Total Probability and Bayes Theorem

From Walpole book

Total Probability

$$P(A) = P[(E \cap A) \cup (E' \cap A)] = P(E \cap A) + P(E' \cap A)$$

= $P(E)P(A|E) + P(E')P(A|E')$.

Total Probability

Theorem 2.13:

If the events B_1, B_2, \ldots, B_k constitute a partition of the sample space S such that $P(B_i) \neq 0$ for $i = 1, 2, \ldots, k$, then for any event A of S,

$$P(A) = \sum_{i=1}^{k} P(B_i \cap A) = \sum_{i=1}^{k} P(B_i) P(A|B_i).$$

Example 2.41: In a certain assembly plant, three machines, B_1 , B_2 , and B_3 , make 30%, 45%, and 25%, respectively, of the products. It is known from past experience that 2%, 3%, and 2% of the products made by each machine, respectively, are defective. Now, suppose that a finished product is randomly selected. What is the probability that it is defective?

Example 2.41: In a certain assembly plant, three machines, B_1 , B_2 , and B_3 , make 30%, 45%, and 25%, respectively, of the products. It is known from past experience that 2%, 3%, and 2% of the products made by each machine, respectively, are defective. Now, suppose that a finished product is randomly selected. What is the probability that it is defective?

Solution: Consider the following events:

A: the product is defective,

 B_1 : the product is made by machine B_1 ,

 B_2 : the product is made by machine B_2 ,

 B_3 : the product is made by machine B_3 .

Applying the rule of elimination, we can write

$$P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3).$$

Referring to the tree diagram of Figure 2.15, we find that the three branches give the probabilities

$$P(B_1)P(A|B_1) = (0.3)(0.02) = 0.006,$$

 $P(B_2)P(A|B_2) = (0.45)(0.03) = 0.0135,$
 $P(B_3)P(A|B_3) = (0.25)(0.02) = 0.005,$

and hence

$$P(A) = 0.006 + 0.0135 + 0.005 = 0.0245.$$

Bayes' Rule

Theorem 2.14:

(Bayes' Rule) If the events B_1, B_2, \ldots, B_k constitute a partition of the sample space S such that $P(B_i) \neq 0$ for $i = 1, 2, \ldots, k$, then for any event A in S such that $P(A) \neq 0$,

$$P(B_r|A) = \frac{P(B_r \cap A)}{\sum_{i=1}^k P(B_i \cap A)} = \frac{P(B_r)P(A|B_r)}{\sum_{i=1}^k P(B_i)P(A|B_i)} \quad \text{for } r = 1, 2, \dots, k.$$

- Example 2.41: In a certain assembly plant, three machines, B_1 , B_2 , and B_3 , make 30%, 45%, and 25%, respectively, of the products. It is known from past experience that 2%, 3%, and 2% of the products made by each machine, respectively, are defective. Now, suppose that a finished product is randomly selected. What is the probability that it is defective?
- Example 2.42: With reference to Example 2.41, if a product was chosen randomly and found to be defective, what is the probability that it was made by machine B_3 ?

Example 2.41: In a certain assembly plant, three machines, B_1 , B_2 , and B_3 , make 30%, 45%, and 25%, respectively, of the products. It is known from past experience that 2%, 3%, and 2% of the products made by each machine, respectively, are defective. Now, suppose that a finished product is randomly selected. What is the probability that it is defective?

Example 2.42: With reference to Example 2.41, if a product was chosen randomly and found to be defective, what is the probability that it was made by machine B_3 ?

tion: Using Bayes' rule to write

$$P(B_3|A) = \frac{P(B_3)P(A|B_3)}{P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3)},$$

Chapter 2 Probability

and then substituting the probabilities calculated in Example 2.41, we have

$$P(B_3|A) = \frac{0.005}{0.006 + 0.0135 + 0.005} = \frac{0.005}{0.0245} = \frac{10}{49}.$$

In view of the fact that a defective product was selected, this result suggests that it probably was not made by machine B_3 .

Example 2.43: A manufacturing firm employs three analytical plans for the design and development of a particular product. For cost reasons, all three are used at varying times. In fact, plans 1, 2, and 3 are used for 30%, 20%, and 50% of the products, respectively. The defect rate is different for the three procedures as follows:

$$P(D|P_1) = 0.01,$$
 $P(D|P_2) = 0.03,$ $P(D|P_3) = 0.02,$

where $P(D|P_j)$ is the probability of a defective product, given plan j. If a random product was observed and found to be defective, which plan was most likely used and thus responsible?

Example 2.43: A manufacturing firm employs three analytical plans for the design and development of a particular product. For cost reasons, all three are used at varying times. In fact, plans 1, 2, and 3 are used for 30%, 20%, and 50% of the products, respectively. The defect rate is different for the three procedures as follows:

$$P(D|P_1) = 0.01,$$
 $P(D|P_2) = 0.03,$ $P(D|P_3) = 0.02,$

where $P(D|P_j)$ is the probability of a defective product, given plan j. If a random product was observed and found to be defective, which plan was most likely used and thus responsible?

Solution: From the statement of the problem

$$P(P_1) = 0.30$$
, $P(P_2) = 0.20$, and $P(P_3) = 0.50$,

we must find $P(P_j|D)$ for j=1,2,3. Bayes' rule (Theorem 2.14) shows

$$P(P_1|D) = \frac{P(P_1)P(D|P_1)}{P(P_1)P(D|P_1) + P(P_2)P(D|P_2) + P(P_3)P(D|P_3)}$$

$$= \frac{(0.30)(0.01)}{(0.3)(0.01) + (0.20)(0.03) + (0.50)(0.02)} = \frac{0.003}{0.019} = 0.158.$$

Similarly,

$$P(P_2|D) = \frac{(0.03)(0.20)}{0.019} = 0.316 \text{ and } P(P_3|D) = \frac{(0.02)(0.50)}{0.019} = 0.526.$$

The conditional probability of a defect given plan 3 is the largest of the three; thus a defective for a random product is most likely the result of the use of plan 3.

Exercises

2.95 In a certain region of the country it is known from past experience that the probability of selecting an adult over 40 years of age with cancer is 0.05. If the probability of a doctor correctly diagnosing a person with cancer as having the disease is 0.78 and the probability of incorrectly diagnosing a person without cancer as having the disease is 0.06, what is the prob-

ability that an adult over 40 years of age is diagnosed as having cancer?

2.96 Police plan to enforce speed limits by using radar traps at four different locations within the city limits. The radar traps at each of the locations L_1 , L_2 , L_3 , and L_4 will be operated 40%, 30%, 20%, and 30% of

Exercises

the time. If a person who is speeding on her way to work has probabilities of 0.2, 0.1, 0.5, and 0.2, respectively, of passing through these locations, what is the probability that she will receive a speeding ticket?

2.97 Referring to Exercise 2.95, what is the probability that a person diagnosed as having cancer actually has the disease?

2.98 If the person in Exercise 2.96 received a speeding ticket on her way to work, what is the probability that she passed through the radar trap located at L_2 ?

2.99 Suppose that the four inspectors at a film factory are supposed to stamp the expiration date on each package of film at the end of the assembly line. John, who stamps 20% of the packages, fails to stamp the expiration date once in every 200 packages; Tom, who stamps 60% of the packages, fails to stamp the expiration date once in every 100 packages; Jeff, who stamps 15% of the packages, fails to stamp the expiration date once in every 90 packages; and Pat, who stamps 5% of the packages, fails to stamp the expiration date once in every 200 packages. If a customer complains that her package of film does not show the expiration date, what is the probability that it was inspected by John?

2.100 A regional telephone company operates three identical relay stations at different locations. During a

one-year period, the number of malfunctions reported by each station and the causes are shown below.

Station	\boldsymbol{A}	${m B}$	$oldsymbol{C}$
Problems with electricity supplied	2	1	1
Computer malfunction	4	3	2
Malfunctioning electrical equipment	5	4	2
Caused by other human errors	7	7	5

Suppose that a malfunction was reported and it was found to be caused by other human errors. What is the probability that it came from station C?

2.101 A paint-store chain produces and sells latex and semigloss paint. Based on long-range sales, the probability that a customer will purchase latex paint is 0.75. Of those that purchase latex paint, 60% also purchase rollers. But only 30% of semigloss paint buyers purchase rollers. A randomly selected buyer purchases a roller and a can of paint. What is the probability that the paint is latex?

2.102 Denote by A, B, and C the events that a grand prize is behind doors A, B, and C, respectively. Suppose you randomly picked a door, say A. The game host opened a door, say B, and showed there was no prize behind it. Now the host offers you the option of either staying at the door that you picked (A) or switching to the remaining unopened door (C). Use probability to explain whether you should switch or not.