

Agenda

1 – Agenda

2 – R – Parte II

3 – Machine Learning

4 – Namorando Dados (SQL)

5 – Desafio Pessoal

6 – Desafio do Curso

7 – Bate Papo e Monitoria

Horário Assunto

09:30 R – Parte II: Qualidade dos Dados e Variáveis Relevantes

11:00 Machine Learning: Teoria e Exemplos

12:30 Almoço

Tarde

Horário Assunto

17:30

13:30	Namorando Dados com SQL: AgroXP
14:30	Desafio Pessoal: Extração de Características e ML
16:30	Desafio Curso: Aplicação da Solução

Bate Papo e Monitoria

Agenda

1 – Agenda

2 - R - Parte II

3 – Machine Learning

4 – Namorando Dados (SQL)

5 – Desafio Pessoal

6 – Desafio do Curso

7 – Bate Papo e Monitoria

O Trabalho do Cientista de Dados > Desafio Curso

- 1. Definição do problema e levantamento de perguntas a serem respondidas 🗹
- 2. Planejamento do processo de Data Science 🗹
- 3. Coleta de dados ✓
- 4. Processamento e limpeza dos dados
- 5. Armazenamento dos dados M
- 6. Análise de dados
- 7. Construção e validação de algoritmos e modelos
- 8. Data Visualization
- 9. Disseminação da informação
- 10. Colocar modelo em produção

Analisando a Qualidade dos Dados

- Objetivo nesta etapa do estudo é verificar a qualidade dos dados para entender quais tem potencial de fazer parte do estudo
- Foco maior em verificar se existem dados faltantes ou nulos que podem interferir no estudo
- Também aqui começa o entendimento de como cada variável ajuda a explicar o evento em estudo
- Aqui começam as descobertas do Cientista de Dados

Variáveis Relevantes

- Objetivo nesta etapa do estudo é verificar a como as variáveis se relacionam entre si
 - Foco maior aqui é entender a correlação entre as variáveis
- O modelo ou a metodologia que será utilizada para responder as perguntas do estudo dependem dos achados desta etapa

Agenda

1 – Agenda

2 – R – Parte II

3 – Machine Learning

4 – Namorando Dados (SQL)

5 – Desafio Pessoal

6 – Desafio do Curso

7 – Bate Papo e Monitoria

Machine Learning - Conceito

A máquina, através de algoritmos, obter padrões sobre características extraídas dos dados para, com um modelo gerado/criados, classificar as observações futuras de novos dados.

No conceito cada vez menos intervenção humana (conceito).

Pré-processamento e análise dos dados, além de realizar "grid" de valores para treinamento obterem maior acurácia (na prática)

Machine Learning - História

1950 - IA: Computadores com habilidade de "pensar" - Teste de Turing. Em 2014 chatbot enganou 10/30 juízes

Machine Learning - História

1959 - ML: Aprender a partir dos dados - Arthur Samuel

Aprender com a experiência que existe intrínseca aos dados.

Algoritmos de aprendizado de máquina analisam as correlações entre os atributos (variáveis) de um sistema (base de dados) a partir de dados amostrais (base de treinamento)

Machine Learning - História

2012: DS – Entender os Dados

Ciência de dados utilizando probabilidade, estatística álgebra linear e computação.

Conhecimentos de IA e ML

"É a ciência (e arte) de programar computadores de tal forma que eles aprendam a partir de dados" (Aurélien Géron, 2017)

Machine Learning – Tipos de Aprendizado

Machine Learning – Tipo de Aprendizado

Supervisionado → rotulado com saídas esperadas. Modelo gera ao entrar com conjunto de características uma saída rotulada (Classificação) ou um valor futuro (Predição). Ex: Nosso desafio AgroXP.

Não Supervisionado → Não existe rótulo prévio. Analisa a rede de relacionamento entre os dados para agrupá-los por características similares. Ex: Categorização de Clientes

Reforço → Maximizar o resultado. Baseado em recompensa / punição. Com isso algoritmo encontrar a "política" que mapeia os dados. Ex: Personagens Jogos

Regressão Linear (Supervisionado - Predição)

Simples... Busca uma reta para se ajustar aos dados. Problemas de relação linear.

SVM - Support Vector Machine (Supervisionado – Classificação) – Vapnik (1963)

Distância das amostrar da linha superfície de separação. Consegue trabalhar com dados não lineares com a premissa de que em alguma dimensão os dados terão linearidade.

KNN – K-Nearest Neighbors (Supervisionado – Classificação)

Baseado em encontrar o valor de K que consiga através de funções básicas de distância Euclidiana encontrar a melhor superfície de separação

Árvore de Decisão (Supervisionado – Classificação)

De fácil explicação do modelo obtido, este algoritmo utiliza a categorização utilizando técnicas referente a Ganho de Informação dos atributos (o quanto a variável sozinha classifica os exemplos de treinamento). Pode ser utilizado para dados numérico ou simbólicos.

K-Means – (Não Supervisionado)

Forma clusters que contêm pontos homogêneos aos dados.

Cadeia de Markov (Reforço)

Processo estocástico (futuro ← estado atual). Com base na cadeia e suas probabilidades o algoritmo toma uma decisão e, se houver recompensa, reforça a decisão tomada. Se houver uma punição rechaça.

Redes Neurais (Supervisionado – Classificação)

Baseado no conceito matemático e computacional (1943) que visa descrever o modelo artificial para um neurônio biológico. Responde "ligando/desligando" os vários neurônios interligada e com isso classifica as características de entrada no rótulo predito pelo modelo.

Redes Neurais (Supervisionado – Classificação)

Redes Neurais (Supervisionado – Classificação)

Redes Neurais (Supervisionado – Classificação)

Machine Learning – Algoritmo x Características Dados

Fonte: https://scikit-learn.org/stable/tutorial/machine_learning_map/

Agenda

1 – Agenda

2 – R – Parte II

3 – Machine Learning

4 – Namorando Dados (SQL)

5 – Desafio Pessoal

6 – Desafio do Curso

7 – Bate Papo e Monitoria

O Trabalho do Cientista de Dados > Desafio Curso

- 1. Definição do problema e levantamento de perguntas a serem respondidas 🗹
- 2. Planejamento do processo de Data Science 🗹
- 3. Coleta de dados ✓
- 4. Processamento e limpeza dos dados
- 5. Armazenamento dos dados M
- 6. Análise de dados
- 7. Construção e validação de algoritmos e modelos
- 8. Data Visualization
- 9. Disseminação da informação
- 10. Colocar modelo em produção

Namorando os Dados (Queries SQL)

Desafio – Modelo de Dados

Namorando os Dados (Queries SQL)

SQL JOINS

FROM TableA A RIGHT JOIN TableB B

Mãos à obra Pessoa!!!

SELECT <select_list> FROM TableA A INNER JOIN TableB B

SELECT <select list> FROM TableA A LEFT JOIN TableB B ON A.Key = B.Key WHERE B.Key IS NULL

ON A.Key = B.Key

SELECT <select list> FROM TableA A RIGHT JOIN TableB B ON A.Key = B.KeyWHERE A.Key IS NULL

SELECT <select list> FROM TableA A FULL OUTER JOIN TableB B ON A.Key = B.KeyWHERE A.Key IS NULL OR B.Key IS NULL

SELECT <select list> FROM TableA A FULL OUTER JOIN TableB B ON A.Key = B.Key

B

@ C.L. Moffatt, 2008

Agenda

1 – Agenda

2 – R – Parte II

3 – Machine Learning

4 – Namorando Dados (SQL)

5 – Desafio Pessoal

6 – Desafio do Curso

7 – Bate Papo e Monitoria

Agenda

1 – Agenda

2 – R – Parte II

3 – Machine Learning

4 – Namorando Dados (SQL)

5 – Desafio Pessoal

6 – Desafio do Curso

7 – Bate Papo e Monitoria

O Trabalho do Cientista de Dados > Desafio Curso

- 1. Definição do problema e levantamento de perguntas a serem respondidas 🗹
- 2. Planejamento do processo de Data Science 🗹
- 3. Coleta de dados✓
- 4. Processamento e limpeza dos dados 🗹
- 5. Armazenamento dos dados 🗹
- 6. Análise de dados **☑**
- 7. Construção e validação de algoritmos e modelos
- 8. Data Visualization
- 9. Disseminação da informação
- 10. Colocar modelo em produção

Agro XP Brazil - Solução

- Proposta: Verificar qual é a previsão para os próximos 4 meses para cada um dos grãos
- ➤ E decidir em qual commodities iremos investir no 1º semestre/2019
- Utilizaremos técnicas de Séries Temporais

O Trabalho do Cientista de Dados > Desafio Curso

- 1. Definição do problema e levantamento de perguntas a serem respondidas 🗹
- 2. Planejamento do processo de Data Science 🗹
- 3. Coleta de dados ✓
- 4. Processamento e limpeza dos dados 🗹
- 5. Armazenamento dos dados 🗹
- 6. Análise de dados **☑**
- 7. Construção e validação de algoritmos e modelos 🗹
- 8. Data Visualization
- 9. Disseminação da informação
- 10. Colocar modelo em produção

Agenda

1 – Agenda

2 – R – Parte II

3 – Machine Learning

4 – Namorando Dados (SQL)

5 – Desafio Pessoal

6 – Desafio do Curso

7 – Bate Papo e Monitoria

- □ Charles Adriano dos Santos
- charles.a.santos@caelis.it
- in chadri
- **§** 41 99144 6663

- **B** Rafael Roberto Dias
- rafael.dias@madeiramadeira.com.br
- rafael-roberto-dias-00b39123
- **S** 41 99672 7170