

E.T.S.I. Informáticos Universidad Politécnica de Madrid

Procesadores de Lenguajes

Práctica

Evaluación de TDS con Analizadores Sintácticos Descendentes Recursivos

José Luis Fuertes

diciembre de 2020

Contenido

- 1. Análisis Sintáctico Descendente Recursivo
- 2. Traductor Descendente Recursivo
- 3. Ejemplo

2

Análisis Sintáctico Descendente Recursivo

- En un A. St. D. las acciones se ejecutarán en el mismo momento en que se expandiría un símbolo que estuviera en esa misma posición en el árbol de análisis sintáctico
- Analizador Sintáctico Descendente Predictivo Recursivo
 - Consiste en un programa con un procedimiento para cada no terminal
 - Si en la regla hay un no terminal, se llama al procedimiento de dicho no terminal
 - Si en la regla hay un terminal y coincide con el último *token* recibido, se pide al Analizador Léxico el siguiente *token*
 - La gramática debe ser LL(1)

Práctica-ASm

Evaluación Descendente de TDS

- Diseño de un Traductor Descendente Recursivo
 - Se parte de:
 - G tipo 2 LL(1)
 - Esquema de Traducción
 - Consiste en un programa con una función para cada no terminal
 - Función:
 - 1. Para cada No Terminal A, se construye una función que tenga un parámetro por cada atributo heredado de A y que devuelva los valores de los atributos sintetizados de A
 - 2. El código de la función depende de la regla:
 - a. Si hay un Terminal X (*token*), con un atributo x, se guarda X.x en una variable local. Si coincide con el último *token* recibido, se pide al Analizador Léxico el siguiente *token*
 - b. Si hay un No Terminal B, se genera la instrucción $s:=B(b_1, b_2... b_n)$
 - b_i: son los atributos heredados de B
 - s: variable local que recoge los atributos sintetizados de B
 - c. Si hay una Acción Semántica, se implementa dentro de la función sustituyendo las referencias a atributos por las variables correspondientes

Práctica-ASm

Evaluación Descendente de TDS

```
Ejemplo
```

```
D → T {L.tipo:= T.tipo}

L;

T → int {T.tipo:= ent}

T → float {T.tipo:= real}

L → id {AñadeTipoTS (id.pos, L.tipo)

R.tipo:= L.tipo}

R

R → , {L.tipo:= R.tipo}

L

R → λ {}
```

```
Procedure D ()
{
    var t: tipo
    t:= T ()
    L (t)
    equipara (<pyc>)
```

```
Function T (): tipo
{
  var t: tipo
  if (sig_tok=<int>) then
  {
     equipara (<int>)
     t:= ent
  }
  else
  {
     equipara (<float>)
     t:= real
  }
  return t
}
```

Práctica-ASm

