Concours commun Mines-Ponts

SECONDE EPREUVE. FILIERE MP

I Algèbres de Lie

 \square 1 - Soit $M \in \mathcal{V}$. X est associé à une valeur propre de M uniquement définie que l'on note $\lambda(M)$. On note que

$$MX = \lambda(M)X \Rightarrow {}^t\overline{X}MX = \lambda(M){}^t\overline{X}X \Rightarrow \lambda(M) = \frac{{}^t\overline{X}MX}{{}^t\overline{X}X} \ (X \neq 0 \Rightarrow {}^t\overline{X}X \in \mathbb{R}^*).$$

Il est alors clair que l'application $M \mapsto \lambda(M)$ est linéaire.

$$\exists \lambda \in \mathcal{V}^* / \ \forall M \in \mathcal{V}, \ MX = \lambda(M)X.$$

- \square 2 Soit $M \in \mathcal{V}$. M est dans \mathcal{U} . Puisque \mathcal{U} est une algèbre de Lie, [M, A] est dans $[\mathcal{U}]$ et donc par hypothèse dans \mathcal{V} .
- □ 3 Montrons par récurrence que

$$\forall i \in \mathbb{N}, \ \forall M \in \mathcal{V}, \ MX_i = \sum_{j=0}^i C_i^j \lambda_{i-j}(M) X_j.$$

- $\bullet \ \mathrm{Si} \ i=0, \ \mathrm{pour} \ M \in \mathcal{V}, \ MX_0=MX=\lambda(M)X=\sum_{j=0}^{0} C_0^j \lambda_{0-j}(M)X_j.$
- $\bullet \ \mathrm{Soit} \ i \geq 0. \ \mathrm{Supposons} \ \mathrm{que} \ \forall M \in \mathcal{V}, \ MX_i = \sum_{j=0}^i C_i^j \lambda_{i-j}(M) X_j.$

Soit $M \in \mathcal{V}$.

$$\begin{split} MX_{i+1} &= MAX_i = [M,A]X_i + AMX_i \\ &= \sum_{j=0}^i C_i^j \lambda_{i-j} ([M,A]) X_j + A \sum_{j=0}^i C_i^j \lambda_{i-j} (M) X_j \text{ (par hypothèse de récurrence et puisque } [M,A] \in \mathcal{V}) \\ &= \sum_{j=0}^i C_i^j \lambda_{i+1-j} (M) X_j + \sum_{j=0}^i C_i^j \lambda_{i-j} (M) X_{j+1} = \sum_{j=0}^i C_i^j \lambda_{i+1-j} (M) X_j + \sum_{j=1}^{i+1} C_i^{j-1} \lambda_{i+1-j} (M) X_j \\ &= \lambda_{i+1} (M) X_0 + \sum_{j=1}^i \left(C_i^j + C_i^{j-1} \right) \lambda_{i+1-j} (M) X_j + \lambda_0 (M) X_{i+1} \\ &= \lambda_{i+1} (M) X_0 + \sum_{j=1}^i C_{i+1}^j \lambda_{i+1-j} (M) X_j + \lambda_0 (M) X_{i+1} \\ &= \sum_{j=1}^i C_{i+1}^j \lambda_{i+1-j} (M) X_j. \end{split}$$

On a montré par récurrence que

$$\forall i \in \mathbb{N}, \ \forall M \in \mathcal{V}, \ MX_i = \sum_{j=0}^i C_i^j \lambda_{i-j}(M) X_j.$$

1

Soit $M \in \mathcal{V}$. Alors, $[M, A] \in \mathcal{V}$ et d'après ce qui précède

$$[M,A] = \sum_{j=0}^{i} C_{i}^{j} \lambda_{i-j}([M,A]) X_{j} = \sum_{j=0}^{i} C_{i}^{j} \lambda_{i-j+1}(M) X_{j} \ (1).$$

$$\forall i \in \mathbb{N}, \; \forall M \in \mathcal{V}, \; [M,A] X_i = \sum_{j=0}^i C_i^j \lambda_{i-j+1}(M) X_j \; (2).$$

- $\label{eq:continuous} \ \ \ \ \ \ \ 4 \text{ Soit } E = \{ p \in \mathbb{N} / \ (X_0, \dots, X_p) \ \mathrm{libre} \}.$
 - \bullet X n'est pas nul et donc (X_0) est une famille libre. Par suite, E est non vide.
- Le cardinal d'une famille libre de $M_{n,1}(\mathbb{C})$ est majoré par la dimension n de $M_{n,1}(\mathbb{C})$ et donc E est majoré par n-1. Ainsi, E est une partie non vide et majorée de \mathbb{N} . On sait alors que E admet un plus grand élément que l'on note q. Il existe donc un plus grand entier q tel que la famille (X_0, \ldots, X_q) soit libre.
- \square 5 Les formules (1) et (2) montrent que pour chaque $i \in [0,q]$, $\overline{M}_G(X_i)$ et $\overline{[M,A]}_G(X_i)$ sont dans G. On en déduit que

$$\overline{M}_G(G) = \operatorname{Vect}(\overline{M}_G(X_0), \dots, \overline{M}_G(X_g)) \subset \operatorname{Vect}(X_0, \dots, X_g) = G_g$$

et de même, $\overline{[M,A]}_G(G)\subset G$. Donc, \overline{M}_G et $\overline{[M,A]}_G$ sont des endomorphismes de G.

Ensuite, pour $i \in [0,q-1]$, $\overline{A}_G(X_i) = X_{i+1} \in G$ et enfin, puisque par définition de q, la famille (X_0,\ldots,X_q) est libre et que la famille (X_0,\ldots,X_q,X_{q+1}) est liée, $\overline{A}_G(X_q) = X_{q+1} \in \mathrm{Vect}(X_0,\ldots,X_q) = G$. Ainsi, $\overline{A}_G(G) \subset G$ et finalement

$$\overline{M}_G$$
, \overline{A}_G et $\overline{[M,A]}_G$ sont des endomorphiqmes de G .

$$\label{eq:definition} \blacksquare \ 6 - \mathrm{Tr}(\overline{[M,A]}_G) = \mathrm{Tr}(\overline{M}_G \circ \overline{A}_G) - \mathrm{Tr}(\overline{A}_G \circ \overline{M}_G) = 0.$$

$$\operatorname{Tr}(\overline{[M,A]}_G)=0.$$

 $\ \square$ 7 - Pour $k\in\mathbb{Z}^{-*},$ posons $\lambda_k(M)=0.$ On rappelle d'autre part que si j< i, $C_i^i=0.$

La formule (2) montre que pour $(i,j) \in [0,q]^2$, le coefficient ligne i, colonne j de la matrice de $\overline{[M,A]}_G$ dans la base (X_0,\ldots,X_q) de G est $C_i^i\lambda_{j-i+1}(M)$.

$$\operatorname{Mat}_{(X_{\mathfrak{i}})_{0\leq \mathfrak{i}\leq q}}(\overline{[M,A]}_G)=(C_{\mathfrak{j}}^{\mathfrak{i}}\lambda_{\mathfrak{j}-\mathfrak{i}+1}(M))_{0\leq \mathfrak{i},\mathfrak{j}\leq q}.$$

□ 8 - En particulier,

$$\mathrm{Tr}(\overline{[M,A]}_G=\sum_{i=0}^q C_i^i\lambda_1(M)=(q+1)\lambda([M,A]),$$

et d'après la question 6 -,

$$\lambda([M,A])=0.$$

 \square 9 - Mais alors, $[M, A]X = \lambda([M, A])X = 0$ et donc

$$MAX = AMX = A(\lambda(M)X) = \lambda(M)AX$$

ce qui démontre que X est soit la colonne nulle, soit un vecteur propre de M associé à la même valeur propre que X et donc démontre le théorème 1.

II Algèbres de Lie résolubles

- \square 10 La propriété « il existe une matrice P inversible telle que pour tout $M \in \mathcal{U}$, $P^{-1}MP$ est triangulaire supérieure » équivaut à l'existence d'une base $(e_i)_{1 \leq i \leq i}$ de \mathbb{C}^n telle que $\forall M \in \mathcal{U}$, $\forall i \in [\![1,n]\!]$, $\overline{M}(e_i) \in \mathrm{Vect}(e_j)_{1 \leq j \leq n}$ et fournit en particulier une base commune de triangulation pour tous les endomorphismes canoniquement associés aux éléments de \mathcal{U} .
- □ 11 • Démontrons que \mathcal{T}_P est une algèbre de Lie. Tout d'abord, \mathcal{T}_p est l'image de l'espace $\mathsf{T}_{n,s}(\mathbb{C})$ (espace des matrices triangulaires supérieures à coefficients dans \mathbb{C}) par l'application linéaire $\mathsf{T} \mapsto \mathsf{PTP}^{-1}$ et est donc un sous-espace de $\mathsf{M}_n(\mathbb{C})$. Ensuite, on sait que le produit de deux matrices triangulaires supérieures est une matrice triangulaire supérieure. Par suite, si M et N sont deux éléments de \mathcal{T}_p , la matrice

$$P^{-1}[M, N]P = P^{-1}(MN - NM)P = (P^{-1}MP)(P^{-1}NP) - (P^{-1}NP)(P^{-1}MP),$$

est encore une matrice triangulaire supérieure. Par suite, $[\mathcal{T}_P] \subset \mathcal{T}_P$ et donc

 \mathcal{T}_{P} est une algèbre de Lie.

• Il est clair que $\{0\} = \mathcal{N}_n \subset \mathcal{N}_{n-1} \subset \ldots \subset \mathcal{N}_1 \subset \mathcal{N}_0 = \mathcal{T}_P$. Montrons que chaque \mathcal{N}_i , $1 \leq i \leq n$, est une algèbre de Lie. On note $(E_{i,k})_{1 \leq i,k \leq n}$ la base canonique de $M_n(\mathbb{C})$.

Soit $i \in [\![1,n]\!]$. Tout d'abord, $\mathcal{N}_i = P\mathrm{Vect}(E_{j,k})_{k-j\geq i}P^{-1} = \mathrm{Vect}(PE_{k,j}P^{-1})_{k-j\geq i}$ est un sous-espace vectoriel de $M_n(\mathbb{C})$. Maintenant, $[\mathcal{N}_i]$ est l'espace engendré par les $P[E_{j,k}E_{j',k'}]P^{-1}$, $k-j\geq i$, $k'-j'\geq i$. Soient j,k,j',k' quatre tels entiers. On sait que

$$E_{i,k}E_{i',k'} = \delta_{k,i'}E_{i,k'}$$
.

Si ce produit est non nul, on a k = j' et dans ce cas,

$$k' - j = k' - j' + k - j \ge 2i \ge i$$
 (*)

ce qui montre que le produit $E_{j,k}E_{j',k'}$ est dans l'espace des matrices dont les k premières diagonales supérieures sont nulles. Il en est de même du crochet de Lie $[E_{j,k},E_{j',k'}]$ et finalement tous les $P[E_{j,k}E_{j',k'}]P^{-1}$, $k-j \geq i$, $k'-j' \geq i$ sont dans $[\mathcal{N}_i]$. On a ainsi montré que $[\mathcal{N}_i] \subset \mathcal{N}_i$ et donc que

$$\forall i \in [\![1,n]\!], \; \mathcal{N}_i \; \mathrm{est \; une \; alg\`ebre \; de \; Lie}.$$

• Montrons que $\forall i \in [0, n-1], [\mathcal{N}_i] \subset \mathcal{N}_{i+1}$.

Soit $i \in [0, n-1]$. Si $i \ge 1$, on peut affiner les inégalités (*) en

$$k' - j = k' - j' + k - j > 2i = i + i > i + 1,$$

et donc les $P[E_{j,k}E_{j',k'}]P^{-1}$, $k-j \ge i$, $k'-j' \ge i$ sont plus précisément dans $[\mathcal{N}_{i+1}]$.

Il reste à vérifier que $[\mathcal{T}_P] = [\mathcal{N}_0] \subset \mathcal{N}_1$. Mais si T et T' sont deux matrices triangulaires supérieures, les matrices TT' et T'T sont des matrices triangulaires supérieures ayant même diagonale principale et donc [T,T'] est une matrice triangulaire supérieure de diagonale principale nulle. Par suite, $[PTP^{-1}, PT'P^{-1}] = P[T,T']P^{-1}$ est dans \mathcal{N}_1 ce qui démontre le résultat.

On a montré que

 \mathcal{T}_P est une algèbre de Lie, résoluble de longueur \mathfrak{n} .

 \square 12 - Par définition, $[\mathcal{U}] = [\mathcal{U}_0] \subset [\mathcal{U}_1] = [\{0\}] = \{0\}$. Par suite, si M et M' sont deux éléments de \mathcal{U} , $MM' - M'M = [M, M'] \in \{0\}$ et donc MM' = M'M.

Si \mathcal{U} est une algèbre de Lie résoluble de longueur 1, $\forall (MM') \in \mathcal{U}^2$, MM' = M'M.

 \square 13 - Montrons par récurrence que $\forall r \in \mathbb{N}^*$, r endomorphismes d'un \mathbb{C} -espace de dimension finie non nulle commutant deux à deux admettent un vecteur propre en commun.

- \bullet Soit f_1 un endomorphisme d'un \mathbb{C} -espace de dimension finie non nulle. On sait que f_1 admet au moins un vecteur propre ce qui démontre le résultat pour r=1.
- Soit $r \geq 1$. Supposons le résultat acquis pour r endomorphismes d'un \mathbb{C} -espace de dimension finie non nulle. Soient f_1, \ldots, f_{r+1} r+1 endomorphismes d'un \mathbb{C} -espace E de dimension finie non nulle commutant deux à deux deux. f_{r+1} admet au moins une valeur propre λ . Le sous-espace $F = \operatorname{Ker}(f_{r+1} \lambda \operatorname{Id}_E)$ est alors un \mathbb{C} -espace de dimension finie non nulle. Puisque les endomorphismes f_1, \ldots, f_r commutent avec f_{r+1} , on sait que F est stable par chacun des f_i , $1 \leq i \leq r$. Les restrictions des f_i , $1 \leq i \leq r$, à F sont donc des endomorphismes de F, notés f_i , $1 \leq i \leq r$, commutant deux à deux. Par hypothèse de récurrence, f_1, \ldots, f_r admettent un vecteur propre commun F0, F1, F2, F3, F4, F5, F5,

Le résultat est ainsi démontré par récurrence. Maintenant, comme $\overline{M}_1, \ldots, \overline{M}_r$ sont r endomorphismes d'un \mathbb{C} -espace de dimension finie non nulle, commutant deux à deux d'après la question 12-, on a montré que

 $\forall r \in \mathbb{N}^*, \ \forall (M_1, \dots, M_r) \in \mathcal{U}^r, \ \overline{M}_1, \dots, \overline{M}_r \ \text{admettent un vecteur propre commun.}$

- \square 14 $\mathcal U$ est un $\mathbb C$ -espace de dimension finie non nulle. On peut appliquer le résultat précédent à une base (M_1,\ldots,M_q) de $\mathcal U$: les endomorphismes $\overline{M}_1,\ldots,\overline{M}_q$ admettent un vecteur propre x en commun. Maintenant tout élément M de $\mathcal U$ est une combinaison linéaire de M_1,\ldots,M_q et donc x est un vecteur propre de \overline{M} ce qui démontre le résultat.
- □ 15 Soit $x \in E$. Si $x \in F$, $u(x) \in F$ et donc $p_H(u(x)) = 0 = p_H(u(p_H(x)))$ et si $x \in H$, $p_H(u(p_H(x))) = p_H(u(x))$. Ainsi, les endomorphismes $p_H u$ et $p_H u p_H$ coïncident sur les sous-espaces supplémentaires F et H et sont dons égaux. De même, $p_H v = p_H v p_H$.

 $\mathfrak{p}_{\mathsf{H}}\mathfrak{u} = \mathfrak{p}_{\mathsf{H}}\mathfrak{u}\mathfrak{p}_{\mathsf{H}} \text{ et } \mathfrak{p}_{\mathsf{H}}\mathfrak{v} = \mathfrak{p}_{\mathsf{H}}\mathfrak{v}\mathfrak{p}_{\mathsf{H}}.$

□ 16 - D'après la question précédente,

 $p_H u p_H p_H v p_H = p_H u p_H v p_H = (p_H u p_H) v p_H = p_H u v p_H = p_H v u p_H = p_H v p_H p_H u p_H.$

 $p_H u_H = p_H u i_H$ est la restriction à H de $p_H u p_H$. De même, $p_H v_H$ est la restriction à H de $p_H v p_H$. Donc $p_H u_H$ et $p_H v_H$ commutent.

 $p_H u_H$ et $p_H v_H$ commutent.

- \square 17 Montrons par récurrence que $\forall n \in \mathbb{N}^*$, si $\overline{\mathcal{U}}$ est sous-espace de $L(\mathbb{C}^n)$ qui est une algèbre de Lie résoluble de longueur $\mathfrak{p}=1$ alors il existe une base de \mathbb{C}^n dans laquelle les éléments de $\overline{\mathcal{U}}$ trigonalisent supérieurement.
- \bullet Puisque toute matrice carrée de format 1 est triangulaire supérieure, le résultat est vrai quand n=1.
- Soit $n \ge 1$. Supposons que toute algèbre de Lie de $M_n(\mathbb{C})$, résoluble de longueur 1 est telle que tous ses éléments soient simultanément trigonalisables. Soit \mathcal{U} une algèbre de Lie de $M_{n+1}(\mathbb{C})$, résoluble de longueur 1.

D'après la question 14 -, les éléments de $\overline{\mathcal{U}}$ admettent un vecteur propre en commun. On note e_1 ce vecteur puis $F = \operatorname{Vect}(e_1)$. Soit H un supplémentaire de F dans \mathbb{C}^{n+1} .

Considérons alors $\overline{\mathcal{U}'}$ l'ensemble des $\mathfrak{p}_H\mathfrak{u}_H$, $\mathfrak{u}\in\overline{\mathcal{U}}$. $\overline{\mathcal{U}'}$ est un sous-espace de L(H) avec dimH = \mathfrak{n} et d'après la question 16 -, puisque F est stable par tous les éléments de $\overline{\mathcal{U}}$ et que deux éléments de $\overline{\mathcal{U}}$ commutent, les éléments de $\overline{\mathcal{U}'}$ commutent deux à deux. On en déduit que $\overline{\mathcal{U}'}$ est une algèbre de Lie de $M_\mathfrak{n}(\mathbb{C})$, résoluble de longueur 1. Par hypothèse de récurrence, il existe une base (e_2,\ldots,e_{n+1}) de H qui est une base de triangulation commune à tous les éléments de $\overline{\mathcal{U}'}$. Mais alors, (e_1,\ldots,e_{n+1}) est une base de \mathbb{C}^{n+1} qui est une base de triangulation commune à tous les éléments de $\overline{\mathcal{U}}$.

Le résultat est démontré par récurrence.

- \square 18 \mathcal{U}_1 est une algèbre de Lie de $M_n(\mathbb{C})$, résoluble de longueur $\mathfrak{p}-1$. Par hypothèse de récurrence, il existe alors une base (e_1,\ldots,e_n) de \mathbb{C}^n qui est une base de triangulation commune à tous les éléments de \mathcal{U}_1 . Mais alors, le vecteur e_1 est un vecteur propre de chaque $\overline{M}, M \in \mathcal{U}$.
- $\ \square$ 19 Notons $\mathcal F$ la famille génératrice de E fournie par l'énoncé.

Si $A \in \mathcal{U}$, alors $\overline{A}(X)$ et plus généralement $\overline{AA_1} \dots \overline{A_k}(X)$, $k \in \mathbb{N}^*$, $A_j \in \mathcal{U}$, sont des éléments de E. Ainsi, l'image par tout élément de \overline{U} des éléments de \mathcal{F} sont des éléments de E et donc E est stable par tous les éléments de \overline{U} .

 \mathcal{U} et \mathcal{U}_1 sont deux algèbres de Lie de $M_n(\mathbb{C})$ telles que

 $[\mathcal{U}] \subset \mathcal{U}_1 \subset \mathcal{U}$.

Puisque X est un vecteur propre de chaque \overline{M} , $M \in \mathcal{U}_1$, associé à la valeur propre $\lambda(M)$, on a déjà

$$\forall M \in \mathcal{U}_1, \ MX = \lambda(M)X,$$

et plus généralement, d'après le théorème 1, pour $A \in \mathcal{U}$, on a $\forall M \in \mathcal{U}_1$, $MAX = \lambda(M)AX$. Par suite, par récurrence sur k, tout élément de \mathcal{F} est soit nul soit un vecteur propre de chaque \overline{M} de \overline{U}_1 . Par linéarité, un élément de E est soit nul, soit un vecteur propre de chaque $\overline{M} \in \overline{U}_1$.

tout élément non nul de E est un vecteur propre commun à tous les endomorphismes de $\overline{\mathrm{U}_1}.$

 \square 20 - Soit $(M, M') \in \mathcal{U}^2$. Notons f l'endomorphisme $\overline{[M, M']_E}$ et posons $x_0 = X$. D'après la question 19 -, pour tout vecteur x de E, la famille (x, f(x)) est liée ou encore,

$$\forall x \in E \setminus \{0\}, \ \exists ! \lambda_x \in \mathbb{C} / \ f(x) = \lambda_x x.$$

Montrons que f est une homothétie. Soit $x \in E \setminus \{0\}$.

• Si (x, x_0) est libre, on a

$$\lambda_{x+x_0}x + \lambda_{x+x_0}x_0 = f(x+x_0) = f(x) + f(x_0) = \lambda_x x + \lambda_{x_0}x_0,$$

et par identification $\lambda_x = \lambda_{x+x_0} = \lambda_{x_0}$. Dans ce cas, on a $f(x) = \lambda_{x_0} x$.

• Si (x, x_0) est liée, posons $f(x) = \mu x_0$.

$$f(x) = \mu f(x_0) = \lambda_{x_0}(\mu x_0) = \lambda_{x_0} x.$$

Dans ce cas aussi, on a $f(x) = \lambda_{x_0} x$.

f est donc l'homothétie de rapport λ_{x_0} . Enfin, comme en I 6 -, la trace de $f = \overline{[M,M']_E}$ est nulle.

$$\forall (M,M') \in \mathcal{U}^2, \ \overline{[M,M']_E} \ \mathrm{est \ une \ homoth\'etie \ de \ trace \ nulle.}$$

□ 21 - Puisque E contient X, $E \neq \{0\}$. La seule homothétie de E de trace nulle est donc l'application nulle. On a donc montré que pour $(M, M') \in \mathcal{U}^2$, $\overline{[M, M']}_E = 0$ et donc, puisque E est stable par tous les éléments de E, $\overline{M}_E \overline{M'}_E = \overline{M'}_E \overline{M}_E$. Ainsi, $\{\overline{M}_E, M \in \mathcal{U}\}$ est une algèbre de LIE résoluble de longueur 1. D'après la question 17 -, il existe une base de E dans laquelle tous les \overline{M}_E , $M \in \mathcal{U}$ trigonalisent supérieurement.