IIC3263

Lógicas que no pueden ser evaluadas eficientemente

¿Alguna idea?

La lógica de segundo orden: Sintaxis

Dado: Vocabulario \mathcal{L}

Definición

La lógica de segundo orden (LSO) sobre \mathcal{L} es definida como la extensión de LPO que incluye las siguientes reglas:

- Si t_1, \ldots, t_k son \mathcal{L} -términos y X es una variable de segundo orden de aridad k (vale decir, una relación con $k \geq 1$ argumentos), entonces $X(t_1, \ldots, t_k)$ es una fórmula en LSO
- Si φ es una fórmula en LSO y X es una variable de segundo orden de aridad k, entonces ∃Xφ y ∀Xφ son fórmulas en LSO

La lógica de segundo orden: Semántica

Notación

Dada una estructura $\mathfrak A$ con dominio A, una asignación σ es una función que asigna:

- ▶ un valor en A a cada variable x de primer orden: $\sigma(x) \in A$
- ▶ un subconjunto de A^k a cada variable X de segundo orden con k argumentos: $\sigma(X) \subseteq A^k$

La lógica de segundo orden: Semántica

Definición

La definición de la semántica de LSO incluye tres casos adicionales. Para una variable de segundo orden X con aridad k:

- $(\mathfrak{A}, \sigma) \models X(t_1, \ldots, t_k)$ si y sólo si $(\sigma(t_1), \ldots, \sigma(t_k)) \in \sigma(X)$
- ▶ $(\mathfrak{A}, \sigma) \models \exists X \varphi$ si y sólo si existe $S \subseteq A^k$ tal que $(\mathfrak{A}, \sigma[X/S]) \models \varphi$
- ▶ $(\mathfrak{A}, \sigma) \models \forall X \varphi$ si y sólo si para todo $S \subseteq A^k$, se tiene que $(\mathfrak{A}, \sigma[X/S]) \models \varphi$

¿Qué podemos decir en LSO?

Sea $\mathcal{L}=\{E(\cdot,\cdot)\}$ y \mathcal{P} el conjunto de todas \mathcal{L} -estructuras \mathfrak{A} tal que $E^{\mathfrak{A}}$ es una relación de sucesor.

Vamos a demostrar que esta propiedad es expresable en LSO

¿Qué podemos decir en LSO?

Sea $\mathcal{L}=\{E(\cdot,\cdot)\}$ y \mathcal{P} el conjunto de todas \mathcal{L} -estructuras \mathfrak{A} tal que $E^{\mathfrak{A}}$ es una relación de sucesor.

Vamos a demostrar que esta propiedad es expresable en LSO

Sea:

$$first(x) = \forall y \neg E(y, x)$$

Y sea:

conectado
$$(x,y) = \forall P \left[\left(P(x) \land \forall u \forall v \left(P(u) \land E(u,v) \rightarrow P(v) \right) \right) \rightarrow P(y) \right]$$

Y sea:

$$conectado(x,y) = \forall P \left[\left(P(x) \land \\ \forall u \forall v \left(P(u) \land E(u,v) \rightarrow P(v) \right) \right) \rightarrow P(y) \right]$$

Entonces la siguiente \mathcal{L} -oración Φ en LSO define \mathcal{P} :

$$\Phi = \forall x \forall y \forall z \left(E(x, y) \land E(x, z) \to y = z \right) \land$$

$$\forall x \forall y \forall z \left(E(y, x) \land E(z, x) \to y = z \right) \land$$

$$\exists x \left(first(x) \land \forall y (x \neq y \to conectado(x, y)) \right)$$

Lógica de Segundo Orden Existencial

Dado: Vocabulario \mathcal{L}

Definición

El fragmento existencial de la lógica de segundo orden, denotado como $\exists LSO$, es definido como el conjunto de todas las fórmulas en LSO sobre \mathcal{L} de la forma:

$$\exists X_1 \exists X_2 \cdots \exists X_\ell \varphi$$

donde φ es una fórmula en LPO sobre el vocabulario $\mathcal{L}' = \mathcal{L} \cup \{X_1, \dots, X_\ell\}$

Fragmento existencial de LSO: Ejemplo

¿Qué podemos decir en ∃LSO?

Sea $\mathcal{L}=\{E(\cdot,\cdot)\}$ y \mathcal{P} el conjunto de todas \mathcal{L} -estructuras \mathfrak{A} tal que $E^{\mathfrak{A}}$ es una relación de sucesor.

▶ ¿Podemos expresar esta propiedad en ∃LSO?

Fragmento existencial de LSO: Ejemplo

¿Qué podemos decir en ∃LSO?

Sea $\mathcal{L}=\{E(\cdot,\cdot)\}$ y \mathcal{P} el conjunto de todas \mathcal{L} -estructuras \mathfrak{A} tal que $E^{\mathfrak{A}}$ es una relación de sucesor.

▶ ¿Podemos expresar esta propiedad en ∃LSO?

La siguiente \mathcal{L} -oración Ψ en $\exists \mathsf{LSO}$ define \mathcal{P} :

$$\Psi = \exists L \begin{pmatrix} \forall x \neg L(x, x) \land \\ \forall x \forall y \forall z (L(x, y) \land L(y, z) \rightarrow L(x, z)) \land \\ \forall x \forall y (L(x, y) \lor x = y \lor L(y, x)) \land \\ \forall x \forall y (E(x, y) \leftrightarrow (L(x, y) \land \neg \exists z (L(x, z) \land L(z, y)))) \end{pmatrix}$$

Complejidad de la ∃LSO

Teorema

- 1. Para cada vocabulario $\mathcal L$ y $\mathcal L$ -oración φ en $\exists LSO$, se tiene que L_{φ} está en NP
- 2. Existe un vocabulario $\mathcal L$ y una $\mathcal L$ -oración φ en $\exists LSO$ tal que L_{φ} es NP-completo

Complejidad de la ∃LSO

Teorema

- 1. Para cada vocabulario \mathcal{L} y \mathcal{L} -oración φ en $\exists LSO$, se tiene que L_{φ} está en NP
- 2. Existe un vocabulario $\mathcal L$ y una $\mathcal L$ -oración φ en $\exists LSO$ tal que L_{φ} es NP-completo

Ejercicio

Demuestre la primera parte del teorema

Complejidad de la ∃LSO

Teorema

- 1. Para cada vocabulario $\mathcal L$ y $\mathcal L$ -oración φ en $\exists LSO$, se tiene que L_{φ} está en NP
- 2. Existe un vocabulario $\mathcal L$ y una $\mathcal L$ -oración φ en $\exists LSO$ tal que L_{φ} es NP-completo

Ejercicio

Demuestre la primera parte del teorema

Vamos a demostrar la segunda parte del teorema ...

NP-hardness de ∃LSO: Demostración

Sea
$$\mathcal{L} = \{E(\cdot, \cdot)\}$$

▶ E es utilizado para almacenar grafos

NP-hardness de ∃LSO: Demostración

Sea
$$\mathcal{L} = \{E(\cdot, \cdot)\}$$

▶ E es utilizado para almacenar grafos

Sea Φ la siguiente \mathcal{L} -oración en $\exists LSO$:

$$\exists A \exists B \exists C \begin{pmatrix} \forall x (A(x) \lor B(x) \lor C(x)) \land \\ \forall x (\neg A(x) \lor \neg B(x)) \land \\ \forall x (\neg A(x) \lor \neg C(x)) \land \\ \forall x (\neg B(x) \lor \neg C(x)) \land \\ \forall x \forall y ((E(x, y) \land A(x)) \to \neg A(y)) \land \\ \forall x \forall y ((E(x, y) \land B(x)) \to \neg B(y)) \land \\ \forall x \forall y ((E(x, y) \land C(x)) \to \neg C(y)) \end{pmatrix}$$

NP-hardness de ∃LSO: Demostración

Lema

L_Φ es NP-hard

Demostración: Reducimos desde el problema de 3-coloración de grafos.

- ▶ Dado un grafo G = (N, A), \mathfrak{A}_G se define como una \mathcal{L} -estructura tal que:
 - ► El dominio de \mathfrak{A}_G es N
 - $\triangleright E^{\mathfrak{A}_G} = A$

Se tiene que G es 3-coloreable si y sólo si $\mathfrak{A}_G \in L_{\Phi}$ (es decir, $\mathfrak{A}_G \models \Phi$)

Dado: Vocabulario \mathcal{L}

Notación

- ▶ Lenguaje: Subconjunto de $\{\operatorname{enc}(\mathfrak{A}) \mid \mathfrak{A} \in \operatorname{Struct}[\mathcal{L}]\}$
 - ▶ Ejemplo: $\mathcal{L} = \{G(\cdot, \cdot)\}\ y\ L = \{\operatorname{enc}(\mathfrak{A}) \mid \mathfrak{A} \text{ es 3-coloreable}\}$
- Clase de complejidad: Conjunto de lenguajes
 - Ejemplo: NP = {L | existe una MT no determinista M tal que M acepta L en tiempo polinomial}

Definición

Una lógica \mathcal{LO} captura una clase de complejidad $\mathcal C$ si:

Definición

Una lógica \mathcal{LO} captura una clase de complejidad \mathcal{C} si:

Para toda oración φ en \mathcal{LO} , se tiene que:

$$L_{arphi} = \{ \operatorname{enc}(\mathfrak{A}) \mid \mathfrak{A} \models arphi \}$$
 está en $\mathcal C$

Definición

Una lógica LO captura una clase de complejidad C si:

Para toda oración φ en \mathcal{LO} , se tiene que:

$$\mathcal{L}_{arphi} = \{ \mathrm{enc}(\mathfrak{A}) \mid \mathfrak{A} \models arphi \}$$
 está en \mathcal{C}

▶ Para cada lenguaje L ∈ C, existe una oración φ en LO tal que

$$L = L_{\varphi}$$

Vale decir: $\operatorname{enc}(\mathfrak{A}) \in L$ *si y sólo si* $\mathfrak{A} \models \varphi$

Punto de partida de la complejidad descriptiva: Teorema de Fagin

Dado: Vocabulario \mathcal{L}

Teorema (Fagin) ∃LSO captura NP

Dado: Vocabulario \mathcal{L} sin constantes

Constantes son reemplazadas por predicados unarios

Asumimos que las fórmulas están dadas por su árbol de parseo (como un string binario).

Dado: Vocabulario \mathcal{L} sin constantes

Constantes son reemplazadas por predicados unarios

Definimos la codificación de una \mathcal{L} -estructura \mathfrak{A} (enc(\mathfrak{A})) de la siguiente forma.

1. Tomamos un orden arbitrario en A: $a_1 < a_2 < \cdots < a_n$

Este orden es usado para definir un orden lexicográfico para las k-tuplas ($k \ge 1$):

$$(a_1, \ldots, a_1, a_1) < (a_1, \ldots, a_1, a_2) < \cdots$$

 $\cdots < (a_1, \ldots, a_1, a_n) < (a_1, \ldots, a_2, a_1) < \cdots$
 $\cdots < (a_n, \ldots, a_n, a_{n-1}) < (a_n, \ldots, a_n, a_n)$

2. Para R en \mathcal{L} con aridad k: $\operatorname{enc}(R)$ es una palabra w de largo n^k , tal que el i-ésimo elemento de w es 1 si y sólo si la i-ésima tupla en el orden lexicográfico de las k-tuplas está en $R^{\mathfrak{A}}$

3. Si
$$\mathcal{L} = \{R_1, \dots, R_\ell\}$$
, entonces $\operatorname{enc}(\mathfrak{A}) = \operatorname{enc}(R_1) \cdots \operatorname{enc}(R_\ell)$

2. Para R en \mathcal{L} con aridad k: $\operatorname{enc}(R)$ es una palabra w de largo n^k , tal que el i-ésimo elemento de w es 1 si y sólo si la i-ésima tupla en el orden lexicográfico de las k-tuplas está en $R^{\mathfrak{A}}$

3. Si
$$\mathcal{L} = \{R_1, \dots, R_\ell\}$$
, entonces $\operatorname{enc}(\mathfrak{A}) = \operatorname{enc}(R_1) \cdots \operatorname{enc}(R_\ell)$

Ejemplo

Si
$$\mathfrak{A} = \langle A = \{1,2\}, P^{\mathfrak{A}} = \{1\}, R^{\mathfrak{A}} = \{(1,1),(2,1),(2,2)\}\rangle$$
, entonces:

$$\operatorname{enc}(\mathfrak{A}) = 101011$$

Punto de partida de la complejidad descriptiva: Teorema de Fagin

Dado: Vocabulario \mathcal{L}

Teorema (Fagin) ∃LSO captura NP

Demostración: Sabemos que para toda oración φ en $\exists \mathsf{LSO}$, se tiene que L_φ está en NP.

Vamos a demostrar la otra condición: Dado L en NP, vamos a encontrar φ en $\exists LSO$ tal que $L=L_{\omega}$.

 $ightharpoonup \operatorname{enc}(\mathfrak{A}) \in L$ si y sólo si $\mathfrak{A} \models \varphi$

Consideramos el caso $\mathcal{L} = \{G(\cdot, \cdot)\}$

Para otros vocabularios la demostración es similar

Suponemos que L es aceptado por una MT no determinista M que funciona en tiempo polinomial.

También suponemos que $\Sigma = \{0,1\}$ y $M = (Q, \Sigma, q_0, \delta, F)$, donde

- $Q = \{q_0, \ldots, q_m\}$
- ▶ $F = \{q_m\}$

- ▶ Para todo $(q, a) \in (Q \setminus \{q_m\}) \times (\Sigma \cup \{B, \vdash\})$, existe $(q', b, X) \in Q \times (\Sigma \cup \{B, \vdash\}) \times \{\leftarrow, \Box, \rightarrow\}$ tal que $(q, a, q', b, X) \in \delta$
- Para todo $a \in (\Sigma \cup \{B, \vdash\})$, no existe $(q', b, X) \in Q \times (\Sigma \cup \{B, \vdash\}) \times \{\leftarrow, \Box, \rightarrow\}$ tal que $(q_m, a, q', b, X) \in \delta$
- ▶ M funciona en tiempo polinomial: Existe k>0 tal que si M acepta $\mathrm{enc}(\mathfrak{A})$, entonces existe una ejecución de M que acepta $\mathrm{enc}(\mathfrak{A})$ en un número de pasos menor a $|\mathrm{enc}(\mathfrak{A})|^k$

¿Por qué podemos hacer los supuestos anteriores?

¿Por qué podemos hacer los supuestos anteriores?

Por qué podemos suponer que M ejecuta un número de pasos menor a n^k ?

¿Por qué podemos hacer los supuestos anteriores?

- Por qué podemos suponer que M ejecuta un número de pasos menor a n^k ?
- ▶ ¿Por qué podemos usar n^k en lugar de $c \cdot n^k$?

¿Por qué podemos hacer los supuestos anteriores?

- Por qué podemos suponer que M ejecuta un número de pasos menor a n^k ?
- ▶ ¿Por qué podemos usar n^k en lugar de $c \cdot n^k$?

Ejercicio

Suponiendo que L es un lenguaje finito, construya una \mathcal{L} -oración φ en $\exists \mathsf{LSO}$ tal que $L = L_{\varphi}$.

Dada una estructura $\mathfrak A$ con |A|=n, se tiene que $|\operatorname{enc}(\mathfrak A)|=n^2$

• M recibe como entrada $enc(\mathfrak{A})$: Funciona en tiempo $(n^2)^k = n^{2k}$

Para una estructura con n elementos, M funciona en tiempo n^{2k}

► Hay que tener esto en cuenta en la construcción de la oración que representa a *L*

Definimos oración φ como:

$$\exists L \exists O \exists S \exists P \exists H \exists T_0 \exists T_1 \exists T_B \exists T_{\vdash} \exists E_{q_0} \cdots \exists E_{q_m} ($$

$$\varphi_L \land \varphi_O \land \varphi_S \land \varphi_P \land \varphi_I \land \varphi_C \land \varphi_A \land \varphi_\delta)$$

 φ_L : L es un orden lineal

$$\forall x (\neg L(x,x)) \land \forall x \forall y (x = y \lor L(x,y) \lor L(y,x)) \land \\ \forall x \forall y \forall z (L(x,y) \land L(y,z) \to L(x,z))$$

 φ_0 : O es un orden lexicográfico, construido a partir de L, para las tuplas con 2k elementos

$$\forall x_1 \cdots \forall x_{2k} \forall y_1 \cdots \forall y_{2k} \left(O(x_1, \dots, x_{2k}, y_1, \dots, y_{2k}) \leftrightarrow \bigvee_{i=1}^{2k} \left(\left(\bigwedge_{j=1}^{i-1} x_j = y_j \right) \wedge L(x_i, y_i) \right) \right)$$

 φ_{S} : S es la relación de sucesor asociada a O

$$\forall \bar{x} \forall \bar{y} \left(S(\bar{x}, \bar{y}) \right. \leftrightarrow \left. \left(O(\bar{x}, \bar{y}) \land \neg \exists \bar{z} \left(O(\bar{x}, \bar{z}) \land O(\bar{z}, \bar{y}) \right) \right) \right)$$

Notación

Cada tupla de variables tiene largo 2k

$$|\bar{x}|=|\bar{y}|=|\bar{z}|=2k$$
 en φ_S

 φ_5 : S es la relación de sucesor asociada a O

$$\forall \bar{x} \forall \bar{y} \left(S(\bar{x}, \bar{y}) \right. \leftrightarrow \left. \left(O(\bar{x}, \bar{y}) \land \neg \exists \bar{z} \left(O(\bar{x}, \bar{z}) \land O(\bar{z}, \bar{y}) \right) \right) \right)$$

Notación

Cada tupla de variables tiene largo 2k

$$|\bar{x}| = |\bar{y}| = |\bar{z}| = 2k$$
 en φ_S

 φ_P : P almacena el primer elemento de O

$$\forall \bar{x} (P(\bar{x}) \leftrightarrow \neg \exists \bar{y} O(\bar{y}, \bar{x}))$$

 φ_I : Representa el estado inicial de M

$$\forall \bar{x} \forall \bar{y} \left[\left(P(\bar{x}) \land S(\bar{x}, \bar{y}) \right) \rightarrow \left(H(\bar{x}, \bar{y}) \land E_{q_0}(\bar{x}) \land T_{\vdash}(\bar{x}, \bar{x}) \land \right. \\
\exists u \exists v \left(\neg \exists w \left(L(w, u) \right) \land \neg \exists w \left(L(v, w) \right) \land \right. \\
\forall u_1 \cdots \forall u_{2k} \forall \bar{v} \left(S(u_1, \dots, u_{2k}, \bar{v}) \rightarrow \right. \\
\left(\neg O(u, \dots, u, v, v, u_1, \dots, u_{2k}) \rightarrow \right. \\
\left. \left((\neg G(u_{2k-1}, u_{2k}) \rightarrow T_0(\bar{x}, \bar{v})) \land \right. \\
\left. \left(G(u_{2k-1}, u_{2k}) \rightarrow T_1(\bar{x}, \bar{v})) \right) \right) \land \right. \\
\left. \left(O(u, \dots, u, v, v, u_1, \dots, u_{2k}) \rightarrow T_B(\bar{x}, \bar{v}) \right) \right) \right) \right) \right]$$

 φ_I : Representa el estado inicial de M

$$\forall \bar{x} \forall \bar{y} \left[\left(P(\bar{x}) \land S(\bar{x}, \bar{y}) \right) \rightarrow \left(H(\bar{x}, \bar{y}) \land E_{q_0}(\bar{x}) \land T_{\vdash}(\bar{x}, \bar{x}) \land \right. \right.$$
$$\exists u \exists v \left(\neg \exists w \left(L(w, u) \right) \land \neg \exists w \left(L(v, w) \right) \land \right. \right.$$

(u es el primer elemento del orden lexicografico y v es el último)

 φ_I : Representa el estado inicial de M

$$\forall \bar{x} \forall \bar{y} \left[\left(P(\bar{x}) \land S(\bar{x}, \bar{y}) \right) \rightarrow \left(H(\bar{x}, \bar{y}) \land E_{q_0}(\bar{x}) \land T_{\vdash}(\bar{x}, \bar{x}) \land \right. \right.$$

$$\exists u \exists v \left(\neg \exists w \left(L(w, u) \right) \land \neg \exists w \left(L(v, w) \right) \land \right.$$

$$\forall u_1 \cdots \forall u_{2k} \forall \bar{v} \left(S(u_1, \dots, u_{2k}, \bar{v}) \rightarrow \right. \right.$$

$$\left(\neg O(u, \dots, u, v, v, u_1, \dots, u_{2k}) \right.$$

Si no es verdad que u_1, \ldots, u_{2k} es mayor a $n^2 \ldots$ (u es el elemento 1 y v es el n-ésimo)

 φ_I : Representa el estado inicial de M

$$\forall \bar{x} \forall \bar{y} \left[\left(P(\bar{x}) \land S(\bar{x}, \bar{y}) \right) \rightarrow \left(H(\bar{x}, \bar{y}) \land E_{q_0}(\bar{x}) \land T_{\vdash}(\bar{x}, \bar{x}) \land \right. \right.$$

$$\exists u \exists v \left(\neg \exists w \left(L(w, u) \right) \land \neg \exists w \left(L(v, w) \right) \land \right.$$

$$\forall u_1 \cdots \forall u_{2k} \forall \bar{v} \left(S(u_1, \dots, u_{2k}, \bar{v}) \rightarrow \right. \right.$$

$$\left(\neg O(u, \dots, u, v, v, u_1, \dots, u_{2k}) \rightarrow \right.$$

$$\left. \left((\neg G(u_{2k-1}, u_{2k}) \rightarrow T_0(\bar{x}, \bar{v})) \land \right. \right.$$

$$\left. \left(G(u_{2k-1}, u_{2k}) \rightarrow T_1(\bar{x}, \bar{v})) \right) \right)$$

Para la posición representada por $u, \ldots, u, u_{2k-1}, u_{2k}$. Si el elemento u_{2k-1} está contectado con u_{2k} , pongo un 1 en esa posición en la cinta, de lo contrario pongo un 0

 φ_I : Representa el estado inicial de M

$$\forall \bar{x} \forall \bar{y} \left[\left(P(\bar{x}) \land S(\bar{x}, \bar{y}) \right) \rightarrow \left(H(\bar{x}, \bar{y}) \land E_{q_0}(\bar{x}) \land T_{\vdash}(\bar{x}, \bar{x}) \land \right. \\
\exists u \exists v \left(\neg \exists w \left(L(w, u) \right) \land \neg \exists w \left(L(v, w) \right) \land \right. \\
\forall u_1 \cdots \forall u_{2k} \forall \bar{v} \left(S(u_1, \dots, u_{2k}, \bar{v}) \rightarrow \right. \\
\left(\neg O(u, \dots, u, v, v, u_1, \dots, u_{2k}) \rightarrow \right. \\
\left. \left((\neg G(u_{2k-1}, u_{2k}) \rightarrow T_0(\bar{x}, \bar{v})) \land \right. \\
\left. \left(G(u_{2k-1}, u_{2k}) \rightarrow T_1(\bar{x}, \bar{v})) \right) \right) \right) \right] \\
\left. \left(O(u, \dots, u, v, v, u_1, \dots, u_{2k}) \rightarrow T_B(\bar{x}, \bar{v}) \right) \right) \right) \right) \right]$$

 φ_C : La máquina funciona correctamente. Se define como la conjunción de cuatro fórmulas

Primero, cada celda siempre contiene un único símbolo:

$$\forall \bar{x} \forall \bar{y} \left[\left(T_{0}(\bar{x}, \bar{y}) \vee T_{1}(\bar{x}, \bar{y}) \vee T_{B}(\bar{x}, \bar{y}) \vee T_{\vdash}(\bar{x}, \bar{y}) \right) \wedge \\ \left(\neg T_{0}(\bar{x}, \bar{y}) \vee \neg T_{1}(\bar{x}, \bar{y}) \right) \wedge \left(\neg T_{0}(\bar{x}, \bar{y}) \vee \neg T_{B}(\bar{x}, \bar{y}) \right) \wedge \\ \left(\neg T_{0}(\bar{x}, \bar{y}) \vee \neg T_{\vdash}(\bar{x}, \bar{y}) \right) \wedge \left(\neg T_{1}(\bar{x}, \bar{y}) \vee \neg T_{B}(\bar{x}, \bar{y}) \right) \wedge \\ \left(\neg T_{1}(\bar{x}, \bar{y}) \vee \neg T_{\vdash}(\bar{x}, \bar{y}) \right) \wedge \left(\neg T_{B}(\bar{x}, \bar{y}) \vee \neg T_{\vdash}(\bar{x}, \bar{y}) \right) \right]$$

Segundo, la máquina siempre está en un único estado:

$$\forall \bar{x} \left(\bigvee_{q \in Q} \left(E_q(\bar{x}) \land \bigwedge_{q' \in (Q \setminus \{q\})} \neg E_{q'}(\bar{x}) \right) \right)$$

Segundo, la máquina siempre está en un único estado:

$$\forall \bar{x} \left(\bigvee_{q \in Q} \left(E_q(\bar{x}) \land \bigwedge_{q' \in (Q \setminus \{q\})} \neg E_{q'}(\bar{x}) \right) \right)$$

Notación

$$(y_1,\ldots,y_{2k})=(z_1,\ldots,z_{2k})$$
 representa a la fórmula $\bigwedge_{i=1}^{2n}y_i=z_i$

Segundo, la máquina siempre está en un único estado:

$$\forall \bar{x} \left(\bigvee_{q \in Q} \left(E_q(\bar{x}) \land \bigwedge_{q' \in (Q \setminus \{q\})} \neg E_{q'}(\bar{x}) \right) \right)$$

Notación

$$(y_1,\ldots,y_{2k})=(z_1,\ldots,z_{2k})$$
 representa a la fórmula $\bigwedge_{i=1}^{2k}y_i=z_i$

Tercero, la cabeza siempre está en una única posición:

$$\forall \bar{x} \exists \bar{y} (H(\bar{x}, \bar{y}) \land \forall \bar{z} (H(\bar{x}, \bar{z}) \rightarrow \bar{y} = \bar{z}))$$

Cuarto, el valor de una celda no cambia si no es apuntada por la cabeza lectora:

$$\forall \bar{x} \forall \bar{y} \forall \bar{z} \left[\left(S(\bar{x}, \bar{y}) \land \neg H(\bar{x}, \bar{z}) \right) \rightarrow \left(\left(T_0(\bar{x}, \bar{z}) \land T_0(\bar{y}, \bar{z}) \right) \lor \left(T_1(\bar{x}, \bar{z}) \land T_1(\bar{y}, \bar{z}) \right) \lor \left(T_B(\bar{x}, \bar{z}) \land T_B(\bar{y}, \bar{z}) \right) \lor \left(T_{\vdash}(\bar{x}, \bar{z}) \land T_{\vdash}(\bar{y}, \bar{z}) \right) \right) \right]$$

 φ_A : La máquina acepta la entrada.

$$\exists \bar{x} \, E_{q_m}(\bar{x})$$

 φ_{δ} : Representa la función de transición δ .

 φ_A : La máquina acepta la entrada.

$$\exists \bar{x} \, E_{q_m}(\bar{x})$$

 φ_{δ} : Representa la función de transición δ .

• φ_{δ} se construye como la conjunción de las fórmulas $\varphi_{(q,a)}$, donde $q \neq q_m$ y $a \in (\Sigma \cup \{B, \vdash\})$

 $\varphi_{(q,a)}$:

$$\begin{split} \forall \bar{x} \forall \bar{y} \left[\left(E_q(\bar{x}) \wedge T_a(\bar{x}, \bar{y}) \wedge H(\bar{x}, \bar{y}) \right) \rightarrow \\ \left(\bigvee_{(q, a, q', b, \leftarrow) \in \delta} \forall \bar{u} \forall \bar{v} \left(S(\bar{x}, \bar{u}) \wedge S(\bar{v}, \bar{y}) \right. \rightarrow \\ \left. E_{q'}(\bar{u}) \wedge H(\bar{u}, \bar{v}) \wedge T_b(\bar{u}, \bar{y}) \right) \right) \vee \\ \left(\bigvee_{(q, a, q', b, \rightarrow) \in \delta} \forall \bar{u} \forall \bar{v} \left(S(\bar{x}, \bar{u}) \wedge S(\bar{y}, \bar{v}) \right. \rightarrow \\ \left. E_{q'}(\bar{u}) \wedge H(\bar{u}, \bar{v}) \wedge T_b(\bar{u}, \bar{y}) \right) \right) \vee \\ \left(\bigvee_{(q, a, q', b, \rightarrow) \in \delta} \forall \bar{u} \left(S(\bar{x}, \bar{u}) \rightarrow E_{q'}(\bar{u}) \wedge H(\bar{u}, \bar{y}) \wedge T_b(\bar{u}, \bar{y}) \right) \right) \right] \end{split}$$

Definimos el fragmento universal de la lógica de segundo orden (VLSO) como el conjunto de todas las fórmula en LSO de la forma:

$$\forall X_1 \forall X_2 \cdots \forall X_\ell \varphi$$
,

donde φ es una fórmula en LPO.

Para un lenguaje L, definimos \overline{L} como $\{\operatorname{enc}(\mathfrak{A}) \mid \operatorname{enc}(\mathfrak{A}) \not\in L\}$

▶
$$coNP = {\overline{L} \mid L \in NP}$$

Corolario ∀LSO captura coNP

Corolario

∀LSO captura coNP

Corolario

 $NP \neq coNP$ si y sólo si $\exists LSO \neq \forall LSO$

Corolario

∀LSO captura coNP

Corolario

 $NP \neq coNP$ si y sólo si $\exists LSO \neq \forall LSO$, vale decir, si alguna de las siguientes condiciones es verdadera:

- ► Existe una oración en ∃LSO que no es expresable en ∀LSO
- ► Existe una oración en ∀LSO que no es expresable en ∃LSO