ME - 731 Métodos em Análise Multivariada Prof. Caio Azevedo Segundo semestre de 2009, Data: 29/10/2009 Prova II

Leia atentamente as instruções abaixo:

- Tenha em mãos somente: lápis, borracha e caneta.
- Leia atentamente cada uma das questões.
- Enuncie, claramente, todos os resultados que você utilizar.
- Em caso de dúvida, levante-se e dirija-se ao professor. Pergunte somente o que for imprescindível.
- Entregue todas as folhas que você recebeu, inclusive os rascunhos e a prova propriamente, informando o que deve ser corrigido.
- Faça a prova, preferencialmente, à caneta, e procure ser organizado. Se fizer à lápis, destaque, à caneta, sua resposta.
- Não proceda de maneira indevida como: conversar durante a prova, utilizarse de material que não permitido, emprestar material à colegas, sem autorização do professor e atender ao telefone celular (a não ser em casos de EXTREMA URGÊNCIA). Isso acarretará em nota 0 na prova.
- Se precisar de algum material, inclusive calculadora, levante-se e dirija-se ao professor.
- A prova terá duração de 2 horas, improrrogáveis, das 14h às 16h.

Obs: Quando falarmos do modelo de análise fatorial ortogonal (MAFO), com as suposições usuais, estamos nos referindo à:

$$\begin{array}{lll} \boldsymbol{X}_{(p\times 1)} & = & \boldsymbol{\mu}_{(p\times 1)} + \boldsymbol{L}_{(p\times m)} \boldsymbol{F}_{(m\times 1)} + \boldsymbol{\xi}_{(p\times 1)} \\ \mathcal{E}(\boldsymbol{F}) & = & \boldsymbol{0}_{(m\times 1)}; Cov(\boldsymbol{F}) = \boldsymbol{I}_m; \mathcal{E}(\boldsymbol{\xi}) = \boldsymbol{0}_{(p\times 1)}; Cov(\boldsymbol{\xi}) = \boldsymbol{\Psi}; Cov(\boldsymbol{F}, \boldsymbol{\xi}) = \boldsymbol{0}_{(m\times p)}; \\ \boldsymbol{\Psi} & = & \begin{bmatrix} \psi_1 & 0 & \dots & 0 \\ 0 & \psi_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \psi_p \end{bmatrix} \end{array}$$

Faça uma excelente prova!!

Questões

- 1. Seja $X \sim N_p(\mathbf{0}, \Sigma)$, Σ conhecida e positiva definda, e $\boldsymbol{\rho}$ a respectiva matriz de correlações. Sejam $(\lambda_1', \boldsymbol{e}_1')', (\lambda_2', \boldsymbol{e}_2')', ..., (\lambda_p', \boldsymbol{e}_p')'$, os respectivos autovalores e autovetores ortonormalizados obtidos à partir de $\boldsymbol{\rho}$, $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_p$. Defina $\boldsymbol{Y}_{(p\times 1)}$ as componentes principais associadas à \boldsymbol{X} . Responda os itens:
 - a) Escreva, em forma matricial, as equações que relacionam as componentes principais com as variáveis originais padronizadas, definindo adequadamente a matriz que determina tal relação (0,5 pontos).
 - b) Qual a distribuição do vetor \boldsymbol{Y} ? Justifique adequadamente sua resposta (0,5 pontos).
 - c) As componentes do vetor \boldsymbol{Y} são mutuamente independentes? Justifique adequadamente sua resposta (0,5 pontos).
 - d) Quala distribuição de $W=\sum_{i=1}^p \left(\frac{Y_i}{\sqrt{\lambda_i}}\right)^2$? Justifique adequadamente sua resposta (0,5 pontos).
- 2. Considere $X_j \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}), j=1,...,n$, uma amostra aleatória, em que $(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ são ambos desconhecidos e o MAFO, com as suposições usuais. Desejamos testar a validade do MAFO, ou seja, desejamos testar $H_0: \boldsymbol{\Sigma} = \boldsymbol{L}\boldsymbol{L}' + \boldsymbol{\Psi}$ vs $H_1: \boldsymbol{\Sigma} \neq \boldsymbol{L}\boldsymbol{L}' + \boldsymbol{\Psi}$. Responda os itens:
 - a) Prove que a estatística do testa da razão de verossimilhanças pode ser escrita como (1 ponto):

$$\Lambda = \left(rac{|\widehat{oldsymbol{\Sigma}}_0|}{|\widehat{oldsymbol{\Sigma}}_1|}
ight)^{-n/2} \, ,$$

em que $\widehat{\boldsymbol{\Sigma}}_0 = \widehat{\boldsymbol{L}}\widehat{\boldsymbol{L}}' + \widehat{\boldsymbol{\Psi}}$ e $\widehat{\boldsymbol{\Sigma}}_1 = \frac{1}{n}\sum_{i=1}^n \left(\boldsymbol{X}_i - \overline{\boldsymbol{X}}\right) \left(\boldsymbol{X}_i - \overline{\boldsymbol{X}}\right)'$. Sugestão: admita que $tr(\widehat{\boldsymbol{\Sigma}}_0^{-1}\widehat{\boldsymbol{\Sigma}}_1) = p$.

- b) Qual a distribuição assintótica de $\Lambda^* = -2 \ln \Lambda$? Justifique adequadamente sua resposta (1 ponto).
- c) Desenhe a região do teste baseado em Λ^* , definindo, claramente, as regiões crítica e de aceitação (0,5 pontos).
- d) Obtenha o nível descritivo (aproximado) do teste em questão baseado em Λ^* (0,5 pontos).
- 3. Considere uma matriz de dados $X_{(60\times6)}$, em que as variáveis representam as notas de indivíduos em testes (provas) nas seguintes áreas de conhecimento: Geometria, Estatística, Física, Química, Português e Inglês. Com base na matriz de correlações amostrais R, calculada a partir de $X_{(60\times6)}$, obtivemos o seguinte resultado no ajuste de um MAFO, através do método de máxima verossimilhança:

	٦.		1	-1	
Ή	ีล	hei	โล	- 1	٠

Variável	Cargas 1	Fatoriais	Comunalididade (h_i)	Variância específica (ψ_i)
	(não rotacionadas)			
	Fator 1	Fator 2		
Geometria	0,919	0,170		
Estatística	$0,\!863$	$0,\!241$		
Física	0,857	0,163		
Química	0,920	$0,\!230$		
Português	0,189	0,979		
Inglês	0,263	0,848		

Tabela 2:

Estatística	Fator 1	Fator 2
Soma dos quadrados das cargas fatoriais	3,28	1,84
Proporção da variância explicada (%)	$54,\!58$	30,73
Proporção acumulada da variância explicada (%)	54,58	85,32

A estatística Λ^* do TRV observada, para testar $H_0: \Sigma = LL' + \Psi$ vs $H_1: \Sigma \neq LL' + \Psi$, foi $\Lambda_c^* = 4,65$ com p-valor = 0,3260.

Responda os itens:

- a) Complete, adequadamente, a Tabela 1, apresentando os respectivos cálculos (1 pontos).
- b) Escreva, adequadamente, as equações ajustadas do MAFO (0,5 pontos).
- c) Você acha, com base nas informações apresentadas, que o MAFO se ajusta bem ao conjunto de dados? Justifique, adequadamente, seus comentários, utilizando o maior número de informações possíveis. Utilize $\alpha = 5\%$ (1 pontos).
- d) Interprete as cargas fatoriais obtidas, em termos das vriáveis originais. O que cada um dos fatores representa? (0,5 pontos)
- e) Nesse caso, você acha que é necessário rotacionar os fatores? Justifique adequadamente sua resposta (0,5 pontos).
- 4. Explique, com suas palavras, os principais aspectos da metodologia de componentes principais. Quais são os principais objetivos, aspectos positivos, aspectos negativos e utilidades? (1,5 pontos)

Formulário

• Se
$$\boldsymbol{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 então $f_{\boldsymbol{X}}(\boldsymbol{x}) = (2\pi)^{-p/2} |\boldsymbol{\Sigma}|^{-1/2} \exp\left[-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right]$ e $M_{\boldsymbol{X}}(\boldsymbol{t}) = \exp\left\{\boldsymbol{\mu}' \boldsymbol{t} + \frac{1}{2} \boldsymbol{t}' \boldsymbol{\Sigma} \boldsymbol{t}\right\}$