EM360-B – Termodinâmica I PROVA 2

Solução

Questão 1 [5 pts] **Vapor d'água** a 700 kPa e 320 °C escoa por uma tubulação. Um **tanque** de 2 m³, contendo inicialmente vapor d'água a 100 kPa e 200 °C, está conectado a esta tubulação por uma válvula fechada. A válvula é aberta, permitindo a entrada do vapor da tubulação no interior do tanque, até que a pressão final no tanque alcance 700 kPa. Durante este processo, **calor** é transmitido *do tanque para o ambiente* de modo a manter o conteúdo do tanque a temperatura constante de 200 °C. O ambiente encontra-se a 20 °C.

- (a) Calcule a massa total de vapor d'água que entra no tanque [1 pt];
- (b) Calcule o calor total transmitido ao longo do processo [2 pt];
- (c) Calcule a variação total da entropia no interior do tanque durante o processo [1 pt]; e mostre que o processo não viola a segunda lei da termodinâmica [1 pt].

TANQUE		T = 200 °C			
	P kPa	$v \text{ m}^3/\text{kg}$	u kJ/kg	h kJ/kg	s kJ/kg
	100	2,17	2658	2875	7,834
	700	0,2999	2635	2845	6,886

LINHA		T = 320 °C				
	P kPa	$v \text{ m}^3/\text{kg}$	u kJ/kg	h kJ/kg	s kJ/kg	
	700	0,3852	2831	3101	7,370	

isotérmico: $T_t = 200$ °C início: $P_t = 100$ kPa fim: $P_t = 700$ kPa

MASSA

$$m_i = V / v_i$$
 = 2 / 2,17 = **0,922 kg**
 $m_f = V / v_i$ = 2 / 0,2999 = **6,67 kg**

dif.:
$$\frac{dm}{dt} = \dot{m}_e$$
 integr.: $m_f - m_i = m_e$ 6,67 - 0,92 = m_e $m_e = 5,75 \text{ kg}$ (1 pt)

ENERGIA

$$U_i = m_i \cdot u_i$$
 = 0,922 × 2658 = **2450,7 kJ**
 $U_f = m_f \cdot u_f$ = 6,67 × 2635 = **17.575,5 kJ**

dif.:
$$\frac{dU}{dt} = \dot{Q} + \dot{W} + \dot{m}_e h_e$$
 integr.: $U_f - U_i = Q + W + m_e h_e$ 17.575 - 2451 = $Q + 5.75 \times 3101$

$$Q = -2706 \text{ kJ} \quad (2 \text{ pt})$$

ENTROPIA

$$S_i = m_i \cdot s_i$$
 = 0,922 × 7,834 = **7,223 kJ/K**
 $S_f = m_f \cdot s_f$ = 6,67 × 6,886 = **45,93 kJ/K**

$$\Delta S = S_f - S_i$$
 = 45,93 – 7,22 = 38,71 kJ/K (1 pt)

dif.:
$$\frac{dS}{dt} = \frac{\dot{Q}}{T_S} + \dot{m}_e s_e + \dot{\mathbf{P}}_S$$
 integr.: $S_f - S_i = \frac{Q}{T_S} + m_e s_e + \mathbf{P}_S$ 38,71 = -2706/473 + 5,75 × 7,37 + \mathbf{P}_S $\mathbf{P}_S = \mathbf{2,05 \ kJ/K}$ (1 pt)

 $P_S > 0$ – positivo! Não viola a 2ª Lei da Termodinâmica.

Questão 2 [5 pts] Uma turbina movida a vapor d'água, com eficiência de 70 %, aciona um compressor de ar, cuja eficiência é de 80 %. Consideradas as condições especificadas na figura abaixo, calcule:

- o trabalho desenvolvido no eixo da turbina, em kW [2 pt];
- a descarga de ar, em kg/s, que pode ser comprimida [2 pt];
- a temperatura da água na saída da turbina T_{ts} [0,5 pt] e a temperatura do ar na saída do compressor T_{cs} [0,5 pt].

Dados do ar: $R = 0.287 \text{ kPa.m}^3/\text{kg.K}$; $c_p = 1.00 \text{ kJ/kg.K}$; $c_v = 0.717 \text{ kJ/kg.K}$

Entrada: $P_{\text{te}} = 2 \text{ MPa}$, $T_{\text{te}} = 360 \,^{\circ}\text{C}$

 T_{sat} (2 MPa) = 212 °C < T_{te} : fase gás

 $h_e = 3159 \text{ kJ/kg}$, $s_e = 6,992 \text{ kJ/kg.K}$

* Processo ideal: *adiabático reversível* – **isoentrópico** $s_s = s_e$

Saída:
$$P_{ts} = 100 \text{ kPa}$$
, $s_s = 6,992 \text{ kJ/kg.K}$ $s_{ls} = 1,303 \text{ kJ/kg.K}$, $s_{gs} = 7,36 \text{ kJ/kg.K}$

$$s_{ls} < s_s < s_{gs}$$
 : mistura bifásica $x_g = (s_s - s_{ls}) / (s_{gs} - s_{ls}) = (6.99 - 1.303)/(7.36 - 1.303) = 0.94$

$$h_{1s} = 417.5 \text{ kJ/kg}$$
, $h_{gs} = 2675.5 \text{ kJ/kg}$

$$h_{\rm s} = x_{\rm g} \; h_{\rm gs} + (1-x_{\rm g}) \; h_{\rm ls}$$
 $h_{\rm ls} = 417.5 \; {\rm kJ/kg}$, $h_{\rm gs} = 2675.5 \; {\rm kJ/kg}$ $h_{\rm s} = 0.94 \times 2675.5 + 0.06 \times 417.5 = 2540 \; {\rm kJ/kg}$

$$\dot{W}_T = \eta_t \times \dot{m}_{Vap} (h_e - h_{s,ideal})$$

Potência:
$$\dot{W}_T = \eta_t \times \dot{m}_{Vap} (h_e - h_{s,ideal}) = 0.7 \times 0.1 \text{ (3159 - 2540)} = 43,4 \text{ kW (2 pt)}$$

COMPRESSOR

Potência:
$$\dot{W}_C = \frac{1}{\eta_C} \times \dot{m}_{Ar} (h_{s,ideal} - h_e) = \frac{1}{\eta_C} \times \dot{m}_{Ar} c_p (T_{s,ideal} - T_e)$$

* Processo ideal: *adiabático reversível* – **isoentrópico** $s_s = s_e$

$$\frac{T_{cs}}{T_{ce}} = \left(\frac{P_{cs}}{P_{ce}}\right)^{R/c_p} \qquad T_{cs} = 300 \times (5/1)^{0.287} = 476 \text{ K } (203 \text{ }^{\circ}\text{C})$$

$$\dot{m}_{Ar} = \frac{\eta_c \dot{W}_C}{c_n \left(T_{s ideal} - T_e\right)} = 0.8 \times 43.4 / 1.0 \times (476 - 300) = 0.197 \text{ kg} (2 \text{ pt})$$

Temperatura na saída da turbina

$$\dot{W}_T = \dot{m}_{Vap} \left(h_e - h_s \right)$$
 $\therefore h_s = h_e - \frac{\dot{W}_T}{\dot{m}_{Vap}}$ = 3159 - 43,4/0,1 = 2726 > h_{gs} \therefore fase gás

Na tabela de vapor, com P = 100 kPa, esta entalpia corresponde a... $T_{ts} = 125$ °C (0,5 pt)

Temperatura na saída do compressor:

$$\dot{W}_C = \dot{m}_{Ar} c_p (T_s - T_e)$$
 $\therefore T_s = T_e + \frac{\dot{W}_C}{\dot{m}_{Ar} c_p} = 300 + 43,4/0,197 = 520 \text{ K} (247 \, {}^{\circ}\text{C}) (0.5 \text{ pt})$