Alberto Quaini

Exercise 6.1

Let $f(w) := -e^{-w^T x}$, $G(w) := w^T A w - w^T A y - w^T x$, and $H(w) = y^T w - w^T x$. Then the problem can be written in the following standard form:

minimize
$$f(w)$$

subject to $G(w) \le a$
 $H(w) = b$.

Exercise 6.6

The gradient is $Df(x,y) = (6xy + 4y^2 + y, 3x^2 + 8xy + x)$ and the hessian is

$$D^{2}f(x,y) = \begin{bmatrix} 6y & 6x + 8y + 1 \\ 6x + 8y + 1 & 8x \end{bmatrix}.$$

The first order conditions read Df(x,y) = (0,0) and yield the following critical points: A = (-1/3,0), B = (-1/9,-1/12), C = (0,0) and D = (0,-1/4). The eigenvalues of the hessian for A are approximately 0.3 and -3, thus A is a saddle point. The eigenvalues of the hessian for B are approximately -0.3 and -1.1, thus B is a local maximizer. The eigenvalues of the hessian for C are approximately 1 and -1.1, thus C is a saddle point. The eigenvalues of the hessian for D are approximately -2 and 0.5, thus D is a saddle point.

Exercise 6.7

(i)

Notice that $Q^T = (A^T + A)^T = A^T + A = A + A^T = Q$. Also, $x^T A x = \sum_{i=1}^n a_{ij} x_i x_j = \sum_{i=1}^n a_{ji} x_i x_j = x^T A^T x$. Therefore $x^T Q x = 2x^T A x$ and (6.17) is equivalent to

$$f(x) = x^T Q x / 2 - b^T x + c.$$

(ii)

The first order necessary conditions for a minimizer imply $Q^T x^* = b$, since $f'(x) = Q^T x - b$.

(iii)

If Q is positive definite, then f''(x) > 0 for any x. Also, Q is invertible and by (6.19) we have that $x^* = Q^{-1}b$ is such that $f'(x^*) = 0$. Then by the second order sufficient condition, x^* is the unique minimizer of f. Now assume x^* is the unique minimizer of f. Then by the second order necessary condition, Q is positive semi-definite. Also, x^* is a solution to $Q^Tx^* = b$. If Q has at least one zero eigenvalue, then x^* is not unique. Therefore Q must be positive definite.

Exercise 6.11

Notice that f'(x) = 2ax + b, f''(x) = 2a, and that the first Newton's Method iteration is $x_1 = x_0 - f'(x_0)/f''(x_0)$. Notice that

$$f'(x_1) = 2a(x_0 - (2ax_0 + b)/2a) + b = 0$$

and

$$f''(x_0) = 2a > 0.$$

Therefore, x_1 is a local minimizer. Since f is quadratic, it is the unique minimizer.

0.1 Exercise 7.1

Take $x, y \in \text{conv}(S)$. Then $x = \sum_{i=1}^{k_x} \lambda_i^x s_i$ where s_i are elements of S, $k_x \in \mathbb{N}$ and λ_i^x are nonnegative and sum to 1. Do the same for y and set $k = \max\{k_x, k_y\}$. Also, let $\lambda \in [0, 1]$. Then

$$\lambda x + (1 - \lambda)y = \sum_{i=1}^{k} (\lambda \lambda_i^x + (1 - \lambda)\lambda_i^y) s_i$$

where $(\lambda \lambda_i^x + (1 - \lambda)\lambda_i^y)$ are nonnegative and

$$\sum_i \lambda \lambda_i^x + (1-\lambda)\lambda_i^y = \lambda \sum_i \lambda_i^x + (1-\lambda) \sum_i \lambda_i^y = 1.$$

Thus $\lambda x + (1 - \lambda y) \in S$ and S is convex.

Exercise 7.2

(i) Let $P = \{x \in V : \langle a, x \rangle = b\}$ for some $a \in V, a \neq 0$ and some real b. Let $x, y \in P$ and $0 \leq \lambda \leq 1$. Then

$$< a, \lambda x + (1 - \lambda)y > = \lambda < a, x > +(1 - \lambda) < a, y > = \lambda b + (1 - \lambda)b = b.$$

Thus P is convex.

(ii) Let $H = \{x \in \mathbb{R}^n : \langle a, x \rangle \leq b\}$ where again $a \in V, a \neq 0$ and some real b. Let $x, y \in H$ and $0 \leq \lambda \leq 1$. Then

$$< a, \lambda x + (1-\lambda)y> = \lambda < a, x> + (1-\lambda) < a, y> \leq \lambda b + (1-\lambda)b = b.$$

Thus H is convex.

$$\langle a, \lambda x + (1-\lambda)y \rangle = \lambda \langle a, x \rangle + (1-\lambda) \langle a, y \rangle \leq \lambda b + (1-\lambda)b = b.$$

Exercise 7.4

(i) Note that

$$||x - y||^2 = ||(x - p) + (p - y)||^2 =$$

$$< (x - p) + (p - y), (x - p) + (p - y) > = ||x - p||^2 + ||p - y||^2 + 2 < x - p, p - y > .$$

- (ii) Take an arbitrary $y \neq p$. Then $||p y||^2 > 0$. Suppose $\langle x p, p y \rangle \geq 0$. Then it is clear by (i) that ||x y|| > ||x p||.
- (iii) Let $z = \lambda y + (1 \lambda)p$, where $0 \le \lambda \le 1$. Then by (i) where we use z instead of y we get

$$||x - z||^2 = ||x - p||^2 + ||\lambda y - \lambda p||^2 + \langle x - p, \lambda p - \lambda y \rangle =$$
$$||x - p||^2 + 2\lambda \langle x - p, p - y \rangle + \lambda^2 ||y - p||^2.$$

(iv) In (7.15), put $\lambda = 1$, so x = y. Then we know that

$$0 \le ||x - y||^2 - ||x - p||^2 = 2\lambda < x - p, p - y > +2\lambda^2 ||y - p||^2.$$

Dividing by λ you get $0 \le 2\lambda < x - p, p - y > +2\lambda^2||y - p||^2$. Take y = p, then $0 \le 2\lambda < x - p, p - y >$, which clearly implies $0 \le < x - p, p - x >$.

The if statment of the theorem follows by (iv). The only if statment of the theore follows by (ii).

Exercise 7.8

Let $x, y \in \mathbb{R}^n$, with $x \neq y$, and $\lambda \in [0, 1]$. Then

$$g(\lambda x + (1 - \lambda)y) = f(\lambda Ax + (1 - \lambda)Ay + b) = f(\lambda (Ax + b) + (1 - \lambda)(Ay + b))$$

$$< \lambda f(Ax + b) + (1 - \lambda)f(Ay + b) = \lambda g(x) + (1 - \lambda)g(y)$$

shows that g is convex.

Exercise 7.12

(i)

Take $X, Y \in PD_n(\mathbb{R})$ and $\lambda \in [0, 1]$. Then for every $v \in \mathbb{R}^n$ we have that

$$v^T(\lambda X + (1 - \lambda)Y)v = \lambda(v^T X v) + (1 - \lambda)(v^T Y v) > 0,$$

because X and Y are positive definite.

(ii)

(a) Take $t_1, t_2 \in \mathbb{R}$ and $\lambda \in [0, 1]$. On the one hand,

$$\lambda g(t_1) + (1 - \lambda)g(t_2) = \lambda f(t_1 A + (1 - t_1)B) + (1 - \lambda)f(t_2 A + (1 - t_2)B).$$

On the other,

$$g(\lambda t_1 + (1 - \lambda)t_2) = f((\lambda t_1 + (1 - \lambda)t_2)A + (1 - \lambda t_1 + (1 - \lambda)t_2)B)$$

= $f(\lambda(t_1A + (1 - t_1)B) + (1 - \lambda)(t_2A + (1 - t_2)B)).$

Since g is convex we get

$$f(\lambda X + (1 - \lambda)Y) \le \lambda f(X) + (1 - \lambda)f(Y),$$

with $X = t_1 A + (1 - t_1)B$ and $Y = t_2 A + (1 - t_2)B$. Since the choice of t was arbitrary and this holds for any $A, B \in PD_n(\mathbb{R})$, we conclude that f is convex.

(b) By Proposition (4.5.7), we know that if A is positive definite, then there exits a nonsingular matrix S such that $A = S^H S$. Then, $tA + (1-t)B = S^H (tI + (1-t)(S^H)^{-1}BS^{-1})S$, and so

$$g(t) = -\log(\det(tA + (1-t)B)) = -\log(\det(S^H(tI + (1-t)(S^H)^{-1}BS^{-1})S)).$$

By the fact that det(AB) = det(A)det(B) and the properties of logarithms, we obtain

$$-\log(\det(S^H(tI+(1-t)(S^H)^{-1}BS^{-1})S)) = -\log(\det(S^H)) - \log(\det(tI+(1-t)(S^H)^{-1}BS^{-1})) - \log(\det(S))$$

$$= -\log(\det(S^H)\det(S)) - \log(\det(tI+(1-t)(S^H)^{-1}BS^{-1}))$$

$$= -\log(\det(A)) - \log(\det(tI+(1-t)(S^H)^{-1}BS^{-1})).$$

(c)

Since $A, B \in PD_n(\mathbb{R})$, then $B^{-1} \in PD_n(\mathbb{R})$ and $((S^H)^{-1}BS^{-1})^{-1} = SB^{-1}S^H$ is positive definite since

$$x^{H}SB^{-1}S^{H}x = (S^{H}x)^{H}B^{-1}(xS) > 0.$$

Therefore $(S^H)^{-1}BS^{-1}$ is positive definite. Now let $\{\lambda_i\}_i$ be the collection of eigenvalues of $((S^H)^{-1}BS^{-1})$ and $\{x_i\}_i$ the corresponding collection of eigenvectors. Then for every i:

$$(tI + (1-t)(S^H)^{-1}BS^{-1})x_i = tx_i + (1-t)\lambda_i x_i = (t+(1-t)\lambda_i)x_i.$$

Thus, $\{t + (1-t)\lambda_i\}_i$ are the eigenvalues of $(tI + (1-t)(S^H)^{-1}BS^{-1})$ corresponding to the $\{x_i\}_i$, and we can conclude that

$$-\log(\det(A)) - \log(\det(tI + (1-t)(S^H)^{-1}BS^{-1})) = -\log(\det(A)) - \log(\prod_{i=1}^n (t + (1-t)\lambda_i))$$
$$= -\log(\det(A)) - \sum_{i=1}^n \log((t + (1-t)\lambda_i)).$$

(d)

By using the expression of g(t) in part (c) we can see that $g'(t) \sum_{i=1}^{n} (1 - \lambda_i)/(t + (1 - t)\lambda_i)$ and $g''(t) = \sum_{i=1}^{n} (1 - \lambda_i)^2/(t + (1 - t)\lambda_i)^2$, which is clearly nonnegative for all $t \in [0, 1]$.

Exercise 7.13

Suppose f(x) < M for all x for some real M and f is convex and not constant. Then, there exist $x, y \in \mathbb{R}^n$ such that $f(x) \neq f(y)$. But then the line between (x, f(x)) and (y, f(y)) intersects $f(\cdot) = M$. Since f must lie on or above this line, at some point it must cross $f(\cdot) = M$ as well, which is a contraddiction.

Exercise 7.20

Take $x, y \in \mathbb{R}^n$, with $x \neq y$, and $\lambda \in [0, 1]$. Since f is convex we have $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$. Since -f is convex, the opposite hold. Therefore we must have $f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y)$. Therefore f is affine.

Exercise 7.21

Let $x^* \in \mathbb{R}^n$ be a local minimizer of f. Then $f(x^*) \leq f(x)$ for all $x \in \mathcal{N}_r(x^*)$, where $\mathcal{N}_r(x^*)$ is an open ball around x^* of radius r > 0. Since ϕ is monothonically increasing, $\phi(f(x^*)) \leq \phi(f(x))$ for all $x \in \mathcal{N}_r(x^*)$. Thus, x^* is a local minimizer of $\phi \circ f$. Now let x^* be a local minimizer of $\phi \circ f$. Then $\phi(f(x^*)) \leq \phi(f(x))$ for all $x \in \mathcal{N}_r(x^*)$, and since ϕ is monothonically increasing, this implies that $f(x^*) \leq f(x)$ for all $x \in \mathcal{N}_r(x^*)$. Thus, x^* is a local minimizer of f.