Solutions for Calculus Vol 1: One variable calculus, with an introduction to Linear Algebra (2nd Edition) by Tom M. Apostol

Michael Rocke

May 20, 2020

Contents

-	Introduction														1										
	0.1.1	1.4 Exercises																							

0.1 Introduction

0.1.1 1.4 Exercises

1

Figure 1.3: $y = x^2$

a) Modify the region in Figure 1.3 by assuming that the ordinate at each x is $2x^2$ instead of x^2 .

Draw the new figure.

 $y = 2x^2$

Check through the principal steps in the forgoing section and find what effect this has on the calculation of the area. Do the same if the ordfinate at each x b) $3x^2$

 $y = 3x^2$

c) $\frac{1}{4}x^2$

$$y = \frac{1}{4}x^2$$

- d) $2x^2 + 1$ e) $ax^2 + c$

 $\mathbf{2}$

Modify the region in Figure 1.3 by assuming that the ordinate at each x is x^3 instead of x^2 .

Draw the new figure.

a) Use a construction similar to that illustrated in Figure 1.5 and show that the outer and inner sums S_n and s_n are given by

$$S_n = \frac{b^4}{n^4}(1^3 + 2^3 + \ldots + n^3), \ s_n = \frac{b^4}{n^4}[1^3 + 2^3 + \ldots + (n-1)^3]$$

b)