Project 1[Detail is in the coding provided]

Problem 1:

- Step 1) Getting the Data
- Step 2) Using ADF (df['TMin'],autolag='AIC') to check whether the data, the seasonally lagged data and the data minus it's seasonally MA is stationary. All test statistic is below the thresholds, therefore minimum temperature series is stationary.
- Step 3) Considering "Global warming" and "Seasonality", I choose to use exponential smoothing methods to build our model instead of ARIMA.

model1 = ExponentialSmoothing(train['TMin'], trend="add", seasonal="add", damped=True, seasonal_periods=365)

Damped=True just because the model with damping seems to perform better.

Step 4) Using the predicted data and a 'for' loop to calculate payout, I have Expected Payout as 13186.81\$, and 99th percentile shortfall as 100000\$. Our pricing structure is

	TMin	payout
2015-12-01	38.775650	0.0
2015-12-02	35.926563	100000.0
2015-12-03	34.257054	100000.0
2015-12-04	35.151517	100000.0
2015-12-05	34.175969	100000.0

2016-02-25	27.182206	0.0
2016-02-26	27.560962	0.0
2016-02-27	28.267086	0.0
2016-02-28	25.680232	0.0
2016-02-29	27.561327	0.0

Problem 2:

- Step 1) Getting the data and splitting it into two data frames, spot price and temperature.
- Step 2) Repeating Step 2,3 from problem 1 for both TMax and TMin. Proven both series are stationary.

```
modelmin = ExponentialSmoothing(train['TMin'], trend="add", seasonal="add", damped=True,seasonal_periods=365)
modelmax= ExponentialSmoothing(train['TMax'], trend="add", seasonal="add", damped=True,seasonal_periods=365)
fitmin = modelmin.fit()
fitmax = modelmax.fit()
```


Step 3) Using Linear Regression model to predict the Spot price. Our test data range from 2013-10-24 to 2016-07-18.

structure:

Step 4) At the last, simply put the data into the formula, following is our pricing

	Month	TStrike	PStrike	Tavg	Pavg	Monthly Payout
0	2015-11	50	1.802	50.933333	6.478826	0.000000
1	2015-12	41	2.999	48.519939	6.557157	0.000000
2	2016-01	37	5.295	34.864947	7.008445	182914.835295
3	2016-02	38	5.134	38.031097	6.904917	0.000000
4	2016-03	48	2.525	46.807092	6.615283	243966.481753

Therefore, the expected five month payout is 85376.26\$, and the 99th percentile shortfall is 241524.42\$