Foundations of Elliptic Curves Cryptosystems

Gianluca Dini

Dept. of Ingegneria dell'Informazione

University of Pisa

Email: gianluca.dini@unipi.it

Version: 2022-05-01

1

ECC in a nutshell

- Mid-1980s
- Same level of security of RSA and DL-system with considerably shorter operands
 - 160 256-bit vs 1024 3072 bit
- GDLP in ECC
 - DHKE and DL-systems can be redefined in ECCs
- Performance advantages over RSA and DL-systems
 - However, RSA with short public parameter is faster than ECC

May-22

Foundations of Elliptic Curves Cryptosystem

2

Elliptic Curves Cryptosystem

HOW TO COMPUTE WITH ECC

May-22

oundations of Elliptic Curves Cryptosysten

3

3

How to Compute with ECC

- ECC is based on GDLP, so we have to accomplish two tasks
 - Task 1: Define an elliptic-curve-based cyclic group
 - Task 1.1: Define a set of elements
 - Task 1.2: Define the group operations
 - Task 2: Show that DLP is hard in that group

May-22

Foundations of Elliptic Curves Cryptosystem

4

Polynomials and curves

- We can form curves from polynomial equations
 - A curve is the set of points (x, y) which are the solutions of the equations
- Examples (in ℝ)
 - $-x^2 + y^2 = r^2$ is a circle
 - $-a \cdot x^2 + b \cdot y^2 = c$ is an ellipse

May-22

Foundations of Elliptic Curves Cryptosysten

5

5

ECC – definition

- We consider $GF(p) = \{0, 1, ..., p-1\}$
 - Intuitively, GF is a finite set where you can add, subtract, multiply and invert
- Definition
 - The elliptic curve over \mathbb{Z}_p , p > 3, is the set of points $(x,y)\in\mathbb{Z}_p$ which fulfils

$$y^2 \equiv x^3 + a \cdot x + b \bmod p$$

- together with an imaginary point of infinity \mathcal{O} , where $a, b \in \mathbb{Z}_p$, and $4 \cdot a^3 + 27 \cdot b^2 \neq 0 \mod p$
 - The curve is non-singular (no vertices, no self-intersections)

May-22

Foundations of Elliptic Curves Cryptosystem

6

Group elements (task 1.1)

- Plotting in $\ensuremath{\mathbb{R}}$ for the sake of illustration
- Observations
 - 1, 3 intersections with x axis
 - Symmetric with respect to x axis
- Task 1.1 solved
 - Group elements are the points of the curve

$$y^2 = x^3 - 3x + 3$$
 over \mathbb{R}

May-22

Foundations of Elliptic Curves Cryptosystem

7

7

Group operations (task 1.2)

• We call "addition" the group operation and denote it by "+" an operation that takes two points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ and produces a third point $R = (x_3, y_3)$ as a result

$$P + Q = R$$

- Geometrical interpretation of + in $\ensuremath{\mathbb{R}}$
 - Point Addition P + Q, Q \neq P
 - Point Doubling P + P

May-22

Foundations of Elliptic Curves Cryptosystem

Group operations (task 1.2)

• Geometrical interpretation of "+" operation: the tangent-and-chord method

Point addition

Point doubling

May-22

Foundations of Elliptic Curves Cryptosystem

9

Group operations (task 1.2)

- Geometrical interpretation of +
 - The tangent-and-chord method only uses the four standard operations
- FACT
 - If addition + is defined this way, the group points fulfil most of necessary conditions of a group: closure, associativity, existence of an identity element and existence of an inverse

May-22

Foundations of Elliptic Curves Cryptosystem

10

Group operations (task 1.2)

- Analytic expressions of Point Addition and Point Doubling
 - $-x_3 \equiv s^2 x_1 x_2 \bmod p$
 - $-y_3 \equiv s \cdot (x_1 x_3) y_1 \bmod p$

where

- $-s \equiv \frac{y_2 y_1}{x_2 x_1} \mod p$ if $P \neq Q$ (point addition)
- $-s \equiv \frac{3 \cdot x_1^2 + a}{2 \cdot y_1} \mod p$ if P = Q (point doubling)
- with s the slope of chord/tangent

May-22

Foundations of Elliptic Curves Cryptosyster

11

11

Point at infinity (task 1.2)

- An identity (neutral) element ${\cal O}$ is still missing
 - $\forall P \in E : P + \mathcal{O} = P$
- There exists not such a point on the curve
- Thus, we define $\mathcal O$ as the point at infinity
 - Located at "plus" infinity towards the y-axis or at "minus" infinity towards the y-axis
- Now, we also define -P (inverse) $P + (-P) = \mathcal{O}$

May-22

Foundations of Elliptic Curves Cryptosystem

12

Group operations (task 1.2)

- Inverse of a point P on an elliptic curve
 - Apply the tangent-and-chord method
- In ECC over GF(p)
 - Given P = (x, y) then -P = (x, p y)

May-22

oundations of Elliptic Curves Cryptosyster

13

13

Elliptic Curves Cryptosystem

BUILDING DLP ON EC

May-22

Foundations of Elliptic Curves Cryptosystem

14

A useful theorem

- THM
 - The points on an elliptic curve together with $\ensuremath{\mathfrak{O}}$ have cyclic subgroups. Under certain conditions all points on an elliptic curve form a cyclic group
 - A primitive element must exist such that its powers generate the entire group

May-22

Foundations of Elliptic Curves Cryptosystem

15

Example (1/2)

- E: $y^2 \equiv x^3 + 2 \cdot x + 2 \mod 17$
 - #E (order of E) = 19
 - P = (5, 1) primitive element
 - "Powers" of P

TOWERS OF T		
•	2P = (6, 3) – point doubling	11P = (13, 10)
•	3P = (10, 6) – point addition 2P + P	12P = (0, 11)
•	4P = (3, 1)	13P = (16, 4)
•	5P = (9, 16)	14P = (9, 1)
•	6P = (16, 13)	15P = (3, 16)
•	7P = (0, 6)	16P = (10, 11)
•	8P = (13, 7)	17P = (6, 14)
•	9P = (7, 6)	18P = (5, 16)

• 10P = (7, 11)

 $19P = \mathfrak{O} = \#E \cdot P$

May-22

Foundations of Elliptic Curves Cryptosystem

Example (2/2)

- The cyclic structure becomes visible
 - -20 P = 19P + P = O + P = P
 - -21P = 19P + 2P = 2P
 - **–** ...
- Furthermore
 - 19P = O, thus 18P + P = O, then18P is the inverse of P and vice versa
 - Verification
 - P = (5, 1), 18P = (5, 16)
 - $x_p = x_{18P} = 5$
 - $y_p + y_{18p} \equiv 0 \mod 17$

May-22

Foundations of Elliptic Curves Cryptosystem

17

17

Hasse's Theorem

- Hasse's theorem
 - Given an elliptic curve E modulo p, the number of points on the curve is denoted by #E and is bounded by:

$$p+1-2\sqrt{p} \leq \#E \leq p+1+\sqrt{p}$$

- The number of points is roughly in the range of p (Hasse's bound)
- Example If you need an EC with 2¹⁶⁰ points, you have to use a prime p of about 160 bit

May-22

Foundations of Elliptic Curves Cryptosystem

18

ECDLP - point multiplication

- Elliptic Curve Discrete Logarithm Problem (ECDLP)
 - Given is an elliptic curve E. We consider a primitive element P and another element T. The DL problem is finding the integer d, where 1 ≤ d ≤ #E, such that:

$$P + P + \dots + P = d \cdot P = T$$
d times

- d is the private key, T is the public key
- − Point multiplication $\stackrel{\text{def}}{=}$ T = d·P

May-22

Foundations of Elliptic Curves Cryptosystem

19

19

Square-and-multiply

- Point multiplication is analogue to exponentiation in multiplicative groups $(\mathbb{Z}_{p}^{*},\times)$
- We can adopt the square-and-multiply algorithm
- Example

```
- 26P = (11010)_2P = (d_4d_3d_2d_1d_0)2P
```

Step

```
• #0 P = 1P
                                                      init setting, bit processed: d<sub>4</sub>= 1
• #1a P+P = 2P = 10P
                                                      DOUBLE, bit processed: d<sub>3</sub>
• #1b 2P+P = 3P = 10P+1P = 11P
                                                      ADD, since d_3 = 1
• #2a 3P+3P = 6P = 2(11P) = 110P
                                                      DOUBLE, bit processed: d<sub>2</sub>.
• #2b
                                                      no ADD, since d_2 = 0
• #3a 6P+6P = 12P = 2(110P) = 1100P
                                                      DOUBLE, bit processed: d<sub>1</sub>
• #3b 12P+P = 13P = 1100P+1P = 1101P
                                                      ADD, since d_1 = 1
• #4a 13P+13P = 26P = 2(1101P) = 11010P DOUBLE, bit processed: d<sub>0</sub>
• #4b
                                                      no ADD, since d_0 = 0
```

May-22

Foundations of Elliptic Curves Cryptosystem

20

EC Cryptosystem

- · Private key: d
- Public key: T
- Geometrical interpretation of ECDLP
 - Given P, we compute 2P, 3P,..., $d \cdot P = T$, we actually jump back and forth on the EC
 - Given the starting point P and the final point T (public key), the adversary has to figure out how often we "jumped" on the EC

May-22

Foundations of Elliptic Curves Cryptosystem

21