Nirma University

Institute of Technology

Semester End Examination (IR), December - 2019

B. Tech. in Computer Engineering / Information Technology, Semester-V CE501 Theory of Computation

Roll / Exam No. Time: 3 Ho	Supervisor's With Date	Initial Total Marks: 100	
Instruction	1. Figures to the right indicate marks. 2. Draw neat sketches wherever necessary 3. Assume abbreviations: (1) DFA- Deterministic finite (2) NFA- Non Deterministic fi (3) PDA-Push down Automata	nite automaton	
0.1	Section - I		[16]
Q:1	Answer the following question. (4 X 4)		[16]
A co1,L2	Prove using mathematical induction that for ever $\sum_{i=1}^{n} i * 2^{i} = (n-1) * 2^{n+1} + 2$	y positive integer n,	
B co1,L2	Write recursive definitions for the following languages. (a) The set L, as length function to calculate length of the string (b) The set A of all the strings of the form aibj such that i>=2j		
C co2,L3	Let L be the language mentioned as: the set of s 1, 2} that do not have two consecutive identical strings of L are any string in {0, 1, 2}* such that t 00, no occurrence of 11, and no occurrence of above language.	symbols. (Explanation: here is no occurrence of	
D co1,L2	(a) What is the relationship between 2^{AUB} and 2^{AU} (b) What is the relationship between $2^{(A')}$ and (2^A)		
Q:2	Answer the following Questions.		[16]
A co2,L2	Write down Regular Expression for following Land. The language of all strings with atleast two 1's and 2. The language of all strings that do not contain	l atmost two 0's.	[04]
B co3,L3	Design an NFA for the language L = {w w is a C consider $\Sigma = \{*, a,/\}$, where 'a' is the valid C state OR		[06]
B co3,L4	Design a DFA over binary input such that whe converted into the corresponding decimal valuations of the DFA should not accept the least	ie, then the number is	[06]

C Design DFA accepting the language L_2 - L_1 in $\{0,1\}^*$ for the following co3,L4 language.

[06]

L1= { Strings containing the substring 11 }

L2= { Strings do not end with 11}

Q:3 Answer the following Questions.

[18]

A Convert Following NFA-∧ to DFA.

[06]

co4,L2

B Describe the importance of pumping lemma. Show that the language co1,L2 L={0p | P is the prime number} is not regular language using pumping lemma.

[06]

C Minimize following Finite automata.

[06]

co4,L4

OR

C Minimize following Finite automata.

[06]

co4,L4

Section - II

Q:4 Answer the following question. Justify your answer. (4 X 4)

[16]

(1) Find out CFG for the language L, where $L(G) = \{w \# w^r x \mid w^r \text{ is reverse string of } w \text{ and } x \in \{a,b\}^*$

(2) co2,L2	Describe the language for which following CFG is designed. a. S -> aSa bSb a b b. S -> SS bTT TbT TTb null and T -> aS SaS Sa a		
(3) co2,L3	Find the language accepted by the following grammar: $S \to 0X \mid 1Y \mid ^$ $X \to 0S \mid 1Z$ $Y \to 1S \mid 0Z$ $Z \to 0Y \mid 1X$		
(4) co2,L2	Find out CFG for the language L, where $L(G) = \{(ab)^n (cb^m)^n \mid n>0, m>0\}$		
Q:5 A 1 co3,L3	Answer the following Questions. Do as directed. Is it possible to design a deterministic PDA (DPDA) for the language $L=\{ww^r\}$ where $w\in\{a,b\}^*$? Give reason for our answer. If it is not accepted by DPDA then design the corresponding non deterministic PDA which accepts the given language. OR	[18] [12] [06]	
1 co3,L3	Design a PDA to accept the language L where L \in {a,b,c}* and L = {a $^ib^j$ ck i=j or i=k }. Trace the designed PDA to accept the string "aaabccc".	[06]	
2 co3,L3	Design a PDA to recognize the set of all strings over $\{0,1\}$ that ends with 101.	[06]	
B co4,L3	Convert following CFG to CNF $S \rightarrow ABC \mid BaB$ $A \rightarrow aA \mid BaC \mid aaa \mid BD$ $B \rightarrow bBb \mid a \mid D$ $C \rightarrow CA \mid AC$ $D \rightarrow ^$	[06]	
Q:6	Answer the following Questions.	[16]	
A co4,L3	Draw a Turing machine for the language L to compute n mod 3.(unary number as input) $f(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{otherwise} \end{cases}$	[06]	
B co4,L3	Draw a Turing machine for function f from N to N, $f(X) = X+X^2$. (unary number as input)	[06]	
B co3,L3	Draw a Turing machine to delete the occurrence of special character '@' from the string of binary input. If the input is 0100@11 then the machine should delete the '@' and give 010011 as output.	[06]	
C co2,L4	Check whether following grammar is ambiguous or not. Find out an equivalent unambiguous grammar. $S \rightarrow a \mid aAb \mid bS$	[04	