

红师教育

2019军队文职考试数学1练习题

一、选择题

1. 设 f(x) 和 $\varphi(x)$ 在 $(-\infty, +\infty)$ 内有定义,f(x) 为连续函数,且 $f(x) \neq 0$, $\varphi(x)$ 有间断点,则

(A) $\varphi[f(x)]$ 必有间断点

(B) $[\varphi(x)]^2$ 必有间断点

(C) $f[\varphi(x)]$ 必有间断点

(D) $\frac{\varphi(x)}{f(x)}$ 必有间断点

2. 曲 线 y = x(x-1)(2-x) 与 x 轴 所 围 图 形 的 面 积 可 表 示 为

(A)
$$-\int_0^2 x(x-1)(2-x)dx$$

(B)
$$\int_0^1 x(x-1)(2-x)dx - \int_1^2 x(x-1)(2-x)dx$$

(C)
$$-\int_0^1 x(x-1)(2-x)dx + \int_1^2 x(x-1)(2-x)dx$$

(D)
$$\int_0^2 x(x-1)(2-x)dx$$

3. 二元函数
$$f(x,y) = \begin{cases} x^2 + y^2, & xy = 0, \\ 1, & xy \neq 0 \end{cases}$$
 在点 $(0, 0)$ 处

(A)连续,偏导数存在

(B)连续,偏导数不存在

(C)不连续,偏导数存在

- (D) 不连续, 偏导数不存在
- 4. 下列命题中正确的是 (

(A) 若
$$\sum_{n=1}^{\infty} a_n$$
, $\sum_{n=1}^{\infty} b_n$ 均收敛,则 $\sum_{n=1}^{\infty} a_n b_n$ 收敛

(B) 若
$$\sum_{n=1}^{\infty} a_n$$
 收敛, $\sum_{n=1}^{\infty} b_n$ 发散,则 $\sum_{n=1}^{\infty} a_n b_n$ 发散

(C) 若
$$\sum_{n=1}^{\infty} a_n$$
 条件收敛, $\sum_{n=1}^{\infty} b_n$ 绝对收敛, 则 $\sum_{n=1}^{\infty} a_n b_n$ 绝对收敛

(D) 若
$$\sum_{n=1}^{\infty} a_n$$
 条件收敛, $\sum_{n=1}^{\infty} b_n$ 绝对收敛,则 $\sum_{n=1}^{\infty} a_n b_n$ 条件收敛

5. 设 n 阶 矩 阵 A 非 奇 异 (n ≥ 2), A* 是 矩 阵 A 的 伴 随 矩 阵 , 则
()

(A)
$$(A^*)^* = |A|^{n-1} A$$

(B))
$$(A^*)^* = |A|^{n+1} A$$

(C)
$$(A^*)^* = |A|^{n-2} A$$

(D)
$$(A^*)^* = |A|^{n+2} A$$

6. 设有任意两个 n 维向量组 $\alpha_1, \cdots, \alpha_m$ 和 β_1, \cdots, β_m ,若存在两组不全为零的数 $\lambda_1, \cdots, \lambda_m$ 和 k_1, \cdots, k_m ,使

$$(\lambda_1+k_1)\alpha_1+\cdots+(\lambda_m+k_m)\alpha_m+(\lambda_1-k_1)\beta_1+\cdots+(\lambda_m-k_m)\beta_m=0,$$
 则

- (A) $\alpha_1, \dots, \alpha_m$ 和 β_1, \dots, β_m 都线性相关
 - (B) $\alpha_1, \dots, \alpha_m$ 和 β_1, \dots, β_m 都线性无关
 - (C) $\alpha_1 + \beta_1, \dots, \alpha_m + \beta_m, \alpha_1 \beta_1, \dots, \alpha_m \beta_m$ 线性无关
 - (D) $\alpha_1 + \beta_1, \dots, \alpha_m + \beta_m, \alpha_1 \beta_1, \dots, \alpha_m \beta_m$ 线性相关

7. 已知 0 < P(B) < 1 且 $P[(A_1 + A_2)|B] = P(A_1|B) + P(A_2|B)$,则下列选项成立的是

- (A) $P[(A_1 + A_2)|\overline{B}] = P(A_1|\overline{B}) + P(A_2|\overline{B})$
- (B) $P(A_1B + A_2B) = P(A_1B) + P(A_2B)$
- (C) $P(A_1 + A_2) = P(A_1 | B) + P(A_2 | B)$
- (D) $P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2)$

8.设随机变量 X 的分布函数为 F(x) ,引入函数 $F_1(x) = F(ax)$, $F_2(x) = F^3(x)$,

 $F_3(x)=1-F(-x)$, $F_4(x)=F(x+a)$, 其中 a 为任意常数, 则下列函数为分布函数的是

()

(A).
$$F_1(x)$$
, $F_2(x)$

(B).
$$F_2(x)$$
, $F_3(x)$

(C).
$$F_3(x)$$
, $F_4(x)$

(D).
$$F_2(x)$$
, $F_4(x)$