Лабораторная работа №10

Задача об обедающих мудрецах

Хватов М. Г.

Содержание

4	Вывод	15
3	Выполнение лабораторной работы 3.1 Упражнение	6 9
2	Задание	5
1	Цель работы	4

Список иллюстраций

3.1	Граф сети задачи об обедающих мудрецах	7
3.2	Задание деклараций задачи об обедающих мудрецах	8
3.3	Модель задачи об обедающих мудрецах	ç
3.4	Граф пространства состояний	14

1 Цель работы

Реализовать модель задачи об обедающих мудрецах в CPN Tools.

2 Задание

- Реализовать модель задачи об обедающих мудрецах в CPN Tools;
- Вычислить пространство состояний, сформировать отчет о нем и построить граф.

3 Выполнение лабораторной работы

Пять мудрецов сидят за круглым столом и могут пребывать в двух состояниях – думать и есть. Между соседями лежит одна палочка для еды. Для приёма пищи необходимы две палочки. Палочки – пересекающийся ресурс. Необходимо синхронизировать процесс еды так, чтобы мудрецы не умерли с голода.

Рисуем граф сети. Для этого с помощью контекстного меню создаём новую сеть, добавляем позиции, переходы и дуги (рис. 3.1).

Начальные данные:

- позиции: мудрец размышляет (philosopher thinks), мудрец ест (philosopher eats), палочки находятся на столе (sticks on the table)
- переходы: взять палочки (take sticks), положить палочки (put sticks)

Рис. 3.1: Граф сети задачи об обедающих мудрецах

В меню задаём новые декларации модели (рис. 3.2): типы фишек, начальные значения позиций, выражения для дуг:

- n число мудрецов и палочек (n = 5);
- p фишки, обозначающие мудрецов, имеют перечисляемый тип PH от 1 до n;
- s фишки, обозначающие палочки, имеют перечисляемый тип ST от 1 до n;
- функция ChangeS(p) ставит в соответствие мудрецам палочки (возвращает номера палочек, используемых мудрецами); по условию задачи мудрецы сидят по кругу и мудрец p(i) может взять i и i+1 палочки, поэтому функция ChangeS(p) определяется следующим образом:

```
fun ChangeS (ph(i))=
1`st(i)++st(if = n then 1 else i+1)
```

```
► Help
Options
▼ petry_philosopher.cpn
   Step: 0
   Time: 0
 ▶ Options
 ► History
 ▼ Declarations
   ▼ val n = 5;
   ▼colset PH = index ph with 1..n;
    ► colset ST
   ▼var p:PH;
   ▼fun ChangeS(ph(i)) =
     1 st(i)++1 st(if i = n then 1 else i+1)
   ► Standard priorities
   ▶ Standard declarations
 ► Monitors
   philosopher
```

Рис. 3.2: Задание деклараций задачи об обедающих мудрецах

В результате получаем работающую модель (рис. 3.3).

Рис. 3.3: Модель задачи об обедающих мудрецах

После запуска модели наблюдаем, что одновременно палочками могут воспользоваться только два из пяти мудрецов.

3.1 Упражнение

Вычислим пространство состояний. Прежде, чем пространство состояний может быть вычислено и проанализировано, необходимо сформировать код пространства состояний. Этот код создается, когда используется инструмент Войти в пространство состояний. Вход в пространство состояний занимает некоторое время. Затем, если ожидается, что пространство состояний будет небольшим, можно просто применить инструмент Вычислить пространство состояний к листу, содержащему страницу сети. Сформируем отчёт о пространстве состояний и проанализируем его. Чтобы сохранить отчет, необходимо применить инструмент Сохранить отчет о пространстве состояний к листу, содержащему страницу сети и ввести имя файла отчета.

Из отчета можем узнать, что:

- есть 11 состояний и 30 переходов между ними;
- указаны границы значений для каждого элемента: думающие мудрецы (максимум 5, минимум 3), мудрецы едят (максимум 2, минимум 0), палочки на столе (максимум 5, минимум 1, минимальное значение 2, так как в конце симуляции остаются пирожки);
- указаны границы в виде мультимножеств;
- маркировка home для всех состояний;
- маркировка dead равна None;
- указано, что бесконечно часто происходят события положить и взять палочку.

Содержимое файла:

CPN Tools state space report for:

<unsaved net>

Report generated: Mon Apr 7 12:15:27 2025

Statistics

State Space

Nodes: 11

Arcs: 30

Secs: 0

Status: Full

Scc Graph

Nodes: 1

Arcs: 0

Secs: 0

Boundedness Properties

_ _ _

Best Integer Bounds

Upper Lower

philosopher'philisopher_thinks 1

5 3

philosopher'philosopher_eats 1

2 0

philosopher'sticks_on_table 1

5 1

Best Upper Multi-set Bounds

philosopher'philisopher_thinks 1

1`ph(1)++

1 ph(2)++

1 ph(3)++

1 ph(4)++

1`ph(5)

philosopher'philosopher_eats 1

1`ph(1)++

1 ph(2)++

1 ph(3)++

1 ph(4)++

```
1`ph(5)
     philosopher'sticks_on_table 1
                           1`st(1)++
1 \text{ 'st}(2) ++
1 \text{`st}(3) ++
1'st(4)++
1`st(5)
  Best Lower Multi-set Bounds
     philosopher'philisopher_thinks 1
                           empty
     philosopher'philosopher_eats 1
                           empty
     philosopher'sticks_on_table 1
                           empty
 Home Properties
  Home Markings
     All
 Liveness Properties
```

```
Dead Markings
    None
 Dead Transition Instances
    None
 Live Transition Instances
    All
Fairness Properties
______
_ _ _
 Impartial Transition Instances
   philosopher'put_sticks 1
   philosopher'take_sticks 1
 Fair Transition Instances
    None
 Just Transition Instances
    None
 Transition Instances with No Fairness
    None
 Граф пространства состояний (рис. 3.4):
```


Рис. 3.4: Граф пространства состояний

4 Вывод

В процессе выполнения данной лабораторной работы я реализовал модель задачи об обедающих мудрецах в CPN Tools.