Universidad de Granada	Fundamentos Físicos y Tecnológicos D.G.I.I.M. y D.G.I.I.M.		Examen de Teoría 9 de Enero de 2021
Apellidos:			Firma:
Nombre:	DNI:	Grupo:	

- Indica en cada hoja tu nombre, el número de página y el número de páginas totales que entregas.
- Lee detenidamente los enunciados antes de contestar.
- No es obligatorio hacer los ejercicios en el orden en el que están planteados.
- Los datos de los problemas están en función de los dígitos de tu DNI. Así si una resistencia vale $(D_1 + 1) * 2k\Omega$, el valor de esa resistencia lo tendrás que calcular sumando uno al primer dígito de tu DNI y multiplicando el resultado por dos. La magnitud resultate está expresada en kilo Ω .
- Cuando hayas terminado los ejercicios escanéalos con tu dni al menos en una de las hojas que entregues y sube el archivo resultante en pdf al enlace correspondiente de la plataforma PRADO.
- 1. En el circuito de la figura 1:
 - a) Calcula y **dibuja** los equivalentes Thevenin y Norton del circuito visto desde los puntos A y B si todas las resistencias valen R=1k Ω **excepto** la que se encuentra entre los nudos L y B cuyo valor es (D_1+3) k Ω , C=1nF, L= 1mH, I₁= (D_1+1) mA, I₂= (D_1+2) mA, V₁= (D_2+1) V, V₂= (D_2+2) V y V₃= (D_2+3) V. Para calcular V_{th} usa el camino sombreado y los nombres de los nudos asignados en la figura. (**1.4 puntos**).
 - b) Calcula la potencia de las fuentes I_1 , I_2 , V_1 y V_2 del circuito justificando si son consumidas o suministradas.(0.8 puntos)
 - c) Razona cómo cambiaría el resultado si entre los nudos A y B se colocara un condensador de capacidad 1nF. Si ese condensador llegase a almacenar carga, ¿cuál sería el valor de ésta? Justifica tu respuesta. (0.3 puntos)

Figura 1: Circuito para el problema 1

- 2. En el circuito de la figura 2, R_1 =(D_5 +1) $k\Omega$, R_2 =0.5 · (D_5 +2) Ω , L_2 =0.1 · (D_5 +3) H, L_1 =(D_5 +4) mH, I=(D_6 +2) · V_i mA/V y α =(D_6 +1).
 - a) Calcula la función de transferencia, su módulo y su argumento. (0.75 punto)
 - b) Pinta el diagrama de Bode en módulo y argumento de la función de transferencia y explica su significado. ¿Existe alguna frecuencia para la que la salida sea 5 veces más pequeña que la entrada? ¿Existe alguna frecuencia para la que la salida adelanta a la entrada? Si la respuesta es afirmativa, determina estos valores. (0.75 puntos)
 - c) ¿Cuáles serían las potencias media e instantánea en la bobina L_2 si la entrada fuera $v_i(t) = 4 \sin(10^7 t + \frac{\pi}{4})V$? Justifica tu respuesta. (0.75 puntos)
- 3. En el circuito de la figura 3 $V_1=(D_3+1)V$, $V_2=(D_3+2)V$, $V_3=(D_3+3)V$, $R_1=(D_4+1)k\Omega$, $R_2=(D_4+2)k\Omega$, $R_3=(D_4+3)k\Omega$, $R_4=(D_4+4)k\Omega$, $R_5=(D_4+5)k\Omega$, $R_6=(D_4+6)k\Omega$, $V_{\gamma}=0.1\cdot(7+D_5)V$.
 - a) Calcula la expresión de la característica de transferencia.(1.3 puntos)
 - b) Dibuja la señal de salida ($v_o(t)$) cuando la señal de entrada ($v_i(t)$) es una señal triangular de amplitud 1V.(**0.4 puntos**)
 - c) Calcula la intensidad a la salida del AO cuando V_i =-10V.(0.25 puntos)

.

Figura 2: Circuito para el problema 2

Figura 3: Circuito para el problema 3