Elementy statystyki - DEST LIO

Zajęcia 5

Testy ilorazu wiarogodności

Definicja 1. Testem ilorazu wiarogodności nazywamy test z obszarem krytycznym

$$B = \left\{ \mathbf{x} \in \mathcal{X} : \frac{\sup_{\theta \in \Theta} L(\theta; \mathbf{x})}{\sup_{\theta \in \Theta_0} L(\theta; \mathbf{x})} \geqslant k_{\alpha} \right\},$$

gdzie k_{α} jest najmniejszą stałą taką, że $\forall \theta \in \Theta_0 : \mathbb{P}_{\theta}(\mathbf{X} \in B) \leqslant \alpha$.

Uwaga 1. Supremum funkcji wiarogodności osiągane jest dla $\theta = \hat{\theta}(\mathbf{x})$, gdzie $\hat{\theta}(\mathbf{X})$ jest estymatorem największej wiarogodności parametru θ .

"Plan wyznaczania testu ilorazu wiarogodności"

- (a) Wyznaczamy przestrzenie Θ, Θ_0 .
- (b) Wyznaczamy funkcję wiarogodności $L(\theta; \mathbf{x})$.
- (c) $\sup_{\Theta} L, \sup_{\Theta_0} L \left(\sup_{\Theta} L = L(ENW(\theta); \mathbf{x}) \right)$
- (d) Upraszczamy iloraz wiarogodności.
- (e) Wyznaczamy obszar krytyczny.
- (f) Wyznaczamy rozkład statystyki testowej przy założeniu prawdziwości H_0 .
- (g) Wyznaczamy wartość krytyczną.
- (h) Zapisujemy ostateczną postać obszaru krytycznego.

Zadanie 1. Niech $\mathbf{X} = (X_1, X_2, \dots, X_n)'$ będzie próbą prostą z populacji o rozkładzie wykładniczym $Ex(\lambda)$, gdzie $\lambda > 0$ jest parametrem.

- (a) Skonstruować test ilorazu wiarogodności, na poziomie istotności α (α ∈ (0,1)), hipotezy zerowej H₀: λ = λ₀, przeciwko hipotezie alternatywnej H₁: λ > λ₀. Wskazówka: Przy prawdziwości hipotezy zerowej statystyka 2nλ₀X̄ ma rozkład χ²(2n).
 (b) Napisz funkcję w.test() realizującą test χ² w modelu wykładniczym. Funkcja powinna
- (b) Napisz funkcję w.test() realizującą test χ^2 w modelu wykładniczym. Funkcja powinna posiadać trzy argumenty: x wektor zawierający dane, lambda.zero wartość λ_0 z hipotezy zerowej oraz alternative typ hipotezy alternatywnej, który ma mieć trzy możliwe wartości: "two.sided" (domyślna wartość), "greater", "less". Funkcja zwraca obiekt (listę) klasy htest (klasę obiektu w programie R nadaje się funkcją class()) o następujących elementach: statistic wartość statystyki testowej, parameter liczba stopni swobody, p.value p-wartość, alternative wybrany typ hipotezy alternatywnej, method nazwa testu, data.name nazwa zbioru danych. Dla klasy htest, w programie R istnieje przeciążona funkcja print, więc nie ma potrzeby jej tworzyć.

Wskazówka: Hipoteza zerowa testu χ^2 w modelu wykładniczym ma postać $H_0: \lambda = \lambda_0$. Uwzględnia się trzy hipotezy alternatywne:

- (1) $H_1: \lambda \neq \lambda_0$ (two.sided),
- (2) $H_1: \lambda > \lambda_0$ (greater),
- (3) $H_1: \lambda < \lambda_0$ (less).

Statystyka testowa T została wyprowadzona w punkcie (a), a hipotezom alternatywnym odpowiadają następujące obszary krytyczne:

- (1) $B = \{\mathbf{x} : T(\mathbf{x}) \geqslant \chi^2(1 \alpha/2, 2n) \text{ lub } T(\mathbf{x}) \leqslant \chi^2(\alpha/2, 2n)\}$ (dwustronny),
- (2) $B = \{\mathbf{x} : T(\mathbf{x}) \leq \chi^2(\alpha, 2n)\}$ (lewostronny),
- (3) $B = \{\mathbf{x} : T(\mathbf{x}) \geqslant \chi^2(1 \alpha, 2n)\}$ (prawostronny).

Dla powyższych typów obszaru krytycznego p-wartość obliczana jest w następujący sposób:

- (1) $2\min\{P_0(T \geqslant T(\mathbf{x})), P_0(T \leqslant T(\mathbf{x}))\}$ (dwustronny),
- (2) $P_0(T \leq T(\mathbf{x}))$ (lewostronny),
- (3) $P_0(T \geqslant T(\mathbf{x}))$ (prawostronny),

gdzie P_0 informuje o wykorzystaniu podczas obliczeń rozkładu statystyki testowej przy założeniu prawdziwości hipotezy zerowej. W programie R przydatne mogą okazać się funkcje pchisq(), match.arg(), names(), deparse(), substitute(), class().

(c) Jako rozkład teoretyczny danych w pliku Awarie.txt (patrz Zadanie 1 Zajęcia 4) przyjęto rozkład wykładniczy. Zweryfikuj dla tych danych, na poziomie istotności 0.05, układ hipotez $H_0: \lambda = 0.001, H_1: \lambda < 0.001,$ dwoma sposobami: korzystając z obszaru krytycznego (patrz Wskazówka do punktu (b)), korzystając z p-wartości (funkcja w punkcie (b)). Czy podjęta została taka sama decyzja?

Wskazówka: Decyzje: Jeżeli $\mathbf{x} \in B$ lub p-wartość jest mniejsza lub równa poziomowi istotności α , to odrzucamy hipotezę zerową. W przeciwnym razie nie ma podstaw do odrzucenia hipotezy zerowej.

```
# wartość statystyki testowej
110.136
# wartość krytyczna
124.3421

Test chi-kwadrat w modelu wykładniczym

data: Time$V1
T = 110.136, num df = 100, p-value = 0.2295
alternative hypothesis: less
```