Regular Series Expansions of π and $\ln 2$ Using the NeCo Function and the Dirichlet η Function

Yuto Namaizawa

1 Overview of the Present Study

In this study, we introduce a new function, the NeCo function, defined based on Dirichlet's eta function, and construct a novel holomorphic series representation using the values of the eta function at negative integers. In particular, we derive new expansion formulas for mathematical constants such as π and $\ln 2$ through integral structures arising from the NeCo function.

2 Research Motivation and Background

I have long been fascinated by the intricate structure of the Riemann zeta function, $\zeta(s)$, particularly its analytic continuation and functional equation. Through my own independent investigations into its properties, I have gone through numerous trials and errors. However, I came to feel that simply following conventional methodologies was insufficient for making new discoveries, and I began to sense the need for a shift in perspective.

In this process, I turned my attention to Dirichlet's eta function, $\eta(s)$, which is closely related to $\zeta(s)$ but often receives less attention. $\eta(s)$ has a well-behaved series representation, and I noticed that its values at negative integers possess an intriguing structure. This led me to consider that a new approach might be possible.

By viewing the values $\eta(-k)$ as a sequence and using them as a core to define a new holomorphic series, I began to uncover natural connections with constants such as π and $\ln 2$, as well as with various other functions. This eventually led me to the definition of a new function, which I call the NeCo function.

I believe that this research is not the result of accidental insight, but rather a necessary outcome of trying to ask new questions about the world of the zeta function from a different angle, while striving to follow a function-theoretically legitimate path.

article amsmath,
amssymb,
amsthm mathrsfs enumerate Theorem $\,$

Theorem 1.1

2.1. Let $a \in \mathbb{C}$ be a complex number satisfying $\Re(a) \geq 1$. Define the following functions:

$$N(a,x) := \int \frac{dx}{1+x^a}, \quad N'(a,x) := \frac{1}{1+x^a}.$$

Then, the following identity holds:

$$\int_0^\infty N'(a, e^{-t}) dt = -1 + \sum_{k=0}^\infty (-a)^k \eta(-k),$$

where $\eta(s)$ denotes the Dirichlet eta function.

Connection to the NeCo Function

The NeCo function C(a) is defined as the exponential generating function whose coefficients are the special values of the Dirichlet eta function at non-positive integers:

$$C(a) := \sum_{k=0}^{\infty} (-a)^k \eta(-k).$$

Therefore, the above integral relation simplifies to:

$$\int_0^\infty \frac{dt}{1 + e^{-at}} = -1 + C(a).$$

$$C(a) = 1 - \int_0^\infty \frac{e^{-t}}{1 + e^{-at}} dt = \sum_{k=0}^\infty (-a)^k \eta(-k)$$

On the Radius of Convergence of Series Expansions

To discuss the convergence of series expansions, the following two points must be carefully considered:

1. Convergence Condition of the Geometric Series Expansion:

When expanding the function

$$f(t) = \frac{1}{1 + e^{-at}}$$

into a geometric series, the condition for convergence is

$$|e^{-at}| < 1.$$

Since this condition is always satisfied in the domain $\Re(a) \geq 1$, the resulting series **converges** absolutely.

2. Radius of Convergence of the Maclaurin Expansion:

The Maclaurin series of e^{-ant} has an **infinite radius of convergence**. That is, each term in the expansion **converges absolutely**, and therefore the full series **converges globally**.

From these observations, it follows that the series expansion within the integral is convergent, and the interchange of summation and integration is justified.

2.1. Theorem 1.1

Let $a \in \mathbb{C}$ satisfy $\Re(a) \geq 1$. Define

$$N(a,x) = \int \frac{dx}{1+x^a}, \qquad N'(a,x) = \frac{1}{1+x^a}.$$

Then the following relation holds:

$$\int_0^\infty N'(a, e^{-t}) dt = -1 + \sum_{k=0}^\infty (-a)^k \eta(-k),$$

or equivalently,

$$\int_0^\infty \frac{e^{-t}}{1 + e^{-at}} dt = 1 - \sum_{k=0}^\infty (-a)^k \eta(-k).$$

Proof

Define

$$f(t) = \frac{1}{1 + e^{-at}},$$

with t > 0 and $\Re(a) \ge 1$.

1. By the geometric series expansion,

$$f(t) = \frac{1}{1 + e^{-at}} = 1 + \sum_{n=1}^{\infty} (-1)^n e^{-ant}.$$

2. Expand each term e^{-ant} in its Maclaurin series:

$$e^{-ant} = \sum_{k=0}^{\infty} \frac{(-ant)^k}{k!}.$$

3. Substitute into the previous sum and interchange summation (justified by absolute convergence):

$$f(t) = 1 + \sum_{k=0}^{\infty} \frac{(-at)^k}{k!} \sum_{n=1}^{\infty} (-1)^n n^k.$$

4. Note the identity

$$\sum_{n=1}^{\infty} (-1)^n n^k = -\eta(-k).$$

Hence

$$f(t) = 1 - \sum_{k=0}^{\infty} \frac{(-at)^k}{k!} \eta(-k).$$

5. Multiply both sides by e^{-t} and integrate from 0 to ∞ :

$$\int_0^\infty \frac{e^{-t}}{1 + e^{-at}} dt = 1 - \sum_{k=0}^\infty (-a)^k \eta(-k).$$

This completes the proof. article amsmath, amssymb amsthm geometry margin=30mm titlesec Proposition Theorem Definition

Theorem 1.1

Let $a \in \mathbb{C}$ with $\Re(a) \geq 1$, and define

$$N(a,x) = \int \frac{dx}{1+x^a}, \quad N'(a,x) = \frac{1}{1+x^a}.$$

Then the following identities hold:

$$\int_0^\infty N'(a, e^{-t}) dt = -1 + \sum_{k=0}^\infty (-a)^k \eta(-k),$$

or equivalently,

$$\int_0^\infty \frac{e^{-t}}{1 + e^{-at}} dt = 1 - \sum_{k=0}^\infty (-a)^k \eta(-k).$$

Proof

Define the function $f(t) = \frac{1}{1+e^{-at}}$ for t > 0, $\Re(a) \ge 1$. Then we expand using the geometric series:

$$f(t) = \frac{1}{1 + e^{-at}} = 1 + \sum_{n=1}^{\infty} (-1)^n e^{-ant}.$$

Next, expand e^{-ant} via the Maclaurin series:

$$e^{-ant} = \sum_{k=0}^{\infty} \frac{(-ant)^k}{k!}.$$

Substituting and interchanging the order of summation (justified by absolute convergence),

$$f(t) = 1 + \sum_{k=0}^{\infty} \frac{(-at)^k}{k!} \sum_{n=1}^{\infty} (-1)^n n^k.$$

Noting that

$$\sum_{n=1}^{\infty} (-1)^n n^k = -\eta(-k),$$

we obtain

$$f(t) = 1 - \sum_{k=0}^{\infty} \frac{(-at)^k}{k!} \eta(-k).$$

Multiplying both sides by e^{-t} and integrating from 0 to ∞ ,

$$\int_0^\infty \frac{e^{-t}}{1 + e^{-at}} dt = 1 - \sum_{k=0}^\infty (-a)^k \eta(-k). \quad \Box$$

2.2. For a > 0, the following identity holds:

$$\int_0^\infty \frac{e^{-t}}{1 + e^{-at}} dt = \frac{1}{2a} \left(\psi \left(\frac{1+a}{2a} \right) - \psi \left(\frac{1}{2a} \right) \right),$$

where $\psi(z) = \frac{d}{dz} \log \Gamma(z)$ is the digamma function.

Proof. Expand:

$$\int_0^\infty \frac{e^{-t}}{1 + e^{-at}} dt = \sum_{n=0}^\infty (-1)^n \int_0^\infty e^{-(1+an)t} dt = \sum_{n=0}^\infty \frac{(-1)^n}{1 + an}.$$

Using the identity:

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{z+n} = \frac{1}{2} \left(\psi \left(\frac{z+1}{2} \right) - \psi \left(\frac{z}{2} \right) \right) \quad (\Re(z) > 0),$$

setting $z = \frac{1}{a}$, we obtain

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{1+an} = \frac{1}{2a} \left(\psi \left(\frac{1+a}{2a} \right) - \psi \left(\frac{1}{2a} \right) \right). \quad \Box$$

2.3 (NeCo Function and Polylogarithms). For a > 0, the following identity holds:

$$\sum_{k=0}^{\infty} (-a)^k \eta(-k) = \sum_{k=0}^{\infty} (-a)^k \operatorname{Li}_{-k}(-1).$$

Proof. Using the identity

$$\operatorname{Li}_{-k}(-1) = -\sum_{n=1}^{\infty} (-1)^n n^k = \eta(-k),$$

each term matches, and we obtain

$$\sum_{k=0}^{\infty} (-a)^k \eta(-k) = -\sum_{k=0}^{\infty} (-a)^k \operatorname{Li}_{-k}(-1). \quad \Box$$

3. Evaluation of Constants Using the NeCo Function

From the structure of the NeCo function, several mathematical constants can be expressed as:

$$\sum_{k=0}^{\infty} \eta(-k) = \ln 2,$$

$$\sum_{k=0}^{\infty} 2^k \eta(-k) = 2 - \frac{\pi}{4} \quad \Rightarrow \quad \pi = 8 - 4 \sum_{k=0}^{\infty} 2^k \eta(-k).$$

4. Trigonometric Form and Reflection Formula of the NeCo Function

4.1 (NeCo Function). The NeCo function is defined for a > 0 as

$$C(a) = 1 - \frac{1}{2a} \left[\psi \left(\frac{1+a}{2a} \right) - \psi \left(\frac{1}{2a} \right) \right].$$

4.1. The NeCo function satisfies the identity:

$$C(a) = 1 - \frac{\pi}{a} \csc\left(\frac{\pi}{a}\right).$$

Proof. Let $u = \frac{1}{2a}$, so that

$$\frac{1+a}{2a} = u + \frac{1}{2}, \quad \frac{1}{2a} = u.$$

Hence,

$$C(a) = 1 - \frac{1}{2a} \left[\psi(u + \frac{1}{2}) - \psi(u) \right].$$

Using the known identity:

$$\psi(u + \frac{1}{2}) - \psi(u) = \pi \tan(\pi u),$$

we find:

$$C(a) = 1 - \frac{\pi}{a} \csc\left(\frac{\pi}{a}\right)$$
. \square

4.1 (Half-Integer Tangent Identity). For any $u \in \mathbb{C}$,

$$\psi\left(u+\frac{1}{2}\right)-\psi\left(\frac{1}{2}-u\right)=\pi\tan(\pi u).$$

4.2 (Reflection Formula for the Digamma Function). For all $z \notin \mathbb{Z}$,

$$\psi(1-z) - \psi(z) = \pi \cot(\pi z).$$

Proof of the Trigonometric Identity for C(a). We start by decomposing the digamma difference:

$$\psi\left(u+\frac{1}{2}\right)-\psi(u) = \left[\psi\left(u+\frac{1}{2}\right)-\psi\left(\frac{1}{2}-u\right)\right] + \left[\psi\left(\frac{1}{2}-u\right)-\psi(u)\right]$$
$$= \pi \tan(\pi u) + \pi \cot(\pi u)$$
$$= \pi \left[\tan(\pi u) + \cot(\pi u)\right].$$

Using the trigonometric identity

$$\tan x + \cot x = 2 \csc(2x),$$

we obtain

$$\tan(\pi u) + \cot(\pi u) = 2 \csc(2\pi u),$$

so that

$$\psi\left(u+\frac{1}{2}\right)-\psi(u)=2\pi\,\csc(2\pi u).$$

Substituting $u = \frac{1}{2a}$, we get:

$$2\pi \csc(2\pi u) = 2\pi \csc\left(\frac{\pi}{a}\right),\,$$

and hence,

$$C(a) = 1 - \frac{1}{2a} \left[\psi \left(u + \frac{1}{2} \right) - \psi(u) \right]$$
$$= 1 - \frac{1}{2a} \cdot 2\pi \csc \left(\frac{\pi}{a} \right)$$
$$= 1 - \frac{\pi}{a} \csc \left(\frac{\pi}{a} \right).$$

This proves the trigonometric expression:

$$C(a) = 1 - \frac{\pi}{a} \csc\left(\frac{\pi}{a}\right),$$

which immediately implies the **reciprocal identity**:

$$C\left(\frac{1}{a}\right) = 1 - \pi a \csc(\pi a). \quad \Box$$

4.3 (Reflection Formula of the NeCo Function). For the NeCo function C(a), the difference

$$C(a) - C\left(\frac{1}{a}\right)$$

can be expressed using trigonometric functions as follows:

$$C(a) - C\left(\frac{1}{a}\right) = -\pi \left(\frac{1}{a}\csc\left(\frac{\pi}{a}\right) - a\csc(\pi a)\right).$$

4.4 (Connection to Dirichlet *L*-functions). Let $\chi(n) = (-1)^{n-1}$ be the non-principal Dirichlet character modulo 2. Then the Dirichlet *L*-function satisfies

$$L(s, \chi^{-1}) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s} = \eta(s).$$

Using this identity, the NeCo function can be expressed as a generating function for the special values of the Dirichlet L-function at non-positive integers:

$$C(a) = \sum_{k=0}^{\infty} (-a)^k \cdot L(-k, \chi^{-1})$$

This representation shows that the NeCo function naturally reconstructs the sequence of special values of $L(s,\chi^{-1})$ at negative integers.

article amsmath, amssymb, amsthm enumitem Proposition

4.1 (Functional Equation of the NeCo Function). For all real $a \neq 0$, the NeCo function

$$C(a) = 1 - \frac{1}{2a} \left[\psi\left(\frac{1+a}{2a}\right) - \psi\left(\frac{1}{2a}\right) \right]$$

satisfies

$$C(-a) = C(a) - 2a + \pi \left(\cot\frac{\pi}{2a} - \tan\frac{\pi}{2a}\right).$$

Proof. We use the digamma identity

$$\psi(-x) = \psi(x) + \frac{1}{x} + \pi \cot(\pi x).$$

[label=0.] **Definition & substitution.**

From the definition,

$$C(a) = 1 - \frac{1}{2a} \left[\psi\left(\frac{1+a}{2a}\right) - \psi\left(\frac{1}{2a}\right) \right],$$

substituting $a \mapsto -a$ gives

$$C(-a) = 1 + \frac{1}{2a} \left[\psi\left(\frac{a-1}{2a}\right) - \psi\left(-\frac{1}{2a}\right) \right],$$

since $\frac{1-a}{-2a} = \frac{a-1}{2a} = \frac{1}{2} - \frac{1}{2a}$. Half-integer shift. With $u = \frac{1}{2a}$, the identity $\psi(u + \frac{1}{2}) - \psi(\frac{1}{2} - u) = \pi \tan(\pi u)$ yields

$$\psi\left(\frac{1}{2} - \frac{1}{2a}\right) = \psi\left(\frac{1}{2} + \frac{1}{2a}\right) - \pi \tan\frac{\pi}{2a}.$$

Reflection–shift for $\psi(-\frac{1}{2a})$.

Applying $\psi(-x) = \psi(x) + \frac{1}{x} + \pi \cot(\pi x)$ with $x = \frac{1}{2a}$ gives

$$\psi\left(-\frac{1}{2a}\right) = \psi\left(\frac{1}{2a}\right) + 2a + \pi \cot\frac{\pi}{2a}.$$

Combine in C(-a).

Substitute steps 2–3 into C(-a):

$$C(-a) = 1 + \frac{1}{2a} \left[\psi(\frac{1}{2} + \frac{1}{2a}) - \psi(\frac{1}{2a}) - 2a - \pi \left(\tan \frac{\pi}{2a} + \cot \frac{\pi}{2a} \right) \right].$$

Subtract from C(a).

Since $C(a) = 1 - \frac{1}{2a} \left[\psi(\frac{1}{2} + \frac{1}{2a}) - \psi(\frac{1}{2a}) \right]$, one finds

$$C(a) - C(-a) = 2a - \pi \left(\cot \frac{\pi}{2a} - \tan \frac{\pi}{2a}\right).$$

Rearrange.

Therefore

$$C(-a) = C(a) - 2a + \pi \left(\cot \frac{\pi}{2a} - \tan \frac{\pi}{2a}\right),$$

as claimed.