Example 1- simple national income model

Structural form:

$$\begin{split} Y &= C + I_o + G_o \\ C &= \alpha + \beta (Y - T), \qquad (a > 0; 0 < \beta < 1) \\ T &= \gamma + \delta Y, \qquad (\gamma > 0; 0 < \delta < 1) \\ \text{or} \end{split}$$

$$Y - C = I_o + G_o$$

 $-\beta Y + C + \beta T = \alpha$
 $-\delta Y + T = \gamma$

or

$$Ax = d$$

with

$$A = \begin{pmatrix} 1 & -1 & 0 \\ -\beta & 1 & \beta \\ -\delta & 0 & 1 \end{pmatrix}, x = \begin{pmatrix} Y \\ C \\ T \end{pmatrix}, \text{ and } d = \begin{pmatrix} I_o + G_o \\ \alpha \\ \gamma \end{pmatrix}$$

Reduced form:

Solution to the system as indicated above (to address the problem of simultaneous equation bias)

$$x = A^{-1}d$$

$$A = \begin{pmatrix} 1 & -1 & 0 \\ -\beta & 1 & \beta \\ -\delta & 0 & 1 \end{pmatrix}, \text{ determinant: } |A| = \beta \delta - \beta + 1$$

$$x = A^{-1}d = \begin{pmatrix} \frac{\alpha}{-\beta + \beta\delta + 1} - \beta \frac{\gamma}{-\beta + \beta\delta + 1} + \frac{G_o + I_o}{-\beta + \beta\delta + 1} \\ \frac{\alpha}{-\beta + \beta\delta + 1} - \beta \frac{\gamma}{-\beta + \beta\delta + 1} + (G_o + I_o) \frac{\beta - \beta\delta}{-\beta + \beta\delta + 1} \\ \alpha \frac{\delta}{-\beta + \beta\delta + 1} + \delta \frac{G_o + I_o}{-\beta + \beta\delta + 1} + \gamma \frac{-\beta + 1}{-\beta + \beta\delta + 1} \end{pmatrix} = \begin{pmatrix} Y \\ C \\ T \end{pmatrix}$$

$$\begin{pmatrix} Y \\ C \\ T \end{pmatrix} = \begin{pmatrix} \frac{\alpha - \beta\gamma + G_o + I_o}{1 - \beta + \beta\delta} \\ \frac{\alpha - \beta\gamma + (G_o + I_o)(\beta - \beta\delta)}{1 - \beta + \beta\delta} \\ \frac{\alpha - \beta\gamma + (G_o + I_o)(\beta - \beta\delta)}{1 - \beta + \beta\delta} \end{pmatrix} = \begin{pmatrix} \frac{\alpha - \beta\gamma}{1 - \beta + \beta\delta} + \frac{1}{1 - \beta + \beta\delta} G_o + \frac{1}{1 - \beta + \beta\delta} I_o \\ \frac{\alpha - \beta\gamma}{1 - \beta + \beta\delta} + \frac{(\beta - \beta\delta)}{1 - \beta + \beta\delta} G_o + \frac{(\beta - \beta\delta)}{1 - \beta + \beta\delta} I_o \\ \frac{\alpha \delta + \gamma(1 - \beta)}{1 - \beta + \beta\delta} + \frac{\delta}{1 - \beta + \beta\delta} G_o + \frac{\delta}{1 - \beta + \beta\delta} I_o \end{pmatrix}$$

$$\begin{pmatrix} Y \\ C \\ T \end{pmatrix} = \begin{pmatrix} \pi_{11} + \pi_{21}G_0 + \pi_{31}I_0 \\ \pi_{12} + \pi_{22}G_0 + \pi_{32}I_0 \\ \pi_{13} + \pi_{23}G_0 + \pi_{33}I_0 \end{pmatrix}, \text{ with }$$

$$\pi_{11} = \frac{\alpha - \beta \gamma}{1 - \beta + \beta \delta}, \pi_{21} = \frac{1}{1 - \beta + \beta \delta}, \pi_{31} = \frac{1}{1 - \beta + \beta \delta}$$

$$\pi_{12} = \frac{\alpha - \beta \gamma}{1 - \beta + \beta \delta}, \pi_{22} = \frac{(\beta - \beta \delta)}{1 - \beta + \beta \delta}, \pi_{32} = \frac{(\beta - \beta \delta)}{1 - \beta + \beta \delta}$$

$$\pi_{13} = \frac{\alpha \delta + \gamma(1 - \beta)}{1 - \beta + \beta \delta}, \pi_{23} = \frac{\delta}{1 - \beta + \beta \delta}, \pi_{33} = \frac{\delta}{1 - \beta + \beta \delta}$$

The objective is to estimate the structural form parameters via estimating the reduced form. We will have estimates for $\pi_{11}, \dots \pi_{33}$ and need to use these to estimate the structural form parameters.

How?

For instance: $\delta = \frac{\pi_{33}}{\pi_{31}}$ or $\frac{\pi_{23}}{\pi_{21}}$, $\beta = ???$ is it possible?????

The answer to the above lies in the identification of the system and the individual equations

Comparative static analysis:

Comparative static results with respect to G_0 :

$$\begin{pmatrix} \frac{\partial Y}{\partial G_o} \\ \frac{\partial C}{\partial G_o} \\ \frac{\partial T}{\partial G_o} \end{pmatrix} = \begin{pmatrix} \frac{1}{1-\beta+\beta\delta} \\ \frac{\beta-\beta\delta}{1-\beta+\beta\delta} \\ \frac{\delta}{1-\beta+\beta\delta} \end{pmatrix}$$

Comparative static results with respect to I_0 :

$$\begin{pmatrix} \frac{\partial Y}{\partial I_o} \\ \frac{\partial C}{\partial I_o} \\ \frac{\partial T}{\partial I_o} \end{pmatrix} = \begin{pmatrix} \frac{1}{1-\beta+\beta\delta} \\ \frac{\beta-\beta\delta}{1-\beta+\beta\delta} \\ \frac{\delta}{1-\beta+\beta\delta} \end{pmatrix}$$

Example 2- identified system

Consider the following structural form:

$$y_1 = a + bx_1 + cy_2 + u_1$$

$$y_2 = d + ex_2 + fy_1 + u2$$

with y_1 and y_2 endogenous, and x_1 and x_2 exogenous

or

$$y_1 - cy_2 = a + bx_1 + u_1$$

- $fy_1 + y_2 = d + ex_2 + u_2$

٥r

$$A = \begin{pmatrix} 1 & -c \\ -f & 1 \end{pmatrix}, |A| = \begin{vmatrix} 1 & -c \\ -f & 1 \end{vmatrix} = 1 - cf$$

The reduced form only exists if $cf \neq 1$

$$g = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$
 and $r = \begin{pmatrix} a + bx_1 + u_1 \\ d + ex_2 + u_2 \end{pmatrix}$

Thus Ag = r and thefore $g = A^{-1}r$

(Note that $g = A^{-1}r$ is the reduced form)

$$A = \begin{pmatrix} 1 & -c \\ -f & 1 \end{pmatrix} A^{-1} = \begin{pmatrix} -\frac{1}{cf-1} & -\frac{c}{cf-1} \\ -\frac{f}{cf-1} & -\frac{1}{cf-1} \end{pmatrix}$$

$$g = A^{-1} \begin{pmatrix} a + bx_1 + u_1 \\ d + ex_2 + u_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{1 - cf} (a + u_1 + bx_1) + \frac{c}{1 - cf} (d + u_2 + x_2 e) \\ \frac{1}{1 - cf} (d + u_2 + x_2 e) + \frac{f}{1 - cf} (a + u_1 + bx_1) \end{pmatrix}$$

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \frac{a+bx_1+u_1}{1-cf} + c\frac{d+ex_2+u_2}{1-cf} \\ \frac{d+ex_2+u_2}{1-cf} + f\frac{a+bx_1+u_1}{1-cf} \end{pmatrix} = \begin{pmatrix} \frac{a+u_1}{1-cf} + \frac{bx_1}{1-cf} + c\frac{d+u_2}{1-cf} + c\frac{ex_2}{1-cf} \\ \frac{d+u_2}{1-cf} + f\frac{a+u_1}{1-cf} + f\frac{bx_1}{1-cf} + f\frac{bx_1}{1-cf} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{a+u_1}{1-cf} + c\frac{d+u_2}{1-cf} + \frac{bx_1}{1-cf} + c\frac{ex_2}{1-cf} \\ \frac{d+u_2}{1-cf} + f\frac{a+u_1}{1-cf} + f\frac{bx_1}{1-cf} + \frac{ex_2}{1-cf} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{a+u_1+c(d+u_2)}{1-cf} + \frac{bx_1}{1-cf} + c\frac{ex_2}{1-cf} \\ \frac{d+u_2+f(a+u_1)}{1-cf} + f\frac{bx_1}{1-cf} + \frac{ex_2}{1-cf} \end{pmatrix} = \begin{pmatrix} \frac{a+cd}{1-cf} + \frac{b}{1-cf}x_1 + \frac{ce}{1-cf}x_2 + \frac{u_1+cu_2}{1-cf} \\ \frac{d+fa}{1-cf} + \frac{fb}{1-cf}x_1 + \frac{e}{1-cf}x_2 + \frac{u_2+fu_1}{1-cf} \end{pmatrix}$$

$$= \begin{pmatrix} \pi_{11} + \pi_{21}x_1 + \pi_{31}x_2 + u_1^* \\ \pi_{12} + \pi_{22}x_1 + \pi_{32}x_2 + u_2^* \end{pmatrix}$$

with

$$\pi_{11} = \tfrac{a+cd}{1-cf}, \pi_{21} = \tfrac{b}{1-cf}, \pi_{31} = \tfrac{ce}{1-cf}, \pi_{12} = \tfrac{d+fa}{1-cf}, \pi_{22} = \tfrac{fb}{1-cf}, \pi_{32} = \tfrac{e}{1-cf}$$

The comparative static results for a change in x_1 is given by

$$\frac{\partial y_1}{\partial x_1} = \pi_{21} = \frac{b}{1-cf}$$

$$\frac{\partial y_2}{\partial x_1} = \pi_{22} = \frac{fb}{1-cf}$$

The comparative static results for a change in x_2 is given by

$$\frac{\partial y_2}{\partial x_1} = \pi_{31} = \frac{ce}{1-cf}$$

$$\frac{\partial y_2}{\partial x_2} = \pi_{32} = \frac{e}{1-cf}$$

The structural form parameters are estimated by the following:

$$\begin{split} f &= \frac{\pi_{22}}{\pi_{21}}, c = \frac{\pi_{31}}{\pi_{32}} \\ b &= \pi_{21}(1-cf) = \pi_{21}(1-\frac{\pi_{31}}{\pi_{32}} \frac{\pi_{22}}{\pi_{21}}), \\ e &= \pi_{32}(1-cf) = \pi_{32}(1-\frac{\pi_{31}}{\pi_{32}} \frac{\pi_{22}}{\pi_{21}}), \\ \pi_{11} &= \frac{a+cd}{1-cf} = \frac{a+\frac{\pi_{31}}{\pi_{32}}d}{1-\frac{\pi_{31}}{\pi_{32}} \frac{\pi_{22}}{\pi_{21}}}, \text{ and} \\ \pi_{12} &= \frac{d+fa}{1-cf} = \frac{d+\frac{\pi_{22}}{\pi_{21}}a}{1-\frac{\pi_{31}}{\pi_{32}} \frac{\pi_{22}}{\pi_{21}}} \end{split}$$

$$z_1 = \pi_{11} (1 - \frac{\pi_{31}}{\pi_{32}} \frac{\pi_{22}}{\pi_{21}})$$
, and $z_2 = \pi_{12} (1 - \frac{\pi_{31}}{\pi_{32}} \frac{\pi_{22}}{\pi_{21}})$
 $z_1 = a + cd$, or $a = z_1 - cd$
 $z_2 = d + fa = d + f(z_1 - cd) = d + fz_1 - fcd$
 $d - fcd = z_2 - fz_1$

$$d(1-fc) = z_2 - fz_1$$

$$d = \frac{z_2 - fz_1}{1 - fc} = \frac{\pi_{12}(1 - \frac{\pi_{31}}{\pi_{32}} \frac{\pi_{22}}{\pi_{21}}) - \pi_{11} \frac{\pi_{22}}{\pi_{21}} (1 - \frac{\pi_{31}}{\pi_{32}} \frac{\pi_{22}}{\pi_{21}})}{1 - \frac{\pi_{22}}{\pi_{21}} \frac{\pi_{31}}{\pi_{32}}} = \pi_{12} - \pi_{11} \frac{\pi_{22}}{\pi_{21}}$$

$$a = \pi_{11} \left(1 - \frac{\pi_{31}}{\pi_{32}} \frac{\pi_{22}}{\pi_{21}} \right) - \frac{\pi_{31}}{\pi_{32}} \frac{\pi_{12} \left(1 - \frac{\pi_{31}}{\pi_{32}} \frac{\pi_{22}}{\pi_{21}} \right) - \pi_{11} \frac{\pi_{22}}{\pi_{21}} \left(1 - \frac{\pi_{31}}{\pi_{32}} \frac{\pi_{22}}{\pi_{21}} \right)}{1 - \frac{\pi_{31}}{\pi_{32}} \frac{\pi_{22}}{\pi_{21}}}$$

$$= \pi_{11} \left(1 - \frac{\pi_{31}}{\pi_{32}} \frac{\pi_{22}}{\pi_{21}} \right) - \frac{\pi_{31}}{\pi_{32}} \left(\pi_{12} - \pi_{11} \frac{\pi_{22}}{\pi_{21}} \right)$$

$$= \pi_{11} - \frac{\pi_{31}}{\pi_{32}} \pi_{12}$$

How do we estimate the standard errors of the structural form parameters?

Example 3- SAS Example (Example 2 continued)

The REG Procedure Model: MODEL1 Dependent Variable: y1

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	39244291	19622145	137.30	<.0001
Error	97	13862788	142915		
Corrected Total	99	53107079			
Root MSE Dependent Coeff Var	Mean	378.04146 3977.51000 9.50448	R-Square Adj R-Sq	0.7390 0.7336	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	1008.85165	210.44972	4.79	<.0001
x1	1	20.63740	1.32274	15.60	<.0001
x2	1	9.76651	1.08785	8.98	<.0001

The REG Procedure Model: MODEL1 Dependent Variable: y2

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	273834386	136917193	293.59	<.0001
Error	97	45236258	466353		
Corrected Total	99	319070645			
Root MSE Dependent Coeff Var	Mean	682.90056 4459.52000 15.31332	R-Square Adj R-Sq	0.8582 0.8553	

Parameter Estimates

		Parameter	Stalldard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	2668.42257	380.15998	7.02	<.0001
x1	1	50.72257	2.38941	21.23	<.0001
x2	1	-12.89939	1.96512	-6.56	<.0001
	1 1				

The REG Procedure Model: MODEL1 Dependent Variable: y1

Source Model Error Correct	ed Total	DF 2 3 97 1	Sum of Va Sum of Squares 39244291 13862788 53107079	Me Squa 196221 1429	137.30	
	Root MSE Dependent Mea: Coeff Var	n 3977	3.04146 7.51000 9.50448	R-Square Adj R-Sq		
Variable	Label	Paramet	ter Esti DF	mates Parameter Estimate	Standard Error	t Value
Intercept x1 y2h		lue of y2	1 3 1	59.04098 -0.75713	109.52448 4.75556 0.08433	27.66
-	Variable Intercept x1 y2h	Paramet Label	er Esti	mates DF 1 1	Pr > t <.0001 <.0001 <.0001	
			EG Proce el: MODE : Variab	L2		
		Analysi	ls of Va Sum of		an	
Source Model Error Correct	ed Total	97 4	Squares 73834386 15236258 19070645	1369171 4663	.93 293.59	
	Root MSE Dependent Mea: Coeff Var	n 4459	2.90056 9.52000 5.31332	R-Square Adj R-So		
Parameter Estimates						
Variable	Label		DF	Parameter Estimate	Standard Error	t Value
Intercept x2	Intercept		1 1	188.86879 -36.90351	463.24042 2.03272	0.41 -18.15
y1h	Predicted Va	lue of yl	1	2.45780	0.11578	21.23
	Variable Intercept x2 y1h	Paramet Label Intercept Predicted		DF 1 1	Pr > t 0.6844 <.0001 <.0001	

Therefore:

$$\pi_{11} = 1008.85165$$
 $\pi_{21} = 20.63740$
 $\pi_{31} = 9.76651$
 $\pi_{12} = 2668.42257$
 $\pi_{22} = 50.72257$
 $\pi_{32} = -12.89939$
yielding estimates:

$$f = \frac{\pi_{22}}{\pi_{21}} = 2.4578$$

$$c = \frac{\pi_{31}}{\pi_{32}} = -0.75713$$

$$b = \pi_{21}(1 - \frac{\pi_{31}}{\pi_{32}} \frac{\pi_{22}}{\pi_{21}}) = 59.041$$

$$e = \pi_{32}(1 - \frac{\pi_{31}}{\pi_{32}} \frac{\pi_{22}}{\pi_{21}}) = -36.904$$

$$d = \pi_{12} - \pi_{11} \frac{\pi_{22}}{\pi_{21}} = 188.87$$

$$a = \pi_{11} - \frac{\pi_{31}}{\pi_{32}} \pi_{12} = 3029.2$$

The estimates of the structural model equations are:

$$\hat{y}_1 = a + bx_1 + cy_2 = +3029.\ 2 + 59.\ 041x_1 - 0.75713y_2$$

$$\hat{y}_2 = d + ex_2 + fy_1 = 188.87 - 36.904x_2 + 2.4578y_1$$

This method of estimation is known as Indirect Least Squares (ILS)