23.P. 52

Snells Law

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

 $n_1 = 1.00$ $n_2 = 1.33$
 $\sigma_1 = 60^{\circ}$ $\sigma_2 = 40.6^{\circ}$

Geometry;

$$S_{1}n\sigma_{2} = \frac{N_{1}S_{1}n\sigma_{1}}{N_{2}}$$

$$O_{2} = S_{1}n^{2} \left(\frac{N_{1}S_{1}n\sigma_{1}}{N_{2}}\right)$$

$$O_{2} = 40.62^{\circ}$$

$$O = 70a^{-1} \left(\frac{3m}{4.32m} \right)$$
 $O = 34.770$

23.P.12)

(0=31.25°

Sind, =
$$\frac{h_2 \sin \sigma_2}{n_1}$$

$$0_1 = \sin^2(h_2 \sin \sigma_2)$$

$$0_1 = 58.750$$

23.P. 10)

1.0cm

$$S_1^{1}Q_2^{2} = \frac{N_1S_1^{1}Q_2^{2}}{N_2S_1^{1}Q_2^{-1}}$$

$$Q_2^{2} = S_1^{1}Q_2^{-1}$$

$$N_2 = 1.33$$
 $N_3 = 1.50$ $O_2 = 40.63^{\circ}$ $O_3 =$

