ÁLGEBRA II (61.08 - 81.02)

Evaluación integradora Duración: 3 horas. Primer cuatrimestre - 2022 17/VIII/22 - 9:00 hs.

Apellido y Nombres:

Legajo:

Curso:

1. Sea Π la proyección de \mathbb{R}^3 sobre el plano $\{x \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}$ en la dirección de la recta $\{x \in \mathbb{R}^3 : x_1 - x_2 = 0, x_2 - x_3 = 0\}$. Hallar la imagen por Π del triángulo de vértices $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$, $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$, $\begin{bmatrix} 1 & 2 & 2 \end{bmatrix}^T$.

2. Sea $A \in \mathbb{R}^{3 \times 3}$ la matriz definida por

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 2 & 3 & 0 \\ 0 & 2 & 3 \end{bmatrix}.$$

Hallar la solución del problema de valores iniciales Y' = AY, $Y(0) = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$.

3. Sea $A \in \mathbb{R}^{3 \times 3}$ la matriz simétrica de traza nula tal que $\begin{bmatrix} -1 & 2 & 2 \end{bmatrix}^T \in \text{nul}(A-2I)$ y $\det(A) = 2$. Calcular $\begin{bmatrix} 4 & 1 & 1 \end{bmatrix} A$.

4. Sea $T: \mathbb{R}^3 \to \mathbb{R}^2$ la transformación lineal definida por T(x) = Ax, donde

$$A = \begin{bmatrix} 6 \\ 6 \end{bmatrix} \begin{bmatrix} 6 & 3 & 2 \end{bmatrix} - \begin{bmatrix} 2 \\ -2 \end{bmatrix} \begin{bmatrix} -3 & 2 & 6 \end{bmatrix}.$$

Sea $K \subset \mathbb{R}^2$ la imagen por T de la esfera unitaria $\{x \in \mathbb{R}^3 : ||x|| = 1\}$. Graficar K y determinar sus puntos más lejanos del origen.

Sea Q la forma cuadrática en R² definida por Q(x) = x^T (9I − vv^T) x, donde v = [3 4]^T.
Graficar el conjunto {x ∈ R² : Q(x) = −1} y determinar sus puntos más cercanos al origen.