实验报告

总结

这个星期,主要研究模型治疗相关的问题:

引入了由知识蒸馏 + 正交约束再训练组合的模型治疗策略,如下是具体效果(由于刚跑通,实验只做了几次,后续会扩大):

遗忘目标客户端是0号(其主要数据集是4号,都已加粗):

阶段	测试集精度 (test_acc)	客户端0自有数据精度
Training	0.8083	93.01%
Retrain	0.8026	60.00%
FAIR-VUE	0.7277	41.80%
HEAL	0.7726	50.89%

类别ID	Training	Retrain	FAIR-VUE	HEAL
0	0.9776	0.9959	0.9724	0.9776
1	0.9912	0.9982	0.9903	0.9930
2	0.9680	0.9729	0.9603	0.9671
3	0.6931	0.9139	0.5129	0.8317
4	0.9053	0.3136	0.0000	0.1354
5	0.7444	0.4854	0.9664	0.8812
6	0.9729	0.9666	0.9687	0.9760
7	0.9844	0.9650	0.9154	0.9650
8	0.0021	0.3871	0.0000	0.0421

类别ID	Training	Retrain	FAIR-VUE	HEAL
9	0.7948	0.9455	0.9514	0.9078

客户端ID	Training	Retrain	FAIR-VUE	HEAL
0	93.01	60.00	41.80	50.89
1	27.82	56.21	26.42	30.88
2	76.26	93.49	83.38	87.94
3	96.38	90.21	84.43	89.18
4	97.46	91.55	87.72	89.78
5	63.43	86.36	47.75	75.46
6	76.85	61.17	96.16	89.66
7	98.39	99.62	97.89	97.97
8	75.06	86.49	72.99	78.44
9	96.95	98.17	96.08	96.51

能明显看到,引入治疗后准确率有一定程度的回升

现在最大的问题是mnist手写数据集太容易学习,导致重训练后即使抛弃了目标客户端的数据,依旧能 学得较好,后续会替换为cifar数据集进行下一步实验

下面是技术细节

healing 模块(也就是 selective_kd_heal 与 heal_model)本质上是一种 "知识蒸馏 + 正交约束再训练(Knowledge Distillation with Orthogonal Regularization)" 的治疗机制,用来在 FAIR-VUE 遗忘之后修复模型的整体性能。

它的核心思想可以分为三步来理解:

一、背景:为什么需要"模型治疗"

在联邦遗忘中,我们会对模型权重沿着被遗忘客户端的"影响子空间"做投影擦除(即 FAIR-VUE 的 V_spec 空间)。

这一步虽然可以让模型"忘掉"目标客户端的知识,但副作用是:

- 全局模型的结构被破坏;
- 其他客户端的性能(尤其是共享类)显著下降。
- ◆ 所以 healing 的目标:在不重新训练被遗忘数据的前提下,**让模型在 retained clients 的分布上** 恢复性能,同时避免重新学回被忘知识。

二、原理核心:知识蒸馏+正交惩罚

(1) 知识蒸馏 (KD)

healing 阶段会使用一个 **teacher 模型**(即遗忘前的模型或未投影版本)来指导 **student 模型**(投影后的遗忘模型)。

两者在同样的数据上计算预测分布,然后通过 KL 散度损失 让 student 向 teacher 的知识分布靠近:

$$\mathcal{L}_{KD} = T^2 \cdot KLig(ext{softmax}(z_s/T); ||; ext{softmax}(z_t/T)ig)$$

- (z_s, z_t): student/teacher的 logits;
- (T): 温度参数(一般2~4),用于平滑预测分布;
- KD loss 让 student 重新吸收非遗忘客户端的通用知识。

(2)正交惩罚(Orthogonal Regularization)

这一部分就是 healing 的"关键创新":

之前遗忘时擦除了一个特征子空间 (V_{spec}),表示被遗忘客户端的影响方向。 为了防止 student 在治疗过程中**重新学回被遗忘知识**,需要约束模型梯度不再朝 (V_{spec}) 方向更新。

具体做法是:

$$\mathcal{L} * ortho = \lambda * ortho \cdot |Q^{\top}\theta| * 2^{2}$$

其中 (Q) 是对 (V*{spec}) 的正交基,(\theta) 是当前模型参数向量。 这相当于:

- 投影当前模型参数到被遗忘方向;
- 惩罚这些分量的大小;
- 让模型保持在被遗忘空间的正交补内。

所以你最终优化的总损失为:

$$\mathcal{L}*total = \mathcal{L}*task + \lambda_{KD}\mathcal{L}*KD + \lambda*ortho\mathcal{L}_{ortho}$$

这一步相当于 "在不触碰遗忘方向的情况下重新蒸馏模型"。

三、训练过程

整体流程可以简化为下图的逻辑:

```
遗忘后模型 (student_init)

↓

teacher (未遗忘模型)

↓

healing dataloader (仅保留客户端数据)

↓

Loss = CE + KD + \(\lambda\)\·Orthogonal

↓

优化几百步 (num_steps=200)

↓

student_final (恢复准确率但仍遗忘目标客户端)
```

四、关键点总结

模块	目的	对应参数
知识蒸馏 (KD)	恢复 retained clients 的知识	λ_kd, T

模块	目的	对应参数
正交惩罚 (Orthogonal)	防止重新学回被遗忘方向	λ_ortho, v_spec
短步数微调 (Selective Heal)	控制治疗强度	num_steps
Teacher 冻结	保持指导一致性	teacher.eval()