SureStep® Stepping Motors

SureStep Series Part	Numbers	- Connectorized	l Bipolar Step _l	ping Motors*
Bipolar Stepping Motors	Price	Shaft Type	Torque Level	Encoder Mounting
STP-MTRL-14026	\$22.50	single		not available
STP-MTRL-14026D	\$27.00	dual		optional
STP-MTRL-14026E**	\$97.00	dual	low	pre-installed
STP-MTRL-14034	\$28.50	single	IOW	not available
STP-MTRL-14034D	\$32.50	dual		optional
STP-MTRL-14034E**	\$101.00	dual		pre-installed
STP-MTR-17040	\$19.00	single		not available
STP-MTR-17040D	\$23.00	dual		optional
STP-MTR-17040E**	\$92.00	dual		pre-installed
STP-MTR-17040W***	\$132.00	single		not available
STP-MTR-17048	\$23.00	single		not available
STP-MTR-17048D	\$27.50	dual		optional
STP-MTR-17048E**	\$97.00	dual		pre-installed
STP-MTR-17048W***	\$135.00	single		not available
STP-MTR-17060	\$37.50	single		not available
STP-MTR-17060D	\$42.00	dual		optional
STP-MTR-17060E**	\$111.00	dual		pre-installed
STP-MTR-17060W ***	\$175.00	single	high	not available
STP-MTR-23055	\$37.50	single		not available
STP-MTR-23055D	\$42.50	dual		optional
STP-MTR-23055E**	\$112.00	dual		pre-installed
STP-MTR-23055W ***	\$163.00	single		not available
STP-MTR-23079	\$49.00	single		not available
STP-MTR-23079D	\$54.00	dual		optional
STP-MTR-23079E**	\$123.00	dual		pre-installed
STP-MTR-23079W ***	\$177.00	single		not available
STP-MTR-34066	\$116.00	single		not available
STP-MTR-34066D	\$132.00	dual		not available
STP-MTR-34066W ***	\$211.00	single		not available
STP-MTRH-23079	\$55.00	single		not available
STP-MTRH-23079D	\$59.00	dual		optional
STP-MTRH-23079E **	\$129.00	dual		pre-installed
STP-MTRH-23079W ***	\$263.00	single		not available
STP-MTRH-34066	\$130.00	single		not available
STP-MTRH-34066D	\$145.00	dual		not available
STP-MTRH-34066W ***	\$299.00	single	higher	not available
STP-MTRH-34097	\$147.00	single		not available
STP-MTRH-34097D	\$162.00	dual		not available
STP-MTRH-34097W ***	\$335.00	single		not available
STP-MTRH-34127	\$174.00	single		not available
STP-MTRH-34127D	\$191.00	dual		not available
STP-MTRH-34127W ***	\$366.00	single		not available
Motors listing continued on next p	age			

- * For integrated motor/drives part numbers and pricing, see the integrated motor/drives section.
- ** E model motors come with a STP-MTRA-ENC9 encoder pre-installed. Requires STP-CBL-EBxx for encoder wiring. To change from the default 400ppr, use STP-USBENC-CBL-1. See the SureStep Stepping System Encoders section for more details.
- *** W models are IP65 washdown rated. All others are IP40.

STP-MTR-xxxxx (single-shaft)

STP-MTR-xxxxxE (encoder mount)

STP-MTR-xxxxxD (dual-shaft)

STP-MTR-xxxxxW (IP65)

tMNC-19 Motion Control 1 - 8 0 0 - 6 3 3 - 0 4 0 5

SureStep® Stepping Motors

SureStep Series Part I	lumbers -	- Non-connectori	zed Bipolar St	epping Motors							
Bipolar Stepping Motors	Price	Shaft Type	Torque Level	Encoder Mounting							
Motors listing continued from previous page											
STP-MTRAC-23044	\$57.00	single		not available							
STP-MTRAC-23044D	\$58.00	dual		optional							
STP-MTRAC-23055	\$63.00	single		not available							
STP-MTRAC-23055D	\$64.00	dual		optional							
STP-MTRAC-23078	\$88.00	single		not available							
STP-MTRAC-23078D	\$89.00	dual	High voltage	optional							
STP-MTRAC-34075	\$235.00	single	High torque	not available							
STP-MTRAC-34075D	\$236.00	dual		optional							
STP-MTRAC-34115	\$245.00	single		not available							
STP-MTRAC-34115D	\$246.00	dual		optional							
STP-MTRAC-34156	\$265.00	single		not available							
STP-MTRAC-34156D	\$265.00	dual		optional							

NOTE: STP-MTRAC-34156(x) motors have a 5/8" front shaft

STP-MTRAC-xxxxx (single-shaft)

SureStep® Stepping Motors Mounting Accessory

	Mounting Accessory – for NEMA 17 SureStep Series Bipolar Stepping Motors							
Part Number	Price	Description						
STP-MTRA-RB-85	\$8.50	Reducer bushing, 8mm OD to 5mm ID, 16mm length, aluminum alloy. Connects NEMA size 17 stepper motors to Koyo TRD-NH and TRD-SH hollow shaft encoders.						

tMNC-20 Motion Control 1 - 8 0 0 - 6 3 3 - 0 4 0 5

SureStep® Stepping Motors

	SureSto	ep Serie	s Speci	fication	ıs – Con	nectori	zed Bip	olar Ste	epping N	lotors			
			oltage orque				oltage					oltage	
Ripolar Stepping Motors		STP-MTRL-14026(x)	STP-MTRL-14034(x)	STP-MTR-17040(x)	STP-MTR-17048(x)	STP-MTR-17060(x)	STP-MTR-23055(x) an	STP-MTR-23079(x)	STP-MTR-34066(x)	STP-MTRH-23079(x)	STP-MTRH-34066(x) Biple additional and a second a second and a second	STP-MTRH-34097(x)	STP-MTRH-34127(x)
NEMA Frame Size		14	14	17	17	17	23	23	34	23	34	34	34
	(lb·in)	0.5	1.25	3.81	5.19	7.19	10.37	17.25	27.12	17.87	27.12	50.00	80.50
Maximum Holding Torque*	(oz∙in)	8	20	61	83	115	166	276	434	286	434	800	1288
Torque	(N·m)	0.06	0.14	0.43	0.59	0.81	1.17	1.95	3.06	2.02	3.06	5.65	9.10
Rotor Inertia	(oz∙in ²)	0.06	0.08	0.28	0.37	0.56	1.46	2.60	7.66	2.60	7.66	14.80	21.90
NULUI IIIEILIA	(kg·cm ²)	0.0003	0.00035	0.05	0.07	0.10	0.27	0.48	1.40	0.48	1.40	2.71	4.01
Rated Current (A/phase)		0.35	0.8	1.7	2.0	2.0	2.8	2.8	2.8	5.6	6.3	6.3	6.3
Resistance (Ω/phase)		8.5	7.66	1.6	1.4	2.0	0.75	1.1	1.11	0.4	0.25	0.3	0.49
Inductance (mH/phase)		5.77	6.92	3.0	2.7	3.3	2.4	3.8	6.6	1.2	1.5	2.1	4.1
Insulation Class		130°C [266°F] Class B; 300V rms											
Basic Step Angle		1.8°											
Shaft Runout (in)	0.002 in [0.051 mm]												
Max Shaft Radial Play @	9 1lb load												
Perpendicularity		0.003 in [0.076 mm]											
Concentricity		0.003 in [0.076 mm]											
Maximum Radial Load (6.0 [2.7] 15.0 [6.8] 39.0 [17.7]					15.0 [6.8]		39.0 [17.7]				
Maximum Thrust Load (6.0 [2.7] 13.0 [5.9] 25.0 [11.3] 13.0 [5.9] 25.0 [11.3]											
Storage Temperature Ra		-20°C to 100°C [-4°F to 212°F]											
Operating Temperature	Range		-20°C to 50°C [-4°F to 122°F] (motor case temperature should be kept below 80°C [176°F])										
Operating Humidity Ran	ge	55% to 85% non-condensing											
Product Material		steel motor case; stainless steel shaft(s)											
Environmental Rating						IP	40 (IP65 fo	r "W" moto	rs)				
Weight (Ib [kg]) (E models)			0.35 [0.15] (0.4 [0.2])		0.7 [0.3] (0.8 [0.4])	0.9 [0.4] (0.9 [0.4])	1.5 [0.7] (1.5 [0.7])		3.9 [1.7]	2.4 [1.1] (2.4 [1.1])	3.9 [1.7]	5.9 [2.7]	8.4 [3.8]
Agency Approvals			CE										
Design Tips		DO NOT di DO NOT co Mount the Use a flexit	sassemble s innect or dis motor to a si	tep motors connect the urface with o with "clamp	because mo step motor good therma	tor performa during oper al conductivi ctions to bot	ance will be ation. ty, such as s th the motor	reduced an	orque safety f d the warran minum, to al he load shaf	ty will be voi	sipation. radial and th		g on bear-
Accessory Extension Cal * For dual-shaft motors (STP-		_	(T L -0xx		STP-	STP-E EXT W -0xx (XT-0xx (for "W" mo	otors)		STP-E	STP-EX EXT HW -0xx		otors)

tMNC-21 Motion Control 1 - 8 0 0 - 6 3 3 - 0 4 0 5

SureStep® Stepping Motors

Sure	Step Series	Specificati	ons – High \	oltage Bipo	lar Stepping	Motors				
		High Voltage High Torque								
Bipolar Stepping Moto	Bipolar Stepping Motors			STP-MTRAC- 23078(x)	STP-MTRAC- 34075(x)	STP-MTRAC- 34115(x)	STP-MTRAC- 34156(x)**			
NEMA Frame Size	23	23	23	34	34	34**				
	(lb·in)	4.69	9.31	14.19	51.31	69.48	115.06			
Maximum Holding Torque*	(oz·in)	75	149	227	821	1110	1841			
Torquo	(N·m)	0.53	1.05	1.6	5.8	7.84	13			
- · · · ·	(oz·in²)	0.66	1.64	2.62	7.38	14.74	24.06			
Rotor Inertia	(kg·cm²)	120	300	480	1350	2700	4400			
Rated Current	Series	0.71	0.71	0.71	2.15	2.05	2.55			
(A/phase)	Parallel	1.41	1.41	1.41	4.3	4.1	5.1			
	Series	12.4	14.4	18	4	4.8	4.8			
Resistance (Ω/phase)	Parallel	3.1	3.6	4.5	1.0	1.2	1.375			
Inductance	Series	30.4	51.2	60.8	32	43.2	44.8			
(mH/phase)	Parallel	7.6	12.8	15.2	8.0	10.8	11.2			
Insulation Class		В								
Steps per Revolution		200								
Basic Step Angle		1.8°								
Shaft Runout (in)	0411.1	0.002 in 0.05 mm]					0.02 in [0.51			
Max Shaft Radial Play	@ 11b load		0.02 in [0.51 mm]		0.025 IN [0.635 MM] mn					
Max End Play @ 2.2-II	h Axial load	0.08 in [2.03 mm] 0.075 in [1.91 mm]					0.08 in [2.03 mm]			
Connectors		8 leads, 24AWG 8 leads, 22AWG								
Temperature Rise	D				6°F] max					
Storage Temperature I Operating Temperature	-40°C to 70°C [-40°F to 158°F] -20°C to 50°C [-4°F to 122°F]									
Operating Humidity Ra			5% to 95% no							
Product Material		S	teel motor case; si		s)					
Environmental Rating		IP40								
Weight (lb [kg])		1.03 [0.47]	1.54 [0.7]	2.2 [1.0]	4.2 [1.9]	8.4 [3.8]	11.46 [5.2]			
Agency Approvals * For dual-shaft motors (ST			None			_c UR _{us}				

^{*} For dual-shaft motors (STP-MTRAC-xxxxxD):

tMNC-22 Motion Control 1 - 8 0 0 - 6 3 3 - 0 4 0 5

The sum of the front and rear Torque Loads, Radial Loads, and Thrust Loads must not exceed the applicable Torque, Radial, and Thrust load ratings of the motor.

^{**} STP-MTRAC-24156(x) motors have a 5/8" front shaft

SureStep® Motor Running Torque vs. Speed Charts

STP-MTRL-14xxx(x) NEMA 14 Step Motors

STP-MTRL-14026(x) Torque vs Speed (1.8° step motor; 1/2 stepping, RMS phase current)

STP-MTRL-14034(x) Torque vs Speed (1.8° step motor; 1/2 stepping, RMS phase current)

STP-MTR-17xxx(x) NEMA 17 Step Motors

Note: "W" series motors have 5% less running torque than other models

STP-MTR-17040(x) Torque vs Speed (1.8° step motor; 1/2 stepping)

STP-MTR-17060(x) Torque vs Speed (1.8° step motor; 1/2 stepping)

STP-MTR-17048(x) Torque vs Speed (1.8° step motor; 1/2 stepping)

Note: Motor torque vs speed charts for STP-MTRD series integrated motor/drives can be found in the integrated motor/drives section of the full catalog

tMNC-23 Motion Control 1 - 8 0 0 - 6 3 3 - 0 4 0 5

SureStep® Motor Torque vs. Speed Charts (continued)

STP-MTR(H)-23xxx(x) NEMA 23 Step Motors

Note: "W" series motors have 5% less running torque than other models

STP-MTR-23055(x) Torque vs Speed (1.8° step motor; 1/2 stepping)

STP-MTRH-23079(x) Torque vs Speed (1.8° step motor; 1/2 stepping)

STP-MTR-23079(x) Torque vs Speed (1.8° step motor; 1/2 stepping)

STP-MTRAC-23xxxx Torque vs Speed @ 340VDC bus (1.8° step motor; 1/2 stepping)

tMNC-24 Motion Control 1 - 8 0 0 - 6 3 3 - 0 4 0 5

SureStep® Motor Torque vs. Speed Charts (continued)

STP-MTR(H)-34xxx(x) NEMA 34 Step Motors

Note: "W" series motors have 5% less running torque than other models

STP-MTRH-34066(x) Torque vs Speed (1.8° motor; 1/2 stepping)

STP-MTRH-34097(x) Torque vs Speed (1.8° step motor; 1/2 stepping)

STP-MTRH-34127(x) Torque vs Speed (1.8° step motor; 1/2 stepping)

(1.8° step motor; 1/2 stepping) 1600 1400 1200

STP-MTRAC-34xxxx Torque vs Speed @ 340VDC bus

tMNC-25 1 - 8 0 0 - 6 3 3 - 0 4 0 5 **Motion Control**

SureStep® Motor Dimensions and Cabling

STP-MTR(x)-xxxx(x) Motors

Note: Drawings and dimensions for STP-MTRD series integrated motor/drives can be found in the integrated motor/drives section of the manual

STP-MTR-xxxxxW Motors

		SureStep Series Dimensions & Cabling – Connectorized Bipolar Stepping Motors											
Dimen	Low Torqu	ue Motors	h oelies	HIIIGHSIU		ue Motors	iieGtui ize	Dipulai		Higher Tor	aue Motors		
-sions* (in [mm]*)	STP- MTRL	STP- MTRL -14034(x)	STP-MTR -17040(x)	STP-MTR -17048(x)	STP-MTR	STP-MTR -23055(x)	STP-MTR -23079(x)		STP- MTRH -23079(x)	STP- MTRH	STP- MTRH -34097(x)	STP- MTRH	
Α	1.39 [35.3]	1.39 [35.3]		1.67 [42.3]		2.25	[57.2]	3.39 [86.1]	2.25 [57.2]	3.39 [86.1]			
В	1.02 [25.9]	1.02 [25.9]		1.22 [31.0]		1.86	[47.2]	2.74 [69.6]	1.86 [47.2]		2.74 [69.6]		
С			Ø 0.87 [22.1]			Ø 1.50	[38.1]	Ø 2.88 [73.0]	Ø 1.50 [38.1]		Ø 2.88 [73.0]		
D**			Ø 0.20 [5.0]			Ø 0.25	5 [6.4]	Ø 0.50 [12.7]	Ø 0.25 [6.4]		Ø 0.50 [12.7]		
E	0.15 DP	0.15 DP		M3 x 0.5 thread 0.15 [3.8] min depth		Ø 0.20 thro) [5.1] ough	Ø 0.26 [6.6] through	Ø 0.20 [5.1] through		Ø 0.26 [6.6] through		
E ₂	M2.5 x 0.45 thread	M2.5 x 0.45 thread	M2 x 0.4 thread M2 x 0.4		4-	40	n/a	4-40		n/a			
F ₁ **	1.02 [25.9]	1.34 [34.0]	1.58 [40.1]	1.89 [48.0]	2.34 [59.5]	2.22 [56.4]	3.10 [78.7]	2.64 [67.1]	3.10 [78.7]	2.64 [67.1]	3.82 [97.0]	5.00 [127.0]	
F ₂ **	n,	/a	1.90 [48.3]	2.24 [56.9]	2.67 [67.8]	2.33 [59.1]	3.19 [81.0]	2.64 [67.1]	3.19 [81.0]	2.64 [67.1]	3.82 [97.0]	5.00 [127.0]	
G ₁	0.375	0.375	0.375	0.375	0.411	0.906	0.906	0.906	0.906	0.906	0.906	0.906	
G ₂	0.75	0.75	0.75	0.75	n/a	1.812	1.812	1.812	1.812	1.812	1.812	1.812	
H ₁	0.60 [15.2]	0.60 [15.2]		0.94 [24.0]		0.81	[20.6]	1.46 [37.1]	0.81 [20.6]		1.46 [37.1]		
H ₂ **	0.51 [13.0]	0.51 [13.0]		0.51 [13]		0.51	[13]	1.13 [28.7]	0.51 [13]		1.13 [28.7]		
H ₃ ***				0.40				n/a	0.40		n/a		
J**			n/a			0.59	[15.0]	0.98 [25.0]	0.59 [15.0]		0.98 [25.0]		
K**			n/a			0.23	[5.8]	0.45 [11.4]	0.23 [5.8]		0.45 [11.4]		
L					(4) "0		[305]			(4) "			
Conductor	(4) #26	6 AWG			٠,	0 AWG (for W motors)				(4) #18 (5) #18 AWG (
Connector	TE # 10	3653-3		PX		3025-0400	ors)		PX	Molex # 39	9-01-3042	rs)	
Pin	TE # 1-10450	05-3 (LOOSE)			, .,	3030-0007				Molex # 39	PXP4010/06S/6065 (for W motors) Molex # 39-00-0039 Socket: SA3347 (for W motors)		

^{*} mm dimensions are for reference purposes only.

tMNC-26 Motion Control 1 - 8 0 0 - 6 3 3 - 0 4 0 5

^{**} Dimension H₂ applies only to dual-shaft (D) and encoder (E) motors. Dimension D (shaft diameter) is the same for both front and rear shafts of dual-shaft (D) and encoder (E) motors. Dimensions J & K do NOT apply to rear shafts of dual-shaft (D) and encoder (E) motors (all rear shafts are round style). Dimension F₂ applies to IP65 (W) motors only.

^{***} Dimension H3 applies only to "E" models with the encoder pre-mounted.

SureStep® Motor Dimensions and Cabling

STP-MTRAC-23xxx Motors

STP-MTRAC-34xxx Motors

NEMA # -34075x and -34155x (front shaft): KEYED,

Key Dimensions 0.125 X 0.125 X 0.875

NEMA # -34155x (front shaft): KEYETD,

Key Dimensions 0.1875 X 0.1875 X 0.875

Dimension H.2 applies only to dual-shaft (D) motors.

Dimensions 1.8 K do NOT apply to rear shafts of dual-shaft

SureSt	ep Series Dir	nensions & C	abling – Higl	h Voltage Bip	olar Steppin	g Motors					
Dimen -sions*		High Voltage High Torque									
(in [mm]*)	STP-MTRAC -23044(x)	STP-MTRAC -23055(x)	STP-MTRAC -23078(x)	STP-MTRAC -34075(x)	STP-MTRAC -34115(x)	STP-MTRAC -34156(x)					
Α	2.25 [57.15]	2.25 [57.15]	2.25 [57.15]	3.39 [86.1]	3.39 [86.1]	3.39 [86.1]					
В	1.86 [47.24]	1.86 [47.24]	1.86 [47.24]	2.74 [69.6]	2.74 [69.6]	2.87 [72.9]					
С	1.50 [38.1]	1.50 [38.1]	1.50 [38.1]	2.87 [72.9]	2.87 [72.9]	2.87 [72.9]					
D**	0.25 [6.35]	0.25 [6.35]	0.25 [6.35]	0.5 [12.7]	0.5 [12.7]	0.625 [15.9]					
E	0.2 [5.08]	0.2 [5.08]	0.2 [5.08]	0.25 [6.35]	0.25 [6.35]	0.25 [6.35]					
E ₂ ***	2-56 thru	2-56 thru	2-56 thru	2-56 UNC Tap 0.2 Deep	2-56 UNC Tap 0.2 Deep	2-56 UNC Tap 0.2 Deep					
E ₃ ***	4-40 UNC x 0.2 Deep	4-40 UNC x 0.2 Deep	4-40 UNC x 0.2 Deep	4-40 UNC Tap 0.2 Deep	4-40 UNC Tap 0.2 Deep	4-40 UNC Tap 0.2 Deep					
E ₄ ***	2-56 UNC Tap 0.2 Deep	2-56 UNC Tap 0.2 Deep	2-56 UNC Tap 0.2 Deep	-	_	_					
F	1.71 [43.43]	2.16 [54.86]	3.05 [77.47]	2.95 [74.93]	4.52 [114.81]	6.14 [155.96]					
Н1	0.81 [20.57]	0.81 [20.57]	0.81 [20.57]	1.25 [31.75]	1.25 [31.75]	1.25 [31.75]					
H ₂ ***	0.63 [16.0]	0.63 [16.0]	0.63 [16.0]	1.12 [28.45]	1.12 [28.45]	1.12 [28.45]					
J	0.60 [15.24]	0.60 [15.24]	0.60 [15.24]	0.87 [22.1]	0.87 [22.1]	0.87 [22.1]					
L	120 [3048]	120 [3048]	120 [3048]	120 [3048]	120 [3048]	120 [3048]					

^{*} mm dimensions are for reference purposes only.

STP-MTRAC-230xx(x), 34156(x) Motor Wiring

STP-MTRAC-34075(x), 34115(x) Motor Wiring

tMNC-27 Motion Control 1 - 8 0 0 - 6 3 3 - 0 4 0 5

^{**} Dimension D (shaft diameter) is the same for both front and rear shafts of NEMA 23 dual-shaft motors. See diagrams for NEMA 34.

^{***} Dimension applies only to dual-shaft (D) motors.

SureStep® Microstepping Drives Accessories

Braking Accessories

As a load rapidly decelerates from a high speed, much of the kinetic energy of that load is transferred back to the motor. This energy is then pushed back to the drive and power supply, resulting in increased system voltage. If there is enough overhauling load on the motor, the DC voltage will go above the drive and/or power supply limits. In general, the more torque the motor is capable of producing then the more energy it can push back into the drive.

When using a regulated/switching power supply, this can trip the overvoltage protection of the power supply or drive, and cause it to shut down.

To solve this problem, AutomationDirect offers a regeneration clamp and a braking resistor as optional accessories. The regen clamp has a built-in 50W braking resistor. For additional braking power (larger overhauling loads), an optional 100W braking resistor is also available with the STP-DRVA-RC-050. The STP-DRVA-RC-050A does not have the ability to use an external resistor.

Regeneration Clamp STP-DRVA-RC-050

Braking Resistor

Regeneration Clamp Features

Common Features

- Built-in 50W power resistor for more continuous current handling
- · Mounted on a heat sink
- Voltage range: 24-80 VDC; no user adjustments required
- Power: 50W continuous; 800W peak
- Indicators (LED):

Green = power supply voltage is present Red = clamp is operating (usually when stepper is decelerating)

 Protection: The external power supply is internally connected to an "Input Diode" in the regen clamp that protects the power supply from high regeneration voltages. This diode protects the system from connecting the power supply in reverse. If the clamp circuit fails, the diode will continue to protect the power supply from over-voltage.

STP-DRVA-RC-050 Features

- External 100W resistor available
- Multiple drives in parallel up to 20A total output current
- Non-removable terminal blocks
- Uses 12-18 AWG wires for connections

STP-DRVA-RC-050A Features

- Three drive connections, 7A max per channel, 15A total output current
- Removable terminal blocks (replacement kit STP-CON-4)
- Uses 18-20 AWG wire for connections

SureStep Damper

A step motor inertia damper can smooth out steps in a typical step motor resulting in a quieter and smoother motion when rotating between steps. Reducing the resonance and possible micro oscillations when moving from step to step is the main purpose of a "hockey puck" style damper, but it can also be used as a hand wheel to directly rotate the position of the rotor when power is removed from the motor. The damper is a properly sized machined piece of aluminum encased in plastic. It is sized and weighted for general damping of the respective frame size motor.

Regeneration Clamp STP-DRVA-RC-050A

Part Number	Price	Description					
i ait ivuilibei	1 1106	•					
STP-DRVA-RC-050*	\$94.00	Regen Clamp: 50W, for DC input stepper and servo drives, non-enclosed, optional 100W external resistor					
STP-DRVA-RC-050A*	\$55.00	.00 Regen Clamp: 50W, for DC input stepper and servo drives, enclosed					
STP-DRVA-BR-100	\$68.00	Braking Resistor: use with STP-DRVA-RC-050 regen clamp; 100W, 10Ω					
STP-MTRA-17DMP	\$13.50	SureStep damper, metal body. For use with NEMA 17 stepper motors with 5mm shafts. Mounting set screw included.					
STP-MTRA-23DMP	\$31.00	SureStep damper, metal body. For use with NEMA 23 stepper motors with 1/- linch shafts. Mounting set screw included.					

Damper

tMNC-43 Motion Control 1 - 8 0 0 - 6 3 3 - 0 4 0 5

SureStep® Microstepping Drives Accessories

Dimensions = in [mm]

STP-DRVA-BR-100 5.87 [149.1] 2X R0.16 5.46 [R4.0] STP-DRVA-RC-050 [138.7] 2.50 4X Ø0.12 1.50 [63.5] [Ø3.0] [38.1] 0.75 [19.1] 000000 22.00 [558.8] 0.13 4.00 3.75 [3.3] [101.6] [95.3] 0.75 [19.0] 3.00 3.69 0.16 [76.2] [93.7] ~4-40 UNC [4.0] 0.24 3X Ø0.12 [6.1] [Ø3.0] 2.21 [56.2] 1.50 1.17 1.25 [38.1] [29.7] [31,.8] 1.20 [30.6] [22.1]

STP-DRVA-RC-050A

tMNC-44 Motion Control 1 - 8 0 0 - 6 3 3 - 0 4 0 5

SureStep® Stepping System Encoders

Replacement Encoders

The STP-MTRA-ENC1 is a replacement for the encoder that comes standard with the STP-MTRD-17038E, STP-MTRD-23042E, and STP-MTRD-23065E integrated motor/drives. Note that the encoder included with (E) model advanced integrated motor/drives is internal and cannot be replaced.

The STP-MTRA-ENC9 is a replacement for the encoder that comes standard with the STP-MTR(x)-xxxxE stand alone step motors.

Installation tool and mounting hardware is included with all replacement encoders. For more information and details on how to wire the replacement encoders, please see the SureStep User Manual.

Optional Encoders

Optional encoders can be purchased separately for standard integrated motor/drives and standalone dual-shaft motors in all NEMA 14, 17, and 23 sizes, and also for STP-MTRAC-34xxxD motors (currently not available for STP-MTRx-34xxxD motors). All (D) model (dual-shaft) step motors come with pre-drilled holes in the rear end cap for easy encoder mounting. Pre-installed encoders on standalone dual-shaft motors and standard integrated motor/drives can be retrofitted with an appropriate optional encoder if desired. Please see the chart on the following page for encoder compatibility.

Features:

- Fixed resolutions include 400ppr or 1000ppr
- Configurable models have up to 4096ppr (default = 400ppr)
- · Choose line driver or push-pull (totem) output signals

STP-MTRA-ENC2

STP-MTRA-ENC9

STP-MTRA-ENC11

		Sure Step Series Specifications – Encoders
Part Number	Price	Description
STP-MTRA-ENC1	\$68.00	SureStep incremental (quadrature) modular encoder, 5VDC, line driver (differential) output, 1000 ppr. For use with SureStep stepper motors with 5mm rear shaft. Installation tool and mounting hardware included.
STP-MTRA-ENC2	\$58.00	SureStep incremental (quadrature) modular encoder, 5VDC, Push-pull (totem) output, 1000 ppr. For use with SureStep stepper motors with 5mm rear shaft. Installation tool and mounting hardware included.
STP-MTRA-ENC3	\$59.00	SureStep incremental (quadrature) modular encoder, 5VDC, line driver (differential) output, 400 ppr. For use with SureStep stepper motors with 5mm rear shaft. Installation tool and mounting hardware included.
STP-MTRA-ENC4	\$49.50	SureStep incremental (quadrature) modular encoder, 5VDC, Push-pull (totem) output, 400 ppr. For use with SureStep stepper motors with 5mm rear shaft. Installation tool and mounting hardware included.
STP-MTRA-ENC5	\$68.00	SureStep incremental (quadrature) modular encoder, 5VDC, line driver (differential) output, 1000 ppr. For use with SureStep stepper motors with 1/4 inch rear shaft. Installation tool and mounting hardware included.
STP-MTRA-ENC6	\$58.00	SureStep incremental (quadrature) modular encoder, 5VDC, Push-pull (totem) output, 1000 ppr. For use with SureStep stepper motors with 1/4 inch rear shaft. Installation tool and mounting hardware included.
STP-MTRA-ENC7	\$59.00	SureStep incremental (quadrature) modular encoder, 5VDC, line driver (differential) output, 400 ppr. For use with SureStep stepper motors with 1/4 inch rear shaft. Installation tool and mounting hardware included.
STP-MTRA-ENC8	\$49.50	SureStep incremental (quadrature) modular encoder, 5VDC, Push-pull (totem) output, 400 ppr. For use with SureStep stepper motors with 1/4 inch rear shaft. Installation tool and mounting hardware included.
STP-MTRA-ENC9*	\$56.00	SureStep incremental (quadrature) modular encoder, 5VDC, line driver (differential) output, configurable up to 4096 ppr. For use with NEMA 14, 17, and 23 SureStep dual-shaft motors. Installation tool and mounting hardware included.
STP-MTRA-ENC10*	\$42.50	SureStep incremental (quadrature) modular encoder, 5VDC, Push-pull (totem) output, configurable up to 4096 ppr. For use with NEMA 14, 17, and 23 SureStep dual-shaft motors. Installation tool and mounting hardware included.
STP-MTRA-ENC11	\$66.00	SureStep incremental (quadrature) modular encoder, 5 VDC, line driver (differential) output, 1000 ppr. For use with SureStep stepper motors with 3/8in rear shaft. Installation hardware included. Requires STP-CBL-EAxx cable.
STP-MTRA-ENC12	\$56.00	SureStep incremental (quadrature) modular encoder, 5 VDC, push-pull (totem) output, 1000 ppr. For use with SureStep step- per motors with 3/8in rear shaft. Installation hardware included. Requires STP-CBL-EDxx cable.
STP-MTRA-ENC13	\$57.00	SureStep incremental (quadrature) modular encoder, 5 VDC, line driver (differential) output, 400 ppr. For use with SureStep stepper motors with 3/8in rear shaft. Installation hardware included. Requires STP-CBL-EAxx cable.
STP-MTRA-ENC14	\$48.00	SureStep incremental (quadrature) modular encoder, 5 VDC, push-pull (totem) output, 400 ppr. For use with SureStep stepper motors with 3/8in rear shaft. Installation hardware included. Requires STP-CBL-EDxx cable.

^{*} ENC9 and ENC10 encoders come with multiple adapter sleeves to accomodate different motor shaft diameters. See the dimensional drawing for details.

tMNC-46 Motion Control 1 - 8 0 0 - 6 3 3 - 0 4 0 5

SureStep® Stepping System Encoders

		Sure S	Step Series Enco	der Compatibility				
Part Number	PPR	Bore Diameter	Output Type	Encoder Cable	PLC Compatibility	Motor Compatibility		
STP-MTRA-ENC1	1000		Line Driver	STP-CBL-EAxx	P2-HSI, P3-HSI, BRX*, CLICK C0-1xDxE-D*			
STP-MTRA-ENC2	1000	- 5mm -	Push-pull (totem)	STP-CBL-EDxx	BRX*, CLICK C0-1xDxE-D*	STP-MTRx-14xxxD STP-MTRx-14xxxE		
STP-MTRA-ENC3	400	JIIIII	Line Driver	STP-CBL-EAxx	P2-HSI, P3-HSI, BRX*, CLICK C0-1xDxE-D*	STP-MTRx-17xxxD STP-MTRx-17xxxE Standard STP-MTRD-xxxxxE		
STP-MTRA-ENC4	400		Push-pull (totem)	STP-CBL-EDxx	BRX*, CLICK C0-1xDxE-D*			
STP-MTRA-ENC5	1000		Line Driver	STP-CBL-EAxx	P2-HSI, P3-HSI, BRX*, CLICK C0-1xDxE-D*			
STP-MTRA-ENC6	1000	- 0.25 inch -	Push-pull (totem)	STP-CBL-EDxx	BRX*, CLICK C0-1xDxE-D*	STP-MTRx-23xxxD STP-MTRx-23xxxE		
STP-MTRA-ENC7	400	0.25 IIICII -	Line Driver	STP-CBL-EAxx	P2-HSI, P3-HSI, BRX*, CLICK C0-1xDxE-D*	STP-MTRAC-23xxxD		
STP-MTRA-ENC8	400		Push-pull (totem)	STP-CBL-EDxx	BRX*, CLICK C0-1xDxE-D*			
STP-MTRA-ENC9	48 to 4096 - configurable**	2mm - 8mm	Line Driver	STP-CBL-EBxx (signal)	P2-HSI, P3-HSI, BRX*, CLICK C0-1xDxE-D*	STP-MTRx-14xxxD STP-MTRx-14xxxE STP-MTRx-17xxxD STP-MTRx-17xxxE		
STP-MTRA-ENC10	(default = 400)	2(1))(1 - 0(1))(1)	2(1) 1 - () 1 1	Z111111 - O111111	Push-pull (totem)	STP-USBENC-CBL-1 (configuration)	BRX*, CLICK C0-1xDxE-D*	STP-MTRX-23xxxD STP-MTRX-23xxxE STP-MTRAC-23xxxD Standard STP-MTRD-xxxxxE
STP-MTRA-ENC11	1000		Line Driver	STP-CBL-EAxx	P2-HSI, P3-HSI, BRX*, CLICK C0-1xDxE-D*			
STP-MTRA-ENC12	1000	0.075	Push-pull (totem)	STP-CBL-EDxx	BRX*, CLICK C0-1xDxE-D*	OTD MTDAG GA - D		
STP-MTRA-ENC13	400	- 0.375 inch -	Line Driver	STP-CBL-EAxx	P2-HSI, P3-HSI, BRX*, CLICK C0-1xDxE-D*	STP-MTRAC-34xxxD		
STP-MTRA-ENC14	400		Push-pull (totem)	STP-CBL-EDxx	BRX*, CLICK C0-1xDxE-D*			
* Requires FC-ISO-C ** Cable STP-USBENC-CB	L-1 required for c	onfiguration						

tMNC-47 Motion Control 1 - 8 0 0 - 6 3 3 - 0 4 0 5

SureStep® Stepping System Encoders

Dimensions = in [mm]

STP-MTRA-ENC1, 3, 5, 7

STP-MTRA-ENC2, 4, 6, 8

Bolt Hole Circles for Mounting							
Encoder	Holes						
ENC1, ENC2, ENC3, ENC4, ENC5, ENC6, ENC7, ENC8	2 holes @ 19.05mm (.75") 3 holes @ 20.9mm (.823")						
	2 holes @ 16mm, 19.05mm, 32.44mm, 46.02 mm 3 holes @ 20.9mm, 21.55mm, 22mm 4 holes @ 25.4mm						

STP-MTRA-ENC9, 10

STP-MTRA-ENC9, 10 Additional Dimensions					
Location	Dimensions				
D*	2mm, 3mm, 1/8 inch, 4mm, 3/16 inch, 5mm, 6mm, 1/4 inch, 8mm				

^{*} The dimension of D varies based on which sleeve is used. Values listed represent the different sleeves available for this encoder.

tMNC-48 Motion Control 1 - 8 0 0 - 6 3 3 - 0 4 0 5

SureStep® Stepping System Encoders

Dimensions = in [mm]

STP-MTRA-ENC11, 13

Bolt Hole Circles for Mounting		
Encoder	Holes	
ENC11, ENC12, ENC13, ENC14	2 holes @ 19.05mm (.75")	
	3 holes @ 20.9mm (.823")	
LINO14	2 holes @ 46.02mm (1.812")	

STP-MTRA-ENC12, 14

tMNC-49 Motion Control 1 - 8 0 0 - 6 3 3 - 0 4 0 5

SureStep® Cables

		SureStep Series -	- Stepping	System Cables	
Cable	Price	Purpose	Length	Use With	Cable End Connectors
STP-EXT-006	\$10.50		6 ft		
STP-EXT-010	\$12.00		10 ft	STP-MTR-xxxxx(x)	pigtail / Molex 43020-0401 connector
STP-EXT-020	\$16.00		20 ft		
STP-EXTH-006	\$22.50		6 ft	STP-MTR # -xxxxx(x)	
STP-EXTH-010	\$27.00		10 ft		pigtail / Molex 39-01-2041 connecto
STP-EXTH-020	\$31.50		20 ft		
STP-EXTHW-006	\$45.50		6 ft		
STP-EXTHW-010	\$50.00	motor to drive extension	10 ft	STP-MTR HW -xxxxx(x)	Bulgin # PXP4011/06P/6065
STP-EXTHW-020	\$63.00		20 ft		
STP-EXTL-006	\$10.00		6 ft		
STP-EXTL-010	\$12.00		10 ft	STP-MTR L -xxxxx(x)	pigtail / Molex 105308-22004 con- nector
STP-EXTL-020	\$15.50		20 ft		
STP-EXTW-006	\$45.50		6 ft		
STP-EXTW-010	\$50.00		10 ft	STP-MTR W -xxxxx(x)	Bulgin # PXP4011/06P/6065
STP-EXTW-020	\$63.00		20 ft		
STP-232RJ11-CBL*	\$9.50	programming/communication	10 ft	STP-DRV-4850, STP-DRV-80100	DB9 female / RJ11(6P4C)
STP-232HD15-CBL-2**	\$11.50	communication	6.6 ft	STP-DRV-4850, STP-DRV-80100 DL06, D2-250-1, D2-260	HD 15-pin male / RJ12 6-pin plug
STP-232RJ12-CBL-2**	\$7.00	communication	6.6 ft	STP-DRV-4850, STP-DRV-80100 DL05, CLICK	RJ12 6-pin plug / RJ12 6-pin plug
STP-CBL-CA6	\$17.00	control cable	6 ft	OTD 147000	11-pin / pigtail
STP-CBL-CA10	\$20.00	control cable	10 ft	STP-MTRD-17038 STP-MTRD-17038E	11-pin / pigtail
STP-CBL-CA20	\$29.50	control cable	20 ft		11-pin / pigtail
STP-CBL-EA6	\$17.00	encoder cable	6 ft	STP-MTRD-xxxxxE STP-MTRA-ENC1, STP-MTRA-ENC3	10-pin / pigtail
STP-CBL-EA10	\$20.00	encoder cable	10 ft	STP-MTRA-ENC5, STP-MTRA-ENC7 STP-MTRA-ENC11, STP-MTRA-ENC13	10-pin / pigtail
STP-CBL-EA20	\$29.50	encoder cable	20 ft	(for line driver encoders)	10-pin / pigtail
STP-CBL-EB3	\$24.50	encoder cable	3 ft	STP-MTRA-ENC9	17-pin / pigtail
STP-CBL-EB6	\$40.50	encoder cable	6 ft	STP-MTRA-ENC9 STP-MTRA-ENC10	17-pin / pigtail
STP-CBL-EB10	\$61.00	encoder cable	10 ft	(for both line driver and push-pull (totem) encoders)	17-pin / pigtail
STP-CBL-EB20	\$112.00	encoder cable	20 ft	unioudisj	17-pin / pigtail
STP-CBL-ED6	\$16.50	encoder cable	6 ft	STP-MTRA-ENC2, STP-MTRA-ENC4	5-pin / pigtail
STP-CBL-ED10	\$19.50	encoder cable	10 ft	STP-MTRA-ENC6, STP-MTRA-ENC8 STP-MTRA-ENC12, STP-MTRA-ENC14	5-pin / pigtail
STP-CBL-ED20	\$29.00	encoder cable	20 ft	(for push-pull (totem) encoders)	5-pin / pigtail
STP-CON-1	\$16.00	replacement connector kit	n/a	STP-DRV-4845 & -6575	-
STP-CON-2	\$16.00	replacement connector kit	n/a	STP-DRV-4850 & 80100	-
STP-CON-3	\$31.50	replacement connector kit	n/a	STP-MTRD-xxxxxR	-
STP-CON-4	\$15.00	replacement connector kit	n/a	STP-DRVA-RC-050 A	-
STP-CON-5	\$15.00	replacement connector kit	n/a	STP-DRV-4830	-
STP-CON-6	\$21.00	replacement connector kit	n/a	STP-DRVAC-24025	-
STP-485DB9-CBL-2	\$37.00	4-wire programming cable	6.5 ft	STP-MTRD-xxxxxR	DB9 / Phoenix 5-conductor plug
STP-USBENC-CBL-1	\$39.50	USB programming cable	3 ft	STP-MTRA-ENC9,ENC10	17-pin / USB

^{*} Programming/communication cable STP-232RJ11-CBLis available for spare or replacement purposes. (One cable is included with each software programmable drive.)

tMNC-51 **Motion Control** 1 - 8 0 0 - 6 3 3 - 0 4 0 5

^{**} Refer to the ZIPLinks Wiring Solutions section for complete information regarding cables STP-232HD15-CBL-2 and STP-232RJ12-CBL-2.

SureStep® Cables

STP-EXT(x)-0xx Extension Cable Wiring Diagram

STP-EXTW-0xx and STP-EXTHW-0xx Extension Cable Wiring Diagram

STP-USBENC-CBL-1 Wiring Diagram

tMNC-52 **Motion Control** 1 - 8 0 0 - 6 3 3 - 0 4 0 5

SureStep® Cables, continued

STP-232RJ11-CBL Programming Cable Wiring Diagram

	WIRE CONNE	CTION	
(DB9) P1			P2 (RJ11 6P4C)
	RX	TX	3
3	TX	RX	. 5
4	nc	nc	4
5	GND	GND	4
5			2

- DB 9P FEMALE CONNECTOR SHELL: FRONT NICKEL BACK TIN INSULATOR COLOR: BLACK
- CABLE: CAT-5 UTP 24AWG (7/0.203BA*2PR) 100MHz
- COLOR: BLACK OD: 4.5mm (3) RJ11 6P4C PLATED GOLD 3U"
- 4 SCREW: #4-40UNC PD40*175TNP COLOR: BLACK

STP-485DB9-CBL-2 4-wire Programming Cable Wiring Diagram

STP-CBL-CAxx Control Cable Wiring Diagram

tMNC-53 **Motion Control** 1 - 8 0 0 - 6 3 3 - 0 4 0 5

SureStep® Cables, continued

STP-CBL-EAxx Encoder Cable Wiring Diagram

	CONNECTION TABLE		
	SIGNAL	LEAD COLOR	PIN
TWISTED PAIR	GROUND	GREEN/WHITE	2
IWISTED PAIR	POWER+	GREEN	7
TWISTED PAIR	I-	ORANGE/WHITE	3
IWISTED PAIR	I+	ORANGE	4
TWISTED PAIR	A-	BLUE/WHITE	5
IWISTED FAIR	A+	BLUE	6
TWISTED PAIR	B-	BROWN/WHITE	9
IWISTED PAIR	B+	BROWN	10
NO CONNECTIO	N/A	N/C	1
NO CONNECTIO	N/A	N/C	8

WIRE: 24AWG, CABLE: UL2464.

STP-CBL-EBxx Encoder Cable Wiring Diagram

STP-CBL-EDxx Encoder Cable Wiring Diagram

	_	
TABLE INFORMATION		
CABLE NUMBER	CABLE LENGTH L	
STP-CBL-ED6	6 Feet	
STP-CBL-ED10	10 Feet	
STP-CBL-ED20	20 Feet	

tMNC-54 **Motion Control** 1 - 8 0 0 - 6 3 3 - 0 4 0 5