	$\sigma_{1}^{\#1}{}_{+}$ $_{lphaeta}$	$\sigma_1^{\#2}$	$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1^{-}\alpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1}^{\#1}{}_{\alpha}$	$\tau_{1}^{\#2}{}_{\alpha}$
$\sigma_1^{\#1} + \alpha \beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1}^{#2} + \alpha^{\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\tau_{1+}^{\#1} + \alpha \beta$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1} +^{\alpha}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1-2t_3)}{3(1+2k^2)t_1t_3}$	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$
$\sigma_{1}^{\#2} + ^{lpha}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{3(1+2k^2)t_1t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
$\tau_{1}^{\#1} +^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} + \alpha$	0	0	0	$\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	0	$\frac{2k^2(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$

$f_{1^-}^{\#2}$	0	0	0	$\frac{1}{3}$ \vec{l} k $(t_1 - 2t_3)$	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}k(t_1-2t_3)\left -\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)\right $
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{6}(t_1+4t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}\bar{l}k(t_1-2t_3)$
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}_{+} \omega_{1}^{\#2}_{+} \ell_{1}^{\#1}_{+} \alpha_{eta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	- 1 1	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
,	$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} + ^{lphaeta}$	$f_{1}^{\#1} + ^{\alpha \beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_1^{#2} + \alpha$

$ \begin{array}{l} -\frac{1}{3}t_{1}\omega_{\kappa}^{\;a''}\omega_{\kappa}^{\;\;\kappa} + \frac{2}{3}t_{3}\omega_{\kappa}^{\;a''}\omega_{\kappa}^{\;\;\kappa} - t_{1}\omega_{\kappa}^{\;\kappa\lambda}\omega_{\kappa}^{\;\;\prime} + \\ f^{\alpha\beta}\tau_{\alpha\beta} + \omega^{\alpha\beta\chi}\sigma_{\alpha\beta\chi} + \frac{2}{3}r_{2}\partial^{\beta}\omega^{\beta\alpha}_{\;\;\kappa}\partial_{\theta}\omega_{\alpha\beta}^{\;\;\kappa} - \frac{1}{3}r_{2}\partial_{\theta}\omega_{\alpha\beta}^{\;\;\kappa}\partial_{\kappa}\omega^{\alpha\beta\theta} - \\ \frac{2}{3}r_{2}\partial_{\theta}\omega_{\alpha\beta}^{\;\;\kappa}\partial_{\kappa}\omega^{\theta\alpha\beta} - \frac{1}{2}t_{1}\partial^{\alpha}f_{\theta}^{\;\;\kappa}\partial^{\kappa}f_{\alpha}^{\;\;\;-\frac{1}{2}}t_{1}\partial^{\alpha}f_{\kappa\theta}^{\;\;\theta}\partial^{\kappa}f_{\alpha}^{\;\;\theta} - \frac{1}{2}t_{1}\partial^{\alpha}f_{\kappa\theta}^{\;\;\theta}\partial^{\kappa}f_{\alpha}^{\;\;+\frac{1}{3}}t_{1}\omega_{\kappa}^{\;\;\lambda}\partial^{\kappa}f_{\prime}^{\;\;\prime} + \\ \frac{1}{3}t_{1}\omega_{\kappa\alpha}^{\;\;\alpha}\partial^{\kappa}f_{\prime}^{\;\;\prime} - \frac{2}{3}t_{3}\omega_{\kappa}^{\;\;\alpha}\partial^{\kappa}f_{\prime}^{\;\prime} + \frac{1}{3}t_{1}\omega_{\kappa}^{\;\lambda}\partial^{\kappa}f_{\prime}^{\;\prime} + \frac{2}{3}t_{3}\partial_{\kappa}f_{\lambda}^{\;\lambda}\partial^{\kappa}f_{\prime}^{\;\prime} + \\ \frac{2}{3}t_{1}\partial^{\alpha}f_{\kappa\alpha}^{\;\;\alpha}\partial^{\kappa}f_{\prime}^{\;\prime} - \frac{1}{3}t_{1}\partial_{\kappa}f_{\lambda}^{\;\lambda}\partial^{\kappa}f_{\prime}^{\;\prime} + \frac{2}{3}t_{3}\partial^{\kappa}f_{\lambda}^{\;\prime} + \\ \frac{2}{3}t_{3}\omega_{\lambda}^{\;\lambda}\partial^{\kappa}f_{\kappa}^{\;\prime} + \frac{1}{2}t_{1}\partial^{\kappa}f_{\lambda}^{\;\lambda}\partial^{\kappa}f_{\lambda}^{\;\prime} + \frac{1}{2}t_{1}\partial_{\kappa}f_{\lambda}^{\;\lambda}\partial^{\kappa}f_{\lambda}^{\;\prime} + \\ \frac{2}{3}t_{3}\omega_{\lambda}^{\;\lambda}\partial^{\kappa}f_{\lambda}^{\;\prime} + \frac{1}{3}t_{3}\partial^{\alpha}f_{\lambda}^{\;\lambda}\partial^{\kappa}f_{\lambda}^{\;\prime} + \frac{1}{3}t_{2}\partial^{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} + \\ \frac{2}{3}t_{2}\partial_{\kappa}\omega^{\beta\theta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta} - \frac{2}{3}t_{2}\partial^{\beta}\omega_{\lambda}^{\;\lambda}\partial^{\kappa}f_{\lambda}^{\;\prime} + \frac{2}{3}t_{2}\partial^{\beta}\omega_{\lambda}^{\;\lambda}\partial^{\kappa}g_{\lambda}^{\;\prime} + \\ \frac{2}{3}t_{2}\partial^{\kappa}\omega^{\beta\theta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta} - \frac{2}{3}t_{2}\partial^{\beta}\omega_{\lambda}^{\;\lambda}\partial^{\kappa}g_{\lambda}^{\;\prime} + \frac{2}{3}t_{2}\partial^{\beta}\omega_{\lambda}^{\;\lambda}\partial^{\kappa}g_{\lambda}^{\;\prime} + \\ \frac{2}{3}t_{2}\partial^{\kappa}\omega^{\beta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta} - \frac{2}{3}t_{2}\partial^{\beta}\omega_{\lambda}^{\;\lambda}\partial^{\kappa}g_{\lambda}^{\;\prime} + \frac{2}{3}t_{2}\partial^{\beta}\omega_{\lambda}^{\;\lambda}\partial^{\kappa}g_{\lambda}^{\;\prime} + \\ \frac{2}{3}t_{2}\partial^{\kappa}\omega^{\beta\beta}\partial^{\kappa}\omega_{\alpha\beta\theta} - \frac{2}{3}t_{2}\partial^{\beta}\omega_{\lambda}^{\;\lambda}\partial^{\kappa}g_{\lambda}^{\;\prime} + \\ \frac{2}{3}t_{2}\partial^{\kappa}\omega^{\beta\beta}\partial^{\kappa}\omega_{\alpha\beta\theta} - \frac{2}{3}t_{2}\partial^{\beta}\omega_{\lambda}^{\;\lambda}\partial^{\kappa}g_{\lambda}^{\;\prime} + \\ \frac{2}{3}t_{2}\partial^{\kappa}\omega^{\beta}\partial^{\kappa}\omega_{\lambda}^{\;\lambda} + \frac{2}{3}t_{2}\partial^{\beta}\omega_{\lambda}^{\;\lambda}\partial^{\kappa}g_{\lambda}^{\;\prime} + \\ \frac{2}{3}t_{2}\partial^{\kappa}\omega^{\beta}\partial^{\kappa}\omega_{\lambda}^{\;\lambda} + \\ \frac{2}{3}t_{2}\partial^{\kappa}\omega^{\beta}\partial^{\kappa}\omega_{\lambda}^{\;\lambda} + \\ \frac{2}{3}t_{2}\partial^{\kappa}\omega^{\beta}\partial^{\kappa}\omega_{\lambda}^{\;\lambda} + \\ \frac{2}{3}t_{2}\partial^$
--

Source constraints $SO(3) \text{ irreps}$ $t_0^{\#2} == 0$ $t_0^{\#1} - 2ik\sigma_0^{\#1} == 0$ $t_1^{\#2}\alpha + 2ik\sigma_1^{\#2}\alpha == 0$ $t_1^{\#1}\alpha == 0$ $t_1^{\#1}\alpha\beta + ik\sigma_1^{\#2}\alpha\beta == 0$ $t_2^{\#1}\alpha\beta - 2ik\sigma_1^{\#1}\alpha\beta == 0$ $t_2^{\#1}\alpha\beta - 2ik\sigma_1^{\#1}\alpha\beta == 0$ Total #:		#	1	1	3	3	3	2	16
	source constraints	SO(3) irreps	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$		$\tau_{1}^{\#1}{}^{\alpha} == 0$	$+\bar{l}k\sigma_1^{\#2}{}^{\alpha\beta}$	$-2ik\sigma_{2+}^{\#1}\alpha\beta==0$	

 $\tau_0^{\#1}$

 $-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$

 $\frac{2k^2}{(1+2k^2)^2t_3}$

0

0

 $au_{0}^{\#2}$

0

0

0

 $\sigma_0^{\#1}$

0

 $\frac{1}{k^2 r_2 - t_1}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^+\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta}^{\#1}$
$\omega_{2}^{\#1} \dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

 $\sigma_0^{\#1}$

 $\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$

0

0

 $\tau_{0^{+}}^{\#1}$ †

 $\tau_{0^{+}}^{\#2}$ †

 $\sigma_0^{\#1}$ †

$\omega_{0}^{\#1}$ \dagger	$f_{0}^{#1}$ †	$f_0^{#2} + \omega_0^{#1} + \omega_0^{*1}$	
$\sigma_{2}^{\#1}$ $_{aeta\chi}$	0	0	$\frac{2}{t_1}$
$\tau_{2}^{\#1}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
	$\sigma_{2}^{\#1} + \alpha^{eta}$	$\tau_{2^+}^{\#1} \dagger^{\alpha\beta}$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$

 $\omega_{0^{\text{-}}}^{\#1}$

 $\omega_{0}^{\#1}$

0

0

 $2\,k^2\,t_3$

 $\sqrt{2} kt_3$

 $-i\sqrt{2}kt_3$

0

0

0 0

0 0

	Massive partic	le
? /	Pole residue:	$-\frac{1}{r_2} > 0$
$J^P = 0^-$	Polarisations:	1
k^{μ}	Square mass:	$\frac{t_1}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

(No massless particles)

Unitarity conditions $r_2 < 0 \&\& t_1 < 0$