Esame di Logica e Algebra		
Politecnico di Milano – Ingegneria Informatica – 10 Febbraio 2021		
Cognome:	Nome:	Matricola:
	itecnico di Milano – In	itecnico di Milano – Ingegneria Informatica – 1

Tutte le risposte devono essere motivate. Gli esercizi vanno svolti su questi fogli, nello spazio sotto il testo e sul retro. I fogli di brutta non devono essere consegnati. I compiti privi di indicazione leggibile di nome e cognome non verranno corretti.

- 1. (a) La formula $(A \Rightarrow B) \Rightarrow (C \Rightarrow A)$ è un teorema della teoria L?
 - (b) Mostrare usando il metodo della risoluzione del primo ordine che la formula:

$$\mathcal{F} = \forall x \forall y \left(\left(A(x, y) \Rightarrow \exists y \neg B(y) \right) \Rightarrow \left(\forall z B(z) \Rightarrow \neg A(x, y) \right) \right)$$

è logicamente valida.

Soluzioni: Punteggio 9: a) 4; b) 5

- (a) Dal teorema di correttezza e completezza della teoria L abbiamo che la assegnata formula è un teorema di L se e solo se risulta che $\vDash (A \Rightarrow B) \Rightarrow (C \Rightarrow A)$, cioè se e solo se la formula assegnata è una tautologia. Ora, invece di scrivere la tavola di verità, ragioniamo per assurdo e cerchiamo (se esiste) un eventuale assegnamento che renda falsa la formula. Questo assegnamento ν dovrebbe rendere vero l'antecedente $A \Rightarrow B$ e falso il conseguente $C \Rightarrow A$, quindi $\nu(C) = 1$ e $\nu(A) = 0$ da cui si ottiene $\nu(A \Rightarrow B) = 1$. Quindi, per esempio, l'assegnamento $\nu(C) = 1$, $\nu(A) = 0$ e $\nu(B) = 1$ rende la formula $(A \Rightarrow B) \Rightarrow (C \Rightarrow A)$ falsa e pertanto tale formula non è una tautologia e quindi non è un teorema di L.
- (b) Dobbiamo verificare se la formula $\neg \mathcal{F}$ è insoddisfacibile e quindi, per il teorema di correttezza e completezza per refutazione della risoluzione, se $(\neg \mathcal{F})^c \vdash_R \Box$. Portiamo in fnp la formula dell'esercizio:

$$\forall x \forall y ((A(x,y) \Rightarrow \exists y \neg B(y)) \Rightarrow (\forall z B(z) \Rightarrow \neg A(x,y))) \equiv \\ \forall x \forall y (\exists t (A(x,y) \Rightarrow \neg B(t)) \Rightarrow \exists z (B(z) \Rightarrow \neg A(x,y))) \equiv \\ \forall x \forall y \forall t \exists z ((A(x,y) \Rightarrow \neg B(t)) \Rightarrow (B(z) \Rightarrow \neg A(x,y))) \equiv \\ \end{aligned}$$

Neghiamo la formula

$$\neg \mathcal{F} \equiv \exists x \exists y \exists t \forall z \neg ((A(x,y) \Rightarrow \neg B(t)) \Rightarrow (B(z) \Rightarrow \neg A(x,y)))$$

e portiamo in forma di Skolem:

$$\neg \mathcal{F}_{sk} \equiv \forall z \neg ((A(a,b) \Rightarrow \neg B(c)) \Rightarrow (B(z) \Rightarrow \neg A(a,b)))$$

Quindi dalla matrice della formula ricaviamo le clausole $\{\neg A(a,b), \neg B(c)\}, \{B(z)\}, \{A(a,b)\}$. Una risolvente tra la prima e l'ultima clausola è $\{\neg B(c)\}$ e quindi la clausola vuota si ottiene come risolvente tra quest'ultima clausola e la seconda con la sostituzione c/z. Segue che la formula assegnata è logicamente valida.

2. Sia $R \subseteq X \times X$, con $X = \{a, b, c, d, e\}$ la relazione descritta dal seguente grafo d'incidenza:

- (a) Disegnare il grafo d'adiacenza della chiusura d'equivalenza T della relazione $R \setminus \{(b, a)\}$ e costruire X/T;
- (b) Quante funzioni da X in X sono contenute in R e quante funzioni contengono R?
- (c) Dire se può esistere la chiusura d'ordine di R ed eventualmente disegnare il suo grafo d'adiacenza e disegnare il suo diagramma di Hasse, trovandone, se esistono, i punti di massimo, minimo, massimali e minimali.
- (d) Si consideri la seguente formula della logica del primo ordine:

$$\mathcal{F} = \forall x \forall y \left(\exists z (A(x, z) \land A(y, z)) \Rightarrow \exists w A(z, w) \right)$$

Si stabilisca se \mathcal{F} è vera, falsa o soddisfacibile ma non vera nell'interpretazione avente come dominio l'insieme X e in cui la lettera predicativa A(x,y) è interpretata dalla relazione R su X. \mathcal{F} è logicamente valida?

Soluzioni: Punteggio 12: a) 2, b) 2, c) 4, d) 4

(a) Il grafo d'adiacenza è il seguente

da cui ricaviamo che $X/T = \{[c], [a]\}, \text{ dove } [a] = \{a\}, [c] = \{c, d, b, e\}.$

- (b) Per ogni vertice diverso da e abbiamo una sola freccia uscente, mentre abbiamo due frecce uscenti da e, quindi le uniche due funzioni contenute in R sono: $f_1(e) = c$, $f_1(c) = b$, $f_1(d) = b$, $f_1(b) = a$, $f_1(a) = a$ e $f_2(e) = d$, $f_2(c) = b$, $f_2(d) = b$, $f_2(b) = a$, $f_2(a) = a$. Non esistono invece funzioni che contengono R dato che, per una qualunque relazione F contenente R, si avrebbe che (e, c), $(e, d) \in R \subseteq F$ e quindi F non sarebbe una funzione.
- (c) Dato che R è antisimmetrica, potrebbe esistere la sua chiusura d'ordine, chiudiamo R riflessivamente e transitivamente ottenendo la relazione T descritta dal seguente grafi d'adiacenza:

Il suo diagramma di Hasse è il seguente:

Dunque e è minimo, quindi anche minimale, mentre a è massimo e quindi anche massimale.

(d) Notate che la formula non è chiusa. Però dato che R è seriale abbiamo che per ogni z esiste sempre un w tale che $(z,w) \in R$ e quindi il conseguente della precedente formula è sempre vero, da cui otteniamo che la formula è vera in questa interpretazione. La formula non è logicamente valida basta considera l'interpretazione sul dominio $Y = \{a,b\}$ dove A è interpretata dalla relazione $S = \{(a,b)\}$: prendendo l'assegnamento x = y = a, l'antecedente $\exists z (A(x,z) \land A(y,z))$ è soddisfatto ma non lo è il conseguente dato che non esiste w tale che $(b,w) \in S$. Notare che non è vero che in ogni relazione non seriale la formula è falsa, basta considerare la relazione vuota su di un qualunque dominio che non è una relazione seriale ma rende falso l'antecedente, rendendo vera la formula.

3. Si consideri il seguente sottoinsieme di $\mathbb Q$

$$X = \left\{ \frac{z}{3^k} : z \in \mathbb{Z}, k \in \mathbb{N} = \{0, 1, \ldots\} \right\}$$

- (a) Si provi che (X, +) è un sottogruppo normale di $(\mathbb{Q}, +)$.
- (b) $(X \setminus \{0\}, \cdot)$, con l'usuale moltiplicazione di razionali, è sottogruppo di (\mathbb{Q}, \cdot) ? Si motivi la risposta.
- (c) Verificare che $(X, +, \cdot)$ è un sottoanello di $(\mathbb{Q}, +, \cdot)$; X è un ideale di $(\mathbb{Q}, +, \cdot)$?
- (d) Si consideri la seguente formula della logica del primo ordine:

$$\forall x \forall y \forall z \left(E(f(f(x,y),z), f(x,f(y,z))) \land (A(x) \Rightarrow A(f(x,z))) \right)$$

Si stabilisca se essa è vera, falsa o soddisfacibile ma non vera nell'interpretazione avente come dominio \mathbb{Q} ed in cui E interpreta la relazione di uguaglianza, f interpreta la moltiplicazione e A(x) si interpreta come " $x \in X$ ". È logicamente valida o contradditoria.

Soluzioni: Punteggio 10: a) 3, b) 2, c) 2, d) 3

- (a) Per il criterio di caratterizzazione dei sottogruppi verifichiamo se presi $x_1, x_2 \in X$ abbiamo che $x_1 x_2 \in X$. Se $x_1 = z_1/3^{k_1}$, $x_2 = z_2/3^{k_2}$, e supponiamo $k_1 \geq k_2$, allora abbiamo $x_1 x_2 = \frac{z_1 3^{k_1 k_2} z_2}{3^{k_1}} \in X$ in quanto $z_1 3^{k_1 k_2} z_2$ è un intero. Segue che (X, +) è un sottogruppo di $(\mathbb{Q}, +)$ ed inoltre, essendo $(\mathbb{Q}, +)$ commutativo, allora ogni suo sottogruppo è normale e quindi deduciamo che anche (X, +) è normale.
- (b) Nel testo si intendeva ovviamente il gruppo ($\mathbb{Q}\setminus\{0\}$, ·) e non (\mathbb{Q} , ·). ($X\setminus\{0\}$, ·) non è un sottogruppo di ($\mathbb{Q}\setminus\{0\}$, ·), infatti per esempio $2/3 \in X$ ma l'inverso moltiplicativo è 3/2 che non appartiene a X, infatti non esistono nessun intero z e nessun naturale k tali che $z/3^k = 3/2$. Infatti l'equazione $z/3^k = 3/2$ implica che $z = 3^{k+1}/2$ e dato che 2 non divide 3 abbiamo che z non può essere un intero.
- (c) Verifichiamo che $(X, +, \cdot)$ è un sottoanello di $(\mathbb{Q}, +, \cdot)$. Abbiamo già verificato nel primo punto che presi $x_1, x_2 \in X$ abbiamo che $x_1 x_2 \in X$, dunque dobbiamo solo verificare che $x_1 \cdot x_2 \in X$. Questo è molto semplice dato che se $x_1 = z_1/3^{k_1}$, $x_2 = z_2/3^{k_2}$, allora $x_1x_2 = (z_1z_2)/3^{k_1+k_2} \in X$ dato che z_1z_2 è ancora intero. Per il criterio di caratterizzazione dei sottoanelli, $(X, +, \cdot)$ è un sottoanello di $(\mathbb{Q}, +, \cdot)$ ma non è un ideale, infatti prendendo $z = 3/2 \in \mathbb{Q}$ e $x = 1 \in X$ abbiamo che $xz = 3/2 \notin X$ (lo abbiamo visto nel punto precedente).
- (d) La formula dice che, per ogni $x, y, z \in \mathbb{Q}$, il prodotto di numeri razionali è un'operazione associativa (che è vero) e che se $x \in X$ allora anche $xz \in X$. Quest'ultima parte non è vera, come abbiamo visto prima prendendo per esempio x=1, z=2/3. Quindi la formula è falsa nell'interpretazione data (essendo congiunzione di due formule di cui una falsa) e quindi non è logicamente valida. Non è nemmeno logicamente contradditoria, basta considerare l'interpretazione avente come dominio un qualunque insieme Y e in cui E interpreta la relazione binaria universale ed E la relazione unaria (sottoinsieme) coincidente con E0, cioè E1, significa "E2". In questo caso entrambe le sottoformule E2, f(f(x,y), z), f(x, f(y,z))) e E3, d(x) E4, d(x,z)) risultano vere e la loro congiunzione è pertanto vera, così come la sua chiusura univerale.