- 63 -

SEQUENCE LISTING

111	GENERAL.	INFORMATION

- (i) APPLICANT: Levy, Gary
- (ii) TITLE OF INVENTION: Methods of Modulating Immune Coagulation
- (iii) NUMBER OF SEQUENCES: 4
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: BERESKIN & PARR
 - (B) STREET: 40 King Street West
 - (C) CITY: Toronto
 - (D) STATE: Ontario
 - (E) COUNTRY: Canada
 - (F) ZIP: M5H 3Y3
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Gravelle, Micheline(B) REGISTRATION NUMBER: 40,261
- (C) REFERENCE/DOCKET NUMBER: 9579-006

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (416) 364-7311
- (B) TELEFAX: (416) 361-1398

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4630 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GATCTAGGGT	TGGAAGCCAG	GTCTCCTGAG	TATGCGAGAA	TAAATACAGT	CATGGAAGTG	60
TAAAGAGTCT	GCCAACATTT	TGAGAATGTG	AATAGGATTT	GGCTAAAATT	AAGGGGATAT	120
ACAGAAAAGT	CATAGGAAAT	CAGGTTAAAG	ACATAAATAT	GAGATAGGCT	ACAGAGTGTT	180
TTAAGTAATA	CAATAAAACA	TTTAGATTTT	TGCCCATGTC	AGTCATTTTG	AAATTATTTT	240
TAAAGCAAAA	AAACCCTTTT	TAAACAAGAA	ATCTTATGAG	ATGTCAATAT	GCAAAACAAA	300
TTAAAAGGAG	GTGGTTTCTC	TAACTGAAGC	TGTTCCTCTT	TCCTGCCTTC	AGCCTCTGAA	360

- 64 -

GAGAAAGTTA GAAAACTATT ATCATTAATG CTACATGTTT TGAACAAGCT GATATACCAA	420
GTGGCCCAGA GAGCAGGTAG AAGAACCAGC GTGGAGACAG AAAGCAAGAG GCCCGCCTGC	480
CAGGGCTACC TGCAGAAAGA AAGGGCAAAG ATGCTGTAGG CAAGAGAAGT TCAGGACAGA	540
CACTGGCATA GCTCAAAGAT TCACATTTGA GCAGCTGTGG AAGATGACAG TACAATTACC	600
AAAATGTCGA AGGGCAAAGG AGGCAGCTAC TGGTTTTGAT GAAAGACAAT TATGTCCTTT	660
TAAATGGGTC TTAGACATTT AGACATTTAT ATACACTATG CTACGGACAA AGGAATAGAA	720
AGTAGCACTT TTTTCTCCAC TAGTTTTCTT CTCTTTTTCA AGTAGATGAA GCAAAAGTCA	780
ACTGCAATAG TCAGAAAGCT GTACTTTGTT ACACTTAGAA ACTTCTAAAA GTGCTTAAGA	840
TTTCACCTGA AAGTCCAACA TGAAGAAAAT ACAGGCTCCC CAATGCCCCA TTCTAAGAAG	900
GAAAAAGGAC CATTTTCATT TTAGTAACGT TTCTGTTCTA TAGACAGTTT GGATAACTAG	960
CTCTTACTTT TTATCTTTAA AAACTGTTTT TCCAGTGAAG TTACGTATAA TTATTTACTT	1020
CAAGCGTAGT ATACCAAATT ACTTTAGAAA TGCAAGACTT TTCTTATACT TCATAAAATA	1080
CATTATGAAA GTGAATCTTG TTGGCTGTGT ACATTTGACT ATAATAATTT CAATGCATAT	1140
TATTTCTATT GAGAGTAAGT TACAGTTTTT GGCAAACTGC GTTTGATGAG GGCTATCTCC	1200
TCTTCCTGTG CGTTTCTAAA ACTTGTGATG CAAACGCTCC CACCCTTTCC TGGGAACACA	1260
GAAAGCCTGA CTCAGGCCAT GGCCGCTATT AAAGCAGCTC CAGCCCTGCG CACTCCCTGC	1320
TGGGGTGAGC AGCACTGTAA AGATGAAGCT GGCTAACTGG TACTGGCTGA GCTCAGCTGT	1380
TCTTGCCACT TACGGTTTTT TGGTTGTGGC AAACAATGAA ACAGAGGAAA TTAAAGATGA	1440
AAGAGCAAAG GATGTCTGCC CAGTGAGACT AGAAAGCAGA GGGAAATGCG AAGAGGCAGG	1500
GGAGTGCCCC TACCAGGTAA GCCTGCCCCC CTTGACTATT CAGCTCCCGA AGCAATTCAG	1560
CAGGATCGAG GAGGTGTTCA AAGAAGTCCA AAACCTCAAG GAAATCGTAA ATAGTCTAAA	1620
GAAATCTTGC CAAGACTGCA AGCTGCAGGC TGATGACAAC GGAGACCCAG GCAGAAACGG	1680
ACTGTTGTTA CCCAGTACAG GAGCCCCGGG AGAGGTTGGT GATAACAGAG TTAGAGAATT	1740
AGAGAGTGAG GTTAACAAGC TGTCCTCTGA GCTAAAGAAT GCCAAAGAGG AGATCAATGT	1800
ACTTCATGGT CGCCTGGAGA AGCTGAATCT TGTAAATATG AACAACATAG AAAATTATGT	1860
TGACAGCAAA GTGGCAAATC TAACATTTGT TGTCAATAGT TTGGATGGCA AATGTTCAAA	1920
GTGTCCCAGC CAAGAACAAA TACAGTCACG TCCAGGTATG TATAATAATG TTTTCTTATC	1980
ATATGTTCAT AAATGTTATA CAGTCAGAGA TGTATCTAAA AGATTAACCT GAGTCAGTAA	2040
GTTAAATAGA TGACAGATTA AGTCTTTTAT TTATCAAGGT GCACAGGAAA AAATAAATAT	2100
CTTCTCAAAT ATGACCACAT AAATATGACC TAATTACAAA ATCATAGTTA GTTCTGTATC	2160
CACTGGAAGT CACTTTCAAT TTTAAGATCT TATTTGTTAA TGCCAGACCT ACTTGCAAGC	2220
AGAGATTAGA GGTCCTTTCT GCTTTATAAC ATTAGGTTCT TCTTGTGAGG CCTTAAGCAT	2280
TTACTAAACA CCTTCAAGTA AGTTTAGTAA AGTTTCATTA CTGCCATTGA TTCAATTATC	2340

AAACTGCTTT	TGTACATATA	AAGAATTCTT	CAGATGCATG	GTTTCTATTA	ACAAGATCCA	2400
ATGCCTTCCT	TTTATTTCCC	CTTCAGTTCA	ACATCTAATA	TATAAAGATT	GCTCTGACTA	2460
CTACGCAATA	GGCAAAAGAA	GCAGTGAGAC	CTACAGAGTT	ACACCTGATO	CCAAAAATAG	2520
TAGCTTTGAA	GTTTACTGTG	ACATGGAGAC	CATGGGGGGA	GGCTGGACAG	TGCTGCAGGC	2580
ACGTCTCGAT	GGGAGCACCA	ACTTCACCAG	AACATGGCAA	GACTACAAAG	CAGGCTTTGG	2640
AAACCTCAGA	AGGGAATTTT	GGCTGGGGAA	CGATAAAATT	CATCTTCTGA	CCAAGAGTAA	2700
GGAAATGATT	CTGAGAATAG	ATCTTGAAGA	CTTTAATGGT	GTCGAACTAT	ATGCCTTGTA	2760
TGATCAGTTT	TATGTGGCTA	ATGAGTTTCT	CAAATATCGT	TTACACGTTG	GTAACTATAA	2820
TGGCACAGCT	GGAGATGCAT	TACGTTTCAA	CAAACATTAC	AACCACGATC	TGAAGTTTTT	2880
CACCACTCCA	GATAAAGACA	ATGATCGATA	TCCTTCTGGG	AACTGTGGGC	TGTACTACAG	2940
TTCAGGCTGG	TGGTTTGATG	CATGTCTTTC	TGCAAACTTA	AATGGCAAAT	ATTATCACCA	3000
AAAATACAGA	GGTGTCCGTA	ATGGGATTTT	CTGGGGTACC	TGGCCTGGTG	TAAGTGAGGC	3060
ACACCCTGGT	GGCTACAAGT	CCTCCTTCAA	AGAGGCTAAG	ATGATGATCA	GACCCAAGCA	3120
CTTTAAGCCA	TAAATCACTC	TGTTCATTCC	TCCAGGTATT	CGTTATCTAA	TAGGGCAATT	3180
AATTCCTTGT	TTCATATTTT	TCATAGCTAA	AAAATGATGT	CTGACGGCTA	GGTTCTTATG	3240
CTACACAGCA	TTTGAAATAA	AGCTGAAAAA	CAATGCATTT	TAAAGGAGTC	CTTTGTTGTT	3300
ATGCTGTTAT	CCAATGAACA	CTTGCAAGCA	ATTAGCAATA	TTGAGAATTA	TACATTAGAT	3360
TTACAATTCT	TTTAATTTCT	ATTGAAACTT	TTTCTATTGC	TTGTATTACT	TGCTGTATTT	3420
AAAAAATAAT	TGTTGGCTGG	GTGTGGTAGC	TCACGCCTGT	AATCCCAGCA	CTTTGGAATG	3480
TCAAGGCAGG	CAGATCACTT	GAGGTCAGGA	GTTTGAGACC	AGCCTGGCCA	AACATGTGAA	3540
ACGCTGTCTC	TATTAAAAAT	ACAAAAATTA	GCCGGGCATG	GTGGTACATG	CCTGTAATCA	3600
ACGCTGTTTA	TTAAAAATAC	AAAAATTAGC	CGGGCATGGT	GGACATGCCT	GTAATCCTAG	3660
TACTTGGGAG	GCTGAGGCAG	GAGAATCGCT	TGAACCTGAG	AGGAAGAGGT	TGCAGTGAGC	3720
CAAGAATGAG	CCACTGCACT	CCAGCATGGG	TGACAGAGAA	AACTCTGTCT	CAAACAAAA	3780
AATAATAAAA	TTTATTCAGT	AGGTGGATTC	TACACAAAGT	AATCTGTATT	TGGGCCATGA	3840
TTTAAGCACA	TCTGAAGGTA	TATCACTCTT	TTCAGGCTAT	AATTATTTGG	GTAATCTTCA	3900
TTCTGAGACA	AACTTAATCT	ATATCATTTA	CTTTGCAACA	GAACAACCCT	ACAGCATTTT	3960
GGTTCCCAGA	CTAAGGGAAC	TAATATCTAT	ATAATTAAAC	TTGTTCATTT	ATCATTCATG	4020
AAATATAAAA	TACTTGTCAT	TTAAACCGTT	TAAAAATGTG	GTAGCATAAT	GTCACCCCAA	4080
AAAGCATTCA	GAAAGCAATG	TAACTGTGAA	GACCAGGGTT	TAAAGGTAAT	TCATTTATAG	4140
TTTATAACTC	CTTAGATGTT	TGATGTTGAA	AACTGCTTTA	ACATGAAAAT	TATCTTCCTC	4200
TGCTCTGTGT	GAACAATAGC	TTTTAATTTA	AGATTGCTCA	CTACTGTACT	AGACTACTGG	4260
TAGGTTTTTT	TGGGGGGGG	TGGGTAGGGA	TATGTGGGTA	ATGAAGCATT	TACTTACAGG	4320

CTATCATACT	CTGAGGCCAA	TTTTATCTCC	AAAGCAATAA	TATCATTAAG	TGATTCACTT	4380
CATAGAAGGC	TAAGTTTCTC	TAGGACAGAT	AGAAAACATG	AATTTTGAAA	TATATAGAAC	4440
AGTAGTTAAA	ATACTATATA	TTTCAACCCT	GGCTGGTAGA	TTGCTTATTT	TACTATCAGA	4500
AACTAAAAGA	TAGATTTTTA	CCCAAACAGA	AGTATCTGTA	ATTTTTATAA	TTCATCAATT	4560
CTGGAATGCT	АТАТАТАТА	TTTAAAAGAC	TTTTTAAATG	TGTTTAATTT	CATCATCGTA	4620
AAAAGGGATC						4630

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 439 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- Met Lys Leu Ala Asn Trp Tyr Trp Leu Ser Ser Ala Val Leu Ala Thr
- Tyr Gly Phe Leu Val Val Ala Asn Asn Glu Thr Glu Glu Ile Lys Asp 20 25 30
- Glu Arg Ala Lys Asp Val Cys Pro Val Arg Leu Glu Ser Arg Gly Lys 35 40 45
- Cys Glu Glu Ala Gly Glu Cys Pro Tyr Gln Val Ser Leu Pro Pro Leu 50 60
- Thr Ile Gln Leu Pro Lys Gln Phe Ser Arg Ile Glu Glu Val Phe Lys 65 70 75 80
- Glu Val Gln Asn Leu Lys Glu Ile Val Asn Ser Leu Lys Lys Ser Cys 85 90 95
- Gln Asp Cys Lys Leu Gln Ala Asp Asp Asn Gly Asp Pro Gly Arg Asn 100 105 110
- Gly Leu Leu Pro Ser Thr Gly Ala Pro Gly Glu Val Gly Asp Asn 115 120 125
- Arg Val Arg Glu Leu Glu Ser Glu Val Asn Lys Leu Ser Ser Glu Leu 130 135 140
- Lys Asn Ala Lys Glu Glu Ile Asn Val Leu His Gly Arg Leu Glu Lys 145 150 155 160
- Leu Asn Leu Val Asn Met Asn Asn Ile Glu Asn Tyr Val Asp Ser Lys
- Val Ala Asn Leu Thr Phe Val Val Asn Ser Leu Asp Gly Lys Cys Ser 180 185 190
- Lys Cys Pro Ser Gln Glu Gln Ile Gln Ser Arg Pro Val Gln His Leu 195 200 205
- Ile Tyr Lys Asp Cys Ser Asp Tyr Tyr Ala Ile Gly Lys Arg Ser Ser 210 215 220

Glu 225	Thr	Tyr	Arg	Val	Thr 230	Pro	Asp	Pro	Lys	Asn 235	Ser	Ser	Phe	Glu	Val 240
Tyr	Cys	Asp	Met	Glu 245	Thr	Met	Gly	Gly	Gly 250	Trp	Thr	Val	Leu	Gln 255	Ala
Arg	Leu	Asp	Gly 260	Ser	Thr	Asn	Phe	Thr 265	Arg	Thr	Trp	Gln	Asp 270	Tyr	Lys
Ala	Gly	Phe 275	Gly	Asn	Leu	Arg	Arg 280	Glu	Phe	Trp	Leu	Gly 285	Asn	Asp	Lys
Ile	His 290	Leu	Leu	Thr	Lys	Ser 295	Lys	Glu	Met	Ile	Leu 300	Arg	Ile	Asp	Leu
Glu 305	Asp	Phe	Asn	Gly	Val 310	Glu	Leu	Tyr	Ala	Leu 315	Tyr	Asp	Gln	Phe	Tyr 320
Val	Ala	Asn	Glu	Phe 325	Leu	Lys	Tyr	Arg	Leu 330	His	Val	Gly	Asn	Tyr 335	Asn
Gly	Thr	Ala	Gly 340	Asp	Ala	Leu	Arg	Phe 345	Asn	Lys	His	Tyr	Asn 350	His	Asp
Leu	Lys	Phe 355	Phe	Thr	Thr	Pro	Asp 360	Lys	Asp	Asn	Asp	Arg 365	Tyr	Pro	Ser
Gly	Asn 370	Cys	Gly	Leu	Tyr	Tyr 375	Ser	Ser	Gly	Trp	Trp 380	Phe	Asp	Ala	Cys
Leu 385	Ser	Ala	Asn	Leu	Asn 390	Gly	Lys	Tyr	Tyr	His 395	Gln	Lys	Туr	Arg	Gly 400
Val	Arg	Asn	Gly	Ile 405	Phe	Trp	Gly	Thr	Trp 410	Pro	Gly	Val	Ser	Glu 415	Ala
His	Pro	Gly	Gly 420	Tyr	Lys	Ser	Ser	Phe 425	Lys	Glu	Ala	Lys	Met 430	Met	Ile
Arg	Pro	Lys 435	His	Phe	Lys	Pro									

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 5403 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CATAAGGCGT	GTCTGACAAA	TTCTTCATAC	ACACATTTCC	CCTTTGCACA	TTCAGTCTGT	60
ATAGGTTATT	TCTATAGGAG	АААААААТА	TTCAAATTCC	TTGTGCACTG	GTAACAGGCA	120
TGAAGGCTCA	GCAAAGCCAA	TACGTGTTAT	GTCCAGTTGG	AGACAGTGCC	AGGGCCAACA	180
TTCCAGACTT	CTCAGATAGA	AAGTGCGCCT	GCCTGCCCTG	CTCTGAGAAT	TTGAAGAGAG	240
TAGTTCAGTT	AGAATTAAGA	GGCAGTAGAG	AAAAGTCTTG	GGAAATCTGG	TTAGAGATAT	300
AAATATGAGA	ACTGGACATG	GTGGTACACA	CCTGTGATCT	CTGTGTTTAG	GAGGGAGAGG	360

CAGAGAGATC	AGGAGTTCAA	GGCCAGCCTG	AGCTACTTGA	GACCCAGTCT	' AAATAAATAA	420
GAGATAGATT	ACAGAGTGCC	TTTAACTAGT	ACAGAGAAAG	AATTTGGGTT	TATCTGTGTC	480
AGTTACGCTG	AAATAATTTT	TAAGTAATAA	AATCCCTTTT	AATAAGAAAC	CTTATGAGGT	540
CAGTATGCAC	AATGAACTTA	AGAGAGACCC	CCAGCTCCTG	AGCTGAGTGA	TGGGGAAGGA	600
CAGCCACTGC	CTGTGATGTG	TGAGTGACGT	GCTTCCAAGT	GTTTTAACCA	CTGACGATTA	660
CATAGCCTGC	ACAGTCAGGA	GAAAACAGCC	GTATTCTCTG	CCAGTTCTCT	TCCCTTTTAC	720
AAACAGATGA	GAGACACACA	CAGAGAATCC	ATTTAAAGAG	CGGACCTTTG	TTCTGATTAG	780
GGGCAATTTT	AAGTACTTAA	GAGTTCACAC	AAAGTCTAGC	CTTCAAAAAG	AAAACAGGTT	840
CCCAAACTAG	GGAGGAAACA	GAATCATTTC	CATTTTGGTG	ACATTTAGTG	GGAAGAAGCT	900
CACAGACATT	TAGACGTTCC	AACTCTTTCC	CCACTAGTGG	ACCAAGTATA	TAATATGGTA	960
TCTTTTGGGC	ACTGGTATTA	CAACTGTTTT	TTAAACAAAA	GACTTTCCTT	GTGCTTTACT	1020
AAAAACCCAG	ACGGTGAATC	TTGAATACAA	TGCGTGGCAC	CCACGGCAGG	CATTCTATTG	1080
TGCATAGTTT	TGACTGACAG	GAGATGACAG	CATTTGGCTG	GCTGCGCTTG	CTGAGGACCC	1140
TCTCCTCCTG	TGTGGCGTCT	GAGACTGTGA	TGCAAATGCG	CCCGCCCTTT	TCTGGGAACT	1200
CAGAACGCCT	GAGTCAGGCG	GCGGTGGCTA	TTAAAGCGCC	TGGTCAGGCT	GGGCTGCCGC	1260
ACTGCAAGGA	TGAGGCTTCC	TGGTTGGTTG	TGGCTGAGTT	CTGCCGTCCT	CGCTGCCTGC	1320
CGAGCGGTGG	AGGAGCACAA	CCTGACTGAG	GGGCTGGAGG	ATGCCAGCGC	CCAGGCTGCC	1380
TGCCCCGCGA	GGCTGGAGGG	CAGCGGGAGG	TGCGAGGGGA	GCCAGTGCCC	CTTCCAGCTC	1440
ACCCTGCCCA	CGCTGACCAT	CCAGCTCCCG	CGGCAGCTTG	GCAGCATGGA	GGAGGTGCTC	1500
AAAGAAGTGC	GGACCCTCAA	GGAAGCAGTG	GACAGTCTGA	AGAAATCCTG	CCAGGACTGT	1560
AAGTTGCAGG	CTGACGACCA	TCGAGATCCC	GGCGGGAATG	GAGGGAATGG	AGCAGAGACA	1620
GCCGAGGACA	GTAGAGTCCA	GGAACTGGAG	AGTCAGGTGA	ACAAGCTGTC	CTCAGAGCTG	1680
AAGAATGCAA	AGGACCAGAT	CCAGGGGCTG	CAGGGGCGCC	TGGAGACGCT	CCATCTGGTA	1740
AATATGAACA	ACATTGAGAA	CTACGTGGAC	AACAAAGTGG	CAAATCTAAC	CGTTGTGGTC	1800
AACAGTTTGG	ATGGCAAGTG	TTCCAAGTGT	CCCAGCCAAG	AACACATGCA	GTCACAGCCG	1860
GGTAGGTGTA	ATGAGGGTCA	TACAGTTTGT	TCATGAAAGC	TGTATAGCCA	GATAGTGGCC	1920
ATAAACATTA	ACCCGAGGGA	GCATAAGTTA	GTCAGACTTT	CACCTGTTAA	GTTATGGCAG	1980
GAGAAACAAG	TGTTTTCTCA	AATGAGACAA	CAGAAATGGT	AAATGATCCA	CGTACAAAAA	2040
TCCTATTAGT	TGTACTCGTT	AGAGACCGTC	ACTTGCAAGT	CTCTAGACCT	TCCCTGCTAG	2100
GTCGACCAAC	AGACGAGCAG	AAACAGATTC	CTCCCGGAAT	CTGAACACAT	ATTTGAACAC	2160
AGGACAGGTA	TGGCAAGGTT	CCTGGCTCTG	CTTGCTTAGG	TCCCTGGGAA	TCAGATCTTG	2220
GGTGGCTGAT	GGGCTTTATA	AGGCTTTCAC	AAACAATCTG	CTGTGCTAGG	TTCTCAAATA	2280
TCTAGTGAGA	ATGGGAGATT	TTTATACATG	GAAGCATCTC	TCCTCTCTCT	СТССТСТСТС	2340

- 69 -

C	CTCTCTCTTC	TCTCTCTCTC	тстстстстс	TCTCTCTCTC	TCTCTCTCTC	TCTCTCTCTC	2400
C	CTCCCTCCCT	CCCTCTCTCT	CTCTTTGTGT	GCGTGTGTGG	TGGGGATGAG	GACACGTGTA	2460
C	GAACTTCGGG	GGTTGAGACT	TAGTGCATAT	GCATCCTCAC	CATTCCAGTT	AGTGAATGTT	2520
7	ACACTATTT	AAGGTCACAG	ACCTAACAGC	CTTCTGTGTC	CGGATTCCTG	GATTCCTAGG	2580
2	ACCTTTGTGG	ATGGGTTGCC	ACACCCTCTG	TGTTCATCCT	GACTGTGAGG	TCGATGGGAC	2640
I	ATAGTAGGGA	TAACTTTCAT	TTGGAATCTC	TAGAGATGGT	AGGTCATCAT	GTCATAGAAT	2700
C	GTTATCACTA	ATGACCAAGA	TAGACACTCA	TGTTTAAGAG	ACATCACAAG	GTGTATATTA	2760
7	AATATGACAT	GGCATATAAC	TTGTAATGAC	ACAAAAATAT	TCTGTTACCT	ACTTTTCTCC	2820
,	TAAAAGCTTG	GGACTCTCCA	GAGTTCTAAA	TACATGCAAA	CAGATTATTG	TGTTTTACAG	2880
(GAATCTTATA	TTGAACTTTC	TTTACCTGAC	TCAAATTTTA	TTAAAATTAA	CTGGGAACAA	2940
ž	ATAGTTGGTC	TCTAATCTCT	ACAAAAACCA	CCAAATGATT	ACACTGAGCA	TAATTATAAT	3000
(CACCCTGCTG	CTACGTCTAG	AAACCAAACT	GTGAAATATT	GGCTGACTGT	ATACCTTCCT	3060
ž	AAATAATAAA	TTCAGGATAA	CATTGCCATA	TTATTGGAGA	ACCCCCCCT	CCCTTTTAAA	3120
	ACTGGAATCA	TTTTATGTCA	ATCTCAGGTG	AAATACGAAT	GGGTTTCAGA	ACAGTGCTGT	3180
(GCACTGAAGG	CTGACATTTA	GAACATATAT	AACGATTTCT	GTAAAGTCTG	CTGTAACAAT	3240
,	TGCTGATTGT	ATCCTAGGAG	ACTTGGACTC	CTCTCAACGT	TAAGGCAGAG	GAATATAATG	3300
	GTTATGAGAG	TAAAACTCTC	TGTCAGGTAC	ATCTGGCTTT	CTGTCCCAGC	TCTGTCACTT	3360
	AACACTTAGT	TGCGGTGGGA	AAACTCCCTG	ATCTTCCGGG	AGACTAAGTA	ACTGTATAAG	3420
	CAAGCTGGCC	GTGATATCCA	CGTCGTAAGG	CTGCTGTGTG	GGTTCAGTGA	AAACTGTTAC	3480
	AGTGATTGGC	AGAGTTTCTG	GAGGTCATTG	ACCCTCATTA	AACCTTGCAT	ACACTTATTC	3540
	TTACTACTCT	TTGCTGTTAG	TGTTGCCACC	AGGATTGCCA	TTCAAGGCAG	TCCTGTATAC	3600
	TTGATAACAC	CAGTTGGTTC	TGAGGCCTTA	GTTAGCATCT	GTTAGCCTGG	TTCAGGAGAG	3660
	TGTATCAGAG	CCAGGTTCCT	CTATCACATA	AACTGTAACG	CAAGTGAATT	GTCCAATTGC	3720
	TGTTGAGTCT	GAGAGTCCTT	GAGGTGCATA	GCTTTGACTA	ATAAATCCCC	ATGCTTTTAT	3780
	GCTTTTCCTT	CCTCCCTCTT	CCAGTTCAAC	ATCTAATATA	CAAAGATTGT	TCCGACCACT	3840
	ACGTGCTAGO	AAGGAGAAGC	AGTGGGGCCT	ACAGAGTTAC	CCCTGATCAC	AGAAACAGCA	3900
	GCTTTGAGGT	T CTACTGTGAC	ATGGAGACCA	TGGGTGGAGG	CTGGACGGTG	CTGCAGGCTC	3960
	GCCTTGATG	CAGCACCAAC	TTCACCAGAG	AGTGGAAAGA	CTACAAAGCC	GGCTTTGGAA	4020
	ACCTTGAAC	G AGAATTTTGG	TTGGGCAACG	ATAAAATTCA	TCTTCTGACC	AAGAGTAAGG	4080
	AAATGATTT	r gagaatagai	CTTGAAGACT	TTAATGGTCT	CACACTTTAT	GCCTTGTATG	4140
	ATCAGTTTT	a TGTGGCTAA1	GAATTTCTCA	AATACCGATT	ACACATCGGT	AACTACAATG	4200
	GCACGGCAG	G GGATGCCTTC	G CGTTTCAGTC	GACACTACAA	CCATGACCTG	AGGTTTTTCA	4260
	CAACCCCAG	A CAGAGACAA	GATCGGTACC	CCTCTGGGAA	CTGTGGGCTC	TATTACAGCT	4320

- 70 -

CAGGCTGGTG	GTTTGATTCA	TGTCTCTCTG	CCAATTTAAA	TGGCAAATAT	TACCACCAGA	4380
AATACAAAGG	TGTCCGTAAT	GGGATTTTCT	GGGGCACCTG	GCCTGGTATA	AACCAGGCAC	4440
AGCCAGGTGG	CTACAAGTCC	TCCTTCAAAC	AGGCCAAGAT	GATGATTAGG	CCCAAGAATT	4500
TCAAGCCATA	AATTGCTAGT	GTTCATCTCT	CTGGGCACTC	ACTATCTAAG	AGGACGATGA	4560
ATTCCTTCAG	CCCTTTACCA	TATGTCTCAG	TTTATATTCC	TTTCCTATGG	CTAAACATTT	4620
CCTTTAAAGC	TTTACAGCTT	TTAGAATAAA	GCTGAAAAGA	TCTAAAAAGA	CTCCTATGTT	4680
GCTGTTATAT	GAGGAATGCT	TGAAAGCACT	GGAAATATTG	ACAATTATAC	ATTATAATTG	4740
CAAAACCTTT	CATTTTTATT	AGTTGAAAAG	TTTCCTAATA	TTTTTATTAT	TTTTATAATA	4800
AAAACTAAAT	TATTCAGCAA	GCTAGATTCT	ATATACGCAA	GTTTTATTTT	CACTAGGGCT	4860
AAATATACAC	ATTTGAGAAT	ATACCAGTCC	TTCCAGGTAC	AACTGAAAGC	CAAGAACTGT	4920
AGTATTATCT	TTCGTCTAAG	AAGAACTTAA	AGCATTTTAG	TTCTCAAGAA	GAAGGGCAGG	4980
GATGGGATTG	GGGGCCAGGG	ACAATATGTA	TAGCTAAATG	TATTCATCTA	ATGCAAAATA	5040
TGGCATTAAA	АТАССТАААА	ATGTGGTAGC	ATAATATATG	TCTCTTCCCT	CTCCAATTGA	5100
AAAATAATGT	TACCCTGTAG	ACTTTGGTTT	AGTGGTAATT	CACTTACTGT	TTATAGCCTG	5160
TTAGACCGCG	ATACAAAAGC	TGCTTTATCC	TCTCCCTCTG	CTCTCTGTGC	ACAATGGTTT	5220
			TTCCTTGGGG		TAAGGGAAAA	5280
CACACTGGTT	TATATTTTGA	AAGCCAATCC	TAATCCCAAA	GCAATACTGT	TGTCGAGGAG	5340
			ACAAATGTAT		GAATTTGGGA	5400
ATT						5403
-						

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 432 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
- Met Arg Leu Pro Gly Trp Leu Trp Leu Ser Ser Ala Val Leu Ala Ala
- Cys Arg Ala Val Glu Glu His Asn Leu Thr Glu Gly Leu Glu Asp Ala
- Ser Ala Gin Ala Ala Cys Pro Ala Arg Leu Glu Gly Ser Gly Arg Cys
- Glu Gly Ser Gln Cys Pro Phe Gln Leu Thr Leu Pro Thr Leu Thr Ile
- Gln Leu Pro Arg Gln Leu Gly Ser Met Glu Glu Val Leu Lys Glu Val

Arg Thr Leu Lys Glu Ala Val Asp Ser Leu Lys Lys Ser Cys Gln Asp Cys Lys Leu Gln Ala Asp Asp His Arg Asp Pro Gly Gly Asn Gly Gly Asn Gly Ala Glu Thr Ala Glu Asp Ser Arg Val Gln Glu Leu Glu Ser Gln Val Asn Lys Leu Ser Ser Glu Leu Lys Asn Ala Lys Asp Gln Ile Gln Gly Leu Gln Gly Arg Leu Glu Thr Leu His Leu Val Asn Met Asn Asn Ile Glu Asn Tyr Val Asp Asn Lys Val Ala Asn Leu Thr Val Val Val Asn Ser Leu Asp Gly Lys Cys Ser Lys Cys Pro Ser Gln Glu His Met Gln Ser Gln Pro Val Gln His Leu Ile Tyr Lys Asp Cys Ser Asp His Tyr Val Leu Gly Arg Arg Ser Ser Gly Ala Tyr Arg Val Thr Pro Asp His Arg Asn Ser Ser Phe Glu Val Tyr Cys Asp Met Glu Thr Met Gly Gly Gly Trp Thr Val Leu Gln Ala Arg Leu Asp Gly Ser Thr Asn Phe Thr Arg Glu Trp Lys Asp Tyr Lys Ala Gly Phe Gly Asn Leu Glu Arg Glu Phe Trp Leu Gly Asn Asp Lys Ile His Leu Leu Thr Lys Ser Lys Glu Met Ile Leu Arg Ile Asp Leu Glu Asp Phe Asn Gly Leu Thr Leu Tyr Ala Leu Tyr Asp Gln Phe Tyr Val Ala Asn Glu Phe Leu Lys Tyr Arg Leu His Ile Gly Asn Tyr Asn Gly Thr Ala Gly Asp Ala Leu Arg Phe Ser Arg His Tyr Asn His Asp Leu Arg Phe Phe Thr Thr Pro Asp Arg Asp Asn Asp Arg Tyr Pro Ser Gly Asn Cys Gly Leu Tyr Tyr Ser Ser Gly Trp Trp Phe Asp Ser Cys Leu Ser Ala Asn Leu Asn Gly Lys Tyr Tyr His Gln Lys Tyr Lys Gly Val Arg Asn Gly Ile Phe Trp Gly Thr Trp Pro Gly Ile Asn Gln Ala Gln Pro Gly Gly Tyr Lys Ser 410 Ser Phe Lys Gln Ala Lys Met Met Ile Arg Pro Lys Asn Phe Lys Pro

SEQUENCE LISTING

<110>	Levy, Gary
<120>	Methods of Modulating Immune Coagulation
<130>	9579-37
<140>	
<141>	
<150>	US 09/442,143
<151>	1999-11-15
<160>	53
<170>	PatentIn version 3.1
<210>	1

<211> 4630 <212> DNA <213> Homo sapiens

<400> 60 gatctagggt tggaagccag gtctcctgag tatgcgagaa taaatacagt catggaagtg taaagagtct gccaacattt tgagaatgtg aataggattt ggctaaaatt aaggggatat 120 180 acagaaaagt cataggaaat caggttaaag acataaatat gagataggct acagagtgtt 240 ttaagtaata caataaaaca tttagatttt tgcccatgtc agtcattttg aaattatttt 300 taaagcaaaa aaaccctttt taaacaagaa atcttatgag atgtcaatat gcaaaacaaa 360 ttaaaaggag gtggtttctc taactgaagc tgttcctctt tcctgccttc agcctctgaa gagaaagtta gaaaactatt atcattaatg ctacatgttt tgaacaagct gatataccaa 420 480 gtggcccaga gagcaggtag aagaaccagc gtggagacag aaagcaagag gcccgcctgc 540 cagggctacc tgcagaaaga aagggcaaag atgctgtagg caagagaagt tcaggacaga 600 cactggcata gctcaaagat tcacatttga gcagctgtgg aagatgacag tacaattacc 660 aaaatgtcga agggcaaagg aggcagctac tggttttgat gaaagacaat tatgtccttt

720 taaatgggtc ttagacattt agacatttat atacactatg ctacggacaa aggaatagaa 780 agtagcactt ttttctccac tagttttctt ctctttttca agtagatgaa gcaaaagtca actgcaatag tcagaaagct gtactttgtt acacttagaa acttctaaaa gtgcttaaga 840 tttcacctga aagtccaaca tgaagaaaat acaggctccc caatgcccca ttctaagaag 900 960 gaaaaaggac cattttcatt ttagtaacgt ttctgttcta tagacagttt ggataactag ctcttacttt ttatctttaa aaactgtttt tccagtgaag ttacgtataa ttatttactt 1020 caagcgtagt ataccaaatt actttagaaa tgcaagactt ttcttatact tcataaaata 1080 cattatgaaa gtgaatcttg ttggctgtgt acatttgact ataataattt caatgcatat 1140 1200 tatttctatt gagagtaagt tacagttttt ggcaaactgc gtttgatgag ggctatctcc tcttcctgtg cgtttctaaa acttgtgatg caaacgctcc caccctttcc tgggaacaca 1260 gaaagcctga ctcaggccat ggccgctatt aaagcagctc cagccctgcg cactccctgc 1320 1380 tggggtgagc agcactgtaa agatgaagct ggctaactgg tactggctga gctcagctgt 1440 tcttgccact tacggttttt tggttgtggc aaacaatgaa acagaggaaa ttaaagatga aagagcaaag gatgtctgcc cagtgagact agaaagcaga gggaaatgcg aagaggcagg 1500 ggagtgcccc taccaggtaa gcctgccccc cttgactatt cagctcccga agcaattcag 1560 1620 caggatcgag gaggtgttca aagaagtcca aaacctcaag gaaatcgtaa atagtctaaa gaaatcttgc caagactgca agctgcaggc tgatgacaac ggagacccag gcagaaacgg 1680 1740 actgttgtta cccagtacag gagcccggg agaggttggt gataacagag ttagagaatt 1800 agagagtgag gttaacaagc tgtcctctga gctaaagaat gccaaagagg agatcaatgt acttcatggt cgcctggaga agctgaatct tgtaaatatg aacaacatag aaaattatgt 1860 tgacagcaaa gtggcaaatc taacatttgt tgtcaatagt ttggatggca aatgttcaaa 1920 1980 gtgtcccagc caagaacaaa tacagtcacg tccaggtatg tataataatg ttttcttatc 2040 atatgttcat aaatgttata cagtcagaga tgtatctaaa agattaacct gagtcagtaa gttaaataga tgacagatta agtcttttat ttatcaaggt gcacaggaaa aaataaatat 2100 cttctcaaat atgaccacat aaatatgacc taattacaaa atcatagtta gttctgtatc 2160 cactggaagt cactttcaat tttaagatct tatttgttaa tgccagacct acttgcaagc 2220 agagattaga ggtcctttct gctttataac attaggttct tcttgtgagg ccttaagcat 2280 ttactaaaca ccttcaagta agtttagtaa agtttcatta ctgccattga ttcaattatc 2340 2400 aaactgcttt tgtacatata aagaattctt cagatgcatg gtttctatta acaagatcca 2460 atgeetteet titatiteee etteagitea acatetaata tataaagati getetgaeta ctacgcaata ggcaaaagaa gcagtgagac ctacagagtt acacctgatc ccaaaaatag 2520 2580 tagctttgaa gtttactgtg acatggagac catgggggga ggctggacag tgctgcaggc

2640 acgtctcgat gggagcacca acttcaccag aacatggcaa gactacaaag caggctttgg 2700 aaacctcaga agggaatttt ggctggggaa cgataaaatt catcttctga ccaagagtaa 2760 ggaaatgatt ctgagaatag atcttgaaga ctttaatggt gtcgaactat atgccttgta 2820 tgatcagttt tatgtggcta atgagtttct caaatatcgt ttacacgttg gtaactataa 2880 tggcacagct ggagatgcat tacgtttcaa caaacattac aaccacgatc tgaagttttt caccactcca gataaagaca atgatcgata tccttctggg aactgtgggc tgtactacag 2940 3000 ttcaggctgg tggtttgatg catgtctttc tgcaaactta aatggcaaat attatcacca aaaatacaga ggtgtccgta atgggatttt ctggggtacc tggcctggtg taagtgaggc 3060 acaccetggt ggctacaagt ceteetteaa agaggetaag atgatgatea gacceaagea 3120 3180 ctttaagcca taaatcactc tgttcattcc tccaggtatt cgttatctaa tagggcaatt 3240 aattccttgt ttcatatttt tcatagctaa aaaatgatgt ctgacggcta ggttcttatg ctacacagca tttgaaataa agctgaaaaa caatgcattt taaaggagtc ctttgttgtt 3300 atgctgttat ccaatgaaca cttgcaagca attagcaata ttgagaatta tacattagat 3360 3420 ttacaattct tttaatttct attgaaactt tttctattgc ttgtattact tgctgtattt 3480 aaaaaataat tgttggctgg gtgtggtagc tcacgcctgt aatcccagca ctttggaatg 3540 tcaaggcagg cagatcactt gaggtcagga gtttgagacc agcctggcca aacatgtgaa 3600 acqctqtctc tattaaaaat acaaaaatta gccgggcatg gtggtacatg cctgtaatca 3660 acgctgttta ttaaaaatac aaaaattagc cgggcatggt ggacatgcct gtaatcctag tacttgggag gctgaggcag gagaatcgct tgaacctgag aggaagaggt tgcagtgagc 3720 3780 caagaatgag ccactgcact ccagcatggg tgacagagaa aactctgtct caaacaaaaa 3840 aataataaaa tttattcagt aggtggattc tacacaaagt aatctgtatt tgggccatga 3900 tttaagcaca tctgaaggta tatcactctt ttcaggctat aattatttgg gtaatcttca ttctqaqaca aacttaatct atatcattta ctttgcaaca gaacaaccct acagcatttt 3960 4020 ggttcccaga ctaagggaac taatatctat ataattaaac ttgttcattt atcattcatg 4080 aaatataaaa tacttgtcat ttaaaccgtt taaaaatgtg gtagcataat gtcaccccaa 4140 aaagcattca gaaagcaatg taactgtgaa gaccagggtt taaaggtaat tcatttatag 4200 tttataactc cttaqatqtt tgatgttgaa aactgcttta acatgaaaat tatcttcctc 4260 tgctctgtgt gaacaatagc ttttaattta agattgctca ctactgtact agactactgg taggtttttt tggggggggg tgggtaggga tatgtgggta atgaagcatt tacttacagg 4320 ctatcatact ctgaggccaa ttttatctcc aaagcaataa tatcattaag tgattcactt 4380 4440 catagaaggc taagtttctc taggacagat agaaaacatg aattttgaaa tatatagaac

agtagttaaa atactatata tttcaaccct ggctggtaga ttgcttattt tactatcaga 4500
aactaaaaga tagatttta cccaaacaga agtatctgta atttttataa ttcatcaatt 4560
ctggaatgct atatataata tttaaaagac tttttaaatg tgtttaattt catcatcgta 4620
aaaagggatc 4630

<210> 2

<211> 439

<212> PRT

<213> Homo sapiens fgl2

<400> 2

Tyr Gly Phe Leu Val Val Ala Asn Asn Glu Thr Glu Glu Ile Lys Asp 20 25 30

Glu Arg Ala Lys Asp Val Cys Pro Val Arg Leu Glu Ser Arg Gly Lys 35 40 45

Cys Glu Glu Ala Gly Glu Cys Pro Tyr Gln Val Ser Leu Pro Pro Leu 50 60

Thr Ile Gln Leu Pro Lys Gln Phe Ser Arg Ile Glu Glu Val Phe Lys 65 70 75 80

Glu Val Gln Asn Leu Lys Glu Ile Val Asn Ser Leu Lys Lys Ser Cys 85 90 95

Gln Asp Cys Lys Leu Gln Ala Asp Asp Asn Gly Asp Pro Gly Arg Asn 100 105 110

Gly Leu Leu Pro Ser Thr Gly Ala Pro Gly Glu Val Gly Asp Asn $115 \hspace{1.5cm} 120 \hspace{1.5cm} 125$

Arg Val Arg Glu Leu Glu Ser Glu Val Asn Lys Leu Ser Ser Glu Leu 130 135 140

Leu Asn Leu Val Asn Met Asn Asn Ile Glu Asn Tyr Val Asp Ser Lys 165 170 175

Val Ala Asn Leu Thr Phe Val Val Asn Ser Leu Asp Gly Lys Cys Ser 180 185 190

Lys Cys Pro Ser Gln Glu Gln Ile Gln Ser Arg Pro Val Gln His Leu 195 200 205

Ile Tyr Lys Asp Cys Ser Asp Tyr Tyr Ala Ile Gly Lys Arg Ser Ser 210 215 220

Glu Thr Tyr Arg Val Thr Pro Asp Pro Lys Asn Ser Ser Phe Glu Val 225 230 235 240

Tyr Cys Asp Met Glu Thr Met Gly Gly Gly Trp Thr Val Leu Gln Ala 245 250 255

Arg Leu Asp Gly Ser Thr Asn Phe Thr Arg Thr Trp Gln Asp Tyr Lys 260 265 270

Ala Gly Phe Gly Asn Leu Arg Glu Phe Trp Leu Gly Asn Asp Lys 275 280 285

Ile His Leu Leu Thr Lys Ser Lys Glu Met Ile Leu Arg Ile Asp Leu 290 295 300

Glu Asp Phe Asn Gly Val Glu Leu Tyr Ala Leu Tyr Asp Gln Phe Tyr 305 310 315 320

Val Ala Asn Glu Phe Leu Lys Tyr Arg Leu His Val Gly Asn Tyr Asn 325 330 335

Gly Thr Ala Gly Asp Ala Leu Arg Phe Asn Lys His Tyr Asn His Asp 340 345 350

Leu Lys Phe Phe Thr Thr Pro Asp Lys Asp Asn Asp Arg Tyr Pro Ser 355 360 365

Gly Asn Cys Gly Leu Tyr Tyr Ser Ser Gly Trp Trp Phe Asp Ala Cys 370 375 380

Leu Ser Ala Asn Leu Asn Gly Lys Tyr Tyr His Gln Lys Tyr Arg Gly 385 390 395 400

Val Arg Asn Gly Ile Phe Trp Gly Thr Trp Pro Gly Val Ser Glu Ala 405 410 415

His Pro Gly Gly Tyr Lys Ser Ser Phe Lys Glu Ala Lys Met Met Ile

Arg Pro Lys His Phe Lys Pro

435

<212> DNA

<213> Murine

<400> 60 cataaggcgt gtctgacaaa ttcttcatac acacatttcc cctttgcaca ttcagtctgt ataggttatt tctataggag aaaaaaaata ttcaaattcc ttgtgcactg gtaacaggca 120 tgaaggetea geaaageeaa taegtgttat gteeagttgg agacagtgee agggeeaaca 180 ttccagactt ctcagataga aagtgcgcct gcctgccctg ctctgagaat ttgaagagag 240 300 tagttcagtt agaattaaga ggcagtagag aaaagtcttg ggaaatctgg ttagagatat 360 aaatatgaga actggacatg gtggtacaca cctgtgatct ctgtgtttag gagggagagg cagagagatc aggagttcaa ggccagcctg agctacttga gacccagtct aaataaataa 420 480 gagatagatt acagagtgcc tttaactagt acagagaaag aatttgggtt tatctgtgtc agttacgctg aaataatttt taagtaataa aatccctttt aataagaaac cttatgaggt 540 cagtatgcac aatgaactta agagagaccc ccagctcctg agctgagtga tggggaagga 600 cagecactge etgtgatgtg tgagtgaegt gettecaagt gttttaacca etgaegatta 660 catagcctgc acagtcagga gaaaacagcc gtattctctg ccagttctct tcccttttac 720 aaacagatga gagacacaca cagagaatcc atttaaagag cggacctttg ttctgattag 780 840 gggcaatttt aagtacttaa gagttcacac aaagtctagc cttcaaaaag aaaacaggtt 900 cccaaactag ggaggaaaca gaatcatttc cattttggtg acatttagtg ggaagaagct cacagacatt tagacgttcc aactctttcc ccactagtgg accaagtata taatatggta 960 tcttttgggc actggtatta caactgtttt ttaaacaaaa gactttcctt gtgctttact 1020 1080 aaaaacccag acggtgaatc ttgaatacaa tgcgtggcac ccacggcagg cattctattg 1140 tgcatagttt tgactgacag gagatgacag catttggctg gctgcgcttg ctgaggaccc 1200 tetectectg tgtggcgtet gagactgtga tgcaaatgcg cccgccettt tetgggaact 1260 cagaacgect gagteaggeg geggtggeta ttaaagegee tggteagget gggetgeege 1320 actgcaagga tgaggcttcc tggttggttg tggctgagtt ctgccgtcct cgctgcctgc cgagcggtgg aggagcacaa cctgactgag gggctggagg atgccagcgc ccaggctgcc 1380

1440 tgccccgcga ggctggaggg cagcgggagg tgcgagggga gccagtgccc cttccagctc accetgeeca egetgaecat ecageteecg eggeagettg geageatgga ggaggtgete 1500 1560 aaagaagtgc ggaccctcaa ggaagcagtg gacagtctga agaaatcctg ccaggactgt 1620 aagttgcagg ctgacgacca tcgagatccc ggcgggaatg gagggaatgg agcagagaca gccgaggaca gtagagtcca ggaactggag agtcaggtga acaagctgtc ctcagagctg 1680 1740 aagaatgcaa aggaccagat ccaggggctg caggggcgcc tggagacgct ccatctggta 1800 aatatgaaca acattgagaa ctacgtggac aacaaagtgg caaatctaac cgttgtggtc 1860 aacagtttgg atggcaagtg ttccaagtgt cccagccaag aacacatgca gtcacagccg ggtaggtgta atgagggtca tacagtttgt tcatgaaagc tgtatagcca gatagtggcc 1920 1980 ataaacatta acccgaggga gcataagtta gtcagacttt cacctgttaa gttatggcag 2040 gagaaacaag tgttttctca aatgagacaa cagaaatggt aaatgatcca cgtacaaaaa tcctattagt tgtactcgtt agagaccgtc acttgcaagt ctctagacct tccctgctag 2100 2160 gtcgaccaac agacgagcag aaacagattc ctcccggaat ctgaacacat atttgaacac 2220 aggacaggta tggcaaggtt cctggctctg cttgcttagg tccctgggaa tcagatcttg ggtggctgat gggctttata aggctttcac aaacaatctg ctgtgctagg ttctcaaata 2280 tctagtgaga atgggagatt tttatacatg gaagcatctc tcctctctc ctcctctctc 2340 2400 2460 ctccctccct ccctctctct ctctttgtgt gcgtgtgtgg tggggatgag gacacgtgta 2520 gaacttcggg ggttgagact tagtgcatat gcatcctcac cattccagtt agtgaatgtt 2580 aacactattt aaggtcacag acctaacagc cttctgtgtc cggattcctg gattcctagg 2640 acctttgtgg atgggttgcc acaccttctg tgttcatcct gactgtgagg tcgatgggac 2700 atagtaggga taactttcat ttggaatctc tagagatggt aggtcatcat gtcatagaat gttatcacta atgaccaaga tagacactca tgtttaagag acatcacaag gtgtatatta 2760 2820 aatatgacat ggcatataac ttgtaatgac acaaaaatat tctgttacct acttttctcc 2880 taaaagettg ggacteteca gagttetaaa tacatgeaaa cagattattg tgttttacag 2940 gaatettata ttgaaettte tttaeetgae teaaatttta ttaaaattaa etgggaaeaa 3000 atagttggtc tctaatctct acaaaaacca ccaaatgatt acactgagca taattataat 3060 caccetgetg ctacgtetag aaaccaaact gtgaaatatt ggetgaetgt atacetteet 3120 aaataataaa ttcaggataa cattgccata ttattggaga accccccct cccttttaaa actggaatca ttttatgtca atctcaggtg aaatacgaat gggtttcaga acagtgctgt 3180 3240 gcactgaagg ctgacattta gaacatatat aacgatttct gtaaagtctg ctgtaacaat

tgctgattgt atcctaggag acttggactc ctctcaacgt taaggcagag gaatataatg 3300 3360 gttatgagag taaaactctc tgtcaggtac atctggcttt ctgtcccagc tctgtcactt aacacttagt tgcggtggga aaactccctg atcttccggg agactaagta actgtataag 3420 3480 caagctggcc gtgatatcca cgtcgtaagg ctgctgtgtg ggttcagtga aaactgttac 3540 agtgattggc agagtttctg gaggtcattg accctcatta aaccttgcat acacttattc 3600 ttactactct ttgctgttag tgttgccacc aggattgcca ttcaaggcag tcctgtatac 3660 ttgataacac cagttggttc tgaggcctta gttagcatct gttagcctgg ttcaggagag tgtatcagag ccaggttcct ctatcacata aactgtaacg caagtgaatt gtccaattgc 3720 3780 tgttgagtct gagagtcctt gaggtgcata gctttgacta ataaatcccc atgcttttat gcttttcctt cctccctctt ccagttcaac atctaatata caaagattgt tccgaccact 3840 3900 acgtgctagg aaggagaagc agtggggcct acagagttac ccctgatcac agaaacagca 3960 gctttgaggt ctactgtgac atggagacca tgggtggagg ctggacggtg ctgcaggctc gccttgatgg cagcaccaac ttcaccagag agtggaaaga ctacaaagcc ggctttggaa 4020 accttgaacg agaattttgg ttgggcaacg ataaaattca tcttctgacc aagagtaagg 4080 4140 aaatgatttt gagaatagat cttgaagact ttaatggtct cacactttat gccttgtatg atcagtttta tgtggctaat gaatttctca aataccgatt acacatcggt aactacaatg 4200 gcacggcagg ggatgccttg cgtttcagtc gacactacaa ccatgacctg aggtttttca 4260 4320 caaccccaga cagagacaac gatcggtacc cctctgggaa ctgtgggctc tattacagct 4380 caggctggtg gtttgattca tgtctctctg ccaatttaaa tggcaaatat taccaccaga aatacaaagg tgtccgtaat gggattttct ggggcacctg gcctggtata aaccaggcac 4440 agccaggtgg ctacaagtcc tccttcaaac aggccaagat gatgattagg cccaagaatt 4500 4560 tcaagccata aattgctagt gttcatctct ctgggcactc actatctaag aggacgatga 4620 attecttcag ccctttacca tatgtctcag tttatattcc tttcctatgg ctaaacattt cctttaaagc tttacagctt ttagaataaa gctgaaaaga tctaaaaaaga ctcctatgtt 4680 gctgttatat gaggaatgct tgaaagcact ggaaatattg acaattatac attataattg 4740 4800 caaaaccttt catttttatt agttgaaaag tttcctaata tttttattat ttttataata 4860 aaaactaaat tattcagcaa gctagattct atatacgcaa gttttatttt cactagggct 4920 aaatatacac atttgagaat ataccagtcc ttccaggtac aactgaaagc caagaactgt 4980 agtattatct ttcgtctaag aagaacttaa agcattttag ttctcaagaa gaagggcagg gatgggattg ggggccaggg acaatatgta tagctaaatg tattcatcta atgcaaaata 5040 tggcattaaa atacctaaaa atgtggtagc ataatatatg tctcttccct ctccaattga 5100 5160 aaaataatgt taccctgtag actttggttt agtggtaatt cacttactgt ttatagcctg

<210> 4

<211> 432

<212> PRT

<213> Murine fgl2

<400> 4

Met Arg Leu Pro Gly Trp Leu Trp Leu Ser Ser Ala Val Leu Ala Ala 1 5 10 15

Cys Arg Ala Val Glu Glu His Asn Leu Thr Glu Gly Leu Glu Asp Ala 20 25 30

Ser Ala Gln Ala Ala Cys Pro Ala Arg Leu Glu Gly Ser Gly Arg Cys 35 40 45

Glu Gly Ser Gln Cys Pro Phe Gln Leu Thr Leu Pro Thr Leu Thr Ile 50 55 60

Gln Leu Pro Arg Gln Leu Gly Ser Met Glu Glu Val Leu Lys Glu Val 65 70 75 80

Arg Thr Leu Lys Glu Ala Val Asp Ser Leu Lys Lys Ser Cys Gln Asp 85 90 95

Cys Lys Leu Gln Ala Asp Asp His Arg Asp Pro Gly Gly Asn Gly Gly 100 105 110

Asn Gly Ala Glu Thr Ala Glu Asp Ser Arg Val Gln Glu Leu Glu Ser 115 120 125

Gln Val Asn Lys Leu Ser Ser Glu Leu Lys Asn Ala Lys Asp Gln Ile 130 135 140

Gln Gly Leu Gln Gly Arg Leu Glu Thr Leu His Leu Val Asn Met Asn 145 150 155 160

Asn Ile Glu Asn Tyr Val Asp Asn Lys Val Ala Asn Leu Thr Val Val 165 170 175

Val Asn Ser Leu Asp Gly Lys Cys Ser Lys Cys Pro Ser Gln Glu His 180 185 190

Met Gln Ser Gln Pro Val Gln His Leu Ile Tyr Lys Asp Cys Ser Asp 195 200 205

His Tyr Val Leu Gly Arg Arg Ser Ser Gly Ala Tyr Arg Val Thr Pro 210 215 220

Asp His Arg Asn Ser Ser Phe Glu Val Tyr Cys Asp Met Glu Thr Met 225 230 235 235

Gly Gly Gly Trp Thr Val Leu Gln Ala Arg Leu Asp Gly Ser Thr Asn 245 250 255

Phe Thr Arg Glu Trp Lys Asp Tyr Lys Ala Gly Phe Gly Asn Leu Glu 260 265 270

Arg Glu Phe Trp Leu Gly Asn Asp Lys Ile His Leu Leu Thr Lys Ser 275 280 285

Lys Glu Met Ile Leu Arg Ile Asp Leu Glu Asp Phe Asn Gly Leu Thr 290 295 300

Leu Tyr Ala Leu Tyr Asp Gln Phe Tyr Val Ala Asn Glu Phe Leu Lys 305 310 315 320

Tyr Arg Leu His Ile Gly Asn Tyr Asn Gly Thr Ala Gly Asp Ala Leu 325 330 335

Arg Phe Ser Arg His Tyr Asn His Asp Leu Arg Phe Phe Thr Thr Pro 340 345 350

Asp Arg Asp Asn Asp Arg Tyr Pro Ser Gly Asn Cys Gly Leu Tyr Tyr 355 360 365

Ser Ser Gly Trp Trp Phe Asp Ser Cys Leu Ser Ala Asn Leu Asn Gly 370 375 380

Lys Tyr Tyr His Gln Lys Tyr Lys Gly Val Arg Asn Gly Ile Phe Trp 385 390 395 400

Gly Thr Trp Pro Gly Ile Asn Gln Ala Gln Pro Gly Gly Tyr Lys Ser 405 410 415

<210> 5

<211> 592

<212> DNA

<213> Murine

<400> 5						
	ctggttggtt	gtggctgagt	tctgccgtcc	tegetgeetg	ccgagcggtg	60
gaggagcaca	acctgactga	ggggctggag	gatgccagcg	cccaggctgc	ctgccccgcg	120
aggctggagg	gcagcgggag	gtgcgagggg	agccagtgcc	ccttccagct	caccctgccc	180
acgctgacca	tccagctccc	gcggcagctt	ggcagcatgg	aggaggtgct	caaagaagtg	240
cggaccctca	aggaagcagt	ggacagtctg	aagaaatcct	gccaggactg	taagttgcag	300
gctgacgacc	atcgagatcc	cggcgggaat	ggagggaatg	gagcagagac	agccgaggac	360
agtagagtcc	aggaactgga	gagtcaggtg	aacaagctgt	cctcagagct	gaagaatgca	420
aaggaccaga	tccaggggct	gcaggggcgc	ctggagacgc	tccatctggt	aaatatgaac	480
aacattgaga	actacgtgga	caacaaagtg	gcaaatctaa	ccgttgtggt	caacagtttg	540
gatggcaagt	gttccaagtg	tcccagccaa	gaacacatgc	agtcacagcc	aa	592

<210> 6

<211> 613

<212> DNA

<213> Homo sapiens

<400> 6
atgaagctgg ctaactggta ctggctgagc tcagctgttc ttgccactta cggttttttg 60
gttgtggcaa acaatgaaac agaggaaatt aaagatgaaa gagcaaagga tgtctgccca 120
gtgagactag aaagcagagg gaaatgcgaa gaggcagggg agtgccccta ccaggtaagc 180
ctgccccct tgactattca gctcccgaag caattcagca ggatcgagga ggtgttcaaa 240
gaagtccaaa acctcaagga aatcgtaaat agtctaaaga aatcttgcca agactgcaag 300
ctgcaggctg atgacaacgg agacccaggc agaaacggac tgttgttacc cagtacagga 360
gccccgggag aggttggtga taacagagtt agagaattag agagtgaggt taacaagctg 420

<210> 7

<211> 707

<212> DNA

<213> Murine

cagtcacgtc cag

7 <400> 60 ttcaacatct aatatacaaa gattgttccg accactacgt gctaggaagg agaagcagtg 120 gggcctacag agttacccct gatcacagaa acagcagctt tgaggtctac tgtgacatgg 180 agaccatggg tggaggctgg acggtgctgc aggctcgcct tgatggcagc accaacttca ccagagagtg gaaagactac aaagccggct ttggaaacct tgaacgagaa ttttggttgg 240 gcaacgataa aattcatctt ctgaccaaga gtaaggaaat gattttgaga atagatcttg 300 aagactttaa tggtctcaca ctttatgcct tgtatgatca gttttatgtg gctaatgaat 360 ttctcaaata ccgattacac atcggtaact acaatggcac ggcaggggat gccttgcgtt 420 480 tcagtcgaca ctacaaccat gacctgaggt ttttcacaac cccagacaga gacaacgatc 540 ggtacccctc tgggaactgt gggctctatt acagctcagg ctggtggttt gattcatgtc 600 tctctgccaa cttaaatggc aaatattacc accagaaata caaaggtgtc cgtaatggga ttttctgggg cacctggcct ggtataaacc aggcacagcc aggtggctac aagtcctcct 660 707 tcaaacaggc caagatgatg attaggccca agaatttcaa gccataa

<210> 8

<211> 707

<212> DNA

<213> Homo sapiens

<400> 8
ttcaacatct aatatataa gattgctctg actactacgc aataggcaaa agaagcagtg 60
agacctacag agttacacct gatcccaaaa atagtagctt tgaagtttac tgtgacatgg 120
agaccatggg gggaggctgg acagtgctgc aggcacgtct cgatgggagc accaacttca 180
ccagaacatg gcaagactac aaagcaggct ttggaaacct cagaagggaa ttttggctgg 240

- <210> 9
- <211> 1052
- <212> DNA
- <213> Homo sapiens
- <220>
- <221> misc_feature
- <222> (384)..(384)
- <223> n is any nucleic acid
- <220>
- <221> misc_feature
- <222> (468)..(468)
- <223> n is any nucleic acid
- <220>
- <221> misc_feature
- <222> (470)..(470)
- <223> n is any nucleic acid
- <220>
- <221> misc_feature
- <222> (505)..(505)

<223> n is any nucleic acid

<220>

<221> misc_feature

<222> (524)..(524)

<223> n is any nucleic acid

<220>

<221> misc_feature

<222> (668)..(668)

<223> n is any nucleic acid

<400> 60 atcactctgt tcattcctcc aggtattcgt tatctaatag ggcaattaat tccttcagca 120 ctttagaata tgccttgttt catatttttc atagctaaaa aatgccttgt ttcatatttt 180 tcatagctaa aaaatgatgt ctgacggcta ggttcttatg ctacacagca tttgaaataa 240 agctgaaaaa caatgcattt taaaggagtc ctttgttgtt atgctgttat ccaatgaaca 300 cttgcaagca attagcaata ttgagaatta tacattagat ttacaattct tttaatttct attgaaactt tttctattgc ttgtattact tgctgtattt aaaaaataat tgttggctgg 360 gtgtggtagc tcacgcctgt aatnccagca ctttggaatg tcaaggcagg cagatcactt 420 480 gaggtcagga gtttgagacc agcctggcca aacatgtgaa acgctgtntn tattaaaaaat 540 acaaaaatta gccgggcatg gtggnacatg cctgtaatcc tagntacttg ggaggctgag 600 gcaggagaat cgcttgaacc tgagaggaag aggttgcagt gagccaagaa tgagccactg 660 cactccagca tgggtgacag agaaaactct gtctcaaaca aaaaaataat aaaatttatt 720 cagtaggntg gattctacac aaagtaatct gtatttgggc catgatttaa gcacatctga aggtatatca ctcttttcag gctataatta tttgggtaat cttcattctg agacaaactt 780 aatctatatc atttactttg caacagaaca accctacagc attttggttc ccagactaag 840 900 ggaactaata tctatataat taaacttgtt catttatcat tcatgaaata taaaatactt gtcatttaaa ccgtttaaaa atgtggtagc ataatgtcac cccaaaaagc attcagaaag 960 1020 caatgtaact gtgaagacca gggtttaaag gtaattcatt tatagtttat aactccttag 1052 atgtttgatg ttgaaaactg ctttaacatg aa

<210> 10

<211> 1339

<212> DNA

<213> Murine

<400> 10 tcggtttgga tatcatggga tggaatgaga agggaaagta ggagcccgag agtgcggtaa	60
gacaaggcat aaggegtgte tgacaaatte tteatacaea cattteeeet ttgeacatte	120
agtctgtata ggttatttct ataggagaaa aaaaatattc aaattccttg tgcactggta	180
acaggcatga aggctcagca aagccaatac gtgttatgtc cagttggaga cagtgccagg	240
gccaacattc cagacttete agatagaaag tgegeetgee tgeeetgete tgagaatttg	300
aagagagtag ttcagttaga attaagaggc agtagagaaa agtcttggga aatctggtta	360
gagatataaa tatgagaact ggacatggtg gtacacacct gtgatctctg tgtttaggag	420
ggagaggcag agagatcagg agttcaaggc cagcctgagc tacttgagac ccagtctaaa	480
taaataagag atagattaca gagtgccttt aactagtaca gagaaagaat ttgggtttat	540
ctgtgtcagt tacgctgaaa taatttttaa gtaataaaat cccttttaat aagaaacctt	600
atgaggtcag tatgcacaat gaacttaaga gagaccccca gctcctgagc tgagtgatgg	660
ggaaggacag ccactgcctg tgatgtgtga gtgacgtgct tccaagtgtt ttaaccactg	720
acgattacat agcetgeaca gteaggagaa aacageegta ttetetgeea gttetettee	780
cttttacaaa cagatgagag acacacacag agaatccatt taaagagcgg acctttgttc	840
tgattagggg caattttaag tacttaagag ttcacacaaa gtctagcctt caaaaagaaa	900
acaggttccc aaactaggga ggaaacagaa tcatttccat tttggtgaca tttagtggga	960
agaageteae agaeatttag aegtteeaae tettteeeea etagtggaee aagtatataa	1020
tatggtatct tttgggcact ggtattacaa ctgtttttta aacaaaagac tttccttgtg	1080
ctttactaaa aacccagacg gtgaatcttg aatacaatgc gtggcaccca cggcaggcat	1140
tctattgtgc atagttttga ctgacaggag atgacagcat ttggctggct gcgcttgctg	1200
aggaccetet ceteetgtgt ggegtetgag aetgtgatge aaatgegeee geeettttet	1260
gggaactcag aacgcctgag tcaggcggcg gtggctatta aagcgcctgg tcaggctggg	1320
ctgccgcact gcaaggatg	1339

<210> 11

<211> 1338

<212> DNA

<213> Homo sapiens

<400> 11						
	agccaggtct	cctgagtatg	cgagaataaa	tacagtcatg	gaagtgtaaa	60
gagtctgcca	acattttgag	aatgtgaata	ggatttggct	aaaattaagg	ggatatacag	120
aaaagtcata	ggaaatcagg	ttaaagacat	aaatatgaga	taggctacag	agtgttttaa	180
gtaatacaat	aaaacattta	gatttttgcc	catgtcagtc	attttgaaat	tatttttaaa	240
gcaaaaaaac	cctttttaaa	caagaaatct	tatgagatgt	caatatgcaa	aacaaattaa	300
aaggaggtgg	tttctctaac	tgaagctgtt	cctctttcct	gccttcagcc	tctgaagaga	360
aagttagaaa	actattatca	ttaatgctac	atgttttgaa	caagctgata	taccaagtgg	420
cccagagagc	aggtagaaga	accagcgtgg	agacagaaag	caagaggccc	gcctgccagg	480
gctacctgca	gaaagaaagg	gcaaagatgc	tgtaggcaag	agaagttcag	gacagacact	540
ggcatagctc	aaagattcac	atttgagcag	ctgtggaaga	tgacagtaca	ataccaaaat	600
gtcgaagggc	aaaggaggca	gctactggtt	ttgatgaaag	acaattatgt	ccttttaaat	660
gggtcttaga	catttagaca	tttatataca	ctatgctacg	gacaaaggaa	tagaaagtag	720
cactttttc	tccactagtt	ttcttctctt	tttcaagtag	atgaagcaaa	agtcaactgc	780
aatagtcaga	aagctgtact	ttgttacact	tagaaacttc	taaaagtgct	taagatttca	840
cctgaaagtc	caacatgaag	aaaatacagg	ctccccaatg	ccccattcta	agaagaaaaa	900
ggaccatttt	cattttagta	acgtttctgt	tctatagaca	gtttggataa	ctagctctta	960
ctttttatct	ttaaaaactg	tttttccagt	gaagttacgt	ataattattt	acttcaagcg	1020
tagtatacca	aattacttta	gaaatgcaag	acttttctta	tacttcataa	aatacattat	1080
gaaagtgaat	cttgttggct	gtgtacattt	gactataata	atttcaatgc	atattatttc	1140
tattgagagt	aagttacagt	ttttggcaaa	ctgcgtttga	tgagggctat	ctcctcttcc	1200
tgtgcgtttc	taaaacttgt	gatgcaaacg	ctcccaccct	ttcctgggaa	cacagaaagc	1260
ctgactcagg	ccatggccgc	tattaaagca	gctccagccc	tgcgcactcc	ctgctgggtg	1320
agcagcactg	taaagatg					1338

<210> 12

<211> 1339

<212> DNA

<213> Homo sapiens

<400> 12 tagggttgga agccaggtct cctgagtatg cgagaataaa tacagtcatg gaagtgtaaa 60 gagtctgcca acattttgag aatgtgaata ggatttggct aaaattaagg ggatatacag 120 180 aaaaqtcata ggaaatcagg ttaaagacat aaatatgaga taggctacag agtgttttaa 240 gtaatacaat aaaacattta gatttttgcc catgtcagtc attttgaaat tatttttaaa 300 gcaaaaaaac cctttttaaa caagaaatct tatgagatgt caatatgcaa aacaaattaa 360 aaggaggtgg tttctctaac tgaagctgtt cctctttcct gccttcagcc tctgaagaga aagttagaaa actattatca ttaatgctac atgttttgaa caagctgata taccaagtgg 420 480 cccagagagc aggtagaaga accagcgtgg agacagaaag caagaggccc gcctgccagg gctacctgca gaaagaaagg gcaaagatgc tgtaggcaag agaagttcag gacagacact 540 600 ggcatagctc aaagattcac atttgagcag ctgtggaaga tgacagtaca attaccaaaa tgtcgaaggg caaaggaggc agctactggt tttgatgaaa gacaattatg tccttttaaa 660 tgggtcttag acatttagac atttatatac actatgctac ggacaaagga atagaaagta 720 780 gcactttttt ctccactagt tttcttctct ttttcaagta gatgaagcaa aagtcaactg ccaatagtca gaaagctgta ctttgttaca cttagaaact tctaaaagtg cttaagattt 840 cacctgaaac gccaacatga agaaaataca ggctccccaa tgccccattc taagaagaaa 900 aaqqaccatt ttcattttaq taacqtttct gttctataga cagtttggat aactagctct 960 1020 tactttttat ctttaaaaac tgtttttcca gtgaagttac gtataattat ttacttcaag cgtagtatac caaattactt tagaaatgca agacttttct tatacttcat aaaatacatt 1080 atgaaagtga atcttgttgg ctgtgtacat ttgactataa taatttcaat gcatattatt 1140 1200 tctattgaga gtaagttaca gtttttggca aactgcgttt gatgagggct atctcctctt cctgtgcgtt tctaaaactt gtgatgcaaa cgctcccacc ctttcctggg aacacagaaa 1260 1320 cgctactcag gcacgtgccg gtattaaagc agctccagcc ctgcgcactc cctgctgggt 1339

<210> 13

<211> 328

<212> DNA

<213> Homo sapiens

gagcagcact gtaaagatg

<220>

<221> misc_feature

<222> (265)..(265)

<223> n is any nucleic acid

<213> Artificial Sequence

4400-	12						
<400> ccaagta	13 atat	aatatggtat	cttttgggca	ctggtattac	aactgttttt	taaacaaaag	60
actttco	cttg	tgctttacta	aaaacccaga	cggtgaatct	tgaatacaat	gcgtggcacc	120
cacggca	aggc	attctattgt	gcatagtttt	gactgacagg	agatgacagc	atttggctgc	180
gtgcgct	tgc	tgaggaccct	ctcctcctgt	gtggcgtctg	agactgtgat	gcaaatgcgc	240
ccgccct	ttt	ctgggaactc	agaangcctg	agtcaggcgg	cggtggctat	taaagcgcct	300
ggtcagg	gctg	ggctgccgca	ctccaagg				328
<210>	14						
<211>	23						
<212>	DNA						
<213>	Arti	ificial Sequ	ience				
<220>							
<223>	Prin	mer					
<400>	14	agtgagacct	aca				23
caaaag	augu	agogagaooo					
<210>	15						
<211>	23						
<212>	DNA						
<213>	Art	ificial Seq	uence				
<220>							
<223>	Pri	mer					
<400> ttatcto	15 ggag	tggtgaaaaa	ctt				23
<210>	16						
<211>	22						
<212>	DNA						

<220>	
<223>	Primer
<400> gcaaaca	16 aatg aaacagagga aa
<210>	17
<211>	24
<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	Primer
<400> attgcc	17 ctat tagataacga atac
<210>	18
<211>	15
<212>	PRT
<213>	Homo sapiens
<400>	18
Asp Are	g Tyr Pro Ser Gly Asn Cys Gly Leu Tyr Tyr Ser Ser Gly 5 10 15
<210>	19
<211>	7
<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	API motif
<220>	
<221>	misc_feature
<222>	(4)(4)

<223> n is G or C

- 5		
<210>	20	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	20 caaa aaccgcagaa gg	22
gaaaca	caaa aaccgcagaa gg	
<210>	21	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	21 gaaa tctggttaga g	21
33		
<210>	22	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> gagctg	22 agtg atggggaagg a	21

<210>

<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	23 tggt attacaactg t	21
333		
<210>	24	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	24 ctgt gtggcgtctg a	21
<210>	25	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	25 ggag ggcagggtga a	21
ggacaa	ggag ggcagggcga a	
<210>	26	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	

<220>		
<223>	Primer	
<400> acagtt	26 gtaa taccagtgcc c	21
<210>	27	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> aacgga	27 gacc caggcagaaa c	21
<210>	28	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> cttcgg	28 gagc tgaatagtca a	21
<210>	29	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> gacage	29 aaag tggcaaatct a	21

23

- <210> 30
- <211> 21
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Primer
- <400> 30
- ttctggtgaa gttggtgctc c
- <210> 31
- <211> 23
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Primer
- <400> 31
- caaaagaagc agtgagacct aca
- <210> 32
- <211> 21
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Primer
- <400> 32
- tgaccaagag taaggaaatg a
- <210> 33
- <211> 22
- <212> DNA
- <213> Artificial Sequence

<220>	
<223>	Primer
<400> tgactgt	33 catt tgttcttggc tg
<210>	34
<211>	21
<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	Primer
<400> ttctggg	34 gaac tgtgggctgt a
<210>	35
<211>	19
<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	Primer
<400> ccagcti	35 ccat ctttacagt
<210>	36
<211>	21
<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	Primer

<400> 36 aatcactctg ttcattcctc c 22

21

<210> 37 <211> 19 <212> DNA <213> Artificial Sec <220> <223> Primer <400> 37 gaaataatat gcattgaaa <210> 38 <211> 19 <212> DNA <213> Artificial Sec <220> <223> Primer <400> 38 aacgcacagg aagaggaga <210> 39 <211> 19 <212> DNA <213> Artificial Sec <220> <223> Primer <400> 39 ttgacatcct ttgagatat <210> 40 <211> 17

<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
	37 atat gcattgaaa	19
<210>	38	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
		٠
<220>		
<223>	Primer	
<400> aacgca	38 cagg aagaggaga	19
<210>	39	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> ttgaca	39 tcct ttgagatat	19
<210>	40	
<211>	17	
<212>	DNA	
<213>	Artificial Sequence	

<220>	
<223>	Primer
	40 att ggggagc
<210>	41
<211>	19
<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	Primer
<400> ggctato	41 ctcc tcttcctgt
<210>	42
<211>	20
<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	Primer
	42 atgc cagtgtctgt
<210>	43
<211>	19
<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	Primer
<400> caagcg	43 tagt ataccaaat

21

<210>	44
<211>	18
<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	Primer
<400> aaggca	44 ggaa agaggaac
<210>	45
<211>	21
<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	Primer
<400>	45 ggaa tagaaagtag c
3	
<210>	46
<211>	19
<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	Primer
<400> cagggo	46 caaaa atctaaatg
<210>	47
<211>	19
<212>	DNA
<213>	Artificial Sequence

<220>	
<223>	Primer
<400> gcccaga	47 agag caggtagaa
<210>	48
<211>	18
<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	Primer
<400> ccagcca	48 aggg ttgaaata
<210>	49
<211>	18
<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	Primer
	49 tcag tcattttg
<210>	50
<211>	19
<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	Primer
<400> aaaaaa	50 ctac cagtagtct

	4
- 91 -	

<210>	51
-------	----

- <211> 17
- <212> DNA
- <213> Artificial Sequence

<220>

- <223> Primer
- <400> 51

ttggggtgac attatgc

- <210> 52
- <211> 20
- <212> DNA
- <213> Artificial Sequence

<220>

- <223> Primer
- <400> 52

tgagcagcac tgtaaagatg

- <210> 53
- <211> 20
- <212> DNA
- <213> Artificial Sequence

<220>

- <223> Primer
- <400> 53

gtggcttaaa gtgcttgggt

20

20