Docket No.: 83180US1

AMENDMENTS TO THE CLAIMS

(currently amended) An automatic gain control radio frequency
 (RF) signal processor, comprising:

an attenuator having an input for receiving an analog RF input signal, an output for applying an attenuated output signal, and a variable gain control input;

an amplifier having an input coupled to the attenuator output and an output;

a bandpass filter having an input coupled to the amplifier output and an output;

a single analog to digital (ADC) having an input coupled to the bandpass filter output and an output for providing a digitized ADC signal;

a digital logic circuit having an Input for receiving the ADC signal, a first output coupled to the variable gain control input of said attenuator, and a second output, said digital logic circuit including signal detection logic for detecting the presence of a pulse within the ADC signal, determining a peak amplitude value of the pulse, and based on the peak

Docket No.: 83180US1

amplitude value generating an attenuation value at said first output that is applied to the variable gain control input of said attenuator; and

a first in [[firslt]] <u>first</u> out (FIFO) buffer having an input coupled to the second digital logic circuit output and an output for producing an attenuated, gain controlled, digitized output.

- 2. (previously presented) A processor as in claim 1, wherein the RF and the processor as in claim 1, which is the processor as in clai
- 3. (original) A processor as in claim 1, wherein the signal detection logic comprises:

a threshold logic for detecting the presence of a pulse within the ADC signal; and

a control logic for generating said attenuation value and for controlling a flow of data into the FIFO.

Application No. 10/077,730

Amendment dated March 13, 2006

Reply to Office Action of June 1, 2005

4. (previously presented) A processor as in claim 3, wherein the RF input signal is an intermediate frequency (IF) signal.

5. (original) A processor as in claim 1, wherein the digital logic circuit further comprises a digital delay at said second digital logic circuit output.

6. (original) A processor as in claim 5, wherein the signal detection is a particular to the signal detection in the signal detection is a particular to the signal detection in the signal detection is a signal detection in the signal detection in the signal detection is a signal detection in the signal detection in the signal detection is a signal detection in the signal detection in the signal detection is a signal detection in the signal detection in the signal detection is a signal detection in the signal detection in the signal detection is a signal detection in the signal detection in the signal detection is a signal detection in the signal detection in the signal detection is a signal detection in the signal detection in the signal detection in the signal detection is a signal detection in the signal detection in the signal detection in the signal detection is a signal detection in the signal detect

a threshold logic for detecting the presence of a pulse within the ADC signal; and

a control logic for generating said attenuation value and for controlling a flow of data into the FIFO.

7. (original) A processor as in claim 6, wherein the RF input signal is an IF signal.

the FIFO.

Application No. 10/077,730

Amendment dated March 13, 2006

Reply to Office Action of June 1, 2005

- 8. (original) A processor as in claim 1, wherein the signal detection logic includes storing a desired number of samples before the RF signal is detected and a desired number of samples after the RF signal is stored in
- 9. (original) A processor as in claim 1, wherein a final data sample associated with the RF signal includes a unique bit pattern recognized by the FIFO.

10-11 (canceled)

.

- 12. (currently amended) A method as in claim 10, further comprising the step of A method of processing an radio frequency (RF) Input signal, comprising the steps of:
- (a) receiving an RF signal;
- (b) inputting the RF signal to an attenuator to produce an attenuator output;

- Docket No.: 83180US1
- (c) applying the attenuator output to an amplifier while controlling a variable gain in the attenuator to produce a controlled amplified output;
- (d) passing the amplified output through a bandpass filter to produce a filtered RF output;
- (e) applying the filtered RF output to an analog to digital (ADC) to produce a digitized output signal;
- (f) applying the digitized output signal to a signal detection logic to the large transfer of the section logic to the large transfer of the large transfe
- (g) repeating steps (a) (f) for each of a plurality of ADC data samples;
- (h) establishing a threshold for detecting the presence of a pulse within the plurality of ADC data samples;
- (i) applying the delayed output signal to a buffer to produce a buffered signal output;
- () controlling a flow of data into the buffer; and
- (k) applying the attenuation value to the attenuator to establish an updated attenuation gain value.

Application No. 10/077,730

Amendment dated March 13, 2006

Reply to Office Action of June 1, 2005

- 13. (currently amended) A method as in claim 10, further comprising the step of A method of processing an radio frequency (RF) input
- (a) receiving an RF signal;

signal, comprising the steps of:

- (b) inputting the RF signal to an attenuator to produce an attenuator output:
- variable gain in the attenuator to produce a controlled amplified output; as wide pair in the attenuator to produce a controlled amplified output;
- (d) passing the amplified output through a bandpass filter to produce a filtered RF output;
- (e) applying the filtered RF output to an analog to digital (ADC) to produce a digitized output signal;
- (f) applying the digitized output signal to a signal detection logic to determine an attenuation value and to produce a delayed output signal;
- (g) repeating steps (a) (f) for each of a plurality of ADC data samples;

- Docket No.: 83180US1
- (h) establishing a threshold for detecting the presence of a pulse within the plurality of ADC data samples;
- () averaging a number of data samples from the ADC to determine a moving average pulse amplitude:
- (j) applying the delayed output signal to a buffer to produce a buffered signal output; and
- (b) applying the attenuation value to the attenuator to establish an updated attenuation gain value:
 - 14. (original) A method as In claim 13, further comprising the step of comparing the moving average pulse amplitude to a processing threshold value.
 - 15. (original) A method as in claim 14, further comprising repeating for a number n samples the steps of averaging a number of data samples from the ADC and comparing the moving average pulse amplitude to a

Docket No.: 83180US1

processing threshold value to determine whether an assigned number m of the n averages are above the processing threshold value.

16. (original) A method as in claim 15, further comprising the step of signifying the end of the pulse when an assigned number i out of j averages are below the processing threshold value.

17. (original) A method as in claim 16, wherein the moving average is computed using four data samples.

18. (original) A method as in claim 16, wherein the end of pulse is signified when i of j averages are below a noise threshold value.

19-20. (canceled)

Application No. 10/077,730

Amendment dated March 13, 2006

Reply to Office Action of June 1, 2005

21. (currently amended) A processor as in claim 20, wherein the signal detection logic comprises An automatic gain control radio frequency (RF) signal processor, comprising: an attenuator having an input for receiving an analog RF input signal, an output for applying an attenuated output signal, and a variable gain control input; an amplifier having an input coupled to the attenuator output and an output; a bandpass filter having an input coupled to the amplifier output and an output; a single analog to digital (ADC) having an input coupled to the bandpass filter output and an output for providing a digitized ADC signal; a first in firsit out (FIFO) buffer having an input and an output for producing an attenuated, gain control, digitized output; and a digital logic circuit having an input for receiving the ADC signal, a first output coupled to the variable gain control input of said attenuator, and a second output coupled to the buffer input, said digital logic circuit including signal detection logic, and said signal detection logic comprising:

Docket No.: 83180US1

•

a field programmable gate array including a threshold logic for detecting the presence of a pulse within the ADC signal; and

a control logic for determining a peak amplitude value of the pulse, and based on the peak amplitude value generating an attenuation value at said first output that is applied to the variable gain control input of said attenuator, said control logic further controlling a flow of data into the buffer.

22. (currently amended) A processor as in claim 19, wherein An automatic gain control radio frequency (RF) signal processor, comprising:

an attenuator having an input for receiving an analog RF input signal, an output for applying an attenuated output signal, and a variable gain control input;

an amplifier having an input coupled to the attenuator output and an output;

a bandpass filter having an input coupled to the amplifier output and an output;

Docket No.: 83180US1

a single analog to digital (ADC) having an input coupled to the

bandpass filter output and an output for providing a digitized ADC signal;

a first in first out (FIFO) buffer having an input and an output for

producing an attenuated, gain control, digitized output; and

a digital logic circuit having an input for receiving the ADC signal, a first

output coupled to the variable gain control input of said attenuator, and a

second output coupled to the buffer input, said digital logic circuit including

signal detection logic, and said signal detection logic comprising:

a threshold logic for detecting the presence of a pulse within the ADC

signal; and

a control logic for determining a peak amplitude value of the pulse, and based on the peak amplitude value generating an attenuation value at said first output that is applied to the variable gain control input of said attenuator, wherein the control logic utilizes stored peak amplitude values of one or more previously detected pulses in order to better predict the required attenuation value, said control logic further controlling a flow of data into the buffer.

Docket No.: 83180US1

23-25 (canceled)

26. (new) A processor as in claim 21, wherein the RF input signal is an intermediate frequency (IF) signal.