Human Activity Recognition

Shanmuga 20 July 2016

Human Activity Recognition

Load raw data

```
library(caret)

## Loading required package: lattice

## Loading required package: ggplot2

library(rattle)

## Rattle: A free graphical interface for data mining with R.

## Version 4.1.0 Copyright (c) 2006-2015 Togaware Pty Ltd.

## Type 'rattle()' to shake, rattle, and roll your data.

library(e1071)
library(ggplot2)
library(C50)

trainData <- read.csv("pml-training.csv",na.strings=c("NA","#DIV/0!",""))
testData <- read.csv("pml-testing.csv",na.strings=c("NA","#DIV/0!",""))</pre>
```

Clean the raw data

Remove first column that is not required - running number

```
cleanTrainData <- trainData[c(-1)]</pre>
```

Find NA values and exclude

```
notNA <- sapply(cleanTrainData,function(i){sum(is.na(i))/length(i)})<0.9
cleanTrainData <- cleanTrainData[, notNA]</pre>
```

Remove near zero variance columns/variables

```
nzv <- nearZeroVar(cleanTrainData, saveMetrics=TRUE)
cleanTrainData <- cleanTrainData[,nzv$nzv==FALSE]</pre>
```

Drop unnecessary columns from the testing dataset

```
columnNames <- colnames(cleanTrainData[,-58]) # remove class column.
cleanTestData <- testData[columnNames]</pre>
```

Split the training set into a training and validation set.

```
intrain<-createDataPartition(y=cleanTrainData$classe,p=0.7,list=FALSE)
training<-cleanTrainData[intrain,]
testing<-cleanTrainData[-intrain,]</pre>
```

Cross Validation to select the best model performance

```
fitControl <- trainControl(method = "cv", number = 10, repeats = 0,savePred=T, classProb=T)
modelHAR_1 <- train(classe~., data = training, method = "rpart", trControl= fitControl)

## Loading required package: rpart

modelHAR_2 <- train(classe~., data = training, method = "rpart1SE", trControl= fitControl)
modelHAR_3 <- train(classe~., data = training, method = "C5.0Tree", trControl= fitControl)

Confusion martix

activity_1 <- predict(modelHAR_1, newdata = testing[,-58])
conMatrix_1 <- confusionMatrix(activity_1, testing$classe)
conMatrix_1</pre>
```

```
##
             Reference
## Prediction
                      В
                           C
                                D
                                     Ε
            A 1260 284
                          21
                               31
                                    13
##
##
            B 107
                    493
                          17
                                0
                                     0
##
               83
                    178
                         540
                               28
                                    48
##
            D 218
                    184
                         448
                              905 512
##
            F.
                      0
                                0 509
                 6
                           0
##
## Overall Statistics
##
##
                  Accuracy : 0.6299
                    95% CI: (0.6174, 0.6423)
##
       No Information Rate: 0.2845
##
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.5355
   Mcnemar's Test P-Value : NA
##
##
## Statistics by Class:
##
                        Class: A Class: B Class: C Class: D Class: E
##
```

```
## Sensitivity
                       0.7527 0.43284 0.52632 0.9388 0.47043
                        0.9171 0.97387 0.93064 0.7232 0.99875
## Specificity
## Pos Pred Value
                       0.7831 0.79903 0.61574 0.3992 0.98835
                        0.9032 0.87737 0.90296 0.9837
## Neg Pred Value
                                                          0.89330
## Prevalence
                        0.2845 0.19354 0.17434
                                                 0.1638
                                                          0.18386
## Detection Rate
                        0.2141 0.08377 0.09176 0.1538 0.08649
## Detection Prevalence 0.2734 0.10484 0.14902 0.3852 0.08751
                        0.8349 0.70335 0.72848 0.8310 0.73459
## Balanced Accuracy
activity_2 <- predict(modelHAR_1, newdata = training[,-58])</pre>
conMatrix_2 <- confusionMatrix(activity_2, training$classe)</pre>
conMatrix 2
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction A B
                         C
                              D
                                  F.
##
           A 3021 665
                        68
                             79
                                  31
           B 208 1183
##
                        28
                             Ω
                                   Λ
##
           C 186 368 1270
##
           D 483 442 1030 2114 1222
           F.
               8
                    0
##
                       0 0 1122
##
## Overall Statistics
##
##
                 Accuracy : 0.6341
##
                   95% CI: (0.6259, 0.6421)
##
      No Information Rate: 0.2843
##
      P-Value [Acc > NIR] : < 2.2e-16
##
##
                    Kappa: 0.5402
  Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
                      Class: A Class: B Class: C Class: D Class: E
##
## Sensitivity
                        0.7734 0.44507 0.53005 0.9387 0.44436
## Specificity
                        0.9143 0.97870 0.93272 0.7234 0.99929
## Pos Pred Value
                        0.7818 0.83369 0.62469 0.3995 0.99292
## Neg Pred Value
                        0.9104 0.88026 0.90379 0.9837 0.88871
## Prevalence
                        0.2843 0.19349 0.17442
                                                 0.1639
                                                          0.18381
## Detection Rate
                       0.2199 0.08612 0.09245 0.1539
                                                          0.08168
## Detection Prevalence 0.2813 0.10330 0.14799 0.3852 0.08226
                        0.8438 0.71188 0.73139 0.8310 0.72182
## Balanced Accuracy
activity_3 <- predict(modelHAR_3, newdata = training[,-58])</pre>
conMatrix_3 <- confusionMatrix(activity_3, training$classe)</pre>
conMatrix_3
## Confusion Matrix and Statistics
##
##
           Reference
                         С
## Prediction A B
                              D
                                   F.
```

```
##
            A 3900
                     12
                            0
                                 0
            В
                 5 2636
                                 0
                                      0
##
                            1
##
            C
                       9 2395
                                 2
                                      2
            D
                                      2
##
                       1
                            0 2249
                 1
##
            Ε
                 0
                       0
                            0
                                 1 2521
##
## Overall Statistics
##
##
                  Accuracy : 0.9974
                    95% CI: (0.9964, 0.9982)
##
##
       No Information Rate: 0.2843
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.9967
##
    Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
                         Class: A Class: B Class: C Class: D Class: E
##
## Sensitivity
                           0.9985
                                    0.9917
                                              0.9996
                                                       0.9987
                                                                 0.9984
## Specificity
                           0.9988
                                    0.9995
                                             0.9989
                                                       0.9997
                                                                0.9999
## Pos Pred Value
                           0.9969
                                    0.9977
                                             0.9946
                                                       0.9982
                                                                0.9996
## Neg Pred Value
                                    0.9980
                                                                0.9996
                           0.9994
                                             0.9999
                                                       0.9997
## Prevalence
                           0.2843
                                    0.1935
                                             0.1744
                                                                0.1838
                                                       0.1639
## Detection Rate
                           0.2839
                                    0.1919
                                              0.1743
                                                       0.1637
                                                                0.1835
## Detection Prevalence
                           0.2848
                                    0.1923
                                              0.1753
                                                       0.1640
                                                                0.1836
## Balanced Accuracy
                           0.9986
                                    0.9956
                                              0.9992
                                                       0.9992
                                                                0.9992
```

As the "C5.0Tree" has the highest accuracy (0.9972) when predicting the test data. we select this model to build our final model.

Build final model

Final model is build with the "C5.0Tree" algorithm using the entire training data set.

```
fitControl <- trainControl(method = "cv", number = 10, repeats = 0,savePred=T, classProb=T)
modelHAR_F <- train(classe~., data = cleanTrainData, method = "C5.0Tree", trControl= fitControl)</pre>
```

Perform prediction with final model

```
act_prediction <- predict(modelHAR_F, newdata = cleanTestData)</pre>
```

The predistions obtained are:

```
act_prediction
```

```
## [1] B A B A A E D B A A B C B A E E A B B B ## Levels: A B C D E
```