1 The metric space structure on \mathbb{R}^{∞}

Definition 1.1 (The metric space \mathbb{R}^{∞} , Example 1.2, [1])

Let \mathbb{R}^{∞} denotes the set of all infinite sequences of real numbers, i.e.

$$\mathbb{R}^{\infty} := \{ (x_1, x_2, \dots) \mid x_i \in \mathbb{R}, \text{ for each } i \in \mathbb{N} \}.$$

Define $\rho: \mathbb{R}^{\infty} \times \mathbb{R}^{\infty} \longrightarrow [0,1]$ as follows:

$$\rho(x,y) := \sum_{n=1}^{\infty} \frac{\min\{1, |x_n - y_n|\}}{2^n}.$$

Remark 1.2 Recall that

$$\sum_{n=1}^{\infty} \, \frac{1}{2^n} \; = \; \frac{1}{2} \sum_{n=1}^{\infty} \, \frac{1}{2^{n-1}} \; = \; \frac{1}{2} \cdot \left(\frac{1}{1-\frac{1}{2}} \right) \; = \; 1,$$

which proves indeed that $0 \le \rho(x, y) \le 1$, for any $x, y \in \mathbb{R}^{\infty}$.

Theorem 1.3

- (i) $(\mathbb{R}^{\infty}, \rho)$ is a metric space. Let \mathbb{R}^{∞} denote also this metric space in the remainder of this Theorem.
- (ii) For $x, x^{(1)}, x^{(2)}, x^{(3)}, \ldots, \in \mathbb{R}^{\infty}$, we have:

$$\rho(x^{(n)}, x) \longrightarrow 0 \iff \text{for each } i \in \mathbb{N}, \lim_{n \to \infty} |x_i^{(n)} - x_i| = 0$$

(iii) For each $n \in \mathbb{N}$, the "natural projection to the initial segment of length n"

$$\pi_n: \mathbb{R}^{\infty} \longrightarrow \mathbb{R}^n: x \longmapsto (x_1, x_2, \dots, x_n)$$

is continuous, where \mathbb{R}^n has the usual Euclidean topology.

(iv) For each $x \in \mathbb{R}^{\infty}$, $n \in \mathbb{N}$, and $\varepsilon > 0$, let $C_{\mathbb{R}^n}(\pi_n(x), \varepsilon)$ denote the open hypercube in \mathbb{R}^n of side length 2ε centred at $\pi_n(x) \in \mathbb{R}^n$, i.e.

$$C_{\mathbb{R}^n}(\pi_n(x), \varepsilon) := \left\{ y \in \mathbb{R}^n \mid |y_i - x_i| < \varepsilon, \\ i = 1, 2, \dots, n \right\}$$

Then, its pre-image in \mathbb{R}^{∞} under π_n

$$\pi_n^{-1}(C_{\mathbb{R}^n}(\pi_n(x),\varepsilon)) = \left\{ y \in \mathbb{R}^\infty \mid |y_i - x_i| < \varepsilon, \\ i = 1, 2, \dots, n \right\}$$

is an open subset of \mathbb{R}^{∞} .

(v) The collection

$$\left\{ \left. \pi_n^{-1} (C_{\mathbb{R}^n}(\pi_n(x), \varepsilon)) \subset \mathbb{R}^{\infty} \; \right| \; n \in \mathbb{N}, \, x \in \mathbb{R}^{\infty}, \, \varepsilon > 0 \; \right\}$$

of all pre-images under π^n of open hypercubes in \mathbb{R}^n , for all $n \in \mathbb{N}$, forms a basis for the topology of \mathbb{R}^{∞} .

(vi) \mathbb{R}^{∞} is a separable and complete metric space. Hence, every probability measure on \mathbb{R}^{∞} is tight.

Proof

(i) Clearly, ρ is non-negative and symmetric. We now show that, for any $x, y \in \mathbb{R}^{\infty}$, we have $\rho(x, y) = 0$ implies x = y. Indeed,

$$\rho(x,y) = 0 \iff \sum_{i=1}^{\infty} \frac{\min\{1, |x_i - y_i|\}}{2^i} = 0$$

$$\iff \min\{1, |x_i - y_i|\} = 0, \text{ for each } i \in \mathbb{N}$$

$$\iff |x_i - y_i| = 0, \text{ for each } i \in \mathbb{N}$$

$$\iff x = y.$$

In order to show that ρ is a metric, it remains only to establish the Triangle Inequality. By Lemma A.2, for any $x, y, z \in \mathbb{R}^{\infty}$, we have

$$\rho(x,y) = \sum_{i=1}^{\infty} \frac{\min\{1, |x_i - y_i|\}}{2^i} \\
\leq \sum_{i=1}^{\infty} \frac{\min\{1, |x_i - z_i|\} + \min\{1, |z_i - y_i|\}}{2^i} \\
= \sum_{i=1}^{\infty} \frac{\min\{1, |x_i - z_i|\}\}}{2^i} + \sum_{i=1}^{\infty} \frac{\min\{1, |z_i - y_i|\}}{2^i} \\
= \rho(x,z) + \rho(z,y),$$

where we have used the fact that $0 \le \rho \le 1$ to split the infinite sum into two terms in second-to-last equality. This proves that ρ satisfies the Triangle Inequality, and it is thus a metric on \mathbb{R}^{∞} .

(ii)
$$\lim_{n \to \infty} \rho(x^{(n)}, x) = 0 \implies \lim_{n \to \infty} |x_i^{(n)} - x_i| = 0$$
, for each $i \in \mathbb{N}$

$$\lim_{n \to \infty} \rho \left(x^{(n)}, x \right) = 0 \implies \lim_{n \to \infty} \sum_{i=1}^{\infty} \frac{\min\{1, |x_i^{(n)} - x_i|\}}{2^i} = 0$$

$$\implies \lim_{n \to \infty} \min\{1, |x_i^{(n)} - x_i|\} = 0, \text{ for each } i \in \mathbb{N}$$

$$\implies \lim_{n \to \infty} \left| x_i^{(n)} - x_i \right| = 0, \text{ for each } i \in \mathbb{N}$$

$$\lim_{n \to \infty} \left| x_i^{(n)} - x_i \right| = 0, \text{ for each } i \in \mathbb{N} \implies \lim_{n \to \infty} \rho(x^{(n)}, x) = 0$$

This follows from the Weierstrass M-test. Suppose $\lim_{n\to\infty} \left| x_i^{(n)} - x_i \right| = 0$, for each $i \in \mathbb{N}$. Then,

$$\lim_{n \to \infty} \frac{\min\{1, |x_i^{(n)} - x_i|\}}{2^i} = 0 =: y_i, \text{ for each } i \in \mathbb{N}.$$

For each $i \in \mathbb{N}$, let $M_i := \frac{1}{2^i}$. Then,

$$\frac{\min\{1, |x_i^{(n)} - x_i|\}}{2^i} \le M_i \text{ and } \sum_{i=1}^{\infty} M_i < \infty.$$

Hence, by the Weierstrass M-test (Lemma A.3), we have

$$\lim_{n \to \infty} \rho \Big(x^{(n)}, x \Big) = \lim_{n \to \infty} \sum_{i=1}^{\infty} \frac{\min\{1, |x_i^{(n)} - x_i|\}}{2^i} = \sum_{i=1}^{\infty} y_i = 0.$$

- (iii) Immediate by (ii).
- (iv) Since $C_{\mathbb{R}^n}(\pi_n(x), \varepsilon) \subset \mathbb{R}^n$ is an open subset of \mathbb{R}^n , its pre-image under the continuous (by (ii)) map $\pi_n : \mathbb{R}^\infty \longrightarrow \mathbb{R}^n$ is an open subset of \mathbb{R}^∞ .
- (v) It suffices to show that every open ball in $B(x,\varepsilon) \subset \mathbb{R}^{\infty}$ contains the pre-image of an open hypercube in \mathbb{R}^n under π_n .

A Technical Lemmas

Lemma A.1 Define

$$\phi: [0,\infty) \longrightarrow [0,1]: t \longmapsto \min\{1,t\}.$$

Then, ϕ satisfies:

$$\phi(s+t) \leq \phi(s) + \phi(t)$$
, for each $s, t \in [0, \infty)$.

PROOF For any $s, t \in [0, \infty)$, either $s + t \ge 1$ or s + t < 1. If $s + t \ge 1$, then

$$\phi(s+t) = \min\{1, s+t\} = 1 < 2 = 1+1 \le \min\{1, s\} + \min\{1, t\} = \phi(s) + \phi(t),$$

hence, the required inequality holds. On the other hand, if s + t < 1, then we must also have s < 1 and t < 1 (since $s, t \ge 0$). Hence,

$$\phi(s+t) = \min\{1, s+t\} = s+t = \min\{1, s\} + \min\{1, t\} = \phi(s) + \phi(t),$$

thus, the required inequality also holds.

Lemma A.2 For any $x, y, z \in \mathbb{R}$, we have:

$$\min\{1, |x-y|\} \le \min\{1, |x-z|\} + \min\{1, |z-y|\}.$$

PROOF Observe that $|x-y| \le |x-z| + |z-y|$ implies

$$\min\{1, |x-y|\} \le |x-z| + |z-y|.$$

The above inequality, together with min $\{1, |x-y|\} \leq 1$, thus in turn imply:

$$\min\{1, |x-y|\} \le \min\{1, |x-z| + |z-y|\}.$$

By Lemma A.1, we therefore have:

$$\min\{1, |x-y|\} \le \min\{1, |x-z| + |z-y|\}, \le \min\{1, |x-z|\} + \min\{1, |z-y|\},$$

which proves the present Lemma.

Lemma A.3 (The Weierstrass M-test, Theorem A.28, [2])

Suppose that $\lim_{n\to\infty} x_i^{(n)} = x_i$, for each $i\in\mathbb{N}$, and that $\left|x_i^{(n)}\right| \leq M_i$, where $\sum_{i=1}^{\infty} M_i < \infty$. Then,

- (i) $\sum_{i=1}^{\infty} x_i$ exists, and $\sum_{i=1}^{\infty} x_i^{(n)}$ exists for each $n \in \mathbb{N}$.
- (ii) Furthermore,

$$\lim_{n \to \infty} \sum_{i=1}^{\infty} x_i^{(n)} = \sum_{i=1}^{\infty} x_i.$$

Study Notes July 28, 2015 Kenneth Chu

Proof

- (i) $\sum_{i=1}^{\infty} M_i < \infty$ and $\left| x_i^{(n)} \right| \le M_i \implies$ the series $\sum_{i=1}^{\infty} x_i$ and $\sum_{i=1}^{\infty} x_i^{(n)}$, $n \in \mathbb{N}$, converge absolutely.
- (ii) Let $\varepsilon > 0$ be given. Choose $K \in \mathbb{N}$ sufficiently large such that $\sum_{j=K+1}^{\infty} M_i < \frac{\varepsilon}{3}$. Next, choose $N \in \mathbb{N}$ sufficiently large such that

$$\left| x_i^{(n)} - x_i \right| < \frac{\varepsilon}{3K}$$
, for any $n > N$ and $i = 1, 2, \dots, K$.

Then, we have, for each n > N,

$$\left| \sum_{i=1}^{\infty} x_i^{(n)} - \sum_{i=1}^{\infty} x_i \right| = \left| \sum_{i=1}^{K} \left(x_i^{(n)} - x_i \right) + \sum_{i=K+1}^{\infty} x_i^{(n)} - \sum_{i=K+1}^{\infty} x_i \right|$$

$$\leq \sum_{i=1}^{K} \left| x_i^{(n)} - x_i \right| + \sum_{i=K+1}^{\infty} \left| x_i^{(n)} \right| + \sum_{i=K+1}^{\infty} |x_i|$$

$$\leq K \cdot \frac{\varepsilon}{3K} + \sum_{i=K+1}^{\infty} M_i + \sum_{i=K+1}^{\infty} M_i \leq \frac{\varepsilon}{3} + 2 \cdot \frac{\varepsilon}{3} = \varepsilon.$$

Since ε is arbitrary, this proves:

$$\lim_{n \to \infty} \sum_{i=1}^{\infty} x_i^{(n)} = \sum_{i=1}^{\infty} x_i.$$

References

- [1] BILLINGSLEY, P. Convergence of Probability Measures, second ed. John Wiley & Sons, 1999.
- [2] BILLINGSLEY, P. Probability and Measure, anniversary ed. John Wiley & Sons, 2012.