

Le ReJMiC présente

Introduction aux statistiques

Journée d'initiation à la bio-informatique n°2 24 juin 2022

Maël Pretet

Décrire en utilisant les statistiques

Etude d'un groupe

Etude d'un groupe

4

Variables aléatoires descriptives

- Poids
- Taille
- Couleur
- Etc...

Classifier les variables

Variables aléatoires descriptives

Variables aléatoires descriptives

Représenter les variables : boxplot

Représenter les variables : boxplot

Paramètres et lois

Paramètres d'échantillon

- Moyenne μ m
- Variance σ^2 s^2
- Proportion π p

Paramètres d'échantillon

- Espérance E(X): la valeur de la variable étudiée la plus probable à observer (moyenne pondérée)
- Variance V(X): moyenne des carrés des écarts à la moyenne

$$V = rac{1}{n} \sum_{i=1}^n \left(x_i - \overline{x}
ight)^2$$

Loi de probabilité discrète

Variable aléatoire discrète : caractérisée par l'ensemble des valeurs que peut prendre cette variable et par les lois de probabilités de ces

valeurs

• $0 \le p(X=xi) \le 1$

• $\sum p(X=xi) = 1$

Loi de probabilité à densité de probabilité

Les variables aléatoires continues suivent une loi de densité de probabilité

Loi exponentielle (x) Χ

Loi normale

Densité de probabilité : $X \sim N(\mu, \sigma^2)$

Formule développée :
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\left(-\frac{(x-p)^2}{2\sigma^2}\right)}$$

Valeurs caractéristiques : $E(X) = \mu$ et $V(X) = \sigma^2$

Loi normale

Densité de probabilité : $X \sim N(\mu, \sigma^2)$

$$E(X) = \mu \text{ et } V(X) = \sigma^2$$

Loi normale centrée réduite

Densité de probabilité : $Z \sim N(1,0)$

$$E(Z) = 1 \text{ et } V(Z) = 0$$

Transformation : $Z = \frac{X - \mu}{\sigma}$

Identifier les lois normales

Théorème central-limite

La somme d'un grand nombre de variables aléatoires indépendantes (≥ 30) de même loi suit une loi normale dont les paramètres connus sont :

$$E(X_i) = \mu$$

$$V(X_i) = \sigma^2$$

Théorie des tests

Préparation d'un test statistique

Définir:

- Population
- Échantillon
- Unité Statistique
- Expérience aléatoire : comment obtenir la variable aléatoire
- Variable aléatoire : variable étudiée dans le test

Test statistique

Un test statistique est une **règle de décision** permettant de trancher entre **deux hypothèses** faite sur une population, à partir du résultat d'une expérience sur un **échantillon**.

Test statistique

Hypothèses d'un test statistique

H0 / Hypothèse nulle : Hypothèse de non modification du paramètre

H1 / Hypothèse alternative: Hypothèse de modification du paramètre

Test statistique

Hypothèses d'un test statistique

H0 / Hypothèse nulle : Hypothèse de non modification du paramètre

H1 / Hypothèse alternative: Hypothèse de modification du paramètre

Règle de décision : rejeter H0 ou ne pas rejeter H0

Décision et risque d'erreur

		Réalité	
		Н0	H1
Décision	Non rejet de H0	correct	β
	Rejet de H0	α	correct

Décision et risque d'erreur

		Réalité	
		Н0	H1
Décision	Non rejet de H0	correct	β
	Rejet de H0	α	correct

Conformité et comparaison

Conformité

Le paramètre estimé dans l'échantillon est-il conforme à celui de la population ?

Population

 $H_0: \theta = \theta_0$
 $H_1: \theta \neq \theta_0$

Comparaison

Les paramètres estimés de deux échantillons sont-ils égaux ?

Échantillon 1

Échantillon 2

$$H_0: \theta_1 = \theta_2$$

$$H_1: \theta_1 \neq \theta_2$$

Test de conformité pour une variable qualitative ou quantitative discrète (test de proportion)

- On étudie la variable X de paramètre π
- Le paramètre π_0 est la valeur théorique dans la population
- Sur un échantillon de taille n, on calcule p_{obs}

Hypothèses:

- H_0 : $\pi = \pi_0$
- $H_1: \pi \neq \pi_0$

Conditions d'application:

- $n\pi_0 > 5$
- $n(1-\pi_0) > 5$

Règle de décision :

$$\bullet \quad \varepsilon_{cal} = \frac{|p_{obs} - \pi_0|}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$$

Si $\varepsilon_{cal} > \varepsilon_{\alpha}$, le test est significatif à $\alpha\%$ (H_0 est rejetée), sinon le test est non significatif

Test de comparaison de moyenne pour une variable quantitative continue

- On étudie la variable X de paramètres μ et σ^2
- Échantillon 1 de taille n_1 , de moyenne m_1 et de variance s_1^2
- Échantillon 2 de taille n_2 , de moyenne m_2 et de variance s_2^2

Hypothèses:

- H_0 : $\mu_1 = \mu_2$
- $H_1: \mu_1 \neq \mu_2$

Conditions d'application :

- $n_1 \ge 30$ et $n_2 \ge 30$
- Sinon X doit suivre une loi normale et les variances doivent être identiques

Règle de décision :

$$\bullet \quad \varepsilon_{cal} = \frac{|m_1 - m_2|}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Si $\varepsilon_{cal} > \varepsilon_{\alpha}$, le test est significatif à $\alpha\%$ (H_0 est rejetée), sinon le test est non significatif

Corrélation

Représentation dans l'espace

Soit deux variables quantitatives X et Y dont on calcule les valeurs x_i et y_i formant un nuage de points :

Coefficient de corrélation

On peut estimer le coefficient de corrélation de deux variables aléatoires X et Y par la formule suivante :

$$\bullet \quad \hat{\rho} = r = \frac{s_{xy}}{s_x s_y}$$

Avec s_{xy} la covariance entre X et Y:

•
$$s_{xy} = \frac{1}{(n-1)} \left[\sum x_i y_i - \frac{\sum_{x_i} \sum_{y_i}}{n} \right]$$

Test du coefficient de corrélation

Hypothèses:

- $H_0: \rho = 0$
- $H_1: \rho \neq 0$

Conditions de validité :

• X et Y sont distribués selon une loi normale

Test du coefficient de corrélation

Règle de décision :

$$t_{cal} = \frac{|\mathbf{r}|\sqrt{n-2}}{\sqrt{1-r^2}}$$

Si $t_{cal} > t_{\alpha, n-2}$, le test est significatif à $\alpha\%$ (H_0 est rejetée), sinon le test est non significatif

Coefficient de corrélation

