PDE SIR

王乾宇

2024年3月5日

摘要

老师我已完成部分模型搭建的工作,使用的方案二2.2。在将真实数据带人求解事遇到了如下问题3,应该对年龄和时间分别选择哪个时间单位?

目录

1	模型建立	2
2	网络结构问题	3
	2.1 存在的问题	3
	2.2 解决方案	3
3	参数的问题	4
	3.1 时间单位	4
	3.2 差值方法的选择	6

1 模型建立

表 1	表 1.1: 符号说明							
符号	含义							
a	年龄							
d(a,t)	死亡率							
v(a,t)	疫苗接种率							
$\lambda(a,a',t)$	a' 对 a 的传染率							
p(a)	疫苗保护率							
$\theta(a,t)$	补充接种率							
$\delta(a)$	免疫丧失率							
B(t)	出生人口							
M(t)	母婴传播数							
A	人群最大寿命							
$\gamma(a)$	恢复率							

假设:

- 1. 由于流行时间较短、数据获取难度较大, p(a), $\delta(a)$, $\gamma(a)$ 只与年龄有关, 不随时间变化
- 2. 存在母婴传播,但不存在先天免疫

可能存在的问题:

- 1. 没有考虑病死率 (所有群体死亡率一致)
- 2. 没有考虑人口迁入迁出

方程:

$$\begin{cases} \frac{\partial}{\partial a}S(a,t) + \frac{\partial}{\partial t}S(a,t) = -\left(d(a,t) + (v(a,t) + \theta(a,t))p(a)\right)S(a,t) - S(a,t) \int_{0}^{A} \lambda(a,a',t)I(a',t)da' + \delta(a)R(a,t) \\ \frac{\partial}{\partial a}I(a,t) + \frac{\partial}{\partial t}I(a,t) = S(a,t) \int_{0}^{A} \lambda(a,a',t)I(a',t)da' - (d(a,t) + \gamma(a))I(a,t) \\ \frac{\partial}{\partial a}R(a,t) + \frac{\partial}{\partial t}R(a,t) = (v(a,t) + \theta(a,t))p(a)S(a,t) + \gamma(a)I(a,t) - (d(a,t) + \delta(a))R(a,t) \end{cases}$$

$$(1.1)$$

边界条件:

$$\begin{cases} S(0,t) = B(t) - M(t) \\ I(0,t) = M(t) \\ R(0,t) = 0 \\ S(a,0) = S_0(a) \\ I(a,0) = I_0(a) \\ R(a,0) = R_0(a) \end{cases}$$
(1.2)

2 网络结构问题

2.1 存在的问题

在之前 ode 的 SEIR 模型 [1] 复现中存在无法同时优化两个网络(如图2.1),而导致求解困难,达不到理想效果的问题。当时的解决方案是把两个网络合并为一个网络。即将

$$NN_1(t) = \lambda$$

$$NN_2(\lambda, t) = X$$
(2.1)

改为

$$X, \lambda = NN(t) \tag{2.2}$$

其中 X 为各仓室人口数量, λ 为传染率, 两个网络输入变量相同都是 t, 可以合并。而在 PDE 模型(1.1)中

图 2.1: ODE 情况下理论上的网络结构

若采用两个网络则

$$NN_1(a, a', t) = \lambda(a, a', t)$$

$$NN_2(a, t, \lambda) = X$$
(2.3)

两个网络的输入变量不同,由以下解决方案。

2.2 解决方案

- 一. 将(2.3)中的 $NN_2(a,t,\lambda)$ 增添一个输入变量 a' 变为 $NN_2(a,a',t,\lambda)$
- 二. 化简(2.3)中的 $\int_0^A \lambda(a,a',t)I(a',t)da'$ 部分,由积分中值定理

$$\int_0^A \lambda(a, a', t) I(a', t) da' = \lambda(a, \epsilon, t) \int_0^A I(a', t) da', \epsilon \in (0, A)$$
(2.4)

每一对 a,t 对应一个 ϵ ,存在 $\hat{\lambda}(a,t)$

$$\hat{\lambda}(a,t) = \lambda(a,\epsilon(a,t),t) \tag{2.5}$$

可以将(2.3)改为

$$NN_1(a,t) = \hat{\lambda}(a,t)$$

$$NN_2(a,t,\lambda) = X$$
(2.6)

其中 $\hat{\lambda}(a,t)$ 的实际含义为年龄为 a 的易感群体在 t 时刻的易感程度。

三. 分布训练两个模型 (预训练 +LoRA 微调)

在之前 ode 的 SEIR 模型 [1] 中, 损失由数据损失和 ODE 损失两部分组成:

$$Loss = Loss_{data} + Loss_{ODE} (2.7)$$

而在神经网络(2.3)中, $NN_2(a,t)$ 对应 $Loss_{ODE}$,可以预先设定不同的 $\lambda(a,a',t)$,使用(1.1)生成多组 仿真数据预先训练 $NN_2(a,t)$,当 $NN_2(a,t)$ 学习到足够多的 PDE 信息后再将其中的参数冻结,用 $NN_1(a,a',t)$ 代替 $\lambda(a,a',t)$ 使用真实数据进行训练。

表 2.1: 总结

方案	优点	不足				
_	1. 可以得到每个年龄段对每个年龄段的传染率 $\lambda(a,a',t)$ 2. 保持模型结构不变	1. 增大计算量 2. 现有数据量可能不足				
	1. 大幅减少计算量	1. 只能得到每个年龄段的易感率 $\lambda(a,t)$				
三	1. 可以得到每个年龄段对每个年龄段的传染率 $\lambda(a,a',t)$ 2. 在较少数据下表现更好 3. 训练好的 $NN_2(a,t)$ 可以在其他数据集直接使用	1. 增大计算量 2. 如何生成预训练的仿真数据 3. 是否具有可行性				

对于这三种解决方案,按照可行性从二 > 一 > 三的顺序进行。

3 参数的问题

3.1 时间单位

对于部分参数,师姐给出了一些文献中的参考值,如(图3.1)为年龄分组的数值,分组的组距为7个月、15个月、12年、5年、10年不等。同时,麻疹数据的时间单位为月,年龄单位为年(如图3.1),对于本文的连续性模型应该采用怎样的时间单位?(月?年?)

如果 a 的单位为年, t 的单位为月的话, (1.1)式应改为:

$$\begin{cases} \frac{\partial}{\partial a}S(a,t) + 12\frac{\partial}{\partial t}S(a,t) = -\left(d(a,t) + (v(a,t) + \theta(a,t))p(a)\right)S(a,t) - S(a,t)\int_{0}^{A}\lambda(a,a',t)I(a',t)da' + \delta(a)R(a,t) \\ \frac{\partial}{\partial a}I(a,t) + 12\frac{\partial}{\partial t}I(a,t) = S(a,t)\int_{0}^{A}\lambda(a,a',t)I(a',t)da' - (d(a,t) + \gamma(a))I(a,t) \\ \frac{\partial}{\partial a}R(a,t) + 12\frac{\partial}{\partial t}R(a,t) = (v(a,t) + \theta(a,t))p(a)S(a,t) + \gamma(a)I(a,t) - (d(a,t) + \delta(a))R(a,t) \end{cases}$$

$$(3.1)$$

参数	含义	月龄	数值	数值来源	浙江省2010-2018年麻疹补充接种情况 (Θ)				
		0≤a<7(0-7月)	q=0	文献查找	时间	年龄	补种人数	补种率%	数据来源
		8≤a<24(8-23月)	待估		2010.9	8月-4周岁	2421830	97.5	
	to treat (C.)	24≤a<180(2-14岁)	待估			初三、高一			
a (a)	各年龄组人 群初始免疫	180≤a<240(15-19岁)	0.9089		2011.10		1011917	>95.0	
q₀(a)	率	240≤a<360(20-29)	0.9168		2012.10	初三	445536	>95.0	
		360≤a<480(30-39)	0.915	文献查找	2013.10	初三	426722	>95.0	
		480≤a<600 (40-50)	0.9275		2013.10	ATT -	420722	775.0	
		a≥600	0.9226		2014.10	初三	444822	>95.0	合作项目
		0≤a<8月	0	文献查找	2015.10	初三	405022	>95.0	数据
v(a)	常规接种率	8≤a<18 18≤a<24	0.95 0.95	又献宣找	2015.10	411-	403022	-75.0	
		a≥24	0.75		2016.10	初三	425822	>95.0	
		0≤a<8月	0		2017.10	初三初三	419627	>95.0	
p(a)	疫苗保护率	8≤a<18月	0.85	文献查找	2017.10		417027	-75.0	
P(d)		18≤a<24月 a≥24	0.9		人脈巨比	2018.10	₩J.=	461247	>95.0
ν	恢复率	无	1		总计		6462545	>95.0	

图 3.1: 部分参数值

诊断年	2005											
诊断月	1	2	3	4	5	6	7	8	9	10	11	12
F龄分纟总计	242	383	1112	2395	1970	1013	529	267	124	53	62	153
0-7月	14	37	82	253	238	118	87	43	22	3	7	2
8-17月	19	42	100	302	310	186	88	71	23	12	22	3
18-23月	3	4	9	23	13	7	10	5	2	1	0	
2岁-	1	12	18	67	68	29	29	15	3	3	1	
3岁-	4	6	14	38	47	23	14	5	8	0	2	
4岁-	3	3	10	60	35	22	8	3	3	2	0	
5岁-	6	8	37	57	52	23	11	2	2	4	2	
6岁-	4	3	29	60	74	35	11	6	1	1	1	
7岁-	7	7	37	87	63	27	10	4	4	2	2	
8岁-	7	6	43	63	56	19	9	3	4	2	3	
9岁-	5	4	21	49	43	13	4	2	4	1	2	
10岁-	29	20	96	188	147	85	32	7	5	4	3	2
15岁-	24	26	83	151	81	54	24	9	7	1	4	
20岁 -	43	47	119	174	149	90	40	21	8	5	2	
25岁 -	30	63	147	292	192	98	45	29	10	4	4	
30岁-	23	53	143	274	206	107	52	20	8	1	1	
35岁-	13	27	81	174	123	52	38	11	4	6	1	
40岁-	5	12	36	66	53	19	12	9	4	0	1	
45岁-	1	3	5	14	13	4	2	2	1	0	0	
50岁-	0	0	1	3	5	2	3	0	1	1	4	
55岁-	1	0	1	0	2	0	0	0	0	0	0	
60岁-	0	0	0	0	0	0	0	0	0	0	0	
65岁-	0	0	0	0	0	0	0	0	0	0	0	
70岁-	0	0	0	0	0	0	0	0	0	0	0	
75岁-	0	0	0	0	0	0	0	0	0	0	0	
80岁-	0	0	0	0	0	0	0	0	0	0	0	
>85岁	0	0	0	0	0	0	0	0	0	0	0	

图 3.2: 麻疹数据

3.2 差值方法的选择

由于能够获取的参数、感染数据都是离散值,而且大部分数据点并没有相互对应。所以需要选择一种差值方法来扩充数据(部分需要二维差值方法)。可以将以下方法都试一遍选择最好的方法:

表 3.1: 插值方法							
方法 效!							
——————— 牛顿插值							
Hermite 插值							
三次样条插值							

九种常见的二维插值方法

References

[1] Mengqi He et al. "Transmission dynamics informed neural network with application to COVID-19 infections". In: Computers in Biology and Medicine 165 (2023), p. 107431.