Claim 1 (Twice Amended). A compound of the formula

$$R_3$$
 R_4
 R_5

or a pharmaceutically acceptable salt thereof, wherein

A is $-CR_7$;

B is $-NR_1R_2$, $-CR_1R_2R_{11}$, $-C(=CR_2R_{12})R_1$, $-NHCHR_1R_2$, $-OCHR_1R_2$, $-SCHR_1R_2$, $-CHR_2OR_1$, $-CHR_1OR_2$, $-CHR_2SR_1$, $-C(S)R_2$, $-C(O)R_2$, $-CHR_2NR_1R_2$, $-CHR_1NHR_2$, $-CHR_1$, $-CHR_1$, $-CHR_2$, $-CHR_2$, $-CHR_2$, $-CHR_2$, $-CHR_2$, $-CHR_3$, $-CHR_4$, $-CHR_4$, $-CHR_5$

Z is NH, O, S, -N (C_1 - C_2 alkyl)-, -N($C(O)CF_3$), - or - $C(R_{13}R_{14})$ -, wherein R_{13} and R_{14} are each, independently, hydrogen, trifluoromethyl or methyl, or one of R_{13} and R_{14} is cyano and the other is hydrogen or methyl, or - $C(R_{13}R_{14})$ is a cyclopropyl group, or Z is nitrogen or CH and forms a five or six membered heterocyclic ring fused with R_5 , which ring optionally comprises two or three further hetero members selected independently from oxygen, nitrogen, NR_{12} , and $S(O)_m$, and optionally comprises from one to three double bonds, and is optionally substituted with halo, C_1 - C_4 alkyl, - $O(C_1$ - C_4 alkyl), NH_2 , $NHCH_3$, $N(CH_3)_2$, CF_3 , or OCF_3 , with the proviso that said ring does not contain any -S-S-, -S-O-, -N-S-, or -O-O- bonds, and does not comprise more than two oxygen or $S(O)_m$ heterologous members;

 R_1 is C(O)H, $C(O)(C_1-C_6$ hydrocarbyl), $C(O)(C_1-C_6$ _hydrocarbylene)(C_3-C_8 cyclohydrocarbyl), $C(O)(C_3-C_8$ cyclohydrocarbylene)(C_3-C_8 _cyclohydrocarbyl), $C(O)(C_1-C_6$ hydrocarbylene)(C_4-C_8 heterocyclohydrocarbyl), C_1-C_6 hydrocarbyl, C_3-C_8 cyclohydrocarbyl, C_4-C_8 heterocyclohydrocarbyl, C_1-C_6 hydrocarbylene (C_3-C_8 cyclohydrocarbyl), C_3-C_8 cyclohydrocarbyl), C_3-C_8 cyclohydrocarbyl), C_3-C_8 cyclohydrocarbyl), C_3-C_8 cyclohydrocarbylene)(C_4-C_8 heterocyclohydrocarbyl), C_3-C_8 cyclohydrocarbylene)(C_4-C_8 heterocyclohydrocarbylene)-aryl; wherein said aryl,

 C_4 - C_8 heterocyclohydrocarbyl, C_1 - C_6 hydrocarbyl, C_3 - C_8 cyclohydrocarbyl, C_3 - C_8 cyclohydrocarbylene, and C₁-C₆ hydrocarbylene groups may each independently be optionally substituted with from one to six fluoro and may each independently be optionally substituted with one or two substituents R₈ independently selected from the group consisting of C₁-C₄ hydrocarbyl, -C₃-C₈l cyclohydrocarbyl, hydroxy, chloro, bromo, iodo, CF₃, -O-(C₁-C₆ hydrocarbyl), -O-(C₃-C₅ cyclohydrocarbyl), -O-CO-(C₁-C₄ hydrocarbyl), -O-CO-NH(C_1 - C_4 hydrocarbyl), -O-CO-N(R_{24})(R_{25}), -N(R_{24})(R_{25}), -S(C_1 - C_4 hydrocarbyl), $-S(C_3-C_5)$ cyclohydrocarbyl $--N(C_1-C_4)$ hydrocarbyl)CO(C_1-C_4 hydrocarbyl), $-NHCO(C_1-C_4)$ hydrocarbyl), -COO(C₁-C₄ hydrocarbyl), -CONH(C₁-C₄ hydrocarbyl), -CONC₁-C₄ hydrocarbyl)(C_1 - C_2 hydrocarbyl), CN, NO₂, -OSO₂(C_1 - C_4 hydrocarbyl), S⁺(C_1 - C_6 hydrocarbyl)(C₁-C₂ hydrocarbyl), -SO(C₁-C₄ hydrocarbyl) and -SO₂(C₁-C₄ hydrocarbyl); and wherein the C_1 - C_6 hydrocarbyl, C_1 - C_6 hydrocarbylene, C_5 - C_8 cyclohydrocarbyl, C_5 - C_8 cyclohydrocarbylene, and C₅-C₈ heterocyclohydrocarbyl moieties of R₁ may optionally independently contain from one to three double or triple bonds; and wherein the C₁-C₄ hydrocarbyl moieties and C₁-C₆ hydrocarbyl moieties of R₈ can optionally independently be substituted with hydroxy, amino, C₁-C₄ alkyl, aryl, -CH₂-aryl₁ C₃-C₅ cycloalkyl, or -O-(C₁-C₄ alkyl), and can optionally independently be substituted with from one to six fluoro, and can optionally contain one or two double or triple bonds; and wherein each heterocyclohydrocarbyl group of R_1 contains from one to three heteromoieties selected from oxygen, $S(O)_m$, nitrogen, and NR_{12} ;

 R_2 is hydrogen, C_1 - C_{12} hydrocarbyl, C_3 - C_8 cyclohydrocarbyl , C_4 - C_8 heterocyclohydrocarbyl, $-(C_1$ - C_6 hydrocarbylene)(C_3 - C_8 cyclohydrocarbylene)(C_4 - C_8 cyclohydrocarbylene)(C_4 - C_8 heterocyclohydrocarbyl), $-(C_3$ - C_6 cyclohydrocarbylene)(C_4 - C_8 heterocyclohydrocarbyl), aryl, $-(C_1$ - C_6 hydrocarbylene)aryl, or $-(C_3$ - C_8 cyclohydrocarbylene)(aryl); wherein each of the foregoing R_2 groups may optionally be substituted with from one to three substituents independently selected from chloro, fluoro, and C_1 - C_6 alkyl, wherein one of said one to three substituents can further be selected from bromo, iodo, C_1 - C_6 alkoxy, -OH, $-O-CO-(C_1$ - C_6 alkyl), $-O-CO-N(C_1$ - C_4 alkyl)(C_1 - C_2 alkyl), -S (C_1 - C_6 alkyl), -S(O)(C_1 - $C_$

B

bonds; and wherein each heterocyclohydrocarbyl group of R_2 contains from one to three heteromoieties selected from oxygen, $S(O)_m$, nitrogen, and NR_{12} ;

or when R_1 and R_2 are as in -NHCH R_1R_2 , -OCH R_1R_2 , -SCH R_1R_2 , -CH R_1R_2 or -NR₁R₂, R_1 and R_2 of B may form a saturated 5- to 8-membered ring which may optionally contain one or

two double bonds and in which one or two of the ring carbons may optionally be replaced by an

oxygen, S(O)_{m,} nitrogen or NR₁₂; and which carbocyclic ring can optionally be substituted with

from 1 to 3 substituents selected from the group consisting of hydroxy, C_1 - C_4 alkyl, fluoro, chloro, bromo, iodo, CF_3 , -O-(C_1 - C_4 alkyl), -O-CO-(C_1 - C_4 alkyl), -O-CO-NH(C_1 - C_4 alkyl), -NH(C_1 - C_4 alkyl), -N(C_1 - C_4 alkyl)(C_1 - C_4 alkyl), -S(C_1 - C_4 alkyl), -N(C_1 - C_4 alkyl), -NHCO(C_1 - C_4 alkyl), -COO(C_1 - C_4 alkyl), -COO(C_1 - C_4 alkyl), -COO(C_1 - C_4 alkyl), -CON(C_1 - C_4 alkyl), CN, NO₂, -OSO₂(C_1 - C_4 alkyl), -SO(C_1 - C_4 alkyl), and -SO(C_1 - C_4 alkyl), wherein one of said one to three substituents can further be selected from phenyl;

)

R₃ is methyl, ethyl, fluoro, chloro, bromo, iodo, cyano, methoxy, OCF₃, NH₂, NH(C₁-C₂ alkyl), N(CH₃)₂, -NHCOCF₃, -NHCH₂CF₃, S(O)_m(C₁-C₄ alkyl), CONH₂, -CONHCH₃, CON(CH₃)₂, -CF₃, or CH₂OCH₃;

 R_4 is hydrogen, C_1 - C_4 hydrocarbyl, C_3 - C_5 cycloalkyl, -(C_1 - C_4 hydrocarbylene)(C_3 - C_5 cycloalkyl), -(C_3 - C_5 cycloalkylene)(C_3 - C_6 cycloalkyl), cyano, fluoro, chloro, bromo, iodo, - OR_{24} C_1 - C_6 alkoxy, -O- cycloalkyl), -O-(C_1 - C_4 hydrocarbylene)(C_3 - C_5 cycloalkyl), -O-(C_3 - C_5 cycloalkylene)(C_3 - C_5 cycloalkyl), -CH₂SC(S)O(C_1 - C_4 alkyl), CH₂OCF₃, CF₃, amino, nitro, -NR₂₄R₂₅, -(C_1 - C_4 hydrocarbylene)-OR₂₄, -(C_1 - C_4 hydrocarbylene)NR₂₄R₂₅, -NHCOR₂₄, -NHCONR₂₄R₂₅, -CH=NOR₂₄, -NHNR₂₄R₂₅, -S(O)_mR₂₄, -C(O)R₂₄, -OC(O)R₂₄, -C(O)CN, -C(O)NR₂₄R₂₅, -C(O)NHNR₂₄R₂₅, and -COOR₂₄, wherein the hydrocarbyl and hydrocarbylene groups of R₄ may optionally independently contain one or two double or triple bonds and may optionally independently be substituted with one or two substituents R₁₀ independently selected from hydroxy, amino, -NHCOCH₃, -NHCOCH₂C1, -NH(C₁-C₂ alkyl), -N(C₁-C₂ alkyl)(C₁-C₂alkyl), -COO(C₁-C₄ alkyl), -COOH, -CO(C₁-C₄ alkyl), C₁-C₆ alkoxy, C₁-C₃ thioalkyl, cyano and nitro, and with one to four substituents independently selected from fluoro and chloro;

 R_5 is aryl or heteroaryl and is substituted with from one to four substituents R_{27} independently selected from halo, C_1 - C_{10} hydrocarbyl, -(C_1 - C_4 hydrocarbylene)(C_3 - C_8

cycloalkyl), -(C₁-C₄ hydrocarbylene)(C₄-C₈ heterocycloalkyl), -(C₃-C₈ cycloalkyl), -(C₄-C₈ heterocycloalkyl), -(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl), -(C₃-C₈ cycloalkylene)(C₄-C₈ heterocycloalkyl), C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, nitro, cyano, -NR₂₄R₂₅, -NR₂₄COR₂₅, $-NR_{24}CO_2R_{26}$, $-COR_{24}$, $-OR_{25}$, $-CONR_{24}R_{25}$, $-CON(OR_{22})R_{23}$, $-CO_2R_{26}$, $-C=N(OR_{22})R_{23}$, and -S(O) _mR₂₃; wherein said C₁-C₁₀ alkyl, C₃-C₈ cycloalkyl, (C₁-C₄ hydrocarbylene), (C₃-C₈ cycloalkyl), (C₃-C₈ cycloalkylene), and (C₄-C₈ heterocycloalkyl) groups can be optionally substituted with from one to three substituents independently selected form C₁-C₄ alkyl, C₃-C₈ cycloalkyl, (C₁-C₄ hydrocarbylene)(C₃-C₈ cycloalkyl), -(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl), C₁-C₄ haloalkyl, hydroxy, C₁-C₆ alkoxy, nitro, halo, cyano, -NR₂₄R₂₅, $-NR_{24}COR_{25}$, $NR_{24}CO_2R_{26}$, $-COR_{24}$, $-OR_{25}$, $-CONR_{24}R_{25}$, CO_2R_{26} , $-CO(NOR_{22})R_{25}$, and - $S(O)_m R_{23}$; and wherein two adjacent substituents of the R_5 group can optionally form a 5-7 membered ring, saturated or unsaturated, fused to R₅, which ring optionally can contain one, two, or three heterologous members independently selected from O, S(O)_m, and N, but not any -S-S-, -O-O-, -S-O-, or -N-S- bonds, and which ring is optionally substituted with C_1 - C_4 alkyl, C₃-C₈ cycloalkyl, -(C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), -(C₃-C₈ cyloalkylene)(C₃-C₈ cycloalkyl), C₁-C₄ haloalkyl, nitro, halo, cyano -NR₂₄R₂₅, NR₂₄COR₂₅, NR₂₄CO₂R₂₆, -COR₂₄, -OR₂₅, -CONR₂₄R₂₅, CO₂R₂₆, -CO(NOR₂₆)R₂₅, or -S(O)_mR₂₃; wherein one of said one to four optional substituents R₂₇, can further be selected from -SO₂NH(C₁-C₄ alkyl), -SO₂NH(C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), SO₂NH(C₃-C₈ cycloalkyl), -SO₂NH(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl), -SO₂N(C₁-C₄ alkyl)(C₁-C₂ alkyl), -SO₂NH₂, -NHSO₂(C₁-C₄ alkyl), -NHSO₂(C₃-C₈ cycloalkyl), -NHSO₂(C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), and -NHSO₂(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl); and wherein the hydrocarbyl, and hydrocarbylene groups of R₅ may independently optionally contain one double or triple bond; R_6 is hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, -(C_1 - C_6 alkylene)(C_3 - C_8 cycloalkyl), or -(C_3 - C₈ cycloalkylene)(C₃-C₈ cycloalkyl), wherein said alkyl and cycloalkyl may optionally be substituted with one hydroxy, methoxy, ethoxy or fluoro group; or R₆ and R₄ can together form an oxo (=O) group, or can be connected to form a 3-8 membered carbocyclic ring, optionally containing one to three double bonds, and optionally containing one, two, or three heterologous ring members selected from O, SO_m, N, and NR₁₂, but not containing any -O-O-, -S-O-, -S-S-, or -N-S- bonds, and further optionally substituted with C₁- C₄ hydrocarbyl or C₃-C₆ cycloalkyl, wherein said C₁-C₄ hydrocarbyl substituent may optionally contain one double or triple bond;

 R_7 is hydrogen, methyl, fluoro, chloro, bromo, iodo, cyano, hydroxy, -O(C_1 - C_2)alkyl), -O(cyclopropyl), - COO(C_1 - C_2 alkyl), -COO(C_3 - C_8 cycloalkyl), -OCF₃, -CF₃, -CH₂OH or CH₂OCH₃;

R₁₁ is hydrogen, hydroxy, fluoro, ethoxy, or methoxy;

 R_{12} is hydrogen or C_1 - C_4 alkyl;

 R_{22} is independently at each occurrence selected from hydrogen, $C_1.C_{14}$ alkyl, $C_1.C_{14}$ haloalkyl, C_3-C_6 alkenyl, $C_3.C_6$ alkynyl, $C_3.C_8$ cycloalkyl, $(C_3-C_8$ cycloalkylene)(C_3-C_8 cycloalkyl), and $(C_1.C_4)$ alkylene)($(C_3.C_8)$ cycloalkyl);

 R_{23} is independently at each occurrence selected from $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $C_2\text{-}C_8$

alkoxyalkyl, C_3 - C_8 cycloalkyl, - $(C_1$ - C_4 alkylene) $(C_3$ - C_8 cycloalkylene) $(C_3$ - C_8 cycloalkylene) $(C_3$ - C_8

cycloalkyl), aryl, $-(C_1-C_4$ alkylene)aryl, piperidine, pyrrolidine, piperazine, N-methylpiperazine,

morpholine, and thiomorpholine;

 R_{24} and R_{25} are independently at each occurrence selected from hydrogen, $-C_1$ - C_4 alkyl, C_1 - C_4 haloalkyl, $-(C_1$ - C_4 alkylene)OH, $-(C_1$ - C_4 alkylene)-O- $(C_1$ - C_4 alkyl), $-(C_1$ - C_4 alkylene)-O- $(C_3$ - C_5 cycloalkyl), C_3 - C_8 cycloalkyl, $-(C_1$ - C_4 alkylene)(C_3 - C_8 cycloalkyl), $-(C_3$ - C_8 cycloalkylene)(C_3 - C_8 cycloalkylene)(C_4 - C_8 heterocyclohydrocarbyl), $-(C_3$ - C_8 cycloalkylene)(C_4 - C_8 heterocyclohydrocarbyl), aryl, and $-(C_1$ - C_4 alkylene)(aryl), wherein the $-C_4$ - C_8 heterocyclohydrocarbyl groups can each independently optionally be substituted with aryl, $-(C_1$ - $-(C_4$ alkylene)) are as $-(C_1$ - $-(C_4$ alkylene) are as $-(C_1$ - $-(C_4$ alkylene)) are as $-(C_1$ - $-(C_4$).

 R_{26} is independently at each occurrence selected from C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_8 cycloalkyl, -(C_1 - C_4 alkylene)(C_3 - C_8 cycloalkyl), -(C_3 - C_8 cycloalkyl), aryl, and -(C_1 - C_4 alkylene)(aryl); and

wherein each m is independently zero, one, or two,

with the proviso that heterocyclohydrocarbylene groups of the compound of formula I, do not comprise any -S-S-, -S-O-, -N-S-, or -O-O- bonds, and do not comprise more than two oxygen or $S(O)_m$ heterologous members.

Claim 2 (Twice Amended). A compound according to claim 1 of the formula

$$R_3$$
 R_4
 ZR_5

or a pharmaceutically acceptable salt thereof, wherein

A is CR₇;

B is -NR₁R₂, -CR₁R₂R₁₁, -C(=CR₂R₁₂)R₁, -NHCHR₁R₂, -OCHR₁R₂, -SCHR₁R₂, -CHR₂OR₁₂, -CHR₂SR₁₂, -C(S)R₂ or -C(O)R₂;

Z is -NH, O, S, N(C_1 - C_2 alkyl) or C($R_{13}R_{14}$) wherein R_{13} and R_{14} are each independently, hydrogen, trifluoromethyl or methyl or one of R_{13} and R_{14} is cyano and the other is hydrogen or methyl;

 R_1 is C_1 - C_6 hydrocarbyl which may optionally be substituted with one or two substituents R_8 independently selected from the group consisting of hydroxy, fluoro, chloro, bromo, iodo, CF_3 , C_1 . C_4 alkoxy, -O-CO- $(C_1$ - C_4 hydrocarbyl), -O-CO-NH $(C_1$ - C_4 hydrocarbyl), -O-CO-NH $(C_1$ - C_4 hydrocarbyl), -NH $(C_1$ - C_4 hydrocarbyl), -N($(C_1$ - $(C_4$ hydrocarbyl)), -S($(C_1$ - $(C_4$ alkyl)), -N($(C_1$ - $(C_4$ hydrocarbyl)), -COO($(C_1$ - $(C_4$ hydrocarbyl))), -CONH $((C_1$ - $(C_4$ hydrocarbyl)), and wherein said $(C_1$ - $(C_4$ hydrocarbyl) and the $((C_1$ - $(C_4$)) hydrocarbyl moieties in the foregoing $((C_1$ - $(C_4$)) may optionally contain one carbon-carbon double or triple bond;

 R_2 is C_1 - C_{12} hydrocarbyl, aryl or -(C_1 - C_4 hydrocarbylene)aryl wherein said aryl is phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidyl, imidazolyl, furanyl, benzofuranyl, benzothiazolyl, isothiazolyl, benzisothiazolyl, benzisoxazolyl, benzimidazolyl, indolyl, or benzoxazolyl; 3- to 8-membered cycloalkyl or -(C_1 - C_6 alkylene)cycloalkyl, wherein one or two of the ring carbons of said cycloalkyl having at least 4 ring members and the cycloalkyl moiety of said -(C_1 - C_6 alkylene)cycloalkyl having at least 4 ring members may optionally be replaced by an oxygen or sulfur atom or by N- R_9 wherein R_9 is hydrogen or C_1 - C_4 alkyl; and wherein each of the foregoing R_2 groups may optionally be substituted with from one to three substituents independently selected from chloro, fluoro and C_1 - C_4 alkyl, or with one substitutent selected from bromo, iodo, C_1 - C_6 alkoxy, -O-CO-(C_1 - C_6 alkyl), -O-CO-N(C_1 - C_4 alkyl)(C_1 - C_2 alkyl), -S(C_1 - C_6 alkyl), CN, NO₂,

-SO(C_1 - C_4 alkyl), and -SO₂(C_1 - C_4 alkyl), and wherein said C_1 - C_{12} hydrocarbyland the C_1 - C_4 hydrocarbylene)aryl may optionally contain one carbon-carbon double or triple bond;

or $-NR_1R_2$ or $-CR_1R_2R_{11}$ may form a saturated 5- to 8-membered carbocyclic ring which may optionally contain one or two carbon-carbon double bonds and in which one or two of the ring carbons may optionally be replaced by an oxygen or sulfur atom;

R₃ is methyl, ethyl, fluoro, chloro, bromo, iodo, cyano, methoxy, OCF₃, methylthio, methylsulfonyl, CH₂OH, or CH₂OCH₃;

 R_4 is hydrogen, C_1 - C_4 hydrocarbyl, fluoro, chloro, bromo, iodo, C_1 - C_4 alkoxy, trifluoromethoxy, $-CH_2OCH_3$, $-CH_2OCH_2CH_3$, $-CH_2CH_2OCH_3$, $-CH_2OF_3$, CF_3 , amino, nitro, $-NH(C_1$ - C_4 alkyl), $-N(CH_3)_2$, $-NHCOCH_3$, $-NHCONHCH_3$, $-SO_n(C_1$ - C_4 hydrocarbyl) wherein n is 0, 1 or 2, cyano, hydroxy, $-CO(C_1$ - C_4 hydrocarbyl), -CHO, cyano or $-COO(C_1$ - C_4 alkyl) wherein said C_1 - C_4 hydrocarbyl may optionally contain one double or triple bond and may optionally be substituted with one substitutent selected from hydroxy, amino, $-NHCOCH_3$, $-NH(C_1$ - C_2 alkyl), $-N(C_1$ - C_2 alkyl)₂, $-COO(C_1$ - C_4 alkyl), $-CO(C_1$ - $-C_4$ alkyl)

 R_5 is phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidyl, furanyl, benzofuranyl, benzothiazolyl, or indolyl, wherein each of the above groups R_5 is substituted with from one to three substituents independently selected from fluoro, chloro, C_1 - C_6 alkyl, and C_1 - C_6 alkoxy, or with one substitutent selected from hydroxy, iodo, bromo, formyl, cyano, nitro, trifluoromethyl, amino, - $(C_1$ - C_6 alkyl)O(C_1 - C_6)alkyl, -NHCH₃, -N(CH₃)₂, -COOH, -COO(C_1 - C_4 alkyl), -CO(C_1 - C_4 alkyl), -SO₂NH(C_1 - C_4 alkyl), -SO₂NH(C_1 - C_6 alkyl) and -SO₂(C_1 - C_6 alkyl), and wherein the C_1 - C_4 alkyl and C_1 - C_6 alkyl moieties of the foregoing R_5 groups may optionally be substituted with one or two fluoro groups or with one substitutent selected from hydroxy, amino, methylamino, dimethylamino and acetyl;

 R_{11} is hydrogen, hydroxy, fluoro, or methoxy; R_{12} is hydrogen or C_1 - C_4 alkyl; and or a pharmaceutically acceptable salt of such compound.

Claim 12 (Amended). A compound according to claim 1, wherein said compound is selected from the group consisting of:

[3,6-dimethyl-2-(2,4,6-trimethyl-phenoxy)-pyridin-4-yl]-diethyl-amine; [3,6-dimethyl-2-(2,4,6-trimethyl-phenoxy)-pyridin-4-yl]-ethyl-propyl-amine; butyl-[3,6-dimethyl-2-(2,4,6-trimethyl-phenoxy)-pyridin-4-yl]-ethyl-amine;

B2

4-(1-ethyl-propoxy)-3,6-dimethyl-2-(2,4,6-trimethyl-phenylsulfanyl)-pyridine; butyl-[2-(4-chloro-2,6-dimethyl-phenoxy)-3,6-dimethyl-pyridin-4-yl]-ethyl-amine; [3,6-dimethyl-[2-(2,4,6,-trimethyl-phenylsulfanyl)-pyridin-4-yl]-ethyl-propyl-amine; [2-(4-chloro-2,6-dimethyl-phenoxy)-3,6-dimethyl-pyridin-4-yl]-ethyl-propyl-amine; N4-(1-ethyl-propyl)-6-methyl-3-nitro-N2-(2,4,6-trimethyl-phenyl)-pyridine-2,4-diamine; 3,6-dimethyl-2-(2,4,6-trimethyl-phenoxy)-pyridin-4-yl]-ethyl-(2,2,2-trifluoro-ethyl)-amine; N4-(1-ethyl-propyl)-6-methyl-N2-(2,4,6-trimethyl-phenyl)-pyridine-2,3,4-triamine; (N-(1-ethyl-propyl)-2-methyl-5-nitro-N'-(2,4,6-trimethyl-pyridin-3-yl)-pyrimidine-4,6-diamine;

[2-(4-chloro-2,6-dimethyl-phenoxy)-3,6-dimethyl-pyridin-4-yl]-diethyl-amine; (1-ethyl-propyl)-[5-methyl-3-(2,4,6-trimethyl-phenyl)-3H-imidazo [4,5-b]pyridin-7-yl-amine;

[2,5-dimethyl-3-(2,4,6-trimethyl-phenyl)-3H-imidazo[4,5-b]pyridin-4-yl]-(1-ethyl-propyl)-amine;

[4-(1-ethyl-propoxy)-3,6-dimethyl-pyridin-2-yl]-(2,4,6-trimethylphenyl)-amine; [4-(1-ethyl-propoxy)-3,6-dimethyl-2-(2,4,6-trimethylphenoxy)-pyridine; [3,6-dimethyl-2-(2,4,6-trimethyl-phenoxy)-pyridin-4-yl]-(1-ethyl-propyl)-amine; and [2-(4-chloro-2,6-dimethyl-phenoxy)-3,6-dimethyl-pyridin-4-yl]-(1-ethyl-propyl)-amine or pharmaceutically acceptable salt of one of the above compounds.

A pharmaceutical composition for the treatment of Claim 13 (Twice Amended). (a) a disorder or condition the treatment of which can be effected or facilitated by antagonizing CRF or (b) a disorder or condition selected from inflammatory disorders, pain, asthma, psoriasis and allergies; generalized anxiety disorder; panic; phobias; obsessive-compulsive disorder; post-traumatic stress disorder; sleep disorders induced by stress; pain perception; mood disorders, mood disorders associated with premenstrual syndrome, and postpartum depression; dysthemia; bipolar disorders; cyclothymia; chronic fatigue syndrome; stress-induced headache; cancer; irritable bowel syndrome, Crohn's disease; spastic colon; post operative ileus; ulcer; diarrhea; stress-induced fever; human immunodeficiency virus infections; neurodegenerative diseases; gastrointestinal diseases; eating disorder; hemorrhagic stress; chemical dependencies or addictions; drug or alcohol withdrawal symptoms; stress-induced psychotic episodes; euthyroid sick syndrome; syndrome of inappropriate antidiuretic hormone; obesity; infertility; head trauma; spinal cord trauma; ischemic neuronal damage; excitotoxic neuronal damage; stroke; immune dysfunctions; muscular spasms; urinary incontinence; senile dementia of the Alzheimer's

type; multi infarct dementia; amyotrophic lateral sclerosis; hypertension; tachycardia; congestive heart failure; osteoporosis; premature birth; hypoglycemia, and Syndrome X in a mammal or bird, comprising an amount of a compound according to claim 1 that is effective in the treatment of such disorder or condition, and a pharmaceutically acceptable carrier.

Bent

Claim 14 (Twice Amended). A pharmaceutical composition according to claim 13 for the treatment of a disorder selected from inflammatory disorders; pain, asthma, psoriasis and allergies; generalized anxiety disorder; panic; phobias; obsessive compulsive disorder; post-traumatic stress disorder; sleep disorders induced by stress; pain perception; mood disorders; dysthemia; bipolar disorders; cyclothymia; fatigue syndrome; stress induced headache; cancer; irritable bowel syndrome, Crohn's disease; spastic colon; human immunodeficiency virus (HIV) infections; neurodegenerative diseases; gastrointestinal diseases; eating disorders; chemical dependencies and addictions; obesity; infertility; head traumas; spinal cord trauma; ischemic neuronal damage; excitotoxic neuronal damage; epilepsy; stroke; immune dysfunctions; muscular spasms; urinary incontinence; senile dementia of the Alzheimer's type; multi infarct dementia; amyotrophic lateral sclerosis; and hypoglycemia in a mammal.

B3

Claim 29 (Amended). A compound as claimed in claim 1 wherein R₂₄ and R₂₅ are selected from-CF₃, -CHF₂, CF₂CF₃, and CH₂CF₃,

By

Claim 32 (Amended). A pharmaceutical composition as claimed in claim 14 for treatment of depression, selected from the group consisting of major depression, single episode depression, recurrent depression, and child abuse induced depression.

B

Claim 36 (Amended). A pharmaceutical composition as claimed in claim 14 for treatment of stress induced immune dysfunctions selected from the group consisting of porcine stress syndrome, bovine shipping fever, equine paroxysmal fibrillation, confinement dysfunction in chicken, sheering stress in sheep, and human animal interaction stress in dogs.

B

Claim 39 (Amended). A pharmaceutical composition as claimed in claim 44 for treatment of cerebral ischemia selected from cerebral hippocampal ischemia.

Claim 40 (Amended). A pharmaceutical composition as claimed in claim 14 for treatment of including social phobia, agoraphobia or specific phobias.

- Claim 41. The pharmaceutical composition according to claim 13 wherein the pain perception is fibromyalgia.
- Claim 42. The pharmaceutical composition according to claim 13 wherein the ischemic neuronal damage is cerebral ischemia.
- Claim 43. The pharmaceutical composition according to claim 14 wherein mood disorder is depression or postpartum depression.
- Claim 44. The pharmaceutical composition according to claim 14 wherein the ischemic neuronal damage is cerebral ischemia.
- Claim 45. The pharmaceutical composition according to claim 14 wherein the mammal is a human.

