Original Graph:

All possible cycles:

$$C_1 = \langle n_1, n_2 \rangle$$
 $C_4 = \langle n_1, n_2, n_3, n_5 \rangle$
 $C_2 = \langle n_2, n_3 \rangle$ $C_5 = \langle n_3, n_5, n_4 \rangle$
 $C_3 = \langle n_3, n_4 \rangle$

Optimal Solution M* = {C1, C5}

Integer Programming Formulation (cycle-formulation):

MAX 2x1 + 2x2 + 2x3 + 4x4 + 3x5

Subject to:

$$(n_i)$$
 $X_i + X_4 \stackrel{<}{=}$

$$(n_1)$$
 $X_1 + X_4 \stackrel{?}{=} 1$ (n_2) $X_1 + X_2 + X_4 \stackrel{?}{=} 1$

X1, X2, X3, X4, X5 6 30, 13

Dual Values:

$$n_1: 5-5=0$$
 $n_2: 5-5=0$

$$(n_1, n_2): 0-1=-1$$

 $(n_2, n_1): 0-1=-1$
 $(n_2, n_3): -1-1=-2$
 $(n_3, n_2): 0-1=-1$
 $(n_3, n_4): 0-1=-1$
 $(n_4, n_3): -1-1=-2$
 $(n_3, n_5): 0-1=-1$
 $(n_5, n_1): 0-1=-1$