CMPE 409 Machine Translation Language Model

Murat ORHUN Adopted from original slides of NIKHIL.P

Istanbul Bilgi University

May 18, 2022

1 Language Model

2 Further Reading

- One essential component of any statistical machine translation system is the language model. Models that assign probabilities to sequences of words are called language models (LMs).
- Which measures how likely it is that a sequence of words would be uttered by an English(may be other languages) speaker.

- Language model typically does much more than just enable fluent output.
- It supports difficult decisions about word order and word translation.
- For instance, a probabilistic language model p LM should prefer correct word order to incorrect word order:
- p LM (the house is small) > p LM (small the is house)
- p LM (I am going home) > p LM (I am going house)

- In the solution of many problems in the natural language processing, statistical language processing techniques can be also used.
 - optical character recognition
 - spelling correction
 - speech recognition
 - machine translation
 - part of speech tagging
 - parsing
- Statistical techniques can be used to disambiguate the input.
- They can be used to select the most probable solution.
- Statistical techniques depend on the probability theory.
- To able to use statistical techniques, we will need corpora to collect statistics.
- Corpora should be big enough to capture the required knowledge.

N-Gram

- The simplest language model that assigns probabilities to sentences and sequences of words is the n-gram.
- An n-gram is a sequence of N words:
 - A 1-gram (unigram) is a single word sequence of words like "please" or "turn".
 - A 2-gram (bigram) is a two-word sequence of words like "please turn", "turn your", or "your homework".
 - A 3-gram (trigram) is a three-word sequence of words like "please turn your", or "turn your homework".
- We can use n-gram models to estimate the probability of the last word of an n-gram given the previous words, and also to assign probabilities to entire word sequences.

Probabilistic language models can be used to assign a probability to a sentence many NLP tasks.

Machine Translation:

P(high winds tonight) > P(large winds tonight)

Spell Correction:

- Thek office is about ten minutes from here
- P(The Office is) > P(Then office is)

Speech Recognition:

– P(I saw a van) >> P(eyes awe of an)

Summarization, question-answering, ...

Our goal is to compute the probability of a sentence or sequence of words W $(=w_1, w_2, ... w_n)$:

-
$$P(W) = P(w_1, w_2, w_3, w_4, w_5...w_n)$$

What is the probability of an upcoming word?:

-
$$P(w_5|w_1, w_2, w_3, w_4)$$

A model that computes either of these:

-
$$P(W)$$
 or $P(w_n|w_1, w_2...w_{n-1})$ is called a **language model**.

The intuition of the n-gram model (simplifying assumption):

 instead of computing the probability of a word given its entire history, we can approximate the history by just the last few words.

$P(\mathbf{w_n} \mathbf{w_1\mathbf{w}_{n-1}}) \approx P(\mathbf{w_n})$	unigram
$P(w_n w_1w_{n-1})\approx P(w_n w_{n-1})$	bigram
$P(w_n w_1w_{n-1}) \approx P(w_n w_{n-1}w_{n-2})$	trigram
$P(w_n w_1w_{n-1}) \approx P(w_n w_{n-1}w_{n-2}w_{n-3})$	4-gram
$P(w_n w_1w_{n-1}) \approx P(w_n w_{n-1}w_{n-2}w_{n-3}w_{n-4})$	5-gram

In general, N-Gram is

$$P(w_n \big| w_1 ... w_{n\text{--}1}) \approx P(w_n | w_{n-N+1}^{n-1})$$

computing probabilities of word sequences

Unigrams --
$$P(w_1^n) \approx \prod_{k=1}^n P(w_k)$$

Bigrams --
$$P(w_1^n) \approx \prod_{k=1}^n P(w_k \mid w_{k-1})$$

Trigrams --
$$P(w_1^n) \approx \prod_{k=1}^n P(w_k \mid w_{k-1} w_{k-2})$$

4-grams --
$$P(w_1^n) \approx \prod_{k=1}^n P(w_k \mid w_{k-1} w_{k-2} w_{k-3})$$

computing probabilities of word sequences (Sentences)

Unigram

```
P(\langle s \rangle the man from jupiter came \langle s \rangle) \approx
P(the) P(man) P(from) P(jupiter) P(came)
```

Bigram

```
P(\le > the man from jupiter came </s>) \approx P(the |\le s>) P(man|the) P(from |man) P(jupiter |from) P(came |jupiter) P(</s>|came)
```

Trigram

- In general, a n-gram model is an insufficient model of a language because languages have long-distance dependencies.
 - "The computer(s) which I had just put into the machine room is (are) crashing."
 - But we can still effectively use N-Gram models to represent languages.

Which N-Gram should be used as a language model?

- Bigger N, the model will be more accurate.
 - But we may not get good estimates for N-Gram probabilities.
 - The N-Gram tables will be more sparse.
- Smaller N, the model will be less accurate.
 - But we may get better estimates for N-Gram probabilities.
 - The N-Gram table will be less sparse.
- In reality, we do not use higher than Trigram (not more than Bigram).
- How big are N-Gram tables with 10,000 words?
 - Unigram -- 10,000
 - Bigram -10,000*10,000 = 100,000,000
 - Trigram -10,000*10,000*10,000 = 1,000,000,000,000

N-Grams and Markov Models

- The assumption that the probability of a word depends only on the previous word(s) is called Markov assumption.
- Markov models are the class of probabilistic models that assume that we can predict the probability of some future unit without looking too far into the past.
- A bigram is called a first-order Markov model (because it looks one token into the past);
- A trigram is called a second-order Markov model;
- In general a N-Gram is called a N-1 order Markov model.

Estimating N-Gram Probabilities

Estimating n-gram probabilities is called maximum likelihood estimation (or MLE)

We get the MLE estimate for the parameters of an n-gram model by *getting counts from a corpus*, and **normalizing** the counts so that they lie between 0 and 1.

Estimating bigram probabilities:

$$P(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{\sum_{w} C(w_{n-1}w)} = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

where C is the count of that pattern in the corpus

Estimating N-Gram probabilities

$$P(w_n \mid w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1}w_n)}{C(w_{n-N+1}^{n-1})}$$

A Bigram Example

A mini-corpus: We augment each sentence with a special symbol <s> at the beginning of the sentence, to give us the bigram context of the first word, and special end-symbol </s>.

```
<s> I am Sam </s>
<s> Sam I am </s>
```

<s> I fly </s>

Unique words: I, am, Sam, fly

Bigrams: <s> and </s> are also tokens. There are 6(4+2) tokens and 6*6=36 bigrams

P(I <s>)=2/3</s>	P(Sam <s>)=1/3</s>	$P(am \leq s>)=0$	$P(fly \leq s>)=0$	$P(<_S> <_S>)=0$	P(<s>)=0</s>
P(I I)=0	P(Sam I)=0	P(am I)=2/3	P(fly I)=1/3	P(<s> I)=0</s>	P(I)=0
P(I am)=0	P(Sam am)=1/2	P(am am)=0	P(fly am)=0	P(<s> am)=0</s>	P(am)=1/2
P(I Sam)=1/2	P(Sam Sam)=0	P(am Sam)=0	P(fly Sam)=0	P(<s> Sam)=0</s>	P(Sam)=1/2
P(I fly)=0	P(Sam fly)=0	P(am fly)=0	P(fly fly)=0	$P(\leq s \geq fly)=0$	P(fly)=1
P(I)=0	P(Sam)=1/3	P(am)=1/3	P(fly)=1/3	$P(<_S>)=0$	P()=0

Uni-Trigram Example

Example

<s> I am Sam </s>

Unigrams: I, am, Sam, fly

<s> Sam I am </s> <s> I fly </s>

P(I) = 3/8

P(am)=2/8

P(Sam)=2/8

P(fly)=1/8

Trigrams: There are 6*6*6=216 trigrams.

- Assume there are two tokens <s> <s> at the begining, and two tokens </s> </s> at the end

P(I|<s><s>)=2/3

P(Sam|<s><s>)=1/3

 $P(am|\leq s \geq I)=1/2$

 $P(fly|\leq s \geq I)=1/2$

 $P(I|\leq s \geq Sam)=1$

P(Sam|I am)=1/2

P(</s>|I am)=1/2

P(</s>|am Sam)=1

P(</s>|Sam </s>)=1

Corpus: Berkeley Restaurant Project Sentences

- There are 9222 sentences in the corpus.
- Raw biagram counts of 8 words (out of 1446 words)

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Corpus: Berkeley Restaurant Project Sentences

	i	want	to	eat	chinese	food	lunch	sper
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Unigram counts:

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Normalize bigrams by unigram counts:

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Bigram Estimates of Sentence Probabilities

Some other bigrams:

P(i|<s>)=0.25P(food|english)=0.5 P(english|want)=0.0011P(</s>|food)=0.68

0.002 0.33 0.0036 0 0.0022 0.66 0.0065 want 0.0011 0.00083 0.0017 0.28 0.00083 0 0.0027 0 0.021 eat chinese 0.0063 food 0.014 0 0.014 0.00092

0.0036

want to

chinese food

0

0.0065 | 0.0054 | 0.0011

0.0027 0.056

0.52 0.0063

0.0037

0.0029 0

0.0025 0.087

spend

0

0

0.00079

Compute the probability of sentence I want English food

 $P(\le s \ge i \text{ want english food } \le s \ge i)$

= $P(i|\le s>) P(want|i) P(english|want) P(food|english) P(\le s>|food)$

lunch 0.0059 0

spend

0.0036

= 0.25*0.33*0.0011*0.5*0.68

= 0.000031

Further Reading

- Jurafsky, D. and J. H. Martin. Speech and language processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, Second Edition, Upper Saddle River, NJ: Prentice-Hall, 2008.
- Statistical Machine Translation, Philipp Koehn (chapter 7).