

Single Dell Data Analysis Course

Dimensionality reduction 2: UMAP and graph-based clustering

Lisa Buchauer

Professor of Systems Biology of Infectious Diseases

Department of Infectious Diseases and Intensive Care

Charité - Universitätsmedizin Berlin

Today

Heumos, L., Schaar, A.C., Lance, C. et al. Best practices for single-cell analysis across modalities. Nat Rev Genet 24, 550–572 (2023). https://doi.org/10.1038/s41576-023-00586-w

Data types along the processing path

python

sc.pp.neighbors(adata, n_neighbors=10, n_pcs=40)

R

pbmc <- FindNeighbors(pbmc, dims = 1:10)</pre>


```
python
```

sc.pp.neighbors(adata, n_neighbors=10, n_pcs=40)

R

pbmc <- FindNeighbors(pbmc, dims = 1:10)</pre>

https://satijalab.org/seurat/articles/pbmc3k_tutorial https://scanpy.readthedocs.io/en/stable/tutorials/basics/cl ustering.html https://umaplearn.readthedocs.io/en/latest/how_umap_works.html


```
python
```

sc.pp.neighbors(adata, n_neighbors=10, n_pcs=40)

R

pbmc <- FindNeighbors(pbmc, dims = 1:10)</pre>

Idea: describing a dataset by way of each data point's k nearest neighbours retains relevant structural information and allows efficient computations

https://satijalab.org/seurat/articles/pbmc3k_tutorial https://scanpy.readthedocs.io/en/stable/tutorials/basics/cl ustering.html https://umaplearn.readthedocs.io/en/latest/how_umap_works.html

How many neighbours are selected impacts what information is retained in the graph

Side topic: The role of the distance metrics

Side topic: The role of the distance metrics

Side topic: The role of the distance metrics

Choice of distance metric has a bearing on results – but in practice, the default (Euclidean in PC-space) is almost always used

Nearest neighbours search results in an adjacency matrix

cell 1 - my
neighbours
neighbours
cell 15, 0.9 m
cell 773, 1.5 m
cell 7042, 1.8 m

adjacency matrix for 2 nearest neighbours

	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5
Cell 1	1	1	0	1	0
Cell 2	1	1	1	0	0
Cell 3	0	1	1	0	1
Cell 4	1	0	0	1	1
Cell 5	0	0	1	1	1

Slightly more information can be retained with a "fuzzy adjacency matrix", in which the nearest neighbour gets connectivity 1 and additional neighbours get lower connectivities based on distances.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.442861	0.444071	0.000000	0.434997	0.000000
1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.348746	0.000000	0.000000	0.472147	0.000000	0.501032	0.000000	1.000000
2	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.529206	0.172009	0.620710	0.000000	0.000000
3	0.000000	0.000000	0.000000	0.000000	0.000000	0.320071	0.000000	0.000000	0.000000	0.000000	0.000014	0.990871	0.331041	0.000000	1.000000
4	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.562689	0.391506	0.000000	0.000000	0.367735
5	0.000000	0.000000	0.000000	0.320071	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.756879	0.244988
6	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	1.000000	0.550696	0.765252	0.005983
7 (1.000000	0.348746	1.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	1.000000	1.000000	0.649921	0.436091	0.435187	0.522817
8	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.428062	0.408286	0.485575	0.000000
9	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.000000	0.447287	0.140004	0.000000	0.734638	0.000000
10	0.442861	0.472147	0.529206	0.000014	0.562689	1.000000	0.000000	1.000000	0.000000	0.447287	0.000000	0.634077	0.534171	0.459211	1.000000
11	0.444071	0.000000	0.172009	0.990871	0.391506	0.000000	1.000000	0.649921	0.428062	0.140004	0.634077	0.000000	1.000000	1.000000	0.688714
12	0.000000	0.501032	0.620710	0.331041	0.000000	0.000000	0.550696	0.436091	0.408286	0.000000	0.534171	1.000000	0.000000	0.427533	1.000000
13	0.434997	0.000000	0.000000	0.000000	0.000000	0.756879	0.765252	0.435187	0.485575	0.734638	0.459211	1.000000	0.427533	0.000000	0.000000
14	0.000000	1.000000	0.000000	1.000000	0.367735	0.244988	0.005983	0.522817	0.000000	0.000000	1.000000	0.688714	1.000000	0.000000	0.000000

3k PBMC dataset \rightarrow downsampled to 15 cells \rightarrow computed 4 nearest neighbours with the UMAP neighbour algorithm (via scanpy)

Data types along the processing path

python

sc.tl.leiden(adata, flavor="igraph", n_iterations=2)

R

pbmc <- FindClusters(pbmc, resolution = 0.5)</pre>

Arms et al.: "From Wayback Machine to Yesternet: New Opportunitites for Social Science", https://www.cs.cornell.edu/wya/papers/Yesternet.pdf

python

sc.tl.leiden(adata, flavor="igraph", n_iterations=2)

R

pbmc <- FindClusters(pbmc, resolution = 0.5)</pre>

US political blogs

red – conservative,
blue – liberal,
edges represent direct
hyperlinks

Arms et al.: "From Wayback Machine to Yesternet: New Opportunitites for Social Science", https://www.cs.cornell.edu/wya/papers/Yesternet.pdf

Leiden (and Louvain) algorithms optimize **modularity** – the density of connections within a community compared to between communitites

modularity –
the density of
connections
within a
community
compared to
between
communitites

modularity –
the density of
connections
within a
community
compared to
between
communitites

Traag, V.A., Waltman, L. & van Eck, N.J. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep 9, 5233 (2019). https://doi.org/10.1038/s41598-019-41695-z

Choose Leiden over Louvain.

*Louvain: after node 0 moves to another community, 1-6 stay in one cluster even though they are no longer connected

- Louvain risks returning "disconnected communities"*, fixed in Leiden
- Leiden runs faster

Traag, V.A., Waltman, L. & van Eck, N.J. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep 9, 5233 (2019). https://doi.org/10.1038/s41598-019-41695-z

Non-linear dimension reduction – example: UMAP (Uniform Manifold Approximation and Projection)

python

sc.tl.umap(adata)

R

pbmc <- RunUMAP(pbmc, dims = 1:10)</pre>

Goal

Embed the cellular graph into lower dimensions in such a way that neighbourhoods (= local structure) are preserved.

https://satijalab.org/seurat/articles/pbmc3k_tutorial https://scanpy.readthedocs.io/en/stable/tutorials/basics/cl ustering.html https://umap-

learn.readthedocs.io/en/latest/how_umap_works.html

Non-linear dimension reduction – example: UMAP (Uniform Manifold Approximation and Projection)

Phase 1 – in high D

 Determine similarities between cells in highdim space (= fuzzy adjacency matrix)

Non-linear dimension reduction – example: UMAP (Uniform Manifold Approximation and Projection)

Phase 1 – in high D

 Determine similarities between cells in highdim space (= fuzzy adjacency matrix)

Phase 2 - in 2/3 D

- Project cells into low D
- Determine similarities between cells in low D
- Move cells around until adjacency matrix resembles the one from high D

The most important UMAP parameter: the number of neighbours with which to build the graph

n_neighbors = 200

The green cluster is less variable than the beige-brown cluster because it is smaller.

The green cluster is less variable than the beige-brown cluster because it is smaller.

You shall not

The green cluster is more similar to the blue cluster than to the brown cluster because it is closer.

You shall not

The green cluster is more similar to the blue cluster than to the brown cluster because it is closer.

You shall not

Interpret visual cluster size

Interpret distances between cluster

There are clearly several subpopulations within the red cluster.

You shall not

Interpret visual cluster size

Interpret distances between cluster

There are clearly several subpopulations within the red cluster.

You shall not

Interpret visual cluster size

Interpret distances between cluster

Perform clustering (manual or automatic) on UMAP/tSNE

We considered all cells with umap_1>10 as marker-positive for the analysis.

You shall not

Interpret visual cluster size

Interpret distances between cluster

Perform clustering (manual or automatic) on UMAP/tSNE

We considered all cells with umap_1>10 as marker x-positive for the analysis.

You shall not

Interpret visual cluster size

Interpret distances between cluster

Perform clustering (manual or automatic) on UMAP/tSNE

https://satijalab.org/seurat/articles/pbmc3k_tutorial.html#perform-linear-dimensional-reduction

We considered all cells with umap_1>10 as marker x-positive for the analysis.

You shall not

Interpret visual cluster size

Interpret distances between cluster

Perform clustering (manual or automatic) on UMAP/tSNE

Perform gating or ordering based on UMAP/tSNE coordinates.

https://satijalab.org/seurat/articles/pbmc3k_tutorial.html#perform-linear-dimensional-reduction

The "UMAP is wrong and useless" controversy

The specious art of single-cell genomics

Tara Chari, Lior Pachter

Published: August 17, 2023 • https://doi.org/10.1371/journal.pcbi.1011288

The "UMAP is wrong and useless" controversy

The specious art of single-cell genomics

Tara Chari, Lior Pachter

Published: August 17, 2023 • https://doi.org/10.1371/journal.pcbi.1011288

The art of seeing the elephant in the room: 2D embeddings of single-cell data do make sense

Jan Lause ^{1,2}, Philipp Berens ^{1,2}, and Dmitry Kobak ^{1,2,3}

¹Hertie Institute for AI in Brain Health, University of Tübingen, Germany

²Tübingen AI Center, Tübingen, Germany

³IWR, Heidelberg University, Germany

□ name.surname@uni-tuebingen.de

March 26, 2024

https://www.biorxiv.org/content/10.1101/2024.03.26.586728 v1

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011288

While 50D can approximate the full information reasonably, **2D cannot preserve the full information.**

Data types along the processing path

