PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-307163

(43) Date of publication of application: 02.11.2000

(51)Int.CI.

H01L 41/09 H01L 41/24 // B41J 2/045 B41J 2/055

(21)Application number: 11-112263

(71)Applicant: SEIKO EPSON CORP

(22)Date of filing:

20.04.1999

(72)Inventor: SUMI KOJI

MORIYA SOICHI -

(54) PIEZOELECTRIC THIN FILM ELEMENT AND ITS MANUFACTURE

(57)Abstract:

PROBLEM TO BE SOLVED: To improve a piezoelectric thin film in breakdown voltage by a method wherein the crystal grain boundaries of crystals comprises in the piezoelectric thin film are so formed as to be discontinuous in the thickness direction of the thin film. SOLUTION: A piezoelectric thin film is composed of one to three film layers corresponding to a thermal treatment carried out in each step, the grain boundaries of crystal grains contained in each layer are discontinuous in the thickness direction of the piezoelectric thin film and discontinued at an intermediate point in the thickness direction of the thin film. In other words, one or more discontinuous regions where crystal grain boundaries are discontinued are present in the thickness direction of the piezoelectric thin film. A crystal structure is so constituted that crystal grains contained in each layer are different from each other in grain diameter, or crystal grains contained in each layer are arranged as shifted so as not to make

grain boundaries continue. As mentioned above, crystals contained in a piezoelectric film are so structure that crystal grain boundaries are discontinued, so that a piezoelectric element can be improved in withstand voltage characteristics.

LEGAL STATUS

[Date of request for examination]

21.11.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration] [Number of appeal against examiner's decision of rejection] [Date of requesting appeal against examiner's decision of rejection] [Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許山銀公開番号 特開2000-307163 (P2000-307163A)

(43)公開日 平成12年11月2日(2000.11.2)

(51) Int.CL'		織別記号	FI		7	テーマニード(参考)		
HOIL	41/09		HOIL	41/08	c	2C057		
	41/24			41/22	Α			
# B41J	2/045 2/065		B41J	3/04	103A			

密査請求 京請求 商求項の数20 OL (全 10 円)

(21)出顯番号	特顯平11−112263	(71)出廢人					
(on) discom	77-244 or 4 (1100 to 41000 1 100)		セイコーエプソン株式会社				
(22)出題日	平成11年4月20日(1999.4.20)	東京都新宿区西新宿2丁目4番1号					
		(72) 発明者	角 · A二				
	•		長野県諏訪市大和3丁月3番5号 セイコ				
			ーエブソン株式会社内				
		(72) 発明者	守谷 壮一				
			長野県課訪市大和3丁目3番5号 セイコ				
			ーエブソン株式会社内				
	•	(74)代理人					
		(1,1,1,4,3,5,4	弁理士 福業 良幸 (外2名)				

最終頁に続く

(54) 【発明の名称】 圧電体群膜索子、及びその製造方法

(57)【要約】

【解疾課題】 耐電圧が向上した圧電体障膜素子の提供。

【解決手段】 圧電体障膜素子の製造を複数の熱処理工程から行う。各工程の熱処理において、前段階までの熱処理工程の温度を越えないようにする。圧電体障膜を構成する柱状結晶の粒算は、圧電体障膜の厚さ方向に少なくとも一つの不連続面を有する。

(2)

10

【特許請求の範囲】

【請求項1】 圧電体薄膜素子において、圧電体薄膜を 模成する結晶間の結晶粒界が、当該薄膜の膜厚方向で不 連続になるように形成されてなることを特徴とする圧電 体薄膜素子。

【請求項2】 少なくとも1カ所の不迫続域が存在する ことを特徴とする請求項1記載の圧電体薄膜素子。

【語求項3】 前記結晶位界が前記圧電体薄膜の厚さ方 向の一端から他端にかけて連続的に形成されることな く、途中で途切れているように形成されてなる詰求項1 記載の圧噬体蔵勘案子。

【請求項4】 圧電体薄膜素子において、圧電体薄膜を 模成する結晶が、当該圧電体薄膜の膜厚方向に往状に模 成されてなり、かつ、この結晶の結晶粒界が、当該薄膜 の膜厚方向に不迫続になるように模成されてなることを 特徴とする圧電体薄膜素子。

【請求項57】 一対の電極間に圧電体薄膜を配置してな る圧電体薄膜素子において、前記圧電体薄膜は柱状結晶 から構成され、この柱状結晶の長さ方向に対して少なく とも1カ所の独界不連続域が存在することを特徴とする 压缩体薄膜素子。

【請求項6】 一対の電極間に圧噬体薄膜を配置してな る構造において、前記圧電体薄膜がその厚さ方向に複数 層の結晶模造を備えており、隣接する層にある結晶の粒 径が互いに異なるように形成されている機造。

【請求項7】 一つの電極間に圧電体薄膜を配置してな る構造において、前記圧電体薄膜がその厚さ方向に複数 の磨からなる結晶を含み、各層の結晶構造にある結晶粒 界が隣接する層の結晶粒界に一致しないように、隣接す る結晶粒が互いにシフトしている、前記圧電体薄膜中に 30 存在する機能。

【請求項8】 請求項6又は7記載の構造を圧電体障膜 に備えた圧電体薄膜を有する素子。

【請求項9】 請求項1乃至8のいずれか1項記載の圧 電体薄膜素子を機械的駆動源として備えるアクチュエー

【請求項10】 請求項9記載のアクチュエータをイン ク吐出用駆動源として値えるインクジェット式記録へっ F.

【請求項11】 圧電体薄膜素子の製造方法において、 圧電体薄膜形成工程を、熱処理のための感憶が異なる複 数の熱処理工程から構成させてなる圧電体薄膜素子の製 造方法。

【請求項12】 前記圧電体薄膜形成工程の第2の段階 以降の各段階において、前段階の熱処理温度を越えない ようにした請求項11記載の方法。

【請求項13】 前記圧電体薄膜形成工程が熱処理とし TRTAを利用する段階と、熱処理としてファーネスア ニールを利用する段階との組合せからなる請求項12記 戟の製造方法。

【詰求項14】 圧電体薄膜またはこの薄膜を備えた圧 電体薄膜素子を製造する方法において、この圧電体薄膜 を複数の熱処理の工程から製造するとともに、各熱処理. 工程を、その熱処理以前の工程において形成された結晶 粒が再結晶化しない条件で実行させるようにした方法。 【請求項15】 復数の熱処理過程を備えることによっ て形成される機能性膜の構造において、当該構造を複数 の層からなる結晶粒の組合せから構成し、隣接する各層 結晶粒の粒昇が、結晶粒の方向に連続しないように形成

【請求項16】 隣接する層の結晶粒同士の間に、粒界 が不迫続となる領域が形成されてなる請求項15記載の 結晶構造。

されてなる機能性膜のための結晶模造。

【請求項17】 請求項15又は16記載の結晶構造を **備えた機能性膜。**

【請求項18】 圧電体からなる薄膜層を備えた機能性 素子において、前記圧弯体薄膜が複数の層からなる結晶 模造を有してなり、含有(Zr/Ti)比が異なる層間 士の結晶粒径が互いに異なってなる前記案子。

【請求項19】 圧電体からなる薄膜層を備えた機能性 素子において、前記圧電体薄膜が複数の層からなる結晶 模造を有してなり、化学量論比を上回る鉛を有する層の 結晶粒径がそれを越えない層の結晶粒径に比較して大き いものである前記意子。

【請求項20】 圧電体からなる薄膜層を備えた機能性 **素子において、前記圧電体薄膜が複数の磨からなる結晶** 模造を有してなり、含有有機物量が異なる層間士の結晶 粒径が互いに異なってなる前記案子。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】との発明は圧電体薄膜素子と その製造方法に関する。さらに、この発明は、この圧電 体素子を備えた機械アクチュエータに関する。さらに、 本発明は、圧電体薄膜を含む機能性膜の結晶構造の改良 に関する。

[0002]

【従来の技術】圧電体薄膜素子は、圧電体歪み特性を発 揮し、 種々のアクチュエータとして機能するデバイスと して知られている。圧電体薄膜素子は、基板上に共通電 極としての下電極を形成し、この上にパターン化された 圧電体薄膜を形成し、さらに各圧電体薄膜のパターンの 上に個別電極としての上電極を設けた構造を備える。す なわち、圧電体薬膜が一対の電極間に存在する構成であ る。上電極と下電極とに間に電圧を加えると、電圧が加 わったパターンの圧電体薄膜素子に歪みが生じ、この歪 みが機械的駆動源として利用される.

【0003】との種のアクチュエータとして代表的なも のに、インクジェット式プリンタ用ヘッドが存在する。 このインクジェット式プリンタヘッドにおいては、特定 50 の圧電体薄膜に歪みが発生すると、この圧電体薄膜に対

http://www4.ipdl.ncipi.go.jp/tjcontenttrns.ipdl?N0000=21&N0400=image/gif&N0401...

(3)

応したインク選まりからインクがED副対象に対して吐出される。

【0004】圧電体薄膜を構成する圧電体としては、チタン酸シルコン酸鉛(以下、「P2T」と称することとする。)に代表される圧電材料からなるものが良く知られている。圧電体薄膜は、スパッタ法等の物理的気相成長法(PVD)、化学的気相成長法(CVD)、ゾルゲル法等のスピンコート法等で成膜され、次いで、700~1000℃の高温熱処理を受けることにより形成される。

【0005】また、最近では水魚合成法と呼ばれ種箱晶をアルカリ加熱水中で成長させる技術も提案されている。また、圧電体障膜の結晶構造を改良して圧電体管性を高めるための試みが提案されている。圧電体障膜の結晶構造は、圧電体障膜を成す複数の結晶粒と、この結晶粒間に存在する結晶粒界から模成されている。

[0006]

【0007】圧電体素子の耐電圧を上げるために、結晶 30 粒をできるだけ大きくする等して、圧電体障膜の粒界密度を小さくするか、あるいは圧電体障膜を単結晶化するなどの試みが、JAE-HVUN JCD, YOU-JIN LEE, SEUNC-KI JOO, Fercelectrics, 1997, Vol. 195, pp. 1-4においてなされている。しかしながら、発明者は、圧電体障膜内の結晶粒界を数本以下あるいは圧電体を単結晶化することは、実際問題としてかなり困難なことであるとの知見を得ている。

【0008】そこで、本発明の目的は、圧電体内を連続する結晶粒界を極力少なくした圧電体薄膜素子を提供することである。本発明の他の目的は、耐電圧特性に優れた圧電体薄膜素子を提供することである。本発明のさらに他の目的は、耐電圧特性を高めた新規な圧電体の結晶構造を提供することである。本発明のさらに他の目的は、この圧電体素子を備えたアクチェエータ、特にインクジェットプリンタヘッドを提供することである。本発明のさらに他の目的は、これらを製造するための方法を提供することである。

[0009]

【課題を解決するための手段】本発明は、圧電体解膜の 50 ヘッド1は、ノズル板10 圧力窒益板20、振動板3

厚さ方向の一端から他端にかけて既述の結晶粒界が不連続になるようにしたことを特徴とする。すなわち、結晶粒界が連続していない結晶構造からなる復数の層が圧略体薄膜の厚さ方向に存在する。各層同士の間で結晶粒界が途切れている。

【0016】本発明の他の形態は、各層に存在する結晶 粒の弦径が解接する原同士の間で異なるような構造を持 つ圧電体障膜を提供することである。あるいは、関接す る層同士の結晶粒の結晶粒界が登ならないように各層の 10 結晶粒がシフトした構造を持つ圧電体廃膜を提供するこ とである。

【0011】連続した結晶粒界を持たない構造を圧電体 薄膜に実現するととは、圧電体薄膜形成工程を熱処理の ための膨脹が異なる複数の熱処理工程から構成させるこ とがその一例である。特に、好適な形態は、圧電体薄膜 を形成するための一連の熱処理の工程において、第2の 段階以降の各段階において、前段階迄で得られた結晶粒 が再結晶化して、結果として連続した結晶粒界が生じな いような熱処理の形態が採用されることである。たとえ は、前段階迄の熱処理温度を越えないようにすることで ある。熱処理の過程で、既存の結晶粒が再結晶化する と、圧電体薄膜の厚さ方向に連続した結晶となり、この 結晶の粒界も同方向に連続したものになる。それを防止 するために、複数の熱処理工程を実行しながら圧電体薄 膜を順次積層していく過程で、熱処理温度を各工程等に 下げていく。また、熱処理の加熱速度を各工程毎に上げ たり、あるいは下げたりなど変化させることである。熱 処理のための具体的な方法は、特に限定されない。RT Aを利用する熱処理、あるいは、ファーネスアニール (鉱散炉)を利用する熱処理とを各工程ごとに使用する ことができる。RTAによる熱処理のように、加熱速度 が高いものを利用すると、たとえば、結晶粒径は300 0-4000nmのような比較的大きなものになり、プ ァーネスアニーリングのように加熱速度がRTAに比べ て低いものを用いると、50-80 n m程度の結晶粒径 をもつ圧電体結晶を得ることができる。また、加熱の除 の最高温度を調節することにより結晶粒径を調整でき る。結晶粒径が異なる圧電体結晶を後述の図に示すよう に複数の層から形成するような熱処理を多段階に実行す るととにより、各層の結晶の結晶粒界が連続しないよう にできる。

【0012】本発明の構造を備えることにより、結晶粒 界が圧電体障膜の厚さ方向に連続しないようできるの で、圧電体障膜の耐電圧特性を向上することができる。 【0013】

【発明の実施の形態】次に、本発明の実施の形態について説明する。

(インクジェット式記録ヘッド)図1は、公知のインクジェット式記録ヘッドを側面から見た概略図である。同

(4)

○を構えて構成されている。圧力室基板20は、キャビティ21、側壁22を備えている。キャビティ21は、圧力室であってシリコン等の基板をエッチングすることにより形成されるものである。側壁22は、キャビティ21間を仕切るよう構成されている。11はキャビティ21内のインクを後述の圧電体素子の変形によって、紙などの被印刷物に吐出するためのノズル孔である。

【0014】振動板30は圧力室基板20の一方の面に 貼り合わせ可能に構成されている。振動板30には本発 明の圧電体素子40が設けられている。圧電体素子40 は、ペロブスカイト構造を持つ強調電体の結晶であり、 振動板30上に所定の形状で形成されて構成されている。

【0015】ノズル板10は、圧力室差板20に複数設けられたキャビティ(圧力室)21の各々に対応する位置にそのノズル穴11が配置されるよう、圧力室差板20に貼り合わせられている。ノズル板10を貼り合わせた圧力室基板20は、さらに筐体に填められて、インクジェット式記録へッドを構成している。

【0016】図1に示すように、振動板30は絶縁膜3 1および下部電極32を慎層して構成され、圧電体素子40は圧電体層41および上部電極42を積層して構成されている。下部電極32、圧電体層41および上部電極42によって圧電体素子が構成されアクチュエータとして機能させるととができる。

【0017】絶縁膜31は、導電性のない材料、例えばシリコン基板を熱酸化等して形成された二酸化珪素により構成され、圧電体μ層の体積変化により変形し、キャビディ21の内部の圧力を瞬間的に高めることが可能に構成されている。

【0018】下部電極32は、圧電体層に電圧を印加するための上部電極42と対になる電極であり、導電性を有する材料、例えば、白金(Pt)層をそれぞれ交互に配置した層から構成されている。

【0019】圧電体圏41は、強誘電体により構成されている。この強誘電体の組成としては、ジルコニウム酸チタン酸鉛(Pb(2r, Ti)Os:P2T).

((P), La) 2rO。: PL2T) またはマグネシウムニオブ酸ジルコニウム酸チタン酸鉛(P) (Mg、Nb) (2r, Ti) O。: PMN-P2T) のうちいずれかであることが好ましい。例えば、マグネシウムニオブ酸ジルコニウム酸チタン酸鉛であれば、0.1Pb (Mg、1Nb2 v。) O。-0.9 m2 r。。 Tio...(O。という組成が好適である。なお、圧電体層はあまりに厚くすると、層全体の厚みが厚くなり、高い駆動電圧が必要となり、あまりに薄くすると、膜厚を均一にできずエッチング後に分離された各圧電体素子の特性がばらついたり、製造工数が多くなり、妥当なコストで製造できなくなったりする。したがって、圧電体層41の厚みは、0、1~2、0μm程度が好ましい。

[0020]上部電極膜42は、圧電体層に電圧を印加するための一方の電極となり、導電性を有する材料、例えば膜厚0.1μmの白金(Pt)で構成されている。(製造方法)次に、上記条件を満たす圧電体素子およびインクジェット式記録へットの製造方法について図2万至図3を参照して説明する。圧電体薄膜を製造する方法として、既に存在する公知の方法を広く適用できるが、下記に示すいわゆるゾルーゲル法が好査である。本実施形態では酢酸系溶媒からPZTを強誘電体とした圧電体19 素子を製造する。

【0021】アルコール系溶媒(圧電体前駆体)製造工程:まずチタニウムテトライソプロポキシド及びベンタエトキシニオブをブトキシエタノールに溶解させ、これにジエタノールアミンを加え原に空温下で製拌する。次いで、酢酸鉛3水和物とジルコニウムアセチルアセトナート及び酢酸マグネシウム4水和物とを加え、これを摂氏80度に加温し爆拌する。30分程度爆拌した後に空温まで自然冷却し、これにポリエチレングリコールを加え室温下で5分程度凝拌する以上の工程によってアルコール系溶媒が完成する。

【0022】絶録膜形成工程(図2(a)):上記アルコール系溶媒の製造と並行して、圧力室基板の基礎となるシリコン基板20に絶録膜31を形成する。シリコン基板20は、例えば200μm程度、絶縁膜31は、1μm程度の厚みに形成する。絶縁膜の製造には、公知の熱酸化法等を用いる。

【0023】下部驾極順形成工程(同図(b)):次いで、絶縁順31の上に下部電極32を形成する。下部電極32は、例えば、白金層を400nmの順厚に形成しな、これら層の製造は、公知の直流スパッタ法等を用いる。

【0024】圧電体層形成工程(間図(c)):次いで、上記アルコール系溶媒を用いて上部電接32上に圧電体層41を形成する。圧電体層はゾルゲル法によって製造される。本発明の工程は、既述のように複数の系処理工程を重ねることによる。RTA(Rapid thermal annealing)-拡散炉(マワートスマニール)-RTAのように、熱処理の方法および温度を変えて行う。熱処理のための温度は、段階が造んでも前段階までの熱処理温度を越えないようにする。

【0025】先ず、第1の段階であるRTAを用いた熱処理について説明する。前記アルコール系溶媒を一定の厚みに塗布する。例えば、公知のスピンコート法を用いる場合には、毎分500回転で30秒、毎分1500回転で30秒、最後に毎分500回転で10秒間塗布する。塗布後、一定温度(例えば摂氏180度)で一定時間(例えば10分程度)乾燥させる。乾燥により溶媒であるブトキシエタノールが蒸発する。

【0026】乾燥後、さらに大気雰囲気下において所定 50 の高温(例えば摂氏400度)で一定時間(30分間) 脱脂する。脱脂により金属に配位している有機の配位子 が熱分解され、金属が酸化されて金属酸化物となる。こ の金布→乾燥一説脂の各工程を所定回数、例えば5回録 り返して5層のセラミックス層を積層する。これらの乾 操や脱脂により、溶液中の金属アルコキシドが加水分解 や重福合され金属-酸素-金属のネットワークが形成さ

【0027】アルコール系溶媒を5層重ね塗りした後に は、さらに圧電体層の結晶化を促進し圧電体としての特 性を向上させるために、所定の雰囲気下で熱処理する。 例えば、酸素雰囲気下において、RATで、650度で 5分間、さらに900度で1分間加熱する。この熱処理 によりアモルファス状態の溶媒からペロブスカイト結晶 構造が形成される。この結晶化の際に、上記したような 条件に合致する結晶構造になる。上記処理により圧電体 厘4 1 が所定の厚み、例えば0.5μm程度で形成され

【0028】この結果、3000mm-4000mmの 粒径を有する、往状の圧電体結晶が構成される。なお、 基板としては、圧弯体結晶を作る際の種となるTiが形 成されていない (Pt/Ti/S:O2 = (200/20/1000 m))が使用される。ここで、種結晶が存在しないこと も、本発明の圧電体膜の層構成を得る上で有効であると いう可能性についての知見を、発明者は認識している。 【10029】以上の熱処理を纏めると、(スピンコート -乾燥(180度10分)-脱脂(400度30分)) からなる工程を5回-RTA(摂氏650度5分-摂氏 900度1分)となる。この結果、3000mm乃至4 (1) () n mの粒径を持つ圧電体の柱状結晶が得られる。 【0030】次に、第2段階目の熱処理について説明す る。この段階の熱処理は、前記スピンコートののち直ち に拡散炉 (焼結賃氏800度10分、酸素雰囲気) にて 熱処理を行い、以上を繰り返し10回行い、0.5 mm 程度の厚みの圧電体膜を形成する。ここで、明らかなよ うにこの時の熱処理温度は、第1段階目の熱処理温度を 越えない値としている。この結果、結晶粒径が50nm -80nmの圧電体薄膜が形成される。

【0031】次に、第3段階目の熱処理を行う。ここで の第1段階目の熱処理と異なるのはRTAによる加熱温 度第1段階目の摂氏900度を摂氏800度に変えた点 40 である。この第3段階目の熱処理温度は、第1段階目及 び第2段階目の熱処理の最高温度を超えない値となって いる。熱処理の最高温度で結晶粒径が決まるとともに、 熱処理の最高温度を越えると結晶粒の再結晶化が起こ る。この第3段階目の熱処理によって、100mm-5 00 nmの粒径を持つ圧電体結晶層が得られる。熱処理 工程の最高温度が異なる点を除けば、他の工程の一切は 図3における1の屋と同じである。

【0032】図3は第1段階目から第3段階目の熱処理 を実行することによって得られた、圧電体障膜結晶の樽 50 を、樹脂等を用いて貼り合わせる。このとき、各ノズル

造を示す。第2段階目及び第3段階目の熱処理は、それ ぞれ前段階の熱処理温度を越えないように管理されるこ とにより、図3に示す構造が得られる。すなわち、各段 階の熱処理に応じて、圧電体薄膜が1乃至3の複数の層 から構成され、各層の結晶粒の結晶粒界は、圧電体薄膜 の厚さ方向に連続していない、圧電体薄膜の厚さ方向の 途中で途切れている等の特徴を有している。換言すれ は、圧電体薄膜の厚さ方向の途中に結晶粒界の不迫統領 域が1以上存在する。各層の結晶粒の粒径が互いに異な るか、あるいは各層の結晶粒が、結晶粒界が連続しない ようにシフトされて配置されているかのような結晶標準 によって既述のように結晶粒界が連続しない標準が得ち れる

【0033】図3に示す構造、即ち粒径が小さい層2の 上に粒径が大きい磨3を形成する場合は、全層におい て、膜厚方向に対する結晶配向を同一にすることが好ま しい。結晶配向を単一にすることで、結晶の連続性が保 たれ、圧電性能を維持できるからである。結晶配向が殺 つかの配向の混合である場合(例えば111と10)() 或 いは111と001)は、位径を徐々に小さくするよう に構成すれば良い。この時配向が混合であっても、結晶 の膜厚方向での連続性を保ちつつ、粒界の不連続領域を 形成することができる。

【10034】次に、上部電優形成工程(図2(d))を説 明する。圧電体層41の上に、さらに電子ビーム蒸音 法、スパッタ法等の技術を用いて、上部電極42を形成 する。上部電極の材料は、白金(Pt)等を用いる。厚 みは100mm程度にする。

【0035】以上の工程が終了した後、公知のエッチン グエ程を行う。この工程は、各層を形成後、振動板膜上 の積層構造である圧電体膜及び上部電極を、各キャビテ ィ21に合わせた形状になるようマスクし、その周囲を エッチングする。不要な部分の圧電体層4.1 および上部 電極42を取り除く。エッチングのために、まずスピン ナー法、スプレー法等の方法を用いて均一な厚さのレジ スト材料を塗布する。次いでマスクを圧電体素子の形状 に形成してから整光し現像して、成形されたレジストが 上部電極42上に形成される。これに通常用いるイオン ミリング、あるいはドライエッチング法等を適用して、 不要な層構造部分を除去する。

【0036】さらに、公知の圧力室形成工程を行う。圧 電体素子40が形成された圧力変基板20の他方の面を エッチングしてキャビティ21を形成する。例えば、雲 方性エッチング、平行平板型反応性イオンエッチング等 の活性気体を用いた異方性エッチングを用いて、キャビ ティ21空間のエッチングを行う。エッチングされずに 残された部分が側壁22になる。

【0037】さらに、公知のノズル飯貼り合わせ工程を 行う。エッチング後のシリコン基板20にノズル板10

(5)

特闘2000-307163

19

穴11がキャビティ21番々の空間に配置されるよう位置合せする。ノズル板10の貼り合わせられた圧力室基板20を筐体に取り付け、インクジェット式記録ヘッド1が完成する。なお、ノズル板10を貼り合わせる代わりに、ノズル板と圧力室基板を一体的にエッチングして形成してもよい。ノズル穴はエッチングで設ける。以上の工程により、圧電体薄膜素子が形成される。

【0038】なお、本発明では圧電体療験を3段階の熱処理で形成したが、これに限られることはない。また、圧電体障膜以外の、たとえば、メモリー用強誘電療験等・19

の機能性膜についても本発明を適用することが可能となる。

【0039】次に、本発明者は、結晶粒界の不連続領域を形成するために、結晶粒径を変更するための方法について種々検討したところ次のような知見を得た。表1及び表2に示すグラフはこの知見の根拠となった実験結果を示すためのものである。

【0040】 【表1】

http://www4.ipdl.ncipi.go.jp/tjcontenttrns.ipdl?N0000=21&N0400=image/gif&N0401...

12/8/2005

特闘2000-307163

Νф	Seb.		Solution		Costing		BER		相基化		級調強	
	BŒ	serd	EC.	有概論	SUF1	MOM/3	XX	温度	英 電	73.00	校径	0.570
1	TI/PVTV	Tt Saco	56/44 Pb 1.05 +1.2	ed. Peg/dra	80cm	330nm	₽A	150 400 459	AT8	600/ 850	150om 150om 150om	
2	TI/Pt/Ti	Ti Sem	分離 Pb 1.2	114	190nm	400nm	Bake	400	RTA	650/ 900	200~ 700mm	
3	TI/Pt/Ti/ Ti02/Ti	Ti čran Stato 4243 6640 8am JOans	std.	scd.	66aa	200am	Bake	400	RTA	550/ 675 + 609/ 560	200-400 100-200 100-250 200-500 -500am	
4	TI/PV/TI/ TIO2/TI S/IS/IS S/30/30 S/60/60	Ti Som	324.	atd.	100nca	400 w 0	Bake	\$	RTA	550/ 575 500/ 850	200~250 100~250 100~200	111/10 111/10 111/10
5	TVPv/Ti	11 Sam	Pt L 05+1. 2 全層1. 09		300mm	40Cm/m	Bake	400	RTA	FL03C 900	100 200~450 300~400	

[0041] 【表2】

特闘2000-307163

13

(8)

No.	Sub		Set	Schadon		Coating		#2.5V		h/£	開初進	
	BE	seed	組成	省機装	旗隼1	競馬2	KI	选度	禁電	25	松塔	B2/46
5	TI/Pt/TI 無処理 400 ft Os 拡放器	Ti Sera	sti.	sei.	100nun	420nm	gapa	400	RTA	171 SX. 850	199~199	
7	TI/Pt/Ti	Tl Sees	Pb 1.0875	MEA/PEG	190nm	1000	Ĥzke	400	RTA	930	150~300	
8	₽₽/TI	Ti Char	क्र्यं.	atel.	6 0 naa	360	HP	400	RTA	800	2209mm	ш
g	TVPVTI	Tt Srun	2/T 45/55 EB/45 66/35	and.	80oa	300	НP	406	KTA	600	1200 560 1300	111/100 111/100 111/100
w	11/2011 1102/11/	Ti Sam	Pb 1.21	sut.	60am	380	НЪ	400	FA	700	160	111/100
н	PUTI	Ti Orun	P6 1. U	PEGless	20mmi .	36mm	HP	250	FA	800	150~200	111
12	TVPVII	TI Sour	std.	ed.	COam	60nsa	まし	\$ L	FA	700	80	12.1

第1は、圧電体の組成を変更することである。例えば、 2r/T!比を変えると粒径も大きく変化する(No. 9)。なお、この比を変更すると結晶系も同時に変化す る。この比が60/40を越えると菱面体晶系。この比 が45/55未満では正方晶系となる。

【0042】過剰鉛(化学量論比を上回る鉛)によって も현径は変化するが、結晶化装置がRTAであると~7 50 いない基板上にホットプレートで脱脂した前躯体膜をR

00 nmと大きく (No.2)、拡散炉であると標準 (10 0~200nm) である (No.10)。RTAと拡散炉の相違 は、主として昇温レートの違いにあることは既述のとお りである。RTAはおよそ毎秒摂氏250度であるのに 対して拡散炉はせいぜい毎分摂氏200度である。

【0043】最も大きな結晶粒は、種層であるTiを用

特闘2000-307163

16

TAで結晶化させた時に得られたもので、2200nmである(Mc.8)。最も小さな結晶は、脱脂工程を省略し、拡散炉内において、脱脂と結晶化とを同時に行った時に得られた80nmである。

15

【0044】とれち以外の条件下では、結晶粒径はおおよそ100~300nmの範囲で安定している。すなわち、粒径制御は結構類しい。逆に既述の条件を適宜組み合わせることによって、結晶粒径を調整することが可能となる。

【0045】共通電極(下電極)を構成する白金の粒径は30~60mmの範囲であって、P2丁粒径は100~300mmとこれを大きく上回る。白金とP2丁との間に相関関係。すなわち白金の粒径が大きくなるとP2丁の粒径が大きくなる、が認められるが決定的なものではない。

【0046】結晶化する際の順中に存在する有機物、すなわち、脱脂後の前躯体機中に存在する有機物。または結晶化する際の機中に存在する有機物は、結晶化を規制し結晶化速度の低下を招くおそれがある。この為、結晶は自由成長ではなく、基盤(白金)に束縛された111配向になり易い。結晶核の形成が多くなるため、小粒径に成りやすい。

【0047】過剰給の存在はPbOの形成を促進する。 PbOの001配向はPZTの100配向の基となる。 また、PbOの結晶成長開始温度はPZTより低く、自 由成長し易いため過剰給を含む膜の位径は大きくなり易米 *い。但し、有様物を多く含む前駆体競は既述の理由から 大きな粒には成長しない。

【① 0 4 8】下電極 (白金)上にチタンが存在すると、これが揺結晶として機能することは本出類人の出頭に係わる特類平9-72209により知られたところである。隣り合う核(種)から成長して互いに接する境界が結晶粒界となる。屋毎に種結晶が形成される密度を変えることにより結晶粒程を各層毎に変えることができ、これにより、結晶粒界が連続しないようにすることができる。 本発明によれば、結晶粒径を制御する既述の要素を適宜組み合わせることによりそれが可能となる。

[0049]

【発明の効果】以上説明したように、本発明によれば、 圧電体薄膜結晶の結晶粒界を連続しないような精成を実現したことにより、圧電体素子の耐電圧特性を向上する ことが可能となる。

【図面の簡単な説明】

【図1】本発明に係わる圧電体素子を側面から示した 図。

【図2】それの製造工程図。

【図3】圧営体薄膜の結晶構造を説明する模式図。 【符号の説明】

- 1 インクジェット式記録ヘッド
- 32 下部電極

20

- 4.1 圧電体膜
- 4.2 上部電極

【図1】

[23]

(10)

特闘2000-307163

[図2]

フロントページの続き

F ターム(参考) 2C057 AF65 AF93 AC44 AC92 AC93 AP02 AP13 AP14 AP25 AP34 AP51 AP57 AP77 AQ02 BA04 BA13