## Lecture 4

(1) 
$$m^2 - 84$$

$$\mathbb{S}_{\mathbb{O}}$$
  $m^2 - 84$ 

$$= (m)^2 - (\sqrt{84})^2 \qquad a^2 - b^2 = (a + b)(a - b)$$

$$= (m + \sqrt{84})(m - \sqrt{84})$$

:.  $(m + \sqrt{84})$  and  $(m - \sqrt{84})$  are the factors of  $m^2 - 84$ So, the value of  $m^2 - 84$  is zero

When 
$$(m + \sqrt{84}) = 0$$
 or  $(m - \sqrt{84}) = 0$ 

$$m + \sqrt{84} = 0$$
 or  $m - \sqrt{84} = 0$ 

$$m = -\sqrt{84} \quad \text{or} \quad m = \sqrt{84}$$

$$m = -2\sqrt{21} \quad \text{or} \quad m = 2\sqrt{21}$$

The zeroes of 
$$m^2$$
 – 84 are  $2\sqrt{21}$  or –  $2\sqrt{21}$ .



$$(2) x^2 + 21x - 196$$

$$x^2 + 21x - 196$$

$$= (x^2) + (28x - 7x) - 196$$

$$= x^2 + 28x - 7x - 196$$

$$= x(x + 28) - 7(x + 28)$$

$$= (x + 28)(x - 7)$$

 $\therefore$  (x + 28) and (x - 7) are the factors of  $x^2 + 21x - 196$ 

So, the value of  $x^2 + 21x - 196$  is zero

When 
$$(x + 28) = 0$$
 or  $(x - 7) = 0$ 

$$x + 28 = 0$$
 or  $x - 7 = 0$ 

$$\therefore \qquad \qquad x = -28 \quad \text{or} \qquad x = 7$$

 $\therefore$  The zeroes of  $x^2 + 21x - 196$  are -28 and 7.

$$(1) 7x^2 + 4x - 20$$

$$7x^2 + 4x - 20$$

$$= 7x^2 + (14x - 10x) - 20$$

$$= 7x^2 + 14x - 10x - 20$$

$$= 7x(x + 2) - 10(x + 2)$$

$$= (x+2)(7x-10)$$

$$\therefore$$
 (x + 2) and (7x - 10) are the factors of 7x<sup>2</sup> + 4x - 20

So, the value of  $7x^2 + 4x - 20$  is zero

When 
$$(x + 2) = 0$$
 or  $(7x - 10) = 0$ 

$$x + 2 = 0$$
 or  $7x - 10 = 0$ 

$$\therefore \qquad x = -2 \text{ or } \qquad 7x = 10$$

$$x = -2 \text{ or } x = \frac{10}{7}$$

14x - 10x = 4x

140

 $\therefore \text{ The zeroes of } 7x^2 + 4x - 20 \text{ are } -2 \text{ and } \frac{10}{7}$ 

(2) 
$$7m^2 - 84$$

$$\boxed{50}. \qquad \boxed{7}m^2 - \boxed{84}$$

$$= 7(m^2 - 12)$$

$$a^2 - b^2 = (a + b)(a - b)$$

$$= 7[(m^2) - (\sqrt{12})^2]$$

$$= 7 (m + \sqrt{12})(m - \sqrt{12})$$

$$\therefore (m + \sqrt{12})(m - \sqrt{12})$$

 $\therefore$  7,  $(m+\sqrt{12})$  and  $(m-\sqrt{12})$  are the factors of  $7m^2-84$  So, the value of  $7m^2-84$  is zero

When 
$$(m + \sqrt{12}) = 0$$
 or  $(m - \sqrt{12}) = 0$ 

$$m = -\sqrt{12} \quad \text{or} \qquad m = \sqrt{12}$$

The zeroes of 
$$7m^2-84$$
 are  $-2\sqrt{3}$  or  $2\sqrt{3}$ .



## Standard form of Polynomials in terms of a and b

 $x^2$  – (Sum of roots)x + Product of roots

$$x^2$$
 - (a + b)  $x$  + ab

- Pind a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively:
  - (iii) 0,  $\sqrt{5}$
- Sol. Let quadratic polynomial be  $ax^2 + bx + c$ , and its two zeroes be  $\alpha$  and  $\beta$

We have 
$$\alpha + \beta = 0$$
 and  $\alpha\beta = \sqrt{5}$ 

If 
$$a = 1$$
, then  $b = 0$  and  $c = \sqrt{5}$ 

So, one quadratic polynomial which fits the given condition is  $x^2 - 0x + \sqrt{5}$  i.e  $x^2 + \sqrt{5}$ 

- Pind a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively:
  - (iv) 1, 1
- Sol. Let quadratic polynomial be  $ax^2 + bx + c$ , and its two zeroes be  $\alpha$  and  $\beta$

We have 
$$\alpha + \beta = 1$$
 and  $\alpha\beta = 1$ 

If 
$$a = 1$$
, then  $b = -1$  and  $c = 1$ 

So, one quadratic polynomial which fits the given condition is  $x^2 - x + 1$ 

- Q. 2 Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively:
  - (i)  $\frac{1}{4}$ , -1
- Sol. Let quadratic polynomial be  $ax^2 + bx + c$ , and its two zeroes be  $\alpha$  and  $\beta$

We have 
$$\alpha + \beta = \frac{1}{4}$$
 and  $\alpha\beta = -1$ 

$$\begin{array}{c|c} -b & 1 \\ \hline a & 4 \end{array}$$

$$\begin{array}{c|c} c & 1 \\ \hline a & 1 \\ \hline \end{array}$$

If 
$$a = 4$$
, then  $b = -1$  and  $c = -4$ 

So, one quadratic polynomial which fits the given condition is  $4x^2 - x - 4$ 

- Q. 2 Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively:
  - (ii)  $\sqrt{2}$ ,  $\frac{1}{3}$
- Sol. Let quadratic polynomial be  $ax^2 + bx + c$ , and its two zeroes be  $\alpha$  and  $\beta$

We have 
$$\alpha + \beta = \sqrt{2}$$
 and  $\alpha\beta = \frac{1}{3}$ 

$$\frac{b}{a} = \sqrt{2} \times \sqrt{3} \sqrt{2}$$

$$\alpha = \sqrt{3} \times \sqrt{3} \sqrt{2}$$

$$\alpha = \sqrt{3} \times \sqrt{3} \sqrt{2}$$

$$\alpha = \sqrt{3} \times \sqrt{3} \sqrt{2}$$

If 
$$a = 3$$
, then  $b = 3\sqrt{2}$  and  $c = 1$ 

So, one quadratic polynomial which fits the given condition is  $3x^2 - 3\sqrt{2}x + 1$ 

- Q. 2 Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively:
  - (v)  $\frac{-1}{4}$ ,  $\frac{1}{4}$
- Sol. Let quadratic polynomial be  $ax^2 + bx + c$ , and its two zeroes be  $\alpha$  and  $\beta$

We have 
$$\alpha + \beta = \frac{-1}{4}$$
 and  $\alpha\beta = \frac{1}{4}$ 

If 
$$a = 4$$
, then  $b = 1$  and  $c = 1$ 

So, one quadratic polynomial which fits the given condition is  $4x^2 + x + 1$ 

- Pind a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively:
  - (vi) 4, 1
- Sol. Let quadratic polynomial be  $ax^2 + bx + c$ , and its two zeroes be  $\alpha$  and  $\beta$

We have 
$$\alpha + \beta = 4$$
 and  $\alpha\beta = 1$ 

If 
$$a = 1$$
, then  $b = -4$  and  $c = 1$ 

So, one quadratic polynomial which fits the given condition is  $x^2 - 4x + 1$ 

## **Thank You**