

Correction de l'examen national 2016

DSI-SRI-MCW

Présenté par: Mme. BENAZZOU Salma

Cette exercice ressemble à celui du national 2019

1-Montrer que $P(\lambda) = \lambda^2 - 4 \lambda + 3$

On a A=
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

P(λ)=Det(A- λ I)= $\begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix}$ =(2 - λ)²-1=4+ λ ²-4 λ -1
= λ ²-4 λ +3

Les valeurs propres:

Résoudre P(
$$\lambda$$
)=0
 Δ =(-4)²-4.3=4=2²
 λ 1= $\frac{4-2}{2}$ =1 et λ 2= $\frac{4+2}{2}$ =3
Alors P(λ)=(λ -1)(λ +2)

Si
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Alors Det $A = ad-bc$

$$P(X)=aX^2+bX+c$$

Si α et β deux racines de P alors
 $P(X)=(X-\alpha)(X-\beta)$

2-Calculer PQ et QP et déduire que P et inversible et calculer P^{-1}

On a
$$P = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $Q = \frac{1}{2} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$

$$PQ = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

$$PQ = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

$$Donc P^{-1} = Q = \frac{1}{2} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$$

Donc
$$P^{-1} = Q = \frac{1}{2} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$$

2-b-Verifier que $A=PDP^{-1}$

On a
$$\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$

P.D= $\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} -1 & 3 \\ 1 & 3 \end{pmatrix}$

$$\begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$PD P^{-1} = \begin{pmatrix} -1 & 3 \\ 1 & 3 \end{pmatrix} \qquad \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = A$$

3-a-Exprimer X'(t) en fonction de A et de X(t)

Le système est :
$$\begin{cases} x'(t) = 2x(t) + y(t) \\ y'(t) = x(t) + 2y(t) \end{cases}$$
 Avec $X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$

La forme matricielle associé au système est :

$$\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

Alors X'(t)=A. X(t)

Déduire que Y'(t)=DY(t)

On a
$$Y(t)=P^{-1}X(t)$$

Alors $Y'(t) = P^{-1}X'(t)$ et d'après la question précédente X'(t) = A. X(t)

Donc Y'(t)= P^{-1} A. X(t) et A=PD P^{-1} (d'aprés la questions 3)

Donc Y'(t)=
$$P^{-1}$$
 PD P^{-1} . X(t)

Or
$$P^{-1}$$
 P=I

Alors Y'(t)=D
$$P^{-1}$$
. X(t)

C'est-à-dire Y'(t)=D Y(t)

3-b-exprimer u(t) et v(t) en fonction de t

On a Y'(t)=DY(t) et Y(t)=
$$\begin{pmatrix} x1(t) \\ y1(t) \end{pmatrix}$$

Alors $\begin{pmatrix} x1'(t) \\ y1'(t) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} x1(t) \\ y1(t) \end{pmatrix} = \begin{pmatrix} x1(t) \\ 3y1(t) \end{pmatrix}$
 $\begin{cases} x1'(t) = x1(t) \\ y1'(t) = 3y1(t) \end{cases}$ alors $\begin{cases} x1'(t) - x1(t) = 0 \\ y1'(t) - 3y1(t) = 0 \end{cases}$
 $\begin{cases} x1(t) = \alpha e^{-\int \frac{-1}{1} dt} = \alpha e^{t} \\ y1(t) = \beta e^{-\int \frac{-3}{1} dt} = \beta e^{3t} \end{cases}$

3-c-En déduire x(t) et y(t) en fonction de t

On a Y(t)=
$$P^{-1}$$
X(t) alors
X(t)= P .Y(t)

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x1(t) \\ y1(t) \end{pmatrix}$$

$$\begin{pmatrix} \alpha e^t \\ \beta e^{3t} \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{cases} x(t) = -\alpha e^t + \beta e^{3t} \\ y(t) = \alpha e^t + \beta e^{3t} \end{cases}$$

$$= \begin{pmatrix} -\alpha e^t + \beta e^{3t} \\ \alpha e^t + \beta e^{3t} \end{pmatrix}$$

National 2016

1-

$$I = \int_1^{+\infty} \frac{dx}{x(x+1)(x+2)}$$
. On a:

 $x+1\sim x$ au voisinage de $+\infty$

 $x+2\sim x$ au voisinage de $+\infty$

Donc
$$x(x+1)(x+2) \sim x^3$$
 au voisinage de $+\infty$ alors $\frac{1}{x(x+1)(x+2)} \sim \frac{1}{x^3}$

Or $\int_{1}^{+\infty} \frac{1}{x^3} dx$ est convergente car c'est une integrale de Riemann $\alpha = 3 > 1$

Donc d'apres le **critére d'equivalence** $\int_1^{+\infty} \frac{dx}{x(x+1)(x+2)}$ est convergente

On a
$$\frac{1}{2x} - \frac{1}{x+1} + \frac{1}{2(x+2)} = \frac{(x+1)\times 2(x+2) - 2x\times 2(x+2) + 2x(x+1)}{2x\times (x+1)\times 2(x+2)} = \frac{2(x^2 + 2x + x + 2) - 4(x^2 + 2x) + 2(x^2 + x)}{4x(x+1)(x+2)} = \frac{2x^2 + 6x + 4 - 4x^2 - 8x + 2x^2 + 2x}{4x(x+1)(x+2)} = \frac{4}{4x(x+1)(x+2)} = \frac{1}{x(x+1)(x+2)}$$

b- On a
$$I(\alpha) = \int_1^{\alpha} \frac{dx}{x(x+1)(x+2)} = \int_1^{\alpha} \left(\frac{1}{2x} - \frac{1}{x+1} + \frac{1}{2(x+2)}\right) dx = \left[\frac{1}{2} \ln|x| - \ln|x+1| + \frac{1}{2} \ln|x+2|\right]_1^{\alpha}$$

$$= \left[\ln \sqrt{x} - \ln(x+1) + \ln \sqrt{x+2}\right]_1^{\infty} = \left[\ln \frac{\sqrt{x(x+2)}}{x+1}\right]_1^{\infty} = \ln \frac{\sqrt{\infty(\infty+2)}}{\infty+1} - \ln \frac{\sqrt{3}}{2}$$

Par définition d'une intégrale généralisée $I = \lim_{\infty \to +\infty} I(\infty)$ c'est-à-dire

$$\int_{1}^{+\infty} \frac{dx}{x(x+1)(x+2)} = \lim_{\alpha \to +\infty} \int_{1}^{\infty} \frac{dx}{x(x+1)(x+2)}$$

Donc I=
$$\lim_{\alpha \to +\infty} \ln \frac{\sqrt{\alpha(\alpha+2)}}{\alpha+1} - \ln \frac{\sqrt{3}}{2} = -\ln \frac{\sqrt{3}}{2} \left(\operatorname{car} \lim_{\alpha \to +\infty} \frac{\sqrt{\alpha(\alpha+2)}}{\alpha+1} = \lim_{\alpha \to +\infty} \frac{\sqrt{\alpha^2}}{\alpha} = 1 \right)$$
 et $\ln 1 = 0$)

a
$$\ln b = \ln b^a$$

Ln a - $\ln b = \ln \frac{a}{b}$
Ln a + $\ln b = \ln ab$

II-
$$A = \int_0^{+\infty} e^{-x} dx$$

On sait que $\lim_{x\to +\infty} x^2 e^{-x} = 0$, $\alpha = 2 > 1$ alors d'après le **critère de Riemann** A est convergente

$$\lim_{x \to -\infty} x^{\infty} e^x = 0$$

$$B = \int_{1}^{4} \frac{dx}{x\sqrt{x-1}}$$

Je pose
$$f(x) = \frac{1}{x\sqrt{x-1}} = \frac{1}{x} \cdot \frac{1}{\sqrt{x-1}}$$

Je pose $g(x) = \frac{1}{\sqrt{x-1}}$

On a
$$\lim_{x \to 1} \frac{f(x)}{g(x)} = \lim_{x \to 1} \frac{\frac{1}{x} \cdot \frac{1}{\sqrt{x-1}}}{\frac{1}{\sqrt{x-1}}} = \lim_{x \to 1} \frac{1}{x} = 1$$

Alors $f(x) \sim g(x)$ au voisinage du point 1. Etudions $\int_1^4 \frac{dx}{\sqrt{x-1}}$

Méthode 1: Définition

$\int_{1}^{4} \frac{dx}{\sqrt{x-1}} = \lim_{t \to 1} \int_{t}^{4} \frac{dx}{\sqrt{x-1}} = \lim_{t \to 1} \int_{t}^{4} (x-1)^{-\frac{1}{2}} dx = \lim_{t \to 1} \left[\frac{1}{-\frac{1}{2}+1} (x-1)^{-\frac{1}{2}+1} \right]_{t}^{4} = \lim_{t \to 1} \left[2\sqrt{x} - 1 \right]_{t}^{4} = \lim_{t \to 1} 2\sqrt{3} - 2\sqrt{t-1} = 2\sqrt{3}$ Alors $\int_{1}^{4} \frac{dx}{\sqrt{x-1}}$ est convergente donc B est convergente d'après le **critère d'équivalence**

Méthode 2: Changement de variable

Je pose t=x-1 alors dx=dt $x=1 \rightarrow t=0$ et x=4 $\rightarrow t=3$ $\int_{1}^{4} \frac{dx}{\sqrt{x-1}} = \int_{0}^{3} \frac{dt}{\sqrt{t}} = \int_{0}^{1} \frac{1}{\sqrt{t}} dt + \int_{1}^{3} \frac{1}{\sqrt{t}} dt$ $\int_{0}^{1} \frac{1}{\sqrt{t}} dt$ est convergente (Riemann $\alpha=1/2<1$) $\int_{1}^{3} \frac{1}{\sqrt{t}} dt$ est convergente (t $\rightarrow \frac{1}{\sqrt{t}}$ est continue sur [1,3]) Alors $\int_{0}^{3} \frac{dt}{\sqrt{t}} = \int_{1}^{4} \frac{dx}{\sqrt{x-1}}$ est convergente donc B est convergente d'après le **critère d'équivalence**

	6 point	Exercise 3:
		I. Som in some $\sum_{n \geq 1} u_n$ the name general u_n tel que pour tours $n \geq 1$: $u_n = \frac{1}{n(n+1)}$
	1,3	In Montrer que les mites $(u_n)_{n\geq 1}$ et $\left(\frac{1}{n^2}\right)_{n\geq 1}$ sent équivalentes su voisinage de $+n$
		and the first the same of the language of the
	0.5	2. a. Vérifier que : $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \text{ pour tout } n \ge 1$
		b-Calculer S_n avec : $S_n = \sum_{k=1}^n u_k$ et en déduire $\sum_{n=1}^n u_n$
	1	IL Etudier la nature des séries numériques suivantes :
13	×I	$\sum_{i=1}^{n} \frac{n^n}{n^2}$ or $\sum_{n\geq 0} \frac{(-1)^n}{\sqrt{n^2+1}}$

1-Montrons que Un $\sim \frac{1}{n^2}$ et déduire la nature de $\sum_{n\geq 1} Un$

On a Un=
$$\frac{1}{n(n+1)}$$

Au voisinage de l'infini on a : n+1~n donc n(n+1)~n² alors Un~ $\frac{1}{n^2}$

Or $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ est convergente car c'est une série de Riemann $\alpha=2>1$

Donc d'après le critère d'équivalence la série $\sum_{n=1}^{+\infty} Un$ est convergente

2-a-Vérifier que
$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

 $\frac{1}{n} - \frac{1}{n+1} = \frac{n+1-n}{n(n+1)} = \frac{1}{n(n+1)} = U_n$
B-Calculer $Sn = \sum_{k=1}^{n} U_k$
 $\sum_{k=1}^{n} U_k = U_1 + U_2 + \dots + U_n$
 $U_n = \frac{1}{n} - \frac{1}{n+1}$
 $U_1 = \frac{1}{1} - \frac{1}{2}$
 $U_2 = \frac{1}{2} - \frac{1}{3}$

.

$$U_{n-1} = \frac{1}{n-1} - \frac{1}{n}$$

$$U_n = \frac{1}{n} - \frac{1}{n+1}$$

$$\sum_{k=1}^{n} U_k = U_1 + U_2 + \dots + U_n$$

$$Sn = 1 - \frac{1}{n+1}$$

• Calculer $\sum_{n=1}^{+\infty} U_n : \sum_{n=1}^{+\infty} U_n = \lim_{n \to +\infty} 1 - \frac{1}{n+1} = 1$

II-

1-La nature de
$$\sum_{n\geq 1} \frac{e^{-n}}{n^2}$$

• Méthode 1
Je pose Un=
$$\frac{e^{-n}}{n^2}$$

On sait que
$$\lim_{-\infty} x^{\infty} e^{x} = 0$$

On a
$$\lim_{n \to \infty} n^2 \cdot \frac{e^{-n}}{n^2} = \lim_{n \to \infty} e^{-n} = 0$$

On a $\approx 2 > 1$ Donc d'après la règle $n^{\alpha}U_n$ la série de terme générale Un est convergente.

• <u>Méthode 2</u>

On sait que
$$\lim_{n\to+\infty} \frac{\frac{e^{-n}}{n^2}}{\frac{1}{n^2}} = \lim_{n\to+\infty} e^{-n} = 0$$
 (car $\lim_{x\to-\infty} e^x = 0$)

Or $\sum_{n\geq 1} \frac{1}{n^2}$ est convergente car c'est une série de Riemann $\alpha=2>1$

Donc d'après le critère de négligence $\sum_{n\geq 1} \frac{e^{-n}}{n^2}$ est convergente.

2-La nature de
$$\sum_{n\geq 1} \frac{n^n}{n!}$$

Je pose Un=
$$\frac{n^n}{n!}$$

Je pose Un=
$$\frac{n^n}{n!}$$

$$\frac{Un+1}{Un} = \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} = \frac{(n+1)^{n+1}}{(n+1)!} \times \frac{n!}{n^n} = \frac{(n+1) \cdot (n+1)^n}{(n+1) \times n!} \times \frac{n!}{n^n} = \frac{(n+1)^n}{n^n} = (\frac{n+1}{n})^n = (1+\frac{1}{n})^n$$

$$\lim_{n \to \infty} \frac{Un+1}{Un} = \lim_{n \to \infty} (1 + \frac{1}{n})^n = \lim_{n \to \infty} e^{n \cdot \ln(1 + \frac{1}{n})} = \lim_{n \to \infty} e^{n \cdot \ln(1 + \frac{1}{n})} = \lim_{n \to \infty} e^{n \cdot \ln(1 + \frac{1}{n})} = e^{1} > 1$$

Alors d'après le critère de D'Alembert la série de terme générale Un est divergente.

3-La nature de
$$\sum_{n\geq 0} \frac{(-1)^n}{\sqrt{n^2+1}}$$

Je pose Un=
$$\frac{(-1)^n}{\sqrt{n^2+1}}$$
= $(-1)^n \times \frac{1}{\sqrt{n^2+1}}$ et Vn= $\frac{1}{\sqrt{n^2+1}}$

On a
$$\lim_{+\infty} V n = \lim_{+\infty} \frac{1}{\sqrt{n^2 + 1}} = 0$$

• On a
$$V_n+1=\frac{1}{\sqrt{(n+1)^2+1}}$$

or n+1>n donc (n+1)²>n² (car x
$$\rightarrow$$
x² est croissante) donc (n+1)²+1>n²+1

Alors
$$\sqrt{(n+1)^2+1} > \sqrt{n^2+1}$$
 ((car x $\rightarrow \sqrt{x}$ est croissante)

Donc Vn+1<Vn donc (Vn) est décroissante

Alors d'après le critère spécial des séries alternées $\sum_{n\geq 1} \frac{(-1)^n}{\sqrt{n^2+1}}$ est convergente

National 2016

114tional 2010		
4 poin	ts Exercice 4:	
	Soit X la variable aléatoire réelle qui prend pour valeur le nombre de défauts sur le serre d'une ampoule.	
	On admet que X suit la loi de Poisson de paramètre $\lambda=5$.	
	Calculer la probabilité des événements suivants :	
1	a- Il n'y a aucun défaut sur l'ampoule.	
1	b- Il y'a au moins deux défauts sur l'ampoule.	
1	c- Le nombre de défauts est compris entre deux et cinq (bornes comprises).	
1	2. Calculer l'espérance et l'écart-type de X.	
3 2 1		
- 30	The second secon	

National 2016

1-a Il n'y a aucun défaut sur l'ampoule

$$P(X = 0) = e^{-5} \frac{5^{\circ}}{0!} = e^{-5} = 0,0067$$

1-b-il y a au moins deux défauts sur l'ampoule

On a
$$P(X \ge 2) = 1 - P(X < 2) = 1 - (P(X = 0) + P(X = 1))$$

$$=1-e^{-5}\frac{5^{\circ}}{0!}-e^{-5}\frac{5^{\circ}}{1!}=0.95$$

1-c-Le nombre de défaut est compris entre 2 et 5

On a:
$$P(2 \le X \le 5) = P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)$$

$$= e^{-5} \frac{5^{2}}{2!} + e^{-5} \frac{5^{3}}{3!} + e^{-5} \frac{5^{4}}{4!} + e^{-5} \frac{5^{5}}{5!} = e^{-5} \left(\frac{5^{2}}{2!} + \frac{5^{3}}{3!} + \frac{5^{4}}{4!} + \frac{5^{5}}{5!} \right)$$

$$= 0.57$$

2-Calculer l'espérance et l'écart type

$$E(X)=5$$

$$\sigma = \sqrt{V(X)} = \sqrt{5} = 2,23$$

