Two's complement: binary to denary 1

Practice 1

Convert the binary number 11101001 to denary. The binary value is encoded as an 8-bit	
two's complement number.	

+105

_ -23

+233

-105

Two's complement: binary to denary 3

Practice 1

Convert the binary number 10001010 to denary. The binary value is encoded as an 8-bit ${\bf two's\ complement\ number}$.

Type your answer as a **signed decimal number** (e.g. +3.75). Do not leave any spaces in your answer.

Quiz:

STEM SMART Computer Science Week 3

Two's complement: denary to binary 1

Practice	2
PP	

Convert the value $+28_{10}$ to an 8-bit two's complement binary number.	
O 11100000	
O0011100	
O 11100100	
O11100	
Quiz: STEM SMART Computer Science Week 3	
All teaching materials on this site are available under a <u>CC BY-NC-SA 4.0</u> license, except where otherwise stated.	

Two's complement: denary to binary 2

Practice	2
PP	

Conve	vert the value -49_{10} to an 8-bit two's complement binary number.	
Quiz: STEM	M SMART Computer Science Week 3	
	All teaching materials on this site are available under a CC BY-NC-SA 4.0 license, except	where otherwise

stated.

Two's complement: range 1

Practice 1

actic	_
P	

Signed integers can be stored in two's complement form. What is the range of values that can be stored using 8 bits in two's complement?	
-127 to -128	
- +255 to -256	
-128 to -128	
- +256 to -256	
Quiz: STEM SMART Computer Science Week 3	

Signed fixed: binary to denary 1

Challenge 1

Select the denary number that is the same value as the binary number 110011.1001 to denary. It is represented in two's complement fixed point form with 6 places before the binary point and 4 places after the binary point.

- $\bigcirc \ \ -13.5625 \ ext{(or} \ -13rac{9}{16} \ ext{or} \ -rac{217}{16} ext{)}$
- -3.109375 (or $-3\frac{7}{64}$ or $-\frac{199}{64}$)
- -51.5625 (or $-51\frac{9}{16}$ or $-\frac{825}{16}$)
- -12.4375 (or $-12\frac{7}{16}$ or $-\frac{199}{16}$)

Quiz:

STEM SMART Computer Science Week 3

Signed fixed: binary to denary 4

Challenge 2

Convert the binary number 101011.10110 to denary. It is represented in **two's complement fixed point form** with 6 places before the binary point and 5 places after the binary point.

Type your answer as a **signed decimal number** (e.g. +3.75). Do not leave any spaces in your answer.

Quiz:

STEM SMART Computer Science Week 3

Signed fixed: denary to binary 1

Challenge 1

Each binary number below is encoded as a fixed point two's complement number with 4 places before the binary point and 4 places after the binary point. Select the binary number that is the same value as the denary number $-4\frac{3}{4}$ (or $-\frac{19}{4}$ or -4.75 as a decimal).	
O 01001100	
O 11000100	
O 10110100	
O 11001100	
Quiz: STEM SMART Computer Science Week 3	

Signed fixed: denary to binary 2

Challenge 2

Convert the denary number $-11\frac{3}{8}$ (or $-\frac{91}{8}$ or -11.375 as a decimal) to binary. It must be encoded as a **fixed point two's complement number** with 5 places before the binary point and 4 places after the binary point.

Type your answer as a 9-bit binary number **without a binary point** (e.g. 111110000). Do not leave any spaces in your answer.

Quiz:

STEM SMART Computer Science Week 3

Absolute and relative error 2

Challenge 2

Calculate the absolute and relative error that is caused due to the **truncated** representation of 0.2_{10} in binary using 8 bits.

Original value in denary	Truncated representation in binary using 8 bits	Absolute error	Relative error
0.2 ₁₀	0.00110102	?	?

Part A
Enter the value of the absolute error in denary.
Part B
Enter the value of the relative error as a percentage (but do not include the percentage sign).

