Notes of Categories for the Working Mathematicians

Naughie

Contents

Pı	Preface		
3	Uni	iversals and Limits	1
	3.1	Universal arrows	2
	3.2	The Yoneda Lemma	5
	3.3	Coproducts and Colimits	9
	3.4	Products and Limits	14

Contents

Preface

これは、@naughiez による、MacLane's Categories for the Working Mathematicians の個人的なメモです。

第3章 Universals and Limits

§ 3.1 Universal arrows

DEFINITION 3.1.1

 $S: \mathcal{D} \to \mathscr{C}$ を functor とし, $c \in \mathscr{C}$ を object とする。 $\langle r \in \mathcal{D}, u \colon c \to Sr \rangle$ が universal arrow from c to S であるとは,任意の $\langle d \in \mathcal{D}, f \colon c \to Sd \rangle$ に対し,唯一つの射 $\tilde{f} \colon r \to d$ が存在して, $f = S\tilde{f} \circ u$ とできることをいう.

 $c \xrightarrow{u} Sr$: universal arrow $\iff c \xrightarrow{u} Sr$: initial object in $(c \downarrow S)$

である. 特に, universal arrow は unique up to isomorphism (if exists).

以下,特に断らない限り, $U: \mathcal{D} \to \mathcal{C}$ は forgetful functor とする.

EXAMPLE 3.1.1 i) $k \notin \text{field}$, $X \notin \text{set } k \notin S$. $X \hookrightarrow U \operatorname{span}_k X$ is universal arrow from X to $U \colon \mathbf{Vect}_k \to \mathbf{Set}$.

- ii) G を graph とすると、 $P: G \to U\mathscr{C}_G$ は universal arrow from G to $U: \mathbf{Grph} \to \mathbf{Cat}$.
- iii) X を set, $\langle X \rangle$ を X から生成された free group とする. $X \hookrightarrow U\langle X \rangle$ は universal arrow from X to U: $\mathbf{Grp} \to \mathbf{Set}$.
- iv) \mathbf{Dom}_m を次のように定める:
 - obj.: objects of **Dom**, *i. e.*, integral domains;
 - arr.: monomorphic ring homomorphisms between integral domains.

Fields 間の ring homomorphisms はすべて monomorphisms であることに注意して(実際, ring homomorphism の kernel は (two sided) ideal であるから,自明なものしかない),U: Fld \rightarrow Dom $_m$

が定まる. $D \in \mathbf{Dom}_m$ に対して Frac D をその field of fractions とすれば, $D \hookrightarrow U$ Frac D は universal arrow from D to U.

REMARK 3.1.1 Dom $_m$ を **Dom** に置き換えてはいけない!実際, F を field とし, ring homomorphism $f: D \to F$ を $\tilde{f}: \operatorname{Frac} D \to F$ に拡張するには,

$$\tilde{f}\left(\frac{1}{r}\right) = \frac{1}{f(r)}$$

でなければならない. そのためには,

$$r \in D \setminus \{0\} \Longrightarrow f(r) \in F \setminus \{0\}$$

- v) Met を次のように定める:
 - · obj.: metric spaces;
 - arr.: maps preserving metric.

CMet \subset **Met** \overleftarrow{e} , full subcategory whose objects are complete とする. X \overleftarrow{e} metric space, \overline{X} \overleftarrow{e} \overleftarrow{e} completion とすると, $X \to \overline{X}$ は universal arrow from X to U: **CMet** \to **Met**.

DEFINITION 3.1.2

 $H: \mathcal{D} \to \mathbf{Set}$ を functor とする. $\langle r \in \mathcal{D}, e \in Hr \rangle$ が universal element of H とは、任意の $\langle d \in \mathcal{D}, x \in Hd \rangle$ に対して、唯一つの射 $f: r \to d$ が存在して、(Hf)e = x とできることをいう.

REMARK 3.1.2 特殊な状況では、universal arrow と universal element は同じものである.

• $H: \mathcal{D} \to \mathbf{Set}$ が functor で、 $\langle r, e \rangle$ が universal element であるとは、 $e \in Hr$ を射 $* \xrightarrow{e} Hr$ in \mathbf{Ens} と見たときに、 $\langle r, e \rangle$ が universal arrow from * to H であること.

- 逆に、 \mathscr{C} を small category とし、 $S: \mathscr{D} \to \mathscr{C}$ を functor、 $c \in \mathscr{C}$ とすると、 $\langle r, u \rangle$ が universal arrow from c to S であるとは、これが $H = \mathscr{C}(c, S \cdot)$ の universal element であること。
- **EXAMPLE 3.1.2** i) S ε set, $E \subset S \times S$ ε S $\mathscr O$ equivalence relation, $\pi: S \twoheadrightarrow S/E$ とする. $\langle S/E, \pi \rangle$ は universal element of H: **Set** \to **Set**, where
 - obj.: $HX := \{f: S \to X: sEs' \Longrightarrow fs = fs'\};$
 - arr.: $Hg: HX \ni f \mapsto g \circ f \in HY (g: X \to Y)$.
 - ii) G を group, $N \triangleleft G$, $\pi \colon G \twoheadrightarrow G/N$ とする. $\langle G/N, \pi \rangle$ は universal element of $H \colon \mathbf{Grp} \to \mathbf{Set}$, where
 - obj.: $HG' := \{f : G \rightarrow G' : \text{ group hom. s. t. ker } f \subset N\};$

- arr.: $Hg: HG' \ni f \mapsto g \circ f \in HG'' (g: G' \to G'')$.
- iii) V_1, V_2 を vector spaces /k, $H: \mathbf{Vect}_k \to \mathbf{Set}$ を次で定まる functor とする:
 - obj.: $HW := Bilin(V_1, V_2; W) := \{f : V_1 \times V_2 \to W : bilinear\};$
 - arr.: $Hg: HW \ni f \mapsto g \circ f \in HW'(g: W \to W')$.

 $\langle V_1 \otimes_k V_2, \otimes \rangle$ $\forall x$, universal element of H. ($\otimes: V_1 \times V_2 \ni (x,y) \mapsto x \otimes y \in V_1 \otimes_k V_2$.)

 $Vect_k$ ではなく、 Mod_R でもよい.

DEFINITION 3.1.3

 $S: \mathcal{D} \to \mathcal{C}$ を functor とし, $c \in \mathcal{C}$ とする. $\langle r \in \mathcal{D}, v : Sr \to c \rangle$ が universal arrow from S to c であるとは,これが $(S \downarrow c)$ の terminal object であることをいう.

 $a,b \in \mathscr{C}$ を任意に取り、 $p: a \times b \to a, q: a \times b \to b$ を canonical projections とする. $\langle p,q \rangle$ は universal arrow to $\langle a,b \rangle$ from $\Delta: \mathscr{C} \to \mathscr{C} \times \mathscr{C}$, where

- obj.: $\Delta c := \langle c, c \rangle$;
- arr.: $\Delta f := \langle f, f \rangle$.

この Δ を diagonal functor という.

Exercises

- (2) The universal element of $\mathfrak{P} \colon \mathbf{Set}^{\mathrm{op}} \to \mathbf{Set}$ (power set) is $\langle \{0,1\}, 1 \in \{0,1\} \rangle$
- - $U: \mathbf{Ab} \to \mathbf{Grp} \Longrightarrow \langle G/[G,G], \pi \colon G \twoheadrightarrow G/[G,G] \rangle$ (commutator group and abelianization),
 - $U: \mathbf{Rng} \to \mathbf{Ab} \Longrightarrow \langle R[G], \iota: G \hookrightarrow R[G] \rangle$ (group ring),
 - $U: \mathbf{Top} \to \mathbf{Set} \Longrightarrow \langle (X, 2^X), \mathrm{id}_X : X \to X \rangle$ (discrete topology),
 - $U: \mathbf{Set}_* \to \mathbf{Set} \Longrightarrow \langle X \coprod \{X\}, \iota \colon X \hookrightarrow X \coprod \{X\} \rangle$ (one-point compactification).

§ 3.2 The Yoneda Lemma

PROPOSITION 3.2.1

 $S: \mathcal{D} \to \mathcal{C}$ を functor とし, $c \in \mathcal{C}$ とする. $\langle r, u \rangle$ が universal arrow from c to S ならば,

$$\mathcal{D}(r,d) \cong \mathcal{C}(c,Sd)$$
 naturally in d via $\tilde{f} \mapsto S\tilde{f} \circ u$.

逆に、 $\mathcal{D}(r,d) \cong \mathcal{C}(c,Sd)$ naturally in d ならば、唯一つの $u: c \to Sr$ が存在して、 $\langle r,u \rangle$ は universal arrow from c to S である.

Proof. (⇒) $\langle r,u\rangle$ を universal arrow from c to S とする. このとき、(by definition of universal arrows) $\mathcal{D}(r,d)\cong\mathcal{C}(c,Sd)$ である. これが natural in d であることを見るために、 $g:d\to d'$ とすると、 $S(g:\tilde{f})\circ u=Sg\circ(S\tilde{f}\circ u)$ となる、i.e., naturality in d を示せた.

(\iff) $\mathscr{D}(r,d) \overset{\varphi_d}{\cong} \mathscr{C}(c,Sd)$ naturally in d とする.このとき φ_d の自然性より, $u \coloneqq \varphi_r 1_r$ とおけば,任意の $\langle d \in \mathscr{D}, f \colon c \to Sd \rangle$ に対して唯一つの $\tilde{f} \colon r \to d$ が存在して, $f = S\tilde{f} \circ u$ となる.実際, $\tilde{f} \coloneqq S\varphi_d^{-1}f$ とおけば よい.このような \tilde{f} の一意性は, φ_d が bijective であることから従う.

DEFINITION 3.2.1

 \mathscr{D} を category whose hom-sets are small とし, $K: \mathscr{D} \to \mathbf{Set}$ を functor とする. $\langle r \in \mathscr{D}, \psi : \mathscr{D}(r, \cdot) \cong K \rangle$ を *representation of* K といい, r を *representing object* という. A representation が存在するとき, K は representable であるという.

PROPOSITION 3.2.1 より、 $\mathscr{C}(c,S)$ は $\langle r,\varphi \rangle$ によって represents され、従って representable である.

PROPOSITION 3.2.2

 \mathscr{D} を category whose hom-sets are small とし, $K: \mathscr{D} \to \mathbf{Set}$ を functor とする. もし $\langle r \in d, u: * \to Kr \rangle$ が universal arrow from * to K ならば,

$$\psi_d : \mathcal{D}(r,d) \to Kd, \quad \tilde{f} \mapsto K(\tilde{f})(u*)$$

によって定まる ψ は representation of K である.

逆に, K の各 representation は, 唯一つの universal arrow from * $\rightarrow K$ からこのようにして得られる.

Proof. (⇒) $\langle r, u \rangle$ & universal arrow from * to $K \geq f$ ≥ f ≥ **PROPOSITION 3.2.1** \sharp f),

$$\psi_d \colon \mathscr{D}(r,d) \overset{\varphi_d}{\cong} \mathbf{Set}(*,Kd) \cong Kd$$
 naturally in d

なる自然変換 ψ : $\mathcal{D}(r,\cdot) \cong K$ が存在する. この対応は,

$$\tilde{f} \mapsto K\tilde{f} \circ u \mapsto (K\tilde{f} \circ u)(*) = K(\tilde{f})(u*)$$

で与えられる.

(**二**) 逆に、 $\langle r, \psi \rangle$ を representation of K とする.

$$\varphi_d : \mathcal{D}(r,d) \stackrel{\psi_d}{\cong} Kd \cong \mathbf{Set}(*,Kd)$$
 naturally in d

によって natural isomorphism $\varphi: \mathscr{D}(r,\cdot) \cong \mathbf{Set}(*,K\cdot)$ を定義すれば,再び **PROPOSITION 3.2.1** より,唯一 つの $u:* \to Kr$ が存在して, $\langle r,u \rangle$ は universal arrow from * to K となる.このとき K は,

$$\psi_d \colon \mathscr{D}(r,d) \stackrel{\varphi_d}{\cong} \mathbf{Set}(*,Kd) \cong Kd$$

によって represents される.

LEMMA 3.2.1 (米田の補題 (Yoneda Lemma))

 \mathscr{D} ε category whose hom-sets are small $\xi \cup K: \mathscr{D} \to \mathbf{Set} \ \varepsilon$ functor $\xi \neq \delta$. $\zeta \in \mathcal{S}$

$$\exists y \colon \operatorname{Nat}(\mathcal{D}(r,\cdot),K) \cong Kr, \quad \alpha \mapsto \alpha_r 1_r.$$

Proof. $y: \operatorname{Nat}(\mathscr{D}(r,\cdot),K) \ni \alpha \mapsto \alpha_r 1_r \in Kr$ の逆射を求めればよい。今 $e \in Kr$ が任意に与えられたとする。 The natural transformation $\alpha: \mathscr{D}(r,\cdot) \to K$ を次のように定める:

$$\alpha_d : \mathcal{D}(r,d) \to Kd, \quad \tilde{f} \mapsto K(\tilde{f})(e).$$

このとき $\alpha_r 1_r = K(1_r)(e) = e$ であり、さらに

となる. よって、 $\alpha \in \operatorname{Nat}(\mathscr{D}(r,\cdot),K)$ で、 $y\alpha = e$, *i. e.*, y is bijective. $(\alpha \ \mathcal{O}$ 一意性は **PROPOSITION 3.2.2** から分かる.)

COROLLARY 3.2.3

 \mathscr{D} を category whose hom-sets are small とし、 $r,s\in \mathscr{D}$ とする。このとき、任意の natural transformation $\alpha\colon \mathscr{D}(r,\cdot) \overset{.}{\to} \mathscr{D}(s,\cdot)$ に対して、唯一つの射 $h\colon s\to r$ が存在して、 $\alpha=\mathscr{D}(h,\cdot)$ となる、i. e.,

$$\alpha_d = \mathcal{D}(h,d) \colon \mathcal{D}(r,d) \to \mathcal{D}(s,d), \quad f \mapsto f \circ h.$$

Proof. **LEMMA 3.2.1** とその証明を functor $K=\mathcal{D}(s,\cdot)$ に適用すれば、 α に対して唯一つの $h\in\mathcal{D}(s,r)$ が存在して、

$$\alpha_d : \mathcal{D}(r,d) \to \mathcal{D}(s,d), \quad f \mapsto \mathcal{D}(s,f)h = f \circ h$$

とできる.

LEMMA 3.2.1 の全単射 y: Nat($\mathcal{D}(r,\cdot)$,K) $\cong Kr$ は、実は natural transformation である。それを述べるために、まず Nat($\mathcal{D}(r,\cdot)$,K) と Kr が、K と r に関する functors と見なせることを確認する.

- Kr: evaluation functor $E: \mathbf{Set}^{\mathscr{D}} \times \mathscr{D} \to \mathbf{Set}$, where
 - obj.: $E\langle K, r \rangle = Kr$;
 - arr.: $E\langle \alpha : K \xrightarrow{\cdot} K', f : r \rightarrow r' \rangle = K'f \circ \alpha_r = \alpha_{r'} \circ Kf : Kr \rightarrow K'r'$
- Nat($\mathcal{D}(r,\cdot)$, K): functor $N: \mathbf{Set}^{\mathscr{D}} \times \mathscr{D} \to \mathbf{Set}$, where
 - obj.: $N\langle K, r \rangle := \text{Nat}(\mathcal{D}(r, \cdot), K);$
 - arr.: $K\langle \alpha \colon K \xrightarrow{\cdot} K', f \colon r \to r' \rangle$: $\operatorname{Nat}(\mathcal{D}(r, \cdot), K) \to \operatorname{Nat}(\mathcal{D}(r', \cdot), K'), \beta \mapsto \alpha \beta \mathcal{D}(f, \cdot)$.

LEMMA 3.2.2

LEMMA 3.2.1 における全単射

$$y = y_{\langle K, r \rangle} \colon \operatorname{Nat}(\mathcal{D}(r, \cdot), K) \cong Kr$$

は、natural isomorphism $N \stackrel{\mathcal{V}(K,r)}{\cong} E$ を定める。すなわち、v は natural in K and r である。

 $f = \mathcal{D}(r, f)1_r$ に注意すれば、以下の可換図式から従う:

The functor $Y: \mathcal{D}^{op} \to \mathbf{Set}^{\mathcal{D}}$, defined as

- obj.: $Yr := \mathcal{D}(r, \cdot)$,
- arr.: $Y f := \mathcal{D}(f, \cdot) : \mathcal{D}(r, \cdot) \xrightarrow{\cdot} \mathcal{D}(s, \cdot) (f : s \rightarrow r),$

を **Yoneda functor** という. これは full and faithful である. 実際, full であることも, faithful であること も, COROLLARY 3.2.3 から従う.

Yoneda functor の双対 $Y': \mathcal{D} \to \mathbf{Set}^{\mathcal{D}^{op}}$ は、次で定まる:

- obj.: $Y'r := \mathcal{D}(\cdot, r)$;
- arr.: $Y'f := \mathcal{D}(\cdot, f) : \mathcal{D}(\cdot, s) \xrightarrow{\cdot} \mathcal{D}(\cdot, r) (f : s \rightarrow r)$.

これは faithful である. 実際, $f, f': s \rightarrow r$ が Y'f = Y'f' とすると,

$$f = (Y'f)_s 1_s = (Y'f')_s 1_s = f'.$$

逆に、これらの functor Y, Y' が定義できるのなら、 \mathcal{D} は category whose hom-sets are small でなければな らない. なぜなら, このとき任意の $r,s \in \mathcal{D}$ に対して, $\mathcal{D}(r,s) = (Yr)s = (Y's)r \in \mathbf{Set}$ は small だからである. より大きい ② に対しても、Set を Ens に置き換えたものが同様に成立する.

§ 3.3 Coproducts and Colimits

Coproducts

DEFINITION 3.3.1

ℒ を category とし、 $a,b \in \mathcal{C}$ とする. $\langle c \in \mathcal{C}, \langle i,j \rangle$: $\langle a,b \rangle \rightarrow \langle c,c \rangle \rangle$ が coproduct of a and b であるとは、 $\langle c,i,j \rangle$ が universal arrow from $\langle a,b \rangle$ to the diagonal functor Δ であることをいう.このとき、

$$c = a \coprod b = a \oplus b$$

などと書く. i,j を **injections** という.

a,b の coproduct について,以下の全単射がある:

$$\mathscr{C}(a,d) \times \mathscr{C}(b,d) \cong \mathscr{C}(a \coprod b,d), \quad \langle f,g \rangle \mapsto h, \quad \text{naturally in } d,$$

with inverse $h \mapsto \langle hi, hj \rangle$.

REMARK 3.3.1 \mathscr{C} を category every two of whose objects have the coproduct とすると,bifunctor \coprod : $\mathscr{C} \times \mathscr{C} \to \mathscr{C}$ を定める:

- obj.: $\langle a, b \rangle \mapsto a \coprod b$;
- arr.: $\langle h, k \rangle \mapsto h \coprod k$, defined by the following diagram:

EXAMPLE 3.3.1 i) **Set**: disjoint union $a \hookrightarrow a \coprod b \longleftrightarrow b$.

- ii) **Top**: disjoint union $a \hookrightarrow a \coprod b \hookleftarrow b$.
- iii) \mathbf{Top}_* : wedge product $\langle a, *_a \rangle \hookrightarrow a \coprod b / \langle *_a = *_b \rangle \longleftrightarrow \langle b, *_b \rangle$.
- iv) **Ab**, $_R$ **Mod**: direct sum $a \hookrightarrow a \oplus b \hookleftarrow b$.
- v) **Grp**: free group $a \hookrightarrow \langle a, b \rangle \longleftrightarrow b$.
- vi) **CRng**: tensor product $a \hookrightarrow a \otimes b \longleftrightarrow b$.
- vii) P (preordered set): least upper bound $a \le a \cup b \ge b$.

Infinite Coproducts

- obj.: $\Delta c := \langle c_x = c \rangle_{x \in X}$,
- arr.: $\Delta f := \langle f_x = f \rangle_{x \in X}$,

とする.

DEFINITION 3.3.2

 $\mathscr C$ を category, X を set とし, $a=\langle a_x\rangle_{x\in X}\in \mathscr C^X$ とする. $\langle c\in\mathscr C,i_x\colon a_x\to c,x\in X\rangle$ が **coproduct of** a であるとは, $\langle c,i_x,x\in X\rangle$ が universal arrow from a to Δ であることをいう.このとき,

$$c = \coprod_{x \in X} a_x = \coprod a_x = \coprod a$$
$$= \bigoplus_{x \in X} a_x = \bigoplus a_x = \bigoplus a$$

などと書く.

 $a = \langle a_x \rangle \in \mathscr{C}^X$ の coproduct について、以下の全単射がある:

$$\prod_{x\in X}\mathscr{C}(a_x,d)\cong\mathscr{C}\left(\coprod_{x\in X}a_x,d\right),\quad \langle f_x\rangle\mapsto \tilde{f},\quad \text{naturally in }d,$$

with inverse $f \mapsto \langle f i_x \rangle$.

REMARK 3.3.2 \mathscr{C} を category every X-fold family of whose objects have the coproduct とすると、X-fold functor $[]:\mathscr{C}^X \to \mathscr{C}$ を定める:

- obj.: $\langle a_x \rangle \mapsto \prod a_x$;
- arr.: $\langle h_x \rangle \mapsto \prod h_x$, defined by the following diagram:

Copowers

 $b = \langle b_x = a \rangle_{x \in X} \in \mathscr{C}^X$ の coproduct を **copower of** a といい, $X \cdot a \coloneqq \coprod_x a$ と書く. このとき,

$$\mathscr{C}(a,d)^X \cong \mathscr{C}(X \cdot a,d)$$
, naturally in d .

EXAMPLE 3.3.2 i) Set: $a = Y \oslash \text{copower } l \sharp, X \cdot Y = X \times Y.$

Cokernels

DEFINITION 3.3.3

 $\mathscr C$ を category that has the null object z とし、 $f: a \to b$ とする. $\langle e \in \mathscr C, u: b \to e \rangle$ が **cokernel of** f であるとは、uf = 0 であって、任意の射 $h: b \to c$ with hf = 0 に対して、唯一つの射 $\tilde h: e \to c$ が存在して、 $h = \tilde h \circ u$ とできることをいう.

The cokernel $\langle r, u \rangle$ of $f \geq l \ddagger$, universal element of the functor $H \colon \mathscr{C} \to \mathbf{Set}$, where

$$Hc := \{h \colon b \to c \colon hf = 0\},\$$

に他ならない.

EXAMPLE 3.3.3 i) $\mathscr{C} = \mathsf{Grp}, \mathsf{Ab}, \mathsf{Rng}, {}_R\mathsf{Mod}, \mathit{etc.}, \mathit{とする}. \mathscr{C}$ における cokernel of $f: a \to b$ は、通常の意味での cokernel である。すなわち、 $\langle \mathsf{coker} \, f := b/\mathsf{im} \, f, \pi : b \twoheadrightarrow \mathsf{coker} \, f \rangle$ のこと.

Coequalizers

DEFINITION 3.3.4

 \mathscr{C} を category とし、 $f,g: a \Rightarrow b$ を \mathscr{C} の射とする. $\langle e \in \mathscr{C}, u: b \rightarrow e \rangle$ が **coequalizer of** $\langle f,g \rangle$ である とは、uf = ug であって、任意の射 $h: b \rightarrow c$ with hf = hg に対して、唯一つの射 $\tilde{h}: e \rightarrow c$ が存在して、 $h = \tilde{h}u$ とできることをいう.

REMARK 3.3.3 The coequalizer を universal arrow と考えることもできる. \downarrow を, category \cdot ⇒ · that has only two objects とする. このとき、 $\mathscr{C}^{\downarrow\downarrow}$ は, category consisting of

 $\Delta \colon \mathscr{C} \to \mathscr{C}^{\downarrow\downarrow} \not \simeq$ diagonal functor, defined as:

- obj.: $\Delta c := \langle 1_c, 1_c \rangle$,
- arr.: $\Delta r := \langle r, r \rangle : \langle 1_c, 1_c \rangle \rightarrow \langle 1_{c'}, 1_{c'} \rangle (r: c \rightarrow c'),$

とする.

このとき、射 $h: b \to c$ with hf = hg, where $f,g: a \to b$, とは、 $\mathscr{C}^{\downarrow\downarrow}$ の射 $\langle hf,h \rangle: \langle f,g \rangle \to \langle 1_c,1_c \rangle$ のことである.

$$\begin{array}{ccc}
 & a & \xrightarrow{f} & b \\
 & hf & & \downarrow h \\
 & c & \xrightarrow{1_c} & c
\end{array}$$

従って、 $\langle e,u \rangle$ が coequalizer of $\langle f,g \rangle$ であるとは、universal arrow from $\langle f,g \rangle$ to Δ に他ならない.

任意の平行射の族 $\langle f_x \colon a \to b \rangle_{x \in X}$ についても同様に定義できる。すなわち、 $\langle e,u \rangle$ が coequalizer of $\langle f_x \rangle$ であるとは、 $uf_x = uf_y$ ($\forall x,y \in X$) であって、任意の射 $h \colon b \to c$ with $hf_x = hf_y$ ($\forall x,y \in X$) に対して、唯一つの射 $\tilde{h} \colon e \to c$ が存在して、 $h = \tilde{h}u$ とできることをいう。

ii) $\mathscr{C} = \mathbf{Set}$, \mathbf{Top} , etc., $\[\] \[\] \[\] \[\]$

$$R := \{\langle f x, g x \rangle : x \in a\} \subset b \times b,$$

である.

Exercises

- (3) $Matr_k$, category consisting of
 - obj.: $n \in \mathbb{Z}_{\geq 0}$,
 - arr.: $m \times n$ matrix $A: n \rightarrow m$,

を考え、A,B を $m \times n$ matrices とする。 $T \coloneqq A - B$ とおく。A,B の coequalizer は、 $(m - \operatorname{rank} T) \times m$ matrix

$$P := (1_{m-\operatorname{rank} T}, 0_{\operatorname{rank} T})$$

である. $(1_n \ge 0_n$ は、それぞれ $n \times n$ の単位行列と零行列を表す。) $A: n \to m$ を、linear map $R^n \to R^m$ と考えると分かりやすい.このとき、(linear maps として) $C: R^m \to R^p$ に対して、

$$CA = CB \iff CT = 0 \iff \exists !\tilde{C} : \operatorname{coker} T \to \mathbb{R}^p \text{ s.t. } C = \tilde{C}P$$

が成り立つ. $\operatorname{coker} T = \mathbf{R}^m / \operatorname{im} T \cong \mathbf{R}^{m-\operatorname{rank} T}$ であるから、最初の主張が確かめられる.

(5) X を set とし, $E \subset X \times X$ をその equivalence relation とする. X/E は, 以下の図式で定まる coequalizer である:

$$E \hookrightarrow X \times X \xrightarrow{\pi_1} X \xrightarrow{\pi} X/E$$

$$f \downarrow \exists ! \tilde{f}$$

ここで、 $\pi_i: X \times X \rightarrow X$ は i-th component への射影(i = 1, 2)、 $\pi: X \rightarrow X/E$ は標準的全射である.

(6) $a, b \in \mathscr{C} \cap \text{coproduct } l \sharp, \text{ functor } l \sharp$

$$\mathscr{C}(a,\cdot)\times\mathscr{C}(b,\cdot)\colon\mathscr{C}\to\mathbf{Set},\quad c\mapsto\mathscr{C}(a,c)\times\mathscr{C}(b,c)$$

が representable であるとき, かつそのときに限り存在する. 実際, この functor が representable であることは,

$$\langle r \in \mathcal{C}, \psi \colon \mathcal{C}(r, \cdot) \cong \mathcal{C}(a, \cdot) \times \mathcal{C}(b, \cdot) \rangle$$

が存在することであるから、 $r = a \sqcup b$ が存在すれば representable である.

逆に、このような $\langle r, \psi \rangle$ が存在すれば、r が coproduct of a and b together with injection $\psi_r 1_r = \langle i, j \rangle$ となる $(h := \psi^{-1} \langle f, g \rangle)$:

§ 3.4 Products and Limits