Class 2b: Review of concepts in Probability and Statistics

Business Forecasting

Summarizing Data

Summary Statistics

Measures of Central Tendency

Mean

- **Mean** represents the arithmetic average of the data.
- Sometimes called the expected value of the random variable E(X)
- The population mean μ is the sum of all observations divided by the total population size:

$$\mu = E(X) = rac{\sum_{i=1}^{N} x_i}{N} = \sum_{x \in X} P(X) \times X$$

- where N is the total population size, and x_i are individual data points.
- The sample mean, denoted as \bar{x} , is the sample equivalent:

$$ar{x} = rac{\sum_{i=1}^n x_i}{n} = rac{x_1 + x_2 + \ldots x_{n-1} + x_n}{n}$$

Mean

Intuitively, mean is the balancing point of the distribution.

Mean of a binary variable

What if a mean of a binary variable?

- Binary variable is a variable which takes value 0 or 1
- For example: do you have diabetes (yes=1, no=0)

What is the intuitive interpretation of the mean of this variable?

$$egin{array}{l} ullet ar{x} = rac{\sum_{i=1}^n x_i}{n} \ ullet ar{x} = rac{1+0+0+...0+1}{n} = rac{n_{diabetes}}{n} = \hat{\mu}_{diabetes} \end{array}$$

It's the proportion of people with diabetes in the sample: mean(diabetes)= 0.11

Weighted Mean

- In some scenarios, data points have different weights.
- For a dataset with weights w_i and values x_i , the weighted mean is:

$$ext{Weighted Mean} = rac{\sum_{i=1}^n w_i \cdot x_i}{\sum_{i=1}^n w_i}$$

Show 4 ventries		
Person	Weight 🌲	Grade 🌲
Midterm 1	0.2	6
Midterm 2	0.2	8
Quizzes	0.15	9
Final Project	0.15	4
Showing 1 to 4 of 5 entries		Previous 1 2 Next

The **weighted mean** is:

$$\bar{x} = \frac{0.2 \times 6 + 0.2 \times 8 + 0.15 \times 9 + 0.15 \times 4 + 0.3 \times 8}{0.2 + 0.2 + 0.15 + 0.15 + 0.3}$$

Aggregated Data

- We want to know average individual income in Mexico City
- But we only know averages by neighborhood, no individual data

Show 6 ventries					
Neighborhood		Average_Income 🔷	Population 👇		
Polanco		60000	10000		
Condesa		45000	20000		
Roma		35000	30000		
Tepito		15000	5000		
Coyoacán		30000	25000		
Santa Fe		25000	18000		
Showing 1 to 6 of 12 entries			Previous 1 2 Next		

10 / 44

Unweighted Mean vs. Weighted Mean

- Unweighted mean is: 25916.67 USD
- Weighted mean is: 21760.42USD
- Which one reflects average population income in CDMX?

Let

- ullet μ be the average individual income
- x_i be income of person "i"
- ullet N be the total Population in CDMX
- ullet N_z be the population in a neighborhood "z"
- ullet μ_z be the average income in a neighborhood "z"

$$\mu = \underbrace{\frac{\sum_{i=1}^{N} x_i}{N}}_{\substack{\text{Average} \\ \text{Individual} \\ \text{Income}}} = \underbrace{\frac{\sum_{z} \sum_{i=1}^{N_z} x_i}{\sum_{z} N_z}}_{\substack{\text{Average} \\ \text{Individual} \\ \text{Income}}} = \underbrace{\frac{\sum_{z} \sum_{i=1}^{N_z} x_i}{\sum_{z} N_z}}_{\substack{\text{N}_z \\ \text{N}_z \\ \text{N}_z}} = \underbrace{\frac{\sum_{z} N_z \sum_{i=1}^{N_z} \frac{x_i}{N_z}}{\sum_{z} N_z}}_{\substack{\text{Weighted} \\ \text{Average of Neighborhood} \\ \text{Incomes}}} = \underbrace{\frac{\sum_{z} N_z \sum_{i=1}^{N_z} x_i}{\sum_{z} N_z}}_{\substack{\text{Weighted} \\ \text{Average of Neighborhood} \\ \text{Incomes}}}$$

Mean

• Is mean always a right measure?

"Bill Gates walks into a bar"

- Suppose a group of people, including Bill Gates, walks into a bar.
- Let's say the net worth of everyone in the group is as follows:

The **mean** is:

$$ar{x} = rac{10 + 20 + 30 + 40 + 50 + 60000}{6} \ = 100025$$

Mean is seriously skewed due to the outlier.

Mean vs Median

Median

- Median represents the middle value when data is sorted
- Half of observations are below it, half are above it.
- For a dataset with odd size n, the median is the $\frac{n+1}{2}$ -th value
- ullet For even size n, it's the average of $rac{n}{2}$ -th and $rac{n}{2}+1$ -th values.

Day	Number of Customers
1	20
2	18
3	25
4	22
5	30
6	21
7	27

The dataset has n=7 (odd) observations, so to find the median:

- Arrange the data in ascending order:
 - 18, 20, 21, 22, 25, 27, 30.
- The median is the $\frac{n+1}{2}$ -th value, which is the 4th value.
- Thus, the median is the 4th value, which is 22.

Let's look at the median weight in our population

Mean: 72.66451Median: 70.7536

20 / 44

Median and outliers

I added couple of observations on the right tail of the distribution

• Old Mean: 72.66, New Mean: 77.05

• Old Median: 70.75, **New Median: 70.95**

Side note on the Mode

Mode is the most frequent value in the data

• Let's look at the distribution of age of people with diabtese

Show 6	entries		
Age	≜	n_i ∳	p_i 4
20		4	0.00
21		2	(
22		4	0.00
23		3	0.00
24		5	0.00
25		7	0.002
Showing 1 to 6	of 78 entries	Previous 1 2	3 4 5 13 Next

Mode

- How much inventory of milk you need to keep in your Starbucks?
- What is the tradeoff of keeping too much vs too litle inventory?
- Suppose we want to have enough of milk to cover sales on 95% of days
- To figure it out, let's look at the distribution of the daily use of milk

- Let s_i be the daily sales of milk
- ullet We want to choose amount M, such that $P(s_i \leq M) = 0.95$
- ullet That is, in 95% of days sales are smaller or equal than M

- What is this number?
- It's the 95th percentile of the distribution (274 liters)

- Percentiles divide the ordered data into 100 equal parts.
- pth percentile is a value such that p% of the data are below it
 - $\circ \ v_p$ is such that $P(x_i \leq v_p) = p$
 - $\circ \ v_{95}$ is such that $P(x_i \leq v_{95}) = 95\%$

- What is the height such that 75% of ITAM students are smaller than this height?
- What is the income level such that 25% of people in Mexico earn less than that level?
- What is the age, such that 50% of people die before that age?

How to find it in a sample

- 1. Arrange the data in ascending order
- 2. Find which observation corresponds to the relevant percentile
 - \circ Formula: $i = \left(\frac{p}{100}\right)(n+1)$
 - \circ Example: To find 95th percentile in a sample of 1000 observations we look at $i=\left(rac{95}{100}
 ight)(1000+1)=950.95$ observation
- 3. If it's an integer, value of ith observation is your percentile
- 4. If it's not, take the average between ith rounded down and ith rounded up
 - In our example it would be the average of 950th and 951th observation

Or use the CDF

• $ECDF(v) = P(x_i \leq v)$

Common values

- **Median** 50th percentile half of the values are below the median
- Quartiles 25th, 50th and 75th percentile.
 - How poor is the poorest quartile of the society?
 - Their income is below the 25th percentile

- **Deciles** 10th, 20th, ... 90th
 - How bad pollution gets in CDMX during top 10% polluted days?
 - During top 10% of polluted days pollution level is larger or than 9th decile.

Example with data

Here is a data on distribution of how many views have various tik-tok videos.

- What is the 1st decile?
- What is the 95th percentile?

- Index for the first decile is: $i=\left(\frac{10}{100}\right)(200+1)=20.1$
 - First decile is the average of the 20th and 21st observation
- Index for the 95th percentile is: $i=\left(\frac{95}{100}\right)(200+1)=190.95$
 - 95th percentile is the average of the at 190th and 191st observation

Exercises:

- Review Exercises:
 - o PDF 2: 3,4,5,6,
- Homeworks
 - o Lista 00.1: 3