

Methods in Spatial Analysis PS | LV.Nr. 856.141

Paris-Lodron University Salzburg Department of Geoinformatics – Z_GIS

Johannes Scholz

TU Graz, Institute of Geodesy Research Group Geoinformation

johannes.scholz@tugraz.at | johannes.scholz@plus.ac.at

ifg.tugraz.at | | www.johannesscholz.net

@Joe_GISc @Joe_GISc@mastodon.online

Selection:

- Identification of objects that fit a set of criteria
- Purpose: further analysis and/or visualization of these objects
- Selection by set theory
 - Based on set theory we select spatial objects
 - For the definition of set mathematical operators are used:
 >, <, =, <> (=!), <=, =>
 - E.g.: counties with an area > 50 km²
 - Communities having a population <= 2500

- Selection using Boolean Algebra
 - Boolean Algebra: AND, OR, NOT, XOR
 - A combination thereof can result in complex queries
 - E.g.: Community population <= 2500 >> Set *A* budget surplus > 0 >> *Set B*

(County = Rice)

AND

(Wshed = Canon)

- Spatial Selection
 - Selection based on geometrical properties
 - Adjacency: i.e. touch

- Containment: checks if an object is within another object
 - ... which provinces are crossed by the Danube?
 - ... villages in Styria

>> exploiting of Spatial Relations

- Categorization of Objects based on one or more attributes
 - E.g.: area, population, soil type, land use, ...
- Classification types
 - Binary: 0/1, true/false
 - Equal Interval
 - Equal Area
 - Natural Breaks
 - Statistical methods
 - E.g.: percentile: 0-25, 25-50, 50-75, 75-100

Binary classification

States west of the main branch of the Mississippi River assigned 1, east of the River assigned 0

Classification table

	state name	is_west
	Alabama	0
	Arizona	1
	Arkansas	1
	Colorado	1
	Connecticut	0
	••••	
t	Wyoming	1

Equal Interval

Equal-interval classification

Selektion & Klassifikation

Equal Area

Equal-area classification

Natural Breaks

- Method to classify data by determining "natural" groups to be found in the data.
- Natural Breaks method creates a histogram of the data and then calculates the groups – based on the histogram.
 - Break points are "valleys"
 - The "deeper" the valley the more important is a break point.
- Objective of Natural Breaks (Jenks, 1967)
 - minimize the average deviation from the class mean, while maximizing the deviation from the means of the other groups;
 - reduces the variance within classes and maximizes the variance between classes

Natural Breaks

Natural breaks classification

Dissolve

Aggregation of objects with similar properties

Dissolve of polygons

Dissolve of polygonens based on an attribute

Dissolve

Dissolve

Before dissolve

After dissolve

Buffer

Is a region within a defined distance around on or several objects

Vector buffers

lines

input source features ...

Buffer:

- Nb! overlapping buffer
- >> Dissolve of overlapping areas
- >> Idenfication of the overlapping areas

nested buffers

d) nested buffers

Buffer (cont'd)

- Fix distance
- Variable distance

river_identifier	buffdist
mississippi	100
missouri	50
arkansas	50
ohio	75
tennessee	75
st. croix	75
illinois	75
wisconsin	75

Proximity Functions – Spatial Join

- Combination of 2 layers based on their spatial relation
 - Attributes and geometry are in the combined result layer
 - "The spatial join appends the attributes in one layer to the features in another, based on their relative locations (i.e. how they overlap or how close they are to each other."
- All topological relations can be queried:
 - Intersect
 - Contains
 - Within
 - Closest

Spatial Join of Centroids of parcels (polygons) with buffer around bus stops

Proximity Functions – Spatial Join

Intersect

Two features touch at any location

Within a distance

Two features are within a set distance

Completely within

The join feature is within the target feature

Closest

The join feature is closest to the target feature

Both features match identically

Methods in Spatial Analysis PS | LV.Nr. 856.141

Paris-Lodron University Salzburg Department of Geoinformatics – Z_GIS

Johannes Scholz

TU Graz, Institute of Geodesy Research Group Geoinformation

johannes.scholz@tugraz.at | johannes.scholz@plus.ac.at

ifg.tugraz.at | | www.johannesscholz.net

@Joe_GISc @Joe_GISc@mastodon.online

