Machine Learning Approaches for Predicting Coronary Heart Disease

Dataset

```
In [31]: import pandas as pd
          # Load the dataset
          data = pd.read_csv('/Users/nick/Downloads/heart-disease.csv')
          # Display first few rows
          data.head()
Out[31]:
            sbp tobacco
                           Idl adiposity famhist typea obesity alcohol age chd
          0 160
                    12.00 5.73
                                  23.11 Present
                                                        25.30
                                                                97.20 52
                                                                            1
          1 144
                                                        28.87
                     0.01 4.41
                                  28.61 Absent
                                                                2.06
                                                                      63
          2 118
                    0.08 3.48
                                  32.28 Present
                                                        29.14
                                                                 3.81 46
                                                                            0
                                                  52
                    7.50 6.41
                                  38.03 Present
          3 170
                                                        31.99
                                                                24.26 58
          4 134
                   13.60 3.50
                                  27.78 Present
                                                  60
                                                        25.99
                                                                57.34 49
                                                                            1
```

Data Pre-processing

```
In [32]: import pandas as pd
         # Check and encode 'famhist' column
         if 'famhist' in data.columns:
             # Map 'Present' to 1 and 'Absent' to 0
             data['Famhist'] = data['famhist'].map({'Present': 1, 'Absent': 0})
             # Remove original 'famhist' column
             data.drop('famhist', axis=1, inplace=True)
             # Check for missing values
             print("'famhist' column does not exist in the DataFrame.")
         # Identify any missing values across columns
         missing_values = data.isnull().sum()
         print(missing_values)
         # Save the cleaned data to a new CSV file
         data.to_csv('/Users/nick/Downloads/preprocessed_data.csv', index=False)
         # Confirmation message
         print('Preprocessed data has been saved.')
         # Show the first few rows to confirm changes
         data.head()
         sbp
         tobacco
         ldl
         adiposity
         typea
         obesity
         alcohol
         age
         chd
         Famhist
         dtype: int64
         Preprocessed data has been saved.
            sbp tobacco Idl adiposity typea obesity alcohol age chd Famhist
Out[32]:
                                                      97.20
                    0.01 4.41
                                              28.87
                                                       2.06 63
         2 118
                    0.08 3.48
                                 32.28
                                              29.14
                                                       3.81 46
           170
                    7.50 6.41
                                 38.03
                                              31.99
                                                      24.26
                                                            58
                   13.60 3.50
                                 27.78
                                              25.99
                                                            49
         4 134
                                                      57.34
```

Exploratory Data Analysis (EDA)

Descriptive Statistics

```
In [33]: import pandas as pd
# Calculate statistical characteristics of the dataset
statistical_characteristics = data.describe()
```

Out[33]:

	sbp	tobacco	ldl	adiposity	typea	obesity	alcohol	age	chd	Famhist
count	462.000000	462.000000	462.000000	462.000000	462.000000	462.000000	462.000000	462.000000	462.000000	462.000000
mean	138.326840	3.635649	4.740325	25.406732	53.103896	26.044113	17.044394	42.816017	0.346320	0.415584
std	20.496317	4.593024	2.070909	7.780699	9.817534	4.213680	24.481059	14.608956	0.476313	0.493357
min	101.000000	0.000000	0.980000	6.740000	13.000000	14.700000	0.000000	15.000000	0.000000	0.000000
25%	124.000000	0.052500	3.282500	19.775000	47.000000	22.985000	0.510000	31.000000	0.000000	0.000000
50%	134.000000	2.000000	4.340000	26.115000	53.000000	25.805000	7.510000	45.000000	0.000000	0.000000
75%	148.000000	5.500000	5.790000	31.227500	60.000000	28.497500	23.892500	55.000000	1.000000	1.000000
max	218.000000	31.200000	15.330000	42.490000	78.000000	46.580000	147.190000	64.000000	1.000000	1.000000

Family History and CHD Events

```
In [34]: import matplotlib.pyplot as plt
         import seaborn as sns
         # Create a more attractive countplot with seaborn
         plt.figure(figsize=(10, 6))
         sns.set_style("whitegrid")
         sns.countplot(x='chd', hue='Famhist', data=data, palette='coolwarm', edgecolor=sns.color_palette("dark", 3))
         # Add labels, title, and improve legend
         plt.xlabel('CHD Event', fontsize=14, labelpad=10)
         plt.ylabel('Count', fontsize=14, labelpad=10)
         plt.title('Fig 1. Family History vs CHD Event', fontsize=16, pad=20)
         plt.xticks([0, 1], ['No CHD', 'CHD'], fontsize=12)
         plt.yticks(fontsize=12)
         plt.legend(title='Family History', title_fontsize='13', fontsize='12', loc='upper right', frameon=True, shadow=True)
         # Show the plot
         plt.tight_layout()
         plt.show()
```

Fig 1. Family History vs CHD Event

CHD Event Frequency

```
import matplotlib.pyplot as plt
import seaborn as sns

# Set the aesthetic style of the plots
sns.set_style("whitegrid")

# Create a more attractive countplot with seaborn
```

```
plt.figure(figsize=(10, 6))
sns.countplot(x='chd', data=data, palette='viridis', saturation=0.75,linewidth=1.5)

# Add labels, title, and improve font sizes
plt.xlabel('CHD Event', fontsize=14, labelpad=15)
plt.ylabel('Count', fontsize=14, labelpad=15)
plt.title('Fig 2. Frequency of CHD Events', fontsize=16, pad=20)
plt.xticks([0, 1], ['Negative', 'Positive'], fontsize=12)
plt.yticks(fontsize=12)

# Adding gridlines for better readability
plt.grid(axis='y', linestyle='-', alpha=0.7)

# Ensure layout is well-organized
plt.tight_layout()

# Show the plot
plt.show()
```

Fig 2. Frequency of CHD Events

Data Imbalance

```
In [36]: import pandas as pd
          # 'chd' is the target column
          y = data['chd']
          # Count the occurrences of each class in the target column
          class_distribution = y.value_counts()
          # Calculate the percentage of each class
          class_percentage = y.value_counts(normalize=True) * 100
          print("Class Distribution:\n", class_distribution)
print("\nClass Percentage:\n", class_percentage)
          Class Distribution:
           chd
          0
               302
             160
          1
          Name: count, dtype: int64
          Class Percentage:
          chd
               65.367965
          0
          1
             34.632035
          Name: proportion, dtype: float64
```

Boxplot Analysis

```
import matplotlib.pyplot as plt
import seaborn as sns
```

```
# Define figure size and layout
fig, axes = plt.subplots(nrows=2, ncols=4, figsize=(15, 10))
# Flatten axes for iteration
axes = axes.flatten()
# Features to plot
features = ['sbp', 'tobacco', 'ldl', 'adiposity', 'typea', 'obesity', 'alcohol', 'age']
# Create boxplot for each feature
for i, feature in enumerate(features):
    # Plot boxplot
    sns.boxplot(data=data, x='chd', y=feature, ax=axes[i], palette="Set2")
    # Set subplot title
    axes[i].set_title(feature, fontsize=15)
    # Set x-axis label and increase font size
    axes[i].set_xlabel('CHD_Event', fontsize=13)
    axes[i].tick_params(axis='x', labelsize=11)
    if i % 4 == 0:
        # Set y-axis label and increase font size for the first column
        axes[i].set_ylabel('Value', fontsize=13)
        axes[i].tick_params(axis='y', labelsize=11)
    else:
        # Clear y-axis label to avoid clutter
        axes[i].set_ylabel('')
# Adjust layout
plt.tight_layout()
# Set main title
plt.suptitle('Fig. 3. Boxplot Representing the Distribution of Data Features with respect to CHD Event',
             fontsize=16, y=1.02)
# Show plot
plt.show()
```


Features importance using Random Forest

```
import pandas as pd
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
```

```
from imblearn.over_sampling import KMeansSMOTE
from imblearn.pipeline import make_pipeline as make_pipeline_imb
import matplotlib.pyplot as plt
import seaborn as sns
# Load the preprocessed dataset
df = pd.read_csv('/Users/nick/Downloads/preprocessed_data.csv')
# Prepare the features (X) and target (y)
X = df.drop('chd', axis=1)
y = df['chd']
# Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Pipeline setup with SMOTE and RandomForestClassifier
pipeline = make pipeline imb(
    StandardScaler(),
    KMeansSMOTE(random state=42),
    RandomForestClassifier(random_state=42)
# Define grid search parameters
param_grid = {
    'randomforestclassifier__n_estimators': [100, 500, 600],
    'randomforestclassifier__max_depth': [None, 10, 20, 30],
    'randomforestclassifier__min_samples_split': [2, 5, 10],
    'randomforestclassifier__min_samples_leaf': [1, 2, 4]
# Initialize GridSearchCV
grid_search = GridSearchCV(pipeline, param_grid, cv=10, scoring='accuracy', verbose=1, n_jobs=-1)
# Fit the model on the training data
grid_search.fit(X_train, y_train)
# Best model from grid search
best_model = grid_search.best_estimator_
# Predict on the test set using the best model
y_pred = best_model.predict(X_test)
# Calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")
# Get feature importances from the best model
feature_importances = best_model.named_steps['randomforestclassifier'].feature_importances_
# Create a pandas Series with feature names and their importance scores
importances = pd.Series(feature_importances, index=X.columns)
# Sort the feature importances in descending order
sorted_importances = importances.sort_values(ascending=False)
# Create a horizontal bar plot
plt.figure(figsize=(10, 6))
sns.barplot(x=sorted_importances, y=sorted_importances.index, palette='coolwarm')
# Add labels and title to the plot
plt.xlabel('Relative Importance', fontsize=14, weight='bold')
plt.ylabel('Features', fontsize=14, weight='bold')
plt.title('Fig 4. Feature Importance using Random Forest', fontsize=16, weight='bold')
plt.xticks(fontsize=11, ha='center', weight='bold')
plt.yticks(fontsize=11, weight='bold')
# Show the plot
plt.tight_layout()
plt.show()
Fitting 10 folds for each of 108 candidates, totalling 1080 fits
```

Accuracy: 0.7419354838709677

Fig 4. Feature Importance using Random Forest

Correlation Analysis

```
In [39]: # Compute correlation matrix
         correlation_matrix = df.corr()
         # Choose a seaborn style with whitegrid but without the internal grid
         sns.set_style('whitegrid', {'axes.grid': False})
         # Set up a larger figure size for better readability
         plt.figure(figsize=(16, 12))
         # Create a diverging color palette for better distinction of values
         cmap = sns.diverging_palette(240, 10, n=9, as_cmap=True)
         # Generating a heatmap with annotations, a float format, and our color map
         ax = sns.heatmap(correlation_matrix,
                          annot=True,
                          cmap=cmap,
                          fmt=".2f",
                          annot_kws={"size": 14, "weight": "bold", "color": "black"},
                          linewidths=0.5, # Reduce line width for minimal style
                          linecolor='gray', # Neutral line color
                          cbar_kws={'shrink': 1, 'label': 'Correlation Strength'})
         # Increasing font size for correlation strength in colorbar and making it bold
         cbar = ax.collections[0].colorbar
         cbar.ax.set_ylabel('Correlation Strength', fontsize=18, weight='bold')
         # Title and labels
         plt.title('Fig 5. Pearson Correlation Coefficient Matrix', fontsize=24, pad=20, weight='bold')
         plt.xticks(fontsize=16, rotation=45, ha='center', weight='bold')
         plt.yticks(fontsize=16, weight='bold')
         # Tight layout for spacing
         plt.tight_layout()
         # Show plot
         plt.show()
```

Fig 5. Pearson Correlation Coefficient Matrix

- 0.8

- 0.6

Correlation Strength

- 0.2

- 0.0

Logistic Regression with Ridge Penalty

```
In [40]: # Import necessary libraries
         import pandas as pd
         from sklearn.model_selection import train_test_split, GridSearchCV
         from sklearn.linear_model import LogisticRegression
         from sklearn.preprocessing import StandardScaler
         from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
         from imblearn.over_sampling import SMOTE, KMeansSMOTE, SVMSMOTE
         from imblearn.pipeline import Pipeline as ImbPipeline
         # Setup features and target, excluding 'obesity'
         X = df.drop(['chd', 'obesity'], axis=1)
         y = df['chd']
         # Split dataset
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
         # Setup pipeline with scaling, SMOTE, and logistic regression
         pipeline = ImbPipeline([
             ('scaler', StandardScaler()),
              ('kmeanssmote', KMeansSMOTE(random_state=42)),
              ('logisticregression', LogisticRegression(random_state=42, max_iter=10000))
         ])
         # Define hyperparameter space
         param_grid = {
              'logisticregression__C': [0.001, 0.01, 0.1, 0.25, 0.5, 1, 10, 100],
              'logisticregression__solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'],
              'logisticregression__penalty': ['l2']
         }
         # Grid search for best parameters
         grid_search = GridSearchCV(pipeline, param_grid, scoring='accuracy', cv=10, verbose=1)
         grid_search.fit(X_train, y_train)
         # Output best parameters and CV score
         print(f"Best parameters: {grid_search.best_params_}")
         print(f"Best CV score: {grid_search.best_score_:.4f}")
```

```
# Test set predictions
y_pred = grid_search.best_estimator_.predict(X_test)
# Evaluate on test set
print(f"Accuracy: {accuracy_score(y_test, y_pred):.4f}")
print(f"F1 Score: {f1_score(y_test, y_pred, average='weighted'):.4f}")
print(f"Precision: {precision_score(y_test, y_pred, average='weighted'):.4f}")
print(f"Recall: {recall_score(y_test, y_pred, average='weighted'):.4f}")
# Calculate and print specificity
tn, fp, _, _ = confusion_matrix(y_test, y_pred).ravel()
specificity = tn / (tn + fp)
print(f"Specificity: {specificity:.4f}")
Fitting 10 folds for each of 40 candidates, totalling 400 fits
Best parameters: {'logisticregression__C': 0.01, 'logisticregression__penalty': 'l2', 'logisticregression__solver': 'newton-c
g'}
Best CV score: 0.7075
Accuracy: 0.7527
F1 Score: 0.7557
Precision: 0.7630
Recall: 0.7527
Specificity: 0.7627
```

Classifier Exploration

Support Vector Machine (SVM)

```
In [41]: # Import necessary libraries
         from sklearn.svm import SVC
         # Create pipeline: scaling, SMOTE, SVM classifier
         pipeline = ImbPipeline([
             ('scaler', StandardScaler()),
             ('svmsmote', SVMSMOTE(random_state=42, k_neighbors=5, m_neighbors=10)),
             ('svm', SVC(random state=42))])
         # Define grid search parameters
         param_grid = {
              'svm__kernel': ['rbf'],
             'svm__C': [8, 10, 12, 14, 16],
             'svm__gamma': [0.01, 0.05, 0.1, 0.15, 0.2]}
         # Execute grid search
         grid_search = GridSearchCV(pipeline, param_grid, scoring='accuracy', cv=10, verbose=1)
         grid_search.fit(X_train, y_train)
         # Output best model details
         print(f"Best parameters: {grid_search.best_params_}")
         print(f"Best CV score: {grid_search.best_score_:.4f}")
         # Test set predictions
         y_pred = grid_search.best_estimator_.predict(X_test)
         # Test model performance
         print(f"Accuracy: {accuracy_score(y_test, y_pred):.4f}")
         print(f"F1 Score: {f1_score(y_test, y_pred, average='weighted'):.4f}")
         print(f"Precision: {precision_score(y_test, y_pred, average='weighted'):.4f}")
         print(f"Recall: {recall_score(y_test, y_pred, average='weighted'):.4f}")
         # Specificity from confusion matrix
         tn, fp, _, _ = confusion_matrix(y_test, y_pred).ravel()
         specificity = tn / (tn + fp)
         print(f"Specificity: {specificity:.4f}")
         Fitting 10 folds for each of 25 candidates, totalling 250 fits
         Best parameters: {'svm_C': 14, 'svm_gamma': 0.01, 'svm_kernel': 'rbf'}
         Best CV score: 0.6968
         Accuracy: 0.7849
         F1 Score: 0.7835
         Precision: 0.7828
         Recall: 0.7849
         Specificity: 0.8475
```

K-Nearest Neighbours (KNN)

```
'knn__n_neighbors': [5, 10, 15, 18, 20, 21, 22, 23, 24, 25],
    'knn__metric': ['minkowski', 'euclidean', 'manhattan'],
    'knn__p': [1, 2]}
# Execute grid search
grid_search = GridSearchCV(pipeline, param_grid, cv=10, scoring='accuracy', verbose=1)
grid_search.fit(X_train, y_train)
# Output best model details
print(f"Best parameters: {grid_search.best_params_}")
print(f"Best CV score: {grid_search.best_score_:.4f}")
# Test model on hold-out set
y_pred = grid_search.best_estimator_.predict(X_test)
# Print performance metrics
print(f"Accuracy: {accuracy_score(y_test, y_pred):.4f}")
print(f"F1 Score: {f1_score(y_test, y_pred, average='weighted'):.4f}")
print(f"Precision: {precision_score(y_test, y_pred, average='weighted'):.4f}")
print(f"Recall: {recall_score(y_test, y_pred, average='weighted'):.4f}")
# Specificity from confusion matrix
tn, fp, _, _ = confusion_matrix(y_test, y_pred).ravel()
specificity = tn / (tn + fp)
print(f"Specificity: {specificity:.4f}")
Fitting 10 folds for each of 60 candidates, totalling 600 fits
Best parameters: {'knn__metric': 'minkowski', 'knn__n_neighbors': 21, 'knn__p': 2}
Best CV score: 0.7128
Accuracy: 0.7419
F1 Score: 0.7419
Precision: 0.7419
Recall: 0.7419
Specificity: 0.7966
```

Multilayer Perceptron (MLP) Neural Network

```
In [43]: # Import necessary libraries
         from sklearn.neural_network import MLPClassifier
         # Pipeline: Scale data, apply SMOTE, use MLP classifier
         pipeline = ImbPipeline([
             ('scaler', StandardScaler()),
             ('kmeanssmote', KMeansSMOTE(random_state=42)),
             ('mlpclassifier', MLPClassifier(random_state=42, max_iter=1000))])
         # Define grid search parameters
         param_grid = {
             'mlpclassifier__hidden_layer_sizes': [(100,), (100, 50), (128, 64)],
             'mlpclassifier__activation': ['tanh', 'relu'],
             'mlpclassifier__solver': ['sgd', 'adam'],
             'mlpclassifier__learning_rate_init': [0.001, 0.01],
             'mlpclassifier__alpha': [0.0001, 0.001],
             'mlpclassifier__early_stopping': [True]}
         # Execute grid search
         grid_search = GridSearchCV(pipeline, param_grid, cv=10, scoring='accuracy', verbose=1)
         grid_search.fit(X_train, y_train) # Fit model
         # Output best model details
         print(f"Best parameters: {grid_search.best_params_}")
         print(f"Best CV score: {grid_search.best_score_:.4f}")
         # Test set predictions
         y_pred = grid_search.best_estimator_.predict(X_test)
         # Test model performance
         print(f"Accuracy: {accuracy_score(y_test, y_pred):.4f}")
         print(f"F1 Score: {f1_score(y_test, y_pred, average='weighted'):.4f}")
         print(f"Precision: {precision_score(y_test, y_pred, average='weighted'):.4f}")
         print(f"Recall: {recall_score(y_test, y_pred, average='weighted'):.4f}")
         # Specificity from confusion matrix
         tn, fp, _, _ = confusion_matrix(y_test, y_pred).ravel()
         specificity = tn / (tn + fp)
         print(f"Specificity: {specificity:.4f}")
         Fitting 10 folds for each of 48 candidates, totalling 480 fits
         Best parameters: {'mlpclassifier__activation': 'relu', 'mlpclassifier__alpha': 0.0001, 'mlpclassifier__early_stopping': True,
         'mlpclassifier__hidden_layer_sizes': (128, 64), 'mlpclassifier__learning_rate_init': 0.01, 'mlpclassifier__solver': 'sgd'}
         Best CV score: 0.7047
         Accuracy: 0.7634
         F1 Score: 0.7667
         Precision: 0.7763
         Recall: 0.7634
         Specificity: 0.7627
```

```
In [44]: # Import necessary libraries
         from sklearn.preprocessing import Binarizer
         from sklearn.naive bayes import BernoulliNB
         # Pipeline: Binarizer + SMOTE + BernoulliNB
         pipeline = make_pipeline_imb(
             Binarizer(),
             SMOTE(random_state=42),
             BernoulliNB())
         # Parameters for grid search
         param_grid = {
              'binarizer__threshold': [0.15, 0.175, 0.2, 0.225, 0.25],
              'bernoullinb__alpha': [0.0005, 0.00075, 0.001, 0.00125, 0.0015],
              'bernoullinb__class_prior': [
                  [0.55, 0.45], [0.575, 0.425],
                  [0.6, 0.4],
                 [0.625, 0.375], [0.65, 0.35]]
         # Execute grid search
         grid_search = GridSearchCV(pipeline, param_grid, cv=10, scoring='accuracy', verbose=1)
         grid_search.fit(X_train, y_train)
         # Display best parameters and score
         print(f"Best parameters: {grid_search.best_params_}")
         print(f"Best CV score: {grid_search.best_score_:.4f}")
         # Test set predictions
         y_pred = grid_search.best_estimator_.predict(X_test)
         # Model evaluation on test set
         print(f"Accuracy: {accuracy_score(y_test, y_pred):.4f}")
         print(f"F1 Score: {f1_score(y_test, y_pred, average='weighted'):.4f}")
         print(f"Precision: {precision_score(y_test, y_pred, average='weighted'):.4f}")
         print(f"Recall: {recall_score(y_test, y_pred, average='weighted'):.4f}")
         # Specificity from confusion matrix
         cm = confusion_matrix(y_test, y_pred)
         tn, fp, fn, tp = cm.ravel()
         specificity = tn / (tn + fp)
         print(f"Specificity: {specificity:.4f}")
         Fitting 10 folds for each of 125 candidates, totalling 1250 fits
         Best parameters: {'bernoullinb_alpha': 0.0005, 'bernoullinb_class_prior': [0.55, 0.45], 'binarizer_threshold': 0.15}
         Best CV score: 0.6992
         Accuracy: 0.7204
         F1 Score: 0.7185
         Precision: 0.7173
         Recall: 0.7204
         Specificity: 0.7966
```

Quadratic Discriminant Analysis (QDA)

```
In [45]: # Import necessary libraries
         from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
         # Pipeline setup: Scale -> SMOTE -> QDA
         pipeline = make_pipeline_imb(
             StandardScaler(),
             KMeansSMOTE(random state=42),
             QuadraticDiscriminantAnalysis())
         # Grid search parameters
         param_grid = {
              'quadraticdiscriminantanalysis__reg_param': [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]}
         # Execute grid search
         grid_search = GridSearchCV(pipeline, param_grid, cv=10, scoring='accuracy', n_jobs=-1, verbose=1)
         grid_search.fit(X_train, y_train)
         # Output best hyperparameters
         print(f"Best parameters: {grid_search.best_params_}")
         print(f"Best CV score: {grid_search.best_score_:.4f}")
         # Test set predictions
         y_pred = grid_search.best_estimator_.predict(X_test)
         # Evaluate on test set
         print(f"Accuracy: {accuracy_score(y_test, y_pred):.4f}")
         print(f"F1 Score: {f1_score(y_test, y_pred, average='weighted'):.4f}")
         print(f"Precision: {precision_score(y_test, y_pred, average='weighted'):.4f}")
         print(f"Recall: {recall_score(y_test, y_pred, average='weighted'):.4f}")
         # Specificity calculation
         tn, fp, _, _ = confusion_matrix(y_test, y_pred).ravel()
         specificity = tn / (tn + fp)
         print(f"Specificity: {specificity:.4f}")
```

```
Fitting 10 folds for each of 13 candidates, totalling 130 fits
Best parameters: {'quadraticdiscriminantanalysis__reg_param': 0.25}
Best CV score: 0.7209
Accuracy: 0.7957
F1 Score: 0.7974
Precision: 0.8007
Recall: 0.7957
Specificity: 0.8136
```

Linear Discriminant Analysis (LDA)

```
In [46]: # Import necessary libraries
         from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
         # Pipeline: Scale -> Balance (SMOTE) -> Classify (LDA)
         pipeline = make_pipeline_imb(
             StandardScaler(),
             SMOTE(random_state=42),
             LinearDiscriminantAnalysis())
         # Define hyperparameters for GridSearch
         param_grid = {
             'lineardiscriminantanalysis__solver': ['lsqr', 'eigen'],
             'lineardiscriminantanalysis_shrinkage': [0.85, 0.875, 0.9, 0.925, 0.95],}
         # GridSearch for optimal parameters
         grid_search = GridSearchCV(pipeline, param_grid, cv=10, scoring='accuracy', verbose=1)
         grid_search.fit(X_train, y_train)
         # Display best parameters/score
         print(f"Best parameters: {grid_search.best_params_}")
         print(f"Best CV score: {grid_search.best_score_:.4f}")
         # Test set predictions
         y_pred = grid_search.best_estimator_.predict(X_test)
         # Evaluate on test set
         print(f"Accuracy: {accuracy_score(y_test, y_pred):.4f}")
         print(f"F1 Score: {f1_score(y_test, y_pred, average='weighted'):.4f}")
         print(f"Precision: {precision_score(y_test, y_pred, average='weighted'):.4f}")
         print(f"Recall: {recall_score(y_test, y_pred, average='weighted'):.4f}")
         # Specificity calculation
         tn, fp, _, _ = confusion_matrix(y_test, y_pred).ravel()
         specificity = tn / (tn + fp)
         print(f"Specificity: {specificity:.4f}")
         Fitting 10 folds for each of 10 candidates, totalling 100 fits
         Best parameters: {'lineardiscriminantanalysis__shrinkage': 0.925, 'lineardiscriminantanalysis__solver': 'lsqr'}
         Best CV score: 0.6885
         Accuracy: 0.7097
         F1 Score: 0.7150
         Precision: 0.7479
         Recall: 0.7097
         Specificity: 0.6610
```