EXERCISES FOR INF3320

LINEAR, AFFINE, AND PROJECTIVE TRANSFORMS (PART I)

14/09/202

1. A point $\mathbf{p} = [x, y]$ in \mathbb{R}^2 can be represented in polar coordinates $[\rho, \phi]$ with

$$x = \rho \cos \phi, \qquad y = \rho \sin \phi.$$

- (a) What is the new position $\mathbf{p}' = [x', y']$ after a rotation of θ about the origin?
- (b) Write down a 2×2 matrix for the transformation from p to p', i.e. find M such that

$$\mathbf{p}' = \mathbf{M}\mathbf{p}$$
.

- (c) Use the solution of the previous exercise to find a 4×4 rotation matrix that represent a rotation of θ in \mathbb{R}^3 about the y-axis.
- 2. Let $M_1, M_2, ..., M_n$ be a sequence of transformations, where each M_i is either a rotation around the z-axis or an arbitrary translation in \mathbb{R}^3 .

Show that

$$\mathbf{M}_1 \mathbf{M}_2 \cdots \mathbf{M}_n = \mathbf{T} \mathbf{R}$$

where T is a translation and R is a rotation around the z-axis.

- 3. (a) Write down a matrix M that mirrors points about the xy-plane.
 - Given an angle θ and a normalized axis of rotation a, let $R_{a,\theta}$ be the corresponding rotation matrix. Given a translation vector t, let T_t be the corresponding translation matrix. Using M, $R_{a,\theta}$ and T_t ,
 - (b) specify a 4×4 -matrix that mirrors points about a plane through the origin, and then
 - (c) specify a 4×4 -matrix that mirrors points about any plane.
- 4. Let **p** be a point in \mathbb{R}^3 , **n** a surface normal, and **M** a 4×4 non-singular homogenous transformation matrix.

Using a right hand coordinate system (as OpenGL do):

- (a) How do we apply M on p to find the transformed point p'?
- (b) How do we apply M on n to find the transformed surface normal n'? Why?