Intelligent Multi Agent Systems

Decentralized POMDPs
Gerhard Neumann

Agenda

So far, we know how to plan and learn with partial observations and a single agent.

- What about multiple agents?
- Each agent gets a local set of observations
- We will still assume that all agents share the same reward
- Decision making is decentralized

Such a model is called a Decentralized POMDP (Dec-POMDP)!

- There is not much learning out there...
- We will only consider planning

Outline

- Problem Formulation
- Finite Horizon approaches:
 - Bottom-Up
 - Top-Down
- Infinite Horizon approaches
 - Optimizing finite state controllers

Dec-POMDPs

A Dec-POMDP is defined by:

- its state space $oldsymbol{s} \in \mathcal{S}$
- An action space A_i for agent i
- An observation space O_i for agent i
- its transition dynamics $\mathcal{P}(s'|s,a) = \mathcal{P}^a_{s's}$
- observation model per agent $\mathcal{O}_i(m{o}|m{s}) = \mathcal{O}_{os}^i$
- A shared reward function for all agents $r(m{s}, m{a}) = \mathcal{R}^a_s$
- ullet and its initial state probabilities $\mu_0(oldsymbol{s})$

There is a common goal (reward)

We do not know what the other agents observed

Partially Observable Stochastic Games

A Partially Observable Stochastic Game (POSG) is defined by:

- ullet its state space $s\in\mathcal{S}$
- An action space A_i for agent i
- An observation space O_i for agent i
- its transition dynamics $\mathcal{P}(s'|s,a) = \mathcal{P}^a_{s's}$
- observation model per agent $\mathcal{O}_i(m{o}|m{s}) = \mathcal{O}_{os}^i$
- reward function per agent $r_i(m{s},m{a})=\mathcal{R}_{sa}^i$
- and its initial state probabilities $\mu_0(m{s})$

Competitive agents -> That's the hardest case

Dec-Tiger Problem

- A toy problem: decentralized tiger (Nair et al., 2003).
- Opening correct door: both receive treasure.
 - More treasue if both open at the same time
- Opening wrong door: both get attacked by a tiger.
 - Less painful if both open at the same time
- Agents can open a door, or listen.
- Two noisy observations:
 - hear tiger left or right.
 - Don't know the other's actions or observations.

Dec-POMDP policies

Definition: A local policy π_i for agent i, is a mapping from local histories of observations $\mathbf{o}^i=(o_1^i,\dots,o_t^i)$ over Ω_i^* to actions in A_i , $\pi_i:\Omega_i^*\to A_i$

Definition: A **joint policy**, $\langle \pi_1, \dots, \pi_n \rangle$ is a tuple of local policies, one for each agent

Other forms of policy representations:

Mapping from (generalized) belief states to actions:

Mapping from internal memory states to actions (finite state controller
 Computational Learning for Autonomous Systems

DEC-POMDPs complexity

How hard is this problem in comparision to other models?

Some complexity results:

T.	• ,	T 1	r '	•	
H 1	nite	·	α r	170	m
	1				,,,

MDP	P-complete (if $h < S $)	(Papadimitriou and Tsitsiklis, 1987)
POMDP	PSPACE-complete (if $h < S $)	(Papadimitriou and Tsitsiklis, 1987)

Infinite Horizon Discounted

MDP	P-complete	(Papadimitriou and Tsitsiklis, 1987)
POMDP	undecidable	(Madani et al., 1999)

PSPACE-complete if it can be solved using an amount of memory that is polynomial in the input length

DEC-POMDPs complexity

Intuition

- Agents must consider the choices of all others in addition to the state and action uncertainty present in POMDPs.
- In order to know the future choices of other agents we have to reason about the observations of the other agents
- Observation histories of the other agent is our unobserved state

Theorem 2. (Bernstein et al., 2002) Two-agent finite-horizon DEC-POMDPs are NEXP-hard.

- Double exponential!
- Thus provably intractable (unlike POMDP)
- Probably doubly exponential (unlike POMDP)

NEXP problems can be solved by a <u>non-deterministic Turing machine</u> using time $2^{n} O(1)$ and unlimited space.

Outline

Problem Formulation

Finite Horizon approaches

- Bottom-Up
- Top-Down

Infinite Horizon approaches

Optimizing finite state controllers

Optimal DEC-POMDP solutions

Reminder:

- No beliefs over states available.
- No piecewise linear convex value functions.

MDP/POMDP algorithms do not transfer directly. . .

• ... but ideas do transfer

Optimal policies

Naive approach: Evaluate the expected value all policies of horizon T, take the best one

Example: Optimal Policy, Dec-Tiger, T = 4

Exhaustive Search via Dynamic Programing

- Construct all possible policies for the set of agents
- Do this in a bottom up fashion
- Trivially includes an optimal set of trees when finished
- Check all possible combination of trees

t = 1

Exhaustive Search

- Construct all possible policies for the set of agents
- Do this in a bottom up fashion
- Trivially includes an optimal set of trees when finished
- Check all possible combination of trees

Exhaustive Search

- Construct all possible policies for the set of agents
- Do this in a bottom up fashion
- Trivially includes an optimal set of trees when finished
- Check all possible combination of trees

t = 3

Exhaustive Search

- Can find an optimal set of trees
- Number of each agent's trees grows exponentially at each step.
- Many trees will not contribute to an optimal solution
- Can we reduce the number of trees we consider?

Add a pruning step to exhaustive search (Hansen et al., 2004)

- At each step, remove trees that will never be part of optimal solution
- Uses linear programming (LP) to prune these dominated trees.
- Ensures any policy that can contribute to optimal is not removed

- Prune over multi-agent belief space (policies of the other agents and states of the system)
- Retains optimal policy for any belief state

Linear Programs for Prunning Trees

Variables: $\epsilon, x(\hat{q}_i)$

Objective: Maximize ϵ

Improvement constraints:

$$\forall s, q_{-i} \quad V(s, q_i, q_{-i}) + \epsilon \le \sum_{\hat{q}_i} x(\hat{q}_i) V(s, \hat{q}_i, q_{-i})$$

Probability constraints:
$$\sum_{\hat{q}_i} x(\hat{q}_i) = 1, \quad \forall \hat{q}_i \quad x(\hat{q}_i) \geq 0$$

- Prune tree q_i if there is distribution $x(\hat{q}_i)$ of other trees that has a higher value for all system states and trees of the other agents
- This is the case if $\epsilon > 0$

Dynamic programming summary

- Will produce optimal solution for any initial state
- Improves scalability of exhaustive backups with pruning at each step
- Still limited to small problems
- For POSGs, iterative removal of very weakly dominated strategies

Instead of using exhaustive search,

- always keep policies of all but one agent fixed
- and use best-response to update the policy of the particular agent

```
Algorithm: JESP (Nair et al., 2003)

Start with policy for each agent

while not converged do

for i = 1 to n do

Fix other agent policies

Find a best response policy for agent i
```

Only finds local optimum

Finding the best-response can be reduced to a complex POMDP problem

- The agent needs to reason about the hidden state AND about the observations of the other agents!
- Define new hidden state $\hat{s}_i = (s, h_{-i})$
 - h_{-i} histories of all other agents

Define new POMDP:

• Transition function:

$$\mathcal{P}(\hat{s}_{i,t+1}|\hat{s}_{i,t}, a_{i,t}) = p(s_{t+1}|s_t, (\pi_{-i}(h_{-i,t}), a_{i,t})) \prod_{j \neq i} O_j(o_{j,t+1}|s_{t+1})$$

 Observation model: equivalent to single agent observation model in Dec-POMDP

Figure 1: Trace of Tiger Scenario

Same principles apply as for standard POMDPs

- Piecewise linear convex representation for the value function
- A similar belief propagation update as for standard POMDPs can be defined

However: The state space is growing at each time step!

- Use similar approach to point-based value iteration
- Compute reachable set of belief states from intial belief state b₀
- Thats still a lot of points
- Only compute value on this fixed set of points

Top-Down Approaches

So far: Bottom-Up: Start with policies for last time-step.

Propagate backwards in time

Alternative: Top-down: Start with first time-step, do forward search

Multi Agent A*

A* Search:

- Forward search tree
- Value at leaves is estimated by heuristic function
- Expand leave with highest return (sum of rewards in tree + heuristic)
- Admissible heuristic function: needs to overestimate return!

MA A*: top-down heuristic policy search (Szer et al., 2005).

- Requires an admissible heuristic function.
- A*-like search over partially specified joint policies:
 - Collection of policy trees for each time step

$$\varphi_t = (\pi_0, \dots, \pi_t)$$

• Policy trees are defined for each agent

$$\pi_t = (\pi_{t,1}, \dots, \pi_{t,n})$$

 $\pi_t = (\pi_{t,1}, \dots, \pi_{t,n})$ • Policy tree: Direct mapping from observation histories to action

$$\pi_{t,i}: \mathcal{O}_i^{1:t} \to A_i$$

Multi-Agent A*

• Heuristic value for partial joint policies $arphi_t$

$$\hat{V}(\varphi_t) = \underbrace{V_{0:t}(\varphi_t)}_{\text{expected reward for the first t time steps}} + \underbrace{\hat{V}_{t+1:T}(\varphi_t)}_{\text{Heuristic value starting from the "state"} \varphi_t$$

- Good heuristics can avoid the construction large trees
 - If the heuristic would be accurate, the tree would be only expanded along the real optimal path

Heuristic Function

Can be defined by solving simplified problem settings:

$$\tilde{V}_{t+1:T}(\varphi_t) = \sum_{h_t \in H_t} p(h_t|b_0, \varphi_t) \tilde{Q}(h_t, \varphi_t(h_t))$$

- h_t is a history over observations and actions
- $\hat{Q}(h_t, \varphi_t(h_t))$... Q-function of an easier (Po)MDP starting from history h_t and taking action $\varphi_t(h_t)$
- ullet We need to average over all possible histories starting with intial belief b_0

Heuristic Function

What can we use for Q?

 Q_{MDP} :

$$\tilde{Q}(h_t, a) = \sum_{s} p(s|h_t)Q_{\text{MDP}}(s, a)$$

- Average Q-value for an MDP defined on the same system dynamics (state is observable)
- The value of the MDP is for sure better (overestimates) than the one on the Dec-POMDP
- Relatively simple to compute
- Loose bound: Assumes full observability and centralized control

Heuristic Function

What can we use for Q?

 Q_{POMDP} (Szer et al., 2005; Roth et al., 2005):

- Average Q-value for an POMDP defined on the same system and observation model
- Tighter bound: Assumes centralized control
- But harder to compute

 Q_{BG} (Oliehoek and Vlassis, 2007)

assumes centralized observations, but delayed by 1 step.

It can be shown that:

$$Q^* \le Q_{\mathrm{BG}} \le Q_{\mathrm{POMDP}} \le Q_{\mathrm{MDP}}$$

Illustration

Outline

Problem Formulation

Finite Horizon approaches

- Bottom-Up
- Top-Down

Infinite Horizon approaches

Optimizing finite state controllers

Infinite Horizon Policies

A large enough horizon can be used to approximate an infinitehorizon solution, but this is neither efficient nor compact

Specialized infinite-horizon solutions have also been developed:

- Use finite state controllers as policy
- Can be optimized by different methods
- We look at a non-linear programming approach

Finite State Controllers:

- The controller has internal nodes q which serve as memory
- Each node has an action policy defined $\pi_i(a|q)$
- We also define a transition probability between the notes

$$P_i(q'|q,o,a)$$

Depends on observation and action

Using controllers for infinite-horizon policies

Example: 2 Agents in a grid

- Periodic policies
- Inherently infinite-horizon
- Randomness reduces memory limitations
- Nodes define actions, $P_i(a|q)$
- Transitions based on observations seen, $P_i(q'|q, o)$

Value function for controllers

Value for the nodes $q = (q_1, \dots, q_n)$ of all players and state s can be found as

$$V(\boldsymbol{q},s) = \sum_{\boldsymbol{a}} p(\boldsymbol{a}|\boldsymbol{q}) \left(r(s,\boldsymbol{a}) + \gamma \sum_{\boldsymbol{o},s'} p(s'|s,\boldsymbol{a}) O(\boldsymbol{o}|s') \sum_{\boldsymbol{q}'} p(\boldsymbol{q}'|\boldsymbol{q},\boldsymbol{o}) V(\boldsymbol{q}',s') \right)$$

where:

- $p(\boldsymbol{a}|\boldsymbol{q}) = \prod_i \pi_i(a_i|q_i)$... is the product of the policies and
- $p(q'|q,o) = \prod_i p_i(q_i'|q_i,o_i)$... is the product of the transition functions

of the controllers.

I.e., policies and transition function need to be independent.

Infinite-horizon approaches

Use a fixed-size controller

- Want best state controller for the given size
- How can the action selection and node transition parameters be set?
 - Deterministic controllers: using heuristic search methods
 - Stochastic controllers: using continuous non-linear optimization

Controller estimation by NLP

Estimating the controller parameters (policy, transition) can be written down as non-linear constraint optimization

Variables: $V(\boldsymbol{q},s)\dots$ value for all states and notes $p(\boldsymbol{a}|\boldsymbol{q})\dots$ policies for all controllers (product) $p(\boldsymbol{q}'|\boldsymbol{q},\boldsymbol{o},\boldsymbol{a})\dots$ transitions for all controllers (product)

Maximize expected value: $\sum_{s} b_0(s) V(\boldsymbol{q}_0, s)$

Given Bellman constraints:

$$V(\boldsymbol{q},s) = \sum_{\boldsymbol{a}} p(\boldsymbol{a}|\boldsymbol{q}) \left(r(s,\boldsymbol{a}) + \gamma \sum_{\boldsymbol{o},s'} p(s'|s,\boldsymbol{a}) O(\boldsymbol{o}|s') \sum_{\boldsymbol{q}'} p(\boldsymbol{q}'|\boldsymbol{q},\boldsymbol{o}) V(\boldsymbol{q}',s') \right)$$

... we are still missing... independence!

Controller estimation by NLP

For each agent i:

Independence constraints:

$$\forall a_i, q_i, \mathbf{q}_{-i}^f : \sum_{a_{-i}} p(\mathbf{a}|\mathbf{q}) = \sum_{a_{-i}} p(\mathbf{a}|q_i, \mathbf{q}_{-i}^f)$$

• The marginal $p(a_i|q)$ should only depend on q_i

$$\forall a_i, \mathbf{q}_{-i}^f, q_i, \mathbf{q}_{-i}^f, o_i, \mathbf{o}_i^f : \sum_{\mathbf{q}_{-i}'} p(\mathbf{q}'|\mathbf{q}, \mathbf{o}, \mathbf{a}) = \sum_{\mathbf{q}_{-i}'} p(\mathbf{q}'|(q_i, \mathbf{q}_{-i}^f), (a_i, \mathbf{a}_{-i}^f), (o_i, \mathbf{o}_{-i}^f))$$

• The marginal $p(q_i|\boldsymbol{q},\boldsymbol{a},\boldsymbol{o})$ should only depend on q_i , o_i and a_i .

Controller estimation by NLP

For each agent i:

Probability constraints:

$$\forall \boldsymbol{q} : \sum_{\boldsymbol{a}} p(\boldsymbol{a}|\boldsymbol{q}) = 1, \text{ and } \forall \boldsymbol{q}, \boldsymbol{a} : p(\boldsymbol{a}|\boldsymbol{q}) \ge 0$$

$$\forall \boldsymbol{a}, \boldsymbol{o}, \boldsymbol{q} : \sum_{\boldsymbol{q}'} p(\boldsymbol{q}'|\boldsymbol{q}, \boldsymbol{a}, \boldsymbol{o}) = 1, \text{ and } \forall \boldsymbol{q}, \boldsymbol{a}, \boldsymbol{o}, \boldsymbol{q}' : p(\boldsymbol{q}'|\boldsymbol{q}, \boldsymbol{a}, \boldsymbol{o}) \geq 0$$

The resulting optimization problem is:

- Non-linear
- Huge for already quite small problems (number of constraints)
- Still, one of the most elegants solutions so far
- Can be solved by non-linear constraint optimizers, e.g. fmincon

Dec-POMDP Benchmarks

- Dec-Tiger
- Recycling Robots
- Cooperative Box-Pushing
- Mars Rover
- Fire Fighter Problem

All of these problems are rather simple benchmark tasks

Recycling Robots

2 Robots:

- Need to empty trash
- Big trash needs 2 robots
- Robots can only see status of neighbored trash

Cooperative Box-Pushing

2 agents:

- Need to push all boxes in the goal area
- Big box requires 2 robots to be pushed
- Local observations: only observe field in front of the robot
- State: position of the 2 agents and 3 boxes

Results

Cooperative Box Pushing: 100 states, 4 actions, 5 obs

Value Time

Size	NLP	NLP fix	Mealy NLP	DEC-BPI	BFS	NLP	NLP fix	Mealy NLP	DEC-BPI	BFS
1	-1.58	n/a	123.46	-10.37	-2	20	n/a	12	26	1696
2	31.97	-6.25	124.20	3.29	_	115	18	31	579	_
3	46.28	5.10	133.67	9.44	_	683	27	217	4094	_
4	50.64	18.78	143.14	7.89	_	5176	44	774	11324	_
5	_	53.13	_	14.76	_	_	92	_	27492	_
6	_	73.25	_	_	_	_	143	_	_	_
7	_	80.47	_	_	_	_	256	_	_	_

Conclusion

- Dec-POMDPs are a relatively new research field
- Optimal solutions are intractable
- Policies can be obtained by bottom-up search or top-down search over policy trees
- Finite-State controllers can represent controllers for infinite horizon problems
- Benchmark problems are still toyish