Simple Linear Regression

Chapter 7

Regression Analysis

- A relationship between variables may exist due to 1 of 4 possible reasons:
 - Chance
 - » useless since this relationship can not be quantified
 - A relationship to a 3rd set of circumstances
 - » a more direct relationship is desired since it provides a better explanation of cost
 - A functional relationship
 - » a precise relationship that seldom exists in cost estimating
 - A causal type of relationship

Definition of Regression

 Regression Analysis is used to describe a statistical relationship between variables

• Specifically, it is the process of estimating the "best fit" parameters of a specified function that relates a dependent variable to one or more independent variables (including implicit

Regression Analysis in Cost Estimating

- If the dependent variable is a cost, the regression equation is often referred to as a *Cost Estimating Relationship* or *CER*
 - The independent variable in a CER is often called a *cost driver*

Examples of cost drivers:

Cost	Cost Driver (single)
Aircraft Design	# of Drawings
Software	Lines of Code
Power Cable	Linear Feet

A CER may have multiple cost drivers:

Example with multiple cost drivers:

Cost	Cost Driver (multiple)
Power Cable	Linear Feet Power

Linear Regression Model

- Cost is the dependent (or unknown) variable; generally denoted by the symbol Y.
- The system's physical or performance characteristics form the model's known, or independent, variables which are generally denoted by the symbol X.
- The linear regression model takes the following form:

$$Y_i = b_0 + b_1 X_i + \varepsilon_i$$

where b_0 (the Y intercept) and b_1 (the slope of the regression line) are the unknown regression parameters and ϵ_i is a random error term.

• It is assumed that $\epsilon_1 \sim N(0, \sigma^2)$ and iid.

Linear Regression Model

We desire a model of the form:

$$\hat{y}_x = b_0 + b_1 x$$

This model is estimated on the basis of historical data as:

$$y_i = b_0 + b_1 x_i + e_i$$

where

$$e_i \sim N(0, \sigma_x^2)$$
, and id

 b₁ and b₀ are chosen such that the sum of the squared residuals is minimized (Least Squares Best Fit).

$$e_i = y_i - (b_0 + b_1 x_i) = y_i - \hat{y} = \text{residua}$$

 $\sum (y_i - \hat{y})^2 = \text{minimum}$

Least Squares Best Fit (LSBF)

• To find the values of b_0 and b_1 that minimize $\sum (y_i - \hat{y})^2$ one may refer to the "Normal Equations."

$$\sum Y = nb_0 + b_1 \sum X$$
$$\sum XY = b_0 \sum X + b_1 \sum X^2$$

 With two equations and two unknowns, we can solve for b₀ and b₁.

$$b_{1} = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sum (X - \overline{X})^{2}} = \frac{\sum XY - \frac{\sum X \sum Y}{n}}{\sum X^{2} - \frac{(\sum X)^{2}}{n}} = \frac{\sum XY - n\overline{X}\overline{Y}}{\sum X^{2} - n\overline{X}^{2}}$$

$$b_{0} = \frac{\sum Y}{n} - b_{1} \frac{\sum X}{n} = \overline{Y} - b_{1}\overline{X}$$

An Example

- Suppose we're analyzing the production cost of radio comm sets.
- The average production cost of all radio comm sets in your data set is \$250K

$$Y = $250K$$

 Then you develop an estimating relationship between production cost and radio comm set weight using LSBF.

$$\hat{Y} = \$25K + \$0.44K \text{ (weightnlbs)}$$

 Now you want to estimate the production cost of a 650 lb. radio comm set.

$$\hat{Y} = \$25K + \$0.44K(650lbs) = \$311K$$

An Example

- What do these numbers mean?
- \$250K is the estimate of the average production cost of all radio comm sets in the population.
- \$311K is the estimate of all radio comm sets in the population that have a weight of 650 lbs.

Another Example

 Recall the transmogrifier? Now lets look at the relationship between transmogrifier weight (lbs) and average unit production cost.

Histo	oric Transmo	<u>ogrifier</u>		25 ¬					
<u>Average</u>	Unit Produc	ction Cost					•		
System	FY97\$K	Weight (lbs)		20 -	_				
1	22.2	90	5	1 -				•	
2	17.3	161	7	15 -					
3	11.8	40	FY97	10 -		•			
4	9.6	108	ш	10			•	•	
5	8.8	82		5 -		•			
6	7.6	135		,		•			
7	6.8	59		0 -			-		
8	3.2	68		()	50	100	150	200
9	1.7	25			•	30			200
10	1.6	24					Weight (lbs	<i>)</i>	

The Regression Model

The first time, we'll crank it out by hand...

 $\hat{Y}_{V} = \$2.48K + (\$0.083K)X$

$$Y = \text{Averag} \, \text{ \it E} \, \text{InitProductions} \, \text{ \it initProductions} \, \text{ \it$$

Standard Error

• Standard Error = $S_{\hat{\mathcal{Y}}}$ = the standard deviation about the regression line. The smaller the better.

$$SE = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}}$$

n-k-1, where k is numb of independent variable

Yį	$\widehat{\mathbf{Y}}_{\mathbf{i}}$	$Y_i - \hat{Y}_i$	$(\mathbf{Y_i} - \widehat{\mathbf{Y}_i})^2$
22.2	10.0	12.2	149.87
17.3	15.9	1.4	2.07
11.8	5.8	6.0	35.98
9.6	11.5	-1.9	3.44
8.8	9.3	-0.5	0.24
7.6	13.7	-6.1	37.19
6.8	7.4	-0.6	0.34
3.2	8.1	-4.9	24.30
1.7	4.6	-2.9	8.15
1.6	4.5	-2.9	8.25
		Sum	269.83

Standard Error

$$SE = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}} = \sqrt{\frac{26983}{8}} = \$5.8K$$

- For the transmogrifier data, the standard error is \$5.8K.
- This means that on "average" when predicting the cost of future systems we will be off by \$5.8K.

Coefficient of Variation

Coefficient of Variation (CV)

$$CV = \frac{SE}{\overline{Y}} = \frac{\$5.8K}{\$9.06K} = 64\%$$

 This says that on "average", we'll be off by 64% when predicting the cost of future systems. The smaller the better.

Analysis of Variance

Analysis of Variance (ANOVA)

SST=TotaSumof Squares $\sum (Y_i - \overline{Y})^2$ SSE=Sumof SquareRegression $\sum (Y_i - \hat{Y_i})^2$ SSR=Sumof SquareRegression $\sum (\hat{Y_i} - \overline{Y})^2$ SST=SSE+SSR

SST=TotaNariation
SSE=UnexplaineVariation
SSR=VariationxplaineValvegressic

					Significance F
	df	<i>SS</i>	MS = SS/df	F = MSR/MSE	<i>P(b1=b2=0)</i>
SSR	1	130.00	130 (MSR)	3.85	0.0852
SSE	8	269.83	33.7 (MSE)		
SST	9	399.82			

Analysis of Variance (ANOVA)

Measures of Variation

Total Sum of Squares (SST): The sum of the squared deviations between the data and the average

2. Residual or Error Sum of Squares (SSE):

The sum of the squared deviations between the data and the regression line

"The unexplained variation"

3. Regression Sum of Squares (SSR):

The sum of the squared deviations

between to the averag

"The e

SST = SSE + SSR

"total" = "unexplained"

"explained"

7

Analysis of Variance (ANOVA)

Mean Measures of Variation

Mean Squared Error (or Residual) (MSE);

$$MSE = \frac{SSE}{n - k}$$

 Mean of Squares of the Regression (MSR);

$$MSR = \frac{33R}{k-1}$$

The denominator for each of the above is called the *degrees* of freedom, or df, associated with each type of variation

where:

n = # data points

k = # equation

parameters

Coefficient of Determination

 Coefficient of Determination (R2) represents the percentage of total variation explained by the regression model. The larger the better.

regression model. The larger the better.
$$R^{2} = \frac{\text{Explaine Mariation}}{\text{Total Variation}} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

$$R^{2} = \frac{130}{3998} = 1 - \frac{2698}{3998} = 0.3252 = 325\%$$

 R² adjusted for degrees of freedom (Adj. R²) takes into account the increased uncertainty due to a small sample size.

$$R_{adj}^{2} = 1 - \frac{\frac{SSE}{n-(k+1)}}{\frac{SST}{n-1}} = 1 - \frac{2698}{\frac{8}{3998}} = 0.2408 = 241\%$$

The t statistic

- For a regression coefficient, the determination of statistical significance is based on a t test
 - The test depends on the ratio of the coefficient's estimated value to its standard deviation, called a t statistic
- This statistic tests the marginal contribution of the independent variable on the reduction of the unexplained variation.
- In other words, it tests the strength of the relationship between Y and X (or between Cost and Weight) by testing the strength of the coefficient b₁.
- Another way of looking at this is that the t-statistic tells us how many standard deviations the coefficient is from zero.
- The t-statistic is used to test the hypothesis that X and Y (or Cost and Weight) are NOT related at a given level of significance.
- If the test indicates that that X and Y <u>are</u> related, then we say we prefer the model with b_1 to the model without b_1 .

The t statistic

 $H_0: \beta_1 = 0$ (Costis not relate to weight (prefer node without evight).

 $H_a: \beta_1 \neq 0$ (Costandweightrerelated) prefermed evith welto

Teststatisti
$$\mathbf{t}_{\beta_{1}} = \frac{b_{1} - \beta_{1}^{2}}{s_{b_{1}}} = \frac{b_{1}}{s_{b_{1}}} = \frac{b_{1}}{SE/\sqrt{\sum (X - \overline{X})^{2}}} = \frac{0.0831}{5.8/13716} = 1.97$$

• Say we wish to test b_1 at the α = 0.20 significance level. Refer to Table 6-2 with 8 degrees of freedom...

• Since our test statistic, 1.97, falls within the rejection region, we $\alpha/2 = 0.10$ reject H₀ and conclude that we prefer the model with b₁ to the model without b₁.

The F Statistic

- The F statistic tells us whether the full model is preferred to the mean, . That is, whether the coefficients of all the independent variables are zero
- Say we want to test the strength of the relationship between our model and Y at the α = 0.1 significance level...

$$H_0: \beta_1 = \cdots = \beta_k = 0$$
 (The models invalid) prefer

 $H_a: H_0 \text{ isfalse (The models valid) (prefex)}$

Teststatistid =
$$\frac{MSR}{MSE} = \frac{\frac{SSR}{df_R}}{\frac{SSE}{df_E}} = \frac{\frac{130}{130}}{\frac{130}{2698}} = \frac{3.85}{8}$$

 Since 3.85 falls within the rejection region, we reject H₀ and say the full model is better than the mean as a predictor of cost.

There's an Easier Way...

Linear Regression Results (Microsoft Excel):

Regression Statis	stics
Multiple R	0.5702
R Square	0.3251
Adjusted R Square	0.2408
Standard Error	5.8076
Observations	10

ANOVA

	df	<i>SS</i>	MS	F	Significance F
Regression	1	130.00	130.00	3.85	0.0852
Residual	8	269.83	33.73		
Total	9	399.82			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	2.477	3.823	0.648	0.535	-6.340	11.293
Weight (lbs)	0.083	0.042	1.963	0.085	-0.015	0.181

Now the information we need is seen at a glance.

Important Results

- From the Excel Regression output we can glean the following important results:
 - R² or Adj. R²: The bigger the better.
 - CV: Divide Standard Error $b\overline{y}$ (calculated separately). The smaller the better.
 - Significance of F: If less than α then we prefer the model \hat{Y} to the mean \hat{Y} . Else, vice versa.
 - P-value of coefficient b_1 : If less than α then we prefer the model with b_1 , else we prefer it without b_1 .
- These statistics will be used to compare other linear models when more than one cost driver may exist.

Treatment of Outliers

- In general, an outlier is a residual that falls greater than \mathbf{z}_{σ} from or .
- The standard residual is

$$\frac{Y_i - \hat{Y}}{SE}$$
 or $\frac{X_i - \overline{X}}{S_X}$ or $\frac{Y_i - \overline{Y}}{S_Y}$

- Recall that since 95% of the population falls within 2σ of the mean, then in any given data set, we would expect 5% of the observations to be outliers.
- In general, do not throw them out unless they do not belong in your population.

Outliers with respect to X

- All data should come from the same population. You should analyze your observations to ensure this is so.
- Observations that are so different that they do not qualify as a legitimate member of your independent variable population are called outliers with respect to the independent variable, X.
- To identify outliers with respect to X, simply calculate
 and S_x. Those observations that fall greater than two
 standard deviations from are likely candidates.
- You expect 5% of your observations to be outlier, therefore the fact that some of your observations are outliers is not necessarily a problem. You are simply identifying observations that warrant a closer investigation.

Example Analysis of Outliers with Respect to X

				$(X_i - X)$
Rang	\overline{X}	X_i - \overline{X}	$(X_i - \overline{X})^2$	$\overline{S_{X}}$
600	823	-223	49785	-0.59
925	823	102	10379	0.27
450	823	-373	139222	-0.99
420	823	-403	162510	-1.07
1000	823	177	31285	0.47
800	823	-23	535	-0.06
790	823	-33	1097	-0.09
1600	823	777	603535	2.06

S_X 377.65

**(**\ \

Outliers with Respect to Y

- There are two types of outliers with respect to the dependent variable.
 - Those with respect to Y itself.
 - Those with respect to the regression model ?
- Outliers with respect to Y itself are treated in the same way as those with respect to X.
- Outliers with respect to $\hat{\mathbf{y}}$ are of particular concern, because those represent observations our model does not predict well.
- Outliers with respect to are identified by comparing the residuals to the standard error of the estimate (SE). This is referred to as the "standardized residual."

$$\frac{(Y_i - \hat{Y})}{SE} = \#of Standardrop$$

 $\frac{(Y_i - \hat{Y})}{SF} = \#of Standardror$ Outliers are those with residuals greater than ±2 std errors.

Remedial Measures

- Remember: the fact that you have outliers in your data set is not necessarily indicative of a problem. The trick is to determine WHY an observation is an outlier.
- Possible reasons why an observation is an outlier.
 - Random Error: No problem
 - Not a member of the same population: If so, you want to delete this observation from your data set.
 - You've omitted one or more other cost drivers.
 - Your model is improperly specified.
 - The data point was improperly measured (it's just plain wrong).
 - Unusual event (war, natural disaster).
 - A normalization problem.

Remedial Measures

- Your first reaction should not be to throw out the data point.
- Assuming the observation belongs in the sample, some options are:
 - Dampen or lessen the impact of the observation through a transformation of the dependent and or independent variables.
 - Develop two or more regression equations (with and without the outlier)
- Outliers should be treated as useful information.

Model Diagnostics

- If the fitted model is appropriate for the data, there will be no pattern apparent in the plot of the residuals $\hat{\mathbf{Y}}_{i}$ etc.
 - Residuals spread uniformly across the range of X-axis values

Model Diagnostics

 If the fitted model is not appropriate, a relationship between the X-axis values and the e_i values will be apparent.

Example Residual Patterns

Non-Linear Models

 Data transformations should be tried when residual analysis indicates a non-linear trend

$$X' = 1/X$$
 $X = 1/Y$ $X = \log X$ $Y = \ln Y$ $Y = \log Y$

CER is often non-linear when independent variable is a performance parameter

$$Y = aXb$$

$$log Y = log a + b log X \Rightarrow Y' = aB + bXB$$

- » log-linear transform allows use of linear regression
- » predicted values for Y are "log dollars" which must be converted
- r² is potentially misleading when using a log model

Other Concerns

- When the regression results are illogical (i.e., cost varies inversely with a physical or performance parameter), omission of one or more important variables may have occurred or the variables being used may be interrelated
 - Does not necessarily invalidate a linear model
 - Additional analysis of the model is necessary to determine if additional independent variables should be incorporated or if consolidation/elimination of existing variables is required

Assumptions of OLS

- (1) Fixed X
 - -Can obtain many random samples, each with the same X values but different Y_i values due to different e_i values
- (2) Errors have mean of 0

$$-E[e_i] = 0$$

- (3) Errors have constant variance (homoscedasticity)
 - $-Var[e_i] = \sigma^2$ for all I
- (4) Errors are uncorrelated

$$-Cov[e_i,e_j] = 0$$
 for all $i \neq j$

(5) Errors are normally distributed

$$-\mathbf{e}_{i} \sim N(\mathbf{0}, \sigma^{2})$$