Homework 3 for Math 1530

Zhen Yao

Problem 27. Let $a_1, a_2, a_3, ... > 0$. Prove that if

$$\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) > 1 \,,$$

then the series $a_1 + a_2 + a_3 + \dots$ converges.

Proof. Method 1:Since $\lim_{n\to\infty} n\left(\frac{a_n}{a_{n+1}}-1\right) > 1$, then there exists a r_1 such that $\lim_{n\to\infty} n\left(\frac{a_n}{a_{n+1}}-1\right) > r_1 > 1$. Then there exists an $N_1 > 0$, such that for $\forall n > N_1$, $\frac{a_n}{a_{n+1}} > 1 + \frac{r_1}{n}$.

We take r_2 such that $1 < r_2 < r_1$. And we consider function $f(x) = 1 + r_1 x - (1+x)^{r_2}$, which satisfies f(0) = 0. Also, $f'(x) = r_1 - r_2(1+x)^{r_2-1} > 0$ in a small neighborhood of x = 0. Then there exists an $N_2 > 0$ such that for $\forall n > N_2$, we have

$$\frac{a_n}{a_{n+1}} > 1 + \frac{r_1}{n} > \left(1 + \frac{1}{n}\right)^{r_2} = \frac{(n+1)^{r_2}}{n^{r_2}}$$

$$\Rightarrow (n+1)^{r_2} a_{n+1} < n^{r_2} a_n$$

as x substituted by $\frac{1}{n}$. Then for $n > N_2$, we have

$$a_n < \frac{N_2^{r_2} a_{N_2}}{n^{r_2}}$$

By comparison test, $\sum_{k=1}^{\infty} a_k$ converges since $r_2 > 1$ and $\sum_{n=1}^{\infty} 1/n^{r_2}$.

Method 2: Since $\lim_{n\to\infty} n\left(\frac{a_n}{a_{n+1}}-1\right) > 1$, then there exists N>0, such that $\forall n>N$,

$$n\left(\frac{a_n}{a_{n+1}}-1\right)=L>0$$
. Thus, we have

$$\frac{na_n}{a_{n+1}} - n = L$$

$$\Rightarrow na_n - na_{n+1} = La_{n+1}$$

$$\Rightarrow na_n - (n+1)a_{n+1} + a_{n+1} = La_{n+1}$$

$$\Rightarrow na_n - (n+1)a_{n+1} = (L-1)a_{n+1}$$

Wiht this equation, we have

$$1a_1 - 2a_2 > (L - 1)a_2$$

$$2a_2 - 3a_3 > (L - 1)a_3$$

$$\vdots$$

$$(n - 1)a_{n-1} - na_n > (L - 1)a_n$$

Adding these equations gives us $a_1 \ge a_1 - na_n = (L-1)\sum_{n=1}^n a_n$. With $a_k > 0, k = 1, 2, 3, \dots$, we knnw that $\sum_{n=1}^n a_n$ is increasing and bounded above, thus it converges. \square

Problem 28. Provide an example of a convergent series $a_1 + a_2 + a_3 + \ldots$, where $a_n > 0$, $n = 1, 2, 3, \ldots$ such that the limit $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ does not exist.

Proof. We already know that series $\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} \cdots = 1$, which is convergent. Now we rearrange this series as

$$a_1 = \frac{1}{2^2}, a_2 = \frac{1}{2}, a_3 = \frac{1}{2^4}, a_4 = \frac{1}{2^3}, a_5 = \frac{1}{2^6}, \cdots$$

by substituting the positions between 2nth and (2n-1)th. Then we have

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 2, n \text{ is odd}$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{1}{8}, n \text{ is even}$$

which means the limit does not exist.

Problem 29. Prove that there is a sequence of positive integers $n_1 < n_2 < n_3 < \dots$ such that the sequence $a_k = \sin n_k$ converges.

Proof. Based on Bolzano-Weierstrass Theorem, we can know that bounded sequence has a convergent subsequence. Also, $\sin n$ is dense in [-1,1], then there exists a subsequence that converges to any value in [-1,1]. Suppose we want a subsequence that converges to $g \in [-1,1]$. First, for $\forall \varepsilon > 0$, there exists n_1 such that $\|\sin n_1 - g\| < \varepsilon$. Then, starting from n_1 , we could find a $n_2 > n_2$ such that $\|\sin n_2 - g\| < \varepsilon$ since $\sin n$ is dense in [-1,1]. Repeating this process, and we can find $n_1 < n_2 < n_3 < \cdots$ such that $\lim_{n\to\infty} a_k = \sin n_k = g \in [-1,1] \setminus \{0\}$.

Problem 30. Prove that the series

$$\sum_{n=3}^{\infty} \frac{1}{n(\log n)(\log \log n)^p}$$

diverges if 0 and converges if <math>p > 1.

Proof. Based on Cauchy condensation test, the convergence of $\sum_{n=1}^{\infty} a_n$ is equivalent to the convergence of $\sum_{n=0}^{\infty} 2^n a_{2^n}$. Then we only need to consider $\sum_{n=2}^{\infty} 2^n a_{2^n}$ in this case, we have

$$\sum_{n=2}^{\infty} 2^n a_{2^n} = \sum_{n=2}^{\infty} 2^n \frac{1}{2^n (\ln 2^n) (\ln \ln 2^n)^p}$$
$$= \sum_{n=2}^{\infty} \frac{1}{(\ln 2^n) (\ln (n \ln 2))^p}$$
$$= \frac{1}{\ln 2} \sum_{n=2}^{\infty} \frac{1}{n (\ln n + \ln(\ln 2))^p}$$

we denote this sum by A. And we have

$$\frac{1}{\ln 2} \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p} \le A \le \frac{1}{\ln 2} \sum_{n=2}^{\infty} \frac{1}{n(\frac{1}{2}\ln n)^p} = \frac{2^p}{\ln 2} \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$$

since $\frac{1}{2} \ln n < \ln n + \ln(\ln 2) < \ln n$, for n > 4. And we already know that $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$ converges if p > 1, and diverges if 0 . So <math>A converges if p > 1, and diverges if 0 .

Problem 31. Prove that if the series $a_1 + a_2 + a_3 + \dots$ converges, where $a_n > 0$, $n = 1, 2, 3, \dots$, then the series

$$\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$$
 converges.

Proof. We have $\frac{\sqrt{a_n}}{n} \leq \frac{1}{2} \left(a_n + \frac{1}{n^2} \right)$, since $\left(\sqrt{a_n} - \frac{1}{n} \right)^2 = a_n - \frac{2\sqrt{a_n}}{n} + \frac{1}{n^2} \geq 0$. Thus, we have

$$\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n} \le \frac{1}{2} \sum_{n=1}^{\infty} \left(a_n + \frac{1}{n^2} \right)$$

Then the sequence converges by comparison test.

DEFINITION. Let $a_1, a_2, a_3, \ldots > 0$. We define the infinite product by

$$\prod_{n=1}^{\infty} a_n = \lim_{n \to \infty} a_1 a_2 \dots a_n.$$

We say that the infinite product *converges* if the limit is finite and *positive*. If the limit does not exist, equals 0 or ∞ then we say that the product *diverges*.

Problem 32. Prove that if $a_n > 0$, n = 1, 2, ..., then the product $\prod_{n=1}^{\infty} (1 + a_n)$ converges if and only if the series $\sum_{n=1}^{\infty} a_n$ converges. **Hint:** You can use the inequality $e^x \ge 1 + x$ without proving it.

Proof. Denote $\prod_{n=1}^{\infty} (1+a_n)$ by A. (1) If the series $\sum_{n=1}^{\infty} a_n$ converges, we have

$$\ln A = \ln(1 + a_1) + \dots + \ln(1 + a_n)$$

$$\leq \ln e^{a_1} + \dots + \ln e^{a_n}$$

$$= \sum_{n=1}^{\infty} a_n$$

Since $\sum_{n=1}^{\infty} a_n$ converges, then $\ln A$ converges. Thus, A converges since log function is continuous.

(2) If $\prod_{n=1}^{\infty} (1+a_n)$ converges, we can prove following inequality by induction

$$1 + \sum_{n=1}^{N} a_n \le \prod_{n=1}^{N} (1 + a_n)$$

For N = 1, $1 + a_1 \le 1 + a_1$, so it holds. Assume it also holds for N = k, then for N = k + 1, we have

$$1 + \sum_{n=1}^{N+1} a_n \le \prod_{n=1}^{N} (1 + a_n) + a_n$$

$$\le \prod_{n=1}^{N} (1 + a_n) + \prod_{n=1}^{N} (1 + a_n) a_{n+1}$$

$$= \prod_{n=1}^{N+1} (1 + a_n)$$

So We can know

$$\sum_{n=1}^{\infty} a_n \le \prod_{n=1}^{\infty} (1 + a_n) - 1$$

which implies that $\sum_{n=1}^{\infty} a_n$ converges.

Problem 33. Prove that if $0 < a_n < 1, n = 1, 2, ...$, then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the series $\sum_{n=1}^{\infty} a_n/(1-a_n)$ converges.

Proof. (1)If $\sum_{n=1}^{\infty} a_n$ converges, then it implies that $\lim_{n\to\infty} a_n = 0$ then $\forall \varepsilon > 0$, $\exists N_1 > 0$ such that $\forall n > N_1$, $a_n < \varepsilon$. Since it is true for arbitrary $\varepsilon > 0$, then there exist an $N_2 > 0$, such that $a_n < \varepsilon < \frac{1}{2}$. Also, since $\sum_{n=1}^{\infty} a_n$ converges, then $\forall \varepsilon > 0$, $\exists N_3 > 0$, such that for $\forall n > N_3, \forall m > 0$, $|a_n + \dots + a_{n+m}| < \varepsilon$. Now we set $N = \max\{N_1, N_2, N_3\}$, we have

$$\left| \frac{a_n}{1 - a_n} + \dots + \frac{a_{n+m}}{1 - a_{n+m}} \right| \le 2(a_n + \dots + a_{n+m}) \le 2\varepsilon$$

since $a_n < \varepsilon < \frac{1}{2}$ for n > N. Then we proved that $\sum_{n=1}^{\infty} a_n/(1-a_n)$ converges. (2) If $\sum_{n=1}^{\infty} a_n/(1-a_n)$ converges, then we have

$$\sum_{n=1}^{\infty} |a_n| < \sum_{n=1}^{\infty} a_n / (1 - a_n)$$

since $0 < a_n < 1$ for $\forall n$. So $\sum_{n=1}^{\infty} a_n$ converges.

Problem 34. Prove that if $0 < a_n < 1$, then the product $\prod_{n=1}^{\infty} (1 - a_n)$ converges if and only if the series $\sum_{n=1}^{\infty} a_n$ converges.

Proof. (1)If $\sum_{n=1}^{\infty} a_n$ converges, then we have

$$\ln\left(\prod_{n=1}^{\infty} (1 - a_n)\right) = \sum_{n=1}^{\infty} \ln(1 - a_n) \le \sum_{n=1}^{\infty} a_n$$

since $\ln(1-x) < x, 0 < x < 1$. Also, log function is continuous and we have that $\prod_{n=1}^{\infty} (1-a_n)$ converges.

(2) If $\prod_{n=1}^{\infty} (1-a_n)$ converges, we can know $\prod_{n=1}^{\infty} 1/(1-a_n)$ also converges, since

 $0 < a_n < 1$ which means $1 - a_n \neq 0$. Using inequality $e^{-x} > 1 - x$, we have $e^x < \frac{1}{1-x}$. Then we have

$$\sum_{n=1}^{\infty} a_n < \ln \left(\prod_{n=1}^{\infty} \frac{1}{1 - a_n} \right)$$

Then $\sum_{n=1}^{\infty} a_n$ converges. The proof is complete.