ELEC 7410 Solution: Homework Assignment #3 Sept. 16, 2025

1. (Problem 30 in Gubner, Chapter 3.)

$$\begin{split} X \sim \operatorname{Poisson}(\lambda) \ \Rightarrow \ P(X = n) &= \frac{\lambda^n e^{-\lambda}}{n!}, \quad n = 0, 1, \cdots \\ Y \Big|_{X = n} \sim \operatorname{Bernoulli}(\frac{1}{n+1}) \ \Rightarrow \ P(Y = 1 | X = n) = \frac{1}{n+1}. \\ P(Y = 1) &= \sum_{n=0}^{\infty} P(Y = 1 | X = n) P(X = n) = \sum_{n=0}^{\infty} \frac{1}{n+1} \times \frac{\lambda^n e^{-\lambda}}{n!} \\ &= \sum_{n=0}^{\infty} \frac{\lambda^n e^{-\lambda}}{(n+1)!} \stackrel{m = n+1}{=} \sum_{m=1}^{\infty} \frac{\lambda^{m-1} e^{-\lambda}}{m!} = \frac{1}{\lambda} \Big[\sum_{m=0}^{\infty} \frac{\lambda^m e^{-\lambda}}{m!} - e^{-\lambda} \Big] = \frac{1 - e^{-\lambda}}{\lambda} \,. \end{split}$$

By Bayes rule,

$$P(X = n | Y = 1) = \frac{P(Y = 1 | X = n)P(X = n)}{P(Y = 1)} = \frac{\frac{1}{n+1} \frac{\lambda^n e^{-\lambda}}{n!}}{\frac{1 - e^{-\lambda}}{\lambda}}$$
$$= \frac{\lambda^{n+1}}{(e^{\lambda} - 1)(n+1)!}, \quad n = 0, 1, \dots$$

2. (Problem 7 (+ part (d)) in Gubner, Chapter 4.) Given

$$X \sim \exp(\lambda) \implies f_X(x) = \lambda e^{-\lambda x} u(x)$$
$$Y \sim \exp(\mu) \implies f_Y(y) = \mu e^{-\mu y} u(y)$$
$$f_{XY}(x, y) = f_X(x) f_Y(y)$$

(a)
$$P(Y \le 2) = \int_{-\infty}^{2} f_Y(y) dy = \int_{0}^{2} \mu e^{-\mu y} dy = \mu \frac{e^{-\mu y}}{-\mu} \Big|_{0}^{2} = 1 - e^{-2\mu}$$

(b)
$$P(X \le 12, Y \le 12) = P(X \le 12)P(Y \le 12) = (1 - e^{-12\lambda})(1 - e^{-12\mu})$$

(c) Use DeMorgan's law:
$$P(\{X \le 12\} \cup \{Y \le 12\}) = 1 - P(X > 12, Y > 12) = 1 - P(X > 12)P(Y > 12) = 1 - e^{-12(\lambda + \mu)}$$

(d) Given
$$\mu^{-1} = 48$$
 months and $\lambda^{-1} = 24$. We have

$$P(X > Y) = \int \int_{\{(x,y): x > y\}} f_{XY}(xy) \, dx \, dy = \int_0^\infty \left[\underbrace{\int_y^\infty \lambda e^{-\lambda x} \, dx}_{=e^{-\lambda y}} \right] \mu e^{-\mu y} \, dy$$
$$= \int_0^\infty \mu e^{-(\lambda + \mu)y} \, dy = \frac{\mu}{\lambda + \mu} = \frac{48^{-1}}{24^{-1} + 48^{-1}} = \frac{1}{3} = 0.333...$$

3. (**Problem 35 in Gubner, Chapter 4.**) Let X_i denote the number of passengers in the *i*th flight. Given $X_i \sim \exp(\lambda)$, $\lambda^{-1} = 20$, and X_i 's are independent. There are five flights a day. Need to calculate the probability of the set

$$\{\text{At least one flight a day makes money}\} = \bigcup_{i=1}^5 \{X_i > 25\} \,.$$

We have

$$P(\bigcup_{i=1}^{5} \{X_i > 25\}) = 1 - P(\bigcap_{i=1}^{5} \{X_i \le 25\}) = 1 - \prod_{i=1}^{5} P(X_i \le 25)$$
$$= 1 - \prod_{i=1}^{5} (1 - e^{-25\lambda}) = 1 - (1 - e^{-1.25})^5 = 0.8151$$

4. (Problem 40 in Gubner, Chapter 4.) Given

$$X \sim \text{uniform}(0,1) = \text{U}(0,1) \implies f_X(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

 $Y = \ln(1/X) = -\ln(X)$

Need to show that the moment generating function (MGF) $M_Y(s)$ of Y is the same as that of an $\exp(1)$ random variable. Then $Y \sim \exp(1)$. We have

$$M_Y(s) = E\{e^{sY}\} = E\{e^{-s\ln(X)}\} = E\{e^{\ln(X^{-s})}\} = E\{X^{-s}\}$$
$$= \int_{-\infty}^{\infty} x^{-s} f_X(x) dx = \int_0^1 x^{-s} dx = \frac{x^{-s+1}}{1-s} \Big|_0^1 = \frac{1}{1-s} \text{ if } s - 1 < 0$$

The MGF of $Z \sim \exp(1)$ is

$$M_Z(s) = E\{e^{sZ}\} = \int_0^\infty e^{sz} e^{-z} dx = \frac{e^{(s-1)z}}{s-1} \Big|_0^\infty = \frac{1}{1-s} \text{ if } s-1 < 0$$

Compare the two expressions to conclude that $Y = \ln(1/X) \sim \exp(1)$

- 5. (**Problem 67 in Gubner, Chapter 4**.) Given $X \sim \exp(1) \Rightarrow f_X(x) = e^{-x}u(x)$. Then $E\{X\} = 1$, $E\{X^2\} = 2$, $F_X(a) = 1 e^{-a}$.
 - **Exact value**: $P(X \ge a) = 1 F_X(a) = e^{-a}$
 - Markov Inequality: $P(X \ge a) \le \frac{E\{X\}}{a} = \frac{1}{a}$
 - Chebyshev Inequality: $P(X \ge a) \le \frac{E\{X^2\}}{a^2} = \frac{2}{a^2}$
 - Chernoff Bound: For any a > 0,

$$P(X \ge a) \le \min_{s>0} \left[e^{-as} E\{e^{sX}\} \right]$$

We have

$$E\{e^{sX}\} = \int_0^\infty e^{sx} e^{-x} dx = \frac{e^{(s-1)x}}{s-1} \Big|_{x=0}^\infty = \frac{1}{1-s} \text{ if } 1-s > 0$$

Now $P(X \ge a) \le \min_{0 \le s < 1} g(s)$ where $g(s) = e^{-as}/(1-s)$. We have

$$\frac{dg(s)}{ds} = \frac{(1-s)(-ae^{-as}) - e^{-as}(-1)}{(1-s)^2} = \frac{e^{-as}(1-a(1-s))}{(1-s)^2} = 0$$

$$\Rightarrow 1 - a(1-s) = 0 \Rightarrow s = \frac{a-1}{a}$$

Hence, $P(X \ge a) \le g(\frac{a-1}{a}) = e^{-as}/(1-s)\Big|_{s=(a-1)/a}$. But the bound expression is valid only for $0 \le s < 1$, therefore, must have $a \ge 1$ for $s \ge 0$.

For $a \ge 1$, the Chernoff bound is

$$P(X \ge a) \le \frac{e^{-a(a-1)/a}}{1 - (a-1)/a} = ae^{1-a}$$
.

- (a) For Markov inequality to be smaller than the Chebyshev inequality, must have $\frac{1}{a} < \frac{2}{a^2}$, that is, a < 2.
- (b) Plots (linear and semilog scales) are for $a \ge 1$ since the Chernoff bound does not exist for a < 1.

The Markov bound is the smallest for $a \le 2$. The Chebyshev bound is the smallest for approximately 2 < a < 5.

6. (Problem 14 in Gubner, Chapter 5.) Let $Z = \max(X,Y)$ where $X,Y \sim \exp(\lambda)$ and X and Y are independent. Therefore, $F_X(x) = F_Y(x) = (1-e^{-\lambda x})u(x)$ where u(x) is the unit step function. We have

$$F_Z(z) = P(Z \le z) = P(\{X \le z\} \cap \{Y \le z\}) = P(X \le z)P(Y \le z)$$

= $F_X(z)F_Y(z) = (1 - e^{-\lambda z})^2 u(z)$.

The pdf is given by

$$f_Z(z) = \frac{dF_Z(z)}{dz} = 2\lambda e^{-\lambda z} (1 - e^{-\lambda z}) u(z).$$

Therefore

$$\begin{split} E\{Z\} &= \int_0^\infty 2z\lambda e^{-\lambda z} \left(1 - e^{-\lambda z}\right) dz = 2\underbrace{\int_0^\infty z\lambda e^{-\lambda z} dz}_{=1/\lambda} - \underbrace{\int_0^\infty z(2\lambda e^{-2\lambda z}) dz}_{=1/(2\lambda)} \\ &= \frac{2}{\lambda} - \frac{1}{2\lambda} = \frac{3}{2\lambda} \,. \end{split}$$