Computer Architecture

Tutorial 4 – Floating Point Numbers

- 1) Convert the following decimal numbers to binary: a) 5.5 b) 8.25 c) 9.3 d) 11.46875
- Convert the binary number 1001.1010101 to decimal. 2)
- 3) Normalise the following binary numbers: a) 101.1 b) 1000.01 c) 0.00010101
- 4) Convert –31.3 to IEEE Single Precision format.
- 5) Interpret the 32-bit hexadecimal value C154 0000 as an IEEE Single Precision number.
- Carry out the operation 31.3 + 13.25 in IEEE Single Precision arithmetic 6)
- Fill in the missing entries 7)

	Fraction	Binary	Decimal	
	1/4	0.01	0.25	
	3/8			
	23/16	4	D	TT 1
	ASS19	inment	Project.	Exam Help
		1.011	3	•
	r	ittns://e	duassis	tpro.github.io/
•	•	1110011/0	aaaaaaa	tpioigitiiabiio/

Consider a five-bit floating representation based on the I 8)

ith 1 sign bit, two exponent

Consider a five-bit floating representation pased on the libits and 2 significand bits. For this format fill in the miss Add WeChat edu_assist_pro

Bits	Binary Value or Special Value	Decimal value or Special Value
0 00 00		
0 00 01		
0 00 10		
0 00 11		
0 01 00		
0 01 01		
0 01 10		
0 01 11		
0 10 00		
0 10 01		
0 10 10		
0 10 11		
0 11 00		
0 11 01		
0 11 10		
0 11 11		