

MODELO PREDICTIVO PARA LA TOXICIDAD DE SUSTANCIAS QUÍMICAS EN PECES

HACIA UNA EVALUACIÓN MÁS ÉTICA Y EFICIENTE

Objetivo

Responder a la necesidad de métodos alternativos más rápidos, éticos y explicables.

Reducción de ensayos in vivo

Predicciones computacionales más éticas.

Enfoque supervisado

Entrenamiento del modelo a partir de datos etiquetados y verificables.

Ahorro de recursos

Disminuir costes económicos y tiempos asociados a ensayos tradicionales.

Clasificación binaria

Predicción de toxicidad como clase dicotómica: alta o baja.

Aceleración de toma de decisiones

Facilitar decisiones regulatorias más rápidas con modelos reproducibles.

Dataset y Diseño experimental

ADORE Benchmark (A Data-driven benchmark fOR Ecotoxicology)

Schür *et al*. (2023)

t-F2F_mortality

Fish 2 Fish 1200

Basado en ECOTOX (EPA) + ADORE

split_occurrence

Train/Test

Basada en la ocurrencia química

Reducción de Features

95 % de las más de mil variables corresponden a descriptores químicos

- 1 Reducción estructural
- 2 Correlación lineal con el target
- 3 Importancia mediante Random Forest
- 4 Test estadístico SelectKBest

Exploratory Data Analysis

Subconjunto de variables numéricas y categóricas, seleccionadas por importancia estadística y conocimiento experto.

Análisis Univariante

• Distribuciones asimétricas y la presencia de outliers, sobre todo en variables moleculares.

Análisis Bivariante

• Poder predictivo frente al target mediante visualizaciones, AUC y tests estadísticos.

• 26 variables finales

- 21 predictivas: descriptores moleculares, condiciones del test y taxonomía
- 5 contextuales: pH, temperatura y rasgos biológicos del organismo.

Pipeline

Preprocesador completo y una regresión logística como modelo baseline.

Column transformer

Column transformer

Standard Scaler

Features numéricas

Validación del baseline

Validación cruzada estructurada siguiendo los splits propuestos por ADORE, lo que evita fugas químicas o taxonómicas entre entrenamiento y validación.

Accuracy promedio

Proporción de predicciones correctas entre todas las muestras.

Recall

Capacidad del modelo para detectar sustancias tóxicas (positivos reales).

F1 Score

Equilibrio entre precisión y recall: penaliza los errores en ambas clases.

F1 Score en test

Desempeño final del modelo sobre datos completamente nuevos.

Comparativa de métricas

Modelo Baseline: Regresión Logística

Rendimiento estable

Random Forest (tuned):

F1 (CV ADORE) **0.667**

Accuracy (CV) -

Recall (CV) -

Evaluado en Test 💢 No

XGBoost (sin tuning):

F1 (CV ADORE) **0.621**

Accuracy (CV) 0.730

Recall (CV) 0.542

Evaluado en Test X No

Logistic Regression:

F1 (CV ADORE) 0.749

Accuracy (CV) 0.805

Recall (CV) 0.731

Evaluado en Test 🗸 Sí

Modelo principal

Regresión Logística con ajuste de hiperparámetros

Random Forest y XGBoost

Ninguna mejoró consistentemente el rendimiento: presentaban mayor variabilidad entre folds y peor F1 promedio.

Variables Contextuales

No aportaron valor predictivo y se descartaron.

Regresión Logística

Hiperparámetros (C=0.1, penalty='l2', solver = 'liblinear')
Validación según benchmark ADORE

Regresión Logística

C=0.1, penalty='12', solver = 'liblinear'

▲ Recall

Con umbral 0.3

- Recall sube a 0.82
- Falsos negativos bajan un 37%, sin pérdida grave de precisión

Modelo flexible y adaptable

- Más estricto en entornos regulatorios
- Equilibrado en investigación.

Interpretación

Análisis de **coeficientes**:cada coeficiente representa el efecto de una variable sobre la probabilidad de toxicidad.

DESCRIPTORES QUÍMICOS

Zagrebl Xpc-6dv SRW02

FACTORES BIOLÓGICOS

Etapa de vida del organismo

Familia taxonómica

Interpretación: SHAP

Permite analizar el impacto individual de cada variable sobre cada predicción.

Summary plot: cada punto representa una muestra individual

Interpretación: SHAP

Permite analizar el impacto individual de cada variable sobre cada predicción.

¿Qué empujó al modelo a clasificar una sustancia como **tóxica**?

- Justificación de decisiones regulatorias.
- Priorización de sustancias para evaluación experimental.

Conclusión

Construcción de un modelo **preciso, reproducible** e **interpretable** para **predecir la toxicidad aguda en peces**, reduciendo la necesidad de ensayos in vivo.

Regresión Logística

- F1-score de **71.5% en test**
- Estabilidad entre folds
- Comportamiento robusto ante datos nuevos

SHAP

Ajuste de umbral de decisión

- Adaptación del modelo según el riesgo aceptable
- Mayor utilidad en contextos regulatorios

API

- Recepción de estructuras químicas
- Devolución de predicciones
- Cribado temprano de sustancias
- Normativas REACH

Gracias

Hacia una ecotoxicología más ética, rápida y accesible

