Algebra Lineal

Ejemplos de manejar matrices

✓ Estructura de la matriz

bandwidth	Lower and upper matrix bandwidth
tril	Lower triangular part of matrix
triu	Upper triangular part of matrix
isbanded	Determine if matrix is within specific bandwidth
isdiag	Determine if matrix is diagonal
ishermitian	Determine if matrix is Hermitian or skew-Hermitian
issymmetric	Determine if matrix is symmetric or skew-symmetric
istril	Determine if matrix is lower triangular
istriu	Determine if matrix is upper triangular

✓ Propiedades de la matriz

norm	Normas de vectores y matrices
normest	2-norm estimate
vecnorm	Vector-wise norm
cond	Condition number for inversion
condest	1-norm condition number estimate
rcond	Reciprocal condition number
condeig	Condition number with respect to eigenvalues
det	Matrix determinant
null	Null space of matrix
orth	Orthonormal basis for range of matrix
rank	Rank of matrix
rref	Reduced row echelon form (Gauss-Jordan elimina
trace	Sum of diagonal elements
subspace	Angle between two subspaces

entendiendo la multiplicacion

C2 =

$$\begin{pmatrix} b_{1,1} \, \overline{a_{1,1}} + b_{2,1} \, \overline{a_{1,2}} + b_{3,1} \, \overline{a_{1,3}} & b_{1,2} \, \overline{a_{1,1}} + b_{2,2} \, \overline{a_{1,2}} + b_{3,2} \, \overline{a_{1,3}} & b_{1,3} \, \overline{a_{1,1}} + b_{2,3} \, \overline{a_{1,2}} + b_{3,3} \, \overline{a_{1,3}} \\ b_{1,1} \, \overline{a_{2,1}} + b_{2,1} \, \overline{a_{2,2}} + b_{3,1} \, \overline{a_{2,3}} & b_{1,2} \, \overline{a_{2,1}} + b_{2,2} \, \overline{a_{2,2}} + b_{3,2} \, \overline{a_{2,3}} & b_{1,3} \, \overline{a_{2,1}} + b_{2,3} \, \overline{a_{2,2}} + b_{3,3} \, \overline{a_{2,3}} \\ b_{1,1} \, \overline{a_{3,1}} + b_{2,1} \, \overline{a_{3,2}} + b_{3,1} \, \overline{a_{3,3}} & b_{1,2} \, \overline{a_{3,1}} + b_{2,2} \, \overline{a_{3,2}} + b_{3,2} \, \overline{a_{3,3}} & b_{1,3} \, \overline{a_{3,1}} + b_{2,3} \, \overline{a_{3,2}} + b_{3,3} \, \overline{a_{3,3}} \end{pmatrix}$$

Tarea 1

Ej. 1

a)

Δ =

$$\begin{pmatrix}
2 & -4 & 12 & -10 & 58 \\
-1 & 2 & -3 & 2 & -14 \\
2 & -4 & 9 & -6 & 44
\end{pmatrix}$$

A1 =

$$\begin{pmatrix} -1 & 2 & -3 & 2 & -14 \\ 2 & -4 & 12 & -10 & 58 \\ 2 & -4 & 9 & -6 & 44 \end{pmatrix}$$

Δ2 -

$$\begin{pmatrix} 1 & -2 & 3 & -2 & 14 \\ 2 & -4 & 12 & -10 & 58 \\ 2 & -4 & 9 & -6 & 44 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -2 & 3 & -2 & 14 \\ 0 & 0 & 6 & -6 & 30 \\ 2 & -4 & 9 & -6 & 44 \end{pmatrix}$$

A4 =

$$\begin{pmatrix}
1 & -2 & 3 & -2 & 14 \\
0 & 0 & 6 & -6 & 30 \\
0 & 0 & 3 & -2 & 16
\end{pmatrix}$$

A5 =

$$\begin{pmatrix}
1 & -2 & 3 & -2 & 14 \\
0 & 0 & 0 & -2 & -2 \\
0 & 0 & 3 & -2 & 16
\end{pmatrix}$$

A6 =

$$\begin{pmatrix}
1 & -2 & 3 & -2 & 14 \\
0 & 0 & 3 & -2 & 16 \\
0 & 0 & 0 & -2 & -2
\end{pmatrix}$$

A7 =

$$\begin{pmatrix}
1 & -2 & 3 & -2 & 14 \\
0 & 0 & 3 & 0 & 18 \\
0 & 0 & 0 & -2 & -2
\end{pmatrix}$$

A8 =

$$\begin{pmatrix}
1 & -2 & 3 & 0 & 16 \\
0 & 0 & 3 & 0 & 18 \\
0 & 0 & 0 & -2 & -2
\end{pmatrix}$$

A9 =

$$\begin{pmatrix} 1 & -2 & 0 & 0 & -2 \\ 0 & 0 & 3 & 0 & 18 \\ 0 & 0 & 0 & -2 & -2 \end{pmatrix}$$

A10 =

$$\begin{pmatrix} 1 & -2 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & -2 & -2 \end{pmatrix}$$

A11 =

$$\begin{pmatrix} 1 & -2 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & -2 & 0 & 0 & -2 \\
0 & 0 & 1 & 0 & 6 \\
0 & 0 & 0 & 1 & 1
\end{pmatrix}$$

queda una ecuacion con 2 incognitas (not sure que pedo) comprobe qeu estuviera bien con rref

b)

$$\begin{pmatrix}
3 & -3 & 3 & 9 \\
2 & -1 & 4 & 7 \\
3 & -5 & -1 & 7
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 1 & 3 \\
2 & -1 & 4 & 7 \\
3 & -5 & -1 & 7
\end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 1 & 3 \\ 0 & 1 & 2 & 1 \\ 3 & -5 & -1 & 7 \end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 1 & 3 \\
0 & 1 & 2 & 1 \\
0 & -2 & -4 & -2
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & 2 & 1 \\ 0 & -2 & -4 & -2 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 3 & 4 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

ans =

$$\begin{pmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

mismo caso que el a)

correcto por rref

c)

A =

$$\begin{pmatrix} 3 & -3 & 3 & 9 \\ 2 & -1 & 4 & 7 \\ 3 & -5 & -1 & 6 \end{pmatrix}$$

A1 =

$$\begin{pmatrix}
1 & -1 & 1 & 3 \\
2 & -1 & 4 & 7 \\
3 & -5 & -1 & 6
\end{pmatrix}$$

A2 =

$$\begin{pmatrix} 1 & -1 & 1 & 3 \\ 0 & 1 & 2 & 1 \\ 3 & -5 & -1 & 6 \end{pmatrix}$$

A3 =

$$\begin{pmatrix} 1 & -1 & 1 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & -2 & -4 & -3 \end{pmatrix}$$

A4 =

$$\begin{pmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & 2 & 1 \\ 0 & -2 & -4 & -3 \end{pmatrix}$$

A5 =

$$\begin{pmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

A6 =

$$\begin{pmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

ans =

$$\begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Contradiccion en el ultimo row por tanto no es consistente correcto por rref

Ej 2

a)

A =

$$\begin{pmatrix}
2 & 3 & 1 & 0 & 5 \\
5 & 7 & -4 & 0 & 0 \\
1 & 0 & 0 & -19 & -35 \\
0 & 1 & 0 & 13 & 25 \\
0 & 0 & 1 & -1 & 0
\end{pmatrix}$$

A1 =

$$\begin{pmatrix}
0 & 3 & 1 & 38 & 75 \\
5 & 7 & -4 & 0 & 0 \\
1 & 0 & 0 & -19 & -35 \\
0 & 1 & 0 & 13 & 25 \\
0 & 0 & 1 & -1 & 0
\end{pmatrix}$$

A2 =

$$\begin{pmatrix}
1 & 0 & 0 & -19 & -35 \\
5 & 7 & -4 & 0 & 0 \\
0 & 3 & 1 & 38 & 75 \\
0 & 1 & 0 & 13 & 25 \\
0 & 0 & 1 & -1 & 0
\end{pmatrix}$$

A3 =

$$\begin{pmatrix}
1 & 0 & 0 & -19 & -35 \\
0 & 7 & -4 & 95 & 175 \\
0 & 3 & 1 & 38 & 75 \\
0 & 1 & 0 & 13 & 25 \\
0 & 0 & 1 & -1 & 0
\end{pmatrix}$$

A4 =

$$\begin{pmatrix}
1 & 0 & 0 & -19 & -35 \\
0 & 1 & 0 & 13 & 25 \\
0 & 3 & 1 & 38 & 75 \\
0 & 7 & -4 & 95 & 175 \\
0 & 0 & 1 & -1 & 0
\end{pmatrix}$$

A5 =

$$\begin{pmatrix}
1 & 0 & 0 & -19 & -35 \\
0 & 1 & 0 & 13 & 25 \\
0 & 0 & 1 & -1 & 0 \\
0 & 7 & -4 & 95 & 175 \\
0 & 3 & 1 & 38 & 75
\end{pmatrix}$$

A6 =

$$\begin{pmatrix}
1 & 0 & 0 & -19 & -35 \\
0 & 1 & 0 & 13 & 25 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & -4 & 4 & 0 \\
0 & 3 & 1 & 38 & 75
\end{pmatrix}$$

A7 =
$$\begin{pmatrix}
1 & 0 & 0 & -19 & -35 \\
0 & 1 & 0 & 13 & 25 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & -4 & 4 & 0 \\
0 & 0 & 1 & -1 & 0
\end{pmatrix}$$

A8 =

$$\begin{pmatrix}
1 & 0 & 0 & -19 & -35 \\
0 & 1 & 0 & 13 & 25 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0
\end{pmatrix}$$

A9 =

$$\begin{pmatrix}
1 & 0 & 0 & -19 & -35 \\
0 & 1 & 0 & 13 & 25 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

ans =

ya no se que mas **aqui hay algo qeu teines que corregir lo antes posible** correcto por rref

respuesta alternativa

$$q1 = x = 19 t$$

$$q2 = y = 25 - 14t$$

$$q3 = z = t$$

$$q4 = 2x + 3y + z = 5$$

$$q5 = 5x + 7y - 4z = 0$$

ans =

Empty sym: 0-by-1

ans =

Empty sym: 0-by-1

ans =

Empty sym: 0-by-1

b)

A =

$$\begin{pmatrix} 2 & 5 & 9 & 3 & 0 & 0 & -1 \\ 1 & 2 & 4 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & -19 & -35 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & -1 & -3 & 3 \end{pmatrix}$$

A1 =

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -19 & -35 \\ 1 & 2 & 4 & 0 & 0 & 0 & 1 \\ 2 & 5 & 9 & 3 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & -1 & -3 & 3 \end{pmatrix}$$

A2 =

A3 =

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -19 & -35 \\ 0 & 2 & 4 & 0 & 0 & 19 & 36 \\ 0 & 5 & 9 & 3 & 0 & 38 & 69 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & -1 & -3 & 3 \end{pmatrix}$$

A4 =

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -19 & -35 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 5 & 9 & 3 & 0 & 38 & 69 \\ 0 & 2 & 4 & 0 & 0 & 19 & 36 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & -1 & -3 & 3 \end{pmatrix}$$

A5 =

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -19 & -35 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 9 & 3 & -5 & 38 & 69 \\ 0 & 2 & 4 & 0 & 0 & 19 & 36 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & -1 & -3 & 3 \end{pmatrix}$$

A6 =

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -19 & -35 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 9 & 3 & -5 & 38 & 69 \\ 0 & 0 & 4 & 0 & -2 & 19 & 36 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & -1 & -3 & 3 \end{pmatrix}$$

A7 =

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -19 & -35 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 9 & 3 & -5 & 38 & 69 \\ 0 & 0 & 4 & 0 & -2 & 19 & 36 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 3 & -3 \end{pmatrix}$$

A8 =

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -19 & -35 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 3 & -3 \\ 0 & 0 & 4 & 0 & -2 & 19 & 36 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 9 & 3 & -5 & 38 & 69 \end{pmatrix}$$

A9 =

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -19 & -35 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 3 & -3 \\ 0 & 0 & 0 & 0 & -6 & 7 & 48 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 9 & 3 & -5 & 38 & 69 \end{pmatrix}$$

A10 =

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -19 & -35 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 3 & -3 \\ 0 & 0 & 0 & 0 & -6 & 7 & 48 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 & -14 & 11 & 96 \end{pmatrix}$$

A11 =

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -19 & -35 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 3 & -3 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -6 & 7 & 48 \\ 0 & 0 & 0 & 3 & -14 & 11 & 96 \end{pmatrix}$$

A12 =

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -19 & -35 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 3 & -3 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -6 & 7 & 48 \\ 0 & 0 & 0 & 0 & -14 & 8 & 96 \end{pmatrix}$$

A13 =

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & -19 & -35 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 3 & -3 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & -\frac{7}{6} & -8 \\
0 & 0 & 0 & 0 & -14 & 8 & 96
\end{pmatrix}$$

A14 =

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & -19 & -35 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 3 & -3 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & -\frac{7}{6} & -8 \\
0 & 0 & 0 & 0 & 0 & -\frac{25}{3} & -16
\end{pmatrix}$$

A15 =

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -19 & -35 \\ 0 & 1 & 0 & 0 & 0 & \frac{7}{6} & 8 \\ 0 & 0 & 1 & 0 & 1 & 3 & -3 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -\frac{7}{6} & -8 \\ 0 & 0 & 0 & 0 & 0 & -\frac{25}{3} & -16 \end{pmatrix}$$

A16 =

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -19 & -35 \\ 0 & 1 & 0 & 0 & 0 & \frac{7}{6} & 8 \\ 0 & 0 & 1 & 0 & 0 & \frac{25}{6} & 5 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -\frac{7}{6} & -8 \\ 0 & 0 & 0 & 0 & 0 & -\frac{25}{3} & -16 \end{pmatrix}$$

ans =

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & \frac{37}{25} \\
0 & 1 & 0 & 0 & 0 & 0 & \frac{144}{25} \\
0 & 0 & 1 & 0 & 0 & 0 & -3 \\
0 & 0 & 0 & 1 & 0 & 0 & -\frac{48}{25} \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{144}{25} \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{48}{25}
\end{pmatrix}$$

correcto por rref

Ej3

$$\begin{pmatrix} 1 & -2 & 4 & 12 \\ 2 & -1 & 5 & 18 \\ -1 & 3 & -3 & -8 \end{pmatrix}$$

A1 =

$$\begin{pmatrix} 1 & -2 & 4 & 12 \\ 0 & 3 & -3 & -6 \\ -1 & 3 & -3 & -8 \end{pmatrix}$$

$$\begin{pmatrix}
1 & -2 & 4 & 12 \\
0 & 3 & -3 & -6 \\
0 & 1 & 1 & 4
\end{pmatrix}$$

A3 =

$$\begin{pmatrix}
1 & -2 & 4 & 12 \\
0 & 1 & -1 & -2 \\
0 & 1 & 1 & 4
\end{pmatrix}$$

A4 =

$$\begin{pmatrix} 1 & -2 & 4 & 12 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 2 & 6 \end{pmatrix}$$

A5 =

$$\begin{pmatrix}
1 & 0 & 2 & 8 \\
0 & 1 & -1 & -2 \\
0 & 0 & 2 & 6
\end{pmatrix}$$

A6 =

$$\begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & -1 & -2 \\
0 & 0 & 2 & 6
\end{pmatrix}$$

A7 =

$$\begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 2 & 6
\end{pmatrix}$$

A8 =

$$\begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

ans =

$$\begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

correcto por rref

Ej 4

$$\begin{pmatrix} 1 & 2 & -1 & a \\ 2 & 1 & 3 & b \\ 1 & 4 & 0 & a \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & -1 & a \\ 0 & -3 & 5 & b - 2a \\ 1 & -4 & 9 & c \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & -1 & a \\ 0 & -3 & 5 & b - 2a \\ 0 & -6 & 10 & c - a \end{pmatrix}$$

A3 =

$$\begin{pmatrix} 1 & 2 & -1 & a \\ 0 & -3 & 5 & b - 2a \\ 0 & 0 & 0 & 3a - 2b + c \end{pmatrix}$$

A4 =

$$\begin{pmatrix} 1 & 2 & -1 & a \\ 0 & 1 & -\frac{5}{3} & \frac{2a}{3} - \frac{b}{3} \\ 0 & 0 & 0 & 3a - 2b + c \end{pmatrix}$$

A5 =

$$\begin{pmatrix} 1 & 0 & \frac{7}{3} & \frac{2b}{3} - \frac{a}{3} \\ 0 & 1 & -\frac{5}{3} & \frac{2a}{3} - \frac{b}{3} \\ 0 & 0 & 0 & 3a - 2b + c \end{pmatrix}$$

ans =

$$\begin{pmatrix} 1 & 0 & \frac{7}{3} & 0 \\ 0 & 1 & -\frac{5}{3} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

jalaba desde la matriz escalonada

correcto por rref

Ej5

$$\begin{pmatrix}
1 & -1 & 2 & 3 \\
2 & -2 & 5 & 4 \\
1 & 2 & -1 & -3 \\
0 & 2 & 2 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 & 3 \\
0 & 0 & 1 & -2 \\
1 & 2 & -1 & -3 \\
0 & 2 & 2 & 1
\end{pmatrix}$$

A2 =

$$\begin{pmatrix}
1 & -1 & 2 & 3 \\
0 & 0 & 1 & -2 \\
0 & 3 & -3 & -6 \\
0 & 2 & 2 & 1
\end{pmatrix}$$

A3 =

$$\begin{pmatrix} 1 & -1 & 2 & 3 \\ 0 & 3 & -3 & -6 \\ 0 & 0 & 1 & -2 \\ 0 & 2 & 2 & 1 \end{pmatrix}$$

A4 =

$$\begin{pmatrix} 1 & -1 & 2 & 3 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 1 & -2 \\ 0 & 2 & 2 & 1 \end{pmatrix}$$

A5 =

$$\begin{pmatrix}
1 & -1 & 2 & 3 \\
0 & 1 & -1 & -2 \\
0 & 0 & 1 & -2 \\
0 & 0 & 4 & 5
\end{pmatrix}$$

A6 =

$$\begin{pmatrix}
1 & -1 & 2 & 3 \\
0 & 1 & -1 & -2 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 13
\end{pmatrix}$$

A7 =

$$\begin{pmatrix}
1 & 0 & 1 & 1 \\
0 & 1 & -1 & -2 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 13
\end{pmatrix}$$

A8 =

$$\begin{pmatrix}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & -1 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 13
\end{pmatrix}$$

A9 =

$$\begin{pmatrix}
1 & 0 & 0 & 3 \\
1 & 1 & 0 & -1 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 13
\end{pmatrix}$$

ans =

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

inconsistente

correcto por rref

Ej 6

- a) falso -> tendria m renglones
- b) falso -> uno inconsistente deberia tener una infinidad de soluciones
- c) verdadero
- d) verdadero
- e) verdadero por transividad

Ej 7

Δ =

$$\begin{pmatrix}
a & -b & c & 6 \\
a & 2b & 4c & 0 \\
a & 3b & 9c & 2
\end{pmatrix}$$

A1 =

$$\begin{pmatrix} a & -b & c & 6 \\ 0 & 3b & 3c & -6 \\ a & 3b & 9c & 2 \end{pmatrix}$$

A2 =

$$\begin{pmatrix} a & -b & c & 6 \\ 0 & 3b & 3c & -6 \\ 0 & 4b & 8c & -4 \end{pmatrix}$$

A3 =

$$\begin{pmatrix}
a & -b & c & 6 \\
0 & b & c & -2 \\
0 & 4b & 8c & -4
\end{pmatrix}$$

A4 =

$$\begin{pmatrix} a & -b & c & 6 \\ 0 & b & c & -2 \\ 0 & 0 & 4c & 4 \end{pmatrix}$$

A5 =

$$\begin{pmatrix} a & -b & c & 6 \\ 0 & b & c & -2 \\ 0 & 0 & c & 1 \end{pmatrix}$$

A6 =

$$\begin{pmatrix}
a & -b & 0 & 5 \\
0 & b & c & -2 \\
0 & 0 & c & 1
\end{pmatrix}$$

A7 =

$$\begin{pmatrix}
a & -b & 0 & 5 \\
0 & b & 0 & -3 \\
0 & 0 & c & 1
\end{pmatrix}$$

A8 =

$$\begin{pmatrix}
a & 0 & 0 & 2 \\
0 & b & 0 & -3 \\
0 & 0 & c & 1
\end{pmatrix}$$

la cuadratica seria 2-3x+x^2

Ej8

sin resolver

Ej 9

$$A = \begin{pmatrix} 2 & 1 & 5 \\ 4 & -2 & t \end{pmatrix}$$

a)

$$\begin{pmatrix} 2 & 1 & 5 \\ 0 & -4 & t - 10 \end{pmatrix}$$

A2 =

$$\begin{pmatrix} 2 & 0 & \frac{t}{4} + \frac{5}{2} \\ 0 & -4 & t - 10 \end{pmatrix}$$

A3 =

$$\begin{pmatrix} 1 & 0 & \frac{t}{8} + \frac{5}{4} \\ 0 & -4 & t - 10 \end{pmatrix}$$

$$A4 = \begin{pmatrix} 1 & 0 & \frac{t}{8} + \frac{5}{4} \\ 0 & 1 & \frac{5}{2} - \frac{t}{4} \end{pmatrix}$$

definitivamente no se que pedo

b) tampoco en esta

Ej 10

Α :

$$\begin{pmatrix} 1 & 3 & 1 & a \\ -1 & -2 & 1 & b \\ 3 & 7 & -1 & c \end{pmatrix}$$

A1 =

$$\begin{pmatrix} 1 & 3 & 1 & a \\ 0 & 1 & 2 & a+b \\ 3 & 7 & -1 & c \end{pmatrix}$$

A2 :

$$\begin{pmatrix} 1 & 3 & 1 & a \\ 0 & 1 & 2 & a+b \\ 0 & -2 & -4 & c-3 & a \end{pmatrix}$$

A3 =

$$\begin{pmatrix} 1 & 0 & -5 & -2a - 3b \\ 0 & 1 & 2 & a+b \\ 0 & -2 & -4 & c-3a \end{pmatrix}$$

A4 =

$$\begin{pmatrix} 1 & 0 & -5 & -2a - 3b \\ 0 & 1 & 2 & a+b \\ 0 & 0 & 0 & 2b-a+c \end{pmatrix}$$

2*b-a+c=0 para que sea consistente

Ej 11

a)

3 variables y solo 2 ecuaciones sin solucion

A =

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

b)

2 variables 3 ecuaciones (no se si tiene solucion unica)

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Ej 12

(3,4,-2) (como se si es la unica)

$$\begin{pmatrix}
5 & -1 & 2 & 7 \\
-2 & 6 & 9 & 0 \\
-7 & 5 & -3 & -7
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -\frac{1}{5} & \frac{2}{5} & \frac{7}{5} \\
-2 & 6 & 9 & 0 \\
-7 & 5 & -3 & -7
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -\frac{1}{5} & \frac{2}{5} & \frac{7}{5} \\
0 & \frac{28}{5} & \frac{49}{5} & \frac{14}{5} \\
-7 & 5 & -3 & -7
\end{pmatrix}$$

A3 =

$$\begin{pmatrix}
1 & -\frac{1}{5} & \frac{2}{5} & \frac{7}{5} \\
0 & \frac{28}{5} & \frac{49}{5} & \frac{14}{5} \\
0 & \frac{18}{5} & -\frac{1}{5} & \frac{14}{5}
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -\frac{1}{5} & \frac{2}{5} & \frac{7}{5} \\
0 & 1 & \frac{7}{4} & \frac{1}{2} \\
0 & \frac{18}{5} & -\frac{1}{5} & \frac{14}{5}
\end{pmatrix}$$

A5 =

$$\begin{pmatrix}
1 & 0 & \frac{3}{4} & \frac{3}{2} \\
0 & 1 & \frac{7}{4} & \frac{1}{2} \\
0 & \frac{18}{5} & -\frac{1}{5} & \frac{14}{5}
\end{pmatrix}$$

A6 =

$$\begin{pmatrix}
1 & 0 & \frac{3}{4} & \frac{3}{2} \\
0 & 1 & \frac{7}{4} & \frac{1}{2} \\
0 & 0 & -\frac{13}{2} & 1
\end{pmatrix}$$

A7 =

$$\begin{pmatrix} 1 & 0 & \frac{3}{4} & \frac{3}{2} \\ 0 & 1 & \frac{7}{4} & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{2}{13} \end{pmatrix}$$

A8 =

$$\begin{pmatrix} 1 & 0 & \frac{3}{4} & \frac{3}{2} \\ 0 & 1 & 0 & \frac{10}{13} \\ 0 & 0 & 1 & -\frac{2}{13} \end{pmatrix}$$

۸۵ -

$$\begin{pmatrix} 1 & 0 & 0 & \frac{21}{13} \\ 0 & 1 & 0 & \frac{10}{13} \\ 0 & 0 & 1 & -\frac{2}{13} \end{pmatrix}$$

not a clue how to procede

Ej 13

$$A = \begin{pmatrix} 2 & -1 & h \\ 6 & 2 & h \end{pmatrix}$$

A1 =

$$\begin{pmatrix} 2 & -1 & h \\ 0 & -6 & 3h + k \end{pmatrix}$$

$$\begin{pmatrix} 1 & -\frac{1}{2} & \frac{h}{2} \\ 0 & -6 & 3h + k \end{pmatrix}$$

$$\begin{pmatrix} 1 & -\frac{1}{2} & \frac{h}{2} \\ 0 & 1 & -\frac{h}{2} - \frac{k}{6} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & \frac{h}{4} - \frac{k}{12} \\ 0 & 1 & -\frac{h}{2} - \frac{k}{6} \end{pmatrix}$$

para todos, no?

Ej 14

a)

$$\begin{pmatrix}
0 & 1 & 4 & -5 \\
1 & 3 & 5 & -2 \\
3 & 7 & 7 & 6
\end{pmatrix}$$

A1 =

$$\begin{pmatrix}
1 & 3 & 5 & -2 \\
0 & 1 & 4 & -5 \\
3 & 7 & 7 & 6
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 3 & 5 & -2 \\
0 & 1 & 4 & -5 \\
0 & -2 & -8 & 12
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 & 5 & -2 \\ 0 & 1 & 4 & -5 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & -7 & 13 \\ 0 & 1 & 4 & -5 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -7 & 0 \\
0 & 1 & 4 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

no tiene solucion

com rref

b)

$$\begin{pmatrix}
1 & -3 & 4 & -4 \\
3 & -7 & 7 & -8 \\
-4 & 6 & -1 & 7
\end{pmatrix}$$

A1 =

$$\begin{pmatrix} 1 & -3 & 4 & -4 \\ 0 & 2 & -5 & 4 \\ -4 & 6 & -1 & 7 \end{pmatrix}$$

A2 =

$$\begin{pmatrix}
1 & -3 & 4 & -4 \\
0 & 2 & -5 & 4 \\
0 & -6 & 15 & -9
\end{pmatrix}$$

A3 =

$$\begin{pmatrix} 1 & -3 & 4 & -4 \\ 0 & 1 & -\frac{5}{2} & 2 \\ 0 & -6 & 15 & -9 \end{pmatrix}$$

A4 =

$$\begin{pmatrix} 1 & 0 & -\frac{7}{2} & 2 \\ 0 & 1 & -\frac{5}{2} & 2 \\ 0 & -6 & 15 & -9 \end{pmatrix}$$

Δ5 =

$$\begin{pmatrix} 1 & 0 & -\frac{7}{2} & 2 \\ 0 & 1 & -\frac{5}{2} & 2 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -\frac{7}{2} & 0 \\
0 & 1 & -\frac{5}{2} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

no tiene solucion

com rref

c)

$$A = \begin{pmatrix} 1 & 0 & -3 & 8 \\ 2 & 2 & 9 & 7 \\ 0 & 1 & 5 & -2 \end{pmatrix}$$

A1 :

$$\begin{pmatrix} 1 & 0 & -3 & 8 \\ 0 & 1 & 5 & -2 \\ 2 & 2 & 9 & 7 \end{pmatrix}$$

A2 =

$$\begin{pmatrix} 1 & 0 & -3 & 8 \\ 0 & 1 & 5 & -2 \\ 0 & 2 & 15 & -9 \end{pmatrix}$$

A3 =

$$\begin{pmatrix} 1 & 0 & -3 & 8 \\ 0 & 1 & 5 & -2 \\ 0 & 0 & 5 & -5 \end{pmatrix}$$

A4 =

$$\begin{pmatrix}
1 & 0 & -3 & 8 \\
0 & 1 & 5 & -2 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

A5 =

$$\begin{pmatrix} 1 & 0 & -3 & 8 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

A6 =

$$\begin{pmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

si habemus respuesta

com rref

Ej 15

$$\begin{pmatrix} 1 & -4 & 1 \\ 2 & -1 & -3 \\ -1 & -3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -4 & 1 \\ 2 & -1 & -3 \\ 0 & -7 & 5 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -4 & 1 \\ 0 & 7 & -5 \\ 0 & -7 & 5 \end{pmatrix}$$

$$\begin{pmatrix}
1 & -4 & 1 \\
0 & 7 & -5 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix} 1 & -4 & 1 \\ 0 & 1 & -\frac{5}{7} \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & -\frac{13}{7} \\ 0 & 1 & -\frac{5}{7} \\ 0 & 0 & 0 \end{pmatrix}$$

creo que si \ref{si} pero cual es el punto en x $_3$

Ej 16

A =

$$\begin{pmatrix} 1 & 2 & 1 & 4 \\ 0 & 1 & -1 & 1 \\ 1 & 3 & 0 & 0 \end{pmatrix}$$

$$A1 = \begin{pmatrix} 1 & 2 & 1 & 4 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & -4 \end{pmatrix}$$

$$A2 = \begin{pmatrix} 1 & 2 & 1 & 4 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & -4 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 3 & 2 \\
0 & 1 & -1 & 1 \\
0 & 1 & -1 & -4
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 3 & 2 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & -5
\end{pmatrix}$$

el sistema es inconsistente entonces supongo que no?

Ej 17

a)

$$\begin{pmatrix} 1 & h & -3 \\ -2 & 4 & 6 \end{pmatrix}$$

$$\begin{pmatrix} 1 & h & -3 \\ 1 & -2 & -3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & h & -3 \\ 0 & -h-2 & 0 \end{pmatrix}$$

ni siquiera puede inconsistentar el sistema

b)

mismo que a)

c)

mismo que a)

d)

mismo que a)

seguro I am missing something que si pueda inconsistentar el sistema

ni hay sistema presentado a continuacion

Ej 19

tampoco hay sistema de ecuaciones a continuacion

Ej 20

A =

$$\begin{pmatrix} a & b & 0 \\ c & d & 0 \end{pmatrix}$$

not a clue

Ej 21

A =

$$\begin{pmatrix}
a & b & c & -5 \\
a & -b & c & 1 \\
4 a & 2 b & c & 7
\end{pmatrix}$$

A1 =

$$\begin{pmatrix}
a & b & c & -5 \\
0 & -2b & 0 & 6 \\
4a & 2b & c & 7
\end{pmatrix}$$

A2 =

$$\begin{pmatrix} a & b & c & -5 \\ 0 & -2 b & 0 & 6 \\ 0 & -2 b & -3 c & 27 \end{pmatrix}$$

A3 =

$$\begin{pmatrix} a & b & c & -5 \\ 0 & b & 0 & -3 \\ 0 & -2b & -3c & 27 \end{pmatrix}$$

Δ4 :

$$\begin{pmatrix} a & 0 & c & -2 \\ 0 & b & 0 & -3 \\ 0 & -2 b & -3 c & 27 \end{pmatrix}$$

A5 =

$$\begin{pmatrix}
a & 0 & c & -2 \\
0 & b & 0 & -3 \\
0 & 0 & -3 & c & 21
\end{pmatrix}$$

A6 =

$$\begin{pmatrix} a & 0 & c & -2 \\ 0 & b & 0 & -3 \\ 0 & 0 & c & -7 \end{pmatrix}$$

$$\begin{pmatrix}
a & 0 & 0 & 5 \\
0 & b & 0 & -3 \\
0 & 0 & c & -7
\end{pmatrix}$$

la parabola seria

$$p(x) = 5x^2 - 3x - 7$$

Ej 22

 $\sin azufre: 1 ton = 5 m + 4 r$

con azufre: 1 ton = 4 m + 2 r

planta M = 3 horas

planta R = 2 horas

la neta no se como taclear este problema

Tarea 2

Ej 1

1. Sean
$$A = \begin{pmatrix} 5 & 4 \\ -1 & 7 \\ 9 & -3 \end{pmatrix}$$
 y $B = \begin{pmatrix} -3 & 0 \\ 4 & 2 \\ 5 & -7 \end{pmatrix}$. Determina:

anc -

$$\begin{pmatrix}
5 & 4 \\
-1 & 7 \\
9 & -3
\end{pmatrix}$$

ans =

$$\begin{pmatrix} -3 & 0 \\ 4 & 2 \\ 5 & -7 \end{pmatrix}$$

a)
$$A+B$$

$$\begin{pmatrix}
2 & 4 \\
3 & 9 \\
14 & -10
\end{pmatrix}$$

$$_{\rm b)}~2A+B$$

ans =

$$\begin{pmatrix}
7 & 8 \\
2 & 16 \\
23 & -13
\end{pmatrix}$$

c) A^T

ans =

$$\begin{pmatrix} 5 & -1 & 9 \\ 4 & 7 & -3 \end{pmatrix}$$

Ej 2

a)

ans =

$$\begin{pmatrix}
9 & 8 & 13 \\
8 & -6 & 4 \\
-5 & 4 & 8
\end{pmatrix}$$

b)

ans =

$$\begin{pmatrix} 21 \\ 6 \\ 1 \end{pmatrix}$$

c)

ans =

$$\begin{pmatrix} -9 \\ -2 \\ 1 \end{pmatrix}$$

d)

ans =

$$\begin{pmatrix}
0 & 6 & -4 \\
-1 & -8 & 5 \\
4 & 2 & 9
\end{pmatrix}$$

Ej 3

a)

b)

c)

d)

e)

Ej 4

a)

- b) checa este pedo as well
- c) checa este pedo

d)

Ej 5

$$C = \begin{pmatrix} 15 & 16 & -24 \\ 28 & 49 & 24 \\ -1 & 0 & -15 \end{pmatrix}$$

D =

$$\begin{pmatrix}
1 & 9 & 17 \\
16 & 57 & -8 \\
8 & 6 & -9
\end{pmatrix}$$

a)

$$\mathsf{ans} = -1$$

b)

$$ans = 9$$

Ej6

Δ :

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ 0 & 0 & 0 \end{pmatrix}$$

B =

$$\begin{pmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{pmatrix}$$

C =

$$\begin{pmatrix} a_{1,1} b_{1,1} + a_{1,2} b_{2,1} + a_{1,3} b_{3,1} & a_{1,1} b_{1,2} + a_{1,2} b_{2,2} + a_{1,3} b_{3,2} & a_{1,1} b_{1,3} + a_{1,2} b_{2,3} + a_{1,3} b_{3,3} \\ a_{2,1} b_{1,1} + a_{2,2} b_{2,1} + a_{2,3} b_{3,1} & a_{2,1} b_{1,2} + a_{2,2} b_{2,2} + a_{2,3} b_{3,2} & a_{2,1} b_{1,3} + a_{2,2} b_{2,3} + a_{2,3} b_{3,3} \\ 0 & 0 & 0 \end{pmatrix}$$

 $C_31 = ()$

 $C_32 = ()$

 $C_33 = ()$

Ej7

Sea A una matriz de mxn tal que A = -A: Prueba que A = 0

Δ =

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix}$$

$$\begin{pmatrix} -a_{1,1} & -a_{1,2} & -a_{1,3} \\ -a_{2,1} & -a_{2,2} & -a_{2,3} \\ -a_{3,1} & -a_{3,2} & -a_{3,3} \end{pmatrix}$$

Sabemos que A=-A si son iguales termino a termino, esto quiere decir que

a11=-a11 ... a33=-a33

esto solo se puede dar si todos los valores de A son iguales a 0

la matriz que tiene todas sus elementos iguales a 0 a es la matriz 0

entonces A = 0

Ej8

a)

A =

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

R =

$$\begin{pmatrix} c - 3 d & -d \\ 2 a + d & a + b \end{pmatrix}$$

C =

$$\begin{pmatrix}
a & c - 3 d \\
b & -d \\
c & 2 a + d \\
d & a + b
\end{pmatrix}$$

C =

$$\begin{pmatrix}
1 & 0 & 1 & -3 \\
0 & 1 & 0 & -1 \\
2 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{pmatrix}$$

C1 =

$$\begin{pmatrix}
1 & 0 & 1 & -3 \\
0 & 1 & 0 & -1 \\
0 & 0 & -1 & 7 \\
1 & 1 & 0 & 1
\end{pmatrix}$$

C2 =

$$\begin{pmatrix} 1 & 0 & 1 & -3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & -1 & 7 \\ 0 & 1 & -1 & 4 \end{pmatrix}$$

C3 =

$$\begin{pmatrix} 1 & 0 & 1 & -3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & -1 & 7 \\ 0 & 0 & -1 & 5 \end{pmatrix}$$

C4 =

$$\begin{pmatrix}
1 & 0 & 1 & -3 \\
0 & 1 & 0 & -1 \\
0 & 0 & -1 & 7 \\
0 & 0 & 0 & -2
\end{pmatrix}$$

C5 =

$$\begin{pmatrix}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & -1 \\
0 & 0 & -1 & 7 \\
0 & 0 & 0 & -2
\end{pmatrix}$$

C6 =

$$\begin{pmatrix}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -7 \\
0 & 0 & 0 & -2
\end{pmatrix}$$

C7 =

$$\begin{pmatrix}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -7 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

a=4d b=-1d c=-7 d=0 dudo de esta respuesta

b)

ans =

$$\begin{pmatrix} 2 & 2 \\ -6 & 2 \end{pmatrix}$$

A =

$$\begin{pmatrix}
1 & -1 & 0 & 0 & 2 \\
0 & 1 & -1 & 0 & 2 \\
0 & 0 & 1 & -1 & -6 \\
-1 & 0 & 0 & 1 & 2
\end{pmatrix}$$

A1 =

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 2 \\ 0 & 1 & -1 & 0 & 2 \\ 0 & 0 & 1 & -1 & -6 \\ 0 & -1 & 0 & 1 & 4 \end{pmatrix}$$

A2 =

$$\begin{pmatrix}
1 & 0 & -1 & 0 & 4 \\
0 & 1 & -1 & 0 & 2 \\
0 & 0 & 1 & -1 & -6 \\
0 & -1 & 0 & 1 & 4
\end{pmatrix}$$

A3 =

$$\begin{pmatrix}
1 & 0 & -1 & 0 & 4 \\
0 & 1 & -1 & 0 & 2 \\
0 & 0 & 1 & -1 & -6 \\
0 & 0 & -1 & 1 & 6
\end{pmatrix}$$

A4 =

$$\begin{pmatrix}
1 & 0 & -1 & 0 & 4 \\
0 & 1 & -1 & 0 & 2 \\
0 & 0 & 1 & -1 & -6 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

A5 =

$$\begin{pmatrix} 1 & 0 & -1 & 0 & 4 \\ 0 & 1 & 0 & -1 & -4 \\ 0 & 0 & 1 & -1 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

A6 =

$$\begin{pmatrix}
1 & 0 & 0 & -1 & -2 \\
0 & 1 & 0 & -1 & -4 \\
0 & 0 & 1 & -1 & -6 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

solucion alternativa

eq1 =
$$a - b = 2$$

eq2 =
$$b - c = 2$$

eq3 =
$$c - d = -6$$

eq4 =
$$d - a = 2$$

S = struct with fields:

- a: [1×1 sym]
- b: [1×1 sym]
- c: [1×1 sym]
- d: [1×1 sym]

ans =
$$-2$$

ans =
$$-4$$

ans =
$$-6$$

$$ans = ()$$

todo correcto

Ej 9

a)

$$\begin{pmatrix} -12 & 2 & 11 \\ 0 & 6 & -10 \end{pmatrix}$$

b)

$$\begin{pmatrix}
1 & -5 & 4 & 0 \\
2 & 1 & 0 & 6
\end{pmatrix}$$

ans =

$$\begin{pmatrix} 1 & 2 \\ -5 & 1 \\ 4 & 0 \\ 0 & 6 \end{pmatrix}$$

Ej 10

a)

$$\begin{pmatrix} -1 & 3 & 3 \\ -2 & -1 & -4 \end{pmatrix}$$

b)

$$\begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix}$$

ps se armo

Ej 11

demo que no se hacer porque no se como son las matrices simetricas

Ej 12

11 pero de diagonales

Ej 13

11

Δ :

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix}$$

para que sean iguales tienen que ser iguales todos sus terminos un ejemplo de sus terminos es aij=k*aji

??

Ej 15

11

a)

b)

Ej 16

a)

ans =

$$\begin{pmatrix} 2 & 2 \\ 0 & -2 \end{pmatrix}$$

b)

ans =

$$\begin{pmatrix} -1 & -6 & -2 \\ 0 & 6 & 10 \end{pmatrix}$$

c) interesante

C =

$$\begin{pmatrix}
2a & 3b & c \\
5a & 7b & 4c
\end{pmatrix}$$

c11 = 2a

$$c12 = 3b$$

c13 = C

$$c21 = 5a$$

c22 = 7b

$$c23 = 4 c$$

C23 = 4c

despejamos la matriz que queremos el pedo radica en qeu se multiplican y no se como dividir matrices

a)

A = 1

2 10

b)

A =

16/5 2/5

-3/5 9/5

Ej 18

Ej 19

Ej 20

Ej 21

Ej 22

Ej 23

Ej 24

Ej 25

Ej 26

Ej 27

Ej 28

Ej 29

Ej 30

Ej 31

Ej 32

Ej 34

Ejercicios de Kolman-Hill

1.1

1-14 son sistemas lineales por metodo de eliminacion gaussiana, no los hare

15 -

16 -

17 -

18 - entonces porque metodo?

19 - solo expandes mas la matriz

20 - igual que la 19

21 - no hay figura 1.2

22 - a) 0 b) ? c) ?

23 - mismo que el ultimo de la tarea 2

24 - 26 son del tipo del 23

27 - ya lo resolvi en la tarea 1

28 - 23

Ejericios teoricos

- T.1 Demuestra que el sistema lineal que se obtiene al intercambiar dos ecuaciones en A tiene las mismas soluciones que A
- T.2 Demuestre que el sistema lineal obtenido al remplazar una ecuacion en A por un multiplo constante de la ecuacion diferente de cero, tiene exactamente las mismas soluciones que A
- T.3 Demuestre que el sistema lineal que se obtiene al remplazar una ecuacion en A por ella misma mas un multiplo de otra ecuacion en A tiene exactamente las mismas soluciones que A
- T.4 mismo que en tarea 1

1.2

1- determinar valores especificos sin hacer toda la matriz

2 - sistema de ecuaciones sencillo presentado de forma medio rara

3 - 2

4 - 7 son operaciones de matrices sencillas

- 8 combinacion lineal? 9 - 8 10 - multiplicar una constante por una matriz de forma que te de otra, mas o menos se como hacerla pero vale la pena hacerla!! 11 - 4-7 12 - 11 13 - Obtener una matriz a partir de una suma de matrices !!! 14-15 son 13 pero con vectores Ej teoricos T.1 - Demuestra que la suma y la diferencia de dos matrices diagonales es una matriz diagonal T.2 - Demuestre que la suma y la diferencia de dos matrices escalares es una matriz escalar T.3 - 4-7 pero simbolico T.4 - sea 0 la matriz de n x n tal que todas sus entradas son cero. Demuestre que si k es un numero real y a es una matriz de n x n tal qeu kA=0 entonces k=0 o A=0 T.5 a) demuestre que la suma y la diferencia de dos matrices triangulares superiores es una matriz triangular superior
- b) demuestre lo que a) pero con inferiores
- c) demo que si una matriz es inferior y superior al mismo tiempo entonces es diagnoal

T.6 -

- a) demo que si A es superior A^t es inferior
- b) viceversa de a)
- T.7 cuales son las entradas de la diagonal principal de A-A^{*}t si A es matriz cuadrada
- T.8 si x es un n vector demuestre que x+0=x
- T.9 haga una lista de todos los posibles 2 vectores binarios ¿cuantos hay?
- T.10 T.9 pero con 3 vector
- T.11 T.9 pero con 4 vector

1.3

Ej teoricos

- T.1 sea x un n vector
- a) es posible que x punto x sea negativo?

b) si x punto x = 0, cual es el valor de x?

T.2 -

a) demuestre que a punto b = b punto a

- b) demuestre que (a + b) punto c = a punto c + b punto c
- c) demuestre que (ka) punto b = a punto (kb) = k(a punto b)

T.3 -

- a) demuestre uge si A tiene una dila de ceros, AB tiene una fila de ceros
- b) demuestre que si B tienen una columna de ceros, AB tiene una columna de ceros

T.4 -

Demuestre que el producto de dos matrices diagonales es una matriz diagnoal

T.5 -

demuestre que el producto de dos matrices escalares es una matriz escalar

T.6 -

- a) demuester que el producto de dos matrices superiores es una matriz superior ya existe en algun otro lado
- b) demuestre que el prducto de dos matrices inferiores es una matriz inferior
- T.7 sean A y B matrices diagonales de nxn ¿es cierto que AB = BA?

T.8 -

- a) sea a una matriz de 1xn y B una matriz de nxp demuestre que el producto de matrices aB puede escribirse como una combinacion lineal de las filas de B en los qeu los coeficientes cson las entradas de a
- b) sean

ans =
$$(1 -2 3)$$

ans =

$$\begin{pmatrix} 2 & 1 & -4 \\ -3 & -2 & 3 \\ 4 & 5 & -2 \end{pmatrix}$$

escriba aB como una combinacion lineal de las filas de B

T.9 -

- a) demuester que al jesima columna del producto de matrices AB es igual al producto de matrices A col_j(B)
- b) demuestre que el iesima fila del producto de matrices AB es igual al producto de matrices fil i(A)B
- T.10 sea A una matriz de mxn cuyas entradas son numeros reales, demuestre que si AA^t= 0 entonces A=0

T.11 - T.13 son de notacion sigma que ni al caso

T.14 -

- a) si u y v se consideran matrices de nx1 demuestre que u punto v = u^tv
- b) lo mismo que a) pero u punto v = uv^t
- c) si u se considerara una matriz de 1xn y v una matriz de nx1 demuestre que u punto v= uv

Funciones