

Signaling System #7 (SS7) Overview

Comverse ONE

Lesson Objectives

By the end of this lesson you will be able to:

- Describe the Signaling concept in telephony
- List the different entities of a signaling network
- List the protocols used for signaling

Agenda

Signaling and Comverse ONE

Signaling Role

Signaling System Architecture

Signaling Protocols

SS7 Message Structure

SS7 and Comverse ONE

Most calls that enter the system start with signaling

SMS Voice MMS

Telephony (Switches, SGSN)

Importance of Understanding SS#7

Deployment

How to connect and configure

Telephony (Switches, SGSN)

Support

Understand the communication

Comverse ONE Components that Handle SS7

Rating Server Support Processes URE Offline Rating Interface **Network Interfaces and Session** Management CCS SGU **LBA DGU**

Signaling Gateway Unit (SGU)

Accepts and balances signaling traffic

Call Control Server (CCS) –

Gateway for IVR functions

NETWORKS

Agenda

Signaling and Comverse ONE

Signaling Role

Signaling System Architecture

Signaling Protocols

SS7 Message Structure

Signaling and Comverse ONE

Required information:

- Call start/end
- Call originator
- Call destination

This information is in the call **Signaling**

Generic Call Setup

Off-Hook

Dial Destination Number

Call Paths

Review Question – 1

What information is not provided by the signaling path

- 1. When the call started
- 2. The content of the call (voice)
- 3. Who is the caller
- 4. Who is the called party

Agenda

Signaling and Comverse ONE

Signaling Role

Signaling System Architecture

Signaling Protocols

SS7 Message Structure

Service Switching Point (SSP)

SSP/MSC

- Originate, terminate or transit calls
- Point-to-Point switch

Switching Transfer Point (STP)

- Acts as a hub/messages router
- Improves utilization and reliability of network
- Eliminates need for direct links

Signaling Control Point (SCP)

SCP

Provides translation, verification and information

SS7 Entities and Comverse ONE

Review Question – 2

For each definition, select the term it defines from the list below.

- A. The Entrance point to SS7 from the PSTN network responsible for switching
- B. The part responsible for routing in the SS7
- C. A Centralized routing database. scp
- The entrance point to the mobile network, responsible for switching
- 1. SSP
- 2. MSC
- 3. SCP
- 4. STP

Review Question – 3

In the SS7 network, Comverse ONE acts as:

- 1. SSP
- 2. STP
- 3. SCP Comverse One acts as SCP
- 4. MSC

Agenda

Signaling and Comverse ONE

Signaling Role

Signaling System Architecture

Signaling Protocols

SS7 Message Structure

SS7 Protocols Stack and OSI

OSI

SS7

SIGTRAN SS7 over IP

Application (Layer 7)

Presentation (Layer 6)

Session (Layer 5)

Transport (Layer 4)

Network (Layer 3)

Data Link (Layer 2)

Physical (Layer 1)

SS7 Protocol Stack Model – Message Transfer Parts (MTP)

OSI Model

SS7 Stack Model

Application (Layer 7)

Presentation (Layer 6)

Session (Layer 5)

Transport (Layer 4)

Network (Layer 3)

Data Link (Layer 2)

Physical (Layer 1)

Links, Linksets, Routes, and Routesets

Point Code (PC)

MTP-3 RSET

MTP-2 LSET

MTP-1 SLK

Unique address of a Signaling Point

All linksets between 2 signaling end points (PC)

All signaling links between 2 signaling points (PC)

Direct connection between 2 adjacent signaling points (PC)

The ISDN User Part (ISUP)

OSI Model

Application (Layer 7)

Presentation (Layer 6)

Session (Layer 5)

Transport (Layer 4)

Network (Layer 3)

Data Link (Layer 2)

Physical (Layer 1)

SS7 Stack Model

Typical ISUP Call Control

Signaling Connection Control Part (SCCP)

Signaling Connection Control Part (SCCP)

SCCP enables:

- To address an application within a signaling point using SSN
- Routing using GT

Area Operator Line code prefix number 712 - 354 - 3234

Transaction Capabilities Application Part (TCAP)

TCAP functions:

- Data transfer capabilities
- Database services

IN and Database Usage

Application Layer

OSI Model

SS7 Stack Model

CAMEL Application Part (CAP)

CAMEL Application Part (CAP):

- Used in mobile networks
- Allows implementation of Value added Service

Application (Layer 7)
Presentation (Layer 6)
Session (Layer 5)
Transport (Layer 4)
Network (Layer 3)
Data Link (Layer 2)
Physical (Layer 1)

OSI Model

SS7 Stack Model

Voice CAP2 Call Flow – Comverse ONE Example

Application Layer

OSI Model

SS7 Stack Model

SS7 Protocols Stack and OSI

OSI

SS7

SIGTRAN SS7 over IP

Application (Layer 7) Presentation (Layer 6) Session (Layer 5) Transport (Layer 4) Network (Layer 3) Data Link (Layer 2) Physical (Layer 1)

Agenda

Signaling and Comverse ONE

Signaling Role

Signaling System Architecture

Signaling Protocols

SS7 Message Structure

Application Layer (CAP)

The message bits as created by CAP

Session Layer (TCAP)

Transaction Capabilities Application Part (TCAP):

- Used to communicate between applications in nodes
- Used for database services
 - Prepaid
 - Repeat dialing
 - Call return

Transport Layer (SCCP)

Signaling Connection Control Part (SCCP):

- GT Global title
- Subsystem Number (SSN): 1 byte

Network Layer (MTP-3)

Message Transfer Part 3 (MTP3):

- Network layer functionality
- Node addressing, routing, alternate routing and congestion control

Data Link Layer (MTP-2)

Message Transfer Part 2 (MTP2)

- Ensure reliable exchange of signaling messages
- Error checking
- Sequence checking

Physical Layer (MTP-1)

Message Transfer Part 1 (MTP1):

SIGTRAN Implementation

Review Question – 4

Select the correct answers to the following questions.

A protocol used for voice circuit switching:

- 1. TCAP
- 2. ISUP
- 3. IN (intelligent networks)
- 4. SIGTRAN

For transporting SS7 over IP you use:

- 1. MTP-1
- 2. MTP-3
- 3. IN (intelligent networks)
- 4. SIGTRAN

What does the SCCP use in order to deliver a message to a specific application within a signaling point?

- 1. Destination point code
- 2. Port number
- 3. SSN (Subsystem Number)
- 4. IP number

Summary

This lesson has covered the following topics:

- Signaling and its importance to Comverse ONE
- Signaling network entities:
 - SSP, STP, SCP
- SS7 protocol stack
- Message structure

