COMPOSITION DE MATHÉMATIQUES GÉNÉRALES

SESSION DE 1990

Durée: 6 heures

CONCOURS EXTERNE

Calculatrice électronique de poche — y compris calculatrice programmable et alphanumérique — à fonctionnement autonome, non imprimante, autorisée conformément à la circulaire nº 86-228 du 28 juillet 1986.

La clarté et la précision de la rédaction seront prises en compte dans l'appréciation de la copie.

NOTATIONS ET DÉFINITIONS

Tout espace vectoriel de dimension finie sur R est muni de la topologie associée à l'une quelconque de ses normes.

Si \mathcal{V} est un espace vectoriel réel euclidien de dimension finie, on note $(x \nmid y)$ le produit scalaire de deux vecteurs x et y de \mathcal{V} et $||x|| = \sqrt{(x \mid x)}$ la norme euclidienne de x.

On associe à toute famille finie $(x_1, x_2, ..., x_k)$ de \mathcal{V} sa matrice de Gram, $G(x_1, x_2, ..., x_k)$, définie par :

$$G(x_1, x_2, ..., x_k) = ((x_i | x_i)).$$

On note id l'application linéaire identité de V.

fg désigne la composée $f \circ g$ de deux éléments de $\mathscr{L}(\mathscr{V})$, et on définit f^k , pour tout k de \mathbb{N} , par : $f^\circ = \mathrm{id}$ et $\forall k \in \mathbb{N}$, $f^{k+1} = f^k \circ f$.

 $\ker(f)$, im (f), $\det(f)$, rg (f) désignent respectivement le noyau, l'image, le déterminant et le rang d'un élément $f \det \mathscr{L}(\mathscr{V})$.

On munit $\mathscr{L}(\mathscr{V})$ de la norme usuelle d'opérateurs déduite de celle de \mathscr{V} (on rappelle que, si f appartient à $\mathscr{L}(\mathscr{V})$, $||f|| = \sup_{\|x\| \le 1} (\|f(x)\|)$).

Si f appartient à $\mathcal{L}(\mathcal{V})$, on définit son polynôme caractéristique χ_f par :

$$\forall \lambda \in \mathbb{R}, \ \chi_f(\lambda) = \det(\lambda \operatorname{id} - f).$$

On note $\rho(f)$ le rayon spectral de f, c'est-à-dire le plus grand module des racines réelles ou complexes de χ_f (on conviendra, lorsque $\mathcal{V} = \{0\}$, que $\chi_f = 1$ et $\rho(f) = 0$).

On admettra que:

$$(\rho(f) < 1) \Leftrightarrow \left(\lim_{p \to +\infty} f^p = 0\right) \Leftrightarrow (\exists k \in \mathbb{N} \mid \|f^k\| < 1).$$

On note f^* l'opérateur adjoint de f.

On définit les sous-ensembles suivants de $\mathscr{L}(\mathscr{V})$:

$$\begin{split} \mathcal{B}(Y) &= \left\{ f \in \mathcal{L}(Y) \mid \|f\| \le 1 \right\} \\ \mathcal{B}_{0}(Y) &= \left\{ f \in \mathcal{B}(Y) \mid \rho(f) < 1 \right\} \\ \mathcal{C}(Y) &= \left\{ f \in \mathcal{B}(Y) \mid \operatorname{rg}(\operatorname{id} - f^{*}f) \le 1 \right\} \\ \mathcal{C}_{0}(Y) &= \left\{ f \in \mathcal{C}(Y) \mid \rho(f) < 1 \right\}. \end{split}$$

On note $\mathcal{O}(\mathcal{V})$ le groupe orthogonal de \mathcal{V} .

On note $\mathscr{S}(\mathscr{V})$ l'espace vectoriel des endomorphismes symétriques de \mathscr{V} . On note $\mathscr{S}^+(\mathscr{V})$ la partie de $\mathscr{S}(\mathscr{V})$ constituée des endomorphismes symétriques positifs : on dit qu'un endomorphisme f de $\mathscr{S}(\mathscr{V})$ est positif (resp. défini positif) si et seulement si f vérifie :

$$\forall x \in \mathcal{V}, (x | f(x)) \ge 0 \quad (\text{resp.} \ \forall x \in \mathcal{V} \setminus \{0\}, (x | f(x)) > 0).$$

 $\mathcal{M}_k(\mathbb{R})$ désigne l'ensemble des matrices carrées d'ordre k à coefficients réels. On note I_k la matrice identité d'ordre k.

On identifie \mathbb{R}^k avec l'ensemble des matrices colonnes à k lignes, et les éléments de $\mathscr{L}(\mathbb{R}^k)$ avec leur matrice dans la base canonique de \mathbb{R}^k notée $(E_1, E_2, ..., E_k)$. \mathbb{R}^k est muni du produit scalaire canonique, de telle sorte que si A appartient à $\mathscr{M}_k(\mathbb{R})$, A^* s'identifie avec la matrice transposée de A. On notera également X^* la matrice ligne transposée de la matrice colonne X de \mathbb{R}^k .

 $\mathbb{R}[T]$ désigne l'algèbre des polynômes à une indéterminée T sur \mathbb{R} .

Si P (T) = $T^k - a_{k-1}T^{k-1} - ... - a_1T - a_0$ est un polynôme unitaire de \mathbb{R} [T], on appelle matrice compagnon de P la matrice C définie par :

Dans tout le problème, E désigne un espace euclidien de dimension $n \ge 1$.

Les parties II, III et IV sont indépendantes.

I

Questions utiles pour la suite du problème.

A. Décomposition d'un élément de \mathscr{S} (E).

- 1. Soit f_u appartenant à $\mathcal{L}(E)$ définie par $f_u(x) = (u \mid x) u$ où u est un vecteur donné de E.
 - a. Vérifier que f_{μ} appartient à \mathscr{S}^+ (E).
 - b. Préciser le rang de f_{μ} .
 - c. Reconnaître f_u lorsque ||u|| = 1.
 - d. Si B est une base orthonormale de E, et si U est la matrice de u dans la base B, vérifier que la matrice de f_u dans la base B est UU*.

Dans toute la suite du problème on notera uu^* l'application f_u .

- 2. Soient u et v deux vecteurs de E; à quelle condition a-t-on $uu^* = vv^*$?
- 3. Soit f appartenant à \mathcal{S} (E). Montrer l'existence d'une base orthonormale $(e_1, e_2, ..., e_n)$ et d'un n-uplet $(\lambda_1, \lambda_2, \dots, \lambda_n)$ de réels tels que $f = \sum_{i=1}^n \lambda_i e_i e_i^*$.

Oue représentent pour f les λ_i et les e_i ? À quelle condition f est-elle dans \mathscr{S}^* (E)?

- 4. Soit f appartenant à $\mathcal{S}(E)$. Montrer que f = 0 si et seulement si $\forall x \in E$, $(x \mid f(x)) = 0$.
- 5. Soit f appartenant à $\mathcal{S}^+(E)$ et xun vecteur de E. Montrer que f(x) = 0 si et seulement si (x|f(x)) = 0.
- 6. Soit f appartenant à $\mathscr{L}(E)$. Montrer que f appartient à $\mathscr{S}^+(E)$ si et seulement s'il existe n vecteurs $(u_1, u_2, ..., u_n)$ de E tels que :

$$f = \sum_{i \neq 1}^{n} u_i u_i^*.$$

B. Caractérisation dès éléments de $\mathcal{B}(E)$ et de $\mathcal{C}(E)$.

- 1. Soit f appartenant à $\mathcal{L}(E)$.
 - a. Montrer que $\forall x \in E$, $||f(x)||^2 \le ||x|| ||f^*f(x)||$. En déduire que $\forall x \in E$, $||f(x)|| \le ||f^*|| ||x||$.
 - b. Établir que $||f|| = ||f^*||$.
- 2. Soit f appartenant à $\mathcal{L}(E)$.
 - a. Vérifier que f^*f appartient à \mathcal{S}^+ (E).
 - b. Montrer que f appartient à $\mathcal{B}(E)$ si et seulement si id $-f^*f$ appartient à $\mathcal{S}^+(E)$.
- 3. Soit f appartenant à $\mathcal{B}(E)$.

Notons
$$E_f = \{x \in E \mid \|f(x)\| = \|x\|\}$$
 et $E_f^* = \{x \in E \mid \|f^*(x)\| = \|x\|\}$.

- a. Montrer que ||f|| = 1 si et seulement si $E_f \neq \{0\}$.
- b. Montrer que $E_f = \ker(\mathrm{id} f^*f)$, $E_f^* = \ker(\mathrm{id} ff^*)$.
- c. Établir les égalités suivantes : $f(E_i) = E_f^*$, $f^*(E_f^*) = E_f$, et $\dim(E_f^*) = \dim(E_f)$.
- 4. Soit f appartenant à $\mathcal{L}(E)$. Vérifier que f appartient à $\mathcal{C}(E)$ si et seulement si f^* appartient à $\mathcal{C}(E)$, et que f appartient à $\mathcal{C}_0(E)$ si et seulement si f^* appartient à $\mathcal{C}_0(E)$.
- 5. Soit f appartenant à $\mathscr{L}(E)$. Montrer que les propriétés suivantes sont équivalentes :
 - i. f appartient à $\mathscr{C}(E)$;
 - ii. il existe u appartenant à E tel que id $-f^*f = uu^*$;
 - iii. il existe u appartenant à E tel que $\forall x \in E$, $||x||^2 ||f(x)||^2 = (u | x)^2$.
 - C. Propriétés des matrices compagnons.

Calculer en fonction de P, polynôme unitaire de $\mathbb{R}[T]$, le polynôme caractéristique et le polynôme minimal de C, matrice compagnon de P.

II

Le but de cette partie est de déterminer les matrices triangulaires inférieures qui sont dans $\mathscr{C}(\mathbb{R}^n)$ et, si A est une de ces matrices, de trouver U appartenant à \mathbb{R}^n tel que $\mathbb{I}_n - \mathbb{A}^* \mathbb{A} = \mathbb{U} \mathbb{U}^*$.

1. Soit $A = \begin{bmatrix} \lambda & 0 \\ v & \mu \end{bmatrix}$ appartenant à $\mathscr{C}(\mathbb{R}^2)$. Vérifier que $v^2 = (1 - \lambda^2)(1 - \mu^2)$.

En déduire que les matrices triangulaires inférieures de $\mathscr{C}(\mathbb{R}^2)$ s'écrivent $A = \begin{bmatrix} \cos \alpha & 0 \\ -\sin \alpha \sin \beta & \cos \beta \end{bmatrix}$, avec α et β réels quelconques ; trouver alors U de \mathbb{R}^2 tel que $I_2 - A*A = UU*$.

2. On suppose $n \ge 2$. Soient $A = (a_{ij})$ de $\mathcal{M}_n(\mathbb{R})$ telle que $a_{in} = 0$ pour tout i vérifiant $1 \le i \le n - 1$, et

$$U = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} de \mathbb{R}^n.$$

On écrit A = $\begin{bmatrix} B & 0 \\ C^* & a_{nn} \end{bmatrix}$ et $U = \begin{bmatrix} W \\ b_n \end{bmatrix}$, avec B appartenant à \mathcal{M}_{n-1} (\mathbb{R}), C et W matrices colonnes de

page 4 AGREGATION de MATHEMATIQUES 1990 4/6 externe-mathématiques générales

Montrer que $I_n - A^*A = UU^*$ si et seulement s'il existe θ_n de \mathbb{R} et V de \mathbb{R}^{n-1} vérifiant les égalités suivantes :

$$a_{nn} = \cos(\theta_n)$$
, $b_n = \sin(\theta_n)$, $C = -\sin(\theta_n)$ V, $W = \cos(\theta_n)$ V et $I_{n-1} - B^*B = VV^*$.

3. Donner un algorithme permettant de construire une matrice triangulaire inférieure de $\mathscr{C}(\mathbb{R}^n)$ dont les valeurs propres sont imposées dans [-1, 1]. En déduire la forme générale de telles matrices et préciser pour chacune d'entre elles un élément U de \mathbb{R}^n tel que $I_n - A^*A = UU^*$.

Ш

Étude de & (E) et de & (E).

Dans toute cette partie III, f appartient à $\mathcal{B}(E)$, E_f et F sont définis par :

$$E_f = \{ x \in E \mid || f(x) || = || x || \},$$

$$F = \{ x \in E \mid \forall k \in \mathbb{N}, f^k(x) \in E_f \},$$

et on note G l'orthogonal de F dans E.

A. Décomposition d'un élément de & (E).

- 1. Établir les propriétés suivantes :
 - a. F est un sous-espace vectoriel de E;
 - b. $f(F) = F \text{ et } f^*(F) = F$;
 - c. $f(G) \subset G$.
- 2. On note $\varphi = f_{1F}$ et $\psi = f_{1G}$, les endomorphismes de F et G induits par f.
 - a. Montrer que ψ appartient à. # (G).
 - b. Montrer que φ appartient à $\mathscr{O}(F)$.
 - c. Soit x appartenant à E. On suppose que x n'appartient pas à F et on appelle k le plus petit entier naturel tel que $f^k(x)$ n'appartient pas à E_j .

Montrer que la famille $\{x, f(x), \dots, f^*(x)\}$ est une famille libre de E. En déduire que $\|f^*(x)\| < \|x\|$.

- d. Montrer que ψ appartient à $\mathcal{P}_{\mathbf{o}}(G)$.
- 3. Établir l'équivalence des trois propriétés suivantes :
 - i. f appartient à $\mathcal{B}_0(E)$;
 - ii. $||f^n|| < 1$;
 - iii. $F = \{0\}$.
- B. Caractérisation des éléments de $\mathscr{C}_0(E)$.
- 1. On suppose dans cette question que f appartient à $\mathscr{C}(E)$ et que u est un vecteur de E tel que id $-f^*f = uu^*$.
 - a. Montrer que x appartient à F si et sculement si $(x \mid u) = (f(x) \mid u) = \dots = (f^{n-1}(x) \mid u) = 0$.
 - b. En déduire que f appartient à $\mathscr{C}_0(E)$ si et seulement si $(u, f^*(u), ..., (f^*)^{n-1}(u))$ est une base de E.
- 2. On suppose dans cette question que f appartient à \mathcal{C}_0 (E). Montrer qu'il existe x appartenant à $E\setminus\{0\}$ tel que :

 $||x|| = ||f(x)|| = ... = ||f^{n-1}(x)||.$

En déduire que : $||f^k|| = 1$ pour tout $k \text{ de } \{0, ..., n-1\}$, et $||f^n|| < 1$.

3. Réciproquement, on suppose que f vérifie : $\|f^k\| = 1$ pour tout k de $\{0, ..., n-1\}$, et $\|f^n\| < 1$. Soit x non nul tel que $\|x\| = \|f^{n-1}(x)\|$, montrer que $(x, f(x), ..., f^{n-1}(x))$ est une base de E et que f appartient à $\mathscr{C}_0(E)$.

Tournez la page S.V.P.

C. Étude d'une base adaptée à un élément de $\mathscr{C}_0(E)$ et de sa matrice de Gram.

On suppose dans toute la fin de cette partie III que f est un élément de \mathscr{C}_0 (E) et on note C la matrice compagnon de son polynôme caractéristique.

1. Montrer que l'on peut trouver v_1 appartenant à E tel que :

$$||f^{n-1}(v_1)|| = ||v_1||$$
 et $||v_1||^2 - ||f^n(v_1)||^2 = 1$.

On pose alors $v_2 = f(v_1)$, $v_3 = f^2(v_1)$, ..., $v_n = f^{n-1}(v_1)$. Vérifier que $(v_1, ..., v_n)$ est une base de E. Donner la matrice de f dans cette base.

- 2. On appelle Ω la matrice de Gram $G(\nu_1, ..., \nu_n)$.
 - a. Montrer que $C^*\Omega C = G(f(v_1), f(v_2), \dots, f(v_n))$.
 - b. En déduire que $\Omega C^*\Omega C = E_n E_n^*$.

Dans toute la fin du problème. P désigne un polynôme unitaire de \mathbb{R} [T], de degré n dont toutes les racines réelles ou complexes sont de module strictement inférieur à 1, et \mathbb{C} est sa matrice compagnon.

IV

Résolution dans $\mathcal{M}_n(\mathbb{R})$ de l'équation à l'inconnue G: G - C*GC = H.

- 1. Soit A appartenant à $\mathcal{M}_n(\mathbb{R})$ telle que $A = C^*AC$. Montrer que A = 0.
- 2. Soit B appartenant à $\mathcal{M}_n(\mathbb{R})$.
 - a. Montrer qu'il existe une unique matrice A dans $\mathcal{M}_n(\mathbb{R})$ telle que A C*A C = B.
 - b. Établir que $A = \sum_{n=0}^{+\infty} (C^*)^p B(C)^p$.
- 3. Soit H appartenant à $\mathcal{S}^+(\mathbb{R}^n)$, et G de $\mathcal{M}_n(\mathbb{R})$ vérifiant :

$$G - C*GC = H$$
.

- a. Montrer que G appartient à $\mathcal{S}^+(\mathbb{R}^n)$.
- b. Établir que les propriétés suivantes sont équivalentes :
 - i. X appartient à ker (G);
 - ii. $\forall k \in \mathbb{N}$, $C^k X \in \ker(H)$;
 - iii. $HX = HCX = ... = HC^{n-1}X = 0$.
- 4. Soit U appartenant à \mathbb{R}^n et G de $\mathcal{M}_n(\mathbb{R})$ tels que $G C^*G C = UU^*$. Montrer que G est définie positive si et seulement si l'une des deux conditions équivalentes suivantes est réalisée :
 - i. $\forall X \in \mathbb{R}^n$, $(X \mid U) = (CX \mid U) = \dots = (C^{n-1} \mid X \mid U) = 0 \Rightarrow X = 0$;
 - ii. $(U, C^*U, (C^*)^2 U, ..., (C^*)^{n-1} U)$ est une base de \mathbb{R}^n .
- 5. Soit Ω appartenant à $\mathcal{M}_n(\mathbb{R})$ telle que $\Omega C^*\Omega C = E_n E_n^*$.
 - a. Établir que Ω est définie positive.
 - b. U étant un élément quelconque de \mathbb{R}^n , et G la matrice de $\mathcal{M}_n(\mathbb{R})$ telle que $G C^*GC = UU^*$, montrer qu'il existe un unique polynôme Q de \mathbb{R} [T] vérifiant : $d^0Q \le n-1$ et $U = (Q(C))^*E_n$. En déduire que $G = (Q(C))^*\Omega Q(C)$.
 - c. G étant un élément de $\mathcal{M}_n(\mathbb{R})$, prouver que $G = C^*G$ C appartient à $\mathscr{S}^+(\mathbb{R}^n)$ si et seulement s'il existe
 - *n* polynómes $Q_1, ..., Q_n$ appartenant à $\mathbb{R}[T]$, tels que $G = \sum_{i=1}^n (Q_i(C))^* \Omega Q_i(C)$.

V

A. Existence d'éléments f de $\mathscr{C}_0(E)$ tels que $\chi_f = P$.

1. Dans cette question seulement on suppose que P est scindé sur R.

Montrer qu'il existe f appartenant à $\mathcal{C}_0(E)$ tel que $\chi_f = P$.

- 2. Soit Ω appartenant à $\mathcal{M}_n(\mathbb{R})$ telle que $\Omega C^*\Omega C = E_n E_n^*$.
 - a. Montrer qu'il existe une base $(v_1, ..., v_n)$ de E telle que $G(v_1, ..., v_n) = \Omega$.
 - b. En déduire qu'il existe f appartenant à $\mathscr{C}_0(E)$ tel que $\chi_f = P$.
- 3. Soient f et g appartenant à $\mathcal{C}_0(E)$. Montrer que les propriétés suivantes sont équivalentes :

i.
$$\exists r \in \mathscr{O}(\mathsf{E}) \mid rfr^{-1} = g;$$

ii.
$$\exists r \in GL(E) \mid rfr^{-1} = g;$$

iii.
$$\chi_f = \chi_g$$
.

B. Maximum de ||Q(g)|| lorsque $||g|| \le 1$ et P(g) = 0.

Dans toute la fin du problème, f désigne un élément $\mathscr{C}_0(E)$ de polynôme caractéristique P, et g un élément de $\mathscr{B}(E)$ vérifiant P(g) = 0.

- 1. Soit u appartenant à E; on note G la matrice $G(u, g(u), ..., g^{n-1}(u))$.
 - a. $x_1, x_2, ..., x_n$ étant n réels, on pose :

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad \text{et} \quad x = \sum_{i=1}^n x_i g^{i-1}(u).$$

Établir que, pour tout polynôme Q de R [T], on a:

$$\|Q(g)(x)\|^2 = (Q(C)X)^*G(Q(C)X).$$

- b. Montrer que G C*G C appartient à $\mathscr{S}^+(\mathbb{R}^n)$.
- c. Montrer que l'on peut trouver n vecteurs $u_1, ..., u_n$ de E tels que :

$$\forall \ Q \in \mathbb{R} \ [T], \ \| \ Q \ (g) \ (u) \|^{\, 2} = \sum_{i \ge 1}^n \| \ Q \ (f) \ (u_i) \|^{\, 2}.$$

2. Soit Q appartenant à $\mathbb{R}[T]$. Montrer que $\|Q(g)\| \le \|Q(f)\|$.