

What are the uses of Jensen inequality

Jensen's Inequality is a fundamental result in convex analysis and probability theory. It relates the value of a convex (or concave) function of an expectation to the expectation of the convex (or concave) function. Simply put:

For a convex function φ and a random variable X:
φ(E[X]) ≤ E[φ(X)]

Here are some of the most important uses and applications of Jensen's Inequality:

1. Probability and Statistics

• Bounding Expectations:

Enables derivation of bounds for expectations of random variables, especially when the direct computation of $E[\phi(X)]$ is tough.

• Proof of Inequalities:

Many important inequalities in probability (e.g., Markov's, Hölder's, and Minkowski's inequalities) either directly or indirectly use Jensen's inequality.

• Variance and Moments:

Used to show that the variance of a random variable is always non-negative, and to compare higher order moments.

2. Information Theory

Entropy Properties:

Used to prove the convexity or concavity of information measures (like Shannon entropy).

• Kullback-Leibler Divergence:

Key tool in proving non-negativity of relative entropy.

Data Processing Inequality:

Used in proofs about the behavior of information under processing or transmission.

3. Convex Optimization

• Designing Algorithms:

Used to show that certain iterative update rules (e.g., expectation-maximization) improve the objective function.

• Duality and Convex Functions:

Essential in proving properties of convex and concave functions in optimization.

4. Machine Learning & Signal Processing

• EM Algorithm:

Foundation for proving the monotonicity of the Expectation-Maximization algorithm in maximum likelihood estimation.

Loss Functions:

Used to derive properties of risk, and to bound error when using estimators.

5. Economics and Finance

• Risk Aversion:

Used to demonstrate why risk-averse agents prefer the expected value of wealth to risky gambles with the same expected pay-off (utility functions are concave).

Portfolio Theory:

Helps interpret expected utility and decisions under uncertainty.

6. Other Fields

• Thermodynamics & Physics:

Fundamental in the study of ensembles and statistical mechanics.

• Engineering:

Used for performance bounds in signal processing and communication systems.

Summary Table

Field	Use Example
Probability	Bounding moments, proof of inequalities
Information Theory	Entropy, divergence, data processing inequalities
Optimization	Proving convexity, updating algorithms
Machine Learning	EM algorithm, risk bounds
Economics/Finance	Risk aversion, utility theory
Physics/Engineering	Statistical mechanics, signal bounds

In essence:

Jensen's inequality is a versatile and powerful tool for dealing with convex (or concave) functions and expectations, making it a cornerstone in mathematics, statistics, economics, and beyond.