NMB - Oefenzitting 1 Benaderingstheorie

Simon Telen

Opgave 1. Beschouw de vectorruimte C[-1,1] van continue reële functies op het interval $[-1,1] \subset \mathbb{R}$. De L_p -norm, $p \in \mathbb{R}$, $p \geq 1$, is gegeven door de functionaal

$$\|\cdot\|_p: C[-1,1] \to \mathbb{R}: f \mapsto \left(\int_{-1}^1 |f(x)|^p dx\right)^{1/p}.$$

Voor welke waarden van $p \in \mathbb{N}, p \geq 1$ is de volgende functionaal een norm

$$\|\cdot\|_p': C[-1,1] \to \mathbb{R}: f \mapsto \left| \int_{-1}^1 f(x)^p dx \right|^{1/p}.$$

Bewijs je antwoord.

Oplossing. Voor even waarden van p is $|f(x)|^p = f(x)^p$ en

$$0 \le \int_{-1}^{1} f(x)^{p} dx = \left| \int_{-1}^{1} f(x)^{p} dx \right|.$$

Daaruit volgt dat voor even p, $||f(x)||_p' = ||f(x)||_p$ en $||\cdot||_p'$ is gelijk aan de L_p -norm. Voor p oneven kan $||\cdot||_p'$ geen norm zijn. Als tegenvoorbeeld, neem de functie $f(x) = x \in C[-1, 1]$. We hebben

$$||f(x)||'_p = \left| \int_{-1}^1 x^p dx \right|^{1/p} = 0,$$

terwijl x niet de nulfunctie is. Dit is in tegenspraak met het tweede axioma.

Opgave 2. Op een verzameling S van eindige verzamelingen definiëert men de Silverman afstand als

$$\rho(A,B) = \#(A \triangle B) = \#\{(A \cup B) \backslash (A \cap B)\}$$

met $A, B \in S$. De verzameling $A \triangle B = (A \cup B) \setminus (A \cap B)$ wordt ook het *symmetrisch* verschil van A en B genoemd. Het symbool '#' staat voor kardinaalgetal, d.w.z. het aantal elementen in de verzameling.

• Waarom worden er enkel eindige verzamelingen beschouwd?

Figuur 1: Venndiagram ter illustratie van Opgave 2.

• Toon aan dat ρ inderdaad een afstand is.

Oplossing.

- Een afstand gedefiniëerd op een verzameling S is per definitie een functionaal $\rho: S \times S \to \mathbb{R}$ waarvan het beeld een deelverzameling is van de reële getalen. Als $A \in S$ een oneindige verzameling is en $B \in S$ is eindig, dan is $A \cup B$ oneindig en $A \cap B$ eindig, bijgevolg is $(A \cup B) \setminus (A \cap B)$ een oneindige verzameling. De operator # geeft voor een oneindige set een zogenaamd transfiniet kardinaalgetal, hetgeen buiten de verzameling van de reële getallen valt.
- Neem $A, B, C \in S$.
 - 1. $\rho(A,B) > 0$ volgt uit $\emptyset \subset A \triangle B$ en dus $0 < \#(A \triangle B)$.
 - 2. $\rho(A, B) = 0$ impliceert dat $A \triangle B = \emptyset$ en dus A = B.
 - 3. $\rho(A, B) = \rho(B, A)$ want \cup, \cap zijn symmetrisch.
 - 4. Beschouw het Venndiagram in Figuur 4. We hebben de formules

$$\#(C\triangle A) = \#\{(C \cup A) \setminus (C \cap A)\} = \#a + \#e + \#c + \#f,$$

$$\#(C\triangle B) = \#\{(C \cup B) \setminus (C \cap B)\} = \#b + \#e + \#c + \#d,$$

$$\#(A\triangle B) = \#\{(A \cup B) \setminus (A \cap B)\} = \#a + \#d + \#b + \#f.$$

Er volgt

$$\rho(A, B) + 2\#c + 2\#e = \rho(C, A) + \rho(B, A)$$

en dus geldt de driehoeksongelijkheid $\rho(A, B) \leq \rho(C, A) + \rho(B, A)$.

Opgave 3. We beschouwen de vectorruimte $V = \mathbb{R}^{m \times n}$ van reële $m \times n$ matrices. Beschouw

$$(\cdot,\cdot)_F: V \times V \to \mathbb{R}: (A,B) \mapsto \operatorname{trace}(A^\top B).$$

Dit wordt het Frobenius inwendig product genoemd.

- Toon aan dat $(\cdot,\cdot)_F$ een inwendig product is.
- Toon aan dat de norm op V geïnduceerd door het Frobenius inwendig product op V equivalent is met de 2-norm op \mathbb{R}^{mn} , of nog $||A||_F = ||\operatorname{vec}(A)||_2$. Hierbij staat 'vec' voor de *vectorizatie-operatie*. Dit is een lineaire transformatie die de matrix A omzet tot een kolomvector, bestaande uit een verticale stapeling van de kolommen van A. Men noemt deze norm de *Frobeniusnorm* op V.
- Bereken de Frobenius norm van de matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & \sqrt{2} \end{bmatrix}$ en de Frobenius afstand tussen A en $B = \begin{bmatrix} 4 & 2 \\ 3 & 4 + \sqrt{2} \end{bmatrix}$.

Oplossing.

• Dit volgt uit

1. $(aA, B)_F = \operatorname{trace}((aA)^\top B) = \operatorname{trace}(a(A^\top B)) = a\operatorname{trace}(A^\top B) = a(A, B)_F$,

2. $(A + A', B)_F = \operatorname{trace}((A + A')^{\top}B) = \operatorname{trace}(A^{\top}B + A'^{\top}B) = \operatorname{trace}(A^{\top}B) + \operatorname{trace}(A'^{\top}B) = (A, B)_F + (A', B)_F,$

3. $(A, B)_F = \operatorname{trace}(A^{\top}B) = \operatorname{trace}(B^{\top}A) = (B, A)_F$ want het spoor is invariant onder \cdot^{\top} (het is de som van de eigenwaarden),

4. $(A, A)_F = \operatorname{trace}(A^{\top}A) > 0$ wanneer $A \neq 0$. Inderdaad, er geldt $\operatorname{trace}(A^{\top}A) = \sum_{i=1}^{m} \sigma_i^2$ (de eigenwaarden van $A^{\top}A$ zijn de singuliere waarden in het kwadraat). Daaruit volgt dat $\operatorname{trace}(A^{\top}A) \geq 0$ en als de gelijkheid geldt, dan zijn alle singuliere waarden van A gelijk aan 0 en dus A = 0.

• De geïnduceerde norm wordt gegeven door $||A||_F = \sqrt{\operatorname{trace}(A^{\top}A)}$. Een eenvoudige berekening geeft dat

$$\operatorname{trace}(A^{\top}A) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^{2}$$

met a_{ij} het element op de *i*-de rij en *j*-de kolom van A. Dus

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}.$$

Dit komt overeen met de 2-norm van de vector verkregen door de elementen van A op gelijk welke manier te ordenen in een mn-vector.

• $||A||_F = 4$, $\rho_F(A, B) = ||B - A||_F = 5$.

Opgave 4. Beschouw de verzameling W van 'woorden' waarbij we een woord definiëren als een eindige sequentie van karakters. De verzameling W is een metrische ruimte met

3

de volgende, recursief gedefiniëerde afstandsfunctie. Voor $a, b \in W$, schrijf |a|, |b| voor het aantal karakters in a, b respectievelijk. De afstand tussen a en b is recursief gedefiniëerd als $\rho(a, b) = \text{lev}_{a,b}(|a|, |b|)$ met

$$\operatorname{lev}_{a,b}(i,j) = \begin{cases} \max(i,j) & \min(i,j) = 0\\ \min \begin{cases} \operatorname{lev}_{a,b}(i-1,j) + 1\\ \operatorname{lev}_{a,b}(i,j-1) + 1\\ \operatorname{lev}_{a,b}(i-1,j-1) + (1 - \delta_{a_ib_j}) \end{cases}$$
 and ers

waarbij $\delta_{a_ib_j} = \begin{cases} 1 & a_i = b_j \\ 0 & a_i \neq b_j \end{cases}$. Deze afstand noemt men de *Levenshtein afstand* en ze wordt gebruikt in onder andere spellingscontrole software.

- Schrijf een functie lev(a,b,i,j) in Matlab die als input twee strings en twee positieve integers neemt en het getal lev_{a,b}(i,j) teruggeeft.
- Gebruik je implementatie om het volgende na te gaan: de Levenshtein afstand geeft het minimum aantal toevoegingen, verwijderingen of vervangingen van karakters die nodig zijn om het woord a in het woord b te veranderen. Zo is bijvoorbeeld $\rho(\text{`kater'}, \text{`kat'}) = 2$ volgens deze metriek.
- Gebruik je implementatie om de afstand te berekenen tussen jouw achternaam en die van de docent van dit deel van het vak: 'Vandewalle'.

Oplossing. Zie lev.m.

Opgave 5.

• Gebruik de Gram-Schmidt orthogonalizatie procedure om het stel $\{1, x, x^2, x^3\}$ te orthogonalizeren tot het stel $\{T_0(x), T_1(x), T_2(x), T_3(x)\}$ ten opzichte van het scalair product

$$(f,g) = \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x)g(x)dx.$$

Start met $T_0(x) = 1$, ga na dat $||T_0||^2 = \pi$ (we gebruiken de geïnduceerde norm) en normalizeer $T_1(x), \ldots, T_3(x)$ zodat de coëfficiënt van $T_i(x)$ by x^i gelijk is aan 2^{i-1} .

• De veeltermen die je bekomt zijn de zogenaamde Chebyshev veeltermen van de eerste soort. Ze hebben uitzonderlijk goede benaderingseigenschappen. Men toont aan dat dit stel orthogonale veeltermen voldoet aan de recursiebetrekking

$$T_0(x) = 1,$$
 $T_1(x) = x,$ $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).$

Vind nu op een eenvoudige manier $T_4(x)$ en $T_5(x)$.

• Leid met behulp van deze recursiebetrekking een matrix af waarvan de eigenwaarden de nulpunten zijn van $T_5(x)$. Controleer het resultaat met Matlab.

Oplossing.

• We gaan na dat $||T_0||^2 = \pi$:

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx = \left[\arcsin(x)\right]_{-1}^{1} = \pi/2 - (-\pi/2) = \pi.$$

De (nog niet genormalizeerde) veelterm $\tilde{T}_1(x)$ is gegeven door

$$\tilde{T}_1(x) = x - \frac{(x, T_0)}{(T_0, T_0)} T_0(x) = x - \frac{1}{\pi} \int_{-1}^1 \frac{x}{\sqrt{1 - x^2}} dx = x$$

want de integrand is oneven. De coefficient bij x^1 is $1 = 2^{1-1}$ dus $T_1(x) = \tilde{T}_1(x) = x$. Op een analoge manier vinden we

$$\tilde{T}_{2}(x) = x^{2} - \frac{(x^{2}, T_{0})}{(T_{0}, T_{0})} T_{0}(x) - \frac{(x^{2}, T_{1})}{(T_{1}, T_{1})} T_{1}(x)
= x^{2} - \frac{1}{\pi} \left(\int_{-1}^{1} \frac{x^{2}}{\sqrt{1 - x^{2}}} dx \right) T_{0}(x) - \frac{2}{\pi} \left(\int_{-1}^{1} \frac{x^{3}}{\sqrt{1 - x^{2}}} dx \right) T_{1}(x)
= x^{2} - 1/2.$$

Merk op dat de derde term opnieuw wegvalt omdat de integrand oneven is. Normalizeren geeft $T_2(x) = 2\tilde{T}_2(x) = 2x^2 - 1$. Tenslotte vinden we

$$\tilde{T}_3(x) = x^3 - \frac{(x^3, T_1)}{(T_1, T_1)} T_1(x)$$

$$= x^2 - \frac{2}{\pi} \left(\int_{-1}^1 \frac{x^4}{\sqrt{1 - x^2}} dx \right) T_1(x)$$

$$= x^3 - \frac{3}{4} x.$$

Normalizeren geeft $T_3(x) = 4x^3 - 3x$.

• Uit de recursiebetrekking volgt:

$$T_4(x) = 2xT_3(x) - T_2(x) = 2x(4x^3 - 3x) - (2x^2 - 1) = 8x^4 - 8x^2 + 1,$$

 $T_5(x) = 2xT_4(x) - T_3(x) = 16x^5 - 20x^3 + 5x.$

• de vergelijkingen

$$T_{1}(x) = xT_{0}(x)$$

$$\frac{1}{2}T_{0}(x) + \frac{1}{2}T_{2}(x) = xT_{1}(x)$$

$$\frac{1}{2}T_{1}(x) + \frac{1}{2}T_{3}(x) = xT_{2}(x)$$

$$\frac{1}{2}T_{2}(x) + \frac{1}{2}T_{4}(x) = xT_{3}(x)$$

$$\frac{1}{2}T_{3}(x) + \frac{1}{2}T_{5}(x) = xT_{4}(x)$$

volgen rechtstreeks uit de recursiebetrekking. In Matrixvorm krijgen we

$$\begin{bmatrix}
0 & 1 & & & \\
1/2 & 0 & 1/2 & & \\
& 1/2 & 0 & 1/2 & \\
& & 1/2 & 0 & 1/2 \\
& & & 1/2 & 0
\end{bmatrix}
\begin{bmatrix}
T_0(x) \\
T_1(x) \\
T_2(x) \\
T_3(x) \\
T_4(x)
\end{bmatrix} = x \begin{bmatrix}
T_0(x) \\
T_1(x) \\
T_2(x) \\
T_3(x) \\
T_4(x)
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
0 \\
T_5(x)
\end{bmatrix}.$$

Er volgt dat de nulpunten van $T_5(x)$ de eigenwaarden zijn van A. Merk op dat $T_0(x) = 1$ verzekert dat de bijhorende eigenvectoren niet triviaal zijn. Dit geeft in Matlab via het commando eig(A)

$$-9.5106e - 01$$
, $-5.8779e - 01$, $3.0864e - 17$, $9.5106e - 01$, $5.8779e - 01$.

Een eenvoudig plot bevestigt de resultaten, zie Figuur 2.

Figuur 2: De vijfde Chebyshev veelterm van de eerste soort (\longrightarrow) en eigenwaarden van de matrix A (\bullet).

Opgave 6. Beschouw de vectorruimte $V = C^1[a, b]$ van continue functies met continue afgeleide op het interval $[a, b] \subset \mathbb{R}$. Op $C^1[a, b]$ is het Sobolev inwendig product $(f, g)_{H^1}$ gedefiniëerd als

 $(f,g)_{H^1} = \int_a^b (f(x)g(x) + f'(x)g'(x))dx.$

- Toon aan dat $(\cdot, \cdot)_{H^1}$ een scalair product is en leid een formule af voor de geïnduceerde norm $\|\cdot\|_{H^1}$.
- Is $(f,g) = \int_a^b f'(x)g'(x)dx$ een scalair product op V? Bewijs je antwoord.
- Bereken de Sobolev en de L^2 -afstand tussen x en e^x op [0,1].
- Toon aan dat $||f||_{H^1} \ge ||f||_{L^2}, \forall f \in V$.

Oplossing.

• De eerste drie axioma's volgen uit bilineariteit en symmetrie van $\langle \cdot, \cdot \rangle_V$. De geïnduceerde norm is

$$||f||_{H^1} = \sqrt{(f,f)_{H^1}} = \sqrt{\int_a^b (f(x)^2 + f'(x)^2) dx} = \sqrt{\int_a^b f(x)^2 dx + \int_a^b f'(x)^2 dx}.$$

Het vierde axioma volgt uit het feit dat van de twee positieve termen onder het wortelteken, de eerste strict positief is als en slechts als $f(x) \neq 0$.

- Neen. Een tegenvoorbeeld is $f(x) = C, C \in \mathbb{R}_0, (f, f)_{H^1} = 0$, maar $f \neq 0$.
- De Sobolev afstand wordt gegeven door

$$\rho_{H^1}(x, e^x) = \int_0^1 (xe^x + e^x) dx = [xe^x]_0^1 - \int_0^1 e^x dx + \int_0^1 e^x dx = e^x$$

en

$$\rho_{L^2}(x, e^x) = \int_0^1 x e^x dx = [xe^x]_0^1 - \int_0^1 e^x dx = e - (e - 1) = 1.$$

• Dit volgt uit $||f||_V^2 = ||f||_{L^2}^2 + ||f'||_{L^2}^2$.