

Examen Teórico

NIVEL I VIII OLIMPIADA HONDUREÑA DE FÍSICA

Código	OHF24	-	
--------	-------	---	--

PROBLEMA 1: HACIA LA CIMA (6 pts)

Se lanza un objeto desde un punto A, con una rapidez v de tal manera que al llegar un punto B la velocidad es netamente horizontal. La base del triángulo mostrado en la figura tiene una longitud 2L y altura L. Despreciando la resistencia del aire, y considerando $L = 100 \,\mathrm{m}$, determine el valor de v.

PROBLEMA 2: RETROCESO ASTRONÁUTICO (6 pts)

Un astronauta de masa $M=55\,\mathrm{kg}$ que está en reposo en el espacio, lanza una bola de masa $m=2.0\,\mathrm{kg}$ utilizando un resorte de masa despreciable que almacena una energía potencial $E=15\,\mathrm{J}$, determine el cambio de rapidez que experimenta el astronauta.

PROBLEMA 3: ¡TÚ SÍ, PERO YO NO! (8 pts)

Se tienen tres bloques idénticos A, B y C. Los bloques A y B están colocados uno al lado del otro, y sobre ellos reposa el bloque C. El coeficiente de fricción entre los bloques es μ_1 , y el coeficiente de fricción con el suelo es μ_2 . Si se tira del bloque A de manera que una fracción k de la masa del bloque C se mantiene sobre B, ¿para qué valores de k es posible que C se mueva sin que B también lo haga? Los valores de los coeficientes de fricción cinética y estática son idénticos.

PROBLEMA 4: EL DERRAPE LOCO (10 pts)

Un coche de juguete se mueve derrapando en un plano horizontal con coeficiente de fricción μ . El coche puede orientar sus ruedas en cualquier dirección para controlar la fricción cinética. El coche se mueve a velocidad v_1 y desea girar 90° alcanzando una velocidad v_2 .

- a) ¿Cuál es el tiempo mínimo τ para realizar este giro? Argumenta o demuestra por qué es mínimo. (4 pts)
- b) Encuentre la rapidez mínima v_{min} que el coche puede tener durante el movimiento ideal de a). (6 pts)

Considere: El área de un triángulo es independiente de la base elegida para calcularla.

Fecha: 2/12/2024 Tiempo: 4 horas Valor: 30 pts