Problems for Griffiths' Electrodynamics

Contents

1 Vector Analysis

1 Vector Analysis

Figure 1.1: Three Coplanar Vectors

1.1 (a) When three vectors are coplanar as shown in Figure 1.1, the dot product is

$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$
$$A(B+C)\cos\theta = AB\cos\theta_B + AC\cos\theta_C$$

Since $B\cos\theta_B + B\cos\theta_C = (B+C)\cos\theta$ from Figure 1.1, the distributive property holds true. The cross product also holds true since $B\sin\theta_B + B\sin\theta_C = (B+C)\sin\theta$, and multiplying by A on both sides gives the same result as the distributive property:

$$\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = \mathbf{A} \times \mathbf{B} + \mathbf{A} \times \mathbf{C}$$
$$A(B+C)\sin\theta = AB\sin\theta_B + AC\sin\theta_C$$

(b) In the general case in three-dimensional space, each vector has three components: $\mathbf{A} = (A_x, A_y, A_z)$. Therefore,

$$\begin{split} \mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) &= \mathbf{A} \cdot (B_x + C_x, B_y + C_y, B_z + C_z) \\ &= A_x (B_x + C_x) + A_y (B_y + C_y) + A_z (B_z + C_z) \\ &= A_x B_x + A_y B_y + A_z B_z + A_x C_x + A_y C_y + A_z C_z \\ &= \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C} \end{split}$$

1.2 Setting $\mathbf{A} = \mathbf{B} = (1, 1, 1)$ and $\mathbf{C} = (1, 1, -1)$:

$$(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} \stackrel{?}{=} \mathbf{A} \times (\mathbf{B} \times \mathbf{C})$$

$$0 \stackrel{?}{=} (1, 1, 1) \times [(1, 1, 1) \times (1, 1, -1)]$$

$$0 \stackrel{?}{=} (1, 1, 1) \times (-2, 2, 0)$$

$$0 \neq (-2, -2, 4)$$

where the cross product of parallel vectors $\mathbf{A} \times \mathbf{B} = 0$. Therefore, the cross product is not associative.

1.3 Taking the dot product of a unit cube's body diagonals $\mathbf{A} = (1, 1, 1), \mathbf{B} = (1, 1, -1)$:

$$\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$$
$$1 = 3 \cos \theta$$
$$\theta = \arccos 1/3 \approx 70.53^{\circ}$$

1.4 The cross product of two vectors coplanar to the shaded plane— $\mathbf{A} = (-1, 2, 0)$, $\mathbf{B} = (-1, 0, 3)$ —is parallel to the normal unit vector $\hat{\mathbf{n}}$ of the plane:

$$\mathbf{A} \times \mathbf{B} = \mathbf{C}$$

$$\begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ -1 & 2 & 0 \\ -1 & 0 & 3 \end{vmatrix} = (6, 3, 2)$$

where $\hat{\bf n} = {\bf C}/C$, and $C = \sqrt{6^2 + 3^2 + 2^2} = \sqrt{49} = 7$. Therefore,

$$\hat{\mathbf{n}} = \frac{1}{7}(6, 3, 2)$$

1.5 Proving the "BAC-CAB" rule for three-dimensional vectors:

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{A} \times \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$$

$$= \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_y C_z - B_z C_y & B_z C_x - B_x C_z & B_x C_y - B_y C_x \end{vmatrix}$$

where the x component is $A_y(B_xC_y - B_yC_x) - A_z(B_zC_x - B_xC_z)$. Similarly,

$$\mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B}) = \mathbf{B}(A_x C_x + A_y C_y + A_z C_z) - \mathbf{C}(A_x B_x + A_y B_y + A_z B_z)$$

where x component simplifies to

$$B_x(A_x E_x + A_y C_y + A_z C_z) - C_x(A_x B_x + A_y B_y + A_z B_z) = A_y(B_x C_y - B_y C_x) - A_z(B_z C_x - B_x C_z)$$

the same is done for the y and z components. Therefore, the "BAC-CAB" rule holds true.

1.6

$$[\mathbf{A}\times(\mathbf{B}\times\mathbf{C})] + [\mathbf{B}\times(\mathbf{C}\times\mathbf{A})] + [\mathbf{C}\times(\mathbf{A}\times\mathbf{B})] = \mathbf{B}(\mathbf{A}\cdot\mathbf{C}) - \mathbf{C}(\mathbf{A}\cdot\mathbf{B}) + \mathbf{C}(\mathbf{B}\cdot\mathbf{A}) = 0$$
$$-\mathbf{A}(\mathbf{B}\cdot\mathbf{C}) + \mathbf{A}(\mathbf{C}\cdot\mathbf{B}) - \mathbf{B}(\mathbf{C}\cdot\mathbf{A})$$

since dot product is associative, the first and last terms cancel out, and the middle terms also cancel out with each other.

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$$
$$\mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{A}(\mathbf{B} \cdot \mathbf{C})$$
$$0 = -\mathbf{C}(\mathbf{A} \cdot \mathbf{B}) + \mathbf{A}(\mathbf{B} \cdot \mathbf{C})$$
$$0 = -\mathbf{B}(\mathbf{C} \times \mathbf{A}) = (\mathbf{C} \times \mathbf{A}) \times \mathbf{B}$$

For the relation to hold true, either the vectors **A** and **C** are parallel $(\mathbf{A} \times \mathbf{A} = 0)$ or **B** is perpendicular to both **A** and **C** $(\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{C} = 0)$.

1.7 Finding the seperation vector **2**:

$$\mathbf{\hat{z}} = \mathbf{r} - \mathbf{r}' = (4, 6, 8) - (2, 8, 7) = (2, -2, 1)$$

$$\mathbf{\hat{z}} = \sqrt{2^2 + (-2)^2 + 1^2} = 3$$

$$\mathbf{\hat{z}} = \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right)$$

1.8 (a)

$$\bar{A}_y \bar{B}_y + \bar{A}_z \bar{B}_z = (A_y \cos \phi + A_z \sin \phi)(B_y \cos \phi + B_z \sin \phi)$$

$$+ (-A_y \sin \phi + A_z \cos \phi)(-B_y \sin \phi + B_z \cos \phi)$$

$$= A_y B_y \cos^2 \phi + A_z B_z \sin^2 \phi + \underline{A_y B_z \sin \phi \cos \phi} + \overline{A_z B_y \sin \phi \cos \phi} + A_z B_z \cos^2 \phi$$

$$+ A_y B_y \sin^2 \phi - \underline{A_y B_z \sin \phi \cos \phi} - \overline{A_z B_y \sin \phi \cos \phi} + A_z B_z \cos^2 \phi$$

$$= A_y B_y (\sin^2 \phi + \cos^2 \phi) + A_z B_z (\sin^2 \phi + \cos^2 \phi)$$

$$\bar{A}_y \bar{B}_y + \bar{A}_z \bar{B}_z = A_y B_y + A_z B_z$$

(b) To preserve length $|\bar{A}| = |A|$. Squaring both sides and expanding gives

$$\bar{A}_x^2 + \bar{A}_y^2 + \bar{A}_z^2 = A_x^2 + A_y^2 + A_z^2$$

in summation form,

$$\sum_{i=1}^{3} \bar{A}_i \bar{A}_i = \sum_{i=1}^{3} \left(\sum_{j=1}^{3} R_{ij} A_j \right) \left(\sum_{k=1}^{3} R_{ik} A_k \right) = \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} R_{ij} R_{ik} A_j A_k$$

For the length to be preserved, the indices j and k must be equal. Therefore,

$$R_{ij}R_{ik} = \delta_{ik}$$

where δ_{ij} is the Kronecker delta. Thus the length is preserved if the rotation matrix is orthogonal, i.e.

$$R_{ij}R_{ik} = (R^T)_{ji}R_{ik} = \delta_{jk}$$
 or $R^TR = I$

Figure 1.2: Rotation of 120° about an axis through the origin and point (1,1,1)

1.9 From Figure 1.2, the rotation is equivalent to changing the position of the basis vectors $\hat{\mathbf{x}} \to \hat{\mathbf{z}}$, $\hat{\mathbf{y}} \to \hat{\mathbf{x}}$, and $\hat{\mathbf{z}} \to \hat{\mathbf{y}}$. Therefore, the rotation matrix is a permutation matrix:

$$R = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

1.10 (a) Under a **translation** of coordinates $\bar{y} = y - a$, the origin O and terminus A = (x, y, z) of some vector are translated to

$$O \rightarrow O' = (0, -a, 0)$$
$$A \rightarrow A' = (x, y - a, z)$$

therefore, the translated vector is

$$\overline{O'A'} = (x, y - a, z) - (0, -a, 0) = (x, y, z) = \overline{OA} = \mathbf{A}$$

which is the same as the original vector, so

$$\begin{pmatrix} \bar{A}_x \\ \bar{A}_y \\ \bar{A}_z \end{pmatrix} = \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix}$$

(b) Under **inversion** of coordinates, only the terminus changes

$$O \to O' = (0, 0, 0)$$

 $A \to A' = (-x, -y, -z)$

therefore, the inverted vector is

$$\overline{O'A'} = (-x, -y, -z)$$
 or $\begin{pmatrix} \bar{A}_x \\ \bar{A}_y \\ \bar{A}_z \end{pmatrix} = \begin{pmatrix} -A_x \\ -A_y \\ -A_z \end{pmatrix}$

(c) The components of cross product under inversion

$$\bar{\mathbf{A}} \times \bar{\mathbf{B}} = \begin{pmatrix} \bar{A}_y \bar{B}_z - \bar{A}_z \bar{B}_y \\ \bar{A}_z \bar{B}_x - \bar{A}_x \bar{B}_z \\ \bar{A}_x \bar{B}_y - \bar{A}_y \bar{B}_x \end{pmatrix} = \begin{pmatrix} A_y B_z - A_z B_y \\ A_z B_x - A_x B_z \\ A_x B_y - A_y B_x \end{pmatrix}$$

which is the same as the original cross product $\mathbf{A} \times \mathbf{B}$. The cross product of two pseudovectors is also a pseudovector. Torque $\tau = \mathbf{r} \times \mathbf{F}$ and magnetic force $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$ are examples of pseudovectors.

(d) Scalar triple product under inversion

$$\begin{split} \bar{A} \cdot (\bar{B} \times \bar{C}) &= -\mathbf{A} \cdot (-\mathbf{B} \times -\mathbf{C}) \\ &= -\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) \end{split}$$

the scalar triple product changes sign under inversion.

1.11 (a) Finding gradient of $f(x, y, z) = x^2 + y^3 + z^4$:

$$\nabla f = \frac{\partial f}{\partial x} \hat{\mathbf{x}} + \frac{\partial f}{\partial y} \hat{\mathbf{y}} + \frac{\partial f}{\partial z} \hat{\mathbf{z}}$$
$$= 2x \hat{\mathbf{x}} + 3y^2 \hat{\mathbf{y}} + 4z^3 \hat{\mathbf{z}}$$

(b) Gradient of $f(x, y, z) = x^2y^3z^4$:

$$\nabla f = 2xy^3z^4\hat{\mathbf{x}} + 3x^2y^2z^4\hat{\mathbf{y}} + 4x^2y^3z^3\hat{\mathbf{z}}$$

(c) Gradient of $f(x, y, z) = e^x \sin(y) \ln(z)$:

$$\nabla f = e^x \hat{\mathbf{x}} + e^x \cos(y) \ln(z) \hat{\mathbf{y}} + \frac{e^x \sin(y)}{z} \hat{\mathbf{z}}$$

1.12 The height of the hill (in feet) is given by the function

$$h(x,y) = 10(2xy - 3x^2 - 4y^2 - 18x + 28y + 12)$$

where y is north and x is east in miles. The gradient of h is

$$\nabla h = 10(2y - 6x - 18)\hat{\mathbf{x}} + 10(2x - 8y + 28)\hat{\mathbf{y}}$$

(a) The top of the hill is a stationary point, so the summit is found by setting the gradient to zero which gives the system of equations

$$0 = 2y - 6x - 18$$

$$0 = 2x - 8y + 28$$

adding the first equation to 3 times the second equation gives

$$0 = 2y - 6x - 18 + 3(2x - 8y + 28)$$
$$0 = -22y + 66$$
$$y = 3$$

substituting y = 3 into the first equation

$$0 = 2(3) - 6x - 18 \rightarrow x = -2$$

Therefore, the top of the hill is at (-2,3) or 2 miles west and 3 miles north of the origin.

- (b) The height of the hill is simply h(-2,3) = 10(12) = 720 feet.
- (c) The steepness of the hill at h(1,1) is given by the magnitude of the gradient

$$|\nabla h| = 10\sqrt{(2y - 6x - 18)^2 + (2x - 8y + 28)^2}$$
$$= 10\sqrt{(2 - 6 - 18)^2 + (2 - 8 + 28)^2}$$
$$= 10\sqrt{(-22)^2 + (22)^2} = 220\sqrt{2} \approx 311 \text{ ft/mi}$$

The direction of the steepest slope is given by the vector in the direction of the gradient at the point $\nabla h(1,1) = 220(-\mathbf{x} + \mathbf{y})$, or simply northwest.

1.13 Given the seperation vector

$$\mathbf{z} = (x - x')\hat{\mathbf{x}} + (y - y')\hat{\mathbf{y}} + (z - z')\hat{\mathbf{z}}$$
 and $\mathbf{z} = \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}$

(a) Show that $\nabla(z^2) = 2z$:

$$\nabla(\mathbf{z}^2) = 2(x - x')\hat{\mathbf{x}} + 2(y - y')\hat{\mathbf{y}} + 2(z - z')\hat{\mathbf{z}} = 2\mathbf{z}$$

(b)

$$\boldsymbol{\nabla} \left(\frac{1}{\boldsymbol{\imath}} \right) = \frac{\partial}{\partial x} \left(\frac{1}{\boldsymbol{\imath}} \right) \hat{\mathbf{x}} + \frac{\partial}{\partial y} \left(\frac{1}{\boldsymbol{\imath}} \right) \hat{\mathbf{y}} + \frac{\partial}{\partial z} \left(\frac{1}{\boldsymbol{\imath}} \right) \hat{\mathbf{z}}$$

looking at the x component,

$$\begin{split} \frac{\partial}{\partial x} \left(\frac{1}{\imath} \right) &= -\frac{1}{\imath^2} \frac{\partial}{\partial x} (\imath) \\ &= -\frac{1}{\imath^2} \frac{\partial}{\partial x} \left(\sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2} \right) \\ &= -\frac{1}{\imath^2} \frac{1}{2} \frac{2(x-x')}{\sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2}} \\ &= -\frac{x-x'}{\imath^3} \end{split}$$

therefore,

$$\nabla \left(\frac{1}{\boldsymbol{\iota}}\right) = -\frac{1}{\boldsymbol{\iota}^3}[(x-x')\hat{\mathbf{x}} + (y-y')\hat{\mathbf{y}} + (z-z')\hat{\mathbf{z}}] = -\frac{\boldsymbol{\iota}}{\boldsymbol{\iota}^3} = -\frac{\hat{\boldsymbol{\iota}}}{\boldsymbol{\iota}^2}$$

(c) The general formula is

$$\nabla(z^n) = n z^{n-1} \hat{z}$$

1.14 Given the rotation matrix

$$\begin{pmatrix} \bar{y} \\ \bar{z} \end{pmatrix} = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} y \\ z \end{pmatrix}$$

or the two equations

$$\bar{y} = y\cos\phi + z\sin\phi$$
$$\bar{z} = -y\sin\phi + z\cos\phi$$

differentiating with respect to \bar{y} and \bar{z} respectively gives

$$1 = \frac{\partial y}{\partial \bar{y}} \cos \phi + \frac{\partial z}{\partial \bar{y}} \sin \phi$$
$$1 = -\frac{\partial y}{\partial \bar{z}} \sin \phi + \frac{\partial z}{\partial \bar{z}} \cos \phi$$

this can only be true if

$$\frac{\partial y}{\partial \bar{y}} = \cos \phi, \quad \frac{\partial z}{\partial \bar{y}} = \sin \phi \quad \text{and} \quad \frac{\partial y}{\partial \bar{z}} = -\sin \phi, \frac{\partial z}{\partial \bar{y}} = \cos \phi$$

which satisfies the trig identity $\sin^2 \phi + \cos^2 \phi = 1$. Differentiating f with respect to the rotated coordinates \bar{y} and \bar{z} is given by

$$\frac{\partial f}{\partial \bar{y}} = \frac{\partial f}{\partial y} \frac{\partial y}{\partial \bar{y}} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial \bar{y}} = \frac{\partial f}{\partial y} \cos \phi + \frac{\partial f}{\partial z} \sin \phi$$
$$\frac{\partial f}{\partial \bar{z}} = \frac{\partial f}{\partial y} \frac{\partial y}{\partial \bar{z}} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial \bar{z}} = -\frac{\partial f}{\partial y} \sin \phi + \frac{\partial f}{\partial z} \cos \phi$$

therefore, the gradient of f transforms as a vector under rotations given by

$$\overline{\boldsymbol{\nabla} f} = \frac{\partial f}{\partial \bar{y}} \hat{\bar{\mathbf{y}}} + \frac{\partial f}{\partial \bar{z}} \hat{\bar{\mathbf{z}}} = \left(\frac{\partial f}{\partial y} \cos \phi + \frac{\partial f}{\partial z} \sin \phi \right) \hat{\bar{\mathbf{y}}} + \left(-\frac{\partial f}{\partial y} \sin \phi + \frac{\partial f}{\partial z} \cos \phi \right) \hat{\bar{\mathbf{z}}}$$

or in matrix form

$$\overline{\nabla f} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \nabla f$$

where the gradient is a column vector

$$\mathbf{\nabla} f = \begin{pmatrix} \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix}$$