Aerial-robot HW5 A071549 莊詠翔

Table of Contents	
 Aerial-robot HW5 A071549 莊詠翔 Table of Contents github Question1 Question Answer Question2 Question 	
github	
HW5 LINK (https://github.com/studennis911988/Robotics-Aerial-Robots/tree/master/Homework5)	
Question1	ρ
Question	Q
Given a set of 50 input data and output data, please find the ideal linear regre (40%)	ession model!
Answer	
1. Code (The code is on github)	
 A simple python script for linear regression model. I first convert the excel file to csv file and separate the input and output categories. Second, we solve the curve fitting problem by ceres solver a coefficients from the optimization results. run the code 	•
 roscore rosrun HW5_1 hw5_1 path_to_HW5-1.csv 	
2. Results	
• The coefficients are 0.2 for input variable 1 and 0.3 for input variable 2, to output is equal to 0.2input1 + 0.3input2 (i.e. output = 0.2input1 + 0.3input2)	ut2)
dennts@dennts-H97M-D3H:~/ROS/aertal_robots_ws\$ rosrun HWS hw5_1 /home/dennts/ROS/aertal_robots_ws/. tler cost cost_change gradtent step tr_ratio tr_radius ster ter_time tr 0	5.24e-04 1.12e-03 1.53e-03 1.90e-03 2.26e-03 don: CONVERGENCE
 The cost start from 1.8e+5 and converge to 8.6e-16 with 5 iterations. Question2 	D
4 4000.0	ρ
Question	Q
Given the Inertial frame and body-fixed frame on a UAV with their axes initiall their z axes are pointing upward (opposite to the direction of the gravity), plea attitude trajectory of the UAV (i.e.,) given the measurement of the accelerom stored in the excel file. The magnitude of the gravity is 9.8 pointing to -z axis	ase find the eter of SI unit

frame. (60%)

1. Code (The code is on github)

• A simple python script for linear regression model. I first convert the excel file to **csv file** and by simply using "FromTwoVectors" function from Eigen library. Finally I log the result data and **plot with matlab**.

Q

- · run the code
 - 1. roscore
 - 2. rosrun HW5_2 hw5_2 path_to_HW5-2.csv

2. Results

• I provide two representation of the attitude of the drone, quaternion and euler angle.

```
quaternion (w,x,y,z) = (0.999961,0.00787402,0.00388501,0) euler, roll: = 0.902326, pitch: 0.445246, yaw: 0.00350608 quaternion (w,x,y,z) = (0.999846,0.0157877,0.00768825,0) euler, roll: = 1.80937, pitch: 0.880907, yaw: 0.0139107 quaternion (w,x,y,z) = (0.999653,0.0237396,0.0114072,0) euler, roll: 0.00144072,0) euler, roll: 0.00144072,0) euler, roll: 0.00144072,0)
quaternion (w,x,y,z) = (0.999846,0.0157877,0.00768825,0)
euler, roll: = 1.80937, pitch: 0.880907, yaw: 0.0139107
quaternion (w,x,y,z) = (0.999653,0.0237396,0.0114072,0)
euler, roll: = 2.72114, pitch: 1.30682, yaw: 0.0310396
quaternion (w,x,y,z) = (0.999383,0.0317282,0.0150416,0)
euler, roll: = 3.63762, pitch: 1.72284, yaw: 0.0547128
quaternion (w,x,y,z) = (0.999037,0.039752,0.0185909,0)
euler, roll: = 4.55881, pitch: 2.1288, yaw: 0.0847446
quaternion (w,x,y,z) = (0.998613,0.0478097,0.0220542,0)
euler, roll: = 5.48468, pitch: 2.52453, yaw: 0.120943
quaternion (w,x,y,z) = (0.998112,0.0558997,0.0254308,0)
euler, roll: = 6.41519, pitch: 2.9099, yaw: 0.163111
quaternion (w,x,y,z) = (0.997535,0.0640206,0.0287199,0)
euler, roll: = 7.35032, pitch: 3.28474, yaw: 0.211042
quaternion (w,x,y,z) = (0.996881,0.0721709,0.0319207,0)
euler, roll: = 8.29002, pitch: 3.64891, yaw: 0.323347
quaternion (w,x,y,z) = (0.996151,0.0803491,0.0350326,0)
euler, roll: = 9.23424, pitch: 4.00224, yaw: 0.323347
quaternion (w,x,y,z) = (0.995344,0.0885539,0.0380547,0)
euler, roll: = 10.1829, pitch: 4.3446, yaw: 0.387277
quaternion (w,x,y,z) = (0.993502,0.105037,0.0409862,0)
euler, roll: = 11.136, pitch: 4.67585, yaw: 0.456084
quaternion (w,x,y,z) = (0.993502,0.105037,0.0438263,0)
euler, roll: = 12.0933, pitch: 4.99582, yaw: 0.529528
quaternion (w,x,y,z) = (0.993502,0.105037,0.0465743,0)
euler, roll: = 13.0549, pitch: 5.3044, yaw: 0.607364
quaternion (w,x,y,z) = (0.991357,0.121608,0.0492294,0)
euler, roll: = 14.0206, pitch: 5.60143, yaw: 0.689335
quaternion (w,x,y,z) = (0.99017,0.129924,0.0517907,0)
euler, roll: = 14.0206, pitch: 5.8868, yaw: 0.77518
          euler, roll: = 14.0206, pitch: 5.60143, yaw: 0.689335
quaternion (w,x,y,z) = (0.99017,0.129924,0.0517907,0)
euler, roll: = 14.9904, pitch: 5.8868, yaw: 0.77518
```

• In order to visualize the attitude, I assumed that each IMU data comes in 0.05sec, and that results in 5 secs timespan.

tags: Aerial-robot