

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Redox Essential Pre-Uni Chemistry K1.1

Essential Pre-Uni Chemistry K1.1

Give the oxidation number of nitrogen in the following compounds:		
Part A $ m NH_3$		
NH_3		
Part B NO		
NO		
Part C N_2		
$ m N_2$		
Part D NO_2		
NO_2		

 $\begin{array}{ccc} \textbf{Part J} & NO^+ \end{array}$

 NO^+

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Redox Essential Pre-Uni Chemistry K1.2

Essential Pre-Uni Chemistry K1.2

Vrite dow	n the oxidation number of:
Part A	$ m H_2O$
Ox	ygen in $ m H_2O$
Part B	$ m H_2SO_4$
Su	fur in $ m H_2SO_4$
Part C	$ m H_3PO_4$
Ph	osphorus in $ m H_3PO_4$
Part D	$ m H_3PO_3$
Ph	osphorus in $ m H_3PO_3$

Part E ClO_2
Chlorine in ${ m ClO}_2$
Part F OF_2
Oxygen in OF_2
Part G Sodium nitrite
Nitrogen in sodium nitrite NaNO_2
Part H Ammonium sulfate
Nitrogen in ammonium sulfate $(\mathrm{NH_4})_2(\mathrm{SO_4})$
Part I Hydrogen peroxide
Oxygen in hydrogen peroxide $\mathrm{H_2O_2}$

Part 0 ${ m I_3}^-$	_		
${ m I}$ in ${ m I_3}^-$			

Gameboard:

STEM SMART Chemistry Week 10

<u>Home</u>

<u>Gameboard</u>

Chemistry

Inorganic

Redox

Essential Pre-Uni Chemistry K1.3

Essential Pre-Uni Chemistry K1.3

Select the element or species that is being reduced in the following reactions

Part A (a)

$$CuO + H_2 \longrightarrow Cu + H_2O$$

- $Cu \ \text{in} \ CuO$
- $H \ \text{in} \ H_2$
- $O \ \text{in} \ CuO$
- $O \text{ in } H_2O$

Part B (b)

$$C_3H_6+H_2 {\:\longrightarrow\:} C_3H_8$$

- $H \ \text{in} \ H_2$
- $\mathrm{C_3H_6}$
- $\mathrm{C_3H_8}$
- H in C_3H_6

Part C (c)

 $2\,\mathrm{Na} + \mathrm{Br}_2 \longrightarrow 2\,\mathrm{NaBr}$

- Br in NaBr
- O Na
- Na in NaBr
- \bigcirc Br₂

Part D (d)

 $\mathrm{H_2O_2} + 2\,\mathrm{FeSO_4} + \mathrm{H_2SO_4} {\longrightarrow} 2\,\mathrm{H_2O} + \mathrm{Fe_2(SO_4)_3}$

- \bigcirc S in FeSO₄
- $\bigcirc \quad H_2O_2$
- \bigcirc S in H_2SO_4
- \bigcirc Fe in FeSO₄

Part E (e)

 ${
m ZnCl}_2 \longrightarrow {
m Zn} + {
m Cl}_2$

- \bigcirc Cl in Cl₂
- \bigcirc Zn in ZnCl₂
- \bigcirc Cl in \mathbf{ZnCl}_2

Part F (f)

 $\mathrm{Fe_2(SO_4)_3} + \mathrm{Zn} \longrightarrow 2\,\mathrm{FeSO_4} + \mathrm{ZnSO_4}$

- Zn in ZnSO₄
- \bigcirc Zn
- igcap Fe in $\mathrm{Fe_2}(\mathrm{SO_4})_3$
- $\bigcirc \quad S \text{ in } \mathrm{Fe}_2(\mathrm{SO}_4)_3$

Part G (g)

 ${
m NiSO_4 + Fe} \longrightarrow {
m FeSO_4 + Ni}$

- O Fe
- $\ \ \, S \text{ in } NiSO_4$
- O in NiSO₄
- Ni in NiSO₄

Part H (h)

 $4\,\mathrm{C_3H_6O} + \mathrm{NaBH_4} + 4\,\mathrm{H_2O} \longrightarrow 4\,\mathrm{C_3H_8O} + \mathrm{NaB(OH)_4}$

- \bigcirc C₃H₆O
- H in NaBH₄
- H in C₃H₆O
- B in NaBH₄

Gameboard:

STEM SMART Chemistry Week 10

<u>Home</u>

<u>Gameboard</u>

Chemistry Inorganic Redox

Essential Pre-Uni Chemistry K1.4

Essential Pre-Uni Chemistry K1.4

Select the element or species that is being oxidised in the following reactions.

Part A (a)

$$2\,\mathrm{Al} + \mathrm{Cr}_2\mathrm{O}_3 \longrightarrow \mathrm{Al}_2\mathrm{O}_3 + 2\,\mathrm{Cr}$$

- O in $\mathrm{Cr}_2\mathrm{O}_3$
- $Cr \ \text{in} \ Cr_2O_4$
- $Al \ \text{in} \ Al_2O_3$
- Al

(b) Part B

$$2\,NH_3 + 3\,CuO \longrightarrow N_2 + 3\,Cu + 3\,H_2O$$

- $Cu \; \text{in} \; CuO$
- NH_3
- $O \ \text{in} \ CuO$
- $N \ \text{in} \ N_2$

Part C (c)

$$2\,\mathrm{Cu}^{2+} + 4\,\mathrm{I}^{-} \longrightarrow 2\,\mathrm{CuI} + \mathrm{I}_{2}$$

- I in CuI
- Cu in CuI
- $\bigcirc \quad Cu^{2+}$
- I⁻

Part D (d)

$$6\,PbO + O_2 \longrightarrow 2\,Pb_3O_4$$

- $\bigcirc \quad Pb \text{ in } Pb_3O_4$
- Pb in PbO
- \bigcirc O in O_2
- O in PbO

Part E (e)

$$\mathrm{H_2O_2} + \mathrm{SO_2} \longrightarrow \mathrm{H_2SO_4}$$

- \bigcirc H in $\mathrm{H_2SO_4}$
- $\bigcirc \quad S \text{ in } H_2SO_4 \\$
- \bigcirc SO₂
- $\bigcirc \quad H_2O_2$

Part F (f)

$$3\,H_2SO_4 + 2\,NaBr {\:\longrightarrow\:} 2\,NaHSO_4 + Br_2 + SO_2 + 2\,H_2O$$

- Na in NaBr
- \bigcirc S in H_2SO_4
- $\bigcirc \quad Br \ \text{in} \ NaBr \\$

Part G (g)

$$\mathrm{Mg} + 2\,\mathrm{CH_3COOH} \longrightarrow \mathrm{Mg}(\mathrm{CH_3COO})_2 + \mathrm{H_2}$$

- \bigcirc C in CH₃COOH
- $\bigcirc \quad H_2$
- \bigcirc Mg in Mg(CH₃COO)₂
- O Mg

Part H (h)

$$2\,\mathrm{Fe^{3+}} + 6\,\mathrm{ClO^-} + 4\,\mathrm{OH^-} \longrightarrow 2\,\mathrm{FeO_4}^{2-} + 3\,\mathrm{Cl_2} + 2\,\mathrm{H_2O}$$

- OH-
- Cl in ClO
- O in ClO
- \sim Fe³⁺

Gameboard:

STEM SMART Chemistry Week 10

 ${\color{red} \underline{\mathsf{Home}}} \quad {\color{red} \underline{\mathsf{Gameboard}}} \quad {\color{red} \mathsf{Chemistry}} \quad {\color{red} \mathsf{Inorganic}} \quad {\color{red} \mathsf{Redox}} \quad {\color{red} \mathsf{Oxidation}} \, {\color{red} \mathsf{States}} \, {\color{red} \mathsf{of}} \, {\color{red} \mathsf{S}} \, {\color{red} \mathsf{and}} \, {\color{red} \mathsf{N}}$

Oxidation States of \boldsymbol{S} and \boldsymbol{N}

Part A Oxidation states of sulfur

In which of the following pairs of species is the sulfur in the same oxidation state in both members of the pair?

- 1. ${\rm SF}_6$ and ${\rm SO_4}^{2-}$
- ${f 2}.~{
 m SO}_2$ and ${
 m HSO}_3^-$
- 3. $\mathrm{S_2O_3}^{2-}$ and $\mathrm{S_4O_6}^{2-}$
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct
 - 3 only is correct

Part B Oxidation states of nitrogen

In which of the following conversions does the oxidation number of the nitrogen change by two?

- $\textbf{1}.\ NH_2OH \longrightarrow NH_3$
- $\textbf{2}.\ N_2 \longrightarrow NO$
- $\textbf{3}.\ NO_2 \longrightarrow HNO_3$
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct
 - 3 only is correct

Part A adapted with permission from UCLES, A-Level Chemistry, June 1990, Paper 1, Question 35; Part B adapted with permission from UCLES, A-Level Chemistry, June 1994, Paper 4, Question 34

Gameboard:

STEM SMART Chemistry Week 10

Home Gameboard Chemistry Inorganic Redox Rocket and Metal Reduction

Rocket and Metal Reduction

Part A Solid rocket booster

The propellant used in the solid rocket booster of a space shuttle is a mixture of aluminium and compound ${\bf X}$. Compound ${\bf X}$ contains chlorine in an oxidation state of +7.

Which of the following could be compound **X**?

NH_4	$_{1}ClC$)
$\mathbf{N}\mathbf{\Pi}_4$	O1 O 1	,

- NH₄ClO₃
- O NCl₃
- NH₄Cl
- N_2H_5Cl

Part B Metals and reduction

In which of the following changes has the metal undergone reduction?

- $\ \ \, \left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}\longrightarrow\mathrm{Cr}{\mathrm{O_{4}}^{2-}}$

<u>Home</u> <u>Gameboard</u>

Chemistry Inorganic Redox

Oxidation Numbers of Halides

Oxidation Numbers of Halides

Oxidation of bromine Part A

What changes can be regarded as oxidation of bromine?

- $\textbf{1}.\ Br_2 {\:\longrightarrow\:} BrO^-$
- $\textbf{2}.\;Br_2 \longrightarrow BrF$
- $\textbf{3}.\;Br_2 \longrightarrow BrI$
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct

Part B Oxidation numbers of halides

Which of the statements about the reaction below are correct?

$$\mathrm{IO_3}^-\mathrm{(aq)} + 2\,\mathrm{I}^-\mathrm{(aq)} + 6\,\mathrm{H}^+\mathrm{(aq)} + 6\,\mathrm{Cl}^-\mathrm{(aq)} \longrightarrow 3\,\mathrm{ICl_2}^-\mathrm{(aq)} + 3\,\mathrm{H_2O}\,\mathrm{(l)}$$

- **1**. The oxidation number of chlorine changes from -1 to -2.
- **2**. The oxidation number of the iodine in the iodide ion $I^{-}(aq)$ changes from -1 to +1.
- **3**. The oxidation number of the iodine in the iodate ion $IO_3^-(aq)$ changes from +5 to +1.
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct

Part A adapted with permission from UCLES, A-Level Chemistry, June 1996, Paper 3, Question 37; Part B adapted with permission from UCLES, A-Level Chemistry, June 1989, Paper 3, Question 37

Gameboard:

STEM SMART Chemistry Week 10

<u>Home</u> <u>Gameboard</u>

Chemistry Inorganic Redox

Platinum, Hydroquinone and Silver

Platinum, Hydroquinone and Silver

Oxidation numbers of platinum Part A

The anti-cancer drug *cis-platin* has the formula $Pt(NH_3)_2Cl_2$.

In the human body, one of the chloride ions of *cis-platin* is replaced by one water molecule.

$$\mathrm{Pt}(\mathrm{NH_3})_2\mathrm{Cl}_2 + \mathrm{H_2O} \longrightarrow \left[\mathrm{Pt}(\mathrm{NH_3})_2(\mathrm{H_2O})\mathrm{Cl}\right]^+ + \mathrm{Cl}^-$$

What is the oxidation number of platinum in each of these complexes?

	cis-platin	in the aquo complex
Α	+2	+1
В	+2	+2
С	+4	+3
D	+4	+4

Δ)	(
_	/	

D

Part B Hydroquinone and silver bromide

When exposed film from a camera is developed, one step involves reacting the light-activated silver bromide crystals with hydroquinone in alkali according to the following equation:

$$OH + 2AgBr + 2OH^{-} \longrightarrow OH + 2Ag + 2H_{2}O + 2Br^{-}$$
Hydroquinone

Figure 1: Hydroquinone and silver bromide in presence of base.

Which of the following describes the role of hydroquinone?

It acts as both an acid and a reducing agent
It acts only as an acid
It acts only as a reducing agent
It acts only as an oxidising agent
It acts as both a base and a reducing agent

Part A adapted with permission from UCLES, A-Level Chemistry, June 1996, Paper 3, Question 9; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1994, Paper 1, Question 3

Gameboard:

STEM SMART Chemistry Week 10

<u>Home</u> <u>Gameboard</u> Chemistry Inorganic Redox Ferrite

Ferrite

Aerials in portable radios are made of a mixed oxide of calcium and iron known as 'Ferrite'. It contains $18.5\,\%$ calcium and $51.9\,\%$ iron by mass. Calculate the empirical formula of 'Ferrite' and hence deduce the oxidation number of the iron it contains.

Part A	Empirical formula
Emp	irical Formula:
Part B	Oxidation number
Oxid	ation number:

Adapted with permission from UCLES, A-Level Chemistry, June 1992, Paper 2, Question 3

Gameboard:

STEM SMART Chemistry Week 10

Home Gameboard Chemistry Inorganic Redox Oxides of Nitrogen

Oxides of Nitrogen

Part A Oxides of nitrogen

In an attempt to establish the formula of an oxide of nitrogen, a known volume of the pure gas was mixed with hydrogen and passed over a catalyst at a suitable temperature. 100% conversion of the oxide to ammonia and water was shown to have taken place.

$$\mathrm{N}_x\mathrm{O}_y \xrightarrow[\mathrm{catalyst}]{\mathrm{H}_2} x\,\mathrm{NH}_3 + y\,\mathrm{H}_2\mathrm{O}$$

 $2400\,\rm cm^3$ of the nitrogen oxide, measured at room temperature and pressure (RTP) produced $7.200\,\rm g$ of water. The ammonia produced was neutralised by $200\,\rm cm^3$ of $1.0\,\rm mol~dm^{-3}~HCl.$

[Molar volume of gas at RTP = $24000 \, \mathrm{cm^3 \ mol^{-1}}$]

What was the oxidation number of nitrogen in the solid oxide?

- () +1
- () +2
- +:
- +4
- () +5

Part B Oxidation numbers of nitrogen

The key stage in the manufacture of nitric acid is the reaction of ammonia with air in the presence of a platinum-rhodium gauze:

$$4\,\mathrm{NH_{3}}\left(\mathrm{g}\right)+5\,\mathrm{O}_{2}\left(\mathrm{g}\right)\longrightarrow4\,\mathrm{NO}\left(\mathrm{g}\right)+6\,\mathrm{H}_{2}\mathrm{O}\left(\mathrm{g}\right)$$

What is the oxidation number of nitrogen in

 NH_3

NO

Part A adapted with permission from UCLES, A-Level Chemistry, November 1989, Paper 3, Question 2; Part B adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 3, Question 1