Problemas Resueltos

Rafael Guillermo Arias Michel

10 de febrero de 2015

Enunciado 1.

- a) Probar que si $a_n \in \mathbb{Z} \ \forall n \in \mathbb{N}^* \ y \ \text{lim}_{n \to +\infty} a_n = L$, entonces $\exists n_0 \in \mathbb{N}^* \ \text{tal}$ que $a_n = L \ \forall n \geq n_0$.
- b) Probar que $\{(a_n)_{n\in\mathbb{N}^*}|a_n\in\mathbb{Z}\ \forall n\in\mathbb{N}^*\ y\ \text{lim}_{n\to+\infty}\ a_n=0\}$ es numerable. Solución.
- a) Por la definición,

$$\lim_{n \to +\infty} a_n = L \implies \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}^*; n > n_0 \Rightarrow |a_n - L| < \varepsilon.$$

Como $\mathbb{Z} = \overline{\mathbb{Z}}$, $L \in \mathbb{Z}$ y $|a_n - L| \in \mathbb{Z}$ por ser una resta de enteros. Luego, si $\varepsilon \leq 1$, $\exists n_0 \in \mathbb{N}^*$; $n > n_0 \Rightarrow |a_n - L| < 1 \implies |a_n - L| = 0 \implies a_n = L \ \forall n \geq n_0 + 1$.

b) Sea $A = \{(a_n)_{n \in \mathbb{N}^*} | a_n \in \mathbb{Z} \ \forall n \in \mathbb{N}^* \ \text{y } \lim_{n \to +\infty} a_n = 0\}.$

 $\forall (a_n) \in A \ \exists n_a \in \mathbb{N}^*; n \geq n_a+1 \Rightarrow a_n=0.$ Entonces, $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{n_a} a_n$ converge. Para cada sucesión (a_n) , podemos considerar sus primeros n_a términos.

Sea p_n el n-ésimo número primo positivo. Luego, podemos definir $f:A\to\mathbb{N}^*$ y $g:\mathbb{N}^*\times\mathbb{N}^*\to\mathbb{N}^*$ del siguiente modo:

$$g(a,i) = \begin{cases} p_{2n-1} & \text{si } a \ge 0 \\ p_{2n} & \text{si } a < 0 \end{cases}$$
$$f((a_n)) = \prod_{i=1}^{\infty} g(a_i, i)$$

Si $a_n = 0 \ \forall n > n_a$, es evidente que $f((a_n)) = \prod_{i=1}^{n_a} g(a_i, i)$. Luego, $f((a_n)) = f((b_n)) \Leftrightarrow g(a_i, i) = g(b_i, i) \forall i \in \mathbb{N}^* \Rightarrow a_i = b_i \forall i \in \mathbb{N}^*$ por el teorema de la factorización única, lo cual concluye que f es inyectiva y, por tanto, A es numerable.

Enunciado 2. Suponga que $a_n > 0 \ \forall n \in \mathbb{N}^* \ y \sum_{n=1}^{\infty} \infty a_n$ converge. Para cada $n \in \mathbb{N}^*$, sea $r_n = \sum_{n=k}^{\infty} a_k$.

- 1. Probar que $\sum_{n=1}^{\infty} a_n/r_n$ diverge.
- 2. Probar que $\sum_{n=1}^{\infty} a_n / \sqrt{r_n}$ converge.

Solución. Para ambas partes, tendremos en cuenta que $\exists s \in \mathbb{R}; s = \sum_{n=1}^{\infty} a_n$. Luego, $r_n = s - s_{n-1}$ y

$$\lim_{n \to +\infty} r_n = \lim_{n \to +\infty} s - s_n = \lim_{n \to +\infty} s - \lim_{n \to +\infty} s_n = s - s = 0.$$

Además, $r_n-r_{n+1}=a_n>0 \Rightarrow r_n>r_{n+1} \ \forall n\in\mathbb{N}^*.$ También, $r_n=a_n+a_{n+1}+\ldots>a_n.$

a)

$$\sum_{i=m}^{n} \frac{a_i}{r_i} = \sum_{i=m}^{n} \frac{r_i - r_{i+1}}{r_i} > \sum_{i=m}^{n} \frac{r_i - r_{i+1}}{r_m} = \frac{r_m - r_{n+1}}{r_m} = 1 - \frac{r_{n+1}}{r_m} > 1 - \frac{r_n}{r_m}$$

Luego:

$$\sum_{i=m}^{\infty} \frac{a_i}{r_i} = \lim_{n \to +\infty} \sum_{i=m}^n \frac{a_i}{r_i} = \lim_{n \to +\infty} \left(1 - \frac{r_n}{r_m}\right) = 1$$

Esto significa que para cualquier $\varepsilon>0$ $\exists n_0\in\mathbb{N}^*; n>n_0\Rightarrow\sum_{i=m_0}^n\frac{a_i}{r_i}\in(1-\varepsilon,1+\varepsilon)$. Para todo $k\in\mathbb{N}^*$, tomamos $m_k=n_{k-1}+1$ y hallamos $n_k\in\mathbb{N}^*$ tal que $n>n_k\Rightarrow\sum_{i=m_k}^n\frac{a_i}{r_i}\in(1-\varepsilon,1+\varepsilon)$. Así, obtenemos una suma infinita de partes de la serie $\sum_{n=1}^\infty a_n/r_n$ (sin repetir elementos), y cada una de las partes es mayor a $1-\varepsilon$. Si hacemos $\varepsilon<\frac{1}{2}$ tenemos una suma infinita de expresiones mayores a $\frac{1}{2}$, la cual diverge. Con esto se concluye que $\sum_{n=1}^\infty a_n/r_n$ diverge.

b)

$$\frac{a_n}{\sqrt{r_n}} = \frac{a_n(\sqrt{r_n} + \sqrt{r_{n+1}})}{\sqrt{r_n}(\sqrt{r_n} + \sqrt{r_{n+1}})} = \frac{1}{\sqrt{r_n} + \sqrt{r_{n+1}}} \left(a_n + \frac{a_n\sqrt{r_{n+1}}}{\sqrt{r_n}} \right)$$

$$< \frac{2a_n}{\sqrt{r_n} + \sqrt{r_{n+1}}} = \frac{2(r_n - r_{n+1})}{\sqrt{r_n} + \sqrt{r_{n+1}}} = 2(\sqrt{r_n} - \sqrt{r_{n+1}})$$

Si m < n, entonces $\sum_{i=m}^n \frac{a_i}{\sqrt{r_i}} < \sum_{i=m}^n 2(\sqrt{r_i} - \sqrt{r_{i+1}}) = 2(\sqrt{r_m} - \sqrt{r_n})$. Luego:

$$\sum_{i=1}^{\infty} \frac{a_i}{\sqrt{r_i}} = \lim_{n \to +\infty} \sum_{i=1}^{n} \frac{a_i}{\sqrt{r_i}} \le \lim_{n \to +\infty} 2(\sqrt{r_m} - \sqrt{r_n})$$

$$\sum_{i=-\infty}^{\infty} \frac{a_i}{\sqrt{r_i}} \le 2 \lim_{n \to +\infty} \sqrt{r_m} - 2 \lim_{n \to +\infty} \sqrt{r_n} = 2\sqrt{r_m}$$

En particular, para $m=1, \sum_{i=1}^{\infty} \frac{a_i}{\sqrt{r_i}} \leq 2\sqrt{r_1}$ converge.

Enunciado 3. Sea $X \subset \mathbb{R}$ un conjunto arbitrario. Pruebe que todo recubrimiento de X por abiertos posee un subrecubrimiento numerable.

Solución. Sea $A = \bigcup_{\lambda \in L} A_{\lambda}$ tal que $A_{\lambda} = \operatorname{int}(A_{\lambda}) \ \forall \lambda \in L \ y \ X \subset A$ (A es un recubrimiento de X).

$$x \in X \Rightarrow \exists \lambda \in L; x \in A_{\lambda} = \operatorname{int}(A_{\lambda}) \Rightarrow \exists \varepsilon > 0; (x - \varepsilon, x + \varepsilon) \subset A_{\lambda}$$

Luego, sean $p_x, q_x \in \mathbb{Q}$ tales que $(p_x, q_x) \subset (x - \varepsilon, x + \varepsilon)$. Así, podemos definir $B = \{\langle p_x, q_x \rangle | x \in X\}$. De $B \subset \mathbb{Q}^2$ se deduce que B es numerable.

Definimos ahora $f: B \to A$ tal que $f(\langle p_x, q_x \rangle) = A_\lambda$ si $x \in A_\lambda$ (en caso de que más de un A_λ cumpla la condición, se elegirá uno de ellos arbitrariamente). Inmediatamente concluimos que f(B) es un subrecubrimiento numerable de X.

Enunciado 4. Pruebe que si $F_n \subset \mathbb{R}$ es cerrado e $\operatorname{int}(F_n) = \emptyset \ \forall n \in \mathbb{N}^*$ entonces $\operatorname{int}(\bigcup_{n \in \mathbb{N}^*} F_n) = \emptyset$.

Solución. Primero, demostraremos que, si C es un conjunto cerrado con interior vacío y A cualquier conjunto abierto, entonces existe un intervalo abierto $I \in A$ tal que $I \cap C = \emptyset$.

Supongamos, por absurdo, que todo intervalo abierto $I \in A$ tiene al menos un punto en C. Como A es abierto, $c \in A \Rightarrow \exists \varepsilon_c > 0; (c - \varepsilon_c, c + \varepsilon_c) \subset A$. Como int $(C) = \emptyset$, no existe un intervalo abierto completamente contenido en C (sino, todo punto en el interior del invervalo sería un punto en el interior de C). Entonces, $\exists a \in (c - \varepsilon_c, c + \varepsilon_c) - C$. Sea ε tal que $(a - \varepsilon, a + \varepsilon) \subset (c - \varepsilon_c, c + \varepsilon_c)$. Ahora, construimos la sucesión (a_n) tal que $a_n \in (a - \varepsilon/n, a + \varepsilon/n) \cap C$. Inmediatamente, $\lim_{n \to +\infty} a_n = a$, pero como C es cerrado y $a_n \in C \ \forall n \in \mathbb{N}^*$, se llega a la contradicción de que $a \in C$. Así concluimos que A tiene al menos un intervalo abierto sin puntos en común con C.

Sabemos ahora que A contiene un intervalo abierto I_1 tal que $I_1 \cap F_1 = \emptyset$. Inductivamente, I_n contiene un intervalo abierto I_{n+1} tal que $I_{n+1} \cap F_{n+1} = \emptyset$ para toda $n \in \mathbb{N}^*$. Luego, $\bigcap_{n \in \mathbb{N}^*} I_n \cap \bigcup_{n \in \mathbb{N}^*} F_n = \emptyset$. Como $\bigcap_{n \in \mathbb{N}^*} I_n \neq \emptyset$, $\exists c \in \bigcap_{n \in \mathbb{N}^*} I_n \text{ y } c \notin \bigcup_{n \in \mathbb{N}^*} F_n$.

Obtenemos así que cualquier conjunto abierto A tiene al menos un punto no perteneciente a $\bigcup_{n\in\mathbb{N}^*} F_n$, por tanto, para $x\in\bigcup_{n\in\mathbb{N}^*} F_n$, $\nexists \varepsilon$; $(x-\varepsilon,x+\varepsilon)\subset\bigcup_{n\in\mathbb{N}^*} F_n$, lo cual concluye que int $(\bigcup_{n\in\mathbb{N}^*} F_n)=\emptyset$.

Enunciado 5. Sea $f:[0;+\infty)\to\mathbb{R}$ una función acotada en cada intervalo acotado. Pruebe que si $\lim_{x\to+\infty}[f(x+1)-f(x)]=L$ entonces $\lim_{x\to+\infty}\frac{f(x)}{x}=L$.

Solución. Sea $g:[0;+\infty)\to\mathbb{R}$ definida como g(x)=f(x+1)-f(x). Luego, $\lim_{x\to+\infty}g(x)=\lim_{x\to+\infty}[f(x+1)-f(x)]=L$. Por definición, $\forall \varepsilon>0\ \exists A>0; x>A\Rightarrow g(x)\in(L-\varepsilon,L+\varepsilon)$.

Sea x > A. Existe $r \in (0,1]$ tal que $x - A - r \in \mathbb{Z}$. Luego,

$$\frac{f(x)}{x} = \frac{\sum_{y=A+r}^{x-1} [f(y+1) - f(y)] + f(A+r)}{x}$$
$$= \frac{\sum_{y=A+r}^{x-1} g(y) + f(A+r)}{x}$$

De $L - \varepsilon < g(y) < L + \varepsilon \ \forall y > A$ se deduce

$$(x-A-r)(L-\varepsilon) < \sum_{y=A+r}^{x-1} g(y) < (x-A-r)(L+\varepsilon).$$

Luego,

$$\frac{(x-A-r)(L-\varepsilon)-f(A+r)}{x} < \frac{f(x)}{x} < \frac{(x-A-r)(L+\varepsilon)-f(A+r)}{x}$$

$$\frac{(x-A-r)}{x} \cdot (L-\varepsilon) - \frac{f(A+r)}{x} < \frac{f(x)}{x} < \frac{(x-A-r)}{x} \cdot (L+\varepsilon) - \frac{f(A+r)}{x}$$
(1)

para cualquier x > A.

f es una función acotada en cada invervalo acotado. Entonces, también lo es f(x)/x. Por tanto, para todo $a \in \mathbb{R}$, existen $\mathcal{I}_a := \liminf_{x \to a} \frac{f(x)}{x}$ y $\mathcal{S}_a :=$ lím $\sup_{x\to a} \frac{f(x)}{x}$ Volviendo a la desigualdad (1), sea (x_n) una secuencia de números en $(A, +\infty)$

tal que $\lim_{n\to+\infty} x_n = +\infty$ $\lim_{n\to+\infty} \frac{f(x_n)}{x_n} = \mathcal{I}_{+\infty}$. Luego,

$$\frac{f(x_n)}{x_n} > \frac{(x_n - A - r)}{x_n} \cdot (L - \varepsilon) - \frac{f(A + r)}{x_n} \, \forall n \in \mathbb{N}^*$$

$$\lim_{n \to +\infty} \frac{f(x_n)}{x_n} \ge \lim_{n \to +\infty} \left[\frac{(x_n - A - r)}{x_n} \cdot (L - \varepsilon) - \frac{f(A + r)}{x_n} \right]$$

$$\mathcal{I}_{+\infty} \ge \lim_{n \to +\infty} \frac{(x_n - A - r)}{x_n} \cdot \lim_{n \to +\infty} (L - \varepsilon) - \lim_{n \to +\infty} \frac{f(A + r)}{x_n}$$

$$\mathcal{I}_{+\infty} \ge L - \varepsilon.$$
(2)

Análogamente, tomando otra secuencia (x_n) de números en $(A, +\infty)$ tal que $\lim_{n\to+\infty} x_n = +\infty \lim_{n\to+\infty} \frac{f(x_n)}{x_n} = \mathcal{S}_{+\infty}$ obtenemos

$$S_{+\infty} \le L + \varepsilon. \tag{3}$$

De (2) y (3) deducimos $L - \varepsilon \leq \mathcal{I}_{+\infty} \leq \mathcal{S}_{+\infty} \leq L + \varepsilon \ \forall \varepsilon > 0$. Luego,

$$L \le \mathcal{I}_{+\infty} \le \mathcal{S}_{+\infty} \le L \Rightarrow \mathcal{I}_{+\infty} = \mathcal{S}_{+\infty} = L \Rightarrow \lim_{x \to +\infty} \frac{f(x)}{x} = L.$$