4D $\mathcal{N}=2$ SCFT AND SINGULARITY THEORY PART IV: ISOLATED RATIONAL GORENSTEIN NON-COMPLETE INTERSECTION SINGULARITIES WITH AT LEAST ONE-DIMENSIONAL DEFORMATION AND NONTRIVIAL T^2

BINGYI CHEN, STEPHEN S.-T. YAU, SHING-TUNG YAU, AND HUAIQING ZUO

ABSTRACT. We study the miniversal deformations of minimally elliptic two-dimensional singularities of multiplicities of 5, 6 and 7. By restricting the miniversal deformations on the line transverse to the discriminant locus, we construct many new three-dimensional isolated rational Gorenstein singularities with one-dimensional equisingular deformation and nontrivial T^2 . In fact the three-dimensional isolated rational Gorenstein singularities constructed from minimally elliptic singularities of multiplicity 5 has four-dimensional family of deformation, of which one-dimensional family is equisingular in the sense of Hilbert polynomial. On the other hand, the three-dimensional isolated rational Gorenstein singularities constructed from minimally elliptic singularities of multiplicity 6 and 7 respectively has nontrivial T^2 and has one-dimensional equisingular family of deformation. These singularities define many new interesting four dimensional N=2 superconformal field theories.

Keywords. rational singularity, Gorenstein singularity, deformation. MSC(2010). 14B05, 32S05.

1. Introduction

This is the fourth of a series of papers in which we try to classify four-dimensional $\mathcal{N}=2$ superconformal field theories (SCFTs) using classification of singularity.

In [XY], we conjecture that any three-dimensional isolated rational Gorenstein graded singularity should define a $\mathcal{N}=2$ SCFT. A complete list of hypersurface singularities was obtained in [YY], and this immediately gives us a large number of new four-dimensional $\mathcal{N}=2$ SCFTs.

Four-dimensional (4d) $\mathcal{N} = 2$ superconformal field theory (SCFT) can be defined using type IIB string theory on following background

$$R^{1,3} \times X \tag{1}$$

The work of S.-T. Yau is supported by NSF grant DMS-1159412, NSF grant PHY- 0937443, and NSF grant DMS-0804454. The work of Stephen S.-T. Yau is supported by NSFC grant 11531007 and Tsinghua University start-up fund. The work of Huaiqing Zuo is supported by NSFC (grant nos. 11771231, 11531007).

Here X is conjectured to be an isolated rational Gorenstein singularity [XY] with a good \mathbb{C}^* action, and we take string coupling $g_s \to 0$ and go to infrared limit [SV, GKP]. These singularities naturally appear in the degeneration of compact Calabi-Yau three manifolds, and in fact general definition of Calabi-Yau variety allows such singularity [Gr].

4d $\mathcal{N}=2$ SCFT has a $SU(2)_R \times U(1)_R$ R symmetries, and there are two kinds of half-BPS operators $E_{r,(0,0)}$ and \hat{B}_1 [DO]. The Coulomb branch deformations are described as follows [ALLM]:

• Deformation using half-BPS operator $E_{r,(0,0)}$:

$$\delta S = \lambda \int d^4x dQ^4 E_{r,(0,0)} + c.c. \tag{2}$$

• Deformation using half-BPS operator \hat{B}_1 :

$$\delta S = m \int d^4x Q^2 \hat{B}_1 + c.c. \tag{3}$$

• We can also turn on expectation value of operator $E_{r,(0,0)}$: $u_r = \langle E_{r,(0,0)} \rangle$.

A central question of understanding 4d $\mathcal{N}=2$ SCFT is to understand the low energy physics for general deformations parameterized by (λ, m, u_r) . The low energy physics is best captured by the Seiberg-Witten geometry [SW]. Usually Seiberg-Witten geometry is described by a family of Riemann surface, and it is conjectured in [XY] that more general Coulomb branch geometry can be captured by the miniversal deformation [GLS] of a rational Gorenstein threefold singularity X with \mathbb{C}^* action. Gorenstein means that there is a canonical nowhere zero holomorphic 3-form Ω defined outside the singular locus of X, and rational means that the weight of Ω under the \mathbb{C}^* action is positive. Roughly speaking, a deformation is a flat morphism $\pi: Y \to S$, with $\pi^{-1}(0)$ isomorphic to the singularity X, and a miniversal deformation essentially captures all the deformations. Let $X \hookrightarrow \mathscr{X} \to S$ be a miniversal deformation of X, where $S \subset \mathbb{C}^{\mu}$ and μ is the dimension of T_X^1 . If T_X^2 is trivial then $S = \mathbb{C}^{\mu}$ (see the definitions of T_X^1 and T_X^2 in section 4). Let $\lambda_{\alpha}, \alpha = 1, \dots, \mu$ be the coordinate of \mathbb{C}^{μ} . The \mathbb{C}^* action of X induce a \mathbb{C}^* action on \mathscr{X} and S, so is \mathbb{C}^{μ} . The scaling dimension of λ_{α} is defined to be the ratio of the weight of λ_{α} to the weight of the canonical 3-form Ω under the \mathbb{C}^* action. If the scaling dimension of λ_{α} larger than 1, then it is a Coulomb branch operator.

Therefore the study of 4d $\mathcal{N}=2$ SCFT is reduced to the study of singularity X and its miniversal deformation. We have classified such X which can be described by complete intersection [XY, YY, CX1] and by quotient singularity [CX2]. The physical aspects of these 4d $\mathcal{N}=2$ SCFTs are studied in [XY1, XY2, XY3, XYY, WX].

The purpose of this note is to study isolated rational Gorenstein non-complete intersection singularities and their deformations. One of the main results of this paper is to construct many new three-dimensional isolated rational Gorenstein non-complete intersection singularities with nontrivial T^1 and T^2 . Therefore the corresponding 4d theory has Coulomb branch. On the other hand, all the complete intersection examples studied in [XY, YY, CX1] have a non-trivial miniversal deformation and therefore a non-trivial Coulomb branch, however they have trivial T^2 .

ACKNOWLEDGEMENT

The authors would like to thank Shihoko Ishii for patiently answering our questions about how to construct a nowhere zero three form on a threefold Gorenstein singularity. And we would like to thank Gert-Martin Greuel for giving us lots of useful advice about how to use the computer algebra system SINGULAR.

2. Preliminaries

Let $\pi \colon M \to V$ be a resolution of the normal two-dimensional Stein space V. We assume that p is the only singularity of V. Let $\pi^{-1}(p) = A = \bigcup A_i$, $1 \le i \le n$, be the decomposition of the exceptional set A into irreducible components.

A cycle $D = \sum d_i A_i$, $1 \leq i \leq n$ is an integral combination of the A_i , with d_i an integer. There is a natural partial ordering denoted by <, between cycles defined by comparing the coefficients. We let supp $D = \bigcup A_i$, $d_i \neq 0$, denote the support of D.

Let \mathcal{O} be the sheaf of germs of holomorphic functions on M. Let $\mathcal{O}(-D)$ be the sheaf of germs of holomorphic functions on M which vanish to order d_i on A_i . Let \mathcal{O}_D denote $\mathcal{O}/\mathcal{O}(-D)$. Define

$$\chi(D) := \dim H^0(M, \mathcal{O}_D) - \dim H^1(M, \mathcal{O}_D). \tag{2.1}$$

The Riemann-Roch theorem [Se, Proposition IV.4, p. 75] says

$$\chi(D) = -\frac{1}{2}(D^2 + D \cdot K), \tag{2.2}$$

where K is the canonical divisor on M. $D \cdot K$ may be defined as follows. Let ω be a meromorphic 2-form on M. Let (ω) be the divisor of ω . Then $D \cdot K = D \cdot (\omega)$ and this number is independent of the choice of ω . In fact, let g_i be the geometric genus of A_i , i.e., the genus of the desingularization of A_i . Then the adjunction formula [Se, Proposition IV, 5, p. 75] says

$$A_i \cdot K = -A_i^2 + 2g_i - 2 + 2\delta_i \tag{2.3}$$

where δ_i is the "number" of nodes and cusps on A_i . Each singular point on A_i other than a node or cusp counts as at least two nodes. It follows immediately from (2.2) that if B and C are cycles, then

$$\chi(B+C) = \chi(B) + \chi(C) - B \cdot C. \tag{2.4}$$

Definition 2.1. Associated to π a unique fundamental cycle Z [Ar, pp. 131-132] such that Z > 0, $A_i \cdot Z \leq 0$ all A_i and such that Z is minimal with respect to those two properties.

The fundamental cycle Z can be computed from the intersection as follows via a computation sequence for Z in the sense of Laufer [La1, Proposition 4.1, p. 607].

$$Z_0 = 0, Z_1 = A_{i_1}, Z_2 = Z_1 + A_{i_2}, \dots, Z_j = Z_{j-1} + A_{i_j}, \dots,$$

 $Z_{\ell} = Z_{\ell-1} + A_{i_{\ell}} = Z$

where A_{i_1} is arbitrary and $A_{i_j} \cdot Z_{j-1} > 0$, $1 < j \le \ell$.

Lemma 2.1. [La2] Let Z_k be part of a computation sequence for Z and such that $\chi(Z_k) = 0$. Then $\dim H^1(M, \mathcal{O}_D) \leq 1$ for all cycles D such that $0 \leq D \leq Z_k$. Also $\chi(D) \geq 0$.

3. MINIMALLY ELLIPTIC SINGULARITIES

In this section we shall recall some of the properties of minimally elliptic singularities which we need for our construction.

Definition 3.1. A cycle E > 0 is minimally elliptic if $\chi(E) = 0$ and $\chi(D) > 0$ for all cycles D such that 0 < D < E.

Wagreich [Wa] defined the singularity p to be elliptic if $\chi(D) \geq 0$ for all cycles $D \geq 0$ and $\chi(F) = 0$ for some cycles F > 0. He proved that this definition is independent of the resolution. It is easy to see that under this hypothesis, $\chi(Z) = 0$. The converse is also true [La2]. Henceforth, we shall adopt the following definition:

Definition 3.2. p is said to be weakly elliptic if $\chi(Z) = 0$.

The following proposition and lemma hold for weakly elliptic singularities.

Proposition 3.1. [La2] Suppose that $\chi(D) \geq 0$ for all cycles D > 0. Let $B = \sum b_i A_i$ and $C = \sum c_i A_i$, $1 \leq i \leq n$, be any cycles such that 0 < B, C and $\chi(B) = \chi(C) = 0$. Let $F = \sum \min(b_i, c_i) A_i$, $1 \leq i \leq n$. Then F > 0 and $\chi(F) = 0$. In particular, there exists a unique minimally elliptic cycle E.

Lemma 3.1. [La2] Let E be a minimally elliptic cycle. Then for $A_i \subset \text{supp } E$, $A_i \cdot E = -A_i \cdot K$. Suppose additionally that π is the minimal resolution. Then E is the fundamental cycle for the singularity having supp E as its exceptional set. Also, if E_k is part of a computation sequence for E as a fundamental cycle and $A_j \subset \text{supp } (E - E_k)$, then the computation sequence may be continued past E_k so as to terminate at $E = E_\ell$ with $A_{i_\ell} = A_j$.

Theorem 3.1. [La2] Let $\pi: M \to V$ be the minimal resolution of the normal twodimensional variety V with one singular point p. Let Z be the fundamental cycle on the exceptional set $A = \pi^{-1}(p)$. Then the following are equivalent:

- (1) Z is a minimally elliptic cycle,
- (2) $A_i \cdot Z = -A_i \cdot K$ for all irreducible components A_i in A,
- (3) $\chi(Z) = 0$ and any connected proper subvariety of A is the exceptional set for a rational singularity.

In [La2], Laufer introduced the notion of minimally elliptic singularity.

Definition 3.3. Let p be a normal two-dimensional singularity. p is minimally elliptic if the minimal resolution $\pi \colon M \to V$ of a neighborhood of p satisfies one of the conditions of Theorem 3.1.

Theorem 3.2. [La2] Let V be a Stein normal two-dimensional space with p as its only singularity. Let $\pi \colon M \to V$ be a resolution of V. Then p is minimally elliptic singularity if and only if $H^1(M, \mathcal{O}) = \mathbb{C}$ and $\mathcal{O}_{V,p}$ is a Gorenstein ring.

Theorem 3.3. [La2] Let p be a minimally elliptic singularity. Let $\pi: M \to V$ be a resolution of a Stein neighborhood V of p with p as its only singular point. Let m be the maximal ideal in $\mathcal{O}_{V,p}$. Let Z be the fundamental cycle on $A = \pi^{-1}(p)$.

- (1) If $Z^2 \leq -2$, then $\mathcal{O}(-Z) = m\mathcal{O}$ on A.
- (2) If $Z^2 = -1$, and π is the minimal resolution or the minimal resolution with non-singular A_i and normal crossings, $\mathcal{O}(-Z)/m\mathcal{O}$ is the structure sheaf for an embedded point.
- (3) If $Z^2 = -1$ or -2, then p is a double point.
- (4) If $Z^2 = -3$, then for all integers $n \ge 1$, $m^n \approx H^0(A, \mathcal{O}(-nZ))$ and $\dim m^n/m^{n+1} = -nZ^2$.
- (5) If $-3 \le Z^2 \le -1$, then p is a hypersurface singularity.
- (6) If $Z^2 = -4$, then p is a complete intersection and in fact a tangential complete intersection.

(7) If $Z^2 \leq -5$, then p is a non-complete intersection.

4.
$$T^1$$
 AND T^2

For an affine scheme $Y = \operatorname{Spec} A$, there are two important A-modules, T_Y^1 and T_Y^2 . These modules play an important role in the deformation theory in analytic and algebraic geometry. In case Y admits a versal deformation, T_Y^1 may be identified as the Zariski tangent space of the versal deformation; i.e. it is the space of infinitesimal deformations. T_Y^2 contains the obstructions for extending deformations of Y to larger base spaces.

Let $Y \subseteq \mathbb{C}^{w+1}$ be given by equations f_1, \dots, f_m , i.e. its ring of regular functions equals A = P/I with $P = \mathbb{C}[z_0, \dots, z_w]$ and $I = (f_1, \dots, f_m)$. Then, using $d: I/I^2 \to A^{w+1}$ $(d(f_i) := (\frac{\partial f_i}{\partial z_0}, \dots, \frac{\partial f_i}{\partial z_w}))$, the vector space T_Y^1 equals

$$T_Y^1 = \text{Hom}_A(I/I^2, A)/\text{Hom}_A(A^{w+1}, A).$$

Let $\mathcal{R} \subseteq P^m$ denotes the P-module of relations between the equations f_1, \dots, f_m . It contains the so-called Koszul relations $\mathcal{R}_0 := \langle f_i e^j - f_j e^i \rangle$ as a submodule.

Now, T_Y^2 can be obtained as

$$T_Y^2 = \operatorname{Hom}_P(\mathcal{R}/\mathcal{R}_0, A)/\operatorname{Hom}_P(P^m, A).$$

Remark 4.1. For isolated complete intersection singularities $\mathcal{R} = \mathcal{R}_0$, so $T^2 = 0$.

5. SELF-INTERSECTION NUMBER
$$Z^2 = -5$$

In this section, we will construct some three-dimensional isolated rational Gorenstein non-complete intersection singularities based on minimally elliptic singularities with $Z^2 = -5$.

Definition 5.1. Let (V, q) be a normal surface singularity. If the exceptional curve A of the minimal resolution of (V, q) is a nonsingular elliptic curve, then (V, q) is called a simple elliptic singularity.

A simple elliptic singularity is a minimally elliptic singularity, and hence a Gorenstein singularity.

Now consider a simple elliptic singularity with $A \cdot A = -5$. More explicitly, let A be a nonsingular elliptic curve, p a point on A and M the total space of the line bundle corresponding to the divisor -5p. A can be identified as the 0-section of M and its self-intersection number in M is -5. It's well known that A is exceptional in M, that is to say, there exists an analytic variety V and a proper map $\pi: M \to V$ such that $\pi(A)$ is a

point q in V and the restriction of π on M-A is biholomorphic. Then (V,q) is a two-dimensional simple elliptic singularity. Obviously the fundamental cycle of $\pi: M \to V$ is A. Since the self-intersection number of the fundamental cycle of (V,q) is -5, so it follows from Theorem 3.3 that (V,q) is a non-complete intersection singularity.

Next we will calculate the defining equations for (V,q). First we need a finite set of generators of $\Gamma(A,\mathcal{O})$, the ring of holomorphic functions which are defined on a neighbourhood of A in M. The sections of M can be identified with meromorphic functions on A which have a zero of order at least 5 at $p \in A$. The complex plane \mathbb{C} is the universal covering of A and A can be identified as \mathbb{C}/Λ where Λ is a lattice in \mathbb{C} . Let z be a coordinate of \mathbb{C} such that z=0 project onto p. Since the restriction of M to A-q is a trivial bundle, we may let (z,t) be coordinates for M over A-q and (z,t') coordinates for M near q, with z the coordinate for \mathbb{C} and t,t' fibre coordinates. The transition functions are given by

$$t = t'z^5,$$

$$z = z.$$
(5.5)

Given $f \in \Gamma(A, \mathcal{O})$, on the first chart it can be written as

$$f(t,z) = f_0(z) + t f_1(z) + t^2 f_2(z) + \dots + t^i f_i(z) + \dots$$

On the second chart, by (5.5) it can be written as

$$f(t,z) = f_0(z) + t'z^5 f_1(z) + (t')^2 z^{10} f_2(z) + \dots + (t')^i z^{5i} f_i(z) + \dots$$

Hence f_i are meromorphic functions on A which have poles of order at most 5i at $p \in A$ for each $i \geq 0$. In particular, f_0 is a constant function. Denote by S_i the set of doubly periodic meromorphic function f on \mathbb{C} (i.e. $f(z) = f(z + \omega)$ for any $\omega \in \Lambda$) which is holomorphic outside the lattice points and has poles of order i at the lattice points (a zero of order k is viewed as a pole of order -k). Then f_i may be identified as an element in $\bigcup_{k \leq 5i} S_k$.

Let us recall some facts about the Weierstrass elliptic function. Suppose the lattice Λ is generated by ω_1 and ω_2 , i.e, $\Lambda = \{m\omega_1 + n\omega_2 : m, n \in \mathbb{Z}\}$. The Weierstrass's elliptic function \mathfrak{p} is a meromorphic function on \mathbb{C} with periods ω_1 and ω_2 defined as

$$\mathfrak{p}(z) = \frac{1}{z^2} + \sum_{n^2 + m^2 \neq 0} \left\{ \frac{1}{(z + m\omega_1 + n\omega_2)^2} - \frac{1}{(m\omega_1 + n\omega_2)^2} \right\}.$$

Then \mathfrak{p} is in S_2 and \mathfrak{p}' (derived function of \mathfrak{p}) is in S_3 . $\bigcup_{k<0} S_k$ and S_1 are empty. All elements in $\bigcup_{k\in\mathbb{Z}} S_k$ can be written as linear combinations of products of \mathfrak{p} and \mathfrak{p}' . In a

punctured neighborhood of the origin, the Laurent series expansion of $\mathfrak{p}(z)$ is

$$\mathfrak{p}(z) = z^{-2} + \frac{1}{20}g_2z^2 + \frac{1}{28}g_3z^4 + O(z^6),$$

where

$$g_2 = 60 \sum_{(m,n)\neq(0,0)} (m\omega_1 + n\omega_2)^{-4},$$

$$g_3 = 140 \sum_{(m,n)\neq(0,0)} (m\omega_1 + n\omega_2)^{-6}.$$

It's well known that $\mathfrak{p}(z)$ satisfies the following differential equation

$$(\mathfrak{p}')^2 - 4(\mathfrak{p})^3 + g_2\mathfrak{p} + g_3 = 0. \tag{5.6}$$

Proposition 5.1. For any positive integer i and any element f in $\bigcup_{k \leq 5i} S_k$, $t^i f(z)$ can be written as a linear combination of products of the following five functions

$$t$$
, $t\mathfrak{p}(z)$, $t\mathfrak{p}'(z)$, $t\mathfrak{p}^2(z)$, $t\mathfrak{p}(z)\mathfrak{p}'(z)$. (5.7)

Proof. We prove the claim by induction on the order d of poles of f(z) at the lattices points (d can not be 1 and $d \le 5i$). If d = 0, then f is a constant, then the claim holds. Assume the claim holds for $0, 2, 3, \dots, d-1$. Write d = 5k + r where k, r are non-negative integers and $0 < r \le 5$. Since $d \le 5i$, we have $k \le i - 1$. There are two cases.

a) $r \neq 1$, then there is an element e in $\{\mathfrak{p}(z), \mathfrak{p}'(z), \mathfrak{p}^2(z), \mathfrak{p}(z)\mathfrak{p}'(z)\}$ such that $e(\mathfrak{p}(z)\mathfrak{p}'(z))^k$ has poles of order d at the lattice points. Hence $f(z) - ce(\mathfrak{p}(z)\mathfrak{p}'(z))^k$ has poles of order less than d at the lattice points for some coefficient c. By inductive assumption,

$$t^{i}f(z) - c(te)(t\mathfrak{p}(z)\mathfrak{p}'(z))^{k}t^{i-k-1}$$

can be generated by (5.7), hence the claim holds.

b) r = 1. Then $k \ge 1$ since $d \ne 1$. $f(z) - c(\mathfrak{p}(z))^3 (\mathfrak{p}(z)\mathfrak{p}'(z))^{k-1}$ has poles of order less than d at the lattice points for some coefficient c. By inductive assumption,

$$t^{i}f(z) - c(t\mathfrak{p}(z))(t\mathfrak{p}^{2}(z))(t\mathfrak{p}(z)\mathfrak{p}'(z))^{k-1}t^{i-k-1}$$

can be generated by (5.7), hence the claim holds.

By the above claim, we have $\Gamma(A, \mathcal{O})$ is generated by (5.7). Next we need to explore relations of the generators. Consider a homomorphism

$$\rho: \mathbb{C}[e_1, e_2, e_3, e_4, e_5] \to \Gamma(A, \mathcal{O})$$

$$e_1 \mapsto t, \qquad e_2 \mapsto t\mathfrak{p}(z), \qquad e_3 \mapsto t\mathfrak{p}'(z),$$

$$e_4 \mapsto t\mathfrak{p}^2(z), \qquad e_5 \mapsto t\mathfrak{p}(z)\mathfrak{p}'(z).$$

Proposition 5.2. The kernel of ρ is generated by

$$e_{1}e_{5} - e_{2}e_{3},$$

$$e_{1}e_{4} - e_{2}^{2},$$

$$e_{2}e_{5} - e_{3}e_{4},$$

$$e_{3}^{2} - 4e_{2}e_{4} + g_{2}e_{1}e_{2} + g_{3}e_{1}^{2},$$

$$e_{3}e_{5} - 4e_{4}^{2} + g_{2}e_{2}^{2} + g_{3}e_{1}e_{2}.$$

$$(5.8)$$

Proof. By equation (5.6), it is easy to check that elements in (5.8) are in the kernel of ρ . Denote by I the ideal generated by (5.8). Given $f \in \text{Ker}(\rho)$, we need to prove $f \in I$. Write $f = \sum_{i=0}^{n} f_i$ where f_i is a homogeneous polynomial of degree i. Since $\rho(f) = \sum_{i=0}^{n} \rho(f_i) = 0$ and $t^i \mid \rho(f_i)$ and $t^{i+1} \nmid \rho(f_i)$, we have $\rho(f_i) = 0$ for each i. Hence we may assume that f is a homogeneous polynomial of degree n without loss of generality. Associated to each variable e_i a weight $wt(e_i)$, which is equal to the order of poles at the lattice points of the periodic meromorphic function $\rho(e_i)/t$. Then

$$wt(e_1) = 0$$
 $wt(e_2) = 2$ $wt(e_3) = 3$ $wt(e_4) = 4$ $wt(e_5) = 5.$ (5.9)

We may write $f = \sum_{i=0}^{m} f_i$ where f_i is weighted homogeneous of weight i with respect to the weight system (5.9). Since $\rho(f_i)/t^n$ has poles of degree i at the lattice point, $\{\rho(f_i)\}_{i=1}^{m}$ is linear independent. Hence $\rho(f) = \sum_{i=0}^{n} \rho(f_i) = 0$ implies that $\rho(f_i) = 0$ for each i. Hence we may assume that f is homogeneous of degree n and weighted homogeneous of weight m without loss of generality.

We will prove the claim by induction on the weight m. If m = 0, then $f = ce_1^n$ for some coefficient c. Since $\rho(f) = ct^n = 0$ in $\Gamma(A, \mathcal{O})$, we have c = 0 and f = 0, hence the claim holds. Assume the claim holds for $0, 1, 2, \ldots, m - 1$. There are two cases.

a) Each term h of f satisfies the following condition

(*) the support of
$$h$$
 is $\{e_i, e_{i+1}\}$ or $\{e_i\}$ for some i

here the support of a monomial means the set of variables which appear in the monomial. Since f is homogeneous and $wt(e_i) < wt(e_{i+1})$ for any i, the weights of terms in f are pairwise distinct. And since f is weighted homogeneous, f has only one term, hence $\rho(f) = 0$ implies f = 0.

b) There exists a term h in f which does not satisfy Condition (*), for example, $h = e_3e_5\widetilde{h}$, then $h - 4e_4^2\widetilde{h} + (g_2e_2^2 + g_3e_1e_2)\widetilde{h} \in I$ (see the fifth equation in (5.8)). The weights of terms in $(g_2e_2^2 + g_3e_1e_2)\widetilde{h}$ are less than wt(f) = m. From this example, it's not hard to see that there exist polymonomials f_1, f_2 such that

- 1) $f f_1 f_2 \in I$;
- 2) each term in f_1 satisfies condition (*);
- 3) the weights of terms in f_2 are less than wt(f) = m.

By the inductive assumption, $f_2 \in I$ and by case (a) $f_1 = 0$, hence $f \in I$.

By Proposition 5.1 and Proposition 5.2, we have that $(V,q) \hookrightarrow \mathbb{C}^5$ is defined by

$$xv - yz = 0,$$

$$xu - y^{2} = 0,$$

$$yv - zu = 0,$$

$$z^{2} - 4yu + g_{2}xy + g_{3}x^{2} = 0,$$

$$zv - 4u^{2} + g_{2}y^{2} + g_{3}xy = 0.$$
(5.10)

where x, y, z, u, v are coordinates of \mathbb{C}^5 and g_2, g_3 depend on the elliptic curve A.

The next step is to calculate the miniversal deformation of (V, q) for general g_2, g_3 using Singular ([DGPS] a computer algebra system for polynomial computations). By calculation, the miniversal deformation (V, q) is defined as follows. Let $\mathscr{X} \subseteq \mathbb{C}^5 \times \mathbb{C}^6$ be the subvariety defined by

$$-yz + xv - Az - g_2Cx + 4Cu + Eyv + Fy + AEv + AF = 0,$$

$$-y^2 + xu - Ay + Cz + Dx = 0,$$

$$-zu + yv + g_3Cx - Dz + Euv + Fu + BC + DEv + DF = 0,$$

$$g_3x^2 + g_2xy + z^2 - 4yu + Bx - Ezv - Fz = 0,$$

$$g_3xy + g_2y^2 - 4u^2 + zv + g_3Ax + g_2Ay + By - g_2Cz - 4Du + AB = 0.$$
(5.11)

where x, y, z, u, v are coordinates of \mathbb{C}^5 and A, B, C, D, E, F are coordinated of the base space \mathbb{C}^6 . Then $\phi : (\mathcal{X}, 0) \to (\mathbb{C}^6, 0)$ is the miniversal deformation of (V, q) for general g_2, g_3 ("general" means that there exists a Zariski open set $U \subset \mathbb{C}^2$ such that if $(g_2, g_3) \in U$ then the above statement holds), where ϕ is induced by the projection $\mathbb{C}^5 \times \mathbb{C}^6 \to \mathbb{C}^6$.

Consider a line $i: l \hookrightarrow \mathbb{C}^6$ in the base space, which is given by C = s and A = B = D = E = F = 0. Restrict the deformation to the line l, then we get a three-dimensional germ $(X, 0) \subseteq (\mathbb{C}^6, 0)$ which is defined by

$$f_{1} = -yz + xv - g_{2}sx + 4su = 0,$$

$$f_{2} = -y^{2} + xu + sz = 0,$$

$$f_{3} = -zu + yv + g_{3}sx = 0,$$

$$f_{4} = g_{3}x^{2} + g_{2}xy + z^{2} - 4yu = 0,$$

$$f_{5} = g_{3}xy + g_{2}y^{2} - 4u^{2} + zv - g_{2}sz = 0.$$

$$f_{5} = g_{3}xy + g_{2}y^{2} - 4u^{2} + zv - g_{2}sz = 0.$$

where x, y, z, u, v, s are coordinates of \mathbb{C}^6 and g_2, g_3 depend on the ellptic curve A.

Using SINGULAR, we can check that for general $g_2, g_3, (X, 0)$ is an isolated singularity. $\dim(V, q) = \dim(X, 0) - 1$ and $(V, q) = (X, 0) \cap \{s = 0\}$, hence (V, q) is non-complete intersection implies that (X, 0) is non-complete intersection.

The following theorem tells us that (X, 0) is Gorenstein.

Theorem 5.1. [Is] Let $\pi: (\mathscr{X}, x) \to (C, 0)$ be a one-parameter deformation of a Gorenstein singularity (X, x), then (\mathscr{X}, x) is a Gorenstein singularity.

Finally we need to check that (X,0) is a rational singularity for general g_2, g_3 . Since (X,0) is a homogeneous Gorenstein singularity, there is a homogeneous nowhere zero holomorphic 3-form on $X - \{0\}$ near 0. In order to prove that (X,0) is rational, we only need to check that the degree of the 3-form is positive.

We will construct a nowhere zero holomorphic 3-form on $X - \{0\}$. We firstly recall some notations. Let $S \hookrightarrow \mathbf{A}_k^N = Spec(k[x_1, \dots, x_N])$ be a reduced subscheme of pure dimension n, where k is a field. Let f_1, \dots, f_d be generators of the ideal I_S of S. Consider F_1, \dots, F_d with $F_i = \sum_{j=1}^d a_{i,j} f_j$ for general $a_{i,j} \in k$ such that the following three conditions are satisfied. Denote by T the scheme defined by the ideal $I_T = (F_1, \dots, F_r)$ where r = N - n.

- 1) Each irreducible component of T has dimension n, so T is complete intersection.
- 2) S is a closed subscheme of T and S = T at the generic point of every irreducible component of S.
- 3) Some minor Δ of the Jacobian matrix of F_1, \dots, F_r does not vanish at the generic point of any irreducible component of S. Without loss of generality, we may assume that $\Delta = \det(\partial F_i/x_j)_{i,j \le r}$.

Let ω_S (resp. ω_T) be the canonical sheaf of S (resp. T). Note that the stalk of ω_S at the generic point of an irreducible component Z of S is $\Omega^n_{K_Z/k}$, where K_Z is the residue field at the generic point of Z. Denote by K the product of the residue fields of the generic points of the irreducible components of S. Then we have the localization map $\omega_X \to \Omega^n_{K/k}$.

Proposition 5.3. [EM] With the above notation, there are canonical morphisms $u : \omega_S \to \omega_T \mid_S$ and $w : \omega_T \mid_S \to \Omega^n_{K/k}$ with the following properties:

- a) w is injective and identifies $\omega_T \mid_S$ with $\mathcal{O}_S \cdot \Delta^{-1} dx_{r+1} \wedge \cdots \wedge dx_N$.
- b) u is injective and the image of $w \circ u$ is $((I_T : I_S) + I_S)/I_S \cdot \Delta^{-1} dx_{r+1} \wedge \cdots \wedge dx_N$.
- c) $w \circ u$ is the localization map.

Now we look at the three dimension singularity (X,0) we have constructed, which is defined by the ideal $I_X = (f_1, f_2, \dots, f_5)$ in (5.12). Let U be the close subscheme of \mathbb{C}^6 defined by ideal $I_U = (f_3, f_4, f_5)$ then X is a close subvariety of U. By using SINGULAR, we compute the dimension of (U,0) is 3 for general g_2, g_3 , hence (U,0) is complete intersection for general g_2, g_3 . Using MAPLE, we compute $(I_U : I_X)$ and find that $((I_U : I_X) + I_X)/I_X$ is generated by one element $g_2y + g_3x$ as an ideal of $\mathbb{C}[x, y, z, u, v, s]/I_X$. Let

$$\Delta = \det \begin{pmatrix} \partial f_3/\partial x & \partial f_3/\partial y & \partial f_3/\partial z \\ \partial f_4/\partial x & \partial f_4/\partial y & \partial f_4/\partial z \\ \partial f_5/\partial x & \partial f_5/\partial y & \partial f_5/\partial z \end{pmatrix}.$$

It can be checked that $\Delta - (g_2y + g_3x)(g_2sv - 2g_2uy - 3g_3y^2 - v^2) \in I_X$. By Proposition 5.3,

$$\frac{du \wedge dv \wedge ds}{g_2sv - 2g_2uy - 3g_3y^2 - v^2}$$

is a nowhere zero 3-form on X - 0 near 0. Since the degree of the 3-form is positive, (X, 0) is a rational singularity. Hence (X, 0) is a three-dimensional isolated homogeneous rational Gorenstein singularity which is non-complete intersection for general g_2, g_3 .

Using SINGULAR, we calculate the multiplicity of (X,0) which is 5 for general parameters g_2, g_3 . We compute the miniversal deformation of (X,0) for general g_2, g_3 . By calculation, for general g_2, g_3 , dim $T^1 = 4$, dim $T^2 = 0$ and the miniversal deformation of (V,q) is

$$\pi: (\mathscr{X}, 0) \to (\mathbb{C}^4, 0).$$

The total space $\mathscr X$ is a subvariety of $\mathbb C^6 \times \mathbb C^4$ which is defined by

$$-yz + xv - g_2xs + 4us - Az + Dy + AD = 0,$$

$$-y^2 + xu + zs - Ay + Cx = 0,$$

$$-zu + yv + g_3xs + Bs - Cz + Du + CD = 0,$$

$$g_3x^2 + g_2xy + z^2 - 4yu + Bx - Dz = 0,$$

$$g_3xy + g_2y^2 - 4u^2 + zv - g_2zs + g_3Ax + g_2Ay + By - 4Cu$$

$$+ AB = 0,$$
(5.13)

where x, y, z, u, v, s are coordinates of \mathbb{C}^6 and A, B, C, D are coordinates of \mathbb{C}^4 . π is induced by the projection $\mathbb{C}^6 \times \mathbb{C}^4 \to \mathbb{C}^4$.

6. Self-intersection number $Z^2 = -6$

This section we consider a simple elliptic singularity with $Z^2 = A \cdot A = -6$. Let A be a smooth elliptic curve, p a point on A and M the total space of the line bundle corresponding to the divisor -6p. Collapse A to a point, we get a simple elliptic singularity

(V,q). By Theorem 3.3, we know that it is non-complete intersection. Similarly as Section 5, we can prove that $\Gamma(A,\mathcal{O})$ is generated by 6 elements

$$x = t$$
, $y = t\mathfrak{p}(z)$, $z = t\mathfrak{p}'(z)$, $u = t\mathfrak{p}^2(z)$, $v = t\mathfrak{p}(z)\mathfrak{p}'(z)$, $w = t(\mathfrak{p}'(z))^2$.

And their relations are generated by

$$xw - z^{2}$$
,
 $xv - yz$,
 $xu - y^{2}$,
 $yw - zv$,
 $yv - zu$,
 $z^{2} - 4yu + g_{2}xy + g_{3}x^{2}$,
 $zw - 4uv + g_{2}yz + g_{3}xz$,
 $zv - 4u^{2} + g_{2}y^{2} + g_{3}xy$,
 $uw - v^{2}$.
(6.14)

Hence $(V,q) \subseteq \mathbb{C}^6$ is defined by equations in (6.14). By using SINGULAR, we compute the miniversal deformation of (V,q) for general g_2, g_3 . The miniversal deformation of (V,q) is

$$\pi: (\mathscr{X}, 0) \to (\mathscr{B}, 0).$$

The base space $\mathscr{B} \subseteq \mathbb{C}^7$ is defined by

$$4B^{2} - g_{2}CF - g_{2}F^{2} + 4BG + 16g_{2}ABC + 8g_{2}ABF +$$

$$8g_{2}ACG + 4g_{2}AFG + 16g_{2}^{2}A^{2}C^{2} + 16g_{2}^{2}A^{2}CF + 4g_{2}^{2}A^{2}F^{2} = 0,$$

$$BD + -g_{2}CE + -g_{2}EF +^{2}g_{2}ACD + g_{2}ADF = 0,$$

$$-4BE + DF - 4EG + -8g_{2}ACE + -4g_{2}AEF = 0,$$

$$(6.15)$$

where A, B, C, D, E, F, G are coordinates of \mathbb{C}^7 . The total space \mathscr{X} is a subvariety of $\mathbb{C}^6 \times \mathbb{C}^7$ (its defining equations are too complicate to list here) and π is induced by the projection $\mathbb{C}^6 \times \mathbb{C}^7 \to \mathbb{C}^7$.

Consider a line $i: l \hookrightarrow \mathcal{B}$ in the base space, which is given by C = -F = s and A = B = D = E = G = 0. Restrict the deformation to the line l, then we get a three-dimensional germ $(X,0) \subseteq \mathbb{C}^7$ which is defined by the ideal $I_X = (f_1, f_2, \dots, f_9)$,

where

$$f_{1} = -4su + wx - z^{2},$$

$$f_{2} = vx - sz - yz,$$

$$f_{3} = ux - sy - y^{2},$$

$$f_{4} = -g_{3}sx - g_{2}sy + wy - vz,$$

$$f_{5} = vy - uz,$$

$$f_{6} = g_{3}x^{2} - 4uy + g_{2}xy + z^{2},$$

$$f_{7} = -4uv + wz + g_{3}xz + g_{2}yz,$$

$$f_{8} = -4u2 + g_{3}sx + g_{2}sy + g_{3}xy + g_{2}y^{2} + vz,$$

$$f_{9} = -g_{3}s^{2} - g_{2}su - v^{2} + uw - g_{3}su.$$

$$(6.16)$$

where x, y, z, u, v, w, s are coordinates of \mathbb{C}^7 .

Using SINGULAR, we can check that for general $g_2, g_3, (X, 0)$ is an isolated singularity. Theorem 5.1 tells us that (X, 0) is Gorenstein. (V, q) is non-complete intersection implies that (X, 0) is non-complete intersection.

Let U be the close subscheme of \mathbb{C}^7 defined by ideal $I_U = (f_1, f_2, f_3, f_4)$ then X is a close subvariety of U. By using SINGULAR, we compute the dimension of U is 3 for general g_2, g_3 , hence U is complete intersection for general g_2, g_3 . By using MAPLE, we find that $((I_U : I_X) + I_X)/I_X$ is generated by one element sx as an ideal of $\mathbb{C}[x, y, z, u, v, w, s]/I_X$. Let

$$\Delta = \det \begin{pmatrix} \partial f_1/\partial x & \partial f_1/\partial y & \partial f_1/\partial z & \partial f_1/\partial u \\ \partial f_2/\partial x & \partial f_2/\partial y & \partial f_2/\partial z & \partial f_2/\partial u \\ \partial f_3/\partial x & \partial f_3/\partial y & \partial f_3/\partial z & \partial f_3/\partial u \\ \partial f_4/\partial x & \partial f_4/\partial y & \partial f_4/\partial z & \partial f_4/\partial u. \end{pmatrix}.$$

It can be checked that $\Delta - (sx)(g_2sw - 2g_2vz - 3g_3z^2 - w^2) \in I_X$. By Proposition 5.3,

$$\frac{dv \wedge dw \wedge ds}{g_2sw - 2g_2vz - 3g_3z^2 - w^2}$$

is a nowhere zero 3-form on $X - \{0\}$ near 0. Since the degree of the 3-form is positive, so (X, 0) is a rational singularity. Hence (X, 0) is a three-dimensional isolated homogeneous rational Gorenstein singularity which is non-complete intersection for general g_2, g_3 .

We use SINGULAR to compute T^1 and T^2 of (X,0) and find that dim $T^1=3$ and dim $T^2=2$ for general g_2,g_3 .

Using SINGULAR, we calculate the multiplicity of (X,0) which is 6 for general parameters g_2, g_3 . We compute the miniversal deformation of (X,0) for general g_2, g_3 . By calculation, for general g_2, g_3 , dim $T^1 = 3$, dim $T^2 = 2$ and the miniversal deformation of

(V,q) is

$$\pi: (\mathscr{X}, 0) \to (\mathscr{B}, 0).$$

The total space \mathscr{X} is a subvariety of $\mathbb{C}^7 \times \mathbb{C}^3$ which is defined by

$$-z^{2} + xw - 4us + 4Ay + 4As + 4Bv = 0,$$

$$-yz + xv - zs - g_{2}Bx + 4Bu = 0,$$

$$-y^{2} + xu - ys + Bz + Cx = 0,$$

$$-zv + yw - g_{3}xs - g_{2}ys + 4Au + g_{2}Bz - 4g_{3}B^{2} + 4AC = 0,$$

$$-zu + yv + g_{3}Bx - Cz = 0,$$

$$g_{3}x^{2} + g_{2}xy + z^{2} - 4yu = 0,$$

$$g_{3}xz + g_{2}yz - 4uv + zw + 4Av - 4g_{3}By - 4g_{3}Bs = 0,$$

$$g_{3}xy + g_{2}y^{2} - 4u^{2} + zv + g_{3}xs + g_{2}ys - g_{2}Bz - 4Cu = 0,$$

$$-v^{2} + uw - g_{3}ys - g_{2}us - g_{3}s^{2} + g_{3}Ax + g_{2}Ay + Aw$$

$$-g_{3}Bz + g_{2}Bv + Cw - g_{2}Cs = 0,$$

$$(6.17)$$

where x, y, z, u, v, w, s are coordinates of \mathbb{C}^7 and A, B, C are coordinates of \mathbb{C}^3 . The base space $\mathscr{X} \subseteq \mathbb{C}^3$ is defined by

$$A^2 + AC = 0,$$

$$AB + BC = 0,$$
(6.18)

and π is induced by the projection $\mathbb{C}^7 \times \mathbb{C}^3 \to \mathbb{C}^3$.

7. Self-intersection number $Z^2 = -7$

This section we consider a simple elliptic singularity with $Z^2 = A \cdot A = -7$. Let A be a smooth elliptic curve, p a point on A and M the total space of the line bundle corresponding to the divisor -7p. Collapse A to a point, then we get a simple elliptic singularity (V, q). By Theorem 3.3, we know that it is non-complete intersection. Similarly as in Section 5, we can prove that $\Gamma(A, \mathcal{O})$ is generated by 7 elements

$$x = t$$
, $y = t\mathfrak{p}(z)$, $z = t\mathfrak{p}'(z)$, $u = t\mathfrak{p}^2(z)$, $v = t\mathfrak{p}(z)\mathfrak{p}'(z)$, $w = t(\mathfrak{p}'(z))^2$, $r = t\mathfrak{p}^2(z)\mathfrak{p}'(z)$.

And their relations are generated by

$$xw - z^{2}$$
.
 $xv - yz$.
 $xu - y^{2}$,
 $yw - zv$,
 $yv - zu$,
 $z^{2} - 4yu + g_{2}xy + g_{3}x^{2}$,
 $zw - 4uv + g_{2}yz + g_{3}xz$,
 $zv - 4u^{2} + g_{2}y^{2} + g_{3}xy$,
 $uw - v^{2}$,
 $xr - yv$,
 $yr - uv$,
 $zr - uw$,
 $vw - 4ur + g_{2}yv + g_{3}xv$,
 $w^{2} - 4vr + g_{2}yw + g_{3}xw$.
(7.19)

Hence $(V,q) \subseteq \mathbb{C}^7$ is defined by equations in (7.19). Unfortunately, the program to calculate its universal deformation for general g_2, g_3 takes too long time because it has too many defining equations, so we only calculate for the special case that $g_2 = 1$ and $g_3 = 0$. By calculation, the miniversal deformation of (V,q) (for $g_2 = 1$ and $g_3 = 0$) is

$$\pi:(\mathscr{X},0)\to(\mathscr{B},0).$$

The base space $\mathscr{B} \subseteq \mathbb{C}^7$ is defined by

$$4A^{2} + 8AF + 4F^{2} - 4CG - 8EG - DH + BE^{2} = 0,$$

$$-4AG - 4FG - CH - EH + BDG = 0,$$

$$AE - DG + GH = 0,$$

$$AD + CE + 2E^{2} + DF - AH - FH - BEG = 0,$$

$$2AC + 3AE + CF + EF + GH - ABG - BFG = 0,$$

$$-AD + CE + E^{2} + 4G^{2} - BEG = 0,$$

$$A^{2} + AF + CG + 2EG - BG^{2} = 0.$$
(7.20)

where A, B, C, D, E, F, G, H are coordinates of \mathbb{C}^8 . The total space \mathscr{X} is a subvariety of $\mathbb{C}^7 \times \mathbb{C}^8$ (its defining equations are too complicate to list here) and ϕ is induced by the projection $\mathbb{C}^7 \times \mathbb{C}^8 \to \mathbb{C}^8$.

Consider a line $i: l \hookrightarrow \mathcal{B}$ in the base space, which is given by C = s and A = B = D = E = F = G = H = 0. Restrict the deformation to the line l, then we get a three-dimensional germ $(X,0) \in \mathbb{C}^8$ which is defined by the ideal $I_X = (f_1, f_2, \dots, f_{14})$, where

$$f_{1} = -4sv + wx - z^{2},$$

$$f_{2} = -4su + sx + vx - yz,$$

$$f_{3} = ux - y^{2} - sz,$$

$$f_{4} = wy - sz - vz,$$

$$f_{5} = vy - uz,$$

$$f_{6} = -4uy + xy + z^{2},$$

$$f_{7} = -4uv + wz + yz,$$

$$f_{8} = -4u^{2} + y^{2} + sz + vz,$$

$$f_{9} = -sv - v^{2} + uw,$$

$$f_{10} = -sw + rx - sy - vy,$$

$$f_{11} = -su - uv + ry,$$

$$f_{12} = -uw + rz,$$

$$f_{13} = -4ru + sw + vw + sy + vy,$$

$$f_{14} = -4rv + w^{2} + wy.$$

$$(7.21)$$

where x, y, z, u, v, w, r, s are coordinates of \mathbb{C}^8 . Using SINGULAR, we can check that (X, 0) is an isolated singularity. Theorem 5.1 tells us that (X, 0) is Gorenstein. (V, q) is non-complete intersection implies that (X, 0) is non-complete intersection.

Let U be the close subscheme of \mathbb{C}^8 defined by ideal $I_U = (f_1, f_2, f_3, f_4, f_{14})$ then X is a close subvariety of U. Using SINGULAR, we compute the dimension of U is 3, hence U is complete intersection. Using MAPLE, we find that $((I_U : I_X) + I_X)/I_X$ is generated by one element $swx - sz^2$ as an ideal of $\mathbb{C}[x, y, z, u, v, w, r, s]/I_X$. Let

$$\Delta = \det \begin{pmatrix} \partial f_1/\partial x & \partial f_1/\partial y & \partial f_1/\partial z & \partial f_1/\partial u & \partial f_1/\partial v \\ \partial f_2/\partial x & \partial f_2/\partial y & \partial f_2/\partial z & \partial f_2/\partial u & \partial f_2/\partial v \\ \partial f_3/\partial x & \partial f_3/\partial y & \partial f_3/\partial z & \partial f_3/\partial u & \partial f_3/\partial v \\ \partial f_4/\partial x & \partial f_4/\partial y & \partial f_4/\partial z & \partial f_4/\partial u & \partial f_4/\partial v \\ \partial f_{14}/\partial x & \partial f_{14}/\partial y & \partial f_{14}/\partial z & \partial f_{14}/\partial u & \partial f_{14}/\partial v \end{pmatrix}.$$

It can be checked that $\Delta - (16r^2 - 4s^2 + 4v^2 - 16rz)(swx - sz^2) \in I_X$. By Proposition 5.3,

$$\frac{dw \wedge dr \wedge ds}{16r^2 - 4s^2 + 4v^2 - 16rz}$$

is a nowhere zero 3-form on $X - \{0\}$ near 0. Since the degree of the 3-form is positive, so (X, 0) is a rational singularity. Hence (X, 0), for $g_2 = 1$ and $g_3 = 0$, is a three-dimensional isolated homogeneous rational Gorenstein singularity which is non-complete intersection.

With the help of SINGULAR, we compute the semi-universal deformation of (X, 0) for $g_2 = 1$ and $g_3 = 0$. By calculation, dim $T^1 = 2$, dim $T^2 = 4$ and the miniversal deformation of (V, q) is

$$\pi: (\mathscr{X}, 0) \to (\mathscr{B}, 0).$$

The total space \mathscr{X} is a subvariety of $\mathbb{C}^8 \times \mathbb{C}^2$ which is defined by

$$-z^{2} + xw - 4vs - 4Ay + Bx - 4Bu = 0,$$

$$-yz + xv + xs - 4us - Bz = 0,$$

$$-y^{2} + xu - zs + Ax - By = 0,$$

$$-zv + yw - zs - 4Au = 0,$$

$$-zu + yv - Az = 0,$$

$$xy + z^{2} - 4yu = 0,$$

$$yz - 4uv + zw - 4Av + Bz = 0,$$

$$y^{2} - 4u^{2} + zv + zs - 4Au + By = 0,$$

$$-v^{2} + uw - vs - Ay = 0,$$

$$-yv + xr - ys - ws - Az - Bv - Bs = 0,$$

$$-uv + yr - us - 2Av - 2As = 0,$$

$$-uw + zr + Ay - Aw = 0,$$

$$yv + vw - 4ur + ys + ws + Bv + Bs = 0,$$

$$yw + w^{2} - 4vr - 4Au + Bw = 0,$$

$$(7.22)$$

where x, y, z, u, v, w, r, s are coordinates of \mathbb{C}^8 and A, B are coordinates of \mathbb{C}^2 . The base space $\mathscr{X} \subseteq \mathbb{C}^2$ is defined by

$$AB = 0,$$

$$A^2 = 0,$$

$$(7.23)$$

and π is induced by the projection $\mathbb{C}^8 \times \mathbb{C}^2 \to \mathbb{C}^2$.

REFERENCES

- [Ar] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1996), 129–136.
- [ALLM] P. Argyres, M. Lotito, Y. L and M. Martone, Geometric constraints on the space of N=2 SCFTs I: physical constraints on relevant deformations, arXiv:1505.04814 [hep-th].
- [CX1] B. Chen, D. Xie, S. T. Yau, S. S.-T. Yau and H. Zuo, $4d \mathcal{N} = 2$ SCFT and singularity theory Part II: complete intersection, Adv. Theor. Math. Phys. **21** (2017), no. 1, 121-145.
- [CX2] B. Chen, D. Xie, S. S.-T. Yau, S. T. Yau and H. Zuo, $4d \mathcal{N} = 2$ SCFT and singularity theory Part III: rigid singularity, [arXiv:1712.00464v1 [hep-th]].
- [DGPS] W. Decker, G.-M. Greuel, and G. Pfister, H. Schönemann, SINGULAR 4-1-0 A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2016).
- [DO] F. A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys. **307**, 41 (2003) [hep-th/0209056].
- [EM] L. Ein and M. Mustata, *Jet schemes and singularities*, Algebraic Geometry-Seattle 2005. Part 2, 505-546, Proc. Sympos. Pure Math., **80**, Part 2, Amer. Math. Soc., Providence, RI, 2009.
- [Gr] M. Gross, Primitive Calabi-Yau threefolds, Journal of Differential Geometry 45 (1997), no.2, 288-318.
- [GKP] A. Giveon, D. Kutasov and O. Pelc, *Holography for noncritical superstrings*, JHEP **9910**, 035 (1999) [hep-th/9907178].
- [GLS] G.M. Greuel, , C. Lossen, and E.I. Shustin, *Introduction to singularities and deformations*, Springer Science & Business Media, 2007.
- [Is] S. Ishii, Introduction to singularities, Springer, Tokyo, 2014. viii+223 pp. ISBN: 978-4-431-55080-8; 978-4-431-55081-5.
- [La1] H. Laufer, On rational singularities, Amer. J. Math. 94 (1972), 597–608.
- [La2] H. Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257–1295.
- [Se] J. P. Serre, Groupes algebriques et corps de classes, Actualités Scientifiques et Industrielles, no. 1264, Hermann, Paris, 1959.
- [SV] A. D. Shapere and C. Vafa, BPS structure of Argyres-Douglas superconformal theories, hepth/9910182.
- [SW] N. Seiberg and E. Witten, Electric magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426, 19 (1994) Erratum: [Nucl. Phys. B 430, 485 (1994)] [hep-th/9407087].
- [Wa] P. Wagreich, Elliptic singularities of surfaces, Amer. J. Math. 92 (1970), 419–454.
- [WX] Y. Wang, D. Xie, S. S.-T. Yau and S. T. Yau, 4d N=2 SCFT from Complete Intersection Singularity, Adv. Theor. Math. Phys. 21, 801 (2017) [arXiv:1606.06306 [hep-th]].
- [XY] D. Xie and S. T. Yau, $4d \mathcal{N} = 2$ SCFT and singularity theory Part I: classification, preprint, arXiv:math/1510.01324, (2015).
- [XY1] D. Xie and S. T. Yau, Semicontinuity of 4d $\mathcal{N}=2$ spectrum under renormalization group flow, JHEP **1603**, 094 (2016) [arXiv:1510.06036 [hep-th]].
- [XY2] D. Xie and S. T. Yau, New $\mathcal{N} = 2$ dualities, arXiv:1602.03529 [hep-th].
- [XY3] D. Xie and S. T. Yau, Argyres-Douglas matter and $\mathcal{N}=2$ dualities, arXiv:1701.01123 [hep-th].
- [XYY] D. Xie, W. Yan and S. T. Yau, Chiral algebra of Argyres-Douglas theory from M5 brane, arXiv:1604.02155 [hep-th].
- [YY] S. S.-T. Yau and Y. Yu, Algebraic classification of rational CR structures on topological 5-sphere with transversal holomorphic S^1 action in \mathbb{C}^4 , Math. Nachr. **246** (2002), no. 1, 207-233.

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, P. R. China.

 $Email\ address: {\tt chenby16@mails.tsinghua.edu.cn}$

DEPARTMENT OF MATHEMATICAL SCIENCES, TSINGHUA UNIVERSITY, BEIJING, 100084, P. R. CHINA.

Email address: yau@uic.edu

Department of Mathematics, Center of Mathematical Sciences and Applications, Jefferson Physical Laboratory, Harvard University, Cambridge, 02138, USA

Email address: yau@math.harvard.edu

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, P. R. China.

Email address: hqzuo@mail.tsinghua.edu.cn