	JAB		Natio	nal 5 Chem	nistry		JAB	on	Tra	ffic L	ight
	chem			it 3.1c Red	•		chem	Lesson	Red	Amber	Green
6a 8a	Cu ²⁺ • a compo	+ ound react	2e- ing to form a	nctant in any cher metal element is ons before the ar	Cu an example of		n		(S)	<u>(i)</u>	©
6b 8b	• a metal e	element re	Mg eacting to form	ctant in any chem a compound is ons after the arro	Mg^{2+} an example of	+ oxidation	2e-		©	(1)	\odot
7	In a redox reacti	on, reduct	tion and oxida	ation take place a	t the same tim	e.			(3)	<u>(i)</u>	\odot
9	Oxidation ReMg Reduction Re	action: action:		d to produce redo	Mg ²⁺	+	2e-		3	①	©
	Mg	+	Cu ²⁺		Mg^{2+}	+	Cu				

Na Traffic	-		Past Paper Question Bank Unit 3.1c Redox										J	JABchem			
Outcome	Original Specimen	New Specimen	Nat5	Nat5	Nat5	Nat5	Nat5	Nat5	Nat5	Nat5							
Ourcome	<u>Paper</u>	<u>Paper</u>	2014	2015	2016	2017	2018	2019	2020	2021							
6a								L8d									
8a								200									
6b			L11a		L10c(i)	L4b	I 7h(ii)	L10b(ii)									
8b			1		2100(1)	L8b) (ii)	E105(II)									
7																	
9	mc19	mc20	mc17	L9b(i)	L10c(ii)	L10a(ii)	mc18	L10b(iii)									

Nat5	Answer	% Correct	Reasoning
2014 MC	В	55	
17			Add $0+2'$ (cancelling e^-) $H_2O(l) + SO_3^{2-}(aq) + 2Fe^{3+}(aq) \rightarrow SO_4^{2-}(aq) + 2H^+(aq) + 2Fe^{2+}(aq)$
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2018	_		
18	В	-	oth dd 2H2(g) + 2H2(0(1) + O2(g) + 4e → 4H*(aq) + 4e + 4OH*(aq)
			$_{\text{down}}^{\text{cancel}} 2H_{2(g)} + 2H_{2}O_{(l)} + O_{2(g)} + 4H^{*}_{(aq)} + 4H^{*}_{(aq)} + 4OH^{*}_{(aq)}$
			redox $2H_{2(g)}$ + $2H_{2}O_{(1)}$ + $O_{2(g)}$ \longrightarrow $4H^{+}_{(aq)}$ + $4OH^{-}_{(aq)}$

Nat5	Answer	Reasoning
2014 11 a	2Cl⁻ → Cl₂ + 2e⁻	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2015 9b (i)	4Al ³⁺ + 6O ²⁻ ↓ 4Al + 3O ₂	$4AI^{3+} + 6O^{2-} \longrightarrow 4AI + 3O_2$
2016 10c(i)	oxidation	$Br_2(l)$ + $2e^ \longrightarrow$ $2Br^-(aq)$ Reduction gain of electrons $SO_3^{2-}(aq)$ + $H_2O(l)$ \longrightarrow $SO_4^{2-}(aq)$ + $2H^+(aq)$ + $2e^-$ Oxidation loss of electrons
2016 10c(ii)	$Br_{2} + SO_{3}^{2^{-}} + H_{2}O$ \downarrow $2Br^{-} + SO_{4}^{2^{-}} + 2H^{+}$	$Br_2 + SO_3^{2-} + H_2O \longrightarrow 2Br^- + SO_4^{2-} + 2H^+$
2017 4b	$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$	The reduction step $Fe^{3+} + e^- \rightarrow Fe^{2+}$ is in the data booklet. The reversal of the equation means the equation becomes oxidation
2017 8 b	Magnesium	MgO contains Mg ²⁺ ions : Mg \longrightarrow Mg ²⁺ + 2e ⁻ (oxidation)
2017 10a(ii)	3Cu ²⁺ + 2Al ↓ 3Cu + 2Al ³⁺	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2018 7 b(ii)	oxidation	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2019 8 d	Reduction	Beryllium ions Turn information in question in to chemical formulae $Be^{2+} \longrightarrow Be$ Balance charge difference by adding electrons to the most positive side $Be^{2+} + 2e^{-} \longrightarrow Be$
2019 10b (ii)	oxidation	$2I^{-}_{(aq)} \longrightarrow I_{2(l)} + 2e^{-}$
2019 10b(iii)	2Fe ³⁺ +2I ⁻ ↓ 2Fe ²⁺ +I ₂	$2I^{-} ightarrow I_{2} + 2e^{-}$ $Fe^{3+} + e^{-} ightarrow Fe^{2+}$ Multiple equations to get same number of electrons $2I^{-} ightarrow I_{2} + 2e^{-}$ $2Fe^{3+} + 2e^{-} ightarrow 2Fe^{2+}$ Cancel out electrons add equations together $2Fe^{3+} + 2I^{-} ightarrow 2Fe^{2+} + I_{2}$

No	1†5			Pas	st Po	per	Qu	estic	on B	ank			7	VB*	- la m	W.A
Traffic	Lights		Unit 3.1c Redox									JABchem				
Outcome	Int2		Int2						Int2			Int2		Int2		Int2
	<u>2000</u>	<u>2001</u>	2002	<u>2003</u>	<u>2004</u>	<u>2005</u>	<u>2006</u>	<u>2007</u>	<u>2008</u>	<u>2009</u>	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	2014	<u>2015</u>
6a 8a		L13a			mc22	L4c(i)	L3b									
6b 8b	L13d		L3a	L13a		mc28	L12b(ii)		L14b(i)	mc28 L14b				L15b	L12b	L13b
7	mc17		L13b(i)		L12a											
9		L14a		L3b				L12b	L14b(ii)		mc28				mc29	

Int2	Answer	% Correct	Reasoning												
2000			$\blacksquare A$ Redox has both Reduction: $2H^+ + 2e^- \rightarrow H_2$ and Oxidation: $Zn \rightarrow Zn^{2+} + 2e^-$												
2000 MC		Ea	B B Redox has both Reduction: $Br_2 + 2e^- \rightarrow 2Br^-$ and Oxidation: $Fe^{2+} \rightarrow Fe^{3+} + e^-$												
		52	☑C Precipitation Reaction: ions come together to form insoluble solid												
17			I ■ D Redox has both Reduction: $2H^+ + 2e^- \rightarrow H_2$ and Oxidation: $Zn \rightarrow Zn^{2+} + 2e^-$												
2004			■A oxidation is loss of electrons : electrons appear after arrow												
2004 MC		10	☑B oxidation is loss of electrons ∴ electrons appear after arrow												
		69	$\square C$ reduction is gain of electrons: Fe ³⁺ gains electron to become Fe ²⁺												
22			区 reduction is gain of electrons but Fe ³⁺ is on wrong side of equation												
2005			■A Electrons before arrow is gain of electrons : reduction reaction												
MC MC	D	11	☑B Fe ²⁺ ions are losing electrons Fe ²⁺ ions are being oxidised												
	В	41	Solution of the state of th												
28			ID Electrons before arrow is gain of electrons :: reduction reaction												
2009			■A Electrons are gained in reduction and appear before the arrow in an equation												
MC		E 2	☑B Electrons are gained in reduction and appear before the arrow in an equation												
		53	☑C Titanium atoms are oxidised as electrons are lost (electrons after the arrow)												
28			☑D Titanium ions are products and are the products of the oxidation												
2010															
MC	A	25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
28	A	35													
20			Add $0+2$ Mg + $2Ag^+$ + $2e^- \rightarrow Mg^{2+}$ + $2e^-$ + $2Ag$												
			Cancel e^- Mg + $2Ag^+$ + $2e^ \rightarrow$ Mg ²⁺ + $2e^-$ + $2Ag$												
			$Mg + 2Ag^{+} \rightarrow Mg^{2+} + 2Ag$												
			$\mathbf{e} \qquad \qquad \mathbf{F} \mathbf{e}^{3+}(\mathbf{a}\mathbf{q}) \qquad + \qquad \mathbf{e}^{-} \qquad \rightarrow \qquad \mathbf{F} \mathbf{e}^{2+}(\mathbf{a}\mathbf{q})$												
2014															
MC	В	49													
29			$2\times 2 2Fe^{3+}(aq) + 2e^{-} \rightarrow 2Fe^{2+}(aq)$												
			Add 1+2 ' 110 502 25 35 35 25 215 25 25												
			Add $0+2$ $H_2O(1) + SO_3^{2-}(aq) + 2Fe^{3+}(aq) \rightarrow SO_4^{2-}(aq) + 2H^{+}(aq) + 2Fe^{2+}(aq)$ (cancelling 2e-)												

Int2	Answer	Reasoning
2000	$2I^{-} \rightarrow I_2 + 2e^{-}$	2I ⁻ → I ₂ + 2e ⁻
13d	21 - 12 + 26	Iodine ions Iodine molecule
2001	Fe ³⁺ + e ⁻ → Fe ²⁺	From the question, Fe³+ — Fe²+ (difference on charge of 1+)
13a	re" + e	1e⁻ is added to the most positive side: Fe³+ + e⁻
2001		
14a	$O_2 + 2H_2 \rightarrow 2H_2O$	
		add O_2 + $2H_2 \rightarrow 2H_2O$
2002		
3a	Fe → Fe ²⁺ + 2e ⁻	Iron atoms oxidise (lose electrons) to become Fe ²⁺ ions and further oxidise to become Fe ³⁺ ions during the process of rusting.
		$Zn \rightarrow Zn^{2+} + 2e^{-}$
2002	7	$Cu^{2+} + 2e^{-} \rightarrow Cu$
13b(i)	Zn+Cu ²⁺ →Zn ²⁺ +Cu	Add together equations cancelling out electrons
		$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$
2003		$2Ag^{+} + 2e^{-} \rightarrow 2Ag$ $2I^{-} \rightarrow I_{2} + 2e^{-}$
3b	2Ag ⁺ +2I ⁻ → 2Ag+I ₂	Add together equations cancelling out electrons
		$2Ag^+ + 2I^- \rightarrow 2Ag + I_2$
2003	$Zn \rightarrow Zn^{2+} + 2e^{-}$	Oxidation is the loss of electrons. Metals reacting to become compounds are
13a		oxidation reactions. See data booklet p7 for reduction version of this equation.
2004		$2Cl^{-} \rightarrow Cl_{2} + 2e^{-}$
12a	$2H_2O+2Cl^{-} \rightarrow Cl_2+H_2$	$2H_2O + 2e^- \rightarrow 2OH^- + H_2$ Add together equations cancelling out electrons
		2H ₂ O + 2Cl ⁻ → Cl ₂ + H ₂
2005	Copper ions	Cu ²⁺ + 2e ⁻ → Cu
4c(i)	gain electrons	Cu · Le · Cu
2006	Fe³+ + 3e⁻ → Fe	Fe ³⁺ ions at start and Fe atoms at end of reaction. Three electrons must
3b	70 . 30 70	be gained by the Fe³+ ions to become Fe atoms
2006	oxidation	Oxidation is loss of electrons (electrons after the arrow)
12b(ii)	OXIGUTION	Reduction is gain of electrons (electrons before the arrow)
2007		2× 0 2Na ⁺ + 2e ⁻ → 2Na ⁺
2007	2Na⁺+2H⁻→2Na+H2	$2H^{-} \rightarrow H_2 + 2e^{-}$
12b		add 0' + 2 2Na⁺ + 2H⁻ → 2Na + H₂
2008		EING FILE
14b(i)	Oxidation	Oxidation is Loss of Electrons (electrons after the arrow on right hand side)
2008		
	Aluminium hydroxide	$AI^{3+}(aq) + OH^{-}(aq) \longrightarrow AI^{3+}(OH^{-})_{3}(s)$
14b(ii)		

2009	$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$	Fe ²⁺ → Fe	3+
14b	re → re + e	re → re	7 + 6
2013		Na	Na+ e-
15b	Na → Na ⁺ + e ⁻	2,8,1 sodium atom so	2,8 dium ion
2014	N1: . N1:2+ 2 -	5	
12b	Ni → Ni ²⁺ + 2e ⁻	Equation is on page 11 of data booklet	but in the reverse direction.
2015	41 413+ 0 -	Electrons are always on the right of an equation	
13b	Al → Al ³⁺ + 3e ⁻	The data book always list equations as reducti left of the equation. The equation is flipped to	

	Nat5 Traffic Lights Past Paper Question Bank Unit 3.1c Redox Unit 3.1c Redox														m	
	1	1	1	1						1	1	1	l			
Outcome			2002													
	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	Credit	Credit	Credit	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>		
6a 8a							10b			17d	17c					
6b 8b			13b	16b(ii)	16c	10a(i)	14c		13b	17a		21b	16b(ii) 19a	14b		
7																
9																

SG Credit	Answer	Reasoning											
2002 <i>c</i> 13b	Cu → Cu ²⁺ + 2e ⁻	Redox Reaction Cu + $2Ag^+$ \rightarrow Cu^{2+} + $2Ag$ Separate equations Cu \rightarrow Cu^{2+} Reduction $2e^-$ + $2Ag^+$ \rightarrow $2Ag$ Oxidation Cu \rightarrow Cu^{2+} + $2Ag$											
2003 <i>C</i> 16b (ii)	Reduction	Reduction is Gain of Electrons: Fe ³⁺ + e ⁻ Fe ²⁺											
2004 <i>C</i> 16c	2Cl ⁻ Cl ₂ + 2e ⁻	reverse of equation on p10 of data booklet											
2005 <i>C</i> 10a (i)	Zn → Zn²+ + 2e⁻	Equation for reduction of Zn^{2+} ions to Zn atoms is on page 10 of data booklet. Oxidation is the reverse of reaction in data booklet											
2006 <i>C</i>	Reduction	Fe³+ ions are gaining electrons ∴ reduction											
2006 <i>C</i> 14c	H ₂ → 2H ⁺ + 2e ⁻	reverse of equation on page 10 of data booklet											
2008 <i>c</i> 13b	$2Cl^{-} \rightarrow Cl_{2} + 2e^{-}$	From p10 pf data booklet: $Cl_2 + 2e^- \rightarrow 2Cl^-$ Question asks for the formation of chlorine so reverse equation											
2009 <i>c</i> 17a	Oxidation	Oxidation is loss of electrons (electrons after the arrow) Reduction is gain of electrons (electrons before the arrow)											
2009 <i>c</i> 17d	Br ₂ + 2e ⁻ →2Br ⁻	Solution at electrode X contains Bromine Br_2 which reacts with the electrons travelling through the wires from electrode Y to form Bromide Br^- ions. This equation is found on p10 of data booklet.											
2010 <i>c</i> 17 <i>c</i>	Ag⁺+e⁻→Ag	Fe(s) + $2Ag^{+}(aq) \rightarrow Fe^{2+}(aq) + 2Ag(s)$ redox Separate out equations and balance charge with e^{-} Fe(s) $\rightarrow Fe^{2+}(aq) + 2e^{-}$ oxidation $2e^{-} + 2Ag^{+}(aq) \rightarrow 2Ag(s)$ reduction											
2011 <i>c</i> 21 b	Au⁺ + 2e⁻ → Au	Au⁺ ions must pick up electrons from electrode B to form Au atoms											
2012 <i>C</i> 16b(ii)	2Cl ⁻ → Cl ₂ + 2e ⁻	Chloride ions (Cl^-) are attracted to the positive electrode where they lose an electron each as they turn into Chlorine atoms. Chlorine atoms then pair up into a diatomic molecule Cl_2 . This oxidation reaction is the reverse of the reduction reaction on page 10 of the data booklet.											
2012 <i>C</i> 19a	Oxidation	Type OILRIG Position of Electrons oxidation loss of electrons Electrons after arrow reduction gain of electrons Electrons before arrow											
2013 <i>C</i> 14 b	Zn → Zn ²⁺ + 2e ⁻	$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$ $Split the redox reaction into its component halves$ $Zn(s) \longrightarrow Zn^{2+}(aq)$ $Cu^{2+}(aq) \longrightarrow Cu(s)$ $Balance equations by adding electrons into ion-electrons equations$ $Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^-$ $Cu^{2+}(aq) + 2e^- \longrightarrow Cu(s)$ $Oxidation reactions have electrons after the arrow Reduction Reactions have electrons before the arrow$											

Na	t5		Pas	st Po	per	Qu	estic	n B	ank		aril .	Сор	yright	
Traffic	Lights	Unit 3.1c Redox								J.	ABO	che	m	
Outcome	2000 General	2002 General									2012 General			
6a 8a														
6b 8b														
7														
9														