

LOW VOLTAGE 0.5Ω MAX QUAD SPDT SWITCH WITH BREAK BEFORE MAKE FEATURE

- HIGH SPEED:
 - $t_{PD} = 0.3$ ns (TYP.) at $V_{CC} = 3.0$ V $t_{PD} = 0.4$ ns (TYP.) at $V_{CC} = 2.3$ V
- ULTRA LOW POWER DISSIPATION: $I_{CC} = 0.2\mu A \text{ (MAX.)}$ at $T_A = 85^{\circ}\text{C}$
- LOW "ON" RESISTANCE V_{IN} =0V: $R_{ON} = 0.5\Omega$ (MAX. $T_{A} = 25$ °C) at $V_{CC} = 2.7V$ $R_{ON} = 0.8\Omega$ (MAX. $T_{A} = 25$ °C) at $V_{CC} = 2.3V$ $R_{ON} = 3.0\Omega$ (MAX. $T_{A} = 25$ °C) at $V_{CC} = 1.8V$
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 1.65V to 4.3V SINGLE SUPPLY
- 4.3V TOLERANT AND 1.8V COMPATIBLE THRESHOLD ON DIGITAL CONTROL INPUT at V_{CC} = 2.3 to 3.0V
- LATCH-UP PERFORMANCE EXCEEDS 300mA (JESD 17)
- ESD PERFORM. (ANALOG CHAN. vs GND): HBM > 7KV (MIL STD 883 method 3015)

DESCRIPTION

The STG3699 is an high-speed CMOS LOW VOLTAGE QUAD ANALOG S.P.D.T. (Single Pole Dual Throw) SWITCH or 2:1 Multiplexer/Demultiplexer Switch fabricated in silicon gate C²MOS technology. It is designed to operate from 1.65V to 4.3V, making this device ideal for portable applications.

It offers very low ON-Resistance (<0.5 Ω) at V_{CC}=3.0V. The nIN inputs are provided to control the switches. The switches nS1 are ON (they are

Table 1: Order Codes

PACKAGE	T&R
TSSOP	STG3699TTR
QFN	STG3699QTR

connected to common Ports Dn) when the nIN input is held high and OFF (high impedance state exists between the two ports) when nIN is held low; the switches nS2 are ON (they are connected to common Ports Dn) when the nIN input is held low and OFF (high impedance state exists between the two ports) when IN is held high. Additional key features are fast switching speed, Break Before Make Delay Time and Ultra Low Power Consumption. All inputs and outputs are equipped with protection circuits against static discharge, giving them ESD immunity and transient excess voltage. It's available in the commercial temperature range in TSSOP and QFN3x3mm package.

Figure 1: Pin Connection

August 2005 1/12

Figure 2: Input Equivalent Circuit

Table 2: Pin Description

TSSOP ⁽¹⁾ PIN N°	QFN ⁽¹⁾ PIN N°	SYMBOL	NAME AND FUNCTION
1, 5, 9, 13,	15, 3, 7, 11,	1S1 to 4S1,	Independent
3, 7, 11, 15	1, 5, 9, 13	1S2 to 4S2	Channels
2, 6, 10, 14	16, 4, 8, 12	D1 to D4	Common Channels
4, 12	2, 10	1-2IN, 3-4IN	Controls
16	14	V _{CC}	Positive Sup- ply Voltage
8	6	GND	Ground (0V)

Exposed pad must be soldered to a floating plane. Do NOT connect to power or ground.

Table 3: Truth Table

IN	SWITCH S1	SWITCH S2
Н	ON	OFF ⁽¹⁾
L	OFF ⁽¹⁾	ON

^{1.} High Impedance

Table 4: Absolute Maximum Ratings

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage		-0.5 to 4.6	V
V _I	DC Input Voltage		-0.5 to V _{CC} + 0.5	V
V _{IC}	DC Control Input Voltage		-0.5 to 4.6	V
Vo	DC Output Voltage		-0.5 to V _{CC} + 0.5	V
I _{IKC}	DC Input Diode Current on control pin (V _{IN} < 0V)	- 50	mA
I _{IK}	DC Input Diode Current (V _{IN} < 0V)		± 50	mA
I _{OK}	DC Output Diode Current		± 20	mA
Io	DC Output Current		± 300	mA
I _{OP}	DC Output Current Peak (pulse at 1ms	, 10% duty cycle)	± 500	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current		± 100	mA
P _D	Power Dissipation at T _a =70°C (1)	QFN	1120	mW
		TSSOP	500	mW
T _{stg}	Storage Temperature		-65 to 150	°C
TL	Lead Temperature (10 sec)		300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions not implied.

Table 5: Recommended Operating Conditions

Symbol	Parameter	Value	Unit	
V _{CC}	Supply Voltage (note 1)		1.65 to 4.3	V
V _I	Input Voltage		0 to V _{CC}	V
V _{IC}	Control Input Voltage		0 to 4.3	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature		-55 to 125	°C
dt/dv	Input Rise and Fall Time Control Input	V _{CC} = 1.65V to 2.7V	0 to 20	ns/V
ui/uv		V _{CC} = 3.0V to 4.3V	0 to 10	115/ V

¹⁾ Truth Table guaranteed: 1.2V to 4.3V.

⁽¹⁾ Derate above 70 $^{\circ}$ C: by 18.5 mW/ $^{\circ}$ C for QFN package; by 5.6 mW/ $^{\circ}$ C for TSSOP.

Table 6: DC Specifications

		Test	Conditions	Value							
Symbol	Parameter	v _{cc}		T,	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level	1.65-1.95		0.65V _{CC}			0.65V _{CC}		0.65V _{CC}		
	Input Voltage	2.3-2.5		1.4			1.4		1.4		
		2.7-3.0		1.4			1.4		1.4		V
		3.3		1.5			1.5		1.5		_ v
		3.6		1.7			1.7		1.7		
		4.3		2.2			2.2		2.2		
V_{IL}	Low Level	1.65-1.95				0.40		0.40		0.40	
	Input Voltage 2.3-2	2.3-2.5				0.50		0.50		0.50	
		2.7-3.0				0.50		0.50		0.50	1 . <i>.</i>
		3.3				0.50		0.50		0.50	V
		3.6				0.50		0.50		0.50	
		4.3				1.3		1.3		1.3	
R _{ON}	Switch ON	4.3			0.40	0.50		0.60			
ON	Resistance	3.0			0.40	0.50		0.60			
	(1)	2.7	$V_S=0V$ to V_{CC}		0.40	0.50		0.60			
		2.3	I _S =100mA		0.50	0.80		0.80			Ω
		1.8	G		0.70	3.0		4.0			1
		1.65			0.80	3.0		4.0			1
ΔR _{ON}	ON Resistance Match between channels (1,2)	2.7	V _S =1.5V I _S =100mA		0.06						Ω
R _{FLAT}	ON	4.3									
	Resistance	3.0	V _S =1.5∨								
	FLATNESS	2.7	I _S =100mA		0.07	0.15		0.15			
	(3)	2.3									Ω
		1.65	V _S =0.8V I _S =100mA								
I _{OFF}	OFF State Leakage Current (nSn), (Dn)	4.3	V _S =0.3 or 4V			±10		± 100			nA
I _{IN}	Input Leakage Current	0 - 4.3	V _{IN} = 0 to 4.3V			±0.1		± 1			μΑ
Icc	Quiescent Supply Current (1)	1.65-4.3	V _{IN} =V _{CC} or GND			±0.05		±0.2		±1	μА

Note 1: Guaranteed by design Note 2: $\Delta R_{ON} = R_{ON(MAX)} - R_{ON(MIN)}$. Note 3: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

Table 7: AC Electrical Characteristics (C_L = 35pF, R_L = 50 Ω , t_r = $t_f \le 5 ns$)

		Test Co	ondition				Value					
Symbol	Parameter	V _{CC}		Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
t _{PLH} , t _{PHL}	Propagation Delay	1.65-1.95			0.45							
		2.3-2.7	V _I =OPEN		0.40						ns	
		3.0-3.6	V -01 EIV		0.30						115	
		3.6-4.3			0.30							
t _{ON}	TURN-ON time	1.65-1.95	V _S =0.8V		70							
		2.3-2.7			30	50		60			ns	
		3.0-3.6	V _S =1.5V		30	50		60				
		3.6-4.3			30	50		60				
t _{OFF}	TURN-OFF time	1.65-1.95	V _S =0.8V		45							
		2.3-2.7			25	30		40			ns	
		3.0-3.6	V _S =1.5V		25	30		40				
		3.6-4.3			25	30		40				
	Break Before Make	1.65-1.95	C 2555									
+_	Time Delay	2.3-2.7	$C_L=35pF$ $R_L=50\Omega$	2	15						ns	
t _D		3.0-3.6	V _S =1.5V	2	15						115	
		3.6-4.3	V 5 - 1.0 V	2	15						1	
Q	Charge injection	1.65-1.95	C _L = 100pF		50							
		2.3-2.7	$R_L=1M\Omega$		40						pC	
		3.0-3.6	V _{GEN} = 0V		35							
		3.6-4.3	$R_{GEN} = 0\Omega$		35							

Table 8: Analog Switch Characteristics (C $_L$ = $5pF,~R_L$ = $50\Omega,~T_A$ = $25^{\circ}C)$

		Te	st Condition				Value				
Symbol	Parameter	V _{cc}		Т	A = 25°	С	-40 to 85°C		-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
OIRR	Off Isolation (1)	1.65-4.3	V _S = 1V _{RMS} f= 100KHz		-64						dB
Xtalk	Crosstalk	1.65-4.3	V _S = 1V _{RMS} f= 100KHz		-54						dB
THD	Total Harmonic Distortion	2.3-4.3	$R_L = 600\Omega$ $V_{IN} = 2V_{PP}$ f = 20Hz to $20kHz$		0.03						%
BW	-3dB Bandwidth	1.65-4.3	$R_L = 50\Omega$		50						MHz
C _{IN}	Control Pin Input Capacitance				5						
C _{Sn}	Sn Port Capaci- tance	3.3	f= 1MHz		37						рF
C _D	D Port Capaci- tance when Switch is Enabled	3.3	f= 1MHz		84						

Note 1: Off Isolation = 20Log_{10} ($\text{V}_{\text{D}}/\text{V}_{\text{S}}$), V_{D} = output. V_{S} = input to off switch

Figure 3: On Resistance

Figure 4: Off Leakage

Figure 5: Off Isolation

Figure 6: Bandwidth

Figure 7: Channel To Channel Crosstalk

Figure 8: Test Circuit

 c_L = 5/35pF or equivalent (includes jig and probe capacitance) R_L = 50Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50Ω)

Figure 9: Break Before Make Time Delay

Figure 10: Charge Injection (V_{GEN} =0V, R_{GEN} =0 Ω , R_L =1 $M\Omega$, C_L =100pF)

Figure 11: Turn On, Turn Off Delay Time

TSSOP16 MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			1.2			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.8	1	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0079	
D	4.9	5	5.1	0.193	0.197	0.201	
E	6.2	6.4	6.6	0.244	0.252	0.260	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
К	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	

QFN16 (3x3) MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	0.80	0.90	1.00	0.032	0.035	0.039
A1		0.02	0.05		0.001	0.002
А3		0.20			0.008	
b	0.18	0.25	0.30	0.007	0.010	0.012
D		3.00			0.118	
D2	1.55	1.70	1.80	0.061	0.067	0.071
E		3.00			0.118	
E2	1.55	1.70	1.80	0.061	0.067	0.071
е		0.50			0.020	
K		0.20			0.008	
L	0.30	0.40	0.50	0.012	0.016	0.020
r	0.09			0.006		

Tape & Reel TSSOP16 MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α			330			12.992	
С	12.8		13.2	0.504		0.519	
D	20.2			0.795			
N	60			2.362			
Т			22.4			0.882	
Ao	6.7		6.9	0.264		0.272	
Во	5.3		5.5	0.209		0.217	
Ko	1.6		1.8	0.063		0.071	
Ро	3.9		4.1	0.153		0.161	
Р	7.9		8.1	0.311		0.319	

Table 9: Revision History

Date	Revision	Description of Changes
14-May-2004	3	Characteristics at V_{CC} = 4.3 V Added on Tables 3, 4, 5, 6 and 7.
01-Jun-2004	4	ESD Performance (Analog Channels) added on top page.
04-Jul-2005	5	The Q Values on Table 7 has been updated.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

