Этап 2

Электрический пробой

Дымченко Д.Ю.

Содержание

1	Этап	2		5
	1.1	Докла	дчики	5
	1.2	Содер	жание	5
	1.3	1. Введ	дение	6
		1.3.1	Актуальность	6
		1.3.2	Объект и предмет исследования	6
		1.3.3	Цель работы	6
		1.3.4	Задачи	7
	1.4	2. Выб	ор подхода к моделированию	7
		1.4.1		7
		1.4.2		8
		1.4.3		9
	1.5		· • • · · · · · · · · · · · · · · · · ·	9
	1.6	3. Алго		9
		1.6.1	, , , , , , , , , , , , , , , , , , ,	0
		1.6.2	· · · · · · · · · · · · · · · · · · ·	0
	1.7	4. Инс	FV	1
		1.7.1	Y	1
		1.7.2		2
		1.7.3	КАRAT (для РІС-моделирования)	2
	1.8	5. Доп	олнительные исследования	2
	1.9			2
	1.10	7. Спи	сок литературы	3

Список иллюстраций

1.1	Входные параметры	1
1.2	Пошаговый алгоритм	1
1.3	Б Листинг	1
1.4	Входные данные	1

Список таблиц

1 Этап 2

1.1 Докладчики

- Амуничников Антон Игоревич
- Леснухин Даниил Дмитриевич
- Майзингер Эллина Сергеевна
- Дымченко Дмитрий Юрьевич
- Матюхин Павел Андреевич
- Понамарев Алексей Михайлович

1.2 Содержание

- 1. Введение
- 2. Выбор подхода к моделированию
- 3. Алгоритм моделирования пробоя
- 4. Инструменты и коды
- 5. Дополнительные исследования
- 6. Выводы
- 7. Список литературы

1.3 1. Введение

1.3.1 Актуальность

Надёжная оценка распределения электрического поля и критических условий пробоя является ключевым аспектом при проектировании изоляционных систем, выборе материалов, а также обеспечении электробезопасности и надёжности устройств. Особую актуальность данное направление приобретает в приложениях, где присутствует сложная геометрия электродов или неоднородные диэлектрические среды. В таких случаях аналитические методы оказываются недостаточными, и требуется использование численного моделирования — в частности, методов конечных элементов (FEM) и других подходов, способных точно воспроизводить реальные условия. Кроме того, развитие концепции «цифрового двойника» в инженерных задачах требует высокой точности и воспроизводимости моделей электрического пробоя.

Также важным фактором является переход от эмпирических моделей (например, кривой Пашена) к более универсальным физически обоснованным методам, которые позволяют учитывать пространственную неоднородность, временную динамику и взаимодействие с материалами.

1.3.2 Объект и предмет исследования

- Процесс электрического пробоя в диэлектрической среде при наличии неоднородного электрического поля.
- Методы численного моделирования электрического поля и условий пробоя в системах с различной геометрией электродов и граничными условиями.

1.3.3 Цель работы

Целью настоящего исследования является и анализ численных методов моделирования электрического пробоя в неоднородных электрических полях с учётом геометрии электродов, граничных условий и критических параметров среды.

1.3.4 Задачи

- 1. Рассмотреть основные способы моделирования пробоя
- 2. Составить математическую модель для расчёта электрического поля.
- 3. Настроить численное моделирование с помощью разных алгоритмов.

1.4 2. Выбор подхода к моделированию

Электрический пробой можно описывать разными методами в зависимости от:

- Среды (газ, жидкость, твёрдый диэлектрик),
- Точности (простая аналитическая модель или сложное численное моделирование),
- **Цели** (расчёт пробивного напряжения, визуализация процесса, исследование динамики).

1.4.1 Аналитические модели

Подходят, если нужно быстро оценить параметры пробоя без детального рассмотрения физики.

1.4.1.1 Закон Пашена

Применяется для **газовых разрядов** (например, искровой пробой в воздухе). Формула Пашена:

$$U_{\text{пробоя}} = \frac{B \cdot p \cdot d}{\ln(A \cdot p \cdot d) - \ln(\ln(1 + 1/\gamma))}$$

Где:

- (р) давление газа,
- (d) расстояние между электродами,
- (A, B) эмпирические коэффициенты,
- (γ) коэффициент вторичной эмиссии.

Пример для воздуха: $A \approx 15 \text{ m}^{-1} \cdot \text{Pa}^{-1}$,

 $B \approx \frac{365 \text{ V}}{\text{m} \cdot \text{Pa}}$

Когда можно использовать?

- Для оценки пробивного напряжения в однородном поле.
- Если не нужна детальная динамика процесса.

1.4.2 Численные методы

Нужны, если требуется смоделировать **распределение поля, зарождение стримеров, неоднородные поля**.

1.4.2.1 Метод конечных элементов (FEM)

Для чего необходим?

- Расчёт распределения электрического поля $\vec{E} = -\nabla \phi$.
- Учёт сложной геометрии электродов.

Шаги:

1. Решить уравнение Пуассона:

$$\nabla^2\phi=-\frac{\rho}{\varepsilon_0}$$

- 2. Добавить условия на границах (например, $\phi = U$ на катоде, $\phi = 0$ на аноде).
- 3. Найти \vec{E} и проверить, где $|\vec{E}|$ превышает критическое значение $E_{ ext{\tiny KDUT}}.$

Инструменты: COMSOL, ANSYS, FEniCS (Python)

1.4.3 Particle-in-Cell (PIC)

Для чего?

• Моделирование движения заряженных частиц (электронов, ионов) в самосогласованном поле.

Алгоритм:

- 1. Разбить область на сетку.
- 2. На каждом шаге:
- Рассчитать поле на сетке.
- Переместить частицы в этом поле.
- Учесть столкновения и ионизацию.

1.5 Инструменты: KARAT, COMSOL Plasma Module, VPIC.

1.6 3. Алгоритм моделирования пробоя

Рассмотрим **газовый пробой** (например, в воздухе) с использованием **урав- нения Таунсенда**.

1.6.1 Входные параметры (рис. 1.1).

Параметр	Обозначение	Пример значения	
Давление газа	p	101325 Па (1 атм)	
Зазор	d	0.001 м (1 мм)	
Напряжение	U	3000 B	
Коэф. ионизации	α	Зависит от E/p	
Коэф. эмиссии	γ	0.01	

Рис. 1.1: Входные параметры

1.6.2 Пошаговый алгоритм (рис. 1.2).

Шаг 1. Проверка критерия пробоя

1. Рассчитать напряжённость поля:

$$E = \frac{U}{d}$$

2. Найти α (коэффициент Таунсенда):

$$lpha = A \cdot p \cdot e^{-rac{B \cdot p}{E}}$$

3. Проверить условие пробоя:

$$\alpha \cdot d \geq \ln \left(1 + \frac{1}{\gamma}\right)$$

Рис. 1.2: Пошаговый алгоритм

Шаг 2. Численное моделирование (если нужно)

Если поле неоднородное, используем **FEM**:

- 1. Задать геометрию (например, игла-плоскость).
- 2. Решить уравнение Пуассона.

3. Найти области, где $E > E_{_{
m KDИT}}$.

Шаг 3. Визуализация

- График $U_{\mathrm{проб}}(d)/U_{\mathrm{nopor}}(d)$ (кривая Пашена).
- ullet Распределение $ec{E}$ в COMSOL / Matplotlib.

1.7 4. Инструменты и коды

1.7.1 Python (для аналитики и простых моделей)

Библиотеки

- numpy, scipy расчёты,
- matplotlib графика,
- PyBoltz моделирование пробоя в газах.

Пример кода для кривой Пашена: (рис. 1.3).

```
import numpy as np
import matplotlib.pyplot as plt

# Константы для воздуха
A = 15 # 1/(Pa*m)
B = 365 # V/(Pa*m)
gamma = 0.01

# Функция Пашена
def paschen_voltage(p, d):
    return B * p * d / (np.log(A * p * d) - np.log(np.log(1 + 1/gamma)))

# Давление (Па), зазор (М)
p = 101325
d_values = np.linspace(1e-6, 0.01, 100)
U_breakdown = [paschen_voltage(p, d) for d in d_values]

# График
plt.plot(d_values * 1000, U_breakdown)
plt.xlabel("Зазор, мм")
plt.ylabel("Напряжение пробоя, В")
plt.title("Кривая Пашена для воздуха при p=1 атм")
plt.grid()
plt.show()
```

Рис. 1.3: Листинг

1.7.2 COMSOL/ANSYS (для FEM)

- 1. Создать геометрию электродов.
- 2. Задать параметры газа.
- 3. Добавить модуль Electrostatics или Plasma.

1.7.3 KARAT (для РІС-моделирования)

Пример входного файла: (рис. 1.4).

```
TIME 1e-9 # время моделирования
GRID 100 100 100 # сетка
GAS AIR # газ
VOLTAGE CATHODE 0 ANODE 3000 # напряжение
```

Рис. 1.4: Входные данные

1.8 5. Дополнительные исследования

Если необходимо углубиться, требуется исследовать:

- Влияние влажности на пробой (увеличивает $U_{\mathrm{пробоя}}$).
- Неоднородные поля (игла-плоскость).
- Динамика стримеров (нужны РІС-коды).

1.9 6. Выводы

В ходе работы были рассмотрены основные алгоритмы математического моделирования электрического пробоя с использованием как численных методов, так и языков программирования и прочих инструментов.

1.10 7. Список литературы

- 1. Пашен Ф. "Электрические разряды в газах", Москва, 1985.
- 2. Fridman A., Kennedy L. "Plasma Physics and Engineering", CRC Press, 2011.
- 3. Кумпан В.О. "Диэлектрики и их применение", СПб, 2002.