NLP Programming Assignment 3

Name: Priyank Devpura UIN: 225002461

Run command: Viterbi.py probs.txt sents.txt

The viterbi.py takes 2 inputs: probs.txt and sents.txt from command line

Results and Analysis:

Analysis:

- The Viterbi algorithm is dependent on the probability provided for the words. The probability provided for the testcase is pretty good.
- From the results we can see that the predicted tags for the sentence are accurate. For eg. Mark bears fish. Mark is noun, bears is a word and fish is a noun. These tags are also predicted from the Viterbi algorithm.
- Some of the probabilities in the Viterbi DP table is zero as for a big sentence, we keep on multiplying with smaller probability values and since it's only up to 10 decimal digits so it turns out to be zero.
- The Best sequence probability is calculated by taking 'fin' into account.

Following are the results:

PROCESSING SENTENCE: bears fish

FINAL VITERBI NETWORK

P(bears = noun)= 0.0160000000
P(bears = verb)= 0.0020000000
P(bears = inf)= 0.0000000100
P(bears = prep)= 0.0000000100
P(fish = noun)= 0.0001232000
P(fish = verb)= 0.0007280000
P(fish = inf)= 0.0000000440
P(fish = prep)= 0.00000004800

FINAL BACKPTR

Backptr(fish = noun)= verb Backptr(fish = verb)= noun Backptr(fish = inf)= verb Backptr(fish = prep)= noun

BEST TAG SEQUENCE HAS PROBABILITY = 0.0003640000 fish -> verh

bears -> noun

FORWARD ALGORITHM RESULTS

P(bears = noun)= 0.0160000000
P(bears = verb)= 0.0020000000
P(bears = inf)= 0.0000000100
P(bears = prep)= 0.0000000100
P(fish = noun)= 0.0001233287
P(fish = verb)= 0.0007280145
P(fish = inf)= 0.0000000442

PROCESSING SENTENCE: mark has fish

FINAL VITERBI NETWORK

P(mark = noun)= 0.0720000000

P(mark = verb)= 0.0060000000

P(mark = inf) = 0.0000000100

P(mark = prep)= 0.000000100

P(has = noun)= 0.0000004620

P(has = verb)= 0.0014040000

P(has = inf)= 0.0000001320

P(has = prep)= 0.0000021600

P(fish = noun)= 0.0000864864

P(fish = verb)= 0.000000210

P(fish = inf) = 0.0000000309

P(fish = prep)= 0.0000000351

FINAL BACKPTR

Backptr(has = noun)= verb

Backptr(has = verb)= noun

Backptr(has = inf)= verb

Backptr(has = prep)= noun

Backptr(fish = noun)= verb

Backptr(fish = verb)= noun

Backptr(fish = inf)= verb

Backptr(fish = prep)= verb

BEST TAG SEQUENCE HAS PROBABILITY = 0.0000432432

fish -> noun

has -> verb

mark -> noun

FORWARD ALGORITHM RESULTS

P(mark = noun)= 0.0720000000

P(mark = verb)= 0.0060000000

P(mark = inf)= 0.000000100

P(mark = prep)= 0.000000100

P(has = noun)= 0.0000004627

P(has = verb)= 0.0014040182

P(has = inf)= 0.0000001327

P(has = prep)= 0.0000023100

P(fish = noun)= 0.0000866446 P(fish = verb)= 0.0000000379

P(fish = inf)= 0.000000309

P(fish = prep)= 0.000000351

PROCESSING SENTENCE: mark bears fish

FINAL VITERBI NETWORK

P(mark = noun)= 0.0720000000

P(mark = verb)= 0.0060000000

P(mark = inf) = 0.0000000100

P(mark = prep)= 0.000000100

P(bears = noun)= 0.0000924000

```
P( bears = verb )= 0.0009360000
```

P(bears = inf)= 0.0000001320

P(bears = prep)= 0.0000021600

P(fish = noun)= 0.0000576576

P(fish = verb)= 0.0000042042

P(fish = inf)= 0.000000206

P(fish = prep)= 0.0000000234

FINAL BACKPTR

Backptr(bears = noun)= verb

Backptr(bears = verb)= noun

Backptr(bears = inf)= verb

Backptr(bears = prep)= noun

Backptr(fish = noun)= verb

Backptr(fish = verb)= noun

Backptr(fish = inf)= verb

Backptr(fish = prep)= verb

BEST TAG SEQUENCE HAS PROBABILITY = 0.0000288288

fish -> noun

bears -> verb

mark -> noun

FORWARD ALGORITHM RESULTS

P(mark = noun)= 0.0720000000

P(mark = verb)= 0.0060000000

P(mark = inf)= 0.000000100

P(mark = prep)= 0.000000100

P(bears = noun)= 0.0000925442

P(bears = verb)= 0.0009360122

P(bears = inf)= 0.000001327

P(bears = prep)= 0.0000023100

P(fish = noun)= 0.0000578162

P(fish = verb)= 0.0000042243

P(fish = inf)= 0.0000000206 P(fish = prep)= 0.0000000262

PROCESSING SENTENCE: mark likes to fish for fish

FINAL VITERBI NETWORK

P(mark = noun)= 0.0720000000

P(mark = verb)= 0.0060000000

P(mark = inf)= 0.000000100

P(mark = prep)= 0.000000100

P(likes = noun)= 0.000004620

P(likes = verb)= 0.0000046800

P(likes = inf)= 0.000001320

P(likes = prep)= 0.0000021600

P(to = noun)= 0.0000000004

P(to = verb)= 0.0000000000

P(to = inf)= 0.0000010193

P(to = prep)= 0.000003861

P(fish = noun)= 0.0000000263

P(fish = verb)= 0.000000535

P(fish = inf) = 0.0000000000

P(fish = prep)= 0.0000000000

P(for = noun)= 0.0000000000

P(for = verb)= 0.0000000000

P(for = inf) = 0.0000000000

P(for = prep)= 0.000000031

P(fish = noun)= 0.000000002

P(fish = verb)= 0.000000000

P(fish = inf) = 0.00000000000

P(fish = prep)= 0.0000000000

FINAL BACKPTR

Backptr(likes = noun)= verb

Backptr(likes = verb)= noun

Backptr(likes = inf)= verb

Backptr(likes = prep)= noun

Backptr(to = noun)= verb

Backptr(to = verb)= noun

Backptr(to = inf)= verb

Backptr(to = prep)= verb

Backptr(fish = noun)= prep

Backptr(fish = verb)= inf

Backptr(fish = inf)= inf

Backptr(fish = prep)= noun

Backptr(for = noun)= verb

Backptr(for = verb)= noun

Backptr(for = inf)= verb

Backptr(for = prep)= verb

Backptr(fish = noun)= prep

Backptr(fish = verb)= noun

Backptr(fish = inf)= verb

Backptr(fish = prep)= noun

BEST TAG SEQUENCE HAS PROBABILITY = 0.0000000001

fish -> noun

for -> prep

fish -> verb

to -> inf

likes -> verb

mark -> noun

FORWARD ALGORITHM RESULTS

P(mark = noun)= 0.0720000000

P(mark = verb)= 0.0060000000

P(mark = inf)= 0.000000100

P(mark = prep)= 0.000000100

P(likes = noun)= 0.0000004627

P(likes = verb)= 0.0000046801

P(likes = inf)= 0.000001327

P(likes = prep)= 0.0000023100

P(to = noun)= 0.000000006

P(to = verb)= 0.0000000000

P(to = inf)= 0.0000010196

P(to = prep)= 0.0000004320

P(fish = noun)= 0.000000294

P(fish = verb)= 0.000000536

P(fish = inf)= 0.0000000000

P(fish = prep)= 0.0000000000

P(for = noun)= 0.00000000000
P(for = verb)= 0.0000000000
P(for = inf)= 0.0000000000
P(for = prep)= 0.00000000051
P(fish = noun)= 0.0000000000
P(fish = verb)= 0.0000000000
P(fish = inf)= 0.0000000000
P(fish = prep)= 0.00000000000

Limitations:

• It is dependent on the probability of the words with tags. If these are not accurate, then Viterbi will give incorrect results.