U.S. Census Insight: Predicting Adult Income

 $\bullet \bullet \bullet$

February 19, 2021

Proposal

- Americans income-to-expense ratio varies by income level.
- What factors will allow us to accurately predict the annual income of adults in the US?
- If we can predict income, we can predict expenditure.

The Methodology

- Clean the data to be categorical in nature.
- Create a categorical model with a RandomForest algorithm.
- Train a model to correctly categorize the income level of adults.

Cleaning

- Binary Income:
 - 0 assigned <= \$50k/year,1 assigned >\$50k/year
- Education cleaned into 3 categories
 - Little difference and representation in lower/higher education extremes
- Marital status simplified to binary
 - Little variation in income via technical status
 (ex: "widowed" vs. "never married" have
 similar income ratios)

Cleaning (cont.)

- Race & native country Not enough data representation
 to be reliable in categorical model.
- Gender and relationship show strong trends in relation to income.
 - Relationship is in regards to others in the home.

Cleaning (cont.)

- Age shows strong correlation to income values; with a tail to the outlier ages of 70+.
 - Removed the 1% outliers

- Hours-per-week is focused in on an average of 40;
 as expected.
 - < 40 hours/week not conducive with making >\$50k?

Feature Identification

- No feature has a higher score than 30% correlation to income.
- As predicted, race had little value in predicting income from this dataset.
- Top 5 features:
 - Age ~ 30%
 - Hours-per-week ~ 15%
 - Marital Status ~12%
 - Education ~ 12%
 - Occupation ~12%

Results of Random Forest Model

- Trained on 80% of data, tested on 20%.
 - Training accuracy: 85%
 - Testing Accuracy: 83.1%
- Recall or True Positive Rate
 - (TP/(TP+FN): 83%, better w/ <= \$50k data
- Precision
 - (TP/(FP+TN): 82%, better w/ <= \$50k data</p>
- F1-score
 - \circ (2*P*R/(P+R): 82%
 - It is a harmonic mean of precision and recall
- Accuracy
 - ((TP+TN)/(N+P)): Overall ~83%
 - Percentage of total items classified correctly

Results of Random Forest Model

- Great? Good? Bad?!
- ROC-AUC Score:
 - Likelihood of randomly choosing a positive case & negative case where the positive case outranks the negative case according to the classifier.

• Our model's score: 88.4%; pretty good.

Conclusions

- We can accurately predict the income level of an adult in the US with an error of < 12%.
 - Allows us to predict expenses, savings, and taxes.
 - Enables tailored marketing to demographics according to expenses.
- For the future:
 - Need more representative data of minorities & immigrants
 - Consider adding more income tiers, changing from binary classification to a new model.