What is machine learning?

Machine Learning Day

Data source: James et al., 2013

setosa

versicolor

virginica

Challenges

What is this?

Image by artist Hikaru Cho

We generalize from past experiences

Image: "It's not what it seems" by artist Hikaru Cho

Predict which class x_{new} belongs to...

$$f(\boldsymbol{x}_{new}) = ?$$

Example credit: Yaser Abu-Mostafa, 2012

1

Machine learning is an ill-posed problem

There are often **many** models that will fit your data – how do we choose which to use?

the best models generalize well

Predict the next value in the sequence...

$$f(4) = 0.530$$

Our guess:

$$f(x) = 16.2x - 6.36x^2 - 11.9x^3 - 4.77x^4 + 7.03x^5 + 8.32x^6 - 9.01x^7 + 2.75x^8 - 0.275x^9$$

setosa

versicolor

virginica

Data Source: Fisher Iris Data

Overfit works against generalization

We can use regularization to prevent overfit

What is machine learning?

A class of techniques where the **goal** is to **describe**, **predict**, and **strategize**...

...based on data, past experiences, and/or direct instruction...

...and do so automatically, with minimal human intervention.

Types of machine learning tools

Types of learning Common use case

Unsupervised learning Describe

Supervised learning Predict

Reinforcement learning Strategize

Types of machine learning

	Unsupervised Learning	Supervised Learning	Reinforcement Learning
Goal	Describe structure in data	Predictfrom examples	Strategize Learn through interaction
Data available	predictors, x	predictor and response pairs, (x, y)	actions and delayed responses (called rewards)
Examples	 Density estimation Clustering Dimensionality reduction Anomaly detection 	ClassificationRegression	Model-free learningModel-based learning

Sale Price Prediction

\$414K

\$390K

\$429K

27708 Real Estate

1 home for sal

Homes for You

More Map >

Newest

Cheapest

More

Input Data:

Home characteristics (Numerical & Categorical)

Target Data:

Price estimate (numerical)

1640 Marion Ave, Durham, NC 27705

\$826K

\$393K

\$390K

\$435K

5 beds · 4 baths · 3,264 sqft

SHOPPING: HEALTH CARE; PARKS; R

SHOPPING; AND EASY HIGHWAY AC

SPACIOUS RANCH W FINISHED LL WALKOUT! 5 BEDROOMS AND 4 BRAND NEW BATHS! RENOVATED WITH CUSTOM FEATURES THRUOUT! CONTEMPORARY HOME WITH MANY HANDICAP ACCESSIBLE REQUIREMENTS ALREADY IN PLACE! VAULTED CEILINGS! SECLUDED TREED LOT! GREAT HOME FOR LIVING AND ENTERTAINING WITH LARGE REAR DECK! WONDERFUL CONTEMPORARY FEEL THAT LIVES LARGE WITH EASY ACCESS TO DUKE UNIVERSITY:

\$599,900 Price cut: -\$79,100 (6/17) Zestimate*: \$619.585

EST. MORTGAGE

FOR SALE

\$2,284/mo = -

Get pre-qualified

Zestimate[®]: \$619,585

Sherlock

97% Match 2017 TV-14 4 Series

97% Match

edding reception, Sherloc ering a best man's speech

Season 3's episode "The Abominable Bride," which originally aired as a TV movie, won two Emmys.

MY LIST

Video Recommendations

Input Data:

User video ratings (numerical and categorical)

Target Data:

User rating of video (numerical)

Learning Category:

Recommender Systems

OVERVIEW

EPISODES

MORE LIKE THIS

DETAILS

From: Internal Revenue Service [mailto:yourtaxrefund@InternalRevenueService.com]

Sent: Tuesday, July 22, 2008 9:47 AM

Subject: Get your tax refund now

Importance: High

After the last annual calculations of your account activity we have determined that you are eligible to receive a tax refund of \$479.30.

Please submit the tax refund request and allow us 2-6 days in order to process it.

A refund can be delayed for a variety of reasons. For example submitting invalid records or applying after the deadline.

To access the form for your tax refund, please click here (http://e-dlogs.rta.mi.th:84/www.irs.gov/)

Note: Deliberate wrong inputs will be prosecuted by law.

Regards,

Internal Revenue Service

Spam Filters

Input Data:

Email text (text)

Target Data:

Spam/not spam (category)

Learning Category:

Supervised Learning Classification (binary)

Spam example source: itservices.uchicago.edu

Handwriting and Optical Character Recognition

Input Data:

Imagery

Target Data:

Text Characters

Learning Category:

Supervised Learning Classification (multiclass)

Postnet barcode

Among the first handwritten addresses sorted automatically in October 1996

Image source: Sargur Srihari, SUNY

Where's Waldo = Computer Vision Problem

Kyle Bradbury What is machine learning?

Machine Learning Day

Object Recognition: Energy Systems

Kyle Bradbury

Machine Learning Day

21 / 46

What is machine learning?

Types of machine learning

	Unsupervised Learning	Supervised Learning	Reinforcement Learning
Goal	Describe structure in data	Predictfrom examples	Strategize Learn through interaction
Data available	predictors, x	predictor and response pairs, (x, y)	actions and delayed responses (called rewards)
Examples	 Density estimation Clustering Dimensionality reduction Anomaly detection 	ClassificationRegression	Model-free learningModel-based learning

Credit Fraud

Input Data:

Account transactions, dates, locations, demographic information (Numerical and categorical)

Target Data:

Anomalous transactions

Learning Category:

Unsupervised Learning Clustering, Density Estimation

Anomalous Event Detection: NYC Taxis

Data source: Numenta Anomaly Benchmark (NAB), from kaggle.com

Types of machine learning

	Unsupervised Learning	Supervised Learning	Reinforcement Learning
Goal	Describe structure in data	Predictfrom examples	Strategize Learn through interaction
Data available	predictors, x	predictor and response pairs, (x, y)	actions and delayed responses (called rewards)
Examples	 Density estimation Clustering Dimensionality reduction Anomaly detection 	ClassificationRegression	Model-free learningModel-based learning

Learning a strategy to master games

Input Data:

Moves taken and occasional feedback on win/loss (Numerical and categorical)

Target Data:

Win/loss (Maximizing rewards)

Learning Category:

Reinforcement Learning

THE ULTIMATE GO CHALLENGE

GAME 3 OF 3

27 MAY 2017

AlphaGo
Winner of Match 3

Ke Jie

RESULT B+Res

Kyle Bradbury What is machine learning? Machine Learning Day 26 / 46

Manufacturing – learn to pick up iron cylinders

Kyle Bradbury What is machine learning? Machine Learning Day 27 / 46

Types of machine learning

	Unsupervised Learning	Supervised Learning	Reinforcement Learning
Goal	Describe structure in data	Predictfrom examples	Strategize Learn through interaction
Data available	predictors, x	predictor and response pairs, (x, y)	actions and delayed responses (called rewards)
Examples	 Density estimation Clustering Dimensionality reduction Anomaly detection 	ClassificationRegression	Model-free learningModel-based learning

Image: xkcd.com

A Taste of Supervised Learning

Classification and Regression

Common language

independent variable

input

predictor

feature

X

dependent variable

output

response

target

У

Supervised learning

Objective: create an algorithm that predicts well

Example:

Digits classification

Supervised machine learning model

We search for the model that best fits our data

K-Nearest Neighbors

Classification and Regression

Feature 2

Step 1: Training

Every new data point is a model parameter

Feature

Step 2:

Place new (unseen) examples in the feature space

-eature

Step 3:

Classify the data by assigning the class of the k nearest neighbors

Score vs Decision:

For 5-NN, the confidence score that a sample belongs to a class could be: {0,1/5,2/5,3/5,4/5,1}

Decision Rule:

If the confidence score for a class > threshold, predict that class

K Nearest Neighbor Regression

Feature 1

K Nearest Neighbor Regression

 $y_i \in \{k \text{ nearest}\}$

Summarizing supervised learning

Let's review and bring it all together

Components of supervised learning

X

Output

y

Training Data

$$(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$$

Target function

$$f(x) \rightarrow y$$

This is unknown, but the best you could ever do

Hypothesis set

$$f_i(x) \to \hat{y}$$

Functions to consider in trying to approximate f(x)

Learning algorithm

Optimization technique that searches the hypothesis set for the function f_i that best approximates f (typically by choosing parameters in a model)

Supervised Learning

Unobservable

Data Generating Process

p(X,Y)

Target Function

The best function predicting *y* from *x*

$$f(x) \rightarrow y$$

Observable

Training Data

$$(x_1, y_1), \dots, (x_N, y_N)$$

Learning Algorithm

Chooses a hypothesis, $\hat{f} = f_i$ based on the training data such that

$$\hat{f}(x) \approx f(x)$$

Hypothesis Functions Set

$$f_1, f_2, f_3, \dots$$

- Need to select the hypothesis functions (models to train)
- Need to select the learning algorithm (for fitting the models to the data)

Final Hypothesis

 $\hat{f}(x) \rightarrow \hat{y}$ predictions

Supervised learning in practice

Preprocess Data Visualization and Exploration Data Cleaning

Identify patterns that can be leveraged for learning

- Missing data
- Noisy data
- Erroneous data

Normalization

Prepare data for use in scale-dependent algorithms.

Feature Extraction

Dimensionality reduction eliminates redundant information

Evaluate Performance

Cross-Validation

Metrics

Classification

Precision, Recall, F₁, ROC Curves (Binary), Confusion Matrices (Multiclass)

Regression

MSE, explained variance, R²

Want to learn more?

List of additional resources:

http://www.kylebradbury.org/datascience.html

ENERGY data analytics lab

Kyle Bradbury What is machine learning? Machine Learning Day 46 / 46