

Universidade Federal do Paraná Departamento de Ciências da Computação TOCI08-Tópicos em IA

PARETO ANT –COLONY para a otimização bi-objetivo do custo em teste de integração de softwear orientado a objetos.

Rafael da Veiga Cabral

Agenda

- § Introdução Colônia de formigas
- § Algoritmos Colônia de formigas mono-objetivo– Colônia de formigas multi-objetivo
- § Pareto ant-colony system Implementação
- § Resultados
- § Conclusão

Introdução

- § Concebido por Dorigo et al.
- Metaheuíistica colônia de formigas baseia-se na inteligência coletiva das formigas para encontrar comida
- Feromônio é o recurso que as formigas utilizam para guiar-se
- Mesmo com obstáculos as formigas encontram a melhor trilha e ida e retorno

Colônia de formigas mono-objetivo

- § Ant System -AS
- § Ant Colony System ACS
- § Max-Min Ant System MMAX

Ant System -AS

§ Introduzido por Dorigo et al

F feromônio H valor heurístico 6

Ant System -AS

§ Construção do caminho

$$p_{ij}^{h} = \frac{\begin{bmatrix} j \end{bmatrix} \begin{bmatrix} j \end{bmatrix}}{\sum \begin{bmatrix} j \end{bmatrix} \begin{bmatrix} j \end{bmatrix}}, j \in N_{i}^{h}$$

§ Depósito e evaporação do feromônio

$$_{ij} \leftarrow (1 -)$$
 $_{ij} \neq \sum_{ij} h$
 $_{ij} = 1 / L_h$ $h = 0$

§ Realizado sempre que a formiga h constrói um caminho - solução

Ant Colony System - ACS

- § Introduzido por Dorigo e Grambella et al.
- § Visa melhorar aspectos de diversificação e intensificação
- § Trabalha com atualização local e global de feromônio

$$j = argmax_{k N_j^b} \{ [\ _{ii}] \ [\ _{ii}] \ \}, q \leq q_0$$

senão:

$$p_{ij}^{h} = \frac{\begin{bmatrix} j \end{bmatrix} \begin{bmatrix} j \end{bmatrix}}{\sum \begin{bmatrix} j \end{bmatrix} \begin{bmatrix} j \end{bmatrix}}, j \in N_{i}^{h}$$

Ant Colony System - ACS

$$_{ij} \leftarrow (1-\wp)_{ij} + \wp_{0}$$
 Atualização local (Decaimento do feromônio) $_{ij} \leftarrow (1-)_{ij} + _{ij}$ Atualização global (intensificação) $_{ij} = 1/$ Lbest

§ A atualização global é realizada de maneira *iteration-best* ou *best-so-far*

Max-Min Ant System - MMAX

- § Introduzido por Stulze
- § Problema de convergência prematura do AS (formigas tendem a passar por apenas um trajeto)
- §Valores _{min} e _{max} para a trilha de feromônio
- § _{o= max} para aumentar a diversificação em fases iniciais
- §Atualização do feromônio:

$$_{ij} \leftarrow (1-)_{ij} + _{ij}^{best}$$

- § TSP (Travelling Sales Problem)minimizar distância e custo.
- § Ordenação lexicográfica, agregação
- e *Pareto*
- § Porém, minimizar a distância não significa minimizar também o custo- São objetivos concorrentes.
- § Estudo empírico = BicreterionAnt / PAC

BicreterionAnt

- § Problema de Roteamento de Veículos
- § Utiliza duas matrizes de feromônio (, ') e duas funções heurísticas (, ')
- § Construção do Caminho:

BicreterionAnt

§ Atualização do feromônio: local

$$_{ij} \leftarrow \begin{pmatrix} 1 - \end{pmatrix} _{ij}, \quad _{ij} \leftarrow \begin{pmatrix} 1 - \end{pmatrix} _{ij}$$

§ Atualização do feromônio: global

$$_{ij} \leftarrow _{ij} \neq 1/I$$

- § A cada iteração o conjunto Pareto é atualizado com a solução encontrada
- § BicreterionMC Utiliza várias colônias de formigas

Pareto Ant Colony

- § Baseado no ACS
- § Resolver o problema de seleção de portfólio
- § Utiliza duas matrizes de feromonio (, ') e duas funções heurísticas (, ') ou uma agregada
- § Construção do caminho

$$j = argmax_{\neq U} \left[\sum_{k} p_{k} \cdot k \right] \cdot q \leq q_{0}$$

Senão:

$$p(j) = \frac{\left[\sum p_{k} \cdot \frac{k}{ij}\right] \cdot j}{\sum \left[\sum p_{k} \cdot \frac{k}{ij}\right]}$$

Pareto Ant Colony

§ Atualização do feromônio: local

$$_{ij}^{k} = (1 -) \cdot _{ij}^{k} \neq \cdot _{0}$$

§ Atualização do feromônio: global

$$_{ij}^{k} = (1 -) \cdot _{ij}^{k} \neq \cdot _{ij}^{k}$$

 $_{ii}^{k}$ =15 se (i,j) fizer parte do melhor caminho e do segundo melhor caminho

 $_{ij}^{k}$ =10 se (i,j) fizer parte somente do melhor caminho

k = 5 se (i,j) fizer parte somente do segundo melhor caminho

k = 0 caso contrário

§ A cada iteração o conjunto Pareto é atualizado com a solução encontrada

Implementação

```
Inicializa_Feromonio (F1,F2, t0)
  Equanto nr_iter < max_iter
        Para cada Formiga
                 p1 = rand(0,1)
                 p2 = 1 - p1
                 s = Constroi\_Caminho(q, q0, p1, p2, F1, F2)
                 Atualiza_Feromonio_Local(s, F1, F2)
                 s = Busca_Local(s)
                 s' = Busca_Local(s)
                 b = Melhor_Iteracao()
                 b' = Segundo_Melhor_Iter()
                 Atualiza_Feromonio_Global(b, b', F1, F2)
                 Atualiza_Pareto(P, s, s')
        nr_iter += 1
```

Implementação

- § PAC modificado para a resolução do problema flow shop scheduling
- § Construção do caminho

$$j = argmax_{j \in U} \sum p_k \cdot \binom{k}{j} \cdot \binom{k}{j} \cdot \binom{k}{j}$$
 $q \leq q$

Senão:

$$p(j) = \frac{\sum p_k \cdot \binom{k}{ij} \cdot \binom{k}{ij}}{\sum \left[\sum p_k \cdot \binom{k}{ij} \cdot \binom{k}{ij}\right]} \qquad \qquad k = \frac{1}{L_{i,j}}$$

§ Parâmetros:
$$q_0 = 0.75$$
 $q_0 = 1.0$ $q_0 = 0.0001$ $\alpha = 1$ $\beta = 1$

ATM (A)

Pontos			
Pareto Ótimo globa			global
Método	Atributo	Método	Atributo
13	39	13	39

Parâmetros		
Ants	Iterações	
20	40	

Ant System (B)

Pontos			
Pareto		Ótimo global	
Método	Atributo	Método	Atributo
19	178	19	131
23	170		
25	162		
26	157		
29	136		
33	131		

Parâmetros		
Ants	Iterações	
20	40	

SPM System (C)

Pontos			
Pareto		Ótimo global	
Método	Atributo	Método	Atributo
26	148	26	146
20	140	20	140
27	146		

Parâmetros		
Ants	Iterações	
20	40	

Sistema Bcel (D)

Resultados

Pontos			
Pareto		Ótimo global	
Método	Atributo	Método	Atributo
66	130	66	45
67	129		
68	53		
71	52		
74	48		
76	45		

Parâmetros		
Ants	Iterações	
45	80	

DNS System (E)

Pontos			
Pareto Ótimo global			
Método	Atributo	Método	Atributo
11	19	11	19

Parâmetros		
Ants	Iterações	
45	80	

Conclusão

Para os sistemas A,C,E foram encontrados os ótimos globais em ambos os objetivos. Para o sistema B e D verificou-se que dois pontos da fronteira de Pareto continha cada um o valor ótimo para cada objetivo o que demonstra a eficiência do método. Entretanto, originalmente o PAC utiliza uma busca local baseada em Pareto e está busca foi implementada mas os resultados obtidos não foram satisfatórios – os pontos da fronteira de pareto para o sistema D não continha os valores ótimos para ambos os objetivos.

O resultado apresentado foi alcançado somente com substituição da busca local de Pareto com duas buscas locais para cada objetivo o que aumentou consideravelmente o custo computacional.

Referências

- [1]. Dorigo, M., Maniezzo, V. Colorni, A., 1996 Ant System: Optimization by a Colony of Cooperating Agents. *IEEE Trans. On System, Man, and Cybernetics Part B 26(1), 29-41.*
- [2]. Dorigo, M. Gambrella, L. M., 1997. Ant Colonies for the Traveling Salesman Problem. IEE Transactions on Evolutionary Computing, 1 (1), 53-66.
- [3]. Garca-Martnez, C. Cordon, O. Herrera F. 2004 An Empirical Analysis of Multiple Objective Ant Colony Optimization Algorithms for the TSP*. Springer Berlin / Heidelberg, 61-72.
- [4]. Briand, C., L., Feng, J., Labiche, Y., 2002 Experimenting with Genetic Algorithms and Coupling Measures to Devise Optimal Integration Test Orders. *Carleton University, Department of Systems and Computer Engineering. Technical Report SCE-02-03.*
- [5]. Pasia, J., M., Hartl, R., F., Doerner K. F., Solving a Bi-objective Flowshop Scheduling Problem by Pareto-Ant Colony Optimization 2006. Springer Berlin / Heidelberg,