READING SCENE TEXT IN DEEP CONVOLUTIONAL SEQUENCES

Pan He*, Weilin Huang*, Yu Qiao, Chen Change Loy, Xiaoou Tang

Shenzhen Key Lab of Comp. Vis and Pat. Rec., Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Multimedia Laboratory, Department of Information Engineering, The Chinese University of Hong Kong

Traditional OCR —— texts from printed documents

Largely black-and-white, nearly horizontal text line

In 1939 the Yorkshire Parish Register Society, of which the Parish Register Section of the Yorkshire Archaeological Society is the successor (the publications having been issued in numerical sequence without any break) published as its Volume No. 108 the entries in the Register of Wensley Parish Church from 1538 to 1700

Scene text understanding —— texts from natural scene images

Larger diversity of text patterns

- low resolution
- low constrast
- blurring

Highly complicated background clusters

Numerous practical applications

License Plates Recognition
Street View House Number Recognition
Automated CAPTCHA Character Recognition
Text-based Image Retrieval

Keyword: baby

Retrieve text string from cropped word image

TRANSFORMERS

HEPP

Royal

State-of-the-art —— character-level classification

DeepFeatures [Jaderberg, Vedaldi, and Zisserman 2014. ECCV]

2D character probability map and multiple visual cues

PhotoOCR [Bissacco et al. 2013. ICCV]

static n-gram and word language model

State-of-the-art —— word-level classification

Sub-regression [Almazan et al. 2014. TPAMI]

- subspace regression
- embedded text attributes

Dictionary-based [Jaderberg et al. 2015. IJCV]

- multi-class classification
- 4096 FC feature for 90K word classes

State-of-the-art —— unconstrained text recognition

[Jaderberg et al. 2015. ICLR]

- character sequence model
- 4096 FC feature for up to 23 output classifiers of 37 classes

Limitation

Character-level methods

- difficult character separation
- heuristic post-processing
- Ignore context info

Word-level methods

- ignore spatial info (sub-regression)
- constrained recognition (dictionary-based)
- length-limited recognition (23-multi-softmax)

Motivation

Recent advancement on recurrent neural network community

- image caption
- speech recognition
- handwritten digit recognition

Scene text recognition is similar to speech recognition

- context information
- variable length

OVERVIEW

Deep-Text Recurrent Networks(DTRN) for text recognition

- Sequence generation with Maxout CNN
- Sequence labelling with RNN

Experiments

- DTRN vs DeepFeatures
- Comparisons with State-of-the-Art

SEQUENCE GENERATION MODEL

Suppose input is 32*131, 5 maxout convolutional layers, 128×100 (100 is T for RNN) as the sequential feature

SEQUENCE LABELLING MODEL

SEQUENCE LABELLING MODEL

Variables

```
\begin{aligned} \mathbf{x} &= \{x_1, x_2, x_3, \dots, x_T\}, & 128 \times \mathbf{T} \text{ sequence from maxout convolutional activations} \\ \mathbf{h} &= \{\mathbf{h}_1, \mathbf{h}_2, \mathbf{h}_3, \dots, \mathbf{h}_T\}, & 256 \times \mathbf{T} \text{ sequence of the LSTM output} \\ p &= \{p_1, p_2, p_3, \dots, p_T\}, & 37 \times \mathbf{T} \text{ sequence of the estimation, } p_i &= \mathbf{W}_{37 \times 256} \mathbf{h}_{\mathbf{i}} \\ S_\omega &\approx B \big( \underset{\pi}{\operatorname{argmax}} P(\pi|p) \big), & S_\omega \text{ is the target string with } |S_\omega| &= \mathbf{K} \text{ and } S_\omega &= B(\pi) \end{aligned}
```

Projection *B* removes the repeated labels and non — character labels

for example, B(-gg - o - oo - d -) = good

SEQUENCE LABELLING MODEL

Loss Function

$$L(I, S_{\omega}) = -\sum_{i=1}^{K} \log P(S_{\omega}^{i}|I)$$

 $(I, S_{\omega}) \in \Omega$, sample pair (image sample I, corresponding target string S_{ω})

$$L(I, S_{\omega}) \approx -\sum_{t=1}^{T} \log P(\pi_t | I)$$

which can be optimized effectively with the Forward — Backward algorithm proposed in [Graves et al. 2006. ICML]

EXPERIMENTS

DATASETS

SVT 647 word images

ICDAR2003 860 word images

IIIT5K 3000 word images

TRAINNING

Using 1.8×10⁵ character images for training sequence generation model

3×10³ word images for optimizing the sequence labelling model

COMPARISON

DTRN vs DeepFeatures

We can get clearer 2D character probability map due to our recurrence property

COMPARISON

State-of-the-art

Method	Cropped Word Recognition Accuracy(%)					
	IC03-50	IC03-FULL	SVT-50	IIIT5k-50	IIIT5k-1K	
Wang et al. 2011	76.0	62.0	57.0	64.1	57.5	
Mishra et al. 2012	81.8	67.8	73.2	-	-	Other
Novikova et al. 2012	82.8	-	72.9		-	Other
TSM+CRF(Shi et al. 2013)	87.4	79.3	73.5	-	- 1	
Lee et al. 2014	88.0	76.0	80.0	-	-	Mid-level representation
Strokelets(Yao et al. 2014)	88.5	80.3	75.9	80.2	69.3	
Wang et al. 2012	90.0	84.0	70.0	-	-	
Alsharif and Pineau 2013	93.1	88.6	74.3	-	-	Deep neural network
Su and Lu 2014	92.0	82.0	83.0		-	<u>'</u>
DeepFeatures	96.2	91.5	86.1	-	-	
Goel et al. 2013	89.7	_	77.3			VA/In a la Cara a construir de Cara
Almazán et al. 2014		<u> </u>	87.0	88.6	75.6	Whole image representation
DTRN	97.0	93.8	93.5	94.0	91.5	Proposed method
PhotoOCK	-	-	90.4	-	-	
Jaderberg2015a	97.8	97.0	93.2	95.5	89.6	Training on additional large datasets
Jaderberg2015b	98.7	98.6	95.4	97.1	92.7	

RESULTS

(Left) Correct recognitions, (Right) Incorrect samples

SUMMARY

Cast scene text recognition as sequence labelling problem

Leverage word context information to recognize highly ambiguous images

Process unknown words and arbitrary strings

Thank You

mybestsonny@gmail.com

