MAT 135 – Geometria Analítica e Álgebra Linear

2^A Lista (Sistemas Lineares) - 2021/1

profa. Lana Mara Rodrigues dos Santos

Atualizada em: 22 de fevereiro de 2021

1) Escreva cada um dos sistemas abaixo na forma matricial:

(a)
$$\begin{cases} 2x + 8y = 18 \\ 2x + 2y - 3z = 3 \\ x + 2y + 7z = 12 \end{cases}$$
 (b)
$$\begin{cases} 2x_1 + 3x_2 + x_4 = -2 \\ 4x_1 + 5x_2 + 3x_3 + 3x_4 = -2 \\ -2x_1 - 6x_2 + 7x_3 + 7x_4 = -16 \\ 8x_1 + 9x_2 + 5x_3 + 21x_4 = -66 \end{cases}$$

2) Resolva, se possível, os seguintes sistemas lineares utilizando o Método da Matriz Inversa:

$$(a) \begin{cases} 8x + 12y - 4z = -36 \\ 6x + 5y + 7z = 11 \\ 2x + y + 6z = 16 \end{cases}$$

$$(b) \begin{cases} 2x - y - 3z = 5 \\ 3x - 2y + 2z = 5 \\ 5x - 3y - z = 16 \end{cases}$$

3) Determine os valores reais de k, em cada um dos casos, tais que o sistema linear dado tenha:

(i) uma única solução; (ii) infinitas soluções; (iii) nenhuma solução:

(a)
$$\begin{cases} x + y - z = 1 \\ 2x + 3y + kz = 3 \\ x + ky + 3z = 2 \end{cases}$$
(b)
$$\begin{cases} kx + y + z = 1 \\ x + ky + z = 1 \\ x + y + kz = 1 \end{cases}$$
(c)
$$\begin{cases} x + y + kz = 2 \\ 3x + 4y + 2z = k \\ 2x + 3y - z = 1 \end{cases}$$

4) Determine k para que o sistema linear $\begin{cases} x - y - z = 0 \\ x - 2y - 2z = 0 \end{cases}$, admita solução não-trivial. 2x + ky + z = 0

5) Encontre os valores reais de λ para os quais o sistema homogêneo AX=0 admita apenas a solução trivial

$$\mathrm{para}\; A = \left[\begin{array}{ccc} \lambda & 0 & 1 \\ 1 & \lambda - 1 & 0 \\ 0 & 0 & \lambda + 1 \end{array} \right].$$

6) Sejam

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix}$$

(a) Determine, se possível, a inversa de A.

(b) Utilize o item (a) para resolver a equação matricial $AX = B_k$ para k = 1, 2.

7) Determine a condição que os números reais a, b e c devem satisfazer para que o sistema linear tenha solução.

$$(a) \begin{cases} x + 2y - 3z = a \\ 2x + 6y - 11z = b \\ x - 2y + 7z = c \end{cases}$$

$$(b) \begin{cases} x - 2y + 4z = a \\ 2x + 3y - z = b \\ 3x + y + 2z = b \end{cases}$$

- 8) Dado o sistema linear $S: \left\{ \begin{array}{ccccc} 2x & + & 3y & & z = & 0 \\ x & & 4y & + & 5z = & 0 \end{array} \right.$
 - (a) Verifique que (1, -1, -1) é uma solução de S;
 - (b) Verifique que (1,0,2) também é uma solução de S;
 - (c) Suponha x_1, y_1, z_1 reais tais que (x_1, y_1, z_1) é uma solução de S. Então $(x_1 + x_2, y_1 + y_2, z_1 + z_2)$ é também uma solução de S?
 - (d) Suponha x_1, y_1, z_1 reais tais que (x_1, y_1, z_1) é uma solução de S. Então $(3x_1, 3y_1, 3z_1)$ é também uma solução de S?
 - (e) Se as respostas de (c) e (d) forem afirmativas, então responda: Por que isso ocorre?
- 9) Resolva os seguintes sistemas utilizando o Método de Gauss. Classifique-os.

(a)
$$\begin{cases} x + 2y - z = 2 \\ 2x - y + z = 5 \\ x + 3y + 2z = 9 \end{cases}$$
(b)
$$\begin{cases} x + 3y + 2z = 2 \\ 3x + 5y + 4z = 13 \end{cases}$$
(c)
$$\begin{cases} x + 3y + 2z = 2 \\ 3x + 6y - 8z = 1 \\ 2x + 6y - 4z = 0 \end{cases}$$
(d)
$$\begin{cases} x + 2y - z + w = 0 \\ -x - y + 2z - 3t + w = 0 \\ x + y - 2z - w = 0 \end{cases}$$
(e)
$$\begin{cases} 2x - y + z - t = 4 \\ 3x + 2y - z + 2t = 1 \\ 2x - y - z - t = 0 \end{cases}$$
(f)
$$\begin{cases} x + 2y - 3z + 2t = 2 \\ 2x + 5y - 8z + 6t = 5 \\ 3x + 4y - 5z + 2t = 4 \end{cases}$$

- 10) Um fabricante de plástico produz dois tipos de plástico: o normal e o especial. Para produzir uma tonelada de plástico normal são necessárias duas horas na fábrica A e 5 horas na fábrica B; já na produção de uma tonelada de plástico especial são necessárias 2 horas na fábrica A e 3 horas na fábrica B. Se a fábrica A funciona 8 horas por dia e a fábrica B funciona 15 horas por dia, quantas toneladas de cada tipo de plástico devem ser produzidas diariamente para que as duas fábricas se mantenham totalmente ocupadas?
- 11) Um nutricionista está elaborando uma refeição que contenha os alimentos A, B e C. Cada grama do alimento A contém 2 unidades de proteína, 3 unidades de gordura e 4 unidades de carboidrato. Cada grama do alimento B contém 3 unidades de proteína, 2 unidades de gordura e 1 unidade de carboidrato. Já o alimento no alimento C encontramos 3 unidades de proteína, 3 unidades de gordura e 2 unidades de carboidrato. Se a refeição deve fornecer exatamente 25 unidades de proteína, 24 unidades de gordura e 21 unidades de carboidrato, quantos gramas de cada tipo de alimento devem ser utilizados?

12) Num torneio de triatlon as competições: nado, corrida e ciclismo foram pontuadas com pesos x, y e z, respectivamente. A tabela abaixo apresenta a pontuação dos quatro primeiros colocados em cada categoria e sua respectiva classificação final.

	Nado	Corrida	Ciclismo	Pontuação geral
Atleta 1	7,5	9	9	8,4
Atleta 2	8	7	9	8
Atleta 3	9	7,5	8,5	7,9
Atleta 4	7,5	8	8	7,8

O terceiro atleta alegou que se as classificações dos 1°, 2° e 4° atletas estivessem corretas, então sua classificação estaria incorreta. Sabendo que a classificação geral foi obtida pela média ponderada da pontuação de cada uma das competições e supondo que o terceiro atleta está correto determine:

- (a) o peso de cada competição;
- (b) a classificação do terceiro candidato.
- 13) Três pessoas jogam juntas. Na primeira rodada a primeira perde para cada um dos outros dois a mesma quantia que cada um deles tinha no início do jogo. Na segunda rodada, a segunda pessoa perde para cada um dos outros a mesma quantia que eles tinham no final da 1a rodada. Na terceira rodada, o 1° e o 2° jogadores ganham do 3° a mesma quantia que cada um tinha no final da segunda rodada. Neste momento, os jogadores verificaram que cada um deles possui R\$24,00. Quanto cada jogador tinha ao começar o jogo?
- 14) Uma indústria produz três produtos, A, B e C, utilizando dois tipos de insumos, X e Y. Para a manufatura de cada quilo de A são utilizados 1 grama do insumo X e 2 gramas do insumo Y; para cada quilo de B, 1 grama do insumo X e 1 grama do insumo Y e, para cada quilo de C, 1 grama do insumo X e 4 gramas do insumo Y. O preço da venda do quilo de cada um dos produtos A, B e C é de R\$2,00, R\$3,00 e R\$5,00, respectivamente. Com a venda de toda a produção de A, B e C manufaturada com 1 quilo de X e 2 quilos de Y, essa indústria arrecadou R\$2500,00. Determine quantos quilos de cada um dos produtos A, B e C foram vendidos.
- 15) Cada ração contém as seguintes unidades de proteínas (P), carboidratos (C) e gorduras (G).

	P	C	G
(1)	1	0	2
(2)	3	1	4
(3)	2	2	1

Se as quantidades de proteínas (P), carboidratos (C) e gorduras (G) que a cooperativa tem disponível, nos meses de dezembro e janeiro, são mostradas na tabela abaixo, qual a quantidade de cada tipo de ração é produzido em cada mês?

Quant./mês	P	C	G
Dezembro	15	10	14
Janeiro	13	5	17

- 16) Decida se a afirmação dada é (sempre) verdadeira ou (às vezes) falsa. Justifique sua resposta dando um argumento lógico matemático ou um contra-exemplo.
 - (a) Se o sistema linear AX = 0 admite as soluções X_1 e X_2 , então também admite $k_1X_1 + k_2X_2$ como solução, quaisquer que sejam os números reais k_1 e k_2 .
 - (b) Uma condição necessária e suficiente para que o sistema linear AX = 0 tenha somente a solução trivial é que det $A \neq 0$.
 - (c) Todo sistema linear homogêneo admite a solução trivial.
 - (d) Se X_1 e X_2 são soluções do sistema linear AX=0, então X_1-X_2 é solução de AX=0.
 - (e) Se C é uma matriz invertível tal que CA = CB, então os sistemas lineares AX = b e BX = b são equivalentes.
 - (f) Se A é uma matriz tal que $A^TA = A$, então os sistemas lineares AX = b e $A^2X = b$ são equivalentes.
 - (g) Um sistema linear com menos equações do que incógnitas tem sempre um número infinito de soluções.
 - (h) Um sistema linear com mais equações que incógnitas pode ter uma infinidade de soluções.
 - (i) Se A é uma matriz quadrada e sistema homogêneo Ax = 0 tem somente a solução trivial, então o sistema Ax = b, para todo b, tem solução e ela é única.
 - (j) Se o sistema homogêneo Ax = 0 tem solução não trivial, existe b não nulo tal o sistema Ax = b, tem somente solução trivial.
 - (k) Se o sistema homogêneo Ax = 0 tem solução não trivial, então o sistema Ax = b, para todo b, tem solução não trivial.
- 17) Encontre todos os escalares $a, b \in c$ tais que:
 - (a) a(1,2,0) + b(2,1,1) + c(0,3,1) = (0,0,0)
 - (b) a(1,2,0) + b(2,1,1) + c(-1,4,-2) = (0,0,0)
- 18) Sejam os vetores u = (2, -3, 2) e v = (-1, 2, 4) em \mathbb{R}^3 .
 - (a) Existem escalares $a \in b$ tais que w = au + bv, para w = (7, -11, 2)?
 - (b) Existem escalares $a \in b$ tais que w = au + bv, para w = (2, -5, 4)?
 - (c) Determine o conjunto de vetores w do \mathbb{R}^3 tais que w = au + bv, para a e b reais.
- 19) Mostre que:
 - (a) Se a(5,8) + b(3,7) = (0,0), então a = 0 e b = 0.
 - (b) a(2,4) + b(1,2) = (0,0) não implica necessariamente a = 0 e b = 0.
- 20) Seja $A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & -1 & 1 \end{pmatrix}$ e $F_A : \mathbb{R}^3 \to \mathbb{R}^2$ uma função definida por $F_A(u) = uA^T$.
 - (a) Determine $F_A(u)$.
 - (b) Calcule $F_A(u)$, para u = (1, 0, 2).
 - (c) Determine um vetor não nulo $u \in \mathbb{R}^3 \in \text{tal que } F_A(u) = 0$ (vetor nulo do \mathbb{R}^2).
 - (d) Mostre que $F_A(u+u) = F_A(u) + F_A(v)$ e $F_A(au) = aF_A(u)$, $\forall a \in \mathbb{R}$ e $\forall u, v \in \mathbb{R}^n$.

(e) O núcleo $N(F_A)$ de F_A é definido por $N(F_A) = \{u : F_A(u) = 0\}$. Determine $N(F_A)$. Existe relação entre o posto de uma matriz A e $N(F_A)$? Justifique.

21) Seja
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \\ 1 & 2 & 4 \end{bmatrix}$$
.

- (a) Decomponha A em LU.
- (b) Calcule $\det A$ usando a decomposição obtida.
- (c) Resolva o sistema linear $Ax = e_2$ em que $e_2 = (0, 1, 0)$
- (d) Determine, caso exista, a inversa de A, usando a decomposição obtida.
- 22) Determine uma decomposição LU da matriz A e use esta decomposição para determinar o conjunto solução do sistema Ax = b, sendo $A = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 2 & 3 & -2 & 6 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 1 & 5 \end{pmatrix}$ e $b = \begin{pmatrix} 5 \\ -1 \\ 3 \\ 7 \end{pmatrix}$.

$$\begin{pmatrix} 0 & 0 & 1 & 5 \end{pmatrix} \qquad \begin{pmatrix} 7 \end{pmatrix}$$
23) Use a decomposição *PLU* dada da matriz $A = \begin{pmatrix} 0 & 1 & 4 \\ 1 & 2 & 2 \\ 3 & 1 & 3 \end{pmatrix}$ para resolver o sistema $Ax = b$, em que $b = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}$

$$e\ A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -5 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 4 \\ 0 & 0 & 17 \end{pmatrix} = PLU.$$

- 24) Determine duas decomposições PLU de matriz $A=\begin{pmatrix} 3 & -1 & 0 \\ 3 & -1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$. Resolva o sistema Ax=b, em que $b^T=(-2,1,4)$ usando uma duas decomposições obtidas.
- 25) A tabela exibe o número de bactérias existentes em uma cultura (por unidade de volume) após x horas. Deseja-se estimar o número de bactérias em t = 3,7 horas.

número de horas (x)	0	1	2	3	4
número de bactérias por volume unitário (y)	32	37	65	92	132

- (a) Calcule um polinômio interpolador P_1 usando 2 pontos da tabela e calcule $P_1(t)$.
- (b) Calcule um polinômio interpolador P_2 usando 3 pontos e calcule $P_2(t)$.

Gabarito

1) (a)
$$\begin{bmatrix} 2 & 8 & 0 \\ 2 & 2 & -3 \\ 1 & 2 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} 18 \\ 3 \\ 12 \end{bmatrix}$$
;

1) (a)
$$\begin{bmatrix} 2 & 8 & 0 \\ 2 & 2 & -3 \\ 1 & 2 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} 18 \\ 3 \\ 12 \end{bmatrix};$$
 (b) $\begin{bmatrix} 2 & 3 & 0 & 1 \\ 4 & 5 & 3 & 3 \\ -2 & -6 & 7 & 7 \\ 8 & 9 & 5 & 21 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \\ -16 \\ -66 \end{bmatrix};$

- 2) (a) $sol(S) = \{(0, -2, 3)\}$
 - (b) det A=0, logo não é possível utilizar o método da matriz inversa para resolver o sistema.
- 3) (a) (i) $k \neq 2$ e $k \neq -3$; (ii) k = 2; (iii) k = -3.
 - (b) (i) $k \neq 1$ e $k \neq -2$; (ii) k = 1; (iii) k = -2.
 - (c) (i) $k \neq 3$; (ii) k = 3; (iii) para nenhum $k \in \mathbb{R}$.
- 4) k = 1
- 5) $S = \{ \lambda \in \mathbb{R}; \ \lambda \neq 0, \ \lambda \neq -1, \ e \ \lambda \neq 1 \}.$
- 6) (a) det $A = -1 \neq 0$ logo, existe $A^{-1} \in A^{-1} = \begin{bmatrix} 0 & 1 & -1 \\ 2 & -2 & -1 \\ -1 & 1 & 1 \end{bmatrix}$.
 - (b) $S_1 = \{(-1, -5, 4)\};$ $S_2 = \{(-1, -5, -3)\}$
- 7) (a) -5a + 2b + c = 0; (b) para quaisquer $a, b \in c \text{ em } \mathbb{R}$;
- 8) (a) Sim, pois $\begin{cases} 2(1) + 3(-1) (-1) = 0 \\ 1 4(-1) + 5(-1) = 0 \end{cases}$ (b) Não pois $\begin{cases} 2(1) + 3(0) (2) = 0 \\ 1 4(0) + 5(2) = 11 \neq 0 \end{cases}$

 - (c) sim.
 - (d) sim.
 - (e) Em um sistema homogêneo se (x_1, y_1, z_1) e (x_2, y_2, z_2) são soluções então, $k_1(x_1, y_1, z_1) + k_2(x_2, y_2, z_2)$ também é solução para todo $k_1, k_2 \in \mathbb{R}$.
- (a) $S = \{(2, 1, 2)\}$ o sistema é compatível determinado;
 - (b) sistema incompatível, não tem solução;
 - (c) $S = \{(-1 4z, \frac{1}{3} + 2z, z); z \in \mathbb{R}\}$ o sistema é compatível indeterminado;
 - (d) $S = \{(1, 2, 2 2)\}$ o sistema é compatível determinado;
 - (e) $S = \{(-z + 2t, 1 + 2z z, t); z, t \in \mathbb{R}\}\$
- 10) 1,5T de plástico normal e 2,5T de plástico especial.
- 11) Devem ser utilizadas 3, 2g de A, 4, 2g de B e 2g de C.
- 12) (a) Os pesos de nado, corrida e ciclismo seguem a seguinte proporção, respectivamente, $\frac{4}{3}:1:1$.
 - (b) Ele ficaria empatado com o primeiro colocado.
- 13) O jogađor A tinha R\$39,00, o jogađor B tinha R\$21,00 e o jogađor C tinha R\$12,00.

- 14) Foram vendidos 700Kg do produto A, 200Kg do produto B e 100Kg do produto C.
- 15) Em dezembro foram produzidos 1 unidade da ração 1, 2 unidades da ração 2 e 4 unidades da ração 3. Já em janeiro foram produzidos 2 unidades da ração 1, 3 unidades da ração 2 e 1 unidade da ração 3.
- 16) (a) V

(d) V

(g) F

(j) V

(b) F

(e) F

(h) V

(k) F

(c) V

(f) V

(i) V

- 17) (a) a = b = c = 0
 - (b) a = -3c e b = 2c para todo $c \in \mathbb{R}$.
- 18) (a) Sim, w = 3u v
 - (b) Não.
 - (c) $\{(x, y, z) \in \mathbb{R}^3 : z = 16x + 10y\}$
- 19) (a) o sistema linear homogêneo tem única solução.
 - (b) $S = \{(a, -2a), a \in \mathbb{R}\}$
- 20) (a) $F_A(x, y, z) = (x + 2y, x y + z)$
 - (b) $F_A(1,0,2) = (1,3)$
 - (c) u = (-2, 1, 3)
 - (d) (use propriedades de operações com matrizes)
 - (e) $N(F_A) = \{(-2a, a, 3a), a \in \mathbb{R}\}$
- 21) (a) $L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ e $U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 - (b) $\det A = \det L \cdot \det U = 1.1 = 1$
 - (c) Resolvendo $Ly = e_2$ e Ux = y, obtemos x = (-2, 1, 0).
 - (d) Com a solução do item anterior e com as soluções de $Ly_1 = e_1$ e $Ux = y_1$ e $Ly_3 = e_3$ e $Ux = y_3$, obtemos $A^{-1} = \begin{bmatrix} 6 & -2 & -3 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.
- (-3,1,2,1)
- 23) $\left\{ \frac{1}{17}(21, -14, 12) \right\}$
- 24)

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1/3 & 0 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & -1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} = PLU$$

$$sol = \{(-1/2, 1/2, 3)\}$$

- 25) (a) Usando os 2 últimos pontos, $P_1(x) = 40x 28$ e $P_1(3,7) = 120$.
 - (b) Usando os 3 últimos pontos, $P_2(x) = 50 5.5x + 6,5x^2$ e $P_2(3,7) = 118,635$.