

Estudio de transferencia de calor en una aleta disipadora con condiciones de frontera

Integrantes: Leandro Caloguerea(G3)

Erwin Gatica (G3)

Diego Rojas (G3)

Fabian Sanchez (G3)

Métodos Numéricos Bain 053 Junio - 2017

Índice

Introducción	3						
Capítulo 1 Planteamiento del Problema de Valor de Frontera							
Capítulo 2 Solución Analítica del PVF	5						
Capítulo 3 Método de Diferencias Finitas	10						
Capítulo 4 Resolución del PVF mediante el Método de Diferencias Finitas	11						
Capítulo 5 Resultados y discusión	13						
Capítulo 6 Conclusión	13						
Bibliografía	13						

Introducción

Entre otras aplicaciones en Ingeniería, las aletas son utilizadas como un mecanismo que acelera el enfriamiento de una superficie, de forma que combinan el sistema de conducción y de convección en un área o superficie determinada, como por ejemplo en la pared interna de un motor. En el desarrollo de este documento seremos capaces aplicar las competencias entregadas por el curso en materias físicas de la ingeniería.

Se estudiará el fenómeno de transferencia de calor aplicando la ecuación de transferencia de temperatura en estado estacionario de Fourier con valores de frontera, aplicada a una superficie tridimensional. Tal estudio comprende desde su resolución analítica hasta su solución numérica utilizando el método de diferencias finitas. Además, nos apoyaremos de herramientas informáticas tales como Octave y el lenguaje de programación Python, con los que podremos ser capaces de representar gráficamente el comportamiento matemático mediante ambos métodos numéricos y hacer una comparación que nos demostrará cuál de estos puede ser más efectivo al momento de resolver dicho problema.

Capítulo 1 Planteamiento del Problema de Valor de Frontera

En la siguiente imagen, una aleta de longitud b con sección transversal cuadrada $a \times a$ está en contacto con una superficie caliente, mientras que el otro extremo de la aleta está aislado. El coeficiente de conductividad térmica de la aleta es k. Sea T(x,y,z) la distribución de temperatura en la aleta disipadora de calor. La distribución de temperatura en la superficie caliente está dada por T(x,y,b) = f(x,y). Un fluido refrigerante de temperatura Tf fluye a través de la aleta. El coeficiente de transferencia de calor entre la superficie de la aleta y el refrigerante es h. Se estudiará la distribución de temperatura en estado estacionario de la aleta disipadora de calor.

La ecuación de calor para el problema en estado estacionario tridimensional viene dada por la ecuación de Laplace tridimensional.

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0, \ 0 \le x \le a, \ 0 \le y \le a, \ 0 \le z \le b$$

Condiciones de contorno:

$$x = 0: k \frac{\partial T}{\partial x} = h(T - T_f), \qquad x = a: -k \frac{\partial T}{\partial x} = h(T - T_f)$$

$$y = 0: k \frac{\partial T}{\partial y} = h(T - T_f), \qquad y = a: -k \frac{\partial T}{\partial y} = h(T - T_f)$$

$$z = 0: k \frac{\partial T}{\partial z} = 0, \qquad z = b: f(x, y)$$
Caso especial $f(x, y) = T_0 \ y \ h \to \infty$.

Capítulo 2 Solución Analítica del PVF

Al tomar en cuenta estos casos especial, las condiciones de borde quedan de la siguiente forma:

$$\begin{split} T(0,y,z) &= T_f, & T(a,y,z) &= T_f, \\ T(x,0,z) &= T_f, & T(x,a,z) &= T_f, \\ \frac{T(x,y,0)}{\partial z} &= 0, & T(x,y,b) &= T_0, \end{split}$$

Donde las seis condiciones son no homogéneas.

En orden de poder aplicar el método de separación de variables para poder resolver este problema de conducción de temperatura en estado estacionario, cinco de las seis condiciones de borde deben ser homogéneas, por lo tanto, definiendo una nueva variable $\widehat{T}(x,y,z) = T(x,y,z) - T_f$, quedando el problema de la forma:

$$\frac{\partial^2 \widehat{T}}{\partial x^2} + \frac{\partial^2 \widehat{T}}{\partial y^2} + \frac{\partial^2 \widehat{T}}{\partial z^2} = 0,$$

con las siguientes condiciones de borde:

$$\begin{split} \widehat{T}(0,y,z) &= 0, & \widehat{T}(a,y,z) &= T_f, \\ \widehat{T}(x,0,z) &= 0, & \widehat{T}(x,a,z) &= T_f, \\ \\ \widehat{\frac{T}(x,y,0)}{\partial z} &= 0, & \widehat{T}(x,y,b) &= T_0 - T_f, \end{split}$$

Aplicando el método de separación de variables, nos lleva a

$$\widehat{T}(x, y, z) = X(x) \cdot Y(y) \cdot Z(z),$$

Luego, sustituyendo en la ecuación tridimensional de Laplace nos conduce a:

$$\frac{d^{2}X(x)}{dx^{2}}Y(y)Z(z) + X(x)\frac{d^{2}Y(y)}{dy^{2}}Z(z) + X(x)Y(y)\frac{d^{2}Z(z)}{dz^{2}} = 0,$$

Procedemos a dividir la ecuación por X(x)Y(y)Z(z) nos deja

$$\frac{1}{X(x)} \frac{d^2 X(x)}{dx^2} = -\left[\frac{1}{Y(y)} \frac{d^2 Y(y)}{dy^2} + \frac{1}{Z(z)} \frac{d^2 Z(z)}{dz^2} \right] = -\omega^2,$$

(Acá podemos denotar que el primer término es una función que depende solo de x, mientras que el siguiente paréntesis depende solo de y y z).

En orden de que la función dependiente de x sea igual a la función que depende de y y z, cada una de estas funciones debe ser igual a a la misma constante $-\omega^2$, es más, este proceso es aplicable a la expresión dentro del paréntesis donde la función que depende de y en orden de ser igual a la función que depende de z, estas deben estar igualadas a una misma constante $-\Omega^2$, como se muestra a continuación.

$$\frac{1}{Y(y)} \frac{d^2 Y(y)}{dy^2} = \omega^2 - \frac{1}{Z(z)} \frac{d^2 Z(z)}{dz^2} = -\Omega^2$$

(Podemos apreciar 2 funciones, una en términos solamente de y, y otra solamente en términos de z)

Ahora podemos reescribir las ecuaciones de la siguiente forma.

Respecto a X

$$\frac{d^2X}{dx^2} + \omega^2 X = 0,$$

EDO de segundo orden

La ecuación característica asociada es $\lambda^2 + \omega^2 = 0$, donde $\lambda = \pm i\omega$. Su solución es:

$$X(x) = A_1 cos(\omega x) + B_1 sin(\omega x).$$

Respecto a Y

$$\frac{d^2Y}{dv^2} + \Omega^2 Y = 0,$$

EDO de segundo orden

La ecuación característica asociada es $\lambda^2 + \Omega^2 = 0$, donde $\lambda = \pm i\Omega$. Su solución es:

$$Y(y) = A_2 cos(\Omega y) + B_2 sin(\Omega y).$$

Respecto a Z

$$\frac{d^2Z}{dz^2} - (\omega^2 + \Omega^2)Z = 0,$$

EDO de segundo orden

La ecuación característica asociada es $\lambda^2-(\omega^2+\Omega^2)=0$, donde $\lambda=\pm\nu$, $con\ \nu=\sqrt{\omega^2+\Omega^2}$. Su solución es:

$$Z(z) = A_3 cosh(vz) + B_3 sinh(vz).$$

La solución de la ecuación de tres dimensiones de Laplace es

$$\widehat{T}(x,y,z) = X(x) \cdot Y(y) \cdot Z(z) =$$

$$(A_1 cos(\omega x) + B_1 sin(\omega x))(A_2 cos(\Omega y) + B_2 sin(\Omega y))(A_3 cosh(vz) + B_3 sinh(vz))$$

Donde las constantes $A_1, B_1, A_2, B_2, A_3, B_3, \omega > 0$, $\Omega > 0$ serán determinadas usando las condiciones de borde como se muestra a continuación.

•
$$\widehat{T}(0, y, z) = A_1(A_2 cos(\Omega y) + B_2 sin(\Omega y))(A_3 cosh(vz) + B_3 sinh(vz))$$

= $0 \Rightarrow A_1 = 0$,

- $\widehat{T}(x,0,z) = (B_1 sin(\omega x))(A_2)(A_3 cosh(vz) + B_3 sinh(vz)) = 0 \Rightarrow A_2 = 0$,

Ordenando, la solución queda

$$\widehat{T}(x, y, z) = X(x) \cdot Y(y) \cdot Z(z) = B_1 sin(\omega x) B_2 sin(\Omega y) A_3 cosh(vz)$$

Usando las condiciones de borde

- $\widehat{T}(a, y, z) = F \sin(\omega a) \cdot \sin(\Omega y) \cdot \cosh(vz) = 0 \Rightarrow \sin(\omega a) = 0,$ $\therefore \omega a = m\pi, \ m = 1, 2, ... \Rightarrow \omega_m = \frac{m\pi}{a}, \ m = 1, 2, ...$
- $\widehat{T}(x, a, z) = F \sin(\omega x) \cdot \sin(\Omega a) \cdot \cosh(vz) = 0 \Rightarrow \sin(\Omega a) = 0,$ ∴ $\Omega a = n\pi, \ n = 1, 2, ... \Rightarrow \Omega_n = \frac{n\pi}{a}, \ n = 1, 2, ...$

Lo que nos da

$$\widehat{T}_{mn}(x,y,z) = F_{mn} sin \frac{m\pi x}{a} \cdot sin \frac{n\pi y}{a} \cdot cosh \frac{\sqrt{m^2 + n^2}\pi z}{a}$$

Dado que el problema de conducción de calor es lineal, cualquier combinación lineal de la solución es también solución, de este modo, la solución es

$$\widehat{T}(x,y,z) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} F_{mn} sin \frac{m\pi x}{a} \cdot sin \frac{n\pi y}{a} \cdot cosh \frac{\sqrt{m^2 + n^2}\pi z}{a}$$

Aplicando la condición de borde, tenemos

$$\widehat{T}(x,y,b) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} F_{mn} sin \frac{m\pi x}{a} \cdot sin \frac{n\pi y}{a} \cdot cosh \frac{\sqrt{m^2 + n^2}\pi z}{a}$$

$$= \sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} F_{mn} cosh \frac{\sqrt{m^2 + n^2}\pi z}{a} \cdot sin \frac{n\pi y}{a} \right) sin \frac{m\pi x}{a} = T_0 - T_f, donde$$

$$\left(\sum_{n=1}^{\infty} F_{mn} cosh \frac{\sqrt{m^2 + n^2}\pi z}{a} \cdot sin \frac{n\pi y}{a} \right) se denota G_m$$

Lo que está expresado en serie de senos de Fourier en x con G_m , m = 1, 2, ... los coeficientes. Multiplicando la ecuación por $\frac{i\pi x}{a}$, i = 1, 2, ... e integrando respecto a x de cero hasta a nos deja

$$G_{i} \cdot \frac{a}{2} = (T_{0} - T_{f}) \cdot \frac{a}{i\pi} [1 - (-1)^{i}] \Rightarrow G_{i} = \frac{2(T_{0} - T_{f})}{i\pi} [1 - (-1)^{i}]$$

$$\therefore \sum_{n=1}^{\infty} \left(F_{in} cosh \frac{\sqrt{i^{2} + n^{2}} \pi b}{a} \right) \cdot sin \frac{n\pi y}{a} = G_{p}$$

Lo que está expresado en series de seno de Fourier en y. Multiplicando la ecuación por $\frac{j\pi y}{a}$, j=1,2,... e integrando respecto a y de cero hasta a nos deja

$$F_{ij} cosh \frac{\sqrt{i^2 + j^2} \pi b}{a} \cdot \frac{a}{2} = G_i \cdot \frac{a}{j\pi} [1 - (-1)^j],$$

$$\therefore F_{ij} = \frac{4(T_0 - T_f)}{ij\pi^2 cosh \frac{\sqrt{i^2 + j^2} \pi b}{a}} [1 - (-1)^i] [1 - (-1)^j]$$

De este modo, la distribución de la conducción de temperatura en estado estacionario está dada como sigue:

$$\begin{split} T(x,y,z) &= T_f + \widehat{T}(x,y,z) \\ &= T_f + \frac{4(T_0 - T_f)}{\pi^2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{[1 - (-1)^i][1 - (-1)^j]}{ij coshh} \frac{i\pi x}{a} sin \frac{i\pi x}{a} sin \frac{j\pi y}{a} cosh \frac{\sqrt{i^2 + j^2}\pi z}{a} \\ &= T_f + \frac{16(T_0 - T_f)}{\pi^2} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{(2m-1)(2n-1)cosh} \frac{1}{\sqrt{(2m-1)^2 + (2n-1)^2\pi z}} \\ &\times sin \frac{(2m-1)\pi x}{a} \cdot sin \frac{(2n-1)\pi y}{a} \cdot cosh \frac{\sqrt{(2m-1)^2 + (2n-1)^2\pi z}}{a} \end{split}$$

El desarrollo de esta sección fue guiada por el texto Differential equations for Engineers[1].

Capítulo 3 Método de Diferencias Finitas

Las ecuaciones diferenciales parciales sirven para caracterizar sistemas de ingeniería en los que el comportamiento de una cantidad física se expresa en términos de su razón de cambio con respecto a dos o más variables independientes (Chapra, S. y Canale. P., 2006, Pág. 8)[2]. Entre los ejemplos tenemos la distribución de temperatura en estado estacionario sobre una placa caliente o en este caso sobre la aleta disipadora de calor. Para resolver numéricamente las ecuaciones diferenciales parciales(EDP) se emplean dos métodos bastante diferentes: diferencias finitas y elementos fínitos, siendo el primero el método a utilizar en este informe, el cual transforma la diferencial en una diferencia de ΔX_i o diferencias finitas.

Se pueden generar fórmulas por diferencias divididas de alta exactitud tomando términos de expansión de la serie de Taylor. Por ejemplo, tenemos:

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)h^2}{2} + \dots$$

De la que podemos despejar:

$$f'(x_i) = \frac{f'(x_{i+1}) - f'(x_{i-1})}{2h} - \frac{f''(x_i)h}{2} + O(h^2)$$

Siendo $O(h^2)$ el error de truncamiento.

Considerando esto, podemos utilizar series de Taylor para solucionar problemas ingenieriles más complejos, valiéndonos de uso de diferencias finitas y así aproximar las derivadas de orden superior de la ecuación de Laplace por medio de las condiciones de frontera.

Estas serán las derivadas a utilizar:

$$f'(x_i) = \frac{f'(x_{i+1}) - f'(x_{i-1})}{2h}$$

$$f'''(x_i) = \frac{f'(x_{i+1}) - 2f(x_i) + f'(x_{i-1})}{2h^2}$$

Fig. 0 Extraido de: Chapra, S. y Canale. P., 2006, Pág. 669 [2]

Capítulo 4 Resolución del PVF mediante el Método de Diferencias Finitas

Para la solución numérica de las EDP elípticas, como lo es la ecuación de Laplace, necesitamos representar las derivadas parciales por diferencias divididas finitas, y así tratar la placa de la cara axa de la aleta disipadora de calor como una malla de puntos discretos. Finalmente, la EDP se transforma en una ecuación algebraica de diferencias. Una representación de bidimensional de ella sería:

(Fig.1 Chapra, S. y Canale. P., 2006, Pág. 869)[2]

Así, extrapolando la a tres dimensiones la ecuación de Laplace nos queda:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0 \tag{Y}$$

Así, con (Fig.1) tenemos que:

$$\begin{split} \frac{\partial^2 T}{\partial x^2} &= \frac{T_{i+1,j,z} - 2T_{i,j,z} + T_{i-1,j,z}}{\Delta x^2} \\ \frac{\partial^2 T}{\partial y^2} &= \frac{T_{i,j+1,z} - 2T_{i,j,z} + T_{i,j-1,z}}{\Delta y^2} \\ \frac{\partial^2 T}{\partial z^2} &= \frac{T_{i,j,z+1} - 2T_{i,j,z} + T_{i,j,z-1}}{\Delta z^2} \end{split}$$

Sustituyendo en (Y), tenemos que:

$$\frac{T_{i+1,j,z} - 2T_{i,j,z} + T_{i-1,j,z}}{\Delta x^2} + \frac{T_{i,j+1,z} - 2T_{i,j,z} + T_{i,j-1,z}}{\Delta y^2} + \frac{T_{i,j,z+1} - 2T_{i,j,z} + T_{i,j,z-1}}{\Delta z^2} = 0$$

En el caso de que $\Delta z = \Delta y = \Delta z$, la ecuación queda de la forma:

$$T_{i+1,j,z} - 6T_{i,j,z} + T_{i-1,j,z} + T_{i,j+1,z} + T_{i,j-1,z} + T_{i,j,z+1} + T_{i,j,z-1} = 0$$

Y si son distintos, entonces deberíamos considerar cada Δx_i en la ecuación aplicada a cada nodo.

Hay que recordar que esta relación se satisface solo para todos los nodos dentro de la aleta disipadora de calor, pero los puntos externos no están contemplados, por lo tanto, debemos analizar el momento en el que en la ecuación se introduce el valor de frontera. Al tener el valor de temperatura en las fronteras, algunos valores dentro de la ecuación de Laplace serán constantes y otras variables, formándose finalmente un sistema de ecuaciones con el conjunto de ecuaciones de Laplace de cada nodo.

En este caso tenemos:

Condiciones de contorno:

Así, con

$$\frac{T_{i+1,j,z} - 2T_{i,j,z} + T_{i-1,j,z}}{\Delta x^2} + \frac{T_{i,j+1,z} - 2T_{i,j,z} + T_{i,j-1,z}}{\Delta y^2} + \frac{T_{i,j,z+1} - 2T_{i,j,z} + T_{i,j,z-1}}{\Delta z^2} = 0$$

Tenemos que si i=1, j=1, z=1:

$$\frac{T_{2,1,1}-2T_{1,1,1}+T_{0,1,1}}{\Delta x^2}+\frac{T_{1,2,1}-2T_{1,1,1}+T_{1,0,1}}{\Delta y^2}+\frac{T_{1,1,2}-2T_{1,1,1}+T_{1,1,0}}{\Delta z^2}=0$$

La ecuación considera los valores en x, y y z en cero, por tanto, se reemplaza por los valores de contorno, considerando que la ecuación de primer orden de Taylor especifica qué: $f'(x_i) = \frac{f'(x_{i+1}) - f'(x_{i-1})}{2h}.$

De este modo, con $h \rightarrow \infty$ la nueva ecuación sería:

$$\frac{T_{2,1,1}-2T_{1,1,1}+(T_{2,1,1}-T_f)}{\Delta x^2} + \frac{T_{1,2,1}-2T_{1,1,1}+(T_{1,2,1}-T_f)}{\Delta y^2} + \frac{T_{1,1,2}-2T_{1,1,1}+(T_{1,1,2}-T_f)}{\Delta z^2} = 0$$

$$\frac{2T_{2,1,1}-2T_{1,1,1}-T_f}{\Delta x^2} + \frac{2T_{1,2,1}-2T_{1,1,1}+T_f}{\Delta y^2} + \frac{2T_{1,1,2}-2T_{1,1,1}+T_f}{\Delta z^2} = 0$$

Si $\Delta z = \Delta y = \Delta z$, queda:

$$2T_{2.1.1} - 6T_{1.1.1+} + 2T_{1.2.1} + 2T_{1.1.2} = 3T_f$$

Se procede de forma análoga para todos los nodos relacionados, quedando un sistema de

ecuaciones que se traspasa a un software de programación para así trabajar el sistema en forma de matriz.

Capítulo 5 Resultados y discusión

Según las siguientes tablas que dan razón a la cantidad de particiones en "z" por nodo, donde la temperatura del refrigerante asignada fue de 12°, del aislante 0° y de la zona caliente de 60°, nos entrega una solución aproximada que va desde la cara 10 (zona caliente) hasta la 2 (aislante), la cara 1 no la mostramos ya que poseía los mismos valores que la cara 2.

ans = cara	2			ans = cara	ans = cara 8							
11.998	11.998	11.999	12.000	12.060	12.067	12.050	12.022	13.591	13.736	13.441	12.809	
11.997	11.996	11.998	11.999	12.113	12.149	12.120	12.060	14.637	15.424	14.972	13.743	
11.997	11.996	11.997	11.999	12.133	12.197	12.175	12.095	14.891	16.169	15.862	14.366	
11.998	11.997	11.998	11.999	12.097	12.161	12.155	12.092	14.072	15.282	15.249	14.115	
ans = cara 3				ans = cara 6			ans = cara 9					
11 000	11.999	11.999	12,000	12,197	12,217	12.165	12.077	16.626	16.947	16.385	14.870	
11.998		32 X 10 X 1	A 100 CO	12.360	12.471	12.386	12.197	18.948	20.801	19.978	17.259	
11.997	11.997	11.998	11.999					19.370	22.190	21.691	18.516	
11.997	11.997	11.998	11.999	12.416	12.612	12.546	12.302	17.474	20.097	20.083	17.676	
11.998	.998 11.998	11.998	11.999	12.297	12.491	12.477	12.288					
							a	ans = cara 10				
ans = cara 4				ans = cara 7								
								26.277	26.770	26.026	23.152	
11.999	11.999	12.000	12.000	12.563	12,620	12.488	12.245	30.267	33.652	32.621	28.042	
11.999	11.999	11.999	12.000	12.991	13.296	13.087	12.587	30.732	35.446	34.913	29.819	
11.999	11.998	11.999	12.000	13.117	13.637	13,483	12.854	27.311	31.662	31.696	27.735	
11.999	11.999	11.999	12,000	12.795	13.298	13.271	12.790					

lado cuadrado 3, profundidad 5 , dx=dy=dz= 0.5

Segundo muestreo con diferentes lados y profundidades

ans = cara	7					ans = cara	10					
11.993	11.992	11.994	11.996	11.998	11.999	13.809	14.125	14.108	13.923	13.527	12.841	
11.986	11.983	11.985	11.990	11.995	11.998	15. 192	16.390	16.498	16.142	15.323	13.885	
11.981	11.974	11.976	11.983	11.990	11.996	16.068	18.092	18.543	18.113	16.944	14.854	
11.979	11.969	11.969	11.977	11.986	11.994	16.411	18.979	19.803	19.442	18.090	15.575	
11.981	11.970	11.969	11.975	11.984	11.993	16.068	18.752	19.815	19.631	18.360	15.822	
11.989	11.981	11.979	11.982	11.988	11.994	14.687	16.750	17.708	17.726	16.899	15.062	
ans = cara 8						ans = cara ll						
						16, 933	17.520	17.504	17. 223	16.518	14.922	
11.997	11.996	11.997	11.998	11.999	12.000	19.745	22.212	22, 418	21.898	20.520	17, 493	
11.993	11.992	11.993	11.995	11.997	11.999	21.190	25.114	25.938	25.331	23, 451	19.365	
11.991	11.987	11.988	11.992	11.995	11.998	21.661	26, 413	27, 821	27.341	25, 224	20.536	
11.990	11.985	11.985	11.989	11.993	11.997	20.997	25.873	27, 616	27.392	25, 416	20.773	
11.991	11.985	11.985	11.988	11.992	11.997	18. 288	22.097	23.650	23.702	22.404	19.027	
11.995	11.991	11.990	11.991	11.994	11.997	0200000000						
						ans = cara	12					
ans = cara	9											
						26. 529	27. 285	27.278	27.007	26. 139	23.199	
12.617	12.745	12.735	12,650	12.484	12, 240	30.959	34.914	35.162	34.679	33.116	28. 271	
13. 159	13.625	13.666	13, 498	13.144	12.598	32.570	38.303	39.319	38.778	36.762	30. 795	
13.545	14.360	14, 545	14, 336	13.815	12.982	32.975	39.521	41.132	40.737	38.530	32. 023	
13.714	14. 780	15.133	14. 952	14. 337	13.300	32.106	38.717	40.622	40. 456	38. 403	32. 039	
13. 581	14.713	15. 181	15. 084	14.501	13. 436	27. 952	33.321	35.011	35.079	33. 696	28.911	
	20 TH 1 THOUSAND				PARTICIPATION OF THE PARTY OF T	20		14	373 3	10 10 10		
13.024	13.890	14.316	14.319	13.940	13.166	valor cara	= 4, val	or profun	didad = 6	dx=dy=d	z=0.5	

Discusión

Según los datos mostrados en las tablas anteriores pudimos ver el cómo descendía la temperatura desde el sector caliente (cara 12) y se estabiliza hasta quedar con la temperatura del refrigerante (cara 7). Cabe mencionar que los cálculos se hicieron desde la zona fría hasta la zona caliente, por lo que fue necesario cambiar el sentido multiplicando el vector resultante por -1, para que así los valores tuvieran un sentido físico.

Limitantes: Cabe señalar que presentamos problemas al momento de evaluar la solucion analitica, puesto que los resultados entregados por la tabulación de datos nos entregó como resultado una gran cantidad de valores imaginarios.

También señalaremos que probamos con valores pequeños debido que el número de nodos a evaluar, aumentaba considerablemente en el método de diferencias finitas, generando matrices hasta 1764x1764, con lados y deltas pequeños, lo que dificulta visualizar los datos para la hora de concluir.

Capítulo 6 Conclusión

Como conclusión de este trabajo podemos decir que gracias a una ardua investigación, hemos podido aplicar las Diferencias Finitas a un problema de transferencia de temperatura con las ecuaciones de Fourier estacionaria en tres dimensiones. Gracias al lenguaje de programación Python y la herramienta informática-matemática Octave, pudimos observar los resultados obtenidos por ambos métodos de modo que al contrastar la información obtenida descubrimos que el método de Diferencias Finitas puede perfectamente reemplazar una solución analítica de un problema dado, puesto que los resultados tienen una aproximación bastante más cercana con respecto a su medición en solución real.

Bibliografía

- [1] Wei-Chau Xie, Differential Equations for Engineers, 2010, pag 488-492.
- [2] Chapra, S. y Canale. P., 2006, Pág. 869