Cheap Bandits

Manjesh K Hanawal Dept. of ECE Boston University

Joint work with Venkatesh Saligrama, (BU,USA) Michal Valko (INRIA, France) Remi Munos (DeepMind, UK)

ICML 2015, Lille, France

Problem setting

- Undirected Graph: G=(V,E,W)
 - N Nodes, W={w_{ii}}: Weights
- Signal on Graph

$$u^* = \arg\max_{u \in V} f(u)$$

- Actions:
 - Noisy Cluster Averages; Differentiated Costs
- Goal: In min Time (T << N) locate u*; Min Cost?

Application Scenarios

- Surveillance/Geography
 - Forest Cover Dataset: labeled samples on 30m² region
 - Nodes: Regions of forest; Edge weights: feature similarity;
 - Rewards: Density of species. Locate highest density.
 - Actions: Zoom-in to a node (high cost); Zoom-out (low cost).

- Sensor networks:
- Radar search:
- Online advertisements:

Bandit Setting

- N-arm Bandit [Robbins'72, Lai-Robbins85]
 - N Independent Rewards/arms
 - Each arm ~ action
 - N-nodes ~ no coupling between nodes
 - Need T >> N.
 - Multiple looks per node

Very large # arms

Reward is Linear and Smooth

Linear Reward

Fourier decomposition

$$f = Q\alpha^*$$

- Q: Eigenvectors of the graph Laplacian
- \circ Linearly Param Bandit: unknown param $lpha^*$

Smooth Reward

Neighboring nodes have similar rewards

$$(u,v) \in E \implies f(u) \approx f(v)$$

$$\|\mathcal{L}f\|_2^2 = \sum_{u,v} w_{uv} (f(u) - f(v))^2 \le c$$

[Valko et. al. ICML'14]

Actions: Sample Node or Group

- Actions consists of subset of simplex:
 - o Sample a node, u:

$$s(v) = \delta(u - v)$$

 \circ Sample a group of nodes $A\subset V$

$$s(v) = \frac{1}{|A|} \sum_{u \in A} \delta(u - v)$$

Any Probability Mass Function

$$S = \Delta^N$$

$$[1 \quad 0 \quad 0 \quad 0 \quad \dots \quad 0]$$

$$\begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & \dots & 0 \end{bmatrix}$$

Cost of Actions

Cost of actions:

Costly: Zoom-in to observe a particular node

Cheap: Zoom-out to observe average of a group

Cost Model

$$C(s) = \sum_{(u,v)\in E} (s(u) - s(v))^2 = \|\mathcal{L}s\|_2^2$$

- Why this model?
 - Larger the group size smaller the cost
 - Probing Nodes has high cost
 - In Fourier domain: Energy of s

Regret and Cost

- Policy(π): In round t, pick an action s_t
- Observe reward

$$r_t(s_t) = \langle s_t, f \rangle + \epsilon_t = \sum_u s_t(u) f(u) + \epsilon_t$$

Cumulative Regret

$$R_T(\pi) = Tf(u^*) - E\left[\sum_{t=1}^T r_t(s_t)\right]$$

Cumulative Cost

$$C_T(\pi) = \sum_{t=1}^T C(s_t)$$

Objective: Cost vs Regret

Minimize Cost subject to 'optimal' Regret

$$\min_{\pi, \mathcal{S}} C_T(\pi)$$
subject to $R_T(\pi) \leq R_T^*$

Best admissible policies

$$R_T^* = \min_{\pi, S} R_T(\pi)$$

- Conflicting goals:
 - Node actions give better estimates, but costly
 - Group actions give poor estimates, but cheaper

Cost

Optimal Regret with lower cost

What is a good Regret Constraint? Lower Bound

- No smoothness constraint (c → ∞)
 - Finite set of actions

$$R_T(\cdot) = \Omega(\sqrt{NT})$$
 (Chu et. al. AISTATS'11)

Smooth Functions (This paper)

Proposition: For Smooth function on graphs with effective dimension d

$$R_T(\cdot) = \Omega(\sqrt{dT})$$
 where $d \ll N$

o Effective Dimension [Valko et.al. ICML'14]

$$d = \max \left\{ i \mid \lambda_i(i-1) \le \frac{T}{\log(T+1)} \right\}$$

Intuition: Lower Bound

Effective Dimension related to Graph Clusters

o d clusters

$$d = \max \left\{ i \mid \lambda_i(i-1) \le \frac{T}{\log(T+1)} \right\}$$

- # Disconnected clusters or
- # sparse clusters

Need to sample at least one node per cluster

$$\min_{\pi,\mathcal{S}} C_T(\pi)$$

subject to
$$R_T(\pi) \leq \mathcal{O}(\sqrt{dT})$$

Key Intuition: Locally Smooth Rewards

Smoothness condition implies local smoothness

Group actions are good approximation to node action

$$u \in A \implies f(u) \sim \frac{1}{|A|} \sum_{v \in A} f(v) + \text{const}$$

Proposition: Let **f** be a smooth function on a graph with effective dimension d. Then,

$$|f(i) - \frac{1}{\mathcal{N}_i} \sum_{j \in \mathcal{N}_i} f(j)| \le \frac{c'd}{\lambda_{d+1}}$$

CheapUCB: Algorithm

- Inspired by SpectralUCB Algorithm [Valko et. al. ICML14]
- SpectralUCB uses only node actions, cannot control cost
- CheapUCB uses both node actions and group actions

- **Phases:** Split the T into J=|log T| phases
- **Length:** Phase j=1,2,...J is of 2^{j-1} rounds
- **Select action:** In phase j select groups of size J-j+1 optimistically using UCB

Zoom-in slowly using progressively costly actions

Algorithm Performance

Algorithm	Regret bound	Cost
SpectralUCB (ICML'14)	$\mathcal{O}(d\sqrt{T})$	T
CheapUCB (This paper)	$\mathcal{O}(d\sqrt{T})$	3/4 T

CheapUCB provides good regret guarantee and also provides O(T) cost saving

CheapUCB achieves at least 25% reduction in cost!!

Network Experiments

Forest Cover Dataset

- 50000 Samples; 7 Species
- 30m² regions; 2000 clusters
- Nodes: regions; Edges: Feature similarity
 - Connect K-NN
- Reward: Density of Desired Species
 - Continuous Classifier Output

Conclusions

- Cheap Bandit Formulation
 - Optima of Smooth signals on graphs
 - Minimize cost under optimal regret constraints
- Probes/Actions
 - Actions: Sample a node or a group
 - Cost of actions

- Effective Dimension governs regret
 - Time << N, depends on statistical dimension
- Expand actions beyond node actions to reduce cost
 - CheapUCB algorithm
 - Reduces cost by at least by 25%

Thank You!!

Please visit our poster today: 2A