

WOMEN IN DATA SCIENCE

Priyanka Sawant

- Senior Lead Data Sciences at Envestnet-Yodlee
- Post graduate from IITB
- Areas of expertise: Deep learning,
 Statistical Machine Translation
- Hobbies: Travel, Trekking, Painting

Demystifying Convolutional Neural Networks

Convolutional Neural Network

CNN: Biological Motivation

Img src: https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Perception

CNN Architecture

Why Convolution?

FULLY CONNECTED NEURAL NET

LOCALLY CONNECTED NEURAL NET

What is Convolution?

7	2	3	3	8
4	5	3	8	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

Filter

Convoluted image

1	0	-1
1	0	-1
1	0	-1

7x1+4x1+3x1+ 2x0+5x0+3x0+ 3x-1+3x-1+2x-1 = 6

Edge Detection with Convolution

							•		•					
10	10	10	0	0	0									
10	10	10	0	0	0	,	1	U	-1		0	30	30	0
10	10	10	0	0	0	*	1	0	-1	=	0	30	30	0
10	10	10	0	0	0		1	0	-1		0	30	30	0
10	10	10	0	0	0		1	0	-1		0	30	30	0
10	10	10	0	0	0									

Vertical Edge Detection

Convolution over Volumes

#of parameters: 3 x 3 x 3

Stride

Padding

Stride 1 with Padding

Feature Map

Convolution with multiple filters

of parameters: 3 x 3 x 3 x 2(# of filters)

Convolution Layer

$A\ Convolution\ Layer$

of parameters: $4 \times 4 \times 3 \times 2 + 1$ (bias)

Pattern Detection with Convolution

Pattern Detection with Convolution

Convolution Hyperparameters

- Filter size and number of filters
- Type of padding
- Stride size

Small filter size (3X3, 5X5) with stride 1 and zeros padding

CNN Architecture

Pooling Layer

Downsample the input to reduce parameters

End-to-End Network

CNN Hyperparameters

- Filter size and number of filters
- Padding type, stride size
- Pooling size and type
- Number of conv-pool layers, learning rate etc.

Classic CNN models

• VGG-16

• LeNet-5

AlexNet

VGG-16 Architecture

Improving CNN model

- Transfer learning
- Data augmentation

Transfer Learning

Transfer Learning scenarios – Feature extraction

Fine-Tuning Pre-trained model

When to use transfer learning?

- Limited labeled data to train
- Availability of pre-trained model on similar data

Data Augmentation

Conclusion

- What is convolutional neural network.
- How it works.
- How to use pre-trained networks.

Any Questions?

Page 30

