Chapitre III: Vecteurs aléatoires réels

Module PROBABILITÉS

A.U: 2023-2024

- Introduction
- 2 Notion d'un vecteur aléatoire rée
- 3 Lois de probabilité d'un vecteur aléatoire
- Moments d'un vecteur aléatoire
- 5 Formule de changement de variable
- Motion d'indépendance

Introduction

On considère une expérience aléatoire modélisée par un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$ et on définit X et Y deux v.a.r tels que :

- X modélise le poids moyen d'un individu, $X(\omega) = [47,72]$ (en kg).
- Y modélise la taille moyenne d'un individu, $Y(\omega) = [1.50, 1.80]$ (en m).

Introduction

On considère une expérience aléatoire modélisée par un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$ et on définit X et Y deux v.a.r tels que :

- X modélise le poids moyen d'un individu, $X(\omega) = [47,72]$ (en kg).
- Y modélise la taille moyenne d'un individu, $Y(\omega) = [1.50, 1.80]$ (en m).

Question:

- Comment modéliser le couple (X, Y)?
- ② Plus généralement : comment modéliser un vecteur $Z = (X_1, ..., X_d) \in \mathbb{R}^d$, de dimensions $d \ge 1$, dont les composantes $X_i, 1 \le i \le d$, sont des v.a.r? (cas de la pluspart des expériences aléatoires!).

Introduction : exemple des réalisations d'un vecteur aléatoire

Soit $Z = (X_1, ..., X_d) \in \mathbb{R}^d$: mesures de battement cardiaque enregistré à des temps sucessifs $0 \le t_1 \le t_2 \le ... \le t_d$.

Figure 1: Réalisation $Z(\omega_1)$ pour n = 128 milles secondes

Introduction : exemple des réalisations d'un vecteur aléatoire

Soit $Z=(X_1,...,X_d)\in\mathbb{R}^d$: mesures de battement cardiaque enregistré à des temps sucessifs $0\leq t_1\leq t_2\leq ...\leq t_d$.

Figure 2 : Réalisation $Z(\omega_2)$ pour n = 128 milles secondes

- 2 Notion d'un vecteur aléatoire réel
- 3 Lois de probabilité d'un vecteur aléatoire
- Moments d'un vecteur aléatoire
- 5 Formule de changement de variable

Vecteur aléatoire réel

Définitions

① On appelle **vecteur aléatoire (V.a.)** de dimension $d \ge 1$ ou une variable aléatoire à valeurs dans \mathbb{R}^d toute application :

$$X: (\Omega, \mathcal{A}) \longrightarrow (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$$

$$\omega \mapsto \Big(X_1(\omega), ..., X_d(\omega)\Big)$$

telle que chaque application coordonnée $X_i: (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ $1 \leq i \leq d$, est une variable aléatoire réelle.

- **1** Un vecteur aléatoire X à valeurs dans \mathbb{R}^d est un d-uplet $(X_1, X_2, ..., X_d)$ des v.a. réelles
- **3** Lorsque d = 2, $X = (X_1, X_2)$ est dit un **couple aléatoire**.

Vecteur aléatoire réel

Définitions

① On appelle **vecteur aléatoire (V.a.)** de dimension $d \ge 1$ ou une variable aléatoire à valeurs dans \mathbb{R}^d toute application :

$$X: (\Omega, \mathcal{A}) \longrightarrow (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$$

$$\omega \mapsto \Big(X_1(\omega), ..., X_d(\omega)\Big)$$

telle que chaque application coordonnée $X_i: (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ $1 \leq i \leq d$, est une variable aléatoire réelle.

- **1** Un vecteur aléatoire X à valeurs dans \mathbb{R}^d est un d-uplet $(X_1, X_2, ..., X_d)$ des v.a. réelles
- **3** Lorsque d = 2, $X = (X_1, X_2)$ est dit un **couple aléatoire**.

Remarque :On note que X est bien une application mesurable de (Ω, \mathcal{A}) dans $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ c.à.d $\forall B \in \mathcal{B}(\mathbb{R}^d), X^{-1}(B) \in \mathcal{A}$.

- Introduction
- Notion d'un vecteur aléatoire réel
- 3 Lois de probabilité d'un vecteur aléatoire
 - Loi conjointe Lois marginales
 - Vecteur aléatoire discret
- Moments d'un vecteur aléatoire
- Formule de changement de variable
- Motion d'indépendance

Proposition

Soit $X=(X_1,X_2,...,X_d):(\Omega,\mathcal{A})\longrightarrow (\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$ un vecteur aléatoire alors

l'application:

$$\mathbb{P}_X:\mathcal{B}(\mathbb{R}^d)\longrightarrow [0,1]$$

définie par :

$$\forall B \in \mathcal{B}(\mathbb{R}^d), \mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B)) \in \mathcal{A}$$

est une mesure de probabilité sur $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$.

Proposition

Soit $X = (X_1, X_2, ..., X_d) : (\Omega, \mathcal{A}) \longrightarrow (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ un vecteur aléatoire alors l'application :

$$\mathbb{P}_X:\mathcal{B}(\mathbb{R}^d)\longrightarrow [0,1]$$

définie par :

$$\forall B \in \mathcal{B}(\mathbb{R}^d), \mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B)) \in \mathcal{A}$$

est une mesure de probabilité sur $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$.

Par analogie avec la notion d'une v.a, la notion d'un V.a permet de probabiliser l'espace $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$.

Définitions

• Soit $X = (X_1, X_2, ..., X_d), d \ge 1$ un vecteur aléatoire, la mesure de probabilité \mathbb{P}_X est appeleé **loi conjointe de** X.

- Soit $X = (X_1, X_2, ..., X_d), d \ge 1$ un vecteur aléatoire, la mesure de probabilité \mathbb{P}_X est appeleé loi conjointe de X.
- **②** On appelle **lois marginales**, les lois $\mathbb{P}_{X_1}, \dots, \mathbb{P}_{X_d}$ des v.a. réelles X_1, X_2, \dots, X_d (lois des composantes).

Définitions

- Soit $X = (X_1, X_2, ..., X_d), d \ge 1$ un vecteur aléatoire, la mesure de probabilité \mathbb{P}_X est appeleé **loi conjointe de** X.
- **②** On appelle **lois marginales**, les lois $\mathbb{P}_{X_1},...,\mathbb{P}_{X_d}$ des v.a. réelles $X_1,X_2,...,X_d$ (**lois des composantes**).

Remarque : La connaissance des lois marginales ne détermine pas la loi conjointe \mathbb{P}_X . Tout va dépendre des "relations" pouvant exister entre les variables composantes $X_1,...,X_d$.

Fonction de répartition conjointe

On appelle fonction de répartition de $X = (X_1, ..., X_d), d \ge 1$ ou bien fonction **de répartition conjointe**, la fonction $\mathbb{F}_X : \mathbb{R}^d \longrightarrow [0,1]$ tel que $\forall x = (x_1, ..., x_d) \in \mathbb{R}^d$, on a :

$$\mathbb{F}_{X}(x_{1},...,x_{d}) = \mathbb{P}\Big(\cap_{i=1}^{d} \{X_{i} \in]-\infty,x_{i}]\}\Big) = \mathbb{P}\Big(X_{1} \leq x_{1},...,X_{d} \leq x_{d}\Big)$$

Fonction de répartition conjointe

Définition

On appelle fonction de répartition de $X=(X_1,...,X_d), d\geq 1$ ou bien fonction de répartition conjointe, la fonction $\mathbb{F}_X:\mathbb{R}^d\longrightarrow [0,1]$ tel que $\forall x=(x_1,...,x_d)\in\mathbb{R}^d$, on a :

$$\mathbb{F}_{X}(x_{1},...,x_{d}) = \mathbb{P}\Big(\cap_{i=1}^{d} \{X_{i} \in]-\infty,x_{i}]\}\Big) = \mathbb{P}\Big(X_{1} \leq x_{1},...,X_{d} \leq x_{d}\Big)$$

Proposition

Soit $X = (X_1, ..., X_d), d \ge 1$ un V.a de fonction de répartition \mathbb{F}_X alors :

- **①** \mathbb{F}_X est croissante par rapport à chaque variable.

$$\lim_{\substack{x_i \to -\infty}} \mathbb{F}_X(x_1, ..., \frac{x_i}{\cdot}, ..., x_d) = 0, \quad \lim_{\substack{x_1 \to +\infty, ..., x_d \to +\infty}} \mathbb{F}_X(x_1, ..., x_d) = 1.$$

- **3** \mathbb{F}_X est continue à droite par rapport à chaque variable $x_1, ..., x_d$
- **1** \mathbb{F}_X est discontinue en $(x_1,...,x_d)$ ssi $\mathbb{P}(X_1=x_1,...,X_d=x_d)>0$.

Fonctions de répartition marginales

Proposition

La fonction de répartition conjointe d'un vecteur aléatoire $X=(X_1,...,X_d)$ détermine les fonctions de répartition $\mathbb{F}_{X_1},...,\mathbb{F}_{X_d}$ des variables aléatoires $X_1,...,X_d$ dites fonctions de répartition marginales.

En effet $\forall 1 \leq i \leq d$, on a :

$$\mathbb{F}_{X_i} = \lim_{x_1 \to +\infty, \dots, x_{i-1} \to +\infty, x_{i+1} \to +\infty, \dots x_d \to +\infty} \mathbb{F}_X(x_1, \dots, x_d)$$
$$= \mathbb{F}_X(+\infty, \dots, +\infty, x_i, +\infty, \dots, +\infty)$$

Définition

Soit $X=(X_1,...,X_d)$ est un **vecteur aléatoire discret** si et seulement si chaque application coordonnée (composante) $X_i:\Omega\to\mathbb{R}$ est une **variable aléatoire** discrète.

Définition

Soit $X=(X_1,...,X_d)$ est un **vecteur aléatoire discret** si et seulement si chaque application coordonnée (composante) $X_i:\Omega\to\mathbb{R}$ est une **variable aléatoire discrète**.

Proposition: "Loi conjointe discrète'

Soit $X = (X_1, ..., X_d)$ un vecteur aléatoire discret, alors la loi conjointe de X est caractérisée par la donnée de :

$$\{\mathbb{P}(X=k), k \in X(\Omega)\}$$

$$\iff \{\mathbb{P}\Big((X_1,...,X_d)=(k_1,...,k_d)\Big), \ \forall k=(k_1,...,k_d)\in (X_1(\Omega),...,X_d(\Omega))\}$$

avec :

$$\sum_{k\in X(\Omega)}\mathbb{P}(X=k)=1$$

Proposition: "Lois marginales discrètes"

Soit $X=(X_1,...,X_d)$ un vecteur aléatoire discret, alors $\forall y\in X_1(\Omega)$ la loi marginale de \mathbb{P}_{X_1} de X_1 est donnée par :

$$\mathbb{P}(X_1 = y) = \sum_{k_2 \in X_2(\Omega)}, ..., \sum_{k_d \in X_d(\Omega)} \mathbb{P}(X_1 = y, X_2 = k_2, ..., X_d = k_d)$$

Proposition: "Lois marginales discrètes"

Soit $X=(X_1,...,X_d)$ un vecteur aléatoire discret, alors $\forall y\in X_1(\Omega)$ la loi marginale de \mathbb{P}_{X_1} de X_1 est donnée par :

$$\mathbb{P}(X_1 = y) = \sum_{k_2 \in X_2(\Omega)}, ..., \sum_{k_d \in X_d(\Omega)} \mathbb{P}(X_1 = y, X_2 = k_2, ..., X_d = k_d)$$

Remarque:

À partir de la loi conjointe \mathbb{P}_X , on pourra également déterminer toutes les lois \mathbb{P}_{X_i} de X_i , $1 \le i \le d$, en permutant 1 par l'indice i dans la proposition ci-dessus.

Cas d=2 : Un couple aléatoire discret :

Soient X et Y deux v.a. réelles discrètes, alors on a :

2 Les lois marginales \mathbb{P}_X et \mathbb{P}_Y sont données par :

$$\mathbb{P}(X=i) = \sum_{j \in Y(\Omega)} \mathbb{P}(X=i, Y=j)$$

$$\mathbb{P}(Y=j) = \sum_{i \in X(\Omega)} \mathbb{P}(X=i, Y=j)$$

3 La fonction de répartition $\mathbb{F}_{(X,Y)}$ est donnée par :

$$\forall (x,y) \in \mathbb{R}^2, \mathbb{F}_{(X,Y)}(x,y) = \sum_{i \in X(\Omega) | i \leq x} \sum_{j \in Y(\Omega) | j \leq y} \mathbb{P}(X=i,Y=j)$$

Exemple 1:

Si on considère un couple de variables aléatoires (X,Y) tel que $X(\Omega)=\{-2,0,1\}$ et $Y(\Omega)=\{-1,1,2\}$. De plus on se donne la loi conjointe de ce couple à l'aide du tableau suivant où la valeur de α est un réel à déterminer :

P(X=i,Y=j)	j = -1	j=1	j=2
i = -2	0.2	0.2	α
i = 0	0.1	0.1	0.05
i = 1	0.2	0	0.1

Comme la loi conjointe de (X, Y) est une loi de probabilité, alors :

$$\sum_{i \in X(\Omega)} \sum_{j \in Y(\Omega)} \mathbb{P}(X = i, Y = j) = 1$$

$$\Rightarrow 0, 2 \times 3 + 0, 1 \times 3 + 0.05 + \alpha = 1$$

$$\Rightarrow \alpha = 0.05$$

Exemple 1

Si on voulais connaître la loi de la v.a.r X, il suffit d'appliquer la formule (on pourra également lire le tableau directement) :

$$* \mathbb{P}(X = -2) = \sum_{j \in Y(\Omega)} \mathbb{P}(X = -2, Y = j)
= \mathbb{P}(X = -2, Y = -1) + \mathbb{P}(X = -2, Y = 1) + \mathbb{P}(X = -2, Y = 2)
= 0.2 + 0.2 + 0.05
= 0.45
* \mathbb{P}(X = 0) = \sum_{j \in Y(\Omega)} \mathbb{P}(X = 0, Y = j) = 0.1 + 0.1 + 0.05 = 0.25
* \mathbb{P}(X = 1) = \sum_{j \in Y(\Omega)} \mathbb{P}(X = 1, Y = j) = 0.1 + 0.2 = 0.3$$

La même chose pour déterminer la seconde loi marginale \mathbb{P}_{Y} .

 $i \in Y(\Omega)$

Exercice 1

Soit N le nombre d'enfants d'une famille. On suppose qu'il suit $\mathcal{P}(\lambda), \lambda > 0$ et qu'à chaque naissance, la probabilité que l'enfant soit une fille est $p \in]0,1[$, cepandant la probabilité que ça soit un garçon est q=1-p. On suppose que les sexes de naissance successives sont indépendants. On note X la v.a correspond au nombre de filles par famille, et Y celle du nombre de garçons.

- **1** Déterminer la loi conjointe de (N, X).
- ullet Endéduire la loi de X et de Y.

Solution de l'exercice 1

① Pour un nombre de naissnace fixé $n \in \mathbb{N}^*$, le nombre de filles suit une loi Binomiale des paramètres n et p c.à.d :

Solution de l'exercice 1

① Pour un nombre de naissnace fixé $n \in \mathbb{N}^*$, le nombre de filles suit une loi Binomiale des paramètres n et p c.à.d :

$$\mathbb{P}(X = k | N = n) = \begin{cases} C_n^k p^k q^{n-k} &, & \text{si } k \leq n \\ 0 &, & \text{si } k > n \end{cases}$$

D'où on déduit que :

$$\mathbb{P}(N = n, X = k) = \mathbb{P}(X = k | N = n) \times \mathbb{P}(N = n)$$

$$= C_n^k p^k q^{n-k} e^{-\lambda} \frac{\lambda^n}{n!}$$

$$= \frac{e^{-\lambda} \lambda^n p^k q^{n-k}}{k! (n-k)!}$$

Solution de l'exercice 1

 $oldsymbol{\Theta}$ À partir de la loi conjointe, on trouve que la loi marginale de X est comme suit :

$$\mathbb{P}(X = k) = \sum_{n \ge k} \mathbb{P}(X = k, N = n)$$

$$= \sum_{n \ge k} \frac{e^{-\lambda} \lambda^n p^k q^{n-k}}{k! (n-k)!}$$

$$= \frac{e^{-\lambda} \lambda^k p^k}{k!} \sum_{n=k}^{+\infty} \frac{\lambda^{n-k} q^{n-k}}{(n-k)!}$$

$$= \frac{e^{-\lambda} \lambda^k p^k}{k!} \sum_{m=0}^{+\infty} \frac{\lambda^m q^m}{(m)!}$$

$$= \frac{e^{-\lambda} \lambda^k p^k}{k!} e^{\lambda q} = e^{-\lambda} e^{\lambda (1-p)} \frac{(\lambda p)^k}{k!} = e^{-\lambda p} \frac{(\lambda p)^k}{k!}$$

Ainsi X suit la loi de poisson de paramètre λp . De même, on pourra montrer que Y suit la loi de poisson de paramètre λq .

Vecteur aléatoire continu

Définition : "Loi conjointe continue'

Soit $X = (X_1, ..., X_d)$ un vecteur aléatoire. On dit que sa loi conjointe \mathbb{P}_X est **continue** s'il existe une fonction réelle $f_X : \mathbb{R}^d \to \mathbb{R}$, tels que :

- f > 0 et mesurable.
- \bullet f est intégrable sur \mathbb{R}^d et

$$\int_{\mathbb{D}} \dots \int_{\mathbb{D}} f_X(x_1, \dots, x_d) dx_1 \dots dx_d = 1$$

La fonction f est appelée la **densité de loi de probabilité** de X. Par la suite, le vecteur $X = (X_1, ..., X_d)$ est dit **continu**.

Vecteur aléatoire continu

Proposition

Soit $X = (X_1, ..., X_d)$ un V.a continu de fonction de répartition \mathbb{F}_X et de densité f_X , alors :

$$\mathbb{F}_X(x_1,...,x_d) = \int_{-\infty}^{x_1} ... \int_{-\infty}^{x_d} f_X(y_1,...,y_d) dy_1...dy_d$$

② \mathbb{F}_X est dérivable presque partout sur \mathbb{R}^d et tel que $\forall (x_1,...,x_d)$ où f_X est continue on a :

$$f_X(x_1,...,x_d) = \frac{\partial^d \mathbb{F}_X}{\partial_{x_1},...,\partial_{x_d}}(x_1,...,x_d)$$

Lois marginales continues

Proposition: "Densités marginales'

Soit $X=(X_1,...,X_d)$ un V.a continu de fonction densité f_X , alors $\forall 1 \leq i \leq d$, la v.a.r X_1 a pour densité :

$$f_{X_i}(\mathbf{u}) = \int_{\mathbb{R}^{d-1}} f_X(x_1, x_2, ..., x_{i-1}, \mathbf{u}, x_{i+1}, ..., x_d) dx_1 ... d_{xd}, \ \forall \mathbf{u} \in \mathbb{R}$$

Lois marginales continues

Proposition: "Densités marginales"

Soit $X=(X_1,...,X_d)$ un V.a continu de fonction densité f_X , alors $\forall 1 \leq i \leq d$, la v.a.r X_1 a pour densité :

$$f_{X_i}(\mathbf{u}) = \int_{\mathbb{R}^{d-1}} f_X(x_1, x_2, ..., x_{i-1}, \mathbf{u}, x_{i+1}, ..., x_d) dx_1 ... d_{xd}, \ \forall \mathbf{u} \in \mathbb{R}$$

Remarques:

 $\stackrel{\blacksquare}{\Rightarrow}$ À partir de la densité conjointe du vecteur X, on pourra déterminer les densités marginales.

Lois marginales continues

Proposition: "Densités marginales"

Soit $X=(X_1,...,X_d)$ un V.a continu de fonction densité f_X , alors $\forall 1 \leq i \leq d$, la v.a.r X_1 a pour densité :

$$f_{X_i}(\mathbf{u}) = \int_{\mathbb{R}^{d-1}} f_X(x_1, x_2, ..., x_{i-1}, \mathbf{u}, x_{i+1}, ..., x_d) dx_1 ... d_{xd}, \ \forall \mathbf{u} \in \mathbb{R}$$

Remarques:

 $\stackrel{\blacksquare}{\Rightarrow}$ À partir de la densité conjointe du vecteur X, on pourra déterminer les densités marginales.

La réciproque est fausse.

Loi continue d'un couple (X, Y)

Cas d=2 : Un couple aléatoire continu :

- **●** La loi conjointe de (X, Y) est dite continue s'elle admet une densité $f_{(X,Y)}: \mathbb{R}^2 \to \mathbb{R}$.

$$\mathbb{F}_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_X(y_1,y_2) d_{y_1} dy_2$$

1 $\mathbb{F}_{(X,Y)}$ est dérivable presque partout sur \mathbb{R}^2 et tel que $\forall (x,y)$ où $f_{(X,Y)}$ est continue on a :

$$f_{(X,Y)}(x,y) = \frac{\partial^2 \mathbb{F}_{(X,Y)}}{\partial_x \partial_y}(x,y)$$

Loi continue d'un couple (X, Y)

Exemple 2:

Soit (X,Y) un vecteur aléatoire sur \mathbb{R}^2 dont la loi admet la densité suivante :

$$f_{(X,Y)}(x,y) = \frac{1}{2\pi} e^{\frac{-(x^2+y^2)}{2}}, \forall (x,y) \in \mathbb{R}^2$$

alors la densité de X et celle de Y sont :

$$f_X(x) = \int_{\mathbb{R}} f_{(X,Y)}(x,y) dy = \frac{1}{2\pi} \int_{\mathbb{R}} e^{\frac{-(x^2 + y^2)}{2}} dy$$
$$= \frac{1}{2\pi} e^{\frac{-x^2}{2}} \int_{\mathbb{R}} e^{\frac{-y^2}{2}} dy$$
$$= \frac{1}{2\pi} e^{\frac{-x^2}{2}} \times \sqrt{2\pi} = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$$

D'où $X \sim \mathcal{N}(0,1)$, et par le même calcul, on montre aussi que $Y \sim \mathcal{N}(0,1)$.

Loi continue d'un couple (X, Y)

Exercice 2:

Soit (X, Y) un vecteur aléatoire dont la densité conjointe est la suivante :

$$f_{(X,Y)}(x,y) = e^{-(x+y)} 1_{[0,+\infty[}(x) \times 1_{[0,+\infty[}(y)$$

Déterminer la loi de X et de Y.

Loi continue d'un couple (X, Y)

Solution de l'exercice 2 :

On a:

$$f_X(x) = \int_{\mathbb{R}} f_{(X,Y)}(x,y) dy = \int_{\mathbb{R}} e^{-(x+y)} 1_{[0,+\infty[}(x) \times 1_{[0,+\infty[}(y)) dy$$

$$= e^{-x} 1_{[0,+\infty[}(x)) \int_{0}^{+\infty} e^{-y} dy$$

$$= e^{-x} 1_{[0,+\infty[}(x)[-e^{-y}]_{0}^{+\infty} = e^{-x} 1_{[0,+\infty[}(x)).$$

De même pour le calcul de la loi de Y, on trouve :

$$f_Y(y) = e^{-y} 1_{[0,+\infty[}(y)$$

Loi continue d'un couple (X, Y)

Solution de l'exercice 2 :

On a:

$$f_X(x) = \int_{\mathbb{R}} f_{(X,Y)}(x,y) dy = \int_{\mathbb{R}} e^{-(x+y)} 1_{[0,+\infty[}(x) \times 1_{[0,+\infty[}(y)) dy$$

$$= e^{-x} 1_{[0,+\infty[}(x)) \int_{0}^{+\infty} e^{-y} dy$$

$$= e^{-x} 1_{[0,+\infty[}(x)[-e^{-y}]_{0}^{+\infty} = e^{-x} 1_{[0,+\infty[}(x)).$$

De même pour le calcul de la loi de Y, on trouve :

$$f_Y(y) = e^{-y} 1_{[0,+\infty[}(y)$$

 \Rightarrow X et Y suivent la loi $\mathcal{E}(1)$.

- Introduction
- 2 Notion d'un vecteur aléatoire rée
- 3 Lois de probabilité d'un vecteur aléatoire
- 4 Moments d'un vecteur aléatoire
- 5 Formule de changement de variable
- 6 Notion d'indépendance

Théorème de transfert

Théorème : "Théorème de transfert"

Soient $X=(X_1,...,X_d)$ un V.a et $g:\mathbb{R}^d\to\mathbb{R}$ une fonction mesurable. Alors $g(X_1,...,X_d)$ est une v.a réelle.

① Si la v.a X est **discrète** et $\mathbb{E}(g(X)) \leq \infty$ alors on a :

$$\mathbb{E}(g(X)) = \sum_{x_1 \in X_1(\Omega) \cdots x_d \in X_d(\Omega)} g(x_1, \cdots, x_d) \mathbb{P}(X_1 = x_1, \cdots, X_d = x_d)$$

Théorème de transfert

Théorème : "Théorème de transfert"

Soient $X=(X_1,...,X_d)$ un V.a et $g:\mathbb{R}^d\to\mathbb{R}$ une fonction mesurable. Alors $g(X_1,...,X_d)$ est une v.a réelle.

① Si la v.a X est **discrète** et $\mathbb{E}(g(X)) \leq \infty$ alors on a :

$$\mathbb{E}(g(X)) = \sum_{x_1 \in X_1(\Omega) \cdots x_d \in X_d(\Omega)} g(x_1, \cdots, x_d) \mathbb{P}(X_1 = x_1, \cdots, X_d = x_d)$$

② Si la v.a X est absolument continue et $\mathbb{E}(g(X)) \leq \infty$ alors on a :

$$\mathbb{E}(g(X)) = \int_{-\infty}^{+\infty}, ..., \int_{-\infty}^{+\infty} g(x) f_X(x) dx_1, ..., dx_d$$

Espérance d'un vecteur aléatoire

Définition

Soit $X=(X_1,\cdots,X_d)$ un V.a telles que les v.a réelles X_1,\cdots,X_d admettent des espérences finies. On appelle **espérance** du vecteur X le vecteur de \mathbb{R}^d

$$\mathbb{E}(X) = (\mathbb{E}(X_1), \mathbb{E}(X_2), \cdots, \mathbb{E}(X_d)).$$

Espérance d'un vecteur aléatoire

Définition

Soit $X=(X_1,\cdots,X_d)$ un V.a telles que les v.a réelles X_1,\cdots,X_d admettent des espérences finies. On appelle **espérance** du vecteur X le vecteur de \mathbb{R}^d

$$\mathbb{E}(X) = (\mathbb{E}(X_1), \mathbb{E}(X_2), \cdots, \mathbb{E}(X_d)).$$

Remarque:

Réellement notre vecteur
$$X$$
 il s'écrit : $X = \begin{pmatrix} X_1 \\ \vdots \\ X_d \end{pmatrix}$ et par la suite

$$\mathbb{E}(X)=\left(egin{array}{c} \mathbb{E}(X_1) \\ dots \\ \mathbb{E}(X_d) \end{array}
ight)$$
 mais par abus de notation on utilise fréquemment les

écritures de transposé).

Définition

Soient X et Y deux variables aléatoires admettant des moments d'ordre 2. On appelle **covariance** de X et Y le réel :

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Définition

Soient X et Y deux variables aléatoires admettant des moments d'ordre 2. On appelle **covariance** de X et Y le réel :

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Si cov(X, Y) = 0, on dit que X et Y sont **non corrélées.**

Définition

Soient X et Y deux variables aléatoires admettant des moments d'ordre 2. On appelle **covariance de** X **et** Y le réel :

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Si cov(X, Y) = 0, on dit que X et Y sont **non corrélées.**

Proposition

Soient X et Y deux v.a réelles admettant des moments d'ordre 2, alors

• $cov(aX + b, cY + d) = ac \ cov(X, Y)$ pour tout réels a, b, c et d.

Définition

Soient X et Y deux variables aléatoires admettant des moments d'ordre 2. On appelle **covariance de** X **et** Y le réel :

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Si cov(X, Y) = 0, on dit que X et Y sont **non corrélées.**

Proposition

Soient X et Y deux v.a réelles admettant des moments d'ordre 2, alors

- \bullet $cov(aX + b, cY + d) = ac \ cov(X, Y)$ pour tout réels a, b, c et d.
- \bigcirc cov(X + Y, Z) = cov(X, Z) + cov(Y, Z)

Définition

Soient X et Y deux variables aléatoires admettant des moments d'ordre 2. On appelle **covariance de** X **et** Y le réel :

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Si cov(X, Y) = 0, on dit que X et Y sont **non corrélées.**

Proposition

Soient X et Y deux v.a réelles admettant des moments d'ordre 2, alors

- \bullet $cov(aX + b, cY + d) = ac \ cov(X, Y)$ pour tout réels a, b, c et d.
- \bigcirc cov(X + Y, Z) = cov(X, Z) + cov(Y, Z)
- $oldsymbol{o}$ cov(X, Y) = cov(Y, X)

Définition

Soient X et Y deux variables aléatoires admettant des moments d'ordre 2. On appelle **covariance** de X et Y le réel :

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Si cov(X, Y) = 0, on dit que X et Y sont **non corrélées.**

Proposition

Soient X et Y deux v.a réelles admettant des moments d'ordre 2, alors

- \bullet $cov(aX + b, cY + d) = ac \ cov(X, Y)$ pour tout réels a, b, c et d.
- $oldsymbol{o}$ cov(X,Y) = cov(Y,X)

Définition

Soit $X=(X_1,\cdots,X_d)$ un V.a telles que les v.a réelles X_1,\cdots,X_d admettent des moments d'ordre 2.

On appelle **matrice de covariance** la matrice réelle d'ordre *d* définie par :

$$\Sigma_X = (cov(X_i, X_j))_{1 \le i, j \le d}$$

$$\Sigma_X = \begin{pmatrix} cov(X_1, X_1) = \mathbb{V}(X_1) & \cdots & cov(X_1, X_d) \\ cov(X_2, X_1) & \cdots & cov(X_2, X_d) \\ \cdots & \cdots & \cdots \\ cov(X_d, X_1) & \cdots & \mathbb{V}(X_d) = cov(X_d, X_d) \end{pmatrix}$$

Définition

Soit $X=(X_1,\cdots,X_d)$ un V.a telles que les v.a réelles X_1,\cdots,X_d admettent des moments d'ordre 2.

On appelle **matrice de covariance** la matrice réelle d'ordre *d* définie par :

$$\Sigma_X = (cov(X_i, X_j))_{1 \le i, j \le d}$$

$$\Sigma_X = \begin{pmatrix} cov(X_1, X_1) = \mathbb{V}(X_1) & \cdots & cov(X_1, X_d) \\ cov(X_2, X_1) & \cdots & cov(X_2, X_d) \\ \cdots & \cdots & \cdots \\ cov(X_d, X_1) & \cdots & \mathbb{V}(X_d) = cov(X_d, X_d) \end{pmatrix}$$

Remarque: En utilisant l'écriture matricielle, on pourra re-écrire cette matrice: $\Sigma_X = \mathbb{E}\Big((X - \mathbb{E}(X))(X - \mathbb{E}(X))^t\Big) = \mathbb{E}(XX^t) - \mathbb{E}(X)(\mathbb{E}(X))^t \text{ où } X^t \in \mathcal{M}_{1,d} \text{ est la transposée du vecteur } X \in \mathcal{M}_{d,1}.$

Conséquences

Soit $X = (X_1, X_2, \dots, X_d)$ un V.a de matrice de covariances Σ_X . Alors

- **1** Pour tout $\alpha \in \mathbb{R}$, $\Sigma_{\alpha X} = \alpha^2 \Sigma_X$.
- **2** Pour tout $u \in \mathbb{R}^d$, $\Sigma_{u+X} = \Sigma_X$.
- \bullet Σ_X est semi-définie positive (i.e ses valeurs propres sont positives ou nulles).
- **§** Soit une matrice $A \in \mathcal{M}_{q \times d}$ et Y une v.a à valeurs dans \mathbb{R}^q tel que Y = AX, alors

$$\Sigma_Y = A\Sigma_X A^t$$

Conséquences

Soit $X = (X_1, X_2, \dots, X_d)$ un V.a de matrice de covariances Σ_X . Alors

- **1** Pour tout $\alpha \in \mathbb{R}$, $\Sigma_{\alpha X} = \alpha^2 \Sigma_X$.
- **2** Pour tout $u \in \mathbb{R}^d$, $\Sigma_{u+X} = \Sigma_X$.
- **3** $(\Sigma_X)^t = \Sigma_X$ (i.e matrice symétrique).
- \bullet Σ_X est semi-définie positive (i.e ses valeurs propres sont positives ou nulles).
- $\textbf{ Soit une matrice } A \in \mathcal{M}_{q \times d} \text{ et } Y \text{ une v.a à valeurs dans } \mathbb{R}^q \text{ tel que } Y = AX, \text{ alors }$

$$\Sigma_Y = A\Sigma_X A^t$$

Proposition

Soient X_1, X_2, \cdots, X_d n v.a réelles admettant des moments d'ordre 2, alors

$$\mathbb{V}(X_1+\cdots+X_d)=\sum_{i=1}^d\mathbb{V}(X_i)+2\sum_{1\leq i< j\leq d}cov(X_i,X_j)$$

Cas d=2 : Un couple aléatoire :

Soit V = (X, Y) un couple aléatoire tel que les v.a.r X et Y ademettent des moments d'ordre 2 alors :

2

$$\Sigma_V = \left(egin{array}{cc} cov(X,X) = \mathbb{V}(X) & cov(X,Y) \ cov(X,Y) & cov(Y,Y) = \mathbb{V}(Y) \end{array}
ight)$$

Exercice 3:

Soit $a \in \mathbb{R}$, et soient $X \in \{0,1\}$ et $Y \in \{0,1\}$ deux variables aléatoires telles que :

$$\mathbb{P}((X,Y)=(0,0))=rac{1}{6}+a;\ \mathbb{P}((X,Y)=(1,0))=rac{1}{3}-a$$

$$\mathbb{P}((X,Y)=(0,1))=rac{1}{2}-a;\ \mathbb{P}((X,Y)=(1,1))=a$$

Exercice 3:

Soit $a\in\mathbb{R}$, et soient $X\in\{0,1\}$ et $Y\in\{0,1\}$ deux variables aléatoires telles que :

$$\mathbb{P}((X,Y) = (0,0)) = \frac{1}{6} + a; \ \mathbb{P}((X,Y) = (1,0)) = \frac{1}{3} - a$$
$$\mathbb{P}((X,Y) = (0,1)) = \frac{1}{2} - a; \ \mathbb{P}((X,Y) = (1,1)) = a$$

- \odot Déterminer les lois marginales de X et de Y.
- **3** Calculer le vecteur espérance ainsi que la matrice de covariance du couple (X,Y).

Solution de l'exercice 3 :

• Comme les 4 expressions représentent des probabilitités, alors forcément chacunes d'entre elle $\in [0,1]$ (déjà la somme vaut $1 \ \forall a \in \mathbb{R}$).

$$\Rightarrow a \in [\frac{-1}{6}, \frac{5}{6}] \text{ et } a \in [\frac{-2}{3}, \frac{1}{3}] \text{ et } a \in [\frac{-1}{2}, \frac{1}{2}] \text{ et } a \in [0, 1] \Rightarrow a \in [0, \frac{1}{3}].$$

Solution de l'exercice 3 :

- **①** Comme les 4 expressions représentent des probabilitités, alors forcément chacunes d'entre elle ∈ [0,1] (déjà la somme vaut $1 \forall a \in \mathbb{R}$). $\Rightarrow a \in [\frac{-1}{6}, \frac{5}{6}]$ et $a \in [\frac{-2}{2}, \frac{1}{2}]$ et $a \in [\frac{-1}{2}, \frac{1}{2}]$ et $a \in [0, 1] \Rightarrow a \in [0, \frac{1}{2}]$.
- La loi de X est donnée par :
 - ▶ $\mathbb{P}(X = 0) = \mathbb{P}((X, Y) = (0, 0)) + \mathbb{P}((X, Y) = (0, 1)) = \frac{1}{6} + a + \frac{1}{2} a = \frac{2}{3}$ ▶ $\mathbb{P}(X = 1) = \mathbb{P}((X, Y) = (1, 0)) + \mathbb{P}((X, Y) = (1, 1)) = \frac{1}{2} a + a = \frac{1}{2}$

Solution de l'exercice 3 :

- **①** Comme les 4 expressions représentent des probabilitités, alors forcément chacunes d'entre elle ∈ [0,1] (déjà la somme vaut $1 \forall a \in \mathbb{R}$). $\Rightarrow a \in [\frac{-1}{6}, \frac{5}{6}]$ et $a \in [\frac{-2}{3}, \frac{1}{3}]$ et $a \in [\frac{-1}{2}, \frac{1}{2}]$ et $a \in [0,1] \Rightarrow a \in [0,\frac{1}{3}]$.
- La loi de X est donnée par :

$$\mathbb{P}(X=0) = \mathbb{P}((X,Y) = (0,0)) + \mathbb{P}((X,Y) = (0,1)) = \frac{1}{6} + a + \frac{1}{2} - a = \frac{2}{3}$$

$$\mathbb{P}(X=1) = \mathbb{P}((X,Y)=(1,0)) + \mathbb{P}((X,Y)=(1,1)) = \frac{1}{3} - a + a = \frac{1}{3}$$

La loi de Y est donnée par :

$$\mathbb{P}(Y=0) = \mathbb{P}((X,Y)=(0,0)) + \mathbb{P}((X,Y)=(1,0)) = \frac{1}{6} + a + \frac{1}{3} - a = \frac{1}{2}$$

$$\mathbb{P}(Y=1) = \mathbb{P}((X,Y)=(1,1)) + \mathbb{P}((X,Y)=(0,1)) = a + \frac{1}{2} - a = \frac{1}{2}$$

3 On pose V = (X, Y), alors calculons $\mathbb{E}(Z)$ et Σ_Z

$$ightharpoonup \mathbb{E}(X) = 0\mathbb{P}(X=0) + 1\mathbb{P}(X=1) = \frac{1}{3} \text{ et } \mathbb{E}(Y) = 0\mathbb{P}(Y=0) + 1\mathbb{P}(Y=1) = \frac{1}{2}$$

$$\Rightarrow \mathbb{E}(Z) = (\frac{1}{3}, \frac{1}{2})$$

•
$$\mathbb{E}(X^2) = 0\mathbb{P}(X = 0) + 1^2\mathbb{P}(X = 1) = \frac{1}{3}$$
 et $\mathbb{E}(Y^2) = \mathbb{P}(Y = 1) = \frac{1}{2}$

Solution de l'exercice 3 :

$$\Rightarrow \mathbb{V}(X) = \frac{1}{3} - \frac{1}{9} = \frac{2}{9} \text{ et } \mathbb{V}(Y) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

Calcul de covariance : $cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$

Solution de l'exercice 3 :

$$\Rightarrow \mathbb{V}(X) = \frac{1}{3} - \frac{1}{9} = \frac{2}{9} \text{ et } \mathbb{V}(Y) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

Calcul de covariance : $cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$ or,

$$\mathbb{E}(XY) = 0\mathbb{P}((X, Y) = (0, 0)) + 0\mathbb{P}((X, Y) = (0, 1))$$
$$+0\mathbb{P}((X, Y) = (1, 0)) + 1\mathbb{P}((X, Y) = (1, 1)) = a$$

Solution de l'exercice 3 :

$$\Rightarrow \mathbb{V}(X) = \frac{1}{3} - \frac{1}{9} = \frac{2}{9} \text{ et } \mathbb{V}(Y) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

Calcul de covariance : $cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$ or.

$$\mathbb{E}(XY) = 0\mathbb{P}\Big((X,Y) = (0,0)\Big) + 0\mathbb{P}\Big((X,Y) = (0,1)\Big)$$
$$+0\mathbb{P}\Big((X,Y) = (1,0)\Big) + 1\mathbb{P}\Big((X,Y) = (1,1)\Big) = a$$
$$\Rightarrow cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = a - \frac{1}{6}$$

Donc

$$\Sigma_{\mathcal{Z}} = \left(egin{array}{ccc} rac{2}{9} & a - rac{1}{6} \ a - rac{1}{6} & rac{1}{4} \end{array}
ight)$$

- Introduction
- 2 Notion d'un vecteur aléatoire réel
- 3 Lois de probabilité d'un vecteur aléatoire
- 4 Moments d'un vecteur aléatoire
- 5 Formule de changement de variable
- Motion d'indépendance

Il s'agit ici d'apprendre à déterminer dans le cas d'un vecteur aléatoire $X=(X_1,...,X_d)$ à **densité**, et pour une application (qui vérifie certaines conditions) donnée par :

$$g$$
 : $\mathbb{R}^d \to \mathbb{R}^d$
 $x = (x_1, ..., x_d) \mapsto g(x) = (g_1(x_1, ..., x_d), ..., g_d(x_1, ..., x_d))$

la loi du vecteur aléatoire Y = g(X).

Définition

Si U et V sont deux ouverts de \mathbb{R}^d , et g une fonction de U dans V, on dit que g est un C^k -difféomorphisme, k > 0, si g est bijective et si g et g^{-1} sont de classe C^k .

Formule de changement de variable

Soit $X=(X_1,\ldots,X_d)$ un vecteur aléatoire de **densité** f_X . Soit $g=(g_1,...,g_d)$ un C^1 -difféomorphisme de l'ouvert $U\subset\mathbb{R}^d$ sur l'ouvert $V\subset\mathbb{R}^d$, alors la densité f_Y du vecteur Y=g(X) est donnée $\forall y=(y_1,...,y_d)$ par :

$$f_Y(y) = f_X(g^{-1}(y)) |J(g^{-1}(y))| \mathbf{1}_V(y)$$

où $g^{-1}=(g_1^{-1},...,g_d^{-1})$ est l'application réciproque de g et $J(g^{-1}(y))$ est le déterminant de la matrice des coefficients $\left(\frac{\partial g_j^{-1}}{\partial y_k}\right)_{1\leq j,k\leq d}$, appelé jacobien de g^{-1} et donné par :

$$J(g^{-1}(y)) = det\left(\frac{\partial g_j^{-1}}{\partial y_k}\right)_{1 \leq j, k \leq d} = \begin{vmatrix} \frac{\partial g_1^{-1}}{\partial y_1}(y_1, \dots, y_d) & \dots & \frac{\partial g_1^{-1}}{\partial y_d}(y_1, \dots, y_d) \\ \dots & \dots & \dots \\ \frac{\partial g_d^{-1}}{\partial y_1}(y_1, \dots, y_d) & \dots & \frac{\partial g_d^{-1}}{\partial y_d}(y_1, \dots, y_d) \end{vmatrix}$$

Cas d=2 : Un couple aléatoire

Soit $X=(X_1,X_2)$ un couple aléatoire de **densité** f_X . Soit $g=(g_1,g_2)$ est un C^1 -difféomorphisme de l'ouvert $U\subset \mathbb{R}^2$ sur l'ouvert $V\subset \mathbb{R}^2$, alors la densité f_Y du vecteur Y=g(X) est donnée $\forall y=(y_1,y_2)$ par :

$$f_Y(y) = f_X(g^{-1}(y)) |J(g^{-1}(y))| \mathbf{1}_V(y)$$

οù

$$J(g^{-1}(y)) = det\left(\frac{\partial g_j^{-1}}{\partial y_k}\right)_{1 \le j, k \le 2} = \begin{vmatrix} \frac{\partial g_1^{-1}}{\partial y_1}(y_1, y_2) & \frac{\partial g_1^{-1}}{\partial y_2}(y_1, y_2) \\ \frac{\partial g_2^{-1}}{\partial y_1}(y_1, y_2) & \frac{\partial g_2^{-1}}{\partial y_2}(y_1, y_2) \end{vmatrix}$$

Exemple 3:

Soit (X, Y) un couple aléatoire qui a pour densité :

$$\mathit{f}_{(X,Y)}(x,y) = \frac{1}{2\pi} \exp\Big(-\frac{1}{2}(x^2+y^2)\Big), \ \forall (x,y) \in \mathbb{R}^2.$$

On veut déterminer la densité du couple $\left(U = \frac{X+Y}{\sqrt{2}}, V = \frac{X-Y}{\sqrt{2}}\right)$. Alors la fonction g considérée est définie de \mathbb{R}^2 dans \mathbb{R}^2 par :

$$g(x,y) = \left(\frac{x+y}{\sqrt{2}}, \frac{x-y}{\sqrt{2}}\right)$$

g est bien un C^1 -difféomorphisme. Déterminons maintenant l'expression de son inverse g^{-1} et trouve que :

$$\left\{ \begin{array}{ll} u & = \frac{x+y}{\sqrt{2}} \\ v & = \frac{x-y}{\sqrt{2}} \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{ll} \frac{2x}{\sqrt{2}} & = u+v \\ \frac{2y}{\sqrt{2}} & = u-v \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{ll} x & = \frac{u+v}{\sqrt{2}} \\ y & = \frac{u-v}{\sqrt{2}} \end{array} \right.$$

Ainsi $J_{g^{-1}}$ le jacobien de g^{-1} est :

Suite de l'exemple 3 :

$$J(g^{-1}(u,v)) = \begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{vmatrix} = -\frac{1}{2} - \frac{1}{2} = -1$$

On applique alors le théorème de changement de variable, et par la suite la densité du couple (U,V) est la suivante :

$$\begin{split} f_{(U,V)} &= f_{(X,Y)}(g^{-1}(u,v)) \times |J(g^{-1}(u,v))| \times \mathbf{1}_{Img}(u,v) \\ &= \frac{1}{2\pi} \exp\left(-\frac{1}{2}[(\frac{u+v}{\sqrt{2}})^2 + (\frac{u-v}{\sqrt{2}})^2]\right) \times |-1| \times \mathbf{1}_{\mathbb{R}^2}(u,v) \\ &= \frac{1}{2\pi} \exp\left(-\frac{1}{2}(u^2+v^2)\right) \mathbf{1}_{\mathbb{R}^2}(u,v) \end{split}$$

où Img désigne l'image de \mathbb{R}^2 par l'application g.

- Introduction
- 2 Notion d'un vecteur aléatoire réel
- 3 Lois de probabilité d'un vecteur aléatoire
- 4 Moments d'un vecteur aléatoire
- 5 Formule de changement de variable
- 6 Notion d'indépendance

Vecteur aléatoire - Indépendance

Proposition

Soient X_1, \dots, X_d des v.a réelles **indépendantes** et h_1, \dots, h_d des fonctions réelles mesurables, alors les v.a. réelles :

$$h_1(X_1), \cdots, h_d(X_d)$$
 sont indépendantes

Vecteur aléatoire - Indépendance

Proposition

Soient X_1, \dots, X_d des v.a réelles **indépendantes** et h_1, \dots, h_d des fonctions réelles mesurables, alors les v.a. réelles :

$$h_1(X_1), \cdots, h_d(X_d)$$
 sont indépendantes

Pour montrer dorénavant l'indépendance des v.a. on utilise souvent les résultats suivants :

Proposition

Soient X_1, \dots, X_d des v.a réelles **indépendantes** et h_1, \dots, h_d des fonctions réelles mesurables, alors les v.a. réelles :

$$h_1(X_1), \cdots, h_d(X_d)$$
 sont indépendantes

Pour montrer dorénavant l'indépendance des v.a. on utilise souvent les résultats suivants :

Indépendance - Fonction de répartition conjointe

Soit $X=(X_1,\ldots,X_d)$ un vecteur aléatoire de **fonction de répartition conjointe** \mathbb{F}_X , alors les v.a. X_1,\cdots,X_d sont indépendantes ssi

$$\forall (x_1, \dots, x_d) \in \mathbb{R}^d, \ \mathbb{F}_X(x_1, \dots, x_d) = \prod_{i=1}^d \mathbb{F}_{X_i}(x_i)$$

où $\forall 1 \leq i \leq d$, \mathbb{F}_{X_i} est la fonction de répartition (marginale) de X_i .

Indépendance - Vecteur discre

Soit $X=(X_1,\ldots,X_d)$ un vecteur aléatoire **discret** de loi de **probabilité conjointe** \mathbb{P}_X , alors les v.a. discrètes X_1,\cdots,X_d sont indépendantes ssi $\forall k=(k_1,\cdots,k_d)\in X(\Omega)$, on a :

$$\mathbb{P}_{X}(X_{1} = k_{1}, \cdots, X_{d} = k_{d}) = \prod_{i=1}^{d} \mathbb{P}_{X_{i}}(X_{i} = k_{i})$$

 $\forall 1 \leq i \leq d, \ \mathbb{P}_{X_i}$ est la loi de probabilité (marginale) de la v.a discrète X_i .

Indépendance - Vecteur à densité

Soit $X = (X_1, \dots, X_d)$ un vecteur aléatoire **continu** de **densité conjointe** f_X , alors les v.a. continues X_1, \dots, X_d sont indépendantes ssi

$$\forall x = (x_1, \cdots, x_d) \in \mathbb{R}^d$$
, on a:

$$f_X(x_1, \cdots, x_d) = \prod_{i=1}^d f_{X_i}(x_i)$$

 $\forall 1 \leq i \leq d, \ f_{X_i}$ est la densité (marginale) de la v.a continue X_i .

Exercice 4:

Soit (X,Y) un vecteur aléatoire de loi uniforme sur $[-1,1] \times [-1,1]$ tq la densité conjointe est donnée par :

$$f_{(X,Y)} = \frac{1}{4} \mathbf{1}_{[-1,1]^2}(x,y)$$

Exercice 4:

Soit (X,Y) un vecteur aléatoire de loi uniforme sur $[-1,1] \times [-1,1]$ tq la densité conjointe est donnée par :

$$f_{(X,Y)} = \frac{1}{4} \mathbf{1}_{[-1,1]^2}(x,y)$$

Les v.a. X et Y sont-elles indépendantes?

Exercice 4:

Soit (X, Y) un vecteur aléatoire de loi uniforme sur $[-1,1] \times [-1,1]$ tq la densité conjointe est donnée par :

$$f_{(X,Y)} = \frac{1}{4} \mathbf{1}_{[-1,1]^2}(x,y)$$

Les v.a. X et Y sont-elles indépendantes?

Solution de l'exercice 4 :

Comme $f_{(X,Y)} = \frac{1}{4} \mathbf{1}_{[-1,1]^2}(x,y) = \frac{1}{2} \mathbf{1}_{[-1,1]}(x) \times \frac{1}{2} \mathbf{1}_{[-1,1]}(y) = f_X(x) \times f_Y(y)$ alors X et Y sont indépendantes, avec f_X est bien la densité de X, ainsi que f_Y est la densité de Y.

Indépendance - vecteur espérence

Soit $X=(X_1,\ldots,X_d)$ un vecteur aléatoire tq les v.a. X_1,\cdots,X_d sont indépendantes alors on a :

$$\mathbb{E}\Big(\prod_{i=1}^d X_i\Big) = \prod_{i=1}^d \mathbb{E}(X_i)$$

Indépendance - vecteur espérence

Soit $X=(X_1,\ldots,X_d)$ un vecteur aléatoire tq les v.a. X_1,\cdots,X_d sont indépendantes alors on a :

$$\mathbb{E}\Big(\prod_{i=1}^d X_i\Big) = \prod_{i=1}^d \mathbb{E}(X_i)$$

Conséquences

Indépendance - vecteur espérence

Soit $X=(X_1,\ldots,X_d)$ un vecteur aléatoire tq les v.a. X_1,\cdots,X_d sont indépendantes alors on a :

$$\mathbb{E}\Big(\prod_{i=1}^d X_i\Big) = \prod_{i=1}^d \mathbb{E}(X_i)$$

Conséquences

Indépendance - Corrélation

Soient X_1, \ldots, X_d des v.a.r **indépendantes**, qui admettent tous des moments d'ordre 2, alors :

$$cov(X_i, X_i) = 0, \ \forall 1 \leq i, j \leq d$$

Remarques:

on pourra dire que les deux v.a X_i et X_i sont **non corrélées** ou **décorrélées**.

Remarques:

- on pourra dire que les deux v.a X_i et X_i sont **non corrélées** ou **décorrélées**.

Un contre exemple :

Soit $X \sim \mathcal{U}([-1,1])$, alors $cov(X,X^2) = \mathbb{E}(X^3) - \mathbb{E}(X)\mathbb{E}(X^2) = 0$. Cependant X et X^2 ne sont pas indépendantes.

Remarques:

- on pourra dire que les deux v.a X_i et X_i sont **non corrélées** ou **décorrélées**.

Un contre exemple :

Soit $X \sim \mathcal{U}([-1,1])$, alors $cov(X,X^2) = \mathbb{E}(X^3) - \mathbb{E}(X)\mathbb{E}(X^2) = 0$. Cependant X et X^2 ne sont pas indépendantes.

 \square La matrice de covariance de $X = (X_1, \dots, X_d)$ est diagonale.

Indépendance - Variance

Soient X_1, \ldots, X_d des v.a.r **indépendantes**, qui admettent tous des moments d'ordre 2, alors :

$$\mathbb{V}(X_1+\cdots+X_d)=\sum_{i=1}^n\mathbb{V}(X_i)$$

Cas d=2 : Un couple aléatoire :

Cas d=2 : Un couple aléatoire :

- $oldsymbol{\circ}$ ssi $\mathbb{P}(X=k_1,Y=k_2)=\mathbb{P}(X=k_1)\times\mathbb{P}(Y=k_2),\ \forall (k_1,k_2)\in X(\Omega)\times Y(\Omega).$

Cas d=2 : Un couple aléatoire :

Soit (X, Y) un couple aléatoire, X et Y sont indépendantes

Cas d=2 : Un couple aléatoire :

alors
$$\mathbb{E}(XY) = \mathbb{E}(X) \times \mathbb{E}(Y)$$
.

Cas d=2 : Un couple aléatoire :

• alors
$$\mathbb{E}(XY) = \mathbb{E}(X) \times \mathbb{E}(Y)$$
.

$$\bullet$$
 alors $cov(X, Y) = 0$.

Cas d=2 : Un couple aléatoire :

$$\bullet$$
 alors $\mathbb{E}(XY) = \mathbb{E}(X) \times \mathbb{E}(Y)$.

alors
$$cov(X, Y) = 0.$$

J.Jacod et P.Protter: Probability essentials. Springer 2000.

Laurent Rouvière : Probabilités générales, Université de Rennes 1.