Identifying Co-regulated Yeast Genes Using Graph-theoretic Methods

Rubin McLuen

Definitions

Gene Expression Level - How actively a gene is being used by the cell.

Co-regulated Genes - Genes that turn on and off together.

Goal: Evaluate Different Methods for Identifying Co-regulated Genes in Yeast

Why?

- Understanding gene function
- Understanding cellular processes
- Disease research

Research On This Subject

Cluster analysis and display of genome-wide expression patterns (Eisen et al., 1998)

Two main questions for finding 'good' clusters:

- 1. How do we decide what is similar?
- How do we use this to cluster items?

Research Approach

Preparing the Data

What it looks like:

Normalizing the data:

- Mean = 0
- Standard Deviation = 1

Conditions

		1	2	3
Genes	YAL001C	161	110	139
Genes	YAL002W	238	139	69
	YAL003W	425	429	451

Conditions

Genes

	1	2	3
YAL001C	-0.65614	-0.94920	-0.56354
YAL002W	-0.19565	-0.69493	-1.13391
YAL003W	1.93042	1.84769	1.97868

Similarity Measures

Manhattan distance (city-block distance, L1 norm)	$d_{fg} = \sum_c \left e_{fc} - e_{gc} \right $			
Euclidean distance (L2 norm)	$d_{fg} = \sqrt{\sum_{c} \left(e_{fc} - e_{gc}\right)^2}$			
Mahalanobis distance	$d_{fg} = (e_f - e_g)' \Sigma^{-1} (e_f - e_g)$, where Σ is the (full or within-cluster) covariance matrix of the data			
Pearson correlation (centered correlation)	$d_{fg} = 1 - r_{fg}$, with $r_{fg} = \frac{\sum_{c} (e_{fc} - \bar{e}_f)(e_{gc} - \bar{e}_g)}{\sqrt{\sum_{c} (e_{fc} - \bar{e}_f)^2 \sum_{c} (e_{gc} - \bar{e}_g)^2}}$			
Uncentered correlation (angular separation, cosine angle)	$d_{fg} = 1 - r_{fg}$, with $r_{fg} = \frac{\sum_{c} e_{fc} e_{gc}}{\sqrt{\sum_{c} e_{fc}^2 \sum_{c} e_{gc}^2}}$			
Spellman rank correlation	As Pearson correlation, but replace e_{gc} with the rank of e_{gc} within the expression values of gene g across all conditions $c = 1C$			
Absolute or squared correlation	$d_{fg} = 1 - r_{fg} \text{ or } d_{fg} = 1 - r_{fg}^2$			
d_{fg} , distance between expression patterns for genes f and g . e_{gc} , expression level of gene g under condition c .				

Similarity Measures

	YAL001C	YAL002W	YAL003W
YAL001C	0	0.75097	0.78498
YAL002W	0.75097	0	0.65889
YAL003W	0.78498	0.65889	0

- 1.0

- 0.8

o. 6. 9.0 Correlation Coefficient

- 0.2

Graph Algorithms: Nearest Neighbor

Nearest Neighbor Graph Visualization for Euclidean

Graph Algorithms: Relative Neighbor

Graph Algorithms: Gabriel Graph

Identifying Clusters

Identifying Clusters: Louvain Method

Louvain Method Clusters for euclidean RNG

Validation

Validating clustering for gene expression data (K. Y. Yeung, D. R. Haynor and, W. L. Ruzzo)

