CAPSTONE PROJECT

PROJECT TITLE

Presented By: Priyanka Kar-Dr.B.C.Roy Engineering College-ECE

OUTLINE

- Problem Statement (Should not include solution)
- Proposed System/Solution
- System Development Approach (Technology Used)
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

Problem statement No.41 – Power System Fault Detection and Classification

The Challenge:

Design a machine learning model to detect and classify different types of faults in a power distribution system. Using electrical measurement data (e.g., voltage and current phasors), the model should be able to distinguish between normal operating conditions and various fault conditions (such as line-to-ground, line-to-line, or three-phase faults). The objective is to enable rapid and accurate fault identification, which is crucial for maintaining power grid stability and reliability.

PROPOSED SOLUTION

Data Collection

Gather voltage, current, power load, and environmental data during normal and faulty conditions.

Data Preprocessing

Clean and label the data (Normal, L-G, L-L, 3-Phase faults).

Normalize and encode features.

Model Building

Train a Random Forest Classifier on the labeled data.

Validate using accuracy, precision, recall.

Deployment

Deploy the model on IBM Cloud using Watson Studio.

Provide a web interface for real-time CSV/JSON input and fault prediction.

SYSTEM APPROACH

The "System Approach" section outlines the overall strategy and methodology for developing and implementing the rental bike prediction system.

Here's a suggested structure for this section:

- IBM Cloud
- IBM Watson Studio for model Devolopment and deployment
- IBM Cloud Object storage for dataset handling

ALGORITHM & DEPLOYMENT

Algorithm Selection:

I used a Batched Tree Ensemble Classifier from IBM Watson AutoAI, ideal for multi-class classification based on structured power system data.

Data Input:

Input features include Voltage, Current, Power Load, Temperature, Wind Speed, Fault ID, and Location.

Training Process:

IBM AutoAl handled data preprocessing, model selection, and hyperparameter tuning automatically using cross-validation.

Prediction Process:

The trained model was deployed on IBM Cloud via Watson Machine Learning. It takes CSV/JSON input and returns real-time fault type predictions.

	Rank ↑	Name	Algorithm	Specialization	Accuracy (Optimized) Cross Validation	Enhancements	Build time
*	1	Pipeline 9	Batched Tree Ensemble Classifier (Random Forest Classifier)	INCR	0.409	HPO-1 FE HPO-2 BATCH	00:00:47
	2	Pipeline 8	O Random Forest Classifier		0.409	HPO-1 FE HPO-2	00:00:44
	3	Pipeline 4	O Snap Logistic Regression		0.393	HPO-1 FE HPO-2	00:00:32
	4	Pipeline 3	O Snap Logistic Regression		0.393	HPO-1 FE	00:00:28

CONCLUSION

In this project, I developed a machine learning-based solution for efficient fault detection and classification in power distribution systems. Using key electrical parameters such as voltage, current, and power load, I trained a Batched Tree Ensemble Classifier to accurately distinguish between normal operating conditions and various fault types, including line-to-ground, line-to-line, and three-phase faults. The model was deployed on IBM Cloud using Watson Studio, enabling real-time fault prediction through an intuitive interface. This solution ensures faster fault identification, reduces system downtime, and supports the development of a more intelligent and resilient power grid.

FUTURE SCOPE

- Integration of real-time data from smart sensors and IoT devices for live fault monitoring.
- Incorporation of advanced features like frequency deviation, harmonic distortion, and environmental factors.
- Use of deep learning models (e.g., LSTM, CNN) for better performance on time-series fault data.
- Scalability to larger power grids and adaptation for different voltage levels and regions.
- Development of mobile/web dashboards for on-the-go access by field engineers.
- Implementation of auto-alert systems for instant fault notification to grid operators.
- Cloud-based data pipelines for seamless model updates and real-time analytics.

REFERENCES

IBM Cloud – https://www.ibm.com/cloud

IBM Watson Studio – https://www.ibm.com/cloud/watson-studio

IBM AutoAl Documentation – https://www.ibm.com/docs/en/watson-studio

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Priyanka Kar

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 16, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/b04cb262-9d5c-448b-bdbb-a711326f98d6

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Priyanka Kar

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 19, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/40d21690-35bf-4a2b-b3d3-c974839086ec

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Priyanka Kar

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 24 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

