Méthode de la ligne portante

<u>Théorie</u>: si vous avez une distribution de portance $\Gamma(y)$, alors vous pouvez calculer la portance et la trainée induite de cette distribution.

Relations utiles:

- $\Gamma(y)$ est la circulation locale (2D), qui produit une portance $L_{2D} = \rho U_{\infty} \Gamma(y)$ (2D)
- Le coefficient de portance (2D) s'écrit $C_l = \frac{L_{2d}}{0.5 \rho U_{\infty}^2 c}$, où c est la corde locale;
- La portance totale d'une aile d'envergure b est $L_{3D} = \int_{-b/2}^{b/2} \rho U_{\infty} \Gamma(y) \, dy$;
- Le coefficient de portance (3D) s'écrit $C_L = \frac{L_{3d}}{0.5\rho U_{\infty}^2 S_{ref}}$, où S_{ref} est la surface de référence (typiquement de l'aile);
- On obtient donc une relation entre le coefficient de portance local et la circulation : $\Gamma(y) = \frac{1}{2}C_l(y) * U_{\infty} * c(y)$;
- On définit parfois une corde moyenne de cette façon : $c_{movenne} \equiv S_{ref}/b$
- On utilise une transformation $y -> \theta$: $y/(b/2) = -cos\theta$. Ainsi $\Gamma(y)$ deviens $\Gamma(\theta)$.

Méthode:

Représentons la portance par $\Gamma(\theta) = 4sU_{\infty} \sum_{n=1}^{\infty} A_n \sin(n\theta)$ (n impair, car la distribution de portance est symétrique sur l'aile)

Alors, avec
$$\lambda=b^2/S$$
, $e=1/(1+\delta)$, et $\delta=\sum_{n=3}^\infty n(A_n/A_1)^2$
$$C_L=\pi A_1\lambda$$

$$C_{Di}=\frac{{C_L}^2}{\pi\lambda e}$$

Si vous avez la portance sur 4 stations y_i (au centre de vos panneaux le long de l'axe y dans le code VLM), alors vous pouvez résoudre pour les 4 A_n :

- 1) Trouvez les 4 valeurs θ_i avec la transformation $y_i/(b/2) = -\cos\theta_i$
- 2) Écrire les 4 équations

$$\begin{split} &\Gamma(\theta_{1})=4\frac{b}{2}\,U_{\infty}(A_{1}\sin{1\theta_{1}}+A_{3}sin3\theta_{1}+A_{5}sin5\theta_{1}+A_{7}sin7\theta_{1})\\ &\Gamma(\theta_{2})=4\frac{b}{2}\,U_{\infty}(A_{1}\sin{1\theta_{2}}+A_{3}sin3\theta_{2}+A_{5}sin5\theta_{2}+A_{7}sin7\theta_{2})\\ &\Gamma(\theta_{3})=4\frac{b}{2}\,U_{\infty}(A_{1}\sin{1\theta_{3}}+A_{3}sin3\theta_{3}+A_{5}sin5\theta_{3}+A_{7}sin7\theta_{3})\\ &\Gamma(\theta_{4})=4\frac{b}{2}\,U_{\infty}(A_{1}\sin{1\theta_{4}}+A_{3}sin3\theta_{4}+A_{5}sin5\theta_{4}+A_{7}sin7\theta_{4}) \end{split}$$

Notez que l'on extrait les $\Gamma(\theta)$ directement du code VLM.

3) Résoudre le système linéaire pour trouver les 4 A_n , et donc la portance et la trainée induite (ou le facteur Oswald e``)

Méthode alternative avec inversion de matrice analytique:

Représentons la portance par $\Gamma(\theta)$ sur toute l'aile par n points discrets situés à $\theta_j=j\pi/r$ (où r=n+1). Alors, on trouve les (r-1) coefficients A_n par :

$$A_n = \frac{2}{r} \frac{1}{4sU_{\infty}} \sum_{j=1}^{r-1} \Gamma(j\pi/r) \sin(nj\pi/r)$$

Exemple:

Soit une distribution de portance donnée par $C_l(y)$ comme la figure 12.17 de Katz & Plotkin, où l'on doit reconstruire l'aile gauche par symétrie. On peut calculer le facteur d'Oswald 'e' avec 3 (n=3) points de contrôle (donc r=4) aux points $\theta_j=1\pi/4, 2\pi/4, 3\pi/4$. La transformation de coordonnées donne: $y_j/(b/2)=-0.707, 0,0.707$.

Pour une aile avec flèche de 45⁰, on récupère (à l'œil sur le graphique, mais on pourrait les prendre par interpolations d'une sortie de code VLM) les coefficients de portance locaux suivants :

 $C_l(y_i)=1.05,1.0,1.05$, ce qui donne $\Gamma(y_i)=0.525,0.5,0.525$ pour une aile rectangulaire de corde 1 dans un écoulement $U_{\infty}=1$ et de portance $C_L=1$ (mais U_{∞} et C_L sont arbitraires car c'est la forme de la courbe qui importe et non sa grandeur)

Notez que pour l'aile avec une flèche de 135° , on récupèrerait $\Gamma(y_i) = 0.85, 1.35, 0.85$.

Les coefficients A_n se trouvent directement par :

$$\begin{split} A_1 &= \frac{2}{4} \frac{1}{4sU_{\infty}} \left(\Gamma(1\pi/4) \sin(1*1\pi/4) + \Gamma(2\pi/4) \sin(1*2\pi/4) + \Gamma(3\pi/4) \sin(1*3\pi/4) \right) \\ A_3 &= \frac{2}{4} \frac{1}{4sU_{\infty}} \left(\Gamma(1\pi/4) \sin(3*1\pi/4) + \Gamma(2\pi/4) \sin(3*2\pi/4) + \Gamma(3\pi/4) \sin(3*3\pi/4) \right) \\ A_5 &= \frac{2}{4} \frac{1}{4sU_{\infty}} \left(\Gamma(1\pi/4) \sin(5*1\pi/4) + \Gamma(2\pi/4) \sin(5*2\pi/4) + \Gamma(3\pi/4) \sin(5*3\pi/4) \right) \end{split}$$

Les calculs (avec $\Gamma(y_i) = 0.525, 0.5, 0.525$) donnent $A_{1,3,5} * (4sU_{\infty}) = 0.6212, 0.1212, -0.1212$. On tire que e = 0.7666.

Essayer vous-mêmes avec une distribution de portance elliptique ($C_l = constant$, mais avec une distribution de corde elliptique) pour vous convaincre que les $A_{3,5,...}$ sont tous nuls, et donc e=1!