凯撒密码

The Caesar Cipher 刘卓

凯撒密码,或称凯撒加密、凯撒变换、变换加密,是一种最简单且最广为人知的加密技术。距今已有 2000 余年的历史。

凯撒密码属于密码学中的替换加密,即密文是由明文中的所有字母在字母表上向后(或向前)按照 一个固定数目进行偏移而生成。

1 加密

首先需要设置偏移量:

例 1

当偏移量为 16 时,得到如下加密方法。所有的字母 A 向拉丁字母表右移动 16 位,将被替换成字母 Q,字母 B 向字母表右移动 16 位变成字母 R,以此列推。

A	В	С	D	Е	F	G	Н	I	J	K	L	Μ	N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
Q	R	S	Т	U	V	W	X	Y	Z	A	В	С	D	E	F	G	Н	Ι	J	K	L	Μ	N	О	Р

如明文:Person。加密后可以得到:FUHIED。

由此我们可以知道,密钥空间 |K| = 密钥数量 = 26。

或者 |K| = 25, 当偏移量为 26 时, 字母 A 替换成字母 A 这种情况不算。

例 2

使用 Python 程序加密 I am a person.

```
Plaintext = 'iamaperson'
ciphertext = ''
key = 4 %偏移量

for i in Plaintext:
   if (ord(i) + key) > 122:
        alpha = chr((ord(i) + key) - 26)
```

```
else:
    alpha = chr(ord(i) + key)
    ciphertext += alpha
print(ciphertext)
```

输出: meqetivwsr

作为明文时一般没有空格,大小写也不区分。

2 解密

由于**拉丁字母表**中的字母有且仅有 26 个,使得凯撒密码易受频率分析和暴力破解的攻击。最多 26 种可能性即可破解。

例 3

破解密文: exxegoexsrgi

使用 Python 程序破解:

```
cipher = 'exxegoexsrgi'

for j in range(26):
    Plaintext = ''
    for i in cipher:
        if (ord(i) - j) < 97:
            alpha = chr((ord(i) - j) + 26)
        else:
            alpha = chr(ord(i) - j)
        Plaintext += alpha
    print(Plaintext)</pre>
```

输出:

Shift	Output
A	exxego exsrgi
B	dwwdfndwrqfh
C	cvvcemcvqpeg
D	buubdlbupodf
E	attack at once
F	zsszbjzsnmbd
X	haahjrhavujl
Y	gzzgiqgzutik
Z	fyyfhpfytshj

由此可知,解密后明文为 attack at once

3 凯撒密码的改进

是否觉得凯撒密码太过于简单被破解? 我们有三种方法可以使得密文更难破解:

- 随机替换 (Randomize the Order of Substitution)
- 特殊符号替代 (Homophonic Substitution)
- 多字母替代 (Poly-alphabetic Substitution)

3.1 随机替换

即不按照字母表顺序进行替换,而是随机移位,使得每个字母——对应。如:

a	b	c	d	е	f	g	h	i	j	

计算密钥空间。我们知道'A'的偏移选择一共有 26 种(包括自己),'B'的偏移选择一共有 25 种,以此列推。密钥空间一共就有 26 种,介于 2⁸⁸ 和 2⁸⁹ 之间。相比起传统的凯撒密码,破解难度大大提升。然而,该方法还是易受频率分析的影响而被破解。明文和密文仍然存在遵循字母的频率分布。即统

图 1: 英语语言材料中的字母频率

明文足够情况下,通过对密文的出现字母频率分析,依然可以推理出明文。

3.2 特殊符号替代

字母可以使用特殊符号替代,标点符号,数字,数学符号,希腊字母表,甚至是 emoji 表情都可以。 并且每个字母可以分配多个密文符号。

O	p	q	r	S	t	u	V	W	X	y	Z
[9		{	}	:	;	7	<	>	5	?
8	*		Ω	*	÷	U				Ŏ	
∞				þ		\hbar				10 E26	
				#	1						

图 2: 特殊符号替代

例 4

密文 $\Diamond \Box \Box \Delta$ 既可以是 FOOD 也可以是 AMMO。

例 5

明文 OK 既可以是"83" 也可以是"[3"。

相比随机替换,不容易被频率分析破解。

3.3 多字母替代

1467 年,莱昂·巴蒂斯塔·阿尔贝蒂(Leon Battista Alberti)发明了密码盘。允许发送者对明文的不同部分使用不同的字母。16 世纪,有人根据给定的密钥使用多个凯撒密码对明文进行加密。

例 6

A	В	С	D	E	F	G	Н	I	J	K	L	M	N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
R	S	Т	U	V	W	X	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	О	Р	Q
E	F	G	Н	I	J	K	L	М	N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z	A	В	С	D
V	W	X	Y	Z	A	В	С	D	Е	F	G	Н	Ι	J	K	L	М	N	О	Р	Q	R	S	Т	U

其中, 密钥 (Key) 为 REV

对明文 Avenged Sevenfold 进行加密:

明文	A	V	E	N	G	E	D	S	E	V	Е	N	F	О	L	D
Key1	R			E			U			M			W			U
Key2		Z			K			W			I			S		
Key3			Z			Z			Z			I			G	
密文	R	Z	Z	E	K	Z	U	W	Z	M	I	I	W	S	G	U

得到密文 RZZEKZUWZMIIWSGU

多字母替代的密钥空间等于 26 的密钥长度次方。如果 Key = WATER,则密钥空间为 26⁵。 其安全性再被发明后的三个世纪内都没有被破解。直至 1863 年被查尔斯·巴贝奇 (Charles Babbage) 使用 Kasiski's 测试,利用推断 Key 的长度,破解多字母替代加密法。