6A 전자기복사선의 일반적 성질

- 전자기 복사선의 성질
 - 고전적 파형 모형 함·방문 waves 생성하기 힘듦
 - 파장, 주파수, 속도, 진폭으로 묘사되는 sine파 모형
 - _ 입자 모형
 - 불연속적 에너지의 흡수 및 방출 현상을 설명
 - 광자(photon): 에너지의 불연속 입자로 주파수에 비례
- 파동-입자의 이중성은 상호보완적 관계

electric field magnetic field

- 전기장과 자기장
 - 전파 방향에 대해서 위상 일치
 - 서로 직각으로 진동
 - 대부분의 분광학은 전기적 성분과 관련

Wave Properties of EMR

- Electromagnetic radiation (EM wave)
 - Amplitude A photon ուհեր ՀՀԵ
 - Frequency ν : the number of oscillation of the field that occur per sec
 - Wavelength λ: the linear distance between any two equivalent points on wave
 γκι²μ₂: τον νηον
 - Velocity $v = v^{\bullet} \lambda$

幽 致

C= 3×108 m/s (>230mm 43e1 35)

Change in wavelength as radiation passes from air into a dense glass and back to air. Note that the wavelength shortens by nearly 200nm, or more than 30%, as it passes into glass; a reverse change occurs as the radiation again enters air.

- •전파 속도
 - 진공에서 복사선의 속도 $c = v \cdot \lambda = 3.00 \times 10^8 \text{ m/s}$
 - 전파속도는 통과 매질에 따라 달라짐
 - 복사선의 <mark>전기장과 물질의 상호작용</mark>으로 느려지나 주파수는 변화 없음

EMR spectrum & spectroscopy

- Infrared (IR) vibration
- Visible (VIS) electronic
- Ultraviolet (UV) electronic

EMR spectrum & spectroscopy

- Infrared (IR) vibration
- Visible (VIS) electronic
- Ultraviolet (UV) electronic

Common Spectroscopic Methods Based on Electromagnetic Radiation

TABLE 6-1 Common Spectroscopic Methods Based on Electromagnetic Radiation

Type of Spectroscopy	Usual Wavelength Range*	Usual Wavenumber Range, cm ⁻¹	Type of Quantum Transition
Gamma-ray emission	0.005-1.4 Å	_	Nuclear
X-ray absorption, emission, fluorescence, and diffraction	0.1–100 Å	_	Inner electron
Vacuum ultraviolet absorption (المحكونا)	10-180 nm	1×10^6 to 5×10^4	Bonding electrons
Ultraviolet-visible absorption, emission, and fluorescence	180-780 nm	5×10^4 to 1.3×10^4	Bonding electrons
Infrared absorption and Raman scattering	1 0.78 – 300 μm	1.3×10^4 to 3.3×10^1	Rotation/vibration of molecules
Microwave absorption [LA] #23	0.75-375 mm	13-0.03	Rotation of molecules
Electron spin resonance	3 cm	0.33	Spin of electrons in a magnetic field
Nuclear magnetic resonance	0.6-10 m	$1.7 \times 10^{-2} \text{ to } 1 \times 10^{3}$	Spin of nuclei in a magnetic field

© 2007 Thomson Higher Education

6B 파동의 겹침

- 겹침의 원리
 - 두 개 이상의 파동이 동일한 공간을 통과 때
 - 존재하는 각각의 파동에 의해 교란이 일어남 interaction

$$y = A_1 \sin(2\pi v_1 t + \phi_1) + A_2 \sin(2\pi v_2 t + \phi_2) + \dots + A_n \sin(2\pi v_n t + \phi_n)$$

- 위상 차이에 의한 간섭
 - 보강 간섭: 두 파동의 위상 차이가 0인 경우 Sin9 + 2sin9 + 3sin9 = GsinD
 - 상쇄 간섭: 두 파동의 위상 차이가 180° 인 경우

그림 6-4 Sine파의 겹침.

- 주파수 차이에 의한 간섭
 - sine파가 아닌 맥놀이 (beats)
 - 맥놀이 주기

(a)
$$u_1 = 1$$
(b) $u_1 = 1$
(c)
$$u_1 = 1$$

$$u_2 = 1$$

$$u_2 = 1$$

$$u_3 = 1$$

$$u_4 = 1$$

$$p_{\rm b} = 1/\Delta v = 1/(v_2 - v_4)$$

그림 6-4 <mark>주파수는 다르나 진폭이</mark> 같은 두 파동의 겹침.

- 푸리에 변환
 - 복잡한 파형을 sine 또는 cosine 성 분으로 분해
 - _ 컴퓨터를 이용하여 쉽게 변환

Wave 12 7tel interaction on 의한 간官 奇妙

