

10/12/00
JCS23 U.S.P.T.O.
PTO

JCS17 U.S.P.T.O.
09/686760
10/12/00

LAW OFFICES
SUGHRUE, MION, ZINN, MACPEAK & SEAS, PLLC

2100 PENNSYLVANIA AVENUE, N.W.
WASHINGTON, DC 20037-3213
TELEPHONE (202) 293-7060
FACSIMILE (202) 293-7860
www.sughrue.com

October 12, 2000

J. Frank Osha, Esq.
Direct Dial (202) 663-7915
Email: fosha@sughrue.com

BOX PATENT APPLICATION
Assistant Commissioner for Patents
Washington, D.C. 20231

Re: Application of Toshikazu NAKAJIMA
TRANSMITTER AND DISTORTION COMPENSATION METHOD TO BE
USED THEREFOR
Our Ref. Q61105

Dear Sir:

Attached hereto is the application identified above including 21 sheets of the specification and claims, and 5 sheets of formal drawings. The executed Declaration and Power of Attorney and Assignment will be submitted at a later date.

The Government filing fee is calculated as follows:

Total claims	24	-	20	=	4	x	\$18.00	=	\$72.00
Independent claims	4	-	3	=	1	x	\$80.00	=	\$80.00
Base Fee									\$710.00
TOTAL FEE								\$862.00	

A check for the statutory filing fee of \$862.00 is attached. You are also directed and authorized to charge or credit any difference or overpayment to Deposit Account No. 19-4880. The Commissioner is hereby authorized to charge any fees under 37 C.F.R. §§ 1.16 and 1.17 and any petitions for extension of time under 37 C.F.R. § 1.136 which may be required during the entire pendency of the application to Deposit Account No. 19-4880. A duplicate copy of this transmittal letter is attached.

Priority is claimed from October 13, 1999 based on Japanese Application No. 290380/1999. The priority document is enclosed herewith.

Respectfully submitted,
SUGHRUE, MION, ZINN,
MACPEAK & SEAS, PLLC
Attorneys for Applicant

By:
J. Frank Osha
Registration No. 24,625

TRANSMITTER AND DISTORTION COMPENSATION METHOD

TO BE USED THEREFOR

BACKGROUND OF THE INVENTION

5 Field of the Invention

The present invention relates to a transmitter and a distortion compensation method to be used therefor. More particularly, the invention relates to a distortion compensating method in a transmitter having a pre-distortion
10 type linearizer.

Description of the Related Art

Conventionally, the transmitter of this type is constructed with a transmission signal generating portion 21, a pre-distortion type linearizer 22, a transmitter 23, a
15 directional coupler 24, an antenna 25, a power calculator 26, a compensation value calculating means 27 and a demodulation means 28, as shown in Fig. 7.

Here, since a transmission signal is distorted due to non-linear characteristics or an amplifier or the like, in case
20 of the transmitter 23 alone, the pre-distortion type linearizer 22 is provided between an output of the signal generating portion 21 and an input of the transmitter 23.

The pre-distortion type linearizer 22 performs correction for mutually canceling distortion component and
25 correction data component generated in the transmitter 23. By

this, distortion of an output waveform of the transmitter 23 can be improved. The directional coupler 24 divides an RF signal. Most of the power thereof becomes an output of the antenna 25. However, a part of the power is input to the 5 demodulating means 28. The power calculator 26 calculates an instantaneous power of a base band signal.

As a generation method of the compensation data input to the pre-distortion type linearizer 22, there is a method to return a part of the output of the transmitter 23 to the 10 base band signal by the demodulator 28 and to arithmetically derive the distortion component from this signal and the result of the power calculator 26 by the compensation value calculating means.

In the distortion compensation method in the 15 conventional transmitter set forth above, since the distortion component is arithmetically derived by returning a part of the transmitter to the base band signal by the demodulation means and calculating the distortion component from this signal and the result of the power calculator by the compensation value 20 calculating means, a scale of the circuit becomes large to also increase current consumption.

SUMMARY OF THE INVENTION

The present invention has been worked out in view of the problem in the prior art set forth above. It is therefore an 25 object of the present invention to provide a distortion

compensation circuit of a transmitter which can avoid increasing of a circuit size and current consumption.

According to the first aspect of the present invention, a transmitter assembly including a pre-distortion type linearizer correcting to mutually cancel a distortion component caused in a transmission signal and a correction data component, comprises:

first storage means for preliminarily storing the correction data.

10 According to the second aspect of the present invention, a distortion compensation method for a transmitter including a pre-distortion type linearizer correcting to mutually cancel a distortion component caused in a transmission signal and a correction data component, comprises steps of:

15 reading out a value corresponding to a transmission level from a first storage means preliminarily storing the correction data; and

inputting the read out value to the pre-distortion type linearizer.

20 The first storage means may manage correction data as table per transmission level. The transmitter assembly may further comprise second storage means having a plurality of table of the correction data per transmission frequency and environmental temperature and means for updating storage
25 content of the first storage means with the corresponding table

of the second storage means when at least one of the transmission frequency and the environmental temperature is varied.

An address corresponding to the transmission level and a correction data corresponding to the address may be stored
5 in the first storage means. The transmission level may be a sum of an alternating current voltage value corresponding to an instantaneous power of a transmission signal and a direct current voltage corresponding to a part of the power of transmission output signal. The correction data may be
10 consisted of a predetermined amplitude value and a predetermined phase value of the transmission signal. The address corresponding to the transmission level and the correction data corresponding to the address may be stored in the first storage means.

15 Namely, the distortion compensation circuit for the transmitter assembly according to the present invention having the pre-distortion type linearizer stores the distortion compensation data to be transmitted to the distortion type linearizer in the first memory to sequentially update the data
20 in the first memory with the corresponding table in the second memory depending upon variation of the transmission frequency and the environmental temperature . By this, the transmitter with good transmission waveform can be realized with restricting power consumption without causing increasing of
25 circuit size.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood more fully from the detailed description given hereinafter and from the accompanying drawings of the preferred embodiment of the 5 present invention, which, however, should not be taken to be limitative to the invention, but are for explanation and understanding only.

In the drawings:

Fig. 1 is a block diagram showing a construction of one 10 embodiment of a transmitter according to the present invention;

Fig. 2 is an illustration showing a correspondence between $V = (V_1 + v_2)$ and a generated address in an address generating portion of Fig. 1;

Fig. 3 is an illustration showing a correspondence 15 between an address and a compensation data in a first memory;

Fig. 4 is an illustration showing a correspondence between a temperature and a frequency and a compensation table in a second memory of Fig. 1;

Fig. 5 is an illustration showing a gain and a phase 20 characteristics of the transmitter alone of Fig. 1;

Fig. 6 is a flowchart showing a process operation of CPU of Fig. 1; and

Fig. 7 is a block diagram showing a construction of the conventional transmitter.

25 DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention will be discussed hereinafter in detail in terms of the preferred embodiment of the present invention with reference to the accompanying drawings. In the following description, numerous specific details are set forth 5 in order to provide a thorough understanding of the present invention. It will be obvious, however, to those skilled in the art that the present invention may be practiced without these specific details. In other instance, well-known structure are not shown in detail in order to avoid unnecessary 10 obscurity of the present invention.

Fig. 1 is a block diagram showing a construction of one embodiment of a transmitter according to the present invention. In Fig. 1, one embodiment of a transmitter assembly according to the present invention is constructed with a transmission 15 signal generating portion 1, a pre-distortion type linearizer 2, a transmitter 3, a directional coupler 4, an antenna 5, a power calculator 6, a first memory 7, a second memory 8, a CPU 9, an address generating portion 10 and a power detector portion 11.

20 The transmission signal generating portion 1 generates a base band signal of an I signal and a Q signal. The transmitter 3 modulates and amplifies the base band signal into an RF signal. Here, the transmission signal may cause distortion due to non-linear characteristics of the amplifier or so forth by the 25 transmitter 3 alone. Therefore, the pre-distortion type

linearizer 2 is provided between an output of a the transmission signal generating portion 1 and an input of the transmitter 3.

The pre-distortion type linearizer 2 makes correction 5 for canceling distortion component generated by the transmitter 3 and a correction data component by multiplying a correction data provided from the first memory 7 and the base band signal with each other. By this, an output waveform of the transmitter 3 is improved distortion.

10 The directional coupler 4 divides the RF signal. Most of the power divided by the directional coupler 4 becomes an output of the antenna, and a part thereof is input to the power detector portion 11. The power detector portion 11 detects the RF signal and outputs a transmission level to the address 15 generating portion 10 as a direct current voltage value V1. The power calculator 6 calculates an instantaneous power of the base band signal to output to the address generating portion 10 as a certain alternating voltage value v2.

The address generating portion 10 determines an address 20 of data to be output by the first memory 7 from the direct current voltage value V1 and the alternating current voltage value v2. The first memory 7 holds a compensation data in a form of a table for outputting the data contained in the designated address to the pre-distortion type linearizer 2.

25 A compensation data table of the first memory 7 is only

established under the same temperature and the same frequency for the transmitter 3. Therefore, it becomes necessary to update the compensation data table depending upon variation of an environmental temperature and a transmission frequency.

5 In the second memory 8, the compensation data tables are stored for all cases with taking the transmission frequency and the environmental temperature. CPU 9 transfers the compensation data table from the second memory 8 to the first memory 7 depending upon variation of the environmental temperature and

10 the transmission frequency.

Fig. 2 is an illustration showing a correspondence between $V = (V_1 + v_2)$ and the generated address in the address generating portion 10 of Fig. 1. In Fig. 2, there is illustrated the compensation data table storing addresses with

15 correspondence to the level of $(V_1 + v_2)$.

In the shown compensation table, "0" is stored as an address to be output when the level of $(V_1 + v_2)$ is " $< A_0$ ", "1" is stored as an address to be output when the level of $(V_1 + v_2)$ is " $A_0 \leq V < A_1$ ", "2" is stored as an address to be output

20 when the level of $(V_1 + v_2)$ is " $A_1 \leq V < A_2$ ", and "3" is stored as an address to be output when the level of $(V_1 + v_2)$ is " $A_2 \leq V < A_3$ ", ..., respectively.

Fig. 3 is an illustration showing a correspondence between the address and the compensation data in the first

memory 7 of Fig. 1. In Fig. 3, there is shown an example, in which the compensation data table #1 storing the address and the compensation data with correspondence is stored in the first memory 7.

5 In the compensation data table #1, a compensation data " $-\Delta G10, -\Delta \theta 10$ " is stored in an address "0", a compensation data " $-\Delta G11, -\Delta \theta 11$ " is stored in an address "1", a compensation data " $-\Delta G12, -\Delta \theta 12$ " is stored in an address "2", a compensation data " $-\Delta G13, -\Delta \theta 13$ " is stored in an address "3", ...,
10 respectively.

Fig. 4 is an illustration showing a correspondence between the temperature and frequency and the compensation data table in the second memory 8 of Fig. 1. In Fig. 4, there is shown an example, in which the compensation data tables "table #0", "table #1", "table #2", "table #3" are respectively stored with correspondence with a temperature t ($t < t_0, t_0 \leq t < t_1, t_1 \leq t < t_2, t_2 \leq t < t_3 \dots$) and a frequency f (f_0, f_1, f_2, \dots).

Fig. 5 is an illustration showing a gain and a phase characteristics of the transmitter 3 alone of Fig. 1. Fig. 6
20 is a flowchart showing a process operation of CPU 9 of Fig. 1. Referring to Figs. 1 to 6, discussion will be given for operation of one embodiment of a distortion compensation circuit of the transmitter according to the present invention.

For example, considering the case that the transmission

frequency is f_0 and the temperature is t_1 to t_2 , a content of the compensation data table #2 corresponding to this condition is stored in the first memory 7. The base band signal generated by the transmission signal generating portion 1 is modulated 5 into the RF signal and amplified by the transmitter 3 via the pre-distortion type linearizer 2.

It is assumed that distortion of ΔG in amplitude of the transmission signal and $\Delta \theta$ in phase is caused in comparison with the ideal case where no internal distortion is present 10 in the transmitter 3 (see Fig. 5). The RF signal output by the transmitter 3 is divided by the directional coupler 4 to input a part of the divided power to the power detector portion 11.

The power detector portion 11 detects this signal to output the result of detection to an address generating portion 15 10 as the direct current voltage value V_1 . The address generating portion 10 combines the direct current voltage value V_1 and an instantaneous power value v_2 derived by the power calculator 6 to determine an address of the data to be output by the first memory 7 from $V_1 + v_2$. In Fig. 2, assuming, for 20 example, $A_1 \leq V_1 + v_2 < A_2$, the address becomes "2". Therefore, in Fig. 3, the first memory 7 outputs data $(-\Delta G_{12}, -\Delta \theta_{12})$ of the address "2" to the pre-distortion type linearizer 2.

Here, it is assumed that the temperature is varied from t_2 to t_3 . In Fig. 4, CPU 9 transfers the content of the

compensation data table #3 corresponding to this condition from the second memory 8 to the first memory 7 to update the data content of the first memory 7. For example, data of the address "2" of the first memory 7 becomes $(-\Delta G_{22}, -\Delta \theta_{22})$ taking the 5 temperature characteristics of the transmitter 3 into account.

Namely, when the transmission frequency is varied (step S1 of Fig. 6) or when the environmental temperature is varied (step S2 of Fig. 6), CPU 9 updates storage content of the first memory 7 corresponding to variation content of the compensation 10 data table in the second memory 8 (step S3 of Fig. 6).

Once updating of CPU 9 is completed, CPU 9 effects control for transmitting a value of the compensation data table in the first memory 7 corresponding to the address transmitted to the first memory 7 from the address generating portion 10 to the 15 pre-distortion type linearizer 2 (step S4 of Fig. 6).

When the transmission frequency or the environmental temperature does not vary, CPU 9 effects control for transmitting a value of the compensation data table in the first memory 7 before updating corresponding to the address 20 transmitted to the first memory 7 from the address generating portion 10 to the pre-distortion type linearizer 2 (step S4 of Fig. 6).

As set forth above, by storing the distortion correction data to be transmitted to the pre-distortion type linearizer 25 in the first memory 7 and sequentially updating data in the

first memory 7 with the storage content of the second memory
8 depending upon variation of the transmission frequency and
the environmental temperature, the transmitter assembly with
good transmission waveform can be realized without causing
5 increasing of circuit size and power consumption.

As set forth above, according to the present invention,
in the transmitter assembly including the pre-distortion type
linearizer which effects correction for mutually canceling the
distortion component caused in the transmission signal and the
10 correction data component, by inputting the value
corresponding to the transmission level from the first memory
means preliminarily storing the correction data to the
pre-distortion type linearizer, current consumption can be
restricted without causing increasing of circuit scale.

15 Although the present invention has been illustrated and
described with respect to exemplary embodiment thereof, it
should be understood by those skilled in the art that the
foregoing and various other changes, omission and additions
may be made therein and thereto, without departing from the
20 spirit and scope of the present invention. Therefore, the
present invention should not be understood as limited to the
specific embodiment set out above but to include all possible
embodiments which can be embodied within a scope encompassed
and equivalent thereof with respect to the feature set out in
25 the appended claims.

WHAT IS CLAIMED IS:

1. A transmitter assembly including a pre-distortion type linearizer correcting to mutually cancel a distortion component caused in a transmission signal and a correction data 5 component, comprising:

first storage means for preliminarily storing said correction data.

2. A transmitter assembly as set forth in claim 1, wherein 10 said first storage means manages correction data as table per transmission level.

3. A transmitter assembly as set forth in claim 1, which further comprises:

15 second storage means having a plurality of table of said correction data per transmission frequency and environmental temperature; and

means for updating storage content of said first storage means with the corresponding table of said second storage means 20 when at least one of the transmission frequency and the environmental temperature is varied.

4. A distortion compensation method for a transmitter including a pre-distortion type linearizer correcting to 25 mutually cancel a distortion component caused in a transmission

signal and a correction data component, comprising steps of:

reading out a value corresponding to a transmission level from a first storage means preliminarily storing said correction data; and

- 5 inputting the read out value to said pre-distortion type
linearizer.

5. A distortion compensation method as set forth in claim
4, wherein said first storage means manages the correction data
10 in a form of table per transmission level.

6. A distortion compensation method as set forth in claim
4, wherein a storage content of said first storage means is
updated with a corresponding table in said second storage means
15 storing a plurality of tables storing said correction data per
transmission frequency and environmental temperature when at
least one of said transmission frequency and environmental
temperature.

20 7. A transmitter assembly as set forth in claim 2, wherein
an address corresponding to said transmission level and a
correction data corresponding to said address are stored in
said first storage means.

25 8. A transmitter assembly as set forth in claim 2, wherein

said transmission level is a sum of an alternating current voltage value corresponding to an instantaneous power of a transmission signal and a direct current voltage corresponding to a part of the power of transmission output signal.

5

9. A transmitter assembly as set forth in claim 1, wherein said correction data is consisted of a predetermined amplitude value and a predetermined phase value of the transmission signal.

10

10. A distortion compensation method as set forth in claim 5, wherein the address corresponding to the transmission level and the correction data corresponding to said address are stored in said first storage means.

15

11. A distortion compensation method as set forth in claim 5, wherein said transmission level is a sum of an alternating current voltage value corresponding to an instantaneous power of a transmission signal and a direct current voltage corresponding to a part of the power of transmission output signal.

12. A distortion compensation method as set forth in claim 4, wherein said correction data is consisted of a predetermined amplitude value and a predetermined phase value of the

transmission signal.

13. A transmitter assembly including a pre-distortion type linearizer correcting to mutually cancel a distortion component caused in a transmission signal and a correction data component comprising:

transmission signal generating means generating a base band signal of an I signal and a Q signal; and

10 base band signal into an RF signal; and

said pre-distortion type linearizer being provided between an output of said transmission signal generating means and an input of said transmission means; and

directional coupling means dividing RF signal; and

15 power detecting means detecting said RF signal and outputting a transmission level to address generating means; and

power calculating means calculating an instantaneous Power calculating of said base band signal to output to said 20 address generating means; and

said address generating means detecting an address of data to be output by the first storage means from said transmission level and said instantaneous power of said base band signal; and

25 said first storage means for preliminarily storing said

correcting data.

14. A transmitter assembly as set forth in claim 13, wherein
said first storage means manages correction data as table per
5 transmission level.

15. A transmitter assembly as set forth in claim 13, which
further comprises:

second storage means having a plurality of table of said
10 correction data per transmission frequency and environmental
temperature; and

14. means for updating storage content of said first storage
means with the corresponding table of said second storage means
when at least one of the transmission frequency and the
15 environmental temperature is varied.

16. A transmitter assembly as set forth in claim 14, wherein
an address corresponding to said transmission level and a
correction data corresponding to said address are stored in
20 said first storage means.

17. A transmitter assembly as set forth in claim 14, wherein
said transmission level is a sum of an alternating current
voltage value corresponding to an instantaneous power of a
25 transmission signal and a direct current voltage corresponding

to a part of the power of transmission output signal.

18. A transmitter assembly as set forth in claim 13, wherein
said correction data is consisted of a predetermined amplitude
5 value and a predetermined phase value of the transmission
signal.

19. A distortion compensation method for a transmitter
including a pre-distortion type linearizer correcting to
10 mutually cancel a distortion component caused in a transmission
signal and a correction data component, comprising steps of:

providing said pre-distortion type linearizer between
an output of said transmission signal generating means and an
input of said transmission means; and

15 dividing RF signal by directional coupling means; and
detecting said RF signal and outputting a transmission
level to address generating means by power detecting means;
and

20 calculating an instantaneous power of said base band
signal to output to said address generating means by power
calculating means; and

determining an address of data to be output by the first
storage means from said transmission level and said
instantaneous power of said base band signal by said address
25 generating means

reading out a value corresponding to a transmission level from said first storage means preliminarily storing said correction data; and

inputting the read out value to said pre-distortion type
5 linearizer.

20. A distortion compensation method as set forth in claim 19, wherein said first storage means manages the correction data in a form of table per transmission level.

10

21. A distortion compensation method as set forth in claim 19, wherein a storage content of said first storage means is updated with a corresponding table in said second storage means storing a plurality of tables storing said correction data per 15 transmission frequency and environmental temperature when at least one of said transmission frequency and environmental temperature.

22. A distortion compensation method as set forth in claim 20, wherein the address corresponding to the transmission level and the correction data corresponding to said address are stored in said first storage means.

23. A distortion compensation method as set forth in claim 25 20, wherein said transmission level is a sum of an alternating

SEARCHED SERIALIZED INDEXED FILED

current voltage value corresponding to an instantaneous power of a transmission signal and a direct current voltage corresponding to a part of the power of transmission output signal.

5

24. A distortion compensation method as set forth in claim 19, wherein said correction data is consisted of a predetermined amplitude value and a predetermined phase value of the transmission signal.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
80297
80298
80299
80300
80301
80302
80303
80304
80305
80306
80307
80308
80309
80310
80311
80312
80313
80314
80315
80316
80317
80318
80319
80320
80321
80322
80323
80324
80325
80326
80327
80328
80329
80330
80331
80332
80333
80334
80335
80336
80337
80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
80349
80350
80351
80352
80353
80354
80355
80356
80357
80358
80359
80360
80361
80362
80363
80364
80365
80366
80367
80368
80369
80370
80371
80372
80373
80374
80375
80376
80377
80378
80379
80380
80381
80382
80383
80384
80385
80386
80387
80388
80389
80390
80391
80392
80393
80394
80395
80396
80397
80398
80399
80400
80401
80402
80403
80404
80405
80406
80407
80408
80409
80410
80411
80412
80413
80414
80415
80416
80417
80418
80419
80420
80421
80422
80423
80424
80425
80426
80427
80428
80429
80430
80431
80432
80433
80434
80435
80436
80437
80438
80439
80440
80441
80442
80443
80444
80445
80446
80447
80448
80449
80450
80451
80452
80453
80454
80455
80456
80457
80458
80459
80460
80461
80462
80463
80464
80465
80466
80467
80468
80469
80470
80471
80472
80473
80474
80475
80476
80477
80478
80479
80480
80481
80482
80483
80484
80485
80486
80487
80488
80489
80490
80491
80492
80493
80494
80495
80496
80497
80498
80499
80500
80501
80502
80503
80504
80505
80506
80507
80508
80509
80510
80511
80512
80513
80514
80515
80516
80517
80518
80519
80520
80521
80522
80523
80524
80525
80526
80527
80528
80529
80530
80531
80532
80533
80534
80535
80536
80537
80538
80539
80540
80541
80542
80543
80544
80545
80546
80547
80548
80549
80550
80551
80552
80553
80554
80555
80556
80557
80558
80559
80560
80561
80562
80563
80564
80565
80566
80567
80568
80569
80570
80571
80572
80573
80574
80575
80576
80577
80578
80579
80580
80581
80582
80583
80584
80585
80586
80587
80588
80589
80590
80591
80592
80593
80594
80595
80596
80597
80598
80599
80600
80601
80602
80603
80604
80605
80606
80607
80608
80609
80610
80611
80612
80613
80614
80615
80616
80617
80618
80619
80620
80621
80622
80623
80624
80625
80626
80627
80628
80629
80630
80631
80632
80633
80634
80635
80636
80637
80638
80639
80640
80641
80642
80643
80644
80645
80646
80647
80648
80649
80650
80651
80652
80653
80654
80655
80656
80657
80658
80659
80660
80661
80662
80663
80664
80665
80666
80667
80668
80669
80670
80671
80672
80673
80674
80675
80676
80677
80678
80679
80680
80681
80682
80683
80684
80685
80686
80687
80688
80689
80690
80691
80692
80693
80694
80695
80696
80697
80698
80699
80700
80701
80702
80703
80704
80705
80706
80707
80708
80709
80710
80711
80712
80713
80714
80715
80716
80717
80718
80719
80720
80721
80722
80723
80724
80725
80726
80727
80728
80729
80730
80731
80732
80733
80734
80735
80736
80737
80738
80739
80740
80741
80742
80743
80744
80745
80746
80747
80748
80749
80750
80751
80752
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
80763
80764
80765
80766
80767
80768
80769
80770
80771
80772
80773
80774
80775
80776
80777
80778
80779
80780
80781
80782
80783
80784
80785
80786
80787
80788
80789
80790
80791
80792
80793
80794
80795
80796
80797
80798
80799
80800
80801
80802
80803
80804
80805
80806
80807
80808
80809
80810
80811
80812
80813
80814
80815
80816
80817
80818
80819
80820
80821
80822
80823
80824
80825
80826
80827
80828
80829
80830
80831
80832
80833
80834
80835
80836
80837
80838
80839
80840
80841
80842
80843
80844
80845
80846
80847
80848
80849
80850
80851
80852
80853
80854
80855
80856
80857
80858
80859
80860
80861
80862
80863
80864
80865
80866
80867
80868
80869
80870
80871
80872
80873
80874
80875
80876
80877
80878
80879
80880
80881
80882
80883
80884
80885
80886
80887
80888
80889
80890
80891
80892
80893
80894
80895
80896
80897
80898
80899
80900
80901
80902
80903
80904
80905
80906
80907
80908
80909
80910
80911
80912
80913
80914
80915
80916
80917
80918
80919
80920
80921
80922
80923
80924
80925
80926
80927
80928
80929
80930
80931
80932
80933
80934
80935
80936
80937
80938
80939
80940
80941
80942
80943
80944
80945
80946
80947
80948
80949
80950
80951
80952
80953
80954
80955
80956
80957
80958
80959
80960
80961
80962
80963
80964
80965
80966
80967
80968
80969
80970
80971
80972
80973
80974
80975
80976
80977
80978
80979
80980
80981
80982
80983
80984
80985
80986
80987
80988
80989
80990
80991
80992
80993
80994
80995
80996
80997
80998
80999
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
8015

ABSTRACT OF THE DISCLOSURE

A transmitter is capable of avoiding increasing of a circuit size and current consumption. The transmitter assembly includes a pre-distortion type linearizer correcting 5 to mutually cancel a distortion component caused in a transmission signal and a correction data component. The transmitter assembly also includes first storage means for preliminarily storing the correction data.

CONFIDENTIAL

FIG. 1

1 / 5

2 / 5

FIG. 2

(V1 + V2) LEVEL	ADDRESS
< A0	0
A0 ≤ V < A1	1
A1 ≤ V < A2	2
A2 ≤ V < A3	3
.	.
.	.
.	.

FIG. 3

COMPENSATION DATA TABLE #1

ADDRESS	DATA	
0	-△G10	-△θ10
1	-△G11	-△θ11
2	-△G12	-△θ12
3	-△G13	-△θ13
.	.	.
.	.	.
.	.	.

FIG. 4

TEMPERATURE t/FREQUENCY f	f 0	f 1	f 2
$t < t_0$	TABLE # 0
$t_0 \leq t < t_1$	TABLE # 1
$t_1 \leq t < t_2$	TABLE # 2
$t_2 \leq t < t_3$	TABLE # 3
.
.
.

FIG. 5

GAIN AND PHASE CHARACTERISTICS OF TRANSMITTER
3 ALONE

FIG. 6

FIG. 7

5
5

