(Quiz 1						
		Continue Course					
•	5/5 points earned (100%)	Back to Week 1					
	Quiz passed!						
~	1 / 1 points						
	of the following are comp	onents in building a machine					
0	Machine learning						
0	Training and test sets						
0	Artificial intelligence						
0	Deciding on an algorithm.						
Corre	ect						
0	Statistical inference						
	1/1						

points

2.								
Suppose we build a prediction algorithm on a data set and it is								
	accurate on that data set. Why might the algorithm not							
work w	vell if we collect a new data set?							
0	We may be using bad variables that don't explain the outcome.v							
0	We have too few predictors to get good out of sample accuracy.							
0	We have used neural networks which has notoriously bad performance.							
0	Our algorithm may be overfitting the training data, predicting both the signal and the noise.							
Corr	ect							
V	1 / 1 points							
	points							
3.								
What a	re typical sizes for the training and test sets?							
0	60% in the training set, 40% in the testing set.							
Corr	ect							
\circ	20% training set, 80% test set.							
0	100% training set, 0% test set.							
0	90% training set, 10% test set							

4.

What are some common error rates for predicting binary variables (i.e. variables with two possible values like yes/no, disease/normal, clicked/didn't click)? Check the correct answer(s).

0	Median absolute deviation			
0	Correlation			
0	Root mean squared error			
0	R^2			
0	Predictive value of a positive			
Correct				

1/1 points

5.

Suppose that we have created a machine learning algorithm that predicts whether a link will be clicked with 99% sensitivity and 99% specificity. The rate the link is clicked is 1/1000 of visits to a website. If we predict the link will be clicked on a specific visit, what is the probability it will actually be clicked?

O 0.009%O 89.9%O 99%

O 9%

Correct			

