MA-207 Differential Equations II Lecture-12 Wave and Laplace Equation

M.K. Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 2nd November, 2017 S1 - Lecture 12

M.K. Keshari

S1 - Lecture 12

Theorem. Let
$$\nu_n = \frac{n\pi}{L}$$
. Then $u(x,t) = \sum_{n\geq 1} \left(A_n\cos(a\nu_n t) + \frac{B_n}{a\nu_n}\sin(a\nu_n t)\right)\sin\nu_n x$

is a formal solution of Dirichlet IBV wave equation

$$u_{tt}(x,t) = a^2 u_{xx}(x,t), \quad 0 < x < L, \ t > 0;$$

$$u(0,t) = 0, \quad u(L,t) = 0, \quad t > 0; \quad \text{with}$$

$$u(x,0) = f(x) = \sum_{n \ge 1} A_n \sin \nu_n x \quad \text{and}$$

$$u_t(x,0) = g(x) = \sum_{n \ge 1} B_n \sin \nu_n x$$

$$A_n = \frac{2}{L} \int_0^L f(x) \sin \nu_n x \, dx, B_n = \frac{2}{L} \int_0^L g(x) \sin \nu_n x dx$$

M.K. Keshari

Theorem. Let
$$\nu_n = \frac{n\pi}{L}$$
. Then $u(x,t) = (A_0 + B_0 t)$
 $+ \sum_{n \ge 1} \left(A_n \cos(a\nu_n t) + \frac{B_n}{a\nu_n} \sin(a\nu_n t) \right) \cos \nu_n x$

is a formal solution of Neumann IBVP

$$u_{tt}(x,t) = a^2 u_{xx}(x,t), \quad 0 < x < L, \ t > 0;$$
 $u_x(0,t) = 0, \quad u_x(L,t) = 0, \quad t > 0;$ with
$$u(x,0) = f(x) = A_0 + \sum_{n \ge 1} A_n \cos \nu_n x \quad \text{and}$$

$$u_t(x,0) = g(x) = B_0 + \sum_{n \ge 1} B_n \cos \nu_n x$$

$$A_n = \frac{2}{L} \int_0^L f(x) \cos \nu_n \, dx, B_n = \frac{2}{L} \int_0^L g(x) \cos \nu_n x \, dx$$

M.K. Keshari

S1 - Lecture 12

Non homogeneous Wave Equation: Dirichlet boundary condition

The following model describes the vibrations of a string with an external force that depends on time.

$$u_{tt} - k^2 u_{xx} = F(x, t), 0 < x < L, t > 0$$

 $u(0, t) = f_1(t), u(L, t) = f_2(t), t > 0$
 $u(x, 0) = f(x), u_t(x, 0) = g(x), 0 \le x \le L$

We will first reduce the problem so that boundary conditions are homogeneous. Note that

$$\widetilde{w}(x,t) = \left(1 - \frac{x}{L}\right)f_1(t) + \frac{x}{L}f_2(t)$$

$$\implies \widetilde{w}(0,t) = f_1(t), \quad \widetilde{w}(L,t) = f_2(t)$$

I.K. Keshari S1 -

So let us first make the substitution

$$z(x,t) = u(x,t) - \widetilde{w}(x,t)$$

Then clearly

$$z_{tt} - k^2 z_{xx} = G(x, t)$$
, $z(0, t) = 0$, $z(L, t) = 0$, $z(x, 0) = v(x)$, $z_t(x, 0) = w(x)$.

To solve for u(x,t), it is enough to solve for z(x,t).

Since the boundary conditions are Dirichlet type, we assume the solution is given by

$$z(x,t) = \sum_{n\geq 1} Z_n(t) \sin(\nu_n x)$$

where $\nu_n=\frac{n\pi}{L}$, and solve for $Z_n(t)$'s.

M.K. Keshari

S1 - Lecture 12

Differentiating z(x,t) term by term, we get that it satisfies the equation

$$z_{tt} - k^2 z_{xx} = \sum_{n>1} \left(Z_n''(t) + k^2 \nu_n^2 Z_n(t) \right) \sin(\nu_n x)$$

Let us write

$$G(x,t) = \sum_{n\geq 1} G_n(t) \sin(\nu_n x)$$

where

$$G_n(t) = \frac{2}{L} \int_0^L G(x, t) \sin(\nu_n x) dx$$

Thus, $z_t - k^2 z_{xx} = G(x, t)$ gives

$$Z_n''(t) + k^2 \nu_n^2 Z_n(t) = G_n(t)$$

$$z(x,0) = \sum_{n\geq 1} Z_n(0) \sin(\nu_n x) = v(x)$$

and

$$z_t(x,0) = \sum_{n>1} Z'_n(0) \sin(\nu_n x) = w(x)$$

gives

$$Z_n(0) = \frac{2}{L} \int_0^L v(x) \sin(\nu_n x) \, dx := b_n$$

is the Fourier sine coefficient of v(x) and

$$Z'_n(0) = \frac{2}{L} \int_0^L w(x) \sin(\nu_n x) \, dx := c_n$$

is the Fourier sine coefficient of w(x).

M.K. Keshari

S1 - Lecture 12

We can solve

$$Z_n''(t) + k^2 \nu_n^2 Z_n(t) = G_n(t)$$

uniquely with given initial conditions

$$Z_n(0) = b_n, \quad Z'_n(0) = c_n$$

where b_n and c_n are Fourier sine coefficients of v(x) and w(x) respectively.

If $Z_n(t)$ is this unique solution, then the series

$$z(x,t) = \sum_{n>1} Z_n(t) \sin(\nu_n x)$$

solves our non homogeneous wave equation with Dirichlet boundary conditions for z.

Example. Consider the following PDE

$$u_{tt} - u_{xx} = e^t,$$
 $0 < x < 1, t > 0$
 $u(0,t) = 0, u(1,t) = 0,$ $t > 0$
 $u(x,0) = x(x-1), u_t(x,0) = 0,$ $0 \le x \le 1$

The boundary conditions are Dirichlet type, so we find solution in Fourier sine series. Assume (here $\nu_n=n\pi$)

$$u(x,t) = \sum_{n\geq 1} u_n(t)\sin(\nu_n x)$$

The Fourier sine series for u(x,0) = x(x-1) is

$$x(x-1) = \sum_{n\geq 1} \frac{-8}{(\nu_{2n-1})^3} \sin(\nu_{2n-1}x)$$

M.K. Keshari

S1 - Lecture 12

Therefore, we get for $n \ge 1$,

$$u_{2n}(0) = 0$$
, $u_{2n-1}(0) = \frac{-8}{(\nu_{2n-1})^3}$, $u'_n(0) = 0$

The Fourier sine series for $G(x,t)=e^t$ is given by

$$e^{t} = \sum_{n \ge 1} \frac{4}{\nu_{2n-1}} \sin(\nu_{2n-1}x) e^{t}$$

Substitute

$$u(x,t) = \sum_{n>1} u_n(t) \sin(\nu_n x)$$

into the equation $u_{tt} - u_{xx} = e^t$, we get

M.K. Keshari S1 - Lecture 12

$$\sum_{n\geq 1} \left(u_n''(t) + \nu_n^2 u_n(t) \right) \sin(\nu_n x) = \sum_{n\geq 1} \frac{4e^t}{\nu_{2n-1}} \sin(\nu_{2n-1} x)$$

For even n, we get

$$u_{2n}''(t) + \nu_{2n}^2 u_{2n}(t) = 0$$

$$\implies u_{2n}(t) = C_{2n}\cos(\nu_{2n}t) + D_{2n}\sin(\nu_{2n}t)$$

Since $u_{2n}(0) = 0$, we get $C_{2n} = 0$.

Further, $u'_{2n}(0) = 0$, we get $D_n = 0$.

Therefore $u_{2n}(t) = 0$.

M.K. Keshari

S1 - Lecture 12

For odd n,

$$u_{2n-1}''(t) + \nu_{2n-1}^2 u_{2n-1}(t) = \frac{4}{\nu_{2n-1}} e^t$$

To find a particular solution, put $u_{2n-1}(t) = ce^t$,

$$ce^{t} + \nu_{2n-1}^{2}ce^{t} = \frac{4e^{t}}{\nu_{2n-1}} \implies c = \frac{4}{\nu_{2n-1}(1+\nu_{2n-1}^{2})}$$

The general solution is $u_{2n-1}(t) =$

$$\frac{4e^t}{\nu_{2n-1}(1+\nu_{2n-1}^2)} + C_{2n-1}\cos\nu_{2n-1}t + D_{2n-1}\sin\nu_{2n-1}t$$

Initial conditions are

$$u_{2n-1}(0) = \frac{-8}{\nu_{2n-1}^3}, \quad u'_{2n-1}(0) = 0$$

M.K. Keshari

$$u_{2n-1}(0) = C_{2n-1} + \frac{4}{\nu_{2n-1}(1+\nu_{2n-1}^2)} = \frac{-8}{\nu_{2n-1}^3}$$

$$\implies C_{2n-1} = \frac{-4(2+3\nu_{2n-1}^2)}{\nu_{2n-1}^3(1+\nu_{2n-1}^2)}$$

$$u'_{2n-1}(0) = \frac{4}{\nu_{2n-1}(1+\nu_{2n-1}^2)} + \nu_{2n-1}D_{2n-1} = 0$$

$$\implies D_{2n-1} = \frac{-4}{\nu_{2n-1}^2(1+\nu_{2n-1}^2)}$$

Thus, the solution is given by

$$u(x,t) = \sum_{n>1} u_{2n-1}(t) \sin(\nu_{2n-1}x)$$

where $u_{2n-1}(t)$ is defined above.

M.K. Keshari

S1 - Lecture 12

Non homogeneous Wave equation: Neumann boundary condition

The following model describes the vibrations of a string with an external force that depends on time.

$$u_{tt} - k^2 u_{xx} = F(x, t), \quad 0 < x < L, \quad t > 0$$

 $u_x(0, t) = f_1(t), \quad u_x(L, t) = f_2(t), \quad t > 0$
 $u(x, 0) = f(x), \quad u_t(x, 0) = g(x), \quad 0 \le x \le L$

We will first reduce the problem so that boundary conditions are homogeneous. Note that

$$\widetilde{w}(x,t) = \left(x - \frac{x^2}{2L}\right) f_1(t) + \frac{x^2}{2L} f_2(t)$$

$$\Longrightarrow \widetilde{w}_x(0,t) = f_1(t), \quad \widetilde{w}_x(L,t) = f_2(t)$$

M.K. Keshari S1

So let us first make the substitution

$$z(x,t) = u(x,t) - \widetilde{w}(x,t)$$

Then clearly

$$z_{tt} - k^2 z_{xx} = G(x, t)$$
, $z_x(0, t) = 0$, $z_x(L, t) = 0$, $z(x, 0) = v(x)$, $z_t(x, 0) = w(x)$.

To solve for u(x,t), it is enough to solve for z(x,t).

Since the boundary conditions are Neumann type, we assume the solution is given by

$$z(x,t) = \sum_{n\geq 1} Z_n(t) \cos(\nu_n x)$$

where $\nu_n=rac{n\pi}{L}$ and solve for $Z_n(t)$'s.

M.K. Keshari

S1 - Lecture 12

Differentiating z(x,t) term by term, we get that it satisfies the equation

$$z_{tt} - k^2 z_{xx} = \sum_{n>1} \left(Z_n''(t) + k^2 \nu_n^2 Z_n(t) \right) \cos(\nu_n x)$$

Let us write

$$G(x,t) = \sum_{n\geq 1} G_n(t) \cos(\nu_n x)$$

where

$$G_n(t) = \frac{2}{L} \int_0^L G(x, t) \cos(\nu_n x) dx$$

Thus, $z_t - k^2 z_{xx} = G(x, t)$ gives

$$Z_n''(t) + k^2 \nu_n^2 Z_n(t) = G_n(t)$$

$$z(x,0) = \sum_{n\geq 1} Z_n(0)\cos(\nu_n x) = v(x)$$

and

$$z_t(x,0) = \sum_{n>1} Z'_n(0) \sin(\nu_n x) = w(x)$$

gives

$$Z_n(0) = \frac{2}{L} \int_0^L v(x) \cos(\nu_n x) dx := b_n$$

is the Fourier cosine coefficient of v(x) and

$$Z'_n(0) = \frac{2}{L} \int_0^L w(x) \cos(\nu_n x) dx := c_n$$

is the Fourier cosine coefficient of w(x).

M.K. Keshari

S1 - Lecture 12

We can solve

$$Z_n''(t) + k^2 \nu_n^2 Z_n(t) = G_n(t)$$

uniquely with given initial conditions

$$Z_n(0) = b_n, \quad Z'_n(0) = c_n$$

where b_n and c_n are Fourier cosine coefficients of v(x) and w(x) respectively.

If $Z_n(t)$ is this unique solution, then the series

$$z(x,t) = \sum_{n>1} Z_n(t) \cos(\nu_n x)$$

solves our non homogeneous wave equation with Neumann boundary conditions for z.

M.K. Keshari

Example. Consider the following PDE

$$u_{tt} - u_{xx} = e^t$$
, $0 < x < 1$, $t > 0$
 $u_x(0,t) = 0$, $u_x(1,t) = 0$, $t > 0$
 $u(x,0) = x(x-1)$, $u_t(x,0) = 0$, $0 \le x \le 1$

The boundary conditions are Neumann type, so we find solution in Fourier cosine series. Assume (here $\nu_n=n\pi$)

$$u(x,t) = \sum_{n\geq 0} u_n(t) \cos(\nu_n x)$$

The Fourier cosine series for u(x,0) = x(x-1) is

$$x(x-1) = \frac{-1}{6} + \sum_{n>1} \frac{4}{(\nu_{2n})^2} \cos(\nu_{2n}x)$$

M.K. Keshari

S1 - Lecture 12

Therefore, we get $u_0(0) = \frac{-1}{6}$ and for $n \ge 1$,

$$u_{2n-1}(0) = 0$$
, $u_{2n}(0) = \frac{4}{(\nu_{2n})^2}$, $u'_n(0) = 0$

The Fourier cosine series for e^t is given by

$$e^t = e^t$$

Substitute

$$u(x,t) = \sum_{n\geq 1} u_n(t) \cos(\nu_n x)$$

into the equation $u_{tt} - u_{xx} = e^t$, we get

$$\sum_{n\geq 0} (u_n''(t) + (\nu_n)^2 u_n(t)) \cos(\nu_n x) = e^t$$

For n = 0, we get

$$u_0''(t) = e^t \implies u_0(t) = e^t + A_0 + B_0 t$$

Since
$$u_0(0) = \frac{-1}{6}$$
, we get $A_0 = \frac{-7}{6}$.

Further, $u'_0(0) = 0$, we get $B_0 = -1$.

Therefore
$$u_0(t) = e^t - \frac{7}{6} - t$$
.

M.K. Keshari S1 - Lecture 12

For
$$n \ge 1$$
, $u_n''(t) + (\nu_n)^2 u_n(t) = 0$
 $\implies u_n(t) = A_n \cos(\nu_n t) + B_n \sin(\nu_n t)$

Initial conditions are

$$u_{2n-1}(0) = 0, \ u_{2n}(0) = \frac{4}{(\nu_{2n})^2}, \ u'_n(0) = 0$$

$$\implies A_{2n-1} = 0, \ B_{2n-1} = 0, \ A_{2n} = \frac{4}{(\nu_{2n})^2}, \ B_{2n} = 0$$

$$u_{2n-1}(t) = 0, \ u_{2n}(t) = \frac{4}{(\nu_{2n})^2} \cos(\nu_{2n}t)$$

Therefore,

$$u(x,t) = (e^t - \frac{7}{6} - t) + \sum_{n \ge 1} \frac{4}{(\nu_{2n})^2} \cos(\nu_{2n}t) \cos(\nu_{2n}x)$$

Now we will start the study of Laplace equation.

M.K. Keshari

S1 - Lecture 12

The two dimensional Laplace (or potential) equation in \mathbb{R}^2 is

$$\Delta u = u_{xx} + u_{yy} = 0$$

The solutions u of the Laplace equation are called harmonic functions.

It is associated with the gravitational and electric fields.

The following are typical problems associated with the Laplace operator.

Dirichlet Problem.

The problem is to find a harmonic function u inside a domain D so that the values of u are prescribed on the boundary ∂D of D,

(i.e. u = f is given on the boundary ∂D).

Neumann Problem.

The problem is to find a harmonic function u inside the domain D so that the normal derivative of u, i.e.

$$(\operatorname{\mathsf{grade}} u).n(x,y) = g$$

is given on the boundary ∂D , where n(x,y) is the exterior unit normal at the point (x,y).

M.K. Keshari

S1 - Lecture 12

Steady-State Temperature Problems.

A steady-state or equilibrium function u of 2 dimensional heat equation is a function that is independent of time t, i.e. $u_t=0$

Thus if u satisfies heat equation $u_t = \Delta u$ and u is steady-state, then it satisfies Laplace equation

$$\Delta u = 0$$

Example. Write the BVP for the steady state temperature u(x,y) in a 1×2 rectangular plate if the bottom horizontal side is kept at 0^0 , top horizontal side at 100^0 , left vertical side at -10^0 and right vertical side at 200^0 .

The equation is

$$\Delta u = u_{xx} + u_{yy} = 0$$
, $0 < x < 1$, $0 < y < 2$, $u(x,0) = 0$, $u(x,2) = 100$, $0 < x < 1$, $u(0,y) = -10$, $u(1,y) = 200$, $0 < y < 2$.

M.K. Keshari

S1 - Lecture 12

Let us consider the Laplace equation with boundary conditions

$$u_{xx} + u_{yy} = 0,$$
 $0 < x < a,$ $0 < y < b$
 $u(x, 0) = f(x),$ $u(x, b) = 0,$ $0 \le x \le a$
 $u(0, y) = 0,$ $u(a, y) = 0,$ $0 \le y \le b$

Let u(x,y) = X(x)Y(y). Then the differential equation becomes

$$X''(x)Y(y) + X(x)Y''(y) = 0$$

Thus,

$$\frac{-X''(x)}{X(x)} = \frac{Y''(y)}{Y(y)} = \text{constant} = \lambda$$

M.K. Keshari

$$u(0,y) = X(0)Y(y) = 0 = u(a,y) = X(a)Y(y)$$

Since $Y(y) \neq 0$ identically, so we get

$$X(0) = 0 = X(a)$$

Since $X(x) \neq 0$ identically and

$$u(x,b) = X(x)Y(b) = 0 \implies Y(b) = 0$$

Thus we need to solve the eigen-value problem

$$X''(x) + \lambda X(x) = 0$$
, $X(0) = 0$, $X(a) = 0$

and

$$Y''(y) - \lambda Y(y) = 0, \quad Y(b) = 0$$

M.K. Keshari

S1 - Lecture 12

There are infinitely many positive eigenvalues for $n \ge 1$

$$\lambda_n = \nu_n^2, \quad \nu_n = \frac{n\pi}{a}$$

with eigenfunctions

$$X_n(x) = \sin(\nu_n x)$$

Before solving for Y problem, let us recall some generality about hyperbolic functions.

$$\cosh x = \frac{e^x + e^{-x}}{2}, \quad \sinh x = \frac{e^x - e^{-x}}{2}$$

$$\cosh' x = \sinh x, \quad \sinh' x = \cosh x$$

$$\cosh(x - y) = \cosh x \cosh y - \sinh x \sinh y$$

$$\sinh(x - y) = \sinh x \cosh y - \cosh x \sinh y$$

M.K. Keshari S1

The $Y''(y) - \lambda_n Y(y) = 0$ has general solution

$$Y_n(y) = A \cosh(\nu_n y) + B \sinh(\nu_n y)$$

Y(b) = 0 gives

$$A\cosh(\nu_n b) + B\sinh(\nu_n b) = 0$$

Thus $Y_n(y) =$

$$\frac{-B\left(\sinh(\nu_n b)\cosh(\nu_n y) - \sinh(\nu_n y)\cosh(\nu_n b)\right)}{\cosh(\nu_n b)}$$

$$Y_n(y) = C \sinh(\nu_n(b-y)), \quad C = \frac{-B}{\cosh(\nu_n b)}$$

M.K. Keshari

S1 - Lecture 12

Hence the solution with the separated variables is

$$u_n(x,y) = \sinh(\nu_n(b-y)) \sin(\nu_n x)$$

satisfying

$$u(x,b) = 0, \ u(0,y) = 0, \ u(a,y) = 0$$

A series solution is therefore

$$u(x,y) = \sum_{n\geq 1} C_n \sinh(\nu_n(b-y)) \sin(\nu_n x)$$

This satisfies

$$u(x,0) = \sum_{n>1} C_n \sinh(\nu_n b) \sin(\nu_n x) = f(x)$$

$$\implies C_n \sinh(\nu_n b) = b_n = \frac{2}{a} \int_0^a f(x) \sin(\nu_n x) dx$$

M.K. Keshari

Definition.

$$u(x,y) = \sum_{n\geq 1} \frac{b_n}{\sinh(\nu_n b)} \sinh(\nu_n (b-y)) \sin(\nu_n x)$$

is a (formal) solution of

$$u_{xx} + u_{yy} = 0,$$
 $0 < x < a,$ $0 < y < b$
 $u(x, 0) = f(x),$ $u(x, b) = 0,$ $0 \le x \le a$
 $u(0, y) = 0,$ $u(a, y) = 0,$ $0 \le y \le b$

where b_n are Fourier sine coefficients of f(x) on [0,a].

M.K. Keshari S1 - Lecture 12

Example. Let $\nu_n = \frac{n\pi}{a}$. Consider

$$u_{tt} + u_{xx} = 0,$$
 $0 < x < a, 0 < y < b$
 $u(x, 0) = \sin(\nu_5 x) - 3\sin(\nu_9 x),$ $0 \le x \le a$
 $u(x, b) = 0,$ $0 \le x \le a$
 $u(0, y) = 0 = u(a, y) = 0,$ $0 \le y \le b$

Since f(x) = u(x, 0) is given in Fourier sine series,

$$b_5 = 1, b_9 = -3,$$

Thus, the solution to the above problem is given by

$$u(x,t) = \frac{1}{\sinh(\nu_5 b)} \sinh(\nu_5 (b-y)) \sin(\nu_5 x)$$
$$+ \frac{-3}{\sinh(\nu_9 b)} \sinh(\nu_9 (b-y)) \sin(\nu_9 x)$$

M.K. Keshari S1 - Lecture 12

Neumann boundary condition

Consider the following differential equation

$$u_{xx} + u_{yy} = 0, \quad 0 < x < a, \ 0 < y < b,$$

with boundary conditions

$$u(x,0) = f(x)$$
 $u(x,b) = 0$ $0 \le x \le a$
 $u_x(0,y) = 0$ $u_x(a,y) = 0$ $0 \le y \le b$

Let u(x,y) = X(x)Y(y). Then the differential equation becomes

$$X''(x)Y(y) + X(x)Y''(y) = 0$$

Thus, we have

$$\frac{-X''(x)}{X(x)} = \frac{Y''(y)}{Y(y)} = \text{constant} = \lambda$$

M.K. Keshari

S1 - Lecture 12

Since

$$u_x(0,y) = X'(0)Y(y) = 0 = u_x(a,y) = X'(a)Y(y) = 0$$

and we do not want Y to be identically zero, we get

$$X'(0) = 0, \quad X'(a) = 0$$

Since $X(x) \neq 0$ identically and

$$u(x,b) = X(x)Y(b) = 0 \implies Y(b) = 0$$

We need to solve the eigenvalue problem

$$X''(x) + \lambda X(x) = 0$$
, $X'(0) = 0$, $X'(a) = 0$

and

$$Y''(y) - \lambda Y(y) = 0, \quad Y(b) = 0$$

There are infinitely many positive eigenvalues for $n \ge 0$

$$\lambda_n = \nu_n^2, \quad \nu_n = \frac{n\pi}{a}$$

with eigenfunctions $X_n(x) = \cos(\nu_n x)$

For
$$n=0$$
, $Y''(y)=0$, $Y(b)=0$ gives $Y_0(y)=C_0(b-y)$.

For $n \ge 1$, $Y''(y) - \lambda Y(y) = 0$ has general solution

$$Y_n(y) = A \cosh(\nu_n y) + B \sinh(\nu_n y)$$

$$Y(b) = 0$$
 gives $A \cosh(\nu_n b) + B \sinh(\nu_n b) = 0$.

Thus
$$Y_n(y) =$$

$$\frac{-B\left(\sinh(\nu_n b)\cosh(\nu_n y) - \sinh(\nu_n y)\cosh(\nu_n b)\right)}{\cosh(\nu_n b)}$$

M.K. Keshari

S1 - Lecture 12

$$Y_n(y) = C \sinh(\nu_n(b-y)), \quad C = \frac{-B}{\cosh(\nu_n b)}$$

Hence the solution with separated variables is

$$u_0(x,y) = (b-y)$$
 and for $n \ge 1$

$$u_n(x,y) = \sinh(\nu_n(b-y)) \cos(\nu_n x)$$

satisfying
$$u(x,b) = 0, u_x(0,y) = 0, u_x(a,y) = 0$$

A series solution is therefore

$$u(x,y) = C_0(b-y) + \sum_{n\geq 1} C_n \sinh(\nu_n(b-y)) \cos(\nu_n x)$$

$$u(x,0) = C_0 b + \sum_{n>1} C_n \sinh(\nu_n b) \cos(\nu_n x) = f(x)$$

where $C_0b = a_0$ and $C_n \sinh(\nu_n b) = a_n$ are the Fourier cosine coefficients of f(x) on [0, a].

VI.K. Keshari

Definition. u(x,y) =

$$\frac{a_0}{b}(b-y) + \sum_{n\geq 1} \frac{a_n}{\sinh(\nu_n b)} \sinh(\nu_n (b-y)) \cos(\nu_n x)$$

is a (formal) solution of

$$u_{xx} + u_{yy} = 0,$$
 $0 < x < a,$ $0 < y < b$
 $u(x, 0) = f(x),$ $u(x, b) = 0,$ $0 \le x \le a$
 $u_x(0, y) = 0,$ $u_x(a, y) = 0,$ $0 \le y \le b$

where a_n , $n \ge 0$, are Fourier cosine coefficients of f(x) on [0, a].

M.K. Keshari S1 - Lecture 12

Example. Consider the Laplace equation with boundary conditions given by (here $\nu_n = \frac{n\pi}{a}$)

$$u_{tt} + u_{xx} = 0,$$
 $0 < x < a,$ $0 < y < b$
 $u(x,b) = 0,$
 $u(x,0) = \cos(\nu_5 x) - 3\cos(\nu_9 x),$ $0 \le x \le a$
 $u_x(0,y) = 0 = u_x(a,y),$ $0 \le y \le b$

Since f is given by its Fourier cosine series

$$a_5 = 1$$
, $a_9 = -3$

Thus, the solution to the above problem is

$$u(x,t) = \frac{1}{\sinh(\nu_5 b)} \sinh(\nu_5 (b-y)) \cos(\nu_5 x)$$
$$+ \frac{-3}{\sinh(\nu_9 b)} \sinh(\nu_9 (b-y)) \cos(\nu_9 x)$$

M.K. Keshari S1 - Lecture 12