FLS 6441 - Methods III: Explanation and Causation

Week 3 - Field Experiments

Jonathan Phillips

April 2019

Section 1

- ► The rest of the course is mostly about:
 - Design-Based Solutions to the Fundamental Problem of Causal Inference: Which treatment assignment mechanisms avoid these biases and provide plausible counterfactuals

- ► The rest of the course is mostly about:
 - Design-Based Solutions to the Fundamental Problem of Causal Inference: Which treatment assignment mechanisms avoid these biases and provide plausible counterfactuals
 - ► How much can we learn with better research design?

- ► The rest of the course is mostly about:
 - Design-Based Solutions to the Fundamental Problem of Causal Inference: Which treatment assignment mechanisms avoid these biases and provide plausible counterfactuals
 - How much can we learn with better research design?
 - Model-Based Solutions: Not so much.

		Independence of Treatment Assignment	Researcher Controls Treatment Assignment?
Controlled Experi- ments	Field Experiments	✓	✓
	Survey and Lab Experiments	√	√
ments			
Natural Ex- periments	Randomized Natural Experiments	√	
	Instrumental Variables	✓	
	Discontinuities	√	
Observational Studies	Difference-in-Differences		
	Controlling for Confounding		
	Matching		
	Comparative Cases and Process Tracing		

Section 2

Independence

► Last week, we identified why it's hard to estimate causal effects:

- Last week, we identified why it's hard to estimate causal effects:
- ► The Treatment Assignment Mechanism is almost never independent of Potential Outcomes

- ► Last week, we identified why it's hard to estimate causal effects:
- ► The Treatment Assignment Mechanism is almost never independent of Potential Outcomes
- ► So estimates of the ATE are biased

- ► Last week, we identified why it's hard to estimate causal effects:
- ► The Treatment Assignment Mechanism is almost never independent of Potential Outcomes
- So estimates of the ATE are biased
- ► The solution?

- Last week, we identified why it's hard to estimate causal effects:
- ► The Treatment Assignment Mechanism is almost never independent of Potential Outcomes
- ► So estimates of the ATE are biased
- ► The solution?
- Treatment Assignment Mechanisms that ARE independent of potential outcomes

- ► Why does Independence of Treatment Assignment help us achieve causal inference?
 - ▶ We want to estimate:

$$E(Y_1) - E(Y_0) \tag{1}$$

- ► Why does Independence of Treatment Assignment help us achieve causal inference?
 - ▶ We want to estimate:

$$E(Y_1) - E(Y_0) \tag{1}$$

► Our data provides:

$$E(Y_1|D=1)$$
, $E(Y_0|D=0)$ (2)

- ► Why does Independence of Treatment Assignment help us achieve causal inference?
 - ▶ We want to estimate:

$$E(Y_1) - E(Y_0) \tag{1}$$

► Our data provides:

$$E(Y_1|D=1)$$
, $E(Y_0|D=0)$ (2)

▶ With independence, $Y_1, Y_0 \perp D$:

$$E(Y_1|D=1) = E(Y_1)$$
,

- ► Why does Independence of Treatment Assignment help us achieve causal inference?
 - ▶ We want to estimate:

$$E(Y_1) - E(Y_0) \tag{1}$$

► Our data provides:

$$E(Y_1|D=1)$$
, $E(Y_0|D=0)$ (2)

▶ With independence, Y_1 , $Y_0 \perp D$:

$$E(Y_1|D=1) = E(Y_1), E(Y_0|D=0) = E(Y_0)(3)$$

- ► Why does Independence of Treatment Assignment help us achieve causal inference?
 - ▶ We want to estimate:

$$E(Y_1) - E(Y_0) \tag{1}$$

► Our data provides:

$$E(Y_1|D=1)$$
, $E(Y_0|D=0)$ (2)

▶ With independence, $Y_1, Y_0 \perp D$:

$$E(Y_1|D=1) = E(Y_1), E(Y_0|D=0) = E(Y_0)(3)$$

$$E(Y_1|D=1) = E(Y_1), E(Y_1|D=0) = E(Y_1), E(Y_1|D=0) = E(Y_1), E(Y_1|D=0) = E(Y_1|D=0)$$

$$E(Y_1|D=1) - E(Y_0|D=0) = E(Y_1) - E(Y_0)$$
(4)

 Potential outcomes in the treatment and control groups are now unbiased and representative of all the units

What is the treatment assignment mechanism under randomization?

- What is the treatment assignment mechanism under randomization?
 - It has nothing to do with potential outcomes!
 - ▶ Every unit has **exactly the same** probability of treatment
 - ► No omitted variable bias is possible
 - ► No self-selection is possible
 - ▶ No reverse causation is possible

► This is the **entire** causal diagram:

► This is the **entire** causal diagram:

But our logic works only based on expectations (averages)

- ► But our logic works only based on **expectations** (averages)
 - On average, potential outcomes will be balanced

- ► But our logic works only based on **expectations** (averages)
 - On average, potential outcomes will be balanced
 - That's more likely in larger samples

- But our logic works only based on expectations (averages)
 - On average, potential outcomes will be balanced
 - That's more likely in larger samples
 - Less likely in small samples; by chance, potential outcomes may be biased

- But our logic works only based on expectations (averages)
 - ► On average, potential outcomes will be balanced
 - ► That's more likely in larger samples
 - Less likely in small samples; by chance, potential outcomes may be biased
 - ► We have no way of *verifying* if potential outcomes are biased

Section 3

Analyzing Field Experiments

$$E(Y_1|D=1)-E(Y_0|D=0)=E(Y_1)-E(Y_0)$$

▶ If treatment is random we know that:

$$E(Y_1|D=1)-E(Y_0|D=0)=E(Y_1)-E(Y_0)$$

▶ What is $E(Y_1|D=1)$?

$$E(Y_1|D=1)-E(Y_0|D=0)=E(Y_1)-E(Y_0)$$

- ▶ What is $E(Y_1|D=1)$?
- ▶ What is $E(Y_0|D=0)$?

$$E(Y_1|D=1)-E(Y_0|D=0)=E(Y_1)-E(Y_0)$$

- ▶ What is $E(Y_1|D=1)$?
- ▶ What is $E(Y_0|D=0)$?
- ► This is easy!

$$E(Y_1|D=1)-E(Y_0|D=0)=E(Y_1)-E(Y_0)$$

- ▶ What is $E(Y_1|D=1)$?
- ▶ What is $E(Y_0|D=0)$?
- ► This is easy!
- ► Just the difference in outcome means between treatment and control units

$$E(Y_1|D=1)-E(Y_0|D=0)=E(Y_1)-E(Y_0)$$

- ▶ What is $E(Y_1|D=1)$?
- ▶ What is $E(Y_0|D=0)$?
- ► This is easy!
- ► Just the difference in outcome means between treatment and control units
 - ► And a simple T-test for statistical significance

$$E(Y_1|D=1) - E(Y_0|D=0) = E(Y_1) - E(Y_0)$$

- ▶ What is $E(Y_1|D=1)$?
- ▶ What is $E(Y_0|D=0)$?
- ► This is easy!
- Just the difference in outcome means between treatment and control units
 - ► And a simple T-test for statistical significance
 - NO modelling assumptions ("non-parametric")

► Simple Regression = Difference-in-means T-test

► Simple Regression = Difference-in-means T-test

$$Y_i \sim \alpha + \beta D_i = \epsilon_i$$

► Simple Regression = Difference-in-means T-test

$$Y_i \sim \alpha + \beta D_i = \epsilon_i$$

$$Y_i = Y_{0i} + (Y_{1i} - Y_{0i})D_i + \epsilon_i$$

► Simple Regression = Difference-in-means T-test

$$Y_i \sim \alpha + \beta D_i = \epsilon_i$$

$$Y_i = Y_{0i} + (Y_{1i} - Y_{0i})D_i + \epsilon_i$$

► Simple Regression = Difference-in-means T-test

- ► Simple Regression = Difference-in-means T-test
- ► T-test Results:

	estimate	statistic	p.value
1	0.27065	2.69475	0.00706

- ► Simple Regression = Difference-in-means T-test
- ► T-test Results:

	estimate	statistic	p.value
1	0.27065	2.69475	0.00706

Regression Results:

	term	estimate	std.error	statistic	p.value
1	(Intercept)	0.03459	0.07110	0.48647	0.62664
2	treatment	0.27065	0.10044	2.69472	0.00706

- ► How do we randomize?
 - Hard! We can't just 'pick' treated units off the top of our heads

- ► How do we randomize?
 - Hard! We can't just 'pick' treated units off the top of our heads
 - Computers are deterministic

- ► How do we randomize?
 - Hard! We can't just 'pick' treated units off the top of our heads
 - ► Computers are deterministic
 - ► The best we can do is to use atmospheric noise or radioactive decay

- ► How do we randomize?
 - Hard! We can't just 'pick' treated units off the top of our heads
 - Computers are deterministic
 - The best we can do is to use atmospheric noise or radioactive decay
- ▶ In the real world, randomization is hard
 - Pressure to help the most needy

- ► How do we randomize?
 - Hard! We can't just 'pick' treated units off the top of our heads
 - Computers are deterministic
 - The best we can do is to use atmospheric noise or radioactive decay
- ▶ In the real world, randomization is hard
 - Pressure to help the most needy
 - Political pressure

- ▶ How do we randomize?
 - Hard! We can't just 'pick' treated units off the top of our heads
 - Computers are deterministic
 - The best we can do is to use atmospheric noise or radioactive decay
- ▶ In the real world, randomization is hard
 - Pressure to help the most needy
 - ► Political pressure
 - ▶ We don't want to be guinea pigs!

► How do we randomize?

- ► How do we randomize?
- ➤ So how do we confirm that randomization has succeeded?

- ► How do we randomize?
- ▶ So how do we confirm that randomization has succeeded?
 - ► We can't directly test potential outcomes
 - 1. Qualitative research: to reconstruct the treatment process

- ► How do we randomize?
- ▶ So how do we confirm that randomization has succeeded?
 - ▶ We can't directly test potential outcomes
 - 1. **Qualitative research:** to reconstruct the treatment process
 - Balance tests: We can directly test other variables between treatment and control
 - Randomization balances all variables, not just potential outcomes

Section 4

Implementing Field Experiments

Section 5

Designing Field Experiments