Introduction to Supervised Learning

Machine Learning

Daniele Loiacono

References

- ☐ Pattern Recognition and Machine Learning, Bishop
 - ▶ Chapter 1

What is supervised learning?

- ☐ It is the most popular and well-established learning paradigm
- lacksquare Data from an unknown function that maps an input x to an output t: $\mathcal{D} = \{\langle x, t \rangle\}$
- \Box Goal: learn a good approximation of f
- ☐ Input variables *x* are usually called **features** or **attributes**
- ☐ Output variables *t* are also called **targets or labels**
- Tasks
 - ▶ Classification if t is discrete
 - ▶ **Regression** if *t* is continuous
 - ▶ **Probability estimation** if t is a probability

When to apply supervised learning?

- When human cannot perform the task
 - ▶ e.g., DNA analysis
- ☐ When human can perform the task but cannot explain how
 - e.g., medical image analysis
- When the task changes over time
 - e.g., stocks price prediction
- ☐ When the task is user-specific
 - ▶ e.g., movie recommendation

- lacktriangle We want to **approximate** a function f given a data set \mathcal{D}
- ☐ The steps are

 \mathcal{F}

- lacktriangle We want to **approximate** a function f given a data set \mathcal{D}
- ☐ The steps are
 - ▶ Define a loss function £

 \mathcal{F}

- lacktriangle We want to **approximate** a function f given a data set \mathcal{D}
- ☐ The steps are
 - ▶ Define a loss function £
 - ightharpoonup Choose the **hypothesis space** \mathcal{H}

 \mathcal{F}

- lacktriangle We want to **approximate** a function f given a data set \mathcal{D}
- ☐ The steps are
 - ▶ Define a loss function £
 - ▶ Choose the **hypothesis space** \mathcal{H}
 - ► Find in H an approximation h of f that minimizes L

 \mathcal{F}

- lacktriangle We want to **approximate** a function f given a data set \mathcal{D}
- The steps are
 - ▶ Define a loss function £
 - ▶ Choose the **hypothesis space** \mathcal{H}
 - ► Find in H an approximation h of f that minimizes L
- What if we enlarge the hypothesis space?
 - ▶ We can approximate *f* without error!

 \mathcal{F}

- lacktriangle We want to **approximate** a function f given a data set \mathcal{D}
- ☐ The steps are
 - ▶ Define a loss function £
 - ightharpoonup Choose the **hypothesis space** \mathcal{H}
 - ► Find in H an approximation h of f that minimizes L
- What if we enlarge the hypothesis space?
 - ▶ We can approximate *f* without error!
 - But we don't know f!

 \mathcal{F}

- lacktriangle We want to **approximate** a function f given a data set \mathcal{D}
- The steps are
 - ▶ Define a loss function £
 - ightharpoonup Choose the **hypothesis space** \mathcal{H}
 - ▶ Find in \mathcal{H} an approximation h of f that **minimizes** \mathcal{L}
- What if we enlarge the hypothesis space?
 - ▶ We can approximate *f* without error!
 - ▶ But we don't know f!

 \mathcal{F}

Elements of Supervised Learning Algorithms

Representation

Evaluation

Optimization

Examples of representation

- Linear models
- Instance-based
- Decision trees
- Set of rules
- ☐ Graphical models
- Neural networks
- □ Gaussian Processes
- Support vector machines
- Model ensembles
- etc.

Examples of evaluation

- Accuracy
- Precision and recall
- Squared Error
- ☐ Likelihood
- Posterior probability
- Cost/Utility
- Margin
- Entropy
- ☐ KL divergence
- etc.

Examples of evaluation

- Accuracy
- Precision and recall
- Squared Error
- ☐ Likelihood
- Posterior probability
- Cost/Utility
- Margin
- Entropy
- ☐ KL divergence
- etc.

Examples of optimization

- Combinatorial optimization
 - ▶ e.g.: Greedy search
- Convex optimization
 - ▶ e.g.: Gradient descent
- Constrained optimization
 - ► e.g.: Linear programming

A Supervised Learning Taxonomy

- □ Parametric vs Nonparametric
 - ▶ Parametric: **fixed and finite** number of parameters
 - ▶ Nonparametric: the number of parameters depends on the training set
- Empirical Risk Minimization vs Structural Risk Minimization
 - ► Empirical Risk: Error over the **training set**
 - Structural Risk: Balance training error with model complexity
- ☐ Direct vs Generative vs Discriminative
 - ▶ Generative: Learns the **joint** probability distribution p(x,t)
 - ▶ Discriminative: Learns the **conditional** probability distribution p(t|x)
- □ Frequentist vs Bayesian
 - ► Frequentist: use probabilities to model the **sampling** process
 - ▶ Bayesian: use probability to **model uncertainty** about the estimate

Direct, Discriminative, or Generative

☐ Our goal, is learn from data a function that maps inputs to outputs

$$\mathcal{D} = \{\langle x, t \rangle\} \Rightarrow t = f(x)$$

- □ Direct approach
 - ▶ Learn directly an approximation of f from \mathcal{D}
- □ Discriminative approach
 - ▶ Model conditional density p(t|x)
 - ▶ Marginalize to find **conditional mean** $\mathbb{E}[t|x] = \int t \cdot p(t|x) dt$
- □ Generative approach
 - ▶ Model joint density p(x,t)
 - ▶ Infer conditional density p(t|x)
 - ▶ Marginalize to find **conditional mean** $\mathbb{E}[t|x] = \int t \cdot p(t|x) dt$