Exercise 1 Evaluate the limit and justify your answer.

(a)
$$\lim_{x \to \frac{\pi}{2}} e^{\sin x} = \boxed{e}$$

Justification:

Notice that $e^{\sin x} = f(g(x))$, where

$$f(x) = \boxed{e^x}$$
 and $g(x) = \boxed{\sin x}$

and both functions, f and g, are (not continuous / continuous \checkmark) on $(-\infty, \infty)$.

So, we can apply (Composition \checkmark / Product) limit law

$$\lim_{x \to \frac{\pi}{2}} e^{\sin x} = e^{\lim_{x \to \frac{\pi}{2}} \boxed{\sin x}}$$

Since g is (not continuous/continuous \checkmark) at $\frac{\pi}{2}$, we have

$$\lim_{x \to \frac{\pi}{2}} \sin x = \sin \left(\left\lceil \frac{\pi}{2} \right\rceil \right) = \boxed{1}$$

and, therefore

$$\lim_{x \to \frac{\pi}{2}} e^{\sin x} = e^{\boxed{1}} = \boxed{e}$$

(b)
$$\lim_{x\to 2}\cos\left(\pi\frac{3x^2-4x+1}{4}\right) = \boxed{-\frac{\sqrt{2}}{2}}$$

Justification:

Notice that $\cos\left(\pi \frac{3x^2 - 4x + 1}{4}\right) = f(g(x))$, where

$$f(x) = \boxed{\cos x}$$
 and $g(x) = \boxed{\pi \frac{3x^2 - 4x + 1}{4}}$

and both functions, f and g, are (not continuous / continuous \checkmark) on $(-\infty,\infty)$.

So, we can apply (Composition ✓/ Product) limit law

$$\lim_{x \to 2} \cos\left(\pi \frac{3x^2 - 4x + 1}{4}\right) = \cos\left(\lim_{x \to 2} \pi \frac{3x^2 - 4x + 1}{4}\right)$$

Since g is (not continuous/continuous \checkmark) at 2, we have

$$\lim_{x \to 2} \pi \frac{3x^2 - 4x + 1}{4} = \pi \frac{32^2 - 42 + 1}{4} = 5\pi \frac{5\pi}{4}$$

and, therefore

$$\lim_{x \to 2} \cos\left(\pi \frac{3x^2 - 4x + 1}{4}\right) = \cos\left(\frac{5\pi}{4}\right) = \boxed{-\frac{\sqrt{2}}{2}}$$

 $\lim_{x \to e^3} (\ln x + 5)^2 = \boxed{64}$

Justification: Notice that $(\ln x + 5)^2 = f(g(x))$, where

$$f(x) = x^2$$
 and $g(x) = \ln x + 5$

The function f is (not continuous/continuous \checkmark) on $(-\infty, \infty)$.

The function g is a (product / sum \checkmark) of two continuous functions, $\ln x$ and $\boxed{5}$. Therefore, g is (not continuous / continuous \checkmark) on its domain $(\boxed{0}, \boxed{\infty})$.

So, we can apply (Composition ✓/ Product) limit law

$$\lim_{x \to e^3} (\ln x + 5)^2 = \left(\lim_{x \to e^3} (\ln x + 5) \right)^{\boxed{2}}$$

Since g is (not continuous/continuous \checkmark) at e^3 , we have

$$\lim_{x \to e^3} (\ln x + 5) = \ln (e^3) + 5 = 3 + 5 = 8$$

and, therefore

$$\lim_{x \to e^3} (\ln x + 5)^2 = \left(\boxed{8} \right)^2 = \boxed{64}$$