Matemáticas para las Ciencias I

Semestre 2020-2

Prof. Pedro Porras Flores

Ayud. Irving Hernández Rosa

unam1.png

Tarea I

fciencias1.png

Realice los siguientes ejercicios, escribiendo el procedimiento claramente. Y recuerden que la tarea se entrega en equipos de a lo más tres integrantes.

1. Determina cuando los siguientes conjuntos son linealmente dependientes o linealmente independientes.

a)
$$\left\{ \begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix}, \begin{pmatrix} -2 & 6 \\ 4 & -8 \end{pmatrix} \right\} \in M_{2x2}(\mathbb{R})$$

b)
$$\left\{ \begin{pmatrix} 1 & -2 \\ -1 & 4 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 2 & -4 \end{pmatrix} \right\} \in M_{2x2}(\mathbb{R})$$

c)
$$\{x^3 + 2x^2, -x^2 + 3x + 1, x^3 - x^2 + 2x - 1\} \in P_3(\mathbb{R})$$

d)
$$\{(1,-1,2),(1,-2,1),(1,1,4)\} \in \mathbb{R}^3$$

e)
$$\{(1,-1,2),(2,0,1),(-1,2,-1)\}\in\mathbb{R}^3$$

Recuerde que $P_n(\mathbb{R}) = \{a_0 + a_1x + a_2x^2 + \dots + a_nx^n | a_k \in \mathbb{R} \, \forall k = 0, 1, 2, \dots n \}$

- 2. ¿Cuáles de los siguientes conjuntos son bases para \mathbb{R}^3 ?
 - a) $\{(1,0,-1),(2,5,1),(0,-4,3)\}$
 - b) $\{(2, -4, 1), (0, 3, -1), (6, 0, -1)\}$
 - c) $\{(1,2,-1),(1,0,2),(2,1,1)\}$
- 3. Diga si los siguientes $x^3-2x^2+1,\,4x^2-x+3$ y 3x-2 generan a $P_3(\mathbb{R})$
- 4. Prueba que las siguientes tranformaciones T son lineales y encuentra el núcleo Nu(T) y la imagen Im(T)
 - a) $\{T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2 \text{ definida por } T(a_1, a_2, a_3) = (a_1 a_2, 2a_3) \}$
 - b) $\{T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3 \text{ definida por } (a_1, a_2) = (a_1 + a_2, 0, 2a_1 a_2) \}$
 - c) $\{T: M_{2x3}(\mathbb{R}) \longrightarrow M_{2x2}(\mathbb{R})$ definido por

$$T\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} = \begin{pmatrix} 2a_{11} - a_{12} & a_{13} + 2a_{12} \\ 0 & 0 \end{pmatrix}$$

- d) $T: P_2(\mathbb{R}) \longrightarrow P_3(\mathbb{R})$ definida por T(f(x)) = xf(x) + f'(x).
- 5. Sean β y γ las bases estándar para \mathbb{R}^n y \mathbb{R}^m respectivamente. Para cada transformación lineal $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ encontrar su representación matricial.
 - a) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ definido por $T(a_1, a_2) = (2a_1 a_2, 3a_1 + 4a_2, a_1)$
 - b) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ definido por $T(a_1, a_2, a_3) = (2a_1 + 3a_2 a_3, a_1 + a_3)$
 - c) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}$ definido por $T(a_1, a_2, a_3) = 2a_1 + a_2 3a_3$
 - d) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definido por $T(a_1, a_2, a_3) = (2a_2 + a_3, -a_1 + 4a_2 + 5a_3, a_1 + a_3)$

- 6. Para cada uno de los siguientes pares de bases β y β' para \mathbb{R}^2 , encuentra la matriz de cambio de coordenadas que cambia las coordenadas de β' en las de β .
 - a) $\beta = {\hat{e}_1, \hat{e}_2}$ y $\beta' = {(a_1, a_2), (b_1, b_2)}$
 - b) $\beta = \{(-1,3), (2,-1)\}$ y $\beta' = \{(0,10), (5,0)\}$
 - c) $\beta = \{(2,5), (-1,-3)\}$ y $\beta' = \{e_1, e_2\}$
 - d) $\beta = \{(-4,3), (2,-1)\}$ y $\beta' = \{(2,1), (-4,1)\}$
- 7. Encontrar la matriz inversa por el método de Gauss-Jordan de las siguientes matrices
 - a) $\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ b) $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 2 & 1 \\ 1 & 3 & 4 \\ 2 & 3 & -1 \end{pmatrix}$ d) $\begin{pmatrix} 0 & -2 & 4 \\ 1 & 1 & -1 \\ 2 & 4 & -5 \end{pmatrix}$
- 8. Calcular el determinante de las siguientes matrices
 - a) $\begin{pmatrix} 6 & -3 \\ 2 & 4 \end{pmatrix}$ b) $\begin{pmatrix} -5 & 2 \\ 6 & 1 \end{pmatrix}$ c) $\begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ 2 & 3 & 0 \end{pmatrix}$ d) $\begin{pmatrix} 0 & 2 & 1 & 3 \\ 1 & 0 & -2 & 2 \\ 3 & -1 & 0 & 1 \\ -1 & 1 & 2 & 0 \end{pmatrix}$
- 9. Para cada par de vectores u y v en \mathbb{R}^2 , calcula el área del paralelogramo determinado por u y v.
 - a) $\vec{u} = (3, -2) \text{ y } \vec{v} = (2, 5)$ b) $\vec{u} = (1, 3) \text{ y } \vec{v} = (-3, 1)$ c) $\vec{u} = (4, -1) \text{ y } \vec{v} = (-6, -2)$
- 10. Para cada una de las siguientes matrices $A \in M_{nxn}(\mathbb{R})$ determine los valores propios de A y para cada valor propio λ de A, encontrar el conjunto de vectores propios correspondientes a A
 - a) $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$ b) $A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$ c) $A = \begin{pmatrix} 0 & -2 & -3 \\ -1 & 1 & -1 \\ 2 & 2 & 5 \end{pmatrix}$
- 11. Encuentre los ejes principales de la siguiente superficie $x^2 + 4y^2 + 5z^2 + 8xz 36 = 0$ y con ello construya una matriz de rotación de tal manera que los ejes principales de la superficie coincidan con los con los vectores canónicos de \mathbb{R}^3 . ¿Qué superficie es?
- 12. Aplique el proceso de Gram-Schmidt para construir una base ortonormal en cada caso
 - a) $\{(1,1),(1,2)\}$

- b) $\{(3,-3),(3,1)\}$
- c) $\{(1,-1,-1),(0,3,3),(3,2,4)\}$
- d) $\{(1,1,1),(1,1,0),(1,0,0)\}$
- 13. Encuentre la distancia de punto (2,1,-1) al plano x-2y+2z+5=0
- 14. Encuentre la ecuación del plano que pasa por los puntos (3,2,-1) (1,-1,2) que es paralelo a la recta $\ell=(1,-1,0)+t(3,2,-2)$