Support Vector Machine with Missing Class Identifiers

A motivating example: Complicated Grief (CG)

Acute grief: a normal human response to the loss of a loved one, usually dissipates with time.

Complicated grief (CG): an intense and long-lasting form of grief that takes over a person's life.

Studied since mid 90's, prevalence about 10% in bereaved people.

Those suffering from CG often exhibit symptoms of (Shear et al. 2011):

- strong yearning for the person who died
- frequent intrusive thoughts of the loved one
- feelings of intense loneliness or emptiness
- a feeling that life without the person has no purpose or meaning

Scientific goal

• To use psychiatric assessment information (X) to predict CG disease (D).

Feature variables X

Inventory of Complicated Grief (ICG; Prigerson et al. 1995)

- Preoccupation with the person who died
- Memories of the person who died are upsetting
- 3. The death is unacceptable
- Longing for the person who died
- Drawn to places and things associated with the person who died
- Anger about the death
- Disbelief
- 8. Feeling stunned or dazed
- 9. Difficulty trusting others
- 10. Difficulty caring about others

- Avoidance of reminders of the person who died
- Pain in the same area of the body
- 13. Feeling that life is empty
- Hearing the voice of the person who died
- 15. Seeing the person who died
- Feeling it is unfair to live when the other person has died
- 17. Bitter about the death
- 18. Envious of others
- 19. Lonely

Practical challenge

- However, CG is never well defined.
- There has even been some debate regarding whether CG should be a disease:
 - In the Diagnostic Statistical Manual of Mental Disorders DSM-IV (1994), CG is not explicitly considered a mental disorder.
 - But body of evidence leads to inclusion of CG to DSM-5, Section 3 (due out May 2013).
- Challenge: A prediction problem but in the absence of disease state!

Salvaged by disease-informative markers

- There often exist functional markers as the consequences of disease.
- One important marker for CG is

 Work and Social Adjustment Scale (Mundt et al. 2002)

Rate each of the following guestions on a 0 to 8 scale: 0 indicates no impairment

- at all and 8 indicates very severe impairment.
 - Because of my [disorder], my ability to work is impaired. 0 means not at all impaired and 8 means very severely impaired to the point I can't work.
 - Because of my [disorder], my home management (cleaning, tidying, shopping, cooking, looking after home or children, paying bills) is impaired. 0 means not at all impaired and 8 means very severely impaired.
 - Because of my [disorder], my social leisure activities (with other people, such as parties, bars, clubs, outings, visits, dating, home entertainment) are impaired. 0 means not at all impaired and 8 means very severely impaired.
 - Because of my [disorder], my private leisure activities (done alone, such as reading, gardening, collecting, sewing, walking alone) are impaired. 0 means not at all impaired and 8 means very severely impaired.
 - 5. Because of my [disorder], my ability to form and maintain close

Diagram of prediction problem

Overview of proposed approach

Goal: to construct an optimal decision rule to classify presence/absence of a disorder:

- Absence of a gold standard disease status
- ullet Observe feature variables, X
- ullet Observe external disease-informative markers, $oldsymbol{Z}$

Overview of proposed approach

Classification, variable/item selection in the presence of missing data (missing class labels).

- Large-margin based classifiers
- Pseudo-EM: introduce EM algorithm for missing data to margin-based classification
 - Distinction: do NOT model distribution of disease status and feature variables
 - Pseudo-likelihood naturally based on the loss function.

Borrow information from external informative markers to guide classification.

Large margin based classification with known labels

Let $D_i = 1$: diseased; $D_i = -1$: non-diseased; $g(\boldsymbol{x})$ separating boundary

Margin based loss subject to a penalty

$$\arg\min_{g\in\mathcal{H}_K} \left[\sum_i \mathcal{L}\{D_i g(\boldsymbol{X}_i)\} + \frac{\lambda_n}{2} ||g||^2 \right],$$

- SVM loss: $(1 u)_{+}$
- Variant of SVM loss: $(1-u)_+^q$
- ψ -loss: $\mathcal{L}(u) = \psi(u), \psi(u) = 1 \text{sign}(u)$ if $u \ge 1$ or u < 0; and $\psi(u) = 2(1 u)$ otherwise

Assumptions

Key assumptions:

- $\boldsymbol{Z}_i|D_i = d \sim MVN(\boldsymbol{\mu}_d, \boldsymbol{\Sigma}_d)$
- Disease-informative marker has distinct population mean and known direction
- For illustrative purposes, Z_i and X_i are conditionally independent given D_i (can be relaxed)
- Other technical assumptions for theoretical proof

Penalized pseudo-likelihood:

$$\prod_{i} \exp \left[-\mathcal{L}\{D_{i}g(\boldsymbol{X}_{i})\} - \frac{\lambda_{n}}{2}||g||^{2} \right].$$

Penalized pseudo-log-likelihood for complete data $(\boldsymbol{Z}_i, D_i, \boldsymbol{X}_i)$ (up to some constant):

$$\sum_{i} \log \left[f(\boldsymbol{Z}_{i} | D_{i} = d; \boldsymbol{\mu}_{d}, \boldsymbol{\Sigma}_{d}) \right] - \sum_{i} \left[\mathcal{L} \left\{ D_{i} g(\boldsymbol{X}_{i}) \right\} + \frac{\lambda_{n}}{2} ||g||^{2} \right].$$

Pseudo-EM algorithm accounting for missing D_i (SVM-EM)

E-step:

$$\begin{split} w_i^{(m)} &= E(D_i = 1 | \text{observed}) \\ &= \frac{f(\boldsymbol{Z}_i; \widehat{\boldsymbol{\mu}}_1, \widehat{\boldsymbol{\Sigma}}_1) \text{Pr}^{(m-1)}(D_i = 1 | \boldsymbol{X}_i)}{\sum_{d \in \{-1,1\}} f(\boldsymbol{Z}_i; \widehat{\boldsymbol{\mu}}_d, \widehat{\boldsymbol{\Sigma}}_d) \text{Pr}^{(m-1)}(D_i = d | \boldsymbol{X}_i)}, \end{split}$$

Pseudo-probabilities

$$\Pr^{(m-1)}(D_i = d|\mathbf{X}_i) = \frac{p[d, g^{(m-1)}(\mathbf{X}_i)]}{p[1, g^{(m-1)}(\mathbf{X}_i)] + p[-1, g^{(m-1)}(\mathbf{X}_i)]},$$

where

$$p[d, g(\boldsymbol{x})] = \exp[-\mathcal{L}\{dg(x)\}].$$

For μ_d , Σ_d : Gaussian mixture model

M-step for $g(\cdot)$:

$$\min_{g \in \mathcal{H}_K} \left(\sum_{i} \left[w_i^{(m)} \mathcal{L} \{ g(X_i) \} + (1 - w_i^{(m)}) \mathcal{L} \{ -g(X_i) \} \right] + \frac{\lambda_n}{2} ||g||^2 \right)$$

Figure: Illustration under the SVM loss, $\mathcal{L}(u) = (1-u)_{+}$

Under linear decision boundary and SVM loss:

$$\arg\min_{\beta_0, \boldsymbol{\beta}} \left(\sum_i \xi_i + \frac{\lambda_n}{2} \|\boldsymbol{\beta}\|^2 \right)$$

$$u_i^{(m-1)}(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}_i) \ge 1 - \xi_i, \quad \xi_i \ge 0, \quad i = 1, \dots, n,$$

$$u_i^{(m)} = E(D_i|\text{observed}) = 2w_i^{(m)} - 1.$$

Dual form:

$$\max \left(\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j u_i^{(m)} u_j^{(m)} \boldsymbol{X}_i^T \boldsymbol{X}_j \right),$$

$$0 \le \alpha_i \le C_n, \quad \sum_{i=1}^{n} \alpha_i \operatorname{sign} \{ u_i^{(m)} \} = 0, \quad i = 1, ..., n.$$

Computation extremely easy!

• Re-scaled $\widetilde{\boldsymbol{X}}_i = |u_i^{(m)}|\boldsymbol{X}_i$, $\widetilde{D}_i = \mathrm{sign}\{u_i^{(m)}\}$ and solve regular SVM

$$\max\left(\sum_{i=1}^{n}\alpha_{i} - \frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{i}\alpha_{j}\widetilde{D}_{i}\widetilde{D}_{j}\widetilde{\boldsymbol{X}}_{i}^{T}\widetilde{\boldsymbol{X}}_{j}\right),$$

$$0 \le \alpha_i \le C_n, \sum_{i=1}^n \alpha_i \widetilde{D}_i = 0, \quad i = 1, ..., n.$$

• Adapt to nonlinear boundary by kernel trick

Variable selection while accommodating correlation among X:

$$\begin{split} & \min_{b,\boldsymbol{\beta}} \Big[\sum_{i} \Big\{ w_i^{(m)} \mathcal{L}(b + \boldsymbol{\beta}^T \boldsymbol{X}_i) + (1 - w_i^{(m)}) \mathcal{L}(-b - \boldsymbol{\beta}^T \boldsymbol{X}_i) \Big\} \\ & + \lambda_{1n} ||\boldsymbol{\beta}||_1 + \frac{\lambda_{2n}}{2} ||\boldsymbol{\beta}||^2 \Big]. \end{split}$$

Computation: penalized SVM (Zhu et al. 2004; Becker et al. 2009)

Asymptotic Results

Theoretical property I:

Convergence of the pseudo-EM algorithm:

Theorem

Let $\widetilde{p}[d, g(\cdot)] = \exp[-\mathcal{L}\{dg(\cdot)\} - p_{\lambda_n}(g)]$, where $p_{\lambda_n}(g)$ is a penalty function, and define

$$\mathcal{Q}_n(g) \equiv \sum_{i=1}^n \log \left\{ \sum_d \widetilde{p}[d, g(\boldsymbol{X}_i)] f(\boldsymbol{Z}_i | D_i = d; \widehat{\boldsymbol{\mu}}_d, \widehat{\boldsymbol{\Sigma}}_d) \right\}.$$

Then $Q_n(g)$ is non-decreasing after each iteration in the EM algorithm. Furthermore, the value of Q_n does not increase if and only if the decision rule based on $g(\cdot)$ does not change after an iteration.

Theoretical property II:

Fisher consistency under a general boundary:

Theorem

Let $g_0(\mathbf{x})$ be $p_1(\mathbf{x}) - p_{-1}(\mathbf{x})$ where $p_d(\mathbf{x}) = Pr(D = d|\mathbf{X} = \mathbf{x})$. Then

$$\operatorname{sign}[g^*(\boldsymbol{x})] = \operatorname{sign}[g_0(\boldsymbol{x})],$$

where $g^*(\cdot)$ is the limit of $\widehat{g}(\cdot)$.

Theoretical properties III:

Paremeter consistency and variable selection consistency under linear boundary:

Theorem

Under a linear decision rule, $g(\mathbf{x}) = b_0 + \boldsymbol{\beta}^T \mathbf{x}$, and technical conditions on $p_{\lambda_n}(|\boldsymbol{\beta}|)$,

- (a) $\hat{\boldsymbol{\beta}}$ is consistent;
- (b) with probability tending to 1, $\operatorname{sign}(\widehat{\beta}_k) = \operatorname{sign}(\beta_{0k})$, where $\widehat{\beta}_k$ and β_{0k} are the kth component of $\widehat{\boldsymbol{\beta}}$ and $\boldsymbol{\beta}_0$, respectively;
- (c) $\sqrt{n}(\widehat{\boldsymbol{\beta}}^1 \boldsymbol{\beta}_0^1)$ converges in distribution to a normal distribution with mean zero where $\widehat{\boldsymbol{\beta}}^1$ and $\boldsymbol{\beta}_0^1$ denote the components of $\widehat{\boldsymbol{\beta}}$ and $\boldsymbol{\beta}_0$ corresponding to non-zero β_{0k} 's.

Simulations

Simulation studies: simulation design

Key settings:

- $Z_i|D_i = d \sim N(\mu_d, \sigma_d^2)$
- $\mu_1 \mu_{-1} = 1.5$ or 2, for continuous and multinomial X_i , respectively
- $\boldsymbol{X}_i = (X_{i1}, \dots, X_{i10})^T | D_i = d \sim MVN(\boldsymbol{\theta}_d, \boldsymbol{\Sigma}_d)$ for continuous \boldsymbol{X}_i , thresholding for binary, and multinomial

Methods to be compared:

- SVM-Oracle: assuming D_i is known
- SVM-2stage: Gaussian mixture model analysis with Z, use obtained labels as outcomes and X as features in an SVM
- SVM-EM with various penalty functions

Simulation studies: simulation design

Four scenarios:

I: X are continuous and independent features;

II: \boldsymbol{X} are binary and independent features;

III: X are multinomial and independent features $(X_{ij} = 0, 1, \dots, 4)$;

IV: \boldsymbol{X} are continuous and correlated features;

Simulation studies: results

Table: Prediction and feature selection performance (n=500)

Setting	Method	Miss	AUC	С	IC	
I	SVM-Oracle	0.043	0.993	2.990	0.002	
	SVM-EM	0.050	0.991	2.928	0.054	
	SVM-2stage	0.075	0.987	2.948	0.046	
II	SVM-Oracle	0.094	0.864	2.994	0.001	
	SVM-EM	0.104	0.861	2.950	0.410	
	SVM-2stage	0.130	0.814	2.618	0.010	
III	SVM-Oracle	0.102	0.955	2.998	0.001	
	SVM-EM	0.104	0.955	3.000	0.142	
	SVM-2stage	0.115	0.953	2.988	0.472	
IV	SVM-Oracle	0.045	0.992	2.990	0.162	
	SVM-EM	0.054	0.989	2.900	0.316	
	SVM-2stage	0.076	0.986	2.938	0.292	
	SVM-Oracle*	0.044	0.992	3.000	0.066	
	SVM-EM*	0.054	0.991	2.998	0.001	
	SVM-2stage*	0.073	0.990	2.988	0.096	

Simulation studies: sensitivity analysis

Four scenarios:

A: Misspecify the distribution of Z_i as normal while generated from Laplace;

B: Misspecify X and Z as conditionally independent given D_i while they are correlated;

C: Alternative pseudo-class probabilities:

$$\Pr^{(m)}[D_i = d_i^{(m)} | \mathbf{X}_i] = \frac{1}{1 + [1 - d_i^{(m)} g(\mathbf{X}_i)]_+}.$$

D: Randomly reveal 10%, 20% or 30% of disease labels and semi-supervised learning in literature.

Simulation studies: sensitivity analysis

Table: Prediction and feature selection performance (n=500)

Setting	Method	Miss	AUC	С	IC
A	SVM-Oracle	0.043	0.992	2.990	0.002
	SVM-EM	0.059	0.989	2.866	0.082
	SVM-2stage	0.083	0.987	2.876	0.078
В	SVM-Oracle	0.044	0.992	2.984	0.002
	SVM-EM	0.061	0.988	2.864	0.390
	SVM-2stage	0.074	0.987	2.946	0.526
$^{\mathrm{C}}$	SVM-Oracle	0.097	0.857	2.994	0.000
	SVM-EM	0.114	0.844	2.864	0.156
	SVM-2stage	0.132	0.809	2.612	0.002
D	Semi-10%	0.059	0.988	2.878	0.454
	Semi- 20%	0.049	0.991	2.922	0.118
	Semi- 30%	0.045	0.992	2.958	0.046
	SVM-EM	0.050	0.991	2.928	0.054

Applications

Application to CG studies

Training data:

- Pittsburgh study (Shear et al. 2005): CG psychotherapy (CGT) compared to interpersonal psychotherapy (IPT)
- 175 subjects (67% women) with a baseline visit

Independent validation data:

- HEAL (on going): multi-site study to compare response to antidepressant medication administered with and without CGT among bereaved individuals
- CGTOA (on going): CGT in an older population (≥ 50)
- 196 subjects (109 HEAL, 87 CGTOA)

Fit linear decision rule for easy interpretation.

Application to CG studies

Assessments of CG symptoms (X):

• Inventory of Complicated Grief (ICG) (Prigerson et al. 1995).

Informative marker (Z):

• Work and Social Adjustment Scale (WSAS) (Mundt et al. 2002), range 0-40.

Validation variables:

- Structured Clinical Interview of Complicated Grief (SCI-CG)
- Impairment in social suport (ISEL)
- Depression score (HAM-D)
- Impact of event scales (IES-T, IES-I, IES-A)

Application to CG studies: results

Indirectly assessing validity:

Table: Correlation with other external measures on independent data sets: HEAL and CGTOA.

Measure	SVM1*	$\mathrm{SVM2}^\dagger$	$Z \text{ as } GS^{\ddagger}$
SCI-CG	0.47	0.38	0.34
Ham-D	0.58	0.50	0.57
ISEL	0.43	0.35	0.38
IES-T	0.26	0.19	0.18
IES-I	0.22	0.19	0.19
IES-A	0.24	0.15	0.13

^{*:} SVM-EM with Enet penalty

^{†:} SVM-EM without variable selection

^{‡:} WSAS as the outcome for penalized regression with elastic net penalty

Application to CG studies: results

Table: Selected variables from the ICG and their coefficients in the Pittsburgh complicated grief study (training data).

Domain 1: Yearning and preoccupation with the deceased (5 items)					
I think about this person so much					
that it's hard for me to do the things I normally do	0.22				
Life is empty without the person who died	0.09				
Unfair that I should live when this person died	0.10				
Feel lonely a great deal of the time ever since death	0.12				
Domain 2: Anger and bitterness (2 items)					
I feel bitter over this persons death	0.01				
Domain 3: Shock and disbelief (3 items)					
Disbelief over what happened	0.02				
Domain 4: Estrangement from others (3 items)					
Lost the ability to care about other people	0.13				
Envious of others who have not lost someone close	0.04				
Domain 5: Hallucinations of the deceased (3 items)					
	None				
Domain 6: Behavior change, including avoidance or proximity seeking (3 items)					
	None				

Comparing to existing literature

Simon et al. (2011): clinically confirmed CG and non-CG

	Prevalence in cases (n=288)	Prevalence in non-cases (n=377)	
	Sensitivity	False positive	Specificity
Symptom Clusters			
1. Yearning and preoccupation with the deceased (5 items)	96.9%	11.7%	88.3%
2. Anger and bitterness (2 items)	72.6%	5.3%	94.7%
3. Shock and disbelief (3 items)	87.2%	6.1%	93.9%
4. Estrangement from others (3 items)	76.7%	5.8%	94.2%
5. Hallucinations of the deceased (3 items)	24.0%	1.6%	98.4%
6. Behavior change, including avoidance or proximity seeking (3 items)	92.4%	13.8%	86.2%

Comparing to existing literature

Simon et al. (2011): clinically confirmed CG and non-CG

TABLE 5. Sensitivity and specificity of ICG items in complicated grief cases versus noncases

Prevalence in Prevalence in cases (n = 288) noncases (n = 377)Sensitivity Specificity (true-positive False-positive (1-false-positive Ratio of rate) (%) rate (%) rate) (%) test positive 9.3 4. I feel myself longing for the person who died 88.5 90.7 9.5 7.2 92.8 Memories of the person who died upset me 81.9 11.4 19. I feel lonely a great deal of the time ever since he/she died 80.9 2.4 97.6 33.9 13. I feel that life is empty without the person who died 80.2 1.9 98.1 43.2 7. I feel disbelief over what happened 76.4 3.7 96.3 20.6 71.2 8. I feel stunned or dazed over what happened 1.9 98.1 38.3 70.1 1.9 98.1 37.8 3. I feel I cannot accept the death of the person who died 6. I can't help feeling angry about his/her death 64.6 3.7 96.3 17.4 1. I think about this person so much, it's hard to do the things I normally do 61.1 1.3 98.7 46.1 61.1 2.1 97.9 28.8 17. I feel bitter over this person's death 9. Ever since he/she died it is hard for me to trust people 49.0 2.4 97.6 20.5 10. Ever since he/she died I have lost the ability to care about other people 47.9 1.6 98.4 30.1 5. I feel drawn to places and things associated with the person who died 46.5 5.3 94.7 8.8 18. I feel envious of others who have not lost someone close 45.1 2.7 97.3 17.0 16. I feel that it is unfair that I should live when this person died 40.6 0.0 100.0 a9,999 32.3 2.4 97.6 13.5 12. I go out of my way to avoid reminders of the person who died 11. I have pain in the same area of my body as the person who died 12.8 1.3 98.7 9.7 15. I see the person who died stand before me 10.8 0.3 99.7 40.6 14. I hear the voice of the person who died speak to me 9.7 0.0 100.0 9,999a

[&]quot;Values of 9,999 are given for those cases where the ratio is estimated to be infinite (due to a zero false-positive rate in the noncase group)

Likelihood ratio of test positive = sensitivity/(1-specificity).

UCI data analysis

UCI machine learning repository:

- Wisconsin breast cancer (WBC)
- Pima Indians diabetes (PIMA)
- HEART
- Spam email (SPAM)

Class labels known, but not used.

Combine 20% to 30% of the attributes as informative markers.

SPAM: 1000 randomly selected as training, the rest testing.

Three others: 200 cases were randomly selected as training.

UCI data analysis results

Table: Analysis results of four UCI Machine Learning Repository data sets

		WBC	SPAM	PIMA	HEART
Number of feature variables		7	47	7	9
$Correlation^{\dagger}$		0.867	0.695	0.443	0.378
Miss	SVM-EM	0.045	0.161	0.365	0.267
	SVM-Oracle	0.043	0.130	0.325	0.197
AUC	SVM-EM	0.986	0.889	0.643	0.806
	SVM-Oracle	0.988	0.931	0.703	0.866

^{†:} Pearson correlation between the informative marker and disease status

Discussion

Discussion

- Incorporating biomarkers (e.g., polysomnography for sleep-wake disorders)
- Multi-class problems
- Joint learning to relax conditional independence assumption
- Multivariate informative markers
- Semi-supervised learning
- Other pseudo class probabilities
- Incorporating correlation structure