Algoritmos e Programação I

Pedro H A Konzen

17 de dezembro de 2024

Konzen, Pedro Henrique de Almeida

Algoritmos e programação I: notas de aula / Pedro Henrique de Almeida Konzen. –2024. Porto Alegre.- 2024.

"Esta obra é uma edição independente feita pelo próprio autor."

 $1.\ Algoritmos computacionais.$ 2. Programação de computadores.3. Linguagem Python.

 $\begin{array}{c} Licença\\ {\rm CC\text{-}BY\text{-}SA}\ 4.0. \end{array}$

Licença

Este texto é disponibilizado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite

http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR

ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

O site notaspedrok.com.br é uma plataforma que construí para o compartilhamento de minhas notas de aula. Essas anotações feitas como preparação de aulas é uma prática comum de professoras/es. Muitas vezes feitas a rabiscos em rascunhos com validade tão curta quanto o momento em que são concebidas, outras vezes, com capricho de um diário guardado a sete chaves. Notas de aula também são feitas por estudantes - são anotações, fotos, prints, entre outras formas de registros de partes dessas mesmas aulas. Essa dispersão de material didático sempre me intrigou e foi o que me motivou a iniciar o site.

Com início em 2018, o site contava com apenas três notas incipientes. De lá para cá, conforme fui expandido e revisando os materiais, o site foi ganhando acessos de vários locais do mundo, em especial, de países de língua portuguesa. No momento, conta com 13 notas de aula, além de minicursos e uma coleção de vídeos e áudios.

As notas de **Algoritmos e Programação I** fazem uma introdução a algoritmos e programação de computadores com a linguagem Python. É pensada para estudantes de cursos de matemática e áreas afins.

Aproveito para agradecer a todas/os que de modo assíduo ou esporádico contribuem com correções, sugestões e críticas. ;-)

Pedro H A Konzen https://www.notaspedrok.com.br

Conteúdo

Licença	iii
Prefácio	iv
1 Introdução	1
Notas	3
Referências	4
Índice de Comandos	5

Capítulo 1

Introdução

Vamos começar executando nossas primeiras **linhas de código** na linguagem de programação Python. Em um **terminal** Python digitamos

```
1 >>> print('Olá, mundo!')
```

Observamos que >>> é o símbolo do prompt de entrada e digitamos nossa instrução logo após ele. Para executarmos a instrução digitada, teclamos <ENTER>. Uma vez executada, o terminal apresentará as seguintes informações

```
1 >>> print('Olá, mundo!')
2 Olá, mundo!
3 >>>
```

Pronto! O fato do símbolo de prompt de entrada ter aparecido novamente, indica que a instrução foi completamente executada e o terminal está pronto para executar uma nova instrução.

Alternativamente a terminais, aplicativos *notebooks*, como o Jupyter, permitem organizar códigos Python em células de programação. Ao longo do texto, salvo explicitado diferente, vamos assumir a utilização de um *notebook* Jupyter rodando Python 3 [7]. Células de código são destacadas com linhas enumeradas como, por exemplo,

```
1 print('Olá, mundo!')
```

E quando for o caso, a saída aparece logo na sequência como, no caso,

Olá, mundo!

A linha de comando executada acima instrui ao computador a imprimir no prompt de saída a frase Olá, mundo!. O método/função print contém ins-

truções para imprimir **objetos** em um dispositivo de saída, no caso, imprime a frase na tela do computador.

Vamos considerar um outro exemplo, computar a soma dos números ímpares entre 0 e 100. Podemos fazer isso como segue

2500

Oh! No momento, não se preocupe se não tenha entendido a linha de código acima, ao longo das notas de aula isso vai ficando natural. O código usa a função sum para computar a soma dos elementos da lista de números ímpares desejada. A lista é construída de forma iterada e indexada pela variável i, para i no intervalo/faixa de 0 a 99, se o resto da divisão de i por 2 não for igual a 0.

O resultado computado foi 2500. De fato, a soma dos números ímpares de 0 a $100\,$

$$(1,3,5,\ldots,99) \tag{1.1}$$

é a soma dos 50 primeiros elementos da progressão aritmética $a_i=1+2i,$ $i=0,1,\ldots,$ i.e.

$$\sum_{i=0}^{49} a_i = a_0 + a_1 + \dots + a_{49} \tag{1.2}$$

$$= 1 + 3 + \dots + 99 \tag{1.3}$$

$$=\frac{50(1+99)}{2}\tag{1.4}$$

$$=2500$$
 (1.5)

como já esperado! Em Python, esta última conta pode ser computada como segue

1 50*(1+99)/2

2500.0

Notas

Referências

- [1] Banin, S.L.. Python 3 Conceitos e Aplicações Uma Abordagem Didática, Saraiva: São Paulo, 2021. ISBN: 978-8536530253.
- [2] Cormen, T.. Desmitificando Algoritmos, Grupo GEN: São Paulo, 2021. ISBN: 978-8595153929.
- [3] Cormen, T.. Algoritmos Teoria e Prática, Grupo GEN: São Paulo, 2012. ISBN: 978–8595158092.
- [4] Grus, J.. Data Science do Zero, Alta Books: Rio de Janeiro, 2021. ISBN: 978-8550816463.
- [5] Hunter, J.; Dale, D.; Firing, E.; Droettboom, M. & Matplotlib development team. NumPy documentation, versão 3.8.3, disponível em https://matplotlib.org/stable/.
- [6] NumpPy Developers. NumPy documentation, versão 1.26, disponível em https://numpy.org/doc/stable/.
- [7] Python Software Foundation. Python documentation, versão 3.10.12, disponível em https://docs.python.org/3/.
- [8] Ribeiro, J.A.. Introdução à Programação e aos Algoritmos, LTC: São Paulo, 2021. ISBN: 978-8521636410.
- [9] Wazlawick, R.. Introdução a Algoritmos e Programação com Python -Uma Abordagem Dirigida por Testes, Grupo GEN: São Paulo, 2021. ISBN 978-8595156968.

Índice de Comandos

 $\mathtt{print},\,1 \\ \\ \mathtt{sum},\,2$