

TRANSIT FIÉLD BOOK

No. 8152-00

This Book is manufactured of a High Grade 50% Rag Ledger Paper having a Water Resistant Surface, and is sewed with Nylon Water-proof Thread.

INDEX

	**			
	 		 -	
 -	 			
	 	· · · · · · · · · · · · · · · · · · ·		
				-
-		·	 	

_			THICKNESS	BURNETED SHOULDON HE COURT HER THE STATE OF			
FOCENE		ABSAROKA VOLCANIC SUPERGROUP	6000,	MAINLY AMDESITIC. BASALTIC. AND DACITIC VOLCANICLASTICS (INCLUDING BRECCIAS, CONGLOMERATES, SANOSTONES, SILTSTONES, AND TUFFS) INTERBEDDED WITH LAVA FLOWS AND VENT BRECCIAS: PETHIFIED TREES AND LEAF FOSSILS COMMON.			
[0]		MITTINGOD EW 5		VARIEGATEO UNITS OF GRAY, REO AND PURPLE HUOSTONES WITH OCCASSIONAL THIN SAROSTONES. MANHALIAN BONES COMMON, PLART MEMAINS PRESENT IN TABULAR AND LENTICULAR CARBONACEOUS SHALES.			
PALEOCENE		FORT UNION FM	3,000'- 12,000	IRTERBEDDED YELLOWISH. LERTICULAR SAROSTOMES AND YELLOW-GRAY HUDSTONES; LACUSTRINE BELFRY MEMBER NEAR Middle: Coal-Bearing member in upper part; syntectomic conglomerates and breccias at top of section along Nountain Front; fossil leaves common, bores rare.			
		LANCE FII	750-1000'	THICK AND LATERALLY EXTENSIVE YELLOW SANDSTONES INTERBEDOED WITH DRAB, GRAY NUOSTONES: OCCASSIONAL DINOSAUR BORES.			
		MEETEETSE FM	1200	BANGEO GRAY HUOSTONES WITH INTERBEODED SANDSTONES AND OCCASIONAL THIN LIGHTES. NUOSTONES ARE ROOTED AND CONTAIN PLANTS. FRESHWATER MOLLUSCS, AND OINOSAUR BONES; A SANDSTONE UNIT MEAR MIDDLE CONTAINS A HARINE TRACE FOSSIL ASSEMBLAGE.			
		JUDITH RIVER FM	500-900	LIGHT-COLORED YELLOWISH SANDSTONES INTERBEDOED WITH YELLOWISH-GRAY SANDY SHALES AND SILTSTONES: FEM BEDS OF DARK GRAY CARBONACEOUS SHALES: OCCASIONAL THIR COAL BEDS: COMMON DINOSAUR BONES AND OCCASSIONAL FOSSIL PLANTS			
		CLAGGETT FM 12		BROWN TO GRAY SHALE WITH STRINGER SAIDS REAR TOP, GRADING UPHARD HITO MASSIVE RUSTY SAHOSTONE. COMMONLY DARN MEAR BOTTOM AND LIGHTER NEAR TOP - PARKMAN MEMBER: THICN BENTONITE BELOM SHALE, MEAR BASE OF FORMATION.			
0 0 \$		EAGLE FM 200		INTERBEDDED RIDGE-FORMING SANDSTONES WITH INTERBEDDED SMALES: COAL BETWEEN LOWER SANDS; SANDSTONES NOT CONTINUOUS: MASSIVE, RUSTY, PITTED SANDSTONE AT BASE - VIRGELLE MEMBER.			
ACE		TELEGRAPH CREEK FM	150,-400	GREENISH-GRAY SHALE, SOME GYPSUM; SALT AND PEPPER SANOSTONE FORMS SMOULDER-LIKE MOUND IN UPPER PART: TWO PROMINENT RUSTY SANDSTONE RIDGE-FORMERS AT BASE, VERY FOSSILIFEROUS - ELK BASIN SANOSTONE MEMBER,			
C P. E. T		CARLILE - CODY NIOBRARA SH SH	1000~1600	VERY THICK SHALE, GRAY ON FRESH SURFACE, MEATHERS ALMOST WHITE: VERY LARGE CONCRETIONS MEAR TOP AS WELL AS LOWER IN FORMATION: LARGE AMMONITES FOUND IN CERTAIN LOCALITIES - EQUAL TO PART OR ALL OF COUR SHALE,			
		FROMITIER FM 300-		MASSIVE GRAY, RESISTANT SANOSTOMES INTERCALATED WITH THINLY-BEDDED BROWN SANDY SHALE AND BLACK SHALE: LARGE THREE-FOOT CONCRETIONS NEAR TOP: FEW BEDS OF CHERT-PEBBLE CONGLOMERATE,			
		MOWRY 5H 350-500'		BROWNISH-GRAY, MARO. RESISTANT SANOSTONE AND SOME BLACK SHALE; NUMEROUS FISH SCALES UP TO ONE AND ONE-HALF INCHES IN LOWER 250 FEET; SIDER'TE CONCRETIONS COMMON 250 TO 300 FEET FROM TOP IN BLACK SHALES.			
		THERMOPOLIS SH S00-600		DARK GRAY TO BLACK, THINLY-BEDDED, SOFT BHALES, NON-RESISTANT, INTERBEDDED WITH SEVERAL BENTONITE BEDS: JANUSTONE WHIT BETWEEN THE AND THREE HUMBRED FEST ABOVE BISE.			
~		CLOVERLY FM 150-150* MORRISON FM 200-150* SUNDANCE FM 150-600*		BASAL BLACK CHERT CONGLOMERATES OR PEBBLY. YELLOMISH SANDSTONES: RECOISH SHALES INTERCALATED WITH AMDESITIC AGGIOMERATES AND YELLOM SANDSTONE IN MIDDLE PORTION: GRAY-BROWN SANDSTONE AND SANDY SHALES TOWARD TOP. VARIECATED REDDISH, RRECHISH, PURPLISH, AND GRAY CLAYS AND SHALES INTERBEDON WITH LIGHT YELLOWISH-GRAY			
JURASSIC				BASAL GREEN-BROWN & RED CLAY, SHALES; THIN BEOS OF GYPSUM AND LS: HIDDLE GRAY CLAYS & SANDSTONES WEATHERING			
~ ~ ~		GYPSUM SPRINGS FM	40-200'	GAREN-BROWN: UPPER RESISTANT SS. GLAUCONITICS COMMON BELEMNITES, CRINDID STEMS, AND THE MOLLUSCS, ENVPHEA THIN-BEDDED GRAY LIMESTONES AND MEDDISH SHALES: THINLY TO MASSIVELY BEDDED GYPSUM TOWARD TOP, BRIGHT TO DARN RED SHALES. SILTSTONES, AND SANDSTONES: MUCH GYPSUM SCATTERED IN BASAL TWENTY FEET.			
TRIASS.		CHUGNATER FM	180-600'				
PFRM	2. 46	PARK CITY FM	10-70'	POROUS, THIN-BEODED, GRAY LINESTONES: FEW DOLOMITE BEOS AND THIN CALCAREOUS SANOSTONES (*PHOSPHORIA FM)			
FE	2022	TENSLEEP SS	40-2NO'	GRAY TO TAN, MASSIVE, CROSS-BECCEC, MECIUM TO COARSE SANCSTONES: RESISTANT TO EROSION: UNFOSSILIFEROUS.			
		AMSDEN FM	80-140'	RED SHALES AND SILTSTONES WITH INTERCALATED GRAY LIMESTONE AND BOLONITE: LOCALLY GRAY, CHERTY SANDSTONE.			
MISSISSIPPIAN		MADISON LS	700-800'	CHIEPLY MASSIVE, LIGHT GRAY TO TAN LIMESTOMES, CDARSELY CRYSTALLINE TO FINE-GRAINED: SOME DOLONITE AND LOCAL CHERTY ZONES: A PEW THINLY-BEDOED LÍMESTOMES; A VARIETY OF MARINE INVERTEBNATE FOSSILS FAIRLY COMMON,			
		THREE FORKS FM	70-140'	FLATY, LIGHT GRAY AND YELLOW TO BROWN AND REDDISH LIMESTONE AND DOLOMITE: THICKER CALCAREOUS SANOSTONE AT BASE,			
DEVORTAN		JEFFERSON LS 220-27		ALTERNATING THINLY-TO-THICKLY BEDDED LIGHT GRAY TO BROWN LIMESTONES AND DOLOMITES WITH FETID DOOR: FEW FINE BRECCIA BEDS: CALCARGOUS BANDSTONE AT BASE; BRACKIOPODS (ATRYPAS, ETC.) PAIRLY COMMON.			
		BEARTOOTH BUTTE FM 8-150'		LOCAL LENSES OF THINLY-BEODED RED AND BUFF CALCAREOUS SHALES AND THICKER BEOS OF YELLOWISH-MEATHERING, GRAY			
1920			150-400'	LITE JOHE AND INTRACORDATIONAL LITESTONE CONSIDERATE: VERY CORRES BASE AND CONSIDERATE: FOSSIL FISHES AND PLANTS. VELLOWISH OR GRAY SANDY DOLOWITE. THE FEET, OVERLAIN BY HASSIVE, CLIFF-FORMIN GENERAL ATTHEMEND DOLOMITE MOTTLES WITH SERVY CRO'! I THEN LESS RESISTANT, THIN BEDDED. FINE-GRAINED LIMESTONE WITH RESISTANT DOLOMITE IN HIDDLE SIXTY FEET THIS UNIT: TOP ELGENT PEPT SAME RASSIVE, MOTTLES DOLOMITE REAR BOTTOM; FOSSILS MARE.			
A H		SHOWY RANGE FM 250-300'		INTERCALATED GREENISH-GRAY BHALES AND INTRAFORMATIONAL CONGLOMENATE; LATTER CONTAIRS DISTINCT SUB-ANGULAR. FLAT. GRAY PEBBLES; UPPER PORTY TO FIFTY PEET YELLOW TO GREENISH SHALE, BRAY TO BUFF DOLDMITE AND INTRAFORMATIONAL CONDLOMERATE (= GROVE CREEK MEMBER); FEBBLES MELL-ROUNDED, GRAY MITH GREEN COATING; STAR-SHAPED FOSSILS IN MATRIX.			
ANBRI		MAURICE FM , SO-150'		CLIFF-FORMING, THICKLY BEDDED, CRYSTALLINE LIMESTORE, LIGHT GRAY TO BUFF WITH SOME MOTTLING; OCCASIONALLY OOLITIC; TRILOBITE REMAINS COMMON IN COQUINA ABOUT THIRTY FEET ABOVE BASE AND IN TOPMOST BED.			
		PARK SH 350-475'		GREENISH TO PURPLE BHALE INTERBEODED MITH OME INCH BEDS AND LENSES OF GRAY LINESTONE! TOP FIFTY FEET CONTAINS DISTINCTIVE EDGENISE CONGLOMERATES MITH CLASTS AT BLL ANGLES TO BEODING.			
۰		MEAGHER LS	40-100'	THIM-BEDDED GRAY LIMESTONE, USUALLY TRREGULARLY WAVY-BEDDED: HIDDLE NEMBER, IF PRESENT, MARKLY SOFT, GREER SHALES.			
	7555	WOLSEY SH	\$0-200'	GREEN. GRAY, PURPLE, PAPERY SHALES GRADING UP TO GREEN. BROWN, SANOY SHALES & SILTSTONES: TRILOBITES FAIRLY COMMON!			
	100	FLATHEAD SS	0-60'	LIGHT TAN TO REDDISH TO WHITE, MEDIUM SANOSTONE, DUARTZITE, LOCALLY COL; SANOSTONE COARSE & ARNOSIC TOMARD BASE.			
PRE-C		"BASEMENT"		COMPLEX OF GRANITIC CHEISSES AND DARK SCHISTS, INTRUDED BY MAFIC DIKES, ETC.			
			MOTE .	HE ATIVE THICKNEEDER PROPORTIONAL (APPROVINGTE V TO SCALE) MITTURE SALE AND			

COMPILED BY EXLING BORP H. B. EAUTPHAN E. JOHNSON

NOTE:

Belleybutton Butice Centre Sec. 14, tg5, B24E CARBON Co., MT. - Lower Meetectse Glyptostrobus eurganeus Parataxodium PlatanoidS Cercidiphyllum ellipticum mystery pinnite, wide obluny lonf. Cone somles PISTIA CUrrugator frags Aspelleum Henreryliil drink PAREN just above CONTACT. Midst. LEAGUEST STEVETURETESS - CArb modst leas layer CAN be muds > Learned

Benjuritie CAVA JEALLEY +nf Ave. 942 VITIS OXXIKI 942 C

943		6/30,	94	
				. —
				-
				-
-				-

944 S. ELK-B 7/1/94 11 Eagle FM, 5M above C SAND HM Delow JASON HICKS 441 57 69 N WORD PS. NW, NE, Sec 6, 75 PN, A GOW PARK GUN BUNTUNITE THAT GAL EIMA DATE ~ 10 M below top of D. and base of Claygett, PHANT SITC. Eagle level 87 m in JFH EIK BASIN Sect D. FILER, UNA SMITH.

Plans occur in a light grey to but f many Dewanth a IT, grey V/g Some 00 75 m 0.3 m 17 gray 0,5 m some plants DECUT IN D,3 m mail interval between 55 & Silerire cords, Some toward top of the 127 Ce Val helino 240 const. Parciff Xod Vin dom. CNASSIDENTIC VINE 15Ph Elatedes Crate or possivon at CClastrophyllum FRW MARC additional TAXA

944 (CONZ) 1 Very low diservery. Pa UNIT PART Of a Terre 17 minl Transgyresive pulse - marked by COALITICATION OF 丗 depositional red. Unit is a yellowish light transh grey 51. mayly 1×+ mudst. Mostly massive on 11 Ma Weakly Inminution 7:11 Kward top PARATOROLLUM IS IN TAXORIVIA Q CUERROSON CRYPTOMININ 11 4 Crassidenticulum of has cuticle 1 PATATOX. becomes more about

7/2/94 Census 1 Parataxologo 14+ HH- HH+ HH HH 1117 PH 1 1 111 HI HI HAT ALT PHIT HE I'M HIF HA FIFTH HAT HAT HAT THE THE 5 mintericene > pole HH-HH-1111 6 Indet dicot w perc. vois 7 Indet Musor Ivs. 1 8 Entire 9 ENTIRE EMERGINATE III in so aff dard in sold one 4 11 Tradet obtuse hase evt. 4.111 Il LARGE DECAMOR MAJADINAL

0.6 55, Vfg 5/8/ X-hedded W/ Verticaling -0.6 M-547/2 MURST W/P/ANTS 0,25m UNIT becomes a 5 45/2 Mudst. at BAGE O.Sm. CORI > SS is dowe 17/29 at pase O.H m of COAT INTERP of the fossil IAYER SISTAL SPLAY

Census en reusion 2 1PARATAYON : +++ +11/ 1111 0 700 0 + "E" SANH 5,5 to Base of Joseph Arth 5,7 to Vason & Hocks 14 E1313+ 62 + 2.6 to Bertonite at STEAK EBB 94-9 Bentanite Sample Gives 81,2 Me date

945 7/2/94 Frale FM SAME ST/47 between CYDSS NF, NW, NW, Sec 31, ISEN 19 99W, PARK CO. WYD FIK BASIN 71/2 QUAD 5,54.15 1T TWO 10415 17 prsc 1 xxxxx 55 745 + 345h a 47 1/2 m high-r Palms where B Alevel Credweria Platanus guiella emaz Source of or directs These are CHANCE MARGIN 12/1/2

16 = LOC 8731 7/6/94 Meeteetse domp NW, NW, NE Sec 10, T 198N, R100 W PARK CO., WYO. 74bT ZOOVES C. Of Drays 946 a P17 114' enso of Thuites cart Transfer Con fas RICUS FRADERIT Fod schrangeters 946 6 Porte Joha Dertains Powel Claystone language Anned goog Marcantial Equiserum W JIII Mc Eldery, Fleur Tiver, ANA, CARIZ VAN BOSKICK, DUCIAN FULLER, JORY TWIST

3Mahore 946c VITIS STRIKI TAXOGIVED CONFER Cerchiphylloid C' ANEMIA FREMORTIADElow 180

7/6/94 09466

Loc 946 Meetee758 Dump = Fleur Tiver SITE FT 941 946C Busal Equisetum F-14 Saplich Possible palm in Indermon Endet dicot

INCREMENT SEC. STAMTS MIN LIMW ITE mods? 1.20 Brown Sh. 0.7 Fossil plants in Averturia Base of Lais The TAST CHANNEL STAIR & 15

53 m. It grey panimured

55 IN a CANNEL CARB FISS/e Sh y interpedded IT gray SS. That Thickens INTO Chaynel axis Chrinel is a 4 Story Sharnel and its axis LT grex Vfg /Amm. fissle carb sh ut cim. Ferry 55 representing The bhorizen of a stal soll Vfg 55. proturbated

0,45 below 11 becomes souty NUMEROUS RUSTO -0.15 m. - brown Soiley look, wy Bouted. mudst we enter pent w top 0 m. 2.2m. Benjon Te Plant 10c, 9460 in basal 0.08 cm. 0.52 2+ gre) vtg Immated end of measured section

7/8/74 Stop GH7 VISION QUEST SECTION

sunverasite GUNNERA EITY at JFH per 20 55 00 17. ATUNIT 127 of JFH sec GUNNORa MONOCOT Cercidinhella Norder Exioldia Probably in NW, NW, NW, See 3e T 49N B 100 W 1 W. of Town of mestectie, Pink Co. Wy But This is a largely UNSURVEYED township LONG 1089 34 36" W, LAT 44010 1 57"N Also w/ Filexires Know / Towir (1996) UNIT appears to be a distal splay 55 above a Thin se lignite, followed by a carb. shalt. GUNNERA BEARING heds extend some 20 m. To CAST WOND FACE of OUTEMP. (1996 ohs.)

949 VISION QUEST VALLEY BASE OF UNIT 140 NU SFH Secr Pond Seds. TAN IMMINATED mulst w dimonite CNVJIJ. Ficus planicostata minselys Quereuxix

9411 Scotts MRACIE LAYER SAlpich Wood. Balm. Bulfdrdia JFH UNIT 255 under power Ino BeNTONITE

7/10/94 Firms Ela71de LOG. W 50077

9412 Green Bug arra
LATE? PATEOCENE.~

140 m below wo

fund in basal willwood. NW, NE SOC 19, + 46N, K 89W WASh 414 Scott Wing Loc 943 Co 1490 Castle GAIDENS 7/2 MENE, NE, Ser 19 THON, R89W WASHAKIE CO, WYO HONEYCOMBS WILDENESS STURY SLW Protophyllum or
9412 (ereilightillum (raie!) LAIGE ENTIFE EUCKMPT) Plat of BAYNOI dsin Amplelogses acted Crevasse Splay or distate Sp /2 LOC W SCOTT WING.

9413 Sec 18, 416M, 858 W Center, IN. LITTLE COTTONWOOD Crock SOUTH SIDE OF BUTTE FLAT bodded. SANDSTONE W. BASICALLY SAME FlorA as at 9412 FICUS 10505 11119ceous +1 FUERMANO / PURPLES FUS39 BOTH SLW 9412 + 9413 an ~ 40 m Tillaceous will ward Control

9414 approx ~ 30 m belin cintral

Center line of N/407 Sec 19, ETC. 4860 CONTINI PIAT RAYNOLDSIL Betuluid (don, in, NT) FU 503 Thujites interruptus
FIOUS PIANICUSIATA FU 505 Cyclocarxa LAURACEAE FU 539 Passible Prerocareu

LOC. 9412 SLW 943 NA - PIAT PAYNUIDS III

PINTO JA HILLUM

PINTO TELY COMPOUND

PIATANOS E V & PINTO

LEAF segonia 503 TIllia Georg 180 Cercidin hyllum Jen X lasella Populus genetrix

GAleurites

2/2 Max G Collectin

W/ Crew of 6 5

LOC 940 7/13/94
POND IN UPPER FORT
UNION FM. \$ Mudstone BASN 4 INChes a SOUTY ported SILTSTONE. HINChes dense lest MAT IN WAXX MATERIAL 2' INTerhelded grev mulst 5/11/5 of INTER BALLED 6' Soil & limonite on bedding planes SITST w fragmentary leaves. Betula ENTIRE MARY W/ Alnus? Peren dori Fern? at very base Corcidi Center 5 line Sec 18, THIN, A 89 W, WASHIKIE C.

7/14/94 Windself Drove D Wood W MONTANA DO CO VAN BOSKIAKS SITES SULITA DIVER 11/1

7115 194 Visited Three Lows IN The Judith muer Fine WITH Craig DVB UB 9403 Upper SudiTh Biver SS. SE, SE, Sec 3, 7 22N, A 18E Fergus Co. MT -LOW DIVERSITY SCRAPPY MATCRIAL. IN a fg. 55. VITS STANDONII PISTIA EINTIDES. VB 9404 LOW DIVERSITY SCRAPPU material in a fig. 55. SE, SEC. 1, 7 22N, B. 17 E Fergus Co MT. VITS STANDNIL UB 9405 holernoe Clivensity flora IN a It, grey SITS T. 10 55 Flatides PlATANIA Pipernens of Sararma

CD3 CONIFER.

CF. Crassiden Ticulum sp.

Ex Trocho dendroid

NOT Trans ported f. 901 N

7/11/94 2JH 9413 Traverse To The prominent POINT IN SE, SEC 31, T 23 N, R 18E, Flyus Co., MT Judith BIVER FM. Base is a ss about 2750' CINTUUR 1 bt 10-15 m. ThICK obive This 55 is CArbonaccous layer prob representing The backbarrier march Ren a sequence of modst, sitst, Thin SS, W Changes rooted inteptions, Thin lignites foor straps of plants Top of J. a supposedly MARKED bx oxster bed This occrss 500' Thick

7/16/14 J.B. Quite different EIK MI rum 175 PACKMON" is a fer That m. Jed2 4 55 ON Shallower 6_ Cinquer bear has no abvious atthough some some 1/1 some small Also No Ardmore Bentanite Classet here.
by a BACULITS (determin) 1 The Zong MAN FAILE TOP IS a WhITE S forms prominents legge 111

9414
BACULITE 50' below
TOP of Clayset

9/17/941
Drose To Bed Lidge
Through Vingelle, Montany 9/18/94

FIRST dax of BASIN

From Marie String for w/

Craig Van Boskiak.

115, Tel again NI Craig Obtained seeds of Nordenskilla

Loc. 9415 Tersone BASE 130605 13/11/08 robited

POSTCARD

MESSAGE

ADDRESS

MEETEETSE ●

NANCY STIMSON

INTERPRETIVE SPECIALIST
Worland District Office

101 S. 23rd St. P.O. Box 119 Worland, WY 82401

Office: (307) 347-9871 FTS: (307) 321-5126

5100 mailed

INDEX OF CURVE AND REDUCTION TABLES

Table	I-SLOPE	STAKE
-------	---------	-------

Table II-STADIA CORRECTION AND HORIZONTAL DISTANCES

Table III-TRIGONOMETRIC FORMULAE

Table IV-NATURAL TRIGONOMETRICAL FUNCTIONS

CURVE FORMULAE

Table V-TANGENTS AND EXTERNALS TO A 1° CURVE

USEFUL RELATIONS

Table VI-INCHES TO DECIMALS OF A FOOT

Table VII-MINUTES IN DECIMALS OF A DEGREE

Table VIII-MIDDLE ORDINATES OF RAILS

Table IX-SHORT RADIUS CURVES

Table X-RODS IN FEET, 10THS AND 100THS OF FEET

Table XI-LINKS IN FEET, 10THS AND 100THS OF FEET

DISTANCES FROM SIDE STAKES FOR CROSS-SECTIONING ROADWAY OF ANY WIDTH. SIDE SLOPES 11/2 TO 1. SIDE STAKE STAKE STAKE STAKE STAKE STAKE 24.3

10°

11¹ 12¹ 12 13

# E	Dis	tance	out	fro	yn Si	de o	r Sh	oulde	r St	ake.	==
Ting III	0	.1	.2	.3	.4	.5	.6	7.	.8	.9	Cut
0	0.00	0 15	0.80	0.45	0.60	0.75	0.90	1.05	1.20	1.35	0
1	1 50	1 65	1 60	1.95	2.10	2.25	2.40	2.55	2.70	2.85	1
2	3.00	3.15	8,80	3 45	3,60	3 75	3.90	4.05	4.20	4 35	2
3	4.50	4 65	4.80	4.95	5 10	5 25	5 40	5.55	5.70	5.85	3
4	6.00	6 15	6.30	6.45	6.60	6 75	6.90	7.05	7.20	7.35	4
5	9 00	7.65	7.60	7.95	8 10	8.25	8.40	8.55	8.70	8.85	5
7	10.50	9 15 10 65	9,30 10 80	9.45	9.60	9.75	9.90	10.05	10.20	10 35	6
8	12.00	12 15	12.80	10.95 12.45	11.10 12 60	11.25 12.75	11.40 12.90	11 55	11 70	11.85	7 8
9	13 50	13 65	18 80	13 95	14.10	14.25	14.40	13 05	13.20	13.35	9
10	15 00	15 15	15 80	15 45	15.60	15.75	15.90	14 55 16.05	14.70 16.20	14.85 16 35	10
ii	16 50	16 65	16 80	16.95	17 10	17.25	17.40	17.55	17.70	17.85	ii
12	18 00	18 15	18.30	18 45	18 60	18 75	18.90	19.05	19.20	19 85	12
13	19 50	19 65	19.60	19.95	20.10	20.25	20 40	20.55	20.70	20.85	l iš
14	21.00	21 15	21.30	21.45	21 50	21.75	21.90	22 05	22 20	22 85	14
15	22 50	22 65	22 80	22 95	23.10	23.25	23.40	23.55	23.70	23.85	15
16	24.00	24 15	24 30	24 45	24 60	24.75	24 90	25 05	25.20	25.35	16
17	25,50	25 65	25.80	25 95	26.10	26 25	28 40	26.55	26.70	26.85	17
18	27.00	27 15	27.30	27 45	27.60	27.75	27.90	28.05	28 20	28.35	18
19	28 50	28 65	28 80	28.95	29.10	29.25	29.40	29.55	29.70	29.85	19
20	30 00	30 15	30.30	30.45	30.60	30.75	30.90	31.05	31.20	31.85	20
21	31 50	31 65	31.80	31.95	32 10	32 25	32.40	32.55	32 70	82 85	21
22 23	33 00	33 15	33 30	33 45	33.60	83 75	33.90	34.05	34.20	34.35	22
23	34 50 86 00	34 65	34.60	34.95	35.10	85 25	35 40	35.55	35.70	35 85	23
25	87.50	86 15 37.65	36.30	36 45	36.60	36,75	36.90	37,05	37_20	37.35	24
28	39 00	39 15	37 80 39 80	37 95 39 45	38.10	38.25	38.40	38 55	38.70	38.85	25
27	40 50	40 65	40 80	40.95	39 60	39.75	39.90	40.05	40.20	40.35	26
28	42 00	42 15	42 30	42.45	41.10	41.25 42.75	41 40	41.55	41.70	41.85	27
29	43 50	43 65	43.80	43 95	44.10	44 25	42.90 44.40	43.05	43.20	48.35	28
30	45 00	45 15	45.30	45 45	45.60	45.75	45.90	44.55	14.70	44 85	29
31	48.50	46.65	46.80	46 95	47.10	47.25	47.40	48.05	46 20 47.70	46.35	80 31
32	48 00	48.15	48.30	48 45	48.60	48 75	48.90	49.05	49 20	47.85 49.35	32
33	49.50	49 65	49.80	49.95	50.10	50.25	50.40	50.55	50.70	50.85	33
34	51 00	51.15	51.30	51,45	51.60	51.75	51.90	52.05	52,20	52.85	34
35	52 50	52.65	52.60	52,95	53.10	53.25	53.40	53.55	53.70	53.85	35
36	54 00	54.15	54 30	54 45	54.60	54.75	54.90	55.05	55.20	55.35	36
37	55 50	55 65	55.80	55.95	56.10	56.25	56.40	56.55	56.70	56.85	37
38	57.00	57.15	57.30	57 45	57.60	57 75	57.90	58.05	58.20	58 35	38
39	58 50	58.65	58 80	58.95	59,10	59 25	59.40	59 55	59,70	59.85	39
40	60 00	60 15	60 30	60 45	60 60		60 90			61.35	

TABLE II. STADIA CORRECTION AND HORIZONTAL DISTANCES

CTADIA	REDUCTIONS FOR READING 10	M.
STADIA	REDUCTIONS FOR BEADING R	ж.

Verticol Angle	col Angle Horizontal Differ Correction in Elev		Verticol Angle	Horizontal Correction	Difference in Elevotion
2°-00′	0.1	3.5	18°-30′	10.1	30.1
3°-00′			19°–00′	10.6	30.8
4°-00′	0.5	7.0	19°-30′	11.2	31.5
5°-00'	0.8	8.7	20°00′	11.7	32.1
6°-00′	1.1	10.4	· 20°-30′	12.3	32.8
7°—00′	1.5	12.1	21°00′	12.8	33.5
8°-00′	00 1.0		21°30′	13.4	34.1
9°-00′			22°-00′	14.0	34.7
10°-00′			22°-30′	14.7	35.4
10°-30′	3.3	17.9	23°-00′	15.3	36.0
11°-00′	3.6	18.7	23°—30′	15.9	36.6
11°-30′	4.0	19.5	24°-00′	16.5	37.2
12°00′	4.3	20.3	24°-30′	17.2	37.7
12°-30′	4.7	21.1	25°-00′	17.9	38.3
13°-00′	5.1	21.9	25°—30′	18.6	39.0
13°-30′	5.5	22.7	26°-00′	19.2	39.4
14°-00′	5.9	23.4	26°-30′	19.9	39.9
14°-30′	6.3	24.2	27°-00′	20.6	40.5
15°-00′	6.7	25.0	27°-30′	21.3	41.0
15°-30′	7.2	25.8	28°-00′	22.0	42.0
16°-00′	7.6	26.5	28°-30′	22.8	41.9
16°-30′	8.1	27.2	29°-00′	23.5	42.4
17°-00′			29°-30′	24.3	42.9
17°-30′	9.0	28.7	30°-00′	25.0	43.3
18°-00′	9.5	29.4			
	 		Loot	to Chaine	1

Chains to	Feet
1	66 132 198 264 330 396
7 8 9 10	462 528 594 660

			_1
Feet	to	Chains	
100		1.515	
200		3.030	
300		4.545	
400		6.060	
500		7.575	
600		9.090	
700		10.606	
800		12.121	
900		13.636	
1,000		15.151	
			-

1100

(3)

1,07

IW

103 £ 25

4.24

Z Ja 1.00

D 93

I 35

0 33

REDUCTION TO HORIZONTAL

Horizontal distance

Horizontal distance = Slope distance multiplied by the cosine of the vertical angle. Thus: slope distance = 319.4 ft. Vert. angle = 55 10°. From Tahle, 1V. cos 5° 10° = 9959. Horizontal distance = 319.4 · 9959 = 318.09 ft. Horizontal distance also = Slope distance minus stope distance times (1 - cosine of vertical angle). With the same figures as in the preceding example, the following result is obtained. Cosine 5° 10° = .9959. 1 - .9959 = .0041. 318.4 × 0.41 = 1.31 × 1.94 + 1.31 = 318.09 ft

319.4×.0041=1.31. 519.4-1.31=318.09 ft.

When the rise is known, the horizontal distance is approximately:—the slope distance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft. slope distance=302.6 ft. Horizontal distance= $302.6 - \frac{14 \times 14}{2 \times 200.5} = 302.6 - 0.32 = 302.28$ ft. 2×302.6

TABLE IV. NATURAL TRIGONOMETRICAL FUNCTIONS

A1-	Ci-	7		Casas	C=4=	Coulo			·-			,			
Angle	Sin	Ton.	Şec.	Cosec.	Cotg.	Cosin.		Angle	Sin.	Tan.	Sec.	Cosec.	Cotg.	Cosin.	
۰,								0 /							
0	0	0	1.	8	∞	1.	90	8	.1392	.1405	1.0098	7.185	7.115	.99027	82
10	.0029	.0029			343.8	1.	50	10	.1421	.1435	1.0102	7.040		.98986	50
20	.0058	.0058		171.9	171.9	.99998	40		.1449	.1465	1.0107		6.827	.98944	40
30	.0087	.0087	1 0001	114.6 85.94	114.6 85.94	99996	30 20		.1478	.1495	1.0111		6.691	.98902	30
40 50	.0116	.0116	1.0001	68.76		.99989	10				1.0120		6.561	.98858 .98814	20 10
30	.0143	.0143	1.0001	0010	00.75	.,,,,,,,,	''	"	. 1330	.1334	1.0120	0312	0.455	.70014	10
1	.0175	.0175	1.0002	57.30	57.29	.99985	89	9	.1564	1584	1.0125	6.394	6.314	.98769	81
10	.0204	.0204	1.0002	49.11	49.10	99979	50	10	.1593		1.0129	6.277	6.197	98723	50
20	.0233	.0233	1.0003	42.98	42.96	.99973	40	20	.1622	.1644	1.0134	6.166	6.084	.98676	40
30	.0262	.0262	1.0003	38.20	38.19	.99966	30	30			1.0139	6.059	5.976	.98629	30
40	.0291	.0291	1.0004	34.38	34 37	.99958	20	40			1.0144		5.871	.98580	20
50	.0320	.0320	1.0005	31.26	31.24	.99.949	10	50	.1708	.1733	1.0149	5.855	5.769	.98531	10
2	.0349	.0349	1.0006	28.65	28.64	.99939	88	10	.1736	1763	1.0154	5.759	5.671	.98481	80
10	.0378		1.0007	26.03		.99929	50	10	.1765		1.0160		5.576	.98430	50
20	.0407	.0407	1.0008	24.56			40		.1794		1.0165		5.485	.98378	40
30	.0436	.0437	1.0010	22.93	22.90		36	30	.1822	.1853	1.0170		5.396	.98325	30
40	.0465	.0466	1.0011	21.49	21.47	.99892	20	40	.1851	.1883	1.0176	5.403	5.309	.98272	20
50	.0494	.0495	1.0012	20.23	20.21	.99878	10	50	.1880	.1914	1.0181	5.320	5.226	.98218	10
3	.0523	.0524	1.0014	19.11	19.08	.,	87	111	.1908	1944	1.0187	5.241		.981 6 3	79 50
10	.0552	.0553		18.10	18.07	.99847	50 40		.1937	1974	1.0193		5.066 4.989	.98050	40
20 30	.0581	.0582		17.20 16.38	17,17	.99831	30		.1994		1.0205		4.915	.97992	30
40		.0641	1.0019	15.64	15.60	.99795	20	40	.2022		1.0203		4.843	.97934	20
50		.0670		14.96	14.92	99776	10	50	.2051		1.0217	4.877	4.773	.97875	10
"	1.0007	1.007.0						1	ľ	1					
4	.0698	.0699	1.0024	14.34	14.30	,99756	86	12	.2079		1.0223		4.705	.97815	78
10	.0727	.0729	1.0027	13,76	13.73		50	10	.2108		1.0230	4.745	4.638	.97754	50
20	.0756	.0758			13 20		40	20	.2136		1.0236		4.574	.97692	40
30	.0785	.0787	1.0031	12.75	12.71	.99692	30		.2164		1.0243	4.520	4.511	.97630 .97 5 66	30 20
40	.0814	.0816		12.29	12.25	.99668	20 10	40 50	.2193	.2278	1.0249	4.502	4.390	.97502	10
50	.0843	.0846	1.0036	11.87	11.83	.99644	10	30	.2221	.227,0	1.0230	4.502	4.370	,,,,,,,,,,	"
5	.0872	.0875	1.0038	11.47	11.43	.99619	85	13	.2250	.2309	1,0263	4.445	4.331	.97437	77
10	.0901	.0904	1.0041	11.10	11.06			10		.2339	1.0270	4.390	4.275	.97371	50
20	.0929	.0934	1.0043	10.76	10.71	.99567	40	20		.2370			4.219	.97304	40
30	.0958	.0963	1.0046	10.43	10.39	.99540			.2334		1.0284		4.165	.97237	30
40	.0987	.0992	1.0049	10.13	10.08	.99511	20		.2363		1.0291		4.113	.97169	10
50	.1016	.1022	1.0052	9.839	9.788	.99482	10	50	,2391	.2462	1.0299	4.182	4.061	.97100	10
6	1045	.1051	1.0055	9.567	9.514	.99452	84	14	2419	.2493	1.0306	4.133	4.011	.97030	76
10		.1080		9.309	9.255	.99421	50	10		.2524		4.086	3.962	.96959	50
20		.1110	1.0061	9.065			40	20		.2555	1.0321		3.914	.96887	40
30		.1139	1.0065	8.834	8.777	,99357	30	30		.2586	1.0329		3.867	.96815	30
40		.1169	1.0068	8.614	8.556	.99324	20	40		.2617	1.0337		3,821	.96742	20
50	.1190	.1198	1 0072	8.405	8.345	.99290	10	50	.2560	2548	1.0345	3,906	3.776	.96667	10
_						.99255	83	15	2580	.2679	1.0353	3 864	3.732	.96593	75
7,		.1228	1.0075	8.206	8.144	.99219	50	10	.2616	.2711	1.0353		3.689	.96517	50
20	.1248	1287	1.0079	8.016 7.834		.99182	40	20		.2742	1.0369		3.647	.96440	40
_		.1317	1.0082	7.654	7.596		30	30		.2773	1.0377		1	.96363	30
		.1346		7.496	7.429	.99106	20	40		.2805	1.0386	3,703		.96285	20
50		.1376		7.337	7.269	.99067	10	50	.2728	.2836	1.0394	3.665	3,526	.96206	10
							82								74
							0 /			1					0 1
							L			<u> </u>					<u> </u>
	Cosin	Cotg.	Cosec.	Sec.	Tan.	Sin.	Angle		Cosin.	Cotg.	Cosec.	Sec.	Tan.	Sin.	Angle
-	20311	co.g.													

1/4

e a

3)

B)

他依赖

ow. Odl. igh

TABLE IV CONTD. NATURAL TRIGONOMETRICAL FUNCTIONS

Angle	Sin.	lan.	Sec.	Cosec.	Cotg.	Cosin.		Angle	Sin.	lan.	Sec.	Cosec.	Cotg.	Cosin.	
. ,								.,							
16	2756	2867	1.0403	3 428	3 487	96126	74	24	4067	4452	1.0946	2 450	2 244	.9135.5	66
10			1.0403			.96046					1.0961				
20			1.0423		3.412				.4120		1.0975		2.211		
30			1.0429			.95882		30	.4147		1.0989			.90996	
			1.0438	1 .	1	.95799			4173		1,1004			.90875	
			1.0438		3.305			50		.4628			2.161	.90753	
17	2024	7057	1.0457	2 420	2 271	.95630	73	25	1226	1443	1.1034	2 744	2 1 45	.90631	65
10			1.0466		3.237	95545		10			1.1049			.90507	
20		.3121			3.204			20	1	.4734			2,112		
30			1.0485			.95372		30			1 1079		2,097		
40			1.0495			.95284		40			1.1095		2.081	.90133	
50			1.0505			95195		50			1.1110		2.066	1	
18	.3090	.3249	1.0515	3 234	3 078	.95106	72	26	1384	1977	1,1126	2 201	2.050	.89879	64
10	.3118	.3281				.95015					1 1142		2,035	.89752	50
			1.0535			.94924		20			1.1158			.89623	40
30	.3173		1.0545			94832		30	4462		1.1174			89493	30
40	.3201		1.0555			.94740	1		4488		1.1190	2.228		.89363	20
50	.3228		1.0566			.94646					1.1207	2.215		.89232	10
19	.3256	3443	1.0576	3 072	2 904	.94552	71	27	4540	sons.	1.1223	2 202	1 042	00101	
10	.3283		1.0587	3.046			1					2.203	1	.89101	63
	.3311		1.0598			94457	50 40				1,1240			.88968	50
			1.0608			.94264	30				1.1257			.88835	40
40	.3365		1.0619	2.971		.94167	20	30 40			1 1274	2.166		88701	30
	.3393		1.0631			.94068	10				1.1291 1.1308	2,154 2,142		.88566 88431	20 10
20	.3420	3640	1.0642	2 024	2 747	02040	70	28	4405	.5317	1 1 204	2 1 20	1 001	00005	
			1.0653			93869	50				1,1326 1 1343			.88295	62
			1.0665			.93769	40				1.1361			.881.58 .88020	50
			1.0676				30				1.1379			87882	40 30
40		.3772	1.0688			.93565	20	40	.4797		1.1397	2.085		87743	20
50	.3557		1.0700			.93462	10		4823		1.1415			87603	10
21	.3584	.3839	1.0711	2.790	2.605	.93358	69	29	4848	55.43	1.1434	2 043	1 904	97442	61
10	.3611			2.769		93253	50	10	4874		1.1452				50
20	.3638	.3906	1,0736	2.749	2.560	.93148	40	20	4899		1.1471	2.041		.87178	40
30	.3665	.3939	1.0748	2.729	2.539	93042	30	30			1.1490			.87036	30
40	.3692	3973	1.0760	2.709	2.517	.92935	20	40			1,1509			.86892	20
50	.3719	.4006	1.0773	2.689	2.496	92827	10	50			1.1528	2.010		.86748	10
22	.3746	.4040	1.0785	2.670		.92718	68	30	5000	.5774	1.1547	2.000	1.732	.86603	60
			1.0798			92609	50	to	5025		1 1566	1.990			50
			1.0811			92499	40	20	5050	.5851	1.1586	1.980	1.709	86310	40
			1.0824			92388	30				1.1606			.86163	30
40	.3854	.4176	1.0837	2.595		.92276	20	40	5100	.5930	1.1626	1.961		.86015	20
50	.3881	.4210	1 0850	2.577	2.375	92164	10	50	5125	.5969	1.1646	1.951	1.675	85866	10
23	.3907		1.0864			.92050	67	31	5150		1.1666	1.924	1.664	.85717	59
			1.0877			.91936	50		5175	.6048	1.1687		1.653	.85567	50
			1.0891			91822	40					1.923		.85416	40
			1.0904			.91706	30						1.632	.85264	30
40	.4014	.4383	1.0918	2.491		91590	20	40	5250		1.1749			.8.5112	20
50 .	.4041	.4417	1.0932	2.475	2.264	91472	10	50	5275	1		1	1.611	84959	10
							66								58
							0 1								۰,
	Cosin.	Cotg.	Cosec.	Sec.	Ton.	Sin.	Angle								

1

TABLE IV CONTD. NATURAL TRIGONOMETRICAL FUNCTIONS

III de la companya de

879 M 750 H 610 E 670 K 163 M 171 M

40 F 121 S 178 O 138 E 178 D 174 D 180 G 180 G 180 S 180

Angle	Sin.	Tan.	Sec.	Cosec.	Cotg.	Cosin.		Angle	Sin.	Tan	Sec.	Cosec.	Cotg.	Cosin.	
. ,		•					٠,								. ,
32	.5299	.6249	1.1792	1.887	1 /00	.84805	58	39	4202	0000	1.2868	1.589		77716	51
10	.5324	.6289	1.1813	1.878	1.590	.84650	50	10	.6316	.8146	1.2898	1.583	1.235	.77715 .77531	50
20	.5348	.6330	1.1835	1.870	1.580	.84495	40	20	.6338	.8195	1.2929	1.578	1.220	.77347	40
30	.5373	.6371	1.1857	1.861	1.570	.84339	30	30	.6361	.8243	1.2959	1.572	1.213	.77162	30
40	.5398	.6412	1.1879	1.853	1.560	.84182	20	40	.6383	.8292	1.2991	1.567	1.206	.76977	20
50	.5422	.6453	1.1901	1.844	1.550	84025	10	50	.6406	.8342	1.3022	1.561	1.199	.76791	10
33	.5446	.6494	1.1924	1.836	1,540	.83867	57	40	.6428	.8391	1.3054	1.556	1.192	.76604	50
10	.5471	.6536	1.1946	1.828	1.530	.83708	50	10	.6450	.8441	1.3086	1.550	1.185	.76417	50
20	.5495	.6577	1.1969	1.820	1.520	.83549	40	20	.6472	.8491	1.3118	1.545	1.178	.76229	40
30	.5519	.6619	1.1992		1,511	.83389	30	30	.6494	.8541	1.3151	1.540	1.171	.76041	30
40	.5544	.6661	1.2015	1.804	1.501	.83228	20	40	.6517	.8591	1.3184		1.164	.75851	20
50	.5568	.6703	1 2039	1.796	1.492	.83066	10	50	.6539	.8642	1.3217	1.529	1.157	.75661	10
34	.5592	.6745	1.2062	1.788	1.483	.82904	56	41	.6561	.8693	1.3251	1.524	1,150	.75471	49
10	.5616	.6787	1.2086	1.781	1.473	.82741	50	10	.6583	.8744	1.3284	1.519	1,144	. <i>7</i> 5280	50
20	.5640	.6830	1.2110	1.773	1.464	.82577	40	20	.6604		1.3318		1.137	75088	40
30	.5664	.6873	1.2134	1.766	1,455	.82413	30	30	.6626		1.3352	1.509	1.130	.74896	30
40	.5688	.6916	1.2158	1.758	1.446	.82248	20	40	.6648	.8899	1.3386	1.504	1.124	.74703	20
50	.5712	.6959	1.2183	1.751	1.437	.82082	10	50	.6670	.8952	1.3421	1.499	1.117	.74509	10
35	.5736	.7002	1.2208	1.743	1.428	.81915		42	.6691	.9004	1,3456	1.494	1,111	.74314	48
10	.5760	.7046	1.2233	1.736	1.419	.81748	50	10	.6713	.9057	1.3492	1.490	1,104	.74120 .73924	50
20	.5783	.7089	1.2258	1.729	1.411	.81580	40		.6734		1.3527		1.098	.73728	30
30	.5807	.7133	1 2283		1.402	.81412	30		.6756	.9163	1.3563			.73531	20
40	.5831	.7177	1.2309		1.393	.81242	20	40	.6777	.9271	1.3636	1.471	1.079	.73333	10
50	.5854	.7221	1.2335	1.708	1.385	.81072	10	50	.0799	.9271	1.3030	1.47		D 1	
36	.5878	.7265	1.2361	1.701	1.376	.80902	54	43	.6820	.9325	1.3673	1.466	1.072		47
10	.5901	.7310	1.2387	1.695	1.368	80730	50	10	.6841	.9380	1.3711	1.462		.72937	50
20	.5925	.7355	1.2413	1.688	1.360	.80558	40	20	.6862		1 3748	1.457		.72737	40
30	.5948	.7400	1 2440	1.681	1.351	.80386	30		.6884				1.054	.72537	30
40	.5972	.7445	1.2466	1.675		.80212	20		.6905			1.448		.72337	20
50	.5995	.7490	1.2494	1.668	1.335	.80038	10	50	.6926	.9601	1,3863	1,444	1,042	.72136	10
37	.6018		1.2521	1.662	1.327	.79864	53	44	.6947		1,3902		1,036	.71934 .71732	46 50
10	.6041	.7581	1.2549	1.655	1.319	.79688	50	10	.6967		1.3941	1.435	1,030	.71529	40
20	.6065	.7627	1.2577		1.311	.79512	40	20	.6988		1.3980	1.431	1.018	.71325	30
30	.6088	.7673	1.2605	1,643	1.303	.79335	30	30	.7009	.9827	1.4020	1.422	1.012	.71121	20
40	.6111	.7720	1.2633	1.636	1.295	.79158	20	40	.7030		1.4061	1.418	1.006	.70916	
50	.6134	.7766	1 2661	1.630	1.288	.78980	10	50	.7050	.7942				1	
38	.6157	.7813	1.2690	1.624	1.280	.78801	52	1	.7071	1.	1.414	1.414	1.	.70711	45
10	.6180	.7860	1.2719		1.272	.78622	50		1						
20	.6202	.7907	1.2748	1.612	1.265	.78442	40					1			
30	.6225	.7954	1.2778	1.606	1.257	.78 26 1	30								
40	.6248	.8002	1.2808	1.601	1.250	.78079	20								
50	.6271	.8050	1,2838	1,595	1.242	.77897	10								
	Cosin.	Cotg.	Cosec	Sec.	Tan.	Sin.	Angle		Cosin.	Cotg.	Cosec.	Sec.	Ton.	Sin.	Angle

CURVE TABLE

Table of Tangent and External to a 1° Curve

To find Tangent and External for curve of any other degree, divide by degree of curve and add correction found in column of corrections.

Degree of curve with a given I may be found by dividing tangent, (or external), opposite I by given tangent, (or external).

The distance from a point on the tangent to the curve is very nearly the square of the tangent length divided by twice the radius.

CURVE FORMULAS

Radius: $R = \frac{50}{\sin \frac{1}{2} D}$

Length of Curve: $L = 100 \frac{\Delta}{D}$

also $L = .0174533 \times \triangle \times R$

Degree of Curve: $D = 100 \frac{\Delta}{L}$

Tangent: $T = R \tan \frac{1}{2} \Delta$

Long Cord: $LC = 2R \sin \frac{1}{2} \Delta$

Middle Ordinate: $M = R (1 - Cos \frac{1}{2} \Delta)$

External: $E = T \tan \frac{1}{4} \Delta$

TABLE V. TANGENTS AND EXTERNALS TO A 1° CURVE

	I	ī	E	F 100	T -		-			,		-
	_		· ·	I=10°	I	r	E	<u>1</u> =20°	I	T	E	I=30°
2 3 4	10° 10° 20°	50.00 58.34 66.67 75.01 83.34 91,68	.388 .491 .606 .733	+ 5° C. T .03 E	11° 20′ 30′ 40′ 50′	551.70 560.11 568.53 576.95 585.36 593.79	26.500 27.313 28.137 28.974 29.824 30.686	+ 5° C. T .06	21° 10' 20' 30' 40' 50'	1061.9 1070.6 1079.2 1087 8 1096.4 1105.1	99.155 100.75 102.35 103.97	+ 5° C T .10 E
2 3 4	00000	100.01 108.35 116.68 125.02 133.36 141.70	.873 1.024 1.188 1.364 1.552 1.752	.001	12° 10′ 20′ 30′ 40′ 50′	602.21 610.64 619.07 627.50 635.93 644.37	31.561 32.447 33.347 34.259 35.183 36.120	.006	22° 10′ 20′ 30° 40′ 50′	1113.7 1122.4 1131.0 1139.7 1148.4 1157.0	110.57 112.25	.013
2 3 4	00000	150.04 158.38 166.72 175.06 183.40 191.74	1.964 2.188 2.425 2.674 2.934 3.207	10° C. T .06 E .003	13° 10' 20' 30' 40' 50'	652.81 661.25 669.70 678.15 686.60 695.06	37.070 38.031 39.006 39.993 40.992 42.004	10° C. T .13 E .011	23° 10′ 20′ 30′ 40′ 50′	1165.7 1174.4 1183.1 1191.8 1200.5 1209.2	124.41	10° C. T ,19 E .025
2 3 4	ÓÓÓÓÓ	200.08 208.43 216.77 225.12 233.47 241.81	3.492 3.790 4.099 4.421 4.755 5.100	15° C.	14° 10′ 20′ 30′ 40′ 50′	703.51 711.97 720.44 728.90 737.37 745.85	43.029 44.066 45.116 46.178 47.253 48.341	15° C.	24° 10′ 20′ 30′ 40′ 50′	1217.9 1226.6 1235.3 1244.0 1252.8 1261.5	128.00 129.82 131.65 133.50 135.35 137.23	15° C.
21 31 41	00000	250.16 258.51 266.86 275.21 283.57 291.92	5.459 5.829 6.211 6.606 7.013 7.432	T .09 E .004	15° 10′ 20′ 30′ 40′ 50′	754.32 762.80 771.29 779.77 788.26 796.75	49.441 50.554 51.679 52.818 53.969 55.132	T .19 E .017	25° 10′ 20′ 30′ 40′ 50′	1270.2 1279.0 1287.7 1296.5 1305.3 1314.0	139.11 141.01 142.93 144.85 146.79 148.75	T ,29 E .038
30	0,00,00	300.28 308.64 316.99 325.35 333.71 342.08	7,863 - 8,307 8,762 9,230 9,710 10,202	20° C. T	16° 10′ 20′ 30′ 40′ 50′	805.25 813.75 822.25 830.76 839.27 847.78	56.309 - 57.498 58.699 59.914 61.141 62.381	20° C. T	26° 10′ 20′ 30′ 40′ 50′	1322.8 1331.6 1340.4 1349.2 1358.0 1366.8	150.71 152.69 154.69 156.70 158.72 160.76	20° C.
20 30 40	ဝဲဝဲဝဲဝဲ	350.44 358.81 367.17 375.54 383.91 392.28	10.707 11.224 11.753 12.294 12.847 13.413	.13 E .006	17° 10' 20' 30' 40' 50'	856.30 864.82 873.35 881.88 890.41 898.95	63.634 64.900 66.178 67.470 68.774 70.091	.26 E .022	27° 10′ 20′ 30′ 40′ 50′	1375.6 1384.4 1393.2 1402.0 1410.9 1419.7	162.81 164.86 166.95 169.04 171.15 173.27	.39 E .051
20 30 40	01	400.66 409.03 417.41 425.79 434.17 442.55	13.991 14.582 15.184 15.799 16.426 17.065	25° C. T .16 E	18° 10' 20' 30' 40' 50'	907.49 916.03 924.58 933.13 941.69 950.25	71.421 72.764 74.119 75.488 76.869 78.264	25° C. T .32 E	28° 10′ 20′ 30′ 40′ 50′	1428.6 1437,4 1446.3 1455,1 1464.0 1472.9	177.55 179.72 181.89	25° C T .49 E
9° 20 30 40 50	0,00	450.93 459.32 467.71 476.10 484.49 492.88	17.717 18.381 19.058 19.746 20.447 21.161	.007	19° 10′ 20′ 30′ 40′ 50′	958.81 967.38 975.96 984.53 993.12 1001.7	79.671 81.092 82.525 83.972 85.431 86.904	.028	29° 10′ 20′ 30′ 40′ 50′	1508.5 1517.4	188.52 190.74 192.99 195.25 197.53 199.82	.065
10° 1(20 30 40 50	0, 0, 0, 0,	501.28 509.68 518.08 526.48 534.89 543.29	21.887 22.624 23.375 24.138 24.913 25.700	30° C. T 19 E .008	20° 10′ 20′ 30° 40′ 50′	1010.3 1018.9 1027.5 1036.1 1044.7 1053.3	88.389 89.888 91.399 92.924 94.462 96.013	30° C. T .39 E .034	30° 10′ 20′ 30′ 40′ 50°	1535.3 1544.2 1553.1 1562.1 1571.0	202.12 204.44 206.77 209.12 211.48 213.86	30° C T .59 E .078

TABLE V CONTD. TANGENTS AND EXTERNALS TO A 1° CURVE

I	τ	E	I=40°	I	Ţ	E	I=50°	I	T	E	I=60°
31° 10′ 20′ 30′ 40′ 50′	1589.0 1598.0 1606.9 1615.9 1624.9 1633.9	216.3 218.7 221.1 223.5 226.0 228.4	+ 5° C. T .13	41° 10′ 20′ 30′ 40′ 50′	2142.2 2151.7 2161.2 2170.8 2180.3 2189.9	387.4 390.7 394.1 397.4 400.8 404.2	+ 5° C. T .17 E	51° 10′ 20′ 30′ 40′ 50′	2732.9 2743.1 2753.4 2763,7 2773.9 2784.2	618.4 622,8 627.2 631.7 636.2 640.7	+ 5° C. T .21 E
10° 20° 30° 40° 50°	1643.0 1652.0 1661.0 1670.0 1679 1 1688.1	230.9 233.4 235,9 238.4 241.0 243.5	.023	10' 20' 30' 40' 50'	2199.4 2209.0 2218.6 2228.1 2237.7 2247.3	407.6 411.1 414.5 418.0 421.4 425.0	.037	10° 20° 30° 40° 50°	2794.5 2804.9 2815.2 2825 6 2835.9 2846.3	645.2 649.7 654.3 658.8 663.4 668.0	.056
33° 10′ 20′ 30′ 40′ 50′	1697.2 1706.3 1715.3 1724.4 1733.5 1742.6	246.1 248.7 251.3 253.9 256.5 259.1	10° C. T ,26 E .046	43° 10' 20' 30' 40' 50'	2257.0 2266.6 2276.2 2285.9 2295.6 2305.2	428.5 432.0 435.6 439.2 442.8 446.4	10° C. T .34 E .075	53° 10' 20' 30' 40' 50'	2856.7 2867.1 2877.5 2888.0 2898.4 2908.9	672.7 677.3 682.0 686.7 691.4 696.1	10° C. T 42 E .112
34° 10′ 20′ 30′ 40′ 50′	1751.7 1760.8 1770.0 1779.1 1788.2 1797.4	261.8 264.5 267.2 269.9 272.6 275.3	15° C.	10° 20° 30° 40 50°	2314 9 2324.6 2334.3 2344 1 2353.8 2363.5	450.0 453.6 457.3 461.0 464.6 468.4	15° C.	54° 10′ 20′ 30′ 40′ 50′	2919.4 2929.9 2940.4 2951.0 2961.5 2972.1	700.9 705.7 710.5 715.3 720.1 725.0	15° C.
35° 10′ 20′ 30′ 40′ 50′	1806.6 1815.7 1824.9 1834.1 1843.3 1852.5	278.1 280.8 283.6 286.4 289.2 292.0	.40 E .070	45° 10' 20' 30' 40' 50'	2373.3 2383.1 2392.8 2402.6 2412.4 2422.3	472.1 475.8 479.6 483.4 487.2 491.0	T .51 E .116	55° 10′ 20′ 30′ 40′ 50′	2982.7 2993.3 3003.9 3014.5 3025.2 3035.8	729.9 734.8 739.7 744.6 749.6 754.6	.63 E ,168
36° 10′ 20′ 30′ 40′ 50′	1861.7 1870.9 1880.1 1889.4 1898.6 1907.9	294.9 297.7 300.6 303,5 306.4 309.3	20° C.	46° 10′ 20′ 30′ 40′ 50′	2432.1 2441.9 2451.8 2461.7 2471.5 2481.4	494.8 498.7 502.5 506.4 510.3 514.3	20° C.	56° 10′ 20′ 30′ 40′ 50′	3046.5 3057.2 3067 9 3078.7 3089.4 3100.2	759 6 764.6 769.7 774.7 779.8 784.9	20 ° C. T .84
37° 10′ 20′ 30′ 40′ 50′	1917 1 1926.4 1935.7 1945.0 1954.3 1963 6	312.2 315.2 318,1 321.1 324.1 327.1	.53 E .093	47° 10′ 20′ 30′ 40′ 50′	2491.3 2501,2 2511.2 2521.1 2531.1 2541.0	518.2 522.2 526,1 530.1 534.2 538.2	.68 E 151	57° 10′ 20′ 30′ 40′ 50′	3110.9 3121.7 3132.6 3143.4 3154.2 3165.1	790.1 795.2 800.4 805.6 810.9 816.1	E .225
38° 10' 20' 30' 40' 50'	1972.9 1982,2 1991.5 2000.9 2010.2 2019.6	330.2 333.2 336.3 339.3 342.4 345.5	25° C. T .67 E	48° 10′ 20′ 30′ 40′ 50′	2551.0 2561.0 2571.0 2581.0 2591.0 2601.1	542.2 546.3 550.4 554.5 558.6 562.8	25° C. T .85 E	58° 10' 20' 30' 40' 50'	3176.0 3186.9 3197.8 3208.8 3219 7 3230.7	821.4 826.7 832.0 837.3 842.7 848.1	25° C. T 1.05
39° 10′ 20′ 30′ 40′ 50′	2029.0 2038.4 2047.8 2057.2 2066.6 2076.0	348.6 351.8 354.9 358.1 361.3 364.5	117	49° 10′ 20′ 30′ 40′ 50′	2611.2 2621.2 2631,3 2641.4 2651.5 2661,6	566.9 571.1 575.3 579.5 583.8 588.0	.189	59° 10′ 20′ 30′ 40′ 50	3241.7 3252,7 3263.7 3274.8 3285,8 3296,9	853.5 858.9 864,3 869.8 875.3 880.8	.283
40° 10′ 20′ 30′ 40′ 50′	2085.4 2094.9 2104.3 2113.8 2123.3 2132.7	367.7 371.0 374.2 377.5 380.8 384.1	30° C. T .80 E .141	50° 10′ 20′ 30′ 40′ 50′	2671,8 2681.9 2692.1 2702.3 2712.5 2722.7	592.3 596.6 600.9 605.3 609.6 614.0	30° C. T 1.02 E .227	60° 10′ 20′ 30′ 40′ 50′	3308,0 3319,1 3330,3 3341,4 3352,6 3363,8	886,4 892.0 897,5 903.2 908.8 914.5	30 C. T 1.27 E .340

 $T = R \tan \frac{1}{2} I$

E = R exsec ½ I

TABLE V CONTD. TANGENTS AND EXTERNALS TO A 1° CURVE

I	ī	E	I=70°	I	Ţ	E	I== 80°	I	ī	E	I=90°
10° 20° 30° 40° 50°	3375.0 3386.3 3397.5 3408.8 3420.1 3431.4	920.2 925.9 931.6 937.3 943.1 948.9	+ 5° C. T .25 E	10° 20' 30' 40' 50'	4086.9 4099.5 4112.1 4124.8 4137.4 4150 1	1308.2 1315.6 1322.9 1330.3 1337.7 1345.1	+ 5° C. T .30 E	81° 10 20′ 30′ 40′ 50′	4893.6 4908.0 4922.5 4937.0 4951.5 4966.1	1805.3 1814.7 1824.1 1833.6 1843.1 1852.6	+ 5° C. T ,36 E
10° 20° 30° 40° 50°	3442.7 3454.1 3465.4 3476.8 3488.3 3499.7	954.8 960.6 966.5 972.4 978.3 984.3	.080	72° 10' 20' 30' 40' 50'	4162.8 4175.6 4188.5 4201.2 4214.0 4226.8	1352.6 1360.1 1367.6 1375.2 1382.8 1390.4	.110	82° 10' 20' 30' 40' 50'	4980.7 4995.4 5010.0 5024.8 5039.5 5054.3	1862.2 1871.8 1881.5 1891.2 1900.9 1910.7	.149
63° 10′ 20′ 30′ 40′ 50′		990.2 996.2 1002.3 1008.3 1014.4 1020.5	10 [±] C. T .51 E .159	73° 10′ 20° 30′ 40′ 50′	4278.5 4291.5	1398.0 1405.7 1413.5 1421.2 1429.0 1436.8	10° C. T .61 E .220	83° 10′ 20′ 30′ 40′ 50′	5069.2 5084.0 5099.0 5113.9 5128.9 5143.9	1920.5 1930.4 1940.3 1950.3 1960.2 1970.3	10° C. T .72 E .299
64° 10′ 20′ 30′ 40′ 50′	3591.9 3603.5 3615.1 3626.8	1026.6 1032.8 1039.0 1045.2 1051.4 1057.7	15° C.	10' 20' 30' 40' 50'	4343.8	1444.6 1452.5 1460.4 1468.4 1476.4 1484.4	15° C.	10' 20' 30' 40' 50'	5189.3 5204.4 5219,7	1980.4 1990.5 2000.6 2010.8 2021.1 2031,4	15°C.
65° 10′ 20′ 30′ 40′ 50′	3673.7	1063.9 1070.2 1076.6 1082.9 1089.3 1095.7	T .76 E .240	75° 10′ 20′ 30′ 40′ 50′	4396.5 4409.8 4423.1 4436.4 4449.7 4463.1		7 .91 E .332	85° 10' 20' 30' 40' 50'	5296.4	2041.7 2052.1 2062.5 2073.0 2083.5 2094.1	T 1,09 E .450
66° 10′ 20′ 30′ 40′ 50°	3720.9 3732.7 3744.6 3756.5 3768.5 3780.4	1102.2 1108.6 1115.1 1121.7 1128.2 1134.8	20° C. T 1.02	76° 10' 20' 30' 40' 50'	4476.5 4489.9 4503,4 4516.9 4530.4 4544.0	1541.4 1549.7 1558.0 1566.3 1574.7 1583.1	20° C. T 1.22	86° 10′ 20′ 30′ 40′ 50′	5343.0 5358.6 5374.2 5389.9 5405.6 5421.4	2104.7 2115.3 2126.0 2136.7 2147.5 2158.4	20° C. T 1.45
67° 10' 20' 30' 40' 50'	3816.4 3828.4 3840.5	1141.4 1148.0 1154.7 1161.3 1168.1 1174.8	E .321	77° 10′ 20′ 30′ 40′ 50′	4557.6 4571.2 4584.8 4598.5 4612.2 4626.0	1591.6 1600.1 1608.6 1617.1 1625.7 1634.4	E .445	87° 10′ 20′ 30′ 40′ 50′	5437 2 5453.1 5469.0 5484.9 5500.9 5517.0	2169.2 2180.2 2191.1 2202.2 2213.2 2224.3	E .603
68° 10′ 20′ 30′ 40′ 50′		1188.4 1195.2 1202.0 1208.9	25° C. T 1.28 E	78 ⁵ 10 ⁴ 20 ⁷ 30 ⁷ 40 ⁷ 50 ⁷	4639.8 4653.6 4667.4 4681.3 4695.2 4709.2	1643.0 1651.7 1660.5 1669.2 1678.1 1686.9	25° C. T 1.53 E	88° 10' 20' 30' 40' 50'	5565.4 5581.6 5597.8	2235.5 2246.7 2258.0 2269.3 2280.6 2292.0	25" C. T 1.83 E
69° 10′ 20′ 30′ 40′ 50′	3937.9 3950.2 3962.5 3974.8 3987.2 3999.5	1222.7 1229.7 1236.7 1243.7 1250.8 1257.9	.403	79° 10′ 20′ 30′ 40′ 50′	4723.2 4737.2 4751.2 4765.3 4779.4 4793.6	1695.8 1704.7 1713.7 1722.7 1731.7 1740.8	.558	10° 20° 30° 40° 50°		2303.5 2315.0 2326.6 2338.2 2349.8 2361.5	.756
70° 10′ 20′ 30′ 40′ 50′	4011.9 4024.4 4036.8 4049.3 4061.8	1272.1	30° C. T 1,54 E .485	80° 10′ 20′ 30′ 40′ 50′	4807.7 4822.0 4836.2 4850.5 4864.8 4879.2	1749.9 1759.0 1768.2 1777.4 1786.7 1796.0	30° C. T 1.84 E .671	90° 10' 20' 30' 40' 50'	5763.1 5779.9 5796.7	2408.9 2420.9	30° C. T 2,20 E .910

T = R tan ½I

E = R exsec ½ I

TABLE V CONTD. TANGENTS AND EXTERNALS TO A 1° CURVE

I	ī	E	I=100°	I	Ţ	E	I=110°	I	7	E	I=120°
91° 10° 20° 30° 40° 50°	5830.5 5847.5 5864.6 5881.7 5898.8 5916.0	2444.9 2457.1 2469.3 2481.5 2493.8 2506.1	+ 5° C. T .43	101° 10′ 20′ 30′ 40′ 50′	6950.6 6971.3 6992.0 7012.7 7033.6 7054.5	3278.1 3294.1 3310.1 3326.1 3342.3 3358.5	+ 5° C. T .51 E	111° 10' 20' 30' 40' 50'	8336.7 8362.7 8388.9 8415.1 8441.5 8468.0	4386.1 4407.6 4429.2 4450.9 4472,7 4494.6	+ 5 ° C. T .62
92° 10′ 20′ 30′ 40′ 50′	5933.2 5950.5 5967.9 5985.3 6002.7 6020.2	2518.5 2531 0 2543.5 2556.0 2568.6 2581.3	.200	102° 10′ 20′ 30′ 40′ 50′	7075.5 7096.6 7117.8 7139.0 7160.3 7181.7	3424.3	.268	112° 10' 20' 30' 40' 50'	8494.6 8521.3 8548.1 8575.0 8602.1 8629.3	4516.6 4538.8 4561 1 4583.4 4606.0 4628.6	.360
93° 10′ 20′ 30′ 40′ 50′	6037.8 6055.4 6073.1 6090.8 6108.6 6126.4	2594.0 2606.8 2619.7 2632.6 2645.5 2658.5	10° C. T .86 E ,401	103° 10' 20' 30' 40 50'	7203.2 7224.7 7246.3 7268.0 7289.8 7311.7	3474.4 3491.3 3508.2 3525.2 3542.4 3559.6	10° C. T .103 E .536	113° 10' 20' 30' 40' 50'	8656.6 8684.0 8711.5 8739.2 8767.0 8794.9	4651.3 4674.2 4697.2 4720.3 4743.6 4766.9	10° C T 1.25 E .721
94° 10′ 20′ 30′ 40′ 50′	6144.3 6162.2 6180.2 6198.3 6216.4 6234.6	2671.6 2684.7 2697.9 2711.2 2724.5 2737,9	15° C.	104° 10' 20' 30' 40' 50'	7333.6 7355.6 7377.8 7399.9 7422.2 7444.6	3576.8 3594.2 3611.7 3629.2 3646.8 3664.5	15° C.	114° 10′ 20′ 30′ 40° 50′	8822.9 8851.0 8879.3 8907.7 8936.3 8965.0	4790.4 4814.1 4837.8 4861.7 4885.7 4909.9	15° C.
95° 10' 20' 30' 40' 50'	6326.3	2751.3 2764.8 2778.3 2792,0 2805.6 2819.4	1.30 E .604	105° 10′ 20′ 30′ 40′ 50′	7467.0 7489.6 7512.2 7534.9 7557.7 7580.5	3700.2 3718,2 3736.2 3754.4	T 1.56 E .806	115° 10' 20' 30' 40' 50'	9051.7 9080.9 9110.3	4934.1 4958.6 4983.1 5007.8 5032.6 5057.6	1.93 E 1.09
10° 20° 30° 40° 50°	6363.4 6382.1 6400.8 6419.5 6438.4 6457.3	2833.2 2847.0 2861.0 2875.0 2889.0 2903.1	20° C.	106° 10′ 20′ 30′ 40′ 50′	7603.5 7626.6 7649.7 7672.9 7696.3 7719.7	3791 0 3809.4 3827.9 3846.5 3865.2 3884.0	20° C. T	116° 10' 20' 30' 40' 50'	9199.1	5082.7 5107.9 5133.3 5158.8 5184.5 5210.3	20° C
10° 20° 30° 40° 50°	6476.2 6495.2 6514.3 6533.4 6552.6 6571.9	2917.3 2931.6 2945.9 2960.3 2974.7- 2989.2	1.74 E .809	107° 10′ 20′ 30′ 40′ 50′	7743.2 7766.8 7790.5 7814.3 7838.1 7862.1	3902.9 3921.9 3940.9 3960.1 3979.4 3998.7	2.08 E 1.08	117° 10' 20' 30' 40' 50'	9349.9 9380.5 9411.3 9442.2 9473.2 9504.4	5236.2 5262.3 5288.6 5315.0 5341.5 5368.2	2.52 E 1.46
10° 20° 30° 40° 50°	6591.2 6610.6 6630.1 6649.6 6669.2 6688.8	3003.8 3018.4 3033.1 3047.9 3062.8 3077.7	25° C. T 2.18 E	108° 10′ 20′ 30′ 40′ 50′	7886.2 7910.4 7934.6 7959.0 7983.5 8008.0	4018.2 4037.8 4057.4 4077.2 4097.1 4117.0	25° C. T 2.61 E	118° 10° 20° 30° '40° 50°	9535.7 9567.2 9598.9 9630.7 9662.6 9694.7	5395.1 5422.1 5449.2 5476.5 5504.0 5531.7	25° C T 3.16 E
10 ² 20 ² 30 ² 40 ² 50 ²	6708.6 6728.4 6748.2 6768.1 6788.1 6808.2	3153.3	1.02	109° 10' 20' 30' 40' 50'	8082.3 8107.3 8132.3	4137,1 4157.3 4177.5 4197.9 4218.4 4239.0	1.36	119° 10' 20' 30' 40' 50'	9727.0 9759.4 9792.0 9824.8 9857.7 9890.8	5559.4 5587.4 5615.5 5643.8 5672.3 5700.9	1.83
00° 10′ 20′ 30′ 40′ 50′	6828.3 6848.5 6868.8 6889.2 6909.6 6930.1	3184.1 3199.6 3215.1 3230.8 3246.5 3262.3	30° C. T 2.62 E 1.22	110° 10' 20' 30' 40' 50'	8182.8 8208.2 8233.7 8259.3 8285.0 8310.8	4259.7 4280.5 4301.4 4322.4 4343.6 4364.8	30° C. T 3.14 E 1.63		9924.0 9957.5 9991.0 10025.0 10059.0 10093.0	5729.7 5758.6 5787.7 5817.0 5846.5 5876.1	30° C T 3.81 E 2.20

USEFUL RELATIONS

Lineal feet $\times .00019$ = miles Lineal yards $\times .0006$ = miles Square inches ×.007 = square feet Square feet $\times .111$ = square yards Square yards $\times .0002067 = acres$ Acres = square yards $\times 4840$ Cubic inches $\times .00058$ = cubic feet Cubic feet $\times .03704$ = cubic vards Links $\times .22$ = yards Links $\times.66$ = feet Feet $\times 1.5$ = links $360^{\circ} = 21600' = 1296000''$ Radius = arc of 57.2957790° Arc of 1° (radius = 1) = .017453292

Curvature of Earth's surface = about 0.7 feet in 1 mile Curvature in feet = 0.667 (Dist. in miles)³ Difference between arc and chord length, 0.05 feet in 11½

miles

Probable error of a single observation = $0.6754 \sqrt{\frac{> v^2}{n-1}}$ Error in chaining of 0.01 feet in 100 feet: Due to—

1. Length of tape error of 0.01 feet

Arc of 1' (radius = 1) = .000290888Arc of 1" (radius = 1) = .000004848

- 2. Alignment. One end 1.4 feet out of line
- 3. Sag of tape at center of 0.61 feet.
- 4. Temperature difference of 15°
- 5. Difference of pull of 15 lbs.

SQUARE MEASURE

144 sq. inches = 1 sq. ft.

9 sq. ft. = 1 sq. yard

 $30 \, \text{\%}$ sq. yds. = 1 sq. rd.

40 sq. rds. = 1 rood.

4 roods = 1 acre

640 acres = 1 sq. mile.

SURVEYORS' MEASURE

7.92 inches = 1 link.

25 links = 1 red.

4 rds. = 1 chain.

10 sq. chains or 160 sq. rods = 1 acre.

640 acres = 1 sq. mile.

36 sq. miles (6 miles sq.) = 1 township.

TABLE VI. INCHES TO DECIMALS OF A FOOT

In.	0	1	2	3	4	5	6	7	8	9	10	11	In.
0	Foot	0833	1667	2500	3333	4167	.5000	.5833	6667	,7500	.8333	.9167	0
1-32													1-32
1-16													1-16
3_32													3-32
1-8													1-8 5-32
5-32													
3-16													7-32
7-32	.0182	.1016	.1849	.2682	,3516	.4349	.5162	.0010	.0049	.1002	.0310	, 9010	1-02
1-4	0208	.1042	.1875	2708	.3542	.4375	.5208	.6042	.5875	.7708	.8542		
9_32	0024	1000	1001	0234	25.69	44(1)	32234	DI-DH	1.6301		.6000	.9401	9-32
5-16	0260	.1094											
11-32													
3-8	.0313	.1146	1000	വെവ	2646	4474	5313	614n	1 10973		.00**	. 5410	9-0
13_32	1 0000	1170	0.0061	04230	36.74	4.5113	.3.119	.6142	. 4 (4.6)	1.1000	.Cuiv	. 0000	10.0
7-16	. 0365	4100	0001	0066	26,631	4531	5.355	6198	111151	. (000	LOUGO.	. 50001	4-10
15-32	.0391	1.1224	.2057	.2891	.3724	.455	.5391	.0224	1601	. 1091	.01~2	. 55504	10-94
1-2	0417	1950	2083	2917	3750	.4583	.5417	.6250	.7083	.7917	.8750 8776	, 9583	1-2
17-32													
9-16	0.460	1500	43195	DARG	3802	4635	5409	0.630/2	1.7133	_ / 200	.0004	. 2000	0-10
19-32													
5-8	0591	1 1 254	9199	2001	25.54	1 AKKS	552	1.15354	1.7100	1.8021	.000/4	, 5000	0-8
21-32													
11-16	1 Acres	1 1100	0.310	907.9	200%	1 4740	5513	i naum	1. 423441	2817.0	-0.00	1. 2130	111-10
23–32	.0599	, 1432	.2266	.3099	.3932	.4766	.5599	.6432	. 7200	.6039	.8932	.9100	20-02
3-4	0625	.1458	.2292	.3125	.3958	.4792	.5625	.6458	.7292	.8125	.8958	.9792	3-4
25-32													
13-16													
27-32	1 0.00	1 1596	1 133771	20012	4036	48711	1 5 (1)	りつづり	. 401V	I. DZUG	L.JUJU	.9010	141 W
7-8	1 0790	1 1563	0.308	13 13 14 KI	4003	4896	1 57729	6003	1.7390	+. DXXX	1.5000	. 9000	1-0
29-32	1 0255	1 1590	0.490	1 20055	1 40039	4900	1.5755	เกาสม	1.1422	1.5.00	1. 5005	1.9922	29 0
15-16	0.0781	.1615	.2448	.3281	.4115	4948	.5761	6615	7448	.0201	.9115	0074	21 20
31-32	.0807	1.1641	2474	.3307	.4141	.49.4	.5807	.6041	. 14/4	.0007	.9141	. 5514	01-0
	0	1	2	8	4	5	6	7	8	9	10	11	

TABLE VII. MINUTES IN DECIMALS OF A DEGREE

									_		
0′ 30″	.00833	10′ 30″	.17500	20′ 30″	.34167	30′ 30″	.50833		.67500	50' 30"	.84167
1 00	.01667	11 00	.18333	21 00	.35000	31 00	.51667	41 00	.68333	51 00	.85000
30	.02500	30	.19167	30	.35833	30	.52500	30	.69167	30	.85833
2 00	.03333	12 00	.20000		.36667	32 00	.53333	42 00	.70000	52 00	.86667
30	.04167	30	.20833	30	.37500	30	,54167	30	.70833	30	.87500
3 00	.05000	13 00		23 00	.38333	33 00	.55000	43 00	.71667	53 00	.88333
30	.05833	30	.22500	30	.39167	30	.55833	30	.72500	30	.89167
4 00	.06667	14 00	.23333		,40000	34 00	.56667	44 00	.73333	54 00	.90000
30	.07500	30	.24167	30	.40833	30	.57500	30	.74167	30	.90833
5 00	.08333	15 00	.25000	25 00	.41667	35 00	.58333	45 00	.75000	55 00	.91667
30	.09167	30	.25833	30	.42500	30	.59167	30	.75833	30	.92500
6 00	.10000	16 00	26667	26 00	.43333	36 00	.60000	46 00	.76667	56 00	.93333
30	.10833	30	.27500	30	.44167	30	.60833	30	.77500	30	.94167
7 00	.11667	17 00	.28333	27 00	.45000	37 00	.61667	47 00	.78333	57 00	.95000
30	.12500	30	.29167	30	.45833	30	.62500	30	.79167	30	.95833
8 00	.13333	18 00	,30000	28 00	.46667	38 00	.63333	48 00	.80000	58 00	.96667
30	.14167	-30	.30833	30	.47500	30	.64167	30	.80833	30	.97500
9 00	.15000	19 00	.31667	29 00	.48333	39 00	.65000	49 00	.81667	59 00	.98333
30	.15833	30	.32500	30	.49167	30	.65833	30	.82500	30	.99167
10 00	.16667	20 00	.33333	30 00	.500000	40 00	.66667	50 00	.83333	60 00	1.00000

TABLE VIII. MIDDLE ORDINATES OF RAILS

Length of Rail (feet)

C	R	30	28	26	24	22	20	С	R	30	28	26	24	22	20
0/	Feet	Inch	Inch	lnch	Inch	Inch	Inch	0	Feet	Inch	Inch	Inch	Inch	Inch	Inch
0-20	17189	.08	.07	.06	.05	.04	.03	8	716.8	1.88	1.64	1,42	1.20	1.01	.84
0-40	8594	.16	.14	.12	.10	.08	.07	9	637.3	2.12	1.84	1,60	1.35	1.14	.94
1-0	5730	.24	.20	.18	.15	. 13	.10	10	573.7	2.36	2,05	1.78	1.50	1.27	1.04
1-20	4297	.31	.27	.23	.20	. 17	.13	11	521.7	2.59	2.26	1.95	1.65	1.39	1.15
1-40	3438	.39	.34	.29	.25	. 21	.17	12	478.3	3.83	2.47	2.15	1.81	1.54	1.26
2-0	2865	.47	.41	.35	.30	.25	.20	13	441.7	3.05	2,66	2.30	1.96	1.66	1.36
2-20	2456	.55	.48	.41	.35	.29	.23	14	410.3	3.30	2.87	2.48	2.10	1.78	1.46
2-40	2149	.63	.55	.47	.40	.33	.27	15	383.1	3.54	3.08	2.68	2.26	1.91	1.57
3-0	1910	.71	.62	.53	.45	.38	.31	16	359.3	3.76	3.28	2,83	2.40	2.04	1.67
3-20	1719	.78	.68	.59	.50	.42	.35	17	338.3	4.00	3.48	3.02	2.57	2.16	1.78
3-40	1563	.86	.75	.65	.55	.46	.38	18	319.6	4.21	3.67	3.18	2.70	2.28	1.87
4-0	1433	.94	.82	.71	.60	.50	.42	19	302.9	4.45	3.89	3.36	2.86	2.41	1.98
4-20	1323	1.02	.89	.77	.65	.55	.45	20	287,9	4.70	4.09	3,55	3.00	2.54	2.09
4-40	1228	1.10	.96	.83	.70	.59	.48	22	262.0	5.16	4.44	3.84	3.30	2.80	2.29
5	1146	1.18	1.03	.89	.75	.63	.52	24	240.5	5.64	4.92	4.20	3.59	3.04	2.50
6	955.3	1.41	1,23	1.06	.90	.76	.62	26	222.3	6.07	5.29	4.58	3.88	3.29	2.70
7	819.0	1.65	1.44	1.24	1.05	.89	.73								

TABLE IX. SHORT RADIUS CURVES

Radius Feet	Chord Feet	Central Angle	Deflection Angle	Deflection for 1 Foot
35	10	16-26	8-13	49.3
45	10	12-46	6-23	38.3
50	15	17-16	8-38	34.5
60	15	14-22	7-11	28.8
75	15	11-30	5-45	23.0
100	20	11-30	5-45	17.3
120	20	9-34	4-47	14.3
150	20	7-39	3-49	11.5
190	25	7-32	3-46	9.15
200	25	7-10	3-35	8.6
225	25	6-25	3-12	7.7
240	25	5-58	2-59	7.2
250	25	5-44	2-52	6.9
275	25	5-12	2-36	6.2
288	50	9-58	4-59	6.0
300	50	9-32	4-46	5.7
350	50	8-12	4-06	4.9
376	50	7-40	3-50	4.6
400	50	7-10	3-35	4.3
410	50	7-00	3-30	4.2

To find length of curve divide angle from P. C. to P. T. by central angle of chord, and multiply by length of chord.

TABLE X. RODS IN FEET, 10THS AND 100THS OF FEET

Rods	Feet	Rods	Feet	Rods	Feet	Rods	Feet	Rods	Feet
1	16.50	21	346.50	41	676.50	61	1006.50	81	1336.50
2	33.00	22	363.00	42	693.00	62	1023.00	82	1353.00
3	49.50	23	379.50	43	709.50	63	1039.50	83	1369.50
4	66.00	24	396.00	44	726.00	64	1056.00	84	1386.00
5	82.50	25	412.50	45	742.50	65	1072.50	85	1402.50
6	99.00	26	429.00	46	759.00	66	1089.00	86	1419.00
7	115.50	27	445.50	47	775.50	67	1105.50	87	1435.50
8	132.00	28	462.00	48	792.00	68	1122.00	88	1452.00
9	148.50	29	478.50	49	808.50	69	1138.50	89	1468.50
10	165.00	30	495.00	50	825.00	70	1155.00	90	1485.00
11	181.50	31	511.50	51	841.50	71	1171.50	91	1501.50
12	198.00	32	528.00	52	858.00	72	1188.00	92	1518.00
13	214.50	33	544.50	53	874.50	73	1204.50	93	1534.50
14	231.00	34	561.00	54	891.00	74	1221.00	94	1551.00
15	247.50	35	577.50	55	907.50	75	1237.50	95	1567.50
16	264.00	36	594.00	56	924,00	76	1254.00	96	1584.00
17	280.50	37	610.50	57	940.50	77	1270.50	97	1600.50
18	297.00	38	627.00	58	957.00	78	1287.00	98	1617.00
19	313.50	39	643.50	59	973.50	79	1303.50	99	1633.50
20	330.00	40	660.00	60	990.00	80	1320.00	100	1650.00

TABLE XI. LINKS IN FEET, 10THS AND 100THS OF FEET

Links	Feet	Links	Feet	Links	Feet	Links	Feet	Links	Feet	Links	Feet
1	0.66	18	11.88	35	23.10	52	34.32	69	45.54	86	56.76
2	1.32	19	12.54	36	23.76	53	34.98	70	46.20	87	57.42
3	1.98	20	13.20	37	24.42	54	35.64	71	46.86	88	58.08
4	2.64	21	13.86	38	25.08	55	36.30	72	47.52	89	58.74
5	3.30	22	14.52	39	25.74	56	36.96	73	48.18	90	59.40
6	3.96	23	15.18	40	26,40	57	37.62	74	48.84	91	60.06
7	4.62	24	15.84	41	27.06	58	38.28	75	49.50	92	60.72
8	5.28	25	16.50	42	27.72	59	38.94	76	50.16	93	61.38
9	5.94	26	17.16	43	28.38	60	39.60	77	50.82	94	62.04
10	6.60	27	17.82	44	29,04	61	40.26	78	51.48	95	62.70
11	7.26	28	18.48	45	29.70	62	40.92	79	52.14	96	63.36
12	7.92	29	19.14	46	30.36	63	41.58	80	52.80	97	64.02
13	8.58	30	19.80	47	31.02	64	42.24	81	53.46	98	64.68
14	9.24	31	20.46	48	31.68	65	42.90	82	54.12	99	65.34
15	9.90	32	21.12	49	32.34	66	43.56	83	54.78	100	66.00
16	10.56	33	21.78	50	33.00	67	44.22	84	55.44	101	66.66
17	11.22	34	22.44	51	33.66	68	44.88	85	56.10	102	67.32

S OF FEET

81 13361

88 | 1452.00 89 | 1468.50 90 | 1485.00

91 | 1501.50 92 | 1518.00 93 | 1534.50

> 1551.00 1567.50 1584.00

 $7 \mid 1600.50 \\ 98 \mid 1617.00 \\ 99 \mid 1633.50$

SURVEYING INSTRUMENTS, EQUIPMENT AND SUPPLIES

- EDM Systems
- Theodolites
- Levels
- Transits
- Tripods
- Rods
- Hand Levels
- Tapes
- Planimeters
- Accessories

00 | 1650.00 OF FEET

8.84 91 9.50 92 50.16 93 50.82 94 51.48 95 52.14 96 52.80 97 53.46 98

54.78 100 55.44 100 56.10 102

54.12

The paper in this book is a fine quality thick 50% rag ledger specially treated during the making to give "High Wet Strength." It retains its strength and writing surface when dried after having been subjected to extreme weather conditions.

FIELD BOOKS

Rain resistant fine quality ledger paper, bound in high visibility chrome yellow imitation leather. Printed in waterproof ink.

Left page: blue horizontal lines; red vertical lines.

Right page: 4 horizontal and 8 vertical blue lines; red vertical center line.

Stock No. 8152-00 Transit Field Book. Size 4½ x 7½ inches.

Stock No. 8152-05 Economy Field Book. Spiral Bound Paperback. Size 4½ x 7½ inches.

Left page: blue horizontal lines; red vertical lines. Right page: 8 x 8 blue lines; red vertical center line.

Stock No. 8152-20 Mining Transit Book. Size 4½ x 7½ inches.

Left page: blue horizontal lines; red vertical lines.

Right page: 10 x 10 blue lines; red vertical center line. Inch lines heavy.

Stock No. 8152-30 Engineers Field Book. Size 4½ x 7½ inches.

Both pages: blue horizontal lines; red vertical lines. 6 vertical columns.

Stock No. 8152-50 Level Book. Size 4 x 6½ inches. Stock No. 8152-55 Level Book. Size 4½ x 7½ inches.

Left page: blue horizontal lines; red vertical lines. Right page: 4 x 4 blue lines; red vertical center line.

Stock No. 8152-60 Field Book. Size 4½ x 7¼ inches.

Both pages: 10 x 10 blue lines; inch lines slightly heavier.

Stock No. 8152-75 Cross Section Book. Size 6½ x 8½ inches.

CURVE FORMULAE

D = Degree of Curve

1° = 1-Degree of Curve

2° =2-Degree of Curve

P.C. = Point of Curve

P.T. = Point of Tangent

P.I. = Point of Intersection

I = Intersection of Angle, Angle between Two Tangents

L = Length of Curve, from P.C. to P.T.

T = Tangent Distance

E = External Distance

R = Radius

L.C. = Length of Chord

M = Length of Middle Ordinate

c = Length of Sub-Chord

d = Angle of Sub-Chord

$$R = \frac{L.C.}{2 \sin \frac{1}{2} I} T = R \tan \frac{1}{2} I = \frac{L.C.}{2 \cos \frac{1}{2} I}$$

$$\frac{L.C.}{2} = R \sin \frac{I}{2}, D \, 1^{\circ} = R = 5730, D \, 2^{\circ} = \frac{5730}{2}, D = \frac{5730}{R}$$

$$M = R \, (1 - \cos \frac{1}{2} I), = R - R \cos \frac{I}{2}$$

$$\frac{E + R}{R} = \sec \frac{I}{2}, \frac{R - M}{R} = \cos \frac{I}{2}$$

$$c = 2 \, R \sin \frac{1}{2} d, d = \frac{c}{2R}$$

$$L.C. = 2 \, R \sin \frac{1}{2} I, E = R \, (\sec \frac{1}{2} I - I), = R \, \sec \frac{I}{2} - R$$

Minutes in Decimals of a Degree

Inches in Decimals of a Foot

18 -0052	3 32 0078	0104	3 16 ∙0156	1 √0208	-5 16 -0260	-0313	0417	•0521	-06 2 5	7 8 ∙0729
1	2	3	4	5	6	7	8	9	10	11
·0833	·1667	·2500	·3333	•4167	•5000	·5833	•6667	·7500	•8333	·9167

