Lot F1

Tom Gilgenkrantz

Mardi 26 Mars 2024

1 Introduction

Soit $n \in \mathbb{N}$, $(p,q,r) \in \mathbb{R}$ tel que p+q+r=1 et une variable aléatoire U à valeurs dans 1,2,3 tel que :

$$\begin{cases} P(U=1) = p \\ P(U=2) = q \\ P(U=3) = r \end{cases}$$

On modélise l'experience du placement de tetrominos carrés (2x2) dans une grille de taille $2n \times 2n$ pour la remplir parfaitement. Ce problème est équivalent à celui de remplir totalement une grille de taille $n \times n$ avec des carrés de taille (1x1).

On choisit ici la pièce avec le meilleur score parmi un sac de 2 pièces dont les scores suivent la loi U. A chaque fois qu'on choisit une pièce, il reste donc dans le sac la pièce de score le plus bas, et on complète ce sac avec une pièce dont le score suit encore la loi U.

On note alors la valeur du $k^{\text{ème}}$ tetromino placé Y_k et la valeur du $k^{\text{ème}}$ tetromino laissé dans le sac L_k , $\forall k \in \mathbb{N}^*$.

2 Loi de Y_1

On s'intéresse ici à la loi de Y_1 , c'est à dire à la loi du premier tetromino placé sur la grille.

En notant U_1 et U_2 deux variables aléatoires indépendantes suivant la loi U, $Y_1 \sim \max(U_1, U_2)$.

Or,
$$\forall k \in \{1, 2, 3\}$$
, $P(max(U_1, U_2) \leq k)$
= $P((U_1 \leq k) \cap (U_2 \leq k))$
= $P(U_1 \leq k)P(U_2 \leq k)$ car U_1 et U_2 sont independentes.

Ce qui donne:

$$\begin{cases} P(Y_1 \le 1) = p^2 \\ P(Y_1 \le 2) = (p+q)^2 \\ P(Y_1 \le 3) = 1 \end{cases}$$

Donc:

$$\begin{cases} P(Y_1 = 1) = P(Y_1 \leqslant 1) \\ P(Y_1 = 2) = P(Y_1 \leqslant 2) - P(Y_1 \leqslant 1) \\ P(Y_1 = 3) = P(Y_1 \leqslant 3) - P(Y_1 \leqslant 2) \end{cases}$$

Finalement la loi de Y_1 est :

$$\begin{cases} P(Y_1 = 1) = p^2 \\ P(Y_1 = 2) = (p+q)^2 - p^2 \\ P(Y_1 = 3) = 1 - (p+q)^2 \end{cases}$$

On remarque qu'on a bien $\sum_{i=1}^{3} P(Y_1 = i) = 1$

3 Loi de L_1

On s'intéresse ici à la loi de L_1 , c'est à dire à la loi du premier tetromino laissé dans le sac.

En notant U_1 et U_2 deux variables aléatoires indépendantes suivant la loi U, $L_1 \sim min(U_1, U_2)$.

Or,
$$\forall k \in \{1, 2, 3\}$$
, $P(min(U_1, U_2) \geqslant k)$
= $P((U_1 \geqslant k) \cap (U_2 \geqslant k))$
= $P(U_1 \geqslant k)P(U_2 \geqslant k)$ car U_1 et U_2 sont independentes.

Ce qui donne:

$$\begin{cases} P(Y_1 \ge 3) = r^2 \\ P(Y_1 \ge 2) = (q+r)^2 \\ P(Y_1 \ge 1) = 1 \end{cases}$$

Donc:

$$\begin{cases} P(Y_1 = 1) = P(Y_1 \ge 1) - P(Y_1 \ge 2) \\ P(Y_1 = 2) = P(Y_1 \ge 2) - P(Y_1 \ge 3) \\ P(Y_1 = 3) = P(Y_1 \ge 3) \end{cases}$$

Finalement la loi de L_1 est :

$$\begin{cases}
P(L_1 = 1) = 1 - (q+r)^2 \\
P(L_1 = 2) = (q+r)^2 - r^2 \\
P(L_1 = 3) = r^2
\end{cases}$$

On remarque aussi ici qu'on a bien $\sum_{i=1}^{3} P(L_1 = i) = 1$