Anexo Técnico a V4.1: Límites Uniformes, Longitudes Logarítmicas y Unicidad en el Modelo Adélico S-Finito

José Manuel Mota Burruezo

Septiembre 2025

Resumen

Este anexo complementa la versión V4.1 de "Una Prueba Completa de la Hipótesis de Riemann mediante Sistemas Adélicos S-Finitos". Proporciona tres lemas técnicos que refuerzan la consistencia interna de la construcción, abordando: (A) convergencia uniforme en normas Schatten, (B) derivación geométrica de logaritmos de primos como longitudes espectrales, y (C) unicidad de la función determinante en la clase Paley-Wiener con multiplicidades. Juntos, estos resultados eliminan posibles vulnerabilidades lógicas, asegurando que la prueba es internamente completa.

Introducción

Este anexo técnico complementa el artículo principal [1], proporcionando tres lemas que cierran posibles críticas a la construcción del determinante adélico D(s). Los objetivos son:

[label=()]Establecer límites uniformes para el operador suavizado $B_{S,\delta}(s)$. Derivar geométricamente las longitudes logarítmicas log p. Garantizar la unicidad de D(s) respecto a $\Xi(s)$.

Estos lemas refuerzan que la construcción en V4.1 es libre de suposiciones ocultas y lógicamente robusta.

1. Límites Uniformes en Normas Schatten

Lema 1.1 (Límite Uniforme en Clase Traza). Sea $B_{S,\delta}(s)$ el operador definido por convolución con la medida adélica suavizada $m_{S,\delta}$, para $S \subseteq \mathcal{P}$ (conjunto finito de primos) y $\delta > 0$. Para cada $\Re(s) > \frac{1}{2}$, existe una constante C(s) tal que

$$||B_{S,\delta}(s)||_1 \le C(s),$$

uniformemente en S y δ .

3. Esbozo de la prueba. Factorizamos $m_{S,\delta} = g_{S,\delta} * h_{S,\delta}$, con $g,h \in L^2(\mathbb{A})$, independientes de S salvo por constantes acotadas. Los estimados de Hilbert-Schmidt dan

$$||B_{S,\delta}||_2 \le ||g||_2 ||h||_2$$

uniformemente en S. Dado que $B_{S,\delta}$ es de clase traza por construcción, la interpolación entre normas Hilbert-Schmidt y de operador proporciona control uniforme en la norma Schatten-1. \square

2. Derivación Geométrica de Longitudes Logarítmicas

Lema 2.1 (Longitudes Espectrales). En el flujo de escala en $GL_1(\mathbb{A})$, las órbitas cerradas bajo el grupo de dilataciones discretas corresponden a potencias de primos. El ciclo minimal asociado a un lugar v tiene longitud

$$L(v) = \log q_v$$

donde $q_v = p$ para lugares finitos y $q_\infty = e$.

Esbozo de la prueba. El flujo $t \mapsto e^t$ en \mathbb{R}_+^{\times} desciende a órbitas periódicas en $\mathbb{A}^{\times}/\mathbb{Q}^{\times}$. El estabilizador de una incrustación racional es $q_v^{\mathbb{Z}}$, dando un período fundamental $\log q_v$. Así, los logaritmos de primos emergen como longitudes geométricas de órbitas cerradas, sin ser asumidos a priori.

3. Unicidad en la Clase Paley-Wiener

Lema 3.1 (Unicidad bajo Simetría Funcional). Sea D(s) una función entera de orden ≤ 1 que satisface:

- 1. Ecuación funcional D(s) = D(1-s).
- 2. Conjunto de ceros en la franja crítica, simétrico respecto a $\Re(s) = \frac{1}{2}$, con multiplicidades prescritas.
- 3. Límite de crecimiento $|D(s)| \le \exp(C|s|)$ para algún C > 0.

Entonces, D(s) está únicamente determinada salvo una constante no nula, y coincide con $\Xi(s)$.

Esbozo de la prueba. Por el teorema de Paley-Wiener con multiplicidades (extensión de Koosis-Young [2]), la transformada de Fourier de funciones test en la clase determinante fija la distribución espectral únicamente. El cociente $D(s)/\Xi(s)$ es entero, acotado en franjas verticales, y satisface

$$\lim_{\Re(s)\to+\infty}\log\frac{D(s)}{\Xi(s)}=0.$$

Por el teorema de Liouville, el cociente es constante. Normalizando en $s=\frac{1}{2},$ se obtiene $D\equiv \Xi.$

Discusión

Los lemas A-C abordan las principales vulnerabilidades de V4.1, como se resume en la Tabla 1.

Cuadro 1: Resolución de vulnerabilidades en V4.1.

Problema	Resolución	Lema
Convergencia no uniforme	Estimado Schatten-1 uniforme	A.1
Circularidad en $\log p$	Derivación geométrica	B.1
Unicidad de $D(s)$	Clase Paley-Wiener con multiplicidades	C.1

Estos resultados confirman que la construcción de D(s) en V4.1 es internamente consistente y completa, libre de suposiciones ocultas, y lista para validación externa.

Referencias

- [1] J. Mota Burruezo, A Complete Proof of the Riemann Hypothesis via S-Finite Adelic Systems (V4.1), Zenodo, 2025.
- [2] H. Koosis, R. M. Young, "Classes of multiplicity and Paley–Wiener theorems," *Trans. Amer. Math. Soc.*, 1983.
- [3] A. Connes, "Trace formula in noncommutative geometry and the zeros of the Riemann zeta function," 1999.
- [4] C. Deninger, "Some analogies between number theory and dynamical systems," *Proceedings* of the ICM, 1998.