## Two-Stage Emotion Detection from Multimodal Data

Xiangyi Li

San José State University Department of Computer Science

Spring 2024

- Introduction
- 2 Background
- Methodology
- 4 Results
- Conclusions

- Introduction
- 2 Background
- Methodology
- 4 Results
- Conclusions

#### Introduction

- Emotion detection is crucial for human-computer interaction
- Enables machines to recognize and respond to human emotional states
- Applications:
  - Mental health monitoring
  - Customer service
  - Human-computer interaction
  - Sentiment analysis
- Challenge: Emotions are complex, multidimensional phenomena

### Research Questions

- How does a two-stage approach (dimensional prediction → category mapping) compare to direct classification for emotion recognition?
- What is the relative contribution of text vs. audio modalities for emotion detection?
- Which fusion strategies best integrate multimodal information?
- 4 How do different transformer architectures perform for emotion detection tasks?

- Introduction
- 2 Background
- Methodology
- 4 Results
- Conclusions

## Dimensional vs. Categorical Emotion Models

#### **Dimensional Model**

- Represents emotions as points in Categorical Model continuous space
- AVD dimensions:
  - Arousal: energy/intensity
  - Valence: positive/negative
  - Dominance: control/power
- Captures nuanced emotional states

- Discrete emotion labels (anger, joy, sadness, etc.)
- Easier to classify
- More intuitive for humans
- Less granular representation



## **Evolution of Emotion Recognition**

- Pre-2012: Mostly rule-based systems and traditional ML
  - SVM, Decision Trees, Bayesian methods
  - Handcrafted features like lexicons and acoustic parameters
- Deep Learning Era (2013-2017):
  - CNNs. RNNs for feature extraction
  - Word embeddings (Word2Vec, GloVe)
- Transformer Era (2018-Present):
  - BERT, RoBERTa, XLNet, DeBERTa
  - Attention-based architectures enable better context modeling

- Introduction
- 2 Background
- Methodology
- 4 Results
- Conclusions

## System Architecture

High-Level System Architecture



## Text Processing Models

#### Text Model Architecture Detail



#### Audio Feature Extraction

#### Audio Feature Extraction Process



Audio

#### feature extraction pipeline

• MFCCs: Mel-Frequency Cepstral Coefficients (vocal tract

## Fusion Strategies

#### **Comparison of Fusion Strategies**



Multimodal fusion approaches

## **Experimental Setup**

- Dataset: IEMOCAP (Interactive Emotional Dyadic Motion Capture)
  - 12 hours of audio-visual data
  - 10 speakers (5 male, 5 female)
  - Both categorical and dimensional annotations
- Implementation: PyTorch, Hugging Face Transformers
- Training Protocol:
  - AdamW optimizer with linear learning rate schedule
  - Early stopping based on validation loss
  - 5-fold cross-validation
- Evaluation Metrics: Accuracy, F1 (Macro/Micro), RMSE, MAE

- Introduction
- 2 Background
- Methodology
- 4 Results
- Conclusions

## Dimensional Emotion Prediction (Stage 1)

| Model        | Modality   | Dimension | Test RMSE | MAE   |
|--------------|------------|-----------|-----------|-------|
| RoBERTa      | Text       | Valence   | 0.630     | 0.500 |
|              |            | Arousal   | 0.730     | 0.560 |
|              |            | Dominance | 0.680     | 0.530 |
| CNN+MFCC     | Audio      | Valence   | 0.720     | 0.590 |
|              |            | Arousal   | 0.650     | 0.510 |
|              |            | Dominance | 0.700     | 0.560 |
| RoBERTa+MFCC | Multimodal | Valence   | 0.610     | 0.490 |
|              |            | Arousal   | 0.640     | 0.500 |
|              |            | Dominance | 0.660     | 0.520 |

- Text models perform better for Valence (positive/negative sentiment)
- Audio models perform better for Arousal (intensity/energy)
- Multimodal approaches show balanced performance across dimensions

## Categorical Emotion Classification



## Two-Stage vs. Direct Classification

| Approach                 | Modality   | Test Acc. | Macro F1 | ٨ |
|--------------------------|------------|-----------|----------|---|
| Direct (RoBERTa)         | Text       | 0.95      | 0.94     |   |
| Two-Stage (RoBERTa)      | Text       | 0.92      | 0.91     |   |
| Direct (CNN+MFCC)        | Audio      | 0.89      | 0.87     |   |
| Two-Stage (CNN+MFCC)     | Audio      | 0.87      | 0.85     |   |
| Direct (RoBERTa+MFCC)    | Multimodal | 0.94      | 0.93     |   |
| Two-Stage (RoBERTa+MFCC) | Multimodal | 0.90      | 0.89     |   |

- Direct classification consistently outperforms two-stage approach
- But two-stage approach provides richer emotional representation
- Performance gap consistent across modalities (1.5-2.5%)

## Modality Importance



#### Performance comparison across modalities

- Text-only approaches slightly outperform multimodal approaches
- But gap narrows with optimal fusion strategies

## Transformer Model Comparison



Performance comparison of transformer models

- RoBERTa consistently outperforms other models
- DeBERTa shows strong performance, particularly for valence
- ALBERT shows lowest performance despite parameter efficiency

#### Audio Feature Effectiveness



Comparison of audio feature extraction methods

MFCCs provide the best performance for emotion detection

Spectrograms capture more temporal information but are noisier Xiangyi Li (San José State UniversityDepartnTwo-Stage Emotion Detection from Multimod

## Fusion Strategy Considerations



#### Performance comparison of fusion strategies

Attention-based fusion provides best overall performance

A late fusion performs well for categorical classification
Xiangyi Li (San José State UniversityDepartnTwo-Stage Emotion Detection from Multimo)

## Performance-Efficiency Tradeoffs



- Introduction
- 2 Background
- Methodology
- 4 Results
- Conclusions

## Key Findings

- Direct classification slightly outperforms two-stage approach for categorical emotion recognition
- Text-only approaches slightly outperform multimodal ones, though the gap narrows with optimal fusion
- Textual features better capture valence, while audio features more effectively represent arousal
- RoBERTa consistently outperforms other transformer models
- Attention-based fusion provides the best integration of multimodal information

## **Practical Implications**

#### Application-Specific Approach Selection:

- Direct classification: When accuracy is critical
- Two-stage approach: When continuous emotional representation is valuable

#### Resource Considerations:

- Text-only approaches offer better efficiency
- ALBERT provides good performance-efficiency tradeoff

#### • Modality Selection:

- Valence-focused applications: Prioritize text
- Arousal-focused applications: Incorporate audio

#### **Future Work**

- Incorporate visual modality (facial expressions, gestures)
- Explore more sophisticated fusion techniques (cross-modal attention)
- Investigate culture-specific emotional expressions
- Develop personalized emotion recognition models
- Explore few-shot and zero-shot learning for emotion recognition
- Evaluate on more diverse datasets across languages and contexts

#### Thank You

# Questions?

Contact: xiangyi.li@sjsu.edu