In[136]≔ parteSup = ContourPlot3D[x^2 + y^2 == 100, _representación 3D de contornos

 $\{x, -15, 15\}, \{y, -15, 15\}, \{z, 1, 3\}, ColorFunction \rightarrow GrayLevel]$ Let $[x, -15, 15], \{y, -15, 15\}, \{z, 1, 3\}, [x, 1, 3], [x, 1,$

In[137]:= parteInf = ContourPlot3D[x^2 + y^2 == 100, _representación 3D de contornos

 $\{x, -15, 15\}, \{y, -15, 15\}, \{z, -3, -1\}, ColorFunction \rightarrow GrayLevel]$ Let $\{x, -15, 15\}, \{y, -15, 15\}, \{z, -3, -1\}, \{y, -15, 15\}, \{y, -15, 1$

In[138]:= cremaAba = ContourPlot3D[-0.0239 x^2 - 0.0239 y^2 + 2.347 == z, _representación 3D de contornos

 $\{x, -15, 15\}, \{y, -15, 15\}, \{z, 0, 1\}, ColorFunction \rightarrow White]$ Let the proof of the proof of

 $In[139] = cremaArr = ContourPlot3D[0.0228 x^2 + 0.0228 y^2 - 2.285 == z, \{x, -15, 15\}, Lepresentación 3D de contornos$

 $\{y, -15, 15\}, \{z, -1, 0\}, \begin{array}{c} \text{ColorFunction} \rightarrow \text{RGBColor}[255, 255, 255]] \\ \text{ $ \underline{$}$ function de color } \end{array}$

In[140]:= tapaSup1 = RegionPlot3D[x^2+y^2 \leq 100, {x, -15, 15}, _representación de región 3D

ln[141]:= tapaSup2 = RegionPlot3D[56.25 <= $x^2 + y^2 \le 100$, {x, -15, 15}, _representación de región 3D

In[142]:= tapaInf2 = RegionPlot3D[56.25 $\le x^2 + y^2 \le 100$, $\{x, -15, 15\}$, representación de región 3D

