MATHEMATICS FOR COMPUTING

WEEK 5:1

LOGIC ENGINEERING IN CPL

- To build logic we must define
 - -Syntax
 - -Semantics
 - –Provide the proof theory
 - -Establish the correctness of the construction

SYNTAX

- Alphabet of Logic
 - -A set of atomic propositions: p, q, r, p I, q I, r I,....
 - -A set of logical operators: \neg , \land , \Rightarrow , \lor
 - -Technical symbols: ()

WELL FORMED FORMULAE

Definition I

- -Any atomic proposition is wff
- -If A and B are wff then $\neg A$, $A \land B$, $A \lor B$, $A \Rightarrow B$ are wff
- -Nothing else is a wff

• A proposition should be a wff to enable reasoning properly.

SATISFIABILITY AND VALIDITY

Definition 2

- Formula A is satisfiable if there is an interpretation of its atomic propositions which makes A true.
- Alternatively, if no interpretation of atomic propositions makes A true then A is unsatisfiable.

Definition 3

- Formula A is valid if every interpretation of its atomic propositions makes it true.
- A notation is used to denote the fact that A is valid.

LOGICAL CONSEQUENCE

Definition 4

– Formula B is a logical consequence of a knowledge base $A_1, A_2, A_3, \dots A_n$ if the following formula is valid:

$$-(A_1 \wedge (A_2 \wedge (A_3 \wedge ...A_n))) \Rightarrow B$$

 $-A_1, A_2, A_3, \dots A_n = B$ is used to denote logical consequence of B

PROOF STRATEGIES

AXIOMATIC APPROACH

- An axiom is a proposition formally accepted without demonstration, proof, or evidence as one of the starting-points for the systematic derivation of an organized body of knowledge.
- From all valid formulae we choose a set of formulae and assume they do not need proofs.
- Next, we formulate the proof technique such that all other valid formulae can be proven from axioms using corresponding rules.

AXIOMS IN CPL

Definition 6 [Logic CPLAx-axiomatic formulation of CPL]

Ax.1
$$(p \Rightarrow (q \Rightarrow p))$$

Ax.2 $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$
Ax.3 $(\neg p \Rightarrow \neg q) \Rightarrow (q \Rightarrow p)$

RULES OF INFERENCE

- Substitution: Let A be a formula of CPL and p a propositional variable in A. Let A(p/B) be a result of substituting all occurrences of p in A by a formula B.
- Then the following rule can be carried out:

If A then A(p/B)

$$(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$$
 Ax.2
 $(s \Rightarrow (q \Rightarrow r)) \Rightarrow ((s \Rightarrow q) \Rightarrow (s \Rightarrow r))$ from 1, Substitution p/s,

RULES OF INFERENCE

Modus Ponens (Implication Elimination)

From A and A \Rightarrow B follows B

• It can be summarized as "P implies Q and P is asserted to be true, therefore Q must be true."

SEARCHING FOR PROOFS

Breadth-First Search

Here we explore the tree in order of levels

Level I – nodes 2 and 3

Level 2 – nodes 4, 5, 6

Level 3 – nodes 7, 8 and 9

Level 4 – nodes 10 and 11

Depth-First Search

Here we explore the tree in order of paths

Path I – nodes 1, 2, 4, 7

Path 2 – nodes 1, 2, 4, 8

Path 3 – nodes 1, 3, 5

Path 4 – nodes 1, 3, 6, 9, 10

Path 5 – nodes 1, 3, 6, 9, 11

FORWARD CHAINING

- Match the FACTS contained in the knowledge base to left hand sides of rules
- Apply the rules and instantiate new (temporary) facts
- Repeat until: the goal is achieved or until no more rules fire
- Operates as a breadth-first search

FORWARD CHAINING

KNOWLEDGE BASE

Rules

Initial facts

j, f, m

R1: m⇒i

 $R2:b \Rightarrow a$

 $R3:i \Rightarrow d$

R4:j⇒e

 $R5:k \Rightarrow e$

 $R6:g\&h \Rightarrow c$

R7: $e\&f \Rightarrow b$

R8:c&d⇒a

R9:l⇒i

State-space Representation

BACKWARD CHAINING

- Match the GOAL to right hand side of rules
- Set up left side of rule as sub-goals
- Repeat until: all sub-goals match directly with known facts (goal is true) or some sub-goals fail to match (goal is false)
- Backward chaining is usually implemented as depth-first search

BACKWARD CHAINING

Rules

Initial facts

j, f, m

R1: m⇒i

 $R2:b \Rightarrow a$

 $R3:i \Rightarrow d$

R4:j⇒e

 $R5: k \Rightarrow e$

 $R6:g\&h \Rightarrow c$

R7: $e\&f \Rightarrow b$

 $R8:c\&d \Rightarrow a$

R9:1⇒i

Problem-space Representation

PROVING VALIDITY BY CONTRADICTION

Consider Axiom I. $p \Rightarrow (q \Rightarrow p)$

Goal: proof that Axiom I is valid but not by constructing the full truth table

- I. Assume the contrary $-p \Rightarrow (q \Rightarrow p)$ is not valid.
- 2. It should be the case then that p is true but $q \Rightarrow p$ is false
- 3. Since $q \Rightarrow p$ is false q should be true but p false
- 4. Contradiction:
- 5. Therefore our assumption that $p \Rightarrow (q \Rightarrow p)$ is not valid is wrong!
- 6. Therefore, $p \Rightarrow (q \Rightarrow p)$ is valid

QUESTIONSP

SAPNA.K@IIT.AC.LK