

INFORME TAREA VI "HETEROSCEDASTICIDAD Y SERIES DE TIEMPO"

ECONOMETRIA

PROFESOR: RODRIGO ORTEGA AYUDANTE: DIEGO BASCUÑAN

INTEGRANTE:

BARBARA LIZAMA

PROBLEMA

Se adjunta un set de datos de precios de casas, de datos IMACEC y de datos UF-Dólar para generar diversas pruebas en relación a la población de estos data set.

OBJETIVO

Realizar diversas pruebas de hipótesis con diferentes análisis como heteroscedasticidad y series de tiempo interpretando sus resultados.

A. HETEROSCEDASTICIDAD

1. Desarrolle un modelo para estimar el precio de una casa en función de algunos atributos. Corra dos modelos. Uno con las variables en nivel y el segundo con las variables en logaritmo (a excepción de numero de dormitorios y colonial).

Modelo Nivel Y (Precio): $\beta 0 + \beta 1$ (Sup. Sitio) + $\beta 2$ (Sup. Const) + $\beta 3$ (n° dormitorios) + $\beta 4$ (colonial)+ μ Regression Analysis

OVERALL FIT	
Multiple R	0,821825079
R Square	0,67539646
Adjusted R Square	0,659562141
Standard Error	45 142 0350

Observations

AIC	1.869,7076
AICc	1.870,7576
SBC	1.882,0371

ANOVA					Alpha	0,05	
	df		SS	MS	F	p-value	sig
Regression		4	3,4768E+11	86.920.387.698	42,6540	2,64992E-19	yes
Residual		82	1,6710E+11	2.037.803.321			
Total		86	5,1478E+11				

	coeff	std err	t stat	p-value	lower	upper	vif
Intercept	-18.120,2733	22.318,5365	-0,8119	0,4192	-62.518,952	26.278,406	
Sup.sitio (m2)	16,6807	5,2192	3,1960	0,0020	6,298	27,063	1,037
Sup.const (m2)	999,8733	108,5535	9,2109	2,73982E-14	783,926	1.215,821	1,444
n°dormitorios	8.457,3290	7.194,2998	1,1756	0,2432	-5.854,425	22.769,083	1,560
colonial	10.480,5879	11.047,3384	0,9487	0,3456	-11.496,087	32.457,263	1,115

Ilustración 1 Regresión Múltiple Modelo Nivel

Modelo Logaritmo

Ln Y (Precio): β 0 + β 1 (Ln Sup. Sitio) + β 2 (Ln Sup. Const) + β 3 (n° dormitorios) + β 4 (colonial)+ μ Regression Analysis

OVERALL FIT	
Multiple R	0,8052
R Square	0,6484
Adjusted R Square	0,6312
Standard Error	0,1852
Observations	87

AIC	-288,5876867
AICc	-287,5376867
SBC	-276,2581461

	ANOVA			Alpha	0,05	
, , , , , , , , , , , , , , , , , , , ,		df SS	MS	F	p-value	sig
Residual 82 2.8119 0.0343	Regression	4 5,184	5 1,2962	37,7982	6,77168E-18	yes
	Residual	82 2,811	9 0,0343			
Total 86 7,9966	Total	86 7,996	5			

	coeff	std err	t stat	p-value	lower	upper	vif
Intercept	7,3580	0,4441	16,5679	6,77919E-28	6,4745	8,2415	
Ln Sup.sitio (m2)	0,1672	0,0385	4,3428	3,9954E-05	0,0906	0,2438	1,1063
Ln Sup.const (m2)	0,7061	0,0935	7,5538	5,30911E-11	0,5201	0,8920	1,4812
n°dormitorios	0,0273	0,0290	0,9420	0,3489	-0,0303	0,0849	1,5017
colonial	0,0543	0,0451	1,2048	0,2318	-0,0354	0,1440	1,1042

Ilustración 2 Regresión Múltiple Modelo Logaritmo

2. Evalúe la significancia de cada modelo y de cada coeficiente. Compare los modelos en términos de su bondad de ajuste.

H0: β 1= β 2= β 3= β 4= 0 Ha: H0 no es verdadera Ilustración 3 Test de Hipótesis Significancia Global

ANOVA		Alpha	0,05	
	df	F	p-value	sig
Regression	4	42,6540	2,64992E-19	yes
Residual	82			
Total	86			

Ilustración 4 Modelo Nivel Significancia Global

ANOVA		Alpha	0,05	
	df	F	p-value	sig
Regression	4	37,7982	6,77168E-18	yes
Residual	82			
Total	86			

Ilustración 5 Modelo Logaritmo Significancia Global

Se puede concluir que se rechaza la hipótesis nula, dado que el P-value es menor al alpha, por lo cual si es significativos globalmente el modelo tanto a nivel como a logaritmo.

	Modelo Nivel	Modelo Logaritmo
R^2	67,54	64,84

Ilustración 6 Comparación de los modelos

La bondad de ajuste es igual al R^2 que permite ver cuánto está explicando las variables independientes a las variables dependientes, en este caso se puede deducir que el 67,54% de la variación esta explicada por el modelo nivel y el 64,84% esta explicada por el modelo logaritmo.

H0:
$$\beta$$
1 = 0 ; β 2 = 0; β 3 = 0 ; β 4 = 0
Ha: β 1 \neq 0 ; β 2 \neq 0; β 3 \neq 0 ; β 4 \neq 0
Ilustración 7 Test de Hipótesis Significancia Local

	coeff	p-value
Sup.sitio (m2)	16,6807	0,0020
Sup.const (m2)	999,8733	2,73982E-14
n°dormitorios	8.457,3290	0,2432
colonial	10.480,5879	0,3456

Ilustración 8 Modelo Nivel Significancia Local

	coeff	p-value
Ln Sup.sitio (m2)	0,1672	3,9954E-05
Ln Sup.const (m2)	0,7061	5,30911E-11
n°dormitorios	0,0273	0,3489
colonial	0,0543	0,2318

Ilustración 9 Modelo Logaritmo Significancia Local

Se puede concluir que en ambos modelos se rechaza la hipótesis nula en el caso del $\beta1$ (Sup. Sitio) y $\beta2$ (Sup. Const), dado que el p-value es menor al alpha, por lo cual estas variables son significativas localmente.

Y en el caso del $\beta 3$ (n° dormitorios) y $\beta 4$ (colonial) no se rechaza la hipótesis nula ya que el p-value es mayor al alpha, y por lo cual estas variables no son significativas localmente.

3. Evalúe si los modelos son homocedásticos. Establezca las hipótesis respectivas. Utilice las principales pruebas para evaluar la homocedasticidad. Use tanto la prueba de F como el Multiplicador de Lagrange. Compare los resultados entre modelos y entre pruebas.

H0: var = constante = sigma^2
Ha: var no es constante

Illustración 10 Test de Hipótesis Homocedasticidad

Para comprobar esta hipótesis se usará la prueba de F, donde se usará los residuos del modelo original al cuadrado junto con las variables x se hará una nueva regresión y también se usará el multiplicador de Lagrange.

F P value

4,5739 0,0021986

Ilustración 11 Prueba de F Modelo nivel

Multiplicador de Langrage 15,8703
P value 0,00320

Ilustración 12 Prueba de ML Modelo nivel

Se puede concluir que en ambas pruebas se rechaza la hipótesis nula, por lo cual el p-value es menor al alpha, por lo cual **si existe heterocedasticidad** en las variables según la prueba de Breusch-Pagan.

F	P value	
1,5102	0,2068	
Ilustración 13 Prueb	oa de F Modelo Log	garitmo

Multiplicador de Langrage 5,9694 P value 0,2014

Ilustración 14 Prueba de ML Modelo Logaritmo

Se puede concluir que en ambas pruebas no se rechaza la hipótesis nula, por lo cual el pvalue es mayor al alpha, por lo cual **si existe homocedasticidad** en las variables según la prueba de Breusch-Pagan.

En conclusión, se puede indicar que el modelo nivel presenta problemas de Heteroscedasticidad y el modelo logaritmo presenta Homocedasticidad.

4. Utilice el error estándar robusto contra heterocedasticidad. ¿cambian las conclusiones respecto al modelo estimado?

Para generar los errores estándar robusto se utilizó Real Statistics seleccionando la opción de HC0 como tipo de EE Robusto para generar la regresión.

	coeff	std err	t stat	p-value	lower	upper	vif
Intercept	-18120,2733	27530,1387	-0,6582	0,5123	-72886,4891	36645,9426	
Sup.sitio (m2)	16,6807	10,1247	1,6475	0,1033	-3,4606	36,8221	1,0371
Sup.const (m2)	999,8733	140,0740	7,1382	3,45675E-10	721,2216	1278,5251	1,4437
n°dormitorios	8457,3290	6756,9256	1,2517	0,2143	-4984,3484	21899,0064	1,5596
colonial	10480,5879	11982,7732	0,8746	0,3843	-13356,9652	34318,1411	1,1152

Ilustración 15 EE Robusto Modelo Nivel

Según lo obtenido se puede ver que la variable Sup. Sitio ya no es significativa localmente como si lo era en el modelo original.

	coeff	std err	t stat	p-value	lower	upper	vif
Intercept	7,3580	0,5370	13,7030	7,E-23	6,2898	8,4262	
Ln Sup.sitio (m2)	0,1672	0,0430	3,8923	0,0002	0,0817	0,2527	1,1063
Ln Sup.const (m2)	0,7061	0,1062	6,6454	3,E-09	0,4947	0,9174	1,4812
n°dormitorios	0,0273	0,0319	0,8542	0,3955	-0,0363	0,0908	1,5017
colonial	0,0543	0,0475	1,1433	0,2563	-0,0402	0,1489	1,1042

Ilustración 16 EE Robusto Modelo Log

Según lo obtenido se puede ver que las variables no tuvieron cambios en las conclusiones con respecto al modelo original ya que la variable Ln Sup. Sitio y Ln Sup Const sigue siendo significativas localmente y n° dormitorios y colonial siguen no siendo significativas localmente.

5. Estime los pesos necesarios, en cada modelo, para utilizar el método de mínimos cuadrados ponderados (MCP). Corra los modelos nuevamente, ahora con MCP y determine si los errores son homocedásticos. Establezca sus conclusiones.

Para realizar este análisis es necesario identificar y obtener un ponderador que denotaremos con la palabra Peso, luego se generaran las columnas que se utilizara como variables del modelo.

225.000 569 226 4 1 545784972,6 9,6310 4,28045E-05 0,0244 0,00970 277.500 920 193 3 1 299054518,1 16,0468 5,78262E-05 0,0532 0,01115	0,000171	
277 500 920 193 3 1 299054518 1 16 0468 5 78262F_05 0.0532 0.01115	0,000171	4,28045E-05
277.000 320 130 3 1 233034010,1 10,0400 0,702021200 0,0032 0,01110	0,000173	5,78262E-05
143.250 483 128 3 0 206328287 9,9728 6,96179E-05 0,0336 0,00889	0,000209	0
146.250 427 135 3 1 171329085 11,1733 7,63984E-05 0,0326 0,01028	0,000229	7,63984E-05
279.750 566 234 4 1 569064185,6 11,7271 4,19198E-05 0,0237 0,00979	0,000168	4,19198E-05
349.706 796 256 5 1 1230045756 9,9711 2,85128E-05 0,0227 0,00730	0,000143	2,85128E-05
249.375 836 192 3 1 287470245,8 14,7081 5,89798E-05 0,0493 0,01133	0,000177	5,89798E-05
236.250 577 161 3 1 213767153 16,1585 6,83958E-05 0,0395 0,01100	0,000205	6,83958E-05
154.500 557 164 3 0 265617812,9 9,4798 6,1358E-05 0,0342 0,01007	0,000184	0
180.000 269 176 3 0 252926580,8 11,3181 6,28786E-05 0,0169 0,01104	0,000189	0
213.750 557 217 4 1 512745217,1 9,4396 4,4162E-05 0,0246 0,00958	0,000177	4,4162E-05
225.000 655 245 5 1 1084734170 6,8316 3,03626E-05 0,0199 0,00743	0,000152	3,03626E-05
303.750 1137 314 3 1 681090691,1 11,6390 3,83175E-05 0,0436 0,01201	0,000115	3,83175E-05
159.000 600 176 3 0 291252242,1 9,3167 5,85956E-05 0,0352 0,01034	0,000176	0
198.750 606 215 3 1 300367202,5 11,4678 5,76997E-05 0,0349 0,01239	0,000173	5,76997E-05
170.550 334 164 4 1 337872184,6 9,2785 5,44031E-05 0,0182 0,00890	0,000218	5,44031E-05
180.000 550 186 4 0 518922080 7,9017 4,38984E-05 0,0242 0,00816	0,000176	0
213.750 662 165 3 1 226782055,5 14,1939 6,64042E-05 0,0439 0,01094	0,000199	6,64042E-05
201.000 524 128 3 1 171162882 15,3635 7,64355E-05 0,0401 0,00977	0,000229	7,64355E-05
232.500 799 170 4 1 426593645,6 11,2568 4,84164E-05 0,0387 0,00825	0,000194	4,84164E-05
199.500 510 190 3 1 248822781,9 12,6473 6,3395E-05 0,0324 0,01206	0,000190	6,3395E-05
202.500 725 197 3 1 283607252 12,0245 5,93802E-05 0,0430 0,01172	0,000178	5,93802E-05
168.750 558 164 3 0 265798356,8 10,3507 6,13372E-05 0,0342 0,01007	0,000184	0
112.500 485 161 4 0 434182182,8 5,3990 4,79915E-05 0,0233 0,00772	0,000192	0
185.250 876 134 3 1 204994572,7 12,9386 6,9844E-05 0,0612 0,00934	0,000210	6,9844E-05
206.250 568 179 3 0 292846975,6 12,0524 5,84359E-05 0,0332 0,01049	0,000175	0
172.500 623 179 3 0 299576080,5 9,9663 5,77759E-05 0,0360 0,01037	0,000173	0
257.250 797 196 3 1 289176020 15,1277 5,88056E-05 0,0469 0,01151	0,000176	5,88056E-05
358.125 780 328 7 1 5588358419 4,7906 1,3377E-05 0,0104 0,00439	0,000094	1,3377E-05
262.500 908 191 4 1 503979566,2 11,6929 4,45444E-05 0,0404 0,00849	0,000178	4,45444E-05
172.500 446 146 4 1 318325024,6 9,6684 5,60486E-05 0,0250 0,00819	0,000224	5,60486E-05
251.250 1402 263 4 0 1175627341 7,3278 2,91652E-05 0,0409 0,00767	0,000117	0
188.250 535 151 3 1 198496340,4 13,3616 7,0978E-05 0,0380 0,01075	0,000213	7,0978E-05
176.250 593 171 4 1 393103985,4 8,8895 5,04367E-05 0,0299 0,00862	0,000202	5,04367E-05
270.750 836 192 4 1 493512212,4 12,1876 4,50144E-05 0,0376 0,00864	0,000180	4,50144E-05
142.500 325 158 4 0 399823812 7,1266 5,0011E-05 0,0163 0,00791	0,000200	0
270.000 1012 255 4 1 780718576,8 9,6631 3,57893E-05 0,0362 0,00914	0,000143	3,57893E-05
431.250 1452 360 5 1 3042876416 7,8178 1,81283E-05 0,0263 0,00653	0,000091	1,81283E-05
156.751 595 172 4 1 396483323,2 7,8722 5,02213E-05 0,0299 0,00865	0,000201	5,02213E-05
168.750 825 132 2 0 141926554,5 14,1648 8,39398E-05 0,0692 0,01108	0,000168	0
. 184.500 587 154 3 1 206408599,7 12,8420 6,96043E-05 0,0408 0,01075	0,000209	6,96043E-05
535.125 2623 309 5 1 3606426004 8,9108 1,66518E-05 0,0437 0,00515	0,000083	1,66518E-05
186.000 655 154 4 1 363403938 9,7570 5,24572E-05 0,0344 0,00807	0,000210	5,24572E-05
172.500 493 109 3 0 184703104.6 12.6926 7.35805E-05 0.0363 0.00800	0,000221	0
281.250 617 213 5 1 880731600,7 9,4770 3,3696E-05 0,0208 0,00718	0,000168	3,3696E-05
198.750 728 164 3 1 231699183,9 13,0570 6,56958E-05 0,0478 0,01077	0,000197	6,56958E-05
234.750 93 257 3 0 386512303,3 11,9405 5,08649E-05 0,0047 0,01308	0,000153	0
313.125 754 347 4 0 1502071397 8,0793 2,58021E-05 0,0194 0,00895	0,000103	0
189.750 543 143 3 1 188852215,4 13,8077 7,27678E-05 0,0395 0,01038	0,000218	7,27678E-05

Ilustración 17 Estimación MCP Modelo Nivel

Resumen

Estadísticas de la regresión	
Coeficiente de correlació	0,9851
Coeficiente de determina	0,9703
R^2 ajustado	0,9567
Error típico	1,9960
Observaciones	87

ANALISIS DE VARIANZA

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	P value
Regresión	5	10686,6240	2137,3248	536,4723	1,59896E-60
Residuos	82	326,6909	3,9840		
Total	87	11013,3149			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	0	#N/D	#N/D	#N/D	#N/D	#N/D
1/raiz(peso)	43435,7453	23584,9947	1,8417	0,0691	-3.482,3223	90.353,8130
supsit/raiz(peso) supconst/raiz(peso)	35,0939 719,3245	12,2254 121,5271	2,8706 5,9190	0,0052 7,23847E-08	10,7738 477,5685	59,4140 961,0806
dorm/raiz(peso)	665,9687	7164,6323	0,0930	0,9262	-13.586,7674	14.918,7047
colonial/raiz(peso)	11648,7584	8819,7322	1,3208	0,1903	-5.896,4985	29.194,0152

Ilustración 18 MCP Modelo Nivel

Se aprecia que el modelo es significativo globalmente ya que el p value es menor al alpha. Además, al igual que en el modelo original las variables sup sitio y sup const son significativas localmente y n° dormitorio y colonial no son significativas localmente.

Ln Precio (Ln Sup.sitio Ln Sup.const	n°dormitorio	colon	ial Peso	In precio/raiz(peso)	1/raiz(peso)	In supsit/raiz(peso)	In supconst/raiz(peso)	In dorm/raiz(peso)	In colonial/raiz(peso)
12,323856 6,34409795 5,422733969	4	1	0,004326369	187,3634	15,20331231	96,4513	82,44352	60,813249	15,20331231
12,533576 6,82439368 5,261998903	3	1	0,002781409	237,6526	18,9612761	129,3992	99,77421	56,883828	18,9612761
11,872347 6,18021456 4,849282132	3	0	0,014360858	99,0710	8,344682185	51,5719	40,46572	25,034047	0
11,893073 6,05761224 4,901739232	3	1	0,004335647	180,6205	15,18703711	91,9972	74,44290	45,561111	15,18703711
12,541652 6,3390247 5,453431048	4	1	0,004133065	195,0826	15,5547807	98,6021	84,82692	62,219123	15,5547807
12,764849 6,67935682 5,544610338	5	1	0,007806589	144,4724	11,31799069	75,5969	62,75385	56,589953	11,31799069
12,426713 6,72878052 5,257654219	3	1	0,002769426	236,1356	19,00225446	127,8620	99,90728	57,006763	19,00225446
12,372646 6,35771683 5,080255214	3	1	0,003448575	210,6894	17,02864734	108,2633	86,50987	51,085942	17,02864734
11,947949 6,32331541 5,100839131	3	0	0,010080528	119,0013	9,959977373	62,9801	50,80424	29,879932	0
12,100712 5,59350424 5,168132767	3	0	0,008414226	131,9179	10,90166703	60,9785	56,34126	32,705001	0
12,272562 6,32331541 5,379996003	4	1	0,00459629	181,0221	14,75014557	93,2698	79,35572	59,000582	14,75014557
12,323856 6,48415793 5,500059541	5	1	0,008154939	136,4697	11,07362083	71,8031	60,90557	55,368104	11,07362083
12,62396 7,03602009 5,747951262	3	1	0,001393812	338,1377	26,78538621	188,4625	153,96109	80,356159	26,78538621
11,976659 6,39718526 5,17288337	3	0	0,009142497	125,2574	10,45845635	66,9047	54,10037	31,375369	0
12,199803 6,40627693 5,369668889	3	1	0,002265519	256,3120	21,00951856	134,5928	112,81416	63,028556	21,00951856
12,046784 5,8116561 5,096869747	4	1	0,006581765	148,4909	12,32618838	71,6356	62,82498	49,304754	12,32618838
12,100712 6,31023017 5,224703119	4	0	0,017442591	91,6232	7,571719139	47,7793	39,55998	30,286877	0
12,272562 6,49488492 5,104792822	3	1	0,003377844	211,1619	17,20601193	111,7511	87,83313	51,618036	17,20601193
12,21106 6,26179455 4,850736678	3	1	0,004781414	176,5937	14,46178221	90,5567	70,15030	43,385347	14,46178221
12,356646 6,68355067 5,13860042	4	1	0,006824851	149,5733	12,10468296	80,9023	62,20113	48,418732	12,10468296
12,20357 6,23521253 5,248419645	3	1	0,002656343	236,7799	19,40250961	120,9788	101,83251	58,207529	19,40250961
12,218495 6,58567967 5,284857041	3	1	0,002618529	238,7751	19,54210237	128,6980	103,27722	58,626307	19,54210237
12,036174 6,32381528 5,101404902	3	0	0,010072709	119,9265	9,963842663	63,0095	50,82960	29,891528	0
11,630709 6,18367012 5,080832748	4	0	0,021249008	79,7879	6,860103463	42,4206	34,85504	27,440414	0
12,129462 6,77492167 4,896199052	3	1	0,004736705	176,2395	14,52987393	98,4388	71,14115	43,589622	14,52987393
12,236844 6,34213716 5,190111674	3	0	0,008859004	130,0101	10,62447671	67,3819	55,14222	31,873430	0
12,058153 6,43515489 5,190111674	3	0	0,008951762	127,4461	10,56928794	68,0150	54,85578	31,707864	0
12,457804 6,68064014 5,276346352	3	1	0,002679852	240,6501	19,31721697	129,0514	101,92433	57,951651	19,31721697
12,788637 6,65978764 5,792570483	7	1	0,023382423	83,6334	6,539661072	43,5528	37,88145	45,777628	6,539661072
12,478006 6,81117942 5,249883417	4	1	0,005877997	162,7536	13,0432354	88,8398	68,47547	52,172942	13,0432354
12,058153 6,10142108 4,984540562	4	1	0,008019976	134,6462	11,16640743	68,1310	55,65941	44,665630	11,16640743
12,434204 7,2453231 5,57147923	4	0	0,01163104	115,2945	9,272369238	67,1813	51,66081	37,089477	0
12,145526 6,28301411 5,020135953	3	1	0,003735956	198,7080	16,36059518	102,7939	82,13241	49,081786	16,36059518
12,079659 6,38519414 5,14132151	4	1	0,006574242	148,9813	12,33323951	78,7501	63,40915	49,332958	12,33323951
12,508951 6,72878052 5,257170309	4	1	0,005761935	164,7922	13,17394432	88,6446	69,25767	52,695777	13,17394432
11,867097 5,78431891 5,063359968	4	0	0,020848575	82,1876	6,925670275	40,0603	35,06716	27,702681	0
12,506177 6,91958451 5,54315685	4	1	0,003865474	201,1515	16,08416812	111,2958	89,15707	64,336672	16,08416812
12,974443 7,28100397 5,887391092	5	1	0,00504434	182,6781	14,07984283	102,5154	82,89354	70,399214	14,07984283
11,962412 6,38785393 5,148901405	4	1	0,006503305	148,3378	12,40032115	79,2114	63,84803	49,601285	12,40032115

Ilustración 19 Estimación MCP Modelo Log

Estadísticas de la regresión	
Coeficiente de correlación múltiple	0,9991
Coeficiente de determinación R^2	0,9981
R^2 ajustado	0,9860
Error típico	0,6111
Observaciones	87

ΔΝΙ	ĹΠ	212	DE	۱/Δ	RIA	NZA

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	4	16516,7630	4129,1907	11056,1510	3,8338E-111
Residuos	83	30,9984	0,3735		
Total	87	16547,7614			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	0	#N/D	#N/D	#N/D	#N/D	#N/D
In supsit/raiz(peso)	0,0271	0,0100	2,7207	0,0079	0,0073	0,0469
In supconst/raiz(peso)	0,1661	0,0135	12,2835	0,0000	0,1392	0,1930
n° dorm/raiz(peso)	-0,0160	0,0078	-2,0523	0,0433	-0,0316	-0,0005
colonial/raiz(peso)	0,0088	0,0132	0,6671	0,5066	-0,0174	0,0350

Ilustración 20 MCP Modelo Log

Se aprecia que el modelo es significativo globalmente ya que el p value es menor al alpha. Además, al igual que en el modelo original las variables sup sitio y sup const son significativas localmente y colonial no son significativas localmente, el cambio fue en la variable n° dormitorio que ahora si es significativa localmente.

B. SERIES DE TIEMPO

Utilice el set de datos IMACEC

1. Determine si la serie tiene autocorrelación.

Ilustración 21 Correlograma Serie IMACEC

Según lo que se ve en el correlograma se dice que existe autocorrelación ya que hay parámetros fuera del límite, se ve que hasta la distancia del día 25 se perdería la autocorrelación.

2. Determine si la serie tiene tendencia y estacionalidad (use variables binarias).

Se convirtió los meses en números discretos del 1 al 12

Ilustración 22 Grafico IMACEC

Por lo que se ve en el grafico la serie tiene estacionalidad

Resumen	
Estadísticas de la regresión	
Coeficiente de correlación múltiple	0,9802
Coeficiente de determinación R^2	0,9608
R^2 ajustado	0,9588
Error típico	3,8236
Observaciones	256
ANÁLISIS DE VARIANZA	

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F	
Regresión	12	86985,2415	7248,7701	495,8084	2,8058E-163	
Residuos	243	3552,6850	14,6201			
Total	255	90537,9265				
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	53,6257	0,9129	58,7440	0,0000	51,8276	55,4239
t	0,2438	0,0032	75,3567	0,0000	0,2374	0,2501
febrero	-3,5782	1,1529	-3,1037	0,0021	-5,8491	-1,3073
marzo	6,5311	1,1529	5,6650	0,0000	4,2602	8,8020
abril	3,0293	1,1529	2,6276	0,0091	0,7584	5,3003
mayo	3,3441	1,1665	2,8667	0,0045	1,0463	5,6419
junio	1,1431	1,1665	0,9800	0,3281	-1,1546	3,4409
julio	-1,9836	1,1665	-1,7005	0,0903	-4,2814	0,3141
agosto	0,3744	1,1665	0,3210	0,7485	-1,9233	2,6722
septiembre	-1,9883	1,1665	-1,7045	0,0896	-4,2861	0,3095
octubre	3,1861	1,1666	2,7312	0,0068	0,8883	5,4840
noviembre	5,4302	1,1666	4,6548	0,0000	3,1323	7,7281
diciembre	9,2770	1,1666	7,9520	0,0000	6,9790	11,5750

Ilustración 23 Significancia Local

Al generar el modelo se puede ver que los meses de febrero, marzo, abril, mayo, octubre, noviembre y diciembre tienen tendencia y estacionalidad mirando su p value.

3. Determine si los residuales del modelo en 2) aún tienen autocorrelación. Comente sobre los resultados.

Ilustración 24 Correlograma Modelo 2

Se puede ver que aún existe autocorrelación, pero disminuyo hasta la distancia del día 13, ya que hay se pierde la autocorrelación.

4. Separe el set de datos en dos partes de 80 y 20% respectivamente. Sobre el 80% inicial ajuste el modelo de regresión igual al de la pregunta 2). Con éste estime los valores del 20% de validación. Utilizando el modelo ETS en Excel estime los valores hacia adelante (20% de validación). En ambos casos calcule el RMSE y el R2 de validación. Compare sus resultados.

Resumen	
Estadísticas de la regresión	
Coeficiente de correlación múltiple	0,9928
Coeficiente de determinación R^2	0,9856
R^2 ajustado	0,9847
Error típico	2,0595
Observaciones	205

ANÁLISIS DE VARIANZA					
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	P value
Regresión	12	55809,4842	4650,7903	1096,4773	1,0452E-169
Residuos	192	814,3823	4,2416		
Total	204	56623,8665			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	51,3294	0,5463	93,9515	1,85E-162	50,2518	52,4070
Т	0,2723	0,0024	111,8625	9,50E-177	0,2675	0,2771
Febrero	-3,0824	0,6966	-4,4247	1,62E-05	-4,4564	-1,7084
Marzo	6,2475	0,6966	8,9686	2,70E-16	4,8735	7,6214
Abril	3,7931	0,6966	5,4455	1,57E-07	2,4192	5,1670
Mayo	3,5887	0,6965	5,1521	6,36E-07	2,2148	4,9625
Junio	1,6107	0,6965	2,3124	2,18E-02	0,2368	2,9845
Julio	-1,5406	0,6965	-2,2119	2,82E-02	-2,9144	-0,1668
Agosto	0,2846	0,6965	0,4086	6,83E-01	-1,0892	1,6584
Septiembre	-1,9456	0,6965	-2,7932	5,75E-03	-3,3194	-0,5717
Octubre	3,2008	0,6966	4,5951	7,82E-06	1,8269	4,5747
Noviembre	4,8128	0,6966	6,9091	6,99E-11	3,4389	6,1868
Diciembre	8,2023	0,6966	11,7742	1,93E-24	6,8283	9,5763

Ilustración 26 Correlograma Residuos

Hacia Adelante					
ID	Residuales	Residuales^2			
206	-6,48	41,98			
207	-2,86	8,16			
208	-5,81	33,79			
209	-3,17	10,07			
210	-4,44	19,71			
211	-5,26	27,69			
212	-2,62	6,88			
213	-4,36	19,02			
214	-3,27	10,68			
215	0,24	0,06			
216	-0,58	0,33			
217	-3,56	12,67			
218	-5,13	26,30			
219	-1,00	1,00			
220	-2,34	5,49			
221	-1,81	3,26			
222	-3,32	10,99			
223	-5,36	28,76			
224	-3,33	11,09			
225	-5,88	34,58			
226	-2,62	6,85			
227	0,20	0,04			
228	-0,39	0,15			
229	-5,10	25,99			
230	-7,88	62,08			
231	-2,88	8,31			
232	-4,02	16,14			
233	-2,88	8,27			
234	-5,42	29,34			
235	-5,49	30,11			
236	-2,44	5,93			
237	-5,59	31,24			
238	-9,85	96,97			
239	-7,73	59,69			
239	-1,73	3,70			
241	-6,96	48,43			
242	-7,82	61,12			
243	-10,31	106,27			
243	-23,07	532,43			
244	-23,83	567,78			
246	-23,79	566,15			
247 248	-20,94 -18.07	438,33			
248	-18,07	326,44			
250	-14,01	196,24			
	-14,12	199,29			
251	-9,88	97,67			
252	-5,28	27,86			
253	-13,45	180,91			
254	-13,30	176,80			
255	-7,03	49,43			
256	-12,50	156,33			
		4.428,80			
Ì		86,84			

ETS		
ID	Residuales	Residuales^2
206	-1,69	2,84
207	-0,53	0,28
208	-3,26	10,62
209	-1,66	2,76
210	-3,01	9,06
211	-3,01	9,03
212	-2,11	4,47
213	-3,29	10,85
214	-2,74	7,49
215	-0,59	0,34
216	-0,47	0,22
217	0,90	0,81
218	-0,34	0,12
219	1,32	1,75
220	0,20	0,04
221		0,04
222	-0,30 -1,89	3,58
223		9,68
224	-3,11 -2,83	7,99
225	-4,82	
		23,23
226	-2,09	4,38
227	-0,63	0,40
228	-0,29	0,08
229	-0,64	0,41
230 231	-3,10	9,59
231	-0,56	0,32
233	-1,48 -1,38	2,18 1,89
234	-4,00	16,00
235	-3,24	10,51
236	-1,94	3,75
237	-4,53	20,55
238	-9,33	87,03
239	-8,56	73,27
240	-1,83	3,34
241	-2,51	6,30
242	-3,04	9,25
243	-8,00	63,94
244	-20,54	421,83
245	-22,33	498,75
246	-22,38	500,98
247	-18,70	349,57
248	-17,58	308,90
249	-12,96	167,94
250	-12,96	185,08
251		114,98
251	-10,72 -5,19	26,93
252		
253	-9,01 -8,53	81,12
254	-8,53 -4,72	72,70 22,31
256	-4,72	99,46
256	-9,97	3.269,00
		64.10
		04,10

Ilustración 27 Pronostico Hacia Adelante y ETS

Hacia Adelante				
RMSE	9,318754931			
R2	0,249733347			

	ETS
RMSE	8,00612937
R2	0,302877246

Ilustración 28 Comparación

En el modelo ETS se puede ver que el RMSE es menor al modelo hacia adelante, por lo cual se puede identificar que es una buena estimación.

Utilice el set de datos UF - Dólar

1. Desarrolle los siguientes modelos para explicar la UF en función del dólar:

a. Modelo considerando solo las series de tiempo UF y dólar

Resumen

Estadísticas de la regresión					
Coeficiente de correlación múltiple	0,8285				
Coeficiente de determinación R^2	0,6864				
R^2 ajustado	0,6850				
Error típico	139,3981				
Obs ervaciones	219				

ANÁLISIS DE VARIANZA

	Grados de libertad Su	ma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1	9.231.545,8	9231545,7849	475,0735287	1,45669E-56
Residuos	217	4.216.706,1	19431,8252		
Total	218	13.448.251,9			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	17418,2637	289,5257	60,1614	2,4888E-137	16847,62115	17988,90625
dólar	11,1663	0,5123	21,7962	1,45669E-56	10,15653701	12,17599358

Ilustración 29 Modelo UFt = USDt

b. Modelo con las series sin tendencia

Resumen

Estadísticas de la regresión						
Coeficiente de correlación múltiple	0,1328					
Coeficiente de determinación R^2	0,0176					
R^2 ajustado	0,0131					
Error típico	32,5114					
Obs ervaciones	219,0000					

ANÁLISIS DE VARIANZA

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	1,0000	4.120,3462	4.120,3462	3,8982	0,0496
Residuos	217,0000	229.367,6028	1.056,9936		
Total	218,0000	233.487,9490			

	Coeficientes	Error típico	Estadístico t	dístico t Probabilidad		Superior 95%	
Intercepción	0,0000	2,1969	0,0000	1,0000	-4,3300	4,3300	
USDst	0,4184	0,2119	1,9744	0,0496	0,0007	0,8360	

Ilustración 30 Modelo UFst = USDst

c. Modelo incluyendo explícitamente el tiempo

Resumen

Estadísticas de la regr	esión
Coeficiente de correlación múltiple	0,9914
Coeficiente de determinación R^2	0,9829
R^2 ajustado	0,9828
Error típico	32,5866
Observaciones	219,0000
ANÁLISIS DE VARIANZA	
	Grados de libertad
Regresión	2,0000
Residuos	216,0000
Total	218,0000

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	23.072,8083	114,4373	201,6197	0,0000	22.847,2516	23.298,3650
t	3,7851	0,0618	61,2777	0,0000	3,6634	3,9069
dólar	0,4184	0,2124	1,9698	0,0501	-0,0003	0,8370

Ilustración 31 Modelo UFt = USDt + t

Interprete y compare el estimador del β1 obtenido en cada modelo.

_		Modelo UFt = USDt	Modelo UFst = USDst	Modelo UFt = USDt + t
	β1	11,1663	0,4184	0,4184

Ilustración 32 Comparación estimador B1

En el primer modelo se tiene un β 1 de un 11,1663 que significa que, por cada dólar adicional, el precio de la UF aumentara en 11,1662 UF

En los otros modelos se tiene un β 1 de un 0,4184 que significa que por cada dólar adicional el precio de la UF aumentara en 0,4184 UF

Se puede concluir que la determinación de los dos últimos modelos estuvo correctamente desarrollada, ya que se ve que la influencia del USD sobre UF es reducida.

2. Evalúe la autocorrelación de los residuales de cada uno de los modelos. Utilice el estadístico Durbin-Watson.

Durbin-Watson Test

Alpha	0,05
D-stat	0,0471
D-lower	1,7695
D-upper	1,7878
sig	yes

Ilustración 33 Estadístico Durbin-Watson UFt=USDt

Durbin-Watson Test

Alpha	0,05
D-stat	0,0041
D-lower	1,7695
D-upper	1,7878
sig	yes

Ilustración 34 Estadístico Durbin-Watson UFst=USDst

Durbin-Watson Test

Alpha	0,05
D-stat	0,0041
D-lower	1,7603
D-upper	1,7971
sig	yes

Ilustración 35 Estadístico Durbin-Watson UFt=USDt + t

Nuevamente los dos últimos modelos son idénticos en el estadístico Durbin-Watson, en los tres modelos se rechaza la hipótesis nula, lo cual significa que tienen correlación entre los residuos.

3. Aplique los siguientes métodos para lidiar con la autocorrelación. En cada caso considere la tendencia de las series:

a. Diferenciación de las series de tiempo

Resumen								
Estadísticas de la regr	esión	•						
Coeficiente de correlación múltiple	0,327461106							
Coeficiente de determinación R^2	0,107230776						Durbin-Wa	tson Test
R^2 ajustado	0,098925946							
Error típico	1,649864129						Alpha	0,05
Observaciones	218							
		<u>.</u>					D-stat	0,0564
ANÁLISIS DE VARIANZA							D-lower	1,7597
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F		D-upper	1,7967
Regresión	2	70,29348229	35,14674114	12,91185684	5,06367E-06		sig	yes
Residuos	215	585,2411035	2,722051644					
Total	217	655,5345858						
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	nferior 95,0	%uperior 95,0%
Intercepción	4,434421643	0,225100024	19,69978312	4,74851E-50	3,990736188	4,87810709	8 3,9907361	9 4,8781071
Delta Dólar	0,023764792	0,041335218	0,574928442	0,565940827	-0,057709366	0,10523895	1 -0,0577093	37 0,10523895
t	-0,00893244		,	1,04385E-06	-0,012434187			19 -0,00543069

Ilustración 36 Diferenciación de las series de tiempos

Se puede concluir que el modelo es significativo ya que el p value es menor al alpha y la variable t es significativa localmente en cambio el Delta dólar no. Además, se puede ver por el estadístico de Durbin-Watson que el modelo aún tiene correlación entre los residuos.

b. Utilizando un modelo autorregresivo

Prais-Winsten AR(1) regression -- iterated estimates

Source	SS	df	MS	Numk	er of ob	s =	218
				- F(2,	215)	=	632.34
Model	3205.53312	2	1602.7665	6 Prok	> F	=	0.0000
Residual	544.955012	215	2.5346744	7 R-sc	quared	=	0.8547
				- Adj	R-square	d =	0.8533
Total	3750.48814	217	17.283355	5 Root	MSE	=	1.5921
uf	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
t	4.559341	.1291942	35.29	0.000	4.304	691	4.81399
dólar	.0256536	.0395414	0.65	0.517	0522	848	.103592
_cons	23292.93	22.85723	1019.06	0.000	23247	. 87	23337.98
rho	1.013337						

Durbin-Watson statistic (original) 0.004094 Durbin-Watson statistic (transformed) 0.061892

Ilustración 37 Modelo Autorregresivo

Se ve que el nuevo modelo es significativo globalmente y sigue el dólar siendo una variable no significativa. Además, continúa teniendo una autocorrelación positiva.

d. Errores estándar robustos contra correlación serial

.4183571 .236228

dólar

_cons

Ilustración 38 EER v/s Correlación Serial

23072.81 127.6375 180.77 0.000

Se aprecia que el nuevo modelo es significativo y así sigue el dólar como una variable no significativa.

1.77 0.078 -.0472501

.8839643

22821.23 23324.38

En cada caso evalúe la autocorrelación de los residuales y determine si se logró eliminar.

En conclusión, se puede ver que no se eliminó la autocorrelación en ninguno de los modelos.