Instituto de Informática Departamento de Informática Aplicada

Dados de identificação

Período Letivo: 2013/2

Professor Responsável: TAISY SILVA WEBER

Disciplina: FUNDAMENTOS DE TOLERÂNCIA A FALHAS

Sigla: INF01209 Créditos: 4 Carga Horária: 60

Súmula

Conceitos básicos de segurança de funcionamento. Aplicações de tolerância a falhas. Técnicas para incremento de confiabilidade de disponibilidade. Identificação e seleção de técnicas de projeto tolerante a falhas. Tolerância a falhas em sistemas distribuídos e arquiteturas paralelas. Medidas e ferramentas para avaliação e simulação de sistemas tolerantes a falhas. Arquiteturas de sistemas tolerantes a falhas.

Currículos

Currículos	Etapa Aconselhada	Natureza
ENGENHARIA DE COMPUTAÇÃO	7	Eletiva
BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO	6	Obrigatória

Objetivos

Esta disciplina visa introduzir conceitos e técnicas empregadas para atingir segurança de funcionamento (dependabilidade) em sistemas computacionais que exijam um alto grau de confiabilidade e disponibilidade. Ao final da disciplina, o aluno deve estar apto para selecionar técnicas a serem utilizadas em uma vasta gama de sistemas computacionais, considerando, além da aplicação, parâmetros como custo e desempenho para alcançar a confiabilidade e a disponibilidade desejada.

Conteúdo Programático

Semana	Título	Conteúdo
1 a 3	Conceitos e terminologia de segurança de funcionamento	Falhas: físicas, humanas, intencionais; falhas de software e de hardware. Erros e defeitos. Atributos de dependabilidade: confiabilidade, disponibilidade, segurança funcional (safety). Taxonomia geral
4 a 6	Técnicas de tolerância a falhas	Mecanismos de controle de falhas: detecção, confinamento, avaliação, recuperação de erros, tratamento de falhas Técnicas de controle de respostas sob falha Redundância de hardware, software e temporal Códigos para detecção e correção de erros Tolerância a falhas em software
7	Medidas de confiabilidade e disponibilidade	Cálculo de confiabilidade e disponibilidade Medidas: MTTF, MTBF, MTTR, cobertura Modelagem, modelos de confiabilidade de software Análise experimental de dependabilidade
8 a 10	Arquiteturas tolerantes a falhas	Áreas de aplicação de tolerância a falhas: sistemas de alta disponibilidade; sistemas de vida longa; computação crítica; exemplos de sistemas por área de aplicação. Arquitetura de microprocessadores com tolerância a falhas. Servidores e mainframes tolerantes a falhas, de alta disponibilidade e com disponibilidade contínua. Arquiteturas para sistemas críticos: computadores de bordo e controladore lógico-programáveis.
11 a 12	Segurança funcional crítica (safety)	Risco, redução de risco, nível de integridade de segurança funcional Segurança funcional em sistemas de controle, embarcados e embutidos Funções de segurança em sistemas críticos Normas de certificação para nível de integridade de segurança (SIL)
13 a 15	Tolerância a falhas em sistemas distribuídos	Falhas e defeitos em sistemas distribuídos Modelos de sistemas distribuídos, blocos básicos e serviços tolerantes a falhas Concordância bizantina, comunicação de grupo Replicação e recuperação Clusters de alta disponibilidade

Metodologia

Aulas teóricas: (48 horas)

Aulas práticas; (12 horas)

Análise de artigos através de questionários para exercitar conceitos estudados na disciplina. Trabalhos de pesquisa sobre produtos tolerantes a falhas (servidores, clusters, controladores, ...). Apresentação de seminários pelos alunos, em duplas, sobre produtos tolerantes a falhas.

Exercícios e atividades extra-classe: 10 horas (600 minutos)

As 60 horas previstas para atividades teóricas e práticas indicadas neste Plano de Ensino incluem 30 encontros de 100 minutos de duração (2 períodos de 50 minutos por encontro, 2 encontros por semana, durante 15 semanas), num total de 3.000 minutos, e mais 10 horas (600 minutos) de atividades autônomas, realizadas sem contato direto com o professor, correspondentes a execícios e trabalhos extraclasse.

Os questionários, as pesquisas, as apresentações exercícios e atividades extra-classe são avaliados e fazem parte dos critérios de avaliação. A disciplina é presencial, mas usa recursos de EAD para intensificar as experiências de aprendizagem.

Carga Horária

Teórica: 48 horas Prática: 12 horas

Experiências de Aprendizagem

Os alunos realizam:

- Leitura e análise de artigos recentes e relevantes para fixação dos conteúdos da disciplina: As atividades de leitura e análise de artigos estão distribuídas uniformemente ao longo da disciplina e são realizadas parcialmente em aulas de laboratório conectadas a Internet, onde os alunos podem buscar os artigos em bibliotecas digitais (IEEE, ACM, ...), e parcialmente como trabalho extra-classe. Essas atividades são conduzidas através do moodle.
- Pesquisa por produtos tolerantes a falhas na Web e apresentação: Os alunos se organizam em duplas, escolhem um produto comercial tolerante a falhas, visitam o site do fabricante para colher dados, respondem a um questionário, cujo objetivo é fornecer um padrão para auxiliá-los na pesquisa, e finalmente apresentam para toda a turma o resultado da pesquisa.
- Duas provas presenciais individuais com recursos do moodle e consulta livre a livros e artigos, inclusive a Internet.

Critérios de Avaliação

Provas:

2 provas escritas, individuais, presenciais, com consulta.

Trabalhos

Questionários sobre artigos analisados em aula, pesquisa sobre produtos tolerantes a falhas e seminários. Todos os trabalhos entregues na data têm o mesmo peso e valem no conjunto 20% do conceito final. Os alunos devem realizar todos os trabalhos para terem aprovação na disciplina.

Bônus por participação:

75% de frequência é exigida de acordo com regimento. Alunos com 100% de frequência recebem 0,5 ponto na média final como bônus por participação.

Conceitos:

Cada prova é computada como 40% do conceito final. O conjunto dos trabalhos é computado em 20%. Serão considerados aprovados alunos com conceito A, B ou C (A = 9 a 10, B = 7,5 até 9, C = 6,5 até 7,5) e mais do que 75% de frequência. Alunos com mais faltas de sete (7) recebem FF.

Divulgação dos resultados:

Provas realizadas no sistema moodle: divulgação em até uma semana após a realização das provas por todas as turmas.

Trabalhos: divulgação em até uma semana após o prazo final de entrega dos trabalhos.

Observações: situações imprevistas poderão estender os prazos estabelecidos acima.

Atividades de Recuperação Previstas

Recuperação por falta justificada:

Nos casos de ausência justificada de acordo com o Regimento da Universidade através da junta médica, o aluno poderá recuperar uma das duas provas em data, horário e local a serem marcados pelo professor.

Recuperação de trabalho:

No máximo 25% dos trabalhos podem ser recuperados até o final da disciplina. No caso de recuperação da análise de um artigo, a recuperação será feita sobre um artigo diferente do proposto no prazo original.

Recuperação de conceito D:

O aluno que obtiver conceito final D, não apresentar nenhuma nota de prova inferior a 4 e entregar todos os trabalhos poderá recuperar o conceito realizando uma prova versando sobre todo o conteúdo do programa. Se a nota obtida nessa prova for igual ou superior a 6,5 o conceito mudará para C.

Bibliografia

Básica Essencial

Israel Koren, C. Mani Krishna - Fault-Tolerant Systems - Editora Morgan Kaufmann (ISBN: 978-0120885251)

Básica

Pradhan, D. K - Fault-Tolerant System Design - Editora Prentice Hall (ISBN: 0-13-057887-8)

Complementar

Birman, K. - Reliable distributed systems - Editora Springer (ISBN: 0387215093)

Dunn, William R. - Practical design of safety-critical computer systems - Editora Reliability Press (ISBN: 0971752702)

Jalote, P - Fault tolerance in distributed systems - Editora Prentice Hall (ISBN: 0-13-301367-7)

Laura L. Pullum - Software Fault Tolerance Techniques and Implementation - Editora Artech House Publishers (ISBN: 978-1580531375)

Shooman, Martin L. - Reliability of computer systems and networks :fault tolerance, analysis, and design - Editora John Wiley (ISBN: 0471293423)

Outras Referências

Não existem outras referências para este plano de ensino.

Observações

Nenhuma observação incluída.