Supplementary exercise on Mapping

Created by Mr. Francis Hung on 20090415

1. Let $f: A \to B$ be a bijective mapping, x an element of A and y an element of B. Prove that there exists a bijective mapping $g: A \to B$ so that g(x) = y.

- 2. Z is the set of all integers. Give examples of mappings $f: Z \to Z$ which are
 - (a) injective but not surjective,
 - (b) surjective but not injective.
- 3. Let $f: A \to B$. Prove that for any subsets X, X_1, X_2 of A and for any subsets Y, Y_1, Y_2 of B,
 - (a) $f[X_1 \setminus X_2] \supset f[X_1] \setminus f[X_2]$
 - (b) $f[X \cap f^{-1}[Y]] = f[X] \cap Y$
 - $(c) \quad f[X_1 \cap X_2] \subset f[X_1] \cap f[X_2]$

Give an example for which the equality does not hold.

- (d) if $Y_1 \subset Y_2$, then $f^{-1}[Y_1] \subset f^{-1}[Y_2]$
- (e) $Y \supset f[f^{-1}[Y]]$

Give an example for which the equality does not hold.

- 4. Let $f: A \to B$ and $g: B \to C$ be mappings. Prove that
 - (a) if f and g are surjective, then $g \circ f : A \to C$ is surjective
 - (b) if f and g are injective, then $g \circ f : A \to C$ is injective
 - (c) if $g \circ f : A \to C$ is surjective, then g is surjective Give counter-examples to show that the converse is not true.
 - (d) if $g \circ f : A \to C$ is injective, then f is injective Give counter-examples to show that the converse is not true.
 - (e) for all subset Z of C, $(g \circ f)^{-1}[Z] = f^{-1}[g^{-1}[Z]]$
- 5. Prove that, for a mapping $f: A \to B$ is surjective if and only if $Y = f[f^{-1}[Y]]$ for all $Y \subset B$.
- 6. Prove that, for a mapping $f: A \rightarrow B$, the following conditions are equivalent:
 - (a) f is injective;
 - (b) $X = f^{-1}[f[X]]$ for all $X \subset A$;
 - (c) $f[X_1 \cap X_2] = f[X_1] \cap f[X_2]$ for all $X_1, X_2 \subset A$.
- 7. Let the function $f: S \to T$ be surjective. If $A \subset S$, prove that $T \setminus f[A] \subset f[S \setminus A]$
- 8. Let $f: A \to B$ be a function. If $Y \subset B$, prove that $f^{-1}[B \setminus Y] = A \setminus f^{-1}[Y]$
- 9. Let $f: S \to T$ be a function. If $A, B \subset S$, and $B \subset A$, prove that $f[A \setminus B] = f[A] \setminus f[B]$
- 10. If $f(x) = x^2 + 2x + 3$, find two functions g(x) for which $f \circ g(x) = x^2 6x + 11$.

Last updated: April 22, 2011

- 11. Let A, B, C and D be non-empty sets, $C \subseteq A, D \subseteq B, f: A \rightarrow B$
 - (a) Prove or give a counter-example that $f[C] \subset D$ iff $C \subset f^{-1}[D]$
 - (b) What condition will ensure that f[C] = D iff $C = f^{-1}[D]$? Prove your answer.
- 12. Let $f: X \to Y$ be a mapping from a set X to a set Y. For any subset S of X, the direct image of S under f is defined by $f[S] = \{y: y = f(x) \text{ for some } x \in S\}$
 - (a) Show that $f[A \cup B] = f[A] \cup f[B]$ for all subsets A and B of X.
 - (b) Show that if $f[A \cap B] = f[A] \cap f[B]$ for all subsets A and B of X, then f is injective.
 - (c) Show that $f[X \setminus A] = Y \setminus f[A]$ for all subsets A of X if f is bijective.
- 13. Let A be a set. Suppose f is a mapping from A to itself such that f is injective but not surjective. Let $f[A] = \{f(a): \text{ for some } a \in A\}$
 - (a) Show that
 - (i) A is non-empty,
 - (ii) A consists of more than two elements.
 - (b) If $g: A \to A$ is a mapping defined by g(f(x)) = x for all $x \in A$, show that g is not bijective.
 - (c) Show that there exists a unique mapping $h: f[A] \to A$ such that h(f(x)) = x for all $x \in A$.
 - (i) h is well defined.
 - (ii) h is bijective.

1. Let $f: A \to B$ be a bijective mapping, x an element of A and y an element of B. Prove that there exists a bijective mapping $g: A \to B$ so that g(x) = y.

If
$$f(x) = y$$
 then $g = f$ is the required bijective mapping.

If
$$f(x) \neq y$$
,

:: f is bijective,

 $\therefore \exists ! \ t \in A \text{ such that } f(t) = y \text{ and } t \neq x$

Define
$$g: A \to B$$
 by $g(a) = \begin{cases} y, & \text{for } a = x \\ f(x), & \text{for } a = t \\ f(a), & \text{for } a \neq x \text{ and } a \neq t \end{cases}$

We are going to show that g is a well-defined function.

$$\forall a \in A, g(a) = y \text{ or } f(x) \text{ or } f(a) \in B$$

If
$$g(a) = y_1$$
 and $g(a) = y_2$,

Case 1
$$a \neq x$$
 and $a \neq t$
 $\Rightarrow f(a) = y_1$ and $f(a) = y_2$
 $\therefore f$ is a well defined function
 $\therefore y_1 = y_2$

Case 2
$$a = t$$

 $\Rightarrow g(t) = f(x) = y_1, g(t) = f(x) = y_2$
 $\therefore f$ is a well-defined function
 $\therefore y_1 = y_2$

Case 3
$$a = x$$

$$\Rightarrow g(x) = y = y_1, g(x) = y = y_2$$

$$\Rightarrow y = y_1 = y_2$$

In all 3 cases, g is a well-defined function

We are going to show that g is surjective

$$\forall b \in B$$
, if $b = y$ then $g(x) = y$
if $b = f(x)$ then $g(t) = f(x)$
if $b \neq y$ and $b \neq f(x)$
then $\exists ! \ a \in A \text{ and } a \neq x \text{ and } a \neq t \text{ s.t. } f(a) = b$
 $\Rightarrow g(a) = b$

 \therefore g is surjective

We are going to show that g is injective

If
$$g(a_1) = g(a_2)$$
,
Case $1 \ g(a_1) = g(a_2) = y$
 $f(t) = y \text{ and } t \text{ is unique}$
 $t = a_1 = a_2$

Case
$$2 g(a_1) = g(a_2) = f(x)$$

 $\therefore g(t) = f(x)$
if $a_1 \neq t$ then $g(a_1) = y$ or $f(a_1)$
 $\Rightarrow g(a_1) \neq g(t)$
if $a_2 \neq t$ then $g(a_2) = y$ or $f(a_2)$
 $\Rightarrow g(a_2) \neq g(t)$
By contrapositivity, $f(x) = g(a_1) = g(a_2) \Rightarrow a_1 = a_2 = t$
Case $3 g(a_1) = g(a_2) = f(a_1) = f(a_2)$, where $a_1, a_2 \neq x, t$
 $\therefore f$ is injective
 $\therefore a_1 = a_2$

Combining the above 3 cases, g is injective.

- \therefore g is both injective and surjective
- \therefore g is bijective and is the required function.

2.
$$f: Z \to Z$$

(a)
$$f(x) = 2x$$

then f is a well-defined function. (prove it!)

Suppose
$$f(x_1) = f(x_2)$$

$$\Rightarrow 2x_1 = 2x_2$$

$$\Rightarrow x_1 = x_2$$

- \therefore f is an injective function
- $5 \in \mathbb{Z}$, but we cannot find an integer such that 2x = 5
- \therefore f is not surjective.
- (b) Define $f(x) = \left\lceil \frac{x}{2} \right\rceil$ where [t] is the integer less than or equal to t.

$$\left[\frac{3}{2}\right] = 1, \quad \left[-\frac{5}{2}\right] = -3, \quad \left[-\frac{4}{2}\right] = -2$$

$$\forall y \in Z, f(2y) = \left[\frac{2y}{2}\right] = y$$

 $\therefore f$ is surjective.

But
$$f(0) = \left[\frac{0}{2} \right] = 0$$
, $f(1) = \left[\frac{1}{2} \right] = 0$

 \therefore f is not injective.

Let $f: A \to B$. Prove that for any subsets X, X_1, X_2 of A and for any subsets Y, Y_1, Y_2 of B, 3.

Let
$$f: A \to B$$
. Prove that for any subsets X, X_1, X_2 of A and for any (a) $f[X_1 \setminus X_2] \supset f[X_1] \setminus f[X_2]$
 $\forall f(x) \in f[X_1] \setminus f[X_2]$
 $\Rightarrow f(x) \in f[X_1] \text{ and } f(x) \notin f[X_2]$
 $\Rightarrow x \in f^{-1}[f[X_1]] \text{ and } x \notin X_2$
 $\Rightarrow x \in f^{-1}[f[X_1]] \setminus X_2$
 $\Rightarrow f(x) \in f[f^{-1}[f[X_1]] \setminus X_2] \quad (\because f[f^{-1}[f[X]]] = f[X])$
 $\Rightarrow f(x) \in f[X_1 \setminus X_2]$
 $\therefore f[X_1 \setminus X_2] \supset f[X_1] \setminus f[X_2]$
(b) $f[X \cap f^{-1}[Y]] = f[X] \cap Y$
 $X \cap f^{-1}[Y] \subset X \text{ and } X \cap f^{-1}[Y] \subset f^{-1}[Y]$
 $\Rightarrow f[X \cap f^{-1}[Y]] \subset f[X] \text{ and } f[X \cap f^{-1}[Y]] \subset f[f^{-1}[Y]] \subset Y$
 $\Rightarrow f[X \cap f^{-1}[Y]] \subset f[X] \cap Y$
 $\forall f(x) \in f[X] \cap Y$
 $\Rightarrow f(x) \in f[X] \text{ and } f(x) \in Y$
 $\Rightarrow x \in f^{-1}[f[X]] \text{ and } x \in f^{-1}[Y]$
 $\Rightarrow x \in f^{-1}[f[X]] \cap f^{-1}[Y]$
 $\Rightarrow f(x) \in f[X \cap f^{-1}[Y]] \quad (\because f[f^{-1}[f[X]]] = f[X])$
 $\therefore f[X \cap f^{-1}[Y]] \supset f[X] \cap Y$

$$f[X \cap f^{-1}[Y]] \subset f[X] \cap Y \text{ and } f[X \cap f^{-1}[Y]] \supset f[X] \cap Y$$

$$f[X \cap f^{-1}[Y]] = f[X] \cap Y$$

(c)
$$f[X_1 \cap X_2] \subset f[X_1] \cap f[X_2]$$

 $X_1 \cap X_2 \subset X_1 \text{ and } X_1 \cap X_2 \subset X_2$
 $\Rightarrow f[X_1 \cap X_2] \subset f[X_1] \text{ and } f[X_1 \cap X_2] \subset f[X_2]$
 $\Rightarrow f[X_1 \cap X_2] \subset f[X_1] \cap f[X_2]$

Give an example for which the equality does not hold.

Define
$$f: \{a, b\} \to \{1\}$$
 by $f(a) = f(b) = 1$
Let $X_1 = \{a\}, X_2 = \{b\}, f[X_1 \cap X_2] = f[\phi] = \phi; f[X_1] \cap f[X_2] = \{1\}$
 $\therefore f[X_1 \cap X_2] \neq f[X_1] \cap f[X_2]$

(d) if
$$Y_1 \subset Y_2$$
, then $f^{-1}[Y_1] \subset f^{-1}[Y_2]$
 $\forall x \in f^{-1}[Y_1] \Rightarrow f(x) \in Y_1$
 $\Rightarrow f(x) \in Y_2 \ (\because Y_1 \subset Y_2)$
 $\Rightarrow x \in f^{-1}[Y_2]$
 $\therefore f^{-1}[Y_1] \subset f^{-1}[Y_2]$

(e)
$$Y \supset f[f^{-1}[Y]]$$

 $\forall f(x) \in f[f^{-1}[Y]] \Rightarrow x \in f^{-1}[Y]$
 $\Rightarrow f(x) \in Y$
 $\therefore Y \supset f[f^{-1}[Y]]$

Give an example for which the equality **does not** hold.

Define
$$f: \{a, b\} \to \{1,2\}$$
 by $f(a) = f(b) = 1$
Let $Y = \{1,2\}, f^{-1}[Y] = \{a, b\}, f[f^{-1}[Y]] = \{1\}$

- 4. Let $f: A \to B$ and $g: B \to C$ be mappings. Prove that
 - (a) if f and g are surjective, then $g \circ f : A \to C$ is surjective $\forall c \in C, \exists b \in B \text{ such that } g(b) = c \ (\because g \text{ is surjective})$

 $\exists a \in A \text{ such that } f(a) = b \text{ (} :: f \text{ is surjective)}$

- $\Rightarrow \exists a \in A \text{ such that } g \circ f(a) = g(f(a)) = g(b) = c$
- \therefore gof is surjective.
- (b) if f and g are injective, then $g \circ f : A \to C$ is injective

Suppose $g \circ f(a_1) = g \circ f(a_2)$

$$\Rightarrow g(f(a_1)) = g(f(a_2))$$

$$\Rightarrow f(a_1) = f(a_2)$$
 (: g is injective)

$$\Rightarrow a_1 = a_2$$
 (: f is injective)

- \therefore gof is injective.
- (c) if $g \circ f : A \to C$ is surjective, then g is surjective

 $\forall c \in C, \exists a \in A \text{ such that } g \circ f(a) = c \quad (\because g \circ f \text{ is surjective})$

$$\Rightarrow g(f(a)) = c$$

Let
$$b = f(a) \in B$$

$$\Rightarrow g(b) = c$$

 \therefore g is surjective.

Give counter-examples to show that the converse is not true.

Define
$$f: \mathbb{R} \to \mathbb{R}$$
, $g: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = x^2$$
, $g(x) = x$

$$\therefore g = i$$
 (identity mapping)

 $\therefore g$ is surjective.

$$g \circ f(x) = x^2$$

 $g \circ f$ is not injective because we cannot find $x \in R$ such that $x^2 = -3$.

(d) if $g \circ f : A \to C$ is injective, then f is injective

Suppose
$$f(a_1) = f(a_2)$$

$$\Rightarrow$$
 $g(f(a_1)) = g(f(a_2))$

$$\Rightarrow$$
 $g \circ f(a_1) = g \circ f(a_2)$

$$\Rightarrow a_1 = a_2$$
 (:: gof is injective)

 $\therefore f$ is injective.

Give counter-examples to show that the converse is not true.

Define
$$f: \mathbb{R} \to \mathbb{R}$$
, $g: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = x, g(x) = x^2$$

then f = i (identity mapping)

so f is injective

$$g \circ f(x) = x^2$$

$$g \circ f(2) = g \circ f(-2) = 4$$

 \therefore gof is not injective.

(e) for all subset Z of C, $(g \circ f)^{-1}[Z] = f^{-1}[g^{-1}[Z]]$

$$\forall a \in f^{-1} [g^{-1} [Z]] \Leftrightarrow f(a) \in g^{-1} [Z]$$

$$\Leftrightarrow$$
 $g \circ f(a) \in Z$

$$\Leftrightarrow a \in (g \circ f)^{-1}[Z]$$

$$(g \circ f)^{-1} [Z] = f^{-1} [g^{-1} [Z]]$$

- 5. Prove that, for a mapping $f: A \to B$ is surjective if and only if $Y = f[f^{-1}[Y]]$ for all $Y \subset B$.
 - (\Rightarrow) Given $f: A \to B$ is surjective

By the result of
$$3(e)$$
, $Y \supset f[f^{-1}[Y]]$

$$\forall y \in Y \subset B$$

$$\Rightarrow \exists x \in A \text{ such that } f(x) = y \text{ (} :: f \text{ is surjective)}$$

$$\Rightarrow x \in f^{-1}[Y]$$

$$\Rightarrow f(x) \in f[f^{-1}[Y]]$$

$$\therefore Y \subset f[f^{-1}[Y]]$$

$$\therefore Y = f[f^{-1}[Y]]$$

$$(\Leftarrow)$$
 Given $Y = f[f^{-1}[Y]] \forall Y \subset B$

$$\Rightarrow B = f[f^{-1}[B]] \quad (\because B \subset B)$$

$$\forall y \in B \Rightarrow y \in f[f^{-1}[B]]$$

$$\Rightarrow \exists x \in f^{-1}[B] \subset A \text{ such that } f(x) = y$$

$$\Rightarrow$$
 f is surjective.

- 6. Prove that, for a mapping $f: A \rightarrow B$, the following conditions are equivalent:
 - (a) f is injective;
 - (b) $X = f^{-1}[f[X]]$ for all $X \subset A$;
 - (c) $f[X_1 \cap X_2] = f[X_1] \cap f[X_2]$ for all $X_1, X_2 \subset A$.

We shall prove in the following manner: $(a) \Rightarrow (c), (c) \Rightarrow (b), (b) \Rightarrow (a)$

$$(a) \Rightarrow (c)$$

By
$$3(c)$$
, $f[X_1 \cap X_2] \subset f[X_1] \cap f[X_2]$

$$\forall y \in f[X_1] \cap f[X_2]$$

$$\Rightarrow$$
 $y = f(x_1)$ and $y = f(x_2)$ for some $x_1 \in X_1$ and $x_2 \in X_2$

$$\therefore$$
 f is injective $\Rightarrow x_1 = x_2 \in X_1 \cap X_2$

$$\Rightarrow f(x) = y \in f[X_1 \cap X_2]$$

$$\therefore f[X_1 \cap X_2] = f[X_1] \cap f[X_2] \text{ for all } X_1, X_2 \subset A.$$

$$(c) \Rightarrow (b)$$

We shall use contrapositivity $\sim(b) \Rightarrow \sim(c)$

Suppose
$$X \neq f^{-1}[f[X]]$$

$$\Rightarrow \exists x \in f^{-1}[f[X]] \text{ and } x \notin X$$

$$\Rightarrow f(x) \in f[X] \text{ and } x \notin X$$

$$\Rightarrow \exists x_1 \in X, x \notin X \text{ such that } f(x) = f(x_1)$$

$$f[\{x_1\} \cap \{x\}] = f[\phi] = \phi$$

$$f[\{x_1\}] \cap f[\{x\}] = \{f(x_1)\} \cap \{f(x)\} = \{f(x)\} \neq \emptyset$$

 \therefore (c) is not always true for all $X_1, X_2 \subset A$.

$$(b) \Rightarrow (a)$$

We use contradiction $\sim(a)\Lambda(b) \Rightarrow F$

Suppose *f* is not injective.

$$\exists x_1 \neq x_2 \text{ such that } f(x_1) = f(x_2)$$

$${x_1} = f^{-1}[f[{x_1}]]$$

$$=f^{-1}[\{f(x_1)\}]$$

$$= f^{-1} [\{f(x_2)\}]$$

$$\Rightarrow x_2 \in f^{-1}[\{f(x_2)\}] = \{x_1\}$$
 which is false.

7. Let the function $f: S \to T$ be surjective. If $A \subset S$, prove that $T \setminus f[A] \subset f[S \setminus A]$ We use the property $f[X_1 \cup X_2] = f[X_1] \cup f[X_2]$

Given
$$A \subset S$$

$$f[A] \cup f[S \setminus A] = f[A \cup (S \setminus A)]$$

$$= f[S]$$

$$= T \quad (\because f \text{ is surjective})$$

$$T \setminus f[A] = f[A] \cup f[S \setminus A] \setminus f[A]$$

$$T \setminus f[A] = f[A] \cup f[S \setminus A] \setminus f[A]$$
$$\subset f[S \setminus A]$$

8. Let
$$f: A \to B$$
 be a function. If $Y \subset B$, prove that $f^{-1}[B \setminus Y] = A \setminus f^{-1}[Y]$

$$x \in f^{-1}[B \setminus Y] \Leftrightarrow f(x) \in B \setminus Y$$

 $\Leftrightarrow f(x) \in B \text{ and } f(x) \notin Y$
 $\Leftrightarrow x \in A \text{ and } x \notin f^{-1}[Y]$
 $\Leftrightarrow x \in A \setminus f^{-1}[Y]$

$$\therefore f^{-1}[B \setminus Y] = A \setminus f^{-1}[Y]$$

9. Let $f: S \to T$ be a function. If $A, B \subset S$, and $B \subset A$, prove that $f[A \setminus B] = f[A] \setminus f[B]$

By the result of 3(a), $f[A \setminus B] \supset f[A] \setminus f[B]$

$$\forall f(x) \in f[A \setminus B]$$

$$\Rightarrow \exists x \in A \setminus B \text{ such that } f(x) \in f[A \setminus B]$$

$$\Rightarrow \exists x \in A \text{ and } x \notin B$$

$$\Rightarrow \exists f(x): f(x) \in f[A] \text{ and } f(x) \notin f[B]$$

$$\Rightarrow f(x) \in f[A] \setminus f[B]$$

$$\therefore f[A \setminus B] \subset f[A] \setminus f[B]$$

$$\therefore f[A \setminus B] = f[A] \setminus f[B]$$

10. If $f(x) = x^2 + 2x + 3$, find two functions g(x) for which $f \circ g(x) = x^2 - 6x + 11$.

g(x) must be a linear function of x.

Let
$$g(x) = ax + b$$
, $f(x) = x^2 + 2x + 3$

$$f \circ g(x) = f(ax + b)$$

= $(ax + b)^2 + 2(ax + b) + 3$
= $ax^2 + 2abx + b^2 + 2ax + 2b + 3$

But
$$x^2 - 6x + 11 = ax^2 + (2a + 2ab)x + b^2 + 2b + 3$$

$$-6 = 2a + 2ab$$
 and $11 = b^2 + 2b + 3$

$$a(1+b) = -3$$
 and $b^2 + 2b - 8 = 0$

$$a(1+b) = -3$$
 and $(b = -4 \text{ or } b = 2)$

:.
$$a = 1$$
, $b = -4$ or $a = -1$, $b = 2$

and
$$g(x) = x - 4$$
 or $g(x) = 2 - x$

- 11. Solution: Note that $f^{-1}[D] = \{x \in A : f(x) \in D\}$
- (a) (Proof of only if part) $f[C] \subset D$ (given)

$$\forall x \in C$$

$$\Rightarrow f(x) \in f[C]$$

$$\Rightarrow f(x) \in D$$

$$\Rightarrow x \in f^{-1}[D]$$

$$\therefore C \subset f^{-1}[D]$$

(Proof of if part) $C \subset f^{-1}[D]$ (given)

$$\forall y \in f[C]$$

$$\Rightarrow \exists x \in C \text{ such that } f(x) = y \in f[C]$$

$$\Rightarrow x \in f^{-1}[D]$$
 and $f(x) = y \in f[C]$

$$\Rightarrow y = f(x) \in D$$

The proof is completed.

Illustration:
$$A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d, e, f\}, C = \{1, 2\}, D = \{a, b, c, d\}$$

Define
$$f: A \to B$$
 by $f(1) = a, f(2) = b, f(3) = c, f(4) = e, f(5) = a$

$$f^{-1}[D] = \{1, 2, 3, 5\}, f[C] = \{a, b\} \subset D, C \subset f^{-1}[D]$$

(b) The condition is:

$$f[C] \subset D$$
 and there is a bijection $g: C \to D$ defined by $g(x) = f(x)$

Since $C \subseteq A$, $D \subseteq B$ and f is a well-defined function. Also $f[C] \subseteq D$.

So *g* is also a well-defined function.

Given the above condition. To prove: f[C] = D iff $C = f^{-1}[D]$

(Proof of only if part) f[C] = D (given)

By the result of (a), $C \subset f^{-1}[D]$

$$\forall x \in f^{-1}[D]$$

$$\Rightarrow f(x) = y \in D$$

$$: g: C \to D$$
 is a bijection,

$$\Rightarrow x \in C$$
 and x is unique.

$$\Rightarrow f^{-1}[D] \subset C$$

$$\therefore C = f^{-1}[D]$$

(Proof of if part)
$$C = f^{-1}[D]$$
 (given)

By the result of (a), $f[C] \subset D$

$$\forall y \in D$$

$$\because g: C \to D$$
 is a bijection

$$\exists$$
 unique $x \in C$ such that $g(x) = f(x) = y \in D$

$$\Rightarrow D \subset f[C]$$

$$f[C] = D$$

The proof is completed.

12. (a)
$$\forall y \in f[A \cup B] \Leftrightarrow \exists x \in A \cup B \land f(x) = y$$
 $\Leftrightarrow (\exists x \in A \lor x \in B) \land f(x) = y$ $\Leftrightarrow f(x) \in f[A] \lor f[B]$ $\Leftrightarrow f(x) \in f[A] \lor f[B]$ $\therefore f[A \cup B] = f[A] \lor f[B] \forall A, B \subset X$

(b) Given $f[A \cap B] = f[A] \cap f[B] \forall A, B \subset X$

Suppose, on the contrary, that f is not injective.

 $\exists x_1, x_2 \in X$ such that $f(x_1) = f(x_2) \land x_1 \neq x_2$

Let $A = \{x_1\}, B = \{x_2\}, \text{ then } A, B \subset X$
 $\because f[A \cap B] = f[A] \cap f[B]$
 $\therefore f[\phi] = \{f(x_1)\}, \text{ which is false}$

We have proved that if f is not injective then $f[A \cap B] \neq f[A] \cap f[B]$
 $\therefore f[A \cap B] = f[A] \cap f[B] \forall A, B \subset X \Rightarrow f$ is $1 - 1$.

(c) Given f is bijective, try to show that $f[X \lor A] = Y \lor f[A] \forall A \subset X$
 $\forall y \in f[X \lor A] \Rightarrow \exists x \in X \lor A \text{ such that } f(x) = y$
 $\Rightarrow \exists x \in X \land x \notin A \land f(x) = y \dots (1)$

Claim: $x \notin A \land f(x) \notin f[A]$

Proof: otherwise $f(x) \in f[A]$
 $\Rightarrow \exists a \in A \text{ such that } f(a) = f(x) \land x \notin A$
 $\Rightarrow a \neq x$
 $\Rightarrow f$ is not injective
 $\Rightarrow f$ is not bijective

cont'd from $f(x) \Rightarrow f(x) \in f[A] \land f(x) \notin f[A]$
 $\Rightarrow f(x) \in f[A] \land f(x) \in f[A]$
 $\Rightarrow f(x) \in f[A] \land f(x) \in f[A]$
 $\Rightarrow f(x) \in f[A] \land f(x) \in f[A]$
 $\Rightarrow f(x) \in f[A]$

 $\therefore f[X \setminus A] \supset Y \setminus f[A]$ $\therefore f[X \setminus A] = Y \setminus f[A]$

- 13. (a) (i) :: f is not surjective
 - $\therefore \exists b \in A \text{ such that } f(a) \neq b \ \forall \ a \in A \dots (1)$
 - $\therefore A \neq \emptyset$
 - (ii) From (a), let a = f(b)
 - :: f is not surjective
 - $\therefore a \neq b \dots (2)$
 - Let c = f(a)

If
$$c = a$$
, then $f(a) = f(b)$

$$\Rightarrow a = b \ (\because f \text{ is } 1 - 1)$$

This result contradicts with (2)

$$\therefore c \neq a$$

If
$$c = b$$
, then $f(a) = b$

This result contradicts with (1)

$$\therefore c \neq b$$

- \therefore a, b, c are distinct elements of A
- \therefore A consists of more than two elements.
- (b) From (a), $\exists b \in A \text{ such that } f(a) \neq b \ \forall \ a \in A$

Let
$$g(b) = c$$

However,
$$g(f(c)) = c \land b \neq f(c)$$

$$\Rightarrow g(b) = g(f(c)) \land b \neq f(c)$$

- \therefore g is not injective
- \therefore g is not bijective
- (c) Suppose there is another bijective function g such that $g:f[A] \to A$ and g(f(x)) = x

$$\forall y \in f[A], \text{ let } h(y) = x_1, g(y) = x_2$$

By the definition of h, $y = f(x_1)$

$$\therefore x_2 = g(y) = g(f(x_1)) = x_1$$

$$g(y) = h(y) \forall y \in f[A]$$

$$\Rightarrow g = h$$

 \therefore h is unique.

(i)
$$h: f[A] \rightarrow A$$

$$\forall y \in f[A] \Rightarrow \exists x \in A \text{ such that } f(x) = y$$

If
$$h(y) = x_1 \wedge h(y) = x_2$$

$$\Rightarrow h(f(x_1)) = x_1 \wedge h(f(x_2)) = x_2$$

$$\Rightarrow$$
 $y = f(x_1) \land y = f(x_2)$

$$\Rightarrow f(x_1) = f(x_2)$$

$$\Rightarrow x_1 = x_2 \quad (\because f \text{ is } 1 - 1)$$

 \therefore h is well defined.

(ii) To show that h is injective

Suppose
$$h(y_1) = h(y_2)$$

 $\Rightarrow \exists x_1 \in A \land f(x_1) = y_1; \exists x_2 \in A \land f(x_2) = y_2$
 $\Rightarrow h(f(x_1)) = h(y_1) = h(y_2) = h(f(x_2))$
 $\Rightarrow x_1 = x_2$
 $\Rightarrow f(x_1) = f(x_2)$
 $\Rightarrow y_1 = y_2$
 $\Rightarrow f$ is injective

To show that *h* is surjective

$$\forall x \in A \quad \exists y = f(x) \in f[A] \text{ such that } h(y) = h(f(x)) = x$$

- \therefore h is surjective
- \therefore h is both injective and surjective
- \therefore h is bijective.