群の準同型定理

黒木 玄

2008年5月14日(火)

1 群と部分群と正規部分群

群とは集合 G と二項演算 $\cdot: G \times G \to G, \ (a,b) \mapsto ab$ と G の元 $1=1_G \in G$ と単項演算 $(\)^{-1}: G \to G, \ a \mapsto a^{-1}$ の組 $(G,\cdot,1,(\)^{-1})$ で以下の条件を満たすもののことである: $a,b,c \in G$ に対して

$$(ab)c = a(bc), \quad 1a = a1 = 1, \quad a^{-1}a = aa^{-1} = 1.$$

簡単のため群 $(G, \cdot, 1, (\cdot)^{-1})$ を単に群 G と呼ぶことにする. 以下 G は群であるとする. 群 G の部分集合 H が次の条件を満たすとき H は自然に群をなすので, H は G の部分群であると言う:

$$a, b \in H \implies ab \in H; \quad 1 \in H; \quad a \in H \implies a^{-1} \in H.$$

以下 H は G の部分群であるとする. 元 $a \in G$ で代表される左剰余類 aH を次のように定める:

$$aH = \{ah \mid h \in H\}.$$

このとき $a,b \in G$ に対して aH = bH と $a^{-1}b \in H$ は同値である.

証明. aH=bH のとき $b\in bH=aH$ なので、ある $h\in H$ が存在して b=ah. よって $a^{-1}b=h\in H$ である. 逆に $a^{-1}b\in H$ のとき、任意の $h\in H$ に対して、 $bh=aa^{-1}bh\in aH$ 、 $ah=bb^{-1}ah=b(a^{-1}b)^{-1}h\in bH$ なので $bH\subset aH$ 、 $aH\subset bH$ である. よって aH=bH である.

群 G の部分群 N が次の条件をみたすとき, N は G の正規部分群であると言う:

$$q \in G, n \in N \implies q^{-1}nq \in N.$$

以下 N は G の正規部分群であるとする. 集合 G/N を次のように定める:

$$G/N = \{ aN \mid a \in G \}.$$

このとき G/N に二項演算 \cdot ,元 $1_{G/N}$,単項演算 $(\cdot)^{-1}$ を次のように定めることができる: $a,b\in G$ に対して

$$aN \cdot bN = abN$$
, $1_{G/N} = 1N = N$, $(aN)^{-1} = a^{-1}N$.

証明. \cdot と ()⁻¹ が well-defined であることを示せばよい.

 $aN=a'N,\ bN=b'N$ のとき、 $a^{-1}a',b^{-1}b'\in N$ である。N は正規部分群なので $b^{-1}a^{-1}a'b\in N$ であり、 $(ab)^{-1}a'b'=b^{-1}a^{-1}a'b'=b^{-1}a^{-1}a'bb^{-1}b'\in N$. よって abN=a'b'N である。これで二項演算・が well-defined であることがわかった。

aN=a'N のとき $a'^{-1}a\in N$ である. N は正規部分群なので $(a^{-1})^{-1}a'^{-1}=aa'^{-1}=aa'^{-1}aa^{-1}\in N$. よって $a^{-1}N=a'^{-1}N$ である. これで単項演算 $(\)^{-1}$ が well-defined であることがわかった. \square

上の定義によって G/N は群をなす. G/N を剰余群と呼ぶ.

証明. $a,b,c \in G$ に対して, $(aN \cdot bN)cN = abN \cdot cN = (ab)cN = a(bc)N = aN \cdot bcN = aN(bN \cdot cN)$., $1_{G/N}aN = 1N \cdot aN = 1aN = aN$, $aN1_{G/N} = aN \cdot 1N = a1N = aN$, $(aN)^{-1}aN = a^{-1}N \cdot aN = a^{-1}aN = 1N = 1_{G/N}$, $aN(aN)^{-1} = aN \cdot a^{-1}N = aa^{-1}N = 1N = 1_{G/N}$.

2 群の準同型と準同型定理

以下 G,G' は群であるとする. 写像 $f:G\to G'$ が群の準同型であるとは以下の条件をみたすことである: $a,b\in G$ に対して

$$f(ab) = f(a)f(b).$$

以下 $f:G \to G'$ は群の準同型であるとする. このとき次が成立する: $a \in G$ に対して

$$f(1) = 1, \quad f(a^{-1}) = f(a)^{-1}.$$

証明、f(1)f(1)=f(11)=f(1) の両辺に $f(1)^{-1}$ をかけると f(1)=1. $f(a^{-1})f(a)=f(a^{-1}a)=f(1)=1$ の両辺に右から $f(a)^{-1}$ をかけると $f(a^{-1})=f(a)^{-1}$. \square

準同型 f が全単射であるときその逆写像 f^{-1} も準同型になる.

証明. $a',b' \in G'$ に対して $a'b' = f(f^{-1}(a'))f(f^{-1}(b')) = f(f^{-1}(a'))f^{-1}(b')$)なので $f^{-1}(a'b') = f^{-1}(a')f^{-1}(b')$.

全単射準同型写像を同型写像と呼ぶ. G, G' のあいだに同型写像が存在するとき G と G' は同型であると言い, $G \cong G'$ と書く.

集合 $\operatorname{Im} f$, $\operatorname{Ker} f$ を次のように定める:

Im
$$f = \{ f(a) \mid a \in G \}$$
, Ker $f = \{ a \in G \mid f(a) = 1 \}$.

このとき $\operatorname{Im} f$ は G' の部分群であり、 $\operatorname{Ker} f$ は G の正規部分群である.

証明. $a,b \in G$ に対して $f(a)f(b) = f(ab) \in \text{Im } f, \ 1 = f(1) \in \text{Im } f, \ f(a)^{-1} = f(a^{-1}) \in \text{Im } f$. よって Im f は G' の部分群である.

 $a,b \in \operatorname{Ker} f, g \in G$ に対して $f(ab) = f(a)f(b) = 11 = 1, f(1) = 1, f(a^{-1}) = f(a)^{-1} = 1$ より $ab,1,a^{-1} \in \operatorname{Ker} f$ であり, $f(g^{-1}ag) = f(g)^{-1}f(a)f(g) = f(g)^{-1}1f(g) = 1$ より $g^{-1}ag \in \operatorname{Ker} f$. よって $\operatorname{Ker} f$ は G の正規部分群である.

記号の簡単のため $N = \operatorname{Ker} f$ とおく.

写像 $\bar{f}:G/\operatorname{Ker} f \to \operatorname{Im} f$ を次のように定めることができる: $a \in G$ に対して

$$\bar{f}(aN) = f(a).$$

証明. $a,b\in G,\ aN=bN$ と仮定する.このとき $a^{-1}b\in N=\mathrm{Ker}\, f$ であるから $1=f(a^{-1}b)=f(a)^{-1}f(b)$.よって f(a)=f(b).これで写像 $\bar f$ が well-defined であることが示された. \square

写像 $\bar{f}: G/\operatorname{Ker} f \to \operatorname{Im} f$ は群の同型写像である (準同型定理).

証明、任意の $a,b\in G$ に対して $\bar{f}(aN\cdot bN)=\bar{f}(abN)=f(ab)=f(a)f(b)=\bar{f}(aN)\bar{f}(bN)$. よって \bar{f} は群の準同型である.

任意の $a \in G$ に対して $f(a) = \overline{f}(aN) \in \operatorname{Im} \overline{f}$ なので \overline{f} は全射である.

任意の $a,b \in G$ について $\bar{f}(aN) = \bar{f}(bN)$ ならば $f(a) = f(b), f(a^{-1}b) = f(a)^{-1}f(b) = f(a)^{-1}f(a) = 1, a^{-1}b \in \operatorname{Ker} f = N$ なので aN = bN である. よって \bar{f} は単射である.

3 例

例 3.1 $GL_n(\mathbb{C})=\{A\in M_n(\mathbb{C})\mid \det A\neq 0\}$ は行列の積に関して自然に群をなす. $\mathbb{C}^{\times}=\{z\in\mathbb{C}\mid z\neq 0\}$ は乗法に関して自然に群をなす. 行列式を取る写像 $\det:GL_n(\mathbb{C})\to\mathbb{C}^{\times}$ は群の全射準同型である. $SL_n(\mathbb{C})=\mathrm{Ker}(\det:GL_n(\mathbb{C})\to\mathbb{C}^{\times})$ とおくと, $SL_n(\mathbb{C})$ は $GL_n(\mathbb{C})$ の正規部分群である. 準同型定理より群の同型 $GL_n(\mathbb{C})/SL_n(\mathbb{C})\cong\mathbb{C}^{\times}$ が成立している.

例 3.2 $B=\{A\in GL_n(\mathbb{C})\mid A$ は上三角行列 $\},\ T=\{A\in B\mid A$ は対角行列 $\},\ U=\{A\in B\mid A$ は対角成分がすべて $1\}$ とおく. このとき B は $GL_n(\mathbb{C})$ の部分群であり, T, U はその部分群である. 写像 $f:B\to T$ を $A\in B$ に対して f(A)=(A の対角成分) = (A の非対角成分を 0 に置き換えたもの) と定める. このとき f は群の全射準同型写像になり, $\operatorname{Ker} f=U$ である. よって群の同型 $B/U\cong T$ が成立している.

 $n \ge 2$ ならば T は B の正規部分群ではない. \square