CS143: Database Systems Homework #1

1. Suppose relation R(A, B, C) has the tuples:

A	В	С
3	2	1
4	2	3
4	5	6
2	5	3
1	2	6

and relation S(A, B, C) has the tuples:

A	В	С
2	5	3
2	5	4
4	2	3
3	2	1

Compute $(R-S) \cup (S-R)$, often called the "symmetric difference" of R and S. List all the tuples in the result relation.

2. Suppose relation R(A, B) has the tuples:

A	В
1	2
3	4
5	6

and relation S(B, C, D) has the tuples:

R.A R.B S.B S.C S.D
1 2 2 4 6
1 2 8 6 8
1 2 7 5 9
3 4 2 4 6
3 4 8 6 8
3 4 7 5 9
5 6 8 6 8

Compute $\sigma_{R.A < S.C \land R.B < S.D}(R \times S)$ and list all the result tuples.

3. Assume the following database for this problem. The relations represent information on bank branches:

Customer(<u>customer-name</u>, street, city)

Branch(<u>branch-name</u>, city)

Account(customer-name, branch-name, account-number)

The **Customer** relation has customer names and their addresses. The **Branch** Relation has branch names and the city that a branch is located in. The **Account** relation represents at which branch a customer has his/her accounts. We assume that customer names and branch names are unique. We also assume that a customer may have multiple accounts in one branch and the customer may have accounts in multiple branches.

Write an relational-algebra expression for each of the following queries. We can use only the operators learned in the class.

(Hint: When a query is difficult to write, think of its complement.)

(a) Find the names of all customers who have an account in the 'Region12' branch.

Πcustomer-name(σbranch-name='Region12'(Account))

(b) Find the names of all customers who have an account in a branch NOT located in the same city that they live in.

 Π customer-name(σ A.city \sim B.city Λ A.branch-name=B.branch-name(ρ B(Branch) × ρ A(Customer \bowtie Account)))

(c) Find the branches that do not have any accounts.

Πcustomer-name(Branch)—Πcustomer-name(Account)

- (d) Find the customer names who do not have any account in the 'Region12' branch. See end of page
- (e) Find the customer names who have accounts in all the branches located in 'Los Angeles'.

You are not allowed to use the division operator directly for this question.

 Π Customer-name(Customer) — (Π Customer-name(Π Customer-name(Customer) × Π Dranch-name(σcity='Los Angeles'(Branch)) — Π Customer-name, branch-name(Account))

(f) Find the customer names who have only one account.

 Π customer-name(Account)—A1.customer-name(σ(A1.customer-name=A2.customer-name) Λ (A1.branch-name Δ 2.branch-name) Λ (A1.account-number Δ 2.account-number)(Λ 1.account-number)(Λ 2.account-number)(Λ 3.account-number)(Λ 4.account)))

4. The relation **Student**(**sid**, **GPA**) captures the student-GPA information, where **sid** is the id of a student and **GPA** is the student's GPA. Write a relational algebra that finds the ids of the students with the lowest GPA.

(Hint: When a query is difficult to write, think of its complement.)

 Π sid(Student – (Π S2.sid,S2.GPA(σ S1.GPA<S2.GPA(ρ S1(Student) × ρ S2(Student))))

3.(d) \(\Pi\) \(\text{Customer-name}(\text{Account}) - (\Pi\) \(\Pi\) \(\text{Customer-name}(\text{\signal}\) \(\text{cranch-name} - \text{'Region12'}(\text{Account})))\)