

Design and Analysis of Algorithms

Algorithm Analysis

Even Semester- 2018-19

Course Details

Lecture Notes – on AUMS

Text Book

- Michael T Goodrich, Roberto Tamassia, "Algorithm Design: Foundations, Analysis and Internet Examples", John Wiley and Sons, 2001
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms, Second Edition", The MIT Press, 2001

Evaluation

- Grade Policy
 - Final 50%
 - Midterm 30%
 - Assignments/Quizzes/Tutorials 20%
 - One after each topic
 - Quizzes/Tutorials 8 minimum
 - Programming assignments
 - Implement important algorithms and apply them for problem solving on HPOJ

Lecture Schedule (Tentative)

- Term I (before periodical I)
 - Algorithm Analysis
 - Sorting Algorithms
 - Graph Algorithms
 - Greedy Algorithms
- Term II (before periodical II)
 - Recurrence Analysis
 - Divide and Conquer
 - Dynamic Programming

Lecture Schedule

- Term III
 - Backtracking and Branch and Bound
 - String Algorithms
 - Introduction to NP Completeness
- May be modified over time

Problem Solving

- Identify problems in real world solvable by computers
- Understand the problem
 - Understand the inputs
 - Output requirements
 - Constraints under which the problem must operate
- Identify potential solutions
- Select best solution
 - Fastest
 - Most accurate

CSE 211 : Design and Analysis of Algorithms

Pseudocode

- High level description of an algorithm
- More structured than English prose
- Less detailed than an actual program
 - Hides program design details

```
Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax \leftarrow A[0]
for i \leftarrow 1 to n \cdot 1 do

if A[i] < currentMax then
currentMax \leftarrow A[i]
return currentMax
```


Pseudocode

- Expressions
 - ← assignment, like = in Java
 - = Equality testing, like == in Java
 - Superscripts and other mathematical formatting allowed
- Method Declaration
 - Algorithm *method*(arg1...)

Input..

Ouput..

Indentation replaces braces

CSE 211 : Design and Analysis of Algorithms

Control Flow

- if ... then .. [else...]
- while .. do ..
- repeat ... until ..
- for ... do...

Analyzing Algorithms

- Correctness
- Amount of Work done
- Space used
- Simplicity, clarity
- Optimality

Correctness

- Understand what correctness means
 - Define the characteristics of the input an algorithm is expected to work on
 - The results that each input must produce
- Prove the statement about the relationship between input and output
- Prove Correctness of algorithm

Proof of Correctness

- Simple Techniques
 - By example
 - By contrapositives and contradiction
 - Induction
 - Loop Invariants

Analysis of Amount of Work done

Algorithm

• Set of simple instructions to be followed to solve a problem

Algorithm Analysis

- Determine resources, time and space the algorithms requires
- Helps choose among different algorithms to a solution

• Goal

- Estimate time required to execute the algorithm
- Reduce the running time of the program
- Understand results of careless use of recursion

Issues in calculating running time

- Running time grows with input size
- Varies with different inputs
- Actual running time can be calculated in seconds or milliseconds
 - The system setup must be same for all inputs
 - Same hardware and software must be used
 - Actual time maybe affected by other programs running on the same machine
- A theoretical analysis is usually preferred

Average Case and Worst Case

- Running time of an algorithm is not constant
 - Depends on input
 - Can run fast for certain inputs and slow for others
 - e.g linear search
- Average Case Cost
 - Cost of the algorithm on average
 - Difficult to calculate
- Worst Case
 - Gives an upper limit for the running time
 - Easier to analyze

CSE 211 : Design and Analysis of Algorithms

- Model of Computation
 - Mathematical Framework
 - Asymptotic Notation
- What to Analyze
 - Running Time Calculations
- Checking the analysis

Random Access Machine Model

- Model of Computation to analyze algorithms
- Primitive Operations
 - Assigning a value to a variable
 - Performing an arithmetic operation
 - Calling a method
 - Comparing two numbers
 - Indexing into an array
 - Following an object reference
 - Returning from a method
- Count primitives to give high level estimate

CSE 211 : Design and Analysis of Algorithms

Counting Primitives: Recap

Algorithm FindMax(S, n)

Input : An array S storing n numbers, n>=1

Output: Max Element in S

curMax <-- S[0] (2 operations)</pre>

 $i \leftarrow 0$ (1 operations)

while i< n-1 do (n comparison operations)

if curMax < A[i] then (2(n-1) operations)</pre>

 $\operatorname{curMax} \leftarrow \operatorname{A[i]}(2(n-1))$ operations)

 $i \leftarrow i+1$; (2 (n-1) operations)

return curmax (1 operations)

Complexity between 5n and 7n-2

CSE 211 : Design and Analysis of Algorithms

Calculate running time:

```
• sum = 0;
for( i=1; i<n; i*=2 )
sum++;
```

• sum = 0; for(i=0; i<n; i++) for(j=1; j<n; j*=2) sum++;

• sum = 0; for(i=0; i<n; i++) for(j=0; j<n*n; j++)

sum++;

CSE 211 : Design and Analysis of Algorithms

Problem continued

• sum = 0;

Consider the following code segment:

CSE 211 : Design and Analysis of Algorithms

- Consider the task of finding the missing element in a sequence of n elements
- Consider the task of finding the frequency of occurrence of each element in a set
- Prefix averages
 - The i-th prefix average of an array X is average of the first (i + 1) elements of X:
 - -A[i] = (X[0] + X[1] + ... + X[i])/(i+1)
 - Two algorithms

• *Algorithm* prefixAverage1(*X*,*n*)

Input array *X* of integers

Output array *A* of prefix averages of *X*

 $A \leftarrow$ new array of n integers

for
$$i \leftarrow 0$$
 to $n-1$ **do**

$$s \leftarrow X[0]$$

for
$$j \leftarrow 1$$
 to i **do**

$$s \leftarrow s + X[j]$$

$$A[i] \leftarrow s/(i+1)$$

return A

• *Algorithm* prefixAverage2(*X*,*n*)

Input array *X* of integers

Output array *A* of prefix averages of *X*

 $A \leftarrow$ new array of n integers

for $i \leftarrow 0$ to n-1 **do**

$$s \leftarrow s + X[i]$$

$$A[i] \leftarrow s/(i+1)$$

return A

Growth Rates of Running Time

- Important factor to be considered when estimating running time
- When experimental setup (hardware/software) changes
 - Running time is affected by a constant factor
 - 2n or 3n or 100n is still linear
 - Growth rate of the running time is not affected
- Growth rates of functions
 - Linear
 - Quadratic
- Exponential CSE 211: Design and Analysis of Algorithms

Some Function Plots

CSE 211 : Design and Analysis of Algorithms

- Can be defined as a method of describing limiting behavior
- Used for determining the computational complexity of algorithms
 - A way of expressing the main component of the cost of an algorithm using the most determining factor
 - e.g if the running time is $5n^2+5n+3$, the most dominating factor is $5n^2+5n+3$
 - Capturing this dominating factor is the purpose of asymptotic notations

Big Oh Notation

• Given a function f(n) we say, f(n) = O(g(n)) if there are positive constants c and n_0 such that f(n) <= cg(n) when $n >= n_0$

- Example
 - 2n + 8 is O(n)
 - $2n+8 \le cn$
 - (c-2)n >= 8
 - $n \ge 8/(c-2)$
 - Choose c = 3, and n_0 as 8, then the rule holds

O(n) – growth function

Example

- Example: the function n² is not O(n)
 - Must prove $n^2 \le cn$
 - n <= c
 - The above inequality cannot be satisfied since c must be a constant
 - Hence proof by contradiction

Example

- Example: the function n² is not O(n)
 - Must prove $n^2 \le cn$
 - n <= c
 - The above inequality cannot be satisfied since c must be a constant
 - Hence proof by contradiction

More Examples

- Show 7n-2 is O(n)
 - need c > 0 and $n_0 >= 1$ s.t 7n-2 <= cn for $n >= n_0$
 - this is true for c = 7 and $n_0 = 1$
- Show $3n^3 + 20n^2 + 5$ is $O(n^3)$
 - find c, n_0 s.t $3n^3 + 20n^2 + 5 \le cn^3$ for $n \ge n_0$
 - this is true for c = 4 and $n_0 = 21$
- Show 3 log n + log log n is O(log n)
 - need c > 0 and $n_0 >= 1$ such that $3 \log n + \log \log n <= c \log n$ for $n >= n_0$
 - this is true for c = 4 and $n_0 = 2$

CSE 211 : Design and Analysis of Algorithms

Show that $6n^2 + 20n$ is $O(n^3)$

When does the time taken to calculate the circumference of a circle run faster than the time taken to find the area of a circle, considering n to be the radius.

 Graph the following expressions. For each expression, state for which values of n that expression is the most efficient.

For the following functions: 4n², log₃n, 20n, log₂n, n^{2/3}

- Graph all functions on a single plot
- Arrange the functions by asymptotic growth rate from slowest to fastest.

Some problems

- Order the following functions by the big-Oh notation 6nlogn, 2¹⁰⁰, log²n, 1/n, n³, n²logn
- What is the total running time of counting from 1 to n in binary if the time needed to add 1 to the current number i is proportional to the number of bits in the binary expansion of i that must change in going from i to i+1
- Is $2^{n+1} O(2^n)$?
- Is 2^{2n} O(2^n)?

Big Oh Significance

- The big-Oh notation gives an upper bound on the growth rate of a function
- "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
 - Both can grow at the same rate
- Though 1000n is larger than n², n² grows at a faster rate
 - n^2 will be larger function after n = 1000
 - Hence $1000n = O(n^2)$
- The big-Oh notation can be used to rank functions according to their growth rate
 CSE 211: Design and Analysis

 Amrita School of Engineering

of Algorithms

Amrita Vishwa Vidyapeetham

- If is f(n) a polynomial of degree d, then f(n) is O(n^d), i.e.,
 - Drop lower-order terms
 - Drop constant factors
- Use the smallest possible class of functions to represent in big Oh
 - "2n is O(n)" instead of "2n is O(n²)"
- Use the simplest expression of the class
 - "3n+ 5 is O(n)" instead of "3n + 5 is O(3n)"

- f(n) = O(g(n)) if there are constants c and n_0 such that $f(n) \le cg(n)$ when $n \ge n_0$
- $f(n) = \Omega(g(n))$ if there are constants c and n_0 such that f(n) > = cg(n) when $n > = n_0$
- $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$. $f(n) <= c_1 g(n)$ and $s = c_2 g(n)$
- f(n) = o(g(n)) if f(n) = O(g(n)) and $f(n) \neq \Theta(g(n))$
 - f(n)<cg(n)
 - Goal
 - Establish relative order among functions!!

CSE 211 : Design and Analysis of Algorithms

Growth of Functions

- $n^3 3n^2 n + 1 = \Theta(n^3)$.
- For each of the following pairs of functions, either f(n) is in O(g(n)), f(n) is in $\Omega(g(n))$, or $f(n) = \Theta(g(n))$. Determine which relationship is correct and briefly explain why.
 - $f(n) = log n^2$; g(n) = log n + 5
 - $f(n) = (n^2 n)/2$, g(n) = 6n

- Though 1000n is larger than n², n² grows at a faster rate
 - n^2 will be larger function after n = 1000
 - $1000n = O(n^{2})$
- If f(n) is O(g(n)), we are guaranteeing that f(n) grows at a rate no faster than g(n)
- f(n) is $\Omega(g(n))$, then g(n) is lower bound

Importance of Asymptotics

• Table of max-size of a problem that can be solved in one second, one minute and one hour for various running times measures in microseconds [Goodrich]

Running Time		Maximum Problem Size (n)		
	1sec	1 min	1 hour	
400n	2500	150000	9000000	
20nlogn	4096	166666	7826087	
2n ²	707	5477	42426	
n^4	31	88	244	
2 ⁿ	19	25	31	

CSE 211 : Design and Analysis of Algorithms

Asymptotic Rules

• If d(n) is O(f(n)), ad(n) is O(f(n)), for any a>0

- $d(n) \le cf(n)$
- ad(n) <= acf(n) // ac is still a constant, hence proved
- If d(n) is O(f(n)), and e(n) is O(g(n)), then d(n) te(n) is O(f(n)+g(n))
 - $d(n) \le c_1 f(n)$ and $e(n) \le c_2 g(n)$
 - $d(n)+e(n) \le c_1 f(n)+c_2 g(n)$
 - Choose a constant c_3 which is max of (c_1,c_2) . Then $d(n)+e(n) \le c_3(f(n)+g(n))$

CSE 211 : Design and Analysis of Algorithms

Asymptotic Rules

• 3. If d(n) is O(f(n)), and e(n) is O(g(n)), then d(n)e(n) is O(f(n)g(n))

•
$$d(n) \le c_1 f(n)$$
 and $e(n) \le c_2 g(n)$

$$\bullet d(n)e(n) \le c_1 f(n)c_2 g(n)$$

•
$$d(n)+e(n) \le c_3(f(n)+g(n)) // c_3 = c_1c_2$$

• 4. If d(n) is O(f(n)), and f(n) is O(g(n)), then d(n) is O(g(n))

•
$$d(n) \le c_1 f(n)$$
 and $f(n) \le c_2 g(n)$

$$\bullet = = > d(n) < = c_1 c_2 g(n) < = c_3 g(n) // c_3 = c_1 c_2$$

CSE 211 : Design and Analysis of Algorithms

Asymptotic Rules

- 5.If d(n) is O(f(n)), and e(n) is O(g(n)), then d(n) +e(n) is Max(O(f(n)), O(g(n)))
 - 6. n^x is $O(a^n)$ for any fixed x>0, a>1
 - $n^x <= ca^n => log n^x <= c log a^n$
 - $x \log n \le cn \log a$
- 7. $\log n^x$ is O($\log n$) for any fixed x>0
 - $\log n^x <= c \log n => x \log n <= c \log n$
- 8. $\log^x n$ is $O(n^y)$ for some constant x>0, y>0
 - $(\log n)^x \le cn^y$

Example

- Show $2n^3 + 4n^2 \log n$ is $O(n^3)$
 - $\log n$ is O(n) (rule 8)
 - $4n^2$ logn is O($4n^3$) (rule 3)
 - $2n^3 + 4n^2$ logn is O(2 $n^3 + 4n^3$) (rule 2)
 - $2n^3 + 4n^3$ is $O(n^3)$ (rule 1 or polynomial rule)
 - $2n^3 + 4n^2 \log n$ is $O(n^3)$ (rule 4)