Monte Carlo Algorithms

Dmytro Kedyk

Some Applications

- Concurrent skip list
- Option pricing with binomial tree
- World cup winner prediction
- Quantifying and comparing system performance
- Fun interview questions

Learning Outcomes

- Understand advantages of randomization
- Be able to generate random numbers and other objects
- Add simulation to your generic solution method toolbox
- Easy perform traditionally complex statistical analysis
- Correctly evaluate and compare system performance

Topics

- Quick review of probability
- Theory of randomization
- Generation of random objects
- Monte Carlo method
- Bootstrap method

What is Probability

- Measures likelihood of events E_i
- E_i are subsets of a sample space S
 - E.g. S can be real numbers and E_i intervals
 - − Samples $x \in S$ aren't events!
- Defined by axioms:
 - Prob(E_i) ≥ 0
 - $-\operatorname{Prob}(S) = 1$

– For disjoint events Prob($\cup E_i$) = $\sum E_i$

What is a Distribution

- Uses **probability density function** (pdf) f(x) to assign values to $x \in S$
 - $\forall E \operatorname{Prob}(E) = \int_{x \in E} f(x)$
 - Values f(x) need not be probabilities!
- For connected range events **cumulative distribution function** (cdf) $F(x) = \int_{\infty < t \le x} f(t)$ directly gives probabilities

Die Sum Distribution

- $f(x) = \max(0, (6 |7 x|)/36)$
- F(8) F(5) = Prob(sum is 6, 7, or 8)

Normal(m, q) Distribution

- *m* is mean, *q* standard deviation
- Models many events, heavily used in statistics
- $f(x) = \exp(-((x-m)/q)^2/2)/(q\sqrt{2\pi})$

Evaluating Normal CDF

- E.g. two-sided confidence interval is 2F(x) − 1
- $F(x) = 0.5 + erf(x/\sqrt{2})/2$
- Can't express erf in terms of elementary functions, must approximate:
 - $-erf(x) \approx 1 (1 + \sum_{0 \le i < 6} a_i x^i)^{-16}$
 - a_i are 0.0705230784, 0.0422820123,
 0.0092705272, 0.0001520143, 0.0002765672,
 0.0000430638
 - approximation has ≤10⁻⁷ error

Using Distributions

- Often don't know the right distribution!
 - Every distribution is a good or bad model for some events
 - E.g. normal is a bad model for flying bird's avoiding a pole
- In many cases need only a summary
 - Expected value is $M = \int_{x \in S} xf(x)$
 - Variance is $E[(x M)^2]$
- Summaries may lose information
 - E.g. for multi-peak data M doesn't mean much

Geometric(p) Distribution

- How long it takes for p-coin to give "tails"
- x discrete, $f(x) = (1 p)^{x-1}p$
- Models waiting for specific event, E[x] = 1/p

Uniform(a, b) Distribution

- Easy to sample from, basic building block
- f(x) = 1/(b a) if $a \le x \le b$ and 0 otherwise
- Used for no information models

Topics

- Quick review of probability
- Theory of randomization
- Generation of random objects
- Monte Carlo method
- Bootstrap method

Randomization Helps

- In every game there is an optimal randomized strategy
- But may not be optimal deterministic one
- E.g. rock-paper-scissors random choices draw on average
- But can learn to defeat a clever deterministic strategy, e.g. using machine learning

Randomized Algorithms

- Game between algorithm and input
 - Using rand() may avoid bad worst cases on average
- Randomness in data ≠ rand()
- But may help too
 - Worst case input may be unlikely
 - Thus many algorithms are fast in practice and slow in theory
 - E.g. unbalanced binary tree

Quicksort

 Pick a pivot, split array into < pivot and ≥ pivot, and recurse on each half

- How to pick? first, last, median of 3 may give $O(n^2)$ runtime
- Random!
 - $O(n \ln(n))$ runtime on average
 - Also tail inequality Prob(runtime > O(nln(n))) is exponentially small!

Types of Randomized Algorithms

- Las Vegas expected performance
 - E.g. random pivot quicksort E[runtime] = O(nln(n))
- Monte Carlo expected correctness
 - E.g. Miller-Rabin primality test tiny chance of error
 - Repeat to reduce error
- Often randomized algorithms are the fastest known

Topics

- Quick review of probability
- Theory of randomization
- Generation of random objects
- Monte Carlo method
- Bootstrap method

What is a Random Number Sequence?

- Hard to define exactly, but:
- A sequence is random if can't predict next value with probability > that of a guess

Is a sequence containing 10⁹ consecutive 0's

random?

Getting Random Numbers

- Hire a coin flipper
- Measure physical phenomena, e.g. atmospheric noise or radioactive decay
- Record CPU or hard drive activity, mouse movement, keyboard actions, etc
- Slow and unportable!

Pseudorandom Numbers

- Generated deterministically and indistinguishable from random
- General algorithm:
 - Start from some initial state
 - Output and the next state are functions of the current state

Generator Quality

- Produce random-looking outputs
 - Period ≥ 2⁶⁴ after how long the sequence repeats itself
 - High equidistribution largest k for which consecutive k values can be any values
 - Pass statistical tests can't reject hypothesis that the sequence is random

Generator Requirements

- Return random double $u \in (0, 1)$, not [0, 1], to make $\log(u)$ well-defined
- Simple, fast, and portable
- Optionally generate independent streams for parallelization

Linear Congruential Generator

- Single word state s
- Transition s = (as + c) % m
 - a, c, m are picked constants
- u = (s + 1)/(m + 1)
- E.g. a = 2685821657736338717, $m = 2^{64}$, c = 0, $s_0 = 123456789$
 - $s_1 = 8624929095735532502$
 - $-u_1 = 0.46755834315649508$

Linear Congruential Generator

- Don't use as is!
 - Period of the lower k bits = 2^k
 - Fails many tests
 - Multiplication needs double precision to avoid overflow

Picking the Initial State

- Function of system time and a password fast, simple, portable, and very random
- Operating system random source for cryptography
- Restored generator state from the last run complete independence of generator runs

Xorshift

- Much better generator, transition
 - Interprets state as Boolean vector
 - And multiplies it by a Boolean matrix
- The matrix has special form can implement using shift and xor

Xorshift Code

```
class Xorshift
    unsigned int state;
    enum{PASSWORD = 19870804};
public:
    Xorshift(unsigned int seed = time(0) ^ PASSWORD)
        assert (numeric limits < unsigned int>::digits == 32);
        state = seed ? seed : PASSWORD;
    static unsigned int transform (unsigned int x)
        x ^= x << 13;
        x ^= x >> 17;
        x ^= x << 5;
        return x;
    unsigned int next() {return state = transform(state);}
    double uniform01() { return 2.32830643653869629E-10 * next(); }
};
```

Xorshift Properties

- 13, 17, and 5 are picked by theory, exhaustive search, and testing
- Minor quality problems
 - The period is 2^{32} 1 (state is never 0) too small
 - Matrix multiplication is a linear operation bits of successive numbers are correlated
- To remove correlation and increase period
 - Use 64-bit state, this changes constants
 - Combine with a simple LCG

Improved Xorshift

```
class QualityXorshift64
    unsigned long long state;
    enum\{PASSWORD = 19870804\};
public:
    QualityXorshift64 (unsigned long long seed =
        time (0) ^ PASSWORD)
        assert (numeric limits < unsigned long long >:: digits == 64);
        state = seed ? seed : PASSWORD;
    static unsigned long long transform (unsigned long long x)
        x ^= x << 21:
        x ^= x >> 35;
        x ^= x << 4;
        return x * 2685821657736338717ull;
    unsigned long long next() {return state = transform(state);}
    double uniform01() {return 5.42101086242752217E-20 * next();}
```

Improved Xorshift Propeties

- Doesn't generate 0, so $u \in (0, 1)$
- Very fast, passes most tests
- Period 2⁶⁴ is long enough for all practical uses
- Use as default generator unless have another good one from some API
- Can use transition function for hashing

Other Good Generators

MRG32k3a

Slower, but passes all tests and supports independent streams

• RC4

- Much slower, but cryptographically secure
- Mersenne Twister
 - Same speed and test performance, and huge state
 - But complex implementation and uses 4KB memory

Samples from Probability Distributions

- Inverse method cumulative distribution function F is a function $x \rightarrow [0,1]$, so $F^{-1}(u)$ is a random variate
- Can calculate F⁻¹ numerically

Inverse Method Example

- Exponential distribution with parameter $I: F(x) = 1 e^{-lx}$
 - _ Solve F(x) = u to get $x = -\ln(1 u)/I$
 - _ Simplifies to $-\ln(u)/l$ since u and 1 − u have the same distribution
- Many other methods for generation, most are distribution-specific
 - Boost has good API

Some Continuous Generators

• Uniform(*a*, *b*) with *a* < *b*:

```
double uniform(double a, double b)
{return a + (b - a) * uniform01();}
```

Exponential – memoryless waiting times:

```
double exponential01() {return
-log(uniform01());}
```

- Many more complex ones
 - Normal, gamma, Cauchy, etc.

Some Discrete Generators

• Bernoulli(p) – 1 with prob p and 0 with 1 – p:

```
bool bernoulli(double p) {return
uniform01() <= p;}</pre>
```

 Geometric(p) – number of times Bernoulli(p) = 0 before it's 1:

```
int geometric(double p)
{
   int result = 0;
   while(!bernoulli(p)) ++result;
   return result;
}
```

Example Output

```
GlobalRNG.uniform01<> 0.904229
GlobalRNG.uniform<10, 20> 10.2389
GlobalRNG.normal01<> 0.508248
GlobalRNG.normal(10, 20) -8.47315
GlobalRNG.exponential01() 1.42522
GlobalRNG.gamma1(1.5) 0.355508
GlobalRNG.weibull1(20) 0.894177
GlobalRNG.erlang<10, 2> 13.6015
GlobalRNG.chiSquared(10) 10.7126
GlobalRNG.t<10> 0.492003
GlobalRNG.logNormal<10, 20> 5.51916e+010
GlobalRNG.F(10 ,20) 2.49824
GlobalRNG.cauchy01<> 0.585426
GlobalRNG.binomīal(0.7, 20) 14
GlobalRNG.geometric(0.7) 0
GlobalRNG.poisson(0.7) 2
```

Generating Random Objects

- Permutations swap the first element with a random one and recursively permute the remaining n – 1
- Combinations of k out of n use above for k steps

Topics

- Quick review of probability
- Theory of randomization
- Generation of random objects
- Monte Carlo method
- Bootstrap method

Law of Large Numbers

- Average of many enough samples is the true average
 - Given n iid samples X_i from distribution T such that $E[X_i] = M$, $(\sum X_i)/n = X \to M$ for $n \to \infty$
- x → sample mean of T
- $s = (\sum (X_i \overline{X})^2)/(n-1) \rightarrow \text{sample variance of } T$
 - Divisor for s is n-1
 - _ Because variance = $E[X_j (\sum_{i \neq j} X_i)/n]$

Central Limit Theorem

- Essentially LLN with error bounds
 - Given n iid samples X_i from a distribution with mean M and finite variance V, for $n \to \infty$, $X \sim \text{normal}(M, V/n)$
 - LLN and technical Slutsky's theorem allow using s instead of V
- True mean M is $\overline{x} \pm 2\sqrt{s/n}$ with 95% probability!
 - The multiplier is 1.96 actually, but use 2 for convenience, or others

Monte Carlo Idea

- Define quantity of interest X and compute it using CLT
 - Need function f producing iid events with value X_i such that $E[X_i] = X$
- Important events must be generated often enough
 - Otherwise need very large n for CLT to kick in
 - Rare event problem!

Monte Carlo Algorithm

- Define X, pick f and confidence level
- Until out of patience or (n is large enough and error small enough)
 - $-X_{i} \leftarrow f()$
 - $_{-}$ Incrementally update m and s with X_{i}
- Return $X \leftarrow \overline{x} \pm \text{error}$

Computing TT

- Area of a circle with radius r is πr^2 and of its enclosing square $4r^2$
- X = π/4 = (area of the circle)/(area of the square)

 $\pi \approx 4 \times 22/(22 + 6) \approx 3.142$

Computing TT

- f generates random points p ∈ (-1, 1) × (-1, 1)
 and returns X_i = (distance(p, (0, 0)) ≤ 1)
- $X_i = 1$ and $X_i = 0$ happen often enough
- After 10^8 2D uniform(-1, 1) variates π = 3.14182 \pm 0.000493 with 99.73% confidence

Calculating Mean and Error Incrementally

- Store and update $\sum X_i$ and $\sum X_i^2$
- After n > 1 simulations

$$-\overline{x} = \sum X/n$$

$$-s = \max((\sum X_i^2 - x^2/n)/(n-1), 0)$$

- Need max for numerical issues!
- Variance of mean = s/n

Monte Carlo Good and Bad

- O(n) time and O(1) space
- A simulated event can produce k values
 - Effectively perform k related simulations at cost of one
- O($1/\sqrt{n}$) convergence is too slow
 - Variance reduction via common random numbers
 - fix everything that isn't simulated
 - E.g. when simulating performance of a randomized algorithm, run all simulations on the same input

Predict World Cup Winner

- Highest rated team may not be most likely winner
 - Team with relatively easiest opponents is
- Team ratings R_i determine game result probabilities
 - Prob(A wins against B) = $1/(1 + 10^{D})$, where $D = (R_B R_A)/400$
 - Use this to simulate the tournament tree
- Expected winner is the most frequent winner

Topics

- Quick review of probability
- Theory of randomization
- Generation of random objects
- Monte Carlo method
- Bootstrap method

Motivation

- Want to estimate E_S[f(S)] where f is some function and S iid sample of size n from distribution T
- Monte Carlo applies if f = mean and can sample from T
- But what if f = median and have small fixed sample?
- Obvious f(S) can be a bad estimator bias and no error bounds

Bootstrap Idea

- f(S) has some unknown distribution W, e.g. W is normal if f = mean
- S defines an empirical distribution with CDF $F(x) = \sum_{i} (x > S_{i})/n$
- Dvoretzky-Kiefer-Wolfowitz inequality: $F \rightarrow T$ exponentially fast as $n \rightarrow \infty$
 - Let r_j be iid sample of size n from F
 - Heuristically $f(r_j)$ has about the same distribution as f(S)!
- f(r_i) are effectively random samples from W

Algorithm

- b times for some large b
 - $r_i \leftarrow n$ random items from s with replacement
 - $= f_i \leftarrow f(r_i)$
 - $_{-}$ Return average f_{i} and its confidence interval
- No CLT distribution of f(S) may not be normal
 - Compute confidence interval by sorting f_i and finding those that enclose wanted confidence level %

Example

- On 1000 uniform01 values, with f = mean with confidence 95%
 - CLT gave 0.509 \pm 0.018
 - Bootstrap with b = 10000 gave 0.500 -0.018/+0.019
- Bootstrap gave correct confidence without knowledge of the normal distribution!
- With f = median and same parameters bootstrap gave 0.480 –0.030/+0.028
- More complicated intervals may be better

Parameters

- Usually b = 10000 or as much as feasible
- No point to have $b \to \infty$, *n* limits accuracy
 - Number of distinct resamples ≈ $4^n/(n\sqrt{\pi n})$
 - Don't have something for nothing bootstrap effectively extracts all info from S

Extentions

- Works with functions of multiple samples
 - E.g. to compute difference of medians of two samples, resample from both and use the difference of the resample medians
 - Can do many statistical tests this way

References

• Kedyk, D. (2018). Commodity Algorithms and Data Structures in C++: Simple and Useful. 3rd Edition. CreateSpace.

Lab

- Estimate π correctly to 3 decimal places
 - Use any programming language
 - That has a simple random number generator
 - Beware: accuracy of π ≠ accuracy of π/4
 - Multiplication by 4 magnifies the error