2018-11-26 Exponential Population Growth (2.2.2)

2.2.2 Exponential Population Growth

Assumption: Population reproduces at specific times of the year

β= babies born per individual each season (per capita birth rate)

 μ = probability of dying between one season and the next

 N_k = number of individuals at the start of the k^{th} breeding season

1) Find a Difference Equation for Nk?

 $N_{k+1} = N_k - (N_k * \mu) + (N_k * \beta)$ (Correct because it is per capita) -this assumes all the newborns are alive. We add the beta term because babies do not reproduce.

(OR)

$$N_k = (1-\mu) N_{k-1} + \beta$$

if we assume newborns die as well we can use $N_k = N_{k-1} (1 + \beta)(1 - \mu)$

2) a) Based on your DE, what happens if $\beta > \mu$?

- b) Based on your DE, what happens if $\beta < \mu$?
 - a) when $\beta>\mu$, population will increase

$$N_{k+1} = N_k - (N_k * \mu) + (N_k * \beta)$$
 -> $N_{k+1} = N_k * (1 - \mu + \beta)$ -> $1 - \mu + \beta$ is positive (birth > deaths)

b) when $\beta < \mu$, population will decrease

1- μ +β is negative (deaths > birth)

2.2.3 Death Rate

Consider the following:

P(k) = probability that an individual born at k = 0 is alive at time k (at the end of kth season)

3) What is the probability of dying between time (k-1) and k?

- a. Find an expression that uses μ ?
- b. Find an expression that does not use μ ?

Note: The expressions found in a) and b) are equal.

a) Probability(alive at k-1 and die next season)

```
= Probability(alive at k-1) *P(die next season)
=P(k-1)*μ
P(alive at k-1) is P(k-1)
P(die next season) is μ, not 1-P(k) or 1-μ
```

It is P(k-1) - P(k) because P(k) should be decreasing, therefore, P(k-1) > P(k), and probability is a number between 0 and 1. This is because you have to be alive at P(k-1) in order to be alive at P(k), but not the other way around.

Example:

K = 75 P(74) - P(75) 30% 25%

If we assume 100 people, we will expect 30 of us to live to age 74 and 5 of us will die between ages 74 to 75. 25 of us will live to age 75.