HOMEWORK 11 ERGODICITY AND MIXING

Let (X, \mathcal{B}, μ, T) be a measure preserving dynamical system.

Problem 1. Prove that if f is an observable such that for every $t \in \mathbb{R}$ we have

either
$$f > t$$
 a.e. or $f \le t$ a.e.

then f is constant almost everywhere.

Problem 2. Prove that for every observable f (which is integrable or non-negative) we have

$$\int_X f \circ T \, d\mu = \int_X f \, d\mu.$$

Deduce from here that if $f \in L^2(d\mu)$ then $||f \circ T||_{L^2} = ||f||_{L^2}$, and more generally, that $||f \circ T^n||_{L^2} = ||f||_{L^2}$ for all $n \ge 1$.

Problem 3. Prove that if $f_k \to f$ in $L^2(\mu)$ as $k \to \infty$, then for all $n \ge 1$,

$$f_k \circ T^n \to f \circ T^n$$
 in $L^2(\mu)$ as $k \to \infty$.

Problem 4. Use Cauchy-Schwarz to prove that if $f_k \to f$ and $g_k \to g$ in $L^2(\mu)$, then

$$f_k \cdot g_k \to f \cdot g$$
 in $L^1(\mu)$ as $k \to \infty$.

Problem 5. Prove that if $f \in L^2(\mu)$ then there is a sequence $\{f_k\}_{k\geq 1}$ of simple functions such that

$$f_k \to f$$
 in $L^2(\mu)$ as $k \to \infty$.

Problem 6. Prove that if (X, \mathcal{B}, μ, T) is mixing then for all $f, g \in L^2(\mu)$ we have

$$\int_X f \cdot g \circ T^n d\mu \to \int_X f d\mu \int_X g d\mu \text{ as } n \to \infty.$$

Hint: Prove this first for the case when $f = \mathbf{1}_E$ and $g = \mathbf{1}_F$, then for f, g simple functions, then use Problem 5 to approximate by simple functions. You will also need to use Problems 3 and 4.

Problem 7. Let (S, \mathcal{F}, ν) be a probability space and let $\mathcal{X} := S^{\mathbb{N}}$.

Recall the definition of *cylinder sets*: given any $n \in \mathbb{N}$ and given any \mathcal{F} -measurable sets $A_0, A_1, \ldots A_{n-1} \subset S$, the corresponding cylinder is the set

$$C[A_0,A_1,\ldots,A_{n-1}]:=\left\{\mathbf{x}=(x_0,x_1,\ldots,x_{n-1},x_n,\ldots):x_0\in A_0,x_1\in A_1,\ldots,x_{n-1}\in A_{n-1}\right\}.$$

Let \mathcal{B}_0 be the collection of all *finite* unions of cylinder sets. Show that \mathcal{B}_0 is a Boolean algebra.