TRATAMENTO ALGÉBRICO DE VETORES

PROFESSORA FABIANA PIMENTA

BASE CANÔNICA DO PLANO

No plano R^2 , a base é formada pelos vetores \vec{i} e \vec{j} Onde,

$$\vec{\iota} = (1,0) \ e \ \vec{\jmath} = (0,1) \ .$$

Essa base é chamada de base canônica.

VETORES NO PLANO

Dado um vetor \vec{v} no plano cartesiano R^2 , podemos representá-

lo das seguintes maneiras:

Ideia geométrica:

$$\vec{v} = x \vec{i} + y \vec{j}$$

$$\vec{v} = (x, y)$$

•
$$3\vec{i} - 5\vec{j} = (3, -5)$$
;

- $3\vec{j} = (0,3)$
- $-4\vec{i} = (-4,0)$
- $\vec{0} = (0,0)$

O ESPAÇO

Um ponto no R^3 é representado por uma terna ordenada

$$P = (x, y, z).$$

Os eixos do sistema cartesiano do espaço são denominados: OX: eixo das abscissas, OY: eixo das ordenadas e OZ: eixo das cotas.

VETORES NO ESPAÇO

No plano R^3 , a base é formada pelos vetores $\vec{\imath}$, $\vec{\jmath}$ e \vec{k}

Onde,

$$\vec{i} = (1,0,0)$$
, $\vec{j} = (0,1,0)$ e $\vec{k} = (0,0,1)$.

Essa base é chamada de base canônica.

VETORES NO ESPAÇO

Desta maneira, um vetor no espaço é uma terna ordenada $(x, y, z) = x\vec{\imath} + y\vec{\jmath} + z\vec{k}$.

O vetor

$$(1,3,2) = 1\vec{i} + 3\vec{j} + 2\vec{k}$$

CASOS PARTICULARES NO ESPAÇO

Os pontos posicionados nos eixos cartesianos têm duas de suas coordenadas iguais a zero.

Os pontos que estão posicionados nos planos coordenados, tem uma de suas coordenadas nula.

IGUALDADE DE VETORES

NO PLANO

Sejam $\vec{u} = (x, y)$ e $\vec{v} = (a, b)$. Dizemos que $\vec{u} = \vec{v}$ se, e somente se, $x = a \ e \ y = b$.

NO ESPAÇO

Sejam $\vec{u}=(x,y,z)$ e $\vec{v}=(a,b,c)$. Dizemos que $\vec{u}=\vec{v}$ se, e somente se, x=a,y=b e z=c.

O vetor $\vec{u} = (x+1.4)$ é igual ao vetor $\vec{v} = (5.2y-6)$. Determine $x \ e \ y$.

Solução:

$$\begin{cases} x+1=5\\ 4=2y-6 \end{cases} \qquad \begin{cases} x=4\\ y=5 \end{cases}$$

OPERAÇÕES COM VETORES

NO PLANO

Sejam
$$\vec{u} = (x, y), \vec{v} = (a, b)$$
 e $k \in R$

$$1)\vec{u} + \vec{v} = (x + a, y + b)$$

$$2)\vec{u} - \vec{v} = (x - a, y - b)$$

$$3)k\vec{u} = (kx, ky)$$

NO ESPAÇO

Sejam
$$\vec{u} = (x, y, z), \vec{v} = (a, b, c)$$
 e $k \in R$

1)
$$\vec{u} + \vec{v} = (x + a, y + b, z + c)$$

2)
$$\vec{u} - \vec{v} = (x - a, y - b, z - c)$$

$$3)k\vec{u} = (kx, ky, kz)$$

Dados os vetores $\vec{u} = (2, -3)$ e $\vec{v} = (-1, 4)$, determine:

i.
$$3\vec{u} + 2\vec{v} = (6, -9) + (-2, 8) = (4, -1)$$

ii.
$$3\vec{u} - 2\vec{v} = (6, -9) - (-2, 8) = (8, -17)$$

Determine o vetor \vec{x} na igualdade $3\vec{x} + 2\vec{u} = \frac{1}{2}\vec{v} + \vec{x}$, onde $\vec{u} = (3, -1)$ e $\vec{v} = (-2, 4)$

Solução:

$$3\vec{x} - \vec{x} = \frac{1}{2}\vec{v} - 2\vec{u} \Longrightarrow \vec{x} = \frac{1}{2}\left(\frac{1}{2}\vec{v} - 2\vec{u}\right)$$

$$\vec{x} = \frac{1}{4}\vec{v} - \vec{u} = (\frac{-1}{2}, 1) - (3, -1) = (\frac{-7}{2}, 2)$$

VETOR DEFINIDO POR DOIS PONTOS

NO PLANO

Sejam
$$A(x_A, y_A)$$
 e $B(x_B, y_B)$

$$\vec{v} = \overrightarrow{AB} = B - A$$

$$\vec{v} = (x_B - x_A, y_B - y_A)$$

VETOR DEFINIDO POR DOIS PONTOS

NO ESPAÇO

Sejam $A(x_A, y_A, z_A)$ e $B(x_B, y_B, z_B)$

$$\vec{v} = \overrightarrow{AB} = B - A$$

$$\vec{v} = (x_B - x_A, y_B - y_A, z_B - z_A)$$

Dados os pontos A(-1,2), B(3,-1) e C(-2,4), determine o ponto D de modo que

$$\overrightarrow{CD} = \frac{1}{2}\overrightarrow{AB}$$
.

Solução:

$$D - C = \frac{1}{2}(B - A) \Longrightarrow (x + 2, y - 4) = \left(2, \frac{-3}{2}\right)$$

$$\begin{cases} x + 2 = 2 \\ y - 4 = \frac{-3}{2} \end{cases} \qquad \begin{cases} x = 0 \\ y = \frac{5}{2} \end{cases}$$
 D(0, $\frac{5}{2}$)

PARALELISMO DE VETORES

Considere os vetores $\vec{u}=(x_1,y_1)$ e $\vec{v}=(x_2,y_2)$, dizemos que $\vec{u}\parallel\vec{v}$, se existe um número real k, tal que $\vec{u}=k\vec{v}$.

Exemplo: Verifique se os vetores são paralelos:

i)
$$\vec{u} = (-2,3) \ e \ \vec{v} = (-4,6)$$
 são paralelos

$$ii) \vec{u} = (1, -2) e \vec{v} = (4, -6)$$
 não são paralelos

MÓDULO DE UM VETOR

NO PLANO

Considere os vetores $\vec{v} = (x, y)$, o módulo do vetor \vec{v} é dado por:

$$|\vec{v}| = \sqrt{x^2 + y^2}$$

MÓDULO DE UM VETOR

NO ESPAÇO

Considere os vetores $\vec{v} = (x, y, z)$, o módulo do vetor \vec{v}

É dado por:

$$|\vec{v}| = \sqrt{x^2 + y^2 + z^2}$$

VERSOR

Cada vetor \vec{v} , $\vec{v} \neq 0$, é possível associar dois vetores unitários paralelos a \vec{v} :

$$\frac{\vec{v}}{|\vec{v}|}$$
 (é o versor de \vec{v}) e seu oposto $-\frac{\vec{v}}{|\vec{v}|}$

Observação: Versor é um vetor unitário sobre o vetor dado, possuido mesma direção e sentido.

Dados os pontos A(2,-1) e B(-1,4) e os vetores $\vec{u} = (-1,3)$ e $\vec{v} = (-2,-1)$, determine:

i) $|\vec{u}|$;

$$|\vec{u}| = \sqrt{1+9} = \sqrt{10};$$

ii)
$$|\vec{u} + \vec{v}|$$
;

$$|\vec{u} + \vec{v}| = \sqrt{9 + 4} = \sqrt{13};$$

Dados os pontos A(2,-1) e B(-1,4) e os vetores $\vec{u} = (-1,3)$ e $\vec{v} = (-2,-1)$, determine:

iii) A distância entre os pontos A e B;

$$d(A, B) = |\overrightarrow{AB}| = \sqrt{9 + 25} = \sqrt{34};$$

iv) O versor do vetor \vec{v} .

$$\frac{\vec{v}}{|\vec{v}|} = \frac{(-2,-1)}{\sqrt{5}}.$$