Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO EA772 — Circuitos Lógicos

Prova 2A - 15/05/2007

Prof. Jaime Portugheis

RA: 071251

Nome: Joso Arranio G.L. Silva

Ass.: 100 Antonis G-L Sile

		1
Questão	Valor	Nota
1	2,0	0,00
2	1,75	1,50
3	1,0	0,00
N5	1,0	1,00
84	1,75	1,750
6	2,5	0,130
Soma	10.0	438

: :→0;30

Questão 1: (2,0) Utilize o método Quine-McCluskey para reduzir a função

 $g(b_3,b_2,b_1,b_0) = \sum m(4,5,6,7,8,9,10,11)$

Questão 2: (1,75) Dada a seguinte tabela de estados, determine a tabela de estados mínima equivalente. Mostre explicitamente a sua solução.

EA	Entrada		
	x=0	x=1	
A	A,0	B,0	
В	H,1	C,0 ₹	
\mathbf{C}	E,0	B,0	
D	C,1	D,0 •	
\mathbf{E}	C,1	E,0 •	
\mathbf{F}	F,1	G,1 ×	
G	B,0	F,0	
Η	H,1	C,0 -	
	PE, Saída		

Questão 3: (1,0) Projete uma árvore de multiplexadores que implementa a expressão:

$$a'b + a'b'c' + bc'd + abd' + b'cd$$

Questão 4: (1,75) Obtenha o diagrama de estados reduzido para um detector do padrão 10010 com repetição (Por exemplo, para uma sequência de entrada x = 001001000010010 deve-se gerar a sequência z = 000100100001001 como saída).

Questão 5: (1,0) Usando um *chip* PLA, implemente um sistema cujas variáveis de saída são dadas pelas seguintes expressões: $d_3 = 0$; $d_2 = a'_1b_0 + a_1b'_0$; $d_1 = 1$; e $d_0 = a_0b'_1 + b_0$. Indique explicitamente os pinos assinalados a cada variável de entrada/saída.

Si So Loo 2001

Questão 6: (2,5) Dada a especificação de alto nível de um sistema sequencial

Entrada: $x(t) \in \{a, b, c, d\}$

Saída: $z(t) \in \{0, 1\}$

Estado: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Estado inicial: $s(0) = S_0$

As funções de transição de estado e de saída são definidas pela seguinte tabela:

$\mathbf{E}\mathbf{A}$	$\operatorname{Entrada}$				
	x=a	x=b	x=c	x=d	
$\odot S_0$	$S_{0},0$	$S_{0},0$	$S_0,1$	$S_0,1$	
S_1	$S_{1},0$	$S_{1},0$	$S_{3},0$	$S_{3},0$	
$S S_{2}$	$S_{2},0$	$S_{3},0$	$S_2,1$	$S_3,1$	
S_3	$S_{3},0$	$S_2,0$	$S_{1},0$	$S_0,0$	
	PE,Saída				

- 1. (0,25) Determine a tabela de estados correspondente em código binário e o número mínimo de *flip-flops* D necessários para implementar o sistema.
- 2. (1,0) Determine as funções de excitação para cada *flip-flop* D para obter as transições desejadas. Mostre explicitamente a sua solução.
- 3. (0,25) Determine a função de transição (de estados) para cada flip-flop D. Justifique.
- 4. (0,5) Determine a função de saída z(t).
- 5. (0,5) Desenhe o diagrama lógico de uma implementação do sistema com uso de flip-flops D.