Discrete Structures: Homework #5

Due on 17 July 2020

Professor Jensen Section 201

Brian Ton

Problem 1

Let the universal set be the set $\{a, b, c, d, e, f, g\}$ and let $A = \{a, d, f\}$ and $B = \{d, g\}$.

- a) Find $A \cup B$.
- b) Find $A \cap B$.
- c) Find A B.
- d) Find B A.
- e) Find \overline{A} . Note that $\overline{A} = U A$
- f) Find $A \times B$.
- g) Find $\mathcal{P}(B)$.

Solution

- a) $A \cup B = \{a, d, f, g\}$
- b) $A \cap B = \{d\}.$
- c) $A B = \{a, f\}.$
- d) $B A = \{g\}.$
- e) $\overline{A} = \{b, c, e, g\}$
- f) $A \times B = \{(a,d), (d,d), (f,d), (a,g), (d,g), (f,g)\}.$
- g) $\mathcal{P}(B) = \{\emptyset, \{d\}, \{g\}, \{d, g\}\}.$

Problem 2

Consider the set $S = \{1, 2, 3, 4, 5, 6\}$. Answer each question Yes or No.

- a) Is $\{\{1,4,5\},\{2,3\},\{2,6\}\}$ a partition of S?
- b) Is $\{\{1, 2, 5\}, \{3\}, \{4, 6\}\}\$ a partition of S?
- c) Is $\{\{1,4\},\{2,3\},\{6\}\}$ a partition of S?

Solution

- a) No
- b) Yes
- c) No

Explanation

Part A

Since not all elements within the proposed partition are disjoint (i.e. the sets $\{2,3\}$ and $\{2,6\}$), it cannot be a partition of S.

Part B

Since all elements within the proposed partition are disjoint and the union of them is equal to S, it is a partition of S.

Part C

Since 5 is not in any of the elements within the proposed partition, the union of the elements is not equal to S.

Problem 3

Suppose A is a set with 8 elements. What is $|\mathcal{P}(A)|$?

Solution

$$|\mathcal{P}(A)| = 2^8 = 256$$

Explanation

Note that $|\mathcal{P}(A)| = 2^{|A|}$.

This can be proven using induction.

Base Case: Show $|\mathcal{P}(\emptyset)| = 2^{|\emptyset|}$.

$$|\emptyset| = 0$$

$$|\mathcal{P}(\emptyset)| = |\{\emptyset\}| = 1$$

$$2^{|\emptyset|} = 2^0 = 1 = |\mathcal{P}(\emptyset)|.$$

Induction Hypothesis: Assume for some fixed $k \ge 0, \forall$ sets S, if |S| = k, then $|\mathcal{P}(s)| = 2^k$.

Induction Step: Let T be a set with |T| = k + 1. Let $S = T - \{a\}$ for an arbitrary element a in T. Thus, |S| = k. Let B denote the set that contains all the elements in $\mathcal{P}(S)$ with a adjoined to them. Here, note that $|\mathcal{P}(S)| = |B|$, since the construction of B preserves the equality of cardinality. Then, note that $\mathcal{P}(T) = \mathcal{P}(S) \cup B$. Hence $|\mathcal{P}(T)| = |\mathcal{P}(S)| + |B|$. Since $|\mathcal{P}(S)| = |B|$, $|\mathcal{P}(T)| = 2 \cdot |\mathcal{P}(S)|$. By the inductive step, since $|\mathcal{P}(S)| = 2^k$, $|\mathcal{P}(T)| = 2 \cdot 2^k = 2^{k+1} = 2^{|T|}$.

 \therefore By induction, $|\mathcal{P}(A)| = 2^{|A|}$ for some arbitrary set A.

Problem 4

Define sets A and B as follows:

 $A = \{ m \in \mathbb{Z} \mid m = 3a \text{ for some integer a} \}$

 $B = \{n \in \mathbb{Z} \mid n = 3b - 3 \text{ for some integer b} \}$

Show A = B.

Solution

Part 1

Show: $A \subseteq B$.

Let $x \in A$. By definition of A, x = 3a for some $a \in \mathbb{Z}$. Let b = a + 1. Note that by closure under addition, b must be an integer. By substitution, 3b - 3 = 3(a + 1) - 3 = 3a + 3 - 3 = 3a = x. Hence, x = 3b - 3 for some $b \in \mathbb{Z}$ (namely b = a + 1). In other words, $x \in B$ and $A \subseteq B$.

Part 2

Show: $B \subseteq A$.

Let $x \in B$. By definition of B, x = 3b - 3 for some $b \in \mathbb{Z}$. Let a = b - 1. Note that by closure under addition, a must be an integer. By substitution, 3a = 3(b - 1) = 3b - 3 = x. Thus, x = 3a for some $a \in \mathbb{Z}$ (namely a = b - 1). In other words, $x \in A$ and $B \subseteq A$.

 \therefore Since $A \subseteq B$ and $B \subseteq A$, A = B.

Problem 5

Prove the statement using the subset method if it is true and find a counterexample if it is false. Assume all sets are subsets of a universal set U.

- a) For all sets A, B, and C, A (B C) = (A B) C.
- b) For all sets A and B, $A \cap (A \cup B) = A$.

Solution

- a) False
- b) True

Part A

Let $A = \{1, 2, 3, 4, 5\}$, $B = \{2, 3\}$, and $C = \{3\}$. Here, $A - (B - C) = A - (\{2\}) = \{1, 3, 4, 5\}$. Additionally, $(A - B) - C = (\{1, 4, 5\}) - C = \{1, 4, 5\}$. Note that $A - (B - C) = \{1, 3, 4, 5\} \neq (A - B) - C = \{1, 4, 5\}$. Hence, the statement is false.

Part B

Part 1

Show: $A \cap (A \cup B) \subseteq A$.

Let $x \in A \cap (A \cup B)$. By definition of intersection, $x \in A$ and $x \in (A \cup B)$. Therefore, by simplification, $x \in A$ and thus $A \cap (A \cup B) \subseteq A$.

Part 2

Show: $A \subseteq A \cap (A \cup B)$.

Let $x \in A$. By definition of union, if an element is in $A \cup B$, then the element must be in A or B. Hence, since $x \in A$, $x \in (A \cup B)$. Furthermore, by definition of an intersection, if an element is in both A and B, then it must also be in $A \cap B$. Since $x \in A$ and $x \in (A \cup B)$, $x \in A \cap (A \cup B)$ and thus $A \subseteq A \cap (A \cup B)$.

 \therefore Since $A \cap (A \cup B) \subseteq A$ and $A \subseteq A \cap (A \cup B)$, $A \cap (A \cup B) = A$.

Problem 6

State De Morgan's Laws for sets.

Solution

- 1. The complement of the union of two sets is the intersection of the complements of the two sets.
- 2. The complement of the intersection of two sets is the union of the complements of the two sets.