Surfaces 1

Computational Visual Design (CVD-Lab), DIA, "Roma Tre"
University, Rome, Italy

Computational Graphics 2012

Sommario

Superfici

Superfici parametriche Superfici speciali

Sommario

Superfici Superfici parametriche Superfici speciali

introduzione

una superficie come insieme di punti in uno spazio euclideo \mathbb{E}^3 può essere definita implicitamente come un insieme di livello, spesso l'insieme zero, di un campo scalare continuo $s:\mathbb{E}^3\to\mathbb{R}$, cioè come l'insieme $s^{-1}(0)$.

spesso la superficie in \mathbb{E}^n può essere definita parametricamente come l'immagine di una funzione

$$\mathbf{S}:U\to\mathbb{E}^n$$

di due parametri reali, ovvero con $U \subset \mathbb{R}^2$

rappresentazione parametrica

una superficie come luogo di punti può essere descritta come l'immagine di una funzione vettoriale

S:
$$U \to \mathbb{E}^n$$
, $n > 2$

definita su un insieme aperto $U \subset \mathbb{R}^2$

pertanto si ha

$$(u,v) \mapsto \begin{bmatrix} x_1(u,v) & x_2(u,v) & \cdots & x_n(u,v) \end{bmatrix}^T$$

 $\mathbf{S} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$

dove le $x_i : \mathbb{R}^2 \to \mathbb{R}$, $1 \le i \le n$, sono chiamate funzioni coordinate della superficie.

regolarità

la superficie **S** si dice regolare in (u, v) se:

- 1. le funzioni coordinate hanno derivate parziali continue in (u, v);
- 2. i vettori derivata parziale di S

$$\mathbf{S}^{u}(u,v) = \begin{bmatrix} \partial^{u}x_{1}(u,v) & \partial^{u}x_{2}(u,v) & \dots & \partial^{u}x_{n}(u,v) \end{bmatrix}$$

$$\mathbf{S}^{v}(u,v) = \begin{bmatrix} \partial^{v}x_{1}(u,v) & \partial^{v}x_{2}(u,v) & \dots & \partial^{v}x_{n}(u,v) \end{bmatrix}$$

sono linearmente indipendenti.

in 3D questo implica

$$\mathbf{S}^{u}(u,v)\times\mathbf{S}^{v}(u,v)\neq\mathbf{0}.$$

la superficie **S** è regolare su U se è regolare per ogni $(u, v) \in U$.

sfera unitaria

costruiamo una curva meridiana per rotazione di un vettore

$$\mathbf{c}(u) = \begin{bmatrix} \cos u & 0 & \sin u \\ 0 & 1 & 0 \\ -\sin u & 0 & \cos u \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos u \\ 0 \\ -\sin u \end{bmatrix},$$

$$con - \frac{\pi}{2} \le u \le \frac{\pi}{2}$$

e la sfera per rotazione del meridiano

$$\mathbf{S}(u,v) = \begin{bmatrix} \cos v & -\sin v & 0 \\ \sin v & \cos v & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos u \\ 0 \\ -\sin u \end{bmatrix} = \begin{bmatrix} \cos u \cos v \\ \cos u \sin v \\ -\sin u \end{bmatrix}$$

$$\operatorname{con} - \frac{\pi}{2} \le u \le \frac{\pi}{2} \ \operatorname{e} - \pi \le v \le \pi.$$

si può vedere che non è regolare ai poli

Sommario

Superfici

Superfici parametriche

Superfici speciali

Classi notevoli di superfici

modellazione generativa

un potente approccio alla specifica della forma, è noto come modellazione generativa

come in altri metodi procedurali della grafica,¹ le forme possono essere descritte proceduralmente

la potenza dell'approccio generativo deriva dall'uso di operatori per combinare forme, principalmente curve parametriche, per generare un gran numero di generi di superfici e solidi

Classi notevoli di superfici

i principali metodi generativi si possono riassumere come segue:

- superfici prodotto di profili (curve piane)
- superfici di rotazione
- superfici rigate
- coni e cilindri generalizzati
- superfici prodotto tensore

una superficie $\mathbf{S}(u,v)=(S_1(u,v),\ S_2(u,v),\ S_3(u,v))$ è generata in \mathbb{E}^3 trasformando affinemente una curva *sezione* lungo una curva *profilo*

S è chiamata il prodotto di profili di due curve piane α e β , immerse in due sottospazi coordinati e chiamate curva profilo e curva sezione

$$\alpha(u) = \begin{bmatrix} \alpha_1(u) & 0 & \alpha_3(u) \end{bmatrix}^T$$
$$\beta(v) = \begin{bmatrix} \beta_1(v) & \beta_2(v) & 0 \end{bmatrix}^T$$

quando è della forma

$$\mathbf{S}(u,v) = \begin{bmatrix} \alpha_1(u) \beta_1(v) & \alpha_1(u) \beta_2(v) & \alpha_3(u) \end{bmatrix}^T$$

la funzione coordinata α_1 è usata come un coefficiente di scala, mentre α_3 è usata come un coefficiente di traslazione nella direzione z

$$\mathbf{S}(u,v) = \begin{bmatrix} \alpha_1(u) & 0 & 0 \\ 0 & \alpha_1(u) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_1(v) \\ \beta_2(v) \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \alpha_3(u) \end{bmatrix} = \begin{bmatrix} \alpha_1(u) \beta_1(v) \\ \alpha_1(u) \beta_2(v) \\ \alpha_3(u) \end{bmatrix}$$

esempio

prodotto ProfileSurface di due curve piane: (a) curve
crossSection e profile (b) superficie (c) immagine di un
insieme di linee nel dominio

Superfici di rivoluzione

Quando una curva profilo definita nel piano xz, cioè

$$\alpha(u) = \begin{bmatrix} f(u) & 0 & g(u) \end{bmatrix}^T$$

è ruotata intorno all'asse z, si ottiene una superficie rotazionale o di rivoluzione:

$$\mathbf{S}(u,v) = \mathbf{R}_{z}(v) \alpha(u) = \begin{bmatrix} \cos v & -\sin v & 0 \\ \sin v & \cos v & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} f(u) \\ 0 \\ g(u) \end{bmatrix} = \begin{bmatrix} f(u)\cos v \\ f(u)\sin v \\ g(u) \end{bmatrix}$$

Superfici di rivoluzione

superficie di rivoluzione: (a) curva profilo (b) tassellazione della superficie con poligoni (c) shading della superficie

Superfici rigate

definizione

una superficie si dice <u>rigata</u> quando ogni suo punto appartiene ad una linea retta interamente contenuta nella superficie le superfici rigate si possono pensare generate dal movimento di una retta.

se $\alpha(u)$ è una curva che attraversa tutte le rette della superficie, e $\beta(u)$ è un vettore orientato come la retta che attraversa $\alpha(u)$, allora la superficie rigata si può rappresentare come

$$S(u, v) = \alpha(u) + v \beta(u)$$

Superfici rigate

implementazione

$$\mathbf{S}(u, v) = \alpha(u) + v \beta(u)$$

```
DEF RuledSurface (alpha, beta::IsSeqOf:IsFun) =
```

alpha vectSum (S2 scalarVectProd beta);

Superfici rigate, coni e cilindri

si denotano come cilindri e coni generalizzati le superfici rigate le cui rette sono tutte parallele oppure attraversano un singolo punto (proprio), rispettivamente

i cilindri nelle sezioni seguenti, sono superfici rigate dove la direzione delle rette è dato da un vettore costante β

$$\mathbf{S}(\mathbf{u},\mathbf{v}) = \alpha(\mathbf{u}) + \mathbf{v}\,\beta.$$

Coni e cilindri

approssimazione poliedrale della superficie cilindrica, e alcune curve coordinate

Coni e cilindri

implementazione

Coni generalizzati

una superficie conica è una superficie rigata $\mathbf{S}(u, v)$ che soddisfa l'equazione vettoriale generale

$$\mathbf{S}(\mathbf{u},\mathbf{v}) = \alpha + \mathbf{v}\beta(\mathbf{u}),$$

dove il punto α , che appartiene a tutti i raggi $v\beta(u)$, è chiamato l'apice (oppure il vertice) della superficie conica.

Coni generalizzati

esempio

approssimazione poliedrale della superficie, e curve coordinate

Esercizio: generare una superficie conica

Coni generalizzati

implementazione

la implementazione Plasm di una superficie conica è semplicissima:

il punto alpha è l'apice, e la curva beta descrive le direzioni dei raggi.

