西南交通大学 XXXX-XXXX 学年第 X 学期考试试卷

课程代码______课程名称_计算机组成原理__考试时间__120 分钟__

	题号	_	_	Ξ	四	五	六	七	总成绩	
	得分									
阅	卷教师签写	字:								
注意:										
	严禁使用 不自带草		十算器及	其它计	算工具;					
一、码	制与计算	(20分)								
1. 己乡	∏ X=0.10	011, Y	=-0.01	01 (二	进制), 3	求				
[X]	_移 =	,	[X]*+=		, [X]	反=		_, [_{X/2}]	_补 =	
[Y]	原 [—]	,	[Y] _* =		, [-Y] _补 =		_, [2Y] _补 =	
2. 计算	拿并指出结	吉果是否	溢出(フ	下必列出	算式)					
[X-	+Y]*\=		_,结果	: □不溢	盆出,□Ⅰ	E溢出,	□负溢占	Ц		
[X-	-Y] _{ネト} =		<u>,</u> 结果:	:□不溢	出,口正	E溢出,	□负溢出	I I		
二、填	空题(每名	₹2分,	共 10 分	.) [——— 答案填在]			
	-/-		/ \ _ · / 4		其它地方	无效!				
((1)				_			-			
((I)~	(5) <u> </u>									
为2		址 2000	H中的P	内容为3	000H,	也址 300	00H 中的	内容为	也址 1000H 5000H,址 。	
	Cache 的地 中方法称为				意一块。	只能映身	寸到 Cac	he 内唯·	一指定的位	<i>[</i> 置上,
位		数符),	补码表示	F,则该					以补码表示 数是(以十	

"计算机组成原理"模拟试卷。题目共七大题。第1页

4.	4. 某机主存容量 1MB,用 16K× 新一遍需要 <u>④</u> 个刷新		成,芯片最大刷新!	间隔为 2ms。则刷
5.	5. 假设一位全加器的输入量为 A	、 B 、 C_0 ,其向高位的进	位输出 C ₁ 的逻辑表	达式为。
三、	三、单选题 (每小题 2 分,共 30 ½ 答案填写处:			
1				
1.	1. 在机器数中,的零的表示			
	A . 原码 B .补码			
2.	 如果某一个数 x 的真值为一0. 方式是。 	1010,在计算机中该数	效表示为 1.0101,『	则该数采用的编码
	A. 原码 B. 补码	C. 反码		D. 移码
3.	3. 在 I/O 地址与内存独立编址的	计算机中,下列说法中	中正确的是	_0
	A. 不需要设置专门的 I/O 指	ri令 B.	I/O 地址和存储器均	也址可以有相同的
	C. 可用访存指令实现 CPU 对	讨设备的访问 D.	可将I/O地址看作是	是存储器的一部分
4.	4. 用 1 位奇偶校验能检测出 1 位	存储错误的百分比为_	o	
	A. 0% B	3. 25%	C. 50%	D. 100%
5.	条二地址指令、10条零地址指	f令,则最多可有	_条一地址指令	
	A. 10			
6.	 在浮点数中,如果基数为 2,数。 	尾数用原码表示,则 ^一	下面哪个尾数对应的	的浮点数是规格化
	A. 0.0101110 B	3. 1.0111010	C. 1.100110	D. 0.0011001
7.	7. 下列说法中不正确的是。			
	A. 任何可以由软件实现的操	作也可以由硬件来实现	见	
	B. 固件就功能而言类似于软	件,而从形态上来说了	又类似于硬件	
	C. 计算机系统的层次结构中	,位于硬件之外的所有	有层次统称为操作	系统
	D. 冯诺依曼计算机工作方式	的基本特点是采用存储	诸程序的工作方式。	
8.	3. 计算机的存储器采用分级存储	体系的主要目的是	<u> </u>	
	A. 便于读写数据 E	3. 提高访问速度	C. 便于系统	升级

	D. 解伏仔储谷里、1	介恰和仔拟迷皮,	乙則的才自		
9.	某计算机字长为 32 位	位,其存储容量位	立 4GB,若按与	Z编址,它的寻址	止范围为 <u></u> 。
	A. 1G	B.4G	C. 4GB	D.	1GB
10.	下列数中最小的数是	<u>.</u>			
	A. (110001) ₂	B. (62) ₈	C. (001100	001) _{BCD}	D. (21) ₁₆
11.	浮点数的表示范围主	要取决于。	,		
	A. 阶码的位数	B. 阶码采用的:	编码 C. 尾	数的位数	D. 尾数采用的编码
12.	计算机操作的最小时 A. 指令周期	·		CPU 周期	D. 存取周期
13.	三级时序系统通常提				
	A. CPU 周期、节拍	自周期、节拍脉 <i>冲</i>	B. CPU	周期、微指令周	期、节拍周期
	C. 指令周期、CPU	J 周期、节拍周 	明 D. 指令月	周期、节拍周期	、节拍脉冲
14.	寄存器间接寻址方式	中,操作数处在	生中。		
	A. 通用寄存器	B. 主存单	i元 C.	PC	D. 堆栈
15.	假定用若干个 2K×4 址是	的芯片组成一个	8K×8 的存储器	号,则地址 131F	H 所在芯片的最小地
	А. 1000Н	B. 1FFFH	C	. 1700Н	D. 0000H
四、	简答题(10分)				
1.	简述机器指令与微指	冷的关系。			

五、某计算机字长为 16 位, 主存地址空间大小为 128KB, 按字编址, 采用单字指令格式,

2. 简述一位 Booth 乘法的运算规则

指令各字段定义如下: (10分)

源操作数 目的操作数

转移指令采用相对寻址方式,相对偏移量采用补码表示,寻址方式定义如下:

Ms/Md	寻址方式	助记符	含义
000B	寄存器直接	Rn	操作数= (Rn)
001B	寄存器间接	(Rn)	操作数=((Rn))
010B	寄存器间接、自增	(Rn)+	操作数=((Rn)), (Rn)+1->Rn
011B	相对	D(Rn)	转移目标地址= (PC) + (Rn)

请回答:

- 1. 该指令系统最多可有多少条指令? 该计算机最多有多少个通用寄存器? 存储器地址 寄存器 MAR 和存储器数据寄存器 (MDR) 至少各需多少位?
- 2. 若寄存器 R4 的内容为 1234H, R5 的内容为 5678H, 地址 1234H 中的内容为 5678H, 地址 5678H 中的内容为 1234H,则汇编语言指令 add (R4), (R5)+(逗号前为源操作数, 逗号后为目的操作数)执行后,哪些寄存器和存储单元的内容会改变?改变后的内容 是什么?

六、存储器设计(10分)

用 8K×8 / 片的静态 RAM 芯片,设计一个容量为 16K×16 内存储器,要求主存的起始地址为 2000H。问(1)需要多少芯片,采用什么存储体扩展方式?(2)写出各芯片的地址范围及 片选信号的逻辑表达式。(3) 画出逻辑电路图 (10分)

注: 外部电路提供: 地址线 $A_{15\sim0}$; 数据线 $D_{15\sim0}$; 控制线 $\overline{\text{MEM}}$ 和 R/\overline{W} 。

当 $\overline{\text{MEM}}=0$ 且 $R/\overline{W}=1$ 时存储器读操作; 当 $\overline{\text{MEM}}=0$ 且 $R/\overline{W}=0$ 时存储器写操作。 RAM 芯片中, CE 为片选信号,低电平有效; WE 为读写控制(高电平读,低电平写)

[解] 所设计的逻辑电路图如下:

七、微操作序列分析(10分)

模型机的 CPU 及内存的简图如下图所示。请根据下图写出:

- (1) 实现 T→DR 功能所需的微操作序列;
- (2) 假定经过取操作数周期后,操作数已经存放在 DR 寄存器中。写出执行周期中将操作数求反后写入 BX 寄存器功能所需的微操作序列;

要求: 微操作序列中每一步微操作写出其功能说明及所需的微命令。

解:	微操作	微操作所需的控制信号
(1)	1)	
(2)	1)	
	2	
	3	

西南交通大学 XXXX-XXXX 学年第 X 学期模拟试卷答案及评分标准

课程代码 课程名称 计算机组成原理 考试时间 120 分钟

一、码制与计算(20分)

已知 X=0.1011, Y=-0.0101 (二进制), 求【每空2分】

$$[X]_{\mathscr{B}} = 1.1011$$
 , $[X]_{\mathscr{A}} = 0.1011$, $[X]_{\mathscr{Q}} = 0.1011$, $[X/2]_{\mathscr{A}} = 0.0101$

$$[Y]_{\emptyset} = 1.0101$$
, $[Y]_{\lozenge} = 1.1011$, $[-Y]_{\lozenge} = 0.0101$, $[2Y]_{\lozenge} = 1.0110$

计算并指出结果是否溢出(不必列出算式)

二、填空题(每空2分,共10分)

(①~⑤) _5000H_、 直接映像 、
$$(1-2^{-9}) \times 2^{31}$$
 、128 、C₁=AB+(A \oplus B)C₀

三、单选题 (每小题 2 分, 共 30 分)

BCBDC CCDAC ABABA

四、简答题【10分,每小题5分】

- 1. 答:每一条机器指令(即指令系统所提供的指令)需要作很多微操作,因此一条机器指令需要由一组微 指令所组成的微程序来解释执行【3分】,而一条微指令可为多个机器指令服务。【2分(意思大 致正确即可)】
- 2. 答:乘数和被乘数都用补码表示,符号位和数值位同等对待,参与运算【1分】,用乘数的最低两位作为判断位,运算规则如下【3分】。对 n+1 位乘数补码(包括一位符号位),共需要做 n+1 次累加,n 次移位。【1分】

判断位 Y _n Y _{n+1}	操作
0 0	原部分积+0, 再右移一位
0 1	原部分积+[X]*, 再右移一位
1 0	原部分积+[-X]*, 再右移一位
1 1	原部分积+0, 再右移一位

- 五、[解] (1) 最多可有 16 条指令【1 分】,该计算机最多有 8 个通用寄存器【1 分】, MAR 和 MDR 均至少需 16 位【2 分】
 - (2) 执行该指令后, R5 寄存器和内存单元 5678 的内容会改变。【2分】

R5=5679H【2分】, 5678H单元的内容为 5678H+1234H=68ACH 【2分】

六、[解](1)需要4片8K×8芯片,采用字位同时扩展方式【1分】

各芯片的地址范围如下表所示【1分】

	$A_{15} A_{14} A_{13}$	A_{12} , A_0	地址范围
$\overline{CS_0}$	0 0 1	00	2000H-3FFFH
		11	
$\overline{CS_1}$	0 1 0	00	4000H-5FFFH
		11	

各芯片的片选信号逻辑表达式为:【2分】

$$\overline{CS_0} = \overline{\overline{A_{15}}} \overline{A_{14}} A_{13} \overline{\overline{MEM}}$$

$$\overline{CS_0} = \overline{\overline{A_{15}}A_{14}}\overline{\overline{A_{13}}}\overline{\overline{MEM}}$$

所设计的逻辑电路图如下:【片选信号线2分,地址线2分,数据线1分,控制线1分】

七、微操作序列分析(10分)

解:

	微操作	微操作所需的控制信号	
(1)		T→IB, DRin	【3分】
(2)	① (DR)→S	DR→IB, Sin	【3分】
	② NOT S	NOT	【2分】
	$(S) \rightarrow BX$	S→IB, BXin	【2分】