CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 15 LUGLIO 2024

Svolgere i seguenti esercizi,

	giustificando pienamente tutte le risposte.	,
$\overline{}$	gracing premamente value is reposted	

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Sia $A = \mathcal{P}_2(\mathbb{Z})$ l'insieme delle parti di \mathbb{Z} di cardinalità 2. Sia σ la relazione d'ordine definita da: $\forall a, b \in A$

$$a \sigma b \iff (a = b \lor \forall x \in a(\forall y \in b \ (x \text{ divide } y))).$$

Sia $B = \{\{0, 12\}, \{0, 16\}, \{1, 2\}, \{2, 4\}, \{2, 8\}, \{4, 6\}\}\$

- (i) Disegnare un diagramma di Hasse di (B, σ) . Stabilire se (B, σ) è un reticolo e, nel caso, se è distributivo, complementato, booleano.
- (ii) Determinare un sottoinsieme C di B della cardinalità massima possibile tale che (C, σ) sia un reticolo complementato.
- (iii) Determinare in (A, σ) i minoranti di $\{\{1, 4\}\}$ e, se esistono, inf $\{\{1, 4\}, \{1, 6\}\}$ e sup $\{\{1, 4\}, \{1, 6\}\}$.
- (iv) Determinare, se ne esistono, gli elementi minimali, massimali, minimo, massimo in (A, σ) .
- (v) Esiste $a \in A$ tale che $(B \cup \{a\}, \sigma)$ sia un reticolo?

Esercizio 2. Stabilire per quali $c \in \{1, 3, 20, 24, 55, 60\}$ l'equazione congruenziale $470x \equiv_{350} 3c$ ha soluzioni in \mathbb{Z} e, per ciascun tale c, fornire l'insieme delle soluzioni.

Esercizio 3. Sia S un insieme tale che |S|=13 e sia h un suo elemento. Indicare (ma non calcolare): (a) il numero delle parti di S di cardinalità 8; (b) il numero delle parti di S di cardinalità 18; (c) il numero delle parti T di S tali che |T|=7 e $h\in T$; (d) il numero delle relazioni binarie in S.

Esercizio 4. Per ciascuno degli insiemi \mathbb{Z} , \mathbb{Z}_6 e \mathbb{Z}_3 si consideri l'operazione binaria (che indichiamo sempre con lo stesso simbolo) * definita da: per ogni a, b appartenenti all'insieme, a * b = 3a + b. Che tipo di strutture algebriche (semigruppi, monoidi, gruppi; commutativi o no?) sono $(\mathbb{Z}, *)$, $(\mathbb{Z}_6, *)$ e $(\mathbb{Z}_3, *)$? In ciascuna di esse determinare gli eventuali elementi neutri a sinistra o a destra.

Esercizio 5. Siano $S = \mathbb{N} \setminus \{0, 1\}$ ed $f \colon S \to S$ l'applicazione che ad ogni $n \in S$ associa la somma $\sum_{n \geq p \in \mathbb{P}} p$ dei numeri interi positivi primi minori o uguali a n (ad esempio, f(4) = 2 + 3 = 5). Sia poi \Re il nucleo di equivalenza di f.

- (i) Determinare $\overleftarrow{f}(\{10\})$ e $\overleftarrow{f}(\{11\})$.
- (ii) f è iniettiva? f è suriettiva? f è biettiva?
- (iii) Elencare gli elementi di $[8]_{\Re}$.
- (iv) $|S/\Re|$ è finito o infinito?
- (v) Esiste $a \in S$ tale che $a \notin [a]_{\Re}$?
- (vi) Posto $T = \{n \in S \mid 10 \le n \le 20\}$, detta \Re_T la relazione di equivalenza indotta da \Re su T, descrivere esplicitamente le classi appartenenti a T/\Re_T , elencandone gli elementi. Quanto vale $|T/\Re_T|$?

Esercizio 6.

- (i) Quali tra queste affermazioni sono vere, e quali no, per tutte le possibili scelte di un anello commutativo unitario A, di $f \in A[x]$ e di due elementi distinti a e b di A:
 - (a) se $a \in b$ sono radici di f, allora $(x a) \in (x b)$ dividono f in A[x];
 - (b) se $a \in b$ sono radici di f, allora (x a)(x b) divide f in A[x];
 - (c) se A è un campo e a e b sono radici di f, allora (x-a)(x-b) divide f in A[x].
- (ii) Esistono un anello commutativo unitario A ed un polinomio di grado 2 in A[x] tali che f abbia infinite radici in A?
- (iii) Sia $f \in \mathbb{Z}_{13}[x]$. Supponiamo f = pqr dove p, q ed r sono polinomi irriducibili in $\mathbb{Z}_{13}[x]$, $p \in q$ hanno grado 1 e r ha grado 4. Allora, in $\mathbb{Z}_{13}[x]$,
 - (a) quanti divisori monici di grado 3 ha f?
 - (b) quanti divisori monici di grado 2 ha f?
 - (c) assumendo p e q non associati tra loro, quanti divisori, monici o non monici, di grado 5 ha f?


```
tsercizio 4
Va, be Zx (a * b = 3 a + b)
ASSOCIATIVA
      (a * 6) * c = a * (b*c)
      3(3a+1)+c = 3a+ (31+c)
      9a + 3b + c = 3a+ 3b+c
                FALSO, mon à associative quind non è una strutture olgelaice
                3a+31+c=3a+31+c
      (\mathbb{Z}_{\epsilon,\star})
                3 =+ 36+ == 30+36+ c
                Veno, i assocative
      (\mathbb{Z}_3,*)
                3.+31+c=3.+31+c
                3 -+ 36+ c = 30+36+c
                Veno, i assocative
ELGHENTO NEUTRO
       a +6 = a => 3a +6 = a
       6 ma = a => 36 te = a
      (Z,*)
               36 + 2 = 0
                                    6= [0].
                3 - 1 = 2 => b= -3 a + a => b = -2 a = 6 = 4 a
                 Neutro sx: [0]
                 Neutro dx: nessuro
      (Z3,*) 36+a=0
                b è un quoluque elemento di Z,
                 3a+b= a
                 b=a, non existe neutro
Esencizio 5
5-IN \ \ 0, 1}
                           h: 5 -> 5 ( Vm & S ( h(n) = somma interipositie < n)
i) $\bar{\( \left\{ 10\} \right) = \left\{ 6\} \bar{\( \left\{ 11\} \right) = \BO
ii) | NIETIVA · NO.
∀x, y ∈ S ( f(x) = f(z) <=>x=z)
          h(8)= 2+3+5+7= 17
          (3) = 2+3+5+7=17
```

