Chapter 1

Asymptotic Theory I - Exercises

Shu Shen

Exercise 7.4 Consider a random variable Z_n with the probability distribution

$$Z_n = \begin{cases} -n & \text{with probability } 1/n \\ 0 & \text{with probability } 1-2/n \\ n & \text{with probability } 1/n \end{cases}$$

- (a) Does $Z_n \stackrel{p}{\to} 0$ as $n \to \infty$?
- (b) Calculate $E[Z_n]$.
- (c) Calculate $Var[Z_n]$.
- (d) Now suppose the distribution is

$$Z_n = \begin{cases} 0 & with \ probability \ 1 - 1/n \\ n & with \ probability \ 1/n \end{cases}$$

Calculate $E[Z_n]$.

(e) Conclude that $Z_n \stackrel{p}{\to} 0$ as $n \to \infty$ and $E[Z_n] \to 0$ are unrelated.

Solution. 7.4

(a) Take any $\delta > 0$, as $n \to \infty$

$$P(\omega:|Z_n(\omega)-0|>\delta)=P(\omega:Z_n(\omega)=-n)+P(\omega:Z_n(\omega)=n)=2/n\to 0$$

so that $Z_n \stackrel{p}{\to} 0$ as $n \to \infty$.

(b)
$$E[Z_n] = (-n) \times 1/n + 0 \times (1 - 2/n) + n \times 1/n = 0.$$

(c)
$$Var[Z_n] = E(Z_n - E[Z_n])^2 = (-n)^2 \times 1/n + 0^2 \times (1 - 2/n) + n^2 \times 1/n = 2n$$
.

(d)
$$E[Z_n] = 0 \times (1 - 1/n) + n \times 1/n = 1.$$

(e) Take any $\delta > 0$, as $n \to \infty$

$$P(\omega:|Z_n(\omega)-0|>\delta)=P(\omega:Z_n(\omega)=n)=1/n\to 0$$

so that $Z_n \stackrel{p}{\to} 0$ as $n \to \infty$ and $E[Z_n] \to 0$ are unrelated.

Exercise 7.7 A weighted sample mean takes the form $\overline{X_n^*} = \frac{1}{n} \sum_{i=1}^n w_i X_i$ for some non-negative constants w_i satisfying $\frac{1}{n} \sum_{i=1}^n w_i = 1$. Assume X_i is i.i.d.

- (a) Show that $\overline{X_n^*}$ is unbiased for $\mu = E[X]$.
- (b) Calculate $Var[\overline{X_n^*}]$.
- (c) Show that a sufficient condition for $\overline{X_n^*} \overset{p}{\to} \mu$ is that $n^{-2} \sum_{i=1}^n w_i^2 \to 0$.
- (d) Show that a sufficient condition for the condition in part 3 is $\max_{i \le n} w_i \to 0$ as $n \to \infty$.

Solution. 7.7

(a)
$$E[\overline{X_n^*}] = E[\frac{1}{n}\sum_{i=1}^n w_i X_i] = \frac{1}{n}\sum_{i=1}^n w_i E[X_i] = \frac{1}{n}\sum_{i=1}^n w_i \mu = \mu.$$

(b)

$$\begin{aligned} Var[\overline{X_{n}^{*}}] &= E\left(\overline{X_{n}^{*}} - E[\overline{X_{n}^{*}}]\right)^{2} \\ &= E\left(\frac{1}{n}\sum_{i=1}^{n}w_{i}X_{i} - \mu\right)^{2} \\ &= E\left(\frac{1}{n}\sum_{i=1}^{n}w_{i}\left(X_{i} - \mu\right)\right)^{2} \\ &= Var\left(\frac{1}{n}\sum_{i=1}^{n}w_{i}\left(X_{i} - \mu\right)\right) + E^{2}\left(\frac{1}{n}\sum_{i=1}^{n}w_{i}\left(X_{i} - \mu\right)\right) \\ &= n^{-2}\sum_{i=1}^{n}w_{i}^{2}Var[X_{i}] \\ &= \sigma^{2}n^{-2}\sum_{i=1}^{n}w_{i}^{2}\end{aligned}$$

(c) If $n^{-2}\sum_{i=1}^n w_i^2 \to 0$, we have $\sigma^2 n^{-2}\sum_{i=1}^n w_i^2 \to 0$.

So
$$E\left(\overline{X_n^*} - \mu\right)^2 = Var[\overline{X_n^*}] \to 0$$

 $\Rightarrow \overline{X_n^*} \stackrel{m.s.}{\to} \mu$

and square-mean convergence implies $\overline{X_n^*} \stackrel{p}{\to} \mu$.

(d) If $\max_{i < n} w_i \to 0$ as $n \to \infty$,

$$\frac{1}{n}\sum_{i=1}^{n}w_i^2 \le \frac{1}{n}n\left(\max_i w_i\right)^2 = \left(\max_i w_i\right)^2 \to 0$$

so that $n^{-2} \sum_{i=1}^{n} w_i^2 \to 0$.

Exercise 7.11 Take a random sample $\{X_1,...,X_n\}$ where X>0 and $E|logX|<\infty$. Consider the sample geometric mean

$$\hat{\mu} = \left(\prod_{i=1}^{n} X_i\right)^{1/n}$$

and population geometric mean

$$\mu = \exp\left(E[\log X]\right)$$

Show that $\hat{\mu} \stackrel{p}{\to} \mu$ as $n \to \infty$.

Solution. 7.11

As $n \to \infty$ by WLLN,

$$E |\log X| < \infty \quad \Rightarrow \frac{1}{n} \sum_{i=1}^{n} \log X_{i} \xrightarrow{p} E[\log X]$$

$$\Rightarrow \frac{1}{n} \log \left(\prod_{i=1}^{n} X_{i}\right) \xrightarrow{p} E[\log X]$$

$$\Rightarrow \log \left(\prod_{i=1}^{n} X_{i}\right)^{1/n} \xrightarrow{p} E[\log X]$$

Take $h(u) = \exp(u)$, by CMT,

$$\log \left(\prod_{i=1}^{n} X_{i}\right)^{1/n} \stackrel{p}{\to} E[\log X] \quad \Rightarrow h\left(\log \left(\prod_{i=1}^{n} X_{i}\right)^{1/n}\right) \stackrel{p}{\to} h\left(E[\log X]\right)$$

$$\Rightarrow \exp \left(\log \left(\prod_{i=1}^{n} X_{i}\right)^{1/n}\right) \stackrel{p}{\to} \exp \left(E[\log X]\right)$$

$$\Rightarrow \left(\prod_{i=1}^{n} X_{i}\right)^{1/n} \stackrel{p}{\to} \exp \left(E[\log X]\right)$$

$$\Rightarrow \hat{\mu} \stackrel{p}{\to} \mu$$

Exercise 8.1 Let X be distributed Bernoulli P[X = 1] = p and P[X = 0] = 1 - p.

- (a) Show that p = E[X].
- (b) Write down the moment estimator \hat{p} of p.
- (c) Find $Var[\hat{p}]$.
- (d) Find the asymptotic distribution of $\sqrt{n}(\hat{p}-p)$ as $n\to\infty$.

Solution. 8.1

(a)
$$E[X] = P[X = 1] \times 1 + P[X = 0] \times 0 = p$$
.

(b)
$$\therefore E[\overline{X}] = E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}E[X_{i}] = \frac{1}{n} \times np = p$$

$$\therefore \hat{p} = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

(c)
$$Var[\hat{p}] = Var[\frac{1}{n}\sum_{i=1}^{n}X_i] = \frac{1}{n^2}Var[\sum_{i=1}^{n}X_i] = \frac{1}{n^2}\sum_{i=1}^{n}Var[X_i] = \frac{1}{n^2}np(1-p) = \frac{1}{n}p(1-p).$$

(d) By CLT,
$$\sqrt{n}(\hat{p}-p) \stackrel{d}{\to} N(0, p(1-p))$$
 as $n \to \infty$.

Exercise 8.7 Assume $\sqrt{n}\left(\widehat{\theta}-\theta\right) \stackrel{d}{\to} N\left(0,v^2\right)$. Use the Delta Method to find the asymptotic distribution of the following statistics

- (a) $\hat{\theta}^2$.
- (b) $\hat{\theta}^3$.
- (c) $\hat{\theta}^k$.
- (d) $\hat{\theta}^2 + \hat{\theta}^3$.
- (e) $\frac{1}{1+\hat{\theta}^2}$.
- (f) $\frac{1}{1+\exp(\hat{\theta})}$.

Solution. 8.7

(a) Take $h(u) = u^2$, so that by the Delta Method

$$\sqrt{n}\left(\widehat{\theta}^2 - \theta^2\right) \stackrel{d}{\to} N\left(0, (2\theta)^2 v^2\right)$$

(b) Take $h(u) = u^3$, so that by the Delta Method

$$\sqrt{n}\left(\widehat{\theta}^3 - \theta^3\right) \xrightarrow{d} N\left(0, \left(3\theta^2\right)^2 v^2\right)$$

(c) Take $h(u) = u^k$, so that by the Delta Method

$$\sqrt{n}\left(\widehat{\theta}^k - \theta^k\right) \stackrel{d}{\to} N\left(0, \left(k\theta^{k-1}\right)^2 v^2\right)$$

(d) Take $h(u) = u^2 + u^3$, so that by the Delta Method

$$\sqrt{n}\left(\left(\hat{\theta}^2+\hat{\theta}^3\right)-\left(\theta^2+\theta^3\right)\right)\stackrel{d}{\to} N\left(0,\left(2\theta+3\theta^2\right)^2v^2\right)$$

(e) Take $h(u) = \frac{1}{1+u^2}$, so that by the Delta Method

$$\sqrt{n}\left(\frac{1}{1+\hat{\theta}^2}-\frac{1}{1+\theta^2}\right) \xrightarrow{d} N\left(0,\frac{4\theta^2}{\left(1+\theta^2\right)^4}v^2\right)$$

(f) Take $h(u) = \frac{1}{1 + \exp(u)}$, so that by the Delta Method

$$\sqrt{n}\left(\frac{1}{1+\exp(\hat{\theta})} - \frac{1}{1+\exp(\theta)}\right) \xrightarrow{d} N\left(0, \frac{\exp(2\theta)}{\left(1+\exp(\theta)\right)^4}v^2\right)$$