C3 linearization algorithm

Miguel Cid Flor

April 23, 2025

Ingredients

Let \mathcal{C} be a finite set of symbols, ranged over by C_0, C_1, \ldots, C_n , possibly primed, which we refer to as *classes*, and let $(\mathcal{C}, <_c)$ be an ordered set of classes. Consider $\mathcal{P} \subseteq (\mathcal{C}, <_c)$ and $\mathcal{D} \subseteq \mathcal{C} \times \wp(\mathcal{P})$.

The purpose of this document is to present the MRO algorithm¹, which maps each \mathcal{C} with an ordered set of classes, \mathcal{P} . We show first the envisaged properties, then define it, and finally prove the definition ensures those properties.

Properties

Let
$$D = \langle C, \{P_1, \dots, P_n\} \rangle \in \mathcal{D}$$
, with $n \in \mathbb{N}_0$.

Consistency with the hierarchy of classes

This property requires that $MRO(\mathcal{C}) = \{C_0, \dots, C_m\}$, with $m \in \mathbb{N}_0$ and $C_0 = C$ where $\{P_0, P_1, \dots, P_n\} \subseteq \{C_1, \dots, C_m\}$.

Consistency with the local precedence order

Let \widetilde{C} denote a possibly empty sequence of class names and consider

$$\mathtt{chars}(\mathbf{s}) = \{ c \in \Sigma \mid \exists i \in [1, |s|] \text{ such that } s_i = c \}$$

 $SbStr(\varepsilon, \widetilde{C})$ holds always

 $SbStr(a \cdot s_1, s_2 \cdot a \cdot s_3)$ holds if $a \notin s_1 \cdot s_2 \cdot s_3 \land \operatorname{chars}(s_1) \subseteq \operatorname{chars}(s_3)$

This property requires that $SbStr(a \cdot s_1, \pi_2(D))$ and $SbStr(s_2 \cdot a \cdot s_3, MRO(C))$.

DEFINIR
ASSINATURA e
SbStr como
macro

 $^{^1}M{\rm bla}$ $R{\rm something}$ $O{\rm yada}$

Consistency with the local precedence graph

Let $X \in \mathcal{C}$ and $P(X) = [PX_0, \dots, PX_r]$, where $r \in \mathbb{N}_0$ is a list of superclasses. Let D, B and A be a class. If $D \in P(B) \setminus P(A)$, then $\exists p, q, 0 , where <math>\mathcal{M}_p = D$, $\mathcal{M}_q = A$.

Functions

Remove

Let $(\mathcal{C}, <_c)^*$ be a sequence of ordered sets of classes. remove : $(\mathcal{C}, <_c)^* \times C \Rightarrow (\mathcal{C}, <_c)^*$ Let $L = [L_1; \dots; L_n], L \in (\mathcal{C}, <_c)^*$ Let $C \in \mathcal{C}$

$$remove(L, C) = [l/C \mid l \in L]$$

Merge

merge:
$$(\mathcal{C}, <_c)^* \Rightarrow (\mathcal{C}, <_c)$$

Let $L = [L_1; \dots; L_n], L \in (\mathcal{C}, <_c)^*$

$$merge(L) = \begin{cases} \{C\} \cup \text{merge}(\text{remove}(L,C)), & \text{if } (\exists k \in \llbracket 1,n \rrbracket, L_k \neq \emptyset \land C = \text{head}(L_k)) \land \\ & (\forall j < k, C \neq \text{head}(L_j)) \land \\ & (\forall i \in \llbracket 1,n \rrbracket, C \notin \text{tail}(L_i)) \end{cases}$$
 fail otherwise

C3 Linearization

```
 \begin{split} \text{c3linearization} : \mathcal{D} &\Rightarrow (\mathcal{C}, <_c) \\ \text{Let } D &= \langle C, P \rangle \text{ where } D \in \mathcal{D} \\ \forall P_i \in P, \ \exists \text{DP}_i \in \mathcal{D} \text{ such that } \text{DP}_i &= \langle P_i, \text{PP}_i \rangle \\ \text{Let } DP &= [DP_i \mid i \in \llbracket 1, |P| \rrbracket] \end{split} \\ \text{c3linearization}(D) &= \begin{cases} \{C\} \\ \{C\} \cup \text{merge}([\text{c3linearization}(dp) \mid dp \in DP] \cdot [P]) \end{cases} \text{ otherwise}
```