3D Graphics Programming Tools Colour

Today's agenda

- Perception of colour
- Colour spaces

Basics of colour

 To understand how to make realistic images, we need a basic understanding of the physics and physiology of colour vision.

Lighting versus "Colouring"

Basics of colour

Physics

- Illumination
 - Electromagnetic spectra
- Reflection
 - Material properties
 - Surface geometry and microgeometry (i.e., polished versus matte versus brushed)
- Perception
 - Physiology and neurophysiology
 - Perceptual psychology

Physiology of vision

- Rods
- Cones
 - LMS wavelengths → Colour!

Physiology of vision: cones

Cones → three types

- M or G, most sensitive to green light (560 nm)
- S or B, most sensitive to blue light (430 nm)

Colour blindness results from missing cone type(s)

Light

University of London

Perception: metamers

- A given perceptual sensation of colour derives from the stimulus of all three cone types.
- Identical perceptions of colour can thus be caused by very different spectra.

Perception

- Colour perception is also difficult because:
 - It varies from person to person
 - It is affected by adaptation
 - It is affected by surrounding colours

Perception: relative intensity

- We are not good at judging absolute intensity
- We perceive relative intensities, not absolute

Today's agenda

- Perception of colour
- Colour spaces

Colour Perception

- Colour perception → three quantities
 - Hue → Distinguishes between colours like red, green, blue, etc.
 - Saturation → How far the color is from a gray of equal intensity
 - Lightness → The perceived intensity of a reflecting object
 (Sometimes lightness is called *brightness* if the object is emitting light instead of reflecting it)

In order to use colour precisely in computer graphics, we need to be able to specify and measure colours

Specify Colour: How do artists do it?

- Artists often specify colour as tints, shades, and tones of saturated (pure) pigments
 - Tint
 - Obtained by adding white to a pure pigment, decreasing saturation
 - Shade
 - Obtained by adding black to a pure pigment, decreasing lightness
 - Tone
 - Obtained by adding white and black to a pure pigment

HSV colour space

- Computer scientists → use an intuitive colour space that corresponds to tint, shade, and tone:
 - Hue
 - The colour we see (red, green, purple)
- Saturation
 - How far is the colour from gray (pink is less saturated than red, sky blue is less saturated than royal blue)
- Brightness (Luminance)
 - How bright is the color (how bright are the lights illuminating the object)

HSV colour model

- Hue (H) is the angle around the vertical axis
- Saturation (S) is a value from 0 to 1 indicating how far from the vertical axis the color lies
- Value (V) is the height of the "hexcone"

HSV colour model

Η	S	V	Color
0	1.0	1.0	Red
120	1.0	1.0	Green
240	1.0	1.0	Blue
*	0.0	1.0	White
*	0.0	0.5	Gray
*	*	0.0	Black
60	1.0	1.0	
270	0.5	1.0	
270	0.0	0.7	

HSV colour space

- Intuitive colour space
 - -H = Hue
 - S = Saturation
 - V = Value (or brightness)

Computer Display Systems

Colour Models

Additive (RGB)

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}, \quad \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} C \\ M \\ Y \end{bmatrix}$$

Subtractive (CMYK)

The CMYK model

- Cyan, Magenta, Yellow & Black
- Used in printers
- Richer black
- Black ink is cheap

$$K := \min(C, M, Y)$$

$$C := C - K$$

$$M := M - K$$

$$Y := Y - K$$

Colour Space Conversion

Continuous Tone and Halftone

To increase the colour resolution by halftone

Continuous tone

Halftone

Colour Halftoning

For printing

What did we learn today?

- Perception of colour
- Colour spaces

And from now?

- We will stop assigning colours
- We will setup light sources
- We will declare material properties
- We will then <u>calculate</u> the colours

Solving the lighting problem

- Where are we?
 - We somewhat understand the perception of light (colour)
 - We know how to represent and generate colour using computers
- We now need to understand the interplay of light and objects

Lighting versus "Colouring"

