

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 1 ปีการศึกษา 2554

วิชา STA 302 Statistics for engineer สอบวันอังการที่ 27กันยายน 2554

คณะวิศวกรรมศาสตร์ เวลา 9.00—12.00 น.

<u>คำชี้แจง</u>

- ı ข้อสอบรายวิชานี้มี 8 ข้อ จำนวน 13 หน้า (รวมใบปะหน้าและสูตร) รวม 45 คะแนน
- 2 ให้นักศึกษาทำข้อสอบทุกข้อลงในตัวข้อสอบ
- 3 ห้ามนำเอกสารทุกชนิดเข้าห้องสอบ
- 4 อนุญาตให้นำเครื่องคำนวณตามระเบียบของมหาวิทยาลัยเข้าห้องสอบได้
- 5 ข้อสอบรายวิชานี้มีสูตร 3 แผ่น
- 6 ในกรณีที่ต้องการเนื้อที่ในการทำข้อสอบ ให้ทำข้อสอบต่อในกระคาษค้านหลังของแต่ละข้อ

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ

ห้ามนักศึกษานำข้อสอบและกระดาษกำตอบออกนอกห้องสอบ นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

1		_	
ชื่อ	รหัส	ภาควิชา	

 อ. คาว สงวนรังศิริกุล ผู้ออกข้อสอบ

ข้อสอบรายวิชานี้ ได้ผ่านการพิจารณาจากคณะกรรมการประจำภาควิชาคณิตศาสตร์แล้ว

คร. คุษฎี ศุขวัฒน์

หัวหน้าภาควิชาคณิตศาสตร์

2

			all in
ชื่อ		ຄາຄວີພາ	สานกหยสมุล
7D C	รหัส	ภาควิชา	The state of the s
		172000	T 7 4

 กระบวนการผลิตหนึ่งจะได้จำนวนผลิตภัณฑ์ชำรุด 9% เสมอสุ่มตัวอย่างผลิตภัณฑ์ที่ผลิตจาก กระบวนการนี้มา 100ชิ้น จงหาความน่าจะเป็นที่จะได้ผลิตภัณฑ์ ชำรุด

ก) ตั้งแต่ 8 ถึง12 ชิ้น

(3 กะแนน)

ข) มากกว่า6แต่น้อยกว่า10ชิ้น

(3กะแนน)

ช่วงเวลาที่ลูกค้าแต่ละรายจะยืนคอยเพื่อจ่ายเงินที่โต๊ะแคชเชียร์ในห้างสรรพสินค้าแห่งหนึ่งเป็นตัวแปรสุ่ม ที่มีค่าเฉลี่ย 3.2 นาที ค่าเบี่ยงเบนมาตรฐาน 1.6 นาที สุ่มตัวอย่างลูกค้ามา 64 คน จงหาความน่าจะเป็นที่ ลูกค้าจะใช้เวลาเฉลี่ยในการรอคอยเพื่อจ่ายเงิน

ก) อย่างน้อยที่สุด 2.7 นาที

(3 กะแนน)

ข) อย่างมากที่สุด3.5 นาที

(3กะแนน)

3. จากการทดลองวัดแรงที่กระทำต่อชิ้นงานจนชิ้นงานชำรุดมีค่าดังนี้

- dinimony.
- 19.8 18.5 17.6 16.7 15.8 15.4 14.1 13.6 11.9 11.4 11.4 8.8 7.5 15.4 14.1 โลยีพระจะบนกล้าง
- 15.4 19.5 14.9 12.7 11.9 11.4 10.1 7.9
- ก) จากข้อมูลการทดลองนี้ จะสรุปได้หรือไม่ว่าค่าเฉลี่ยของแรงที่กระทำต่อขึ้นงานจนชิ้นงานชำรุดมีค่า เกินกว่า 10 MPaที่ระดับนัยสำคัญ 0.05 และสมมุติว่าแรงที่กระทำต่อขึ้นงาน จนชิ้นงานชำรุดมีการ แจกแจงปกติ

(4 กะแนน)

สานกายสมุด มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธน

ข) จงหาช่วงความเชื่อมั่น 90% ของความแปรปรวนของแรงที่กระทำต่อชิ้นงานจนชิ้นงานชำรุด (4 กะแนน) 4. ค่าการเหนี่ยวนำความร้อนของเหล็กArmcoที่อุณหภูมิ100 องศาฟาเรนไฮส์ และกำลังไฟฟ้า 550 วัตต์ มี การแจกแจงปกติ และมีค่าความแปรปรวนเท่ากับ 0.09 (BTUต่อชั่วโมง- ฟุต-องศาฟาเรนไฮส์) วิศวกรต้องการ สร้างช่วงความเชื่อมั่น 95%ของค่าการเหนี่ยวนำความร้อนของเหล็กArmco เขาจึงนำเหล็กArmcoจำนวน10 ตัวอย่างมาทดลองที่อุณหภูมิ 100 องศาฟาเรนไฮส์ และกำลังไฟฟ้า550 วัตต์ แล้ววัดค่าการเหนี่ยวนำความร้อนได้ ดังนี้

41.60 41.48 42.34 41.95 41.86 42.18 41.72 42.26 41.81 42.04 จากข้อมูลการทดลองจงสร้างช่วงความเชื่อมั่น 95%ของค่าการเหนี่ยวนำความร้อนของเหล็กArmco

(5กะแนน)

5. ผู้ผลิตเครื่องเล่นวีดีโอกำลังทดสอบแผงวงจรไฟฟ้าอยู่สองแบบว่าแผงวงจรไฟฟ้าพังล้องผูญบุนั้นผลิต กระแสไฟฟ้าที่เท่าเทียมกันหรือไม่ ซึ่งข้อมูลของผลการทดลองเป็นดังนี้

แบบที่ 1
$$\bar{x}_1 = 24.2$$
 แอมแปร์ , $s_1^2 = 10$ (แอมแปร์) $n_1 = 15$

แบบที่ 2
$$\bar{x}_2 = 23.9$$
 แอมแปร์ , $s_1^2 = 20$ (แอมแปร์) $n_2 = 10$

ที่ระดับนัยสำคัญ 0.10 กระแสไฟฟ้าเฉลี่ยที่ได้จากแผงวงจร ทั้งสองแบบแตกต่างกันหรือไม่ สมมุติว่า กระแสไฟฟ้าที่ได้จากแผงวงจรไฟฟ้าทั้งสองแบบมีการแจกแจงแบบปกติและมีความแปรปรวนไม่เท่ากัน (5 กะแนน)

นหาวิทยาลัยเทค ใน โลยีพระกอนเกล้าการ 6. วิศวกรเคมีต้องการที่จะลดเวลาในการแห้งตัวของสีรองพื้นชนิดหนึ่งเขาจึงทดลองสูตรผสมสี 2 สูตร กอนเกล้าการ คือ สูตรที่ 1 ซึ่งเป็นสูตรผสมสีมาตรฐานและสูตรที่ 2 ที่มีการเติมส่วนผสมตัวใหม่ ซึ่งเชื่อว่า จะช่วย ให้สีแห้งได้เร็วขึ้นจากข้อมูลในอดีตทราบว่าความแปรปรวนของเวลาในการแห้งตัวของสีรองพื้นมีค่า เป็น 8 นาที และสารผสมตัวใหม่ที่เติมลงไปไม่ส่งผลใดๆต่อกวามแปรปรวนของเวลาในการแห้งตัว ของสีรองพื้น เขาทดลองสูตรที่ 1 กับชิ้นงานตัวอย่าง 10 ชิ้น หาเวลาเฉลี่ยที่สีแห้งตัวได้เป็น 121 นาที และสูตรที่2 กับขึ้นงานตัวอย่างอีก 10 ขึ้น หาเวลาเฉลี่ยที่สีแห้งตัวได้เป็น 112 นาที จากผลการทดลอง วิศวกรสามารถสรุปผลเกี่ยวกับส่วนผสมใหม่นี้ได้อย่างไร ที่ระดับนัยสำคัญ 0.05 สมมุติว่าเวลาในการ - แห้งตัวของสีรองพื้นทั้งสองสูตรมีการแจกแจงปกติ

(5 กะแนน)

มหาวิทยาลัยเทค โน โลยีพระลคมแคล้า

7. วิศวกรฝ่ายออกแบบของโรงงานผลิตเครื่องบินแห่งหนึ่ง ได้เสนอผลการพิสูจน์ทางทฤษฎีว่า การทาสี
ภายนอกตัวเครื่องบินขับไล่ที่โรงงานกำลังผลิต จะมีผลทำให้ความเร็วขณะทำการขับไล่ลดลง หัวหน้า
วิศวกรฝ่ายออกแบบจึงตกลงกับฝ่ายผลิตว่า เครื่องบินที่ประกอบเสร็จ 9 ลำ ควรมีการทดสอบ
กวามเร็ว ขณะทำการขับไล่ทั้งก่อนและหลังการทาสี จากการทดลองได้ข้อมูลดังต่อไปนี้

<u>เครื่องบินลำที่</u>	<u>ความเร็วขณะขับ</u>	<u>ความเร็วขณะขับไล่(นอท)</u>	
	<u>ไม่ทาสี</u>	<u>ทาสี</u>	
1	426	416	
2	418	403	
3	424	420	
4	438	431	
5	440	432	
6	421	404	
7	412	398	
8	409	405	
9	427	422	

จากข้อมูล จงทดสอบว่าทฤษฎีของวิศวกรเป็นจริงหรือไม่ ที่ระดับนัยสำคัญ 0.05

(5 กะแนน)

นทาวิทยาลัยเทคโนโลยีพระลคบเคล้ามา บหาวิทยาลัยเทคโนโลยีพระลคบเคล้ามา

8. จากการศึกษาพบว่าปริมาณไขที่เคถือบผิวของถุงกระดาษอาบไขเป็นตัวแปรสุ้ม และมีเหตุผลที่ทำให้ เชื่อว่ากวามแปรปรวนของปริมาณไขบนผิวด้านนอกน้อยกว่าบนผิวด้านใน จึงมีการทดลองกับ ตัวอย่าง 61 ตัวอย่าง ปริมาณไขที่พบกิดเป็นน้ำหนักต่อพื้นที่ (ปอนด์ต่อตารางนิ้ว) สรุปดังนี้

a 9
ผิวด้านนอก
MANIMMON

<u>ผิวด้านใน</u>

$$\overline{x} = 0.948$$

$$\overline{y} = 0.652$$

$$\sum_{i=1}^{61} x_i^2 = 91$$

$$\sum_{i=1}^{61} y_i^2 = 84$$

จงทดสอบและสรุปผลการทดลองนี้ ที่ระดับนัยสำคัญ 0.01

(5 กะแนน)

Formula

$$S^{2} = \sum_{i=1}^{n} \frac{(X_{i} - \overline{X})^{2}}{n - 1} = \frac{\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2}}{n - 1} = \frac{n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n(n - 1)}$$

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \qquad \text{when } \sigma^{2} \text{ known}$$

$$Z = \frac{\overline{X} - \mu}{S / \sqrt{n}} \qquad \text{when } \sigma^{2} \text{ unknown, } n \ge 30$$

$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}}, \upsilon = n - 1 \qquad \text{when } \sigma^{2} \text{ unknown, } n < 30$$

$$Z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{(\sigma_{1}^{2} / n_{1}) + (\sigma_{2}^{2} / n_{2})}} \qquad \text{when } \sigma_{1}^{2}, \sigma_{2}^{2} \text{ known}$$

$$\chi^{2} = \frac{(n - 1)S^{2}}{\sigma^{2}}, \upsilon = n - 1$$

$$F = \frac{S_{1}^{2} \cdot \sigma_{2}^{2}}{S_{2}^{2} \cdot \sigma_{2}^{2}}, \upsilon_{1} = n_{1} - 1, \upsilon_{2} = n_{2} - 1$$

$$\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
 when σ^2 known
$$\overline{x} - z_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \overline{x} + z_{\alpha/2} \frac{s}{\sqrt{n}}$$
 when σ^2 unknown, $n \ge 30$

$$\overline{x} - t_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}, \upsilon = n - 1$$
 when σ^2 unknown, $n < 30$

$$(\overline{x}_{1} - \overline{x}_{2}) - z_{\alpha/2} \sqrt{\frac{\sigma_{1}^{2} + \sigma_{2}^{2}}{n_{1}}} < \mu_{1} - \mu_{2} < (\overline{x}_{1} - \overline{x}_{2}) + z_{\alpha/2} \sqrt{\frac{\sigma_{1}^{2} + \sigma_{2}^{2}}{n_{1}}} \text{ when } \sigma_{1}^{2}, \sigma_{2}^{2} \text{ known}$$

$$(\overline{x}_{1} - \overline{x}_{2}) - z_{\alpha/2} \sqrt{\frac{s_{1}^{2} + s_{2}^{2}}{n_{1}}} < \mu_{1} - \mu_{2} < (\overline{x}_{1} - \overline{x}_{2}) + z_{\alpha/2} \sqrt{\frac{s_{1}^{2} + \sigma_{2}^{2}}{n_{1}}} \text{ when } \sigma_{1}^{2}, \sigma_{2}^{2} \text{ unknown}, \ n_{1}, n_{2} \ge 30$$

$$(\overline{x}_1 - \overline{x}_2) - t_{\alpha/2} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < \mu_1 - \mu_2 < (\overline{x}_1 - \overline{x}_2) + t_{\alpha/2} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}},$$

$$v = n_1 + n_2 - 2$$
, $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$ when σ_1^2, σ_2^2 unknown, $\sigma_1^2 = \sigma_2^2$, $n_1, n_2 < 30$

. when σ_1^2, σ_2^2 unknown, $\sigma_1^2 \neq \sigma_2^2$, $n_1, n_2 < 30$

$$(\overline{x}_1 - \overline{x}_2) - t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} < \mu_1 - \mu_2 < (\overline{x}_1 - \overline{x}_2) + t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \ ,$$

$$U = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{\left(S_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(S_2^2/n_2\right)^2}{n_2 - 1}}$$

$$\overline{d} - t_{\alpha/2} \frac{s_d}{\sqrt{n}} < \mu_D < \overline{d} + t_{\alpha/2} \frac{s_d}{\sqrt{n}}, \upsilon = n - 1$$

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

$$\begin{split} &(\hat{p}_{1}-\hat{p}_{2})-z_{\alpha/2}\sqrt{\frac{\hat{p}_{1}\hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2}\hat{q}_{2}}{n_{2}}} < p_{1}-p_{2} < (\hat{p}_{1}-\hat{p}_{2})+z_{\alpha/2}\sqrt{\frac{\hat{p}_{1}\hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2}\hat{q}_{2}}{n_{2}}}\\ &\frac{(n-1)s^{2}}{\chi_{\alpha/2}^{2}} < \sigma^{2} < \frac{(n-1)s^{2}}{\chi_{1-\alpha/2}^{2}}, \upsilon = n-1\\ &\frac{s_{1}^{2}}{s_{2}^{2}}\frac{1}{f_{\alpha/2}(\upsilon_{1},\upsilon_{2})} < \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} < \frac{s_{1}^{2}}{s_{2}^{2}}f_{\alpha/2}(\upsilon_{2},\upsilon_{1}), \upsilon_{1} = n_{1}-1, \upsilon_{2} = n_{2}-1 \end{split}$$

$$n = \left(\frac{z_{\alpha/2} \cdot \sigma}{e}\right)^{2}, \ n = \frac{z_{\alpha/2}^{2} \hat{p} \hat{q}}{e^{2}}, \ n = \frac{z_{\alpha/2}^{2}}{4e^{2}}$$

		r — — · · · · · · · · · ·	
H_0	Test Statistic	H_1	Critical region
1.1. $\mu = \mu_0$	σ^2 known	$\mu > \mu_0$	$z>z_{\alpha}$
	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$\mu < \mu_0$	$z < -z_{\alpha}$
	σ/\sqrt{n}	$\mu \neq \mu_0$	$z < -z_{\frac{\alpha}{2}}$ and $z > z_{\frac{\alpha}{2}}$
1.2. $\mu = \mu_0$	σ^2 unknown, $n \ge 30$	$\mu > \mu_0$	$z > z_{\alpha}$.
	$Z = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$	$\mu < \mu_0$	$z < -z_{\alpha}$
	S/\sqrt{n}	$\mu \neq \mu_0$	$z < -z_{\frac{\alpha}{2}}$ and $z > z_{\frac{\alpha}{2}}$
1.3. $\mu = \mu_0$	σ^2 unknown, $n < 30$.	$\mu > \mu_0$	$t > t_{\alpha}$
	$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$, $\upsilon = n - 1$	$\mu < \mu_0$	$t < -t_{\alpha}$
	S/\sqrt{n}	$\mu \neq \mu_0$	$t < -t_{\frac{\alpha}{2}}$ and $t > t_{\frac{\alpha}{2}}$
2.1. $\mu_1 - \mu_2 = d_0$	σ_1^2, σ_2^2 known	$\mu_1 - \mu_2 > d_0$	$z > z_{\alpha}$
	$Z = (\overline{X}_1 - \overline{X}_2) - d_0$	$\mu_1 - \mu_2 < d_0$	$z < -z_{\alpha}$
	$Z = \frac{(\overline{X}_1 - \overline{X}_2) - d_0}{\sqrt{(\sigma_1^2 / n_1) + (\sigma_2^2 / n_2)}}$	$\mu_1 - \mu_2 \neq d_0$	$z < -z_{\frac{\alpha}{2}}$ and $z > z_{\frac{\alpha}{2}}$
2.2. $\mu_1 - \mu_2 = d_0$	σ_1^2, σ_2^2 unknown, $n_1, n_2 \ge 30$	$\mu_1 - \mu_2 > d_0$	$z > z_{\alpha}$
	$(\overline{X}_1 - \overline{X}_2) - d_0$	$\mu_1 - \mu_2 < d_0$	$z < -z_{\alpha}$
	$Z = \frac{(\bar{X}_1 - \bar{X}_2) - d_0}{\sqrt{(S_1^2 / n_1) + (S_2^2 / n_2)}}$	$\mu_1 - \mu_2 \neq d_0$	$z < -z_{\frac{\alpha}{2}}$ and $z > z_{\frac{\alpha}{2}}$
2.3. $\mu_1 - \mu_2 = d_0$	σ_1^2, σ_2^2 unknown, $\sigma_1^2 = \sigma_2^2$,	$\mu_1 - \mu_2 > d_0$	$t > t_{\alpha}$
	$n_1, n_2 < 30$	$\mu_1 - \mu_2 < d_0$	$t < -t_{\alpha}$
	$T = \frac{(\overline{X}_1 - \overline{X}_2) - d_0}{S_p \sqrt{(1/n_1) + (1/n_2)}}$	$\mu_{\rm I} - \mu_{\rm 2} \neq d_{\rm 0}$	$t < -t_{\frac{\alpha}{2}}$ and $t > t_{\frac{\alpha}{2}}$
	$S_p \sqrt{(1/n_1) + (1/n_2)}$		2
	$\upsilon = n_1 + n_2 - 2$		
	$S_{p} = \sqrt{\frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}}$		
			<u> </u>

	D 0		
H_{o}	Test Statistic	H_1	Critical region
2.4. $\mu_1 - \mu_2 = d_0$	σ_1^2, σ_2^2 unknown. $\sigma_1^2 \neq \sigma_2^2$.	$\mu_1 - \mu_2 > d_0$	$l > l_{\alpha}$
	$n_1, n_2 < 30$	$\mu_{\scriptscriptstyle \rm I} - \mu_{\scriptscriptstyle 2} < d_{\scriptscriptstyle \rm O}$	$l < -l_{\sigma}$
	$T = (\overline{X}_1 - \overline{X}_2) - d_0$	$\mu_1 - \mu_2 \neq d_0$	$t < -t_{\frac{\alpha}{2}}$ and $t > t_{\frac{\alpha}{2}}$
· .	$T = \frac{(\bar{X}_1 - \bar{X}_2) - d_0}{\sqrt{(S_1^2/n_1) + (S_2^2/n_2)}}$		2 2
	• • • • •		
	$v = \frac{\left(S_1 / n_1 + S_2 / n_2\right)}{2}$		
	$\left(S_{1}^{2}/n_{1}\right)^{2} \left(S_{2}^{2}/n_{2}\right)^{2}$		
	$\upsilon = \frac{\left(S_1^2 / n_1 + S_2^2 / n_2\right)^2}{\left(S_1^2 / n_1\right)^2 + \left(S_2^2 / n_2\right)^2}$ $\frac{\left(S_1^2 / n_1\right)^2}{n_1 - 1} + \frac{\left(S_2^2 / n_2\right)^2}{n_2 - 1}$		
2.5. $\mu_D = d_0$	Pair Observation, $n < 30$	$\mu_D > d_0$	$t > t_{\alpha}$
, ,,	$\overline{D} - d_0$	$\mu_D < d_0$	$t < -t_{\alpha}$
	$T = \frac{D - d_0}{S_D / \sqrt{n}}, \upsilon = n - 1$	$\mu_D \neq d_0$	
		7-0 - 0	$t < -t_{\frac{\alpha}{2}}$ and $t > t_{\frac{\alpha}{2}}$
3.1. $p = p_0$	<i>n</i> ≥ 30	$p > p_0$	$z > z_{\alpha}$
	$Z = \frac{X - np_0}{\sqrt{np_0q_0}}$	$p < p_0$	$z < -z_{\alpha}$
	$\sqrt{np_0q_0}$	$p \neq p_0$	$z < -z_{\frac{\alpha}{2}}$ and $z > z_{\frac{\alpha}{2}}$
3.2. $p = p_0$	n < 30	$p > p_0$	$X \ge x$
	$X \sim b(x; n, p_0)$	$p < p_0$	$X \leq x$
		$p \neq p_0$	$X \le x$ if $x < np_0$ or
			$X \ge x \text{ if } x > np_0$
4.1. $p_1 - p_2 = 0$	$n_1, n_2 \ge 30$	$p_1 - p_2 > 0$	$z > z_{\alpha}$
		$p_1 - p_2 < 0$	$z < -z_{\alpha}$
	$Z = \frac{\hat{P}_1 - \hat{P}_2}{\sqrt{\hat{P}\hat{O}(1/n_1 + 1/n_2)}}$	$p_1 - p_2 < 0$ $p_1 - p_2 \neq 0$	$z < -z_{\underline{\alpha}}$ and $z > z_{\underline{\alpha}}$
	V 2 1 27		$\frac{\omega}{2}$ $\frac{\omega}{2}$
	$\hat{P}_1 = \frac{X_1}{n_1}, \ \hat{P}_2 = \frac{X_2}{n_2}$		
	$\hat{P} = \frac{X_1 + X_2}{X_1 + X_2}$		
	$P = \frac{1}{n_1 + n_2}$		
4.2. $p_1 - p_2 = d_0$		$p_1 - p_2 > d_0$	$z > z_{\alpha}$
and $d_0 \neq 0$	$(\hat{P}_1 - \hat{P}_2) - d_0$	$p_1 - p_2 < d_0$	$z < -z_{\alpha}$
	$Z = \frac{(\hat{P}_1 - \hat{P}_2) - d_0}{\sqrt{(\hat{P}_1 \hat{Q}_1 / n_1) + (\hat{P}_2 \hat{Q}_2 / n_2)}}$		$z < -z_{\frac{\alpha}{2}}$ and $z > z_{\frac{\alpha}{2}}$
$5. \ \sigma^2 = \sigma_0^2$	$(n-1)S^2$	$\sigma^2 > \sigma_0^2$	$\chi^2 > \chi_\alpha^2$
	$\chi_0^2 = \frac{(n-1)S^2}{\sigma_0^2}$	1	
	$\upsilon = n - 1$	$\sigma^2 \neq \sigma_0^2$	$\chi^{2} < \chi_{1-\alpha}^{2}$ $\chi^{2} < \chi_{1-\frac{\alpha}{2}}^{2} \text{ and } \chi^{2} > \chi_{\frac{\alpha}{2}}^{2}$
$6. \ \sigma_1^2 = \sigma_2^2$	S. ²		$f > f_{\alpha}$
2. 01 02	$F = \frac{S_1^2}{S_2^2}$	$\sigma_1^2 > \sigma_2^2$ $\sigma_1^2 < \sigma_2^2$	$f < f_1$
	$\upsilon_1 = n_1 - 1, \upsilon_2 = n_2 - 1$	$\sigma_1^2 \neq \sigma_2^2$	$f < f_{1-\alpha}$ $f < f_{1-\frac{\alpha}{2}} \text{ and } f > f_{\frac{\alpha}{2}}$
	$0_1 - n_1 - 1, 0_2 - n_2 - 1$	$\sigma_1 \neq \sigma_2$	$\frac{1}{1-\frac{\alpha}{2}}$
	<u></u>		

$$\hat{y} = a + bx$$

$$b = \frac{n \sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$

$$a = \overline{y} - b\overline{x}.$$