Modelos Lineares

Otaviano da Cruz Neto

Instituto de Ciencias Exatas - ICEX / UFF

09/05/2018

Introdução (Notação)

▶ Dados Individuais (X⁽ⁱ⁾ e Y⁽ⁱ⁾)

$$X^{(i)} = (x_1, x_2, \cdots, x_m)$$
 (1)

$$Y^{(i)} = y^{(i)} \tag{2}$$

▶ Dados da Amostra $(X^{(i)}, Y^{(i)})$

$$X = \begin{bmatrix} 1 & x_1^{(1)} & \cdots & x_m^{(1)} \\ 1 & x_1^{(2)} & \cdots & x_m^{(2)} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_1^{(N)} & \cdots & x_m^{(N)} \end{bmatrix}$$
(3)

Introdução (Notação)

$$Y = \begin{bmatrix} y^{(0)} \\ y^{(1)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

(4)

Regressão

▶ O que é o método de Regressão?

O método de Regressão é uma ferramenta que leva em consideração a dependência entre as variáveis que caracterizam os dados . Ou seja, a cada valor de entrada é associado a um valor dado por uma Função Target, o padrão a ser aprendido.

Tipos de Regressão

Os dois tipos de regressão que serão exibidos serão a Regressão Linear e a Regressão Logística. A regressão linear admite a dependência linear entre as variáveis e busca um hiperplano que melhor aproxima a configuração. Já a regressão logística utiliza a associação de cada $X^{(i)}$ a respostas $(Y^{(i)})$ binárias, por exemplo, 0 ou 1.

Vetor Normal à Hipótese

$$W = [w_0, w_1, w_2, \cdots, w_N]$$
 (5)

Hipótese Linear

$$h(w) = XW^T \tag{6}$$

 Caracterização dos Erros dentro (E_{in}) da amostra e fora dela (E_{out})

A preocupação com o erro que envolve o aprendizado de um padrão é evidente quando há a necessidade de aplicar em outros juntos fora da amostragem a qual foi implementado o método de regressão linear. Neste caso temos,

$$E_{in}(W) = \frac{1}{N} \sum_{n=1}^{N} \left(X^{(n)} W^{T} - Y^{(n)} \right)^{2} = \frac{1}{N} \left(X W^{T} - Y \right)^{2}$$
(7

▶ Gradiente de E_{in} $(\vec{\nabla} E_{in})$

$$\vec{\nabla} E_{in} = \frac{2}{N} X^T \left(X W^T - Y \right) \tag{8}$$

Gradiente decrescente (Solução Numérica): O método do gradiente decrescente é uma ferramenta que utiliza a propriedade do operador gradiente de apontar sempre na direção de máximo crescimento, afim de minimizar o erro dentro da amostra.

$$\vec{W_{t+1}} = \vec{W_t} - \alpha \nabla \vec{E}_{in} \tag{9}$$

Solução da Regressão Linear

Normalização (Solução analítica)

$$\vec{\nabla} E_{in} = \frac{2}{N} X^{T} \left(X W^{T} - Y \right) = 0 \tag{10}$$

$$W^T = X^{\dagger} Y \tag{11}$$

$$X^{\dagger} = \left(X^{T}X\right)^{-1}X^{T} \tag{12}$$

Regressão Linear e PLA(Hipótese Inicial)

Muitas vezes na aplicação do Perceptron Learning Algorithm é inicialmente estipulado os valores do vetor normal (W) de maneira aleatória, e , por isso, pode haver uma demora em relação à convergência do algoritmo. Assim, afim de evitar tal situação, iniciar com uma hipótese que caracteriza melhor a amostragem é uma boa estratégia para diminuir o tempo de convergência. Ou seja, aplicando o algoritmo de regressão linear na amostragem e, a partir do padrão da regressão, aplicar o PLA.

Visualização Gráfica

Interpretação Probabilística

Gaussiana (IID - Independente e identicamente distribuidos)

Tomando que

$$Y_i = WX_i + \epsilon_i \tag{13}$$

Podemos expressar $\epsilon_i \approx N(0, \sigma^2)$, então a densidade de ϵ_i é dada por:

$$p(\epsilon_i) = \frac{2}{\sqrt{2\pi}\sigma} exp\left(-\frac{(Y_i - WX)^2}{2\sigma^2}\right)$$
 (14)

Então a probabilidade(Likelihood) da Hipótese Linear é:

$$L(W) = \prod_{i=1}^{N} \frac{2}{\sqrt{2\pi}\sigma} exp\left(-\frac{(Y_i - WX)^2}{2\sigma^2}\right)$$
 (15)

Interpretação Probabilística

Então derivando o $\ln L(w)$ temos:

$$I(W) = \ln L(w) \tag{16}$$

$$= \ln \prod_{i=1}^{N} \frac{2}{\sqrt{2\pi}\sigma} exp\left(-\frac{(Y_i - WX)^2}{2\sigma^2}\right)$$
 (17)

$$= \sum_{i=1}^{N} \ln \frac{2}{\sqrt{2\pi}\sigma} exp\left(-\frac{(Y_i - WX)^2}{2\sigma^2}\right)$$
 (18)

$$= N \ln \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^2} \cdot \frac{1}{2} \sum_{i=1}^{N} (Y_i - WX_i)^2$$
 (19)

Interpretação Probabilística

Maximizando temos:

$$I(W) = \frac{1}{2} \sum_{i=1}^{N} (Y_i - WX_i)^2$$
 (20)

Aplicação

Dados

Figura 1: Dados criados a partir da reta X=Y.

Aplicação

► Função Custo a cada Iteração

Figura 2: Gráfico de Custo por quantidade de iterações.

Aplicação

Resultado Final

Figura 3: Gráfico da Reta de coeficiente angular 1.01 e coeficiente linear 0.01 criada a partir dos dados gerados.

Regressão Logística

Referências

[1] http://www.portalaction.com.br/analise-de-regressao. Acessao em 04/05/2018. [2] https://www.researchgate.net/figure/A-plot-of-the-gradient-descent-algorithm-left-and-the-stochastic-gradient-descent_fig1_303257470