Solar Spectrum

Tuesday, January 30, 2024 4:06 PM

Solar Energy Conversion System

Lo Converting the sun's energy into electrical power

Insolution

Incident Solar Radiation [Wm2]

· Goal: · Determine insolation for a particular location

on 11 11 day

at 11 11 time

* Choose good locations and tilt angles for Solar panels

Spectrum of Solar Radiation (Earth)

- Area under curve = Solar insolation just under Earth's atmosphere $[W]_{m^2}$ = 1.37 kW/ $_{m^2}$
- "As solar radiation makes its way to Earth's surface, it has to pass some distance the Earth's atmosphere La Attenuation occurs, but by how much?
- · Simplifying Assumption: Earth is flat (!)

- Air Mass Ratio $m^2 \frac{h_2}{h_1} = \frac{1}{\sin \beta}$ $h = \frac{1}$
 - · As m increases, spectrum attenuation overall
 - Also, shift towards longer wavelength $E = \frac{hc}{\lambda}$ photon energy

- · This is why sunsets look red
- * To compute m without the flat earth assumption, need to know more about Earth's orbit

Earth's Orbit

· Elliptical orbit around the sun 365.25 days/yr

Variation in distance:
$$d = 1.5 \times 10^8 \left(1 + 0.017 \sin\left(\frac{360 \left(n - 93\right)}{365}\right)\right) \text{ [km]}$$

$$d = 1.5 \times 10^8 \left(1 + 0.017 \sin\left(\frac{365}{365}\right)\right) \text{ [km]}$$

- · Sun rises in the East, sets in the West
- · Try alternate frame of reference (Stationary Earth)

· At winter solstice:

Can we use this information to find a good tilt angle for solar collector? See next lecture

· In this new frame of reference, the sun moves around!

In general:

Solar Declination Angle (8)

angle formed between plane of equator and line drawn from Centre of the sun

$$\frac{360}{365}(n-81) = 5^{\circ} \text{ or } 180^{\circ} - 5 = 6$$

$$\frac{1}{4}$$

$$\frac{$$