PROPORTIONNALITÉ

I) RAPPEL

Dans les problèmes concrets utilisant la proportionnalité, on est souvent amené à chercher le « nombre manquant » dans un tableau de proportionnalité. Pour cela, plusieurs approches sont possibles :

1) En utilisant la proportionnalité des lignes

Ex: 12 m de tissus coûtent 4 €. Combien coûtent 30 m?

Appelons x le prix cherché en \in .

Longueur de tissus (m)		7/3
Prix (€)		

 $\chi =$

30 m de tissus coûtent donc

2) En utilisant la proportionnalité des colonnes

Ex: 11 kg de bananes coûtent 13 €. Combien coûtent 22 kg?

Appelons x le prix cherché en \in .

Masse de bananes (kg)		
Prix (€)		
	×	2

x =

22 kg de bananes coûtent donc

3) En passant par l'unité

Ex : Pour faire 250 g de confiture, il faut 130 g de fruits. Combien faut-il de fruits pour faire 400 g de confiture ?

Appelons x la masse de fruits cherchée en g.

Masse de confiture (g)		
Masse de fruits (g)		
	1	<u></u>

 $\chi =$

Pour faire 400 g de confiture, il faut donc g de fruits.

II) PRODUIT EN CROIX

1) Cas général

Soit le tableau de propo<u>rtionnalité ci-dessous avec a, b, c</u> et d non nuls

Grandeur 1	а	С
Grandeur 2	b	d

Les grandeurs étant proportionnelles, on a : $\frac{a}{b} = \frac{c}{d}$

En faisant un produit en croix (cf chapitre sur les fractions),

on obtient:

En divisant les deux membres de ce produit en croix successivement par chacune des lettres ci-dessus, on obtient :

$$a = \frac{bc}{d}$$

$$b = d =$$

Cette façon d'obtenir directement le nombre manquant dans un tableau de proportionnalité s'appelle « la règle de trois ».

2) Dans les exercices

Il n'est désormais plus exigé de reproduire le tableau de proportionnalité sur votre copie.

Ex : Une voiture roulant à vitesse constante, a parcouru 105 km en 1 h et 15 min. Combien de temps lui faudra-t-il pour parcourir 140 km qu'il lui reste à faire ?

Appelons t le temps cherché en minutes.

$$t =$$

Pour faire 140 km, il lui faudra donc

III) CARACTÉRISATION GRAPHIQUE

Ex: On s'intéresse au périmètre et à l'aire d'un carré en fonction de la longueur de son côté.

Côté (cm)	0	1	2	3	4	5
Périmètre (cm)						
Aire (cm²)						

Représentons ces données par un graphique :

Dans le cas ci-dessus, le périmètre est proportionnel au côté (p=4c) et les points associés au périmètre sont sur une ligne droite passant par l'origine du repère.

En revanche, l'aire n'est pas proportionnelle au côté et les points associés à l'aire ne sont pas sur une droite.

Propriété : (admise)

Lorsque deux grandeurs sont proportionnelles, les points représentant ces deux grandeurs sont alignés et la droite formée passe par l'origine du repère.

Propriété réciproque :

Lorsque les points représentant deux grandeurs sont alignés et que la droite formée passe par l'origine du repère, ces deux grandeurs sont proportionnelles.

IV) APPLICATIONS

1) Pourcentages

Les pourcentages traduisent des situations de proportionnalité!

a) Calculer un pourcentage

Ex : Dans une classe de 24 élèves, 15 étudient l'anglais. Quel est le pourcentage d'élèves étudiant l'anglais ?

Appelons x ce pourcentage

Nombre d'élèves étudiant l'anglais	
Nombre total d'élèves	

x =

Il y a donc % d'élèves faisant de l'anglais dans cette classe.

b) Appliquer un pourcentage

Ex : Dans une classe de 30 élèves, 40 % sont des filles. Combien y a-t-il de filles ?

• **Méthode 1 :** Avec un tableau de proportionnalité Appelons *x* le nombre de filles

Nombre de filles				
Nombre total d'élèves				

 $\chi =$

Il y a donc filles dans cette classe.

• **Méthode 2 :** En « appliquant » directement le pourcentage Les filles représentent 40 % des 30 élèves de la classe.

Le nombre de filles est donc :

Dans cette classe, il y a donc filles.

c) Pourcentage d'augmentation ou de diminution

Ex 1 : Un pantalon qui coûtait 12,50 € vient d'augmenter de 20 %. Combien coûte-t-il désormais ?

Appelons p le nouveau prix du pantalon :

$$p =$$

Ex 2 : Bonne nouvelle ! Dans ma boulangerie, les éclairs au chocolat sont passés de 3 € à 2,70 €. De quel pourcentage ont-ils baissé ?

Appelons p ce pourcentage.

La baisse est alors : $\frac{p}{100} \times 3 =$

2) Échelle d'un plan

Sur un plan à l'échelle, les distances sur le plan sont proportionnelles aux distances réelles.

Définition:

L'échelle d'un plan est le coefficient de proportionnalité :

distance sur le plan
distance réelle

distance réelle

Ex:

Un microbe est représenté sur un livre par un cercle de diamètre 12 mm. Le schéma est à l'échelle $\frac{10000}{1}$. Quel est le diamètre réel du microbe ?

Appelons x le diamètre réel du microbe en mm.

TIPPOTOTION TO GRANITOUS TOOT	0.01 1111010	9 • • • • • • • • • • • • • • • • • • •
Diamètre sur le livre (mm)		
Diamètre réel (mm)		

x =

Le microbe mesure donc

mm de diamètre.

V) GRANDEURS COMPOSÉES :

1) Grandeurs produit, grandeurs quotient:

Dans un tableau de proportionnalité, le coefficient de proportionnalité est souvent le quotient de deux grandeurs différentes :

- L'aire d'une surface est une grandeur produit : en $m^2 = m \times m$.
- Le prix au litre de l'essence est une grandeur quotient : en €/L.
- La consommation d'une voiture est une grandeur quotient : en L/km.
- La masse volumique est une grandeur quotient : en kg/m³.
- Un débit est une grandeur quotient : en m³/s.

2) Exemple de grandeur quotient : La vitesse moyenne

La vitesse moyenne v d'un objet ayant parcouru une distance d en un temps t est le quotient : $v = \frac{d}{t}$.

Ex : Un avion parcourt 4100 km à la vitesse moyenne de 820 Km/h. Quelle sera la durée du vol ?

Appelons t la durée du vol en heures.

On alors:
$$820 = \frac{4100}{t}$$

donc t =

3) Calculs et changements d'unité

Ex 1 : Le grammage d'une feuille de papier étant de 80 g/m², calculer la masse de 500 feuilles A4.

L'aire d'une feuille A4 est :

L'aire de 500 feuilles A4 est :

La masse de 500 feuilles A4 est :

Ex 2 : La vitesse de rotation d'un disque dur est de 5400 tours/min. Calculer cette vitesse en tours/s.

$$v = \frac{5400 \text{ tours}}{1 \text{ min}} =$$

Ex 3: Convertir 15 m² en cm².

$$15 \text{ m}^2 = 15 \times (1 \text{ m})^2 =$$

Ex 4 : La vitesse du son dans l'air est d'environ 340 m/s. Exprimez cette vitesse en km/h.

v =