

B0B33OPT - Optimaliz	zace - Test1
----------------------	--------------

Jméno	Příjmení	Už. jméno	Podpis
Jakub	Janoušek	janouja9	

Řešení testu pište perem na papír (tedy ne do počítače). Zadání příkladů nemusíte opisovat. Jednotlivé příklady oddělujte vodorovou čarou přes celou šířku papíru. Každý příklad příp. jeho část uvod'te příslušným číslem nebo písmenem v kroužku.

Do řešení pište nejen odpovědi ale i jejich odůvodnění a postupy řešení. Správná odpověď bez odůvodnění je neplatná!

Řešení celého testu se musí vejít na maximálně 4 stránky A4.

Na konci testu vaše řešení oscanujte nebo ofoťte (v tom případě zajistěte dobrou kvalitu snímků) a nahrajte do Brute do úlohy Test1. Dovolené formáty jsou PDF, JPG a PNG. Pokud odevzdáte více souborů např. ve formátu JPG, musí se jmenovat 1.jpg, 2.jpg atd. a být zabalené v jednom ZIP souboru.

Během testu můžete používat materiály k předmětu (skripta, slajdy, Vaše zápisky), nesmíte ale s nikým komunikovat. Prosíme, nezneužívejte situace a nepodvádějte! Při odhaleném podvodu předmět pro studenta okamžitě končí.

Otázka 1.

Chceme vyřešit soustavu rovnic

$$\mathbf{A}\mathbf{x} + \mathbf{y} + \mathbf{c} = \lambda \mathbf{1}, \quad \mathbf{y}^T \mathbf{B} = \mathbf{0}$$

kde \mathbf{A} , \mathbf{B} jsou známé matice, \mathbf{c} je známý vektor, \mathbf{x} , \mathbf{y} jsou neznámé vektory a λ je neznámý skalár. Soustavu přepište do tvaru $\mathbf{P}\mathbf{u} = \mathbf{q}$, kde matice \mathbf{P} a vektor \mathbf{q} obsahují známé konstanty a vektor \mathbf{u} obsahuje všechny neznámé.

Otázka 2

Najděte přibližné řešení soustavy

$$y = 1, \quad x = 2 + y, \quad x = 0$$

ve smyslu nejmenších čtverců.

Otázka 3

Mějme matici $\mathbf{A} = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$. Tvrdíme, že číslo $\mathbf{x}^T \mathbf{A} \mathbf{x}$ je nezáporné pro každé $\mathbf{x} \in \mathbb{R}^2$. Je toto tvrzení pravdivé? Odpověď dokažte. (Nápověda: Je matice symetrická?)

Otázka 4

Závislost kroutivého momentu elektrického motoru na velikosti napájecího proudu je modelována regresní funkcí

$$f(x) = a_1 + a_2 x + a_3 10^x + a_4 10^{-x}.$$

Naměřili jsme n dvojic $(x_1, y_1), \ldots, (x_n, y_n)$, kde x_i je napájecí proud a y_i je kroutivý moment motoru. Chceme odhadnout neznámé koeficienty a_1, \ldots, a_4 regresí ve smyslu nejmenších čtverců, tj. tak, aby $\sum_{i=1}^{n} [f(x_i) - y_i]^2$ bylo co nejmenší. Napište matlabskou funkci $\mathbf{a} = \mathbf{regres}(\mathbf{X})$, kde \mathbf{a} je sloupcový vektor obsahující koeficienty a_1, \ldots, a_4 a \mathbf{X} je matice rozměru $2 \times n$, jejíž sloupečky jsou naměřené dvojice $(x_1, y_1), \ldots, (x_n, y_n)$. Jestliže nedokážete úlohu vyřešit přesně, vyřešte ji aspoň přibližně.

Otázka 5.

Nechť vektory $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ mají stejnou délku. Tvrdíme, že vektory $\mathbf{a} + \mathbf{b}$ a $\mathbf{a} - \mathbf{b}$ pak jsou na sebe kolmé. Tvrzení dokažte nebo vyvraťte.

Otázka 6_

Najdi ortogonální projekci vektoru (-1,1,0) na podprostor span $\{(2,-1,2)\}$.

Otázka 7_

Najděte bázi prostoru obrazů matice $\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix}$.

Otázka 8_

Existuje lineární funkce $f: \mathbb{R}^3 \to \mathbb{R}$ taková, že f(-1,1,0) = 0 a f(1,0,1) = 2? V případě kladné odpovědi najděte takovou funkci. V případě záporné odpovědi odpověď dokažte.

1.
$$A \times + 9 = -21 = -C$$
 $A \times + 9 = -21 = -C$
 $A \times + 9 = -21 = -$

$$2. \quad y = 1 \quad x = 2 + 3 \quad x = 0$$

$$2. \quad x = \left(\frac{2 - n}{1 - 1}\right) \left(\frac{1 + 1}{1 - 1}\right) \left(\frac{1}{1 -$$

$$A^{T}A \mathcal{L} = A^{T}b$$

$$\mathcal{L} = A^{T}b$$

$$\mathcal{L} = A^{T}b$$

Protoze inviene preparate Zaminit A za A, $\widetilde{A} = \frac{1}{2} \left(A + A^{T} \right)$ Edera je diagonatai, a par like, re poind $\widehat{A} = \begin{bmatrix} -1 & \text{Math } 0.5 \\ 0.5 & 4 \end{bmatrix}$ in the x place nezaporné pro isedna \$ hl. minor A = -1; -4,25 XERL, musiby 7 A positione semide Pinita protoze h! minory json aporte, pas matice nent pos. sellet de se midefinite a turzen. Sunction a = vegres(x) (= size (x,2), X = X. 2 A = [ones(L,1), x(:,1), 10.1x(:,1), 10.1(-x(:,1))]; $a = A \times X(:,2);$ (5) $\sqrt{a_a} = \sqrt{b_b}$ $(a_{+b})^{\dagger} (a_{-b})$ = 0 (a+5) (a-6) = 0 = (a1 + b1) (an-b1) + ... (an + bn) (an-bn). = S(a;2-6;2) = 0 => \(\frac{2}{5} ai^2 = \frac{2}{5} bi^2 \neq a a b \frac{7}{5} Plati

(6)
$$V = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$$
 $U = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 $V = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 V

fundice of musit splinous to to vousice, con splings happen an = an = an = = 1 tedy A = [1 17]