main.c File Reference

```
: Main program body More...
#include "main.h"
#include "Const.h"
#include "stdio.h"
#include <math.h>
#include "function.h"
```

Functions

void SystemClock_Config (void)

System Clock Configuration. More...

int __io_putchar (int ch)

void Init (I2C HandleTypeDef *p hi2c1)

Init I2C1 @Note Cette fonction met à 1 le bit 7 de PWR_MGMT_1 pour faire un reset de l'ensemble des registres du capteur, puis attend 100ms et choisit une horlorge. De plus, elle désactive l'interface master I2C du MPU-9250 pour permettre la lecture des données du magnétomètre et elle configure ce dernier pour gu'il réalise des mesures en continu. More...

void Measure_T (I2C_HandleTypeDef *hi2cx, double *Temperature)

Mesure temperature @Note Cette fonction permet de lire la temperature du capteur puis de l'enregistrer dans une variable globale de type double. More...

void Measure_A (I2C_HandleTypeDef *hi2cx, double *Acceleration)

Mesure acceleration @Note Cette fonction permet de lire l'acceleration du capteur sur les axes x,y et z puis de l'enregistrer dans une variable globale de type double. More...

void Measure_Vitesse_angulaire (I2C_HandleTypeDef *hi2cx, double *tableau donnee utiles)

Mesure vitesse angulaire @Note Cette fonction permet de lire la vitesse angulaire du capteur sur les axes x,y et z puis de l'enregistrer dans une variable globale de type double. More...

void Measure_M (I2C_HandleTypeDef *p hi2c1, double *mag)

Mesure champ magnétique @Note Cette fonction permet de lire la valeur du champ magnétique selon un repère d'axes x,y et z puis de l'enregistrer dans une variable globale de type double. More...

void Noise_G (I2C_HandleTypeDef *hi2cx, double *noise)

Mesure de la valeur efficace du bruit @Note Cette fonction permet de calculer la valeur efficace du bruit du gyromètre selon une approche probabiliste, en calculant la moyenne d'un échantillon de données de vitesse angulaire. More...

void Calib gyro (I2C HandleTypeDef *hi2cx, double *gyro offset)

Calibration du gyromètre @Note Cette fonction permet de calculer l'offset des composantes de la vitesse angulaire en se basant sur la méthode du single point. More...

void Average (I2C_HandleTypeDef *hi2cx, double *tableau_moyenne)

Vérification du fonctionnement de la calibration @Note Cette fonction permet de tester la fonction Cali_gyro en calculant la moyenne de la vitesse angulaire moins son offset lorsque le capteur est immobile. More...

int main (void)

The application entry point. More...

void Error_Handler (void)

This function is executed in case of error occurrence. More...

Variables

I2C_HandleTypeDef	hi2c1
UART_HandleTypeDef	hlpuart1
char	mess1 [30]
double	Temperature = 0
double	Acceleration [3] = {0}
double	norme_vecteur_gravite = 0
double	donnees_Gyrometre [3] ={0}
double	norme_vecteur_Gyrometre =0
double	donnees_mag [3] ={0}
double	noise [3] = {0}
double	tableau_moyenne [3] ={0}

Detailed Description

: Main program body

Attention

Copyright (c) 2022 STMicroelectronics. All rights reserved.

This software is licensed under terms that can be found in the LICENSE file in the root directory of this software component. If no LICENSE file comes with this software, it is provided AS-IS.

Function Documentation


```
void Average ( I2C_HandleTypeDef * hi2cx,
double * tableau_moyenne
)
```

Vérification du fonctionnement de la calibration @Note Cette fonction permet de tester la fonction Cali_gyro en calculant la moyenne de la vitesse angulaire moins son offset lorsque le capteur est immobile.

Parameters

hi2cx

Pointeur vers une structure I2C qui contient l'information de configuration pour un

i2c particulier

tableau_moyenne Pointeur vers une zone mémoire de type double contenant l'information de valeur

moyenne de la vitesse angulaire calibrée et capteur immobile (censée valoir 0)

Return values

None

Calib_gyro()

Calibration du gyromètre @Note Cette fonction permet de calculer l'offset des composantes de la vitesse angulaire en se basant sur la méthode du single point.

Parameters

hi2cx

Pointeur vers une structure I2C qui contient l'information de configuration pour un i2c

particulier

gyro_offset Pointeur vers une zone mémoire de type double contenant l'information de l'offset du

gyromètre

Return values

None

Error_Handler()

void Error_Handler (void)

This function is executed in case of error occurrence.

Return values

None

• Init()

void Init (I2C_HandleTypeDef * p_hi2c1)

Init I2C1 @Note Cette fonction met à 1 le bit 7 de PWR_MGMT_1 pour faire un reset de l'ensemble des registres du capteur, puis attend 100ms et choisit une horlorge. De plus, elle désactive l'interface master I2C du MPU-9250 pour permettre la lecture des données du magnétomètre et elle configure ce dernier pour qu'il réalise des mesures en continu.

Parameters

p_hi2c1 Pointeur vers une structure I2C qui contient l'information de configuration pour un i2c particulier

Return values

None

main()

int main (void)

The application entry point.

Return values

int

Measure_A()

```
void Measure_A ( I2C_HandleTypeDef * hi2cx,
double * Acceleration
)
```

Mesure acceleration @Note Cette fonction permet de lire l'acceleration du capteur sur les axes x,y et z puis de l'enregistrer dans une variable globale de type double.

Parameters

hi2cx

Pointeur vers une structure I2C qui contient l'information de configuration pour un i2c particulier

Acceleration Pointeur vers une zone mémoire de type double contenant l'information d'accélération

Return values

None

Measure_M()

Mesure champ magnétique @Note Cette fonction permet de lire la valeur du champ magnétique selon un repère d'axes x,y et z puis de l'enregistrer dans une variable globale de type double.

Parameters

hi2cx

Pointeur vers une structure I2C qui contient l'information de configuration pour un i2c particulier

tableau_donnee_utiles Pointeur vers une zone mémoire de type double contenant l'information de champ magnétique

Return values

None

Measure_T()

Mesure temperature @Note Cette fonction permet de lire la temperature du capteur puis de l'enregistrer dans une variable globale de type double.

Parameters

hi2cx

Pointeur vers une structure I2C qui contient l'information de configuration pour un i2c particulier.

Temperature Pointeur vers une zone mémoire de type double contenant l'information de température

Return values

None

Measure_Vitesse_angulaire()

Mesure vitesse angulaire @Note Cette fonction permet de lire la vitesse angulaire du capteur sur les axes x,y et z puis de l'enregistrer dans une variable globale de type double.

Parameters

hi2cx

Pointeur vers une structure I2C qui contient l'information de configuration pour un i2c particulier

tableau_donnee_utiles Pointeur vers une zone mémoire de type double contenant l'information de vitesse angulaire

Return values

None

Noise_G()

```
void Noise_G ( I2C_HandleTypeDef * hi2cx,
double * noise
)
```

Mesure de la valeur efficace du bruit @Note Cette fonction permet de calculer la valeur efficace du bruit du gyromètre selon une approche probabiliste, en calculant la moyenne d'un échantillon de données de vitesse angulaire.

Parameters

hi2cx Pointeur vers une structure I2C qui contient l'information de configuration pour un i2c particulier

noise Pointeur vers une zone mémoire de type double contenant l'information de valeur efficace du bruit

Return values

None

SystemClock_Config()

void SystemClock_Config (void)

System Clock Configuration.

Return values

None

Configure the main internal regulator output voltage

Initializes the RCC Oscillators according to the specified parameters in the RCC_OscInitTypeDef structure.

Initializes the CPU, AHB and APB buses clocks

Generated by 1.9.5