	COMPUTER SCI CIAL INTELLIG		DEPARTMENT OF COMPUTER SCIENCE ENGINEERING	
Program Name: B. Tech		Assignment Type: Lab		Academic Year: 2025-26
Course Coordinator Name		Dr.Vairachilai Shenbagavel		
Instructor(s) Name		Srinivas Komakula		
Course Code	23CA201SE402	Course Title	Explainable AI (P)	
Year/Sem	III/V	Regulation	R24	
Date and Day of Assignment	28-07-2025	Time(s)	09:00AM -05:00PM	
Duration	2 Hours	Applicable t Batches	23CSBTB43	

Assignment Number: 01

Q. No.	Question	Expected Time to complete
1	FreshSip – Juice Bar	

Context

Fresh Sip offers free samples outside malls and observes their impact on the number of juice orders.

Free Sample Events	Juice Orders
(x)	(y)
1	45
2	70
3	90
1	48
2	72

Objective:

Analyze how free sample events affect juice orders using Linear Regression and SHAP values. Instructions:

- 1. Perform Linear Regression
 - Independent Variable (x): Number of Free Sample Events
 - Dependent Variable (y): Juice Orders
 - Find the regression equation:

 $y^=a+b\cdot x \cdot hat\{y\} = a+b \cdot cdot xy^=a+b\cdot x$

- 2. Calculate the Baseline Value
 - Compute the average of all y-values (juice orders)
- 3. SHAP Value Calculation
 - For each observation:

- Attribute SHAP to the input variable (x)
- 4. Prediction Table

X	Actu	Predict	Basel	SHAP	Interpreta
(Sample	al y	ed y	ine	Value	tion
s) _					

- 5. Interpretation Points
 - How did free sample events influence predicted juice orders?
 - Over/underprediction comparison
 - Any practical insights (e.g., effectiveness of 1 vs 3 events)

Expected Deliverables:

- Linear regression equation
- Baseline juice order
- Prediction + SHAP + interpretation table
- Final summary:
 - o How well the model captures the trend
 - o Practical insight for FreshSip's marketing strategy
 - o Feature impact via SHAP

Q. No.	Question	Expected Time to complete
2	echBytes – Webinar Attendance using Multiple Linear Regression and SHAP Analysis	

Objective:

Evaluate how the number of reminder emails and topic relevance score impact webinar attendance using Multiple Linear Regression and interpret results through SHAP values.

Given Dataset:

Emails	Topic	Attenda
Sent (x ₁)	Score (x ₂)	nce (y)
100	8	200
80	6	160
120	9	230
90	5	150
70	4	130

Tasks:

1. Perform Multiple Linear Regression Analysis

- o Independent variables: Emails Sent and Topic Score
- o Dependent variable: Attendance

2. Compute the Baseline Value

Use the average of the attendance values

3. Calculate SHAP Values

- o Calculate SHAP Value
- o Distribute SHAP contributions between Emails Sent and Topic Score

4. Compute Model Predictions for Each Record

- o Apply the regression equation
- Validate the SHAP decomposition: Prediction = Baseline + SHAP(Emails) + SHAP(Topic Score)

5. Interpret the SHAP Contributions

- o For each row, explain the influence of each input
- o Compare actual vs predicted attendance
- Indicate whether the model overestimated or underestimated and why

Q. No.	I I HIASTIAN	Expected Time to complete
3	Regression with Diabetes Dataset	

Objective:

Understand how patient features influence disease progression using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all available features from the Diabetes dataset as independent variables.
 - Fit a Multiple Linear Regression model to predict disease progression.
- 2. Calculate the Baseline Value
 - Compute the **mean** of the target variable (disease progression scores) from the training

data.

- This will serve as the **baseline prediction**.
- 3. Calculate SHAP Values
 - Apply SHAP to compute **feature contributions** to each prediction.
 - Use model coefficients to proportionally attribute the difference from the baseline to each feature.
- 4. Compute Final Prediction for Each Record
 - For every test record, verify that:

Prediction = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For each patient record:
 - Explain how each feature contributed to the predicted disease progression.
 - o Compare the **predicted value** vs the **actual observed value**.
 - o Comment on whether the model **overpredicted or underpredicted** and **why**, based on SHAP values.

Q. No.	Question	Expected Time to complete
4	Regression with Student Performance Dataset	

Objective:

Investigate how student background and behavior influence final exam scores using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all relevant student attributes (e.g., study time, parental education, absences, etc.) as independent variables.
 - Fit a regression model to predict the **final exam score**.
- 2. Calculate the Baseline Value
 - Compute the **mean of the final exam scores** from the training set.
 - This serves as the **baseline prediction** (expected value).
- 3. Calculate SHAP Values
 - Use SHAP to compute the contribution of each student attribute to the final exam score prediction.
 - Distribute the prediction deviation from the baseline among the features.
- 4. Compute Final Prediction for Each Record
 - For each student record, confirm:

Predicted Score = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For every prediction:
 - Explain how different features (e.g., study time, failures, health) impacted the exam score.
 - o Compare predicted score to actual score.
 - o Comment on overprediction or underprediction and possible reasons behind it.