

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

14.7

پردازش تصویر در حوزه مکان

Image Processing in Spatial Domain

فيلترهاي هموارساز

• لبههای تصویر که در بسیاری از کاربردها نظیر تشخیص اشیاء در تصویر نقش مهمی دارند، توسط فیلترهای هموارساز خاصیت پلهای خود را از دست میدهند و این میتواند اثر نامطلوبی باشد

• می توان متوسط گیری را به صورت وزن دار انجام داد

	1	1	1		
$\frac{1}{9}$ ×	1	1	1		
	1	1	1		

$\frac{1}{16} \times$	1	2	1
	2	4	2
	1	2	1

فیلتر گاوسی

• می توان با نمونه برداری از توابع پیوسته کاربردی، فیلترهای مناسبی را بدست آورد

• تابع گاوسی:

$$G(s,t) = Ke^{-\frac{s^2+t^2}{2\sigma^2}} = Ke^{-\frac{r^2}{2\sigma^2}}$$

	0.3679	0.6065	0.3679	
$\frac{1}{4.8976} \times$	0.6065	1.0000	0.6065	
	0.3679	0.6065	0.3679	

مقایسه فیلتر گاوسی و جعبهای

نویز نمک و فلفل

- این نوع نویز برخلاف نویزهای بررسی شده، جمعشونده نیست
- فیلترهای هموارساز خطی نمی توانند این نوع نویز را به خوبی برطرف کنند
 - فیلترهای مرتبهای میتوانند عملکرد بهتری داشته باشند

فيلتر ميانه

• فیلتر میانه یک فیلتر غیرخطی است که بر اساس مرتبسازی پیکسلهای درون کرنل و جایگزینی مقدار میانه بجای پیکسل مرکزی عمل میکند

10	11	15	8	7						
7	10	50	12	10			11	12	12	
9	14	12	13	11			12	14	13	
10	16	14	15	14			11	13	12	
8	11	10	10	9						

فیلترهای تیزکننده

- برخلاف هموارسازی تصویر، اساس کار تیز کردن تصویر بر برجستهسازی جزئیات کوچک در تصویر است
 - از آنجائیکه متوسط گیری معادل با انتگرال گیری است، می توان نتیجه گرفت که تیز کردن تصویر را می توان توسط مشتق گیری که معادل با تفاضل است بدست آورد
 - بنابراین، لبهها و البته دیگر گسستگیها نظیر نویز نیز برجسته خواهند شد

• سری تیلور

$$f(x + \Delta x) = f(x) + \Delta x \frac{\partial f(x)}{\partial x} + \frac{(\Delta x)^2}{2!} \frac{\partial^2 f(x)}{\partial x^2} + \frac{(\Delta x)^3}{3!} \frac{\partial^3 f(x)}{\partial x^3} + \cdots$$

در تصویر x=1 است \bullet

$$f(x+1) = f(x) + \frac{\partial f(x)}{\partial x} + \frac{1}{2!} \frac{\partial^2 f(x)}{\partial x^2} + \frac{1}{3!} \frac{\partial^3 f(x)}{\partial x^3} + \cdots$$

$$f(x+1) \approx f(x) + \frac{\partial f(x)}{\partial x}$$

$$\frac{\partial f(x)}{\partial x} \approx f(x+1) - f(x)$$

• سری تیلور

$$f(x + \Delta x) = f(x) + \Delta x \frac{\partial f(x)}{\partial x} + \frac{(\Delta x)^2}{2!} \frac{\partial^2 f(x)}{\partial x^2} + \frac{(\Delta x)^3}{3!} \frac{\partial^3 f(x)}{\partial x^3} + \cdots$$

 $\Delta x = -1$ به ازای •

$$f(x-1) = f(x) - \frac{\partial f(x)}{\partial x} + \frac{1}{2!} \frac{\partial^2 f(x)}{\partial x^2} - \frac{1}{3!} \frac{\partial^3 f(x)}{\partial x^3} + \cdots$$

$$f(x-1) \approx f(x) - \frac{\partial f(x)}{\partial x}$$

$$\frac{\partial f(x)}{\partial x} \approx f(x) - f(x-1)$$

• سری تیلور

$$f(x + \Delta x) = f(x) + \Delta x \frac{\partial f(x)}{\partial x} + \frac{(\Delta x)^2}{2!} \frac{\partial^2 f(x)}{\partial x^2} + \frac{(\Delta x)^3}{3!} \frac{\partial^3 f(x)}{\partial x^3} + \cdots$$

 $\Delta x = -1$ از $\Delta x = +1$

$$f(x+1) - f(x-1) = 2\frac{\partial f(x)}{\partial x} + \frac{2}{3!}\frac{\partial^3 f(x)}{\partial x^3} + \cdots$$

$$f(x+1) - f(x-1) \approx 2 \frac{\partial f(x)}{\partial x}$$

$$\frac{\partial f(x)}{\partial x} \approx \frac{f(x+1) - f(x-1)}{2}$$

• سری تیلور

$$f(x + \Delta x) = f(x) + \Delta x \frac{\partial f(x)}{\partial x} + \frac{(\Delta x)^2}{2!} \frac{\partial^2 f(x)}{\partial x^2} + \frac{(\Delta x)^3}{3!} \frac{\partial^3 f(x)}{\partial x^3} + \cdots$$

• مشتق مرتبه ۲

$$f(x+1) + f(x-1) = 2f(x) + \frac{2}{2!} \frac{\partial^2 f(x)}{\partial x^2} + \cdots$$

$$f(x-1) + f(x-1) \approx 2f(x) + \frac{\partial^2 f(x)}{\partial x^2}$$

$$\frac{\partial^2 f(x)}{\partial x^2} \approx f(x+1) + f(x-1) - 2f(x)$$

• تصویر یک سیگنال دوبعدی است که مشتق آن نسبت به هر جهت قابل محاسبه است

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x-1,y)}{2}$$

$$\frac{\partial f(x,y)}{\partial y} \approx \frac{f(x,y+1) - f(x,y-1)}{2}$$

$$\frac{\partial^2 f(x,y)}{\partial x^2} \approx f(x+1,y) - 2f(x,y) + f(x-1,y)$$

$$\frac{\partial^2 f(x,y)}{\partial y^2} \approx f(x,y+1) - 2f(x,y) + f(x,y-1)$$

لاپلاسین تصویر

$$\Delta^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\Delta^2 f(x,y) \approx f(x,y+1) - 2f(x,y) + f(x,y-1) + f(x+1,y) - 2f(x,y) + f(x-1,y)$$

- نمایش کرنلی
- می توان مشتق در جهتهای قطری را نیز اضافه کرد

0	1	0		
1	-4	1		
0	1	0		

1	1	1		
1	-8	1		
1	1	1		

لاپلاسين تصوير

$$\Delta^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- لاپلاسین تغییرات شدت روشنایی را برجسته می کند
- تقویت پیکسلهایی که تغییرات دارند موجب تیز شدن تصویر میشود $g(x,y)=f(x,y)+c\ \Delta^2 f(x,y)$

