CIS4930 - Math for Machine Learning

Homework 5

Fernando Sckaff

March 26, 2023

Question 1

Let K be the set of all numbers which can be written in the form a+bi where $i=\sqrt{-1}$ and a,b are rational numbers. Show that K is a field.

Solution:

K is a field if it satisfies following conditions:

- 1. If x, y are elements of K, then x + y and xy are also elements of K
- 2. If $x \in K$, then -x is also an element of K
- 3. If $x \neq 0$, then x^{-1} is an element of K
- 4. The elements 0 and 1 are elements K.

1. $x = a + bi \in K$ $y = c + di \in K$ $a, b, c, d \in \mathbb{Q}$

$$x + y = (a + bi) + (c + di)$$
$$= a + bi + c + di$$
$$= (a + c) + (b + d)i$$

Since $a,b,c,d\in\mathbb{Q}$, then $(a+c)\in\mathbb{Q}$ and $(b+d)\in\mathbb{Q}$. Therefore, addition property holds. Also,

$$xy = (a + bi)(c + di)$$

$$= ac + adi + cbi + bdi^{2}$$

$$= (ac - bd) + (ad + cb)i$$

Since $a,b,c,d\in\mathbb{Q}$, then $(ac-bd)\in\mathbb{Q}$ and $(ad+cb)\in\mathbb{Q}$. Therefore, multiplication property holds.

Let x = a + bi

$$-x = -(a+bi)$$
$$= (-a) + (-b)i$$

Since $a, b \in \mathbb{Q}$, then -a, -b also $\in \mathbb{Q}$. Therefore, negative property holds.

3.

Let x = a + bi and $t = a^2 + b^2 \in \mathbb{Q}$

$$x^{-1} = \frac{1}{a+bi}$$

$$= \frac{1}{a+bi} \cdot \frac{a-bi}{a-bi}$$

$$= \frac{a-bi}{a^2-(bi)^2}$$

$$= \frac{a-bi}{a^2+b^2}$$

$$= \frac{a-bi}{t}$$

$$= (a/t) + (-b/t)i$$

Since $a, b, t \in \mathbb{Q}$, then $(a/t), (-b/t) \in \mathbb{Q}$. Therefore, inverse property holds.

4.

Let
$$x = a + bi$$
, $a = 0$, and $b = 0$.

$$x = 0 + 0i = 0$$

Now, let a = 1 and b = 0.

$$x = 1 + 0i = 1$$

Therefore, 0 and 1 are in the field.

Question 2

If U and W are subspaces of a vector space V, show that

- **1.** $U \cap W$ (the set of elements that lie both in U and W) and
- **2.** U + W (the set of all elements u + w with $u \in U$ and $w \in W$) are subspaces of V.

Solution:

W is a subspace of V if it satisfies the following conditions:

- If v, w are elements of W, their sum v + w is also an element of W
- If v is an element of W and $c \in K$, then cv is an element of W
- ullet The element O of V is also an element of W

1. Let

- $T \equiv U \cap W$
- $u, w \in T$

Then u + w is $((u_1 + w_1), ..., (u_n + w_n))$.

First

 $u + w \in U$ since $u \in U$ and $w \in W$.

Similarly, $u + w \in W$. Therefore, $u + w \in T$

Second

 $cu \in T$ since $cu \in U$ and $cw \in W$

Third

 $O \in T$ since $O \in U$ and $O \in W$

2.

Let $u, w \in U + W$. Then $u + w \in U + W$

First

 $u + w \in U + W$ since $u \in U$ and $w \in W$

Second

Since $u \in U$, $U \in U + W(O \in W)$, and $c \in W$

 $cu \in U + W$

Third

 $O \in U \& O \in W :: O \in U + W$

Question 3

Show that $\|A\|_1$ which is equal to $\max_j \sum_{i=1}^m |a_{ij}|$ and $\|A\|_\infty$ which is equal to $\max_i \sum_{j=1}^n |a_{ij}|$ satisfy the following properties.

- 1. ||A|| > 0 if $A \neq O$ (the all zero matrix).
- 2. $\|\gamma A\| = |\gamma| \cdot \|A\|$ for γ . 3. $\|A + B\| \le \|A\| + \|B\|$,
- 4. $||AB|| \le ||A|| \cdot ||B||$.
- 5. $||Ax|| \le ||A|| \cdot ||x||$ for any vector x (and for the same choice of vector norm).

Solution: Solution question something

1. First, assume $A \neq O$, and let's say $||A||_1 < 0$.

$$\begin{aligned} \|A\|_1 &< 0 \\ \max_j \sum_{i=1}^m |a_{ij}| &< 0 \\ \max_j (|a_{1j}| + |a_{2j}| + \dots + |a_{ij}|) &< 0 \end{aligned}$$

A sum of non-zero, absolute values cannot be negative. Therefore, proof by contradiction. Likewise,

2.

$$\|\gamma A\|_{1} = \max_{j} \sum_{i=1}^{m} |\gamma a_{ij}|$$

$$= \max_{j} |\gamma| \sum_{i=1}^{m} |a_{ij}|$$

$$= |\gamma| \max_{j} \sum_{i=1}^{m} |a_{ij}|$$

$$= |\gamma| \cdot \|A\|_{1}$$

Likewise,

$$\|\gamma A\|_{\infty} = \max_{i} \sum_{j=1}^{m} |\gamma a_{ij}|$$

$$= \max_{i} |\gamma| \sum_{j=1}^{m} |a_{ij}|$$

$$= |\gamma| \max_{i} \sum_{j=1}^{m} |a_{ij}|$$

$$= |\gamma| \cdot ||A||_{\infty}$$

3. Remember, $|A + B| \le |A| + |B|$.

$$||A + B||_1 = \max_{j} \sum_{i=1}^{m} |a_{ij} + b_{ij}|$$

$$\max_{j} \sum_{i=1}^{m} |a_{ij} + b_{ij}| \le \max_{j} \sum_{i=1}^{m} |a_{ij}| + \max_{j} \sum_{i=1}^{m} |b_{ij}|$$

$$\le ||A||_1 + ||B||_1$$

Likewise,

$$\begin{split} \|A+B\|_{\infty} &= \max_{i} \sum_{j=1}^{m} |a_{ij}+b_{ij}| \\ \max_{i} \sum_{j=1}^{m} |a_{ij}+b_{ij}| &\leq \max_{i} \sum_{j=1}^{m} |a_{ij}| + \max_{i} \sum_{j=1}^{m} |b_{ij}| \\ &\leq \|A\|_{\infty} + \|B\|_{\infty} \end{split}$$

4. Remember, $|AB| \leq |A| \cdot |B|$.

$$||AB||_{1} = \max_{j} \sum_{i=1}^{m} |a_{ij}b_{ij}|$$

$$\max_{j} \sum_{i=1}^{m} |a_{ij}b_{ij}| \leq \max_{j} \sum_{i=1}^{m} |a_{ij}| \cdot \max_{j} \sum_{i=1}^{m} |b_{ij}|$$

$$\leq ||A||_{1} \cdot ||B||_{1} \quad \Theta$$

Likewise,

$$||AB||_{\infty} = \max_{i} \sum_{j=1}^{m} |a_{ij}b_{ij}|$$

$$\max_{i} \sum_{j=1}^{m} |a_{ij}b_{ij}| \leq \max_{i} \sum_{j=1}^{m} |a_{ij}| \cdot \max_{i} \sum_{j=1}^{m} |b_{ij}|$$

$$\leq ||A||_{\infty} \cdot ||B||_{\infty} \quad \Theta$$

5.

$$||Ax||_1 = \max_j \sum_{i=1}^m |a_{ij}x_j|$$

 $||x||_1 = \sum_{i=1}^m |x_i|$

Assume $||Ax||_1 \ge ||A||_1 \cdot ||x||_1$:

$$||Ax||_{1} \ge ||A||_{1} \cdot ||x||_{1}$$

$$\max_{j} \sum_{i=1}^{m} |a_{ij}x_{j}| \ge \max_{j} \sum_{i=1}^{m} |a_{ij}| \cdot \sum_{i=1}^{m} |x_{i}|$$

$$\max_{j} \sum_{i=1}^{m} |a_{ij}x_{j}| \ge \max_{j} \sum_{i=1}^{m} |a_{ij}| \cdot \sum_{i=1}^{m} |x_{i}|$$

$$\max_{j} \sum_{i=1}^{m} |a_{ij}x_{j}| \ge \max_{j} \sum_{i=1}^{m} (|a_{ij}| \cdot |x_{i}|)$$

As we know, $|a_{ij}x_i| \leq |a_{ij}| \cdot |x_i|$. Therefore, a contradiction. Also, assume $||Ax||_{\infty} \ge ||A||_{\infty} \cdot ||x||_{\infty}$:

As we know, $|a_{ij}x_i| \leq |a_{ij}| \cdot |x_i|$. Therefore, a contradiction. ⊜

Question 4

(a) Show that the quadratic form $x^T B x$ annihilates the skew symmetric portion of B (where we can write $B = \frac{B+B^T}{2} + \frac{B-B^T}{2}).$ (b) Is the matrix $B \equiv A^T A$ non-negative definite?

(Hint: For a non-negative definite matrix B, the quadratic form $x^T B x \ge 0$ for all $x \ne 0$.) Explain.

Solution: (a) We have $B = \frac{B+B^T}{2} + \frac{B-B^T}{2}$, where the first term is symmetric and the second term is skewsymmetric. Then we have:

$$x^{T}Bx = x^{T} \left(\frac{B + B^{T}}{2} + \frac{B - B^{T}}{2} \right) x$$
$$= x^{T} \frac{B + B^{T}}{2} x + x^{T} \frac{B - B^{T}}{2} x$$

Be mindful, a skew-symmetric matrix is a square matrix whose transpose equals its negative. $(B^T = -B)$. Assume B is skew-symmetric:

$$x^{T}Bx = x^{T} \frac{B + B^{T}}{2} x + x^{T} \frac{B - B^{T}}{2} x$$
$$= x^{T} \frac{B - B}{2} x + x^{T} \frac{B + B}{2} x$$
$$= x^{T} \cdot 0 \cdot x + x^{T} \frac{2B}{2} x$$
$$= x^{T} Bx$$

Therefore, $B = \frac{B+B^T}{2} + \frac{B-B^T}{2}$ does eliminate the skew-symmetric part of B.

(b) Let x be a column vector. Then we have:

$$x^{T}Bx = x^{T}A^{T}Ax = (Ax)^{T}(Ax) = ||Ax||^{2}$$

Since the norm of a vector is non-negative, we have $x^T B x \ge 0$ for all $x \ne 0$. Therefore, the matrix $B = A^T A$ is non-negative definite.

Question 5

Rewrite the least-square orthogonality principle $(A^T(b-A\hat{x}=O))$ where \hat{x} is the least-squares solution for the problem $\min_x \|b-Ax\|_2^2$ in the form $C\hat{x}=Db$ where C and D are written in terms of the SVD of A (which can be written as $A=USV^T$). C should not contain U and D should not contain V. Note that $U^TU=I$ and $V^TV=I$. (Note: You may use the reduced form of the SVD if you wish.)

Solution: Starting with the least-square orthogonality principle: $A^{T}(b - Ax) = 0$ Using the SVD of A $(A = USV^{T})$, we have:

$$A^{T}(b - Ax) = 0$$

$$A^{T}b - A^{T}Ax = 0$$

$$A^{T}Ax = A^{T}b$$

$$VS^{T}U^{T}USV^{T}x = VS^{T}U^{T}b$$

Simplifying using $U^T U = I$ and $V^T V = I$, we get:

$$SV^T x = U^T b$$

Multiplying both sides by S^{-1} , we have:

$$V^T x = S^{-1} U^T b$$

Multiplying both sides by V, we have:

$$x = VS^{-1} U^T b$$

Thus, we have expressed the least-squares solution x in terms of the SVD of A as $x = VS^{-1}U^Tb$. We can write C and D in terms of the SVD of A as follows:

$$C = V$$
 (since $V^T V = I$) and $D = S^{-1} U^T$

Therefore, the least-squares solution can be expressed as: Cx = Db where C = V and $D = S^{-1}U^{T}$, and $A = USV^{T}$.

Question 6

Set up the Lagrangian for the following objective function:

• $f(x) = -\sum_{i=1}^{N} T_i x_i + \sum_{i=1}^{N} x_i \log x_i$ subject to the constraint $\sum_{i=1}^{N} x_i = 1$ where T is a set of real numbers. Solve for the Lagrange parameter and then find the solution for x (called the **softmax** nonlinearity without the Lagrange parameter).

Solution: The objective function is:

$$f(x) = -\sum_{i=1}^{N} T_i x_i + \sum_{i=1}^{N} x_i \log x_i$$

subject to the constraint:

$$\sum_{i=1}^{N} x_i = 1$$

To set up the Lagrangian, we introduce a Lagrange multiplier λ :

$$\mathcal{L}(x,\lambda) = f(x) + \lambda \left(\sum_{i=1}^{N} x_i - 1\right)$$

where \mathcal{L} is the Lagrangian.

Now we compute the partial derivatives of \mathcal{L} with respect to x_i and λ , and set them equal to zero:

$$\frac{\partial \mathcal{L}}{\partial x_i} = -T_i + \log x_i + 1 + \lambda = 0 \quad \text{for } i = 1, \dots, N$$
 (1)

$$\frac{\partial \mathcal{L}}{\partial \lambda} = \sum_{i=1}^{N} x_i - 1 = 0 \tag{2}$$

Solving the first equation for x_i gives:

$$x_i = e^{T_i - 1 - \lambda}$$

Substituting this expression into the second equation, we have:

$$\sum_{i=1}^{N} e^{T_i - 1 - \lambda} = 1$$

$$\log(\sum_{i=1}^{N} e^{T_i - 1 - \lambda}) = \log 1$$

$$\log(\sum_{i=1}^{N} e^{T_i - 1} \cdot e^{-\lambda}) = 0$$

$$\log \sum_{i=1}^{N} e^{T_i - 1} + \log \sum_{i=1}^{N} e^{-\lambda} = 0$$

$$\log \sum_{i=1}^{N} e^{T_i - 1} - \lambda = 0$$

which implies:

$$\lambda = \log \left(\sum_{i=1}^{N} e^{T_i - 1} \right)$$

Therefore, by substituting λ inside $-T_i + \log x_i + 1 + \lambda = 0$, the solution for x_i is:

$$-T_i + \log x_i + 1 + \lambda = 0$$

$$\log x_i = T_i - \lambda - 1$$

$$\log x_i = T_i - \log(\sum_{i=1}^N e^{T_i - 1}) - 1$$

$$x_i = e^{T_i - \log(\sum_{i=1}^N e^{T_i - 1}) - 1}$$

$$x_i = e^{T_i} \cdot e^{-\log(\sum_{i=1}^N e^{T_i - 1})} \cdot e^{-1}$$

$$x_i = \frac{e^{T_i - 1}}{\sum_{j=1}^N e^{T_j - 1}}$$

This is known as the softmax nonlinearity without the Lagrange parameter.

☺

Note:-

- Question 1: Correct
- Question 2: $(AB)_{ij} \neq a_{ij}b_{ij}$ which is what you are trying to do. $(AB)_{ij} = \sum_k a_{ik}b_{kj}$ and to make your approach work, you have to use this matrix multiplication formula and then bound the sum. Take a look at my revised solution which expands on this.
- Question 3: Correct
- Question 4: Correct
- Question 5: Correct. OBS: Could have moved S^{-1} to the other side but we'll let this slide.
- Question 6: Correct. OBS: Could have eliminated the -1 from the numerator AND denominator exponents. You would then have the standard softmax nonlinearity $x_i = \exp T_i / \sum_k \exp T_k$.