Posible Title*

Amos Okutse¹ Monica Colon-Vargas¹
¹School of Public Health, Brown University, Providence, RI.

Abstract

Introduction: hi

Objective: hi Methods: hi

Results: hi
Conclusion: hi

Keywords: Obesity, Pandemic, Health risk, Lower socioeconomic groups.*

Introduction

The World Health Organization (WHO) defines obesity as a chronic and intricate disease characterized by an accumulation of excess fat that poses significant health risks. This condition is not confined to isolated cases but has become alarmingly prevalent across numerous countries worldwide, warranting recognition as a global pandemic (CITE PAPER1). Among its many complications, obesity significantly elevates the risk of various health issues, including diabetes, fatty liver disease, hypertension, cardiovascular events like heart attacks and strokes, cognitive decline, joint ailments such as osteoarthritis, disrupted sleep patterns due to conditions like obstructive sleep apnea, and an increased susceptibility to certain types of cancer (CITE PAPER1).

Literature suggests that the likelihood of obesity is influenced by a range of factors beyond individual characteristics, including demographic attributes, community infrastructure, socioeconomic conditions, and specific environmental factors within communities (CITE PAPER 2). In certain countries, particularly among lower socioeconomic groups, obesity rates have surged dramatically due to urbanization, shifts in diet and food availability, and reduced physical activity. This rise in obesity is linked to a significant increase in mortality from chronic diseases like type 2 diabetes, heart disease, and certain cancers, potentially shortening life expectancy by up to 20 years. Given the preventable nature of obesity and its associated health risks, early detection is crucial to mitigate the development of serious conditions such as cardiovascular issues, diabetes, and asthma. Obesity's complex origins involve various factors including socioeconomic status, occupation, and lifestyle habits like smoking and physical activity levels. Physical activity and eating habits are key in preventing obesity, as it primarily stems from an imbalance between calories consumed and expended. Weight loss typically involves reducing calorie intake, increasing energy expenditure, or both. When individuals consume more energy than needed, the excess is stored as fat, leading to obesity. Therefore, maintaining a healthy weight relies on a balanced diet and regular physical activity. (CITE PAPER3)

This work is centered in identifying determinants associated with obesity, with particular emphasis on exploring the interplay between socioeconomic indicators and lifestyle behaviors. In Latin American obesity rates have reached alarming levels, posing serious health risks and placing a substantial burden on healthcare systems CITE(paper4). Therefore this work will address the global health issue of obesity, with a specific focus on

^{*}Replication files are available on the author's Github account (https://github.com/MCV20/GLM-project.git). Current version: April 24, 2024

Table 1: Variable Description

Variable	Description	Values	
Nobeyesdad	Obesity Level	Insufficient/Normal ObesityI/ObesityII ObesityIII/OverweightI/OverweightII	
Gender	What is your gender?	Female/Male	
Age	What is your age?	Numeric Value	
Height	What is your height?	Numeric Value (m)	
Weight	What is your weight?	Numeric Value (kg)	
family_history_with_overweight	Has a family member suffered or suffers from overweight?	Yes/No	
FAVC	Do you eat high caloric food frequently?	Yes/No	
FCVC	Do you usually eat vegetables in your meals?	Never/Sometimes/Always	
NCP	How many main meals do you have daily?	Numeric Value	
CAEC	Do you eat any food between meals?	No/Sometimes/Frequently Always	
Smoker	Do you smoke	Yes/No	
CH20	How much water do you drink daily	Numeric Value	
SCC	Do you monitor the calories you eat daily	Yes/No	
FAF	How often do you do physical activity	Numeric Value	
TUE	How much time do you use technological devices such as cell phone, videogames, television, computer and others?	Numeric Value	
CALC	How often do you drink alcohol	Never/Sometimes/ Frequently/Always	
MTRANS	Which transportation do you usually use	Automobile/Motorbike Bike/Public/Walking	

the diverse populations of Mexico, Peru, and Colombia. By examining individuals' eating habits and physical condition, this research aims to understand the factors contributing to obesity prevalence in these regions and understand the underlying mechanisms driving the escalating rates of obesity.

Methodology

Data

The dataset, accessible online at the UC Irvine Machine Learning Repository, includes information pertinent to estimating obesity levels among (n=498) individuals aged 14 to 61 hailing from Mexico, Peru, and Colombia. Collected via a web-based survey administered to anonymous respondents, the dataset comprises 17 attributes and was available online for a duration of 30 days. Data collection involved posing questions as delineated in Table 1, which also details the variables under study and the methodology employed in the data collection process.

Data Pre-processing

Given the relatively modest sample size of our dataset, we anticipate potential challenges in conducting robust analyses. Our outcome variables comprise seven distinct levels, encompassing three tiers of obesity (Type I, II, III), two tiers of overweight (I, II), as well as normal weight and underweight categories. However, certain categories contain a limited number of individuals, necessitating the consolidation of some for better statistical reliability. Accordingly, we introduce a novel class termed "Obese," which consolidates the three levels of obesity, alongside a separate class denoted as "Overweight," housing the two levels thereof, while retaining the remaining categories unchanged. Furthermore, certain categories within the covariates exhibited minimal representation, with some even lacking individuals in certain categories. Consequently, we undertook additional aggregation of these classes. For instance, within the alcohol consumption variable, we combined the "always" and "frequently" classes into a singular category. Similarly, in the transportation variable, we merged "motorbike" and "automobile" into a consolidated class termed "motor vehicle," while amalgamating "walking" and "bike" into a unified category.

Statistical Modeling

Since the outcome variable exhibits an ordinal nature, where the categories can be ordered as underweight < normal < overweight < obese, we opted for a modeling approach suited to such data characteristics. Specifically, we employed the generalized linear model framework, fitting a proportional odds model. This modeling technique allows us to account for the ordinal nature of the outcome variable and the inherent ordering of its categories. By utilizing the proportional odds model, we can assess the relationship between the predictors and the ordinal outcome variable while accommodating the cumulative nature of the categories.

Variable Selection

In light of the considerable number of variables present within the dataset, an approach to variable selection opted. To this end, we employed two distinct methodologies for variable selection. Primarily, variables were selected based on their significance as determined by p-values derived from the proportional odds model. Additionally, we conducted variable selection utilizing a proportional odds model with lasso penalization, a technique that inherently incorporates variable selection by penalizing less influential predictors. Subsequently, interactions among selected variables were explored, and the resultant models were meticulously compared to discern the most parsimonious and informative model structure.

Class Imbalance

Given the class imbalance within the outcome variable, we address this issue by employing an upsampling technique. The goal is to decrease the disparity by augmenting the instances of minority classes to achieve parity with the majority class, thereby fostering a more balanced representation across all categories. Subsequently, within this augmented dataset, we applied the same two variable selection techniques previously described. This approach ensures that the variable selection procedures are conducted on a dataset that reflects a more equitable distribution of observations across the various outcome categories, thereby mitigating potential biases and bolstering the reliability of the ensuing models. We additionally proceed to fit an additional model using the augmented dataset, incorporating solely those covariates that demonstrated statistical significance within the original dataset.

Model Comparisons

The majority of models analyzed in this study were nested, with assessments primarily relying on information criteria such as the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC). Notably, the BIC

Table 2: Summary Statistic Stratified by Outcome Category

Characteristic	Overall, $N = 498$	Normal_Weight, N = 287	Obese, $N = 61$	Overweight, N = 116	Underweight, N = 34
Gender					
Female	227.00 (45.58%)	141.00 (49.13%)	23.00 (37.70%)	46.00 (39.66%)	17.00 (50.00%)
Male	271.00 (54.42%)	146.00 (50.87%)	38.00 (62.30%)	70.00 (60.34%)	17.00 (50.00%)
Age	23.15 (6.72)	21.74 (5.10)	26.46 (8.22)	25.77 (8.39)	20.15 (4.03)
Height	1.69 (0.10)	1.68 (0.09)	1.71 (0.10)	1.69 (0.10)	1.70 (0.11)
Family history overweight	300.00 (60.24%)	155.00 (54.01%)	53.00 (86.89%)	76.00 (65.52%)	16.00 (47.06%)
High-calorie food consumption	348.00 (69.88%)	208.00 (72.47%)	44.00 (72.13%)	75.00 (64.66%)	21.00 (61.76%)
Number of meals veggie consumption					
1	32.00 (6.43%)	18.00 (6.27%)	4.00 (6.56%)	7.00 (6.03%)	3.00 (8.82%)
2	272.00 (54.62%)	155.00 (54.01%)	36.00 (59.02%)	69.00 (59.48%)	12.00 (35.29%)
3	194.00 (38.96%)	114.00 (39.72%)	21.00 (34.43%)	40.00 (34.48%)	19.00 (55.88%)
Daily main meals					
1	108.00 (21.69%)	52.00 (18.12%)	16.00 (26.23%)	35.00 (30.17%)	5.00 (14.71%)
3	344.00 (69.08%)	206.00 (71.78%)	44.00 (72.13%)	73.00 (62.93%)	21.00 (61.76%)
4	46.00 (9.24%)	29.00 (10.10%)	1.00 (1.64%)	8.00 (6.90%)	8.00 (23.53%)
Eating between meals					
Frequently	189.00 (37.95%)	118.00 (41.11%)	16.00 (26.23%)	37.00 (31.90%)	18.00 (52.94%)
no	20.00 (4.02%)	10.00 (3.48%)	2.00 (3.28%)	5.00 (4.31%)	3.00 (8.82%)
Sometimes	289.00 (58.03%)	159.00 (55.40%)	43.00 (70.49%)	74.00 (63.79%)	13.00 (38.24%)
Smoke	32.00 (6.43%)	13.00 (4.53%)	10.00 (16.39%)	8.00 (6.90%)	1.00 (2.94%)
Water Intake (L)					
1	135.00 (27.11%)	83.00 (28.92%)	17.00 (27.87%)	25.00 (21.55%)	10.00 (29.41%)
2	266.00 (53.41%)	164.00 (57.14%)	25.00 (40.98%)	61.00 (52.59%)	16.00 (47.06%)
3	97.00 (19.48%)	40.00 (13.94%)	19.00 (31.15%)	30.00 (25.86%)	8.00 (23.53%)
Calorie intake monitoring	55.00 (11.04%)	30.00 (10.45%)	3.00 (4.92%)	16.00 (13.79%)	6.00 (17.65%)
Frequency of days of physical activity (wk)					
0	162.00 (32.53%)	80.00 (27.87%)	28.00 (45.90%)	44.00 (37.93%)	10.00 (29.41%)
1	158.00 (31.73%)	97.00 (33.80%)	15.00 (24.59%)	40.00 (34.48%)	6.00 (17.65%)
2	113.00 (22.69%)	69.00 (24.04%)	12.00 (19.67%)	18.00 (15.52%)	14.00 (41.18%)
3	65.00 (13.05%)	41.00 (14.29%)	6.00 (9.84%)	14.00 (12.07%)	4.00 (11.76%)
Technology use time					
0	243.00 (48.80%)	129.00 (44.95%)	33.00 (54.10%)	68.00 (58.62%)	13.00 (38.24%)
1	181.00 (36.35%)	122.00 (42.51%)	16.00 (26.23%)	30.00 (25.86%)	13.00 (38.24%)
2	74.00 (14.86%)	36.00 (12.54%)	12.00 (19.67%)	18.00 (15.52%)	8.00 (23.53%)
Frequency of alchohol intake					
Frequently	46.00 (9.24%)	19.00 (6.62%)	9.00 (14.75%)	17.00 (14.66%)	1.00 (2.94%)
no	179.00 (35.94%)	107.00 (37.28%)	22.00 (36.07%)	36.00 (31.03%)	14.00 (41.18%)
Sometimes	273.00 (54.82%)	161.00 (56.10%)	30.00 (49.18%)	63.00 (54.31%)	19.00 (55.88%)
Transportation					
Motor_Vehicle	110.00 (22.09%)	51.00 (17.77%)	22.00 (36.07%)	34.00 (29.31%)	3.00 (8.82%)
Public_Transportation	326.00 (65.46%)	200.00 (69.69%)	35.00 (57.38%)	66.00 (56.90%)	25.00 (73.53%)
Walking/Bike	62.00 (12.45%)	36.00 (12.54%)	4.00 (6.56%)	16.00 (13.79%)	6.00 (17.65%)

¹ n (%); Mean (SD)

was preferred over the AIC due to its heightened penalty with larger sample sizes, leading to more stringent significance thresholds CITE(BIC). Model comparisons were conducted using the likelihood ratio test (LRT), aimed at examining competing models by testing the null hypothesis that the simpler and more complex models are equally effective. Specifically, this test assesses whether the additional parameters in the larger model significantly improve fit, implying that their effect sizes are statistically indistinguishable from zero.

Results

Descriptive Statistics

Table 2 presents an overview of participant characteristics stratified by each outcome category. Notably, the distribution across categories reveals a significant class imbalance, with only 34 participants categorized as underweight compared to 64 classified as obese. Conversely, the overweight category encompasses 116 partic-

ipants, with the highest representation observed within the normal weight classification.

Within the subset of 64 obese participants, 53 (86.80%) individuals exhibit familial overweight history, whereas among the underweight subset, 16 (47.06%) individuals demonstrate a similar familial predisposition. Regarding dietary habits, individuals categorized as normal weight exhibit the highest prevalence of high-caloric food consumption, followed sequentially by obese, overweight, and underweight counterparts. Additionally, observing the frequency of vegetable consumption, we can see 55.88% of underweight participants consuming vegetables in all three main meals, while 59% of obese and overweight individuals consume vegetables in two main meals. Meal frequency reveals that most participants consume three daily main meals, while a minority consumes only one daily meal. Moreover, between-meal eating habits are prevalent across all weight categories, with few individuals abstaining from between-meal consumption. Remarkably, a significant proportion (52.95%) of underweight participants report frequent between-meal snacking. Hydration patterns among participants indicate a consistent consumption of approximately 2-3 liters of water daily. Public transportation emerges as the preferred mode of transportation among participants. Furthermore, physical activity engagement varies across weight categories, with 45.9% of obese individuals reporting no weekly physical activity.

Model Results

A proportional odds model was employed to analyze the original dataset comprising (n=498) observations. Variable selection techniques, specifically LASSO regularization and p-value-based selection, yielded identical sets of significant predictors. These predictors included age, height, daily number of complete meals, weekly physical activity, daily water intake (L), and technology usage duration. To comprehensively explore potential interactions among these predictors, two-way and three-way interaction terms were examined. The interaction between age and height, the daily frequency of meals and physical activity, as well as physical activity and water intake, were found to be statistically non-significant. However, a three-way interaction involving the daily frequency of meals, physical activity, and water intake exhibited significance across most coefficient estimates. Despite this, a series of likelihood ratio tests were conducted, comparing models with varying complexity to a simpler baseline model. Likelihood ratio tests consistently favored the simpler model over those incorporating the interaction terms. Consequently, despite the significant findings regarding the three-way interaction, the simpler model without interactions was deemed more favorable based on the statistical evidence obtained from the likelihood ratio tests. Table 3 displays the AIC and BIC values for the various models. It is evident that the reduced model, which excludes interactions, exhibits the lowest AIC and BIC scores.

Table 3: AIC and BIC

	AIC	BIC
mod.polr.reduced	1075.388	1134.336
mod1	1077.369	1140.528
mod2	1078.691	1162.903
mod3	1085.632	1169.844
mod4	1100.734	1269.158

One important issue observed in these models pertains to class imbalance, where a disproportionate focus on these models is placed on accurately predicting instances within the normal weight class, while neglecting predictions for other weight categories. This imbalance is evidenced by the extreme case where the obese class fails to yield any predicted instances. Consequently, we address this imbalance by generating a new synthetic dataset wherein the underrepresented classes were upsampled. This augmented dataset now encompasses a total of n=1148 observations, evenly distributed with 287 observations allocated to each outcome category.

In the augmented dataset, both variable selection methods are employed. The LASSO penalty method exhibits limited variable selection, as it only omits the gender variable. Conversely, selection based on p-values results in a more concise set of significant variables, including family history of overweight, high-calorie food consumption, daily number of complete meals, eating between meals, physical activity, and technology usage duration.

Two-way and three-way interactions were considered, including several combinations. Specifically, these interactions involved high-calorie food consumption with daily main meals, the number of daily main meals combined with eating between meals, physical activity in conjunction with the number of daily main meals, daily main meals coupled with physical activity, physical activity paired with eating between meals, and lastly, the three-way interaction among the number of daily meals, physical activity, and eating between meals. It is noteworthy that most interaction terms demonstrated a high level of significance within the models. We conducted comparisons between the simple model and the model incorporating interactions, affirming the significance of these interactions through likelihood ratio tests. Additionally, when comparing models with interactions, the Likelihood ratio test indicated a preference for the model featuring the three-way interaction by concluding that its fit significantly differs from that of the others. Table 4 presents the AIC and BIC, revealing that the model including three interactions (mod.up.int5) exhibits the lowest AIC and BIC scores.

Table 4: AIC and BIC

	AIC	BIC
mod.up.reduced	3091.079	3161.720
mod.up.int1	3076.705	3157.437
mod.up.int2	3072.434	3158.212
mod.up.int3	3054.762	3155.677
mod.up.int4	3071.253	3172.169
mod.up.int5	3032.281	3153.379

Coefficients Interpretation

We present significant coefficients of the model with three way interactions

Model Diagnostics

Discussion

Table 5: Coefficients

	estimate	std.errors	statistic	pvalues
fam.histyes	-0.318	0.357	-0.891	0.3729
FAF1	-0.289	0.371	-0.778	0.4368
FAF2	-0.034	0.404	-0.083	0.9337
FAF3	-0.117	0.431	-0.271	0.7861
NCP3	-3.064	0.843	-3.633	0.0003
NCP4	-2.053	0.851	-2.413	0.0158
FAVCyes	-2.325	0.828	-2.809	0.0050
CAECno	-15.028	0.630	-23.866	0.0000
CAECSometimes	-2.854	0.827	-3.449	0.0006
TUE1	-0.014	0.362	-0.038	0.9701
TUE2	0.500	0.398	1.256	0.2092
NCP3:FAVCyes	2.591	0.871	2.976	0.0029
NCP4:FAVCyes	3.001	0.911	3.293	0.0010
NCP3:CAECno	18.182	0.631	28.799	0.0000
NCP3:CAECSometimes	3.280	0.871	3.768	0.0002
NCP4:CAECSometimes	2.413	1.078	2.238	0.0252
FAVCyes:CAECno	14.686	0.631	23.262	0.0000
FAVCyes:CAECSometimes	2.211	0.862	2.567	0.0103
NCP3:FAVCyes:CAECno	-18.367	0.722	-25.455	0.0000
NCP3:FAVCyes:CAECSometimes	-3.218	0.908	-3.544	0.0004
NCP4:FAVCyes:CAECSometimes	-1.104	1.132	-0.976	0.3292

Code Appendix

```
knitr::opts_chunk$set(echo = FALSE,
                      message = FALSE,
                      warning = FALSE,
                      fig.align="center")
## Load libraries
library(naniar)
library(dplyr)
library(ggplot2)
library(corrplot)
library(caret)
library(tidymodels)
library(naivebayes)
library(gtsummary)
library(nnet)
library(coefplot)
library(ggpubr)
library(pROC)
```

```
library (MASS)
library(stargazer)
library(brant)
library(DescTools)
library(ordinalNet)
library(pomcheckr)
library(ROSE)
library(kableExtra)
theme set(theme minimal())
## Load data
dat <- read.csv("ObesityDataSet raw and data sinthetic.csv")</pre>
dat <- dat[1:498,] #take original data before SMOTE
## Data Preprocessing (covariates)
dat$CALC[dat$CALC == "Always"] <- "Frequently"</pre>
dat$CAEC[dat$CAEC == "Always"] <- "Frequently"</pre>
dat$MTRANS[dat$MTRANS == "Motorbike"] <- "Motor_Vehicle"</pre>
dat$MTRANS[dat$MTRANS == "Automobile"] <- "Motor_Vehicle"</pre>
dat$MTRANS[dat$MTRANS == "Bike"] <- "Walking/Bike"</pre>
dat$MTRANS[dat$MTRANS == "Walking"] <- "Walking/Bike"</pre>
dat$NObeyesdad <- ifelse(dat$NObeyesdad %in% c("Obesity_Type_I",</pre>
→ "Obesity_Type_II", "Obesity_Type_III"), "Obese", dat$NObeyesdad)
dat$NObeyesdad <- ifelse(dat$NObeyesdad %in% c("Overweight_Level_I",</pre>
→ "Overweight Level II"), "Overweight", dat$NObeyesdad)
dat$NObeyesdad[dat$NObeyesdad == "Insufficient_Weight"] <- "Underweight"</pre>
## Factor variables
dat <- dat %>%
  mutate_if(is.character, as.factor)
dat <- dat %>% mutate(
 FCVC = factor(FCVC),
  NCP = factor(NCP),
 CH20 = factor(CH20),
 FAF = factor(FAF),
  TUE = factor(TUE)
)
## Remove weight variable and rename fam history
dat <- dat %>% dplyr::select(-Weight)
dat <- dat %>% rename(fam.hist = family_history_with_overweight)
## Summary Statistics
dat %>% tbl_summary(digits = list(everything() ~ c(2)),
                     statistic = list(all_continuous() ~ "{mean} ({sd})"),
                     by = NObeyesdad,
                     missing = "no",
```

```
label = list(
                      fam.hist ~"Family history overweight",
                      FAVC ~ "High-calorie food consumption",
                      FCVC ~ "Number of meals veggie consumption",
                      NCP ~ "Daily main meals",
                      CAEC ~ "Eating between meals",
                      SMOKE ~ "Smoke",
                      CH20 ~ "Water Intake (L)",
                      SCC ~ "Calorie intake monitoring",
                      FAF ~ "Frequency of days of physical activity (wk)",
                      TUE ~ "Technology use time",
                      CALC ~ "Frequency of alchohol intake",
                      MTRANS ~ "Transportation"))%>%
  add_overall() %>%
  bold_labels() %>%
  as_kable_extra(booktabs = TRUE, caption = "Summary Statistic Stratified by
  → Outcome Category") %>%
  kableExtra::kable_styling(latex_options = "scale_down")
mod.polr.reduced <- polr(NObeyesdad ~ Age + Height + NCP + CH2O + FAF +TUE,
                         data = dat, Hess=TRUE,method = "logistic")
## Interactions
mod1 <- polr(NObeyesdad ~ Age*Height +TUE + NCP+FAF + CH2O,</pre>
                  data = dat, Hess=TRUE, method = "logistic")
mod2 <- polr(NObeyesdad ~ Age+TUE+ Height + NCP*FAF + CH2O,
             data = dat, Hess=TRUE, method = "logistic")
mod3 <- polr(NObeyesdad ~ Age+TUE+ Height + NCP+ FAF*CH2O,
             data = dat, Hess=TRUE, method = "logistic")
mod4 <- polr(NObeyesdad ~ Age+ Height + NCP*FAF*CH2O + TUE,</pre>
             data = dat, Hess=TRUE, method = "logistic")
res <- data.frame(AIC = AIC(mod.polr.reduced,mod1,mod2,mod3,mod4)$AIC,
                  BIC = BIC(mod.polr.reduced,mod1,mod2,mod3,mod4)$BIC)
rownames(res) <- rownames(AIC(mod.polr.reduced,mod1,mod2,mod3,mod4))</pre>
res %>%
  kbl(caption = "AIC and BIC",
      booktabs = TRUE, escape = FALSE, align = "c") %>%
 kable_styling(full_width = FALSE, latex_options = c('hold_position'))
## Create new dataset with Oversampling
set.seed(123)
dat2 <- upSample(dat %>% dplyr::select(-NObeyesdad),dat$NObeyesdad)
dat2 <- dat2 %>% rename(NObeyesdad = "Class")
```

```
## Variable Selection by P-value
mod.up <- polr(NObeyesdad ~.,</pre>
               data = dat2, Hess=TRUE, method = "logistic")
mod.up.reduced <- polr(NObeyesdad ~ fam.hist + FAVC + NCP + CAEC + FAF + TUE,</pre>
                         data = dat2, Hess=TRUE, method = "logistic")
## Interactions
mod.up.int1 <- polr(NObeyesdad ~ fam.hist + FAVC*NCP + CAEC + FAF + TUE,
                     data = dat2, Hess=TRUE, method = "logistic")
mod.up.int2 <- polr(NObeyesdad ~ fam.hist + FAVC+NCP*CAEC + FAF + TUE,
                     data = dat2, Hess=TRUE, method = "logistic")
mod.up.int3 <- polr(NObeyesdad ~ fam.hist + FAVC+NCP*FAF+CAEC + TUE,</pre>
                     data = dat2, Hess=TRUE, method = "logistic")
mod.up.int4 <- polr(NObeyesdad ~ fam.hist + FAVC+NCP+FAF*CAEC + TUE,</pre>
                     data = dat2, Hess=TRUE, method = "logistic")
mod.up.int5 <- polr(NObeyesdad ~ fam.hist + FAF+NCP*FAVC*CAEC + TUE,
                     data = dat2, Hess=TRUE, method = "logistic")
res <- data.frame(AIC =
AIC(mod.up.reduced,mod.up.int1,mod.up.int2,mod.up.int3,mod.up.int4,mod.up.int5)$AIC,
                   BIC(mod.up.reduced,mod.up.int1,mod.up.int2,mod.up.int3,mod.up.int4,mod.ur.
rownames(res) <-
- rownames(BIC(mod.up.reduced,mod.up.int1,mod.up.int2,mod.up.int3,mod.up.int4,mod.up.int5))
res %>%
  kbl(caption = "AIC and BIC",
      booktabs = TRUE, escape = FALSE, align = "c") %>%
  kable_styling(full_width = FALSE, latex_options = c('hold_position'))
#tidy(mod.up.int5,pvalue = T)
# Extract coefficient estimates and p-values
model <- mod.up.int5</pre>
model_summary <- data.frame(summary(mod.up.int5)$coefficients)</pre>
# Extract coefficients and standard errors
coefficients <- coef(model)</pre>
standard_errors <- sqrt(model_summary$Std..Error)[1:21]</pre>
# Calculate z-values and p-values
z_values <- coefficients / standard_errors</pre>
p_values <- 2 * pnorm(-abs(z_values))</pre>
```

```
# Combine coefficients, standard errors, z-values, and p-values into a data frame
results <- data.frame(
  estimate = round(coefficients,3),
 std.errors = round(standard_errors,3),
 statistic = round(z_values,3),
 pvalues = round(p_values,4)
results %>%
 kbl(caption = "Coefficients",
      booktabs = TRUE, escape = FALSE, align = "c") %>%
 kable_styling(full_width = FALSE, latex_options = c('hold_position'))
#as.data.frame(stargazer(mod.up.int5, type="text", style="apsr", single.row =
→ T))%>% kbl(caption = "Model Coefficients", booktabs = TRUE, escape = FALSE,
→ align = "l") %>%kable_styling(full_width = FALSE, latex_options =

    c('hold_position'))
#stargazer(mod.up.int5, type = "latex", style = "apsr", title = "Model
→ Coefficients")
```