CS4495/6495 Introduction to Computer Vision

3A-L1 Cameras and images

What is an image?

- Up until now: a function a 2D pattern of intensity values
- Today: a 2D projection of 3D points

First Known Photograph – Heliograph

View from the Window at le Gras, Joseph Nicéphore Niépce 1826

Reproduction, 1952

Projection

Projection

Image formation – (bad) method

Pinhole camera

Camera Obscura (Latin: Darkened Room)

Home-made pinhole camera

Shrinking the aperture

Shrinking the aperture

A little bit of computational photography

Adding a lens – and concept of focus

Lenses

Thin lenses

The thin lens

Computer Vision - A Modern Approach Slides by D.A. Forsyth

The thin lens

$$\frac{-y'}{y} = \frac{||z'||}{||z||}$$

The thin lens

$$\frac{-y'}{y} = \frac{\mid\mid z\mid\mid\mid}{\mid\mid z\mid\mid}$$

$$\frac{-y'}{y} = \frac{||z'|| - f}{f}$$

$$\rightarrow \frac{\parallel z \, ' \parallel}{\parallel z \parallel} = \frac{\parallel z \, ' \parallel - f}{f}$$

The thin lens equation

$$\frac{\parallel z \, ' \parallel}{\parallel z \parallel} = \frac{\parallel z \, ' \parallel - f}{f}$$

$$\rightarrow \frac{1}{\mid\mid z\mid\mid} = \frac{1}{f} - \frac{1}{\mid\mid z'\mid\mid}$$

$$\to \frac{1}{\|z'\|} + \frac{1}{\|z\|} = \frac{1}{f}$$

The thin lens equation

Any object point satisfying this equation is in focus.

$$\to \frac{1}{\|z'\|} + \frac{1}{\|z\|} = \frac{1}{f}$$

Thin lenses

http://www.phy.ntnu.edu.tw/java/Lens/lens e.html

(by Fu-Kwun Hwang)

Varying Focus

Depth of field

f/5.6 = large aperture

f/32 = small aperture

Flower images from Wikipedia http://en.wikipedia.org/wiki/Depth_of_field

Nice Depth of Field effect

Field of View (Zoom)

85mm

Field of View (Zoom)

FOV depends on Focal Length

d is the "retina" or sensor size

$$\phi = 2 \tan^{-1} \left(\frac{d/2}{f} \right)$$

Larger Focal Length => Smaller FOV

Zooming and Moving are not the same...

Field of View / Focal Length

Large FOV, small *f*Camera close to car

Small FOV, large *f*Camera far from the car

Perspective and Portraits

Perspective and Portraits

Effect of focal length on perspective effect

From Zisserman & Hartley

Dolly Zoom

Pioneered by Hitchcock in Vertigo (1958)

Original(YouTube link) (2:07) Widely used (YouTube link)

But reality can be a problem...

Geometric Distortion

No distortion

Pin cushion

Barrel

Correcting radial distortion

from Helmut Dersch

Chromatic Aberration

Rays of different wavelength focus in different planes

Chromatic Aberration

Vignetting

Lens systems

Nikon 24-70mm zoom

