COMPUTER SCIENCE 349A Handout Number 34

ORDINARY DIFFERENTIAL EQUATIONS

Part 7 of the textbook: see pages 697-706 of the 6th ed. or pages 699-708 of the 7th ed. for Motivation and Mathematical Background. Recall that the mathematical model of a free-falling body developed in Chapter 1 involved a first order differential equation, and a simple numerical method was developed there for solving that differential equation.

Chapter 25 Runge-Kutta methods

The problem considered is a first-order initial value problem, which is always assumed to be in the form

$$y'(x) = f(x, y(x))$$
, subject to the initial condition $y(x_0) = y_0$.

Here x is the independent variable, the dependent variable y is a function of x, and f is a given function of both x and y(x) that specifies the derivative of the function y.

Given constants $a = x_0$, b and y_0 and a function f(x, y(x)), the problem is to determine y(x) for $a \le x \le b$.

Example

Determine y(x) for $0 \le x \le 2$ such that

$$y'(x) = y - x^2 + 1$$
, subject to $y(0) = 0.5$.

This problem has an analytic solution, namely $y(x) = (x+1)^2 - 0.5e^x$.

Numerical methods

All numerical methods we will consider for approximating y(x) are called "difference methods" (or discrete variable methods): that is, the continuous, exact solution y(x) is approximated by a <u>finite set</u> of computed values at a set of <u>mesh points</u> (or grid points) $x_0, x_1, x_2, ..., x_N$ in [a, b].

For now, we consider only equally-spaced mesh points, and let

$$x_i = a + ih = x_0 + ih$$
, $i = 0, 1, 2, ..., N$,

where

$$h = \frac{b - a}{N}$$

is called the step size.

At each of the N+1 mesh points x_i , the exact solution is denoted by $y(x_i)$, and the computed approximation is denoted by y_i .

Euler's method (Section 25.1, page 708 of the 6th ed. or page 710 of the 7th ed.) -- seldom used, but illustrates the derivation and use of numerical methods.

Derivation from Taylor's Theorem:

Taylor's Theorem for y(x) (with n = 1) expanded about x_i is

$$y(x) = y(x_i) + h y'(x_i) + \frac{h^2}{2} y''(\xi)$$

for some value ξ between x_i and x. Thus, at $x = x_{i+1}$,

$$y(x_{i+1}) = y(x_i) + h y'(x_i) + \frac{h^2}{2} y''(\xi)$$

where $h = x_{i+1} - x_i$.

For small values of h, this suggests the approximation

$$y(x_{i+1}) \approx y(x_i) + hy'(x_i)$$

= $y(x_i) + hf(x_i, y(x_i))$,.

using the differential equation y'(x) = f(x, y(x)).

Euler's method is obtained from this truncated Taylor polynomial approximation by replacing the exact solution $y(x_{i+1})$ by its numerical approximation y_{i+1} , and similarly by replacing $y(x_i)$ by y_i : given an initial condition

$$y_0 = y(x_0),$$

let

$$y_{i+1} = y_i + hf(x_i, y_i)$$
, for $i = 0, 1, 2, 3, ..., N-1$.

Example

Consider the initial-value problem

$$y'(x) = y - x^2 + 1$$
, subject to $y(0) = 0.5$.

Here $x_0 = 0$ and $y_0 = 0.5$. Let h = 0.2. Using Euler's method with i = 0 gives

$$y_1 = y_0 + h f(x_0, y_0) = 0.5 + (0.2) f(0, 0.5) = 0.5 + (0.2)(0.5 - 0 + 1) = 0.8$$

The first few computed approximations y_i and the corresponding exact solutions $y(x_i)$ are as follows:

\mathcal{X}_{i}	\boldsymbol{y}_{i}	$y(x_i)$	$ y(x_i)-y_i $
0	0.5	0.5	0.0
0.2	0.8	0.8292986	0.0292986
0.4	1.152	1.2140877	0.0620877
0.6	1.5504	1.6489406	0.0985406
0.8	1.98848	2.1272295	0.1387495

Geometric interpretation of Euler's method:

 $y_0 = y(x_0)$ is the given initial condition. Using this value, we compute

$$y_1 = y_0 + hf(x_0, y_0)$$

= $y_0 + hy'(x_0)$

from which it follows that

$$\frac{y_1 - y_0}{h} = y'(x_0)$$
.

Geometrically, this says that y_1 is obtained from y_0 by constructing the tangent line to the graph of y(x) at x_0 (which has slope equal to $y'(x_0)$) and going a distance h.

Similarly,

$$y_2 = y_1 + hf(x_1, y_1),$$

so y_2 is determined by constructing a straight line through (x_1, y_1) with slope $f(x_1, y_1)$. Note, however, that this is not the slope of the tangent line to the graph of y(x) at x_1 , since $f(x_1, y_1)$ is only an approximation to $y'(x_1)$ (since the computed approximation y_1 is not equal to the exact value $y(x_1)$).

In general, y_{i+1} is obtained by constructing a straight line through (x_i, y_i) with slope equal to $f(x_i, y_i)$, which is an approximation to $y'(x_i)$. As y_i depends on y_{i-1} , which in turn depends on y_{i-2} and so on, successive values of y_i tend to be less and less accurate (as the truncation errors accumulate as you go across the interval [a, b]).