This version of the SVM problem was first discussed in Schölkopf, Smola, Williamson, and Bartlett [147] under the name of ν -SVC, and also used in Schölkopf, Platt, Shawe–Taylor, and Smola [146].

In order for the problem to have a solution we must pick K_m and K_s so that

$$K_m \le \min\{2pK_s, 2qK_s\}.$$

It is shown in Section 54.5 that the dual program is

Dual of the Basic Soft margin ν -SVM Problem (SVM_{s2'}):

minimize
$$\frac{1}{2} \begin{pmatrix} \lambda^{\top} & \mu^{\top} \end{pmatrix} X^{\top} X \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$$
subject to
$$\sum_{i=1}^{p} \lambda_{i} - \sum_{j=1}^{q} \mu_{j} = 0$$
$$\sum_{i=1}^{p} \lambda_{i} + \sum_{j=1}^{q} \mu_{j} \geq K_{m}$$
$$0 \leq \lambda_{i} \leq K_{s}, \quad i = 1, \dots, p$$

If the primal problem has an optimal solution with $w \neq 0$, then using the fact that the duality gap is zero we can show that $\eta \geq 0$. Thus constraint $\eta \geq 0$ could be omitted. As in the previous case w is given by

 $0 \le \mu_i \le K_s$, $j = 1, \dots, q$.

$$w = -X \begin{pmatrix} \lambda \\ \mu \end{pmatrix} = \sum_{i=1}^{p} \lambda_i u_i - \sum_{j=1}^{q} \mu_j v_j,$$

but b and η are not determined by the dual.

If we drop the constraint $\eta \geq 0$, then the inequality

$$\sum_{i=1}^{p} \lambda_i + \sum_{j=1}^{q} \mu_j \ge K_m$$

is replaced by the equation

$$\sum_{i=1}^{p} \lambda_i + \sum_{j=1}^{q} \mu_j = K_m.$$

It convenient to define $\nu > 0$ such that

$$\nu = \frac{K_m}{(p+q)K_s},$$