1) Zistile, či pre košchi brejicu množin K, LaM plati KU (LNM) = (KUL)NM. Až rovnost neplati, plati aspon niektora u inkluxii:

## Riejenie:

Rajpor mairlneme obrásky:





Obrásky naxuačujú, sie inklúxia  $KU(L \Lambda M) \supseteq (KUL) \Lambda M$  bude plašiť pre ľubovoľné  $K_1 L_0 M$ , ale inklúxia  $KU(L \Lambda M) \subseteq (KUL) \Lambda M$  serejme nie.

Dobazeme obe birdina:

De lubovolné x platé:

x ∈ ((KUL) NM),

ath ((xE(KUL)) 1(xEM))

(definicia prienisa),

all (((x EK) V (x EL)) 1 (x EM))

(definicia rejednolenia),

ztv. ((xek) VC(xeL) 1 (x E M)))

(libo výrok (4V4) 1 ž implikuje výrok 4V(41 ž) (dókax je nižšíž))

att ((xEK) V(XE(LNM)))

(definicia prienitu)

all (x E(KU(L 1M)))

(definicia sejetnolenia).

Oslava visle dekeisal, sie výrok (4VY) 1 ž implikuje výrok PV (Y1 ž). Roxoberieme všeby možnosti pravdivosti výrokov 4, 4 a ž:

| Y | 4 | È | PVY | (9V4) 1 È | 718 | 9V(41E) |
|---|---|---|-----|-----------|-----|---------|
| 0 | 0 | 0 | 0   | 0         | 0   | 0       |
| 0 | 0 | 1 | 0   | 0         | 0   | 0       |
| 0 | 1 | 0 | 1   | 0         | 0   | 0       |
| 0 | 1 | 1 | 1   | 1         | 1   | - 1     |
| 1 | 0 | 0 | O   | 0         | 0   | 1       |
| 1 | 0 | 1 | 1   | 1         | 0   | 1       |
| 1 | 1 | 0 | 0   | 0         | 0   | 1       |
| 1 | 1 | 1 | 1   | 1         | 1   | 1       |

Rodnola v sllpce prisluchajúcom výrobu (PVY) 1 è v ziadnom riadku nepresaluje hodnolu v sllpci prisluchejúcom výrobu P1(YVE), a prvého lebka vyplýva obruhy pre saseli volle P, Ya E.

Waxali sme, ñe x hordenia x € ((KUL) 1 M), royphýra hordenie x € (KU(L 1 M)), leda hardý prvok mnoziny (KUL) NM je prokom množiny KU (LNM), čise glah KU(LMM) Z (KUL)MM

D Najdene sonbapriskel pomocou obrazku:



KU(LAM) (KUL)AM



Tvolme leda K=L={13 a M=Ø. Polom plati:

· KU(LAM) = {13 U(213A4) = {13 U Ø = {13

· (KUL) NM = ( £130 \$13) N \$= \$13 N \$= \$

Indluxia KU(LAM) 5 (KUL) MM leda neploch pre Baxolu brejicu mrożin K, La 17.

2) Listile, či pre sasolu bozicu množin K, L a M plati-KI (LAM) = (KIL)A(KIM). ak rovest neplale, plati asjor niektora z inkluxii?

## Riesenie:





KICLAM)

(KIL) n(KIM)

Obrasky nastraciuju, se indlinia K((LNM) 2(K/L) N(K/M) bude platit pre luborobne K, L a M, ale inclusia K ( ( NM) E (K L) N (K 1 M) serejine mie.

Dokanene de hordenia:

[ ] The lubovolne x plate:

KE ((KIL) n(KIM)),

all ((xe(KIL)) 1 (xe(KIH)))

(definicia prienida),

at (((xEK)) 7(xEL)) 1 ((xEK) 17(xEM)))

(definicia roxelielu),

ztv((xeK) A7 (xeL 1 xeM)),

(lebe nýrož ((4174) 1(417E)) implibuje nýrok (417 (41E)) (dôpaz je niárie))

改 ((xEK)AT(xE(LM)))

(definicia prienisu),

all xE (KI (LMM))

(definicia roxohelu).

Osláva dokárod, ne výrok ((4114)1(417E)) implikuje výrok (417(41E)). Rosolerieme vielly morrosti pardirosti ujector P, ta c:

| φ | 4 | È | 74 | 1 È | 4174 | P17 E | (P174)1(P17E) | (412) | [1(412) | 417(412) |
|---|---|---|----|-----|------|-------|---------------|-------|---------|----------|
| 0 | 0 | 0 | 1  | 1   | 0    | 0     | 0             | 0     | 1       | 0        |
| 0 | 0 | 1 | 1  | 0   | 0    | 0     | 0             | 0     | 1       | 0        |
| 0 | 1 | 0 | 0  | 1   | 0    | 0     | 0             | 0     | 1       | 0        |
| 0 | 1 | 1 | 0  | 0   | 0    | 0     | 0             | 1     | 0       | 0        |
| 1 | 0 | 0 | 1  | 1   | 1    | 1     | 1             | 0     | 1       | 1        |
| 1 | 0 | 1 | 1  | 0   | 1    | 0     | 0             | 0     | 1       | 1        |
| 1 | 1 | 0 | ٥  | 1   | 0    | 1     | 0             | 0     | 1       | 1        |
| 1 | 1 | 1 | 0  | 0   | 0    | 0     | 0             | 1     | 0       | 0        |

Hodnota v stlpei pristickajúcom výrožu ((41 14 )1 (4112)) v siciodnom riadžu nepresahuje todroda v stlpei pristickajúcom nýrožu (41 1 (412)), se prveto teola uzplýra druhý pre basidu volitu 4, 4 a č.

Ukarali sne, ne  $\kappa$  hordenia  $\kappa \in ((K \setminus L) \cap (K \setminus M))$  nyphyva hvelenie  $\kappa \in (K \setminus (L \cap M))$ , heda baxoly prook mrozing  $((K \setminus L) \cap (K \setminus M))$  je prohom mrozing  $(K \setminus (L \cap M))$ , cixe plati  $(K \setminus (L \cap M)) \supseteq ((K \setminus L) \cap (K \setminus M))$ 

[ Najdeme Sonbayarishad pomocou obrazar:



KI(LAM)



(KIL) N(KIM)

Zvoline leda K=L= {13 a M= 9. Potom flati:

· KI (LAM) = {131( & BA Ø) = {131 = {13

«(KLL)∩(KLM) = (£131{13}) ∧ ({131 Ø3 = Ø ∩ {13 = Ø

Inklusia (K((LNM)) & (KIL) N(KIM)) seda replatí pre pasiehu bojien mozin K, LaM.

3) Zishike, či pre sasoda brojicu množin K, L a M glali KU(LAM) = (KAL)UM ar novnost neplate, plate aspon niestora a instrini?

Riesenie.







(KAL)UM

Obrashy narraciju se inslusia (KU(LAM)) 2 ((KAL)UM) ocrejme platit pre hubovolné K, L a M nebude. Tiex nevenacijú, xe ani insluisia (KU(LNH)) = ((KNL)UM)) nebucle gladit pre lubovolné K, L a M.

Dobaiseme obe Surdenia:

[ ] Najdeme sonbrapuslad pomerou obreight:





(KAL) UM

Tvolme leda K= {13 a L=M= Ø. Potom plati:

· KU(LNM) = {13/(BNØ) = {13 U Ø - {13

· (KNL)UM = (₹13 NØ)UØ = ØUØ = Ø

Indlivia (KU(LMM)) 2 ((KML) UM) teda neplati pre hazidu trajicu morink, Lat.

1 Najdeme sonbaprislad jonecou obassa.





KU(LAM)

Zvolme heda M= { 23 a K= L = \$. Botom plati:

· KU(LAM) = DU(On ERG = DU Ø = D

· (KAL)UM = (OA) UM3 = ØU 523 = 523

Inklusia (KU(LNM)) & ((KNL)UM) leder neplatí pre saxolu bojica moxim K, Latt.