α) Η εξίσωση της έλλειψης C με εστίες τα σημεία $E'(-\gamma,0)$, $E(\gamma,0)$, μήκος μεγάλου άξονα 2α και μήκος μικρού άξονα 2β , είναι

$$\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1$$
, όπου $\beta = \sqrt{\alpha^2 - \gamma^2}$

Η εξίσωση της έλλειψης C_1 : $x^2+4y^2=4$ γίνεται ισοδύναμα $\frac{x^2}{4}+y^2=1$. Είναι λοιπόν:

$$\alpha^2=4 \stackrel{\alpha>0}{\Longleftrightarrow} \alpha=2$$
 , $\beta^2=1 \stackrel{\beta>0}{\Longleftrightarrow} \beta=1$ και $1=\sqrt{4-\gamma^2} \Leftrightarrow \gamma^2=3 \stackrel{\gamma>0}{\Longleftrightarrow} \gamma=\sqrt{3}$.

Επομένως, είναι:

$$2\alpha = 4$$
, $2\beta = 2$, $E'(-\sqrt{3}, 0)$, $E(\sqrt{3}, 0)$.

Για την έλλειψη $C_2: \frac{x^2}{16} + \frac{y^2}{4} = 1$ είναι αντίστοιχα:

$$\alpha^2=16 \stackrel{\alpha>0}{\Longleftrightarrow} \alpha=4$$
 , $\beta^2=4 \stackrel{\beta>0}{\Longleftrightarrow} \beta=2$ και $2=\sqrt{16-\gamma^2} \Leftrightarrow \gamma^2=12 \stackrel{\gamma>0}{\Longleftrightarrow} \gamma=2\sqrt{3}$.

Επομένως, είναι:

$$2\alpha = 8$$
, $2\beta = 4$, $E'(-2\sqrt{3}, 0)$, $E(2\sqrt{3}, 0)$.

β) Δύο ελλείψεις όταν έχουν την ίδια εκκεντρότητα ε λέγονται όμοιες, όπου $\varepsilon = \frac{\gamma}{\alpha}$.

Η έλλειψη \mathcal{C}_1 έχει εκκεντρότητα $\varepsilon_1=rac{\sqrt{3}}{2}$.

Η έλλειψη C_2 έχει εκκεντρότητα $\varepsilon_2=rac{2\sqrt{3}}{4}=rac{\sqrt{3}}{2}$.

Επομένως, ο ισχυρισμός είναι αληθής.