

Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation

Kang Liu, Zhuoqi Ma*, Xiaolu Kang, Zhusi Zhong, Zhicheng Jiao, Grayson Baird, Harrison Bai, Qiguang Miao*

Motivation

- Background: A radiology report comprises presentation-style vocabulary, which ensures clarity and organization, and factual vocabulary, which provides accurate and objective descriptions based on observable findings.
- To truly meet clinical needs, report generation processes should incorporate patient-specific indications, such as previous treatment history or responses to specific diagnostic requirements, which cannot be derived exclusively from medical images.
- Existing methods face challenges in effectively focusing on the cross-modal alignment between medical images and reports. This is attributed to assigning equal weights to presentation-style elements (e.g., sentence structure and grammar) and factual vocabulary (e.g., findings) in reports. Unfortunately, this limitation impacts their clinical efficacy.

Method

We propose a two-stage method called Structural Entities extraction and patient indications Incorporation (SEI) for generating chest X-ray reports.

- ✓ **Goal:** Given a chest X-ray, our model retrieves similar historical cases in a gradient-free manner and generates a draft report based on these cases for radiologists.
- ✓ **Stage 1:** Pre-training for visual representation
 - Structural Entities Extraction (SEE): We remove presentation-style vocabulary from reports using RadGraph outputs and process the noise in these outputs to form factual entity sequences, which are short sentences consisting exclusively of factual vocabulary.
 - Cross-modal Alignment: We align medical images with factual entity sequence through instance-level and token-level cross-modal semantic correspondences. This approach reduces the noise in the cross-modal alignment process, facilitating gradient-free retrieval of similar historical cases from the training set.
- ✓ **Stage 2:** Fine-tuning for chest X-ray report generation
 - Patient-specific Indications: This field is a string representing the patient's examination purpose or symptoms, which may occasionally be absent.
 - Cross-modal Fusion Network: This network effectively utilizes available indications and similar historical cases through output rules, even when some samples these elements, This enables the text decoder to attend to discriminative features of X-ray images, assimilate historical diagnostic information from similar cases, and understand the examination intention of patients.

Experiments

□ Comparison of our SEI with SOTA approaches on the MIMIC-CXR dataset

SEI-*n* indicates our SEI generates reports by referencing *n* similar historical cases

${f Method}$	M_{gt}	$\mathbf{NLG}\uparrow$						
Mediod		BL-2	BL-4	MTR	R_L	\mathbf{RG}	CX5	CX14
R2Gen [5] (EMNLP'20)	100^{\dagger}	0.218	0.103	0.137	0.264	0.207	0.340	0.340
	Cpl.	0.209	0.097	0.135	0.266	0.211	0.339	0.338
R2GenCMN [4] (ACL'21)	100^{\dagger}	0.218	0.106	0.142	0.278	0.220	0.461	0.278
	Cpl.	0.198	0.090	0.133	0.268	0.223	0.464	0.393
GSKET [29] (MedIA'22)	80 [†]	0.228	0.115	\$7 <u>2-2</u>	0.284	<u> </u>	<u> 83</u>	0.371
CGPT2 [18] (ARTMED'23)	60 [†]	0.248	0.127	0.155	0.286	0.223	0.463	0.391
	Cpl.	0.204	0.102	0.138	0.277	0.237	0.483	0.434
M2KT [28] (MedIA'23)	80 [†]	0.237	0.111	0.137	0.274	0.204	0.477	0.352
	Cpl.	0.204	0.085	0.133	0.244	0.210	0.483	0.413
DCL [16] (CVPR'23)	90 [†]	32 4 3	0.109	0.150	0.284). 3 4 0	×	0.373
RGRG [20] (CVPR'23)	$Cpl.^{\dagger}$	0.249	0.126	0.168	0.264); (2 4);	0.547	0.447
SEI-0 (ours)	60	0.268	0.146	0.164	0.300	0.239	0.505	0.437
	80	0.250	0.135	0.158	0.300	0.250	0.531	0.452
	90	0.244	0.131	<u>0.156</u>	0.299	0.252	0.536	0.455
	100	0.240	0.129	0.154	0.298	0.252	0.539	0.457
	Cpl.	0.231	0.123	0.150	0.297	0.252	0.541	0.457
SEI-1 (ours)	60	0.268	0.148	0.167	0.301	0.236	0.509	0.445
	80	0.257	0.140	0.162	0.300	0.247	0.535	0.457
	90	15000000 - 250042005200000000000		0.160		Ass more will	5370% 3970% 5900A	
	100			0.158		W		
	Cpl.	0.238	0.128	0.154	0.296	0.249	0.545	0.460

□ Ablation study on MIMIC-CXR

Settings	Model	$\mathbf{NLG}\uparrow$				\mathbf{CE}^{\uparrow}		
		BL-2	BL-4	MTR	R_L	$\mathbf{R}\mathbf{G}$	CX5	CX14
(a)	Base (R2Gen $[5]$)	0.209	0.097	0.135	0.266	0.211	0.339	0.338
(b)	(a)+cross-modal module	0.206	0.098	0.138	0.277	0.234	0.513	0.431
$\overline{\text{(c)}}$	SEI-1 w/o indications	0.228	0.109	0.148	0.279	0.241	0.542	0.474
(d)	$SEI-1 \text{ w/o } SHC (\mathbf{SEI-0})$	0.231	0.123	0.150	0.297	0.252	0.541	0.457
(e)	SEI-1	0.238	0.128	0.154	0.296	0.249	0.545	0.460

☐ Qualitative analysis on MIMIC-CXR

0.690/0.303

☐ Conclusion:

✓ Using factual entity sequences for alignment proves to be an effective strategy.

expanded clear

- ✓ Similar historical cases provide valuable empirical insights for report generation.
- ✓ Integrating patient-specific indications into the report generation process significantly enhances its performance.

Welcome to our Github homepage for source codes https://github.com/mk-runner/SEI

- Email: kangliu422@gmail.com
- WeChat: kangliu422