Projektowanie algorytmów i metody sztucznej inteligencji

Dawid Marszałkiewicz 218665 13 marca 2016

1 Zadanie

Przeprojektować kod z poprzedniego zadania w sposób podany na zajęciach oraz 10-krotnie zmierzyć czas każdego dystansu.

2 Strategia zwiększania o jeden

2.1 Tabela z średnimi wynikami

l. elementów	czas
	\mathbf{s}
10	0.0000007
1000	0.0022524
10000	0.235683
100000	24.3165
1000000	2459.32

2.2 Wykres złożoności obliczeniowej

3 Strategia zwiększania dwukrotnie

3.1 Tabela z średnimi wynikami

l. elementów	czas
	s
10	0.0000007
1000	0.0000252
100000	0.0028963
1000000	0.0276037
100000000	3.19796

3.2 Wykres złożoności oblczieniowej

4 Strategia zwiększania dziesięciokrotnie

4.1 Tabela z średnimi wynikami

l. elementów	czas
	\mathbf{s}
10	0.0000008
1000	0.0000193
100000	0.0021811
1000000	0.0187237
100000000	2.11319

4.2 Wykres złożoności obliczeniowej

5 Wnioski

- \bullet Przy dodawnaniu stałej przy zwiększaniu rozmiaru tablicy złożoność oblczeniowa znajduje się w $\mathcal{O}(n^2)$
- \bullet Przy mnożeniu przez stałą przy zwiększaniu tablicy złożoność obl
czieniowa znajduje się w $\mathrm{O}(n)$
- Dwukrotne mnożenie rozmiaru przy zwiększaniu tablicy jest optymalne ze względu na wykorzystywanie zasobów komputera oraz szybkości działania algorytmu