CMSE 820 Homework 4

Wei-Chien Liao (liaowei2@msu.edu)

1. (a)(\Rightarrow) Assume A is positive semi-definite. Then $u^T A u \geq 0$ for any $u \in \mathbb{R}^n$. Let λ be an eigenvalue of A, so $Ax = \lambda x$. Then

$$x^{T}Ax = x^{T}(\lambda x) = \lambda x^{T}x = \lambda ||x||^{2} \ge 0 \Rightarrow \lambda \ge 0.$$
 (1)

Note that (1) holds for any eigenvalue of A. Hence, all the eigenvalues of A are non-negative.

(\Leftarrow) Assume all eigenvalues of A are non-negative. Since A is symmetric, $A = Q^T \Lambda Q$ for some orthogonal matrix Q. Let q_1, q_2, \dots, q_n denote the columns of Q. Then $Q = \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix}$ and $\{q_1, q_2, \cdots, q_n\}$ is a basis of \mathbb{R}^n . Let $x \in \mathbb{R}^n$. Then

$$x = \sum_{i=1}^{n} \alpha_i q_i, \alpha_i \in \mathbb{R}, \text{ and } x^T = \sum_{i=1}^{n} \alpha_i q_i^T.$$

Compute $x^T A x$ gives

$$x^{T}Ax = \left(\sum_{i=1}^{n} \alpha_{i} q_{i}^{T}\right) A \left(\sum_{i=1}^{n} \alpha_{i} q_{i}\right)$$

$$= \left(\sum_{i=1}^{n} \alpha_{i} q_{i}^{T}\right) \left(\sum_{i=1}^{n} \alpha_{i} A q_{i}\right)$$

$$= \sum_{i=1}^{n} \alpha_{i}^{2} q_{i}^{T} A q_{i}$$

$$= \sum_{i=1}^{n} \alpha_{i}^{2} q_{i}^{T} \lambda q_{i} = \sum_{i=1}^{n} \lambda_{i} \alpha_{i}^{2} ||q_{i}||^{2}.$$

Note that $\lambda_i \geq 0, \forall i = 1, \dots, n$

$$\Rightarrow \lambda_i \alpha_i^2 ||q_i||^2 \ge 0 \Rightarrow \sum_{i=1}^n \lambda_i \alpha_i^2 ||q_i||^2 \ge 0 \Rightarrow x^T A x \ge 0.$$

 $\Rightarrow A$ is positive semi-definite.

(b)(\Rightarrow) Assume A is positive semi-definite. Since A is symmetric, $A=Q^T\Lambda Q$ for some orthogonal matrix Q. Write

$$\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}.$$

Define

$$\sqrt{\Lambda} = \begin{bmatrix} \sqrt{\lambda_1} & & \\ & \ddots & \\ & & \sqrt{\lambda_n} . \end{bmatrix}$$

Note that $\lambda_i \geq 0$, $\forall i = 1, \dots, n$ from (a), so $\sqrt{\Lambda} \in \mathbb{R}^{n \times n}$. Then

$$A = Q^T \Lambda Q = Q^T \sqrt{\Lambda}^T \sqrt{\Lambda} Q = \left(\sqrt{\Lambda} Q\right)^T \left(\sqrt{\Lambda} Q\right) = B^T B,$$

where $B := \sqrt{\Lambda}Q \in \mathbb{R}^{n \times n}$.

 (\Leftarrow) Assume $A = B^T B$ for some $B \in \mathbb{R}^{n \times n}$. Then

$$x^{T}Ax = x^{T}B^{T}Bx = (Bx)^{T}Bx = ||Bx||^{2} \ge 0,$$

so A is positive semi-definite.

2. (a) Fix $x \in \mathbb{R}^n$. Compute $||Ax - \alpha x||^2$ gives

$$(Ax - \alpha x)^T (Ax - \alpha x) = (x^T A - \alpha x^T)(Ax - \alpha x)$$
$$= x^T A^2 x - 2\alpha x^T Ax + \alpha^2 x^T x.$$

Let $f(\alpha) = (x^T x)\alpha^2 - (2x^T A x)\alpha + x^T A^2 x$, then f is a quadratic function of α , and

$$\underset{\alpha \in \mathbb{R}}{\operatorname{arg min}} ||Ax - \alpha x||^2 = \underset{\alpha \in \mathbb{R}}{\operatorname{arg min}} f(\alpha).$$

First-order derivative of f is given by

$$f'(\alpha) = 2(x^T x)\alpha - 2x^T A x.$$

Let $f'(\alpha) = 0$, then

$$\alpha = \frac{x^T A x}{x^T x} = R_A(x).$$

(b) Let $x \in \mathbb{R}^n$. Then

$$\begin{split} \frac{\partial R_A(x)}{\partial x_j} &= \frac{\partial}{\partial x_j} \frac{x^T A x}{x^T x} \\ &= \frac{\left(\frac{\partial}{\partial x_j} x^T A x\right) x^T x - \left(\frac{\partial}{\partial x_j} x^T x\right) x^T A x}{(x^T x)^2} \\ &= \frac{(2Ax)_j x^T x - (2x_j) x^T A x}{(x^T x)^2} \\ &= \frac{2}{x^T x} \left((Ax)_j - R_A(x) x_j \right) = \frac{2}{x^T x} \left(Ax - R_A(x) x \right)_j. \end{split}$$

Hence,

$$\nabla R_A(x) = \frac{2}{x^T x} (Ax - R_A(x)x).$$

Now let $0 \neq x_0 \in \mathbb{R}^n$, then

$$x_0$$
 is a critical point of $R_A(x)$
 $\Leftrightarrow \nabla R_A(x_0) = 0$
 $\Leftrightarrow \frac{2}{x_0^T x_0} (Ax_0 - R_A(x_0)x_0) = 0$
 $\Leftrightarrow Ax_0 - R_A(x_0)x_0 = 0$
 $\Leftrightarrow Ax_0 = R_A(x_0)x_0$
 $\Leftrightarrow x_0$ is an eigenvector of A .

(c) Let x_1, \dots, x_{n-1} be the remaining n-1 eigenvectors of A with unit length, and $Ax_i = \lambda_i x_i, i = 0, 1, \dots, n-1$. Let $x \in \mathbb{R}^n$. Then $x = \sum_{i=0}^{n-1} a_i x_i$.

$$x - x_0 = (a_0 - 1)x_0 + \sum_{i=1}^{n-1} a_i x_i,$$

so,

$$||x - x_0||^2 = (a_0 - 1)^2 + \sum_{i=1}^{n-1} a_i^2.$$

It suffice to show that if $\left|\frac{a_i}{a_0}\right| < \varepsilon$ for all $i \neq 0$, $R_A(x) - \lambda_0 = O(\varepsilon^2)$.

$$R_{A}(x) - \lambda_{0} = \frac{\sum_{i=0}^{n-1} \lambda_{i} a_{i}^{2}}{\sum_{i=0}^{n-1} a_{i}^{2}} - \lambda_{0}$$

$$= \frac{\sum_{i=0}^{n-1} (\lambda_{i} - \lambda_{0}) a_{i}^{2}}{\sum_{i=0}^{n-1} a_{i}^{2}}$$

$$= \frac{\sum_{i=1}^{n-1} (\lambda_{i} - \lambda_{0}) a_{i}^{2}}{\sum_{i=0}^{n-1} a_{i}^{2}}$$

$$\leq \frac{\sum_{i=1}^{n-1} \lambda_{i} a_{i}^{2}}{\sum_{i=0}^{n-1} a_{i}^{2}}$$

$$\leq \frac{\sum_{i=1}^{n-1} \lambda_{i} a_{i}^{2}}{\sum_{i=0}^{n-1} a_{i}^{2}}$$

$$\leq \frac{\sum_{i=1}^{n-1} \lambda_{i} a_{i}^{2}}{a_{0}^{2}} = \sum_{i=1}^{n-1} \lambda_{i} \left(\frac{a_{i}}{a_{0}}\right)^{2} < \left(\sum_{i=1}^{n-1} \lambda_{i}\right) \varepsilon^{2} = M \varepsilon^{2},$$

where $M = \sum_{i=1}^{n-1} \lambda_i$ is a constant. Therefore, $R_A(x) - \lambda_0 = O(\varepsilon^2)$ and the proof is complete.

3. (a) A is diagonal, so the diagonal entries are exactly the eigenvalues of A. May assume

$$A = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} = \Lambda,$$

since the diagonal entries of A can be reordered by apply some permutation matrix P and P is orthogonal. Then in this case, one can take $Q = \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix}$ so that $Q^T A Q = \Lambda$, where the column vector e_i has value 1 in the i-th entry and zero otherwise.

First consider the case

$$\max_{dim(V)=k} \ \min_{v \in V: ||v||=1} v^T A v.$$

Let $V_k = span\{e_1, \dots, e_k\}$. Let $v \in V_k$ with ||v|| = 1, then $v = \sum_{i=1}^k \alpha_i e_i, v^T = \sum_{i=1}^k \alpha_i e_i^T, \sum_{i=1}^k \alpha_i^2 = 1$, and

$$v^T A v = \left(\sum_{i=1}^k \alpha_i e_i^T\right) \left(\sum_{i=1}^k \alpha_i e_i\right) = \sum_{i=1}^k \alpha_i^2 e_i^T \lambda_i e_i = \sum_{i=1}^k \alpha_i^2 \lambda_i \ge \lambda_k.$$

Therefore,

$$\max_{dim(V)=k} \min_{v \in V: ||v||=1} v^T A v \ge \min_{v \in V_k: ||v||=1} v^T A v = \lambda_k.$$

On the other hand, let V be any k dimensional subspace.

Observe that $V \cap span\{e_k, \dots, e_n\} \neq \phi$, since $\dim(V) = k$ and $\dim(span\{e_k, \dots, e_n\}) = n - k + 1$.

If $v^* \in V \cap span\{e_k, \dots, e_n\}$ and $||v^*|| = 1$, then $v^* = \sum_{i=k}^n \beta_i e_i$ and $\sum_{i=k}^n \beta_i^2 = 1$. Therefore,

$$\min_{v \in V: ||v|| = 1} v^T A v \le v^T A v = \sum_{i=k}^n \beta_i^2 e_i^T \lambda_i e_i = \sum_{i=k}^n \beta_i^2 \lambda_i \le \lambda_k$$

$$\Rightarrow \max_{dim(V) = k} \min_{v \in V: ||v|| = 1} v^T A v \le \lambda_k.$$

Now consider the case

$$\min_{\dim(V) = n - k + 1} \max_{v \in V: ||v|| = 1} v^T A v.$$

Let $V_{n-k+1} = span\{e_k, \dots, e_k\}$. Then by similar arguments in the first case,

$$\min_{\dim(V) = n-k+1} \max_{v \in V: ||v|| = 1} v^T A v \le \max_{v \in V_{n-k+1}: ||v|| = 1} v^T A v = \lambda_k.$$

Now let V be any n - k + 1 dimensional subspace.

Observe that $V \cap span\{e_1, \dots, e_k\} \neq \phi$.

If $v^* \in V \cap span\{e_1, \dots, e_k\}$ and $||v^*|| = 1$, then $v^* = \sum_{i=1}^k \beta_i e_i$ and $\sum_{i=1}^k \beta_i^2 = 1$. Therefore,

$$\max_{v \in V: ||v||=1} v^T A v \ge v^T A v = \sum_{i=1}^k \beta_i^2 \lambda_i \ge \lambda_k$$

$$\Rightarrow \min_{dim(V)=n-k+1} \max_{v \in V: ||v||=1} v^T A v \ge \lambda_k.$$

(b) A is symmetric, so $A = Q^T \Lambda Q$ for some orthogonal matrix Q, where

$$\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}.$$

Then

$$\begin{aligned} \max_{\dim(V)=k} \min_{v \in V: ||v||=1} v^T A v &= \max_{\dim(V)=k} \min_{v \in V: ||v||=1} v^T Q^T \Lambda Q v \\ &= \max_{\dim(V)=k} \min_{v \in V: ||v||=1} (Q v)^T \Lambda Q v \text{ (Let } u = Q v) \\ &= \max_{\dim(V)=k} \min_{u \in V: ||u||=1} u^T \Lambda u. \end{aligned}$$

The second equality holds since Q is orthogonal, and this reduces to the first case verified in (a). Therefore,

$$\max_{\dim(V)=k} \min_{v \in V: ||v||=1} v^T A v = \max_{\dim(V)=k} \min_{u \in V: ||u||=1} u^T \Lambda u = \lambda_k.$$

On the other hand,

$$\min_{dim(V)=n-k+1} \max_{v \in V: ||v||=1} v^T A v = \min_{dim(V)=n-k+1} \max_{v \in V: ||v||=1} v^T Q^T \Lambda Q v$$

$$= \min_{dim(V)=n-k+1} \max_{v \in V: ||v||=1} (Q v)^T \Lambda Q v \text{ (Let } u = Q v)$$

$$= \min_{dim(V)=n-k+1} \max_{u \in V: ||u||=1} u^T \Lambda u.$$

This reduces to the second case verified in (a). Therefore,

$$\min_{\dim(V) = n-k+1} \; \max_{v \in V: ||v|| = 1} v^T A v = \min_{\dim(V) = n-k+1} \; \max_{u \in V: ||u|| = 1} u^T \Lambda u = \lambda_k.$$

4. Observe that by the minimax theorem,

$$\begin{split} \lambda_k(A+B) &= \max_{\dim(V)=k} \min_{v \in V: ||v||=1} v^T (A+B) v \\ &= \max_{\dim(V)=k} \min_{v \in V: ||v||=1} (v^T A v + v^T B v) \\ &\leq \max_{\dim(V)=k} \min_{v \in V: ||v||=1} (v^T A v + \lambda_1(B)) \\ &= \left(\max_{\dim(V)=k} \min_{v \in V: ||v||=1} v^T A v \right) + \lambda_1(B) = \lambda_k(A) + \lambda_1(B), \end{split}$$

and

$$\begin{split} \lambda_k(A+B) &= \max_{\dim(V)=k} \min_{v \in V: ||v||=1} v^T (A+B) v \\ &= \max_{\dim(V)=k} \min_{v \in V: ||v||=1} (v^T A v + v^T B v) \\ &\geq \max_{\dim(V)=k} \min_{v \in V: ||v||=1} (v^T A v + \lambda_n(B)) \\ &= \left(\max_{\dim(V)=k} \min_{v \in V: ||v||=1} v^T A v \right) + \lambda_n(B) = \lambda_k(A) + \lambda_n(B), \end{split}$$