svm

```
library(tidyverse)
## Warning in system("timedatectl", intern = TRUE): running command 'timedatectl'
## had status 1
## -- Attaching packages ----- tidyverse 1.3.1 --
                  v purrr
## v ggplot2 3.3.5
                             0.3.4
## v tibble 3.1.5 v dplyr
                            1.0.7
## v tidyr 1.1.4 v stringr 1.4.0
## v readr
          2.0.2
                   v forcats 0.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
library(stringr)
library(e1071)
heart <- read.csv(file = 'heart.csv')</pre>
heart %>%
count(Cholesterol)
##
      Cholesterol n
## 1
              0 172
## 2
              85
                 1
## 3
             100 2
## 4
             110
                   1
## 5
             113
                   1
## 6
             117
                  1
## 7
             123
                  1
## 8
             126
                   2
## 9
             129
                  1
## 10
             131
                  1
## 11
             132
                   1
## 12
             139
                   2
## 13
             141
                   1
             142
## 14
## 15
             147
                   2
## 16
             149
                   2
## 17
             152
                  1
## 18
             153
                   1
## 19
             156
                   1
## 20
             157
                   1
## 21
             159
                  1
## 22
             160
                   6
## 23
             161
                   2
## 24
             163
                   2
## 25
             164
                   2
```

##	26	165	1
##	27	166	4
##	28	167	3
##	29	168	2
##	30	169	2
##	31	170	2
##	32	171	3
##	33	172	2
##	34	173	2
##	35	174	1
##	36	175	4
##	37	176	1
##	38	177	6
##	39	178	1
##	40	179	2
##	41	180	3
##	42	181	2
##	43	182	5
##	44	183	1
##	45	184	4
##	46	185	3
##	47	186	6
##	48	187	2
##	49	188	4
##	50	190	2
##	51	192	4
##	52	193	6
##	53	194	2
##	54 55	195	7
##	55 56	196	6 7
## ##	56 57	197 198	6
##	58	190	3
##	59	200	4
##	60	200	6
##	61	201	3
##	62	202	7
##	63	203	9
##	64	205	3
##	65	206	3
##	66	207	6
##	67	208	7
##	68	209	5
##	69	210	4
##	70	211	9
##	71	212	6
##	72	213	7
##	73	214	7
##	74	215	6
##	75	216	9
##	76	217	4
##	77	218	6
##	78	219	8
##	79	220	10

##	80	221	5
##	81	222	6
##	82	223	10
##	83	224	6
##	84	225	7
##	85	226	6
##	86	227	4
##	87	228	5
##	88	229	4
##	89	230	9
##	90	231	5
##	91	232	3
##	92	233	6
##	93	234	7
##	94	235	5
##	95	236	6
##	96	237	6
##	97	238	4
##	98	239	4
##	99	240	8
##	100	241	4
##	101	242	2
##	102	243	7
##	103	244	4
##	104	245	6
##	105	246	8
##	106	247	3
##	107	248	6
##	108	249	5
##	109	250	5
##	110	251	1
##	111	252	3
##	112	253	4
##	113	254	11
##	114	255	3
##	115	256	5
##	116	257	3
##	117	258	7
##	118	259	2
##	119	260	8
##	120	261	3
##	121	262	1
##	122	263	8
##	123	264	6
##	124	265	4
##	125	266	4
##	126	267	5
##	127	268	5
##	128	269	6
##	129	270	6
##	130	271	4
##	131	272	3
##	132	273	5
##	133	274	6

##	134	275	7
##	135	276	4
##	136	277	5
##	137	278	1
##	138	279	1
##	139	280	2
##	140	281	3
##	141	282	7
##	142	283	5
##	143	284	4
	144		2
##	144	285 286	2
##			
##	146	287	2
##	147	288	6
##	148	289	6
##	149	290	2
##	150	291	3
##	151	292	4
##	152	293	1
##	153	294	4
##	154	295	5
##	155	297	4
##	156	298	5
##	157	299	2
##	158	300	2
##	159	302	2
##	160	303	4
##	161	304	2
##	162	305	4
##	163	306	3
##	164	307	2
##	165	308	6
##	166	309	4
##	167	310	3
##	168	311	2
##	169	312	2
##	170	313	1
##	171	315	3
##	172	316	1
##	173	318	3
##	174	319	1
##	175	320	2
##	176	321	1
##	177	322	1
##	178	325	2
##	179	326	2
##	180	327	1
##	181	328	1
##	182	329	1
##	183	330	2
##	184	331	1
##	185	333	1
##	186	335	2
##	187	336	1

```
## 188
               337
                      1
## 189
                338
                      1
## 190
               339
                      2
## 191
               340
                      2
## 192
                341
                      3
               342
## 193
                      3
                344
## 194
                      1
## 195
               347
                      1
## 196
                349
                      1
## 197
               353
                      1
## 198
               354
                      1
## 199
               355
                      1
## 200
                358
                      1
## 201
                360
                      1
## 202
                365
                      1
## 203
                369
                      1
## 204
               384
                      1
## 205
               385
                      1
## 206
               388
                      1
               392
## 207
                      1
## 208
               393
                      1
## 209
               394
                      2
## 210
                404
                      1
## 211
                407
                      1
## 212
               409
                      1
## 213
               412
                      1
## 214
                417
                      1
## 215
                458
                      1
## 216
                466
                      1
## 217
                468
                      1
## 218
                491
                      1
## 219
               518
                      1
## 220
               529
                      1
## 221
               564
                      1
## 222
                603
```

heart %>% count(RestingBP)

##		RestingBP	n
##	1	0	1
##	2	80	1
##	3	92	1
##	4	94	2
##	5	95	6
##	6	96	1
##	7	98	1
##	8	100	15
##	9	101	1
##	10	102	3
##	11	104	3
##	12	105	9
##	13	106	3
##	14	108	7
##	15	110	58

```
## 16
             112 14
## 17
                   1
             113
## 18
             114
                   2
## 19
             115
                  19
## 20
             116
                   2
## 21
             117
                   1
## 22
             118 10
             120 132
## 23
## 24
             122
                  12
## 25
             123
                   2
## 26
             124
                  12
## 27
             125
                  29
## 28
             126
                   7
## 29
             127
                   1
## 30
             128
                 18
## 31
             129
                   1
## 32
             130 118
## 33
             131
                   4
## 34
             132
                 17
## 35
             133
                   6
## 36
             134
                  11
## 37
             135
                  20
## 38
             136
                  13
## 39
             137
                   5
## 40
             138
                  17
## 41
             139
                   5
## 42
             140 107
## 43
             141
                   3
## 44
             142
                 11
## 45
             143
                   2
## 46
             144
                   8
## 47
             145
                  18
## 48
             146
                   4
## 49
             148
                   2
## 50
             150
                  55
## 51
             152
                   7
## 52
             154
                   3
## 53
             155
                   8
## 54
             156
                   2
## 55
             158
                   4
## 56
             160
                  50
## 57
             164
                   1
## 58
             165
                   2
## 59
             170
                  14
## 60
             172
                   2
## 61
             174
                   1
## 62
             178
                   3
## 63
             180
                   12
## 64
             185
                   1
## 65
             190
                   2
## 66
             192
                   1
## 67
                   4
             200
```

heart %>% count(Age)

```
##
      Age n
## 1
      28 1
## 2
      29
          3
## 3
      30 1
## 4
      31 2
## 5
      32 5
      33 2
## 6
## 7
      34 7
## 8
      35 11
## 9
      36 6
## 10 37 11
## 11
      38 16
## 12
      39 15
## 13
      40 13
## 14
      41 24
## 15
      42 18
## 16
      43 24
## 17
      44 19
## 18
      45 18
## 19
      46 24
## 20
      47 19
## 21 48 31
## 22 49 21
## 23 50 25
## 24 51 35
## 25
      52 36
## 26 53 33
## 27
      54 51
## 28
     55 41
## 29
      56 38
## 30
      57 38
## 31
      58 42
## 32
      59 35
## 33
      60 32
## 34
      61 31
## 35
      62 35
## 36
      63 30
## 37
      64 22
## 38
     65 21
## 39
      66 13
## 40
      67 15
## 41
      68 10
## 42
      69 13
## 43
      70 7
## 44
      71 5
## 45
      72 4
## 46
      73 1
## 47
      74
          7
## 48
      75
          3
## 49
      76
          2
## 50 77
          2
```

heart %>% count(MaxHR)

##		MaxHR	_
## ##	1	махнк 60	n 1
##	2	63	1
##	3	67	1
##	4	69	1
##	5	70	1
##	6	71	1
##	7	72	2
##	8	73	1
##	9	77	1
##	10	78	1
##	11	80	2
##	12	82	3
##	13	83	1
##	14	84	3
##	15	86	4
##	16	87	1
##	17	88	2
##	18	90	3
##	19	91	1
##	20	92	6
##	21	93	2
##	22	94	4
##	23	95	2
##	24	96	7
##	25	97	3
##	26	98	9
##	27	99	7
## ##	28 29	100 102	14 4
##	30	102	4
##	31	103	2
##	32	105	11
##	33	106	5
##	34	107	1
##	35	108	8
##	36	109	5
##	37	110	23
##	38	111	5
##	39	112	13
##	40	113	5
##	41	114	6
##	42	115	16
##	43	116	9
##	44	117	6
##	45	118	12
##	46	119	5
##	47	120	36
##	48	121	5
##	49	122	20
##	50	123	7

```
## 51
         124 9
## 52
         125 21
## 53
         126 12
## 54
         127
             8
## 55
         128 14
## 56
         129 4
## 57
         130 33
## 58
         131 7
## 59
         132 11
## 60
         133 5
## 61
         134 6
## 62
         135 15
## 63
         136 6
## 64
         137 7
## 65
         138 14
## 66
         139 6
## 67
         140 41
## 68
         141 6
## 69
         142 14
## 70
         143 10
## 71
         144 13
## 72
         145 14
## 73
         146 6
## 74
         147
             5
         148 11
## 75
## 76
         149 6
## 77
         150 43
## 78
         151 5
## 79
         152 11
## 80
         153 5
## 81
         154 12
## 82
         155 14
## 83
         156 10
## 84
         157
             7
## 85
         158 8
## 86
         159 5
## 87
         160 25
## 88
         161 7
## 89
         162 13
## 90
         163 10
## 91
         164
             4
## 92
         165 11
## 93
         166
             5
## 94
         167 2
## 95
         168 8
         169 6
## 96
## 97
         170 20
## 98
         171 4
## 99
         172 10
## 100
         173
             7
## 101
         174
             7
## 102
         175 10
## 103
         176 2
## 104
         177 1
```

```
## 105
        178 6
## 106
        179
            6
## 107
        180 10
## 108
        181
             2
## 109
        182
             6
## 110
        184 4
## 111
        185 4
## 112
             2
        186
## 113
        187
             1
## 114
         188 2
## 115
        190
             2
## 116
        192
            1
## 117
        194
             1
## 118
        195 1
## 119
        202 1
```

heart %>%

count(Oldpeak)

```
##
      Oldpeak
## 1
         -2.6
                 1
## 2
         -2.0
                 1
## 3
         -1.5
                 1
## 4
         -1.1
                 1
## 5
         -1.0
                 2
## 6
         -0.9
                 1
## 7
         -0.8
                 1
## 8
         -0.7
## 9
         -0.5
                 2
## 10
         -0.1
                 2
## 11
          0.0 368
## 12
          0.1
                14
## 13
          0.2
                22
## 14
          0.3
                11
## 15
          0.4
                11
## 16
          0.5
                19
## 17
          0.6
                14
                7
## 18
          0.7
## 19
          0.8
               16
## 20
          0.9
                4
## 21
          1.0
                86
## 22
          1.1
                 7
## 23
          1.2
                26
## 24
          1.3
                7
## 25
          1.4
                18
## 26
          1.5
                53
## 27
          1.6
                16
## 28
          1.7
                 6
## 29
          1.8
                17
## 30
                7
          1.9
## 31
          2.0
                76
## 32
          2.1
                 2
## 33
          2.2
                 5
## 34
          2.3
                 2
## 35
          2.4
```

```
## 36
          2.5 16
## 37
          2.6
                7
## 38
          2.8
               7
          2.9
## 39
               1
## 40
          3.0 28
## 41
          3.1
               1
## 42
          3.2
## 43
          3.4
                 3
## 44
          3.5
                 2
## 45
          3.6
## 46
          3.7
## 47
          3.8
               1
## 48
          4.0
               8
## 49
          4.2
               1
## 50
          4.4
## 51
          5.0
## 52
          5.6
                 1
## 53
          6.2
heart %>%
  count(ST_Slope)
##
     ST_Slope
                 n
## 1
         Down 63
## 2
         Flat 460
## 3
           Up 395
heart %>%
count(HeartDisease)
##
     HeartDisease
## 1
                 0 410
## 2
                 1 508
heart <- heart %>%
  filter(Cholesterol != 0) %>%
  filter(RestingBP!=0) %>%
  mutate(Sex = as.factor(Sex)) %>%
  mutate(ChestPainType= as.factor(ChestPainType)) %>%
  mutate(RestingECG= as.factor(RestingECG)) %>%
  mutate(ExerciseAngina = as.factor(ExerciseAngina)) %>%
  mutate(ST_Slope = as.factor(ST_Slope)) %>%
  mutate(HeartDisease = as.factor(HeartDisease))
#set.seed(1)
#x <- model.matrix(HeartDisease~., heart)[,-1]</pre>
#y <- heart$HeartDisease</pre>
\#svmfit \leftarrow svm(y \sim ., data = heart, kernel = "linear", cost = 10, scale = FALSE)
#summary(sumfit)
The code below creates a training and test data set.
set.seed(1)
training <- sample(dim(heart)[1], 522)</pre>
train <- heart[training, ]</pre>
test <- heart[-training, ]</pre>
```

```
The code below fits a support vector classifier.
```

```
svm.fit <- svm(HeartDisease ~., data = train, kernel = "linear", cost=0.01)</pre>
summary(svm.fit)
##
## Call:
## svm(formula = HeartDisease ~ ., data = train, kernel = "linear",
       cost = 0.01)
##
##
##
## Parameters:
##
      SVM-Type: C-classification
   SVM-Kernel: linear
##
##
          cost: 0.01
##
## Number of Support Vectors: 295
##
   ( 148 147 )
##
##
## Number of Classes: 2
## Levels:
## 0 1
There are 295 Support Vectors, 148 in Class 0 and 147 in Class 1.
svm.pred <- predict(svm.fit, test)</pre>
wrong <- 0
for (i in 1:length(svm.pred)){
  if (svm.pred[i]!=test$HeartDisease[i]){
    wrong = wrong + 1
 }
print(wrong/length(test$HeartDisease))
## [1] 0.1428571
The test error rate is 14.3%.
The code below uses CV to find the optimal cost for an svm with a linear kernel.
set.seed(1)
tune.out = tune(svm, HeartDisease ~ ., data = train, kernel = "linear", ranges = list(cost = 10^seq(-2,
summary(tune.out)
##
## Parameter tuning of 'svm':
## - sampling method: 10-fold cross validation
##
## - best parameters:
##
        cost
  5.623413
##
##
## - best performance: 0.1398403
##
```

```
## - Detailed performance results:
##
                     error dispersion
             cost
      0.01000000 0.1532656 0.04594129
## 1
      0.01778279 0.1532656 0.04021823
## 2
## 3
      0.03162278 0.1571118 0.04398593
      0.05623413 0.1417634 0.03134359
## 4
      0.10000000 0.1474964 0.02842013
## 6
      0.17782794 0.1417271 0.02546022
      0.31622777 0.1436502 0.02558931
## 8
      0.56234133 0.1474601 0.03084972
      1.00000000 0.1493832 0.03187442
## 10 1.77827941 0.1417634 0.03134359
## 11 3.16227766 0.1436865 0.03011101
## 12 5.62341325 0.1398403 0.03110896
## 13 10.00000000 0.1398403 0.03110896
```

The optimal cost is 5.623.

The code below calculates the test error using the optimal cost.

```
svm.fit = svm(HeartDisease ~ ., kernel = "linear", data = train, cost = tune.out$best.parameters$cost)

svm.pred <- predict(svm.fit, test)

wrong <- 0
for (i in 1:length(svm.pred)){
  if (svm.pred[i]!=test$HeartDisease[i]){
    wrong = wrong + 1
  }
}
print(wrong/length(test$HeartDisease))</pre>
```

[1] 0.1205357

(119 114)

The error rate is 12.05%.

END OF LINEAR

BEGINNING OF RADIAL

The code below fits a support vector classifier.

```
summary(svm.fitradial)

##
## Call:
## svm(formula = HeartDisease ~ ., data = train, kernel = "radial")
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: radial
## cost: 1
##
## Number of Support Vectors: 233
##
```

svm.fitradial <- svm(HeartDisease ~., data = train, kernel = "radial")</pre>

```
##
##
## Number of Classes: 2
##
## Levels:
## 0 1
There are 233 Support Vectors, with 119 in 0 and 114 in 1.
svm.predradial <- predict(svm.fitradial, test)</pre>
wrong <- 0
for (i in 1:length(svm.predradial)){
  if (svm.predradial[i]!=test$HeartDisease[i]){
    wrong = wrong + 1
 }
print(wrong/length(test$HeartDisease))
## [1] 0.1205357
The test error is 12.05\%.
set.seed(1)
tune.out2 = tune(svm, HeartDisease ~ ., data = train, kernel = "radial", ranges = list(cost = 10^seq(-2
summary(tune.out2)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
##
        cost
  5.623413
##
##
## - best performance: 0.1399129
##
## - Detailed performance results:
             cost
##
                      error dispersion
## 1
       0.01000000 0.5171263 0.07196263
## 2
       0.01778279 0.2298621 0.05191857
       0.03162278 0.1800798 0.04793246
## 4
       0.05623413 0.1628084 0.04793032
## 5
       0.10000000 0.1513788 0.04653122
## 6
       0.17782794 0.1513788 0.04740609
## 7
       0.31622777 0.1551887 0.04380499
## 8
       0.56234133 0.1475327 0.03145408
       1.00000000 0.1437591 0.03657071
## 10 1.77827941 0.1418723 0.03554973
## 11 3.16227766 0.1456821 0.04276003
## 12 5.62341325 0.1399129 0.04156757
```

The optimal cost is 5.623. The code below finds the test error of a radial kernel SVM using the optimal cost.

13 10.00000000 0.1456821 0.04276003

```
svm.radial3 = svm(HeartDisease ~ ., data = train, kernel = "radial", cost = tune.out2$best.parameters$c
svm.predradial <- predict(svm.radial3, test)</pre>
wrong <- 0
for (i in 1:length(svm.predradial)){
  if (svm.predradial[i]!=test$HeartDisease[i]){
    wrong = wrong + 1
  }
print(wrong/length(test$HeartDisease))
## [1] 0.1205357
The test error is 12.05\%.
END OF RADIAL
BEGINNING OF POLYNOMIAL
svm.fitpoly <- svm(HeartDisease ~., data = train, kernel = "poly", degree = 2)</pre>
summary(svm.fitpoly)
##
## Call:
## svm(formula = HeartDisease ~ ., data = train, kernel = "poly", degree = 2)
##
##
## Parameters:
##
      SVM-Type: C-classification
## SVM-Kernel: polynomial
##
          cost: 1
##
        degree: 2
##
        coef.0: 0
##
## Number of Support Vectors: 279
## ( 139 140 )
##
##
## Number of Classes: 2
##
## Levels:
## 0 1
There are 279 Support Vectors, 139 0 and 140 1.
svm.predpoly <- predict(svm.fitpoly, test)</pre>
wrong <- 0
for (i in 1:length(svm.predpoly)){
  if (svm.predpoly[i]!=test$HeartDisease[i]){
    wrong = wrong + 1
  }
print(wrong/length(test$HeartDisease))
```

```
## [1] 0.1473214
The test error is 14.7\%.
The code below find teh optimal cost
set.seed(1)
tune.out = tune(svm, HeartDisease ~ ., data = train, kernel = "poly", degree = 2,ranges = list(cost = 1
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
##
        cost
##
  1.778279
##
## - best performance: 0.1456821
##
## - Detailed performance results:
##
             cost
                      error dispersion
## 1
      0.01000000 0.5171263 0.07196263
## 2 0.01778279 0.5171263 0.07196263
## 3 0.03162278 0.4518505 0.07328965
## 4 0.05623413 0.2813498 0.06687009
## 5
      0.10000000 0.2183962 0.03164476
## 6
    0.17782794 0.1781930 0.04068122
## 7  0.31622777  0.1628447  0.03866025
## 8
      0.56234133 0.1532656 0.03949555
## 9
      1.00000000 0.1494920 0.03938606
## 10 1.77827941 0.1456821 0.03872582
## 11 3.16227766 0.1533745 0.04266201
## 12 5.62341325 0.1572206 0.04881518
## 13 10.00000000 0.1725327 0.05379036
The optimal cost is 1.778.
The code below calculates the test error using the optimal cost.
svm.poly3 = svm(HeartDisease ~ ., data = train, kernel = "poly", degree = 2, cost = tune.out$best.param
test.pred3 = predict(svm.poly3, test)
wrong <- 0
for (i in 1:length(test.pred3)){
  if (test.pred3[i]!=test$HeartDisease[i]){
    wrong = wrong + 1
 }
```

[1] 0.1294643

The test error is 12.95%.

print(wrong/length(test\$HeartDisease))

CONCLUSION

Linear Kernel w/Optimal Cost: 12.05% Radial Kernel w/Optimal Cost: 12.05% Polynomial Kernel w/ Optimal Cost: 12.95%