

Figure 1: Illustrations

Claim 1. For any pair of points $i = (i_1, i_2), j = (j_1, j_2) \in X$, where neither dominates the other, let $a = (a_1, a_2) \in \mathbb{R}^2_{\geq 0}$ be the preference weight vector that gives $i =_a j$, then for any preference weight vector $b = (b_1, b_2) \in \mathbb{R}^2_{\geq 0}$,

- 1. $\frac{a \times b}{\|a \times b\|} > 0$ if and only if $i >_b j$.
- 2. $\frac{a \times b}{\|a \times b\|} < 0$ if and only if $i <_b j$.

Proof. 1 and 2 are completely analogous, here we only prove 1.

• " \Longrightarrow ": On the one hand, from $\frac{a \times b}{\|a \times b\|} > 0$ we have

$$a_1b_2 - a_2b_1 < 0 \implies a_1 < \frac{b_1}{b_2}a_2.$$
 (1)

On the other hand, by $i =_a j$,

$$a_1i_1 + a_2i_2 = a_1j_1 + a_2j_2 \implies a_1(i_1 - j_1) = a_2(j_2 - i_2).$$
 (2)

Plug (1) into (2), $a_2(j_2 - i_2) < \frac{b_1}{b_2} a_2(i_1 - j_1)$, this gives

$$b_1i_1 + b_2i_2 > b_1j_1 + b_2j_2 \implies i >_b j_b$$

• " $\Leftarrow=$ ": From (2) we get

$$\frac{j_2 - i_2}{i_1 - j_1} = \frac{a_1}{a_2}. (3)$$

By $i >_b j$ and (3),

$$b_1i_1 + b_2i_2 > b_1j_1 + b_2j_2 \implies \frac{b_1}{b_2} > \frac{j_2 - i_2}{i_1 - j_1} = \frac{a_1}{a_2} \implies a_1b_2 - a_2b_1 < 0 \implies \frac{a \times b}{\|a \times b\|} > 0.$$

Using Claim 1 we are able to show the following lemma.

Lemma 2. Let i, j, i', j' be two pairs of points in X satisfying

• neither of i, j dominates the other: $i_1 < j_1$ and $i_2 > j_2$,

- neither of i', j' dominates the other: $i'_1 < j'_1$ and $i'_2 > j'_2$,
- the slope of line ij is less than the slope of line i'j': $\frac{j_2-i_2}{j_1-i_1} < \frac{j'_2-i'_2}{j'_1-i'_1}$.

Then for any preference weight vector $b \in \mathbb{R}^2_{\geq 0}$,

- 1. If $i >_b j$, $i' >_b j'$.
- 2. If $j' >_b i'$, $j >_b i$.

Proof. Again 1 and 2 are symmetric, we only prove 1. Let a, a' be the preference weight vectors that gives $i =_a j$ and $i' =_{a'} j'$ respectively. By definition of a',

$$a'_1i'_1 + a'_2i'_2 = a'_1j'_1 + a'_2j'_2 \implies \frac{a'_1}{a'_2} = \frac{j'_2 - i'_2}{i'_1 - j'_1}.$$
 (4)

Since $i >_b j$,

$$b_1 i_1 + b_2 i_2 > b_1 j_1 + b_2 j_2 \implies \frac{b_1}{b_2} > \frac{j_2 - i_2}{i_1 - j_1}.$$
 (5)

From the relation of slopes we have

$$\frac{j_2 - i_2}{i_1 - j_1} > \frac{j_2' - i_2'}{i_1' - j_1'}. (6)$$

 \triangleright Suppose that L[1] is the first element in the list L

Combine (4)(5)(6) we get

$$\frac{b_1}{b_2} > \frac{j_2 - i_2}{i_1 - j_1} > \frac{j_2' - i_2'}{i_1' - j_1'} = \frac{a_1'}{a_2'} \implies a_1' b_2 - a_2' b_1 < 0 \implies \frac{a' \times b}{\|a' \times b\|} > 0.$$

By Proposition ??, this implies $i' >_b j'$.

Let P_2 be a set of 2-dimensional preferences on [n].

Theorem 3. $|P_2| \leq \binom{n}{2} + 1$.

Proof. We prove this upper bound algorithmically. Consider the following algorithm of generating a preference in P_2 given X:

Algorithm 1 Preference Generator for P_2

- 1: Relabel all points in X such that $y_1 \geq y_2 \geq \cdots \geq y_n$
- 2: for all $i, j \in X, i < j$ do

 $L \leftarrow s_{ii}$

- 3: Compute slope s_{ij}
- 4: if $s_{ij} < 0$ then
- 6: Sort L in ascending order
- 7: Choose a pivot $p \in \{0, \dots, |L|\}$
- 8: if $p \ge 1$ then
- 9: Let $L[p] = s_{ij}$, set $i >_a j$
- 10: **if** p + 1 < |L| **then**
- 11: Let $L[p+1] = s_{i'j'}$, set $i' <_a j'$
- 12: Output $>_a$

Lemma 2 ensures that by setting $i <_a j$ and $i' >_a j'$ in steps 8-11, all pairs k, l before i, j in list L are set to $k <_a l$, and all pairs k', l' after i', j' in L are set to $k' <_a l'$. Moreover, there is a one-to-one correspondence between the actual preference, and choosing a pivot to flip from $<_a$ to $>_a$. Since $|L| \le \binom{n}{2}$, and the number of pivots that we can choose from is |L| + 1, we get that $|P_2| \le \binom{n}{2} + 1$.

The upper bound is tight. ADD the example here!

Figure 2: List L