

Темы, освещенные в презентации

- **У**Логические элементы
- **▼Триггеры на логических элементах**
- УРегистры и счетчики

Основные параметры логических элементов

- 1. Каждый элемент реализует какую-то логическую операцию, поэтому к первому пункту отнесем конкретный набор логических функций данного элемента.
- 2. Конкретные значения напряжений U^1 , U^0 , отвечающие логической единице и логическому нулю, а также логический перепад.
 - 3. Передаточная характеристика, т.е. зависимость Ивых от Ивх.
 - 4. Помехоустойчивость.
 - 5. Коэффициент объединения по входу Коб.

Коэффициент объединения по входу — это число входных сигналов, которые могут быть поданы на вход усилителя.

6. Коэффициент разветвления по выходу Кразв.

Коэффициент разветвления — это максимальное число таких же логических элементов, которые можно подключить параллельно к выходу данного логического элемента.

7. Быстродействие.

Быстродействие логического элемента характеризуется временем задержки выходного сигнала по отношению к входному при переключении элемента.

8. Средняя потребляемая мощность и работа переключения схемы.

Разновидности логических элементов

В настоящее время используется несколько видов логических элементов:

- диодно-транзисторная логика (ДТЛ)
- транзисторно-транзисторная логика(ТТЛ, TTL)
- логика на основе комплементарных МОП транзисторов (КМОП, CMOS)
- на основе сочетания комплементарных МОП и биполярных транзисторов (BiCMOS)

	Напряжение питания, В	Уровень лог.0, В	Уровень лог. 1, В
ТТЛ	5 ±0,5	0,4	2,4
ТТЛШ	5 ±0,5	0,5	2,7
кмоп	315	< 0,1	~ U пит
Быстродейств. КМОП	26	< 0,1	~ U пит
ЭСЛ	-5,2 ±0,5	-1,65	-0,96

Резистивно-транзисторная логика

Элементы РТЛ логики представляют собой вариант переключающих схем на транзисторах в режиме насыщения. В приведенной на рисунке схеме реализуется логическая функция ИЛИ-НЕ.

Резистивно-транзисторная логика

Схема обладает низким коэффициентом разветвления по выходу. В настоящее время РТЛ логика не используется.

Потребляемая мощность РТЛ элемента ИЛИ-НЕ (МС717) 5 мВт, быстродействие 25 нс.

Логический элемент диодно-транзисторной логики (ДТЛ)

Название связано с тем, что входная логика в этих элементах реализуется с помощью диодов, а выходная — с помощью биполярного транзистора. Схема логического элемента ДТЛ с двумя входами изображена на рисунке.

Логический элемент И-НЕ диодно-транзисторной логики (ДТЛ)

Логический элемент И-НЕ ДТЛ служит прообразом более распространенного элемента И-НЕ ТТЛ. Входная логика элемента ТТЛ реализуется с помощью многоэмиттерного транзистора.

Логический элемент ДТЛ И-НЕ типа МС849 потребляет мощность 15 мВт, быстродействие 25 нс.

Простейший элемент ТТЛ

Простейшая схема элемента ТТЛ изображена на рисунке а).

На входе схемы стоит многоэмиттерный транзистор VT1, включенный по схеме с общей базой. С помощью этого транзистора осуществляется входная логика. Многоэмиттерный транзистор имеет два (или несколько) эмиттеров, одну общую для них базу и один коллектор. Схематически биполярный транзистор с двумя эмиттерами изображен на рисунке б).

Простейший элемент И-HE ТТЛ

Простейшая схема элемента И-НЕ ТТЛ (рисунок а).

В зависимости от входных сигналов возможна ситуация, при которой один из эмиттерных переходов включен прямо, а другой — обратно, т.е. ток может течь через один эмиттер, в то время как тока через другой эмиттер нет.

Недостаток схемы — низкая экономичность. Когда транзистор VT2 в насыщении, ток коллектора высок, приводит к увеличению потребляемой мощности. Уменьшение тока за счет Rк ведет к снижению уровня логической единицы, уменьшению нагрузочной способности и уменьшению быстродействия.

Для защиты схемы при воздействии отрицательных импульсов между эмиттерами и корпусом устанавливают диоды.

Логический элемент И-НЕ со сложным инвертором.

Нагрузочный транзистор VT4 работает в противофазе с выходным транзистором VT3.

При переходе из состояния y=0 в состояние y=1 заряд емкости нагрузки идет через открытый транзистор VT4 с малым входным сопротивлением, что обеспечивает высокое быстродействие схемы. В состоянии y=0 транзистор VT4

закрывается. При ЭТОМ выходной транзистор VT3 идет только ток из нагрузок; ток через VT4 отсутствует. Нагрузочная способность этого элемента оказывается значительно выше, нагрузочная способность чем простейшего элемента ТТЛ. Таким образом, использование данной схемы улучшить позволяет быстродействие и увеличить нагрузочную способность логического элемента.

Логический элемент И-НЕ ТТЛ с составным нагрузочным транзистором

изображенном логическом рисунке элементе транзисторы VT4, VT5, включенные по схеме Дарлингтона, составной образуют нагрузочный транзистор. База транзистора VT4 эмиттером связана VT5, транзистора коллекторы ЭТИХ транзисторов соединены. Переход коллектор-база VT4 транзистора может быть включен прямо.

Транзистор-транзисторная логика с диодами Шоттки

Быстродействие элементов ТТЛ ограничено сравнительно большим временем рассасывания избыточного заряда в базах транзисторов.

Для уменьшения времени переключения применяют транзисторами элементы с Шоттки, В которых отсутствует насыщение. ТТЛШ Применение схем позволяет уменьшить время задержки с 10 нс (для ТТЛ) до 3 нс.

Схема логического элемента ТТЛ с транзисторами Шоттки (ТТЛШ) представлена на рисунке.

Транзисторах с изолированным затвором

Основу этих логических элементов составляет пара МДП (или комплементарных $MO\Pi$) транзисторов индуцированным каналом, транзисторов с идентичными параметрами, но с разным типом проводимости каналов. Ток через схемы с КМДП транзисторами чрезвычайно мал, поэтому можно считать, что логической единице соответствует напряжение питания, логическому нулю – ноль вольт.

Транзисторах с изолированным затвором

Схема инвертора на КМДП, или, что тоже самое, КМОП транзисторах представлена на рисунке.

Логические элементы на комплементарных МОП транзисторах

Логические элементы на комплементарных МОП транзисторах

На рисунке изображены логические элементы на комплементарных МОП транзисторах:

а – элемент И-НЕ;

б – элемент ИЛИ-НЕ.

Как видно из рисунка, каждая из этих схем состоит из двух простых инверторов. В элементе И-НЕ выходные транзисторы этих инверторов соединены последовательно, а в элементе ИЛИ-НЕ — параллельно.

Логические элементы с тремя состояниями на выходе

У всех логических элементов есть два рабочих состояния, одному из которых отвечает высокий уровень выходного напряжения, а другому — низкий. Оба этих состояния характеризуются низким выходным сопротивлением. Однако нередко возникает необходимость отключить логический элемент от выходной цепи. Например, если несколько элементов подключены к одной шине и требуется передать по этой шине данные от одного к другому, то возникает необходимость изолировать остальные элементы.

Это делается путем остальных перевода логических элементов третье состояние большим состояние входным сопротивлением. На рисунке изображены схемы с тремя состояниями на выходе, выполненные на основе логических элементов ТТЛ (а) и КМОП (б).

Обозначение указателей выводов

Наименование	Обозначение	
	Форма 1	Форма 2
Прямой статический вход		
Прямой статический выход		
Инверсный статический вход	-d) -d)	→ →
Инверсный статический выход	(p- (p-	├
Прямой динамический вход		→
Инверсный динамический вход		
Статический вход с указателем полярности	4	P
Статический выход с указателем полярности		
Динамический выход с указателем полярности		
Вывод, не несущий логической информации: изображенный слева		

Важной особенностью триггера является возможность хранения в нем одного бита информации (одного разряда двоичных чисел). При проектировании триггерных устройств широко используются универсальные элементы И-НЕ и ИЛИ-НЕ.

Триггеры на интегральных ЛЭ разделяются на две группы: **асинхронные** и **синхронные**. **Асинхронный** триггер переходит из одного устойчивого состояния в другое в моменты поступления на вход управляющих импульсов. Рассмотренные ранее триггеры на дискретных компонентах являются асинхронными.

Инерционность процессов переключения может привести к несоответствию в течение некоторого временного интервала выходного сигнала входному. Это может стать причиной ошибок в работе цифровых устройств. Возможность возникновения таких ошибок исключена в синхронных (тактируемых) триггерах. В них, кроме запускающих, используются тактовые импульсы, которые следуют с некоторым запаздыванием по отношению к запускающим. Переключение синхронных триггеров может происходить только в тактовые моменты времени.

Различают триггеры со **статическими** и **динамическими входами**. В первом случае управление производится потенциалами (уровнями напряжения), во втором – перепадами напряжения, т.е. фронтами импульсов.

Типы триггеров

RS-триггер - асинхронный триггер, который сохраняет своё предыдущее состояние при неактивном состоянии обоих входов и изменяет своё состояние при подаче на один из его входов активного уровня.

D-триггер - запоминает состояние входа и выдаёт его на выход.

Т-триггер - при единице на входе **T**, по каждому такту на входе C изменяет своё логическое состояние на противоположное, и не изменяет выходное состояние при нуле на входе **T**

ЈК-триггер - работает так же как RS-триггер, с одним лишь исключением: при подаче логической единицы на оба входа J и K состояние выхода триггера изменяется на противоположное, т.е. выполняется операция инверсии (чем он отличается от RS-триггеров с доопределённым состоянием, которые строго переходят в логический ноль или единицу, независимо от предыдущего состояния).

На рисунке показана базовая схема RS-триггера на элементах ИЛИ-НЕ, охваченных обратными связями, на основе которой строятся триггеры других типов.

Дуализм логических функций позволяет, инвертировав переменные, а также поменяв местами операции дизъюнкции и конъюнкции, получить RS-триггер на элементах И-НЕ. Его схема и обозначения приведены на рисунках а) и б).

Минимальная длительность установочных импульсов должна вдвое превышать время задержки примененных логических элементов, чтобы по петле положительной обратной связи пришло подтверждение о фиксации нового состояния триггера.

На рисунке а) показано, как можно построить статический синхронный RS-триггер, а на рисунке б) дано его обозначение. Символом С обозначен вход тактовых импульсов.

В схеме на третьем рисунке инверсность обеспечивается автоматически за счет дополнительного инвертора. При этом схема имеет лишь один информационный вход D и называется D-триггером.

Рассмотренные RS-триггеры имеют запрещенные сочетания входных сигналов. Таких сочетаний не имеет так называемый JK-триггер. Он строится на базе двух последовательно соединенных RS-триггеров с инверсными входами. Его структурная схема на элементах И-НЕ и обозначение показаны на рисунке, а таблица представляет собой таблицу переключений.

Триггеры

Т-триггер. Он имеет только тактовый вход Т и меняет свое состояние на противоположное по фронту или срезу каждого нового тактового импульса.

Примеры обозначения триггеров: Т – триггер, М – D-триггер, универсальный (ЈК-триггер)

К555TM2 — содержит 2 D-триггера К555TB6 — содержит 2 универсальных JKтриггера К555TP2 — содержит 4 RS-триггера

На рисунке приведен пример схемы трехразрядного регистра, в котором запись и считывание коэффициентов zi числа A производится одновременно (параллельно) для всех разрядов (в параллельном коде). Перед началом записи импульс сброса на входе R триггеров устанавливает их в нулевое состояние. Записываемый код числа устанавливается в виде уровней zi (0 или 1) на выходах схем И. При поступлении импульса записи переходят в

единичное состояние только те триггеры, в которые записывается zi=1 поскольку установочный сигнал формируется только на выходах соответствующих им схем И.

На рисунке показана схема четырехразрядного регистра сдвига на базе RS-триггеров, реализующих функции D-триггера

В цифровых и аналогово-цифровых устройствах широко используют счетчики импульсов, представляющие собой устройства, у которых в определенных границах установлено однозначное соответствие между числом поступивших импульсов и состоянием выходных переменных. В этом смысле счетчики с естественным порядком счета изменяют код выходного сигнала на единицу после поступления на Счетчики, следующего импульса. каждого формирующие выходной сигнал после определенного числа единиц, называют *пересчетными* схемами.

Счетчики делят на *суммирующие, вычитающие* и *реверсивные*. Последние суммируют или вычитают входные импульсы в зависимости от сигнала, поступающего со схемы управления.

Таблица состояний двоичного счетчика, приведенная на рисунке устанавливает соответствие между числом входных импульсов и значениями выходных переменных трехзначного (m=3) суммирующего счетчика. Данной таблице соответствует временная диаграмма, приведенная на рисунке.

	0.	0-	
Z	Q ₃	Q_2	Q_1
	2 ²	21	2 ⁰
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
8	0	0	0

По коэффициенту пересчета различают счетчики двоичные (Ксч = 2), десятичные (Ксч = 10), с произвольным постоянным Ксч с изменяемым Ксч (программируемые)

В суммирующем счетчике счетные импульсы поступают на вход С первого триггера (рисунок), а с его прямого выхода — на вход С следующего. Поскольку на входы Ј и К постоянно подана единица, переключение каждого из триггеров происходит в момент окончания импульса на его входе, на что указывает обозначение входа С. Заметим, что если соединить входы С триггеров с инверсными выходами последующей ячейки, то получим вычитающий счетчик.

Счетчики

Недостатком асинхронных счетчиков с последовательным переносом является их невысокое быстродействие. Сигнал на вход последнего триггера поступает после переключения всех предыдущих. Поскольку переключение триггеров происходит с задержкой и при переключении задержки суммируются, то для правильной работы требуется, чтобы m-ый триггер успел переключиться до прихода следующего счетного импульса. Это снижает быстродействие счетчика с последовательным переносом.

Повышение быстродействия достигается в синхронных счетчиках с параллельным (сквозным) переносом. Пример реализации такого счетчика показан на рисунке.

Спасибо за внимание!