Tightly-coupled Radar-LiDAR fusion for Robust Odometry

Nikhil Khedekar

Autonomous Robots Lab

Norwegian University of Science and Technology (NTNU)

Resilient Autonomy Anywhere

Resilience: To preserve the existence of functionality and retain performance against unexpected adverse conditions, and unknown, unmodelled disturbances or other phenomena.

Autonomy through Degradation

- Penetrate and overcome conditions of degradation & austerity leading to high-risk operations
 - Perceptually:
 - Self-similarity
 - Lack of visual texture
 - Obscurants such as smoke or dust
 - Geometrically:
 - Large in scale
 - Narrow in cross section
 - Obstacle-filled
 - Unknown/aleatoric sources of risk:
 - Unaccounted and unmodelled factors leading to module/system failures (e.g., map failure)
- Deliver resilient robot pose and map estimation, alongside scene reasoning

Potentially all simultaneously

Autonomy through Degradation

- Penetrate and overcome conditions of degradation & austerity leading to high-risk operations
 - Perceptually:
 - Self-similarity
 - Lack of visual texture
 - Obscurants such as smoke or dust
 - Geometrically:
 - Large in scale
 - Narrow in cross section
 - Obstacle-filled

simultaneously

Multiple but not all

Potentially all simultaneously

- Unknown/aleatoric sources of risk:
 - Unaccounted and unmodelled factors leading to module/system failures (e.g., map failure)
- Deliver resilient robot pose and map estimation, alongside scene reasoning

Perceptually degraded conditions

Obscurants

Self-similarity

Weak visual texture

Morten Nissov*, Nikhil Khedekar*, and Kostas Alexis

Multi-modal Loosely-coupled SLAM

Multi-modal Loosely-coupled SLAM

Handling degeneracy

Detection:

Point cloud Registration: Threshold eigenvalues of the approximate Hessian of the Jacobian of the nonlinear optimization

$$J^T J \delta \mathbf{x} = -J^T r$$

Visual (Thermal)-inertial Odometry: Threshold the D-Optimality metric

$$D_{\mathrm{opt}} = \exp(\log(\det(\Sigma)^{1/l}))$$

Handling:

- Retain successful degrees of freedom from LiDAR localization and mapping and replace those degenerate from VIO.
- Disregard VIO if its D-opt value exceeds threshold.

Complementary Multi-Modal Sensor Fusion for Resilient Robot Pose Estimation in Subterranean Environments S. Khattak, H. Nguyen, F. Mascarich, T. Dang, K. Alexis

Tightly-coupled LiDAR-Radar-Inertial fusion

Motivation:

- In self-similar and obscurants-filled environments, LiDAR faces significant limitations.
 - Threshold-based detection, which can be environment dependent
- Experience from SubT indicated that dense smoke-filled environments render both LiDAR and vision degraded, while certain types of smoke render LWIR degraded.
 - Thermal vision is not a viable solution for all obscurants.
- Radar represents a viable and versatile alternative.

Contribution:

- Tightly-coupled LiDAR-Radar-Inertial fusion for odometry
- Factors for direct integration of LiDAR features in the graph with a global map
- Factor for integration of radar velocity in a factor graph for inertial navigation

Tightly-coupled LiDAR-Radar-Inertial fusion

Measurement Handling: IMU

1- Add IMU data to buffer

- Ready to add node to the graph at the radar measurement
- Addition of pre-integrated IMU factor to connect the new state
- Implementation from GTSAM following [1]

IMU Factor $m{e}_{\mathcal{I}} = egin{bmatrix} m{e}_{\Delta_{m{v}}\mathbf{R}_{m{1}}}^{ op} & m{e}_{\Delta_{m{v}}m{v}_{m{1}}}^{ op} & m{e}_{\Delta_{m{w}}m{p}_{m{1}}}^{ op} \end{bmatrix}^{ op}$ [1] Radar Factor LiDAR Plane Factors

Jacobians: refer to [1]

[1] Forster, Christian, et al. "On-manifold preintegration for real-time visual--inertial odometry." IEEE Transactions on Robotics 33.1 (2016): 1-21

LiDAR Line Factors

Measurement Handling: Radar

1 - Radar point cloud includes

- Geometry (range, azimuth, elevation)
- Doppler (radial speed)
- Radar cross section

Texas Instruments IWR6843AOPEVM (Ideal for SWaP constraints)

Chirp Parameters	Value
Start frequency	60 GHz
Bandwidth	1911.273 MHz
Maximum Range	15.999 m
Maximum Doppler	3.995 m/s
Range Resolution	0.0785 m
Doppler Velocity Resolution	0.133 m/s
Azimuth/Elevation Resolution	23 deg

Image courtesy of D. Kellner, et. al., "Instantaneous ego-motion estimation using Doppler radar," 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)

Measurement Handling: Radar

1 - Radar point cloud includes

- Geometry (range, azimuth, elevation)
- Doppler (radial speed)
- Radar cross section

2 - RANSAC Least Squares

- Angular rate from IMU buffer
- Get linear velocity 3-vector
- Estimate solution covariance

$$v_{r} = -_{R} \bar{\boldsymbol{r}}^{\top}_{R} \boldsymbol{v}$$

$$_{R} \boldsymbol{v} = _{R} \mathbf{R}_{I} \left(_{I} \mathbf{R}_{WW} \boldsymbol{v} + (_{I} \boldsymbol{\omega} - \boldsymbol{b}_{g}) \times _{I} \boldsymbol{p}_{R} \right)$$

$$\begin{bmatrix} v_{r}^{1} \\ v_{r}^{2} \\ \vdots \\ v_{r}^{N} \end{bmatrix} = \begin{bmatrix} \left(_{R} \bar{\boldsymbol{r}}^{1} \right)^{\top} \\ \left(_{R} \bar{\boldsymbol{r}}^{2} \right)^{\top} \\ \vdots \\ \left(_{R} \bar{\boldsymbol{r}}^{N} \right)^{\top} \end{bmatrix} \begin{bmatrix} _{R} v_{x} \\ _{R} v_{y} \\ _{R} v_{z} \end{bmatrix}$$

 $oldsymbol{v}_r = \mathbf{X}_\mathtt{R} oldsymbol{v}$

$$oldsymbol{e}_{\mathcal{R}} = {}_{\mathtt{R}} \mathbf{R}_{\mathtt{I}} \left({}_{\mathtt{I}} \mathbf{R}_{\mathtt{WW}} oldsymbol{v} + ({}_{\mathtt{I}} oldsymbol{\omega} - oldsymbol{b}_g) imes {}_{\mathtt{I}} oldsymbol{p}_{\mathtt{R}}
ight) - {}_{\mathtt{R}} ilde{oldsymbol{v}}$$

Measurement Handling: Radar

1 - Radar point cloud includes

- Geometry (range, azimuth, elevation)
- Doppler (radial speed)
- Radar cross section
- 2 RANSAC Least Squares
- Angular rate from IMU buffer
- Get linear velocity 3-vector
- Estimate solution covariance
- 3 Add to factor graph

- Prior Factor (Initialization)
- IMU Factor
- Radar Factor
- LiDAR Plane Factors
- LiDAR Line Factors

$$\begin{aligned} & \text{Error} \left[\begin{array}{l} \boldsymbol{e}_{\mathcal{R}} = {}_{\mathbf{R}} \mathbf{R}_{\mathbf{I}} \left({}_{\mathbf{I}} \mathbf{R}_{\mathbf{W} \mathbf{W}} \boldsymbol{v}_{\mathbf{I}} + \left({}_{\mathbf{I}} \boldsymbol{\omega} - \boldsymbol{b}_g \right) \times {}_{\mathbf{I}} \boldsymbol{p}_{\mathbf{R}} \right) - {}_{\mathbf{R}} \tilde{\boldsymbol{v}} \\ & \frac{\partial \boldsymbol{e}_{\mathcal{R}}}{\partial_{\mathbf{W}} \mathbf{R}_{\mathbf{I}}} = {}_{\mathbf{R}} \mathbf{R}_{\mathbf{I}} \left({}_{\mathbf{I}} \mathbf{R}_{\mathbf{W} \mathbf{W}} \boldsymbol{v}_{\mathbf{I}} \right)^{\wedge} \\ & \frac{\partial \boldsymbol{e}_{\mathcal{R}}}{\partial_{\mathbf{W}} \boldsymbol{v}_{\mathbf{I}}} = {}_{\mathbf{R}} \mathbf{R}_{\mathbf{I}} \mathbf{I} \mathbf{R}_{\mathbf{W}} \\ & \frac{\partial \boldsymbol{e}_{\mathcal{R}}}{\partial \boldsymbol{b}_g} = {}_{\mathbf{R}} \mathbf{R}_{\mathbf{I}} \left({}_{\mathbf{I}} \boldsymbol{p}_{\mathbf{R}} \right)^{\wedge} \end{aligned}$$

Measurement Handling: LiDAR

1 - De-skew point cloud to radar measurement timestamp

2 - Extract point/line features by curvature

3 - Find correspondences in feature submap (global map)

4 - Add feature factors to graph

Hardware Setup

Microcontroller triggers sensors and timestamps their measurements

Sensor Data IWR6843AOP-EVM 10Hz Khadas VIM4 **PixRacer** nav motor cmds cmds 10Hz VN-100 Time-sync

Degradation Resilient LiDAR-Radar-Inertial Odometry

Morten Nissov*, Nikhil Khedekar*, and Kostas Alexis

* Equal contribution

Degradation Resilient LiDAR-Radar-Inertial Odometry

Morten Nissov*, Nikhil Khedekar*, and Kostas Alexis

* Equal contribution

ROAMER – Robust Odometry on JPL RACER

Motivation: More robust estimation for off-road vehicle.

Method: Include radar velocity

- Uses unique 4D radar sensor
 - Returning 3x4 grid of RD-Maps (4x7.5 degrees of azimuth/elevation)
- Driving up to 12 m/s

Investigating usage of radar for stabilizing noisy LiDAR-IMU fusion in barren, off-road terrain

Thank you

