EPFL - Fall 2021

M. Cossarini, B. Santos Correia

Exercise Series 13 - Exterior derivative, Stokes' theorem 2021 - 12 - 21

Exercise 13.1. Prove Proposition 7.2.6. (properties of the integral: linearity, etc).

Exercise 13.2. Prove that a continuous k-form is determined by the value of its integrals (Proposition 7.3.12). *Hint:* Use a chart to move the problem to \mathbb{R}^n , then integrate on small pieces of coordinate planes.

Exercise 13.3. Let $f: M \to N$ be a smooth map between smooth manifolds. Then for all $\omega \in \Omega^k(M)$ we have

$$f^*(d\omega) = d(f^*\omega).$$

Exercise 13.4. Let (x, y, z) be the standard coordinates on \mathbb{R}^3 and let (v, w) be the standard coordinates on \mathbb{R}^2 . Let $\phi: \mathbb{R}^3 \to \mathbb{R}^2$ be defined as $\phi(x,y,z) = (x+z,xy)$. Let $\alpha = e^w dv + v dw$ and $\beta = v dv \wedge dw$ be 2-forms on \mathbb{R}^2 . Compute the following differential forms:

$$\alpha \wedge \beta$$
, $\phi^*(\alpha)$, $\phi^*(\beta)$, $\phi^*(\alpha) \wedge \phi^*(\beta)$.

Exercise 13.5. Compute the exterior derivative of the following forms:

- (a) on $\mathbb{R}^2 \setminus \{0\}$ $\theta = \frac{x \, dy y \, dx}{x^2 + y^2}$. (b) on \mathbb{R}^3 , $\varphi = \cos(x) \, dy \wedge dz$.
- (c) on $\mathbb{R}^3 \omega = A dx + B du + C dz$.

Exercise 13.6. Deduce the following classical theorems from Stokes' theorem.

(a) Green's theorem. Let $D \subseteq \mathbb{R}^2$ be a smooth 2-dimensional compact embedded submanifold with boundary in \mathbb{R}^2 . Then for any differentiable 1-form $\omega = P dx + Q dy$ defined on an open neighborhood of D we have

$$\int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{\partial D} P dx + Q dy.$$

(b) Divergence theorem. Let $A \subset \mathbb{R}^3$ be a 3-dimensional compact embedded submanifold with boundary in \mathbb{R}^3 . Then for any smooth vector field $F:A\to$ \mathbb{R}^3 we have

$$\int_{A} \operatorname{div} F \, \mathrm{d}V = \int_{\partial A} F \cdot \mathrm{d}$$

wher $dV := dx \wedge dy \wedge dz$ is the standard 3-form on \mathbb{R}^3 and on the right hand side we have the formal inner product with $dS = (dy \wedge dz, dz \wedge dx, dx \wedge dy)$.