Name:	
-------	--

St George Girls High School

Trial Higher School Certificate Examination

2014

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- · Write using blue or black pen.
- · Write your student number on each booklet.
- Board-approved calculators may be used.
- · A table of standard integrals is provided at the back of this paper.
- The mark allocated for each question is listed at the side of the question.
- Marks may be deducted for careless or poorly presented work.

Total Marks – 100

Section I - Pages 2 - 6 10 marks

- Attempt Questions 1 10.
- Allow about 15 minutes for this section.
- Answer on the sheet provided.

Section II - Pages 7 - 14 90 marks

- Attempt Questions 11 16.
- Allow about 2 hours 45 minutes for this
- Begin each question in a new booklet.
- Show all necessary working Questions 11 - 16.
- Templates for Q13(a) to be detached and placed in Q13 answer booklet.

Students are advised that this is a Trial Examination only and does not necessarily reflect the content or format of the Higher School Certificate Examination.

Section I

10 marks

Marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

- 1. Which expression is equal to $\int \cos^3 x \ dx$
 - $(A) \ \frac{1}{4}\sin^4 x + C$
 - (B) $\sin x \frac{\sin^3 x}{3} + C$
 - (C) $\sin x + \frac{\cos^3 x}{3} + C$
 - (D) $\cos x \frac{\sin^3 x}{3} + C$
- 2. The eccentricity of the hyperbola with the equation $\frac{x^2}{3} \frac{y^2}{4} = 1$ is:
 - (A) $1 + \frac{2}{\sqrt{3}}$
 - (B) $\sqrt{\frac{7}{3}}$
 - (C) $\frac{\sqrt{21}}{3}$
 - (D) $\frac{5}{3}$
- 3. Let the point R represent the complex number z on an Argand diagram. Which of the following describes the locus of R specified by $2|z| = z + \overline{z} + 4$.
 - (A) Circle with centre (0,0) and radius 4
 - (B) Parabola with vertex (-1, 0), axis y = 0
 - (C) Parabola with vertex (-1, 0), axis x = 0
 - (D) Perpendicular bisector of (0,0) and (0,4)

- The polynomial $P(x) = x^4 + ax^3 bx^2 12x$ has a double root at x = -2. 4, What are the values of α and b.
 - (A) a = -1 and b = -8
 - (B) a = 8 and b = 1
 - (C) a = 2 and b = 4
 - (D) a = 1 and b = 8
- The locus of z if $arg(z-2) arg(z+2) = \frac{\pi}{4}$ is best shown as: 5.

(A)

(C)

(D)

6. The derivative of the curve $x^3 + 9x^2 - y^2 + 27x - 4y + 23 = 0$ is:

$$(A) \quad \frac{dy}{dx} = \frac{x^2 + 6x + 9}{2y}$$

(B)
$$\frac{dy}{dx} = \frac{3x^2 + 18x + 27}{2y + 4}$$

(C)
$$\frac{dy}{dx} = \frac{3x^2 + 18x + 27}{-(2y+)4}$$

(D)
$$\frac{dy}{dx} = \frac{x^2 + 6x + 9}{-2y}$$

7. The diagram below shows the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ where a > b > 0. The points $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \alpha, b \tan \alpha)$ lie on the hyperbola and the chord PQ subtends a right angle at the origin.

Use the parametric representation of the hyperbola to determine which of the following expressions is correct?

(A)
$$\sin \theta \sin \alpha = -\frac{a^2}{b^2}$$

(B)
$$\sin \theta \sin \alpha = \frac{a^2}{b^2}$$

(C)
$$\tan \theta \tan \alpha = -\frac{a^2}{b^2}$$

(D)
$$\tan \theta \tan \alpha = \frac{a^2}{b^2}$$

8.

In the diagram above the circle $(x-2)^2 + y^2 = 1$ is shown. The region bounded by the circle is rotated about the line x = 3. Using the method of cylindrical shells the volume of the solid of revolution so formed is given by:

(A)
$$V = 4\pi \int_{1}^{3} (x-3)\sqrt{1-(x-2)^2} dx$$

(B)
$$V = 4\pi \int_{2}^{3} (3-x)\sqrt{1-(x-2)^2} dx$$

(C)
$$V = 2\pi \int_{1}^{3} (3-x)\sqrt{1-(x-2)^2} dx$$

(D)
$$V = 2\pi \int_{1}^{3} (3-x)\sqrt{1-(x-2)^2} \, dx$$

- 9. Let P(x) be a polynomial of degree n > 0 such that $P(x) = (x \alpha)^p \cdot Q(x)$, where $p \ge 2$ and α is a real number. Q(x) is a polynomial with real coefficients of degree q > 0. Which of the following is definitely an incorrect statement?
 - (A) P(x) changes sign around the root $x = \alpha$
 - (B) $n \le p + q$
 - (C) Roots of Q(x) are conjugates of one another
 - (D) $P'(\alpha) > 0$

10. The diagram shows the graph of the function y = f(x).

The diagram that shows the graph of the function $y = [f(x)]^2$ is:

Section II

90 marks

Attempt Questions 11 - 16

Allow about 2 hours 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 – 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet

Marks

- a) Given $z = \frac{1-i}{\sqrt{3}+i}$.
 - (i) Find the modulus |z| and argument arg(z) of z.

2

(ii) Find the smallest positive integer n such that z^n is REAL.

2

b) Find the complex square roots of $1 - 2\sqrt{2}i$ giving your answers in the form x + iy where x and y are real.

3

c) Find the three different values of z for which $z^3 = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$.

3

d) (i) On an Argand Diagram, draw and shade the region R given by $|z-3-3i| \le 3$.

1

(ii) P is a point in the region R, representing the complex number z.

What is the maximum value of |z|?

2

(iii) The tangent to the curve at P cuts the x-axis at the point T. By using the nature of ΔOPT , or otherwise, find the exact area of ΔOPT .

2

Question 12 (15 marks) Use a SEPARATE writing booklet

Marks

a) Using the substitution
$$t = \tan \frac{x}{2}$$
, evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{5 + 3\cos x}$.

4

[leave your answer in EXACT form]

b) Find
$$\int \sin^4 x \cos^3 x \ dx$$
.

3

c) (i) Show that
$$(1+t^2)^{n-1}+t^2(1+t^2)^{n-1}=(1+t^2)^n$$
.

1

(ii) Let
$$I_n = \int_0^x (1+t^2)^n dt$$
 for n a positive integer.

4

Use integration by parts, and part (i) above, to show that

$$I_n = \frac{1}{2n+1} x(1+x^2)^n + \frac{2n}{2n+1} I_{n-1}.$$

d) Make a suitable substitution to find the exact value of
$$\int_0^{\frac{1}{2}} \frac{dx}{\sqrt{x} \cdot \sqrt{1-x}}$$
.

Question 13 (15 marks) Use a SEPARATE writing booklet

Marks

a) The diagram below shows the graph of a function f(x).

Using the separate templates of the graph of y = f(x) provided at the end of this paper, sketch the graphs of:

(i)
$$y = [f(x)]^2$$
.

(ii)
$$y = f'(x)$$
.

(iii)
$$y^2 = f(x)$$
.

Question 13 (cont'd)

Marks

2

- b) (i) Show that the equation of the normal to the hyperbola $xy = c^2$ at $P\left(cp, \frac{c}{p}\right)$ is $p^3x py = c(p^4 1)$.
 - (ii) The normal at $P\left(cp,\frac{c}{p}\right)$ meets the hyperbola $xy=c^2$ again at $Q\left(cq,\frac{c}{q}\right)$.

Prove that $p^3q = -1$.

(iii) Hence, show that if M(x,y) is the midpoint of PQ, then $\frac{x}{y} = -\frac{1}{p^2}.$

c) Sketch on an Argand Diagram (at least $\frac{1}{3}$ of a page) the locus of the complex number z where $\arg(z+1) = \arg(z-1+i)$.

Question 14 (15 marks) Use a SEPARATE writing booklet

Marks

4

a) The shaded region shown below represents the area bounded by the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and the line x = ae.

1 and the line x = ae. $y = \frac{bx}{a}$ (ae, 0)

Find the volume generated by rotating this area about the y-axis through 360° (answer in terms of a, b).

b) When a polynomial P(x) is divided by (x-3) the remainder is -2. When P(x) is divided by (x+2) the remainder is 8. Find the remainder when P(x) is divided by (x-3)(x+2).

3

Question 14 (cont'd)

Marks

c)

In the diagram above, AB = AD = AX and XP = DC.

(i) Prove that $\angle DBX = 90^{\circ}$.

2

(ii) Hence, or otherwise, prove that $\angle APB = \angle ABP$.

_

d) The three non-zero roots of the equation $x^3-3px+q=0$ are α , β , γ . 4

Find the <u>monic</u> equation whose roots are $\frac{\beta\gamma}{\alpha}$, $\frac{\alpha\gamma}{\beta}$, $\frac{\alpha\beta}{\gamma}$ expressing its coefficients in terms of p and q.

Question 15 (15 marks) Use a SEPARATE writing booklet

Marks

3

3

a) Consider a particle falling through a fluid as shown in the diagram below:

The resistive frictional force on the particle is proportional to its velocity. That is, the resistance force may be written as R = -mkv where k is a constant and the particles velocity is $v(ms^{-1})$.

- (i) If the particle falls vertically from rest, show that the terminal velocity v_T is given by $v_T = \frac{g}{k}$, where $g(ms^{-2})$ is the acceleration due to gravity.
- (ii) If the particle is projected <u>upwards</u> into the resistive fluid with speed v_T , show that after t seconds.
 - (a) its speed $v(ms^{-1})$ is given by $v = v_T(2e^{-kt} 1)$.
 - (β) its height, x(m) is given by $x = \frac{v_T}{k} (2 kt 2e^{-kt})$.
- (iii) Hence, show that the greatest height that the particle can reach is $x_{\max} = \frac{v_T}{k} (1 \ln 2) \, .$
- b) The equation $(\sin^2 \theta) z^2 (\sin 2 \theta) z + 1 = 0$, where $0 < \theta < \frac{\pi}{2}$, has roots α and β .
 - (i) Show that the roots of the equation are $(\cot \theta + i)$ and $(\cot \theta i)$.
 - (ii) Hence, show that $\alpha^n + \beta^n = \frac{2\cos n \theta}{\sin^n \theta}$.

Question 16 (15 marks) Use a SEPARATE writing booklet

Marks

3

a) A solid in the shape of a wedge has its base in half an ellipse, with major axis 2a and minor axis 2b. Cross-sections taken perpendicular to the base are all right angled triangles and the angle between the two flat surfaces of the wedge is θ° .

- (i) Show that the area of the triangular face of the cross-section is given by $\frac{a^2}{2b^2}(b^2-y^2)\tan\theta$.
- (ii) Hence, or otherwise, find the volume of the wedge giving your answer in terms of a, b and $\tan \theta$.
- b) (i) Prove that

$$(\alpha) \frac{{}^{1}C_{0}}{x} - \frac{{}^{1}C_{1}}{x+1} = \frac{1!}{x(x+1)}.$$

$$(\beta) \quad \frac{{}^{2}C_{0}}{x} - \frac{{}^{2}C_{1}}{x+1} + \frac{{}^{2}C_{2}}{x+2} = \frac{2!}{x(x+1)(x+2)}.$$

(ii) Given
$$T(k,x) = \frac{k!}{x(x+1)(x+2)...(x+k)}$$
, prove that
$$T(k,x) - T(k,x+1) = T(k+1,x).$$

(iii) Hence prove, using Mathematical Induction or otherwise, that for $n \ge 1$: 4 $\frac{{}^{n}C_{0}}{x} - \frac{{}^{n}C_{1}}{x+1} + \frac{{}^{n}C_{2}}{x+2} - \frac{{}^{n}C_{3}}{x+3} + ... + (-1)^{n} \frac{{}^{n}C_{n}}{x+n} = \frac{n!}{x(x+1)(x+2)(x+3)...(x+n)} .$

[You may use the result: $^{k+1}C_r = {}^kC_r + {}^kC_{r-1}$]

[Note:
$$^{k+1}C_0 = {}^kC_0$$
 and $^{k+1}C_{k+1} = {}^kC_k$]

End of Paper

Student Number:	 Class Teacher:	

Section I

Year 12 Trial HSC Examination 2014

Mathematics Extension 2

Multiple-choice Answer Sheet - Questions 1 - 10

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample

2 + 4 =

(A) 2

(B) 6

(C) 8

(D) 9

 $A \bigcirc$

В

 $C \bigcirc$

D 🔾

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

A

c 🔾

 $D \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows:

•			/00	orrect				
	A	(B)	<u> </u>	c 🔾	D 🔾			-
1.	A O	В	0	С	0	D	0	,
2.	A 🔾	В	0	С	0	D	0	
3.	$A \bigcirc$	В	\circ	С	\circ	D	\circ	
4.	$A \bigcirc$	В	0	С	0	D	0	
5.	$A \bigcirc$	В	0	С	\circ	D	0	
6.	$A \bigcirc$	В	0	С	\circ	D	0	
7.	$A \bigcirc$	В	0	С	0	D	\circ	
8.	$A \bigcirc$	В	0	С	0	D	0	
9.	$A \bigcirc$	В	0	С	0	D	0	
10.	A	В	0	С	0	D	0	

Staff Use Only

Section I	/10
Section II	/90
Question 11	/15
Question 12	/15
Question 13	/15
Question 14	/15
Question 15	/15
Question 16	/15
Total	/100

		·		
	E _{XT} 2	SOLUTSONS	TRIAL 2	2014
•				
	I		•	
QI	$\int \cos x \left(1 - \sin^2 x\right)$) dx		
	$= \int [\cos \alpha - \cos \alpha] dx$		<u>(B</u>)
	$\frac{\sin \alpha - \frac{1}{3} \sin^3 \alpha}{3}$	+_C		
Q٤	$e^2 = 1 + b^2$			
	e = 1 + 4		<u>B</u>	· · · · · · · · · · · · · · · · · · ·
	$\frac{7}{2}\sqrt{\frac{7}{3}}$		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>
**		-		······
Q 3	$2\sqrt{x^2+y^2} = 2x+$	- 4		
	$x^2 + y^2 = x^2 +$		<u>(B)</u>	
	y2 = 4(x			
				TO THE STATE OF TH
Q4	$P'(x) = 4x^3 + 3a$	c ² 2bx - 12		
- 11 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	P'(2) = -32 + 12a	+46-12		
	: 12a + 4b =	44	<u> </u>	term-recent
	3a + b =	11(I)	,	
····	P(-2) = 16 - 8a -	46 + 24		
THE CONTROL OF THE CO	8a + 4b =	40		
	2a + b =	10(II)		
	(I) - (II) a=1	h='e		

Q 5		(C)
	,	
Q6 3x2+18x	= - Ly dy + 27-4 dy = 0	
	doc doc.	
(2y-	$+4) dy = 3x^{2} + 18x + 27$	(B)
	$4 + 4$) $\frac{dy}{dx} = 3x^{2} + 18x + 27$ $\frac{dy}{dy} = 3x^{2} + 18x + 27$ $\frac{dy}{dx} = 2y + 4$	
	July - 2y+4	
Q7 m = b+c	and q m = b tuno	
'as	eed a see 0	
b ⇒ m,×m,≥	<u>1</u>	
	andtano = -1	
a ² s	Seco Seco	
<u>b</u> 2	= - Secol seco	
	tuna tuno	(Â)
$\frac{-b^2}{\overline{a^2}}$	<u>-</u>	·····
	Sin & Sin O Cosa cos O	
1. }		
$\frac{-\frac{b}{a}}{a^2}$	= 1 Siña O	
		·
	2 ^	
Q8 SV = (3-	$(3-x)$ $(3-x)$ $\sqrt{1-(x-2)^2}$ dx	(<u>D</u>)
.'. V=	$4\pi / (3-x) \sqrt{1-(x-2)^2} dx$	
		<u> </u>
Q9	· į	<u> </u>
Q 10.		- (b)·

HI Y

		- 1 -	
Section 2 Question Number	r: `		
	z = 1-i	or Z = 1-0	x /3 = i
<u> </u>	1/3+11	or $Z = 1 - c$ $\sqrt{3} + c$	√3 - c
	$=\sqrt{1^2+(-1)^2}$	$= (\sqrt{3} - 1)$) - ¿ (√3 +1)
defected to the second	V(3)+1		4
	= $\sqrt{2}$	= \((\int_3 - 1)) + (/3+1)]
	2 /	4-	42 4
	-	= 1 /4-	2/3 + 4 + 2/3
	,	$\frac{4}{2}$	
		2	
			$7 = (\sqrt{3} - 1) = (\sqrt{3} + 1)$
and_	(2) = Am [(1=i)]		$\frac{2 \times (\sqrt{3}-1) - (\sqrt{3}+1)}{(2m)^{4}}$
arg	$(z) = \arg \left[\frac{(1-i)}{(\sqrt{3}+i)} \right]$		
(In)	= arg (1-i) - a	100 (5 ± i)	0) 4 ×
个	VI	· ·	
tanp=1	(1/2,1)	$\frac{\operatorname{trg}(z) = \left(-\frac{\pi}{4}\right) - \left(\frac{\pi}{6}\right)}{-5\pi}$	$tan0 = -(\sqrt{3}+1)$
5 6	187 → (Re)	= -5x	(/3-1)
tan d = -1	(1,-1)		$=-(2+\sqrt{3})$
X=-17 4			* = - 57
<u></u>			12
<i>(ii)</i> =	$= \sqrt{2} cis \left(-\frac{5\pi}{12}\right)$		
(10) 2	2 13 12		
thou -	$z^n = \left(\frac{\sqrt{2}}{2}\right)^n$ cis $\left(-\frac{5\pi}{2}\right)^n$	π) ⁿ	
THE T	2	2/	De Moivrés
	= (\(\sigma\)^\\ \(\in\)\\.	-5 TM) + i sin (-5 7 M)	
	(\(\frac{\pi}{\pi}\)) (\(\cos\))	12 / 12	1
	$=\left(\frac{\sqrt{2}}{2}\right)^{\gamma}\left(\frac{1}{2}\right)^{\gamma}$	$\left(\frac{5\pi n}{12}\right)$ - isin $\left(\frac{5\pi n}{12}\right)$	
	1 W / V 1	· 18/ /	

```
Require sin (5nT) = 0 if zn is REAL
         \frac{1}{12} = 0, \pi, 2\pi
             5n = 0, 1, 2... Rag n to be
    When n=12 z^{12}=(2^{-\frac{1}{2}})^{12}.(\cos(5\pi)-i\sin(5\pi))
(b) Let (x+iy)^2 = 1-i.2\sqrt{2}
     then x^2-y^2+i.2xy=1-i.2\sqrt{2}
    So equating Real and Imaginary parts
            \frac{\chi^{2} \cdot y^{2} = 1 \dots (I)}{2xy = -2\sqrt{2}} \Longrightarrow \frac{\chi^{2} - 2}{x^{2}}
        22 y2= 1 ... (I)
               y = -\sqrt{2}
x
       Since oc is REAL oc = h
       Square root (12-i) and (-12+i)
(c) Z is cube not of Jz + c.Jz = w.
    |\omega| = |\omega| \left( \frac{\pi}{4} + 2k\pi \right) + i \sin \left( \frac{\pi}{4} + 2k\pi \right)
    ary (:) = II
```

Let z = r (ws.0 + i sin 0). z = w
2
Then z3 = (6030+isin30) by de Moins
Equating Ron q imaginary parts
$\omega_{S}(30) = \omega_{S}(\pi + 2\kappa\pi) \qquad \sin 30 = \sin(\pi + 2\kappa\pi)$
$\frac{30 = \pi + 2k\pi}{4}$ $\frac{0 = \pi \left(1 + 8k\right)}{12}$
When $k=0$ $z_1=cis\left(\frac{\pi}{12}\right)=cos\left(\frac{\pi}{12}\right)+isin\left(\frac{\pi}{12}\right)$
$K=1$, $Z_2 = cis\left(\frac{3\pi}{4}\right) = -cos\left(\frac{\pi}{4}\right) + csin\left(\frac{\pi}{4}\right)$
$K=2 \qquad = cis \left(\frac{17\pi}{12}\right) = -\omega s \left(\frac{5\pi}{12}\right) - i sin \left(\frac{5\pi}{12}\right)$
(t/v)
a)0) P
z - (3+3i) < 3
$ z-(3+3i) \leq 3$ (incle centre (3,3)
»Re radius $\sqrt{3}$
O 3 T
(ii) Max. value 2 is (13+3i1+ radius of circle)
$= \sqrt{3^2 + 3^2} + \sqrt{3}$
$= 3\sqrt{2} + \sqrt{3}$
(iii) arg (z) = arg (3+3i) -
= <u>T</u>
then DOPT is isosceles right angle a
gries OP = OT
: area 1 = { (OP. OT)
$= \frac{1}{2} \left(3\sqrt{2} + \sqrt{3}\right)^2$

	-1-
Start here for Question Number: 12	
(a) Let t = tan 2	On Substitution
then $x = 2 + an^{-1}t$	$\int \frac{1+t^2}{1+t^2} dt$
$\frac{dx = \frac{2}{1+t^2}}{dt}$	$\int_{0}^{1} \frac{2}{1+t^{2}} dt$ $\int_{0}^{1} \frac{2}{1+t^{2}} dt$ $\int_{1+t^{2}}^{1+t^{2}} dt$
ac ·	T C
When a = 0 , t=0	$= \int_{0}^{1} \lambda dt$ $= \int_{0}^{1} \lambda dt$ $= \int_{0}^{1} \lambda dt$
x= T (= 1	$5(1+t^2) + 3(1-t^2)$
2 ,	- (' 2 dt
wo x = 1-€2	$\frac{2}{\sqrt{8+2t^2}}$
1+62	(' elt
	$= \int_0^1 \frac{dt}{4+t^2}$
	$= \frac{1}{2} \left[tan^{-1} \left(\frac{t}{2} \right) \right]^{\frac{1}{2}}$
	$= \frac{1}{2} + \tan^{-1}\left(\frac{1}{2}\right)$
(b) / sin'x cos'x c	$lx = \int \sin^4 x \cdot (\cos^3 x) \cdot \cos x \cdot \csc$
	= / sin 3c (1 - sin 3c). cos x dx
	, , , , , , , , , , , , , , , , , , ,
`	$= \int \sin^4 x \cdot \cos x \cdot \csc - \int \sin^6 x \cdot \cos x \cdot \frac{1}{2}$
[f (a) [fa) d])
	$= \frac{1}{5} \sin^5 x - \frac{1}{7} \sin^7 x + C$
	5 7
(c)(i) L.H.S. = (
= (1+62) ~
= (R,H,S_

(X)
(ii) Let $\Gamma_n = \int_{-\infty}^{\infty} (1+t^2)^n \frac{d}{dt}(t) \cdot dt$
,0
$= \left[t. \left(1+t^{2} \right)^{n} \right]_{0}^{\infty} - \int_{0}^{\infty} t. \ n. \left(1+t^{2} \right)^{n-1} 2t \ dt$ $= \alpha. \left(1+\alpha^{2} \right)^{n} - 2n \int_{0}^{\infty} t^{2} \left(1+t^{2} \right)^{n-1} dt$
$= \alpha \cdot (1+\alpha^2)^m - 2n^{-n/2} = \frac{\pi^{n-1}}{n} dt$
/0
Using part(i) = $x(1+x^2)^n - 2n \int_0^x \left[(1+t^2)^n - (1+t^2)^{n-1} \right] dt$
, 70
$\underline{\Gamma}_{n} = \alpha (1+\alpha^{2})^{n} - 2n \underline{\Gamma}_{n} + 2n \underline{\Gamma}_{n-1}$
$\frac{\left(1+2n\right)\Gamma_{n}=\left(x\left(1+2n^{2}\right)^{n}+2n\Gamma_{n-1}\right)}{n}$
$\frac{1}{1+2n} = \frac{x \cdot (1+x^2)^n}{(1+2n)} + \frac{2n}{n-1}$
(1+2n) (1+2n)
(d) Let u2 = 1-x
then $x = 1 - u^2$, Substitution gives and $2u$, $du = -dx$ $\sqrt{2} - 2u$, du
and 2n. du = - dx . 1 - 2n. du
1 NI-u2. u
When $\alpha=0$ $\alpha=1$ $=2$ $\int_{-\infty}^{1} \frac{d\alpha}{\sqrt{1-\alpha^2}}$
4- 2 4- 7
$2>0, u>0 = 2 \left[Sin^{-1} u \right]_{0}^{1}$
$= 2 \left[\sin 1 - \sin \frac{1}{\sqrt{2}} \right]$
$= 2 \left[\frac{\pi}{\lambda} - \frac{\pi}{4} \right]$
= <u>T</u>
2

QUESTION 13.

(2,-1)

QUESTION

13.

(a) (iii) y2 = f(x)

(template)

Substitute (I) in	to II then $y = x$.
	<u> </u>
NEOW	$\frac{p^{3}q = -1}{pq^{2} - \frac{1}{p}} \Rightarrow \frac{x = pq}{g}$
	$\dot{z} = x = -1$
	y P2
· (Liv	
(c)	
(121)	
	→ (Re)
	(13-1)
!	
arg (z - (-1))	= ary (z - (1-i))
,	
	·
• •	

	So V= 4\pi a^2 b b3
	$\frac{1}{3}$ $\frac{3}{4}$
	4 - h 4
	= 4754
	3a
n.	
	and $P(x) = (x+2) \cdot H(x)^{-1} + 8$
	Now $P(\alpha) = (\alpha-3)(\alpha+2) \cdot B(\alpha) + (\alpha\alpha+b)$
	$-(T) P(3) = 0 + 3\alpha + b = -2$
	3a+b = -2
	(II) $P(-2) = 0 + -2a + b = -8$
	-2a+b=8
	So (I) - (II) gives $Sa = -10$
•	a = -2
	on substitution b = 4
	Remainder is (-2x+4)
	@ G) Opx = Ire on a civile since ox subtends
• :	state to deal of Q = [- 1]
	right angle at P [angle in a semi-servel] Since AD = AX and Ox is drameter A is center of circle and radius of circle AD=AB,
7.	sing AD = AX and DX 15 acameter A
	- 15 centre of civile and radius of civile A0=AB
	so b lies on unde DPX
	0x diameter then subtends right angle at
	Ox diameter tren subtends right angle at circumfere, se LOBX = 90°.
	(ii) Now DPBX lie on circle with dianety DX, cente A So AP = AB [radii of circle]
* * *	Cente A
	So AP = AB [radii of ante]

Gives APB is isosceles.
then LAPB = LABP (angles opposite equal
sides are equal)
(d) (I) apy=-9 or (II) -b= px + xx + xp
(d) (I) $d\beta y = -9$ $\alpha \qquad (II) - b = \beta y + dy + d\beta$
$\alpha \alpha^{-} \qquad \qquad = (AP) + (\alpha P)$
$\frac{\alpha \beta}{\delta} = -q$ $\alpha $
Nov [BY+ x/+x/] = Bj +2xpj +2apj
$\frac{\alpha \gamma}{\beta} = -\frac{9}{9}$ $+ \alpha \gamma^{2} + \lambda \alpha \beta \gamma + \alpha^{2}\beta^{2}$ $- \alpha^{2}\beta^{2} + \alpha^{2}\beta^{2} + \alpha^{2}\beta^{2}$
- PJ + xJ + x P + 24PJ (x, Pd)
Let $X = -\frac{q}{\sqrt{2}}$ $= (-3p)^2 - 2q \cdot 0$
$\alpha = -\frac{q}{x}$
** * * * * * * * * * * * * * * * * * *
$d = \frac{1}{\sqrt{2}} \sqrt{\frac{q}{x}}$ Gives $-b = \frac{q}{p}$ $+ xp+cy+py=-3$
γ × γγ=-γ
On Substitution b = 9pt
$\left[\frac{1}{2} \left(\sqrt{\frac{9}{x}} \right) \right]^{2} - 3p \left[\frac{1}{2} \sqrt{\frac{9}{x}} \right] + q = 0$ $\left[\frac{1}{2} \left(\sqrt{\frac{9}{x}} \right) \right]^{2} - 3p \left[\frac{1}{2} \sqrt{\frac{9}{x}} \right] + q = 0$ $\left[\frac{1}{2} \left(\sqrt{\frac{9}{x}} \right) \right]^{2} - 3p \left[\frac{1}{2} \sqrt{\frac{9}{x}} \right] + q = 0$
$\frac{1}{2}\left(\frac{-q}{x}\right)^{\frac{1}{2}} - 3\rho\left(\frac{1}{2}\left(\frac{-q}{x}\right)^{\frac{1}{2}}\right) = -q$
= (X+B+X)-L(XB+x)+bx
>quare both stors = 0 = -2 = (-3p)
$\left(-\frac{9}{x}\right)^{2} - 6\rho\left(-\frac{9}{x}\right) + 9\rho^{2}\left(-\frac{9}{x}\right) = 9^{2}$
$-q^{3}-6pq^{2}X-9p^{2}qX^{2}-q^{2}X^{3} + -d = \int_{X}^{3} X \cdot \frac{dX}{dx} \cdot \frac{dX}{dx}$
$= 2 q^{2} X^{3} + 9 p^{4} X + 6 p q^{2} X + 9^{3} = 0$ $= -q$
$\frac{3}{50} \times \frac{3}{4} + \frac{9}{9} \times \frac{7}{4} + \frac{6}{9} \times \frac{7}{4} + \frac{9}{9} \times \frac{7}{4} + \frac{1}{9} \times \frac{7}{4} + 1$
So $X + 1pX + 6pX + q = 0$ Then $x^2 + bx^2 + cx + d = 0$
9 => x ² + 9 p ² x ² + 6 px + 4 = 0
9
4 ,

Start here for

Question Number:

(A) (C)		t t=o	14= m	9 - mkv
•	A=mkv	√ =0		ma-mkv
mg	1,	x= 0		g-Kv
34				
***************************************	Terminal	velocity v	is at	∵ = 0
***************************************		3.37.37		· · · · · · · · · · · · · · · · · · ·
************************	······································			· • • • • • • • • • • • • • • • • • • •
***************************************	······································	let g-k	Υ _τ α	
***************************************			V.Ţ≒	
		• • • • • • • • • • • • • • • • • • • •	•••••	
or do	- = g - kv		••••••	
***************************************	•••••	***************************************	•••••	
بل ه	= <u> </u>	******************	*************	
		*****************	• • • • • • • • • • • • • • • • • • • •	
t	$= -\frac{1}{K} \int \frac{-k}{g-k}$	_ dv	****************	*******
	k / g-k	ு		
€	= - 1 [In (5	1 - Kv) 7 "		
	K L	هُ ل	• • • • • • • • • • • • • • • • • • • •	••••••
***************************************	= -1 []= (0-	kr] - In/a)]		•••••••••••••••••••••••••••••••••••••••
	= - 1 []s (g-	······································	***************************************	***************************************
-le+	In [a-	kυ-)	*************	******************
	= In [9-	9	•••••••	••••••
·····	Kt - a k	· · ······	••••	•••••
	Kt = 9-KVT		•••••••	••••••
******************		 k - \	•••••••	•••••••
Kr	r= g (1-e	· · · · · · · · · · · · · · · · · · ·	•••••	•••••
	•••••	ν μ	•••••	••••••
دیه	t→∞, e	`` →		
	······	• • • • • • • • • • • • • • • • • • • •		
	Kv = 9	• • • • • • • • • • • • • • • • • • • •		***********
•••••	v== 9			
· · · · · · · · · · · · · · · · · · ·	K		****************	
****************		• • • • • • • • • • • • • • • • • • • •	**************	• • • • • • • • • • • • • • • • • • • •

(i) j j	(d)	t. t. o	m 2 = - y	ng-mkr
		X=0		.gKv
J	(=mK ₂ ,	ツ= ファ -		
<u>m</u> g	***************************************		- a - Kar	•••••
•••••	***************************************	dt	-g-K2	
		-dt =	1	
		E = -1	- k	clu-
	······································			1.v ₇
,		-kt =	n (-g-kv)-	In (-g-42)
Sa 4 e	• • • • • • • • • • • • • • • • • • •	=.ln	[- (g+4v) [- (g+4v]	<u></u>
		eKt =	9 + kr	•••••
	.,,,,		9+Kv-	, , , , , , , , , , , , , , , , , , ,
<u> 50</u> g e	+ e k	vr = g	+ K~	
. ,	· · · · · · · · · · · · · · · · · · ·			·
	К.v. =	9e	+ kv, e-K	<u> </u>
•••••	 	- ge ^{kt}	+ v _T , e	– <u>4</u>
* ~= 9				
' K		= v _f ,e	+v-ekt	- 7-
3 - 7			. kt	
	√ =	~~ (2e	7 (- 1)	••••••
(B) het	v. dv	= -(g+kv	-)	
		• • • • • • • • • • • • • • • • • • • •		
	dsc dsc	= - (g + k2	Ţ.,	•••••
	da i	 = - v-		•••••
	dv	g+K~	***************************************	***************************************

$Z = \cot \theta \pm i \sin \theta \qquad (i - \omega)^{2} = \sin^{2} \theta$
$=\cot\theta\pm\iota$
$0 + 0 + \omega = 0$ $0 + i \lambda i + 0 c \omega = 0$ $0 + i \lambda i + 0 c \omega = 0$
So
$= (\cos \theta - i\sin \theta)^{\gamma} + (\cos \theta + i\sin \theta)^{\gamma}$
sin "O
[by de Moirre] = cos no - isig no + cos no + isig no
\$15 7 O
= 2 cos no
si'n" O
······································

Start here for Question Number: (a) (i) Elemental cross-section slice (b) (i) (\checkmark) $\frac{1}{2c} - \frac{1}{2c+1} = \frac{(x+1) - 2}{2c+1}$ $= \frac{(x+1)\cdot(x+2) - 2\cdot x(x+2) + x(x+1)}{x\cdot(x+1)\cdot(x+2)}$ oc (x+1) (x+2) ... (1+ 4)

· For next n = K+1, the L. H-S. is	
$\frac{k_{+1}}{C_{0}} - \frac{k_{+1}}{C_{1}} + \frac{k_{+1}}{C_{2}} + \frac{k_{+1}}{C_{1}} + \frac{k_{+1}}{C$	
2+1 2+1 2+1 2+1 1+1 2	
Now 6 = 6 and 6+1 = 6x	
Miso K+1 Cr = Kr-1	
S. L.H.S. bécomes	
$\frac{\kappa_{(0)} - \left[\kappa_{(1)} + \kappa_{(0)}\right] + \left[\kappa_{(2)} + \kappa_{(1)}\right] \cdot \left[\kappa_{(1)} + \kappa_{(2)}\right] + \left[\kappa_{(2)} + \kappa_{($) ⁽⁻¹ ⁽
\mathcal{X}	X+1
$= \frac{K_{0} - K_{1} + K_{2} + + (-1)^{K} K_{K}}{x + x + 1}$	
$- \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 4/4
	ひょとか
= T(K,x) - T(K,x+1)	
$= T \left(K+1, x_{i} \right) \left(from (i) \right)$	
= (K+1)! as required.	
(2.61+1)(21+2).(2+4+1)	
If true for n=k it is true for n=k+1. So by method of is duetion true for all K.	
·	