Inhaltsverzeichnis

T	Zah	lendarstellung, Fehler und mehr	3
	1.1	Fehler	3
	1.2	Aufwand	3
	1.3	Plots	3
	1.4	Kondition	3
		1.4.1 Konditionszahl	4
	1.5	Spezielle Matrizen	4
2	Exp	olizite Lösungsverfahren	5
	2.1	Gauß	5
		2.1.1 Aufwand	6
	2.2	Cholesky	6
		2.2.1 Bandstruktur	7
		2.2.2 Aufwand	7
3	Line	eare Ausgleichsprobleme	9
	3.1	Methode der kleinsten Quadrate	9
	3.2	Normalengleichung	0
	3.3	QR-Zerlegung	0
		3.3.1 Householder Spiegelungen	0
		3.3.2 Givens Rotationen	1
4	Iter	ative Verfahren 1	.3
	4.1	Richardson	4
	4.2	Jacobi	4
	4.3	Gauß-Seidel	5
		4.3.1 Satz von Stein/Rosenberg	5
	4.4	Gradienten	5
		4.4.1 Konvergenz	6
	4.5	Konjugierte Gradienten	6
		4.5.1 Konvergenz	7
		4.5.2 Vorkonditionierer	7
5	\mathbf{Ber}	echnung von Eigenwerten 1	9
	5.1	Abschätzungen zur Lage	9
		5.1.1 Matrixnorm	9
	5.2	Potenzmethode	20
		5.2.1 Inverse Iteration nach Wielandt	20
		5.2.2 Shift	21

	5.3	QR-Verfahren
		5.3.1 Hessenbergform
		5.3.2 Shift
	5.4	Singulärwertzerlegung
		5.4.1 Pseudoinverse
6	Anl	nang 2
	6.1	Norm
	6.2	Matrixnormen
	6.3	Irreduzible Matrizen

Zahlendarstellung, Fehler und mehr

1.1 Fehler

Sei x der exakte Wert und \tilde{x} die numerische Näherung so gilt:

absoluter Fehler : $|x - \tilde{x}|$

relativer Fehler : $\frac{|x - \tilde{x}|}{|x|}$

Die Maschinengenauigkeit wird mit eps = 10^{-16} bezeichnet.

1.2 Aufwand

Vektor mal Vektor Matrix mal Vektor Matrix Multiplikation

1.3 Plots

$$\log \log : \quad y = bx^a \quad \Rightarrow \quad \underbrace{\log(y)}_{\tilde{y}} = \log(bx^a) = \log b + a \cdot \underbrace{\log x}_{\tilde{x}} \quad \Rightarrow \quad \left\{ \begin{array}{l} \log b \quad \text{Verschiebung} \\ a \quad \text{Steigung} \end{array} \right.$$
 semilogy :
$$y = a^x \quad \Rightarrow \quad \underbrace{\log y}_{\tilde{y}} = \log\left(a^x\right) = x \cdot \log a \quad \Rightarrow \quad \left\{ \begin{array}{l} \log a \quad \text{Steigung} \end{array} \right.$$

1.4 Kondition

Eigenschaft des Problems (Stabilität ist Eigenschaft des Algorithmus). Sei φ eine Funktion welches das Problem beschreibt und sei $\tilde{x} = x + h$ die um h gestörten Eingabedaten, so gilt mittels Taylor:

$$\varphi(\tilde{x}) \approx \varphi + \varphi'(x)(x - \tilde{x}) + o(||x - \tilde{x}||^{2})$$

$$\Leftrightarrow \frac{\varphi(\tilde{x}) - \varphi(x)}{\varphi(x)} = \frac{\varphi'(x)(x - \tilde{x})}{\varphi(x)} \cdot \frac{x}{x}$$

$$\Leftrightarrow \frac{|\varphi(\tilde{x}) - \varphi(x)|}{|\varphi(x)|} = \underbrace{\left|\frac{\varphi'(x)}{\varphi(x)}x\right|}_{\text{Konditionszahl }\kappa} \cdot \underbrace{\frac{|x - \tilde{x}|}{|x|}}_{\text{rel. Fehler der Eingabe}}$$

Für A s.p.d. gilt $\kappa(A^{\top}A) = (\kappa(A))^2 \to \text{Kondition verschlechtert sich im Quadrat!}$

1.4.1 Konditionszahl

Allgemein gilt :
$$\kappa(A) = ||A|| ||A^{-1}||$$

weiter gilt : $\kappa_2(A) = ||A||_2 ||A^{-1}||_2 = \frac{\lambda_{\max}}{\lambda_{\min}}$

1.5 Spezielle Matrizen

Diagonaldominant : $|a_{i,i}| \ge \sum_{\substack{k=1\\k\neq i}}^n |a_{i,k}|$ (Diagonalelement größer als die Summe der restlichen Zeile)

Explizite Lösungsverfahren

2.1Gauß

Lösen des Gleichungssystems Ax = b mittels LR-Zerlegung:

systems
$$Ax = b$$
 mittels LR -Zerlegung:
$$A = L \cdot R \qquad \Rightarrow \qquad Ax = b$$

$$L\underbrace{Rx}_{=:y} = b$$

$$Ly = b, \quad Rx = y$$
The project project is a system of the project of the project project is a system of the project project project project is a system of the project p

Dabei wird ${\cal L}^{(k)}$ (Frobenius matrix) wie folgt konstruiert:

$$L^{(k)} = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & -\frac{a_{(j+1),j}^{(k)}}{a_{j,j}^{(k)}} & 1 & & \\ & & \vdots & & \ddots & \\ & & -\frac{a_{n,j}^{(k)}}{a_{j,j}^{(k)}} & & 1 \end{pmatrix}, \qquad \begin{pmatrix} L^{(k)} \end{pmatrix}^{-1} = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & \frac{a_{(j+1),j}^{(k)}}{a_{j,j}^{(k)}} & 1 & \\ & & \vdots & & \ddots & \\ & & & \frac{a_{n,j}^{(k)}}{a_{j,j}^{(k)}} & & 1 \end{pmatrix}$$

und es gilt:

$$\begin{split} L^{(n-1)}L^{(n-2)}\dots L^{(1)}A &= R \\ L^{(n-2)}\dots L^{(1)}A &= \left(L^{(n-1)}\right)^{-1}R \\ &\vdots \\ A &= \underbrace{\left(L^{(1)}\right)^{-1}\dots \left(L^{(n-2)}\right)^{-1}\left(L^{(n-1)}\right)^{-1}}_{I}R \end{split}$$

Pivotstrategie

Durch Vertauschen von Zeilen mittels Pivotstrategie kann \underline{immer} eine LR-Zerlegung für eine reguläre Matrix $A \in \mathbb{R}^{n \times n}$ gefunden werden:

$$PA = LR$$

Vertauscht wird mittels Permutationsmatrizen $P^{(k)}$:

$$L^{(n-1)}P^{(n-1)}\dots L^{(1)}P^{(1)}A = R$$

Um die Permutationen korrekt auf die rechte Seite b anwenden zu können, muss folgendermaßen umsortiert werden:

$$\tilde{L}^{(k)} = P^{(n-1)} \dots P^{(k+1)} L^{(k)} \left(P^{(k+1)} \right)^{-1} \dots \left(P^{(n-1)} \right)^{-1}$$

Damit ist:

$$\underbrace{\tilde{L}^{(n-1)}\dots\tilde{L}^{(1)}}_{L^{-1}}\underbrace{P^{(n-1)}\dots P^{(1)}}_{P}A = L^{(n-1)}P^{(n-1)}\dots L^{(1)}P^{(1)}A = R$$

$$\Leftrightarrow LL^{-1}PA = PA = LR$$

2.1.1 Aufwand

Verfahren:

$$\mathcal{O}(n^3)$$

Rückwärtseinsetzen:

$$Ly = \begin{pmatrix} l_{1,1} \\ \vdots \\ l_{n,1} & \dots & l_{n,n} \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = b$$

$$y_n = \frac{1}{l_{n,n}} \left(b_n - \sum_{j=1}^{n-1} y_j l_{n,j} \right) \quad \Rightarrow \quad \underbrace{n-2+1}_{\text{Additionen}} + \underbrace{n-1}_{\text{Multiplikationen}} + \underbrace{1}_{\text{Division}} = 2(n-1) + 1$$

$$\text{FLOPS}: \quad \sum_{i=1}^{n} 2(i-1) + 1 = 2\left(\sum_{i=1}^{n} i - 1\right) + n = 2\sum_{i=1}^{n} i - \sum_{i=1}^{n} 2 + n$$

$$= 2\left(\frac{n(n+1)}{2}\right) - 2n + n = n^2 \quad \Rightarrow \quad \mathcal{O}(n^2)$$

2.2 Cholesky

Sei $A \in \mathbb{R}^{n \times n}$ s.p.d. dann $\exists !$ eine Zerlegung mit $A = LDL^{\top}$ mit $(l_{i,i}) = 1$ (unipotent) und $(d_{i,i}) \geqslant 0$. Sei $\tilde{L} = LD^{\frac{1}{2}}$ mit $D^{\frac{1}{2}} = \operatorname{diag}(\pm \sqrt{d_{i,i}})$ so gilt $A = \tilde{L}\tilde{L}^{\top}$ (wobei diese Zerlegung wegen dem Vorzeichen nicht eindeutig ist).

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & & & \vdots \\ \vdots & & & & \vdots \\ a_{n,1} & \dots & \dots & a_{n,n} \end{pmatrix} = \begin{pmatrix} l_{1,1} & & & & \\ l_{2,1} & l_{2,2} & & & \\ \vdots & & \ddots & & \\ l_{n,1} & \dots & \dots & l_{n,n} \end{pmatrix} \begin{pmatrix} l_{1,1} & l_{2,1} & \dots & l_{n,1} \\ & l_{2,2} & & \vdots \\ & & & \ddots & \vdots \\ & & & & l_{n,n} \end{pmatrix}$$

2.2. CHOLESKY 7

Also gilt für die Spalte k:

$$\begin{split} i &= k: \quad a_{1,1} = l_{1,1}^2 \\ a_{2,2} &= l_{2,1}^2 + l_{2,2}^2 \\ & \vdots \\ a_{k,k} &= \sum_{j=1}^k l_{k,j}^2 = l_{k,k}^2 + \sum_{j=1}^{k-1} l_{k,j}^2 \quad \Leftrightarrow \quad l_{k,k} = \sqrt{a_{k,k} - \sum_{j=1}^{n-1} l_{k,j}^2} \\ k &< i \leqslant n: \quad a_{2,1} = l_{2,1} l_{1,1} \\ a_{3,1} &= l_{3,1} l_{1,1} \\ & \vdots \\ a_{n,1} &= l_{n,1} l_{1,1} \\ a_{3,2} &= l_{3,1} l_{2,1} + l_{3,2} l_{2,2} \\ & \vdots \\ a_{i,k} &= \sum_{j=1}^k l_{i,j} l_{k,j} = l_{i,k} l_{k,k} + \sum_{j=1}^{k-1} l_{i,j} l_{k,j} \quad \Leftrightarrow \quad l_{i,k} = \frac{1}{l_{k,k}} \left(a_{i,k} - \sum_{j=1}^{k-1} l_{i,j} l_{k,j} \right) \end{split}$$

Existiert eine Cholesky-Zerlegung so ist die Matrix A sicher positiv definit!

2.2.1 Bandstruktur

Hat eine Matrix Bandstruktur mit Bandbreite m < n, so müssen jeweils nur die $l_{i,k}$ bis k < i < k + m bestimmt werden.

2.2.2 Aufwand

Verfahren:

FLOPS:
$$\frac{1}{3}n^3 + \mathcal{O}(n^2) = \mathcal{O}(n^3)$$
 (etwa halber Aufwand von Gauß für große n)

Mit Bandstruktur der Breite m:

FLOPS:
$$n(m^3 + 2m) - \frac{4m^3 + 9m^2 + 5m}{6} + n \implies \mathcal{O}(n)$$
 für konstante m

Lineare Ausgleichsprobleme

Vandermonde Matrizen

Das Gleichungssystem für Messwerte $f(x_i), x_i \in \mathbb{R}^n$ für ein Polynom vom Grade p mit den Koeffizienten $a_p, ..., a_1, a_0$ kann mittels einer Vandermonde-Matrix beschrieben werden:

$$V = \begin{pmatrix} 1 & 1 & \dots & 1 \\ x_0 & x_1 & \dots & x_n \\ \vdots & & & \vdots \\ x_0^p & x_1^p & \dots & x_n^p \end{pmatrix}$$

$$V^{\top} a = \begin{pmatrix} 1 & x_0 & \dots & x_0^p \\ 1 & x_1 & \dots & x_1^p \\ \vdots & & & \vdots \\ 1 & x_n & \dots & x_n^p \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_p \end{pmatrix} = \begin{pmatrix} a_p x_0^p + \dots + a_1 x_0 + a_0 \\ a_p x_1^p + \dots + a_1 x_1 + a_0 \\ \vdots \\ a_p x_n^p + \dots + a_1 x_n + a_0 \end{pmatrix} = \begin{pmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{pmatrix} = f$$

$$VV^{\top} a = Vf \overset{A=V^{\top}}{\Leftrightarrow} \text{Normalengleichung} : A^{\top} Ax = A^{\top} f$$

3.1 Methode der kleinsten Quadrate

Sei $A \in \mathbb{R}^{m \times n}$ mit $m \geqslant n$ und $b \in \mathbb{R}^m$:

Finde ein
$$x^* \in \mathbb{R}^n$$
 für das $||Ax - b||_2^2 \to \min$ gilt $\Leftrightarrow x^* = \arg\min_{x \in \mathbb{R}^n} ||Ax - b||_2^2$

Bemerkung: Gilt rang $(A) = n \Rightarrow \exists ! \ x^* \in \mathbb{R}^n$ (es existiert genau eine Lösung)

3.2 Normalengleichung

$$f(x) = \|Ax - b\|_{2}^{2} \to \min$$

$$f(x) = (Ax - b)^{\top} (Ax - b) = \left(x^{\top}A^{\top} - b^{\top}\right) (Ax - b)$$

$$= x^{\top}A^{\top}Ax - \underbrace{x^{\top}A^{\top}b}_{(Ax)^{\top}b = b^{\top}Ax} - b^{\top}Ax + b^{\top}b$$

$$= x^{\top}A^{\top}Ax - 2(Ax)^{\top}b + b^{\top}b \to \min$$

$$\Leftrightarrow f'(x) = 2A^{\top}Ax - 2A^{\top}b \stackrel{!}{=} 0$$

$$\Leftrightarrow \underbrace{A^{\top}A}_{\tilde{A}}x - A^{\top}b = 0$$

$$f''(x) = A^{\top}A \quad \text{ist pos. definit da } x^{\top}A^{\top}Ax = (Ax)^{\top}Ax = \|Ax\|_{2}^{2} > 0$$

Für die Kondition gilt: $\kappa(\tilde{A}) = \kappa(A^{\top}A) = (\kappa(A))^2$.

3.3 QR-Zerlegung

Sei $A \in \mathbb{R}^{m \times n}, R \in \mathbb{R}^{m \times n}, Q \in \mathbb{R}^{m \times m}, \hat{R} \in \mathbb{R}^{n \times n}$

$$\begin{aligned} \|Ax - b\|_{2}^{2} & \stackrel{\text{längen}}{=} \|Q^{\top} (Ax - b)\|_{2}^{2} = \|Q^{\top} Q Rx - Q^{\top} b\|_{2}^{2} \stackrel{\text{längen}}{=} \|Rx - c\|_{2}^{2} \\ & = \left\| \left(\frac{\hat{R}}{0} \right) x - \left(\frac{\hat{c}}{\tilde{c}} \right) \right\|_{2}^{2} = \left\| \left(\frac{\hat{R}x - \hat{c}}{-\tilde{c}} \right) \right\|_{2}^{2} = \left\| \hat{R}x - \hat{c} \right\|_{2}^{2} + \|\tilde{c}\|_{2}^{2} \to \text{min!} \\ & \Rightarrow \quad \left\| \hat{R}x - \hat{c} \right\|_{2}^{2} = 0 \quad \Leftrightarrow \quad \hat{R}x = \hat{c} \end{aligned}$$

Verfahren ist stabil da mit orthogonalen Matrizen Q. Aufwand: $\mathcal{O}(n^3)$

3.3.1 Householder Spiegelungen

Vektor $x \in \mathbb{R}^n$ wird mit einer linearen Transformation $P \in \mathbb{R}^{n \times n}$ so gespiegelt, dass er auf einen Einheitsvektor $e \in \mathbb{R}^n$ fällt. Dadurch werden alle Einträge im Vektor bis auf einen, welcher die Länge α enthält, null.

$$Px = \alpha e \quad \text{mit } \alpha = \pm \|x\| = \pm \sqrt{x^{\top} x}$$

$$\text{Sei } P = \mathbbm{1} - 2 \frac{\omega \omega^{T}}{\omega^{\top} \omega}$$

$$\Rightarrow Px = x - \omega 2 \underbrace{\frac{\omega^{\top} x}{\omega^{\top} \omega}}_{=\lambda \in \mathbb{R}} = x - \lambda \omega \stackrel{!}{=} \alpha e \quad \Leftrightarrow \quad \omega \in \text{span} \{x - \alpha e\}$$

$$\Rightarrow \omega = x \pm \sqrt{x^{\top} x} \ e = \begin{pmatrix} x_{1} \pm \sqrt{x^{\top} x} \\ \vdots \\ x_{n} \end{pmatrix}$$

Lösung aufgrund unterschiedlichen Vorzeichen nicht eindeutig. Um Auslöschungen zu vermeiden gilt:

$$\omega = x_1 - \|x\| = \frac{(x_1 - \|x\|)(x_1 + \|x\|)}{x_1 + \|x\|} = \frac{x_1^2 - \|x\|^2}{x_1 + \|x\|} = \frac{-(x_2^2 + \dots + x_n^2)}{x_1 + \|x\|}$$

3.3.2 Givens Rotationen

Mittels Rotationen $G_i \in \mathbb{R}^{n \times n}$ wird ein Element $a_{q,p}$ der Matrix $A \in \mathbb{R}^{n \times n}$ auf null gesetzt.

$$G_{i}^{\top}A = \begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & c & \dots & s & \\ & & \vdots & \ddots & \vdots & \\ & -s & \dots & c & \\ & 0 & & \ddots & \\ & & & 1 \end{pmatrix}^{\top} \begin{pmatrix} * & & \dots & * & \\ \vdots & \ddots & & & \vdots \\ * & \dots & a_{p,p} & \dots & a_{p,q} & \dots & * \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ * & \dots & a_{q,p} & \dots & a_{q,q} & \dots & * \\ \vdots & \ddots & & & \vdots \\ * & \dots & a_{q,p} & \dots & a_{q,q} & \dots & * \\ \vdots & \ddots & & & \vdots \\ * & \dots & a_{p,p} & \dots & a_{q,q} & \dots & * \\ \vdots & \ddots & & & \vdots \\ * & \dots & a_{p,p} & \dots & a_{q,q} & \dots & * \\ \vdots & \ddots & & & \vdots \\ * & \dots & a_{p,p} & \dots & a_{q,q} & \dots & * \\ \vdots & \ddots & & & \vdots \\ * & \dots & a_{p,p} & \dots & a_{q,q} & \dots & * \\ \vdots & \ddots & & & \vdots \\ * & \dots & a_{p,p} & \dots & a_{q,q} & \dots & * \\ \vdots & \ddots & & & \vdots \\ * & \dots & a_{p,p} & \dots & a_{q,q} & \dots & * \\ \vdots & \ddots & & & \vdots \\ * & \dots & a_{q,p} & \dots & a_{q,q} & \dots & * \\ \vdots & \ddots & & \ddots & \vdots \\ * & \dots & a_{q,p} & \dots & a_{q,q} & \dots & * \\ \vdots & \ddots & & \ddots & \vdots \\ * & \dots & a_{q,p} & \dots & a_{q,q} & \dots & * \\ \vdots & \ddots & & \ddots & \vdots \\ * & \dots & a_{q,p} & \dots & a_{q,q} & \dots & * \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ * & \dots & a_{q,p} & \dots & a_{q,q} & \dots & * \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ * & \dots & a_{q,p} & \dots & a_{q,q} & \dots & * \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ * & \dots & a_{q,p} & \dots & a_{q,q} & \dots & * \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ * & \dots & a_{q,p} & \dots & a_{q,q} & \dots & * \\ \vdots & \dots & \dots & \vdots & \vdots \\ * & \dots & \vdots & \dots & \vdots \\ * & \dots & \vdots & \dots & \vdots \\ * & \dots & \dots & \vdots & \vdots \\ * & \dots & \dots & \dots & \vdots \\ * & \dots & \dots & \vdots \\ * & \dots & \dots & \dots & \vdots \\ * & \dots & \dots & \dots & \vdots \\ * & \dots & \dots & \dots & \vdots \\ * & \dots & \dots & \dots & \vdots \\ * & \dots & \dots & \dots & \vdots \\ * & \dots & \dots & \dots & \vdots \\ * & \dots & \dots & \dots & \vdots \\ * & \dots & \dots & \dots & \vdots \\ * & \dots & \dots & \dots & \vdots \\ * & \dots & \dots & \dots & \dots & \vdots \\ * & \dots & \dots & \dots & \dots & \vdots \\ * & \dots & \dots & \dots & \dots & \vdots \\ * & \dots & \dots & \dots & \dots & \vdots \\ * & \dots & \dots & \dots & \dots & \vdots \\ * & \dots & \dots & \dots & \dots & \dots & \vdots \\ * & \dots & \dots & \dots & \dots & \dots & \vdots \\ * & \dots & \dots & \dots & \dots & \dots & \dots \\ * & \dots & \dots & \dots & \dots & \dots & \dots \\ * & \dots & \dots & \dots & \dots & \dots & \dots \\ * & \dots & \dots & \dots & \dots & \dots & \dots \\ * & \dots & \dots & \dots & \dots & \dots \\ * & \dots & \dots & \dots & \dots & \dots \\ * & \dots & \dots & \dots & \dots & \dots \\ * & \dots & \dots & \dots & \dots & \dots \\ * & \dots & \dots & \dots & \dots & \dots \\ * & \dots & \dots & \dots & \dots & \dots \\ * & \dots & \dots & \dots &$$

Aufwand für das Anwenden einer Givens-Rotation auf eine Matrix ist in $\mathcal{O}(n)$ möglich, da sich ja jeweils nur die q-te und p-te Zeile ändert.

Iterative Verfahren

Banach'scher Fixpunktsatz

Sei $E \subset X \subset \mathbb{R}^n$ eine vollständige (keine offenen Intervalle) Menge oder ein Vektorraum und $\phi: X \to X$ eine Abbildung mit den folgenden Eigenschaften:

- (i) Selbstabbildung: $\phi(E) \subset E$ Bild ist wiederum in der Menge enthalten
- (ii) Kontraktion: $\|\phi(x) \phi(y)\| < L\|x y\| \quad \forall x, y \in E, \quad L < 1$

Dann gilt:

- (i) $\exists!$ Fixpunkt x^*
- (ii) Die Folge $x_{n+1} = \phi(x_n)$ konvergiert $\forall x_0 \in E$ gegen x^*

Allgemein gilt für $A \in \mathbb{R}^{n \times n}$ regulär und $B \in \mathbb{R}^{n \times n}$ leicht invertierbar mit $b \in \mathbb{R}^n$:

$$Ax = b$$

$$\Leftrightarrow Bx + Ax - Bx = b$$

$$\Leftrightarrow Bx + (A - B)x = b$$

$$\Leftrightarrow x = B^{-1}(b - (A - B)x) = B^{-1}b - B^{-1}Ax + B^{-1}Bx$$

$$\Rightarrow x^{(k+1)} = -\underbrace{B^{-1}(A - B)}_{=: C} x^{(k)} + B^{-1}b$$

$$\Leftrightarrow x^{(k+1)} = \underbrace{(1 - B^{-1}A)}_{=: C} x^{(k)} + B^{-1}b$$
Iterations matrix =: C

Zusätzlich wird für Jacobi und Gauß-Seidel folgende Definition benötigt:

$$A = L + D + R$$

L := untere Dreiecksmatrix

R :=obere Dreiecksmatrix

 $D := \operatorname{diag}(a_{11}, a_{22}, \dots, a_{nn})$ (Diagonalelmente von A)

Konvergenz

Falls für den **Spektralradius** $\varrho(C)$ gilt:

$$\varrho(C) = \max_{i=1,\dots,n} \{|\lambda_i(C)|\} < 1$$

 $In\ Worten$: Falls der betragsmäßig maximale Eigenwert der Iterationsmatrix C strikt kleiner ist als 1.

4.1 Richardson

Sei $B = \gamma \mathbb{1}$ mit $\gamma \in \mathbb{R} \setminus \{0\}$, damit ist

Iterationsmatrix :
$$C_R = 1 - \frac{1}{\gamma}A$$

Konvergenz

Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch positiv definit und seien λ_{\min} , λ_{\max} der jeweils kleinste bzw. größte Eigenwert von A:

$$\gamma > \frac{\lambda_{\max}}{2} \quad \Rightarrow \quad \rho\left(C_R(\gamma)\right) < 1 \quad \Rightarrow \quad \text{Konvergenz}$$

$$\gamma_{\text{opt}} = \frac{\lambda_{\min} + \lambda_{\max}}{2} \quad \Rightarrow \quad \rho\left(C_R(\gamma)\right) \rightarrow \min \quad \Rightarrow \quad \text{optimale Konvergenz}$$

4.2 Jacobi

Sei $B = D = \text{diag}(a_{11}, a_{22}, \dots, a_{nn})$ und $B^{-1} = D^{-1} = \text{diag}(\frac{1}{a_{11}}, \frac{1}{a_{22}}, \dots, \frac{1}{a_{nn}})$, damit ist:

$$\begin{aligned} &\text{Iterationsmatrix}: \quad C_J = D^{-1}(A-D) = D^{-1}(L+D+R-D) = D^{-1}(L+R) \\ &\Rightarrow \quad Dx^{(k+1)} = -(L+R)x^k + b \\ &\text{für i-te Zeilte}: \quad a_{i,i} \ x_i^{(k+1)} = -\left(\sum_{\substack{j=1\\j\neq i}}^n a_{i,j} \ x_j^{(k)}\right) + b_i \\ &\Leftrightarrow \quad x_i^{(k+1)} = -\frac{1}{a_{i,i}} \left(\left(\sum_{\substack{j=1\\j\neq i}}^n a_{i,j} \ x_j^{(k)}\right) - b_i\right) \\ &\Rightarrow \quad \text{Gesamt-Schritt-Verfahren}: x_i^{(k+1)} \text{ kommt rechts nicht vor} \end{aligned}$$

Konvergenz

Starkes Zeilen-/Spaltensummen Kriterium oder schwaches Zeilen-/Spaltensummen + irreduzibel

4.3 Gauß-Seidel

Sei B = L + D (oder B = D + R):

Iterationsmatrix :
$$C_{GS} = B^{-1}(A - B) = D^{-1}(L + D + R - L - D) = (L + D)^{-1}R$$

 $\Rightarrow (L + D)x^{(k+1)} = -Rx^{(k)} + b$
für *i*-te Zeilte : $\left(\sum_{j=1}^{i-1} a_{i,j} \ x_j^{(k+1)}\right) + a_{i,i} \ x_i^{(k+1)} = -\left(\sum_{j=i+1}^{n} a_{i,j} \ x_j^{(k)}\right) + b_i$
 $\Rightarrow x_i^{(k+1)} = -\frac{1}{a_{i,i}} \left(\left(\sum_{j=i+1}^{n} a_{i,j} \ x_j^{(k)}\right) + \left(\sum_{j=1}^{i-1} a_{i,j} \ x_j^{(k+1)}\right) - b_i\right)$
 $\Rightarrow \text{Einzel-Schritt-Verfahren} : x_j^{(k+1)} \text{ bis } j < i-1 \text{ kommt rechts vor}$

Konvergenz

Starkes Zeilen-/Spaltensummen Kriterium oder schwaches Zeilen-/Spaltensummen + irreduzibel

4.3.1 Satz von Stein/Rosenberg

Gilt für alle Elemente c_{ij} der Iterationsmatrix C_J des Jacobi-Verfahrens und $\rho(C_J) < 1$ dann gilt:

$$\forall c_{ij} \geqslant 0 \quad \Rightarrow \quad 0 < \rho(C_{GS}) < \rho(C_J) < 1$$

Also konvergiert in diesem **speziellen** Fall das Gauß-Seidel-Verfahren schneller als das Jacobi-Verfahren.

4.4 Gradienten

Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch positiv definit:

Minimiere die Funktion :
$$f(x) = \frac{1}{2}x^{T}Ax - x^{T}b$$

ist $f'(x) = \nabla f(x) = Ax - b \stackrel{!}{=} 0 \Leftrightarrow Ax = b$ so ist x ein Minimum von $f(x)$ da nach Voraussetzung $f''(x) = H_f(x) = A$ positiv definit gilt (Hesse-Matrix).

Um nun das Minimum der Funktion f(x) zu finden, gehen wir von einem Startwert $x_0 \in \mathbb{R}^n$ in Schritten k = 1, 2, ... in Richtung $d^{(k)}$ des steilsten Abstieges:

$$d^{(k)} = -\nabla f(x^{(k)}) = b - Ax^{(k)} = r^{(k)} \text{ (Residuum)}$$
$$r^{(k+1)} = r^{(k)} + \lambda r^{(k)}$$

Dabei ist die optimale Schrittweite λ genau so lang, bis es wieder hoch geht:

$$f(x + \lambda r) = F(\lambda) \to \min \Leftrightarrow F'(\lambda_{\text{opt}}) \stackrel{!}{=} 0$$

$$F(\lambda) = \frac{1}{2} \left(x + \lambda r \right)^{\top} A \left(x + \lambda r \right) - \left(x + \lambda r \right)^{\top} b$$

$$= \frac{1}{2} \left(x^{\top} A x + \underbrace{x^{\top} A \lambda r + \lambda r^{\top} A x}_{= 2\lambda \ r^{\top} A x \ (\text{da skalar})} + \lambda r^{\top} A \lambda r \right) - \left(x^{\top} b + \lambda r^{\top} b \right)$$

$$= \frac{1}{2} \lambda^{2} r^{\top} A r + \lambda \left(r^{\top} A x - r^{\top} b \right) + \underbrace{\frac{1}{2} x^{\top} A x - x^{\top} b}_{= f(x)}$$

$$F'(\lambda_{\text{opt}}) = \lambda r^{\top} A r + r^{\top} A x - r^{\top} b \stackrel{!}{=} 0$$

$$\Rightarrow \lambda_{\text{opt}} = \frac{r^{\top} b - r^{\top} A x}{r^{\top} A r} = \frac{r^{\top} \underbrace{(b - A x)}_{r^{\top} A r}}_{= r^{\top} A r} = \underbrace{\langle r, r \rangle}_{\langle r, A r \rangle}$$

Bemerkung: Um nicht in jedem Schritt das Residuum erneut berechnen zu müssen gilt: $r^{(k+1)} = b - Ax^{(k+1)} = b - A\left(x^{(k)} + \lambda r^{(k)}\right) = \underbrace{b - Ax^{(k)}}_{= r^{(k)}} - \lambda Ar^{(k)} = r^{(k)} - \lambda Ar^{(k)}$

Algorithmus für lineares Gleichungssystem Ax = b:

$$\begin{split} x^{(0)} &= \text{Startwert} \\ r^{(0)} &= b - Ax^{(0)} \\ \text{FOR } k &= 1, 2, \dots \\ a^{(k)} &= Ar^{(k)} \qquad \textit{dieses Resultat wird mehrmals benötigt} \\ \lambda_{\text{opt}} &= \frac{\left\langle r^{(k)}, r^{(k)} \right\rangle}{\left\langle r^{(k)}, a^{(k)} \right\rangle} \qquad \textit{optimale Schrittlänge} \\ x^{(k+1)} &= x^{(k)} + \lambda_{\text{opt}} r^{(k)} \qquad \textit{gehe einen Schritt} \\ r^{(k+1)} &= r^{(k)} + \lambda_{\text{opt}} a^{(k)} \qquad \textit{siehe Bemerkung oben} \\ \text{END} \end{split}$$

4.4.1 Konvergenz

Für die exakte Lösung x^* gilt die Abschätzung:

$$||x^* - x^{(k)}||_A \le \left(\frac{\kappa_2 - 1}{\kappa_2 + 1}\right)^k \cdot ||x^* - x^{(0)}||_A$$

4.5 Konjugierte Gradienten

Information aus A wird verwendet um die Suchrichtung $d^{(k)}$ besser zu bestimmen. Dazu wird das Energieskalarprodukt $\langle x,y\rangle_A=x^\top Ay=\langle x,Ay\rangle_2$ verwendet.

Naiver Algorithmus:

$$\begin{split} x^{(0)} &= \text{Startwert} \\ &\text{FOR } k = 1, 2, \dots \\ r^{(k)} &= b - Ax^{(k)} \qquad \textit{Residuum} \\ d^{(k)} &= r^{(k)} - \sum_{j=1}^{k-1} \frac{\left\langle r^{(k)}, d^{(j)} \right\rangle_A}{\left\langle d^{(j)}, d^{(j)} \right\rangle_A} \qquad \textit{Gramm-Schmidt in der Energienorm} \\ a^{(k)} &= Ad^{(k)} \\ \alpha_{\text{opt}} &= \frac{\left\langle d^{(k)}, d^{(k)} \right\rangle}{\left\langle d^{(k)}, a^{(k)} \right\rangle} \qquad \textit{optimale Schrittlänge} \\ x^{(k+1)} &= x^{(k)} + \alpha_{\text{opt}} d^{(k)} \qquad \textit{gehe einen Schritt} \end{split}$$
 END

Das konjugierte Gradienten Verfahren wird dadurch effizient, da man die Summe im Gramm-Schmidt Schritt nicht in jeder Iteration neu berechnen muss.

$$\begin{split} r^{(0)} &= b - Ax^{(0)} \\ \rho^{(0)} &= \left\langle r^{(0)}, r^{(0)} \right\rangle \\ d^{(1)} &= r^{(0)} \\ \text{FOR } k &= 1, 2, \dots \\ a^{(k)} &= Ad^{(k)} \\ \alpha_{\text{opt}} &= \frac{\rho^{(k-1)}}{\left\langle d^{(k)}, a^{(k)} \right\rangle} \\ x^{(k)} &= x^{(k-1)} + \alpha_{\text{opt}} d^{(k)} \\ \rho^{(k)} &= \left\langle r^{(k)}, r^{(k)} \right\rangle \\ d^{(k+1)} &= r^{(k)} + \frac{\rho^{(k)}}{\rho^{(k-1)}} d^{(k)} \end{split}$$
 END

4.5.1 Konvergenz

Da nach n Schritten kein weitere orthogonaler Vektor mehr gefunden werden kann, muss $x^{(k)}$ die exakte Lösung sein. In dem Sinne handelt es sich hierbei um ein exaktes Verfahren.

4.5.2 Vorkonditionierer

Matrix A wird so vormassiert, dass die sich die Konditionszahl κ verbessert. z.b. unvollständiges Cholesky-Zerlegung.

Berechnung von Eigenwerten

Sei $A \in \mathbb{C}^{n \times n}$ so gilt für den Eigenwert $\lambda_i \in \sigma(A)$ und dessen dazugehöriger Eigenvektor $v_i \in \mathbb{C}^n$:

$$Av_i = \lambda_i v_i$$
$$A^k v_i = \lambda_i^k v_i$$

5.1 Abschätzungen zur Lage

5.1.1 Matrixnorm

$$|\lambda| \leqslant ||A||$$

z.b. Zeilen- $||A||_{\infty}$, Spaltensummen $||A||_{0}$ Normen sind einfach zu berechnen.

Satz von Bendixon

Gerschgorin Kreise

Sind disjunkt, was bedeutet, jeder Kreis enthält auch ein Eigenwert.

$$\lambda \in \sigma(A) \subseteq \mathcal{R}(A) := \bigcup_{i=1}^{n} \mathcal{R}_{i}, \qquad \mathcal{R}_{i} = \left\{ z \in \mathbb{C} : |z - a_{jj}| \leqslant \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}| \right\}$$

Erstes Gerschgorin Theorem

Da A^{\top} die gleichen Eigenwerte wie A hat, gilt folgendes Theorem:

$$\lambda \in \sigma(A) \subseteq \mathcal{R}(A) \cap \mathcal{R}(A^{\top})$$

5.2 Potenzmethode

Liefert den betragsmäßig größten Eigenwert von $A \in \mathbb{C}^{n \times n}$:

$$\begin{split} x^{(0)} & \text{ mit } v_1^\top x^{(0)} \neq 0 \text{ und } ||x^{(0)}|| = 1 \\ & \text{FOR } k = 0, 1, \dots \\ & a^{(k)} = Ax^{(k)} \\ & \rho^{(k)} = \left(x^{(k)}\right)^\top a^{(k)} & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ \lambda}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ A}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ dem\ Eigenwert\ Ax}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ dem\ Eigenwert\ Ax}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ dem\ Eigenwert\ Ax}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ dem\ Eigenwert\ Ax}{Rayleigh\text{-}Quotient\ \frac{x^\top Ax}{x^\top x}} \\ & \underset{entspricht\ dem\ Eigenwert\ dem\ Eigenwert\ entspricht$$

Der Startvektor $x^{(0)}$ ist eine Linearkombination der Eigenvektoren v_i :

$$x^{(0)} = \sum_{i=1}^{n} \alpha_i v_i$$

Damit gilt:

$$a^{(k)} = Ax^{(k-1)} = AAx^{(k-2)} = \dots = A^k x^{(0)} = A^k \sum_{i=1}^n \alpha_i v_i = \sum_{i=1}^n \alpha_i A^k v_i \stackrel{\text{EW-Gleichung}}{=} \sum_{i=1}^n \alpha_i \lambda^k v_i$$
$$= \alpha_1 \lambda_1^k \left(v_1 + \sum_{i=1}^n \frac{\alpha_i}{\alpha_1} \left(\frac{\lambda_i}{\lambda 1} \right)^k v_i \right)$$

Sind die Eigenwerte so $|\lambda_1| > |\lambda_2| \ge ... \ge |\lambda_n| > 0$ sortiert, so gilt:

$$\lim_{k \to \infty} \left(\frac{\lambda_i}{\lambda_1} \right)^k = 0 \qquad \Rightarrow \qquad \lim_{k \to \infty} \left(v_1 + \sum_{i=1}^n \frac{\alpha_i}{\alpha_1} \left(\frac{\lambda_i}{\lambda_1} \right)^k v_i \right) = v_1$$

Weiter:

$$x^{(k+1)} = \frac{a^{(k)}}{||a^{(k)}||} \stackrel{k \to \infty}{\to} \pm v_1$$

5.2.1 Inverse Iteration nach Wielandt

Die kleinsten Eigenwerte einer Matrix A sind die größten der Inversen A^{-1} , denn:

$$\lambda \in \sigma(A), \quad \nu \in \sigma(A^{-1}) \qquad \Rightarrow \qquad \nu_i = \frac{1}{\lambda_i}$$

Also muss im Algorithmus $a^{(k)} = A^{-1}x^{(k)}$ berechnet werden, dies entspricht aber gerade dem linearen Gleichungssystem $Aa^{(k)} = x^{(k)}$. Damit muss in jedem Schritt dieses Gleichungssystem gelöst werden. (Dies ist weniger aufwändig als die einmalige Berechnung der Inversen!).

5.2.2 Shift

Mittels eines Shifts $\mu \in \mathbb{C}$ und der inversen Iteration kann der Eigenwert am nächsten zu μ gefunden werden.

$$\mu \approx \lambda_j$$

$$x^{(0)} \text{ nicht orthogonal zu } v_j$$

$$\|x^{(0)}\| = 1$$

$$\text{FOR } k = 0, 1, \dots$$

$$\text{löse } (A - \mu \mathbb{1}) \, a^{(k)} = x^{(k)}$$

$$\rho^{(k)} = \left(x^{(k)}\right)^{\top} a^{(k)}$$

$$x^{(k+1)} = \frac{a^{(k)}}{||a^{(k)}||}$$

$$\text{END}$$

$$\frac{|\lambda_j - \mu|}{\min_{i \neq j} |\lambda_i - \mu|} < 1$$

Konvergenzgeschwindigkeit für $\mu \approx \lambda_i$ und λ_i der nächstgelegene Eigenwert:

5.3 QR-Verfahren

Algorithmus:

$$A^{(0)}=A$$
 FOR $k=1,2,\ldots$
$$Q^{(k)}R^{(k)}=A^{(k-1)} \qquad QR \ Zerlegung \ von \ A^{(k-1)}$$

$$A^{(k)}=R^{(k)}Q^{(k)}$$
 END

$$A^{(k)} = R^{(k)}Q^{(k)} = \left(Q^{(k)}\right)^{\top} \underbrace{Q^{(k)}R^{(k)}}_{A^{(k-1)}}Q^{(k)} = \dots = \left(Q^{(1)}\dots Q^{(k)}\right)^{\top}A^{(0)}\left(Q^{(1)}\dots Q^{(k)}\right)$$

Damit ist $A^{(k)}$ ähnlich zu $A^{(0)} = A$.

Weiter gilt $\lim_{k\to\infty} A^{(k)} = R$ wobei R eine rechte obere Dreiecksmatrix ist mit den Eigenwerten auf der Diagonale. (Ist A symmetrisch so ist R eine Diagonalmatrix)

5.3.1 Hessenbergform

Eine Matrix der folgenden Gestalt heißt obere Hessenbergmartrix:

$$H = \begin{pmatrix} * & * & \dots & * \\ * & \ddots & & \vdots \\ & \ddots & \ddots & * \\ 0 & & * & * \end{pmatrix}$$

Mittels Householder-Transformationen kann eine Matrix A in Hessenbergform umgewandelt werden \to Aufwand $\mathcal{O}(n^3)$

$$QA = H \qquad \Leftrightarrow \qquad QAQ^{\top} = HQ^{\top} = \tilde{H}$$

Dabei ist \tilde{H} wiederum ähnlich zu A und die QR-Zerlegung von \tilde{H} ist nun mittels n-1 Givens-Rotationen möglich \to Aufwand $\mathcal{O}(n^2)$.

5.3.2 Shift

Sei $H \in \mathbb{R}^{n \times n}$ obere Hessenberg-Matrix, $0 < \varepsilon \in \mathbb{R}$ eine Toleranz:

$$\begin{split} H^{(0)} &= H \\ \text{FOR } k = 1, 2, \dots \\ \mu_k &= h_{n,n} \\ Q^{(k)} R^{(k)} &= H^{(k-1)} - \mu_k \mathbb{1} \quad QR\text{-}Zerlegung \\ H^{(k)} &= R^{(k)} Q^{(k)} + \mu_k \mathbb{1} \quad Shift \ kommt \ wieder \ dazu \\ &\text{IF } |h_{n,n-1}^{(k)}| \leqslant \varepsilon \left(|h_{n-1,n-1}^{(k)}| + |h_{n,n}^{(k)}| \right) \quad & \text{prüfen ob Element links neben dem } \\ H^{(k)} &= H^{(k)} (1:n-1,1:n-1) \quad & \text{lösche lezte Spalte und Zeile} \end{split}$$

END

5.4 Singulärwertzerlegung

Sei $A \in \mathbb{R}^{m \times n}$ mit Rang r und o.B.d.A. $m \geqslant n$:

$$\exists \quad U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n} \text{ mit } U^{\top}AV = \Sigma \in \mathbb{R}^{m \times n} \quad \Leftrightarrow \quad A = U\Sigma V^{\top}$$

$$\Sigma = \begin{pmatrix} \hat{\Sigma} \\ 0 \end{pmatrix}, \quad \hat{\Sigma} = \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ & \ddots \\ & \sigma_n \end{pmatrix}$$
 Singulärwerte:
$$\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r > \sigma_{r+1} = \ldots = \sigma_n = 0$$
 es gilt:
$$u_i^{\top}A = \sigma_i v_i^{\top}$$
 für:
$$A^{\top}A = (V\Sigma^{\top}U^{\top})(U\Sigma V^{\top}) = V\Sigma^2 V^{\top}$$
 gilt:
$$\sigma_i \in \sigma(A^{\top}A) \ \forall i = 1, \ldots, n \quad \text{falls } A \text{ sym. } : \sqrt{\sigma_i^2} \in \sigma(A)$$

5.4.1 Pseudoinverse

Definition :
$$A^+ = V\Sigma^+U^\top$$
, $\Sigma^+ = \begin{pmatrix} \frac{1}{\sigma_1} & & & & \\ & \ddots & & & \\ & & \frac{1}{\sigma_r} & & \\ & & & 0 & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}$

es gilt : (i)
$$(A^{+}A)^{\top} = A^{+}A$$
, $(AA^{+})^{\top} = AA^{+}$

(ii)
$$A^+AA^+ = A^+, AA^+A = A$$

(iii) falls
$$r = n$$
: $A^+ = (A^\top A)^{-1} A^\top = A^{-1} (A^\top)^{-1} A^\top = A^{-1}$

Anhang

6.1 Norm

obere Dreiecksungleichung : $||x+y|| \le ||x|| + ||y||$ untere Dreiecksungleichung : $||||x|| - ||y||| \ge ||x|| - ||y||$

6.2 Matrixnormen

 $\text{Induzierte p-Normen}: \quad \|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \max_{\|x\|=1} \|Ax\|$

Frobenius-Norm : $||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$

Spektralnorm: $||A||_2 = \sqrt{\lambda_{\max}(A^{\top}A)}$

Verträglichkeit : $||Ax|| \le ||A|| \cdot ||x||$

6.3 Irreduzible Matrizen

Irreduzibel wenn im gerichteten Graphen alle Knoten erreichbar sind.