Assume that the statements hold up to stage k-1. At a stage k, if a row is struck off, then

$$x_{i_k j_k} = a_{i_k} - \sum$$
 already found basic variables in that row.

By induction hypothesis, the values of the already found variables in that row are in the required form. So the value of $x_{i_k j_k}$ has the required form. Argument is similar, if a column is struck off at stage k.

[18.14] Corollary (Nonnegative integer bfs) Suppose that in a BTP, all a_i 's and b_j 's are nonnegative integers. Then in any bfs, the values of the variables are nonnegative integers. In particular, if all a_i and b_j are 1, then the value any variable in that bfs is 0 or 1.

Proof. As the values of the variables are sums of the $\pm a_i$'s and $\pm b_j$'s, they must be integers. As it is a bfs, they must be nonnegative. For the next question, the value any variable in that bfs is 0 or 1, as the value of a variable (in a bfs) cannot be more than the a_i 's and b_i 's.

The minimality test

[18.15] <u>Discussion</u> Consider a BTP with a <u>bfs w</u>. Let \tilde{A} be the matrix obtained from A by dropping the last row and \tilde{B} be a basis matrix for w (this is a submatrix of \tilde{A}). For minimality, we need to check the nonnegativity of the vector $\overline{c}^t = c^t - c_{\tilde{R}}^t \tilde{B}^{-1} \tilde{A}$.

a) Suppose that we have a vector $\alpha^t = \begin{bmatrix} p_1 & \cdots & p_m & q_1 & \cdots & q_{n-1} \end{bmatrix}$ such that $c^t - \alpha^t \tilde{A} \nearrow 0$ with basic entries 0. In view of our discussions on lpp, we know that $\alpha^t = c_{\tilde{B}}^t \tilde{B}^{-1}$ and $\overline{c}^t = c^t - \alpha^t \tilde{A}$.

By some $\tilde{C}^t = c^t - c_{\tilde{B}}^t \tilde{B}^{-1}$ でしてなるあるシの

b) Suppose that we have a vector $\beta^t = \begin{bmatrix} u_1 & \cdots & u_m & v_1 & \cdots & v_{n-1} & 0 \end{bmatrix}$ such that $c^t - \beta^t A \geq 0$ with basic entries 0. As the last entry of β is 0, we see that

 $\beta^t = \begin{bmatrix} \alpha^t & 0 \end{bmatrix} \text{ and } \overline{c}^t = c^t - \alpha^t \tilde{A} = c^t - \beta^t A.$ how borne entries $O \stackrel{?}{=} \rangle$ at $= c \overline{p} \overline{B}^{-1}$? Yes $\begin{bmatrix} c \overline{b} & c \overline{c} \end{bmatrix} - d^{-1} \begin{bmatrix} B & c \end{bmatrix} \text{ how borne entries } O \text{ means}$ $= \begin{bmatrix} c \overline{b} & c \overline{c} \end{bmatrix} - d^{-1} \begin{bmatrix} B & c \end{bmatrix} \text{ how borne entries } O \text{ means}$ $= \begin{bmatrix} c \overline{b} & c \overline{c} \end{bmatrix} - d^{-1} \begin{bmatrix} B & c \end{bmatrix} \text{ how } \Delta^{-1} = c \overline{b} \overline{b}$ $= \begin{bmatrix} c \overline{b} & c \overline{c} \end{bmatrix} - d^{-1} \begin{bmatrix} B & c \end{bmatrix} \text{ how } \Delta^{-1} = c \overline{b} \overline{b}$ = [co co] - aT [B c] Idea; find a B set CI - Bt A has
banc entire o. Then CT-Bt A

= ZT.

c) Assume that we have done b). Let $x_{i,j}$ be a basic variable. We must have $\overline{c}_{i,j} = 0$. That is, $c_{i,j} - u_i - v_j = 0$.

This means, $c_{i,j} = u_i + v_j$ on a basic square of the transportation array.

d) Suppose that we are searching for a vector $\beta^t = \begin{bmatrix} u_1 & \cdots & u_m & v_1 & \cdots & v_{n-1} & v_n = 0 \end{bmatrix}$ such that the basic entries of $c^t - \beta^t A$ are 0. Knowing that the basic squares form a tree and $v_n = 0$, we can compute u_i 's and v_i 's uniquely.

e) Suppose that we have computed a vector $\beta^t = \begin{bmatrix} u_1 & \cdots & u_m & v_1 & \cdots & v_{n-1} & v_n = 0 \end{bmatrix}$ such that the basic entries of $c^t - \beta^t A$ are 0. In order to conclude that the current basis is a minimal basis, we must have $c^t - \beta^t A \ge 0$.

This means, for a nonbasic square $x_{i,j}$, we must have $c_{i,j} - u_i - v_j \ge 0$.

If we have that, then w is a minimum. These u_i 's and v_j 's are called the SIMPLEX MULTIPLIERS.

[] In view of this discussion, we give an algorithm to check the minimality of a basis.

Algorithm to check the minimality of a basis w.

- a) Highlight the basic squares in the transportation table.
- b) Write u_1, \dots, u_m at the right end of the rows in the table in top to bottom order.
- c) Write v_1, \dots, v_n at the bottom end of the table in left to right order.
- d) Make any one of u_i 's or v_j 's equal to 0. You may use $v_n = 0$. A normal convention is to choose the u_i or v_j whose line contains many basic variables.
- e) Compute the remaining u_i 's and v_j 's, using $c_{ij} = u_i + v_j$ in basic squares.
- f) If $c_{ij} \geq u_i + v_j$ in all nonbasic squares, then w is a minimum.

[18.16] Example Consider the btp and the highlighted bfs.

							•	_
40 4	50 1	10 2	~ 6	9	$\begin{vmatrix} 100 \\ u_1 \end{vmatrix}$	= 6		
6	4	60	60 \(5)	7	u_2 120	.= J		(
6	2	3	³⁰ 5	90 🗸	u_3	= 7		
$\overline{40}$ v_1	$ \begin{array}{c c} 50 \\ v_2 \end{array} $	$ \begin{array}{c c} 70 \\ v_3 \end{array} $	90 v_4	90 v_5			B=	(
	۲-	-ú	K	/]		-	`	

Is it minimal?

Answer. We take $u_1 = 0$. The other simplex multipliers are $v_1 = 4$, $v_2 = 1$, $v_3 = 2$, $u_2 = 1$, $v_4 = 4$, $u_3 = 1$, $v_5 = 6$. On each nonbasic square we have $\overline{c}_{i,j} = c_{i,j} - u_i + v_j \ge 0$. So this bfs is minimal.

To get an improvised bfs

Discussion (To get an improvised bfs)

- a) Suppose that at a bfs with basis S we found that $\overline{c}_{i,j} < 0$. What shall we do? In order to answer that, we need a few more observations.
 - b) The objective function in a BTP is bounded below.

Proof. Let $v = \sum a_i$ (total amount of goods to be transported) and let m be the minimum of the per unit costs of transportation. Then the cost of any solution is at least mv. So the objective function is bounded below.

- c) Recall the simplex algorithm. When we have all entries of the column (for which \overline{c} is negative) in the simplex table nonpositive, we concluded that the problem is unbounded below.
 - d) But such a situation will never happen for a BTP as we already know that the function is bounded below.

- e) Let S be the current basis and suppose that $\overline{c}_{i,j} < 0$. This means $x_{i,j} \notin S$ and it is our entering variable.
- f) So, we want to insert $x_{i,j}$ into the basis S. Let $S' = S \cup \{x_{i,j}\}$. As Γ_S is already a tree, we see that $\Gamma_{S'}$ will contain exactly one cycle. Since $\Gamma_{S'}$ is bipartite this cycle will have an even length.
 - g) Let $x_{i,j}, x_{i_1,j}, x_{i_1,j_1}, \dots, x_{i_k,j_k}, x_{i,j_k}$ be the edges for that cycle, in that order.
- h) Note that, currently $x_{i,j}$ is nonbasic and so it's current value is 0. If we want to give it a value θ , then it will force some changes on the other edges as follows.

Since $x_{i,j}$ and $x_{i_1,j}$ lie on the same column of the table (transportation array) T, we must decrease the value of $x_{i_1,j}$ by θ in order to satisfy the equation at the sink j. Similarly, the value of x_{i_1,j_1} must increase by θ . In general, the value of every alternate edge, starting from $x_{i,j}$ increases by θ and the remaining edges decrease by θ .

i) What is the maximum value of θ that could be given to $x_{i,j}$?

Recall that we always give the maximum possible value to the entering variable without making the other variables negative. So, we find the minimum of the edges where θ is getting subtracted. This is θ .

- j) Hence, at least one of the old variables will become 0. Select any one of them as the outgoing variable, say it is $x_{l,k}$.
 - k) Let $S'' = S' \setminus \{x_{l,k}\}$. Notice that $x_{l,k}$ and $x_{i,j}$ were on the same cycle of $\Gamma_{S'}$, which is a connected graph

with only one cycle. Hence $\Gamma_{S''}$ must be a tree. So S'' is a basis. Thus, we have got a new bfs.

- l) What is the cost difference between the old and the new basis? From our discussions on simplex algorithm, we know that the cost of the new basis is $\overline{c}_{i,j}\theta$ plus the cost of the old basis.
 - m) In view of this discussion, we have the following algorithm to find an improvised basis.

Algorithm for improvised bfs.

- a) Suppose $\overline{c}_{ij} < 0$. Then x_{ij} is the entering variable.
- b) Put $x_{ij} = \theta$ and make necessary adjustments in the values of other basic variables (by finding a cycle) so that the row sum and the column sum conditions are satisfied.
- c) Determine the maximum value of θ so that at least one of the current basic variables gets a value 0. This is an outgoing variable.
- [18.18] Example Consider the following btp and bfs. Find a minimum solution.

40	V	50	10~			100]
	4	1	2	6	9	•	•
			60~	60~	0	120	
<u> </u>	6	4	3	~ 5	7	Ŋ	ا ا
	_			30 ∽ ► A	90~	120	
l_	5	2	6	74	6 8		1
40		50	70	90	90		
4	-엑	~~ <u>-</u> }	v2 -6	4-4	0		

a) Compute the simple multipliers and the relative cost. Repeat for the new bfs.

Ч ७ - 4	5 7	10 +	6	9	100
6	4	60,	5	60 V	120 3
5	2	6	५	30 × 8	120 8
40 -2	50 ~ 5	⁷⁰ ـ ب	90 - 4	90 0	

	[0	۵	0	5	37
$\overline{c} =$	(\	٤	Ø	2	٥
	(C	j)-1	2	O	0
	1				

10	50	ŊD			100
4	1	2	6	9	
		30		90	120
6	4	3	5	7	
30			90		120
5	2	6	4	8	
40	50	70	90	90	
				0	

 $\overline{c} =$

					100
4	1	2	6	9	
					120
6	4	3	5	7	
					120
5	2	6	4	8	
40	50	70	90	90	
				0	

 $\overline{c} =$

Answer. To start, calculate the simplex multipliers assuming $v_5 = 0$ and the \overline{c} matrix...

T ²	40	50	10			100
	4	1	2	6	9	8
ľ			60	60		120
١.	6	4	3	5	7	9
				30	90	120
١.	5	2	6	4	8	8
4	40	50	70	90	90	
	-4	-7	-6	-4	0	

 $\frac{8}{9}, \quad \text{and} \quad \overline{c} = \begin{bmatrix} 0 & 0 & 0 & 2 & 1 \\ 1 & 2 & 0 & 0 & -2 \\ 1 & 1 & 4 & 0 & 0 \end{bmatrix}.$

Entering variable is x_{25} . The cycle is formed by $x_{2,5}, x_{3,5}, x_{3,4}, x_{2,4}$, in that order. So $\theta = 60$. We compute the simplex multipliers $(v_5 = 0)$ and the relative cost for the new bfs.

40	50	10			100
4	1	2	6	9	6
-		60		60	120
6	4	3	5	7	7
			90	30	120
5	2	6	4	8	8
40	50	70	90	90	T
140	50	10	50	00	

$$\overline{c} = \left[\begin{array}{rrrr} 0 & 0 & 0 & 4 & 3 \\ 1 & 2 & 0 & 2 & 0 \\ -1 & -1 & 2 & 0 & 0 \end{array} \right].$$

Let x_{32} enter. The cycle is formed by $x_{3,2}, x_{3,5}, x_{2,5}, x_{2,3}, x_{1,3}, x_{1,2}$, in that order. So $\theta = 30$. We compute the simplex multipliers and the relative cost for the new bfs.

ſ	40		20		40						100	
		4		1		2		6		9		6
					30				90		120	
		6		4		3		5		7		7
			30				90				120	
		5		2		6		4		8		7
	40		50		70		90		90			
		-2		-5		-4		-3		0		

This bfs is optimal and the optimum cost is 1400.