Atividade Prática 6

Guilherme de Almeida do Carmo - 2207184

Universidade Tecnológica Federal do Paraná

Resumo

Esse trabalho de Processamento Digital de Sinais apresenta uma série de problemas relacionados à Transformada Discreta de Fourier utilizando o software MATLAB.

Etapa 1

No problema em questão, utilizou-se a definição do Quadro 1, e então o resultado obtido foi o da Figura 1, considerando o sinal cossenoidal x = cos(2*pi*n*Ts):

N (tamanho do sinal)	8 amostras	
fs (frequência de amostragem)	4 amostras/segundo (sps)	
f (frequência do sinal)	1 Hz	

Quadro 1

Figura 1

Após isso, sendo necessária a representação de uma matriz que representasse uma DFT de 8 amostras, foram calculados cada um dos valores da matriz de forma teórica, sendo que o resultado foi inserido manualmente ao MATLAB, como nota-se na Figura 2. Porém o mesmo também foi implementado com um laço de repetição em uma função, vista na Figura 3, como método de verificação dos valores obtidos, sendo o resultado favorável.

```
% Matriz DFT 8x8 com valores calculados manualmente
F = [1 1 1 1 1 1 1;
    1 exp(-1i*pi/4) exp(-1i*pi/2) exp(-1i*3*pi/4) exp(-1i*pi) exp(-1i*5*pi/4) exp(-1i*3*pi/2) exp(-1i*2*pi);
    1 exp(-1i*pi/2) exp(-1i*pi) exp(-1i*3*pi/2) exp(-1i*2*pi) exp(-1i*5*pi/2) exp(-1i*3*pi) exp(-1i*7*pi/2);
    1 exp(-1i*3*pi/4) exp(-1i*3*pi/2) exp(-1i*9*pi/4) exp(-1i*3*pi) exp(-1i*15*pi/4) exp(-1i*9*pi/2) exp(-1i*21*pi/4);
    1 exp(-1i*pi) exp(-1i*2*pi) exp(-1i*3*pi) exp(-1i*4*pi) exp(-1i*5*pi) exp(-1i*6*pi) exp(-1i*7*pi);
    1 exp(-1i*5*pi/4) exp(-1i*5*pi/2) exp(-1i*15*pi/4) exp(-1i*5*pi/4) exp(-1i*5*pi/4) exp(-1i*3*pi/2) exp(-1i*3*pi/2);
    1 exp(-1i*2*pi) exp(-1i*3*pi) exp(-1i*9*pi/2) exp(-1i*6*pi) exp(-1i*15*pi/2) exp(-1i*21*pi/2);
    1 exp(-1i*2*pi) exp(-1i*7*pi/2) exp(-1i*21*pi/4) exp(-1i*7*pi) exp(-1i*35*pi/4) exp(-1i*21*pi/2) exp(-1i*49*pi/4)];
```

Figura 2

Figura 3

O espectro de frequência desse sinal, por meio de X = F*x', então, ao ser separado em magnitude e fase foi o da Figura 4.

Figura 4

Etapa 2

A Etapa 2 do problema foi consistida em refazer o que já havia sido feito, porém com os parâmetros do Quadro 2:

N (tamanho do sinal)	8 amostras	8 amostras
fs (frequência de amostragem)	4 sps	8 sps
f (frequência do sinal)	0.5 Hz	1 Hz

Quadro 2

Dessa forma, a sequência discreta representante do primeiro sinal é a da Figura 5, sendo o gráfico da magnitude e fase o da Figura 6. Já os resultados com a segunda coluna de parâmetros encontram-se nas Figuras 7 e 8.

Figura 5

Figura 6

Figura 7

Figura 8

Etapa 3

Na Etapa 3 do problema, o que foi pedido era a mudança dos parâmetros para N=100, f = 1 Hz e fs = 100 sps. Após isso, o espectro de frequência considerado deveria ser N=75. Os resultados obtidos estão nas Figuras 9 e 10, onde nota-se que com o espectro de frequência menor, a magnitude alcançou um pico maior de |X[k]|.

Figura 9

Figura 10