Universidad Nacional Abierta y a Distancia Vicerrectoría Académica y de Investigación Curso: Arquitectura de Computadores Código: 202016893

Guía de actividades y rúbrica de evaluación – Tarea 3 Aritmética del computador y las arquitecturas computacionales

Angelica Gycell Mariño Peña 2025 **Ítem 1:** Explica los sistemas numéricos binario, octal, decimal, hexadecimal y como se realiza la respectiva conversión entre sistemas.

¿Qué es un sistema numérico?

 Un sistema numérico es una forma de representar cantidades usando símbolos y una base. Cada sistema usa una base distinta, lo que determina cuántos dígitos tiene y cómo se interpretan los números.

BASE	SISTEMA	CIFRAS QUE EMPLEAN
2	binario	0,1
3	Ternario	0,1,2
4	Cuaternario	0,1,2,3
5	Quinario	0,1,2,3,4
6	Senario	0,1,2,3,4,5
7	Heptal	0,1,2,3,4,5,6
8	Octal	0,1,2,3,4,5,6,7
9	Nonario	0,1,2,3,4,5,6,7,8
10	Decimal	0,1,2,3,4,5,6,7,8,9
11	Undecimal	0,1,2,3,4,5,6,7,8,9, A
12	Duodecimal	0,1,2,3,4,5,6,7,8,9, <i>A</i> , <i>B</i>

Sistema Decimal (Base 10)

- Es el sistema que usamos diariamente.
- Utiliza los dígitos: **0 a 9**.
- Cada dígito tiene un peso que depende de su posición (unidades, decenas, centenas...).
- **Ejemplo:** 273

Cálculo: $2 imes 10^2 + 7 imes 10^1 + 3 imes 10^0 = 200 + 70 + 3 = 273$

Sistema Binario (Base 2)

- Utiliza solo los dígitos: **0 y 1**.
- Es el lenguaje de las computadoras.
- Cada posición representa una potencia de 2.
- Ejemplo:
- Número: 1011

Cálculo: $1 imes 2^3 + 0 imes 2^2 + 1 imes 2^1 + 1 imes 2^0 = 8 + 0 + 2 + 1 = 11$

Sistema Octal (Base 8)

- Usa los dígitos: **0 a 7**.
- Cada posición representa una potencia de 8.
- Se usa como una forma abreviada del binario.
- Ejemplo:
- Número: **157**

Cálculo: $1 imes 8^2 + 5 imes 8^1 + 7 imes 8^0 = 64 + 40 + 7 = 111$

Sistema Hexadecimal (Base 16)

- Utiliza los dígitos: 0 a 9 y letras A a F (A=10, B=11, ..., F=15).
- Es muy usado en programación y direcciones de memoria.
- Cada posición representa una potencia de 16.
- Ejemplo:
- Número: 2F

Cálculo: $2 imes 16^1 + 15 imes 16^0 = 32 + 15 = 47$

Conversión de Decimal a Binario

• **Ejemplo:** 25

Dividir sucesivamente entre 2:

• Resultado: 11001 (de abajo hacia arriba)

División	Cociente	Residuo
25 ÷ 2	12	1
12 ÷ 2	6	0
6 ÷ 2	3	0
3 ÷ 2	1	1
1 ÷ 2	0	1

Ítem 2: Realiza 10 ejercicios a mano alzada de conversión con su respectivo procedimiento. 2 de decimal a binario, 2 de decimal a octal, 2 de decimal a hexadecimal, 2 de binario a decimal, 2 de binario a octal.

Decimal a Binario (2 ejercicios)

Decimal a Octal (2 ejercicios)

Decimal a
Hexadecimal
(2 ejercicios)

Binario a Decimal (2 ejercicios)

Binario a Octal (2 ejercicios)

Ítem 3: Realiza 8 ejercicios a mano alzada de aritmética computacional en base 2; por cada una de las siguientes operaciones (dos sumas, dos de restas, dos multiplicaciones y dos de divisiones), recuerde que deben llevar el procedimiento.

Sumas binarias (2 ejercicios)

Restas binarias (2 ejercicios)

Multiplicaciones binarias (2 ejercicios)

Divisiones Binarias (2 ejercicios)

Ítem 4: Crea un cuadro sinóptico con los componentes internos de su computadora (CPU, Memoria, Controladores, Unidades de E/S).

Ítem 5: Diseña tres fichas nemotécnicas de los siguientes temas: El Microprocesador 8086, Registros Internos del 8086(Datos, Segmento, Puntero de Pila, Banderas de Estado y de Control), Lenguaje Assembler (TASM, MASM).

Ficha Nemotécnica: Microprocesador 8086

MICROPROCESADOR 8086

Ficha técnica

Nombre completo: Intel 8086 Año de lanzamiento: 1978 Tamaño de palabra: 16 bits

Dirección de memoria: 20 bits \rightarrow 1 MB de direccionamiento

Registros: 14 registros internos

Modos de operación:

Modo mínimo

• Modo máximo (con coprocesador 8087)

Curiosidad: Es la base de la arquitectura x86 usada hasta hoy.

Ficha
Nemotécnica:
Registros
internos del 8086

REGISTROS INTERNOS DEL 8086

- 1 Registros de Datos:
 - AX (Acumulador)
 - BX (Base)
 - · CX (Contador)
 - DX (Datos)

- Registros de Segmento:
 - · CS (Código)
 - DS (Datos)
 - SS (Pila)
 - ES (Extra)

- 3 Punteros e Índices:
 - SP (Puntero de pila)
 - BP (Puntero base)
 - SI (Índice fuente)
 - DI (Índice destino)

- Registros de Banderas (FLAGS):
 - ZF (Zero Flag)
 - CF (Carry Flag)
 - SF (Sign Flag)
 - OF (Overflow Flag)

Ficha Nemotécnica: Lenguaje Assembler (TASM / MASM)

LENGUAJE ASSEMBLER (TASM / MASM)

```
St(R) Windows DOS
right Microsoft Corp 1990-2001.
Si1\BIN\ml macro.asm
St (R) Macro Assembler Version 6.11
nt (C) Microsoft Corp 1981-1993. All rights reserved.
Ling: macro.asm
St (R) Segmented Executable Linker Version 5.31.009 Jul 13 1992
nt (C) Microsoft Corp 1984-1992. All rights reserved.

Modules [.obj]: macro.obj
St [macro.exe]: "macro.exe"
Le [nul.map]: NUL
St [.lib]:
St [.l
```

Ficha técnica

Assembler: Lenguaje de bajo nivel que se comunica

directo con el hardware.

TASM: Turbo Assembler (Borland)
MASM: Microsoft Macro Assembler

Interrupciones comunes:

- int 21h: Llamadas al sistema (DOS)
- mov: Transferencia de datos