МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

(национальный исследовательский университет)»

Институт №3 «Системы управления, информатика и электроэнергетика» Кафедра № 304 «Вычислительные машины, системы и сети»

Информатика

Отчет по лабораторной работе № 1 Вариант № 7

Выполнила бригада группы МЗО-111Бк-21

Багиров Э. Р.

Нуриев Н. Н.

Проверил Секретарев Виталий Евгеньевич

Москва 2021 г.

Оглавление

Задание	
Диаграмма алгоритма	
Исходный код программы	
Алгоритмический вид программы	
Некорректные тесты	
Корректные тесты	8
Протокол расчета ожидаемого результата	11
Вывод	12

Кафедра: 304 Курс: ИНФОРМАТИКА

Задание 1: Вычисление суммы бесконечного числового ряда

ВАРИАНТ № 7

Определить с заданной точностью сумму бесконечного степенного ряда:

$$\sum_{N=1}^{\infty} \frac{1}{(N)(N+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots$$

Предусмотреть ввод точности и печать: количества просуммированных элементов, суммы, разности суммы и точного значения, которое равно: **1**

Диаграмма алгоритма

Исходный код программы

```
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
      setlocale(LC_ALL, "Russian");
      // Инициализация переменных
      long double Eps;
                                      // заданная пользователем точность подсчета Эпсилон
      double Sum = 0;
                                      // cymma
      unsigned long long N = 0;
                                    // индекс суммы
      double prevDelta = 1;
                                     // моментальная точность предыдущей итерации
      // Входной контроль
      cout << "Введите Eps: ";
      cin >> Eps;
      cout << "\n";</pre>
      if (Eps <= 0) {
            // Предотвращение некорректного ввода точности подсчета
            cout << "ОШИБКА - Eps должен быть больше 0." << endl;
            return 0;
      }
      // Расчет суммы
      do {
                                      // инкремент индекса
            N++;
            Sum += 1.0 / N / (N+1); // подсчет нового слагаемого, прибавление его к сумме
            if (prevDelta + Sum - 1 == 0) {
                   // Если точность не увеличилась за последнюю итерацию,
                   // достигнут предел точности, необходимо завершить цикл
                   cout << "ОШИБКА - Достигнуто ограничение по точности подсчета.\n";
                   return 0;
                                    // сохранение новой моментальной точности
            prevDelta = 1 - Sum;
      } while (prevDelta > Eps);
      // Вывод результатов
      cout << "Сумма получена\nКоличество просумированных элементов N = " << N << endl; cout << "Сумма Sum = " << Sum << endl;
      cout << "Достигнутая точность Delta = " << (1 - Sum) << endl;
      return 1;
}
```

Алгоритмический вид программы

```
АЛГ Вариант №7
ΠΕΡ N, Sum, Eps, interrupted, prevDelta
НАЧАЛО
      // Инициализация переменных
                         // заданная пользователем точность подсчета Эпсилон
      Eps
      Sum = 0
                         // сумма
      N = 0
                         // индекс суммы
                         // моментальная точность предыдущей итерации
      prevDelta = 1
      interrupted = false
                         // флаг о выходе из цикла до достижения необходимой точности
      // Входной контроль
      ВВОД Ерѕ
      ЕСЛИ Eps <= 0
            // Предотвращение некорректного ввода точности подсчета
            ТО ПЕЧАТЬ (сообщение об ошибке)
            КОНЕЦ
      КОНЕСЛИ
      // Расчет суммы
      НЦ ПОВТОРЯТЬ
            N = N + 1
                                     // инкремент индекса
            Sum += 1.0 / N / (N + 1)
                                     // подсчет нового слагаемого, прибавление его к сумме
            EСЛИ (prevDelta + Sum - 1 == 0)
            // Если точность не увеличилась за последнюю итерацию,
            // достигнут предел точности, необходимо завершить программу
                  TO
                         ПЕЧАТЬ ошибка достижения ограничения точности
                         КОНЕЦ
            КОНЕСЛИ
            prevDelta = 1 - Sum
                                     // сохранение новой моментальной точности
      КЦ ПОКА (1 - Sum) > Eps
      ПЕЧАТЬ (N, Sum, 1 - Sum)
```

КОНЕЦ

Некорректные тесты

Тест №1

<u>Цель теста:</u> проверить работу программы на границе некорректной области исходных данных

<u>Исходные данные:</u> Eps = 0

Ожидаемый результат: вывод сообщения об ошибке: "ОШИБКА - Ерѕ должен быть больше 0."

Полученный результат:

Вывод: полученный результат совпал с ожидаемым. Тест ошибки не обнаружил.

Тест №2

<u>Цель теста:</u> проверить работу программы в некорректной области исходных данных

<u>Исходные данные:</u> Eps = -0.1

Ожидаемый результат: вывод сообщения об ошибке: "ОШИБКА - Ерѕ должен быть больше 0."

Полученный результат:

Корректные тесты

Тест №1

Цель теста: проверить работу программы в корректной области

<u>Исходные данные:</u> Eps = 0.5

Ожидаемый результат: вывод сообщения:

Сумма получена

Количество просуммированных элементов N = 1

Cумма Sum = 0.5

Достигнутая точность Delta = 0.5

Полученный результат:

Вывод: полученный результат совпал с ожидаемым. Тест ошибки не обнаружил.

Тест №2

Цель теста: проверить работу программы в корректной области

<u>Исходные данные:</u> Eps = 0.3

Ожидаемый результат: вывод сообщения:

Сумма получена

Количество просуммированных элементов N=3

Cумма Sum = 0.75

Достигнутая точность Delta = 0.25

Полученный результат:

Тест №3

Цель теста: проверить работу программы в корректной области

<u>Исходные данные:</u> Eps = 0.2

Ожидаемый результат: вывод сообщения:

Сумма получена

Количество просуммированных элементов N = 4

Cумма Sum = 0.8

Достигнутая точность Delta = 0.2

Полученный результат:

Вывод: полученный результат совпал с ожидаемым. Тест ошибки не обнаружил.

Тест №4

Цель теста: проверить работу программы в корректной области

Исходные данные: Eps = 0.15

Ожидаемый результат: вывод сообщения:

Сумма получена

Количество просуммированных элементов N = 6

Cумма Sum = 0.857143

Достигнутая точность Delta = 0. 142857

Полученный результат:

Тест №5

Цель теста: проверить работу программы в корректной области

<u>Исходные данные:</u> Eps = 0.1

Ожидаемый результат: вывод сообщения об ошибке:

Сумма получена

Количество просумированных элементов N = 9

Cумма Sum = 0.9

Достигнутая точность Delta = 0.1

Полученный результат:

Вывод: полученный результат совпал с ожидаемым. Тест ошибки не обнаружил.

Тест №6

<u>Цель теста:</u> проверить работу программы в корректной области

Исходные данные: Eps = 0.00000001

Ожидаемый результат: вывод сообщения об ошибке:

ОШИБКА - Достигнуто ограничение по точности подсчета.

Полученный результат:

Протокол расчета ожидаемого результата

N	Формула	Sum	Delta (Eps)
1	$\frac{1}{2}$.5	.5
2	$\frac{1}{2} + \frac{1}{6}$.(6)	.(3)
3	$\frac{1}{2} + \frac{1}{6} + \frac{1}{12}$.75	.25
4	$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20}$.8	.2
5	$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30}$.8(3)	.1(6)
6	$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42}$.(857142)	.(142857)
7	$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \frac{1}{56}$.875	.125
8	$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \frac{1}{56} + \frac{1}{72}$.(8)	.(1)
9	$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \frac{1}{56} + \frac{1}{72} + \frac{1}{90}$.9	.1
10	$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \frac{1}{56} + \frac{1}{72} + \frac{1}{90} + \frac{1}{110}$.(90)	.(09)

Вывод

Проанализировали алгоритм по вычислению суммы бесконечного числового ряда. В ходе выполнения лабораторной работы были составлены диаграмма алгоритма и алгоритмический текст программы для дальнейшего написания программы. Проведены некорректные тесты для проверки соответствия исходных данных и корректные тесты, которые показали правильность выполнения алгоритма.