Aprendizagem de Máquina

O que é Aprendizagem de Máquina?

"The field of study that gives computers the ability to learn without being explicitly programmed." (Arthur Samuel)

Algumas Aplicações

Reconhecimento de faces

Reconhecimento de voz

Reconhecimento de spam

Natural Language Processing

Computer Vision

Sistemas de recomendação

Mineração de dados

etc.

Aprendizagem Supervisionada vs não Supervisionada

Aprendizagem Supervisionada

Em aprendizagem supervisionada, recebemos um conjunto de dados e sabemos **output** (valor ou classe) esperado para cada exemplo do conjunto de dados.

Problemas de aprendizagem supervisionada podem ser categorizados como **regressão** ou **classificação**.

Aprendizagem Supervisionada

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Aprendizagem Supervisionada

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Aprendizagem Supervisionada

vetor	Size (feet²) de features	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000) Saída conhecida
	2104	5	1	45	460
	1416	3	2	40	232
	1534	3	2	30	315
	852	2	1	36	178

Regressão

(exemplo: predição de valor de casa)

Regressão

(exemplo: predição de valor de casa)

Regressão

(exemplo: predição de valor de casa)

Classificação

(exemplo: classificação de tumor)

Classificação

(exemplo: classificação de tumor)

(to fit the model)

Hipótese: $h_{\Theta}(\mathbf{x}) = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + ... + \Theta_n x_n$

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Hipótese: $h_{\Theta}(\mathbf{x}) = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + ... + \Theta_n x_n$

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Hipótese:
$$h_{\Theta}(\mathbf{x}) = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + ... + \Theta_n x_n$$

saída esperada para um exemplo (i)

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Hipótese: $h_{\Theta}(\mathbf{x}) = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + ... + \Theta_n x_n$

saída esperada para um exemplo (i)

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$$
 $\}$ (simultaneously update for every $j=0,\dots,n$)

 Θ_1

Custo em classificadores

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat {

$$\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 (simultaneously update all θ_j)

Recapitulando...

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Cost function:

function:
$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$
 $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ $\}$

Size	Price	_
2104	400	
1600	330	
2400	369	
1416	232	Training Set
3000	540	
1985	300	
1534	315	
1427	199	V
1380	212	Test Set
1494	243	

Size	Price
2104	400
1600	330
2400	369
1416	232
3000	540
1985	300
1534	315
1427	199
1380	212
1494	243

Size	Price
2104	400
1600	330
2400	369
1416	232
3000	540
1985	300
1534	315
1427	199
1380	212
1494	243

Overfitting e Underfitting (variance e bias)

High bias (underfit)

"Just right"

High variance (overfit)

