Technische Universität Berlin

Fakultät II – Institut für Mathematik SS 02 Penn-Karras, Bärwolff, Förster, Unterreiter, Borndörfer 22. Juli 2002

Juli – Klausur (Rechenteil) Analysis II für Ingenieure

Name: Vorna	me:				
Matr.–Nr.: Studi	engang	;			
Ich wünsche den Aushang des Klausurgebn unter Angabe meiner Matr.—Nr. (ohne Nar am Schwarzen Brett und im WWW.			Unters	schrift	
Neben einem handbeschriebenen A4 Blatt r zugelassen.	nit No	tizen s	ind ke	ine Hil	fsmittel
Die Lösungen sind in Reinschrift auf A4 l geschriebene Klausuren können nicht gewerte			geben.	Mit	Bleistift
Dieser Teil der Klausur umfasst die Rechen vollständigen Rechenweg an.	aufgab	en. G	eben S	Sie imr	ner den
Die Bearbeitungszeit beträgt 90 Minuten .					
Die Gesamtklausur ist mit 32 von 80 Punkt beiden Teile der Klausur mindestens 10 von 4			,	•	
Korrektur					
	1	2	3	4	Σ

1. Aufgabe 19 Punkte

Es sei die Funktion $f:D\subset\mathbb{R}^2\to\mathbb{R}$ gegeben durch

$$f(x,y) := (x - \frac{1}{2})^2 + 2(y + \frac{1}{2})^2 + \frac{9}{4}, D := \{(x,y)^T \in \mathbb{R}^2 \mid \frac{x^2}{2} + y^2 \le 3\}.$$

Finden Sie die globalen Extrema der Funktion f, falls diese existieren.

2. Aufgabe 9 Punkte

Es sei die Menge B gegeben durch

$$B = \{(x, y, z)^T \in \mathbb{R}^3 \mid 1 \le x^2 + y^2 \le 4, \ 0 \le z \le 42\}.$$

Weiter sei die Funktion $f: \mathbb{R}^3 \to \mathbb{R}$ definiert durch $f(x,y,z) := e^{-z} \frac{1}{(x^2+y^2)^2}$. Berechnen Sie das Integral

$$\iiint\limits_{R} f(x, y, z) \, dV.$$

Tip: Verwenden Sie Zylinderkoordinaten.

3. Aufgabe 8 Punkte

Sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ auf dem Intervall $]-\pi,\pi]$ definiert durch f(x):=2 für $x \in]0,\pi]$ und f(x):=-2 für $x \in]-\pi,0]$ und sei f dann 2π -periodisch fortgesetzt.

- a) Skizzieren Sie den Graphen von f.
- b) Berechnen Sie die reelle Fourierreihe von f.
- c) Fertigen Sie außerdem eine Skizze des Graphen der Funktion an, die durch die Fourierreihe von f definiert wird. (Kennzeichnen Sie dabei die Unterschiede und Gemeinsamkeiten mit dem Graphen von f.)

4. Aufgabe 4 Punkte

Geben Sie die partielle Ableitung $\frac{\partial f}{\partial x}(x,y)$ der folgenden Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ an, wo diese existiert:

$$f(x,y) := \begin{cases} \frac{3x^3 + y^3}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$