

Proves d'accés a la universitat

Matemàtiques

Sèrie 1

Qualificació		TR	
Qüestions	1		
	2		
	3		
	4		
	5		
	6		
Suma de notes parcials			
Qualificació final			

Etiqueta de l'alumne/a	Ubicació del tribunal Número del tribunal
Etiqueta de qualificació	Etiqueta del corrector/a

Responeu a QUATRE de les sis questions seguents. En les respostes, expliqueu sempre què voleu fer i per què.

Cada qüestió val 2,5 punts.

Podeu utilitzar calculadora, però no es permet l'ús de calculadores o altres aparells que poden emmagatzemar dades o que poden transmetre o rebre informació.

Podeu utilitzar les pàgines en blanc (pàgines 14 i 15) per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió si necessiteu més espai. En aquest últim cas, cal que ho indiqueu clarament al final de la pàgina de la qüestió corresponent.

1. Calculeu els coeficients a, b, c i d de la funció $f(x) = ax^3 + bx^2 + cx + d$ si sabem que l'equació de la recta tangent a la gràfica de la funció f en el punt d'inflexió (1,0) és y = -3x + 3 i que la funció té un extrem relatiu en el punt de la gràfica d'abscissa x = 0. [2,5 punts]

2. Considereu les dues matrius següents:

$$\mathbf{A} = \begin{pmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 2 & 2 & 0 \\ -1 & -1 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

a) Calculeu les matrius $A \cdot B$ i $B \cdot A$. [1,5 punts]

b) Siguin C i D dues matrius quadrades del mateix ordre que satisfan $C \cdot D = C$ i $D \cdot C = D$. Comproveu que les dues matrius, C i D, són idempotents. [1 punt]

Nota: Una matriu quadrada s'anomena *idempotent* si coincideix amb el seu quadrat.

Espai per al corrector/a		
	а	
Qüestió 2	b	
	Total	

3. Sigui
$$f'(x) = \begin{cases} x-1, & \text{si } x \le 2 \\ \frac{1}{x-1}, & \text{si } x > 2 \end{cases}$$
 la funció derivada d'una funció derivable $f(x)$ que passa

pel punt A = (0, 3).

a) Calculeu la funció f(x). [1,5 punts]

b)	Calculeu l'equació de la recta tangent a la funció $f'(x)$ en el punt d'abscissa $x = 3$. [1 punt]

Espai per al corrector/a

a
tió 3
b

Total

Qüestió 3

4. Sigui el sistema d'equacions lineals següent, que depèn del paràmetre real λ :

$$\begin{cases} x + 2\lambda y + (2 + \lambda)z = 0\\ (2 + \lambda)x + y + 2\lambda z = 3\\ 2\lambda x + (2 + \lambda)y + z = -3 \end{cases}$$

a) Discutiu el sistema per als diferents valors del paràmetre λ . [1,25 punts]

b)	Per al cas $\lambda = -1$, resoleu el sistema, interpreteu-lo geomètricament i identifiqueu-ne
	la solució.
	[1.25 punts]

Espai per al corrector/a		
	а	
Qüestió 4	b	
	Total	

5. La Núria té un jardí rectangular i vol fer-hi un tancat (rectangular o quadrat) de 8 m² per al seu gos. Ha pensat de posar el tancat tocant al mur del jardí, tal com es mostra a la figura de la dreta, per estalviar-se així un dels quatre costats.

El preu de la tanca que vol fer servir és de 2,5 €/m.

a) Quines dimensions ha de tenir el tancat perquè el cost sigui mínim? Quin és aquest cost mínim?

[1,75 punts]

b) Si manteniu la forma rectangular o quadrada del tancat i feu que un dels vèrtexs del jardí coincideixi amb un vèrtex del tancat, quants euros us podeu estalviar? Raoneu com posaríeu el tancat i justifiqueu amb càlculs matemàtics les dimensions de la vostra proposta.

[0,75 punts]

Espai per al corrector/a		
	а	
Qüestió 5	b	
	Total	

- **6.** Siguin els plans π_1 i π_2 , determinats respectivament per les equacions π_1 : x + y = 3 i π_2 : x z = -2.
 - a) Trobeu l'equació general (Ax + By + Cz + D = 0) del pla π_3 , que és perpendicular a π_1 i π_2 , i que passa pel punt P = (4, 1, 2). [0,75 punts]

b) Sigui r la recta d'intersecció de π_1 i π_2 . Calculeu l'equació vectorial de la recta r. [0,75 punts]

c) Calculeu el punt Q de la recta r que és més a prop del punt P. [1 punt]

Espai per al corrector/a		
	а	
Qüestió 6	b	
Questio 6	С	
	Total	

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió.]

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió.]

Etiqueta de l'alumne/a	

Proves d'accés a la universitat

Matemàtiques

Sèrie 5

Qualificació		TR	
Qüestions	1		
	2		
	3		
	4		
	5		
	6		
Suma de notes parcials			
Qualificació final			

Etiqueta de l'alumne/a	Ubicació del tribunal	
Etiqueta de qualificació	Etiqueta del corrector/a	

Responeu a QUATRE de les sis questions seguents. En les respostes, expliqueu sempre què voleu fer i per què.

Cada qüestió val 2,5 punts.

Podeu utilitzar calculadora, però no es permet l'ús de calculadores o altres aparells que poden emmagatzemar dades o que poden transmetre o rebre informació.

Podeu utilitzar les pàgines en blanc (pàgines 14 i 15) per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió si necessiteu més espai. En aquest últim cas, cal que ho indiqueu clarament al final de la pàgina de la qüestió corresponent.

- 1. Considereu les funcions $f(x) = -x^2 + x + 6$ i $g(x) = -9x + 3x^2$.
 - *a*) Calculeu l'àrea de la regió delimitada per les dues funcions. [1,25 punts]

b) Trobeu l'equació de la recta tangent a la funció f(x) en el punt (-2,0). Representeu aquesta recta tangent i les funcions f(x) i g(x) en uns mateixos eixos de coordenades. [1,25 punts]

Espai per al corrector/a		
Qüestió 1	а	
	b	
	Total	

2. Considereu el sistema d'equacions lineals

$$x - y + kz = -1 x + ky + z = 3 2x + (k-1)y + 2z = 2$$

en què k és un paràmetre real.

a) Discutiu el sistema en funció del valor de *k*. [1,5 punts]

b) Resoleu el sistema per a k = 0 i per a k = 1. [1 punt]

Espai per al corrector/a		
Qüestió 2	а	
	b	
	Total	

- 3. Considereu les rectes a l'espai r: x = -y = z + m i $s: \begin{cases} x + y = 1 \\ x z = 0 \end{cases}$, en què m és un paràmetre real.
 - *a*) Estudieu la posició relativa per als diferents valors del paràmetre m. [1,25 punts]

b) Calculeu m perquè la distància entre les rectes r i s sigui de $\sqrt{2}$ unitats. [1,25 punts]

Espai per al corrector/a		
Qüestió 3	а	
	b	
	Total	

4. En una carretera principal hi trobem el poble *A*. A 12 km del poble *A*, hi ha un encreuament *O* amb una carretera secundària que talla perpendicularment la carretera principal. A 9 km de l'encreuament, a la carretera secundària, hi trobem el poble *B*. Es vol construir una torre de comunicacions *T* en un punt de la carretera principal situat entre el poble *A* i l'encreuament *O*. Aquesta torre ha d'estar connectada amb cadascun dels dos pobles en línia recta per cable. Sabem que instal·lar el cable entre la torre *T* i el poble *B* té un preu de 250 €/km i, en canvi, instal·lar el cable entre la torre *T* i el poble *A* té un preu de 125 €/km. Determineu a quina distància de l'encreuament *O* a la carretera principal cal situar la torre *T* perquè el preu del cablejat sigui mínim i quin serà el valor d'aquest preu mínim.

[2,5 punts]

Carretera principal T: Torre

A: Poble A

- 5. Considereu la família S de matrius de la forma $\begin{pmatrix} a & b \\ b & a \end{pmatrix}$, en què $a, b \in \mathbb{R}$.
 - a) Calculeu $\begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1}$. [1,25 punts]

b) Trobeu totes les matrius de la família S, és a dir, de la forma $A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$, que verifiquin la igualtat $A^2 = I$, en què I és la matriu identitat d'ordre 2. [1,25 punts]

Espai per al corrector/a		
Qüestió 5	а	
	b	
	Total	

- 6. Sigui la funció $f(x) = \frac{ax^2 + x + b}{x^2 + 1}$.
 - a) Calculeu els valors dels paràmetres a i b si sabem que la gràfica de la funció f té un extrem relatiu en x=-1 i passa pel punt $P=\left(-2,\frac{13}{5}\right)$. [1,25 punts]

 \boldsymbol{b}) Per al cas a=b, calculeu i classifiqueu els extrems relatius de la funció. [1,25 punts]

Total

Qüestió 6

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió.]

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió.]

Etiqueta de l'alumne/a	

