6 Oct 2023, BT 304 Lecture 24

"Horror Autotoxicus"

- Literally, the **horror** of self-toxicity.
- A term coined by the great German bacteriologist and immunologist **Paul Ehrlich** (1854-1915) to describe the body's innate aversion to immunological self-destruction.
- Later it was accepted that: Failure of host's humoral and cellular immune systems to distinguish self from non-self
 - Autoimmunity
 - Can result in tissue and organ damage, can be fatal
- Autoimmunity results from a failure of the mechanisms of selftolerance in T or B cells, which may lead to an imbalance between lymphocyte activation and control mechanisms.

Disease	Self antigen	Immune response
	ORGAN-SPECIFIC AUTOIMMUNE DISEASES	
Addison's disease	Adrenal cells	Auto-antibodies
Autoimmune hemolytic anemia	RBC membrane proteins	Auto-antibodies
Goodpasture's syndrome	Renal and lung basement membranes	Auto-antibodies
Graves' disease	Thyroid-stimulating hormone receptor	Auto-antibody (stimulating)
Hashimoto's thyroiditis	Thyroid proteins and cells	T _H 1 cells, auto-antibodies
Idiopathic thrombocyopenia purpura	Platelet membrane proteins	Auto-antibodies
Insulin-dependent diabetes mellitus	Pancreatic beta cells	T _H 1 cells, auto-antibodies
Myasthenia gravis	Acetylcholine receptors	Auto-antibody (blocking)
Myocardial infarction	Heart	Auto-antibodies
Pernicious anemia	Gastric parietal cells; intrinsic factor	Auto-antibody
Poststreptococcal glomerulonephritis	Kidney	Antigen-antibody complexes
Spontaneous infertility	Sperm	Auto-antibodies
	SYSTEMIC AUTOIMMUNE DISEASES	
Ankylosing spondylitis	Vertebrae	Immune complexes
Multiple sclerosis	Brain or white matter	$T_H 1$ cells and T_C cells, auto-antibodic
Rheumatoid arthritis	Connective tissue, IgG	Auto-antibodies, immune complexe
Scleroderma	Nuclei, heart, lungs, gastrointestinal tract, kidney	Auto-antibodies
Sjögren's syndrome	Salivary gland, liver, kidney, thyroid	Auto-antibodies
Systemic lupus erythematosus (SLE)	DNA, nuclear protein, RBC and platelet membranes	Auto-antibodies, immune complexe

- Normal immune homeostasis involves a balance between T cells, B cells, and antibodies that are reactive with self, non-self, or both.
- Disease results when there is an imbalance of immune responsivity with either too little immune defense against foreign pathogens (immune deficiency disease), more immune response to nonself antigens than is beneficial (allergic or hypersensitivity disease), or more immune response to self antigens than is beneficial (autoimmune disease).

Tolerance

- Immune tolerance, or immunological tolerance, or immunotolerance, is a state of unresponsiveness of the immune system to substances or tissue that have the capacity to elicit an immune response in a given organism.
- # of mechanisms are in place to protect individual from self-reactive lymphocytes
 - Central tolerance deleting T or B clones before maturity if they have receptors that recognize self-antigens with great affinity
 - Peripheral tolerance kills lymphocytes in secondary lymphoid tissue
 - Also, life span of lymphocytes regulated by apoptosis
 - central tolerance is not perfect, and it cannot account for unresponsiveness to antigens that are expressed only in peripheral tissues.

- 1. Immature lymphocytes specific for self antigens may encounter these antigens in the generative lymphoid organs.
- 2. Self-reactive immature cells are deleted, change their specificity (B cells only), or (in the case of CD4⁺ T cells) develop into regulatory lymphocytes (central tolerance).
- 3. Some self-reactive lymphocytes may mature and enter peripheral tissues and may be inactivated or deleted by encounter with self antigens in these tissues, or are suppressed by the regulatory T cells (peripheral tolerance).

Central tolerance Lymphoid **Newly emerged** precursor (immature) clones of lymphocytes Self antigen present in generative lymphoid organ

Maturation of clones not specific for self antigens present in generative organs Central tolerance: deletion of lymphocytes specific for self antigens present in generative organs

Peripheral tolerance

Peripheral tolerance: deletion or anergy of lymphocytes that recognize self antigens in peripheral tissues

- Some antigens can produce tolerance
 - Termed tolerogens rather than immunogens
 - High dosages of antigen
 - Persistence of antigen in host
 - IV (intravenous) or oral introduction
 - Absence of adjuvants
 - Low levels of costimulators
 - CD28 will bind to B7 and provide activating signals; however, it was discovered that another receptor, CTLA-4 will bind to B7 and inhibit

Anergy

- Unresponsiveness to antigenic stimulus

Figure 16-2
Kuby IMMUNOLOGY, Sixth Edition
© 2007 W.H. Freeman and Company

Experimental evidence for central and peripheral tolerance

A. Mouse experiment demonstrating existence of central tolerance

