

Arab Academy for Science, Technology and Maritime Transport College of Artificial Intelligence

Course	Swarm Intelligence (RB414)		Feb. 2025
Teaching Staff	Dr. Omar Shalash	Eng. Ahmed Métwalli	

Sheet 1: Ant Colony Optimization

Coordinates of Points (cities):

$$x_1 = (9, 76),$$

 $x_2 = (28, 75),$
 $x_3 = (98, 3),$
 $x_4 = (69, 27).$

ACO Parameters:

$$\begin{split} & \text{Population Size} = 4, \\ & \text{Maximum Iterations} = 10, \\ & \text{Pheromone Evaporation Rate} = 0.05, \\ & \text{Artificial Pheromone (Initial)} = 0.0453, \\ & \alpha = 1, \quad \beta = 1, \quad Q = 1. \end{split}$$

We need to find the shortest route visiting each of the four points $\{x_1, x_2, x_3, x_4\}$ exactly once and returning to the start, using the Ant Colony Optimization steps:

- 1. Initialize pheromone values on all edges to the artificial pheromone (0.0453).
- 2. Place 4 ants on different starting nodes.
- **3.** Compute paths based on probability (influenced by pheromone τ_{ij} and distance via $\eta_{ij} = 1/d_{ij}$).
- **4.** Update pheromone intensities on edges used by ants.
- **5.** Repeat until the maximum iteration (10) or convergence.

Table 1: Distance Matrix d_{ij}

$i \setminus j$	1	2	3	4
1	_	19.03	115.22	77.47
2	19.03	_	100.42	63.17
3	115.22	100.42	_	37.65
4	77.47	63.17	37.65	_

(Values are rounded to 2 decimal places.)

Objective: Use these matrices and the above ACO parameters to find the **shortest tour** that visits each point $(x_1 \to x_2 \to x_3 \to x_4 \to x_1)$ only once.