Parameter estimation with correlated photon pairs

Jan Gößwein

Institute of Applied Physics

Jena, October 28, 2025

Table of content

- 1 Motivation
- 2 Theory
- 3 Experiment
- 4 Results
- 5 Simulation
- 6 Summary

Summary

Motivation

Objective: Can coincidence measurements provide advantages in terms of precision in noisy regimes?

^[1] Brida, Genovese, and Ruo Berchera, "Experimental Realization of Sub-Shot-Noise Quantum Imaging"

SPDC

Energy conservation

$$\omega p = \omega_s + \omega_l$$

SPDC

Energy conservation

$$\vec{k}_{\text{p}} = \vec{k}_{\text{s}} + \vec{k}_{\text{i}} - \Delta \vec{k}$$

Setup: Transmission setup

FRIEDRICH-SCHILLER-

UNIVERSITÄT

Setup: Transmission setup **Parameter:** Transmittance *T*

Motivation

Setup: Transmission setup **Parameter:** Transmittance T

 $\textbf{Estimator:} \ Var(\ \mathcal{T})$

Summary

Parameter estimation

Setup: Transmission setup **Parameter:** Transmittance T

Estimator: Var(T)

Conventional approach:

Setup: Transmission setup **Parameter:** Transmittance T

Estimator: Var(T)

Conventional approach:

Coincidence approach:

Conventional approach

$$N_{
m tot}^{
m ref} = \eta_{
m idl} N_{
m g} + N_{
m noise}^{
m ref}$$

Conventional approach

$$egin{aligned} \mathcal{N}_{\mathsf{tot}}^{\mathsf{ref}} &= \eta_{\mathsf{idI}} \, \mathcal{N}_{\mathsf{g}} + \mathcal{N}_{\mathsf{noise}}^{\mathsf{ref}} \ \mathcal{N}_{\mathsf{tot}}^{\mathsf{sam}} &= \mathcal{T} \, \eta_{\mathsf{idI}} \, \mathcal{N}_{\mathsf{g}} + \mathcal{N}_{\mathsf{noise}}^{\mathsf{sam}} \end{aligned}$$

Conventional approach

$$N_{
m tot}^{
m ref} = \eta_{
m idl} N_{
m g} + N_{
m noise}^{
m ref}$$
 $N_{
m tot}^{
m sam} = T \, \eta_{
m idl} N_{
m g} + N_{
m noise}^{
m sam}$
 $\Rightarrow T = rac{N_{
m tot}^{
m sam} - N_{
m noise}^{
m sam}}{N_{
m ref}^{
m ref} - N_{
m ref}^{
m ref}}$

Coincidence approach

$$N_{
m cc,tot}^{
m ref} = \eta_{
m idl} \, \eta_{
m sig} \, N_{
m g} + N_{
m ac}^{
m ref}$$

Coincidence approach

Coincidence approach

$$egin{align*} N_{ ext{cc,tot}}^{ ext{ref}} &= \eta_{ ext{idl}} \, \eta_{ ext{sig}} \, N_{ ext{g}} + N_{ ext{ac}}^{ ext{ref}} \ N_{ ext{cc,tot}}^{ ext{sam}} &= T \, \eta_{ ext{idl}} \, \eta_{ ext{sig}} \, N_{ ext{g}} + N_{ ext{ac}}^{ ext{sam}} \ &\Rightarrow T = rac{N_{ ext{tot,cc}}^{ ext{sam}} - N_{ ext{ac}}^{ ext{sam}}}{N_{ ext{tot,cc}}^{ ext{ref}} - N_{ ext{ac}}^{ ext{ref}}} \end{aligned}$$

Transmittance model

Conventional approach:

$$\mathsf{Var}(\mathcal{T}) = (\eta_{\mathsf{idl}} \ \mathsf{N_g})^{-2} \left[\mathsf{Var}(\mathit{N_{\mathsf{tot}}^{\mathsf{sam}}}) + \mathsf{Var}(\mathit{N_{\mathsf{noise}}^{\mathsf{sam}}}) + \mathcal{T}^2 \Big[\mathsf{Var}(\mathit{N_{\mathsf{tot}}^{\mathsf{ref}}}) + \mathsf{Var}(\mathit{N_{\mathsf{noise}}^{\mathsf{ref}}}) \Big] \right]$$

Coincidence approach:

$$\mathsf{Var}(\mathcal{T}) = \left(\eta_{\mathsf{sig}} \, \eta_{\mathsf{idl}} \, \mathsf{N}_{\mathsf{g}}\right)^{-2} \left[\mathsf{Var}\big(\mathsf{N}_{\mathsf{tot},\mathsf{cc}}^{\mathsf{sam}}\big) + \mathsf{Var}(\mathsf{N}_{\mathsf{ac}}^{\mathsf{sam}}) + \, \mathcal{T}^2 \Big[\mathsf{Var}\big(\mathsf{N}_{\mathsf{tot},\mathsf{cc}}^{\mathsf{ref}}\big) + \mathsf{Var}\big(\mathsf{N}_{\mathsf{ac}}^{\mathsf{ref}}\big) \Big] \right]$$

Transmittance model

Conventional approach:

$$\mathsf{Var}(\mathcal{T}) = (\eta_{\mathsf{idl}} \ \mathsf{N}_{\mathsf{g}})^{-2} \left[\mathsf{Var}(\mathit{N}_{\mathsf{tot}}^{\mathsf{sam}}) + \mathsf{Var}(\mathit{N}_{\mathsf{noise}}^{\mathsf{sam}}) + \mathcal{T}^2 \Big[\mathsf{Var}(\mathit{N}_{\mathsf{tot}}^{\mathsf{ref}}) + \mathsf{Var}(\mathit{N}_{\mathsf{noise}}^{\mathsf{ref}}) \Big] \right]$$

Coincidence approach:

$$\mathsf{Var}(\mathcal{T}) = \left(\eta_{\mathsf{sig}} \, \eta_{\mathsf{idl}} \, \mathsf{N}_{\mathsf{g}}\right)^{-2} \left[\mathsf{Var}\big(\mathsf{N}_{\mathsf{tot},\mathsf{cc}}^{\mathsf{sam}}\big) + \mathsf{Var}(\mathsf{N}_{\mathsf{ac}}^{\mathsf{sam}}) + \, \mathcal{T}^2 \Big[\mathsf{Var}\big(\mathsf{N}_{\mathsf{tot},\mathsf{cc}}^{\mathsf{ref}}\big) + \mathsf{Var}\big(\mathsf{N}_{\mathsf{ac}}^{\mathsf{ref}}\big) \Big] \right]$$

Photon statistics

Summary

Photon statistics

Poisson distribution (coherent light): [2][3]

$$\mathcal{P}(n) = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle}$$
 $Var(n) = \langle n \rangle$

Results

Photon statistics

Poisson distribution (coherent light): [2][3]

$$\mathcal{P}(n) = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle}$$
 $Var(n) = \langle n \rangle$

^[3] Fouche, "Detection and False-Alarm Probabilities for Laser Radars That Use Geiger-mode Detectors"

^[2] Kim et al., "Photon-Counting Statistics-Based Support Vector Machine with Multi-Mode Photon Illumination for Quantum Imaging"

Results

Summary

Photon statistics

Poisson distribution (coherent light): [2][3]

$$\mathcal{P}(n) = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle}$$

$$Var(n) = \langle n \rangle$$

multi-mode Bose-Einstein distribution (thermal light): [2]

$$\mathcal{P}_{m}(n) = \frac{(n+m-1)!}{(m-1)! \, n!} \frac{m^{m} \langle n \rangle^{n}}{(m+\langle n \rangle)^{n+m}}$$

$$\operatorname{Var}(n) = \langle n \rangle \left(1 + \frac{\langle n \rangle}{m} \right)$$

^[2] Kim et al., "Photon-Counting Statistics-Based Support Vector Machine with Multi-Mode Photon Illumination for Quantum Imaging"

^[3] Fouche, "Detection and False-Alarm Probabilities for Laser Radars That Use Geiger-mode Detectors"

Motivation Theory Experiment Results Simulation Summary

Experimental setup

$$Var(N_{noise}) = 1.8 \cdot \langle N_{noise} \rangle$$

Single counts

Motivation Theory Experiment Results Simulation Summary

Single counts

Signal arm

Single counts

Signal arm

Idler arm

Single counts

Signal arm

Idler arm

$$Var(N_{noise}) = 2.2 \cdot \langle N_{noise} \rangle$$

$$\text{Var}(\textit{N}_{\text{cc}}) = \langle \textit{N}_{\text{cc}} \rangle$$

$$Var(N_{cc}) = \langle N_{cc} \rangle$$

$$Var(N_{cc}) = \langle N_{cc} \rangle$$

$$Var(N_{ac}) = \langle N_{ac} \rangle$$

Summary

Simulation

Conventional approach:

$$\mathsf{Var}(\mathcal{T}) = (\eta_{\mathsf{idl}} \, \mathsf{N}_{\mathsf{g}})^{-2} \left[\mathsf{Var}(\mathsf{N}_{\mathsf{tot}}^{\mathsf{sam}}) + \mathsf{Var}\big(\mathsf{N}_{\mathsf{noise}}^{\mathsf{sam}}\big) + \mathcal{T}^2 \Big[\mathsf{Var}\big(\mathsf{N}_{\mathsf{tot}}^{\mathsf{ref}}\big) + \mathsf{Var}\big(\mathsf{N}_{\mathsf{noise}}^{\mathsf{ref}}\big) \Big] \right]$$

Summary

Simulation

Conventional approach:

$$\text{Var}(\mathcal{T}) = (\eta_{\text{idl}} \, \textit{N}_{\text{g}})^{-2} \left[2.2 \cdot \langle \textit{N}_{\text{tot}}^{\text{sam}} \rangle + 1.8 \cdot \langle \textit{N}_{\text{noise}}^{\text{sam}} \rangle + \mathcal{T}^2 \Big[2.2 \cdot \langle \textit{N}_{\text{tot}}^{\text{ref}} \rangle + 1.8 \cdot \langle \textit{N}_{\text{noise}}^{\text{ref}} \rangle \Big] \right]$$

Conventional approach:

$$\mathsf{Var}(\mathcal{T}) = (\eta_{\mathsf{idl}} \ \mathsf{N}_{\mathsf{g}})^{-2} \left[2.2 \cdot \langle \mathsf{N}_{\mathsf{tot}}^{\mathsf{sam}} \rangle + 1.8 \cdot \langle \mathsf{N}_{\mathsf{noise}}^{\mathsf{sam}} \rangle + \mathcal{T}^2 \Big[2.2 \cdot \langle \mathsf{N}_{\mathsf{tot}}^{\mathsf{ref}} \rangle + 1.8 \cdot \langle \mathsf{N}_{\mathsf{noise}}^{\mathsf{ref}} \rangle \Big] \right]$$

Coincidence approach:

$$\mathsf{Var}(\mathcal{T}) = \left(\eta_{\mathsf{sig}} \ \eta_{\mathsf{idl}} \ \mathsf{N}_{\mathsf{g}}\right)^{-2} \left[\mathsf{Var}\big(\mathsf{N}_{\mathsf{tot},\mathsf{cc}}^{\mathsf{sam}}\big) + \mathsf{Var}(\mathsf{N}_{\mathsf{ac}}^{\mathsf{sam}}) + \mathcal{T}^{2} \Big[\mathsf{Var}\big(\mathsf{N}_{\mathsf{tot},\mathsf{cc}}^{\mathsf{ref}}\big) + \mathsf{Var}\big(\mathsf{N}_{\mathsf{ac}}^{\mathsf{ref}}\big) \Big] \right]$$

Conventional approach:

$$\mathsf{Var}(\mathcal{T}) = (\eta_{\mathsf{idl}} \ \mathsf{N}_{\mathsf{g}})^{-2} \left[2.2 \cdot \langle \mathsf{N}_{\mathsf{tot}}^{\mathsf{sam}} \rangle + 1.8 \cdot \langle \mathsf{N}_{\mathsf{noise}}^{\mathsf{sam}} \rangle + \mathcal{T}^2 \Big[2.2 \cdot \langle \mathsf{N}_{\mathsf{tot}}^{\mathsf{ref}} \rangle + 1.8 \cdot \langle \mathsf{N}_{\mathsf{noise}}^{\mathsf{ref}} \rangle \Big] \right]$$

Coincidence approach:

$$\mathrm{Var}(\mathit{T}) = \left(\eta_{\mathrm{sig}} \, \eta_{\mathrm{idl}} \, \mathit{N}_{\mathrm{g}}\right)^{-2} \left[\langle \mathit{N}_{\mathrm{tot,cc}}^{\mathrm{sam}} \rangle + \langle \mathit{N}_{\mathrm{ac}}^{\mathrm{sam}} \rangle + \mathit{T}^{2} \Big[\langle \mathit{N}_{\mathrm{tot,cc}}^{\mathrm{ref}} \rangle + \langle \mathit{N}_{\mathrm{ac}}^{\mathrm{ref}} \rangle \Big] \right]$$

Parameter	Value
η_{idl} (%)	0.09
η_{sig} (%)	2.6
R _{idl} (kHz)	10
R _{noise,idl} (kHz)	10 - 1000
R _{noise,sig} (Hz)	7
T (1)	0.9

Parameter	Value
η _{idl} (%)	0.09
η_{sig} (%)	2.6
R _{idl} (kHz)	3 - 100
R _{noise,idl} (kHz)	1000
R _{noise,sig} (Hz)	7
T (1)	0.9

Results

Summary

Summary and Outlook

Can coincidence measurements provide more precise results?

Achievements:

- Model for variance of transmittance
- Experimental verification of photon statistics
- Found regions where coincidence approach offers advantages

Summary and Outlook

Git repository

public accessible:

https://git.tpi.uni-jena.de/mstnhsr/latexbeamer_corporatedesign

Feedback

marc.steinhauser@uni-jena.de

Slide title in Palatino Linotype Font

block environment (lower-case b)

itemize:

- First Level
 - Second Level

Third Level has no item mark

Block environment (upper-case B)

enumerate:

- First Level
 - 1.1 Second Level
 - 1.1.1 Third Level

