

1/3/4 (Item 4 from file: 351)
DIALOG(R) File 351:Derwent WPI
(c) 2006 The Thomson Corporation. All rts. reserv.

0003325115

WPI ACC NO: 1985-088391/198515

XRAM Acc No: C1985-038353

Continuous prepn. of carbon fibres - using gas phase reaction of organic metal cpd. and carrier gas

Patent Assignee: NIKKISO CO LTD (NIKK-N)

Inventor: ARAKAWA K

Patent Family (13 patents, 4 countries)

Patent Number	Kind	Date	Application Number	Kind	Date	Update
EP 136497	A	19850410	EP 1984109710	A	19840816	198515 B
JP 60054998	A	19850329	JP 1983162606	A	19830906	198519 E
			JP 198437246	A	19840301	
			JP 198477506	A	19840419	
<u>JP 60185818</u>	A	19850921	JP 1983162606	A	19830906	198544 E
			JP 198437246	A	19840301	
			JP 198477506	A	19840419	
JP 60224815	A	19851109	JP 1983162606	A	19830906	198551 E
			JP 198437246	A	19840301	
			JP 198477506	A	19840419	
			JP 1987117034	A	19830905	
US 4572813	A	19860225	US 1984638941	A	19840808	198611 E
<u>EP 136497</u>	B	19870506	EP 1984109710	A	19840816	198718 E
DE 3463529	G	19870611				198724 E
JP 1987049363	B	19871019	JP 1983162606	A	19830906	198745 E
			JP 198437246	A	19840301	
			JP 198477506	A	19840419	
JP 62282021	A	19871207	JP 1983162606	A	19830906	198803 E
			JP 198437246	A	19840301	
			JP 198477506	A	19840419	
			JP 1987117034	A	19870515	
JP 1992013447	B	19920309	JP 198437246	A	19840301	199214 E
JP 1992013448	B	19920309	JP 198477506	A	19840419	199214 E
EP 136497	B2	19920624	EP 1984109710	A	19840816	199226 E
JP 1992037166	B	19920618	JP 1983162606	A	19830906	199229 E
			JP 1987117034	A	19830906	

Priority Applications (no., kind, date): JP 1987117034 A 19870515; JP 1987117034 A 19830906; JP 1987117034 A 19830905; JP 198437246 A 19840301; JP 1983162606 A 19830906; JP 198477506 A 19840419

Patent Details

Number	Kind	Lan	Pg	Dwg	Filing Notes
EP 136497	A	EN	26		
Regional Designated States,Original:					DE FR GB IT
EP 136497	B	EN	3		
Regional Designated States,Original:					DE FR GB IT
JP 1992013447	B	JA	5		
JP 1992013448	B	JA	5		
EP 136497	B2	EN	11	3	
Regional Designated States,Original:					DE FR GB IT
JP 1992037166	B	JA	5		Division of application JP 1983162606

Based on OPI patent JP 62282021

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 60-054998
 (43)Date of publication of application : 29.03.1985

(51)Int.Cl. C30B 29/62
 C30B 29/02
 // C01B 31/02
 D01F 9/12

(21)Application number : 58-162606 (71)Applicant : NIKKISO CO LTD
 (22)Date of filing : 06.09.1983 (72)Inventor : ARAKAWA KOHEI

(54) PRODUCTION OF CARBON FIBER GROWN IN VAPOR PHASE

(57)Abstract:

PURPOSE: A carrier gas containing a carbon compound and an organotransition metal compound is heated to achieve high-efficiency production of carbon fibers by the vapor-phase growth process.

CONSTITUTION: N₂ gas from a bomb 12 is sent through the bypass 44 to the reactor tube 38 and its inside is replaced with N₂ gas by purging. Then, H₂ gas, as a carrier gas, is sent from the bomb 10 to the generator containing a carbon compound such as benzene 28 and the other generator containing an organotransition metal compound such as ferrocene 32. Then, the resultant carrier gas is combined with hydrogen sulfide gas from the bomb 14, then heated in an electric furnace at 600W1,300° C to effect the vapor-phase growth of carbon fibers.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

⑯ 日本国特許庁 (JP)

⑰ 特許出願公開

⑱ 公開特許公報 (A) 昭60-54998

⑲ Int.CI.

C 30 B 29/62
29/02
// C 01 B 31/02
D 01 F 9/12

識別記号

厅内整理番号

6542-4G
6542-4G
7344-4G
7211-4L

⑳ 公開 昭和60年(1985)3月29日

審査請求 未請求 発明の数 2 (全8頁)

㉑ 発明の名称 気相成長炭素繊維の製造方法

㉒ 特願 昭58-162606

㉓ 出願 昭58(1983)9月6日

㉔ 発明者 荒川 公平 東京都渋谷区恵比寿3丁目43番2号 日機装株式会社内

㉕ 出願人 日機装株式会社 東京都渋谷区恵比寿3丁目43番2号

㉖ 代理人 弁理士 浜田 治雄

明細書

1. 発明の名称

気相成長炭素繊維の製造方法

2. 特許請求の範囲

- (1) 炭素化合物のガスと有機遷移金属化合物のガスとキヤリヤガスとの混合ガスを加熱することを特徴とする気相成長炭素繊維の製造方法。
- (2) 混合ガスの加熱は600℃乃至1300℃である特許請求の範囲第1項記載の気相成長炭素繊維の製造方法。
- (3) 有機遷移金属化合物のガスとキヤリヤガスとの混合ガスを加熱することを特徴とする気相成長炭素繊維の製造方法。
- (4) 混合ガスの加熱は600℃乃至1300℃である特許請求の範囲第3項記載の気相成長炭素繊維の製造方法。

3. 発明の詳細な説明

〔発明の属する技術分野〕

本発明は、気相中で炭素繊維を製造する方法

に關し、更に詳細には、炭素供給源としての炭素化合物のガスと触媒並びに炭素供給源を兼ねる有機遷移金属化合物とキヤリヤガスとの混合ガスを600℃から1300℃の範囲で加熱することを特徴とする気相成長炭素繊維の製造方法に関する。

〔従来技術とその問題点〕

気相成長炭素繊維は、高強度、高弾性、高導電性、高耐食性、高生体適合性などの優れた特性を有し、特に機械的特性を例にとれば、すでに商品化されている PAN系炭素繊維、ビニチ系炭素繊維、レーポン系炭素繊維等を遙かに凌駕するものであり、理想的素材と言える。

従来、気相成長炭素繊維は、燃焼炉内にアルミナなどの磁器、焼結などの基板を置き、これに炭素成長液、鉄、ニッケルなどの超微粒子触媒を形成せしめ、この上にベンゼンなどの炭化水素のガスと水素、キヤリヤガスの混合ガスを導入し、1000℃～1300℃の温度下に炭化水素を分解せしむることにより、基板上に炭素

繊維を成長させる方法が知られている。

基板上に上記炭素成長核、超微粒子触媒を形成させる方法は、基板に、鉄、ニッケルまたはそれらの合金の100人程度の超微粒子を懸濁させたアルコール懸濁液をスプレーするかまたは塗布して乾燥することである。また、前記懸濁液に代えて硝酸鉄水溶液を基板に塗布して乾燥させてもよい。次いで、前記基板を電気炉内の反応管に入れ、ベンゼンや水素を加えて1100℃～1300℃に加熱すれば、還元と成長が進行する。

しかし、このような方法では、①基板表面の微妙な温度ムラや、周囲の繊維の密生度によつて長さの不均一が起り易いこと、また②炭素の供給源としてのガスが反応によつて消費されることにより反応管の入口に近い所と出口に近い所で繊維径が相当異なること、③基板表面でのみ生成が行なわれるため、反応管の中心部分は反応に関与せず収率が悪いこと、④超微粒子の基板への分散、還元、成長、次いで繊維の取出

-3-

また、別法として、有機遷移金属化合物のガスとキャリヤガスとの混合ガスを加熱することを特徴とする。

本発明における炭素供給源としての炭素化合物とは、有機錫式化合物または有機遷移式化合物からなる有機化合物全般が対象となるが、特に高い収率を得るには脂肪族炭化水素、芳香族炭化水素である。しかし、炭化水素化合物以外に脂素、酸素、硫黄、弗素、塩素、臭素、沃素、磷、砒素の内の一種類以上の元素を含むものも使用できる。これらの元素は含まれない方が良好であるが、特に硫黄については問題が少ないと認め、炭素と水素と硫黄との組合せからなる場合には好適である。具体的な個々の化合物の例を挙げると、メタン、エタン等のアルカン化合物、エチレン、ブタジエン等のアルケン化合物、アセチレン等のアルキニ化合物、ベンゼン、トルエン、ステレン等のアリール炭化水素化合物、インデン、ナフタリン、フェナントレン等の縮合環を有する芳香族炭化水素、シクロブロパン、

しという独立に実施を必要とするプロセスがあるため、連続製造が不可能であり、従つて生産性が悪いなどの問題点を有する。そのため、コスト面において、すでに商品化されているPAN系炭素繊維、ビッチ系炭素繊維、レーヨン系炭素繊維に對抗することは、特殊な用途を除いて不可能と言える。

〔発明の目的〕

それ故、この発明の一般的な目的は、上述の問題点を除去し、生産性を高めることのできる気相成長炭素繊維の連続製造方法を提供することである。

本発明の別の目的は、気相成長炭素繊維の需要を大幅に伸し、気相成長炭素繊維が炭素繊維の主役を占めることを可能にすることである。

〔発明の要點〕

この目的を達成するため、この発明に係る気相成長炭素繊維の製造方法は、炭素化合物のガスと有機遷移金属化合物のガスとキャリヤガスとの混合ガスを加熱することを特徴とする。

-4-

シクロヘキサン等のシクロパラフィン化合物、シクロベンテン、シクロヘキセン等のシクロオレフィン化合物、ステロイド等の複合環を有する脂環式炭化水素化合物、メテルテオール、メチルエチルスルフィド、ジメチルテオクトン等の含硫脂族化合物、フェニルテオール、ジフェニルスルフィド等の含硫芳香族化合物、ベンゾチオフェン、チオフェン等の含硫複素環式化合物等である。また、以上の化合物の2種以上を混合した混合物を使用することも可能である。

本発明におけるガスとは、純ガス体以外にガス体に固体または液体の微粒子を包含する懸濁質も含める広義のガス体を意味するものとする。

キャリヤガスとしては、周期律表Ⅳ族のアルゴン、ヘリウム等の希ガスおよび水素、窒素またはこれらの混合ガスの中から選択されるガスを主体とし、水素ガスが最も好ましい。主体とするという意味は、上記以外に他のガスを含むことが許されることを意味し、その割合はキャリヤガス成分中20%以内である。この程の少

-5-

-518-

-6-

量成分ガスとしては、炭化水素および／もしくは二硫化炭素が好ましい。実験によれば、ハロゲン、ハロゲン化水素、水蒸気は共に収率を低下させる原因となる。水素ガス以外のガスをキャリヤガスとして使用する場合、一般に炭素化合物の熱分解が促進されすぎ、かえつて炭素繊維の生成を阻害する要因になるため、炭素化合物の濃度を大幅に低下させる必要性がでてくる。

本発明における有機遷移金属化合物とは、アルキル基と金属が結合したアルキル金属、アリル基と金属が結合したアリル錯体、炭素間2重結合や3重結合と金属とが結合した π -コンプレンシスとキレート型化合物等に代表される有機遷移金属化合物である。また、ここで遷移金属としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、ペラジウム、タンタル、タングステン、レニウム、イリジウム、白金を指すものであるが、これらの内特に

-7-

本発明の方法を具体的に説明すると、炭素化合物のガスと有機遷移金属化合物のガスと0～20%の少量ガスを含むキャリヤガスとの混合物を好ましくは600℃～1300℃、更に好適には1050℃～1200℃に加熱する。炭素化合物、有機遷移金属化合物がガス状ならばそのまま、液体または固体の場合は加熱蒸発または昇華させて得られるガスを使用し、炭素化合物のガスおよび有機遷移金属化合物のガスの金属混合ガスに占める割合は、好ましくは各々0～40%、0.01～40%、さらに好ましくは各々0.5～10%、0.05～10%である。ここで炭素化合物の濃度が0でも良いのは、有機遷移金属化合物中に十分な炭素を含有している場合は、必ずしも炭素化合物のガスを必要としないという意味である。混合ガスの加熱方法としては電気炉による方法が便利である。

本発明は、炭素供給源としての炭素化合物のガスと、従来気相成長炭素繊維の生成に不可欠な触媒となつている金属からなる有機金属化合

周期鉄族に属するもの、その内で特に鉄、ニッケル、コバルトが好適であつて、鉄が最も好適である。

有機遷移金属化合物の具体的例を挙げると、アルキル金属として $(C_4H_9)_4Ti$ 、 $CH_2=CHCH_2Mn(CO)_5$ 、 CH_3-Co 、

$[C_2H_5]_2FeBr-(C_2H_5)FeBr_2$ ；アリル錯体として $(C_4H_9)_3PtI$ ； π -コンプレンシスとして $(C_6H_5)_2Fe$ 、 $(C_6H_5)_2Mo$ 、 $C_6H_{14}Fe$ 、 $[C_6H_5Fe(CO)_3]_2$ 、 $[C_6H_5Fe(CO)_2]Cl$ 、 $[C_6H_5Fe(CO)_2]CN$ 、 $H_5C-\text{C}(=O)-CHO$ 、 $Fe(CO)_5$ 。

$\begin{array}{c} CH_3 \\ | \\ \text{C}-\text{C} \\ | \\ CH_3 \end{array} - NCl_2$ ；キレート型化合物として

$\begin{array}{c} \text{C}_6\text{H}_5-\text{N} \\ || \\ \text{Pd} \\ || \\ \text{C}_6\text{H}_5-\text{N} \end{array}$ 等である。

また、これらの化合物の使用も可能である。

-8-

物のガスとを反応炉内で同時に熱分解させる方法であるが、この方法により炭素繊維が得られたという事実から判断し、有機金属化合物の熱分解によつて遊離した金属原子が衝突を繰り返し一部触媒として機能しうる粗粒の金属の超微粒子に成長し、その超微粒子を触媒として炭素繊維が生成したものと判断する。

また、本発明は、鉄、ニッケル、コバルトまたはそれらの合金の超微粒子や、硝酸鉄、硫酸第1鉄のように、従来気相成長炭素繊維の成長触媒として知られていた金属または金属化合物では、下記の理由で気相触媒として試みられたことがなく。今回有機金属化合物を気相成長炭素繊維の触媒として試み、その可能性を発見したものである。すなわち、従来の触媒では、鉄の超微粒子を炉内中に分散させる場合、第一に超微粒子を定量的に微少量送るフィーダーを設けることが技術的に困難であり、第二に前記超微粒子の供給が可能であつても超微粒子はエネルギー的に安定な複数二次粒子を作るため、炉内に

入ると直ちに焼結し、触媒効果を發揮できないような大きな粒子になること。第三に超微粒子は表面エネルギーが高いため非常に活性で、酸化鉄の状態にあるため還元の必要性があるが、炭素供給化合物のガスと共存すると、還元前に炭素の表面沈着が起り実質的に触媒として機能しなくなる等の理由で使用不可能である。硝酸鉄や硫酸鉄一鉄の場合蒸気を得ることが容易でなく、鉄のように超微粒子を作成する方法を考えられるが、超微粒子にすると鉄の場合と同様の問題に直面し、使用不可能となる。

有機金属化合物を使用し、それを蒸発して気相中で金属触媒を作成するという新しい手法によつて、従来の触媒の基板への分散と還元という2つの操作を省略を可能としたもので、すなわち気相中で炭素源としての炭素化合物のガスと触媒源としての有機遷移金属化合物のガスとを熱分解することにより、触媒と炭素繊維を連続的に生成させることができた。

本発明によれば、従来のように反応が基板没

面だけでなく金球にわたつているため高収率が得られ、気相中で生成している炭素繊維は、浮遊運動をしているため各繊維は平均的に同一の条件で生成していると考えてよく、生成炭素繊維はアスペクト比の一均一ものが得られる。また本発明によれば装置の大きさや、ガスの流速、電気炉の温度を制御することによりアスペクト比を変えることが容易である。実験によると、1100℃以下では主として長さ成長が起り、1100℃を超える温度では径の成長速度が目立つてくる。また、長さの成長範囲においては、生成する炭素繊維の長さが混合ガスの炉内の滞留時間にほぼ比例するため、1100℃以下の加熱炉と1100℃以上の加熱炉を直列につなぐことによつて希望する様、長さの炭素繊維を連続的に生成することが可能である。特に従来の炭素繊維からは得ることのできなかつた長さ0.2μ～2000μ、径0.05μ～1.0μの範囲のアスペクト比一定の短い炭素繊維を高収率で連続的に製造することが可能である。また短纖

-11-

維をランダムに充填する複合材料という用途を検討した場合、高強度高弾性でアスペクト比100～200が好ましいということが言われております。本発明がアスペクト比を自由にコントロール可能であり、特化アスペクト比100～200は極めて容易に作成でき、気相成長炭素繊維の高強度高弾性という機械的特性を有するという点で複合材料には理想的な素材と言える。

(発明の実施例)

次に、この発明に係る気相成長炭素繊維の製造方法の好適な実施例につき添付図面を参照しながら以下詳細に説明する。

まず、本発明における気相成長炭素繊維を製造するために使用した装置につき、その概略を示せば、第1図および第2図に示す通りである。

第1図において、参照符号10, 12, 14はガスポンベを示し、それぞれポンベ10には高純度水素ガス、ポンベ12には窒素ガス、ポンベ14には酸化水素ガスが充填される。ポンベ10, 12は、それぞれ流量計16, 18およ

びバルブ20, 22を介してステンレスパイプ24に接続されている。このパイプ24は、バルブ26を介してベンゼンを充填した原料ガス発生器28に連通している。また、この原料ガス発生器28からステンレスパイプ30が導出され、このパイプ30はフェロセンを充填したガス発生器32に連通している。さらにこのガス発生器32からステンレスパイプ34が導出され、このパイプ34はバルブ36を介して反応管38に連通している。しかるに、この反応管38に連通する前記パイプ34の一部に、前記ポンベ14が流量計40およびバルブ42を介して接続されている。なお、前述したパイプ24からバルブ26より両ガス発生器28, 32およびバルブ36を介して反応管38に接続されるパイプ34に通る系に対し、ステンレスパイプ44をそれぞれバルブ46, 48を介して接続する。

反応管38は、例えば内径2.2mm、長さ1000μの石英管で構成し、その長さ約600mmに亘

つてこれを電気炉50内に設置する。この電気炉50の温度は、熱電対52と3回路PID温度制御器54とからなる制御系で制御し、この温度は温度記録計56で記録するよう構成する。そして、前記反応管38の終端部にはステンレス織維フィルタ58を介して排気パイプ60を連通する。

このように構成した装置は、運転に際し、最初ポンペ12から供給される窒素ガスをバイパスパイプ44を介して反応管38に供給し、反応管38内部を窒素ガスで置換して爆発の危険を防止する。次いで、ポンペ10より水素ガスを両ガス発生器28・32に順次供給して水素・ベンゼン・フェロセンの混合ガスとなし、これをさらに硫化水素と混合して反応管38に導入し、電気炉50の作用下に反応管38内に予め収納した触媒に対し炭素織維の気相成長が行われ、得られた炭素織維はステンレス織維フィルタ58に捕集される。

第2図は、第1図に示す装置にさらに付加し

-15-

細度水素ガス、ポンペ14に硫化水素ガス、原料ガス発生器28にベンゼン、有機金属化合物のガス発生器32にフェロセンを入れて、先づ原料ガス発生器28と有機金属化合物のガス発生器32を加熱してベンゼンとフェロセンのガスを生成させ、バルブ20、42を調節して流量計16、40により所定流量の水素、硫化水素を流す。水素ガスはステンレスパイプ24よりバルブ26を経て原料ガス発生器28に入り、ベンゼンガスと混合されてステンレスパイプ30を経て有機金属化合物のガス発生器32に入り、ここにて水素・ベンゼン・フェロセンの混合ガスを生成し、ステンレスパイプ34よりバルブ36を経て硫化水素と混合されて反応管38に入る。ベンゼンやフェロセンがパイプ内に凝縮しないようステンレスパイプ30は200℃に加熱した。混合ガスの組成は水素：硫化水素：ベンゼン：フェロセン=91.0：2.7：18：4.5。總流量は200℃で17.6ml/分～35.2ml/分の範囲で変化させた。電気炉50

得る装置を示すものである。すなわち、第2図において、参照符号62は第2の反応管を示し、この第2の反応管62は内径8.5mm、長さ約1700mmの石英管で構成し、第1図に示す第1の反応管38に直結したものである。この場合、第2の反応管62の入口部に対し、アセチレンガスをさらに混合し得るよう構成する。このため、アセチレンガスを充填したガスボンベ64を設け、このボンベを流量計66およびバルブ68を介して前記反応管62の入口部に設けた検部材70に接続する。また、第2の反応管62は、第1の反応管38と同様に、電気炉72、熱電対74、3回路PID温度制御器76、温度記録計78、ステンレス織維フィルタ80および排気パイプ82を設ける。なお、この場合、第1の反応管38に対しては、ステンレス織維フィルタ58および排気パイプ60が省略されることとは勿論である。

実施例1

第1図に示す装置において、ポンペ10に高

-16-

は1080℃の温度に設定した。反応管38の内部の温度分布を調べたところ、均熱帶はパイプの中央付近300mmであった。混合ガスは速読的に供給され、反応管38内で速読的に熱分解し、触媒と気相成長炭素織維が速読的に生成する。生成した気相成長炭素織維はステンレス織維フィルタ58で捕集し質量増加分より収率を計算した。また、炭素織維の径、長さについては顯微鏡で観察した。結果を表1表に示す。表中滞留時間は反応管38の300mmの均熱帶を通過する時間として求めた。

表 1

	(1)	(2)	(3)
總流量(ml/分)	17.6	26.4	35.2
滞留時間(秒)	0.23	0.15	0.11
収率(%)	5.8	2.2	1.6
径(μ)	0.1	0.1	0.1
長さ(μ)	11.0	6.5	4.5

第1表より長さはほぼ滞留時間に比例することが示される。

実施例2

第2図に示す装置により、実施例1で生成した炭素繊維を1160℃に加熱した第2の反応管6-2で更に径のコントロールを行つた。反応管6-2の1160℃における均熱帶は300μであつた。第1の反応では炭素供給量が少なかつたので、第2図のポンペ6-4よりアセチレンガスを簡単状態で10ml/分送つた。そのときの結果を第2表に示す。

表 2

	第1の炉	第1+第2の炉
径×長さ(μ)	0.10×110	0.17×110
径×長さ(μ)	0.10×4.5	0.20×4.6

第2表より、第2の炉では径のみが成長したことが示される。

-19-

実施例6

混合ガスとして水素：テオフエン：
 $C_{10}H_{10}Br_2Zr = 9.20 : 6.1 : 4.3$ 、総流量
 1.20ml/分(25℃換算)、電気炉温度
 1080℃の条件で実施し、収率0.1%以下。
 炭素繊維(径×長さ)0.07μ×13μの気相成長炭素繊維が得られた。

実施例7

混合ガスとして水素：ベンゼン： $C_{10}H_{10}V = 9.30 : 3.1 : 3.9$ 、総流量1.10ml/分(25℃換算)、電気炉温度1080℃の条件で実施し、収率0.7%、炭素繊維(径×長さ)0.1μ×2.5μの気相成長炭素繊維が得られた。

実施例8

混合ガスとして水素：アセチレン： $(C_2H_2)_2Mo = 9.10 : 5.3 : 3.7$ 、総流量1.13ml/分(25℃換算)、電気炉温度1070℃の条件で実施し、収率0.3%、炭素繊維(径×長さ)0.05μ×0.5μの気相成長炭素繊維が得られた。

実施例3

混合ガスとして水素：アセチレン： $(C_2H_2)_2Ni = 9.10 : 5.3 : 3.7$ 、総流量1.10ml/分(25℃換算)、電気炉温度1080℃の条件で実施し、収率1.5%、炭素繊維(径×長さ)0.15μ×3μの気相成長炭素繊維が得られた。

実施例4

混合ガスとして水素：ベンジオエニン：
 $(C_6H_5Fe(CO)_3)_2 = 9.24 : 3.4 : 4.2$ 、総流量1.08ml/分(25℃換算)、電気炉温度1065℃の条件で実施し、収率1.0%、炭素繊維(径×長さ)0.1μ×1.0μの気相成長炭素繊維が得られた。

実施例5

混合ガスとしてアルゴン： $CH_4 : C_6H_{15}SeC_6H_{10}O = 9.09 : 6.1 : 3.0$ 、総流量1.10ml/分(25℃換算)、電気炉温度1065℃の条件で実施し、収率0.1%、炭素繊維(径×長さ)0.05μ×1.0μの気相成長炭素繊維が得られた。

-20-

実施例9

混合ガスとして水素： $C_{10}H_8 : (C_6H_5)_2ReH = 9.4.4 : 1.9 : 3.7$ 、総流量1.06ml/分(25℃換算)、電気炉温度1090℃の条件で実施し、収率0.1%以下、炭素繊維(径×長さ)0.05μ×0.5μの気相成長炭素繊維が得られた。

実施例10

混合ガスとして水素：硫化水素： $(C_6H_6)_2Fe = 9.18 : 3.0 : 5.2$ 、総流量1.09ml/分(25℃換算)、電気炉温度1065℃の条件で実施し、収率2.0%、炭素繊維(径×長さ)0.1μ×9μの気相成長炭素繊維が得られた。

4. 図面の簡単な説明

第1図は気相成長炭素繊維の製造に使用した実験装置の系統図、第2図は第1図の装置に接続する第2の気相成長炭素繊維の製造に使用した実験装置の系統図である。

10,12,14,64 - ガスポンベ

16,18,40,66 - 流量計

-21-

-522-

-21-

特開昭60-54998(7)

- 20,22,26,36,42,46,48,68 … バルブ
 24,30,34,44 … ステンレスパイプ
 28,32 … ガス発生器 38 … 反応管(第1)
 50,72 … 燃 気 炉 52,74 … 热 电 对
 54,76 … 3回路PID温度制御器
 56,78 … 温度記録計
 58,80 … ステンレス繊維フィルタ
 60,82 … 排気パイプ
 62 … 反応管(第2)

特許山城人 日機装株式会社
 小断人代理人 井原士 浅田治

-23-

FIG.2

BEST AVAILABLE COPY

特開昭60-54998(8)

手 稿 書 正 善 (自発)

昭和58年10月／日

特許庁長官 若杉 和夫 殿

1. 事件の表示

昭和58年 特許第 第162606号

2. 発明の名称

気相成長炭素触媒の製造方法

3. 補正をする者

事件との関係 特許出願人

住所 東京都渋谷区恵比寿3丁目43番2号

名称 日糧 製株式会社

代表者 齊桂二郎

4. 代理人

郵便番号 107

住所 東京都渋谷区北山1丁目7番22号鉢木ビル
電話 東京 (404) 5768-5769番
(郵送先: 東京都渋谷区北坂町75号)

氏名 (6401) 弁理士 浜田 治雄

5. 補正の対象

(1) 甲類別の発明の詳細な説明の項。

6. 補正の内容

(1) 別紙記載の通り。

補正書

1. 明細書第2頁第16行

「炭素成長法、」を削除します。

2. 同 第2頁第18行

「水素、ギヤリヤガスの」を

「水素ガス等のギヤリヤガスとの」と補正します。

3. 同 第3頁第2行

「上記炭素成長法、」を削除します。

4. 同 第3頁第10行

「1100℃」を「1010℃」と補正します。

5. 同 第7頁第13行

「キレート型化合物」の次に

「、鉄カルボニル」を加入します。

6. 同 第8頁第7行

「アリル錯体」を「アリル金属」と補正します。

7. 同 第8頁下から第2行

「等である。」の前に

「、 $\text{Fe}(\text{CO})_5$ 、 $\text{Pb}_2(\text{CO})_4$ 、」を加入します。

特許出願人 日糧 製株式会社

出願人代理人 弁理士 浜田 治雄

手 稿 書 正 善 (自発)

昭和59年 3月／日

特許庁長官 若杉 和夫 殿

1. 事件の表示

昭和58年 特許第 第162606号

2. 発明の名称

気相成長炭素触媒の製造方法

3. 補正をする者

事件との関係 特許出願人

住所 東京都渋谷区恵比寿3丁目43番2号

名称 日糧 製株式会社

代表者 齊桂二郎

4. 代理人

郵便番号 107

住所 東京都渋谷区北山1丁目7番22号鉢木ビル
電話 東京 (404) 5768-5769番
(郵送先: 東京都渋谷区北坂町75号)

氏名 (6401) 弁理士 浜田 治雄

5. 補正の対象

(1) 甲類別の発明の詳細な説明の項。

6. 補正の内容

(1) 別紙記載の通り。

補正書

1. 明細書第8頁第9行

「 $\text{C}_9\text{H}_{14}\text{Re}$ 」を

「 $\text{C}_{10}\text{H}_{14}\text{Re}$ 」と補正します。

特許出願人 日糧 製株式会社

出願人代理人 弁理士 浜田 治雄

