IVB-paper

Manoel Galdino

novembro 08, 2024

Introduction

In this document, we derive the expression for the **Included Variable Bias (IVB)** caused by conditioning on a collider variable Z in a regression model. This bias is analogous to the well-known omitted variable bias (OVB) but arises when a collider is incorrectly included in the model.

Model Setup

We consider the following models:

Short Regression

The true relationship between the outcome y and the treatment D is given by:

$$y = \beta_0 + \beta_1 D + e$$

- β_0 : Intercept term.
- β_1 : True effect of D on y.
- e: Error term with $\mathbb{E}[e|D] = 0$.

Wrong Model (Long Regression with Collider Bias)

Including the collider variable Z leads to the following (misspecified) model:

$$y = \beta_0^{\star} + \beta_1^{\star} D + \beta_2^{\star} Z + e^{\star}$$

- $\beta_0^{\star}, \beta_1^{\star}, \beta_2^{\star}$: Estimated coefficients from the long regression.
- e^* : Error term where $\mathbb{E}[e^*|D] \neq 0$.

Collider Relationship

The collider variable Z is influenced by both D and y:

$$Z = \gamma_0 + \gamma_1 D + \gamma_2 y + u$$

- $\gamma_0, \gamma_1, \gamma_2$: Parameters of the collider equation.
- u: Error term with $\mathbb{E}[u|D] = 0$ and $\mathbb{E}[u|y] = 0$.

Step 1: Express Bias in Terms of Covariances

The bias in the estimated coefficient β_1^{\star} arises due to the inclusion of the collider Z:

We know that $\beta_1 = \frac{\text{Cov}(D,Y)}{\text{Var}(D)}$.

We also know that $\beta_1^{\star} = \frac{\text{Cov}(D,Y) - \beta_2^{\star} \text{Cov}(D,Z)}{\text{Var}(D)}$.

If we define Bias = $\beta_1^{\star} - \beta_1$, then:

Bias =
$$\beta_1^* - \beta_1 = -\beta_2^* \frac{\text{Cov}(D, Z)}{\text{Var}(D)}$$

- β_2^{\star} : Coefficient of Z from the long regression.
- Cov(D, Z) and Var(D): Covariance and variance terms involving observable variables.

Step 2: Avoiding γ_1 and γ_2

We substitute the expression for y into the collider equation to eliminate γ_1 and γ_2 .

Substitute y into the Collider Equation

From the true model:

$$y = \beta_0 + \beta_1 D + e$$

Substitute y into Z:

$$Z = \gamma_0 + \gamma_1 D + \gamma_2 y + u$$

= $\gamma_0 + \gamma_1 D + \gamma_2 (\beta_0 + \beta_1 D + e) + u$
= $(\gamma_0 + \gamma_2 \beta_0) + (\gamma_1 + \gamma_2 \beta_1) D + \gamma_2 e + u$

Define New Terms

Let:

$$\phi_0 = \gamma_0 + \gamma_2 \beta_0$$

$$\phi_1 = \gamma_1 + \gamma_2 \beta_1$$

$$\varepsilon = \gamma_2 e + u$$

So the collider equation becomes:

$$Z = \phi_0 + \phi_1 D + \varepsilon$$

- ϕ_1 : Coefficient from regressing Z on D.
- ε : Composite error term.

Step 3: Express Covariance Using Observable Quantities

The covariance between D and Z is:

$$Cov(D, Z) = \phi_1 Var(D)$$

Thus, the bias becomes:

Bias =
$$-\beta_2^* \frac{\text{Cov}(D, Z)}{\text{Var}(D)} = -\beta_2^* \phi_1$$

• Both β_2^{\star} and ϕ_1 are estimable from data.

Final Expression of Included Variable Bias

The included variable bias is:

Bias =
$$-\beta_2^{\star}\phi_1$$

Where:

- β_2^{\star} : Estimated coefficient of Z from the long regression.
- ϕ_1 : Estimated coefficient from regressing Z on D.

Practical Implications

- Estimating β_2^{\star} : Run the long regression of y on D and Z.
- Estimating ϕ_1 : Regress Z on D to obtain ϕ_1 .
- Calculating Bias: Use the formula Bias = $-\beta_2^*\phi_1$ to quantify the bias.

Conclusion

By expressing the included variable bias in terms of observable quantities (β_2^{\star} and ϕ_1), we can quantify the bias introduced by incorrectly including a collider variable in the regression model. This derivation parallels the omitted variable bias formula but addresses the specific context of collider bias.

References

- Causal Inference Literature for understanding collider bias and its implications.