## 目录

| 第一         | −章        | SDO 实例分析                 | 1 |
|------------|-----------|--------------------------|---|
| <b>—</b> , | 目的        | :                        | 1 |
| _,         | 手段        | :                        | 1 |
| 三、         | 分析        |                          |   |
| 四、         | 过程        | :                        | 2 |
|            | 4.1.      | 对象字典的编写                  | 2 |
|            |           | 4.1.1 各节点 ID 分配          | 2 |
|            |           | 4.1.2 对节点 1 进行对象字典编写     |   |
|            |           | 4.1.3 对节点 2 进行对象字典编写     | 2 |
|            |           | 4.1.4 对节点 3 进行对象字典编写     | 3 |
|            | 4.2       | 节点 1 读取节点 2 数据           | 3 |
|            |           | 4.2.1 节点 1 发送请求读取命令至节点 2 | 3 |
|            |           | 4.2.2 节点 2 响应节点 1 读取命令   | 4 |
|            | 4.3       | 节点 1 写入数据至节点 3           | 6 |
|            |           | 4.3.1 节点 1 发送数据至节点 3     | 6 |
|            |           | 4.3.2 节点3响应节点1写入数据命令     | 7 |
| 参考         | <b>文献</b> |                          |   |
| 附录         | ₹一:       |                          | 9 |
|            |           |                          |   |

# 第一章 SDO 实例分析

## 一、目的:

实现节点2的数据传送到节点3

### 二、手段:

使用 SDO 进行传送

注: SDO 不能实现从节点之间数据的直接传送

## 三、分析:



图 1-1 SDO 客户/服务器通讯模式<sup>[1]</sup>

SDO通讯可以描述成客户/服务器模型, SDO的客户/服务器通讯模式如图 1-1 所示。两节点中请求进行读写操作的节点为客户端节点,数据被读写的节点为服 务器节点[3]。SDO 通讯用于主节点对从节点对象字典的读写访问,以实现对从节 点参数的设置,下载程序,定义 PDO 的通讯类型和数据格式等[1]。

由此可知要实现将节点2中数据传送给节点3的实现方法为:设置节点1为 主站(Client),数据传送过程由SDO传送的特点分为两段:节点1读取节点2 (server)数据,节点1写入数据到节点3(server)。从而实现了节点2(server) 的数据传送到节点 3 (server)。如图 1-2 所示。



数据传送过程 图 1-2

### 四、过程:

#### 4.1.对象字典的编写

对象字典的结构和条目对于所有设备是共同的,本例中采用索引定位,子索引确定对象的思想构建对象字典,方法是使用结构体定义子索引,子索引结构体的成员变量包含对象的属性(读写权限,数据类型,数据长度等)和指向对象的指针,定义索引时包含指向子索引的指针和子索引数目,对象字典各项在代码中采取如图 4-1 所示的方式来组织构建,这样可以方便地通过索引和子索引一找到对应的项,对象定义为指针的形式可以通过主站的 SDO 报文进行读写,实现对对象字典的灵活配置,同时这种方式实现通讯层与应用层共享数据变量的特点。对象字典的条目格式如图 4-1 所示:

| 索引 对象(符号名) | 名称 | 属性 | 类型 | 强制/可选 |
|------------|----|----|----|-------|
|------------|----|----|----|-------|

图 1-3 对象字典模块结构图

#### 4.1.1 各节点 ID 分配

表 1-1 各节点 ID 分配表

| 节点      | 节点 <b>1</b> | 节点 2、 | 节点3  | 主节点  |
|---------|-------------|-------|------|------|
| NODE-ID | 0x01        | 0x02  | 0x03 | 0x04 |

#### 4.1.2 对节点 1 进行对象字典编写

表 1-2 节点 2 的 SDO 参数在对象字典中的定义

| 索引     | 子索引 | 接受/发送 SDO | SD0    | 参数   | 强制/可选 |
|--------|-----|-----------|--------|------|-------|
| 0x1200 | 00h | 入口数目      | Unit8  | 03h  | rw    |
|        | 01h | 接受 SDO    | Unit32 |      | ro    |
|        | 02h | 发送 SDO    | Unit32 |      | ro    |
|        | 03h | 节点号       | Unit32 | 0x01 | rw    |

节点 1 的 SDO 参数在对象字典中的定义如表 1-2 所示。因为此处节点 1 充当 客户端角色,故而无需定义其接受 SDO 与发送 SDO 的 COB-ID。

#### 4.1.3 对节点 2 进行对象字典编写

表 1-3 节点 2 的 SDO 参数在对象字典中的定义

| 索引     | 子索引 | 接受/发送 SDO | SDO 参数 |          | 强制/可选 |
|--------|-----|-----------|--------|----------|-------|
| 0x1200 | 00h | 入口数目      | Unit8  | 03h      | rw    |
|        | 01h | 接受 SDO    | Unit32 | 600h+节点号 | ro    |
|        | 02h | 发送 SDO    | Unit32 | 580h+节点号 | ro    |
|        | 03h | 节点号       | Unit32 | 0x02     | rw    |

节点 2 的 SDO 参数在对象字典中的定义如表 1-3 所示。节点 2 的发送 SDO 的 COB-ID 为 0x582, 节点 1 的接受 SDO 的 COB-ID 分别为 0x602。

除了完成 SDO 参数在对象字典中的定义外,还需实现节点 2 所要传输数据在对象字典中的定义。如表 1-4 所示。

表 1-4 节点 2 的数据在对象字典中的定义

| 节点   | 索引     | 子索引  | 名称     | 属性 | 类型     | 强制/可选 |
|------|--------|------|--------|----|--------|-------|
| 0x02 | 0x6000 | 0x01 | 体积 (A) | rw | unit8  | О     |
|      | 0x6001 | 0x01 | 质量 (B) | rw | unit32 | О     |
|      | 0x6002 | 0x01 | 速度(C)  | rw | unit8  | О     |
|      | 0x6003 | 0x01 | 位移 (D) | rw | Unit16 | О     |

其中体积(A)定义在对象字典的应用数据区索引为 0x6000、子索引为 0x01的目录中,质量(B)定义在索引为 0x6001、子索引为 0x01的对象字典目录中,体积(C)定义在索引为 0x6002、子索引为 0x01的对象字典目录中,体积(D)定义在索引为 0x6003、子索引为 0x01的对象字典目录中。

#### 4.1.4 对节点 3 进行对象字典编写

同节点 2 的对象字典编写方法对节点 3 对象字典进行编写。其中节点 3 的 SDO 参数在对象字典中的定义如表 1-5 所示;

表 1-5 节点 2 的 SDO 参数在对象字典中的定义

| 索引     | 子索引 | 接受/发送 SDO | SDO 参数 |          | 强制/可选 |
|--------|-----|-----------|--------|----------|-------|
| 0x1200 | 00h | 入口数目      | Unit8  | 03h      | rw    |
|        | 01h | 接受 SDO    | Unit32 | 600h+节点号 | ro    |
|        | 02h | 发送 SDO    | Unit32 | 580h+节点号 | ro    |
|        | 03h | 节点号       | Unit32 | 0x03     | rw    |

节点 2 的 SDO 参数在对象字典中的定义如表 1-5 所示。 节点 2 的发送 SDO 的 COB-ID 为 0x582, 节点 1 的接受 SDO 的 COB-ID 分别为 0x602。

节点3数据接受区在对象字典中定义如表1-6所示

表 1-6 节点 3 的数据在对象字典中的定义

| 节点   | 索引     | 子索引  | 名称       | 属性 | 类型     | 强制/可选 |
|------|--------|------|----------|----|--------|-------|
| 0x03 | 0x7000 | 0x01 | 体积1(A)   | rw | unit8  | О     |
|      | 0x7001 | 0x01 | 质量 2 (B) | rw | unit32 | О     |
|      | 0x7002 | 0x01 | 速度 3 (C) | rw | unit8  | О     |
|      | 0x7003 | 0x01 | 位移4(D)   | rw | Unit16 | О     |

其中体积 1,质量 2,速度 3、位移 4分别由节点 1写入数据。

#### 4.2 节点 1 读取节点 2 数据

#### 4.2.1 节点 1 发送请求读取命令至节点 2

#### 发送格式如图 1-4 所示:



图 1-4 节点 1 请求读取命令格式

#### 4.2.2 节点 2 响应节点 1 读取命令

①若读取成功,则节点2返回:

表 1-7 节点响应读取成功命令格式

|                | 数据长度为 1 个字节时 |    |        |     |    |    |    |    |
|----------------|--------------|----|--------|-----|----|----|----|----|
| 580+ServNodeID | 0            | 4F | 索引     | 子索引 | d0 | 0  | 0  | 0  |
| 数据长度为2个字节时     |              |    |        |     |    |    |    |    |
| 580+ServNodeID | 0            | 4B | 索引     | 子索引 | d0 | d1 | 0  | 0  |
|                |              | 数据 | 长度为3个等 | 字节时 |    |    |    |    |
| 580+ServNodeID | 0            | 47 | 索引     | 子索引 | d0 | d1 | d2 | 0  |
| 数据长度为4个字节时     |              |    |        |     |    |    |    |    |
| 580+ServNodeID | 0            | 43 | 索引     | 子索引 | d0 | d1 | d2 | d3 |

注: d0, d1, d2, d3 为所要传输的数据。

本例中假设节点 2 返回 582 4F 00 60 01 FD 00 00 00 ,其具体含义如图 1-5 所示。



图 1-5 节点 2 响应读取成功命令格式

节点 1 读取节点 2 中对象字典中索引为 0x6000, 子索引为 0x01 目录中的数据,即 FD 00 00 00。

②如果读取失败,则节点2返回读取失败命令。 其格式如下图1-6所示:



图 1-6 节点 2 响应读取失败命令格式

注: 其中 SDO abort code error 根据具体错误返回相应的参数,其具体参数详见附录一。

#### 4.3 节点1写入数据至节点3

#### 4.3.1 节点1 发送数据至节点3

节点 1 写入数据命令格式如表 1-8 所示 表 1-8 节点写入数据命令格式

| 100 - 0 11 W 17 200 A 11 |   |     |        |            |    |    |    |   |
|--------------------------------------------------------|---|-----|--------|------------|----|----|----|---|
| 节点 1 请求                                                |   |     |        |            |    |    |    |   |
|                                                        |   | 数据  | 长为1个字节 | <b>节</b> 时 |    |    |    |   |
| 600+ServNodeID                                         | 0 | 2F  | 索引     | 子索引        | d0 | 0  | 0  |   |
| 数据长度为2个字节时                                             |   |     |        |            |    |    |    |   |
| 600+ServNodeID                                         | 0 | 2B  | 索引     | 子索引        | d0 | d1 | 0  |   |
|                                                        |   | 数据七 | 长度为3个字 | 节时         |    |    |    |   |
| 600+ServNodeID                                         | 0 | 27  | 索引     | 子索引        | d0 | d1 | d2 |   |
| 数据长度为4个字节时                                             |   |     |        |            |    |    |    |   |
| 600+ServNodeID                                         | 0 | 23  | 索引     | 子索引        | d0 | d1 | d2 | ( |

注: d0, d1, d2, d3 为所要传输的数据。

本例中假设节点 1 发送 603 2F 00 70 01 FD 00 00 00 , 其具体含义如图 1-7 所示。



图 1-7 节点 1 写入数据实例

节点 1 将数据 FD 00 00 00 写到节点 3 对象字典索引为 7000h,子索引为 01h 的条目中。

#### 4.3.2 节点3响应节点1写入数据命令

①若写入成功,则节点3返回写入成功命令给节点1,其格式如图1-8所示:



图 1-8 节点 3 响应写入成功命令格式

#### ②若写入失败,则节点返回写入失败命令,其格式如图 1-9 所示:



图 1-9 节点 3 响应写入失败命令格式

注: 其中 SDO abort code error 根据具体错误返回相应的参数,其具体参数详见附录一。

## 参考文献

- [1] 王芳. 基于汽车总线模型的 CANopen 协议的实现 [D]. 2008.
- [2] 董石峰. 混合动力电动汽车车载网络 CANopen 协议及其应用研究 [D]. 2010.
- [3] 叶浩峰. CANopen 总线的原理以及实现 [D]. 2005.
- [4] 张厚林. CANopen 通讯协议设计与实现 [D]. 2009.
- [5] 闫士珍. CANopen 主栈及混合动力电动汽车 CANopen 行规设计 [D]. 2008.
- [6] 周跃峰. CANopen 协议在冗余系统中的应用研究 [D]. 2009.
- [7] 田山. 基于 CANopen 协议的网络主控制器的设计 [D]. 2008.
- [8] 宋晓强. CAN bus 高层协议 CANopen 的研究以及在模块化 CAN 控制器上的实现 [D]. 2004.
- [9] 蒋智康. 基于 CANopen 协议的分布式控制系统的研究 [D]. 2008.
- [10] 王瑞鹏. 基于 CANopen+uC/OS\_II 平台的主从节点通信 [D]. 2007.
- [11] 张晓阳. 基于 CANopen 协议的分布式控制系统智能从站设计 [D]. 2010.
- [12] 陈涛. 汽车仪表的 CANopen 节点通信的研究与实现 [D]. 2007.
- [13] 宋威. CANOPEN 现场总线应用层协议主站的开发与实现 [D]. 2008.
- [14] 李昱. 基于 CANopen 协议的工程车辆网络系统的设计与实现 [D]. 2008.
- [15] CANopen Application Layer and Communication Profile. CiA Draft Standard 301, Version 4.02,2002
- [16] 饶运涛等.现场总线 CAN 原理与应用技术(第2版).北京: 北京航天航空大学出版社.2007
- [17] 广州周立功单片机发展有限公司.CANopen 协议介绍

# 附录一:

## 附录 SDO abort code error

| 1 1 15 77   | IN THE ALLERA IN            |
|-------------|-----------------------------|
| 中止代码        | 代码功能描述                      |
| 05 03 00 00 | 触发位没有交替改变                   |
| 05 04 00 00 | SDO 协议超时                    |
| 05 04 00 01 | 非法或未知的 Client/Server 命令字    |
| 05 04 00 02 | 无效的块大小(仅 Block Transfer 模式) |
| 05 04 00 03 | 无效的序号(仅 Block Transfer 模式)  |
| 05 03 00 04 | CRC 错误(仅 Block Transfer 模式) |
| 05 03 00 05 | 内存溢出                        |
| 06 01 00 00 | 对象不支持访问                     |
| 06 01 00 01 | 试图读只写对象                     |
| 06 01 00 02 | 试图写只读对象                     |
| 06 02 00 00 | 对象字典中对象不存在                  |
| 06 04 00 41 | 对象不能够映射到 PDO                |
| 06 04 00 42 | 映射的对象的数目和长度超出 PDO 长度        |
| 06 04 00 43 | 一般性参数不兼容                    |
| 06 04 00 47 | 一般性设备内部不兼容                  |
| 06 06 00 00 | 硬件错误导致对象访问失败                |
| 06 06 00 10 | 数据类型不匹配,服务参数长度不匹配           |
| 06 06 00 12 | 数据类型不匹配,服务参数长度太大            |
| 06 06 00 13 | 数据类型不匹配,服务参数长度太短            |
| 06 09 00 11 | 子索引不存在                      |
| 06 09 00 30 | 超出参数的值范围(写访问时)              |
| 06 09 00 31 | 写入参数数值太大                    |
| 06 09 00 32 | 写入参数值太小                     |
| 06 09 00 36 | 最大值小于最小值                    |
| 08 00 00 00 | 一般性错误                       |
| 08 00 00 20 | 数据不能传送或保存到应用                |
| 08 00 00 21 | 由于本地控制导致数据不能传送或保存到应用        |
| 08 00 00 22 | 由于当前设备状态导致数据不能传送或保存到应用      |
| 08 00 00 23 | 对象字典动态产生错误或对象字典不存在          |