MOSFET (I): Fundamentals

Material developed by Prof. C. Z. Zhao

<u>OUTLINE</u>

- I V Characteristics
 - Cutoff Region
 - Linear Region
 - Saturation Region (pinch-off region)
- Switch model of nMOSFETs

Reading: Chapter 3.3

MOS Capacitors

MOS: Metal-Oxide-Semiconductor

Ec(O) and electric field direction

4. Energy band diagram: Vg>V_m

Inversion: Minority carriers

PL

PL

4. Inversion

- > Weak Inversion: $0 < \phi_n < \phi_F \ (\phi_F < \phi_S < 2\phi_F)$
- Strong Inversion: $\phi_n \ge \phi_F$ ($\phi_S \ge 2\phi_F$), electron density at the interface \ge hole density in Si bulk.
- Vg for strong inversion: V_T 'threshold voltage'.

$$Vg = V_T \rightarrow \phi_s = 2\phi_F \rightarrow \phi_n = \phi_F \rightarrow n_s = p_b$$

$$V_G = V_{FB} + V_{ox} + \phi_s$$

$$Vg=V_T \rightarrow \phi_s = 2\phi_F$$

$$V_T = V_{FB} + V_{ox} + 2\phi_F$$

$$V_{ox} = +\frac{\sqrt{2qN_A \varepsilon_{Si}(2\phi_F)}}{C_{ox}}$$

for p-Si sub.

$$V_{ox} = -\frac{\sqrt{2qN_D \varepsilon_{Si} |2\phi_F|}}{C_{ox}}$$

for n-Si sub.

 A GATE electrode is placed above (electrically insulated from) the silicon surface, and is used to control the resistance between the SOURCE and DRAIN regions

Gate oxide

Consider the current I_G (flowing into **G**) versus V_{GS} :

The gate is insulated from the semiconductor, so there is no significant (steady) gate current.

nMOSFET: V_{GS}<V_T

Under zero bias, two back-to-back *pn*-junctions create a very high resistive path between source and drain.

Appling a **positive bias** (V_{GS}) to the gate, creates a depletion region under the gate (repells mobile holes). The depletion region is similar to the one occurring in a pn-junction.

nMOSFET: V_{GS}>V_T

Inversion layer expressions are (the surface potential ϕ_s is $2\phi_F$):

Inversion layer charge $Q_{inv} = -C_{ox}(V_G - V_T)$

 $V_G^{\uparrow} \rightarrow Q_{inv}^{\uparrow}$

Threshold voltage

$$V_T = V_{FB} + 2\phi_F + \frac{\sqrt{2qN_A \varepsilon_{Si}(2\phi_F)}}{C_{ox}}$$

Inversion layer

$$Q_{inv} \times W \times L = q \times n \times t \times W \times L$$

$$\rightarrow Q_{inv} = q n t$$

- Without gate bias, MOSFET is off because two diodes are "back-to-back". One of them will be reversely biased. To switch on, the interfacial region is inverted by applying a gate bias.
- Above a certain gate-to-source voltage (*threshold voltage* V_T), a conducting layer of mobile electrons is formed at the Si surface beneath the oxide. These electrons can carry current between the source and drain.

Electrical Resistance

Resistance
$$R \equiv \frac{V}{I} = \rho \frac{L}{A} = \frac{\rho L}{tW} = \left(\frac{\rho}{t}\right) \left(\frac{L}{W}\right)$$
 (Unit: ohms)

where ρ is the resistivity (Ω •cm)

Inversion layer as a resistor

Consider an n-channel:

where Q_{inv} is the charge per unit area.

$$Q_{inv} = q \, n_s \, t \qquad \rho \equiv \frac{1}{\sigma} = \frac{1}{qn\mu_n + qp\mu_p}$$

nMOSFET I_D vs. V_{DS} Characteristics

Next consider I_D (flowing into **D**) versus V_{DS} , as V_{GS} is varied:

"Cutoff" region: $V_{GS} < V_T$

Above threshold ($V_{GS} > V_T$): "inversion layer" of electrons appears, so conduction

between **S** and **D** is possible

Below "threshold" ($V_{GS} < V_T$): no charge \rightarrow no conduction

The MOSFET as a Controlled Resistor

- The MOSFET behaves as a resistor when V_{DS} is low:
 - \triangleright Drain current I_D increases linearly with V_{DS}
 - Resistance R_{DS} between SOURCE & DRAIN depends on V_{GS}
 - R_{DS} is lowered as V_{GS} increases above V_T

NMOSFET Example:

Linear or Resistive or ohmic or "Triode" Region: 0 < V_{DS} < V_{GS} – V_T

SL

MOSFET as a Controlled Resistor (cont'd)

 $Q_{inv} = q n t$, where t is the thickness of the inversion layer.

$$I_D = qn v Wt = qn \mu E Wt = -\mu C_{ox}W [(V_{GS} - V_T) - V(x)] E$$
 where, $E = -dV(x)/dx$.

$$\int I_D dx = \int \mu C_{ox} W \left[(V_{GS} - V_T) - V(x) \right] dV(x)$$

Since I_D is independent of the distance down the channel it can be taken outside the integral sign and the integral is then equal to the channel length. The limits between x=0 and x=L correspond to V(x)=0 and $V(x)=V_D$.

Inversion charge density $Q_{inv}(x) = -C_{ox}[V_{GS}-V_T-V(x)]$ where $C_{ox} \equiv \varepsilon_{ox} / t_{ox}$

MOSFET as a Controlled Resistor (cont'd)

Let's deduce I_D from R_{DS}

$$I_D = \frac{V_{DS}}{R_{DS}}$$

$$I_{D} = \frac{V_{DS}}{R_{DS}}$$
 & $R_{DS} = R_{s}(L/W) = \frac{L/W}{\mu_{n}Q_{inv}} = \frac{L/W}{\mu_{n}C_{ox}(V_{GS} - V_{T} - \frac{V_{DS}}{2})}$

$$I_{D} = \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{T} - \frac{V_{DS}}{2}) V_{DS}$$

average value of V(x)

We can make R_{DS} low by

- applying a large "gate drive" ($V_{GS} V_T$)
- making W large and/or L small

$$R_{s} = \frac{1}{\mu_{n} Q_{inv}}$$

MOSFET as a Controlled Resistor (cont'd)

$$I_D = \mu C_{ox}(W/L)[(V_{GS} - V_T)V_{DS} - V_{DS}^2/2]$$

(1)

for a given V_{GS}

it applies only for the condition $V_{DS} < (V_{GS} - V_T)$ (This is called the 'below pinch-off condition.')

MOSFET as a Controlled Resistor (cont'd)

$$I_D = \frac{\mu_n C_{Ox}}{2} \frac{W}{L} \left(2(V_G - V_T) V_{DS} - V_{DS}^2 \right). \tag{1}$$

for a given V_{GS}

Note for $V_{DS} \ge V_G - V_T = V_{DS,sat}$, result is non-physical.

At
$$V_{DS,sat}$$
, $n_{s,x=L} = 0$

assume that channel curr.

is const for $V_{DS} \ge V_{DS,sat}$

$$I_{D,sat} = \frac{\mu_n C_{Ox}}{2} \frac{W}{L} (V_{GS} - V_T)^2$$
 (2)

[after substituted V_{DS,sat} back into equation (1)

which is called the 'above pinch-off equation'.

Strictly speaking this equation only applies for V_{GS} - V_{T} = V_{DS} , but practically the electrical characteristic saturates above this point so that the equation is more generally applicable.

Depletion Region Width W_{dep}

At
$$V_D=0$$

$$W_{dep} = x_{po} + x_{no} = \sqrt{\frac{2\varepsilon_{Si}}{q} \left(\frac{N_A + N_D}{N_A N_D}\right)} \phi_B$$

At
$$V_D < 0$$

$$W_{dep} = x_p + x_n = \sqrt{\frac{2\varepsilon_{Si}}{q} \left(\frac{N_A + N_D}{N_A N_D}\right)} (\phi_B - V_D)$$

- The width of the depletion region is a function of the bias voltage, and is dependent on N_A and N_D .
- If one side is much more heavily doped than the other (which is commonly the case), then this can be simplified:

$$W_{dep} \cong \sqrt{\frac{2\varepsilon_{Si}}{qN}(\phi_{B} - V_{D})}$$

where *N* is the doping concentration on the more lightly doped side.

What is "Pinch off"? 夹断

- For a given V_{GS}, you have a maximum amount of current you can flow through the channel (regardless of V_{DS}).
- When V_{DS} = V_{GS} V_T the channel is flowing as much current as it can so we call it pinched off (even though current continues to flow).

What is "Pinch off"? 夹断

- For a given V_{GS}, you have a maximum amount of current you can flow through the channel (regardless of V_{DS}).
- When V_{DS} = V_{GS} V_T the channel is flowing as much current as it can so we call it pinched off (even though current continues to flow).

What is "Pinch off"? 夹断

- For a given V_{GS}, you have a maximum amount of current you can flow through the channel (regardless of V_{DS}).
- When V_{DS} = V_{GS} V_T the channel is flowing as much current as it can so we call it pinched off (even though current continues to flow).

What is "Pinch off"?

- For a given V_{GS}, you have a maximum amount of current you can flow through the channel (regardless of V_{DS}).
- When V_{DS} = V_{GS} V_T the channel is flowing as much current as it can so we call it pinched off (even though current continues to flow).

Why "Pinch off"?

- As V_{DS} increases, the inversion-layer charge density at the drain end of the channel is reduced; therefore, I_D does not increase linearly with V_{DS} .
- When V_{DS} reaches $V_{GS} V_T$, the channel is "pinched off" at the drain end, and I_D saturates (*i.e.* it does not increase with further increases in V_{DS}).
- In the pinched-off region: $Q_{inv}(x) = -C_{ox}[V_{GS} V_T V_{DS,sat}] = 0$

I_D vs. V_{DS} or V_{GS} Characteristics

$$I_{D} = \frac{\mu_{n} C_{Ox}}{2} \frac{W}{L} \left(2 \left(V_{GS} - V_{T} \right) V_{DS} - V_{DS}^{2} \right). \tag{1}$$

For $V_{DS} \ge V_{DS,sat}$

$$I_{D,sat} = \frac{\mu_n C_{Ox}}{2} \frac{W}{L} (V_{GS} - V_T)^2$$
 (2)

The graphs shows ideal characteristics. The top graph is the **output characteristic**, the lower one is the **transfer characteristic**. Equations (1) and (2) are the simple form of the design equations.

The quantity μC_{ox} (W/L) = β is the device constant. The designer can only vary W/L so as to change β . Other values are fixed during the process development.

<u>OUTLINE</u>

- I V Characteristics
 - Cutoff Region
 - Linear Region
 - Saturation Region (pinch-off region)
- Switch model of nMOSFETs

Switch Model of nMOS Transistor

Transistor in Linear Mode Assuming $V_{GS} > V_{T}$ V_{GS} I_D n+ $V_{GS}-V_{T}$

When
$$V_{DS} \le V_{GS} - V_T$$
: $I_D = \beta_0 W/L [(V_{GS} - V_T)V_{DS} - V_{DS}^2/2]$

$$\beta_0 = \mu_n C_{ox}$$

$$R = V_{DS} / I_D$$

Transistor in Saturation Mode

Assuming $V_{GS} > V_{T}$

The current remains constant (saturates).

When $V_{DS} \ge V_{GS} - V_{T}$: $I_{D} = (\beta_{0}/2) \text{ W/L } [(V_{GS} - V_{T})^{2}]$

$$R = V_{DS} / I_{D}$$

nMOSIC - The MOST as a linear R_{DS}

When $V_{DS} \leq V_{GS} - V_{T}$

$$I_{D} = \beta_{0} \text{ W/L } [(V_{GS} - V_{T})V_{DS} - V_{DS}^{2}/2]$$

For small V_{DS} , there is a linear dependence between V_{DS} and I_{D} , hence

$$1/R_{DS} = I_D/V_{DS}$$

$$= \beta_0 W/L [(V_{GS} - V_T) - V_{DS}/2]$$

$$\approx \beta_0 W/L (V_{GS} - V_T)$$

nMOSIC - The MOST as a Load

- The use of a load resistor (an implanted layer) leads to rather large structures.
- The need to minimise the area of silicon involved is paramount (see 1st Lecture).
- One method is to use a MOST (frequently called a MOSFET) as a load.
- In this case the gate and the drain are connected together so that $V_{GS}=V_{DS}$. The pinch off point coincides with $V_{GS}-V_{T}=V_{DS}$.
- The characteristic of the load is shown in the Fig. It extends along the drain axis by an amount V_{T} .

nMOSIC - The MOST as a Load

Problem

宽长比

Calculate the resistance of a load MOST with an aspect ratio of 1 when the mobility of the electrons is $1000 \text{cm}^2 \text{V}^{-1} \text{sec}^{-1}$ and the gate capacitance per unit area is 10^{-2}Fm^2 . The drain voltage is $V_D = 5 \text{V}$ and the threshold voltage $V_T = 0.5 \text{V}$.

Solution

The drain current is

$$I_D = \mu_n (W/L) C_{ox} (V_G - V_T)^2/2.$$

but $V_G = V_D$ so that

$$R=V_D/I_D=...$$

• $R=100\Omega$

nMOSIC - The MOST as a Load

Problem

Calculate the resistance of a load MOST with an aspect ratio of 1 when the mobility of the electrons is $1000 \text{cm}^2 \text{V}^{-1} \text{sec}^{-1}$ and the gate capacitance per unit area is 10^{-2}Fm^{-2} . The drain voltage is $V_D = 5 \text{V}$ and the threshold voltage $V_T = 0.5 \text{V}$.

Solution

The drain current is the same as at the pinch-off point where

$$\begin{split} I_D &= \mu(W/2L) \ C_{ox} \ (V_G - V_T)^2. \\ but \ V_G = V_D \ so \ that \\ I_D &= \mu(W/2L) \ C_{ox} \ (V_D - V_T)^2 \\ I_D/V_D = 1/R = \mu \ (W/2L) \ C_{ox} \ (V_D - V_T)^2/V_D \\ &= 0.1*0.5*10^{-2*}4.5^2 = 1.01*10^{-2}, \end{split}$$

• $R=100\Omega$

The Transistor Modeled as a Switch

Modeled as a switch with infinite off resistance and a finite on resistance, R_{on}

Resistance inversely proportional to W/L (doubling W halves R_{on})

For $V_{DD} >> V_T + V_{DSAT}/2$, R_{on} independent of V_{DD}

Once V_{DD} approaches V_{T} , R_{on} increases dramatically

$V_{DD}(V)$	1	1.5	2	2.5
$NMOS(k\Omega)$		19	15	13
PMOS ($k\Omega$)		55	38	31

 R_{on} (for W/L = 1) For larger devices divide R_{eq} by W/L