MEMBRÁNOVÁ ELEKTROFYZIOLOGIE

Klidové membránové napětí Elektrotonická odpověď na podráždění a její šíření Akční napětí a jeho šíření

ELEKTROCHEMICKÝ ROVNOVÁŽNÝ POTENCIÁL

NERNSTOVA ROVNICE

$$E_{X} = \frac{-R.T}{n.F} \times ln \frac{[X]_{i}}{[X]_{e}}$$

R = PLYNOVÁ KONSTANTA (8,14 J.K⁻¹.mol⁻¹).

T = ABSOLUTNÍ TEPLOTA (K = °C + 273,15).

n = MOCENSTVÍ IONTU

F = FARADAYOVA KONSTANTA (96485 C.mol⁻¹).

In = PŘIROZENÝ LOGARITMUS

X_i = INTRACELULÁRNÍ KONCENTRACE IONTU

X_e= EXTRACELULÁRNÍ KONCENTRACE IONTU

Je-li n = +1 a T= 310,15 K, pak RT/nF . 2,3 \cong 61 (ln x = 2,3 . \log_{10} x)

NERNSTOVA ROVNICE

$$E_{X} = \pm 61 \times \log \frac{[X]_{i}}{[X]_{e}}$$

- kationt
- + aniont

log = dekadický logaritmus

X_i = intracelulární koncentrace iontu

X_e= extracelulární koncentrace iontu

Umělá membrána, propustná pouze pro K+

$$E_{K} = -61 \log K_{i}/K_{e} = -94 \text{ mV}$$

Umělá membrána, propustná pouze pro Na+

Na⁺

$$E_{Na} = -61 \log Na_i/Na_e = +71 \text{ mV}$$

Umělá membrána, propustná pouze pro Cl-

CI-

$$E_{Cl} = +61 \log Cl_i/Cl_e = -79 \text{ mV}$$

Umělá membrána, propustná pouze pro Ca²⁺

$$E_{Ca} = -61/2 \log Ca_i/Ca_e = +124 \text{ mV}$$

ŘÍDÍCÍ NAPĚTÍ - K+

ŘÍDÍCÍ NAPĚTÍ - Na+

MEMBRÁNOVÝ PROUD

Ohmův zákon
$$I = U/R \qquad \qquad I = U \cdot g$$
 řídící napětí = $E_M - E_x$
$$I_x = g_x \cdot (E_M - E_x)$$

E_X – elektrochemický potenciál iontu X
 g – vodivost
 E_M – aktuální membránové napětí

Umělá membrána, propustná pouze pro K+ a Na+

Elektrický gradient

Koncentrační gradient

$$E_K = -61 \log K_i/K_e = -96 \text{ mV}$$

 $E_{Na} = -61 \log Na_i/Na_e = +60 \text{ mV}$
 $E_M = ?$

Propustnost pro K⁺ = 1, pro Na⁺ = 0

Propustnost pro K⁺ = 1, pro Na⁺ = 0,01

Propustnost pro $K^+ = 1$, pro $Na^+ = 0.05$

Propustnost pro K⁺ = 1, pro Na⁺ = 1

Propustnost pro K⁺ = 0, pro Na⁺ = 1

KONCENTRACE IONTŮ (mmol/l)

	ECT	ICT			
Na+	145	10			
K+	4	140			
Ca ²⁺	1,2	10-4			
Mg2+	0,5	1			
CI-	100	5			
HCO ₃ -	25	10			
A-	cca 26	cca 135			

A- ostatní anionty (zejména náboje nesené bílkovinami)

KLIDOVÝ MEMBRÁNOVÝ POTENCIÁL

GOLDMANOVA-HODGKINOVA-KATZOVA ROVNICE

$$E_{m} = \frac{RT}{F} ln \left(\frac{p_{k} \left[K^{+}\right]_{o} + p_{Na} \left[Na^{+}\right]_{o} + p_{Cl} \left[Cl^{-}\right]_{i}}{p_{k} \left[K^{+}\right]_{i} + p_{Na} \left[Na^{+}\right]_{i} + p_{Cl} \left[Cl^{-}\right]_{o}} \right)$$

R = plynová konstanta

T = absolutní teplota

F = Faradayův náboj

In = přirozený logaritmus

p = relativní propustnost membrány

X_i = intracelulární koncentrace

X_e= extracelulární koncentrace

SKUTEČNÁ BUŇKA

$$E_{m} = \frac{RT}{F} ln \left(\frac{p_{k} [K^{+}]_{o} + p_{Na} [Na^{+}]_{o} + p_{Cl} [Cl^{-}]_{i}}{p_{k} [K^{+}]_{i} + p_{Na} [Na^{+}]_{i} + p_{Cl} [Cl^{-}]_{o}} \right)$$

$$K_o = 4 \text{ mmol/l}$$

$$p_{K} = 1$$

 $p_{Na} = 0.05$
 $p_{Cl} = 0.45$

$$E_{M} = -70 \text{ mV}$$

KLIDOVÝ MEMBRÁNOVÝ POTENCIÁL

Ve všech živých buňkách lze pomocí skleněných mikroelektrod změřit transmembránové napětí (membránový potenciál). Ve většině buněk je toto membránové napětí relativně stabilní (KLIDOVÉ MEMBRÁNOVÉ NAPĚTÍ) a podléhá depolarizaci nebo hyperpolarizaci v závislosti na polaritě podnětu. Na vzrušivých membránách můžeme rozlišit 3 základní elektrické situace:

A) Membrána není stimulovaná – KLIDOVÉ

MEMBRÁNOVÉ NAPĚTÍ

- B) Po adekvátní stimulaci AKČNÍ NAPĚTÍ
- C) Po podprahové stimulaci **ELEKTROTONICKÁ**

ODPOVĚĎ

Hodnota KMN závisí na iontovém složení ICT a ECT, na propustnosti pro jednotlivé ionty a na absolutní teplotě. Na obou stranách membrány jsou koncentrace kationtů a aniontů přibližně shodné (~150 mmol/l); přesto, za klidových podmínek na vnitřní straně membrány mírně převládají anionty a na zevní kationty – tento rozdíl je primárně způsoben difuzí iontů přes semipermeabilní membránu a modifikován činností Na-K-ATPázy.

KLIDOVÝ MEMBRÁNOVÝ POTENCIÁL

- rozdílné složení ECT a ICT
- membrána více propustná pro K+ (50-100x více než pro Na+)
- intracelulární fixní anionty (proteiny)
- Na-K-ATPáza

ODPOVĚĎ MEMBRÁNY NA PODRÁŽDĚNÍ

Je-li membrána vybavena příslušnými napěťově vrátkovanými kanály a je-li podnět dostatečně silný – vzniká **AKČNÍ NAPĚTÍ** (**AKČNÍ POTENCIÁL**) – výhradně na vzrušivých membránách

Není-li membrána vybavena příslušnými napěťově vrátkovanými kanály nebo není-li podnět dostatečně silný – vzniká **ELEKTROTONICKÁ ODPOVĚĎ (MÍSTNÍ ODPOVĚĎ)** – na všech membránách a vzrušivých membránách při podprahových podnětech – podle místa, kde vzniká, má mnoho synonymních názvů, což je častým zdrojem nedorozumění – IPSP, EPSP, GRADOVANÝ POTENCIÁL, PLOTÉNKOVÝ POTENCIÁL, GENERÁTOROVÝ POTENCIÁL

ELEKTROTONICKÁ ODPOVĚĎ (MÍSTNÍ ODPOVĚĎ)

AKČNÍ NAPĚTÍ

- na vzrušivé membráně (nerv, sval kosterní, srdeční, hladký)
- stereotypní odpověď
- šířením po membráně doprava informace

IONTOVÁ PODSTATA AKČNÍHO POTENCIÁLU

přesunu iontů se účastní jen vrstvy ECT a ICT v nejtěsnějším sousedství membrány → změny koncentrací iontů během jednoho AP zanedbatelné (a ihned korigované)

VLASTNOSTI AKČNÍHO NAPĚTÍ

PRÁH

Hraniční hodnota membránového napětí, při které dochází k vyvolání AN (např. otevírací napětí pro kanály I_{Na})

PRAHOVÝ, NADPRAHOVÝ PODNĚT

Elektrická odpověď dané membrány (AN) za stálých podmínek má vždy stejnou amplitudu a trvání nezávisle na intenzitě podnětu (tj. je-li alespoň prahový) = odpověď vše nebo nic

Není-li prahu dosaženo → AN nevzniká

Je-li práh dosažen nebo překročen –
amplituda ani trvání AN se nemění
(stereotypní odpověď)

AP se šíří membránou – za stálých podmínek

AP se šíří membránou – za stálých podmínek se stejnou amplitudou a trváním - šíří se bez úbytku (dekrementu)

VLASTNOSTI AKČNÍHO NAPĚTÍ

REFRAKTERITA – neschopnost membrány generovat nové AN v průběhu předchozího a těsně po něm – necitlivost nebo snížená citlivost k podnětům, které AN normálně vyvolávají

Absolutní refrakterní fáze

Membrána není schopna generovat AN po podnětech jakékoliv intenzity (fáze začíná se začátkem AN a trvá téměř po celou dobu AN) – souvisí s inaktivací INa.

Relativní refrakterní fáze

Následuje za absolutní, na konci AN (konec repolarizace) a po něm (následná hyperpolarizace). Podnět vedoucí ke vzniku AN musí být větší než obvykle, aby bylo dosaženo prahu. Souvisí se zotavováním INa (konec AN) a následnou hyperpolarizací (zvýšená vodivost pro K+).

DRÁŽDIVÁ MEMBRÁNA

- Podobné chování jako membrána vzrušivá při podprahových podnětech
- Postsynaptická oblast, dendrity, těla neuronů, receptory
- Není schopna generovat akční napětí (nemá příslušné kanály)
- Elektrická odpověď je přímo úměrná intenzitě podnětu gradovaná (stupňovitá) odpověď, též místní, elektrotonická odpověď
- Elektrotonické, pasivní šíření (šíření s dekrementem)

	Místní odpověď	Akční napětí			
Lokalizace	Dráždivá membrána	Vzrušivá membrána			
Podnět	Elektrický nebo jiný	Elektrický - depolarizace			
Charakter odpovědi	Stupňovitá	Vše nebo nic			
Polarita odpovědi	Depolarizace nebo Hyperpolarizace	Depolarizace			
Amplituda odpovědi	Cca 10 mV	Cca 100 mV			
Práh	Ne	Ano			
Vedení	S dekrementem	Bez úbytku			
Kanály	Řízené ligandem aj.	Napěťově řízené			
Refrakterní perioda	Ne	Ano			
Sumace	Ano	Ne			
Trvání	Různě dlouhé	Na dané membráně konstantní			

Gradovaný potenciál Synaptický potenciál Generátorový potenciál Ploténkový potenciál IPSP,EPSP Akční potenciál Hrotový potenciál Impuls (v kontextu) Vzruch

Místní, pasivní, elektrotonická odpověď

ŠÍŘENÍ ELEKTROTONICKÉ ODPOVĚDI

Pasivní šíření s úbytkem (dekrementem), tzn. se vzdáleností od místa stimulace se napěťová změna zmenšuje.

Velikost odpovědi závisí na intenzitě stimulace, na velikosti odpovědi závisí vzdálenost, do které se napěťová změna rozšíří.

Vzdálenost, do které se elektrická odpověď rozšíří, závisí také na vlastnostech membrány (jejím odporu $R_{\rm M}$) a vlastnostech axoplazmy (jejím odporu $R_{\rm A}$)

$$V_{x} = V_{0} \times e^{-\frac{x}{\lambda}}$$

pokud
$$x = \lambda$$

 $V_x = \frac{V_0}{e} = \frac{V_0}{2.7} = 37\% * V_0$

 V_0 (napěťová změna v bodě 0), V_x (napěťová změna v bodě x), x (vzdálenost od bodu 0)

 λ (lambda, prostorová konstanta (na biologických membránách v řádu mm), = vzdálenost od bodu 0, ve kterém V_x představuje 37% V_0)

$$\leftarrow \sqrt{\frac{R_{M}}{R_{A}}}$$

ŠÍŘENÍ ELEKTROTONICKÉ ODPOVĚDI

- Je-li v bodě 0 aplikován proud → změní se rozložení náboje → změní se napětí v bodě 0 (místní odpověď V₀);
- Aplikovaný náboj se pohybuje ve směru vlákna podle odporu axoplazmy (R_A) velký odpor (malý průměr vlákna) umožní transport náboje na menší vzdálenost.
- Membránou (iontovými kanály) se část náboje vrací ven (R_M) → do vzdálenějších částí vlákna se dostává méně a méně náboje → napěťová změna klesá se vzdáleností od místa stimulace

ŠÍŘENÍ ELEKTROTONICKÉ ODPOVĚDI

Máme 2 axony, které mají podobné vlastnosti membrány, stejnou délku, ale liší se průřezem tak, že $S_1 = 4S_2$

$$R_{A1} = \frac{\rho \times l}{4S_2}$$
 $R_{A2} = \frac{\rho \times l}{S_2}$ $\frac{R_{A1}}{R_{A2}} = \frac{S_2}{4S_2} = \frac{1}{4}$

Prostorová konstanta roste s odporem membrány (R_M , náboj hůře uniká ven) a klesá s odporem axoplazmy (R_A , náboj se hůře šíří axoplazmou)

Elektrotonická odpověď membrány a místní proudy jí generované fungují jen na velmi krátkou vzdálenost a vymizí obvykle do vzdálenosti 1 – 2 mm.

ŠÍŘENÍ AKČNÍHO NAPĚTÍ

AN (tj. depolarizace) v bodě $0 \rightarrow$ transpolarizace membrány – vzniká napětí mezi sousedními úseky membrány – lokální proudy nesoucí kladný náboj ve směru šíření (elektrotonické šíření do sousedních oblastí – difuze Na+) \rightarrow depolarizace sousedního úseku dosáhne prahové hodnoty \rightarrow AN v sousední oblasti \rightarrow elektrotonické šíření... regenerativní odpověď

ŠÍŘENÍ AKČNÍHO NAPĚTÍ

- Jsou-li vlastnosti membrány stejné, AP je všude stejný = šíří se bez dekrementu
- Působení sousedních membránových úseků na sebe je elektrotonické → rychlost šíření závisí na prostorové konstantě (čím větší prostorová konstanta, tím větší rychlost šíření)

 Čím větší průměr vlákna (= čím menší R_A) → tím větší prostorová konstanta → tím větší rychlost vedení

SMĚR ŠÍŘENÍ

- Na izolovaném nervovém vlákně rychlost šíření oběma směry stejná
- Vyvoláme-li AN na libovolném místě vlákna → šíření AN oběma směry (elektrotonické šíření probíhá oběma směry z bodu 0)
- Za fyziologických okolností šíření AP ortodromní (od těla neuronu):
- a) v iniciálním segmentu nejnižší práh pro vznik AP
- b) refrakterita zabrání šíření AP zpět (antidromně)

ŠÍŘENÍ AKČNÍHO NAPĚTÍ PO MYELINIZOVANÉM VLÁKNĚ

- Myelinová pochva elektricky izoluje nervové vlákno (tvořena Schwannovou buňkou v PNS, oligodendroglií v CNS), pouze v Ranvierově zářezu kontakt membrány axonu s ECT
- Myelinová pochva → mnohonásobný vzrůst R_M → vzrůst prostorové konstanty

- AN vznikají jen v Ranvierových zářezech (iontové kanály ve vysoké hustotě) → díky velkému R_M - elektrotonické šíření do větší vzdálenosti→ nadprahová depolarizace v dalším Ranvierově zářezu → AN...
- Myelinizované úseky přeskakovány (velký odpor membrány je spojen s nepřítomností nebo malým výskytem příslušných kanálů) = saltatorní vedení
- Prostorová konstanta je tak dlouhá, že i při vyřazení několika Ranvierových zářezů dojde k přeskoku na další úsek
- Vynechání části membrány (myelinizované) z elektrogenních procesů
 - → ekonomičtější šíření (množství vyměňovaných iontů významně menší)
 - → rychlejší vedení (vznik AP v Ranvierově zářezu nejpomalejším procesem)

KLASIFIKACE NERVOVÝCH VLÁKEN

Aferentní (dostředivá) - od receptorů do CNS Eferentní (odstředivá) - z CNS k efektorům Interneurony - spojení mezi aferentními a eferentními

Typ vláken Funkce		Funkce	€		oloměr (µm)	Rychlost vedení (m/s)
Α	α	propriocepce, somatomotorická		20		70-120
	β	dotyk, tlak	mye			30-70
	Y	motorická pro svalová vřeténka	myelinizovaná			15-30
	δ	bolest, dotyk, chlad	vaná			12-30
В		autonomní pregangliová		V		3-15
С		bolest, teplota, autonomní postgangliová		0,3		1