Introduction of Machine Learning

Chul Min Yeum

Assistant Professor

Civil and Environmental Engineering

University of Waterloo, Canada

CIVE 497 – CIVE 700: Smart Structure Technology

Last updated: 2019-03-25

What is Machine Learning?

Learning is any process by which a system improves performance from **experience** (Herbert Simon)

Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithm that

- improve their performance **P**
- at come task T
- with experience **E**

A well-defined learning task is given by <**P**, **T**, **E**>

model, coefficient

Defining the Learning Task

Improve on task T, with respect to performance metric P, based on experience E

T: Playing checkers

P: Percentage of games won against an arbitrary opponent

E: Playing practice games against itself

T: Recognizing hand-written words

P: Percentage of words correctly classified

E: Database of human-labeled images of handwritten words

T: Driving on four-lane highways using vision sensors

P: Average distance traveled before a human-judged error

E: A sequence of images and steering commands recorded while observing a human driver.

T: Categorize email messages as spam or legitimate.

P: Percentage of email messages correctly classified.

E: Database of emails, some with human-given labels

Why is Machine Learning Different from Traditional Programming?

Traditional Programming

Machine Learning

Example: H Beam Classification

Traditional Programming

Edge detection, Hough transform

Machine Learning

Example: Image-to-Image Translation with Conditional Adversarial Nets

ML is used when:

- Human expertise does not exist (navigating on Mars)
- Humans can't explain their expertise (speech recognition, image recognition)
- Models are based on huge amounts of data (genomics), which have complex patterns.

Sample Applications

- Web search
- Computational biology
- Finance
- E-commerce
- Space exploration
- Robotics
- Information extraction
- Social network
- Debugging Software
- Inspection

What are your applications?

Types of Learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

Supervised Learning: Regression

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is real-valued == regression

Revisit: Line Fitting

Data (measurement): $(x_1, y_1), ..., (x_n, y_n)$

Known model: Line $(y_i = mx_i + b)$

We will find m and b.

Supervised Learning: Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is categorical == classification

Supervised Learning: Classification

- x can be multi-dimensional
 - Each dimension corresponds to an attribute

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

•••

Unsupervised Learning: Clustering

- Given $x_1, x_2, ..., x_n$ (without labels)
- Output hidden structure behind the x's
 - E.g., clustering

Example: Unsupervised Learning

Market segmentation

Social network analysis

Autoencoder

Reinforcement Learning

- Given a sequence of states and actions with (delayed) rewards, output a policy
 - Policy is a mapping from states

 actions that tells you what to do in a given state

Examples:

- Credit assignment problem
- Game playing
- Robot in a maze
- Balance a pole on your hand

Example: Regression (Supervised Learning)

Suppose we are given a training set of N observations

$$(x_1,\ldots,x_N)$$
 and $(y_1,\ldots,y_N),x_i,y_i\in\mathbb{R}$

Regression problem is to estimate y(x) from this data

Polynomial Curve Fitting

- The green curve is the true function (which is not a polynomial)
- The data points are uniform in x but have noise in y.
- We will use a loss function that measures the squared error in the prediction of y(x) from x. The loss for the red polynomial is the sum of the squared vertical errors.

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} \left\{ y(x_i, \mathbf{w}) - t_i \right\}^2$$
target value

polynomial

regression

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Some Fits to the Data: Which is Best?

M = 3

Polynomial Coefficients

	M=0	M=1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

• test data: a different sample from the same true function

Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^\star)/N}$

• training error goes to zero, but test error increases with M

Trading off Goodness of Fit against Model Complexity

- If the model has as many degrees of freedom as the data, it can fit the training data perfectly
- But the objective in ML is generalization
- Can expect a model to generalize well if it explains the training data surprisingly well given the complexity of the model.

How to Prevent Over-fitting?

- Add more data than the model "complexity"
- For 9th order polynomial:

• Regularization: penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} \left\{ y(x_i, \mathbf{w}) - t_i \right\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2 \qquad \text{"ridge" regression}$$
 loss function regularization
$$\lim_{t \to 0} \lambda = -18$$
 of the property of

Learning Rate

Use a validation set:

Divide the total dataset into three subsets:

- Training data is used for learning the parameters of the model.
- Validation data is not used for learning but is used for deciding what type of model and what amount of regularization works best.
- Test data is used to get a final, unbiased estimate of how well the learning machine works. We expect this estimate to be worse than on the validation data.

We could then re-divide the total dataset to get another unbiased estimate of the true error rate.

Example: Damage Detection

Collapse classification

- Supervised
- Unsupervised
- Semi-supervised

Leak detection (Cody et al, 2018)

Pipeline inspection

Example: Homography Estimation and Fundamental Matrix

Designing a Learning System

- Choose the training experience
- Choose exactly what is to be learned
 - i.e. the *target function*
- Choose how to represent the target function
- Choose a learning algorithm to infer the target function from the experience

Slide credit: Ray Mooney

Machine Learning in Practice

- Understand domain, prior knowledge, and goals
- Data integration, selection, cleaning, pre-processing, etc.
- Learn models
- Interpret results
- Consolidate and deploy discovered knowledge

Curse of Dimensionality

- "As the number of features or dimensions grows, the amount of data we need to generalize accurately grows exponentially," Charles Isbell
- Think of image recognition problem of high resolution images 1280 × 720 = 921,600 pixels i.e. 921600 dimensions.
- That's why it's called Curse of Dimensionality.
 Value added by additional dimension is much smaller compared to overhead it adds to the algorithm.

SIFT Descriptor

Example: Summation of N Numbers from a to a+N

$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2}$$

$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2} \qquad \sum_{i=a}^{N+a} i = \frac{N(a+N+1)}{2}$$

Given
$$(x_1, y_1)$$
, (x_2, y_2) , ..., (x_n, y_n)

How to design your problem?

Slide Credits and References

- Lecture notes: Eric Eaton
- Lecture notes: A. Zisserman
- Lecture notes: David Sontag
- Bishop (2006) Pattern Recognition and Machine Learning