PH881 Computational Physics

Mini - Project

Deepnika Jain Roll number: 16MT12

Topics

- Qualitative Proof of Heisenberg Principle
- Solving Schrödinger Equation in One-dimension for:
 - 1. Infinite Potential Well
 - 2. Quantum Harmonic Oscillator
 - 3. Hydrogen Atom

1. Heisenberg Uncertainty Principle

Statement

The more precisely the position of some particle is determined, the less precisely its momentum can be known and vice-versa.

$$\sigma_x\sigma_p\geqrac{\hbar}{2}$$

How can we depict it?

By choosing any wave-function, we can calculate its fourier transform and plot the probability functions in both cases. From there we can understand the uncertainty in x(position) and $k(momentum = \hbar k)$.

Problem statement

Take two examples of wave-functions:

- Exp(ikx): Sinusoidal wave
- 2. Delta function

Depict Heisenberg Uncertainty Principle using fourier transforms.

Implementation

Exponential Wave-Function

Large uncertainty in position.

Exponential Wave-Function

Fourier Transform of Exp(ikx)

Probability of finding a particle with a given momentum(ħk)

Small uncertainty in momentum.

Delta Wave-Function

Small uncertainty in position.

Delta Wave-Function

Fourier Transform of Delta(x)

Probability of finding a particle with a given momentum(ħk)

Large uncertainty in momentum.

Result:

With both kinds of wave-functions, we see that the accuracy of both position and momentum do not go hand in hand. If we know position very accurately then uncertainty in k(momentum) is large and vice-versa.

2. Solving Schrödinger Equation in One-dimension

Need to solve

The Schrödinger equation is used to find the allowed energy levels of quantum mechanical systems (such as atoms or transistors). The associated wave-function gives the probability of finding the particle at a certain position.

Problem Statement

Solve the Schrodinger equation by shooting and analytical method for:

- Infinite Potential Well (Ground, First excited and Second excited State)
- Quantum Harmonic Oscillator (Ground, First excited and Second excited State)
- 3. Hydrogen atom (1s, 2s, 2p, 3s states)

Solution:

- Numerical Integration method used is the Fourth Order Runge Kutta Method.
- The harmonic is determined by counting the nodes of the wave-function.
- The energy is then refined by a number of functions in the code like OptimizeEnergy, Normalize etc.
- Potentials are as follows:
 - Infinite Potential Well: V(x<0) = infinite; V(x = (0,1)) = 0; V(x>1) = infinite.
 - Quantum Harmonic Oscillator: $V(x) = x^2$
 - Hydrogen Atom: Different Potential for different states.
- Initial conditions on the left side of the graph are given.
- Normalization is done just by dividing all the values of the wave-function by the maximum value of the wave-function.

Infinite Potential Well

Quantum Harmonic Oscillator

Quantum Harmonic Oscillator

Hydrogen Atom

References:

- A First Course in Computational Physics Paul L. DeVries and Javier E.
 Hasbun
- Numerical Solutions of Schrödinger Equation Neill Lambert