Практика.

Потенциальные векторные поля

Определение (потенциального поля)

Векторное поле $\bar{a}(M)$ для любой точки $M \in A \subset R^3$ называется потенциальным, если его можно представить следующим образом:

$$\bar{a}(M) = \operatorname{grad} f(M) \ \forall (\cdot) \ M \in A$$
,

где f(M)- скалярное поле, называемое **потенциалом** потенциального поля.

Критерий потенциальности векторного поля

Пусть векторное поле $\overline{a}(M)$ имеет координаты $\{P(M), Q(M), R(M)\}$ Для того, чтобы векторное поле $\overline{a}(M)$ было потенциальным, необходимо и достаточно, чтобы ротор этого поля был равен $\overline{0}$, т.е.

$$\overline{a}(M) = \operatorname{grad} f(M) \ \forall (\cdot) M \in A \iff \operatorname{rot} \overline{a}(M) = \overline{0} \ \forall (\cdot) M \in A$$

Свойства потенциальных полей

1. Пусть $\bar{a}(M)$ - потенциальное поле для любой точки $M \in A \subset R^3$

$$\Rightarrow circul_{\Gamma} \bar{a}(M) = 0$$
,

где Γ — любой замкнутый контур и Γ \subset A.

2. Пусть $\bar{a}(M)$ - потенциальное поле для любой точки $M \in A \subset R^3$. Тогда линейный интеграл не зависит от пути интегрирования $\Gamma_{AB} \subset A$, т.е.

$$\int_{\Gamma_{AB}}^{\overline{a}} (M) \cdot d\overline{r} = \int_{\Gamma_{AB}}^{\overline{a}} P(M) dx + Q(M) dy + R(M) dz = \int_{\Gamma_{AB}}^{\overline{a}} df(M) = f(B) - f(A),$$

f(M) — потенциал векторного поля $\bar{a}(M)$.

Замечание

Из определения потенциального поля $(a(M) = grad \ f(M) \ \forall (\cdot) \ M \in A)$ следует, что потенциальное векторное a(M) определяется заданием его потенциала.

Вычисление потенциала потенциального векторного поля

Первый способ

Пусть
$$\bar{a}(M) = \{P(M); Q(M); R(M)\}.$$

Тогда потенциал векторного поля может быть найден по формуле:

$$f(x,y,z) = \int_{x_0}^x P(x,y_0,z_0) dx + \int_{y_0}^y Q(x,y,z_0) dy + \int_{z_0}^z R(x,y,z) dz,$$

где (x_0, y_0, z_0) - произвольная точка из области определения функций P, QuR.

Второй способ

Определение (звёздной области)

Область $A \subset R^3(R^2)$, называется звёздной относительно некоторой точки $M \in A$, если любой луч, выходящий из точки M, пересекает границу области A не более чем в одной точке.

Замечание:

Для плоскости звездными областями будут, например, сама плоскость, параллелограм, круг и т.д. В трехмерном пространстве – само пространство, параллелепипед, шар и т.д.

Теорема

Пусть $\overline{a}(M)$ - потенциальное поле $\forall (\cdot)M \in A \subset R^3$. Пусть A- звёздная область относительно точки O(0;0;0) (само $\overline{a}(M)$ в точке O может быть не определено).

Тогда потенциал f(M) потенциального векторного поля a(M) в точке M(x; y; z) находится по формуле:

$$f(M) = \int_{0}^{1} (\bar{a}(M') \cdot \bar{r}(M))dt + C, \quad C = const,$$

где $\bar{r}(M) = x\bar{\iota} + y\bar{\jmath} + z\bar{k}$ — радиус — вектор точки M, точка M' имеет координаты (tx;ty;tz) $\forall t\in [0,1]$ и пробегает отрезок OM прямой, проходящей через точки O и M.

Третий способ

Третий способ аналогичен нахождению полного дифференциала при решении дифференциальных уравнений 1 порядка в полных дифференциалах (самостоятельно).