ADAMAS UNIVERSITY

END-SEMESTER EXAMINATION: JANUARY 2021

UNIVERSITY PURSUE EXCELLENCE	(Academic Session: 2020 – 21)		
Name of the Program:	B.Tech	Semester:	V
Paper Title :	Microwave Engineering	Paper Code:	EEC43107
Maximum Marks :	40	Time duration:	3 Hrs
Total No of questions:	8	Total No of Pages:	1

Instruction for the Candidate:

- 1. At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam.
- All parts of a Question should be answered consecutively. Each Answer should start from a fresh page.
- Assumptions made if any, should be stated clearly at the beginning of your answer.

Answer all the Groups Group A

Answer all the questions of the following

 $5 \times 1 = 5$

- 1. a) What do you mean by S_{21} ?
 - b) What is the wavelength corresponding to 4 GHz?
 - c) What is the frequency band from 2-4 GHz known as?
 - d) When does the characteristic impedance of a transmission line becomes a real quantity?
 - e) What is the angle between the direction of wave propagation and the electric field vector in TM mode?

GROUP-B

Answer *any three* of the following

 $3 \times 5 = 15$

- 2. Explain TE, TM, TEM modes of wave propagation along with proper diagram. Draw a transmission line section of length Δz and mark different components. [3+2]
- 3. Describe Maxwell's equations.

[5]

Write a short note on EMI/EMC 4.

[5]

5. Find out the values of propagation constant (γ) and characteristics impedance (Z_0) under the following conditions: for no loss (iii) for no distortion [2.5+2.5]

GROUP -C

Answer any two of the following

 $2 \times 10 = 20$

- 6. Write Helmholtz equation. Derive Helmholtz equation from Maxwell's equation. [2+8]
- Explain how a 4-port circulator can be realized by two Magic Tees. Explain the working 7. principle of Microwave Isolator. [5+5]
- Write short notes on: (i) Two hole directional coupler (ii) Microwave Circulator [5+5] 8.