Geometria różniczkowa

Lista 4

- 1. Rozważmy współrzędne biegunowe $x = rsin(\psi), y = rcos(\psi)$, tzn. dyfeomorfizm $F = (x, y) \colon U_1 \to U_2$ gdzie $U_1 = \mathbf{R}_+ \times (0, 2\pi), \ U_2 = \mathbf{R}^2 \{(x, 0) \colon x \leq 0\}.$
 - (a) Wyraź formy $F^*(dx)$, $F^*(dy)$ oraz $F^*(dx \wedge dy)$ za pomocą form $d\psi$, dr.
 - (b) Zauważ, że forma $(F^{-1})^*(d\psi)$ rozszerza się do formy α na $\mathbf{R}^2 \{0\}$. Pokaż, że α nie jest różniczką żadnej funkcji $f \in C^{\infty}(\mathbf{R}^2 \{0\})$.
- 2. Grupa Heisenberga to

$$H = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbf{R} \right\}$$

z mnożeniem macierzy jako działaniem. Dla $g \in H$ określamy $l_g \colon H \to H$ wzorem $l_g(h) = gh$ oraz $r_g \colon H \to H$ wzorem $r_g(h) = hg$. Opisz wszystkie pola wektorowe które są niezmiennicze na (a) wszystkie przekształcenia l_g ; (b) wszystkie przekształcenia r_g ; (c) wszystkie przekształcenia l_g i wszystkie przekształcenia l_g . Następnie zrób to samo dla form stopni 0,1,2,3.

- 3. Uzasadnij, że $H^1_{DR}(\mathbf{R}^n)=0$, to znaczy: jeżeli $\omega\in\Omega^1(M)$ taka, że $d\omega=0$, to $\omega=dF$ dla pewnej funkcji F. Wsk: dla $\omega=a\,dx+b\,dy\in\Omega^1(\mathbf{R}^2)$ definiujemy $F(x,y)=\int_0^x a(t,0)dt+\int_0^y b(x,s)ds$. Zrób podobnie dla dowolnego n. Czy taka funkcja F jest jedyna?
- 4. Pokaż, że forma objętości jest dobrze zdefiniowana.
- 5. Niech $\omega \in \Omega^k(M)$, $\eta \in \Omega^l(M)$ i $X \in \mathcal{X}(M)$.
 - (a) Zdefiniuj pochodną liego $L_X\omega$ za pomocą potoku pola X. Pokaż, że $L_X(\omega \wedge \eta) = (L_X\omega) \wedge \eta + \omega \wedge (L_X\eta)$.
 - (b) Pokaż, że $L_X(\omega) = 0 \iff (\Phi_X^t)^*(\omega) = \omega$.
 - (c) Pokaż, że dla $\omega \in \Omega^1(M)$ zachodzi wzór $L_X\omega(Y) = X(\omega(Y)) \omega([X,Y])$.
 - (d) Niech $X \in \mathcal{X}(M)$. Operator kontrakcji $i_X : \Omega^{k+1}(M) \to \Omega^k(M)$ definiujemy wzorem

$$i_X(\omega)(X_1,\ldots,X_k) = \omega(X,X_1,\ldots,X_k).$$

Pokaż, że $di_X\omega + i_Xd\omega = L_X\omega$ dla $\omega \in \Omega^0(M) \oplus \Omega^1(M)$ (uwaga: dla funkcji przyjmujemy $L_Xf = Xf$).

- 6. Pokaż, że $d\omega(X,Y) = X(\omega(Y)) Y(\omega(X)) \omega([X,Y])$.
- 7. Niech $\omega = \sum_i (-1)^i x^i dx^1 \wedge \ldots \widehat{dx^i} \ldots \wedge dx^n$ będzie (n-1)-formą na \mathbf{R}^n , zaś $\iota \colon S^{n-1} \to \mathbf{R}^n$ niech będzie standardowym włożeniem sfery jednostkowej. Uzasadnij, że $\iota^*\omega$ nie znika w żadnym punkcie i że jest niezmiennicza na obroty. Oblicz $\int_{S^{n-1}} \iota^*\omega$.