Collision Detection and Response

In This Lecture

- Introduce of Collision and Conservation
- Collision Detection and Response
 - Particle-Particle
 - Particle-Plane
 - Restitution
- Hash Grid
 - Algorithm
 - Generate Hash Table
 - Get Neighbor Particles

What is a Collision?

An interaction between two or more bodies in motion is a collision

Pool balls bouncing off of each other is one example.

Types of Collisions

Particle-Particle

Particle-Plane

Collision Response

Particle-Particle

Collision->Response

Particle-Plane

Collision->Response

Restitution

- When two objects collide
 - Their speeds after the collision depend on the their material
- How to denote the material?
 - Using Coefficient of Restitution

Perfectly elastic collision

Coefficient of Restitution=1

Coefficient of Restitution=0

Advanced Algorithm: Hash Grid

- Hash Grid is an accelerate method
 - Efficiently for collision detection between objects
- Commonly used for large set of particles

If check the collision for the red particle

Only check the neighbor particles(green) of it

Introduce of Collision and Conservation

What Happens in a Collsion?

- What is happening in this collision between two balls?
- What might happen next?
 - Velocity change

How Do the Velocities Change?

- Every collision involved forces
 - Ex. In the collision pictured above, the green ball exerts a force F on the red ball. By Newton's third law, the red ball exerts an equal and opposite force on the green ball.
- No external forces act on the system, and the internal forces cancel each other.

So what is conserved?

What is Conserved?

Newton's Cradle

Conservation Laws

- Momentum:
 - The momentum before the collision equals the momentum after the collision
- Energy:
 - The energy before the collision equals the energy after the collision. But the energy may be transformed
- Momentum if conserved in all three types(Perfectly inelastic, Inelastic, Elastic) of collisions

Collision Detection and Response: Particle-Particle

Particle-particle Collision and Response

Collision Algorithm

- For each particle i
 - For each other particle j

```
if ( (radius_i + radius_j)- distance(i , j)<0 )</li>
```

- Collision has detected
- Compute the velocity vectors after collision

}

Detect that a Collision Occurred

- If the distance between two particles is less than the sum of their radii
 - checking (r1+r2) D < 0, where
 - D = $sqrt((x_1-x_2)^2 + (y_1-y_2)^2)$

Response Algorithm

```
if (Collision has detected)
```

- Collision Normal
 - Compute the difference between the particle's centers, then normalization
- Velocity Change
 - Compute the response velocity
- Solve the Trap Problem
 - · Solve the problem if particle trapped each other
- Types of Restitution
 - · Decision the collision is elastic or inelastic

Particle-particle Collision Response

Collision Normal & Tangent

- Determine the collision normal
 - Bisects the centers of the two Particles through the colliding intersection

Particle-particle Collision Response Response Velocity

- Velocity change:
 - Change of velocity reflect against the collision normal

Head on Collision Response

- Determine the velocity
 - assume elastic, no friction,
 - head on collision

- Conservation of Momentum (mass * velocity):
 - $m_1\mathbf{v}_1 + m_2\mathbf{v}_2 = m_1\mathbf{v}_1' + m_2\mathbf{v}_2'$
- Conservation of Energy (Kinetic Energy):
 - $m_1 \mathbf{v}_1^2 + m_2 \mathbf{v}_2^2 = m_1 \mathbf{v}_1^2 + m_2 \mathbf{v}_2^2$
- Final Velocities
 - $\mathbf{v}_1' = \frac{2m_2\mathbf{v}_2 + (m_1 m_2)\mathbf{v}_1}{m_1 + m_2}$

• $\mathbf{v}_2' = \frac{2m_1\mathbf{v}_1 + (m_2 - m_1)\mathbf{v}_2}{m_1 + m_2}$

질량이 같은 경우에는 v'1 = v2, v'2 = v1이 됨. 계산해보셈

Detail of Compute Final velocity

- (1): $m_1\mathbf{v}_1 + m_2\mathbf{v}_2 = m_1\mathbf{v}_1' + m_2\mathbf{v}_2'$
- (2): $m_1 \mathbf{v}_1^2 + m_2 \mathbf{v}_2^2 = m_1 \mathbf{v}_1^2 + m_2 \mathbf{v}_2^2$
- Because (1) =>
 - (3): $m_1(\mathbf{v}_1 \mathbf{v'}_1) = m_2(\mathbf{v}_2 \mathbf{v'}_2)$
- Because (2) =>

• (4):
$$m_1(v_1^2 - v_1'^2) = m_2(v_2'^2 - v_2^2)$$

- Let $x^2 y^2 = (x y)(x + y)$
 - $m_1(\mathbf{v}_1 \mathbf{v}_1') (\mathbf{v}_1 + \mathbf{v}_1') = m_2(\mathbf{v}_2' \mathbf{v}_2) (\mathbf{v}_2' + \mathbf{v}_2)$
- Let $\frac{(3)}{(4)} = >$
 - (5): $v'_1 = v'_2 + v_2 v_1$
 - (6): $v'_2 = v_1 + v'_1 v_2$
- (5)(6)번 식을 (1)번식에 대입:
 - $\mathbf{v}_1' = \frac{2m_2\mathbf{v}_2 + (m_1 m_2)\mathbf{v}_1}{m_1 + m_2}$
 - $\mathbf{v}_2' = \frac{2m_1\mathbf{v}_1 + (m_2 m_1)\mathbf{v}_2}{m_1 + m_2}$

Arbitrary Collision Response

- Determine the velocity
 - assume elastic, no friction
 - arbitrary collision
- Velocity Decomposition
 - $\mathbf{v}_N = (\mathbf{N} \cdot \mathbf{v})\mathbf{N}$
 - *N* is collision normal.
 - $\mathbf{v}_T = (\mathbf{T} \cdot \mathbf{v})\mathbf{T} \text{ or } \mathbf{v} \mathbf{v}_N$
 - T is collision tangent.

vn = 두 파티클의 센터를 빼면 나오고 vt = v-vn

Arbitrary Collision Response

Final Velocities

Final Velocities

•
$$\mathbf{v}_{1N}' = \frac{2m_2\mathbf{v}_{2N} + (m_1 - m_2)\mathbf{v}_{1N}}{m_1 + m_2}$$

•
$$\mathbf{v}_{2N}' = \frac{2m_1\mathbf{v}_{1N} + (m_2 - m_1)\mathbf{v}_{2N}}{m_1 + m_2}$$

$$\mathbf{v}_{1T}' = \mathbf{v}_{1T}$$

•
$$\mathbf{v}_{2T}' = \mathbf{v}_{2T}$$

•
$$\mathbf{v}_{1}' = \mathbf{v}_{1N}' + \mathbf{v}_{1T}'$$

$$\mathbf{v}_2' = \mathbf{v}_{2N}' + \mathbf{v'}_{2T}$$

Trapped Problem

When Collision has occurred, both particles can be trapped each other

Trapped Problem: Solution 1

When Collision has occurred, resolve particle position

 This Solution is similar to real world, but it's difficult way to resolve position with many collisions occurred at the same time.

Trapped Problem: Solution 2

- Add one more state check for collision detection
 - $\mathbf{p}_{rel} \cdot \mathbf{v}_{rel} < 0$
 - \mathbf{p}_{rel} is related position $\mathbf{p}_{rel} = \mathbf{p}_i \mathbf{p}_j$
 - \mathbf{v}_{rel} is related velocity $\mathbf{v}_{rel} = \mathbf{v}_i \mathbf{v}_j$

We will use this Solution.

Collision Detection and Response: Particle-Plane

Particle-Plane Collision

Particle Position

- Given normal n and any point p on plane
- Particle is on the "inside" of the plane (i.e. intersection)

If
$$(x - p) \cdot n < r$$

In practice we take a threshold distance ε i.e. Particle is intersecting

If
$$(x-p) \cdot n < \varepsilon$$

Particle Velocity

 If intersecting we should also check whether the particle is moving further into the plane

If
$$(n \cdot v) < 0$$

 Particle is heading deeper into plane

Particle-Plane Collision Detection

 \mathbf{n}

Given normal n and any point p on plane

If
$$((x - p) \cdot n < r \&\& (n \cdot v < 0))$$

Collision Response:

Normal and Tangential Velocity

To compute the collision response, we need to consider the normal and tangential components of a particle's velocity

$$\mathbf{V}_{N} = (\mathbf{N} \cdot \mathbf{v})\mathbf{N}$$

 $\mathbf{V}_{T} = \mathbf{V} - \mathbf{V}_{N}$

$$V_T = V - V_N$$

Collision Response

 The response to collision is then to immediately replace the current velocity with a new velocity:

$$V' = V_T - V_N$$

• The particle will then move according to this velocity in the next timestep.

Types of Restitution

Three Types of Collisions

- •Perfectly inelastic collision: The objects stick together.
- •Inelastic collision: These collisions are **somewhat bouncy**.
- •Elastic collisions: These collisions are "perfectly" bouncy.

Coefficient of Restitution

Ratio of the final to initial relative velocity after collision.

$$k_{restitution} = -\frac{\mathbf{v}_1' - \mathbf{v}_2'}{\mathbf{v}_1 - \mathbf{v}_2}$$

- $0 \le k_{restitution} \le 1$
- $k_{restitution} = 1$: Called (Perfectly) Elastic Collision
- $0 < k_{restitution} < 1$: Called Inelastic Collision
- $k_{restitution} = 0$: Called Perfectly Inelastic Collision

Elastic Collision

- $k_{restitution} = 1$: (Perfectly) Elastic Collision
 - Energy is conserved
 - Momentum is conserved

Particle-Particle

Particle-Plane

Inelastic Collision(particle-particle)

- $0 < k_{restitution} < 1$: Inelastic Collision
 - Energy is **not** conserved
 - Momentum is conserved

Particle-Particle

$$m_1 = m_2$$
 v_1
 v_2

$$\mathbf{v}_1' = \frac{(1+k)\mathbf{v}_2 + (1-k)\mathbf{v}_1}{2}$$

$$\mathbf{v}_2' = \frac{(1+k)\mathbf{v}_1 + (1-k)\mathbf{v}_2}{2}$$

Inelastic Collision(particle-plane)

- $0 < k_{restitution} < 1$: Inelastic Collision
 - Energy is **not** conserved
 - Momentum is conserved

Particle-Plane

$$V_N' = -\frac{k}{N}V_N$$

Perfectly Inelastic Collision

- $k_{restitution} = 0$: Perfectly Inelastic Collision
 - Energy is **not** conserved
 - Momentum is conserved

Particle-Particle

Particle-Plane

Code skeleton: Collision()

Demo: Detection and Response

- Particle Number: 100
- Particle Radius: 4
- COR: 0.5

- Particle Number: 100
- Particle Radius: 4
- COR: 1.0

Particle collision detection and response

Hash Grid

Why Hash Grid

- Current Time complexity: $O(n^2)$
 - For all particle i Collide Detect
 - For all particle j

- You can reduce time complexity: O(n)
 - With Hash Grid
 - For all particle i Collide Detect
 - For neighbor particle j
 - # of neighbor Particles is much less than # of total particles

Particle number: 5000

Hash Grid Algorithm

Generate Hash table

- Divide space into grid table
- Find grid index for each particle
 - [Position of Particle] is key of hash table
 - [Particle Position to Grid Index] is Hash Function
- Each grid stores particle indices which are located in
 - [Particle indices located in grid] are buckets

Get Neighbor Particles

- Find all neighbor grid indices for particle
- Find the particles stored in neighbor grids
 - Get particle Indices stored in Neighbor Grids Hash

Coding Scheme

Generate Hash table

- Divide space into grid table
 - vector<int> hash[GRID_DEPTH][GRID_HEIGHT][GRID_WIDTH]
- Find grid index for each particle
 - Convert Particle position to Grid index.
 - Get (grid_x, grid_y, grid_z)
- Each grid stores particle indices which are located in
 - hash[grid_x][grid_y][grid_z].pushback(particleIndex)

Get Neighbor Particles

- Find all neighbor grid indices for particle
 - Get Neighbor grid Index (nGrid_x, nGrid_y, nGrid_z)
- Find the particles stored in neighbor grids
 - Get particle Indices stored in Neighbor Grids Hash
 - hash[nGrid_x][nGrid_y][nGrid_z]

Collision Detection

- Compute the distance of the particle and it's neighbor particles
 - Distance=dist(p.position-neighbor.position)
 - If p.radius+neighbor.radius-Distance<0, collision detected

Grid Partition

- Divide space into grid table
- Find grid index for each particle
- Each grid stores particle indices which are located in

Hash Indexing

- Divide space into grid table
- Find grid index for each particle
- Each grid stores particle indices which are located in
- Grid Index is Computed From Particle Position
 - Simulation Space Pos→ Grid Space Index
 - 1. Normalize Position to (0,1)
 - 2. Multiply and Clamp Grid Size
 - 3. Round down after the decimal point
 - Make Integer

	(1,4)	(2,4) 6		
(0,3)	1 ^(1,3)		(3,3) 8 7 (3,3)	
	(1,2) 4	(2,2) 5		
	(1,1) 3		(3,1)	

Indexing Example

- Grid Index is Computed From Particle Position
 - Simulation Space Pos→ Grid Space Index
 - For this Example, Particle Number 0
 - Particle Position: (-8, 5)
 - 1. Normalize Position to (0,1)
 - Simulation Space: (-10,-10)~(10,10)
 - ((-8, 5) (-10, -10))/(20, 20) = (0.1, 0.75)
 - Grid Space Size: 5x5 (25 Cells)
 - 2. Multiply and Clamp Grid Size
 - Grid Space Size: 5x5 (25 Cells)
 - (0.1, 0.75)x(5,5) = (0.5, 3.75)
 - 3. Round down after the decimal point
 - $(0.5, 3.75) \rightarrow (0.3)$

	(1,4)	(2,4) 6		
(0,3)	1 (1,3)		(3,3) 8 (3,3)	
	(1,2) 4	(2,2) 5		
	(1,1) 3		(3,1)	

Store Particles into Grid

- Divide space into grid table
- Find grid index for each particle
- Each grid stores particle indices which are located in

	(1,4)	(2,4) 6		
(0,3)	1 (1,3)		(3,3) 8 7 (3,3)	
	(1,2)	(2,2) 5		
	(1,1) 3		(3,1)	

 2
 6

 0
 1
 7, 8

 4
 5
 9

 3
 9

Grid Space Size: 5x5 Particle indices Stored in Hash

Get Neighbor Particles

- Find all neighbor grid indices for particle
- Find the particles stored in neighbor grids

Get Grid Neighborhoods

- Find all neighbor grid indices for particle
- Find the particles stored in neighbor grids

Search Particles in N_Grid

- Find all neighbor grid indices for particle
- Find the particles stored in neighbor grids

	2	6		
0	1		7, 8	
	4	5		
	3		9	

Neighbor Grids

Neighbor Particle indices Stored in Hash

Collision Check

- For particle (5)
 - Check the neighbor particles(1,3,4,7,8,9)
 - For each neighbor particle
 - Compute the distance of particle 5
 and the neighbor particle
 - If distance <= Collide Distance
 - Collision is true
 - Else if distance > Collide Distance
 - Collision is false

	2	6		
0	1		7, 8	
	4	5		
	3		9	

Code skeleton: Hash_Grid()

Demo

Hash Grid vs. w/o Hash

Demo

Various Size of Hash Grid

Particle number: 5000, Radius:1, Simulation Space: (-100,100)

Demo Neighboring radius of Hash Grid

Particle number: 5000, Radius:1&3, Simulation Space: (-100,100)

Radius 1 Radius 3

Particle to Particle collision response

Example

Dynamic-Static Case: Collision Normal & Tangent

Collision Tangent

$$\mathbf{T} = (-\sin(-30), \cos(-30)) = (\frac{\sqrt{3}}{2}, -\frac{1}{2})$$

Collision normal

$$\mathbf{N} = (\cos(-30), \sin(-30)) = (\frac{\sqrt{3}}{2}, -\frac{1}{2})$$

Dynamic-Static: Velocity Decomposition

Collision Tangent

$$\mathbf{T} = (\frac{1}{2}, \frac{\sqrt{3}}{2})$$

30

$$\mathbf{v}_{1\mathbf{T}} = \mathbf{v} - \mathbf{v}_{1N} = (20,0) - (15, -5\sqrt{3})$$

= $(5, 5\sqrt{3})$

$$\mathbf{v_2} = \mathbf{v_{2N}} = \mathbf{v_{2T}} = (\mathbf{0}, \mathbf{0})$$

Collision normal

$$\mathbf{N} = (\frac{\sqrt{3}}{2}, -\frac{1}{2})$$

Collision Response Example#1 Dynamic-Static: Determine Velocity after Collision

$$\mathbf{v}_{1N}' = \frac{2m_2\mathbf{v}_{2N} + (m_1 - m_2)\mathbf{v}_{1N}}{m_1 + m_2} = \frac{2m_1\mathbf{v}_{2N} + (m_1 - m_1)\mathbf{v}_{1N}}{2m_1} = (0,0)$$

$$\mathbf{v}_{2N}' = \frac{2m_1\mathbf{v}_{1N} + (m_2 - m_1)\mathbf{v}_{2N}}{m_1 + m_2} = (15, -5\sqrt{3})$$

$$\mathbf{v}_{1T}' = \mathbf{v}_{1T} = (5, 5\sqrt{3})$$

$$\mathbf{v}_{2T}' = \mathbf{v}_{2T} = (\mathbf{0}, \mathbf{0})$$

Dynamic-Static: Velocity Composition

$$\mathbf{v}_{1}' = \mathbf{v}_{1N}' + \mathbf{v}_{1T}' = (5, 5\sqrt{3})$$

$$\mathbf{v}_2' = \mathbf{v}_{2N}' + \mathbf{v}_{2T}' = (15, -5\sqrt{3})$$

Dynamic-Dynamic Case: Collision Normal & Tangent

$$m_1 = \frac{1}{2}m_2$$

Collision normal

$$\mathbf{N} = (\cos(-30), \sin(-30)) = (\frac{\sqrt{3}}{2}, -\frac{1}{2})$$

Dynamic-Dynamic: Velocity Decomposition

$$\mathbf{N} = (\frac{\sqrt{3}}{2}, -\frac{1}{2})$$

$$\mathbf{v_{1N}} = (\mathbf{N} \cdot \mathbf{v_1})\mathbf{N} = \left(\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right) \cdot (20,0)\right) \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$

$$=10\sqrt{3}\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)=(15,-5\sqrt{3})$$

$$\mathbf{v}_{1\mathbf{T}} = \mathbf{v} - \mathbf{v}_{1N} = (20,0) - (15, -5\sqrt{3}) = (5, 5\sqrt{3})$$

$$\mathbf{v}_{2N} = (\mathbf{N} \cdot \mathbf{v}_2)\mathbf{N} = \left(\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right) \cdot (-10,0)\right) \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$

$$= -5\sqrt{3}\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right) = \left(-\frac{15}{2}, \frac{5\sqrt{3}}{2}\right)$$

$$\mathbf{v_{2T}} = \mathbf{v} - \mathbf{v}_{2N} = (-10.0) - \left(-\frac{15}{2}, \frac{5\sqrt{3}}{2}\right) = \left(-\frac{5}{2}, -\frac{5\sqrt{3}}{2}\right)$$

Collision Response Example#2 Dynamic-Dynamic: Determine Velocity after Collision

$$\mathbf{v}_{1N}' = \frac{2m_2\mathbf{v}_{2N} + (m_1 - m_2)\mathbf{v}_{1N}}{m_1 + m_2} = \frac{4m_1v_{2N} + (m_1 - 2m_1)v_{1N}}{3m_1}$$

$$= \frac{4\mathbf{v}_{2N} - v_{1N}}{3} = \frac{4\left(-\frac{15}{2}, \frac{5\sqrt{3}}{2}\right) - (15, -5\sqrt{3})}{3} = (-15, 5\sqrt{3})$$

$$\mathbf{v}_{2N}' = \frac{2m_1\mathbf{v}_{1N} + (m_2 - m_1)\mathbf{v}_{2N}}{m_1 + m_2} = \frac{2m_1\mathbf{v}_{1N} + (2m_1 - m_1)\mathbf{v}_{2N}}{3m_1}$$

$$= \frac{2\mathbf{v}_{1N} + v_{2N}}{3m_1} = \frac{2(15, -5\sqrt{3}) + \left(-\frac{15}{2}, \frac{5\sqrt{3}}{2}\right)}{3m_1} = \left(\frac{15}{2}, -\frac{5\sqrt{3}}{2}\right)$$

$$\mathbf{v}_{1T}' = \mathbf{v}_{1T} = (5, 5\sqrt{3})$$

$$\mathbf{v}_{2T}' = \mathbf{v}_{2T} = \left(-\frac{5}{2}, -\frac{5\sqrt{3}}{2}\right)$$

Dynamic-Dynamic: Velocity Composition

$$\mathbf{v}'_{1N} = (-15, 5\sqrt{3})$$

 $\mathbf{v}'_{1T} = (5, 5\sqrt{3})$
 $\mathbf{v}'_{1} = \mathbf{v}'_{1N} + \mathbf{v}'_{1T} = (-10, 10\sqrt{3})$

$$\mathbf{v_{2N}'} = (\frac{15}{2}, -\frac{5\sqrt{3}}{2})$$

$$\mathbf{v_{2T}'} = \left(-\frac{5}{2}, -\frac{5\sqrt{3}}{2}\right)$$

$$\mathbf{v_{2}'} = \mathbf{v_{2N}'} + \mathbf{v_{2T}'} = (5, -5\sqrt{3})$$