ANÁLISIS MATEMÁTICO BÁSICO.

CRITERIOS DE CONVERGENCIA.

Para calcular integrales impropias, usando la definición de las mismas, primero calculamos una integral de Riemann (calculamos una primitiva y después usamos la Regla de Barrow) y por último calculamos un límite. Ahora bien, no siempre se puede calcular una primitiva de una función. Por ejmplo, la función

$$f(x) = e^{-x^2}$$

no admite una primitiva en términos elementales. Sin embargo la integral

$$\int_{-\infty}^{\infty} e^{-x^2} dx$$

es una integral muy importante (en Estadística; ver el artículo de Aplicaciones).

Como en el caso de la Series, tenemos recursos para decidir si una integral impropia existe o no, sin necesidad de calcularla. Para ello tenemos los **criterios de convergencia**. Como en el caso de series, los veremos para funciones positivas. Además **solo** los vamos a enunciar para el extremo derecho del dominio; para la parte izquierda se tiene resultados del todo análogos.

Un criterio teórico y muy general es el siguiente.

Teorema. 1. (Criterio de Cauchy.) Sea la integral impropia $\int_a^b f(t)dt = \lim_{s\to b^-} \int_a^s f(t)dt$.

A): Si $b \in \mathbb{R}$, la integral es convergente si y solo si para todo $\epsilon > 0$ existe $\delta > 0$ de modo que si $x_1, x_2 \in (b - \delta, b)$ entonces

$$\left| \int_{x_1}^{x_2} f(t)dt \right| < \epsilon.$$

B): Si $b = \infty$, la integral es convergente si y solo si para todo $\epsilon > 0$ existe M > 0 de modo que si $x_1, x_2 > M$ entonces

$$\left| \int_{x_1}^{x_2} f(t)dt \right| < \epsilon.$$

2 C. RUIZ

Demostración: Dejamos B) como ejercicio.

A) Sea $l = \lim_{s \to b^-} \int_a^s f(t) dt$. Por definición de límite, para todo $\epsilon > 0$ existe $\delta > 0$ de modo que si $x \in (b - \delta, b)$ se tiene que $|l - \int_a^x f(t) dt| < \frac{\epsilon}{2}$. Luego, si $x_1, x_2 \in (b - \delta, b)$, entonces

$$\left| \int_{x_1}^{x_2} f(t)dt \right| = \left| \int_{x_1}^{a} f(t)dt + \int_{a}^{x_2} f(t)dt \right| =$$

$$|l-\int_a^{x_1}f(t)dt-l+\int_a^{x_2}f(t)dt|\leq |l-\int_a^{x_1}f(t)dt|+|\int_a^{x_2}f(t)dt-l|\leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$

En el otro sentido, sea $(x_n)_n \uparrow b$. Si se cumple la condición, lo que tenemos es que la sucesión $(\int_a^{x_n} f(t)dt)_n$ es de Cauchy y existe

$$\lim_{n \to \infty} \int_{a}^{x_n} f(t)dt = l.$$

Ahora, para todo $\epsilon > 0$ tomemos el $\delta > 0$ de la hipótesis y tomemos $s > x_n \in (b - \delta, b)$ de modo que

$$|l - \int_{a}^{x_n} f(t)dt| \le \frac{\epsilon}{2}$$

у

$$\left| \int_{x_n}^s f(t)dt \right| \le \frac{\epsilon}{2},$$

entonces

$$|l - \int_a^s f(t)dt| \le |l - \int_a^{x_n} f(t)dt| + |\int_a^{x_n} f(t)dt - \int_a^s f(t)dt| =$$

$$|l - \int_a^{x_n} f(t)dt| + |\int_{x_n}^s f(t)dt| \le \epsilon \qquad \Box$$

Definición. 1. Sea $f:[a,b) \to \mathbb{R}$. Se dice que la integral impropia $\int_a^b f(t)dt$ es absolutamente convergente siempre y cuando la integral impropia

$$\int_{a}^{b} |f(t)| dt$$

es convergente.

Como en el caso de las series, las integrales absolutamente convergentes son a su vez convergentes. Lo que nos indica que los criterios para funciones positivas son doblemente útiles.

Proposición. 1. Sea $f:[a,b) \to \mathbb{R}$ de modo que la integral impropia $\int_a^b f(t)dt$ es absolutamente convergente, entonces integral impropia $\int_a^b f(t)dt$ es convergente.

Demostración: Es una sencilla aplicación del Criterio de Cauchy, ya que la integral del valor absoluto $\int_a^b |f(t)| dt$ lo verifica y

$$\left| \int_{x_1}^{x_2} f(t)dt \right| \le \int_{x_1}^{x_2} |f(t)|dt \le \epsilon,$$

por tanto la integral también o verifica

Sigamos ahora con unos pocos criterios de convergencia para funciones positivas.

Proposición. 2. (Criterio de Comparación.) Sean $f, g:(a,b) \to \mathbb{R}$, con $a,b \in \mathbb{R}$ o $a=-\infty$ o $b=\infty$, dos funciones positivas $(f,g \ge 0)$ para las que se verifica que

$$f(x) \le g(x)$$
 para todo $x \in (a,b)$,

entonces

a: si existe $\int_a^b g(x)dx$ también existe la de la función f y

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx;$$

b: si **no** existe $\int_a^b f(x)dx$ tampoco existe la integral de g.

Demostración: Como $f(x) \leq g(x)$ para todo $x \in (a, b)$, entonces

$$\int_{a}^{s} f(x)dx \le \int_{a}^{s} g(x)dx \quad \text{para todo} \quad s \in (a, b)$$

y por tanto

$$\lim_{s \to b^{-}} \int_{a}^{s} f(x) dx \le \lim_{s \to b^{-}} \int_{a}^{s} g(x) dx$$

Ejemplo. 1. ¿Converge
$$\int_{-\infty}^{\infty} e^{-x^2} dx$$
?

Demostración: $f(x) = e^{-x^2} = e^{-(-x)^2} = f(-x)$ es una función **par**, por tanto es simétrica con respecto al eje de ordenadas.

Figura 1. Campana de Gauss.

C. RUIZ

Como en el caso de $\int_{-\infty}^{\infty} e^{-|x|} dx$ (vista en el artículo anterior) tenemos que

$$\int_{-\infty}^{\infty} e^{-x^2} dx = 2 \int_{0}^{\infty} e^{-x^2} dx.$$

Ahora es fácil convencerse que

$$e^{-x^2} < e^{-x}$$
 para todo $x > 1$,

y así

$$\int_0^\infty e^{-x^2} dx = \int_0^1 e^{-x^2} dx + \int_1^\infty e^{-x^2} dx < \int_0^1 e^{-x^2} + \int_1^\infty e^{-x} dx < \infty.$$

Luego nuestra integral es convergente \Box

Ejemplo. 2. Tenemos que determinar si existe $\int_1^2 \frac{1}{\ln x} dx$.

Demostración: El problema lo tenemos en x=1 ya que allí el logaritmo se anula. Si recordamos la gráfica del logaritmo,

FIGURA 2. Gráfica del logaritmo.

vemos que la recta tangente a su gráfica por el punto (1,0) es la recta y = x - 1. Como el logaritmo es una función concava tenemos que

$$\ln x < x - 1$$
 para todo $x > 1$

y por tanto

$$\frac{1}{x-1} < \frac{1}{\ln x} \quad \text{para todo} \quad x > 1.$$

Luego para todo $r \in (1, 2]$

$$\int_{r}^{2} \frac{1}{x-1} dx < \int_{r}^{2} \frac{1}{\ln x} dx.$$

Ahora

$$\int_{1}^{2} \frac{1}{x-1} dx = \lim_{r \to 1^{+}} \int_{r}^{2} \frac{1}{x-1} dx = \lim_{r \to 1^{+}} \ln(x-1)|_{r}^{2} = \lim_{r \to 1^{+}} \ln 1 - \ln(r-1) = \infty.$$

Luego nuestra integral que sería más grande tampoco converge.

Proposición. 3. (Criterio de Comparación por Cociente.) Sean f, g: $[a,b) \to \mathbb{R}$, con $a,b \in \mathbb{R}$ o $a = -\infty$ o $b = \infty$, dos funciones positivas $(f,g \ge 0)$ para las que se verifica que

$$\lim_{x\to b^-}\frac{f(x)}{g(x)}=l,\quad con\quad l=0, l>0\ \ \acute{o}\ l=\infty.$$

Entonces

A): para l > 0 la integral $\int_a^b f(x)dx$ existe si y solo si existe la integral $\int_a^b g(x)dx$.

B): Para l = 0, que la integral $\int_a^b g(x)dx$ exista implica que la integral $\int_a^b f(x)dx$ existe.

C): Para $l = \infty$, que la integral $\int_a^b g(x)dx$ no exista implica que tampoco exista la integral $\int_a^b f(x)dx$.

Demostración: Dejamos B) y C) como ejercicios.

A) De la definición de límite, si $\lim_{x\to b^-}\frac{f(x)}{g(x)}=l>0$, para $\epsilon=\frac{l}{2}$ existe un $\delta>0$ de modo que si $x\in(b-\delta,b)$, entonces

$$\frac{l}{2} \le \frac{f(x)}{g(x)} \le \frac{3l}{2};$$

y por tanto

$$\frac{l}{2}g(x) \le f(x) \le \frac{3l}{2}g(x) \quad \text{para todo} \quad x \in (b - \delta, b).$$

Como las integrales de Riemann $\int_a^{b-\delta} f(x)dx$ y $\int_a^{b-\delta} g(x)dx$ existen, ya solo f^b

hace falta aplicar el Criterio de Comparación a las integrales $\int_{b-\delta}^b f(x)dx$ y

$$\int_{b-\delta}^{b} g(x)dx \quad \Box$$

Algunas integrales con las que comparar son las siguientes.

Ejemplos. 1.

$$\int_0^1 \frac{1}{x^{\alpha}} dx \begin{cases} < \infty & si \quad \alpha \in (0, 1) \\ = \infty & si \quad \alpha \ge 1. \end{cases}$$

6 C. RUIZ

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx \left\{ \begin{array}{ll} = \infty & si & \alpha \in (0, 1] \\ < \infty & si & \alpha > 1. \end{array} \right.$$

Demostración: Calcular todos estas integrales impropias es un simple ejercicio \qed

Ejemplo. 3. Queremos sabe si es convergente la integral $\int_{-1}^{\infty} \frac{dx}{x^2 + \sqrt[3]{x^4 + 1}}$.

Demostración: Encontrar una primitiva de la función $f(x) = \frac{1}{x^2 + \sqrt[3]{x^4 + 1}}$ no parece sencillo. Por otro lado la función dada es continua en todo \mathbb{R} , luego nuestra integral impropia se debe a que consideramos una semirecta. Mirando el cociente $\frac{1}{x^2 + \sqrt[3]{x^4 + 1}}$, vemos que este es parecido a $\frac{1}{x^2 + x^{4/3} + 1}$. Así

$$\lim_{x \to \infty} \frac{\frac{1}{x^2 + \sqrt[3]{x^4 + 1}}}{\frac{1}{x^2}} = \lim_{x \to \infty} \frac{1}{1 + \sqrt[3]{\frac{1}{x^2} + \frac{1}{x^6}}} = 1.$$

Luego

$$\int_{-1}^{\infty} \frac{dx}{x^2 + \sqrt[3]{x^4 + 1}} = \int_{-1}^{1} \frac{dx}{x^2 + \sqrt[3]{x^4 + 1}} + \int_{1}^{\infty} \frac{dx}{x^2 + \sqrt[3]{x^4 + 1}}.$$

La segunda integral converge ya que lo hace $\int_{1}^{\infty} \frac{dx}{x^2}$

Referencias

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE MATEMÁTICAS, UNIVERSIDAD COMPLUTENSE, 28040 MADRID, SPAIN

E-mail address: Cesar_Ruiz@mat.ucm.es