

# 实验报告

实验课程名称: 数值计算方法

实验项目名称: 结课实验

学院: 数学与统计学院

专业: 数学与应用数学

学生: 吴同学

学 号: 20210218

实验日期:2023年6月26日

# 学生实验室守则

- 一、按教学安排准时到实验室上实验课,不得迟到、早退和旷课。
- 二、进入实验室必须遵守实验室的各项规章制度,保持室内安静、整洁,不准在室内打闹、喧哗、吸烟、吃食物、随地吐痰、乱扔杂物,不准做与实验内容无关的事,非实验用品一律不准带进实验室。
  - 三、实验前必须做好预习(或按要求写好预习报告),未做预习者不准参加实验。

四、实验必须服从教师的安排和指导,认真按规程操作,未经教师允许不得擅自动用仪器设备,特别是与本实验无关的仪器设备和设施,如擅自动用或违反操作规程造成损坏,应按规定赔偿,严重者给予纪律处分。

五、实验中要节约水、电、气及其它消耗材料。

六、细心观察、如实记录实验现象和结果,不得抄袭或随意更改原始记录和数据, 不得擅离操作岗位和干扰他人实验。

七、使用易燃、易爆、腐蚀性、有毒有害物品或接触带电设备进行实验,应特别注意规范操作,注意防护;若发生意外,要保持冷静,并及时向指导教师和管理人员报告,不得自行处理。仪器设备发生故障和损坏,应立即停止实验,并主动向指导教师报告,不得自行拆卸查看和拼装。

八、实验完毕,应清理好实验仪器设备并放回原位,清扫好实验现场,经指导教师 检查认可并将实验记录交指导教师检查签字后方可离去。

九、无故不参加实验者,应写出检查,提出申请并缴纳相应的实验费及材料消耗费,经批准后,方可补做。

十、自选实验,应事先预约,拟订出实验方案,经实验室主任同意后,在指导教师或实验技术人员的指导下进行。

十一、实验室内一切物品未经允许严禁带出室外,确需带出,必须经过批准并办理手续。

## 实验目的及要求:

- 1. 完成实验一.
- 2. 完成实验二.

## 实验内容:

实验 1 编写.M 文件, 利用积分定义法计算

$$\int_{1}^{2} \int_{2}^{3} (x^{2} + y^{2}) \mathrm{d}x \mathrm{d}y.$$

**实验 2** 编写.M 通用文件, 利用定义法计算一般 10 阶矩阵  $A_{10\times 10}$  的逆(不使用 inv 命令).

#### 实验(或算法)原理:

依据重积分的定义, 二重积分可以写为极限

$$\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} f(\xi_k, \eta_j) (x_k - x_{k-1}) (y_j - y_{j-1}).$$

在 [1,2] 和 [2,3] 上分别 n 等分,得到分点  $\{1,1+\frac{1}{n},\cdots,2\}$  和  $\{2,2+\frac{1}{n},\cdots,3\}$ . 原式等价为

$$\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{n^2} \left[ \left(1 + \frac{i}{n}\right)^2 + \left(2 + \frac{j}{n}\right)^2 \right].$$

对方阵 A, 若存在方阵 B 使得 AB = BA = I(I) 为单位矩阵), 则称 A 可逆, B 定义为 A 的逆, 记为  $A^{-1}$ . 方阵 A 可逆的充要条件是线性方程组

$$A\mathbf{x} = \mathbf{0}$$

有且只有一个解 x = 0.

考虑 Gauss-Jordan 消元法. 对于增广矩阵 [AI] 有

$$\begin{bmatrix} A & I \end{bmatrix} \times A^{-1} = \begin{bmatrix} I & A^{-1} \end{bmatrix}.$$

# 实验过程及结果:

实验一的 MATLAB 程序源码如下。

```
% 定义法计算二重定积分

n = 999999;

syms k;

F = 1/(n) * ((1+k/n)^2 + (2+k/n)^2);

S = symsum(F,k,1,n);

vpa(S)
```

运行程序输出结果如下。

>> integral\_definition

ans =

8.6666706666709991704661708917349

## 实验二的 MATLAB 程序源码如下。

```
function B = inverse10x10(A0)
%inverse计算10*10方阵的逆
% 原理:Gauss-Jordan Elimination.
B = [A0 eye(10)]; %构造增广矩阵
for ai=1:9 %化为上三角矩阵
   B = \mathbf{upper}(B,ai);
end
for ai=1:9 %化为对角阵
   B = lower(B,ai);
   if isnan(B) = = 1
      break;
   end
end
for ai=1:10 %将对角阵单位化
   B(ai,:) = B(ai,:)/B(ai,ai);
end
for ai=1:10 %提取逆矩阵
   B(:,1) = [];
end
disp B;
   function Y = \mathbf{upper}(X,n)
   %化为上三角矩阵
       %每处理一列,检验一次方阵可逆性
      P = X(:,n);
       if n>1
      P(1:n-1) = [];
      end
      p = \max(P);
       if p == 0
          Y = \mathbf{NaN}(10);
          return;
      end
```

```
%将第n列中(除去前n-1个数字)最大数所对应的行交换到第n行
      k = X(:,n) = =p;
      tmp = X(n,:); \ X(n,:) = X(k,:); \ X(k,:) = tmp;
      %消元
      for i = n:9
         X(i+1,:) = X(i+1,:) - X(n,:)*X(i+1,n)/X(n,n);
      end
      Y = X;
      return;
   end
   function Y = lower(X,n)
   %化为下三角矩阵
   % 此处的n与upper(X,n)中的参数n不同,
   % n=1表示对第10列进行处理,以此类推.
      for i = n:9
         X(10-i,:) = X(10-i,:) - X(11-n,:)*X(10-i,11-n)/X(11-n,11-n);
      end
      Y = X;
      return;
   end
end
```

# 运行程序输出结果如下。

>> M = randi([1,100],10,10)

M =

| 27 | 79 | 14 | 44 | 65 | 61 | 72 | 25 | 1  | 58 |
|----|----|----|----|----|----|----|----|----|----|
| 9  | 8  | 60 | 18 | 56 | 92 | 18 | 25 | 32 | 75 |
| 43 | 40 | 91 | 3  | 22 | 91 | 34 | 16 | 70 | 65 |
| 26 | 1  | 94 | 96 | 78 | 60 | 19 | 96 | 63 | 13 |
| 30 | 23 | 23 | 44 | 23 | 34 | 33 | 94 | 55 | 51 |
| 43 | 1  | 49 | 97 | 38 | 86 | 41 | 82 | 44 | 35 |
| 12 | 19 | 38 | 77 | 90 | 45 | 55 | 73 | 29 | 10 |
| 50 | 15 | 53 | 1  | 86 | 91 | 5  | 18 | 51 | 15 |
| 71 | 27 | 27 | 69 | 41 | 4  | 56 | 37 | 77 | 20 |
| 25 | 18 | 7  | 71 | 32 | 54 | 28 | 19 | 77 | 68 |

 $>> N = M^-1$ 

N =

>> inverse10x10(M)

| 0.0056                   | 0.0087   | -0.0113  | 0.0015  | 0.0006  | 0.0078  | -0.0203 |  |  |
|--------------------------|----------|----------|---------|---------|---------|---------|--|--|
| 0.0061  0.0152  -0.0112  |          |          |         |         |         |         |  |  |
| 0.0151                   | -0.0195  | 0.0048   | 0.0136  | 0.0033  | -0.0079 | -0.0099 |  |  |
| 0.00                     | -0.0     | 108 0.00 | 70      |         |         |         |  |  |
| 0.0010                   | 0.0063   | 0.0047   | 0.0095  | -0.0056 | -0.0028 | -0.0044 |  |  |
| -0.0067  0.0047  -0.0077 |          |          |         |         |         |         |  |  |
| 0.0064                   | -0.0027  | -0.0047  | 0.0106  | -0.0079 | 0.0041  | -0.0091 |  |  |
| -0.0038  -0.0001  0.0061 |          |          |         |         |         |         |  |  |
| 0.0012                   | 0.0094   | -0.0092  | 0.0023  | -0.0005 | -0.0081 | 0.0018  |  |  |
| 0.0049  0.0049  -0.0012  |          |          |         |         |         |         |  |  |
| -0.0018                  | -0.0105  | 0.0068   | -0.0075 | -0.0017 | 0.0102  | 0.0066  |  |  |
| 0.0061  -0.0121  0.0053  |          |          |         |         |         |         |  |  |
| -0.0109                  | 0.0030   | 0.0120   | -0.0218 | -0.0034 | 0.0055  | 0.0275  |  |  |
| -0.0079  0.0054  -0.0055 |          |          |         |         |         |         |  |  |
| -0.0009                  | -0.0022  | -0.0016  | -0.0002 | 0.0129  | 0.0006  | 0.0008  |  |  |
| 0.0016  -0.0038  -0.0046 |          |          |         |         |         |         |  |  |
| -0.0096                  | -0.0120  | 0.0105   | -0.0047 | 0.0031  | -0.0066 | 0.0134  |  |  |
| 0.0025  -0.0052  0.0124  |          |          |         |         |         |         |  |  |
| 0.0037                   | 0.0211   | -0.0102  | 0.0031  | 0.0037  | -0.0040 | -0.0129 |  |  |
| -0.                      | 0056 0.0 | 089 -0.0 | 0027    |         |         |         |  |  |

### ans =

| 0.0056                   | 0.0087                  | -0.0113   | 0.0015  | 0.0006  | 0.0078  | -0.0203 |  |  |  |
|--------------------------|-------------------------|-----------|---------|---------|---------|---------|--|--|--|
| 0.0061  0.0152  -0.0112  |                         |           |         |         |         |         |  |  |  |
| 0.0151                   | -0.0195                 | 0.0048    | 0.0136  | 0.0033  | -0.0079 | -0.0099 |  |  |  |
| 0.0033  -0.0108  0.0070  |                         |           |         |         |         |         |  |  |  |
| 0.0010                   | 0.0063                  | 0.0047    | 0.0095  | -0.0056 | -0.0028 | -0.0044 |  |  |  |
| -0.0067  0.0047  -0.0077 |                         |           |         |         |         |         |  |  |  |
| 0.0064                   | -0.0027                 | -0.0047   | 0.0106  | -0.0079 | 0.0041  | -0.0091 |  |  |  |
| -0.0038  -0.0001  0.0061 |                         |           |         |         |         |         |  |  |  |
| 0.0012                   | 0.0094                  | -0.0092   | 0.0023  | -0.0005 | -0.0081 | 0.0018  |  |  |  |
| 0.00                     | 0.0049  0.0049  -0.0012 |           |         |         |         |         |  |  |  |
| -0.0018                  | -0.0105                 | 0.0068    | -0.0075 | -0.0017 | 0.0102  | 0.0066  |  |  |  |
| 0.0061  -0.0121  0.0053  |                         |           |         |         |         |         |  |  |  |
| -0.0109                  | 0.0030                  | 0.0120    | -0.0218 | -0.0034 | 0.0055  | 0.0275  |  |  |  |
| -0.0079  0.0054  -0.0055 |                         |           |         |         |         |         |  |  |  |
| -0.0009                  | -0.0022                 | -0.0016   | -0.0002 | 0.0129  | 0.0006  | 0.0008  |  |  |  |
| 0.0016  -0.0038  -0.0046 |                         |           |         |         |         |         |  |  |  |
| -0.0096                  | -0.0120                 | 0.0105    | -0.0047 | 0.0031  | -0.0066 | 0.0134  |  |  |  |
| 0.0025  -0.0052  0.0124  |                         |           |         |         |         |         |  |  |  |
| 0.0037                   | 0.0211                  | -0.0102   | 0.0031  | 0.0037  | -0.0040 | -0.0129 |  |  |  |
| -0.0                     | 0056 0.0                | 0089 -0.0 | 0027    |         |         |         |  |  |  |

>> N-ans

ans =

 $1.0e{-16} *$ 

 $0.0347 \quad -0.0347 \quad 0.0520 \quad -0.0043 \quad -0.0596 \quad 0.0347$ 0.0694-0.0173 0 -0.0867-0.0173 -0.0347 -0.0607 -0.0694 0.07810.05200.0173  $0.0304 \quad -0.1041 \quad -0.0607$ -0.0477 0 -0.0087 -0.0520 0.0781 0.0087 0.0694 $0.0434 \quad -0.0520 \quad -0.0520$ 0.0347 0.0130 -0.0347 0.0347 0 -0.0087 -0.0694 $0.0173 \quad 0.0133 \quad -0.0173$  $0.0260 \quad -0.0520 \quad 0.0694 \quad 0.0607 \quad -0.0488 \quad 0 \quad -0.0195$  $-0.0347 \quad 0.0173 \quad 0.0846$ -0.0152 0 0.0173 -0.0087 -0.0195 -0.0173 0.0347 -0.0260 0.0173 -0.0434-0.0347 -0.0087 0.0694 -0.0347 -0.0173 0.01730.0347-0.0173 0.0173 0.0694 $-0.0152 \quad -0.0217 \quad 0.0260 \quad -0.0111 \qquad \qquad 0 \quad -0.0033$ 0.0282  $0.0087 \quad -0.0173 \quad 0.0347$  $0 \quad 0.0520 \quad -0.0173 \quad -0.0347 \quad 0.0390 \qquad \qquad 0 \quad 0.0173$  $-0.0217 \quad -0.0260 \qquad \qquad 0$  $0.0130 \quad -0.0347 \quad -0.0173 \quad 0.0564 \quad -0.0043 \qquad \qquad 0 \quad -0.0347$  $0.0173 \quad -0.0173 \quad 0.0173$ 

可以看到自编的.M 通用文件计算结果,与 MATLAB 内置求逆矩阵算法的计算结果,两者之间存在极小的误差  $(\pm 1 \times 10^{-16})$ .

#### 指导教师意见:

签名: 年 月 日