

CSE 220 Data Structures

Lecture 07: Hashing and Hash Tables

Anwarul Bashir Shuaib [AWBS]

Lecturer

Department of Computer Science and Engineering

BRAC University

Need for Efficient Searching

Arrays: Fast access by index (arr[0], arr[1], ...), but slow to search by value (e.g., Is 'Alice' in this array?).

cat	bob	alice	eve	gold	brown
0	1	2	3	4	5

Need for Efficient Searching

- Same goes for linked lists.
- Find "alice" in this list \Rightarrow O(n)

Need for Efficient Storing

Add a new name "russel" at position $2 \Rightarrow O(n)$

cat	bob	alice	eve	gold	brown
0	1	2	3	4	5

Same for linked lists \Rightarrow O(n)

Fast Searching and Storing

- What if the array is sorted?
 - For searching, best we can do is O(logn)
 - Insertion / deletion of an element is still O(n), as we need to shift elements to make room / fill up empty space

Problem with Arrays/Lists

- Arrays: Fast access by index, but slow to search by value (e.g., "Is 'Alice' in this array?").
- Lists: Easy to add/remove, but slow to search (check every item).

Solution: What if we could turn a key (like "Alice") into an index for instant access?

Hash tables are extremely efficient with both storing and retrieving Both operations are O(1)!

Hash functions

Definition: A function that converts any key (text, number, etc.) into a number (hash code). **Example:**

Hash("Alice") → 140 → Index = 140 % 6 → Index 2
 Key Point: Same key → same index every time!

cat	bob	alice	eve	gold	brown
0	1	2	3	4	5

- 1. Key \rightarrow Hash Function \rightarrow Hash Code (e.g., 140).
- 2. Hash Code % Table Size \rightarrow Index (e.g., 140 % 6 = 2).

More on hash functions

- Hash functions should be as different as possible for different keys
 - We call this property collision resistance
 - We try to come up with such hash functions so that it is extremely difficult
 to find two different inputs, say x and y, that produces same hash code, e.g:
 hash(x) == hash(y)
- Hash functions is a one-way function (you cannot decode the key from the hash code)
- For a given key (say, "alice"), hash functions will always produce the same hash code (for example, hash("alice") = 140)

Key-Value Mapping

- You have a list of user names, and their phone numbers.
- How would you store this information?

Username ⇒ Key Phone number ⇒ Value

5513	2231	5123	6712	9224	5215
cat	bob	alice	eve	gold	brown

Key-Value Mapping

- You have a list of user names, and their phone numbers.
- How would you store this information?

Username ⇒ Key Phone number ⇒ Value

5513	2231	5123	6712	9224	5215
cat	bob	alice	eve	gold	brown

| Values | Keys

Hash(key) % Table size = Index

Hash Table

- We have infinitely possible keys, but limited memory
- We create a fixed sized array (say 1000), and map all possible (key, value) pairs in that array

Hash Table

- We store each (k,v) pair in a linked list. Each cell in the array is a linked list head.
- Whenever multiple keys map to the same position (collision occurs), we append the (k,v) pair in the linked list at that position.

Practice

- You have the keys 41, 18, 28, 36, 10, 90, 12, 54, 38, 25
- Hash table with size 13
- h(k) = k % 13
- Draw the final hash table after inserting the keys

Practice

• Step 1: Find indices for each keys

You can perform modulo on your calculator

k	h(k) = k % 13
41	2
18	5
28	2
36	10
10	10
90	12
12	12
54	2
38	12
25	12

Figure 6.4: Example of a hash table of size 13, storing 10 integer keys, with collisions resolved by the chaining method. The hash function in this case is $h(k) = k \mod 13$.

Operations on Hash Tables

Denote the hash table by "M"

get(k): If M contains an item with key equal to k, then return the value of such an item; else return a special element NULL.

put(k, v): Insert an item with key k and value v; if there is already an item with key k, then replace its value with v.

remove(k): Remove from M an item with key equal to k, and return this item. If M has no such item, then return the special element NULL.


```
 \begin{array}{l} \bullet \ \ \mathsf{get}(k) \colon \\ B \leftarrow A[h(k)] \\ \ \ \mathsf{if} \ B = \mathsf{NULL} \ \ \mathsf{then} \\ \ \ \ \mathsf{return} \ \mathsf{NULL} \\ \ \ \mathsf{else} \\ \ \ \ \ \mathsf{return} \ B.\mathsf{get}(k) \ \ /\!/ \ \mathsf{do} \ \mathsf{a} \ \mathsf{lookup} \ \mathsf{in} \ \mathsf{the} \ \mathsf{list} \ B \\  \end{array}
```


hashtable.get(14)

1. Compute h(14) = 14 % 13 = 1

hashtable.get(14)

- 1. Compute h(14) = 14 % 13 = 1
- 2. Access A[1]

hashtable.get(14)

- 1. Compute h(14) = 14 % 13 = 1
- 2. Access A[1]
- 3. Since A[1] is empty (null), 14 does not exist.

hashtable.get(38)

1. Compute h(38) = 38 % 13 = 12

hashtable.get(38)

- 1. Compute h(38) = 38 % 13 = 12
- 2. Access the head at A[12]

hashtable.get(38)

- 1. Compute h(38) = 38 % 13 = 12
- 2. Access the head at A[12]
- 3. Perform a linear search starting from the head until you find the element


```
• \operatorname{put}(k,v):

if A[h(k)] = \operatorname{NULL} then

Create a new initially empty linked-list-based map, B
A[h(k)] \leftarrow B
else
B \leftarrow A[h(k)]
B \cdot \operatorname{put}(k,v) \text{ // put } (k,v) \text{ at the end of the list } B
```


hashtable.put(20, 20) // key and value are the same

1. Compute h(20) = 20 % 13 = 7

hashtable.put(20, 20) // key and value are the same

- 1. Compute h(20) = 20 % 13 = 7
- 2. Insert element 20 at A[7]

hashtable.put(34, 34) // key and value are the same

1. Compute h(34) = 34 % 13 = 7

hashtable.put(34, 34) // key and value are the same

- 1. Compute h(34) = 34 % 13 = 7
- 2. Append 34 at A[7]

Removal

```
 \begin{array}{l} \bullet \  \  \, \mathrm{remove}(k) \colon \\ B \leftarrow A[h(k)] \\ \mathbf{if} \ B = \mathsf{NULL} \ \ \mathbf{then} \\ \mathbf{return} \ \mathsf{NULL} \\ \mathbf{else} \\ \mathbf{return} \ B.\mathsf{remove}(k) \ \ /\!\!/ \ \mathrm{remove} \ \mathrm{the} \ \mathrm{item} \ \mathrm{with} \ \mathrm{key} \ k \ \mathrm{from} \ \mathrm{the} \ \mathrm{list} \ B \\  \end{array}
```


hashtable.remove(35)

- 1. Compute h(35) = 35 % 13 = 8
- 2. Nothing to remove at A[8], so do nothing

hashtable.remove(20)

- 1. Compute h(20) = 20 % 13 = 7
- 2. Access the head at A[7]
- 3. Keep traversing the list at A[7] until you find 20, if found then remove it.

hashtable.remove(20)

- 1. Compute h(20) = 20 % 13 = 7
- 2. Access the head at A[7]
- 3. Keep traversing the list at A[7] until you find 20, if found then remove it.

Why Constant Time?

Best Case:

• Perfect hash function \rightarrow No collisions \rightarrow **O(1)** time.

Average Case:

Good hash function + balanced table → Short linked lists → ≈0(1).

Key Idea: Even with a few collisions, chains stay small if the table is large enough.

Summary

Hash Tables = Speed + Simplicity:

- 1. Hash function \rightarrow instant index.
- 2. Forward chaining \rightarrow handle collisions.
- 3. Result: Fast insert, search, delete!

Real-World Use Cases: Databases, caches, spell-checkers.

Exercise

- Given an unsorted array of integers, find pairs (a,b) such that a+b = 0 in O(n) time.
 - Insert items into hashtable \Rightarrow O(n)
 - For each item x, find its equivalent negative pair (-x). If found, print $(x, -x) \Rightarrow O(n)$
 - Overall time: O(n)