Corrigé proposé par YAHYA.HABBANI yahyahabbani@gmail.com CPGE OUJDA

Quelques aspects de la chimie du Titane

1^{ère}partie Propriétés atomiques et cristallines

1 Aspects atomiques et cristallines du titane :

1.1 L'élément titane :

1.1.1 Isotopes:

Les isotopes sont des atomes de même numéro atomique (différent par leurs nombres de masse).

1.1.2 La configuration électronique de l'atome de titane dans son état fondamental :

$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^2 (1)$$

La couche de valence du titane est $4s^23d^2$ donc le titane est un élément du bloc d (élément de transition).

1.1.3 La comparaison entre les deux configurations électroniques :

1.1.3.1.La différence entre les deux configurations électroniques est :

$$E(Ti^*) - E(Ti) = 4E_{3d}(Ti^*) - 2E_{3d}(Ti) - 2E_{4s}(Ti)$$
(2)

1.1.3.2.

$$E(Ti^*) - E(Ti) = 4(-13, 15) - 2(-20, 13) - 2(-9, 86) \Rightarrow E(Ti^*) - E(Ti) = 7,38eV$$
 (3)

Donc $E(Ti^*) > E(Ti)$ et par suite la configuration électronique de 1.1.2. est celle de l'état fondamental.

1.1.4 Les ionisations possibles de titane :

Les ions que l'on peut former à priori du titane sont : Ti^{2+} et Ti^{4+} .

1.2 Aspects cristallographiques de quelques composés du titane :

1.2.1 Le titane et son oxyde :

1.2.1.1.Une variété allotropique est la variété d'un corps ayant la capacité d'exister sous plusieurs formes de structures cristallines différentes sous différentes conditions physiques de pression et température (même état physique mais différentes phases).

1.2.1.2.La maille élémentaire du titane est celle à base losange :

On a ci-dessus, les représentations compacte et éclatée d'une structure HC, à droite la maille à base losange (maille élémentaire d'une structure HC) et à gauche la maille triple à base hexagonale.

1.2.1.3.Le paramètre c de la maille HC:

$$c = \sqrt{\frac{8}{3}}a \Rightarrow c = 0,482nm \tag{4}$$

1.2.1.4.La compacité C du système hexagonal compact du titane :

On 2 atomes de titane par maille élémentaire et chaque atome est assimilé à une sphére dure de rayon $R=\frac{a}{2}$ donc la compacité est $C=\frac{2\frac{4}{3}\Pi R^3}{V_{maille}}$ avec $V_{maille}=a^2c\sin(60\check{r})=a^3\frac{\sqrt{3}}{2}\sqrt{\frac{8}{3}}$ soit finalement :

$$C = \frac{\Pi}{2\sqrt{3}} = 0.74\tag{5}$$

1.2.1.5.Les nombres d'oxydation du titane dans TiO_2 et Ti sont respectivement +IV et 0 donc le systéme TiO_2/Ti est couple redox et le rapport des volumes molaires des deux espéces TiO_2 et Ti est :

$$\frac{V_m(TiO_2)}{V_m(Ti)} = \frac{M(TiO_2)}{M(Ti)} \frac{\rho(Ti)}{\rho(TiO_2)} \simeq 1.77 \Rightarrow V_m(TiO_2) > V_m(Ti)$$
(6)

Et par suite le titane peut être passivé par son oxyde.

1.2.2 Structure d'un alliage de titane : $Al_xNi_yTi_z$:

1.2.2.1. Représentation de la maille cubique de cet alliage :

1.2.2.2.La formule de l'alliage :

On a 4Al et 8Ni et 4Ti par maille soit donc $4AlNi_2Ti$ par maille et par suite la formule de l'alliage en question est :

$$AlNi_2Ti$$
 (7)

1.2.2.3.La compacité de l'alliage considéré C_a :

$$C_a = \frac{16\Pi}{3} \frac{(R^3(Al) + 2R^3(Ni) + R^3(Ti))}{a^3} \Rightarrow C_a \simeq 0.81$$
 (8)

La masse volumique de l'alliage considéré ρ_a :

$$\rho_a = 4 \frac{(M(Al) + 2M(Ni) + M(Ti))}{N_A a^3} \Rightarrow \rho_a = 6252 Kg.m^{-3}$$
(9)

1.2.2.4. L'alliage en question est plus compact et moins dense que l'acier d'où son avantage dans la réalisation des piéces mécaniques en aéronautique (moins de poids donc moins de portance et par suite économiser de l'énergie).

2^{éme}partie Métallurgie extractive du titane

2 Métallurgie extractive du titane :

2.1 L'approximation d'Ellingham :

L'approximation d'Ellingham consiste à prendre $\Delta_r H^o$ et $\Delta_r S^o$ indépendantes de la température ou à prendre

 $\Delta_r C_p^o = \frac{d\Delta_r H^o}{dT} = T \frac{d\Delta_r S^o}{dT} \simeq 0 \tag{10}$

2.1.1 La réaction de réduction de TiO_2 par le carbone :

$$TiO_2(s) + 2C(s) \rightleftharpoons Ti(s) + 2CO(q)$$
 (11)

2.1.2 Les grandeurs standards de la réaction précedente :

D'aprés les données de l'épreuve l'enthapie et l'entropie standards de la réction précédente, dans l'approximation d'Ellingham, sont : $\Delta_r H^o = 724 K J.mol^{-1}$ et $\Delta_r S^o = 364 J.K^{-1}.mol^{-1}$ et par suite l'expression de l'enthalpie libre standard de la réaction :

$$\Delta_r G^o(T) = 724 - 0.364T(KJ.mol^{-1})$$
(12)

Or la température d'inversion est solution de $\Delta_r G^o(T_i) = 0$ soit donc :

$$T_i = \frac{724}{0.364} \simeq 1989K \tag{13}$$

La réduction de TiO_2 est thermodynamiquement possible veut dire que $K^o(T) > 1$ donc $\Delta_r G^o(T) < 0$ or $\Delta_r G^o(T)$ est une fonction décroissante de T donc pour $T > T_i \simeq 1989K$.

2.2 Carbochloration:

2.2.1 La constante d'équilibre de la réaction(3) à 1200K:

D'aprés les données de l'épreuve et dans l'approximation d'Ellingham l'enthalpie et l'entropie standars de la réaction (3) sont : $\Delta_r H_3^o = 182 K J.mol^{-1}$ et $\Delta_r S_3^o = 63.5 J.K^{-1}.mol^{-1}$ et par suite l'enthalpie libre standard de la réaction (3) à 1200 K est $\Delta_r G_3^o (1200 K) \simeq 106 K J.mol^{-1}$ soit finalement :

$$K_3^o = \exp(-\frac{\Delta_r G_3^o(1200K)}{RT}) \Rightarrow K_3^o = 2.4810^{-5}$$
 (14)

Notons ξ l'avancement de la réaction (3) à l'équilibre alors :

 $n(O_2(g)) = n(TiCl_4(g)) = \xi$ et $n(Cl_2(g)) = n_o - 2\xi$ avec $n_o = 10mol$ la quantité initiale de dichlore (le réactif limitant), aprés simplification et en supposant que les gaz intervenant sont assimilés à des gaz parfaits la constante d'équilibre K_3^o s'exprime en fonction de l'avancement ξ comme suit :

$$K_3^o = \frac{\xi^2}{(n_o - 2\xi)^2} \tag{15}$$

Et par suite:

$$\xi = \frac{n_o \sqrt{K_3^o}}{1 + 2\sqrt{K_3^o}} = 4.9310^{-2} mol \tag{16}$$

Si la réaction est supposée totale la quantité formée de $TiCl_4(g)$ sera $n_{max} = \frac{n_o}{2} = 5mol$ donc le rendement de la réaction est :

$$\eta_3 = \frac{\xi}{n_{max}} \Rightarrow \eta_3 \simeq 9.910^{-3} \tag{17}$$

2.2.2 L'effet de la température sur la réaction (1) :

Daprés les données de l'épreuve :

 $\Delta_r H_1^o = -39 K J.mol^{-1} \text{ et } \Delta_r S_1^o = 242.3 J.K^{-1}.mol^{-1} \text{ donc}$:

$$\Delta_r G_1^o(T) = -39 - 0.242T \ll 0 \forall T \Rightarrow K_1^o(T) >> 1 \forall T$$
 (18)

Donc la réaction (1) est favorisée dans le sens direct quelque soit la température.

2.2.3 Utilisation d'une température intermidiaire :

Une température intermidiaire pour que le carbone intervient par le couple CO(g)/C(s).

2.2.4 Utilité d'une diminution de la température :

Diminuer la température des produits jusqu'à liquéfaction de chlorure de titane puis le séparer du mélange.

2.2.5 Rendement de la réaction en présence de carbone :

La quantité de chlorure de titane obtenue à l'équilibre ce n'est que l'avancement ξ à l'équilibre. La constante d'équilibre de la réaction en question est :

$$K_1^o = \frac{4RT}{P^oV} \frac{\xi^3}{(n_o - 2\xi)^2} \tag{19}$$

Or

$$K_1^o = exp(-\frac{\Delta_r G_1^o}{RT}) \Rightarrow K_1^o = 2.310^{14}$$
 (20)

Cette constante est trés grande donc la réaction est quantitative et par suite $\xi \simeq \frac{n_o}{2} = 5 mol$ soit donc un rendement

$$\eta_1 \simeq 1$$
 (21)

Remarque: à l'aide d'une résolution par Maple:

$$n_1(TiCl_4(g)) = \xi = 4.999mol$$
 (22)

Le rendement de cette réaction est donc :

$$\eta_1 = \frac{n(TiCl_4(g))}{\frac{n_o}{2}} \Rightarrow \eta_1 = O.99 \tag{23}$$

2.2.6 Effet de la pression sur le déplacement de la réaction considérée :

Une diminution de pression, à température et à composition constantes, déplace la réaction considérée dans le sens d'augmentation de nombre de moles gazeuses donc dans le sens direct et vice versa.

2.3 Obtention du titane:

2.3.1 Les grandeurs standards de la réaction (2) :

Calculons l'enthalpie et l'entropie standars de la réaction(2) :

$$\Delta_r H_2^o \simeq -450 K J. mol^{-1} \tag{24}$$

$$\Delta_r S_2^o \simeq -142 J. K^{-1}. mol^{-1}$$
 (25)

Soit donc l'enthalpie libre standard à T=1200K :

$$\Delta_r G_2^o \simeq -280 K J. mol^{-1} \tag{26}$$

2.3.2 La constante de la réaction(2) :

$$K_2^o = exp(\frac{280}{8.3141.2}) \simeq 1.510^{12} >> 1$$
 (27)

Donc la réaction (2) est quantitative et par suite

$$n(Ti(s)) = n_1(TiCl_4(g)) = 4.999mol \Rightarrow m(Ti(s)) \simeq 239g!!$$
 (28)

Remarque : Dans ce procédé c'est TiO_2 normalement qui est limitant (pour que le procédé soit rentable) donc

$$n(Ti(s)) = n_o(TiO_2(s)) \Rightarrow m(Ti(s)) \simeq 60Kg$$
 (29)

 $3^{\grave{e}me}$ partie

Etude thermodynamique de la corrosion humide du Titane

3 la corrosion humide du Titane :

3.1 Les domaines de stabilité des différents éléments et leurs natures :

Zone	Elément corréspondant	Nature de domaine
A	Ti(s)	d'existence
В	Ti^{2+}	de prédominance
С	$TiO_2(s$	d'existence
D	$Ti_2O_3(s)$	d'existence
Е	TiO(s)	d'existence

3.2 Différentes zones et leurs natures :

Zone	Nature de la zone
A	Immunité
В	Corrosion
С	Passivation
D	Passivation
Е	Passivation

3.3 Détermination du potentiel standard redox E_2^o :

Pour le couple TiO_2/Ti^{2+} la demi-équation électronique est :

$$TiO_2 + 4H^+ + 2e^- \leftrightarrows Ti^{2+} + 2H_2O$$
 (30)

L'equation de la frontière corréspondante est :

$$E_1 = E_1^o - 0.12pH - 0.03log(C_o) (31)$$

Et puisque le point T appartient à cette frontière alors :

$$E_1^o = -0.8 + 0.48 - 0.18 = -0.5V (32)$$

Pour le couple TiO_2/Ti_2O_3 , on a :

$$2TiO_2 + 2H^+ + 2e^- \leftrightarrows Ti_2O_3 + H_2O$$
 (33)

et l'équation de la frontière corréspondante

$$E_2 = E_2^o - 0.06pH (34)$$

Or le point T appartient à cette frontière donc :

$$E_2^o = -0.56V (35)$$

3.4 Passivation du titane :

Dans le cas d'une solution aérée le titane est oxydé par le dioxygéne selon l'équation-bilan :

$$Ti + O_2 \rightarrow TiO_2$$
 (36)

Dans le cas d'une solution desaérée :

$$Ti + 2H_2O \to TiO_2 + 2H_2 \tag{37}$$

3.5 Utilité de titane :

Dans les deux cas le titane est passivé d'où son intérêt dans la fabrication des pièces métalliques.