Potentialgleichung

- $\triangle u = 0$
 - Lösung dieser Gleichung kommt mit zweiter Funktion v
 - * v erfüllt ebenso Gleichung
 - * v heißt konjugiert harmonische Funktion
 - * v ist mit u über CR-Gleichungen verbunden
 - bzw. f(x + iy) = u(x, y) + iv(x, y)
 - jede Lösung ergibt quellenfreies Gradientenfeld grad(u)
 - * grad(u) senkrecht auf $grad(v) \le grad(u)$, grad(v) > 0
 - * Äquipotentiallinien (Niveaulinien) von u und v senkrecht aufeinander
 - ullet außer grad(v)=grad(u)=0

Bestimmen von v(x,y)

• Gradientenfeld gegeben ==> v(x,y) als Integral

- - * $u_{xx} = u_{yy}$
- $-u_x=v_y$
- $-u_{y}=-v_{x}$
- Beispiel WTF?

Randwertaufgabe

Poissonsche Integralformel

- sei g: $[0, 2\pi]$ -> eine Funktion
 - $u(rcos(\varphi),rsin(\varphi))=\frac{1}{2\pi}\int_0^{2\pi}g(t)\frac{1-r^2}{1-2rcos(t-\varphi)+r^2}dt$
 - Lösung der Potentialgleichung $\triangle u = 0$ mit

Beispiel

Fourier-Reihe

- sei g: *I*->
 - I ... Intervall der Länge 2π
 - Koeffizienten

*
$$\alpha_0 = \frac{1}{2\pi} \int_I g(t) dt$$

*
$$\alpha_n = \frac{1}{\pi} \int_I g(t) cos(nt) dt$$

*
$$\beta_n = \frac{1}{\pi} \int_I g(t) sin(nt) dt$$

• wenn Reihe konvergiert, dann gilt in allen Stetigkeitspunkten von g

–
$$g(\varphi) = \alpha_0 + \sum_{n=1}^{\infty} (\alpha_n cos(n\varphi) + \beta_n sin(n\varphi))$$

- · Lösung der Potentialgleichung

• Beispiele:

[[Komplexe Kurvenintegrale]]