26/01/2010

Geometria 3 – Corso di laurea in Matematica

Nome:	Cognome:	Matricola:
l'esercizio stesso (gli	ogni singolo esercizio deve essere esercizi svolti in altri fogli non ve nza nome e cognome hanno valore	
	re il concetto di connessione di ur e almeno un risultato importante al	no spazio topologico avendo cura di riguardo.

Esercizio 2 Sia X un insieme non vuoto. Un *operatore di interno* su X è un'applicazione $\mathcal{I}: \mathcal{P}(X) \to \mathcal{P}(X)$ tale che:

- $\mathcal{I}(X) = X$;
- $S \supset \mathcal{I}(S), \ \forall S \in \mathcal{P}(X);$
- $\mathcal{I}(\mathcal{I}(S)) = \mathcal{I}(S), \ \forall S \in \mathcal{P}(X);$
- $\mathcal{I}(A \cap B) = \mathcal{I}(A) \cap \mathcal{I}(B), \ \forall A, B \in \mathcal{P}(X).$

Dimostrare che se \mathcal{I} è un operatore di interno su X e se \mathcal{T} denota la famiglia di tutti i sottoinsiemi A di X tali che $\mathcal{I}(A) = A$, allora \mathcal{T} è una topologia su X. Dimostrare inoltre che per ogni sottoinsieme S di X si ha:

$$\mathcal{I}(S) = \operatorname{Int}(S)$$

nella topologia \mathcal{T} . (Suggerimento: è utile dimostrare che se $A \subset B$ allora $\mathcal{I}(A) \subset \mathcal{I}(B)$). Risposta:
