Dynamic Energy/Power Effect

 $DE = \frac{1}{2} [Capacitive Load][Voltage]^2$

- Capacitive load charges and releases energy

 $DP = \frac{[Capacitive\ Load][Voltage]^2[Frequency\ Switched]}{2}$

Reducing clock rate reduces power, not energy

Dependability

- Mean time to failure (MTTF) [Measures reliability]
- Mean time to repair (MTTR)
- Mean time between failures (MTBF)=MTTF+MTTR
- Availability = MTTF / MTBF
- Failures in time (FIT) = $\frac{1}{MTTF}$ [The rate of failure]
- Module availability = $\frac{MTTF}{(MTTF+MTTR)}$

Systems alternate between 2 states of service for an SLA

- 1.) Service Accomplishment: Service is delivered as specified
- 2.) Service Interruption: Delivered service is different from SLA
 - Failure = transition from state 1 to state 2
 - Restoration = transition from state 2 to state 1

Amdahl's Law (Speedup/Improvement)

 When the common case is sped up, the computer spends less time on that case so the case becomes less common

Five Pipeline Stages of RISC-V

IF (Instruction Fetch) → Fetch instruction from mem & Update pc variable

ID (Instruction Decode) \rightarrow Fetch register values, detect if it is branch or jump, compute target address EX \rightarrow (ALU Operation, or Compute memory Address) Test Branch Condition; change PC to target if needed MEM (or DM) \rightarrow Read or Write memory Operand

 $\mathsf{WB} \to \mathsf{Write} \ \mathsf{ALU} \ \mathsf{result} \ \mathsf{or} \ \mathsf{Memory} \ \mathsf{Load} \ \mathsf{Operand} \ \mathsf{into} \ \mathsf{Destination} \ \mathsf{Register}$

Trends in Cost

Die Yield = $\frac{Wafer yield}{[1+Defects per unit area \cdot Die area]^{N}}$

N = process complexity factor

$$Dies\ per\ wafer = \frac{\pi [\frac{Wafer\ diameter}{2}]^2}{Die\ area} - \frac{\pi (Wafer\ diameter)}{\sqrt{2 \bullet Die\ Area}}$$

Cost of Integrated Circuit =

Cost of die+Cost of testing die+Cost of packaging and final test

Cost of die = $\frac{\text{Cost of wafer}}{\text{Dies per wafer} \cdot \text{Die yield}}$

SPEC Power Benchmark

- Performance: ssj_ops/sec
- Power: Watts (Joules/sec)

Pwr consumption of server at dif workload Ivls

$$Overall\ ssj_{ops}\ per\ Watt\ = rac{inom{10}{\sum\limits_{i=0}^{10} ssj_{ops_i}}}{inom{10}{\sum\limits_{i=0}^{10} power_i}}$$

fadd.d f2, f0, 3 ;f2 is initialized with 3 fld f4, 0(x1) ;f4 is array element

fmult.d f4, f4, f2 ;multiply scalar

fsd f4, 0(x1) ;store result

subi x1, x1, 8 ;decrement pointer 8 bytes

bne x1, x2, -20 ;branch x1 != x2; If branch ta

lw x1, 104(x0) ;load B into x1

lw x2, 108(x0) :load C into x2

addw x3, x1, x2 ;B+C

sw x3, 100(x0) ;store A from x3

addiw x4, x0, 1 ;initialize x4 with 1 addw x5, x3, x2 ;A+C

subw x1, x5, x4 ;(A+C) -1

sw x1, 104(x0) ;store B

beq x2, 0, 8 ; If C=0, branch taken; then PC

addiw x5, x0, 2 ; if branch not taken, D=2

jal x31, 4 ;jump post taken branch addiw x5, x0, 1 ; D is set to 1

sw x5, 112(x0) ;result for D is stored