Example Parsing LR(0)

Recap: Deterministic Parsing Automaton LR(0)

- We define the deterministic parsing automaton of LR(0) grammar $G = < \Sigma, N, P, S >$ with rule 0: $S' \rightarrow S$
 - Input alphabet Σ
 - Output alphabet U = the rule numbers 0,1,2,3,...
 - States $\Sigma^* \times \Gamma^* \times U^*$
 - Pushdown alphabet $\Gamma = LR(0)(G)$!! item sets !!
 - Initial state (w, I_0, ε) for $w \in \Sigma^*$ where $I_0 = LR(0)(\varepsilon)$
 - Final state final state $(\varepsilon, \varepsilon, u)$ where $u \in U^*$
 - Action depends on the item set I in the state $(x, \alpha I, z)$:
 - Shift $(aw, \alpha I, z) \to (w, \alpha IJ, z)$ if $[A \to \alpha_1 \cdot a\alpha_2] \in I$ and $I \xrightarrow{\alpha}_{goto} J$
 - Reduce $(aw, \alpha II_1 \dots I_n, z) \to (w, \alpha IJ, zi)$ with rule $i \neq 0$ $A \to Y_1 \dots Y_n$ if $[A \to Y_1 \dots Y_n \cdot] \in I_n$ and $I \to J$
 - Accepting state $(\varepsilon, I_0 I, z) \to (\varepsilon, \varepsilon, z0)$ if $[S' \to S \cdot] \in I$
 - Error in state $(w, \alpha I, z)$ if $I = \emptyset$

Example, step 1: Construct the goto-automaton

Example:
$$S' \rightarrow S$$
 (0) $S \rightarrow B \mid C$ (1,2) $B \rightarrow aB \mid b$ (3,4) $C \rightarrow aC \mid c$ (5,6)
$$LR(0)(S) = \{[S' \rightarrow S \cdot]\}$$
 S
$$LR(0)(E) = \{[S' \rightarrow S], [S \rightarrow B], [S \rightarrow B], [S \rightarrow C], [B \rightarrow aB], [C \rightarrow aC], [C \rightarrow c]\}$$

$$LR(0)(E) = \{[S \rightarrow B \cdot]\}$$
 D
$$LR(0)(E) = \{[S \rightarrow B \cdot]\}$$
 C
$$LR(0)(C) = \{[S \rightarrow C \cdot]\}$$
 C
$$LR(0)(C) = \{[C \rightarrow C \cdot]\}$$

Example, step 2: goto-automaton as table

Example: $S' \to S$ (0) $S \to B \mid C$ (1,2) $B \to aB \mid b$ (3,4) $C \to aC \mid c$ (5,6)

• For the parsing, it is more convenient to write the transitions of the goto automaton as a table (all empty cells are "illegal" and go to I_9)

Item set	S	B	С	а	b	С
$I_0 = LR(0)(\varepsilon)$	I_1	I_2	I_3	I_4	I_5	I_6
$I_1 = LR(0)(S)$						
$I_2 = LR(0)(B)$						
$I_3 = LR(0)(C)$						
$I_4 = LR(0)(a)$		I_7	I_8	I_4	I_5	I_6
$I_5 = LR(0)(b)$						
$I_6 = LR(0)(c)$						
$I_7 = LR(0)(aB)$						
$I_8 = LR(0)(aC)$						
$I_9 = \emptyset$						

$$I_{0} = LR(0)(\varepsilon) = \begin{cases} [S' \to S], [S \to B], \\ [S \to C], [B \to aB], \\ [B \to b], [C \to aC], \\ [C \to c] \end{cases}$$

$$I_{1} = LR(0)(S) = \{[S' \to S \cdot]\}$$

$$I_{2} = LR(0)(B) = \{[S \to B \cdot]\}$$

$$I_{3} = LR(0)(C) = \{[S \to C \cdot]\}$$

$$I_{4} = LR(0)(a) = \begin{cases} [B \to a \cdot B], [C \to a \cdot C], \\ [B \to aB], [B \to b], \\ [C \to aC], [C \to c] \end{cases}$$

$$I_{5} = LR(0)(b) = \{[B \to b \cdot]\}$$

$$I_{6} = LR(0)(c) = \{[C \to c \cdot]\}$$

$$I_{7} = LR(0)(aB) = \{[B \to aB \cdot]\}$$

$$I_{8} = LR(0)(aC) = \{[C \to aC \cdot]\}$$

$$I_{9} = \emptyset$$

Example, step 3: Determine actions for parser automaton

Example: $S' \to S$ (0) $S \to B \mid C$ (1,2) $B \to aB \mid b$ (3,4) $C \to aC \mid c$ (5,6)

■ For every item set I, we determine the action for the automaton to take when seeing I in a state $(w, \gamma I, z)$

Item set	action
$I_0 = LR(0)(\varepsilon)$	shift
$I_1 = LR(0)(S)$	accept
$I_2 = LR(0)(B)$	reduce 1
$I_3 = LR(0)(C)$	reduce 2
$I_4 = LR(0)(a)$	shift
$I_5 = LR(0)(b)$	reduce 4
$I_6 = LR(0)(c)$	reduce 6
$I_7 = LR(0)(aB)$	reduce 3
$I_8 = LR(0)(aC)$	reduce 5
$I_9 = \emptyset$	error

$$I_{0} = LR(0)(\varepsilon) = \begin{cases} [S' \to S], [S \to B], \\ [S \to C], [B \to aB], \\ [B \to b], [C \to aC], \\ [C \to c] \end{cases}$$

$$I_{1} = LR(0)(S) = \{[S' \to S \cdot]\}$$

$$I_{2} = LR(0)(B) = \{[S \to B \cdot]\}$$

$$I_{3} = LR(0)(C) = \{[S \to C \cdot]\}$$

$$I_{4} = LR(0)(a) = \begin{cases} [B \to a \cdot B], [C \to a \cdot C], \\ [B \to aB], [B \to b], \\ [C \to aC], [C \to c] \end{cases}$$

$$I_{5} = LR(0)(b) = \{[B \to b \cdot]\}$$

$$I_{6} = LR(0)(c) = \{[C \to c \cdot]\}$$

$$I_{7} = LR(0)(aB) = \{[B \to aB \cdot]\}$$

$$I_{8} = LR(0)(aC) = \{[C \to aC \cdot]\}$$

$$I_{9} = \emptyset$$

Example:
$$S' \to S$$
 (0) $S \to B \mid C$ (1,2)

$$B \rightarrow aB|b$$
 (3,4) $C \rightarrow aC|c$ (5,6)

- Input *aac*
- Parsing:
 - The initial state is (aac, I_0, ε) with $I_0 = LR(0)(\varepsilon)$
 - What do we have to do next? Let's look at the table:

Item set	action
I_{0}	shift

- We have to shift, taking the first "a" from the input
- What will happen next? Consult the table:

Item set	S	В	С	а	b	C
I_0	I_1	I_2	I_3	I_4	I_5	I_6

- We go now to I_4 . The new state is $(ac, I_0I_4, \varepsilon)$
- Note that I_0 is not removed. We are not yet done with it!

Example: $S' \to S$ (0)

$$S' \to S$$

$$S \to B \mid C$$

(1,2)

$$B \rightarrow aB|b$$
 (3,4)

$$C \rightarrow aC|c$$

- Parsing:
 - The current state is $(ac, I_0I_4,$
 - What do we have to do next? Let's look at the table:

Item set	action
I_4	shift

Item set	S	В	С	а	b	С
I_4		I_7	I_8	I_4	I_5	I_6

• The new state is $(c, I_0I_4I_4,$

$$(c, I_0I_4I_4,$$

$$\varepsilon)$$

Example: $S' \to S$ (0) $S \to B \mid C$ (1,2)

 $B \rightarrow aB|b$ (3,4) $C \rightarrow aC|c$ (5,6)

- Parsing:
 - The current state is $(c, I_0I_4I_4, \varepsilon)$
 - What do we have to do next? Let's look at the table:

Item set	action
I_4	shift

Item set	S	В	С	а	b	С
I_4		I_7	I_8	I_4	I_5	I_6

• The new state is $(\varepsilon, I_0 I_4 I_4 I_6, \varepsilon)$

Example: $S' \to S$ (0) $S \to B \mid C$ (1,2)

 $B \rightarrow aB|b$ (3,4) $C \rightarrow aC|c$ (5,6)

Parsing:

• The current state is $(\varepsilon, I_0 I_4 I_4 I_6, \varepsilon)$

What do we have to do next? Let's look at the table:

Item set	action
I_6	reduce 6

- That means we are ready to reduce to C using rule 6: $C \rightarrow c$
- The right-hand side of $C \rightarrow c$ contains one symbol, so we remove one element from the stack:

$$(\varepsilon, I_0 I_4 I_4, 6)_C$$

And we consult the table to see where $I_4 \rightarrow$ leads us:

Item set	S	В	С	а	b	С
I_4		I_7	I_8	I_4	I_5	I_6

• The new state is $(\varepsilon, I_0 I_4 I_4 I_8, 6)$

Example: $S' \to S$ (0) $S \to B \mid C$ (1,2)

 $B \rightarrow aB|b$ (3,4) $C \rightarrow aC|c$ (5,6)

Parsing:

• The current state is $(\varepsilon, I_0 I_4 I_4 I_8, 6)$

What do we have to do next? Let's look at the table:

Item set	action
I_8	reduce 5

- That means we are ready to reduce to C using rule 5: $C \rightarrow aC$
- The right-hand side of $C \rightarrow aC$ contains two symbols, so we remove two elements from the stack:

$$(\varepsilon, I_0 I_4, 65)$$

And we consult the table to see where $I_4 \stackrel{\circ}{\rightarrow}$ leads us:

Item set	S	B	С	а	b	С
I_4		I_7	I_8	I_4	I_5	I_6

• The new state is $(\varepsilon, I_0 I_4 I_8, 65)$

Example: $S' \to S$ (0) $S \to B \mid C$ (1,2)

 $B \rightarrow aB|b$ (3,4) $C \rightarrow aC|c$ (5,6)

Parsing:

• The current state is $(\varepsilon, I_0 I_4 I_8, 65)$

What do we have to do next? Let's look at the table:

Item set	action
I_8	reduce 5

- That means we are ready to reduce to C using rule 5: $C \rightarrow aC$
- The right-hand side of $C \rightarrow aC$ contains two symbols, so we remove two elements from the stack:

$$(\varepsilon, I_0, 655)$$

And we consult the table to see where $I_0 \stackrel{c}{\rightarrow}$ leads us:

Item set	S	В	С	а	b	С
I_0	I_1	I_2	I_3	I_4	I_5	I_6

• The new state is $(\varepsilon, I_0 I_3, 655)$

Example: $S' \to S$ (0) $S \to B \mid C$ (1,2)

 $B \rightarrow aB|b$ (3,4) $C \rightarrow aC|c$ (5,6)

Parsing:

• The current state is $(\varepsilon, I_0 I_3, 655)$

What do we have to do next? Let's look at the table:

Item set	action
I_3	reduce 2

- That means we are ready to reduce to S using rule 2: $S \rightarrow C$
- The right-hand side of $S \rightarrow C$ contains one symbol, so we remove one element from the stack:

$$(\varepsilon, I_0, 6552)$$

And we consult the table to see where $I_0 \xrightarrow{\circ}$ leads us:

Item set	S	В	С	а	b	С
I_0	I_1	I_2	I_3	I_4	I_5	I_6

• The new state is $(\varepsilon, I_0 I_1, 6552)$

Example: $S' \to S$ (0) $S \to B \mid C$ (1,2)

 $B \rightarrow aB|b$ (3,4) $C \rightarrow aC|c$ (5,6)

Parsing:

• The current state is $(\varepsilon, I_0 I_1, 6552)$

What do we have to do next? Let's look at the table:

Item set	action
I_1	accept

• We are done. The last state is $(\varepsilon, \varepsilon, 65520)$

Everything in one picture

Example: $S' \rightarrow S$

$$S' \to S$$

(0)

$$S \to B \mid C$$

(1,2)

$$B \rightarrow aB|b$$

$$C \rightarrow aC|c$$

(5,6)

- Input *aac*
- Parsing:

(aac,
$$I_0$$
, ε)

$$\varepsilon$$
)

$$(ac, I_0I_4, \varepsilon)$$

$$\varepsilon$$
)

$$(c, I_0I_4I_4, \varepsilon)$$

$$\varepsilon)$$

$$(\varepsilon, I_0I_4I_4I_6, \varepsilon)$$

$$(\varepsilon, I_0 I_4 I_4 I_8, 6)$$

$$(\varepsilon, I_0I_4I_8, 65)$$

$$(\varepsilon, I_0 I_3, 655)$$

$$(\varepsilon, I_0 I_1, 6552)$$

$$(\varepsilon, \quad \varepsilon, \quad 65520)$$

Item set	action	S	B	С	a	b	C
$I_0 = LR(0)(\varepsilon)$	shift	I_1	I_2	I_3	I_4	I_5	I_6
$I_1 = LR(0)(S)$	accept						
$I_2 = LR(0)(B)$	red 1						
$I_3 = LR(0)(C)$	red 2						
$I_4 = LR(0)(a)$	shift		I_7	I_8	I_4	I_5	I_6
$I_5 = LR(0)(b)$	red 4						
$I_6 = LR(0)(c)$	red 6						
$I_7 = LR(0)(aB)$	red 3						
$I_8 = LR(0)(aC)$	red 5						
$I_9 = \emptyset$	error						