Exercise 1:

1.	Laquelle des expressions suivantes correspond à l'équation de la tangente $t_{x_0}(x)$ de la fonction $f(x) = (1+x)^{-1}$ au point $x_0 = 0$?
	\Box $-x$
	$\Box 1 + x$
	$\Box 1-x$
	$\square x-1$
	□ Aucune des réponses ci-dessus
2.	Laquelle des expressions suivantes correspond à l'équation de la tangente $t_{x_0}(x)$ de la fonction $f(x) = (1+x)^5$ au point $x_0 = -2$?
	$\Box -2x$
	$\Box 5x + 9$
	$\Box 5x-11$
	$\Box 5x - 9$
	\square Aucune des réponses ci-dessus
3.	On considère la fonction $f(x) = \sqrt{1+x}$. Quelle valeur approximative de $f(3.1)$ obtient-on en utilisant l'approximation linéaire $t_{x_0}(3.1)$ au point $x_0 = 3$?
	$\square \ 2.125$
	$\square \ 2.0125$
	$\square \ 2.025$
	$\square \ 2.25$
	\square Aucune des réponses ci-dessus
4.	On considère la fonction $f(x)=\sqrt{6x-8}$. Quelle valeur approximative de $f(1.9)$ obtient-on en utilisant l'approximation linéaire $t_{x_0}(1.9)$ au point $x_0=2$?
	\square 1.975
	\Box 1.844
	\square 1.75
	\square 1.85
	\square Aucune des réponses ci-dessus
5.	Quel est le développement limité à l'ordre 2 de la fonction $f(x)=e^{3x}$ au voisinage de $x_0=0$?
	$\Box 1 + 6x + \frac{3x^2}{2}$
	$\Box 1 + 3x + \frac{9x^2}{2}$
	$\Box 1 + 3x + 9x^2$
	$\Box 1 + 3x + \frac{9}{2}x^2$
	□ Aucune des réponses ci-dessus

6.	Quel est le développement limité à l'ordre 2 de la fonction $f(x) = e^{x+1}$ au voisinage de $x_0 = -1$?
	□ $1 + (x - 1) + \frac{1}{2}(x - 1)^2$ □ $1 + (x + 1) + \frac{1}{2}(x + 1)^2$ □ $1 + (1 - x) + \frac{1}{2}(1 - x)^2$ □ $1 + (x + 1) + \frac{x^2 + 2x + 1}{2}$ □ Aucune des réponses ci-dessus
7.	En utilisant la différentielle, approximer la variation de la fonction $f(x) = \ln(x)$ lorsque x varie entre 1 et 1.1 (poser $x_0 = 1$).
8.	En utilisant la différentielle, approximer la variation de la fonction $f(x) = x^{20}$ lorsque x varie entre 1 et 1.01 (poser $x_0 = 1$).
	□ 0.02 $□$ 0.002 $□$ 2 $□$ 0.2 $□$ Aucune des réponses ci-dessus
9.	On considère la fonction $f(x) = \sqrt[3]{x}$ et l'approximation linéaire $t_{x_0}(x)$ en un point x_0 . Quelle valeur de x_0 donne la meilleure approximation $t_{x_0}(400)$ de $f(400)$?
	$ \Box x_0 = 7^3 $ $ \Box x_0 = 8^3 $ $ \Box x_0 = 9^3 $ $ \Box x_0 = 10^3 $ $ \Box \text{ Aucune des réponses ci-dessus} $
10.	Quel argument garantit que la fonction $f(x) = x^2 + x - 2 $ définie sur $[-3,3]$ atteint sor minimum?
	 □ cette fonction possède un point critique dans l'intervalle [-3, 3], □ cette fonction est contine et définie sur un compact, □ ça paraît assez clair, non? □ le théorème des valeurs extrêmes,

 $\hfill \square$ Aucune des réponses ci-dessus

11. Le minimum du graphe suivant est-il un point critique ?

- \square Oui
- □ Non

12. En supposant que le graphe ci-dessous correspond à une fonction définie uniquement sur l'intervalle a, b. Peut-on conclure que cette fonction atteint son maximum?

- \square Oui
- \square Non

13. On considère la fonction $f(x) = \frac{1}{2}x^4 - x^2 + 1$. Combien de points critiques possède-t-elle ?

- \Box 0
- \Box 1
- \square 2
- \Box 4
- ☐ Aucune des réponses ci-dessus

14. Les points critiques de $f(x)=2x^3-24x+5$ définis sur $]-5,5\,[$ sont

- \square -2, 0 et 2
- \Box 1, 2 et 3
- \Box -2 et 2
- \square -5 et 5

☐ Aucune des réponses ci-dessus

15. Les extrema (globaux et locaux) de $f(x) = 2x^2 - 4x + 5$ définis sur [-5, 5] sont

- \Box -1, -5 et 5
- \square 1, -5 et 5
- \square 1, 2 et 3
- \Box -2, -5 et 5
- \square -5 et 5
- ☐ Aucune des réponses ci-dessus

Exercise 2:

Calculer le développement de Taylor à l'ordre 4 au voisinage de $x_0 = 0$

1.
$$f(x) = 6x^3 + 2x - 4$$

2.
$$f(x) = \frac{1}{1+x}$$

Exercise 3:

Les fonctions suivantes admettent-elles des extrema locaux ? Si oui, quels sont-ils ? Lesquels sont des extrema globaux ?

- 1. $f(x) = \frac{x+1}{x-1}$ définie sur $\mathbb{R} \setminus \{1\}$.
- 2. $g(x) = x^2 2x 3$ définie sur l'intervalle [-2, 3].
- 3. $h(x) = |x^2 1|$ définie sur l'intervalle [-2, 2].
- 4. $k(x) = -\frac{1}{3}x^3 + 4x^2 + 20x + 2$ définie sur \mathbb{R}_+ .