

regsplice: Lasso-based model selection for improved detection of differential exon usage

European Bioconductor Developers' Meeting 2015 Cambridge, UK

Lukas Weber, University of Zurich 8 December 2015

Alternative splicing

Differential analysis

Compare gene expression (mRNA abundance) between groups of samples in different conditions, e.g. cancer versus healthy

- Differential gene expression: differences in total expression level of all mRNA transcripts from a gene
- Differential transcript expression (DTE): differences in expression level of individual mRNA transcripts
- Differential transcript usage (DTU): differences in <u>proportional</u>
 expression of transcripts from a gene (e.g. due to differential splicing)
- Differential exon usage (DEU): surrogate for DTU used for quantification and testing

Current methods to test for DEU

DEXSeq:

- table of RNA-seq read counts at exon-level (counting bins)
- exon-level statistical tests
- gene-level q-values to rank genes by evidence for differential splicing

voom-diffSplice:

- gene-level linear models with interaction terms for exons
- RNA-seq and microarrays

Example read count table					
		Condition 1		Condition 2	
Gene	Exon	Sample 1	Sample 2	Sample 3	Sample 4
1	1	300	310	150	150
	2	400	410	195	210
	3	100	100	55	50
2	1	210	200	100	100
	2	110	100	55	50
	3	40	35	40	40
	4	150	140	140	150

[other approaches]:

- DRIMSeq (Dirichlet-multinomial models): Gosia Nowicka
- transcript abundance, e.g. kallisto/sleuth
- comparison of approaches for counting reads: Charlotte Soneson (bioRxiv)

Model selection approach

- based on voom-diffSplice approach: gene-level linear models with interaction terms for exons
- biology suggests many interaction terms are redundant, since differential splicing may only involve some exons
- <u>lasso-based model selection</u> to select a subset of interaction terms for each gene

solve for
$$\pmb{\beta}$$
 that minimizes: $\sum_{i=1}^n \left(y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij}
ight)^2 + \lambda \sum_{j=1}^p |eta_j|$

 reduces complexity of gene-level linear models, which may improve statistical power

Results

- methods implemented as R package <u>regsplice</u>, using lasso fitting functions from <u>glmnet</u>
- simulated data for human, fruit fly
- <u>iCOBRA</u> package for evaluation plots (Charlotte Soneson)

Discussion

- <u>Lasso-based model selection approach improves performance</u> of voom-diffSplice testing framework, but DEXSeq still performs best for RNA-seq data
 - Inclusion of terms for sample effects also improves performance
 - genes where lasso selects zero interaction terms: two options (p-value = 1, or fit full GLM)
- regsplice methods work with continuous data (microarrays or voom-transformed RNA-seq)
- fast computational speed
 - <10 min for human data set on a standard MacBook Air laptop</p>
 - faster than DEXSeq, slower than voom-diffSplice

Next steps

- test using more data sets: RNA-seq, microarrays
- submit regsplice package to Bioconductor

Acknowledgments

- Mark Robinson
- Charlotte Soneson
- Robinson lab (UZH)

Additional slides

Additional results: ROC curves

receiver operating characteristic curves (iCOBRA package)

