

dr inż. Rafał Kucharski

Lecture 2 Transport system as a complex system

dr inż. Rafał Kucharski
Zakład Systemów Komunikacyjnych
www.zsk.pk.edu.pl
Politechnika Krakowska

Demand

+

Supply

Travelers **demand** to travel (change location)
They are in place o and want to be get to place d at lowest cost c (shortest time t)

i.e.

in the morning people depart from homes to get to workplaces.

Warsaw 2015

Warsaw 2015

Tabela krzv	zowa mot	vwacia	poczatku	podróżv	* motywac	ia końca	podróży
I GO CIG INIE	2011 a 11101	, ,, ,, ,,	począnic	P G G G E ,	111017 Was	ja konca	pou. 02,

Liczebność		home work school Uni services in mall services not mall other motywacja końca podróży							
		do domu	do pracy	do szkoły	uczelnię	w WOH	poza WOH	inne	Ogółem
motywacj	dom	13	7865	1511	638	711	1342	3004	15084
podróży	praca	7244	334	7	20	241	338	568	8752
	szkoła	1472	1	5	0	5	12	44	1539
	wyższa uczelnia	560	20	0	13	15	22	49	679
	WOH	988	16	2	0	24	1 <i>7</i>	47	1094
	poza WOH	1691	49	2	2	23	112	95	1974
	inne	3211	326	15	15	78	142	465	4252
Ogółem		151 <i>7</i> 9	8611	1542	688	1097	1985	4272	33374

© WBR 2015

Travelers **demand** to travel (change location)
They are in place o and want to be get to place d at lowest cost c (shortest time t)

i.e.

in the morning people depart from homes to get to workplaces.

notation:

 $d_{od}(\tau)$ demand from origin o to destination d in time period τ

number of passengers/vehicles

 $d_{od}(\tau)$ from given place (where I am) to given place (where I want to be).

we need to discretize (space) and aggregate (people)

© Ortuzar

Transport supply

The transportation network (system) allows to satisfy (supply) the demand.

The need to travel (demand) is satisfied by travelling through the transport network (supply).

Transport supply

How can we allow people to travel?

- 1. By building the roads (road network)
- 2. By providing them services (trains, buses, trams, bike-sharing, car-sharing, ...)

Introduction to Transportation Planning dr inż. Rafał Kucharski rkucharski@pk.edu.pl

© ZSK, Krakowski Model Ruchu 2013

G(N,A) oriented, connected, directed **graph**

graph in math is another word for a network, i.e., a set of objects (called nodes) that are connected together.

The connections between the vertices are called edges or links.

 $n \in N$ node – crossing, junction, bus stop

 $a \in A$ arc, link – road (line) segment connecting two nodes

Two basic things we want to know about the **demand** and **supply** in the network

- $q_a(\tau)$ number of vehicles/pax on arc a at time τ demand
- $t_a(\tau)$ travel time of arc a at time τ supply

 $q_a(\tau)$ number of vehicles/pax on arc a at time τ demand

free-flow

congestion

jam

 $t_a(\tau)$ travel time of arc a at time τ supply

free-flow

delayed

stop-and-go

 $t_a(\tau)$ travel time of arc a at time τ

Supply - Demand

 $t_a(\tau)$ travel time of arc a at time τ depends on:

 Q_a link capacity, the average maximum number of vehicles that can travel along the road section in a time unit

 $q_a(\tau)$ number of vehicles (demand)

 v_0 free-flow speed

L length

$$t_a(\tau) = f(v_0, L_a, q_a(\tau), Q_a)$$

Supply - Demand

 $t_a(\tau)$ travel time of arc a at time τ

© Cascetta

Demand \rightarrow network flows

 $q_a(\tau)$ number of vehicles/pax on arc a at time τ

results from number of passengers that want to travel via this arc

total demand for trips $d_{od}(\tau)$

X

share that wants to use this arc (because arc is convenient/efficient)

Variability

How the system changes? Why the system changes?

Will the demand *d* change?
Will the flows *q* change?
Will the travel times *t* change?

$$\frac{dq_{a}(\tau)}{dx} \qquad \frac{dt}{dq}$$

we create (plan) the system to make it optimal but how the system will change after we change it?

Next week

- 1. Demand models
- 2. What are the trips?
- 3. Where do they come from?
- 4. Why people travel?
- 5. How to quantify it?
- 6. Four-stage model
- 7. Activity chains