24 leb 23					
Friday					
	K-Nearest Neighbours (KNN)				
	L> Type: Supervised Learning Algorithm → finding relationship b/W				
	L> Type: Supervised Learning Algorithm → finding relationship b/W Task: Classification 4 Regression The 4 0/P				
	Problem Statement -> (riven a datapoint of Height & Weight, predict the Grender.				
eg					
	I/P Mr model - Gerder				
-					
	H w G Classification or Regression				
	150 45 F (1) Distance based Approach -> KNN				
	30 80 M 2 Boundary " > linear Reg, logistic Reg, SVI	M			
	5 50 F	ン 			
	190 75 M 3 Rule " > Decision Tree				
	190 75 M (3) Rule " > Decision Tree (4) Probabilistic " > Naive Bayes				
grput → H,					
Output > G	Ensemble "				
	(5) Ensemble ~ " (6) Deep learning ~ "				
Q	Is the data available? -> yes				
Q	Does the data have 'y'? -> yes				
	Now Algo which can be used				
	Evaluation Metrics Ly Accuracy, precision, F1 score, confusion matrix. etc.				
	W 1 - male				
	H W G7 Visualizat Nisualizat				
	189 80 M				
of rows datapo	145 50 F				
of toms 1	190 75 M Matrix				

	Schection (rieteria for Product" ML model			
	L> Model train time			
	→ model prediction time			
	Ly Model Size			
g	model			
$\overline{\Omega}$				
	$X-train, y-train \longrightarrow \overline{KNN} \longrightarrow M_1$ $X-test \longrightarrow M_1 \longrightarrow y-test-pred$			
	y_test, y_test_pred → Eval) -> score			
	1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1			
(2)	X-train, y-train - legistic -> M2 Reg			
	$X-\text{test} \longrightarrow M_2 \longrightarrow y-\text{test-pred}$			
	· · · · · · · · · · · · · · · · · · ·			
	y-test, y-test-pred -> [Eval] -> Score			
	Now for the same data both the models give a score of 98%. Then how to choose?			
	M, M ₂			
	Train time 0.000001 sec 5 hr			
	Test time 1 hr. 0.00000 sec			
	Size 100 GB 168			
	Cost per pred, RS1 RS1000			
	Now to choose a model you need to understand the targeted user base behaviour:			
	4 A daily internet user would expect faster output and the model would have			
	to be light weight. => M2 will be chosen			
	4> If the user base being targeted don't care about the execution time but			
	want less cost per prediction			
	=> M1 will be chosen.			
4				
	Whenever me models are deployed, there will always be tradeoffs but we need			
	to select the model based on tradeoffs that prove to be the best jit/benificial to			

27 feb 2023 Monday			
	# KNN Reg	ression # Type -> Supervised Learning	
	V	Task > Regression	
	$D_n = \{(x_i, y_i) x_i \in \mathbb{R}^{d-1}, y_i \in \mathbb{R}^{d}\}$		
	Classification	Regression	
Problem State	ment: Given the height I weight of	Problem Statement: Given the height of an individual,	
an individu	al predict the gender of the individual	predict the weight of an individual.	
Target (y)	→ Grender	Target (y) -> Weight	
Input >	Meight & Weight	Input -> Height	
<u>Data</u> →	Height Weight Grender X Y	Data > Height Weight 12d	
$\mathcal{D}_{n} = \left\{ (x_{i}) \right\}$	$\exists i) \mathcal{X}_i \in \mathbb{R}^{d-1}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Dn = {(Ni, yi) Ni e Rd-1, yi e R} Target -> Real Value Continuous Value Regression	
	-> female -> Mall	(One dimensional Representation)	
) I	Now, we try to visualize it in 2 dimensions	
Steps:	ecide the value of K.	•	
	mpute the distance of ng from each	, , , , , , , , , , , , , , , , , , ,	
	tapoint in the dataset	19 Line and the nearest	
(C) (he	+ K- nearnest neighbours -> Sort & slice	We can take any of the nearest neighbors and come to an aggregate value.	

