Teorema 6.3.6 Teorema de aproximación de la norma

Sea H un subespacio de dimensión finita de un espacio vectorial V con producto interno, y sea \mathbf{v} un vector en V. Entonces, proy $_H$ \mathbf{v} es la mejor aproximación de v por un elemento en H en el sentido siguiente: si \mathbf{h} es cualquier otro elemento de H, entonces

$$||\mathbf{v} - \operatorname{proy}_{H} \mathbf{v}|| < ||\mathbf{v} - \mathbf{h}|| \tag{6.3.9}$$

EJEMPLO 6.3.10 Cálculo de una proyección sobre $\mathbb{P}_2[0, 1]$

Como $\mathbb{P}_2[0, 1]$ es un subespacio de dimensión finita de C[0, 1], se puede hablar de $\operatorname{proy}_{\mathbb{P}_2[0, 1]} f$ si $f \in C[0, 1]$. Si $f(x) = e^x$, por ejemplo, se calcula $\operatorname{proy}_{\mathbb{P}_2[0, 1]} e^x$. Como $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\} = \{1, \sqrt{3}(2x - 1), \text{ por el ejemplo } 6.3.8, \sqrt{5}/(6x^2 - 6x + 1)\}$ es una base ortonormal en $\mathbb{P}_2[0, 1]$, y se tiene

$$\operatorname{proy}_{\mathbb{P}_{2}[0, 1]} e^{x} = \langle e^{x}, 1 \rangle 1 + \langle e^{x}, \sqrt{3} (2x - 1) \rangle \sqrt{3} (2x - 1)$$
$$+ \langle e^{x}, \sqrt{5} (6x^{2} - 6x + 1) \rangle \sqrt{5} (6x^{2} - 6x + 1)$$

Pero pueden ahorrarse los cálculos. Usando el hecho de que $\int_0^1 e^x dx = e - 1$, $\int_0^1 x e^x dx = 1$ y $\int_0^1 x^2 e^x dx = e - 2$, se obtiene $\langle e^x, 1 \rangle = e - 1$, $\langle e^x, \sqrt{3}(2x - 1) \rangle = \sqrt{3}(3 - e)$, y $\langle e^x, \sqrt{5}(6x^2 - 6x + 1) \rangle = \sqrt{5}(7e - 19)$. Por último

$$\operatorname{proy}_{\mathbb{P}_{2}[0, 1]} e^{x} = (e - 1) + \sqrt{3} (3 - e) \sqrt{3} (2x - 1)$$

$$+ \sqrt{5} (7e - 19) (\sqrt{5}) (6x^{2} - 6x + 1)$$

$$= (e - 1) + (9 - 3e) (2x - 1)$$

$$+ 5(7e - 19) (6x^{2} - 6x + 1)$$

$$\approx 1.01 + 0.85x + 0.84x^{2}$$

Se concluye la presente sección con una aplicación del teorema de aproximación de la norma.

Aproximación por mínimos cuadrados a una función continua

Sea $f \in C[a, b]$. Se quiere aproximar f por un polinomio de grado n. ¿Cuál es el polinomio que hace esto con el menor error?

Con el fin de responder a esta pregunta, debe definirse el *error*. Existen muchas maneras diferentes de definir el error. A continuación se dan tres:

Error máximo = máx
$$|f(x) - g(x)|$$
 para $x \in [a, b]$ (6.3.10)

Error de área =
$$\int_{a}^{b} |f(x) - g(x)| dx$$
 (6.3.11)

Error cuadrático medio =
$$\int_{a}^{b} |f(x) - g(x)|^{2} dx$$
 (6.3.12)

EJEMPLO 6.3.11 Cálculo de errores

Sean $f(x) = x^2$ y $g(x) = x^3$ sobre [0, 1]. En $x^2 \ge x^3$, de manera que $|x^2 - x^3| = x^2 - x^3$. Entonces