Risk Profiling using LLM

Alina Salimova, Higher School of Economics

Предлагаемый подход

Индивидуальный портрет и риск-профиль формируются на основе двух уровней признаков:

- Демографические характеристики (возраст, пол, образование, доход)
- Скрытые психологические паттерны, которые предлагается извлекать через визуальные предпочтения

Генерация изображений

Google Gemini API

Четыре ключевых оси:

- Безопасность vs Свобода
- Активность vs Расслабление
- Порядок vs Xaoc
- Социальность vs Интроверсия

Визуальный стиль: мультяшный реализм во вселенной «Шрека»

16 сцен, сочетание значений по четырём осям (1-1-2-2 и тд)

Работа с реальными данными <u>SCF 2022</u>

- <u>T-pro-it-1.0, GPT-40</u>
- Задача: представить, что LLM реальный человек из выборки
- На основе профиля выбирать подходящие картинки
- Сложная структура данных

Категориальные переменные:

HHSEX, RACECL, EDUC, MARRIED, SPENDMOR, YESFINRISK, NOFINRISK, BFINPLAN, LATE60, BNKRUPLAST5, ANYPEN, HTRAD

Числовые переменные:

AGE, INCOME, WAGEINC, INTDIVINC, KGINC, NORMINC, CHECKING, SAVING, STOCKS, BOND, EQUITY, RETQLIQ, VEHIC, HOUSES, IRAKH, ASSET, NETWORTH, HOMEEQ, MRTHEL, HELOC, CCBAL, VEH_INST, DEBT, DEBT2INC, LEVRATIO

Неконсистентность при генерации

1ый запуск:

	row_index	investor_description	first_choice	second_choice	third_choice
0	20310	Female, age 53. White/Caucasian. education: 12	2-2-1-1	2-1-1-2	1-2-1-2
1	22480	Female, age 59. White/Caucasian. education: as	1-2-1-2	2-2-1-2	2-1-1-2

2ой запуск:

	row_index	investor_description	first_choice	second_choice	third_choice
0	20310	Female, age 53. White/Caucasian. education: 12	1-2-1-2	2-2-1-2	2-2-2-2
1	22480	Female, age 59. White/Caucasian. education: as	1-2-1-2	2-2-1-2	2-1-1-2

Переменная	Распределение	3
Возраст (18-80)	Сэмплирование по весам: 18–20: 4%, 21–45: 70%, 46–65: 9%, 66–80: 3%	"
Пол	Бернулли: 55% мужчин / 45% женщин + редкие «другое»	<u>E</u>
Образование	Высшее – 62%, среднее спец. – 35%, школа – 3%	<u>«</u> <u>F</u>
Доход	Низкий – 10%, средний – 60%, высокий – 30%	<u>E</u>
Семейный статус	Зависит от возраста: - 18–29: single 60%, married 30%, divorced 5%, widowed 5% - 30–45: married 65%, single 20%, divorced 10%, widowed 5% - 46+: married 50%, divorced 20%, widowed 10%, single 20%	« <u>«</u> <u>t</u> !
Риск-профиль	Из нормального N(μ = -0.1; σ = 0.5), обрезанного до диапазона [-1; 1] и округленного до сотых	<u>C</u>

Эмпирические источники:

<u>"Профиль инвестора в России", 202</u>4

<u>«Determinants of</u>
<u>Private Investors'</u>
<u>Behavior on Russian</u>
<u>Stock Market», 2020</u>

«The Impact of
Financial Literacy on
the Choice of Financial
Instruments by Private
Investors in Russian
Conditions», 2025

0. LLM-sampled

LLM придумывает личность (например, «30-летняя учительница, замужем, средний доход») и выбирает подходящие изображения

1. LLM-sampled, recommended distribution

- В prompt явно описаны распределения (например, возраст 30–45 с вероятность 0.6)
- LLM представляет себя этим человеком и выбирает изображения на основе этих данных

2.Pre-sampled

- Сначала
 генерируются
 профили
 программно,
 используя заданные
 распределения
- Затем полученный профиль подается в LLM вместе с инструкцией «представь, что это ты, выбери картинки»

Models

Baseline

0. Baseline (mean prediction)

Random Forest

1. RF (socdem only)

Только соцдемография. Почти не даёт прироста качества.

2. RF (socdem + weighted meta)

Соцдемография + агрегированные (взвешенные) метапризнаки из описаний

3. RF (socdem + one-hot meta)

Соцдемография + one-hot мета-признаки из аннотаций.

4. RF (meta only)

Только мета-признаки без соцдемографических данных

5. RF (text embeddings)

Эмбеддинги текстов дают заметное улучшение точности

6. RF (img embeddings)

Эмбеддинги изображений — близкий результат к текстовым

Models

MLP Regressor Architecture

<u>MLP</u>

7. MLP (text + socdem)

Нейросеть на текстовых эмбеддингах и соцдем-признаках

8. MLP (img + socdem)

Нейросеть на эмбеддингах изображений и соцдемографии.

9. MLP (socdem clusters)

Соцдемография сначала кластеризуется, затем обучается MLP

Results

	model_name	mse	r2	train_time	inference_time
0	Baseline (mean prediction)	0.2395	0.0000	0.0011	0.0000
1	RandomForest (socdem only)	0.2397	-0.0039	0.3062	0.0120
2	RandomForest (socdem + weighted meta)	0.2325	0.0266	0.5402	0.0130
3	RandomForest (socdem + one-hot meta)	0.2320	0.0284	0.7132	0.0161
4	RandomForest (meta only)	0.2320	0.0284	0.3075	0.0137
5	RandomForest (text embeddings)	0.2303	0.0356	30.7492	0.0177
6	RandomForest (img embeddings)	0.2303	0.0356	46.5691	0.0241
7	MLP on text+socdem	0.2279	0.0459	21.5193	0.0156
8	MLP on img+socdem	0.2293	0.0400	23.8672	0.0189
9	MLP with clustering on socdem	0.2298	0.0378	6.4228	7.3422

Investor Risk Score Estimator

Select 3 images in order of your preference:

Select ID 1

Select ID 2

Select ID 3

Select ID 4

ID 2

ID3

ID4

14

Sociodemographic Information:

Thank you!