SEQUENCE LISTING

<110> THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE LEE, Se-Jin ESQUELA, Aurora F.

<120> METHODS OF DETECTING LIVER CELLS EXPRESSING GROWTH DIFFERENTIATION '
FACTOR-12

- <130> JHU1220-4
- <140> US 09/361,655
- <141> 1999-07-27
- <150> US 08/765,662
- <151> 1997-04-28
- <150> PCT/ US95/08745
- <151> 1995-07-12
- <150> US 08/274,215
- <151> 1994-07-13
- <160> 14
- <170> PatentIn version 3.1
- <210> 1
- <211> 34
- <212> DNA
- <213> Artificial sequence
- <220>
- <223> PCR primer
- <220>
- <221> misc_feature
- <222> (12)..(12)
- <223> n = inosine
- <220>
- <221> misc_feature
- <222> (18)..(18)
- <223> n is any nucleotide
- <220>
- <221> misc_feature
- <222> (26)..(26)
- <223> n = inosine
- <220>
- <221> misc_feature
- <222> (29)..(29)
- <223> n = inosine
- <400> 1

ccggaattcg gntggmgnva tggrtnrtnt aycc

<210> 2

<211> 33

<212> DNA

```
<213> Artificial sequence
<220>
<223> PCR primer
<220>
<221> misc_feature
<222> (13)..(13)
<223> n = inosine
<220>
<221> misc feature
<222> (19)..(19)
<223> n = inosine
<220>
<221> misc_feature
<222> (22)..(22)
<223> n is any nucleotide
<220>
<221> misc feature
<222> (25)..(25)
<223> n = inosine
<220>
<221> misc_feature
<222> (28)..(28)
<223> n = inosine
<400> 2
ccggaattcr canscrcanc ynwcnacnry cat
<210> 3
<211> 33
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<220>
<221> misc_feature
<222> (13)..(13)
<223> n = inosine
<220>
<221> misc_feature
<222> (19)..(19)
<223> n = inosine
<220>
<221> misc_feature
<222> (22)..(22)
<223> n is any nucleotide
<220>
<221> misc_feature
<222> (25)..(25)
```

<223> n = inosine

```
<220>
<221> misc_feature
<222> (28)..(28)
<223> n = inosine
<400> 3
                                                                              33
ccggaattcr canscrcant snygnacnry cat
<210> 4
<211> 33
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<220>
<221> misc_feature
<222> (13)..(13)
<223> n = inosine
<220>
<221> misc_feature
<222> (19)..(19)
<223> n = inosine
<220>
<221> misc_feature
<222> (22)..(22)
<223> n is any nucleotide
<220>
<221> misc_feature
<222> (25)..(25)
<223> n = inosine
<220>
<221> misc feature
<222> (28)..(28)
\langle 223 \rangle n = inosine
<400> 4
                                                                               33
ccggaattcr canscrcant snwcnacnry cat
<210> 5
<211> 33
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<220>
<221> misc_feature
<222> (13)..(13)
<223> n = inosine
<220>
```

```
<221> misc_feature
<222> (19)..(19)
<223> n = inosine
<220>
<221> misc_feature
<222> (22)..(22)
<223> n is any nucleotide
<220>
<221> misc_feature
<222> (25)..(25)
<223> n = inosine
<220>
<221> misc_feature
<222> (28)..(28)
<223> n = inosine
<400> 5
                                                                              33
ccggaattcr canscrcant snbtnacnry cat
<210> 6
<211> 33
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<220>
<221> misc_feature
<222> (13)..(13)
<223> n = inosine
<220>
<221> misc_feature
<222> (19)..(19)
<223> n = inosine
<220>
<221> misc_feature
<222> (22)..(22)
<223> n is any nucleotide
<220>
<221> misc_feature
<222> (25)..(25)
\langle 223 \rangle n = inosine
<220>
<221> misc_feature
<222> (28)..(28)
<223> n = inosine
                                                                               33
ccggaattcr canscrcang mnygnacnry cat
```

<210> 7

```
<211> 33
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<220>
<221> misc_feature
<222> (13)..(13)
\langle 223 \rangle n = inosine
<220>
<221> misc_feature
<222> (19)..(19)
<223> n = inosine
<220>
<221> misc_feature
<222> (22)..(22)
<223> n is any nucleotide
<220>
<221> misc_feature
<222> (25)..(25)
<223> n = inosine
<220>
<221> misc_feature
<222> (28)..(28)
<223> n = inosine
<400> 7
ccggaattcr canscrcang mnwcnacnry cat
<210> 8
<211> 33
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<220>
<221> misc_feature
<222> (13)..(13)
<223> n = inosine
<220>
<221> misc_feature
<222> (19)..(19)
<223> n = inosine
<220>
<221> misc_feature
<222> (22)..(22)
<223> n is any nucleotide
<220>
<221> misc_feature
```

. . . .

```
<222> (25)..(25)
  <223> n = inosine
  <220>
  <221> misc_feature
  <222> (28)..(28)
  <223> n = inosine
  <400> 8
                                                                              33
  ccggaattcr canscrcanm gnygnacnry cat
  <210> 9
  <211> 33
  <212> DNA
  <213> Artificial sequence
  <220>
  <223> PCR primer
  <220>
  <221> misc_feature
<222> (13)..(13)
<223> n = inosine
  <220>
  <221> misc_feature
  <222> (19)..(19)
  <223> n = inosine
  <220>
  <221> misc_feature
  <222> (22)..(22)
  <223> n is any nucleotide
  <220>
  <221> misc_feature
  <222> (25)..(25)
  <223> n = inosine
  <220>
  <221> misc feature
  <222> (28)..(28)
  <223> n = inosine
  <400> 9
                                                                               33
  ccqqaattcr canscrcanm gnwcnacnry cat
  <210> 10
  <211> 33
  <212> DNA
  <213> Artificial sequence
  <220>
  <223> PCR primer
  <220>
  <221> misc_feature
<222> (13)..(13)
<223> n = inosine
```

```
<220>
<221>
     misc_feature
<222>
      (19)..(19)
<223> n = inosine
<220>
<221> misc feature
<222> (22)..(22)
<223> n is any nucleotide
<220>
<221> misc feature
<222> (25)..(25)
<223> n = inosine
<220>
<221>
       misc_feature
<222>
       (28)..(28)
<223>
       n = inosine
<400> 10
                                                                       33
ccggaattcr canscrcanm gnbtnacnry cat
<210>
       11
<211>
       360
<212>
      DNA
<213> Homo sapiens
<220>
      CDS
<221>
<222>
       (1)..(357)
<223>
<400> 11
cgg gcc agg agg agg acc ccc acc tgt gag cct gcg acc ccc tta tgt
                                                                       48
Arg Ala Arg Arg Arg Thr Pro Thr Cys Glu Pro Ala Thr Pro Leu Cys
                                                                       96
tgc agg cga gac cat tac gta gac ttc cag gaa ctg gga tgg cgg gac
Cys Arg Arg Asp His Tyr Val Asp Phe Gln Glu Leu Gly Trp Arg Asp
                                 25
            20
tgg ata ctg cag ccc gag ggg tac cag ctg aat tac tgc agt ggg cag
                                                                       144
Trp Ile Leu Gln Pro Glu Gly Tyr Gln Leu Asn Tyr Cys Ser Gly Gln
tgc cct ccc cac ctg gct ggc agc cca ggc att gct gcc tct ttc cat
                                                                       192
Cys Pro Pro His Leu Ala Gly Ser Pro Gly Ile Ala Ala Ser Phe His
                         55
    50
                                                                       240
tot goo gto tto ago oto oto aaa goo aac aat oot tgg oot goo agt
Ser Ala Val Phe Ser Leu Leu Lys Ala Asn Asn Pro Trp Pro Ala Ser
                                         75
65
                                                                       288
ace tee tgt tgt gte eet act gee ega agg eee ete tet ete ete tac
Thr Ser Cys Cys Val Pro Thr Ala Arg Arg Pro Leu Ser Leu Leu Tyr
                                                         95
                                     90
                85
ctg gat cat aat ggc aat gtg gtc aag acg gat gtg cca gat atg gtg
                                                                       336
```

. . .

Leu Asp His Asn Gly Asn Val Val Lys Thr Asp Val Pro Asp Met Val 100 105 360 gtg gag gcc tgt ggc tgc agc tag Val Glu Ala Cys Gly Cys Ser 115 <210> 12 <211> 119 <212> PRT <213> Homo sapiens <400> 12 Arg Ala Arg Arg Arg Thr Pro Thr Cys Glu Pro Ala Thr Pro Leu Cys 10 Cys Arg Arg Asp His Tyr Val Asp Phe Gln Glu Leu Gly Trp Arg Asp 25 Trp Ile Leu Gln Pro Glu Gly Tyr Gln Leu Asn Tyr Cys Ser Gly Gln 40 Cys Pro Pro His Leu Ala Gly Ser Pro Gly Ile Ala Ala Ser Phe His 50 Ser Ala Val Phe Ser Leu Leu Lys Ala Asn Asn Pro Trp Pro Ala Ser 70 65 Thr Ser Cys Cys Val Pro Thr Ala Arg Arg Pro Leu Ser Leu Leu Tyr 85 90 Leu Asp His Asn Gly Asn Val Val Lys Thr Asp Val Pro Asp Met Val 105 100 Val Glu Ala Cys Gly Cys Ser 115 <210> 13 <211> 2419 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (218)..(1267) <223> <400> 13 gagetgtgag ggtcaageae agetateeat cagatgatet aettteagee tteetgagte 60

ccagacaata gaagacaggt ggctgtaccc ttggccaagg gtaggtgtgg cagtggtgtc

tgctgtcact gtgccctcat tggcccccag caatcagact caacagacgg agcaactgcc	180
atccgaggct cctgaaccag ggccattcac caggagc atg cgg ctc cct gat gtc Met Arg Leu Pro Asp Val 1 5	235
cag ctc tgg ctg gtg ctg ctg tgg gca ctg gtg cga gca cag ggg aca Gln Leu Trp Leu Val Leu Leu Trp Ala Leu Val Arg Ala Gln Gly Thr 10 15 20	283
ggg tct gtg tgt ccc tcc tgt ggg ggc tcc aaa ctg gca ccc caa gca Gly Ser Val Cys Pro Ser Cys Gly Gly Ser Lys Leu Ala Pro Gln Ala 25 30 35	331
gaa cga gct ctg gtg ctg gag cta gcc aag cag caa atc ctg gat ggg Glu Arg Ala Leu Val Leu Glu Leu Ala Lys Gln Gln Ile Leu Asp Gly 40 45 50	379
ttg cac ctg acc agt cgt ccc aga ata act cat cct cca ccc cag gca Leu His Leu Thr Ser Arg Pro Arg Ile Thr His Pro Pro Pro Gln Ala 55 60 65 70	427
gcg ctg acc aga gcc ctc cgg aga cta cag cca ggg agt gtg gct cca Ala Leu Thr Arg Ala Leu Arg Arg Leu Gln Pro Gly Ser Val Ala Pro 75 80 85	475
ggg aat ggg gag gag gtc atc agc ttt gct act gtc aca gac tcc act Gly Asn Gly Glu Glu Val Ile Ser Phe Ala Thr Val Thr Asp Ser Thr 90 95 100	523
tca gcc tac agc tcc ctg ctc act ttt cac ctg tcc act cct cgg tcc Ser Ala Tyr Ser Ser Leu Leu Thr Phe His Leu Ser Thr Pro Arg Ser 105 110 115	571
cac cac ctg tac cat gcc cgc ctg tgg ctg cac gtg ctc ccc acc ctt His His Leu Tyr His Ala Arg Leu Trp Leu His Val Leu Pro Thr Leu 120 125 130	619
cct ggc act ctt tgc ttg agg atc ttc cga tgg gga cca agg agg agg Pro Gly Thr Leu Cys Leu Arg Ile Phe Arg Trp Gly Pro Arg Arg 135 140 145 150	667
cgc caa ggg tcc cgc act ctc ctg gct gag cac cac atc acc aac ctg Arg Gln Gly Ser Arg Thr Leu Leu Ala Glu His His Ile Thr Asn Leu 155 160 165	715
ggc tgg cat acc tta act ctg ccc tct agt ggc ttg agg ggt gag aag Gly Trp His Thr Leu Thr Leu Pro Ser Ser Gly Leu Arg Gly Glu Lys 170 175 180	763
tct ggt gtc ctg aaa ctg caa cta gac tgc aga ccc cta gaa ggc aac Ser Gly Val Leu Lys Leu Gln Leu Asp Cys Arg Pro Leu Glu Gly Asn 185 190 195	811
agc aca gtt act gga caa ccg agg cgg ctc ttg gac aca gca gga cac Ser Thr Val Thr Gly Gln Pro Arg Arg Leu Leu Asp Thr Ala Gly His 200 205 210	859
cag cag ccc ttc cta gag ctt aag atc cga gcc aat gag cct gga gca Gln Gln Pro Phe Leu Glu Leu Lys Ile Arg Ala Asn Glu Pro Gly Ala	907

215	220	225	2	230
ggc cgg gcc agg agg Gly Arg Ala Arg Arg 235	agg acc ccc a	acc tgt gag cc Thr Cys Glu Pro 240	t gcg acc ccc t o Ala Thr Pro I 245	ta 955 Leu
tgt tgc agg cga gac Cys Cys Arg Arg Asp 250	His Tyr Val A	gac ttc cag ga Asp Phe Gln Gl 255	a ctg gga tgg d u Leu Gly Trp <i>P</i> 260	egg 1003 Arg
gac tgg ata ctg cag Asp Trp Ile Leu Gln 265	ccc gag ggg t Pro Glu Gly 7 270	tac cag ctg aa Tyr Gln Leu As:	t tac tgc agt on Tyr Cys Ser (ggg 1051 Gly
cag tgc cct ccc cac Gln Cys Pro Pro His 280	ctg gct ggc a Leu Ala Gly S 285	agc cca ggc at Ser Pro Gly Il 29	e Ala Ala Ser I	tc 1099 Phe
cat tct gcc gtc ttc His Ser Ala Val Phe 295	agc ctc ctc a Ser Leu Leu 1 300	aaa gcc aac aa Lys Ala Asn As 305	n Pro Trp Pro A	gcc 1147 Ala 310
agt acc tcc tgt tgt Ser Thr Ser Cys Cys 315	gtc cct act of Val Pro Thr	gcc cga agg cc Ala Arg Arg Pr 320	c ctc tct ctc o To Leu Ser Leu 1 325	ctc 1195 Leu
tac ctg gat cat aat Tyr Leu Asp His Asn 330	Gly Asn Val	gtc aag acg ga Val Lys Thr As 335	at gtg cca gat a sp Val Pro Asp I 340	atg 1243 Met
gtg gtg gag gcc tgt Val Val Glu Ala Cys 345		tagcaagagg acc	tggggct ttggag	tgaa 1297
gagaccaaga tgaagttto	cc caggcacagg	gcatctgtga ct	ggaggcat cagat	tcctg 1357
atccacaccc caacccaac	ca accacctggc	aatatgactc ac	ettgacccc tatgg	gaccc 1417
aaatgggcac tttcttgto	ct gagactctgg	cttattccag gt	tggctgat gtgtt	gggag 1477
atgggtaaag cgtttctt	ct aaaggggtct	acccagaaag ca	atgatttcc tgccc	taagt 1537
cctgtgagaa gatgtcag	gg actagggagg	gagggaggga ag	ggcagagaa aaatt	actta 1597
gcctctccca agatgaga	aa gtcctcaagt	gaggggagga gg	gaagcagat agatg	gtcca 1657
gcaggcttga agcagggt	aa gcaggctggc	ccagggtaag gg	gctgttgag gtacc	ttaag 1717
ggaaggtcaa gagggaga	tg ggcaaggcgc	tgagggagga tg	gettagggg acccc	cagaa 1777
acaggagtca ggaaaatg	ag gcactaagcc	taagaagttc co	ctggttttt cccag	gggac 1837
aggacccact gggagaca	ag catttatact	ttctttcttc tt	ttttattt ttttg	agatc 1897
gagteteget etgteace	ag gctggagtgc	agtgacacga to	ettggetea etgea	acctc 1957
cgtctcctgg gttcaagt	ga ttcttctgcc	: tcagcctccc ga	agcagctgg gatta	caggc 2017
gcccactaat ttttgtat	tc ttagtagaaa	cgaggtttca ac	catgttggc cagga	tggtc 2077
tcaatctctt gacctctt	ga tccacccgac	ttggcctccc ga	aagtgatga gatta	taggc 2137

gtgagccacc gcgcctggct tatactttct taataaaaag gagaaagaaa atcaacaaat	2197
gtgagtcata aagaagggtt agggtgatgg tccagagcaa cagttcttca agtgtactct	2257
gtaggettet gggaggteee titteagggg tgteeacaaa gteaaageta titteataat	2317
aatactaaca tgttatttgc cttttgaatt ctcattatct taaaattgta ttgtggagtt	2377
ttccagaggc cgtgtgacat gtgattacat catctttctg ac	2419
<210> 14 <211> 350 <212> PRT <213> Homo sapiens	
<400> 14	
Met Arg Leu Pro Asp Val Gln Leu Trp Leu Val Leu Leu Trp Ala Leu 1 5 10 15	
Val Arg Ala Gln Gly Thr Gly Ser Val Cys Pro Ser Cys Gly Gly Ser 20 25 30	
Lys Leu Ala Pro Gln Ala Glu Arg Ala Leu Val Leu Glu Leu Ala Lys 35 40 45	
Gln Gln Ile Leu Asp Gly Leu His Leu Thr Ser Arg Pro Arg Ile Thr 50 55 60	
His Pro Pro Pro Gln Ala Ala Leu Thr Arg Ala Leu Arg Arg Leu Gln 65 70 75 80	
Pro Gly Ser Val Ala Pro Gly Asn Gly Glu Glu Val Ile Ser Phe Ala 85 90 95	
Thr Val Thr Asp Ser Thr Ser Ala Tyr Ser Ser Leu Leu Thr Phe His 100 105 110	
Leu Ser Thr Pro Arg Ser His His Leu Tyr His Ala Arg Leu Trp Leu 115 120 125	
His Val Leu Pro Thr Leu Pro Gly Thr Leu Cys Leu Arg Ile Phe Arg 130 135 140	
Trp Gly Pro Arg Arg Arg Gln Gly Ser Arg Thr Leu Leu Ala Glu 145 150 155 160	
His His Ile Thr Asn Leu Gly Trp His Thr Leu Thr Leu Pro Ser Ser 165 170 175	

Gly Leu Arg Gly Glu Lys Ser Gly Val Leu Lys Leu Gln Leu Asp Cys 180 185 190

. . . .

Arg Pro Leu Glu Gly Asn Ser Thr Val Thr Gly Gln Pro Arg Arg Leu 195 200 205

Leu Asp Thr Ala Gly His Gln Gln Pro Phe Leu Glu Leu Lys Ile Arg 210 215 220

Ala Asn Glu Pro Gly Ala Gly Arg Ala Arg Arg Arg Thr Pro Thr Cys 225 230 235 240

Glu Pro Ala Thr Pro Leu Cys Cys Arg Arg Asp His Tyr Val Asp Phe 245 250 255

Gln Glu Leu Gly Trp Arg Asp Trp Ile Leu Gln Pro Glu Gly Tyr Gln 260 265 270

Leu Asn Tyr Cys Ser Gly Gln Cys Pro Pro His Leu Ala Gly Ser Pro 275 280 285

Gly Ile Ala Ala Ser Phe His Ser Ala Val Phe Ser Leu Leu Lys Ala 290 295 300

Asn Asn Pro Trp Pro Ala Ser Thr Ser Cys Cys Val Pro Thr Ala Arg 305 310 315 320

Arg Pro Leu Ser Leu Leu Tyr Leu Asp His Asn Gly Asn Val Val Lys 325 330 335

Thr Asp Val Pro Asp Met Val Val Glu Ala Cys Gly Cys Ser 340 345 350