

Machine Learning: Conceptual Soundness Explainability and Interpretability

Vijay Nair Advanced Technologies for Modeling Corporate Model Risk

Biographical Sketch: Vijay

- R&D group in Corporate Model Risk within in Wells Fargo
- Advanced Technologies for Modeling (AToM)
 - Statistical Modeling and Machine Learning (SMMaL) → Tabular Data; VIPER-COM
 - Machine Learning and Validation Engineering (MLiVE) → Pi-ML and Validation of Demand
 - Artifical Intelligence and Automation (AIA) → NLP and conversational AI; VIPER-NLP
 - Market Modeling Technologies (MMT) → Capital Markets; MLTD
 - CoPRA → CMoR computing platform
- 1993-2016: University of Michigan
 - Donald A. Darling professor of statistics and professor of industrial & operations engineering
 - Distinguished data scientist at the University of Michigan, Ann Arbor
 - Chair, Statistics Department for 12 years
- 1978-1993: Research Scientist at Bell Labs, New Jersey
- PhD (Statistics) University of California, Berkeley

Outline

- Machine Learning and Algorithms: Overview
- ☐ PiML: Python Interpretable Machine Learning Toolkit
- ✓ ML Model Risk and Validation
- ✓ Conceptual Soundness: Explainability and Interpretability
 - Post hoc methods
 - Inherently Interpretable Models

Machine Learning and Algorithms: Overview

Data-centric areas:

- Credit Risk: Predicting losses from loans
- Credit Decisions: credit scoring, marketing, collections, ...
- **Revenue and Transactions:** Interest, servicing fees, deposits, withdrawals, electronic payments, etc.
- **Financial Crimes:** Fraud detection, Money laundering
- Fair Lending
- Compliance and staffing
- NLP, Text and speech: Conversations, complaints, emails, voice messages, chat-bots for assisting customers and employees

Statistical and econometric techniques

- Dimension reduction; clustering, anomaly detection
- Parametric modelling for regression and classification
- Semi- and non-parametric regression models
- Regularization: Lasso, ridge, ...
- Survival analysis; Time series forecasting

ML/AI techniques

- Auto-encoders → Dimension reduction
- Isolation Forest → Anomaly detection
- Supervised ML: Support vector machines; Random forests;
 Gradient boosting; Neural networks (FF and Deep NNs)
- Natural language processing of Text Data → Deep NNs
- Conversational AI: Chatbots, ...

Computing Environment

- Python, C++, Java, R, SAS, and R
- Open Source Libraries, Tensorflow, PyTorch
- CPU and GPU Clusters, Cloud

Natural Language Processing (NLP)

- Methods, algorithms, and systems for analyzing "human language" data (text, speech, conversations)
 - Very challenging ...
- Interdisciplinary area that combined computer science, statistics, optimization, AI, linguistics, logic ...
 - Earlier version → computational linguistics, speech recognition, ...
- Evolution:
 - Rule-based, statistical ... now largely driven by deep neural networks
- Diverse applications
 - Jeopardy and IBM Watson

Chatbots

- Alexa and Siri-like
- Conversational Al

Natural Language Generation

Machine Learning and Artificial Intelligence

(wiki and other sources)

Machine Learning:

- Term coined in 1959 by Arthur Samuel (IBM)
- study and construction of <u>algorithms</u> that can learn from data, summarize features, recognize patterns, make predictions, <u>and take actions</u> ...
- A key pathway to AI
- Artificial Intelligence: concerned with making computers behave like humans
 - Long history: formal reasoning in philosophy, logic, ...
 - Term coined in 1956 by John McCarthy (MIT)
 - study of "intelligent agents" devices that perceive the environment and take actions that maximize its chance of success at some goal.
 - Resurgence of AI techniques in the last decade: advances in computing power, computing and data architectures, sizes of training data, and theoretical understanding
 - Deep Neural Networks: At the core of recent advancements in AI, specifically for certain classes of ML tasks
 - Applications:
 - Pattern recognition, Autonomous systems, Recommender systems, ...

Machine Learning Tasks

- Supervised Learning
 - Data with "labels"
 - Regression and classification
 - Goal: use labelled data to train a predictor $\hat{y} = \hat{f}(x)$
 - Given a new observation x^* , predict $\hat{y}^* = \hat{f}(x^*)$
- Unsupervised Learning
 - Data with **no labels**
 - Discover patterns or structure in the data
 - Anomalies, clusters, lower-dimensional representation
- Reinforcement Learning
 - Experiment and exploit to make "optimal" decisions based on reward structure
- Many Others
 - Semi-supervised, Representation Learning, Transfer Learning

Statistical Techniques for Supervised Learning

- Data $\{(Y_i, X_i), i = 1, ... n\}$
- Input-output relationship: example, for continuous response: $Y = f(X) + \epsilon$

Approaches:

- Parametric models: $f(X) = g(X; \beta) \rightarrow g$ a smooth function (linear, logistic, etc.)
- Non-linear models: $f(X) = \beta_0 + h_1(X_1; \beta_1) + h_2(X_2; \beta_2) \dots + h_k(X_k; \beta_k)$
- Fitting methods: **OLS, WLS, MLE, robust**, ...
- Extensive techniques and software: model selection; diagnostics; inference

– More flexible techniques:

- Generalized Additive Models (GAM): $f(X) = g_1(X_1) + (X_2) + ... + g_k(X_k)$
- Splines (regression splines and smoothing splines), MARS, ...
- Kernel regression, nearest-neighbors, Local smoothing (Loess);
- Regularized regression: Ridge, Lasso, Elastic Net, ...
 - Minimize OLS subject to penalty: $PL(f; \lambda) = \sum_{i} (Y_i f(X_i))^2 + J(f; \lambda)$
- Many of these are now called ML these days...
- Distinction is blurring ...

Supervised Learning: Statistics vs ML paradigms

- Leo Breiman (2001) Statistical Modeling: The Two Cultures, Statistical Science
 - Two paradigms: data model and algorithmic model
- Traditional statistics
 - Goal: "understand" the generative model
 - Identify key drivers and input-output relationships
 - Uncertainty → Estimate model parameters, confidence intervals, p-values, ...
- Machine Learning
 - Goal: best predictive performance ... generalization assessed on hold-out data
 - Algorithmic approach and automation of model building
 - → variable selection, feature engineering, model training
 - Split dataset into training and test sets
 - o Train model on former; assess performance on latter
 - o Little focus on distributions, CI, hypothesis testing, ...
 - No intrinsic interest in the data generation process (even if there's such a thing!)
 - Main goal: Optimize predictive performance (Auto ML, Kaggle, ...)
- For us: Model interpretability is just as important

sample

Supervised Machine Learning: Bias vs Variance Trade-Off

- Machine learning algorithms usually come with hyper-parameters: control performance and complexity
 - Trees: depth, number of terminal nodes, etc. to define the tree structure
 - Neural networks: number of layers, number of neurons per layer, activation functions, etc.
- Complexity is related to bias-variance trade-off.
 - Prediction MSE can be decomposed into $bias^2$ and variance.
 - Bias: $[f(x) E(\hat{f}(x))]$. Simpler models typically have larger bias ...
 - Variance: $var(\hat{f}(x))$. Simpler models typically have smaller variance, ...
 - Good model achieves balance between bias and variance → hyper-parameter tuning

Supervised Machine Learning: Tuning

- Hyper-parameter tuning: find the best hyper parameter configuration for predictive performance: a critical component of machine learning algorithms
- Choice of "best" hyper-parameters is data dependent
- Tuning involves a search routine and an evaluation routine
- For each hyper-parameter setting:
 - Fit the model and evaluate model performance;
 - Use search routine to find the hyper-parameter setting with that performs "best"
- Caution: ML models are stochastic
 - Model results depend on the random starting point
 - Many other sources of randomness

Supervised ML Algorithms

Ensemble algorithms

- Random Forests (RFs)
- Gradient Boosting Machines (GBMs)
 - eXtreme Boosting (XGBoost)
- Tree-based models
- Piecewise constant within nodes

Feedforward Neural Networks

Ensemble Algorithms

Improve performance by combining outputs of several individual algorithms ("weak learners"):

- Bagging and Random Forest
- Boosting
- Other ensemble approaches:
 - Model Averaging
 - Majority Voting
 - Stacking

Random Forest

- Random Forest (Breiman and Cutler, 1994)
 - Create multiple datasets by bootstrap sampling of rows
 - Build deep trees for each dataset
 - → fit piecewise constant models
 - → each tree has small bias (deep) but large variance
 - Average results across trees
 - → reduce variance and instability
- Bootstrap aggregating (bagging)
 - Column sub-sampling
 - → reduce correlations across trees
- Hyper-parameters
 - Tree depth
 - Number of trees
 - Row sampling ratio
 - Colum sampling ratio

Gradient Boosting Machine

Boosting

- AdaBoost
 - Schapire (1990), Freund and S (1995)
- Gradient boosting
 - Breiman (1996), Friedman (2001)
 - Fit trees to residuals sequentially
- Updates in the direction of negative gradient
- **Short trees** → low variance, big bias
- Boosting reduces bias
- Hyper-parameters (similar to RF)
 - Tree depth
 - Number of trees
 - Learning rate
 - Row sampling ratio
 - Colum sampling ratio

Feedforward Neural Networks (FFNNs)

- Mimic neuronal networks
- Activation function: $g(w^Tx)$
 - Sigmoidal, Hyperbolic Tan, ReLU
 - Connection to additive index models: $f(x) = g(w_1x_1 + ... + w_Px_P)$

FFNN architecture

- Nodes (Neurons)
- Input, Output, and Hidden Layers
- All nodes connected with others in next layer

Deep NNs

- Many layers
- CNN, RNN, LSTM, ...
- BERT (Bidirectional Encoder Representations from Transformers)

16

Application to Home Mortgage: Modeling "In-Trouble" Loans

- One portfolio: ~ 5 million observations and 22 predictors
- **Response: binary = loan is "in trouble"** (multiple failures and connections to competing risks)
- **Predictors:** credit history, type of loan, loan amount, loan age, loan-to-value ratios, interest rates at origination and current, loan payments up-to-date, etc. (origination and over time)

Modeling framework

Loan origination, current (snapshot) and prediction times

Comparison of Predictive Performance: ROC and AUC on Test Data

- ML with 22 predictors
- LR model: eight carefully selected variables
 - Itv (loan-to-value ratio);
 - fico (credit history) at snapshot;
 - ind_financial-crisis;
 - o pred_unemp_rate;
 - o pred_income;
 - two delinquency status variables;
 - horizon

Outline

- Machine Learning and Algorithms: Overview
- PiML: Python Interpretable Machine Learning Toolkit
- ✓ ML Model Risk and Validation
- ✓ Conceptual Soundness: Explainability and Interpretability
 - Post hoc methods
 - Inherently Interpretable Models
- ✓ Outcome Analysis
 - In Distribution Test: Weakspot and Reliability
 - Out of Distribution Test: Robustness and Resilient
- ✓ Model Fairness

Interpretable Machine Learning: Python Toolbox

✓ Low-code Interface

✓ High-code Programming

Python Interpretable Machine Learning

Model Development

- Inherently interpretable ML models
 - GLM, GAM, Tree, FIGS, XGB2
 - Explainable Boosting Machine
 - GAMI Neural Networks
 - Sparse ReLU Neural Networks
 - More advanced developments
- Model-inherent Interpretability
- Post-hoc Explainability Tools
- Causal Feature Selection

Model Validation

- ML Model Diagnostics and Outcome Testing
 - Performance
 - WeakSpot
 - Overfit/Underfit
 - Reliability
 - Robustness
 - Resilience
- Model Fairness
- Model Comparison and Benchmarking

PiML Toolbox: Workflow Design

PiML Toolbox: Github Repo

low-code interface and high-code APIs, PiML supports various machine learning models

• URL: https://github.com/SelfExplainML/PiML-Toolbox

Installation: pip install PiML

First Release: V0.1.0 (May 4, 2022)

Latest release: V0.4.2 (December 15, 2022)

Low-code and high-code examples

• We'll demonstrate applications to:

- Post-hoc Explainability
- Inherently Interpretable Models
- Sparse ReLU Deep Neural Networks
- FANOVA-Interpretable Models: GAMI-Net and EBM
- ML Model Diagnostics and Validation, etc.

Outline

- Machine Learning and Algorithms: Brief Overview
- ☐ PiML: Python Interpretable Machine Learning Toolkit
- ML Model Risk and Validation
- ✓ Conceptual Soundness: Explainability and Interpretability
 - Post hoc methods
 - Inherently Interpretable Models
- ✓ Outcome Analysis
 - In Distribution Test: Weakspot and Reliability
 - Out of Distribution Test: Robustness and Resilient
- ✓ Model Fairness

Opportunities with ML

General:

- Advent of "Big Data"
 - ✓ **New sources of data**: social media, sensor networks, intelligent systems, ...
 - o Text, conversations, images, ...
- Advances in computing and data storage technologies
 - ✓ Infrastructure for data collection, warehousing, transfer, and management
 - ✓ Efficient and scalable algorithms and associated technologies for analyzing large datasets
 - ✓ Open-source algorithms
 - ✓ Cloud storage and computing
 - → Democratization of Data Science

Specific:

- Availability of large datasets and fast algorithms
 - → flexible modeling ... move away from restrictive parametric models
- SML model:
 - > Improved predictive performance
 - ➤ Semi-automated approach to feature engineering and model training → ideal for Big Data
- New data sources and computing technologies open up new opportunities
 - > Text, speech, images, ...
 - ➤ More timely information and decision making

Challenges with Use of ML: Model Risks

Model is a black box and results are opaque

- Ensure results "make sense"
- Explain/interpret results and conclusions to multiple stakeholders
- Consistent with subject-matter knowledge (right variables included, monotonicity, etc.)

Potential for model bias

Challenge in assessing fairness

Model is highly flexible: danger of overfitting training data

Assess model robustness

Generalizability

- Traditional approach → select test data to represent training data
- But ... what will be the performance if there is covariate shift?

Uncertainty quantification

- Many sources of variation and randomness in ML models
- Identify and quantify

What is a model? Function-Fitting vs Modeling

Outline

- Machine Learning and Algorithms: Brief Overview
- ☐ PiML: Python Interpretable Machine Learning Toolkit
- ✓ ML Model Risk and Validation
- Conceptual Soundness: Explainability and Interpretability
 - Post hoc methods
 - Inherently Interpretable Models
- ✓ Outcome Analysis
 - In Distribution Test: Weakspot and Reliability
 - Out of Distribution Test: Robustness and Resilient
- ✓ Model Fairness

Explainability and Interpretability

Approaches:

- I. Post hoc explanations: Techniques for understanding results after fitting model
- II. Inherently interpretable algorithms
 - a) Additive index models
 - b) Low-order functional ANOVA models

Some questions in trying to understand model results

- O Main drivers in the model?
- Input-output relationship important variables?
 Nonlinearity? Interaction? Impact of correlations? Strategies?
- o Is model consistent with known relationships?
- What are the characteristics defining fraud accounts?
- Why did a particular customer not get their loan approved
 - Adverse action explanation

Bias and fairness

Post hoc global: Identifying important predictors/features

Permutation based: Model agnostic

- Randomly permute the rows for variable (column) of interest while keeping everything else unchanged
- Compute the change in prediction performance as the measure of importance.
- Issue:
 - Double counting of interactions

Selected Others

- **Tree-based** importance metrics
 - o Importance of a variable $x_j \rightarrow$ total reduction of impurity at nodes where x_j is used for splitting
 - o For ensemble algorithms, average over all trees

- Global Shapley

- o Based on Shapley decomposition (1953); Owen (2014)
- Model agnostic but computationally intractable

Υ	X1	X2	Х3	X4	X5
2	1.5	0	4.5	10.2	3.0
4	2.7	1	5.3	8.7	4.2
8	3.3	1	7.2	19.3	17.6
3	1.9	0	3.3	7.8	21.2

Home Mortgage-XGB

Variable importance: Home Mortgage Data Comparison of permutation and tree-based

LTV_fcast and fico0 are both identified as top important variables Ranking of others vary

Shapley effects for global variable importance

- Shapley (1951-53): game theory: evaluate contribution of a player in a cooperative game.
- Proposed by Owen and others to explain variable importance in ML (contribution of variables)

$$\phi_k = \sum_{\mathbf{S} \subseteq K \setminus k} \frac{|\mathbf{S}|! (|\mathbf{K}| - |\mathbf{S}| - 1)!}{|\mathbf{K}|!} (val(\mathbf{S} \cup k) - val(\mathbf{S}))$$

- $-val(\cdot)$ is conditional variance
- -We wont' discuss this application in detail here as computation is prohibitive
- -But will come back to it later for local explanation

Understanding input-output relationships: 1-dimensional partial dependence plots

- PDPs → visualize the input-output relationship: Friedman (2001).
- Removes the effect of other variables by averaging over them
 the "partial effect" of the variable of interest
- Theoretical PD Function for single input variable X_i :

Partition X into (X_i, X_{-i}) where X_{-i} is the complementary set.

$$f_{PD}(x_j) = \int f(x_j, x_{-j}) p(x_{-j}) dx_{-j}$$

PDP (empirical version)

- -Write $\hat{f}(X) = \hat{f}(X_i, X_{-i})$ be the fitted model
- For each X_j fixed at c, compute the average value of \hat{f} over the entire data

$$\hat{f}_{PD}(x_j = c) = \frac{1}{N} \sum_{i=1}^{N} \hat{f}(x_j = c, \mathbf{x}_{-j,i})$$

- Plot $f_{PD}(x_i)$ against x_i over the grid
- Extrapolation →

Home Mortgage
1-D PDP for forecast_LTV

Accumulated Local Effects (ALE) Plot for highly correlated data

Need technique that is not affected by correlations

ALE Plot (Apley, 2016)

$$f_{ALE}(x_j) = \int_{z_{j,0}}^{x_j} E_{\boldsymbol{X}_{-j}|X_j} \left\{ \frac{\partial f(\boldsymbol{X})}{\partial X_j} | X_j = z_j \right\} dz_j$$

- Focuses on conditional distribution to avoid extrapolation
- Definition uses partial derivatives
- Can be approximated by finite differences, but ...
- Reduces to PDP when predictors are independent

Techniques to detect two-way interactions

- Individual conditional expectation (ICE) plots
- Two-dimensional PDP Plots
- H-statistics

Individual conditional expectation (ICE) plots

- ICE plot: more detailed version of PDP (Goldstein et al., 2015)
 - 1d-PDP $\hat{f}_{PD}(x_j = c) = \frac{1}{N} \sum_{i=1}^{N} \hat{f}(x_j = c, x_{-j,i})$
 - average of $\hat{f}(x_i, x_{-i,i})$ over the entire data
 - when there are interaction effects, $\hat{f}(x_j, x_{-j,i})$ will have different patterns for different $x_{-j,i}$.
 - Averaging loses interaction information
- ICE plot: plot all N curves $\hat{f}(x_i, x_{-i,i})$, i = 1, 2, ..., N, conditional on $x_{-i,i}$.
- Each curve is localized for a single *i*th observation.
 - Can see if there is any change in the input-output relationships for x_i
 - Including possible interaction effect
 - Cannot identify nature of interaction

• Centered ICE (CICE) Plots

– Given the sample n, CICE plot for X_i is to subtract each ICE curve with the weighted mean of the curve.

Normalized CICE plot

 subtracting CICE curves with the corresponding centered partial dependence curves.

H-statistics for 2D-Interactions

• H_{jk} to measure the interaction between X_j and X_k (Friedman and Popescu; 2005)

$$H_{jk}^{2} = \frac{\sum_{i=1}^{N} \left[f_{PD}(x_{j,i}, x_{k,i}) - f_{PD}(x_{j,i}) - f_{PD}(x_{k,i}) \right]^{2}}{\sum_{i=1}^{N} f_{PD}^{2}(x_{j,i}, x_{k,i})}, \ H_{jk} = \sqrt{H_{jk}^{2}}$$

- $-f_{PD}(x_{i,i},x_{k,i}), f_{PD}(x_{i,i}), f_{PD}(x_{k,i})$ are the centered partial dependence functions
- $-H_{jk}^2$ is the proportion of variation in $f_{PD}(x_{j,i}, x_{k,i})$ unexplained by an additive model: relative measure.
- Challenge:
 - When two variables are irrelevant, both denominator and nominator are small
 - $-H_{ik}$ can be high due to instability
- Unnormalized version of H-statistic:

$$\widetilde{H}_{jk}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left[f_{PD}(x_{j,i}, x_{k,i}) - f_{PD}(x_{j,i}) - f_{PD}(x_{k,i}) \right]^{2}, \ \widetilde{H}_{jk} = \sqrt{\widetilde{H}_{jk}^{2}}$$

- Computation is expensive
- No calibration

Application to Home Lending Data

Unscaled H-statistics

	fico0	ltv_fcast	dlq_new_clean	unemprt	totpersincyy	h	premod_ind
fico0	NaN	0.1630	0.1224	0.0820	0.0360	0.0339	0.1107
Itv_fcast	0.1630	NaN	0.0518	0.0291	0.0286	0.0186	0.0843
dlq_new_clean	0.1224	0.0518	NaN	0.0101	0.0071	0.2296	0.0003
unemprt	0.0820	0.0291	0.0101	NaN	0.0232	0.0122	0.0094
totpersincyy	0.0360	0.0286	0.0071	0.0232	NaN	0.0068	0.0661
h	0.0339	0.0186	0.2296	0.0122	0.0068	NaN	0.0192
premod_ind	0.1107	0.0843	0.0003	0.0094	0.0661	0.0192	NaN

Relatively stronger interactions between:

- horizon and dlq_xxx
- fico0 and LTV_fcast

2-dimensional PDPs for home lending case

- Can plot 2-D PDPs for interactions identified as important
- Many ways to display interaction information

Post hoc techniques for local explanation

- Questions of Interest:
 - 1. How can we interpret the response surface locally at selected points of interest?
 - O If fitted model is linear: $\hat{f}(x) = b_0 + b_1 x_1 + \dots b_K x_k$, magnitudes and signs of coefficiencts
 - 2. Given the predicted value at a point of interest $\hat{f}(x^*) = \hat{f}(x_1^*, ..., x_K^*)$, what are the contributions of the different variables $\{x_1, ..., x_K\}$ to the prediction?
 - O If fitted model is linear: $\hat{f}(x) = b_0 + b_1 x_1 + \dots b_K x_k$, contribution of x_i^* is $b_i x_i^*$

• How to extend these interpretations to fitted models from ML algorithms?

Techniques for local explanation: Question 1

- How can we interpret the response surface locally at selected points of interest?
 - Local interpretable model-agnostic explanations
 - LIME (Ribeiro et al. 2016)
 - Fit a linear model locally around the point $b_0 + b_1 x_1^* + ... b_K x_K^*$
 - Use this for interpretation
 - Many ways to sample points locally and fit the linear model

Techniques for local explanation: Question 2

```
Given \hat{f}(\mathbf{x}^*) = \hat{f}(x_1^*, ..., x_K^*) at the point \mathbf{x}^*:
```

- What are contributions of $\{x_1, ... x_K\}$ to that prediction?
- Must compute contribution with and without each of the variables
- Usually done with respect to "average" reference point
- This can vary with on the application
- Adverse action \rightarrow
- Many approaches
 - Integrated Gradient, ...
 - SHAP (local version of Shapley)
 - olllustration using Baseline Shapley → next

"Adverse" action (AA) explanation on declined decisions

- Declined customers are entitled to an "explanation"
- Use historical data $\{y_i, x_i\}$, i = 1, ... n to develop model for probability of default (PoD) p(x)
- Decision:
 - -Accept application with x^* if $p(x^*) \leq \tau$;
 - Decline otherwise
- Model based on complex algorithm
- How to explain the decision?
 - Compute the difference: $[p(x^D) p(x^A)]$
 - Attribute the difference to the (important) predictors
 - O Better to do in terms of f(x) = logit p(x)
 - O Decompose $[f(x^D) f(x^A)] = E_1(x^D, x^A) + E_2(x^D, x^A) + ... + E_K(x^D, x^A)$ $E_k(x^D, x^A)$ is allocation to (contribution by) k —th predictor

 χ_1

General expression for AA with Baseline Shapley

$$[f(x^{D}) - f(x^{A})] = E_1 + \dots + E_K,$$

$$E_{k} = E_{k}(x^{D}; x^{A}) = \sum_{S_{k} \subseteq K \setminus \{k\}} \frac{|S_{k}|! (|K| - |S_{k}|)!}{|K|!} \Big(f(x_{k}^{D}; x_{S_{k}}^{D}; x_{K \setminus S_{k}}^{A}) - f(x_{k}^{A}; x_{S_{k}}^{D}; x_{K \setminus S_{k}}^{A}) \Big)$$

- Application of Shapley concept (Shapley, 1951+)
 - -Adapted to global explanation in ML (Owen 2014; and others)
 - -Local explanation (Lundberg et al. 2018, others)
 - -Computationally intractable
- Baseline Shapley (Sundararajan, M. and Najmi, A. (2020) easier to compute
- Adaptation to adverse action (Nair et al. 2022)

AA explanation with two predictors Linear model: $f(x) = b_0 + b_1x_1 + \cdots + b_Kx_K$

$$[f(\mathbf{x}^{D}) - f(\mathbf{x}^{A})] = b_1(x_1^{D} - x_1^{A}) + b_2(x_2^{D} - x_2^{A}) + \dots$$

GAM:
$$f(\mathbf{x}) = g_1(x_1) + \dots + g_K(x_K)$$

 $f(\mathbf{x}^D) - f(\mathbf{x}^A)$
 $= [g_1(x_1^D) - g_1(x_1^A)] + \dots + [g_K(x_K^D) - g_K(x_K^A)]$
 $E_k = g_k(x_k^D) - g_k(x_k^A)$

Interactions? $f(x) = b_0 + b_1 x_1 + b_2 x_2 + b_{12} x_1 x_2$

$$b_1(x_1^D - x_1^A) + b_2(x_2^D - x_2^A) + b_{12}(x_1^D x_2^D - x_1^A x_2^A)$$

General: (Nair et al. 2022)

•
$$E_1 = \frac{1}{2}(E_{11} + E_{12}) \rightarrow \frac{1}{2}\{[f(x_1^D, x_2^D) - f(x_1^A, x_2^D)] + [f(x_1^D, x_2^A) - f(x_1^A, x_2^A)]\}$$

•
$$E_2 = \frac{1}{2}(E_{21} + E_{22}) \rightarrow \frac{1}{2}\{[f(x_1^D, x_2^D) - f(x_1^D, x_2^A)] + [f(x_1^A, x_2^D) - f(x_1^A, x_2^A)]\}$$

Illustrative Application

Variable Name	Description	Monotone in probability of default
Response:	y = 1 if account defaulted and $y = 0$ if it did not default	
y = default indicator		
Predictors		
x1 = avg bal cards std	Average monthly debt standardized: amount owed by applicant) on all of their credit cards over last 12 months	N
x2 = credit age std	Age in months of first credit product standardized: first credit cards, autoloans, or mortgage obtained by the applicant	Y = Decreasing
x3 = pct over 50 uti	Percentage of open credit products (accounts) with over 50% utilization	N
x4 = tot balance <i>std</i>	Total debt standardized: amount owed by applicant on all of their credit products (credit cards, auto-loans, mortgages, etc.)	N
x5 = uti open card	Percentage of open credit cards with over 50% utilization	N
x6 = num acc 30d past due 12 months	Number of non-mortgage credit-product accounts by the applicants that are 30 or more days delinquent within last 12 months (Delinquent means minimum monthly payment not made)	Y = Increasing
x7 = num acc 60d past due 6 months	Number of non-mortgage credit-product accounts by the applicants that are 30 or more days delinquent within last 6 months	Y = Increasing
x8 = tot amount currently past due <i>log</i>	Total debt standardized: amount owed by applicant on all of their credit products – credit cards, auto-loans, mortgages, etc.	Y = Increasing
x9 = num credit inq 12 month	Number of credit inquiries in last 12 months. An inquiry occurs when the applicant's credit history is requested by a lender from the credit bureau. This occurs when a consumer applies for credit.	Y = Increasing
x10 = num credit card inq 24-month	Number of credit card inquiries in last 24 months. An inquiry occurs when the applicant's credit history is requested by a lender from the credit bureau. This occurs when a consumer applies for credit.	Y = Increasing

Simulated Data:

- 50,000 accounts
- Default or not in 18 months
- 10 predictors
- Distributions of predictors mimic bureau data

Fitted Model:

- Feedforward NN
- Constrained to be monotone in indicated variables

Correlation

High correlation among similar features

- x1 = avg bal cards (std)
 x2 = credit age std (flip)
 x3 = pct over 50 uti
 x4 = tot balance std
 x5 = uti open card
 x6 = num acc 30d past due 12 months
 x7 = num acc 60d past due 6 months
 x8 = tot amount currently past due (log)
 x9 = num credit inquiries is past 12 months
 x10 = num credit card inquiries in past 24-months
 - Block correlation among similar features
 - High-levels

Training Monotone Neural Network

- Iterative algorithm: Fit with a penalty for monotonicity; certify; and iterate
- 50,00 accounts >> training: 80%, validation and training: 10% each
- Final model: three hidden layers with dimensions [35, 15, 5]; learning rate (LR) = 0.001
- For comparison:
 - -fitted unconstrained Feedforward Neural Network (FFNN) [23, 35, 15]; LR = 0.004 Training and Test AUCs for the Two Algorithms

Algorithm	Training AUC	Test AUC	
FFNN	0.810	0.787	
M-NN	0.807	0.797	

Variable Importance for Mono-NN: All and Combined

Individual Variable Importance

Variable Importance for Combined

AA explanation: Decision rule – decline if p(x) > 0.25

Predictors	x^A	x_1^D	M-NN Attributions for x_1^D
x1 = avg bal cards std	-0.006	0.674	0.112 (3.5%)
x2 = credit age std flip	-0.733	0.886	1.928 (59.5%)
x3 = pct over 50 uti	0.518	0.531	0.001 (0.0%)
x4 = tot balance std	-0.001	0.562	-0.008 (0.2%)
x5 = uti open card	0.501	0.577	0.012 (0.4%)
x6 = num acc 30d past due 12 months	0.000	0.000	0.0 (0.0%)
x7 = num acc 60d past due 6 months	0.000	0.000	0.0 (0.0%)
x8 = tot amount currently past due std	0.000	0.000	0.0 (0.0%)
x9 = num credit inq 12 month	0.000	3.000	1.010 (31.2%)
x10 = num credit inq 24			
month	0.000	4.000	0.186 (5.7%)
$\widehat{p}(x)$	0.016	0.294	
$f(x) = logit(\widehat{p}(x))$	-4.117	-0.876	

Modified to get combined explanation for groups of correlated predictors

	M-NN	
Groups of predictors	Attributions	
	for x_1^D	
balance	0.126 (3.9%)	
credit age std flip	1.925 (59.4%)	
utilization	0.018 (0.5%)	
num acc	0.000 (0.0%)	
num inq	1.173 (36.2%)	

AA explanation: Decision rule – decline if p(x) > 0.25

Predictors	x^A	x_2^D	M-NN Attributions for x_2^D
x1 = avg bal cards std	-0.006	0.519	0.028 (0.5%)
x2 = credit age std flip	-0.733	0.431	1.565 (26.5%)
x3 = pct over 50 uti	0.518	0.522	-0.001 (0.0%)
x4 = tot balance std	-0.001	1.968	-0.201 (-3.4%)
x5 = uti open card	0.501	0.525	-0.024 (-0.4%)
x6 = num acc 30d past due 12 months	0.000	4.000	1.850 (31.3%)
x7 = num acc 60d past due 6 months	0.000	2.000	0.984 (16.6%)
x8 = tot amount currently past due std	0.000	4.379	1.712 (28.9%)
x9 = num credit inq 12 month	0.000	0.000	0.0 (0.0%)
x10 = num credit inq 24			
month	0.000	0.000	0.0 (0.0%)
$\widehat{p}(x)$	0.016	0.858	
$f(x) = logit(\widehat{p}(x))$	-4.117	1.797	

Modified to get combined explanation for groups of correlated predictors

Groups of predictors	M-NN Attributions for x_2^D	
balance	-0.328 (-5.5%)	
credit age std flip	1.785 (30.2%)	
utilization	-0.018 (-0.3%)	
past due	4.476 (75.7%)	
num inq	0.000 (0.0%)	

Issues with post hoc explanation

- Most post-hoc tools for studying input-output relationships are lower-dimensional summaries
 - Limited in ability to characterize complex models that may have different local behaviors
- ML algorithms: function-fitting vs modeling
 - High-dimensional ML can do very good function fitting with large samples
 - What is a **role of a model**?
- Correlation causes havoc!
 - Model identifiability

$$f(x_1, x_2) = \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$$

- The view in ML is to throw as many predictors as possible into the mix and automate model building
- Bound to be high correlation among some predictors

Inherently interpretable models

- Goals and challenges of complex ML models
 - Extract as much predictive performance as possible
 - No emphasis on interpretation \rightarrow lots of variables, complex relationships and interactions
 - No analytic expressions → rely on low dimensional summaries → don't present the full picture
- Emerging view:
 - Low-order functional (nonparametric) models are adequate in most of our applications
 - → tabular data in banking
 - Directly interpretable
 - Reversing emphasis on complex modeling
 - → trade-off: improvements in predictive performance vs interpretation

Examples of "Low Order" Models

Functional ANOVA Models:

$$f(\mathbf{x}) = g_0 + \sum_{j} g_j(x_j) + \sum_{j < k} g_{jk}(x_j, x_k) + \sum_{j < k < l} g_{jkl}(x_j, x_k, x_l) + \cdots$$

- FANOVA models with low-order interactions are adequate for many of our applications
- Focus on models with functional main effects and second order interactions
- -Stone (1994); Wahba and her students (see Gu, 2013)
 - → use **splines** to estimate low-order functional effects non-parametrically
- Not scalable to large numbers of observations and predictors
- Recent approaches
 - → use **ML architecture and optimization algorithms** to develop fast algorithms

FANOVA framework

$$f(\mathbf{x}) = g_0 + \sum_{j} g_j(x_j) + \sum_{j < k} g_{jk}(x_j, x_k)$$

- Model made up of mean g_0 , main effects $g_j(x_j)$, two-factor interactions $g_{jk}(x_j,x_k)$
- Interpretability
 - Fitted model is **additive**, effects are enforced to be **orthogonal**
 - Components can be **easily visualized** and **interpreted directly**
 - Regularization or other techniques used to keep model parsimonious
- Two state-of-the-art ML algorithms for fitting these models:
 - Explainable Boosting Machine (Nori, et al. 2019) → boosted trees (EBM)
 - GAMI Neural Networks (Yang, Zhang and Sudjianto, 2021) → specialized NNs (GAMI-NET)
 - **GAMI-Linear-Tree** (Hu, Chen, and Nair, 2022) → boosted linear trees (GAMI-Lin-T)

EBM: Nori, Jenkins, Koch and Caruana (2019) <u>arXiv: 1909.09223</u> GAMI-Net.: Yang, Zhang and Sudjianto (2021, arXiv: 2003.07132 GAMI-Lin-TL Hu, L., Chen, J. and Nair, V. (2022), <u>arXiv:2207.06950</u>

Explainable boosting machine

• EBM – Boosted-tree algorithm by Microsoft group (Lou, et al. 2013)

$$f(\mathbf{x}) = g_0 + \sum g_j(x_j) + \sum g_{jk}(x_j, x_k)$$

- Microsoft InterpretML (Nori, et al. 2019)
- fast implementation in C++ and Python

Multi-stage model training:

- 1: fit functional main effects non-parametrically
 - Shallow tree boosting with splits on the same variable for capturing a non-linear main effect
- 2: fit pairwise interactions on residuals:
 - a. Detect interactions using **FAST** algorithm
 - b. For each interaction (x_j, x_k) , fit function $g_{jk}(x_j, x_k)$ non-parametrically using a tree with depth two: 1 cut in x_j and 2 cuts in x_k , or 2 cuts in x_j and 1 cut in x_k (pick the better one)
 - c. Iteratively fit all the detected interactions until convergence

Explainable boosting machine: Example

Friedman1 simulated data:

- <u>sklearn.datasets.make_friedman1</u> n_samples=10000, n_features=10, and noise=0.1.
- Multivariate independent features x uniformly distributed on [0,1]
- Continuous response generated by

$$y(\mathbf{x}) = 10\sin(\pi x_0 x_1) + 20(x_2 - 0.5)^2 + 20x_3 + 10x_4 + \epsilon$$

depending only $x_0 \sim x_4$

GAMI-Net

NN-based algorithm for non-parametrically fitting

$$f(\mathbf{x}) = g_0 + \sum_{i} g_j(x_j) + \sum_{i} g_{jk}(x_j, x_k)$$

Multi-stage training algorithm:

1: estimate $\{g_j(x_j)\}$ \rightarrow train main-effect subnets and **prune** small main effects

2: estimate $\{g_{jk}(x_j, x_k)\} \rightarrow$ compute residuals from main effects and train pairwise interaction nets

- Select candidate interactions using heredity constraint
- Evaluate their scores (by FAST) and select top-K interactions;
- Train the selected two-way interaction subnets;
- Prune small interactions

3: retrain main effects and interactions simultaneously

Diagnostics: Effect importance and feature importance

• Each effect importance (before normalization) is given by

$$D(h_j) = \frac{1}{n-1} \sum_{i=1}^n g_j^2(x_{ij}), \qquad D(f_{jk}) = \frac{1}{n-1} \sum_{i=1}^n g_{jk}^2(x_{ij}, x_{ik})$$

• For prediction at x_i , the **local feature importance** is given by

$$\phi_j(x_{ij}) = g_j(x_{ij}) + \frac{1}{2} \sum_{j \neq k} g_{jk}(x_{ij}, x_{ik})$$

• For GAMI-Net (or EBM), the **global feature importance** is given by

$$FI(x_j) = \frac{1}{n-1} \sum_{i=1}^{n} (\phi_j(x_{ij}) - \overline{\phi_j})^2$$

• The effects can be visualized by a line plot (for main effect) or heatmap (for pairwise interaction).

GAMI-Net: Example

Friedman1 data:

$$y(x) = 10\sin(\pi x_0 x_1) + 20(x_2 - 0.5)^2 + 20x_3 + 10x_4 + \epsilon$$

Same data generated as for EBM example.

GAMI-Net Output with Test RMSE = 0.0058 and R2 = 99.89%

model_gaminet.show_effect_importance()

model_gaminet.show_feature_importance()

Summary

- Explainability & Interpretability
 - –Post-hoc techniques
 - -Inherently interpretable algorithms

• PI-ML Demo