GW Tech Collective Arduino Workshop

Brandon Waller

October 1, 2017

1 What is an Arduino

Arduino is a n open source computer that runs an ATmega328 microprocessor. It allows for fast prototyping for electronic, and allows for easy communication with sensors.

1.1 Types of Arduino Boards

Arduino UNO:

Arduino Mega:

Arduino Nano: Each of these boards is essentially the same with the main varia-

tion being the number of I/O pins and size. The UNO is considered to be the standard form factor.

2 Arduino Programming

2.1 Arduino IDE

To program an Arduino download the Arduino IDE here.

2.1.1 Configuring the IDE

- Tools > Board, select the correct board from the drop down list
- \bullet Tools > Programmer, select AVRISP mkII
- Tools > Port, Select the port that the Arduino is connected to. If you are unsure, unplug the Arduino and look for the port that is missing

2.1.2 Components

- Serial Monitor (ctrl + shift + m), method for communicating with the Arduino
- Verify, checks for errors within your code
- Upload, verifies code and uploads to the Arduino on the selected port
- Libraries, code from other sources that can be used in your own code. For example, the LiquidChrystal library can be used to interact with LCD displays.

2.2 Arduino Commands

- #define name val: Creates a global variable that cannot be changed
- pinMode: configures a pin as an input or output pinMode(2, INPUT) //configure pin 2 as an input pinMode(3, OUTPUT) //configure pin 3 as an output
- Serial.begin(9600): enables the serial port
 Serial.print() print to serial port
 Serial.read() read from serial port
- delay(): pauses program execution
 delay(1000) //pause for 1s
 delay(250) //pause for 250ms
- digitalWrite(pin, voltage): sends 5 or 0 volts to a pin digitalWrite(3, HIGH) //turn on pin 3
- digitalRead(pin): Read the value of a pin (HIGH or LOW)
- void setup()

 Initialization declare pin modes and global variables, Serial begin
- void loop()

Persistent code, the Arduino will repeat the code in void loop() until a new program is uploaded

Try to keep as much code in other functions as possible to keep the main loop readable $\,$

2.2.1 Blink

Program to turn on and blink an led Before execution, take an LED and place the longer leg in pin 12 and the shorter one in GND

```
#define LED_PIN 12

void
setup()
{
    pinMode(LED_PIN, OUIPUI);
}
void
loop()
{
    //turn on LED
    digitalWrite(LED_PIN, HIGH);
    //wait 0.5s/500ms
```

```
delay(500);
//turn off LED
digitalWrite(LED_PIN, LOW);
//wait 0.5s/500ms
delay(500);
//start from top of void loop
}
```

3 Sensors and Components

Name	Function	Connection
Ultrasonic (HC-SR04)	Distance	Vcc - 5V, Trig - Digital
		Output, Echo - Digital In-
		put, GND - GND
DHT 11/22	Temperature and Humidity	Link
Gyroscope and Accelerometer (MPU-6050)	Angle and Acceleration	link
7 Segment Display	Displaying Numbers	Link
Breadboard	Platform for building circuits	+/- rail connected in se-
		ries, all numbered rows
		connected in series
Servo and Motors	Movement	Link

3.1 Porgramming with Sensors

Reading and Ultrasonic Sensor

Ultrasonic sensors work by sending out a pulse then reading the pulse's reflection. Distance is calculated by using the time difference between the pulse out and the pulse in:

```
#define ECHO 2
#define TRIG 3
double pulse_time = 0;
double in = 0;
double cm = 0;
/*
    * Read the distance reading by
    * an ultrasonic sensor and
    * print the reading in in, cm
    */
double
read_ultrasonic(int ech, int trig)
{
    digitalWrite(trig, IOW);
    delayMicroseconds(5);
    digitalWrite(trig, HIGH);
```

```
delay Microseconds (10);
 {\tt digitalWrite}\,(\,{\tt trig}\,\,,\,\, {\color{red} {\bf LOW}})\,;
  return pulseIn(echo, HIGH) / 2;
   * Return time / 2 because the pulse
   *traveles to the object and backe
}
void
setup()
 pinMode(TRIG, OUTPUT);
 pinMode (ECHO, INPUT);
  Serial.begin(9600);
void
loop()
{
  pulse_time = read_ultrasonic(ECHO, TRIG);
  \begin{array}{lll} cm = pulse\_time \ / \ 29.1\,; \\ in = pulse\_time \ / \ 74\,; \end{array}
  Serial.print("in");
  Serial.print(in);
  Serial.print(" cm: ");
  Serial.println(cm);
  delay(5 * 1000);
```

3.1.1 Logic

Using the data from sensors, using the following commands to make decisions:

```
//Turn on LED is reading from ultrasonic is less than 5 inches

#define ECHO 2

#define TRIG 3

#define LED_PIN 4

double pulse_time = 0;

double in = 0;

double

read_ultrasonic(int ech, int trig)

{
    digitalWrite(trig, LOW);
    delayMicroseconds(5);
    digitalWrite(trig, HIGH);
    delayMicroseconds(10);
    digitalWrite(trig, LOW);

return pulseIn(echo, HIGH) / 2;
```

```
/*
 * Return time / 2 because the pulse
 *traveles to the object and backe
 */
}
void
setup()
{
 pinMODE(LED_PIN, OUIPUT);
 pinMode(TRIG, OUTPUT);
 pinMode(ECHO, INPUT);

Serial.begin(9600);
}
void
loop()
{
 pulse_time = read_ultrasonic(ECHO, TRIG);
 in = pulse_time / 74;

if (in < 5)
    digitalWrite(LED_PIN, HIGH);
    else
    digitalWrite(LED_PIN, LOW);
}</pre>
```

Other control statement:

Other control statement.		
Name	Function	
if(condition){/*code*/}	Executed following code if the statement is true	
else if(condition){/*code*/}	Executed if the if is false and the condition is true	
else	Evaluate only if all other if/else if in the block are false	
for(i = 0; i < 10; i++){/*code */}	Run code 10 times	
i = 0; while(i < 10){/*code */; i++;}	Run code 10 times	
Logic Operations:		
a < b	True if a is less than b, false if b is equal to or greater than	
	a	
a > b	True if a is greater than b, false if b is equal to or less than	
	a	
a == b	True if a is the same as b, false if not	
a >= b	True if a is greater than or equal to b, false if not	
$a \le b$	True if a is less than or equal to b, false if not	
a&&b	True if a and b are both true, false if not	
a b	True if a or b are true, false if not	

Mathematical Operations