TD 10 de processus stochastiques et mouvement brownien

Exercice 1 — Le brownien plan est d'aire nulle.

Le but de cet exercice est de montrer que le mouvement brownien plan est presque sûrement d'aire nulle, on note λ la mesure de Lebesgue de \mathbb{R}^2 et $X = \lambda(B[0,1])$.

- 1. Montrer que $\mathbb{E}(X) < \infty$.
- 2. Soit A_1, A_2 deux boréliens d'aire positive, montrer que

$$\lambda(\{x \in \mathbb{R}^2, \ \lambda(A_1 \cap (A_2 + x)) > 0\}) > 0.$$

- 3. Montrer que $\lambda(B[0,1] \cap B[2,3]) = 0$ p.s.
- 4. Soit $B_t^1 = B_t$, $0 \le t \le 1$ et $B_t^2 = B_{t+2} B_2 + B_1$, $0 \le t \le 1$. Montrer que B^1 et B^2 sont indépendant de $B_2 B_1$ et que si on note $R(x) = \lambda(\{B^1[0,1] \cap (x+B^2[0,1])\})$,

p.s.
$$\lambda(\{x \in \mathbb{R}, \ R(x) > 0\}) = 0.$$

5. Conclure.

Exercice 2 — Continuation harmonique

Soit $D \subset \mathbb{R}^d$ un domaine et $x \in D$. On suppose que $u : D \setminus \{x\} \to \mathbb{R}$ harmonique et bornée. Montrer qu'il existe unique continuation harmonique $u : D \to \mathbb{R}$.

Exercice 3 — Retour aux sources

Soit $d \ge 2$. Soit B un mouvement brownien de dimension d issu de 0. Montrer que, presque sûrement, B ne touche x = 0 qu'à l'instant t = 0.

Exercice 4 — Fonctions harmoniques et martingales

Soit h une fonction continue définie sur un ouvert U de \mathbb{R}^d et à valeurs réelles. Montrer que h est harmonique si et seulement si, pour toute boule ouverte \mathcal{B} d'adhérence incluse dans U, pour tout x dans \mathcal{B} , le processus $(h(B_{\min(t,T_{\mathcal{B}})}^{(x)}))_{t\geq 0}$ est une martingale.

Ci-dessus, $B^{(x)}$ désigne un mouvement brownien issu de x et $T_{\mathcal{B}}$ l'instant où il quitte \mathcal{B} .