ISSN: 2770-5706

Check for updates

arthquake and ngineering esilience

Editor-in-Chief: Lili Xie

A simplified FEM of an innovative CFST truss lightweight bridge for nonlinear seismic analysis

27705706, 2023. 4, Downloaded from https://onlinelibtrary.wiley.com/doi/10.1002/eer2.20 by Purdue University Libraries, Wiley Online Library on [270172024]. See the Terms and Conditions (https://onlinelibtrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensets.

Earthquake Engineering and Resilience

EDITOR-IN-CHIEF

LILI XIE

Institute of Engineering Mechanics, China Earthquake Administration, Harbin, China

ASSOCIATE EDITORS

CHUHAN ZHANG

Tsinghua University, Beijing, China

XILIN LU

Tongji University, Shanghai, China

MARIA I. TODOROVSKA

University of Southern California, Los Angeles, USA

EXECUTIVE EDITOR

QINGHUA HAN

Tianjin University, Tianjin, China

ADVISORY EDITORIAL BOARD

SUBY BHATTACHARYA

University of Surrey, Surrey, UK

LUIS A. DALGUER

3Q-Lab, Adlikon bei Regensdorf, Switzerland

YOU DONG

The Hong Kong Polytechnic University, Hong Kong, China

SHIRLEY J. DYKE

Purdue University, West Lafayette, USA

CHUAN HE

Southwest Jiaotong University, Chengdu, China

AHSAN KAREEM

University of Notre Dame, South Bend, USA

RUBEN BOROSCHEK

University of Chile, Santiago de Chile, Chile

VINH DAO

University of Queensland, Brisbane, Australia

XIULI DU

Beijing University of Technology, Beijing, China

YUFENG GAO

Hohai University, Nanjing, China

SHIMIN HUANG

China Academy of Building Research, Beijing, China

AIQUN LI

Beijing University of Civil Engineering and Architecture, Beijing, China

ALBERTO CARPINTERI

Politecnico di Torino, Città di Torino, Italy

RAJESH DHAKAL

University of Canterbury, Christchurch, New Zealand

WENYANG DUAN

Harbin Engineering University, Harbin, China

ISHWER D. GUPTA

Central Water and Power Research Station, Pune, India

ZEZHOU JI

CCCC First Harbor Consultants Co., Ltd., Tianjin, China

ZHONG-XIAN LI

Tianjin University, Tianjin, China

JIJIAN LIAN

Tianjin University of Technology, Tianjin, China

PETRI PELLIKKA

University of Helsinki, Helsinki, Finland

I E I I I E E E I I I E

WEI SONG

University of Alabama, Tuscaloosa, USA

STEFANO UTILI

Newcastle University, Newcastle, UK

JOHN WILLIAMS

Queen Mary University of London, London, UK

DIMITRIOS LIGNOS

École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

JULIO A. RAMIREZ

Purdue University, West Lafayette, USA

BAITAO SUN

Institute of Engineering Mechanics, China Earthquake Administration, Harbin, China

JINTING WANG

Tsinghua University, Beijing, China

GONGYI XU

China Railway Major Bridge Reconnaissance & Design Institute Co., Ltd., Wuhan, China

TAKUYA NAGAE

Nagoya University, Nagoya, Japan

FRANCISCO J. SÁNCHEZ-SESMA

National Autonomous University of Mexico, Mexico City, Mexico

MIHAILO D. TRIFUNAC

University of Southern California, Los Angeles, USA

XIAOLING WANG

Tianjin University, Tianjin, China

JIANXING YU

Tianjin University, Tianjin, China

GANG ZHENG

Tianjin University, Tianjin, China

CHANGHAI ZHAI

Harbin Institute of Technology, Harbin, China

Disclaimer

The Publisher, Tianjin University, and Editors cannot be held responsible for errors or any consequences arising from the use of information contained in this journal; the views and opinions expressed do not necessarily reflect those of the Publisher, Tianjin University, and Editors, neither does the publication of advertisements constitute any endorsement by the Publisher, Tianjin University, and Editors of the products advertised.

Copyright and Photocopying

© 2023 The Authors. Earthquake Engineering and Resilience published by Tianjin University and John Wiley & Sons Australia, Ltd. All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means without the prior permission in writing from the copyright holder. Authorization to photocopy items for internal and personal use is granted by the copyright holder for libraries and other users registered with their local Reproduction Rights Organisation (RRO), e.g. Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923, USA (www.copyright.com), provided the appropriate fee is paid directly to the RRO. This consent does not extend to other kinds of copying such as copying for general distribution, for advertising or promotional purposes, for creating new collective works or for resale. Special requests should be addressed to: permissionsuk@wiley.com

Aims and Scope

Earthquake Engineering and Resilience is a peer-reviewed international hybrid journal aiming to publish original contributions on a wide range of topics of earthquake engineering and related fields pertaining to reduction of the impact of earthquakes and other natural and man-made disasters.

Research areas covered by EER include but are not limited to:

- 1) Natures of strong ground motions;
- 2) Earthquake hazards and risks;
- 3) Structural response and analysis;
- 4) Seismic specification and design method;
- 5) Earthquake damage and loss;
- 6) Earthquake resilience of cities.

Examples of topics are as follows:

- Strong ground motion observation and simulation
- Nature of strong ground motion and seismic hazard
- · Experimental methods and technology for dynamic testing
- · Numerical modeling and simulations
- Damage evolution and failure mechanisms of engineering structures
- Structural health monitoring, damage detection and remaining life prognosis
- · Seismic design methods and building design codes
- Seismic risk assessment of structures and infrastructure systems
- · Urban and regional resilience assessment
- · Earthquake early warning and emergency response

Address for Editorial Correspondence

Earthquake Engineering and Resilience Editorial Office Email: eer@tju.edu.cn
Tianjin University

For submission instructions and all the latest information, visit https://onlinelibrary.wiley.com/journal/27705706

For online submission, visit https://mc.manuscriptcentral.com/eere

Earthquake Engineering and Resilience

Volume 2, Issue 4, 2023

Contents

Research Articles

Implementation of offline iterative hybrid simulation based on neural networks Fukang Gao, Zhenyun Tang, and Xiuli Du	383
An efficient and accurate fragility approach for seismic performance assessment of structures <i>Yutao Pang, Kai Wei, Jianguo Wang, and Shengbin Zhang</i>	403
Scaling method for small sized model testing of steel-reinforced concrete structures Xu Yang, Wensheng Lu, Xiangxiang Ren, and Bin Xue	418
Nonlinear dynamic response analysis of a hybrid concrete-filled steel tubular truss lightweight brid under strong earthquakes Yufan Huang, Lingjie Chen, Qingxiong Wu, Huihui Yuan, Baochun Chen and Shozo Nakamura	dge 436
On frequency-domain estimation of increase in design yield force levels of SDOF structures due to multiplicity of earthquake events *Arshil A. Naqvi, Vinay K. Gupta, and Sandip Das*	o <i>458</i>
CNN-based damage detection of buildings from wave propagation between two adjacent floors <i>Aijia Zhang, Xin Wang, and Ji Dang</i>	479
Analytical plasticity-based model for soil—structure interaction of lumped system on heterogeneous soil media Ashish Bahuguna and Mohd Firoj	ıs 493
Perspective	
Seismic excitation model in probabilistic risk assessment of civil infrastructure Mohammad R. Falamarz-Sheikhabadi	515