# BÀI TẬP LÝ THUYẾT ĐỒ THỊ BÀI TẬP TUẦN 02

Mã nhóm: 7

Thành viên 1 Thành viên 2:

Họ tên: Nguyễn Hoàng Nam Họ tên: Nguyễn Duy Khương

MSSV: 20880263 MSSV: 1981223

#### <u>Câu 1</u>:

Biểu diễn ma trận kề và danh sách kề cho đồ thị (1) và (2):

• Đồ thị (1):



\_ Biểu diễn ma trận kề:

|    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|----|---|---|---|---|---|---|---|---|---|---|----|
| 0  | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| 1  | 1 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0  |
| 2  | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| 3  | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0  |
| 4  | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0  |
| 5  | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0  |
| 6  | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 1 | 1 | 0  |
| 7  | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0  |
| 8  | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0  |
| 9  | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0  |
| 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |

## \_ Biểu diễn danh sách kề:

| Đỉnh | Đỉnh kề    |
|------|------------|
| 0    | 1, 3       |
| 1    | 0, 2, 4    |
| 2    | 1          |
| 3    | 0, 4, 6    |
| 4    | 1, 3, 5    |
| 5    | 4, 7       |
| 6    | 3, 7, 8, 9 |
| 7    | 5, 6       |
| 8    | 6          |
| 9    | 6          |
| 10   |            |

## • Đồ thị (2):



### \_ Biểu diễn ma trận kề:

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 6 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 8 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 9 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |

### \_ Biểu diễn danh sách kề:

| Đỉnh | Đỉnh kề |
|------|---------|
| 0    |         |
| 1    | 0, 2    |
| 2    |         |
| 3    | 0, 4    |

| 4 | 1       |
|---|---------|
| 5 | 4       |
| 6 | 3, 7, 9 |
| 7 |         |
| 8 | 6       |
| 9 | 5, 6    |

### <u>Câu 2</u>:

- a) Tìm đường đi từ đỉnh A đến đỉnh H bằng giải thuật duyệt đồ thị theo chiều sâu:
- Đồ thị 1:



Danh sách đỉnh viếng thăm: A, B, C, D, G, F, H

Đường đi từ đỉnh A đến H: A => D => G => F => H

### • Đồ thị 2:



Danh sách đỉnh viếng thăm: A, B, C, D, G, F, E, I, H

Đường đi từ đỉnh A đến H: A => B => C => D => G => F => E => I => H

b) Tìm đường đi từ đỉnh A đến đỉnh H bằng giải thuật duyệt đồ thị theo chiều rộng:

• Đồ thị 1:



Danh sách đỉnh viếng thăm: A, B, D, E, C, G, F, I, H

Đường đi từ đỉnh A đến H: A => D => G => H

• Đồ thị 2:



Danh sách đỉnh viếng thăm: A, B, D, E, C, G, F, I, H

Đường đi từ đỉnh A đến H: A => D => G => H

#### Câu 3:

Ta có các định nghĩa về liên thông đồ thị có hướng như sau:

- Liên thông mạnh (strongly connected): Đồ thị có hướng gọi là liên thông mạnh nếu có đường đi từ a tới b và từ b tới a với mọi cặp đỉnh a và b của đồ thị.
- Liên thông yếu (weakly connected): Đồ thị có hướng gọi là liên thông yếu nếu có đường đi giữa 2 đỉnh bất kỳ của đồ thị vô hướng tương ứng với đồ thị đã cho. Tức là hủy bỏ các hướng của các cạnh trong đồ thị.
- Liên thông một phần (unilaterally connected): Đồ thị có hướng gọi là liên thông một phần nếu với mọi cặp đỉnh a, b bất kỳ, có ít nhất một đỉnh đến được đỉnh còn lại.

(nguồn: wikipedia)

### • Đồ thị 1:



\_ Xét loại liên thông của đồ thị, đầu tiên là xét đồ thị có phải liên thông mạnh hay không?

=> Ta thấy đồ thị thuộc loại liên thông mạnh với cách kiểm tra như sau: xét từng đỉnh từ 1-5 ta thấy các đỉnh luôn có đường đi đến tất cả các đỉnh còn lại:  $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$ 

• Đồ thị 2:



\_ Xét loại liên thông của đồ thị, đầu tiên là xét đồ thị có phải liên thông mạnh hay không? => Đầu tiên đồ thị không phải liên thông mạnh vì ta thấy từ đỉnh 4 không đến được bất kỳ đỉnh nào trên đồ thị

\_ Đồ thị là liên thông một phần vì với mọi cặp đỉnh luôn có ít nhất một đỉnh đến được đỉnh còn lại, kể cả đỉnh 4 khi không đến được đỉnh nào nhưng các đỉnh còn lại đều đến được đỉnh 4.

#### Câu 4:

• Đồ thị G1 và G2 đẳng cấu với nhau:

\_ Phép ánh xạ đỉnh tương ứng: f(1) = a, f(2) = b, f(3) = d, f(4) = c, f(5) = e, f(6) = f, f(7) = h, f(8) = g

\_ Phép ánh xa cạnh tương ứng: e1 - E1, e2 - E2, e3 - E3, e4 - E4, e5 - E5, e6 - E6, e7 - E7, e8 - E8, e9 - E9, e10 - E10, e11 - E11, e12 - E12





Đồ thị G3 và G4 không đẳng cấu với nhau:





Các đỉnh bậc 2 của đồ thị G3 không kề nhau (các đỉnh 2, 4, 6, 8 không kề nhau), còn G4 các đỉnh bậc 2 có kề nhau (đỉnh g kề với đỉnh h, đỉnh c kề với đỉnh d)

Hoặc đồ thị G3 có 2 cặp đỉnh bậc 3 kề nhau (là cặp đỉnh (1,5) và cặp đỉnh (3,7)), còn đồ thị G4 có 4 cặp đỉnh bậc 3 kề nhau (là các cặp đỉnh: (e,f), (f,b), (b,a), (a,e))