练习1

列真值表,无需赘述。

7°

(¬	р	V	q)	\rightarrow	(¬	q	\wedge	r)
0	1	0	1	1	0	1	0	1
0	1	0	1	1	0	1	0	0
0	1	0	0	1	1	0	1	1
0	1	0	0	1	1	0	0	0
1	0	1	1	0	0	1	0	1
1	0	1	1	0	0	1	0	0
1	0	0	0	1	1	0	1	1
1	0	0	0	1	1	0	0	0

8°

(p	\rightarrow	q)	\rightarrow	(p	\rightarrow	r)
1	1	1	1	1	1	1
1	1	1	0	1	0	0
1	0	0	1	1	1	1
1	0	0	1	1	0	0
0	1	1	1	0	1	1
0	1	1	1	0	1	0
0	1	0	1	0	1	1
0	1	0	1	0	1	0

9°

(¬	(p	V	(q	\wedge	r)))	\leftrightarrow	((p	V	q)	\wedge	(p	V	r))
0	1	1	1	1	1	0	1	1	1	1	1	1	1
0	1	1	1	0	0	0	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1	1	0	1	1	1	1
0	1	1	0	0	0	0	1	1	0	1	1	1	0
0	0	1	1	1	1	0	0	1	1	1	0	1	1
1	0	0	1	0	0	0	0	1	1	Θ	0	0	0
1	0	0	0	0	1	0	0	0	0	0	0	1	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0

练习2

1.

$$L_0 = X_1 = \{x_1\}$$

$$L_1=\{\lnot x_1,\ x_1 o x_1\}$$

$$L_2 = \{ \lnot (\lnot x_1), \ \lnot (x_1 o x_1), \ x_1 o (\lnot x_1), \ x_1 o (x_1 o x_1), \ (\lnot x_1) o x_1, \ (x_1 o x_1) o x_1 \}$$

2.

$$L_0=X_2=\{x_1,\ x_2\}$$

$$L_1 = \{ \lnot x_1, \ \lnot x_2, \ x_1
ightarrow x_1, \ x_1
ightarrow x_2, \ x_2
ightarrow x_1, \ x_2
ightarrow x_2 \}$$

$$L_2 = \{ \neg (\neg x_1), \ \neg (\neg x_2), \ \neg (x_1 o x_1), \ \neg (x_1 o x_2), \ \neg (x_2 o x_1), \ \neg (x_2 o x_2), \ \neg (x_2 o x_$$

$$x_1 o (\neg x_1), \ x_1 o (\neg x_2), \ x_1 o (x_1 o x_1), \ x_1 o (x_1 o x_2), \ x_1 o (x_2 o x_1), \ x_1 o (x_2 o x_2),$$

$$x_2 o (\neg x_1), \; x_2 o (\neg x_2), \; x_2 o (x_1 o x_1), \; x_2 o (x_1 o x_2), \; x_2 o (x_2 o x_1), \; x_2 o (x_2 o x_2),$$

$$(\neg x_1) o x_1, \; (\neg x_2) o x_1, \; (x_1 o x_1) o x_1, \; (x_1 o x_2) o x_1, \; (x_2 o x_1) o x_1, \; (x_2 o x_2) o x_1,$$

$$(\neg x_1) o x_2, \; (\neg x_2) o x_2, \; (x_1 o x_1) o x_2, \; (x_1 o x_2) o x_2, \; (x_2 o x_1) o x_2, \; (x_2 o x_2) o x_2 \}$$

3.

$$|L_0| = |X_3| = 3$$

$$|L_1|=3+3 imes 3=12$$

$$|L_2| = 12 + 3 \times 12 + 12 \times 3 = 84$$

$$|L_3| = 84 + 3 \times 84 + 84 \times 3 + 12 \times 12 = 732$$

练习3

2.

1°

$$(1) \ (\lnot x_1
ightarrow \lnot x_2)
ightarrow (x_1
ightarrow x_2)$$

$$(2) \; ((\lnot x_1 \rightarrow \lnot x_2) \rightarrow (x_1 \rightarrow x_2)) \rightarrow ((x_1 \rightarrow x_2) \rightarrow ((\lnot x_1 \rightarrow \lnot x_2) \rightarrow (x_1 \rightarrow x_2))) \tag{L_1}$$

$$(3) \; (x_1
ightarrow x_2)
ightarrow ((\lnot x_1
ightarrow \lnot x_2)
ightarrow (x_1
ightarrow x_2))$$

2°

$$(1) \; (x_1
ightarrow (x_2
ightarrow x_3))
ightarrow ((x_1
ightarrow x_2)
ightarrow (x_1
ightarrow x_3))$$

$$(2) \ ((x_1 \to (x_2 \to x_3)) \to ((x_1 \to x_2) \to (x_1 \to x_3))) \to (((x_1 \to (x_2 \to x_3)) \to (x_1 \to x_2)) \to ((x_1 \to (x_2 \to x_3)) \to (x_1 \to x_3))) \\ (L_2)$$

$$(3) \; ((x_1
ightarrow (x_2
ightarrow x_3))
ightarrow (x_1
ightarrow x_2))
ightarrow ((x_1
ightarrow (x_2
ightarrow x_3))
ightarrow (x_1
ightarrow x_3))$$

3.

2°

$$(1) \lnot \lnot p$$

$$(2) \neg \neg p \rightarrow (\neg \neg \neg p \rightarrow \neg \neg p) \tag{L_1}$$

假定

 (L_3)

$$(3) \lnot \lnot \lnot \lnot p
ightarrow \lnot \lnot p$$

$$(4) \ (\neg\,\neg\,\neg\,p\,\rightarrow\,\neg\,\neg\,p) \rightarrow (\neg\,p\,\rightarrow\,\neg\,\neg\,\neg\,p)$$

$$(6) \ (\neg \ p \rightarrow \neg \ \neg \ p) \rightarrow (\neg \ \neg \ p \rightarrow p) \tag{L_3}$$

$$(7) \lnot \lnot p \to p$$

(8)
$$p$$
 (1), (7), MP

另法

$egin{aligned} (1) & eg & p \ (2) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto (p) & eg & p \ oto $	假定 否定前件律 (1),(2),MP (L_3) (3),(4),MP
3°	(L_3)
$egin{align} (1) \lnot (q ightarrow r) ightarrow \lnot p \ (2) \ (\lnot (q ightarrow r) ightarrow \lnot p) ightarrow (p ightarrow r)) \ (3) \ p ightarrow (q ightarrow r) \ (4) \ (p ightarrow (q ightarrow r)) ightarrow ((p ightarrow q) ightarrow (p ightarrow r)) \ (5) \ (p ightarrow q) ightarrow (p ightarrow r) \ (6) \ p ightarrow q \ (7) \ p ightarrow r \ \end{cases}$	假定 (L_3) $(1), (2), MP$ (L_2) $(3), (4), MP$ 假定 $(5), (6), MP$
4° $(1) \ p \rightarrow (q \rightarrow r)$ $(2) \ (p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$ $(3) \ (p \rightarrow q) \rightarrow (p \rightarrow r)$ $(4) \ ((p \rightarrow q) \rightarrow (p \rightarrow r)) \rightarrow (q \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)))$ $(5) \ q \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$ $(6) \ (q \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))) \rightarrow ((q \rightarrow (p \rightarrow q)) \rightarrow (q \rightarrow (p \rightarrow r)))$ $(7) \ (q \rightarrow (p \rightarrow q)) \rightarrow (q \rightarrow (p \rightarrow r))$ $(8) \ q \rightarrow (p \rightarrow q)$ $(9) \ q \rightarrow (p \rightarrow r)$	假定 (L_2) $(1),(2),MP$ (L_1) $(3),(4),MP$ (L_2) $(5),(6),MP$ (L_1) $(7),(8),MP$
练习4 2.	
首先由练习3.2°,有 $\{\neg\neg p\}\vdash p$,由演绎定理有 $\vdash\neg\neg p\to p$ 以下先证明 $\vdash p\to\neg\neg p$	
$egin{align} (1) \lnot \lnot p ightarrow p \ (2) \ (\lnot \lnot \lnot p ightarrow \lnot p) ightarrow (p ightarrow \lnot p) \ (3) \ (p ightarrow \lnot \lnot p) \ \end{array}$	定理 (L_3) $(1),(2),MP$
然后,由演绎定理,只需证 $\{q o p\}$ $\vdash \lnot p o \lnot q$	
$egin{aligned} (1) & p ightarrow eg & p \ (2) & q ightarrow p \ (3) & q ightarrow eg & \neg eg & p \ (4) eg & \neg eg & p \ (5) eg & q ightarrow q ightarrow q \ (5) eg & q ightarrow eg & q ightarrow (5) eg & q ightarrow eg & q ightarrow (7) eg & q ightarrow eg & q ightarrow q ig$	定理 假定 (1),(2),HS 定理 (3),(4),HS (L_3) (5),(6),MP
3°	
由演绎定理,只需证 $\{(p o q) o p\}dash p$	
$egin{align} (1) \lnot p ightarrow (p ightarrow q) \ (2) \ (p ightarrow q) ightarrow p \ (3) \lnot p ightarrow p \ (4) \ (\lnot p ightarrow p) ightarrow p \ (5) \ p \ \end{pmatrix}$	否定前件律 假定 (1),(2), <i>HS</i> 否定肯定律 (3),(4), <i>MP</i>

练习5

2°

由演绎定理,只需证 $\{\neg\ p \to q,\ \neg\ q\} \vdash p$

- $(1) \neg p$
- $(2)\ (p\to q)\to p$
- (3) q
- $(4)\ \neg q$

由(3)(4)用反证律即得 $\{\neg\ p \to q,\ \neg\ q\} \vdash p$

 3°

由演绎定理,只需证 $\{\neg\;(p o q)\} \vdash \neg\; q$

- (1) q
- $(2) \; q \to (p \to q)$
- $(3)~p \rightarrow q$
- $(4) \ \neg (p \to q)$

由(3)(4)用归谬律即得 $\{\neg\ (p \rightarrow q)\} \vdash \neg\ q$

新假定 假定

(1),(2),*MP* 假定

> 新假定 假定

(1),(2),*MP* 假定