

TEMA-2-resumen.pdf

PAODELK28

Métodos Cuantitativos

3º Grado en Administración y Dirección de Empresas

Facultad de Ciencias Económicas y Empresariales Universidad de Granada

TEMA 2 – DECISIONES MULTICRITERIO

1. INTRODUCCIÓN

En este caso vamos a elegir entre diferentes alternativas teniendo en cuenta más de un criterio. Así, las distintas alternativas se evalúan frente a todos los criterios considerados, tras lo que se resume toda la información, pudiendo encontrar finalmente un orden de preferencia de las alternativas.

A las alternativas las llamaremos $a_1, ..., a_n$. A los criterios o atributos, $b_1, ..., b_k$. Y a los resultados alcanzados por cada alternativa en cada criterio, c_{ij} . Esta información se recoge en una tabla tipo:

	CRITERIOS PARA DECIDIR
ALTERNATIVAS	RESULTADOS PARA CADA COMBINACIÓN

Cuando se comparan dos alternativas, pueden ocurrir las siguientes opciones:

- 1. $a_i > a_i$, es decir se prefiere a_i antes que a_i .
- 2. $a_i \simeq a_j$, es decir ambas alternativas son indiferentes.
- 3. $a_i \ge a_j$, es decir a_i es igual o mejor que a_j .

2. MÉTODOS DE SUPERACIÓN: PROMETHEE

Los métodos de superación ordenan las alternativas según sus resultados en cada criterio y cuentan cuántas veces se prefiere a cada una de ellas. La idea principal de los métodos PROMETHEE es construir un índice de preferencia de las alternativas para cada criterio. Para ello, se siguen los siguientes pasos:

- CALCULAR LA DISTANCIA ENTRE ALTERNATIVAS PARA CADA CRITERIO → se determina para cada criterio la diferencia entre alternativas (dos a dos). Es decir, 1º se hace la diferencia de 2 alternativas, luego la de otras 2... hasta haber completado todas las opciones posibles.
- 2. CALCULAR LAS FUNCIONES DE PREFERENCIA PARA CADA CRITERIO \rightarrow como cada distancia depende del criterio que tenga, están definidas en distintas unidades. Para solucionar este problema y para poder decidir cuándo una diferencia es lo suficientemente significativa como para poder decantarse por una de las alternativas se usan las funciones de preferencias $H\ell(d_{ij})$. Estas funciones se basan en la distancia entre dos alternativas en un determinado criterio y van de 0 (no se prefiere) a 1 (preferencia por esa alternativa).

Algunas funciones dependen de:

- Umbral de indiferencia (q), que es el valor a partir del que deja de ser indiferente usar cualquiera de las dos alternativas.
- Umbral de preferencia estricta (p), que es el valor a partir del que se prefiere una de las dos alternativas de forma estricta.

Las funciones de preferencia marcan si las alternativas son indiferentes o no pero no dicen cuál se prefiere. Las distintas funciones de preferencia son:

- Criterio usual → si la diferencia es 0, son indiferentes. En caso de que no fuera 0, se prefiere la que de un mejor resultado.
- Criterio en forma de U (depende de q) → si las diferencias son menores que q, son indiferentes. En caso de que sean mayores que q, se tendrá preferencia estricta por una de ellas.

WUOLAH

- Criterio en forma de V (depende de p) → si la diferencia es 0, son indiferentes. A medida que estas diferencias aumentan también aumenta la preferencia, hasta que se supera p, siendo aquí la preferencia estricta.
- Criterio de Nivel (depende de p y q) → si la diferencia es < q, son indiferentes. Si son > p, hay preferencia estricta. En caso de que esté entre q y p, se asigna el valor 0,5.
- Criterio de Preferencia Lineal (depende de p y q) → si la diferencia es < q, son indiferentes. Si es > p, hay preferencia estricta. Entre q y p, a medida que aumentan las distancias, aumenta la preferencia por una de las dos alternativas.
- Criterio Gaussiano (depende del umbral intermedio $-\sigma$) \rightarrow si la diferencia es 0, es indiferente. A medida que aumenta la distancia crece la preferencia pero con un crecimiento que sigue una función gausiana o normal.

Los tipos 1, 2 y 4, se usan para criterios cualitativos (de respuesta SI/NO, comodidad, color...). Los 3 y 5, para criterios cuantitativos (precios, costes, potencias...). Las tipo 6, se usan menos ya que es difícil fijar el parámetro σ , pero sirve para modelar situaciones más complejas.

- 3. CALCULAR EL ÍNDICE DE PREFERENCIA MULTICRITERIO $\Rightarrow c_{ij} = \sum_{\ell=1}^k \sum_{a_i \succ a_j} w_\ell \, H\ell(d_{ij})$. Donde w_1, \ldots, w_k son los pesos (importancia de cada criterio) establecidos por el decisor. Se tienen en cuenta sólo las funciones de preferencias donde $a_i \succ a_j$ (ai se prefiere).
- 4. CALCULAR LOS FLUJOS DE SUPERACIÓN POSITIVOS, NEGATIVOS Y NETOS:
 - Flujo de superación positivo $\Rightarrow \Phi^+(a_i) = \frac{\left(\sum_{j=1}^n c_{ij}\right)}{n-1}$. Hace referencia al número de veces en las que a_i se prefiere respecto al resto de alternativas. (media de las veces que se prefiere).
 - Flujo de superación negativo $\Rightarrow \Phi^-(a_i) = \frac{\left(\sum_{j=1}^n c_{ij}\right)}{n-1}$. Hace referencia al número de veces que a_i no se prefiere respecto al resto de alternativas. (media de las veces que no se prefiere).
 - Flujo de superación neto $\rightarrow \Phi$ $(a_i) = \Phi^+(a_i) \Phi^-(a_i)$. Es la diferencia entre los flujos positivos y negativos.
- 5. ELECCIÓN DE LA/S MEJOR/ES ALTERNATIVA/S: PROMETHEE I Y PROMETHEE II:
 - PROMETHEE I: $a_i > a_j$, es decir se prefiere a_i antes que a_j si alguna de las siguientes relaciones es cierta:
 - El positivo de a_i es mayor que el de a_j y el negativo de a_i es menor que el de a_j .
 - El positivo de a_i es mayor que el de a_i y el negativo de a_i es igual que el de a_i .
 - El positivo de a_i es igual que el de a_i y el negativo de a_i es menor que el de a_i .

En otro caso, a_i y a_j serían indiferentes.

• PROMETHEE II: se prefiere a_i antes que a_j si el flujo neto de a_i es mayor que el de a_j . En caso de que sean iguales, las alternativas son indiferentes.

