سوال:

عبارت زیر را اثبات کنید:

هر صفحه در \mathbb{R}^3 که از مبدا می گذرد یک زیرفضا از \mathbb{R}^3 است.

پاسخ:

می دانیم که معادله هر صفحه گذرا از مبدا در R^3 به صورت (*) ست که در آن ax+by+cz=0 بست که در آن می دانیم که معادله هر صفحه P در این فضا را می توان به صورت زیر توصیف کرد:

$$P = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \,\middle|\, ax + by + cz = 0 \right\}$$

حال معادله (*) را میتوان به صورت Ax=0 نوشت. که A یک ماتریس $X^*\in R^3$ و $X^*\in R^3$ است.

$$A = \begin{bmatrix} a & b & c \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \mathbf{0} = \begin{bmatrix} 0 \end{bmatrix}$$

حال می توانیم صفحه را به صورت $P=\{\mathbf{x}\in\mathbb{R}^3\mid A\mathbf{x}=\mathbf{0}\}$ بنویسیم که همان تعریف فضای پوچ ماتریس A است.

بنابراین صفحه P فضای پوچ یک ماتریس 3*1 است و از آنجایی که فضای پوچ یک ماتریس همواره یک زیرفضا است پس P نیز یک زیرفضا خواهد بود.