Projeto 2 | Rusting Images

Eduardo Lemos

23/06/2024

Contents

1	C1	2
2	C2	2
3	CIMap 3.1 Comparação com JPEG	3 4
4	CIMap2	6
	Melhorias O projeto foi desenvolvido na linguagem Rust, com o package managergo. Todos os exemplos descritos utilizaram a imagem ./assets/kodimo base.	_

1 C1

O codec C1 apenas binariza imagem detectando qual valor, em escala de cinza, o pixel mais se aproxima. Caso esteja mais próximo de 255 do que de 0, o pixel se torna branco e vice-versa.

Na linha de comando:

[user@nixos:/rusting-images]\$ cargo run -- c1 ./assets/kodim03.png Loading image...

Image loaded!

Applying C1 codec...

Calculated Average PSNR: 8.27 dB

Saving image...

Em teoria, a taxa bpp do codec C1 é 1 bit por pixel. Porém, como cada pixel da imagem gerada está em RGB, a taxa sobe para 24 bits por pixel.

2 C2

O codec C2 aplica a estratégia de Dithering na em uma imagem em escala de cinza. A partir de uma máscara para o Dithering, a imagem é percorrida e é calculado a diferença entre o pixel original da imagem (em escala de cinza) e o novo pixel (que no nosso caso é obtido a partir da estratégia de limiar descrita em C1). Essa diferença, ou erro, é propagada para os pixels vizinhos utilizando-se da máscara provida. Em caso padrão, essa máscara será a de Floyd-Steinberg. O codec C2 binariza a imagem final obtida utilizando a mesma estratégia descrita em C1, obtendo-se uma imagem com apenas pixels pretos ou brancos.

Na linha de comando:

[user@nixos:/rusting-images]\$ cargo run -- c2 ./assets/kodim03.png Loading image...

Image loaded!

Applying C2 codec...

Calculated Average PSNR: 6.44 dB

Saving image...

Nota-se que o valor PSNR calculado é menor que o encontrado no codec C1. Isso é esperado pois o processo de Dithering **propositalmente** inclúi extra ruído para obter uma imagem com melhor visual subjetivamente.

Em teoria, a taxa bpp do codec C2, assim como C1, é 1 bit por pixel. Porém, como cada pixel da imagem gerada está em RGB, a taxa sobe para 24 bits por pixel.

3 CIMap

O codec CIMap utiliza quantização vetorial para diminuir a palheta de cores da imagem utilizando-se o algoritmo LBG. O processo começa com a escolha de um codebook inicial a partir dos pixels iniciais da imagem. Em seguida, inicia-se o processo de *clustering*, isto é, o cálculo iterativo para o encontro dos melhores *centroides* para uma dada imagem.

Esse processo se baseia em alcançar convergência entre o conjunto de centroides atuais e melhores candidatos. Cada pixel será mais próximo de um dos centroides disponíveis e um novo centroide é encontrado após todos os pixels serem mapeados com qual centroide atual eles estão mais próximos. Quando esse processo convergir, os centroides finais serão a palheta de cores que utilizaremos para pintar a imagem final.

Na linha de comando (para 16 cores):

[user@nixos:/rusting-images]\$ cargo run -- ci-map ./assets/kodim03.png 16
Loading image...
Image loaded!
Applying CIMap codec...
Calculated Average PSNR: 22.66 dB
Saving image...

3.1 Comparação com JPEG

Devemos comparar os valores PSNR com os valores de bits por pixel ou bpp do nosso codificador com um codificador JPEG de tamanho teórico aproximado. Em teoria, o valor bpp que cada quantizador vetorial com um codebook de C centroides com tamanho N*M deve gerar segue a seguinte fórmula:

$$\begin{aligned} codebookSize &= 24bits*C\\ bpp &= \frac{NM\log_2C + codebookSize}{NM}\\ bpp &= \frac{NM\log_2C + 24C}{NM} \approx \log_2C \end{aligned}$$

Destaca-se que para o codificador JPEG a taxa bpp sempre será de 24 bits por pixel, porém será codificado a imagem em JPEG assumindo o tamanho teórico estabalecido pela fórmula acima (valores aproximados usando a ferramenta GIMP). A seguinte fórmula determina qual deve ser o tamanho aproximado para o JPEG em bytes:

$$JPEG = NM \log_2 C$$

O cálculo da PSNR para quaisquer imagens pode ser obtido pela linha de comando:

[user@nixos:/rusting-images]\$ cargo run -- psnr kodim03.png kodim03_32.jpg
Loading image...
Image loaded!
Loading image...
Image loaded!
Calculated Average PSNR: 46.51 dB

Finalmente, o gráfico a seguir compara os dois codificadores:

A seguir os pares de imagem com o JPEG e CIMap para (aproximadamente) o mesmo valor bpp:

4 CIMap2

 ${\cal O}$ codec CIMap
2 é uma união dos codecs C2 e CIMap, isto é, devemos aplicar a estratégia de dithering em uma imagem colorida que tenha sido quantizada

pela quantização vetorial. Isso foi feito da seguinte forma: quantiza-se a imagem e para cada canal da imagem, e.g., R, G, B, aplicou-se o dithering de Floyd-Steinberg. A imagem final será composta dos 3 canais unidos após suas transformações individuais.

Na linha de comando (para 16 cores):

[user@nixos:/rusting-images]\$ cargo run -- ci-map ./assets/kodim03.png 16 Loading image...

Image loaded!

Applying CIMap2 codec...

Calculated Average PSNR: 6.75 dB

Saving image...

Nota-se que, assim como no codec C2 em relação a C1, o valor PSNR calculado é menor que o encontrado no codec CIMap. Isso é esperado pois o processo de Dithering **propositalmente** inclúi extra ruído para obter uma imagem com melhor visual subjetivamente.

5 Melhorias

A principal melhoria que poderia ser implementada seria o uso de concorrência em codecs como CIMap para acelerar sua execução.