Day 3: On Formulas and Models

Peter Hull

Design-Based Regression Inference Fall 2024

Outline

- 1. Formula Treatments/Instruments
- 2. Nonlinear/Structural Models

- We've seen how a regression of y_i on x_i and w_i identifies a convex average of treatment effects when $E[x_i \mid y_i(\cdot), w_i] = E[x_i \mid w_i] = w_i' \gamma$
 - IV version: $E[z_i \mid y_i(\cdot), w_i] = w_i' \gamma$ and exclusion/monotonicity hold

- We've seen how a regression of y_i on x_i and w_i identifies a convex average of treatment effects when $E[x_i \mid y_i(\cdot), w_i] = E[x_i \mid w_i] = w_i' \gamma$
 - IV version: $E[z_i \mid y_i(\cdot), w_i] = w_i' \gamma$ and exclusion/monotonicity hold
- As it turns out, this gives us a way to robustly estimate causal effects with "formula" treatments/instruments, constructed from some exogenous shocks and other non-random variables

- We've seen how a regression of y_i on x_i and w_i identifies a convex average of treatment effects when $E[x_i \mid y_i(\cdot), w_i] = E[x_i \mid w_i] = w_i' \gamma$
 - IV version: $E[z_i \mid y_i(\cdot), w_i] = w_i' \gamma$ and exclusion/monotonicity hold
- As it turns out, this gives us a way to robustly estimate causal effects with "formula" treatments/instruments, constructed from some exogenous shocks and other non-random variables. E.g.:
 - Interacted treatments: $x_i = s_i g_i$, with exogenous shocks g_i

- We've seen how a regression of y_i on x_i and w_i identifies a convex average of treatment effects when $E[x_i \mid y_i(\cdot), w_i] = E[x_i \mid w_i] = w_i' \gamma$
 - IV version: $E[z_i \mid y_i(\cdot), w_i] = w_i' \gamma$ and exclusion/monotonicity hold
- As it turns out, this gives us a way to robustly estimate causal effects with "formula" treatments/instruments, constructed from some exogenous shocks and other non-random variables. E.g.:
 - Interacted treatments: $x_i = s_i g_i$, with exogenous shocks g_i
 - Shift-share instruments: $z_i = \sum_k s_{ik} g_k$, with exogenous shocks $\{g_k\}_{k=1}^K$

- We've seen how a regression of y_i on x_i and w_i identifies a convex average of treatment effects when $E[x_i \mid y_i(\cdot), w_i] = E[x_i \mid w_i] = w_i' \gamma$
 - IV version: $E[z_i \mid y_i(\cdot), w_i] = w_i' \gamma$ and exclusion/monotonicity hold
- As it turns out, this gives us a way to robustly estimate causal effects with "formula" treatments/instruments, constructed from some exogenous shocks and other non-random variables. E.g.:
 - Interacted treatments: $x_i = s_i g_i$, with exogenous shocks g_i
 - Shift-share instruments: $z_i = \sum_k s_{ik} g_k$, with exogenous shocks $\{g_k\}_{k=1}^K$
 - Spillover treatments: e.g. number of neighbors treated in an RCT

- We've seen how a regression of y_i on x_i and w_i identifies a convex average of treatment effects when $E[x_i \mid y_i(\cdot), w_i] = E[x_i \mid w_i] = w_i'\gamma$
 - IV version: $E[z_i \mid y_i(\cdot), w_i] = w_i' \gamma$ and exclusion/monotonicity hold
- As it turns out, this gives us a way to robustly estimate causal effects with "formula" treatments/instruments, constructed from some exogenous shocks and other non-random variables. E.g.:
 - Interacted treatments: $x_i = s_i g_i$, with exogenous shocks g_i
 - Shift-share instruments: $z_i = \sum_k s_{ik} g_k$, with exogenous shocks $\{g_k\}_{k=1}^K$
 - Spillover treatments: e.g. number of neighbors treated in an RCT
 - Instruments for policy eligibility, combining exogenous policy shocks & non-random measures of policy exposure (e.g. income/family structure)

- We've seen how a regression of y_i on x_i and w_i identifies a convex average of treatment effects when $E[x_i \mid y_i(\cdot), w_i] = E[x_i \mid w_i] = w_i'\gamma$
 - IV version: $E[z_i \mid y_i(\cdot), w_i] = w_i' \gamma$ and exclusion/monotonicity hold
- As it turns out, this gives us a way to robustly estimate causal effects with "formula" treatments/instruments, constructed from some exogenous shocks and other non-random variables. E.g.:
 - Interacted treatments: $x_i = s_i g_i$, with exogenous shocks g_i
 - Shift-share instruments: $z_i = \sum_k s_{ik} g_k$, with exogenous shocks $\{g_k\}_{k=1}^K$
 - Spillover treatments: e.g. number of neighbors treated in an RCT
 - Instruments for policy eligibility, combining exogenous policy shocks & non-random measures of policy exposure (e.g. income/family structure)
- Let's build up to these slowly...

- Suppose $g_i \mid y(\cdot), s \stackrel{iid}{\sim} G$ for some observed s_i
 - ullet E.g. g_i drawn in a simple RCT, with s_i being a baseline characteristics

- Suppose $g_i \mid y(\cdot), s \stackrel{iid}{\sim} G$ for some observed s_i
 - E.g. g_i drawn in a simple RCT, with s_i being a baseline characteristics
 - We are interested in the effects of $x_i = s_i g_i$: e.g. heterogeneous effects

- Suppose $g_i \mid y(\cdot), s \stackrel{iid}{\sim} G$ for some observed s_i
 - ullet E.g. g_i drawn in a simple RCT, with s_i being a baseline characteristics
 - We are interested in the effects of $x_i = s_i g_i$: e.g. heterogeneous effects
 - Perhaps estimated alongside direct effects of g_i (but don't worry about multiple treatments for now)

- Suppose $g_i \mid y(\cdot), s \stackrel{iid}{\sim} G$ for some observed s_i
 - E.g. g_i drawn in a simple RCT, with s_i being a baseline characteristics
 - We are interested in the effects of $x_i = s_i g_i$: e.g. heterogeneous effects
 - Perhaps estimated alongside direct effects of g_i (but don't worry about multiple treatments for now)
- The design-based approach says we need to adjust for:

$$E[x_i \mid s] =$$

- Suppose $g_i \mid y(\cdot), s \stackrel{iid}{\sim} G$ for some observed s_i
 - E.g. g_i drawn in a simple RCT, with s_i being a baseline characteristics
 - We are interested in the effects of $x_i = s_i g_i$: e.g. heterogeneous effects
 - Perhaps estimated alongside direct effects of g_i (but don't worry about multiple treatments for now)
- The design-based approach says we need to adjust for:

$$E[x_i \mid s] = E[s_i g_i \mid s] =$$

- Suppose $g_i \mid y(\cdot), s \stackrel{iid}{\sim} G$ for some observed s_i
 - E.g. g_i drawn in a simple RCT, with s_i being a baseline characteristics
 - We are interested in the effects of $x_i = s_i g_i$: e.g. heterogeneous effects
 - Perhaps estimated alongside direct effects of g_i (but don't worry about multiple treatments for now)
- The design-based approach says we need to adjust for:

$$E[x_i \mid s] = E[s_ig_i \mid s] = s_iE[g_i] =$$

- Suppose $g_i \mid y(\cdot), s \stackrel{iid}{\sim} G$ for some observed s_i
 - E.g. g_i drawn in a simple RCT, with s_i being a baseline characteristics
 - We are interested in the effects of $x_i = s_i g_i$: e.g. heterogeneous effects
 - Perhaps estimated alongside direct effects of g_i (but don't worry about multiple treatments for now)
- The design-based approach says we need to adjust for:

$$E[x_i \mid s] = E[s_i g_i \mid s] = s_i E[g_i] = s_i \mu$$

- Suppose $g_i \mid y(\cdot), s \stackrel{iid}{\sim} G$ for some observed s_i
 - E.g. g_i drawn in a simple RCT, with s_i being a baseline characteristics
 - We are interested in the effects of $x_i = s_i g_i$: e.g. heterogeneous effects
 - Perhaps estimated alongside direct effects of g_i (but don't worry about multiple treatments for now)
- The design-based approach says we need to adjust for:

$$E[x_i \mid s] = E[s_i g_i \mid s] = s_i E[g_i] = s_i \mu$$

I.e. need to control for s_i to just leverage the random variation in g_i

- Suppose $g_i \mid y(\cdot), s \stackrel{iid}{\sim} G$ for some observed s_i
 - E.g. g_i drawn in a simple RCT, with s_i being a baseline characteristics
 - We are interested in the effects of $x_i = s_i g_i$: e.g. heterogeneous effects
 - Perhaps estimated alongside direct effects of g_i (but don't worry about multiple treatments for now)
- The design-based approach says we need to adjust for:

$$E[x_i \mid s] = E[s_i g_i \mid s] = s_i E[g_i] = s_i \mu$$

- I.e. need to control for s_i to just leverage the random variation in g_i
 - Can use $s_i g_i$ as an IV controlling for s_i , given exclusion/monotonicity

- Now suppose $g_i \mid y(\cdot), s, q \stackrel{iid}{\sim} G(q_i)$: e.g., a stratified RCT
 - Again, we want to estimate the effects of $x_i = s_i g_i$ (or use it as an IV)

- Now suppose $g_i \mid y(\cdot), s, q \stackrel{iid}{\sim} G(q_i)$: e.g., a stratified RCT
 - Again, we want to estimate the effects of $x_i = s_i g_i$ (or use it as an IV)
- Now, for $\mu(q_i) = E[g_i \mid q_i]$:

$$E[x_i | s, q] = E[s_i g_i | s, q] = s_i E[g_i | s, q] = s_i \mu(q_i)$$

- Now suppose $g_i \mid y(\cdot), s, q \stackrel{iid}{\sim} G(q_i)$: e.g., a stratified RCT
 - Again, we want to estimate the effects of $x_i = s_i g_i$ (or use it as an IV)
- Now, for $\mu(q_i) = E[g_i \mid q_i]$:

$$E[x_i | s, q] = E[s_i g_i | s, q] = s_i E[g_i | s, q] = s_i \mu(q_i)$$

I.e. need to control for s_i interacted with a flexible function of q_i

• E.g. the interactions of s_i and strata fixed effects

- Now suppose $g_i \mid y(\cdot), s, q \stackrel{iid}{\sim} G(q_i)$: e.g., a stratified RCT
 - Again, we want to estimate the effects of $x_i = s_i g_i$ (or use it as an IV)
- Now, for $\mu(q_i) = E[g_i \mid q_i]$:

$$E[x_i | s, q] = E[s_i g_i | s, q] = s_i E[g_i | s, q] = s_i \mu(q_i)$$

I.e. need to control for s_i interacted with a flexible function of q_i

- \bullet E.g. the interactions of s_i and strata fixed effects
- Key point: the design of exogenous shocks g_i + knowledge of the "formula" s_ig_i tells us what controls are needed for identification

• Now suppose the shocks $g_k \mid y(\cdot), s \stackrel{iid}{\sim} G$ vary at a different "level" k, and we want to estimate effects with $z_i = \sum_k s_{ik} g_k$

- Now suppose the shocks $g_k \mid y(\cdot), s \stackrel{iid}{\sim} G$ vary at a different "level" k, and we want to estimate effects with $z_i = \sum_k s_{ik} g_k$
 - E.g. g_k are shocks to industries k and $s_{ik} \in (0,1)$ are regional measures of shock exposure, perhaps with $\sum_k s_{ik} = 1$ for all i

- Now suppose the shocks $g_k \mid y(\cdot), s \stackrel{iid}{\sim} G$ vary at a different "level" k, and we want to estimate effects with $z_i = \sum_k s_{ik} g_k$
 - E.g. g_k are shocks to industries k and $s_{ik} \in (0,1)$ are regional measures of shock exposure, perhaps with $\sum_k s_{ik} = 1$ for all i
- What is the "expected instrument"?

$$E[z_i \mid s] =$$

- Now suppose the shocks $g_k \mid y(\cdot), s \stackrel{iid}{\sim} G$ vary at a different "level" k, and we want to estimate effects with $z_i = \sum_k s_{ik} g_k$
 - E.g. g_k are shocks to industries k and $s_{ik} \in (0,1)$ are regional measures of shock exposure, perhaps with $\sum_k s_{ik} = 1$ for all i
- What is the "expected instrument"?

$$E[z_i \mid s] = E\left[\sum_k s_{ik} g_k \mid s\right] =$$

- Now suppose the shocks $g_k \mid y(\cdot), s \stackrel{iid}{\sim} G$ vary at a different "level" k, and we want to estimate effects with $z_i = \sum_k s_{ik} g_k$
 - E.g. g_k are shocks to industries k and $s_{ik} \in (0,1)$ are regional measures of shock exposure, perhaps with $\sum_k s_{ik} = 1$ for all i
- What is the "expected instrument"?

$$E[z_i \mid s] = E\left[\sum_k s_{ik} g_k \mid s\right] = \sum_k s_{ik} E[g_k] =$$

- Now suppose the shocks $g_k \mid y(\cdot), s \stackrel{iid}{\sim} G$ vary at a different "level" k, and we want to estimate effects with $z_i = \sum_k s_{ik} g_k$
 - E.g. g_k are shocks to industries k and $s_{ik} \in (0,1)$ are regional measures of shock exposure, perhaps with $\sum_k s_{ik} = 1$ for all i
- What is the "expected instrument"?

$$E[z_i \mid s] = E\left[\sum_k s_{ik} g_k \mid s\right] = \sum_k s_{ik} E[g_k] = \left(\sum_k s_{ik}\right) \mu$$

- Now suppose the shocks $g_k \mid y(\cdot), s \stackrel{iid}{\sim} G$ vary at a different "level" k, and we want to estimate effects with $z_i = \sum_k s_{ik} g_k$
 - E.g. g_k are shocks to industries k and $s_{ik} \in (0,1)$ are regional measures of shock exposure, perhaps with $\sum_k s_{ik} = 1$ for all i
- What is the "expected instrument"?

$$E[z_i \mid s] = E\left[\sum_k s_{ik} g_k \mid s\right] = \sum_k s_{ik} E[g_k] = \left(\sum_k s_{ik}\right) \mu$$

• I.e. need to control for the "sum of shares" $w_i = \sum_k s_{ik}$ (which may be one, in which case no controls needed!)

- Now suppose the shocks $g_k \mid y(\cdot), s \stackrel{iid}{\sim} G$ vary at a different "level" k, and we want to estimate effects with $z_i = \sum_k s_{ik} g_k$
 - E.g. g_k are shocks to industries k and $s_{ik} \in (0,1)$ are regional measures of shock exposure, perhaps with $\sum_k s_{ik} = 1$ for all i
- What is the "expected instrument"?

$$E[z_i \mid s] = E\left[\sum_k s_{ik} g_k \mid s\right] = \sum_k s_{ik} E[g_k] = \left(\sum_k s_{ik}\right) \mu$$

- I.e. need to control for the "sum of shares" $w_i = \sum_k s_{ik}$ (which may be one, in which case no controls needed!)
- Cool new twist: we can use design to "translate" shocks from one level (e.g. industries) to estimate effects at another (e.g. regions)!

• Now suppose $E[g_k \mid y(\cdot), s, q] = q'_k \mu$, still with $z_i = \sum_k s_{ik} g_k$

- Now suppose $E[g_k \mid y(\cdot), s, q] = q'_k \mu$, still with $z_i = \sum_k s_{ik} g_k$
 - E.g. Autor et al. (2014) leverage industry shocks g_k from China over two periods, with q_k being a set of period FE

- Now suppose $E[g_k \mid y(\cdot), s, q] = q'_k \mu$, still with $z_i = \sum_k s_{ik} g_k$
 - E.g. Autor et al. (2014) leverage industry shocks g_k from China over two periods, with q_k being a set of period FE
 - Want to only use within-period shock variation: e.g. shocks and unobservables could have different means across time

- Now suppose $E[g_k \mid y(\cdot), s, q] = q'_k \mu$, still with $z_i = \sum_k s_{ik} g_k$
 - E.g. Autor et al. (2014) leverage industry shocks g_k from China over two periods, with q_k being a set of period FE
 - Want to only use within-period shock variation: e.g. shocks and unobservables could have different means across time
- What is the "expected instrument"?

$$E[z_i \mid s, q] = E\left[\sum_k s_{ik} g_k \mid s, q\right] = \sum_k s_{ik} E[g_k \mid q_k] = \left(\sum_k s_{ik} q_k\right)' \mu$$

- Now suppose $E[g_k \mid y(\cdot), s, q] = q'_k \mu$, still with $z_i = \sum_k s_{ik} g_k$
 - E.g. Autor et al. (2014) leverage industry shocks g_k from China over two periods, with q_k being a set of period FE
 - Want to only use within-period shock variation: e.g. shocks and unobservables could have different means across time
- What is the "expected instrument"?

$$E[z_i \mid s, q] = E\left[\sum_k s_{ik} g_k \mid s, q\right] = \sum_k s_{ik} E[g_k \mid q_k] = \left(\sum_k s_{ik} q_k\right)' \mu$$

• I.e. need to control for the share-weighted average of shock-level confounders, $w_i = \sum_k s_{ik} q_k$

- Now suppose $E[g_k \mid y(\cdot), s, q] = q'_k \mu$, still with $z_i = \sum_k s_{ik} g_k$
 - E.g. Autor et al. (2014) leverage industry shocks g_k from China over two periods, with q_k being a set of period FE
 - Want to only use within-period shock variation: e.g. shocks and unobservables could have different means across time
- What is the "expected instrument"?

$$E[z_i \mid s, q] = E\left[\sum_k s_{ik} g_k \mid s, q\right] = \sum_k s_{ik} E[g_k \mid q_k] = \left(\sum_k s_{ik} q_k\right)' \mu$$

- I.e. need to control for the share-weighted average of shock-level confounders, $w_i = \sum_k s_{ik} q_k$
- In Autor et al. (2014), this means controlling for the sum-of-shares interacted with period FE

Illustration: Autor et al. (2014) China Shock

ADH study the effects of rising Chinese import competition on US commuting zones, 1991-2000 and 2000-2007

- Treatment x_{it} : local growth of Chinese imports in \$1,000/worker
- \bullet Main outcome y_{it} : local change in manufacturing employment share

Illustration: Autor et al. (2014) China Shock

ADH study the effects of rising Chinese import competition on US commuting zones, 1991-2000 and 2000-2007

- Treatment x_{it} : local growth of Chinese imports in \$1,000/worker
- ullet Main outcome y_{it} : local change in manufacturing employment share

To address endogeneity, ADH use a SSIV $z_{it} = \sum_{n} s_{int} g_{nt}$

- n: 397 SIC4 manufacturing industries \times two periods
- \bullet g_{nt} : growth of Chinese imports in non-US economies per US worker
- s_{int} : lagged share of manufacturing industry n in total employment of location i; hence $\sum_{n} s_{int}$ is i's manufacturing employment share

Illustration: Autor et al. (2014) China Shock

ADH study the effects of rising Chinese import competition on US commuting zones, 1991-2000 and 2000-2007

- Treatment x_{it} : local growth of Chinese imports in \$1,000/worker
- Main outcome y_{it} : local change in manufacturing employment share

To address endogeneity, ADH use a SSIV $z_{it} = \sum_{n} s_{int} g_{nt}$

- n: 397 SIC4 manufacturing industries × two periods
- \bullet g_{nt} : growth of Chinese imports in non-US economies per US worker
- s_{int} : lagged share of manufacturing industry n in total employment of location i; hence $\sum_{n} s_{int}$ is i's manufacturing employment share

Design-based justification: random industry productivity shocks in China, jointly affecting imports in the U.S. and elsewhere $\,$

• Observed g_{nt} proxy for latent as-if-randomly assigned productivity shocks; need other drivers to be unrelated to local U.S. conditions

ADH Balance Tests

Balance variable	Coef.	SE
Panel A: Industry-level balance		
Production workers' share of employment, 1991	-0.011	(0.012)
Ratio of capital to value-added, 1991	-0.007	(0.019)
Log real wage (2007 USD), 1991	-0.005	(0.022)
Computer investment as share of total, 1990	0.750	(0.465)
High-tech equipment as share of total investment, 1990	0.532	(0.296)
No. of industry-periods	7	794
Panel B: Regional balance		
Start-of-period % of college-educated population	0.915	(1.196)
Start-of-period % of foreign-born population	2.920	(0.952)
Start-of-period % of employment among women	-0.159	(0.521)
Start-of-period % of employment in routine occupations	-0.302	(0.272)
Start-of-period average offshorability index of occupations	0.087	(0.075)
Manufacturing employment growth, 1970s	0.543	(0.227)
Manufacturing employment growth, 1980s	0.055	(0.187)
No. of region-periods	1,	444

- Panel A regresses industry characteristics on the g_{nt} shocks, controlling for period FE
- ullet Panel B regresses location characteristics on the z_{it} instrument, controlling for manufacturing employment share imes period FE

ADH Estimates

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Coefficient	-0.596 (0.114)	-0.489 (0.100)	-0.267 (0.099)	-0.314 (0.107)	-0.310 (0.134)	-0.290 (0.129)	-0.432 (0.205)
Regional controls							
Autor et al. (2013) controls	✓	✓	✓		✓	✓	✓
Start-of-period mfg. share	✓						
Lagged mfg. share		✓	✓	✓	✓	✓	✓
Period-specific lagged mfg. share			✓	✓	✓	✓	✓
Lagged 10-sector shares					✓		✓
Local Acemoglu et al. (2016) controls						✓	
Lagged industry shares							✓
SSIV first stage <i>F</i> -stat.	185.6	166.7	123.6	272.4	64.6	63.3	27.6
No. of region-periods	1,444	1,444	1,444	1,444	1,444	1,444	1,444
No. of industry-periods	796	794	794	794	794	794	794

Note: columns 3-7 control for mfg. employment share \times period FE

Contrast: Outome Modeling

- Goldsmith-Pinkham et al. (2020) discuss an alternative interpretation of shift-share IV, which models $E[\varepsilon_i \mid s_{i1}, \dots, s_{iK}, g] = E[\varepsilon_i \mid s_{i1}, \dots, s_{iK}]$
 - Condition on the shocks, then assume the shares are exogenous in the sense of $E[\varepsilon_i \mid s_{i1}, ..., s_{iK}] = 0$
 - When things are in first-differences, this is effectively parallel trends:
 e.g. regions with different exposure shares would have had the same outcome trends if not for shocks to treatment

Contrast: Outome Modeling

- Goldsmith-Pinkham et al. (2020) discuss an alternative interpretation of shift-share IV, which models $E[\varepsilon_i \mid s_{i1}, \dots, s_{iK}, g] = E[\varepsilon_i \mid s_{i1}, \dots, s_{iK}]$
 - Condition on the shocks, then assume the shares are exogenous in the sense of $E[\varepsilon_i \mid s_{i1}, \dots, s_{iK}] = 0$
 - When things are in first-differences, this is effectively parallel trends:
 e.g. regions with different exposure shares would have had the same outcome trends if not for shocks to treatment
- Reasonable enough, but not design-based
 - Need an ex ante stand on the right form for y_i (e.g. logs v levels)
 - Any transformation of (s_{i1}, \dots, s_{iK}) is a valid instrument, including the individual shares \rightarrow overidentified, potentially massively so
 - Can't have any unobserved shocks which transmit to y_i through the same or correlated shares (e.g. can't have $\varepsilon_i = \sum_k s_{ik} v_k + \eta_i$, even if the v_k are totally independent of the g_k)

- All the x_i and z_i we've considered so far are linear in exogenous shocks
 - \bullet Linearity means a specification for $E[g\mid w]$ is enough to know $E[z\mid w]$

- All the x_i and z_i we've considered so far are linear in exogenous shocks
 - ullet Linearity means a specification for $E[g\mid w]$ is enough to know $E[z\mid w]$
- Can we consider nonlinear constructions? E.g. $z_i = \ln(\sum_k s_{ik} g_k)$
 - Yes, but now to know $E[z \mid w]$ we generally need to specify the full distribution of $g \mid w$ (let's call it G(w))

- All the x_i and z_i we've considered so far are linear in exogenous shocks
 - ullet Linearity means a specification for $E[g\mid w]$ is enough to know $E[z\mid w]$
- Can we consider nonlinear constructions? E.g. $z_i = \ln(\sum_k s_{ik} g_k)$
 - Yes, but now to know $E[z \mid w]$ we generally need to specify the full distribution of $g \mid w$ (let's call it G(w))
- This need not be as daunting as it seems!

- All the x_i and z_i we've considered so far are linear in exogenous shocks
 - ullet Linearity means a specification for $E[g\mid w]$ is enough to know $E[z\mid w]$
- Can we consider nonlinear constructions? E.g. $z_i = \ln(\sum_k s_{ik} g_k)$
 - Yes, but now to know $E[z \mid w]$ we generally need to specify the full distribution of $g \mid w$ (let's call it G(w))
- This need not be as daunting as it seems!
 - If $g \mid w$ comes from a true experiment, then G(w) is given by the experimental protocol

- All the x_i and z_i we've considered so far are linear in exogenous shocks
 - ullet Linearity means a specification for $E[g\mid w]$ is enough to know $E[z\mid w]$
- Can we consider nonlinear constructions? E.g. $z_i = \ln(\sum_k s_{ik} g_k)$
 - Yes, but now to know $E[z \mid w]$ we generally need to specify the full distribution of $g \mid w$ (let's call it G(w))
- This need not be as daunting as it seems!
 - If $g \mid w$ comes from a true experiment, then G(w) is given by the experimental protocol
 - We might think some of the shocks are *exchangeable*: e.g. swap which industries grew more vs. less in ADH (maybe within sectors)

- All the x_i and z_i we've considered so far are linear in exogenous shocks
 - Linearity means a specification for $E[g \mid w]$ is enough to know $E[z \mid w]$
- Can we consider nonlinear constructions? E.g. $z_i = \ln(\sum_k s_{ik} g_k)$
 - Yes, but now to know $E[z \mid w]$ we generally need to specify the full distribution of $g \mid w$ (let's call it G(w))
- This need not be as daunting as it seems!
 - If $g \mid w$ comes from a true experiment, then G(w) is given by the experimental protocol
 - We might think some of the shocks are *exchangeable*: e.g. swap which industries grew more vs. less in ADH (maybe within sectors)
 - Could exploit other symmetries/discontinuities in the shocks (e.g. RD)

- We have a $z_i = f_i(g, s)$ for known $f_i(\cdot)$ and observed g and s
 - We assume $g \mid y(\cdot), w \sim G(w)$ for w = (s, q) and known $G(\cdot)$

- We have a $z_i = f_i(g, s)$ for known $f_i(\cdot)$ and observed g and s
 - We assume $g \mid y(\cdot), w \sim G(w)$ for w = (s, q) and known $G(\cdot)$
 - Reduced-form case: $z_i = x_i$; otherwise implicitly assuming exclusion

- We have a $z_i = f_i(g, s)$ for known $f_i(\cdot)$ and observed g and s
 - We assume $g \mid y(\cdot), w \sim G(w)$ for w = (s, q) and known $G(\cdot)$
 - Reduced-form case: $z_i = x_i$; otherwise implicitly assuming exclusion
 - Shocks may vary at a different "level" than observations

- We have a $z_i = f_i(g, s)$ for known $f_i(\cdot)$ and observed g and s
 - We assume $g \mid y(\cdot), w \sim G(w)$ for w = (s, q) and known $G(\cdot)$
 - Reduced-form case: $z_i = x_i$; otherwise implicitly assuming exclusion
 - Shocks may vary at a different "level" than observations
- ullet Design-based approach: include controls that span $\mu_i = E[f_i(g,s) \mid w]$

- We have a $z_i = f_i(g, s)$ for known $f_i(\cdot)$ and observed g and s
 - We assume $g \mid y(\cdot), w \sim G(w)$ for w = (s, q) and known $G(\cdot)$
 - Reduced-form case: $z_i = x_i$; otherwise implicitly assuming exclusion
 - Shocks may vary at a different "level" than observations
- ullet Design-based approach: include controls that span $\mu_i = E[f_i(g,s) \mid w]$
 - Or use "recentered" instrument $\tilde{z}_i = z_i \mu_i$ (same estimand)

- We have a $z_i = f_i(g, s)$ for known $f_i(\cdot)$ and observed g and s
 - We assume $g \mid y(\cdot), w \sim G(w)$ for w = (s, q) and known $G(\cdot)$
 - Reduced-form case: $z_i = x_i$; otherwise implicitly assuming exclusion
 - Shocks may vary at a different "level" than observations
- ullet Design-based approach: include controls that span $\mu_i = E[f_i(g,s) \mid w]$
 - Or use "recentered" instrument $\tilde{z}_i = z_i \mu_i$ (same estimand)
- For complex designs, μ_i can be computed by simulation:
 - **1** Redraw counterfactual shocks $g^{(\ell)}$ from G(w), $\ell = 1, ..., L$

- We have a $z_i = f_i(g, s)$ for known $f_i(\cdot)$ and observed g and s
 - We assume $g \mid y(\cdot), w \sim G(w)$ for w = (s, q) and known $G(\cdot)$
 - Reduced-form case: $z_i = x_i$; otherwise implicitly assuming exclusion
 - Shocks may vary at a different "level" than observations
- ullet Design-based approach: include controls that span $\mu_i = E[f_i(g,s) \mid w]$
 - Or use "recentered" instrument $\tilde{z}_i = z_i \mu_i$ (same estimand)
- For complex designs, μ_i can be computed by simulation:
 - **1** Redraw counterfactual shocks $g^{(\ell)}$ from G(w), $\ell = 1, ..., L$
 - ② Recompute the IV w/these shocks, holding else fixed: $z_i^{(\ell)} = f_i(g^{(\ell)},s)$

- We have a $z_i = f_i(g, s)$ for known $f_i(\cdot)$ and observed g and s
 - We assume $g \mid y(\cdot), w \sim G(w)$ for w = (s, q) and known $G(\cdot)$
 - Reduced-form case: $z_i = x_i$; otherwise implicitly assuming exclusion
 - Shocks may vary at a different "level" than observations
- ullet Design-based approach: include controls that span $\mu_i = E[f_i(g,s) \mid w]$
 - Or use "recentered" instrument $\tilde{z}_i = z_i \mu_i$ (same estimand)
- For complex designs, μ_i can be computed by simulation:
 - **1** Redraw counterfactual shocks $g^{(\ell)}$ from G(w), $\ell = 1, ..., L$
 - **2** Recompute the IV w/these shocks, holding else fixed: $z_i^{(\ell)} = f_i(g^{(\ell)}, s)$
 - **③** Compute expected instrument as $\mu_i = \frac{1}{L} \sum_{\ell} z_i^{(\ell)}$

- BH are interested in estimating the effect of market access on employment by leveraging changes in the transportation network
 - Market access specifies (using economic theory) how transportation upgrades affect economic integration across a country (i.e. spillovers)

- BH are interested in estimating the effect of market access on employment by leveraging changes in the transportation network
 - Market access specifies (using economic theory) how transportation upgrades affect economic integration across a country (i.e. spillovers)
 - Upgrades (of e.g. rail lines) at a different level than regional outcomes

- BH are interested in estimating the effect of market access on employment by leveraging changes in the transportation network
 - Market access specifies (using economic theory) how transportation upgrades affect economic integration across a country (i.e. spillovers)
 - Upgrades (of e.g. rail lines) at a different level than regional outcomes
- They use the differential timing of high-speed rail (HSR) construction in China, conditional on construction plans, as exogenous shocks

- BH are interested in estimating the effect of market access on employment by leveraging changes in the transportation network
 - Market access specifies (using economic theory) how transportation upgrades affect economic integration across a country (i.e. spillovers)
 - Upgrades (of e.g. rail lines) at a different level than regional outcomes
- They use the differential timing of high-speed rail (HSR) construction in China, conditional on construction plans, as exogenous shocks
 - Basic idea: permute which planned lines opened by some date conditional on line observables to generate counterfactual shocks

- BH are interested in estimating the effect of market access on employment by leveraging changes in the transportation network
 - Market access specifies (using economic theory) how transportation upgrades affect economic integration across a country (i.e. spillovers)
 - Upgrades (of e.g. rail lines) at a different level than regional outcomes
- They use the differential timing of high-speed rail (HSR) construction in China, conditional on construction plans, as exogenous shocks
 - Basic idea: permute which planned lines opened by some date conditional on line observables to generate counterfactual shocks
 - Then either control for or recenter by expected market access growth

HSR Lines and Market Access

Naive OLS compares dark ("treatment") vs light ("control") regions

Naive OLS Suggests a Big Market Access Effect...

... but we probably shouldn't believe it

HSR Lines and Counterfactuals

Counterfactuals permute which lines opened by 2016, conditional on length

An Example Counterfactual HSR Network

Seems ok...

Expected Market Access Across Counterfactuals

Darker regions see more MA growth regardless of which lines are built first

Recentered Market Access

Recentered IV compares region that saw more MA growth than expected (in red) to those that saw less MA growth than expected (in blue)

Balance Tests

	Unadjusted	Recentered			
	(1)	(2)	(3)	(4)	
Distance to Beijing	-0.292	0.069		0.089	
	(0.063)	(0.040)		(0.045)	
Latitude/100	-3.323	-0.325		-0.156	
	(0.648)	(0.277)		(0.320)	
Longitude/100	1.329	0.473		0.425	
	(0.460)	(0.239)		(0.242)	
Expected Market Access Growth			0.027	0.056	
			(0.056)	(0.066)	
Constant	0.536	0.014	0.014	0.014	
	(0.030)	(0.018)	(0.020)	(0.018)	
Joint RI p-value		0.489	0.807	0.536	
R^2	0.823	0.079	0.007	0.082	
Prefectures	274	274	274	274	

Recentered MA growth can't be reliably predicted from geography

BH Estimates

	Unadjusted	Recentered	Controlled
	OLS	IV	OLS
	(1)	(2)	(3)
Panel A. No Controls			
Market Access Growth	0.232	0.081	0.069
	(0.075)	(0.098)	(0.094)
	, ,	[-0.315, 0.328]	[-0.209, 0.331
Expected Market Access Growth			0.318
			(0.095)
Panel B. With Geography Controls			
Market Access Growth	0.132	0.055	0.045
	(0.064)	(0.089)	(0.092)
		[-0.144, 0.278]	[-0.154, 0.281
Expected Market Access Growth			0.213
_			(0.073)
Recentered	No	Yes	Yes
Prefectures	274	274	274

Large effect for naive OLS goes away with recentering/controlling

ullet Once adjusting for μ_i , auxilliary controls don't matter (\Longrightarrow balance)

Recentering for Power

- Leveraging non-random exposure can dramatically improve precision when leveraging exogenous shocks in an IV...
 - ... as long as you recenter to use this variation "safely"

Recentering for Power

- Leveraging non-random exposure can dramatically improve precision when leveraging exogenous shocks in an IV...
 - ... as long as you recenter to use this variation "safely"
- Ex: Medicaid eligibility is a treatment combining statewide policy shocks and individual exposure (income, family structure, etc)
 - In settings where policy shocks are plausibly exogenous, standard approach is to use them directly as instruments ("simulated IV")
 - BH approach: use eligibility itself, but recenter: e.g. adjust for *i*'s avg. eligibility across permutations of policies (swap MA & RI, say)

Recentering for Power

- Leveraging non-random exposure can dramatically improve precision when leveraging exogenous shocks in an IV...
 - ... as long as you recenter to use this variation "safely"
- Ex: Medicaid eligibility is a treatment combining statewide policy shocks and individual exposure (income, family structure, etc)
 - In settings where policy shocks are plausibly exogenous, standard approach is to use them directly as instruments ("simulated IV")
 - BH approach: use eligibility itself, but recenter: e.g. adjust for *i*'s avg. eligibility across permutations of policies (swap MA & RI, say)
- In an application to ACA Medicaid expansions, we find this helps a lot
 - Design assumption: can swap expansion decisions of states conditional on whether the governor is a Republican or Democrat

Estimates of Private Insurance Crowdout Effects

	Has Medicaid		Has Private Insurance		Has Employer-Sponsored Insurance	
	Simulated IV (1)	Recentered IV (2)	Simulated IV (3)	Recentered IV (4)	Simulated IV (5)	Recentered IV (6)
Panel A. Eligibility	Effects					
Eligibility	0.132	0.072	-0.048	-0.023	0.009	-0.009
	(0.028)	(0.010)	(0.023)	(0.007)	(0.014)	(0.005)
	[0.080, 0.216]	[0.051, 0.093]	[-0.110, 0.009]	[-0.040, -0.007]	[-0.034, 0.052]	$\left[-0.021, 0.004\right]$
Panel B. Enrollmen	nt Effects					
Has Medicaid	30		-0.361	-0.321	0.068	-0.125
			(0.165)	(0.092)	(0.111)	(0.061)
			[-0.813,0.082]	[-0.566,-0.108]	[-0.232, 0.421]	[-0.263, 0.070]
P-value: SIV=RIV			0.719		0.104	
Exposed Sample	N	Y	N	Y	N	Y
States	43	43	43	43	43	43
Individuals	2,397,313	421,042	2,397,313	421,042	2,397,313	421,042

- Common exposure to the exogenous shocks g make $z_i = f_i(g, s)$ correlated across i, potentially in complicated ways
 - E.g. for shift-share $z_i = \sum_k s_{ik} g_k$, if unit i and j are far apart in space but close in terms of $(s_{ik})_{k=1}^K$ and $(s_{jk})_{k=1}^K$ then $Cov(z_i, z_j) > 0$

- Common exposure to the exogenous shocks g make $z_i = f_i(g, s)$ correlated across i, potentially in complicated ways
 - E.g. for shift-share $z_i = \sum_k s_{ik} g_k$, if unit i and j are far apart in space but close in terms of $(s_{ik})_{k=1}^K$ and $(s_{jk})_{k=1}^K$ then $Cov(z_i, z_j) > 0$
 - Following our Day 2 discussion, this suggests we should cluster *i* and *j* together.

- Common exposure to the exogenous shocks g make $z_i = f_i(g, s)$ correlated across i, potentially in complicated ways
 - E.g. for shift-share $z_i = \sum_k s_{ik} g_k$, if unit i and j are far apart in space but close in terms of $(s_{ik})_{k=1}^K$ and $(s_{jk})_{k=1}^K$ then $Cov(z_i, z_j) > 0$
 - Following our Day 2 discussion, this suggests we should cluster *i* and *j* together. But how do we do this? Shares are not "groups"

- Common exposure to the exogenous shocks g make $z_i = f_i(g, s)$ correlated across i, potentially in complicated ways
 - E.g. for shift-share $z_i = \sum_k s_{ik} g_k$, if unit i and j are far apart in space but close in terms of $(s_{ik})_{k=1}^K$ and $(s_{jk})_{k=1}^K$ then $Cov(z_i, z_j) > 0$
 - Following our Day 2 discussion, this suggests we should cluster *i* and *j* together. But how do we do this? Shares are not "groups"
- For SSIV, Borusyak et al. (2022) show there is an equivalent shock-level IV that yields "exposure-robust" standard errors with ", r"
 - Intuitively: address "clustering" by running the IV at the level of identifying variation. Stata/R package: ssaggregate

- Common exposure to the exogenous shocks g make $z_i = f_i(g, s)$ correlated across i, potentially in complicated ways
 - E.g. for shift-share $z_i = \sum_k s_{ik} g_k$, if unit i and j are far apart in space but close in terms of $(s_{ik})_{k=1}^K$ and $(s_{jk})_{k=1}^K$ then $Cov(z_i, z_j) > 0$
 - Following our Day 2 discussion, this suggests we should cluster *i* and *j* together. But how do we do this? Shares are not "groups"
- For SSIV, Borusyak et al. (2022) show there is an equivalent shock-level IV that yields "exposure-robust" standard errors with ", r"
 - Intuitively: address "clustering" by running the IV at the level of identifying variation. Stata/R package: ssaggregate
- ullet For other $f_i(\cdot)$, Borusyak and Hull '23 propose randomization inference
 - Use the counterfactual g to simulate the distribution of test statistics under the null and check if the actual test is in the tails

ssaggregate in Stata

This is what I used to get SEs in the previous balance / IV tables

Outline

- 1. Formula Treatments/Instruments✓
- 2. Nonlinear/Structural Models

• I've focused on *linear* regression/IV procedures, showing that they can estimate certain convex averages of heterogeneous effects given design

- I've focused on *linear* regression/IV procedures, showing that they can estimate certain convex averages of heterogeneous effects given design
 - But such effects needn't coincide w/policy-relevant param's (e.g. ATE)

- I've focused on *linear* regression/IV procedures, showing that they can estimate certain convex averages of heterogeneous effects given design
 - \bullet But such effects needn't coincide w/policy-relevant param's (e.g. ATE)
- Intuitively, we can try to bridge this gap by putting additional structure on (otherwise non-parametric) potential outcomes

- I've focused on *linear* regression/IV procedures, showing that they can estimate certain convex averages of heterogeneous effects given design
 - \bullet But such effects needn't coincide w/policy-relevant param's (e.g. ATE)
- Intuitively, we can try to bridge this gap by putting additional structure on (otherwise non-parametric) potential outcomes
 - In fact, we've already seen this: our Day-1 constant-effect model of $y_i = \beta x_i + \varepsilon_i$ can be understood as extrapolating simply across all i

- I've focused on *linear* regression/IV procedures, showing that they can estimate certain convex averages of heterogeneous effects given design
 - \bullet But such effects needn't coincide w/policy-relevant param's (e.g. ATE)
- Intuitively, we can try to bridge this gap by putting additional structure on (otherwise non-parametric) potential outcomes
 - In fact, we've already seen this: our Day-1 constant-effect model of $y_i = \beta x_i + \varepsilon_i$ can be understood as extrapolating simply across all i
 - Other (nonlinear) procedures can sometimes be seen as imposing different extrapolations to the same underlying (design-based) variation

- Suppose you run an RCT with a binary treatment x_i . A regression of y_i on x_i identifies $E[y_i \mid x_i = 1] E[y_i \mid x_i = 0] = E[y_i(1) y_i(0)]$
 - What changes if y_i is also binary?

- Suppose you run an RCT with a binary treatment x_i . A regression of y_i on x_i identifies $E[y_i \mid x_i = 1] E[y_i \mid x_i = 0] = E[y_i(1) y_i(0)]$
 - What changes if y_i is also binary? Nothing.

- Suppose you run an RCT with a binary treatment x_i . A regression of y_i on x_i identifies $E[y_i \mid x_i = 1] E[y_i \mid x_i = 0] = E[y_i(1) y_i(0)]$
 - What changes if y_i is also binary? Nothing.
- Now suppose the true model for $y_i \mid x_i$ is a Probit:

$$y_i = \mathbf{1}[y_i^* \ge 0]$$

$$y_i^* = \alpha + \beta x_i - \varepsilon_i$$

$$\varepsilon_i \mid x_i \sim N(0, \sigma^2)$$

- Suppose you run an RCT with a binary treatment x_i . A regression of y_i on x_i identifies $E[y_i \mid x_i = 1] E[y_i \mid x_i = 0] = E[y_i(1) y_i(0)]$
 - What changes if y_i is also binary? Nothing.
- Now suppose the true model for $y_i \mid x_i$ is a Probit:

$$y_i = \mathbf{1}[y_i^* \ge 0]$$

$$y_i^* = \alpha + \beta x_i - \varepsilon_i$$

$$\varepsilon_i \mid x_i \sim N(0, \sigma^2)$$

The CEF implied by this model is linear, so regression fits it perfectly

$$E[y_i \mid x_i] = Pr(y_i^* \ge 0 \mid x_i) =$$

- Suppose you run an RCT with a binary treatment x_i . A regression of y_i on x_i identifies $E[y_i \mid x_i = 1] E[y_i \mid x_i = 0] = E[y_i(1) y_i(0)]$
 - What changes if y_i is also binary? Nothing.
- Now suppose the true model for $y_i \mid x_i$ is a Probit:

$$y_i = \mathbf{1}[y_i^* \ge 0]$$

$$y_i^* = \alpha + \beta x_i - \varepsilon_i$$

$$\varepsilon_i \mid x_i \sim N(0, \sigma^2)$$

The CEF implied by this model is linear, so regression fits it perfectly

$$E[y_i \mid x_i] = Pr(y_i^* \ge 0 \mid x_i) = \Phi\left(\frac{\alpha + \beta x_i}{\sigma}\right)$$

28

- Suppose you run an RCT with a binary treatment x_i . A regression of y_i on x_i identifies $E[y_i \mid x_i = 1] E[y_i \mid x_i = 0] = E[y_i(1) y_i(0)]$
 - What changes if y_i is also binary? Nothing.
- Now suppose the true model for $y_i \mid x_i$ is a Probit:

$$y_i = \mathbf{1}[y_i^* \ge 0]$$

$$y_i^* = \alpha + \beta x_i - \varepsilon_i$$

$$\varepsilon_i \mid x_i \sim N(0, \sigma^2)$$

The CEF implied by this model is linear, so regression fits it perfectly

$$E[y_i \mid x_i] = Pr(y_i^* \ge 0 \mid x_i) = \Phi\left(\frac{\alpha + \beta x_i}{\sigma}\right)$$

$$= \underbrace{\Phi\left(\frac{\alpha}{\sigma}\right)}_{\text{constant}} + \underbrace{\left\{\Phi\left(\frac{\alpha + \beta}{\sigma}\right) - \Phi\left(\frac{\alpha}{\sigma}\right)\right\}}_{\text{slope coefficient}} x_i$$

• Suppose individuals with baseline covariate $w_i = 1$ are randomized into a treatment $x_i \in \{0,1\}$. Those with $w_i = 0$ are all untreated

- Suppose individuals with baseline covariate $w_i = 1$ are randomized into a treatment $x_i \in \{0,1\}$. Those with $w_i = 0$ are all untreated
 - Q: What do we get from regressing y_i on x_i controlling for w_i ?

- Suppose individuals with baseline covariate $w_i = 1$ are randomized into a treatment $x_i \in \{0,1\}$. Those with $w_i = 0$ are all untreated
 - Q: What do we get from regressing y_i on x_i controlling for w_i ?
 - A: The CATE $E[y_i(1) y_i(0) \mid w_i = 1]$, since $Var(x_i \mid w_i = 0) = 0$

- Suppose individuals with baseline covariate $w_i = 1$ are randomized into a treatment $x_i \in \{0,1\}$. Those with $w_i = 0$ are all untreated
 - Q: What do we get from regressing y_i on x_i controlling for w_i ?
 - A: The CATE $E[y_i(1) y_i(0) \mid w_i = 1]$, since $Var(x_i \mid w_i = 0) = 0$
 - Taking the linear regression/model for $E[y_i \mid x_i, w_i]$ seriously, this is also our estimate of the (otherwise unidentified) $E[y_i(1) y_i(0) \mid w_i = 0]$

- Suppose individuals with baseline covariate $w_i = 1$ are randomized into a treatment $x_i \in \{0,1\}$. Those with $w_i = 0$ are all untreated
 - Q: What do we get from regressing y_i on x_i controlling for w_i ?
 - A: The CATE $E[y_i(1) y_i(0) \mid w_i = 1]$, since $Var(x_i \mid w_i = 0) = 0$
 - Taking the linear regression/model for $E[y_i \mid x_i, w_i]$ seriously, this is also our estimate of the (otherwise unidentified) $E[y_i(1) y_i(0) \mid w_i = 0]$
- Suppose y_i is binary and we instead run a Probit on x_i and w_i
 - Taking it seriously, Probit structures potential outcomes:

$$y_i = \mathbf{1}[\alpha + \beta x_i + \gamma w_i \ge \varepsilon_i], \quad \varepsilon_i \mid x_i, w_i \sim N(0, 1)$$

- Suppose individuals with baseline covariate $w_i = 1$ are randomized into a treatment $x_i \in \{0,1\}$. Those with $w_i = 0$ are all untreated
 - Q: What do we get from regressing y_i on x_i controlling for w_i ?
 - A: The CATE $E[y_i(1) y_i(0) \mid w_i = 1]$, since $Var(x_i \mid w_i = 0) = 0$
 - Taking the linear regression/model for $E[y_i \mid x_i, w_i]$ seriously, this is also our estimate of the (otherwise unidentified) $E[y_i(1) y_i(0) \mid w_i = 0]$
- Suppose y_i is binary and we instead run a Probit on x_i and w_i
 - Taking it seriously, Probit structures potential outcomes:

$$y_{i} = \mathbf{1}[\alpha + \beta x_{i} + \gamma w_{i} \ge \varepsilon_{i}], \quad \varepsilon_{i} \mid x_{i}, w_{i} \sim \mathcal{N}(0, 1)$$

$$\Longrightarrow y_{i}(0) = \mathbf{1}[\alpha + \gamma w_{i} \ge \varepsilon_{i}], \quad y_{i}(1) = \mathbf{1}[\alpha + \beta + \gamma w_{i} \ge \varepsilon_{i}]$$

- Suppose individuals with baseline covariate $w_i = 1$ are randomized into a treatment $x_i \in \{0,1\}$. Those with $w_i = 0$ are all untreated
 - Q: What do we get from regressing y_i on x_i controlling for w_i ?
 - A: The CATE $E[y_i(1) y_i(0) \mid w_i = 1]$, since $Var(x_i \mid w_i = 0) = 0$
 - Taking the linear regression/model for $E[y_i \mid x_i, w_i]$ seriously, this is also our estimate of the (otherwise unidentified) $E[y_i(1) y_i(0) \mid w_i = 0]$
- Suppose y_i is binary and we instead run a Probit on x_i and w_i
 - Taking it seriously, Probit structures potential outcomes:

$$y_{i} = \mathbf{1}[\alpha + \beta x_{i} + \gamma w_{i} \geq \varepsilon_{i}], \quad \varepsilon_{i} \mid x_{i}, w_{i} \sim \mathcal{N}(0, 1)$$

$$\Longrightarrow y_{i}(0) = \mathbf{1}[\alpha + \gamma w_{i} \geq \varepsilon_{i}], \quad y_{i}(1) = \mathbf{1}[\alpha + \beta + \gamma w_{i} \geq \varepsilon_{i}]$$

• In particular, $E[y_i(1) - y_i(0) \mid w_i = 1] = \Phi(\alpha + \beta + \gamma) - \phi(\alpha + \gamma)$ (will match OLS) but $E[y_i(1) - y_i(0) \mid w_i = 0] = \Phi(\alpha + \beta) - \Phi(\alpha)$

- Suppose individuals with baseline covariate $w_i = 1$ are randomized into a treatment $x_i \in \{0,1\}$. Those with $w_i = 0$ are all untreated
 - Q: What do we get from regressing y_i on x_i controlling for w_i ?
 - A: The CATE $E[y_i(1) y_i(0) \mid w_i = 1]$, since $Var(x_i \mid w_i = 0) = 0$
 - Taking the linear regression/model for $E[y_i \mid x_i, w_i]$ seriously, this is also our estimate of the (otherwise unidentified) $E[y_i(1) y_i(0) \mid w_i = 0]$
- Suppose y_i is binary and we instead run a Probit on x_i and w_i
 - Taking it seriously, Probit structures potential outcomes:

$$y_{i} = \mathbf{1}[\alpha + \beta x_{i} + \gamma w_{i} \geq \varepsilon_{i}], \quad \varepsilon_{i} \mid x_{i}, w_{i} \sim \mathcal{N}(0, 1)$$

$$\Longrightarrow y_{i}(0) = \mathbf{1}[\alpha + \gamma w_{i} \geq \varepsilon_{i}], \quad y_{i}(1) = \mathbf{1}[\alpha + \beta + \gamma w_{i} \geq \varepsilon_{i}]$$

- In particular, $E[y_i(1) y_i(0) \mid w_i = 1] = \Phi(\alpha + \beta + \gamma) \phi(\alpha + \gamma)$ (will match OLS) but $E[y_i(1) y_i(0) \mid w_i = 0] = \Phi(\alpha + \beta) \Phi(\alpha)$
- Different extrapolation of missing CATE: a feature or a bug?

ExtrapoLATEing

• Consider the simplest design-based IV story: binary x_i , binary z_i , no controls. IV identifies LATE:

$$\beta^{IV} = E[y_i(1) - y_i(0) \mid x_i(1) > x_i(0)]$$

where $x_i(z)$ denotes potential treatment when $z_i = z$

• Avg. treatment effect among compliers (those with $x_i(1) = 1, x_i(0) = 0$)

ExtrapoLATEing

• Consider the simplest design-based IV story: binary x_i , binary z_i , no controls. IV identifies LATE:

$$\beta^{IV} = E[y_i(1) - y_i(0) \mid x_i(1) > x_i(0)]$$

where $x_i(z)$ denotes potential treatment when $z_i = z$

- Avg. treatment effect among compliers (those with $x_i(1) = 1, x_i(0) = 0$)
- Without restrictions on $(y_i(1), y_i(0), x_i(1), x_i(0))$, can't say anything more: IV only reveals effects among i whose x_i is shifted by z_i

ExtrapoLATEing

• Consider the simplest design-based IV story: binary x_i , binary z_i , no controls. IV identifies LATE:

$$\beta^{IV} = E[y_i(1) - y_i(0) \mid x_i(1) > x_i(0)]$$

where $x_i(z)$ denotes potential treatment when $z_i = z$

- Avg. treatment effect among compliers (those with $x_i(1) = 1, x_i(0) = 0$)
- Without restrictions on $(y_i(1), y_i(0), x_i(1), x_i(0))$, can't say anything more: IV only reveals effects among i whose x_i is shifted by z_i
 - Actually not quite true: can identify avg. $y_i(1)$ of always-takers (w/ $x_i(1) = x_i(0) = 1$), avg. $y_i(0)$ of never-takers (w/ $x_i(1) = x_i(0) = 0$), as well as avg. $y_i(1)$ & $y_i(0)$ separately for compliers
 - By adding a (semi-)parametric model of selection, we can extrapolate these objects to identify other parameters, e.g., ATE $E[y_i(1) y_i(0)]$

- Suppose we have a z_i which is as-if-randomly assigned + excludable
 - Assume a distribution for $(y_i(1), y_i(0), v_i)$ where $x_i = \mathbf{1}[\mu + \pi z_i > v_i]$

- ullet Suppose we have a z_i which is as-if-randomly assigned + excludable
 - Assume a distribution for $(y_i(1), y_i(0), v_i)$ where $x_i = \mathbf{1}[\mu + \pi z_i > v_i]$
 - Then we have parametric models for

$$E[y_i \mid x_i = 1, z_i = z] = E[y_i(1) \mid \mu + \pi z > v_i] \equiv f_1(z; \theta)$$

$$E[y_i \mid x_i = 0, z_i = z] = E[y_i(0) \mid \mu + \pi z < v_i] \equiv f_0(z; \theta)$$

as well as "first stage" models for $Pr(x_i = 1 \mid z_i = z) = g(z; \theta)$

- ullet Suppose we have a z_i which is as-if-randomly assigned + excludable
 - Assume a distribution for $(y_i(1), y_i(0), v_i)$ where $x_i = \mathbf{1}[\mu + \pi z_i > v_i]$
 - Then we have parametric models for

$$E[y_i \mid x_i = 1, z_i = z] = E[y_i(1) \mid \mu + \pi z > v_i] \equiv f_1(z; \theta)$$

$$E[y_i \mid x_i = 0, z_i = z] = E[y_i(0) \mid \mu + \pi z < v_i] \equiv f_0(z; \theta)$$

as well as "first stage" models for $Pr(x_i = 1 \mid z_i = z) = g(z; \theta)$

• With enough variation in z_i , the parameter vector θ (and thus ATE) can be identified from these moment restrictions

- Suppose we have a z_i which is as-if-randomly assigned + excludable
 - Assume a distribution for $(y_i(1), y_i(0), v_i)$ where $x_i = \mathbf{1}[\mu + \pi z_i > v_i]$
 - Then we have parametric models for

$$E[y_i \mid x_i = 1, z_i = z] = E[y_i(1) \mid \mu + \pi z > v_i] \equiv f_1(z; \theta)$$

$$E[y_i \mid x_i = 0, z_i = z] = E[y_i(0) \mid \mu + \pi z < v_i] \equiv f_0(z; \theta)$$

as well as "first stage" models for $Pr(x_i = 1 \mid z_i = z) = g(z; \theta)$

- With enough variation in z_i , the parameter vector θ (and thus ATE) can be identified from these moment restrictions
- Key point: the model allows us to extrapolate "local" IV variation to estimate more "policy relevant" parameters
 - When z_i has limited support, the model is doing more "work"
 - With full support, we have "identification at infinity" (w/o a model)

- Kline and Walters (2019) formalize this extrapolation logic in the familiar Imbens and Angrist (1994) setup
 - Key result: in simple binary z_i / no controls setup, control function estimates of LATE are numerically identical to linear IV

- Kline and Walters (2019) formalize this extrapolation logic in the familiar Imbens and Angrist (1994) setup
 - Key result: in simple binary z_i / no controls setup, control function estimates of LATE are numerically identical to linear IV
 - "Differences between structural and IV estimates therefore stem in canonical cases entirely from disagreements about the target parameter rather than from functional form assumptions" (p. 678)

- Kline and Walters (2019) formalize this extrapolation logic in the familiar Imbens and Angrist (1994) setup
 - Key result: in simple binary z_i / no controls setup, control function estimates of LATE are numerically identical to linear IV
 - "Differences between structural and IV estimates therefore stem in canonical cases entirely from disagreements about the target parameter rather than from functional form assumptions" (p. 678)
 - Functional form instead shapes the extrapolation to other parameters (as in our earlier probit example!)

- Kline and Walters (2019) formalize this extrapolation logic in the familiar Imbens and Angrist (1994) setup
 - Key result: in simple binary z_i / no controls setup, control function estimates of LATE are numerically identical to linear IV
 - "Differences between structural and IV estimates therefore stem in canonical cases entirely from disagreements about the target parameter rather than from functional form assumptions" (p. 678)
 - Functional form instead shapes the extrapolation to other parameters (as in our earlier probit example!)
- This can all be extended to conditional as-if-random assignment
 - Design knowledge gives you reduced-form estimands; then plug these into a model to get more!

Heckit Extrapolation of IV Moments

[&]quot;Heckit" model: $E[Y_i(d)|U_i] = \alpha_d + \gamma_d \Phi^{-1}(U_i)$

Summing Up

- You can do a lot with a solid design-based identification strategy
 - Give a clear ex ante rationalization for controls in a linear regression/IV
 - Have confidence in the level of standard error clustering
 - Avoid concerns over "negative weights" / explore alternative weightings
 - Access a large class of formula treatments/IVs
 - Understand what nonlinear/structural models buy you for identification

Summing Up

- You can do a lot with a solid design-based identification strategy
 - Give a clear ex ante rationalization for controls in a linear regression/IV
 - Have confidence in the level of standard error clustering
 - Avoid concerns over "negative weights" / explore alternative weightings
 - Access a large class of formula treatments/IVs
 - Understand what nonlinear/structural models buy you for identification
- Of course, design is not the only way to go: outcome modeling (e.g. DiD) may be a good alternative, especially w/o good shock variation
 - But some of the above issues can get murkier just be clear on what you're assuming!

Summing Up

- You can do a lot with a solid design-based identification strategy
 - Give a clear ex ante rationalization for controls in a linear regression/IV
 - Have confidence in the level of standard error clustering
 - Avoid concerns over "negative weights" / explore alternative weightings
 - Access a large class of formula treatments/IVs
 - Understand what nonlinear/structural models buy you for identification
- Of course, design is not the only way to go: outcome modeling (e.g. DiD) may be a good alternative, especially w/o good shock variation
 - But some of the above issues can get murkier just be clear on what you're assuming!

Thanks for a Great Class!