Intermediate Progress Report HiSC algorithm / Enzymes dataset

Data Mining Group 9: RAPHAEL BEDNARSKY, MAXIMILIAN FAISSNER, PETER HUNYADI, LAURA JAHN, NIKOLA VINKO

Presentation: Maximilian Faissner

Overview

■ HiSC algorithm

- Embedded hierarchical structures
- Comparison with OPTICS (related clustering algorithm)
- HiSC Algorithm overview
- Applying HiSC on test inputs / Visualization

■ Exploratory Data analysis of the Enzymes dataset

- Presentation by Nikola Vinko

Finding nested subspace clusters

k-dimensional subspace cluster, embedded into l-dimensional subspace cluster (k < l)

HiSC as OPTICS extension

OPTICS:

- DBSCAN-based approach
- Outputs datapoints in a computed ordering with help of reachability distances (kNN)
- Perform a Walk, deterministic walk succession by reachability distance
- Reachability plot:
 - valleys correspond to clusters (labels are not computed)

■ HiSC extension:

- Top-Down based (axis-parallel) subspace extension
- Each datapoint is assigned to a subspace dimension & weighted reachability distance

OPTICS reachability plot (from https://de.wikipedia.org/wiki/OPTICS)

HiSC algorithm overview

Pre-processing step:

- Assign subspace preference vectors to every datapoint
- Based on nearest neighbour (kNN, input parameter k is required)

Perform walk through the dataset like OPTICS:

- Next point has the smallest subspace distance to last point
- Initialize priority queue with the first data point randomly chosen

Subspace dimensionality of a single point

Walk succession: Calculate metrics to all remaining datapoints:

- Primary sorting by d_1 : integer value based on subspace preference vector between 2 points p and q. Requires $2^{\rm nd}$ input parameter α .
- Secondary sorting by d_2 : Subspace-weighted Euclidean distance (based on combined subspace weighting vector)

Visualization of sample inputs

- Various multi-dimensional test datasets used as input
- Presented example: <u>subspaces_5d.csv</u>, HiSC parameters $\alpha = 0.02$, k = 4
 - source of file: ELKI clustering framework
- Invoke HiSC, plot predecessor & reachability plot without label considerations:

Reachability plot without labels

Cluster Generation

- Set threshold weighted distance k (y-axis of reachability plot)
- Assign all consecutive points to same cluster, if:
 - Below threshold value k
 - A minimum number of points are present in a cluster

Predecessor plot (2d representation)

Reachability plot with predicted labels

Discussion

- Inconsistent performance on tested input datasets
- HiSC often "finds" embedded structures of clusters with no embeddings
- Selection of parameters α and k is not straight-forward
- Performance on Enzymes dataset: see exploratory data analysis report