Intro to IT Security

CS306C-Fall 2022

Prof. Antonio R. Nicolosi

Antonio.Nicolosi@stevens.edu

Networking Background

Lecture 9 3 November 2022

Networking Background

- What is a network
- Types of networks
- Network models/network operations

What is a Network

At least two points of view:

- End-system centric view
- Infrastructure centric view

End-System Centric View

Network is seen as communication medium

- What differentiates different type of networks
 - Latency
 - Bandwidth
 - Loss rate
 - Number of end systems
 - Interface
- Security issues
 - Authentication, Confidentiality, Anonymity, Integrity

Infrastructure Centric View

Network is seen as system of several components

- Network components
 - Links: cable, optical fiber, wireless (802.11), microwave (802.16), infrared, satellite
 - Interfaces
 - · hardware / software
 - Hosts/End-Points
 - · PCs, PDAs, cellphones, laptops
 - Everything else
 - · Routers, switches, HUB, bridges, modem, ...
- Protocols: rules governing data movements
 - TCP/IP, HTTP, SMTP, IMAP
 - Operate at different level of abstractions (layers)
- Security issues
 - Authentication, Confidentiality, Integrity

Infrastructure Centric View

Network is seen as system of several components

- Network components
 - Links: cable, optical fiber, wireless (802.11), microwave (802.16), infrared, satellite
 - Interfaces
 - · hardware / software
 - Hosts/End-Points
 - · PCs, PDAs, cellphones, laptops
 - Everything else
 - · Routers, switches, HUB, bridges, modem, ...
- Protocols: rules governing data movements
 - TCP/IP, HTTP, SMTP, IMAP
 - Operate at different level of abstractions (layers)
- Security issues
 - Authentication, Confidentiality, Integrity

Infrastructure Centric View

Network is seen as system of several components

- Network components
 - Links: cable, optical fiber, wireless (802.11), microwave (802.16), infrared, satellite
 - Interfaces
 - · hardware / software
 - Hosts/End-Points
 - · PCs, PDAs, cellphones, laptops
 - Everything else
 - · Routers, switches, HUB, bridges, modem, ...
- Protocols: rules governing data movements
 - TCP/IP, HTTP, SMTP, IMAP
 - Operate at different level of abstractions (layers)
- Security issues
 - Authentication, Confidentiality, Integrity

Types of Networks

- Local Area Network (LAN)
 - Small
 - Locally Controlled
 - Physically protected
 - Limited scope (supports a single group)

Types of Networks

- Local Area Network (LAN)
 - Small
 - Locally Controlled
 - Physically protected
 - Limited scope (supports a single group)
- Wide Area Network (WAN)
 - Single control (many subscribers, one organization)
 - Covers a significant distance
 - Physically exposed
- Internet
 - Federation of networks
 - Controlled by the Internet Society (ISOC) and the Internet Corporation for Assigned Names and Numbers (ICANN)
 - Heterogeneous
 - Enormous
 - Physically and logically exposed

Types of Networks

- Local Area Network (LAN)
 - Small
 - Locally Controlled
 - Physically protected
 - Limited scope (supports a single group)
- Wide Area Network (WAN)
 - Single control (many subscribers, one organization)
 - Covers a significant distance
 - Physically exposed
- Internet
 - Federation of networks
 - Controlled by the Internet Society (ISOC) and the Internet Corporation for Assigned Names and Numbers (ICANN)
 - Heterogeneous
 - Fnormous
 - Physically and logically exposed

Protocol Stack

- Protocols allow to view the network at an abstract level of communication
 - Details of how the communication is accomplished are hidden with software and hardware at both ends
- Protocol stack: a layered architecture for communication
 - Open Systems Interconnection (OSI)
 - Transmission Control Protocol and Internet Protocol (TCP/IP)

- ISO: International Standard Organization
- The ISO OSI model consists of 7 layers

Physical Communication Medium

- Layers represents the different activities that must be performed for actual transmission of a message
- Equivalent layers perform similar functions for the sender and the receiver
- Each layer passes data
 - Above: with a layer communicating more abstractly
 - Across (conceptually): to the same layer at another host
 - Below: with a layer handling less abstract data

Drof Antonio D Nicologi

- Application: User-level data
- Presentation: Standardized data appearance, separation in blocks, text compression
- Session: Bundling of logically connected upper-layer units
- Transport
 - Flow control
 - End-to-end error detection and correction
- Network
 - Routing
 - Breaks message into uniformly sized packets
- Data Link
 - Reliable data delivery
 - Transmission error recovery
 - Breaks packets into uniformly sized frames
- Physica

Lastina O /2 Navianshar 2022)

- Actual communication across physical medium
- Individual bit transmissior

- Application: User-level data
- Presentation: Standardized data appearance, separation in blocks, text compression
- Session: Bundling of logically connected upper-layer units
- Transport
 - Flow control
 - End-to-end error detection and correction
- Network
 - Routing
 - Breaks message into uniformly sized packets
- Data Link
 - Reliable data delivery
 - Transmission error recovery
 - Breaks packets into uniformly sized frames
- Physical
 - Actual communication across physical medium
 - Individual bit transmissior

- · Application: User-level data
- Presentation: Standardized data appearance, separation in blocks, text compression
- Session: Bundling of logically connected upper-layer units
- Transport
 - Flow contro
 - End-to-end error detection and correction
- Network
 - Routing
 - Breaks message into uniformly sized packets
- Data Link
 - Reliable data delivery
 - Transmission error recovery
 - Breaks packets into uniformly sized frames
- Physical
 - Actual communication across physical medium
 - Individual bit transmission

- Application: User-level data
- Presentation: Standardized data appearance, separation in blocks, text compression
- Session: Bundling of logically connected upper-layer units
- Transport
 - Flow control
 - End-to-end error detection and correction
- Network
 - Routing
 - Breaks message into uniformly sized packets
- Data Link
 - Reliable data delivery
 - Transmission error recovery
 - Breaks packets into uniformly sized frames
- Physical
 - Actual communication across physical medium
 - Individual bit transmission

- Application: User-level data
- Presentation: Standardized data appearance, separation in blocks, text compression
- Session: Bundling of logically connected upper-layer units
- Transport
 - Flow control
 - End-to-end error detection and correction
- Network
 - Routing
 - Breaks message into uniformly sized packets
- Data Link
 - Reliable data delivery
 - Transmission error recovery
 - Breaks packets into uniformly sized frames
- Physical
 - Actual communication across physical medium
 - Individual bit transmission

- · Application: User-level data
- Presentation: Standardized data appearance, separation in blocks, text compression
- Session: Bundling of logically connected upper-layer units
- Transport
 - Flow control
 - End-to-end error detection and correction
- Network
 - Routing
 - Breaks message into uniformly sized packets
- Data Link
 - Reliable data delivery
 - Transmission error recovery
 - Breaks packets into uniformly sized frames
- Physical
 - Actual communication across physical medium
 - Individual bit transmission

- Application: User-level data
- Presentation: Standardized data appearance, separation in blocks, text compression
- Session: Bundling of logically connected upper-layer units
- Transport
 - Flow control
 - End-to-end error detection and correction
- Network
 - Routing
 - Breaks message into uniformly sized packets
- Data Link
 - Reliable data delivery
 - Transmission error recovery
 - Breaks packets into uniformly sized frames
- Physical
 - Actual communication across physical medium
 - Individual bit transmission

Example: Sending an Email

L7 Application

- Composing an email happens at the application layer (bob@example.com)
- At this level of abstraction, network is the medium that allow to reach Bob at his email address.

16 Presentation

- Raw text modified to prepare it for transmission (e.g., compression, encryption)

L5 Session: N/A (no interaction)

L4 Transport

- Add error detection and correction coding

Example: Sending an Email

L3 Network: Router sends the message from Alice's network to Bob's network

Packet: Data + Source Address + Destination Address

Example: Sending an Email

- L2 Data Link: Move message from Alice's computer to Alice's router
 - NIC: Network Interface Card
 - Every computer connected to the network has a NIC with a unique physical address: Media Access Control (MAC)
 - Frame: Data (Packet) + Source MAC + Destination MAC

L1 Physical: Actual bits are sent (over e.g. WiFi, optic fibers, copper wire, ...)

TCP/IP protocol

TCP/IP (Transmission Control Protocol/Internet Protocol)

Four layers (a.k.a. PITA)

L4 **Application**: Prepare msg from user interaction

L3 Transport: Convert msg to packets

L2 Internet: Convert packet to datagrams

L1 Physical: Transmit datagrams as individual bits

ecture 9 (3 November 202

Prof Antonio P Nicolos

Overview of TCP

Transmit segments

- Full duplex, connection-oriented byte stream
- Flow control
 - If one end stops reading, writes at other eventually block/fail
- Congestion control
 - Keeps sender from overrunning network

TCP Segment

 $\begin{smallmatrix} 0 & & & 1 & & 2 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 \\ \end{smallmatrix}$

source port			destination port	
sequence number				
acknowledgment number				
data offset	reserved	UAPRSF RCSSYI GKHTNN	Window	
	checksu	m	urgent pointer	
options				padding
data				

TCP Fields

- Ports
- Seq no.: segment position in byte stream
- Ack no.: seg no. sender expects to receive next
- Data offset: num. of 4-byte header & option words
- Window: willing to receive (flow control)
- Checksum
- Urgent pointer

TCP Flags

- URG: urgent data present
- ACK: ack no. valid (all but first segment)
- PSH: push data up to application immediately
- RST: reset connection
- SYN: "synchronize" establishes connection
- FIN: close connection

Connection Establishment

- Need SYN packet in each direction
 - Typically second SYN also acknowledges first
 - Supports "simultaneous open", seldom used in practice
- If no program listening: server sends RST
- If server backlog exceeded: ignore SYN
- If no SYN-ACK received: retry, timeout

Sending Data

- Segments may arrive out of order
 - Sequence number used to reassemble in order
- Window achieves flow control
 - If window 0 and sender's buffer full, write will block

Sliding Window

- Used to guarantee reliable & in-order delivery
- Also used for flow control
 - Instead of fixed window size, receiver sends AdvertisedWindow

Retransmission

- TCP dynamically estimates round trip time
- If segment goes unacknowledged, must retransmit
- Use exponential backoff (in case loss from congestion)
 - Additive increase and multiplicative decrease
- After ≈10 minutes, give up and reset connection
- Many optimizations in TCP
 - E.g., Don't necessarily halt everything for one lost packet
 - Just reduce window by half, then slowly augment

Security Issues in TCP/IP

- Network packets pass by untrusted hosts
 - Eavesdropping (packet sniffing/snooping)
- IP addresses are public
 - Smurf attacks
- TCP connection requires state
 - SYN flooding
- TCP state is easy to guess
 - TCP spoofing and connection hijacking

Packet Sniffing

- Many applications send data unencrypted
 - ftp, telnet, SMTP with auth=plain send passwords in the clear
- Network interface card (NIC) in "promiscuous mode" reads all passing data
- Solution: encryption (e.g., IPSec), improved routing

ecture 9 /3 November 20

Brof Antonio B Nicolos

DoS Attacks

- In Feb. 2000, Yahoo's router kept crashing
 - Engineers had problems with it before, but this was worse
 - Turned out they were being flooded with ICMP echo replies
 - Many DDoS attacks followed against high-profile sites
- Basic Denial of Service attack
 - Overload a server or network with too many packets
 - Maximize cost of each packet to server in CPU and memory
- Distributed DoS (DDos) particularly effective:
 - Penetrate many machines in semi-automatic fashion
 - Make hosts into "zombies" that will attack on command
 - Later start simultaneous widespread attacks on a victim

Smurf Attack

- Yahoo attack was a "smurf attack"
 - Penetrated hosts on well-connected networks
 - Flooded LAN with broadcast pings "from" Yahoo
 - Every host on LAN then replied to Yahoo
 - Attack was amplified through uncompromised hosts
- Can tolerate above by filtering packets
 - Ignore all ICMP echo replies from particular addresses
 - Attack still had to be traced to stop waste
 - But attack packets could be distinguished from most legitimate traffic

The SYN-Flooding Attack

The SYN-Flooding Attack

- TCP handshake:
 - $C \rightarrow S$: SYN, $S \rightarrow C$: SYN-ACK, $C \rightarrow S$: ACK
- How to implement:
 - Server inserts connection state in a table
 - Waits for 3rd packet (times out after a minute)
 - Compares each new ack packet to existing connections
- OS can't handle arbitrary # partial connections
- Attack: Send SYN packets from bogus addresses
 - SYN-ACKs will go off into the void
 - Server's tables fill up, stops accepting connections
 - A few hundred pkts/sec completely disables most servers

Other Attacks

- IP Fragment flooding
 - Kernel must keep IP fragments around for partial packets
 - Flood it with bogus fragments, as with TCP SYN bomb
- UDP echo port 7 replies to all packets
 - Forge packet from port 7, two hosts echo each other
 - Has been fixed in most implementations
- Standard flooding attacks
 - Just flood-ping any site
 - Or bombard DNS server with requests

TCP Connection Spoofing

- TCP connection has an associated state
 - Sequence number, port number
- TCP state is easy to guess
 - Port numbers are standard, sequence numbers are often predictable
 - Can inject packets into existing connections
- If attacker knows initial sequence number and amount of traffic, can guess a likely current number
 - Send a flood of packets with likely sequence numbers

acture 9 /3 November 202

Dref Antonio D Nicola

Making Attacks Hard to Stop

- Make DoS traffic indistinguishable from legitimate traffic
 - SYN-bomb ideal, DNS service good
 - Flood-ping at least can be filtered anywhere upstream
- Make source of attack hard to trace
 - Victims need to trace attack and pull the plug
 - Can forge source IP address so packet origin not obvious
 - Most DoS tools use a random address for each packet

Coping with Denial of Service

- Engineering OSes to tolerate attacks
 - Reduce state required for embryonic TCP connections
 - Increase size of hash table for protocol control blocks
 - Use "SYN-cookies" which don't fill up the gueue until the last ack returns
 - Cryptographic puzzles—make the client perform a certain amount of work before starting the connection
- Network monitoring box
 - Passively monitors network
 - Uses heuristics to detect SYN bomb attacks (e.g., traffic patterns w. invalid source addresses)
 - Monitor engineered to keep little state
 - Send out forged RST packets to free resources on victim

Egress Filtering

- Forged addresses complicate shutting off DoS
 - Where is flood of packets coming from?
- Filter forged outgoing packets
 - Sites should block outgoing packets not from their network
 - ISPs should block packets not from customer's network
- But still need to detect and shut down attacks
- And most attackers can find non-filtered networks anyway

Input Debugging

- Some routers can trace output to input
 - Develop attack signature to classify bad packets
 - Router tells you which input port they are from
- Of course, only router administrator can do this
- Must continue on to upstream routers, in other realms
- Not all routers have this capability