

Rudki 27.09.2022 Kontest 1

Kontest 1 - 27.09.2022

Rozwiązania Pierwszaki

Zadanie 1. Udowodnij, że w dwunastokącie foremnym $A_1A_2...A_{12}$ przekątne A_1A_5 , A_3A_8 i A_4A_{11} przecinają się w jednym punkcie.

Rozwiązanie 1:

Zauważmy, że proste te są dwusiecznymi trójkąta $A_3A_5A_{11}$. Jest tak, ponieważ każda z tych prostych dzieli odpowiedni kąt tego trójkąta na 2 kąty oparte na łukach o tej samej długości, czyli dwa równe kąty. Wiadomo, że w trójkącie dwusieczne przecinają się w jednym punkcie (wynika to z definicji dwusiecznej), więc dane trzy proste przecinają się w jednym punkcie.

Rozwiązanie 2:

Zauważmy, że proste te są wysokościami trójkąta $A_1A_4A_8$. Można tego dowieść licząc kąty, przykładowo: $\langle A_5A_1A_4 = \frac{360^\circ}{12} : 2 = 15^\circ$ (z zależności między kątem środkowym i wpisanym). Podobnie $\langle A_1A_5A_8 = 75^\circ$. Niech $S = A_1A_5 \cap A_4A_8$. Zauważmy, że $\langle A_1SA_4 = 180^\circ - 15^\circ - 75^\circ = 90^\circ$. Stąd A_1A_5 jest wysokością w tym trójkącie i analogicznie wszystkie dane dane proste są wysokościami trójkąta $A_1A_4A_8$. Wiadomo, że w trójkącie wysokości przecinają się w jednym punkcie, więc dane trzy proste przecinają się w jednym punkcie.

Zadanie 2. Niech $a, b, c \in \mathbb{R}_+$ oraz $a + b + c \leq 4$ i $ab + bc + ca \geq 4$. Udowodnij, że co najmniej dwie z poniższych nierówności są prawdziwe:

$$|a - b| \le 2$$
, $|b - c| \le 2$, $|c - a| \le 2$

Rozwiązanie:

$$(a+b+c)^2 \le 16$$
, $a^2+b^2+c^2+2(ab+bc+ca) \le 16$, $a^2+b^2+c^2 \le 8$, $a^2+b^2+c^2-ab-bc-ca \le 8$, $(a-b)^2+(b-c)^2+(c-a)^2 \le 8$, z czego w oczywisty sposób wynika teza-załóżmy, że teza nie jest prawdziwa. Wtedy oczywiście: $(a-b)^2+(b-c)^2+(c-a)^2>8$, sprzeczność.

Rudki 27.09.2022 Kontest 1

Zadanie 3. Niech a i b będą różnymi liczbami całkowitymi dodatnimi takimi, że ab(a+b) jest podzielne przez a^2+ab+b^2 . Udowodnij, że $|a-b|>\sqrt[3]{ab}$.

Rozwiązanie:

Niech d = nwd(a, b). Wtedy $a = dk, b = dl, k, l \in \mathbb{N}$, nwd(k, l) = 1. $a^2 + ab + b^2|ab(a+b) => k^2 + kl + l^2|dkl(k+l)$. $nwd(k^2 + kl + l^2, k) = 1$, $nwd(k^2 + kl + l^2, l) = 1$, $nwd(k^2 + kl + l^2, k + l) = nwd(kl, k + l) = 1$. W takim razie $k^2 + kl + l^2|d$, z czego wynika, że $d \ge k^2 + kl + l^2$.

W takim razie $|a-b|^3 = d^3|k-l|^3 >= d^2(k^2+kl+l^2)1^3 = a^2+ab+b^2 > ab$, stąd zaś $|a-b| > \sqrt[3]{ab}$

Zadanie 4. Dany jest duży stosik kart. Na każdej karcie napisana jest jedna liczba ze zbioru $\{1, 2, ..., n\}$. Wiemy, że suma wszystkich liczb na kartach jest równa $k \cdot n!$ dla pewnego k.

Udowodnij, że możemy podzielić nasze karty na k stosów tak, że suma każdego z nich jest równa n!.

Rozwiązanie:

Najpierw udowodnimy lemat:

Z każdego zbioru $a_1, a_2, ..., a_n$ składającego się z n liczb całkowitych można wybrać niezerową liczbę elementów tak, że ich suma jest podzielna przez n.

Załóżmy, że żaden z elementów nie jest podzielny przez n. Teraz rozważmy liczby $b_1 = a_1, b_2 = a_1 + a_2, ..., b_n = a_1 + a_2 + ... + a_n$. Jeżeli żadna z nich nie jest podzielna przez n, to jakieś dwie liczby b_k i b_l , (k < l) mają tę samą resztę z dzielenia przez n. W takim razie ich różnica $a_{j+1} + ... + a_l$ jest podzielna przez n, co kończy dowód lematu.

Następnie dowodzimy naszą tezę za pomocą indukcji po n. Kiedy n=1, wtedy na każdej karcie napisane jest 1, stąd każda karta tworzy wymaganą grupę o sumie 1!

Załóżmy, że teza jest prawdziwa dla jakiejś liczby n >= 1, to znaczy, że jeżeli suma liczb na wszystkich kartach jest $k \cdot n!$, to karty te można podzielić na k stosów, każdy o sumie liczb równej n!.

Nazwijmy superkartą każdą grupę kart o sumie $l \cdot (n+1)$, l=1,...,n. l nazywamy zaś wartością superkarty. Każda karta z numerem n+1 jest superkartą o wartości 1. Z reszty kart, o numerach 1,...,n tworzymy superkarty w następujący sposób: wybieramy dowolne n+1 kart, później używając powyższego lematu, możemy wybrać kilka z nich o sumie podzielnej przez n+1, te karty utworzą superkartę (z definicji). Ten algorytm zatrzyma się, kiedy będziemy

Rudki 27.09.2022 Kontest 1

mieć mniej niż n+1 kart. Ale teraz, suma pozostałych kart musi również być podzielna przez n+1, skoro suma wszystkich kart jest podzielna przez n+1. To oznacza, że wszystkie pozostałe karty tworzą superkartę, której suma nie przekracza n(n+1).

Po takim podziale mamy superkarty z wartościami 1,...,n, a suma ich wartości wynosi $\frac{k \cdot (n+1)!}{n+1} = k \cdot n!$. Teraz używając hipotezy indukcyjnej, możemy podzielić te superkarty na k stosów o sumie wartości równej n! każdy. W takim razie suma kart w każdym stosie wynosi $n! \cdot (n+1) = (n+1)!$, co dowodzi tezę.

3/3