FINM 34500/STAT 39000 Exam 2 (March 4, 2024)

You have two hours (120 minutes) to complete the exam. There are 6 problems/questions, many with multiple parts, worth varying amounts for a total of 100 points. For all multi-part problems all parts are worth the same amount. You may have one sheet of notes. No calculators, phones, etc., permitted.

For your reference, here is the standard Black-Scholes differential equation

$$\dot{f}(t,x) = r f(t,x) - r x f'(t,x) - \frac{\sigma^2}{2} x^2 f''(t,x).$$

Problem 1 (10). Consider the stochastic integral

$$Z_t = \int_0^t A_s \, dB_s,$$

where $A_t, 0 \le t < 1$ is as below with $A_t = 0$ for $t \ge 1$. Let $T = \min\{t : Z_t = 2\}$ and let $M_t = Z_{t \land T}$. In each case say whether or not $Z_t, 0 \le t \le 1$ is a martingale. Give reason.

- 1. $A_t = (1-t)^{-1/3}$
- 2. $A_t = (1-t)^{-2}$.

Problem 2 (15). Suppose that X_t satisfies

$$dX_t = X_t dt + dB_t, \quad X_0 = 1,$$

where B_t is a standard Brownian motion. Let $T = \min\{t : X_t = 0 \text{ or } 3\}$. Suppose F is a function with F(0) = 0 that is C^2 for 0 < x < 3 and such that $F(X_{t \wedge T})$ is a nonnegative martingale.

- 1. Find a second order ODE that F(x), 0 < x < 3 satisfies.
- 2. Find one such F with F(x) > 0 for x > 0 (you can leave your answer in terms of a definite integral).
- 3. Find the probability that $X_T = 3$. You can give your answer in terms of F.

Problem 3 (20). Suppose that a stock price S_t follows the geometric Brownian motion

$$dS_t = S_t \left[3 dt + 3 dB_t \right].$$

Suppose also there is a risk-free bond available growing at rate r = .04,

$$dR_t = r R_t dt$$
.

- 1. Let $\tilde{S}_t = e^{-rt} S_t$ denote the discounted stock price. What is the SDE for \tilde{S}_t (in terms of B_t)?
- 2. Let Q be the measure under which \tilde{S}_t is a martingale. This is obtained using the Girsanov theorem by tilting by a martingale M_t . Write the SDE for M_t .
- 3. Write the SDE for \tilde{S}_t in terms of a Brownian motion with respect to the measure Q.
- 4. Suppose there is a payoff $F(S_3) = [S_3 4]_+$ at time 3. Let v(t, x) be the value of this option at time t given that the stock price at time t equals x. What partial differential equation does v(t, x) satisfy?

Problem 4 (20). Suppose X_t satisfies the SDE

$$dX_t = X_t dt + 4 dB_t, X_0 = 0, (1)$$

and let $T = \min\{t : X_t = -2 \text{ or } X_t = 3\}$. We will consider $Y_t = X_{t \wedge T}$, the process stopped at time T. Here B_t is a standard Brownian motion with respect to probability measure \mathbb{P} .

- 1. What is the (infinitesimal) generator L associated to the process satisfying (??)?
- 2. Suppose we want to find a new probability measure Q that is mutually absolutely continuous with respect to \mathbb{P} and such that Y_t is a martingale with respect to Q. We will do this by tilting by a martingale M_t . Write down the SDE that M_t should satisfy for t < T. (It may be useful to note that $|X_t| \le 3$ for t < T.)
- 3. Your answer to the previous part should show that $M_t, t < T$ is a local martingale. In fact it is a martingale (you do not need to show this and may use this fact). Give the SDE that X_t satisfies for t < T with respect to a standard Brownian motion W_t with respect to the new measure Q.
- 4. Let u(x), -2 < x < 3, be the Q-probability that $X_T = 3$ given $X_0 = x$. Find u(x).

Problem 5 (20). Suppose X_1, X_2, \ldots are independent, identically distributed, random variables with

$$\mathbb{P}{X_j = 2} = q, \quad \mathbb{P}{X_j = \frac{1}{2}} = 1 - q.$$

Let

$$Y_n = X_1 X_2 \cdots X_n$$

with $Y_0 = 1$.

- 1. For what value of q will Y_n be a martingale with respect to $\{\mathcal{F}_n\}$ where \mathcal{F}_n is the information in X_1, \ldots, X_n ? For the remainder of the problem use this value of q.
- 2. Find $\mathbb{P}\{Y_3 = 2\}$.
- 3. Let T be the first time n that $Y_n = 64$ or $Y_n = 1/8$. Find $\mathbb{P}\{Y_T = 64\}$.
- 4. Let Q denote the probability measure obtained by tilting by Y, that is, if V is an \mathcal{F}_n -measurable event, then $Q(V) = \mathbb{E}[1_V Y_n]$. Find $Q\{Y_3 = 2\}$.

Problem 6 (15). For the following measures μ_1, μ_2 , state if $\mu_1 \ll \mu_2$. Give reasons.

- 1. μ_1 is the distribution of a uniform random variable on $\{1, 2, 3, 4, 5, 6\}$ and μ_2 is the distribution of a normal random variable with mean 3 and variance 1.
- 2. μ_1 is the probability measure on continuous functions on [0, 1] given by standard Brownian motion and μ_2 is the probability measure given by Brownian motion starting at the origin with drift 1 and variance parameter 4.
- 3. μ_1 is the distribution of a uniform random variable on $\{1, 2, 3, 4, 5, 6\}$ and μ_2 is the distribution of

$$X_1 + X_2 + \cdots + X_{20}$$

where X_1, X_2, \dots, X_{20} are independent random variables each with

$$\mathbb{P}\{X_j = 1\} = \mathbb{P}\{X_j = -1\} = \frac{1}{2}.$$