Homework 1 - Introduction to Probabilistic Graphical Models

kipngeno koech - bkoech

February 10, 2025

1 Bayesian Networks

- 1. Consider a simple Markov Chain structure $X \to Y \to Z$, where all variables are binary. You are required to:
 - (a) Write a code (using your preferred programming language) that generates a distribution (not necessarily a valid BN one) over the 3 variables.

[in the notebook]

(b) Write a code that verifies whether a distribution is a valid BN distribution.

[in the notebook]

(c) Using your code, generate 10000 distributions and compute the fraction of distributions that are valid BN distributions.

[in the notebook]

2. Given the following Bayesian Network

Figure 1: A Bayesian network.

Figure 1: Bayesian Network

(a) Propose a topological ordering of this graph In Figure 2, the topological ordering is:

i.
$$A \to B \to C \to D \to E \to F \to G \to H \to I$$

ii.
$$A \to B \to C \to E \to D \to F \to G \to I \to H$$

(b) Let X be a random vector that is Markov with respect to the graph. We assume that the random variables X, are binary. Write all the local conditional independence

 X_A has no parents, so no independence condition applies here.

 X_B has no parents, so no independence condition applies here.

 X_C is conditionally independent of all other nodes given its parent X_A :

$$X_C \perp \{X_B, X_D, X_E, X_F, X_G, X_H, X_I\} \mid X_A$$

 X_D is conditionally independent of all other nodes given its parent X_A :

$$X_D \perp \{X_B, X_C, X_E, X_F, X_G, X_H, X_I\} \mid X_A$$

 X_E is conditionally independent of all other nodes given its parents X_C and X_D :

$$X_E \perp \{X_A, X_B, X_F, X_G, X_H, X_I\} \mid \{X_C, X_D\}$$

 X_F is conditionally independent of all other nodes given its parent X_B :

$$X_F \perp \{X_A, X_C, X_D, X_E, X_G, X_H, X_I\} \mid X_B$$

 X_G is conditionally independent of all other nodes given its parents X_E and X_F :

$$X_G \perp \{X_A, X_B, X_C, X_D, X_H, X_I\} \mid \{X_E, X_F\}$$

 X_H is conditionally independent of all other nodes given its parent X_D :

$$X_H \perp \{X_A, X_B, X_C, X_E, X_F, X_G, X_I\} \mid X_D$$

 X_I is conditionally independent of all other nodes given its parents X_G and X_H :

$$X_{I} \perp \{X_{A}, X_{B}, X_{C}, X_{D}, X_{E}, X_{F}\} \mid \{X_{G}, X_{H}\}$$

Figure 2: Bayesian Network

- 3. State True or False, and briefly justify your answer within 3 lines. The statements are either direct consequences of theorems in Koller and Friedman (2009, Ch. 3), or have a short proof. In the follows, P is a distribution and G is a BN structure.
 - (a) If $A \perp B \mid C$ and $A \perp C \mid B$, then $A \perp B$ and $A \perp C$. (Suppose the joint distribution of A, B, C is positive.) (This is a general probability question not related to BNs.)
 - False. Conditional independence does not imply marginal independence. For example, A and B can be dependent but become independent given C.

Figure 2: A Bayesian network.

Figure 3: Bayesian Network

- (b) In Figure 2, $E \perp C \mid B$
- (c) in Figure 2, $A \perp E \mid C$

In figure 3, Recall the definitions of local and global independences of G and independences of P.

$$I_l(G) = \{ (X \perp \text{NonDescendants}_G(X) \mid \text{Parents}_G(X)) \}$$
 (1)

$$I(G) = \{ (X \perp Y \mid Z) : \text{d-separated}_G(X, Y \mid Z) \}$$
 (2)

$$I(P) = \{ (X \perp Y \mid Z) : P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z) \}$$
(3)

- (d) In Figure 3, relation 1 is true.
- (e) In Figure 3, relation 2 is true.
- (f) In Figure 3, relation 3 is true.
- (g) If G is an I-map for P, then P may have extra conditional independencies than G.
- (h) Two BN structures G_1 and G_2 are I-equivalent if they have the same skeleton and the same set of v-structures.

Figure 3: Some relations in Bayesian networks.

- (i) If G_1 is an I-map of distribution P, and G_1 has fewer edges than G_2 , then G_2 is not a minimal I-map of P.
- (j) The P-map of a distribution, if it exists, is unique.

2 Markov Networks

Let $\mathbf{X} = (X_1, \dots, X_d)$ be a random vector with mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. The partial correlation matrix \mathbf{R} of \mathbf{X} is a $d \times d$ matrix where each entry $R_{ij} = \rho(X_i, X_j \mid \mathbf{X}_{-ij})$ is the partial correlation between X_i and X_j given the d-2 remaining variables \mathbf{X}_{-ij} . Let $\boldsymbol{\Theta} = \boldsymbol{\Sigma}^{-1}$ be the inverse covariance matrix of \mathbf{X} .

We will prove the relation between \mathbf{R} and $\mathbf{\Theta}$, and furthermore how $\mathbf{\Theta}$ characterizes conditional independence in Gaussian graphical models.

1. (10 points) Show that

$$\begin{pmatrix} \Theta_{ii} & \Theta_{ij} \\ \Theta_{ji} & \Theta_{jj} \end{pmatrix} = \begin{pmatrix} \operatorname{Var}[e_i] & \operatorname{Cov}[e_i, e_j] \\ \operatorname{Cov}[e_i, e_j] & \operatorname{Var}[e_j] \end{pmatrix}^{-1}$$

for any $i, j \in [d], i \neq j$. Here e_i is the residual resulting from the linear regression of X_{-ij} to X_i , and similarly e_j is the residual resulting from the linear regression of X_{-ij} to X_j .

The residuals e_i and e_j are given by:

$$e_i = X_i - \mathbb{E}[X_i | X_{-ij}], \quad e_j = X_j - \mathbb{E}[X_j | X_{-ij}].$$

These residuals are uncorrelated with X_{-ij} , meaning $Cov(e_i, X_{-ij}) = 0$ and $Cov(e_j, X_{-ij}) = 0$.

Covariance of Residuals: The covariance matrix of the residuals e_i and e_j is:

$$Cov(e_i, e_j) = Cov(X_i, X_j | X_{-ij}).$$

This is because the residuals capture the conditional covariance between X_i and X_j given X_{-ij} .

Inverse Covariance Matrix: The inverse covariance matrix $\Theta = \Sigma^{-1}$ satisfies:

$$\Theta = \begin{pmatrix} \Theta_{ii} & \Theta_{ij} \\ \Theta_{ji} & \Theta_{jj} \end{pmatrix}.$$

By the properties of the inverse covariance matrix, the conditional covariance matrix of (X_i, X_j) given X_{-ij} is:

$$Cov(X_i, X_j | X_{-ij}) = \begin{pmatrix} \Theta_{ii} & \Theta_{ij} \\ \Theta_{ji} & \Theta_{jj} \end{pmatrix}^{-1}.$$

Equating the Matrices: Since $Cov(e_i, e_j) = Cov(X_i, X_j | X_{-ij})$, we have:

$$\begin{pmatrix} \Theta_{ii} & \Theta_{ij} \\ \Theta_{ji} & \Theta_{jj} \end{pmatrix} = \begin{pmatrix} \operatorname{Var}[e_i] & \operatorname{Cov}[e_i, e_j] \\ \operatorname{Cov}[e_i, e_j] & \operatorname{Var}[e_j] \end{pmatrix}^{-1}.$$

2. (10 points) Show that

$$R_{ij} = -\frac{\Theta_{ij}}{\sqrt{\Theta_{ii}\Theta_{jj}}}$$

Partial Correlation: The partial correlation R_{ij} is defined as:

$$R_{ij} = \rho(X_i, X_j | X_{-ij}) = \frac{\text{Cov}(X_i, X_j | X_{-ij})}{\sqrt{\text{Var}(X_i | X_{-ij}) \text{Var}(X_j | X_{-ij})}}.$$

Conditional Covariance and Variance: From Problem 1, we know:

$$Cov(X_i, X_j | X_{-ij}) = -\frac{\Theta_{ij}}{\Theta_{ii}\Theta_{jj} - \Theta_{ij}^2},$$

and:

$$\operatorname{Var}(X_i|X_{-ij}) = \frac{1}{\Theta_{ii}}, \quad \operatorname{Var}(X_j|X_{-ij}) = \frac{1}{\Theta_{ij}}.$$

Substitute into Partial Correlation: Substituting these into the definition of R_{ij} , we get:

$$R_{ij} = \frac{-\frac{\Theta_{ij}}{\Theta_{ii}\Theta_{jj} - \Theta_{ij}^2}}{\sqrt{\frac{1}{\Theta_{ii}} \cdot \frac{1}{\Theta_{jj}}}}$$

Simplifying, we obtain:

$$R_{ij} = -\frac{\Theta_{ij}}{\sqrt{\Theta_{ii}\Theta_{jj}}}.$$

3. (15 points) From the above result and the relation between independence and correlation, we know

$$\Theta_{ij} = 0 \iff R_{ij} = 0 \implies X_i \perp X_j \mid X_{-ij}$$

Note the last implication only holds in one direction. Now suppose $X \sim N(\mu, \Sigma)$ is jointly Gaussian. Show that $R_{ij} = 0 \implies X_i \perp X_j \mid X_{-ij}$.

Partial Correlation and Conditional Independence: From Problem 2, we know:

$$R_{ij} = -\frac{\Theta_{ij}}{\sqrt{\Theta_{ii}\Theta_{jj}}}.$$

If $R_{ij} = 0$, then $\Theta_{ij} = 0$.

Inverse Covariance and Conditional Independence: For a jointly Gaussian distribution, the inverse covariance matrix $\Theta = \Sigma^{-1}$ encodes conditional independence. Specifically:

$$\Theta_{ij} = 0 \iff X_i \perp X_j | X_{-ij}.$$

This is because the off-diagonal elements of Θ represent the conditional dependence between variables after accounting for all other variables.

Conclusion: Since $R_{ij} = 0$ implies $\Theta_{ij} = 0$, it follows that:

$$X_i \perp X_j | X_{-ij}$$
.

3 Exact Inference - Variable Elimination

Reference materials for this problem:

- Jordan textbook Ch. 3, available at https://people.eecs.berkeley.edu/~jordan/prelims/chapter3.pdf
- Koller and Friedman (2009, Ch. 9 and Ch. 10)

3.1 Variable elimination on a grid [10 points]

Consider the following Markov network:

Figure 4: Markov Network

We are going to see how tree-width, a property of the graph, is related to the intrinsic complexity of variable elimination of a distribution

- (5 points) Write down largest clique(s) for the elimination order A, G, I, C, D, H, F, B, E. We start by eliminating A, its neighbors are D, B, so the clique here is: {D, B}. size: 2 We then eliminate G, its neighbors are D, H, so the clique here is: {D, H}. size: 2 We then eliminate I, its neighbors are H, F, so the clique here is: {H, F}. size: 2 We then eliminate C, its neighbors are F, B, so the clique here is: {F, B}. size: 2 We then eliminate D, its neighbors are H, B, E, so the clique here is: {H, B, E}. size: 3 We then eliminate H, its neighbors are F, B, E, so the clique here is: {F, B, E}. size: 3 We then eliminate F, its neighbors are B, E, so the clique here is: {B, E}. size: 2 We then eliminate B, its neighbors are E, so the clique here is: {E}. size: 1 The largest clique(s) for the elimination order A, G, I, C, D, H, F, B, E is 3
- 3. (5 points) Which of the above ordering is preferable? Explain briefly.

 The second ordering is preferable because it results in a smaller largest clique size (3) compared to the first ordering (5). A smaller clique size generally leads to more efficient computations in variable elimination algorithms.
- 4. (10 points) Using this intuition, give a reasonable ($\ll n^2$) upper bound on the tree-width of the $n \times n$ grid.