Esercizi Geometria

1) Data una retta nello spazio, determinare i parametri direttori e scriverla come intersezione tra due piani:

$$a)^{\frac{x-2}{2}} = \frac{y+1}{0} = z - 2$$

$$b)^{\frac{3x-1}{2}} = \frac{y-1}{2} = z$$

$$c)\frac{x-2}{0} = \frac{y+1}{0} = z - 2$$

$$d)^{\frac{x-2}{2}} = \frac{y+1}{4} = \frac{4z}{4}$$

2) Data una retta e un piano, stabilire se la retta r è contenuta nel piano π :

a)
$$r:\begin{cases} 2y-z &= -1\\ x-y &= -3 \end{cases}$$
, $\pi: x+y-z-2=0$

b)
$$r: \begin{cases} x-y-z &= 0 \\ x+y+z &= -2 \end{cases}$$
 , $\pi: 2x+y+z-4=0$

- 3) Dato un punto fissato $P_0 = (1, 1, -1)$, determinare la retta passante per P_0 e avente parametri direttori (5,0,5).
- 4) Date le seguente rette e i seguenti piani, trovare i parametri direttori di ciascuno:

a)
$$r_1: \begin{cases} x+y &= 2 \\ x+y+z &= 2 \end{cases}$$
; $r_2: \begin{cases} 2x-3z+1 &= 0 \\ x-y+2z-1 &= 0 \end{cases}$; $r_3 \begin{cases} x &= 0 \\ y &= z-3 \end{cases}$

b)
$$\pi_1 : 2x + y - 3z + 1 = 0$$
; $\pi_2 : x - z = 0$; $\pi_3 : x + y + 4 = 0$

5) Dato un punto P_0 e una retta r, determinare la retta s passante per P_0 e parallela alla retta r e una retta t passante per P_0 e ortogonale alla retta s:

a) dato
$$P_0 = (2, -2, 0), r : \begin{cases} x + y = 2 \\ x - z = 3 \end{cases}$$

b) dato
$$P_0 = (1, 0, -3), r : \begin{cases} 2x + y = -3 \\ 2x + y + z = 0 \end{cases}$$

6) Dato un punto P_0 e un piano π , determinare il piano π_{\parallel} passante per P_0 e parallela al piano π

1

a) dato
$$P_0 = (0, 2, 0), \pi : x + y = 0$$

b) dato
$$P_0 = (1, 1, -3), \pi : 2x + 2y + 2z$$

7) Data una retta r un punto P_0 e un piano π , determinare la retta t_1 passante per P_0 , ortogonale al piano π e il piano π_{\perp} passante per P_0 , ortogonale alla retta r

7a) Data una retta
$$r:$$

$$\begin{cases} x-y+z &=0\\ x+y+z-2 &=0 \end{cases}$$
, $P_0=(0,0,1)$, $\pi:x+3y-1=0$
7b) Data una retta $r:$
$$\begin{cases} y+z &=0\\ 3x-z-1 &=0 \end{cases}$$
, $P_0=(1,-1,1)$, $\pi:x+y-z=0$

8) Date due rette r_1 , r_2 e un punto P_0 , determinare la retta t che passa per P_0 ed è ortogonale ad entrambe le rette

8a)
$$r_1: \begin{cases} x+y-z &= 0 \\ 2x-y &= 1 \end{cases}$$
, $r_2: \begin{cases} y+z &= 0 \\ x &= 0 \end{cases}$, $P_0 = (1,0,-3)$
8b) $r_1: \begin{cases} x-z &= 0 \\ x-y &= 1 \end{cases}$, $r_2: \begin{cases} x+z &= 0 \\ z &= 0 \end{cases}$, $P_0 = (0,0,3)$

9) Date due rette r_1, r_2 e un punto P_0 , determinare il piano π_{\parallel} che passa per P_0 ed è parallelo ad entrambe le rette

9a)
$$r_1: \begin{cases} x+y-z &= 0 \\ 2x-y &= 1 \end{cases}$$
, $r_2: \begin{cases} y+z &= 0 \\ x &= 0 \end{cases}$, $P_0 = (1,0,-3)$
9b) $r_1: \begin{cases} x-z &= 0 \\ x-y &= 1 \end{cases}$, $r_2: \begin{cases} x+z &= 0 \\ z &= 0 \end{cases}$, $P_0 = (0,0,3)$

10) Data una retta, un punto e un piano, determinare la retta s parallela al piano, che passa per il punto ed è ortogonale alla retta e il piano π' parallelo alla retta, ortogonale al piano e che passa per il punto

10a) Data una retta
$$r: \begin{cases} 4x - y &= 0 \\ y + z - 2 &= 0 \end{cases}$$
, $P_0 = (0, 0, 0)$, $\pi: x + y - 1 = 0$

10b) Data una retta
$$r: \begin{cases} y-z &= 0 \\ x+y+z &= 0 \end{cases}$$
 , $P_0 = (-1,1,1)$, $\pi: x+3y-2=0$

11) Dati tre punti, determinare l'unico piano passante per i tre punti:

11a) Dati
$$A = (1, 1, 2), B = (0, 0, 1), C = (2, -2, 0)$$

11b) Dati
$$A = (0,0,2), B = (-1,0,1), C = (0,-2,0)$$

12) Verificare se due rette sono sghembe (cioè determinante diverso da zero)

12a)
$$r_1: \begin{cases} 4x - y - z &= 0 \\ x - y &= 1 \end{cases}, r_2: \begin{cases} z &= 0 \\ x &= 0 \end{cases}$$

12b) $r_1: \begin{cases} x - z &= 0 \\ x - y &= 1 \end{cases}, r_2: \begin{cases} x + z &= 0 \\ z &= 0 \end{cases}$

13) Date due rette calcolare l'angolo individuato dalle due rette:

13a)
$$r_1: \begin{cases} 4x - y - z &= 0 \\ x - y &= 1 \end{cases}, r_2: \begin{cases} z &= 0 \\ x &= 0 \end{cases}$$

13b) $r_1: \begin{cases} x - z &= 0 \\ x - y &= 1 \end{cases}, r_2: \begin{cases} x + z &= 0 \\ z &= 0 \end{cases}$

14) Calcolare la distanza punto-piano:

14a)
$$P_0 = (2, 5, -1), \pi : x - z = 0$$

14b) $P_0 = (0, 5, 0), \pi : x + y - z - 2 = 0$

15) Dati due punti calcolare il punto medio M di A e B:

15a)
$$A = (2,5,-1), B = (2.0,0)$$

15b) $A = (0,5,0), B = (-1,3,4)$

16) Dati due punti P_0 e il punto P,trovare il simmetrico P'_0 di P_0 rispetto ad P:

16a)
$$P_0 = (2, 5, -1), P = (2.0, 0)$$

16b) $P_0 = (0, 5, 0), P = (1, 1, 4)$

17) Dati il piano π e il punto P_0 trovare il simmetrico P_0' di P_0 rispetto ad π :

17a)
$$P_0 = (2, 5, -1), \pi : x + y + z - 1 = 0$$

17b) $P_0 = (0, 5, 0), \pi : 2x - y - z = 0$

18) Dati due vettori v_1 , v_2 , calcolare il prodotto scalare $v_1 \cdot v_2$, i moduli

3

di v_1 e di v_2 ,e l'angolo individuato dai due vettori. Inoltre individuare un vettore parallelo a v_1 e uno ortogonale a v_2

18a)
$$v_1 = (2, 5, -1), v_2 = i + j - k$$

18b) $v_1 = (1, 3, 5), v_2 = (0, 0, 1)$

19) Date due rette nel piano z=0 e nello spazio, calcolare l'angolo inviduato da loro:

19a)
$$r_1: 2x - y = 0, r_2: x + y - 1 = 0$$

19b) $r_1: y + 4 = 0, r_2: x - 1 = 0$
19c) $r_1: 2x - y = y - z = 0, r_2: x + y - 1 = z - 1 = 0$
19d) $r_1: y + 4 = z = 0, r_2: x - 1 = x - y + z = 0$

20) Date due rette r_1, r_2 e un punto $P_0 = (3, 6)$ calcolare $d(P_0, r_1), d(P_0, r_2), d(r_1, r_2)$:

20a)
$$r_1 : 2x - y = 0, r_2 : y - x - 1 = 0, P_0 = (0, 0)$$

20b) $r_1 : y + 4 = 0, r_2 : 2y - 1 = 0, P_0 = (2, 2)$