培文笔记

陈培文

2020年3月28日

目录

1	线性	空间的定义	1
	1.1	线性空间的定义	1
	1.2	基、维数和坐标	5

1 线性空间的定义

1.1 线性空间的定义

用 F 表示实数全体 (R) 或复数全体 (C)

定义 1.1 设 V 是非空集合, F 是实数 (R) 或复数 (C) 域

在 V 及 F 上定义了两种运算:

定义 1.2 (加法) 对 $\forall \alpha, \beta \in V$, 在 V 中有唯一的元素与之对应,记这个元素为 $\alpha + \beta$, 称为 α, β 的和。

定义 1.3 (数乘) 对 $\forall \alpha \in V, k \in F$, 在 V 中有唯一对元素与之对应,记这个元素为 $k \cdot \alpha$, 称为 k 与 α 的积。

如果满足下述公理,则称 V 是数域 F 上的线性空间, V 中的元素称为是向量。

1. 加法运算

公理 1.1 (交換律) 对
$$\forall \alpha, \beta \in V, \alpha + \beta = \beta + \alpha$$

公理 1.2 (结合律) 对
$$\forall \alpha, \beta, \gamma \in V, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

公理 1.3 (零元素)
$$\exists \theta \in V$$
, 使得 $\forall \alpha \in V, \alpha + \theta = \alpha$

公理 1.4 (负元素) 对
$$\forall \alpha \in V, \exists \beta \in V$$
, 使 $\alpha + \beta = \theta$

2. 数乘运算

公理 1.5 对
$$\forall \alpha \in V, 1 \cdot \alpha = \alpha$$

公理 1.6 对
$$\forall \alpha \in V, k, l \in F, k \cdot (l \cdot f) = (k \cdot l) \cdot f$$

3. 数乘和加法运算

公理 1.7 对
$$\forall \alpha \in V, k, l \in F, (k+l) \cdot \alpha = k\alpha + l\alpha$$

公理 1.8 对
$$\forall \alpha, \beta \in V, k \in F, k(\alpha + \beta) = k\alpha + k\beta$$

例 1. n 维向量, $V = F^n$

- $2. n \times n$ 维矩阵全体, $V = F^{n \times n}$
- 3. 系数在 F 中关于 x 的多项式全体, V = F[x]
- 4. $V = F_n[x]$

5.
$$V = C, F = R$$

6.
$$V = C, F = C$$

- 7. 不构成线性空间, V = R, F = C
- 8. 通常运算, R^+ : 正实数全体, 不构成线性空间, $V = R^+, F = R$
- 9. $V = R^+, F = R$

定义新的运算:

定义 1.4 (
$$\bigoplus$$
) 对 $\alpha, \beta \in V, \alpha \bigoplus \beta = \alpha \cdot \beta$

定义 1.5 (o) 对
$$\alpha \in V, k \in F, k \circ \alpha = \alpha^k$$

验证:

- (1) $\alpha, \beta \in V, \alpha \oplus \beta = \alpha\beta, \beta \oplus \alpha = \beta\alpha, \alpha \oplus \beta = \beta \oplus \alpha$
- (3) $\theta inV, \forall \alpha \in V, \alpha \bigoplus \theta = \alpha, \theta = 1$
- (4) $\alpha \in V, \alpha \oplus \beta = \theta = 1, \beta = \alpha^{-1}$
- $(7) k, l \in F, \alpha \in V, (k+l) \circ \alpha \stackrel{?}{=} k \circ \alpha \bigoplus l \circ \alpha$

性质 1.1 (线性空间的性质) 假设 V 是数域 F 上的线性空间,则:

1. V 中的零向量是唯一的

证明 若有 2 个零元素 θ_1, θ_2 , 则:

$$\theta_1 = \theta_1 + \theta_2 = \theta_2 + \theta_1 = \theta_2 \tag{1}$$

故 $\theta_1 = \theta_2$, 零元素唯一。

2. 对 $\forall \alpha \in V, \alpha$ 的负元素是唯一的,记为 $-\alpha$

证明 设 β_1, β_2 均为 α 的负元素

$$\beta_1 = \beta_1 + \theta = \beta_1 + (\alpha + \beta_2) = (\beta_1 + \alpha) + \beta_2 = (\alpha + \beta_1) + \beta_2 = \theta + \beta_2 = \beta_2 + \theta = \beta_2$$
 (2)

- 3. 加法消去率: 若 $\alpha + \beta = \alpha + \gamma$, 则 $\beta = \gamma$
- 4. 对 $\forall \alpha, \beta \in V$, 向量方程 $\alpha + x = \beta$ 有唯一解, $x = \alpha + (-\beta)$, 记 $x = \alpha \beta$
- 5. $(-k) \cdot \alpha = -(k\alpha)$, 特别地, $(-1)\alpha = \alpha$
- 6. $k\alpha \Leftrightarrow k=0$ & $\alpha=0$

1.2 基、维数和坐标

在线性空间中,可以定义线性组合、线性表、线性相关、线性无关、向量组的极大线性无关组、秩等概念,如:

定义 1.6 设 $\alpha_1, \alpha_2, \dots, \alpha_s \in V$, 若存在不全为 0 的数 k_1, k_2, \dots, k_s , 使得 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0$, 则称向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性相关,否则,称 $\alpha_1, \alpha_2, \dots, \alpha_s$ 是线性无关的。

一些重要结论:

1. **结论 1.1** 若 $s \ge 2$, 则 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关 $\Leftrightarrow \exists j$, 使 α_j 可由其余 s-1 个向量线性表示。 证明 存在不全为 0 的数, k_1, k_2, \cdots, k_s ,使 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$ 不妨设 k_1 $0 \Rightarrow \alpha_1 = -\frac{k_1}{k_1}\alpha_2 - \cdots - \frac{k_s}{k_1}\alpha_s$

- 2. **结论 1.2** 若 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关,但 $\beta, \alpha_1, \alpha_2, \dots, \alpha_s$ 线性相关,则 β 可由 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性表示,而且,线性表示的方法是唯一的。
- 3. **结论 1.3** 若 $t > s, \beta_1, \beta_2, \cdots, \beta_s$ 可由 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表示,则 $\beta_1, \beta_2, \cdots, \beta_t$ 线性相关 证明 极大线性无关组: $\alpha_1, \alpha_2, \cdots, \alpha_s$ 中的极大线性无关组 $\alpha_{i_1}, \alpha_{i_2}, \cdots, \alpha_{i_r}$ 满足 2 个条件:
 - ① $\alpha_{i_1}, \alpha_{i_2}, \cdots, \alpha_{i_r}$ 线性无关
 - ② $\alpha_1, \alpha_2, \alpha_s$ 中的每一个向量均可由 $\alpha_{i_1}, \alpha_{i_2}, \cdots, \alpha_{i_r}$ 线性表示

推论 1 若 $\beta_1,\beta_2,\cdots,\beta_t$ 可由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表示,且 $\beta_1,\beta_2,\cdots,\beta_t$ 线性无关,则 $t\leq s$

推论 2 若 $\beta_1, \beta_2, \cdots, \beta_t$ 与 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 等价, 且均线性无关, 则 s = t

例 1. 在
$$F^{2\times 2}$$
 中, $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ 解答 设 $1E_{11} + k_2E_{12} + k_3E_{21} + k_4E_{22} = 0 \Rightarrow \begin{pmatrix} k_1 & k_2 \\ k_3 & k_4 \end{pmatrix} = 0$ ∴ $k_1 = k_2 = k_3 = k_4 = 0$

2. 在 $F_3[x]$ 中, $\alpha_1 = 2 + x + 3x^2$, $\alpha_2 = 1 + 3x - x^2$, $\alpha_3 = 3 + 4x + 2x^2$ $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = \theta$,是否有不全为 0 的 k_1, k_2, k_3 使上式成立

解答
$$\Rightarrow (2k_1 + k_2 + 3k_3) + (k_1 + 3k_2 + 4k_3)x + (3k_1 - k_2 + 2k_3)x^2 = 0$$

$$\Rightarrow \begin{cases} 2k_1 + k_2 + 3k_3 = 0 \\ k_1 + 3k_2 + 4k_3 = 0 \end{cases} \Rightarrow \begin{cases} k_1 = 1 \\ k_2 = 1 \Rightarrow \alpha_1, \alpha_2, \alpha_3$$
 线性相关
$$k_3 = -1 \end{cases}$$

- 3. $V=C, F=R, \alpha_1=1, \alpha_2=i=-\sqrt{-1}$ 是否存在 $a,b\in F=R, a\alpha_1+b\alpha_2=0$ $\Rightarrow a+b_i=0 \Rightarrow a=b=0 \Rightarrow \alpha_1$ 与 α_2 线性无关
- 4. $V=C, F=R, \alpha_1=1, \alpha_2=i=-\sqrt{-1}$ 是否存在 $a,b\in F=C$,使得 $a\alpha_1+b\alpha_2=0$ 若 $a=i=\sqrt{-1}, b=-1$,则 $a\alpha_1+b\alpha_2=0\Rightarrow\alpha_1,\alpha_2$ 线性相关 小例子: $V=R^+, F=R$,两种运算 $\bigoplus,\circ,\alpha=2,\beta=3\in V$ $k\circ\alpha\bigoplus l\circ\beta=\theta\Rightarrow\alpha^k\cdot\beta^l=1\Rightarrow 2^k+3^l=1\Rightarrow k=1$,则 $l=-\log_32$

定义 1.7 基, 维数

- $1. \alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关
- 2. $\forall \eta \in V$ 均可由 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示

称 $n \in V$ 的维数,记为维 (V) 或 $\dim V$

注:

命题 1.1 若 $\dim V = n$, 则 V 中任意 n+1 个向量线性相关

线性空间的基不一定存在。

例如:零空间 $V = \theta, \dim \theta = 0$

 $V = F[x], \dim F[x] = \infty$

例 $1. V = F^n$

解答
$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)$$

 $\eta = (x_1, x_2, \dots, x_n) = x_1 e_1 + x_2 e_2 + \dots + x_n e_n$

其中 e_1, e_2, \cdots, e_n 为 V 的自然基, $\dim F^n = n$

2. $V = F^{2 \times 2}$

解答
$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

 $\dim F^{2\times 2} = 4$

 $F^{3\times n}$, F, 基: 矩阵单位 $\{E_{ij}\}$, 维数: $\dim F^{s\times n} = s \times n$

3. $V = F_n[x]$

解答 基: $1, x, x^2, \cdots, x^{n-1}, \dim F_n[x] = n$

4.
$$V = C, F = R(\&:1, \sqrt{-1})$$

5.
$$V = C, F = C(\cancel{2}.1, \dim V = 1)$$

6.
$$V = R^+, F = R, \bigoplus, \circ, \theta = 1 (\underline{\mathbb{A}} : \alpha \neq 1 , \dim V = 1)$$

例 证明: 在 $F_3[x]$ 中,下述三个向量构成一组基: $f_1(x)=1+2x+3x^2, f_2(x)=3+x-x^2, f_3(x)=2-x+x^2$

方法一: ① 说明 $f_1(x), f_2(x), f_3(x)$ 线性无关

② $\forall p(x)$ 均可由 $f_2(x), f_3(x)$ 线性表示

设
$$k_1f_1 + k_2f_2 + k_3f_3 = \theta \Rightarrow k_1 = k_2 = k_3 = 0$$

 $p(x) = a + bx + cx^2$, 寻找使 $p(x) = k_1f_1 + k_2f_2 + k_3f_3$

方法二: $\dim F_3[x] = 3$, 且 f_1, f_2, f_3 线性无关由上述定理可知, f_1, f_2, f_3 为一组基

定义 1.8 (坐标) 设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是 V 的一组基, $\beta \in V$ 且 $\beta = x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n$,则称 x_1, x_2, \dots, x_n 是 β 在基 $a\alpha_1, \alpha_2, \dots, \alpha_n$ 下的坐标,或 $(x_1, x_2, \dots, x_n)^T$ 是 β 在基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 下的坐标(列向量)。

例 1. F^n 中, $\eta=(x_1,x_2,\cdots,x_n)$ 在基 $e_1=(1,0,\cdots,0),e_2=(0,1,\cdots,0),\cdots,e_n=(0,0,\cdots,1)$ 下的坐标

2. 在
$$F^{2\times 2}$$
 中, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 在基 $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ 下的坐标

$$A = aE_{11} + bE_{12} + cE_{21} + dE_{22} \Rightarrow \text{ 坐标} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$

注:

1. 线性空间的基是有序的

$$F^n, \eta = (x_1, x_2, \cdots, x_n)$$
 在 e_1, e_2, \cdots, e_n 下坐标 $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$, 在 $e_n, e_{n-1}, \cdots, e_1$ 下坐标 $\begin{pmatrix} x_n \\ x_{x_1} \\ \vdots \\ x_1 \end{pmatrix}$

2. 基的几何意义

定理 1.1 假设 $\eta, \eta_i \in V$ 在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的坐标分别是 X 及 $X_i, i = 1, 2, \cdots, s, 则:$

(a)
$$\eta = \theta \Leftrightarrow X = \theta$$

(b)
$$\eta = k_1 \eta_1 + k_2 \eta_2 + \cdots, k_s \eta_s \Leftrightarrow X = k_1 X_1 + k_2 X_2 + \cdots + k_s X_s$$

$$\eta = k_1 \eta_1 + k_2 \eta_2 = k_1 (a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_n \alpha_n) + k_2 (b_1 \alpha_1 + b_2 \alpha_2 + \dots + b_n \alpha_n)
= (k_1 a_1 + k_2 b_1) \alpha_1 + (k_1 a_2 + k_2 b_2) \alpha_2 + \dots + (k_1 a_n + k_2 b_n) \alpha_n$$
(3)

$$\Rightarrow X = k_1 X_1 + k_2 X_2$$