Deep Interest Network for Click-Through Rate Prediction

Guorui Zhou, Chengru Song, Xiaoqiang Zhu Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, Kun Gai Alibaba Group

Alibaba Group {guorui.xgr,chengru.scr,xiaoqiang.zxq,zhuhan.zh,fanying.fy,maxiao.ma,yanghui.yyh,junqi.jjq,lihan.hl,jingshi.gk}@ alibaba-inc.com

PAN XIANG 2018.10.30

FLOW

Figure 1: Illustration of running procedure of display advertising system in Alibaba, in which user behavior data plays important roles.

- check history
- matching model
- ranking model
- CTR ${\rm rank}$
- response -> label

Embedding&MLP paradigm

usual way

- embedding
- transformed into fixed-length vectors in a group-wise manner
- fully connected layers(multilayer perceptron, MLP)

problem

- user interests are diverse
 - embedding vectors of user behaviors into a fixed-length vector
 - large?

CONTRIBUTION

DIN

- the related user interests by soft-searching for relevant parts of historical behaviors
- takes a weighted sum pooling to obtain the representation of user interests

Two novel techniques to help training industrial deep networks

- a mini-batch aware regularizer
- a data adaptive activation function
 - generalizes PReLU by considering the distribution of inputs and shows well performance

TEST ON Alibaba datasets

Embedding

 $[weekday=Friday, gender=Female, visited_cate_ids=\{Bag,Book\}, ad_cate_id=Book]$

Table 1: Statistics of feature sets used in the display advertising system in Alibaba. Features are composed of sparse binary vectors in the group-wise manner.

Category	Feature Group	Dimemsionality	Type	#Nonzero Ids per Instance
User Profile Features	gender	2	one-hot	1
	age_level	~ 10	one-hot	1
		•••		
	visited_goods_ids	~ 10 ⁹	multi-hot	$\sim 10^{3}$
User Behavior	visited_shop_ids	~ 10 ⁷	multi-hot	~ 10 ³
Features	visited_cate_ids	~ 10 ⁴	multi-hot	$\sim 10^{2}$
Ad Features	goods_id	~ 10 ⁷	one-hot	1
	shop_id	$\sim 10^{5}$	one-hot	1
	cate_id	$\sim 10^{4}$	one-hot	1
		•••		
Context Features	pid	~ 10	one-hot	1
	time	~ 10	one-hot	1

Figure 1:

four groups of features are illustrated as:

$$\underbrace{ \begin{bmatrix} 0,0,0,0,1,0,0 \end{bmatrix} }_{\text{weekday=Friday}} \underbrace{ \begin{bmatrix} 0,1 \end{bmatrix} }_{\text{gender=Female visited_cate_ids=\{Bag,Book}\}} \underbrace{ \begin{bmatrix} 0,..,1,...,0 \end{bmatrix} }_{\text{d_cate_id=Book}} \underbrace{ \begin{bmatrix} 0,..,1,...,0 \end{bmatrix} }_{\text{d_cate_id=Book}}$$

Figure 2:

Base Model

Embedding layer

pooling layer and Concat layer

- If t_i is one-hot vector with j-th element $t_i[j] = 1$, the embedded representation of t_i is a single embedding vector $e_i = w_i^i$.
- If t_i is multi-hot vector with $t_i[j] = 1$ for $j \in \{i_1, i_2, ..., i_k\}$, the embedded representation of t_i is a list of embedding vectors: $\{e_{i_1}, e_{i_2}, ... e_{i_k}\} = \{w_{i_1}^i, w_{i_2}^i, ... w_{i_k}^i\}$.

Figure 3:

$$e_i = \text{pooling}(e_{i_1}, e_{i_2}, ... e_{i_k}).$$

Figure 4:

MLP

LOSS

Loss. The objective function used in base model is the negative log-likelihood function defined as:

$$L = -\frac{1}{N} \sum_{(x,y) \in S} (y \log p(x) + (1-y) \log(1-p(x))), \qquad (2)$$

where S is the training set of size N, with x as the input of the network and $y \in \{0, 1\}$ as the label, p(x) is the output of the network after the softmax layer, representing the predicted probability of sample x being clicked.

Figure 5:

- overfitting
- computation and storage

Figure 6:

behaviors related to displayed ad greatly contribute to the click action ${\bf ATTENTION?}$

POOLING

- We have tried LSTM to model user historical behavior data in the sequential manner. But it shows no improvement.
- Different from text which is under the constraint of grammar in NLP task, the sequence of user historical behaviors may contain multiple concurrent interests
- Rapid jumping and sudden ending
 - special structure?->future

Figure 7:

Figure 8:

$$\mathbf{v}_U(A) = f(\mathbf{v}_A, \mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_H) = \sum_{j=1}^H a(\mathbf{e}_j, \mathbf{v}_A) \mathbf{e}_j = \sum_{j=1}^H \mathbf{w}_j \mathbf{e}_j,$$

Figure 9:

TRAINING TECHNIQUES

activation fun

Relu

Figure 10:

PRelu(Leaky Relu)

Figure 11:

DICE(Data Dependent Activation Function) - the division point should be decided by the data

$$y_i = a_i(1-p_i)y_i + p_iy_i$$
 $p_i = rac{1}{1+e^{-rac{y_i-E[y_i]}{\sqrt{Var[y_i]+\epsilon}}}}$

$$E[y_{i}]_{t+1}' = E[y_{i}]_{t}' + \alpha E[y_{i}]_{t+1}$$

$$Var[y_{i}]_{t+1}' = Var[y_{i}]_{t}' + \alpha Var[y_{i}]_{t+1}$$

Figure 12:

$$f(s) = \begin{cases} s & \text{if } s > 0 \\ \alpha s & \text{if } s \le 0. \end{cases} = p(s) \cdot s + (1 - p(s)) \cdot \alpha s$$

$$f(s) = p(s) \cdot s + (1 - p(s)) \cdot \alpha s, \ p(s) = \frac{1}{1 + e^{-\frac{s - E[s]}{\sqrt{Var[s] + \epsilon}}}}$$

Mini-batch Aware Regularization

Inspiration

- L1 L2 Dropout?
- long-tail law
 - many feature ids only appeared a few times
- Drop?
 - threshold(Hyperparameter)

principle

 according to the frequency of feature id adjusting the strength of regularization

• the more frequency the less strength of regularization

• the less frequency the more strength of regularization

$$I_i = \begin{cases} 1, & \exists (x_j, y_j) \in B, s.t. [x_j]_i \neq 0 \\ 0, & \text{other wises} \end{cases}$$

$$L_2(\mathbf{W}) = \|\mathbf{W}\|_2^2 = \sum_{j=1}^K \|\mathbf{w}_j\|_2^2 = \sum_{(\mathbf{x}, \mathbf{u}) \in \mathcal{S}} \sum_{j=1}^K \frac{I(\mathbf{x}_j \neq 0)}{n_j} \|\mathbf{w}_j\|_2^2$$

$$L_2(\mathbf{W}) = \sum_{j=1}^K \sum_{m=1}^B \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{B}_m} \frac{I(\mathbf{x}_j \neq 0)}{n_j} \|\mathbf{w}_j\|_2^2$$

$$\mathbf{w}_{j} \leftarrow \mathbf{w}_{j} - \eta \left[\frac{1}{|\mathcal{B}_{m}|} \sum_{(\mathbf{x}, y) \in \mathcal{B}_{m}} \frac{\partial L(p(\mathbf{x}), y)}{\partial \mathbf{w}_{j}} + \lambda \frac{\alpha_{mj}}{n_{j}} \mathbf{w}_{j} \right]$$

data set

http://jmcauley.ucsd.edu/data/amazon/

https://grouplens.org/datasets/movielens/20m/

Table 2: Statistics of datasets used in this paper.

Dataset	Users	Goods ^a	Categories	Samples
Amazon(Electro).	192,403	63,001	801	1,689,188
MovieLens.	138,493	27,278	21	20,000,263
Alibaba.	60 million	0.6 billion	100,000	2.14 billion

Model	MovieLens.		Amazon(Electro).		
Wiodei	AUC	RelaImpr	AUC	RelaImpr	
LR	0.7263	-1.61%	0.7742	-24.34%	
BaseModel	0.7300	0.00%	0.8624	0.00%	
Wide&Deep	0.7304	0.17%	0.8637	0.36%	
PNN	0.7321	0.91%	0.8679	1.52%	
DeepFM	0.7324	1.04%	0.8683	1.63%	
DIN	0.7337	1.61%	0.8818	5.35 %	
DIN with Dice ^a	0.7348	2.09%	0.8871	6.82%	

^a Other lines except LR use PReLU as activation function.

Regularization	AUC	RelaImpr
Without goods_ids feature and Reg.	0.5940	0.00%
With goods_ids feature without Reg.	0.5959	2.02%
With goods_ids feature and Dropout Reg.	0.5970	3.19%
With goods_ids feature and Filter Reg.	0.5983	4.57%
With goods_ids feature and Difacto Reg.	0.5954	1.49%
With goods_ids feature and MBA. Reg.	0.6031	9.68%

 $RelaImpr = \left(\frac{\text{AUC(measured model)} - 0.5}{\text{AUC(base model)} - 0.5} - 1\right) \times 100\%.$

Model	AUC	RelaImpr
LR	0.5738	- 23.92%
BaseModel ^{a,b}	0.5970	0.00%
Wide&Deep ^{a,b}	0.5977	0.72%
$PNN^{a,b}$	0.5983	1.34%
DeepFM ^{a,b}	0.5993	2.37%
DIN Model ^{a,b}	0.6029	6.08%
DIN with MBA Reg. ^a	0.6060	9.28%
DIN with Dice ^b	0.6044	7.63%
DIN with MBA Reg. and Dice	0.6083	11.65%

visualization

Figure 5: Illustration of adaptive activation in DIN. Behaviors with high relevance to candidate ad get high activation weight.

Figure 13:	

Figure 6: Visualization of embeddings of goods in DIN. Shape of points represents category of goods. Color of points corresponds to CTR prediction value.

Figure 14: