

SET OF CIRCLE

Consider *n* distinct circles where the centers are arranged on a line. Let the *i*-th circle has the center x_i and radius w_i . Let's find the maximum number of circles from *n* circles such that the distance between any pair of center of circles *i* and *j* is not less than the sum of their radius, or more formally: $|x_i - x_j| \ge w_i + w_j$.

Input

The first line contains the integer n $(1 \le n \le 200\ 000)$ — the number of circles.

Each of the next *n* lines contains two numbers x_i , w_i $(0 \le x_i \le 10^9, 1 \le w_i \le 10^9)$ — the center and the radius of a circle.

Output

Print a single number — the size of maximum number of circles that satisfied this condition.

Examples

Standard Input	Standard Output
4	3
2 5	
3 1	
6 1	
0 2	