/1	oam-2
pgpool-647454fdb8-r46hh	1/1	oam-3
postgres-0	1/1	oam-2
postgres-1	1/1	oam-1
postgres-2	1/1	oam-3
prometheus-hi-res-0	4/4	oam-1
prometheus-hi-res-1	4/4	oam-3
prometheus-hi-res-2	4/4	oam-2
prometheus-rules-685ff55bfd-pfpns	1/1	oam-1
prometheus-scrapeconfigs-synch-6fd89f7768-kkpl7	1/1	serv-data-4
pv-manager-5d7548f785-w8b45	1/1	oam-1
pv-provisioner-6f654d885b-dprng	1/1	oam-1
show-tac-manager-5f4cc946db-j9ghj	2/2	oam-3
smart-agent-cee-oam-ops-center-6f8589765-5wbl4	1/1	oam-2
swift-cee-oam-ops-center-69b68bd7dc-lvqdr	1/1	oam-1
thanos-query-hi-res-5f5577f865-m8rvf	1/1	oam-1
thanos-query-hi-res-5f5577f865-n6zbm	1/1	oam-2
thanos-query-hi-res-5f5577f865-t62n2	1/1	oam-3

"kubectl get pods -n cee-global -o wide"

"kubectl get pods -n smf-data -o wide"

SMF NF Pod List

- Each NF (SMF shown) will have its own "zoo" of micro services.
- The number of nodes and replicas for most NF Services is configurable
- Services of the same type use anti-affinity to be deployed on different worker nodes

٢۪ٮ		Kubecti get	pods -n smr-data -o v	wide
	NAME	READY	NODE	
	api-smf-data-ops-center-5958fd5974-n2zls	1/1	oam-1	
	cache-pod-0	1/1	proto-data-2	
	cache-pod-1	1/1	proto-data-4	
	cdl-ep-session-c1-544bb68dfd-9czwx	1/1	sess-data-1	
	cdl-ep-session-c1-544bb68dfd-kg7c9	1/1	sess-data-2	
	cdl-index-session-c1-m1-0	1/1	sess-data-1	
	cdl-index-session-c1-m1-1	1/1	sess-data-2	
	cdl-slot-session-c1-m1-0	1/1	sess-data-1	
	cdl-slot-session-c1-m1-1	1/1	sess-data-2	
	documentation-7f98b9d685-prf48	1/1	oam-1	
	etcd-smf-data-etcd-cluster-0	1/1	oam-1	
	etcd-smf-data-etcd-cluster-1	1/1	oam-2	
	grafana-dashboard-app-infra-f8968f559-ktwwv	1/1	oam-1	
	grafana-dashboard-cdl-78dd8f455-bhsz5	1/1	proto-data-4	
	grafana-dashboard-smf-64h9h76h5-glczn	1/1	oam-2	
	gtpc-ep-n0-0	1/1	proto-data-1	
	gtpc-ep-n0-1	1/1	proto-data-2	
T	катка-и	1/1	sess-data-1	
	kafka-1	1/1	sess-data-2	
	oam-pod-0	1/1	oam-1	
	ops-center-smf-data-ops-center-548446b4bd-2t4r		oam-2	
	smart-agent-smf-data-ops-center-d59b8b99c-b7vd		oam-1	
	smf-nodemgr-n0-0	1/1	serv-data-2	
_	smf-nodemgr-n0-1	1/1	serv-data-1	_
	smf-protocol-n0-0	1/1	proto-data-2	
	smf-protocol-n0-1	1/1	proto-data-1	
	smf-radius-dns-n0-0	1/1	proto-data-2	
	smf-rest-ep-n0-0	1/1	proto-data-2	
П	smt-rest-ep-n0-1	1/1	proto-data-1	
	smf-service-n0-0	1/1	serv-data-1	
	smf-service-n1-0	1/1	serv-data-2	
	smf-udp-proxy-0-7f57c7984b-b7b6c	1/1	proto-data-2	
	smf-udp-proxy-1-6f94dfc6d5-hqx55	1/1	proto-data-1	
	swift-smf-data-ops-center-6f46b78f8-z6xcm	1/1	oam-3	
	zookeeper-0	1/1	oam-3	
	zookeeper-1	1/1	oam-1 1/1	

cisco Live!

State Management

Protocol Load Balancer Services Application Services

Result: Seismic Shift in how MSP Operate Networks

- API != OAM
- Horizontal Scaling == Cost (Uncontrolled?)
- Having a Zoo of (micro) Services == No Pets!
- Scale of (micro) services == Complexity and Risk

And... How to deal with Multiple Use-Cases?

5G-SA Core + Network needs to "slice" ...

MSP has to consider:

- Use-Cases drive conflicting Network, Core and Operational requirements
- To "Slice" a core, and associated Network (IP Transport, RAN etc) requires coordination
- To "Slice" a core, and associated Network (IP Transport, RAN etc) requires a service "contract"
- If Dynamic slicing is required, excess underlying network H/W resources required
- How many slices? 2 ... 2000?
- Slice architecture complexity increase with dis-aggregation.

5G Services to be based on End-to-End Slicing

Network Slicing is fundamentally an end-to-end partitioning of the network resources and network functions so that selected applications/services/connections may run in isolation from each other for a specific business purpose driven by the Orchestration capabilities

Status of Slicing for a "Multi-Core" approach

- Eco-System is still developing
- Handsets/UE not implementing optional parameters
- Slicing has to be implemented EVERYWHERE to be ready...
- Automation/Orchestration complexities
- Multi-Standard Cooperation and Coordination
- Cost...

Slicing

The 4D of Slicing: Lots of Moving Parts

Alternative Approach: Polylithic Mobile Cores

Utilize a "best-of-breed" approach

- Use multiple "standalone", or Polylithic (Cloud Native-based) Mobile Cores focused on specific use cases (FWA, PWN, URLLC, IoT)
- Complexities of having a fully-backed slicing infrastructure are not needed
- Automation "solves" the many core operational costs → No slicing is required! MSP can now pick those solutions that fit their operations the best.
- Outsourcing the physical cost/ownership of these Polylithic Mobile Cores via SaaS models de-risks the MSP's TTM, Space, Skill-set and Revenue/Market Penetration to those providers with proven Service Creation Platforms.

Polylithic Cores facilitates adoption SaaS Cores

Massive Time to value improvement

Benefits:

Flexible service creation for MSP & rapid prototyping → TTM & Business Case Validation

High level of service control and visibility via APIs → Lowered Cost of System Integration

Service and customer insights and tooling to enable new segments and increase customer satisfaction > Market Relevance, differentiation

It is not about Technology Religion (Mobile Core, Containerization, 3GPP) standards, etc) but about Service Creation & Adoption (How/what to launch, ARPU etc)

Polylithic Cores Deployments

Benefits

- The approach is not new (done in 4G/EPC) successfully.
- Focus is more on efficiency, cost and revenue.
- Slicing Eco-system is still in development → Risk & Cost for MSP
- TTM (outsourcing) of Cores tied to market penetration and revenue.
- Allows MSPs to be agile and proceed with lower Risk and Cost Structure.

Typical Converged Core MSP as of Today

Representative Architecture

- MSP has deployed the foundation of a x-domain/x-vendor Automation & Orchestration layer → Defined workflow for Service Creation
- Regional DC in the midst of transitioning to pure Converged Core (4G/5G) based on Cloud Native Principles where possible
- Started to adopt the "disaggregation" of NFs in remote locations to address scaling and other transport requirements →
 Limited in scope due to resourcing available.

Typical Converged Core MSP as of Today

Services & Personalization based on a Slicing Architecture

- Idea is to use Slicing to create service and personalization, across the deployment
- Still very much in development and concerns persists with respect to the maturity of the slicing ecosystem.

BRKSPM-2917

Services & Personalization based on an Enterprise Slice approach

- Simple connectivity Model, Centralized (Sliced) Converged Core + MEC for Enterprise
- Complex routing (hair-pinning), ussues with Enterprise Data Sovereignty and Privacy Requirements
- Enterprise domain as an extension of MSP domain
- Enterprise has to adopt and accept MSP Deployment and management framework

BRKSPM-2917

Services & Personalization based on an Enterprise Slice approach

Services & Personalization based on a Slicing + Private Radio Architecture

- Simple connectivity Model. Centralized (Sliced) Converged Core
- Complex routing (hair-pinning), issues with Enterprise Data Sovereignty and Privacy Requirements
- Enterprise domain as an extension of MSP domain
- Enterprise has to adopt and accept MSP Deployment and management framework

BRKSPM-2917

Services & Personalization based on a Slicing + Private Radio Architecture

- Simple connectivity Model. Centralized (Sliced) Converged Core
- Complex routing (hair-pinning), issues with Enterprise Data Sovereignty and Privacy Requirements
- Enterprise domain as an extension of MSP domain
- Enterprise has to adopt and accept MSP Deployment and management framework

BRKSPM-2917

Services & Personalization based on a Slicing/UPF on Prem Architecture

- Local Breakout for on-Prem UPF (Bearer) for Centralized (Sliced) Converged Core
- Routing of Control Traffic still to the centralized core → Resiliency and Enterprise Integration issues
- Enterprise domain as an extension of MSP domain
- Enterprise has to adopt and accept MSP Deployment and management framework

Services & Personalization based on a Slicing/UPF on Prem Architecture

- Local Breakout for on-Prem UPF (Bearer) for Centralized (Sliced) Converged Core
- Routing of Control Traffic still to the centralized core → Resiliency and Enterprise Integration issues
- Enterprise domain as an extension of MSP domain
- Enterprise has to adopt and accept MSP Deployment and management framework

BRKSPM-2917

Services & Personalization based on a Polylithic Core Architecture

- Polylithic Converged Core, 1 per
 Enterprise customer --> Personalized
- Control Plane + User Plane traffic now part of the Enterprise Customer domain
- Service Creation and Management is now external to the service delivery → Follow a multi-tenant-based Portal management framework.
- MSP does not have to integrate their backbone network with Enterprise Customer

Enterprise adoption approaches a SaaS

Services & Personalization based on a Polylithic Core Architecture

- Polylithic Converged Core, 1 per Enterprise customer --> Personalized
- Control Plane + User Plane traffic now part of the Enterprise Customer domain
- Service Creation and Management is now external to the service delivery > Follow a multi-tenant-based Portal management framework.
- MSP does not have to integrate their backbone network with Enterprise Customer
- Enterprise adoption approaches a SaaS

BRKSPM-2917

Cisco P5GaaS Offer

Based on Polylithic Cores + SaaS model

Cisco P5GaaS Control Center

Constant Upgrades & Enhancements

SaaS model enables rapid launch of new services

Network and Device Management

Simplified Management UX/API
Project Carrier functions &
Capabilities to Enterprise.

Cisco Cloud

Cloud Apps

Edge Apps

Cisco P5GaaS Offer (Detailed)

As a Result: Polylithic Cores & SaaS Models

Alternative Deployment Models

Use case driven

Start from the use cases, focus on cost, complexity and TTM don't not force-fit technology

Polylithic Cores

Every "solution" has its best applicable domain & Cost/Profit formulae which leads to rapid deployment & profits

SaaS Model

MSP are on a constant Build-Cycle: Rise of SaaS deployment strategies allows MSP to control both OpEx and CapEx

Where's the ARPU? Diverse use cases naturally asks for to multi-access technologies & distinct "Core" functions to optimize cost

Each use-case represents a different approaches & constraints, a "one-size" fits all might be ideal, but not timely

Market adoption of services is based on results: IT and OT integration mean private and personalized (core) services

Consumption of services by high-ARPU customers needs to focus on a SaaS model as the leading adoption model

Questions?

Complete your Session Survey

- Please complete your session survey after each session. Your feedback is important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (open from Thursday) to receive your Cisco Live t-shirt.

https://www.ciscolive.com/emea/learn/sessions/session-catalog.html

Continue Your Education

Visit the Cisco Showcase for related demos.

Book your one-on-one Meet the Engineer meeting.

Attend any of the related sessions at the DevNet, Capture the Flag, and Walk-in Labs zones.

Visit the On-Demand Library for more sessions at <u>ciscolive.com/on-demand</u>.

Thank you

cisco live!

