

Test Report

FCC Part 15.247 Industry Canada RSS210

DTS Devices Operating in range 2400-2483.5MHz and 5725–5850 MHz

Elektrobit Wireless Communications, Ltd.
Automaatiotie 1
FI-90460 OULUNSALO
FINLAND

Product Name: Integrated Service Access Point

FCC ID: V27-DT40ISAP IC ID: 3282B-DT40ISAP

TEST REPORT #: EMC_CETEC_030_15_247 DATE: 2008-6-17

Bluetooth Qualification Test Facility (BQTF)

FCC listed: A2LA accredited

IC recognized # 3462B

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: +1 (408) 586 6200 • Fax: +1 (408) 586 6299 • E-mail: info@cetecomusa.com • http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2113686

Board of Directors: Dr. Harald Ansorge, Dr. Klaus Matkey, Hans Peter May

Date of Report: **2008-6-17** Page 2 of 125

I AS	SSESSMENT	4
2 AI	DMINISTRATIVE DATA	5
2.1	Identification of the Testing Laboratory Issuing the EMC Test Report	5
2.2	Identification of the Client	5
	Identification of the Manufacturer	
3 E(QUIPMENT UNDER TEST (EUT)	6
	Specification of the Equipment under Test	
	Identification of the Equipment under Test (EUT)	
3.3	Identification of Accessory equipment	7
4 SU	UBJECT OF INVESTIGATION	7
5 RA	ADIATED MEASUREMENTS	8
	Maximum Peak Output Power § 15.247 (b)(1) (Radiated)	8
5.1.1 5.1.2		
5.2	Restricted Band Edge Compliance §15.247/15.205	
5.2.1	Limits	9
5.2.2 5.2.3	802.11 (ng) HT20 MODE 802.11 (ng) HT40 MODE	10
3.2.3	602.11 (lig) H140 MODE	14
5.3	Transmitter Spurious Emission § 15.247/15.205/15.209	18
5.3.1	Limits	18
5.3.2	RESULTS 802.11 (ng) HT20 MODE	19
5.3.3	RESULTS 802.11 (ng) HT40 MODE	28
5.3.5	RESULTS 802.11 (na) HT20 MODERESULTS 802.11 (na) HT40 MODE	37 47
5.5.5	TEBOETO 002.11 (III) 11 10 MODE	··
	Receiver Spurious Emission § 15.209/RSS210	57
5.4.1	Limits	57
5.4.2	RESULTS 802.11 (ng) HT20 MODE Chain AB	58
5.4.3	RESULTS 802.11 (ng) HT40 MODE	61
6 C(ONDUCTED MEASUREMENTS	64
6.1	6dB bandwidth and 99% bandwidth	
6.1.1	Limit	64
6.1.2	Measurement Result:	64

ort: 2008-6-17	Page 3 of 125	
ucted Power Measurement		65
nit		65
· Spectral Density		66
ucted Spurious Emission		67
ower Line Conducted Emissions § 15.107/207		68
SULTS 802.11ng HT20 Mode		69
ucted Measurement Plots		73
% Bandwidth		85
nducted Spurious Emissions		110
EQUIPMENT AND ANCILLARIES	USED FOR TESTS	123
K DIAGRAMS		124
	ucted Power Measurement nit	ucted Power Measurement nit sults r Spectral Density nit sults ucted Spurious Emission nit sults: ower Line Conducted Emissions § 15.107/207

9 REVISION HISTORY ______125

Signature

1 Assessment

The following is in compliance with the applicable criteria specified in FCC rules Part 15.247 of the Code of Federal Regulations.

Company	Product Name
Elektrobit Wireless	Integrated Corrige Agency Doint
Communications, Ltd.	Integrated Service Access Point

This report is reviewed by:

Date

Section

Ivaylo Tankov

2008-6-17	EMC & Radio	(EMC Project Engineer)	
Date	Section	Name	Signature
This report	is prepared by:		
		Peter Mu	
2008-6-17	EMC & Radio	(EMC Project Engineer)	

Name

The test results of this test report relate exclusively to the test item specified in Identification of the Equipment under Test. The CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

TESTING LABORATORY				
Company Name:	CETECOM Inc.			
Department:	EMC			
Address:	411 Dixon Landing Road			
	Milpitas, CA 95035			
	U.S.A.			
Telephone:	+1 (408) 586 6200			
Fax:	+1 (408) 586 6299			
Responsible Test Lab Manager:	Lothar Schmidt			
Responsible Project Leader:	Peter Mu			
Date of test:	2008-4-25 to 2008-5-20			

2.2 Identification of the Client

APPLICANT			
Applicant (Company Name)	Elektrobit Wireless Communications, Ltd.		
Street Address	Automaatiotie 1		
City/Zip Code	FI-90460 OULUNSALO		
Country	FINLAND		
Contact Person	Jussi Harju		
Telephone	+41 55 253 2055		
Fax	+41 55 253 2070		
e-mail	jussi.harju@elektrobit.com		

2.3 Identification of the Manufacturer

Same as above applicant.

3 Equipment under Test (EUT)

3.1 Specification of the Equipment under Test

EUT				
Marketing Name of EUT				
(if not same as Model	Integrated Service Access Point			
No.):				
Description:	Wireless LAN Access Point			
Model No:	ISAP			
FCC ID:	V27-DT40ISAP			
IC ID:	3282B-DT40ISAP			

Frequency Range:	2400-2483.5MHz Channel 1, 6, 11 for HT20 mode Channel 2, 6, 10 for HT40 mode 5725–5850 MHz Channel 149, 157, 165 for HT20 mode Channel 151, 159, 167 for HT40 mode
Type(s) of Modulation:	OFDM
Antenna Type:	Whip 2.6dBi
Max Output Power:	Subband 1, 2400-2483.5MHz HT20: Radiated: 17.14dBm (51.81mW) EIRP Conducted: 14.54dBm (28.47mW) Subband 1, 2400-2483.5MHz HT40: Radiated: 16.73dBm (47.11mW) EIRP Conducted: 14.13dBm (25.89mW) Subband 2, 5725-5850MHz HT20: Radiated: 18.63dBm (72.94mW) EIRP Conducted: 16.03dBm (40.08mW) Subband 2, 5725-5850MHz HT40: Radiated: 18.33dBm (68.04mW) EIRP Conducted: 15.73dBm (37.39mW)

3.2 Identification of the Equipment under Test (EUT)

EUT#	TYPE	MANF.	MODEL	SERIAL#
1	EUT	Elektrobit	ISAP	009
2	EUT	Elektrobit	ISAP	015

3.3 Identification of Accessory equipment

None

4 **Subject Of Investigation**

All testing was performed on the product referred to in Section 3 as EUT. EUT operates in the band 2400-2483.5MHz and 5725–5850 MHz in 20MHz mode (HT20) and 40MHz mode (HT40). The EUT does not support 802.11b/g legacy mode of operation.

The EUT is a 3x3 Spatial Multiplexing MIMO system; it transmits and receives on three chains. All three ports are measured during testing and worse case performances are reported here to show compliance to applicable standards. Total conducted output power and power spectral density is a sum of the threes port. No beam-forming is used as stated by the manufacturer. The external whip antennae used on all three ports are identical with stated gain 2.6dBi. Since each antenna elements are always driven incoherently at each frequency the directional gain is the gain of each antenna and is equal to 2.6Bi.

The objective of the measurements done by Cetecom Inc. was to measure the performance of the EUT operating under 20MHz mode (HT20) and 40MHz mode (HT40) in the 2400-2483.4MHz and 5725–5850 MHz range as specified by requirements listed in FCC rules Part 15.247 of Title 47 of the Code of Federal Regulations. The maximization of portable equipment is conducted in accordance with ANSI C63.4

5 Radiated Measurements

5.1 Maximum Peak Output Power § 15.247 (b)(1) (Radiated)

EIRP is calculated from conducted peak power with the following formula:

EIRP = Conducted Peak Power + Directional Antenna Gain (G)

Directional Antenna Gain = Max Stated Antenna Gain = 2.6dBi

No beam-forming is used as stated by the manufacturer. The external whip antennae used on all three ports are identical with stated gain 2.6dBi. Since each antenna elements are always driven incoherently at each frequency the directional gain is the gain of each antenna and is equal to 2.6Bi.

5.1.1 Limits

FCC15.247 (b) (1): 4W (36dBm), with antenna gain < 6dBi.

RSS-210 A8.4 (4): 4W (36dBm)

5.1.2 Results:

EIRP 802.11na HT20 MODE:

TEST CONDITIONS T _{nom} (23)°C, V _{nom} VDC	Channel Frequency	EIRP (dBm)	EIRP (mW)	Margin (mW)
Sub-band 1: 2400-2483.5MHz	2412	17.14	51.81	3948.19
	2437	16.97	49.75	3950.25
	2462	17.06	50.80	3949.20
	5745	18.63	72.94	3927.06
Sub-band 3: 5725-5850MHz	5785	18.62	72.80	3927.20
	5825	18.53	71.35	3928.65

EIRP 802.11na HT40 MODE:

TEST CONDITIONS T _{nom} (23)°C, V _{nom} VDC	Channel Frequency	EIRP (dBm)	EIRP (mW)	Margin (mW)
	2422	16.64	46.08	3953.92
Sub-band 1: 2400-2483.5MHz	2437	16.73	47.11	3952.89
	2452	15.58	36.16	3963.84
	5755	18.32	67.87	3932.13
Sub-band 3: 5725-5850MHz	5795	18.27	67.11	3932.89
	5835	18.33	12.63	3987.37

Date of Report: **2008-6-17** Page 9 of 125

5.2 Restricted Band Edge Compliance §15.247/15.205

5.2.1 Limits

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			•

^{*}PEAK LIMIT= 74dBuV/m

Notes:

- 1. Radiated emissions are maximized by rotating the EUT 360° at 0.5 meter height increments between 1 and 4 meters.
- 2. Measurements were performed with the EUT in X, Y and Z orientations with the measurement antenna in both horizontal and vertical polarity. The plots below show the results of the worst case orientation and polarity.

^{*}AVG. LIMIT= 54dBuV/m

5.2.2 802.11 (ng) HT20 MODE

2412MHz, Lower band edge PEAK

EUT: isap

Customer:: EB

Test Mode: CH.1; 2412MHz; 20 MHz

ANT Orientation: V EUT Orientation: H Test Engineer: Chris Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247 LBE_PK"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2.3 GHz 2.4 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

MaxPeak

Date of Report: Page 11 of 125 2008-6-17

2412MHz, Lower band edge AVERAGE

EUT: isap Customer:: EΒ

Test Mode: CH.1; 2412MHz; 20 MHz

ANT Orientation: V EUT Orientation: H Test Engineer: Chris Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247 LBE_AVG"

Transducer IF Start Stop Detector Meas.

Frequency Frequency Time Bandw.

2.3 GHz 2.4 GHz MaxPeak Coupled #326horn_AF_vert 1 MHz

2462MHz, Upper band edge PEAK

EUT: isap

Customer:: EB
Test Mode: CH.11; 2462MHz; 20 MHz

ANT Orientation: V EUT Orientation: H Test Engineer: Chris

Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247 HBE_PK"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2462MH, Upper band edge AVERAGE

EUT: isap Customer:: EB

Test Mode: CH.11; 2462MHz; 20 MHz

ANT Orientation: V
EUT Orientation: H
Test Engineer: Chris
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247 HBE_AVG"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2.5 GHz 2.5 GHz MaxPeak Coupled 1 MHz #326horn_AF_horz

5.2.3 802.11 (ng) HT40 MODE

2422MHz, Lower band edge PEAK

EUT: isap

Customer:: Electrobit

Test Mode: HT40
ANT Orientation: V
EUT Orientation: H
Test Engineer: Peter
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247 LBE_PK"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2.3 GHz 2.4 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

MaxPeak

2422MHz, Lower band edge AVERAGE

EUT: isap

Customer:: Electrobit

Test Mode: HT40
ANT Orientation: V
EUT Orientation: H
Test Engineer: Peter
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247 LBE_AVG"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2452MHz, Upper band edge PEAK

EUT: isap

Customer:: Electrobit Test Mode: HT40

ANT Orientation: V EUT Orientation: H Test Engineer: Peter Voltage:

Comments:

SWEEP TABLE: "FCC15.247 HBE_PK"

Start Stop IF Transducer

Detector Meas. Time Frequency Frequency Bandw.

#326horn_AF_vert 2.5 GHz 2.5 GHz MaxPeak Coupled 1 MHz

MaxPeak

2452MHz, Upper band edge AVERAGE

EUT: isap

Customer:: Electrobit Test Mode: HT40

ANT Orientation: V EUT Orientation: H Test Engineer: Peter Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247 HBE_AVG"

Start Stop Detector Meas. IF Transducer Time

Frequency Frequency Bandw.

2.5 GHz 2.5 GHz MaxPeak Coupled 1 MHz #326horn_AF_horz

Date of Report: 2008-6-17 Page 18 of 125

5.3 Transmitter Spurious Emission § 15.247/15.205/15.209

5.3.1 Limits

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

^{*}PEAK LIMIT= 74dBuV/m

Notes:

- 1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3 and 25 GHz very short cable connections to the antenna was used to minimize the noise level.
- 2. All measurements are done in peak mode using an average limit, unless specified with the plots.
- 3. Radiated emissions are maximized by rotating the EUT 360° at 0.5 meter height increments between 1 and 4 meters.
- 4. Measurements were performed with the EUT in X, Y and Z orientations with the measurement antenna in both horizontal and vertical polarity. The plots below show the results of the worst case orientation and polarity

Results for the radiated measurements below 30MHz according § 15.33

Frequency	Measured values	Remarks
9KHz – 30MHz	No emissions found, caused by the EUT	This is valid for all the tested
		channels

^{*}AVG. LIMIT= 54dBuV/m

CETECOM

5.3.2 RESULTS 802.11 (ng) HT20 MODE

30MHz – 1GHz, Antenna: Vertical

Note: This plot is valid for low, mid, high channels (worst-case plot).

EUT:

Customer:: EB

Test Mode: Ch.1; 2462MHz; 20 MHz

ANT Orientation: V EUT Orientation: H Test Engineer: Chris Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Ver"

Transducer Start Detector Meas. ΙF Stop Frequency Bandw. Frequency Time 30.0 MHz 3141-#1186_Vert 1.0 GHz MaxPeak 100 kHz Coupled

Date of Report: 2008-6-17 Page 20 of 125

CETECOM

30MHz – 1GHz, Antenna: Horizontal

Note: This plot is valid for low, mid, high channels (worst-case plot).

EUT: isap Customer:: EB

Test Mode: Ch.1; 2462MHz; 20 MHz

ANT Orientation: H
EUT Orientation: H
Test Engineer: Chris
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Hor"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Horz

Note: The peak above the limit line is the carrier freq.

Note: Peak Reading vs. Average limit

EUT: isap

Customer:: Electrobit

Test Mode: HT20
ANT Orientation: V
EUT Orientation: H
Test Engineer: Peter
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

CETECOM

Note: The peak above the limit line is the carrier freq.

Note: Peak Reading vs. Average limit

EUT: isap

Customer:: Electrobit

Test Mode: HT20
ANT Orientation: V
EUT Orientation: H
Test Engineer: Peter
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

Note: The peak above the limit line is the carrier freq.

Note: Peak Reading vs. Average limit

EUT: isap

Customer:: Electrobit

Test Mode: HT20
ANT Orientation: V
EUT Orientation: H
Test Engineer: Peter
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

Date of Report: 2008-6-17 Page 24 of 125

Note: Peak Reading vs. Average limit

EUT: isap

Customer:: EB

Test Mode: Ch.1; 2412MHz; 20 MHz

ANT Orientation: V EUT Orientation: H Test Engineer: Chris Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

Date of Report: 2008-6-17 Page 25 of 125

CETECOM

Note: Peak Reading vs. Average limit

EUT: isap

Customer:: EB

Test Mode: Ch.6; 2437MHz; 20 MHz

ANT Orientation: V EUT Orientation: H Test Engineer: Chris Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

CETECOM

Note: Peak Reading vs. Average limit

EUT: isap

Customer:: EB

Test Mode: Ch.11; 2462MHz; 20 MHz

ANT Orientation: V EUT Orientation: H Test Engineer: Chris Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

18-25GHz

Note: This plot is valid for low, mid, high channels (worst-case plot).

Note: Peak Reading vs. Average limit

EUT: isap
Customer:: EB
Test Mode:
ANT Orientation: H

ANT Orientation: H
EUT Orientation: H
Test Engineer: Chris
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_18-26.5G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

Frequency Frequency Time Bandw.
18.0 GHz 26.5 GHz MaxPeak Coupled 100 kHz Horn # 3116_18-40G

MaxPeak Coupled 100 kHz Horn # 3116_18-40

Date of Report: 2008-6-17 Page 28 of 125

5.3.3 RESULTS 802.11 (ng) HT40 MODE

30MHz – 1GHz, Antenna: Vertical

Note: This plot is valid for low, mid, high channels (worst-case plot).

EUT: isap

Customer:: EB

Test Mode: Ch.6; 2437MHz; 40 MHz

ANT Orientation: V EUT Orientation: H Test Engineer: sam Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Ver"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Vert

Date of Report: 2008-6-17 Page 29 of 125

CETECOM

30MHz – 1GHz, Antenna: Horizontal

Note: This plot is valid for low, mid, high channels (worst-case plot).

EUT: isap Customer:: EB

Test Mode: Ch.6; 2437MHz; 40 MHz

ANT Orientation: H
EUT Orientation: H
Test Engineer: sam
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Hor"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Horz

CETECOM

Note: The peak above the limit line is the carrier freq.

Note: Peak Reading vs. Average limit

EUT: isap

Customer:: Electrobit

Test Mode: HT40
ANT Orientation: V
EUT Orientation: H
Test Engineer: Peter
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

Date of Report: 2008-6-17 Page 31 of 125

Note: The peak above the limit line is the carrier freq.

Note: Peak Reading vs. Average limit

EUT: isap

Customer:: Electrobit

Test Mode: HT40
ANT Orientation: V
EUT Orientation: H
Test Engineer: Peter
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

CETECOM

Note: The peak above the limit line is the carrier freq.

Note: Peak Reading vs. Average limit

EUT: isap

Customer:: Electrobit

Test Mode: HT40
ANT Orientation: V
EUT Orientation: H
Test Engineer: Peter
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

3-18GHz (2422MHz)

Note: Peak Reading vs. Average limit

EUT: isap Customer:: EB

Test Mode: Ch.2; 2422MHz; 40 MHz

ANT Orientation: V EUT Orientation: H Test Engineer: sam Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
3.0 GHz	18.0 GHz	MaxPeak	Coupled	1 MHz	#326horn AF vert

3-18GHz (2437MHz)

Note: Peak Reading vs. Average limit

EUT: isap

Customer:: EB

Test Mode: Ch.6; 2437MHz; 40 MHz

ANT Orientation: V EUT Orientation: H Test Engineer: sam Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
3.0 GHz	18.0 GHz	MaxPeak	Coupled	1 MHz	#326horn AF vert

Date of Report: 2008-6-17 Page 35 of 125

CETECOM

Note: Peak Reading vs. Average limit

EUT: isap Customer:: EB

Test Mode: Ch.10; 2452MHz; 40 MHz

ANT Orientation: V EUT Orientation: H Test Engineer: sam Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

Date of Report: 2008-6-17 Page 36 of 125

Note: This plot is valid for low, mid, high channels (worst-case plot)

Note: Peak Reading vs. Average limit

EUT: isap

Customer:: EB

Test Mode: Ch.1; 2412MHz; 40MHz

ANT Orientation: H
EUT Orientation: H
Test Engineer: Chris
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_18-26.5G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

18.0 GHz 26.5 GHz MaxPeak Coupled 100 kHz Horn # 3116_18-40G

MaxPeak

5.3.4 RESULTS 802.11 (na) HT20 MODE

30MHz – 1GHz, Antenna: Vertical

Note: This plot is valid for low, mid, high channels (worst-case plot).

EUT: isap Customer:: EB Test Mode: 5825MHz

ANT Orientation: V EUT Orientation: H Test Engineer: Chris Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Ver"

Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
30 0 MHz	1 0 CH2	MavDeak	Counled	100 ኡዞ~	3141-#1186 Wart

Date of Report: 2008-6-17 Page 38 of 125

Note: This plot is valid for low, mid, high channels (worst-case plot).

EUT: isap Customer:: EB Test Mode: 5825MHz

ANT Orientation: V
EUT Orientation: H
Test Engineer: Chris
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Hor"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Horz

1-3GHz (5745MHz)

EUT: isap Customer:: EB

Test Mode: 5745MHz; 20MHz

ANT Orientation: V EUT Orientation: H Test Engineer: Sam Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.
1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

1-3GHz (5785MHz)

EUT: isap Customer:: EB

Test Mode: 5785MHz; 20MHz

ANT Orientation: V EUT Orientation: H Test Engineer: Sam Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

1-3GHz (5825MHz)

EUT: isap Customer:: EB

Test Mode: 5825MHz; 20MHz

ANT Orientation: V EUT Orientation: H Test Engineer: Sam Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

3-18GHz (5745MHz)

EUT: isap Customer:: EB

Test Mode: 5745MHz; 20MHz

ANT Orientation: V
EUT Orientation: H
Test Engineer: Chris
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

3.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

3-18GHz (5785MHz)

EUT: isap Customer:: EB

5785MHz; 20MHz Test Mode:

ANT Orientation: V EUT Orientation: H Test Engineer: Chris Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Start Stop Meas. IF Transducer Detector

Frequency Frequency Time Bandw.

Coupled #326horn_AF_vert 3.0 GHz 18.0 GHz MaxPeak 1 MHz

3-18GHz (5825MHz)

EUT: isap Customer:: EB

Test Mode: 5825MHz; 20MHz

ANT Orientation: V
EUT Orientation: H
Test Engineer: Chris
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

3.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

Date of Report: 2008-6-17 Page 45 of 125

Note: This plot is valid for low, mid, high channels (worst-case plot).

Note: Peak Reading vs. Average limit

EUT: isap Customer:: EB

Test Mode: 5825MHz; 20MHz

ANT Orientation: V EUT Orientation: H Test Engineer: Chris Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_18-26.5G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

18.0 GHz 26.5 GHz MaxPeak Coupled 100 kHz Horn # 3116_18-40G

MaxPeak

Date of Report: 2008-6-17 Page 46 of 125

25-40GHz

Note: This plot is valid for low, mid, high channels (worst-case plot).

Note: Peak Reading vs. Average limit

EUT: isap Customer:: EΒ

Test Mode: 5825MHz; 20MHz

ANT Orientation: V EUT Orientation: H Test Engineer: Chris Voltage: AC

Comments:

SWEEP TABLE: "FCC 15.407 26.5-40G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

26.<u>5 GHz</u> 40.0 GHz MaxPeak Coupled 1 MHz Horn # 3116_18-40G

5.3.5 RESULTS 802.11 (na) HT40 MODE

EUT: isap Customer:: EB Test Mode: 5835MHz

ANT Orientation: V
EUT Orientation: H
Test Engineer: Chris
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Ver"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Vert

CETECOM

Note: This plot is valid for low, mid, high channels (worst-case plot).

EUT: isap Customer:: EB Test Mode: 5835MHz

ANT Orientation: V
EUT Orientation: H
Test Engineer: Chris
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Hor"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Horz

Page 49 of 125 Date of Report: 2008-6-17

CETECOM

Note: This plot is valid for low, mid, high channels (worst-case plot).

EUT: isap Customer:: EB

5755MHz; 40MHz Test Mode:

ANT Orientation: V EUT Orientation: H Test Engineer: Sam Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. ΙF Transducer

Frequency Frequency Time Bandw.

1.0 GHz Coupled #326horn_AF_vert MaxPeak 1 MHz

Page 50 of 125 Date of Report: 2008-6-17

CETECOM

Note: This plot is valid for low, mid, high channels (worst-case plot).

EUT: isap Customer:: EB

5795MHz; 40MHz Test Mode:

ANT Orientation: V EUT Orientation: H Test Engineer: Sam Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. ΙF Transducer

Frequency Frequency Time Bandw.

1.0 GHz

CETECOM

Note: This plot is valid for low, mid, high channels (worst-case plot).

EUT: isap Customer:: EB

5835MHz; 40MHz Test Mode:

ANT Orientation: V EUT Orientation: H Test Engineer: Sam Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. ΙF Transducer

Frequency Frequency Time Bandw.

1.0 GHz Coupled #326horn_AF_vert MaxPeak 1 MHz

Page 52 of 125 Date of Report: 2008-6-17

CETECOM

Note: This plot is valid for low, mid, high channels (worst-case plot).

EUT: isap Customer:: EΒ

5755MHz; 40MHz Test Mode:

ANT Orientation: V EUT Orientation: H Test Engineer: Chris Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

3.0 GHz 18.0 GHz ${\tt MaxPeak}$ Coupled 1 MHz #326horn_AF_vert

Date of Report: 2008-6-17

CETECOM

3-18GHz (5795MHZ)

Note: This plot is valid for low, mid, high channels (worst-case plot).

EUT: isap Customer:: EB

5795MHz; 40MHz Test Mode:

ANT Orientation: V EUT Orientation: H Test Engineer: Chris Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

3.0 GHz 18.0 GHz ${\tt MaxPeak}$ Coupled 1 MHz #326horn_AF_vert

Page 54 of 125 Date of Report: 2008-6-17

CETECOM

Note: This plot is valid for low, mid, high channels (worst-case plot).

EUT: isap Customer:: EΒ

5835MHz; 40MHz Test Mode:

ANT Orientation: V EUT Orientation: H Test Engineer: Chris Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

3.0 GHz 18.0 GHz ${\tt MaxPeak}$ Coupled 1 MHz #326horn_AF_vert

Date of Report: 2008-6-17 Page 55 of 125

Note: This plot is valid for low, mid, high channels (worst-case plot).

Note: Peak Reading vs. Average limit

EUT: isap Customer:: EB

Test Mode: 5835MHz; 20MHz

ANT Orientation: V EUT Orientation: H Test Engineer: Chris Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_18-26.5G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

18.0 GHz 26.5 GHz MaxPeak Coupled 100 kHz Horn # 3116_18-40G

MaxPeak

Date of Report: 2008-6-17 Page 56 of 125

25-40GHz

Note: This plot is valid for low, mid, high channels (worst-case plot).

Note: Peak Reading vs. Average limit

EUT: isap Customer:: EΒ

Test Mode: 5835MHz; 20MHz

ANT Orientation: V EUT Orientation: H Test Engineer: Chris Voltage: AC

Comments:

SWEEP TABLE: "FCC 15.407 26.5-40G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

26.<u>5 GHz</u> 40.0 GHz MaxPeak Coupled 1 MHz Horn # 3116_18-40G

5.4 Receiver Spurious Emission § 15.209/RSS210

5.4.1 Limits

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
above 960	500	3

NOTE:

- 1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3 and 25 GHz very short cable connections to the antenna was used to minimize the noise level.
- 2. All measurements are done in peak mode using an average limit unless specified with the plots.
- 3. There are no measurable emissions up to 18GHz in Rx mode.

Date of Report: 2008-6-17 Page 58 of 125

CETECOM

30MHz - 1GHz, Antenna: Horizontal

Note: This plot is valid for low, mid, high channels (worst-case plot).

EUT: 015

Customer:: Elektrobit

Test Mode: RX mode; 20 MHz BW

ANT Orientation: H
EUT Orientation: H
Test Engineer: Satya
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Hor"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Horz

30MHz – 1GHz, Antenna: Vertical

Note: This plot is valid for low, mid, high channels (worst-case plot).

EUT: 015

Customer:: Elektrobit

RX mode; 20 MHz BW Test Mode:

ANT Orientation: V EUT Orientation: H Test Engineer: Satya Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Ver"

IF Transducer Start Meas. Stop Detector

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz Coupled 100 kHz 3141-#1186_Vert MaxPeak

Page 60 of 125 Date of Report: 2008-6-17

1-18GHz

Note: The peak above the limit line is the carrier freq.

Note: Peak Reading vs. Average limit

EUT / Description: 015

Manufacturer: Elektrobit

Operation Mode: RX mode; 20 MHz BW

ANT Orientation: : H EUT Orientation:: H Test Engineer: Chris Voltage:

Comments::

SWEEP TABLE: "FCC 15.407 1-18G"

IF Transducer Start Stop Detector Meas.

Bandw. Frequency Frequency Time

1.0 GHz 18.0 GHz MaxPeak Coupled 1 MHz #326horn_AF_horz

Date of Report: 2008-6-17 Page 61 of 125

CETECOM

30MHz - 1GHz, Antenna: Horizontal

Note: This plot is valid for low, mid, high channels (worst-case plot).

EUT: 015

Customer:: Elektrobit
Test Mode: RX mode
ANT Orientation: H
EUT Orientation: H
Test Engineer: Satya
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Hor"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Horz

CETECOM

30MHz – 1GHz, Antenna: Vertical

Note: This plot is valid for low, mid, high channels (worst-case plot).

EUT: 015

Customer:: Elektrobit
Test Mode: RX mode

ANT Orientation: V
EUT Orientation: H
Test Engineer: Satya
Voltage: AC

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Ver"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Vert

Page 63 of 125 Date of Report: 2008-6-17

1-18GHz

Note: The peak above the limit line is the carrier freq.

Note: Peak Reading vs. Average limit

EUT / Description: 015

Elektrobit Manufacturer: Operation Mode: Rx Mode

ANT Orientation: : H EUT Orientation:: H Test Engineer: Satya Voltage:

Comments::

SWEEP TABLE: "FCC 15.407 1-18G"

IF Transducer Start Stop Detector Meas.

Frequency Frequency Time Bandw.

Coupled #326horn_AF_horz 1.0 GHz 18.0 GHz MaxPeak 1 MHz

6 Conducted Measurements

6.1 6dB bandwidth and 99% bandwidth.

6.1.1 Limit

FCC15.247(a)(2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

RSS210 A8.2 (a): The minimum 6 dB bandwidth shall be at least 500 kHz.

6.1.2 Measurement Result:

EIRP 802.11na HT20 MODE:

TEST CONDITIONS	Channel	6dB BW	99%BW
T _{nom} (23)°C, V _{nom} VDC	Frequency	(MHz)	(MHz)
	2412	17.5	18.3
Sub-band 1: 2400-2483.5MHz	2437	17.7	18.7
	2462	17.9	18.5
	5745	17.6	18.2
Sub-band 3: 5725-5850MHz	5785	17.8	18.2
	5825	17.5	18.2

EIRP 802.11na HT40 MODE:

TEST CONDITIONS	Channel	6dB BW	99%BW
$T_{nom}(23)$ °C, $V_{nom}VDC$	Frequency	(MHz)	(MHz)
	2422	36.7	36.8
Sub-band 1: 2400-2483.5MHz	2437	36.6	37.7
	2452	36.6	37.4
	5755	36.4	36.5
Sub-band 3: 5725-5850MHz	5795	36.5	36.7
	5835	36.0	36.7

6.2 Conducted Power Measurement

6.2.1 Limit

FCC15.247 (b)(3): For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt

RSS210 A8.4(4): For systems employing digital modulation techniques operating in the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz, the maximum peak conducted output power shall not exceed 1 W. Except as provided in Section A8.4(5), the e.i.r.p. shall not exceed 4 W.

6.2.2 Results

The peak conducted power is measured with a power sensor with thermal detector. The EUT is set to transmit at 100% duty cycle and powers from all three transmit ports are measured. Directional gain of the two transmit port is 2.6dBi and the EUT does not support TPC.

EIRP 802.11na HT20 MODE:

TEST CONDITIONS T _{nom} (23)°C, V _{nom} VDC	Channel Frequency	Conducted Output Power	Conducted Output Power	Margin (mW)
nom(- / - / nom -	1 3	(dBm)	(mW)	
	2412	14.54	28.47	971.53
Sub-band 1: 2400-2483.5MHz	2437	14.37	27.34	972.66
	2462	14.46	27.92	972.08
	5745	16.03	40.08	959.92
Sub-band 3: 5725-5850MHz	5785	16.02	40.00	960.00
	5825	15.93	39.21	960.79

EIRP 802.11na HT40 MODE:

TEST CONDITIONS T _{nom} (23)°C, V _{nom} VDC	Channel Frequency	Conducted Output Power (dBm)	Conducted Output Power (mW)	Margin (mW)
	2422	14.04	25.32	974.68
Sub-band 1: 2400-2483.5MHz	2437	14.13	25.89	974.11
	2452	12.98	19.87	980.13
	5755	15.72	37.30	962.70
Sub-band 3: 5725-5850MHz	5795	15.67	36.88	963.12
	5835	15.73	37.39	962.61

6.3 Power Spectral Density

6.3.1 Limit

FCC 15.247 (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

6.3.2 Results

The peak conducted power is measured with a combiner, spectrum analyzer and method 1 specified in FCC public knowledge DA-02-2138A1. The EUT is set to transmit at 100% duty cycle and powers from the two ports with highest transmit power are measured and reported here. The EUT does not support TPC.

TEST CONDITIONS T _{nom} (23)°C, V _{nom} VDC	Channel Frequency	Power Spectral Density (dBm)	Margin (dBm)
	2412	-6.8	14.8
Sub-band 1: 2400-2483.5MHz	2437	-8.15	16.15
	2462	-5.73	13.73
	5745	-8.41	16.41
Sub-band 3: 5725-5850MHz	5785	-7.63	15.63
	5825	-7.48	15.48

EIRP 802.11na HT40 MODE:

TEST CONDITIONS T _{nom} (23)°C, V _{nom} VDC	Channel Frequency	Conducted Output Power (dBm)	Margin (dBm)
	2422	-10.58	18.58
Sub-band 1: 2400-2483.5MHz	2437	-11.03	19.03
	2452	-10.91	18.91
	5755	-11.58	19.58
Sub-band 3: 5725-5850MHz	5795	-11.26	19.26
	5835	-10.53	18.53

Date of Report: 2008-6-17 Page 67 of 125

6.4 Conducted Spurious Emission

6.4.1 Limit

§15.247(d) & RSS-210 (A8.5): -30dBc

6.4.2 Results:

No measurable emission over the limit. See plots for details.

Date of Report: **2008-6-17** Page 68 of 125

6.5 AC Power Line Conducted Emissions § 15.107/207

6.5.1 Limits

Technical specification: 15.107 / 15.207 (Revised as of August 20, 2002)

Frequency of Emission (MHz)	Conducted Limit (dBµV)				
	Quasi-Peak	Average			
0.15 - 0.5	66 to 56*	56 to 46*			
0.5 - 5	56	46			
5 – 30	60	50			
* Decreases with logarithm of the frequency					

ANALYZER SETTINGS: RBW = 10KHz

VBW = 10KHz

6.5.2 RESULTS 802.11ng HT20 Mode

Line:

EUT: 015
Manufacturer: Elektrobit
Test Mode: HT20
ANT Orientation:: Conducted

EUT Orientation:: H
Test Engineer:: Chris
Power Supply: : AC
Comments: : 120V Line

Neutral:

EUT: 015
Manufacturer: HT20
ANT Orientation:: Conducted
EUT Orientation:: H

Test Engineer:: Chris
Power Supply: : AC

Comments: : 120V Neutral

Date of Report: Page 71 of 125 2008-6-17

CETECOM

EUT: 015

Manufacturer: Elektrobit

Test Mode: RX

ANT Orientation:: Conducted

EUT Orientation:: H

Test Engineer:: Chris Power Supply: : Power Cable

CETECOM

EUT: Manufacturer: Elektrobit

Test Mode:

ANT Orientation:: Conducted

EUT Orientation:: H Test Engineer:: Chris Power Supply: : AC

120V Neutral Comments:

6.6 Conducted Measurement Plots

6.6.1 6dB Bandwidth

6.6.1.1 <u>802.11ng HT20 Mode</u>

2412MHz

Date: 5.APR.2008 15:25:36

2437MHz

Date: 5.APR.2008 15:26:45

CETECOM

2462MHz

Date: 5.APR.2008 15:27:34

CETECOM

6.6.1.2 802.11ng HT40 Mode

2422MHz

Date: 5.APR.2008 15:23:11

CETECOM

2437MHz

Date: 5.APR.2008 15:20:36

CETECOM

2452MHz

Date: 5.APR.2008 15:21:43

CETECOM

6.6.1.3 <u>802.11na HT20 Mode</u>

5745MHz

Date: 18.JUN.2008 13:07:45

5785MHz

Date: 18.JUN.2008 13:05:38

CETECOM

5825MHz

Date: 18.JUN.2008 13:02:56

CETECOM

6.6.1.4 <u>802.11na HT40 Mode</u>

5755MHz

Date: 18.JUN.2008 13:09:34

CETECOM

5795MHz

Date: 18.JUN.2008 13:10:38

CETECOM

5835MHz

Date: 18.JUN.2008 13:11:49

6.6.2 99% Bandwidth

6.6.2.1 <u>802.11 ng HT20 mode</u>

2412MHz

Date: 21.APR.2008 15:53:48

CETECOM

2437MHz

Date: 21.APR.2008 15:54:27

2462MHz

Date: 21.APR.2008 15:55:16

CETECOM

6.6.2.2 <u>802.11ng HT40 Mode</u>

2422MHz

Date: 21.APR.2008 15:50:24

CETECOM

2437MHz

Date: 21.APR.2008 15:48:17

CETECOM

2452MHz

Date: 21.APR.2008 15:49:08

CETECOM

6.6.2.3 <u>802.11na HT20 Mode</u>

5745MHz

Date: 18.JUN.2008 13:00:09

CETECOM

5785MHz

Date: 18.JUN.2008 13:00:58

CETECOM

5825MHz

Date: 18.JUN.2008 13:01:40

6.6.2.4 <u>802.11na HT40 Mode</u>

5755MHz

Date: 18.JUN.2008 12:54:33

CETECOM

5795MHz

Date: 18.JUN.2008 12:56:24

CETECOM

5835MHz

Date: 18.JUN.2008 12:57:42

Date of Report: **2008-6-17** Page 97 of 125

6.6.3 Power Spectral Density

6.6.3.1 <u>802.11ng HT20 mode</u>

2412MHz

Date: 18.JUN.2008 13:21:40

CETECOM

2437 MHz

Date: 18.JUN.2008 13:24:57

2462 MHz

Date: 18.JUN.2008 13:28:10

CETECOM

6.6.3.2 <u>802.11ng HT40 mode</u>

2422 MHz

Date: 18.JUN.2008 13:31:08

2437MHz

Date: 18.JUN.2008 13:34:59

2452MHz

Date: 18.JUN.2008 13:38:28

Date of Report: **2008-6-17** Page 103 of 125

CETECOM

6.6.3.3 <u>802.11na HT20 Mode</u>

5745MHz

Date: 18.JUN.2008 13:41:55

5785MHz

Date: 18.JUN.2008 13:45:15

5825MHz

Date: 18.JUN.2008 13:48:01

Page 107 of 125

CETECOM

6.6.3.4 <u>802.11na HT40 Mode</u>

5755MHz

Date: 18.JUN.2008 13:51:03

5795MHz

Date: 18.JUN.2008 13:54:16

CETECOM

5835MHz

Date: 18.JUN.2008 13:57:24

6.6.4 Conducted Spurious Emissions

6.6.4.1 <u>802.11ng HT20 mode</u>

2412MHz

Date: 18.JUN.2008 14:13:01

CETECOM

2437 MHz

Date: 18.JUN.2008 14:13:58

2462 MHz

Date: 18.JUN.2008 14:14:26

CETECOM

6.6.4.2 <u>802.11ng HT40 mode</u>

2422 MHz

Date: 18.JUN.2008 14:15:13

2437MHz

Date: 18.JUN.2008 14:15:51

2452MHz

Date: 18.JUN.2008 14:16:17

Date of Report: **2008-6-17** Page 116 of 125

CETECOM

6.6.4.3 <u>802.11na HT20 Mode</u>

5745MHz

Date: 18.JUN.2008 14:17:32

CETECOM

5785MHz

Date: 18.JUN.2008 14:17:55

CETECOM

5825MHz

Date: 18.JUN.2008 14:18:18

CETECOM

6.6.4.4 <u>802.11na HT40 Mode</u>

5755MHz

Date: 18.JUN.2008 14:18:54

CETECOM

5795MHz

Date: 18.JUN.2008 14:19:21

5835MHz

Date: 18.JUN.2008 14:19:49

Date of Report: **2008-6-17** Page 123 of 125

7 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

No	Instrument/Ancillary	Type	Manufacturer	Serial No.	Cal Due	Interval
01	Spectrum Analyzer	ESIB 40	Rohde & Schwarz	100107	May 2008	1 year
02	Spectrum Analyzer	FSEM 30	Rohde & Schwarz	100017	August 2008	1 year
03	Signal Generator	SMY02	Rohde & Schwarz	836878/011	May 2008	1 year
04	Power-Meter	NRVD	Rohde & Schwarz	0857.8008.02	May 2008	1 year
05	Biconilog Antenna	3141	EMCO	0005-1186	June 2008	1 year
06	Horn Antenna (1- 18GHz)	SAS-200/571	AH Systems	325	June 2008	1 year
07	Horn Antenna (18- 26.5GHz)	3160-09	EMCO	1240	June 2008	1 year
08	Power Splitter	11667B	Hewlett Packard	645348	n/a	n/a
09	Climatic Chamber	VT4004	Voltsch	G1115	May 2008	1 year
10	High Pass Filter	5HC2700	Trilithic Inc.	9926013	n/a	n/a
11	High Pass Filter	4HC1600	Trilithic Inc.	9922307	n/a	n/a
12	Pre-Amplifier	JS4-00102600	Miteq	00616	May 2008	1 year
13	Power Sensor	URV5-Z2	Rohde & Schwarz	DE30807	May 2008	1 year
14	Digital Radio Comm. Tester	CMD-55	Rohde & Schwarz	847958/008	May 2008	1 year
15	Universal Radio Comm. Tester	CMU 200	Rohde & Schwarz	832221/06	May 2008	1 year
16	LISN	ESH3-Z5	Rohde & Schwarz	836679/003	May 2008	1 year
17	Loop Antenna	6512	EMCO	00049838	July 2008	2 years

Test Report #:

EMC_CETEC_030_15_247

CETECOM

Date of Report: 2008-6-17 Page 124 of 125

8 <u>BLOCK DIAGRAMS</u> Radiated Testing

ANECHOIC CHAMBER

Date of Report: **2008-6-17** Page 125 of 125

9 Revision History

2008-6-17: First Issue