Notes on Ergodic Theory

Kai-Jyun Wang* Fall 2024

Abstract

This note is based on Olav Kallenberg's *Foundations of Modern Probability*, Chapter 25, 26, and 27. The solutions to the exercises are planned to be included.

1. Stationary Process and Ergodic Theorems

Definition 1.1

Let (S, \mathcal{S}, μ) be a measure space. A measurable mapping $T: S \to S$ preserves μ or μ -preserving if $\mu(T^{-1}(A)) = \mu(A)$ for all $A \in \mathcal{S}$.

Remark

Let ξ be a random variable on S. Then T preserves μ if and only if $\xi \circ T \stackrel{d}{=} \xi$.

Definition 1.2

Consider the left shift mapping θ defined on S^{∞} by $\theta(x_1, x_2, ...) = \theta(x_2, x_3, ...)$. A random variable ξ on S^{∞} is called **stationary** if $\theta \xi \stackrel{d}{=} \xi$.

Lemma 1.3 (Stationary and Invariance)

For any random variable $\xi: S \to E$ and a measurable mapping $T: S \to S$,

- (a) $\xi T \stackrel{d}{=} \xi$ if and only if the sequence $\{\xi T^n\}$ is stationary.
- (b) If $\xi T \stackrel{d}{=} \xi$, then for every measurable function f defined on E, the sequence defined by $\{f(\xi T^n)\}$ is stationary.
- (c) Any stationary random sequence $\eta \in S^{\infty}$ can be represented as $\eta_n = f(\eta T^n)$.

Proof. Suppose first that $\xi T \stackrel{d}{=} \xi$. Then

$$\theta(\{f(\xi T^n)\}) = \left\{f\xi T^{n+1}\right\} = \left\{f\xi T^n \circ T\right\} \stackrel{d}{=} \left\{f(\xi T^n)\right\},$$

^{*}National Taiwan University, Department of Economics.

where θ is the left shift. This proves (b) and the suffiency of (a) by taking f to be the identity function. Conversely, if $\eta = \{\eta_n\}$ is a stationary sequence, then $\{\eta_n\} \stackrel{d}{=} \theta(\{\eta_n\}) = \{\eta_{n+1}\}$. Let $\eta_n = \pi_0(\theta^n \eta)$, where π_0 is the projection onto the first coordinate. This proves (c). And, taking $\eta = \{\xi T^n\}$, we have

$$\xi = \pi_0(\{\xi T^n\}) \stackrel{d}{=} \pi_0(\theta(\{\xi T^n\})) = \pi_0(\{\xi T^{n+1}\}) = \xi T.$$

This proves the necessity of (a).

Definition 1.4

We extend the definition of stationarity to a sequence indexed by \mathbb{Z} by requiring that $\theta \xi \stackrel{d}{=} \xi$, where θ is the left shift on $S^{\mathbb{Z}}$.

Remark

The advantage of such definition is that the left shift on $S^{\mathbb{Z}}$ is now invertible and hence forms a group instead of a semigroup. Observe that lemma 1.3 does not depend on the choice of our index set and hence still applies.

Definition 1.5

Let (S, S) be a measurable space and μ be a measure on S. μ is said to be **complete** if $A \subset B$ and $\mu(B) = 0$ implies $A \in S$.

Remark

The Lebesgue measure on \mathbb{R} is complete, but the Borel measure is not. In fact, the completion of the Borel measure is the Lebesgue measure.

Definition 1.6

Let (S, S, μ) be a measure space and $T: S \to S$ be a measurable mapping. A set $I \subset S$ is said to be invariant under T if $T^{-1}(I) = I$ and almost invariant if $\mu(T^{-1}(I)\triangle I) = 0$.

Definition 1.7

Let (S, S, μ) be a measure space, $T: S \to S$ be a measurable mapping, and S^{μ} be the completion of S with respect to μ . The **invariant** σ -algebra of T is the collection $\mathcal{I} \subset S$ of all sets that are invariant under T. Similarly, the **almost invariant** σ -algebra of T is the collection $\mathcal{I}' \subset S^{\mu}$ of all sets that are almost invariant under T.

Definition 1.8

A measurable function $f: S \to E$ is said to be **invariant** if $f \circ T = f$ and **almost invariant** if $f \circ T = f$ μ -a.e.