Divide and Conquer Method

Dr. Raghunath Reddy M

Dept. of Computer Science Engineering, Bennett University, Greater Noida

January 28, 2020

The Maximum Sub-array Sum Problem

Problem Definition

Input: Let A be an array of n elements, namely, $A[1], A[2], \ldots, A[n]$. **Output:** Find a sub-array A[i..j] i.e., $A[i], A[i+1], \ldots, A[j]$ such that the sum of the sub-array is maximum.

10	-12	14	-10	12	14	10	-7	10	-15	20	-5	
----	-----	----	-----	----	----	----	----	----	-----	----	----	--

Figure: An instance of array A.

The Maximum Subarray Sum Problem

Problem Definition

Input: Let A be an array of n elements, namely, $A[1], A[2], \ldots, A[n]$. **Output:** Find a sub-array A[i..j] i.e., $A[i], A[i+1], \ldots, A[j]$ such that the sum of the sub-array is maximum.

Figure: An instance of array A and the colored sub-array is the maximum sum sub-array for the given instance.

Question?

How to obtain the solution in $O(n \log n)$ -time?

Divide and Conquer Approach

Where can the optimal solution lie?

- Can lie only in the left half A[low..mid]
- ② Can lie only in the right half A[mid + 1..high]
- 3 Can cross the mid location of the array.

 low
 mid
 high

 10
 -12
 14
 -10
 12
 14
 10
 -7
 10
 -15
 20
 -5

Dr. R Reddy M

```
1: left\_sum = -\infty

2: sum = 0

3: for i = mid down to low do

4: sum = sum + A[i]

5: if sum > left\_sum then

6: left\_sum = sum

7: left\_max = i

8: end if
```

Slide - 4 of 13

9: end for

Similarly, we can extend the solution on the right side of mid.

Finish the code for the right of mid !!!!

Finish the code for the right of mid!!!!


```
1: right\_sum = -\infty

2: sum = 0

3: for \ i = mid + 1 to high \ do

4: sum = sum + A[i]

5: if \ sum > right\_sum \ then

6: right\_sum = sum

7: right\_max = i

8: end \ if

9: end \ for
```

The complete algorithm for case (3)

In the next slide ...

$\textbf{Algorithm 1} \ \mathsf{FIND_MAX_CROSSING_SUBARRAY}(A, low, mid, high)$

```
1: left\_sum = -\infty
 2: sum = 0
3: for i = mid down to low do
4: sum = sum + A[i]
 5: if sum > left sum then
         left sum = sum
6:
7: left max = i
 8: end if
 9: end for
10: right\_sum = -\infty
11: sum = 0
12: for i = mid + 1 to high do
13: sum = sum + A[i]
14: if sum > right_sum then
15:
         right\_sum = sum
          right_max = i
16:
      end if
17:
18: end for
19: return (left_max, right_max, left_sum + right_sum)
```

Algorithm 1 FIND-MAX-CROSSING-SUBARRAY(A, low, mid, high)

```
1: left\_sum = -\infty
 2: sum = 0
 3: for i = mid down to low do
    if sum > left\_sum then left\_sum = sum left\_max = i O(1) O(mid - low + 1)
     end if
 8: end for
 9: right\_sum = -\infty
10: sum = 0
11: for i = mid + 1 to high do
           \begin{array}{c|c} \textbf{if } \textit{sum} > \textit{right\_sum} & \textbf{then} \\ \textit{right\_sum} = \textit{sum} \\ \textit{right\_max} = \textit{i} \end{array} \right\} O(1) \\ \begin{array}{c|c} O(high-mid) \\ \end{array} 
12:
13·
14:
          end if
15:
16: end for
17: return (left_max, right_max, left_sum + right_sum)
```

Algorithm 1 FIND-MAX-CROSSING-SUBARRAY(A, low, mid, high)

```
1: left\_sum = -\infty
 2 \cdot sum = 0
 3: for i = mid down to low do
4: if sum > left\_sum then
5: left\_sum = sum
6: left\_max = i
O(mid - low + 1)
 7. end if
 8: end for
 9: right\_sum = -\infty
10: sum = 0
11: for i = mid + 1 to high do
12: if sum > right\_sum then

13: right\_sum = sum

14: right\_max = i
O(1)
O(high - mid)
        end if
15:
16. end for
17: return (left_max, right_max, left_sum + right_sum)
```

• Total time = O(mid - low + 1) + O(high - mid) = O(high - low + 1) = O(n)

General case:

Algorithm 2 FIND_MAXIMUM_SUBARRAY(A, low, high)

```
1: if high == low then
       return (low, high, A[low]) //base case
 3: else mid = |(low + high)/2|
       (llow, lhigh, lsum) = FIND_MAXIMUM_SUBARRAY(A, low, mid)
4:
 5:
6:
       (rlow, rhigh, rsum) = FIND\_MAXIMUM\_SUBARRAY(A, mid + 1, high)
7:
       (clow, chigh, csum) = FIND\_MAX\_CROSSING\_SUBARRAY(A, low, mid, high
8:
9:
       if |sum| > rsum and |sum| > csum then return (|low|, |high|, |sum|)
10:
11:
       else if rsum \ge lsum and rsum \ge csum then return (rlow, rhigh, rsum)
12:
13:
14:
             return (clow, chigh, csum)
15:
16:
       end if
17: end if
```

General case:

• Total time $T(n) = 2T(n/2) + O(n) = O(n \log n)$

The maximum sub-array Problem

Problem Definition

Input: Let A be an array of n elements, namely, $A[1], A[2], \ldots, A[n]$. **Output:** Find a sub-array two indices i and j of A such that (i) i < j and (ii) A[j] - A[i] is the maximum.

85	105	102	86	63	81	101	94	106	101	79	94	
----	-----	-----	----	----	----	-----	----	-----	-----	----	----	--

Figure: An instance of the maximum sub-array problem.

Reduction to The maximum sub-array sum problem

Figure: B[i] = A[i] - A[i-1] for all $i \ge 2$ and B[1] = NULL.

- A is an instance of the maximum sub-array problem.
- *B* is an instance of the maximum sub-array sum problem.

Relation between the solutions of A and B

Figure: The red colored sub-array of ${\it B}$ is the maximum sum sub-array.

Figure: The colored cells of *A* denote the solution to the problem.

Finding the Closest Pair of Points in the Plane

Closest pair of points

Problem Definition

Input: Let $P = \{p_1, p_2, \dots, p_n\}$ be a set of points in the plane where each $p_i = (x_i, y_i)$ for real numbers x_i and y_i .

Output: Find a pair of points p_i and p_j such that the Euclidean distance between p and p_j , $d(p_i, p_j)$ is minimum.

Brute-force algorithm

Check all possible ${}^{n}C_{2}$ pairs and pick the best one.

Time : $O(n^2)$

Question

Can we do it in better time, like $O(n \log n)$ -time?

