Unidad II: Lógica de predicados

Lógica de predicados: La noción de predicado

Clase 05 - Matemáticas Discretas (IIC1253)

Prof. Miguel Romero

Lógica proposicional y sus limitaciones

Todas las personas son mortales.

Sócrates es persona.

Por lo tanto, Sócrates es mortal.

¿Cómo podríamos modelar este razonamiento en lógica proposicional?

Lógica proposicional y sus limitaciones

Todo número natural es par o impar

2 no es impar

Por lo tanto, 2 es par

¿Cómo podríamos modelar este razonamiento en lógica proposicional?

¿Qué le falta a la lógica proposicional?

- objetos (no solo proposiciones).
- predicados.
- cuantificadores: **para todo** (\forall) y **existe** (\exists) .

Lógica de predicados

Lógica de predicados permite expresar propiedades de estructuras como:

- Números naturales, enteros, racionales, reales, . . .
- Conjuntos, relaciones, ...

Podremos definir propiedades como:

- Para toda persona x, si x es artista, entonces x no es deportista.
- Para todo número n, existe un número m tal que n < m.

Ejemplos:

- 1. x es par
- $2. x \le y$
- 3. x + y = z

¿Cuál es el valor de verdad de estas proposiciones? Depende!

Hay que reemplazar las variables por objetos para tener un valor de verdad:

- $1. 2 \text{ es par}, 3 \text{ es par}, \dots$
- 2. $2 \le 3$, $6 \le 0$, $10 \le 5$, ...
- 3. 10 + 5 = 15, 3 + 8 = 1, ...

Definición:

■ Un predicado P(x) es una proposición abierta, cuyo valor de verdad depende del objeto en el cual es evaluado.

Ejemplos:

- P(x) = x es par
- R(x) = x es primo
- A(x) = x es artista

Definición:

- Un predicado P(x) es una proposición abierta,
 cuyo valor de verdad depende del objeto en el cual es evaluado.
- Para un predicado P(x) y un valor a, la evaluación P(a) es el valor de verdad del predicado P(x) en a.

P(x) = x es par	X	P(x)
	0	1 (True)
P(1) = 0	1	0 (False)
P(4) = 1	2	0 (False) 1 (True)
. ,		0 (False)
	:	÷

Definición:

- Un predicado P(x) es una proposición abierta, cuyo valor de verdad depende del objeto en el cual es evaluado.
- Para un predicado P(x) y un valor a, la **evaluación** P(a) es el valor de verdad del predicado P(x) en a.

P(x) = x es par	У	R(y)
	0	0
R(y) = y es primo	1	0
D(21) 1	2	1
R(31) = 1	3	1
R(21) = 0	4	0
	÷	÷

Definición:

- Un predicado P(x) es una proposición abierta, cuyo valor de verdad depende del objeto en el cual es evaluado.
- Para un predicado P(x) y un valor a, la **evaluación** P(a) es el valor de verdad del predicado P(x) en a.

P(x) = x es par	Z	A(z)
2/)	Javiera Mena	1
R(y) = y es primo	Cristian Castro	1
A(z) = z es artista	Alexis Sanchez	0
	:	
A(Javiera Mena) - 1		

A(Javiera Mena) =	= :	1
A(Cristian Castro)	=	

Predicados n-arios

Definición:

- Un predicado n-ario $P(x_1,...,x_n)$ es una prop. abierta con n variables, cuyo valor de verdad depende de los objetos en el cual es evaluado.
- Para un predicado $P(x_1,...,x_n)$ y valores $a_1,...,a_n$, la evaluación $P(a_1,...,a_n)$ es el valor de verdad de P en $a_1,...,a_n$.

Predicados n-arios

Definición:

- Un predicado n-ario $P(x_1, ..., x_n)$ es una prop. abierta con n variables, cuyo valor de verdad depende de los objetos en el cual es evaluado.
- Para un predicado $P(x_1,...,x_n)$ y valores $a_1,...,a_n$, la evaluación $P(a_1,...,a_n)$ es el valor de verdad de P en $a_1,...,a_n$.

- $O(x,y) = x \le y$

$$S(5,10,14) = 0$$

 $S(9,8,17) = 1$

Predicados n-arios

Definición:

- Un predicado n-ario $P(x_1,...,x_n)$ es una prop. abierta con n variables, cuyo valor de verdad depende de los objetos en el cual es evaluado.
- Para un predicado $P(x_1,...,x_n)$ y valores $a_1,...,a_n$, la evaluación $P(a_1,...,a_n)$ es el valor de verdad de P en $a_1,...,a_n$.

¿Cuál es el valor de verdad de las siguientes evaluaciones?

- $O(x,y) = x \le y$
- S(x,y,z) = x + y = z
- Padre(x, y) = x es padre de y

Padre(George McFly, Marty McFly) = 1

¿Cuál es el valor de verdad de O(George McFly, Marty McFly)? ¿y de Padre(5, 4)?

Predicados y dominio

Definición (final):

- Un **predicado** *n*-ario $P(x_1,...,x_n)$ es una prop. abierta con *n* variables, cuyo valor de verdad depende de los objetos en el cual es evaluado.
- Para un predicado $P(x_1,...,x_n)$ y valores $a_1,...,a_n$, la evaluación $P(a_1,...,a_n)$ es el valor de verdad de P en $a_1,...,a_n$.
- Un predicado $P(x_1, ..., x_n)$ siempre está restringido a cierto dominio de evaluación A.

Ejemplos de predicados y sus dominios:

$$O(x,y) = x \le y$$

 $\mathsf{sobre}\ \mathbb{N}$

$$S(x, y, z) = x + y = z$$

sobre \mathbb{Q}

Padre(x, y) = x es padre de y

sobre todas las personas

Predicados y dominio

Definición:

- Un **predicado** *n*-**ario** $P(x_1,...,x_n)$ es una prop. abierta con *n* variables, cuyo valor de verdad depende de los objetos en el cual es evaluado.
- Para un predicado $P(x_1,...,x_n)$ y valores $a_1,...,a_n$, la evaluación $P(a_1,...,a_n)$ es el valor de verdad de P en $a_1,...,a_n$.
- Un predicado $P(x_1,...,x_n)$ siempre está restringido a cierto dominio de evaluación A.

Notación:

```
Para un predicado P(x_1,...,x_n), diremos que x_1,...,x_n son las variables libres de P.
```

Definición:

Un predicado es **compuesto** si es un predicado básico, o la negación (\neg) , conjunción (\land) , disyunción (\lor) , implicancia (\rightarrow) , doble-impliancia (\leftrightarrow) de predicados compuestos sobre el **mismo dominio**.

El **evaluación** de un predicado **compuesto** corresponde a la evaluación iterativa de sus conectivos lógicos y predicados básicos.

Ejemplos:

$$P'(x) = \neg P(x)$$

$$P'(4) = \neg P(4) = 0$$

$$P'(7) = \neg P(7) = 1$$

X	P(x)	P'(x)
0	1	0
1	0	1
2	1	0
3	0	1
÷	:	÷

Definición:

Un predicado es **compuesto** si es un predicado básico, o la negación (\neg) , conjunción (\land) , disyunción (\lor) , implicancia (\rightarrow) , doble-impliancia (\leftrightarrow) de predicados compuestos sobre el **mismo dominio**.

El **evaluación** de un predicado **compuesto** corresponde a la evaluación iterativa de sus conectivos lógicos y predicados básicos.

Ejemplos:

$$P'(x) = \neg P(x)$$

$$O'(x,y,z) = O(x,y) \wedge O(y,z)$$

$$O'(4,9,7) = O(4,9) \land O(9,7) = 0$$

 $O'(7,12,18) = O(7,12) \land O(12,18) = 1$

Definición:

Un predicado es **compuesto** si es un predicado básico, o la negación (\neg) , conjunción (\land) , disyunción (\lor) , implicancia (\rightarrow) , doble-impliancia (\leftrightarrow) de predicados compuestos sobre el **mismo dominio**.

El evaluación de un predicado compuesto corresponde a la evaluación iterativa de sus conectivos lógicos y predicados básicos.

Ejemplos:

- $P'(x) = \neg P(x)$
- $O'(x,y,z) = O(x,y) \wedge O(y,z)$
- $P''(x,y) = (P(x) \land P(y)) \rightarrow O(x,y)$

$$P''(4,7) = (P(4) \land P(7)) \rightarrow O(4,7) = 1$$

 $P''(8,6) = (P(8) \land P(6)) \rightarrow O(8,6) = 0$
 $P''(10,24) = (P(10) \land P(24)) \rightarrow O(10,24) = 1$

Cuantificador universal

Sea $P(x_1,...,x_n)$ un predicado compuesto con dominio A.

Definición:

Definimos el cuantificador universal:

$$P'(x_1,...,x_{i-1},x_{i+1},...,x_n) = \forall x_i \ P(x_1,...,x_n)$$

donde x_i es la variable cuantificada y el resto de las variables $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$ son las variables libres.

■ Para $b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n$ en A, definimos su evaluación como:

$$P'(b_1,\ldots,b_{i-1},b_{i+1},\ldots,b_n) = 1$$

si **para todo** a en A se tiene que $P(b_1, \ldots, b_{i-1}, a, b_{i+1}, \ldots, b_n) = 1$, y 0 en caso contrario.

Cuantificador universal

Definición:

Para $b_1, ..., b_{i-1}, b_{i+1}, ..., b_n$ en A y $P'(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n) = \forall x_i \ P(x_1, ..., x_n)$, definimos:

$$P'(b_1,\ldots,b_{i-1},b_{i+1},\ldots,b_n) = 1$$

si **para todo** a en A se tiene que $P(b_1, \ldots, b_{i-1}, a, b_{i+1}, \ldots, b_n) = 1$, y 0 en otro caso.

x_1		X _i _	1 X _{i+}	1	Xn	P'	ssi	x_1		X_{i-1} X_i	$x_{i+1} \cdots$	Xn	Р
:	:	:	:	:	:	i		:	:	: :	: :	:	:
b_1		b_{i-}	1 b _{i+}	1	b_n	1		b_1		b_{i-1} a_1	b_{i+1}	b_n	1
÷	÷	÷	÷	÷	÷	:		b_1		b_{i-1} a_2	b_{i+1}	b_n	1
						'		b_1		b_{i-1} a_3	b_{i+1}	b_n	1
											b_{i+1}		
											: :		

¿Cuándo ocurre que $P'(b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n) = 0$?

$$O'(x) = \forall y \ O(x,y)$$

$$O'(0) = \forall y \ O(0,y) = 1$$

$$0 \ 1$$

$$0 \ 1$$

$$0 \ 2$$

$$1$$

$$0 \ 3$$

$$1$$

$$0 \ 4$$

$$1$$

$$\vdots \ \vdots$$

$$O'(x) = \forall y \ O(x,y)$$

$$O'(2) = \forall y \ O(2,y) = 0$$

$$2 \quad 1 \quad 0$$

$$2 \quad 2 \quad 1$$

$$2 \quad 3 \quad 1$$

$$2 \quad 4 \quad 1$$

$$\vdots \quad \vdots \quad \vdots$$

$O'(x) = \forall y \ O(x,y)$	X	P(x)
, , ,	0	1
$ O''(y) = \forall x \ O(x,y) $	1	0
$R = \forall x P(x)$	2	1
	3	0
R = 0	4	1
	÷	÷

$$O'(x) = \forall y \ O(x, y)$$

$$O''(y) = \forall x \ O(x, y)$$

$$R = \forall x \ P(x)$$

$$Q = \forall x \ (P(x) \lor \neg P(x))$$

$$Q = 1$$

X	P(x)	$\neg P(x)$	$P(x) \vee \neg P(x)$
0	1	0	1
1	0	1	1
2	1	0	1
3	0	1	1
4	1	0	1
÷	÷	:	:

Cuantificador existencial

Sea $P(x_1,...,x_n)$ un predicado compuesto con dominio A.

Definición:

Definimos el cuantificador existencial:

$$P'(x_1,...,x_{i-1},x_{i+1},...,x_n) = \exists x_i \ P(x_1,...,x_n)$$

donde x_i es la variable cuantificada y el resto de las variables $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$ son las variables libres.

Para $b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n$ en A, definimos su evaluación como:

$$P'(b_1,\ldots,b_{i-1},b_{i+1},\ldots,b_n) = 1$$

si **existe** a en A tal que $P(b_1, \ldots, b_{i-1}, a, b_{i+1}, \ldots, b_n) = 1$, y 0 en caso contrario.

Cuantificador existencial

Definición:

Para $b_1, ..., b_{i-1}, b_{i+1}, ..., b_n$ en A y $P'(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n) = \exists x_i \ P(x_1, ..., x_n)$, definimos:

$$P'(b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n) = 1$$

si **existe** a en A tal que $P(b_1, \ldots, b_{i-1}, a, b_{i+1}, \ldots, b_n) = 1$, y 0 en otro caso.

¿Cuándo ocurre que
$$P'(b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n) = 0$$
?

$$O'(y) = \exists x \ O(x,y)$$

$$O'(2) = \exists x \ O(x,2) = 1$$

$$2 \ 2 \ 1$$

$$3 \ 2 \ 0$$

$$4 \ 2 \ 0$$

$$\vdots \ \vdots$$

$$O'(y) = \exists x \ O(x,y)$$

$$O''(x) = \exists y \ O(x,y)$$

$$O''(2) = \exists y \ O(2, y) = 1$$

X	у	O(x,y)
2	0	0
2	1	0
2	2	1
2	3	1
2	4	1
÷	÷	:

Podemos combinar cuantificadores

¿Cuál es el valor de verdad de los siguientes predicados compuestos?

- $\forall x \forall y \ O(x,y)$
- $\exists x \exists y \ O(x,y)$
- $\forall x \exists y \ O(x,y)$
- $\exists x \, \forall y \, O(x,y)$

Definición (final):

Decimos que un predicado es compuesto si es:

- un predicado básico,
- la negación (¬), conjunción (∧), disyunción (∨), implicancia (→), doble-implicancia (↔), cuantificación universal (∀) o cuantificación existencial (∃) de predicados compuestos sobre el mismo dominio.

El evaluación de un predicado compuesto corresponde a la evaluación iterativa de sus cuantificadores, conectivos lógicos y predicados básicos.

Observación: Si el predicado compuesto es 0-ario (no tiene variables libres), entonces tiene un valor de verdad 0 o 1.

Considere los siguientes predicados básicos:

$$Bot(x) = x$$
 es un bot $Persona(x) = x$ es una persona $Sigue(x, y) = x$ sigue a y

sobre el conjunto de todos los usuarios de la red social X.

Escriba predicados compuestos que definan lo siguiente:

1. C(x,y) = x e y tienen un seguidor en común.

$$C(x,y) = \exists z (Sigue(z,x) \land Sigue(z,y))$$

2. E(x) = x es una persona que se sigue a si misma.

$$E(x) = Persona(x) \wedge Sigue(x, x)$$

3. Todo bot sigue al menos a una persona.

$$\forall x \Big(Bot(x) \rightarrow \exists y \Big(Persona(y) \land Sigue(x,y) \Big) \Big)$$

4. La relación Sigue es simétrica: si x sigue a y, entonces y sigue a x.

$$\forall x \forall y (Sigue(x, y) \rightarrow Sigue(y, x))$$

Considere los siguientes predicados básicos:

$$Suma(x, y, z) = (x + y = z)$$
 $Mult(x, y, z) = (x \cdot y = z)$ $x = y$

sobre el conjunto de los números naturales \mathbb{N} .

Escriba predicados compuestos que definan lo siguiente:

1. $x \le y$.

$$x \le y = \exists z (Suma(x, z, y))$$

2. x < y.

$$x < y = x \le y \land \neg(x = y)$$

3. Suc(x, y) = y es el sucesor de x.

$$Suc(x, y) = x < y \land \neg \exists z (x < z \land z < y)$$

Considere los siguientes predicados básicos:

$$Suma(x, y, z) = (x + y = z)$$
 $Mult(x, y, z) = (x \cdot y = z)$ $x = y$

sobre el conjunto de los números naturales \mathbb{N} .

Escriba predicados compuestos que definan lo siguiente:

4. Cero(x) = x es el numero 0.

$$Cero(x) = Suma(x, x, x)$$

 $Cero(x) = \forall y (x \le y)$

5. Uno(x) = x es el numero 1.

$$Uno(x) = Mult(x, x, x) \land \neg Cero(x)$$

 $Uno(x) = \exists y (Cero(y) \land Suc(y, x))$

6. Primo(x) = x es un número primo.

$$Primo(x) = \neg Cero(x) \land \neg Uno(x) \land$$
$$\forall y \forall z \Big(Mult(y, z, x) \rightarrow \big((y = x) \lor (z = x) \big) \Big)$$

Considere los siguientes predicados básicos:

$$Suma(x, y, z) = (x + y = z)$$
 $Mult(x, y, z) = (x \cdot y = z)$ $x = y$

sobre el conjunto de los números naturales \mathbb{N} .

¿Qué están expresando los siguientes predicados compuestos?

- 1. $\exists x \, \forall y \, (x \leq y)$
- 2. $\forall x \exists y (Suma(y, y, x))$.
- 3. $\exists x \, \forall y \, (Mult(x, y, y))$
- 4. $\forall x \forall y \forall z (Suma(x, y, z) \rightarrow Suma(y, x, z))$.
- 5. $\forall x \forall y \forall z ((Suc(x,y) \land Suc(y,z)) \rightarrow Suc(x,z))$
- 6. $\forall x (Primo(x) \rightarrow \exists y (Primo(y) \land x < y))$