Project 1: Predicting Catalog Demand

Step 1: Business and Data Understanding

Provide an explanation of the key decisions that need to be made. (500 word limit)

Key Decisions:

Answer these questions

- 1. What decisions needs to be made?
 - a. Shall we send catalog to these new 250 customers?
 - b. How much profit can we make from these new 250 customers?
 - c. Can expected profit from sending catalog to 250 new customers exceed \$10,000?
- 2. What data is needed to inform those decisions?
 - a. The gross margin for each catalog sending to customers
 - b. The cost of printing and sending catalog to customers
 - c. Data of customers that bought something from the catalog in the past including but not limited to:
 - i. Bought an item from a past catalog
 - ii. Average amount of items the customer buys from the company
 - iii. The total dollar amount that the customer spent ordering from our catalog

Step 2: Analysis, Modeling, and Validation

Provide a description of how you set up your linear regression model, what variables you used and why, and the results of the model. Visualizations are encouraged. (500 word limit)

Important: Use the p1-customers.xlsx to train your linear model.

At the minimum, answer these questions:

- How and why did you select the <u>predictor variables (see supplementary text)</u> in your model? You must explain how your continuous predictor variables you've chosen have a linear relationship with the target variable. Please refer to this <u>lesson</u> to help you explore your data and use scatterplots to search for linear relationships. You must include scatterplots in your answer.
 - Dataset contains
 - 3 continuous features and
 - 9 categorical features.
 - My target variable is Avg_Sale_Amount.
 - First I have to check the correlation between 2 continuous variables and the target variables.

!rplot of Avg_Num_Products_Purchased versus Avg_Sal

Scatterplot of Year versus Avg_Sale_Amount

- There is some positive relationship between Avg_Num_Products_Purchased and Avg_Sale_Amount variables.
- There is no visible relationship between #_Years_as_Customer variable and Avg_Sale_Amount variable.

- I have to exclude Name, CustomerID and Address variables from predictor variables, as this two features are not likely to have any relationship with the target variable.
- And I'll also exclude the State variable in this dataset since there is only one value in its field "CO".
- Since the customers to predict are new, they don't have any value in Responded_to_Last_Catalog variable. I have to exclude this variable too.
- Now, I have selected
 - Avg_Sale_Amount as my target variables and
 - Avg_Num_Products_Purchased and the remaining 4 categorical Variables as predictor variables.
- To find the relationship between these 4 categorical variables and the target variable, I have to run linear regression test model and check the correlation between these variables.
- I ran my linear regression model with 5 predictor variables and found that only 2 predictor variables are statistically significant for my training model.
 - Customer_Segment and Avg_Num_Products_Purchased
- So I decide to run my training model with
 - Avg_Sale_Amount as target variable and
 - Customer_Segment and Avg_Num_Products_Purchases as predictor variables.

Response: Avg_Sale_Amount				
	Sum Sq	DF	F value	Pr(>F)
Customer_Segment	27413020.63	3	480.37	< 2.2e-16 ***
City	478475.88	26	0.97	0.51066
ZIP	1290040.03	77	0.88	0.76054
Store_Number	194978.46	9	1.14	0.3312
Avg_Num_Products_Purchased	35308379.63	1	1856.17	Activate Wind 2,2e-16 ***
Residuals	42952075.43	2258		Go to Settings to activate Windows.

- 2. Explain why you believe your linear model is a good model. You must justify your reasoning using the statistical results that your regression model created. For each variable you selected, please justify how each variable is a good fit for your model by using the p-values and R-squared values that your model produced.
 - I have removed all other variables which are not statistically significant predictors of target variables to increase accuracy of my training mode.
 - The p value of all remaining coefficients of my model are less than 2.2 x 10⁻¹⁶ with multiple R-squared value of 0,8369 and adjusted R-Squared value of 0.8366.
 - Any predictor variables with p value less than 0.05 is considered statistically Significant. Any model with R-squared value above 0.70 is considered a "strong" model.

3. What is the best linear regression equation based on the available data? Each coefficient should have no more than 2 digits after the decimal (ex: 1.28)

Avg_Sale_Amont = 303.46 - 149.36 (If Customer_Segment: Loyalty Club Only) + 281.84 (If Customer_Segment: Loyalty Club and Credit Card) - 245.42 (If Customer_Segment: Store Mailing List) + 0 (If Customer_Segment: Cash) + 66.98 * Avg_Num_Products_Purchased

Step 3: Presentation/Visualization

Use your model results to provide a recommendation. (500 word limit)

At the minimum, answer these questions:

- 1. What is your recommendation? Should the company send the catalog to these 250 customers?
 - Yes. My recommendation is the company should send the catalog to these 250 customers.
- 2. How did you come up with your recommendation? (Please explain your process so reviewers can give you feedback on your process)
 - I first selected the predictor variables and built the linear model. Then scored the data on the mailing list, then multiplied "score" with "Score_Yes" (where Score_Yes is theprobability of purchase.) Then added up all values to get a combined value for 250 customers.
 - To get the expected profit from each customer, we have to subtract the cost of catalog (\$6.50) from expected gross margin for each customer (expected average sale amount * 0.50).
 - The expected gross margin from these 250 customers is \$23,612.
 The total cost for printing and distributing 250 catalog is \$1,625.
 The expected profit contribution will be \$21,987
 - The management want to send the catalog only if the expected profit contribution exceeds \$10,000. According to the training model, the expected profit contribution will be 2 time greater than the minimum expected profits. So, I'll recommend that the company should send the catalog.
- 3. What is the expected profit from the new catalog (assuming the catalog is sent to these 250 customers)?

Assuming the catalog is sent to these 250 customers, expected profit is \$21,987.44