P4 21700477 윤다은

문제정의

각 원반이 가야하는 타워의 위치를 가려내는 문제

문제해결

disk	current position(source)	destination	buffer
4	1	3	2
3	1	2	3
2	1	3	2
1	1	2	Х

n = 4이고 k = 3일 경우 위 표를 생성한다. current position은 현재 원반의 위치를 나타낸다. 4의 destination으로 k를 집어넣는다. 이 때 4를 옮기기 위해서는 4보다 작은 원반들은 2로 옮겨져야 한다. 따라서 buffer를 2로 설정한다. disk3의 목적지는 앞선 4의 buffer를 상속받는다. 원반3이 2로 옮겨지기 위해서는 3보다 작은 원반들이 3으로 옮겨져야한다. 이 논리를 따라가보면 재귀를 발견할 수 있다. i개의 원반을 옮기는 일반적인 하노이 공식을 hanoi(i)라고 했을 때 hanoi(i) = hanoi(i-1)+1이 성립한다(i>2). 이 표를 완성한뒤 아래에서 hanoi(i)를 중첩시켜나간다. 만약 현재 위치와 목적지가 일치하면 움직일 필요가 없으므로, 상속받은 버퍼를 그대로 자신의 버퍼 값에 쓰고 계산을 건너뛴다.

타당성

하노이 타워의 임의의 원판을 옮기기 위해서는 자신보다 위에 있는(크기가 작은) 원판들이 목적지가 아닌 경유지 타워쪽으로 옮겨져야한다. 이는 그 규칙을 적용한 알고리즘이므로타당하다.

시간복잡도

n개의 원판에 대해 표를 작성하고 이동횟수를 계산하기 때문에 **O(n)**의 시간복잡도를갖는다.

공간복잡도

n의 개수가 50이하이기 때문에 50*3의 이차원 배열을 선언하여도 무리가 없다. n이 늘어남에 따라 공간이 증가하지 않으므로 **0(1)**의 공간복잡도를 갖는다.

응용

컨테이너 박스를 적재할 때, 버틸 수 있는 무게가 정해져 있을 경우 내림차순으로 컨테이너를 적재할 수 있는 빠른 순서를 찾을 때 유용할 것 같다.