GRADUATE TOPOLOGY NOTES

ISAAC

ABSTRACT. These are some of the notes I took during my graduate topology courses. They cover the basics for Point-set, Algebraic, and Differential Topology. They emphasizing the definitions, big theorems, and exercises for each theory. Hard/unintuitive exercises are marked with an asterisk.

Contents

Point-Set Topology	1
Algebraic Topology	2
Differential Topology	8

POINT-SET TOPOLOGY

Basic Topology.

Definition. In a space X, an **open neighborhood** of a point $x \in X$ is an open set U such that $x \in U \subseteq X$; a **neighborhood** of a point $x \in X$ is a set $V \subseteq X$ containing an open neighborhood; i.e. there exists an open U satisfying $x \in U \subseteq V$.

Quotient Spaces.

Theorem. (Characteristic Property of Quotient Maps) If $p: X \to Y$ is a quotient map, a map $f: Y \to Z$ is continuous if and only if $f \circ p$ is continuous.

Connectedness.

Definition. A space X is **connected** if there does not exist a **separation** of X, i.e. a pair of nonempty, disjoint, open sets $U, V \subset X$ covering X.

Definition. A space X is **locally connected** if every open neighborhood of every point contains a connected open neighborhood.

Definition. A space X is **path-connected** if for every pair of points $a, b \in X$, there exists a path $\gamma: I \to X$ from a to b, i.e. $\gamma(0) = a$ and $\gamma(1) = b$.

Definition. A space X is **locally path-connected** if every open neighborhood of every point contains a path-connected open neighborhood.

- **Exercise.** Prove I = [0,1] is connected. Conclude that path-connected implies connected.
- ▶ Exercise. Give an example of a space which is path-connected, but not locally path-connected.
- ▶ Exercise. Give an example of a space which is connected, but not path-connected.
- ► Exercise. Prove that every connected, locally path-connected space is path-connected.

Compactness.

Definition. A space X is **compact** if every open cover of X has a finite subcover.

Definition. A space X is **sequentially-compact** if every sequence has a convergent subsequence.

Theorem. (Heine-Borel) A subset of \mathbb{R}^n is compact if and only if it is closed and bounded.

Theorem. (Bolzano-Weierstrass) A bounded sequence in \mathbb{R}^n has a convergent subsequence.

- ▶ Exercise. Show every closed subspace of a compact space is compact.
- ▶ Exercise. Show every compact subspace of a Hausdorff space is closed.
- ▶ Exercise. Show I = [0, 1] is compact. Conclude that Heine-Borel holds.
- ▶ Exercise. Prove Bolzano-Weierstrass; use this theorem to show a subset of \mathbb{R}^n is sequentially-compact if and only if it is closed and bounded.*
- ▶ Exercise. Prove compact and sequential compactness are equivalent in metric spaces.*

Definition. A space X is **locally compact** if every point has a compact neighborhood.

Proper Maps.

Definition. A map between spaces is **proper** if the preimage of every compact subspace is compact.

- **Exercise.** Let Y be a locally compact, Hausdorff space. Prove a proper map $X \to Y$ is closed.
- ▶ Exercise. Give an example of a proper map whose image is not closed.

Metrizability.

Definition. A space with a metric is said to be **metrizable**.

Theorem. (Urysohn's Theorem) A regular, Hausdorff, second-countable space is metrizable.

▶ Exercise. Prove that manifolds are metrizable.

Algebraic Topology

Homotopy Basics.

Definition. A map is **nullhomotopic** if it is homotopic to a constant map.

Definition. A retract of X onto $A \subseteq X$ is a map $r: X \to X$ with r(X) = A and $r|_A = \mathbb{1}_A$.

Definition. A **deformation retract** of a space X onto a subspace A is a homotopy $f_t \colon X \to X$ relative to A with $f_0 = \mathbb{1}_X$ and $f_1(X) = A$.

▶ Exercise. Relate deformation retract and retract in terms of homotopic maps.

Definition. A map $f: X \to Y$ is a **homotopy equivalence** if there is a map $g: Y \to X$ such that $fg \simeq \mathbb{1}$ and $gf \simeq \mathbb{1}$. In such a case, X and Y are said to be **homotopy equivalent** or to have the same **homotopy type**.

Definition. A space having the homotopy type of a point is called **contractible**.

- ▶ Exercise. Prove that a space is contractible if its identity map is nullhomotopic.
- \blacktriangleright **Exercise.** Prove if Y is contractible, [X, Y] is trivial.
- **Exercise.** Prove that if X is contractible and Y is path-connected, then [X,Y] is trivial.

Fundamental Group.

Definition. The fundamental group of X at $x \in X$ is the group $\pi_1(X, x) = [(S^1, s), (X, x)]$ under concatenation. Given a map $f: X \to Y$, the map $f_*: \pi_1(X, x) \to \pi_1(Y, y)$ defined by $f_*([\gamma]) = [f \circ \gamma]$ is called the **induced homomorphism** of f on the fundamental group.

Definition. A space is **simply connected** if its fundamental group is trivial.

- ▶ Exercise. If X retracts onto A, prove the inclusion induced homomorphism is injective. If X deformation retracts onto A, prove this map is an isomorphism.
- **Exercise**. If $X \to Y$ is a homotopy equivalence, prove the induced map is an isomorphism.

Theorem. (van Kampen) Let X be a space; $A, B \subseteq X$ path-connected; $A \cap B$ nonempty and path-connected; $x \in A \cap B$. Then $\pi_1(X, x)$ is the **free product with amalgamation** of $\pi_1(A, x)$ with $\pi_1(B, x)$, written $\pi_1(A, x) *_{\pi_1(A \cap B, x)} \pi_1(B, x)$. That is, given group presentations

$$\pi_1(A, x) = \langle a_1, \dots, a_\ell \mid r_1, \dots, r_p \rangle$$

$$\pi_1(B, x) = \langle b_1, \dots, b_m \mid s_1, \dots, s_q \rangle$$

$$\pi_1(A \cap B, x) = \langle c_1, \dots, c_n \mid t_1, \dots, t_r \rangle$$

and inclusion maps $i: A \to X$ and $j: B \to X$, we have a representation

$$\pi_1(X,x) \cong \langle a_1, \dots, a_\ell, b_1, \dots, b_m \mid r_1, \dots, r_p, s_1, \dots, s_q, i_*(c_k) = j_*(c_k) \rangle.$$

- ▶ **Exercise**. Show S^n is simply connected for $n \ge 2$, and compute $\pi_1(P^n)$.
- ▶ Exercise. Find a presentation for the fundamental group of the Klein bottle. Find a double covering map $p: T \to K$ from the torus T to K. Describe the induced homomorphism on fundamental groups.
- ▶ **Exercise**. Compute $\pi_1(F_q)$, the genus g closed connected orientable surface.

Covering Spaces.

Definition. A covering space of X is a space \widetilde{X} with a map $p \colon \widetilde{X} \to X$ such that X is covered by open sets $\{U_i\}$ having the property $p^{-1}(U_i)$ is a disjoint union of open sets in \widetilde{X} , each mapped homeomorphically by p onto U_i .

Proposition. (Homotopy Lifting in Coverings) Let $\widetilde{X} \to X$ be a covering space. Given a homotopy $f_t \colon Y \to X$ and a lift $\widetilde{f}_0 \colon Y \to \widetilde{X}$, there exists a unique homotopy $\widetilde{f}_t \colon Y \to \widetilde{X}$ lifting f_t .

Proposition. The induced map of a cover space is injective; the image subgroup consists of homotopy classes of loops whose lifts are also loops.

Proposition. The number of sheets of a path-connected cover space $p \colon \widetilde{X} \to X$ is the index of $p_*(\pi_1(\widetilde{X}, \widetilde{x}))$ in $\pi_1(X, x)$.

Proposition. (Lifting Criterion) Let $p: (\widetilde{X}, \widetilde{x}) \to (X, x)$ be a cover space, Y path-connected and locally path-connected, and $f: (Y, y) \to (X, x)$. Then a lift of f exists iff $f_*(\pi_1(Y, y)) \subset p_*(\pi_1(\widetilde{X}, \widetilde{x}))$.

- ▶ Exercise. Calculate $\pi_1(P^n)$ again. You may assume $\pi_1(S^n) = 1$, n > 1.
- ▶ Exercise. Prove every map $P^3 \to T^2$ is nullhomotopic. Prove $1: P^3 \to P^3$ is not nullhomotopic.

Definition. A space is **semilocally simply-connected** if each point $x \in X$ is contained in a neighborhood U whose inclusion induced map $\pi_1(U, x) \to \pi_1(X, x)$ is trivial.

Theorem. (Classification of Coverings) Suppose X is path-connected, locally path-connected, and semilocally simply-connected. Then there exists a bijection between the set of basepoint-preserving isomorphism classes of path-connected covering spaces $p: (\widetilde{X}, \widetilde{x}) \to (X, x)$ and the set of subgroups $\pi_1(X, x)$, obtained by associating the subgroup $p_*(\pi_1(\widetilde{X}, \widetilde{x}))$ to the covering space $(\widetilde{X}, \widetilde{x})$.

Definition. The universal cover of a space X is a simply-connected covering space \widetilde{X} .

- ► Exercise. Show homotopic spaces have the same universal covers.*
- ▶ **Exercise**. Show T^2 and $S^1 \vee S^1 \vee S^2$ are not homotopy equivalent (with(out) homotopy groups).

Definition. For a covering space $p \colon \widetilde{X} \to X$, the homeomorphisms $\widetilde{X} \to \widetilde{X}$ are called **deck** transformations. These form a group $G(\widetilde{X})$ under composition.

▶ Exercise. Draw two lifts of the 2-torus, one regular and one irregular.

Definition. A covering space $\widetilde{X} \to X$ is **normal** (or **regular**) if for any pair of lifts $\widetilde{x}_1, \widetilde{x}_2 \in \widetilde{X}$ of a point $x \in X$, there is a deck transformation taking \widetilde{x}_1 to \widetilde{x}_2 .

Proposition. Let $p: (\widetilde{X}, \widetilde{x}) \to (X, x_0)$ be a path-connected covering space of the path-connected, locally path-connected space X, and let H be the subgroup $p_*(\pi_1(\widetilde{X}, \widetilde{x})) \subset \pi_1(X, x)$. Then

- the covering space is normal iff H is a normal subgroup;
- $G(\widetilde{X})$ is isomorphic to $N_H(\pi_1(X,x))/H$.

In particular, if \widetilde{X} is a normal cover, $G(\widetilde{X}) \cong \pi_1(X, x)/H$.

Definition. Given a covering space $\widetilde{X} \to X$, the group $G(\widetilde{X})$ defines an action, called the **cover action**, on Homeo(Y) in the obvious way: $g \cdot Y = g(Y)$ for all $g \in G(\widetilde{X})$ and $Y \in \text{Homeo}(Y)$.

▶ Exercise. Show that each $y \in Y$ has a neighborhood U such that all images g(U) for varying $g \in G(\widetilde{X})$ are disjoint. In other words, the cover action is free $(g_1(U) = g_2(U) \text{ implies } g_1 = g_2)$.*

Homology Basics.

Definition. Given a sequence of homomorphisms of abelian groups and homomorphisms

$$\cdots \to C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} \cdots \to C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0$$

with $\partial_n \partial_{n+1} = 0$ for each n is called a **chain complex**. Note then $\operatorname{im}(\partial_{n+1}) \subset \ker(\partial_n)$; we define the **n-th homology group** of the chain complex to be the quotient group $H_n(C_n) = \ker(\partial_n)/\operatorname{im}(\partial_{n+1})$. Elements of H_n are **homology classes**; elements of the kernel are **cycles**; elements of the image are **boundaries**; two cycles representing the same homology class are **homologous**.

Definition. Let X be a simplicial complex and $\Delta_n(X)$ be the free abelian group with basis the open n-simplices of X. Elements of $\Delta_n(X)$, called n-chains, are finite formal sums $\sum_{\alpha} n_{\alpha} \sigma_{\alpha}$, where $\sigma_{\alpha} \colon \Delta^n \to X$ and $n_{\alpha} \in \mathbb{Z}$. A **boundary homomorphism** $\partial_n \colon \Delta_n(X) \to \Delta_{n-1}(X)$ is defined on each simplex σ_{α} by

$$\partial_n(\sigma_\alpha) = \sum_i (-1)^i \sigma_\alpha|_{[v_0, \dots, \widehat{v_i}, \dots, v_n]}.$$

The chain complex (Δ_n, ∂_n) induces the **n-th simplicial homology group** of X in the usual way.

- ► Exercise. Read and define cellular and singular homology.
- ▶ Exercise. Calculate the homology for the n-sphere, n-projective space, n-torus, genus g torus.
- ▶ Exercise. Calculate the homology of the Klein bottle K. According to the Classification of Surfaces, all surfaces are given up to homeomorphism by

$$S^2, T^2, \dots, T^2 \#_m T^2, \dots, P^2, \dots, P^2 \#_m P^2, \dots$$

Determine the surface to which K is homeomorphic.

- ▶ **Exercise**. Let X be the space constructed from the torus T^2 and the real projective plane P^2 by identifying a meridinal circle on T^2 to a circle on P^2 representing the generator of $\pi_1 P^2$.
 - (a) Compute the homology groups of X;
 - (b) compute the fundamental group of X;

- (c) show that X has exactly two inequivalent 2-fold covers;
- (d) one cover has infinite cyclic fundamental group and is homotopy equivalent to a wedge of spheres. Give a geometric description of this cover and specify the wedge of spheres to which it is homotopy equivalent.
- ▶ Exercise. Calculate the homology of the space obtained by identifying the circle $S^1 \times \{1\}$ on the torus $T^2 = S^1 \times S^1$ with a meridinal circle of the Klein bottle K.
- ▶ **Exercise**. Let X have path components $| \cdot |_i X_i$, prove that $H_n(X) \cong \bigoplus_i H_n(X_i)$.
- ▶ **Exercise**. Show that $H_0(X) = \bigoplus \mathbb{Z}$, with one copy of \mathbb{Z} for each path-component.*
- ▶ **Exercise**. (Dimension) Show that $H_0(\{x\}) = \mathbb{Z}$ and $H_n(\{x\}) = 0$ otherwise.

Definition. The reduced homology groups $\widetilde{H}_n(X)$ are the homology groups of

$$\cdots \xrightarrow{\partial_2} C_1(X) \xrightarrow{\partial_1} C_0(X) \xrightarrow{\varepsilon} \mathbb{Z} \to 0,$$

where $\varepsilon(\sum_{\alpha} n_{\alpha} \sigma_{\alpha}) = \sum_{\alpha} n_{\alpha}$.

▶ **Exercise**. Prove that $H_0(X) \cong \widetilde{H}_0(X) \oplus \mathbb{Z}$ and $H_n(X) \cong \widetilde{H}_n(X)$ otherwise.

Definition. A map $f: X \to Y$ induces a **chain homomorphism** $f_{\#}: C_n(X) \to C_n(Y)$ by extending $f_{\#}(\sigma) = f\sigma: \Delta^n \to Y$ linearly. If $f_{\#}\partial = \partial f_{\#}$, we say that $f_{\#}$ is a **chain map**.

- ▶ **Exercise**. Show that given a chain map $f_{\#}$: $C_n(X) \to C_n(Y)$ the induced f_* : $H_n(X) \to H_n(Y)$ given by $f_*[\sigma] = [f_{\#}\sigma] = [f\sigma]$ is a homomorphism.*
- ▶ Exercise. (Homotopy) Show that homotopic maps induce the same homomorphism.*
- ▶ *Exercise*. (Functoriality) Show that $\mathbb{1}_* = \mathbb{1}$ and $(fg)_* = f_*g_*$.
- ▶ Exercise. Show homotopy equivalences induce isomorphisms on homology.

Definition. For a pair (X, A), the **relative chain complex** of X relative to A is the chain complex $C_n(X, A) = C_n(X)/C_n(A)$ with boundary map $\partial \colon C_n(X, A) \to C_{n-1}(X, A)$ the induced quotient map. The resulting homology groups $H_n(X, A)$ are called the **relative homology groups** of X relative to A. We define **relative cycles** and **relative boundaries** similarly.

Definition. A short exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ splits on the left if there is a homomorphism $\ell \colon B \to A$ such that $\ell f = \mathbb{1}_A$; it splits on the right if there is a homomorphism $r \colon C \to B$ such that $gr = \mathbb{1}_C$. In either case, we say the sequence **splits**.

Lemma. (SES Lemma) If $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is a short exact sequence: (a) it splits on the left iff it splits on the the right; (b) it splits if C is free abelian; (c) if it splits, $A \oplus C \cong B$.

Lemma. (ES Lemma) If ... $\xrightarrow{p} A \xrightarrow{q} B \xrightarrow{r} C \xrightarrow{s}$... is exact, there is a short exact sequence $0 \to \operatorname{coker}(p) \to B \to \ker(s) \to 0$

where coker(p) = B/im(p).

Theorem. (Long Exact Sequence) For any pair (X, A) we have a long exact sequence

(1)
$$\cdots \xrightarrow{\partial_{n+1}} \widetilde{H}_n(A) \xrightarrow{i_*} \widetilde{H}_n(X) \xrightarrow{j_*} \widetilde{H}_n(X,A) \xrightarrow{\partial} H_{n-1}(A) \xrightarrow{i_*} \cdots \to \widetilde{H}_0(X,A) \to 0$$

where $i: A \hookrightarrow X$ is an inclusion map and $j: X \to X/A$ is a quotient map.

- ▶ **Exercise**. Show that a retract $r: X \to A$ induces a split short exact sequence on homology. Conclude that $H_n(X) \cong H_n(A) \oplus H_n(X, A)$ (hint: use the Splitting Lemma).
- \triangleright Exercise. Calculate the homology groups of S^n with this theorem.

Theorem. (Excision) Given subspaces $Z \subset A \subset X$ such that the closure of Z is contained in the interior of A, then the inclusion $(X - Z, A - Z) \hookrightarrow (X, A)$ induces isomorphisms on homology.

Definition. A pair (X, A) consisting of a space X with nonempty, closed subspace A that is a deformation retract of some neighborhood in X is called a **good pair**.

Proposition. For good pairs (X, A), the quotient map $(X, A) \to (X/A, A/A)$ induces isomorphisms $H_n(X, A) \cong H_n(X/A, A/A) \cong \widetilde{H}_n(X/A)$ for all n.

▶ **Exercise**. Prove that if nonempty, open sets $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$ are homeomorphic, then n = m (hint: use excision with $Z = \mathbb{R}^n \setminus U$).

Theorem. The long exact sequence of a pair is **natural**; given $f:(X,A)\to (Y,B)$,

$$\cdots \longrightarrow H_n(A) \xrightarrow{i_*} H_n(X) \xrightarrow{j_*} H_n(X,A) \xrightarrow{\partial} H_{n-1}(A) \longrightarrow \cdots$$

$$\downarrow^{f_*} \qquad \downarrow^{f_*} \qquad \downarrow^{f_*} \qquad \downarrow^{f_*}$$

$$\cdots \longrightarrow H_n(B) \xrightarrow{i_*} H_n(Y) \xrightarrow{j_*} H_n(Y,B) \xrightarrow{\partial} H_{n-1}(B) \longrightarrow \cdots$$

is a commutative diagram.

▶ *Exercise*. (Naturality) Show that $(f|_A)_*\partial = \partial f_*$. Conclude this theorem.

More Homology.

Definition. For a finite CW complex X, the **Euler characteristic** of X is the integral value $\chi(X) = \sum (-1)^n c_n$, where c_n is the number of n-cells in X.

- ▶ **Exercise**. Show that $\chi(X) = \sum (-1)^n \operatorname{rank}(H_n(X))$.
- ▶ Exercise. Recall that every closed connected orientable surface F is homeomorphic to a connectedsum of copies of the torus. The number of copies is called the genus of F.
 - (a) Find the genus of a surface in terms of Euler characteristic. No proof is required;
 - (b) Let F be a surface of genus g, and E be an n-fold covering space of F. Derive a formula for the genus h of E in terms of g and n.
 - (c) Draw pictures of two 3-fold covering spaces of a surface F of genus 2, one regular and one irregular. Indicate in your pictures the curve in F along which the connected-sum is performed, and its lifts in the covers.

Theorem. (Mayer-Vietoris) If A, B are subspaces of X whose interiors cover X, then

$$\cdots \xrightarrow{\partial} H_n(A \cap B) \to H_n(A) \oplus H_n(B) \to H_n(X) \xrightarrow{\partial} H_{n-1}(A \cap B) \to \cdots \to H_0(X) \to 0$$
 is an exact sequence.

▶ Exercise. Calculate $H_k(S^n)$ and $H_k(T^n)$ using Mayer-Vietoris.

Definition. Let G be an abelian group. There is no obstruction to repeating the construction for simplicial homology of X so that $n_i \in G$. The resulting homology groups $H_n(X;G)$ are called the homology groups with coefficients in G.

Definition. A homology theory is a pair of functors H and ∂ assigning

- each pair of spaces (X, A) a sequence $H_*(X, A)$ of abelian groups $H_n(X, A)$;
- each pair of spaces (X, A) a sequence ∂_* of homomorphisms $H_{n+1}(X, A) \xrightarrow{\partial_n} H_n(A)$;
- each map $f: (X, A) \to (Y, B)$ a sequence f_* of group homomorphisms $f_n: H_n(X, A) \to H_n(Y, B)$; such that the following six axioms (referenced throughout this section) hold:
- (functoriality) $\mathbb{1}_* = \mathbb{1}$ and $(fq)_* = f_*q_*$;
- (naturality) $\partial f_* = (f|_A) * \partial$;
- (homotopy) $f \simeq g$ implies $f_* = g_*$;
- (exactness) for any pair (X, A), the sequence (1) is exact;

- (excision) If $\overline{U} \subset A^{\circ}$, then $(X U, A U) \hookrightarrow (X, A)$ is a homology equivalence;
- (dimension) $H_n(\text{pt}) = 0$ for all $n \neq 0$.
- ▶ Exercise. Prove these axioms hold for simplicial, cellular, and singular homology.*

Cohomology.

Definition. For a homomorphism $\alpha \colon A \to B$ and abelian group G, the **dual homomorphism** $\alpha^* \colon \operatorname{Hom}(B,G) \to (A,G)$ is defined by $\alpha^*(\varphi) = \varphi \alpha$.

▶ **Exercise**. Show that $(\alpha\beta)^* = \beta^*\alpha^*$ for homomorphisms $A \xrightarrow{\beta} B \xrightarrow{\alpha} C$.

Definition. Let (C, ∂) be a chain complex of free abelian groups, and let G be an abelian group. Consider the **dual cochain** (C^n, δ^n) consisting of cochain groups $C^n = (C_n)^* = \text{Hom}(C_n, G)$ and coboundary map $\delta^n = (\partial_n)^* : C^{n-1} \to C^n$. The homology groups $H^n(C^n; G)$ of the resulting chain complex

$$\cdots \longleftarrow C^{n+1} \xleftarrow{\delta^{n+1}} C^n \xleftarrow{\delta^n} C^{n-1} \xleftarrow{\delta^{n-1}} \cdots \xleftarrow{\delta^1} C^0 \longleftarrow 0.$$

are called the **cohomology groups**.

- ▶ Exercise. Show that the chain complex for a space X induces a cochain complex, i.e. $\delta \delta = 0$.
- **Exercise.** Compute cohomology of S^n , P^n , and F_g by constructing their cochains.

Theorem. (Universal Coefficient Theorem for Cohomology) If a chain complex (C, δ) of free abelian groups has homology groups $H_n(C)$, then there are split short exact sequences

$$0 \to \operatorname{Ext}(H_{n-1}(C), G) \to H^n(C; G) \to \operatorname{Hom}(H_n(C), G) \to 0.$$

for all n and all G. In particular, when $G = \mathbb{Z}$ this gives

$$H^n(C) \cong \operatorname{Free}(H_n(C)) \oplus \operatorname{Torsion}(H_{n-1}(C)).$$

Theorem. (Universal Coefficient Theorem for Homology) If C is a chain complex of free abelian groups, then there are split short exact sequences

$$0 \to H_n(C) \otimes G \to H_n(C;G) \to \operatorname{Tor}(H_{n-1}(C),G) \to 0$$

for all n and all G.

Theorem. (Poincaré Duality) If M is a closed, orientable n-manifold, then for all k

$$H^k(M) \cong H_{n-k}(M)$$
.

Theorem. (Lefschetz Duality) If M is a compact orientable n-manifold whose boundary is decomposed as the union of (n-1)-manifolds A and B sharing a common boundary (i.e. $A \cap B = \partial A = \partial B$), then for all k

$$H^k(M,A) \cong H_{n-k}(M,B).$$

In particular, for $A = \emptyset$ and $B = \partial M$,

- ▶ **Exercise**. Let M be a compact, orientable 3-manifold with boundary, and assume $H_1(M) = 0$. Prove that the boundary of M is a disjoint union of 2-spheres. Hint: find $H_1(\partial M)$.
- ▶ **Exercise**. Let M be a connected closed orientable 4-manifold with $H_1(M)$ finite. Show that the Euler characteristic $\chi(M) \ge 2$. Compute $H_k(M)$ and $H^k(M)$ in terms of $H_1(M)$ and $\chi(M)$.

Higher Homotopy Groups.

Definition. The *n*-th homotopy group of X at $x \in X$ is the group $\pi_n(X, x) = [(I^n, \partial I^n), (X, x)]$ under concatenation.

- ▶ **Exercise**. Show that each $\pi_n(X, x)$ is abelian for n > 1.
- ▶ **Exercise**. Show the induced map of a covering space is an isomorphism on $\pi_n(X, x)$ for n > 1.

Definition. Let I^{n-1} denote the face of I^n with last coordinate 0, and let $J^{n-1} = \overline{\partial I^n - I^{n-1}}$. The *n*-th relative homotopy groups of X relative to A is the group

$$\pi_n(X, A, x) = [(I^n, \partial I^n, J^{n-1}), (X, A, x)].$$

- ▶ Exercise. Show $[f] \in \pi_n(X, A, x)$ is trivial if and only if it is homotopic rel ∂I^{n-1} to a map with image contained in A.
- **Exercise.** Read and prove the long exact sequence of a pair (X, A) in Hatcher.

Definition. A space is n-connected if its first n homotopy groups vanish.

Definition. For any space X and integer k > 0, there is a homomorphism $h_k \colon \pi_k(X) \to H_k(X)$ called the **Hurewicz map**: given a choice of generator $u_k \in H_k(S^k)$, a homotopy class of maps $[f] \in \pi_k(X)$ is mapped to $f_*(u_k) \in H_k(X)$.

Theorem. (Hurewicz) If X is (n-1)-connected, the Hurewicz map $h_k \colon \pi_k(X) \to H_k(X)$ is an isomorphism for all $k \leq n$, when $n \geq 2$.

Theorem. (Whitehead) If a map between CW-complexes induces isomorphisms on all homotopy groups, then it is a homotopy equivalence. Moreover, if this map is an inclusion, the complex deformation retracts onto its subcomplex.

▶ Exercise. Prove the Dunce Cap is contractible (hint: Hurewicz and Whitehead).

DIFFERENTIAL TOPOLOGY

Smooth Manifolds.

Definition. A topological n-manifold is a Hausdorff, second-countable space that is locally Euclidean (i.e. each point has a neighborhood homeomorphic to a subset of \mathbb{R}^n .

Definition. A coordinate chart or M is a pair (U, φ) consisting of an open subset U and a homeomorphism $\varphi \colon U \to \widehat{U}$ to an open subset $\varphi(U) = \widehat{U} \subseteq \mathbb{R}^n$. We call U a coordinate domain. We call φ a coordinate map, and we denote its component functions as $\varphi(p) = (x^1(p), \dots, x^n(p))$

- ► Exercise. Show that graphs of continuous functions, spheres, and projective spaces are topological manifolds.
- ▶ Exercise. Show that the product of manifolds is a manifold.
- ▶ Exercise. Show that a manifold is metrizable, with countably many components.

Definition. Two coordinate charts (U, φ) , (V, ψ) are **smoothly compatible** if either $U \cap V = \emptyset$ or the transition function $\psi \circ \varphi^{-1} \colon \varphi(U \cap V) \to \psi(U \cap V)$ is smooth.

Definition. An atlas for M is a collection \mathcal{A} of charts whose coordinate domains cover M. A smooth atlas for M is an atlas whose coordinate charts are smoothly compatible.

Definition. A smooth atlas is **maximal** if it is not properly contained in any larger smooth atlas. A **smooth structure** or M is a maximal smooth atlas.

- ▶ Exercise. Every smooth atlas A for M is contained in a unique maximal smooth atlas, called the smooth structure determined by A.
- ▶ Exercise. Two smooth atlases for M determine the same smooth structure if and only if their union is a smooth atlas.
- ▶ Exercise. Prove the aforementioned graphs, spheres, and projective spaces are smooth manifolds.
- ▶ *Exercise*. Prove the smooth structure $A = \{(\mathbb{R}, \mathbb{1}_{\mathbb{R}})\}$ on \mathbb{R} is not unique.
- ▶ **Exercise**. Prove the space $M(m \times n, \mathbb{R})$ of $m \times n$ matrices with real entries is a smooth manifold, and determine its dimension.
- ▶ **Exercise**. Let K be the subspace of $M(m \times n, \mathbb{R})$ consisting of all rank 2 matrices. Show that K is a manifold and determine its dimension.

Definition. Let \mathcal{A} be a smooth structure on M, and let $U \subseteq M$ be open. Then U is an **open** submanifold of M with smooth structure defined by $\mathcal{A}_U = \{(V, \varphi) \in \mathcal{A} : V \subseteq U\}$.

- ▶ Exercise. Prove that open submanifolds are manifolds.
- ▶ Exercise. Prove that the general linear group, i.e. the set of all invertible $n \times n$ matrices with real entries, is a smooth n^2 -manifold.
- ▶ Exercise. Let m < n. Prove that the subset $M_m(m \times n, \mathbb{R})$ consisting of $m \times n$ matrices with rank m is a smooth manifold.

Smooth Maps.

Definition. Let M be a smooth n-manifold. A function $f: M \to \mathbb{R}^k$ is a **smooth function** at $p \in M$ if there is a chart (U, φ) containing p whose **coordinate representative** $\widehat{f} = f \circ \varphi^{-1} : \widehat{U} \to \mathbb{R}^k$ is smooth.

▶ Exercise. Given a smooth function, show its coordinate representation is smooth with respect to any chart (U, φ) for M.

Definition. Let M and N be a smooth manifolds. A map $F: M \to N$ is a **smooth map** if for every $p \in M$ there are charts (U, φ) containing p and (V, ψ) containing f(p) such that $F(U) \subseteq V$ and the **coordinate representative** $\widehat{F} = \psi \circ F \circ \varphi^{-1}$ is smooth from $\varphi(U) \to \psi(V)$.

- ▶ Exercise. Prove every smooth map is continuous. Prove smoothness is a local condition (i.e. F is smooth iff each point $p \in M$ has a neighborhood U such that $F|_U$ is smooth).
- ▶ Exercise. Prove that constant, identity, inclusion, and projection maps are smooth.

Definition. A smooth map with smooth inverse is called a **diffeomorphism**.

Theorem. (Extension Lemma) Suppose M is a smooth manifold, $A \subseteq M$ is a closed subset, and $f: A \to \mathbb{R}^k$ is a smooth function. For any open subset U containing A, there exists a smooth function $\widetilde{f}: M \to \mathbb{R}^k$ supported in U such that $\widetilde{f}|_A = f$.

Theorem. (Level Sets) Let M be a smooth manifold with closed subset K. There is a smooth nonnegative function $f: M \to \mathbb{R}$ such that $f^{-1}(0) = K$.

Tangent Vectors.

Definition. A linear map $w: C^{\infty}(M) \to \mathbb{R}$ is a **derivation** at $p \in M$ if it satisfies the product rule w(fg) = f(p)w(g) + g(p)w(f). The **tangent space** of M at p is the set of all derivations at p, denoted T_pM . An element of T_pM is called a **tangent vector** at p.

- ▶ **Exercise**. Show that $T_p(\mathbb{R}^n)$ is a vector space. Note that $T_p(\mathbb{R}^n) \cong \mathbb{R}^n$ (see Lee's text).
- ▶ **Exercise.** Prove: if f is constant, then vf = 0; if f(p) = g(p) = 0, then v(fg) = 0.

Definition. For smooth manifolds M and N and smooth map $F: M \to N$, the **differential** of F at $p \in M$ is the map

$$dF_p: T_pM \to T_{f(p)}N,$$

defined by $dF_p(v)(f) = v(f \circ F)$ for each $v \in T_p(M)$ and each $f \in C^{\infty}(N)$.

- ▶ Exercise. Prove the differential is linear, maps the identity on M to the identity on T_pM , distributes over composition, and works well with inverses.
- ▶ Exercise. Let $U \subseteq M$ be open. Prove the inclusion induced differential $d\iota_p \colon T_pU \to T_pM$ is an isomorphism for all $p \in U$.*
- ▶ Exercise. Prove the dimension of the tangent space agrees with the dimension of the manifold.

Proposition. Let M be a smooth n-manifold and $p \in M$. Then T_pM is an n-dimensional vector space: for any smooth chart $(U,(x^i))$ containing p, the **coordinate vectors** $\partial/\partial x^i|_p$, defined by

$$\left. \frac{\partial}{\partial x^i} \right|_p = (d\varphi_p)^{-1} \left(\frac{\partial}{\partial x^i} \right|_{\varphi(p)} \right) = (d\varphi^{-1}) \left(\frac{\partial}{\partial x^i} \right|_{\varphi(p)} \right),$$

form a basis for T_pM , which we call a **coordinate basis**.

Proposition. The differential dF_p is represented in coordinate bases by the Jacobian matrix of the coordinate representative of F.

Definition. The **tangent bundle** of M, denoted TM, is the space $TM = \bigsqcup_p T_p M$. A natural **projection map** $\pi: TM \to M$ defined by $(p, v) \mapsto p$ defines a fiber bundle.

Theorem. The tangent bundle TM has a natural topology and smooth structure, making it a $2(\dim M)$ -dimensional smooth manifold. With respect to this smooth structure, the projection map is smooth.

The smooth structure on TM is defined as follows: given a chart (U, φ) for M, define a chart $(\pi^{-1}(U), \widetilde{\varphi})$ for TM with $\widetilde{\varphi}$ defined by

$$\widetilde{\varphi}\left(v^i \frac{\partial}{\partial x^i}\bigg|_{p}\right) = (x^1(p), \dots, x^n(p), v^1, \dots, v^n).$$

Note that with respect to charts (U, φ) for M and $(\pi^{-1}(U), \widetilde{\varphi})$ for TM, the coordinate representative of the projection is $\pi(x, v) = x$.

Definition. The global differential of a smooth map $F: M \to N$ is the map $dF: TM \to TN$ whose restriction to each tangent space T_pM is the differential dF_p at $p \in M$.

- ► Exercise. Prove the global differential is a smooth map.*
- ▶ Exercise. Prove that the global differential induces a covariant functor; that is, the **tangent** functor is a covariant functor from the category of smooth manifolds to the category of smooth vector bundles: to each smooth manifold M it assigns the tangent bundle $TM \to M$, and to each smooth map $F: M \to N$ it assigns the pushforward $F^*: TM \to TN$.*

Immersions and Submersions.

Definition. The rank of a smooth map $F: M \to N$ at $p \in M$ is defined as the rank of the linear map dF_p . If F has the same rank at each point in M, we say it has **constant rank**.

Definition. A map $f: M \to N$ between smooth manifolds is an **immersion/submersion** if at each $p \in M$, the differential dF_p is injective/surjective, respectively.

▶ Exercise. Prove that projections are submersions. Prove a smooth curve $\gamma: I \to M$ is an immersion if and only if $\gamma'(t) \neq 0$ for all $t \in I$.

Theorem. (Inverse Function Theorem) Suppose $F: M \to N$ is a smooth map with dF_p invertible. There are connected neighborhoods U and V of p and F(p) with $F|_U$ a diffeomorphism onto V.

Exercise. Prove this theorem; you may use the Inverse Function Theorem for \mathbb{R}^n .

Theorem. (Rank Theorem) Suppose $F: M^m \to N^n$ is a smooth map of constant rank. For each $p \in M$, there are smooth charts (U, φ) centered at p and (V, ψ) centered at F(p) such that $F(U) \subseteq V$, in which F has coordinate representation

$$\widehat{F}(x^1, \dots, x^r, x^{r+1}, \dots, x^m) = (x^1, \dots, x^r, 0, \dots, 0).$$

In particular, if F is a smooth submersion, this becomes

$$\widehat{F}(x^1, \dots, x^n, x^{n+1}, \dots, x^m) = (x^1, \dots, x^n),$$

and if F is a smooth immersion, it is

$$\widehat{F}(x^1, \dots, x^m) = (x^1, \dots, x^m, 0, \dots, 0).$$

- ▶ Exercise. Prove the Rank Theorem (hint: for immersions and submersions construct functions on \mathbb{R}^m and \mathbb{R}^n , respectively, with which you can apply the Inverse Function Theorem).
- ▶ Exercise. Prove if X is compact and Y is connected, every submersion $X \to Y$ is surjective.
- ▶ Exercise. Show that there exist no submersions of compact manifolds into Euclidean spaces.

Theorem. (Global Rank Theorem) If $F: M \to N$ is a surjective/injective smooth map of constant rank, then it is a smooth submersion/immersion, respectively.

▶ Exercise. Prove the Global Rank Theorem for immersions (hint: use Rank Theorem).

Embeddings.

Definition. A smooth embedding is a smooth immersion $F: M \to N$ that is also a topological embedding (i.e. a homeomorphism onto its image).

- ▶ Exercise. Show that inclusions of open submanifolds $U \hookrightarrow M$ are smooth embeddings; show inclusions into products $M_j \hookrightarrow M_1 \times \cdots \times M_k$ are smooth embeddings $(1 \leqslant j \leqslant k)$.
- ▶ Exercise. Give an example of a topological embedding that is not a smooth immersion; give an example of a smooth immersion that is not a topological embedding.

Theorem. (Local Embedding Theorem) A smooth map $F: M \to N$ is a smooth immersion if and only if every point in M has a neighborhood $U \subseteq M$ such that $F|_U$ is a smooth embedding.

Definition. A section of a continuous map $\pi: M \to N$ is a continuous right inverse. A local section is a section on some open subset $U \subseteq N$.

Theorem. (Local Section Theorem) A smooth map $\pi: M \to N$ is a smooth submersion if and only if every point of M is in the image of a smooth local section of π .

▶ Exercise. Show that smooth submersions are open maps, and conclude that surjective submersions are quotient maps (do this with and without the Local Section Theorem).

Theorem. (Characteristic Property of Surjective Smooth Submersions) If $\pi: M \to N$ is a surjective smooth submersion, a map $F: N \to P$ is smooth if and only if $F \circ \pi$ is smooth.

Submanifolds.

Definition. An **embedded submanifold** is a subset $S \subseteq M$ that is a manifold in the subspace topology, endowed with a smooth structure with respect to which the inclusion map $S \hookrightarrow M$ is a smooth embedding. The difference of dimension dim M – dim S is the **codimension** of S in M.

- ▶ Exercise. Show that open submanifolds are embedded submanifolds with codimension 0.
- ▶ Exercise. Show that the image of an embedding is a submanifold.

Definition. An embedded submanifold $S \subseteq M$ is **properly embedded** if the inclusion map $S \hookrightarrow M$ is a proper map.

▶ Exercise. If $S \subseteq M$ is an embedded submanifold, prove S is properly embedded if and only if it is a closed subset of M. Conclude every compact embedded submanifold is properly embedded.

Definition. Given a map $\Phi: M \to N$ and a point $c \in N$, we call the set $\Phi^{-1}(c)$ a **level set** of Φ .

Theorem. (Constant-Rank Level Set Theorem) If $\Phi: M \to N$ is smooth with constant rank r, each level set of Φ is a properly embedded submanifold of codimension r in M.

Definition. Let $\Phi: M \to N$ be a smooth map. A point $p \in M$ is a **regular point** of Φ if the map $d\Phi_p: T_pM \to T_{\Phi(p)}N$ is surjective; it is a **critical point** otherwise.

Definition. Let $\Phi: M \to N$ be a smooth map. A point $c \in N$ is a **regular value** of Φ if every point of the level set $\Phi^{-1}(c)$ is a regular point; it is a **critical value** otherwise. The preimage of a regular value is called a **regular level set**.

Theorem. (Regular Level Set Theorem) Every regular level set of a smooth map is a properly embedded submanifold with codimension equal to the dimension of the codomain.

- **Exercise.** Show that the subset of rank 1 matrices in $M(2,\mathbb{R})$ is a smooth manifold.
- ▶ Exercise. Show that the sphere is a smooth manifold.

Definition. If $S \subseteq M$ is an embedded submanifold realized as a regular level set of a smooth map $\Phi \colon M \to N$, we call Φ a **defining map** for S. If $U \subseteq M$ is open and $\Phi \colon U \to N$ is a smooth map such that $S \cap U$ is a regular level set of Φ , then Φ is called a **local defining map** for S.

Definition. Let $\iota: S \to M$ be the inclusion map of a submanifold. The tangent space T_pS is defined as the subspace $d\iota_p(T_pS) \subseteq T_pM$.

▶ Exercise. Explore the equivalent definitions of T_pS using curves/derivations restricted to S.

Theorem. If $\Phi: U \to N$ is a local defining map for a submanifold $S \subseteq M$, then $T_pS = \ker(d\Phi_p)$ for each $p \in S \cap U$. If S is a level set of $\Phi: M \to N$, the same equality holds for each $p \in S$.

Transversality.

Definition. Submanifolds X and Y of a manifold M are said to intersect **transversely** if their tangent spaces span the ambient tangent space, i.e. $T_x(X) + T_x(Y) = T_x(M)$ for each $x \in X \cap Y$.

▶ Exercise. Let $\mathcal{H} = \{(x, y, z) : x^2 + y^2 - z^2 = 1\}$ and $\mathcal{S}_a = \{(x, y, z) : x^2 + y^2 + z^2 = a\}$. Give equations for their intersection for varying values of $a \in \mathbb{R}_{\geq 0}$. For which values of a do they intersect transversely?

12

Multilinear Algebra.

Definition. Suppose V_1, \ldots, V_k, W are vector spaces; $F: V_1 \times \cdots \times V_k \to W$ is **multilinear** if

$$F(v_1, \dots, v_j + av'_j, \dots v_k) = F(v_1, \dots, v_j, \dots, v_n) + aF(v_1, \dots, v'_j, \dots, v_k)$$

for all scalars a and all $1 \le j \le k$. We denote the space of all multilinear maps $V_1 \times \cdots \times V_k \to W$ by $L(V_1, \ldots, V_k; W)$.

Definition. Let $F \in L(V_1, ..., V_k; \mathbb{R})$ and $G \in L(W_1, ..., W_\ell; \mathbb{R})$. The **tensor product** of F and G is the element $F \otimes G \in L(V_1, ..., V_k, W_1, ..., W_\ell; \mathbb{R})$ defined by

$$F \otimes G(v_1, \dots, v_k, w_1, \dots, w_\ell) = F(v_1, \dots, v_k)G(w_1, \dots, w_\ell).$$

▶ Exercise. Show the tensor product operation is bilinear and associative.

Theorem. (Multilinear Functions Basis) Let V_1, \ldots, V_k be real vector spaces of dimension n_1, \ldots, n_k . For each $1 \leq j \leq k$, let $(e_1^{(j)}, \ldots, e_{n_j}^{(j)})$ be a basis for V_j and let $(\varepsilon_{(j)}^1, \ldots, \varepsilon_{(j)}^{n_j})$ be a basis for V_j^* ;

$$\mathcal{B} = \{ \varepsilon_{(1)}^{i_1} \bigotimes \ldots \bigotimes \varepsilon_{(k)}^{i_k} : 1 \leqslant i_1 \leqslant n_1, \ldots, 1 \leqslant i_k \leqslant n_k \}$$

is a basis for $L(V_1, \ldots, V_k; \mathbb{R})$.

Tensors.

Definition. For any set S, a **formal linear combination** of elements of S is a function $f: S \to \mathbb{R}$ such that f(s) = 0 for all but finitely many $s \in S$. The **free real vector space** on S, denoted $\mathcal{F}(S)$, is the set of all formal linear combinations of elements of S.

Proposition. (Characteristic Property of Free Vector Spaces) For any set S and any vector space W, every map $f: S \to W$ has a unique extension to a linear map $F: \mathcal{F}(S) \to W$.

Definition. Let V_1, \ldots, V_k be real vector spaces. Let \mathcal{R} be the subspace of $\mathcal{F}(V_1 \times \cdots \times V_k)$ spanned by all elements of the following forms:

$$(v_1, \dots, av_i, \dots, v_k) = a(v_1, \dots, v_i, \dots v_k)$$

$$(v_1, \dots, v_i + v_i', \dots, v_k) - (v_1, \dots, v_i, \dots, v_k) - (v_1, \dots, v_i', \dots, v_j)$$

with $v_i, v_i' \in V_i$, $i \in \{1, ..., k\}$, and $a \in \mathbb{R}$. We define the **tensor product of** $V_1, ..., V_k$ to be the space

$$V_1 \bigotimes \ldots \bigotimes V_k = \mathcal{F}(V_1 \times \cdots \times V_k)/\mathcal{R},$$

with natural projection Π . The equivalence class of an element (v_1, \ldots, v_k) is denoted

$$v_1 \bigotimes \ldots \bigotimes v_k = \Pi(v_1, \ldots, v_k),$$

and is referred to as the (abstract) tensor product of v_1, \ldots, v_k .

Exercise. Show that abstract tensor products behave multilinearly, meaning

$$v_1 \otimes \ldots \otimes av_i \otimes \ldots \otimes v_k = a(v_1 \otimes \ldots \otimes v_i \otimes \ldots \otimes v_k, v_k \otimes \ldots \otimes (v_i + v_i') \otimes \ldots \otimes v_k = (v_1 \otimes \ldots \otimes v_i \otimes \ldots \otimes v_k) + (v_1 \otimes \ldots \otimes v_i' \otimes \ldots \otimes v_k)$$

Proposition. (Characteristic Property of Tensor Product Spaces) Let V_1, \ldots, V_k be finite-dimensional real vector spaces. If $f: V_1 \times \cdots \times V_k \to X$ is any multilinear map into a vector space X, then there is a unique linear map $F: V_1 \otimes \ldots \otimes V_k \to X$ such that the following diagram commutes:

Proposition. (Basis of Tensor Product Space) Let V_1, \ldots, V_k be real vector spaces of dimensions n_1, \ldots, n_k . For each $j = 1, \ldots, k$ suppose $(E_1^{(j)}, \ldots, E_{n_j}^{(j)})$ is a basis for V_j . Then the set

$$\mathcal{C} = \{ E_{i_1}^{(1)} \otimes \ldots \otimes E_{i_k}^{(k)} : 1 \leqslant i_1 \leqslant n_1, \ldots, 1 \leqslant i_k \leqslant n_k \}$$

is a basis for $V_1 \otimes \ldots \otimes V_k$.

Proposition. (Associativity of Tensor Product Space) Let V_1, V_2, V_3 be finite-dimensional real vector spaces. There are unique isomorphisms

$$V_1 \otimes (V_2 \otimes V_3) \cong V_1 \otimes V_2 \otimes V_3 \cong (V_1 \otimes V_2) \otimes V_3$$

under which elements of the forms $v_1 \otimes (v_2 \otimes v_3)$, $v_1 \otimes v_2 \otimes v_3$, and $(v_1 \otimes v_2) \otimes v_3$ all correspond.

Proposition. If $V_1, ..., V_k$ are finite-dimensional vector spaces, there is a canonical isomorphism $V_1^* \otimes ... \otimes V_k^* \cong L(V_1, ..., V_k; \mathbb{R}),$

under which the abstract tensor product corresponds to the tensor product of covectors.

Vector Bundles.

Definition. Let $\pi: E \to M$ be a vector bundle. A **section** of E is a section of the map π , that is, a continuous right inverse $\sigma: M \to E$.

Definition. A local section of E is a continuous right inverse $\sigma: U \to E$ on some open $U \subseteq M$.

Definition. Let $\pi: E \to M$ be a vector bundle. If $U \subseteq M$ is open, a k-tuple of local sections $(\sigma_1, \ldots, \sigma_k)$ on E over U is **linearly independent** if their values $(\sigma_1(p), \ldots, \sigma_k(p))$ form a linearly independent k-tuple in E_p for each $p \in U$. Similarly, the are said to **span** E if their values span E_p for each $p \in U$.

Definition. A local frame for E over U is an ordered k-tuple $(\sigma_1, \ldots, \sigma_k)$ of linearly independent local sections over U that span E, that is, $(\sigma_1(p), \ldots, \sigma_k(p))$ is a basis for E_p for each $p \in U$. This is a frame if U = M.

Orientation.

Definition. Let V be a real vector space of dimension $n \ge 1$. We say ordered basis (e_1, \ldots, e_n) and $(\widetilde{e}_1, \ldots, \widetilde{e}_n)$ are **consistently oriented** if the transition matrix $e_i = B_i^j \widetilde{e}_j$ has positive determinant.

Definition. Let V be a real vector space of dimension $n \ge 1$. An **orientation** for V is an equivalence class of ordered basis, where two consistently oriented bases are equivalent. Any element in the orientation is said to be **positively oriented**; otherwise it is **negatively oriented**.

Proposition. Let V be a real vector space of dimension $n \ge 1$. Each nonzero element $\omega \in \Lambda^n(V^*)$ determines an orientation \mathcal{O}_{ω} , the set of ordered bases (e_1, \ldots, e_n) such that $\omega(e_1, \ldots, e_n) > 0$. We say that ω is a **positively oriented covector**.

Definition. If (E_i) is a local frame for TM, we say that (E_i) is **positively oriented** if $(E_1|_p, \ldots, E_n|_p)$ is a positively oriented basis for T_pM at each $p \in U$.

Definition. A pointwise orientation is **continuous** if every point of M is in the domain of an oriented local frame. An **orientation** for M is a continuous pointwise orientation.

Proposition. Let M be a smooth n-manifold with or without boundary. Any nonvanishing n-form ω on M determines a unique orientation of M for which ω is positively oriented at each point. Conversely, if M is given an orientation, then there is a smooth nonvanishing n-form on M that is positively oriented at each point.

Tensors on Vector Spaces.

Definition. A p-tensor on a real vector space V is an element of the k-fold product $V^* \otimes ... \otimes V^*$; that is, a real-valued multilinear function $T: V \times \cdots \times V \to \mathbb{R}$. A 0-tensor is, by convention, a real number. The space of k-tensors is denoted $T^k(V^*)$.

Theorem. If V^* has basis $\{\phi_1, \ldots, \phi_n\}$, then

$$\{\phi_{i_1} \otimes \ldots \otimes \phi_{i_k} : 1 \leqslant i_1 \leqslant \cdots \leqslant i_k \leqslant n\}$$

forms a basis for $T^k(V^*)$. Consequently, dim $T^k(V^*) = n^k$.

Definition. If T is a k-tensor and S is a ℓ -tensor, we define a $k + \ell$ tensor $T \otimes S$ by

$$T \otimes S(v_1, \dots, v_k, v_{k+1}, \dots, v_{k+\ell}) = T(v_1, \dots, v_k) \cdot S(v_{k+1}, \dots, v_{k+\ell}).$$

The resulting tensor $T \otimes S$ is called the **tensor product** of T and S.

Definition. A k-tensor T is alternating if its sign is reversed whenever variables are transposed:

$$T(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_k)=-T(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_k).$$

The alternating k-tensors form a vector subspace $\Lambda^k(V^*)$ of $\mathcal{T}^k(V^*)$.

- **Exercise.** Give two examples of k-tensors on \mathbb{R}^k (one alternating, one not).
- ▶ Exercise. Show that the tensor product is associative* and that it distributes over addition.

Definition. Let $(-1)^{\pi} = \pm 1$ be the parity of $\pi \in S_k$. For a k-tensor T, define

$$T^{\pi}(v_1, \dots, v_k) = T(v_{\pi(1)}, \dots, v_{\pi(k)}),$$
 and $Alt(T) = \frac{1}{k!} \sum_{\pi \in S_k} (-1)^{\pi} T^{\pi},$

both of which are p-tensors.

- ▶ **Exercise**. Prove that T is alternating if $T^{\pi} = (-1)^{\pi}T$ for all $\pi \in S_k$.
- ▶ **Exercise.** Prove that $(T^{\pi})^{\sigma} = T^{\pi\sigma}$ for all $\pi, \sigma \in S_k$.
- **Exercise.** Prove Alt(T) is alternating. Prove that T is alternating if and only if Alt(T) = T.

Definition. If $T \in \Lambda^k$, $S \in \Lambda^\ell$, we define their **wedge product** $T \wedge S = \operatorname{Alt}(T \otimes S) \in \Lambda^{k+\ell}$.

Theorem. If V^* has basis $\{\phi_1, \ldots, \phi_n\}$, then

$$\{\phi_I = \phi_{i_1} \wedge \dots \wedge \phi_{i_k} : 1 \leqslant i_1 \lneq \dots \lneq i_k \leqslant n\}$$

 $\{\phi_I = \phi_{i_1} \wedge \cdots \wedge \phi_{i_k} : 1 \leqslant i_1 \lneq \cdots \lneq i_k \leqslant n\}$ forms a basis for $\Lambda^k(V^*)$. Consequently, $\dim \Lambda^k(V^*) = \frac{n!}{k!(n-k)!}$.

- ▶ Exercise. Prove the wedge is associative* and distributes over addition and scalar multiplication.
- ▶ **Exercise**. Prove that $\phi_I = \pm \phi_J$ when two index sequences I, J differ only in their orderings. Prove that $\phi_I = 0$ when any index of I is repeated.
- ▶ **Exercise**. Prove $\phi_I \wedge \phi_J = (-1)^{k\ell} \phi_J \wedge \phi_I$ for any properly defined sequences I, J of length k, ℓ respectively. Conclude that $T \wedge S = (-1)^{k\ell} S \wedge T$ for any $T \in \Lambda^k$ and $S \in \Lambda^\ell$.
- **Exercise.** By the previous theorem, $\dim \Lambda^k((\mathbb{R}^k)^*)$ is one dimensional when $k = \dim(\mathbb{R}^k)^*$. Why does this make sense? Consider the known alternating k-tensors on $(\mathbb{R}^k)^*$.

Definition. We have, by convention, that $\Lambda^0(V^*) = \mathbb{R}$, and we extend the wedge product of any element in \mathbb{R} with any tensor in $\Lambda^k(V^*)$ as the usual scalar multiplication. The wedge product then makes the direct sum

$$\Lambda(V^*) = \Lambda^0(V^*) \oplus \Lambda^1(V^*) \oplus \cdots \oplus \Lambda^n(V^*)$$

a noncommutative algebra, called the **exterior algebra of** V^* , with identity element $1 \in \Lambda^0(V^*)$.

Proposition. If v^1, \ldots, v^k are covectors on V, then $v^1 \wedge \cdots \wedge v^k(v_1, \ldots, v_k) = \det(v^j(v_i))$.

Differential Forms.

Definition. Let X be a smooth manifold, and recall that an element of the vector bundle

$$\Lambda^k(T^*X) = \coprod_{x \in X} \Lambda^k(T_x^*X)$$

is an alternating k-form ω that assigns to each point $x \in X$ an alternating p-tensor $\omega(x)$ on the tangent space of X at x. A **p-form** on X is a smooth section of the projection $\Lambda^k(T^*X) \to X$. The space of all k-forms on X is denoted $\Omega^k(X)$.

- ► Exercise. Characterize 0-forms.
- ▶ Exercise. If $\phi: X \to \mathbb{R}$ is a smooth function, $d\phi_x: T_x(X) \to \mathbb{R}$ is a linear map, so the assignment $x \mapsto d\phi_x$ defines a 1-form $d\phi$ on X. In this manner, the coordinate functions x^i on \mathbb{R}^k yield 1-forms dx^i on \mathbb{R}^k . At each $z \in \mathbb{R}^k$, what familiar objects are the $dx^i(z)$?

Proposition. Every p-form on an open set $U \subseteq \mathbb{R}^k$ may be uniquely expressed as a sum $\sum_I f_I dx^I$ over increasing index sequences $I = (i_1 < \ldots, < i_p)$, where each f_I is a function on U.

Definition. If $f: X \to Y$ is smooth and ω is a smooth p-form on Y, we define the **pullback** of ω by f to be the p-tensor

$$f^*(\omega)(x) = (df_x)^* \omega[f(x)],$$

where $(df_x)^*$ is the dual (or transpose) map defined by $(df_x)^*\omega[f(x)] = \omega[f(x)] \circ df_x$.

- ▶ **Exercise**. Prove that $f^*(\omega_1 + \omega_2) = f^*\omega_1 + f^*\omega_2$ and prove $f^*(\omega \wedge \theta) = f^*\omega \wedge f^*\theta$ and prove $(fh)^*\omega = h^*f^*\omega$ for p-forms $\omega, \omega_1, \omega_2$ and a q-form θ .
- ▶ **Exercise**. Prove $f^*dx^i = df^i$ and conclude $f^*(\omega) = \sum_I (f^*a_I)df^I$ for $\omega = \sum_I a_I dx^I$.
- ▶ **Exercise**. Prove that if $f: X \to Y$ smooth and ϕ a chart on Y, then $f^*(d\phi) = d(f^*\phi)$.
- ▶ Exercise. Note: one of the reasons we want to look at an n-form ω on an n-manifold M is to be able to assign volume to a small region. The previous section showed these **volume forms** are essentially determinants on the tangent space. This makes sense because determinants (i) record volume of parallelepipeds and (ii) act like alternating n-tensors.

Exterior Derivatives.

Definition. If $\omega = \sum_{J} \omega_{J} dx^{J}$ is a smooth k-form on an open subset $U \subseteq \mathbb{R}^{n}$, we define its **exterior derivative** $d\omega$ to be the following (k+1)-form:

$$d\left(\sum_{J}' \omega_{J} dk^{J}\right) = \sum_{J}' d\omega_{J} \wedge dx^{J},$$

where $d\omega_J$ is just the differential of the function ω_J .

Integration on Manifolds.

Definition. Let $D \subseteq \mathbb{R}^n$ be a **domain of integration** (i.e. a bounded subset whose boundary has measure 0), and let $\omega = f dx^1 \wedge \cdots \wedge dx^n$ be an *n*-form on \overline{D} , where $f : \overline{D} \to \mathbb{R}$ is a continuous function. We define the **integral of** ω over D to be

$$\int_{D}^{\cdot} f dx^{1} \wedge \dots \wedge dx^{n} = \int_{D}^{\cdot} \omega = \int_{D}^{\cdot} f dx^{1} \dots dx^{n}$$

Definition. Suppose M is an oriented smooth n-manifold and ω is an n-form, compactly supported in the domain of a chart (U, φ) that is either positively or negatively oriented. We define the **integral** of ω over M to be the value

$$\int_{M} \omega = \pm \int_{\varphi(U)} (\varphi^{-1})^* \omega,$$

where the sign agrees with the positive/negative orientation.

Definition. Suppose M is an oriented smooth n-manifold and ω is a compactly supported n-form on M. Let $\{U_i\}$ be a finite open cover of $\operatorname{supp}(\omega)$ by domains of positively or negatively oriented charts, and let $\{\psi_i\}$ be a subordinate smooth partition of unity. Define the **integral of** ω **over** M to be the value

$$\int_{M} \omega = \sum_{i} \int_{M} \psi_{i} \ \omega$$

▶ Exercise. Show the above definition does not depend on choice of charts or partition of unity.*

Theorem. (Stokes's Theorem) Let M be an oriented smooth n-manifold with boundary, and let ω be a compactly supported (n-1)-form on M. Then

$$\int_{M} d\omega = \int_{\partial M} \omega.$$