Hydraulic bore interaction with a column A comparison between the solution of the shallow equation and experimental results

Xinsheng Qin, Kaspar Müller

AM574 Conservation Laws and Finite Volume Methods University of Washington, Seattle USA

March 13, 2015

Outline

Introduction

The Model

Framework and Method

Test cases

Outlook

Introduction

Comparison between Solution of the shallow water equations solved with CLAWPACK and experimental results.

- Experiment by Halldór Árnason
- Comaprison of water level at various locations
- 3 Cases
 - Dam Break
 - 2 Dam Break with square column
 - 3 Dam Break with cylindrical column

The Model equations

2D depth averaged shallow water equations

$$h_t + (uh)_x + (vh)_y = 0$$

$$(hu)_t + (huv)_y + (hu^2 + \frac{1}{2}gh^2)_x = -ghB_x - Du$$

$$(hv)_t + (huv)_x + (hv^2 + \frac{1}{2}gh^2)_y = -ghB_y - Dv$$

where B is the topography and D the drag coefficient. g stands for the gravitational acceleration.

CLAWPACK/GeoClaw

GeoClaw

- Geophysical flow problems
- Specialized version of CLAPACK and AMRClaw

Requirements for solver

- Flow over topography
- Handle non-trivial steady state
 - Ocean at rest
- Dry state handling
- Multiple scales in space and time

Riemann solver

Approaches

- f-wave approach
 - guarantees numerical conservation
 - source terms simply included in solver
 - not clear how to prevent depth negativity
- HLLE solver
 - guarantees depth non-negativity
 - fails to capture large transonic rarefactions
 - not well balanced for steady states

Augmented Riemann solver

- Split into more than two waves
 - Add 1 wave to have two waves to represent large transonic rarefactions
 - Add 1 wave to incorporate topography balance for steady state

Wave propagation algorithm

2D hyperbolic system

$$q_t + A(q, x, y)q_x + B(q, x, y)q_y = 0$$

Approximation of the state

$$\begin{split} Q_{ij}^{n+1} &= Q_{ij}^{n} &- \frac{\Delta t}{\Delta x} \left(\mathcal{A}^{+} \Delta Q_{i-1/2,j}^{n} + \mathcal{A}^{-} \Delta Q_{i+1/2,j}^{n} \right) \\ &- \frac{\Delta t}{\Delta y} \left(\mathcal{B}^{+} \Delta Q_{i,j-1/2}^{n} + \mathcal{B}^{-} \Delta Q_{i,j+1/2}^{n} \right) \\ &- \frac{\Delta t}{\Delta x} \left(\tilde{F}_{i+1/2,j}^{n} - \tilde{F}_{i-1/2,j}^{n} \right) - \frac{\Delta t}{\Delta y} \left(\tilde{G}_{i,j+1/2}^{n} - \tilde{G}_{i,j-1/2}^{n} \right) \end{split}$$

- Fluctuations $\mathcal{A}^{\pm}\Delta Q_{i\mp1/2,i}^n$ and $\mathcal{B}^{\pm}\Delta Q_{i,i\mp1/2,i}^n$
- Second order correction terms $\tilde{F}^n_{i\pm 1/2,j}$ and $\tilde{G}^n_{i,j\pm 1/2}$

Approach in 1D

f-wave approach

$$f(Q_i) - f(Q_{i-1}) = \sum_{p=1}^{m} \mathcal{Z}_{i-1/2}^p = \sum_{p=1}^{m} \beta_{i-1/2}^p r_{i-1/2}^p$$

jumps in the flux instead of state

Fluctuations

Decomposition into waves

$$\begin{split} \mathcal{A}^{-}\Delta Q_{i-1/2} &= \sum_{p:s_{i-1/2}^{p} < 0} \mathcal{Z}_{i-1/2}^{p} & \begin{bmatrix} H_{i} - H_{i-1} \\ HU_{i} - HU_{i-1} \\ \varphi(Q_{i}) - \varphi(Q_{i-1}) \end{bmatrix} = \sum_{p=0}^{3} \alpha_{i-1/2}^{p} w_{i-1/2}^{p} \\ \mathcal{B}_{i} - \mathcal{B}_{i-1} \end{bmatrix}$$

Setup of the test case

Case01 - Dam Break

- Wave arrives at t=3.8s
- Second jump from reflection from right wall

- GeoClaw 0.02s ahead
- Peak value overestimated

movie

Case02 - Dam Break with Square Column

Case02 - Dam Break with Square Column

- Two jumps in GeoClaw result
 - One originates in dam break
 - Another results from wave reflected by column
- Time interval becomes shorter
- Difference between GeoClaw result and experiment result:
 - Shock shape
 - Arrival time of the shock

Case02 - Dam Break with Square Column

- Wave height at front face
- Wave height at back face
- Comparison between cases with and without column

Case03 - Dam Break with Cylindrical Column

movie

Case03 - Dam Break with Cylindrical Column

- Mesh refinement
- History of wave height at front face and back of the column

Conclusion and Outlook

- For the dam break problem, GeoClaw underestimates the arrival time of the shock by only 0.02s
- In both cases with cylinder and square column, GeoClaw overestimates the arrival time of the shock
- In general GeoClaw agrees well with the measured water levels at various locations for the square as well as the cylindrical column

Future work

- A mapped grid could be used to improve the solution in cylindrical column case
- Comparing the forces on the structure by using $F = \frac{1}{2}C_D\rho dhu^2$