

Noval ultrafast gigahertz high-power semiconductor lasers: MIXSELs and SESAM modelocked VECSELs

T. Südmeyer, U. Keller

Department of Physics, Institute of Quantum Electronics,

ETH Zurich, Switzerland

28.10.2010, IBM Research - Zurich, Ruschlikon

Ultrafast semiconductor lasers

Currently, typical ultrafast lasers are bulky and complex

Our approach: semiconductor laser with vertical integration

Vertical External

Cavity Surface

Emitting Laser

Semiconductor

Saturable Absorber

Mirror

MIXSEL

Modelocked Integrated

External-Cavity Surface

Emitting Laser

first wafer-fused modelocked VECSEL

Optically pumped VECSEL

Combine the advantages of ion-doped DPSSL and semiconductor lasers

M. Kuznetsov et al., IEEE Phot. Tech. Lett. 9, 1063 (1997)

Surface Emitter

Power scalability

Optical Pumping

 Large area homogeous inversion

External cavity

- Excellent beam quality
- flexible: SHG, modelocking single-frequency

Semiconductor Gain

- bandgap engineering: so far 0.6 ... 2.3 µm
- cost-efficient fabrication

High power CW-operation: 20 W TEM₀₀

- Maximum power P = 20.2 W
- Up to η_{opt-opt} = 43%
- M² < 1.1

SESAM-VECSEL modelocking

⇔ loss has to saturate faster

- Self-starting and reliable modelocking
- After each roundtrip a pulse is emitted
 - 1 GHz: T_{roundtrip} = 1 ns, L_{cavity} = 15 cm
 - 50 GHz: T_{roundtrip} = 20 ps, L_{cavity} = 3 mm

$$\frac{E_{sat,a}}{E_{sat,g}} = \frac{F_{sat,a}}{F_{sat,g}} \stackrel{A_a}{A_g} < 1$$

#1 U. Keller et al., Opt. Lett. 17, 505, 1992 #2 U. Keller, Nature 424, 831, 2003

SESAM-VECSEL modelocking

AR

7 QW gain layers

Pump DBR

QD saturable absorber

Laser DBR

Substrate GaAs

Resonant vs. antiresonant design

Initial MIXSEL demonstration had a resonant design:

D. J. H. C. Maas et al., Appl. Phys. B 88, 493, 2007

high GDD - long pulses

layer thickness variations < 1%

growth error simulation:

 Field enhancement in QD-layer by resonant sub-cavity

- low saturation fluence <10 μJ/cm²
- Recently: detailed study on QD-growth parameters
 - optimization of growth temperature and post-growth annealing
 - achieved first 1:1 SESAM-VECSEL modelocking from antiresonant SESAM

MIXSEL on diamond heat sink

- First MIXSEL with diamond heat sink instead of GaAs wafer
- Increase pump spot from 80 μm radius to ~215 μm
- Achieve new power record: 6.4 W in 28 ps at 2.5 GHz

average output power: 6.4 W

pulse duration: 28.1 ps center wavelength:959.1 nm FWHM spectral width:0.15 nm optical pumping 36.7 W at 808 nm pump / laser spot radius: ~215 μm

TBP: 1.35 (4.2 times sech2)

efficiency (opt-opt): 17.4 %

Electrical vs. optical pumping

Simulations for EP-VECSEL Design

P. Kreuter et al., Appl. Phys. B, 91, 257, 2008

EP-VECSEL: some design features

Trade off between optical losses and electrical resistance

- Suitable for modelocking
 ⇒no excessive resonances, low dispersion
- Low-loss, high conductivity p-DBR
 - ⇒ large aperture possible
 - ⇒ high power achievable
- Use wafer bonding on CuW wafer
- Good electrical contacts
 - Donut n-contact
 - Small disk p-contact
- Uniform current injection
 by thick spreading layer (shown in red)
- Increased gain by intermediate DBR
- AR coating etched for lower resistance

P. Kreuter et al., Appl. Phys. B, 91, 257, 2008