Géométrie analytique dans l'espace

I. Coordonnées d'un point dans un repère – Coordonnées d'un

<u>vecteur dans une base</u>

1. Base et repère dans l'espace :

Définition

Soient O, I, J et K quatre points non coplanaires.

On pose $\overrightarrow{OI} = \overrightarrow{i}$, $\overrightarrow{OJ} = \overrightarrow{j}$ et $\overrightarrow{OK} = \overrightarrow{k}$

* Le triplet $(\vec{i}; \vec{j}; \vec{k})$ est appelé une base de l'espace.

* Le quadruplet $(0; \vec{i}; \vec{j}; \vec{k})$ est appelé un repère de l'espace.

Remarque:

- Si $(OI) \perp (OJ)$, $(OJ) \perp (OK)$ et $(OI) \perp (OK)$ et OI = OJ = OK = 1u alors $(O; \vec{i}; \vec{j}; \vec{k})$ est un repère orthonormé.
- Quatre points non coplanaires O, A, B et C déterminent une base de l'espace.

Par exemple $(\overrightarrow{OA}; \overrightarrow{OB}; \overrightarrow{OC})$, et un repère de l'espace par exemple $(O; \overrightarrow{OA}; \overrightarrow{OB}; \overrightarrow{OC})$.

2. Coordonnées d'un point dans un repère – coordonnées d'un vecteur dans une base

D'après la relation de Chasles

On a
$$\overrightarrow{OM} = \overrightarrow{OM_1} + \overrightarrow{M_1M} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$$

<u>Propriété</u>

Soit $(O; \vec{i}; \vec{j}; \vec{k})$ un repère de l'espace.

Pour tout point M de l'espace, il existe unique triplet (x; y; z) de réels que :

$$\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$$

Pour tout vecteur \vec{u} de l'espace, il existe unique triplet de réels (x; y; z) tel que :

$$\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$$

- Le triplet (x; y; z) est appelé triplet de coordonnées du point M dans le repère (O; i; j; k).
- x est l'abscisse du point M, y est l'ordonnée du point M, z est la côte du point M, et on écrit : M(x; y; z) ou $\overrightarrow{OM}(x; y; z)$.
- Le triplet (x; y; z) est appelé triplet de coordonnées du vecteur \vec{u} dans la base $(\vec{i}; \vec{j}; \vec{k})$ et on note $\vec{u}(x; y; z)$.

II. Déterminant de trois vecteurs :

1. Condition de colinéarité de deux vecteurs :

<u>Activité</u>

Soient $\vec{u}(x; y; z)$ et $\vec{v}(x'; y'; z')$ deux vecteurs de l'espace tels que x, y, z, x', y' et z' sont des nombres réels non nuls.

- 1) Montrer que : \vec{u} et \vec{v} sont colinéaires si et seulement si $\frac{x}{x'} = \frac{y}{y'} = \frac{z}{z'}$
- 2) Montrer que : \vec{u} et \vec{v} sont colinéaires si et seulement si xy' yx' = 0 et xz' zx' = 0 et yz' zy' = 0

Propriétés

Soient $\vec{u}(x; y; z)$ et $\vec{v}(x'; y'; z')$ deux vecteurs non nuls.

- * Les vecteurs \vec{u} et \vec{v} sont *colinéaires* si et seulement s'il existe un nombre réel k tel que : x = kx' et y = ky' et z = kz' (condition géométrique).
- * Soient $\vec{u}(x; y; z)$ et $\vec{v}(x'; y'; z')$ deux vecteurs non nuls, \vec{u} et \vec{v} sont *colinéaires* si et seulement si xy'-x'y=0, xz'-x'z=0 et yz'-y'z=0 (condition analytique).

Autrement dit

- \vec{u} et \vec{v} sont colinéaires si et seulement si $\begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = 0$ et $\begin{vmatrix} x & x' \\ z & z' \end{vmatrix} = 0$ et $\begin{vmatrix} y & y' \\ z & z' \end{vmatrix} = 0$.
- \vec{u} et \vec{v} ne sont pas colinéaires si et seulement si $\begin{vmatrix} x & x' \\ y & y' \end{vmatrix} \neq 0$ ou $\begin{vmatrix} x & x' \\ z & z' \end{vmatrix} \neq 0$ ou $\begin{vmatrix} y & y' \\ z & z' \end{vmatrix} \neq 0$

2. Déterminant de trois vecteurs

Soient $\vec{u}(x; y; z), \vec{v}(x'; y'; z')$ et $\vec{w}(x''; y''; z'')$ trois vecteurs de l'espace.

Le nombre réel

$$\begin{vmatrix} x & x' & x'' \\ y & y' & y'' \\ z & z' & z'' \end{vmatrix} = x \begin{vmatrix} y' & y'' \\ z' & z'' \end{vmatrix} - y \begin{vmatrix} x' & x'' \\ z' & z'' \end{vmatrix} + z \begin{vmatrix} x' & x'' \\ y' & y'' \end{vmatrix} = x (y'z'' - z'y'') - y (x'z'' - z'x'') + z (x'y'' - y'x'')$$

est appelé déterminant des vecteurs \vec{u}, \vec{v} et \vec{w} , et on le note $\det(\vec{u}; \vec{v}; \vec{w})$.

<u>Exemple</u>

Calculer $\det(\vec{u}; \vec{v}; \vec{w})$ tels que $\vec{u}(1;2;3), \vec{v}(3;1;2)$ et $\vec{w}(2;3;1)$

$$\det(\vec{u}; \vec{v}; \vec{w}) = \begin{vmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{vmatrix} = 1 \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} - 2 \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} + 3 \begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix} = 1(1-6) - 2(3-4) + 3(9-2) = -5 + 2 + 21 = 18$$

3. Vecteurs coplanaires

Propriété

Soient \vec{u}, \vec{v} et \vec{w} trois vecteurs de l'espace.

 \vec{u}, \vec{v} et \vec{w} sont coplanaires si et seulement si $\det(\vec{u}; \vec{v}; \vec{w}) = 0$.

Exemples

 \Rightarrow On considère les vecteurs : $\vec{u}(1,1,0), \vec{v}(1,0,1)$ et $\vec{w}(0,1,1)$

On a:
$$\det(\vec{u}; \vec{v}; \vec{w}) = \begin{vmatrix} 1 & 1 & 0 \\ -2 & 3 & 1 \\ 0 & 4 & 1 \end{vmatrix} = 1 \begin{vmatrix} 3 & 1 \\ 4 & 1 \end{vmatrix} - (-2) \begin{vmatrix} 1 & 0 \\ 4 & 1 \end{vmatrix} + 0 \begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix} = -1 + 2 = 1$$

Or $\det(\vec{u}; \vec{v}; \vec{w}) \neq 0$ donc les vecteurs \vec{u}, \vec{v} et \vec{w} ne sont pas coplanaires.

Application *O*

- 1) On considère les vecteurs $\vec{u}(2;1;4), \vec{v}(1;-1;1)$ et $\vec{w}(1;2;3)$. Montrer que les vecteurs \vec{u}, \vec{v} et \vec{w} sont coplanaires.
- 2) On considère les vecteurs $\vec{u}(1+m;1;2m-1), \vec{v}(1;-1;1)$ et $\vec{w}(1;2;3)$.

Déterminer m pour que les vecteurs \vec{u}, \vec{v} et \vec{w} soient coplanaires.

III. <u>Représentation paramétrique d'une droite – Deux équations</u> <u>cartésiennes d'une droite.</u>

1. Représentation paramétrique d'une droite

<u>Activité</u>

On considère les points A(1;2;-1), B(-1;3;1), C(5;0;-5) et E(1;3;0).

Soit M(x; y; z) un point de l'espace.

1) Montrer que si $M \in (AB)$ alors $(\exists t \in \mathbb{R})$ tel que (S) $\begin{cases} x = 1 - 2t \\ y = 2 + t \text{ le système est une} \end{cases}$

représentation paramétrique de la droite (AB)

- 2) Montrer que $C \in (AB)$.
- 3) Le point E appartient-il à la droite (AB)?

Propriété

Soit $A(x_A; y_A; z_A)$ un point de l'espace et soit $\vec{u}(a; b; c)$ un vecteur non nul.

Le système
$$\begin{cases} x = x_A + at \\ y = y_A + bt / (t \in \mathbb{R}) \text{ est appelé } \textbf{représentation paramétrique } \text{ de la droite } D(A, \vec{u}) \\ z = z_A + ct \end{cases}$$

passant par A et de vecteur directeur \vec{u}

Exemple

$$\begin{cases} x = 1 + t \\ y = 1 + 2t ; (t \in \mathbb{R}) \text{ est une représentation paramétrique de la droite } D(A, \vec{u}) \text{ où } A(1;1;1) \text{ et } \vec{u}(1;2;3) \\ z = 1 + 3t \end{cases}$$

2. Deux équations cartésiennes d'une droite :

Définition et propriété :

Soit (D) une droite passant par le point $A(x_A; y_A; z_A)$ et de vecteur directeur $\vec{u}(a; b; c)$.

- Si $a \ne 0, b \ne 0$ et $c \ne 0$ alors le système $\frac{x x_A}{a} = \frac{y y_A}{b} = \frac{z z_A}{c}$ s'appelle deux équations cartésiennes de la droite (D)
- Si l'un des nombres (un seul) a ou bien b ou bien c est nul (par exemple a = 0 et $b \ne 0$

ou bien
$$c \neq 0$$
) alors, le système
$$\begin{cases} x = x_A \\ \frac{y - y_A}{b} = \frac{z - z_A}{c} \end{cases}$$
 est appelé **équations cartésiennes** de la droite

(D)

• Si deux de ces nombres sont nuls (par exemple a = 0 et b = 0 ou bien $c \neq 0$) alors le système $\begin{cases} x = x_A \\ y = y_A \end{cases}$ est appelé *équations cartésiennes* de la droite (D).

Exemples

 \Rightarrow Soit (D_1) la droite passant par le point A(1,-2,3) et de vecteur directeur $\vec{u}(4,5,6)$

On a:
$$M(x; y; z) \in D_1(A, \vec{u}) \Leftrightarrow \frac{x-1}{4} = \frac{y+2}{5} = \frac{z-3}{6}$$

Donc
$$\begin{cases} \frac{x-1}{4} = \frac{y+2}{5} \\ \frac{y+2}{5} = \frac{z-3}{6} \end{cases} \Leftrightarrow \begin{cases} 5(x-1) = 4(y+2) \\ 6(y+2) = 5(z-3) \end{cases} \Leftrightarrow \begin{cases} 5x-4y-13=0 \\ 6y-5z+27=0 \end{cases}$$
 Sont deux équations cartésiennes de

la droite (D_1) .

 \Rightarrow Soit (D_2) la droite passant par le point B(1;1;2) et de vecteur directeur $\vec{v}(4;0;6)$.

On a
$$M(x; y; z) \in D_2(A, \vec{v}) \Leftrightarrow \begin{cases} \frac{x-1}{4} = \frac{z-2}{6} \\ y-1=0 \end{cases} \Leftrightarrow \begin{cases} 6x-6=4z-8 \\ y-1=0 \end{cases} \Leftrightarrow \begin{cases} 6x-4z+2=0 \\ y-1=0 \end{cases}$$
 sont deux

équations cartésiennes de la droite (D_2) .

Application 2

- 1) Déterminer deux équations cartésiennes de la droite (D) passant par le point $A\left(-1;-2;\frac{1}{3}\right)$ et dirigée par le vecteur $\vec{u}\left(-2;\frac{1}{2};1\right)$.
- 2) Soit (Δ) une droite définie par ses deux équations cartésiennes suivantes $\frac{2x-1}{3} = \frac{3y-2}{-2} = \frac{z-1}{2}$
- a) Déterminer un vecteur directeur de la droite (Δ) et un point de (Δ) .
- b) Déduire une représentation paramétrique de la droite (Δ) .

IV. Représentation paramétrique d'un plan – Equation cartésienne d'un

<u>plan</u>

1. Représentation paramétrique d'un plan

<u>Activité</u>

On considère les points A(1;2;3), B(-1;3;1) et C(3;3;-1).

- 1) Montrer que les points A, B et C ne sont pas alignés.
- 2) Soit M(x; y; z) un point de l'espace.

Montrer que $M \in (ABC) \Leftrightarrow (\exists (t;t') \in \mathbb{R}^2)$: $\begin{cases} x = 1 - 2t + 2t' \\ y = 2 + t + t' \end{cases}$ le système est une **représentation** z = 3 - 2t + 4t'

paramétrique du plan (ABC).

3) En déduire que $M(x, y, z) \in (ABC) \Leftrightarrow x + 6y + 2z - 19 = 0$

L'équation x + 6y + 2z - 19 = 0 est appelé une appelé une équation cartésienne du plan (ABC).

Définition

Soit $A(x_A; y_A; z_A)$ un point de l'espace, $\vec{u}(a;b;c)$ et $\vec{v}(a';b';c')$ deux vecteurs **non colinéaires**.

Le système
$$\begin{cases} x = x_A + at + a't' \\ y = y_A + bt + b't' / \left((t, t') \in \mathbb{R}^2 \right) \text{ est appelé une } \textbf{représentation paramétrique} \text{ du plan} \\ z = z_A + ct + c't' \end{cases}$$

 $P(A; \vec{u}; \vec{v})$ passant par A et de vecteurs directeurs \vec{u} et \vec{v} .

Exemple

Déterminer une représentation paramétrique du plan $P(A; \vec{u}; \vec{v})$ tel que A(2;-1;3) et $\vec{u}(1;-2;1)$ et $\vec{v}(-2;4;5)$.

Soit M(x; y; z) un point de l'espace.

$$M(x; y; z) \in P \Leftrightarrow (\exists (t; t') \in \mathbb{R}^2) : \begin{cases} x = 2 + 1t - 2t' \\ y = -1 - 2t + 4t' / ((t, t') \in \mathbb{R}^2) \\ z = 3 + 1t + 5t' \end{cases}$$

2. Equation cartésienne d'un plan

Définition

Soit A un point de l'espace, \vec{u} et \vec{v} sont deux vecteurs non colinéaires.

L'équation cartésienne du plan (P) passant par A et de vecteurs directeurs \vec{u} et \vec{v} s'écrit sous la forme ax + by + cz + d = 0 où a,b,c et d sont des réels tels que $(a;b;c) \neq (0;0;0)$

<u>Remarque :</u>

L'ensemble des points M(x; y; z) de l'espace qui vérifient $\det(\overrightarrow{AM}; \vec{u}; \vec{v}) = 0$ est un plan passant par A et dirigé par les vecteurs \vec{u} et \vec{v} .

Exemple

Déterminer une équation cartésienne du plan P qui passe par le point A(1;-2;1) et dirigé par les vecteurs $\vec{u}(1;-2;1)$ et $\vec{v}(1;1;3)$.

$$M(x; y; z) \in P \Leftrightarrow \det(\overrightarrow{AM}; \overrightarrow{u}; \overrightarrow{v}) = 0$$

$$\Leftrightarrow \begin{vmatrix} x-1 & 1 & 1 \\ y+2 & -2 & 1 \\ z-1 & 1 & 3 \end{vmatrix} = 0 \Leftrightarrow (x-1) \begin{vmatrix} -2 & 1 \\ 1 & 3 \end{vmatrix} - (y+2) \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} + (z-1) \begin{vmatrix} 1 & 1 \\ -2 & 1 \end{vmatrix} = 0$$

$$\Leftrightarrow -7(x-1)-2(y+2)+3(z-1)=0 \Leftrightarrow -7x-2y+3z=0$$

Donc -7x-2y+3z=0 est une équation cartésienne du plan P.

V. <u>Positions relatives de deux droites - Positions relatives de deux plan - </u> <u>Positions relatives d'une droite et un plan</u>

1. Positions relatives de deux droites dans l'espace

<u>Propriété</u>

Soient $(D) = D(A; \vec{u})$ et $(\Delta) = \Delta(B; \vec{v})$ deux droites de l'espace.

- * Si \vec{u} et \vec{v} sont colinéaires et $A \in (\Delta)$ ou $B \in (D)$ alors (D) et (Δ) sont confondues.
- * Si \vec{u} et \vec{v} sont colinéaires et $A \notin (\Delta)$ ou $B \notin (D)$ alors (D) et (Δ) sont strictement parallèles.
- * Si \vec{u} et \vec{v} ne sont pas colinéaires et $\det(AB; \vec{u}; \vec{v}) = 0$ alors (D) et (Δ) sont sécantes (se coupent en un point).
- * Si \vec{u} et \vec{v} ne sont pas colinéaires et $\det(\overrightarrow{AB}; \vec{u}; \vec{v}) \neq 0$ alors (D) et (Δ) ne sont pas coplanaires.

Remarque

Soient $A(x_A; y_A; z_A)$ et $B(x_B; y_B; z_B)$ deux points de l'espace, $\vec{u}(a;b;c)$ et $\vec{v}(a';b';c')$ deux vecteurs non nuls.

On considère les droites (D):
$$\begin{cases} x = x_A + at \\ y = y_A + bt \\ z = z_A + ct \end{cases}$$
 et (Δ) :
$$\begin{cases} x = x_B + a't' \\ y = y_B + b't', (t' \in \mathbb{R}) \\ z = z_B + c't' \end{cases}$$

- \Rightarrow Si \vec{u} et \vec{v} sont colinéaires alors $(D)//(\Delta)$
- \Rightarrow Si \vec{u} et \vec{v} ne sont pas colinéaires alors :

* (D) et (
$$\Delta$$
) sont sécantes si et seulement si le système : (S):
$$\begin{cases} x_A + at = x_B + a't' \\ y_A + bt = y_B + b't' \text{ ayant pour } \\ z_A + ct = z_B + c't' \end{cases}$$

inconnues t et t' admet une solution unique.

* (D) et (Δ) ne sont pas coplanaires si et seulement si le système (S) n'admet aucune solution.

Application 3

Etudier les positions relatives de la droite (D) et la droite (Δ) dans les cas suivants :

$$a) \bullet \quad (D): \begin{cases} x = -2 + t \\ y = 2 - 2t ; (t \in \mathbb{R}) \text{ et } (\Delta): \begin{cases} x = -1 - t' \\ y = 2t' \end{cases}, (t' \in \mathbb{R}) \\ z = 1 + t' \end{cases}$$

$$b) \bullet \quad (D): \begin{cases} x = 1 + t \\ y = -2 - 2t \\ z = 2 + 3t \end{cases} \quad (t \in \mathbb{R}) \text{ et } (\Delta): \begin{cases} x = 2t' \\ y = 1 - t', (t' \in \mathbb{R}) \\ z = 3 + t' \end{cases}$$

$$c) \bullet \quad (D): \begin{cases} x = 1 + t \\ y = -2 ; (t \in \mathbb{R}) \text{ et } (\Delta): \begin{cases} x = 2t' \\ y = 1 \\ z = 3 - 2t' \end{cases}, (t' \in \mathbb{R}) \end{cases}$$

2. Positions relatives de deux plans

Propriété

Soient $(P) = P(A; \vec{u}; \vec{v})$ et $(Q) = P(B; \vec{u}'; \vec{v}')$ deux plans de l'espace.

- * Si $\det(\vec{u}; \vec{v}; \vec{u}') = 0$ et $\det(\vec{u}; \vec{v}; \vec{v}') = 0$ et $A \in (Q)$ ou $B \in (P)$ alors (P) et (Q) sont confondus
- *Si $\det(\vec{u}; \vec{v}; \vec{u}') = 0$ et $\det(\vec{u}; \vec{v}; \vec{v}') = 0$ et $A \notin (Q)$ ou $B \notin (P)$ alors (P) et (Q) strictement parallèles.
- * Si $\det(\vec{u}; \vec{v}; \vec{u}') \neq 0$ ou $\det(\vec{u}; \vec{v}; \vec{v}') \neq 0$ alors (P) et (Q) se coupent selon une droite.

Remarque

Soient (P) et (P') deux plans définis par leurs équations cartésiennes : ax + by + cz + d = 0 et a'x + b'y + c'z + d' = 0 où $(a;b;c) \neq (0;0;0)$ et $(a';b';c') \neq (0;0;0)$.

- Les plans (P) et (P') se coupent suivant une droite si et seulement si $ab' ba' \neq 0$; $ac' ca' \neq 0$ ou $bc' cb' \neq 0$.
- Les plans (P) et (P') sont parallèles si et seulement s'il existe un réel k non nul tel que a' = ka; b' = kb et c' = kc.
- Les plans (P) et (P') sont confondus si et seulement s'il existe un réel k non nul tel que : a' = ka; b' = kb; c' = kc et d' = kd.

Application @

Etudier la position relative du plan (P) et le plan (Q) dans les cas suivants :

a) •
$$(P)$$
: $\begin{cases} x = 1 + 2t + t' \\ y = 2 - t + t' / ((t;t') \in \mathbb{R}^2) \end{cases}$; (Q) : $\begin{cases} x = 5 + 5t' \\ y = 3 + t + t' / ((t;t') \in \mathbb{R}^2) \end{cases}$
 $z = 2 + t + 3t'$

b) •
$$(P): 2x + y - z + 2 = 0; (Q): 3x + y - 4z - 1 = 0$$

3. Positions relatives d'une droite et un plan

<u>Propriété</u>

Soit $(D) = D(A; \vec{w})$ une droite de l'espace et soit $(P) = P(B; \vec{u}; \vec{v})$ un plan de l'espace.

*Si $\det(\vec{u}; \vec{v}; \vec{w}) = 0$ et $A \in (P)$ alors $(D) \subset (P)$.

* Si $\det(\vec{u}; \vec{v}; \vec{w}) = 0$ et $A \notin (P)$, alors (D) est strictement parallèle à (P)

* Si $\det(\vec{u}; \vec{v}; \vec{w}) \neq 0$ alors (D) perce le plan (P)

Exemple

Soit (P) le plan défini par l'équation cartésienne : x + y - z + 1 = 0 et (D) la droite définie par la

représentation paramétrique
$$\begin{cases} x = 1 + t \\ y = 1 - t ; (t \in \mathbb{R}) \end{cases}$$
$$z = 1 + 2t$$

Pour étudier l'intersection de (D) et (P) on résout le système : (S)
$$\begin{cases} x+y-z+1=0 & (1) \\ x=1+t & (2) \\ y=1-t & (3) \\ z=1+2t & (4) \end{cases}$$

On remplace respectivement x, y et z par 1+t, 1-t et 1+2t dans l'équation (1) on obtient 1+t+1-t-1-2t+1=0 D'où t=1

Après remplacement dans les équations : (2),(3) et (4) on trouve le triplet (2;0;3) solution du système (S).

Donc (D) perce le plan (P) au point M(2;0;3)

Application **5**

Etudier la position relative de la droite (D) et le plan (P) dans les cas suivants

a) • (D):
$$\begin{cases} x = 2 - 4t \\ y = -1 + 2t / (t \in \mathbb{R}) ; (P) : 3x + 2y + z + 1 = 0 \\ z = 3t \end{cases}$$

b) • (D):
$$\begin{cases} x = -4 + 5t \\ y = -1 - 2t / (t \in \mathbb{R}) ; (P) : x + 3y + z + 4 = 0 \\ z = -3 + t \end{cases}$$