CHE 576 Assignment 3 due: February 10, 2012

Feb 3, 2012

$\mathbf{Q}\mathbf{1}$

(25 marks) Consider a model of a simple two tank system given in the Figure below:

Assuming that the flow rate, u(t) is input and flow $F_2(t)$ is output, where K_1 , K_2 (valve characteristics) and A_1 and A_2 (tank diameter) are constants:

- Find the continuous-time state space representation of the system. (hint: let $x_1 = h_1, x_2 = h_2$).
- Find discrete state space model representation for the following parameters $K_1 = 1$, $K_2 = 0.5$, $A_1 = 2$ $A_2 = 1$. and sampling time $\triangle t = 0.1$.
- ullet Find the overall transfer function by using \mathcal{Z} -transform.
- Find the zero-input state response $x_{zero\ input}(n)$.
- Find the zero-state response $x_{zero\ state}(n)$ for the step input.
- Find the overall system response for the initial conditions $x(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

$\mathbf{Q2}$

(10 marks) Consider a process described by linear difference equation given as:

$$x(k+2) + 3x(k+1) + 2x(k) = u(k)$$
(1)

and initial conditions x(0) = 1 and x(1) = -4. Find the time response of the system (x(n)) to the unit step input.

$\mathbf{Q3}$

(10 marks) For a given transfer function $G(z) = \frac{z(z+1)}{(z-1)^2}$ of the plant find an impulse response by the following methods:

- Power series method (use 5 terms)
- The partial fraction method

Confirm that both methods lead to the same result.

$\mathbf{Q4}$

(25 marks) For the tank system model given in the Figure below by the following transfer function $G(z) = \frac{1}{z+0.1}$, find the response of the system to the step input signal. Comment what is response if $n \to \infty$ and graphically show the evolution of the state from y(n=0) to y(n=15).

