

Differential Data and Clock D Flip-Flop

The MC10EL/100EL52 is a differential data, differential clock D flip-flop with reset. The device is functionally equivalent to the E452 device with higher performance capabilities. With propagation delays and output transition times significantly faster than the E452 the EL52 is ideally suited for those applications which require the ultimate in AC performance.

Data enters the master portion of the flip-flop when the clock is LOW and is transferred to the slave, and thus the outputs, upon a positive transition of the clock. The differential clock inputs of the EL52 allow the device to also be used as a negative edge triggered device.

The EL52 employs input clamping circuitry so that under open input conditions (pulled down to VEE) the outputs of the device will remain stable.

- 365ps Propagation Delay
- 2.0GHz Toggle Frequency
- 75k Ω Internal Input Pulldown Resistors
- >1000V ESD Protection

LOGIC DIAGRAM AND PINOUT ASSIGNMENT

MC10EL52
MC100EL52

D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751-05

PIN DESCRIPTION

PIN	FUNCTION
D	Data Input
CLK	Clock Input
Q	Data Output

TRUTH TABLE

D	CLK	Q
L	Z	L
H	Z	H

Z = LOW to HIGH Transition

MC10EL52 MC100EL52

DC CHARACTERISTICS ($V_{EE} = V_{EE(\min)} \text{ to } V_{EE(\max)}$; $V_{CC} = \text{GND}$)

Symbol	Characteristic	-40°C			0°C			25°C			85°C			Unit
		Min	Typ	Max										
I_{EE}	Power Supply Current 10EL 100EL		21 21	25 25		21 21	25 25		21 21	25 25		21 24	25 29	mA
V_{EE}	Power Supply Voltage 10EL 100EL	-4.94 -4.20	-5.2 -4.5	-5.5 -5.5	-4.94 -4.20	-5.2 -4.5	-5.5 -5.5	-4.75 -4.20	-5.2 -4.5	-5.5 -5.5	-4.75 -4.20	-5.2 -4.5	-5.5 -5.5	V
I_{IH}	Input HIGH Current			150			150			150			150	μA

AC CHARACTERISTICS ($V_{EE} = V_{EE(\min)} \text{ to } V_{EE(\max)}$; $V_{CC} = \text{GND}$)

Symbol	Characteristic	-40°C			0°C			25°C			85°C			Unit
		Min	Typ	Max										
f_{MAX}	Maximum Toggle Frequency	1.8	2.5		2.2	2.8		2.2	2.8		2.2	2.8		GHz
t_{PLH} t_{PHL}	Propagation Delay to Output CLK	225	335	515	275	365	465	275	365	465	320	410	510	ps
t_S	Setup Time	125	0		125	0		125	0		125	0		ps
t_H	Hold Time	150	50		150	50		150	50		150	50		ps
t_{PW}	Minimum Pulse Width	400			400			400			400			ps
V_{PP}	Minimum Input Swing ¹	150			150			150			150			mV
V_{CMR}	Common Mode Range ² D (10EL) D (100EL) CLK (10EL) CLK (100EL)	-0.4 -0.4 -0.6 -0.8		-1.6 -1.2 See ³ See ³	V									
t_r t_f	Output Rise/Fall Times Q (20% – 80%)	100	225	350	100	225	350	100	225	350	100	225	350	ps

1. Minimum input swing for which AC parameters are guaranteed.

2. The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between $V_{PP\min}$ and 1V.

3. The lower end of the CMR range is dependent on V_{EE} and is equal to $V_{EE} + 2.5V$.

OUTLINE DIMENSIONS

D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751-05
ISSUE P

NOTES:

1. DIMENSIONS A AND B ARE DATUMS AND T IS A DATUM SURFACE.
2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
3. DIMENSIONS ARE IN MILLIMETER.
4. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
6. DIMENSION D DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS	
DIM	MIN	MAX
A	4.80	5.00
B	3.80	4.00
C	1.35	1.75
D	0.35	0.49
F	0.40	1.25
G	1.27 BSC	
J	0.18	0.25
K	0.10	0.25
M	0 °	7 °
P	5.80	6.20
R	0.25	0.50

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
 P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com – **TOUCHTONE** 602-244-6609
INTERNET: <http://Design-NET.com>

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center,
 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

MOTOROLA

MC10EL52/D

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com