CLASSICAL ENCRYPTION TECHNIQUES LECTURE 2

Cryptography

Basic Terminology

- plaintext
- ciphertext
- cipher
- key
- encipher (encrypt)
- decipher (decrypt)
- cryptography
- cryptanalysis (codebreaking)
- cryptology

Symmetric Cryptosystem

Cryptography

- Can characterize cryptographic system by:
 - type of encryption operations used
 - substitution
 - transposition
 - product
 - number of keys used
 - single-key or secret
 - two-key or public
 - way in which plaintext is processed
 - block
 - stream

Cryptanalysis

Objective to recover key not just message

- General approaches:
 - cryptanalytic attack
 - brute-force attack

Cryptanalytic Attacks

- ciphertext only
 - only know algorithm & ciphertext
- known plaintext
 - know/suspect plaintext & ciphertext
- chosen plaintext
 - select plaintext and obtain ciphertext
- chosen ciphertext
 - select ciphertext and obtain plaintext
- chosen text
 - select plaintext or ciphertext to en/decrypt

More Definitions

- Unconditional security
 - No matter how much computer power or time is available, the cipher cannot be broken
- Computational security
 - ► Given limited computing resources (e.g. time), the cipher cannot be broken

Brute Force Search

- Always possible to simply try every key
- Most basic attack, proportional to key size

average

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/ μ s	Time required at 10 ⁶ decryptions/ μ s
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8 \text{ minutes}$	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	$2^{55} \mu s = 1142 \text{ years}$	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu \text{s} = 5.4 \times 10^{24} \text{years}$	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu \text{s} = 5.9 \times 10^{36} \text{years}$	5.9×10^{30} years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu\text{s} = 6.4 \times 10^{12} \text{years}$	6.4×10^6 years

 $1.2 \times 10^4 \text{ years}$? $3 \times 10^4 \text{ years}$? $2 \times 10^8 \text{ years}$? $4.6 \times 10^9 \text{ years}$?

Caesar Cipher

PHHW PH DIWHU WKH WRJD SDUWB

Cryptanalysis of Caesar Cipher

GCUA VQ DTGCM

- ▶ Only have 26 possible ciphers
- Could simply try each in turn (brute force search)

Monoalphabetic Cipher

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDB METSXAIZVUEPHZHMDZSHZOWSFPAPPDTSVPQUZW YMXUZUHSXEPYEPOPDZSZUFPOMBZWPFUPZHMDJU DTMOHMQ

 Each plaintext letter maps to a different random ciphertext letter

Caesar VS. Monoalphabetic

"regular"
26 total

"random" 26! total

Monoalphabetic Cipher

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDB METSXAIZVUEPHZHMDZSHZOWSFPAPPDTSVPQUZW YMXUZUHSXEPYEPOPDZSZUFPOMBZWPFUPZHMDJU DTMOHMQ

- Each plaintext letter maps to a different random ciphertext letter
 - ▶ $26! = 4 \times 10^{26}$ different mappings
 - ▶ Is it safe?

Language Redundancy

- Human languages are redundant
- Letters are not equally commonly used
- In English E is by far the most common letter
 - ▶ followed by T, R, N, I, O, A, S
- Other letters like Z, J, K, Q, X are fairly rare
- Have tables of single, double & triple letter frequencies for various languages

English Letter Frequencies

Use in Cryptanalysis

- Key concept
 - monoalphabetic substitution ciphers do not change relative letter frequencies
- Calculate letter frequencies for ciphertext
- Compare counts/plots against known values
- For monoalphabetic must identify each letter
 - tables of common double/triple letters help

Polyalphabetic Ciphers

Rotor Machines

Enigma Machine

Polyalphabetic Ciphers

- Improve security using multiple cipher alphabets
- Make cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- Use a key to select which alphabet is used for each letter of the message
- Use each alphabet in turn
- Repeat from start after end of key is reached

One-Time Pad

- If a truly random key as long as the message is used, the cipher will be secure
- Called a One-Time pad
- Is unbreakable since ciphertext bears no statistical relationship to the plaintext
- Can only use the key once though
- Problems in generation & safe distribution of key

Transposition Ciphers

MEMATRHTGPRYETEFETEOAAT

MEMATRHTGPRY

"Rail Fence cipher"

ET E F ETEOAAT

- Hide the message by rearranging the letter order without altering the actual letters used
- Can recognize these since have the same frequency distribution as the original text

Row Transposition Ciphers

TTNAAPTMTSUOAODWCOIXKNLYPETZ

ATTACKP

OSTPONE

DUNTILT

WOAMXYZ

Product Ciphers

- Ciphers using substitutions or transpositions are not secure because of language characteristics
- Hence consider using several ciphers in succession to make harder, but:
 - ▶ two substitutions make a more complex substitution
 - ▶ two transpositions make more complex transposition
 - but a substitution followed by a transposition makes a new much harder cipher
- This is bridge from classical to modern ciphers

Steganography

