ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIO DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS MICROONES, PRIMAVERA 1998-99

EXAMEN FINAL

PROFESSORS: A. AGUASCA, A. COMERON

N. DUFFO Barcelona, 10 de juny de 1999

Cal realitzar **només tres** dels quatre problemes proposats Temps: 3 hores. Comenci cada exercici en un full apart.

PROBLEMA 1

Es desitja determinar el valor d'una impedància Z₃ construint un pont d'impedàncies basat en un híbrid de 180° el qual s'ha connectat amb els següents elements:

- A la porta 1 es connecta el generador de senyal
- A la porta 2 un detector adaptat
- A la porta 3 la impedància a determinar Z₃
- A la porta 4 un atenuador i un desfasador variables

L'esquema del circuit complet és aquest:

A continuació s'han fet dues mesures:

- Amb l'atenuador a zero (L=0dB) s'observa un màxim de potència detectada a la porta 2 quan φ= 30°
- Canviant el desfasament convenientment i modificant l'atenuació s'observa que quan aquesta es igual a 2.37 dB el detector presenta un nul.
- a) Determini la potència P_2 en funció del coeficient de reflexió a la porta 3 Γ_3 així com del coeficient de reflexió a l'entrada de l'atenuador Γ_4 .
- b) A la vista del resultat del apartat anterior, quin és el mecanisme de funcionament d'aquest pont?
- c) A partir de les mesures realitzades, trobi quant val la impedància Z₃.

PROBLEMA 2

L'estructura de la figura pot actuar com atenuador (referit a Z_0 =50 Ω) sota uns determinats valors de **Z**₀' i **R**, amb ℓ = λ /4.

- a) Trobi la condició que han d'acomplir **Z**₀' i **R** per que la xarxa sigui un atenuador. Escrigui raonadament la matriu S de la xarxa.
- b) Calculi els seus valors concrets per a que l'atenuador sigui de 10dB.
- c) Si aquest atenuador de 10dB es col.loca entre una càrrega Z_L = 25+j25 Ω i un generador (canònic), determini la millora de l'adaptació que veu el generador.

PROBLEMA 4

Les xarxes d'adaptació a l'entrada i sortida del transistor, considerat unilateral, han estat calculades per que l'amplificador presenti màxim guany a la freqüència de 2GHz. De l'amplificador se sap que presenta un Guany G_{TUmax} = 9.1dB.

- a) Trobi els valors en <u>mòdul i fase</u> dels paràmetres S_{11} i S_{22} , així com <u>només</u> el <u>mòdul</u> de S_{21} , tots ells referits a Z_0 =50 Ω .
- b) A partir dels cercles de factor de soroll del transistor determini quin valor de F presentarà l'amplificador.
- c) Determini quina pèrdua de guany significaria haver dissenyat l'amplificador si treballés sota condició de factor de soroll mínim.

Dades: Línies de transmissió de $Z_0=50~\Omega$, amb $\varepsilon_{reff}=4$. $\ell_1=11,3$ mm, $\ell_2=6,1$ mm.

$$G_{T} = \frac{(1 - |\Gamma_{S}|^{2}) S_{21}|^{2} (1 - |\Gamma_{L}|^{2})}{|(1 - S_{11}\Gamma_{S})(1 - S_{22}\Gamma_{L}) - S_{12}S_{21}\Gamma_{S}\Gamma_{L}|^{2}}$$

