Tema 6. Análisis y diseño de circuitos secuenciales

Circuitos Electrónicos Digitales E.T.S.I. Informática Universidad de Sevilla

Contenidos

- Introducción
- Biestables
- Máquinas de estados finitos y circuitos secuenciales síncronos (CSS)
- Análisis de CSS
- Diseño de CSS

Introducción

- Muchos problemas prácticos no pueden resolverse sólo mediante definición de funciones de conmutación.
- Se necesita que la acción del sistema tenga en cuenta las entradas y el estado del sistema.
- Para almacenar un estado son necesarios nuevos elementos de circuito: elementos de memoria.
- En este tema
 - Elementos de memoria (biestables).
 - Concepto de estado y de circuito secuencial.
 - Técnicas de diseño y análisis de circuitos secuenciales.

Biestables

- Introducción
- Biestables
 - Introducción
 - Biestable SR asíncrono
 - Biestables síncronos. Señal de reloj
 - Otros biestables síncronos
 - Entradas asíncronas de los biestables
 - Consideraciones temporales
- Máquinas de estados finitos y circuitos secuenciales síncronos (CSS)
- Análisis de CSS
- Diseño de CSS

Biestables

- Los biestables son circuitos electrónicos que pueden asumir uno de dos estados estables que muestran en sus salidas
- Son el elemento básico de los dispositivos de memoria
- Poseen una o más entradas de control que hacen que conmute entre ambos estados estables
- Con n biestables se pueden "recordar" 2ⁿ estados

Biestable SR. Representación formal

Símbolos

Tabla de estados

Diagrama de estados

Tabla de excitación

$q \rightarrow Q$	SR	
0→ 0	0x	
0 → 1	10	
1 → 0	01	
1→ 1	х0	

Biestables síncronos

- En circuitos reales con miles (o millones) de biestables es muy útil que todos cambien de estado a la vez: simplificación del proceso de diseño.
- Los cambios de estado se producen "sincronizados" con una "señal de reloj" (CK)
- Tipos de sincronización:
 - Por nivel: cuando CK tiene un valor determinado, alto (1) o bajo (0).
 - Por flanco: cuando CK cambia de 0 a 1 (flanco de subida) o de 1 a 0 (flanco de bajada).
- Flanco: más conveniente.
 - Determina de forma precisa el instante de cambio
 - Minimiza errores en los circuitos

Biestables síncronos

Otros biestables síncronos

- SR
- . JK
 - Similar a SR: J~S, K~R
 - Función de complemento para J=K=1
- . D
 - Una única entrada que indica el próximo estado.
 - Fácil de usar e implementar.
- . T
 - Una única entrada que permite complementar el estado.
 - Útil en aplicaciones especiales.

Biestable JK

Símbolos

Tabla de estados

Diagrama de estados

Tabla de excitación

$q \rightarrow Q$	JK
0→ 0	0x
0 → 1	1x
1 → 0	x1
1→ 1	х0

Biestable D

Símbolos

Diagrama de estados

Tabla de excitación

$q \rightarrow Q$	D
0→ 0	0
0 → 1	1
1 → 0	0
1→ 1	1

Biestable T

Símbolos

Tabla de estados

Diagrama de estados

Tabla de excitación

$q \rightarrow Q$	Т
0→ 0	0
0 → 1	1
1 → 0	1
1→ 1	0

Entradas asíncronas de los biestables

- Permiten cargar un estado determinado de forma sencilla
 - CL (clear): puesta a cero
 - PR (preset): puesta a uno
- Operan inmediatamente cuando se activan:
 - Activas en nivel bajo (0)
 - Activas en nivel alto (1)
- Las entradas asíncronas <u>tienen prioridad</u> sobre las síncronas (J, K, D, T, ...)
- Resuelven el problema de la iniciación en los circuitos digitales complejos
 - millones de biestables
 - necesidad de partir de un estado conocido

Entradas asíncronas de los biestables

Consideraciones temporales

- Las entradas síncronas no deben cambiar en un entorno del flanco activo de la señal de reloj para evitar cambios de estado no predecibles.
- Tiempo de set-up (ts)
 - Las entradas deben estar fijas desde un tiempo antes del flanco
- Tiempo de hold (th)
 - Las entradas deben permanecer fijas un tiempo después del flanco.

Consideraciones temporales

Máquinas de estados finitos y CSS

- Introducción
- Biestables
- Máquinas de estados finitos y circuitos secuenciales síncronos (CSS)
 - Concepto de máquina de estados
 - Circuitos secuenciales síncronos
 - Representaciones formales
 - Aplicaciones
- Análisis de CSS
- Diseño de CSS

Concepto de máquinas de estados

- "Máquina determinista de estados finitos"
- Componentes
 - Conjunto finito de estados (q ∈ S)
 - Conjunto de símbolos de entrada ($x \in \Sigma$)
 - Conjunto de símbolos de salida (z ∈ Γ)
 - Función de próximo estado (δ)
 - $Q = \delta(q, x)$
 - Función de salida (ω)
 - Modelo Mealy: $z = \omega(q, x)$
 - Modelo Moore: $z = \omega(q)$
- Operación
 - Por la entrada llegan símbolos en secuencia. Para cada símbolo de entrada la máquina genera un símbolo de salida.
 - Tras cada símbolo de entrada la máquina puede pasar a un nuevo estado.

Concepto de máquinas de estados

Circuitos secuenciales síncronos

- Las máquinas de estados finitos son un buen instrumento para modelar circuitos digitales con memoria.
- Los circuitos digitales con memoria son una tecnología adecuada para implementar máquinas de estados finitos.
 - Entradas/salidas: señales digitales de 1 o más bits.
 - Estado: valor almacenado en los biestables
 - Función de próximo estado: funciones combinacionales que actúan sobre las entradas de los biestables
 - Función de salida: función combinacional
- Los circuitos secuenciales síncronos implementan máquinas de estados finitos empleando funciones combinacionales y biestables.
- El cambio de estado se controla mediante una señal de reloj. Ej: biestables disparados por flanco.

Circuitos secuenciales síncronos

Representaciones formales

- Diagramas de estados
- Tabla de estados

Diagrama de estados. Mealy

Nodos

 Representan los estados. Se nombran de forma más o menos indentificativa. Ej. {A, B, C, ...}, {S0, S1, S2, ...}, {espera, comienzo, recibiendo, ...}

Arcos

- Indican las posibles transiciones desde cada estado (S).
- Se nombran con x/z:
 - x: valor de entrada que provoca la transición desde el estado S.
 - z: valor de salida generado en el estado S cuando la entrada vale x.

0/0

Tabla de estados. Mealy

- Información equivalente al diagrama de estados en forma de tabla de doble entrada (filas y columnas)
 - Posibles estados en filas
 - Posibles valores de entradas en columnas
 - Próximo estado y salida en cada celda
- Cada nodo del diagrama y los arcos que salen de él se corresponden a una fila de la tabla de estados.
- Pasar del diagrama de estados a la tabla de estados y viceversa es inmediato.

Tabla de estados. Mealy

Diagrama de estados. Moore

Nodos

- Representan los estados. Se nombran de forma más o menos indentificativa. Ej. {A, B, C, ...}, {S0, S1, S2, ...}, {espera, comienzo, recibiendo, ...}
- Cada estado lleva asociado un valor de salida correspondiente.

\rcos

- Indican las posibles transiciones desde cada estado (S).
- Se nombran con x: valor de entrada que provoca la transición desde el estado S.

Tabla de estados. Moore

- Información equivalente al diagrama de estados en forma de tabla de doble entrada (filas y columnas)
 - Posibles estados en filas
 - Posibles valores de entradas en columnas
 - Salida asociada al estado en la última columna (opcionalmente misma salida para cada entrada al estilo Mealy)
- Cada nodo del diagrama y los arcos que salen de él se corresponden a una fila de la tabla de estados.
- Pasar del diagrama de estados a la tabla de estados y viceversa es inmediato.

Tabla de estados. Moore

Aplicaciones de los circuitos secuenciales síncronos

Detectores de secuencia

- La salida se activa sólo en caso de que aparezca una determinada secuencia a la entrada.
- Generadores de secuencia
 - La salida genera una secuencia fija o variable en función de la entrada.
- Unidades de control
 - Las entradas modifican el estado y el estado define la actuación sobre un sistema externo (control de una barrera, control de temperatura, control de presencia, control de nivel de líquidos, etc.)
- Procesamiento secuencial
 - La secuencia de salida es el resultado de aplicar alguna operación a la secuencia de entrada (cálculo de la paridad, suma de una constante, producto por una constante,
 Todificación/decodificación secuencial en general).

Análisis de CSS

- Introducción
- Biestables
- Máquinas de estados finitos y circuitos secuenciales síncronos (CSS)
- Análisis de CSS
 - Análisis formal
 - Análisis temporal
- Diseño de CSS

Análisis formal

Análisis formal

- Proceso inverso a la síntesis
- Objetivo:
 - Partiendo del circuito construido (esquema del circuito), obtener el diagrama de estados de la máquina que implementa e interpretar su operación/utilidad.
- El proceso hasta obtener el diagrama de estados es sistemático.
- La interpretación no es sistemática
 - Experiencia
 - Información adicional
 - Etc.

Análisis lógico de CSS

TABLA DE EXCITACIÓN/SALIDA

TABLA DE TRANSICIÓN/SALIDA

Х	0	1
q_2q_1		
O O	(11)11,0	00,11,0
01	00,11,0	11,11,0
10	11,00,0	00,00,1
11	00,00,1	11,00,0

	Χ	0	1
Q_2Q_1			
00		(1)1,0	01,0
01		00,0	10,0
10		00,0	10,1
11		11,1	01,0

 $J_{2}K_{2}, J_{1}K_{1}, z$

 Q_2Q_1,z

DIAGRAMA DE ESTADO

Análisis lógico de CSS

Análisis lógico de CSS

Análisis temporal

Objetivo

- Dado un circuito diseñado (biestables, puertas, etc.),
 obtener el cronograma de las señales de salida para unas señales de entrada dadas.
- Procedimiento similar al de circuitos combinacionales
 - Parte combinacional: idéntica
 - Biestables (por flanco): observando el flanco activo del reloj y calculando la salida (nuevo estado) a partir de la tabla de estados del biestable
 - La salida cambia con el retraso definido desde el cambio en el reloj hasta el cambio en el estado $(t_{ck-\alpha})$

Diseño de CSS

- Introducción
- Biestables
- Máquinas de estados finitos y circuitos secuenciales síncronos (CSS)
- Análisis de CSS
- Diseño de CSS
 - Objetivos y procedimientos
 - Procedimiento de diseño manual
 - Procedimiento con herramientas de diseño

Objetivo

Objetivo

- Definir una máquina de estados que resuelva un problema dado.
- Implementar la máquina de estados mediante un circuito secuencial síncrono.

Procedimiento manual

Interpretación

- Es la fase más importante del diseño
- Es la fase menos sistemática
- Procedimiento/consejos
 - Definir claramente entradas y salidas.
 - Elegir Mealy o Moore según características del problema (sincronización de la salida)
 - Identificar y definir los estados adecuados de la forma más general posible
 - Establecer las transiciones y salidas necesarias
 - Capturar todos los detalles del problema en la máquina de estados
 - Comprobar el diagrama con una secuencia de entrada típica

Interpretación

Ejemplo

Diseñe un circuito con una entrada x y una salida z que detecte la aparición de la secuencia "1001" en la entrada. Cuando esto ocurre se activará la salida (z=1). El último "1" de una secuencia puede considerarse también el primer "1" de una secuencia posterior (detector con solapamiento).

Interpretación

X S	0	1
S0	S0,0	S1,0
S1	S2,0	S1,0
S 2	S3,0	S1,0
S 3	50,0	S1,1
'	NS	5,Z

S0: esperando primer "1"

S1: "1" recibido, esperando "0"

S2: "10" recibido, esperando "0"

S3: "100" recibido, esperando "1"

Reducción de estados. Ejemplo 2

X S	0	1
S0	S0,0	S1,0
S1	S2,0	S1,0
S 2	S3,0	S1,0
S3	S0,0	S1,1
	NS	5,Z

Tabla de estados minima

Asignación de estados

. Objetivo:

 Asignar valores binarios a los estados (codificación de estados) para su almacenamiento en biestables.

• Elección:

- Afecta al resultados final: número de componentes, tamaño, velocidad de operación, consumo de energía.
- Elección diferente según el objetivo (criterio de coste)

Opciones

- Algoritmos complejos
- Asignación arbitraria
- Un biestable por estado (códificación onehot)

Asignación de estados

Tabla de estados/salida

X S	0	1
50	S0,0	S1,0
S1	S2,0	S1,0
S 3	S0,0	S1,1
S2	S3,0	S1,0
1	NS	5,Z

Asignación de estados

5	dīdo	
S 0	00	
S1	01	
S2	10	
S3	11	

Tabla de transición de estados/salida

X	0	1
q ₁ q ₀ 00	00,0	01,0
01	10,0	01,0
11	00,0	01,1
10	11,0	01,0
	\overline{Q}_1	Q_0,Z

Elección de biestables

Objetivo

 Seleccionar qué tipo de biestables almacenarán los bits del estado codificado.

Opciones

- JK: reduce el coste de la parte combinacional.
- RS: más simple que el JK pero menos flexible.
- D: facilita el diseño, reduce el número de conexiones.
- T: más conveniente en aplicaciones específicas (contadores)

Elección de biestable. Ej: JK

Tabla de transición de estados/salida

Tabla de excitación

$q \rightarrow Q$	JK
$0 \rightarrow 0$	0x
0 → 1	1x
1 → 0	x1
1 → 1	x0

Tabla de excitación/salida

a a	0	1
q ₁ q ₂ 00	0x,0x,0	0x,1x,0
01	1x,0x,0	0x,x0,0
11	x1,x1,0	x1,x0,1
10	x0,1x,0	x1,1x,0
J_1K_1,J_0K_0,z		

Ecuaciones de excitación/salida

Ec. de excitación/salida

u u	0	1
q_1q_2 00	0	0
01	1	0
11	-	-
10	-	-
	J_1	

u u X	0	1
q_1q_2 00	-	-
01	-	-
11	1	1
10	0	1
K_1		

Ecuaciones de excitación/salida

Ec. de excitación/salida

u u X	0	1
q_1q_2	0	1
01	0	-
11	-	-
10	1	1
	J_0	

n n	0	1
q_1q_2	-	-
01	-	0
11	1	0
10	-	-
K_0		

Ecuaciones de excitación/salida

Ec. de excitación/salida

u u	0	1
q_1q_2	0	0
01	0	0
11	0	1
10	0	0
	-	7

Elección de biestable. Ej: D

- En el biestable D:
 - -Q = D
 - -D=Q

Tabla de transición de estados/salida

Tabla de excitación/salida

0,0	01,0	
1,0	00,0	
0,0	01,0	
0,0	01,1	
Q,z D,z		
	1,0 0,0 0,0	

Diseño de la parte combinacional

- La tabla de excitación/salida es una especificación de la parte combinacional.
- La implementación se realiza mediante cualquiera de las técnicas de diseño de C.C.
 - Dos niveles de puertas
 - Subsistemas: multiplexores, decodificadores, etc.
 - Etc.

Parte combinacional. Ejemplo

q_1q_2	0	1
00	0	0
01	1	0
11	X	0
10	0	0
	J_1	

 q_1q_2

00

01

11

10

 J_2

q_1q_2	0	1
00	X	X
01	Х	х
11	0	х
10	Х	х
•	K	, , 1

q_1q_2	0	1	
00	Х	Х	
01	0	Х	
11	Х	0	
10	Х	х	
	K	,	

q_1q_2	0	1
00	0	0
01	0	0
11	0	0
10	0	1
		 Z

$$J_1 = xq_2$$

 $K_1 = 0$
 $J_2 = xq_2$
 $K_2 = 0$
 $z = xq_1q_2$

Circuito. Ejemplo

$$J_1 = xq_2$$

 $K_1 = 0$
 $J_2 = xq_2$
 $K_2 = 0$
 $z = xq_1q_2$

Ejemplo. Resumen

0)/Q D			
q_1q_2	0	1	
00	0x,0x,0	0x,1x,0	
01	1x,x0,0	0x,0x,0	
11	x0,0x,0	0x,x0,0	
10	0x,0x,0	0x,1x,1	

X	0	1
A	A,0	В,0
В	C,0	A,0
С	D,0	В,0
D	A,0	В,1
Q,z		

a a	0	1	
q ₁ q ₂ 00	00,0	01,0	
01	11,0	0,00	
11	10,0	01,0	
10	00,0	01,1	
	Q,z		

$$J_{1} = xq_{2}$$

$$K_{1} = 0$$

$$J_{2} = xq_{2}$$

$$K_{2} = 0$$

$$z = xq_{1}q_{2}$$

