Table 2. Checklist of indigenous ornamental freshwater ichthyofauna of Sundarban Biosphere Reserve along with their conservation status and other remarks

	Order: Family and scientific name	IUCN Status	Remarks
	Cypriniformes: Cyprinidae		
1	Amblypharyngodon mola (Hamilton, 1822)	LC	CA
2	Bengala elanga (Hamilton, 1822)	LC	CA
3	Catla catla (Hamilton, 1822)	LC	NCA
4	Chela cachius (Hamilton, 1822)	LC	CA
5	Cirrhinus mrigala (Hamilton, 1822)	LC	NCA
6	Danio rerio (Hamilton, 1822)	LC	CA
7	Devario devario (Hamilton, 1822)	LC	CA
8	Esomus danricus (Hamilton, 1822)	LC	CA
9	Labeo bata (Hamilton, 1822)	LC	NCA
10	Labeo calbasu (Hamilton, 1822)	LC	NCA
11	Labeo rohita (Hamilton, 1822)	LC	NCA
12	Laubuka laubuca (Hamilton, 1822)	LC	CA
13	Puntius chola (Hamilton, 1822)	LC	CA
14	Pethia conchonius (Hamilton, 1822)	LC	CA
15	Pethia gelius (Hamilton, 1822)	LC	CA
16	Pethia phutunio (Hamilton, 1822)	LC	CA
17	Pethia ticto (Hamilton, 1822)	LC	CA
18	Puntius sophore (Hamilton, 1822)	LC	CA
19	Puntius terio (Hamilton, 1822)	LC	CA
20	Rasbora daniconius (Hamilton, 1822)	LC	CA
21	Salmostoma acinaces (Valenciennes, 1844)	LC	CA
22	Salmostoma bacaila (Hamilton, 1822)	LC	CA
23	Salmostoma phulo (Hamilton, 1822)	LC	CA
24	Securicula gora (Hamilton, 1822)	LC	NCA
25	Systomus sarana (Hamilton, 1822)	LC	NCA
	Cobitidae		
26	Lepidocephalichthys guntea (Hamilton, 1822)	LC	CA
	Perciformes: Ambassidae		
27	Chanda nama (Hamilton, 1822)	LC	CA
28	Parambassis lala (Hamilton, 1822)	NT	CA
29	Parambassis ranga (Hamilton, 1822)	LC	CA
	Anabantidae		
30	Anabas testudineus (Bloch, 1792)	DD	NCA
	Osphronemidae		
31	Trichogaster fasciata (Bloch & Schneider, 1801)	LC	CA
32	Trichogaster lalius (Hamilton, 1822)	LC	CA
33	Trichogaster chuna (Hamilton, 1822)	LC	CA

	Order: Family and scientific name	IUCN Status	Remarks
	Perciformes: Nandidae		
34	Nandus nandus (Hamilton, 1822)	LC	CA
	Badidae		
35	Badis badis (Hamilton, 1822)	LC	CA
	Channidae		
36	Channa barca (Hamilton, 1822)	DD	NCA
37	Channa marulius (Hamilton, 1822)	LC	NCA
38	Channa gachua (Hamilton, 1822)	LC	CA
39	Channa punctata (Bloch, 1793)	LC	NCA
40	Channa striata (Bloch, 1793)	LC	NCA
	Gobiidae		
41	Apocryptes bato (Hamilton, 1822)	NE	CA
42	Boleophthalmus boddarti (Pallas, 1770)	LC	NCA
43	Glossogobius giuris (Hamilton, 1822)	LC	NCA
44	Gobiopterus chuno (Hamilton, 1822)	DD	CA
45	Stigmatogobius sadanundio (Hamilton, 1822)	NE	CA
	Scatophagidae		
46	Scatophagus argus (Linnaeus, 1766)	LC	NCA
	Teraponidae		
47	Terapon jarbua (Forsskal, 1775)	LC	NCA
	Synbranchiformes: Mastacembelidae		
48	Mastacembelus armatus (Lacepede, 1800)	LC	NCA
49	Macrognathus aral (Bloch & Schneider, 1801)	LC	NCA
50	Macrognathus pancalus (Hamilton, 1822)	LC	CA
	Synbranchidae		
51	Monopterus cuchia (Hamilton, 1822)	LC	NCA
	Clupeiformes: Clupeidae	LC	
52	Gonialosa manmina (Hamilton, 1822)	LC	CA
53	Gudusia chapra (Hamilton, 1822)	LC	CA
	Osteoglossiformes: Notopteridae		
54	Chitala chitala (Hamilton, 1822)	NT	NCA
55	Notopterus notopterus (Pallas, 1769)	LC	NCA
	Tetraodontiformes: Tetraodontidae	LC	
56	Leiodon cutcutia (Hamilton, 1822)	LC	CA
57	Dichotomyctere fluviatilis (Hamilton, 1822)	LC	CA
	Cyprinodontiformes: Aplocheilidae		
58	Aplocheilus panchax (Hamilton, 1822)	LC	CA

	Order: Family and scientific name	IUCN Status	Remarks
	Beloniformes: Belonidae		
59	Xenentodon cancila (Hamilton, 1822)	LC	NCA
	Siluriformes: Bagridae		
60	Mystus cavasius (Hamilton, 1822)	LC	NCA
61	Mystus gulio (Hamilton, 1822)	LC	NCA
62	Mystus tengara (Hamilton, 1822)	LC	CA
63	Mystus vittatus (Bloch, 1794)	LC	CA
64	Sperata aor (Hamilton, 1822)	LC	NCA
65	Sperata seenghala (Sykes, 1839)	LC	NCA
	Siluridae		
66	Ompok bimaculatus (Bloch, 1794)	NT	NCA
67	Ompok pabda (Hamilton, 1822)	NT	CA
68	Wallago attu (Bloch & Schneider, 1801)	NT	NCA
	Schilbeidae		
69	Ailia coila (Hamilton, 1822)	NT	NCA
70	Clupisoma garua (Hamilton, 1822)	LC	NCA
71	Eutropiichthys vacha (Hamilton, 1822)	LC	NCA
72	Pachypterus atherinoides (Bloch, 1794)	LC	CA
73	Silonia silondia (Hamilton, 1822)	LC	NCA
	Pangasiidae		
74	Pangasius pangasius (Hamilton, 1822)	LC	NCA
	Sisoridae		
75	Bagarius bagarius (Hamilton, 1822)	NT	NCA
76	Gagata cenia (Hamilton, 1822)	LC	CA
77	Gagata gagata (Hamilton, 1822)	LC	NCA
78	Glyptothorax telchitta (Hamilton, 1822)	LC	CA
79	Gogangra viridescens (Hamilton, 1822)	LC	CA
	Heteropneustidae		
80	Heteropneustes fossilis (Bloch, 1794)	LC	NCA
	Clariidae		
81	Clarias magur (Hamilton, 1822)	LC	NCA
	Anguilliformes: Anguillidae		
82	Anguilla bengalensis (Gray, 1831)	NT	NCA
	Ophichthidae		
83	Pisodonophis boro (Hamilton, 1822)	LC	NCA
	Syngnathiformes: Syngnathidae		
84	Microphis deocata (Hamilton, 1822)	NT	CA

NE - Not Evaluated; NT - Near Threatened; LC - Least Concern; DD - Data Deficient; CA - Classified Aquarium Fish; NCA - Non-Classified Aquarium Fish

magur, Heteropneustes fossilis, C. punctata, C. striata, Anabas testudineus etc were introduced naturally and breed automatically in culture ponds and replenish after harvest for few years (Dubey et al. 2016). Moreover, the majority of these fishes have drawn special attention due to their food value and for providing nutritional security through their high vitamin and mineral contents (Thilsted et al. 1997). Although without any focus on conservation and sustainable use, freshwater fishes are collected from nature as an open access resource for the aquarium trade (Raghavan et al. 2013), resulting in their population decline and general decline of the state of freshwater biodiversity (Allen et al. 2010; Molur et al. 2011). Raghavan et al. (2013) stated that more than 1.5 million freshwater fish belonging to 30 threatened species were exported from India to Europe, US and other Asian countries during 2005-2012. Of these, Botia striata (Endangered), Carinotetraodon travancoricus (Vulnerable), Sahyadria denisonii and S. chalakkudiensis (both Endangered) and range- restricted species like Garra hughi (Endangered) and Channa aurantimaculata (Data Deficient; single location endemic) were the major exported species (Raghavan et al. 2013).

In Sundarban, fisheries (fishing and aquaculture) is the second major livelihood option after agriculture (Chand et al. 2012a). Fishing is a seasonal occupation for communities in the area. While most fishing is undertaken by men; crab collection and prawn seed collection are practiced by both men and women in the inter-tidal waters. Non timber forest produce (NTFPs) and honey collections are also an integral part of the livelihoods of many forest fringe dwellers of Sundarban. However, the majorities of these livelihood options are exposed to human-wildlife conflict issues and hamper the natural continuity of the ecosystem (World Bank 2014). The Sundarban contains over 4.4 million people of which majority belong to largely impoverished and vulnerable communities, and 80% of the households earn their living that involves inefficient production methods of agriculture, fishing, and aquaculture associated with multiple stressors (World Bank 2014). Till date, the ornamental fish trade involving indigenous fishes more or less depends on capture and backyardpond based fishery, without any need for additional expenditure. So, in this backdrop, ornamental fish trade can be a lucrative business for the local people to supplement their traditional livelihood options.

Apart from the economic aspects of the trade in freshwater indigenous ornamental fishes of Sundarban Biosphere Reserve, proper attention needs to be given for improved ecosystem sustainability and conservation