IIT Kanpur Intensive Training School (ITS) on PYTHON for Machine Learning, Neural Networks and Deep Learning

2nd to 22nd December 2023 Assignment #1

- 1. Siri, Alexa are examples of
 - a. Pattern Recognition
 - b. Data Mining
 - c. Artificial Intelligence
 - d. Linear Regression
 Ans c
- 2. In test-train split, the fraction of data set aside for testing is typically
 - a. 50 60%
 - b. 80 90%
 - c. 100%
 - d. 10 20%

Ans d

3. Consider the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$$

Its inverse is

- a. $-\frac{1}{10}\begin{bmatrix} 2 & -4 \\ -3 & 1 \end{bmatrix}$
- b. $\begin{bmatrix} 2 & -4 \\ -3 & 1 \end{bmatrix}$
- c. $\frac{1}{10} \begin{bmatrix} 1 & -4 \\ -3 & 2 \end{bmatrix}$
- d. $-\frac{1}{10}\begin{bmatrix} 2 & 4\\ 3 & 1 \end{bmatrix}$ Ans a
- 4. For the linear regression problem $\min \|\bar{\mathbf{y}} \mathbf{X}\bar{\mathbf{h}}\|^2$, the regression coefficients are given as
 - a. $\mathbf{X}^T(\mathbf{X}^T\mathbf{X})^{-1}\bar{\mathbf{y}}$
 - b. $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\bar{\mathbf{y}}$
 - c. $\mathbf{X}^T(\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{\bar{y}}$
 - d. $(\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}^T\bar{\mathbf{y}}$

Ans b

5. Consider the least squares (LS) problem below

$$\min \left\| \begin{bmatrix} 1 \\ -2 \\ -1 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 & 3 \\ 1 & 2 \\ 1 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} h_0 \\ h_1 \end{bmatrix} \right\|^2$$

The regression coefficient vector is given as

a.
$$\frac{1}{20} \begin{bmatrix} -70 \\ 30 \end{bmatrix}$$

b.
$$\begin{bmatrix} -\frac{1}{2} \\ \frac{1}{10} \end{bmatrix}$$

c.
$$\frac{1}{20} \begin{bmatrix} -54 \\ 18 \end{bmatrix}$$

d.
$$\frac{1}{20} \begin{bmatrix} 36 \\ -12 \end{bmatrix}$$

- 6. Logistic regression is well suited for
 - a. Linear Approximation
 - b. Gaussian clustering
 - c. Binary classification
 - d. Dimensionality reduction Ans c
- 7. The logistic function is defined as

a.
$$\frac{1}{1+e^z}$$

b.
$$\frac{e^{-2z}}{1+e^{-z}}$$

c.
$$\frac{1}{1+e^{-x}}$$

d.
$$\frac{1}{1-e^{-2}}$$

Ans c

8. The update rule for logistic regression is given as

a.
$$\bar{\mathbf{h}}(k+1) = \bar{\mathbf{h}}(k) + \eta \left(y(k+1) - g(\bar{\mathbf{x}}(k+1)) \right) \bar{\mathbf{x}}(k+1)$$

b.
$$\bar{\mathbf{h}}(k+1) = \bar{\mathbf{h}}(k) + \eta \left(g(\bar{\mathbf{x}}(k+1)) - y(k+1) \right) \bar{\mathbf{x}}(k+1)$$

c.
$$\bar{\mathbf{h}}(k+1) = \bar{\mathbf{h}}(k) + \eta \left(g(\bar{\mathbf{x}}(k+1)) - y(k+1) \right)$$

d.
$$\bar{\mathbf{h}}(k+1) = \bar{\mathbf{h}}(k) + \eta \left(y(k+1) - g(\bar{\mathbf{x}}(k+1)) \bar{\mathbf{x}}(k+1) \right)$$

9. PDF of a Gaussian random vector is given as

a.
$$\frac{1}{\sqrt{(2\pi)^n |\mathbf{R}|}} e^{-\frac{1}{2}(\overline{\mathbf{x}} - \overline{\boldsymbol{\mu}})^T \mathbf{R}^{-1}(\overline{\mathbf{x}} - \overline{\boldsymbol{\mu}})}$$

b.
$$\frac{1}{\sqrt{(2\pi)^n |\mathbf{R}|}} e^{-\frac{1}{2}(\bar{\mathbf{x}} - \bar{\boldsymbol{\mu}})^T \mathbf{R}(\bar{\mathbf{x}} - \bar{\boldsymbol{\mu}})}$$
c.
$$\frac{1}{\sqrt{(2\pi)^n}} e^{-\frac{1}{2}(\bar{\mathbf{x}} - \bar{\boldsymbol{\mu}})^T \mathbf{R}(\bar{\mathbf{x}} - \bar{\boldsymbol{\mu}})}$$

c.
$$\frac{1}{\sqrt{(2\pi)^n}}e^{-\frac{1}{2}(\bar{\mathbf{x}}-\bar{\boldsymbol{\mu}})^T\mathbf{R}(\bar{\mathbf{x}}-\bar{\boldsymbol{\mu}})}$$

d.
$$\frac{1}{|\mathbf{R}|\sqrt{(2\pi)^n}}e^{-\frac{1}{2}(\bar{\mathbf{x}}-\bar{\boldsymbol{\mu}})^T\mathbf{R}^{-1}(\bar{\mathbf{x}}-\bar{\boldsymbol{\mu}})}$$

Ans a

10. Consider the **Gaussian classification** problem. The two classes C_0 , C_1 are distributed as

$$C_0 \sim N\left(\begin{bmatrix}1\\-2\end{bmatrix}, \begin{bmatrix}\frac{1}{3} & 0\\0 & \frac{1}{2}\end{bmatrix}\right), C_1 \sim N\left(\begin{bmatrix}-1\\2\end{bmatrix}, \begin{bmatrix}\frac{1}{3} & 0\\0 & \frac{1}{2}\end{bmatrix}\right)$$

The discriminant function to choose C_0 is given as

- a. $8x_1 6x_2 < 0$
- b. $6x_1 8x_2 \ge 0$
- c. $2x_1 3x_2 \ge 3$
- d. $3x_1 2x_2 < 3$ Ans b
- 11. The **SVC** problem is given as
 - a. $\min \|\bar{a}\|$

$$\mathbf{\bar{a}}^T \mathbf{\bar{x}}_i + b \ge 1, \mathbf{\bar{x}}_i \in \mathcal{C}_0$$

 $\mathbf{\bar{a}}^T \mathbf{\bar{x}}_i + b \le -1, \mathbf{\bar{x}}_i \in \mathcal{C}_1$

b. $\max \|\bar{\mathbf{a}}\|$

$$\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \ge 1, \bar{\mathbf{x}}_i \in \mathcal{C}_0$$

 $\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \le -1, \bar{\mathbf{x}}_i \in \mathcal{C}_1$

c. $\min \|\bar{a}\|$

$$\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \ge -1, \bar{\mathbf{x}}_i \in \mathcal{C}_0
\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \le 1, \bar{\mathbf{x}}_i \in \mathcal{C}_1$$

d. $\min \|\bar{a}\|$

$$\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b = -1, \bar{\mathbf{x}}_i \in \mathcal{C}_0$$

 $\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b = 1, \bar{\mathbf{x}}_i \in \mathcal{C}_1$

Ans a

12. Using the Naïve Bayes assumption, $p(\bar{\mathbf{x}}|y) = p(x_1, x_2, ..., x_N|y)$ can be expressed as

a.
$$p(x_1|y) + p(x_2|y) + \dots + p(x_N|y)$$

- b. $p(x_1) \times p(x_2) \times ... \times p(x_N)$
- c. $p(x_1|y) \times p(x_2|y) \times ... \times p(x_N|y)$
- d. $p(y|x_1) \times p(y|x_2) \times ... \times p(y|x_N)$ Ans c
- ECHNOLOG 13. The posterior probability $p(y = 1|\bar{x})$ is given as
 - $p(\bar{\mathbf{x}}|y=1) \times p(\bar{\mathbf{x}})$ p(y=1)

b.
$$\frac{p(\bar{\mathbf{x}}|y=1) \times p(y=1)}{p(\bar{\mathbf{x}})}$$

- $p(\bar{\mathbf{x}}) \times p(y=1)$
- $p(\bar{\mathbf{x}}|y=1)$
- Ans b
- 14. Consider the data table given below

	counts	
X_1	0	1
0	3	10
1	4	13

The quantity $P(Y = 0|X_1 = 0)$ can be evaluated using Laplace smoothing as a. $\frac{4}{15}$ b. $\frac{4}{15}$

- b.
- c.
- d.

Ans b

- 15. The K -means cost-function to minimize is given as a. $\min \sum_{i=1}^{K} \sum_{j=1}^{M} \alpha_i(j) \| \bar{\mathbf{x}}(j) \bar{\mathbf{\mu}}_i \|$ b. $\min \sum_{i=1}^{K} \sum_{j=1}^{M} \alpha_i(j) \| \bar{\mathbf{x}}(j) \bar{\mathbf{\mu}}_i \|^2$ c. $\min \sum_{i=1}^{K} \sum_{j=1}^{M} \| \bar{\mathbf{x}}(j) \bar{\mathbf{\mu}}_i \|^2$ d. $\min \sum_{i=1}^{K} \sum_{j=1}^{M} \| \bar{\mathbf{x}}(j) \bar{\mathbf{\mu}}_i \|^2$ Ans b