

ECE 68000: MODERN AUTOMATIC CONTROL

Professor Stan Żak

Linearization

Linearization

- All physical systems are non-linear
- When we use a linear model of a physical system, we are employing some form of linearization
- A linear model accurately models a physical system in some range about an operating point about which the system is linearized

Taylor Linearization—Sec 2.3

Non-linear time-invariant system

$$\frac{\frac{dx_1}{dt}}{\frac{dx_2}{dt}} = f_1(x_1, x_2, \dots, x_n)$$

$$\frac{\frac{dx_2}{dt}}{\frac{dx_n}{dt}} = f_2(x_1, x_2, \dots, x_n)$$

$$\vdots$$

$$\frac{dx_n}{dt} = f_n(x_1, x_2, \dots, x_n)$$

Compact notation

$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x})$$

Equilibrium state—continuous-time (CT) case

Definition

A point x_e is an equilibrium state, or an equilibrium point, of the system modeled by $\dot{x}(t) = f(x(t))$ if it has the property that when the system starts at x_e , it will stay at x_e for all future time. The equilibrium points are obtained by solving the algebraic equation

$$f(x) = 0.$$

Equilibrium state—discrete-time (DT) case

Definition

A point x_e is an equilibrium state, or an equilibrium point, of the system modeled by x[k+1] = f(x[k]) if it has the property that when the system starts at x_e , it will stay at x_e for all future time, that is, $x_e = f(x_e)$. The equilibrium points for DT systems are obtained by solving the algebraic equation

$$x = f(x)$$
.

r-neighborhood

Definition

The *r*-neighborhood is a set of points

$$\{x : \|x - x_e\| < r\},\$$

where $\|\cdot\|$ can be any *p*-norm on \mathbb{R}^n

Isolated Equilibrium State

Definition

An equilibrium state x_e is isolated if there is an r > 0 such that the r-neighborhood of x_e contains no equilibrium state other than x_e .

Taylor linearization about equilibrium—continuous-time (CT) case

$$\frac{d}{dt}\mathbf{x} = \mathbf{f}(\mathbf{x}_e) + \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x}_e) \,\delta \mathbf{x} + \text{higher-order terms}$$

where

$$\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}(\boldsymbol{x}_e)$$

is the Jacobian matrix of f with respect x, evaluated at the equilibrium state x_e , and $\delta x = x - x_e$

Taylor linearization about equilibrium—manipulations

Observe that

$$\frac{d}{dt}\boldsymbol{x} = \frac{d}{dt}\boldsymbol{x}_e + \frac{d}{dt}\delta\boldsymbol{x} = \frac{d}{dt}\delta\boldsymbol{x}$$

because x_e is constant

• Use $f(x_e) = 0$ to obtain

$$\frac{d}{dt}\delta \boldsymbol{x} = \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}(\boldsymbol{x}_e) \,\delta \boldsymbol{x}$$

Taylor linearized model—continuous-time (CT) case

Let

$$A = \frac{\partial f}{\partial x}(x_e)$$

• Linear model in δx ,

$$\frac{d}{dt}\delta \mathbf{x} = \mathbf{A}\,\delta \mathbf{x}$$

Taylor linearization—DT case

Expand the right-hand side of x[k+1] = f(x[k]) into first-order Taylor series about x_e ,

$$x[k+1] = f(x_e) + \frac{\partial f}{\partial x}(x_e) \delta x[k] + \text{higher-order terms}$$

where

$$\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}(\boldsymbol{x}_e)$$

is the Jacobian matrix of f with respect x, evaluated at the equilibrium state x_e , and $\delta x[k] = x[k] - x_e$

Taylor linearization—DT case; manipulations

Recall that

$$f(x_e) = x_e$$

• Hence,

$$x[k+1] = f(x_e) + \frac{\partial f}{\partial x}(x_e) \, \delta x[k]$$
$$= x_e + \frac{\partial f}{\partial x}(x_e) \, \delta x[k]$$

• Since $\delta x[k+1] = x[k+1] - x_e$, therefore,

$$\delta \mathbf{x}[k+1] = \frac{\partial \mathbf{f}}{\partial \mathbf{r}}(\mathbf{x}_e) \, \delta \mathbf{x}[k]$$

Taylor linearized model—DT case

Let

$$A = \frac{\partial f}{\partial x}(x_e)$$

• Linear model in δx ,

$$\delta \mathbf{x}[k+1] = \mathbf{A}\,\delta \mathbf{x}[k]$$