The Lean-HoTT library and HITs in Lean

Floris van Doorn

Carnegie Mellon University

March 18, 2016

Differences between standard Lean and HoTT Lean

- The lowest universe is neither impredicative, nor proof irrelevant.
- The univalence axiom is assumed.
- There are two HITs primitive, the *n*-truncation and *quotients*.

Given $A: \mathcal{U}$ and $R: A \rightarrow A \rightarrow \mathcal{U}$ the quotient is:

HIT $quotient_A(R) :=$

- $q: A \rightarrow quotient_A(R)$
- $\bullet \ \Pi(x,y:A), \ R(x,y) \to q(x) = q(y)$

Quotients

Using quotients, we can easily define pushouts and colimits, hence we also get suspensions, spheres, wedge products, smash products,

With some more work we can define the propositional truncation and HITs with 2-constructors.

Work in progress: we can also define n-truncations and certain (ω -compact) localizations (Egbert Rijke).

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1					+	+	+	+	+		+	+			
2	+	+	+	+		+	+	+	+	+	+	+	+	+	+
3	+	+	+	+	$\frac{1}{2}$	+	+	+	+		+				
4	_	+	+	+		+	+	+	+						
5	_		$\frac{1}{2}$	-	-			$\frac{1}{2}$							
6		+	+	+	+	+	+	+	<u>3</u>	$\frac{1}{4}$	$\frac{3}{4}$	+			
7	+	+	+	-		-	-								
8	+	+	+	$\frac{3}{4}$	$\frac{3}{4}$	<u>3</u>	-	-	$\frac{1}{2}$	-					
9	<u>3</u>	+	+	$\frac{1}{2}$		$\frac{1}{2}$	-	-	-						

HoTT-Lean: \sim 35k lines

HoTT-Coq: \sim 40k lines (in theories/ folder)

HoTT-Agda: \sim 23k lines (excluding old/ folder)

Furthermore, the library includes the following which are not in the book:

• A library of squares, cubes, pathovers, squareovers, cubeovers

```
definition circle.rec {P : S^1 \rightarrow Type} (Pbase : P base) (Ploop : Pbase = [loop] Pbase) (x : circle) : P x
```

Furthermore, the library includes the following which are not in the book:

A library of squares, cubes, pathovers, squareovers, cubeovers

```
\begin{array}{ll} \textbf{definition} \  \, \text{circle.rec} \  \, \{\text{P} \ : \ S^1 \ \to \ \text{Type}\} \  \, (\text{Pbase} \ : \ \text{P base}) \\ \text{(Ploop} : Pbase = [loop] Pbase) \  \, (\text{x} : \text{circle}) \ : \ P \ \text{x} \end{array}
```

A library of pointed types, pointed maps, pointed homotopies, pointed equivalences

```
\begin{array}{lll} \textbf{definition} & \textbf{iterated\_loop\_ptrunc\_pequiv} \\ & (\texttt{n}: \mathbb{N}_{-2}) \text{ (k}: \mathbb{N}) \text{ (A}: \texttt{Type*)}: \\ & \Omega[\texttt{k}] \text{ (ptrunc (n+k) A)} & \simeq * \text{ ptrunc n (}\Omega[\texttt{k}] \text{ A}) \end{array}
```

Furthermore, the library includes the following which are not in the book:

A library of squares, cubes, pathovers, squareovers, cubeovers

```
\begin{array}{ll} \textbf{definition} \  \, \text{circle.rec} \  \, \{\text{P} \ : \ S^1 \ \to \ \text{Type}\} \  \, (\text{Pbase} \ : \ \text{P base}) \\ \text{(Ploop} : Pbase = [loop] Pbase) \  \, (\text{x} : \text{circle}) \ : \ P \ \text{x} \end{array}
```

A library of pointed types, pointed maps, pointed homotopies, pointed equivalences

```
 \begin{array}{lll} \textbf{definition} & \textbf{iterated\_loop\_ptrunc\_pequiv} \\ & (\texttt{n} : \mathbb{N}_{-2}) \text{ (k} : \mathbb{N}) \text{ (A} : \texttt{Type*)} : \\ & \Omega[\texttt{k}] \text{ (ptrunc (n+k) A)} & \simeq * \text{ ptrunc n (}\Omega[\texttt{k}] \text{ A)} \\ \end{array}
```

• Some more category theory than the book, e.g. limits, colimits and exponential laws:

```
definition functor_functor_iso (C D E : Precategory) : (C ^c D) ^c E \congc C ^c (E \timesc D)
```

Loop space of the circle:

```
definition base_eq_base_equiv : base = base \simeq \mathbb{Z} definition fundamental_group_of_circle : \pi_1(S^1.) = g\mathbb{Z}
```

Connectedness of suspensions:

```
definition is_conn_susp (n : \mathbb{N}_{-2}) (A : Type)
[H : is_conn n A] : is_conn (n .+1) (susp A)
```

The hopf fibration: definition hopf : susp $A \rightarrow Type :=$ susp.elim_type A A $(\lambda a, equiv.mk (\lambda x, a * x) !is_equiv_mul_left)$ definition hopf.total (A : Type) [H : h_space A] [K : is_conn 0 A] : sigma (hopf A) \simeq join A A definition circle_h_space : h_space S1 definition sphere_three_h_space : h_space (S 3)

The Freudenthal equivalence (ported from Agda):

```
definition freudenthal_pequiv (A : Type*) {n k : \mathbb{N}} [is_conn n A] (H : k \leq 2 * n) : ptrunc k A \simeq* ptrunc k (\Omega (psusp A))
```

The long exact sequence of homotopy groups.

The long exact sequence of homotopy groups.

$$F \xrightarrow{\pi_1} X \xrightarrow{f} Y$$

The long exact sequence of homotopy groups.

$$F^{(6)} \xrightarrow{\pi_1^{(6)}} F^{(5)} \xrightarrow{\pi_1^{(5)}} F^{(4)} \xrightarrow{\pi_1^{(4)}} F^{(3)} \xrightarrow{\pi_1^{(3)}} F^{(2)} \xrightarrow{\pi_1^{(2)}} F \xrightarrow{\pi_1} X \xrightarrow{f} Y$$

The long exact sequence of homotopy groups.

$$F^{(6)} \xrightarrow{\pi_1^{(6)}} F^{(5)} \xrightarrow{\pi_1^{(5)}} F^{(4)} \xrightarrow{\pi_1^{(4)}} F^{(3)} \xrightarrow{\pi_1^{(3)}} F^{(2)} \xrightarrow{\pi_1^{(2)}} F \xrightarrow{\pi_1} X \xrightarrow{f} Y$$

$$\downarrow | \qquad \downarrow |$$

$$\Omega F^{(3)} \qquad \Omega F^{(2)} \qquad \Omega F \qquad \Omega X \qquad \Omega Y$$

The long exact sequence of homotopy groups.

$$F^{(6)} \xrightarrow{\pi_{1}^{(6)}} F^{(5)} \xrightarrow{\pi_{1}^{(5)}} F^{(4)} \xrightarrow{\pi_{1}^{(4)}} F^{(3)} \xrightarrow{\pi_{1}^{(3)}} F^{(2)} \xrightarrow{\pi_{1}^{(2)}} F \xrightarrow{\pi_{1}} X \xrightarrow{f} Y$$

$$\downarrow | \qquad \qquad \downarrow | \qquad \downarrow | \qquad \qquad \downarrow | \qquad \downarrow$$

The long exact sequence of homotopy groups.

$$F^{(6)} \xrightarrow{\pi_{1}^{(6)}} F^{(5)} \xrightarrow{\pi_{1}^{(5)}} F^{(4)} \xrightarrow{\pi_{1}^{(4)}} F^{(3)} \xrightarrow{\pi_{1}^{(3)}} F^{(2)} \xrightarrow{\pi_{1}^{(2)}} F \xrightarrow{\pi_{1}} X \xrightarrow{f} Y$$

$$\downarrow | \qquad \qquad \downarrow | \qquad \downarrow |$$

The long exact sequence of homotopy groups.

How do we formalize this?

The obvious thing is to have a sequence $Z: \mathbb{N} \to \mathcal{U}$ and maps $f_n: Z(n+1) \to Z(n)$.

Problem: $Z_{3n} = \pi_n(Y)$ doesn't hold definitionally, hence $f_{3n} = \pi_n(f)$ isn't even well-typed.

Better: Take $Z : \mathbb{N} \times 3 \to \mathcal{U}$, we can define Z by

$$Z_{(n,0)} = \pi_n(Y)$$
 $Z_{(n,1)} = \pi_n(X)$ $Z_{(n,2)} = \pi_n(F).$

Then we need maps $f_x: Z(succ(x)) \to Z(x)$, where *succ* is the successor function for $\mathbb{N} \times 3$.

Better: Take $Z : \mathbb{N} \times 3 \to \mathcal{U}$, we can define Z by

$$Z_{(n,0)} = \pi_n(Y)$$
 $Z_{(n,1)} = \pi_n(X)$ $Z_{(n,2)} = \pi_n(F)$.

Then we need maps $f_x: Z(succ(x)) \to Z(x)$, where succ is the successor function for $\mathbb{N} \times 3$.

Even better: Use $\mathbb{N} \times 6$ instead of $\mathbb{N} \times 3$, because the functions are naturally periodic with period 6.

Better: Take $Z : \mathbb{N} \times 3 \to \mathcal{U}$, we can define Z by

$$Z_{(n,0)} = \pi_n(Y)$$
 $Z_{(n,1)} = \pi_n(X)$ $Z_{(n,2)} = \pi_n(F)$.

Then we need maps $f_x: Z(succ(x)) \to Z(x)$, where succ is the successor function for $\mathbb{N} \times 3$.

Even better: Use $\mathbb{N} \times 6$ instead of $\mathbb{N} \times 3$, because the functions are naturally periodic with period 6.

We define chain complexes over an arbitrary type with a successor operation.

```
definition homotopy_groups : +6N → Set*
| (n, fin.mk 0 H) := \pi*[2*n] Y
| (n, fin.mk 1 H) := \pi*[2*n] X
| (n, fin.mk 2 H) := \pi*[2*n] (pfiber f)
| (n, fin.mk 3 H) := \pi*[2*n + 1] Y
| (n, fin.mk 4 H) := \pi*[2*n + 1] X
| (n, fin.mk k H) := \pi*[2*n + 1] (pfiber f)
```

```
definition homotopy_groups_fun : \Pi(n : +6\mathbb{N}),
  homotopy_groups (S n) →* homotopy_groups n
(n, fin.mk \ 0 \ H) := \pi \rightarrow *[2*n] \ f
| (n, fin.mk 1 H) := \pi \rightarrow *[2*n] (ppoint f)
(n, fin.mk 2 H) := \pi \rightarrow *[2*n] (boundary_map f) \circ *
  pcast (ap (ptrunc 0) (loop_space_succ_eq_in Y (2*n)))
(n, fin.mk\ 3\ H) := \pi \rightarrow *[2*n+1] f \circ *tinverse
(n, fin.mk 4 H) := \pi \rightarrow *[2*n + 1] (ppoint f) 0* tinverse
(n, fin.mk 5 H) := (\pi \rightarrow *[2*n + 1] (boundary_map f) \circ *
    tinverse) o* pcast (ap (ptrunc 0) (loop_space_succ_eq_in
     Y (2*n+1))
(n, fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm
     H, apply le_add_left end
```

Then we prove:

- These maps form a chain complex
- This chain complex is exact
- homotopy_groups (n + 1, k) are commutative groups.
- homotopy_groups (0, k + 3) are groups.
- homotopy_groups_fun (n + 1, k) are group homomorphisms.
- homotopy_groups_fun (0, k + 3) are group antihomomorphisms (TODO).

Corollary:

```
theorem is_equiv_\pi_of_is_connected {A B : Type*} 
 (n k : \mathbb{N}) (f : A \rightarrow* B) [H : is_conn_fun n f] 
 (H2 : k \leq n) : is_equiv (\pi \rightarrow[k] f) 
 (caveat: proof currently incomplete for k=1)
```