Computing the *least-commitment* action model from state observations

Diego Aineto¹, Sergio Jiménez¹, Eva Onaindia¹ and , Blai Bonet²

¹Departamento de Sistemas Informáticos y Computación. Universitat Politècnica de València. Valencia, Spain ²Departamento de Computación. Universidad Simón Bolívar. Caracas, Venezuela

{dieaigar,serjice,onaindia}@dsic.upv.es, bonet@usb.ve

Abstract

1 Introduction

Given an input sequence of partially observed states, this paper formalizes the task of computing the *least-commitment* action model that is able to *explain* the given observation. This task is of interest because it allows the incremental learning of action models from arbitrary large sets of partial observations.

In addition, the paper introduces a new method to compute the *least-commitment* action model for an input sequence of partially observed states. The method assumes that action models are specified as STRIPS action schemata and it is built on top of off-the-shelf algorithms for *classical planning*.

2 Background

This section formalizes the *planning models* we use in the paper as well as the kind of state *observations* that are given as input for computing the *least-commitment* action model.

2.1 Classical planning with conditional effects

Let F be the set of *fluents* or *state variables* (propositional variables) describing a state. A *literal* l is a valuation of a fluent $f \in F$; i.e. either l = f or $l = \neg f$. A set of literals L represents a partial assignment of values to fluents (without loss of generality, we will assume that L does not contain conflicting values). Given L, let $\neg L = \{\neg l : l \in L\}$ be its complement. We use $\mathcal{L}(F)$ to denote the set of all literal sets on F; i.e. all partial assignments of values to fluents. A *state* s is a full assignment of values to fluents; |s| = |F|.

A classical planning frame is a tuple $\Phi = \langle F, A \rangle$, where F is a set of fluents and A is a set of actions. Each classical planning action $a \in A$ has a precondition $\operatorname{pre}(a) \in \mathcal{L}(F)$ and a set of effects $\operatorname{eff}(a) \in \mathcal{L}(F)$. The semantics of actions $a \in A$ is specified with two functions: $\rho(s,a)$ denotes whether action a is applicable in a state s and $\theta(s,a)$ denotes the successor state that results of applying action a in a state s. Then, $\rho(s,a)$ holds iff $\operatorname{pre}(a) \subseteq s$, i.e. if its precondition holds in s. The result of executing an applicable action $a \in A$ in a state s is a new state $\theta(s,a) = (s \setminus \neg\operatorname{eff}(a)) \cup \operatorname{eff}(a)$. Subtracting the complement of $\operatorname{eff}(a)$ from s ensures that $\theta(s,a)$

remains a well-defined state. The subset of action effects that assign a positive value to a state fluent is called *positive effects* and denoted by $\mathsf{eff}^+(a) \in \mathsf{eff}(a)$ while $\mathsf{eff}^-(a) \in \mathsf{eff}(a)$ denotes the *negative effects* of an action $a \in A$.

A classical planning problem is a tuple $P = \langle F, A, I, G \rangle$, where I is the initial state and $G \in \mathcal{L}(F)$ is the set of goal conditions over the state variables. A plan π is an action sequence $\pi = \langle a_1, \ldots, a_n \rangle$, with $|\pi| = n$ denoting its plan length. The execution of π on the initial state I of P induces a trajectory $\tau(\pi, s_0) = \langle s_0, a_1, s_1, \ldots, a_n, s_n \rangle$ such that $s_0 = I$ and, for each $1 \le i \le n$, it holds $\rho(s_{i-1}, a_i)$ and $s_i = \theta(s_{i-1}, a_i)$. A plan π solves P iff the induced trajectory $\tau(\pi, s_0)$ reaches a final state $G \subseteq s_n$, where all goal conditions are met. A solution plan is optimal iff its length is minimal.

An action $a_c \in A$ with conditional effects is defined as a set of preconditions $\operatorname{pre}(a_c) \in \mathcal{L}(F)$ and a set of *conditional effects* $\operatorname{cond}(a_c)$. Each conditional effect $C \rhd E \in \operatorname{cond}(a_c)$ is composed of two sets of literals: $C \in \mathcal{L}(F)$, the *condition*, and $E \in \mathcal{L}(F)$, the *effect*. An action a_c is applicable in a state s if $\rho(s, a_c)$ is true, and the result of applying action a_c in state s is $\theta(s, a_c) = \{s \setminus \neg\operatorname{eff}_c(s, a) \cup \operatorname{eff}_c(s, a)\}$ where $\operatorname{eff}_c(s, a)$ are the *triggered effects* resulting from the action application (conditional effects whose conditions hold in s):

$$\operatorname{eff}_c(s,a) = \bigcup_{C\rhd E\in\operatorname{cond}(a_c), C\subseteq s} E,$$

2.2 The observation model

Given a classical planning problem $P = \langle F, A, I, G \rangle$, a plan π and a trajectory $\tau(\pi, s_0)$, we define the *observation* of the trajectory as a sequence of partial states that results from observing the execution of π on I. Formally, $\mathcal{O}(\tau) = \langle s_0^o, s_1^o, \dots, s_m^o \rangle$ where $s_0^o = I$.

A partial state s_i^o , 0 < i < m, is one in which $|s_i^o| < |F|$; i.e., a state in which at least a fluent of F is not observable. Note that this definition also comprises the case $|s_i^o| = 0$, when the state is fully unobservable. Whatever the sequence of observed states of $\mathcal{O}(\tau)$ is, it must be *consistent* with the sequence of states of $\tau(\pi,s_0)$, meaning that $\forall i,s_i^o \subseteq s_i$. In practice, the number of observed states m, ranges from 1 (the initial state, at least), to $|\pi|+1$, and the observed intermediate states will comprise a number of fluents between [1,|F|].

We are assuming then that there is a bijective monotone mapping between trajectories and observations [Ramírez and Geffner, 2009], thus also granting the inverse consistency relationship (the trajectory is a superset of the observation). Therefore, transiting between two consecutive observed states in $\mathcal{O}(\tau)$ may require the execution of more than a single action $(\theta(s_i^o, \langle a_1, \dots, a_k \rangle) = s_{i+1}^o$, where $k \geq 1$ is unknown but finite. In other words, having $\mathcal{O}(\tau)$ does not imply knowing the actual length of π .

Definition 1 (Explaning a $\mathcal{O}(\tau)$ **observation)** *Given a* classical planning problem P and a sequence of partial states $\mathcal{O}(\tau)$, a plan π explains $\mathcal{O}(\tau)$ (denoted $\pi \mapsto \mathcal{O}(\tau)$) iff π is a solution for P consistent with $\mathcal{O}(\tau)$.

If π is also optimal, we say that π is the *best explanation* for the input observation $\mathcal{O}(\tau)$.

Given a classical planning frame $\Phi = \langle F, A[\cdot] \rangle$ and a sequence of partial states $\mathcal{O}(\tau) = \langle s_0^o, s_1^o, \dots, s_m^o \rangle$, we can build the classical planning problem $P_{\mathcal{O}} = \langle F, A[\cdot], s_0^o, s_m^o \rangle$. We say that an action model \mathcal{M} is a definition of the $\langle \rho, \theta \rangle$ functions of every action in $A[\cdot]$. Further we say that a model \mathcal{M} explains a sequence of observations $\mathcal{O}(\tau)$ iff, when the $\langle \rho, \theta \rangle$ functions of the actions in $P_{\mathcal{O}}$ are given by \mathcal{M} , there exists a solution plan for $P_{\mathcal{O}}$ that explains $\mathcal{O}(\tau)$.

3 Computing the *least-commitment* action model from state observations

First, this section formalizes the notion of the *least-commitment* action model that is able to *explain* a sequence of partially observed states. Next, the section describes our approach to compute such model via *conformant planning*.

3.1 The least-commitment action model

The task of computing the *least-commitment* action model from a sequence of state observations is defined as $\langle \Phi, \mathcal{O}(\tau) \rangle$:

- $\Phi = \langle F, A[\cdot] \rangle$ is a *classical planning frame* where the semantics of each action $a \in A[\cdot]$ is unknown; i.e. the corresponding $\langle \rho, \theta \rangle$ functions are undefined.
- $\mathcal{O}(\tau)$ is a sequence of partial states that results from the partial observation of a trajectory $\tau(\pi, s_0)$ defined within the *classical planning frame* Φ .

Before formalizing the solution to this task, i.e. the *least-commitment* action model, we introduce several necessary definitions.

Definition 2 (Model Space) Given a classical planning frame $\Phi = \langle F, A[\cdot] \rangle$ the model space M is the set of possible models for the actions in $A[\cdot]$ such that: (1), any model $\mathcal{M} \in M$ is a definition of the $\langle \rho, \theta \rangle$ functions of every action in $A[\cdot]$ and (2), for every $\mathcal{M} \in M$ the $\langle \rho, \theta \rangle$ functions are defined in the set of state variables F.

Now, we define a *partially specified action model* inspired by the notion of *incomplete* (annotated) model [Sreedharan et al., 2018].

Definition 3 (Partially specified action model) A partially specified action model is a subset of models in a given model space M.

If the partially specified action model is a singleton, it represents a fully specified action model. On the other hand, if its size is |M| the partially specified action model represents the full model space.

Now we are ready to define the *least-commitment* action model for an observation $\mathcal{O}(\tau)$.

Definition 4 (The least-commitment action model) Given $a \langle \Phi, \mathcal{O}(\tau) \rangle$ task and the partially specified action model M that represents the full space of possible action models for the actions in $A[\cdot] \in \Phi$, then the least-commitment action model is another partially specified action model that represents the largest subset of models $M^* \subseteq M$ such that every model $M \in M^*$ explains the input observation.

3.2 The space of STRIPS action models

Despite previous definitions are general, this work focuses on the particular kind of action models that are specified as STRIPS action schemata.

A STRIPS action schema ξ is defined by four lists: A list of parameters $pars(\xi)$, and three list of predicates (namely $pre(\xi)$, $del(\xi)$ and $add(\xi)$) that shape the kind of fluents that can appear in the preconditions, negative effects and positive effects of the actions induced from that schema. Let be Ψ the set of *predicates* that shape the propositional state variables F, and a list of parameters $pars(\xi)$. The set of elements that can appear in $pre(\xi)$, $del(\xi)$ and $add(\xi)$ of the STRIPS action schema ξ is given by FOL interpretations of Ψ over the parameters $pars(\xi)$. We denote this set of FOL interpretations as $\mathcal{I}_{\Psi,\xi}$. For instance, in the *blocksworld* the $\mathcal{I}_{\Psi,\xi}$ set contain eleven elements for the stack (v_1, v_2) schemata, $\mathcal{I}_{\Psi, stack} = \{\text{handempty,}$ holding (v_1) , holding (v_2) , clear (v_1) , clear (v_2) , ontable (v_1) , ontable (v_2) , on (v_1,v_1) , on (v_1, v_2) , on (v_2, v_1) , on (v_2, v_2) }.

Despite any element of $\mathcal{I}_{\Psi,\xi}$ can *a priori* appear in the $pre(\xi)$, $del(\xi)$ and $add(\xi)$ of schema ξ , the space of possible STRIPS schemata is bounded by constraints of three kinds:

- 1. Syntactic constraints. STRIPS constraints require $del(\xi) \subseteq pre(\xi), del(\xi) \cap add(\xi) = \emptyset$ and $pre(\xi) \cap add(\xi) = \emptyset$. Considering exclusively these syntactic constraints, the size of the space of possible STRIPS schemata is given by $2^{2\times |\mathcal{I}_{\Psi,\xi}|}$. Typing constraints are also of this kind [McDermott *et al.*, 1998].
- 2. Domain-specific constraints. One can introduce domain-specific knowledge to constrain further the space of possible schemata. For instance, in the blocksworld one can argue that $on(v_1, v_1)$ and $on(v_2, v_2)$ will not appear in the $pre(\xi)$, $del(\xi)$ and $add(\xi)$ lists of an action schema ξ because, in this specific domain, a block cannot be on top of itself. Typing constraints and state invariants are also constraints of this kind [Fox and Long, 1998].
- 3. Observation constraints. A sequence of state observations $\mathcal{O}(\tau)$ depicts *semantic knowledge* that constraints further the space of possible action schemata.

Figure 1: PDDL encoding of the stack (?v1, ?v2) schema and our propositional representation for this same schema.

```
(K¬pre_holding_v2_stack) (K¬pre_clear_v1_stack)
(K¬pre_handempty_stack)
(K¬pre_ontable_v1_stack) (K¬pre_ontable_v2_stack)
(K¬pre_on_v1_v2_stack) (K¬pre_on_v2_v1_stack)
(K¬pre_on_v1_v1_stack) (K¬pre_on_v2_v2_stack)
(K¬eff_holding_v2_stack) (K¬eff_clear_v2_stack)
(K¬eff_on_v1_v1_stack) (K¬eff_on_v2_v1_stack)
(K¬eff_on_v1_v1_stack) (K¬eff_on_v2_v1_stack)
```

Figure 2: *Partial specification* of the stack (?v1,?v2) schema that follows our propositional representation.

3.3 A propositional encoding for *partially specified* STRIPS models

First we introduce a propositional encoding of the *preconditions*, *negative*, and *positive* effects of a STRIPS action schema ξ using only fluents of two kinds $\text{pre-e-}\xi$ and $\text{eff-e-}\xi$ (where $e \in \mathcal{I}_{\Psi,\xi}$). This encoding exploits the syntactic constraints of STRIPS so is more compact that the one previously proposed by Aineto *et al.* 2018. In more detail, if $\text{pre-e-}\xi$ and $\text{eff-e-}\xi$ holds it means that $e \in \mathcal{I}_{\Psi,\xi}$ is a negative effect in ξ while if $pre-e-\xi$ does not hold but $\text{eff-e-}\xi$ holds, it means that $e \in \mathcal{I}_{\Psi,\xi}$ is a positive effect in ξ .

Figure 1 shows the PDDL encoding of the stack (?v1, ?v2) schema and our propositional representation for this same schema. There is a total number of $2^{2\times|11|}=4,194,304$ different models for that schema.

Now we show that this encoding can be extended to the kn-woledge level to compactly represent a partially specified action model. The extension replaces each proposition pre_e_ξ with two new propositions $K \text{pre}_e_\xi$ and $K \neg \text{pre}_e_\xi$, meaning that is known that $e \in \mathcal{I}_{\Psi,\xi}$ is a precondition of ξ . The same is done for each eff_e_ξ that is replaced by $K \text{eff}_e_\xi$ and $K \neg \text{eff}_e_\xi$ meaning that is known that $e \in \mathcal{I}_{\Psi,\xi}$ is an effect of ξ or that is known that $e \in \mathcal{I}_{\Psi,\xi}$ is not an effect of ξ . Figure 2 shows a partial specification of the stack (?v1, ?v2) schema that follows our propositional representation.

With respect to this formalization, the *full space* of possible STRIPS schemas for xi is compactly represented as $\bigcap_{e \in \mathcal{I}_{\Psi,\xi}} \neg K \mathsf{pre}_e \underline{\mathcal{F}} \wedge \neg K \neg \mathsf{pre}_e \underline{\mathcal{F}} \wedge \neg K \mathsf{eff}_e \underline{\mathcal{F}} \wedge \neg K \neg \mathsf{eff}_e \underline{\mathcal{F}}.$

3.4 Computing the *least-commitment* model via classical planning

Inspired by the classical planning compilation K_{s_0} for conformant planning [Palacios and Geffner, 2009], this section shows that we can build a classical planning problem $P = \langle F', A', I', G' \rangle$ whose solution induces the least-commitment action model for an observation $\mathcal{O}(\tau)$:

- The set of fluents F' extends F with two new sets of fluents:
 - $\{test_j\}_{1 \leq j \leq m}$, indicating the state observation $s_j \in \mathcal{O}(\tau)$ where the action model is validated
 - Fluents Kpre_e_ξ, K¬pre_e_ξ, Keff_e_ξ and K¬eff_e_ξ encoding the knowledge level representation of the space of possible STRIPS action models.
- The set of actions A' contains now actions of three different kinds:
 - Actions for committing pre_e_ξ to a positive/negative value. Similar actions are also defined for committing eff_e_ξ to a positive/negative value but the value of eff_e_ξ can only be committed once the value of the corresponding pre_e_ξ is committed (i.e. once either Kpre_e_ξ or K¬pre_e_ξ holds in the current state).

```
\begin{split} \operatorname{pre}(\operatorname{commit}\top\operatorname{\_pre\_e}_{-\xi}) &= \{ mode_{commit}, \\ \neg \operatorname{Kpre\_e}_{-\xi}, \neg \operatorname{K}\neg \operatorname{pre\_e}_{-\xi} \}, \\ \operatorname{cond}(\operatorname{commit}\top\operatorname{\_pre\_e}_{-\xi}) &= \{\emptyset\} \rhd \{\operatorname{Kpre\_e}_{-\xi} \}. \\ \operatorname{pre}(\operatorname{commit}\bot\operatorname{\_pre\_e}_{-\xi}) &= \{ mode_{commit}, \\ \neg \operatorname{Kpre\_e}_{-\xi}, \neg \operatorname{K}\neg \operatorname{pre\_e}_{-\xi} \}, \\ \operatorname{cond}(\operatorname{commit}\bot\operatorname{\_pre\_e}_{-\xi}) &= \{\emptyset\} \rhd \{\operatorname{K}\neg \operatorname{pre\_e}_{-\xi} \}. \end{split}
```

- Actions for *validating* that committed models explain the s_j observed states, $0 \le j < m$.

$$\begin{split} & \mathsf{pre}(\mathsf{validate_j}) = & s_j \cup \{test_{j-1}\}, \\ & \mathsf{cond}(\mathsf{validate_j}) = & \{\emptyset\} \rhd \{\neg test_{j-1}, test_j\}, \\ & \{mode_{commit}\} \rhd \{\neg mode_{commit}, mode_{val}\}. \end{split}$$

Editable actions whose semantics is given by the value of the knowledge level fluents (Kpre_e_ξ, K¬pre_e_ξ, Keff_e_ξ and K¬eff_e_ξ) at the current state. Figure 3 shows the PDDL encoding of an editable stack (?v1,?v2) schema. This editable schema behaves exactly as the original PDDL schema defined in Figure 1 when the set of fluents (Kpre_holding_v1.stack) (Kpre_clear_v2.stack)

(Keff_holding_v1_stack) (Keff_clear_v2_stack)
(Keff_clear_v1_stack) (Keff_handempty_stack)

(Keff.on.v1.v2.stack) hold at the current state. Formally, given an operator schema $\xi \in \mathcal{M}$ its *editable* version is:

$$\begin{split} \operatorname{pre}(\operatorname{editable}_{\xi}) = & \{ \neg K \neg \operatorname{pre}_e \cdot \xi \implies e \}_{\forall e \in \mathcal{I}_{\Psi, \xi}} \\ \operatorname{cond}(\operatorname{editable}_{\xi}) = & \{ K \operatorname{pre}_e \cdot \xi, \neg K \neg \operatorname{eff}_e \cdot \xi \} \rhd \{ \neg e \}_{\forall e \in \mathcal{I}_{\Psi, \xi}}, \\ & \{ K \neg \operatorname{pre}_e \cdot \xi, \neg K \neg \operatorname{eff}_e \cdot \xi \} \rhd \{ e \}_{\forall e \in \mathcal{I}_{\Psi, \xi}}. \end{split}$$

• The new initial state $I' = I \cup \{mode_{commit}\}$ while the new goals are $G' = s_m \cup \{test_m\}$.

3.5 Compilation properties

4 Evaluation

5 Conclusions

Related work [Stern and Juba, 2017].

```
(:action stack
                                                                              [Stern and Juba, 2017] Roni Stern and Brendan Juba. Effi-
:parameters (?o1 - object ?o2 - object)
:precondition
                                                                                 cient, safe, and probably approximately complete learning
   (and (or (Knotpre_on_v1_v1_stack) (on ?o1 ?o1))
                                                                                 of action models. In International Joint Conference on Ar-
        (or (Knotpre_on_v1_v2_stack) (on ?o1 ?o2))
        (or (Knotpre_on_v2_v1_stack) (on ?o2 ?o1))
                                                                                 tificial Intelligence, (IJCAI-17), pages 4405-4411, 2017.
        (or (Knotpre_on_v2_v2_stack) (on ?o2 ?o2))
            (Knotpre_ontable_v1_stack) (ontable ?o1))
        (or (Knotpre ontable v2 stack) (ontable ?o2))
        (or (Knotpre_clear_v1_stack) (clear ?o1))
            (Knotpre_clear_v2_stack) (clear ?o2)
        (or (Knotpre_holding_v1_stack) (holding ?o1))
        (or (Knotpre_holding_v2_stack) (holding ?o2))
        (or (Knotpre_handempty_stack) (handempty)))
:effect (and
   (when (and (Kpre_on_v1_v1_stack) (not(Knot_eff_on_v1_v1_stack))) (not (on ?o1 ?o1)))
   (when (and (Kpre_on_v1_v2_stack) (not(Knot_eff_on_v1_v2_stack))) (not (on ?o1 ?o2)))
              (Kpre_on_v2_v1_stack) (not (Knot_eff_on_v2_v1_stack))) (not (on ?o2 ?o1)))
   (when (and
              (Kpre_on_v2_v2_stack) (not(Knot_eff_on_v2_v2_stack))) (not (on ?o2 ?o2))
   (when
   (when (and
              (Kpre_ontable_v1_stack) (not (Knot_eff_ontable_v1_stack))) (not (ontable ?o1)))
              (Kpre ontable v2 stack) (not (Knot eff ontable v2 stack))) (not (ontable ?o2)))
   (when
         (and
              (Kpre_clear_v1_stack) (not(Knot_eff_clear_v1_stack))) (not (clear ?o1)))
   (when
   (when
         (and
              (Kpre clear v2 stack) (not (Knot eff clear v2 stack))) (not (clear ?o2)))
   (when
              (Kpre_holding_v1_stack) (not (Knot_eff_holding_v1_stack))) (not (holding ?o1)))
   (when
         (and
              (Kpre_holding_v2_stack) (not(Knot_eff_holding_v2_stack))) (not (holding ?o2)))
   (when
         (and
              (Kpre handempty stack) (not (Knot eff handempty stack))) (not (handempty)))
               (Knot_pre_on_v1_v1_stack) (not(Knot_eff_on_v1_v1_stack))) (on ?o1 ?o1)
              (Knot_pre_on_v1_v2_stack) (not(Knot_eff_on_v1_v2_stack))) (on ?o1 ?o2))
(Knot_pre_on_v2_v1_stack) (not(Knot_eff_on_v2_v1_stack))) (on ?o2 ?o1))
   (when
         (and
   (when
         (and
               (Knot_pre_on_v2_v2_stack) (not(Knot_eff_on_v2_v2_stack))) (on ?o2 ?o2))
              (Knot_pre_ontable_v1_stack) (not (Knot_eff_ontable_v1_stack))) (ontable ?01))
(Knot_pre_ontable_v2_stack) (not (Knot_eff_ontable_v2_stack))) (ontable ?02))
   (when (and
   (when (and
               (Knot_pre_clear_v1_stack) (not(Knot_eff_clear_v1_stack))) (clear ?o1)
   (when (and (Knot_pre_clear_v2_stack) (not(Knot_eff_clear_v2_stack))) (clear ?o2))
              (Knot_pre_holding_v1_stack) (not (Knot_eff_holding_v1_stack))) (holding ?o1))
   (when
         (and
              (Knot_pre_holding_v2_stack)(not(Knot_eff_holding_v2_stack))) (holding ?o2))
   (when (and (Knot_pre_handempty_stack) (not (Knot_eff_handempty_stack))) (handempty))))
```

Figure 3: PDDL encoding of the editable version of the stack(?v1,?v2) schema.

References

- [Aineto et al., 2018] Diego Aineto, Sergio Jiménez, and Eva Onaindia. Learning STRIPS action models with classical planning. In *International Conference on Automated Plan*ning and Scheduling, (ICAPS-18), pages 399–407. AAAI Press, 2018.
- [Fox and Long, 1998] Maria Fox and Derek Long. The automatic inference of state invariants in tim. *Journal of Artificial Intelligence Research*, 9:367–421, 1998.
- [McDermott *et al.*, 1998] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso, Daniel Weld, and David Wilkins. PDDL The Planning Domain Definition Language, 1998.
- [Palacios and Geffner, 2009] Héctor Palacios and Héctor Geffner. Compiling uncertainty away in conformant planning problems with bounded width. *Journal of Artificial Intelligence Research*, 35:623–675, 2009.
- [Ramírez and Geffner, 2009] Miquel Ramírez and Hector Geffner. Plan recognition as planning. In *International Joint conference on Artifical Intelligence, (IJCAI-09)*, pages 1778–1783. AAAI Press, 2009.
- [Sreedharan et al., 2018] Sarath Sreedharan, Tathagata Chakraborti, and Subbarao Kambhampati. Handling model uncertainty and multiplicity in explanations via model reconciliation. In *International Conference on Automated Planning and Scheduling, (ICAPS-18)*, pages 518–526, 2018.