Capítulo 7

Mudança de Base

Este capítulo é mais técnico, nele pretendemos explicar como as coordenadas de um vetor mudam, ao mudarmos de uma base para outra. Antes de começar é preciso fazer uma distinção sem a qual não é possível entender os conceitos discutidos neste capítulo. A distinção é a de que quando escrevemos \mathbf{w} estamos imaginando um vetor (como ente geométrico) e quando escrevemos $[\mathbf{w}]$, estamos pensando nas coordenadas deste vetor com respeito à uma base.

7.1 Matriz Mudança de Coordenadas

Vamos considerar uma base $\alpha = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ do \mathbb{R}^n , então qualquer vetor $\mathbf{w} \in \mathbb{R}^n$ pode ser escrito de maneira única como combinação linear dos vetores de α , isto é, existem $x_1, x_2, \dots, x_n \in \mathbb{R}$ tais que:

$$\mathbf{w} = x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2 + \dots + x_n \mathbf{u}_n.$$

Se ordenarmos o conjunto α podemos associar para cada vetor \mathbf{w} um único conjunto de números que informam as coordenadas do vetor \mathbf{w} , em relação aos vetores de α , e escrevemos $[\mathbf{w}]_{\alpha} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^t$. Reciprocamente, se dermos um conjunto de n números x_1, x_2, \ldots, x_n existe um único vetor associado, que é o vetor $\mathbf{w} = x_1\mathbf{u}_1 + x_2\mathbf{u}_2 + \cdots + x_n\mathbf{u}_n$.

Agora se tivermos outra base, digamos $\beta = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$, então podemos encontrar $y_1, y_2, \dots, y_n \in \mathbb{R}$, tais que o mesmo vetor \mathbf{w} se escreve

$$\mathbf{w} = y_1 \mathbf{v}_1 + y_2 \mathbf{v}_2 + \dots + y_n \mathbf{v}_n,$$

e as coordenadas desse vetor com respeito à base β são $[\mathbf{w}]_{\beta} = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix}^t$. Nesta seção vamos entender como relacionar as coordenadas de \mathbf{w} , na base α , com as coordenadas de \mathbf{w} , com respeito à base β .

7.1.1 Dimensão 2

Faremos as contas somente para o caso em que a dimensão do espaço vetorial é 2, isso porque o resultado obtido em dimensão 2 estende-se para espaços de dimensão maior sem nenhuma dificuldade.

Sejam $\alpha = \{\mathbf{u}_1, \mathbf{u}_2\}$ e $\beta = \{\mathbf{v}_1, \mathbf{v}_2\}$ duas bases ordenadas de \mathbb{R}^2 . Então dado, o vetor

$$\mathbf{w} = x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2$$
$$= y_1 \mathbf{v}_1 + y_2 \mathbf{v}_2.$$

Como \mathbf{v}_1 e \mathbf{v}_2 são vetores, podemos determinar as coordenadas destes vetores com respeito à base α , isto é,

$$\mathbf{v}_1 = a_{11}\mathbf{u}_1 + a_{21}\mathbf{u}_2$$

 $\mathbf{v}_2 = a_{12}\mathbf{u}_1 + a_{22}\mathbf{u}_2$

Substituindo na igualdade acima obtemos:

$$\mathbf{w} = y_1 \mathbf{v}_1 + y_2 \mathbf{v}_2$$

= $y_1 (a_{11} \mathbf{u}_1 + a_{21} \mathbf{u}_2) + y_2 (a_{12} \mathbf{u}_1 + a_{22} \mathbf{u}_2)$
= $(a_{11} y_1 + a_{12} y_2) \mathbf{u}_1 + (a_{21} y_1 + a_{22} y_2) \mathbf{u}_2$.

E usando a unicidade da representação de um vetor em termos de uma base ordenada e a multiplicação de matrizes obtemos que:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}.$$

Observe que qualquer que seja o vetor \mathbf{w} , se soubermos as coordenadas dele com respeito à base β , $[\mathbf{w}]_{\beta}$, podemos encontrar as coordenadas de \mathbf{w} na base α , $[\mathbf{w}]_{\alpha}$, bastando para isso multiplicar $[\mathbf{w}]_{\beta}$ pela matriz acima. Chamamos essa matriz de **matriz de mudança de coordenadas** da base β para a base α e a denotamos por $[I]_{\alpha}^{\beta}$.

Exemplo 7.1

Considere $V = \mathbb{R}^2$ e $\alpha = \{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\}$ e a base $\beta = \{\begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}\}$. Então, para determinarmos a matriz mudança da base α para a base β , $[I]_{\alpha}^{\beta}$, precisamos encontrar as coordenadas dos vetores da base β com respeito à base α , isto é,

$$\begin{bmatrix} -1\\1 \end{bmatrix} = a_{11} \begin{bmatrix} 1\\0 \end{bmatrix} + a_{21} \begin{bmatrix} 0\\1 \end{bmatrix}$$
e também $\begin{bmatrix} 1\\1 \end{bmatrix} = a_{12} \begin{bmatrix} 1\\0 \end{bmatrix} + a_{22} \begin{bmatrix} 0\\1 \end{bmatrix}$.

Essas equações vetoriais são muito fáceis de serem resolvidas e as soluções são $a_{11} = -1$, $a_{12} = 1$, $a_{21} = 1$ e $a_{22} = 1$. Portanto,

$$[I]_{\alpha}^{\beta} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}.$$

Vamos determinar também $[I]^{\alpha}_{\beta}$. Para isso precisamos escrever os vetores da base α , em termos da base β . Depois de fazermos as contas chegamos que:

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = -1/2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} + 1/2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1/2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} + 1/2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Portanto,

$$[I]^{\alpha}_{\beta} = \begin{bmatrix} -1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}.$$

Vamos fazer duas observação: a primeira é a de que $[I]^{\alpha}_{\beta}[I]^{\beta}_{\alpha} = I$, portanto, uma é inversa da outra (este resultado é geral!) A segunda é a de que a matriz $[I]^{\beta}_{\alpha}$ tem como colunas os vetores da base β , esse fato sempre ocorre se a base de chegada é a base canônica.

7.1.2 Caso Geral

Vamos tratar o caso geral. Suponha que $\alpha = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ é uma base de V assim como $\beta = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ e, que \mathbf{w} seja um vetor qualquer de V, então podemos determinar as coordenadas

$$[\mathbf{w}]_{lpha} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix} \ \mathrm{e} \ [\mathbf{w}]_{eta} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix}.$$

Escrevendo os vetores da base β , em termos da base α , podemos determinar os n^2 números a_{ij} a seguir:

$$\mathbf{v}_1 = a_{11}\mathbf{u}_1 + a_{21}\mathbf{u}_2 + \dots + a_{n1}\mathbf{u}_n$$

$$\mathbf{v}_2 = a_{12}\mathbf{u}_1 + a_{22}\mathbf{u}_2 + \dots + a_{n2}\mathbf{u}_n$$

$$\dots$$

$$\mathbf{v}_j = a_{1j}\mathbf{u}_1 + a_{2j}\mathbf{u}_2 + \dots + a_{nj}\mathbf{u}_n$$

$$\dots$$

$$\mathbf{v}_n = a_{1n}\mathbf{u}_1 + a_{2n}\mathbf{u}_2 + \dots + a_{nn}\mathbf{u}_n$$

E, montando a matriz,

$$[I]_{\alpha}^{\beta} = [[\mathbf{v}_{1}]_{\alpha} \ [\mathbf{v}_{2}]_{\alpha} \ \cdots \ [\mathbf{v}_{n}]_{\alpha}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix}.$$

Essa matriz foi obtida ao pegar os coeficientes que aparecem na expressão do vetor \mathbf{v}_j como combinação linear dos vetores $\mathbf{u}_{i's}$ e colocar na j-ésima coluna. Essa matriz é chamada de matriz de mudança da coordenadas de β para a base α ou simplesmente matriz de mudança de coordenadas.

Observação 7.2

Na literatura a matriz $[I]^{\beta}_{\alpha}$ é muitas vezes chamada de matriz de mudança da base α para a base β , ou, simplesmente, matriz de mudança de base. Você poderia pensar que cometemos um equivoco, mas, de fato, não cometemos. Mais para frente justificaremos este nome.

7.2 Aplicações lineares e Matrizes

Até o momento sabemos que dada uma aplicação linear $T: \mathbb{R}^n \to \mathbb{R}^m$ podemos associar uma matriz $A = [a_{ij}]$, de ordem $m \times n$ e, reciprocamente, dada uma matriz $A = [a_{ij}]$, de ordem $m \times n$, podemos determinar uma aplicação linear $S: \mathbb{R}^n \to \mathbb{R}^m$ definida por $\mathbf{x} \in \mathbb{R}^n \to A\mathbf{x} \in \mathbb{R}^m$. Vamos estender esse conceito para quando levarmos em conta as coordenadas de um vetor.

Vamos iniciar considerando a aplicação linear $T: \mathbb{R}^n \to \mathbb{R}^m$, e sejam $\alpha = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ uma base de \mathbb{R}^n e $\beta = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ uma base de \mathbb{R}^m . Observe que em qualquer vetor $\mathbf{u} \in \mathbb{R}^n$ o vetor $T(u) \in \mathbb{R}^m$ podemos determinar as coordenadas do mesmo com respeito à base β em particular,

$$T(\mathbf{u}_1) = a_{11}\mathbf{v}_1 + a_{21}\mathbf{v}_2 + \dots + a_{m1}\mathbf{v}_m$$

$$T(\mathbf{u}_2) = a_{12}\mathbf{v}_1 + a_{22}\mathbf{v}_2 + \dots + a_{m2}\mathbf{v}_m$$

$$\dots \dots \dots$$

$$T(\mathbf{u}_j) = a_{1j}\mathbf{v}_1 + a_{2j}\mathbf{v}_2 + \dots + a_{mj}\mathbf{v}_m$$

$$\dots \dots \dots$$

$$T(\mathbf{u}_n) = a_{1n}\mathbf{v}_1 + a_{2n}\mathbf{v}_2 + \dots + a_{mn}\mathbf{v}_m$$

Assim, podemos associar a matriz

$$[T]^{\alpha}_{\beta} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

que é chamada matriz da aplicação linear T com respeito às bases α e β .

Exemplo 7.3

Considere $T: \mathbb{R}^3 \to \mathbb{R}^2$ definida por

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} 2x + y - z \\ 3x - 3y - 4z \end{bmatrix} \text{ e as bases}$$

$$\alpha = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\} \text{ e } \beta = \left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}.$$

Encontre a matriz de T com respeito à estas bases. Precisamos encontrar as

coordenadas, na base β , dos vetores da base α avaliados por T.

$$T\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}2\\-4\end{bmatrix} = (-3)\begin{bmatrix}-1\\1\end{bmatrix} + (-1)\begin{bmatrix}1\\1\end{bmatrix};$$

$$T\left(\begin{bmatrix}-1\\-1\\0\end{bmatrix}\right) = \begin{bmatrix}-3\\0\end{bmatrix} = (3/2)\begin{bmatrix}-1\\1\end{bmatrix} + (-3/2)\begin{bmatrix}1\\1\end{bmatrix};$$

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}2\\3\end{bmatrix} = (1/2)\begin{bmatrix}-1\\1\end{bmatrix} + (5/2)\begin{bmatrix}1\\1\end{bmatrix}.$$

Portanto, a matriz de T, com respeito às bases α e β é

$$[T]^{\alpha}_{\beta} = \begin{bmatrix} -3 & 3/2 & 1/2 \\ -1 & -3/2 & 5/2 \end{bmatrix}.$$

Teorema 7.4

Sejam $T: \mathbb{R}^n \to \mathbb{R}^m$ uma aplicação linear, α uma base de \mathbb{R}^n , β uma base de \mathbb{R}^m , então

$$[T(\mathbf{w})]_{\beta} = [T]_{\beta}^{\alpha}[\mathbf{w}]_{\alpha}.$$

Demonstração: Esse teorema nos diz que se tomarmos o vetor \mathbf{w} e calcularmos as coordenadas de $T(\mathbf{w})$, com respeito à base β , será o mesmo que calcularmos $[\mathbf{w}]_{\alpha}$ vezes a matriz da aplicação T, com respeito às bases α e β .

Faremos a demonstração somente para o caso n=2 e m=3, por acreditar que isso é bem mais instrutivo que a demonstração no caso geral. Para começar, sejam $\alpha = \{\mathbf{u}_1, \mathbf{u}_2\}$ uma base do \mathbb{R}^2 e $\beta = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ uma base do \mathbb{R}^3 . Sabemos que existem únicos coeficientes $a_{ij} \in \mathbb{R}$, tais que:

$$T(\mathbf{u}_1) = a_{11}\mathbf{v}_1 + a_{21}\mathbf{v}_2 + a_{31}\mathbf{v}_3$$

 $T(\mathbf{u}_2) = a_{12}\mathbf{v}_1 + a_{22}\mathbf{v}_2 + a_{32}\mathbf{v}_3,$

e obtemos a matriz

$$[T]^{\alpha}_{\beta} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}.$$

Seja **w** um vetor de \mathbb{R}^2 e sejam $[\mathbf{w}]_{\alpha} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ e $[T(\mathbf{w})]_{\beta} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$ as suas coordenadas. Logo, $\mathbf{w} = x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2$ e por fazer uso da linearidade da aplicação T temos:

$$T(\mathbf{w}) = T(x_1\mathbf{u}_1 + x_2\mathbf{u}_2)$$

$$= x_1T(\mathbf{u}_1) + x_2T(\mathbf{u}_2)$$

$$= x_1(a_{11}\mathbf{v}_1 + a_{21}\mathbf{v}_2 + a_{31}\mathbf{v}_3) + x_2(a_{12}\mathbf{v}_1 + a_{22}\mathbf{v}_2 + a_{32}\mathbf{v}_3)$$

$$= (a_{11}x_1 + a_{12}x_2)\mathbf{v}_1 + (a_{21}x_1 + a_{22}x_2)\mathbf{v}_2 + (a_{31}x_1 + a_{32}x_2)\mathbf{v}_3.$$

Mas $T(\mathbf{w}) = y_1\mathbf{v}_1 + y_2\mathbf{v}_2 + y_3\mathbf{v}_3$ e como as coordenadas com respeito a uma base são únicas segue que

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 \\ y_2 = a_{21}x_1 + a_{22}x_2 , \text{ que \'e equivalente a, } \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Isto é,
$$[T(\mathbf{w})]_{\beta} = [T]_{\beta}^{\alpha}[\mathbf{w}]_{\alpha}$$
.

Exemplo 7.5

Considere o caso especial $I: \mathbb{R}^n \to \mathbb{R}^n$ o operador identidade, isto é, $I(\mathbf{v}) = \mathbf{v}$ para todo $\mathbf{v} \in \mathbb{R}^n$. Considere $\alpha = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ uma base do domínio de I e uma base $\beta = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ do contradomínio de I. Vamos determinar a matriz deste operador com respeito à estas bases. Para isso calcule:

$$I(\mathbf{v}_{1}) = \mathbf{v}_{1} = a_{11}\mathbf{u}_{1} + a_{21}\mathbf{u}_{2} + \dots + a_{n1}\mathbf{u}_{n};$$

$$I(\mathbf{v}_{2}) = \mathbf{v}_{2} = a_{12}\mathbf{u}_{1} + a_{22}\mathbf{u}_{2} + \dots + a_{n2}\mathbf{u}_{n};$$

$$\dots \dots \dots$$

$$I(\mathbf{v}_{j}) = \mathbf{v}_{j} = a_{1j}\mathbf{u}_{1} + a_{2j}\mathbf{u}_{2} + \dots + a_{nj}\mathbf{u}_{n};$$

$$\dots \dots \dots \dots$$

$$I(\mathbf{v}_{n}) = \mathbf{v}_{n} = a_{1n}\mathbf{u}_{1} + a_{2n}\mathbf{u}_{2} + \dots + a_{nn}\mathbf{u}_{n}.$$

Observe que a matriz de I com respeito às duas bases é obtida por pegar as coordenadas do vetor \mathbf{v}_j , em termos da base β e colocar na j-ésima coluna da matriz. Mas isso é exatamente a forma de calcular a matriz de mudança de coordenada. Portanto,

$$[I]^{\alpha}_{\beta} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}.$$

E por isso denotar a matriz de mudança de coordenadas da base α para a base β por $[I]^{\alpha}_{\beta}$ não é nada de especial, é apenas a matriz do operador I com respeito às bases α e β .

Teorema 7.6

Sejam $T: \mathbb{R}^n \to \mathbb{R}^m$ e $S: \mathbb{R}^m \to \mathbb{R}^k$ duas aplicações lineares e α, β e γ bases de $\mathbb{R}^n, \mathbb{R}^m$ e \mathbb{R}^k , respectivamente. Então, a composta de $S \circ T: \mathbb{R}^n \to \mathbb{R}^k$, é linear e

$$[S \circ T]^{\alpha}_{\gamma} = [S]^{\beta}_{\gamma} \cdot [T]^{\alpha}_{\beta}.$$

A demonstração desse resultado é fácil, mas muito trabalhosa, veja o exercício R7.2.

Observação 7.7

Você há de convir que seria muito mais natural definir a multiplicação entre matrizes como a simples multiplicação entre as entradas correspondentes e somente

para matrizes de mesmo tamanho, similarmente ao que ocorre com a operação de soma de matrizes. Definimos dessa forma para tornar o Teorema 7.6 verdadeiro.

O Teorema 7.6 nos diz que a multiplicação entre matrizes é compatível com a composição de funções lineares.

Corolário 7.8

Se $T: \mathbb{R}^n \to \mathbb{R}^n$ é um operador linear invertível e se α e β são bases do domínio e do contradomínio, respectivamente. Logo, $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ também é um operador linear e

$$[T^{-1}]^{\beta}_{\alpha} = ([T]^{\alpha}_{\beta})^{-1}.$$

Demonstração: Segue das seguintes duas observações. Em primeiro lugar, se $I: \mathbb{R}^n \to \mathbb{R}^n$ é o operador identidade, e γ é uma base de qualquer de \mathbb{R}^n , então, a0 calcularmos $[I]^{\gamma}_{\gamma}$ obtemos sempre a matriz identidade, qualquer que seja γ escolhida. A segunda observação é a seguinte

$$[T^{-1}]^{\beta}_{\alpha}[T]^{\alpha}_{\beta} = [T^{-1} \circ T]^{\alpha}_{\alpha} = [I]^{\alpha}_{\alpha}.$$

Portanto,
$$[T^{-1}]^{\beta}_{\alpha} = ([T]^{\alpha}_{\beta})^{-1}$$
.

Segue deste corolário que se $[I]^{\beta}_{\alpha}$ é a matriz de mudança de coordenadas da base β para a base α , então $[I]^{\alpha}_{\beta} = ([I]^{\beta}_{\alpha})^{-1}$.

Se $T: \mathbb{R}^n \to \mathbb{R}^m$ é uma aplicação linear e, α e α' são bases de \mathbb{R}^n e β e β' são bases de \mathbb{R}^m , então podemos associar as seguintes matrizes $[T]^{\alpha}_{\beta}$ e $[T]^{\alpha'}_{\beta'}$ à aplicação linear T.

Como podemos relacionar estas matrizes? Como elas provêm da mesma transformação linear, devem ter a mesma ação sobre os vetores de \mathbb{R}^n , o que deve sofrer alteração, são as coordenadas desses vetores.

Observe que para avaliar o vetor $\mathbf{w} \in \mathbb{R}^n$ em T, por usar a matriz $[T]^{\alpha}_{\beta}$, precisamos obter as coordenadas de \mathbf{w} na base α , digamos ainda que conheçamos as coordenadas na base α' , isto é, $[\mathbf{w}]_{\alpha'}$. Portanto, para obtermos as coordenadas na base α precisamos da matriz $[I]^{\alpha'}_{\alpha}$ e, por um lado,

$$[T(\mathbf{w})]_{\beta'} = [T]_{\beta'}^{\alpha'} [\mathbf{w}]_{\alpha'}$$

e por outro,

$$[T(\mathbf{w})]_{\beta} = [T]_{\beta}^{\alpha} [I]_{\alpha}^{\alpha'} [\mathbf{w}]_{\alpha'}.$$

Se ainda conhecermos a matriz $[I]^{\beta'}_{\beta}$, então temos a igualdade

$$[I]^{\beta'}_{\beta}[T]^{\alpha'}_{\beta'}[\mathbf{w}]_{\alpha'} = [I]^{\beta'}_{\beta}[T(\mathbf{w})]_{\beta'} = [T(\mathbf{w})]_{\beta} = [T]^{\alpha}_{\beta}[I]^{\alpha'}_{\alpha}[\mathbf{w}]_{\alpha'}.$$

Como isso vale para todo vetor \mathbf{w} , logo essa igualdade é válida entre as matrizes, isto é,

$$[I]_{\beta}^{\beta'}[T]_{\beta'}^{\alpha'} = [T]_{\beta}^{\alpha}[I]_{\alpha'}^{\alpha'}.$$

Exemplo 7.9

Considere a mesma aplicação $T: \mathbb{R}^3 \to \mathbb{R}^2$ definida no exemplo 7.3 e α' a base canônica do \mathbb{R}^3 e β' a base canônica do \mathbb{R}^2 , então

$$[T]^{\alpha'}_{\beta'} = \begin{bmatrix} 2 & 1 & -1 \\ 3 & -3 & -4 \end{bmatrix}.$$

Vamos conectar com a matriz

$$[T]^{\alpha}_{\beta} = \begin{bmatrix} -3 & 3/2 & 1/2 \\ -1 & -3/2 & 5/2 \end{bmatrix},$$

calculada no exemplo 7.3 com essa matriz, para isso precisamos das matrizes $[I]^{\beta'}_{\beta}$, que foi calculada no exemplo 7.1, e também $[I]^{\alpha'}_{\alpha}$. Executando as contas obtemos:

$$[I]_{\beta}^{\beta'} = \begin{bmatrix} -1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$
 e $[I]_{\alpha}^{\alpha'} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & -1 & 0 \end{bmatrix}$.

Vale a seguinte igualdade (verifique):

$$\begin{bmatrix} -1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 3 & -3 & -4 \end{bmatrix} = [I]_{\beta}^{\beta'}[T]_{\beta'}^{\alpha'}$$

$$= \begin{bmatrix} 1/2 & -2 & -3/2 \\ 5/2 & -1 & -5/2 \end{bmatrix} = [T]_{\beta}^{\alpha}[I]_{\alpha}^{\alpha'}$$

$$= \begin{bmatrix} -3 & 3/2 & 1/2 \\ -1 & -3/2 & 5/2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & -1 & 0 \end{bmatrix}.$$

Se na equação $[I]^{\beta'}_{\beta}[T]^{\alpha'}_{\beta'}=[T]^{\alpha}_{\beta}[I]^{\alpha'}_{\alpha}$ tivermos m=n e $\alpha=\beta$ e $\alpha'=\beta'$, a igualdade aqui demonstrada se torna $[I]^{\alpha'}_{\alpha}[T]^{\alpha'}_{\alpha'}=[T]^{\alpha}_{\alpha}[I]^{\alpha'}_{\alpha}$ e, lembrando que $([I]^{\alpha'}_{\alpha})^{-1}=[I]^{\alpha}_{\alpha'}$ se multiplicarmos a igualdade por $([I]^{\alpha'}_{\alpha})^{-1}$ obtemos:

$$[T]_{\alpha'}^{\alpha'} = [I]_{\alpha'}^{\alpha} [T]_{\alpha}^{\alpha} [I]_{\alpha'}^{\alpha'}.$$

Observação 7.10

Continuando com a notação anterior, observe que ao fazemos $[T]^{\alpha}_{\alpha}[I]^{\alpha'}_{\alpha}$ obteremos $[T]^{\alpha'}_{\alpha}$. Portanto, a matriz $[I]^{\alpha'}_{\alpha}$ toma a matriz de T, na base α , α e retorna a matriz de T com respeito às bases α' , α , podemos dizer que a matriz $[I]^{\alpha'}_{\alpha}$ é a matriz de mudança da base α para a base α' . Isso justifica o nome dado anteriormente na observação 7.2.

Definição 7.11

Sejam A e B duas matrizes quadradas. Dizemos que A e B são matrizes semelhantes e denotamos por $A \cong B$ se existe uma matriz P invertível, tal que

$$B = P^{-1}AP.$$

Disso temos que todas as matrizes associadas a um operador são semelhantes.

Exercícios resolvidos

- **R7.1.** Sejam $\alpha = \{\mathbf{u}_1, \mathbf{u}_2\}$ e $\beta = \{\mathbf{v}_1, \mathbf{v}_2\}$ as bases de um espaço vetorial V, e suponha que $\mathbf{v}_1 = 6\mathbf{u}_1 2\mathbf{u}_2$ e $\mathbf{v}_2 = 9\mathbf{u}_1 4\mathbf{u}_2$.
 - a) Determine a matriz de mudança de coordenadas $[I]^{\alpha}_{\beta}$;
 - b) Determine, usando o item a), $[\mathbf{w}]_{\beta}$ para $\mathbf{w} = 3\mathbf{u}_1 4\mathbf{u}_2$.

Solução: a) Da expressão de \mathbf{v}_1 e \mathbf{v}_2 como combinação linear de $\mathbf{u}_1, \mathbf{u}_2$ obtemos $[I]^{\beta}_{\alpha} = \begin{bmatrix} 6 & 9 \\ -2 & -4 \end{bmatrix}$. Como $([I]^{\beta}_{\alpha})^{-1} = [I]^{\alpha}_{\beta}$ segue que

$$[I]^{\alpha}_{\beta} = \begin{bmatrix} 2/3 & 3/2 \\ -1/3 & -1 \end{bmatrix}.$$

b) Como sabemos que as coordenadas de \mathbf{w} , com respeito à base α , para encontrarmos as coordenadas de \mathbf{w} , com respeito à base β , basta calcularmos:

$$[\mathbf{w}]_{\beta} = [I]_{\beta}^{\alpha}[\mathbf{w}]_{\alpha} = \begin{bmatrix} 2/3 & 3/2 \\ -1/3 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ -4 \end{bmatrix} = \begin{bmatrix} -4 \\ 3 \end{bmatrix}.$$

R7.2. Prove o teorema 7.6. Sejam $T: \mathbb{R}^n \to \mathbb{R}^m$ e $S: \mathbb{R}^m \to \mathbb{R}^k$ duas aplicações lineares e α, β e γ bases de $\mathbb{R}^n, \mathbb{R}^m$ e \mathbb{R}^k , respectivamente. Então, a composta de $S \circ T: \mathbb{R}^n \to \mathbb{R}^k$ é linear e

$$[S \circ T]^{\alpha}_{\gamma} = [S]^{\beta}_{\gamma} \cdot [T]^{\alpha}_{\gamma}.$$

Solução: Suponha que $\alpha = \{\mathbf{u}_1, \dots, \mathbf{u}_n\} \subset \mathbb{R}^n$, $\beta = \{\mathbf{v}_1, \dots, \mathbf{v}_m\} \subset \mathbb{R}^m$ e $\gamma = \{\mathbf{w}_1, \dots, \mathbf{w}_k\} \subset \mathbb{R}^k$ sejam bases de \mathbb{R}^n , \mathbb{R}^m e \mathbb{R}^k , respectivamente. Podemos determinar escalares a_{ij} e b_{jl} , satisfazendo:

$$T(\mathbf{u}_i) = \sum_{j=1}^{m} a_{ij} \mathbf{v}_j \in S(\mathbf{v}_j) = \sum_{l=1}^{k} b_{jl} \mathbf{w}_l, \text{ com } i = 1, \dots, n \in j = 1, \dots, m.$$

E isto determina as matrizes $[S]_{\gamma}^{\beta} = [b_{jl}]_{k \times m}$ e $[T]_{\beta}^{\alpha} = [a_{ij}]_{m \times n}$. Agora, observe o seguinte:

$$(S \circ T)(\mathbf{u}_i) = S(T(\mathbf{u}_i)) = S\left(\sum_{j=1}^m a_{ij} \mathbf{v}_j\right)$$
$$= \sum_{j=1}^m a_{ij} S(\mathbf{v}_j)$$
$$= \sum_{i=1}^m a_{ij} \sum_{l=1}^k b_{jl} \mathbf{w}_l = \sum_{l=1}^k \left(\sum_{j=1}^m a_{ij} b_{jl}\right) \mathbf{w}_l.$$

O escalar $\sum_{j=1}^{m} a_{ij}b_{jl}$ é a entrada il da matriz da transformação linear $S \circ T$ com respeito às bases α e γ . Por outro lado, a entrada na posição il da matriz obtida por multiplicar $[b_{jl}]_{k\times m}$ por $[a_{ij}]_{m\times n}$ é o escalar $\sum_{j=1}^{m} a_{ij}b_{jl}$. De onde obtemos a igualdade desejada.

R7.3. Considere o operador linear F de \mathbb{R}^2 definido por $F\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 5x-y \\ 2x+y \end{bmatrix}$ e as bases de \mathbb{R}^2 a seguir:

$$\alpha = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \ e \ \beta = \left\{ \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 7 \end{bmatrix} \right\}.$$

- a) Encontre a matriz P de mudança de coordenada da base α para a base β e a matriz Q de mudança de coordenada da base β para a base α .
- b) Encontre a matriz A que representa F na base α .
- c) Encontre a matriz B que representa F na base β .

Solução: a) Vamos começar determinando a matriz $Q=[I]^{\beta}_{\alpha}$, a qual é muito fácil de determinar, visto que precisamos escrever os vetores da base β como combinação linear dos vetores da base α que é a base canônica, além disso, $P=Q^{-1}$, então:

$$Q = \begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix} \text{ logo } P = Q^{-1} = Q = \frac{1}{-1} \begin{bmatrix} 7 & -2 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} -7 & 2 \\ 4 & -1 \end{bmatrix}.$$

b) A matriz $A = [T]^{\alpha}_{\alpha}$ é facilmente obtida da expressão, basta fazer $\begin{bmatrix} 5x-y\\2x+y \end{bmatrix} = x\begin{bmatrix} 5\\2 \end{bmatrix} + y\begin{bmatrix} -1\\1 \end{bmatrix}$ e daí

$$A = [T]^{\alpha}_{\alpha} = \begin{bmatrix} 5 & -1 \\ 2 & 1 \end{bmatrix}.$$

c) Como sabemos que $[T]^{\beta}_{\beta} = [I]^{\alpha}_{\beta}[T]^{\alpha}_{\alpha}[I]^{\beta}_{\alpha}$, logo:

$$[T]^{\beta}_{\beta} = \begin{bmatrix} -7 & 2 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix} = \begin{bmatrix} -7 & 2 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 6 & 11 \end{bmatrix} = \begin{bmatrix} 5 & 1 \\ -2 & 1 \end{bmatrix}.$$

- **R7.4.** Considere $T: \mathbb{R}^3 \to \mathbb{R}^3$ uma transformação linear, tal que $T\left(\begin{bmatrix} 1\\0\\1\end{bmatrix}\right) = \begin{bmatrix} 1\\0\\0\end{bmatrix}, T\left(\begin{bmatrix} 0\\1\\-2\end{bmatrix}\right) = \begin{bmatrix} 0\\1\\0\end{bmatrix}$ e $T\left(\begin{bmatrix} 1\\1\\1\end{bmatrix}\right) = \begin{bmatrix} 0\\0\\1\end{bmatrix}$.
 - a) Mostre que $\beta = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$ é uma base do \mathbb{R}^3 .
 - **b)** Determine $[v]_{\beta}$ se $v = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$.
 - c) Determine $T\left(\begin{bmatrix} 2\\-1\\0\end{bmatrix}\right)$.

Solução: a) Vamos montar uma matriz A, por colocar os vetores da base β nas colunas e então

$$\det(A) = \det\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -2 & 1 \end{bmatrix} = \det\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -2 & 0 \end{bmatrix} = \det\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} = 2 \neq 0,$$

E isso garante que estes vetores são linearmente independentes, uma vez que, se os vetores não fossem LI, então eles estariam em um plano, nesse caso o volume do paralelepípedo determinado por esses vetores seria 0, o que não ocorre.

b) Se α é a base canônica do \mathbb{R}^3 precisamos encontrar a matriz $[I]^{\alpha}_{\beta}$, mas calcular a matriz $[I]^{\beta}_{\alpha} = A$ obtida acima, usando a adjunta podemos obter o inverso desta matriz que é

$$B = [I]^{\alpha}_{\beta} = \begin{bmatrix} 3/2 & -1 & -1/2 \\ 1/2 & 0 & -1/2 \\ -1/2 & 1 & 1/2 \end{bmatrix}.$$

Portanto, calcular
$$[v]_{\beta} = [I]_{\beta}^{\alpha}[v]_{\alpha} = \begin{bmatrix} 3/2 & -1 & -1/2 \\ 1/2 & 0 & -1/2 \\ -1/2 & 1 & 1/2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ -2 \end{bmatrix}.$$

c) Observe que

$$T\left(\begin{bmatrix}2\\-1\\0\end{bmatrix}\right) = T\left(4\begin{bmatrix}1\\0\\1\end{bmatrix} + \begin{bmatrix}0\\1\\-2\end{bmatrix} - 2\begin{bmatrix}1\\1\\1\end{bmatrix}\right)$$
$$= 4\begin{bmatrix}1\\0\\0\end{bmatrix} + \begin{bmatrix}0\\1\\0\end{bmatrix} - 2\begin{bmatrix}0\\0\\1\end{bmatrix} = \begin{bmatrix}4\\1\\-2\end{bmatrix}.$$

Exercícios propostos

- **P7.1.** Considere as bases $\alpha = \{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\}$, $\beta = \{\begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \end{bmatrix}\}$ e $\gamma = \{\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix}\}$ do \mathbb{R}^2 . Encontre as matrizes de mudança de coordenadas nos seguintes casos: a) $[I]_{\beta}^{\gamma}$; b) $[I]_{\gamma}^{\beta}$; c) $[I]_{\alpha}^{\beta}$ e d) $[I]_{\gamma}^{\alpha}$.
- **P7.2.** Suponha que os eixos x e y do plano \mathbb{R}^2 tenham sido girados 30° no sentido anti-horário para formar novos eixos x' e y' do plano. Encontre:
 - a) Os vetores unitários na direção dos novos eixos x' e y';
 - b) A matriz P de mudança de coordenadas da base antiga para a base nova;
 - c) As novas coordenadas dos pontos $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ e $\begin{bmatrix} 3 \\ 5 \end{bmatrix}$;
 - d) Por fim, verifique que $PP^t = I$.

- **P7.3.** a) Ache a expressão da transformação linear $T : \mathbb{R}^3 \to \mathbb{R}^2$ tal que $T(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}) = \begin{bmatrix} -2 \\ 1 \end{bmatrix}, T(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$;
 - b) Encontre $\mathbf{v} \in \mathbb{R}^3$ tal que $T(\mathbf{v}) = \begin{bmatrix} 3\\2 \end{bmatrix}$.
- **P7.4.** Seja G um operador do \mathbb{R}^2 e α a base a seguir:

$$G\left(\left[\begin{smallmatrix} x\\y \end{smallmatrix}\right]\right) = \left[\begin{smallmatrix} 2x-7y\\4x-3y \end{smallmatrix}\right] \ \mathrm{e} \ \alpha = \left\{\left[\begin{smallmatrix} 1\\3 \end{smallmatrix}\right], \left[\begin{smallmatrix} -2\\5 \end{smallmatrix}\right]\right\}$$

- a) Encontre a matriz $[G]^{\alpha}_{\alpha}$ de G, com respeito à α .
- b) Verifique que $[G]^{\alpha}_{\alpha}[\mathbf{w}]_{\alpha} = [G(\mathbf{w})]_{\alpha}$ para o vetor $\mathbf{w} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$.
- **P7.5.** Para cada um dos operadores lineares T do \mathbb{R}^2 a seguir, encontre a matriz A, que representa T (em relação à base canônica do \mathbb{R}^2).
 - a) T definida por $T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) = \begin{bmatrix} 2\\4 \end{bmatrix}$ e $T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right) = \begin{bmatrix} 5\\8 \end{bmatrix}$.
 - b) T é a rotação no sentido anti-horário em torno da origem de $\pi/2$.
 - c) T é a reflexão de \mathbb{R}^2 em torno da reta y = -x.
- **P7.6.** Mostre que a relação de semelhança entre matrizes é uma relação de equivalência, isto é, a relação é a seguinte: Dizemos que as matrizes A e B são matrizes semelhantes (e escrevemos $A \cong B$) se existe uma matriz P invertível, tal que $B = P^{-1}AP$. Mostre então que: a) $A \cong A$; b) Se $A \cong B$ então $B \cong A$ e c) Se $A \cong B$ e $B \cong C$ então $A \cong C$.