

HEX SCHMITT TRIGGER

- SCHMITT TRIGGER ACTION WITH NO EXTERNAL COMPONENTS
- HYSTERESIS VOLTAGE (Typ.): 0.9V at V_{DD} = 5V 2.3V at V_{DD} = 10V 3.5V at V_{DD} = 15V
- NOISE IMMUNITY GREATER THAN 50%
- NO LIMIT ON INPUT RISE AND FALL TIME
- LOW V_{DD} TO V_{SS} CURRENT DURING SLOW INPUT RAMP
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED UP TO 20V
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C
- 100% TESTED FOR QUIESCENT CURRENT

DESCRIPTION

The HCF40106B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages.

ORDER CODES

PACKAGE	TUBE	T&R
DIP	HCF40106BEY	
SOP	HCF40106BM1	HCF40106M013TR

The HCF40106B consist of six Schmitt trigger circuits. Each circuit functions as an inverter with Schmitt trigger action on the input. The trigger switches at different points for positive and negative going signals. The difference between the positive going voltage (V_P) and the negative going voltage (V_N) is defined as hysteresis voltage (V_H) .

PIN CONNECTION

March 2004 1/10

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN N°	SYMBOL	NAME AND FUNCTION
1, 3, 5, 9, 11, 13	A, B, C, D, E, F	Data Inputs
2, 4, 6, 8, 10, 12	G, H, I, J, K, L	Data Outputs
7	V _{SS}	Negative Supply Voltage
14	V _{DD}	Positive Supply Voltage

TRUTH TABLE

INPUTS	OUTPUTS		
A to F	G to L		
L	Н		
Н	L		

FUNCTIONAL DIAGRAM

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
V _I	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
I _I	DC Input Current	± 10	mA
P _D	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

		Test Condition			Value								
Symbol	Parameter	Vı	٧o	I _O	V _{DD}	Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)	(V)	(μ A)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ΙL	Quiescent Current	0/5			5		0.02	1		30		30	
		0/10			10		0.02	2		60		60	
		0/15			15		0.02	4		120		120	μΑ
		0/20			20		0.04	20		600		600	
V _{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V_{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	
	Voltage	10/0		<1	10		0.05			0.05		0.05	V
		15/0		<1	15		0.05			0.05		0.05	
V_P	Positive Trigger				5	2.2	2.9	3.6	2.2	3.6	2.2	3.6	
	Threshold Voltage				10	4.6	5.9	7.1	4.6	7.1	4.6	7.1	V
					15	6.8	8.8	10.8	6.8	10.8	6.8	10.8	
V_N	Negative Trigger				5	0.9	1.9	2.8	0.9	2.8	0.9	2.8	
	Threshold Voltage				10	2.5	3.9	5.2	2.5	5.2	2.5	5.2	V
					15	4	5.8	7.4	4	7.4	4	7.4	
V_{H}	Hysteresis Voltage				5	0.3	0.9	1.6	0.3	1.6	0.3	1.6	
					10	1.2	2.3	3.4	1.2	3.4	1.2	3.4	V
					15	1.6	3.5	5	1.6	5	1.6	5	
I _{OH}	Output Drive	0/5	2.5		5	-1.36	-3.2		-1.15		-1.1		
	Current	0/5	4.6		5	-0.44	-1		-0.36		-0.36		mΑ
		0/10	9.5		10	-1.1	-2.6		-0.9		-0.9		
		0/15	13.5		15	-3.0	-6.8		-2.4		-2.4		
I_{OL}	Output Sink	0/5	0.4		5	0.44	1		0.36		0.36		
	Current	0/10	0.5		10	1.1	2.6		0.9		0.9		mA
		0/15	1.5		15	3.0	6.8		2.4		2.4		
lı	Input Leakage Current	0/18	Any	Input	18		±10 ⁻⁵	±0.1		±1		±1	μΑ
CI	Input Capacitance		Any	Input			5	7.5					pF

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V

$\textbf{DYNAMIC ELECTRICAL CHARACTERISTICS} \; (\texttt{T}_{amb} = 25 ^{\circ} \texttt{C}, \; \texttt{C}_{L} = 50 \texttt{pF}, \; \texttt{R}_{L} = 200 \texttt{K}\Omega, \; \texttt{t}_{r} = \texttt{t}_{f} = 20 \; \text{ns})$

Symbol Borome	B	Test Condition		'	Unit		
Symbol	Parameter	V _{DD} (V)		Min.	Тур.	Max.	
t _{PLH} t _{PHL}	Propagation Delay Time	5			140	280	
		10			70	140	ns
		15			60	120	
t _{TLH} t _{THL}	Output Transition Time	5			100	200	
		10			50	100	ns
		15			40	80	

^(*) Typical temperature coefficient for all $\rm V_{DD}$ value is 0.3%/°C.

TYPICAL APPLICATIONS

ASTABLE MULTIVIBRATOR

MONOSTABLE MULTIVIBRATOR

WAVE SHAPER

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = 200K Ω R_T = Z_{OUT} of pulse generator (typically 50 Ω)

WAVEFORM: PROPAGATION DELAY TIMES (f=1MHz; 50% duty cycle)

Plastic DIP-14 MECHANICAL DATA

DIM		mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	1.39		1.65	0.055		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		15.24			0.600			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z	1.27		2.54	0.050		0.100		

SO-14 MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α			1.75			0.068	
a1	0.1		0.2	0.003		0.007	
a2			1.65			0.064	
b	0.35		0.46	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.019		
c1			45°	(typ.)			
D	8.55		8.75	0.336		0.344	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		7.62			0.300		
F	3.8		4.0	0.149		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.019		0.050	
М			0.68			0.026	
S		•	8° (r	max.)			

Tape & Reel SO-14 MECHANICAL DATA

DIM		mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
Α			330			12.992		
С	12.8		13.2	0.504		0.519		
D	20.2			0.795				
N	60			2.362				
Т			22.4			0.882		
Ao	6.4		6.6	0.252		0.260		
Во	9		9.2	0.354		0.362		
Ko	2.1		2.3	0.082		0.090		
Ро	3.9		4.1	0.153		0.161		
Р	7.9		8.1	0.311		0.319		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com