

in a nutshell

Optimal Transport

$$\min \sum_{i,j} \Gamma_{ij} d(x_i, y_j)$$

subject to
$$\sum_{j} \Gamma_{ij} = a_i \quad \forall i$$
 $\sum_{j} \Gamma_{ij} = b_j \quad \forall j$

$dist(x_i, y_j)$

 Γ_{ij} = "mass" moved from x_i to y_j

total transportation cost

supply/demand constraints

demand b_1 b_{j}

supply a_1 a_i

 \dot{a}_n

cost to move mass Γ_{ij} from x_i to y_i

 $\Gamma_{ij} d(x_i, y_j)$

Gaspard Monge (1746-1818)

Leonid Kantorovich (1912-1986)

MÉMOIRE

THÉORIE DES DÉBLAIS.

Par M. Monge.

L'autre, on a coutume de donner le nom de Déblai au volume des terres que l'on doit transporter, & le nom de

Л. В. Канторович

О ПЕРЕМЕШЕНИИ МАСС

Мы будем считать R метрическим компактным пространством, хотя некоторые из приведенных определений и результатов могут быть высказаны и для пространств более общего вида.

Пусть $\Phi(\epsilon)$ распределение масс, т.е. функция совокупности: 1) определенная для борелевских множеств, 2) неотрицательная: $\Phi(\epsilon) \geq 0$, 3) абсолютно-аддитивная: если $\epsilon = \epsilon_1 + \epsilon_2 + \cdots$; $\epsilon_i \cap \epsilon_k = \emptyset$ ($i \neq k$), то $\Phi(\epsilon) = \Phi(\epsilon_1) + \Phi(\epsilon_2) + \cdots$. Пусть $\Phi'(\epsilon')$ другое распределение масс, причем $\Phi(R) = \Phi'(R)$. Перемещением масс будем называть такую функцию $\Psi(\epsilon, \epsilon')$, определен-

Monge's Formulation

Kantorovich's Formulation

 $\sigma(i) = j$ if mine i assigned to factory j

$$\min \sum_{i} d(x_i, y_{\sigma(i)})$$

strict: deterministic assignments

relaxed: fractional assignments

$$\dot{x}_1$$
 \dot{x}_i

 \dot{y}_1 y_j

 y_m

allow "mass splitting"

Optimal Transport

in a nutshell

Monge's Formulation

strict: deterministic assignments

Gaspard Monge (1746-1818)

666. Mémoires de l'Académie Royale

MÉMOIRE THÉORIE DES DÉBLAIS ET DES REMBLAIS. Par M. MONGE.

T orsqu'on doit transporter des terres d'un lieu dans un autre, on a coutume de donner le nom de Déblai au volume des terres que l'on doit transporter, & le nom de

 Γ_{ii} = "mass" moved from x_i to y_i

$$\begin{array}{ll} \mathbf{min} & \sum_{i,j} \Gamma_{ij} \, d(x_i,y_j) & \text{total transportation cost} \\ \mathbf{subject to} & \sum_{i} \Gamma_{ij} = a_i \quad \forall i \\ & \sum_{j} \Gamma_{ij} = b_j \quad \forall j \end{array}$$

Kantorovich's Formulation

relaxed: fractional assignments

Leonid Kantorovich (1912-1986)

Л. В. Канторович

о перемещении масс

Мы будем считать R метрическим компактным пространством хотя некоторые из приведенных определений и результатов могут быть высказаны и для пространств более общего вида.

Пусть $\Phi(\epsilon)$ распределение масс, т.е. функция совокупности: 1) определенная для борелевских множеств, 2) неотрицательная: $\Phi(\epsilon) \geq 0$, 3) абсолютно-аддитивная: если $\epsilon = \epsilon_1 + \epsilon_2 + \cdots$; $e_i \cap e_k = \emptyset \ (i \neq k)$, to $\Phi(e) = \Phi(e_1) + \Phi(e_2) + \cdots$. Пусть $\Phi'(e')$ другое распределение масс, причем $\Phi(R) = \Phi'(R)$. Перемещением масс будем называть такую функцию $\Psi(e,e')$, определен-

Optimal Transport From mines to measures

Discrete