

Objetivo:

Escribir un programa en Python que lea un archivo en formato GraphML (generado a partir de datos de OpenStreetMap) y construya un grafo en memoria utilizando la biblioteca SAX.

El grafo se presenta en un formato de lista de adyacencia y mantiene detalles sobre los nodos (id, osmid, lon, lat) y las aristas (src, dst, len), vitales para la futura Ejecución de algoritmos de búsqueda de rutas.

Descripción del Código Fuente Abierto

Clase GraphMLHandler (creargrafo.py)

GraphMLHandler, que hereda de xml.sax.ContentHandler, recibe eventos SAX para procesar el GraphML. Sus principales características son:

• **Inicialización:** Establece algunas estructuras para guardar el estado del proceso: key_map (mapeo de clave a nombre de atributo), nodes (diccionario de nodos), edges (lista de aristas) y adjacency_list (lista de adyacencia).

• Eventos SAX:

- startElement: Señala el inicio de elementos como key, node, edge y data, capturando sus atributos correspondientes (por ejemplo, id, source, target).
- characters: Recoge el texto del elemento de datos.
- endElement: Gestiona el cierre de elementos con la configuración de nodos o aristas, y también la actualización de las estructuras de datos.
- **Procesamiento de Nodos:** Extrae osmid_original, lon y lat; convierte lat y lon a punto flotante; captura lat y lon que son inválidos.
- **Procesamiento de Aristas**: Guarda el source, target y length, y actualiza la lista de adyacencia para los nodos de destino y sus longitudes.

Función parse graphml (creargrafo.py)

Esta función configura el analizador SAX, establece el GraphMLHandler y analiza el archivo GraphML, devolviendo los diccionarios de nodos, aristas y la lista de adyacencia. Programa Principal (main.py)

El script main.py, cuyo parse_graphml lee el CR_Capital.graphml y genera un archivo de texto (prueba.txt) que contiene los datos extraídos:

- Datos de Nodos con el ID correspondiente, OSMID, longitud y latitud.
- Lista de Aristas con nodos y longitud.
- Lista de Aristas, representando nodos conectados y las aristas entre ellos.

Aspectos Destacados

- Eficiencia: Con SAX es posible procesar grandes archivos XML sin cargar el documento en memoria, lo que es adecuado para gráficos de alto volumen como los de OpenStreetMap.
- Robustez: La clase GraphMLHandler gestiona errores de conversión de datos (por ejemplo, coordenadas inválidas) lanzando excepciones para que la aplicación no se bloquee.
- Representación del gráfico: La lista de adyacencia generada permite que se ejecuten algoritmos de enrutamiento en trabajos futuros como la búsqueda del camino más corto.
- Flexibilidad: La representación es flexible en el sentido de que se pueden incluir más atributos para nodos o aristas si es necesario debido al mapeo dinámico de claves (key map).

Tarea 1 2

Conclusión

La Tarea 1 crea y representa con éxito en memoria un archivo de gráfico graphml. Estructura de Datos: El proceso es SAX y la eficiencia es segura.

Tarea 1 3