# 概念

state: 状态

state transition:状态改变,可以是确定性的,也可以是不确定性的

| sl | s2 | s3 |
|----|----|----|
| s4 | s5 | s6 |
| s7 | s8 | s9 |

Tabular representation: We can use a table to describe the state transition:

|       | $a_1$ (upwards) | $a_2$ (rightwards) | $a_3$ (downwards) | $a_4$ (leftwards) | $a_5$ (unchanged) |
|-------|-----------------|--------------------|-------------------|-------------------|-------------------|
| $s_1$ | $s_1$           | $s_2$              | $s_4$             | $s_1$             | $s_1$             |
| $s_2$ | $s_2$           | $s_3$              | $s_5$             | $s_1$             | $s_2$             |
| $s_3$ | $s_3$           | $s_3$              | $s_6$             | $s_2$             | $s_3$             |
| $s_4$ | $s_1$           | $s_5$              | $s_7$             | $s_4$             | $s_4$             |
| $s_5$ | $s_2$           | $s_6$              | $s_8$             | $s_4$             | $s_5$             |
| $s_6$ | $s_3$           | $s_6$              | $s_9$             | $s_5$             | $s_6$             |
| 87    | $s_4$           | $s_8$              | 87                | 87                | 87                |
| $s_8$ | $s_5$           | $s_9$              | $s_8$             | $s_7$             | $s_8$             |
| $s_9$ | $s_6$           | $s_9$              | $s_9$             | $s_8$             | $s_9$             |

$$egin{aligned} p\left(s_2\mid s_1,a_2
ight) &= 1 \ p\left(s_i\mid s_1,a_2
ight) &= 0 \quad orall i 
eq 2 \end{aligned}$$

action: 某状态采取的动作, 可以用条件概率表示

policy:  $\pi$ :策略

确定性概率:

$$egin{aligned} \pi\left(a_1 \mid s_1
ight) &= 0 \ \pi\left(a_2 \mid s_1
ight) &= 1 \ \pi\left(a_3 \mid s_1
ight) &= 0 \ \pi\left(a_4 \mid s_1
ight) &= 0 \ \pi\left(a_5 \mid s_1
ight) &= 0 \end{aligned}$$

不确定性: 同样是概率

reward: 当前状态采取动作对应的奖励/惩罚



#### **Tabular representation** of *reward transition*: how to use the table?

|       | $a_1$ (upwards) | $a_2$ (rightwards) | $a_3$ (downwards) | $a_4$ (leftwards ) | $a_5$ (unchanged) |
|-------|-----------------|--------------------|-------------------|--------------------|-------------------|
| $s_1$ | $r_{ m bound}$  | 0                  | 0                 | $r_{ m bound}$     | 0                 |
| $s_2$ | $r_{ m bound}$  | 0                  | 0                 | 0                  | 0                 |
| $s_3$ | $r_{ m bound}$  | $r_{ m bound}$     | $r_{ m forbid}$   | 0                  | 0                 |
| $s_4$ | 0               | 0                  | $r_{ m forbid}$   | $r_{ m bound}$     | 0                 |
| $s_5$ | 0               | $r_{ m forbid}$    | 0                 | 0                  | 0                 |
| $s_6$ | 0               | $r_{ m bound}$     | $r_{ m target}$   | 0                  | $r_{ m forbid}$   |
| $s_7$ | 0               | 0                  | $r_{ m bound}$    | $r_{ m bound}$     | $r_{ m forbid}$   |
| $s_8$ | 0               | $r_{ m target}$    | $r_{ m bound}$    | $r_{ m forbid}$    | 0                 |
| $s_9$ | $r_{ m forbid}$ | $r_{ m bound}$     | $r_{ m bound}$    | 0                  | $r_{ m target}$   |

return: 评价策略好坏, reward总和

discounted return:

1. 防止未来return发散, 1+1+1+1+1+1...

2. 平衡现在和未来得到的reward

3. 关于γ: 折扣率, ∈[0,1)
 4. 接近1, 远视; 接近0, 近视

episode:有限步的一次trial,存在terminal state

continuing tasks: 没有terminal state, 一直交互

统一方法:将episode转化为continuing,

• 无论什么action都会回到当前状态,或者只有留在原地的action, reward=0

• 设置成普通的状态, reward>0/<0后续可能会跳出来, 更一般

## **MDP**

马尔可夫决策过程

马尔可夫性质: 和历史无关, 状态转移概率和奖励概率都和历史无关

# 贝尔曼公式

state value

贝尔曼公式

## examples

### While return is important, how to calculate it?



$$egin{aligned} v_1 &= r_1 + \gamma \left( r_2 + \gamma r_3 + \ldots 
ight) = r_1 + \gamma v_2 \ v_2 &= r_2 + \gamma \left( r_3 + \gamma r_4 + \ldots 
ight) = r_2 + \gamma v_3 \ v_3 &= r_3 + \gamma \left( r_4 + \gamma r_1 + \ldots 
ight) = r_3 + \gamma v_4 \ v_4 &= r_4 + \gamma \left( r_1 + \gamma r_2 + \ldots 
ight) = r_4 + \gamma v_1 \end{aligned}$$

 $v_i$ 表示从某个状态开始计算的return

#### The returns rely on each other. Bootstrapping!

$$\underbrace{\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}}_{\mathbf{v}} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix} + \begin{bmatrix} \gamma v_2 \\ \gamma v_3 \\ \gamma v_4 \\ \gamma v_1 \end{bmatrix} = \underbrace{\begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix}}_{\mathbf{r}} + \gamma \underbrace{\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}}_{\mathbf{P}} \underbrace{\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}}_{\mathbf{v}}$$

$$\mathbf{v} = \mathbf{r} + \gamma \mathbf{P} \mathbf{v}$$

This is the Bellman equation (for this specific deterministic problem)!!

- Though simple, it demonstrates the core idea: **the value of one state relies on the values of other states.**
- A matrix-vector form is more clear to see how to solve the **state values**

## state value

Consider the following single-step process:

$$S_t \xrightarrow{A_t} R_{t+1}, S_{t+1}$$

- t, t + 1: discrete time instances
- $S_t$ : state at time t
- $A_t$ : the action taken at state  $S_t$
- $R_{t+1}$ : the reward obtained after taking  $A_t$
- $S_{t+1}$ : the state transited to after taking  $A_t$

Note that  $S_t, A_t, R_{t+1}$  are all random variables.

This step is governed by the following probability distributions:

- ullet  $S_t 
  ightarrow A_t$  is governed by  $\pi(A_t = a | S_t = s)$
- $S_t, A_t \to R_{t+1}$  is governed by  $p(R_{t+1} = r | S_t = s, A_t = a)$
- ullet  $S_t,A_t o S_{t+1}$  is governed by  $p(S_{t+1}=s'|S_t=s,A_t=a)$

At this moment, we assume we know the model (i.e., the probability distributions)!

discounted return is

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

The **expectation** (or called **expected value or mean**) of  $G_t$  is defined as the state-value function or simply state value:

$$v_{\pi}(s) = E[G_t|S_t = s]$$

是关于s的函数, **衡量当前状态价值高低**, 越大说明当前状态价值越高

#### Example:







Recall the returns obtained from  $s_1$  for the three examples:

$$v_{\pi_1}(s_1) = 0 + \gamma 1 + \gamma^2 1 + \dots = \gamma (1 + \gamma + \gamma^2 + \dots) = \frac{\gamma}{1 - \gamma}$$

$$v_{\pi_2}(s_1) = -1 + \gamma 1 + \gamma^2 1 + \dots = -1 + \gamma (1 + \gamma + \gamma^2 + \dots) = -1 + \frac{\gamma}{1 - \gamma}$$

$$v_{\pi_3}(s_1) = 0.5 \left( -1 + \frac{\gamma}{1 - \gamma} \right) + 0.5 \left( \frac{\gamma}{1 - \gamma} \right) = -0.5 + \frac{\gamma}{1 - \gamma}$$

## 公式推导

$$v_{\pi}(s) = \mathbb{E}\left[R_{t+1} \mid S_t = s
ight] + \gamma \mathbb{E}\left[G_{t+1} \mid S_t = s
ight],$$
 $= \underbrace{\sum_a \pi(a \mid s) \sum_r p(r \mid s, a) r}_{ ext{mean of immediate rewards}} + \underbrace{\gamma \sum_a \pi(a \mid s) \sum_{s'} p\left(s' \mid s, a\right) v_{\pi}\left(s'
ight)}_{ ext{mean of future rewards}},$ 

$$=\sum_{a}\pi(a\mid s)\left[\sum_{r}p(r\mid s,a)r+\gamma\sum_{s'}p\left(s'\mid s,a
ight)v_{\pi}\left(s'
ight)
ight],\quadorall s\in\mathcal{S}$$

### **Matrix vector**

### Sovle the state values

Given a policy, finding out the corresponding state values is called **policy evaluation**!

It is a fundamental problem in RL. It is the foundation to find better policies

- closed-form solution
- iterative solution

不同的策略可以得到相同的state value

通过state value可以评价策略好坏

## **Action value**

选择action value大的值的action更新

state value呢?

计算action value:

- 先求state value, 再根据公式计算action value
- 直接计算action value

# 贝尔曼最优公式

贝尔曼公式的特殊情况

- Core concepts: optimal state value and optimal policy
- A fundamental tool: the Bellman optimality equation (BOE)

### **EXAMPLE**

更新:选择action value最大的action

最优策略:每次都选择action value最大的action

原因: 贝尔曼最优公式

What if we select the greatest action value? Then, a new policy is obtained:

$$\pi_{ ext{new}} \; (a \mid s_1) = egin{cases} 1 & a = a^* \ 0 & a 
eq a^* \end{cases}$$

where  $a^* = rg \max_a q_\pi\left(s_1, a\right) = a_3$  .

### **Definition**

最优策略: A policy  $\pi^*$  is optimal if  $v_{\pi^*}(s) \geq v_{\pi}(s)$  for all s and for any other policy  $\pi$  .

The definition leads to many questions:

- Does the optimal policy exist? (所有状态state value都大于其他策略,可能过于理想而不存在)
- Is the optimal policy unique? (是否存在多个最优策略)
- Is the optimal policy stochastic or deterministic? (该策略是确定性还是非确定性)
- How to obtain the optimal policy? (怎么得到)

To answer these questions, we study the Bellman optimality equation.

### BOE

$$egin{aligned} v(s) &= \max_{\pi} \sum_{a} \pi(a \mid s) \left( \sum_{r} p(r \mid s, a) r + \gamma \sum_{s'} p\left(s' \mid s, a
ight) v\left(s'
ight) 
ight), \quad orall s \in \mathcal{S} \ &= \max_{\pi} \sum_{\pi} \pi(a \mid s) q(s, a) \quad s \in \mathcal{S} \end{aligned}$$

若要 $\max$ , 实际是对应最大的 q(s,a)

**Inspired by the above example**, considering that  $\; \sum_a \pi(a \mid s) = 1$  , we have

$$\max_{\pi} \sum_{a} \pi(a \mid s) q(s,a) = \max_{a \in \mathcal{A}(s)} q(s,a)$$

where the optimality is achieved when

$$\pi(a\mid s) = egin{cases} 1 & a=a^* \ 0 & a
eq a^* \end{cases}$$

where  $a^* = rg \max_a q(s,a)$  .

与example处的结果一致

## Solve the optimality equation

固定V, 求解 $\pi$ 

实际问题: v = f(v)

how to solve the equation?

## **Contraction mapping theorem**

Fixed point (不动点):  $x \in X$  is a fixed point of  $f: X \to X$  if

$$f(x) = x$$

Contraction **mapping** (or contractive **function**): f is a contraction mapping if

$$||f(x_1) - f(x_2)|| \le \gamma ||x_1 - x_2||$$

where  $\gamma \in (0,1)$ .

contraction function在求解x = f(x)有三点性质

- Existence: there exists a fixed point  $x^*satisfyingf(x^*) = x^*$ .
- Uniqueness: The fixed point  $x^*$  is unique.
- **Algorithm**: Consider a sequence  $\{x_k\}$  where  $x_{k+1}=f(x_k)$ , then  $x_k\to x^*$  as  $k\to\infty$ . Moreover, the convergence rate is exponentially fast. (利用迭代计算出 $x_k$ , when k->  $\infty$ )

#### solve

对于贝尔曼最优问题,其方程为 contractive function

(证明: 满足  $||f(x_1) - f(x_2)|| \le \gamma ||x_1 - x_2||$  即可,此处省略证明)

绕路:得到目标奖励越晚!和r等于多少有关,但同时也受到 ~的约束

因此求解:

$$egin{aligned} v_{k+1}(s) &= \max_{\pi} \sum_{a} \pi(a \mid s) \left( \sum_{r} p(r \mid s, a) r + \gamma \sum_{s'} p\left(s' \mid s, a
ight) v_{k}\left(s'
ight) 
ight) \ &= \max_{\pi} \sum_{a} \pi(a \mid s) q_{k}(s, a) \ &= \max_{a} q_{k}(s, a) \end{aligned}$$

设立初始的 $v_k$ ,不断迭代得到 $v_{k+1}$ 即可

### **Example**



The values of q(s, a)

| q-value table | $a_\ell$                         | $a_0$                          | $a_r$                            |
|---------------|----------------------------------|--------------------------------|----------------------------------|
| $s_1$         | $-1+\gamma v\left( s_{1}\right)$ | $0+\gamma v\left( s_{1} ight)$ | $1+\gamma v\left( s_{2} ight)$   |
| $s_2$         | $0+\gamma v\left( s_{1} ight)$   | $1+\gamma v\left( s_{2} ight)$ | $0+\gamma v\left( s_{3} ight)$   |
| $s_3$         | $1+\gamma v\left( s_{2}\right)$  | $0+\gamma v\left( s_{3} ight)$ | $-1+\gamma v\left( s_{3}\right)$ |

#### Consider $\gamma$ =0.9 以及下面的初始条件

Our objective is to find  $\,v^*\left(s_i
ight)\,$  and  $\,\pi^*k=0\,$  : v-value: select  $\,v_0\left(s_1
ight)=v_0\left(s_2
ight)=v_0\left(s_3
ight)=0\,$ 

q-value (using the previous table):

|       | $a_\ell$ | $a_0$ | $a_r$ |
|-------|----------|-------|-------|
| $s_1$ | -1       | 0     | 1     |
| $s_2$ | 0        | 1     | 0     |
| $s_3$ | 1        | 0     | -1    |

关于policy: 采取greedy policy, select the greatest q-value

$$\pi\left(a_r \mid s_1\right) = 1, \quad \pi\left(a_0 \mid s_2\right) = 1, \quad \pi\left(a_\ell \mid s_3\right) = 1$$

v-value:  $v_1(s) = \max_a q_0(s, a)$ 

$$v_{1}\left(s_{1}
ight)=v_{1}\left(s_{2}
ight)=v_{1}\left(s_{3}
ight)=1$$

#### This this policy good? Yes!

但是注意,此时虽然policy是最好的,但是state value没有到最优!!!因为此时k=1,而对应的state value 要到无穷,实际不用到无穷,只需  $|v_{k+1}-v_k|<\sigma$ ,因此接下来的iteration,k=1

|       | $a_\ell$ | $a_0$ | $a_r$ |
|-------|----------|-------|-------|
| $s_1$ | -0.1     | 0.9   | 1.9   |
| $s_2$ | 0.9      | 1.9   | 0.9   |
| $s_3$ | 1.9      | 0.9   | -0.1  |

然后Greedy policy (select the greatest q-value):

$$\pi\left(a_r\mid s_1
ight)=1,\quad \pi\left(a_0\mid s_2
ight)=1,\quad \pi\left(a_\ell\mid s_3
ight)=1$$

k = 2, 3, ...

## **Policy optimality**

#### 回答上述的问题

Suppose that  $v^*$  is the unique solution to  $v=\max_\pi{(r_\pi+\gamma P_\pi v)}, and v_\pi$  is the state value function satisfying  $v_\pi=r_\pi+\gamma P_\pi v_\pi$  for any given policy  $\pi$ , then

$$v^* \geq v_\pi, \quad \forall \pi$$

即最优的policy,对应的state value大于每个地方的state value

同时,最优的policy怎么求? 贪心规则

For any  $\,s\in\mathcal{S}$  , the deterministic  ${f greedy}$   ${f policy}$ 

$$\pi^*(a\mid s) = egin{cases} 1 & a=a^*(s) \ 0 & a
eq a^*(s) \end{cases}$$

is an optimal policy solving the BOE. Here,

$$a^*(s) = rg \max_a q^*(a,s),$$

where 
$$q^*(s,a) := \sum_r p(r \mid s,a) r + \gamma \sum_{s'} p\left(s' \mid s,a\right) v^*\left(s'\right)$$
.

# **Analyzing optimal policies**

# **Value Iteration& Policy Iteration**

model-based

### Value iteration

### 原理

即贝尔曼最优公式的迭代求解法

start from  $v_0$ 

step1: Policy update (PU)

已知  $v_k$ ,求出q-table,然后找到最大的策略  $\pi_{k+1}$ ,然后更新

$$\pi_{k+1} = rg \max_{\pi} \left( r_{\pi} + \gamma P_{\pi} v_{k} 
ight)$$

step2: value update (VU)

将上面的  $\pi_{k+1}$ 代入求解  $v_{k+1}$ 

$$v_{k+1} = r_{\pi_{k+1}} + \gamma P_{\pi_{k+1}} v_k$$

 $v_k$  is not a state value, just a value

## 实践算法

#### Pseudocode: Value iteration algorithm

**Initialization:** The probability model p(r|s,a) and p(s'|s,a) for all (s,a) are known. Initial guess  $v_0$ .

**Aim:** Search the optimal state value and an optimal policy solving the Bellman optimality equation.

While  $v_k$  has not converged in the sense that  $||v_k - v_{k-1}||$  is greater than a predefined small threshold, for the kth iteration, do

For every state  $s \in \mathcal{S}$ , do

For every action  $a \in \mathcal{A}(s)$ , do

q-value: 
$$q_k(s,a) = \sum_r p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v_k(s')$$

Maximum action value:  $a_k^*(s) = \arg \max_a q_k(a, s)$ 

Policy update:  $\pi_{k+1}(a|s) = 1$  if  $a = a_k^*$ , and  $\pi_{k+1}(a|s) = 0$  otherwise

Value update:  $v_{k+1}(s) = \max_a q_k(a, s)$ 

## **Policy iteration**

### 原理

start from  $\pi_0$ 

step1: policy evaluation (PE)

计算state value,因为state value实际上表征的就是策略的好坏

已知 $\pi_k$ , 求 $v_{\pi k}$ 

NOTE: 此处有两种计算方法,一种是直接计算,一种是迭代计算

$$v_{\pi_k} = r_{\pi_k} + \gamma P_{\pi_k} v_{\pi_k}$$

step2: policy improvement (PI)

update policy,用greedy算法得到  $\pi_{k+1}$ 

$$\pi_{k+1} = rg \max_{\pi} \left( r_{\pi} + \gamma P_{\pi} v_{\pi_k} 
ight)$$

policy iteration 和value iteration的关系

- 证明policy iteration算法收敛时,用到value iteration收敛的结果
- 是 iteration的极端

 $\triangleright$  Q2: In the policy improvement step, why is the new policy  $\pi_{k+1}$  better than  $\pi_k$ ?

• Lemma (Policy Improvement)

If  $\pi_{k+1} = \arg \max_{\pi} (r_{\pi} + \gamma P_{\pi} v_{\pi_k})$ , then  $v_{\pi_{k+1}} \geq v_{\pi_k}$  for any k.

### 实践编程算法

#### Pseudocode: Policy iteration algorithm

**Initialization:** The probability model p(r|s,a) and p(s'|s,a) for all (s,a) are known. Initial guess  $\pi_0$ .

Aim: Search for the optimal state value and an optimal policy.

While the policy has not converged, for the kth iteration, do

Policy evaluation:

Initialization: an arbitrary initial guess  $v_{\pi_k}^{(0)}$ 

While  $v_{\pi_k}^{(j)}$  has not converged, for the jth iteration, do

For every state  $s \in \mathcal{S}$ , do

$$v_{\pi_k}^{(j+1)}(s) = \sum_{a} \pi_k(a|s) \left[ \sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a) v_{\pi_k}^{(j)}(s') \right]$$

Policy improvement:

For every state  $s \in \mathcal{S}$ , do

For every action  $a \in \mathcal{A}(s)$ , do

$$\begin{aligned} q_{\pi_k}(s, a) &= \sum_r p(r|s, a) r + \gamma \sum_{s'} p(s'|s, a) v_{\pi_k}(s') \\ a_k^*(s) &= \arg\max_a q_{\pi_k}(s, a) \end{aligned}$$

$$\pi_{k+1}(a|s)=1$$
 if  $a=a_k^*$ , and  $\pi_{k+1}(a|s)=0$  otherwise

#### 靠近目标的策略会先变好,远离目标的策略会后变好

原因: greedy action, 当靠近目标时, target是最greedy的, 而greedy则依靠周围的情况, 如果周围乱七八糟, 得到的策略也不一定是最好的

## **Truncated policy iteration**

上述两个算法的一般化!

|            | Policy iteration algorithm                                    | Value iteration algorithm                                | Comments                                                |
|------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|
| 1) Policy: | $\pi_0$                                                       | N/A                                                      |                                                         |
| 2) Value:  | $v_{\pi_0} = r_{\pi_0} + \gamma P_{\pi_0} v_{\pi_0}$          | $v_0 := v_{\pi_0}$                                       |                                                         |
| 3) Policy: | $\pi_1 = \arg\max_{\pi} (r_{\pi} + \gamma P_{\pi} v_{\pi_0})$ | $\pi_1 = \arg\max_{\pi} (r_{\pi} + \gamma P_{\pi} v_0)$  | The two policies are the                                |
|            |                                                               |                                                          | same                                                    |
| 4) Value:  | $v_{\pi_1} = r_{\pi_1} + \gamma P_{\pi_1} v_{\pi_1}$          | $v_1 = r_{\pi_1} + \gamma P_{\pi_1} v_0$                 | $v_{\pi_1}  \geq  v_1   { m since}   v_{\pi_1}  \geq  $ |
|            |                                                               |                                                          | $v_{\pi_0}$                                             |
| 5) Policy: | $\pi_2 = \arg\max_{\pi} (r_{\pi} + \gamma P_{\pi} v_{\pi_1})$ | $\pi_2' = \arg\max_{\pi} (r_{\pi} + \gamma P_{\pi} v_1)$ |                                                         |
| :          | :                                                             | :                                                        | :                                                       |
| •          | •                                                             | •                                                        | •                                                       |

Consider the step of solving  $\,v_{\pi_1} = r_{\pi_1} + \gamma P_{\pi_1} v_{\pi_1}\,$  :

$$\begin{aligned} v_{\pi_1}^{(0)} &= v_0 \\ \text{value iteration} &\leftarrow v_1 \longleftarrow v_{\pi_1}^{(1)} &= r_{\pi_1} + \gamma P_{\pi_1} v_{\pi_1}^{(0)} \\ v_{\pi_1}^{(2)} &= r_{\pi_1} + \gamma P_{\pi_1} v_{\pi_1}^{(1)} \\ &\vdots \\ \text{truncated policy iteration} &\leftarrow \bar{v}_1 \longleftarrow v_{\pi_1}^{(j)} &= r_{\pi_1} + \gamma P_{\pi_1} v_{\pi_1}^{(j-1)} \\ &\vdots \\ \text{policy iteration} &\leftarrow v_{\pi_1} \longleftarrow v_{\pi_1}^{(\infty)} &= r_{\pi_1} + \gamma P_{\pi_1} v_{\pi_1}^{(\infty)} \end{aligned}$$

- The value iteration algorithm computes once.
- The **policy** iteration algorithm computes an **infinite number of iterations**.
- The **truncated** policy iteration algorithm computes a **finite number of iterations** (say j ). The rest iterations from j to  $\infty$  are **truncated**.

#### Pseudocode: Truncated policy iteration algorithm

**Initialization:** The probability model p(r|s,a) and p(s'|s,a) for all (s,a) are known. Initial guess  $\pi_0$ .

Aim: Search for the optimal state value and an optimal policy.

While the policy has not converged, for the kth iteration, do

Policy evaluation:

Initialization: select the initial guess as  $v_k^{(0)} = v_{k-1}$ . The maximum iteration is set to

be  $j_{\text{truncate}}$ . Iimited times While  $j < j_{\text{truncate}}$ , do

For every state  $s \in \mathcal{S}$ , do

$$v_k^{(j+1)}(s) = \sum_a \pi_k(a|s) \left[ \sum_r p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a) v_k^{(j)}(s') \right]$$

Set  $v_k = v_k^{(j_{\text{truncate}})}$ 

Policy improvement:

For every state  $s \in \mathcal{S}$ , do

For every action  $a \in \mathcal{A}(s)$ , do

$$q_k(s, a) = \sum_r p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_k(s')$$

 $a_k^*(s) = \arg\max_a q_k(s, a)$ 

$$\pi_{k+1}(a|s)=1$$
 if  $a=a_k^*$ , and  $\pi_{k+1}(a|s)=0$  otherwise



# **Monte Carlo Learning**

Model Free->monte carlo estimation

Core: policy iteration -> model-free

## **Example**

许多次采样!通过平均值来代替期望!数据理论支持:大数定理!

大量实验来近似! 为什么蒙特卡罗? 因为没有模型, 只能实验

#### Summary:

- Monte Carlo estimation refers to a broad class of techniques that rely on repeated random sampling to solve approximation problems.
- Why we care about Monte Carlo estimation? Because it does not require the model!
- Why we care about mean estimation? Because **state value and action value** are defined as **expectations of random variables**!

## **MC Basic**

#### model-free最大区别的点在于PI中的计算action value

Two expressions of action value:

• Expression 1 requires the model:

$$q_{\pi_k}(s,a) = \sum_r p(r\mid s,a) r + \gamma \sum_{s'} p\left(s'\mid s,a
ight) v_{\pi_k}\left(s'
ight)$$

• Expression 2 does not require the model:

$$q_{\pi_k}(s,a) = \mathbb{E}\left[G_t \mid S_t = s, A_t = a
ight]$$

Idea to achieve model-free RL: We can use expression 2 to calculate  $q_{\pi_k}(s,a)$  based on **data** (samples or experiences)!

### 计算action value

- Starting from (s, a), following policy  $\pi_k$ , generate an episode.
- The return of this episode is g(s, a)
- g(s,a) is a sample of  $G_t$  in

$$q_{\pi_k}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]$$

• Suppose we have a set of episodes and hence  $\{g^{(j)}(s,a)\}$ . Then,

$$q_{\pi_k}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a] \approx \frac{1}{N} \sum_{i=1}^{N} g^{(i)}(s, a).$$

## 具体Policy iteration

step1: policy evaluation

在求解state value时,用期望代替原本用模型求解的答案

This step is to obtain  $q_{\pi_k}(s,a)$  for all (s,a). Specifically, for each action-state pair (s,a), run an infinite number of (or sufficiently many) episodes. The average of their returns is used to approximate  $q_{\pi_k}(s,a)$ .

step2: policy improvement

NOTE:

- useful to reveal the core idea, not practical due to low efficiency
- 直接估计action value! 而不是估计state value

still is convergent

注意: 此处的action value是估计的!

### **Example1**

episode lenth!



Task:

- An initial policy is shown in the figure.
- Use MC Basic to find the optimal policy.
- $r_{
  m boundary} = -1, r_{
  m forbidden} = -1, r_{
  m target} = 1, \gamma = 0.9.$

#### 与model-based区别在哪? 不能直接用公式

Step1: policy evaluation

- Since the current policy is **deterministic**, **one episode** would be sufficient to get the action value!
- If the current policy is **stochastic**, **an infinite number of episodes (or at least many) are required!** (统计计算期望!)
- Starting from  $(s_1,a_1)$  , the episode is  $s_1 \stackrel{a_1}{\longrightarrow} s_1 \stackrel{a_1}{\longrightarrow} s_1 \stackrel{a_1}{\longrightarrow} \ldots$  . Hence, the action value is

$$q_{\pi_0}\left(s_1,a_1
ight) = -1 + \gamma(-1) + \gamma^2(-1) + \dots$$

• Starting from  $(s_1,a_2)$  , the episode is  $s_1 \stackrel{a_2}{\longrightarrow} s_2 \stackrel{a_3}{\longrightarrow} s_5 \stackrel{a_3}{\longrightarrow} \dots$  . Hence, the action value is

$$q_{\pi_0}\left(s_1,a_2
ight) = 0 + \gamma 0 + \gamma^2 0 + \gamma^3 (1) + \gamma^4 (1) + \dots$$

• Starting from  $(s_1,a_3)$  , the episode is  $s_1 \stackrel{a_3}{\longrightarrow} s_4 \stackrel{a_2}{\longrightarrow} s_5 \stackrel{a_3}{\longrightarrow} \dots$  . Hence, the action value is

$$q_{\pi_0}\left(s_1,a_3
ight)=0+\gamma 0+\gamma^2 0+\gamma^3(1)+\gamma^4(1)+\ldots$$

Step2: policy improvement

• By observing the action values, we see that

$$q_{\pi_0}\left(s_1,a_2
ight)=q_{\pi_0}\left(s_1,a_3
ight)$$

are the maximum.

• As a result, the policy can be improved as

$$\pi_1(a_2 \mid s_1) = 1 \text{ or } \pi_1(a_3 \mid s_1) = 1.$$

In either way, the new policy for  $s_1$  becomes optimal. One iteration is sufficient for this simple example!

### Example2

#### the impact of episode length

所谓episode length,可以理解为探索长度

length=1 -> 
$$q_{\pi_0}\left(s_1,a_1\right) = -1$$

length=2 -> 
$$q_{\pi_0}\left(s_1,a_1\right) = -1 + \gamma(-1)$$

#### 且是从target处开始逆向优化!!



注意上面非0的state value,对应为最优的策略

#### Conclusion:

- The episode length should be sufficiently long.
- The episode length does not have to be infinitely long.

## **MC Exploring Start**

#### MC Basic的推广

如何更新? 引入Visit!

MC Basic: Initial visit

Exploring: 在计算一次episode时,其同时访问了其他的state-action pairs,因此可以计算其他的

action value, 提高效率

▶ The episode also visits other state-action pairs.

$$\begin{array}{c} s_1 \xrightarrow{a_2} s_2 \xrightarrow{a_4} s_1 \xrightarrow{a_2} s_2 \xrightarrow{a_3} s_5 \xrightarrow{a_1} \dots & [\text{original episode}] \\ s_2 \xrightarrow{a_4} s_1 \xrightarrow{a_2} s_2 \xrightarrow{a_3} s_5 \xrightarrow{a_1} \dots & [\text{episode starting from } (s_2, a_4)] \\ s_1 \xrightarrow{a_2} s_2 \xrightarrow{a_3} s_5 \xrightarrow{a_1} \dots & [\text{episode starting from } (s_1, a_2)] \\ s_2 \xrightarrow{a_3} s_5 \xrightarrow{a_1} \dots & [\text{episode starting from } (s_2, a_3)] \\ s_5 \xrightarrow{a_1} \dots & [\text{episode starting from } (s_5, a_1)] \end{array}$$

Can estimate  $q_{\pi}(s_1, a_2)$ ,  $q_{\pi}(s_2, a_4)$ ,  $q_{\pi}(s_2, a_3)$ ,  $q_{\pi}(s_5, a_1)$ ,...

#### **Data-efficient methods:**

first-visit method:只用第一次出现的进行估计!every-visit method:后面出现的都可以利用来估计!

#### When to update the policy

• first method: 把**所有episode**的return收集后再开始估计,然后改进

• second method:得到**一个episode**的return就开始估计,直接改进,得到一个改进一个(最后仍会收敛)

#### **GPI**

#### **GPI**: generalized policy iteration

- It refers to the general idea or framework of switching between policy-evaluation and policy-improvement processes.
- Many model-based and model-free RL algorithms fall into this framework.
- 不需要十分精确估计! 但最后仍能收敛

Exploring的缺点:每一个state action pair都要有一个episode,以防漏掉

如何解决?看下面!

## MC $\xi$ -Greedy

为什么要探索?不是按照贪心就可以得到最优策略吗?

为什么用这个策略?不需要exploring starts

Soft policy: A policy is called soft if **the probability to take any action is positive**.

此处的soft policy: *ξ*-Greedy

原因: episode够长,只要用1个或几个就可以覆盖其他所有state action pair

### **Definition**

$$\pi(a \mid s) = egin{cases} 1 - rac{arepsilon}{|\mathcal{A}(s)|} (|\mathcal{A}(s)| - 1), & ext{ for the greedy action,} \ rac{arepsilon}{|\mathcal{A}(s)|}, & ext{ for the other } |\mathcal{A}(s)| - 1 ext{ actions.} \end{cases}$$

where  $\,arepsilon \in [0,1]\,$  and  $|\mathcal{A}(s)|\,$  is the number of actions for  $\,$ s .

• The chance to choose the greedy action is always greater than other actions, because

$$1 - rac{arepsilon}{|\mathcal{A}(s)|}(|\mathcal{A}(s)| - 1) = 1 - arepsilon + rac{arepsilon}{|\mathcal{A}(s)|} \geq rac{arepsilon}{|\mathcal{A}(s)|}$$

.

- Why use  $\varepsilon-greedy$ ? Balance between exploitation and exploration!!! (充分利用和探索性)
- When  $\varepsilon$ =0, it becomes **greedy!** Less exploration but more exploitation!
- When  $\varepsilon$ =1, it becomes a **uniform distribution** (均匀分布). More exploration but less exploitation.

在选择数据时,我们利用every visit,因为action pair可能会被访问很多次,如果用first visit,则会导致数据浪费

## **Example**





#### Conclusion

• The advantage of  $\varepsilon$  -greedy policies is that they have stronger exploration ability so that the exploring starts condition is not required.

- The disadvantage is that  $\varepsilon greedy$  polices are not optimal in general (we can only show that there always exist greedy policies that are optimal).
- The final policy given by the MC  $\varepsilon-Greedy$  algorithm is only optimal in the set  $\Pi_{\varepsilon}$  of all  $\varepsilon-greedy$  policies.
- $\varepsilon$  cannot be too large.
- 当 arepsilon 为0.1或很小时,得到的policy与greedy policy一致,当变大时,得到的最终的policy与greedy有出入

# **Stochastic Approximation**

## **Mean estimation Example**

how to calculate the mean

- The first way, which is trivial, is to collect all the samples then calculate the average.
- **The second way** can avoid this drawback because it calculates the average in an **incremental** and **iterative** manner.

We can use

$$w_{k+1}=w_k-rac{1}{k}(w_k-x_k).$$

to calculate the mean  $\bar{x}$  incrementally:(上述公式可推导)

$$egin{aligned} w_1 &= x_1 \ w_2 &= w_1 - rac{1}{1}(w_1 - x_1) = x_1 \ w_3 &= w_2 - rac{1}{2}(w_2 - x_2) = x_1 - rac{1}{2}(x_1 - x_2) = rac{1}{2}(x_1 + x_2) \ w_4 &= w_3 - rac{1}{3}(w_3 - x_3) = rac{1}{3}(x_1 + x_2 + x_3) \ dots \ w_{k+1} &= rac{1}{k} \sum_{i=1}^k x_i \end{aligned}$$

将  $\frac{1}{k}$ 替换成  $\alpha_k$ ,即为对应的a special **SA algorithm** and also a **special stochastic gradient descent algorithm** 

## **Robbins-Monro algorithm**

## **Description**

Stochastic approximation (SA):

• SA is powerful in the sense that it does not require to know the expression of the objective function nor its derivative.

#### Robbins-Monro (RM) algorithm:

- The is a pioneering work in the field of **stochastic approximation**.
- The famous stochastic gradient descent algorithm is a special form of the RM algorithm.
   (SGD)
- It can be used to analyze the **mean estimation algorithms** introduced in the beginning.

The Robbins-Monro (RM) algorithm can solve this problem:

$$w_{k+1}=w_k-a_k ilde{g}\left(w_k,\eta_k
ight),\quad k=1,2,3,\ldots$$

where

- ullet  $w_k$  is the k th estimate of the **root**
- $\tilde{g}\left(w_{k},\eta_{k}\right)=g\left(w_{k}\right)+\eta_{k}$  is the kth noisy observation
- $a_k$  is a **positive** coefficient.( $a_k$ >0) The function g(w) is a **black box!** This algorithm **relies on data**:
- Input sequence:  $\{w_k\}$
- Noisy output sequence:  $\{\tilde{g}\left(w_{k},\eta_{k}\right)\}$ Philosophy: without model, we need data!
- Here, the model refers to the expression of the function.

## **Example**

Excise: manually solve g(w)=w-10 using the RM algorithm. Set:  $w_1=20, a_k\equiv 0.5, \eta_k=0$  (i.e., no observation error)  $w_1=20\Longrightarrow g\left(w_1\right)=10 \\ w_2=w_1-a_1g\left(w_1\right)=20-0.5*10=15\Longrightarrow g\left(w_2\right)=5 \\ w_3=w_2-a_2g\left(w_2\right)=15-0.5*5=12.5\Longrightarrow g\left(w_3\right)=2.5$   $\vdots$   $w_k\to 10$ 

## **Convergence analysis**

A rigorous convergence result is given below

Theorem (Robbins-Monro Theorem) In the Robbins-Monro algorithm, if

```
1.\ 0 < c_1 \leq \nabla_w g(w) \leq c_2 for all w; 2. \sum_{k=1}^\infty a_k = \infty and \sum_{k=1}^\infty a_k^2 < \infty; 3. \mathbb{E}\left[\eta_k \mid \mathcal{H}_k\right] = 0 and \mathbb{E}\left[\eta_k^2 \mid \mathcal{H}_k\right] < \infty; where \mathcal{H}_k = \{w_k, w_{k-1}, \ldots\}, then w_k converges with probability 1 (w.p.1)(概率收敛) to the root w^* satisfying g\left(w^*\right) = 0
```

a<sub>k</sub>要收敛到0,但不要收敛太快,

## Application to mean estimation

estimation algorithm

$$w_{k+1} = w_k + \alpha_k (x_k - w_k).$$

We know that

- ullet If  $lpha_k=1/k$  , then  $w_{k+1}=1/k\sum_{i=1}^k x_i$  .
- If  $\, lpha_k \,$  is not  $\, 1/k$  , the convergence was not analyzed.

we show that this algorithm is **a special case of the RM algorithm**. Then, its **convergence naturally** follows

下面将证明上述方程为RM算法

1. Consider a function:

$$g(w) \doteq w - \mathbb{E}[X]$$

Our aim is to solve  $\,g(w)=0$  . If we can do that, then we can obtain  $\,\mathbb{E}[X]$  .

2. The observation we can get is

$$\tilde{g}(w,x) \doteq w - x$$

because we can only **obtain samples of X** . Note that

$$egin{aligned} ilde{g}(w,\eta) &= w - x = w - x + \mathbb{E}[X] - \mathbb{E}[X] \ &= (w - \mathbb{E}[X]) + (\mathbb{E}[X] - x) \doteq g(w) + \eta, \end{aligned}$$

3. The RM algorithm for solving g(x) = 0 is

$$w_{k+1} = w_k - \alpha_k \tilde{g}\left(w_k, \eta_k\right) = w_k - \alpha_k \left(w_k - x_k\right),$$

which is exactly the mean estimation algorithm.

The convergence naturally follows.

#### **SGD**

### introduction

SGD is a **special RM** algorithm.

The mean estimation algorithm is a special SGD algorithm

SGD: 常用于解决优化问题(实际还是求根问题?)

最小化:梯度下降

最大化: 梯度上升

• GD (gradient descent)

$$w_{k+1} = w_k - lpha_k 
abla_w \mathbb{E}\left[f\left(w_k, X
ight)
ight] = w_k - lpha_k \mathbb{E}\left[
abla_w f\left(w_k, X
ight)
ight]$$

drawback: the **expected value** is difficult to **obtain**.

• BGD: No model, use data to estimate the mean

$$egin{aligned} \mathbb{E}\left[
abla_w f\left(w_k, X
ight)
ight] &pprox rac{1}{n} \sum_{i=1}^n 
abla_w f\left(w_k, x_i
ight) \ w_{k+1} &= w_k - lpha_k rac{1}{n} \sum_{i=1}^n 
abla_w f\left(w_k, x_i
ight). \end{aligned}$$

Drawback: it requires **many samples** in each iteration for each  $w_k$ .

SGD

• 
$$w_{k+1} = w_k - lpha_k 
abla_w f\left(w_k, x_k
ight)$$
 compared to the BGD, let  $n=1$ 

### example

We next consider an example:

$$\min_{w} \quad J(w) = \mathbb{E}[f(w,X)] = \mathbb{E}\left[rac{1}{2}\|w-X\|^2
ight],$$

where

$$f(w, X) = \|w - X\|^2 / 2 \quad \nabla_w f(w, X) = w - X$$

#### answer

• The SGD algorithm for solving the above problem is

$$w_{k+1} = w_k - \alpha_k \nabla_w f(w_k, x_k) = w_k - \alpha_k (w_k - x_k)$$

- Note:
  - It is **the same as the mean estimation** algorithm we presented before.
  - That mean estimation algorithm is a **special SGD** algorithm.

### convergence

#### Core: 证明SGD是RM算法, 就可以证明其是收敛的

We next show that SGD is a special RM algorithm. Then, the convergence naturally follows. The aim of SGD is to minimize

$$J(w) = \mathbb{E}[f(w, X)]$$

This problem can be converted to a root-finding problem:

$$\nabla_w J(w) = \mathbb{E}\left[\nabla_w f(w, X)\right] = 0$$

Let

$$g(w) = \nabla_w J(w) = \mathbb{E}\left[\nabla_w f(w, X)\right]$$

Then, the aim of SGD is to find the root of g(w) = 0.

#### 用RM算法解决上述问题

What we can measure is

$$egin{aligned} ilde{g}(w,\eta) &= 
abla_w f(w,x) \ &= \underbrace{\mathbb{E}\left[
abla_w f(w,X)
ight]}_{g(w)} + \underbrace{
abla_w f(w,x) - \mathbb{E}\left[
abla_w f(w,X)
ight]}_{\eta}. \end{aligned}$$

Then, the RM algorithm for solving g(w) = 0 is

$$w_{k+1} = w_k - a_k \tilde{g}(w_k, \eta_k) = w_k - a_k \nabla_w f(w_k, x_k).$$

- It is exactly the SGD algorithm.
- Therefore, SGD is a **special RM algorithm**.

#### pattern

由于梯度具有随机性,收敛是否存在随机性呢?即 $w_k$ 是否会绕一大圈再回到 $w^*$ 

#### 不存在

通过**相对误差**来证明

$$\delta_{k} \doteq rac{\left| 
abla_{w} f\left(w_{k}, x_{k}
ight) - \mathbb{E}\left[
abla_{w} f\left(w_{k}, X
ight)
ight] 
ight|}{\left| \mathbb{E}\left[
abla_{w} f\left(w_{k}, X
ight)
ight] 
ight|}$$

Since  $\mathbb{E}\left[ 
abla_{w}f\left( w^{st},X
ight) 
ight] =0$  , we further have

$$\delta_k = rac{\left| 
abla_w f\left( w_k, x_k 
ight) - \mathbb{E}\left[ 
abla_w f\left( w_k, X 
ight) 
ight] 
ight|}{\left| \mathbb{E}\left[ 
abla_w f\left( w_k, X 
ight) 
ight] - \mathbb{E}\left[ 
abla_w f\left( w^*, X 
ight) 
ight] 
ight|} = rac{\left| 
abla_w f\left( w_k, x_k 
ight) - \mathbb{E}\left[ 
abla_w f\left( w_k, X 
ight) 
ight] 
ight|}{\left| \mathbb{E}\left[ 
abla_w^2 f\left( ilde{w}_k, X 
ight) \left( w_k - w^* 
ight) 
ight] 
ight|}.$$

#### 上式用了中值定理

where the last equality is due to the mean value theorem and  $ilde{w}_k \in [w_k, w^*]$ 

Suppose f is strictly convex such that

$$\nabla_w^2 f \geq c > 0$$

for all w, X, where c is a **positive bound**.

Then, the denominator of  $\delta_k$  becomes

$$egin{aligned} \left| \mathbb{E}\left[ 
abla_w^2 f\left( ilde{w}_k, X 
ight) \left( w_k - w^* 
ight) 
ight] 
ight| &= \left| \mathbb{E}\left[ 
abla_w^2 f\left( ilde{w}_k, X 
ight) 
ight] \left( w_k - w^* 
ight) 
ight| &= \left| \mathbb{E}\left[ 
abla_w^2 f\left( ilde{w}_k, X 
ight) 
ight] \left| \left| \left( w_k - w^* 
ight) 
ight| &\geq c \left| w_k - w^* 
ight| \end{aligned}$$

Substituting the above inequality to  $\,\delta_k\,$  gives

$$\delta_k \leq rac{|
abla_w f\left(w_k, x_k
ight) - \mathbb{E}\left[
abla_w f\left(w_k, X
ight)
ight]|}{c\left|w_k - w^*
ight|}.$$

因此,

- 当 $w_k$ 与 $w^*$ 相距较远时,分母很大,此时从另外一个角度而言,相对误差很小,分子很小,因此随机梯度和真实梯度基本一致,意味着算法的趋势朝着真实值,也就是 $w^*$ 前进
- 当  $w_k$ 与  $w^*$ 相距较近时,分母很小,此时从另外一个角度而言,相对误差较大,分子较大,此时则存在随机性,即其不一定能够准确收敛到  $w^*$

#### 因此证明了,不会有收敛的随机性!



- Although the initial guess of the mean is **far away from the true value**, the SGD estimate can **approach** the neighborhood of the true value **fast**.
- When the estimate is **close to the true value**, it exhibits certain **randomness** but still approacwhes the true value gradually

# **Temporal-Difference Learning**

Model-free

迭代式算法

## **Motivating example**

三个例子

First, consider the simple mean estimation problem: calculate

$$w=\mathbb{E}[X]$$

based on some iid samples  $\{x\}$  of X.

ullet By writing  $\,g(w)=w-\mathbb{E}[X]$  , we can reformulate the problem to a root-finding problem

$$g(w) = 0.$$

• Since we can only obtain samples {x} of X, the noisy observation is

$$ilde{g}(w,\eta) = w - x = (w - \mathbb{E}[X]) + (\mathbb{E}[X] - x) \doteq g(w) + \eta.$$

ullet Then, according to the last lecture, we know the RM algorithm for solving  $\,g(w)=0\,$  is

$$w_{k+1} = w_k - \alpha_k \tilde{g}\left(w_k, \eta_k\right) = w_k - \alpha_k \left(w_k - x_k\right)$$

Second

$$egin{aligned} w &= \mathbb{E}[v(X)] \ g(w) &= w - \mathbb{E}[v(X)] \ ilde{g}(w,\eta) &= w - v(x) = (w - \mathbb{E}[v(X)]) + (\mathbb{E}[v(X)] - v(x)) \doteq g(w) + \eta \ w_{k+1} &= w_k - lpha_k ilde{g}\left(w_k,\eta_k\right) = w_k - lpha_k \left[w_k - v\left(x_k\right)
ight] \end{aligned}$$

**Finally** 

$$egin{aligned} w &= \mathbb{E}[R + \gamma v(X)] \ \ w_{k+1} &= w_k - lpha_k ilde{g}\left(w_k, \eta_k
ight) = w_k - lpha_k \left[w_k - \left(r_k + \gamma v\left(x_k
ight)
ight)
ight] \end{aligned}$$

## TD learing of state values

## **Description**

The data/experience required by the algorithm:

•  $(s_0, r_1, s_1, \ldots, s_t, r_{t+1}, s_{t+1}, \ldots)$  or  $\{(s_t, r_{t+1}, s_{t+1})\}_t$  generated following the given policy  $\pi$ .

The TD algorithm can be annotated as

$$\underbrace{v_{t+1}\left(s_{t}\right)}_{\text{new estimate}} = \underbrace{v_{t}\left(s_{t}\right)}_{\text{current estimate}} - \alpha_{t}\left(s_{t}\right) \left[\underbrace{v_{t}\left(s_{t}\right) - \left[\underbrace{r_{t+1} + \gamma v_{t}\left(s_{t+1}\right)}_{\text{TD target } \bar{v}_{t}}\right]},$$

Here,

$$\bar{v}_t \doteq r_{t+1} + \gamma v\left(s_{t+1}\right)$$

is called the TD target.

$$\delta_t \doteq v\left(s_t
ight) - \left[r_{t+1} + \gamma v\left(s_{t+1}
ight)
ight] = v\left(s_t
ight) - ar{v}_t$$

is called the TD error.

It is clear that the **new estimate**  $v_{t+1}\left(s_{t}\right)$  is a **combination** of the **current estimate**  $v_{t}\left(s_{t}\right)$  and the **TD error.** 

TD target 实际就是  $v_\pi$ ,即策略的state value,因为没有模型,最开始并不知道完整的state value,需要不断采样,不断更新,到最后的state value(而不是最优策略)

That is because the algorithm drives  $v(s_t)$  towards  $\bar{v}_t$ .

#### **TD** error

- It is a **difference** between two consequent time steps.
- ullet It reflects the deficiency between  $v_t$  and  $v_\pi.$  To see that, denote

$$\delta_{\pi,t} \doteq v_{\pi}\left(s_{t}
ight) - \left[r_{t+1} + \gamma v_{\pi}\left(s_{t+1}
ight)
ight]$$

## The idea of the algorithm

Q: What does this TD algorithm do mathematically?

A: It solves the Bellman equation of a given policy  $\pi$  without model.

#### 引入新的贝尔曼公式

First, a new expression of the Bellman equation.

The definition of state value of  $\pi$  is

$$v_{\pi}(s) = \mathbb{E}[R + \gamma G \mid S = s], \quad s \in \mathcal{S}$$

where G is discounted return. Since

$$\mathbb{E}[G\mid S=s] = \sum_{a}\pi(a\mid s)\sum_{s'}p\left(s'\mid s,a
ight)v_{\pi}\left(s'
ight) = \mathbb{E}\left[v_{\pi}\left(S'
ight)\mid S=s
ight],$$

where S' is the next state, we can rewrite (4) as

$$v_{\pi}(s) = \mathbb{E}\left[R + \gamma v_{\pi}\left(S'
ight) \mid S = s
ight], \quad s \in \mathcal{S}$$

Equation (5) is another expression of the Bellman equation. It is sometimes called the **Bellman expectation** equation, an important tool to design and analyze TD algorithms.

#### TD算法是计算贝尔曼公式的一个RM算法

Second, solve the Bellman equation in (5) using the RM algorithm.

In particular, by defining

$$g(v(s)) = v(s) - \mathbb{E}\left[R + \gamma v_{\pi}\left(S'\right) \mid s\right],$$

we can rewrite (5) as

$$g(v(s)) = 0$$

Since we can only obtain the samples  $\,r\,$  and  $\,s'\,$  of  $\,R\,$  and  $\,S'\,$  , the noisy observation we have is

$$ilde{g}(v(s)) = v(s) - \left[r + \gamma v_{\pi}\left(s'\right)
ight] \ = \underbrace{\left(v(s) - \mathbb{E}\left[R + \gamma v_{\pi}\left(S'\right) \mid s
ight]
ight)}_{g(v(s))} + \underbrace{\left(\mathbb{E}\left[R + \gamma v_{\pi}\left(S'\right) \mid s
ight] - \left[r + \gamma v_{\pi}\left(s'
ight)
ight]
ight)}_{\eta}.$$

therefore

$$egin{aligned} v_{k+1}(s) &= v_k(s) - lpha_k ilde{g}\left(v_k(s)
ight) \ &= v_k(s) - lpha_k \left(v_k(s) - \left\lceil r_k + \gamma v_\pi\left(s_k'
ight) 
ight
ceil
ight), \quad k = 1, 2, 3, \dots \end{aligned}$$

To **remove the two assumptions** in the RM algorithm, we can modify it

- One modification is that  $\{(s, r, s')\}$  is **changed to**  $\{(s_t, r_{t+1}, s_{t+1})\}$  so that the algorithm can **utilize the sequential samples** in an episode.
- Another modification is that  $v_{\pi}\left(s'\right)$  is **replaced by an estimate of it** because we don't know it in advance.

### convergence

#### Theorem (Convergence of TD Learning)

By the TD algorithm (1),  $v_t(s)$  converges with probability 1 to  $v_\pi(s)$  for all  $s\in\mathcal{S}$  as  $t\to\infty$  if  $\sum_t \alpha_t(s)=\infty$  and  $\sum_t \alpha_t^2(s)<\infty$  for all  $s\in\mathcal{S}$ .

## Comparison

| TD/Sarsa learning                      | MC learning                             |
|----------------------------------------|-----------------------------------------|
| Online: TD learning is online. It can  | Offline: MC learning is offline. It     |
| update the state/action values imme-   | has to wait until an episode has been   |
| diately after receiving a reward.      | completely collected.                   |
| Continuing tasks: Since TD learning    | Episodic tasks                          |
| is online, it can handle both episodic | is offline, it can only handle episodic |
| and continuing tasks.                  | tasks that has terminate states.        |

| TD/Sarsa learning                                                                                                                                        | MC learning                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bootstrapping: TD bootstraps because the update of a value relies on                                                                                     | Non-bootstrapping: MC is not bootstrapping, because it can directly                                                                                                                                                             |
| the previous estimate of this value.                                                                                                                     | estimate state/action values without                                                                                                                                                                                            |
| Hence, it requires initial guesses.                                                                                                                      | any initial guess.                                                                                                                                                                                                              |
| Low estimation variance: TD has lower than MC because there are fewer random variables. For instance, Sarsa requires $R_{t+1}$ , $S_{t+1}$ , $A_{t+1}$ . | High estimation variance: To estimate $q_{\pi}(s_t, a_t)$ , we need samples of $R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$ Suppose the length of each episode is $L$ . There are $ \mathcal{A} ^L$ possible episodes. |

### Sarsa

### **Description**

Core Idea: that is to use an algorithm to solve the Bellman equation of a given policy.

The complication emerges when we try to find optimal policies and work efficiently

Next, we introduce, Sarsa, an algorithm that can directly estimate action values.

估计action value,从而更新,改进策略,Policy evaluation+Policy improvement

如何估计呢? not model, need data

也是求解了一个action value相关的贝尔曼公式!

收敛性:  $q_t(s,a) - > q_{\pi}(s,a)$ 

在policy evaluation (update q-value) 后立马policy improvement (update policy)

First, our aim is to **estimate the action values of a given policy**  $\pi$ . Suppose we have some **experience**  $\{(s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1})\}_t$ . (Sarsa)

We can use the following **Sarsa algorithm** to estimate the action values:

$$egin{aligned} q_{t+1}\left(s_{t}, a_{t}
ight) &= q_{t}\left(s_{t}, a_{t}
ight) - lpha_{t}\left(s_{t}, a_{t}
ight) \left[q_{t}\left(s_{t}, a_{t}
ight) - \left[r_{t+1} + \gamma q_{t}\left(s_{t+1}, a_{t+1}
ight)
ight]
ight], \ q_{t+1}(s, a) &= q_{t}(s, a), & orall \left(s, a
ight) 
otin \left(s, a
ight) 
otin \left(s_{t}, a_{t}
ight) - \left[r_{t+1} + \gamma q_{t}\left(s_{t+1}, a_{t+1}
ight)
ight]
ight], \end{aligned}$$

where t = 0, 1, 2, ...

NOTE: 第二个条件是当某个state action pair没被访问时,将保持原状

- $q_t\left(s_t,a_t\right)$  is an **estimate** of  $q_\pi\left(s_t,a_t\right)$  ;
- $\alpha_t\left(s_t,a_t\right)$  is the learning rate depending on  $s_t,a_t$  .

如何policy improvement?

For each episode, do

ullet If the current  $\,s_t\,$  is not the target state, do

- $\circ$  Collect the experience  $(s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1})$ : In particular, take action  $a_t$  following  $\pi_t(s_t)$ , generate  $r_{t+1}, s_{t+1}$ , and then take action  $a_{t+1}$  following  $\pi_t(s_{t+1})$ .
- Update q-value (policy evaluation) :

$$q_{t+1}\left(s_{t}, a_{t}\right) = q_{t}\left(s_{t}, a_{t}\right) - \alpha_{t}\left(s_{t}, a_{t}\right)\left[q_{t}\left(s_{t}, a_{t}\right) - \left[r_{t+1} + \gamma q_{t}\left(s_{t+1}, a_{t+1}\right)\right]\right]$$

Oupdate policy (policy):

$$\pi_{t+1}\left(a\mid s_{t}\right) = 1 - rac{\epsilon}{|\mathcal{A}|}(|\mathcal{A}|-1) ext{ if } a = rg \max_{a} q_{t+1}\left(s_{t},a\right)$$
 $\pi_{t+1}\left(a\mid s_{t}\right) = rac{\epsilon}{|\mathcal{A}|} ext{ otherwise}$ 

## **Example**

The task is to find a good path from a specific starting state to the target state

So:

#### Results:

- The left figures above show the final policy obtained by Sarsa.
  - Not all states have the optimal policy.
- The right figures show the total reward and length of every episode.
  - The metric of total reward per episode will be frequently used.





## **Expected Sarsa**

### **Description**

A variant of Sarsa is the Expected Sarsa algorithm:

$$egin{aligned} q_{t+1}\left(s_{t},a_{t}
ight) &= q_{t}\left(s_{t},a_{t}
ight) - lpha_{t}\left(s_{t},a_{t}
ight)\left[q_{t}\left(s_{t},a_{t}
ight) - \left(r_{t+1} + \gamma \mathbb{E}\left[q_{t}\left(s_{t+1},A
ight)
ight]
ight)
ight], \ q_{t+1}(s,a) &= q_{t}(s,a), \quad orall \left(s,a
ight) 
otag \left(s_{t},a_{t}
ight), \end{aligned}$$

where

$$\mathbb{E}\left[q_{t}\left(s_{t+1},A
ight)
ight]
ight)=\sum_{a}\pi_{t}\left(a\mid s_{t+1}
ight)q_{t}\left(s_{t+1},a
ight)\doteq v_{t}\left(s_{t+1}
ight)$$

is the **expected value** of  $q_t\left(s_{t+1},a\right)$  under policy  $\pi_t$  . Compared to Sarsa:

- The **TD target** is changed from  $r_{t+1} + \gamma q_t \left( s_{t+1}, a_{t+1} \right)$  as in Sarsa to  $r_{t+1} + \gamma \mathbb{E} \left[ q_t \left( s_{t+1}, A \right) \right]$  as in Expected Sarsa.
- Need more **computation**. But it is beneficial in the sense that it **reduces the estimation variances** because it **reduces random variables** in Sarsa from  $\{s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1}\}$  to  $\{s_t, a_t, r_{t+1}, s_{t+1}\}$ . (因为遍历了所有的action)

## n-step Sarsa

n -step Sarsa: can unify Sarsa and Monte Carlo learning The definition of action value is

$$\begin{aligned} & \text{Sarsa} \longleftarrow & G_t^{(1)} = R_{t+1} + \gamma q_{\pi} \left( S_{t+1}, A_{t+1} \right), \\ & G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 q_{\pi} \left( S_{t+2}, A_{t+2} \right), \\ & \vdots \\ & n\text{-step Sarsa} \longleftarrow & G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^n q_{\pi} \left( S_{t+n}, A_{t+n} \right), \\ & \vdots \\ & \text{MC} \longleftarrow & G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \end{aligned}$$

• Sarsa aims to solve

$$q_{\pi}(s,a) = \mathbb{E}\left[G_{t}^{(1)}\mid s,a
ight] = \mathbb{E}\left[R_{t+1} + \gamma q_{\pi}\left(S_{t+1},A_{t+1}
ight)\mid s,a
ight].$$

• MC learning aims to solve

$$q_{\pi}(s,a) = \mathbb{E}\left[G_t^{(\infty)} \mid s,a
ight] = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots \mid s,a
ight].$$

• An intermediate algorithm called in -step Sarsa aims to solve

$$\bullet \qquad q_{\pi}(s,a) = \mathbb{E}\left[G_{t}^{(n)} \mid s,a\right] = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n} q_{\pi}\left(S_{t+n},A_{t+n}\right) \mid s,a\right] -$$

The algorithm of n-step Sarsa is

$$q_{t+1}\left(s_{t}, a_{t}\right) = q_{t}\left(s_{t}, a_{t}\right) - \alpha_{t}\left(s_{t}, a_{t}\right) \left[q_{t}\left(s_{t}, a_{t}\right) - \left[r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{n} q_{t}\left(s_{t+n}, a_{t+n}\right)\right]\right].$$

n -step Sarsa is **more general** because it becomes the (one-step) Sarsa algorithm when n=1 and the MC learning algorithm when  $n=\infty$ .

## **Q-learning**

## Description

Core Idea: 求解贝尔曼最优公式

$$egin{aligned} q_{t+1}\left(s_{t}, a_{t}
ight) &= q_{t}\left(s_{t}, a_{t}
ight) - lpha_{t}\left(s_{t}, a_{t}
ight) - \left[q_{t}\left(s_{t}, a_{t}
ight) - \left[r_{t+1} + \gamma \max_{a \in \mathcal{A}} q_{t}\left(s_{t+1}, a
ight)
ight]
ight], \ q_{t+1}(s, a) &= q_{t}(s, a), \quad orall \left(s, a
ight) 
otag \left(s_{t}, a_{t}
ight) \end{aligned}$$

引入了 behavior policy, target policy

## off-Policy Vs on-policy

off-policy:比如我behavior policy可以用探索性比较强的,比如action的选择可以均匀分布,以此来得到更多experience

而对应的target policy为了得到最优的策略,直接选择greedy policy,而不是 arepsilon-greedy,因为此时我已经不缺探索性了

on-policy: 而behavior policy=target policy, 比如 Sarsa, uses  $\varepsilon$ -greedy policies to **maintain certain exploration ability**, 但由于一般设置较小,其对应的探索能力有限,因为如果设置较大,最后优化效果并不好

## **Value Function**

## **Example**

Core Idea: 用曲线拟合替代tables 表示state value

最简单:直线拟合

$$\hat{v}(s,w) = as + b = \underbrace{[s,1]}_{\phi^T(s)} \underbrace{egin{bmatrix} a \ b \end{bmatrix}}_{w} = \phi^T(s)w$$

where

- w is the parameter vector
- $\phi(s)$  the feature vector of s
- $\hat{v}(s,w)$  is linear in w

当然,也可以用二阶,三阶,高阶拟合

$$\hat{v}(s,w) = as^2 + bs + c = \underbrace{\left[s^2,s,1
ight]}_{\phi^T(s)} \underbrace{\left[egin{array}{c} a \ b \ c \end{array}
ight]}_{w} = \phi^T(s)w.$$

优点:存储方面,存储的维数大幅减少,

同时, 泛化能力很好

When a state s is visited, the parameter  $\boldsymbol{w}$  is updated so that the values of some other unvisited states can also be updated.

## Algorithm for state value estimation

### **Objective function**

The objective function is

$$J(w) = \mathbb{E}\left[\left(v_\pi(S) - \hat{v}(S,w)
ight)^2
ight]$$

• Our goal is to find the best  $\,w\,$  that can **minimize**  $\,J(w)$  .

- The **expectation** is with respect to the random variable  $S \in \mathcal{S}$  . What is the **probability** distribution of S ?
- This is often confusing because we have not discussed the probability distribution of states so far in this book.
- ullet There are **several ways to define** the probability distribution of S .

first way: uniform distribution

$$J(w) = \mathbb{E}\left[\left(v_\pi(S) - \hat{v}(S,w)
ight)^2
ight] = rac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} \left(v_\pi(s) - \hat{v}(s,w)
ight)^2$$

缺点:有些状态离target area较远,并不重要,被访问次数较少,对应的权重应小

#### second way: stationary distribution.

Let  $\{d_\pi(s)\}_{s\in\mathcal{S}}$  denote the stationary distribution of the Markov process under policy  $\,\pi$ . By definition,  $\,d_\pi(s)\geq 0\,$  and  $\,\sum_{s\in\mathcal{S}}d_\pi(s)=1\,$ .

$$J(w) = \mathbb{E}\left[\left(v_\pi(S) - \hat{v}(S,w)
ight)^2
ight] = \sum_{s \in \mathcal{S}} d_\pi(s)ig(v_\pi(s) - \hat{v}(s,w)ig)^2$$

为什么叫稳态?因为要足够多次的step,等系统稳定后,基本不再改变时

#### Illustrative example:

- Given a policy shown in the figure.
- Let  $n_{\pi}(s)$  denote the number of times that s has been visited in a very long episode generated by  $\pi$ .
- Then,  $d_{\pi}(s)$  can be approximated by



Figure: Long-run behavior of an  $\epsilon$ -greedy policy with  $\epsilon = 0.5$ .

可以证明, 最后的  $d_{\pi}(s)$  为转移矩阵的特征向量

Book All-in-one.pdf

## **Optimization algorithms**

那究竟如何优化呢?

最小化:梯度下降

$$w_{k+1} = w_k - lpha_k 
abla_w J\left(w_k
ight)$$

The true gradient is

$$egin{aligned} 
abla_w J(w) &= 
abla_w \mathbb{E}\left[\left(v_\pi(S) - \hat{v}(S,w)
ight)^2
ight] \ &= \mathbb{E}\left[
abla_w \left(v_\pi(S) - \hat{v}(S,w)
ight)^2
ight] \ &= 2\mathbb{E}\left[\left(v_\pi(S) - \hat{v}(S,w)
ight)\left(-
abla_w \hat{v}(S,w)
ight)
ight] \ &= -2\mathbb{E}\left[\left(v_\pi(S) - \hat{v}(S,w)
ight)
abla_w \hat{v}(S,w)
ight] \end{aligned}$$

use the stochastic gradient

$$w_{t+1} = w_t + lpha_t \left( v_\pi \left( s_t 
ight) - \hat{v} \left( s_t, w_t 
ight) 
ight) 
abla_w \hat{v} \left( s_t, w_t 
ight)$$

系数2已经合并到常数里了

注意到 $v_{\pi}$ 未知,因此要进行替代

两种替代方式:Monte Carlo learning和TD Learning(但是此种替代并不严谨,优化的并不是上述true error,而是projected Bellman error)

• First, Monte Carlo learning with function approximation Let  $g_t$  be the **discounted return starting from**  $s_t$  **in the episode.** Then,  $g_t$  can be used to approximate  $v_\pi(s_t)$ . The algorithm becomes

$$w_{t+1} = w_t + lpha_t \left( g_t - \hat{v}\left( s_t, w_t 
ight) 
ight) 
abla_w \hat{v}\left( s_t, w_t 
ight)$$

• Second, TD learning with function approximation By the spirit of TD learning,  $\ r_{t+1} + \gamma \hat{v}\left(s_{t+1}, w_t
ight)$  can be viewed as an approximation of  $v_\pi\left(s_t
ight)$ . Then, the algorithm becomes

$$w_{t+1} = w_t + lpha_t \left[ r_{t+1} + \gamma \hat{v}\left(s_{t+1}, w_t
ight) - \hat{v}\left(s_t, w_t
ight) 
ight] 
abla_w \hat{v}\left(s_t, w_t
ight)$$

## Selection of function approximators

究竟如何选择相关函数, 1阶? 2阶?

一阶的好处: 简洁,参数少

- The theoretical properties of the TD algorithm in the linear case can be much better understood than in the nonlinear case.
- Linear function approximation is still powerful in the sense that the **tabular representation** is merely a special case of linear function approximation.

坏处:难以拟合非线性情况

Recall that the TD-Linear algorithm is

$$w_{t+1} = w_t + lpha_t \left[ r_{t+1} + \gamma \phi^T \left( s_{t+1} 
ight) w_t - \phi^T \left( s_t 
ight) w_t 
ight] \phi \left( s_t 
ight),$$

ullet When  $\phi\left(s_{t}
ight)=e_{s}$  , the above algorithm becomes

$$w_{t+1} = w_t + \alpha_t (r_{t+1} + \gamma w_t (s_{t+1}) - w_t (s_t)) e_{s_t}.$$

This is a vector equation that merely updates the  $\,s_t\,$  th entry of  $\,w_t\,$  .

• Multiplying  $e_{s_{t}}^{T}$  on both sides of the equation gives

$$w_{t+1}(s_t) = w_t(s_t) + \alpha_t(r_{t+1} + \gamma w_t(s_{t+1}) - w_t(s_t)),$$

which is exactly the tabular TD algorithm.

## **Examples**

## Summary of the story

## theoretical analysis

• The algorithm

$$w_{t+1} = w_t + \alpha_t \left[ r_{t+1} + \gamma \hat{v}(s_{t+1}, w_t) - \hat{v}(s_t, w_t) \right] \nabla_w \hat{v}(s_t, w_t)$$

does not minimize the following objective function:

$$J(w) = \mathbb{E}\left[\left(v_\pi(S) - \hat{v}(S,w)
ight)^2
ight]$$

Different objective functions:

• Objective function 1: True value error

$$J_E(w) = \mathbb{E}\left[\left(v_\pi(S) - \hat{v}(S,w)
ight)^2
ight] = \left\|\hat{v}(w) - v_\pi
ight\|_D^2$$

• Objective function 2: Bellman error

$$J_{BE}(w) = \left\|\hat{v}(w) - \left(r_\pi + \gamma P_\pi \hat{v}(w)
ight)
ight\|_D^2 \doteq \left\|\hat{v}(w) - T_\pi(\hat{v}(w))
ight\|_D^2$$

where  $T_{\pi}(x) \doteq r_{\pi} + \gamma P_{\pi} x$ 

• Objective function 3: Projected Bellman error

$$J_{PBE}(w) = \|\hat{v}(w) - MT_{\pi}(\hat{v}(w))\|_D^2$$

where M is a **projection matrix**. (投影变换矩阵,即无论 w怎么选,两者都有距离时,该投影变换矩阵能将二者error变为0)

The TD-Linear algorithm minimizes the projected Bellman error.

Details can be found in the book.

## Sarsa with function approximation

Core Idea: 利用Sarsa估计action value

So far, we merely considered the problem of **state value estimation**. That is we hope

To search for optimal policies, we need to **estimate action values.** 

The Sarsa algorithm with value function approximation is

$$w_{t+1} = w_t + lpha_t \left[ r_{t+1} + \gamma \hat{q}\left(s_{t+1}, a_{t+1}, w_t
ight) - \hat{q}\left(s_t, a_t, w_t
ight) 
ight] 
abla_w \hat{q}\left(s_t, a_t, w_t
ight).$$

This is the same as the algorithm we introduced previously in this lecture except that  $\hat{v}$  is replaced by  $\hat{q}$ .

#### Illustrative example:

- Sarsa with *linear function* approximation.
- $\gamma = 0.9$ ,  $\epsilon = 0.1$ ,  $r_{\rm boundary} = r_{\rm forbidden} = -10$ ,  $r_{\rm target} = 1$ ,  $\alpha = 0.001$ .





## Q-learning with function approximation

Core Idea: 利用q-learning的方式更新action value

The q-value update rule is

$$w_{t+1} = w_t + lpha_t \left[ r_{t+1} + \gamma \max_{a \in \mathcal{A}(s_{t+1})} \hat{q}\left(s_{t+1}, a, w_t
ight) - \hat{q}\left(s_t, a_t, w_t
ight) 
ight] 
abla_w \hat{q}\left(s_t, a_t, w_t
ight)$$

which is the same as Sarsa except that  $\ \hat{q}\left(s_{t+1},a_{t+1},w_{t}
ight)$  is replaced by  $\max_{a\in\mathcal{A}(s_{t+1})}\hat{q}\left(s_{t+1},a,w_{t}
ight)$ 

## **Deep Q-learning**

DQN: 原本算法计算变量梯度, 涉及到神经网络底层, 因此要进行改进

Deep Q-learning aims to minimize the objective function/loss function:

$$J(w) = \mathbb{E}\left[\left(R + \gamma \max_{a \in \mathcal{A}(S')} \hat{q}\left(S', a, w
ight) - \hat{q}(S, A, w)
ight)^2
ight],$$

where (S, A, R, S') are random variables.

• This is actually the Bellman optimality error. That is because

$$q(s,a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a \in \mathcal{A}(S_{t+1})} q\left(S_{t+1},a
ight) \mid S_t = s, A_t = a
ight], \quad orall s, a$$

The value of  $R + \gamma \max_{a \in \mathcal{A}(S')} \hat{q}\left(S', a, w\right) - \hat{q}(S, A, w)$  should be zero in the expectation sense

# **Policy Function**

Core Idea: 函数表达策略!

value-based to policy based

优化目标函数来求最优策略

 $\theta$ 是参数,可以是神经网络,用以计算  $\pi(a|s)$ 

## **Basic idea of Policy gradient**

The basic idea of the policy gradient is simple:

- First, metrics (or objective functions) to define **optimal policies**:  $J(\theta)$ , which can define optimal policies. (定义目标函数)
- Second, gradient-based optimization algorithms to search for optimal policies: (优化目标函数)

$$\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} J(\theta_t)$$

Although the idea is simple, the complication emerges when we try to answer the following questions.

- What appropriate metrics should be used? (选择什么函数合适)
- How to calculate the gradients of the metrics? (如何优化?)

## Metrics to define optimal policies

Two metrics (两种优化函数)

都是关于 $\pi$ 的函数,且 $\pi$ 是 $\theta$ 的函数

The first metric is the average state value or simply called average value

## Average value

求出每个state的state value然后求mean

$$ar{v}_{\pi} = \sum_{s \in \mathcal{S}} d(s) v_{\pi}(s)$$

- $\bar{v}_{\pi}$  is a **weighted average** of the state values.
- $d(s) \ge 0$  is the **weight** for state s .
- ullet Since  $\sum_{s\in\mathcal{S}}d(s)=1$  , we can interpret d(s) as a probability distribution. Then, the metric can be written as

$$\overline{v}_{\pi}=\mathbb{E}\left[v_{\pi}(S)
ight]$$

How to select the **distribution d**? There are **two cases**.

• The first case is that d is **independent** of the policy  $\pi$ . (另外一种就是依赖于决策)

不依赖又分两种:均匀(equally important)和非均匀(only interested in a specific state  $s_0$ ) we only care about the long-term return **starting from**  $s_0$ 

$$d_0(s_0) = 1, \quad d_0(s \neq s_0) = 0$$

- The second case is that d depends on the policy  $\pi$  .
- A common way to select d as  $d_{\pi}(s)$  , which is the stationary distribution under  $\pi$  .
- One basic property of  $d_{\pi}$  is that it satisfies

$$d_\pi^T P_\pi = d_\pi^T$$

where  $\,P_{\pi}\,$  is the state transition probability matrix.

- The interpretation of selecting  $d_{\pi}$  is as follows.
- If one state is frequently visited in the long run, it is more important and deserves more weight.
- If a state is **hardly visited**, then we give it less weight.

#### 等价描述:

$$J( heta) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_{t+1}
ight]$$

### Average reward

求出每个state的immediate reward然后求mean

$$ar{r}_{\pi} \doteq \sum_{s \in \mathcal{S}} d_{\pi}(s) r_{\pi}(s) = \mathbb{E}\left[r_{\pi}(S)
ight]$$

where  $S \sim d_\pi$  . Here,

$$r_{\pi}(s) \doteq \sum_{s \in A} \pi(a \mid s) r(s,a)$$

is the average of the one-step immediate reward that can be obtained starting from state s, and

$$r(s,a) = \mathbb{E}[R \mid s,a] = \sum_r rp(r \mid s,a)$$

- The weight  $d_{\pi}$  is the **stationary distribution**.
- ullet As its name suggests,  $ar{r}_{\pi}$  is simply a weighted average of the one-step immediate rewards.

#### 有一个等价描述

- Suppose an agent follows a given policy and generate a trajectory with the rewards as  $(R_{t+1}, R_{t+2}, \ldots)$ .
- The average single-step reward along this trajectory is

$$egin{aligned} &\lim_{n o\infty}rac{1}{n}\mathbb{E}\left[R_{t+1}+R_{t+2}+\cdots+R_{t+n}\mid S_t=s_0
ight]\ &=\lim_{n o\infty}rac{1}{n}\mathbb{E}\left[\sum_{k=1}^nR_{t+k}\mid S_t=s_0
ight] \end{aligned}$$

where  $\,s_0\,$  is the starting state of the trajectory.

Proof:

$$egin{aligned} \lim_{n o\infty}rac{1}{n}\mathbb{E}\left[\sum_{k=1}^nR_{t+k}\mid S_t=s_0
ight] &=\lim_{n o\infty}rac{1}{n}\mathbb{E}\left[\sum_{k=1}^nR_{t+k}
ight] \ &=\sum_sd_\pi(s)r_\pi(s) \ &=ar{r}_\pi \end{aligned}$$

- Intuitively,  $\bar{r}_\pi$  is more **short-sighted** because it merely considers the immediate rewards, whereas  $\bar{v}_\pi$  considers the **total reward overall steps**.
- However, the two metrics are **equivalent** to each other. (两个metric等价,因为当一个达到极值时,另一个必然也到达极值) In the discounted case where  $\gamma < 1$ , it holds that

$$ar{r}_\pi = (1-\gamma)ar{v}_\pi$$

### **Gradients of the metrics**

Core Idea:如何求梯度?

Summary of the results about the gradients:

$$egin{aligned} 
abla_{ heta} J( heta) &= \sum_{s \in \mathcal{S}} \eta(s) \sum_{a \in \mathcal{A}} 
abla_{ heta} \pi(a \mid s, heta) q_{\pi}(s, a) \ &= \mathbb{E} \left[ 
abla_{ heta} \ln \pi(A \mid S, heta) q_{\pi}(S, A) 
ight] \end{aligned}$$

where

- $J(\theta)$  can be  $\bar{v}_{\pi}, \bar{r}_{\pi}$  , or  $\bar{v}_{\pi}^{0}$  .
- "=" may denote strict equality, approximation, or proportional to.
- $\eta$  is a **distribution** or **weight** of the states.

Some remarks: Because we need to calculate  $\, \ln \pi(a \mid s, heta)$  , we must **ensure** that for all  $\,$  s, a,  $\,$  heta

$$\pi(a \mid s, \theta) > 0$$

• This can be archived by using **softmax functions** that can normalize the entries in a vector from  $(-\infty, +\infty)$  to (0,1).

## **Gradient-ascent algorithm**

Core Idea: 具体怎么优化函数?

对于期望,利用采样近似;对于未知数,比如  $q_{\pi}(s_t, a_t)$ ,也要近似替代,两种方法替代

1: Monte-Carlo 对应Reinfoce

2: TD methods 对应 Actor-Critic

$$heta_{t+1} = heta_t + lpha \underbrace{\left(rac{q_t\left(s_t, a_t
ight)}{\pi\left(a_t \mid s_t, heta_t
ight)}
ight)}_{eta_t} 
abla_{ heta} \pi\left(a_t \mid s_t, heta_t
ight)$$

The coefficient  $\beta_t$  can well balance **exploration** and **exploitation**.

- First,  $\beta_t$  is **proportional** to  $q_t\left(s_t,a_t\right)$  .
- If  $q_t(s_t, a_t)$  is great, then  $\beta_t$  is great. (**即return大的action**, 后续选到该action的概率就大! 体现剥削性)
- Therefore, the algorithm intends to **enhance actions with greater values**.
- Second,  $eta_t$  is **inversely proportional** to  $\pi\left(a_t \mid s_t, heta_t
  ight)$  .
- If  $\pi(a_t \mid s_t, \theta_t)$  is small, then  $\beta_t$  is large. (即其他action 本身概率小的话,则后续选到他的概率会增大,体现探索性)
- Therefore, the algorithm intends to **explore actions that have low probabilities**.

#### 伪代码!

#### Pseudocode: Policy Gradient by Monte Carlo (REINFORCE)

**Initialization:** A parameterized function  $\pi(a|s,\theta)$ ,  $\gamma \in (0,1)$ , and  $\alpha > 0$ .

**Aim:** Search for an optimal policy maximizing  $J(\theta)$ .

For the kth iteration, do

Select  $s_0$  and generate an episode following  $\pi(\theta_k)$ . Suppose the episode is  $\{s_0, a_0, r_1, \dots, s_{T-1}, a_{T-1}, r_T\}$ .

For t = 0, 1, ..., T - 1, do

Value update:  $q_t(s_t, a_t) = \sum_{k=t+1}^{T} \gamma^{k-t-1} r_k$ 

Policy update:  $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} \ln \pi(a_t|s_t, \theta_t) q_t(s_t, a_t)$ 

 $\theta_k = \theta_T$ 

## **Actor-Critic Methods**

## The Simplest AC (QAC)

实际是Policy gradient,只不过结合了value function

Core Idea: 利用TD估计, 称为actor-critic

何为actor: policy update

何为critic: policy evaluation

对应运用TD算法估计action-value的

## The simplest actor-critic algorithm (QAC)

**Aim:** Search for an optimal policy by maximizing  $J(\theta)$ .

At time step t in each episode, do

Generate  $a_t$  following  $\pi(a|s_t, \theta_t)$ , observe  $r_{t+1}, s_{t+1}$ , and then generate  $a_{t+1}$  following  $\pi(a|s_{t+1}, \theta_t)$ .

Critic (value update):

$$w_{t+1} = w_t + \alpha_w [r_{t+1} + \gamma q(s_{t+1}, a_{t+1}, w_t) - q(s_t, a_t, w_t)] \nabla_w q(s_t, a_t, w_t)$$

Actor (policy update):

$$\theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \ln \pi(a_t | s_t, \theta_t) q(s_t, a_t, w_{t+1})$$

#### A<sub>2</sub>C

#### **Baseline invariance**

Core Idea: introduce a baseline to reduce variance

$$egin{aligned} 
abla_{ heta} J( heta) &= \mathbb{E}_{S \sim \eta, A \sim \pi} \left[ 
abla_{ heta} \ln \pi \left( A \mid S, heta_{t} 
ight) q_{\pi}(S, A) 
ight] \ &= \mathbb{E}_{S \sim \eta, A \sim \pi} \left[ 
abla_{ heta} \ln \pi \left( A \mid S, heta_{t} 
ight) \left( q_{\pi}(S, A) - b(S) 
ight) 
ight] \end{aligned}$$

NOTE: 该函数为**S的函数**, 且添加后**对期望没有影响, 但会影响方差** 

relative proof

$$\begin{split} \mathbb{E}_{S \sim \eta, A \sim \pi} \left[ \nabla_{\theta} \ln \pi \left( A \mid S, \theta_{t} \right) b(S) \right] &= \sum_{s \in \mathcal{S}} \eta(s) \sum_{a \in \mathcal{A}} \pi \left( a \mid s, \theta_{t} \right) \nabla_{\theta} \ln \pi \left( a \mid s, \theta_{t} \right) b(s) \\ &= \sum_{s \in \mathcal{S}} \eta(s) \sum_{a \in \mathcal{A}} \nabla_{\theta} \pi \left( a \mid s, \theta_{t} \right) b(s) \\ &= \sum_{s \in \mathcal{S}} \eta(s) b(s) \sum_{a \in \mathcal{A}} \nabla_{\theta} \pi \left( a \mid s, \theta_{t} \right) \\ &= \sum_{s \in \mathcal{S}} \eta(s) b(s) \nabla_{\theta} \sum_{a \in \mathcal{A}} \pi \left( a \mid s, \theta_{t} \right) \\ &= \sum_{s \in \mathcal{S}} \eta(s) b(s) \nabla_{\theta} 1 = 0 \end{split}$$

ullet Why? Because  $\operatorname{tr}[\operatorname{var}(X)] = \mathbb{E}\left[X^TX\right] - ar{x}^Tar{x}$  and

$$egin{aligned} \mathbb{E}\left[X^TX
ight] &= \mathbb{E}\left[\left(
abla_{ heta} \ln \pi
ight)^T (
abla_{ heta} \ln \pi) (q_{\pi}(S,A) - b(S))^2
ight] \ &= \mathbb{E}\left[\left\|
abla_{ heta} \ln \pi
ight\|^2 (q_{\pi}(S,A) - b(S))^2
ight] \end{aligned}$$

Imagine b is huge (e.g., 1 millon)

b存在最优解,但由于过于复杂,我们一般用  $v_{\pi}(s)$ 替代

### algorithm

$$\theta_{t+1} = \theta_t + \alpha \mathbb{E} \left[ \nabla_{\theta} \ln \pi \left( A \mid S, \theta_t \right) \left[ q_{\pi}(S, A) - v_{\pi}(S) \right] \right] \\ \doteq \theta_t + \alpha \mathbb{E} \left[ \nabla_{\theta} \ln \pi \left( A \mid S, \theta_t \right) \delta_{\pi}(S, A) \right]$$

where

$$\delta_{\pi}(S,A) \doteq q_{\pi}(S,A) - v_{\pi}(S)$$

is called the advantage function (why called advantage?).

当  $q_{\pi}$ 大于  $v_{\pi}(S)$ ,说明该state action-pair优秀!

进行进一步变换

$$egin{aligned} heta_{t+1} &= heta_t + lpha 
abla_{ heta} \ln \pi \left( a_t \mid s_t, heta_t 
ight) \delta_t \left( s_t, a_t 
ight) \ &= heta_t + lpha rac{
abla_{ heta} \pi \left( a_t \mid s_t, heta_t 
ight)}{\pi \left( a_t \mid s_t, heta_t 
ight)} \delta_t \left( s_t, a_t 
ight) \ &= heta_t + lpha \underbrace{\left( rac{\delta_t \left( s_t, a_t 
ight)}{\pi \left( a_t \mid s_t, heta_t 
ight)} 
ight)}_{ ext{sten size}} 
abla_{ heta} \pi \left( a_t \mid s_t, heta_t 
ight) \end{aligned}$$

同样能平衡 exploration 和exploitation,而且更好,因为分子是相对值(作差),而QAC是绝对值进一步,对应的 $\delta_\pi(S,A)$ 可以由TD算法估计得到

伪代码:

#### Advantage actor-critic (A2C) or TD actor-critic

**Aim:** Search for an optimal policy by maximizing  $J(\theta)$ .

At time step t in each episode, do

Generate  $a_t$  following  $\pi(a|s_t, \theta_t)$  and then observe  $r_{t+1}, s_{t+1}$ .

TD error (advantage function):

$$\delta_t = r_{t+1} + \gamma v(s_{t+1}, w_t) - v(s_t, w_t)$$

Critic (value update):

$$w_{t+1} = w_t + \alpha_w \delta_t \nabla_w v(s_t, w_t)$$

Actor (policy update):

$$\theta_{t+1} = \theta_t + \alpha_\theta \delta_t \nabla_\theta \ln \pi(a_t|s_t, \theta_t)$$

由于已经是stochastic,所以不需要 $\varepsilon$ -greedy

## **Off-policy AC**

有两个概率分布,用其中一个概率分布计算另外一个概率分布的期望!

## **Example**

$$p_0(X = +1) = 0.5, \quad p_0(X = -1) = 0.5$$

$$p_1(X = +1) = 0.8, \quad p_1(X = -1) = 0.2$$

The expectation is

$$\mathbb{E}_{X \sim p_1}[X] = (+1) \cdot 0.8 + (-1) \cdot 0.2 = 0.6$$

If we use the average of the samples, then without suprising

$$ar{x} = rac{1}{n} \sum_{i=1}^n x_i 
ightarrow \mathbb{E}_{X \sim p_1}[X] = 0.6 
eq \mathbb{E}_{X \sim p_0}[X]$$



## Importance sampling

Note that

$$\mathbb{E}_{X\sim p_0}[X] = \sum_x p_0(x)x = \sum_x p_1(x) \underbrace{rac{p_0(x)}{p_1(x)}}_{f(x)} x = \mathbb{E}_{X\sim p_1}[f(X)]$$

- ullet Thus, we can estimate  $\, \mathbb{E}_{X \sim p_1}[f(X)] \,$  in order to estimate  $\, \mathbb{E}_{X \sim p_0}[X]$  .
- How to estimate  $\mathbb{E}_{X \sim p_1}[f(X)]$  ? Easy. Let  $\,$  (即对 $f(x_i)$ 采样)

$$ar{f} \doteq rac{1}{n} \sum_{i=1}^n f\left(x_i
ight), \quad ext{ where } x_i \sim p_1$$

Then,

$$egin{aligned} \mathbb{E}_{X\sim p_1}[ar{f}] &= \mathbb{E}_{X\sim p_1}[f(X)] \ \mathrm{var}_{X\sim p_1}[ar{f}] &= rac{1}{n}\mathrm{var}_{X\sim p_1}[f(X)] \end{aligned}$$

Therefore,  $ar{f}$  is a good approximation for  $\,\mathbb{E}_{X\sim p_1}[f(X)]=\mathbb{E}_{X\sim p_0}[X]\,$ 

- $\frac{p_0(x_i)}{p_1(x_i)}$  is called the importance weight.
- If  $p_{1}\left(x_{i}
  ight)=p_{0}\left(x_{i}
  ight)$  , the importance weight is **one** and  $ar{f}$  becomes  $ar{x}$  .
- If  $p_0(x_i) \ge p_1(x_i)$ ,  $x_i$  can be more often sampled by  $p_0$  than  $p_1$ . The importance weight (>1) can emphasize the importance of this sample.
- 举个栗子: 当 $p_0 > p_1$ 时,说明原本这个样本概率较大, $p_0$ 较大,但是在  $p_1$ 内较少出现,因此很珍贵,要加大其比重!

### off-policy gradient

- Suppose  $\beta$  is the **behavior policy** that generates **experience samples**.
- Our aim is to use these samples to **update** a target policy  $\pi$  that can minimize the metric

$$J( heta) = \sum_{s \in \mathcal{S}} d_{eta}(s) v_{\pi}(s) = \mathbb{E}_{S \sim d_{eta}} \left[ v_{\pi}(S) 
ight]$$

where  $\,d_{eta}\,$  is the **stationary distribution** under policy  $\,eta$  .

So ,in the discounted case where  $\,\gamma\in(0,1)$  , the **gradient** of  $\,J( heta)\,$  is

$$abla_{ heta}J( heta) = \mathbb{E}_{S\sim
ho,A\simeta}\left[rac{\pi(A\mid S, heta)}{eta(A\mid S)}
abla_{ heta}\ln\pi(A\mid S, heta)q_{\pi}(S,A)
ight]$$

where  $\beta$  is the behavior policy and  $\rho$  is a **state distribution**.

### The algorithm

#### Off-policy actor-critic based on importance sampling

**Initialization:** A given behavior policy  $\beta(a|s)$ . A target policy  $\pi(a|s,\theta_0)$  where  $\theta_0$  is the initial parameter vector. A value function  $v(s,w_0)$  where  $w_0$  is the initial parameter vector.

**Aim:** Search for an optimal policy by maximizing  $J(\theta)$ .

At time step t in each episode, do

Generate  $a_t$  following  $\beta(s_t)$  and then observe  $r_{t+1}, s_{t+1}$ .

TD error (advantage function):

$$\delta_t = r_{t+1} + \gamma v(s_{t+1}, w_t) - v(s_t, w_t)$$

Critic (value update):

$$w_{t+1} = w_t + \alpha_w \frac{\pi(a_t|s_t,\theta_t)}{\beta(a_t|s_t)} \delta_t \nabla_w v(s_t, w_t)$$

Actor (policy update):

$$\theta_{t+1} = \theta_t + \alpha_\theta \frac{\pi(a_t|s_t, \theta_t)}{\beta(a_t|s_t)} \delta_t \nabla_\theta \ln \pi(a_t|s_t, \theta_t)$$

### introduction

Up to now, the policies used in the policy gradient methods are all **stochastic** since  $\pi(a|s,\theta)$  > **0** for every (s, a).

Can we use deterministic policies in the policy gradient methods?

- Benefit: it can handle **continuous action**. (即action有无数个,此时不能用随机的action,必须确定性的action)
- Now, the deterministic policy is specifically denoted as

$$a = \mu(s, \theta) \doteq \mu(s)$$

- $\mu$  is a **mapping** from  $\mathcal{S}$  to  $\mathcal{A}$ . (从state映射到action space,每个状态有确定性的动作)
- $\mu$  can be **represented by, for example, a neural network** with the input as s, the output as a, and the parameter as  $\theta$ .
- We may write  $\mu(s,\theta)$  in short as  $\mu(s)$  .

### deterministic policy gradient

$$J( heta) = \mathbb{E}\left[v_{\mu}(s)
ight] = \sum_{s \in \mathcal{S}} d_0(s) v_{\mu}(s)$$

where  $\,d_0(s)\,$  is a probability distribution satisfying  $\,\sum_{s\in\mathcal{S}}d_0(s)=1$  .

- ullet  $d_0$  is selected to be independent of  $\mu$  . The gradient in this case is easier to calculate.
- There are two special yet important cases of selecting  $\,d_0$  .
- The first special case is that  $d_0\left(s_0\right)=1$  and  $d_0\left(s\neq s_0\right)=0$ , where  $s_0$  is a specific starting state of interest.
- The second special case is that  $d_0$  is the stationary distribution of a behavior policy that is different from the  $\mu$ .

In the discounted case where  $\gamma \in (0,1)$  , the gradient of  $J(\theta)$  is

$$egin{aligned} 
abla_{ heta} J( heta) &= \sum_{s \in \mathcal{S}} 
ho_{\mu}(s) 
abla_{ heta} \mu(s) \left( 
abla_{a} q_{\mu}(s,a) 
ight) igg|_{a=\mu(s)} \ &= \mathbb{E}_{S \sim 
ho_{\mu}} \left[ \left. 
abla_{ heta} \mu(S) \left( 
abla_{a} q_{\mu}(S,a) 
ight) 
ight|_{a=\mu(S)} 
ight] \end{aligned}$$

Here,  $\rho_{\mu}$  is a state distribution.

### algorithm

**Initialization:** A given behavior policy  $\beta(a|s)$ . A deterministic target policy  $\mu(s,\theta_0)$  where  $\theta_0$  is the initial parameter vector. A value function  $v(s,w_0)$  where  $w_0$  is the initial parameter vector.

**Aim:** Search for an optimal policy by maximizing  $J(\theta)$ .

At time step t in each episode, do

Generate  $a_t$  following  $\beta$  and then observe  $r_{t+1}, s_{t+1}$ .

TD error:

$$\delta_t = r_{t+1} + \gamma q(s_{t+1}, \mu(s_{t+1}, \theta_t), w_t) - q(s_t, a_t, w_t)$$

Critic (value update):

$$w_{t+1} = w_t + \alpha_w \delta_t \nabla_w q(s_t, a_t, w_t)$$

Actor (policy update):

$$\theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \mu(s_t, \theta_t) (\nabla_a q(s_t, a, w_{t+1}))|_{a=\mu(s_t)}$$

#### Remarks:

- ullet This is an off-policy implementation where the behavior policy eta may be different from  $\mu.$
- $\beta$  can also be replaced by  $\mu$ +noise.
- How to select the function to represent q(s, a, w)?
  - Linear function:  $q(s,a,w) = \phi^T(s,a)w$  where  $\phi(s,a)$  is the feature vector. Details can be found in the DPG paper.
  - Neural networks: deep deterministic policy gradient (DDPG) method.

Over!