

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 63-308920
(43)Date of publication of application : 16.12.1988

(51)Int.Cl.

H01L 21/30
C08J 7/00
C23F 1/00
G03C 5/00
G03F 7/00
H01L 21/302
H01L 21/306

(21)Application number : 62-145846

(71)Applicant : MITSUBISHI ELECTRIC CORP

(22)Date of filing : 10.06.1987

(72)Inventor : OGAWA TOSHIAKI

(54) MODIFYING METHOD FOR ORGANIC MATERIAL SURFACE

(57)Abstract:

PURPOSE: To obtain a modifying method for an organic material surface capable of freely adding hydrophilic or hydrophobic properties to an organic film surface, by processing the organic material surface by applying plasma of a mixed gas containing fluorine system gas and oxygen gas, and changing the mixing ratio of the mixed gas.

CONSTITUTION: A silicon wafer 4 on which an organic film is formed is put on a second high frequency electrode 3, and a mixed gas of fluorine system gas, e.g., NF₃ or SF₆, and O₂ is introduced from a gas feeding inlet 5. In the case where the mixed gas having a mixing ratio wherein adding concentration of O₂ is more than or equal to 50% is used, the organic material surface becomes hydrophilic. Then the gas pressure is set at 0.17Torr, plasma is generated by applying high frequency electric power, and the organic film is subjected to a plasma treatment for about one minute. When wet etching of hydrofluoric acid is performed by applying this organic film to a mask, the etching of fine pattern is enabled, and the generation of etching irregularity in the etching process also can be prevented, because the surface of the photosensitive resin organic film is hydrophilic.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

訂正有り

⑩ 日本国特許庁 (JP)

⑪ 特許出願公開

⑫ 公開特許公報 (A) 昭63-308920

⑬ Int.Cl. ¹	識別記号	府内整理番号	⑭公開 昭和63年(1988)12月16日
H 01 L 21/30	3 6 1	P - 7376-5F	
C 08 J 7/00	3 0 6	8720-4F	
C 23 F 1/00	1 0 1	6793-4K	
G 03 C 5/00	3 3 1	7267-2H	
G 03 F 7/00		E - 6906-2H	
H 01 L 21/302		N - 8223-5F	
		H - 8223-5F	
21/306		D - 7342-5F	審査請求 未請求 発明の数 1 (全3頁)

⑮発明の名称 有機物質表面の改質方法

⑯特 願 昭62-145846

⑰出 願 昭62(1987)6月10日

⑮発明者 小川 敏明 兵庫県伊丹市瑞原4丁目1番地 三菱電機株式会社エル・エス・アイ研究所内

⑯出願人 三菱電機株式会社 東京都千代田区丸の内2丁目2番3号

⑰代理人 弁理士 大岩 増雄 外2名

明細書

1. 発明の名称

有機物質表面の改質方法

2. 特許請求の範囲

(1) 有機物質表面の表面エネルギーを制御して、その表面を改質する方法であって、

フッ素系ガスと炭素ガスを含む混合ガスから由来する混合ガスプラズマを用いて前記有機物質表面を処理し、

前記混合ガスの混合比を変えることにより前記有機物質表面の表面エネルギーを制御する、有機物質表面の改質方法。

(2) 前記フッ素系ガスはNF₃である特許請求の範囲第1項記載の有機物質表面の改質方法。

(3) 前記フッ素系ガスがSF₆である特許請求の範囲第1項記載の有機物質表面の改質方法。

(4) 前記フッ素系ガスがCF₄である特許請求の範囲第1項記載の有機物質表面の改質方法。

(5) 前記混合ガス中にさらに不活性ガスを加えて行なう特許請求の範囲第1~4項のいずれ

か1項に記載の有機物質表面の改質方法。

3. 発明の詳細な説明

【産業上の利用分野】

この発明は有機物質表面の改質方法に関するものであり、特に、有機物質表面の表面エネルギーを制御してその表面をそのままに改質する方法に関するものである。

【従来の技術および発明が解決しようとする問題点】

一般に、有機物質の表面は、当該有機物質特有の表面エネルギーを有している。そのため、たとえば半導体装置を製造するにあたり、次のような問題点があった。すわわち、感光性樹脂有機膜、レジスト等の有機膜をマスクとし、下層のエッチング材料をフッ化水素等のエッチング液によってエッチングする場合、有機膜は疎水性であるがために、エッチング液と有機膜との密着性が悪く、有機膜がエッチング液をはじくという問題である。有機膜がエッチング液をはじくと、微細なバケーションのエッチングが不可能となり、またエッチング

特開昭63-308920 (2)

むらが生じる。さらに、次の工程である水洗処理工程において、水と有機膜との着性の差のために、水洗処理後の半導体表面にしみ等の発生が起こる。

また、分野によっては、有機物質表面をさらに疎水性にする必要がある場合がある。このような場合の従来の表面改質法として、特公昭53-27305号公報記載の技術が知られている。特公昭53-27306号公報は不活性ガスの單一または混合ガスによる有機物質表面のプラズマ処理の技術を開示するものである。しかしながら、当該従来技術は有機物質表面の表面エネルギーを制御する方法としては充分なものではない。また、該技術は有機物質の表面を疎水性にする場合には有効なものであるが、有機物質表面を親水性にする場合には全く役に立たない。

この発明は上記のような問題点を解決するためになされたもので、有機物質表面の表面エネルギーを任意に制御し、有機膜表面に、親水性または疎水性を自由自在に付与することのできる、有機物

質表面の改質方法を提供することを目的とする。

【問題点を解決するための手段】

この発明は、有機物質表面の表面エネルギーを制御して、その表面を改質する方法に係るものである。そして、フッ素系ガスと酸素ガスを含む混合ガスから由来する混合ガスプラズマを用いて有機物質表面を処理し、該混合ガスの混合比を変えることにより表面エネルギーを意のままに制御することを特徴とする。

【作用】

フッ素系ガスと酸素ガスを含む混合ガスから由来する混合ガスプラズマを用いて有機物質表面を処理するので、有機物質表面の表面エネルギーを変化させることができる。また、混合ガスの混合比を変えることによって、有機物質表面の表面エネルギーを自由自在に変化させることができる。

【実施例】

以下、この発明の一実施例を図について説明する。

第1図はこの発明を実施するための平行平板型

エッチング装置の概略図である。

真空容器1内には、第1の高周波電極2ともう1つの第2高周波電極3が配置されている。第1の高周波電極2の一端は接地されている。第2の高周波電極3にはシリコンウエハ4が置かれている。シリコンウエハ4表面には有機膜が形成されている(図示せず)。有機膜は、たとえば感光性樹脂の有機膜である。感光性樹脂の有機膜は、半導体装置の製造工程において、エッチングマスクとして使用される。真空容器1はガス導入口5とガス排気口6を備えている。第2高周波電極3は、コンデンサー7を介して、高周波発振器8に接続されている。高周波発振器8の一端は接地されている。

次に、該装置を用いて有機物質表面を改質する方法を説明する。

第2高周波電極3の上に、有機膜が形成されたシリコンウエハ4を置く。次いで、ガス導入口5より、フッ素系ガスたとえばN₂F₄(三フッ化窒素)またはS₂F₁₀(六フッ化イオウ)とO₂(酸

素)の混合ガスを導入する。混合ガスの混合比は任意に変えられることは当然であるが、たとえばO₂の添加濃度が50%以上のものを用いると、後述するように、有機物質表面は疎水性になる。有機物質表面を疎水性にする場合を想定して、ここでは、O₂の添加濃度が50%以上の混合ガスを導入する。次いで、ガス圧力を0.11Torrに設定し、13.56MHzのRF電力(高周波電力)を電力密度0.5W/cm²で印加し、プラズマを発生させる。そして、1分間ほど有機膜にプラズマをさらし、該有機膜にプラズマ処理を施す。以上のプラズマ処理を施した有機膜をマスクにして、フッ化水素酸等でウェットエッチングを行なうと、プラズマ処理された感光性樹脂有機膜の表面は親水性に変質しているために、フッ化水素酸と有機膜との密着性は向上していた。その結果、微細パターンのエッチングが可能となり、またウェットエッチング工程におけるエッチングむらの発生も防止できた。さらに、プラズマ処理された有機膜表面は親水性に富むがために、水に

特開昭63-308920(3)

なじみやすくなり、後の工程である水洗処理を行なっても、しみ等は何ら生じなかった。なお、上記実施例では、O₂添加濃度を50%以上用いて、有機物表面を親水性にする場合について説明したが、この発明はこれに限られるものではない。

第2図は、混合ガスの混合比を変化させた場合の、酸素混合濃度(%)と処理後の有機膜のθ(水との接触角)との関係を示したものである。破線で示したプロットはN_F₃とO₂との混合ガス系である。実線で示したプロットはS_F₆とO₂の混合ガス系のプロットである。一点鎖線はプラズマ処理を行なわなかったものであり、基準となるものである。水との接触角θが大きいものは親水性が大であることを表わし、水との接触角θが小さいものは親水性を表わす。第2図の結果から示唆されるように、混合ガス中の酸素の混合比を変化させることにより、有機物表面の表面エネルギーを連続的に変化させることができ、有機物表面を親水性にも疎水性にも、自由自在に、変質させることができる。このような制御方法は、従来

技術において、見当たらない。

また、上記実施例ではフッ素系ガスと酸素ガスからなる混合ガスを用いる場合を例示して説明したが、この発明はこれに限られるものではなく、混合ガス中に不活性ガスをさらに追加して行なっても、実施例と同様の効果を実現する。

さらに、前記実施例ではフッ素系ガスにN_F₃およびS_F₆を用いる場合を例示したが、この発明はこれに限られるものではなく、C_F₄等の他のフッ素系ガスを用いても実施例と同様の効果を実現する。

【発明の効果】

以上のように、この発明に係る有機物表面の改質方法によれば、フッ素系ガスと酸素ガスを含む混合ガスから由来する混合ガスプラズマを用いて、有機物表面を処理するという簡単な操作で、有機物表面が改質される。また、混合ガスの混合比を変えることによって、有機物表面の表面エネルギーを自由自在に変化させることができる。その結果、有機物表面を親水性にも疎水性にも

意のままに変質することができる。

4. 図面の簡単な説明

第1図はこの発明を実施するための装置の概略図、第2図は酸素混合濃度とθとの関係図である。

図において、2は第1の高周波電極、3は第2の高周波電極、4は有機膜が形成されたシリコンウエハ、5はガス導入口、6は高周波発振器である。

代理人 大岩 増雄

第1図

第2図

特開昭63-308920

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第7部門第2区分

【発行日】平成6年(1994)11月8日

【公開番号】特開昭63-308920

【公開日】昭和63年(1988)12月16日

【年通号数】公開特許公報63-3090

【出願番号】特願昭62-145846

【国際特許分類第5版】

H01L 21/027

C03F 7/26 7124-2H

H01L 21/306 D 9278-4M

【F I】

H01L 21/30 570 7352-4M

手続補正書

平成6年3月8日

特許庁及各局

1. 事件の表示

昭和62年特許第145846号

2. 先引の名前

女性化粧品の改善方法

3. 補正をする者

著者との関係 特許出願人

名前 (801) 三井電機株式会社

4. 代理人

氏名 7100
近畿地方裁判所為内二丁目2番8号
三井電機株式会社内
電話03(3222)3421
氏名 外屋士 (8217) 長田 守

5. 補正命令の日付

昭和(日付書き誤りと同様)

6. 補正の対象

(1) 明細書の実用的範囲的な説明の補正

7. 補正の内容

(1) 明細書第2段落15行の「フッ化水素」を「フッ化水素」に補正する。

以上

記入

検討方