RISCV SINGLECORE

Gunalan N

October 2025

Figure 1: Enter Caption

Name	Fields							
(Bit position) 31:25	24:20	19:15	14:12	11:7	6:0		
) R-type [funct7	rs2	rs1	funct3	rd	opcode		
		(44.0)		6 +0				
) I-type	immediate	[11:0]	rs1	funct3	rd	opcode		
c) S-type [immed[11:5]	rs2	rs1	funct3	immed[4:0]	opcode		
SB-type	immed[12,10:5]	rs2	rs1	funct3	immed[4:1,11]	opcode		

Figure 2: Enter Caption

Input or output	Signal name	R-format	lw	SW	beq
Inputs	I [6]	0	057	0	1
	I[5]	1	0	1	1
	I[4]	1	0	0	0
	I[3]	0	0	0	0
	I[2]	0	0	0	0
	I[1]	1	1	1	1
	I[O]	1	1	1	1
Outputs	ALUSrc	0	1	1	0
	MemtoReg	0	1	Х	X
	RegWrite	1	1	0	0
	MemRead	0	1	0	0
	MemWrite	0	0	1	0
	Branch	0	0	0	1
	ALUOp1	1	0	0	0
	ALUOp0	0	0	0	1

Figure 3: Enter Caption

ALU control lines	Function
0000	AND
0001	OR
0010	add
0110	subtract

Figure 4: Enter Caption

ALUOp			Funct7 field						Funct3 field			
ALUOp1	ALUOp0	I[31]	I[30]	I[29]	I[28]	I[27]	I[26]	I[25]	I[14]	I[13]	I[12]	Operation
0	0	X	X	X	X	X	X	X	X	X	X	0010
X	1	X	X	Х	Х	Х	Х	Х	Х	Х	X	0110
1	Х	0	0	0	0	0	0	0	0	0	0	0010
1	X	0	1	0	0	0	0	0	0	0	0	0110
1	Х	0	0	0	0	0	0	0	1	1	1	0000
1	X	0	0	0	0	0	0	0	1	1	0	0001

FIGURE 4.1.3 The truth table for the 4 ALU control bits (called Operation). The inputs are the ALUOp and funct fields. Only the entries for which the ALU control is asserted are shown. Some don't-care entries have been added. For example, the ALUOp does not use the encoding 11, so the truth table can contain entries 1X and X1, rather than 10 and 01. While we show all 10 bits of funct fields, note that the only bits with different values for the four R-format instructions are bits 30, 14, 13, and 12. Thus, we only need these four funct field bits as input for ALU control instead of all 10.

Figure 5: Enter Caption

Figure 6: Enter Caption