

muRISCV-NN: Efficient Deep-Learning Kernels for RISC-V

<u>Fabian Peddinghaus</u>, Philipp van Kempen, Rafael Stahl, Daniel Müller-Gritschneder

Technical University of Munich
Chair for Electronic Design Automation
1st of September 2022

Deep Learning Workloads

Compression, Anomaly Detection

FC / Deep AutoEncoder

Image Analysis, Object Detection

Convolutional Neural Network (CNN)

Natural Language Processing

Transformer (mobileBert)

Why Deep Learning at the Edge?

BLERP acronym

- Mitigates <u>Bandwidth</u> constraints
- Reduces <u>Latency</u>, which is important for real-time applications
- o Improves **Economics**, by reducing costs of transmitting data and processing it in the cloud
- o Increases Reliability, as on-device models are inherently more reliable than connection to the cloud
- o Improves **Privacy**, when data is processed locally and never transmitted to the cloud

TinyML

- ML at the edge in the mW range
- Only loosely defined term

Edge ML Pipeline

Model

Efficient deep learning kernels for embedded platforms and microcontrollers.

- CMSIS-NN fork
 - Same unit tests
- RISC-V extension
 - **P packed** 0.9.6
 - V vector 1.0 (Zve32x)
- Toolchain
 - o RISC-V GCC
 - o **LLVM 14**

- Integration with
 - TensorFlow Lite Micro
 - \circ TVM
- Simulator support
 - Spike
 - riscvOVPsim
 - o ETISS
 - o (QEMU)

RISC-V V Extension: ReLU Example

Reference implementation in plain C

```
muriscv_nn_status muriscv_nn_relu_q7(q7_t *data, const uint16_t size) {
    for (uint16_t i = 0; i < size; i++) {
        if (data[i] < 0) data[i] = 0;
    }
    return MURISCV_NN_MATH_SUCCESS;
}</pre>
```


Assembly implementation

```
# a0=data, a1=size
for:
    vsetvli t0, a1, e8, m8, ta, ma  # Vectors of 8bit
    vle8.v v0, (a0)  # Load bytes
    vmax.vx v0, v0, zero  # Apply activation
    vse8.v v0, (a0)  # Store bytes
    add a0, a0, t0  # Decrement size
    sub a1, a1, t0  # Bump pointer
    bnez a1, for  # Any more
```

Intrinsics implementation in C

```
for (size_t cnt = size, vl = 0; cnt > 0; cnt -= vl, data += vl) {
    vl = vsetvl_e8m8(cnt);
    vint8m8_t val = vle8_v_i8m8(data, vl);
    val = vmax_vx_i8m8(val, 0, vl);
    vse8_v_i8m8(data, val, vl);
}
```


muRISCV-NN Results

- Models: TinyMLPerf full int8 quantized (https://github.com/mlcommons/tiny)
 - "toycar": Audio anomaly detection (Deep AutoEncoder)
 - "resnet": ImageNet detector (ResNet)
 - "aww": Audio keyword spotting (DS-CNN)
 - "vww": Visual person detection (MobileNet)
- Using TensorFlow Lite Micro
- Compiled with GCC (-Os) for RV32GC(P/V)
- Running on Spike ISS

muRISCV-NN Results: ResNet, TFLM, GCC -Os, Spike

Kernels	Extension	VLEN	Run time [x10 ⁶ Instructions]
Default	-	-	688
muRISCV-NN	-	-	64.8 ~10x
muRISCV-NN	P-Ext.	-	62.5
muRISCV-NN	V-Ext.	64	37.1
muRISCV-NN	V-Ext.	128	20.3 ~10x
muRISCV-NN	V-Ext.	256	11.8
muRISCV-NN	V-Ext.	512	7.81
muRISCV-NN	V-Ext.	1024	5.98

muRISCV-NN Results: Other TinyMLPerf Models

In Million Instructions

Model	TFLM	muRISCV-NN	+P-Ext.	+V-Ext. 64	+V-Ext. 1024
toycar	3.43	1.92	1.12	0.728	0.536
aww	154	16.6	13.9	8.86	2.11
ResNet	688	64.8	62.5	37.1	5.98
VWW	434	49.7	41.5	26.8	8.73

muRISCV-NN Results: Compared to ARM CMSIS-NN

In Million Instructions

Model	TFLM	CMSIS-NN	+DSP	+Helium
toycar	0.574	0.241	0.086	0.045
aww	8.44	3.64	1.04	0.333
ResNet	223	125	40.6	14.8
vww	207	109	32.8	10.2

Comparable Comparable to P-Ext. to V-Ext.

on Corstone-300 simulator

RISC-V Vector Cores

Academic

- **Hwacha** UC Berkeley
- Ara ETH Zurich
- Vitruvius+ BSC
- RISC-V² Univ. of Thrace
- ...

Academic Embedded **Zve32x**

- 2021 Vicuna TU Wien
- 2022 **Spatz** ETH Zurich
- ..

Commercial

- OpenC906 / OpenC910 Alibaba
- P270 / X280 SiFive
- NX27V Andes
- NS-72 / DR1000C NSITEXE
- ...

Future Work

- Lots of optimization potential inside kernels
- Move kernels from application V extension to embedded Zve32x extension
- Support **RTL simulation** on academic cores
- Support hardware targets (as soon as they come to market)

https://github.com/tum-ei-eda/muriscv-nn