OP-AMPS WITH NEGATIVE FEEDBACK

Closed-Loop Voltage Gain, Acl

- closed-loop voltage gain adalah
 - Nilai voltage gain dari op-amp yang memiliki feedback.
- Konfigurasi Amplifier terdiri dari
 - op-amp
 - Rangkaian negative feedback yang menghubungkan output pada inverting input.

Noninverting Amplifier

Gambar 1 : Noninverting amplifier

- Noninverting amplifier adalah
 - Op-amp dihubungkan dengan a closed-loop yang mengontrol seperti gambar 1.
- Sinyal input berada pada
 - noninverting (+) input.
- output di-feedback-kan
 - inverting (-) input dihubungkan mengjadi rangkaian closed loop dengan input resistor R_i dan feedback resistor R_f.

Jika

$$V_{1} = \frac{R_{1}}{R_{1} + R_{f}} V_{0}$$

Maka

$$A_{cl(NI)} = \frac{V_{out}}{V_{in}} = \frac{1}{B} = \frac{R_i + R_f}{R_i}$$

Karena

$$B = \frac{R_i}{R_i + R_f}$$

Maka

$$A_{cl(NI)} = 1 + \frac{R_f}{R_i}$$

Inverting Amplifier

Gambar 7: Inverting Amplifier

• Karena
$$i_1 = -i_f$$

• Sehingga
$$\frac{V_1}{R_1} = -\frac{Vo}{R_f}$$

$$\frac{V_{out}}{V_{in}} = -\frac{R_f}{R_i}$$

$$A_{cl} = -rac{R_f}{R_1}$$

Contoh

Diketahui konfigurasi op-amp pada gambar dibawah ini, tentukan nilai R_f yang dibutuhkan untuk menghasilkan closed-loop voltage gain (A) sebesar -100.

Contoh

Diketahui konfigurasi op-amp pada gambar dibawah ini, tentukan

- Nilai Vo ketika Vi=1,5 V
- Nilai arus pada resistor 25 K ketika Vi=1,5 V
- 3. Tegangan output ketika Vi=-0,6 V

Voltage-Follower

- Konfigurasi voltage-follower adalah kasus khusus pada noninverting amplifier
 - Dimana seluruh tegangan output di feedback pada inverting (-) input dengan garis lurus. (gambar 3)
- Koneksi feedback langsung memiliki voltage gain 1 (tdk ada gain).
- Sedangkan voltage gain noninverting amplifier adalah 1/B.

- Karena B=1, untuk voltage-follower,
 - voltage gain of the voltage follower adalah

$$A_{cl(VF)}=1$$

- Konfigurasi voltage-follower memiliki
 - input impedance sangat tinggi
 - output impedance sangat rendah

Impedansi Noninverting Amplifier

Impedansi Input

$$Z_{_{in(NI)}}=\big(1+A_{ol}B\big)Z_{_{in}}$$

- →Impedansi input pada non inverting dengan negatif feedback lebih besar dibanding internal impedansi input pada op-amp sendiri (tanpa feedback)
- Impedansi Output

$$Z_{out(NI)} = \frac{Z_{out}}{1 + A_{ol}B}$$

→ Impedansi output pada non inverting amplifier dengan negatif feedback lebih kecil dari internal impedansi output op-amp sendiri (tanpa feedback) karena zout dibagi dengan faktor 1+A₀IB

Contoh

- a) Tentukan impedansi input dan output dari amplifier berikut ini. Pada data op-amp memiliki $Zin=2M\Omega$, $Zout=75\Omega$ dan Aol=200.000.
- b) Tentukan closed-loop voltage gain

Impedansi Voltage Follower

☐ Memiliki formula yang sama dengan non inverting amplifier dengan nilai B=1:

$$Z_{in(VF)} = (1 + A_{ol})Z_{in}$$

$$Z_{out(VF)} = \frac{Z_{out}}{1 + A_{ol}}$$

- ☐ Impedansi input lebih besar dibandingkan dengan konfigurasi noninverting amplifier dengan negatif feedback.
- ☐ Impedansi output lebih rendah

Impedansi Inverting Amplifier

☐ Impedansi Input

$$Z_{in(I)} = R_i$$

→ Impedansi input pada inverting berda pada ground (0V) sehingga Zin sama dengan Ri

Impedansi Inverting Amplifier

Impedansi Output

$$Zout(I) = Zout$$

→ Impedansi output pada inverting amplifier sama dengan noninverting amplifier dimana impedansi akan bertambah dengan adanya negatif feedback.

Contoh

Tentukan nilai impedansi input dan output dan closed loop voltage gain dari gambar berikut , Jika diketahui parameter, Aol=50 000, Zin=4M Ω dan Zout=50 Ω .

Summing Amplifier

$$i_n = 0 \implies i_a + i_b + i_c = -i_f$$

 $v_p = 0 \implies v_n = 0$

$$v_o = -\left(\frac{R_f}{R_a}v_a + \frac{R_f}{R_b}v_b + \frac{R_f}{R_c}v_c\right)$$

Substractor Amplifier

1. V2 = off:

$$i_P = i_N = 0$$

Rangkaian sbg inverting amplifier

$$v_{O1} = -\frac{R_2}{R_1} v_1$$

2) V1 =off dan V2 =on:
$$v_P = v_N = \frac{R_4}{R_3 + R_4} v_2$$

KCL pada node A:
$$\frac{\frac{R_4}{R_3 + R_4} v_2}{R_1} + \frac{\frac{R_4}{R_3 + R_4} v_2 - v_{o2}}{R_2} = 0 \Rightarrow v_{o2} = \left[\frac{R_4}{R_3 + R_4} \right] \left[\frac{R_1 + R_2}{R_1} \right] v_2$$

Sehingga
$$v_0 = v_{01} + v_{02} = -\left[\frac{R_2}{R_1}\right]v_1 + \left[\frac{R_4}{R_3 + R_4}\right]\left[\frac{R_1 + R_2}{R_1}\right]v_2$$

COMPARATOR

- ☐ Membandingkan antara dua tegangan input yang berbeda
- □ Ada dua jenis comparator
 - 1. Zero level detection
 - 2. Non-Zero level detection

☐ Zero level detection

→ membandingkan tegangan input dengan tegangan refferensinya yaitu 0 Volt.

■ Non-inverting Zero level detection

Ketika E_i diatas V_{ref} , $V_o = +V_{sat}$. \rightarrow Hal ini terjadi karena tegangan pada input (+) lebih positip dibanding tegangan pada input (-).

□ Inverting Zero level detection

- •Ketika E_i diatas V_{ref} , V_o sama dengan V_{sat}
- •Ketika E_i melewati tegangan referensi menuju positip, maka tegangan output V_o menurun dari $+V_{sat}$ ke $-V_{sat}$.

■ Non Zero level detection

(a) Batterai Refferensi

■ Non Zero level detection

(a) Voltage- devider Refference

$$V_{ref} = \frac{R_2}{R_1 + R_2} (+V)$$

Contoh:

Rangkaian Comparator ditunjukkan dibawah ini memiliki parameter sbb: $R1 = 4 \ k\Omega$, $R2 = 6k\Omega$, $+V = 10 \ V$, dan tegangan saturasi output op-amp Vsat = 13 V. Bila tegangan input Vin= 9sin($2\pi t$). $2\pi t$ =sudut istimewa Gambarkan tegangan output (Vo) sebagai fungsi waktu.

Differential Amplifier

node A:
$$i_S(t) = -i_F(t)$$

$$i_F(t) = \frac{v_{out}(t)}{R_F} \quad i_S(t) = C_S \frac{dv_S(t)}{dt}$$

$$C_S \frac{dv_S(t)}{dt} = -\frac{v_{out}(t)}{R_F}$$

$$v_{out}(t) = -R_F C_S \frac{dv_S(t)}{dt}$$

Integrator Amplifier

node A:
$$i_S(t) = -i_F(t)$$

$$i_S(t) = \frac{v_S(t)}{R_S} \quad i_F(t) = C_F \frac{dv_{out}(t)}{dt}$$

$$C_F \frac{dv_{out}(t)}{dt} = -\frac{v_S(t)}{R_S}$$

$$v_{out}(t) = -\frac{1}{R_S C_F} \int_{-\infty}^t v_S(t') dt'$$

