Análise da busca A* no problema do Puzzle

Thiago Alexandre Nakao França

Universidade Tecnológica Federal do Paraná – UTFPR Campo Mourão, Paraná, Brasil

nakaosensei@gmail.com

Resumo

O objetivo desse trabalho foi averiguar o desempenho da busca A* para resolver o problema do puzzle de 8 peças, nos experimentos a busca foi executada usando duas heurísticas, o número de peças fora do lugar e a distancia de Manhatam, por ser um trabalho de graduação também se fez necessário a implementação do algoritmo A* e das respectivas heuristicas.

1. Introdução

A estratégia de busca A*, é uma evolução do algoritmo guloso, nela não se considera somente o custo da expansão até um estado objetivo, mas o custo da caminho do nó até as suas expansões também é considerado.

Também, será considerado como estado objetivo o seguinte Puzzle: [1 2 3 ; 4 5 6 ; 7 8 0].

2. Experimento I

No primeiro experimento, foi dado como entrada o seguinte puzzle:

[2, 3, 1; 0, 5, 6; 4, 7, 8].

O algoritmo A* foi executado sobre duas heuristicas, primeiro distancia de Manhatam, e depois peças fora do lugar, abaixo os resultados.

A* com Heurística = Distancia de Manhatam: Nós[Puzzles] no caminho ideal: 18 Nós[Puzzles] expandidos: 682

A* com Heurística = Peças fora do lugar: Nós[Puzzles] no caminho ideal: 18

Nós[Puzzles] expandidos: 7646

É notável que o custo da busca usando Manhatam foi menor.

3. Experimento II

No segundo experimento, foi dado como entrada o seguinte puzzle:

[1, 4, 5; 6, 8, 7; 0, 3, 2]

O algoritmo A* foi executado sobre duas heuristicas, primeiro distancia de Manhatam, e depois peças fora do lugar, abaixo os resultados.

A* com Heurística = Distancia de Manhatam:

Nós[Puzzles] no caminho ideal: 21 Nós[Puzzles] expandidos: 213

A* com Heurística = Peças fora do lugar:

Nós[Puzzles] no caminho ideal: 21 Nós[Puzzles] expandidos: 24553

Novamente tivemos um empate na quantidade de expansões no caminho ideal, porém uma grande diferença na quantidade de nós expandidos.

4. Experimento III

No terceiro experimento, foi dado como entrada o seguinte puzzle:

[5, 3, 1; 0, 8, 7; 6, 4, 2]

O algoritmo A* foi executado sobre duas heuristicas, primeiro distancia de Manhatam, e depois peças fora do lugar, abaixo os resultados.

A* com Heurística = Distancia de Manhatam: Nós[Puzzles] no caminho ideal: 22

Nós[Puzzles] expandidos: 566

A* com Heurística = Peças fora do lugar:

Nós[Puzzles] no caminho ideal: 22 Nós[Puzzles] expandidos: 40650

No terceiro e ultimo experimento, fica visivel que o custo da heuristica peças fora do lugar tende a ser muito maior que usando a distancia de Manhatam.

5. Conclusões

Após os testes, ficou claro que a busca foi um sucesso, pois para um problema como a resolução do A*, com um enorme espaço de estados o A* foi capaz de encontrar soluções próximas de 20 ticks, também foi notável que o uso da distancia de Manhatam sai mais barato que peças fora do lugar.