Diskrete Strukturen

Phillip Blum

1. Semester

1 Logik

1.1 Logische Operatoren

Junktoren			\wedge	V	\rightarrow	\leftrightarrow	\oplus
Situation		nicht	A	A	Falls A	A	Entweder A
		A	und	oder	$\operatorname{dann}B$	gdw (iff)	oder B
A	B		B	B		B	
falsch	falsch	wahr	falsch	falsch	wahr	wahr	falsch
falsch	wahr	wahr	falsch	wahr	wahr	falsch	wahr
wahr	falsch	falsch	falsch	wahr	falsch	falsch	wahr
wahr	wahr	falsch	wahr	wahr	wahr	wahr	falsch

1.2 Venn Diagramme

1.3 Quantoren, Gültigkeit und Erfüllbarkeit

1.3.1 Quantoren

Alle: $\forall x$

Einige/es gib ein: $\exists x$ Kein/es gibt kein: $\nexists x$

1.3.2 Gültigkeit und Erfüllbarkeit

Eine Aussage ist erfüllbar, falls es eine Situation gibt, in der sie wahr ist.

Eine Aussage ist (allgemein-)gültig, falls es keine Situation gibt, in der sie falsch ist

Eine Aussage ist ungültig, falls es keine Situation gibt, in der sie wahr ist.

1.4 Übersicht: Junktoren und Quantoren

	formale Logik		C/Java
wahr	(triviale Tautologie)	wahr	true
falsch	(triviale Kontradiction)	falsch	false
nicht	Negation	$\neg A$! A
oder	Disjunction	$(A \vee B)$	(A B)
und	Konjunction	$(A \wedge B)$	(A&&B)
falls/wenn-dann	Konditional, Subjunction	$(A \to B)$	(!A B)
genau-dann-wenn	Biconditional	$(A \leftrightarrow B)$	(A==B)
entweder-oder	exklusives Oder, XOR	$(A \oplus B)$	(A!=B)
alle	Allquantor	$\forall xF$	
einige	Existenzquantor	$\exists xF$	
keine	Nichtexistenz	$\nexists xF$	

2 Syllogismen

2.1 Beschränkte Quantoren und Mengendiagramme

Alle x mit R(x) sind P(x) SYN Für alle $x, R(x) \to P(x)$

Einige x mit R(x) sind P(x) SYN Es gibt x, $R(x) \wedge P(x)$

Nicht alle x mit R(x) sind P(x) SYN Es gibt x, $R(x) \land \neg P(x)$

Kein x mit R(x) ist P(x), Für alle x, $R(x) \to \neg P(x)$

2.2 Hinreichend vs. notwendig, A impliziert" B

2.2.1 If A then B = (allgemein)g"ultig. Dann:

A ist hinreichend für B

Weil: Wenn A wahr dann muss B wahr

B ist notwendig für A

Weil: Wenn B falsch dann muss A falsch

2.2.2 A gdw B = allgemeingültig. Dann:

A hinreichend und notwendig für B

3 Beweise

3.1 Theorem, Lemma, Korollar, Definition, ...

3.1.1 Begriffe

Mit

- Proposition
- Lemma
- Theorem
- Satz
- Korollar
- und manchmal Fakt

weist man auf bewiesene Aussagen hin die wichtig für später sind.

3.1.2 Theorem-Beweiser Isabelle

- T: Theorem (Satz): wichtig, häufig verwendet und/oder nicht offensichtliches Resultat
- L: Lemma: weniger wichtig oder Hilfsresultat für Theorem
- C: Korollar: einfach zu beweisende Abwandlung von Theorem/Lemmata
- F: Fakt: offensichtliches Ergebnis
- D: Definition: eindeutige Begriffsabgrebzubg/erkärung

3.2 Wie schreibe ich einen Beweis?

3.2.1 Anfang

- Beweistechnik und Strategie
- \bullet Übersicht über die Struktur \to "Wir benutzen einen Widerspruchsbeweis", "Der Beweis ist per Induktion"

3.2.2 Anmerkungen

- Roten Faden behalten (lineare Aufeinanderfolgung)
- Beweis = Aufsatz
 - \to keine pure Berechnung, keine Rechenschritte ohne Erklärung, fliessender Text mit Gleichungen/Rechenschritte. Ganze Sätze benutzen
- Symbole nur wenn nötig, aber nicht mehr. Immer Text dazu
- Nachher verbessern und vereinfachen
- \bullet Offensichtlich für Autor \neq Offensichtlich für Leser

3.2.3 Lange Beweise

- Unterschriften
- Wiederholung von Argumenten: Als Lemma hinschreiben (und beweisen) und darauf verweisen

3.2.4 Ende

- Wie folgt aus den Beweisteilen die Aussage
 - \rightarrow Schlussfolgerung nicht immer offensichtlich

3.3 Beweisstrategien

3.3.1 Direkter Beweis

Für $A \to B$: Nimm Aan, zeige mit Regeln der logischen Folgerung dass dann immer B wahr ist.

Beispiel: Wenn $0 \le x \le 2$, dann $-x^3 + 4x + 1 > 0$

- Wir nehmen an dass $0 \le x \le 2$
- Dann sind x, (2-x), (2+x) alle nightnegativ.
- Dann ist das Produkt $x(2-x)(2+x) \ge 0$
- Wenn man zu einer nichtnegativen Zahl 1 addiert, ist die Summe positiv. Deswegen x(2-x)(2+x)+1>0
- Ausmultiplizieren zeigt $x(2-x)(2+x) + 1 = -x^3 + 4x + 1 > 0$

3.3.2 Kontraposition

Man zeigt $A \to B$ indem man $\neg B \to \neg A$ zeigt "Alle x mit P(x) sind Q(x)" SYN "Alle x mit nicht Q(x) sind nicht P(x)"

Beispiel: Wenn n eine ganze Zahl ist und 3n+2 ungerade ist, dann ist n ungerade

- Fakt: Für jede gerade Zahl m gibt es eine ganze Zahl k sodass m=2k
- Wir nehmen an dass n gerade ist. $(\neg B)$
- Dann gilt (einsetzen) 3n + 2 = 6k + 2 = 2(3k + 1)
- Das heisst 3n + 2 ist eine gerade Zahl $(\neg A)$

3.3.3 Widerspruch

Man zeigt A, indem man $\neg A \rightarrow$ falsch zeigt In anderen Worten:

- Wir nehmen an dass $\neg A$ gilt
- Dann Aussage die offensichtlich falsch ist $(B \wedge \neg B)$. Also Widerspruch.
- Widerspruch, also ist A wahr

Beispiel: $\sqrt{2}$ ist nicht rational

- Wir nehmen an: $\sqrt{2}$ ist rational
- Dann gibt es Zahlen m, n mit $\sqrt{2} = \frac{m}{n}$
- Wir dürfen annehmen, dass m,n keine gemeinsamer Teiler mehr haben. Also 1 der einzige positive gemeinsame Teiler von m,n
- Daher gilt $m^2 = 2n^2$
- Daher ist 2 ein Teiler von m^2
- Daher ist 2 ein Teiler von m (Lemma von Euklid)
- Daher gilt m = 2k und damit auch $2k^2 = n^2$
- \bullet Daher ist 2 ein Teiler von n^2 und somit auch von n
- \bullet Da2auch ein Teiler von mist, ist folglich 1 nicht der einzige positive gemeinsame Teiler von m,n. Das ist ein Widerspruch

4 Mengen

4.1 Basisvokabular

 $x \in M$: Objekt x ist in der Menge M (x (ist) Element von M) $x \notin M$: Objekt x ist nicht in der Menge M (x (ist) kein Element von M)

explizierte Definition: $M := \{1, 2, 3\}$ implizierte Definition: $M := \{x \mid x \text{ gerade}\}$

Häufige Abkürzungen:

- $\mathbb{N} = \{1, 2, 3, ...\}$
- $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$
- $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, 3, ...\}$
- $\bullet \ \mathbb{Q} = \{p/q \mid p \in \mathbb{Z}, q \in \mathbb{N}\}$

Ø: leere Menge

Russelsche Antinomie (Widerspruch): $R \in R$ und $R \notin R$

4.2 Vergleiche von Mengen

 $M_1\subseteq M_2\colon M_1$ ist Teilmenge von M_2 (Jedes Element von M_1 auch Element von $M_2)$

 $M_1 \not\subseteq M_2 \colon M_1$ ist keine Teilmenge von M_2 (Mindesten ein Element von M_1 kein Element von $M_2)$

 $M_1 \subsetneq M_2$: $M_1 \subseteq M_2$, aber auch $M_2 \backslash M_1$ hat mindestens ein Objekt

 $M_2\backslash M_1$: Differenz: M_2 ohne M_1 (Elemente von M_2 aber nicht von $M_1)$ $M_1\Delta M_2$: Symmetrische Differenz: $M_1\backslash M_2$ und $M_2\backslash M_1$

Beispiele:

- Jedes $M: \emptyset \subseteq M$
- Für $M: M \subseteq \emptyset$ wenn $M = \emptyset$
- $M_1 \subseteq M_2 \leftrightarrow M_1 \backslash M_2 = \emptyset$

 $\begin{array}{l} M_1 = M_2 \text{: } M_1 \subseteq M_2 \leftrightarrow M_2 \subseteq M_1 \\ M_1 \neq M_2 \text{: } M_1 \subseteq M_2 \not \leftrightarrow M_2 \subseteq M_1 \end{array}$

Kardinalität: |M|: Anzahl der unterschiedlichen Elemente in M

Endliche Menge: $|M| < \infty$: $n \in \mathbb{N} \to M = \{x_1, x_2, ..., x_n\}$ Unendliche Menge: $|M| = \infty$

4.3 Operation auf Mengen

 $M_1 \cap M_2$: Schnitt: $x \in M_1 \leftrightarrow x \in M_2$ $M_1 \cup M_2$: Vereinigung: $x \subseteq \{M_1, M_2\}$ Disjunkt: $M_1 \cap M_2 = \emptyset$

Menge S, deren Elemente Mengen sind: $\cap S: \cap_{M \in S} M \{x \mid \forall M \in S(x \in M)\}$ $\cup S: \cup_{M \in S} M \{x \mid \exists M \in S(x \in M)\}$

Damit gilt: $M_1 \cap M_2 = \cap \{M_1, M_2\}$ und $M_1 \cup M_2 = \cup \{M_1, M_2\}$

Gilt $S = \{M_1, ..., M_k\}$ für ein $k \in \mathbb{N}$ dann:

$$\bigcup_{i=1}^k M_i := \bigcup S \bigcap_{i=1}^k M_i := \cap S$$

 Ω : Universum

Ist Ω fixiert: Für $A \subseteq \Omega$ statt $\Omega \backslash A$ kurz \overline{A}

 \overline{A} ist das Komplement vn A

4.4 Potenzmengen und Partitionen

Potenzmenge von $M: 2^M$ oder $\mathcal{P}(M)$

$$\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$$

$$\mathcal{P}(\emptyset) = \{\emptyset\}$$

Die Potenzmenge mit k Elementen hat die Kardinalität 2^k

Partition von M: Menge $P\subseteq \mathcal{P}(M)$ von disjunkten, nicht leeren Teilmengen von M, deren Vereinigung genau M ergibt: $M=\cup P$

Partitionen von $\{1, 2\}$: $\{1, 2\}$ und $\{\{1\}, \{2\}\}$

4.5 Übersicht: Symbole für Mengen

Symbol	Formale Schreibweise	Bedeutung	Anwendung
z.B x	Element		$x \in M$
z.B M	Menge		$x \in M$
\in	in	Element ist in Menge enthalten	$x \in M$
∉	nicht in	Element ist NICHT in Menge enthalten	$x \notin M$
	expliziete Definition	Ausgeschriebene Definition	$M := \{1, 2, 3\}$
	implizierte Definition	Definition durch Regeln	$M := \{x \mid x \text{ gerade }\}$
Ø	leere Menge	quasi "Nichts"	$\forall M(\emptyset \subseteq M)$
\subseteq	Teilmenge	Menge 1 ist Teilmenge von Menge 2	$M_1\subseteq M_2$
⊈	keine Teilmenge	Menge 1 ist keine Teilmenge von Menge 2	$M_1 \nsubseteq M_2$
⊆ ⊈ Ç,	Teilmenge aber nicht gleich	$M_1 \subseteq M_2$ aber auch $M_2 \backslash M_1$ hat min. ein Objekt	$M_1 \subsetneq M_2$
\	Differenz	Menge 2 ohne Menge 1	$M_2 ackslash M_1$
Δ	Symmetrische Differenz	$M_1 \backslash M_2$ und $M_2 \backslash M_1$	$M_1\Delta M_2$
=	Gleich	Menge 1 gleich Menge 2	$M_1 = M_2$
≠	Ungleich	Menge 1 ungleich Menge 2	$M_1 eq M_2$
z.B M	Kardinalität	Anzahl der unterschiedlichen Elemente in M	M
	Endliche Menge	$ M < \infty$	
	Unendliche Menge	$ M = \infty$	
\cap	Schnitt	Menge mit Objekten die in Menge 1 und Menge 2 sind	$M_1 \cap M_2$
U	Vereinigung	Menge mit Objekten die in Menge 1 und oder Menge 2 sind	$M_1 \cup M_2$
	Disjunkt	Zwei Mengen haben keine gemeinsamen Elemente	$M_1 \cap M_2 = \emptyset$
$\cap S$	Mengenschnitt	Alle Objekte die in allen Mengen sind	$\bigcap_{M \in S} M \{ x \mid \forall M \in S(x \in M) \}$
$\cup S$	Mengenvereinigung	Alle Objekte die in einer der Mengen sind	$\bigcup_{M \in S} M \{ x \mid \exists M \in S(x \in M) \}$
Ω	Universum	Grundmenge	$A\subseteq\Omega$
z.B \overline{A}	Komplement	Das Gegenteil von z.B A	$\overline{A} = \Omega \backslash A$
$\mathcal{P}()$	Potenzmenge	Alle Teilmengen als Elemente	$\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}\$
z.B $M = \cup P$	Partition	disjunkte, nicht leeren Teilmengen einer Menge	$P(\{1,2\}): \{\{1\},\{2\}\},\{1,2\}$