1

证明 A|A = A

A|A表示对于任何字符串x,只要x满足A,就会被A|A接受。

设字符串x,若x满足A,则x满足A|A,同样,如果x满足A|A,则x满足A,故L(A) = L(A|A),A = A|A 证明 $(A^*)^* = A^*$

 A^* 表示0或多个A的重复,设字符串x,如果x被 A接受,就会被 A^* 接受,所以如果x被 A^* 接受,就会被 $(A^*)^*$ 接受。

如果x被 $(A^*)^*$ 接受,那么表示x为0或多个 A^* 的重复,故可以被0到多个A接受,所以被 A^* 接受。故 $L(A^*)=L((A^*)^*)$,所以 $A^*=(A^*)^*$

证明 $A^* = \epsilon |AA^*$

已知 $\epsilon \in A^*$,所以 $\epsilon \in \epsilon | AA^*$

设长度为n的字符串 x_n ,等式成立,对于长度为n + 1 的字符串 $x_{n+1}\in A^*$,,其可以分解为: A与一个长度为n的字符串 $x_n^{'}$,由于上述假设,所以 $x_{n+1}\in\epsilon|AA^*$ 故 $A^*=\epsilon|AA^*$

证明 $(AB)^*A = A(BA)^*$

对于 $x\in (AB)^*A$,有 $x=A^mB^mA=AB^mA^m$,所以(AB)*A=A(BA)*

证明
$$(A|B)^* = (A^*B^*)^* = (A^*|B^*)^*$$

$$(A|B)^* = A^m B^n = (A^*B^*) = (A^*B^*)^*$$

$$(A^*|B^*)^* = (A|B)^*$$

4

