

Syslog - SNMP - NTP - DNS

Implementing Log Messaging

- Routers should be configured to send log messages to one or more of these:
 - Console
 - Terminal lines
 - Memory buffer
 - SNMP traps
 - Syslog
- Syslog logging is a key security policy component.

Syslog Systems

- Syslog server: A host that accepts and processes log messages from one or more syslog clients.
- Syslog client: A host that generates log messages and forwards them to a syslog server.

Cisco Log Severity Levels

Level	Name	Description	
0	Emergencies	Router unusable	
1	Alerts	Immediate action required	
2	Critical	Condition critical	
3	Errors	Error condition	
4	Warnings	Warning condition	
5	Notifications	Normal but important event	
6	Informational	Informational message	
7	Debugging	Debug message	

Log Message Format

Configuring Syslog Logging

Configuring Syslog

Router(config)#

```
logging [host-name | ip-address]
```

1. Sets the destination logging host

Router (config) #

logging trap level

2. (Optional) Sets the log severity (trap) level

Configuring Syslog (Cont.)

Router(config)#

logging source-interface interface-type interface-number

4. (Optional) Sets the source interface

Router (config) #

logging on

5. Enables logging

Syslog Implementation Example


```
R3(config) #logging 10.2.2.6
R3(config) #logging trap informational
R3(config) #logging source-interface loopback 0
R3(config) #logging on
```

SNMP

SNMPv1 and SNMPv2 Architecture

 The SNMP NMS asks agents embedded in network devices for information, or tells the agents to do something.

SNMP: Security is Not My Problem

Community Strings

Used to authenticate messages between a management station, and an SNMPv1 or SNMPv2 engine:

- Read only community strings can get information, but can not set information in an agent.
- Read-write community strings can get and set information in the agent.
- Having read-write access is like having the enable password for the device.

SNMP Security Models and Levels

Definitions:

- Security model is a security strategy used by the SNMP agent
- Security level is the permitted level of security within a security model

Model	Level	Authentication	Encryption	What Happens
v1	noAuthNoPriv	Community String	No	 Authenticates with a community string match
v2	noAuthNoPriv	Community String	No	 Authenticates with a community string match
v3	noAuthNoPriv	Username	No	Authenticates with a username
	authNoPriv	MD5 or SHA	No	 Provides HMAC MD5 or SHA algorithms for authentication
	authPriv	MD5 or SHA	DES	 Provides HMAC MD5 or SHA algorithms for authentication Provides DES 56-bit encryption in addition to authentication based on the CBC-DES (DES-56) standard

SNMPv3 Architecture

SNMP Operational Model

Example

Configuring NTP Client

Understanding NTP

- NTP is used to synchronize the clocks in the entire network.
- System clock is set by the battery system calendar during bootup.
- System clock can then be modified manually or via NTP.
- NTP runs over UDP port 123; current version is 4.
- Only NTP up to version 3 has been documented in RFCs.
- Stratum describes how many "NTP hops" away a machine is from authoritative time source.
- NTP establishes associations to synchronize time.

Configuring NTP Associations

```
Router(config)#
```

```
ntp server {ip-address | hostname} [version number] [key
keyid] [source interface] [prefer]
```

Forms a server association with another system

Resolving DNS Addresses

Resolving DNS Addresses

Resolving DNS Addresses

The number is returned back to the client for use in making requests of the server.

Resolving DNS Addresses

A human legible name is resolved to its numeric network device address by the DNS protocol.

Using nslookup

```
C:\WINDOWS\systen 22\cmd.exe - nslookup
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
C:\Documents and Settings\bradfjoh>cd..
C:\Documents and Settings>nslookup
Default Server: dns-sj.cisco.com
Address: 171.70.168.183
> www.cisco.com
Server: dns-sj.cisco.com
Address: 171.70.168.183
Name: www.cisco.com
Address: 198,133,219,25
> cisco.netacad.net
         dns-sj.cisco.com
Address: 171.70.168.183
Non-authoritative answer:
Name:
         cisco.netacad.net
Address: 128,107,229,50
```


Introduction to IP QoS

Introducing QoS

Converged Network Quality Issues

- Constant small-packet voice flow competes with bursty data flow.
- Critical traffic must get priority.
- Voice and video are time-sensitive.
- Brief outages are not acceptable.

Converged Network Quality Issues (Cont.)

- Lack of bandwidth: Multiple flows compete for a limited amount of bandwidth.
- End-to-end delay (fixed and variable): Packets have to traverse many network devices and links that add up to the overall delay.
- Variation of delay (jitter): Sometimes there is a lot of other traffic, which results in increased delay.
- Packet loss: Packets may have to be dropped when a link is congested.

QoS Defined

The ability of the network to provide better or "special" service to a set of users or applications or both to the detriment of other users or applications or both

25P 068

Voice - Video - Data

Consistent and Predictable Performance

Implementing QoS

- 1. Identify traffic and its requirements.
- 2. Divide traffic into classes.
- 3. Define QoS policies for each class.

Identify Traffic and Its Requirements

- Network audit: Identify traffic on the network.
- Business audit: Determine how important each type of traffic is for business.
- Service levels required: Determine required response time.

The Requirements of Different Traffic Types

QoS Policy

 A networkwide definition of the specific levels of QoS assigned to different classes of network traffic

ABC Corporation

Network QoS Policy

Voice Traffic
Absolute Priority

ERP System Critical Priority

Manufacturing System Critical Priority

Net Surfing
Not Allowed During
Business Hours

325P_072

Classification

- Classification is the process of identifying and categorizing traffic into classes, typically based upon:
 - Incoming interface
 - IP precedence
 - DSCP
 - Source or destination address
 - Application
- Classification is the most fundamental QoS building block.
- Without classification, all packets are treated the same.

Marking

- Marking is the QoS feature component that "colors" a packet (frame) so it can be identified and distinguished from other packets (frames) in QoS treatment.
- Commonly used markers:
 - Link layer:
 - CoS (ISL, 802.1p)
 - MPLS EXP bits
 - Frame Relay
 - Network layer:
 - DSCP
 - IP precedence

Trust Boundaries: Classify Where?

For scalability, classification should be enabled as close to the edge as possible, depending on the capabilities of the device at:

- 1. Endpoint or end system
- 2. Access layer
- 3. Distribution layer

Implementing QoS Policy Using a QoS Service Class

Implementing QoS Policy Using a QoS Service Class (Cont.)

- Profile applications to their basic network requirements.
- Do not overengineer provisioning; use no more than four to five traffic classes for data traffic:
 - Voice applications: VoIP
 - Mission-critical applications: Oracle, SAP, SNA
 - Interactive applications: Telnet, TN3270
 - Bulk applications: FTP, TFTP
 - Best-effort applications: E-mail, WWW
 - Scavenger applications: Nonorganizational streaming and video applications
- Do not assign more than three applications to mission-critical or transactional classes.
- Use proactive policies before reactive (policing) policies.
- Seek executive endorsement of relative ranking of application priority prior to rolling out QoS policies for data.

Implement the DiffServ QoS Model

Introducing Queuing Implementations

Congestion and Queuing

- Congestion can occur at any point in the network where there are points of speed mismatches or aggregation.
- Queuing manages congestion to provide bandwidth and delay guarantees.

Congestion and Queuing

To avoid congestion, queuing mechanisms are activated at the hardware buffer of the outgoing interface

323626

Queuing Algorithms

- First in, first out (FIFO)
- Priority queuing (PQ)
- Round robin
- Weighted Fair Queue.
- Class Based Weighted Fair Queue.

Implement the DiffServ QoS Model

Introducing Traffic Policing and Shaping

Why Use Shaping?

- To prevent and manage congestion in ATM, Frame Relay, and Metro Ethernet networks, where asymmetric bandwidths are used along the traffic path
- To regulate the sending traffic rate to match the subscribed (committed) rate in ATM, Frame Relay, or Metro Ethernet networks
- To implement shaping at the network edge

Why Use Policing?

- To limit access to resources when high-speed access is used but not desired (subrate access)
- To limit the traffic rate of certain applications or traffic classes
- To mark down (recolor) exceeding traffic at Layer 2 or Layer 3

Traffic Policing and Shaping Example

Remote Sites

- Central to remote site speed mismatch
- Remote to central site oversubscription
- Both situations result in buffering and in delayed or dropped packets.

Policing vs. Shaping

- Incoming and outgoing directions.
- Out-of-profile packets are dropped.
- Dropping causes TCP retransmits.
- Policing supports packet marking or re-marking.

- Outgoing direction only.
- Out-of-profile packets are queued until a buffer gets full.
- Buffering minimizes TCP retransmits.
- Marking or re-marking not supported.
- Shaping supports interaction with Frame Relay congestion indication.

Single Token Bucket

If sufficient tokens are available (conform action):

- Tokens equivalent to the packet size are removed from the bucket.
- The packet is transmitted.

Single Token Bucket (Cont.)

If sufficient tokens are not available (exceed action):

Drop (or mark) the packet.

Single Token Bucket (Cont.)

If sufficient tokens are not available (exceed action):

Drop (or mark) the packet.

#