Processo Seletivo - Base dos Dados

Abrindo Pacote basedosdados e demais

In [1]:	<pre>import basedosdados as bd</pre>
In [2]:	<pre>import matplotlib.pyplot as plt</pre>
In [3]:	<pre>import seaborn as sbs</pre>
In [4]:	import pandas as pd
In [5]:	<pre>import plotly.express as px</pre>

Avaliando Produtividade Agrícola de Arroz e Feijão

Datalake Censo Agropecuário

A produtividade da agrícola pode ser definida como a razão entre o **produção total (em Tonaladas)** e a **area total (em Hectares)**. Dessa meneira, é um parâmetro capaz de indicar que regiões são mais produtivas que as outras, levando em consideração a produção gerada em relação à área que foi plantada.

Alguns pontos importantes a serem analisados:

- Relação entre produção total e área total plantada de arroz e feijão;
- Produtividade total de arroz e feijão por estado brasileiro em 2017;
- Produtividade municipal média de arroz e feijão por estado brasileiro em 2017.

A seguir, os comandos serão realizadas com a finalidade de gerar vizualização dos resultados em gráficos e, por fim, são realizados comentários dos principais insights.

```
In [7]: # Acessar o dataLake Censo Agropecuário

df = bd.read_table(dataset_id='br_ibge_censo_agropecuario',
    table_id='municipio', billing_project_id="basedosdados-360312")

Downloading: 100%| 20738/20738 [00:26<00:00, 776.89rows/s]</pre>
```

```
In [9]: # Conhecer dados
display(df)
```

	ano	sigla_uf	id_municipio	area_total	area_proprietario	area_arrendatario	area_parceiro	area_ocupante	area_lavoura_permanente	area_lavoura_temporaria	$ valor_total_cultura_permanente \\$	valor_total_matas_plantadas	valor_total_predios_be
0	1985	RO	1100023	NaN	682505.25	NaN	NaN	NaN	NaN	NaN	NaN	NaN	_
1	1985	RO	1100049	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
2	1985	RO	1100056	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.0	NaN	
3	1985	RO	1100064	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
4	1985	RO	1100080	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
20733	2017	GO	5222005	79967.0	74387.00	5225.0	0.0	0.0	154.0	42274.0	NaN	NaN	
20734	2017	GO	5222054	62341.0	57153.00	2683.0	2213.0	0.0	1265.0	39136.0	NaN	NaN	
20735	2017	GO	5222203	84770.0	80518.00	0.0	0.0	0.0	16.0	6945.0	NaN	NaN	
20736	2017	GO	5222302	186118.0	174196.00	5665.0	0.0	6116.0	5337.0	49492.0	NaN	NaN	
20737	2017	DF	5300108	257047.0	140248.00	33640.0	3851.0	72983.0	9304.0	100425.0	NaN	NaN	

20738 rows × 116 columns

In [12]: # Filtrando dados de 2017

```
In [10]: # Criando tabela de dados
    dados = df[["ano","sigla_uf", "id_municipio", "producao_total_arroz", "producao_total_feijao", "area_feijao"]]
In [11]: # Deletando Linhas vazias
    dados = dados.dropna()
```

In [13]: #Convertendo ano em string
dados_2017= dados_2017.replace([2017],"2017")

PRODUTIVIDADE DE ARROZ

dados_2017 = dados.loc[(dados['ano'] == 2017)]

```
In [14]: # Criando a variavel de produtividade
dados_2017["produtividade_arroz"] = (dados_2017["producao_total_arroz"] / dados_2017["area_arroz"])
```


GRÁFICO DE DISPERSÃO PRODUÇÃO TOTAL X ÁREA PLANTADA - ARROZ

PRODUTIVIDADE TOTAL DE ARROZ POR ESTADO (2017)

PRODUTIVIDADE MÉDIA MUNICIPAL DE ARROZ POR ESTADO (2017)

Insights

- O gráfico de dispensão indica forte correlação levemente positiva entre as variáveis produção total de arroz e área total destinada ao plantio de arroz, mostrando que as duas variáveis tendem a diminuir ou aumentar juntas;
- O estado com maior produtividade total de arroz foi o Mato Grasso (MT), com produção média de 4159,41 T/Ha;
- O estado com menor produtividade total de arroz foi o Distrito Federal (DF), com produção média de 0,87 T/Ha;
- O estado com maior produtividade média municipal de arroz foi o Mato Grasso (MT), com produção de 30,14 T/Ha;
- O estado com menor produtividade média municipal de arroz foi o Paraíba(PB), com produção de 0,36 T/Ha.

PRODUTIVIDADE DE FEIJÃO

```
In [22]: # Criando a variavel de produtividade
dados_2017["produtividade_feijao"] = (dados_2017["producao_total_feijao"] / dados_2017["area_feijao"])
```


GRÁFICO DE DISPERSÃO PRODUÇÃO TOTAL X ÁREA PLANTADA - FEIJÃO

PRODUTIVIDADE TOTAL DE FEIJÃO POR ESTADO (2017)

PRODUTIVIDADE MÉDIA MUNICIPAL DE FEIJÃO POR ESTADO (2017)

Insights

- O gráfico de dispensão indica forte correlação positiva entre as variáveis produção total de feijao e área total destinada ao plantio de feijao, mostrando que as duas variáveis tendem a diminuir ou aumentar juntas;
- O estado com maior produtividade total de feijão foi o Mato Grosso (MT), com produção média de 144.090,82 T/Ha;
- O estado com menor produtividade total de feijão não nula foi o Pernambuco (PE), com produção média de 1.33 T/Ha;
- O estado com maior produtividade média municipal de feijão foi o Piauí (PI), com produção de 1323,22 T/Ha;
- O estado com menor produtividade média municipal de feijão foi o Pernambuco (PE), com produção de 0,16 T/Ha.

Avaliando a distribuição de bolsas CAPES em 2019

Downloading: 100% | 146036/146036 [01:08<00:00, 2117.14rows/s]

Datalake Bolsas CAPES

```
In [33]: # Acessar o datalake Bolsas Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
df2 = bd.read_table(dataset_id='br_capes_bolsas',
    table_id='mobilidade_internacional',
    billing_project_id="basedosdados-360312")
```

d1	isplay(df2)	se de da						EXTE					
146032	2019	2	2020	1	88887.289030/2018-00	***.800.368- **	THIAGO DE MORAIS MARIANO	CAPES/COFECUB (COMITÊ FRANCÊS DE AVALIAÇÃO DA	FRANÇA	EUR	NaN	NaN	NaN
146033	2019	2	2023	1	88881.284303/2018-01	***.617.361- **	TITOS MOAMBA	PROGRAMA ESTUDANTES CONVÊNIO DE PÓS- GRADUAÇÃO	BRASIL	BRL	NaN	NaN	NaN
146034	2019	2	2020	1	88881.162278/2017-01	***.386.226- **	UELINTON MANOEL PINTO	PROGRAMA CAPES/HARVARD	ESTADOS UNIDOS	USD	NaN	NaN	NaN
146035	2019	2	2019	6	88887.309964/2018-00	***.372.238- **	VITOR PASSOS DE PADUA	CAPES/NUFFIC	HOLANDA	EUR	NaN	NaN	NaN
46036 row	vs × 58 column	S											

dados_2019 = dados_capes.loc[(dados_capes['ano_inicial'] == 2019)]

Países destinos de bolsas CAPES por valor recebido total (2019)

Distribuição do valor recebido total por tipo de programa CAPES (2019)

Insights

- Depois do Brasil, o Japão foi país que mais recebeu bolsas CAPES, em seguida, França e Estados Unidos em 2019;
- O programa que a CAPES mais destinou recursos em 2019 foi o Programa Institucional de Internacionalização (PRINT), o que justifica o insight anterior.