Università degli Studi Roma Tre - Corso di Laurea in Matematica $Tutorato\ di\ GE220$

A.A. 2010-2011 - Docente: Prof. Edoardo Sernesi

Tutori: Filippo Maria Bonci, Annamaria Iezzi e Maria Chiara Timpone

Tutorato 6 (5 Maggio 2011) Varietà topologiche

- 1. Dimostrare o confutare con un esempio le seguenti affermazioni:
 - (a) Ogni sottospazio di uno spazio a base numerabile è a base numerabile;
 - (b) Il prodotto di due spazi a base numerabile è a base numerabile;
 - (c) Il quoziente di uno spazio a base numerabile è a base numerabile.
- 2. Dimostrare i seguenti risultati sulle varietà topologiche:
 - (a) le varietà topologiche di dimensione 0 sono tutti e soli gli spazi topologici discreti a cardinalità numerabile;
 - (b) ogni sottoinsieme aperto di una varietà topologica è una varietà topologica della stessa dimensione.
- 3. Siano $Y_1 = \{(x,y) \in \mathbb{R}^2 : (x-1)^2 + y^2 = 1\}$ e $Y_2 = \{(x,y) \in \mathbb{R}^2 : (x+1)^2 + y^2 = 1\}$. Sia $Y = Y_1 \cup Y_2 \subseteq \mathbb{R}^2$. Dire se Y sia o meno una varietà topologica.
- 4. Dire per quali valori del parametro t i seguenti sotto insiemi di \mathbb{R}^2 sono curve topologiche:
 - (a) $C_t = \{(x, y) \in \mathbb{R}^2 : xy + t = 0\};$
 - (b) $\mathcal{D}_t = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 t = 0\}, t \ge 0.$
- 5. Dimostrare che ogni varietà topologica connessa è anche connessa per archi. Dedurne che gli aperti connessi di \mathbb{R}^n sono anche connessi per archi.
- 6. Costruire un atlante per ognuna delle seguenti superfici: il cilindro $S^1 \times \mathbb{R}$, $\mathbb{P}^2(\mathbb{R})$.
- 7. Sia $X = D_1 \cup D_2$ dove con D_i indichiamo un disco chiuso in \mathbb{R}^2 . Assegnare un omeomorfismo tra $C_1 = \partial D_1$ e $C_2 = \partial D_2$ e dimostrare che il quoziente di X ottenuto identificano punti corrispondenti di C_1 e C_2 è omeomorfo a S^2 .

Generalizzare l'esercizio a S^n .