CAS CS 365

Lab 11

1. Gradient descent

a. Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function

$$x_{n+1} = x_n - \gamma \nabla F(x_n), \ where \ \gamma \ is \ step \ size$$

- c. Given a function $F(x) = x_1^2 + x_2^2$
 - i. Assume we start from position (1,1) and trying to find a local minimum, which direction should we go?
 - ii. Why step size affect the result?

2. Convex Set

a. A set C is convex if the line segment between any two points in C lies in C

$$\forall x_1,x_2 \in C, \forall \theta \in [0,1],\ \theta x_1 + (1-\theta)x_2 \in C$$

b.

- c. Some extreme examples
 - i. The empty set
 - ii. The singleton set
 - iii. The complete set

d.

- 3. Prove the convexity of the following sets
 - a. The unit ball $\{x: ||x|| \leq 1\}$
 - b. Let A be an m by m PSD matrix, for any a >= 0, the set $\{x \in \mathbb{R}^m : x^T A x \leq a\}$

4. Convex function

a. A function is convex if its domain is a convex set and

$$\forall x, y \in dom(f), \forall \theta \in [0, 1]$$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

- c. All linear functions are convex and concave
- d. For any real value a, e^(ax) is convex

b.

e. x^a is convex when a > 1 or $a \le 0$, and concave when $0 \le a \le 1$

For any $X_1, Y_2 \in C \Rightarrow \begin{cases} ||x_1||_2 \le | & ||x_1||^2 \le | \\ ||x_2||_2 \le | & ||x_2||^2 \le | \end{cases}$ $\forall 0 \in [0,1] \Rightarrow ||0x_1 + (1-0)|x_2||^2 \le ||x_2||^2 \le ||x_2||^2 \le ||x_2||^2 + 20(1-0)(x_1|x_2) \le ||x_2||^2 + 20(1-0)(x_1|x_2) \le ||x_2||^2 \le ||x$

=> LHS 402+(1-0)2+20(1-0)(x,7(2)41

There fore,

 $LH \le Q^{2} + (1-0)^{2} + O(1-0)(2)$ $\le Q^{2} + 1 - 2Q + Q^{2} + (Q - Q^{2})(2)$ $\le 2Q^{2} - 2Q + 1 + 2Q - 2Q^{2}$ ≤ 1

xTAI = Zaj. Zj. Zj

Zaij (Q 1 + (1-0) yi) (Q 1 ; + (1-0) yi)
= Zaj (Q2 2; xj + (1-0)2 yiyj + Q (1-0) (xi, yi - x, y))

602 a + (1-0)2 a + ∑0(1-0) (x; y; +2; y;)

 $\leq \alpha (Q^2 + (|-Q|)^2 + 2Q (|-Q|)$ $\leq \alpha$

 $(x-y)^T A (x-y) = 0$ = $\sum a_{ij} (x_i-y_i)(x_j-y_j)$ = $\sum a_{ij} (x_i-y_i)(x_j-y_i)$

=> \(\alpha_{ij} \left(\frac{1}{2} \tau_{ij} \tau_{ij} \left(\frac{1}{2} \tau_{ij} \tau_{ij} \left(