Due on Monday 4/12/2010

- 1. Circle "True" at each statement that is always true, and circle "False" at each statement is not always true. In the following questions we will always denote P_n as the vector space of polynomials of degree at most n.
 - A. True False If V is a finite dimensional vector space then the dimension of V is the number of vectors in any finite basis of V.
 - B. True False The set $\{e_1, e_2, e_3, e_4\}$ is a basis of \mathbb{R}^4 .
 - C. True False The set $\{1, x, x^2, x^3, x^4\}$ is a basis of P_4 .
 - D. True False The dimension of \mathbb{R}^4 is 4.
 - E. True False The dimension of P_4 is 5.
 - F. True False There exists an isomorphism from P_4 to \mathbb{R}^4 .
 - G. True False \mathbb{R}^4 has a basis X such that each vector in \mathbb{R}^4 can be written in more than one way as a linear combination of the elements of X.
 - H. True False P_4 has a basis X such that each polynomial (vector) in P_4 can be written in more than one way as a linear combination of the elements of X.
 - I. True False The set of functions $\{c_2x^2 + c_3x^3 + c_4x^4 \mid c_2, c_3, c_4 \in \mathbb{R}\}$ is a subspace of P_4 .
 - J. True False The set $\{1, 1-x, 1+x^2\}$ is a basis of P_2 .
 - K. True False If X is a collection of vectors in a vector space W, then Span(X) is a subspace of W.
 - L. True False Span $\left(\left\{ \begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix} \right\} \right)$ is a subspace of \mathbb{R}^3 .
 - M. True False $Span(\{1, 1-x\})$ is a subspace of P_2 .
 - N. (True) False $Span(\{5\})$ is a subspace of P_2 .
 - O. True False If the set S is linearly independent in P_4 then $S \cup \{x\}$ is always linearly independent.
 - P. True False If S is a spanning set of P_4 then S always contains the vector (polynomial) 1.
 - Q. True False If S is a spanning set of P_4 then Span(S) always contains the vector (polynomial) 1.
 - R. True False A linear transformation is an isomorphism if and only if it is a one-to-one correspondence.
 - S. True False The linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with associated matrix $A = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$ is an isomorphism.
 - T. True False Any isomorphism from \mathbb{R}^4 to \mathbb{R}^4 takes the standard basis $\{e_1, e_2, e_3, e_4\}$ to itself.