Análisis de variable compleja

Óscar Riquelme Moya

Departamento de física aplicada Universidad de Alicante

1 de febrero de 2022

Índice general

1. Introducción de topología

5

Bloque 1

Introducción de topología

Definición 1.1. Sea X un conjunto no vacío, una familia τ de subconjuntos de X (i.e. $\tau \subset \mathcal{P}(X)$) es una **topología** sobre X si se cumplen las condiciones siguientes:

- **T1**) $\emptyset \in \tau \ y \ Xin\tau$
- **T2)** Si A_1 y A_2 son dos conjuntos arbitrarios de τ entonces

$$A_1 \cap A_2 \in \tau$$

T3) Si $S = \{A_i\}_{i \in I}$ es una subfamilia cualquiera de τ entonces

$$\bigcup_{i\in I} A_i \in \tau.$$

El par (X,τ) se llama espacio topológico. Los conjuntos $A\in\tau$ se llaman abiertos de la topología τ , y los elementos de X son los puntos del espacio.

Cuando no hay posible confusión acerca de la topología en X a la que nos estamos refiriendo, designaremos el espacio (X,τ) solo por X.

Observación 1.1. $i \in I$ denota un indice arbitrario que puede ser numerable por ejemplo $i \in \mathbb{N}$ o no numerable, $i \in \mathbb{R}$.

Observación 1.2. En el mismo conjunto X podemos definir distintas topologías τ_1, τ_2, d ando lugar a distintos espacios topológicos $(X, \tau_1), (X, \tau_2)$.