Modellierung mit Genetischen Algorithmen

Carsten Gips (HSBI)

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.

EA – Allgemeiner Ablauf

Kodierung Individuen

- Binäre Lösungsrepräsentation (Bitstring): $\mathbf{g} = (g_1, \dots, g_m) \in \{0, 1\}^m$
 - String gliedert sich in n Elemente (mit n ≤ m)
 => jedes Segment entspricht einer Problemvariablen
 - Dekodierungsfunktion $\Gamma: \{0,1\}^m \to \mathbb{R}^n$
- Fitnessfunktion Φ ordnet jedem Individuum \mathbf{g}_i eine reelle Zahl zu:

$$\Phi(\mathbf{g}_i) = F(\Gamma(\mathbf{g}_i)) - w \cdot \sum_i (Z_i(\Gamma(\mathbf{g}_i)))^2$$

- Zielfunktion F: wie sehr genügt ein Individuum bereits dem Optimierungproblem
- Strafterme Z_j : Anreicherung der Optimierung mit weiteren Informationen
- Gewichte w: statisch oder dynamisch (Abkühlen)

Selektion: Erstelle Matingpool mit μ Individuen

■ Fitnessproportionale Selektion (*Roulette Wheel Selection*): Auswahlwahrscheinlichkeit für Individuum **g**_k:

$$p_{sel}(\mathbf{g}_k) = rac{\Phi(\mathbf{g}_k)}{\sum_j \Phi(\mathbf{g}_j)}$$

=> Voraussetzung: positive Fitnesswerte

- Turnier-Selektion (*Tournament Selection*):
 - ullet Turniergröße ξ
 - ullet Turnier: ziehe ξ Individuen gleichverteilt (mit Zurücklegen!) und kopiere fittestes Individuum in den Matingpool
 - Führe μ Turniere durch

Crossover: Erzeuge zwei Nachkommen aus zwei Eltern

Festlegung der Crossover-Wahrscheinlichkeit p_{cross} (typisch: $p_{cross} \geq 0.6$)

- 1. Selektiere Eltern \mathbf{g}_a und \mathbf{g}_b gleichverteilt aus Matingpool
- 2. Zufallsexperiment:
 - mit $1 p_{cross}$: Kinder identisch zu Eltern (kein Crossover)
 - mit p_{cross} : Crossover mit \mathbf{g}_a und \mathbf{g}_b
 - Ziehe i gleichverteilt mit 1 < i < m
 - Kinder aus \mathbf{g}_a und \mathbf{g}_b zusammenbauen:

$$\mathbf{g}_c = (g_{a,1}, \dots, g_{a,i}, g_{b,i+1}, \dots, g_{b,m})$$

und

$$\mathbf{g}_d = (g_{b,1}, \ldots, g_{b,i}, g_{a,i+1}, \ldots, g_{a,m})$$

3. Gehe zu Schritt 1, bis insg. μ Nachkommen

Anmerkung: Die Eltern werden jeweils in die Ausgangsmenge zurückgelegt.

Mutation

- Mutationswahrscheinlichkeit p_{mut} (typische Werte: $p_{mut} = 0.01$ oder $p_{mut} = 0.001$)
- Für alle Individuen:
 - Mutiere jedes Gen eines Individuums mit p_{mut}:

$$g_i^{(t+1)} = \left\{ egin{array}{ll} \neg g_i^{(t)} & ext{ falls } \chi_i \leq p_{mut} \ g_i^{(t)} & ext{ sonst} \end{array}
ight.$$

 $=>\chi_i$ gleichverteilte Zufallsvariable (Intervall [0,1]), für jedes Bit g_i neu bestimmen

Typische Läufe

- ullet Populationsgröße $\mu=15$
- Anzahl Nachfahren $\lambda = 100$
- Abbruch nach *maxGen* = 200 Generationen

Wrap-Up

Lokale Suchverfahren: Nur das Ergebnis zählt!

- Evolutionäre Algorithmen:
 - Begriffe: Individuum, Population, Kodierung
 - Operationen: Selektion, Rekombination, Mutation
 - Bewertung mit Fitnessfunktion

LICENSE

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.