Elementary Notions

Complex Numbers

 $\mathbb C$ is the field of complex numbers: $\alpha=a+b\cdot i$ with a and b reals and i the **imaginary** number : $i^2=-1$

We denote : $\overline{\alpha} = a - b \cdot i$ called the **complex conjugate** of α .

$$|\alpha| = \sqrt{a^2 + b^2}$$
 absolute value of α

$$|\alpha|^2 = \alpha \cdot \overline{\alpha}$$

because

$$\alpha \cdot \overline{\alpha} = (a + b \cdot i)(a - b \cdot i) = a^2 + ab \cdot i - ab \cdot i + (b \cdot i)(-b \cdot i) = a^2 - i^2 \cdot b^2 = a^2 + b^2$$

Radial representation of complex numbers

$$\alpha = |\alpha| \cdot \left(\frac{a}{|\alpha|} + \frac{b}{|\alpha|} \cdot i \right)$$
on a $\left(\frac{a}{|\alpha|} \right)^2 + \left(\frac{b}{|\alpha|} \right)^2 = 1$

So there is an angle $\theta \in [0, 2\pi[$ such that $\cos(\theta) = \frac{a}{|\alpha|}$ and $\sin(\theta) = \frac{b}{|\alpha|}$ $\alpha = |\alpha| \cdot (\cos(\theta) + \sin(\theta) \cdot i)$

Also:
$$cos(\theta) + i \cdot sin(\theta) = e^{i\theta}$$

Why?

On a
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 $\cos(\theta) = \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n}}{(2n)!}$ $\sin(\theta) = \sum_n (-1)^n \frac{\theta^{2n+1}}{(2n+1)!}$

One can try to do

$$e^{i\theta} = \sum_{n=0}^{\infty} \frac{(i\theta)^n}{n!} = \sum_{n=0}^{\infty} \frac{i^n \theta^n}{n!} = \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n}}{(2n)!} + i \cdot \sum_n (-1)^n \frac{\theta^{2n+1}}{(2n+1)!}$$

$$= \cos(\theta) + i \cdot \sin(\theta)$$

Our complex number can then be written as a "canonical" form $\alpha = \rho \cdot e^{i\theta}$ with ρ positive real : the **amplitude** of α , while θ is the **phase**

$$i = e^{i\frac{\pi}{2}}$$

$$-1 = e^{i\pi} = e^{-i\pi}$$

Some equalities : $e^{a+b}=e^ae^b$ $\overline{e^a}=e^{\overline{a}}$ --- in particular, if θ is real : $\overline{e^{i\theta}}=e^{-i\theta}$

Yet another one : $e^{ab} = (e^a)^b$

Hilbert spaces

In this course, vectorial spaces have in finite dimension!

For us : we choose a **basis**, that is, a set X, for instance $\left\{|0\rangle,|1\rangle\right\}$ (for now, just notation for set elements) -- $|\dots\rangle$ is called a **"ket"** One can say that $|0\rangle$ = "false" and $|1\rangle$ = "true"

From *X* one can build the set of linear combinations on *X*:

$$v = \sum_{x \in X} \alpha_x \cdot x$$

with $\alpha_x \in \mathbb{C}$

These are formal linear combinations, but they behave in the usual way:

$$id w = \sum_{x \in X} \beta_x \cdot x$$

then
$$v + w = \sum_{x \in X} (\alpha_x + \beta_x) \cdot x$$

we also have 0, the empty linear combination : $0 = \sum_{x \in X} 0 \cdot x$

and scalar multiplication is distributive $\beta \cdot v = \sum_{x \in X} (\beta \alpha_x) \cdot x$

When X is $\{|0\rangle, |1\rangle\}$, we get : $|v\rangle = \alpha \cdot |0\rangle + \beta \cdot |1\rangle$

(The "ket" notation is also used for vectors)

With the lexicographic ordering on X, : $|0\rangle < |1\rangle$ one can represent $|v\rangle$ as a column vector

$$|v\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
 Thus $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

A Hilbert space is a vector space with a **scalar product** and a **norm** In two dimensions:

$$\left\langle \left(\begin{array}{c} \alpha_1 \\ \beta_1 \end{array} \right) \middle| \left(\begin{array}{c} \alpha_2 \\ \beta_2 \end{array} \right) \right\rangle = \overline{\alpha_1} \cdot \alpha_2 + \overline{\beta_1} \cdot \beta_2$$

and the norm of v is $||v|| = \sqrt{\langle v|v\rangle}$

So in particular

$$||\alpha \cdot |0\rangle + \beta \cdot |1\rangle|| = \sqrt{\left\langle \left(\begin{array}{c} \alpha \\ \beta \end{array} \right) \left| \left(\begin{array}{c} \alpha \\ \beta \end{array} \right) \right\rangle} = \sqrt{\overline{\alpha}\alpha + \overline{\beta}\beta} = \sqrt{|\alpha|^2 + |\beta|^2}$$

From the scalar product we derive a notion of **orthogonality**:

we say that $v \perp w$ when $\langle v | w \rangle = 0$

For instance, $|0\rangle \perp |1\rangle$

A basis is **orthonormal** if all of its elements are pairwise orthogonal and if they are all of norm 1.

For instance, $\{|0\rangle, |1\rangle\}$ is an orthonormal basis.

In a Hilbert space we usually only consider orthonormal bases.

Note: $|v\rangle$ is always a column vector. Scalar product of $v=\begin{pmatrix} \alpha_1\\ \beta_1 \end{pmatrix}$ with $w=\begin{pmatrix} \alpha_2\\ \beta_2 \end{pmatrix}$ is

written

$$\left\langle \left(\begin{array}{c} \alpha_1 \\ \beta_1 \end{array} \right) \middle| \left(\begin{array}{c} \alpha_2 \\ \beta_2 \end{array} \right) \right\rangle = \overline{\alpha_1} \cdot \alpha_2 + \overline{\beta_1} \cdot \beta_2 = \left(\overline{\alpha_1} \ \overline{\beta_1} \right) \cdot \left(\begin{array}{c} \alpha_2 \\ \beta_2 \end{array} \right)$$

So we can say that $\langle v|w\rangle=\langle v|\cdot|w\rangle$ where $\langle v|$ is the row-vector, conjugate transpose of $|v\rangle$

We call $\langle v |$ a "bra"

"bra"'s are row-vectors while "ket"'s are column vectors.

Example of orthonormal basis:

$$|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

 $|-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$

Are they orthogonal?

$$\langle +|\cdot|-\rangle = \frac{1}{2} \Big(\Big(\langle 0|+\langle 1|\Big) \cdot \Big(|0\rangle - |1\rangle \Big) \Big) = \frac{1}{2} (1-1) = 0$$

So yes...

Another example:

$$| \circlearrowleft \rangle = \frac{1}{\sqrt{2}} (|0\rangle + i|1\rangle)$$
$$| \circlearrowleft \rangle = \frac{1}{\sqrt{2}} (|0\rangle - i|1\rangle)$$

To conclude:

The state of a qubit is of the form $\alpha \cdot |0\rangle + \beta \cdot |1\rangle$ of **norm 1** so $|\alpha|^2 + |\beta|^2 = 1$ in general, modulo a **global phase**, $\cos(\theta/2) \cdot |0\rangle + e^{i\phi} \sin(\theta/2) \cdot |1\rangle$ with $\theta, \phi \in [0, 2\pi[$

Finally, one can work with qu-n-bits with more than 2 valeurs : $\{|0\rangle, |1\rangle, |2\rangle... |n\rangle\}$

Tensor (Kronecker Product)

Morally, when given 2 qubits, the two corresponding particles are spacially separated.

The state of the joint system ends up being a vector in the tensor product of the two original systems.

If first qubit state space is spanned with $|0_a\rangle$, $|1_a\rangle$ and second qubit state space spanned with $|0_b\rangle$, $|1_b\rangle$

then the space of the two qubits in the tensor space is spanned with

$$|0_a0_b\rangle$$
, $|0_a1_b\rangle$, $|1_a0_b\rangle$, $|1_a1_b\rangle$

(of dimention 4)

With a third qubit $|0_c\rangle$, $|1_c\rangle$

The global state spave is

$$|0_c0_a0_b\rangle$$
, $|0_c0_a1_b\rangle$, $|0_c1_a0_b\rangle$, $|0_c1_a1_b\rangle$, $|1_c0_a0_b\rangle$, $|1_c0_a1_b\rangle$, $|1_c1_a0_b\rangle$, $|1_c1_a1_b\rangle$ (dimension... 8)

If I have n qubits, the memory state is of dimension 2^n : the superposition of all possible chains of n bits.

Question : how to denote this with column vector ? We need an ordering on the basis. We pick the lexicographic ordering: in the case of the 3-qbit system, we had c then a then b, so if \mathcal{H}_a is the state of the a-qubit (etc), the state $\mathcal{H}_c \otimes \mathcal{H}_a \otimes \mathcal{H}_b$

$$|0_{c}0_{a}0_{b}\rangle, |0_{c}0_{a}1_{b}\rangle, |0_{c}1_{a}0_{b}\rangle, |0_{c}1_{a}1_{b}\rangle, |1_{c}0_{a}0_{b}\rangle, |1_{c}0_{a}1_{b}\rangle, |1_{c}1_{a}0_{b}\rangle, |1_{c}1_{a}1_{b}\rangle$$

$$|\alpha_{000}\rangle \langle \alpha_{001}\rangle \langle \alpha_{011}\rangle \langle \alpha_{010}\rangle \langle \alpha_{101}\rangle \langle \alpha_{101}\rangle \langle \alpha_{111}\rangle \langle \alpha_{110}\rangle \langle \alpha_{111}\rangle \langle \alpha_{111}\rangle$$

If qubits a and b are in states
$$|a\rangle = \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix}$$
 et $|b\rangle = \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix}$

The memory state with a AND b will be

$$|a\rangle \otimes |b\rangle = (\alpha_1|0_a\rangle + \beta_1|1_a\rangle) \otimes (\alpha_2|0_b\rangle + \beta_2|1_b\rangle) = (\alpha_1\alpha_2) \cdot |0_a0_b\rangle + \dots$$
 where $|0_a0_b\rangle \equiv |0_a\rangle \otimes |0_b\rangle$

In column vector notation:

$$|a\rangle \otimes |b\rangle = \begin{pmatrix} \alpha_1 |b\rangle \\ \beta_1 |b\rangle \end{pmatrix} = \begin{pmatrix} \alpha_1 \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix} \\ \beta_1 \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \alpha_1 \alpha_2 \\ \alpha_1 \beta_2 \\ \beta_1 \alpha_2 \\ \beta_1 \beta_2 \end{pmatrix}$$

Note : $||v \otimes w|| = ||v|| \cdot ||w||$

And $\langle v_1 \otimes w_1 \, | \, v_2 \otimes w_2 \rangle = \langle v_1 \, | \, v_2 \rangle \cdot \langle w_1 \, | \, w_2 \rangle$ if the dimensions of v_1 and v_2 are the same, et and the dimensions of w_1 and w_2 are the same.

For instance : $\langle 01|00\rangle = \langle 0|0\rangle\langle 1|0\rangle = 0$ (they are orthogonal)