Лабораторная работа

1 1. Цель

Получить общее представление о системе команд RISC-V путём решения несложной прикладной задачи.

2. Задание

- 1. Создатьаккаунт нagithub(если ещенет) и создатьрепозиторий с именем lab-riscv-asm.
- 2. Разработать алгоритм решения вашего варианта задачи.
- 3. Реализовать алгоритм на языке ассемблера RISCV ISA. Исходный код программы сохранить в репозитории.
- 4. Реализовать алгоритм на языке Си. Исходный код программы сохранить в репозитории.
- 5. Скомпилировать Си-код используя riscv-компилятор. Получить дамп файл из скомпилированного исполняемого файла вашей программы. Сохранить дамп-файл в репозитории.
- 6. Оформитьотчетопроделанной работе и результатах в виде README.md файла вашего репозитоия.
- 7. Продемонстрировать результаты работы в симуляторе Venus https://www.kvakil.me/venus/

Каждое задание представляет собой простую задачу на обработку двумерного массива. Непосредственную обработку массива необходимо реализовать в виде отдельной функции с необходимыми аргументами. При написании программы на языке ассемблера следует учесть то, что в явном виде подпрограммы/процедуры/функции в RISC-подобных ассемблерах этого набор отсутствуют. Вместо существует специальный соглашений(АВІ). устанавливающий формат передачи аргументов. специальную роль для каждого регистра, формат вызовов и так далее.

Для реализации этих методов необходимо использовать соответствующие регистры, описанные в стандарте RISC-V ISA. Передавать параметры

необходимо только процедуре, осуществляющей непосредственную обработку массива, остальное - по желанию.

3. Варианты заданий

Во всех заданиях используется двумерный массив размера N на M, где N - размер строки, а M - размер столбца.

Номер вариант а	ФИО	Задание
1	Андреев Михаил	Найти значение минимального элемента массива. (N = 5, M = 4)
2	Борисенко Елизавета	Найти индекс максимального элемента массива. (N = 4, M = 3)
3	Голубева Юлия	Найти сумму положительных элементов массива. (N = 4, M = 2)
4	Григорьев Денис	Определить количество положительных и отрицательных элементов массива. (N = 5, M = 6)
5	Костецкая Мария	Найти сумму элементов строки с заданным номером. (N = 4, M = 4)
6	Крашенинников Егор	Найти сумму элементов массива. (N = 4, M = 4)
7	Липатова Светлана	Найти сумму главных диагоналей массива. (N = 4, M = 4)
8	Мокшанцев Никита	Найти сумму отрицательных элементов массива. (N = 3, M = 2)
9	Нгуен Ньы Куанг	Найти сумму элементов столбца с заданным номером.

		(N = 4, M = 4)
10	Смирнов Сергей	Найти строчку в массиве с максимальной суммой элементов. (N = 6, M = 6)

2

Лабораторная работа 1

Номер вариант а	ФИО	Задание
11	Филиппов Михаил	Найти строчку в массиве с минимальной суммой элементов. (N = 5, M = 3)
12	Ходченков Максим	Найти столбец в массиве с максимальной суммой элементов. (N = 6, M = 6)
13	Гарсия Бартоломеу Тшиана	Найти столбец в массиве с минимальной суммой элементов. (N = 4, M = 6)

4. Пример выполнения

Пример выполнения доступен в репозитории https://github.com/sc-itmo socdes-sp20/lab-riscv-asm

5. Дополнительная информация

5.1. Окружение

Очень настоятельно рекомендуем использовать Linux Mint/Ubuntu

В случае, если у вас установлена windows, то рекомендуем установить виртуальную машину: https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html

Навиртуальную машину установитьLinux:https://linuxmint.com/download.php

5.2. Git

Полная документация по работе с Git на русском языке https://git-scm.com/book/ru/v2

Пример работы с гитом (создание репо и загрузка его на сервер):

```
sudo apt-get install git git config --global user.name "FIRST_NAME LAST_NAME"
```

Лабораторная работа 1

```
git config --global user.email "EMAIL"

cd work_dir
git init
git add .
git commit -am "my first commit"
git remote add origin http....link for repo>
git push origin master
```

5.3. RISC-v

Спецификация The RISC-V Instruction Set Manual (Unprivileged), доступную поссылке:https://github.com/riscv/riscv-isa-manual/releases/download/Ratified IMAFDQC/riscv-spec-20191213.pdf

Руководство по ассемблеру RISC-V Assembly Programmer's Manual находится по ссылке: https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md

5.4. Симулятор Venus

Для запуска и отладки тестовой программы необходимо использовать симулятор: https://www.kvakil.me/venus/

Очень рекомендуется использовать Visual Studio Code с расширением Name: RISC-V Venus Simulator

Симулятор поддерживает следующие директивы:

3

Directive	Effects	
.data	Store subsequent items in the [[static segment	
.text	Store subsequent instructions in the [[text segment	
.byte	Store listed values as 8-bit bytes.	
.asciiz	Store subsequent string in the data segment and add null terminator.	
.word	Store listed values as unaligned 32-bit words.	
.globl	Makes the given label global.	
.float	Reserved.	

4

Лабораторная работа 1

Directive	Effects
.double	Reserved.
.align	Reserved.

Симулятор поддерживает обработку следующих системных вызовов:

ID	Name	Description
1	print_int	prints integer in a1
4	print_string	prints the null-terminated string whose address is
9	sbrk	allocates a1 bytes on the heap, returns pointer to start in a0
10	exit	ends the program
11	print_character	prints ASCII character in a1
17	exit2	ends the program with return code in a1

Полный User Guide по работе симулятора:

https://github.com/kvakil/venus/wiki **5.5. Компилятор С**

Для компиляции исходного кода, написанного на СИ, вам необходимо использовать специальный RISCV-совместимый компилятор. Вы можете собрать этот компилятор

- из исходников, следуя инструкциям из официального репозитория https:// github.com/riscv/riscv-gcc
- или же использовать заранее собранный https://drive.google.com/file/ d/16bmrM-W7LEGVLUZhkgr60LhGSM8esl6m/view?usp=sharing

Ручная сборка займет довольно продолжительное время, поэтому рекомендуется использовать второй вариант.

5.6. Настройка для Linux

Например.

1. Необходимо распаковать скачанный архив в одну из доступных вашему пользователю директорий(например, в /home/{ИМЯ ПОЛЬЗОВАТЕЛЯ}/ riscv-tools/})

В

Лабораторная работа 1

выполнив

2. Необходимо добавить путь к директории bin в переменную окружения консоли: export PATH=/home/{ИМЯ ПОЛЬЗОВАТЕЛЯ}/riscv-tools/ {ИМЯ РАЗАРХИВИРОВАННОЙ ДИРЕКТОРИИ}/bin:\$PATH

5.7. Компиляция

\$PATH.

После выполненной процедуры настройки, в окружении той рабочей консоли, в которой выполнялась настройка, вы можете запустить Компилировать необходимо процедуру компиляции. флагами -march=rv32i -mabi=ilp32. Например:

\$ riscv64-unknown-elf-gcc -march=rv32i mabi=ilp32 {ПУТЬ_К_ВАШЕМУ_ИСХОДНОМУ_ФАЛУ} -о {ИМЯ_РЕЗУЛЬТИРУЮЩЕГО_ИСПОЛНЯЕМОГО_ФАЛА}.elf 5

5.8. Получение dump файла

Для получения дамп-файла необходимо использовать утилиту objdump. Например:

 $\$ riscv64-unknown-elf-objdump -D {ПУТЬ_К_ИСПОЛНЯЕМОМУ_ФАЙЛУ} > {ИМЯ_РЕЗУЛЬТИРУЮЩЕГО_ФАЙЛА}.dump