Теоритический миниум. Мне короче вечером евсеев свой даст и я у него перекатаю все.

Содержание

1							
	1.1	Термическое и калорическое уравнения состояния термо-					
		динамической системы					
	1.2	Запись с их помощью 1-го начала термодинамики (для эле-					
		ментарного и для произвольного термодинамического про-					
		цесса)					
2							
_	2.1	Теплоёмкость					
	2.2	Зависимость теплоёмкостей идеального газа c_p и c_v от типа					
		молекулы, связь между ними (уравнение Майера)					
	2.3	Термическое и калорическое уравнения состояния идеаль-					
		ного газа					
3							
	3.1	Политропический процесс с идеальным газом					
	3.2	Уравнение Пуассона					
4	Ско	Скорость звука в идеальном газе					
5							
J	5.1	Энтропия					
	$5.1 \\ 5.2$	2-е начало термодинамики для равновесных (обратимых)					
	0.2	и неравновесных (необратимых) процессов в термодинами-					
		ческой системе					
	5.3	Изменение энтропии идеального газа в результате перехода					
	0.0	между его равновесными состояниями					
		r w					
6	Не готов первый пункт						
	6.1	Термодинамические функции					
	6.2	Метод получения соотношений Максвелла					
7							
1	7.1	Фазовые переходы (I и II родов)					
	7.1						

8			8			
	8.1	Термическое и калорическое уравнения состояния газа Ван-				
		дер-Ваальса	8			
	8.2	Уравнение адиабаты газа Ван-дер-Ваальса	9			
9	Пока не готово					
	9.1	Изотермы газа Ван-дер-Ваальса	9			
	9.2	Правило Максвелла	10			
	9.3	Физический смысл критических параметров реального газа	10			
	9.4	Закон соответственных состояний	10			

1

1.1 Термическое и калорическое уравнения состояния термодинамической системы

В термодтнамической системе согласно опты объём давление и температура находятся в функциональной зависимости, как идеальные газы газы, как и реальные. Эту зависимость можно выразить уравнением, которое и есть **термическим** уравнением состояния системы.

$$f(P, V, T) = 0$$

Так же нам надо знать внутреннюю энергию, как функцию параметров, определяющих состояние, эту зависимость назовем **калорическим** уравнением состояния.

$$U = U(V, T)$$

1.2 Запись с их помощью 1-го начала термодинамики (для элементарного и для произвольного термодинамического процесса)

Если записать ЗСЭ для термодинамической системы, то получим

$$\delta Q = dU + \delta A$$

Тогда с рассмотрев приложение первого начала к идеальным газам, получим, что термическим уравнением будет являться уравнение Менделеева-Клайперона $PV=\mu RT$. Теперь рассмотрим равновесный квазистатический процесс, тогда $\delta=PdV$, и таким образом получаем $dU=-\delta Q$ +

PdV. Здесь, в первом пункте, мы везде рассматривали, что δQ – тепло полученное газом.

2

2.1Теплоёмкость

Обозначается обычно C и есть отношение бесконечно малого количества теплоты δQ , полученного телом к соответствующему приращению dT его температуры:

$$C = \frac{\delta Q}{dT} \tag{1}$$

Также сразу отметим связь между молярной $c_{\nu} = C/\nu$ и удельной $c_m =$ C/m теплоёмкостями.

2.2Зависимость теплоёмкостей идеального газа c_p и c_v от типа молекулы, связь между ними (уравнение Майера)

Молекулы можно охарактеризовать степенями свободы – характеристики движения механической системы. Число степеней свободы определяет минимальное количество независимых переменных (обобщённых координат), необходимых для полного описания движения механической системы. Обозначим это число за i. Тогда: $c_p = \frac{i+2}{2} \cdot R$ и $c_v = \frac{i}{2} \cdot R$. Отметим сразу, что показатель адиабаты (коэффицент Пуасона есть - $\gamma = \frac{c_p}{c_v} = \frac{i+2}{i}.$ Уравнение Майера: $c_p = c_v + R$

2.3Термическое и калорическое уравнения состояния идеального газа

Итак, записав первое начало термодинамики $Q = \Delta U + A$, получим, что для одного моля идеального газа термическим уравнением будет являться PV = RT – уравнение Менделеева-Клайперона.

Теперь рассмотрим равновесный квазистатический процесс, тогда $\delta =$ PdV, и таким образом получаем $dU = -\delta Q + PdV$.

3.1 Политропический процесс с идеальным газом

Политропический процесс – процесс протекающей при постоянной теплоемкости: C = const. В случае идеального газа имеем:

$$CdT = c_v dT + \frac{\nu RT}{V} dV \tag{2}$$

$$PV^n = const$$

 Γ де $n=rac{C-c_p}{C-c_v}$ и называется показателе политропы. Рассмотрим частные случаи

Название процесса	Теплоёмкость	$\mid n \mid$	Уравнение
Адиабатический	C = 0	$n = \gamma$	$PV^{\gamma} = const$
Изобарический	$C = c_p$	n = 0	P = const
Изохорический	$C = c_v$	n = 1	V = const
Изотеримический	$C = \infty$	n=1	T = const

3.2 Уравнение Пуассона

Если теплоёмкости c_p и c_v не проктически не меняются в широком диапозоне температур, то тогда $\gamma = \frac{c_P}{c_V} = const$, и интегрируя несколько преобразованное уравнение Менделеева-Клайперона получаем **уравнение Пуассона**

$$PV^{\gamma} = const$$

4 Скорость звука в идеальном газе

Так как газы обладают упругостью объёма, а не формы, то в них могут распространяться только продольные волны (но не попереченные и не сдвиговые) волны разрежения-уплотнения. $c_{zvykanutonova} = \sqrt{\partial P/\partial \rho} = \sqrt{\frac{R\partial T}{\mu}}$. Но при вычеслении по Ньютоновой, мы получам расхожедение с реальными показателями, которое было устранено Лапласом, который указал, что плотности и связанные с ними колебания температуры происходят быстро, а теплопроводность воздуха настолько мала, что теплообмен не играет никакой роли. Разности температур между сгущением и разряжениями воздухав звуковой волн не успевают выравниваться, так что в таком случае надо пользоваться не уравнением изотермы, а адиабаты

$$c_{zvyka} = \sqrt{\gamma P/\rho} = \sqrt{\gamma RT/\mu} = c_{zvykanutonova} \cdot \sqrt{\gamma}$$

5.1 Энтропия

Допустим, что круговой процесс, совершаемы сисистемой – квазистатический. Неравенство Клаузиса

$$\oint \frac{\delta Q}{T} \le 0$$

Теперь температура самого тела равна температуре окружающей среды Т. Для квазистатического процесса неравенство Клаузиуса превращается в равенство

$$\oint \frac{\delta Q}{T} = 0$$

На этом равенстве и введено понятие энтропии S.

Энтропия системы есть функция состояния определенная с точностью до произвольной постоянной. Разность энтропий в двух равновестных состояниях 2 и 1, по определению, равна приведенному количеству, которое надо сообщить системе, чтобы перевести её из состояния 1 в состтояние 2:

$$S_1 - S_2 = \int_{1 \to 2(kvazistat)} \frac{\delta Q}{T}$$

Для дифференциала имеем

$$dS = \left(\frac{\delta Q}{T}\right)_{kvazistat}$$

5.2 2-е начало термодинамики для равновесных (обратимых) и неравновесных (необратимых) процессов в термодинамической системе

Приведем две формулировки, которые эквивалентны.

Формулировка Клаузиуса. Невозможен круговой процесс, единственным результатом которого был бы переход тепла от более холодного тела к более нагретому. (Тупа переход, без какой либо внешней работы).

Формулировка Томпсона. Невозможен круговой процесс, единственным результатом которого было бы совершение работы за счет теплоты, взятой от какого-либо тела. (Короче, невозможна машина Томпсона (машина которая берет тепло из нагревателя и всё нго на работу спихивает, холодильника, вообще, нет)).

Тепловая машина – устройство, которое преобразует теплоту в работу или обратно и действует строго периодически, т. е. после завершения цикла возвращается в исходное состояние.

5.3 Изменение энтропии идеального газа в результате перехода между его равновесными состояниями

$$\Delta S = \nu(c_V \ln\left(\frac{P_2}{P_1}\right) + c_P \ln\left(\frac{V_2}{V_1}\right) = \nu(c_V \ln\left(\frac{T_2}{T_1}\right) + R \cdot \ln\left(\frac{V_2}{V_1}\right) = \nu(c_V \ln\left(\frac{T_2}{T_1}\right) - R \cdot \ln\left(\frac{P_2}{P_1}\right)$$

Внимание, если записывать в конкретной точке, например, то $S(T,V)=c_V ln(T)+R\cdot ln(V_\nu)+S_0$, где $V=\frac{V}{\nu}$ – молярный объём.

6 Не готов первый пункт

6.1 Термодинамические функции

Объединённое уравнение 1-го и 2-го начал термодинамики для равновесных процессов и последовательная «цепочка» термодинамических функций (внутренняя энергия, энтальпия, свободная энергия Гельмгольца, термодинамический потенциал Гиббса).

6.2 Метод получения соотношений Максвелла

Если что, то смотреть Сивухина, стр 138.

Соотношения Максвелла – равенство между производными разичных термодинамических величин. Они следуют из простого математического утверждения. Пусть есть функция f(x,y). Тогда $df = \left(\frac{\partial f}{\partial x}\right) dx + \left(\frac{\partial f}{\partial y}\right) dy$. С учетом стандартных обозначений частных производных f = Adx + Bdy. Так как $\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right)$, $\rightarrow \frac{\partial A}{\partial y} = \frac{\partial B}{\partial x}$. Применение этого равенства к основным термодинамическим функция позволяет получить искомые соотношения Максвелла.

$$\begin{split} \left(\frac{\partial X}{\partial X}\right)_x \\ \left(\frac{\partial T}{\partial V}\right)_S &= -\left(\frac{\partial P}{\partial S}\right)_V \\ \left(\frac{\partial T}{\partial P}\right)_S &= \left(\frac{\partial V}{\partial S}\right)_P \end{split}$$

$$\begin{split} \left(\frac{\partial S}{\partial V}\right)_T &= \left(\frac{\partial P}{\partial T}\right)_V \\ \left(\frac{\partial S}{\partial P}\right)_T &= -\left(\frac{\partial V}{\partial T}\right)_P \end{split}$$

Вот такие и подобные им соотношения Максвелла используются для вывода различных соотношений между величинами, характеризующими термодинамически равновесные состояния системы.

7

7.1 Фазовые переходы (I и II родов)

Фазовые превращения, при которых первые производные функции $\mu(T,P)$ (химический потенциал $\mu = \left(\frac{\partial U}{\partial N}\right)_{S,V}$) меняются скачкообразно, называются фазовыми превращениями **первого рода**. Поскольку $v = \left(\frac{\partial \mu}{\partial P}\right)_T$ и $s = -\left(\frac{\partial \mu}{\partial T}\right)_P$. Так как плотность обратно пропорцианальна объему , то она скачкообразно меняется. так же отлична от нуля теплота фозового пререхода $q_{12} = T(S|_2 - s_1)$. Примерами может служить: плавление, испарение, возгонка и обратные им.

Фазовые превращения при которых первые производные одной и той же функции (химический потенциал $\mu = \left(\frac{\partial U}{\partial N}\right)_{S,V}$) остаются непрерывными, а вторые меняются скачкообразно, называются фазовыми превращениями **второго рода**. Теплота таких фазовых переходов равна нуль, ибо энтропия $s = -\left(\frac{\partial \mu}{\partial T}\right)_P$ — непрерывна, плотность вещества тоже меняется непрерывно. поскольку

Фазой называется макроскопическая физически однородная часть вещества, отделенная от остальных частей системы границами раздела, так, что она может быть извлечена из системы механическим путём.

Например, если в сосуде находится вода и водяной пар то система двухфазная, и т. д. В системе может быть несколько твердых и жидких фаз. Но не может содержать более одной газообразной фазы, ибо все газы смешиваются между собой.

7.2 Уравнение Клапейрона-Клаузиса и его физический смысл

Рассомтрим систему, сосотоящую из двух фаз 1 и 2, которые могут превращаться в друг друга. Если m_1 – масса первой, а m_2 – масса второй,

обозначив за φ_1 и φ_2 удельные термодинамические потенциалы вещества в этих фазах, то термический потенциал системы представим в виде $\Phi = m_1 \varphi_1 + m_2 \varphi_2$. Тогда, если выполняется условие $\varphi_1(P,T) = \varphi_2(P,T)$. теперь рассмотрим следствия из этого уравнения фаз.

На линии DK удельные термодинамические потенциалы жидкости и пара находятся в равновесии. Тогда $\varphi_1(P,T)=\varphi_2(P,T)$ представимо в виде P=P(T) – это зависимость давления насыщенного пара от температуры. Теперь найдем наклон равновесия жидкости, для этого вычислим производгую давления насыщенного пара по температуре dP/dT. при смещении кривой испарения $d\varphi_1=d\varphi_2$, так как $d\varphi=-sdT+vdP\to v_1dP-s_1dT=v_2dP-s_2dT \Rightarrow$

$$\frac{dP}{dT} = \frac{s_1 - s_2}{v_1 - v_2}$$

Рис. 1: Состояние вещества

С учетом того, что при переходе единицы массы из газообразного в жидкое выделяется теплота $q = T(s_1 - s_2)$. \Rightarrow

$$\frac{dP}{dT} = \frac{q}{T(v_1 - v_2)}$$

Это и есть уравнение Клайперона-Клаузиуса.

8

8.1 Термическое и калорическое уравнения состояния газа Ван-дер-Ваальса

Если взаимодействие молекул друг с другом достаточно сильное, то свойства вещества могут существенно отличаться от свойств идеального газа. рассмотрим модель Ван-дер Ваальса (термическое уравнение)

$$\left(P + \frac{\nu^2 a}{V^2}\right)(V - \nu b) = \nu RT$$

Поправка а – учитывает силы притяжения между молекулами (давление на стенку уменьшается, так как есть силы, втягивающие молекулы приграничного слоя внутрь), поправка b – суммарный объём молекул газа

Тогда внутренняя энергия (калорическое уравнение состояния) есть

$$U = c_v T - \frac{a}{V}$$

8.2 Уравнение адиабаты газа Ван-дер-Ваальса

Итак, как было сказано выше $P(V,T)=\frac{RT}{V-b}-\frac{a}{V^2},$ $U(V,T)=c_vT-\frac{a}{V},$ так же $\Delta Q=CdT=dU+PdV,$ но $dU=C_VdT+\frac{a}{V^2}dV.$ Из этих уравнение следует, что

$$C_V dT + rac{a}{V^2} dV + rac{RT}{V-b} dV - rac{a}{V^2} dV = 0$$
 $rac{dT}{T} + rac{\gamma-1}{V-b} dV = 0$, где γ коэффицент Пуасона. $T(V-b)^{\gamma-1} = const$, таким образом получаем \Rightarrow

$$(P + \frac{a}{V^2})(V - b)^{\gamma} = const$$

– уравнение адиабаты для газа Ван-дер-Ваальса.

9 Пока не готово

9.1 Изотермы газа Ван-дер-Ваальса

Уравнение изотермы можно представить в виде $\left(P + \frac{\nu^2 a}{V^2}\right)(V - \nu b) = \nu RT$ или же, переписав для одного моля и раскрыв скобки и произведя операции домножения $P = \frac{RT}{V-b} - \frac{a}{V^2}$, заметим, что последний член при высоких температурах можно отбросить, после преобразований получаем уравнение изотермы.

$$PV^3 - (RT + Pb)V^2 + aV - ab = 0$$

Заметим, что приболее низких температурах и надлежащих значеиях давления P данное уравнение имеет три корня V_1, V_2, V_3 , в таких случая изобара пересекает изотерму в трех точках P, C, G. При некой промежуточной температуре три корня V_1, V_2, V_3 становятся равными. Такая температура и соответствующая ей изотерма называются **критическими**. Критическая изотерма FKH ивсюду монотонноопускается, за исключением одной точки K, являющейся точкой перегиба и называемой критической. Говорят, что вещество находится в критическом состоянии, если его P_k, V_k и T_k если его объем и давление (а значит и температура) равны критическим. Для нахожденя критических параметров следует учесть, что в критическом случае три корня совпадают и равны V_k , уравнение должно приводиться к виду

$$P_k(V - V_k)63 = 0$$

Тогда возводя в куб и сранивая коэффиценты получим $P_kV_k^3=ab,$ $3P_kV_k^2=a$ и $3P_kV_k=RT_k+P_kb$, решая которые получим что: $V_k=3b,$ $P_k=\frac{a}{27b^2}$ и $T_k=\frac{8a}{27Rb}$.

9.2 Правило Максвелла

9.3 Физический смысл критических параметров реального газа

9.4 Закон соответственных состояний

Рис. 2: Изотермы газа Ван-дер-Ваальса