

PD Control Analysis & Design

- Damping Improvement with PD Control
- PD Control Design with Root Locus
- PD Control Design with Bode Plot
- Lead Compensator Concept

PD Control Concept

Typical structure with **PD control** is as shown below.

Here, K_d is the derivative gain, which adds a **pure zero** to the plant at $-(K_p/K_d)$, while K_p is the proportional gain.

Effect of Derivative Gain on Root Locus

Effect of Derivative Gain on Response

Effect of Derivative Gain on Bode

Summary

PD controllers are used to improve the damping of dominant system behaviour, as well as the speed of response in terms of rise time.

PD Control Design with Root Locus

PD Control Design with Root Locus

Design of **PD** controllers is mainly concerned with **determining** the location of 'zero', based on the closed loop **transient response** specifications.

In this method, we attempt to **modify** the root locus such that it **passes** through the desired dominant **closed loop poles.**

The **procedure** makes use of **angle** and **magnitude** conditions, commonly used for **drawing** the root locus.

PD Control Design Methodology

This is done by first calculating the **angle deficiency** at the required **dominant poles**, which is used to set the **zero location**.

Next, gain is determined from the magnitude condition.

However, there is also a requirement of not tampering too much with the steady state error of the basic system. This requires the **DC gain** of PD controller to be close to 1.

PD Control Design Procedure

Consider the following pole – zero map.

Zero can be located from angle deficiency.

PD Control Design Example

Consider the following **plant**.

$$G(s) = \frac{20}{(s+1)(s+2)(s+3)}$$

Design a PD controller to achieve **following** performance in the closed loop.

K_P to remain largely **unaffected**.

2% Settling Time ≤ 4.0 seconds

Peak Time ≤ 1.0 second

Requirements & Plant Features

PD Control Design Solution

The **design** solution step - 1:

Desired Dominant Closed Loop Pole: $p_c = -1 + j3.14$

$$\theta_1 = \tan^{-1}\left(\frac{3.14}{0}\right) = 90^\circ; \quad \theta_2 = \tan^{-1}\left(\frac{3.14}{1}\right) = 72.3^\circ$$

$$\theta_3 = \tan^{-1} \left(\frac{3.14}{2} \right) = 57.5^\circ; \quad \phi = \tan^{-1} \left(\frac{3.14}{z - 1} \right)$$

Angle Condition: $\phi = -180^{\circ} + \theta_1 + \theta_2 + \theta_3 = 39.8^{\circ}$

$$\tan^{-1}\left(\frac{3.14}{z-1}\right) = 39.8^{\circ} \rightarrow z = 4.77; \quad G_{PD}(s) = K(0.2097s + 1)$$

PD Control Design Solution

The design solution step-2:

$$|G_{PD} \cdot G| = 1 \rightarrow K = \frac{|p_c + 1| \times |p_c + 2| \times |p_c + 3|}{20|0.2097p_c + 1|}$$
$$= \frac{3.14 \times 3.297 \times 3.724}{20 \times 1.029} = 1.874$$

PD Controller: $G_{PD}(s) = 1.874(0.2097s + 1)$

Compensated $K_P = 6.246$, $e_{ss} = 0.138$

PZ-Map Comparison

Step Response Comparison

Design is fine, from transient point of view, as $T_s \& T_p$ are met.

As a bonus, tracking error & M_p are also reduced.

Generic Effects of PD Control

PD control action depends on zero location.

Summary

PD controllers are simpler to synthesize, but have the basic drawback of **non-causal** nature of transfer function.

Large improvements in transient response are possible with PD controllers.

The addition of 'zero' changes the root locus shape and influences both ' σ ' and ' ω_d ', so that all attributes of the transient response are influenced.

PD Control Design with Bode

PD Design in Frequency Domain

Design of **PD** – **controller** in frequency domain is primarily **governed** by the requirements on **PM**.

In addition, a **condition** is put that **DC gain** remains unchanged. Therefore, in **case** there are requirements also on K_V , these are **satisfied first**, before designing PD.

The general form of PD in this case is K_P (1+ T_d s), where corner frequency '1/ T_d ' is chosen such that the **positive phase** to be added, occurs close to the **GCO**.

PD Design in Frequency Domain

PD Design in Frequency Domain

We see that at frequencies > $1/T_D$, increase in phase is accompanied by an increase in gain as well.

This has the **effect** of pushing the **GCO** of the compensated system to a **higher value**.

Thus, the design of **PD** controller has to take this fact into account and add the **required** additional phase at the **new GCO**.

This also results in a kind of **iteration** as the additional phase is **actually calculated** at the **original** GCO.

PD Control Design Example

Consider the following plant.

$$G(s) = \frac{K_x}{s(s^2 + 4.2s + 14.4)}$$

Design a **PD** controller to satisfy following specifications in the closed loop.

$$K_v \ge 3.0$$
, GM > 6 dB, PM > 30°.

First step is to achieve the specified K_V which can be done by making $K_x = 43.2$

Gain Adjusted Margins

Next, we establish the GM, PM of the gain augmented system, as shown alongside.

We find that both GM and PM are below the desired values.

PD Design Space Exploration

PM is to be increased by ~10° @ 3.11 rad/sec. (Both GCO & PCO increase with PD)

An approximate solution for ${}^{\prime}T_{d}{}^{\prime}$ (with no PM buffer) and PD controller can be obtained as follows.

$$\angle (1+T_d s)|_{\omega=3.11} = 10^o \rightarrow 3.11T_d = \tan 10^o = 0.176$$

$$T_d = 0.057; \quad G_{PI}(s) = (1+0.057s)$$

$$G''(s) = \frac{43.2(1+0.057s)}{s(s^2+4.2s+14.4)}$$

Compensated Margins

Redesigned Margins

We see that redesigned system meets all the requirements.

Summary

In case of PD – controllers, **phase margin** is the primary **driver** of the closed loop **design**.

In this case, net **DC** gain of PD part is kept close to unity, while gain is related to explicit K_V requirements.

Lead Compensator Concept

PD Controller Drawbacks

PD controllers are improper transfer functions and hence, reduce relative degree (n - m), and may result in unexpected changes to root locus.

Further, we may also wish to **preserve** (**n** – **m**) in order to ensure a **desired slope** of high frequency **asymptote** in bode plot.

Therefore, we need an **alternative** to PD control to **ensure** (n - m), which is the **lead** compensator.

Lead Compensator Structure

Lead compensator structure is as shown below.

$$G_{Lead}(s) = K_c \frac{\alpha(Ts+1)}{\{\alpha Ts+1\}} = K_c \frac{(s+\frac{1}{T})}{\left(s+\frac{1}{\alpha T}\right)}; \quad \alpha < 1$$

Here, K_c is compensator gain, T is the compensator time constant and (α) is a parameter that **decides** the amount of **lead** added by the **compensator**.

We see that above form will preserve relative degree.

Lead Compensator Features

Lead compensator adds a **zero** at s = -1/T & a **pole** at $s = -1/(\alpha T)$, to the plant, so that (n - m) is **constant.**

Further, as a **bonus**, we also get **additional** design **degree of freedom**, to better achieve the **specifications**.

When $\alpha \to 0$, pole lies at $-\infty$, resulting in PD controller. Also, if $\alpha \to 0$ & T $\to \infty$, the zero moves towards the origin, leading to a pure D control.

DC gain of lead compensator is $K_c\alpha$, and is usually kept ~1.0, which fixes K_C once ' α ' is determined.

Effect of '\alpha'

Let us consider the **following plant**, along with the **lead compensator**.

$$G = \frac{1}{s^{2}(s+5)}; \quad T = 1$$

$$G_{c} = \frac{K_{c}\alpha(1+s)}{(\alpha s+1)}$$

$$K_{c} = 1.0, 2.0, 5.0, 10, 20$$

$$\alpha = 1.0, 0.5, 0.2, 0.1, 0.05$$

Root locus, shown alongside, **brings** out the effect of α .

Effect of 'T'

Let us now consider the **effect** of different values of 'T' on the **impact** of **lead** compensator.

$$K_c = 20; \quad \alpha = 0.05$$

 $T = 0.2, 0.5, 1.0, 2.0, 5.0$

Root locus, shown alongside, **brings** out the effect of **T**.

Lead Compensator Bode Plot

Bode plot of the lead compensator with $K_c = 1 \& \alpha = 0.1$, is shown alongside.

We see that **peak positive phase** occurs
at a **frequency** which
is **related** to the **two corner frequencies**, as
shown below.

$$\phi = \tan^{-1} \omega T - \tan^{-1} \alpha \omega T; \quad \frac{d\phi}{d\omega} = 0 \to \omega_m = \frac{1}{\sqrt{\alpha} \cdot T}$$

$$\tan \phi_m = \frac{1 - \alpha}{2\sqrt{\alpha}} \to \sin \phi_m = \frac{1 - \alpha}{1 + \alpha}$$

Summary

Lead compensator is a better alternative to PD controller but is less effective in terms of transient improvement.