Schrödinger's Pirate: How To Trace a Quantum Decoder

Mark Zhandry (Princeton & NTT Research)

Typical Quantum Attacks on Classical Cryptosystems...

Quantum Computing Attacks [Shor'94]

Quantum Random Oracles

[Bellare-Rogaway'93, Boneh-Dagdelen-Fischlin-Lehmann-Schaffner-Z'11,...]

Superposition Attacks

[Aaronson'09, Kuwakado-Morii'10, Damgård-Funder-Nielsen-Salvail'11, Z'12, ...]

This work: Traitor Tracing Against Quantum Attacks

Traitor Tracing [Chor-Fiat-Naor'94]

Traitor Tracing [Chor-Fiat-Naor'94]

This Work: Quantum Traitor Tracing

Why Quantum Decoders?

Adversary channel "out of band"

Can't prevent quantum messages

May help evade tracing?

Use quantum crypto to hide i?

Other advantages for traitor?

 \longrightarrow Unclonable or self-destructing $|\mathfrak{A}\rangle$?

Results

Definitions

Barrier/Impossibility for "classical" tracing strategies

Positive result for tracing certain kinds of PLBE

generic construction from PKE, improved construction from iO, certain bounded collusion constructions

Defining Traitor Tracing

"Good" := Pr[decrypt]>ε

Quantum Definition?

Always fails

 $D_i(x) := Dec(sk_i, \cdot)$

Q: Which decoders are "good"?

Problem: Attacks physically equivalent

Solution: Measure Decoder?

Problem: In general, will destroy decoder

Solution: Carefully Measure Decoder

Projective Implementations

- (1) $Pr[|\mathfrak{A}'\rangle decrypts] = Pr[|\mathfrak{A}\rangle decrypts]$
- (2) $Pr[\langle x \rangle' \rangle decrypts | p] = p$

Proof idea: $| \mathfrak{D} \rangle$ degrades as queries made

Caveat: doesn't rule out weaker (but meaningful) tracing guarantees

Positive Result: PLBE

[Boneh-Sahai-Waters'06]

PLBE -> Classical Tracing [Boneh-Sahai-Waters'06]

 $Enc_{TT}(pk,m) = Enc(pk,m, N)$

(1) Estimate
$$p_i$$

(2) Output i s.t. $p_{i-1} \not\approx p_i$

$$p_i := Pr[\underbrace{\text{inc}(pk,m,i)}^{\text{decrypts}}]$$

PLBE security $\Rightarrow p_{i-1} \approx p_i$ for honest users $p_0 = \text{"small"}$ **Proof:**

Goodness of $(p) \rightarrow p_N = "big"$

PLBE → Quantum Tracing?

By our impossibility

Problem: p_i non-physical

Problem: Can't estimate p_i by classical evaluations

Problem: | 😂 may become useless at any point

PLBE → Quantum Tracing?

Solution: Quantum Alg for approx. measuring p_i

(Based on technique from [Watrous-Marriott'04])

Solution: Careful analysis \rightarrow measuring (approximations of) p_i in *decreasing order* works

Limitations/Caveats

Doesn't work for LWE-based TT [Goyal-Koppula-Waters'18]

Doesn't work for many combinatorial constructions (e.g. fingerprinting codes [Boneh-Naor'02])

Directions for future work