Entrega 2: Divisibilitat i dominis euclidians

Arnau Mas

18 de maig 2018

Considerem l'anell $\mathbb{Z}[\sqrt{-3}]:=\mathbb{Z}+\sqrt{-3}\,\mathbb{Z}\subseteq\mathbb{C}$ amb la suma i producte de \mathbb{C} . Hi podem definir l'aplicació

$$N \colon \mathbb{Z}[\sqrt{-3}] \longrightarrow \mathbb{N}$$
$$z = a + b\sqrt{-3} \longmapsto a^2 + 3b^2.$$

Comprovem que N és una norma, és a dir, que és definida estrictament positiva i que és multiplicativa. És clar que per tot $z \in \mathbb{Z}[\sqrt{-3}]$ es té $N(z) \geq 0$. També és clar que N(0) = 0. Finalment, si N(z) = 0 hem de poder concloure z = 0. Si $z = a + b\sqrt{-3} \in \mathbb{Z}[\sqrt{-3}]$ i N(z) = 0 tenim $a^2 + 3b^2 = 0$, però com que $a^2, b^2 > 0$ si a, b > 0 ha de ser a = b = 0 i per tant z = 0.

Per veure que N és multiplicativa observem que $N(z)=z\bar{z}$ per tot $z\in\mathbb{Z}[\sqrt{-3}]$. Efectivament, si $z=a+b\sqrt{-3}$ tenim

$$z\bar{z} = (a + \sqrt{-3}b)(a - \sqrt{-3}b) = a^2 + 3b^2 = N(z).$$

Per tant, per tot $z, w \in \mathbb{Z}[\sqrt{-3}]$ tenim

$$N(zw) = zw\bar{z}w = z\bar{z}w\bar{w} = N(z)N(w).$$

Considerem $u \in \mathbb{Z}[\sqrt{-3}]$ una unitat. Per tant existeix $u^{-1} \in \mathbb{Z}[\sqrt{-3}]$ tal que $uu^{-1} = 1$. Fent servir que la norma és multiplicativa i que N(1) = 1 tenim

$$1 = N(1) = N(uu^{-1}) = N(u)N(u^{-1}).$$

Per tant ha de ser N(u) = 1 o N(u) = -1 ja que $u \neq 0$. Però com que N(u) > 0 concloem N(u) = 1.

Î si $z \in \mathbb{Z}[\sqrt{-3}]$ compleix N(z) = 1 tenim $z\bar{z} = 1$ i per tant z és una unitat amb $z^{-1} = \bar{z}$.

Per determinar $\mathbb{Z}[\sqrt{-3}]^{\times}$ només cal que determinem tots els $z \in \mathbb{Z}[\sqrt{-3}]$ tals que N(z) = 1. És a dir, hem de trobar totes les solucions de $a^2 + 3b^2 = 1$ amb $a, b \in \mathbb{Z}$. Observem que ha de ser b = 0 ja que si $b \neq 0$ aleshores $b^2 \geq 1$ i per tant $a^2 + 3b^2 \geq 3$. Per tant les úniques possibles opcions són a = 1 o a = -1. Així doncs les unitats de $\mathbb{Z}[\sqrt{-3}]$ són

$$\mathbb{Z}[\sqrt{-3}]^{\times} = \{1, -1\}.$$

Considerem $z \in \mathbb{Z}[\sqrt{-3}]$ amb N(z) = 4. Observem primer que $z \neq 0$ ja que $N(z) \neq 0$. Si existeixen $\alpha, \beta \in \mathbb{Z}[\sqrt{-3}]$ tals que $z = \alpha\beta$ aleshores hem de tenir $N(\alpha)N(\beta) = N(\alpha\beta) = 4$. És a dir, $N(\alpha), N(\beta) \mid 4$. Per tant els únics valors possibles per $N(\alpha)$ i $N(\beta)$ són 1, 2 o 4. Els valors que pot pendre la norma, però, estan molt restringits per a valors petits. De fet, la norma d'un element no pot ser mai 2. En efecte, si $z = a + \sqrt{-3b} \in \mathbb{Z}[\sqrt{-3}]$ complís N(z) = 2 tindriem $a^2 + 3b^2 = 2$. Però això és impossible ja que si $b \neq 0$ aleshores $b^2 > 1$ i per tant $N(z) = a^2 + 3b^2 \geq 3$. I si b = 0 aleshores a^2 no pot ser 2 si $a \in \mathbb{Z}$.

El que tenim és que o bé $N(\alpha) = 1$ o bé $N(\alpha) = 4$. En el primer cas α és una unitat, per l'apartat anterior. I en el segon ha de ser $N(\beta) = 1$ i per tant ara és β la que és una unitat. Sigui com sigui, acabem de provar que si z descomposa en producte de dos factors, almenys un dels dos sempre és una unitat, i per tant z és irreductible.

Considerem z=2 i $w=1+\sqrt{-3}$. Tenim N(z)=N(w)=4 i per tant, per l'apartat anterior, els dos són irreductibles.

Volem provar que 1 és un màxim comú divisor de z i w. És clar que z i w no són associats ja que les úniques unitats de $\mathbb{Z}[\sqrt{-3}]$ són 1 i -1. També és evident que 1 és divisor comú de z i w. Hem de veure que qualsevol altre divisor comú de z i w és una unitat. Considerem, doncs, $d \in \mathbb{Z}[\sqrt{-3}]$ un divisor comú de z i w. És a dir, podem escriure $z = \alpha d$ i $w = \beta d$ per alguns $\alpha, \beta \in \mathbb{Z}[\sqrt{-3}]$. Com que z i w són irreductibles hi ha dues possibilitats: o bé d és una unitat o bé α i β són unitats. En el primer cas ja hem acabat. I si el segon fos cert tindriem que z i w són associats, però això sabem que no és veritat. Per tant d ha de ser una unitat i concloem que 1 és un màxim comú divisor de z i w.

Si z i w compleixen una identitat de Bézout vol dir que existeixen $\lambda, \mu \in \mathbb{Z}[\sqrt{-3}]$ tals que

$$\lambda z + \mu w = 1.$$

Posem $\lambda = \lambda_1 + \lambda_2 \sqrt{-3}$ i $\mu = \mu_1 + \mu_2 \sqrt{-3}$. Estem dient, doncs, que

$$2\lambda_1 + \mu_1 - 3\mu_2 + (2\lambda_2 + \mu_1 + \mu_2)\sqrt{-3} = 1.$$

Per tant ha de ser $2\lambda_2 + \mu_1 + \mu_2 = 0$ i $2\lambda_1 + \mu_1 - 3\mu_2 = 1$. Restant trobem

$$2(\lambda_1 - \lambda_2) - 4\mu_2 = 1.$$

Però aleshores λ_1, μ_1 i μ_2 no poden existir ja que tant $2(\lambda_1 - \lambda_2)$ com $4\mu_2$ serien parells i -1 no és parell. Per tant z i w no satisfan una identitat de Bézout.

Tenim que $zw=2(1+\sqrt{-3})=2+2\sqrt{-3}$ és un múltiple comú de z i w. També ho és $z^2=w\bar{w}=4$ i $N(z^2)=N(w\bar{w})=16$. Si z i w tinguessin un mínim comú múltiple m hauria de passar, per definició, $m\mid 4$ i $m\mid (2+2\sqrt{-3})$. Això ens diu $N(m)\mid 16$. Com hem comentat abans, la norma d'un element de $\mathbb{Z}[\sqrt{-3}]$ no pot ser 2, per tant $N(m)\neq 8$ ja que si fos així i escribim 4=am aleshores N(a)=2: una contradicció. A més, com

que, per definició, $z \mid m$ i $w \mid m$ hem de tenir $N(m) \geq 4$. Les úniques opcions possibles, doncs, són N(m) = 16 i N(m) = 4.

Si N(m) fos 16 aleshores tindriem que m és associat tant a z^2 com a $w\bar{w}$ —com que $m \mid z^2 = 4$ tenim m = 4b per $b \in \mathbb{Z}[\sqrt{-3}]$, però aleshores N(b) = 1 i b és una unitat; i de la mateixa manera comprovem que m i $w\bar{w}$ serien associats—, però això sabem que no és el cas ja que $w\bar{w}$ i z^2 no són associats.

I si N(m) fos 4 aleshores, per un apartat anterior, m seria irreductible; en contradicció amb la hipotesi que $z \mid m$ i $w \mid m$ —i amb que z i w no són associats. Així doncs concloem que m no pot existir i que z i w no tenen mínim comú múltiple.

Hem de veure que 2w i 2z no tenen màxim comú divisor. Tenim $2w = zw = 2 + 2\sqrt{-3}$ i $2z = z^2 = w\bar{w} = 4$. És clar que z = 2 és un divisor comú de 2z i 2w, així com w. Així, si d és un màxim comú divisor de 2w i 2z hem de tenir $z \mid d$ i $w \mid d$. A més $d \mid 2w$ i $d \mid 2z$. Això ens restringeix molt N(d): concretament, $4 \mid N(d)$ i $N(d) \mid 16$. Seguint el mateix argument que a l'apartat anterior, no és possible que N(d) = 8. Si N(d) = 4 és irreductible, la qual cosa implicaria que tant z com w són associats a d i per tant associats entre si, però sabem que no és el cas. I si N(d) = 16 podriem concloure que 2w i 2z són associats, que també sabem que no és el cas. Així doncs, d no pot existir i per tant 2z i 2w no tenen màxim comú divisor.

Tenim

$$4 = 3 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3}).$$

Ja hem vist que tant 2 com $1+\sqrt{-3}$ són irreductibles no associats. També és irreductible $1-\sqrt{-3}$ ja que $N(1-\sqrt{-3})=4$. I 2 tampox no és associat a $1-\sqrt{-3}$. Per tant acabem d'escriure 4 com a producte d'irreductibles de dues maneres diferents. Això ens dóna que $\mathbb{Z}[\sqrt{-3}]$ no és un DFU.