2024 编译原理理论第 1 次作业

21307174 刘俊杰

April 19 2024

本次作业一共有 2 大题,每道大题都有 3 道小题,每道小题都会给出一个 具体的参考例子,请你确保你的回答和题目提供的例子的样式保持一致,否 则可能会没有分数。

1 正则表达式转换为 NFA 与子集构造(6 分)

给定字母表上 $\sum = \{a,b\}$ 的正则表达式 $(a+b)^*a(a+b)^*$,请完成以下题目

(a) 使用 McNaughton-Yamada-Thompson 算法 (即课件 lecture04.pdf 第 28 页到第 30 页中的算法) 将上述正则表达式转换为 NFA 并绘制出来。(3 分)

(注意你的 NFA 的每个状态要用数字来表示,如对于正则表达式 ab^* ,其绘制出来的 NFA 如图 1 所示)

图 1: ab* NFA 的 DFA 转移表

Answer:

(b) 在你的 NFA 的基础上构建 DFA 转移表 (即课件 lecture04.pdf 第 35 页右下角的表格)。与课件的表格不同的是,你的 DFA 转移表应该有四列,这四列表头分别是 NFA 状态, DFA 状态,a,b。(2 分)

(DFA 状态应该用大写字母表示,而非数字,以图 1 中的 NFA 为例,构造出的 DFA 转移表应如表 1 所示)

NFA STATE	DFA STATE	a	b
{0}	A	В	
$\{1, 2, 4\}$	В		\mathbf{C}
$\{1, 2, 3, 4\}$	С		C

表 1: ab* NFA 的 DFA 转移表

Answer:

求解过程: A = Closure(0) = 0,1,2,3,7,8

move(A,a) = 4,9

B = Closure(4,9) = 0,1,2,3,4,6,7,8,9,10,11,12,13,17

Move(A,b) = 5

C = Closure(5) = 0,1,2,3,5,6,7,8

Move(B,a) = 4,9,14

D = Closure(4,9,14) = 0,1,2,3,4,6,7,8,9,10,11,12,13,14,16,17

Move (B,b) = 5,15

E = Closure(5,15) = 0,1,2,3,5,6,7,8,10,11,12,13,15,16,17

Move(C,a) = 4,9

Move(C,b) = 5

Move(D,a) = 4,9,14

Move(D,b) = 5,15

Move(E,a) = 4,9,14

Move (E,b) = 5,15

故 NFA 的基础上构建 DFA 转移表:

NFA STATE	DFA STATE	a	b
{0,1,2,3,7,8}	Α	В	С
{0,1,2,3,4,6,7,8,9,10,11,12,13,17}	В	D	E
{0,1,2,3,5,6,7,8}	С	В	С
{0,1,2,3,4,6,7,8,9,10,11,12,13,14,16,17}	D	D	E
{0,1,2,3,5,6,7,8,10,11,12,13,15,16,17}	E	D	E

(c) 使用你的 DFA 转移表将你的 NFA 转换为 DFA。(1 分)

(你的 DFA 的每个状态应该用大写字母来表示,如果使用表 1 中的 DFA 转移表对图 1 中的 NFA 进行转换,则对应的 DFA 如图 2 所示。)

图 2: ab* 的 DFA

Answer:

根据上一题 DFA 转移表,将 NFA 转换为 DFA:

2 SLR

给定以下文法 G:

(1) $E \rightarrow X = Y$

- (2) $X \rightarrow Xa$
- (3) $X \rightarrow b$
- (4) $Y \rightarrow cY$
- (5) $Y \rightarrow d$
- (a) 写出文法 G 的增广文法 G',并根据该增广语法 G' 构造 LR(0) 解析的有穷自动机。(2 分)
- (1) $T \rightarrow T F$
- (2) $T \rightarrow F$
- (3) $F \rightarrow a$

(以下面文法 G^* 为例,用其对应的增广语法构造的 LR(0) 有穷自动机 如图 3 所示。)

图 3: G* 的 LR(0) 有穷自动机

图 3: G* 的 LR(0) 解析表

Answer:

- G 的增广文法:
- (1) $E' \rightarrow E$
- (2) $E \rightarrow X = Y$
- (3) $X \rightarrow Xa$
- $(4) X \rightarrow b$
- (5) $Y \rightarrow cY$
- (6) $Y \rightarrow d$

构造 LR(0) 解析的有穷自动机:

(b) 根据你画出来的有穷自动机构造 LR(0) 解析表。(1 分)

(以图 3 的自动机为例,其对应的表格如表 2 所示。你的解析表的表头 应与表 3 保持一致,如果有需要的话,请自行添加更多行。)

Answer:

先写出 FOLLOW 集:

 $FO110W(E) = { \$ }$

FO11OW(X) =

FO11OW(Y) =

(c) 列出使用 G 的 LR(0) 解析表解析输入串 baa = cd 的过程。(1 分) (以表 2 为例, 当输入串为 a a 时, 其解析过程如表 4 所示。)

STATE	A	CTI	GOTO		
SIAIL	a	*	\$	T	F
0	s3			1	2
1		s4	acc		
2		r2	r2		
3		r3	r3		
4	s3				5
5		r1	r1		

表 2: G^* 的 LR(0) 解析表

STATE	ACTION					GOTO			
SIAIL	a	b	c	d	=	\$	E	X	Y

表 3: G 的 LR(0) 解析表的表头

STACK	SYMBOL	INPUT	ACTION
0		a*a\$	shift to state 3
03	a	*a\$	reduce by $F \to a$
02	F	*a\$	reduce by $T \to F$
01	T	*a\$	shift to state 4
014	T*	a\$	shift to state 3
0143	T*a	\$	reduce by $F \to a$
0145	T * F	\$	reduce by $F \to T * F$
01	T	\$	accept

表 $4: G^*$ 对于 a*a 的解析过程