PATENT ABSTRACTS OF JAPAN

(11)Publication number :

09-073541

(43)Date of publication of application: 18.03.1997

(51)Int CI

G06T 7/20 B61L 23/00 G01B 11/04 HO4N 5/225 HO4N 7/18 // GO1V 8/10

(21)Application number: 07-230301

(71)Applicant:

HITACHI DENSHI LTD

(22)Date of filing:

07.09.1995

(72)Inventor:

ITO WATARU UEDA HIROTADA

(54) OBJECT DETECTION DEVICE/METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide highly reliable object detection device/method, which can always and securely detect an object even under an environment where the environment change of illumination fluctuation and the like frequently occur.

SOLUTION: A picture input step 101, a picture storage step 102, a judgment processing step 103 judging whether the storage of the prescribed number of frames is terminated or not, a median calculation step 104 calculating a median for respective picture elements on a stored picture when the storage of the prescribed number of frames is terminated and a reference background picture update step 105 updating the result of the median calculation step 104 as a new reference background picture are provided. Since the reference background picture is generated by median calculation, the precise reference background picture can be obtained even if the necessary number of input frames is reduced and the object can securely be detected.

LEGAL STATUS

[Date of request for examination]

23.02.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3377659

[Date of registration]

06 12 2002

[Number of appeal against examiner's decision of rejection] [Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

特開平9-73541

(43)公開日 平成9年(1997)3月18日

(51) Int. Cl. 6	識別記号		FI				
G06T 7/20			G06F 15/70				
B61L 23/00		B61L 23/00				A	
G01B 11/04		G01B 11/04			H		
H04N 5/225			H04N 5/225			С	
7/18			7/18			D	
		審查請求	未請求 請求	は項の数6	ΟL	(全13頁)	最終頁に続く
(21)出願番号	特願平7-230301		(71) 出願人	0000054:		社	
(22) 出願日	平成7年(1995)9月7日		東京都千 (72)発明者 伊藤 渡		子代田区神田和泉町1番地 [
				東京都小 会社小金			日立電子株式
			(72)発明者 上田 博		唯		
				東京都小	平市御	幸町32番地	日立電子株式
				会社小金	井工場	内	
			(74)代理人	弁理士	武 顕	次郎	

(54) 【発明の名称】物体検出装置及び物体検出方法

(57) 【要約】

【課題】 照明変動などの環境変化が頻繁に起こる環境 のもとでも常に確実に物体が検出できるようにした、信 類性の高い物体検出装置及び物体検出方法を提供するこ と。

[2] 1

【特許請求の範囲】

【請求項1】 テレビジョンカメラの撥像視野内に進入 した物体を、上記テレビジョンカメラから得られる画像 信号の中で基準背景画像と比較することにより自動的に 検出する方式の物体検出装置において、

1

上記テレビジョンカメラから得られる画像信号をフレー ム単位で順次記憶する画像記憶手段と、

記憶したフレームが所定数に達する毎に、該記憶した所 定数フレームの画像信号に基づいて、各フレームの各画 素毎に輝度のメディアン値を計算するメディアン計算手 10 景画便更新手段とを設け、 段と、

上記メディアン値を各画素の輝度値とする1フレーム分の画像により上記基準背景画像を更新する基準背景画像 更新手段とを設け、

上記物体の検出に使用する基準背景画像が逐次更新され て行くように構成したことを特徴とする物体検出装置。

【請求項2】 テレビジョンカメラの撥像視野内に進入 した物体を、上記テレビジョンカメラから得られる画像 信号の中で基準背景画像と比較することにより自動的に 検出する方式の物体検出装置において、

上記テレビジョンカメラから得られる画像信号を基準背 無画像と比較して上記物件を検出する物件検出手段と、 該物体検出手段により物体が検出できなかったときだ け、上記テレビジョンカメラから得られる画像信号を取 り込み、フレーム単位で順次記憶する画像記憶手段と、 記憶したフレームが所定数に連する毎に、該記憶した所 定数フレームの画像信号に基づいて、各フレームの高 素套に輝度のメディアン値を計算するメディアン計算手 段と、

上記メディアン値を各画素の輝度値とする1フレーム分 30 の画像により上記基準背景画像を更新する基準背景画像 更新手段とを設け、

上記物体の検出に使用する基準背景画像が逐次更新され て行くように構成したことを特徴とする物体検出装置。

【請求項3】 テレビジョンカメラの操像視野内に進入 した物体を、上記テレビジョンカメラから得られる画像 信号の中で基準背景画像と比較することにより自動的に 検出する方式の物体検出装置において、

上記テレビジョンカメラから得られる画像信号をフレー ム単位で順次記憶する第1の画像記憶手段と、

該第1の画像記憶手段により記憶したフレームが第1の 所定数に達する毎に、該記憶した所定数フレームの画像 信号に基づいて、各フレームの各画素毎に輝度のメディ アン値を料備する第1のメディアン計算手段と

上記メディアン値を各画素の輝度値とする1フレーム分 の画像により上記基準背景画像を更新する第1の基準背 景画像更新手段と.

上記テレビジョンカメラから得られる画像信号を基準背景画像と比較して上記物体を検出する物体検出手段と、 該物体検出手段により物体が検出できなかったときだ け、上記テレビジョンカメラから得られる画像信号を取 り込み、フレーム単位で順次記憶する第2の画像記憶手 酸と、

該第2の画像記憶手段により記憶したフレームが第2の 所定数に達する毎に、該記憶した所定数フレームの画像 信号に基づいて、各フレームの各画素毎に輝度のメディ アン値を計算するメディアン計算手段と、

上記メディアン値を各画素の輝度値とする1フレーム分の画像により上記基準背景画像を更新する第2の基準背景画像を更新する第2の基準背景画像を更新する第2の基準背景画像

上記物体の検出に使用する基準背景画像が上記第1と第 2の基準背景画像更新手段により逐次更新されて行くよ うに構成したことを特徴とする物体検出装置。

【請求項4】 テレビジョンカメラの操像視野内に進入 した物体を、上記テレビジョンカメラから得られる画像 信号の中で基準背景画像と比較することにより自動的に 検出する方式の物体検出方法において、

上記テレビジョンカメラから得られる画像信号をフレー ム単位で順次記憶する画像記憶ステップと、

20 記憶したフレームが所定数に達する毎に、該記憶した所 定数フレームの画像信号に基づいて、各フレームの各画 来毎に輝度のメディアン値を計算するメディアン計算ス テップと。

上記メディアン値を各画素の輝度値とする1フレーム分 の画像により上記基準背景画像を更新する基準背景画像 更新ステップとを備え、

上記物体の検出に使用する基準背景画像が逐次更新されて行くように構成したことを特徴とする物体検出方法。 【請求項5】 テレビジョンカメラの機像視野内に進入

した物体を、上記テレビジョンカメラから得られる画像 信号の中で基準背景画像と比較することにより自動的に 検出する方式の物体検出方法において、

上記テレビジョンカメラから得られる画像信号を基準背景画像と比較して上記物体を検出する物体検出ステップ

該物体検出手段により物体が検出できなかったときだけ、上記テレビジョンカメラから得られる画像信号を取り込み、フレーム単位で順次記憶する画像記憶ステップと、

40 記憶したフレームが所定数に達する毎に、該記憶した所 定数フレームの画像信号に基づいて、各フレームの各画 素毎に輝度のメディアン値を計算するメディアン計算ス テップと。

上記メディアン値を各画素の輝度値とする1フレーム分 の画像により上記基準背景画像を更新する基準背景画像 更新ステップとを備え、

上記物体の検出に使用する基準背景画像が逐次更新され で行くように構成したことを特徴とする物体検出方法。 [請求項6] テレビジョンカメラの振像視野内に進入 50 した物体な、上記テレビジョンカメラから得られる画像

3 信号の中で基準背景画像と比較することにより自動的に 検出する方式の物体検出方法において、

上記テレビジョンカメラから得られる画像信号をフレー ム単位で順次記憶する第1の画像記憶ステップと、 該第1の画像記憶手段により記憶したフレームが第1の 所定数に達する毎に、該記憶した所定数フレームの画像 信号に基づいて、各フレームの各画素毎に輝度のメディ アン値を計算する第1のメディアン計算ステップと、 上記メディアン値を各画素の輝度値とする1フレーム分 の画像により上記基準背景画像を更新する第1の基準背 10 する方式がなどが知られている。

景画像更新ステップと、 上記テレビジョンカメラから得られる画像信号を基準背 景画像と比較して上記物体を検出する物体検出ステップ

該物体検出手段により物体が検出できなかったときだ け、上記テレビジョンカメラから得られる画像信号を取 り込み、フレーム単位で順次記憶する第2の画像記憶ス テップと、

該第2の画像記憶手段により記憶したフレームが第2の 所定数に達する毎に、該記憶した所定数フレームの画像 20 信号に基づいて、各フレームの各画素毎に輝度のメディ アン値を計算するメディアン計算ステップと、

上記メディアン値を各画素の輝度値とする1フレーム分 の画像によりト記基準背景画像を更新する第2の基準背 景画像更新ステップとを備え、

上記物体の輸出に使用する基準背景画像が上記第1と第 2の基準背景画像更新手段により逐次更新されて行くよ うに構成したことを特徴とする物体検出方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、テレビジョンカメ ラを用いた監視装置に係り、テレビジョンカメラの撮像 視野内に進入した物体を、該テレビジョンカメラの映像 信号の中から自動的に検出するようにした物体検出装置 及び物体検出方法に関する。

[0002]

【従来の技術】テレビジョンカメラを用いた映像監視装 置は、従来から広く一般的に用いられているが、近年、 このような監視システムにおいて、その監視視野内に入 り込んでくる人間や自動車など移動物体の検出を、画像 40 モニタ面での有人監視によるのではなく、画像信号から 自動的に検出し、所定の報知や警報処置が得られるよう にしたシステムが要求されるようになってきている。

【0003】しかして、このようなシステムを実現する ためには、一視野分の画像信号の中から、検出すべき物 体の画像信号だけを識別し検出する必要があるが、ここ で、このような画像信号の処理により物体を検出する方 式の従来技術としては、入力された画像信号と、基準背 景画像、すなわち検出すべき物体が写っていない画像信 値の大きい領域を物体として検出する、いわゆる差分法 と呼ばれる方式が知られている。

【0004】ところで、この差分法では、基準となる画 像が必要であるため、予め基準背景画像を作成する必要 があるが、このような基準背景画像の作成法の従来例と しては、物体が写っていないときの画像信号(通常は1 フレーム分の画像信号)を、オペレータが選択して基準 背景画像として更新する方式や、所定のフレーム数の画 像を、画素毎に平均化を行って基準背景画像として更新

【0005】しかしながら、まず、前者の方式では、人 間の判断によって瞬間的な画像を選択しているため、そ の画像信号中にたまたまノイズが混入していた場合、そ のノイズまで背景画像として保存してしまうため、正確 な背景画像を得にくいという問題があり、しかも、この ようなノイズの混入は、伝送系でのノイズ環境などから 見て、実際にはそう珍しいことではないため、実用上、 大きな障害となっている。

【0006】次に、後者の方式では、正確な背景画像を 得るためには、平均化に用いる画像信号のフレーム数 を、例えば1500枚などのかなり大きな枚数にする必 要があり、この結果、基準背景画像作成に用いる画像を 入力した時刻と、物体検出処理のために差分処理を実行 する時刻とに大きな時間的な差(約50秒)が生じてしま い、このため、例えば夕暮れ時などで撮像視野が徐々に 暗くなる場合や、或いは明け方などで楊像視野が徐々に 明るくなる場合には、上記の時間的な差により、現在の 背景として物体の検出に使えるような正確な基準背景画 像を作成することができなくなってしまうという問題が 30 あった。

【0007】一方、予め作成した基準背景画像を必要と せずに、差分処理により移動物体を検出する方式の例と しては、例えば1994年7月発行、"O plus E" No.1 78, pp. 122-136、に記載の、上田による『画像処理技術 を用いたインテリジェント映像ハンドリング』と類する 論文がある。この論文による移動体の検出方式は、時間 的に連続した3枚の画像から物体の検出を行うようにし たもので、図5に示すように、まず、時間的に連続した 画像501、502、503を入力し、画像501と画 **像502の輝度差分と、画像502と画像503の輝度** 差分をそれぞれ計算し、二値化してから膨張・収縮演算 を行って二値化画像504及び二値化画像505を得、 次に、これらの二値化画像504と505のAND処理 により各画像の共通部分を求め、物体の検出画像506 を得るようにしたものである。

【0008】つまり、この方式では、時間的に前後した 画像間でも背景部分は変化せず、移動物体だけが変化す ることを利用し、二値化画像504及び505を求める ステップで、画像501と502、画像502と503 号とを比較し、画素毎に輝度値の差分を求め、その差分 50 の輝度値が近い部分を除くことにより背景部分を消去

し、移動物体だけの検出が得られるようにしたものであ る。しかしながら、この方式でも、3枚の画像のうち2 枚の画像間で被写体照度に変化が生じていた場合には、 輝度値の差分による背景部分の除去が得られなくなるの で、移動物体の正確な検出ができない場合があり、ま た、この方式では、図6の画像601、602、603 に示すような、2以上の移動物体が接近して撮像視野内 に存在した場合には、複数の移動物体の像が重畳された 結果、二値化画像は604及び605で示すようにな り、検出画像は606のようになってしまって、正確な 10 物体検出が行えない場合がある。

[00009]

【発明が解決しようとする課題】従来より広く用いられ ている差分法は、前記したように基準となる背景画像を 必要とするが、移動物体が存在していない瞬間の画像を 基準背景画像とする方式ではノイズに弱いという問題が あり、画素毎に加算平均を用いる方式では基準背景画像 作成に多くの画像フレーム数を必要とするため、物体検 出処理ステップで時間的な問題が生じる可能性がある。 式でも、被写体照度の変化による影響を受け、且つ、2 以上の移動物体が近接して存在した場面では、正確な物 体検出ができないという問題がある。

【0010】本発明の目的は、これら従来技術が有する 問題点を解決し、特に屋外など、照明変動などの環境変 化が頻繁に起こる環境のもとでも常に確実に物体が検出 できるようにした、信頼性の高い物体検出装置及び物体 検出方法を提供することにある。

[0011]

【課題を解決するための手段】上記目的は、テレビジョ 30 ンカメラの撮像視野内に進入した物体を、画像信号の中 から自動的に検出する方式の物体検出装置において、上 記テレビジョンカメラからフレーム単位で得られる画像 信号を順次入力して記憶する手段と、記憶したフレーム が所定数に達する毎に、記憶した複数フレーム分の画像 信号に基づいて各画素毎に輝度のメディアン値を計算す るメディアン計算手段と、これらメディアン値を各画素 の輝度値とする画像信号による画像を新たな基準背景画 像として更新記憶する基準背景画像更新手段とを設け、 該更新された基準背景画像を用いて上記物体を検出する 40 いて、鑼座のメディアン値が計算されるのであるが、こ ように構成することにより達成される。

【0012】同様に、上記目的は、テレビジョンカメラ の楊俊視野内に進入した物体を、上記テレビジョンカメ ラから得られる画像信号の中で基準背景画像と比較する ことにより自動的に検出する方式の物体検出方法におい て、上記テレビジョンカメラから得られる画像信号をフ レーム単位で順次記憶する画像記憶ステップと、記憶し たフレームが所定数に達する毎に、該記憶した所定数フ レームの画像信号に基づいて、各フレームの各画素毎に 輝度のメディアン値を計算するメディアン計算ステップ 50 番目の輝度値M、つまり、メディアン値Mとなる。そし

と、上記メディアン値を各画素の輝度値とする1フレー ム分の画像により上記基準背景画像を更新する基準背景 画像更新ステップとを備え、上記物体の検出に使用する 基準背景画像が逐次更新されて行くようにして達成され

[0013]

【発明の実施の形態】本発明の一実施例では、図1に示 すように、画像入力ステップ101と、画像記憶ステッ プ102と、所定フレーム数の記憶が終了したか判断す る判断処理ステップ103と、所定フレーム数の記憶を 終了した場合に記憶されている画像について画素毎にメ ディアンを計算するメディアン計算ステップ104と. メディアン計算ステップ104の結果を新しい基準背景 画像として更新する基準背景画像更新ステップ105が 設けられる。

【0014】すなわち、図1において、テレビジョンカ メラから画像入力ステップ101により画像が取り込ま れると、この取り込まれた画像は画像記憶ステップ10 2により記憶される。その後、判断ステップ103で、 また、前記の背景画像を必要としないように改善した方 20 記憶されたフレーム数が所定の数Nになったと判断され た場合、まずメディアン計算ステップ104が実行さ れ、ここで、記憶した複数フレーム分の画像信号に基づ いて各画素毎に輝度のメディアン値が計算され、次いで 基準背景画像更新ステップ105が実行され、ここで、 これらメディアン値を各画素の輝度値とする画像信号に よる画像を新たな基準背景画像として更新記憶するので ある.

【0015】そして、この結果、この実施例によれば、 フレーム数Nとして、あまり大きな値、例えばN=30 0を設定しなくても、充分に正確な基準背景画像を確実 に得ることができるのであるが、その理由について、以 下に説明する。いま、Nフレーム分記憶されている画像 の中の或る画素(x, y)に注目し、記憶したフレームの 番号順に並べてみると、その画素の輝度値変化は、例え ば図4(a)に示すようになる。ここで、(x, y)はフレ ーム内での画素の位置(座標)を表わし、従って、例えば 320×240の画素からなる画像データでは、x=1 ~ 320 , $y = 1 \sim 240$ ≥ 5

【0016】次に、これら同一位置の画素(x, y)につ の"メディアン値を計算する"ということの意味は、複 数の順番に並んで与えられるデータを、その順番とは関 係なく、それらのデータの大きさに従って、小さい方か ら大きい方に向かって順番(昇順)に、或いは、大きい方 から小さい方に向かって順番に(降順)に、並べ替えるこ とである。

【0017】そこで、図4(a)に示す画素の輝度値のメ ディアンを計算した結果は、図4(b)の特性Aに示すよ うな分布を示し、画素(x, y)のメディアン値はN/2 (5)

て、Nフレームに渡って画像に変化が無かったときに は、各フレームの同じ画素の輝度値はメディアン値Mに 等しくなり、この場合には、特性Aは水平の直線にな

【0018】次に、いま、記憶したNフレームの画像の 中のLフレーム(1 < L < N)の画像に、背景には無かっ た物体が写っていたり、ノイズが混入していたとする と、その物体の画像を構成する画素やノイズによる画素 は、変化が無かったときの画像の画素と異なる輝度値、 すなわち異なったメディアン値Mを持つが、輝度値順に 10 02の後、図1の実施例と、図2の実施例で示される方 並べ替えたことにより、そのフレーム数 L が N / 2 以下 のときには、その画素の位置は、図4(b)の特性Aの上 で、中心位置(N/2)から離れた両端の位置になる。 【0019】ここで、物体やノイズの画像を構成する画 素の輝度値が、変化が無かったときの画像の画素の輝度 値よりも小さいときは、中心位置(N/2)から左側(1 側)になり、反対に大きいときは、右側(N側)になる。 そして、物体やノイズが写っているフレームの数Lが増 加するにつれて、中心位置(N/2)に近い位置に現われ

【0020】すなわち、ここで、物体やノイズが存在し たことによる影響が、メディアン値M付近の中心位置 (N/2)領域に現れるのは、少なくとも記憶したフレー ム数Nの半分以上のフレーム期間、物体やノイズによる 画素が同じ位置にとどまっていた場合だけとなる。

2以下の間は、メディアン値Mに対してはほとんど影響

しない。

【0021】ところが、物体やノイズは、通常、速やか に移動するので、それらが存在するフレーム数は、それ ほど多くはならない。従って、メディアン計算をするこ 30 なる踏切全体を撮像できる位置にテレビジョンカメラを とにより、フレーム数Nをそれほど多くとらなくても、 物体やノイズの影響を受け難くでき、充分に正確な基準 背景画像を得ることができるのである。

【0022】次に、本発明の他の一実施例では、図2に 示すように、画像入力ステップ201の処理の後に、物 体給出処理ステップ202と判断処理ステップ203を 付加し、これらにより物体の有無を判断した後、物体が 存在しなかったと判断されたときの画像についてだけ、 図1の実施例と同じ処理が実行されるようにしたもので ある。

【0023】すなわち、図2において、画像入力ステッ プ201の後に物体検出処理202及び物体の判断処理 ステップ203を付加する。そして、物体の判断処理ス テップ203で物体が存在しないと判断された画像を画 像記憶ステップ204において記憶し、次に記憶された フレーム数が所定の数になった場合、メディアン計算ス テップ206及び基準背景画像更新ステップ207が実 行される。

【0024】従って、この実施例では、基準背景画像の 更新処理に用いる画像が、物体が存在しないことが保証 50 は、テレビジョンカメラ701で撮像された画像信号

されている画像となっているため、メディアン計算に必 要なフレーム数Nを、例えばN=6程度と、図1の実施 例に比して、大幅に少なくすることができる。

【0025】次に、本発明の更に別の一実施例では、図 3に示すように、図1及び図2の実施例による処理を並 列に実行させるようにし、2系統の基準背景画像更新ス テップ306、311により、常に最新の基準背景画像 が得られるようにしたものである。すなわち、図3に示 すように、画像入力ステップ301と、物体検出処理3 式を並列処理するようになっている。

【0026】図1に示される実施例においては、記憶す るフレームの数が約300と、図2の実施例に比してか なり多いため、基準背景画像の更新間隔が、これもかな り空いてしまう。従って、基準背景画像の新鮮さについ ては、いささか不満がなくもない。

【0027】一方、図2に示されている実施例では、物 体存在の判断処理ステップ203で物体ありと判断され ている間は、基準背景画像更新ステップ207が実行さ る画素が増えて行くことになるが、フレーム数LがN/ 20 れないので、フレーム数が少なくて済むという折角の利 点が活かせなくなってしまう可能性がある。しかして、 図3の実施例によれば、図1及び図2の実施例の双方の 利点が得られる上、それぞれ特性の異なる最新の基準背 景画像を用いることができるので、基準背景画像の正確 性を一届向上させることができる。

> 【0028】以下、踏切内に進入した歩行者や、自動車 などの物体を検出する映像監視装置に本発明を適用した 実施例により、本発明による物体検出装置について詳細 に説明すると、以下の実施例は、いずれも、監視区域と 設置し、それにより得られる画像信号から、本発明の方 式により基準背景画像を作成し、それを物体検出処理に 用いたものである。

【0029】まず、図7は、本発明の実施例が適用され た映像監視装置の一例で、テレビジョンカメラ701で 監視区域(監視視野)を撮像して得た画像信号は、入力 I /F702を介して画像メモリ703に蓄積(記憶)され る。一方、CPU705は、プログラムメモリ706に 格納されているプログラムに従って画像メモリ703内 40 のデータを読み、このデータによりワークメモリ704 内で画像信号を解析し、基準背景画像作成や物体輸出処 理を実行し、その結果に応じて、出力 I / F 7 0 7 を介 して警報ランプ710を点灯させたり、画像出力I/F 708を介してモニタ711に画像を表示させたりする ようになっている。

【0030】図8は、CPU705による基準背景画像 作成から物体検出処理までの一連の処理を示したもの で、図1に示した方式による実施例である。この図8の 処理が実行されると、まず画像入力ステップ801で

が、320×240画素の画像データとして取り込ま れ、次いで、その画像データを画像記憶ステップ802 で画像メモリ703に記憶する。判断処理803では、 記憶したフレーム数が予め定めてある所定値N₁(例えば $N_1 = 300 = N$)になったらメディアン計算ステップ8 04に、所定値N,未満だったら物体検出ステップ80 6に分岐する。

【0031】メディアン計算ステップ804は、記憶し たNフレームの画像に対し、画素毎に、図4に示すよう にして並べ替えを行い、次の(数1)式によりメディアン 値Mを計算する。

10

[0032]

【数1】

$$r(x, y) = med_{1 \le i \le 300} \{f^{(i)}(x, y)\} \cdots (20)$$

(6)

但し、f(i)(x, y)は、300フレーム分の画像データ を表わし、i=1,2,……,300である。

【0033】ここで、med{ }がメディアンを表わして おり、この(数 1) 式の場合は、Nフレームの画像につい て、それぞれの同じ画素を輝度値順に並べ、その1/N 番目の値(中間の値)の画素を取り出し、これを各画素毎 に実行し、基準背景画像となる1フレーム分のデータr (x, y)とすることを表わしており、これにより、新し い基準背景画像を得るのである。従って、更新される基 20 09に、存在した場合には警報発報ステップ913に分 準背景画像=画像データr(x, v)となる。

【0034】基準背景画像更新ステップ805では、メ ディアン計算ステップ804の結果を画像メモリ703 に割り当てた基準背景画像の記憶領域に記憶する。次 に、物体検出処理ステップ806では、ステップ801 で取り込まれた画像データと、画像メモリ703の記憶 領域に記憶されている基準背景画像との差分を計算し、 その差分値の大きいデータ部分を物体として検出する。 【0035】すなわち、まず、図11の(a)に示すよう 体が写っている画像とを比較し、画素毎に輝度値の差分 を計算すると、同図(c)に示すようになる。そして、そ の差分値に対して所定の閾値を設定して二値化すると、 同図(d)に示す画像が抽出される。一方、物体が存在し ないときには、抽出画像としては現われないので、物体 の検出が可能になるのである。

【0036】ステップ807では、物体検出処理ステッ プ806の結果から物体の有無を判別し、物体が存在す る場合は警報発報ステップ808に分岐し、物体が存在 しない場合は画像入力ステップ801に分岐するのであ 40 物体検出処理1007が実行される。そして、その後、

【0037】次に、図9は、図2で説明した方式による 実施例である。なお、図中における括弧内の数字は、他 の図における同じ処理内容のステップを表す。図9の実 施例において、そのステップ901からステップ905 は、図8におけるステップ801からステップ805と 同様の処理である。この後、画像入力ステップ906で は、ステップ901と同様に、テレビジョンカメラ70 1で撮像された画像信号が、320×240画素の画像 データとして画像メモリ703に取り込まれる。物体検 50

出処理907では、ステップ912で基準背景画像が作 成されていればその基準背景画像を用い、作成されてい なかったときには、ステップ905で作成された基準背 景画像を用いて物体検出処理を行う。

【0038】分岐処理908では、物体検出処理907 の結果、物体が存在しない場合には画像記憶ステップ9 岐する。そして、物体が存在しないと判断された場合、 画像記憶ステップ909では、画像入力ステップ906 において得られた画像を記憶する。判断処理910で は、記憶したフレーム数が予め定めてある所定値N₂(例 えば $N_2 = 6$)になったらメディアン計算ステップ911 に、所定値N₂未満だったら画像入力ステップ906 に、それぞれ分岐する。

【0039】メディアン計算ステップ911は、記憶し た所定値N。フレームの画像に対し、画素毎に図4のよ な基準背景画像と、同図(b)に示すような検出すべき物 30 うな並べ替えを行い、上記(数1)式によりメディアン値 を計算する。そして、このメディアン計算ステップ91 1の結果を、基準背景画像更新ステップ912で画像メ モリ703に割り当てた基準背景画像の記憶領域に記憶 するのである.

> 【0040】さらに図10は、図3で説明した方式によ る実施例である。まず、ステップ1001からステップ 1005は、図8のステップ801からステップ805 までと同様の処理である。続いて、ステップ801と同 じ画像入力ステップ1006と、ステップ806と同じ 図1の方式による処理と同じ第一系統の処理と、図2の 方式による処理と同じ第二系統の処理とが並列に処理が 実行される。

【0041】まず、第一系統の処理であるステップ10 08からステップ1011までの処理は、図8で示され るステップ802から805の処理と同じ処理であり、 次に第二系統の処理であるステップ1012からステッ ブ1017までの処理は、図9で示されるステップ90 8から913と同じ処理である。

【0042】次に、これら実施例による検出結果につい

11

て、図12により説明する。図12において、図示の画像1101は、テレビジョンカメラ701により撮像され、画像入力ステップ801で取り込まれた画像データの一例である。このような人方画像に対して、まず、図8の実施例によれば、画像中のトラックが約5秒以上、同じ場所に止まっていなければ、図12の画像1102に示すように、物体(トラック)の写っていない正確な基準背景画像を確実に得ることができる。

【0043】また、図9及び図10の実施例では、3フレーム以上、物体無しと誤検出しなければ、同じく、図 102の画像1102に示すように、物体(トラック)の写っていない正確な基準背景画像を得ることができる。従って、上記実施例によれば、基準背景画像の作束に必要なフレーム数を少なくしても、正確な基準背景画像を確実に得ることができるので、特に屋外など、瞬野変動などの環境変化が頻繁に起こる環境のもとでも、時間遅れの少ない幾番の基準背景画像による物体の検出が可能になり、信頼性の高い監視システムを容易に得ることができる。

【0044】なお、本発明は、上記の適用例に限らず、 プラント設備や、立入禁止区域への侵入者の監視システ ムなどにも適用可能である。

[0045]

【発明の効果】本発明によれば、メディアン計算による 基準背景画像作成法を用いたので、従来の基準背景画像 作成技術が有する問題点に充分に対処でき、ノイズに対 して耐性があり、且つ、画像の平均化を行って背景画像 を得る方式よりも必要とする画像フレーム数を少なくで きるので、最新の基準背景画像に力を信頼性の高い監視 システムを容易に提供することができる。

【図面の簡単な説明】

【図1】本発明による物体検出装置の第1の実施例の動作原理を説明するためのフローチャートである。

【図2】本発明の第2の実施例の動作原理を説明するた

めのフローチャートである。

【図3】本発明の第3の実施例の動作原理を説明するためのフローチャートである。

12

【図4】 画素輝度値のメディアン計算による効果を理解 させるための説明図である。

【図5】差分法を用いた従来技術による物体検出動作の 説明図である。

【図6】差分法を用いた従来技術による物体検出装置の 問題点を示す説明図である。

10 【図7】本発明の実施例が適用された映像監視装置の一 例を示す構成図である。

【図8】本発明を踏切での進入物体検出に適用した場合 の一実施例の動作を示すフローチャートである。

【図9】本発明の他の一実施例による物体検出動作を説明するフローチャートである。

【図10】本発明の更に別の一実施例による物体検出動作を説明するフローチャートである。 【図11】本発明の一実施例における差分法による物体

検出動作の説明図である。

20 【図12】本発明の実施例による物体検出動作の説明図である。

【符号の説明】

701 テレビジョンカメラ(映像入力装置)

702 入力用I/F

703 画像用メモリ

704 ワークメモリ 705 CPII

706 プログラムメモリ

707 出力用I/F 30 708 画像出力用I/F

709 データバス

710 警告ランプ

711 警告表示用モニタ

【図2】

[図1]

[31]

[図7]

[図3]

【図3】

[図10]

【図12】

フロントページの続き

(51) Int. Cl. 6 // G 0 1 V 8/10

識別記号 庁内整理番号

FΙ G 0 1 V 9/04 技術表示箇所