First Midterm Exam MA 35100

February 26, 2020

Name: ABHISH	ELL	PUID: 00315	68171
□ Section 111	□ Section 112	□ Section 126	☐ Section 127
TTh 10:30 am	TTh 9:00 am	TTh 7:30 am	TTh 9:00 am
Prof. Patzt	Prof. Patzt	Prof. VanKoughnett	Prof. VanKoughnett

DO NOT TURN THE PAGE UNTIL INSTRUCTED!

Rules:

- Put the answers for Multiple Choice Questions in the answer box.
- Do not write on the backside of any pages.
- Every problem is worth 10 points.
- The first two problems have to be answered in a written response and a complete argument has to be presented.
- For the following 8 multiple choice problems.
 - 10 points are achieved if the correct response is indicated in the answer box.
 - Up to 5 points can be achieved if a written response contains essential ideas how to solve the problem.

1. Give the definition of linear independence.

A set of vector $S = \{X_1, X_2, ..., X_n\}$ is said to be linearly independent if the nore of the elements of S can be expressed as a linear combination of any of the other vectors.

In other words, all (i's in the linear dependency equation: (1, X₁ + (2, X₂ + ... + (i, X_i = 0 are Zero, Proving linear in depen

3. What is true about the following linear system?

$$4x + 2y + 4z = 6$$

$$x + 5y - 2z = 0$$

$$3x + 6y + 2z = 1$$

- (a) There is no solution.
- (b) There is exactly one solution and x = 3.
 - (c) There is exactly one solution and y = 1.
- (d) There are infinitely many solutions and x = 3z.
- (e) There are infinitely many solutions and y = 2 2z.

4. What is the RREF of the matrix

$$A = \begin{bmatrix} 3 & 5 & -2 & 3 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & -2 & 1 \end{bmatrix}$$
?

(a)
$$\begin{bmatrix} 1 & 0 & 0 & \frac{1}{3} \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 3 & 5 & -2 & 3 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (e)
$$\begin{bmatrix} 1 & 0 & -4 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 & 1 & 0 & -4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 & -4 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{array}{c|ccccc}
 & 1 & 0 & -4 & 1 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}$$

Answer:

i provisterey

6. Which of the following sets of vectors is **not** linearly independent?

7. Let S be the subspace of \mathbb{R}^4 consisting of all vectors of the form

$$\begin{bmatrix} a+b+d+e \\ 0 \\ 2a+b+c+3e \\ 3b-3c+6d-3e \end{bmatrix}$$

where a, b, c, d, e are real numbers. What is the dimension of S?

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

8. Which of the following is a basis of the nullspace of

(a)
$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
(b) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(c) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(d) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(e) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(f) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(g) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(h) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0$

- 9. Which of the following statements is true?
 - (a) If a 3×4 matrix has nullity 1, then its columns span \mathbb{R}^3 . $\sqrt{3} = \sqrt{4}$
 - (b) The rank of a matrix is the dimension of the nullspace.
 - (c) If a 4×5 matrix has rank 2, then its nullity is also 2. 5 2 = 3
 - (d) The nullity of a matrix is the number of zero rows in its RREF.
 - (e) The rank of a matrix is greater than or equal to its nullity.

Answer:

Pank(A) + nullity (A) = N

If and (a) = N

dim(a)space/dim(rowspace)

- 10. Which of the following statements makes sense? (We are not asking about the truth of the statements.)
 - (a) The vector $v_1, v_2, v_3 \in V$ are inconsistent.
 - (b) The columns of the matrix A are linearly independent.
 - (c) The rank of the matrix B equals its column space.
 - (d) The vector space of polynomials is linearly independent of \mathbb{R}^4 .
 - (e) The dimension of the matrix A is 3.