Таблица интегралов

1.	$\int dx = x + c$	1.	$\int (u)' dx = u + c$
2.	$\int x^{m} dx = \frac{x^{m+1}}{m+1} + c \qquad m \neq 1$	2.	$\int u^{m}(u)^{n}dx = \frac{u^{m+1}}{m+1} + c m \neq -1$
3.	$\int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}}} = 2\sqrt{\mathrm{x}} + c$	3.	$\int \frac{(\mathbf{u})' \mathrm{d}\mathbf{x}}{\sqrt{\mathbf{u}}} = 2\sqrt{\mathbf{u}} + c$
4.	$\int \frac{\mathrm{d}x}{x} = \ln x + c$	4.	$\int \frac{(u)' dx}{u} = \ln u + c$
5.	$\int e^x dx = e^x + c$	5.	$\int e^{u}(u) dx = e^{u} + c$
6.	$\int a^x dx = \frac{a^x}{\ln a} + c$	6.	$\int a^{u}(u)^{d} dx = \frac{a^{u}}{\ln a} + c$
7.	$\int \cos x dx = \sin x + c$	7.	$\int \cos u(u) dx = \sin u + c$
8.	$\int \sin x dx = -\cos x + c$	8.	$\int \sin u(u) dx = -\cos u + c$
9.	$\int \frac{\mathrm{dx}}{\cos^2 x} = \mathrm{tgx} + \mathrm{c}$	9.	$\int \frac{(u)^{n} dx}{\cos^{2} u} = tgu + c$
10.	$\int \frac{\mathrm{dx}}{\sin^2 x} = -\mathrm{ctgx} + \mathrm{c}$	10.	$\int \frac{(u)^{2} dx}{\sin^{2} u} = -ctgu + c$
11.	$\int \frac{\mathrm{dx}}{\cos x} = \ln \left tg \left(\frac{x}{2} + \frac{\pi}{4} \right) \right + c$	11.	$\int \frac{(u)' dx}{\cos u} = \ln \left tg \left(\frac{u}{2} + \frac{\pi}{4} \right) \right + c$
12.	$\int \frac{\mathrm{dx}}{\sin x} = \ln \left \operatorname{tg} \frac{x}{2} \right + c$	12.	$\int \frac{(u) dx}{\sin u} = \ln \left tg \frac{u}{2} \right + c$
13.	$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + c$	13.	$\int \frac{(u)^n dx}{u^2 + a^2} = \frac{1}{a} \arctan \frac{u}{a} + c$
14.	$\int \frac{\mathrm{dx}}{\mathrm{x}^2 - \mathrm{a}^2} = \frac{1}{2\mathrm{a}} \ln \left \frac{\mathrm{x} - \mathrm{a}}{\mathrm{x} + \mathrm{a}} \right + \mathrm{c}$	14.	$\int \frac{\left(u\right)' dx}{u^2 - a^2} = \frac{1}{2a} \ln \left \frac{u - a}{u + a} \right + c$
15.	$\int \frac{\mathrm{dx}}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + c$	15.	$\int \frac{(u)' dx}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + c$
16.	$\int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}^2 \pm \mathrm{a}^2}} = \ln \left x + \sqrt{x^2 \pm a^2} \right + \mathrm{c}$	16.	$\int \frac{(\mathbf{u})^{'} d\mathbf{x}}{\sqrt{\mathbf{u}^{2} \pm \mathbf{a}^{2}}} = \ln \left u + \sqrt{u^{2} \pm a^{2}} \right + \mathbf{c}$
17.	$\int tgxdx = -\ln \cos x + c$	17.	$\int tgu(u) dx = -\ln \cos u + c$
18.	$\int c t g x dx = \ln \left \sin x \right + c$	18.	$\int ctgu(u)'dx = \ln sinu + c$

Таблица производных

1.	(C) = 0	1.	(C)' = 0
2.	$(x^n) = nx^{n-1}$	2.	$(u^n) = nu^{n-1}(u)$
3.	():	3.	
4.	$(e^x)' = e^x$	4.	$(e^{u})' = e^{u}(u)'$
5.	$(a^x) = a^x \ln a$	5.	$(a^u) = a^u \ln a(u)$
	$(\ln x) = \frac{1}{x}$		$(\ln u)' = \frac{1}{u}(u)'$
6.	$(\sin x) = \cos x$	6.	$(\sin u) = \cos u(u)$
7.	$(\cos x)' = -\sin x$	7.	$(\cos u)' = -\sin u(u)'$
8.	$(tgx)' = \frac{1}{\cos^2 x}$	8.	$(tgu)' = \frac{1}{\cos^2 u}(u)'$
9.	$\left(\operatorname{ctgx}\right)' = -\frac{1}{\sin^2 x}$	9.	$\left(\operatorname{ctgu}\right)' = -\frac{1}{\sin^2 u} \left(u\right)'$
10.	(chx)' = shx	10.	(chu)' = shu(u)'
11.	(shx) = chx	11.	(shu)' = chu(u)'
12.	$\left(\arcsin x\right)' = \frac{1}{\sqrt{1-x^2}}$	12.	$(\arcsin u)' = \frac{1}{\sqrt{1 - u^2}} (u)'$
13.	$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$	13.	$(\arccos u)' = -\frac{1}{\sqrt{1-u^2}}(u)'$
14.	$(\operatorname{arctgx})' = \frac{1}{1+x^2}$ $(\operatorname{arcctgx})' = -\frac{1}{1+x^2}$	14.	$(\operatorname{arctgu})' = \frac{1}{1 + u^2} (u)'$
15.	$\left(\operatorname{arcctgx}\right)' = -\frac{1}{1+x^2}$	15.	$\left(\operatorname{arcctgu}\right)' = -\frac{1}{1+u^2}\left(u\right)'$
16.	$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$	16.	$\left \left(\frac{1}{u} \right)' = -\frac{1}{u^2} (u)' \right $
17.	$\left(\sqrt{x}\right) = \frac{1}{2\sqrt{x}}$	17.	$\left(\sqrt{u}\right) = \frac{1}{2\sqrt{u}}\left(u\right)$
18.	$(\log_a x)' = \frac{1}{x \ln a}$	18.	$(\log_a \mathbf{u}) = \frac{1}{\text{ulna}} (\mathbf{u})$
19.	$\mathbf{x}' = 1; (c\mathbf{x})' = c$	19.	(cu)' = c(u)'

$$\left(u \cdot v\right)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

Методы интегрирования

Интегрирование по частям $\int u dv = uv - \int v du$.

1. $\int P(x) \cdot e^{ax} dx$, $\int P(x) \cdot \sin ax dx$, $\int P(x) \cdot \cos ax dx$, где P(x) – многочлен, a – число.

Полагают u = P(x), а за dv обозначают все остальные сомножители.

2. $\int P(x) \cdot \arcsin x \, dx$, $\int P(x) \cdot \arccos x \, dx$, $\int P(x) \ln x \, dx$, $\int P(x) \cdot \arctan x \, dx$, $\int P(x) \cdot \arctan x \, dx$, $\int P(x) \cdot \arctan x \, dx$.

Полагают dv = P(x) dx, а за u принимают все остальные сомножители.

3. $\int e^{ax} \cdot \sin bx \, dx$, $\int e^{ax} \cdot \cos bx \, dx$, где a и b – числа. Можно положить $u = e^{ax}$.

Простейшие дроби
$$\frac{A}{ax+B}$$
, $\frac{B}{(ax+B)^n}$, $\frac{Ax+B}{ax^2+Bx+c}$, $\frac{Ax+B}{(ax^2+Bx+c)^n}$ (n>0 пелое). $\int \sin^m x \cdot \cos^n x \, dx$ $m>0$ нечет. $\cos x=t$ $n>0$ нечет. $\sin x=t$ $m+n<0$ четн. $tgx=t$ $m\ge 0$, $n\ge 0$ четн. $tgx=t$ $m\ge 0$, $n\ge 0$ четн. $\cos^2 x=\frac{1+\cos 2x}{2}$, $\sin^2 x=\frac{1-\cos 2x}{2}$ $\int \sin nx \cdot \cos mx \, dx$ $\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha+\beta)+\sin(\alpha-\beta))$ $\int \cos nx \cdot \cos mx \, dx$ $\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha+\beta)+\cos(\alpha-\beta))$ $\int \sin nx \cdot \sin mx \, dx$ $\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha-\beta)-\cos(\alpha+\beta))$ $\int \frac{dx}{a \sin x + b \cos x + c} tg \frac{x}{2} = t$, $dx = \frac{2dt}{1+t^2}$, $\sin x = \frac{2t}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$ $\int R\left(x, x^{\frac{m}{n}}, \dots, x^{\frac{r}{s}}\right) dx$, $x = t^{\kappa}$ (κ — общий знаменатель $\frac{m}{n}$, ..., $\frac{r}{s}$) $\int \frac{dx}{(x-\alpha)\sqrt{ax^2+dx+c}}$ $x = a \sin t$

$$\int R(x, \sqrt{a^2 + x^2}) dx$$

$$\int R(x, \sqrt{x^2 - a^2}) dx$$

$$x = atgt$$

$$x = \frac{a}{\sin t}$$

$$\int \frac{Ax + B}{\sqrt{ax^2 + bx + c}} dx$$
, в числителе выделить производную подкоренного

выражения, ввести компенсирующие множители и слагаемые, разбить на сумму двух интегралов.

Определенный интеграл

$$\int\limits_{a}^{B}f(x)dx=F(x)\Big|_{a}^{B}=F(B)-F(a)$$

$$\int\limits_{-a}^{a}f(x)dx=\begin{cases} 2\int\limits_{0}^{a}f(x)dx, \ \ \text{если}\,f(x)-\text{четная функция}\\ 0, \ \ \text{если}\,f(x)-\text{нечетная функция}. \end{cases}$$

Интегрирование по частям: $\int\limits_a^B u d\nu = u\nu \Big|_a^B - \int\limits_a^B \nu du \ .$

Несобственные интегралы – это интегралы вида $\int\limits_{a}^{\infty}f(x)dx$, $\int\limits_{a}^{B}f(x)dx$,

$$\int\limits_{-\infty}^{\infty} f(x) dx \,, \quad \int\limits_{a}^{B} f(x) dx \,\, (\text{если } f(x) \,\, \text{имеет разрыв на } [a, B]).$$

$$\int\limits_{a}^{\infty} \frac{dx}{x^p} = \begin{cases} P > 1 \,\, \text{сходится} \\ P \le 1 \,\, \text{расходится} \end{cases}$$

$$\int\limits_{a}^{\infty} e^{-\kappa x} dx = \begin{cases} \kappa > 0 \,\, \text{сходится} \\ \kappa \le 0 \,\, \text{расходится} \end{cases}$$

$$\int_{a}^{\infty} \frac{dx}{(x-a)^{m}} = \begin{cases} m > 1 & \text{сходится} \\ m \leq 1 & \text{расходится} \end{cases}$$

$$\int_{a}^{B} \frac{dx}{(B-x)^{p}} = \begin{cases} P < 1 & \text{сходится} \\ P \geq 1 & \text{расходится} \end{cases}$$

Приложения определенного интеграла

Площадь плоской фигуры

Площадь криволинейной трапеции $S = \int_a^b f(x) dx$.

Площадь фигуры, ограниченной кривыми $y = f_1(x)$, $y = f_2(x)$, $(f_1(x) \le f_2(x))$, прямыми x = a и x = b, $S = \int\limits_a^b (f_2(x) - f_1(x)) dx$.

Площадь криволинейной трапеции $x=x(t),\ y=y(t),\ y(t)\geq 0,\ t\in [t_1,t_2]$ и прямыми x=a и x=b , $S=\int\limits_{t_1}^{t_2}y(t)\,x'(t)dt$.

Площадь криволинейного сектора $S = \frac{1}{2} \int\limits_{\alpha}^{\beta} r^2 (\phi) d\phi$.

Длина дуги кривой

Если линия задана уравнением y = f(x), $x \in [a, B] L = \int_{\alpha}^{\beta} \sqrt{1 + (y')^2} dx$.

Если кривая задана параметрическими уравнениями x = x(t), y = y(t), $t \in [t_1, t_2]$

$$L = \int_{t_1}^{t_2} \sqrt{(x')^2 + (y')^2} dt.$$

Если кривая задана уравнением в полярных координатах $r=r(\phi), \ \alpha \leq \phi \leq \beta$

$$L = \int_{\alpha}^{\beta} \sqrt{r^2 + (r')^2} d\varphi.$$