CS-225: Discrete Structures in CS

Homework 4, Part 1

Noah Hinojos

February 4, 2024

Exercise Set 6.1

7-a

Suppositions:

(None)

Goal:

Prove $A \not\subseteq B$.

<u>Deductions</u>:

 $4 \in A$

- Let $x \in A$.
- By definition of A, $x \in \mathbb{Z}|x = 6a + 4$.
- Then for a = 0, x = 6(0) + 4 = 4.
- Hence $4 \in A$.

 $4 \notin B$.

- By defintion of B, if $4 \in B$ then 18b 2 = 4 for some integer b.
- By algebra, $4 = 18b 2 \Rightarrow b = \frac{1}{3}$.
- . Yet b cannot equal $\frac{1}{3}$ because b is an integer.
- Therefore, $4 \notin B$.

Since $4 \in A$ and $4 \notin B$, $A \not\subseteq B$.

Conclusion:

 $A \not\subseteq B$.

7-b

Suppositions:

Let t be a particular but arbitrarily chosen element of B.

Goal:

Prove $B \subseteq A$.

<u>Deductions</u>:

 $t \in \mathbb{Z}|t = 18b - 2$ for some integer b.

- By supposition, $t \in B$.
- Then by defintion of $B, t \in \mathbb{Z}|t = 18b 2$ for some integer b.

 $t \in A$.

- Let a = 3b 1.
- By closure, a is an integer because it is the product and summation of integers.
- By definition of $A, 6a + 4 \in A$
- By algebra, t = 6a + 4:

$$6a + 4 = 6(3b - 1) + 4$$

$$= 18b - 6 + 4$$

$$= 18b - 2$$

$$= t$$

- By equality, $t \in A$ because $6a + 4 \in A$.
- Hence $t \in A$.

By definition of subset, $B \subseteq A$ because $t \in A \to t \in B$.

Conclusion:

Therefore, $B \subseteq A$.

7-c

By definition of set equality, B = C if and only if $B \subseteq C$ and $C \subseteq B$.

Proof: $B \subseteq C$

Suppositions:

Let t be a particular but arbitrarily chosen element of B.

Goal:

Prove $B \subseteq C$.

<u>Deductions</u>:

 $t \in \mathbb{Z}|t = 18b - 2$ for some integer b (See problem 7-b for proof).

 $t \in C$.

- Let c = b 1.
- ullet By closure, c is an integer because it is the product and summation of integers.
- By definition of C, $18c + 16 \in C$
- By algebra, t = 18c + 16:

$$18c + 16 = 18(b - 1) + 16)$$

$$= 18b - 18 + 16$$

$$= 18b - 2$$

$$= t$$

- By equality, $t \in C$ because $18c + 16 \in C$.
- Hence $t \in C$.

By definition of subset, $B \subseteq C$ because $t \in B \to t \in C$.

Conclusion:

Therefore, $B \subseteq C$.

Seeing that this first proof is complete, do not carry any established variables into the next proof. Looking ahead, the only known variable definitions should be that of B and C, and their respective formulas, from the initial prompt.

Proof: $C \subseteq B$

Suppositions:

Let t be a particular but arbitrarily chosen element of C.

Goal:

Prove $t \in B$.

<u>Deductions</u>:

 $t \in \mathbb{Z}|t = 18c + 16$ for some integer c.

- By supposition, $t \in C$.
- Then by defintion of $C, t \in \mathbb{Z}|t = 18c + 16$ for some integer c.

 $t \in B$.

- Let b = c + 1.
- \bullet By closure, b is an integer because it is the product and summation of integers.
- By definition of B, $18b 2 \in B$.
- By algebra, t = 18b 2:

$$18b - 2 = 18(c + 1) - 2$$
$$= 18c + 18 - 2$$
$$= 18c + 16$$
$$= t$$

- By equality, $t \in B$ because $18b 2 \in B$.
- Hence $t \in B$.

By definition of subset, $C \subseteq B$ because $t \in C \to t \in B$.

Conclusion:

Therefore, $C \subseteq B$.

By definition of set equality, B = C because $B \subseteq C$ and $C \subseteq B$.

26 - a

$$\bigcup_{i=1}^{4} R_i = \bigcup_{i=1}^{4} \left[1, 1 + \frac{1}{i} \right]
= \left[1, 1 + \frac{1}{1} \right] \cup \left[1, 1 + \frac{1}{2} \right] \cup \left[1, 1 + \frac{1}{3} \right] \cup \left[1, 1 + \frac{1}{4} \right]
= \left[1, 2 \right] \cup \left[1, \frac{3}{2} \right] \cup \left[1, \frac{4}{3} \right] \cup \left[1, \frac{5}{4} \right]
= \left[1, 2 \right]$$

26 - b

$$\bigcap_{i=1}^{4} R_i = \bigcap_{i=1}^{4} \left[1, 1 + \frac{1}{i} \right]
= \left[1, 1 + \frac{1}{1} \right] \cap \left[1, 1 + \frac{1}{2} \right] \cap \left[1, 1 + \frac{1}{3} \right] \cap \left[1, 1 + \frac{1}{4} \right]
= \left[1, 2 \right] \cap \left[1, \frac{3}{2} \right] \cap \left[1, \frac{4}{3} \right] \cap \left[1, \frac{5}{4} \right]
= \left[1, \frac{5}{4} \right]$$

26 - c

No, the sets $R_1, R_2, R_3,...$ are not mutually disjoint. This is because all sets share the element, 1. In fact, for $i \neq j$, no set R_i is mutually disjoint from R_j .