FASTQ Processing Tools for Data Analysis Zhongfeng Wang

Outline of the webinar

Overview of Illumina FASTQ generation

- Data analysis pipeline overview
- FASTQ format
- Demultiplexing and FASTQ generation

FASTQ tools

- Adapter trimming
- Quality trimming
- Read merging

Does my run look good vs does my FASTQ look good?

Illumina metrics vs third party QC tools

Intended audience

- Users who are new to Illumina sequencing platforms
 - End users who use a core facility to sequence their data and need some guidance on data optimization
- Not intended for bioinformaticians

Overview of Illumina FASTQ Generation

Pipeline for data analysis

BCL Files

- BCL = Base CalL
 - The "raw" data
 - Binary file containing base calls and quality scores for each tile for each cycle
 - Produced by on-instrument Real-Time Analysis Software (RTA)

FASTQ Files-format

- Text file that contains the sequence data from clusters
- Each entry consists of 4 lines:
- → 1. Sequence identifier with information about the sequencing run and the cluster.
 - Header format = @<instrument>:<run number>:<flowcell
 ID>:<lane>:<tile>:<xpos>:<y-pos>:<UMI> <read>:<is filtered>:<control number>:<index>
- → 2. The sequence (the base calls; A, C, T, G and N).
- → 3. A separator, which is simply a plus (+) sign.
- → 4. The base call quality scores. Phred +33 encoded (ASCII)

```
@NB987655:1:ABCD12345:1:11401:6329:1045 1:N:0:ATCACG
TCGCACTCAACGCCCTGCATATGACAAGACAGAATC
+
<>; ##=><9=AAAAAAAAAA9#:<#<;?????#=
```

Qscore – Quality Score

- The QScore is based on the Phred scale Chance that a base call is incorrectly called
 - Q10: 10% chance of incorrect base call
 - Q20: 1% chance of incorrect base call
 - Q30: 0.1% chance of incorrect base call
 - Q40: 0.01% chance of incorrect base call

Quality Scores for Next-Generation Sequencing

Symbol	ASCII Code	Q-Score
<	60	27
=	61	28
>	62	29
?	63	30
@	64	31
Α	65	32
В	66	33
С	67	34
D	68	35
Е	69	36
F	70	37

FASTQ Files- How to view

FASTQ files are large (file size) – best to not open these

How to view contents without opening?

- Use a terminal window on Linux or Mac
- zcat *.fastq.gz | less
- zcat *.fastq.gz | head

How to open a FASTQ file?

- gzipped
- 7-zip for windows to unzip
- Open using a notepad

@NB00000:84:HN8L6AFXY:4:11401:14537:1100 1:N:0:CGTGTAGG+AGTCCAAC
GTAAACGGCGCCCCCATGAGANCCCGGNTTGCTTTCCCAAGCCTTCGGGCGTCTGTGTGCGCTCTGTGGATGCCAGGGCCGACCAGAGGAGCCTTTTTAAAACACATGTTTTTATACAA

Anatomy of a FASTQ file

Naming

```
SampleName_SampleNumber_Lane_Read_FlowCellIndex.fastq.gz
SampleName_S1_L001_R1_001.fastq.gz
SampleName_S1_L001_R2_001.fastq.gz
```

e.g. NextSeq500/550, PE sequencing. 8 fastq files for each sample

```
SampleName_S1_L001_R1_001.fastq.gz
SampleName_S1_L002_R1_001.fastq.gz
SampleName_S1_L003_R1_001.fastq.gz
SampleName_S1_L004_R1_001.fastq.gz
SampleName_S1_L001_R2_001.fastq.gz
SampleName_S1_L002_R2_001.fastq.gz
SampleName_S1_L003_R2_001.fastq.gz
SampleName_S1_L004_R2_001.fastq.gz
```


Demultiplexing and FASTQ generation

Illumina Tools for Demultiplexing and Fastq Generation

Cloud based

BaseSpace™ Sequence Hub (BSSH) Bcl2fastq

DRAGEN ™ bclconvert

MiSeq[™] Reporter

Local Run Manager

Supports All Illumina Sequencing Systems

Bcl2fastq v2 is required for platforms using RTA 2 & 3.

Note: For sequencing systems running an earlier software version of Real-Time Analysis (RTA) than v1.18.54, use bcl2fastq v1.8.4.

What is bcl2fastq v2?

- Linux-based software to convert BCLs → FASTQs
- Optionally performs demultiplexing per sample sheet (created with IEM) instructions
- Command line example

```
/usr/local/bin/bcl2fastq --runfolder-dir . --output-directory ./Data/Intensities/BaseCalls/ --input-dir ./Data/Intesities/Basecalls --sample-sheet ./SampleSheet.csv
```

Command line configurable options

```
E.g. --no-lane-splitting
```

- SampleName_S1_R1_001.fastq.gz
- SampleName_S1_R1_001.fastq.gz

Demultiplexing reports

- IndexQC on SAV
- DemultiplexSummaryF1L#.txt
 - Helps troubleshoot sample dropouts

Depending on what software is used for demultiplexing,
 DemultiplexSummaryF1L1.txt location will vary

SGC

		Α	В	С	D
	1	SampleNu	0	1	2
	2	SampleNa	None	HG200-10ng	HG200-10
	3	L1T1101	3.439879	1.156535	2.958111
	4	L1T1102	3.498839	1.135605	2.999131
L	5	L1T1103	3.558643	1.126721	2.997476
L	6	L1T1104	3.554299	1.141691	2.957287
L	7	L1T1105	3.577636	1.125214	2.991321
L	8	L1T1106	3.640834	1.111034	2.965273
L	9	L1T1107	3.696693	1.126197	2.936993
L	10	L1T1108	3.626516	1.119271	2.935823
	11	L1T1109	3.610867	1.134466	2.919896
1	12	L1T1110	3.524556	1.129786	2.87885/
	13	I 1T1111	3.600484	1.106575	2.877

	### Most Popular Unknown Index Sequences		
• 1	### Columns: Index_Sequence Hit_Count		
	ACTAAGAT+TGGTGAGT	11440	
	ACAGGCGC+TGGTGAGT	10660	
	GTGAATAT+CAACAGAT	8220	
	TCTCTACT+CAACAGAT	6580	
	ACTAGATA+TTGGTGAG	5540	
	TGCGAGAC+ATAGCGTC	5420	
	GCAGATTA+GGTTATAA	5260	
	ACAGGCGC+^T^CCGTC	5180	

Tools: Adapter Trimming

Illumina library design

- Library DNA insert plus full adapter
- Read 1 Sequencing Primer (Rd1 SP)
- Read 2 Sequencing Primer (Rd2 SP)

Adapter trimming overview PE 151

Adapter trimming options

MiSeq™ Reporter, Local Run Manager, BaseSpace™ Fastq Generation and Bcl2fastq

If runs are setup using PrepTab for NextSeq / MiniSeq, adapter trimming is on by default.

https://support.Illumina.com/bulletins/2016/12/what-sequences-do-i-use-for-adapter-trimming.html

Adapter trimming example (hard trimming)

Adapter match > 90% (default)

```
@M00000:71:000000000-D00LW:1:1101:16265:1658 1:N:0:1
ACTCTGCGTTGCGCTTCTGCTCGGCCTCCAGCTCACCCTCCCCTCTCTTATACACATCTCCGAGCCCA
@M00000:71:00000000-D00LW:1:1101:16265:1658 1:N:0:1
ACTCTGCGTTGCGCTTCTGCTCGGCCTCCAGCTCACCCTCC
BCCCCFFCCBCCGGGGGGGGGGGGGGHHHHHHHHHHHHH
```

Bases trimmed (removed) from the start of the Adapter

Adapter masking options

Bcl2fastq

Adapter masking example

Bases masked to "N" and quality score to 2 "#" from the start of the adapter (Useful if analysis program requires reads to be same read length)

Masking short adapters – bcl2fastq

```
@M00000:71:000000000-D00LW:1:1101:16265:1658 1:N:0:1
ACCTGTCTCTTATACACATCTCCGAGTCTGCGTTGCGCTTCTGCTCGGCCTCCAGCTCACCCTCCCCCA
@M00000:72:00000000-D00LW:1:1101:16265:1658 1:N:0:1
--minimum-trimmed-read-length 35
  --mask-short-adapter-reads 22
```

Entire read is converted to 35bp Ns and quality score to "#" from the start of the sequence

- Useful if adapter dimers in the sample
- Prevents generation of empty reads

Why adapter trim?

BWA Enrichment V2.1

Higher alignment %

BWA backtrac

(backtrace)

Sample	Sample Name	Total Aligned Reads	Percent Aligned Reads
1	NA12892	354,882	77.4%
2	NA12892- trim	450,007	98.2%

Why adapter trim?

Improved assemblies

Data: 2 x 250bp, *E.coli* (Nextera™ XT)

Assembly metrics		Before adapter trimming	After adapter trimming	
	N50		21	29,791
Maximum contig		553	174,326	
Assembly length		18,497,207	4,876,437	
Number of contigs		1,387,508	1,115	

Tools: Quality trimming

Quality trimming

- Filter the end of reads based on read end average quality
- When to trim?
 - Where algorithms sensitive to quality De Novo assembly, merging reads, Metagenomics (using 16S rRNA gene for classification)
- When not to trim?
 - Resequencing. Most aligners take quality scores into account (i.e. BWA, Isaac) will soft clip the ends of reads if low quality
- FASTQ toolkit app on BSSH (BaseSpace Sequence Hub) can be used to perform quality trimming

Quality score trimming example

QualityScoreTrim,20

@M00000:72:00000000-D00LW:1:1101:22420:18334 1:N:0:1
CACCAAGGGCCTGGGGTGTCAATGGCGGGGCTTGTGACTGCACAAAAGGGGCCTCCCGCAGGGGCTCCCGCC

+

@M00000:72:000000000-D00LW:1:1101:22420:18334 1:Ni:0:1 CACCAAGGGCCTGGGGTGTCAATGGCGGGGCTTGTGACTGCACAAAAGG

+

BBBBBBFBBBBBGGGGEEFGGGHHHHGGG00>A0B355@BB3@3BGB?E

Q	ASC
13	
14	/
15	0
16	1
18	3
20	5
22	7
25	9
30	?
31	@
32	Α
33	В

Tools: Read merging

Read merging

Combines paired end read into a single read

Generally requires substantially high overlap

- StitchReads,1 option in MiSeq™ Reporter
- Workflows = Amplicon DS, GenerateFASTQ workflow, TruSeq[™] Amplicon
- 10 bp overlap
- Not supported in any other software

When to merge?

- Where read continuity is important
- Improve indel detection in some cases (i.e. where Indel is in overlap region)
- To use tools that only take single end reads (for example some metagenomics software)
- Where majority of reads overlap

When not to merge?

- When some proportion of reads do not overlap
- Where there are simple repeats in overlap region (i.e. sequencing amplicons with expansion repeats)
- Most downstream aligners will handle unmerged reads

Read merging

Data optimization with an example: Using FASTQ toolkit app for Small RNA workflow

RUNS

BaseSpace[™]

- BaseSpace™ is the Illumina cloud-based genomics computing environment for next-generation sequencing (NGS) data management and analysis.
- Is used to analyze or manipulate samples results stored in the project. There are currently about 80+ apps

Core App

BaseSpace Lab App

Third party App

Please Read:

This is a BaseSpace™ Labs App. BaseSpace Labs Apps are developed using an accelerated development process in order to make them available to BaseSpace users faster than conventional Illumina Apps. Illumina may provide support for BaseSpace Labs Apps at its sole discretion. BaseSpace Labs Apps are provided AS-IS without any warranty of any kind. BaseSpace Labs Apps are used at the user's sole risk. Illumina is not responsible for any loss of data, incorrect results, or any costs, liabilities, or damages that may result from the use of a BaseSpace Labs App.

Small RNA sample prep kit

- Human small RNA peaks at ~22bp
- Typical run setup is Single End = 36 to 50cycles. So reads have to be adapter trimmed
- Bcl2fastq: --minimum-trimmed-read-length 20 and --maskshort-adapter-reads 20
- Recommendation: For workflow GenerateFASTQ do not turn on adapter trimming
- Generate FASTQs with 50bp and trim downstream using 3rd party tools or BSSH FASTQ toolkit

FASTQ toolkit output- Results

Small RNA app output

Does my run look good?

vs Does my FASTQ look good?

Previous Webinar - Sequence Analysis Viewer (SAV): A Beginner's Guide

Metrics

Illumina

- Based on Sequencing Analysis Viewer – taking a whole run into consideration
- Yield, Q30, Reads passing filter
- Used for assessing run quality – instrument performance
- Illumina.com > Systems > MiSeq™ > <u>Specifications</u>

3rd party tools *Eg.*, FASTQC

Based on individual FASTQ file

- Sample dependent and hence library kit
- Used for assessing sample performance – primarily for troubleshooting individual sample

Does my FASTQ look good?

- FASTQC app quick QC step to assess sample quality subsamples from read pool
- FASTQC tool helps understand the nature of your library
- Not all graphs are meaningful Understand <u>documentation</u>
- Failure of QC plots in the app does not translate to poor data quality – understand your data
- Sometimes it needs more in-depth downstream data analysis

What FastQC report looks like

FastQCFastQC Report

Summary

Per sequence quality scores

Per base sequence content

Per base GC content

Per sequence GC content

Per base N content

Sequence Length Distribution

🐼 Sequence Duplication Levels

Overrepresented sequences

Kmer Content

Per Base Sequence Quality

Per Base GC Content

Per Base Sequence Content

Per Sequence Quality Scores

Per Sequence GC Content

Sequence Length Distribution

Example of less than ideal data

 Indication of potential run problem, check
 SAV data

Indication of mixed library types or potential library problem?

Example of less than ideal data

- Indication of poor sequence quality, using non-PF data?
- Using adapter masks, short reads?

- Indication of adapter presence
- adapter-dimer or adapter contamination

Summary

- FASTQ format, demultiplexing and FASTQ generation using Illumina tools
- FASTQ processing tools for adapter trimming, quality trimming, read merging et.al.
- Illumina metrics are used for the overall run performance whereas third party tools such as FASTQC are used to look at sample performance

Resources

- FASTQC detailed documentation
- What sequences do I use for adapter trimming?
- Demultiplexing resource bulletin
- FASTQ files explained
- Adapter trimming: Why are adapter sequences trimmed from only the 3' ends of reads?
- Illumina在线技术培训研讨会 Assessing Run Quality With SAV And FastQC
- Illumina在线技术培训研讨会 Introduction To Bcl2fastq V2+

QUESTIONS?

