ESALO

HENGENHARIA DE DADOS II

Prof. Dr. Jeronymo Marcondes

*A responsabilidade pela idoneidade, originalidade e licitude dos conteúdos didáticos apresentados é do professor.

Proibida a reprodução, total ou parcial, sem autorização. Lei nº 9610/98

Introdução

Perguntas

- Como unir as informações das tabelas?
- Como obter informações de curso a partir de estudantes?
- Como realizar consultas bem performáticas com qualificações inseridas?
- Como garantir que o modelo seja robusto a transações.

Transações

- Execução no banco de dados.
- Garante integridade exemplo de compra de lugares no teatro.
- Sensação de execução local com isolamento e proteção contra perdas.
- · Conceito de lock.

Locking Protocol

- Regras que garantem que, mesmo que várias pessoas executem querys ao mesmo tempo, o resultado líquido será o mesmo que teria ocorrido se as mesmas tivessem sido executadas em fila.
- O lock irá garantir que o objeto consultado não possa ser acessado por meio de outras transações.
- Exclusive Lock e Shared Lock.

Exemplo

Relacionamento

- Como garantir robustez ao modelo do negócio? Além da robustez de transações -> restrições.
- O relacionamento entre entidades. Como se relacionam estudantes e cursos?
- A tabela tem de ter consistência interna e os relacionamentos dela com as demais também.

Restrições de Integridade

- Restrições de chave, de relacionamento e gerais.
- Restrições de chave: um subconjunto mínimo de campos de uma relação que identifica tupla única.
- Ou seja, campo(s) definidos como chave devem garantir que a linha selecionada seja única.

Exemplo

CPF	Nome	Curso
XXX	João	Ciência de Dados
ууу	João	Medicina
hhh	Pedro	Medicina

Nome	Sobrenome	Curso
João	Silva	Ciência de Dados
João	Marinho	Ciência de Dados
Pedro	Guedes	Ciência de Dados

Chave Primária

- Uma determinada tabela pode ter várias chaves = chaves candidatas
- Chave primária é definida pelo DBA de forma que o SGBD faça as averiguações por meio da mesma.
- Chave primária bem definida é importante pois suscita a criação e índices o que torna as consultas mais performáticas.

Formas Normais

- Série de regras que garantem se um BD foi bem projetado.
- Mostra a importância de uma chave primária bem definida.
- Objetivo:
- 1) Garantir informação sem redundância.
- 2) Garantir eficiência na obtenção dos dados.

Formas normais

• 1^a forma normal:

Cada linha é uma informação. Não podem existir grupos repetidos ou atributos com mais de um valor.

PESSOAS = {ID+ NOME + ENDERECO + TELEFONES}

PESSOAS = { <u>ID</u> + NOME + ENDERECO }

TELEFONES = { PESSOA ID + TELEFONE }

Formas normais

• 1^a forma normal:

ID	NOME	ENDEREÇO	TELEFONES
XX	JOAO	AV JOAO	99999;88888;77777
YY	PEDRO	AV PEDRO	77776;5555

ID	NOME	ENDEREÇO
XX	JOAO	AV JOAO
YY	PEDRO	AV PEDRO

AN (ID	TELEFONE
XX	99999
XX	88888
XX	77777
YY	77776
YY	5555

Formas normais

• 2^a forma normal:

Todas as colunas que não participam da chave primária são dependentes de todas as colunas que compõem a chave primária.

```
 \begin{aligned} & \text{ALUNOS\_CURSOS} = \{ & \underline{\text{ID\_ALUNO}} + \underline{\text{ID\_CURSO}} + \text{NOTA} + \text{DESCRICAO\_CURSO} \} \\ & \text{ALUNOS\_CURSOS} = \{ & \underline{\text{ID\_ALUNO}} + \underline{\text{ID\_CURSO}} + \text{NOTA} \} \\ & \text{CURSOS} = \{ & \underline{\text{ID\_CURSO}} + \text{DESCRICAO} \} \end{aligned}
```


Restrições Gerais

- Restrições de , principalmente, de negócio.
- Exemplo: inserção de idade.
- Os modernos SGBD já tem ferramentas que permitem criar tais restrições.

Eduardo Ferrence

Como lidar com modelos com mais de uma tabela?

Eduardo Ferrett's

Chave Estrangeiras

- Chave primária de outra tabela
- Essa chave nos permite ligar tabelas diferentes de forma a garantir a unicidade da relação.
- O nome da chave estrangeira n\u00e3o precisa ser o mesmo da chave prim\u00e1ria = o que importa \u00e9 o conte\u00e4do!

	Fore	ign key	, i	Primar	y key			
cid	grade	studid	-	≥ sid	name	login	age	gpa
Carnatic 101	С	53831		50000	Dave	dave@cs	19	3.3
Reggae203	В	53832	1	53666	Jones	jones@cs	18	3.4
Topology112	A	53650	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	53688	Smith	smith@ee	18	3.2
History105	В	53666′		53650	Smith	smith@math	19	3.8
			16014	53831	Madayan	madayan@music	11	1.8
			4	53832	Guldu	guldu@music	12	2.0

Enrolled (Referencing relation)

Students (Referenced relation)

¹⁸MBAUSP

Casos Específicos

- Inserir Tupla <55555, Art104, A> nos cursos com inscrição.
- Deletar tupla <53666, Jones, Jones @cs, 18, 3.4> de estudantes.
- Inserir tupla <55669, Margareth, MG @test, 21, 4> em estudantes.

Ideia de junção

Tabela 1

CPF	NOME		
XXX	ze das couves		
ууу	maria das desgraças		

Tabela 2

	CPF	IDADE	PIS
	XXX	21	hhh
4	ууу	25	JJJ

Tabela Derivada

CPF	NOME	IDADE
XXX	ze das couves	21
ууу	maria das desgraças	25

ACID

• Atomicity, Consistency, Isolation, Durability

 Conjunto de propriedades em transações de bancos de dados que são importantes para garantir a validade dos dados mesmo que ocorram erros durante o armazenamento ou problemas mais graves no sistema, como crashes ou problemas físicos em um servidor.
 As propriedades ACID são fundamentais para o processamento de transações em bancos de dados.

ACID

- Atomicidade: Garante que cada transação seja tratada como uma entidade única, a qual deve ser executada por completo ou falhar completamente.
- Consistência: Os dados que são gravados devem sempre ser válidos.
- Isolamento: Permite deixar o banco de dados no mesmo estado em que ele estaria caso as transações fossem executadas em sequência.
- Durabilidade: A propriedade da durabilidade garante que uma transação, uma vez executada (efetivada), permanecerá neste estado mesmo que haja um problema grave no sistema

Cardinalidade

 Cardinalidade: indica quantas ocorrências de uma Entidade participam no mínimo e no máximo do relacionamento.

Tipos de relacionamento:

- 1) Um para um;
- 2) Muitos para um;
- 3) Muitos para muitos.

Um para um

- Cardinalidade mínima: define se a relação é obrigatória.
- Cardinalidade máxima: define a quantidade máxima de ocorrências da Entidade que pode participar do Relacionamento.

Muitos para um

Muitos para Muitos

Operandordom SQL

Eduardo Ferreira

JOIN

• Especifica como será feita a junção entre duas tabelas. Por exemplo:

Id_cliente	Pedido	

Id_cliente	Nome	Endereço
383.		

Id_cliente	Nome	Endereço	Pedido
.10			

LEFT JOIN

SELECT [DISTINCT] lista-seleção

FROM lista-origem-1

LEFT JOIN lista-origem-2

ON lista-origem-1. campo_em_comum = lista-origem-2. campo_em_comum

WHERE qualificação

LEFT JOIN

SELECT *

FROM pedidos

LEFT JOIN endereco

ON pedidos.ld_cliente = endereço.ld_cliente

-_cliente Ferreira Lima 383.590.198-27

Id_cliente	Pedido
XXX	1
ууу	2

Id_cliente	Nome	Endereço
xxx	joao	av joao
hhh	pedro	av pedro

Id_cliente	Nome	Endereço	Pedido
XXX	joao	av joao	1
ууу	NULL	NULL	2

NULL

- · Até agora somente valores conhecidos.
- Se desconhecido = NULL.
- Quando o valor é desconhecido ou não se aplica.

Eduardo Ferre

Exemplo com NULL

SELECT *

FROM pedidos_e_endereço

WHERE nome IS NOT NULL

Id_cliente	Nome	Endereço	Pedido
xxx 2	joao	av joao	1

SELECT *

FROM pedidos_e_endereço

WHERE nome IS NULL

Id_cliente	Nome	Endereço	Pedido
ууу	NULL	NULL	2

RIGHT JOIN

SELECT [DISTINCT] lista-seleção

FROM lista-origem-1

RIGHT JOIN lista-origem-2

ON lista-origem-1. campo_em_comum = lista-origem-2. campo_em_comum

WHERE qualificação

RIGHT JOIN

SELECT *

FROM pedidos

RIGHT JOIN endereco

ON pedidos.ld_cliente = endereço.ld_cliente

-cliente 1 ima 383.590.198-27

Id_cliente	Pedido
XXX	1
ууу	2

Id_cliente	Nome	Endereço
XXX	joao	av joao
hhh	pedro	av pedro

ld_cliente	Nome	Endereço	Pedido
XXX	joao	av joao	1
hhh	pedro	av pedro	NULL

INNER JOIN

SELECT [DISTINCT] lista-seleção

FROM lista-origem-1

INNER JOIN lista-origem-2

ON lista-origem-1. campo_em_comum = lista-origem-2. campo_em_comum

WHERE qualificação

INNER JOIN

SELECT *

FROM pedidos

INNER JOIN endereco

ON pedidos.ld_cliente = endereço.ld_cliente

Id_cliente	Pedido
XXX	1
ууу	2

Id_cliente	Nome	Endereço
XXX 2	joao	av joao
hhh	pedro	av pedro

	Id_cliente	Nome	Endereço	Pedido
	XXX	joao	av joao	1
E	duar			

UNION ALL

Eduardo Ferreira Lima 383.590.198-27 Tabelas de mesma estrutura que serão "empilhadas".

SELECT lista-seleção

FROM lista-origem-1

UNION ALL

SELECT lista-seleção

FROM lista-origem-2

UNION ALL

SELECT Id_cliente

FROM pedidos

UNION ALL

SELECT Id_cliente

FROM endereco

^{*}A responsabilidade pela idoneidade, originalidade e licitude dos conteúdos didáticos apresentados é do professor. **Proibida a reprodução**, total ou parcial, sem autorização. Lei nº 9610/98

Id_cliente	Pedido
XXX	1
ууу	2

Id_cliente	Nome	Endereço
XXX	joao	av joao
hhh	pedro	av pedro

⁴²MBAUSP

UNION

- Eduardo Ferreira Lima 383.590.198-27 Tabelas de mesma estrutura que serão "empilhadas".
- Diferencia-se por aplicar um *DISTINCT*.

SELECT lista-seleção

FROM lista-origem-1

UNION

SELECT lista-seleção

FROM lista-origem-2

UNION

SELECT Id_cliente

FROM pedidos

UNION

SELECT Id_cliente

FROM endereco

⁴⁴MBAUSP

Id_cliente	Pedido
XXX	1
ууу	2

Id_cliente	Nome	Endereço
xxx	joao	av joao
hhh	pedro	av pedro

Id_cliente

xxx

yyy

hhh

⁴⁵ MBAUSP

Nested Queries

- Resultado de query anterior pode ser utilizada na atual
- Forma mais comum:

```
SELECT lista-seleção-derivada FROM lista-origem
```

```
WHERE coluna IN
```

(

SELECT lista-seleção-original

FROM lista-origem

)

Nested Queries

CPF	NOME	ENDERECO
XXX	JOAO	AV JOAO
YYY	MARIA	AV MARIA

2	CPF PEDIDO VALOR (R		
	XXX	10	500
	YYY	12	1000

Nested Queries

```
383.590.198-27 Lima 383.590.198-27
SELECT CPF, Nome, Endereco
FROM Consumidores
WHERE CPF IN
              SELECT CPF
              FROM Gastos
              WHERE Valor > 500
```

- Java Database Connectivity SUM
- Open Database Connectivity Microsoft
- API application programming interface

- Permite a execução de SQL dentro do banco a partir de aplicações.
- · Pode acessar diversos servidores de dados ao mesmo tempo.
- Todas as transações ocorrem por meio de um driver.

https://docs.oracle.com/

Exemplo

RStudio Application

Programming Language

System Software

Data Source

^{*}A responsabilidade pela idoneidade, originalidade e licitude dos conteúdos didáticos apresentados é do professor. Proibida a reprodução, total ou parcial, sem autorização. Lei nº 9610/98

- Ordem:
- Seleciona origem de dados.
- Carrega o respectivo driver.
- Estabelece a conexão com a origem.

383.590.198-27

Discussão – futuro dos bancos de dados

^{*}A responsabilidade pela idoneidade, originalidade e licitude dos conteúdos didáticos apresentados é do professor. **Proibida a reprodução**, total ou parcial, sem autorização. Lei nº 9610/98

OBRIGADO! Prof. Dr. Jeronymo Marcondes

in https://www.linkedin.com/in/jeronymo-marcondes-585a26186