Funciones

Álgebra y Geometría I (LM, PM, LF, PF, LCC)

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

31 de mayo de 2021

Definiciones Basicas

Dados A y B conjuntos no vacíos, una función de A en B es una relación de A en B que verifica que cada elemento de A es primera componente de exactamente un par ordenado de la relación. Lo notamos $f:A\to B$ En otras palabras

Definición

la relación f de A en B es función si:

- 1. Para cada $a \in A$ existe $b \in B$ tal que (a, b) está en la relación.
- 2. No puede haber dos pares (a, b_1) y (a, b_2) con $b_1 \neq b_2$ en la relación.

Podemos escribir f(a) = b para indicar que la *imagen* de $a \in A$ es el elemento $b \in B$. Como la función f es una relación de A en B, es un subconjunto de $A \times B$. Diremos que el dominio de f es A y el codominio de f es B.

Escribimos Dom(f) y Codom(f) respectivamente.

Ejemplo

Eiemplo

- Si $A = \{1,2,3\}$ y $B = \{w,x,y,z\}$ sea $f = \{(1,w),(2,x),(3,x)\}$ Notemos que f cumple con las condiciones para ser función. Podemos escribir $f: A \to B$ con f(1) = w, f(2) = x y f(3) = x. En este caso $f(A) = \{w,x\}$. Cuantas funciones distintas se pueden definir de A en B?
- ▶ $f: \mathbb{R} \to \mathbb{R}$ tal que f(x) = 3x + 7
- ▶ $g: \mathbb{R} \to \mathbb{R}$ tal que g(x) = |x|

Función inyectiva

Decimos que una función $f:A\to B$ es inyectiva si cada elemento de B es segunda componente de a lo sumo un par ordenado de la relación.

$$f$$
 es inyectiva si $\forall a_1, a_2 \in A$, $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$.

Ejemplo

- ▶ En el ejemplo anterior f(2) = f(3) y por lo tanto f NO inyectiva
- ▶ $f : \mathbb{R} \to \mathbb{R}$ tal que f(x) = 3x + 7 es inyectiva: $f(x_1) = f(x_2) \Rightarrow 3x_1 + 7 = 3x_2 + 7 \Rightarrow 3x_1 = 3x_2 \Rightarrow x_1 = x_2$
- ▶ $g : \mathbb{R} \to \mathbb{R}$ tal que g(x) = |x| NO es inyectiva, ya que por ejemplo, $1 \neq -1$ y sin embargo |-1| = |1|.
- ▶ Para $A = \{a, b, c\}$ sea $s : \mathcal{P}(A) \to \mathbb{N}$ tal que s(X) = |X| + 1. Es inyectiva?

Conjunto imagen de un subconjunto a través de una función

Si $f: A \to B$ es función, es una relación, y si $A_1 \subseteq A$ el conjunto imágen de A_1 por f es: $f(A_1) = \{b \in B : f(a) = b \text{ para algun } a \in A_1\}.$

Ejemplo

- ▶ $A = \{1, 2, 3, 4, 5\}$ y $B = \{w, x, y, z\}, f : A \rightarrow B,$ $f = \{(1, w), (2, x), (3, y), (4, z), (5, y)\}$ entonces $f(\{1, 2\}) = \{w, x\}, f(\{2, 3, 5\}) = \{x, y\}$ y $f(\{5\}) = \{y\}$
- ▶ $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ tal que h(x,y) = 2x + 3y verifica que $Im(h) = \mathbb{Z}$. $Im(h) \subseteq \mathbb{Z}$.

Dado $z \in \mathbb{Z}$ existe $(-z,z) \in \mathbb{Z} \times \mathbb{Z}$ tal que h(-z,z) = 2(-z) + 3z = z. Esto prueba $\mathbb{Z} \subseteq Im(h)$

Teorema

Sea $f: A \rightarrow B$, $A_1, A_2 \subseteq A$ entonces

- 1. $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$
- 2. $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$

Demostración.

- 1. \Rightarrow) Sea $y \in f(A_1 \cup A_2)$, luego $\exists x \in A_1 \cup A_2 : y = f(x)$. Es decir, $x \in A_1$ o $x \in A_2$, tal que y = f(x) y en consecuencia $y \in f(A_1)$ o $y \in f(A_2)$, vale decir, $y \in f(A_1) \cup f(A_2)$. Queda probado que $f(A_1 \cup A_2) \subseteq f(A_1) \cup f(A_2)$.
 - \Leftarrow) Si $z \in f(A_1) \cup f(A_2)$, $z \in f(A_1) \vee z \in f(A_2)$. Luego $\exists x \in A_1 : z = f(x) \vee \exists x \in A_2 : z = f(x)$, es decir, $\exists x \in A_1 \cup A_2 : z = f(x)$, v.d $z \in f(A_1 \cup A_2)$. Queda probado que $f(A_1) \cup f(A_2) \subseteq f(A_1 \cup A_2)$.
- 2. Hacerla!!

Ejemplo

$$g: \mathbb{R} \to \mathbb{R} \text{ tal que } g(x) = |x| \ A_1 = \{0,1\}, \ A_2 = \{0,-1\} \ A_1 \cap A_2 = \{0\}$$

 $g(A_1) = \{0,1\} = g(A_2), \ g(A_1 \cap A_2) \neq g(A_1) \cap g(A_2)$

Teorema

Sea $f: A \to B$, $\forall X_1, X_2 \subseteq A$, $f(X_1 \cap X_2) = f(X_1) \cap f(X_2) \iff f$ es invectiva

Demostración.

 \Leftarrow) Por el teorema anterior, para cualquier $X_1, X_2 \subseteq A$, $f(X_1 \cap X_2) \subseteq f(X_1) \cap f(X_2)$.

Ahora veamos la otra contención: $y \in f(X_1) \cap f(X_2) \Rightarrow y \in f(X_1) \land y \in f(X_2) \Rightarrow \exists x_1 \in X_1 : y = f(x_1) \land \exists x_2 \in X_2 : y = f(x_1) \land \exists x_2 \in X_2 : y = f(x_1) \land \exists x_2 \in X_2 : y = f(x_1) \land \exists x_2 \in X_2 : y = f(x_1) \land \exists x_2 \in X_2 : y = f(x_1) \land \exists x_2 \in X_2 : y = f(x_1) \land \exists x_2 \in X_2 : y = f(x_2) : y = f(x_2) \land \exists x_2 \in X_2 : y = f(x_2) : y = f($

 $f(x_2)$. Entonces $y = f(x_1) = f(x_2)$. Como f inyectiva $x_1 = x_2 \in X_1 \cap X_2$, y es decir, $v \in f(X_1 \cap X_2)$.

Demostración del Teorema (cont.)

 \Rightarrow) Sean $x_1, x_2 \in A$ tales que $f(x_1) = f(x_2)$. Debemos probar que $x_1 = x_2$. Definimos $X_1 = \{x_1\}$ y $X_2 = \{x_2\}$. Por lo tanto, $f(X_1) = \{f(x_1)\}y$ $f(X_2) = \{f(x_2)\}$. Por hipotesis, $f(X_1) \cap f(X_2) = f(X_1 \cap X_2)$. Si fuera $x_1 \neq x_2, X_1 \cap X_2 = \emptyset$ y se contradice la hipótesis. Por lo tanto, $x_1 = x_2$, y $f(X_1) \cap f(X_2) = \{f(x_1)\}$. probando la inyectividad de f, ya que mostramos que

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

.

Restricción y extensión de una función

Definición

Sea $f: A \rightarrow B$.

- ▶ Para $A_1 \subseteq A$ la restricción de f a A_1 , es la función $f|_{A_1}: A_1 \to B_1$ tal que $f|_{A_1}(a) = f(a)$ si $a \in A_1$
- ▶ Para $A \subseteq A_2$ una extensión de f a A_2 es una funión , $g: A_2 \to B$ tal que g(a) = f(a) si $a \in A$

Ejemplo

$$A = \{1, 2, 3, 4, 5\}, B = \mathbb{N}, A_1 = \{2, 3, 5\} \text{ y } A_2 = \{1, 2, 3, 4, 5, 6, 10\}, f = \{(1, 1), (2, 3), (3, 5), (4, 7), (5, 9)\}$$

- $f|_{A_1} = \{(2,3),(3,5),(3,9)\}$
- ▶ $g: A_2 \to \mathbb{N}$ $g = \{(1,1), (2,3), (3,5), (4,7), (5,9), (6,11), (10,19)\}$ es UNA extensión de f a A_2 .
- ▶ $h: A_2 \to \mathbb{N}: h = \{(1,1), (2,3), (3,5), (4,7), (5,9), (6,9), (10,8)\}$ es OTRA extensión de f a A_2

Conjunto pre-imagen de un conjunto a traves de una función

Definición

Dada una función $f: A \to B$ y $B_1 \subseteq B$, la preimagen de B_1 por medio de f, notada como $f^{-1}(B_1)$, es el conjunto $f^{-1}(B_1) = \{x \in A : \exists b \in B_1 , \text{con } f(x) = b\}$

Ejemplo

 $f: \mathbb{Z} \to \mathbb{R}$ tal que $f(x) = x^2 + 5$

- ▶ Si $B = \{0\}$ entonces $f^{-1}(B) = \emptyset$.
- ▶ Si $B = [5, +\infty)$ entonces $f^{-1}(B) = \mathbb{Z}$.
- ▶ Si B = [6, 10] entonces $f^{-1}(B) = \{1, -1, -2, 2\}$. (Verificarlo)

Sobre el conjunto preimagen de un conjunto a traves de una función

Teorema

Sea la función $f:A\to B,\ B_1,\ B_2\subseteq B$ entonces:

- 1. $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$
- 2. $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$
- 3. $f^{-1}(\overline{B_1}) = \overline{f^{-1}(B_1)}$

Demostración.

- 1. Sea $x \in A$. $x \in f^{-1}(B_1 \cup B_2) \iff f(x) \in B_1 \cup B_2 \iff x \in f^{-1}(B_1) \lor x \in f^{-1}(B_2) \iff x \in f^{-1}(B_1) \cup f^{-1}(B_2)$.
- 2. Ejercicio
- 3. Sea $a \in A$. $a \in f^{-1}(\overline{B_1}) \Leftrightarrow f(a) \in \overline{B_1} \Leftrightarrow f(a) \notin B_1 \Leftrightarrow a \notin f^{-1}(B_1) \Leftrightarrow a \in \overline{f^{-1}(B_1)}$.

L

Funciones suryectivas (sobreyectivas)

Definición

Decimos que la función $f: A \to B$ es suryectiva si cada elemento de B es segunda componente de al menos un par ordenado de la relación función. f(A) = Im(f) = B.

$$f$$
 es sobreyectiva si $\forall y \in B, \exists x \in A : f(x) = y.$

Ejemplo

- 1. $A = \{1, 2, 3, 4\}, B\{a, b, c, d\}, f = \{(1, a), (2, a), (3, d), (4, c)\}$ $Im(f) = \{a, c, d\}.$ No es sobre ya que $\exists b \in B$ que no tiene preimagen.
- 2. Si $g = \{(1, d), (2, b), (3, c), (4, a)\}$ con los mismos A y B, Im(g) = B, es decir, g es suryectiva
- 3. $A = \{1, 2, 3, 4\}, B = \{w\}$ cualquier función de A en B es suryecitva. Ninguna función de B en A es suryectiva

Funciones biyectivas

Definición

Una función es biyectiva si es inyectiva y suryectiva.

Ejemplo

- 1. La función del Ejemplo 1. anterior NO es biyectiva ya que no es suryectiva
- 2. La funcion del Ejemplo 2. anterior es biyectiva ya que además de ser suryectiva es inyectiva (verificarlo)
- 3. $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ tal que h(x, y) = 2x + 3y, vimos que $h(\mathbb{Z} \times \mathbb{Z}) = \mathbb{Z}$, luego es suryectiva. Es inyectiva?

$$h(x_1, y_1) = h(x_2, y_2) \Rightarrow 2x_1 + 3y_1 = 2x_2 + 3y_2 \Rightarrow 2(x_1 - x_2) = 3(y_2 - y_1)$$

Que podemos decir?

Si tomamos (3,0) y (0,2) la igualidad se cumple y los pares ordenados son distintos. NO es inyectiva. NO es biyectiva

Composición de dos funciones

Definición

Sean f y g dos funciones tales que $Im(f) \cap Dom(g) \neq \emptyset$. Se define la composición de g con f y se la nota $g \circ f$ a la funcion que verifica:

$$Dom(g \circ f) = \{x \in Dom(f) : f(x) \in Dom(g)\}$$

y tal que $(g \circ f)(x) = g(f(x))$ para todo $x \in Dom(g \circ f)$.

Bajo la condición $Im(f) \cap Dom(g) \neq \emptyset$ decimos que la composición de g con f es posible ya que su dominio es no vacio.

La composición de funciones NO es conmutativa.

Asociatividad de la composición de funciones

Teorema

La composición de funciones es asociativa

Demostración.

Supongamos que $f:A\to B,\ g:B\to C,\ h:C\to D$. En este caso son posibles las siguientes composiciones (verificarlo): $(h\circ g)\circ f$ y $h\circ (g\circ f)$, ambas composiciones tienen como dominio a A y codominio a D.

Ademas,

$$((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x))) = h((g \circ f)(x)) = (h \circ (g \circ f))(x)$$
 para cualquier $x \in A$.

Ejemplo

Si $f: A \to A$ la composición $f \circ f$ es posible y se nota f^2 . Recursivamente $f^n = f \circ f^{n-1}$ para n > 2.

Teorema

Teorema

Si $f: A \to B$ y $g: B \to C$ inyectivas (suryectiva) entonces g o $f: A \to C$ es inyectiva (suryectiva).

Demostración.

Veamos si f y g son inyectivas, $g \circ f$ también lo es.

Dados $a_1, a_2 \in A$:

$$(g \circ f)(a_1) = (g \circ f)(a_2) \underset{\text{(por def)}}{\Rightarrow} g(f(a_1)) = g(f(a_2)) \underset{\text{(g es iny)}}{\Rightarrow} f(a_1) = f(a_2) \underset{\text{(f es iny)}}{\Rightarrow} a_1 = a_2.$$

Para la suryectividad: dado $c \in C$ sabemos por ser g suryectiva, $\exists b \in B : g(b) = c$. Dado ESE elemento b por la suryectividad de f, existe $a \in A$ tal que f(a) = b.

Por lo tanto, dado $c \in C$, existe $a \in A$ tal que g(f(a)) = g(b) = c

Función inversible

Definición

Una función $f:A\to B$ es inversible si existe una función $g:B\to A$ tal que $g\circ f=id_A$ y $f\circ g=id_B$.

Si f es inversible, g también lo es.

Teorema

Si $f: A \to B$ es inversible $y g: B \to A$ es una inversa de f, entonces es la única.

Demostración.

Supongamos que existen dos funciones $g: B \to A$ y $h: B \to A$ tales que

$$h \circ f = id_A \text{ y } f \circ h = id_B,$$

 $g \circ f = id_A \text{ y } f \circ g = id_B.$

Entonces si
$$b \in B$$
, $h(b) = h(id_B(b)) = (h \circ id_B)(b) = [h \circ (f \circ g)](b) = [(h \circ f) \circ g](b) = (id_A \circ g)(b) = g(b)$ $\therefore h = g$

Si f inversible, la inversa de f tiene una notación propia por su unicidad: f^{-1} .

f es inversible \iff f es biyectiva

Teorema

Dada la función $f: A \rightarrow B$, f es inversible si y solo si f es biyectiva.

Demostración.

$$\Rightarrow$$
)

f invectiva?

Sean a_1,a_2 tales que $f(a_1)=f(a_2)\Rightarrow f^{-1}(f(a_1))=f^{-1}(f(a_2))\Rightarrow a_1=a_2$ $\sqrt{}$

 $f(a) = b \Leftrightarrow a = f^{-1}(b)$. Ahora $f^{-1}(b)$ existe para cualquier elemento $b \in B$ y

$$f^{-1}(b) \in A$$
. es decir $\exists a \in A : f(a) = b$. $\sqrt{ }$

 \Leftarrow

Como f es survectiva, defino $g:B\to A$ asi: $b\in B$ le asigna $a\in A$ tal que f(a)=b.

Por la inyectividad de f, g es función.

$$(g \circ f)(a) = g(f(a)) = g(b) \underset{def \ g}{=} a = id_A(a) \quad \checkmark$$

$$(f \circ g)(b) = f(g(b)) \stackrel{=}{\underset{def \ g}{=}} f(a) = b = id_B(b) \quad \sqrt{}$$

 \therefore g esta bien definida y verifica las condiciones de la inversa de f.

Función inversa de una composición de funciones inversibles

Teorema

Si $f: A \to B$ y $g: B \to C$ son inversibles entonces $g \circ f$ es inversible y $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Demostración.

Como al composición de funciones biyectivas es biyectiva, $g \circ f$ es inversible. Solo resta verificar que LA inversa de $g \circ f$ es $f^{-1} \circ g^{-1}$. Para ello:

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ (id_B) \circ f = (f^{-1} \circ id_B) \circ f = f^{-1} \circ f = id_A.$$

Analoga la otra composición.

Recordar definición de preimagen y contrastar con funcion inversa. La preimagen siempre existe, es un conjunto. La función inversa (cuando existe) es una FUNCION.

Teorema

 $f: A \rightarrow B, A \ y \ B \ finitos, \ |A| = |B|$. Entonces son equivalentes:

- A) f inyectiva;
- B) f suryectiva;
- C) f inversible;

Demostración.

Ya sabemos que C) \Leftrightarrow A) \land B).

Si probamos que A) $\Leftrightarrow B$) complementamos la demostración.

Supongamos que f no es inyectiva y que vale B). Entonces existen $a_1 \neq a_2$ tales que $f(a_1) = f(a_2)$. Con lo cual |A| > |f(A)| = |B|. Contradicción.

Si suponemos que f no es suryectiva y que vale A), |f(A)| < |B| pero como es inyectiva y A es finito, |A| = |f(A)| teniendo entonces que |A| = |f(A)| < |B| = |A|.

Contradicción.

Funciones especiales: Operaciones

Definición

Dados A y B no vacios, una función $f: A \times A \rightarrow B$ es una operación binaria en A. Si ademas, $Im(f) \subseteq A$ la operación es cerrada en A.

Si $g: A \rightarrow A$ entonces g es una operacion monaria (unaria) en A.

Ejemplo

- $lackbox{} f: \mathbb{Z} imes \mathbb{Z} o \mathbb{Z}$ tal que f(a,b) = a-b es una operacion binaria cerrada en \mathbb{Z}
- ▶ $q: \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}$ tal que g(a,b) = a b es una operacion en \mathbb{Z} que NO es cerrada. Ya que $\exists (3,7) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ tal que $g(3,7) \notin \mathbb{Z}^+$.
- ▶ $h: \mathbb{R}^+ \to \mathbb{R}^+$ tal que $h(a) = \frac{1}{a}$ es una operación monaria en \mathbb{R}^+

Operaciones conmutativas y asociativas

Ejemplo

Dado un conjunto universal U consideramos

- ▶ $f: \mathcal{P}(\mathcal{U}) \times \mathcal{P}(\mathcal{U}) \to \mathcal{P}(\mathcal{U})$ tal que $f(A, B) = A \cup B$. f es una operacion cerrada binaria
- ▶ $g: \mathcal{P}(\mathcal{U}) \to \mathcal{P}(\mathcal{U})$ tal que $g(A) = \overline{A}$ es una operacion monaria.

Definición

Dada la operacion binaria $f: A \times A \rightarrow B$ en A, diremos que

- ▶ f es conmutativa si $f(a_1, a_2) = f(a_2, a_1)$ para todo $(a_1, a_2) \in A \times A$.
- ▶ Si f es cerrada, entonces f es asociativa si f(f(a,b),c) = f(a,f(b,c)) para todo $a,b,c \in A$.

Vamos comunmente a usar una notación mas 'parecida' a una operación. Por ejemplo, si $f: A \times A \to B$ operación binaria en A notaremos $f(a,b) = a \otimes b$. Entonces la asociatividad es mas amigable $(a \otimes b) \otimes c = a \otimes (b \otimes c)$ para todo $a, b, c \in A$.

Ejemplo

- ► Ya probamos que la operación unión de conjuntos es asociativa y conmutativa.
 - ▶ Sea $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ tal que h(a, b) = a|b| es cerrada.
 - Es asociativa? Es conmutativa?
 - $ightharpoonup g: \mathbb{R} \times \mathbb{R} \to \mathbb{Z}$ tal que g(a,b) = [a+b]. Verificar que es cerrada y conmutativa

No es asociativa. Basta considerar a = 0, 2, b = 1, 5 y c = 2, 6.

Elemento neutro de una operación

Definición

Dada $f: A \times A \to A$ operaciones binarias en A (Obviamente cerrada). Decimos que la operacion posee neutro si existe $a_0 \in A$ tal que $f(a, a_0) = f(a_0, a) = a$ para todo $a \in A$.

En la notación mas usual escribimos $a \otimes a_0 = a_0 \otimes a = a$ para todo $a \in A$. Para mostrar que una operación posee neutro, exhibimos un elemento que cumple con la definición... EXISTENCIA! Es único?

Eiemplo

Es conmutativa?

- La operacion unión de conjuntos posee neutro. El conjunto \emptyset
- \triangleright La operación intersección de conjuntos? El conjunto \mathcal{U} tal que en $\mathcal{P}(\mathcal{U})$ este definida la operación
- ▶ En \mathbb{Z} la operación $a \otimes b = a b$ (la resta en \mathbb{Z}) posee neutro? NO.Como se prueba?
- ▶ Si $A = \{1, 2, ..., 7\}$ definimos $g : A \times A \rightarrow A$ tal que $g(a, b) = \min\{a, b\}$.
 - Es asociativa? Posee neutro? Si. El numero $7 \in A$ es tal que
 - $g(a,7) = \min\{a,7\} = a$ ya que $a \in A$ verifica a < 7.

Unicidad del neutro

Teorema

Si $f: A \times A \rightarrow A$ posee neutro, este es unico.

Demostración.

Supongamos que $f(a, b) = a \otimes b$ y sean $x, y \in A$ elementos neutros. Entonces:

$$a \otimes x = x \otimes a = a$$
 $\forall a \in A$
 $a \otimes y = y \otimes a = a$ $\forall a \in A$

Como y es neutro, en particular para $x \in A$ se tiene que $x \otimes y = y \otimes x = x$ pero si consideramos ahora que x neutro, para $y \in A$ tenemos $x \otimes y = y \otimes x = y$

$$\therefore x = x \otimes y = y \otimes x = y$$

Probando asi que x = y.

Elemento inverso

Definición

Dada $f: A \times A \to A$ operación binaria en A (obviamente cerrada). Si f posee neutro $x \in A$, decimos que la operación posee inversos si para cada $a \in A$ existe $a' \in A$ tal que f(a, a') = x

Ejemplo

Sea la operacion definida en $A = \{0, 1, 3\}$ dada por la siguiente tabla:

\otimes	0	1	3
0	1	3	0
1	3	0	1
3	0	1	3

Notemos que podemos ver la conmutatividad de la forma de la tabla, lo mismo que la existencia de neutro y de inverso. Es conmutativa y 3 es neutro. Todos los elementos poseen inverso, por ejemplo, 1 es inverso de 0.

Unicidad de inversos

Es otra forma de presentar las funciones que definen operaciones es por su "tabla de valores".

Teorema

Si $f: A \times A \to A$ es una operación asociativa, con elemento neutro $x^* \in A$ y que posee inversos. Entonces, cada elemento posee un único inverso.

Demostración.

Supongamos que $a \in A$ posee dos elementos inversos, a_1 y a_2 y notemos con $f(a,b) = a \bigstar b$. Entonces:

$$a_1 = a_1 \bigstar x^* = a_1 \bigstar (a \bigstar a_2) = (a_1 \bigstar a) \bigstar a_2 = x^* \bigstar a_2 = a_2$$