A Very Brief Linear Algebra Review

ME599-004: Data-Driven Methods for Control Systems, Winter 2024

1 Vector Space

A vector space (V, F) is a set of vectors V and a field of scalars F, along with two operations: vector addition (+) and scalar multiplication (\cdot) ; such that

Addition $(+): V \times V \to V: (x,y) \mapsto x+y$

- (i) associative $(x + y) + z = x + (y + z) \quad \forall x, y, z \in V$.
- (ii) commutative x + y = y + x.
- (iii) \exists additive identity $0 \in V$ such that x + 0 = 0 + x = x.
- (iv) \exists additive inverse, i.e., $\forall x \in V, \exists (-x) \text{ such that } x + (-x) = 0$

Scalar Multiplication $(\cdot): F \times V \to V: (\alpha, x) \mapsto \alpha x$

- (v) (v) $(\alpha\beta) \cdot x = \alpha \cdot (\beta \cdot x) \quad \forall x \in V, \quad \forall \alpha, \beta \in F.$
- (v) $1 \cdot x = x$, where 1 is the multiplicative identity for the field F.
- (v) $0 \cdot x = 0$, where 0 is the additive identity for the field F.
- (v) distributive (1) $\forall x \in V, \forall \alpha, \beta \in F(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$.
- (v) distributive (2) $\forall x, y \in V, \forall \alpha \in F\alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$.

Let (V, F) be a linear space (vector space) and $W \subset V$. Then, (W, F) is called a subspace of (V, F) if (W, F) itself is a vector space (with the same inherited operations).

2 Linear Independence

Suppose (V, F) is a linear space. The set of vectors $\{v_1, v_2, \dots, v_p\}$ is said to be linearly independent iff $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_p v_p = 0 \Leftrightarrow \alpha_1 = \alpha_2 = \dots = \alpha_p = 0$. Conversely, the set of vectors is said to linearly dependent iff \exists scalars $\alpha_1, \alpha_2, \dots \alpha_p$ not all zero, such that, $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_p v_p = 0$.

3 Basis

Suppose (V, F) is a linear space. Then a set of vectors $B = \{b_1, b_2, \dots b_n\}$ is called a basis if $\{b_1, b_2, \dots b_n\}$ spans V; and $\{b_1, b_2, \dots b_n\}$ is a linearly independent set.

4 Linear Map/Operator

Let (V, F) and (W, F) be linear spaces over the same field F. Let \mathscr{A} be a map from V to W, i.e. $\mathscr{A}: V \to W$ such that $\mathscr{A}(v) = w$. \mathscr{A} is said to be a linear map (or a linear operator) iff $\mathscr{A}(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 \mathscr{A}(v_1) + \alpha_2 \mathscr{A}(v_2) \quad \forall v_1, v_2 \in V \text{ and } \alpha_1, \alpha_2 \in F$

4.1 Matrices as Linear Operators

Consider a matrix $A \in \mathbb{R}^{n \times m}$ and a vector x in \mathbb{R}^m

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_m \end{bmatrix}, \quad \mathbf{a}_i \in \mathbb{R}^n \quad \text{and} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

We can interpret matrix multiplication in many ways.

- 1. $\mathbf{y} = A\mathbf{x}$ is the linear combination of the colums of A, i.e. \mathbf{a}_i , with weights corresponding to x_i , i.e. $\mathbf{y} = \sum_{i=1}^m x_i \mathbf{a}_i$.
- 2. $\mathbf{y} = A\mathbf{x}$ can also be thought of as a stack of inner products of the rows of A, namely \mathbf{r}_j^T , with \mathbf{x} . Therefore $y_j = \mathbf{r}_j^T \mathbf{x}$.
- 3. A is a linear map from one finite (m) dimensional vector space to another finite (n) dimensional vector space.

5 Range Space and Null Space

Given a linear operator $\mathscr{A}:U\to V,$ define the range space (or image) of \mathscr{A} to be the subspace

$$\mathscr{R}(\mathscr{A}) := \{ v \mid v = \mathscr{A}(u), u \in U \}$$

We define the null space (or kernel) of \mathscr{A} to be the subspace

$$\mathscr{N}(\mathscr{A}) := \{ u \mid \mathscr{A}(u) = 0_V, u \in U \}$$

6 Norms and Normed Vector Spaces

Let F be a field (either \mathbb{R} or \mathbb{C}). A normed vector space is a pair $(V, \|\cdot\|)$ where V is a vector space over F and $\|\cdot\|: V \to \mathbb{R}$ is a function such that

- 1. $||v|| \ge 0$ for all $v \in V$ and ||v|| = 0 if and only if v = 0 in V (positive definiteness)
- 2. $\|\lambda v\| = |\lambda| \|v\|$ for all $v \in V$ and all $\lambda \in F$ (homogeneity)
- 3. $||v+w|| \le ||v|| + ||w||$ for all $v, w \in V$ (the triangle inequality)

The function $\|\cdot\|$ is called a norm on V.

7 Eigenspace

Given a square matrix $A \in \mathbb{R}^{n \times n}$, an eigenvalue $\lambda_i \in \mathbb{C}$ and the corresponding eigenvector(s) v_i are such that

$$Av_i = \lambda_i v_i$$

The eigenvalues of a matrix can be determined by solving

$$\det\left(\lambda I_n - A\right) = 0$$

The polynomial $[\det(\lambda I_n - A)]$ is called the characteristic polynomial. The equation $\det(\lambda I_n - A) = 0$ is called the characteristic equation.

Eigenspace: Once the eigenvalue(s) λ_i have been found, we find eigenvectors v_i such that $(\lambda_i I - A) v_i = 0$. Thus, the eigenvectors are elements of the subspace $\mathcal{N}(\lambda_i I - A)$; this is called the eigenspace corresponding to λ_i .