NOIP 模拟赛

题目名称	避雷针	子序列	滑冰	斐波那契
英文名称	lightning	subsequence	ski	fib
输入文件名	lightning.in	subsequence.in	ski.in	fib.in
输出文件名	lightning.out	subsequence.out	ski.out	fib.out
程序名称	lightning	subsequence	ski	fib
时间限制	1s	2s	3s	4s
空间限制	256MB	256MB	256MB	256MB
子任务数量	2	5	3	6
子任务是否等分	否	否	否	否

编译选项:

C++	-o %s %s.* -Wl,stack=0x40000000 -O2
-----	-------------------------------------

注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int ,程序正常结束时的返回值必须是 0。
- 3. 若无特殊说明,结果比较方式为忽略行未空格、文末回车后的全文比较。
- 4. 评测时采用的机器配置为:Intel(R) Core(TM) i5-5300U CPU @ 2.30GHz , 内存 8GB。上述时限以此配置为准。
- 5. 选手应将各题的源程序放在选手文件夹内,不要建立子文件夹。
- 6. 评测使用 Windows 系统,系统为 64 位。

避雷针 (lightning)

题目描述

气候变化使 Byteburg 不得不建造一个大型避雷针来保护城市里的所有建筑物。建筑物恰好沿一条街,从 1 到 n 编号。建筑物的高度和避雷针的高度都是非负整数。Byteburg 经费有限,只能建造一个避雷针。而且避雷针越高,价格越贵。

在建筑物 i (高度为 h_i) 屋顶放置高为 p 的避雷针能够保护建筑物 j 的条件是:

$$h_j \leq h_i + p - \sqrt{|i-j|}$$

其中 |i-j| 表示 i 和 j 差的绝对值。

Byteburg 需要你帮它计算,如果在第i个建筑物的屋顶放置这样的避雷针的话,避雷针的最小高度是多少。

输入格式

第一行一个整数 $n~(1 \le n \le 5 \times 10^5)$ 表示 Byteburg 的建筑物个数。

接下来 n 行每行一个整数 $h_i(0 \le h_i \le 10^9)$ 表示第 i 个建筑物的高度。

输出格式

输出 n 行,每行一个非负整数 P_i 表示第 i 个建筑物屋顶上放置避雷针的最小高度。

样例

输入

```
6
5
3
2
4
2
4
```

输出

```
2
3
5
3
5
4
```

数据范围与提示

对于所有数据, $1 \leq n \leq 5 imes 10^5$, $0 \leq h_i \leq 10^9$.

子任务编号	分数	特殊限制
1	40	$n \leq 1000$
2	60	无特殊限制

子序列 (subsequence)

题目描述

Bessie 最近参加了一场 USACO 竞赛, 遇到了以下问题。当然 Bessie 知道怎么做。那你呢?

考虑一个仅由范围在 $1\ldots K$ ($1\leq K\leq 20$) 之间的整数组成的长为 N 的序列 A_1,A_2,\ldots,A_N ($1\leq N\leq 5\times 10^4$) 。给定 Q ($1\leq Q\leq 2\times 10^5$) 个形式为 $[L_i,R_i]$ ($1\leq L_i\leq R_i\leq N$) 的询问。对于每个询问,计算 $A_{L_i},A_{L_{i+1}},\ldots,A_{R_i}$ 中不下降子序列的数量模 10^9+7 的余数。

 A_L,\ldots,A_R 的一个不下降子序列是一组索引(j_1,j_2,\ldots,j_x),满足 $L \leq j_1 < j_2 < \ldots < j_x \leq R$ 以及 $A_{j_1} \leq A_{j_2} \leq \ldots \leq A_{j_x}$ 。确保你考虑了空子序列!

输入格式

输入的第一行包含两个空格分隔的整数 N 和 K。

第二行包含 N 个空格分隔的整数 A_1, A_2, \ldots, A_N 。

第三行包含一个整数 Q。

以下 Q 行每行包含两个空格分隔的整数 L_i 和 R_i 。

输出格式

对于每个询问 $[L_i,R_i]$,你应当在新的一行内输出 $A_{L_i},A_{L_i+1},\ldots,A_{R_i}$ 的不下降子序列的数量模 10^9+7 的余数。

样例

输入

```
5 2
1 2 1 1 2
3
2 3
4 5
1 5
```

输出

```
3
4
20
```

解释

对于第一个询问,不下降子序列为 ()、(2) 和 (3)。(2,3) 不是一个不下降子序列,因为 $A_2 \not \leq A_3$ 。 对于第二个询问,不下降子序列为 ()、(4)、(5) 和 (4,5)。

数据范围与提示

对于全部数据, $1 \leq K \leq 20, 1 \leq N \leq 5 imes 10^4, 1 \leq Q \leq 2 imes 10^5, 1 \leq L_i \leq R_i \leq N$ 。

子任务编号	分数	特殊限制
1	8	$1 \leq N, K, Q \leq 5$
2	16	$N \leq 1000$
3	24	$K \leq 5$
4	24	$Q \leq 10^5$
5	28	无特殊限制

滑雪 (ski)

题目描述

JOI 君喜欢在自然形成的大冰场上滑冰。

这个冰场可以用一个南北 R 格,东西 C 格的矩形表示。从北起第 r 行,从西起第 c 列的单元格表示为 (r,c)。对于每个单元格,要么 JOI 君可以通过,要么有冰块阻挡,JOI 君不能通过。此外,在矩形四周的单元格内都有冰块,所以滑冰者不能从冰场里滑出去。也就是说,(i,1),(i,C) $(1\leq i\leq R)$ 和 (1,j),(R,j) $(1\leq j\leq C)$ 这些单元格都是有冰块的。

JOI 君不太会滑冰,在冰场里滑冰时,他会向东西南北四个方向之一蹬一下所处方格,然后停在恰好要撞上冰块之前的一个方格中。从一次蹬冰开始到停下来结束称为一次移动。如果蹬冰方向的相邻格有冰块,就不能向那个方向移动。

一天,当 JOI 滑冰时,他发现当他蹬一下冰后,那个方格上就会出现冰块。冰块不会因为 JOI 通过某个格子而产生,只会因为蹬冰而产生。继续呆在这个冰场上十分危险,所以 JOI 君想尽快离开这个冰场。

JOI 君目前在 (r_1,c_1) ,为了从这个冰场离开,他需要停在出口 (r_2,c_2) 上。请帮 JOI 计算至少需要移动多少次才能从目前位置离开冰场。由于冰场状况和你目前的位置的不同,JOI 君有可能无论如何移动都无法停在出口。注意 JOI 君必须要停在出口上,滑过出口是不可以的。

输入格式

第一行两个整数 R, C, 表示这个冰场南北有 R 格, 东西有 C 格;

接下来 R 行,每行 C 个字符,字符只包含 . 和 # 两种。第 r 行第 c 个字符如果是 . ,表示这个格子可以通过,如果是 # 则表示这个格子上有冰块,不能通过;

接下来一行两个整数 r_1, c_1 , 表示 |O| 君目前在 (r_1, c_1) 处;

接下来一行两个整数 r_2, c_2 , 表示出口在 (r_2, c_2) 处。

输出格式

输出一行一个整数,如果 |O| 君能从冰场离开,则输出最少移动次数,否则输出 -1。

样例 1

输入

```
5 5
#####
#...#
#...#
#####
2 2
3 3
```

对于样例一,初始状态如下图,其中白色方形表示冰块, J表示JOI 君的初始位置, E表示出口位置。

J		
	Е	

首先, JOI 君向东移动, 之后冰场状态如下图:

		J	
	Е		

之后,JOI 君按顺序向西,南,北移动,最后停在了出口处。所以输出 4,因为不可能在 3 步或以下停在出口处。

样例 2

输入

```
8 6
#####
#..#.#
##...#
#...#
#...#
##...#
#####
4 3
6 4
```

输出

5

样例 3

输入

5 5			
#####			
#.#.#			
#.#.#			
#.#.#			
#####			
2 2			
4 4			

输出

-1

样例 4

输入

```
3 3
###
#.#
###
2 2
2 2
```

输出

0

在样例 4 中,注意 JOI 君目前所在地可以是出口,最少移动次数为 0。

数据范围与提示

对于所有数据,满足 $3\leq R,C\leq 10^3,1\leq r_1,r_2\leq R,1\leq c_1,c_2\leq C$ 。输入保证 (i,1),(i,C) $(1\leq i\leq R)$ 和 (1,j),(R,j) $(1\leq j\leq C)$ 这些单元格都是冰块,并且 (r_1,c_1) 和 (r_2,c_2) 这两个单元格没有冰块。

详细子任务及附加条件如下表:

子任务编号	附加条件	分值
1	$R,C \leq 10$,并且保证答案小于等于 10	13
2	$R,C \leq 200$	65
3	无附加限制	22

斐波那契 (fib)

题目描述

定义斐波那契数列为:

$$F_1 = 1 \ F_2 = 2 \ F_n = F_{n-1} + F_{n-2}, \qquad n \geq 3$$

其前几项为 $1, 2, 3, 5, 8, 13, 21, \ldots$

对一个正整数 p , 令 X(p) 表示把 p 表示为若干个**不同**的斐波那契数的和的表示法数 , 两种表示法不同当且仅当有一个斐波那契数是其中一个的项 , 而不是另一个的项。

给定一个 n 项正整数序列 a_1,a_2,\dots,a_n , 对于其非空前缀 a_1,a_2,\dots,a_k , 定义 $p_k=F_{a_1}+F_{a_2}+\dots+F_{a_k}$.

请你对于 $k = 1, 2, \ldots, n$,求出 $X(p_k) \mod (10^9 + 7)$ 。

输入格式

第一行一个整数 n ($1 \le n \le 100000$)。

第二行 n 个整数 a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^9)$ 。

输出格式

n 行,第 k 行为 $X(p_k) \mod (10^9 + 7)$ 。

样例

输入

4 4 1 1 5

输出

$$p_1 = F_4 = 5$$

 $p_2 = F_4 + F_1 = 5 + 1 = 6$
 $p_3 = F_4 + F_1 + F_1 = 5 + 1 + 1 = 7$
 $p_4 = F_4 + F_1 + F_1 + F_5 = 5 + 1 + 1 + 8 = 15$

5 有两种表示法: $F_2 + F_3 = 2 + 3$ 和 $F_4 = 5$. 因此 $X(p_1) = 2$;

6 有两种表示法: 1+5=1+2+3;

7只有一种表示法:2+5;

15 有两种表示法:2 + 13 = 2 + 5 + 8。

数据范围与提示

子任务	约束	分值
1	$n,a_i \leq 15$	5
2	$n,a_i \leq 100$	20
3	$n \leq 100$, a_i 是不同的完全平方数	15
4	$n \leq 100$	10
5	a_i 是不同的偶数	15
6	无特殊约束	35