We say that $B=\{u\rightarrow,v\rightarrow\}$ is an orthogonal basis if the vectors that form it are perpendicular. In other words, $u\rightarrow$ and $v\rightarrow$ form an angle of 90°.

 $\vec{u}=(3,0), \vec{v}=(0,-2)$ form an orthogonal basis since the scalar product between them is zero and this a sufficient condition to be perpendicular: $\vec{u}\cdot\vec{v}=3\cdot 0+0\cdot (-2)=0$

We say that
$$B=\{u\rightarrow,v\rightarrow\}$$
 is an orthonormal basis

if the vectors that form it are perpendicular and they have length 1. Namely, $u\rightarrow$ and $v\rightarrow$ form an angle of 90 \circ and $|u\rightarrow|=1$, $|v\rightarrow|=1$.

 $\vec{u}=(1,0), \vec{v}=(0,-1)$ form an orthonormal product is zero) and both vectors have length 1. Perpendicular: $ec{u} \cdot ec{v} = 1 \cdot 0 + 0 \cdot (-1) = 0.$ Unitary vectors (length 1): $|\vec{u}|=\sqrt{1^2+0^2}=\sqrt{1}=1$, $|\vec{v}|=\sqrt{0^2+(-1)^2}=\sqrt{1}=1$.