RNNs for Recommendation & Personalization

Nick Pentreath Principal Engineer

@MLnick

About

@MLnick on Twitter & Github

Principal Engineer, IBM

CODAIT - Center for Open-Source Data & AI Technologies

Machine Learning & AI

Apache Spark committer & PMC

Author of Machine Learning with Spark

Various conferences & meetups

codait.org

CODAIT aims to make AI solutions dramatically easier to create, deploy, and manage in the enterprise

Relaunch of the Spark Technology Center (STC) to reflect expanded mission

Agenda

Recommender systems overview

Deep learning and RNNs

RNNs for recommendations

Challenges and future directions

Recommender Systems

Users and Items

```
"user_id": "1",
"name": "Joe Bloggs",
"created_date": 1476884080,
"updated_date": 1476946916,
"last_active_date": 1476946962,
"age": 32,
"country": "GB",
"city": "London",
. . .
```

```
"item_id": "10",
"name": "LOL Cats",
"description": "catscatscats",
"category": ["Cat Videos", "Humour", "Animals"],
"tags": ["cat", "lol", "funny", "cats", "felines"],
"created_date": 1476884080,
"updated_date": 1476884080,
"last played date": 1476946962.
"likes": 100000,
"author_id": "321",
"author_name": "ilikecats",
"channel_id": "CatVideoCentral",
. . .
```


Events

Implicit preference data

- Online page view, click, app interaction
- Commerce cart, purchase, return
- Media preview, watch, listen

Explicit preference data

· Ratings, reviews

Intent

Search query

Social

Like, share, follow, unfollow, block

Context


```
"user_id": "1",
"item_id": "10",
"event_type": "page_view",
"timestamp": 1476884080,
"referrer": "http://codait.org",
"ip": "123.12.12.12",
"device_type": "Smartphone",
"user_agent_os": "Android",
"user_agent_type": "Mobile Browser",
"user_agent_family": "Chrome Mobile",
"geo":"51.5085, 0.0298"
```

Prediction

Prediction is ranking

 Given a user and context, rank the available items in order of likelihood that the user will interact with them

Matrix Factorization

The de facto standard model

- Represent user ratings as a user-item matrix
- Find two smaller matrices (called the factor matrices) that approximate the full matrix
- Minimize the reconstruction error (i.e. rating prediction / completion)

- Efficient, scalable algorithms
 - · Gradient Descent
 - · Alternating Least Squares (ALS)
- Prediction is simple
- Can handle implicit data

Cold Start

New items

- No historical interaction data
- Typically use baselines (e.g. populariy) or item content

New (or unknown) users

- Previously unseen or anonymous users have no user profile or historical interactions
- Have context data (but possibly very limited)
- Cannot directly use collaborative filtering models
 - · Item-similarity for current item
 - · Represent session as aggregation of items
 - Contextual models can incorporate short-term history

Deep Learning and Recurrent Neural Networks

Overview

Original theory from 1940s; computer models originated around 1960s; fell out of favor in 1980s/90s

Recent resurgence due to

- Bigger (and better) data; standard datasets (e.g. ImageNet)
- Better hardware (GPUs)
- Improvements to algorithms, architectures and optimization

Leading to new state-of-the-art results in computer vision (images and video); speech/text; language translation and more

Deep Learning

Source: Stanford CS231n

Modern Neural Networks

Deep (multi-layer) networks

Computer vision

- Convolution neural networks (CNNs)
- Image classification, object detection, segmentation

Sequences and time-series

- Recurrent neural networks (RNNs)
- Machine translation, text generation
- LSTMs, GRUs

Embeddings

- Text, categorical features

Deep learning frameworks

- Flexibility, computation graphs, auto-differentiation, GPUs

Neural Network on Sequences ...

- ... sequence of neural network (layers)
- Hidden layers (state) dependent on previous state as well as current input
- "memory" of what came before

- Share weights across all time steps
- Training using backpropagation through time (BPTT)

Issues

- Exploding gradients clip / scale gradients
- Vanishing gradients

Solutions

- Truncated BPTT
- Restrict sequence length
- Cannot encode very long term memory

Long Short Term Memory (LSTM)

- Replace simple RNN layer (activation) with a LSTM cell
- Cell has 3 gates Input (i), Forget (f), Output (o)
- Activation (g)
- Backpropagation depends only on elementwise operations (no matrix operations over W)

Gated Recurrent Unit (GRU)

- Effectively a simplified version of LSTM
- 2 gates instead of 3 input and forget gate is combined into an update gate. No output gate

GRU has fewer parameters, LSTM may be more expressive

$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

Variants

- Multi-layer (deep) RNNs
- Bi-directional
- Deep bi-directional
- Attention

RNNs for Recommendations

Deep Learning for Recommenders Overview

Wide Models

Most approaches have focused on combining

- Performance of collaborative filtering models (especially matrix factorization)
 - Embeddings with appropriate loss = MF
- Power of deep learning for feature extraction
 - · CNNs for image content, audio, etc.
 - Embeddings for categorical features
 - Linear models for interactions
 - RNNs for text

Deep Models

256

73

MP

35

512

mean

L2

global

temporal

Wide & Deep Models

Session-based recommendation

Apply the advances in sequence modeling from deep learning

- RNN architectures trained on the sequence of user events in a session (e.g. products viewed, purchased) to predict next item in session
- Adjustments for domain
 - Item encoding (1-of-N, weighted average)
 - · Parallel mini-batch processing
 - Ranking losses BPR, TOP1
 - · Negative item sampling per mini-batch
- Report 20-30% accuracy gain over baselines

Contextual Session-based models

Add contextual data to the RNN architecture

- Context included time, time since last event, event type
- Combine context data with input / output layer
- Also combine context with the RNN layers
- About 3-6% improvement (in Recall@10 metric) over simple RNN baseline
- Importantly, model is even better at predicting sales (vs view, add to cart events) and at predicting new / fresh items (vs items the user has already seen)

RNNs for Recommendations

Source: Hidasi, Quadrana, Karatzoglou, Tikk

Content and Session-based models

Add content data to the RNN architecture

- Parallel RNN (p-RNN)
- Follows trend in combining DL architectures for content feature extraction with CF models for interaction data
 - CNN for image data
 - BOW for text (alternatives are Word2Vec-style models and RNN language models)
- Some training tricks
 - · Alternating keep one subnet fixed, train other
 - Residual subnets trained on residual error
 - Interleaved alternating training per mini-batch

3D CNNs for Session-based Recommendation

As we've seen in text / NLP, CNNs can also be effective in modeling sequences

- 3D convolutional models have been applied in video classification
- Potentially faster to train, easier to understand
- Use character-level encoding of IDs and item features (name, description, categories)
 - Compact representation
 - No embedding layer
- "ResNet" style architecture
- Show improvement over p-RNN

Challenges

Challenges particular to recommendation models

- Data size and dimensionality (input & output)
 - Sampling
- Extreme sparsity
 - Embeddings & compressed representations
- Wide variety of specialized settings
- Combining session, content, context and preference data
- Model serving is difficult ranking, large number of items, computationally expensive

- Metrics model accuracy and its relation to realworld outcomes and behaviors
- Need for standard, open, large-scale, datasets that have time and session data and are content- and context-rich
 - RecSys 15 Challenge YouChoose dataset
- Evaluation watch you baselines!
 - When Recurrent Neural Networks meet the Neighborhood for Session-Based Recommendation

Future Directions

Most recent and future directions in research & industry

- Improved RNNs
 - Cross-session models (e.g. Hierarchical RNN)
 - Further research on contextual models, as well as content and metadata
 - · Attention models:
 - Attentive Neural Architecture for Music Recommendation
 - Neural Attentive Session-based Recommendation
- Combine sequence and historical models (longand short-term user profiles)

- Domain-specific applications
 - Contextualized Location Sequence Recommender
- RecGAN (yes, GANs and RNNS!)
- Applications at scale
 - Dimensionality reduction, compressed encodings

Summary

DL for recommendation is just getting started (again)

- Huge increase in interest, research papers. Already many new models and approaches
- DL approaches have generally yielded incremental % gains
 - But that can translate to significant \$\$\$
 - · More pronounced in session-based
- Cold start scenarios benefit from multi-modal nature of DL models and explicit modeling of sequences

- Flexibility of DL frameworks helps a lot
- Benefits from advances in DL for images, video, NLP etc.
- Open-source libraries appearing (e.g. Spotlight)
- Check out DLRS workshops & tutorials @ RecSys 2016 / 2017, and upcoming in Oct, 2018
- RecSys challenges

Thank you!

Sign up for IBM Cloud and try Watson Studio!

https://ibm.biz/BdYbTY

https://datascience.ibm.com/

Links & References

Wikipedia: Perceptron

Stanford CS231n Convolutional Neural Networks for Visual Recognition

Stanford CS231n - RNN Slides

Recurrent Neural Networks Tutorial

<u>The Unreasonable Effectiveness of Recurrent Neural Networks</u>

Understanding LSTM Networks

<u>Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation</u>

Long short-term memory

Attention and Augmented Recurrent Neural Networks

Links & References

<u>Deep Content-based Music Recommendation</u>

Google's Wide and Deep Learning Model

<u>Deep Learning for Recommender Systems Workshops @</u>
<u>RecSys</u>

<u>Deep Learning for Recommender Systems Tutorial @</u> <u>RecSys 2017</u>

Session-based Recommendations with Recurrent Neural Networks

Recurrent Neural Networks with Top-k Gains for Sessionbased Recommendations

Sequential User-based Recurrent Neural Network Recommendations

Links & References

<u>Personalizing Session-based Recommendations with</u> <u>Hierarchical Recurrent Neural Networks</u>

<u>Parallel Recurrent Neural Network Architectures for</u> <u>Feature-rich Session-based Recommendations</u>

<u>Contextual Sequence Modeling for Recommendation with Recurrent Neural Networks</u>

When Recurrent Neural Networks meet the Neighborhood for Session-Based Recommendation

3D Convolutional Networks for Session-based Recommendation with Content Features

Spotlight: Recommendation models in PyTorch

RecSys 2015 Challenge - YouChoose Dataset

