Développement efficace (R3.02) Quelques mots de complexité

Marin Bougeret LIRMM, IUT/Université de Montpellier

Outline

- Définition du modèle
- \bigcirc La notation \bigcirc
- Résultats négatifs
- 4 Complexité des algorithmes récursifs
- 5 Réflexions sur le modèle

Idée 1 : compter le nombre d'opérations (pas le temps), et considérer que toutes les opération élém. ont le MEME coût.

Ainsi, les calculs sont indépendants de la machine !

On considère que toutes les opérations élémentaires coûtent 1 :

- opération arithm/logiques (+,-,..,et,ou..)
- déclaration, affectations
- lecture d'une case d'un tableau (t[i])
- o comparaison de deux types de base
- retour d'une valeur (return)

Attention : cela ne s'applique pas aux opérations suivantes :

- appel d'une fonction (x = f(n)): compter les op. de f(n)
- entrée/sorties

Idée 1 : compter le nombre d'opérations (pas le temps), et considérer que toutes les opération élém. ont le MEME coût.

Ainsi, les calculs sont indépendants de la machine !

On considère que toutes les opérations élémentaires coûtent 1 :

- opération arithm/logiques (+,-,..,et,ou..)
- déclaration, affectations
- lecture d'une case d'un tableau (t[i])
- comparaison de deux types de base
- retour d'une valeur (return)

Attention : cela ne s'applique pas aux opérations suivantes :

- appel d'une fonction (x = f(n)): compter les op. de f(n)
- entrée/sorties

Idée 1 : compter le nombre d'opérations (pas le temps), et considérer que toutes les opération élém. ont le MEME coût.

Ainsi, les calculs sont indépendants de la machine !

On considère que toutes les opérations élémentaires coûtent 1 :

- opération arithm/logiques (+,-,..,et,ou..)
- déclaration, affectations
- lecture d'une case d'un tableau (t[i])
- comparaison de deux types de base
- retour d'une valeur (return)

Attention : cela ne s'applique pas aux opérations suivantes :

- appel d'une fonction (x = f(n)): compter les op. de f(n)
- entrée/sorties

```
void f() {
  int x; //1
  x = (3+1); //2
  if(x > 1) { // 1
    int y = x; //2
  }
}
```

Notation

Le nombre d'opérations de l'algorithme sera noté m

Nombre d'opérations de f: m = 6

```
void f(int n) {
  int x = 10; //1
  for(int i=1;i<=n;i++) {
    x = x+1; //2
    x = x*2; //2
  }
}</pre>
```

Pour compter plus facilement, ré-ecrivons un code équivalent

```
void f(int n) {
  int x = 10; //1
  int i=1; //1
  while(i<=n) {//1 par test
    x = x+1; //2
    x = x*2; //2
    i = i+1; //2
}</pre>
```

```
m(n) =
2+
7+ //i=1
7+ //i=2
..
7+ //i=n
+1 //test sortie
= 7n+3
```

```
void f(int n){
  int x = 10; //1
  int i=1;//1
  while(i<=n){//1 par test
    x = x+1; //2
     x = x*2; //2
     i = i+1; //2
m(n) =
2+
7 + //i = 1
7 + //i = 2
7 + //i = n
+1 //test sortie
= 7n + 3
                                                            5 / 37
```

Idée 2 : compter dans le pire des cas

Idée 2 : compter le nombre d'opérations dans le pire des cas

```
boolean recherche(int x, int[] t){
  boolean trouve = false;
  int i = 0;
  while((!trouve) && (i<t.length)){
    trouve = (t[i]==x);
    i++;
  }
  return trouve;
}</pre>
```

- au lieu de prouver "pour tout x, pour tout tableau de taille n, nb op. de recherche(x,t) = .."
- on va prouver "pour tout x, pour tout tableau de taille n, nb op. de recherche(x,t) ≤ .."

Idée 2 : compter dans le pire des cas

```
boolean recherche(int x, int[] t){
  boolean trouve = false;
  int i = 0;
  while((!trouve) && (i<t.length)){
    trouve = (t[i]==x);
    i++;
  }
  return trouve;
}</pre>
```

$$m(n) \leq 6 + 9n$$

Idée 3 : ignorer les constantes

- obtenir "pour tout, $m(n) \le 2n$ " ou
- obtenir "pour tout, $m(n) \le 4n$ "

est "équivalent" vu notre modèle

- pourquoi la valeur des constantes n'a pas vraiment de sens pour nous ?
- car on compte toutes les opérations élémentaires comme valant 1, mais vrai coût des opérations élémentaires n'est sans doute pas le même ("+" coûte 1, mais "x" coûte 2 (?) ..)

Idée 3 : ignorer les constantes

- obtenir "pour tout, $m(n) \le 2n$ " ou
- obtenir "pour tout, $m(n) \le 4n$ "

est "équivalent" vu notre modèle

- pourquoi la valeur des constantes n'a pas vraiment de sens pour nous ?
- car on compte toutes les opérations élémentaires comme valant 1, mais vrai coût des opérations élémentaires n'est sans doute pas le même ("+" coûte 1, mais "x" coûte 2 (?) ..)

Idée 3 : ignorer les constantes

- obtenir "pour tout, $m(n) \le 2n$ " ou
- obtenir "pour tout, m(n) ≤ 4n"
 est "équivalent" vu notre modèle
 - pourquoi la valeur des constantes n'a pas vraiment de sens pour nous ?
 - car on compte toutes les opérations élémentaires comme valant 1, mais vrai coût des opérations élémentaires n'est sans doute pas le même ("+" coûte 1, mais "x" coûte 2 (?) ..)

- c'est une bonne nouvelle!
- en effet, reprenons l'exemple précédent : (!trouve && (i < t.length)) //m <= 2? 3? 4? 5?
- a présent, on dira $\exists c_0$ (par exemple 1000 ici) telle que (!trouve && (i < t.length)) $//m <= c_0$

Recommençons l'analyse de l'exemple précédent

- c'est une bonne nouvelle!
- en effet, reprenons l'exemple précédent :
 (!trouve && (i < t.length)) //m <= 2? 3? 4? 5?
- a présent, on dira $\exists c_0$ (par exemple 1000 ici) telle que (!trouve && (i < t.length)) $//m <= c_0$

Recommençons l'analyse de l'exemple précédent.

```
1 boolean recherche(int x, int[] t){
2  boolean trouve = false;
3  int i = 0;
4  while((!trouve) && (i<t.length)){
5   trouve = (t[i]==x);
6   i++;
7  }
8  return trouve;
9 }</pre>
```

A présent on dit:

- $\exists c_1$ tq les opérations des l2 et l3 coûtent $\leq c_1$
- $\exists c_2$ tq le test du while l4, l5 et l6 coûtent $\leq c_2$
- $\exists c_3$ tq les opérations des l7 coûtent $\leq c_3$

Remarquez que les c_i ne dépendent pas des paramètres de l'algo (et donc de n), c'est pour cela qu'on les appelle des constantes.

```
1 boolean recherche(int x, int[] t){
2  boolean trouve = false;
3  int i = 0;
4  while((!trouve) && (i<t.length)){
5   trouve = (t[i]==x);
6   i++;
7  }
8  return trouve;
9 }</pre>
```

On obtient donc

```
\exists c_1, c_2, c_3 \; \mathsf{tq} \; \forall (x,t) \; \mathsf{avec} \; t \; \mathsf{ayant} \; n \; \mathsf{cases}, m(n) \; \leq \; c_1 + nbtour \times c_2 + c_3 \leq \; c_1 + c_2 n + c_3
```

Idée 4 : conserver seulement le terme dominant

Si l'on obtient par exemple "
$$m(n) \le c_1 + c_2 n + c_3 n^2 + c_4 n^3$$
":
$$c_1 + c_2 n + c_3 n^2 + c_4 n^3$$
$$\le c_1 n^3 + c_2 n^3 + c_3 n^3 + c_4 n^3$$
$$= cn^3 \text{ avec } c = c_1 + c_2 + c_3 + c_4$$

(valable seulement pour $n \ge 1$, ce que l'on supposera partout)

Retour à l'exemple précédent

Idée 4 : conserver seulement le terme dominant

Si l'on obtient par exemple "
$$m(n) \le c_1 + c_2 n + c_3 n^2 + c_4 n^3$$
":
$$c_1 + c_2 n + c_3 n^2 + c_4 n^3$$
$$\le c_1 n^3 + c_2 n^3 + c_3 n^3 + c_4 n^3$$
$$= cn^3 \text{ avec } c = c_1 + c_2 + c_3 + c_4$$

(valable seulement pour $n \ge 1$, ce que l'on supposera partout)

Retour à l'exemple précédent

Idée 4 : conserver seulement le terme dominant

Si l'on obtient par exemple "
$$m(n) \le c_1 + c_2 n + c_3 n^2 + c_4 n^3$$
":

$$c_1 + c_2 n + c_3 n^2 + c_4 n^3$$

$$\le c_1 n^3 + c_2 n^3 + c_3 n^3 + c_4 n^3$$

$$= cn^3 \text{ avec } c = c_1 + c_2 + c_3 + c_4$$

(valable seulement pour $n \ge 1$, ce que l'on supposera partout)

Retour à l'exemple précédent :

```
boolean recherche(int x, int[] t){
boolean trouve = false;
int i = 0;
while((!trouve) && (i<t.length)){
trouve = (t[i]==x);
i++;
}
return trouve;
}</pre>
```

$$\exists c_1, c_2, c_3 \text{ tq } \forall (x, t) \text{ avec } t \text{ ayant } n \text{ cases,}$$

$$m(n) \leq c_1 + nbtour \times c_2 + c_3$$

$$\leq c_1 + c_2 n + c_3$$

$$\leq c_1 n + c_2 n + c_3 n$$

$$= cn$$

$$(\text{avec } c = c_1 + c_2 + c_3)$$

```
1 boolean recherche(int x, int[] t){
2   boolean trouve = false;
3   int i = 0;
4   while((!trouve) && (i<t.length)){
5    trouve = (t[i]==x);
6   i++;
7   }
8   return trouve;
9 }</pre>
```

```
\exists c \; \mathsf{tq} \; \forall (x,t) \; \mathsf{avec} \; t \; \mathsf{ayant} \; n \; \mathsf{cases}, m(n) \; \leq \; cn
```

Conclusion du modèle

Résumé

Dans la complexité pire cas, l'objectif est donc de prouver des résultats du type :

• \exists constante c / pour toute entrée de "taille" n, $m(n) \le cf(n)$

Classification usuelle

On retrouvera souvent les catégories suivantes :

- $\exists c$ tq pour tout $n \ge 1$, $m(n) \le clog(n)$ (algo logarithmique)
- $\exists c$ tq pour tout $n \ge 1$, $m(n) \le cn$ (algo linéaire)
- $\exists c$ tq pour tout $n \ge 1$, $m(n) \le cnlog(n)$
- $\exists c$ tq pour tout $n \ge 1$, $m(n) \le cn^2$ (algo quadratique)
- $\exists c$ tq pour tout $n \ge 1$, $m(n) \le cn^3$ (algo cubique)
- $\exists c$ tq pour tout $n \ge 1$, $m(n) \le c2^n$ (algo exponential)

Si $m(n) \le cn^a$ (a constante) on parle d'algorithme polynomial.

Conclusion du modèle

But

Pour les complexités du type $m(n) \le cn^a$ (a constante), le but est de minimiser a (peu importe c).

Pourquoi ce but?

Soient A_1 et A_2 tels que :

- A_1 coûte $m_1(n) \le 100n$
- A_2 coûte $m_2(n) < 2n^2$

- quand n est grand (\geq 50 ici), c'est la fonction avec le plus petit "a" qui est la plus petite (m_1 donc)!
- et de toute façon, quand n petit, les deux algorithmes sont très rapides

Conclusion du modèle

But

Pour les complexités du type $m(n) \le cn^a$ (a constante), le but est de minimiser a (peu importe c).

Pourquoi ce but?

Soient A_1 et A_2 tels que :

- A_1 coûte $m_1(n) \le c_1 n^{a_1}$
- A_2 coûte $m_2(n) < c_2 n^{a_2}$

- quand n est grand, c'est la fonction avec le plus petit a qui est la plus petite
- et de toute façon, quand n petit, les deux algorithmes sont très rapides

C'est donc un autre argument pour dire que la valeur des constantes c_i ne nous intéresse pas.

Classification usuelle

- Hypothèses:
 - ordinateur 100 Mips
 - □ traitement de 1 élément = 100 instructions machine

		₽.				
	10	50	100	500	1000	10000
n	.00001	.00005	.0001	.0005	.001	.01
	sec.	sec.	sec.	sec.	sec.	sec.
n ²	.0001	.0025	.01	.25	1	1.6
	sec.	sec.	sec.	sec.	sec.	min.
n ³	.001	.125	1	2.08	16.6	11.57
	sec.	sec.	sec.	min.	min.	jours
n ⁵	.1	5.2	2.7	1	31.7	31x10 ³
	sec.	min.	heures	année	années	siècles
2 ⁿ	.001	35.7	4x10 ¹⁴			
	sec.	années	siècles			
3 ⁿ	.059	2x10 ⁸				
	sec.	siècles				

source : Introduction à la complexité algorithmique : Y. Deville, UCL 1999

Morale : une avancée technologique ne suffira pas à compenser un algorithme de grande complexité

Remarque

Calculer la complexité peut être très difficile ! Exemple :

Si l'on savait calculer la complexité (et même juste prouver que l'algorithme termine), on aurait résolu un grand problème des mathématiques!

On se limitera dans ce cours à des algos. dont la complexité est facile à déterminer.

Outline

- Définition du modèle
- $oldsymbol{2}$ La notation $\mathcal O$
- Résultats négatifs
- 4 Complexité des algorithmes récursifs
- 5 Réflexions sur le modèle

Définition

Définition

Soient m et f deux fonctions de \mathbb{N}^* dans \mathbb{R}^+ . On dit que $m = \mathcal{O}(f)$ (se lit "m est en grand O de f") ssi

• \exists constante c / pour tout $n \ge 1$, $m(n) \le cf(n)$

Notation adaptée ici, car cache la valeur de la constante.

Classification usuelle

Reformulation des catégories précédentes :

- $m = \mathcal{O}(\log(n))$ (algo logarithmique)
- $m = \mathcal{O}(n)$ (algo linéaire)
- $m = \mathcal{O}(n\log(n))$
- $m = \mathcal{O}(n^2)$ (algo quadratique)
- $m = \mathcal{O}(n^3)$ (algo cubique)
- $m \leq \mathcal{O}(2^n)$ (algo exponentiel)

Quelques propriétés du O

Notation

On utilisera $\mathcal{O}(f)$ directement dans des expressions :

Ex : $m = \mathcal{O}(f_1) + \mathcal{O}(f_2)$ signifie $m = m_1 + m_2$ avec $m_i = \mathcal{O}(f_i)$

Lemme

- $m = \mathcal{O}(f_1) + \mathcal{O}(f_2) \Rightarrow m = \mathcal{O}(f_1 + f_2)$
- $m = \mathcal{O}(f_1) \times \mathcal{O}(f_2) \Rightarrow m = \mathcal{O}(f_1 f_2)$
- $m = \mathcal{O}(cf_1) \Rightarrow m = \mathcal{O}(f_1)$ (avec c une constante)
- $m = \mathcal{O}(f_1) + \mathcal{O}(f_2) \Rightarrow m = \mathcal{O}(\max(f_1, f_2))$

Preuve de $m = \mathcal{O}(f_1) + \mathcal{O}(f_2) \Rightarrow m = \mathcal{O}(f_1 + f_2)$

- $m = m_1 + m_2$ et $\exists c_i$ tq $\forall n \geq 1$, $m_i(n) \leq c_i f_i(n)$
- donc $\forall n \geq 1$, $m(n) \leq c_1 f_1(n) + c_2 f_2(n) \leq c(f_1(n) + f_2(n))$ avec $c = max(c_1, c_2)$

Quelques propriétés du O

Notation

On utilisera $\mathcal{O}(f)$ directement dans des expressions :

Ex : $m = \mathcal{O}(f_1) + \mathcal{O}(f_2)$ signifie $m = m_1 + m_2$ avec $m_i = \mathcal{O}(f_i)$

Lemme

- $m = \mathcal{O}(f_1) + \mathcal{O}(f_2) \Rightarrow m = \mathcal{O}(f_1 + f_2)$
- $m = \mathcal{O}(f_1) \times \mathcal{O}(f_2) \Rightarrow m = \mathcal{O}(f_1 f_2)$
- $m = \mathcal{O}(cf_1) \Rightarrow m = \mathcal{O}(f_1)$ (avec c une constante)
- $m = \mathcal{O}(f_1) + O(f_2) \Rightarrow m = \mathcal{O}(\max(f_1, f_2))$

Preuve de $m = \mathcal{O}(cf_1) \Rightarrow m = \mathcal{O}(f_1)$ (avec c une constante)

- $m = cm_1$ et $\exists c_1$ tq $\forall n \geq 1$, $m_1(n) \leq c_1 f_1(n)$
- donc $\forall n \geq 1$, $m(n) \leq c \times c_1 f_1(n) \leq c_0 f_1(n)$ avec $c_0 = c \times c_1$

Quelques propriétés du ${\cal O}$

Notation

On utilisera $\mathcal{O}(f)$ directement dans des expressions :

Ex: $m = \mathcal{O}(f_1) + \mathcal{O}(f_2)$ signifie $m = m_1 + m_2$ avec $m_i = \mathcal{O}(f_i)$

Lemme

- $m = \mathcal{O}(f_1) + O(f_2) \Rightarrow m = \mathcal{O}(f_1 + f_2)$
- $m = \mathcal{O}(f_1) \times \mathcal{O}(f_2) \Rightarrow m = \mathcal{O}(f_1 f_2)$
- $m = \mathcal{O}(cf_1) \Rightarrow m = \mathcal{O}(f_1)$ (avec c une constante)
- $m = \mathcal{O}(f_1) + O(f_2) \Rightarrow m = \mathcal{O}(\max(f_1, f_2))$

Preuve de $m = \mathcal{O}(f_1) + O(f_2) \Rightarrow m = \mathcal{O}(\max(f_1, f_2))$

- $m = m_1 + m_2$ et $\exists c_i$ tq $\forall n \geq 1$, $m_i(n) \leq c_i f_i(n)$
- donc $\forall n \geq 1$,

$$m(n) \le c_1 f_1(n) + c_2 f_2(n) \le c(f_1(n) + f_2(n)) \le 2cf(n) \le c'f(n)$$

avec $c = max(c_1, c_2)$, $f(n) = max(f_1(n), f_2(n))$ et c' = 2c

Conséquence pour l'analyse du code

```
1 boolean recherche(int x, int[] t){
   boolean trouve = false;
2
   int i = 0;
3
   while((!trouve) && (i<t.length)){</pre>
4
      trouve = (t[i]==x);
5
      i++:
6
   }
7
   return trouve;
8
9 }
```

Une deuxième méthode pour montrer que recherche est en $\mathcal{O}(n)$:

- soit *m*_{init} coût des lignes 2 et 3
- soit *m*_{boucle} coût des tests dans while et lignes 5, 6
- soit m_{fin} coût ligne 8

Conséquence pour l'analyse du code

```
1 boolean recherche(int x, int[] t){
2  boolean trouve = false;
3  int i = 0;
4  while((!trouve) && (i<t.length)){
5   trouve = (t[i]==x);
6   i++;
7  }
8  return trouve;
9 }</pre>
```

Une deuxième méthode pour montrer que recherche est en $\mathcal{O}(n)$:

$$m \leq m_{init} + n \times m_{boucle} + m_{fin}$$
 $= \mathcal{O}(1) + n \times \mathcal{O}(1) + \mathcal{O}(1)$
 $\Rightarrow \mathcal{O}(1) + \mathcal{O}(n) + \mathcal{O}(1)$
 $\Rightarrow \mathcal{O}(n) + \mathcal{O}(1)$
 $\Rightarrow \mathcal{O}(n)$

Conséquence pour l'analyse du code

```
boolean algo(...){
   .. une partie 0 init en m0=0(1)
   .. une partie 1 en m1=0(n^2)
   .. une partie 2 en m2=0(n)
                    m = m_0 + m_1 + m_2
                         = \mathcal{O}(1) + \mathcal{O}(n^2) + \mathcal{O}(n)
                         \Rightarrow \mathcal{O}(n^2) + \mathcal{O}(n)
                         \Rightarrow \mathcal{O}(n^2)
```

Conclusion

Quand le code se décompose en un nombre constant de parties, la partie la plus chère détermine à elle seule la complexité.

Définition (par ex pour 2 variables)

Soient m et f deux fonctions de $\mathbb{N}^* \times \mathbb{N}^*$ dans \mathbb{R}^+ . On dit que $m = \mathcal{O}(f)$ (se lit "m est en grand O de f") ssi

• \exists constante c / pour tout $n_1 \ge 1$, $n_2 \ge 1$, $m(n_1, n_2) \le cf(n_1, n_2)$

```
int[] tri(int []t) //t[i] >= 1
  int []res = new int[t.length]; //<= c_0 n</pre>
  int e = 0; //indice ecriture //c_1
  int x = 1; //c_2
  while (e < t.length) { //r: nb tour de while
    for(int i=0;i<t.length;i++){</pre>
      //c_3 pour tests dans for et
         instructions dans la boucle
      if(t[i]==x)
         res[e]=x: e++:
    x++; //c_4
  return res; //c_5
```

Soit V la valeur max des t[i]. Montrons que $m = \mathcal{O}(nV)$.

$$m(V, n) \leq c_0 n + c_1 + c_2 + r(nc_3 + c_4) + c_5$$

$$m(V, n) \le c_0 n + c_1 + c_2 + r(nc_3 + c_4) + c_5$$

 $\le rnc_0 + rnc_1 + rnc_2 + rn_c 3 + rnc_4 + rnc_5$
 $\le crn \text{ (avec } c = c_1 + \dots + c_5\text{)}$
 $\le cVn$

On a donc obtenu que $m = \mathcal{O}(nV)$.

Parfois, introduire plusieurs paramètres permet d'exprimer plus finement la complexité :

- ex pour un problème où l'on prend un graphe G en entrée (à n_S sommets et n_E arêtes)
- on peut avoir une complexité $m(G) \le c(n_S + n_E)$,
- si l'on veut uniquement exprimer en n_S , on peut majorer $c(n_S + n_E) \le c(n_S + n_S^2) \le 2cn_S^2 = c'n_S^2$
- mais la deuxième expression est moins précise

Outline

- Définition du modèle
- igc 2 La notation $\mathcal O$
- Résultats négatifs
- 4 Complexité des algorithmes récursifs
- 5 Réflexions sur le modèle

Résultats négatifs

Jusqu'à présent, notre but était de montrer des énoncés du type $m = \mathcal{O}(n^2)$, c'est à dire :

• \exists constante c / pour tout tab t de n cases, $m(n) \le cn^2$

Autrement dit, on montre que l'algorithme est "bon" (on garantit que pour toute entrée, $m(n) \leq ...$)

Problème

Imaginons que l'on ait prouvé que $m = \mathcal{O}(n^2)$. Comment prouver un résultat négatif, c'est à dire que :

- notre analyse est la meilleure possible ?
- ou autrement dit, que l'on a PAS $m = \mathcal{O}(n)$?
- c'est à dire que ∄ constante c' telle que pour tout tableau t de n cases, m ≤ c'n?

Résutlats négatifs : méthode de l'adversaire

- pour tout n, définir un tableau t_n de n cases bien choisi qui fait faire "beaucoup" d'opérations à l'algorithme
- ② prouver (en annotant le code) que $m \ge ...$ (par ex $m \ge \frac{n(n-1)}{2}$) (ici ne pas utiliser de c_i : on peut juste affirmer "la l4 coûte au moins 1", et non "la l4 coûte au moins c_i avec c_i un grand entier")

Cela suffit à prouver

• \nexists constante c' / pour tout tab t de n cases, $m \le c' n$

En effet, supposons par contradiction que

• \exists constante c' / pour tout tab t de n cases, $m \le c'n$

Alors en particulier on a : pour tout n, avec le tableau t_n :

$$\frac{n(n-1)}{2} \le m(n) \le c'n \qquad \Rightarrow \qquad \frac{(n-1)}{2} \le c'$$

une contradiction, en passant à la limite quand $n \to +\infty$

Exemple

```
public static void triBulle(int []t)
    boolean pb= true;
2
    while(pb){
3
      pb = false;
4
      for(int i=0;i<t.length-1;i++){</pre>
5
        if(t[i]>t[i+1])
6
          pb=true;
7
           int tmp = t[i];
8
          t[i]=t[i+1];
9
         t[i+1]=tmp;
10
11
12
```

Prouvons par exemple que $\frac{1}{2}$ constante c' / pour tout tab t de n cases, $m \le c'n$

- pour tout n, soit $t_n = \{n-1, n-2, ..., 0\}$
- montrons que triBulle (t_n) fait $m(n) \ge n(n-1)$ opération

Exemple

```
public static void triBulle(int []t)
    boolean pb= true;
2
    while(pb){
3
       pb = false;
4
       for(int i=0;i<t.length-1;i++){</pre>
5
         if(t[i]>t[i+1])
6
            pb=true;
7
            int tmp = t[i];
8
           t[i]=t[i+1]:
9
          t[i+1]=tmp;
10
11
12
               m > nbtour \times coût(lignes 4 .. 11)
                   > nbtour \times (n-1)
                   = n \times (n-1)
```

- coût(lignes 4 .. 11) \geq (n-1) car on ignore l4 et on compte coût(lignes 6 .. 10) \geq 1
- nbtour = n : justification au tableau

Exemple

On en déduit avec le même raisonnement que précédemment que \sharp constante c' / pour tout tab t de n cases, $m \le c'n$:

En effet, supposons par contradiction que

• \exists constante c' / pour tout tab t de n cases, $m \le c' n$

Alors en particulier on a : pour tout n, avec le tableau t_n :

$$n(n-1) \le m(n) \le c'n \Rightarrow (n-1) \le c'$$

une contradiction, en passant à la limite quand $n \to +\infty$

Résultats négatifs

Bilan

Pour prouver qu'on ne peut pas avoir mieux que $m = \mathcal{O}(n^a)$

- trouver pour tout $n \ge 1$ un tableau t_n où le nombre d'op. m(n) vérifie $m(n) \ge P(n)$, où P est un polynôme de degré a
- ullet cela implique que pour tout $\epsilon>0$, on a pas $m=\mathcal{O}(n^{a-\epsilon})$
- ex, si $m(n) \ge P(n)$ avec $P(n) = \frac{(n-3)^2}{5} n + 25$, cela suffit pour a = 2, même si P(n) est un peu plus petit que n^2
- l'étape 1 correspond à jouer le rôle de l'adversaire
- être un bon adversaire (qui trouve de "méchantes" entrées pour un algorithme donné) est une compétence utile pour un algorithmicien, au delà des calculs de complexité

Outline

- Définition du modèle
- \bigcirc La notation $\mathcal O$
- Résultats négatifs
- 4 Complexité des algorithmes récursifs
- 5 Réflexions sur le modèle

Complexité des algorithmes récursifs

- pour calculer la complexité d'un algorithme itératif, on annote le code (avec des constantes c_i).
- pour calculer la complexité d'un algorithme récursif .. plus difficile, on a pas envie de faire la trace à la main en annotant !

Complexité des algorithmes récursifs

Par ex, comment analyser par ex les algorithmes suivants?

```
void triFusion(int[] t, int i, int j){
  if(i<j)
    int m=(i+j)/2;
    triFusion(t,i,m);
    triFusion(t,m+1,j);
    fusion(t,i,m+1,j);//0(n)
}
boolean rech(int x){
    //recherche dans classe arbre
  if(estVide())
   return false;
  else
  return val == x | | filsG.rech(x) | | filsD.rech(x);
}
```

Technique standard

En général

- on exécute à la main pour trouver une fonction candidate f(n) telle que $m(n) \le cf(n)$
- 2 on essayer de prouver l'inégalité obtenue par récurrence

lci, étape 2 pas au programme (peut être compliqué!), on se contentera du $1\,$

- pour triFusion, on a $\mathcal{O}(nlog(n))$ (arbre de hauteur n, et sur chaque niveau $\mathcal{O}(n)$ calculs en tout)
- pour rech, on a $\mathcal{O}(n)$

Outline

- Définition du modèle
- \bigcirc La notation $\mathcal O$
- Résultats négatifs
- 4 Complexité des algorithmes récursifs
- 6 Réflexions sur le modèle

Critiques classiques du modèle

Critique 1 : parcours partiel = parcours total

- en complexité pire cas, un parcours partiel et total ont la même complexité (par ex $\mathcal{O}(n)$ pour une recherche dans un tableau)
- c'est dommage! N'oubliez pas de toujours faire des parcours partiels!

Critiques classiques du modèle

Critique 2 : meilleur algo en pratique != en théorie

• parfois, il existe un algorithme A_1 en $\mathcal{O}(f_1)$ et un autre algorithme A_2 en $\mathcal{O}(f_2)$, avec $f_1 >= f_2$, et pourtant A_1 est meilleur "en pratique" !

Raison 1 : rareté du pire cas

Exemple : quickSort en $\mathcal{O}(n^2)$ est en pratique plus rapide triFusion, pourtant en $\mathcal{O}(n\log(n))$

- pourquoi ? Car très peu d'instances provoquent le pire cas !
- il existe d'autres modèles de complexité qui évitent cet inconvénient

Critiques classiques du modèle

Critique 2 : meilleur algo en pratique != en théorie

• parfois, il existe un algorithme A_1 en $\mathcal{O}(f_1)$ et un autre algorithme A_2 en $\mathcal{O}(f_2)$, avec $f_1 >= f_2$, et pourtant A_1 est meilleur "en pratique" !

Raison 2: constantes monstrueuses

Exemple: $100000000n^2 \text{ vs } 2n^3$:

- l'argument de "quand n devient grand (c'est à dire $n \ge v$), le n^2 est meilleur" est toujours vrai..
- mais si la valeur v à partir de laquelle c'est vrai est astronomique, on préfèrera le $2n^3$

Conclusion

Démarche suggérée

- d'abord optimiser la puissance du n (petit a dans n^a)
- une fois votre meilleur a atteint, optimiser les constantes
- ne pas oublier d'écrire des parcours partiels quand cela est possible
- testez plusieurs algorithmes sur vos vraies données pour comprendre si les pires cas se produisent vraiment