THEORETICAL PORTION

PROBLEM #1.

a. The max that can be drawn is \$200, while the minimum could be \$30. So for the interval of X, it represents $30 \le X \le 200$. This also satisfies that f(x) is greater than zero for all x.

Total Win Amount	Bill Configuration (18 total)	PDF	CDF
\$30	\$10 \$10 \$10	0.01225	0.01980
\$40	\$10 \$10 \$20	0.01225	0.03960
·	\$10 \$20 \$10		0.03960
	\$20 \$10 \$10		0.03960
\$50	\$10 \$20 \$20	0.00613	0.04950
	\$20 \$20 \$10		0.04950
\$60	\$20 \$20 \$20	0.00123	0.05149
	\$50 \$10	0.13072	0.26271
	\$10 \$50		0.26271
\$70	\$50 \$20	0.07843	0.38944
	\$20 \$50		0.38944
	\$10 \$10 \$50	0.03268	0.44224
\$80	\$10 \$20 \$50	0.02451	0.48185
	\$20 \$10 \$50		0.48185
\$90	\$20 \$20 \$50	0.00980	0.49769
\$100	\$50 \$50	0.18301	0.79340
\$110	\$100 \$10	0.03268	0.84620
	\$10 \$100		0.84620
\$120	\$10 \$10 \$100	0.00817	0.85941
	\$100 \$20	0.01961	0.89109
\$130	\$10 \$20 \$100	0.00613	0.90099
	\$20 \$10 \$100		0.90099
\$140	\$20 \$20 \$100	0.00245	0.90495
\$150	\$100 \$50	0.05229	0.98944
ф. 00	\$50 \$100		0.98944
\$160	None		0.98944
\$170	None		0.98944
\$180	None		0.98944
\$190 \$200	None \$100 \$100	0.00654	1.00000
φ200	φιου φιου	0.00654	1.00000
	MEAN	55.22059	
	IVIEAIN	33.22038	

b. The mean of $X = E(X) = (30^*.01225) + (40^*.01225) + (50^*.00613) + ... + (200^*.00654) =$ while the variance of $X = E(X) = (30^*.01225) + (40^*.01225) + (50^*.00613) + ... + (200^*.00654) =$

PROBLEM #2.

- a. E(X + 3Y + 3) = E(X) + 3E(Y) + 3 = 2 + 3(4) + 3 = 17
- b. sd(X + 3Y + 3) = sd(X) + 3sd(Y) + 3 = 2 + 3(2) + 3 = 11
- c. E(3X 2Y 5) = 3E(X) 2E(Y) 5 = 3(2) 2(4) 5 = -7
- d. sd(3X 2Y 5) = 3sd(X) 2sd(Y) 5 = 3(2) 2(2) 5 = -3

PROBLEM #3.

a.

PROBLEM #4.

a.

PROBLEM #5.

- a. Cov(X,Y) Yes, the inversely related random variables can go below -1, even to negative infinity.
- b. Yes, if the covariance is negative then the correlation must also be negative
- c. Cov(100X,Y) when $Cov(X,Y)=0.3 \rightarrow 100*Cov(X,Y) = 100*0.3 = 30$
- d. Corr(100X,Y) would take the sign of the 100, which is +, so this equals +0.1
- e. $Cov(X,X) = E(X^2) (E(X))^2 = Var(X)$
- f. $Corr(X,X) = Cov(X,X)/Sqrt(Var(X))^2 = Var(X)/Var(X) = 1$
- g. Cov(100X,10X) = 100*10*Cov(X,X) = 1000Var(X)
- h. Corr(100X, 10X) = 1, since we're only taking the sign of 100 and 10 (which is +)

COMPUTATIONAL PORTION

Code and graphs included with each part, not indexed.

PROBLEM #1 - COMPUTATIONAL

```
#1, part a.

code:

dgeom(7,.20)

output:

0.04194304

#1, part b.

code:

1 - pgeom(7,.20) - dgeom(7,.20) #(P<=7) for pgeom, then subtract what's at 7 (dgeom)

output:

0.1258291

#1, part c.
```

PROBLEM #2 - COMPUTATIONAL

```
#2, part a.
          code:
                     fx = function(x){
                                value = ((x)/((x^2)+1))
                                return(value)
                     integrate(fx,0,2)
                     resultsg=integrate(fx,0,2)
                     c=1/resultsg$value
                     С
                     gx=function(x){
                                 fx(x)*c
          output:
                     0.804719 with absolute error < 3e-10
                     1.24267
#2, part b.
          code:
                     Gx = function(x){
                                 value=integrate(gx,0,x)
                                return(value)
                     }
                     calculate.Info=function(x){
                                cat(gx(x), "\n")
                                cat(Gx(x)$value)
                     calculate.Info(.5)
```

PROBLEM #3 - COMPUTATIONAL

#3, part a.

code:

par(mfrow=c(2,2))

$\#\alpha=1$, $\beta=1$

 $hist((rweibull(n=5000, 1, scale=1)), freq=FALSE, col='lightblue', main="Weibell Distribution for \alpha=1, \beta=1", ylim=c(0,1), xlab="Random Variable (x)")$ curve(dweibull(x, 1, scale=1), add=TRUE, col='red', lwd=1, text(3,.6, "Theoretical Distribution", col='red'))

$\#\alpha=3$, $\beta=1$

 $hist((rweibull(n=5000,3,scale=1)),freq=FALSE,col='lightgreen',main="Weibell Distribution for \alpha=3,\beta=1",ylim=c(0,1.2),xlab="Random Variable (x)")$ curve(dweibull(x,3,scale=1),add=TRUE,col='red',lwd=1,text(1.7,.8,"Theoretical Distribution",col='red'))

$\#\alpha=1$, $\beta=3$

 $hist((rweibull(n=5000, 1, scale=3)), freq=FALSE, col='orange', main="Weibell Distribution for \alpha=1, \beta=3", ylim=c(0,.3), xlab="Random Variable (x)") curve((dweibull(x, 1, scale=3)), add=TRUE, col='red', lwd=1, text(10,.2, "Theoretical Distribution", col='red'))$

$\#\alpha=3$, $\beta=3$

 $hist((rweibull(n=5000,3,scale=3)),freq=FALSE,col='yellow',main="Weibell Distribution for \alpha=3, \beta=3", ylim=c(0,.5),xlab="Random Variable (x)") curve(dweibull(x, 3, scale=3), add=TRUE, col='red', lwd=1, text(5,.3, "Theoretical Distribution", col='red'))$

output:

PROBLEM #4 - COMPUTATIONAL

#4, part

code:

Weibell Distribution for $\alpha=1$, $\beta=1$

line 1

Weibell Distribution for α=3, β=1

Weibell Distribution for $\alpha=1$, $\beta=3$

Weibell Distribution for $\alpha=3$, $\beta=3$

Page 4 of 5

HW2- Stats Josh Miltier

```
lightbulbs=rexp(7500,rate=.75)
                mean(lightbulbs)
                sd(lightbulbs)
        output:
                1.327306 #mean
                1.343139 #standard deviation
        theoretical:
                1/\lambda = 1/.75 = 1.333 (repeating) or 4/3
#4, part b.
        code:
                sum(lightbulbs<=2)/7500
        line 1
        output:
                0.7792
        theoretical:
#4, part c.
```

code:

sum(lightbulbs>2)-sum(lightbulbs>4))/7500 line 1

output:

0.1738667

Just over 17% of the light bulbs will fail in between 2 to 4 years. This is expected as some bulbs will last longer than the mean, though the mean is at 1.3 years. And with a standard deviation of 1.3, the upper end of that spectrum is 2.6 years. So to last up to 4 years is impressive.