Идентификация компонент в анализе сингулярного спектра

Жорникова Полина Георгиевна, гр. 16.М03-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Статистическое моделирование

Научный руководитель: к.ф.-м.н., доцент Голяндина Н.Э. Рецензент: к.ф.-м.н., лектор Пепелышев А.Н.

Санкт-Петербург 2018г.

Введение: Общая постановка задачи

 \mathbb{X} — объект: временной ряд (вещественный или комплексный), система временных рядов, прямоугольное цифровое изображение.

Проблема: найти составляющие разложения $X = \mathbb{T} + \mathbb{P} + \mathbb{N}$, где

 \mathbb{T} — **тренд** (медленно меняющаяся составляющаяся);

 \mathbb{P} — колебательная составляющая (различные регулярные колебания);

 $\mathbb{N}-$ шум (случайный процесс с нулевым средним).

Метод: SSA (Singular Spectrum Analysis) [Golyandina N., Nekrutkin V., Zhigljavsky A., 2001].

Вход: объект \mathbb{X} : временный ряд, система рядов, изображение; оператор \mathcal{T} .

Алгоритм:

- $oldsymbol{0} \ \mathbf{X} = \mathcal{T}(\mathbb{X})$, $\mathbf{X} \in \mathcal{M}_{L,K}^{(H)}$ траекторная матрица.
- ${f Q} \ \ {f X} = \sum_{j=1}^d {f X}_j, \ {f X}_j = \mu_j U_j V_j^*$ сингулярное разложение. Каждая компонента ${f X}_j$ характеризуется тремя значениями: U_j — левый и V_j — правый синг. вектора, μ_j — сингулярное число.
- $\bullet \ \mathbf{X} = \sum_{j=1}^{d} \mathbf{X}_{j} \longrightarrow \mathbf{X} = \mathbf{X}_{I_{\mathbb{T}}} + \mathbf{X}_{I_{\mathbb{P}}} + \mathbf{X}_{I_{\mathbb{N}}}, \ \mathbf{X}_{I} = \sum_{j \in I} \mathbf{X}_{j}.$
- $igotantering f X = f T + f P + f N = \mathcal T^{-1} \left(\Pi^{(H)} {f X}_{I_{\mathbb T}}
 ight) + \mathcal T^{-1} \left(\Pi^{(H)} {f X}_{I_{\mathbb P}}
 ight) + \mathcal T^{-1} \left(\Pi^{(H)} {f X}_{I_{\mathbb N}}
 ight),$ $\Pi^{(H)}$ ортогональный проектор на $\mathcal M^{(H)}_{L,K}$ по норме Фробениуса.

Выход: разложение $\mathbb{X} = \widetilde{\mathbb{T}} + \widetilde{\mathbb{P}} + \widetilde{\mathbb{N}}.$

Как осуществить группировку на этапе 3?

Введение: Постановка задачи работы

Метод	Данные	Обозначение
1D-SSA	временной ряд	$\mathbb{X}=(x_1,\ldots,x_N)$
CSSA	комплексный временной ряд	$X^{(1)} + iX^{(2)}$
MSSA	система временных рядов	$\mathbb{X}^{(p)}$, $p=1,\ldots,s$
2D-SSA	прямоугольное изображение	$\mathbb{X} = (x_{ij})_{i,j=1}^{N_x, N_y}$

Хотим сгруппировать компоненты разложения $\mathbf{X} = \sum_{j=1}^d \mu_j U_j V_j^*$ в группы $\mathbf{X} = \mathbf{X}_{I_{\mathbb{T}}} + \mathbf{X}_{I_{\mathbb{P}}} + \mathbf{X}_{I_{\mathbb{N}}}$, чтобы получить $\mathbb{X} = \widetilde{\mathbb{T}} + \widetilde{\mathbb{P}} + \widetilde{\mathbb{N}}$.

Задача работы: разработать алгоритмы автоматической группировки (идентификации) индексов $\{1,\dots,d\}$ в три группы $I_{\mathbb T},\ I_{\mathbb P},\ I_{\mathbb N}$ для всех вариантов SSA.

Введение: Постановка задачи работы

Метод	Данные	Обозначение
1D-SSA	временной ряд	$\mathbb{X}=(x_1,\ldots,x_N)$
CSSA	комплексный временной ряд	$X^{(1)} + iX^{(2)}$
MSSA	система временных рядов	$\mathbb{X}^{(p)}$, $p=1,\ldots,s$
2D-SSA	прямоугольное изображение	$\mathbb{X} = (x_{ij})_{i,j=1}^{N_x, N_y}$

Хотим сгруппировать компоненты разложения $\mathbf{X} = \sum_{j=1}^d \mu_j U_j V_j^*$ в группы $\mathbf{X} = \mathbf{X}_{I_{\mathbb{T}}} + \mathbf{X}_{I_{\mathbb{P}}} + \mathbf{X}_{I_{\mathbb{N}}}$, чтобы получить $\mathbb{X} = \widetilde{\mathbb{T}} + \widetilde{\mathbb{P}} + \widetilde{\mathbb{N}}$.

Задача работы: разработать алгоритмы автоматической группировки (идентификации) индексов $\{1,\dots,d\}$ в три группы $I_{\mathbb T}$, $I_{\mathbb P}$, $I_{\mathbb N}$ для всех вариантов SSA.

Введение: План доклада

Было сделано в работе:

- Обзор существующих методов автоматической группировки, автоматической идентификации тренда и колебательной составляющей для одномерного вещественного ряда и 1D-SSA.
- Создание нового метода автоматической идентификации колебательной составляющей для 1D-SSA.
- Обобщения методов для расширений SSA (CSSA, MSSA, 2D-SSA).
- Реализация ранее не реализованных методов для 1D-SSA и всех обобщений на языке программирования R.
- Примеры реальных приложений методов.

План рассказа:

- Описание существующих и нового методов автоматической идентификации тренда и колебательной составляющей для 1D-SSA.
- Описание обобщений методов идентификации тренда и колебательной составляющей для CSSA, MSSA, 2D-SSA.
- Примеры реальных приложений методов.

1D-SSA: Основные определения и идеи

ullet Тренд \mathbb{T} — составляющая с низкими частотами: в разложении Фурье ряда $\mathbb{T}=(t_1,\dots,t_N)$ длины N

$$t_n = c_0 + \sum_{k=1}^{\lfloor (N-1)/2 \rfloor} \sqrt{c_k^2 + s_k^2} \cos(2\pi nk/N + \phi_k) + c_{N/2} (-1)^n$$

большое значение имеют только $\sqrt{c_k^2+s_k^2}$ с маленькими k.

- ullet Колебательная составляющая \mathbb{P} сумма э-м гармоник вида $a\,e^{\alpha n}\cos(2\pi\omega n+\phi),\,\omega<0.5,\,0\leqslant\phi<2\pi,\,a\neq0.$
- Сингулярные вектора U_j , V_j разложения $\mathbf{X} = \sum_{j=1}^d \mu_j U_j V_j^*$ имеют такую же структуру, что и компонента \mathbb{X}_j , которой они соответствуют.
- ullet Э-м гармонике соответствует 2 члена разложения ${f X} = \sum_{j=1}^d \mu_j U_j V_j^*$.
- Для выделения тренда каждую компоненту рассматриваем по отдельности и используем частотный подход.
- В случае колебательной составляющей учитываем соотношения между компонентами (например, между сингулярными векторами).

1D-SSA: Тренд: Метод низких частот (Александров, Голяндина, 2005)

Вещественный ряд $\mathbb{X}=(x_1,\ldots,x_N)$. Периодограмма ряда

$$\Pi^N_{\mathbb{X}}(k/N) = \frac{N}{2} \begin{cases} 2c_0^2 & \text{для } k=0, \\ c_k^2 + s_k^2 & \text{для } 0 < k < N/2, \\ 2c_{N/2}^2 & \text{для } k=N/2, \text{ если } N \text{ четное,} \end{cases}$$

 c_k и s_k — коэффициенты разложения Фурье ряда $\mathbb X.$

Параметры метода: частота $0\leqslant \omega_0\leqslant 0.5$, порог $0\leqslant T_0\leqslant 1.$

Мера
$$T(\mathbb{X};\omega_0) = T\left(\sum_{k:0\leqslant k/N<\omega_0}\Pi^N_{\mathbb{X}}(k/N)\right)$$
 — вклад частот, содержащихся в интервале $[0,\omega_0).$

Вход метода: $\mathbb{Y}_i,\ i=1,\dots,d$, — либо ряд, восстановленный по i-ой компоненте, либо левый U_i или правый V_i сингулярный вектор.

Алгоритм: отбираем компоненты, для которых $T(\mathbb{Y}_i; \omega_0) \geqslant T_0$.

1D-SSA: Колеб. составляющая: Частотный метод (Александров, 2006)

Э-м гармоника: $a\,e^{\alpha n}\cos(2\pi\omega n+\phi)$, $0\leqslant\phi<2\pi$, $a\neq0$; $\mathbf{X}=\sum_{j=1}^d\mu_jU_jV_j^*$. Имеет два сингулярных вектора U_1 и U_2 , L — длина векторов.

Вход метода: $\{U_j\}_{j=1}^r$ — левые сингулярные вектора разложения ряда $\mathbb X$. Параметры метода: порог $0\leqslant \rho_0\leqslant 1$.

Для немодулированной гармоники ($\alpha=0$) с $L\omega\in\mathsf{Z}_+$ максимумы периодограмм $\Pi^L_{U_1}(k/L)$ и $\Pi^L_{U_2}(k/L)$ достигаются в одной точке и равны 1.

Схема метода: поверяем условие про периодограммы и отбираем нужные компоненты с помощью порога ρ_0 .

Проблема метода: нет универсальных рекомендаций по выбору порога ρ_0 , и есть обоснование только для немодулированных гармоник.

1D-SSA: Колебательная составляющая: Метод по регулярности углов

Э-м гармоника: $a\,e^{\alpha n}\cos(2\pi\omega n+\phi)$, $0\leqslant\phi<2\pi$, $a\neq0$; $\mathbf{X}=\sum_{j=1}^d\mu_jU_jV_j^*$. Имеет два сингулярных вектора U_1 и U_2 , L — длина векторов.

Специальная мера:

- ullet $au(U_1,U_2):=rac{1}{L-1}\sum_{k=1}^{L-1}\left(heta_k-ar{ heta}
 ight)^2$, где $heta_k$ угол между $\left(u_k^{(1)},u_k^{(2)}
 ight)^{
 m T}$ и $\left(u_{k+1}^{(1)},u_{k+1}^{(2)}
 ight)^{
 m T}$, $ar{ heta}=rac{1}{L-1}\sum_{k=1}^{L-1} heta_k$.
- ullet $\lim_{L o\infty} au(U_1,U_2)=0$ при некоторых условиях.

Вход: $\{U_j\}_{j=1}^r$ — сингулярные вектора разложения ряда $\mathbb X$.

Параметры: порог $\tau_0 > 0$.

Алгоритм: отбираем пары индексов j, j+1, для которых $\tau(U_i, U_{i+1}) < \tau_0$.

Преимущество метода: обоснован для модулированных гармоник.

Проблема метода: нет универсальных рекомендаций по выбору порога au_0 .

1D-SSA: Колебательная составляющая: Сравнение частотного метода и метода идентификации по регулярности углов

Ряд:
$$e^{0.02k}\cos(2\pi k/7) + e^{0.02k}\sigma\varepsilon_k$$
, $\varepsilon_k \sim N(0,1)$; $N=99$, $L=50$.

- Параметры методов подбирались специальным алгоритмом, одинаковым для обоих методов, и считалась ошибка идентификации.
- Методы сравнивались на одних и тех же реализациях рядов.
- Проводилось 1000 моделирований.

Таблица: Средняя ошибка идентификации.

	Для метода по	Для частотного
	регулярности углов	метода
$\sigma = 0.2$	0.0003	0.050
$\sigma = 0.4$	0.0010	0.080
$\sigma = 0.6$	0.0082	0.103
$\sigma = 0.8$	0.0549	0.185
$\sigma = 1$	0.1917	0.239

1D-SSA: Модельный пример

$$x_k = e^{0.01k} + 2\cos(2\pi k/10) + e^{0.009k}\cos(2\pi k/4) + \varepsilon_k \text{, } \varepsilon_k \sim N(0,2) \text{, } N = 199.$$

Верная группировка компонент: 1 — тренд, 2–5 — колеб. составляющая.

Метод низких частот для тренда: частота $\omega_0=0.01$, порог $T_0=0.9$.

Номер компоненты	1	26	
Значение меры T	0.93	0.07	

Частотный метод для колеб. составляющей: порог $\rho_0 = 0.9$.

Номера компонент	4–5	2–3	10-11	
Значение меры $ ho$	0.96	0.95	0.73	

Метод по регулярности углов для колеб. составляющей: порог $au_0 = 0.01$.

Номера компонент	4–5	2–3	6–7	
Значение меры $ au$	0.0009	0.0040	0.0566	

1D-SSA: Модельный пример

$$x_k = e^{0.01k} + 2\cos(2\pi k/10) + e^{0.009k}\cos(2\pi k/4) + \varepsilon_k$$
, $\varepsilon_k \sim N(0, 2)$, $N = 199$.

Рис.: Восстановленные тренд (по компоненте 1) и колебательная составляющая (по компонентам 2–3, 4–5) на фоне исходного ряда.

Обобщение методов идентификации для других вариантов SSA

Можно ли идеи методов автоматической идентификации для 1D-SSA обобщить на другие варианты метода: 2D-SSA, MSSA, CSSA?

Да = обобщили метод; Нет = пока непонятно, как обобщить.

	CSSA	MSSA	2D-SSA
Метод низких частот для тренда	Да	Да	Да
Частотный метод для колебательной составляющей	Да	Да	Нет
Метод идентификации колебательной составляющей по регулярности углов	Да	Да	Нет

CSSA: Обобщения

Комплексный ряд $\mathbb{X}=\mathbb{X}^{(1)}+\mathrm{i}\mathbb{X}^{(2)}.$ Сингулярное разложение: $\mathbf{X}=\sum_{j=1}^d \mu_j U_j V_j^*.$

Особенности CSSA:

- И левые, и правые сингулярные вектора, и восстановленные ряды являются комплексными.
- ullet Сингулярные вектора определяются с точностью до комплексного поворота, т.е. умножения на $e^{2\mathrm{i}\pi t},~0\leqslant t<1.$
- В случае колебательной составляющей идентифицируем комплексные экспоненты: $e^{i(2\pi\omega k+\phi)+\alpha k}$. В сингулярном разложении комплексной экспоненте соответствует один сингулярный вектор.

С учетом особенностей были обобщены методы:

- метод низких частот для тренда;
- частотный метод для колебательной составляющей;
- метод идентификации колеб. составляющей по регулярности углов.

MSSA: Обобщения

Система временных рядов $\mathbb{X}^{(p)}$, $p=1,\ldots,s$. Сингулярное разложение: $\mathbf{X}=\sum_{j=1}^d \mu_j U_j V_j^*$.

Особенности MSSA:

- И левые, и правые сингулярные вектора, и восстановленные ряды имеют разную структуру.
- Применение алгоритмов к разным видам входных данных может давать разные результаты.
- Для разных входных данных нужны разные варианты алгоритма.

С учетом особенностей были обобщены методы:

- метод низких частот для тренда;
- частотный метод для колебательной составляющей;
- метод идентификации колеб. составляющей по регулярности углов.

2D-SSA: Обобщения: Метод низких частот для тренда

Поле $\mathbb{X}=(x_{ij})_{i,j=1}^{N_x,N_y}$. Двумерная периодограмма

$$\Pi_{\mathbb{X}}^{N_x N_y} \left(\frac{k}{N_x}, \frac{l}{N_y} \right) = N_x N_y |G_{kl}|^2,$$

где $0\leqslant k\leqslant N_x$, $0\leqslant l\leqslant N_y$,

 G_{kl} — коэффициент двумерного разложения Фурье ряда \mathbb{X} .

Параметры метода: частоты $0\leqslant \omega_0^{(1)}, \omega_0^{(2)}\leqslant 0.5$, порог $0\leqslant T_0\leqslant 1$.

$$T(\mathbb{X};\omega_{0}^{(1)},\omega_{0}^{(2)}) = T\left(\sum_{k:0\leqslant k/N_{x}<\omega_{0}^{(1)}}\sum_{l:0\leqslant l/N_{y}<\omega_{0}^{(2)}}\Pi_{\mathbb{X}}^{N_{x}N_{y}}\left(\frac{k}{N_{x}},\frac{l}{N_{y}}\right)\right) -$$

вклад частот, содержащихся в $\left\{ \left(-\omega_0^{(1)}, \omega_0^{(1)} \right) \times \left(-\omega_0^{(2)}, \omega_0^{(2)} \right) \right\}$.

Далее алгоритм такой же, как в 1D-SSA.

Реальные примеры применения: Выделение линий с изображения

Алгоритм (Trickett, 2003) выделяет линии с зашумленного изображения.

На одном из этапов применяется преобразование Фурье, и задача сводится к выделению комплексных экспонент. Используется метод CSSA.

Применим два метода автоматической идентификации колебательной составляющей: метод по регулярности углов и частотный метод.

(а) Исходное изображение.

(b) Алгоритм с методом по регулярности углов.

(c) Алгоритм с частотным методом.

Рис.: Изображение с двумя линиями.

Реальные примеры применения: Анализ данных активности генов

Двумерные данные: значения активности гена, измеренные на неравномерной двумерной решетке.

Предполагается, что данные зашумлены, и шум имеет дисперсию σ^2 .

Исходная задача: оценить σ^2 .

Промежуточная задача: оценить тренд.

Качество идентификации тренда можно оценивать по ошибке оценки $\sigma.$

Два подхода к решению:

- Рассмотреть одномерный срез данных и решать задачу дня них.
- ullet Решать задачу для исходных 2D-данных.

Рис.: Изображение данных.

Реальные примеры применения: анализ данных активности генов

Идея: подбираем параметры ω_0 и T_0 для автоматической идентификации тренда на модельных данных, имитирующих поведение реальных. Используем полученные параметры для реальных данных.

Значения подобранных параметров: $\omega_0 = 0.04$, $T_0 = 0.4$.

Реальные примеры применения: анализ данных активности генов

Перед 2D-SSA процедурой данные были интерполированы на регулярную решетку с шагом $\Delta=0.5.$

Идея: подбираем параметры $\omega_0^{(1)}, \omega_0^{(2)}$ и T_0 для автоматической идентификации тренда на модельных данных, имитирующих поведение реальных. Используем полученные параметры для реальных данных.

Значения подобранных параметров: $\omega_0^{(1)}=0.08\Delta$, $\omega_0^{(2)}=0.1\Delta$, $T_0=0.2$.

Reconstructions

Реальные примеры применения: анализ данных активности генов

- 2D-SSA дал более высокую точность оценок.
- Автоматическая идентификация практически такого же качества, как идентификация с фиксированным числом компонент.

Таблица: Модельные данные, истинное значение параметра $\sigma^2 = 0.03$.

	1D	2D	1D auto	2D auto
Среднее значение оценки	0.0285	0.0311	0.0285	0.0318
sd	0.0037	0.0006	0.0037	0.0008

Таблица: Реальные данные.

	1D	2D	1D auto	2D auto
Среднее значение оценки	0.0392	0.0347	0.0390	0.0341
sd	0.0123	0.0063	0.0120	0.0054

Результаты

- Для метода SSA сделан обзор существующих методов автоматической идентификации тренда, колебательной составляющей, методов группировки компонент для одномерного временного ряда.
- Предложен новый метод идентификации колебательной составляющей для одномерного ряда, который работает эффективнее, чем ранее известный.
- Многие описанные методы обобщены для случаев комплексного ряда, системы временных рядов, цифрового изображения.
- Методы для одномерного ряда, нереализованные ранее в R-пакете Rssa, и все обобщенные варианты методов реализованы на языке R.
- Приведены реальные примеры применения разработанных методов для разных вариантов входного объекта.