FUNCTIONAL ANALYSIS II SUMMARY

YANNIS BÄHNI

Abstract. This is a rough summary of the course *Functional Analysis II* held at *ETH Zurich* by *Prof. Dr. Alessandro Carlotto* in spring 2018. The main focus of this summary is to give a neat preparation for the oral exam.

Contents

Introduction
Sobolev Space Theory
The Spaces $W^{k,p}(\Omega)$
Elliptic Operators in Divergence Form
Sobolev Spaces on an Interval
Dirichlet and Neumann Boundary Problems on an Interval
Sobolev Spaces on a Domain
Extension and Trace Operator
Sobolev Embeddings
$p < n \dots \dots$
p > n
$p = n \dots \dots$
Regularity Theory
Interior Regularity
Boundary Regularity
Eigenfunctions of $-\Delta$
Schauder Theory
Campanato-Estimates and Morrey-Spaces
Schauder Estimates
Existence Theorems
Maximum Principle
Weak Maximum Principle
Strong Maximum Principle
References

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

Introduction

This serves as a summary of useful facts from *measure theory* which are used throughout the text.

Theorem 1.1 (Transformation Formula). Let $n \in \omega$, n > 0, $U, V \subseteq \mathbb{R}^n$ open and $\varphi : U \to V$ a C^1 -diffeomorphism. A function $f : V \to \mathbb{R}$ is in $\mathcal{L}^1(V)$ if and only if $(f \circ \varphi) |\det(D\varphi)|$ is in $\mathcal{L}^1(U)$. Then

$$\int_{V} f = \int_{U} (f \circ \varphi) \left| \det(D\varphi) \right|.$$

Theorem 1.2. Let $\Omega \subseteq \mathbb{R}^n$ be open and $1 \leq p < \infty$. Then $C_c^{\infty}(\Omega)$ is dense in $L^p(\Omega)$.

Proposition 1.1. If $|\Omega| < \infty$ and $0 . Then <math>L^q(\Omega) \subseteq L^p(\Omega)$.

Proposition 1.2 (Jensen's Inequality). *Let* $\Omega \subseteq \mathbb{R}^n$ *bounded and* $\varphi : \mathbb{R} \to \mathbb{R}$ *convex. Then*

$$\varphi\left(\frac{1}{|\Omega|}\int_{\Omega}f\right) \leq \frac{1}{|\Omega|}\int_{\Omega}\varphi\circ f$$

for any $f \in L^1(\Omega)$.

Proposition 1.3 (Dual of $L^p(\Omega)$ **).** Let $\Omega \subseteq \mathbb{R}^n$ and $1 \leq p < \infty$. Then the mapping $T: L^q(\Omega) \to (L^p(\Omega))^*$ defined by

$$T(f)(g) := \int_{\Omega} fg$$

is an isometric isomorphism.

Proposition 1.4 (Integration by Parts). Let (M, g) be a compact Riemannian manifold with boundary. Then

$$\int_{M} \langle \operatorname{grad} f, X \rangle_{g} dV_{g} = \int_{\partial M} f \langle X, N \rangle dV_{\tilde{g}} - \int_{M} (f \operatorname{div} X) dV_{g}$$

for $f \in C^{\infty}(M)$ and $X \in \mathfrak{X}(M)$. Moreover, Green's identities hold:

$$\int_{M} u \Delta v \, dV_{g} = \int_{M} \langle \operatorname{grad} u, \operatorname{grad} v \rangle_{g} \, dV_{g} - \int_{\partial M} u N v \, dV_{\widetilde{g}}$$

and

$$\int_{M} (u\Delta v - v\Delta u)dV_{g} = \int_{\partial M} (vNu - uNv)dV_{\tilde{g}}$$

for $u, v \in C^{\infty}(M)$.

Sobolev Space Theory

The Spaces $W^{k,p}(\Omega)$. In what follows, let $n \in \omega$, $n \ge 1$, and $1 \le p \le \infty$.

Definition 1.1 (Distributional and Weak Derivative). Let $\Omega \subseteq \mathbb{R}^n$ open and $u \in L^1_{loc}(\Omega)$. For any multiindex α , the **distributional derivative of order \alpha of u**, written $D^{\alpha}u$, is defined to be the mapping $D^{\alpha}u: C_c^{\infty}(\Omega) \to \mathbb{R}$ defined by

$$\varphi \mapsto (-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \varphi dx.$$

Moreover, a function $D^{\alpha}u \in L^{p}(\Omega)$ is called weak derivative of order α of u with exponent p, iff

$$\forall \varphi \in C_c^{\infty}(\Omega) : \int_{\Omega} D^{\alpha} u \varphi dx = (-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \varphi dx.$$

Theorem 1.3 (Fundamental Lemma of Variational Calculus). Let $\Omega \subseteq \mathbb{R}^n$ open and $f \in L^1_{loc}(\Omega)$. If

$$\forall \varphi \in C_c^{\infty}(\Omega) : \int_{\Omega} f \varphi dx = 0,$$

then f = 0 a.e.

Remark 1.1. Let $\Omega \subseteq \mathbb{R}^n$ open. Then $L^p(\Omega) \subseteq L^1_{loc}(\Omega)$.

Remark 1.2. From the fundamental lemma of variational calculus 1.3 it follows that *weak derivatives, if they exist, are unique.*

Examples 1.1 (Weak Derivatives).

- (a) Suppose u is classically differentiable. Then u is weakly differentiable using integration by parts 1.4.
- (b) Consider $\Omega := (-1, 1)$ and u := |x|. Then $u' = \chi_{[0,1)} \chi_{(-1,0)}$.
- (c) Consider $\Omega := \mathbb{R}$ and $u := \chi_{(0,\infty)}$. Then the weak derivative u' does not exist. Indeed, the *Dirac distribution* is not representable as one may see by considering the smooth family $\varphi_{\varepsilon} : \mathbb{R} \to \mathbb{R}$ for $\varepsilon > 0$ defined by

$$\varphi_{\varepsilon}(x) := \begin{cases} e^{\varepsilon^2/(x^2 - \varepsilon^2)} & |x| < \varepsilon, \\ 0 & |x| \ge \varepsilon. \end{cases}$$

- (d) Let $\Omega := (0, 1)$ and consider the *Cantor function* $u : \Omega \to \Omega$. Then u' = 0 classically a.e. but the distributional derivative of u does not vanish.
- (e) Let $f \in L^p(\Omega)$. Then the computation performed in the proof of lemma 1.3 shows, that the function $u: I \to \mathbb{R}$ defined by

$$u(x) := \int_{x_0}^{x} f(t)dt$$

for $x_0 \in I$, admits the weak derivative f.

Definition 1.2 (Sobolev Space). Let $\Omega \subseteq \mathbb{R}^n$ open. For any $k \in \omega$, the **Sobolev space of index (k, p)**, written $W^{k,p}(\Omega)$, is defined to be the space

$$W^{k,p}(\Omega) := \{ f \in L^p(\Omega) : D^{\alpha}u \in L^p(\Omega) \text{ exists for all } |\alpha| \le k \},$$

with norm

$$||-||_{W^{k,p}(\Omega)} := \sum_{|\alpha| < k} ||D^{\alpha} - ||_{L^p(\Omega)}.$$

Moreover, define

$$W_0^{k,p}(\Omega) := \overline{C_c^{\infty}(\Omega)}^{\|-\|_{W^{k,p}(\Omega)}},$$

and $H^k(\Omega) := W^{k,2}(\Omega)$ as well as $H_0^k(\Omega) := W_0^{k,2}(\Omega)$.

Examples 1.2 (Sobolev Functions). A main tool in constructing Sobolev functions for $n \ge 2$ is using that the origin in \mathbb{R}^n has vanishing $W^{1,p}$ -capacity.

- (a) Let $\Omega := \mathbb{R}$, A Lebesgue-measurable and $u := \chi_A$. Then $u \notin W^{1,p}(\Omega)$, since by theorem 1.7 u must admit a continuous representant, which it obviously does not.
- (b) Let $\Omega := B_1(0) \subseteq \mathbb{R}^n$ for $n \ge 2$. Then $u : \Omega \to \overline{\mathbb{R}}$ defined by $u(x) := \log |x|$ belongs to $L^p(\Omega)$ for any $1 \le p < \infty$ and moreover, $u \in W^{1,p}(\Omega)$ for any p < n.
- (c) Let $\Omega := B_{1/e}(0) \subseteq \mathbb{R}^n$ for $n \ge 2$. Then $u : \Omega \to \overline{\mathbb{R}}$ defined by $u(x) := \log \log \frac{1}{|x|}$ belongs to $W^{1,n}(\Omega)$.
- (d) Let $\Omega := B_{1/2}(0) \subseteq \mathbb{R}^n$. For $\alpha \in \mathbb{R}$ define $u_{\alpha} : \Omega \to \overline{\mathbb{R}}$ by $u_{\alpha}(x) := |\log|x||^{\alpha}$. Then $u_{\alpha} \in H^1(\Omega)$ for n = 1 if and only if $\alpha = 0$, for n = 2 if and only if $\alpha \in (-\infty, 1/2)$ and for $n \geq 3$ if and only if $\alpha \in \mathbb{R}$.

Remark 1.3. Using proposition 1.1, we immediately get

$$W^{1,q}(\Omega) \hookrightarrow W^{1,p}(\Omega)$$

for all $1 \le p \le q \le \infty$ whenever $\Omega \subseteq \subseteq \mathbb{R}^n$.

Theorem 1.4. Let $\Omega \subseteq \mathbb{R}^n$ open. Then $W^{k,p}(\Omega)$ is

- (a) a Banach space for all $1 \le p \le \infty$.
- (b) separable for all $1 \le p < \infty$.
- (c) reflexive for all 1 .

Proof. The proof basically boils down to using the correponding properties of the Lebesgue spaces $L^p(\Omega)$.

(a) This follows from the fact that $L^p(\Omega)$ is a Banach space for all $1 \leq p \leq \infty$. Let $(f_i)_{i \in \omega}$ be a Cauchy sequence in $W^{k,p}$. By definition of the $W^{k,p}$ -norm, $(D^{\alpha}f_i)_{i \in \omega}$ is a Cauchy sequence in L^p . Thus we get $D^{\alpha}f_i \to f_{\alpha}$ in L^p , in particular, $f_i \to f$ in L^p . Using Hölder's inequality we compute

$$\int_{\Omega} f_{\alpha} \varphi dx = \lim_{i \to \infty} \int_{\Omega} D^{\alpha} f_{i} \varphi dx = (-1)^{|\alpha|} \lim_{i \to \infty} \int_{\Omega} f_{i} D^{\alpha} \varphi dx = (-1)^{|\alpha|} \int_{\Omega} f D^{\alpha} \varphi dx$$

for $\varphi \in C_c^{\infty}(\Omega)$.

- (b) For simplicity, we consider k = 1 only. Consider $\iota : W^{1,p} \hookrightarrow (L^p)^{n+1}$ defined in the obvious way. Then ι is an isometry and the statement follows.
- (c) Same argument as in part (b).

Elliptic Operators in Divergence Form.

Lemma 1.1 (Poincaré Inequality). Let $\Omega \subseteq \subseteq \mathbb{R}^n$ and $1 \leq p < \infty$. Then for any $u \in C_c^{\infty}(\Omega)$ we have that

$$||u||_{L^p} \leq C ||\nabla u||_{L^p}.$$

Proof. Let n=1. Since Ω is bounded, we get that $\Omega\subseteq(a,b)$ and we may extend u on [a,b]=:I to be zero. Hence an application of Jensen's inequality 1.2 yields

$$|u(x)|^p = \left| \int_a^x u'(t)dt \right|^p \le (x-a)^{p-1} \int_a^x |u'(t)|^p dt \le (b-a)^{p-1} \|u'\|_{L^p(I)}^p.$$

Thus

$$||u||_{L^{p}(\Omega)}^{p} = ||u||_{L^{p}(I)}^{p} \le (b-a)^{p} ||u'||_{L^{p}(I)}^{p} = (b-a)^{p} ||u'||_{L^{p}(\Omega)}^{p}$$

where the last equality follows due to the fact that u and thus u' is compactly supported in Ω . If n > 1, we have $\Omega \subseteq (a, b) \times \mathbb{R}^{n-1}$. Hence for fixed $y \in \mathbb{R}^{n-1}$, above computation yields

$$|u(x,y)|^p \le (b-a)^{p-1} \|\partial_x u(-,y)\|_{L^p(I)}^p$$

for any $x \in I$. Hence

$$||u||_{L^{p}(\Omega)}^{p} = ||u||_{L^{p}((a,b)\times\mathbb{R}^{n-1})}$$

$$\leq (b-a)^{p} \int_{\mathbb{R}^{n-1}} ||\partial_{x}u(-,y)||_{L^{p}(I)}^{p} dy$$

$$\leq (b-a)^{p} ||\nabla u||_{L^{p}((a,b)\times\mathbb{R}^{n-1})}^{p}$$

$$= (b-a)^{p} ||\nabla u||_{L^{p}(\Omega)}^{p}.$$

Theorem 1.5 (Riesz Representation Theorem). *Let* H *be a real Hilbert space. Then the mapping* $J: H \to H^*$ *defined by* $J(x) := \langle x, - \rangle$ *is an isometric isomorphism.*

Theorem 1.6. Let $\Omega \subseteq \subseteq \mathbb{R}^n$ and consider the elliptic operator

$$A_0 := -\frac{\partial}{\partial x^i} \left(a^{ij} \frac{\partial}{\partial x^j} \right),$$

for $a^{ij} \in L^{\infty}(\Omega)$ symmetric. Then: Given $f \in L^{2}(\Omega)$, the homogenous Dirichlet problem

$$\begin{cases} A_0 u = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
 (1)

admits a unique weak solution $u \in H_0^1(\Omega)$.

Proof. The proof is divided into two steps.

Step 1: Derivation of Weak Formulation. Suppose $u \in C^2(\overline{\Omega})$ is a solution of (1). Let $\varphi \in C_c^{\infty}(\Omega)$. Then integration by parts (see [Lee13, p. 436]) yields

$$-\int_{\Omega} A_0 u \varphi = -\sum_{i=1}^n \int_{\Omega} \operatorname{div}(X_i) \varphi = \int_{\Omega} a^{ij} \frac{\partial u}{\partial x^j} \frac{\partial \varphi}{\partial x^i} = \int_{\Omega} a^{ij} \frac{\partial u}{\partial x^i} \frac{\partial \varphi}{\partial x^j},$$

where $X_j := \left(a^{ij} \frac{\partial}{\partial x^j}\right)_i$. Thus we get the weak formulation:

$$\forall \varphi \in C_c^{\infty}(\Omega): \int_{\Omega} a^{ij} \frac{\partial u}{\partial x^i} \frac{\partial \varphi}{\partial x^j} = \int_{\Omega} f \varphi. \tag{2}$$

Step 2: Existence and Uniqueness of Weak Solutions. Since A_0 is uniformly elliptic, there exists $\lambda > 0$ such that

$$\xi^{t}(a^{ij}(x))\xi = a^{ij}(x)\xi_{i}\xi_{j} \ge \lambda |\xi|^{2}$$

holds for any $x \in \Omega$ and $\xi \in \mathbb{R}^n$. Moreover, since $a^{ij} \in L^{\infty}(\Omega)$, we get that A_0 is uniformly bounded, i.e. there exists $\Lambda > 0$ such that

$$a^{ij}(x)\xi_i\eta_i \leq \Lambda|\xi||\eta|$$

for

$$\Lambda = \sum_{i,j=1}^{n} \|a^{ij}\|_{L^{\infty}(\Omega)}$$

holds for almost all $x \in \Omega$ and $\xi, \eta \in \mathbb{R}^n$. Now define a bilinear form

$$\langle \cdot, \cdot \rangle_a : H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$$

by

$$\langle u, v \rangle_a := \int_{\Omega} a^{ij} \frac{\partial u}{\partial x^i} \frac{\partial v}{\partial x^j} \tag{3}$$

Then it is easy to see, that $\langle \cdot, \cdot \rangle_a$ is symmetric. Also, $\langle \cdot, \cdot \rangle_a$ is positive definite since

$$\langle u, u \rangle_a = \int_{\Omega} a^{ij} \frac{\partial u}{\partial x^i} \frac{\partial u}{\partial x^j} \ge \lambda \int_{\Omega} |\nabla u|^2 \ge C \lambda \int_{\Omega} |u|^2$$

using ellipticity and Poincaré's inequality. Moreover by Poincaré's inequality we have that

$$\lambda \|u\|_{H_0^1(\Omega)}^2 \le \|u\|_a^2 \le \Lambda \|u\|_{H_0^1(\Omega)}^2$$

for the induced norm $\|\cdot\|_a$. Hence the induced norm is equivalent to the standard norm on $H_0^1(\Omega)$ and thus $(H_0^1(\Omega), \|\cdot\|_a)$ is a Hilbert space. Thus an application of Riesz representation theorem 1.5 yields the existence of a unique $u \in H_0^1(\Omega)$, such that

$$\langle u, \varphi \rangle_a = l(\varphi) := \int_{\Omega} f \varphi$$

holds for all $\varphi \in H_0^1(\Omega)$, since $l \in (H_0^1(\Omega))^*$ by

$$|l(\varphi)| \le ||f||_{L^2} ||\varphi||_{L^2} \le ||f||_{L^2} ||\varphi||_{H^1}.$$

Examples 1.3 (Elliptic Operators in Divergence Form).

(a) Set $a^{ij}(x) := \delta^{ij}$ for all $x \in \Omega$. Then $A_0 = -\Delta$. Moroever A_0 is uniformly elliptic, since $\delta^{ij}\xi_i\xi_j = |\xi|^2$ for all $\xi \in \mathbb{R}^n$. (b) For $\Omega \subseteq \mathbb{R}^2$ consider

$$(a^{ij}(x,y)) := \begin{pmatrix} 2 & xy/|xy| \\ xy/|xy| & 2 \end{pmatrix}.$$

Then A_0 is elliptic. Indeed, a^{ij} admits the eigenvalues 1 and 3, thus by the Min-Max theorem we get that

$$1 \le R_{A(x,y)}(z) \le 3$$

for all $(x, y) \in \Omega$ and where $R_A(z)$ denotes the Rayleigh-Ritz quotient defined by

$$R_A(z) := \frac{\langle Az, z \rangle}{\|z\|^2}$$

for $z \in \mathbb{C}^2$.

- (c) A non-example would be $a^{ij}(x) := 0$.
- (d) Another non-example is given by

$$(a^{ij}(x,y)) := \begin{pmatrix} x^2 + y^2 & x + y \\ x + y & 1 \end{pmatrix}$$

for any $\Omega \subseteq \mathbb{R}^2$ containing the origin. Indeed, we get $\det(a^{ij}(0,0)) = 0$.

Sobolev Spaces on an Interval. In what follows, let $-\infty \le a < b \le \infty$ and I := (a, b).

Lemma 1.2 (Du Bois-Reymond). Let $f \in L^1_{loc}(I)$ such that

$$\forall \varphi \in C_c^{\infty}(I) : \int_I f \varphi' dx = 0.$$

Then f is almost everywhere constant.

Proof. Let $v:=w-c_0\psi$ for $w,\psi\in C_c^\infty(I)$ such that $\int_I\psi=1$ and $\int_Iv=0$. This implies $c_0=\int_Iw$. By the fundamental theorem of calculus, the function $\varphi:I\to\mathbb{R}$ defined by

$$\varphi(x) := \int_{I} v(t)dt$$

belongs to $C_c^{\infty}(I)$ with $\varphi' = v$. Thus we compute

$$0 = \int_{I} f \varphi' = \int_{I} f v = \int_{I} f w - c_{0} \int_{I} f \psi = \int_{I} f w - \int_{I} w \int_{I} f \psi = \int_{I} (f - c) w,$$

where $c := \int_I f \psi$. Since w was arbitrary, we conclude by the fundamental lemma of variational calculus 1.3.

Lemma 1.3. Let $f \in L^1_{loc}(I)$ and $x_0 \in I$. Then $u : I \to \mathbb{R}$ defined by

$$u(x) := \int_{x_0}^x f(t)dt$$

is absolutely continuous and belongs to $W_{loc}^{1,1}(I)$ with u'=f a.e.

Proof. Absolute continuity follows from real analysis. Let $\varphi \in C_c^\infty(I)$. Then Fubini yields

$$\int_{I} u\varphi' = \int_{a}^{x_{0}} \int_{x_{0}}^{x} f(t)\varphi'(x)dtdx + \int_{x_{0}}^{b} \int_{x_{0}}^{x} f(t)\varphi'(x)dtdx$$

$$= -\int_{a}^{x_{0}} \int_{x}^{x_{0}} f(t)\varphi'(x)dtdx + \int_{x_{0}}^{b} \int_{x_{0}}^{x} f(t)\varphi'(x)dtdx$$

$$= -\int_{a}^{x_{0}} \int_{a}^{t} f(t)\varphi'(x)dxdt + \int_{x_{0}}^{b} \int_{t}^{b} f(t)\varphi'(x)dxdt$$

$$= -\int_{a}^{x_{0}} f(t)\varphi(t)dt - \int_{x_{0}}^{b} f(t)\varphi(t)dt$$

$$= -\int_{I} f\varphi.$$

Theorem 1.7. Let $u \in W^{1,p}(I)$. Then there exists an absolutely continuous representant \tilde{u} of u on \bar{I} , such that

$$\widetilde{u}(x) = \widetilde{u}(x_0) + \int_{x_0}^x u'(t)dt$$

holds for all $x, x_0 \in I$. In particular, \tilde{u} is classically differentiable a.e. and $\tilde{u}' = u'$.

Proof. By lemma 1.3, the function $v(x) := \int_{x_0}^x u'(t) dt$ is in $W^{1,1}_{loc}(I)$ with weak derivative u'. Moreover, for any $\varphi \in C_c^\infty(I)$ we compute

$$\int_{I} (u - v)\varphi' = \int_{I} u\varphi' - \int_{I} v\varphi' = -\int_{I} u'\varphi + \int_{I} u'\varphi = 0.$$

Thus lemma 1.2 yields u = c + v, for some $c \in \mathbb{R}$. Set

$$\widetilde{u}(x) := c + \int_{x_0}^x u'(t)dt.$$

Then $\tilde{u}(x_0) = c$ and thus the statement follows.

Theorem 1.8 (Characterization of $W^{1,p}(I)$ **).** Let $1 and <math>u \in L^p(I)$. Then the following statements are equivalent:

- (a) $u \in W^{1,p}(I)$.
- (b) There exists $C \geq 0$ such that

$$\forall \varphi \in C_c^{\infty}(I) : \left| \int_I u \varphi' \right| \le C \|\varphi\|_{L^q}.$$

(c) There exists $C \ge 0$ such that for all $I' \subseteq \subseteq I$ and $|h| < \operatorname{dist}(I', \partial I)$ holds

$$\|\tau_h u - u\|_{L^p(I')} \leq C|h|,$$

where $\tau_h u(x) := u(x+h)$.

Proof. The implication $(a) \Rightarrow (b)$ follows immediately from Hölder's inequality. To prove $(b) \Rightarrow (a)$, we observe that $l: C_c^{\infty}(I) \to \mathbb{R}$ defined by

$$L(\varphi) := \int_I u \varphi'$$

is continuous. Since $C_c^{\infty}(I)$ is dense in $L^q(I)$, we get that $l \in (L^q(I))^*$. Hence we find $g \in L^p$, such that $\int_I g\varphi = l(\varphi)$ and so u' = -g.

Next we show $(a) \Rightarrow (c)$. By theorem 1.7, we find an absolutely continuous representant \tilde{u} of u. Thus

$$\widetilde{u}(x+h) - \widetilde{u}(x) = h \int_0^1 u'(x+th)dt$$

Hence Jensen's inequality yields

$$\|\tau_h u - u\|_{L^p(I')} \le |h| \int_0^1 \|u'(\cdot + th)\|_{L^p(I')} dt \le |h| \|u'\|_{L^p(I)}.$$

Lastly, we prove $(c) \Rightarrow (b)$. Let $\varphi \in C_c^{\infty}(I)$. Then we may find $I' \subseteq \subseteq I$ such that $\operatorname{supp} \varphi \subseteq I'$. Hence we compute

$$\left| \int_{I} u\varphi' \right| = \lim_{h \to 0} \frac{1}{|h|} \left| \int_{I} u(x) \left(\varphi(x+h) - \varphi(x) \right) dx \right|$$

$$\begin{split} &= \lim_{h \to 0} \frac{1}{|h|} \left| \int_{I} \left(u(x - h) - u(x) \right) \varphi(x) dx \right| \\ &= \lim_{h \to 0} \frac{1}{|h|} \left| \int_{I} \left(\tau_{-h} u - u \right) \varphi \right| \\ &\leq \lim_{h \to 0} \frac{1}{|h|} \left\| \tau_{-h} u - u \right\|_{L^{p}(I')} \left\| \varphi \right\|_{L^{q}(I)} \\ &\leq C \left\| \varphi \right\|_{L^{q}(I)}. \end{split}$$

Theorem 1.9 (Extension Theorem). There exists a continuous linear operator

$$E: W^{1,p}(I) \to W^{1,p}(\mathbb{R})$$

such that:

(*i*) $Eu|_{I} = u$.

$$(ii) \|Eu\|_{L^p(\mathbb{R})} \le C \|u\|_{L^p(I)}.$$

$$(iii) \| (Eu)' \|_{L^p(\mathbb{R})} \le C \| u \|_{W^{1,p}(I)}.$$

Proof. First we consider the case $I = (0, \infty)$. We extend u by continuity to 0 and then we extend u by means of *even symmetry*. If I is bounded we can without loss of generality assume that I = (0, 1). Now use a cut-off function.

Theorem 1.10 (Approximation Theorem). Let $1 \leq p < \infty$ and $u \in W^{1,p}(I)$. Then there exists a sequence $(u_i)_{i \in \omega}$ in $C_c^{\infty}(\mathbb{R})$ such that

$$||u_i|_I - u||_{W^{1,p}(I)} \to 0.$$

Proof. The main idea of the proof is to use convolutions. Moreover, it is enough to consider the case $I = \mathbb{R}$ only, due to the extension theorem 1.9.

Theorem 1.11 (Sobolev Embedding). *There is a continuous embedding*

$$W^{1,p}(I) \hookrightarrow L^{\infty}(I).$$

Proof. First consider I bounded. By theorem 1.7 we get that

$$||u||_{L^{\infty}} = \sup_{x \in I} |u(x)| \le |u(y)| + \sup_{x \in I} \left| \int_{y}^{x} u'(t)dt \right| \le |u(y)| + ||u'||_{L^{1}},$$

for any $y \in I$. Hence

$$\|u\|_{L^{\infty}} \leq \inf_{y \in I} |u(y)| + \|u'\|_{L^{1}} \leq \frac{1}{|I|} \int_{I} |u(y)| + \|u'\|_{L^{1}} \leq C \|u\|_{W^{1,1}} \leq C \|u\|_{W^{1,p}}.$$

Assume now that I is unbounded. Then we find $I' \subseteq \subseteq I$ such that

$$||u||_{L^{\infty}(I')} \ge \frac{1}{2} ||u||_{L^{\infty}(I)}$$

and thus the claim follows by the previous computation. Indeed, note that by theorem 1.7, we have that

$$|u(x)| \le |u(y)| + ||u'||_{L^1(I)}$$

for all $x \in I$ and fixed $y \in I$, and thus $u \in L^{\infty}(I)$. Moreover, there exists $x_0 \in I$ such that $|u(x_0)| > \frac{1}{2} ||u||_{L^{\infty}(I)}$, if not, this would contradict the definition of the supremum norm. Since u is continuous by theorem 1.7, we find $\delta > 0$ such that

$$|u(x) - u(x_0)| \le |u(x_0)| - \frac{1}{2} ||u||_{L^{\infty}(I)}$$

for all $x \in I$ such that $|x - x_0| < \delta$. Hence the reversed triangle inequality yields

$$\frac{1}{2}\|u\|_{L^{\infty}(I)} - |u(x_0)| \le |u(x)| - |u(x_0)| \le |u(x_0)| - \frac{1}{2}\|u\|_{L^{\infty}(I)}$$

and so

$$\frac{1}{2}\|u\|_{L^{\infty}(I)} \le |u(x)|$$

for all $x \in I \cap (x_0 - \delta, x_0 + \delta) =: I'$.

Corollary 1.1. Let I be unbounded and $u \in W^{1,p}(I)$ for $1 \le p < \infty$. Then $u \to 0$ as $|x| \to \infty$.

Dirichlet and Neumann Boundary Problems on an Interval. In what follows, let us consider $-\infty < a < b < \infty$ and I := (a, b).

Proposition 1.5. Let $f \in C^0(\overline{I})$. Then the weak solution u of the homogenous Dirichlet problem

$$\begin{cases} -u'' = f & \text{in } I, \\ u(a) = 0 = u(b), \end{cases}$$

is a classical solution, i.e. $u \in C^2(\overline{I})$.

Proposition 1.6. Let $f \in C^0(\overline{I})$. Then the weak solution u of the homogenous Neumann problem

$$\begin{cases} -u'' + u = f & \text{in } I, \\ u'(a) = 0 = u'(b), \end{cases}$$

is a classical solution, i.e. $u \in C^2(\overline{I})$.

Sobolev Spaces on a Domain.

Theorem 1.12 (Meyers-Serrin). Let $\Omega \subseteq \mathbb{R}^n$ be open. Then $C^{\infty}(\Omega) \cap W^{1,p}(\Omega)$ is dense in $W^{1,p}(\Omega)$ for every $1 \leq p < \infty$.

Proof. Convolutions and a partition of unity argument.

Proposition 1.7 (Product Rule). Let $u, v \in W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$. Then $uv \in W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ and

$$\partial_{\alpha}(uv) = (\partial_{\alpha}u)v + u(\partial_{\alpha}v).$$

Proof. First consider the case $p < \infty$. Then

$$||uv||_{L^p} \le ||u||_{L^\infty} ||v||_{L^p}$$

and

$$\|(\partial_{\alpha}u)v + u(\partial_{\alpha})v\|_{L^{p}} \leq \|\partial_{\alpha}u\|_{L^{p}}\|v\|_{L^{\infty}} + \|u\|_{L^{\infty}}\|\partial_{\alpha}v\|_{L^{p}}.$$

Meyers-Serrin 1.12 yields the existence of sequences u_k and v_k in $C^{\infty}(\Omega) \cap W^{1,p}(\Omega)$ such that $u_k \to u$ and $v_k \to v$ in $W^{1,p}(\Omega)$. For any $\varphi \in C_c^{\infty}(\Omega)$, we compute

$$\int_{\Omega} uv \, \partial_{\alpha} \varphi = \lim_{k \to \infty} \int_{\Omega} u_k v_k \, \partial_{\alpha} \varphi$$

$$= -\lim_{k \to \infty} \int_{\Omega} ((\partial_{\alpha} u_k) v_k + u_k (\partial_{\alpha} v_k)) \varphi$$

$$= -\int_{\Omega} ((\partial_{\alpha} u) v + u (\partial_{\alpha} v)) \varphi.$$

Now consider the case $p = \infty$. We have $uv \in L^{\infty}(\Omega)$ as well as $(\partial_{\alpha}u_k)v_k + u_k(\partial_{\alpha}v_k) \in L^{\infty}(\Omega)$. Let $\varphi \in C_c^{\infty}(\Omega)$. Hence we find $\Omega' \subseteq \Omega$ with supp $\varphi \subseteq \Omega'$. But then the above calculation holds on Ω' .

Theorem 1.13 (Characterization of W^{1,p}(Ω)). Let $1 and <math>u \in L^p(\Omega)$. Then the following statements are equivalent:

- (a) $u \in W^{1,p}(\Omega)$.
- (b) There exists $C \ge 0$ such that

$$|\forall |\alpha| \leq 1 \forall \varphi \in C_c^{\infty}(\Omega) : \left| \int_I u D^{\alpha} \varphi \right| \leq C \|\varphi\|_{L^q}.$$

(c) There exists $C \geq 0$ such that for all $\Omega' \subseteq \subseteq \Omega$ and $|h| < \operatorname{dist}(I', \partial I)$ holds

$$\|\tau_h u - u\|_{L^p(\Omega')} \leq C|h|$$
,

where $\tau_h u(x) := u(x+h)$.

Proof. The proof $(c) \Rightarrow (b) \Rightarrow (a)$ is almost the same as the one given in the characterization theorem for Ω an interval. For proving $(a) \Rightarrow (c)$, use Meyers-Serrin. \square

Corollary 1.2. Let $u \in L^{\infty}(\Omega)$. Then $u \in W^{1,\infty}(\Omega)$ if and only if u admits a locally Lipschitz continuous representant. Moreover, if Ω is convex, then $u \in W^{1,\infty}(\Omega)$ if and only if u admits a Lipschitz continuous representant.

Extension and Trace Operator. We start off with local theory. In what follows, define

$$Q := \{ (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R} : |x'| < 1, |x_n| < 1 \}.$$

Moreover

$$Q_+ := \{(x', x_n) \in Q : x_n > 0\}$$
 and $Q_0 := \{(x', x_n) \in Q : x_n = 0\}$.

Lemma 1.4. Let $u \in W^{1,p}(Q_+)$. Set

$$u^*(x', x_n) := \begin{cases} u(x', x_n) & x_n > 0, \\ u(x', -x_n) & x_n < 0. \end{cases}$$

Then $u^* \in W^{1,p}(Q)$ and $||u^*||_{W^{1,p}(Q)} \le C ||u||_{W^{1,p}(Q_+)}$.

Now to the *global theory*.

Theorem 1.14 (Extension). Let $\Omega \subseteq \mathbb{R}^n$ of class C^1 . Then there exists a continuous linear operator

$$E: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^n)$$

such that:

- (i) $Eu|_{\Omega}=u$.
- $(ii) \|Eu\|_{L^p(\mathbb{R}^n)} \le C \|u\|_{L^p(\Omega)}.$
- $(iii) \|Eu\|_{W^{1,p}(\mathbb{R}^n)} \leq C \|u\|_{W^{1,p}(\Omega)}.$

Corollary 1.3. Let $\Omega \subseteq \mathbb{R}^n$ of class C^1 and $1 \leq p < \infty$. Then $C^{\infty}(\overline{\Omega})$ is dense in $W^{1,p}(\Omega)$.

Again, we tackle first the *local theory*.

Lemma 1.5. Let $u \in W^{1,p}(Q_+)$. Then $u|_{Q_0} \in L^p(Q_0)$ is well defined and the induced trace operator $W^{1,p}(Q_+) \to L^p(Q_0)$ is linear and continuous.

Proof. We consider the case $\underline{1 \leq p < \infty}$. The main idea is to show this for $u \in C^{\infty}(Q)$, then for $u \in W^{1,p}(Q)$ and then finally for $u \in W^{1,p}(Q_+)$ by extension.

Consider now $\underline{p} = \infty$. Since Q_+ is convex, $u \in W^{1,\infty}(Q_+)$ admits a Lipschitz continuous representant and the result follows by extending via continuity.

Theorem 1.15 (Characterization of $H^1(\Omega)$). Let $\Omega \subseteq \subseteq \mathbb{R}^n$. Then

$$H^1(\Omega)=H^1_0(\Omega)\oplus\{u\in H^1(\Omega):\Delta u=0\}\,.$$

Proof. Let $u \in H^1(\Omega)$ and let $u_0 \in H^1_0(\Omega)$ denote the unique solution of

$$\forall \varphi \in C_c^{\infty}(\Omega) : \int_{\Omega} \nabla u_0 \nabla \varphi = \int_{\Omega} \nabla u \nabla \varphi.$$

Set $u_1 := u - u_0$. Then for any $\varphi \in C_c^{\infty}(\Omega)$ we compute

$$-\int_{\Omega} u_1 \Delta \varphi = \int_{\Omega} \nabla u_1 \nabla \varphi = \int_{\Omega} \nabla u \nabla \varphi - \int_{\Omega} \nabla u_0 \nabla \varphi = 0.$$

Thus $u = u_0 + u_1$ is of the desired form. Moreover, we have

$$\|\nabla u\|_{L^2(\Omega)}^2 = \|\nabla u_0\|_{L^2(\Omega)}^2 + \|\nabla u_1\|_{L^2(\Omega)}^2 + 2\int_{\Omega} \nabla u_0 \nabla u_1.$$

Since $u_0 \in H_0^1(\Omega)$, we find a sequence φ_k in $C_c^{\infty}(\Omega)$ such that $\varphi_k \to u$ in $H^1(\Omega)$. But then

$$\int_{\Omega} \nabla u_0 \nabla u_1 = \lim_{k \to \infty} \int_{\Omega} \nabla \varphi_k \nabla u_1 = 0.$$

Hence

$$\|\nabla u\|_{L^{2}(\Omega)}^{2} = \|\nabla u_{0}\|_{L^{2}(\Omega)}^{2} + \|\nabla u_{1}\|_{L^{2}(\Omega)}^{2}$$

which implies that the decomposition is direct. Indeed, suppose $u \in H_0^1(\Omega)$ such that $\Delta u = 0$. Then u = u/2 + u/2 which yields u = 0 by the above computation.

Corollary 1.4 (Characterization of $H_0^1(\Omega)$). Let $\Omega \subseteq \mathbb{R}^n$ of class C^1 . Then

$$H_0^1(\Omega) = \{ u \in H^1(\Omega) : u|_{\partial\Omega} = 0 \}.$$

Proof. Suppose $u \in H_0^1(\Omega)$. Then $\varphi_k \to u$ in $H^1(\Omega)$ for some sequence φ_k in $C_c^{\infty}(\Omega)$. Hence

$$u|_{\partial\Omega} = \lim_{k\to\infty} \varphi_k|_{\partial\Omega} = 0$$

by continuity of the trace operator. Conversly, suppose $u \in H^1(\Omega)$ with $u|_{\partial\Omega} = 0$. Using the characterization of $H^1(\Omega)$ 1.15, we get a unique decomposition $u = u_0 + u_1$ for $u_0 \in H^1_0(\Omega)$ and $u_1 \in H^1(\Omega)$ with $\Delta u_1 = 0$. Moreover, observe that

$$0 = u|_{\partial\Omega} = u_0|_{\partial\Omega} + u_1|_{\partial\Omega} = u_1|_{\partial\Omega}.$$

Since harmonic extensions are unique, we conclude $u_1 = 0$.

Sobolev Embeddings.

Theorem 1.16 (Sobolev Embedding Theorem). Let $\Omega \subseteq \subseteq \mathbb{R}^n$ of class C^1 and $k \in \omega$, $k \geq 1$. Then:

- (a) If kp < n, then $W^{k,p}(\Omega) \hookrightarrow L^q(\Omega)$ for all $1 \le q \le p^* := \frac{np}{n-pk}$ and the embedding is compact for $q < p^*$.
- (b) If kp = n, then $W^{k,p}(\Omega) \hookrightarrow L^q(\Omega)$ for all $1 \le q < \infty$ and those embeddings are compact.

(c) If kp > n and $k - \frac{n}{p} \notin \omega$, then $W^{k,p}(\Omega) \hookrightarrow C^{l,\alpha}(\Omega)$ for $l := \left[k - \frac{n}{p}\right]$ and $0 \le \alpha \le \alpha^* := k - l - \frac{n}{p}$ and those embeddings are compact for $\alpha < \alpha^*$. (d) If kp > n and $k - \frac{n}{p} = l + 1 \in \omega$, then $W^{k,p}(\Omega) \hookrightarrow C^{l,\alpha}(\Omega)$ for $0 \le \alpha < 1$ and

those embeddings are compact.

Corollary 1.5. Let $\Omega \subseteq \mathbb{R}^n$ of class C^1 and $u \in H^1(\Omega)$. Moreover, assume that $u \in H^k(\Omega)$ for some $k > \frac{n}{2} + 2$. Then $u \in C^2(\Omega)$.

p < n.

Theorem 1.17 (Sobolev-Gagliardo-Nirenberg). Let $1 \le p < n$ and let $p^* := \frac{np}{n-p}$. Then $W^{1,p}(\mathbb{R}^n) \hookrightarrow L^{p^*}(\mathbb{R}^n)$ with

$$||u||_{L^{p^*}} \leq C ||\nabla u||_{L^p}$$
.

Theorem 1.18 (Sobolev-Gagliardo-Nirenberg Compactness). Let $\Omega \subseteq \mathbb{R}^n$ and $1 \leq n$ p < n. Then $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ for $1 \le q \le p^*$ and the embedding is compact if $q < p^*$.

p > n.

Theorem 1.19. Let p > n. Then $W^{1,p}(\mathbb{R}^n) \hookrightarrow C^{0,\alpha}(\mathbb{R}^n)$ with $\alpha := 1 - \frac{n}{p}$ and

$$||u||_{C^{0,\alpha}(\mathbb{R}^n)} \leq ||u||_{W^{1,p}(\Omega)}.$$

Remark 1.4. For $p=\infty$, the statement is trivially true, since any function in $W^{1,\infty}(\mathbb{R}^n)$ is Lipschitz continuous since \mathbb{R}^n is convex, and thus belongs to $C^{0,1}(\mathbb{R}^n)$.

The proof uses the notion of so-called *Campanato spaces*.

Theorem 1.20. Let $\Omega \subseteq \subseteq \mathbb{R}^n$ of type A for some A > 0 and $1 \leq p < \infty$, $\lambda > n$, $\alpha := \frac{\lambda - n}{p}$. Then

$$\mathcal{L}^{p,\lambda}(\Omega) \cong C^{0,\alpha}(\overline{\Omega}).$$

Proof. The inclusion $\mathcal{L}^{p,\lambda}(\Omega) \cong C^{0,\alpha}(\overline{\Omega})$ follows from the Campanato-theorem and does also hold for general $\Omega \subseteq \mathbb{R}^n$ open.

Lemma 1.6. Let $u \in W^{1,p}(\mathbb{R}^n)$, $1 \leq p < \infty$. Then for all $x_0 \in \mathbb{R}^n$ and r > 0 we have that

$$||u - u_{x_0,r}||_{L^p(B_r(x_0))}^p \le Cr^p ||\nabla u||_{L^p(B_r(x_0))}^p.$$

Proof. This is an application of the Poincaré-Wirtinger inequality 1.21 since without loss of generality, we may assume $x_0 = 0$ and r = 1.

Now the proof of the Sobolev embedding theorem for p > n is immediaty by considering

$$W^{1,p}(\mathbb{R}^n) \stackrel{\operatorname{P.W.}}{\longleftrightarrow} \mathcal{L}^{p,p}(\mathbb{R}^n) \stackrel{\operatorname{Campanato}}{\longleftrightarrow} C^{0,\alpha}(\mathbb{R}^n)$$

and observing that \mathbb{R}^n is of type $\frac{\pi^{n/2}}{\Gamma(n/2+1)} > 0$.

Theorem 1.21 (Poincaré-Wirtinger Inequality). Let $\Omega \subseteq \mathbb{R}^n$ connected and of class C^1 and $1 \le p < \infty$. Then there exists $C \ge 0$ such that

$$||u - \overline{u}||_{L^p(\Omega)} \le C ||\nabla u||_{L^p(\Omega)}$$

holds for all $u \in W^{1,p}(\Omega)$.

Proof. Towards a contradiction, assume that for any $C \ge 0$ there exists $u \in W^{1,p}(\Omega)$ such that

$$||u-\overline{u}||_{L^p(\Omega)} > C ||\nabla u||_{L^p(\Omega)}$$
.

In particular, there exists a sequence u_k in $W^{1,p}(\Omega)$, such that

$$||u_k - \overline{u_k}||_{L^p(\Omega)} > k ||\nabla u_k||_{L^p(\Omega)}$$

holds for each $k \in \omega$, $k \ge 1$. Defining $v_k := u_k - \overline{u_k}$ and normalizing, i.e. setting $w_k := v_k / \|v_k\|_{L^p(\Omega)}$ (this is valid since $\|v_k\|_{L^p(\Omega)} > 0$), yields a sequence w_k in $W^{1,p}(\Omega)$ such that

$$\bar{w_k} = 0, \quad \|w_k\|_{L^p(\Omega)} = 1 \quad \text{and} \quad \|\nabla w_k\|_{L^p(\Omega)} \to 0$$

for any $k \in \omega$, $k \ge 1$. Using the Sobolev embedding theorem 1.16, we get

$$W^{1,p}(\Omega) \hookrightarrow W^{1,n}(\Omega) \hookrightarrow L^p(\Omega)$$
 and $W^{1,p}(\Omega) \hookrightarrow L^p(\Omega)$

if $p \ge n$ and p < n, respectively. Moreover, those are compact embeddings. Thus since w_k is bounded in $W^{1,p}(\Omega)$, we have that $w_{k_i} \to w$ in $L^p(\Omega)$ for a subsequence w_{k_i} of w_k . Moreover, $\nabla w = 0$. Indeed, for any $\varphi \in C_c^{\infty}(\Omega)$ we compute

$$\int_{\Omega} w \nabla \varphi = \lim_{i \to \infty} \int_{\Omega} w_{k_i} \nabla \varphi = -\lim_{i \to \infty} \int_{\Omega} \nabla w_{k_i} \varphi = 0.$$

By the constancy lemma we therefore conclude that $w = c \in \mathbb{R}$ a.e. But

$$\overline{w} = \frac{1}{|\Omega|} \int_{\Omega} w = \frac{1}{|\Omega|} \lim_{i \to \infty} \int_{\Omega} w_{k_i} = 0$$

implies w = 0 a.e. contradicting

$$||w||_{L^{p}(\Omega)} = \lim_{i \to \infty} ||w_{k_i}||_{L^{p}(\Omega)} = 1.$$

p = n.

Theorem 1.22. It holds that $W^{1,n}(\mathbb{R}^n) \hookrightarrow L^p(\mathbb{R}^n)$ for $n \leq p < \infty$.

Regularity Theory

Goal of this section is to prove the following regularity result.

Theorem 1.23 (Global Regularity). Let $\Omega \subseteq \mathbb{R}^n$ of class C^{k+2} and $f \in H^k(\Omega)$ for some $k \in \omega$. Moreover, let $u \in H_0^1(\Omega)$ be the unique solution of the homogenous Dirichlet boundary value problem

$$\begin{cases} A_0 u = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

where $a^{ij} \in C^{k+1}(\overline{\Omega})$. Then $u \in H^{k+2}(\Omega)$ and

$$||u||_{H^{k+2}(\Omega)} \leq C ||f||_{H^k(\Omega)}$$
.

Interior Regularity.

Theorem 1.24. Let $\Omega \subseteq \mathbb{R}^n$ of class C^1 and L an elliptic operator in divergence form satisfying $a^{ij} \in C^{k+1}(\overline{\Omega})$. If $f \in H^k(\Omega)$, the unique weak solution $u \in H_0^1(\Omega)$ of the homogenous Dirichlet boundary value problem

$$\begin{cases} A_0 u = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

belongs to $H^{k+2}_{loc}(\Omega)$ and for all $\Omega' \subseteq \subseteq \Omega$ we have the estimate

belongs to
$$H_{loc}$$
 (22) and for all $22 \le 22$ we have the estimate
$$\|u\|_{H^{k+2}(\Omega')} \le C(\|f\|_{H^k(\Omega)} + \|u\|_{H^1(\Omega)}).$$
Proof. Step 1: $k=0$.

- (a) A-priori Estimates. First of all, we are assuming that $u \in H^2_{loc}(\Omega)$. (i) H^1 -Estimate. Choose a bump function $\varphi \in C^\infty_c(\Omega)$ supported in Ω' . Thus the weak formulation yields by plugging in the test function $\varphi^2 u$

$$\int_{\Omega} \varphi^2 a^{ij} \frac{\partial u}{\partial x^i} \frac{\partial u}{\partial x^j} + 2 \int_{\Omega} u \varphi a^{ij} \frac{\partial u}{\partial x^i} \frac{\partial \varphi}{\partial x^j} = \int_{\Omega} f \varphi^2 u. \tag{4}$$

Rearanging formula (4) we compute

$$\begin{split} \int_{\Omega} \varphi^2 a^{ij} \frac{\partial u}{\partial x^i} \frac{\partial u}{\partial x^j} &= \int_{\Omega} f \varphi^2 u - 2 \int_{\Omega} u \varphi a^{ij} \frac{\partial u}{\partial x^i} \frac{\partial \varphi}{\partial x^j} \\ &\leq \|f\|_{L^2(\Omega)}^2 + \|u\|_{L^2(\Omega)}^2 + 2\Lambda \int_{\Omega} (-u) \varphi \left| \nabla u \right| \left| \nabla \varphi \right| \\ &\leq \|f\|_{L^2(\Omega)}^2 + \|u\|_{L^2(\Omega)}^2 + \Lambda \varepsilon \|\varphi \nabla u\|_{L^2(\Omega)}^2 + \frac{\Lambda}{\varepsilon} \|u \nabla \varphi\|_{L^2(\Omega)}^2 \end{split}$$

Noticing that

$$\int_{\Omega} \varphi^2 a^{ij} \frac{\partial u}{\partial x^i} \frac{\partial u}{\partial x^j} \ge \lambda \|\varphi \nabla u\|_{L^2(\Omega)}^2$$

yields

$$(\lambda - \Lambda \varepsilon) \|\varphi \nabla u\|_{L^{2}(\Omega)}^{2} \leq \|f\|_{L^{2}(\Omega)}^{2} + \|u\|_{L^{2}(\Omega)}^{2} + \frac{\Lambda}{\varepsilon} \|u \nabla \varphi\|_{L^{2}(\Omega)}^{2}$$

Picking $\varepsilon > 0$ appropriately, yields

$$\|\varphi\nabla u\|_{L^2(\Omega)}^2 \le C(\|f\|_{L^2(\Omega)}^2 + \|u\|_{L^2(\Omega)}^2)$$

and thus

$$\|\nabla u\|_{L^{2}(\Omega')}^{2} \le C(\|f\|_{L^{2}(\Omega)}^{2} + \|u\|_{L^{2}(\Omega)}^{2}).$$

(ii) H^2 -Estimate. Let $1 \le \mu \le n$. Then $\partial_{\mu} u$ solves

$$\int_{\Omega} a^{ij} \partial_i \partial_{\mu} u \partial_j \varphi = -\int_{\Omega} f \partial_{\mu} \varphi - \int_{\Omega} \partial_{\mu} a^{ij} \partial_i u \partial_j \varphi$$

for all $\varphi \in C_c^{\infty}(\Omega)$. Now perform the H^1 -estimate on $\partial_{\mu}u$.

(b) Existence: The Nirenberg-Trick. The trick is to use difference quotients

$$D_h u := \frac{\tau_h u - u}{|h|}$$

for $h \in \mathbb{R}^n$ such that $|h| < \operatorname{dist}(\Omega', \partial\Omega)$. The idea now is to find a PDE solved by $D_h u$ in the weak sense and to use the characterization of the Sobolev space. *Step 2: Induction Step.*

Boundary Regularity.

Proposition 1.8 (Minimality Property). Let $\Omega \subseteq \subseteq \mathbb{R}^n$. Then $u \in H_0^1(\Omega)$ solves (1) if and only if the **energy functional** satisfies

$$E(u) := \frac{1}{2} \|u\|_a^2 - \int_{\Omega} f u = \inf_{v \in H_0^1(\Omega)} E(v).$$

Proof. Suppose $u \in H_0^1(\Omega)$ solves (1) and let $v \in H_0^1(\Omega)$. Then $v = u + \varphi$ for some $\varphi \in H_0^1(\Omega)$ and we compute

$$E(v) = E(u+\varphi) = \frac{1}{2} \|u\|_a^2 + \langle u, \varphi \rangle_a + \frac{1}{2} \|\varphi\|_a^2 - \int_{\Omega} f(u+\varphi) = E(u) + \frac{1}{2} \|\varphi\|_a^2 \ge E(u).$$

Conversly, suppose $u_0 \in H_0^1(\Omega)$ is a minimizer of the energy functional. Thus by elementary calculus

$$\left. \frac{d}{dt} \right|_{t=0} E(u_0 + tv) = 0$$

for all $v \in H_0^1(\Omega)$. But

$$\frac{d}{dt}\bigg|_{t=0} E(u_0 + tv) = \langle u_0, v \rangle_a - \int_{\Omega} fv.$$

Eigenfunctions of $-\Delta$.

Theorem 1.25. Let $\Omega \subseteq \subseteq \mathbb{R}^n$ of class C^2 . Then there exists a Hilbert-space basis $(\varphi_i)_{i \in \omega}$ of $L^2(\Omega)$ consisting of eigenfunctions of the Laplace operator, i.e.

$$\begin{cases} -\Delta \varphi_i = \lambda_i \varphi_i & \text{in } \Omega, \\ \varphi_i = 0 & \text{on } \partial \Omega. \end{cases}$$

Moreover $0 < \lambda_i \rightarrow \infty$ *are called Dirichlet eigenvalues.*

Proof. Define $K: L^2(\Omega) \to L^2(\Omega)$ by setting Kf to be the unique weak solution of the homogenous Dirichlet boundary value problem

$$\begin{cases} -\Delta u = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

By the global regularity theorem, $u \in H^2(\Omega)$ and thus we can write K as the composition

$$L^2(\Omega) \longrightarrow H^2(\Omega) \hookrightarrow L^2(\Omega).$$

Thus K is continuous as a composition of continuous mappings an moreover, since the embedding is compact by the Sobolev theorem, so is K.

Schauder Theory

Campanato-Estimates and Morrey-Spaces.

Lemma 1.7 (Minimality of Mean-Value). Let $\Omega \subseteq \mathbb{R}^n$ open, $f \in L^2(\Omega)$, $x_0 \in \Omega$ and r > 0. Then

$$||f - \overline{f}_{r,x_0}||_{L^2(\Omega_r(x_0))}^2 = \min_{a \in \mathbb{R}} ||f - a||_{L^2(\Omega_r(x_0))}^2.$$

Schauder Estimates.

Theorem 1.26 (Global Schauder-Estimate). Let $\Omega \subseteq \mathbb{R}^n$ of class $C^{2,\alpha}$, $0 < \alpha < 1$. Moreover, let $a^{ij} \in C^{1,\alpha}(\Omega)$ symmetric, uniformly elliptic and uniformly bounded, $c \in C^{\alpha}(\Omega)$, $u_0 \in C^{2,\alpha}(\overline{\Omega})$, $f = (f^1, \ldots, f^n) \in C^{1,\alpha}(\Omega)$ and $h \in C^{\alpha}(\Omega)$. Then any solution $u \in C^{2,\alpha}(\Omega)$ of the Dirichlet boundary value problem

$$\begin{cases} A_0 u + c u = -\frac{\partial}{\partial x^i} f^i + h & \text{in } \Omega, \\ u = u_0 & \text{on } \Omega \end{cases}$$

satisfies

$$||u||_{C^{2,\alpha}} \le C(||u||_{H^1} + ||f||_{C^{1,\alpha}} + ||h||_{C^{\alpha}} + ||u_0||_{C^{2,\alpha}})$$

where C does not depend on u.

Existence Theorems.

Proposition 1.9 (Method of Continuity). Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces. Given $A_0, A_1 \in \mathcal{L}(X, Y)$ define $A_t := (1 - t)A_0 + tA_1$, $t \in [0, 1]$. Suppose that

$$\exists C > 0 \forall t \in [0, 1] \, \forall x \in X : \|x\|_X \le \|A_t x\|_Y.$$

Then A_0 is surjective if and only if A_1 is surjective.

Using the method of continuity 1.9, one can show existence results of solutions of Dirichlet boundary value problems. Define

$$A_0 := -\frac{\partial}{\partial x^i} \left(a^{ij} \frac{\partial}{\partial x^j} \right)$$

for $a^{ij} \in C^{1,\alpha}$ symmetric, uniformly elliptic and uniformly bounded. Consider the problem

$$\begin{cases} A_0 u + c u = -\frac{\partial}{\partial x^j} f^i + h & \text{in } \Omega, \\ u = u_0 & \text{on } \partial \Omega \end{cases}$$

for $c \in C^{\alpha}$, $f = (f^1, ..., f^n) \in C^{1,\alpha}$ and $h \in C^{\alpha}$. If $c \ge 0$, one can show existence and uniqueness of $C^{2,\alpha}$ solutions. First of all, suppose that solutions of

$$\begin{cases} A_0 u = h & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

do exist. Let us define

$$X := \{ u \in C^{2,\alpha} : u|_{\partial\Omega} = 0 \}$$
 and $Y := C^{\alpha}$.

Then X and Y are Banach spaces, since X is a closed subset of a Banach space. Define now $A_1 := A_0 + c$. Then it is easy to show that A_0 and A_1 are continuous. Thus to apply the continuity method, we have to show the existence of a constant C > 0, such that for all $t \in [0, 1]$ and $u \in X$

$$||x||_{C^{2,\alpha}} \le ||A_t x||_{C^{\alpha}}$$

holds. But this looks like the Schauder-estimate 1.26. Indeed, since $u \in C^{2,\alpha}$ solves $A_t u = A_t u$, we get

$$||u||_{C^{2,\alpha}} \leq C(||u||_{H^1} + ||A_t u||_{C^{\alpha}}).$$

Using ellipticity, integration by parts (justified since any function in X vanishes on the boundary $\partial\Omega$) and $c\geq 0$, we compute

$$\lambda \|u\|_{H^{1}}^{2} = \lambda \int_{\Omega} |\nabla u|^{2}$$

$$\leq \int_{\Omega} a^{ij} \frac{\partial u}{\partial x^{i}} \frac{\partial u}{\partial x^{j}}$$

$$= \int_{\Omega} (A_0 u) u$$

$$= \int_{\Omega} (A_0 u) u + ct u^2 - ct u^2$$

$$= \int_{\Omega} (A_t u) u - ct u^2$$

$$\leq \int_{\Omega} (A_t u) u$$

$$\leq ||A_t u||_{L^2} ||u||_{L^2}$$

$$\leq C ||A_t u||_{C^{\alpha}} ||u||_{H^1}.$$

Maximum Principle

Weak Maximum Principle. Let $\Omega \subseteq \subseteq \mathbb{R}^n$. In what follows, we consider the second order homogenous differential operator in non-divergence form

$$Lu := a^{ij} \frac{\partial^2 u}{\partial x^i \partial x^j} + b^i \frac{\partial u}{\partial x^i} + cu$$

where $a^{ij}, b^i, c \in C^0(\overline{\Omega})$ and L is uniformly elliptic, i.e. there exists $\lambda > 0$ such that

$$a^{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2$$

holds for all $\xi \in \mathbb{R}^n$ and $x \in \Omega$.

Theorem 1.27 (Weak Maximum Principle). Let $\Omega \subseteq \subseteq \mathbb{R}^n$ and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ such that Lu > 0. Then:

- (a) If $c \leq 0$ in Ω , then $\max_{\bar{\Omega}} u \leq \max_{\partial \Omega} u_+$.
- (b) If c = 0 in Ω , then $\max_{\bar{\Omega}} u = \max_{\partial \Omega} u$.

Proof. Consider the perturbation $v_{\varepsilon} := u + \varepsilon e^{\gamma x_1}$ for $\varepsilon, \gamma > 0$ and use the first and second derivative test.

Strong Maximum Principle.

Lemma 1.8 (Boundary Point Lemma, E. Hopf). Let $B := B_{\rho}(y) \subseteq \mathbb{R}^n$ and $u \in C^2(B) \cap C^0(\overline{B})$ such that $Lu \geq 0$ in B with $c \leq 0$. Assume for some $x_0 \in \partial B$ that $u(x_0) \geq 0$ and $u(x) < u(x_0)$ for every $x \in B$. Then

$$\limsup_{h\to 0} \frac{u(x_0+h\eta)-u(x_0)}{h}<0$$

for η the invard pointing unit normal at x_0 .

Proof. Without loss of generality one can assume $\rho=1$ and y=0. Then define $w:\overline{B}\to\mathbb{R}$ by

$$w(x) := e^{-\alpha |x|^2} - e^{-\alpha}$$

for some $\alpha > 0$ to be determined. We compute

$$Lw \ge e^{-\alpha |x|^2} (4\mu |x|^2 \alpha^2 - 2\alpha (\operatorname{tr} A + b^i x_i) + c).$$

Thus for some α large enough, we get that Lw > 0. Set

$$v := u - u(x_0) + \varepsilon w$$

for some $\varepsilon > 0$ on the anulus $A := \overline{B}_1(0) \setminus B_{1/2}(0)$. For $\varepsilon > 0$ sufficiently small, we get that $v \le 0$ on ∂A . Since moreover

$$Lv = Lu - cu(x_0) + \varepsilon Lw > 0$$

the weak maximum principle implies $v \leq 0$ on A. Hence $D_{\eta}^+ v \leq 0$, but

$$D_{\eta}^+ v = D_{\eta}^+ u + \varepsilon D_{\eta}^+ w$$

which yields the statement by observing that $D_{\eta}^+ w > 0$.

References

[Lee13] John M. Lee. *Introduction to Smooth Manifolds*. Second Edition. Graduate Texts in Mathematics. Springer, 2013.