Metody Optymalizacji

Projekt – Zbrojenie

AiR S2-I/Rob Sekcja nr 1

Paweł Kaźmieruk Maksymilian Skibiński

Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 11 czerwca 2021 r.

1 Wstęp

Celem tych "trwających" od kilku tygodni zajęć laboratoryjnych, było przetłumaczenie zadania z treścią na problem optymalizacji. Chodzi nam zatem o to, by to co zostało zapisane słowami, zapisać za pomocą języka matematyki, najlepiej w taki sposób, by przypominało to problemy z którymi spotykaliśmy w ramach wykładów/laboratoriów z Metod Optymalizacji.

Nasza sekcja otrzymała zadanie dotyczące zbrojenia protokątnego fundamentu płytowego. W problemie chodzi o to, że należy zakupić całkiem sporą ilość drutu zbrojeniowego, a chcemy zapłacić jak najmniej.

2 Drut zbrojeniowy

2.1 Przykład

Zacznijmy od przeanalizowania tego jakie możliwości daje nam sklep, abstrahując od reszty całego zadania:

- pręty są sprzedawane w rozmiarze e [m],
- możemy je ciąć dowolną ilość razy na mniejsze części tzw. "podpręty".

Graficznie wygląda to tak:

Rysunek 1: Przykładowe zakupy w sklepie

Na rysunku powyżej sytuacja wygląda w następujący sposób:

- zakupionych zostało 5 prętów,
- wszystkie mają tę samą długość e m,
- niektóre z nich zostały zakupione w całości, a pozostałe zostały pocięte:
 - pręt nr 1 jest w całości,
 - pret nr 2 został zakupiony w dwóch, właściwie równych, częściach,
 - pręt nr 3 został zakupiony w trzech częściach,
 - pręt nr 4 także został zakupiony w trzech częściach, ale o innych długościach,
 - pręt nr 5 został zakupiony w 12 równych częściach.

2.2 Zapis matematyczny

Teraz zapiszmy matematycznie przykład z rysunku powyżej. Dodatkowo, załóżmy że, długością e jest 6 m, tak jak zostało podane w definicji problemu:

$$\mathbf{p}_1 = [6]$$

$$\mathbf{p}_2 = [3 \ 3]$$

$$\mathbf{p}_3 = [2 \ 2 \ 2]$$

$$\mathbf{p}_4 = [1 \ 1 \ 4]$$

$$\mathbf{p}_5 = [0.5 \ 0.5$$

Wszystkie zakupione pręty opisaliśmy przy pomocy wektorów \mathbf{p}_i . Każdy z tych wektorów może mieć inną długość, ale suma jego elementów zawsze musi dawać 6 m.

Tak zapisany został przypadek z rysunku. Teraz, zapiszmy to bardziej ogólnie:

$$\mathbf{p}_{1} = [p_{11} \ p_{12} \ \cdots \ p_{1Y_{1}}]$$

$$\mathbf{p}_{2} = [p_{21} \ p_{22} \ \cdots \ p_{2Y_{2}}]$$

$$\vdots$$

$$\mathbf{p}_{i} = [p_{i1} \ p_{i2} \ \cdots \ p_{iY_{i}}]$$

$$\vdots$$

$$\mathbf{p}_{U} = [p_{U1} \ p_{U2} \ \cdots \ p_{UY_{U}}]$$

Według zapisu powyżej:

- zakupiliśmy U prętów,
- każdy z prętów może składać się z innej liczby Y_i podprętów,
- dla każdego pręta, suma jego podprętów musi dawać e metrów:

$$\forall_{i \in \{1,2,\dots,U\}} \sum_{j=1}^{Y_j} p_{ij} = e$$

Równie dobrze, można by spróbować wrzucić te wszystkie wektory do pewnej macierzy \mathbf{P} , w ten sposób łatwiej można by zapanować nad nimi wszystkimi.

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1Y} \\ p_{21} & p_{22} & \cdots & p_{2Y} \\ \vdots & \vdots & \ddots & \vdots \\ p_{U1} & p_{U2} & \cdots & p_{UY} \end{bmatrix}$$

Wtedy jednak, należałoby założyć pewną maksymalną ilość podprętów Y dla każdego pręta. W dalszych rozważaniach, będziemy korzystać z zapisu wektorowego.

2.3 Transport

Przejdźmy krok dalej – uwzględnijmy transport. Transport wymaga, by każdy z podprętów nie był dłuższy niż f metrów. Zakładając wektorowy zapis zakupionych prętów, ograniczenie to:

$$\forall_{i \in \{1,2,...,U\}} \ \forall_{j \in \{1,2,...,Y_i\}} \ p_{ij} \leqslant f$$

2.4 Pieniądze

W większości zadań optymalizacji chodzi o pieniądze, albo chcemy zarobić jak najwięcej, albo jak najmniej stracić. Tutaj jest podobnie – chcemy zapłacić jak najmniej. Za co płacimy?

Bardziej matematycznie, minimalizowana funkcja celu to:

$$\min \leftarrow J = U \cdot 6 \cdot e + \sum_{i=1}^{U} (1 - Y_i) \cdot g$$

gdzie:

U – ilość kupionych prętów,

e – cena za 1 metr pręta,

 Y_i – ilość podprętów pręta i-tego,

g – cena za jedno cięcie.

3 Siatka prętów

3.1 Cała siatka

Temat zakupów jest załatwiony, pora na fundament płytowy. Cały fundament należy przyozdobić dużą ilością drutów zbrojeniowych.

Rysunek 2: Zbrojenie fundamentu

Fundament jest prostokątem o wymiarach $a \ge b$ [m], a oczka siatki to prostokąty o wymiarach $c \ge d$ [m]. Zatem, cała siatka składa się z:

 $\frac{a}{c} + 1$ prętów poziomych,

 $\frac{b}{d} + 1$ prętów pionowych,

By zrozumieć problem dalej, zwróćmy naszą uwagę na jeden pręt z całej siatki.

Rysunek 3: Siatka z zaznaczonym jednym prętem

Uwaga Musimy rozgraniczyć dwa pojęcia: pręty *zakupione* oraz pręty *zbrojeniowe*. Oczywiście, w zadaniu chodzi o to, że pręty z obu tych grup są ze sobą powiązane, ale powiązanie to zostanie wytłumaczone później. Na tym etapie:

– p. zakupiony – pręt o długości e metrów, składający się z p_{1Y_1} podprętów.

$$\mathbf{p}_i = [p_{i1} \ p_{i2} \ \cdots \ p_{1Y_i}]$$

p. zbrojeniowy – jeden z prętów siatki prętowej, czyli główny bohater następnego punktu.
 Jak zostanie wytłumaczone, on także składa się z pewnej liczby prętów.

3.2 Jeden pręt zbrojeniowy

Jeden pręt zbrojeniowy może zostalić zrealizowany na kilka sposobów.

Rysunek 4: Jeden pręt zbrojeniowy – przykładowe rozwiązania

Opis rozwiązań:

- Pręt nr 1 składa się z jednego pręta,
- Pręt nr 2 składa się z dwóch prętów,
- Pręt nr 3 składa się z dwóch prętów o dłuższym wspólnym fragmencie,
- Pręt nr 4 składa się z czterech prętów.

Najłatwiej byłoby po prostu położyć pręt o konkretnej długości a i problem z głowy. Takie podejście po pierwsze może być niemożliwe, a po drugie nawet jeśli jest dopuszczalne, to niekoniecznie (raczej nie) będzie optymalne.

Gdy konstruujemy jeden pręt zbrojeniowy z kilku krótszych prętów, należy zastosować zakładkę, czyli obszar na którym będą one się wspólnie nakładały na siebie. Zakładka ma minimalną długość i [m], ale ograniczenia maksymalnego już nie ma. Pręty nr 2 i 3 to pokazują.

Czym więcej prętów tym więcej zakładek, co pokazuje przykład nr 4.

3.3 Zapis matematyczny

Zakładając, że a=8 m, zapiszmy przykład z góry korzystając z wektorów:

$$\mathbf{u}_1 = [8]$$

$$\mathbf{u}_2 = [4.2 \ 4.2]$$

$$\mathbf{u}_3 = [4.5 \ 4.5]$$

$$\mathbf{u}_4 = [2.5 \ 3 \ 1.5 \ 2.25]$$

Każdy z prętów składa się z pewnej liczby krótszych prętów – podobnie jak przy zakupie. Jednak, tym razem nie ma ograniczenia równościowego na elementy wektorów **u**, jest za to ograniczenie nierównościowe – czym więcej prętów tym więcej zakładek, czyli tym dłuższa musi być suma elementów wektorów. Nie musi ona jednak być jakaś konkretna, jest tylko ograniczenie

nierównościowe.

$$\sum_{j=1}^{1} u_{1j} = 8$$

$$\sum_{j=1}^{2} u_{2j} = 8.4$$

$$\sum_{j=1}^{2} u_{3j} = 9$$

$$\sum_{j=1}^{4} u_{4j} = 9.25$$

Spójrzmy ponownie na pręt nr 4 z rysunku przykładowego:

Rysunek 5: Rozsunięcie prętów

Pręt 4a to pręt nr 4 z poprzedniego rysunku, a pręt 4b to to samo rozwiązanie, ale pręty nie nachodzą na siebie – zostały przesunięte. Teraz widać, że czym więcej prętów tym ich wspólna długość jest większa.

Równanie stanu

Proponujemy opis korzystając z równania stanu:

$$x_{n+1} = x_n + u_n$$

Sterowania u_n opisują długość pręta n-tego, a stan x_n to suma długości n położonych prętów.

$$x_0 = 0$$
 $x_N \geqslant a + (N-1) \cdot 2 \cdot i$

Startujemy oczywiście z zera $(x_0=0)$, ale na stan końcowy nałożone jest ograniczenie nierównościowe. W zależności od tego ile (N) prętów zostało użytych, tym dłuższa musi być ich wspólna długość – wystarczająco duża, by pokryć minimalne zakładki i. Sam stan końcowy x_N oraz liczba użytych prętów N jest na tym etapie niewiadoma, i musi zostać zaproponowana przez algorytm rozwiązujący zadanie.

$$i \leqslant u_i \leqslant f$$

Ograniczenia nałożone na sterowanie wynikają z tego, że pręty muszą być co najmniej dłuższe niż zakładka i, ale krótsze niż f, czyli ograniczenie nałożone na transport.

3.4 Opis całej siatki

Każdy jeden pręt zbrojeniowy jest opisywany przy pomocy równania stanu. Siatka składa się jednak z wielu prętów i tym samym każdy pręt otrzymuje swoje własne równanie stanu i wektory sterowań/stanów.

Rysunek 6: Siatka z wektorami stanu

Cała siatka składa się z M prętów zbrojeniowych. Jest R prętów poziomych i M - R prętów pionowych. Dokładne wartości wynikają z parametrów a, b, c, d, a proponowane przez nas wzory zostały zapisane na początku rozdziału.

Wektory sterowań dla każdego prętu siatki:

$$\mathbf{u}_{1} = [u_{10} \ u_{11} \ \cdots \ u_{1K_{1}}]$$

$$\mathbf{u}_{2} = [u_{20} \ u_{21} \ \cdots \ u_{2K_{2}}]$$

$$\vdots$$

$$\mathbf{u}_{i} = [u_{i0} \ u_{i1} \ \cdots \ u_{iK_{i}}]$$

$$\vdots$$

$$\mathbf{u}_{M} = [u_{M0} \ u_{M1} \ \cdots \ u_{MK_{M}}]$$

Wektorami stanu \mathbf{x}_i , są o jeden element dłuższe.

Każdy pręt zbrojeniowy siatki składa się z $K_i + 1$ prętów. Dokładna wartość K_i zależy od rozwiązania problemu optymalizacji.

Wzory/ograniczenia na stan/sterowanie zostały przedstawione wcześniej, ale trzeba wziąć pod uwagę raz jeszcze ograniczenie nierównościowe na stan końcowy:

$$x_{iN_i} \geqslant \begin{cases} a + (N_i - 1) \cdot 2 \cdot i & \text{dla } i \in \{1, 2, \dots, R\} \\ b + (N_i - 1) \cdot 2 \cdot i & \text{dla } i \in \{R + 1, R + 2, \dots, M\} \end{cases}$$

Długość "startowa" (a, b) zależy od tego czy analizujemy pręt poziomy czy pionowy.

4 Powiązanie

W poprzednich rozdziałach zaproponowaliśmy opis zakupionych prętów oraz siatki prętów. Opisy te zawierają dużo różnych macierzy i jeszcze więcej innych zmiennych pomocniczych służących głównie do opisów wymiarów wektorów. Teraz należy połączyć jedną część z drugą.

Chodzi o to, że musimy połączyć pręty z wektorów \mathbf{p}_i (pręty zakupione) z prętami z wektorów \mathbf{u}_i (pręty zbrojeniowe). Zasada jest następująca:

$$\forall_{p_{ij}} \ \exists !_{u_{mk}} \ p_{ij} = u_{mk} \qquad \land \qquad \forall_{u_{mk}} \ \exists !_{p_{ij}} \ u_{mk} = p_{ij}$$

W sposób prosty i elegancki cała myśl mogła zostać zapisana przy pomocy języka matematyki. Jeszcze raz, bardziej po ludzku:

Dla każdego pręta p_{ij} (zakupionego) istnieje dokładnie jeden pręt u_{mk} (zbrojeniowy) i vice versa.

To samo, w sposób graficzno-matematyczny (zakładając macierzowy, a nie wektorowy, sposób zapisu prętów):

Rysunek 7: Powiązanie pomiędzy elementami

Co stanowi duży problem?

Każdy zakupiony pręt, wraz z jego podprętami, może powędrować w zupełne inne miejsca siatki, co dobrze widać na rysunku powyżej. Z tego powodu, jest nam ciężko rozwiązać problem i otrzymać optymalne parametry zakupu.

5 Końcowy zapis problemu

Postarajmy się zgrupować wszystko to do czego doszliśmy.

Zakupione pręty

To ile prętów kupiliśmy, i z jakich części się one składają zapisujemy w postaci wektorów \mathbf{p}_i :

$$\mathbf{p}_{1} = [p_{11} \ p_{12} \ \cdots \ p_{1Y_{1}}]$$

$$\mathbf{p}_{2} = [p_{21} \ p_{22} \ \cdots \ p_{2Y_{2}}]$$

$$\vdots$$

$$\mathbf{p}_{i} = [p_{i1} \ p_{i2} \ \cdots \ p_{iY_{i}}]$$

$$\vdots$$

$$\mathbf{p}_{U} = [p_{U1} \ p_{U2} \ \cdots \ p_{UY_{U}}]$$

Czyli kupiliśmy U prętów, a każdy pręt składa się z Y_i podprętów. Ograniczenia na zakupione pręty są dwa:

– dla każdego pręta, suma jego podprętów musi dawać e metrów (jedynie taką możliwość daje nam sklep):

$$\forall_{i \in \{1,2,\dots,U\}} \sum_{j=1}^{Y_j} p_{ij} = e$$

- każdy podpręt musi my niedłuższy niż f (ograniczenie transportowe):

$$\forall_{i \in \{1,2,\dots,U\}} \ \forall_{j \in \{1,2,\dots,Y_i\}} \ p_{ij} \leqslant f$$

Funkcja celu

Chcemy zapłacić jak najmniej, a płacimy J:

$$\min \leftarrow J = U \cdot 6 \cdot e + \sum_{i=1}^{U} (1 - Y_i) \cdot g$$

gdzie:

U – ilość kupionych prętów,

e – cena za 1 metr preta,

 Y_i – ilość podprętów pręta i-tego,

g – cena za jedno cięcie.

Siatka prętów

Cała siatka prętów składa się z M prętów zbrojeniowych, w tym: R prętów poziomych, M-R prętów pionowych. Każdy pręt zbrojeniowy jest opisany poprzez równanie stanu:

$$x_{in+1} = x_{in} + u_{in},$$

i ograniczenia:

$$x_{i0} = 0 x_{iN_i} \ge \begin{cases} a + (N_i - 1) \cdot 2 \cdot i & \text{dla } i \in \{1, 2, \dots, R\} \\ b + (N_i - 1) \cdot 2 \cdot i & \text{dla } i \in \{R + 1, R + 2, \dots, M\} \end{cases}$$

Ograniczenie na sterowania to:

$$i \leqslant u_{in} \leqslant f$$
,

czyli pręty muszą być dłuższe niż minimalna zakładka (i), ale krótsze niż ograniczenie transportowe (f).

Powiązanie

Dla każdego pręta p_{ij} istnieje dokładnie jeden pręt u_{mk} :

$$\forall_{p_{ij}} \ \exists !_{u_{mk}} \ p_{ij} = u_{mk} \qquad \land \qquad \forall_{u_{mk}} \ \exists !_{p_{ij}} \ u_{mk} = p_{ij}$$

6 Podsumowanie

Nasza praca kończy się na tym etapie. Zaproponowany przez nas opis zadania powoduje, że znalezienie rozwiązania optymalnego jest dla nas zbyt trudne. Być może problem da się opisać w inny bardziej elegancki sposób, jednak tego już nam się nie udało zrobić. Najbardziej problematyczne w naszym zapisie jest to, że pręty zakupione i zbrojeniowe opisujemy na dwa różne sposoby (wektory \mathbf{p} , \mathbf{u}), a ich elementy są ze sobą jasno powiązane, ale "porozstrzelane" – połączenia mogą znajdować się w zupełnie różnych miejscach.

Być może, zdefiniowane przez nas zadanie optymalizacji da się łatwo rozwiązać, ale tego także nie udało nam się wykonać. Najważniejszy dla nas był opis zadania i liczymy na to, że to wykonaliśmy poprawnie.