Tema I Introducción a los SSTT Servicios de información y aplicaciones en red

Servicios Telemáticos – 3° Grado de en Ingeniería Informática

Objetivos

Introducir una visión general de la arquitectura de Internet

Asentar los conceptos de servicios, protocolos y procesos

Referencias

- Capítulo I.I-I.3, I.5 y Capítulo 2. I
 - J. F. Kurose, K.W. Ross. Computer Networking, A top-down approach featuring the Internet. 6th Ed.

Parte de estas transparencias son copyright 1996-2014 J.F. Kurose, K.W. RossAll Rights Reserved. Last update: Nov. 14, 2014 Comments welcome: kurose at cs.umass.edu

¿Qué es Internet? (I)

PC

wireless laptop

Millones de dispositivos interconectados:

- Hosts (anfitrión) = end systems
- Ejecutan aplicaciones de red

wireless links

wired links

- Fibra, cobre, radio, satélite
- Ratio de transmisión:
 - ancho de banda

- reenvía paquetes (bloques de datos)
 - routers y switches

¿Qué es Internet? (II)

- Internet: "red de redes"
 - ISPs interconectados
- protocolos para enviar y recibir mensajes: p.ej., TCP, IP, HTTP, Skype, 802. I I
- Internet standards
 - ▶ RFC: Request for comments
 - IETF: Internet Engineering Task Force

¿Qué es Internet?:Visto como un servicio

- Infraestructura que ofrece servicios a aplicaciones:
 - Web, VoIP, email, games, ecommerce, social nets, ...
- Ofrece interfaz de programación para apps
 - Permite conectar a las aplicaciones a Internet
 - Ofrece opciones de servicios

¿Qué es un protocolo?

Protocolo Humano vs Protocolo en Internet

Estructura de la red

- Extremo de la red:
 - hosts: clientes y servidores
 - Servidores habitualmente en centros de datos
- Redes de acceso, medio físico: enlaces de comunicación con cable cable o sin cable (wireless)
- Núcleo de red:
 - Routers interconectados
 - Red de redes

Redes de acceso y medio físico

Q: ¿Cómo conectar sistemas finales al edge router?

- Acceso residencial
- Acceso Institucional networks (school, company)
- Acceso a la red móvil

A tener en cuenta:

- Ancho de banda (bits por segundo) de la red de acceso
- ¿Compartido o dedicado?

El núcleo de la red

- Malla (mesh) de routers interconectados
- Conmutación de paquetes: los hosts dividen mensajes del nivel de aplicación en paquetes más pequeños
 - Los paquetes son enrutados de un router al siguiente a través de enlaces entre la fuente y el destino

Dos funciones del núcleo de red

routing: determina en base a la fuente y el destino de los paquetes el siguiente salto

Algoritmos de enrutamiento

forwarding: mueve paquetes de la entrada de un router a la interfaz de salida para el siguiente router

Alternativa: Conmutación de circuitos

- Recursos end-end reservados para una "llamada" entre la fuente y el destino
 - ▶ En el diagrama hay enlaces para 4 circuitos
 - La llamada obtiene el 2° circuito en el enlace de arriba y el ler circuito en el enlace de la derecha.
- Recursos dedicados: no se comparten
 - Rendimiento (garantizado)
 - El segmento del circuito se mantiene idle si no hay llamada (no se comparte)
- Se usa en redes telefónicas

Com. de paquetes vs com. de circuitos

- Tráfico a ráfagas (com. de paquetes)
 - Compartición de recursos
 - Más simple, sin establecimiento de llamada
- Posibilidad de congestión excesiva: retardos en los paquetes y pérdidas (Com. de paquetes)
 - Protocolos para transferencia confiable de datos, control de congestión
- Q: ¿Cómo suministrar un comportamiento como conmutación de circuitos?
 - Ancho de banda que garantiza las necesidades de aplicaciones de audio/video
 - Sin resolver todavía

- Sistemas finales (hosts) se conectan a Internet vía un Internet
 Service Providers (ISP) de acceso
 - Ej: ISP residencial, de una empresa, la Universidad.
 - Los ISPs de acceso deben estar interconectados también.
 - Así que dos hosts pueden enviarse paquetes entre ellos.
- La red de redes resultante es muy compleja
 - La evolución ha sido dirigida por temas económicos y políticas nacionales.
- Veamos la estructura interna de Internet.

Q: ¿Dado que hay millones de ISPs de acceso, ¿cómo interconectarlos entre ellos?

Opción: Conectar cada ISP de acceso con cada uno de los existentes

Opción: Conectar cada ISP de acceso con un ISP global de tránsito.
 ISP Cliente y el Proveedor ISPs tienen un acuerdo económico.

Pero si un ISP global es viable, habrá competidoresque se

... y redes regionales puede aparecer para conectar redes de acceso a ISPs.

... y redes de proveedores de contentido (e.g., Google, Microsoft, Akamai) puede montar su propia red para ofrecer servicios, y contenido cercano al

- ▶ En el centro: # pequeño de grandes redes bien interconectadas.
 - *tier-I" ISPs comerciales (e.g., Level 3, Sprint, AT&T, NTT), cobertura nacional e intern.
 - Redes de proveedores de contenidos (e.g, Google): redes privadas que conectan sus centros de datos a Internet (con frecuencia, no usan los tier-1 ni los regionales)

Ejemplo:Tier-I Sprint

Niveles en los protocolos de Internet

- Redes son complejas, con muchos componentes:
 - hosts
 - routers
 - Enlaces de varios tipos
 - Aplicaciones
 - Protocolos
 - hardware, software
- Pregunta:
 - Hay alguna esperanza de organizar la estructura de la red?

¿Por qué niveles?

- Para tratar con sistemas complejos:
 - Estructura explícita que permite la identificación, relación de componentes de sistemas complejos
 - Modelo de referencia por capas (layers)
- Modularización facilita el mantenimiento, actualización de los sistemas
 - El cambio de la implementación del servicio de una capa es transparente al resto del sistema
 - P. ej., cambio en TCP no afecta a IP

Pila de protocolos de Internet

- Aplicación: para soportar aplicaciones de red (nuestra asignatura)
 - ▶ FTP, SMTP, HTTP
- Transporte: tranferencia de datos entre procesos de hosts diferentes
 - ▶ TCP, UDP
- Red: enrutamiento de datagramas de la fuente al destino
 - ▶ IP, routing protocols
- Enlace: transferencia de datos entre elementos de red vecinos (p.ej. conectados al mismo switch)
 - ▶ Ethernet, 802.11 (WiFi), PPP
- Físico: bits "en el cable"

Seguridad en la red

- Campos de la seguridad en red:
 - ¿Cómo los chicos malos pueden atacar nuestras ordenadores en red?
 - ¿Cómo podemos defendernos?
 - ¿Cómo diseñar arquitecturas que sean inmunes a ataques?
- Internet no se diseñó con mucha seguridad en mente
 - Visión original: "un grupo de usuarios que confiaban los unos con los otros" ©
 - IMPORTANTE: Consideraciones de seguridad en todos los niveles
- Asignatura: ¡seguridad necesaria para proteger las comunicaciones de servicios telemáticos!

La capa de Aplicación

el objetivo de esta asignatura

- aspectos conceptuales y de implementación de protocolos de aplicaciones en red
 - modelos de servicio de capa de transporte
 - paradigma clienteservidor
 - paradigma peer-to-peer

- aprender sobre
 protocolos examinando
 protocolos de nivel de
 aplicación conocidos
 - HTTP
 - **FTP**
 - SMTP / POP3 / IMAP
 - DNS
- crear aplicaciones en red
 - socket API

Algunas aplicaciones en red

- e-mail
- web
- mensajes de texto
- login remoto
- compartición de ficherosP2P
- juegos en red multiusuario
- retransmisión (streaming)
 de video almacenado
 (YouTube, Hulu, Netflix)

- Voz sobre IP (e.g., Skype)
- video conferencia en tiempo real
- redes sociales
- motores de búsqueda
- **...**
- ...

Creando una nueva app

escribir programas que:

- > se ejecutan en (diferentes) sistemas finales
- se comunican a través de la red
- ej., software de servicio web que se comunica con el software de un navegador

no es necesario escribir software para dispositivos de nucleo de red

- no ejecutan aplicaciones de usuario
- las aplicaciones en sistemas finales permiten un rápido desarrollo y propagación

Arquitecturas de las aplicaciones

Posibles estructuras de aplicaciones:

- cliente-servidor
- peer-to-peer (P2P)

Arquitectura cliente-servidor

Servidor:

- siempre activo y en-línea
- dirección IP permanente
- en centro de datos por escalabilidad

Clientes:

- se comunican con el servidor
- pueden estar intermitentemente conectados
- pueden tener una IP dinámica
- no se comunican directamente entre ellos

Arquitectura P2P

- no hay servidor siempre en-línea
- sistemas finales se comunican directm. de modo arbitrario
- equipos solicitan un servicio desde otros equipos, y ofrece el servicio en respuesta a otros equipos
 - auto-escalable— nuevos equipos añaden nueva capacidad al servicio, así como nuevas demandas del servicio
- equipos están intermitentem.
 conectados y cambian de IP
 - gestión compleja

Comunicación de procesos

- *proceso:* programa en ejecución en un host
- en el mismo host, dos procesos se comunican usando comunicación interproceso (definida por el SO)
- procesos en diferentes hosts se comunican mediante el intercambio de mensajes

clientes, servidores

proceso cliente: proceso que inicia una comunicaciónproceso servidor: proceso que espera ser contactado

 además: aplicaciones en arquitecturas P2P tienen procesos clientes y servidores

Sockets

- Los procesos envían/reciben mensajes hacia/desde su socket
- Un socket es análogo a una puerta
 - proceso que envía "empuja" mensajes de puertas a fuera
 - proceso que envía confía en la infraestructura de transporte al otro lado de la puerta para entregar el mensaje al socket del proceso que recibe

Direccionamiento de procesos

- para recibir mensajes el proceso debe tener un identificador
- un host tiene una dirección
 IP única de 32-bit
- P: ¿Es suficiente la IP de un host para identificar un proceso?
 - R: no, en un host se pueden ejecutar muchos procesos simultaneamente

- identificador incluye tanto dirección IP como números de puerto asociados con el proceso en el host
- ejemplo de números de puerto:
 - servidor HTTP: 80
 - servidor de correo: 25
- para enviar un mensaje al servidor web gaia.cs.umass.edu :
 - dirección IP: 128.119.245.12
 - número de puerto: 80

Un protocolo de nivel de aplicación define ...

- tipos de mensajes intercambiados
 - ej.: consulta, respuesta
- sintaxis de los mensajes
 - qué campos hay en el mensaje y cómo se delimitan
- semántica del mensaje
 - significado de la información en los campos
- reglas
 - cuándo y cómo los procesos envían y reciben mensajes

protocolos abiertos:

- definidos en RFCs
- permiten interoperabilidad
- ▶ ej., HTTP, SMTP

protocolos propietarios:

▶ ej., Skype

¿Qué servicio de transporte necesita una aplicación?

integridad de datos

- algunas aplicaciones (ej., transferencia de ficheros, transferencia web) requiren 100% de fiabilidad
- otras aplicaciones (ej., audio) pueden tolerar algunas pérdidas

temporización

 algunas aplicaciones (ej., telefonía por Internet, juegos interactivos) requiren un retardo bajo para ser "eficaces"

rendimiento

- algunas aplicaciones (ej., multimedia) requieren un rendimiento alto para ser "eficaces"
- algunas aplicaciones
 ("aplicaciones elásticas")
 hacen uso del rendimiento que
 tienen disponible

seguridad

cifrado, integridad de datos...

Req. servicio de transporte: apps comunes

Application	Data Loss	Throughput	Time-Sensitive
File transfer/download	No loss	Elastic	No
E-mail	No loss	Elastic	No
Web documents	No loss	Elastic (few kbps)	No
Internet telephony/ Video conferencing	Loss-tolerant	Audio: few kbps—1Mbps Video: 10 kbps—5 Mbps	Yes: 100s of msec
Streaming stored audio/video	Loss-tolerant	Same as above	Yes: few seconds
Interactive games	Loss-tolerant	Few kbps—10 kbps	Yes: 100s of msec
Instant messaging	No loss	Elastic	Yes and no

Servicios de protocolos de transporte en Internet

servicio TCP:

- transporte confiable entre los procesos emisor y receptor
- control de flujo: servidor no "satura" al cliente
- control de congestión: se ralentiza al emisor cuando la red está sobrecargada
- no ofrece: temporización, rendimiento mínimo garantizado, seguridad
- orientado a conexión: se debe establecer una conexión inicial entre los procesos emisor y receptor

servicio UDP:

- transferencia de datos no confiable entre los procesos emisor y receptor
- no ofrece: transporte confiable, control de flujo, control de congestión, temporización, rendimiento garantizado, seguridad, establecimiento de conexión
- P: ¿por qué? ¿por qué existe UDP?

Aplicaciones en Internet y protocolo de transporte

Application	Application-Layer Protocol	Underlying Transport Protocol
Electronic mail	SMTP [RFC 5321]	TCP
Remote terminal access	Telnet [RFC 854]	TCP
Web	HTTP [RFC 2616]	TCP
File transfer	FTP [RFC 959]	TCP
Streaming multimedia	HTTP (e.g., YouTube)	TCP
Internet telephony	SIP [RFC 3261], RTP [RFC 3550], or proprietary (e.g., Skype)	UDP or TCP

Seguridad con TCP

- TCP & UDP
 - no hay cifrado
 - passwords en claro enviados sobre sockets cruzan Internet en claro
- SSL
 - ofrece cifrado a TCP
 - integridad de datos
 - autenticación de los extremos

- SSL está en la capa de aplicación
 - Aplicaciones usan librerías SSL, que "hablan" con TCP
- API para sockets SSL
 - passwords en claro enviados sobre sockets SSL cruzan Internet cifrados

Bibliografía

- Capítulos 1.1-1.3, 1.5 y 2.1.
 - J. F. Kurose, K.W. Ross. Computer Networking, A top-down approach featuring the Internet. 6th Ed.

Parte de estas transparencias son copyright 1996-2014 J.F. Kurose, K.W. RossAll Rights Reserved. Last update: Nov. 14, 2014 Comments welcome: kurose at cs.umass.edu

