DNA Methylation Arrays MSO Array Illumina Methylation 450k Array

Damianos Melidis

ETH - University of Zurich dmelidis@student.ethz.ch

November 9, 2013

Overview

Introduction

First approach for methylation specific microarray - MSO Array

Illumina Approach - Methylation 450k Array

Evaluation of Methylation 450k Array

Summary

References

DNA Methylation

- ▶ **DNA Methylation:** Addition of methy group to cytosine, sometimes regulating the transcription
- ► **CpG island:** Part of genome where CG more frequently than average

http://extremelongevity.net/2012/06/12/
dna-switches-discovered-to-decline-significantly-with-age/

Epigenetics

- ► **Epigenetics:** Heritable changes in gene action without changing DNA sequence
- Types:
 - DNA methylation
 - histone modification
 - ▶ .
- Why do we need this knowledge?

²http://www.nature.com/nrclinonc/journal/v2/n12s/fig_tab/
ncponc0354_F2.html

DNA Bisulfite Treatment

Method

Chemical treatment of DNA to convert *unmethylated* cytosine to uracil and *methylated* cytosine to cytosine. So we can infer the methylation degree comparing thymine with cytosine

³http://en.wikipedia.org/wiki/File:

MSO Array (Method)

In this approach [Raad S. Gitan et al.], for first time they combine:

- Bisulfite modification
- PCR amplification
- Microarray technology

so they can infer methylation degree comparing thymine to cytosine in highthroughput(!)

MSO Array (Test and control experiment)

Test

- ► 15 CpG sites in first exon of ERa gene
- For each site one methylated and one unmethylated probe
- ► Measure the intensity ratio $\frac{\log(M)}{\log(M) + \log(U)}$
- They show a linear relationship between the DNA methylation percentage and the intensity ratio

Control results

Control

Compare results with bisulfite sequencing

Methylation 450k Array (Introduction)

Microarray features:

- ► Investigation of > 485,000 methylation sites for human genome
- ► Covering 99% of RefSeq genes with average of 17 CpG sites
- Capture of 96% of CpG islands

4

⁴http:

Methylation 450k Array (Method)

Goal:

Evaluate cytosine methylation by quantitative genotyping of single polymorphism C/T

Quite similar with first approach..

Illuminamethylationworkflow.png

⁵http://en.wikipedia.org/wiki/File:

Methylation 450k Array (Technology)

Infinum Assays:

- Infinium 1: assuming methylations of CpG depends on the methylation of each neighbors (50 bp)
- Infinium 1: 2 probes per CpG site + same color channel
- Infinium 2: assuming methylations of CpG independent on the methylation of each neighbors
- Infinium 2: 1 probe per CpG site + red and green channel

^aFigure 2 of [Sarah Dedeurwaerder et al.]

⁶

⁶http://res.illumina.com/documents/products/technotes/

Methylation 450k Array (Data Analysis)

After normalization of scanned images, visualization and analysis like:

- Correlation of methylation
- Visualization of each site relative methylation level
- Clustering of data for profiling

Assessment of Infinium 1 & 2 Assays

Using HCT116 WT and double-knockout and 16 breast tissue samples [Sarah Dedeurwaerder et al.]

- ▶ Investigate the distribution and its variance for 2 assays
- Compare the ability of recovering methylation from different genomic areas

Test and Control of Infinium 1 & 2 Assays

- ▶ Test the assays on breast samples
- Control 450k results with bisulfite sequencing

Summary

Advantages:

- ► High throughput
- Covering most of RefSeq genes and CpG broad region
- High accurate and reproducible (after correction)

Disadvantages:

Raw data need correction before downstream analysis

Leading to:

 $GWAS \rightarrow EWAS!$

References

Raad S. Gitan et al. (2002)

Methylation-Specific Oligonucleotide Microarray: A New Potential for High-Throughout Methylation Analysis.

Genome Research 12, 158 - 164.

Sarah Dedeurwaerder et al. (2011)

Evaluation of Infinum Methylation 450K technology

Epigenomics 3(6), 771-784.