DILLAN MARROQUIN MATH 331.1001 Scribing Week 10 Due. 1 November 2021

Lecture 24

We will begin with a proof of Corollary 23.3 from last lecture...

Proof Cor 23.3. By Proposition 23.2, all σ commute with one another. Thus $\alpha^l = \sigma_1^l \sigma_2^l \cdots \sigma_k^l \ \forall l \geq 1$. As $\{\sigma_i\}$ is disjoint for all i, σ_i^{-1} and $\sigma_{j\neq 1}^l$ are disjoint also. Then $\alpha^m = e$ iff $\sigma_i^m = e \ \forall i = 1, ..., k$. Lemma 14.2 implies $|\sigma_i||m$. Thus $\alpha^m = e$ iff m is a multiple of $|\sigma_1|, |\sigma_2|, ..., |\sigma_k|$. By definition of order, $|\alpha|$ must be the smallest such that $\alpha^m = e$, so $|\alpha^m| = e$, so $|\alpha| = \text{lcm}\{|\sigma_i|\}_{i=1}^k$.

Generators of S_n

Here, we are looking for the set of elements of $\{\sigma_1, ..., \sigma_n\} \subseteq S_n$ such that every element of S_n can be written as $\sigma_1^{k_1}, ..., \sigma_n^{k_n}$ for $k_1, ..., k_n \in \mathbb{Z}$.

Proposition (24.1). Let $n \ge 2$ and $\sigma = (i_1 \dots i_k) \in S_n$ be a k-cycle. Then σ can be written as a product of transpositions. In particular, $\sigma = (i_1 \ i_k)(i_1 \ i_{k-1}) \dots (i_1 \ i_2)$ (i.e. k-1 transpositions).

Remark (Ex 24.2). Consider $\sigma = (1 \ 2 \ 3 \ 4) \in S_4$. Then $(1 \ 4)(1 \ 3)(1 \ 2) = (1 \ 2 \ 3 \ 4)$. Note that $1 \mapsto 2$, $2 \mapsto 1 \mapsto 3$, and $3 \mapsto 1 \mapsto 4$.

Note: Decompositions into transpositions are note unique! For example, $(1\ 2)(2\ 3)(1\ 2)(3\ 4)(1\ 2) = (1\ 2\ 3\ 4)$ as well.

Theorem (24.3). Every non-identity element of S_n is uniquely (up to rearrangement) a product of disjoint cycles, each of length 2.

This is how we define our cycle notation: $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 1 & 5 & 6 & 4 \end{pmatrix} \in S_6 = (1\ 3)(4\ 5\ 6)$.

Corollary (24.4). For all $n \ge 2$, S_n is generated by the set of transpositions $\{(ij) \in S_n | 1 \le i < j \le n\}$.

Remark. We also know that S_3 is generated by $\sigma = (1\ 2\ 3)$ and $\tau = (2\ 3)$. We can also show that $S_{n>3}$ is generated by $\sigma = (1\ 2\ 3\ ...\ n-1\ n)(n-1\ n)$.

Lecture 25

Sign of Permutation

Definition (25.1). Let $\sigma \in S_n$. We say σ is **even/odd** iff σ can be written as an even/odd number of transpositions. We write $sgn(\sigma) := +1$ if σ is even or -1 if σ is odd.

Example. If $\sigma = (i_1 \ i_2 \dots i_k) \in S_n$ is a k-cycle, then σ is even if k is odd, or odd if k is even. Proposition 24.1 implies $\sigma = (i_1 \ i_k)(i_1 \ i_{k-1}) \cdots (i_1 \ i_2)$.

Theorem (25.2). A permutation can't be both odd and even. In particular, sgn : $S_n \rightarrow \{\pm 1\}$ is well-defined.

Evidence for Theorem 25.2: Let $\vec{e_1}, \dots, \vec{e_n}$ be a standard basis of \mathbb{R}^n . So $\vec{e_1} = [1 \ 0 \ 0 \ \cdots \ 0], \vec{e_2} = [0 \ 1 \ 0 \ \cdots \ 0], \dots$ To each $\sigma \in S_n \mapsto n \times n$ matrix P_{σ} :

 $P_{\sigma} := [e_{\sigma(1)}, e_{\sigma(2)}, \dots, e_{\sigma(n)}].$

Example. 1. $S_2 = \{(1), (1\ 2)\}$. We have $(1) \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, (1\ 2) \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

2. $\sigma = (1\ 2\ 3) \in S_3 \mapsto P_{\sigma} = \begin{pmatrix} 0\ 0\ 1 \\ 1\ 0\ 0 \\ 1\ 1 \end{pmatrix}$. Note that $\det(P_{\sigma}) = 1 = \operatorname{sgn}(\sigma)$ since σ is a 3-cycle.

<u>Fact:</u> $S_n \to \operatorname{GL}_n(\mathbb{R})$ is a group homomorphism.

If an $n \times n$ matrix $A = [\vec{a_1} \ \vec{a_2} \dots \ \vec{a_n}]$, then swapping any 2-columns changes the sign of the determinate.

Fact: $sgn(\sigma) = det(P_{\sigma})$.