THE HONG KONG POLYTECHNIC UNIVERSITY

Department of Applied Mathematics

	bject Title: Principles of Data Science
Programmes: Master of Science in Data Science	and Analytics (63027)
Session: Semester 1, 2023/2024	
Time: From: 19:00pm, 12 December 2023 Times	me Allowed: 3 hours
To: 22:00pm, 12 December 2023	
This question paper has 3 pages (attachme	ent included).
Instructions to Students:	
• This is closed-book exam and the paper con	ntains 6 questions.
• Please attempt all the 6 questions. Please st	how all the steps.
 Please note that you should follow the Reg 	ulations on Academic Integrity in Student
Handbook and shall not give nor receive an	• •
persons.	
Attachment:	
NA	
Subject Lecturer: Dr. Ting Li	

DO NOT TURN OVER THE PAGE UNTIL YOU ARE TOLD TO DO SO.

- 1. Let (X_1, \ldots, X_n) be a random sample from the uniform distribution on the interval $(\theta, \theta + |\theta|)$. Find the MME and MLE of θ when
 - (a) $\theta \in (0, \infty)$; [5 marks]
 - (b) $\theta \in (-\infty, 0)$; [5 marks]
 - (c) $\theta \in \mathcal{R}, \theta \neq 0$ [5 marks]
- 2. Suppose X_1, \ldots, X_n are iid with geometric distribution. Their common probability function is

$$P(X_i = k) = \theta(1 - \theta)^k, \quad k = 0, 1, 2, \dots$$

- (a) Find the sufficient and complete statistic and why it is. [5 marks]
- (b) Write out the probability function of $\sum_{i=1}^{n} X_i$. [5 marks]
- (c) Find the UMVUE of θ . [10 marks]
- 3. Let X have the pdf $f(x;\theta)=\theta^x(1-\theta)^{1-x}, x=0,1$, zero elsewhere. We test $H_0:\theta=\frac{1}{2}$ and $H_1:\theta<\frac{1}{2}$ by taking a random sample $X_1,...,X_5$ of size n=5.
 - (a) What's the hypothesis, and what is the type of the statistical hypothesis? What is the Type I Error and what is the Type II Error? [5 marks]
 - (b) Develop a uniformly most powerful (UMP) test. [5 marks]
 - (c) What is the power function of the UMP test. [5 marks]
 - (d) What is the significance level of the UMP test. [5 marks]
 - (e) Develop the likelihood ratio test. Is it the same as the UMP test? [5 marks]
- 4. Suppose X_1, \ldots, X_n are iid $\sim N(\mu, 1)$. For hypotheses $H_0: \mu = 0$ vs. $H_a: \mu \neq 0$, show that the test that rejects H_0 when $\sqrt{n}|\bar{X}| > z(\alpha/2)$ is NOT UMP at level α , here $z(\alpha/2)$ suits that $P(Z > z(\alpha/2)) = \alpha/2$ with Z from a standard normal distribution. [15 marks]
- 5. Suppose X_1, \ldots, X_n are iid $\sim N(\mu, \sigma^2)$ where μ is known.
 - (a) Find a UMP at significance level α for $H_0: \sigma^2 = 1$ v.s. $H_a: \sigma^2 > 1$. [10 marks]
 - (b) Derive the generalized likelihood ratio test assuming μ is unknown. [5 marks]
- 6. Answer following questions about network data analysis.
 - (a) What is the definition of clustering coefficient? Use a real word example to illustrate its meaning. [5 marks]

(b) Suppose we have a network generated from SBM. Given the adjacency matrix A and the community label that $z_i=1$ for $i\in\{1,2,3,4,5\}$ and $z_j=2$ for $j\in\{6,7,8,9,10\}$, find the MLE for all the other parameters, i.e., the connection matrix. [5 marks]

— END —