# Probability and Statistics

Omid Safarzadeh

January 20, 2022

## Table of contents

- Sample Space
- Probability Theory Foundation
  - Axiomatic Foundations
  - The Calculus of Probabilities
- Independence
- Conditional Probability
  - Bayes Theorem
- Random Variables
- Probability Function
  - Distribution Functions
  - Density function
- Distribution of Functions of a Random Variable
- 8 Reference

\*Acknowledgement: This slide is prepared based on Casella and Berger, 2002

Omid Safarzadeh Stokebiliky and Stephenics January 20, 2022

# Sample Space

#### Definition 1.1

The set of all possible outcomes of a particular experiment is called the *sample* space for the experiment, which generally denoted by  $\Omega$ .

### Example 1.1

In tossing two fair coins the sample space is:

$$\Omega = \{HH, HT, TH, TT\}.$$

Omid Safarzadeh Stoke billsy and Statistics January 20, 2022

## Sample space

#### **Exercise:**

- what is the sample space of a fair dice?
- Whats is the sample space of a credit risk problem ?
- Whats is the sample space of a Classification problem?
- Define sample space of a user visiting a specific web page?
- Define sample space of a chat bot?

#### **Event**

#### Definition 1.2

The event space ( $\mathscr A$ ) is the space of potential results of the experiment. In discrete case ,  $\mathscr A$  is the power set of  $\Omega$ 

#### Definition 1.3

An event is any collection of possible outcomes of an experiment, which is, any subset of  $\Omega$ .

 $(\Omega, \mathcal{A}, P)$  is called Probability Space.

**Exercise:** pick any Amazone's product page, define several events.



### Axiomatic Foundations

#### Definition 2.1

A collection,  $\mathbb{B}$ , of subsets  $\Omega$  is called sigma algebra, if it satisfies the following:

- $\emptyset \ \varnothing \in \mathbb{B}$
- ② If  $A \in \mathbb{B}$ , then  $A^c \in \mathbb{B}$  ( $\mathbb{B}$  is closed under complement).

The pair  $(\mathbb{B}, \Omega)$  is called a measurable space or Borel Space.

Interpretation: Sigma Algebra is the collection of events that can be assigned probabilities.

#### **Exercise:**

- Is the set of all subsets of  $\mathbb{B}$  countable?
- Is  $\mathbb{B}$  a set?
- ullet Define  $\Bbb B$  for a web page? Check if fits all 3 properties of sigma algebra.

Omid Safarzadeh Probentis vans santas January 20, 2022 7

### Axiomatic Foundations

if  $A_1,A_2,...\in\mathbb{B}$  then  $A_1^c,A_2^c,...\in\mathbb{B}$ , by(2). Now, by (3),  $\bigcup_{i=1}^{\infty}A_i^c\in\mathbb{B}$ . Use De Morgan's Law,

$$\Big(\cup_{i=1}^{\infty}A_{i}^{c}\Big)^{c}=\cap_{i=1}^{\infty}A_{i}.$$

• is  $\bigcap_{i=1}^{\infty} A_i$  countable or uncountable?

Then, by (2),  $\bigcap_{i=1}^{\infty} A_i \in \mathbb{B}$  and  $\mathbb{B}$  is closed under countable intersections, as well.



Omid Safarzadeh Propositiva and Statistica January 20, 2022 8/

### Axiomatic Foundations

### Example 2.1

if  $\Omega$  is finite or countable, then we can define for a given sample space  $\Omega$ 

 $\mathbb{B}=(\text{all subsets of }\Omega\text{ including }\Omega\text{ itself }).$ 

• Take, for example,  $\Omega = \{A,B,...,Z\}$ . Then the sigma algebra is the power set of  $\Omega$ .

Omid Safarzadeh Protestriky and Statistics January 20, 2022

# Kolmogorov's Axioms

#### Definition 2.2

Given a sample space  $\Omega$  and an associated sigma algebra  $\mathbb{B}$ , a probability function is a function P with domain  $\mathbb{B}$  that satisfies

- $P(A) \ge 0$  for all  $A \in \mathbb{B}$ .
- ② P(Ω) = 1.
- **3** If  $A_1, A_2, ... \in \mathbb{B}$  are pairwise disjoint, then

$$P\Big(\cup_{i=1}^{\infty}A_i\Big)=\sum_{i=1}^{\infty}P(A_i).$$

# Kolmogorov's Axioms

- These three points are usually referred to as the Axioms of Probability or the Kolmogorov's Axioms.
- Now, any function P(.) that satisfies the Kolmogorov Axioms is a valid probability function.

### Example 2.2

In tossing a fair coin.we have,  $\Omega = \{H, T\}$ . The probability function is

$$P({H}) = P({T}),$$

as the coin is fair.

• observe that  $\Omega = \{H\} \cup \{T\}$ . Then, from Axiom 2 we must have

$$P({H} \cup {T}) = 1.$$

Since {H} and {T} are disjoint,

$$P({H} \cup {T}) = P({H}) + P({T}).$$

So.

$$P({H} \cup {T}) = P({H}) + P({T}) = 1.$$

Omid Safarzadeh

# Axioms of Probability

- Our intuition and the Kolmogorov Axioms together tell us that  $P(\{H\} = P(\{T\}) = 1/2.$
- However, any non-negative probabilities that add up to one would have been valid, say  $P(\{H\}) = 1/4$  and  $P(\{T\}) = 3/4$ . The reason we chose equal probabilities is our knowledge that the coin is fair!



13 / 49

**Exercise:** Use above example and provide a similar approach for a web page (buttons, option boxes, popup boxes,...)

Omid Safarzadeh Processitiv and Sisterics January 20, 2022 1

### The Foundation of Probabilities Functions

### Theorem 2.1

If P is a probability function and A is any set in  $\mathbb{B}$ , then

- $P(\varnothing) = 0$  where  $\varnothing$  is the empty set.
- **2**  $P(A) \leq 1$ .
- $P(A^c) = 1 P(A).$ 
  - Proof: Exercise!

15/49

### The Foundation of Probabilities Functions

#### Theorem 2.2

If P is a probability function and A and B are any sets in  $\mathbb{B}$ , then

- $P(B \cap A^c) = P(B) P(A \cap B).$
- ②  $P(A \cup B) = P(A) + P(B) P(A \cap B)$ .
- - Proof: Exercise!

16 / 49

# Independence

### Definition 3.1

Two events, A and B, are statistically independent if

$$P(A \cap B) = P(A)P(B).$$

#### Theorem 3.1

If A and B are independent events, then the following pairs are also independent:

- $oldsymbol{0}$  A and  $B^c$
- $\bigcirc$   $A^c$  and B
- $\bigcirc$   $A^c$  and  $B^c$

# Conditional Probability

#### Definition 4.1

If A and B are events in S, and P(B) > 0, then the conditional probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}. (1)$$

- In words, given that B has occurred, what is the probability that A will occur?
- By definition,

$$P(B|B)=1,$$

as B has already occurred.

18 / 49

# Conditional Probability

• If A and B are disjoint sets,  $P(A \cap B) = P(\emptyset) = 0$  then:

$$P(A|B) = 0 = P(B|A)$$

- In fact, what happens in the conditional probability calculation is that *B* becomes the sample space.
- It is straightforward to verify that the probability function P(.|B) satisfies Kolmogorov's Axioms, for any B for which P(B) > 0.

Omid Safarzadeh Probability and Statutes January 20, 2022 19 / 49

# Conditional Probability



Figure: Conditional Probability.

## NLP application

"You shall know a word by the company it keeps" (J. R. Firth 1957: 11)

### Example 4.1

Omid is a \_\_\_\_\_ Data Scientist...

We want to predict \_\_\_\_\_ given other words!

$$P(w_{t+i}|w_t) = ? (2)$$

For each position  $t=1,\ldots$ , T, predict context words within a window of fixed size m, given center word.

Ref: Stanford CS224N course, Prof. Manning

21 / 49

# Bayes Rule

Observe that since

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 and  $P(B|A) = \frac{P(A \cap B)}{P(A)}$ ,

we have

$$P(A|B)P(B) = P(A \cap B) = P(B|A)(PA) \Rightarrow P(A|B) = P(B|A)\frac{P(A)}{P(B)}$$
(3)

• Which is known as Bayaes's Rule.

22/49

## Bayes Theorem

#### Theorem 4.1

Let  $A_1, A_2, ...$  be a partition of the sample, and let B be any set. Then, for each i=1,2,...

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^{\infty} P(B|A_j)(PA_j)}.$$

This is actually not much more different that (2) since

$$\sum_{j=1}^{\infty} P(B|A_j)P(A_j) = \sum_{j=1}^{\infty} P(A_j \cap B) = P(B)$$

given that  $A_1, A_2, ...$  is a partition of the sample space

### Random Variables

### Definition 5.1

A random variable is a function from a sample space  $\Omega$  into the real numbers  $\mathbb R$  .

| Experiment                                             | Random Variable                                                                           |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Click on amazon product page amazon product page visit | X= click through BUY Button . $X=$ total number of calling the page from server (GET API) |

# Random Variable example

## Example 5.1

Consider tossing a fair coin three times. Define the random variable X to be the number of heads obtained in the three tosses. we have:

| $\omega$    | ННН | HHT | HTH | THH | TTH | THT | HTT | TTT |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|
| $X(\omega)$ | 3   | 2   | 2   | 2   | 1   | 1   | 1   | 0   |

25 / 49

### Random Variables in $\mathbb{R}$

Suppose the sample space is  $\Omega = \{\omega_1, ..., \omega_n\}$  and the original probability function is P. Define the new random variable

$$X: \Omega \to \mathbb{R}, \quad \text{take } A \in \mathbb{R}, A = \{x_1, ..., x_m\}$$

$$P_X(X \in A) = P(\{\omega \in \Omega : X(\omega) \in A\}), A \in \mathbb{R}$$



26 / 49

Omid Safarzadeh Proteibilis and Stadisles January 20, 2022

## **Probability Function**

• Suppose the sample space is  $\Omega = \{\omega_1, ..., \omega_n\}$  and the original probability function is P. Define the new random variable

$$X: \Omega \to \mathscr{X}, \quad \mathscr{X} = \{x_1, ..., x_m\}$$

• Define the new probability function for X as  $P_X$  where

$$P_X(X = x_i) = P(\{\omega_j \in \Omega : X(\omega_j) = x_i\}).$$

- $P_X$  is an induced probability function, as it is defined in terms of the original probability function, P.
- If X is uncountable, the induced probability function is defined in a slightly different way. Namely, for any set  $A \subset \mathcal{X}$ ,

$$P_X(X \in A) = P(\{\omega \in \Omega : X(\omega) \in A\}).$$

Omid Safarzadeh

Profesioliste successions

January 20, 2022

27 / 49

# **Probability Function**

- Exercise: show that induced probability function satisfies the Kolmogorov Axioms.
- we assign capital letters to random variables and lower case letters to the particular value they take.

28 / 49

### Distribution Functions

All random variables are associated with a distribution function. This
distribution function includes all information about the randomness of the
variable.

#### Definition 6.1

The cumulative distribution function or CDF of a random variable X, denoted by  $F_X(x)$ , is defined by

$$F_X(x) = P_X(X \le x)$$
, for all  $x$ .

• When we write  $P_X(X \le x)$ , we mean the probability that the random variable X takes a value equal to or smaller than x. The subscript X in  $P_X(.)$  denotes that this probability is obtained with respect to the probability distribution of X.

(D) (D) (E) (E) (E) (E) (V

### Example 6.1

Consider the experiment of tossing three fair coins, and let X = number of heads observed. The CDF of X is

$$F_X(x) = \begin{cases} 0 & \text{if } -\infty < x < 0, \\ 1/8 & \text{if } 0 \le x < 1, \\ 1/2 & \text{if } 1 \le x < 2, \\ 7/8 & \text{if } 2 \le x < 3, \\ 1 & \text{if } 3 \le x < \infty. \end{cases}$$

• Note that,  $F_X(x)$  is defined for all possible values of  $x \in \mathbb{R}$ . Hence,

$$P_X(x \le 2.5) = P(X = 0, 1 \text{ or } 2) = 7/8.$$

Omid Safarzadeh January 20, 2022 30 / 49

### Distribution Functions



Figure: from Casella and Berger (2002, p.30). CDF of example 6.1

Omid Safarzadeh Probability and Safarzadeh January 20, 2022

### Distribution Functions

#### Theorem 6.1

The function  $F_X(x)$  is a CDF if and only if the following three conditions hold:

- $P_X(x)$  is a non-decreasing function of x.
- **3**  $F_X(x)$  is right-continuous; that is, for every number  $x_0$ ,  $\lim_{x\downarrow x_0} F_x(x) = F(x_0)$ .
  - We can also have a continuous CDF.

#### Definition 6.2

A random variable X is continuous(discrete) if  $F_X(x)$  is a continuous(step) function of x.

> January 20, 2022 Omid Safarzadeh

## Example 6.2

take Sigmoid function:

$$F_X(x) = \frac{1}{1 + e^{-x}}$$

observe that

$$\lim_{x \to -\infty} F_X(x) = 0 \quad \text{since} \quad \lim_{x \to -\infty} e^{-x} = \infty,$$

$$\lim_{x \to \infty} F_X(x) = 1 \quad \text{since} \quad \lim_{x \to \infty} e^{-x} = 0,$$

$$\frac{d}{dx} F_X(x) = \frac{e^{-x}}{(1 + e^{-x})^2} > 0,$$

so  $F_X(x)$  is non-decreasing in x.

 $F_X(x)$  is continuous everywhere.

(□▶◀∰▶◀불▶◀불▶ · 불 · 쒸٩♡)

Omid Safarzadeh Propositiva and Statistica January 20, 2022 33 / 49

## Distribution Functions

identically disturbed

### Theorem 6.2

The following two statements are equivalent:

- lacktriangle The random variables X and Y are identically distributed.
- $F_X(x) = F_Y(x)$  for every x.

34 / 49

# Density Function Discrete Case

#### Definition 6.3

The probability mass function of a discrete random variable is given by

$$f_X(x) = P(X = x)$$
 for all x.

- CDF  $F_X$ , then pdf is denoted by  $f_X$
- the pmf is called "density". ¿¿¿ for Discrete R.V.
- the pdf is also called "density" ¿¿¿ for Continous R.V.

# Density and Mass Continous Case

#### Definition 6.4

The probability density function or pdf,  $f_X(x)$ , of a continuous random variable X is the function that satisfies

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

A note on notation : The expression "X has a distribution given by  $F_X(x)$ " is abbreviated symbolically by "X  $\sim F_X(x)$ ", where we read the symbol " $\sim$ " as "is distributed as". We can similarly write X  $\sim f_X(x)$  or, if X and Y have the same distribution, X  $\sim$  Y

Omid Safarzadeh Stokebilis end Statistics January 20, 2022

# Example 6.3

For the logistic distribution considered before, we have

$$F_X(x) = \frac{1}{1 + e^{-x}}$$

and, hence,

$$f_X(x) = \frac{d}{dx} F_X(x) = \frac{e^{-x}}{(1 + e^{-x})^2}.$$

Then, for continuous random variables in general,

$$P(a < X < b) = F_X(b) - F_X(a) = \int_{-\infty}^b f_X(x) dx - \int_{-\infty}^a f_X(x) dx$$
$$= \int_{-\infty}^b f_X(x) dx.$$

### Theorem 6.3

A function  $f_X(x)$  is a pdf (/ pmf) of a random variable X if and only of

- $f_X(x) \ge 0$  for all x.
- ②  $\sum_{x} f_X(x) = 1$  (discrete) or  $\int_{-\infty}^{\infty} f_X(x) dx = 1$  (continuous).



38 / 49

# Important for Simulating

 Any non-negative function with a finite positive integral can be turned into a pdf or pmf. Take, for example, if

$$h(x) = \begin{cases} \ge 0 & \text{for } x \in A \\ 0 & \text{elsewhere} \end{cases}$$

and

$$\int_{x\in A}h(x)dx=\mathrm{K}<\infty, \quad \text{where } \mathrm{K}>0,$$

then  $f_X(x) = h(x)/K$  is a pdf of a random variable X taking values in A.

• In some cases, although  $F_X(x)$  exists,  $f_X(x)$  may not exist because  $F_X(x)$  can be continuous but not differentiable. Therefore, sometimes statistical analysis would be based on  $F_X(x)$  and not  $f_X(x)$ .

Omid Safarzadeh

From Status and Status and

- If X is a random variable with CDF  $F_X$ , then Y = g(X) is also a random variable.
- Importantly, since *Y* is a function of *X*, we can determine its random behaviour in terms of the behaviour of *X*.
- Then, for any set A,

$$P(Y \in A) = P(g(X) \in A).$$

This clearly shows that the distribution of Y depends on the function g(.) and the CDF  $F_X$ .

• Formally,

$$g(x): \mathscr{X} \to \mathscr{Y}$$

where  $\mathscr{X}$  and  $\mathscr{Y}$  are the sample spaces of X and Y, respectively.

• Notice that the mapping g(.) is associated with the inverse mapping  $g^{-1}(.)$ , a mapping from the subsets of  $\mathscr Y$  to those  $\mathscr X$ :

$$g^{-1}(A) = \{x \in \mathcal{X} : g(x) \in A\}.$$
 (4)

- Therefor, the mapping  $g^{-1}(.)$  takes sets into sets, that is,  $g^{-1}(A)$  is the set of points in  $\mathscr{X}$  that g(x) takes into the set A.
- If  $A = \{y\}$ , a point set, then

$$g^{-1}(\{y\}) = \{x \in \mathcal{X} : g(x) = y\}.$$

• Now, if Y = g(X), then for all  $A \in \mathcal{Y}$ ,

$$P(Y \in A) = P(g(X) \in A)$$

$$= P(\{x \in \mathcal{X} : g(x) \in A\})$$

$$= P(X \in g^{-1}(A)), \tag{5}$$

where the last line follows from (1). This defines the probability distribution of Y.

### Example 7.1

A discrete random variable X has binomial distribution if its pmf is of the form

$$f_X(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, ..., n,$$

where n is a positive integer and  $0 \le p \le 1$ . Values such as n and p are called parameters of a distribution. Different parameter values imply different distributions

• The CDF of Y = g(X) is

$$F_Y(y) = P(Y \le y) = P(g(X) \le y)$$
$$= P(\{x \in \mathcal{X} : g(x) \le y\})$$
$$= \int_{x \in \mathcal{X} : g(x) \le y} f_X(x) dx.$$

43 / 49

#### Theorem 7.1

Let X have CDF  $F_X(x)$ , let Y = g(X) and let  $\mathscr X$  and  $\mathscr Y$  be defined as

$$\mathscr{X} = \{x : f_X(x) > 0\} \text{ and } \mathscr{Y} = \{y : y = g(x) \text{ for some } x \in \mathscr{X}\}.$$
 (6)

- **1** If g is an increasing function on  $\mathscr{X}$ ,  $F_Y(y) = F_X(g^{-1}(y))$  for  $y \in \mathscr{Y}$ .
- ② If g is a decreasing function on  $\mathscr X$  and X is a continuous random variable,  $F_Y(y)=1-F_X(g^{-1}(y))$  for  $y\in\mathscr Y$ .

Proof: Exercise!

ロト (個) (意) (意) (意) (意) (例(の)

Omid Safarzadeh Councility-and Sensors January 20, 2022

#### Theorem 7.2

Let X have pdf  $f_X(x)$  and let Y = g(X),where g is a monotone function, Let  $\mathscr X$  and  $\mathscr Y$  be defined as in (3). Suppose that  $f_X(x)$  is continuous on  $\mathscr X$  and that  $g^{-1}(y)$  has a continuous derivative on  $\mathscr Y$ . The the pdf of Y is given by

$$f_Y(y) = egin{cases} f_\chi(g^{-1}(y)) | rac{d}{dy} g^{-1}(y) | & y \in \mathscr{Y} \\ 0 & ext{otherwise} \end{cases}$$

Proof: Exercise!

# Example 7.2

Suppose X  $f_X(x) = 1$  for 0 < x < 1 and 0 otherwise, which is the *uniform*(0,1) distribution. Observe that  $F_X(x) = x$ , 0 < x < 1. We now make the transformation  $Y = g(X) = -\log X$ . Then,

$$g'(x) = \frac{d}{dx}(-\log x) = -\frac{1}{x} < 0 \text{ for } 0 < x < 1;$$

hence, g(x) is monotone and has e continuous derivative on 0 < x < 1. Also,  $\mathscr{Y}=(0,\infty)$ . Observe that  $g^{-1}(y)=e^{-y}$ . Then, using Theorem (1.2),

$$f_Y(y) = 1 * |-e^{-y}| \quad \text{if } 0 < y < \infty$$
  
=  $e^{-y}$  \quad \text{if } 0 < y < \infty.

Omid Safarzadeh January 20, 2022

#### Theorem 7.3

Let X have continuous CDF  $F_X(x)$  and define the random variable Y as  $Y = F_X(X)$ . Then, Y is uniformly distributed on (0,1), that is

$$P(Y \le y) = y, \quad 0 < y < 1.$$

• Proof: Exercise!

47 / 49

• This result connects any random variable with some CDF  $F_X(x)$  with a uniformly distributed random variable. Hence, if we want to simulate random numbers from some distribution  $F_X(x)$ , all we have to do is to generate uniformly distributed random variables, Y, and then solve for  $F_X(x) = y$ . As long as we can compute  $F_X^{-1}(y)$ , we can generate random numbers from the distribution  $F_X(x)$ .

<□ > < □ > < □ > < ē > < ē > Ē ≥ 9 < ♡

Casella, G., & Berger, R. (2002). *Statistical inference*. Cengage Learning. https://books.google.fr/books?id=FAUVEAAAQBAJ

(1) (1) (2) (2) (2) (2)