# **Equivariant Graph Neural Networks**

Kfir Eliyahu Ben Eliav Jonathan Kouchly

December 4, 2024

### Outline

Motivation

2 Mathematical Backoground

3 Invariant and Equivariant Construction

2 Mathematical Backoground

Invariant and Equivariant Construction

• Our neural networks can operate on data of many types.

- Our neural networks can operate on data of many types.
- We often work with images, text, audio, graphs and more.

- Our neural networks can operate on data of many types.
- We often work with images, text, audio, graphs and more.
- These data types have different structures and qualities, and we would like to build architectures that best suit them.

- Our neural networks can operate on data of many types.
- We often work with images, text, audio, graphs and more.
- These data types have different structures and qualities, and we would like to build architectures that best suit them.



• A cat is a cat no matter how you look at it.



A cat is a cat no matter how you look at it.



• It is acceptable to assume that being invariant to the rotation of the cat is a good property for a classification network.

• Our focus today is on sets and graph data.



|   | Α | В | С | D |
|---|---|---|---|---|
| Α | 0 | 1 | 1 | 1 |
| В | 1 | 0 | 0 | 0 |
| C | 1 | 0 | 0 | 1 |
| D | 1 | 0 | 1 | 0 |



Mathematical Backoground

Invariant and Equivariant Construction

# The Permutation Group $S_n$

- The permutation group  $S_n$  is the group of all permutations of n elements.
- It has n! elements, representing the n! ways to order n elements.
- Given a set  $X = \{x_1, x_2, \dots, x_n\}$ , a permutation  $\pi \in S_n$  is a bijection  $\pi : X \to X$
- e.g.  $x = (x_1, x_2, x_3)$ , and  $\pi = (1, 2, 3) \in S_3$  is the permutation that maps  $1 \to 2$ ,  $2 \to 3$  and  $3 \to 1$ .
- We denote the **action** of  $\pi$  on x as  $\pi x = (x_3, x_1, x_2)$ .

#### Permutation Invariance

• Let  $H \leq S_n$  be a subgroup of the symmetric group.

### Permutation Invariance

• Let  $H \leq S_n$  be a subgroup of the symmetric group.

•  $f: \mathbb{R}^n \to \mathbb{R}^n$  is permutation invariant if  $f(x) = f(\pi x)$  for all  $\pi \in H$ .

### Permutation Invariance

• Let  $H \leq S_n$  be a subgroup of the symmetric group.

•  $f: \mathbb{R}^n \to \mathbb{R}^n$  is permutation invariant if  $f(x) = f(\pi x)$  for all  $\pi \in H$ .

$$f[\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ] = [0.15 \ 0.1 \ 0.05 \ \mathbf{0.8} ]$$

$$f[\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ] = [0.15 \ 0.1 \ 0.05 \ \mathbf{0.8} ]$$

## Permutation Equivariance

• Let  $H \leq S_n$  be a subgroup of the symmetric group.

## Permutation Equivariance

• Let  $H \leq S_n$  be a subgroup of the symmetric group.

•  $f: \mathbb{R}^n \to \mathbb{R}^n$  is permutation invariant if  $\pi f(x) = f(\pi x)$  for all  $\pi \in H$ .

# Permutation Equivariance

• Let  $H \leq S_n$  be a subgroup of the symmetric group.

•  $f: \mathbb{R}^n \to \mathbb{R}^n$  is permutation invariant if  $\pi f(x) = f(\pi x)$  for all  $\pi \in H$ .

$$f[\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ] = [0.15 \ 0.1 \ 0.05 \ 0.8]$$
  
 $f[\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ] = [0.15 \ 0.1 \ 0.8 \ 0.05]$ 

• Assume our set is  $X = \{x_1, x_2, \dots, x_n\}$ .

- Assume our set is  $X = \{x_1, x_2, \dots, x_n\}$ .
- We can represent X as a matrix  $X \in \mathbb{R}^{n \times d}$ .

- Assume our set is  $X = \{x_1, x_2, \dots, x_n\}$ .
- We can represent X as a matrix  $X \in \mathbb{R}^{n \times d}$ .
- Any permutation  $\pi \in S_n$  can be represented as a permutation matrix  $P \in \mathbb{R}^{n \times n}$ ,

- Assume our set is  $X = \{x_1, x_2, \dots, x_n\}$ .
- We can represent X as a matrix  $X \in \mathbb{R}^{n \times d}$ .
- Any permutation  $\pi \in S_n$  can be represented as a permutation matrix  $P \in \mathbb{R}^{n \times n}$ ,
- The action of  $\pi$  on X is then PX.

- Assume our set is  $X = \{x_1, x_2, \dots, x_n\}$ .
- We can represent X as a matrix  $X \in \mathbb{R}^{n \times d}$ .
- Any permutation  $\pi \in S_n$  can be represented as a permutation matrix  $P \in \mathbb{R}^{n \times n}$ ,
- The action of  $\pi$  on X is then PX.
- An invariant neural network is a function  $f: \mathbb{R}^{n \times d} \to \mathbb{R}^{d'}$  such that f(X) = f(PX).

- Assume our set is  $X = \{x_1, x_2, \dots, x_n\}$ .
- We can represent X as a matrix  $X \in \mathbb{R}^{n \times d}$ .
- Any permutation  $\pi \in S_n$  can be represented as a permutation matrix  $P \in \mathbb{R}^{n \times n}$ ,
- The action of  $\pi$  on X is then PX.
- An invariant neural network is a function  $f: \mathbb{R}^{n \times d} \to \mathbb{R}^{d'}$  such that f(X) = f(PX).
- An equivariant neural network is a function  $f: \mathbb{R}^{n \times d} \to \mathbb{R}^{n \times d'}$  such that Pf(X) = f(PX).



• Our data is now a graph signal  $(A, X) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times d}$ .

• Our data is now a graph signal  $(A, X) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times d}$ .

• A permutation matrix  $P \in \mathbb{R}^{n \times n}$  acts on the adjacency matrix A and the feature matrix X.

• Our data is now a graph signal  $(A, X) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times d}$ .

• A permutation matrix  $P \in \mathbb{R}^{n \times n}$  acts on the adjacency matrix A and the feature matrix X.

• The action of P on (A, X) is  $(P^TAP, PX)$ .

2 Mathematical Backoground

3 Invariant and Equivariant Construction

### Conclusion

end

# Thank You!