

MER S. Deparis Algèbre linéaire - (n/a) 21 janvier 2019 3 heures

SCIPER: 999999

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 16 pages, les dernières pouvant être vides. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Aucun document n'est autorisé.
- L'utilisation d'une **calculatrice** et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à **choix multiple**, on comptera:
 - +3 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Pour les questions de type **vrai-faux**, on comptera:
 - +1 point si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -1 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien											
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren									
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte											

Notation

– Pour une matrice $A,\,a_{ij}$ désigne l'élément situé sur la ligne i et la colonne j de la matrice.

– Pour un vecteur $\vec{x}, \, x_i$ désigne la i-ème coordonnée de $\vec{x}.$

- I_m désigne la matrice identité de taille $m{\times}m.$

 $-\mathbb{P}_n(\mathbb{R})$ désigne l'espace vectoriel des polynômes réels de degré inférieur ou égal à n.

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question [MC-calc-systeme-lineaire]: Soient h un paramètre réel,

$$A = \begin{pmatrix} 3 & -1 & -1 \\ 1 & \frac{7}{3} & 1 \\ -3 & 1 - 2h & 1 - h \end{pmatrix} \quad \text{et} \quad \vec{b} = \begin{pmatrix} 2 \\ \frac{4}{3}h + \frac{2}{3} \\ -1 \end{pmatrix}.$$

Alors l'équation matricielle $A\vec{x} = \vec{b}$

 \square admet le vecteur $\vec{x}=\left(egin{array}{c} rac{1}{6}(4+h) \\ rac{1}{2}h \\ 0 \end{array}
ight)$ pour solution si et seulement si $h=\pm 1.$

admet le vecteur $\vec{x} = \begin{pmatrix} \frac{1}{6}(4+h) \\ \frac{1}{2}h \\ 0 \end{pmatrix}$ pour solution si et seulement si $h \neq \pm 1$.

 \blacksquare n'admet aucune solution pour tout choix de h.

 ${\bf Question}$ [MC-calc-LU] : Soit

$$A = \left(\begin{array}{rrrr} 1 & -2 & -3 & 4 \\ 5 & -4 & -17 & 16 \\ -2 & 16 & -3 & -11 \\ 3 & -15 & -2 & 6 \end{array}\right).$$

Calculer la factorisation LU de la matrice A (en utilisant seulement des opérations élémentaires sur les lignes consistant à additionner un multiple d'une ligne à une autre ligne en dessous). Alors l'élément ℓ_{42} de la matrice L est donné par

Question [q:MC-calc-span]: Soit h un paramètre réel et soient

$$A_1=\left(\begin{array}{cc}1&-1\\-1&-h\end{array}\right)\,,\quad A_2=\left(\begin{array}{cc}0&1\\h&-1\end{array}\right)\,,\quad A_3=\left(\begin{array}{cc}h&0\\0&1\end{array}\right)\,,\quad A_4=\left(\begin{array}{cc}-1&h\\1&0\end{array}\right)\,.$$

Alors les matrices $A_1,\,A_2,\,A_3$ et A_4 sont linéairement dépendantes si et seulement si

 $h \in \{0,1\}.$

 $h \in \{-1, 0, 1\}.$

 $h \in \{-1, 0\}.$

Question [q:MC-calc-inverse-v2]: Soit

$$A = \left(\begin{array}{cccc} 1/2 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ -1 & 0 & 1 & 0\\ -1/6 & 0 & 1/3 & 1/3 \end{array}\right)$$

et B une matrice de taille 4×4 telle que $AB=I_4$. Soit ${\rm Tr}(B)=b_{11}+b_{22}+b_{33}+b_{44}$ la trace de B. Alors

 $\operatorname{Tr}(B) = 5.$

 $\operatorname{Tr}(B) = 2.$

Question [q:MC-calc-det-v3]: Soit α un nombre réel et

$$A = \begin{pmatrix} -3 & -3 & -3 & -2 \\ -2 & -1 & -1 & 0 \\ 0 & 1 & 1 & 2 \\ \alpha & 2 & 3 & 3 \end{pmatrix}.$$

Le déterminant de la matrice A est égal à

 $\det(A) = 2.$

Question [q:MC-calc-matrix] : Soit $T: \mathbb{R}^2 \to \mathbb{R}^2$ une application linéaire,

$$\mathcal{B} = \left\{ \left(\begin{array}{c} 1 \\ -1 \end{array} \right), \left(\begin{array}{c} -1 \\ 2 \end{array} \right) \right\} \quad \text{une base de } \mathbb{R}^2, \quad \text{et} \quad M = \left(\begin{array}{cc} 2 & 3 \\ 1 & 6 \end{array} \right)$$

la matrice M de T par rapport à la base \mathcal{B} , c'est-à-dire $\left[T(\vec{x})\right]_{\mathcal{B}}=M\left[\vec{x}\right]_{\mathcal{B}}$ pour tout $\vec{x}\in\mathbb{R}^2$. Alors

Question [q:MC-calc-matrice-polynome]: Soit $\mathcal{B} = \{1, 1+t, 1+t^2\}$ une base de $\mathbb{P}_2(\mathbb{R})$ et $T: \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$ l'application linéaire définie par

$$T(a + bt + ct^2) = (a + b + c) + (a - b)t + (b - c)t^2$$
 pour tout $a, b, c \in \mathbb{R}$.

La matrice M de T par rapport à la base \mathcal{B} , telle que $[T(p)]_{\mathcal{B}} = M[p]_{\mathcal{B}}$ pour tout $p \in \mathbb{P}_2(\mathbb{R})$, est

$$\blacksquare M = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}. \qquad \Box M = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}.$$

Question [q:MC-calc-rank]: Soit A une matrice de taille $m \times n$. Si m < n, alors la plus petite valeur possible pour dim(Ker A) est

 \bigcap 0.

n-m.

 \square m.

 $\prod m-n$

Question [q:MC-calc-base-ker-3-v2] : Soit $T: \mathbb{P}_3(\mathbb{R}) \to \mathbb{R}^4$ l'application linéaire définie par

$$T(a+bt+ct^{2}+dt^{3}) = \begin{pmatrix} a+b-c+3d \\ b+2d \\ 2a+3b-2c+8d \\ -3b-6d \end{pmatrix}.$$

Alors

Ker
$$T = \text{Vect} \{1 + t^2, 1 + 2t - t^3\}.$$

Question [q:MC-calc-base-im-v2] : Soit $T: \mathbb{R}^4 \to \mathbb{R}^4$ l'application linéaire définie par

$$T\left(\left(\begin{array}{c} x_1\\ x_2\\ x_3\\ x_4 \end{array}\right)\right) = \left(\begin{array}{c} 6x_1\\ -12x_1 + 6x_2 - 3x_3 + 6x_4\\ -24x_1 + 18x_3\\ -12x_1 + 6x_2 + 6x_3 + 6x_4 \end{array}\right).$$

Alors

$$\blacksquare \operatorname{Im} T = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ -2 \\ -4 \\ -2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -6 \\ -2 \end{pmatrix} \right\}. \qquad \Box \operatorname{Im} T = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

Question [q:MC-calc-passage] : Soient

$$\mathcal{B} = \left\{ \left(\begin{array}{c} 1 \\ -2 \end{array} \right), \left(\begin{array}{c} -3 \\ 5 \end{array} \right) \right\} \qquad \text{et} \qquad \mathcal{C} = \left\{ \left(\begin{array}{c} -3 \\ 8 \end{array} \right), \left(\begin{array}{c} 2 \\ -5 \end{array} \right) \right\}$$

deux bases de \mathbb{R}^2 . Alors la matrice de passage P de la base \mathcal{B} vers la base \mathcal{C} , telle que $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{C}} = P \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$ pour tout $\vec{x} \in \mathbb{R}^2$, est

$$\blacksquare P = \begin{pmatrix} 1 & -5 \\ 2 & -9 \end{pmatrix}.$$

Question [MC-calc-valeurs-propres]: Soit

$$A = \left(\begin{array}{ccc} 5 & -7 & 7 \\ 4 & -3 & 4 \\ 4 & -1 & 2 \end{array}\right).$$

Les valeurs propres de A sont

$$-5, -2 \text{ et } 3.$$

$$-5, -1 \text{ et } 2.$$

$$-2, 1 \text{ et } 5.$$

Question [MC-calc-vecteurs-propres]: Soient

$$A = \left(\begin{array}{rrrr} 2 & 1 & -1 & 1 \\ 0 & 3 & 2 & -1 \\ 1 & -1 & 4 & -1 \\ -1 & 1 & 1 & 3 \end{array}\right)$$

et $V = \left\{ \vec{x} \in \mathbb{R}^4 \mid A\vec{x} = 3\vec{x} \right\}$. Alors:

$$\blacksquare V = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix} \right\}.$$

 $\mathbf{Question} \; [\mathtt{q:MC-calc-proj-ortho}] : \; \; \mathrm{Soient} \;$

$$\vec{v} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \quad \text{et} \quad W = \text{Vect} \left\{ \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right\}.$$

Si \mathbb{R}^3 est muni du produit scalaire canonique, alors la projection orthogonale de \vec{v} sur W est

$$\blacksquare \left(\begin{array}{c} 1\\ -1/2\\ 1/2 \end{array}\right).$$

Question [MC-calc-moindre-carres]: Soient

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ -1 & 2 & 0 \\ 2 & 0 & -1 \end{pmatrix} \quad \text{et} \quad \vec{b} = \begin{pmatrix} 2 \\ 4 \\ 2 \\ 4 \end{pmatrix}.$$

Alors la solution au sens des moindres carrés $\widehat{x}=\left(\begin{array}{c} \widehat{x}_1\\ \widehat{x}_2\\ \widehat{x}_3 \end{array}\right)$ de l'équation $A\vec{x}=\vec{b}$ satisfait

- $\widehat{x}_1 = 8/5 \quad \text{et} \quad \widehat{x}_3 = 0.$

Question [q:MC-calc-diag]: La matrice $A=\begin{pmatrix}23&-36\\-36&2\end{pmatrix}$ est diagonalisable en base orthonormée et peut s'écrire sous la forme $A=QDQ^T$, avec Q une matrice orthogonale et D une matrice diagonale, où

Question [q:MC-theory-determinant]: Soient A et B deux matrices inversibles de taille $n \times n$. Alors le nombre

$$\frac{\det(A^T) + \det(B^T)}{\det(A)\det(B)}$$

- \square est égal à $\frac{1}{\det(B)} \frac{1}{\det(A)}$.
- \square est égal à $\det(A^T A) + \det(B^T B)$.
- \square est égal à $\det(B^{-1} + A^{-1})$.
- est égal à $\det(A^{-1}) + \det(B^{-1})$.

Question [q:MC-theory-systeme-lineaire]: Soit A une matrice de taille $m \times n$ telle que $A\vec{x} = \vec{b}$ possède au moins une solution pour tout choix de $\vec{b} \in \mathbb{R}^m$. Alors il est toujours vrai que

- $A^T \vec{y} = \vec{c}$ possède au moins une solution pour tout choix de $\vec{c} \in \mathbb{R}^n$.

- $A^T \vec{y} = \vec{0}$ possède une solution unique.

Question [q:MC-theory-sous-espaces-v2]: Soit $\mathcal{M}_{2\times 3}(\mathbb{R})$ l'espace vectoriel des matrices de taille 2×3 .

Parmi les trois sous-ensembles de $\mathcal{M}_{2\times 3}(\mathbb{R})$ suivants :

$$\mathcal{E}_{1} = \left\{ \begin{pmatrix} u & 0 & v \\ 0 & w & 0 \end{pmatrix} \middle| u, v, w \in \mathbb{R} \text{ et } uv = w^{2} \right\},$$

$$\mathcal{E}_{2} = \left\{ a \begin{pmatrix} 1 & 3/2 & 7 \\ -5 & \sqrt{2} & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b \in \mathbb{R} \right\},$$

$$\mathcal{E}_{3} = \left\{ \begin{pmatrix} 0 & x & 1 \\ y & 0 & x - y \end{pmatrix} \middle| x, y \in \mathbb{R} \right\},$$

lesquels sont des sous-espaces vectoriels de $\mathcal{M}_{2\times 3}(\mathbb{R})$?

seulement \mathcal{E}_2 .
seulement \mathcal{E}_1 .
seulement \mathcal{E}_3 .
seulement \mathcal{E}_2 et \mathcal{E}_3

Question [q:MC-theory-valeurs-propres-v2] : Soit $\{\vec{v}_1,...,\vec{v}_6\}$ une base orthonormée de \mathbb{R}^6 muni du produit scalaire canonique et

$$A = 3\vec{v}_1\vec{v}_1^T - 2\left(\vec{v}_2\vec{v}_2^T + \vec{v}_3\vec{v}_3^T\right) + \tfrac{1}{3}\left(\vec{v}_4\vec{v}_4^T + \vec{v}_5\vec{v}_5^T + \vec{v}_6\vec{v}_6^T\right).$$

Le polynôme caractéristique $p_{\scriptscriptstyle A}$ de A est donné par

$$p_A(t) = (t-3) + (t+2)^2 + (t-\frac{1}{3})^3.$$

$$p_A(t) = (t-3) + 2(t+2) + 3(t-\frac{1}{3}).$$

Question [q:MC-theory-diagonalisable]: Soient A et B deux matrices diagonalisables de taille 3×3 .

On suppose que $\{\vec{u}_1,\vec{u}_2,\vec{u}_3\}$ est une base de \mathbb{R}^3 telle que

- (a) les espaces propres de A sont $E_1 = \text{Vect}\,\{\vec{u}_1,\vec{u}_2\}$ et $E_2 = \text{Vect}\,\{\vec{u}_3\},$
- $\textbf{(b)} \ \ B\vec{u}_2 = -\vec{u}_2 \ \ \text{et} \ \ \mathrm{Ker}(B) = \mathrm{Vect}\, \{\vec{u}_1,\vec{u}_3\}.$

Alors

les matrices AB et A + B sont toujours diagonalisables.

aucune des matrices AB et A + B n'est diagonalisable en général.

 $\hfill \Box$ la matrice AB est toujours diagonalisable, mais A+B n'est pas diagonalisable en général.

 \square la matrice A+B est toujours diagonalisable, mais AB n'est pas diagonalisable en général.

Question [q:MC-theory-diagonalisation]: Soit b un paramètre réel et soit

$$A = \left(\begin{array}{ccc} 1 & b - 1 & 0 \\ 0 & b & 0 \\ 0 & b + 1 & b \end{array}\right).$$

Alors

p	pour b = -1	la	${\it matrice}$	A	possède	deux	valeurs	propres	distinctes	et	est	diagona	ılisə	ble
---	-------------	----	-----------------	---	---------	------	---------	---------	------------	----	----------------------	---------	-------	-----

 \square pour b=1 la matrice A possède une seule valeur propre et est diagonalisable.

 \square pour tout $b \neq \pm 1$ la matrice A possède deux valeurs propres distinctes et est diagonalisable.

 \square pour tout $b \neq \pm 1$ la matrice A possède une seule valeur propre et est diagonalisable.

Question [q:MC-theory-moindres-carres]: Soient A une matrice non-nulle de taille $m \times n$ et $\vec{b} \in \mathbb{R}^m$. Alors, il est toujours vrai que

 \square l'équation $A\vec{x} = \vec{b}$ admet une unique solution au sens des moindres carrés.

 $A\widehat{x} = A\widehat{x}'$ si \widehat{x} et \widehat{x}' sont deux solutions au sens des moindres carrés de $A\overrightarrow{x} = \overrightarrow{b}$.

 \Box la matrice A^TA est inversible.

Question [q:MC-theory-matrice-orthogonale-v0]: Soient

$$\vec{x}_1 = \left(egin{array}{c} -2 \\ 2 \\ 1 \\ 0 \end{array}
ight), \quad \vec{x}_2 = \left(egin{array}{c} 2 \\ 2 \\ 0 \\ 1 \end{array}
ight), \quad \vec{x}_3 = \left(egin{array}{c} 3 \\ -2 \\ 1 \\ 7 \end{array}
ight)$$

et soit $W=\mathrm{Vect}\,\{\vec{x}_1,\vec{x}_2,\vec{x}_3\}$. Le procédé d'orthogonalisation de Gram-Schmidt, sans normalisation et sans changer l'ordre, appliqué à la base $\{\vec{x}_1,\vec{x}_2,\vec{x}_3\}$ de W nous fournit une base orthogonale $\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}$ de W, où

$$\vec{v}_3 = \vec{x}_3 - \vec{v}_1 + \vec{v}_2.$$

$$\vec{v}_3 = \vec{x}_3 + \vec{v}_1 - \vec{v}_2.$$

Deuxième partie, questions de type ouvert

- Répondre dans l'espace dédié en utilisant un stylo (ou feutre fin) noir ou bleu foncé.
- Votre réponse doit être soigneusement justifiée: toutes les étapes de votre raisonnement doivent figurer dans votre réponse.
- Laisser libres les cases à cocher: elles sont réservées au correcteur.

Question 1 : Cette question est notée sur 8 points.

Soient A et B les deux matrices 4×4 données ci-dessous.

$$A = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 2 \end{pmatrix}$$

- (a) Seule une des deux matrices est diagonalisable en base orthonormée. (1 point) Laquelle et pourquoi?
- (b) Donner une diagonalisation en base orthonormée sous la forme PDP^{-1} de la (7 points) matrice du point (a).

Question 1 : Cette question est notée sur 10 points.

Soient V et W deux espace vectoriels réels ayants deux bases $\mathcal B$ et $\mathcal C$ respectivement.

(a) Donner la définition de coordonnées d'un vecteur.

(2 points)

(b) Donner la définition de transformation linéaire $T: V \to W$

(2 points)

(c) Prouver qu'il existe une unique matrice A, appelée matrice de T associée aux (6 points) bases \mathcal{B} et \mathcal{C} , telle que pour tout $\vec{v} \in V$, $\left[T(\vec{v})\right]_{\mathcal{C}} = A\left[\vec{v}\right]_{\mathcal{B}}$. Donner la forme de la matrice A.

