

CMSC 233: Computer Networking

Lecture 1: Introduction

Oct 1, 2018

Logistics

- Faculty
 - Heather Zheng (htzheng at cs.uchicago.edu)
 - Office hour: Monday 3pm or by appointment Location: 371 Crerar
 - http://people.cs.uchicago.edu/~htzheng/teach/cs23300/fall18/
- Teaching Assistants
 - Zhi Hong & Neng Huang
 - hongzhi@uchicago.edu, nenghuang@uchicago.edu
 - Office hours: TBD
- Lectures
 - M/W: 1:30-2:50 PM
 - Place: here (Rosenwald 011)

What is this class about?

- Networks have changed our world
 - Email, web, BitTorrent, Facebook, Uber/Lyft, Drones, Self-driving cars ...
 - Now integral infrastructure for every industry
 - Knowledge about how protocols work (and ability to build them) is critical for your future careers
- There's a lot to cover, and it's a moving target
 - Standard IP protocols and tools
 - Infrastructure services
 - Secure, private communication
 - Application level protocols
 - Future Internet, data centers, social networks, mobile networks

A Lot of Topics (Will Evolve)

- UNIX, C, TCP/IP, the real world
 - Autoconf, automake, libtools
 - Tcpdump, libpcap, libnet, netcat
- Client-server programming
 - Socket programming
 - RPC programming
- Data formats and data translation
 - XDR, MIME, HTML, CSS, XML, XSL...
- Secure communication
 - SSL, TLS, X-Mime, OpenPGP
- Infrastructure services
 - Naming: DNS and extensions
 - Routing protocols: RIP, OSPF, BGP
- Application protocols

- HTTP, SMTP, SSH, FTP
- Web-based applications
 - Apache
 - Server-side scripting (PHP, Perl)
 - Client-side scripting (JavaScript)
 - Data access
- Advanced topics
 - Mobile/wireless networks
 - Peer-to-peer networks
 - Datacenters and cloud computing
 - Social Networks

Textbooks

- Two books, both "optional"
 - Computer Networking: A Top-Down Approach Featuring the Internet, by Kurose & Ross, "recent" edition
 - "Top-down" view of Internet, great for conceptual understanding
 - Internetworking with TCP/IP, Vol. III: Client-Server Programming and Applications (Linux/Posix Sockets Version), by Comer and Stevens, Prentice Hall, 2001.
 - "programmer" view of networking, great for coding references

One Aside on Teaching Style

- Ask questions in class
 - I may slip and assume things you don't know
 - I tend to talk fast if no one stops me
 - Solution: slow me down with questions
- See something that can be improved?
 - Tell me, and I'll consider it
 - This class is adaptable, (almost) nothing is set in stone

Administrivia

- Course webpage
 - http://people.cs.uchicago.edu/~htzheng/teach/cs23300/fall18/
- Piazza = Class discussion group / mailing list
 - Sign up today please
 - https://piazza.com/uchicago/fall2018/cmsc23300/home
 - Lectures will be posted after class
 - Do not forget, your responsibility to know lecture material!

Deadlines

- Unless otherwise specified, assignments due at 11:59PM
- Special circumstances must be brought to me before deadlines, not after
- Except for true emergenciesTM, late assignments will not be accepted
 - One extension available / quarter, 2 days (cannot be split)

About Grading

Projects	5/20/25%
Class quizzes	5%
Exam 1	20%
Exam 2	25%

- Focus on learning how to build network applications
 - Assignments will demand time and dedication
- Cheating / plagiarism not tolerated
 - Projects to be done individually
 - Discussion, idea sharing is OK, sharing code is not
 - Code will be run through similarity checkers
 - Cheaters will fail the course, and be reported

Three Projects

- Ultimate goal(s)
 - Prepare you for the "real world"
 - Get exposure to real network protocols and applications
- Three homework/projects
 - Simple network application
 - FTP
 - Fun project, more details TBD

Everyone still awake?

- Let's take a quiz...
- No stress, this is for my benefit only
 - Not one of the class quizzes
 - Will not count in any way towards your grade

What does AIMD stand for

- a) Active Implantable Medical Devices
- b) Accounting and Information Management Division
- c) Additive Increase, Multiplicative Decrease
- d) Aircraft Immediate Maintenance Department
- e) Ab Initio Molecular Dynamics

• The first emoticon is commonly credited to Kevin Mackenzie in 1979, and it looked like:

```
1. :)
```

```
2. :-)
```

- 3. -)
- 4. ;)

• Of the 247 BILLION email messages sent every day, X% are pure spam. X=?

- 1. 18%
- 2. 5%
- 3. 81%
- 4. 63%

Internet History https://www.youtube.com/watch?v=9hlQjrMHTv4

https://www.youtube.com/watch?v=h8K49dD52WA

https://www.youtube.com/watch?v=1UStbvRnwmQ

https://www.youtube.com/watch?v=XE FPEFpHt4

Why study Networks?

Networks **have** transformed everything

- The way we do business
 - E-commerce, advertising, cloud-computing
- The way we have relationships
 - Facebook friends, E-mail, IM, virtual worlds
- The way we learn
 - Wikipedia, MOOCs, search engines
- The way we govern and view law
 - E-voting, censorship, copyright, cyber-attacks
- The way we cure disease
 - Digital health, remote diagnostics

Networks are big business

- Many large and influential networking companies
 - Cisco, Broadcom, AT&T, Verizon, Akamai, Huawei, ...
 - \$200B+ industry (carrier and enterprise alone)
- Networking central to most technology companies
 - Google, Facebook, Uber, Microsoft, HP, Dell, VMware,

. . .

Networking research has impact

- The Internet started as a research experiment!
- 4 of 10 most cited authors work in networking
- Many successful companies have emerged from networking research(ers)

But why are networks interesting?

"What's your formal model for the Internet?" -- theorists

"Aren't you just writing software for networks" – OS community

"You don't have performance benchmarks???" - hardware folks

"It's just another communication network!" – old timers at AT&T

"What's with all these TLA protocols?" – all

"But the Internet seems to be working..." - my parents

A few defining characteristics of the Internet

A federated system

The <u>Internet interconnects different networks</u> (>18,000 ISPs)

One common protocol -- the "Internet Protocol (IP) -- between users and the network and between networks

A federated system

- Interoperability is the Internet's most important goal
- Leads to a constant tussle between business and technical factors
 - competing ISPs must cooperate to serve their customers
 - practical realities of incentives, economics and realworld trust determine physical topology and path selection
 - a common protocol is great for interoperability ...
 - but complicates innovation

Tremendous scale

- 3.2 Billion users (~half of world population)
- 1 Billion unique websites (since 2014)
- 205 Billion emails sent per day
- 2 Billion smartphones
- 2 Billion Facebook users (monthly active users)
- 300 hours of video uploaded to YouTube every minute
- Switches that move 300Terabits/second (10¹⁴)
- Links that carry 100Gigabits/second

1 minute in Internet

Enormous diversity and dynamic range

- Communication latency: microseconds to seconds (10⁶)
- Bandwidth: 1Kbits/second to 100 Gigabits/second (10⁷)
- Packet loss: 0 90%
- Technology: optical, wireless, satellite, copper
- Endpoint devices: sensors, cell phones, datacenters, bikes/cars
- Applications: skype, live video, gaming, remote medicine,
- Users: the governing, governed, operators, selfish, <u>malicious</u>, naïve, savvy, embarrassed, paranoid, ...

Constant Evolution

1970s:

- •56kilobits/second "backbone" links
- •<100 computers, a handful of sites in the US
- •Telnet and file transfer are the "killer" applications

Today

- •100+Gigabits/second backbone links
- •5B+ devices, all over the globe
- •20M Facebook apps installed per day

Asynchronous Operation

- Fundamental constraint: speed of light
- Consider: How many cycles does your 3GHz CPU in Chicago execute before it can possibly get a response from a message it sends to a server in Hawaii?
 - Chicago to Hawaii: 4,189 km
 - Traveling at 300,000 km/s: 13.96 milliseconds
 - Then back to Chicago: $2 \times 13.96 = 28$ milliseconds
 - -3,000,000,000 cycles/sec * 0.028 = 84,000,000 cycles!
- Thus, communication feedback is always *dated*

Prone to Failure

- To send a message, all components along a path must function correctly
 - software, modem, wireless access point, firewall, links, network interface cards, switches,...
 - Including human operators
- Consider: 50 components, that work correctly 99% of time → 39.5% chance communication will fail
- Plus, recall
 - scale \rightarrow lots of components
 - asynchrony → takes a long time to hear (bad) news

An Engineered System

- Constrained by limits of available technology
 - Link bandwidths
 - Switch port counts
 - Bit error rates
 - Cost
 - **–** ...

 According to legend, Amazon became the number one shopping site before Google was on, because?

- Yahoo would list the sites in their directory alphabetically!

Recap: The Internet is...

- A federated system
- Of enormous scale
- Dynamic range
- Diversity
- Constantly evolving
- Asynchronous in operation
- Failure prone
- Constrained by what's practical to engineer
- Too complex for theoretical models
- "Working code" needn't mean much
- Performance benchmarks are too narrow

We will study networks in cs23300!

Before you go, remember to...

- Sign up for Piazza page
 - https://piazza.com/uchicago/fall2018/cmsc233 00/home
 - Link also on class webpage
 - Get to know your TAs (Zhi, Neng)
 - they will likely save your life at least once this quarter
 - See you Wed ...

BACKUP ON INTERNET HISTORY

Internet History

- 1961 Kleinrock @ MIT writes paper on packet-switched network
- 1962 Licklider's vision of Galactic Network
- 1965 Roberts connects two computers over phone line
- 1967 Roberts publishes vision of ARPANET
- 1969 BBN installs first InterfaceMsgProcessor at UCLA
 - 2nd node installed at SRI, then at UCSB and Utah
- 1970 Network Control Protocol
 - Assumed reliable transmission!
- 1972 Public demonstration of ARPANET
- 1972 Email invented by Tomlinson @ BBN
- 1972 Kahn @ DARPA advocates Open Architecture networking
 - Joined by Cerf @ Stanford to write TCP

Internet Evolution 1969

THE ARPA NETWORK

DEC 1969

4 NODES

FIGURE 6.2 Drawing of 4 Node Network (Courtesy of Alex McKenzie)

Internet Evolution (1960s plan)

Internet Evolution (April 1971)

Internet Evolution (Sept. 1971)

Internet Evolution (Sept. 1973)

ARPA NETWORK, LOGICAL MAP, SEPTEMBER 1973

History Continued

- 1974 Cerf and Kahn paper on TCP
 - Included basic flow control, parameters unclear
 - Experiments showed non-ideal for voice txns, thus separated out IP
- 1980 TCP/IP adopted as defense standard
- 1983 Global NCP to TCP/IP flag day
 - planned for several years
- 198x XNS, DECbit, and other protocols
- 1985 NSFnet (picks TCP/IP)
- 198x Internet meltdowns due to congestion
- 1986+ Van Jacobson saves the Internet (BSD TCP)
- 1988 Deering and Cheriton propose multicast
- 199x QoS rises and falls, ATM rises and falls
- 1994 Internet goes commercial
- 200x The Internet boom and bust
- 2006+

What's next?

- Internet of (Insecure) Things?
- Real-time Streaming Media everywhere?
- Autonomous Mobile Devices?