

Engenharia de Computação

Iuri Ramon Cervantes Santos

Relatório : Mineração de dados - Algerian Forest Fires Daset.

Introdução

Este trabalho tem como objetivo aplicar os conhecimentos adquiridos na disciplina de Mineração de Dados em uma base de dados afim de extrair as informações nela contida e resolver o problema proposto pela base de dados.

1- Apresentação da base de dados

A base utilizada neste trabalho foi a Algerian Forest Fires Daset.

Esta base de dados apresenta informações de uma região florestal da Algéria, do período de junho de 2012 a setembro de 2012, a base de dados possui 11 atributos mais 1 atributo de saída (classe).

A base possui 122 objetos, classificados em "ocorreu incêndio" e "não ocorreu incêndio".

Atributos:

- Data: Dia, mês e ano das informações coletadas;
- Temperatura: Temperatura máxima no dia em graus Celsius (22°C - 42°C);
- Humidade relativa: Humidade relativa no dia em porcentagem (21% - 90%);
- Velocidade do vento: velocidade do vento em km/h (6km/h – 29km/h);
- Chuva: total de chuva no dia em milímetros (0mm 16,8mm);
- FFMC: Índice de humidade de combustíveis finos, representa o teor de humidade dos combustíveis finos mortos, de secagem rápida, constituindo um bom indicador do seu grau de inflamabilidade. (28,6 – 92,5; índice FWI);
- DMC: Índice de húmus, representa o teor de humidade de uma fina e pouco compactada camada de solo (até cerca de 8 cm de profundidade), dando a indicação do

- estado da matéria orgânica decomposta (húmus) e materiais lenhosos de tamanho médio que aí se encontram. (1,1 65,9; índice FWI);
- DC: Índice de Seca, representa o teor de humidade dos combustíveis florestais (húmus e materiais lenhosos de maiores dimensões), que se encontram abaixo da superfície do solo, entre 8 e 20 cm de profundidade e é um bom indicador dos efeitos do período seco sazonal. (7 – 220,4; índice FWI);
- ISI: Índice de Propagação Inicial, resulta da combinação do FFMC e da intensidade do vento, representando a taxa de propagação inicial do fogo, sem incluir a influência de quantidades variáveis de combustível. (0 – 18,5; índice FWI);
- BUI: Índice de Combustível Disponível, resulta da combinação do DMC e do DC, representando a quantidade total de combustíveis disponível para propagação do fogo. (1,1 – 68; índice FWI);
- Risco Incêndio Índice de Perigo de Incêndio (FWI). (0 31,1);
- Classe: 1 para incêndio, 0 para não incêndio.

Figura 1 – Estrutura do índice meteorológico de risco de incêndio florestal FWI.

A base de dados apresentava dados faltantes em alguns atributos, tal problema é resolvido no pré-processamento, na fase de limpeza de dados.

2- Pré-Processamento

• Limpeza:

À limpeza da base de dados foi executada por meio do preenchimento dos valores faltantes, para tal foi considerada a média de cada atributo, média foi escolhida pois a sensibilidade aos valores extremos (desde que não sejam outliers) é importante para a detecção de um incêndio.

Seguem as informações sobre o procedimento:

```
INFORMAÇÕES GERAIS DOS DADOS
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 122 entries, 0 to 121
Data columns (total 14 columns):
    Column
                 Non-Null Count
                                  Dtype
0
    Dia
                 122 non-null
                                  int64
1
    Mes
                 122 non-null
                                  int64
2
                122 non-null
    Ano
                                  int64
3
    Temperatura 99 non-null
                                  float64
4
                                  float64
    RH
                 117 non-null
5
                                  float64
    WS
                 118 non-null
6
                                  float64
    Chuva
                 122 non-null
7
                 122 non-null
                                  float64
    FFMC
    DMC
8
                 122 non-null
                                  float64
9
                                  float64
    DC
                  122 non-null
                                  float64
10
   ISI
                  122 non-null
11
   BUI
                 122 non-null
                                  float64
                                  float64
12
    FWI
                 122 non-null
                                  int64
    Classes
                 122 non-null
dtypes: float64(10), int64(4)
nemory usage: 13.5 KB
Vone
```

Figura 2 – Classificação geral dos atributos.

```
DESCRIÇÃO DOS DADOS
                                                                                                           Classes
      122.000000
                    122.000000
                                   122.0
                                                               122.000000
                                                                                           122.000000
        15.754098
8.843274
                                  2012.0
                                              31.343434
near
std
                       1.115259
                                                                              14.474302
                                                                                             6.343051
                                              3.326338
                                                                  3.021768
                                  2012.0
                                  2012.0
8 rows x 14 columns]
```

Figura 3 – Descrição dos dados antes da limpeza.

	Dia	Mes	Ano	Temperatura	RH	WS	Chuva	FFMC	DMC	DC	ISI	BUI	FWI	Classes
0	1	6	2012	29.0	57.0	18.0	0.0	65.7	3.4	7.6	1.3	3.4	0.5	0
1	2	6	2012	29.0	61.0	13.0	1.3	64.4	4.1	7.6	1.0	3.9	0.4	0
2	3	6	2012	26.0	NaN	22.0	13.1	47.1	2.5	7.1	0.3	2.7	0.1	0
3	4	6	2012	25.0	89.0	13.0	2.5	28.6	1.3	6.9	0.0	1.7	0.0	0
4	5	6	2012	27.0	77.0	16.0	0.0	64.8	3.0	14.2	1.2	3.9	0.5	0
5	6	6	2012	31.0	67.0	14.0	0.0	82.6	5.8	22.2	3.1	7.0	2.5	1
6	7	6	2012	33.0	NaN	13.0	0.0	88.2	9.9	30.5	6.4	10.9	7.2	1
7	8	6	2012	30.0	NaN	15.0	0.0	86.6	12.1	38.3	5.6	13.5	7.1	1
8	9	6	2012	NaN	88.0	13.0	0.2	52.9	7.9	38.8	0.4	10.5	0.3	0
9	10	6	2012	28.0	79.0	12.0	0.0	73.2	9.5	46.3	1.3	12.6	0.9	0
10	11	6	2012	31.0	65.0	14.0	0.0	84.5	12.5	54.3	4.0	15.8	5.6	1
11	12	6	2012	26.0	81.0	19.0	0.0	84.0	13.8	61.4	4.8	17.7	7.1	1
12	13	6	2012	27.0	84.0	21.0	1.2	50.0	6.7	17.0	0.5	6.7	0.2	0
13	14	6	2012	NaN	78.0	20.0	0.5	59.0	4.6	7.8	1.0	4.4	0.4	0
14	15	6	2012	28.0	80.0	17.0	3.1	49.4	3.0	7.4	0.4	3.0	0.1	0

Figura 4 – 15 Linhas iniciais antes de executar a limpeza.

```
'RH', 'WS'], dtype='object')
Mes Ano Temperatura
Index(['Temperatura',
                                    122.0
      122.000000
                                                                               122.000000
                                                                                             122.000000
                                                                                                           122.000000
                                                                                15.426230
        15.754098
                                                                                               5.577869
                                   2012.0
                                                                                 1.100000
                                                                                               0.000000
                                   2012.0
                                                                                                3.000000
[8 rows x 14 columns]
```

Figura 5 – Descrição dos dados pós limpeza.

	Dia	Mes	Ano	Temperatura	RH	WS	Chuva	FFMC	DMC	DC	ISI	BUI	FWI	Classes
0	1	6	2012	29.0	57.0	18.0	0.0	65.7	3.4	7.6	1.3	3.4	0.5	0
1	2	6	2012	29.0	61.0	13.0	1.3	64.4	4.1	7.6	1.0	3.9	0.4	0
2	3	6	2012	26.0	78.0	22.0	13.1	47.1	2.5	7.1	0.3	2.7	0.1	0
3	4	6	2012	25.0	89.0	13.0	2.5	28.6	1.3	6.9	0.0	1.7	0.0	0
4	5	6	2012	27.0	77.0	16.0	0.0	64.8	3.0	14.2	1.2	3.9	0.5	0
5	6	6	2012	31.0	67.0	14.0	0.0	82.6	5.8	22.2	3.1	7.0	2.5	1
6	7	6	2012	33.0	78.0	13.0	0.0	88.2	9.9	30.5	6.4	10.9	7.2	1
7	8	6	2012	30.0	78.0	15.0	0.0	86.6	12.1	38.3	5.6	13.5	7.1	1
8	9	6	2012	31.0	88.0	13.0	0.2	52.9	7.9	38.8	0.4	10.5	0.3	0
9	10	6	2012	28.0	79.0	12.0	0.0	73.2	9.5	46.3	1.3	12.6	0.9	0
10	11	6	2012	31.0	65.0	14.0	0.0	84.5	12.5	54.3	4.0	15.8	5.6	1
11	12	6	2012	26.0	81.0	19.0	0.0	84.0	13.8	61.4	4.8	17.7	7.1	1
12	13	6	2012	27.0	84.0	21.0	1.2	50.0	6.7	17.0	0.5	6.7	0.2	0
13	14	6	2012	31.0	78.0	20.0	0.5	59.0	4.6	7.8	1.0	4.4	0.4	0
14	15	. 6	2012	28.0	80.0	17.0	3.1	49.4	3.0	7.4	0.4	3.0	0.1	0

Figura 6 – 15 Linhas iniciais após executar a limpeza.

Normalização:

Após a efetuação da limpeza dos dados, partiu-se para a etapa de normalização, para critério de estudo, foram implementados dois métodos diferentes de normalização, Z-score e Min-Max, que depois acompanharão a base de dados nos procedimentos seguintes, e estes foram os resultados:

Normalização Z-Score

None								
	Dia	Mes	Ano	Temperatura	ISI	BUI	FWI	Classes
count	1.220000e+02	122.000000	122.0	1.220000e+02	1.220000e+02	1.220000e+02	1.220000e+02	122.000000
mean	5.824121e-17	0.000000	0.0	5.642117e-16	5.824121e-17	2.821059e-17	-4.004083e-17	0.483607
std	1.004124e+00	1.004124	0.0	1.004124e+00	1.004124e+00	1.004124e+00	1.004124e+00	0.501792
min	-1.675278e+00	-1.350526	0.0	-3.109186e+00	-1.214790e+00	-9.938515e-01	-8.829931e-01	0.000000
25%	-8.804515e-01	-0.450175	0.0	-4.284744e-01	-8.409559e-01	-7.163601e-01	-8.038416e-01	0.000000
50%	2.792130e-02	0.000000	0.0	-9.338545e-02	-3.342034e-01	-2.931856e-01	-4.080842e-01	0.000000
75%	8.227475e-01	0.450175	0.0	5.767925e-01	6.460720e-01	4.334951e-01	4.942426e-01	1.000000
max	1.731120e+00	1.350526	0.0	1.917148e+00	2.938920e+00	3.605569e+00	3.897756e+00	1.000000

Figura 6 – Dados da normalização Z-score.

```
[8 rows x 14 columns]
Dia Mes Ano Temperatura RH WS ... DMC DC ISI BUI FWI Classes
0 -1.675278 -1.350526 0.0 -0.763563 -1.030580 0.730077 ... -0.739371 -0.883547 -0.782804 -0.834294 -0.883842 0
1 -1.561731 -1.350526 0.0 -0.763563 -0.674670 -1.030188 ... -0.731627 -0.883547 -0.882493 -0.799608 -0.819672 0
2 -1.448185 -1.350526 0.0 -1.768830 0.876622 2.138290 ... -0.874127 -0.893243 -1.115101 -0.882855 -0.867163 0
3 -1.334638 -1.350526 0.0 -2.103919 1.880399 -1.030188 ... -0.981003 -0.897122 -1.214790 -0.952228 -0.882993 0
4 -1.221091 -1.350526 0.0 -1.433741 0.785370 0.025971 ... -0.829596 -0.755555 -0.816034 -0.799608 -0.803842 0
5 -1.107545 -1.350526 0.0 -0.93385 -0.127155 -0.678135 ... -0.580221 -0.600413 -0.184670 -0.584552 -0.487236 1
6 -0.993998 -1.350526 0.0 0.576792 0.876622 -1.030188 ... -0.215064 -0.439453 0.911909 -0.313997 0.256788 1
7 -0.880452 -1.350526 0.0 -0.428474 0.876622 -0.326082 ... -0.019127 -0.288189 0.646072 -0.133628 0.240958 1
8 -0.766905 -1.350526 0.0 -0.093358 1.789147 -1.031088 ... -0.393189 -0.278493 -1.081871 -0.341747 -0.835602 0
9 -0.653358 -1.350526 0.0 -1.098652 0.967874 -1.382241 ... -0.250689 -0.133047 -0.782804 -0.190604 -0.740520 0
```

Figura 7 – Dados normalizados (Z-Score).

	Dia	Mes	Ano	Temperatura	ISI	BUI	FWI	Classes	
count	122.000000	122.000000	122.0	122.000000	122.000000	122.000000	122.000000	122.000000	
mean	0.491803	0.500000	0.0	0.618579	0.292459	0.216082	0.184698	0.483607	
std	0.294776	0.371753	0.0	0.199773	0.241741	0.218315	0.210035	0.501792	
min	0.000000	0.000000	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.233333	0.333333	0.0	0.533333	0.090000	0.060332	0.016556	0.000000	
50%	0.500000	0.500000	0.0	0.600000	0.212000	0.152338	0.099338	0.000000	
75%	0.733333	0.666667	0.0	0.733333	0.448000	0.310332	0.288079	1.000000	
max	1.000000	1.000000	0.0	1.000000	1.000000	1.000000	1.000000	1.000000	

Figura 8 – Dados da normalização Min-Max.

ı													
ı	[8 rows x 14 columns]												
1	Dia	Mes	Ano	Temperatura	RH	WS		DMC	DC	ISI	BUI	FWI	Classes
6	0.000000	0.0	0.0	0.466667	0.272727	0.466667		0.050467	0.003279	0.104	0.034691	0.016556	0
1	0.033333	0.0	0.0	0.466667	0.363636	0.133333		0.063551	0.003279	0.080	0.042232	0.013245	0
2	0.066667	0.0	0.0	0.266667	0.750000	0.733333		0.033645	0.000937	0.024	0.024133	0.003311	0
1	0.100000	0.0	0.0	0.200000	1.000000	0.133333		0.011215	0.000000	0.000	0.009050	0.000000	0
4	0.133333	0.0	0.0	0.333333	0.727273	0.333333		0.042991	0.034192	0.096	0.042232	0.016556	0
•	0.166667	0.0	0.0	0.600000	0.500000	0.200000		0.095327	0.071663	0.248	0.088989	0.082781	1
6	0.200000	0.0	0.0	0.733333	0.750000	0.133333		0.171963	0.110539	0.512	0.147813	0.238411	1
1	7 0.233333	0.0	0.0	0.533333	0.750000	0.266667		0.213084	0.147073	0.448	0.187029	0.235099	1
8	0.266667	0.0	0.0	0.600000	0.977273	0.133333		0.134579	0.149415	0.032	0.141780	0.009934	0
9	0.300000	0.0	0.0	0.400000	0.772727	0.066667		0.164486	0.184543	0.104	0.173454	0.029801	0

Figura 9 – Dados normalizados (Min-Max).

Redução:

Para o processo de redução de dados, foram consideradas ambas as estratégias de normalização mencionadas anteriormente, e ambas apresentaram resultados diferentes quando expostas ao procedimento PCA, a variável alvo foi a Classe, responsável pela classificação do objeto em incêndio ou não.

Min-Max

```
None

| Dia | No. | Ano | Temperatura | ISI | BUI | FMI | Classes | Count | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,000000 | 122,0000000 | 122,000000 | 122,000000 | 122,0000000 | 122,0000000 | 122,00000000 | 12
```

Figura 10 – Normalização Min-Max

Pela variância por componente podemos perceber que os atributos que apresentaram uma maior variância após a normalização foram BUI (Índice de Combustível Disponível) e FWI (Índice de risco de incêndio).

Após a normalização foi aplicada a técnica PCA, proporcionando os seguintes resultados:

```
Dataframe PCA
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 122 entries, 0 to 121
Data columns (total 3 columns):
                            Non-Null Count
    Column
                                             Dtype
                                              float64
    principal component 1
                            122 non-null
0
    principal component 2
                            122 non-null
                                              float64
    Classes
                             122 non-null
                                              int64
dtypes: float64(2), int64(1)
memory usage: 3.0 KB
None
       principal component 1
                               principal component 2
                                                          Classes
                                                       122.000000
                1.220000e+02
                                       1.220000e+02
count
mean
                1.274026e-17
                                       -1.456030e-17
                                                         0.483607
std
                5.713452e-01
                                        3.750415e-01
                                                         0.501792
min
                                       -5.472171e-01
               -1.006894e+00
                                                         0.000000
               -4.887426e-01
                                       -2.242153e-01
                                                         0.000000
25%
               -6.202398e-02
                                       -2.355026e-02
50%
                                                         0.000000
75%
                3.507589e-01
                                        2.439139e-01
                                                         1.000000
                1.791852e+00
                                        5.644910e-01
                                                         1.000000
max
  principal component 1
                          principal component 2
                                                  Classes
               -0.503866
                                       -0.443315
               -0.524675
                                       -0.450052
                                                         0
               -0.893066
                                       -0.460303
                                                         0
                                       -0.523028
                                                         0
               -1.006894
                                                         0
               -0.601269
                                       -0.508310
               -0.234971
                                       -0.483853
                                                         1
                                       -0.523956
               -0.006708
                                                         1
               -0.040869
                                       -0.527228
                                                         0
               -0.540021
                                       -0.542371
                                                         0
               -0.336427
                                       -0.524466
```

Figura 11 – PCA para Min-Max.

Figura 12- Plot de PCA para Min-Max.

Analisando estes resultados, é perceptível a divisão dos resultados, enquanto os valores classificados como 0 (não incêndio), se encontram em sua maioria com valores negativos para o componente 1, enquanto em relação ao componente 2, variam ao longo de todo o eixo.

Z-Score

Figura 13 – Normalização Z-Score.

Pela variância por componente podemos perceber que os atributos que BUI (Índice de Combustível Disponível) e FWI (Índice de risco de incêndio), continuam sendo os que apresentaram uma variância maior do que os outros atributos.

Após a normalização foi aplicada a técnica PCA, proporcionando os seguintes resultados:

```
Dataframe PCA
class 'pandas.core.frame.DataFrame'>
RangeIndex: 122 entries, 0 to 121
Data columns (total 3 columns):
                               Non-Null Count Dtype
    Column
    principal component 1
                               122 non-null
                                                 float64
    principal component 2 122 non-null
     Classes
                                                 int64
dtypes: float64(2), int64(1)
memory usage: 3.0 KB
None
       principal component 1 principal component 2
1.220000e+02 1.220000e+02
3.640075e-17 7.280151e-18
                                                               Classes
count
                                                           122.000000
nean
                  2.500625e+00
                                           1.334894e+00
                -4.341686e+00
                                          -2.845961e+00
                                                              0.000000
25%
                -2.026179e+00
                                          -8.772041e-01
                                                              0.000000
50%
                                                              0.000000
                -3.076748e-01
                                          -2.600732e-01
                 1.438445e+00
7.874032e+00
75%
                                          8.344961e-01
                                                              1.000000
                                           4.900078e+00
                                                              1.000000
   principal component 1 principal component 2 Classes
                -2.001236
                                          -0.928025
                                          -1.417235
3.445404
                -2.106809
                -4.341686
                -4.170996
                                           0.652135
                -2.463878
                                          -0.302742
                                          -1.494485
                 -0.862813
                 0.226868
                                           -1.369866
                 -0.011712
                                          -0.507242
                 -2.034657
                                           -0.222111
                 -1.343563
                                           -0.629996
```

Figura 14 – PCA para Z-Score.

Figura 15 – Plot de PCA para Z-Score.

Analisando os resultados obtidos podemos perceber que a normalização Z-Score proporciona uma distribuição diferente dos pontos, enquanto no gráfico de PCA para Min-Max, podemos notar um agrupamento em patamares em relação ao componente 2, na normalização Z-Score temos os pontos mais distribuídos por esse eixo.

Porém o padrão de classificação permaneceu o mesmo, 0 (não incêndio), assumindo valores negativos para o componente 1, enquanto 1(incêndio) apresentou valores positivos para este componente.

3- Análise descritiva dos dados

Para uma melhor análise, a base de dados foi exposta à diversas medidas de resumo:

Distribuição de frequência dos dados

Medidas de tendência central

Para medidas de tendência central foram escolhidas média e moda, pois com a média podemos analisar como os extremos estão afetando a medição em relação à moda.

```
Media Temperatura: 31.278688524590162

Media RH: 68.39344262295081

Media WS: 15.926229508196721

Media Chuva: 0.8426229508196721

Media FFMC: 74.67295081967214

Media DMC: 12.314754098360657

Media DC: 53.160655737704914

Media ISI: 3.6557377049180326

Media BUI: 15.426229508196721

Media FWI: 5.577868852459017
```

```
Moda
Moda Temperatura: 0
                       31.0
dtype: float64
Moda RH: 0
              78.0
dtype: float64
Moda WS: 0 14.0
dtype: float64
Moda Chuva: 0
                 0.0
dtype: float64
Moda FFMC: 0
                88.9
    89.4
dtype: float64
Moda DMC: 0
   12.5
dtype: float64
Moda DC: 0
dtype: float64
Moda ISI: 0
                1.1
dtype: float64
Moda BUI: 0
                3.0
dtype: float64
Moda FWI: 0
                0.0
    0.1
    0.5
dtype: float64
```

Medidas de dispersão

```
Desvio Padrão

Desvio padrão Temperatura: 2.9965884047480618

Desvio padrão RH: 11.003799026203511

Desvio padrão WS: 2.852193683184015

Desvio padrão Chuva: 2.4092081629368325

Desvio padrão FFMC: 15.558713308488693

Desvio padrão DMC: 11.274359648167286

Desvio padrão DC: 51.77826462107204

Desvio padrão ISI: 3.021768109757118

Desvio padrão BUI: 14.47430212582062

Desvio padrão FWI: 6.343051280961404
```

```
Variância Temperatura: 8.979542067470533
Variância RH: 121.08359300907735
Variância WS: 8.135008806394797
Variância Chuva: 5.804283972361468
Variância FFMC: 242.07355981574315
Variância DMC: 127.11118547622276
Variância DC: 2680.9886871697604
Variância ISI: 9.131082509145104
Variância BUI: 209.5054220295353
Variância FWI: 40.23429955290611
```

Medidas de posição relativa

```
Classes
0
                                        FFMC
                                                                     FWI
     Temperatura
                     RH
                            WS
                                Chuva
                                               DMC
                                                      DC
                                                                BUI
                                       65.7
64.4
                                                     7.6 1.3
7.6 1.0
7.1 0.3
                   57.0
                                              3.4
4.1
            29.0
29.0
                                                                     0.5
                         18.0
                                  0.0
                                                                3.4
                  61.0
                         13.0
                                                                     0.4
                                                                                  0
                                                                3.9
                                       47.1 2.5
                                                                                  0
            26.0
                  78.0 22.0
                                                                2.7
                                                                      0.1
            25.0
                   89.0
                                                     6.9
                         13.0
                                  2.5
                                        28.6
                                               1.3
                                                           0.0
                                                                      0.0
            27.0
                   77.0
                                  0.0
                                              3.0
                                                    14.2
                                                                3.9
                         16.0
                                        64.8
                                                           1.2
                                                                      0.5
            31.0
                                  0.0
                                       82.0 6.0
                                                    16.3
                  54.0
                         11.0
                                        85.7
77.5
                                              8.3
7.1
            31.0
                  66.0
                         11.0
                                  0.0
                                                    24.9
                                                          4.0
                                                                9.0
119
            32.0 47.0
                         14.0
                                                     8.8
                                                          1.8
                                                                6.8
            26.0 78.0
25.0 78.0
                                              2.9
1.9
                                                     7.7
7.5
120
                         16.0
                                                           0.3
                                  1.4
                                        45.0
121
                         14.0
[122 rows x 11 columns]
Kurtosis:
       0.761623
       0.811790
       2.749274
       6.922108
       1.306951
      2.350221
117
       1.548945
118
       2.619934
119
       2.971443
120
121
       3.398807
Length: 122, dtype: float64
```

Medidas de associação

```
Temperatura RH WS Chuva FFMC DMC DC ISI BUI FWI Classes
RH -19.151876 -2.384230 -2.987183 29.913386 17.438829 81.826758 5.576074 22.700068 11.061591 0.674028
RH -19.151876 121.083593 6.731744 8.027720 -105.550435 -41.206679 -175.171169 -18.154342 -51.980653 -31.332543 -1.844736
WS -2.384230 6.731744 8.135009 2.459369 -10.252425 -0.141878 9.122693 -0.548747 0.835835 -0.031398 -0.211963
Chuva -2.987183 8.027720 2.459369 5.804284 -21.496276 -7.208072 -35.384012 -2.667602 -9.483359 -4.476239 -0.404254
FFMC 29.913386 -105.569435 -10.1252425 -10.6741890 127.111185 561.696040 25.554708 162.462502 64.488263 3.490327
DMC 17.438829 -41.206679 -0.141878 -7.208072 106.741890 127.111185 561.696040 25.554708 162.462502 64.488263 3.490327
DC 81.826758 -175.171169 9.122693 -35.384012 463.399588 561.096040 2680.988687 112.275682 736.379140 285.706808 15.289432
DC 81.826758 -175.171169 9.122693 -35.384012 463.399588 561.096040 2680.988687 112.275682 736.379140 285.706808 15.289432
DC 81.826758 -175.171169 9.122693 -35.384012 463.399588 561.096040 2680.988687 112.275682 736.379140 285.706808 15.289432
DC 81.826758 -175.171169 9.122693 -35.384012 463.399588 561.096040 2680.988687 112.275682 736.379140 285.706808 15.289432
DC 81.826758 -175.171169 9.122693 -35.384012 463.399588 561.096040 2680.988687 112.275682 736.379140 285.706808 15.289432
DC 81.826758 -175.171169 9.122693 -35.384012 463.399588 561.096040 2680.988687 112.275682 736.379140 285.706808 15.289432
DC 81.826758 -175.17169 9.122693 -35.384012 463.399588 561.096040 2680.988687 112.275682 9.13083 32.661832 18.095045 1.261252
DC 81.826758 -175.17169 9.122693 -35.384012 463.399588 561.096040 2680.988687 112.275682 9.13083 32.661832 18.095045 1.261252
DC 81.826758 -175.17169 9.122693 -35.384012 463.399588 561.096040 2680.988687 112.275682 9.13083 32.661832 18.095045 1.261252
DC 81.826758 -175.17169 9.122693 -35.384012 463.399588 561.096040 2680.988687 112.275682 9.13083 32.661832 18.095045 1.261252
DC 81.826758 -175.17169 9.1226758 9.13083 32.661832 18.095045 1.261252
DC 81
```

```
Correlação
                                                            -0.413771 0.641601
0.302813 -0.616626
                                                                                                                                 0.523362
-0.326363
                                                                                                                                                           0.448257
-0.334093
Temperatura
                     1.000000
                     0.580820
                                               0.214489
                                                1.000000
0.357907
                                                             0.357907
1.000000
                                  0.214489
                                                                                        -0.004412
                                                                                                       0.061773 -0.063670
                                                                                                                                  0.020246
                                                                                                                                               -0.001736
                                  0.302813
                                                                          -0.573476
                                                                                        -0.265371
                                                                                                                   -0.366425
                                                                                                                                 -0.271951
                                                                                                                                               -0.292914
                                                                                                     -0.283652
                                                                                                                                 0.600707
0.995551
                                                                           0.608512
                        516177
                                                            -0.265371
                                                                                                                    0.750098
                                 -0.332149
                                               -0.004412
                                                                                         1.000000
                                                                                                       0.962193
                                                                                                                                               0.901759
                                                             -0.283652
                       .615801 -0.545980
.523362 -0.326363
                                              -0.063670 -0.366425 0.020246 -0.271951
                                                                           0.790086
0.600707
                                                                                                       0.717591
0.982554
                                                                                                                                  0.746761
1.000000
                                                                                                                                               0.944062
0.900417
                                                                                                                    0.746761
                                                                                                                                                             0.612576
```

4- Análise de grupos

Para o agrupamento, foi utilizado o algoritmo K-Means, este algoritmo foi aplicado na base de dados, tanto normalizada pelo método Min-Max, quanto pelo método Z-Score.

Para cada uma das normalizações o algoritmo foi rodado duas vezes, uma fazendo o agrupamento em dois grupos, e outro em quatro grupos (k = 2 e k = 4).

K-Means com normalização MinMax, com k = 2

```
Explained variance per component:
[0.46547484 0.2005662 ]
(122, 14)
(122, 2)

29.709202507870565
For n_clusters = 2, silhouette score is 0.41447923021889954)
```


• K-Means com normalização MinMax, com k=4.

```
Explained variance per component:

[0.46547484 0.2005662 ]

(122, 14)

(122, 2)

13.236946205690224

For n_clusters = 4, silhouette score is 0.43474283483216786)
```


• K-Means com normalização Z-Score, com k=2.

```
Explained variance per component:
[0.51682267 0.14727808]
(122, 14)
(122, 2)

465.0331655100531
For n_clusters = 2, silhouette score is 0.46587213094764907)
```


• K-Means com normalização Z-Score, com k=4.

```
Explained variance per component:
[0.51682267 0.14727808]
(122, 14)
(122, 2)

201.0132484630516
For n_clusters = 4, silhouette score is 0.3833762440863893)
```


Após a análise dos resultados, é possível observar que a execução que mostrou uma maior efetividade, dada pelo valor de silhueta apresentado (0,46), foi a normalização Z-Score com dois grupos (k=2).

5- Classificação

Para a classificação foi utilizado o método de normalização Z-Score, pois o mesmo apresentou melhores resultados nas etapas realizadas previamente.

KNN

Como foi possível observar nos dados obtidos, a matriz de confusão gerada utilizando sklearn, para k=5, apresentou a mesma acurácia na predição.

SVM

```
Total samples: 122
Total train samples: 85
Total test samples: 37
```

```
Qtd Support vectors:
[21 17]
Acurracy SVM from sk-learn: 100.00%
F1 Score SVM from sk-learn: 1.00%
Confusion matrix, without normalization
[[19 0]
[ 0 18]]
Normalized confusion matrix
[[1. 0.]
[0. 1.]]
[0.53846154 0.53846154 0.58333333 0.5
                                             0.5
                                                         0.5
                       0.5
                                  0.5
            0.5
Média cross validation = 0.5160256410256411
```


Como foi possível observar nos dados obtidos, o algoritmo obteve acurácia de 100% dos testes de predição de incêndios feitos, utilizando o kernel = rfb como classificador SVM.

6- Discussão

Como podemos comparar durante todo os processos realizados durante o trabalho, alguns métodos se sobressaíram a outros, para o tratamento desta base de dados específica, para este problema tivemos uma vantagem do método de normalização Z-Score, sobre o Min-Max, quando aplicado o agrupamento K-Means.

Outra comparação que podemos fazer é a da acurácia fornecida pelo método SVM, que alcançou 100% de acurácia nas predições, quando configurado com kernel=rfb, enquanto o KNN, com k=5 (n° de objetos próximos para comparação), alcançou 94,59 %.