Retrieval-guided Dialogue Response Generation via a Matching-to-Generation Framework

Deng Cai^{1*} Yan Wang^{2*} Wei Bi² Zhaopeng Tu² Xiaojiang Liu² Shuming Shi²

¹The Chinese University of Hong Kong, ²Tencent AI Lab

thisisjcykcd@gmail.com

{brandenwang, victoriabi, zptu, kieranliu, shumingshi}@tencent.com

Motivation

- Skeleton-then-response framework has shown promising results for dialogue generation task
- How to precisely extract a skeleton and how to effectively train a retrieval-guided response generator

 Query: How is your day today?

Retrieval guided retrieve collapse generate

Bad, I hate the weather. generate

Response: Great, I get promotion today.

Figure 1: The common problem for training a retrievalguided generation model in previous work. The model is forced to neglect the retrieved response even though it is a proper response, due to the mismatch between the retrieved response and the target response

frame

- propose an interpretable matching model for matching skeleton extraction.
- train skeleton-guided response generator

Figure 2: Flow charts during training and inference.

Interpretable matching model

Response: I love superhero movies. Batman is my favorite.

Query: Would you like to watch Captain America?

The goal of the interpretable matching model is to reveal token-level matching information between a query-response pair, thus we can choose a matching skeleton

- Interpretable matching model
- For a query $q=(q_1,q_2,q_3,\ldots,q_n)$ and a response $r=(r_1,r_2,\ldots,r_m)$ where n,m are query length and the response length, respectively
- We first insert a special token at the beginning of each input sentence,
- Use a transformer encoder to get hidden state vectors q_0, q_1, \ldots, q_n and r_0, r_1, \ldots, r_m , where q_0 and r_0 are considered as the aggregate summary for the query and the response, respectively

- Interpretable matching model
- First, the sequence-level summary is projected to another vector:

$$\mathbf{r}^w = W^w \mathbf{r}_0 + b^w$$

• Use attention to compute the score between weight vector r^w and the token representation r_i :

$$\omega_i = \frac{\exp(\mathbf{r}^w \cdot \mathbf{r}_i)}{\sum_{k=1}^m \exp(\mathbf{r}^w \cdot \mathbf{r}_k)}$$

Calculate the response representation by weighted sum:

$$\mathbf{x}_r = \sum_{k=1}^m \omega_i (\mathbf{r}_i + \mathbf{e}_{r_i})$$

Interpretable matching model

The pair-wised score can is calculated by a bilinear function of $oldsymbol{x}_q$ and

• x_r :

$$s(q,r) = \mathbf{x}_q^T W^s \mathbf{x}_r$$

• further discussion:

$$s(q, r) = \mathbf{x}_q^T W^s \mathbf{x}_r$$

$$= \mathbf{x}_q^T W^s \sum_{k=1}^m \omega_k (\mathbf{r}_k + \mathbf{e}_{r_k})$$

$$= \sum_{k=1}^m \omega_k \mathbf{x}_q^T W^s (\mathbf{r}_k + \mathbf{e}_{r_k})$$

$$s(q, r) = \sum_{k=1}^m \omega_k s_k$$

$$= \sum_{k=1}^m \omega_k \mathbf{x}_q^T W^s (\mathbf{r}_k + \mathbf{e}_{r_k})$$

• s(q,r) can be interpreted as the weighted sum of w_k and s_k , where s_k and w_k are the **local** matching score and local importance score

Skeleton-guided Response Generator

- To ensure the skeleton-guided response generator does make use of the input skeleton, we extract the training skeleton from the groundtruth response by some randomized strategies:
- For a given pair (q, r), we randomly generate a training skeleton through the following procedure:
- All stop words in r are masked in advance.
 The rest tokens are masked at a mask rate γ.
 90% of the time, γ is set to 0.7. 10% of the time, γ is uniformly sampled in the range of [0, 1].

 Instead of always replacing the masked token with a special placeholder token, 20% of time, we replace the token with a random word uniformly sampled from the total vocabulary.

- Skeleton-guided Response Generator
- The model consists one encoder for query q, one encoder for skeleton s, one decoder for response r.

Training

- The matching model and the response generator are trained separately.
- At each training mini-batch, we randomly sample M query-response pairs, then compute the matching score with s(q,r) between all combinations of queries and responses, we can form a scoring matrix: $S \in \mathbb{R}^{M \times M}$ where $S_{i,j}$ is the score between i-th query and the j-th response:

$$L(\theta) = -\sum_{k=1}^{M} \log \operatorname{softmax}(\mathbf{S}_{k:})_{k}$$

- Dataset:a single-turn conversation dataset collected from popular Chinese social websites such as Douban and Weibo
- retrieval system: a publicly available chatbot API

- Existing automatic metrics such as BELU and METEOR cannot authentically reflect te quality of dialog response
- The main evaluation is done by human annotators, including informativeness, relevance and fluency. Ezch aspect is rated on a fivepoint scale

Models	Informativeness	Relevance	Fluency	Dist-1(%)	Dist-2(%)
Retrieval	2.65 (0.90)†	2.58 (0.86)	2.96 (0.72)	49.10	84.19
Seq2Seq	2.01 (0.65)	2.58 (0.53)	2.71 (0.43)	30.38	54.52
Seq2Seq-MMI	2.47 (0.70)	2.79 (0.67)	2.99 (0.61)	30.98	62.85
RetrieveNRefine++	2.30 (0.79)	2.62 (0.63)	2.82 (0.51)	29.83	61.07
EditVec	2.29 (0.61)	2.62 (0.60)	2.83 (0.47)	35.30	67.57
Skeleton-Lex	2.45 (0.61)	2.80 (0.56)	2.99 (0.46)	25.70	56.61
Ours	2.69 (0.87)	3.11 (0.55)	3.20 (0.55)	49.01	80.36

Quality of extracted skeleton:

Skeletons	Info.	Relevance	Fluency
Ours	2.69	3.11	3.20
Lexical	2.62	2.92	3.05
keywords	2.56	2.90	3.03
PMI	2.53	2.88	3.02

- PMI: for any word in response, we compute the sum of PMIs between it and all words in query
- Keyword: preserve the most informative words in retrived response

Case

Query	喜欢长头发的女生 I like girls with long hair				
Retrieved response	可以 把 头发 后面 汤 大 卷 ,前面 是 直 刘海 ,这样 看 的 很 可爱				
	You can try perming the hair , hair with curly ends and straight bangs is very cute.				
Ours	我也喜欢长 头发 的女生, 卷了直刘海 , 头发就不好看了 I also like girl with long hair ,				
	I think once the straight bangs are curled , it doesn't look good any more.				
Seq2Seq-MMI	我也喜欢长头发的女生 I also like girls with long hair.				
RetrieveNRefine ⁺⁺	我喜欢长头发的女生 I like girls with long hair.				
EditVec	我也喜欢长头发的女生 I also like girls with long hair.				
Skeleton-Lex	我喜欢长头发的女生 I like girls with long hair.				
Query	我提现怎么还没到 Why hasn't my withdrawal arrived yet?				
Retrieved response	就是 提现 到 你 绑定 的 银行卡 上 了 Withdrawal is in the bound bank card.				
Ours	你提现的时候绑定了银行卡吗 Have you bounded the bank card when withdrawing?				
Seq2Seq-MMI	我提现也到了 My withdrawal has arrived too.				
RetrieveNRefine ⁺⁺	你要支付宝干嘛 Why do you need Alipay?				
EditVec	你是提现的吗 Do you want to withdraw?				
Skeleton-Lex	你不是已经到了吗 Haven't you arrived ?				
Query	我月经不太规律 I have irregular periods.				
Retrieved response	去 看 医生 啊 . 最 好看 中医 , 挺准 的 , 别 不好意思 Go to see a doctor ,				
	best see a traditional Chinese doctor . Pretty accurate , don't be shy.				
Ours	看 医生 吧,最简单的方法就是 中医 调理一下了 See a doctor , the easiest way is with				
	Chinese medicine recuperation.				
Seq2Seq-MMI	我也不规律 I am irregular too.				
RetrieveNRefine ⁺⁺	有啥不规律的 What is irregular?				
EditVec	有啥不好意思的 Why you are shy?				
Skeleton-Lex	我也不规律 I am irregular too.				

Inspire

• For a given pair (x,y), find some input sentences which is most similar to x in training corpus, then use these sentences to guide generation