Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

aTS1577 .A3U5

U.S. DEPARTMENT OF AGRICULTURE Agricultural Marketing Service Cotton Division, May 1975

CONTENTS

Introduction	Page
	3
Sampling procedures	3
Map: Distribution of production areas	4
Laboratory procedures	5
Test Results. Table 1 - Area and U. S. summary. Table 2 - State summary. Table 3 - Grade and Staple summary. Table 4 - Variety and state summary. Table 5 - Short staple results. Table 6 - Medium staple results.	16 20 24
Table 7 - Long staple results	58
Simple Correlations Table 9 - Results for short staple	66 68
Multiple Correlations	
Table 12 - Grade, staple, mike, "O" gage, unif short staple Table 13 - Color, nonlint, 2.5% length, mike - short staple Table 14 - 2.5% length, mike, 1/8" gage, unif., elong short staple. Table 15 - Grade, staple, mike, "O" gage, unif medium staple Table 16 - Color, nonlint, 2.5% length, mike - medium staple Table 17 - 2.5% length, mike, 1/8" gage, unif., elong medium staple. Table 18 - Grade, staple, mike, "O" gage, unif long staple,	77 79 81 83
carded yarns Table 19 - Color, nonlint, 2.5% length, mike, - long staple	85
carded yarns	87
Carded yarns	89
combed yarns	91
combed yarns Table 23 - 2.5% length, mike, 1/8" gage, unif., elong long staple combed yarns	93 95
Measures used in statistical analysis	97
Basis for interpretation of test results	101
Table 24 - Standard machine settings and specifications for processing specified staple length groupings	119

SUMMARY OF COTTON FIBER AND PROCESSING TEST RESULTS CROP of 1974

INTRODUCTION

This report contains information on the fiber properties and spinning performance of cotton from major commercial production areas of the United States. Similar reports have been published annually since 1946. 1/2 These reports summarize and add supplemental information to the data published in biweekly reports which were titled "Cotton Fiber and Processing Test Results, Crop of 1974" and numbered 1 through 13.

The results of fiber and spinning tests made in connection with these annual surveys provide data for studies of the relationships between fiber properties, processing performance and product quality. The data are used to measure the effectiveness of the standards to be sure that they continue to reflect differences in spinning utility. Publication of the bi-weekly reports enables merchants and manufacturers to use the results to locate sources of cotton to meet their specific requirements. Farmers and breeders may also use the data as a source of quality information regarding the various varieties of cottons produced under commercial growing conditions.

SAMPLING PROCEDURES

The procedure for selecting samples for the 1974 survey was designed to provide test lots representing all major varieties in each of the territories served by Cotton Division classing offices. Variety selections were based on the predominant varieties planted in each classing office territory as reported by the Cotton Division in "Cotton Varieties Planted, 1970-1974". A production area was selected to represent the leading variety and one to represent each of the other varieties with an expected production of 10,000 bales or more in each classing office territory. Additional areas were selected for those varieties with a production of over 150,000 bales. One additional production area was selected for each 150,000 bales or portion thereof in excess of the first 150,000 bales. Production areas with at least 70 percent of one variety were designated as that variety with no attempt made to maintain the purity of the variety except by selection of representative production areas. However, in some cases, where there was unusual interest in a particular variety and a low percentage was planted in the area, the classing offices selected lots representing 100 percent of the variety. The locations of the 132 production areas selected for the 1974 survey are shown on figure 1.

 $\frac{1}{2}$ Copies of past summary reports may be obtained from the Standardization Section, Cotton Division, AMS, USDA, 4841 Summer Avenue, Memphis, Tennessee 38122 until supplies are exhausted.

Figure 1. Location of production areas selected for the 1974 Survey.

Test lots were collected from each production area at intervals of three weeks during the harvest season. Lots were selected to represent the predominant grade and staple being classed at the time of collection. For the most part, these areas produce the specified qualities in quantities large enough to enable buyers to obtain lots of even-running grade and staple. Obviously, other qualities of cotton are available in each area as a result of normal seasonal, soil, harvesting and other variations. Most production areas also produce cotton of varieties other than those included in the tests.

Each spinning lot used in this study was made up of 20 to 30 samples of the same grade and staple length from bales classed for growers under the Smith-Doxey Act. These even-running lots of samples were then tested at Cotton Division fiber and spinning laboratories. While this method of collecting samples does not provide data for all qualities in the crop, it does provide average test results for those qualities in largest supply during each three-week period.

LABORATORY PROCEDURES

Fiber, spinning, and chemical finishing tests were performed under standardized procedures at the Cotton Division spinning laboratory at Clemson, South Carolina. Most of the fiber tests were performed in the standard atmospheric conditions of 65 percent relative humidity at a temperature of 70 degrees F. Standard test procedures as outlined by the American Society for Testing and Materials were used in making tests. Tests not covered by ASTM were performed using commonly accepted procedures as recommended by the instrument manufacturer. Five subsamples were taken at random from each spinning lot to provide representative specimens for the fiber tests.

Yarn processing or spinning tests were performed by a technique developed in the Cotton Division laboratories for processing small lots of cotton on standard-type textile machines. The samples in each lot were thoroughly composited by hand-mixing before being fed to the first process picker. This hand-mixing is similar to the machine mixing normally obtained in cotton textile opening equipment. Observations were made at each process to measure processing behavior and the yarns produced were tested to measure product quality.

On the basis of average past performance, cottons were grouped according to the expected staple length for the specified variety. All cottons of the specified variety were spun in the same manner regardless of difference in staple length. This was done so that direct comparisons of different lots of cotton within a specified variety could be made. These samples were

carded at specified production rates and spun into numbers that reflect the manufacturing values of the varieties tested. In general, the rates of carding and yarn numbers spun from the 1974 crop are as follows:

- Group 1.--Short staple cottons, carded at 12-1/2 pounds per hour and spun into carded 8s and 22s yarns with a twist multiplier of 4.40 plus a carded yarn spinning potential test for all lots. This includes varieties which normally produce staple lengths 31/32 and shorter.
- Group 2.--Medium staple cottons, carded at 9-1/2 pounds per hour and spun into carded 22s and 50s yarns with a twist multiplier of 4.00 plus a carded yarn spinning potential test for all lots. This group includes varieties which normally produce cottons from 1 inch through 1-3/32 inches in staple length.
- Group 3.--Long staple cottons, carded at 6-1/2 pounds per hour and spun into both carded and combed 22s and 50s yarns with a twist multiplier of 3.80 plus a carded yarn spinning potential test for all lots. This group includes upland varieties which normally produce cottons from 1-1/8 inches through 1-1/4 inches in staple length.
- Group 4.--Extra long staple cottons, carded at 4-1/2 pounds per hour and spun into combed 50s and 80s yarns with a twist multiplier of 3.60. This group includes all American Pima and American upland extra long staple varieties, which are usually 1-5/16 inches or longer in staple length.

Skeins of yarn from each spinning test lot were bleached and dyed by a technique developed in the Cotton Division laboratories for small scale finishing tests. Color tests were made on gray and chemically finished skeins of yarn as measures of the bleaching and dyeing behavior.

TEST RESULTS

U. S. Average - Upland Cotton

American upland spinning lots tested from the 1974 crop totaled 391, which includes short, medium and long staple cottons. This compares with 456 lots tested from the 1973 crop. Average fiber test results show 1974 cotton to be slightly less uniform, finer and stronger than in 1973. Both Shirley Analyzer nonlint content and picker and card waste were higher in 1974. Yarns spun from these samples were slightly stronger with lower appearance grades and higher imperfections. (Table 1).

Group 1. -- Short Staple Cottons

A total of 57 short staple American upland spinning lots was tested from the 1974 crop compared to 70 in 1973. Average results showed the 1974 cottons to be less uniform, considerably finer and stronger at zero gage strength than the 1973 crop cottons. Yarns spun from these samples were weaker with much lower appearance grades than the previous year. Yarn imperfections were considerably higher for the 1974 crop cottons as compared with 1973. The spinning potential number was slightly lower.

Group 2.--Medium Staple Cottons

A total of 299 medium staple American upland spinning lots was tested from the 1974 crop compared to 346 lots from the 1973 crop cottons. Average fiber properties for the 1974 cottons tested show these cottons to be slightly longer, less uniform, finer and stronger at both zero and 1/8" gage strength than the 1973 cottons. Picker and card waste was higher than a year ago. Yarns spun from these samples showed slightly stronger yarn strength with lower appearance grades but fewer imperfections than a year ago. Average spinning potential was higher in 1974.

The <u>Southeastern</u> production area includes the states of Virginia, North Carolina, South Carolina, Georgia, Florida and Alabama. A total of 51 medium staple spinning lots was tested from this area in 1974 compared to 57 in 1973. Average results in 1974 showed these cottons to be slightly longer, less uniform, finer and weaker at zero gage strength than the previous year. Shirley Analyzer nonlint content was slightly less for the 1974 cottons, while picker and card waste was significantly higher than a year ago. Yarns spun from these samples were slightly stronger with lower appearance grades and fewer imperfections.

The South Central production area includes the states of Tennessee, Missouri, Mississippi, Arkansas and Louisiana. A total of 128 medium staple lots was tested in 1974 compared to 167 lots from the 1973 crop. Average results in 1974 showed these cottons to be less uniform, significantly finer and stronger at zero gage strength than in 1973. Both Shirley Analyzer nonlint content and picker and card waste were higher in the 1974 cottons. Yarns spun from these samples were stronger with lower appearance grades and slightly fewer imperfections. Average spinning potential was higher.

The <u>Southwestern</u> production area consists of the states of Oklahoma and Texas except far west Texas (served by the Pecos and El Paso classing offices). A total of 48 medium staple American upland spinning lots was tested from the 1974 crop compared to 54 from the 1973 crop. Average results showed the 1974 cottons to be less uniform, finer and stronger than the 1973 crop. Both Shirley Analyzer nonlint content and picker and card waste were higher. Yarns spun from these samples were slightly stronger with much lower appearance grades than the 1973 crop. Yarn imperfections were higher in 1974 cottons. Average spinning potential yarn number was slightly higher.

The Western production area consists of the states of California, Arizona, New Mexico and far west Texas. A total of 72 medium staple spinning lots was tested from this area in 1974 compared with 68 lots for the 1973 crop. Average results from these medium staple samples show 1974 cottons to be slightly more uniform and coarser than the 1973 crop. Both Shirley Analyzer nonlint content and picker and card waste were higher in 1974. Yarns spun from these samples were slightly weaker with higher appearance grades and fewer imperfections than the previous year.

Group 3.--Long Staple Cottons

A total of 35 long staple American upland spinning lots was tested in 1974 compared to 40 lots in 1973. Average results showed the 1974 cottons to be longer, less uniform, finer and stronger than the previous year. Yarns spun from these samples were slightly weaker with lower appearance grades than in 1974. The 1974 cottons showed more imperfections than the 1973 cottons. The spinning potential yarn number was slightly higher than for the 1973 cottons.

A total of 15 long staple American upland spinning lots was tested in 1974 from the <u>Southeastern</u> area compared to 18 lots in 1973. Average results show 1974 cottons to be longer, less uniform, finer and stronger at zero gage strength than in 1973. Shirley Analyzer nonlint content was slightly higher. Yarns spun from these samples in 1974 were stronger with lower appearance grades. Yarn imperfections were greater in 1974. Average spinning potential yarn number was higher.

A total of six long staple American upland spinning lots were tested from the <u>South Central</u> area in 1974 compared to seven lots in 1973. Average fiber test results show the 1974 cottons to be longer, finer and weaker at 1/8" gage strength than in 1973. Shirley Analyzer nonlint content was less than in 1973. Yarns spun from these samples were weaker with much lower appearance grades. The 1974 cottons showed slightly fewer yarn imperfections than in 1973. Average spinning potential yarn number was higher in 1974.

A total of 14 long staple American upland spinning lots was tested in 1974 from the Western area compared to 15 lots tested in 1973. Average fiber test results from these long staple lots show 1974 cottons to be slightly longer, coarser and stronger at zero gage fiber strength than in 1973. Picker and card waste was less in 1974 cottons. Yarns spun from these samples were weaker with slightly higher appearance grades. Yarn imperfections were slightly higher in the 1974 cottons. Average spinning potential yarn number was higher in 1974.

Group 4.--Extra Long Staple Cottons

A total of 19 extra long staple American Pima spinning lots was tested from the <u>Western</u> area in 1974. This compares with 20 lots tested in 1973. Average fiber test results show 1974 extra long staple cottons to be shorter, slightly more variable, finer and weaker than 1973 cottons.

Shirley Analyzer nonlint content, picker and card waste and comber waste were less for the 1974 cottons. Yarns spun from these samples were weaker with lower appearance grades and more imperfections in 1974.

Table 1.--Cotton: Average results of classification, fiber and processing tests from selected gin points, crops of 1973 and 1974 $\frac{1}{1}$

·				4				-10-				
		Spin.	Potent.	No.	4.20 4.0		61	61	56 57	99	61	
	results	Yarn	imperf. 22s	No	16		21 19	19	22 24	17	20	
	Processing test results	Appear-	ance 22s	Index	108		105	107	797 87	101	104	
	Proces	Skein	strength 22s	Lbs.	91		101	101	98	116	104 106	
		Picker		Pct.	6.3		0.0	0,0 0,0	8 10	5.0	5.7	
		Shirley	non- lint	Pct.	3.3		9. m 9. t	3.2	2. c.	2.0	3.1	
	ts	Strength	1/8" gage	G/tex	21 22		22	22	22	25	22	
	t resu]	Stre	Zero	Mpsi	82 83		82 81	83	82 84	91	84 85	quality
	Fiber test results	,	Mike	Rdg	4.4		44	4.0.	4.0	44	けた	al qua
	Fi	raph	50/2.5 unif.	Pct.	††† 9††		46 45	44	t+ t+	452	447	of modal
		Fibrograph	2.5% span	In.	%%		1.08	1.10	1.07	1.10	1.09	samples
		Staple		32d in	30.9	and-	34.1 34.5	34.4	33.4	35.1	34.4	
		Grade		Index in uple	88	American upland	81	92 91	33	82	93	l numbe
		Lots		No. Index 32 American upland	70		57 51	ral 167 128	54 148	68	346 299	limited number of
		Area and Crop Year		í	Southwest 1973 1974	MEDIUM STAPLE -	Southeast 1973 1974	South Central 1973 16 1974 12	Southwest 1973 1974	West 1973 1974	Average 1973 1974	1/ Based on a

Spin. Potent. Comber Waste 18.4 No. 65 64 88 74 88 Yarn imperf. 22s Processing test results No. 14 200 29 17 50 H Q Yarn Combed Appearance Index 117 114 102 108 105 82 110 50°s C 67 64 Skein strength Lbs. 132 115 103 104 108 103 Picker & Card Waste Pct. ω ω ω ω 8 8 8 0 0.9 8.7 88 Analyzer Shirley -uou Pct. 3.0 4.0. 2.7 3.5 3.5 20.0 G/tex 1/8" Strength 23 かか 23 32 23 27 Fiber test results Zero Mpsi 101 81 85 33 86 84 Rdg. Mike 3.50 , t 4.0 4.0.4 3.6 3.7 50/2,5 Pct. Fibrograph 42 ## 45 44 45 32 1.46 31 2.5% 1.15 1.13 1.08 1.12 1.15 In Staple in 35.8 33.9 34.3 35.3 36.2 44.0 EXTRA LONG STAPLE - American Pima 32d STAPLE - American upland Grade Index 88 93 88 8 88 58 Lots No. 46 456 391 138 18 29 South Central UPLAND AVG. Southeast Average 1973 1974 1973 1974 1973 1974 1973 1974 1973 1974 1973 1974 Crop Year West က်

Table 1. -- Continued

Table 2.--Cotton: Average results of classification, fiber tests, and carded yarn processing tests by state for American upland samples from selected gin points, crops of 1973 and 1974

	Spinning Potential	No.	63	58	61 66	65	69	62 62	76 65	73	62 64	60	63	57 65	67.78
Dioker	& card	Pet.	9.0	5.8	7.2	9.9	& & & & & &	4.8 9.0	& & 6 &	8 8 8 8	6.3	, 6,2,5	0.9	ν. ι. ω. ω.	mo mo
stock	Com- posite	Index	96	56	88	95	95	8,88	88	8.E	88	88	97	88	98
of raw	Yellow- ness	No.	നന	നന	നന	നന	നന	4 6	m m	ოო	mm	т «И	aa	mm	mm
Color	Gray- ness	No.	α ι αι	നന	୯୯	ma	ma	ma	તા તા	ოო	a a	mm	તા તા	C1 C1	2.5
Shirley	Analyzer non- lint	Pct.	€ 0 0,0	3.7	† † † † †	4 K K K K	& 44 & &	3.5	4.0 3.7	0° €.	რ რ ი	0, E	3.4	2.5	0 0 0 0
E	gation 1/8"	Pet.	0.7	9.0	9.4.9	9.4.9	7.4 7.3	6.7 6.7	6.5	7.9 7.9	7.2	7.h 6.9	7.2	6.9	7.1
strength	1/8" gage	G/tex	8 83	22	83	55	82.42	ឌឌ	쿣 8	55 53	8 8	8 8	23 83	22 82	22
Fiber s		Mpsi	83.88	83 79	80 83	81	888	8 83 83	88 82 83	80	82 84	79 82	82 84	82 81	82
	Micro- naire	Rdg.	44.50	4. 4. 4.	7. 4. 1.	9• 1	4.4	# # 20	4.6 3.9	7°7	4.5	9•† †•†	4.5 4.1	4.4 3.8	3.9
length		Pet.	149 149	††† 5††	5 ^t 1	5† 1*2	17 17 17	1,5 1,2	74 94 143	††1	4,7 1,4,4	5 ⁴	44 44	45 ₁ 43	9 1 1
Fiber	2.5% span	នៀ	1.07	1.08	1.08	1.10	1.15	1.12	1.12	1.16	1.10	1.10	1.11	1.07	1.06
Classification	Staple	32d in.	34°0 34°1	33.8 34.2	34.8 35.3	34.6 35.0	33.9 35.0	34.2 34.7	35.0 35.7	35.0 35.7	34.5 35.1	34.4 34.7	34.6 34.9	34.1 35.1	33.8 35.0
Classit	Grade	Index	81	88 88	168	93	88 85	86	8.3	91	93	98	90	33.45	3.5
	lots tested	No.	83	12	99	0/0	2 8	99	a m	mm	38	24 18	61	15	9
Area	state and crop year	SOUTHEAST Medium staple:	Alabama 1973 1974	Georgia 1973 1974	North Carolina 1973 1974	South Carolina 1973 1974	Long staple: Alabama 1973 1974	<u>Georgia</u> 1973 1974	North Carolina 1973 1974	South Carolina 1973 1974 SOUTH CENTRAL	Medium staple: Arkansas 1973	Louisiana 1973 1974	Mississippi 1973 1974	Missouri 1973 1974	Tennessee 1973 1974

								-13-							
dyed yarn	Com- posite	Index	97	94 103	961	96	97 104	98 104	97 102	98 106	99 103	100	98	100	100
22s	Blue- ness	위	25.3 25.9	24.9 25.9	25.6 25.9	25.6	25.1 25.9	25.4 26.1	25.0 25.8	25.5 26.6	25.6 25.9	25.7 26.1	25.4 25.9	25.7	25.5
Color	Reflect- ance	服	29.1 27.4	29.5 27.5	28.7	28.7 26.6	28.5 26.5	28.9	28.7 27.7	29.1 27.3	28.5 27.1	28.6 8.8.6	28.9	28.3	28.1 26.4
d yarn	Com- posite	Index	97	102	<i>97</i> 103	98 105	100	% 102	99	98 106	98 104	99 103	98 103	98 10 2	96
Color 22s bleached yarn	Yellow- ness	₽	33.	3.7	3.6	3.4 3.1	3.3	& & & &	3°,4	დ დ თ თ	ლ ღ ღ	3.3 1.0	33.3 1.	မှာ မ ကို မှာ	3.4.
Color 22	Reflect- ance	Electron 1	82.5 84.5	82.1 83.8	82.3 84.6	82.5 85.1	83.3 83.9	82.4 84.0	83.1 83.3	82.6 85.5	8 2. 4 84.8	82.7 84.3	8 2. 4 84.3	82.6 84.2	82.0 84.9
prfctns	Second	No.	13 13	1,4	17	17	11	01 16	10	15	1,45	13	វ ព	17 14	122
Yarn imprfetns	22s or 27 tex	No.	18	26 18	₹ 62 ·	88	[‡] 1 (2	14 22	23 82	17	19	23 17	18	21 18	14 18
earance	Second	Index	88 82	77	82 83	82 77	12 07	78	95 73	87	82 77	79 86	81 81	80	362
Yarn appearance	22s or 27 tex	Index	108	100	105	102 98	116	120 103	120	011	100	102	108	103	112
Yarn elongation	Second	Pet.	†*† L*†	4.3	4.5	4.5	4.7 5.2	4.4.5	7°-1	44	9.9.	4 4 5 5	4.7	, 6. 4. 4. 8	7.0
Yarn elc	22s or 27 tex	Pet.	6.5	6.1	6.5	6.3	4.9	999	6.5	0.0 99	6.5	6.4 6.1	6.6 4.9	6.9	6.3
Yarn strength	Second	Ibs.	32 35	30	34 38	37	85 04 04	31 33	37 34	35	35	31 32	33	30	30
Yarn st	22s or 27 tex	Ibs.	101	88	107	102 103	100	103	111	100	103	88	103	97	95
Spinning	lots	No.	30	13	99	0.00	7 8	99	ଷଳ	നന	38	24 1.8	61	15	92
Area	state and crop year	SOUTHEAST Medium staple:		Georgia 1973 1974	North Carolina 1973 1974	South Carolina 1973 1974	Long staple: Alabama 1973 1974	Georgia 1973 1974	North Carolina 1973 1974	South Carolina 1973 1974 SOUTH CENTRAL	Medium staple: Arkansas 1973 1974	Louisiana 1973 1974	Mississippi 1973 1974	Missouri 1973 1974	Tennessee 1973 107/4

-14-

Table 2.--Cotton: Average results of classification, fiber tests, and carded yarn processing tests by state for American upland samples from selected gin points, crops of 1973 and 1974--Continued

1	ial						-14	•							
9	Spinning Potential	No.	63	59	45 38	41 41	24 04	63	20.28	7,45	55	72	. 26	91 88	7 8 88
Picker	& card waste	Pct.	4.60	8.8	6.6	6.2 7.4	7.5	2.5	6.1	5.8 7.4	6.53 .23		5.1	7.2	8.1 7.4
stock	Com- posite	Index	25	99	91	84	88	95	8,8	100 97	105	101	106	1004	104 98
of raw	Yellow- ness	No.	ભા ભ	mm	ოქ	m4	₆ 4	mm	ന്ന	็พพ	ma	നന	നന	mα	നവ
Color	Gray- ness	No	ભા ભા	2 1	w≠	M W	a m	= ma	64	a a	0 0	аа	0 m	η α	чα
Shirley	non- lint	Pet.	7.5 7.7	3.5	3.5	6.4 1.8	2.8 3.4	9.9 6.5	 	3.5 4.1	2.9 4.9	დ. დ.	† † č	7.9.	3.1
Elon-	gation 1/8"	Pct.	6.4	7.2	6 6 8	6.9	7.4 6.3	0.0	6.9	6.5	6.9	5.7	7.8	6.0	6.4 5.5
rength	1/8" gage	G/tex	24 23	ឌឌ	2 2	ដដ	ଷଷ	2 8	ដដ	8 8	ឌឌ	26	22 [2	- 52	26 27
Fiber strength	Zero gage	Mps1	86 87	84 83	85 87	82 81	78 82	88 88	82 85	83 85	86 85	82	.80	93	88 9 5
N.	naire	Rdg.	4. 1.	4.4	7°-7	3.5	9•4 4	7. t.	4.2 4.1	3.5	9.4	4.4 5.3	6.4 6.5	9.9. m.m.	3.5
length	50/2.5 unif.	Pet.	†† ††	원 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	94 14	դդ 9դ	9† 1	44 42	45 43	45 42	44	24 94	1 ⁴ 3	, 75 45 75	44 44
Fiber	2.5% span	In.	1.18	1.09	1.01	8.8	%%	1.08	1.07	1.03	1.10	1.11	1.07	1.16	1.12
Classification	Staple	32d in.	36.2 36.0	34.0 35.0	31.7 30.4	30.6 30.9	31.2 31.4	33.9 33.8	33.9 33.4	32.3 33.3	34.8 35.1	35.4 35.3	34.0 34.0	36.3 36.7	36.0
Classif	Grade	Index	87 91	まま	88 87	88 88	88	8.5%	89 87	88%	93	94	100	66.75	97.
Spinning	lots	No.	3 m	നന	18	44 33	96	15 21	15	21 18	17 26	1,45 1,43	9 m	. 601	9 #
	state and crop year	SOUTH CENTRAL (Continued) Long staple:	$\frac{\text{Mississippi}}{1973}$ 1974	Tennessee 1973 1974 SOUTHWEST	Short staple: Central Texas 1973 1974	Northwest Texas 1973 1974	Oklahoma 1973 1974	Medium staple: South Texas 1973 1974	Central Texas 1973 1974	Northwest Texas 1973 1974 WEST	Medium staple: Arizona 1973 1974	California 1973 1974	West Texas 1973 1974	Long staple: New Mexico 1973 1974	West Texas 1973 1974

1	i	ł						•	-15-								
dyed yarn	Com- posite	Index	93 104	98 105		99	98	100		98	2 8	88	103 102	98 10 2	102	866	100
22s	Blue- ness	위	24.8 26.0	25.3 25.9		25.3 25.4	25.5 24.9	25.9 25.3		26.0	25.0 25.4	25.4 24.8	26.4 25.8	25.2 25.6	25.0 25.4	25.0 25.1	25.5
Color	Reflect- ance	뛢	29.9	28.4		29.8 28.3	28.9 2.82	28.8 27.5		29.8 27.3	29.9 28.5	28.9 28.4	28.1 27.8	28.5	27.9 28.0	27.9	28.0
d yarn	Com- posite	Index	100	97 104		88	95 97	88		101	88	95	100	97	101	99	100
22s bleached yarn	Yellow- ness	₽I	3.3 3.1	3.7 3.4		3.7	3.8	4°.0		3.5	3.7	3.8	3.0	3.5 2.5	4. E. E.	₩. 4.01.	3.5
Color 2	Reflect-	쮩	83.3 84.3	83.0 85.2		8 3.2 8 2. 9	82.2 83.2	82.6 83.5		83.7 83.1	8 2. 9 8 2. 3	82.0 84.4	83.0 84.2	82.1 84.0	83.9 84.4	83.2 84.7	83.5
Yarn imprfctns	Second	No. 50's	16	10	8.8	23	91 12	14 45	50's	18 14	21 82	15	12 13	13	15	15	14
Yarn in	22s or 27 tex	No.	22 18	17		19	15	27.88		24 17	27 24	19	15	17	18	81 2 3	2 0
Yarn appearance	Second	Index 50's	88	33	8.8	126	123 108	123 118	50.s	77 80	75	92	88 83	77 81	77	78 75	78
Yarn ap	22s or 27 tex	Index	110	120 100		112	107 87	112 91		88	8 <mark>8</mark>	93	107 107	100	95	93	97
Yarn elongation	Second	Pct.	8.4	4.3	8.8	7.4	7.8	8.2	50.8	4.5	4.3	9.4	ካ•ተ 9•ተ	4. 7. 7.	5.5	4.4 6.8	6.4
Yarn el	22s or 27 tex	Pct.	5.8	6.0		5.5	6.5	6.2		5.9	6.1 5.4	6.3	6.3	6.0	7.5	6.5	9.0
Yarn strength	Second	Lbs.	33	30	8.8	303 282	288 305	280 293	50's	32	32 27	29 34	8 1 8	242	32	48	44 47 54
_	22s or 27 tex	Lbs.	116	98 107		97 86	89 93	88 88		98	86	97	102	123 125	103	136	128
Spinning	lots	led) No.	# FC	mm		18 15	7 [†] 1	96		15 21	15	21 18	17	1,5 1,3	9 m	601	なっさ
Area	state and crop.year	SOUTH CENTRAL (Continued) Long stable:	Mississippi 1973 1974	Tennessee 1973	Short staple:	1973 1974	Northwest Texas 1973 1974	Oklahoma 1973 1974	Medium staple:	1973 1974	Central Texas 1973 1974	Northwest Texas 1973 1974	Medium staple: Arizona 1973 1974	California 1973 1974	West Texas 1973 1974	Long staple: New Mexico 1973 1974	Mest Texas 19/3 1974

-16-

Table 3.--Cotton: Average results of fiber and carded yarn processing tests by grade and staple combinations for American upland samples from selected gin points, crop of 1974

ing										-16-									
Spinning	roten tial	No.		84	37 41 45	33 43		99	衣	55 62	61 64 72	9	58	62	65 85	94	去	99	49 82
Picker	& card	Pct.		ф . 9	7.2	8.1 4.8		5.8	6.9	7.9	6.1 5.9	6.8	7.1 7.0	5.4	6.1	7.6	7.5	5.4	6.1
ock	Com- posite	Index		66	888	98		88	ま	まま	98 100 101	お	88	104	102	ま	76	103	88
Color of raw stock	Yellow- ness	No.		m	크 코크	4 4		mm	٣	m 01	ณ m ณ	က	01 01	m	mm	m	٣	m	നന
Colo	Gray- ness	No.		αı	⊅ ₩ ₩	7 E		Q1 Q1	ю	ოო	7 8 8	ю	ma	0	ч 03	ю	α	ч	Q1 Q1
Shirley	non- lint	Pet.		3.0	 	4.0 6.8		3.0	3.8	4.2	ო თ თ ოთ თ	3.4	ተ. 6 የ	2.1	3.8	3.9	9.4	1.8	9.0
Elon-	gation 1/8"	Pct.		4.9	6.00	6.1		7.1	6.7	4.6.6	6.8 7.0 7.6	6.8	6.5	2.9	6.9	6.2	6.3	5.9	5.6
rength	1/8" gage	G/tex		22	2 2 2	8 8		8 8	21	88	ននេន	22	22 23	ซ	ଷ ଷ	[†] Z	53	98	83
Fiber strength	Zero gage	Mpsi		48	88 83 83	8 2 75		18 48	80	80	83 83 33	80	83 448	82	82 84	98	48	95	88
Micro-	naire	Rdg.		η•η	4.2 3.7 4.0	3.8		η•η η•η	9.4	5.4 5.4	4.0 4.0 1.1	3.7	4.4	†* †	6.4 6.4	ካ• ካ	3.5	9•4	4.4 2.6
Length	50/2.5 unif.	Pct.		54	††4 †††	43 43		45 45	71	4. 4.5	444	£4	‡ ‡	54	42 45	‡	745	917	22
Fiber length	2.5% span	ili		1.01	.95	\$8.		1.08	1.07	1.07	1.08	1.09	1.08	1.06	1.05	1.04	1.13	1.10	1.10
Spinning	lots tested	No.		m	7 114 8	9 €		13 16	7	95	5 71 9	7	6,0	٣	77	7	5	†T	132
	ple	32d in.		32	30 32 32	30 31		34 35	34	34 35	\$% \$%	35	34 35	33	33	32	35	35	35.
Staple group,	area, grade and staple	Code	GROUP	141	42	52	ROUP	1,1	745	[5	[1	745	51	31	14	745	15	31	ή1
Staple	ar grade	Name	SHORT STAPLE GR	Southwest	SIM Lt Sp	IM Lt Sp	MEDIUM STAPLE GROUP	Southeast	SIM Lt Sp	MI	South Central SIM	SIM Lt Sp	I ₄ M	Southwest M	SIM	SIM Lt Sp	MI	West	SIM

1	1	ı								-17-									
22s dyed yarn	Com- posite	Index		104	8,8%	88		105	102	102	103 104 105	102	104	107	104	101	95	105	100
Color 22s d	Blue- ness	위		25.7	25.5 24.9 25.0	24.2 25.2		26.2 26.0	25.8	25.9	25.7 26.1 26.1	25.6	25.9 25.4	26.5	24.5 26.1	25.6	24.8	26.1	25.5 25.4
CO	Reflect- ance	Rd		5.92	28.2 27.8 28.1	28.7 28.4		27.2	27.7	27.6 27.4	27.0 26.9 26.7	27.3	26.7 27.6	26.7	28.9 27.4	27.4	28.7	26.8	27.7
l yarn	Com- posite	Index		100	88	83 8		103 103	102	103	105 103 104	102	103	102	104	101	101	103	102
Color 22s bleached yarn	Yellow- ness	₽ I		3.1	3.7	3.98		33.1	3.0	8.8 4.4	a m m o a o	3.5	3.2	2.9	3.5	9	3.7	3.0	3.8
Color 2	Reflect- ance	Rd		82.9	82.5 83.2 83.7	83.5		4.48 4.48	83.7	84.6 83.7	84.6 84.5 84.5	84.3	84.3 84.5	83.5	85.3	83.8	84.2	84.3	84.0
Yarn imprfctns	Second	No.		8 <u>8</u> 31	27 4,8 4,0	57 81		50s 11 13	17	16 15	ខ្លួ	16	12 17	12	27 15	25	30	11	12 13
Yarn ir	22s or 27 tex	No.		21	8698	34 76		15	17	ਹ ਹ	15 17 16	22	15	15	32 19	32	35	15	16
Yarn appearance	Second	Index		8 <u>8</u> 127	120 109 110	108 97		50s 83 81	82	78 82 ·	82 79 79	77	82 78	77	60	78	62	8	82 83
Yarn ag	22s or 27 tex	Index		103	106 88 91	85 . 70		110	105	100	106 102 101	100	107	76	77	85	92	104	102
longation	Second	Pct.		88 7.6	6.6	9.0		50s 4.2 4.4	4.2	1°4 1°9	4.2 5.0	9.4	4.0	L. 4	5.0	ተ • ተ	9.4	4.3	9° t
Yarn el	22s or 27 tex	Pct.		6.5	5.9	5.8		6.3	5.8	6.0	6.9	2.9	5.7	6.3	7.0	5.8	6.5	5.8	6.0
Yarn strength	Second	Lbs.		$\frac{8s}{314}$	281 302 313	27 ⁴ 316		50s 31 37	31	30	333	34	30	38	34	29	36	42	140 145
Yarn s	22s or 27 tex	Ibs.		100	888	95		99 107	95	94 105	104 106 113	103	93	106	104 104	93	106	118	113 124
on transfer	lots	No.		m	7,11,4	98		13 16	†	. 95	77.	7	6,0	m	3	4	7	14	32
		d in.		32	32 32	30	Ę.	34	34	34	34 35	35	34	33	33	32	35	35	35
4	taple	32d	GROUF	41	775	52	GROU	141	Sp 42	17	[a] [t]	24 0	民	31	141	p 42	51	31	Ţ1,
, (Lea 40	area, grade and staple	Name Code	SHORT STAPLE GROUP	Southwest	SLM Lt Sp 42	IM Lt Sp	MEDIUM STAPLE GROUP	Southeast	SLM Lt Sp	IIM	South Central SLM 41	SIM Lt Sp 42	ΓM	Southwest	SLM	SIM It Sp	IM	West	MIS

Table 3.--Cotton: Average results of fiber and carded yarn processing tests by grade and staple combinations for American upland samples from selected gin points, crop of 1974--(Continued)

Spinning	tial	No.		57		63 67	75	19	87
Picker	& card waste	Pct.		6.3		88 1.0	0.6	4.8	7.6
ock	Com- posite	Index		85		100	%	100	88
Color of raw stock	Yellow- ness	No.		CV		നന	ю	ო	તા તા
C 01 03	Gray- ness	No.		ĸ		Q1 Q1	α	Т	a a
Shirley	non- lint	Pct.		3.7		4. E	9*4	3.5	2.7
Elon-	gation 1/8"	Pct.		5.8		6.7 6.7	0.7	7.2	ν. 9.89
trength	1/8" gage	G/tex		23		828	2 ^l t	23	27
Fiber strength	Zero gage	Mpsi		88		88	82	83	88
Micro-	naire	Rdg.		4.3		ι• 1• 1•	3.7	9.0	8.8 9.6
length	50/2.5 unif.	Pct.		£†1		7† 7†	₄ 3	£ ₁	455 455
Fiber length	2.5% span	In.		1.07		1.14	1.14	1.14	1.17
Spinning	tested	No.	1)	m		া ক	†1	m	120
	aple	32d in.	(Continued	35		35	35	35	36 37
Staple group,	area, grade and staple	Code	TE GROUP	51	GROUP	14	13	tral 41	147
Sta	gre	Name	MEDIUM STAPLE GROUP (Continued)	West	LONG STAPLE GROUP	Southeast SIM	IM	South Central	West

			-														
7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		Spinning	Yarn strength	rength	Yarn elongation	ngation	Yarn appearance	earance	Yarn im	Yarn imprfctns	Color 2	Color 22s bleached yarn	d yarn	Col	Color 22s dyed yarn	d yern	I
area, area, grade and staple		lots	22s or 27 tex	Second	22s or 27 tex	Second	22s or 27 tex	Second	22s or 27 tex	Second	Reflect- ance	Yellow- ness	Com- posite	Reflect- ance	Blue- ness	Com- posite	
Name Code	Code 32d in.	No.	Lbs.	Lbs.	Pet.	Pet.	Index	Index	No.	No.	뗾	₽	Index	胐	위	Index	
MEDIUM STAPLE (Continued)	Continued	(1															
West IM 51	35	m	105	36	0.9	4.5	011	83	18	12	84.2	3.0	103	27.8	25.6	101	
LONG STAPLE GROUP	UP																
Southeast SIM 41	3635	4 4	103 104	34 34	6.3	9.4 4.4	102	75	23 17	17	84.0 84.6	3.52 1.	102 104	27.3 27.0	26.0	103 106	
15 MI	. 35	†	110	37	6.5	4.9	100	75	73	118	84.1	3.7	100	27.0	26.1	104	
South Central	35	က	107	35	6.3	9.4	100	73	19	77	85.2	3.4	104	26 . 4	25.9	105	
West SIM 41	36	ľνο	126	522	0.0	t. 4	28	72	18 21	13	84.2 84.5	3.1	103	28.6 27.6	25.0	97	

Table 4.--Cotton: Average of classification, fiber tests, and yarn processing tests by variety for samples from selected 100 percent one-variety gin points, crop of 1974

Fiber length 2.5% span In. In. 97 1.00 43 1.10 44 1.11 42 1.10 44 1.11 41 1.10 41 1.10 41 1.10 41	1.08 1.19 1.19 1.19 1.10 1.10 1.10 1.10 1.10	Fiber length Micro- Fiber 2.5% 50/2.5 naire Zero	Fiber length Micro- 2.5% 50/2.5 naire 2.5% 70/2.5 naire 3.97 44, 4.2 1.00 43 4.3 1.12 47 4.1 1.10 44 3.8 1.11 45 4.1 1.11 41 3.3 1.12 44 4.1 1.13 44 4.0 1.13 44 4.1 1.13 44 4.1 1.13 44 4.1 1.13 44 4.1 1.13 44 4.1 1.13 44 4.1 1.13 44 4.1 1.11 41 3.3 1.11 41 4.1 1.10 44 4.1 1.10 44 4.1 1.10 44 4.1 1.10 44 4.1 1.10 44 4.1	Fiber length Micro- span unif. 1.5% 50/2.5 naire 2.5% 50/2.5 naire 2.6m Mpsi 1.0. htt h.2 82 1.00 htt h.3 83 1.10 htt h.2 82 1.10 htt 3.8 86 1.11 htt h.1 99 1.12 htt h.1 99 1.13 htt h.1 99 1.13 htt h.1 99 1.13 htt h.3 83 1.11 htt h.3 83 1.11 htt h.3 83 1.13 htt h.3 83 1.11 htt h.4 87 1.10 htt h.4 87	Fiber length Micro- Fiber strength Micro- 2.5% 50/2.5 Paire Zero 1/8" gage gag	Fiber length Micro Fiber strength Elon Shirley Analyzer Analyze	Fiber length Micro- Fiber strength Ellon- Maliyer Color of read Fiber Light Maliyer Color of read Ma	Fiber length Ricro-	Fiber length Macro Fiber strength Eron Shirilay Color of raw from the getton 1,00 1,	Pitch langth Macro Fibra strength Radio Analyzer Caro Caro	S, dno.	variety, lots and state tested Grade St	No. Index	<u>Lankart 611</u> Northwest Texas 3 89 3	Lankart LX-571 Northwest Texas 6 89 3	MEDIUM STAPLE	Acala 5J-2 California 30 96 3	Acala SJ-3 California 3 95 3	Auburn M Missouri 3 92 3	<u>Brycot #4.</u> Arkanaas 3 94 3	Coker 201 3 91 3 Georgia 3 91 3 North Carolina 3 91 3 South Carolina 3 91 3	Coker 312 312 85 3 Northwest Texas 3 85 3	$\frac{\text{Coker } 41\underline{I}}{\text{Alabama}} \qquad \qquad 4 \qquad 94 \qquad 3$	Coker 5110 3 88 3	Deltapine 16 Arkansas 14 92 3 Louisiana 9 93 3 Mississippi 15 93 3 Central Texas 3 91 3 Arizona 3 91 3	Deltapine 25 Mississippi 3 94 3	Deltapine 61 California 4 98 3	
er length 70/2.5 unif. Pet. 43 44 45 45 44 44 44 44 45 45	# 1ength # # # # # # # # # # # # # # # # # # #	er length Micro-fage Fiber builf. Rdg. Mpsi hth h.2 82 hth h.2 83 hth h.3 83 hth h.6 98 hth 3.8 86 hth 3.8 86 hth h.2 82 hth h.2 82 hth h.1 90 hth h.1 90 hth h.1 90 hth h.2 83 hth h.3 83 hth h.3 83 hth h.2 83 hth h.3 83 hth h.4 <t< td=""><td>er length Micro-naire Fiber stre gage pc/2.5 naire Zero gage pth h.2 82 pth h.2 82 pth h.3 83 pth h.3 96 pth h.1 90 pth h.2 95 pth h.3 93 pth h.3 98 pth h.3 96 pth h.3 93 pth h.4 90 pth h.4 90 pth h.4 <t< td=""><td>er Fiber strength po/2.5 naire Zero 1/8" unif. Rdg. Mpsi gage gage th th.2 82 21 th th.2 82 21 tq th.3 96 27 tq th.3 96 22 tq th.3 86 22 tq th.3 86 22 tq th.2 85 24 tq th.2 85 24 tq th.2 85 24 th th.2 85 24 th th.1 90 24 th th.3 83 22 th th.3 88 23 th th.3 88 23 th th.3 83 22 th th.3 88 23 th th.5 84 23</td><td> Pet. Piber strength Ellon-line </td><td> Micro- Fiber strength Elon- Sation Inn- Or </td><td> The part Harmon Fiber strength Ellon Shiftley Color of raw Shiftley Shiftley Color of raw Shiftley Shiftl</td><td> The part Micro-</td><td> Part Mary Mary Fiber strangth Elicar Mary Fiber strangth Mary Fiber Mary M</td><td> Mathematical Material Signatural Material Material Material Material</td><td>ation</td><th>Staple</th><td>32d in.</td><td>31.0</td><td>31.5</td><td></td><td>35.4</td><td>35.3</td><td>35.0</td><td>35.0</td><td>35.0 35.0 35.0</td><td>35.0</td><td>35.0</td><td>34.7</td><td>35.2 34.9 35.1 35.0</td><td>. 0*28</td><td>34.8</td><td></td></t<></td></t<>	er length Micro-naire Fiber stre gage pc/2.5 naire Zero gage pth h.2 82 pth h.2 82 pth h.3 83 pth h.3 96 pth h.1 90 pth h.2 95 pth h.3 93 pth h.3 98 pth h.3 96 pth h.3 93 pth h.4 90 pth h.4 90 pth h.4 <t< td=""><td>er Fiber strength po/2.5 naire Zero 1/8" unif. Rdg. Mpsi gage gage th th.2 82 21 th th.2 82 21 tq th.3 96 27 tq th.3 96 22 tq th.3 86 22 tq th.3 86 22 tq th.2 85 24 tq th.2 85 24 tq th.2 85 24 th th.2 85 24 th th.1 90 24 th th.3 83 22 th th.3 88 23 th th.3 88 23 th th.3 83 22 th th.3 88 23 th th.5 84 23</td><td> Pet. Piber strength Ellon-line </td><td> Micro- Fiber strength Elon- Sation Inn- Or </td><td> The part Harmon Fiber strength Ellon Shiftley Color of raw Shiftley Shiftley Color of raw Shiftley Shiftl</td><td> The part Micro-</td><td> Part Mary Mary Fiber strangth Elicar Mary Fiber strangth Mary Fiber Mary M</td><td> Mathematical Material Signatural Material Material Material Material</td><td>ation</td><th>Staple</th><td>32d in.</td><td>31.0</td><td>31.5</td><td></td><td>35.4</td><td>35.3</td><td>35.0</td><td>35.0</td><td>35.0 35.0 35.0</td><td>35.0</td><td>35.0</td><td>34.7</td><td>35.2 34.9 35.1 35.0</td><td>. 0*28</td><td>34.8</td><td></td></t<>	er Fiber strength po/2.5 naire Zero 1/8" unif. Rdg. Mpsi gage gage th th.2 82 21 th th.2 82 21 tq th.3 96 27 tq th.3 96 22 tq th.3 86 22 tq th.3 86 22 tq th.2 85 24 tq th.2 85 24 tq th.2 85 24 th th.2 85 24 th th.1 90 24 th th.3 83 22 th th.3 88 23 th th.3 88 23 th th.3 83 22 th th.3 88 23 th th.5 84 23	Pet. Piber strength Ellon-line	Micro- Fiber strength Elon- Sation Inn- Or	The part Harmon Fiber strength Ellon Shiftley Color of raw Shiftley Shiftley Color of raw Shiftley Shiftl	The part Micro-	Part Mary Mary Fiber strangth Elicar Mary Fiber strangth Mary Fiber Mary M	Mathematical Material Signatural Material Material Material Material	ation	Staple	32d in.	31.0	31.5		35.4	35.3	35.0	35.0	35.0 35.0 35.0	35.0	35.0	34.7	35.2 34.9 35.1 35.0	. 0*28	34.8	
		Micro-Fiber Micro-Fiber Adg. Mpsi 4.2 82 4.3 83 4.1 79 4.1 82 4.1 90 4.2 83 4.3 83 4.4 87 4.6 89	Micro- Fiber stre Rag. Mosi h.2 82 h.3 83 h.1 78 h.1 79 h.1 87 h.4 87 h.6 89	Micro- Fiber strength Micro- Rdg. Mpsi G/tex	Micro- Fiber strength gage Elon- gage Elon- gage Elon- gage I/8" h.2 82 21/8" 1/8" 1/8" h.2 82 21 7.0 h.3 83 21 6.2 h.3 96 27 5.5 h.1 79 22 6.9 h.1 79 22 6.4 h.1 90 24 6.1 h.1 90 24 6.1 h.1 90 24 6.5 h.1 90 24 6.5 h.2 82 22 6.4 h.1 90 24 6.1 h.2 82 22 6.4 h.1 90 24 6.1 h.2 82 22 6.4 h.3 83 22 6.4 h.5 83 22 6.5 h.5 84 23 6.4	Micro- Fiber strength Elon- Analyzer Gatton Int Int	Micro-field Fiber strength Elon-field Shiftley strength strength Elon-field Shiftley strength strength Color of raw noal, settle strength Elon-field Color of raw noal, settle strength Elon-field Color of raw noal, settle strength Ilint ness No.	Micro- Fiber strength Ellon- Analyzer Color of raw stoon Analyzer Color of raw stoon Color of raw	Micro-	Micro-	Fiber ler		ü	76.	1.00		1.12	1.11	1.08	1.10	1.11 1.10 1.10	1.13	1.12	1.11	 	1.10	1.08	
	Micro- Maire Ma	Fiber Fiber Mps1	#iber stre Piber stre Rage Rag	Fiber strength	Fiber strength Elon- gage gage 1/8" 1/8" gage gage 1/8" 1/8" 82 21 7.0 83 22 6.4 90 24 5.5 90 24 5.5 83 22 6.4 84 23 7.7 85 22 6.5 86 22 6.4 87 23 7.7 88 22 7.4 89 24 6.1 89 24 6.1 89 24 6.1 89 24 6.1 89 24 6.1 89 24 6.1	Fiber strength Ellon- Analyzer Garlege 1/8"	Fiber strength Elon- Analyzer Color of raw gation 1/8" Color of raw non-	Fiber strength Ellon Gatton Gat	State Stat	Fiber strength Eilon Anialyser Color of raw stock Eilon Anialyser Color of raw stock Eilon Anialyser Color of raw stock Eilon Eilon Anialyser Color of raw stock Eilon Anialyser Color of raw stock Eilon Eilon Eilon Corav Corav			Pet.	44	43		47	24	143	† ₁ †	45 45 45	745	拉	<u>†</u> ,	本で発生	† †	† †	

1											-21-							
	d yarn	Com- posite	Index	66	86		103	104	104	105	104 105 107	95	86	76	103 102 101 103	104	103	103
	Color 22s dyed yarn	Blue- ness	위	25.2	25.0		. 25.6	25.9	25.9	26.3	25.8 25.8 4.0	24.7	25.0	24.7	25.0 25.6 25.6 26.0	26.2	26.0	25.7
6	Col	Reflect- ance	멦	27.8	28.2		8.8	26.7	8.8	27.0	26.7 26.4 26.8	28.6	28.2	29.5	27.0 26.7 27.4 28.2 27.4	27.6	27.8	27.1
	ed yarn	Com- posite	Index	91	66		102	101	103	103	102 101 106	100	102	102	105 104 97	105	106	100
	color zzs bleached yarn	Yellow- ness	₽	5.0	3.8		3.8	8°.	3.4	3.4	a m o m m m	3.7	3.8	3.7	88888 00001	3.1	2.7	3.1
0 10 10	COTOL	Reflect- ance	묎	82.4	83.6		84.0	83.7	84.5	7.48	83.8 83.9 85.6	83.8	84.2	84.8	84.2 84.2 82.7 83.8	85.1	84.7	83.3
	iarn imprictus	Second	No.	88 113	7,5		50s 12	75	15	17	13	33	15	56	31 I I I I I I I I I I I I I I I I I I I	14	12	13
,	rarn n	22s or 27 tex	હ	Yarns 29	27		16	16	8	21	สส ล	36	12	33	16 13 13 19	18	17	16
	rarn appearance	Second	Index	Carded 988	011		50s 81	80	.8	202	83 87 77	09	72	63	81 86 77 80	80	78	8
	rarn a <u>p</u>	22s or 27 tex	Index	8	93		66	103	26	33	107 103 103	70	95	80	106 112 97 97	107	100	110
	ngation	Second	Pct.	8s 7.1	7.2		50s 4.5	9.4	4.9	£.4	44.5	9•4	†• †	4.7	0 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4.4	4.2	4.3
	rarn elongation	22s or 27 tex	Pet.	2.9	6.3		5.9	5.9	6.9	6.3	6.00	6.2	0.9	2.9	7.00.00 0.00.00 0.00.00	6.2	5.9	0.9
	Yarn strength	Second	Lbs.	30S 8	292		50s 47	64	35	37	\$68 \$68 \$68	37	04	35	88833	35	35	33
	Yarn S	22s or 27 tex	Lbs.	93	88		126	128	104	106	102 111 107	107	211	104	112 104 110 91	106	107	101
	Spinning	lots	No.	т	9		30	т	m	ო	നനന	m	#	m	14 15 3	٣	<i>‡</i>	m
	Processing group,	variety, and state	SHORT STAPLE	Lankart 611 Northwest Texas	Lankart IX-57 Northwest Texas	MEDIUM STAPLE	Acala SJ-2 California	Acala SJ-3 California	Auburn M Missouri	Brycot #4 Arkansas	Coker 201 Georgia North Carolina South Carolina	Coker 312 Northwest Texas	Coker 417 Alabama	Coker 5110 Northwest Texas	Deltapine 16 Arkansas Louisiana Mississippi Central Texas Arizona	<u>Deltapine 25</u> Mississippi	Deltapine 61 California	Dixie King II Georgia

-22-

Table 4.--Cotton: Average of classification, fiber tests, and yarn processing tests by variety for samples from selected 100 percent one-variety gin points, crop of 1974--Continued

ning	tial							- 22-						
Spin	Potential	No.	65	51	64	99	58	8288388	36		88	88 83 83 83		
Picker	& card waste	Pet.	8.0	7.9	6.8	7.5	7.2	6.1 7.3 7.1 7.1 7.1	8.7		7.4	8080 0040		7.9
cock	Com- posite	Index	95	91	66	86	8/8	388888	8		86	2883		89
of raw stock	Yellow- ness	No.	നന	κ	m	က	നവ	๓๓๓๓๗๓	٣		α	ოოოო		ĸκ
Color	Gray-	No.	m.#	က	α	ΟI	વાવા		4		a	ผผพผ		⊅ €
Shirley	non- lint	Pct.	8.0. 8.0.	4.5	3.4	4.7	സ സ യ യ		ተ • ተ		2.8	44 W4 8 4 W4		9.6 6.4
Elon-	gation 1/8"	Pet.	6.1	0.9	9.9	4.9	5.3	7.7.4.6.6. 7.7.4.6.6.0.	5.4		5.5	7.3 6.7 6.1		6.9
rength	1/8" gage	G/tex	କ୍ଷ କ୍ଷ	25	22	22	53	222222	19		12	4 8 8 8 8		33 31
Fiber strength	Zero gage	Mpsi	85 89	89	83	80	88 9 1	48 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88		95	82 83 79 87		101 99
Micro-	naire	Rdg.	7.7	4.2	3.7	1.4	6.4 6.4	444 W W 4 044 W 0 0 0	3.3		0.4	&444 ~444		
length	50/2.5 unif.	Pet.	†† 4†	†††	143	45	41 45	4 7 7 7 7 7 8 5 7 7 8 7 8 8	14		45	£4444		31 34
Fiber	2.5% span	崩	1.07	1.06	1.03	1.11	1.10	1.09	ş.		1.17	1.15 1.15 1.14 1.15		1.47
Classification	Staple	32d in.	34.7 34.7	32.0	32.3	35.3	35.0	35.0 35.0 35.0 35.0	30.7		36.5	35.0 34.7 35.7 36.0		2.44 0.44
Classif	Grade	Index	91 83	98	85	84	91 87	888 4 48	85		76	25226		44
Spinning	lots	હ્યુ	നന	ന	9	က	നന	1333 B 6 8 8 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	က		4	m w m m		9
Processing group,	variety, and state	MEDIUM STAPLE (Continued)	Dixie King III Alabama Mississippi	Lockett BXL Northwest Texas	Lockett 4789A Northwest Texas	McNair 612 North Carolina	Stoneville 7A Arkansas Mississippi	Stoneville 213 Arkansas Louisiana Mississippi Missouri Arizona West Texas	Tamcot SP-37 Central Texas	LONG STAPLE	Acala 1517-C West Texas	Coker 310 Alabama Georgia South Carolina Mississippi	EXTRA LONG STAPLE	Pima S-4 Arizona West Texas

								-23-						
22s dyed yarn	Com- posite	Index	104 98	66	98	104	101	104 104 105 103 99	%		. 86	104 104 106 106		966
Color 22s dy	Blue- ness	쉬	26.3 25.1	25.2	25.1	26.1	25.6	88.600 8.5000 7.7.7.	25.0		25.2	25.9 26.1 26.0		25.5
Col	Reflect- ance	[말	27.3 28.1	27.8	28.0	27.0	27.6 28.5	27.1 27.1 27.1 26.1 28.3	29.3		28.2	26.8 27.2 27.3 26.7		28.2
ed yarn	Com- posite	Index	101	102	102	105	106	103 104 102 1004	95		102	100 102 106		100
22s bleached yarn	Yellow- ness	위	. e. 4. s.	3.2	3.4	3.1	3.1 1.1		3.8		3.1	6666 6666 6666		w.w 0.æ
Color 2	Reflect- ance	窟	83.7 84.6	83.9	4.48	85.2	85.6 83.1	48 48 48 48 48 48 48 48 48 48 48 48 48 4	82.1		84.0	83.9 84.1 85.5 84.3		94.48 94.48
Yarn imprfetns	Second	No.	11	ฉ	. 88	ผ	22	11013146613	56		15	18 16 13		3 1
Yarn i	22s on 27 tex	No.	13	27	34	33	27 16	17 19 19 13 15	58		18	21 22 16 18	rns	чю
Yarn appearance	Second	Index	890	77	89	80	67 87	77 8 82 79 77	63		80	70 78 83 80	Combed Yarns	116
Yarn ap	22s or 27 tex	Index	110	8	80	93	87 110	99 107 103 103 117	73		100	97 103 110		112
ongation	Second	Pet.	4°4 8°8	7.5	9.4	9.4	3.8	4 4 4 4 6 4 4 0 6 6 6 8 8	o• †		4.7	でなけれる。		L.4 7.4
Yarn elon	22s or 27 tex	Pet.	6.5	0.9	6.3	6.5	6.0	0 0 0 0 0 0 0 4 0 0 0 0 0 0	4.5		0.9	9.00°		5.0
Yarn strength	Second	Ibs.	32	32	59	36	30	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	19		45	40 33 33 33		35 34
Yarn s	22s or 27 tex	Lbs.	109	66	76	106	100	101 96 102 104 98	69		126	115 101 100 104		63
Spinning	lots	d)	നന	m	9	m	നന	1866 1333 1333 1333 1333 1333 1333 1333	ന		4	ოდოო		6
Decorations and many	variety, and state	MEDIUM STAPLE (Continued)	Dixie King III Alabama Mississippi	Lockett EXL Northwest Texas	Lockett 4789A Northwest Texas	McNair 612 North Carolina	Stoneville 7A Arkansas Mississippi	Stoneville 213 Arkansas Louisiana Mississippi Missouri Arizona West Texas	Tamcot SP-37 Central Texas	LONG STAPLE	Acala 1517-C West Texas	Coker 310 Alabama Georgia South Carolina Mississippi	EXTRA LONG STAPLE	Pima S-4 Arizona West Texas

Table 5.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 197^{\dagger}

	Ficker & Card waste		Pct.		7.2		6.2		6.6		7.0		6.9 6.6 7.8		7.0		6.5
ck	Composite		Index		91 90 87		92 94 77		99 102 85		80 80		99 90 84		888		85 89 91
of raw stock	Yellow- ness		No.		ммм		446		444		4 W W		444		4 m m		4 11 4
Color	Gray- ness		No.		m 4 4		m m v9		2 1 5		400		04 N		404		446
alyzer	Total waste		Pct.		3.9				3.0 5.3		3.6 4.1		9.1 9.1		3.5 3.5 9.5		3.00
Shirley Analyzer	Visible waste		Pct.		2.9		2.9		2.3 1.8 4.0		2.2		1.8 2.1 2.0		1.4 2.3	.,	2.3 2.1 1.9
	Elon- gation 1/8"		Pct.	ļa-	5.9	_	6.2	-	5.8 5.8	-	5.26	-	5.6	-	7.0	-	5.5 5.8 6.9
strength	1/8" Gage	0	G/tex	98 PERCENT	22 22	85 PERCENT	22 20 20	95 PERCENT	23	95 PERCENT	18 18 18	95 PERCENT	19 17 18	100 PERCENT	21 21 21	100 PERCENT	22 22 20
Fiber s	Zero	5	Mpsi		8 8 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9		88. 84. 84.		88 92 92		8 8 8 8 9 8		91 87 86	ā	80 82 83	-	8 90 82
	Micro- naire		Rdg.		4.4		444		444		3.7		3.6		4.9 4.1		0,44 0,44 0,44
Fibrograph	50/2.5 unif.		Pct.		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 4 4 2 2 2 E	1129	4 4 4 5		433	1129	43 43	-	44 45 63	571	444
Digital Fi	2.5% span		In.	LANKART 611	0.97 0.97 0.97	LANKART 57	0.95	LANKART LX	0.99 1.00 1.03	LANKART 57	0.90	LANKART LX	0.93 0.91 0.91	LANKART 611	0.98	LANKART LX	0.95
Area,	pling ion	Staple	32d in.	2	30	-	30	_	32 33 33	-	30 29 29	-	30 31 30	-	31 31 31	Ī	31 31
State, Production Area,	Chronological sampling and Classification	Grade	Code	TEXAS	51 LT SP 42 LT SP 42		T SP 42 T SP 42		41 31 LT SP 52	CHIE	LT SP 42 LT SP 52 LT SP 52	CHIE	LT SP 32 LT SP 42 LT SP 52	ST TEXAS	LT SP 42 LT SP 42 LT SP 42	RNETT	LT SP 42 LT SP 42 LT SP 42
State	Chron		Name	SOUTH WEST CENTRAL TEXAS BYERS	SLML	TAYLOR	SLM L SLM L	MACO	SLM L	WAXAHACHI	SINI	WAXAHACHI	SLAL	NORTHWEST ANSON	SLM L SLM L SLM L	BURKBURNETT	SLM L SLM L SLM L

Table 5a.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1974--Continued

rarn	I-	Index		98 02 93		āno		4 0 L		97 93 90		03 97 95		0 00 ∪		N 4 0
dyed yarn	Com- posite	Inc		1 9 8 10 8 9		5 106 105 90		0106				-		99		95
22s	Blue- ness	위		25.1 25.8 24.8		26.6 26.3 24.2		26.1 27.1 25.1		25.2 24.4 24.0		26.0 25.2 24.4		24.7 25.1 25.8		24.5
Color -	Reflct- ance	^R d		28.0 27.4 29.9		27.0 27.2 30.2		27.3 26.8 28.5		28.7 29.1 29.9		27.6 28.9 28.4		26.9 28.0 28.6		28.5
blchd.yarn	Com- posite	Index		100 99 93		100 95 96		99 102 92		94 97 98		99		88 89 96	*7	104
	Yellow- ness	₽		9.0 4.0 6.0		3.1 3.3 3.6		3.1 3.1 4.1		3.0		3.0		5.4 5.1 4.6		3.6
Color-22s	Reflct-)	Rd		84.2 83.3 82.7		83.1 81.2 82.0		82.7 83.8 81.3		80.1 82.7 83.3		82.5 82.4 87.6		81.6 81.5 84.0		85.5
yarn	Com- Re posite a	Index		94 85 85		88 87 74		96 99 83		88 79 78		94 87 79		83 86 89		93
22s gray	Yellow-	₽		11.0 10.8 10.7		12.0 11.5 10.4		12.2 12.3 12.0		11.5		12.3 11.9 11.1		11.0		11.1
Color -	Reflct- ance	Rd		69.0 64.8 64.8		64.8 65.0 58.7		67.7 69.4 62.2		65.5 61.2 60.5		66.7 64.6 61.0		63.4 64.9 67.8		63.4
Spin-	ning Poten- tial	No.		44 40 36		44 41 33		52 43 52		32 30 27		34 36 32		4 4 4 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		33
fetns.	22s or 1 27 tex	No.	; L	119	L N	15 11 16	L N	9 26	N T	25 20 18	N T	15 23 22	F Z	20 26 25	LN	33
Yarn imprfctns	8s or 74 tex	No.	8 PERCENT	32 31 28	5 PERCENT	21 16 32	5 PERCEN	14 10 42	5 PERCENT	3 8 3 3	5 PERCENT	14 32 37	O PERCENT	32 47 51	D PERCENT	39
appearance Y	22s or 27 tex	Index	ŏ.	110 100 100	æ	110 120 100	6	120 120 100	6	100 80 80	6	90 80 80	10	066	100	06
Yarn appe	8s or 74 tex	Index		130 120 120		120 120 120		130 130 120		120 110 120		120 120 110		120 110 110		110
\neg	22s or 27 tex	Pct.		666		5.0 5.0 5.4		6.2		44.0		40.0		6.6		5.4
Yarn elongation	8s or 274 tex 2	Pct.	611	6.9 7.1 6.8	57	7.2 7.1 6.2	LX 571	7.3	57	5.68	LX 571	5.0 5.0 5.0	1119	7.1	LX 571	4.9
	s or tex	Lbs.	LANKART	96 88 87	LANKART	92 92 19	LANKART	104 100 105	LANKART	74 68 63	LANKART	84	LANKART	94 91 93	LANKART	80
Yarn strength	or tex	Lbs.	٥	306 292 293	7	278 311 261	ت	316 309 315	٥	256 239 231	ت	295 275 256	٠	298 300 307	_	259
	8s 74t	in.		30 30		30		32 33		30 29 29		30		31		31
ion Are	cation Staple	32d	(AS	51 42 42		52 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3		41 31 P 52	ш	P 42 P 52 P 52	ш	P 32 P 42 P 52	TEXAS	P 42 P 42 P 42	11	P 42
duct	sifi	Code	ST TE)	T SP		T SP T SP		S	CHIL	SSS	CHI	LT SP LT SP LT SP	ST	LT SI LT SI LT SI	RNE	LT SP
State, Production Area	Chronological Sampling and Classification Grade Staple	Name	SOUTH WEST CENTRAL TEXAS BYERS	SLM LT SLM LT	TAYLOR	SLM LT SLP LT LM LT	WACO	SLM H LM LT	WAXAHACHI	SLM LT LM LT LM LT	WAXAHACHIE	SLM L	NORTHWEST ANSON	SLM L	BURKBURNETT	SLM L

Table 5.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1974--Continued

	Picker & Card		Pet.		9.1 8.6 9.4		8.4 7.4 6.6		0 0 0 4 0 0		7.1 7.4 8.6		7.9 8.1 9.4		7.2 6.6 6.5		5.6 7.2 8.0	
ock	Composite		Index		95		89 93 97		100 97 91		100 97 99		666		87 96 93		66 96 86	
of raw stock	Yellow-		No.		444		444		444	•	444	•	ጠጠቁ		*mm		ммм	
Color	Gray-		No.		N m m	£	4 10 10		226		~~~		m ~ ~		4 0 m		222	
nalyzer	Total		Pct.		400		3 3 5 6 0 8 5 6 0 8 9 5 6 0 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		3.3		00.4		6.9		40.0		3.2	
Shirley Analyzer	Visible		Pct.		4.6 3.50		3.2 2.0 1.8		0.7 1.8 2.2		2.24 2.04 2.05		444		2.2		1.9	
	Elon- gation	~/~	Pct.		7.5		5.2		6.9 7.1 7.2		7.0 5.7		7.4	_	5.5 7.1 7.2		6.1 6.2 6.3	
strength	1/8"	2000	G/tex	90 PERCENT	22 20 21	90 PERCENT	19 19 20	90 PERCENT	20 21 20	90 PERCENT	20 20 21	90 PERCENT	20 22 21	100 PERCENT	21 21 22	83 PERCENT	19 20 19	
Fiber	Zero	95	Mpsi	ŗ.	80 75 82		80 83 83		80 78 74		78 79 73		77 79 78	10	83 81 77		78 81 77	
	Micro- naire		Rdg.		2.5		3.6 9.6 9.6	,	8 8 8 8 9 8 8 9 8		2.5		3.0		4 E E		3.7	
ibrograph	50/2.5	· iiiii	Pct.		4 4 4 2 2 3	STORMPROOF	4 4 4 5 6 3 5	_	443 423	18	4 4 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5 6 6 6 6		44 41 41	571	4 4 4 4 4 4	, 81	4 4 4 2 0 0	
Digital Fibrograph	2.5% span	TC118 011	In.	STRIPPER 31	0.96 0.96 0.95	WESTERN ST	0.94 0.94 0.95	LANKART 611	0.96	PAYMASTER	0.96 0.97 0.94	STRIPPER 31	0.95	LANKART LX	1.01	PAYMASTER	0.93 0.91 0.90	
Area,	pling	Staple	32d in.	' 5	32 31 30	R	30 30 31	ند	311	a.	31	S	31 30	7	32 32	۵.	30 29 29	
State, Production Area,	Chronological sampling and Classification	Grade	Name Code	SOUTH WEST NORTHWEST TEXAS HART	1/ LM LT SP 52 1/ LM LT SP 52 1/ LM LT SP 52	KNOTT	SLM LT SP 42 M SP 33 M LT SP 32	PADUCAH	M LT SP 32 SLM LT SP 42	PLAINVIEW	SLM LT SP 42 SLW LT SP 42 1/ LM LT SP 52	RALLS	\perp LM LT SP 52 LM \perp LM SP 52 \perp LM LT SP 52	RULE	SLM LT SP 42 SLM LT SP 42 SLM LT SP 42	SEAGRAVES	2/ LM T SP 42 2/ LM 51 51	

 $\frac{1}{2}$ Reduced from 42 because of bark $\frac{2}{2}$ Reduced from 41 because of bark

Table 5a.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1974--Continued

arn	t te	lex															
dyed yarn	Com- posite	Index		98 97 91		94		97 101 104		100 91 97		96		986		101 99 98	
- 22s d	Blue- ness	위		24.6 25.0 23.4		24.5 25.3 24.7		25.4 26.0 25.9		24.8 23.8 25.0		25.5 24.8 23.2		24.8 25.4 25.2		25.9 25.4 25.4	
Color	Reflct- ance	Rd		27.0 28.4 28.1		29.0 28.4 29.2		29.3 28.5 26.6		26.8 29.3 28.4		28.5 28.5 28.4		27.8 28.4 28.6		28.3 28.3 28.6	
blchd.yarn	Com- posite	Index		102 81 97		95 93 103		97 99 97		102 93 102		96 101 98		97 100 97		98 93 103	
	Yellow- ness	위		4.1 3.9 3.7		4.7		3.6		3.8 3.8		4.1 3.7 3.6		3.7		3.5	
Color-22s	Reflct-	Rd		85.5 76.3 82.5		83.4 82.7 85.6		82.4 83.4 83.0		85.4 82.8 85.0		83.0 84.4 82.8		83.4 83.9 83.0		83.0 82.6 84.5	
yarn	Com- R	Index		98 103 97		86 85 94		95		97 93 95		90 94 101		84 96 87		91 88 93	
22s gray	Yellow-	위		11.8 13.2 12.3		11.6		11.4 11.6 11.8		12.2 11.5 12.5		11.3 11.8 12.3		11.1 11.6 11.2		11.2	
Color -	Reflct- ance	Rd		69.9 69.5 68.1		64.2		68.9 66.4 64.8		68.4 67.6 66.7		66.6		63.8 69.1 65.2		68.3 66.1 68.3	
Spin-	ning Poten- tial	No.		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		35 40		40 39 41		44 45 40 40		45 51 39		44 44		40 29 33	
orfetns.	22s or 27 tex	No.	IN	58 59 40	L	16 12 17	L N	14 29 46	EN T	39 49 37	L	41 42 71	EN	21 31 30	ENT	24 17 24	
Yarn imprfctns	8s or 74 tex	No.	90 PERCENT	968	90 PERCENT	32 25 30	90 PERCENT	25 49 86	O PERCENT	59 79 83	O PERCENT	60 61 103	O PERCENT	26 59 48	3 PERCENT	35 31 44	
appearance	22s or 27 tex	Index	ō.	07 08 80	6	100 90 110	ō	100 90 100	6	80 70 70	6	07 07 09	100	110 80 110	8	966	
Yarn appe	8s or 74 tex	Index		100 80 90		120 130 130		120 110 70		100 90 100		110 100 90		120 120 70		120 110 120	
	22s o r 27 tex	Pct.		7.5	00F	5.3		6.7 6.7 7.1		7.4		7.0		6.2 7.2 7.1		00.0 8.4.4	
Yarn elongation	8s or 74 tex	Pct.	31	8 8 8 . 6 . 6 . 6 . 3 . 3	STORMPROOF	6.2	1119	7.8	R 18	8 8 8	31	8.2	LX 571	7.0 7.5 8.2	R 18	7.5	
	22s or 27 tex	Lbs.	STRIPPER	101 98 97	WESTERN	82 81 97	LANKART	92 92 85	PAYMASTER	100 98 92	STRIPPER	96 103 96	LANKART	92 96 94	PAYMASTER	89 74 83	of bark of bark
Yarn strength	s or 4 tex	Lbs.	O,	336 322 320		261 280 310	_	314 300 293		324 319 319	O,	308 328 316	_	294 309 319		301 256 287	
		in.		32 31 30		30 30 31		31 31 31		31 31 31		31 31 30		32 32 32		30 29 29	because
ion An	sampling cation Staple	32d	EXAS	52 52 52		42 33 32		31 32 42		42 42 52		52 51 52		45		51 42 51	from 42 from 41
dueti	ssifi	Code	ST TI	T SP		T SP T SP	r	T SP	IEN	T SP T SP		T SP		T SP T SP T SP	VES	LT SP	ed fr
State, Production Area	Chronological sampling and Classification Grade Staple		SOUTH WEST NORTHWEST TEXAS HART		KNOTT	SLM LT M SP M LT	PADUCAH	M LT SLM LT	PLAINVIEW	SLM LT SLM LT LM LT	RALLS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RULE	SLP LT SLM LT SLM LT	SEAGRAVES	SLM L	Reduced from Reduced from
Stat	Chro	Name	NOR	নানান	¥	U,	P	v,	7	7	R	ਜ ਜ	æ		S	<u>S</u>	20

Table 5.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1974--Continued

			1										
i	Picker & Card waste		Pet.		6.3		4.6 8.0		7.0		7.7		7.3
ck	Composite		Index		90 97 89		86 86		98 76 97		93 100 95		87 82 80
of raw stock	Yellow-		No.		444		440		m 4 4		4 11 4		w w 4
Color	Gray-		No.		404		~ ~ ~		~~~		m 20 m		4100
nalyzer	Total waste		Pet.		3.0 4.0		4 W W		9.0 9.0 9.0		9.0 9.0		3.43 3.643
Shirley Analyzer	Visible		Pct.		1.9 2.2 3.0		2.7		2.2		2.8 2.1 2.3		1.8
	Elon- gation	-/ -	Pet.	5	5.6 6.1 5.8		49.9	;	6.6 6.9 7.1	F-7	6.4 6.9 6.1		5.00 4.00 8.00
strength	1/8"	9	G/tex	75 PERCENT	21 23 23	90 PERCENT	22 21 21	94 PERCENT	21 23 21	95 PERCENT	22 21 22	90 PERCENT	22 20 20
Fiber	Zero	30	Mpsi		87 89 84		84 81 80		82 79 77		8 8 8 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	**	88 82 81
	Micro- naire		Rdg.	44	3.0 3.5 4.5		3.1 3.1 1.0		44.6 0.00 0.00		4.4		7.4 7.0 6.0
rograph	50/2.5	•	Pct.	RMPROOF	4 4 4 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 4 4 4 4 5 7 4 6		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		6 4 4 4 4 4
Digital Fibrograph	2.5% span	ग्राहिका	<u>In.</u>	WESTERN STORMPROO	1.02	STRIPPER 31	0.94	LANKART 57	1.01	LANKART 57	0.98 1.02 1.03	LANKART 57	0.99 0.91 0.95
rea,	ing n	Staple	32d in.		31 32 32	S	31 31	7	32 33	-	32 32 32	_	30
State, Production Area,	Chronclogical sampling and Classification	Grade	Code	OUTH WEST NORTHWEST TEXAS SNYDER	T SP 42 T SP 42 T SP 42		T SP 42 T SP 42 T SP 42	II E	41 T SP 42 T SP 42	N.C	T SP 42 41 T SP 42		T SP 42 T SP 52 T SP 52
State,	Chronc	9	Name	SOUTH WEST NORTHWEST SNYDER	SLM LT SLM LT SLM LT	TULIA	SLM LT SLM LT SLM LT	OKLAHOMA CARNEGIE	SLM LT SLM LT SLM LT	DAVIDSON	SLM LT SLM SLM LT	TERRAL	SLM LT LM LT LM LT

Table 5a.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1974--Continued

								-29					
	dyed yarn	Com- posite	Index		93 91 96		99 102 99		103 102 105		99 106 99		9 4 4 8 8 8 8
	22s dy	Blue- ness	위		23.7 24.0 24.3		24.9 25.3 25.3		25.3 25.8 25.8		25.3 25.8 25.2		25.1 24.5 25.2
	Color -	Reflct- ance	R _d		27.7 29.3 27.8		27.5 26.8 28.0		26.3 27.5 26.3		27.9 25.8 27.8		28.3 28.9 28.4
	yarn	Com- R posite	Index		87 97 94		99 101 100		100 101 98		99 100 101		94
	s blchd	ellow-	위		4 4 4 8 9 9 8		3.7		2.9 3.6 3.8		33.00 6.00 6.00		3.7
	Color-22s blchd.yarn	Reflct-Yellow- ance ness	Rd		80.3 84.1 83.2		83.4 84.6 84.3		82.7 84.3 83.4		83.6 83.4 83.8		84.0 82.8 83.4
	yarn	Com- R	Index		95 88 86		986		94		82 90 88		91 82 79
	22s gray	ellow- (1		11.1		12.1 12.0 12.0		10.9 11.4 11.5		11.1		10.6 10.9 10.9
	Color -	Reflct-Yellow- ance ness p	Rd		69.4 65.4 63.8		63.6 65.8 67.3		69.2 67.8 66.3		62.8 67.3 65.7		68.3 63.2 61.6
	_	ning Poten- R tial	No.		4 4 8 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		274		9 9 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		45 6 6		34 6 25 6
	-	22s or Pe 27 tex	No.		23 27 15		32 29 20		33 18 42		31 20 32		21 38 15
	Yarn imprfctns.	8s or 2% 74 tex 27	No.	PERCENT	7 7 7 7 7 7 7	PERCENT	46 40	PERCENT	643	PERCENT	35	PERCENT	35 32
	_			75 P		9 P		9 4 P	9 06	95 P		90	
	peara	22s or	Index				70 90 110				1000		900
	Yarn appearance	8s or 74 tex	Index		120 120 110		110		120 110 110		120 130 110		120 120 120
	gation	22s o r 27 tex	Pct.	00F 44	6.5		7.27.1		6.7		6.3		000 400
	Yarn elongation	8s or 74 tex	Pct.	WESTERN STORMPROOF 44	7.2 7.1	31	0.88	~	7.6 7.6 8.0	57	7.3 8.0 8.0	57	9.0
			Lbs.	TERN S	98 105 100	STRIPPER	94	LANKART 57	98 95 91	LANKART 5	91 97 98	LANKART 5	83 70 66
	strength	22s or x 27 tex		WES.		STR	-	LAN		LAN		LAN	
	Yarn	8s or 74 tex	Ibs		33		311 326 327		312 312 314		301 315 317		273 249 244
	Area	tion Staple	32d in.	SI	32		333		32 33 33		32 32 32 32		30 30
	tion	icati		TEX	SP 42 SP 42 SP 42		SP 42 SP 42 SP 42		5P 42 SP 42		SP 42 41 SP 42		SP 42 SP 52 SP 52
	Produc	Classif	Code	MEST MEST ER	111	æ	בבב	OM A EG I E	בב	DSON	1 1	AL	
	State, Production Area	and Classification Grade Stap	Name	SOUTH WEST NORTHWEST TEXAS SNYDER	SLM	TULIA	SLA	OKLAHOMA CARNEGIE	SLA	DAVIDSON	SLA	TERRAL	SLM
•	02 (,		•,									

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974

Diobos	& Card waste	,	Pct.		5.2		6.0		5.1 5.6 5.5		0 0 0 0 0 0 0 0 0		5.4 7.4 6.4		5.7 5.6 6.1		5.3
Ä							- B		94 6 98 6 98 96 96 96 96			*	94 5 97 7 98 7 99 6		96 5		99 5
stock	Composite color		Index		102 102 100		ወ ወ ወ	Pl.	0000		96 100 100		~~~		6000		Φ (
of raw st	Yellow- ness		No.		ммм		m m N		мммм		~~~		мммм		m m 2		6
Color o	Gray-		No.		2 1 1		222		2222		212		5553		ଧଳନ		5
	Gray		-			že.					10 - 10		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Analyzer	Total waste		Pct.		2.6		2.4		2.5		444		2.1 3.0 3.0 2.8		2.4 2.1 3.8		2.5
Shirley Ar	Visible waste		Pct.	r	1.8 1.7 1.8		1.3		2.2 1.9 1.5		2.9		1.6 1.8 2.0 1.9		1.8 1.4 2.8		1.7
- E	gation 1/8"		Pct.		7.5 8.2 7.2		7.9 6.4 6.1		~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		6.1 6.6 6.7		6.1 6.9 7.0 6.4		5.66		7.2
strength	1/8" Gage	,	G/tex	8 PERCENT	23 21 22	O PERCENT	22 23 23	D PERCENT	24 4 5 5 3 3 3 4 4 6	5 PERCENT	22 23 21	5 PERCENT	23 21 23 21	D PERCENT	23 23	95 PERCENT	23
Fiber st	Zero Gage)	Mpsi	6	80 80 78	06	78 83 83	100	92 91 90 86	75	80 79 78	80	86 82 79 79	100	88 88 82	6	83
	Micro- naire		Rdg.		444		444		444		400		. 4 4 4 		444		4.2
Fibrograph	50/2.5 unif.		Pet.	213	4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.0	4 4 4 V V V		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	603	452	213	4 4 4 4 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	111	777	9	44
Digital Fib	2.5% span		īn.	STONEVILLE	1.09	DELTAPINE 16	1.10	COKER 417	1.11 1.13 1.13	STONEVILLE	1.10	STONEVILLE	1.05 1.07 1.09	DIXIE KING	1.06 1.07 1.08	DEL TAPINE 16	1.09
ΙŪ	.2.	_	ü	STOP		DELT		COK		STO		STO		VIO		DEL	
n Area,	mpiing, tion	Staple	32d		34		9 9 9 4 0 0		999		35		444		35 35 35		34
State, Production Area,	Chronological sampling, and Classification	Grade	Code	ER	41 41 51	TLLE	41 51	LE	1111		51	~	41 71 71 71 71 71 71 71 71 71 71 71 71 71	¥.	41 41 51		41
State,	Chronol and C	75	Name	SOUTH EAST ALABAMA GREENBRIER	SLM	HARPERSVILLE	SLA	PRATTVILLE	SLM SLM SLM SLM	SECTION	SLA	ST. CLAIR	SLM SLM SLM SLM	SYLACAUGA	SLM	TUSKEGEE	SLM

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974--Continued

yarn	t ,	×														
dyed y	Com- posite	Index		112 106 98		11111110		101 98 98 93		103 100 98		105 102 105 105		109 101 103		105
- 22s d	Blue- ness	위		27.4 26.1 25.1		26.9 27.3 26.8		25.7 24.8 24.8 24.6		26.0 25.2 25.2		26.5 25.6 26.3 26.3		26.7 25.9 26.2		26.3 26.0 25.9
Color	Reflct. ance	집		26.0 26.0 28.3		25.2 26.8 26.1		27.9 27.5 27.8 29.8		27.4 27.2 28.5		27.7 27.3 27.1 29.1		25.8 28.2 27.8		27.1 27.4 28.0
d. yarn	Com- posite	Index		106 104 101		107 102 103		97 103 107 102		101		98 109 104 106		103 99 100		101 111 105
2s blchd.	eflct-Yellow- ance ness	₽		2.9 3.7 3.6		2.8 3.1 2.9		33.04		33.6		3.5 2.5 2.8		3.3 3.1 3.8		2.9
Color-22s	Reflct- ance	찖		85.1 85.8 84.2		85.5 83.7 83.9		82.4 84.8 85.7 84.0		84.3 83.9 83.8		82.4 86.3 85.0 84.9		84.6 82.5 84.1		83.8 87.2 84.7
yarn	Com- posite	Index		99 95 95		89 78 88		98 88 89 88		90 94 92		90 60 60 60 60 60 60 60 60 60 60 60 60 60		88 88 85		94
22s gray	Yellow-	위		11.8 11.4 10.6		10.8 10.3 10.1		11.3 10.9 10.4 10.5		10.8 11.0 10.8		11.2 10.4 10.5 10.3		10.7 11.0 9.8		11.0
Color -	Reflct- ance	집		70.0 68.9 70.1		67.0 66.6 67.7		66.6 66.6 67.5 67.1		67.7 68.8 68.4		66.8 68.0 67.9		66.3 66.1 66.3		69.0 66.8 68.0
Spin-	ning Poten- tial	S		62 60 51		63 61 68		76 73 69 61		62 67 68		53 59 58		66 69 61		68 61 58
imprfctns.	50s or 12 tex	<u>ا</u>	-	14 14 16	_	8 12 9	-	20 15 11	-	14 19 17	-	6 15 11	-	9 10 13	-	7 8 15
Yarn imp	22s or 27 tex	No.	PERCENT	21 19 18	PERCENT	11 14 12	PERCENT	27 22 18 16	PERCENT	22 27 20	PERCENT	9 16 18 15	PERCENT	12 11 15	PERCENT	10 11 19
appearance	50s or 2	Index	86	90 70 80	90	90	100	70 70 80 70	75	80 70 70	85	0 0 0 0 0 0 0 0 0	100	06	95	90 90 90
Yarn appe	re c	Index		110 90 90		120 90 120		06		06		120 110 100 90		110 110 110		120 120 110
-	or 22s	· "						_								
Yarn elongation	50s or 12 tex	Pct.		4.9		4.8		4444		8.0.4		3.3		444		4.4.4
Yarn el	22s or 27 tex	Pct.	LE 213	6.3	E 16	6.6 6.5	7	5.238	LE 603	6.6	LE 213	5.3 6.2 6.2	KING III	6.2	IE 16	6.4 6.3 6.3
ength	50s or 12 tex	Lbs.	STONEVILLE 213	31 34 30	DELTAPINE 16	31 36 40	COKER 417	41 411 37	STONEVILLE	39 37 35	STONEVILLE	24 27 33 30	DIXIE KI	38 41 37	DELTAPINE	34 35 35
Yarn strength	22s or 27 tex	.sq:	S	99 104 96	90	98 105 112	5	113 113 115 107	S	112 110 105	S	88 90 100 98	0	109 112 105	٥	106 98 101
\vdash		ä	•	33		34 35		355		35 34 34		344		34 35		34 34 34
Ion Ar	sampli sation	32d		41 41 51	uų.	41 41 51		4 4 1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1		51 51 41		41 41 41 41		41 41 51		41 41 42
oducti	ical ssific	Code	ST		SVILL		ILLE		z		CLAIR		UGA		EE	LT SP
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name	SOUTH EAST ALABAMA GREENBRIER	SLM	HARPERSVILLE	SLM	PRATTVILLE	SLA	SECTION	LH SL#	ST. CL.	SLM SLM SLM	SYLACAUGA	SLM	TUSKEGEE	SLM L SLM SLM
St	ਰੂ [*]	Na Na	SOL													

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974-Continued

	er e rd		۱.,		0 6 5		8821		or m as		m ~ .*		0 10 80		0.0		4 9 0
-	& Card		Pct.		5.0		4.8 4.6 9.5		7.3		6.3		6.9		7.6		9.8
stock	Composite		Index		96 86 86		96 89 90 87		46 46 46		99 100 97		98 96 96		100 99 96		102 95 99
of raw	Yellow-		No.		m m ~		m m m m		4 11 11		ოოო		m m m		m N m		ммм
Color	Gray-		No.		m 0 4		0464		m m m		777		2 2 2		226		3 1
Analyzer	Total waste		Pet.		2.5		2.0 2.0 4.0 8.4 8.4		4 4 B		W44 84W		2.6 2.7 3.7		7.0 7.0 5.0		244 883
Shirley A	Visible waste		Pet.		1.7		2.5 4.4 3.2		2.8 3.9 3.1		0 6 4 0 6 4		1.6 1.8 2.6		4.8 9.8 8.8		3.0 3.0 5.0 5.0
- uo [#	gation 1/8"		Pct.	_	6.3 6.6 6.1	_	6.1 6.3 6.0		6.4		6.8 6.2 6.1	_	7.6 7.8 6.1	_	6.6 6.0 5.0		6.8
strength	1/8" Gage		G/tex	80 PERCENT	23 22 21	95 PERCENT	23 21 21 20	100 PERCENT	21 21 23	100 PERCENT	22 22 21	98 PERCENT	21 22 21	100 PERCENT	23	100 PERCENT	23
Fiber :	Zero)	Mpsi		86 82 78		79 77 77	7	82 82 81	7	82 77 78		80 79	2	83 79 78	7	76 84 82
	Micro- naire		Rdg.		4.3		4 4 4 4 		444		4.4		4 4 4 .3 .3		3.4		4.00
rograph	50/2.5 unif.		Pct.		4 4 4 8 3 6 5 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		43	11	46 47 47		4 4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9	444		45		4 4 4 6 6 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6
Digital Fibrograph	2.5% span length)	힒	COKER 201	1.15 1.10 1.09	COKER 201	1.07 1.07 1.09 1.09	DIXIE KING	1.05 1.05 1.06	COKER 201	1.12	DELTAPINE 16	1.09	MCNAIR 612	1.12	COKER 201	1.11
Area,	on on	Staple	32d in.	3	35 35 35	ដ	3444	0	34 4	5	3 3 3 5 5 5	Ĭ	34 4	Ĭ	35 35 35	5	35 35 35
State, Production Area,	ronological sampliand and Classification	Grade	Code		41 51	7	41 51 51 51		SP 42 SP 42 51		41 41 51	PE	41 41 51	OLINA	41 41 SP 42		41 SP 52 SP 42
State, I	and Cl	Gra	Name	SOUTH EAST ALABAMA TYLER	SCE	GEORGIA ALLENTOWN	SLM LM SLM LT	BOSTWICK	SLM LT S SLM LT S LM	COMER	SCE	OGLETHORPE	SLA	NORTH CAROLINA LAURINBURG	SLM SLM SLM LT	SHELBY	SLM LT S

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974--Continued

l yarn	Com- posite		Index		105 97 95		104 105 100 102		106 99 103		107 103 102		104 100 98		109 101 103		107 102 105
22s dyed	Blue- C		위		26.4 1 24.8 24.4		26.3 1 26.6 1 25.8 1 26.1 1		26.3 1 25.1 25.7 1		25.8 1 25.8 1 25.6 1		26.4 1 25.4 1 25.3		27.3 1 25.3 1 25.6 1		26.1 1 25.5 1 25.8 1
Color -	Reflct-		묎		27.2 28.3 28.1		27.8 27.7 28.6 28.1		26.8 27.5 27.1		25.9 26.9 27.4		27.6 28.0 28.6		27.0 27.0 26.9		25.9
d. yarn	Com- posite		Index		104 108 101		100 106 106 102		97 100 104		107 100 98		101 99 103		107 102 107		100
2s blchd.	Yellow- ness		위		3.1 3.3 2.9		3.1 3.1 3.1		3.2		3.0		2.9 2.8 3.1		2.9 3.3 3.1		
Color-22s	Reflct- ance		묎		84.6 86.9 82.9		83.1 85.6 85.7 83.6		82.0 82.5 85.3		85.9 82.5 83.1		83.1 82.2 84.4		85.6 84.2 85.9		83.5
gray yarn	Com-		Index		90 8 8 8 8 8		91 85 84 85		90 96 91		97 94 91		97 91 91		97 87 96		91
22s gra	Yellow-		위		11.2		11.2 11.2 10.5		11.9		11.2		11.4		11.3		10.3
Color -	Reflct-		뀙		67.1 67.7 68.2		67.5 64.6 64.5 65.7		0.89		69.6		69.5 68.3 69.1		70.0 66.9 69.3		66.9
Spin-	ning Poten-	LIGHT	일 :		72 66 60		V 4 4 4 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9		60 53 61		63 58 58		63 47 47		71 66 61		72 67 60
imprfctns.	50s or		હ્યુ	Ľ	10 17	r L	19 13 16 20	T.	4114	I N	9 10 21	LN	10	IN.	16 24 22	r z	11119
Yarn	22s or		§	O PERCENT	1 15 24	5 PERCENT	23 17 19 23	PERCENT	17 12 20	DERCENT	11 17 34	8 PERCENT	13 14 19) PERCENT	23 39 38) PERCENT	14 32 27
appearance	50s or	¥.	Index	8	900	6	02 02 00 00 00	100	0666	100	100 80 70	5	828	100	88 08 08	100	80 80 80 80 80
Yarn app	22s or	5	Index		130		100 110 90 90		120 100 110		110 120 90		120 120 100		100 90 90		100
-	50s or		Pct.		44.0		9999		4.4		444		4 4 W		444		5.5
Yarn elongation	22s or	45	Pct.	3_	6.0		2000 2040	11 9A	6.58	_	6.9	E 16	40.6	612	6.4	_	6.6
	50s or	_	Lbs.	COKER 201	37 33	COKER 201	30 22 24 24	DIXIE KING II	36	COKER 201	35	DELTAPINE 16	32 30 28	MCNAIR 6	36 37 35	COKER 201	41 41 36
Yarn strength	22s or 97 tex		Ibs.	8	107 104 96	03	93 78 80 81	10	96 102 104	3	102 103 101	DE	99 95 88	Đ.	108 108 102	5	117 1113 104
		Staple	32d In.		35 35		4444		34 34		35 35		344		35 35 35		35 35 35
ion Ar	sampli	Ste	1		41		41 51 42 51		42 42 51		41 41 51		41 41 51	N N	411		41 52 42
State, Production Area,	Chronological sampling, and Classification	Grade	Code	SOUTH EAST ALABAMA TYLER	SLM	GEORGIA ALLENTOWN	SLM LM SLM LT SP LM	BOSTWICK	SLM LT SP SLM LT SP LM	COMER	SLM	OGLETHORPE	SLM	NORTH CAROLINA LAURINBURG	SLM SLM SLM LT SP	SHELBY	SLM LM LT SP SLM LT SP
Stat	Chro		Name	SOUT ALA	0,01	GEC	•. •.	9	0.0,	ວັ	••••	ŏ		S C		S	

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974--Continued

Picker & Card waste		Pct.		5.4 6.91/ 7.4		6.3			7.2		5.7		5.6 7.1 5.8		5.2 5.2 5.6	
Color of raw stock	Composite &	-	Index		97 6		98 97 101			100 101 95 95		97 99 99 98 98		101 101 7 96 7 98		98 100 98 98 5
	Ļ				พฅฅ		๛๛ฺ๛			0000		m m N N		0000		๓๓๓๙
	Gray-	2	No.		222		1 2 2			2315		2222		1 1 2 5 7 7		nnn
Shirley Analyzer	Total		Pct.		0 4 4 6 4 4		3.9.6 3.3.6			NW 4 20		32 32 30 0 30 0		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		3.50
	Visible	2	Pct.		3.0 3.0 5.0		2.4			1.6 2.1 2.0 3.6		2.1 2.0 1.7 2.5		1.4 2.0 1.6 1.8		2.2 1.5 1.8
- ao[±	gation 1/8"	gation 1/8"			6.1 6.9 6.3		6.1 6.9 6.0	6 • 9 0 • 9		7.87		5.00		7.3 8.0 6.9		9 9 9 9 9 0 0 0 9 0 0 0
strength	1/8"		G/tex	100 PERCENT	23 20 22	98 PERCENT	22 20 21		100 PERCENT	24 24 21 21	100 PERCENT	22 22 21 20	100 PERCENT	23 22 20 20	100 PERCENT	24 23 21
Fiber a	Zero	þ	Mpsi		82 83 81		79 82 78		01	81 81 85 81		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		89 84 78		90 83 84 80
	Micro- naire		Rdg.		4.1		5.44			44WW 		44. 9.4. 1.4.		4446		4446
Fibrograph	50/2.5	_	Pet.		4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		44 45 44		16	44 4 4 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	213	444 244 244 344 344 344 344 344 344 344	16	4044	213	444 450 1
Digital F	2.5% span length		崱	COKER 201	1.11	COKER 201	1.13		DEL TAP INE	1.17	STONEVILLE	1.11	DELTAPINE	1.11	STONEVILLE	1.12 1.10 1.11 1.06
Production Area,	sification	Staple	32d in.	ū	3 3 3 5	Ü	9 9 9 9 5 5		٥	36 35 35	S	3333 335 35	Q	23 23 25 25 25 25 26 25 25 26 25 25 26 2	S	9999 9999
		Grade	Code	TOL INA FALLS	41 50 50	(EWS	41		FRAL	41 51 15		4 4 4 1 1 1 1 1 1 1 1 1 1		4 4 4 1		41 41 51
State,		IJ	Name	SOUTH EAST SOUTH CAROLINA CALHOUN FALLS	SLM LM+	ST MATTHEWS	SLM		SOUTH CENTRAL ARKANSAS ALTHEIMER	SCH	DUMAS	N S S S S S S S S S S S S S S S S S S S	EUDCRA	S C K K K K K K K K K K K K K K K K K K	ниенеѕ	SCE

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 197^{μ} --Continued

l u	ا	×1												
dyed yarn	Com- posite	Index		112 110 100		108 100 106		105 105 97 98		109 101 103 99		109 103 103 90		109 106 104 93
22s	Blue- ness	위		27.1 26.7 25.5		26.5 25.6 26.4		26.2 26.0 24.6 25.4		27.1 25.3 25.6 25.6		26.9 25.4 25.8 23.4		26.8 26.2 26.3 24.6
Color -	Reflct- ance	묎		25.3 25.4 27.9		26.1 28.1 27.0		27.0 26.7 27.5 28.9		26.5 27.1 26.9 28.5		26.3 26.2 27.0 28.8		26.1 26.4 27.6 29.6
. yarn	Com- posite	Index		106 107 106		106 101 104		1111 104 108 102		98 98 103 103		106 108 106 102		108 108 103 101
Color-22s blchd.		위		2.8 3.1 3.1		3.4		2.9 3.2 3.3		3 3 3 5 5 6 9 5 6		2.8 2.6 2.8		3.1
olor-22	Reflct-Yellow- ance ness	別		85.2 85.9 85.6		85.1 84.1 84.7		87.1 84.8 86.6 84.3		81.9 82.6 85.1 84.2		84.8 85.9 84.6 83.1		85.8 86.7 84.1 84.2
yarn	Com- R posite	Index		95 94 93		92 92 94		90 97 86 86		92 95 89 88		94 93 88		93
22s gray	Yellow- ness p	[] 위		10.6 10.7 10.4		11.0		10.2 10.6 10.3 9.9		11.1 10.7 10.1		111.0 10.5 9.8 9.9		10.8 10.0 10.0
Color -	Reflct-Y	湿		70.0 69.3 69.6		67.9 69.0 70.0		68.6 71.3 66.8 67.0		67.9 70.0 68.3 67.6		68.8 69.2 68.1 69.9		68.8 67.2 69.0 65.3
Spin-		No.		68 7 66 6		63 6		74 72 72 72 72 74 69		62 60 64 64		68 67 67 62 62		65 64 59 65 59
imprfctns.	50s or 1	No.		14	_	23 14 16		13 10 15 17	_	9 10 18		111		10 15 12 16
Yarn impr	22s or 5 27 tex 1	No.	PERCENT	18 17 25	PERCENT	29 22 20	PERCENT	16 15 18 20	PERCENT	11 12 22 16	PERCENT	11 12 13	PERCENT	14 115 22
	5 8		100	80	9.6	980	100	9 8 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100	9000	100	90 90 70	100	90 70 00 00 00 00 00 00 00 00 00 00 00 00
appearance	50s 12	Index												
Yarn	22s or 27 tex	Index		1100		900		110 100 110 90		120 110 110 90		120 100 100 90		120 90 100 70
elongation	50s or 12 tex	Pc t.		5.0		4.1		5.2		4444		4444		6 4 4 4 4 6 8 8 6 6 6 6 6 6 6 6 6 6 6 6
Yarn elo	22s or 27 tex	Pct.		6.5	_	6.5	E 16	6.6 7.2 7.0	LE 213	0000 0000	E 16	6.1 6.5 6.7 6.6	LE 213	6.04
strength	50s or 12 tex	Lbs.	COKER 201	34 39 35	COKER 20	30 34	DELTAPINE	37 39 37	STONEVILLE	31 32 35	DELTAPINE 16	338	STONEVILLE	31 37 35 31
Yarn str	22s or 27 tex	Lbs.	5	108 109 104	5	97 102 99	DE	111 119 111 107	S	101 97 102 102	0	106 107 106 103	S	103 105 100 91
\vdash		32d In.		35 35		35 35		36 35 35		35 35		35		35
tion Ar	sampli ication Sta	1	LINA	41 50 50	N.S	417	AL	41 41 51 51		4 4 4 4		4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		41 41 51
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name Code	SOUTH CAROLINA CALHOUN FALLS	SLM LM+ LM+	ST MATTHEWS	SLM	SOUTH CENTRAL ARKANSAS ALTHEIMER	N N N N N N N N N N N N N N N N N N N	DUMAS	SLA SLA SLA	EUDORA	SLA SLA SLA SLA	HUGHES	E S C H

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974--Continued

																	1
5.9 6.7 6.1		5.9		5.6		2.5		0.0	5.5		5.7		5.9		Pct.	& Card	D. 0.10
101 101 95		100 100 8		100 96 93		101		96	66		101 102 96		101 101 95		Index	Composite color	oc k
N m N		m m N		NMM		n m N		n m N	m		ผคค		๓๓๓		No.	Yellow- ness	Color of raw stock
7 1 7		222		3 2 3		 €		7 m m	2		1 1 2		E		No.	Gray- ness	Color
9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1		3.0		1.9 3.2 3.8		ህ ላ ሠ ህ ላ ጦ		3.8	2.9		3.0		2.4		Pct.	Total waste	nalyzer
2.5		1.9 2.3 2.5		1.2 2.0 2.4		2.0		2.5	2.1		2.6		1.6		Pct.	Visible waste	Shirley Analyzer
8.9 7.8 8.0	_	4.6	-	6.6 6.5 7.8	_	, 4 v . 0 a	-	6.5	. 6.7	_	7.2 7.6 7.1	_	6.0 6.6 6.1	-	Pct.	gation 1/8"	F) On-
25 23		22 22		23		22		23 23			23		23 22 21	00 PERCEN	G/tex	1/8" Gage	trength
85 85 81	-	86 81 80	-	80 80	-	82 0 2	1	8 4 4 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			85	-	91 86 82	1	Mpsi	Zero Gage	Fiber
404		4.1 3.8 3.5		4.8 9.3 9.3		2.00		4 W W	•		4 M Q		3.3		Rdg.	Micro- naire	
4 4 4 5 4 5 4 5 4 5 4 5 4 5 6 6 6 6 6 6	16	7 4 4 9 4 6	16	44 41 43	E 213	33	E 7A	3		5 213	2 4 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	E 213	49 43 43		Pct.	50/2.5 unif.	ibrograph
1.14	DEL TAP INE	1.17	SELTAPINE	1.11	STONEVILL	1.10	STONEVILL	1.03	1.09	TOMEVILL	1.15	STONEVILL	1.12	SRYCOT #4	il.	2.5% span length	Digital F
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	_	36 35	_	35 35 35		322		35			36 35 35	υ,	35 35		32d in.	ion Staple	Area,
41 41 51		41 41 SP 42		41 41 SP 42		41 51		41	. 5		411	LE	411	RAL .LE	Code	lassificat	Production
SLM	MANNE	SLH SLH SLH	WILSON	SLM SLM SLM SLM	TYRENZA	SLM	OSCEOLA	SLA	¥.	ANNATON	SLA	LEACHVIL	SLM	SOUTH CENT ARKANSAS LEACHVIL	Name	and C	State,
	DELTAPINE	41 36 1.17 45 4.1 86 24 7. 41 36 1.16 44 3.8 81 22 8. LT SP 42 35 1.13 43 3.5 80 22 7.	DELTAPINE	41 35 1.11 44 4.3 82 23 41 35 1.08 41 3.3 80 23 5P 42 35 1.10 43 3.7 80 22	STONEVILLE	41 35 1.10 43 4.0 90 22 51 35 1.07 39 2.9 82 22	STONEVILLE	41 35 1.08 44 4.4 83 22 41 35 1.07 44 3.9 84 23 51 34 1.06 44 3.8 81 21	9 2 1.09 45 4.8 87 23 6	MARTANNA CTONEVILLE 213	41 36 1.15 45 4.4 85 23 41 35 1.11 43 4.3 .82 23 41 35 1.10 42 3.6 79 23	LEACHVILLE STONEVILLE 213 100 PERCENT	41 35 1.12 46 4.2 91 23 41 35 1.12 43 4.0 86 22 41 35 1.06 42 3.3 82 21	SOUTH CENTRAL ARKANSAS LEACHVILLE BRYCOT #4 100 PERCENT	Code 32d in. In. Pct. Rdg. Mpsi G/tex	2.5% span 50/2.5 Micro- Zero 1/8" g length unif. Gage Gage	Fiber strength

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 197^{1} --Continued

State, Production Area,	on Are	-	Yarn strength	rength	Yarn elongation	ngation	Yarn ap	Yarn appearance	Yarn	imprfctns.	Spin-	Color -	22s gra	gray yarn	Color-22s	2s blchd.	d. yarn	Color -	22s	dyed yarn
Chronological sampling, and Classification	samplin ation		22s or	50s or	22s or	50s or	22s or	50s or	22s or	50s or	ning Poten-	Reflct- ance	Yellow-	Com- posite	Reflct-	Yellow-	Com- posite	Reflct- ance	Blue-	Com- posite
Grade	Staple		Yan	75 CEY	za rev	75 064		150			rigi									
Name Code	32d In	ri I	Lbs.	Lbs.	Pct.	Pct.	Index	Index	હ્ય	No.	No.	됩	위	Index	묎	위	Index	Rd I	٩١	Index
SOUTH CENTRAL ARKANSAS LEACHVILLE			æ	BRYCOT #4	4			100	0 PERCENT	i z										
SLM	1144	35 35	106	33 37 31	5.8	74.4	100	07 07 07	20 20 23	113	67 67 58	70.2 69.4 65.5	10.9 10.7 10.2	96 94 85	84.9 84.5 84.7	3.0	105 102 102	25.4 27.1 28.5	27.3 26.2 25.4	112 105 99
LEACHVILLE			S	STONEVILLE 213	LE 213			100	O PERCENT	F										
SLM	14 4 4 11 1	36 35	108 110 103	35 37 35	6.9 6.9	4.9	90 90 100	80 70 90	20 13 20	16 11 16	66 66 63	68.9 70.0 69.1	11.0	94 96 92	85.8 85.4 85.5	2.8 3.6 3.8	108 104 103	25.6 25.7 27.0	27.3 26.2 25.1	112 107 100
MARIANNA			S	STONEVILLE	LLE 213			100	O PERCENT	L N										
N W W W S S S S S S S S S S S S S S S S	1444	35 35 35 35	97 99 96 92	30 31 29 29	5.9 6.2 5.3	4.3 4.3	110 110 100 100	80 80 70	15 13 13	10 7 8 13	56 55 51 54	68.8 68.9 66.3 69.4	11.3 10.9 10.3	95 93 86 93	86.5 87.1 82.2 83.4	3.5 3.5 3.1	108 108 98 101	26.7 25.8 28.1 27.4	27.9 26.6 25.7 24.5	112 109 101 97
OSCEOLA			S	STONEVILLE 7A	LLE 7A			10	O PERCENT	E Z										
SLM SLM SLM	41 41 21	35 35	100 104 92	28 34 29	5.4	3.7	80 80 100	60 70 70	26 18 37	25 14 26	61 61 51	70.4	10.8 11.1 9.8	96 97 86	86.9 85.3 84.6	3.0	110 105 104	27.1 27.0 28.8	26.4 25.9 24.6	105 104 95
TYRONZA			S	STONEVILLE	LLE 213			10	OO PERCENT	L Z										
SLM SLM SLM LT SP	41 41 42	35 35	107 107 105	35 36 35	4 8 8	444	100 90 90	80 70 70	17 22 28	9 17 20	60 58 60	69.3 68.0 62.9	10.5 10.3 10.6	93 89 81	83.4 83.8 83.7	3.1 3.5 3.9	101 100 99	26.5 27.3 28.5	25.9 26.1 25.5	105 104 99
WILSON			۵	DELTAPINE	NE 16			100	O PERCENT	L N										
SLM SLM SLM LT SP	41 41 42	36 35	115 122 113	39 45 40	6.8 7.6 7.5	4 .0 .0 8 .0 .0	110	80 80 80	15 19 18	11112	79 82 70	70.2 67.4 67.7	10.9	96 88 89 89	86.0 84.2 85.0	2.8 3.4 3.4	108 102 104	25.0 26.0 27.1	27.0 26.0 25.3	112 106 101
WYNNE			۵	DELTAPINE 16	NE 16			100	O PERCENT	E Z										
SLP	41 41 51	35	112 116 113	38 41 38	7.4 6.9 7.3	5.2 5.0 5.1	110	90 80	20 19 21	13 14 16	69 66 71	69.4	11.0 10.6 9.7	95 94 86	83.5 82.9 85.7	3.2 3.0 3.2	101 100 106	26.3 27.3 27.5	27.1 25.6 25.3	110 102 100

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974--Continued

State, Production Area,	on Area,	Digital Fibrograph	brograph		Fiber s	strength	- uo (a	Shirley Analyzer	halyzer	Color	r of raw stock	ock.	7
Chronological sampling, and Classification	ampiing, tion	2.5% span length	50/2.5 unif.	Micro- naire	Zero Gage	1/8" Gage	gation 1/8"	Visible waste	Total	Gray-	Yellow-	Composite	& Card
Grade	Staple		_)								
Name Code	32d in.	폡	Pet.	Rdg.	Mpsi	G/tex	Pet.	Pct.	Pct.	No.	No.	Index	Pct.
SOUTH CENTRAL LOUISIANA BUNKIE		DELTAPINE 45A	,5A		6.	90 PERCENT	_						
SLM LT SP 42 LM 51 LM 51	3 3 4 4 4 4	1.05 1.08 1.06	42 42 42	444	79 83 83	21 22 20	6.9	1.8 2.3 2.0	2.8 3.5 2.9	N 4 W	m 2 m	84 87 91	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
LAKE PROVIDENCE		DELTAPINE 1	16		100	O PERCENT	-						
SLM 41 SLM 41 SLM 41	333	1.15 1.13 1.12	644	4.2	83 80 77	23 22 22	7.6	1.9 2.0	2 • 8 2 • 7 3 • 8		222	102 102 100	5.8 6.6
LAKE PROVIDENCE	-	STONEVILLE	213		100	O PERCENT	—						
SLM 41 SLM 41 LM 51	34 35 35	1.10 1.10 1.09	4 4 4 4 7	446	87 80 80	22 21 22	6.5	1.8 2.1 2.6	2.9 2.9 3.9	m ~ ~	m m N	95 97 96	5.9 7.0
MONROE		DELTAPINE	16		100	O PERCENT	_						
LM 51 SLM 41 SLM 41	33 34 35 7	1.15	44 45 45	3.7	81 81 81	23 22	7.2 6.6 7.5	1.3 1.4 1.1	2.3 2.6 2.0	ታ ጠጠ	787	87 96 95	044 600
SHREVEPORT		DELTAPINE 1	16		100	O PERCENT	_						
SLM 41 SLM 41 SLM 41	35 35 35	1.14 1.13 1.12	644	4 4 4 5	82 80 77	23 23 23 23	7.1 8.0 7.2	1.6 1.6 2.0	2.1 2.4 2.7	216	m N m	100 103 95	5.2
WINNSBORO		STONEVILLE	213		10	100 PERCENT	_						
SLM LT SP 42 LM 51 LM 51	3 3 4 3 5 5 5 5 5	1.08 1.09 1.07	42 42	4.4	90 84 83	21 23 22	6.9 6.0	2.7 3.3 2.2	9.6 9.1 7.1	mvm	m m N	91 98 .95	7.5
MISSISSIPPI ARCOLA		DELTAPINE 1	16		100	O PERCENT	-						
SLM 41 SLM 41 SLM 41	35 36 36	1.07	4 4 4 4 4 4	****	80 82 81	24 23	7.5 7.5 7.1	1.5	2.2 1.8 2.5	7 - 1 - 2	222	98 101 101	6.3 6.1

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974--Continued

E	a)															
dyed yarn	Com- posite	Index		103 106 110		108 104 103		106 104 99		108 99 105		107 103 107		108 104 101		105 99 96
22s	Blue- ness	위		26.0 26.1 26.9		26.9 25.9 25.4		26.3 26.0 25.5		26.4 24.8 25.9		26.6 25.8 26.5		26.9 25.9 25.3		25.8 24.9 25.2
Color -	Reflct- ance	Rd		27.7 26.4 25.7		27.0 26.8 26.5		26.6 26.8 28.3		25.6 27.2 26.5		26.9 27.1 26.6		26.7 26.6 27.2		26.1 27.4 29.3
d. yarn	Com- posite	Index		98 106 103		102 106 106		106 100 103		107 102 107		90 106 105		106 103 103		104 103 100
Color-22s blchd.	Reflct-Yellow- ance ness	위		3.2 2.9 3.1		2.9 2.8 2.9		3.0 3.3		2.9 2.8 3.1		3.2 3.1 3.2		3.2 3.1 3.3		3.3
Color-2	ance	뮕		82.4 85.1 84.4		83.6 84.9 85.2		85.3 83.1 84.5		85.5 83.5 86.1		78.7 85.4 85.3		85.5 84.4 84.5		84.8 83.5 83.4
yarn	Com-	Index	1	78 84 80		95		88 92 91		78 90 86		91 91 86		85 91 86		98 90 89
22s gray	Yellow- ness I	위		10.7 10.1 10.1		10.5 10.0 9.8		10.6 10.2 10.2		9.8 10.5 10.0		10.7 10.4 10.3		11.1 10.8 10.3		9.6
Color -	Reflct-	湿		60.8 65.1 63.1		70.3 68.2 70.9		66.6 69.2 69.1		61.6 68.1 66.6		68.2 68.6 65.9		64.5 67.8 66.3		68.5 69.0 69.0
Spin-	ning Poten- tial	No.	7	45 57 62		76 65 73		55 55		70 62 70		65 58 64		55 60 51		63
rfctns.	50s or 12 tex	No.	=	0,0,0	=	9	=	17 14 29	=	13	=	7 6 7 1 7 1 7 1	=	8 16 15	=	6 114 10
appearance Yarn imprfctns.	22s or 27 tex	No.	PERCENT	191	PERCENT	11 16 18	PERCENT	23 21 40	PERCENT	15 12 17	PERCENT	9 20	PERCENT	14 23 20	PERCENT	11 17 15
rance Y	50s or 2	Index	06	06 001	100	90 80	100	70 80 70	100	8 8 0 8	100	000	100	001 90 80	100	800 08
	or tex	Index		120		110 110 120		110 110 90		110		130 110 110		130 100 100		100
on Yarn	or 22s	1														
Yarn elongation	50s or 12 tex	Pet.		3.52		4 4 6 8 9 5 . 2 8 9 5 . 2		64.4		5.0		5.0		4.5		4.5 5.1 5.2
Yarn e	22s or 27 tex	Pet.	IE 45A	5.3 5.8	iE 16	7.0	.LE 213	5.4	VE 16	5.6 6.2 7.3	VE 16	6.1 6.5 6.4	LE 213	5.2 6.4 5.6	VE 16	6.2 6.8 7.1
ength	50s or 12 tex	Lbs.	DELTAPINE 45A	22 26 31	DELTAPINE 16	37 38 38	STONEVILLE 21	25 34 31	DELTAPINE 16	29 36 37	DELTAPINE	32 34 38	STONEVILLE	23 37 32	DELTAPINE	37 40 39
Yarn strength	22s or 27 tex	Lbs.	0	73 87 94	0	109 107 111	S	92 102 98	0	90 104 108	٥	98 105 106	S	87 107 93	۵	109 110 114
		32d In.		34	111	35 35		34 35		34 35 35		35 35		34 35 35		36
ion Ar	sampli cation Sta	1	_	42 51 51	DENCE	444	DENCI	41 41 21 21 21 21 21 21 21 21 21 21 21 21 21		41		41		, 42 51 51		444
oduct	ical ssifi	Code	NTRA	LT SP	PROV IDENCE		PROV IDENCE				PORT		SORO	LT SP	SIPPI	
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name	SOUTH CENTRAL LOUISIANA BUNKIE	SEM L	LAKE P	SLA	LAKE P	SLM	MONROE	LM	SHREVEPORT	SLM SLM SLM	WINNSBORD	SLM I	MISSISSIPPI ARCCLA	SLM SLM SLM

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974--Continued

	& Card waste		Pct.		7.4 6.7 7.1		6.9		6.2 5.8		6.9		7.2 8.0		6.2 6.9 6.7		6.0
A A	T		2				000		4.010		in io io		F 80 6		000		w w o
stock	Composite		Index		9 9 9 9 5		90 8 8 4		99 102 101		97 100 97		91 86 89		6.6 9.6 9.4		100
of raw	Yellow-		No.		4 10 10		222		m m N		222		m m ~		m m N		328
Color	Gray-		No.		m N m		355		271		222		m 4 4		3 5 5		1 2 2
alyzer	Total		Pct.		3.2		3.04 3.04		2.2 2.2 2.1		8 2 8 4 0 0 •		3.7 5.2 3.1		3.1 4.6 4.3		2.8 2.7 3.1
Shirley Analyzer	Visible waste		Pct.		2.5 1.7 2.6		2.6		1.5 1.5 1.5		2.4 2.0 1.9		2.5		2.1 3.6 3.0		2.2 1.6 1.8
E) On-	gation 1/8"		Pct.		7.3 5.9 6.0		6.3 5.4 5.9		7.4 8.3 7.8		6.3 7.8		5.0 5.0 5.3		6.2 6.4 6.1		7.4
strength	1/8"		G/tex	100 PERCENT	22 22 21	100 PERCENT	23	100 PERCENT	24 23 23	100 PERCENT	23 23 23	100 PERCENT	23 24 23 23 33 33 33 33 33 33 33 33 33 33 33	O PERCENT	23 23	100 PERCENT	23
Fiber s	Zero	þ	Mpsi	10	83 83	10	86 87 83	10	83 80 80	10	8 8 8 8 2	10	93	100	92 84 81	10	81 79 81
	Micro- naire		Rdg.		4.3		4.1 3.5 3.4		9.00 9.00		64.9		444		7.44		400
Fibrograph	50/2.5		Pet.	: 213	4 4 4 4 4 4	213	4 4 4 4 6 4	16	444	16	44 44 44	1111	4 4 4 0 4 6	213	7 4 4 7 9 9	16	433
Digital F	2.5% span	p	·uI	STONEVILLE 213	1.07 1.08 1.07	STONEVILLE	1.13	DELTAPINE	1.09	DELTAPINE	1.08	DIXIE KING	1.02	STONEVILLE	1.06	DELTAP INE	1.16
Area,	on on	Staple	32d in.	8	35 35	S	35 35 35	٥	35 35	Q	34 35	Q	35 34	S	34 34 34	Q	35 36 36
State, Production Area,	Chronological Sampling, and Classification	Grade	Code	RAL PP I	SP 42 SP 42 SP 42		512		4 41	A.	411	4.	51 SP 52 51	A.	41 51 51	CORMORANT	41 41 SP 42
State,	and C.	GF	Name	SOUTH CENTRAL MISSISSIPPI CLARKSDALE	SLM LT SLW LT SLM LT	GLENDORA	555	GUNNISON	SLM SLM SLM	INDIANGLA	SLM SLM SLM	INDIANOLA	רל האה	INDIANGLA	SLM	LAKE COR	SLM SLM SLP LT

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974--Continued

yarn	Com- posite		Index		13		792		E 4.8		977		37.6		076		920
dyed ;		_	Inc		7 103 2 108 2 97		5 107 3 106 6 101		9 103 9 104 6 98		4 106 4 102 9 92		9 104 3 97 2 93		9 110 5 102 7 99		4 106 3 105 3 99
- 22s	Blue- ness		위		25.7 26.2 25.2		26. 26.		25.		26.		25.		26.		26.4
Color	Reflct- ance		P _d		26.7 25.6 29.0		26.7 26.4 27.8		27.1 27.0 29.3		26.7 27.0 28.7		26.6 29.0 28.8		26.0 27.0 27.1		26.8 27.1 28.0
blchd. yarn	- Com- posite		Index	٠	102 104 100		103 101 109		100 102 104		99 111 105		107 98 106		106 101 101		104 104 103
	Yellow		위		3.6		3.1 3.2 3.2		3.0 2.4 8.4		3.0		3.0 3.4 3.1		2.9		3.0
Color-22s	Reflct-Yellow- ance ness		Rd.		84.0 84.2 84.0		84.3 83.6 86.9		82.8 84.4 84.1		82.3 87.2 84.1		85.6 82.6 85.6		85.3 83.0 83.4		84.4 84.5 84.1
/ yarn	Com- posite		Index		91 87 89		96 93 84		93 95 86		91 92 90		87 81 89		96 91 90		94 91 91
22s gray	Yellow-		위		11.5		11.2		10.4		10.4 9.9 9.4		11.0		10.9		10.2 9.9 10.7
Color -	Reflct- ance		Rd		66.8 66.4 68.0		69.7 70.0 66.4		69.6 69.9 67.2		69.7 69.7 69.5		65.6 62.9 68.4		70.3 68.6 68.6		70.1 69.2 68.3
-uiq?	ning Poten-	1	No.		56 57 58		66 59		64 67 62		66 68 57		61 55 47		54 61 63		67 71 72
imprfctns.	50s or 12 tex		No.	¥	10 17	F	13 18 24	L	14 13 21	F	9 8 11	F	12 15 16	F	10	-	13
Yarn im	22s or 27 tex		No.) PERCENT	26 24 18	PERCENT	18 20 29	O PERCENT	22 16 17) PERCENT	16 12 14	PERCENT	21 17 23	PERCENT	12 13 17) PERCENT	13 15 17
appearance	50s or		Index	100	02 06 00	100	80 70 80	100	01 07 07	100	90	100	80 80 80	100	90	100	70 80 90
Yarn app	22s or		Index		100		100		100 100 80		1100		1100		120 100 110		100
ngation	50s or		Pct.		4.0		447		5.0 4		4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		3.7		4.00
Yarn elongatio	22s or		Pct.	E 213	6.4	.E 213	6.5	91 =	6.2 7.0 7.3	E 16	6.2 7.1 6.7	KING III	440	LE 213	5.7 6.3 6.1	E 16	6.8
	50s or		Ibs.	STONEVILLE 213	33 33 33	STONEVILLE 213	34 34	DELTAPINE 16	33 37 36	DELTAPINE 16	36 40 32	DIXIE KIN	31 34 30	STONEVILLE	28 38	DELTAPINE	39 41 40
Yarn strength	22s or		Lbs.	rs	101	S	108 107 101	10	103 108 106	O	110	0	105 101 90	S	101 110 106	ō	11111110
_		Staple	32d In.		35 35		35		35 35		34 34 35		35 35 34		34 35		36
ion A	sampl.	St		ب	452		51 51		411		414		51 52 51		41 51 51	RANT	41 41 42
oduct	ical ssifi	e)	Code	ENTRA SIPPI SOALE	LT SP LT SP LT SP	JRA		NOS		VOLA		VOLA	LT SP	NOLA		CORMORANT	LT SP
State, Production Area,	Chronological sampling, and Classification	Grade	Name	SOUTH CENTRAL MISSISSIPPI CLARKSDALE	N I S	GLENDORA	555	GUNNISON	SLA	INCIANGLA	SLM	INDIANGLA	555	INDIANGLA	SLM	LAKE (SLM

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974--Continued

Picker	& Card		Pet.		8.6 10.4 9.2		6.6 6.5 8.4 8.4		7.6		6.9		400 400		5.9		6.8 7.2 7.2
stock	Composite		Index		92 80 80		98 100 98		96 95 92		97 101 99		103 101 101		66 66		96 66 63
Color of raw st	Yellow- ness		No.		262		m m N		m m m		222		m m ~		7 7 7		m m =
Colo	Gray- ness		No.		m m m		~~~		~~~		717				226		226
nalyzer	Total waste		Pct.		7.6 8.2 7.3		3.2 3.9		3.7 3.2		2.9 3.2 2.9		3.1 2.4 3.3		2.6 2.8 3.2		4.6
Shirley Analyzer	Visible waste		Pct.		6.2 6.7 5.3		2.5 2.2 2.8		2.9		1.9 2.3 1.8		1.5		1.6		2.3
Elon-	gation 1/8"		Pct.	-	6.6 6.4 6.1	_	6.3	_	6.4	1	6.1 6.9 6.2	_	6.9	_	7.6	_	5.2
strength	1/8" Gage	,	G/tex	100 PERCENT	23 23 21	100 PERCENT	24 23 23	100 PERCENT	22 22 22	100 PERCENT	23	93 PERCENT	22 22 22	100 PERCENT	23	100 PERCENT	23 22 22
Fiber	Zero		Mpsi	7	83 83	1	85 85 79	1	88 83 83	1	89 86 87		80 81 80	1	85 81 77	1	96 92 84
	Micro- naire		Rdg.		4.1		4.6 4.1 3.7		444		4.3		9.9 9.1 9.4		4.2 3.7 3.5		4 4 6 9 6 6
ibrograph	50/2.5 unif.		Pct.	: 213	44 49 49	: 213	2 4 4 2 4 2	213	4 4 4 4 4 9	25	44 44 43	213	44 44 43	16	43 41 41	A7 :	44
Digital Fibrograp	2.5% span length	,	lu:	STONEVILLE 213	1.12	STONEVILLE	1.12 1.09 1.07	STONEVILLE	1.09	DELTAPINE	1.10	STONEVILLE	1.09	DELTAPINE	1.14	STONEVILLE	1.08
Area,	ion	Staple	32d in.	6	988 988 988	S	35	S	344	0	35 35 35	S	35 35 35	0	35 35 35	S	3 2 2 3 5 3 5
State, Production Area,	Chronological Sampling, and Classification	Grade	Code	TRAL PP I	61 SP 52 51		51 51		51	YUMA	417	BRANCH	4111		41 51	_	51 50 51
State,	and	0	Name	SOUTH CENTRAL MISSISSIPPI LELAND	SGO LM LT	LYON	SLA	NATCHEZ	žžš	NITTA Y	SLM	OLIVE 8	SLM	SCOTT	SLM	TRIBBETT	555

1/ Reduced from 42 because of grass

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974--Continued

1/ Reduced from 42 because of grass

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974--Continued

Dioko	ricker & Card waste		Pct.		5.6 6.11/ 6.1		5.6 5.7 6.1		5.1 6.5 5.8		5.9 5.1 6.1		5.3 6.1 6.7		5.5 5.6 5.1		6.1 5.8 6.1
ck	Composite		Index		101 103 102		100 99 99		101 101 93		99 101 96		101 100 90		103 99 99		102 101 99
of raw stock	Yellow-		No		888		282		4 m m		953		266		m m m		m 4 8
Color	Gray-		No.				7 7 7		3 1 1		212		4 5 1		7 7 7		7 1 7
nalyzer	Total waste		Pct.		3.5		2.1 2.6 3.1		1.8 3.0		2.5		2.6 2.9 2.8		1.8 2.6 2.1		2.2
Shirley Analyzer	Visible waste		Pct.		2.5		1.3		1.2 2.3 1.7		1.6 1.8 1.5		1.9		1.3		1.6
- ao [±	gation 1/8"		Pct.	_	7.8 8.7 7.4	-	7.7 8.1 7.6	<u> </u>	8.0 7.0 6.9		7.0	_	6.7 7.1 7.0	_	7.9	_	8.0 6.9 7.2
strength	1/8" Gage		G/tex	95 PERCENT	23 22 22	95 PERCENT	22 23 22	100 PERCENT	23 23	94 PERCENT	24 22 21	100 PERCENT	23 22 21	80 PERCENT	22 23 21	95 PERCENT	23 24 24
Fiber :	Zero	þ	Mpsi	J	83 77 79		85 81 80	11	81 84 81	O.	82 80	21	. 81 80 73	•	82 82 79	Ū.	79 81 82
	Micro- naire		Rdg.	,			4°.2 3°.9 8°.8		3.9 4.1 3.7		4°.4 3°.8		3.6 9.7 9.0		4.0 3.7 3.2		4.9
Fibrograph	50/2.5 unif.		Pct.	16	43 43 45	16	444	213	44 42	213	44 4 43 45		44 43 83	16	44 43 45	16	4 4 4 4 4 4 0
Digital F	2.5% span	þ	ü	DEL TAP I NE	1.12	DEL TAP INE	1.13 1.11 1.12	STONEVILLE	::::	STONEVILLE	1.14	AUBURN M	1.10	DELTAPINE	1.13	DELTAP INE	1.10
Area,	lon	Staple	32d in.	ă	35 35 35	10	35 35 35	S	35 35	S	35 35 35	A	35 35 35	Ĭ	35 35 35	ă	35 35 35
State, Production Area,	Chronological Sampling, and Classification	Grade	Code	FRAL PP I VL L EY	41 41 41		41 41 41	<u>}</u>	41 41 SP 42	11116	411		41 41 SP 42		4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ш	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
State,	and (පි	Name	SOUTH CENTRAL MISSISSIPPI WATER VALLEY	SLM SLM SLM	WINDNA	SLM SLM SLM	MISSOURI BELL CITY	SLM SLM SLM LT	PORTAGEVILLE	SLM	SENATH	SLM SLM SLM LT	SENATH	SLM SLM SLM	TENNESSEE BRADEN	SLM

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974 --Continued

Lat	1	1															
dyed yarn	Com- posite		Index		105 99 99		110 1111 102		102 104 104		105 107 99		106 105 101		107 103 101		108 105 102
22s dy	Blue-		위		26.9 25.3 25.4		27.7 27.0 25.7		25.8 26.3 25.8		26.3 26.4 25.0		26.2 26.2 25.4		26.5 25.8 25.3		26.3 26.0 25.2
Color -	Reflct- ance		뀝		28.1 28.0 28.2		27.2 25.5 27.6		27.7 27.6 26.8		27.1 26.5 27.3		26.4 26.8 27.2		26.3 27.3 27.1		25.8 26.6 26.3
yarn	Com- posite		Index		109 102 107		109		103 101 101		102 98 103		102 105 101		102 103 105		106 103 104
2s blchc	Yellow-		위		2.8 3.4 3.1		2.7 2.8 2.9		3.2 3.5		2.9 3.1 3.2		3.0		3.1 3.1 3.4		3.1 3.6
Color-22s blchd.	Reflct-Yellow- ance ness		뭠		86.1 84.3 85.9		86.1 83.9 82.4		84.2 83.9 84.3		83.6 81.9 84.6		83.7 85.1 84.8		83.8 84.1 85.8		85.4 84.6 85.3
yarn	Com-		Index		97 92 88		95 93 91		92 96 83		944		97 97 84		9,8 8,8 6,0		93 91 93
22s gray	Yellow-		위		10.7 10.4 9.6		11.1 10.6 10.1		11.2		11.4 10.3 10.2		11.2 11.1 10.2		10.9		10.0
Color -	Reflet-		Rd		71.2 68.8 68.1		69.4 69.1 69.2		67.9		68.5 69.8 65.8		70.4		69.0 67.0 66.6		68.8 69.2 70.1
Spin-		CTGT	No.		70 68 62		69		67 58 62		67 67 57		69 72 56		75 68 62		69
imprfctns.	50s or 12 tex		No.	E	9 14 16	E	8 11 12	=	14 10 15	E	11114	=	11118	=	17 10 22	=	9 112 113
Yarn imp	22s or 5		No.	PERCENT	117	PERCENT	11 14 15	PERCEN	16 13 19	PERCENT	15 12 16	PERCENT	21 16 23	PERCENT	24 15 27	PERCENT	14 12 14
appearance	or		Index	95	80 08	95	0 0 0 0	100	70 80 80	96	80 70 70	100	8 8 8 8	80	09 02 04	95	90
	s or 50s	1	Index In		100 90 110		000		100		120 90 100		001		80 100 100		0110
ion Yarn	or 22s				5.2 5.1 4.9		4 2 . 8 8 2 8		8 9 7 -		4.0.4 0.00		5.5		5.0		4.8 4.9 5.1
Yarn elongation	50s or		Pet.		N, N, 4		410,4	æ	444	æ	404		404		N 4 N		44 W
Yarn e	22s or	3	Pct.	NE 16	7.0	NE 16	6.6	LLE 213	7.0 6.8 6.9	LLE 213	6.8 6.8 6.6	Σ	7.0	NE 16	7.2 6.9 7.6	NE 16	7.0
rength	50s or	דב הבי	Lbs.	DELTAPINE 16	36 37 35	OEL TAP INE	35 39 38	STONEVILLE	36 35	STONEVILLE	33	AUBURN	35 39 31	DELTAPINE 16	36 36	DELTAPINE 16	34
Yarn strength	22s or	4	Ibs.	٥	109 107 107	0	110	S	105 104 103	S	106 110 99	•	107 1111 95	۵	111 109 106	J	109 109 112
		Staple	32d In.		35 35		35 35		35 35		35 35 35		35 35		35 35		35 35
ion Ar	sampli	Ste		L EY	14 14 14		41		41 41 42	LE.	41 41 41		41 41 41		41		4 4 1
oduct	ical ssift	9	Code	SIPP I		_		2117	LT SP	GEVIL		I	LT SP	I		SEE	
State, Production Area,	Chronological sampling, and Classification	Grade	Name	SOUTH CENTRAL MISSISSIPPI WATER VALLEY	SLM	WINDNA	SLM	MISSOURI BELL CITY	SLM SLM SLM	PORTAGEVILLE	SLM	SENATH	SLM SLM SLM	SENATH	SLM	TENNESSEE BRADEN	SLM
(0)	J		H	V)										_		_	

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 197^{μ} --Continued

1			1														
Dicker	& Card		Pet.		6.0		5.5		4. v.		5.1 5.8 6.5		N 9 9		5.3		5.5
stock	Composite		Index		102 101 97		99 101 98		102 103 104		93		97 100 94		102 104 100		105 106 97
of raw	Yellow-		No.		m m m		ммм		m m N		m m 4*		w w 4		N W W		m m m
Color	Gray-		No.		7 - 7		2 2		0		w w 4		328		1 2 2		000
nalyzer	Total waste		Pct.		333		2.5		2.5 2.6 3.1		2.5		2.5		2.3		2.3 1.9
Shirley Analyzer	Visible waste		Pct.		2.5 2.4 1.9		1.9		1.8		1.8 2.1 2.0		1.8 3.8		1.7		1.6 1.2 2.8
E	gation 1/8"		Pct.	E	6°9 4°9 4°9	±.	6.3 6.3	=	6.8 7.1 6.8	=	4.7 5.2 4.8	E	6.9 6.8 6.7	E	6.3 5.6 5.6	Į.	6.0
strength	1/8" Gage		G/tex	95 PERCENT	22 21 21	75 PERCENT	23 23	90 PERCENT	22 22	85 PERCENT	23 20	75 PERCENT	24 22 21	85 PERCENT	24 24 23	95 PERCENT	22 22 22 22
Fiber	Zero)	Mpsi		83 83 82		8 8 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		79 80 78		93		82 82 83		8 8 8 8		78 80 80
	Micro- naire		Rdg		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		4°-7		3.5		444		444		444		4.1 3.9
Fibrograph	50/2.5 unif.		Pct.	EAF	747	213	44 43 43		45	7.A	4 4 4 4 5 0 0	16	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7.A	4 4 4 6 6 6		4 4 4 6 8 8 8
Digital Fit	2.5% span length		In.	REX SMOOTHLEAF	1.12 1.12 1.07	STONEVILLE	1.12	TAMCOT SP37	1.06 1.08 1.06	STONEVILLE	1.07	DELTAPINE 1	1.10 1.08 1.06	STONEVILLE	1.07	TAMCOT SP37	1.09
Trea,	on and	Staple	32d in.	e .	35 35 35	Ο,	35		444	0,	9 9 9 4 4 4 4	7	344	0,	34	Ī	8 8 8 8 8 9
State, Production Area,	ronological sampling and Classification	Grade	Code	TRAL E TON	41 41 51		411 411	T XAS ILLE	4	0	41 41 SP 42		41 41 SP 42	00	4 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	z	4.33
State,	and (G	Name	SOUTH CENTRAL TENNESSEE MILLINGTON	SLA	RIDGELY	SLM SLM SLW	SOUTH WEST SOUTH TEXAS BROWNSVILLE	SCE	EL CAMPO	SLM SLM SLP LT	GANADO	SLM SLM SLM LT	RIO HONDO	SLA	ROBSTOWN	SLA

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974--Continued

ayea yarn	Com- posite	Index		105 103 102		112 102 106		108 106 104		106 104 103		107 106 101		107 104 101		108
- 22s ay	Blue- ness	위		26.0		27.0 25.4 26.4		26.8 26.4 26.3		26.6 26.4 26.3		26.4 26.6 25.8		26.5 26.3 25.6		26.6
COTOL	Reflct	Rd		26.5 26.6 26.6		25.2 27.0 26.8		26.5 26.8 27.6		27.1 27.7 28.0		26.4 27.4 28.1		26.5 27.4 27.8		26.4
orcna. yarn	- Com- posite	Index		101 103 105		105 102 102	٠	97 104 105		99 101 97		101 101 88		107		105
	-Yellow ness	위		9 9 9 9 8 9 9 8 9		3.1		3.1 3.0 3.1		3.2 3.1 3.6		2.9		3.0 3.1 3.0		3.0
COTOL-ZZS	Reflct- ance	뀖		84.4 85.6 85.6		85.1 84.2 84.3		81.5 84.5 85.0		82.6 83.3 82.5		83.0 82.9 80.9		85.9 83.7 82.4		85.0
gray yarn	Com- posite	Index		94 95 89		93 89		96 96 76		88 86		92 93 89		94 97 99		9.6
C.C.3 6.1	Yellow- ness	위		11.1		11.3		11.1 10.8 10.5		10.7		10.6 10.9 11.4		10.8 11.2 10.9		9.01
	Reflct- ance	찖		68.6 69.2 67.4		68.0 68.4 67.8		69.7 70.3 69.8		66.0 66.6 64.3		68.8 68.5 66.1		69.3		71.6
1	ning Poten- tial	No.		74 75 65		64 65 62		6 4 6 4 6 0		58 57 54		59 59		72 67 58		61
	50s or 12 tex	No.	-	17 14 15	-	20 12 19	±	19 11 24	=	01 13 61	_	16 18 18	<u>-</u>	11 13 14	=	12
	22s or 27 tex	No.	PERCENT	21 13 19	PERCENT	25 21 27	PERCENT	21 15 27	PERCENT	14 16 20	PERCENT	22 17 18	PERCENT	11 11 11	PERCENT	17
	50s or 12 tex	Index	95	70 80 90	75	70 70 80	90	02 00 07	85	980	75	00 00 00 00 00 00 00 00 00 00 00 00 00	85	80 80 80	95	70
	22s or 27 tex	Index		100 100 110		1000		80 80 80		110 100 80		90 90 90		110 100 90		100
,	50s or 12 tex	Pet.		5.0		4 4 4 2 6 4	^	4.9		33.6		444 9 N C		5.1 4.6 4.1		4.4
	22s or 27 tex	Pct.	THLEAF	7.0	.E 213	6.65	SP37	4.54	LE 7A	5 6 4 5 6 4 5	E 16	6.7	LE 7A	6.3 6.0 5.8	SP37	6.2
,	50s or 12 tex	Lbs.	REX SMGOTHLEAF	41 40 36	STONEVILLE	34 38 37	TAMCOT SI	388	STONEVILLE 7A	32 31 29	DELTAPINE 16	36 34 31	STONEVILLE 7A	44 34	TAMCOT S	35
)	22s or 27 tex	I.bs.	R	116 114 104	S	106 108 106	1	102 108 104	S	98 93 97	0	102 97 98	S	114 113 99	7	103
		32d In.		35 35		35 35		34		34		34 34 33		34 34		33
[sificatio	Code 32	RAL	41 41 51		411	KAS	411		41 41 SP 42		41 41 SP 42	00	4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	31
Obening in a complete	Chronological sampling, and Classification Grade Staple	Name C	SOUTH CENTRAL TENNESSEE MILLINGTON	SLH	RIDGELY	SLM	SOUTH WEST SOUTH TEXAS BROWNSVILLE	SLH	EL CAMPO	SLM SLM SLM SLM	GANADO	SLM SLM SLM SLM	RIO HONDO	SLM	ROBSTOWN	x

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974--Continued

	State, Production Area, Chronological sampling,	Digital Fil	Fibrograph	Micro-	Fiber s	strength	Elon-	Shirley Analyzer	nalyzer	Color	Color of raw stock	oc k	Picker
and Classification	5	2.5% span length	50/2.5 unif.	naire	Zero Gage	1/8" Gage	gation 1/8"	Visible waste	Total waste	Gray- ness	Yellow- ness	Composite	& Card waste
2 0	32d in.	li.	Pet.	Rdg.	Mpsi	G/tex	Pet.	Pet.	Pct.	No.	No.	Index	Pet.
	16	TPSA 1633			ř	70 PERCENT							
	* * * M M M	1.10 1.09 1.07	7 4 4 22 4 4	444 0.00	89 86 87	23 24 24	5 5 5 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1.0 2.1 1.5	1.4 2.7 2.1		ጠቁጠ	104 102 102	5.6 5.8
	SI	STONEVILLE	213		6	96 PERCENT							
	333	1.06	8 9 9	4 4 5 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	88 88 53 33 83	25 24 24	6.3 7.0 5.9	1.9 1.9 3.8	2.1 2.5 4.4	e	ታጠ ታ	102 101 96	4 W 6 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V
	ST	STONEVILLE	213		Ď	5 PERCENT							
	33.35	1.13 1.10 1.06	4 4 4 4 4 4 4 4	4 4 4 6 10 10	8 8 8 3 8 3	25 21 21	6.0	1.3 2.3 8.8	1.8 4.1 3.9	1 - 4	4-4	104 75 86	5.1 6.4 6.0
	DE	DELTAPINE 16	•		100	O PERCENT							
	33.55 35.55 35.55	1.12	4 4 4 4 4 4	4.4	84 83 81	22 22 22	7.2	2.1 1.7 1.6	3.0	m m m	~~~	94 92 92	4.00
	1.4	TAMCOT SP37			100	O PERCENT			`				
	31 30	0.96	42 41 41	33.4	. 87 86 90	20 19 19	5.2	23.5	6 0 0 v	-49	ታ ጠ ጠ	103 87 80	8.2 8.0 10.0
	5	COKER 312			100	0 PERCENT*	*						
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1.14 1.13 1.13	45 41 41	3.55	8 8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	24 54 54	5.9 6.3	3.3 4.4 4.4	3.9	622	m m m	94 99 99	7.3 7.5 8.2 <u>2</u> /
	20	COKER 5110			100	O PERCENT*	*						
	መ መ መ ተ ላ ነነ	1.11	45 41 41	9 N N	8 8 8 3 8 8	22	6.8 6.8 5.7	2.1 3.1 2.2	64 m 6 m 4	e 2 2	กกก	94 100 99	7.2
1	9												

Reduced from 41 because of bark Cotton stuck to processing rolls 100 percent selected for tests, less than 100 percent in the area പ്പയം

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974 --Continued

State, Production Area,	on Area		Yarn strength	Yarn elongati	ongation	Yarn ap	appearance	Yarn	imprfctns.	Spin-	Color -	22s gray	yarn	Color-22s	2s blchd.	d. yarn	Color -	22s	dyed yarn
Chronological sampling, and Classification Grade Staple	ation Staple	22s or 27 tex	r 50s or x 12 tex	or 22s or ex 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	ning Poten- tial	Reflct- ance	Yellow- ness I	Com- posite	Reflct-Yello	3	Com- posite	Reflct- ance	Blue- ness	Com- posite
Name Code	32d In.	n. Lbs.	. Ibs.	Pct.	Pet.	Index	Index	No.	No.	No.	찙	위	Index	뀙	위	Index	찚	위	Index
SOUTH WEST SOUTH TEXAS SAN JUAN			TPSA 1633	633			70) PERCENT	Ę										
H LT SP	31 34 32 34 41 34	1115	41 41 37	N N N 9 0 0	4.3 4.2 4.1	120 110 110	100 100 90	100	11 8	67 66 63	69.5 67.9 68.2	11.2	96 95 94	82.1 83.0 83.1	3.4	98 100 99	27.5 27.4 27.5	25.8 26.3 25.8	102 104 102
SEBASTIAN			STONEVILLE	71LLE 213			96	6 PERCEN	F Z										
N SLM SLM LT SP	31 33 41 34 42 34	3 116 4 118 4 112	444	6.2	0.44	110	90 100 80	10 12 16	7 10 15	70 70 73	69.3 68.5 66.8	11.3	966	80.6 82.5 81.7	3.0 3.1	95	26.7 26.7 27.7	26.5 26.2 26.3	107 105 104
CENTRAL TEXAS BATESVILLE	SI		STONEVILLE	וורב 213			96	5 PERCENT	L N										
SLM TG	31 35 44 35 52 34	5 97	41 32 25	5.6	3.8 3.8 5.5	90 70 70	009	20 42 27	15 29 22	62 56 54	69.1 55.1 62.1	12.2 13.4 11.1	98 74 81	82.4 82.4 81.4	3.6	97 98 93	26.6 28.3 29.0	26.4 25.1 25.0	106 98 96
NAVASOTA			DELTAP	DELTAPINE 16			100	D PERCENT	H										
SLM LT SP SLM LT SP SLM LT SP	41 35 42 35 42 35	91 92 92 89	2 30	5.0	444	90 110 90	70 80 80	16 9 14	15	57 55	67.2 66.2 67.1	9.8	87 84 87	80.7 84.0 83.5	3.7	92 98 102	27.8 27.7 29.0	26.8 25.1 25.4	106 99 98
WHITNEY			TAMCOT	. SP37			100) PERCEN	F										
SLM LM LT SP LM LT SP	41 31 52 31 52 30	1 84 1 65 0 59	25 18 15	5.1 4.2 4.3	4 m m m m m m m m m m m m m m m m m m m	70 70 80	090	26 34 25	28 29 22	43 36 29	67.8 64.7 59.1	13.3 11.6 10.3	100 87 75	80.6 82.5 83.3	4.0 4.0	93 96 97	27.8 29.3 30.7	25.6 24.8 24.7	101 95 91
NORTHWEST TEXAS	XAS		COKER 312	312			100	D PERCENT*	***										
EN LA	51 35 51 35 51 35	5 105 5 108 5 107	3 38	6.1	4.1 4.6 5.1	900	000	40 32 35	34 25 39	50 52 51	66.4 68.3 68.8	10.2	86 91 96	83.4 83.7 84.2	0 M 00	98 101 100	28.9 27.8 29.2	24.7 24.7 24.7	95
LUBBOCK			COKER	5110			100	D PERCENT*	*11										
SLH SLH	51 35 51 35 41 34	5 104 5 108 4 99	34	6.3	4 4 4 .0 9	100 70 70	70 60 60	22 46 30	19 31 28	58 61 57	67.5 68.9 68.5	10.3 11.2 10.8	88 95 92	84.9	3.6	102 102 101	28.3 29.4 29.9	24.9 24.8 24.4	97 94 92
1/ End breakage too high to spin 50s yarn.	ge too	high to	spin 50s		36s yarn spun	and	strength a	adjusted	to equivalent		of 50s.								

End breakage too high to spin 50s yarn. 36s yarn spun and strength adjusted to equivalent of 50s. Reduced from 41 because of bark 100 percent selected for tests, less than 100 percent in the area નો જો∗

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974--Continued

Diokow	& Card waste		Pct.		8.3		5.5		7.2		7.3 7.9 8.5	,	6.50 6.50 6.50		7.0
ck	Composite		Index		96		102 102 101		96 96		95 91 88		100 98 101 101		66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
of raw stock	Yellow- ness		No.		ммм		ммм		ммм		ጠፋጠ		m N m N		5 2 3
Color	Gray- ness		No.		222				3 2 8		ጠጠቁ		1155		222
nalyzer	Total		Pct.		W W 4		3.0 3.0		3.4		w4w owo		6 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		2.2 3.6 4.1
Shirley Analyzer	Visible waste		Pct.		3.5 3.0 0.0 0.0		1.6		2.1 2.1 3.2		1.7 3.2 4.5		2.1 2.3 1.5		2.7 2.7 3.1
410n-	gation 1/8"		Pct.	_	6 6 8 8 8 8		7.0		6.1	_	6.2 5.8 6.1	_	7.7	_	7.0 5.4 5.1
strength	1/8" Gage		G/tex	85 PERCENT	25 23 25	100 PERCENT	22 22 22	100 PERCENT	22 22 23	100 PERCENT	25 25 25	94 PERCENT	22 22 20 22	95 PERCENT	24 24 24
Fiber a	Zero Gage	,	Mpsi		8 8 8 4 7 3	=	81 82 82	1	87 85 81	Ä	8 8 8 6 6 8		80 77 80		91 86 82
	Micro- naire		Rdg.		2.8		2.7		4.7		4.3		4 4 4 6 9 • • • • •		2.0 4.0
Digital Fibrograph	50/2.5 unif.		Pct.		45 45 45	4789A	45 43	4789A	42 42 45	٠,	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	213	7 7 4 4 0 7 4 6	61	4 4 8 4 6 8
Digital F	2.5% span	,	In.	DUNN 119	1.05	LOCKETT 47	1.04	LOCKETT 47	1.00	LOCKETT BXL	1.05	STONEVILLE	1.10 1.07 1.08 1.10	DELTAPINE	1.11
Area,	pring, ion	Staple	32d in.	a	34 33		3333		31 32 32		32 32 32	v	3 3 3 8 8	٥	3.55
State, Production Area,	Chronological sampling, and Classification	Grade	Code	T TEXAS	51 51 SP 42	LE	444		SP 42 SP 42 SP 42		SP 42 SP 42 SP 52		444		SP 32 41 41
State,	Chrono. and (G	Name	SOUTH WEST NORTHWEST OLTON	1/ LM SLM LT	ROPESVILLE	SLM SLM SLM	VERNON	SLM LT SLM LT SLM LT	VERNON	SLM LT SLM LT LM LT	WEST ARIZONA BOWIE	SL# SL# SL# SL#	BUCKEYE	SLN SLN SLN

1/ Reduced from 41 because of bark

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974 --Continued

dyed yarn	Com- posite	Index		94 96 87		97 95 91		100 103 103		96		01 02 98 98		000
22s dyed	Blue- Conness po	위		24.1 24.9 23.2		24.3 24.8 24.4		25.3 1 25.9 1 25.8 /1		25.0 25.5 25.0		25.6 1 25.3 1 24.9 25.3		26.4 1 25.9 1 25.1
Color - 2	Reflct- E	Rd		28.0 29.0 29.7		27.3 29.2 30.1		27.5 27.1 27.0		27.4 2 28.0 2 28.1 2		27.9 2 26.5 2 28.0 2 28.6 2		27.1 2 28.8 2 27.8 2
yarn	Com-R	Index		1001		104		1001		103		103 103 101		103
s blchd.	Yellow-	위		3.7		3.7		3.53		3.1 3.1		3.2 3.1 2.9		2.8 3.0 3.1
Color-22s	Reflct-hance	찚		84.5 85.1 85.3		85.7 85.1 85.2		83.6 83.0		84.5 83.9 83.4		84.6 84.2 83.3		83.8 82.5 84.2
yarn	Com-	Index		93		82 93 94		83 90 88		98 88 86		91 85 97 95		97 94 90
22s gray	Yellow- ness	위		11.1		11.2 10.5 10.4		10.9 11.2 10.9		10.5 11.1 10.9		11.1 10.2 10.3 9.3		11.0 10.5 9.3
Color -	Reflct- ance	Rd		68.3 66.8 68.8		62.8 69.5 69.8		63.4 66.9 66.5		70.7 66.2 65.3		67.5 65.9 71.6		7C.7 69.6 69.8
Spin-	ning Poten- tial	S		71 67 64		64 59 54		36 37 43		52 50 50		58 48 57		61 53 55
rfctns.	50s or 12 tex	No.	F-	27 37 31	-	22 30 28	ENT	25 30 30	Ļ	17 23 22	F 7	12 15 16 26	-	51 111
Yarn imprictns.	22s or 27 tex	No.	PERCENT	35 37 37	PERCENT	30 31 34	PERC	31 37 38	PERCENT	20 32 29	PERCENT	15 20 18 29	PERCENT	11 23 18
appearance	50s or 12 tex	Index	85	09	100	009	100	80 80 70	100	90 70 70	76	96 06 70	66	90
Yarn appe	22s. or 27 tex	Index		80 70 70		80 70 80		90		100 80 90		100 110 110 80		130 100 110
-	50s or 2	Pet. 1		40.6		5.0		4.1		4.3		4.1 4.8 5.2		4.1
Yarn elongation	or ex	Pet.		7.1	4789A	7.4 7.0 6.7	4789A	5.4	_	5.9 5.8 5.8	213	6.5 6.5 7.0	19	6.1 5.9 5.8
	or	Lbs. P	911 NNO	43 7 7.41 7.41 7.		36 7. 35 7. 31 6		23 <u>2</u> / 5, 24, 5, 27, 5	ETT BXL	32 5 33 6 31 5	STONEVILLE 213	34 6 32 6 32 6 34 7	DELTAPINE 61	33 6 34 5 35 5
Yarn strength		┨.	DUNN		LOCKETT		LOCKETT	0110	LOCKETT		STON	95 99 99 39	DELT	104 3 104 3 104 3
	22s 27 t	In. Lbs.		4 120 4 112 3 113		3 109 3 105 3 99		31 8 32 8 32 8		32 98 32 101 32 99		35 10 35 5 35 9		35 10 35 10 35 10
on Ares	anpling, ation Staple	32d In.	XAS	51 34 51 34 42 33		41 3		42 3		42 3 42 3 52 3		41 3 41 41 41 41 41 41 41 41 41		32 3 41 3 41 3
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name Code	SOUTH WEST NORTHWEST TEXAS OLTON	1/ LM SLM LT SP	ROPESVILLE	SLM SLM SLM	VERNON	SLM LT SP SLM LT SP SLM LT SP	VERNON	SLM LT SP SLM LT SP LM LT SP	WEST ARIZONA BOWIE	SLM SLM SLM SLM	BUCKEYE	SLM SLM SLM

1/ Reduced from 41 because of bark 2/ End breakage too high to spin 50s yarn. 44s spun and strength adjusted to equivalent of 50s.

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974--Continued

P. 040	Composite & Card		Index Pct.		100 6.1 96 6.3 99 7.7		104 5.6 100 6.1 98 6.5		96 5.1 97 5.8 88 5.4		100 6.7 99 6.2 <u>2</u> / 99 6.2		101 5.4 88 6.4 90 6.4		103 5.6 103 6.0 101 7.2 98 6.3		100 6.2 100 5.9 99 6.0
of raw stock	Yellow- Comp		No. I		668		m m N		~~~		~ ~ ~		888		๓๓๓ ง		m m m
Color	Gray- ness		No.		777		122		004		~~~		-4 6		1 1 1 2		222
Analyzer	Total waste		Pct.		3.4 2.6		1.9 2.6 2.8		8°00 8°00		2.7		3.7		23.2		2.18
Shirley Analyzer	Visible waste		Pct.		2.3 1.6 1.8		1.3		1.9		1.55 1.55 1.55		1.5 2.7 3.0		1.2 2.1 1.3 1.5		2.2 1.8 2.2
- no [4	gation 1/8"		Pct.		5.7 4.9	-	7.1 6.5 6.8	_	6.9 6.8 6.8	-	5.6 5.4 6.1	_	6.0	-	6656 6442	_	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5
strength	1/8" Gage		G/tex	100 PERCENT	23	75 PERCENT	24 22	100 PERCENT	23 23	83 PERCENT	22 24 23	88 PERCENT	22 23 23	92 PERCENT	23 22 23	100 PERCENT	26 27 26
Fiber s	Zero Gage		Mpsi	10	91 95 89	7	84 84 80	10	90 81 80	w	85 91 90	ω	88 86 86	G.	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10	99
	Micro- naire		Rdg.		4		5.0 4.1		4.4		4 0 . 4		4 8 4 0 0 0 0 0		4 9 . 1 5 . 0 . 0		444
brograph	50/2.5 unif.		Pct.	213	444	61	4 4 4 2 4 4 4	16	244	16	4 4 4	99	43 43	61	4644		44 44 47
Digital Fibrograp	2.5% span	p	퇴	STONEVILLE	1.11	DELTAPINE	1.13	DELTAPINE	1.13	DELTAPINE	1.07	DELTAPINE	1.12	DELTAPINE	1.11 1.09 1.08 1.13	ACALA SJ-2	1.12
Area,		Staple	32d in.	ST	9 9 9 5 8	DE	35 35 35	DE	35 36 36	90	35 35	DE	35 35	90		Þ	35 36 36
State, Production Area,	Chronological sampling, and Classification	Grade	Code		7 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GRANDE	31	8	41 51	3OE	41 41		SP 32 51 51	7	4 4 4 11	TA	144
State,	Chronol and C	P. Gr	Маше	WEST ARIZONA BUCKEYE	SLM	CASA GRA	SLM	MARICOPA	SLM	PALO VERDE	SLM 1/ LM SLM	PICACHO		SOMERTON	SLM	CAL I FORNIA BAKERSFIELD	SLM

 $\frac{1}{2}$ Reduced from 41 because of grass $\frac{2}{2}$ Cotton stuck to processing rolls

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1.97^{μ} --Continued

,	ı	i														
dyed yarn	Com- posite	Index		102 103 93		113 104 96		105 99 106		103 98 97		106 104 100		110 101 99 102		104 104 100
22s	Blue- ness	위		25.5 26.1 24.9		28.3 25.9 24.8		26.4 25.1 26.4		25.7 25.4 25.5		26.2 25.8 25.8		27.5 25.7 25.3 26.4		26.1 26.0 25.1
Color -	Reflct- ance	뀖		27.1 27.6 30.1		27.1 26.9 28.7		27.4 27.9 26.8		27.1 28.8 29.3		26.6 26.4 28.3		27.1 27.7 28.0 28.8		27.2 27.0 27.1
l. yarn	Com- posite	Index		104 104 103		109 103 103		100 101 106		102 103 104		102 103 104		105 104 106 105		103 98 105
2s blch	Yellow- ness	₽Ι		3.1 3.5 2.8		2.8 3.0 3.1		2.9		3.2		3.1 2.5 3.3		3.0		
Color-22s blchd	Reflet-	湿		84.6 85.3 83.8		86.1 83.9 84.3		82.4 83.9 85.1		83.8 84.4 84.2		83.7 83.1 85.0		85.0 84.9 84.8		84.5 82.5 85.1
ey yarn	Com- posite	Index		97		99 90 91		97 93 86		93 93 92		0, 80 80 80 80 80		99 95 97		96
22s gra	Yellow-	위		10.5 10.1 9.9		10.1		11.1 10.4 9.6		10.2 10.5 9.4		11.9 10.5 9.4		111.0 111.0 10.4 9.5		11.6
Color -	Reflct- ance	駋		71.2 68.8 69.9		72.3 68.8 69.4		70.5 69.3 66.9		69.7 69.5 70.7		69.3 66.8 68.3		71.9 69.5 71.5 70.5		69.0
Spin-	ning Poten- tial	일 일		60 52 50		65 59 57		71 61 65		50 44		70 63 62		5 5 5 8 8 8		74 92
imprfctns.	50s or 12 tex	No.	-	991	L Z	6 10 19	L _N	10 15 15	L _Z	17	L	8 12 13	F	17 11 14 15	-	15 7 10
Yern imp	22s or 27 tex	힗	PERCENT	14 15 11	PERCENT	7 13 22	PERCENT	16 22 18	PERCENT	20 18 13	PERCENT	10 19 17	PERCENT	20 19 19	PERCENT	2c 12 16
appearance	50s or 12 tex	Index	100	0000	75	9 9 9	100	90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	83	808	80	80 00 00	92	60 70 80 80	100	080
Yarn appe	22s or 5 27 tex 1	Index		110 120 120		120 120 100		120 100 100		100 110 90		120 110 110		80 100 110		90 100 100
elongation Y	50s or 2 12 tex 2	Pet. I		3 3 3 3 6 8		4 4 4 7		444		444 0 m V		444		4444 W / W O		444 N40
Yarn elc	22s or 27 tex	Pet.	LE 213	5.2 5.0 5.3	E 61	444	E 16	6.9	E 16	446	E 66	6.4	E 61	5.9 6.1 6.2 6.3	57-2	6.1
strength	50s or 12 tex	Lbs.	STONEVILLE 21	35 31 30	DELTAPINE	36 36	DELTAPINE	34 37 38	DELTAPINE 16	30 32 28	DELTAPINE 66	38	DELTAPINE 61	8 8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ACALA SU	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Yarn str	22s or 27 tex	Lbs.	S	103 95 95	ō	108 106 105	0	102 105 107	ā	94 94 91	ō	1111	٥	101 110 102 103	Ā	129 132 129
_		32d In.		35 35		35 35		35 36 36		35 35		35		35		35
tion Ar	sampli ication	1		411	.DE	41		41 41 51	ñ	41 51 41		SP 32 51 51		4114	10	444
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name Code	WEST ARIZONA BUCKEYE	SLM SLM SLM	CASA GRANDE	SLM	MARICOPA	SLM	PALO VERDE	SLM SLM SLM	PICACHO	M LT S	SOMERICA	S C W S C W S C W W S	CAL I FORNIA BAKER SFIE	SLM

٦

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974--Continued

1	id e				1 P		4 I/		10 es -1		***		2 4 9 <u>1</u> /		<u>–</u>		
100	1		Pct.		0 m 0		5.0		5.5 5.8 6.1		5.0		5.2		5.9 6.2 6.1 1√		6.1
stock	Composite		Index		102 102 100		103 104 101		102 98 101		100 102 97		100 98 97		103 100 99		101
Color of raw st	Yellow- ness		No.		4 W W		ক ক ল		m m N		****		ጠቁጠ		m m m		m m N
Color	Gray- ness		No.						121		212		~~~		7 7 7		
lalyzer	Total waste		Pet.		1.6 1.8 2.6		1.6		2.2 2.1 2.9		1.6		2.3 1.6 2.2		1.8 3.1 2.7		2.6 2.6
Shirley Analyzer	Visible waste		Pct.		1.1		1.0		1.5		1.2		1.6 0.8 1.1		1.2		1.9 2.7 2.1
- 40 F	gation 1/8"		Pct.		5.5	_	5.8 5.9 5.1		5.6	_	5.3.7		5.0		5.2	_	5.7
strength	1/8" Gage		G/tex	100 PERCENT	26 27 27	100 PERCENT	26 26 27	100 PERCENT	28 27 26	100 PERCENT	26 28 27	99 PERCENT	27 25 24	100 PERCENT	27 27 26	100 PERCENT	30 28 26
Fiber s	Zero Gage	,	Mpsi	91	97 93	10	101 99 94	10	102 97 88	10	98 102 91	G.	101 96 94	10	93 95 97	10	102 96 95
	Micro- naire		Rdg		4.4 4.5 5.5		- 4 4 - 4 4		4.2 3.6 4.1		444		444		444		444
Fibrograph	50/2.5 unif.	_	Pet.		44 47 47		44 46 46		44 47 41		84 74 74		44 44 74		7 7 7 8 7 4 7 8 7 8 7 8 7 8 7 8 7 8 7 8		8 L 9 7 4
Digital F	2.5% span length		il.	ACALA SJ-2	1.07	ACALA SJ-2	1.10	ACALA SJ-2	1.14	ACALA SJ-2	1.11	ACALA SJ-2	1.12	ACALA SJ-2	1.13	ACALA SJ-3	1.09
Area,	ion	Staple	32d in.	ď	35 35 35	₹	35 36 35	4	36 36 36	A	35 35 35	e e	35 35	•	35 36 36	4	35 36 36
State, Production Area,	ronological sampling and Classification	Grade	Code	A ELD	31	HOTI	331	LA	41		31 41		111	St	31	۲۲.	41 41 41
State,	and C	Gr	Name	EST CALIFORNIA BAKERSFIELD	SLM	BUTTONWILLOW	SLA	CHOWCHILLA	SLM	CORCORAN	SLA	HANFORD	SLM	LOS BANDS	SLM	LOST HILL	SLA

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 197^{\dagger} --Continued

dyed yarn	Com- posite	Index		.03 99 96		107 106 106		101 104 101		104 106 104		99 97		06		103 103 107
22s dyed	Blue- Conness po	위		25.9 1 25.2 24.5		26.3 1 25.9 1 26.4 1		25.3 1 25.7 1 25.1 1		25.6 1 26.0 1 26.0 1		25.0 25.2 24.9		26.1 1 25.7 1 25.2 1		25.8 1 25.8 1
1	Reflet- I	〗		27.3 2 28.1 2 27.8 2		25.9 255.8 27.0 2		27.0 226.3 226.6 2		26.3 2 25.8 2 26.8 2		27.6 2 27.7 2 28.3 2		26.0 2		27.1 2 26.9 2
1. yarn Color	Com- F	Index		100 101 105		104 104 102		99 100 100		105 104 100		101 101 105		99 104 100		100
yarn Color-22s blchd.	Yellow- ness	위		3.2		3.5 3.4		3.1		3.0		3.2 3.1 3.1		3.2		3.5
Color-2	Reflct- ance	묎		83.6 83.4 85.5		85.4 85.1 84.0		82.6 83.8 84.3		84.7 84.6 83.2		83.6 83.3 85.1		82.0 85.0 83.4		83.5
gray yarn	Com- posite	Index	,	96 92 90		98		95		95 91 92		946		95		94
22s	Yellow- ness	위		11.7 10.0 10.4		11.3 11.1 10.4		11.1 10.8 9.8		11.4		11.2 11.3 10.6		10.8 10.3 10.0		11:1
Color -	Reflct- ance	묎		68.9 69.5 68.4		70.6 69.6 69.6		69.2 67.6 69.9		68.9 67.7 68.9		68.8 66.5 69.7		69.6 69.3 68.4		69.1
-	ning Poten- tial	No.		63 64		74 65 69		79 81 75		69 68 71		76 71 65		11 67 81		73 73
orfetns.	50s or 12 tex	N	- -	9 11 12	L 2	10	-	13 16 14	L	15 9 15	L Z	9 10 7	TN	16 14 14	L	100
Yern im	22s or 27 tex	No.	PERCENT	14 15 15	PERCENT	10 11 15	PERCENT	16 20 20	PERCENT	18 16 18	PERCENT	12 13 11	PERCENT	23 23 19	PERCENT	23
earance	50s or 12 tex	Index	100	90 80 80	100	8 8 9	100	8088	100	07 07 80	66	906	100	70 80 90	100	9 0 0 0
Yarn appearance Yarn imprfctns.	22s or 27 tex	Index		100 100 100		1100		90 100		100		100 110 110		90 100 100		100
-	50s or 12 tex	Pet.		4.1		440		4.9 4.6		4.53		4.5		7 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		9 - 4
Yarn elongation	22s or 27	Pct.	A 1	55.5	01	5 5 5 8 8 8 8 8 8	0.	5.8 6.0 6.3	01	5.7	Č.	55.8	~	5.9	3	5.7
	50s or 22	Lbs.	ACALA SJ-2	443	ACALA SJ-2	46	ACALA SJ-2	49 50 45	LA SJ-2	46	ACALA SJ-2	444	LA SJ-2	44 45 45	ACALA SJ-3	500
Yarn strength	22s or 50 27 tex 12	Lbs.]	ACA	119 119 118	ACA	127 121 120	ACA	131 135 126	ACALA	121 124 123	ACA	128 123 118	ACALA	124 126 126	ACA	131 130 124
_		32d In. 1		35 1 35 1		35 36 35		36		35		35		35		35 35 36
ion Az	sampli cation	1	. 0	31	N. C	31 31 41		31 41 41		31 31 41		14 17		31 41		40
State, Production Area,	Chronological sampling, and Classification Grade Staple	Code	EST CALIFORNIA BAKERSFIELD		BUTTONWILLOW		CHCWCHILLA	***	CORCORAN		HANFORC	***	LOS BANDS	xxx	LOST HILLS	*x *
State,	Chrono.	Name	WEST CALIF BAKE	SLAR	BUTT	SLA	CHCI	SLH	CORC	SLAT	HANE	SLM	108	SLH	LOST	SLA

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974 --Continued

State, Production Area,	on Area,	Digital Fibrograph	brograph		Fiber s	strength	, E	Shirley Analyzer	nalyzer	Color	of raw	stock	Dioker
Chronological sampling, and Classification	ampling, ation	2.5% span length	50/2.5 unif.	Micro- naire	Zero Gage	1/8" Gage	gation 1/8"	Visible waste	Total waste	Gray- ness	Yellow- ness	Composite color	& Card
Grade	Staple)											
Name Code	32d in.	ġ	Pct.	Rdg.	Mpsi	G/tex	Pct.	Pct.	Pet.	No.	No.	Index	Pct.
WEST													
CALIFORNIA San Joaquin		ACALA SJ-2			21	100 PERCENT							
SLM+ 40 SLM 41 SLM 41	36 36	1.15	41 41 48	4.1	89 96 93	27 26 27	5.2	1.2	2.1 2.3 3.4	7 7 7	ммм	102 100 99	6.00
STRATFORD		ACALA SJ-2			7	100 PERCENT	_						
SLM 41 SLM 41 M 31	35 35 35	1.09	45	3.1	96 46 86	26 27 29	5.9 5.4 5.1	7.1	2.8	2 5 1	mmvr	99 97 103	4.6
TRANGUILITY		ACALA SJ-2			Ħ	100 PERCENT	—						
SLM 41 SLM 41 SLM+ 40	36 36 36	1.12 1.15 1.16	44 49	444 704	102 93 95	27 25 28	5.8 5.6 5.2	1.9	1.5 2.5 2.4		m N m	104 101 102	N N N 0 0 N
TULARE		ACALA SJ-2			ĭ	100 PERCENT	_						
SLM 41 SLM 41 SLM 41	35 35 35	1.10	46 47 47	3.8 4.1 4.3	95	27 26 27	6.0	1.5	2.33	212	m m N	99 102 100	5.8 6.0 5.1
VISALIA		ACALA SJ-3				70 PERCENT	Ĺ						
M 31 SLM 41 SLM 41	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1.10	48 44 44	44° 94°	103 99 91	28 27 26	5.0 5.0 5.0	1.8	1.5	1 2 2	m m 2	101 96 96	4.2 5.3 5.3½/
WESTMORLAND		DELTAPINE	19		2	100 PERCENT							
M 31 M 31 SLM 41	8 8 8 8 8 8 8 8	1.09	4 4 4 4 4 7 7 7 9	4 4 7 6 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 8 9 8 8 8 8	23 24 24	6.5 6.8 6.8 4	1.1	1.9 2.0 1.2 3.1	0-	m m N N	102 103 105 101	5.5.4 5.4.7 5.00
WEST TEXAS PECOS		STONEVILLE	213		1	100 PERCENT*	*_						
SLM LT SP 42 SLM 41 LM 51	4 4 4 M M M	1.08	444 7	44°50	75 77 87	21 21 22	7.3 6.6 7.2	2.3 1.6 3.2	6,24 6,00 6,00	400	4 m N	87 96 96	6.9

Cotton stuck to processing rolls 100 percent in the area 100 percent selected for tests, less than 100 percent in the area

`તો∗

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1974--Continued

yarn	æ .	1	×I														
dyed y	Com- posite	4	Index		103		104 106 102		103 100 105		101		100 95 94		105 107 102 97		105 98 96
- 223	Blue-		위		26.0 25.8 25.0		25.8 26.5 25.3		25.7 25.1 26.0		25.2 25.4 25.4 25.5		25.3 24.2 23.9		25.9 26.5 26.2 25.6		25.9 25.2 25.1
Color	Reflct- ance	,	꾀		27.4 26.9 26.9		26.7 27.1 26.6		26.9 27.0 26.5		27.0 27.9 27.5		27.5 27.9 28.0		26.5 26.5 28.3 29.7		26.3 28.3 29.3
d. yarn	Com- posite		Index		102 104 105		102 99 100		102		100		0000		108 106 104 104		102 96 103
Color-ZZs bicha	Yellow. ness		위		2.00		3.6		2.9 3.1 3.0		3.3 3.1 3.1		3.3 3.5 5.5		2.7 3.0 2.5 2.6		3.9
COTOL-2	Reflct- ance		조		83.5 85.0 85.3		84.3 83.2 83.5		83.3 84.3 83.0		83.5 83.2 85.0		83.2 83.5 83.7		85.8 85.5 83.7 83.8		85.6 82.7 84.8
gray yarn	Com- posite		Index		95 88 96		93 87 90		96 92 92		93		92 87 89		97 95 95		85 88 92
22s gra	Yellow-		위		11.0		11.2		11.2 10.3		11.5		11.2 10.4 10.1		10.0 10.1 9.7		11.1
Color -	Reflct- ance		낊		69.6		68.1 66.9 67.6		69.4 69.2 68.9		67.9 69.7 67.7		67.9 66.7 68.2		72.1 71.1 71.5 70.3		64.7
Spin-	ning Poten- tial		હ		80 77 78		82 82 73		77 83 78		11 EE		79 72 73		60 51 54 58		60 52 55
imprfctns.	50s or 12 tex		હ્યું	F Z	11 12 13	CENT	13 9	-	9 4 6	, L	10 8 13	L N	11112	L Z	11 11 8 18	*	10 14
Yarn im	22s or 27 tex		<u>.</u>) PERCENT	13 19 16	PER	16 15 12	PERCENT	13 13	PERCEN	8 12 18	PERCENT	14 16 12	PERCENT	19 14 12 24	O PERCENT	12 15 19
appearance	50s or 12 tex		Index	100	000	100	5 5 00 1 100	100	900	100	70 70 90	10	900	100	70 80 90 70	100	80 80 70
Yarn app	22s or 27 tex		Index		90 100 100		90 100 120		1100		100		1100		90 1110 110		100
\dashv	50s or 12 tex		Ret.		4.5		4 4 4 8 7 4		4.7		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4.4		1414		4.5
Yarn elongation	22s or 27 tex		Ret.	'n	6.1 5.7 6.2	ņ	6.2 5.3 5.9	.5	5.7	.5	5.8 6.1 5.9	ė.	5.7	19	5.8	.E 213	6.5
strength	50s or 2		Lbs.	ACALA SJ-2	50 47 48	ACALA SJ-2	644	ACALA SJ-2	48	ACALA SJ-2	47 48 46	ACALA SJ-3	50 47 45	DELTAPINE	333	STONEVILLE	31 33 33
Yarn stre	22s or 97 tex		Lbs.	AC	129 126 131	AC	129 123 127	AC	129 129 137	AC	128 127 125	AC	133 127 125	DE	108 108 106 106	S1	95
		Staple	32d In.		36 36		35 35		35 36 36		35 35		35 35		322		34
ton A	cation	St		z	40 41 41		41 41 31	<u>></u>	31 41 40		41		31 41 41	Q	31		P 42 41 51
e, Production Area,	Chronological sampling, and Classification	Grade	Code	EST CALIFORNIA SAN JOAQUIN	SLM+ SLM SLM	STRATFORD	SLM	TRANQUILITY	SLM+ SLM+	TULARE	SLM	VISALIA	SLW	WESTMORLAND	N T T T T	WEST TEXAS PECOS	SLW LT SP SLW LM
State,	Chro		Name	WEST CAL SA	W W W	ST	0,0,	1	0,0	7	0,0,0,	>	0,0,	ī	•	M. P.	

N 100 percent sele ted for tests, less than 100 percent in the area

Table 7..-Cotton, American upland long staple: Quality characteristics by production areas, crop of 1974

	Picker & Card		Pct.		9.0		7.9		8.4 10.0 11.5		8 8 8 4 7 0		7.8 7.9 9.6		8.1 9.3 10.5
ock	Composite	10100	Index		98		100		97 97 92		99 100 98		999		92 97 96
r of raw stock	Yellow-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	No.				ммм		ммм		m N m		m m m		m m N
Color	Gray-	2	No.		m ~ ~		727		226		222		คผต		666
Shirley Analyzer	Total		Pct.		444		3.1 3.1 3.7		0.44		3.6		3.1 2.9 3.9		3.1 4.0 6.1
Shirley	Visible		Pct.		9 9 9 9 9 9		2.3		3.5 4.6 6.6		2.9		2.3 1.9 2.8		4.3
	Elon- gation) / +	Pct.	=	8.0 7.1 6.7	5	4.00	-	7.0	=	6.6	=	6.8 7.3 6.0	<u></u>	6 6 5 9 8 8 6 9 8 8 8
strength	1/8"	200	G/tex	100 PERCENT	24 23 26	100 PERCENT	23 22 22	100 PERCENT	23	95 PERCENT	23	100 PERCENT	22 21 2 3	100 PERCENT	23 24
Fiber	Zero	9	Mpsi		83 83 82		83 83		83 86 86		81 82 82	-	80 79 79	Ī	98 80 0 80 80
	Micro- naire		Rdg.		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		4.3 4.1 4.2		4 7 7 7		3.6		4.2		3.5
Fibrograph	50/2.5	• 17111	Pet.		444		453		4 4 4 4 3 8 9		46 43 41		# # # # # #		9 4 4 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Digital Fi	2.5% span	TCIIB 011	In.	COKER 310	1.16	COKER 310	1.18 1.12 1.14	COKER 310	1.15	COKER 310	1.16	COKER 310	1.14	COKER 310	1.17
Area,	oling ion	Staple	32d in.		332	J	9 9 9 9 2 2	J	344	J	3 8 6 3 5 6	O,	36 35		36 36 36
State, Production Area,	Chronological sampling and Classification	Grade	Code	NE T	51 51		114		SP 42 SP 42 51	CAROLINA	111	ROLINA	41 51	TRAL PP I CI TY	5114
State,	Chronol and C	Gr	Name	SOUTH EAST ALABAMA GERALDINE	555	GEORGIA COMER	NTS STW	MADISON	SLM LT SLM LT LM	NORTH CA	SLM	SOUTH CARDLINA HARTSVILLE	SLM	SOUTH CENTRAL MISSISSIPPI MORGAN CITY	SCH

Table 7a.--Cotton, American upland long staple: Quality characteristics by production areas, crop of 1974--Continued

									-75	_					
dyed yarn	Com- posite		Index		106 104 102		108 109 100		107 99 101		105 104 96		107 106 105		106 106 101
88	Blue- ness		휘		26.3 26.0 25.5		26.5 26.9 25.6		26.5 25.3 25.9		26.4 25.9 25.1		26.9 26.3 26.6		26.5 26.1 25.3
Color -	Reflet		뀙		26.4 26.8 27.1		25.9 26.3 28.0		26.7 28.0 28.3		27.1 26.9 29.1		27.2 26.8 27.9		26.9 26.2 26.9
1. yarn	Com- posite		Index		98 98 103		98 105 103		103 100 103		101 99 102		111 104 102		99 104 106
Color-22s blchd.	rellow-		₽		3.2		3.4 3.2 3.1		3.1 3.5		3.0 3.3		3.1 3.1		3.1 3.0
Color-2	Reflct-Yellow		뀖		84.0 82.2 85.6		82.7 85.4 84.1		84.2 83.5 84.4		83.4 82.8 83.8		84.5		82.6 84.7 85.6
gray yarn	Com- I		Index		93 93 92		97 96 93		93		92 93 89		90 88		88 87
22s gra	rellow-	_	위		11.6		11.3 10.9 10.5		11.3 · 111.4 10.6		10.7 10.2 10.1		10.8 10.5 10.1		10.6
Color -	Reflct-		묎		67.7 68.5 68.6		70.2 69.9 69.3		68.2 69.1 67.3		68.7 69.8 67.9		67.5 68.7 67.8		66.4 67.2 67.6
Spin-	ning Poten-		No.		82 75 82		63 64 64		63 62 59		61 63		65 71 61		64
rfctns.	50s or 12 tex		§ 	E	20 15 19	=	12 24 14	=	12 12 24	=	18 18	=	13 10 16	=	14 9 21
Yarn imprfctns	22s or 27 tex		No.	100 PERCENT	22 18 24	100 PERCENT	15 30 18	PERCENT	18 13 35	PERCENT	17 23 28	PERCENT	13 15 20	PERCENT	18 9 28
appearance Y	50s or 2		Index	100	02 02 05	100	8 2 8 8 9 9	100	80 90 70	95	80 70 70	100	80 06	100	80 90 70
Yarn appea	22s or 50 27 tex 13		Index		1000		100		100 120 90		110		120 100 110		100 120 90
\vdash	50s or 2		Pet.		5.1 5.2 5.2		4.8		40.4		4 4 4 6 9 4		4.0		4.5
Yarn elongation	22s or 27 tex	_	Pct.	0	9 9 . 9	•	6.5 6.6		6.5.8	0	6.1 6.1 6.4	0	6.1	0	5.1 5.9 6.3
	50s or 12 tex		Lbs.	COKER 310	930	COKER 310	37 33	COKER 310	34 30 32	COKER 310	33 32 32	COKER 310	33 35 29	COKER 310	31 35
Yarn strength	22s or 27 tex		Lbs.	5	116 114 115	3	100	3	104 96 97	3	103 104 102	3	103 104 93	ວັ	100 104 108
					35 35		35 35		35 34 34		36 35		36 36 35		36 36
on Ar	ation	Staple	32d In		51 51		747		42 42 51	ANI	111	N N	41	 ≻	41 41 51
ducti	sific		Code	ST				z	T SP	CAROLINA		AROL		IPP I	
State, Production Area,	our onotogical sampling, and Classification	Grade	Name	SOUTH EAST ALABAMA GERALDINE	- 555	GEORGIA COMER	SLM SLM SLM	MADISON	SLM LT SLM LT LM	NORTH C.	SCH	SOUTH CAROLINA HARTSVILLE	SLA	SOUTH CENTRAL MISSISSIPPI MORGAN CITY	SLM

Table 7.--Cotton, American upland long staple: Quality characteristics by production areas, crop of 1974--Continued

	Picker & Card waste	Pet.		80 80 80 4 57 40				10 h m		G 01 10		•
		-				7.2 7.9 6.7 6.1		7.5 6.7 7.8		7.0		6.6 7.1 7.7 8.2
stock	. Composite color	Index		101 99 100		99 103 102 103		97 97 97		100		94 96 99 101
of raw stock	Yellow-	No.		w w u		m N N m		man		622		1555
Color	Gray- ness	No.		1 5 1								
		21				1 1 1		222		121		1553
Shirley Analyzer	Total	Pet.		3.2 2.8 4.5		3.2		2.3		25.2		2.7
Shirley	Visible waste	Pct.		2.2		2.1 1.8 2.5 1.9		1.3 1.5 1.6		1.6 1.5 1.3		1.7
	Elon- gation 1/8"	Pct.	_	7.6		4.0.0		6.4 5.7 5.7		6.4 5.8 5.6		5.6 5.3 1.3
strength	1/8" Gage	G/tex	90 PERCENT	23	PERCENT	25 26 28	PERCENT	25 26 26	PERCENT	26 29 25	100 PERCENT*	28 27 27 27
Fiber s	Zero Gage	Mpsi	5	883	75	91 89 94	10	92 97 95	90	0000	100	95 96 94
	Micro- naire	Rdg.		4.1 4.0 3.5		W W W W W W W A A		3.4		9.99 .59.90		4446
brograph	50/2.5 unif.	Pet.		44 43 43 43		2 4 4 4 2 4 4 5 3 4 4 5		7 7 6 7 7 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3	_	44 44 44		444 0440
Digital Fibrograph	2.5% span length	희	COKER 310	1.14	ACALA 1517-V	1.17 1.18 1.15 1.18	ACALA 1517-70	14 18 17	ACALA 1517-70	1.16 1.19 1.10	ACALA 1517-C	1.18 1.16 1.17
	ng 2 Staple	32d in.	COKE		ACALA	1.17 1.18 1.15 1.15	ACALA	1.14	ACALA	1.16	ACALA	1.18 1.16 1.17 1.17
on Area,	ampling ation	350		35		37 37 37		37 37 36		36 36 37		31 36 36
State, Production Area,	Chronological sampling and Classification Grade Sta	Code	RAL	41 41 41		4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		111		411		4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
State,	Chronol and C	Name	SOUTH CENTRAL TENNESSEE TRENTON	SLA	WEST NEW MEXICO ANIMAS	SLR SLR SLR	ARTESIA	SLA	BERIND	SLM	WEST TEXAS EL PASO	N H H H H S S S S S S S S S S S S S S S

* 100 percent selected for tests, less than 100 percent in the area

Table 7a.--Cotton, American upland long staple: Quality characteristics by production areas, crop of 1974--Continued

1	1	1						-01-					
22s dyed yarn	Com- posite	Index		108 103 103		101 102 95 99		001 001 90		102 101 96		104 98 97 95	
	Blue- ness	ণ		26.6 25.5 25.5		25.2 25.8 24.4 25.4		25.1 25.3 23.9		25.5 25.9 24.3		25.8 25.2 25.4 24.5	
Color -	Refleta	শ্র		26.3 26.5 26.5		26.9 27.8 28.2 28.2		27.1 27.6 29.9		27.2 28.2 27.7		26.7 28.3 29.1 28.5	
gray yarn Color-22s blchd. yarn	Com- posite	Index		101 104 108		109 105 103 105		98 106 102		103 105 103		102 100 105 100	
2s blck	rellow- ness	₽		33.5		3.3 3.4 3.1 2.8		3.8		3.4		3.5	
Color-2	Reflet-Yellow ance ness	ফ্রা		84.8 86.9		87.0 85.4 84.3		83.2 84.3 84.1		83.9 85.7 84.3		84.1 83.6 84.2 83.1	
y yarn	Com- F	Index		94 94 93		9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		87 93 90		95 90 93		87 85 87 91	
22 s		₽I		10.8 11.2 10.4		10.8 10.6 10.5 10.7		10.8 10.2 9.7		11.4 10.2 10.5		9.9 10.0 9.6 9.5	
Color -	Reflct-Yellow- ance ness	잼		69.2 68.7 69.6		67.5 69.6 67.8 70.2		65.8 69.7 69.0		68.7 68.5 69.5		67.5 66.1 67.9 70.2	
Spin-	ning Poten- tial	No.		65 65 71		Q-Q-80 80 Q-Q-80 80 80 80 80		94 94 85		91 84 77		85 94 88 86	
rfctns.	50s or 12 tex	No.	F Z	91 0 10	F	111 21 20 9	L N	14 21 10	F	14 14 26	*1	111111111111111111111111111111111111111	
Yarn imp	22s or 27 tex	No.) PERCENT	22 20 15	5 PERCENT	15 23 20 17	PERCENT	17 26 17	PERCENT	19 21 31	PERCENT*	22 16 17 18	
earance	50s or 12 tex	Index	06	020	75	80 70 90 90	10	07 07 07	90	70 70 70	100	90 70 80	
Yarn appearance Yarn imprfctns	22s or 27 tex	Index		100 90 110		100 90 100 110		90 80		900		100 110 90 100	
ngation	50s or 12 tex	Pet.		4.6		4.9 5.2 5.1 5.1		4 4 4 4 8 00		4.4		444 7.7.4	
Yarn elongation	22s or 27 tex	Pet.		6.1 6.2 6.6	V-71	6.09 6.09 7.09	07-71	6.0 6.1 6.0	07-71	6.1 6.0 5.8	17-C	5.6	
	50s or 12 tex	Lbs.	COKER 310	35 35 35	ACALA 1517-V	4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ACALA 1517-70	4 4 4 2 0 0	ACALA 1517-70	847	ACALA 1517-C	44 47 40 40 40	
Yarn strength	22s or 27 tex	Lbs.	3	106 107 107	A	135 138 129 131	AC	125 132 126	A(130 123 118) W	120 132 126 126	
		2 EI		35		37 37 37		37 37		36 36 37		37 36 36	
ion Are	sampli	Staple 32d In.	1	4 t t t t t t t t t t t t t t t t t t t		444		4 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		411		411	
State, Production Area,	Chronological sampling, and Classification	Grade Name Code	SOUTH CENTRAL TENNESSEE TRENTON	SLM SLM SLM	WEST NEW MEXICO ANIMAS	### 878 878	ARTESIA	SLM	BERINO	SLM	WEST TEXAS EL PASO	SCE	

* 100 percent selected for tests, less than 100 percent in the area

Table 7b.--Cotton: Combed yarn processing test results for long staple varieties, by state and market area for samples of modal quality, collected at triweekly intervals, crop of $197l_{\perp}$ --Continued

										-62-						
Vous immonstations	eri ecorous	50s or	TZ rex	No.		7 10 10		125		4 5 11		~ 4 6		N N 40		7 8 8
yar, caro'	Tarm Turbi	22s or	z) rex	No.		100		6 14 6		9 9 1 4 1		11 7 13		~ 89		13
	D)	Average		Index		105 100 95		105 90 110		105		105 110 100		100 105 105		110 115 90
	iarii appearance	50s or	TZ rex	Index		06 6 6		90 80 100		90 100 90		100 100 90		90 100 100		100 100 80
		22s or	Z/ rex	Index		120 110 100		120 100 12¢		120 120 110		110 120 110		110 110 110		120 130 100
40:+00	garton	50s or	TZ new	Pet.		N N N 2 N 4		5.2 5.2 5.1		5.0		4 0 0 0 0 0		4 5 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		444
TO COMON	iarn erongacton	22s or	z/ rex	Pct.	O PERCENT	7.0	100 PERCENT	6.8 6.6 7.2	O PERCENT	6.3	5 PERCENT	6.5 6.8 7.2	100 PERCENT	200 200	100 PERCENT	8 0 8 8 0 8
1+2	ig ou	Average Break	Factor	No.	100	2674 2602 2591	10	2511 2334 2359	100	2417 2240 2348	σ	2406 2417 2392	10	2370 2417 2171	10	2428 2406 2486
- 1 '	n skein strengtn	50s or	12 tex	Libs.		4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		45 41 42		43 42 42		443 423	•• -	42 43 38		4 4 4 8 8 8 8 8
V	Iar	22s or	Z/ tex	Lbs.		134 132 131		126 119 119		122 115 118		121 122 122		120 122 111		123 121 126
		Comber		Pct.	COKER 310	15.6 19.2 15.2	COKER 310	16.8 18.3 17.0	COKER 310	17.7 17.1 17.2	COKER 310	17.9 17.6 18.7	COKER 310	19.3 15.2 17.0	COKER 310	19.7 17.4 18.1
	ea, ng	20 20	Staple	32d in.	J	22 22 22 23 24 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 2	J	3 S S	U	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	o	36 36 35	0	36 36 35	Ü	36 36
	State, Production Area, Chronological Sampling	and Classification		Code	. Ψ	51 51 51		41 41 41		SP 42 SP 42 51	CAROL I NA	41 41 41	SOL INA	41 41 51	TRAL PP I CI TY	41 41 51
	State, Pr	and Cla	Grade	Name	SOUTH EAST ALABAMA GERALDINE	Z E E	GEURGIA	S C S C S C S C S C S C S C S C S C S C	MADISON	SLM LT SLM LT LM	NCRTH CAR	SLA	SOUTH CAROLINA HARTSVILLE	SLM SLM SLM	SOUTH CENTRAL MISSISSIPPI MORGAN CITY	SLM

Table 7b.--Cotton: Combed yarn processing test results for long staple varieties, by state and market area for samples of modal quality, collected at triweekly intervals, crop of 1974-Continued

								- 63-					
Yarn imperfections	50s or	12 tex	No.		2 8 4		4000		7 12 6		6 12 12		กกกก
Yarn imp	22s or	27 tex	No.		88 ~		7 7 8 8		7 13 10		1 13 14		0400
je.	Aronogo	not ago	Index		110 95 100		105 95 100 110		95 80 100		95 95		100 110 105 110
Yarn appearance	50s or	12 tex	Index		006		90 80 90 100		90 70 100		900		90 100 100 100
Ya		27 tex	Index		120 100 110		120 110 110		100 90 100		100 100 100		110 120 110 120
gation	50s or	12 tex	Pct.		8 55 C		የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ		4.7.4		5.2		042V
Yarn elongation	22s or	27 tex	Pct.	90 PERCENT	6.6 6.8 7.2	75 PERCENT	0.40.0	70 PERCENT	6.5	90 PERCENT	6.6 6.5	100 PERCENT*	40 S S S
gth	Average Break	Factor	No.	ŏ	2511 2522 2461	1	3105 3094 2989 3036	ī	2942 3025 3014	Ō	2945 2895 2815	10	2793 3025 2989 2920
skein strength	50s or	12 tex	Lbs.		4 4 4 N N W		55 55 55 57		55 55 55 55		54 52 51		51 55 53
Yarn	22s or	Z/ tex	<u>lbs.</u>		126 127 126	,	155 154 149 151	0	147 150 149	0	145 145 140		138 150 149 145
	Comber		Pct.	COKER 310	17.6 18.0 17.3	ACALA 1517-V	13.7 14.0 16.0 15.3	ACALA 1517-70	17.5 14.0 17.3	ACALA 1517-70	15.8 15.3 16.7	ACALA 1517-C	10.8 14.8 15.8
ea,	ng Bu	Staple	32d in.	000	35 35 35	AC	37 37 37	AC	37 37 36	AC	36 36 37	AC	37 36 36
duction Ar	ronological Sampli and Classification		Code	4	144		4 4 4 4		4 4 4 1		144		4 4 1 1 1 1 1 1 1 1 1 1
State, Production Area,	Chronological Sampling and Classification	Grade	Name	SOUTH CENTRAL Tennessee Trenton	SLA SLA SLA	MEST NEW MEXICO ANIMAS	NTS SEE	ARTESIA	SER	BERIND	SLA	WEST TEXAS EL PASO	SLT

* 100 percent selected for tests, less than 100 percent in the area

Table 8.--Cotton, American Pima extra long staple: Quality characteristics by production area, crop of 1974

		£ı,															
		Comber		Pct.		16.6 16.8 17.5		17.0 18.0 18.9		16.3 18.1 17.6		16.6 18.3 20.1		16.8 17.6 18.3 19.2		18.9 19.4 20.8	
	Diologi	& card	200	Pet.		7.3 8.4 9.1		7.1		7.4		7.1 7.6 8.8		7.4 7.0 7.7 8.6		6.9 8.8 10.1	
100+0	LOCK	Com-		Index		88 88 <u>8</u>		8 8 8		93.86		91 87 88	ě	88888 8888		888	
40	OI Law	Yellow-		No.		9 K/9		· · · · · · · · · · · · · · · · · · ·		200		ろろろ		ろろうろ		000	
*0[0]	3703	Gray-		No.		च चच ं		구 구 구		ナの た		a a a		いせなせ		NON	
Chimles Anolymeen	MIGTAZEI	Total	70	Pct.		000 000 000		 		3.6		1.6		9.9.6.4 9.8.9.4		a e e e e e	
Gh i m loss	SHITTES	Visible		Pct.	rcent	1.4	Percent	2.1	rcent	2.3	90 Percent	1.0	rcent	1.1.1.9 8.1.8	100 Percent*	1.0	
	Ę	gation	2/-	Pct.	100 Percent	7.5	100 Pe	488	100 Percent	6.00 7.00 8.00	% %	6.6	100 Percent	7.5	100 Pe	7.0 6.7 7.3	
4+500	or enging	1/8"	0	G/tex		35 35 35		33 38		32.33		೯೪೪೪	f	80 84 0 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 8		8888	
Tibos.	- 1	Zero	0	Mpsi		10 2 96 95		101		103 101 103		103 101 <i>9</i> 7		99 101 101 99		100 95 96	
		Micro- naire		Rdg.	4-8	20.00 4.00.00	S-4	3.8	3-h	4 5. 3.4. 1.0. 1.0.	7-8	8.8. 9.5.	†-S	8888 8888 8888 8888 8888 8888 8888 8888 8888	S-4	3.0	the the
1	Teng ut	Coeff.		Pct.	Pima S-4	82.87.85	Pima	32 32	Pima S-4	30.33	Pima S-4	36 33	Pina S-4	32 34 35	Pima	35 35 35	7
V	Array lengun	Upper	,	In.		1.48		1.48		1.46 1.47 1.48		1.46 1.43 1.39		1.46		1.42	OC 2044 2001
	ъ, Т		Staple	32d in.		777		11 11 11 11 11 11		779 779		## ##		李李李李		‡ ‡‡	
	State, Production Area,	Chronological Sampling and Classification															* 100 most of 60+00 ton tong to *
	ate, Produ	ronological Sampli and Classification	Grade			###	Grande	444	Queen Creek	4 で 4	ICO	m 4 4	XAS	トヤヤン		せい た	on thousand
	St	ch.		ST	ARIZONA Bowie		Casa		Queen		NEW MEXICO		WEST TEXAS Fabens		Pecos		* 000

* 100 percent selected for tests, less than 100 percent in the area

Table 8.--Cotton, American Pima extra long staple: Quality characteristics by production area, crop of 1974-- Continued

							- 65-						
50s dyed yarn	Com- posite	Index	102 100 99	957		97 101 100		104		100 101 102 96		103 98 92	
Color - 50s	Blue	위	25.8 25.8 25.4	24.7 25.4		25.3 25.3		25.5 25.5 25.5		25.2 25.5 25.5 25.5		25.6 25.6 24.8	
ပိ	Reflect	묎	27.7 28.7 28.2	28.9)	29.5 29.0 4.88		26.1 28.8 28.7		27.4 26.7 27.2 29.8		26.7 29.2 30.5	
ned yarn	Com- posite	Index	100 97 99	99		103 100 102		1000		101 103 101 100		98	
Color-50s bleached yarn	Yellow- ness	위	8 8 4 6 6 0	w w w)	8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		0,00°E		3446		3.7	
Color-5	Reflect. ance	<u>R</u>	83.9 83.0 84.2	83.7 83.5 84.1		85.5 83.6 84.2		84.5 84.2 83.5		82.7 85.9 85.1 84.0		84.1 84.3 84.5	
yarn	Com- posite	Index	88 88 86	88 88		855		86 87 85		88 88 88 88		888 89	
50s gray yarn	Yellow- ness	+p	12.9 12.7 13.6	l2.4	ent	12.8 12.6 12.3	ent	12.6 12.7 12.5	sent	12.5 12.6 12.7 12.8	ent*	12.6 12.8 13.4	
Color -	Reflect- ance	Rd +1	63.1 63.7 61.4	100 Percent 64.1 12 66.2 12 64.8 12	100 Percent	64.1 67.4 66.7	90 Percent	63.2 63.3 62.4	100 Percent	61.3 62.3 64.7 63.6	100 Percent*	61.0 63.7 63.2	
rfctns	80s or 7.4 tex	No.	нчε	ппп		нон		нαн		ччак		ロシュ	
Yarn imprfctns	50s or 12 tex.	No.	нчю	404		8 4 4		a m m		нмим		0000	
pearance	80s or 7.4 tex	Index	110 120 110	110		120 120		011		120 120 120		001	area
Yarn app	50s or 12 tex	Index	011	120 110	-4.1	110 110 120		110 110 110	-+1	0110	+1	110	
Yarn elongation Yarn ap	80s or 7.4 tex	Pct. Pima S-4	4.0.80	Pima S-4 4.5 4.4 4.8	Pima S-4	4.3	Pima S-4	8.8.8.	Pima S-4	7444 0.800	Pima S-4	4.8 4.6 5.0	percent
Yarn el	50s or 12 tex	Pct.	5.5. 2.7.8	となって		7.7.7. 7.6.7.		5.7		ง ง ง ง ง ง ง		5.5.7 5.8.4.9	han 100
Yarn strength	80s or 7.4 tex	Lbs.	34	922		36 36 37		35 34 33		34 34 35		34 33 34	s, less t
Yarn st	50s or 12 tex	Lbs.	63 62 62	68 67 66		65		65 62 62		79 79 79 79		45 60 64 64	for test
n Area,	npling tion Staple	32d in.	\$ \$ \$ \$	444		4 44		4 44		444 4		††† †††	elected
State, Production Area,	Chronological Sampling and Classification Grade Stapl	WEST ARIZOWA <u>Bowie</u>	<i>ਸ</i> ਸ ਸੋ	Casa Grande th th	Queen Creek	ታ የንታ	NEW MEXICO Las Cruces	r t t	WEST TEXAS Fabens	いななな	Pecos	ナ いユ	* 100 percent selected for tests, less than 100 percent in the

Table 9.--Cotton: Results of simple correlation analyses for the fiber and processing tests performed on 57 short staple samples collected at triweekly intervals from selected gin points, crop of 1974

								-	66 -								
	Spinning Potential	No.	6.5	+.21 +.74	+.67 +.10 30	14 +.60 +.53	+.37	53 +.18 +.55	17		+ + 94.94	+.75 +.78	16	+.18 +.22	+ .41 + .40 + .47	02 +.03 04	47 +.20 +.35
	Picker & card waste	Pct.	7.25	62	33	22	+.66	+.11 +.07 10		17	06	+.08	37	÷ ÷ 52	05 +.29 +.07	+.15 +.07 +.10	+.16 48 41
tock	Com- posite	Index	92.5 6.3	+,45	+.22 +.11 51	32 +.27 +.49	+.17	+.22	10	+.55	+.73	+.74 +.65		+.18 +.24	+.72 +.53 +.77	+.13 27 +.24	4+ 4+. 4+.
Color of raw stock	Yellow- ness	No.	3.6	+.18 +.30	+.07 16 17	+ + .02	+.07	20	4.07	+.18	+.22	+.16 +.09	10 08	+.04 +.11	0 ⁴ +.56 +.12	03	25 02 +.10
Colo	Gray-	⊗	3.1	46 34	- 24 + . + 5	+.32	10	20	TT-+	53	70	71	+.12 +.08	18 24	72 47 75	20 +.23 27	+.43
nalyzer	Total waste	Pct.	3.95	+.07	08	- + - - + - - + - 06 - + - + 2	+.95	15 +.03 +.20	+.71	+.28	+ + 30	+,45	50	+.65	+.18 +.49 +.33	02 +.03 04	+ .06 26
Shirley Analyzer	Visible waste	Pct.	2.53	56 +.16	+.01 05 59	32 +.18 +.38	+.95	10 +.07 +.17	99*+	+.37	+.40 +.37	† †	45	+.56	+ + 11 + . 49 + . 26	04 +.01 05	02 21 14
	Elon-gation $1/8$ "	Pet.	69.	03		+.28	+.38	49	90*+	+.53	+.62	+.78 +.80	53	+.61	+ + + + 6 + + + 9 + + 9	40.4	30 +.12 22
trength	1/8" gage	G/tex	20.7	+.21	+.70 +.28 +.15	+.12	+.18 +.06	33 +.06 +.27	LO	9.+	+.55	777°+	01	+.01	+.28 +.11 +.28	+.09	30 +.12 +.22
Fiber strength	Zero gage	Mpsi	82.5 4.4	÷.00.	+.02 +.12 +.53	+.12	32	+.32	22	14	27	51	+ + 38	61	22 17 24	1.02	+.12
	Micro- naire	Rdg.	3.8	+.26 +.02	+.18	+.53 +.15 50	59	+.45	36	30	49	61	+.60	79 19	38 63 54	+0.+ +0.+ +0.+	02 +.26 +.19
ength	50/2.5 unif.	Pct.	43.8 1.4	+.14	+.03	+ + . 28 06	05	16 	40	+.10	+ + 05 + 05	04	++++	43 47	01	+ 11	26 +.38 +.37
Fiber length	2.5% span	崩	84.	+.32 +.81	+.03	+.02	+.01	2 ⁴ +.07 +.22	33	19.+	+.57	64°+	.10	+ + 05	+.25	02 +.10 08	36 +.16 +.28
	Staple	32d in.	30.9	+.29	+.81 05 +.02		+.16	3 ⁴ +.30 +.33	22	+.74	†9°+	+.51	08	+.14 +.19	+.21 +.23 +.24	+.05	41 +.18 +.33
	Grade	Index	87.8 5.3	+.29	+.32 +.14 +.26	+.20 +.21 03	56	49 +.18 +.45	62	+.21	+2.+ +2.+	+.16	+.34+.45	51 44	+.32 01 +.24	+.05	.30
	Item	Distriction of	Sample Distillation. Standard deviation (±) Correlation Coef. for:	Classification: Gradeindex Staple32d inches	2.5% spaninches 50/2.5pct	Zero gageMpsi 1/8" gagegrams/tex Elongation (1/8")pct	Visible wastepct	Character of raw stock: Crayness	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 8s (74 tex)pounds 22s (27 tex)pounds	8s (74 tex)pct	as (74 tex)index 28 (74 tex)index 28 (77 tex)index	8s (7th tex)	ReflectanceRd Yellowness+b Compositeindex	ReflectanceRd Yellowness	ReflectanceRd Bluenessb

, ,																	
l yarn	Com- posite	Index	98.1	 36 + . 33	+.28 +.37 +.19	+.22	14	45 +.10 +.43	41	+.35	+.25	+.27	+.16	27 24	+.21 +.19 +.19	+ · · · · · · · · · · · · · · · · · · ·	79
22s dyed yarn	Blue- ness	위	25.1	+.50	+.16 +.38 +.26	01 +.12 +.12	21	+.35	48	+.20	+.09	+.11 +.04	+.25	- 38	+ + + - 08 + - 09		47
Color -	Reflect- ance	띪	28.1	30	36	+ 12	+.06	+ + + + 5	+.16	24°-	40	42	+ 05	01	27	+.22	74°-
ed yarn	Com- posite	Index	97.5	+,10	08 +.16 +.04	+ + 0.0	05	27 .00 +.24	+.10	†o	02	+.01	+.14	12	+.05	+.87	15 +.19 +.21
Color-22s bleached yarn	Yellow- ness	₽Ι	8.00	13 +.03	+.10 11 03	15 +.09 +.09	+.03	+.23	to.+	+.03	90.++	.00*	12	+.17	13	10	+.22-43
Color-2	Reflect- ance	띪	83.2	+.05	4	02 +.13 04	0 ⁴	20	+.15	02	+.02	10°+ 40°+	+.10	05	01	10	90. +
yarn	Com- posite	Index	89.3	+.24 +.24 +.24	+.20	+.28 +.49	+.26	+.12	4.07	4.47	+.65	+.67	23	+.39	+.95	07 18 +.02	+.09
22s gray yarn	Yellow- ness	위	4.11	+.01	01 11 63	17 +.11 +.30	+ + + 649	+.56	+.29	+.40	94°+	+ .50	39	+.33	+.27	18	+ + + + + + + + + + + + + + + + + + + +
Color -	Reflect- ance	Rd.	2.7	+.31	+.25		4.11	72 04 +.72	05	+.41	+.60	+.60	11	+.32	+.27	01	27 +.12 +.21
\vdash	Fine F	No.	26.8	4 ⁺ .	49°-	+.56	+.58	+ · · · · · · · · · · · · · · · · · · ·	+.53	+.22	+.35	+.54	72	40.+	+.31 +.37 +.39	07 +.08 09	07
Yarn imprfctns	Coarse 8s	No.	43.8 21.1	51 +.14	+.05	1.61	+.56	18 +.04 +.18	+.52	+,18	+.32	+.51	7 ⁴	\$.+	+ + +	05 +.17 12	01
arance	Fine (Index	90.9	+,45	+.20 +.41 +.57	+ + .28	41	+.08	64	01	12	28	††**+	67	26	05	64.4.
Yarn appearance	Coarse 8s	Index	113.0	+.34	-10 +.40 +.60	+.58	45	+.12	37	16	28	48	†† †	74	11	+.10	+.02+.16
_	Fine 22s	Pet.	w.æ.	+.07	+.49	55 +.44 +.80	+.44+	+.09	05	+.78	+.88 +.81	+.95	50	+.57	+.55	+.0 ⁴ +.11 02	37 +.04 +.20
Yarn elongation	Coarse	Pet.	2.5	+.16 +.51	+.42 04 61	51 +.40 +.78	+.44	71 +.16 +.7+	+.08	+.75	+.89	+.95	48	+.5	+.60	+.01	42 +.11 +.27
	Fine 22s	Lbs.	10.2	+.27 +.69	+.61 +.06 37	+.64	+.37	+ + . 63	12	46.+	+.95	+.81	15	+.21	+.55	+.01	+.25
Yarn strength	Coarse	Lbs.	297.4 26.1	₹.+ +.+	+.57 +.02 49	27 +.55 +.62	+.40	+.22	90	+ 88	+.95	+ + 88	28	+.32	+.60 +.46 +.65	+.02	+ . 25
	Item	Sample Distribution:	Mean	Gradeindex Staple32d inches Fiber length:	2.5% spaninches 50/2.5pct Micronairereading Fiber strength:	Zero gageMpsi 1/8" gagegrams/tex Elongation (1/8")pct Shirley Analyzer:	Visible wastepct Total wastepct Color of raw stock:	GraynessNo. YellownessNo. Compositeindex	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 8s (74 tex)pounds 22s (27 tex)pounds Yarn elongation:	8s (74 tex)pct 22s (27 tex)pct Yarn appearance:	8s (7t tex)index 22s (27 tex)index Yarn imperfections:	8s (74 tex)	ReflectanceRd Yellowness+b Compositeindex Color-22s bleached yarn:	ReflectanceRd Yellowness+b Compositeindex Color - 22s dyed Yarn:	ReflectanceRd Bluenessb Compositeindex

Table 10.--Cotton: Results of simple correlation analyses for the fiber and processing tests performed on 299 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1974

								•	-00-								
	Spinning Potential	No.	62.5	+.37	+.62 +.36 10	+.32 +.53 +.10	2 ⁴	40 06 +.41	94		+.85	+ 4.39	+.16 +.13	29	+.26 +.07 +.28	+.08 12 12	38 +.14 +.26
, 51° 40	& card	Pet.	6.31	63	31 25 17	17 31 11	+.68	+.39 04 43		94	36	1 41	25	+.42		+.16 +.04	+ .26 -32 -32
stock	Com- posite	Index	97.9	+.73	+.31 +.17 03	+.17 +.36 +.18	84·-	±6 70:-	43	+.41	+.51 +.49	+.33	†°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	20	+.73 +.07 +.74	+.07 18 +.16	21 +.20 +.23
Color of raw s	Yellow- ness	No.	8.0	+.07	16 +.19 +.14	+.20 +.10 19	.00	+.13	†O • -	90	+°01 +°07 +°07	24 19	13 14	+ + 08 - 08	26 +.70 +.06	22 30	09 +.09 +.10
Colo	Gray- ness	힕	0.6.	68	29	14 34 18	+,4,1	+.13 94	+.39	04	64 64	33	03	+.21 +.19	72 02 69	10 +.19 17	+.22
alyzer	Total waste	Pet.	3.09	71	18 27 28	29	+ 93	+,44	+.73	29	29	+.05	24	9ħ°+	26 26	+ + - 23	- 23
Shirley Analyzer	Visible waste	Pct.	2.12 .82	65	14 13 14	24 28 05	+.93	++,+,-	+*68	42.−	23	+.01	18	+.41	26 +.14 19	01 +.18 08	+.07
- u O [4	gation 1/8"	Pet.	6,49 .81	+ + 03	+.21 34 18	64	05	18 19 18	11	+.10	12 14	+.69	†0°+	70	+.14	+.21 11 +.23	15 +.17 +.19
rength	1/8" gage	G/tex	23.1	+.40	+.35	+.74	28	34 +.10 +.36	31	+.53	+.7 ⁴ +.73	16 +.09	+.10 +.1 ⁴	18	+ + 24 + 12 + 28	06	88.5
Fiber strength	Zero gage	Mpsi	84.9 5.9	+.30	+ + + + 252 + 26	†9°-	24	14 +.20 +.17	17	+.32	+ . 52 + 449	50	+.10	. 20	+ + 23	1.02	07 01 +.01
	maire	Rdg.	4.0	+ + 80.	+.16	+.26 +.20 18	1 ⁴	+.02 +.1 ¹ 4 03	17	10	05	24°-	64°+	44	+ + 08	15	26 +.41 +.39
ength	50/2.5 unif.	Pct.	14°14 1°8	+.33 +.24	+.21	+ + 23	13	15 +.19 +.17	25	+.36	54°+	31	+.35	38	+ + 21 + 20 + 20	1.10	+ + .37 + .31
Fiber length	2.5% span	il.	1.10	+.30	+.21 +.16	+.11 +.35 +.21	1 ⁴	29 16 +.31	31	+.62	4.54 4.49	+.34	+.19 +.11	20	+.32	+.18 +.22 +.21	+ + .3 + .31
	Staple	32d in.	34.7	+.23	+.72 +.24 +.09	++.15	17	+ · · · ·	26	+.55	+.55	+.28	+.24	22	+.26	+.17 18 +.22	+.09
	Grade	Index	91.9	+.23	. 23 23 23 23	0.04.4.	65	68 +.07 +.73	63	+.37	+.42	+.07 +.1 ⁴	+.19	41 38	+ + + 53		+ .23
	Item	Sample Distribution:	Mean Standard deviation (#). Correlation Coef. for Classification.	Gradeindex Staple32d inches Fiber length:	2.5% spaninches 50/2.5 unifpct Micronairereading Fiber strength.	Zero gage	Visible wastepct Total wastepct Color of raw stock:	GraynessNo. YellownessNo. Compositeindex	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds Yarn elongation:	22s (27 tex)pct 50s (12 tex)pct Yarn Amparance:	228 (27 tex)index 50s (12 tex)index Yarn imperfections:	22s (27 tex)	ReflectanceRd Yellowness+b Compositehdex Color-22s bleached varn:	ReflectanceRd Yellowness+b Compositeindex Color - 22s dyed yarn:	ReflectanceRd Bluenessb Compositeindex

	,							·69 -								
varn	Com- posite	Index 102.6 4.6	+.29	+.31 +.31 +.39	+.01 +.08 +.19	23	+.102	32	+.26	+.10	+.02	+.37	35	+.15	+.09	82 +.93
22s dyed yarn	Blue-	25.8 25.8	+.27	+ + . + . + . + . + .	01 .00 +.17	20	+ - 18	28	+.14	03	03	+.31	32	+ + + 23	+.13	55
Color -	Reflect- ance	Rd 27.3 1.0	23	29	07	+.07	+.22 09	+.26	38	28 24	10	36	+.29	.19	- 12 - 22 - 23 - 23	
Color-22s bleached yarn	Com-	Index 102.5 3.4	+.09	+.21 03	+.23	08	17	†0°+	+.12	+.04	4.2 11.+	+.18 +.11	08	+ - + 583	+.87	+ + - 23
s bleach	Yellow- ness	की हैं. इ.इ.		22 14 34	02	+.18 +.21	+.19	+.16	12	03	†°.+ †°.9°.	3 ⁴	+.29 +.34	32 +.16 24	09	+.22
Color-22	Reflect- ance	Rd 84.2 1.3	03	+.18 10 15	13 06 +.21	+.08	10 22 +.07	4.11	+.08	+.02	+.25	+.03	+.05	+.13 .00	09	12 +.13 +.09
y yarn	Com- posite	Index 91.1 4.3	+.54	+.23	+ + 28 + 08	19	4.7.+	23	+.28	+.37	+. +.2.+	+.05	18	+.87	.00 +2 +.12	+ + 26
22s gray yarn	Yellow- ness	라. 10.6 6.	+.05	+ + .09	+.23	†1°•	05 +.70 +.07	03	to•+	+.07 +.07	17	12	+ + + +	12	+.16	+ + - 23
Color -	Reflect- ance	Rd. 68.2 2.1	+.53	+ + .32	+ + + + + + + + + + + + + + + + + + +	26	72	23	+.26	+ 32	+.24 +.30	+.10 +.09	 3	12	+.13	10 +.19 +.15
rfctns	Fine 50s	No. 14.3 5.6	38	45. - 54. - 525.	20	+.37	+ + 19 + . 08 - 18	+.39	32	2 ⁴	+.11	70	4.91	21 +.08 16	+.02 +.34 11	+.37
Yarn imprfctns	Coarse 22s	No. 18.6 6.8	41 22	200 38	. 20	+•41 +•47	4.10	+,42	29	19	+.12	63	+.91	+.09	+ + 1	1 : 32
arance	Fine 50s	Index 79.2 9.7	+.15	+ + + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6	+ + 13 + 17 + 0; -	15	02 14 +.03	18	+.13	+.11	13 14	+2.74	62	600.	02 28 11.+	24 +.22 +.26 +.26
Yarn appearance	Coarse 22s	Index 100.1 12.6	+.19 +.24	+ + + + + + + + + + + + + + + + + + + +	+ + + 10 + 0+	18 24	03 +.04	25	+,16	+.07	11	+24+	63	+10	+.03	+.31
ngation	Fine 50s	Pct. 4.5	+.1 ⁴ +.26	+.32	+.09	05	+ - 19	±1	64.+	+.48	+.80	20 14	+.13	+ .30	+ + + 06. + . 111.	21.
Yarn elongation	Coarse 22s	Pet. 6.3 .6	+.07	+.34	50	+.01	33 +.33 +.33	11	+.39	+.29	+.80	1.13	+.12	+.24 17 +.14	+ + . + .04 + .25	10 +.03
	Fine 50s	Lbs. 36.1 6.1	+.39	+ .45	+.49 +.73 14	28	74°+ +00+ +01-	33	+.81	96*+	+.25	+ + 08	18	+.32	01	24 07 +.06
Yarn strength	Coarse 22s	106.1 11.4	+.42	+ .54	+.52 +.75 12	23	49 +.01 +.51	36	+.85	96°+	+ + + + + 8	+.07	19 24	+.36 +.07 +.37	+.02	28 03 +.10
	Item	Sample Distribution: Mean	Gradeindex Staple32d inches	1.05 spaninches 2.5% spanprc 50/2.5 unifpct Micronairereading Fiber strength:	Zero gageMpsi 1/8" gagegrams/tex Elongation (1/8")pct	Visible wastepct Total wastepct	GraynessNo. YellownessNo. Compositeindex	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds Yarn elongation:			228 (27 tex)No. 50s (12 tex)No. Color - 22s gray varn:	ReflectanceRd Yellowness+b Compositehdex	ReflectanceRd Yellowness+b Compositehdex	ReflectanceRd Bluenessb Compositeindex

Table 11.--Cotton: Results of simple correlation analyses for the fiber and processing tests performed on 35 long staple samples, collected at triweekly intervals from selected gin points, crop of 1974

									-70-								
	Spinning Potential	No.	75.2	÷. +. 7.0	+.53	+.7 ¹ 4 +.80 41		31 49 +.31	62		%°+ %°+	+.28 +.64	35	80	+.01 19 09	+.13	+.32 51 48
	Picker & card waste	Pet.	8.2	71	32 41 +.15	50	+.85	+ + + 29 48		62	†9 . -	+.01 24	+.20	+.17	+.05 +.05	03 +.19 12	05 +.21 +.16
tock	Com- posite	Index	98.2	+.46	90°+ 20°+ 91°-	+.11 +.27 +.04	36	88	34	+.31	+.37	- + + 14.	01	08	+.68 +.05 +.57	+.08 15 +.14	+.06 26
Color of raw stock	Yellow-	No.	9.9	25	27 26 +.41	53 +.58 +.53	+.37	+.31	+.29	64	- 49	.00	+ + 08 .08	14 08	21 +.71 +.25	03	40 +.57 +.55
Colo	Gray-	હ્યુ	1.9	41	+.05 11 +.47	26	+.32	+.31 88	4.2 ⁴	31	.39	34 37	+°01	+.06	56 +.03 44	02 +.20 11	13 +.45 +.35
nalyzer	Total	Pct.	3.46	78		49 43 +.35	16. +	+ + 50	+.85	94	50	+.16	+.14 +.02	+.19 +.24	13 +.08 05	+.08	13
Shirley Analyzer	Visible waste	Pct.	2,42 .90	99	27 44 +.04	55 50 +.44	†6 ° +	+.32+.37	+.85	54	55	+.12 07	+.19 +.04	+.17	+ + .06	04 +.28 16	- + + - 28 - 26
	Elon- gation 1/8"	Pet.	6.37	30	+ .12	71	+,44	+.05	+.28	-,41	41 40	+.38	+.0 ⁺	07	+ .16 + .46 + .48	+.02	+.46
rength	1/8" gage	G/tex	2.2	+.20	+ + + • + • • • • • • • • • • • • • • •	+.75	50	26	64	÷.8	÷ ÷ • 81	+.11	38	+.16 +.04	+.09 33	+.11 03 +.10	+.38
Fiber strength	Zero gage	Mpsi	96.9	+.37	+.50	+.75	55	23 53 +.11	50	+2.4	+ . 80 + . 79	12	+.04	03	13 41 32	14 38 +.03	+.51 62 64
	Micro- naire	Rdg.	9.6	+.13 34	01 +.14		†0°+	24°+ 14°+ 1940-	+.15	55	57	62	+.34	31	. 25 . 10 . 10	30	. + + 586.
ength	50/2.5 unif.	Pct.	43.8 1.5	+ + .56	+.51	+.51	††•• ††••		-,41	64.+	6 [†] •+	.00	+ .22	25	14 10 19	41	+.04
Fiber length	2.5% span	lh.	1.15	+.24 +.35	+.51	+ + 50	27	+.05	32	+.53	+ . 53	+.20	+.04 +.04	31	÷ .09 .00.	08	+.08 01 04
	Staple	32d in.	35.8	+.52	+.35 +.56 +.34	+ 69	66		69	+.70	+.75	+.03	19 +.11	1	15	+ 1 + 1 + 20	+.15
	Grade	Index	3.5	+.52	+.24 +.36 +.13	+.37 +.20 30	80	41 25 +.46	71	+.26	+.32	15	+.10 +.10	30	+.19 16 +.06	+.03	+.09
	Item	Sample Distribution:	Mean Standard deviation (±) Correlation Coef. for: Colassification:	Graphe32d inches	2.5% spaninches 50/2.5 unifpct Micronairereading Fiber strength:	Zero gageMpsi 1/8" gagegrams/tex Blongation (1/8")pct	Visible wastepct Total wastepct Color of raw stock:	GraynessNo. YellownessNo. Compositeindex	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds Yarn elongation:	22s (27 tex)pct 50s (12 tex)pct Yarn Ambearance:	22s (27 tex)index 50s (12 tex)index Yarn imperfections:	22s (27 tex)No. 50s (12 tex)No. Color - 22s gray varn:	owi os:	ReflectanceRd Yellowness+b Compositeindex	ReflectanceRd Bluenessb Compositeindex

1 1		ı		10 Q	700	72	2 6		0 (T=	00	0.80	∞ _+	0 Q	- 0	01 470	E 0 7	10 +
yarn	Com- posite	Index	101.9	15	04 02 +.50	64	+.26	+.35	+.16	48	- 50	03	+.19	11	02 +.51 +.26	+.08 +.20 01	+.94
22s dyed yarn	Blue- ness	위	25.7	18	01	62 43 +.46	+.28	+.45	+.21	51	55	12	+.24	60.00	+.42	+.07 +.12 +.01	62
Color -	Reflect- ance	Rd	27.4	+.09	+.08 +.04 26	+.51	21	13 40 +.06	05	+.32	+.30	13	+.02	+.12	01 53 31	07	62
	Com- R	Index	102.8 3.1	+ + 50	02	+.03 +.10 15	16	11 08 +.1.4	12	+.15	++13	+.11	+.03	.02	+.08 17 02	+.91	+.04
bleache	Yellow-	위	a 6.		18 14 01	38 03 +.44	+.28	+.20 +.20 15	+.19	05	11	+.19	+.01	+.01	22 +.38 +.03	+.01	+ + - 28
Color-22s bleached yarn	Reflect-	Rd	34.4	+.03		14 +.11 +.02	+.08	+ .02	03	+.13	+.09	+.21	90.+	+.01	01	+.01 +.91	07
yarn	Com-	Index	91.3	+.06		32	+.06	44 +.25 +.57	8.	60	07	+.33	+.05	+.03	+.81 +.63	+.03	31 +.17 +.26
22s gray yarn	Yellow- ness	위	10.5	16	10 +.22	41 33 +.64	+ + .08	+.03 +.71 +.05	+.05	19	18	+.13	+.08	13	+.08	+.38	+ + + 53
Color -	Reflect- ance	Rd.	68.5	+.19	+.09	13 +.16	12	56 21 +.68	±0	+°01	+.02	+.33	.00	+.12	+.08	01 22 +.08	01
rfctns	Fine F	No.	15.4	31	38	+ 0.04	+.25	+ 05	+.15	60	09	+.02	52	+.87	+.10 +.05 +.11	+.01	+.00.+
Yarn imprfctns	Coarse 22s	No.	20.0	30	31 25 31	03 +.16 07	+.17	+.06 +.11	+.17	08	07	+.03	60	+.87	+.12 13 +.03	+.01	+.12 09 11
arance	Fine 50s	Index	76.6	or.+ T.	+ + + 25 + + . + +	+.04	+.02+	00.+.08	+.03	L0	11	19	+.70	59	14 01 12		+ + +
Yarn appearance	Coarse 22s	Index	9.00	+.10	19 03 +.34	38 + .0+	+.19 +.14	+.01 +.26 01	+.20	35	94.	10	04.70	60	+ + 08	+.06	+ . 24
ngation	Fine 50s	Pet.	4.6	+.21	+.38 .00 67	+.23 +.48 +.15	07	37	24	+9.+	†9°+	+.81	34	+.12	+.33 +.12 +.33	+.15	01 20 14
Yarn elongation	Coarse 22s	Pct.	4.	15	+ .20	+ + 38	+.12	34+	+.01	+.28	+ + 30	+.81	10	+.03	+.33	+.21 +.19 +.11	13
	Fine 50s	Ibs.	38.9	+.31	+.54	+.79 +.81 40	57	38	64	+.97	66.+	+ + . 66	44	02	+.08	+.07	+.30
Yarn strength	Coarse 22s	Ibs.	113.8	+.32	+.53	+.80 +.80 41	56	39	- .64	+.96	+ 66-+	+.30+	40	70°- 09	+.02	+.09	+.31
	Item	Ocumal Dischartions	Standard deviation (±). Correlation Coef. for	Gradeindex Staple32d inches	2.5% spaninches 50/2.5 unifpct Micronairereading	Zero gage	Visible wastepct	Color or raw scock. CraynessNo. Yellowness	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds	22s (27 tex)pct 50s (12 tex)pct	larn Appearance: 22s (27 tex)index 50s (12 tex)index	100	ReflectanceRd Yellowness+b Composite Composi	ReflectanceRd Yellownesstb Compositeindex	Selectance

Table lla--Cotton: Results of simple correlation analyses for the fiber and processing tests performed on combed yarns from 35 long staple samples from selected gin points, crop of 1974

	i					Combed	Combed Yarn Values			
Statistical Items	Ficker & Card	Comber	Yarn strength	ength	Yarn elongation	ngation	Yarn appearance	arance	Yarn impe	Yarn imperfections
	Waste	000	22s	50s	22s	50s	22s	50s	22s	50 s
	Pet.	Pet.	Lbs.	.sq.	Pet.	Pet	Index	Index	일	No.
Sample Distribution:										
MeanStandard deviation (±)	8.21	16.55 1.85	132.9 13.3	4.7.4 5.7	4°9	5.1	110.9	92.3	8 e 0 • 0	6.9 6.9
Correlation Coeff. for										
Classification: Gradeindex Staple32d inches	71	16	+.35	+.37	25	13	+.04	+.10 19	.00	22
2.5% spaninches 50/2.5 unifpct	32	53 41	+.52 +.49	+.54	10 48	+.15	+.12 +.14	+.11	09	18 16
Micronairereading	+.15	+.27	55	64	99	62	+,42	94.+	94	35
Zero gagegrams/tex 1/8" gagegrams/tex Elongation (1/8")pct	50 + 49 28	51 67 +.34	+.85 +.81 46	+.87 +.81 47	26 03 +.36	07 +.26 +.36			+ + . + 1	4.4. 42.1
Visible wastepct Votal wastepct	+.85	+.41 +.33	.52	61	+.22	70°+	+.27	₹0°+ 90°+	+.09 +.10	+.02 01
Grayness	+ - 24 + - 29 34	+.10 +.40 15	38 +.51 +.35	37 51 +.33	32 +.07 +.42	34 08 +.53	+.01 +.19	+°.0+ +°.15 -°.04		+.01 +.01 +.01
Picker & card wastepct		ካ ተ•+	63	1 9•-	+.10	14	ħ2°+	+.19	LO*+	+.02
Comber waste pct	ħħ*+		61	63	90:-	32	90*+	+,14	+.02	**************************************
Combed yarn strength: 22s (27 tex)pounds 50s (12 tex)pounds	63	61	66 ° +	66°+	+.07	+ 33	8:- -:-	28	+.14 +.13	80°++
Combed yarn elongation: 22s (27 tex)pct 50s (12 tex)pct	+.10 14	32	+.07	+ 05	÷.	**	18	- 38 - 38	+.35	+ + 23.85
Combed yarn appearance: 22s (27 tex)index 50s (12 tex)index	+.24 +.19	+°.06 +°.14	23		18 39	13	†9 * +	†9 ° +	. 59.	68
Combed yarn imperfections: 22s (27 tex)No. 50s (12 tex)No.	+.07	7.08 * + * +	μ.+ 40.+	+.13 +.06	+ + 35	+ + + 23		65	78.+	<i>1</i> 8°+

Table 12.--Cotton: Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 57 short staples, collected at triweekly intervals from selected gin points, crop of 1974

						Depende	Dependent Variable	e s					
Statistical Items	Diokos	Yarn skein	strength	Yarn ele	elongation	Yarn appearance	earance	Yarn imperfections	rfections		CO	Color of 22s	yarn
	& card waste	Coarse	Fine 22s	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse	Fine 22s	Spinning Potential	Gray	Bleached	Dyed
Mean Values for:	Pet.	Lbs.	Libs.	Pet.	Pet.	Index	Index	일.	임	No.	Index	Index	Index
Dependent variable	7.3	297 88	8,8	7.2	6.3	113	91	1 8	27	048	89	97	80 0
Staple length	98° 6°0	30.0	30.0	30.0	30.0	6° 2° 3°	90°6	90°6	30.0	30.0	30.0	90°0	90°6
Fiber strength (0 gage)	0 0 0 0 0 1	0 83 7	0 0 0 1	83.	, 83 2.	o. 60	0 0 0 0	0. 83.	83°	0 n gr.	0 7 ES :	n 60.	χ. π. ες ;
Standard Deviations (±) for:	\$	#	† †	†	† †	† †	#	1	\$	‡	\$	‡	₫
Dependent variable		26.1	10.2		. 80	13.5	14.4	23.1	12.8		6.1	4 r	1 t
Staple length	76.	6.	76.	.6.	.6.	76.	76.	76.	76.	.6.	76.	76.	16.
Micronaire Fiber strength (Ogage) Uniformity ratio	9-4-7	4.4 4.1	69° 4° 1	69° 4° 1	69. 4. 7.	69. 1.1.	69. 1	9.4.	99.4.	69. 1. 1.	99. 4.1	69° 4	4.4
Simple Correlation Coef. for:	† • •	•	1	+ +	+	+	•	+	+	† •	† •	† •	† •
Grade index	- 62	+.2 .	+.27	91.+	£0°+	÷°°÷	+.45	51	‡ ;	+.21	₹. +	+,10	+,50
Micronaire Fiber strength (O gage)	36.1	54	-37 -37	 	 	999	. + 1 2007	+1.+ 67	 	 	₹. • • •		+ +
Uniformity ratio	†o. -	+.02	90.+	: :	. 0.	23.	8. 1 .	43	47	+.10	05	4.16	+.37
MULTIPLE COY. Data for: DEPENDENT VARIABLE with GRADE INDEX. STAPTE LENGTH													
Multiple Cor. Coef	.62	•65	69.	.51	.56	•38	84.	.59	.55	t/L.	•30	.10	.53
Grade indexStaple length	59	+.07	+.10 +.66	+.01	11	+.38	+.48	+.58	52	01 +.72	+.19 +.18	+.10 .00	4,44
Grade index	*†0	+.05*	*80*+	+.01*	*60.+	+.39*	+.50	60	54	+.01*	+.19* +.18*	*00*	+ 4.44
Constant (a)	+17.75	-246.18	-136.60	-7.13	-7.04	+106.47	444-79	06.444+	+1.29	-111.65	+34.28	+89.34	+38.42
Grade index	10	+.26	+.15	00.	01	41.00	+1.37	-2.38	-1.31	01	+.22	60°+	+.36
Staple length Standard error (±) DEFENDENT VARIABLE with GRADE INDEX, STAFLE LENGTH, MICRONAIRE	04 .72	+16.87 19.87	7.35	+,46	24°+	-2.64	12.65	+6.74	+4.54 10.75	4-95	+1.16	64.4 705 4	+.90 3.71
Multiple Cor. Coef	.65	†8°	.81	.82	.81	79.	.67	62.	.76	.81	.68	.10	.54
Grade index. Staple length. Micronaire. Beta Coefficients for:	07	+.34 +.72 70	+.29 +.72 57	+.30 +.62 75	+.12 +.66 71	+.28 19 +.56	+.41 17 +.53	+.39	+43	+.14 +.76 48	+ + 18 + 18 + 64	+.09 +.00 +.01	+ + .41
Grade index. Staple length: Micronaire. Rerression Enuation:	54 06*	+.21* +.59 56	+.20* +.64 43	+.20*	+.08*	+.24* 15* +.54	+.37 13* +.48	44 +.27 55	38 +.31 55	+.09* +.72 34	+.37 +.14* 64	+.10*	+.42
Constant (a) Regression Coef. for:	+18.34	-203.53	-123.76	-5.42	-5.60	+85.21	+24.47	+79.19	+21.85	-105.20	+45.67	+89.14	+37.42
Grade index Staple length. Nicronaire. Standard Error (±).		09 +1.04 +.38 06 +15.88 +6.64 29 -21.01 -6.32 .69 14.10 6.02 *Statistically insignificant	+.38 +6.64 -6.32 6.02 nificant	. 503	+.01 +.44 71 47	+.61 -2.15 +10.47 10.33	+1.00 -1.94 +10.01 10.75	-1.76 +5.94 -16.89 12.87	93 +4.06 -10.13 8.36	+.11 +4.80 -3.18 3.85	+.43 +.89 -5.61 4.47	+.08 +.02 +.49	+ + .92 + .50 3.70

						Depend	Dependent Variables	es					
Statistical Items	Diolog	Yarn skein strength	strength	Yarn el	elongation	Yarn appearance	earance	Yarn impe	Yarn imperfections		CoJ	Color of 22s yarn	arn
	& card	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse	Fine 22s	. Coarse 8s	Fine 22s	Spinning Potential	Gray	Bleached	Dyed yarn
DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICRONAIRE, FIBER STRENGTH (O GAGE)	Pct.	Lbs.	libs.	Pct.	Pct.	Index	Index	این	[<u>N</u>	No.	Index	Index	Index
Multiple Cor. Coef	.65	₩.	.81	.85	98•	.77	29.	±8.	.78	.81	.68	11.	• 58
Grade index. Staple length. Micronaire Fiber str. (C gage) Beta Coefficients for:	55 07 24 +.01		+.20 +.72 +.14	49. 149. 149. 149.	. + + + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ + 139	+ 4.41			+ 11 + 76 + 15 + 15	+.36 +.18 +.59	+.07 +.01 00 +.03	+,47 +,22 +,22 -,27
Grade index. Staple length. Micronaire. Fiber str. (O gage) Regression Equation:	54 06* 23* +.01*	+ +	+,15* +,64 +,10*	+ 24* + 4.46 - 53 - 28	128 144 1.34 1.34	+.20* 14* +.35 +.35*	*.13* +.+.+ +.06*	43 43 39	+ .38 + .30 43 23*	+.08* +.08* +.04*	+.36* +.114* 65 +.03*	+.09* +.01* +.03*	+.51 +.19* +.21* 27*
Constant (a)Regression Coef. for:	+18.18	-196.65	-133.09	-1.83	-1,48	+13.02	+9.16	+194.64	+71.54	-107.70	+44.19	+87.58	+56.08
Grade index. Staple length Micronaire. Fiber str. (0 gage) Standard Error (‡) DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICRONAIRE, FIBER STRENGTH, (0 GAGE). UNIFORMITY RATIO	00000	+1.09 +15.86 -20.53 -1.5	+.28 -7.08 -7.08 -7.08 5.96	40.+ 11.1 14 14 14 14 14	+ + +	+.52 -1.98 +7.00 +1.08 9.53	+.99 -1.91 -9,32 +.21 10.72	-1.74 -5.71 -11.84 -1.57	92 -7.96 -7.96 67 99	4 + 4 + 4 3 • 4 • 4 3 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5 •	+ + · · · · · · · · · · · · · · · · · ·	+.07 +.03 +.03 +.03 +.49	1.36 1.36 3.56 3.56
Multiple Cor. Coef	.67	88.	.85	88.	88	±7.	.70	.86	.82	.85	02.	.19	.65
Grade index. Staple length. Micronaire Fiber str. (O gage) Uniformity ratio. Beta Coefficients for:	56 28 +.03	+.32 +.77 73 +.01 +.45	+ .17 + .77 + .21 + .44	+ + 1 + + + + + + + + + + + + + + + + +	+ + + 1.19	+ + 24 - 17 - 17 - 17 - 17 - 17 - 18 - 18	+ 1.40 + 1.36 + 1.10 + 1.27	36.55	1.150	+	+ + .35 + .62 + .22	4	+ + + + + + + + + + + + + 08 + + + 36
Grade index Staple length Micronaire Fiber str. (O gage) Uniformity ratio Regression Equation:	56 05* +.03* +.14*	+.19* +.61 66 66 +.01*	+.11.* 66 60 13.* +.28	+ + + + + + + + + + + + + + + + + + +	+ + 10 * + 52 + 131 + 120 *	+ 118* + 27* + 37 + 23*	+ .35 + .36* + .09* + .22*	1.42 1.35 1.35	* * 4	+ + 0 + + + + + + + + + + + + + + + + +	+ + 133*	+.07* +.02* +.07* +.05* +.17*	+ + + + + + + + + + + + + + + + + + +
Constant (a)Regression Coef. for:	+14.12	-421.06	-224.63	-7.87	92-9-	-87.80	-93.95	+342.78	+178.82	-170.43	11.6+	+63.07	+5.37
Grade index Staple length. Micronaire Fiber str. (0 gage). Uniformity ratio. Standard Error (±).	10 04 37 +.01 +.09 68 *Statist	10 +.94 +.22 04 +16.44 +6.91 37 -24.68 -8.79 +.01 +.03 +.31 +.09 +5.04 +2.07 .68 12.55 5.35 *Statistically insignificant	+.22 +6.91 -8.79 +.31 +2.07 5.35 gnificant	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	+ + 1 1 +	+.47 -1.73 +5.17 +1.16 +2.23 9.11	+ 1.65 -1.65 -1.65 -2.33 -3.32	1.68 45.33 -9.16 -1.68 10.73		+.05 -4.51 -4.51 -1.10 -1.11 3.41	-6.38 -6.38 -6.38 -6.38 -6.38		+.39 +.52 +.52 +.52 3.32

-75-

rable 13.--cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 57 short staple samples, collected at triweekly intervals from selected gin points, crop of 1974

						Depend	Dependent Variables	les					
Statistical Items	201010	Yarn skein streng	strength	Yarn e	elongation	Yarn appearance	earance	Yarn imp	Yarn imperfections		Colc	Color of 22s y	yarn
	& card	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Spinning Potential	Gray	Bleached	Dyed yarn
Mean Values for:	Pet.	Lbs.	Lbs.	Ret.	Pet.	Index	Index	잃.	용]	No.	Index	Index	Index
Dependent variable	7.3	297	8	7.2	6.3	113	91	†	27	04	89	26	86
Grayness	₆ 4	r.4	m4	₄	r.4	ω .4	r.4	r.4	೧4	€	೧4	r.	೧4
Nonlint content (S.A.)	4.0	0.4	0.4	0.4	0,4	0.4	0.4	0.4	0.4	0.4	0.4	4.0	4.0
Micronaire	. v.	3.80	. K.	. ω γ.ω.	် တို့ထဲ	, ε. Σ, α.	, E.	. £.	, E.	, ω γ.ω	. κ. δ. α.	. ω Σ.ω.	. w
Dependent variable	.91	26.1	10.2	.88	-88	13.5	14.41	21.1	12.8	6.5	6.1	4.5	4.4
Grayness	L W	L S	L v	1.3	1.3	L	L.	L C	L S	1.3	L S	1.3	L. v.
Nonlint content (S.A.)	۲. د نار	ָר <u>ִי</u>	۲. د ا	Ц	ָרִ ירִּיּ	.i.		۲. د تار	ָר <u>י</u>	ָר <u>י</u>	, r.	ין.	1.1
Micronaire	ġ.	69.	ş. %	÷ 69.	¥.6.	69.	\$ 69.	69.	÷ 6.	69.	69.	69.	69.
Grayness	1.1	0.40	63	71	₹ •	4.12	80°+	91.4	₽ 24	53	75	27	-,45
Nonlint content (S.A.)	+.71	+ + 3	, + .	+ + +	+ + +			+ + 65	14,	58 58 7	+ +	. <u>.</u>	
Micronaire	36	49	37	61	58	07:+	+.57	67	9.79.	30	 	80°+ 10°+	+ + 19
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS													
Multiple Cor. Coef	4T.	.70	49.	.71	49.	.14	.10	.18	ф г .	.53	.75	.28	.45
Grayness Yellowness	+.12	68	61 +.13	71 +.02	64	+.10	70.+ 70	18 +.01	22	+.09	74	28	+. to.+
Grayness	+.13*	*90.+	61	*.07+	65	+10*	*400.+	*10.+	22*	51	75	28*	\$\frac{1}{2} + \frac{1}{2}
Regression Equation: Constant (a)	46.30	+30t, 81	497.99	+8.70	47.8h	09 211+	99 40+	451 96	107 LO	69 nu+	90 cort+	, solt+	79. OUL+
Regression Coef. for:		1		•)	000			7.17		00.101	101.	00.707
Grayness Yellowness Standard Error (±) DEFENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A.)		-13.89 +4.46 18.58	-4.83 42.22 7.83	+.03 +.03	41 07 61	+1.11 -2.23 13.35	+.76 -1.98 14.35	-2.99 +.34 20.75	-2.24 +1.74 12.45	-2.61 +1.06 5.50	-3.61 -39 -1.06	-1.01 51 4.34	-1.5 th +.07 3.92
Multiple Cor. Coef	.75	.75	19.	62.	.73	15.	.53	.65	99•	.57	.78	.29	.53
Grayness Yellowness Nonlint (S.A.). Beta Coefficients for:	+.33 +.14 +.74	+ + 12	60 +.14 +.27	72 +.02 +.50	79+	+ 03	03	1.4.4	+ + .08	4.09 +.09 +.2.4	74	8,88	49 +.01 31
Grayness Yellowness Nonlint (S.A.). Regression Equation:	+.24* +.10* +.74	+ +08*	58 +.11* +.21*	+.01*	59 +.36 +.36	+.03*	01*	**.01* +.01*	+ + + + + + + + + + + + + + + + + + + +	+ .08*	72	***	+.01*
Constant (a)Regression Coef. for:	+3.68	+298.46	+88.98	+7.51	46.74	+143.13	+124.98	+.52	-2.94	+39.56	06.96+	+103.88	+107.45
Grayness	+.17 +.18 +.60 61 *Statis	+.17 -13.09 -4.58 +.18 +4.43 +2.22 +.60 +6.05 +1.89 .61 17.31 7.53 *Statistically insignificant	-4.58 +2.22 +1.89 7.53 gnificant	45 +.02 +.27 53	37 07 +.25	+.33 -2.20 -5.87 11.63	-1.94 -1.94 -6.74 12.21	-1.42 +.28 +11.82 15.98	-1.31 +1.70 +6.99 9.68	-2.46 +1.06 +1.16 5.35	-3.45 40 +1.18 3.83	-1.05 51 31	-1.69 +.08 -1.10 3.72

	imperfections Color of 22s yarn	Fine Spinning Gray Bleached Dyed 22s yarn yarn yarn	No. Index Index Index Index	.66 .82 .78 .33 .55	7231 0505 +.3310 +.0817	11*337033*46 +.06* +.06*03*05* +.01* +.63 +.28 +.23*10*27* +.08* +.61 +.05*16* +.15*	-28.97 -63.93 +88.83 +123.21 +90.24	-1.12 -1.68 -3.38 -1.17 -1.58 +1.65 +.874147 +.05 +7.10 +1.59 +1.2239 -1.03 +26.08 +103.69 +8.03 -19.45 +17.30 9.64 3.75 3.82 4.27 3.66	.72 .83 .79 .41 .63	+.0933614057 +.03 +.080801 +.07 +.32 +.19 +.10 +.11 +.04 +.24 +.72 +.1525 +.03 382122 +.26 +.37	+.08*25*614966 +.02* +.05*01* +.05* +.34* +.16* +.09* +.15* +.05* +.19* +.66 +.10*26* +.03* 48*20*23* +.41* +.52*	-20.81 -62.19 +90.64 +120.71 +87.15	+.79 -1.28 -2.92 -1.73 -2.27 +.51 +.626713 +.47 +.90 +.48 +.58 +.18
lables	Yarn im	Coarse	No.	99•		*90° + + + + + + + + + + + + + + + + + + +	-48.95	-1.06 +19 +12.02 +49.61 15.88	.75	. + + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	+ 1.05* + 2.05* + 2.03* + 2.03*	-31.97	+2.85 -2.18 +5.30
Dependent Variables	Yarn appearance	Fine 22s	Index	• 56	+.03 08 51 +.19	+.03* 07* 51 +.17*	+62,15	+.34 -2.06 -6.48 +62.93 11.99	.63	116	1.16* 1.03* 1.02* 1.48*	+52.88	-1.82
Depe	Yarn a	Coarse 8s	Index	.52	.00 09 51	.00* 08* 51 14*	+192.15	+.01 -6.07 -49.28 11.48	69.	31 01 06 37 +.52	29* 01* 32* +.75	+178,48	-3.05
	elongation	Fine 22s	Pet.	.83	+++	- 41 - 05* + 41 - 41	-1.98	84 80 82 834 74	.88	29 19 +.17 52	- 194 - 094 - 193 - 194	-1.51	1.16
	Yarn e	Coarse	Pct.	.85	- 62 + + 58 + + 49	+.01* +.39 +.31	+.23	3 ⁴ +.01 +.30 +7.11 .46	. 88	1 + + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.15* 1.15* 1.39	+•63	i i + d
	strength	Fine 22s	Libs.	±84.	58 +.17 +.44 +.68	42 +.09* +.27 +.52	-50.43	-3.36 +1.96 +2.46 +139.13 5.53	.85	- + + 1.14 - 21 - 21 - 20	35 +.08* +.16* 18*	-47.99	-2.77 +1.61 +1.47 +1.47
	Yarn skein strength	Coarse 8s	Lbs.	.87	64 +.14 +.53 +.67	- 46 + .07* + .32	-19.48	-9.31 43.86 47.34 4314.10 12.88	68.	+	32 4	-8.97	-6.46 +2.29 +2.87 +2.87
	100	Rocker & card waste	Pct.	.78	+.21 +.16 +.75 34	+.15* +.10* +.71 23*	+9.35	 	.80	+ + + + + + + + + + 28	*.13* *.13* *.30	+9.01	+ + + + 24 27. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7
	Statistical Items		DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN TENGTH	Multiple Cor. Coef	Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Beta Coefficients for:	Grayness Yellowness Nonlint (S.A.).	Regression Equation: Constant (a) Regression Coef. for:	Grayness. Yellowness. Yellowness. Nonlint (S.A.). 2.5% span length. Standard Error (±) DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN	manding Microwalke Multiple Cor. Coef Partial Cor. Coef. for:	Grayness Yellowness. Nonlint (S.A.). 2.5% span length. Micronaire. Beta Coefficients for:	Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Micronaire. Regression Fonation:	Constant (a)	Grayness. Yellowness. Nollin (S.A.). 2.5% span length.

-77-

Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 57 short staple samples, collected at triweekly intervals from selected gin points, crop of 1974 Table 14. -- Cotton:

C+o+i+i+i+i+in+in		Yarn skein strength	strength	Yarn el	elongation	Depend Yarn app	Dependent Variable	Yarn	imperfections		8	Color of 22s 3	yarn
9	Picker & card waste	Coarse	Fine 22s	Coarse	Fine 22s	Coarse	Fine 22s	Coarse 8s	Fine 22s	Spinning Potential	Gray	Bleached	Dyed
Mean Values for: Dependent variable 2.5% span length. Micronaire. Fiber str. (1/8" gage) Uniformity ratio. Elongation (1/8" gage)	Pet. 7.3 7.3 3.8 8.8 8.1 8.1 8.1 6.3	297 297 3.8 21 44 6.3	158. 93.8 3.8 21.2 44.4 6.3	Pet. 7.2 3.86 3.86 6.3	6.3 .96 .98 .13 .63	Index 113 .96 3.8 21 444 6.3	1ndex 91 3.8 21 444 6.3	N. 444 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	27. 27. 3. 88. 6.3	No. 60. 93. 88. 63. 94. 6.3	10dex 89 3.8 21 444 6.3	1ndex 97 3.8 2.1 4.4 6.3	Index 98 96 3.8 21 44 6.3
andard Deviation (1) for: Dependent variable 2.5% span length. Micronaire. Fiber str. (1/8" gage) Uniformity ratio. Elongation (1/8" gage).		26.1 .69 .69 .1.7 .4.1	20. 40. 69. 4.1. 4.1.	88. 40. 69. 41. 69.	8	13.5 .04 .69 .1.5 1.1.1	4.41 40. 69. 7.1 7.1	1.12 .04 .69 .1.5 .1.1	12.8 .04 .69 .1.5 .1.1	65. 	6.1 69.1 7.1	4. 44. 20. 64.	4
Simple Correlation Goef. for: 2.5% span length Micronaire Fiber str. (1/8" gage) Uniformity ratio Blongation (1/8" gage) Miltiple Cor. Data for: DEFENDENT VARIABLE with	+ 1	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ • • • • • • • • • • • • • • • • • • •	4 · · · · · · · · · · · · · · · · · · ·	. 10 	+ . 20 + . 57 + . 21 + . 41 28	+.05 +.01 +.43 +.61	+ 64 + 64 +	+	+ · + · + · + · + · · + · · · · · · · ·	7 + + + 1 08 8 8 9 1 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	
2.5% SPAN LENGTH, MICRONAIRE Multiple Cor. Coef	5 ^t .	.83	62.	.81	† ₈ .	49.	• 58	69.	29.	.80	.62	.10	-77- 28.
Andread Cof. Coei. 10f. 2.5% span length	29	+.77. 77.	+.75	+.68	+.75	27	+.11	4.2+ 4.69	+.23	+.78	+.36	600:+	
beta Coefficients for: 2.5% span length Micronaire	27*	+.68	+.71	+.55	+.62	22* +.6 [‡]	*60.+	+.18*	+.18*	44	+.31*	*60	+.26*
Kegression Equation: Constant (a)	+15.10	-60.86	-62.99	-1.48	-3.10	+140.23	+12.43	+28.73	+15.71	-67.28	+61.55	+106.21	+66.29
Acepression Coei. ior: 2.5% span length Micronaire Standard Error (±) DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE	64.9- 24 82.	+463.74 -23.29 14.51	+187.77 -7.33 6.27	+12.62 90 .51	+12.97 81	-77.65 +12.45 10.41	+35.20 +11.62 11.73	+100.16 -21.30 15.30	+61.18 -12.53 -9.57	+127.96 -4.16 3.92	+49.54 -5.24 4.81	-10.50 +.37 4.50	+29.33 +.91 4.16
Multiple Cor. Coef	.51	88.	48.	.83	98.	49.	•59	69.	29.	.82	.65	.19	.32
2.5% span length Micronaire Fiber str. (1/8" gage)	38	+.54	+.48 68 +.49	+,44.	+.54	+ + .63	+.01 +.56 +.10	+.19	+.17	+.57	+.09	18 +.05 +.17	+.17 +.15 +.03
2.5% span length Micronaire Fiber str. (1/8" gage)	50 32* +.34*	+ - + + + - + - + - 33	+,41	+.38 71 +.24*	+,47	*84. + + . 64	+.01* +.56 +.12*	+.20*	+.18* 68 .00.*	+.56	*01.+	+ + .05*	+.23*
Constant (a)	+16.18	-31.12	-47.89	75	-2.50	+144.51		+26.51	+15.89	-61.07	+67.95	+109.87	+66.86
2.5% span length Micronalie Fiber str. (1/8" gage). Standard Error (+)	-12.09 -4.2 +.21 79	+308.34 -23.53 +5.84 13.18	+108.86 -7.45 +2.96 5.46	+8.79 91 +1.14	+9.83 81 +.12	-100.00 +12.42 +.84 10.38		+111.74 -21.29 -44 -15.29	+60.24 -12.53 +.04 9.57	+95.50 -4.21 +1.22 3.71	+16.13 -5.29 +1.26 4.63	-29.60 +.34 +.72 +.43	+26.38 +.91 +.11
	*Statistic	*Statistically insignificant	ificant								1		

						nepend	Dependent Variables		:					
Statistical Items	Picker & card waste	Coarse	Yarn skein strength Coarse Fine 8s 22s	Yarn el Coarse 8s	Fine 22s	Coarse	Yarn appearance	Coarse 8s	mperiections Fine 22s	Spinning Potential	Gray yarn	Bleached	yarn Dyed yarn	
DEFENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE FIBER STR. (1/8" GAGE),	Pct.	Lbs.	Lbs.	Ret.	Pet.	Index	Index	N	No.	NO.	Index	Index	Index	
Multiple Cor. Coef	.51	88•	.85	.85	.87	99•	.62	.72	.72	.85	99.	.21	74.	
Partual Cor. Coel. 10f. 2.5% span length Micropaire Fiber str. (1.8" gage) Uniformity ratio	37 32 +.25	+ + + + + + + + + + + + + + + + + + + +	+ - + + 51.54 54.54	+ + + + + + + + + + + + + + + + + + +	+.57 82 +.16 +.31	30 +.56 +.23	+	. + . + 62 . 28 . 28	+.26 59 +.14	+.61 67 +.20 +.35	+.07 61 21 +.14	20 	+.09 01 12 +.37	
2.5% span length Micronaire	*15 *38.+ *333*	+ + 500 + + 1.23* + 203.*	+ + + + + + + + + + + + + + + + + + +	+.38 78 +.15*	+.48 77 +.12* +.19*	34* +.56 01*	*†7.+ *00.+ *00.+	+.27* 61 +.08* 23*	+.27* 56 +.15* 30*		+.08* 64 +.24* +.12*	28* +.01* +.18*	+.12* 01* 16* +.40*	
Regression Equation: Constant (a)Regression Coef for:	416.14	-170.06	-93.39	-4.55	-6.03	4101+	-37.88	+102.00	+74.08	-98.78	+54.26	+102.07	+39.16	
2.5% span length Micronaire Fiber str. (1/8" gage). Uniformity ratio Standard Error (±) DEFENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE FIBER STR. (1/8" GAGE). UNIFORMITY RATIO, ELONGAFION	-12.11 -4.2 +2.21 -00 -00	+331.88 -26.25 +4.13 +3.71 12.42	117.20 -8.32 +2.41 +1.19 5.27	4.09 1.12 1.12 1.47	5.95 5.07 111.	-120.87 +10.93 09 +2.01 10.10	-18.00 +9.74 -0.00 +2.49 11.29	149.88 -18.65 -1.22 -3.58 14.69	+91.20 -10.47 +1.33 -2.81 8.97	+99.25 -5.01 +.72 +1.09 3.47	112.81 -5.68 11.01 1.54 1.58	-33.36 + .507 + .35 + .41	+13.31 04 48 -1.29 3.87	-10-
(1/0 dade) Multiple Cor. Coef. for:	.51	.88	.85	-89	-92	02.	•63	.78	92.	.85	19.	. 22	.52	
2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage). Reta Coefficients for:	25 +25 04	+	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	. + + + . . 29. . 29. . 31.	+.01 +.01 +.27	+ 1 + 15 + 1.37 + 1.38 + 1.45	+	* • • • • • • • • • • • • • • • • • • •	+ + + + + + + + + + + + + + + + + + + +	17 03 +.12 +.11	4	
2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage). Regression Equation:		* + + + + + + + + + + + + + + + + + + +	+.t. +.35 +.16* +.01*	. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	+ 34 + 13* + 13* + 13*	. + + + + +	+ + 38* + 26* - 13*	+ 1 + 1 + 1 + 1 + 2	+	+.57 +.16* +.02* +.04*	+.04* +.23* +.10* +.12*		+ + 138* + 236* + 236*	
Constant (a)Regression Coef. for:	+16.14	-165.05	-93.15	-4.05	-5.51	+99.85	-38.85	+105.14	+75.53	-98.25	+54.87	+101.92	+39.68	
2.5% span length Micronaire Fiber str. (1/8" gage). Uniformity ratio Elongation (1/8" gage). Standard Error (†)	-11.79 46 +.21 +.01 06 .79 *Statistic	-11.79 +309.54 +116 46 -24.13 -8 +.21 +4.05 +2 +.01 +3.45 +1 06 +3.37 +1 .79 12.30 5 *\$tatistically insignificant	+116.14 -8.22 +2.41 +1.18 +.16 5.27 ificant	77.77 - 69 - + + 68 - + + 68 - + 64 - 64 - 64	+7.01 +.06 +.06 +.07 +.17	-87.66 +7.03 +7.03 +2.48 -6.19	+ 2.06 + 2.06 + 2.70 - 2.74 - 2.74	+80.99 -10.52 +.91 -4.56 +12.88	+55.56 -6.23 -1.17 -3.32 -6.70	+96.66 -4.75 + +71 + +1.06 + +1.13 3.47	4.5.62 4.1.4 4.55	-30.37 28 56 56 56	+3.41 +1.12 53 +1.15 +1.84 3.76	

Table 14. -- Continued

-79-

Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 299 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1974 Table 15. -- Cotton:

Ctotiction Ttoms		Yarn skein	strength	Yarn e	elongation	Depen Yarn ap	Dependent Variables		Yarn imperfections		Colo	Color of 22s ya	yarn
Statistical Items	Picker & card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
Mean Values for:	Pet.	Lbs.	Lbs.	Pet.		Index	Index	일	No.	No.	Index	Index	Index
Dependent variable	6.3	106	88	6.3	8.4.8	100	79	19	77 8	63	92	103	103
Staple length	34.7	34.7	34.7	34.7		34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7
Fiber strength (O gage) Uniformity ratio Standard Deviations (±) for:	85 44	45.	85 44	85 44		82 44	85 44	85 44	85 44	82 ††	85 44	85 44	85 44
Dependent variableGrade index.	.95	11.4	6.1	09.	4.7	12.6	9.7	6.8	5.6	8.7	4.3	3.4	4.6
Staple length	98.	98.		98.	98.	98.	8.	98.		86.	98.	98.	98.
Midronaire Fiber strength (0 gage) Uniformity ratio	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	1.8	5.9	1.8	1.8	5.9
Grade index	63	+,42	+.39	+.07	+,14	+.18	+15	41	38	+.37	+.53	60.++	+.29
Micronaire. Fiber strength (0 gage)	17	+ 1	+ 1		25.	+ +	+ + +	書 89	25.	100 88	+.12	8.6	+ +
Uniormity ratio	25	0 +	+*+5	31	16	+.35	* +	æ. •	. t	9E•+	+	-03	±°+
Multiple Cor. Coef	.65	.63	.58	.28	.27	.28	.21	.43	714.	.61	45.	.22	.31
Grade indexStaple lengthBeta Coefficients for:	61	+.37	+.33	+ 28	+ + 508	+.14 +.21	+.11	38	±5	+.30	+.53	+ + 50	+.26
Grade indexStaple length	61	+.32	4+ + +	*.58	+.08*	+,14*	+.11*	38 14*	33	+.25	+.54	+.04*	+.26
Constant (a)	+22.23	-184.63	-108.37	61	59	-41.22	-1.40	+106.74	+101.92	-154.01	+47.21	+71.07	+58.17
Grade index Staple length Standard Error (±) DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH,	12	+.76 +.36 8.83	+.38 +3.16 4.99	.00 +.20 .57	+.01 +.13 .43	+.37 +3.09 12.09	+.23 +1.70 9.48	55 -1.08 6.15	-1.47	+,47	3.66	3 + + +	+.25 +.61 4.37
Multiple Cor. Coef Partial Cor. Coef. for:	• 65	.65	09.	.59	.59	.52	.51	.56	.62	₄ 9.	.54	.22	.45
Grade index	60	+.41	+.36	+ + + + + + + + + + + + + + + + + + +	+.23	4°.4 4°.4 4°.4	+.01 +.15 +.48	32 14 39	27	+.35	+.52	+.05	+ + + + . + . 4 . 4 . 4 . 4 . 4 . 4 . 4
Grade index	.12*	+.35	+.33	+.12*	+ + 20	+°0¢* +°50 +°4.	+.01* +.13* +.48	30	23 21 45	+.30	+.54	+.05*	+.19 +.10* +.34
Constant (a)	+22.29	-179.59	-105,88	+.19	+.02	-55.80	-13.19	+113.07	+108.36	-149.38	+47.28	+71.30	+54.26
Crade index. Staple length. Micronaire. Standard Error (±).	1.12 1.03	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + - 02	++ + 102	+.10 +2.85 +11.35	+.02 +.02 +9.18	- 14 - 4	-1.36	+ 55	+ 1 1 6	+.04 +.83 17	+ + 18
	*Statistic	*Statistically insignificant	ficant	•	•30	10.72	0.33	7.67	7.4.7	99•9	3.00	3.32	TT•+

-						Depen	Dependent Variables	les					
Statistical Items	D: 0100	Yarn skein strength	strength	Yarn el	elongation	Yarn ap	Yarn appearance	Yarn impe	Yarn imperfections		[O]	Color of 22s	yarn
	& card	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray yarn	Bleached	Dyed
DEFENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICROWAIRE, FIBER STRENGTH	· Pet.	Lbs.	Lbs	Pct.	Pct.	Index	Index	No.	No.	No.	Index	Index	Index
Multiple Cor. Coef	.65	.78	.72	92.	.63	.53	.51	.56	.62	.68	.5 ⁴	.26	74.
Grade index Staple length Micronaire Fiber str. (0 gage) Reta Coefficients for	59 03 +.04	+.22 +.57 +.37 +.55	+++++++++++++++++++++++++++++++++++++++	+ + - 1	+ + + 1 28 28 28 28	+ + + + + + + + + + + + + + + + + + + +	+.01 +.15 +.47 01	31 14 39	- 27 - 25 - 48 + 02	4. + + + + + 232 + 232 + 29	+ .49 01 05	+.09 +.22 00 1.14	+.24 +.12 +.37 17
Grade index Staple length Micronaire Fiber str. (O gage) Regression Emation:	61 13* 02* +.03*	+ + - + + - 26 + . 45	+ .16 -24.+ -24.+ +2.+3	+ - 20 + - 34 50	+ + + 58 - + 59 - + 59 - + 59	+.06* +.20 +.47 07*	+.01* +.14* +.48	30 12* 37 .00*	24 21 45 +.01*	+ + + + + + + + + 5 + + 5 + + 5 + 5 + 5	+.53 01* +.04*	+.10* +.22 00*	+.24 +.11* +.37 16*
Constant (a) Regression Coef. for:	+22.19	-186.39	-110.79	+2.16	4.5 ¹	-52.60	-12.77	+113.17	+107.98	-153.40	99*94+	+73.01	+57.12
Grade index. Staple length Micronaire. Fiber str. (O gage) Standard Error (±). DEFENDENT VARIABLE with GRADE INDEX, STAPIE LENGTH, MICROMAIRE, FIBER STRENGTH, O CALCED INTERPRETATION DEPARTORY		+ + 5.39 -5.92 + 86 7.17	+ 4 4 4 2.94 44.75	4. + +	+ 102 + 114 + 143 - 023 - 35	+.16 +2.93 +11.69 15 10.69	+ + + + + + + + + + + + + + + + + + +	- 143 - 198 - 14.92 - 00 5.65	28 -1.37 -5.05 +.01 4.42	+ 4 4 + 6	3 + 1 1 + 5 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	+ + 07 + + 87 - 08 3 28	+ + + + + + + + + + + + + + + + + + +
Multiple Cor. Coef	.65	.83	.78	.76	•65	.53	45.	.56	.63	47.	. 5 ⁴	.27	64.
Grade index Staple length Micronaire Fiber str. (O gage) Uniformity ratio. Beta Coefficients for:	* 1		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	+ + + - + + + + + + + + + + + + + + + +	+ + • • • • • • • • • • • • • • • • • •	+ + + + + + + + + + + + + + + + + + +	1 + + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1			+ . 24 52 	4 + i + + + 033 S S S S S S S S S S S S S S S S S S	+ + + +	
Grade index Staple length. Micronaire Fiber str. (O gage) Uniformity ratio. Regression Equation:	1.61 1.12* 1.05* 1.05*	+ + + + + + + + + + + + + + + + + + + +	44	+ + + 19 1.19 1.19 1.11	+ + · · + +	+ + + + + + + + + + + + + + + + + + + +	+ 1 + + 1 + 103 * + 10	. 1. 128 1. 128 1. 068	23 19 40 +.05*	+ + • • • • • • • • • • • • • • • • • •	**************************************		+ + + + - + + + + - 22 + 22 + + + + 16*
Constant (a)Regression Coef. for:	+22.65	-236.48	-138.21	+1.54	48	-62.63	-37.42	+117.33	4114,19	-191.73	96.44+	+76.01	02.64+
Grade index. Staple length Micronaire. Fiber str. (0 gage) Uniformity ratio. Standard Error (±).	12 13 .00 +.01 03 .72 *Statistics	12 +.37 ++ 13 +5.32 +2 .00 -10.27 -5 +.59 +1 03 +2.63 +1 .72 6.43 3 *Statistically insignificant	+.19 +2.59 -5.38 +.29 +1.46 3.87 ficant	+ + 1 1 + +	+ + + + +	+.14 +2.78 +10.75 21 +.57 10.67	- 01 - 16 - 16 - 16 - 16 - 16	- 1,52 - 1,52 - 1,02 - 24 - 24 - 24		+ 4.35 -7.80 -7.80 +1.14 -2.05 5.88	3.4.4.8	91 3.28	+ + 50 + 50 + 2.64 - 17 + 12 + 12 + 10

Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests on 299 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1974 Table 16. -- Cotton:

						Depende	Dependent Variables	es					
Statistical Items	Diokon	Yarn skein strength	strength	Yarn e	elongation	Yarn appearance	sarance	Yarn impe	Yarn imperfections		[O2)	Color of 22s yarn	arn
	& card	Coarse , 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
Mean Values for:	Pet.	Lbs.	Lbs.	Pet.	Pet.	Index	Index	No.	≧	No.	Index	Index	Index
Dependent variable	6.3	106	36	6.3	4.5	100	79	19	14	63	요 2	103	103
Yellowness	ww.			3.1	33. 1.	8 8 6 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6	e e e	 	ee.	e e e	ee.	ee,	
Z.>% span Length Micronaire Standard Deviation (±) for:	4.2	7.5	 4	4.2	7. 7.	2.4	7.10 7.10	4.2	4.2	1.10 4.2	4.2	4.2	1.10 4.2
Dependent variable	9.	4.11	6.1	9.6	.45	12.6	7.6	8.9	5.6	8.7	4.3	3.4	9.4
Yellowness	, 9°-	7.00	7.00	7.00	, o 5	7.6.5	7.00	9.5	7.6 5	7.00	,	, , ,	رم د
2.5% span length	.03	.03		.03	.03	.03	.51	.03	.03	.51	.03	.03	.03
Grayness	+.39	64	45	33	42	03	02	+.21	+.19	04	69	17	22
Yellowness Nonlint content (S.A.)	04 +.73	+.01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+.05 +.05	19	13 24	20 20	74°+ +°†	80°+ + +	963:	98.	30	+.10
2.5% span length	31	+.54	+*+9 -*05	# - * •	+.32	+ + 19	+ + + +	8.‡ : :	24 52	+.62	+ <u>.</u> 24 +.12	র ÷	+ +.31 +.39
Multiple Cor. Data for: DEPENDENT VARIABLE with													
Grainess, improvingss Multiple Cor. Coef	14.	.50	94.	.38	44.	.13	ήT.	.22	•19	04.	.71	•33	.26
GraynessYellowness	04.+	+.08	46 11.+		41 15	02	01 14	+ +	+.18	39	70	1 ⁴	24 +.13
Beta Coefficients for: Grayness	+.41	50	94	30	04	*00*	01*	+.20	+.18	야	71	-13*	2h
Yellowness	10*	*400+	+.10*		14*	13*	14*	+*00*+	+*00+	01*	+.15	28	+*13*
Constant (a)Regression Coef. for	+5.90	+114.441+	+39.54	+7.16	+5.13	+107.77	+85.13	+13.50	+10.86	+70.26	494.68	+107.66	+102.23
Grayness Yellowness Standard Error (‡)	+.41 41 88.	-6.05 +1.34 9.89	-3.03 +.93 5.45	19	-19 -10 04.	23 -2.63 12.47	-2.11	+1.45 +.82 +6.65	+1.08 +.48 5.54	-3.66 18 7.95	-3.27 +1.04 3.08	48 -1.51 3.22	-1.16 +.96 4.44
GRAYNESS, YELLOWNESS, NONLINT (S.A.)													
Multiple Cor. Coef	.73	• 50	74.	.43	84.	.31	.27	.50	84.	Z4.	17.	.33	.29
Grayness Yellowness. Nonlint (S.A.). Reta Coefficients for:	+.12 +.02 +.67	43 +.07 08		36 18 +.20	44 21 91.+	+.12	+.11 18 24	03 +.17 +.46	05 +.14 +.44 +.44	30	+.22	+ 1.28 + 0.28	16 13
Grayness. Yellowness Nonlint (S.A.).	+°00* +°01* +.69.	***************************************	**00*+ **00*+	40	49 11* +.19	+.13*	+.12*18	03* +.15 +.50	05* +.13* +.49	33	75 +.16 +.09*	14* 28 +.02*	17* +.11* 14*
Regression Equation: Constant (a)	+4.05	+117.10	440.98	46.80	+4.88	+119.06	+92.41	+3.82	+3.03	-74.05	+93.62	4107.49	+104.07
Grayness	+ +09	-5.59	-2.78	26	52.5	+1.72	+1.19	22	27	-3.01	-3.45	15	±8. + +
Nonlint (S.A.)	99.+	95	- 51	+ 13	+ 00	20.4	9.60	+3.45	42.79	-1.35	1 + 6	96.	99.
	Statistica	*Statistically insignificant	ficant		60.	2	7.33	7.71	+ 30		2.00	3.66	† • •

						Depend	Dependent Variables	es					
Statistical Items	Picker	Yarn skein strength	strength	Yarn elongation	ngation	Yarn appearance	earance	Yarn impe	Yarn imperfections		Co.	Color of 22s y	yern
	& card	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray yarn	Bleached	Dyed
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN IRNCH	Pet.	Lbs.	Lbs.	Pct.	Pct.	Index	Index	No.	ું	ON.	Index	Index	Index
Multiple Cor. Coef Partial Cor. Coef. for:	•75	99•	.61	64.	.52	.35	.28	.51	.50	.67	.71	.35	.39
Grayness Yellowness Yonlint (S.A.) 2.5% span length Beta Coefficients for:	+.08 02 +.67 24	+1.36	32 +.17 05 +.44	- 27 - 14 + 23 + 27	37 09 +.22 +.24	+.15 16 27 +.16	+.12 17 23 +.07	06 +.15 +.45 11	08 12 44 18	23 +.06 +.58		09 + + .03 + .15	
Grayness Yellowness Yollowness Nonlint (S.A.). 2.5% span length Regression Fonation:	+.06* 01* +.67 17	34 +.13* 04* +.45	31 +.14* +.41	1.30 1.13* 1.26	41 08* +.22 +.22	+.17* 16* 30 +.16*	+.14* 17* 26 +.07*	06* +.16* +.49 10*	08* +.11* +.48 17	20 +.04* 10* +.55	73 +.17 +.09* +.07*	10* 26 +.03* +.15*	09* 15* 12*
Constant (a)	+9.52	-55.52	-44-10	+1.56	+1.54	+51.55	24.69+	+27.24	+34.17	-86.01	+84.05	490.78	+60.18
Grayness Yellowness Nonlint (S.A.). 2.5% span length Standard Error (‡). DEFENDENT VARIABLE with GRAYNESS, YELLOWNESS, NOWLINT (S.A.), 2.5% SPAN TENCTH, MICRONAIRE	+ .02 + .02 + .64 + .80 62	-4.11 +2.29 46 +150.47 8.56	-2.04 +1.39 -27 +74.14 +.87	19 12 +.14 +4.53 .52	+ 	45.30 -3.16 -3.83 +58.85 11.80	+1.41 -2.59 -2.53 -19.97 9.30	1- 11.50 13.38 -20.44 5.88	50 +.95 +2.70 -27.21 4.88	-1.84 +.59 90 +139.88 6.42	-3.35 +1.20 +4.1 +4.1 3.05	35 -1.38 -11. -11.52 3.18	46 -1.10 53 53 .4.22
Multiple Cor. Coef	.75	.68	.63	.68	69.	.55	45.	.61	1 9.	.71	.72	.35	.50
Grayness. Yellowness Nonlint (S.A.). 2.5% span length Micronaire. Beta Coefficients for:	+ + + + + + + + + + + + + + + + + + + +	. + . 19 111 + . 52 121 21	+ - + - 19 100 110 110	1 + + 1 1 200		+ - 1 + + + + + + 5 + 5 + 5 + 5 + 5 + 5 + 5	+ 1 - 1 + 103	+.02 +.37 05		. +	67 +.21 +.17 +.05 +.19		51 51 45 45
Grayness Yellowness Nonlint (S.A.). 2.5% span length Micronaire Regression Equation:	* * 00.05 1.1.4 1.00.05 1.1.4 1.00.05 1.00.	. +	. + . + . . 1. + . 1. + . 1	1.19 1.07* 1.35	30 02* +.05* 50	+.08* 16* +.08* +.45	+.03*		00* +.15 09* 43	1.15 +.07* 18 +.60	. 41°+ *40°+ *40°+ *40°+		
Constant (a)Regression Coef. for:	+9.37	-50.23	-41.40	+2.36	+2.14	+35.93	+56.29	+33.95	+40.92	-80.00	+82.39	+90.50	+55.95
Grayness. Yellowness Youlint (S.A.) 2.5% span length. Micronaire Standard Error {±}.	+.05 03 +.66 -5.08 +.11 .62	+.05 -3.69 -1 03 +2.63 +1 +.66 -1.09 -7 -5.08 +160.34 +79 +.11 -1 .62 8.37 4 *Statistically insignificant	-1.82 +1.57 59 +79.19 -1.95 h.78	1.1.4.05.1.25.05.25.25.25.25.25.25.25.25.25.25.25.25.25	41 + 4 20 + 4 20 4 44	+1.05 -4.18 -1.97 +29.67 +11.27 10.55	+ 1. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	+ 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	+ + + + + + + + + + + + + + + + + + +	-1.38 +.98 -1.61 +151.05 -1.32 6.09	-3.49 -1.09 -4.61 -1.21 -2.99	37 -1.40 +.14 +13.97 +.21 3.18	+ 83 + 30 . 34 + 30 . 34 + 3 . 06

rable 17.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurement with processing tests performed on 299 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1974

						Depen	Dependent Variabl	88					
Statistical Items	P. C. C.	Yarn skein	strength	Yarn el	elongation	Yarn ap	Yarn appearance	Yarn imperfections	rfections		00	Color of 22s y	yarn
	& card	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
Moor Wellings for.	Pet.	Lbs.	Lbs.	Pet.	Pet.	Index	Index	No.	왕	.cN	Index	Index	Index
Dependent variable	6.3	106	36	6.3	4.8	100	62	19	17‡	63	91	103	103
2.5% span length	01.1	1.10	1.10	01.1	1.10	01.1	1.10	1.10	1.10	1.10	1.10	1.10	1.10
Fiber str. (1/8" gage)	. K3	23.	23.	23 +	. 23	23	53	23	23	23	23	53.	53
Uniformity ratio Elongation (1/8" gage)	44	44 6.5	44,	44	44	44	6.5	6.5	6.5	6.5	6.5	6.5	6.5
Standard Deviation (±) for Dependent variable	.95	11.4	6.1	09	4.5	12.6	7.6	6.8	5.6	8.7	4.3	3.4	4.6
2.5% span length	.0.	.03	60.	03	0.03	.03	.03	.03	.0.	60.		£0.	£0°
Fiber str. (1/8" gage)	1.8	1.8	 1.8.1	1.84	1.8	1.8	1.87	1.87	1.87	1.8	1.85	1.87	1.02
Uniformity ratio Elongation (1/8" gage)	1.8	1.8	1.8	1.8	1.8	1.8	1.8 .81	1.8	1.8	1.8	1.8	1.8	1,8
2.5% span length	31	+.54	6ħ . +	+.34	+.32	+.19	+,11	20	2 ^t	+.62	+.24	+.21	+.31
Micronaire	17	+.75	+.73	- 148	60°+	+ + 10 10	+ + + 1,	 4.18	52	10	+ + 28 + 28	8.5	+ + 60°
Uniformity ratio		·+·	+ + 5	1.3	+ 16 + 50	+ +	∄ ∂	38	45	÷ +	+ + 800 800 800 800 800 800 800 800 800 80	03.	+.31
Multiple Cor. Data for: DEPENDENT VARIABLE with	7:	71	⁺	60.	-	•	•			2		<u>.</u>	· ·
Multiple Cor. Coef	.33	.56	.51	₹9•	.62	.50	64.	94.	.55	.65	.25	83.	94.
Partial Cor. Coef. for:	?	2			}	}					Ì		
2.5% span length	29	+.56	+.51	+.48	+.46 56	+.14 +.47	+.03 +.48	15	19	+.65	+ + +	+.22	+ + 36 + 36
Beta Coefficients for:	000	+ 57	+ -	¢!(+	+ FT	*0 -	***	*6.	71.	+ 65	+	+ 22	*
Micronaire	12*	- 1 1 1	- 13*	55	45	94.+	64.+	24	50	- 50	*80*+	*60	+.35
Constant (a)	+15.96	-86.17	-58.28	+*88	+.62	+3.73	+30.92	+71.19	+67.35	-104.25	+57.88	49.67+	+51.64
2.5% span length	-7.95	+187.65	+92.08	+7.37	+5.31	+43.99	+8,40	-26.19	-27.35	+165.38	+27.62	+21.71	+34.50
Micronaire Standard Error (‡) DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE FIBER STR. (1/8" GAGE)	89.	-3.20 9.43	5.28	91.	47	10.93	+9.35 8.43	-5.71 6.04	4.73	-3.47 6.56	+.70 4.21	3.32	+3.14 4.07
	.39	.85	.81	29.	.62	.50	64.	24.	.55	•75	.32	.2 ⁴	24.
	22	+.52	+,43	+.53	+.42	+°-14	+.02	12	16	09.+	+.114	+.24	+.29
Fiber str. (1/8" gage) Beta Coefficients for:	. 22	4.76	+.73	27	80.	-05	†0°+	90	0.0	64.+	+.21	1.1	-10
, ee)	22	+.35	+ .30	+.50	+.39	+.13 +.47 04*	+ .02* + .48 + .03*	11* 42 05*	14* 48 07*	+.53 26 +.40	+.15* +.05* +.22	+.26 01* 12*	+.29
or	+16.16	-93.80	-62.36	+1.01	+.59	+4.26	+30.60	+71.56	+67.72	-107.65	+56.95	+80.03	+52.05
	-6.01 16 11 11 *Statisti	-6.01 +114,80 +53.08 16 -5.50 -2.80 -1.1 +4.21 +2.25 6.08 3.61 ************************************	+53.08 -2.80 +2.25 3.61	+8.63 61 07	+5.02 48 +.02 .35	+48.99 +11.67 29 10.92	+5.30 +9.25 +.18 8.43	-22.70 -5.60 -20 6.03	-23.7 ⁴ -5.40 21 4.72	+132.94 -4.49 +1.88 5.72	+18.78 +.42 +.51 +.51	+25.50 09 22 3.30	+38.33 +3.26 22 \pi.05
	TO STORY OF	cally insig	HILLOWILL										

						Depend	Dependent Variables	les					
Statistical Items	25	Yarn skein	Ø	Yarn el	elongation	Yarn api	Yarn appearance	Yarn impe	Yarn imperfections		Co]	Color of 22s y	yarn
	& card	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE), UNIFORMITY RATIO	Pct.	Lbs.	Lbs.	Pet.	Pet.	Index	Index	<u>N</u>	No.	No.	Index	Index	Index
Multiple Cor. Coef.	.39	.88	48.	19.	.63	.51	.53	84.	.57	.81	.32	42.	64.
2.5% span length Micronaire		+ · · + + · · + + · · +	+.48 51 +.41	+,47 -,49 -,25 +,03	+ .38 + .02 + .10		+.30 +.08 +.21	07 28 +.02 13	11 34 +.02 16		+.13 +.01 +.16 +.04	+ .23	+.23 +.23 +.15
2.5% span length	20 18* 08*	. + . + . 52 36	+.31 41 +.53 +.35	+.48 53 +.04*	+.36 61 +.02* +.12*	+.10* +.10* +.10* +.14*	05* +.34 09* +.27	07* 33 02* 17*	10* 38 19*	+.55 48 +.21 +.43	+.14* 02* +.19* +.06*	+.27 10* 04*	+.23 +.26 17*
or:	+16.92	-163.06	-99.05	+.93	+.14	-8.14	+10.30	+80.38	+76.51	-172.83	+54.62	+80.87	+46.39
::(:: 원 입	-5.55 - 08 - 09 - 05 - 87	+119.27 -9.70 -9.70 5.32 5.33 5.39	455.94 -4.98 11.75 11.23 3.30	8	4	+ + .98 10.85 10.85	-14.10 46.54 -1.55 1.55 8.23	-14.64 -4.45 +.07 64 5.98	-16.18 -4.29 +.05 62 4.66	139.64 -8.26 11.00 7.11 5.14	+17.14 +.15 +.45 +.15 +.15 h.11	+26.47 +.03 19 07 3.30	+31.20 +2.38 43 +.49 +.01
r. Coef.	44.	.88	+8.	.83	.76	.52	45.	.52	09.	.82	•36	.29	.53
	09	+ + + + + + + + + + + + + + + + + + + +	 £	+	+ + + +	+ + - + + + + + + + + + + + + + + + + +		25. 1.16. 1.16. 1.22.			+ + + + + + + + + + + + + + + + + + +	+.15 +.01 03 +.16	
age)	10* 06* 27 13*	+ + + + + + + + + + + + + + + + + + +	 14	+.21 +.102* +.58		+.04* +.141 +.16* +.16* +.13*	10* 04* 29 +.11*	+.03* 34 21*			+.05* +.03*. +.27 +.210*	+.19* 02* 03* +.18*	+.12* +.28 07* +.23
Constant (a)Regression Coef. for:	+17.85	-166.57	-100.34	18	79	-14.72	+6.17	+86.57	+81.83	-181.46	+50.89	+78.51	+42.04
2.5% span length. Micronaire. Fiber str. [1/8" gage). Uniformity ratio. Elongation (1/8" gage). Standard Error (±).	-2.83 -11 -14 -07 -27 -85	-2.83 +112.25 +53.41 -11 -9.62 -4.96 -14 +2.41 +1.25 -27 +.77 +1.25 -27 +.77 +28 -85 5.37 3.29	+53.41 -4.96 -1.79 +1.25 +28 3.29 ificant	+	1.89 51 +.05 +.27 29	+14.24 +10.13 34 +1.15 +2.09 10.76	-27.40 +6.66 -2.83 -1.63 +1.29 8.18	+5.06 -1.63 -1.91 -1.91	+ + + + + + + + + + + + + + + + + + +	123.04 -8.09 +1.31 +2.27 +1.85 4.98	5.93 +25 +24 +10 +4	+18.52 +.10 06 01 +.76 3.26	+16.28 +2.52 -1.18 +1.42 3.89

Table 18.--Cotton: Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 35 long staple samples, carded yarns, collected at triweekly intervals from selected gin points, crop of 1974

	f 22s yarn	Bleached Dyed yarn yarn	Index Index	.4o .78	21 - 01 28 + 42 29 + 55 18 - 67	25* - 01* 12* + 47* 33* + 48* - 78	90 +50.28	2201 42.28 55 +5.41 1358 88 2.72	.80	+ .02 + .02 99 + .45 69 69	14* + .02* 54* + .35* 54* + .39* 64* + .20*	8 +47.65	
	Color of	Gray Blee	Index Inc	٠. 57	+.41 +.21 39 +.08 4029 1918	+,46* +,25* -,56* +,12* -,23* -,33*	+146.25 +88.90	+.41 +.22 -1.95 +.41 -3.36 -2.65 -12 -13 2.57 2.88	04. 65.	+.42 +.20 43 +.09 4425 2417 +.2005	+.48* +.24* 69 +.15* 51*30* 28*22* +.23*06*	145.77 +89.08	+ 42 + 53 + 53 + 53 + 54 + 54 + 54 + 54 + 54
		Spinning Potential	No.	.85	11 148 148	07* +.27* 33 +.47	-82.85 +11	27 +.83 -10.92 +1.01 6.72	.87		**10. +112. +14. +2.40 +2.40	-90.92 +14	
	Yarn imperfections	Fine 50s	<u>.</u>	.4s	15.4 1.24 1.14	- 28* - 13* - 18*	+50.57		24.	24 +.10 19 12	29* +.17* 22* 16*	+51.00	2 +
ables	Yarn im	Coarse 22s	No.	54.	17 12 30 +.06	19* 17* 32* +.08*	44.86+	31 -1.07 -14.69 +.07 5.06	.43	1.18	. 26* - 26* - 15*	+99.58	
Dependent Variables	Yarn appearance	Fine 50s	Index	.35	08 04 04	10* +.32* +.37* 05*	-24.38	22 +2.75 +7.32 07	.35	+.16 +.27 +.06 +.07	* * * * * * * * * * * * * * * * * * *	-25.24	5 4 5 1 + 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Лере	Yarn a	Coarse 22s	Index	64.	+.17 +.07 +.23 +.23	+.19* +.09* +.23* 43*	+54.95	+.52 +1.01 +5.89 71 8.46	64.	+.17 +.03 +.18 34	+.05* +.05* +.1.05* +.07*	+53.79	+ + + + + + + + + + + + + + + + + + +
	Yarn elongation	Fine 50s	Pct.	.68	00		+7.63		69.	+ 15 - 15 - 16 - 16	+.02* 74 +.08* +.16*	+7.54	86488
	Yarn	Coarse 22s	Pet.	69•	†0.+ 10.+ 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	+.04*	+11.32	301.30	69.		*†0°+ *0°+ *0°+		
	Yarn skein strength	Fine 50s	Lbs	88		05* +.21* 35 +.53	-33.30	11.17 -5.70 -5.70 -5.57 2.95	8.	560603 32 +.16 +.10 +.116662 03 +.64 +.61 03 +.38 +.36	02* +.08* +.44 +.47 +.23*	-37.23	. + + + • • • • • • • • • • • • • • • •
	Yarn skei	Coarse 22s	Lbs.	%	11 +.33 58 +.67	+.24* +.35 +.53	-44.55	22 -11.84 -11.15 -5.53	.92	90.1.1.4.4.56.4.38	03* 12* 44 47	-52.77	11
	i	Picker & card waste	<u>Ret</u> .	-80	56 36 11 04	51 37* +.08* 03*	+39.93	51.1. 22.+ 20.1. 49.	-80		4.50 4.00 4.00 4.00 6.00 7.00 7.00	+37.96	91.1.4
	Statistical Ttems		DEFENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICROVALIRE, FIBER STRENGTH	Multiple Cor. Coef	Grade index. Staple length. Micronaire. Fiber str. (0 gage). Beta Coefficients for:	Grade index. Staple length. Micromaire. Fiber str. (0 gage)	Constant (a)Regression Coef. for:	Grade index. Staple length. Micronaire. Fiber str. (O gage). Standard Error (±). DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICRONAIRE, FIBER STRENCTH, (O CACE) INTRORMITY PARTO				or:	

-87-

Table 19.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 35 long staple samples, carded yarn, collected at triweekly intervals from selected gin points, crop of 1974

						Depende	Dependent Variables	es					
Statistical Items	10,10	Yarn skein	strength	Yarn el	elongation	Yarn appearance	sarance	Yarn imperfections	rfections		Co	Color of 22s yarn	arn
	& card	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
Mean Values for:	Pct.	Ibs.	Ibs.	Pct.	Pet.	Index	Index	ક્રી	No.	No.	Index	Index	Index
Dependent variable	8.2	411	39	6.1	9.4	101	77	20	15	75	91	103	102
Grayness	01 m	01 60	cu m	cu m	cu m	cu in	01 6	(V) (r)	CU M	01 6	OI M	01 0	CV n
Nonlint content (S.A.)		. w .	. w	3.	. w.	3.5	3.5	 	. w.	. w.		3.5	3.5
Micronaire	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9 3.9	3.9 3.9	3.9	1.15 3.9	3.9
Dependent variable	1.07	13.0	6.3	.41	33	6.7	9.2	5.6	9.4	12.7	3.1	3.1	7.7
Grayness	-4	- 3		2.	2.		2	2.		.7			
Nonlint content (S.A.)	0.1	0.1	0.1	0.1	0.1	0.1	1.0	0.1	1.0	1.0	1.0	1.0	9.0
2.5% span length	.39	.39	.39	.39	3.05	39	.39	.39	90. 89.	30.	.39	.02	.02
Grayness	+.24	39	38	34	37	00.	00.	90*+	+.05	31	44	17.	+.35
Yellowness Nonlint content (S.A.)	+.29	6 1	225	00.+	-19	8°++	80.4	-14 +19	+	91	+.25	08	++
Micronaire	32	+.53 57	+.54	8.5 8.5 8.5	+.38 67	19 +.34	± 4.	31	+.29	55	- 10	02	+.50
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS													
Multiple Cor. Coef	•33	•55	.56	.35	•38	.27	60.	.18	11.	.52	09.	.12	.58
Grayness	+.16 +.23	29	27 44	35	3 ⁴	08	+ -03	+.11	+.08	- 19 14	56	09	+.23
Grayness	+.16*	*64	25*	37*	35*	+.29*	*60.+	+.11*	+.08*	*14*-	57	*60	* 67.+
Constant (a)Regression Coef. for:	+6.52	+148.41	+56.06	+6.36	+5.07	+89.71	+73.91	+22.85	+16.61	+107.79	+90.27	+104.42	+89.23
Grayness	+ + + .46	-5.28 -9.44	-2.36	+ .23	18	-1.18	35	+.93	+ .59	-3.41	-2.72	43.0	+1.35
DEPENDENT (±) DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NOWLINT (S.A.)	1.01	10.83	5.24	.38	.31	9.31	7.62	64.5	4.52	10.84	2.50	3.12	3.57
Multiple Cor. Coef	.86	99•	.68	. 42	.39	.29	60•	.28	. 28	.62	09.	.12	.58
Grayness Yellowness Nonlint (S.A.) Beta Coefficients for:	+ + .01 + .84	15 04 14	21 43 46	+.08 +.25	35 +.08	10 +.26 +.11	+ • • • • • • • • • • • • • • • • • • •	+.07	+.03	1.13		08	+.23 +.49 +.01
Grayness. Yellowness Nonlint (S.A.) Regression Equation:	+.01*	* * * * * * * * * * * * * * * * * * * *	17*	42* +.08* +.25*	***************************************	10* +.27* +.11*	***************************************	+.07*	+.04*	.36*	+.43*	***************************************	+.20*
Constant (a)Regression Coef. for:	η 9° η+	+158.98	94.19+	+6.15	+5.02	+87.52	+73.78	+20.22	414.09	+117.47	+90.29	+104.52	+89.16
Grayness. Yellowness. Nonlint (S.A.)	+ + +	-3.85 -4.83	-1.64	+ + . 106.	18 06 +.03	-1.48 +4.78 +1.00	+1.27	+.58 -2.11 +1.20	+.25	-2.11 -8.82 -4.42	-2.72 +2.42 01	.42 29 05	+1.34 +3.86 +.03
	.55 *Statistic	• 572 4. *Statistically insignificant	4.64 Ficant	.37	•30	9.56	7.62	5.36	4.38	9.95	2.50	3.12	3.57

						Depend	Dependent Variables	bles					
C+a+ic+ica) T+amc		Yarn skei	Yarn skein strength	Yarn e	elongation	Yarn api	Yarn appearance	Yarn im	Yarn imperfections		Co	Color of 22s y	yarn
ממנומנדנים דינעווים	Picker & card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray yarn	Bleached	Dyed
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NOULUT (S.A.), 2.5% SPAN	Pet.	Lbs.	Lbs.	Pet.	Pct.	Index	Index	No.	No.	No.	Index	Index	Index
Multiple Cor. Coef	98.	92.	-77	45.	.58	.31	.11	:43	74.	.72	.62	.13	.59
Against Cor. Coet. 107: Grayness. Yellowness. Nonlint (S.A.)	+.03 +.17 +.82	+ 1 1 1	4+ 4+ 5.00	+ + + 19 + + 38 + 38	- + + + - 53 - 53	. + +	04 +.10 +.03 +.07	+.12 30 +.12	 39	23 34 +.46	57 +.48 +.05	80°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	
beta Coefficients for: Grayness. Yellowness. Nonlint (S.A.)	**************************************	- 27* - 24* - 27* - 11		41* +.18* +.35* +.37*	39* +.03* +.41*	09* +.25* 10*	04* +.11* +.03* +.08*	+.12* 31* +.12* 37*	+.09* 26* +.15* 41*	18* 25* +.40*	59 +.47 +.04* +.16*	* * * * * * * * * * * * * * * * * * * *	+.19* +.51 +.04* +.10
Regression Equation: Constant (a)	+8.48	-146.09	-85.83	-2.79	-4.03	+141.84	+39.93	+139.32	+122.91	-174.07	+60.24	+111.89	+62.92
Crayness Yellowness Yellowness Yollowness Nonlint (S.A.). 2.5% span length Standard Error (±) DEFENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN LEWATH MICROMATER		-5.40 -5.41 -3.41 8.46	-2.38 -2.94 -1.78 +123.99 4.02	26 		-1.35 -4.32 -45.49 9.22	+1.55 +28.35 7.60	+ .8 -3.12 -99.94 5.02	+.63 -2.12 +.65 -91.35 4.03	-3.47 -6.34 -3.06 -3.06 8.80	-2.79 +2.68 +1.13 +25.17 2.45	41 35 08 -6.17 3.12	12.28 4.15 4.15 3.54
Multiple Cor. Coef	88.	88	.89	.77	.81	74.	.32	.53	45.	.85	.62	.29	1 9.
Grayness Yellowness Nonlint (S.A.) 2.5% span length Micronaire Beta Coefficients for:	16 +.03 +.85 11 +.40	90:1:4:0		1. + + + 1. 544. 43. 44. 44. 44. 44. 44. 44. 44. 44.	+ + + + + + + 69	26 +.10 +.19 +.37	1.17 1.12 1.12 1.08 1.30	+		+ 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. + + +	+ + 1 05 40.10 10.40 10.40 10.40	+ + + + + + + + + + + + + + + + + + +
Grayness Yellowness Nonlint (S.A.). 2.5% span length Micronaire Regression Frustion	02* +.02* +.87 +.06*	- 03* - 05* - 140 - 56	01* 08* 43 55	**************************************	**************************************	28* + .10* + .09* + .44*		+.28* +.02* 37*	**************************************	* * * * * * * * * * * * * * * * * * *	**************************************	+.05* 11* 04* 33*	+ + + + + + + + + + + + + + + + + + +
Constant (a)Regression Coef. for:	90.9+	-80.95	-54.93	32	-1.94	+103.58	42,41+	+158.28	+137.29	-109.20	19.09+	+121.06	+50.25
Grayness. Yellowness. Nollint (S.A.). 2.5% span length Micronaire. Standard Error (±).	15 +.03 +.91 -3.04 +.70 .50	156514 +.03 -1.1988 +.91 -5.22 -2.64 -3.04 +251.61 +121.53 +.70 -18.85 -8.94 .50 6.14 2.92 *Statistically insignificant	14 88 -2.64 +121.53 -8.94 2.92 nificant	+.30 +.30 +7.25 71	- 105 + 105 + 101 + 100 + 100 - 100	-4.12 -1.77 -1.81 -42.45 -11.07 8.56	-2.31 16 +.93 +7.43 7.24	+2.36 -1.86 +.12 -101.45 -5.49	11.68 -11.17 +25 -92.49 -4.16 3.82	+1.24 -2.02 -4.87 +240.08 -18.77 6.62	-2.76 +2.70 +25.14 -1.12 -1.12	3.65 3.65 3.01	+ 36 + 51 + 52 + 51 + 3.66 3.36

Table 20.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 35 long staple samples, carded yarn, collected at triweekly intervals from selected gin points, crop of 1974

						Depend	Dependent Variables	les					
Statistical Items	Picker	Yarn skein streng	strength	Yarn el	elongation	Yarn appearance	earance	Yarn impe	imperfections		Col	Color of 22s	yarn
	& card	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
Mean Values for:	Pct.	Tps.	Lbs.	Pct.	Pct.	Index	Index	No.	일	No.	Index	Index	Index
Dependent variable	8.2	114	39	6.1	4.6	101	77	20	15	75	91	103	102
Micronaire	j o,	i m =) o.) o.	in a	, w.	i m -	i m -	i w :	i m-	i m -	i w.:	
Uniformity ratio	·	'£.Ż	· · ‡ iz	主	·	· 15	· ·	* ‡ *	· * * * * * * * * * * * * * * * * * * *	主	*		± 5.
Elongation (1/8" gage) Standard Deviation (±) for:	ħ . 9	ħ*9	†*9	†. 9	4.9	†. 9	†. 9	†. 9	†*9	†•9	†. 9	4.9	†•9
Dependent variable	1.07	13.0	6.3	. 4 <u>.</u> 02	.33	9.7	7.6	5.6	4.6	12.7	3.1	3.1	ή·ή 0·
Micronaire	66.0	.39	8,00	66.0	330	.39	330	.39	330	680	330	330	68.0
Uniformity ratio Elongation (1/8" gage)	1.48	1.18	1.48	1.48	1.48	1.48	1.48	1.48	1.48	1.48	1.48	1.48	1.48
2.5% span length	32	+.53	+.54	9.+	+.38	-19	†0°+	31	1.38	+.53	00.	02	40
Fiber str. (1/8" gage)	- 40 - 40	+.80	. + 7.8.	62 +.11	- . 67 + . 48	+ . 38	+.26 12	31 +.16	57. + +	. + 	9 11	2' +.10	- + - 50 - 45
Uniformity ratio Elongation (1/8" gage)	41 +.28	+ • • • • • • • • • • • • • • • • • • •	87°- + -	21 +.38		+ - 03	- 52	25	8.8	+ - 64. 14.	19 +.48	03	02 +.57
Multiple Cor. Data for: DEPENDENT VARIABLE with 2.5% SPAN LENGTH. MICRONAIRE													
Multiple Cor. Coef	. 35	.78	.77	•65	.77	.39	.26	ħ ħ.	84.	92.	.11	.27	.50
2.5% span length	32	+9.+	+.65	+.25	+.50	20	†o•+	33	04	+.63	01	02	40
MicronaireBeta Coefficients for:	+.15	67	65	63	72	+.34	+.26	33	31	1 9•-	10	27	+.50
2.5% span length	32* +.1L*	+ 53	女:	+.19*	+.37	19*	*40.+	*31*	*38*	+.53	**01*	*05*	*03*
Regression Equation:		. 00	i t		- 1	t		•	(7.	3 -			•
Constant (a) Regression Coef. for:	+25.90	-198.8	-117.66	+4.22	05	+169.40	+40.30	+136.27	+126.22	-232.47	+95.65	+115.29	+88,14
2.5% span length	-16.65	+334.64	+165.87	+3.88	45.98	-88.25 +8 ho	+13.96	-85.44	-84.50	+327.05	91	-3.42	-7.24
Standard Error (±)	1.00	8.18	4.00	.31	.21	8.93	7.38	5.01	4.01	8.21	3.11	3.03	
2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE)													
Multiple Cor. Coef	.50	.87	.87	t ₁ 2.	.77	.43	.27	64.	64.	.86	.23	.27	.57
2.5% span length	09	+ + + + + + + + + + + + + + + + + + + +	+,44	+.47	ήή·+ - 67	06 +.21 20	+.05	40 18 +.24	40 21 +1.+	+,42	1.50	01 24 02	+.14+.33
2.5% span length	*60	+.28*	+.28*	*24°+ 84 48	*37*	07* +.23* 25*	+.05*	45* 18* +.29*	46*	+.28* 31* +.53	+.12*	01*	+.14*
Constant (a)	+20.28	-125.39	-80.39	+2.05	90*-	+142.91	+37.74	+154.06	+134.30	-158.71	+86.35	+114.34	+70.78
2.5% span length	-4.86 21 23	+180.31	+87.69 -4.99 +1.53	+8.43 89	+5.99 58	-32.68 +5.66 -1.09	+19.32	-122.76 -2.64 +.73	-101.45 -2.55 +.33	+172.34	+18.61	-1.43 -2.30 04	+29.18 +3.83 71
Standard Error (±)	.92 *Statistic	.92 6.47 3. *Statistically insignificant	3.09 ficant	.27	.21	8.74	7.37	4.86	3.97	6.50	3.04	3.02	3.61

Yarn skein strength
Roarse Fine Coarse Waste 22s 50s 22s
Pct. Ibs. Ibs. Pct
.53 .89 .89
+,03 +,33 +,35 +,47 +,01 -,59 -,56 -,68 -,28 +,49 +,53 -,38 -,20 +,41 +,36 -,17
+.04* +.20* +.21* +.53* +.01*433978 36* +.38 +.4211* 23* +.27* +.23*15*
+17.20 -135.56 -84.94
+2.13 +128.20 +66.11 +10.64 +.03 -14.30 -6.3683 18 +2.26 +1.2108 17 +2.33 +.9704 91 5.92 2.8927
.53 .89
+.33 +.45 +.45 +.40 +.40 +.00
+.05* +.20* +.21* +.41* 00*423871 39* +.39* +.4511* 24* +.27* +.23*08* 04* +.01* +.04* +.46
+17.62 -136.66 -87.7275
+2.67 +127.31 +63.87 +8.19 +.01 -14.27 -6.2775 19 +2.29 +1.2802 17 +2.34 +1.0002 07 +.14 +35 +.28 .90 5.91 2.89 .23 *Statistically insignificant

Table 21.--Cotton: Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 35 long staple samples, combed yarn, collected at triweekly intervals from selected gin points, crop of 1974

			Depe	Dependent Variables					
		Yarn skein strength	strength	Yarn elongation	ngation	Yarn appearance	arance	Yarn imperfections	rfections
Statistical items	Comber	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex
Mean Values for: Dependent variable. Grade index Staple length. Micronaire. Fiber strength (0 gage).	Ret. 16.6 92 35.8 3.9	108. 133 95.8 35.8 3.9	108. 14.7 92. 35.8 3.9	Pet. 6.7 92 35.8 3.9	Pet. 5.1 92 35.8 3.9	Index 111 92 35.8 33.9	Index 92 92 35.8 3.9	8.9 8.9 35.8 3.9	No. 6.9 92 35.8 3.9
Uniformity ratio Standard Deviation (t) for: Dependent variable Grade index Staple length Micronaire Fiber strength (0 gage). Uniformity ratio	3.5 3.5 5.9 5.9 1.5	# He	₹ ₹. ₽. ₹. ₹. ₹. ₹. ₹. ₹. ₹. ₹. ₹. ₹. ₹. ₹. ₹.	3.5 3.5 3.9 3.9 1.5	\$	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\$ 5.5 5.5 8.5.5 7.1	\$ 8.8. 0.0.0 0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0	4 4.6
Simrle Correlation Coef. for Grade index. Staple length. Micronaire. Fiber strength (O gage). Uniformity ratio. Multiple Cor. Data for: DEPENDENT VARIABLE with	5	+, 35 +, 74 +, 55 +, 85 +, 49	+.37 +.76 49 +.53 +.53	. 25 66 		+ .04 16 14 14	+.10 19 +.16 +.18 +.18		
GRADE INDEX, STAPLE LENGTH Multiple Cor. Coef	.51	.75	92.	.25	.16	ਹ ਼	•30	8.	.23
Grade indextractions Staple length	+°-14 -°-49	08	05	19	16 +.10	+.15 21	+.24	22	8.8
Grade index Staple length Regression Equation:	+,14*	*90*-	*40**	*55	19*	+•17* -•24*	+.28*	+.114*	25*
Constant (a)Regression Coef. for:	451.76	-255.75	-122.40	17.6+	+5.15	+159.21	+137.47	+13.20	+17.57
Grade index Staple length Standard Error (±). DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICHOWALRE	+.07 -1.17 1.58		06 +4.91 3.73	02 02 37	02 +.04 -27	ተ. ተ. 66.8 8.99	+.61 -2.84 7.34	2.3 2.97 2.97	19 +.19 2.54
Multiple Cor. Coef	.52	.81	.80	.79	99•	5ħ.	L4.	64.	. th.
Grade index Staple length. Micronalite Beta Coefficients for:	+.10 42 +.08	+.13 +.59 48	11.+	+.18 55 77	+.12 28 65	.00	+.10 09 +.37	04 12 45	08
Grade index Staple length. Micronaire. Rerression Foustion:	+.11*	+.09* +.57 37	+.09* +.61 30*	*41.+ 42 188	+.12*	.00* 01* +.4.*	+11.+	05*	09* 15* 39*
Constant (a)	+48.80	-152,42	-86.19	+16.68	49.50	+78.55	+71.01	00°94+	+39.01
	+.06 -1.09 +.36 1.58 *Statistical	+.06 +.36 -1.09 +8.41 +.36 -12.63 1.58 7.76 *Statistically insignificant	+.14 +3.85 -4.43 3.42	. 0. . 2. . 4. . 4.	+.01 09 53	01 14 -9.86 8.35	+.24 90 90 6.81 6.81	04 49 -4.01 2.65	- 07 - 143 - 2.62 2.39

				Dependent Variables					
Statistical Items		Yarn skeir	ein strength	Yarn eld	Yarn elongation	Yarn appearance	earance	Yarn impe	Yarn imperfections
7 100 100 100 100 100 100 100 100 100 10	Comber	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex
DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICROWAIRE, FIBER STRENGTH	Pct.	Lbs.	Lbs.	Pet.	Pet.	Index	Index	No.	No.
(O CAGE) Multiple Cor. Coef	.56	.93	.93	.82	89•	24.	84.	•50	14.
Grade index	1. +	+.26	-12 +.29	+.10	1.+ 1	00.+.01	+.10	05 14	90 41
Micronaire	- 500 - 500 - 500		+.78	- 39	900	+°3./ -°03	+*38 +*14	+ 07	+ 08
Grade index. Staple length Micronaire. Fiber str. (0 gage)	+.11* +.05* +.33*	+.16* +.34 +.62	+.19* +.19* +.65	+.08* 32* 87	+.10* 15* 75	*00. +01. *10. *+0.	+,11* -,21* +,41* +,17*		- 09* - 38* - 38*
Kegression Equation: Constant (a)	+42.36	-3.31	-24.43	+15.96	00*6+	+74.92	+84.22	66°84+	+42.00
Grade index Staple length Micronaire Fiber str. (0 gage) Standard Error (±) GRADE TYDRY SMAILABLE WITH	+.06 67 10 1.52	27 +2.38 -11.64 +1.40 4.91	09 +1.17 -3.99 +.62 2.14	+.01 +1.1 87 02	+ .0. 05 01 01	01 +.10 +9.82 05 8.35	+ .25 -1.83 -4.83 + .22 -75	43.88 40.24 40.49	- 62 - 62 - 59 - 59 - 59 - 59 - 59
MICRONAIRE, FIBER STRENGTH, (O GAGE), UNIFORMITY RATIO Multiple Cor. Coef.	•59	₦6•	±6°	.83	07.	†† ₁ *	.51	.50	.41
Grade index. Staple length. Micronaire. Fiber str. (0 gage) Uniformity ratio	+.09 11.14 11.14 12.19	10 +.09 +.76 +.37	07 +.11 +.73 +.77 +.40	+.10 24 75 35	+ 13 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15	+.01 06 +.28 +.27 07	+ .22 -22 + .28 + .09 + .19	70°+ +0°2 +0°2 +0°2 +0°2 +0°2 +0°2 +0°2 +	
Grade index. Staple length. Micronaire. Fiber str (0 gage). Uniformity ratio.	+.10* 20* +.15* 25*	+.05* +.05* +.58 +.19*	+.03* +.07* +.35 +.59	+.07* 25* 82 29* 13*	+ 11* - 30* - 85 - 27* + 26*	+,01* -,10* -,10* +,33* +,09* +,19*	+.13* +.32* +.11* +.22*	*40*- *42*- *53*- *07*- *00*-	09* 22* 38* +.10*
Constant (a)Regression Coef, for:	+45.90	-11.13	-27.75	+15.96	+8.94	+72.55	+82.30	448.66	441.99
Grade index Stable length. Micronaire. Fiber str. (0 gage). Uniformity ratio. Standard Error (±).	+.05 42 +.72 08 27 1.50 *Statistically	+.0517 42 +.80 +.7214.30 06 +1.29 27 +1.70 1.50 4.56 *Statistically insignificant	. +			+.03 -1.01 -1.33 -1.13 -1.13 -1.13 -1.13	+ 28 -2.92 +6.14 +1.14 +1.17 6.64	- 04 - 4.22 - 4.22 - 4.03 - 4.16 - 2.64	-2.60 -2.60 -2.60 -4.04 -38

-93-

Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 35 long staple samples, combed yarn, collected at triweekly intervals from selected gin points, crop of 1974Table 22. -- Cotton:

			Deper	Dependent Variables					
Statistical Items		Yarn skein	kein strength	Yarn eld	Yarn elongation	Yarn appearance	earance	Yarn imperfections	rfections
	Comber waste	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex
Mean Values for:	Pct.	Lbs.	Lbs.	Pct.	Pct.	Index	Index	No.	No.
Dependent variable	16.6	133	17	6.7	ר	רונ	8	0 00	0 4
Grayness	2	201	- cu		1 01	2	íα	o ou	, a
Yellowness	ო (m r	m (n e	г С	m (en :	8	m
2.5% span length	ر.د جد: ر	3.5 5.	ر.د د د	ر•د دـ د	3.5	3.5	3.5 7.	3.5	3.5
Micronaire	9.6 6.6	. w	4 W	9.6	j 6.	નું હ હ	6.6	. 6. K	3.9
Standard Deviation (±) for:	r C	. (, t	ن ن	. (. () I		` '
Grayness	1.85	L3•3	5.7	± 5	w r	0 01 1	7.7	3.0	2.6
Yellowness	-9.	- 9.	-9.	. 9.	- 9.	- 9.	-9.	- 9.	- 9
Nonlint content (S.A.)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Micronaire	39.	39.	39	.39	.39	.39	39.	.39	30.08
Grayness	+,10	-,38	37	35	ηε	+.01	ηO.+	00	- +
Yellowness	017.+	15.	<u>.</u>	+.07	80	+.19	+,15	23	†o.
Nonlint (S.A.)		. + . 52	・ ・ ・ ・ ・ ・	+•31 •10	+.07 +.15	+ 225 9 C +	+ + -0°+	or. • •	01
Micronaire	+.27	55	6h	99:-	- 62	24.+	94.+		35
Multiple Cor. Data for: DEPENDENT VARIABLE with									
GRAYNESS, YELLOWNESS		,							
Multiple Cor. Coef	.41	• 56	• 56	•37	•34	•19	.15	.23	• 05
Grayness	-03	27	26	36	33	05	01	+.05	+•03
Deta Coefficients for:	+	45	-,45	+.19	+.03	+.19	+.15	23	†o• -
Grayness	+ 171 +	***************************************	23*	-38*	***************************************	*00.	*10.	**00+	+*03*
Regression Equation:	•	•	•	"£т•-	4.03	* O V •	+•T>*	* 54*	*<0
Constant (a)	+13.12	+169.59	+63.10	46. 74	+5.34	+103.51	+86.87	+11.87	+7.29
Grayness	08	-4.92	-1.99	22	15	68	60*-	+.25	+,11
Yellowness Standard Error (±) DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS	+1.38 1.69	-10.51 10.99	-4.56 4.73	+.13 •36	+.01 .26	+3.33 9.03	+2.15 7.61	-1.3¼ 2.97	2.61
Multiple Cor. Coef	64.	89.	02.	.52	•37	.28	.15	.27	• 05
Grayness	60	ਰ: -	19	ካተ•-	35	60	01	+.03	+.03
Nonlint (S.A.)	+.37 +.29	74	-•45 -•51	+.15 +.40	+.01 +.16	+,16	+.14 +.01	+ 14	100-
Grayness	*80°-	*17*	*15*	*******	38*	*60	*00-	+.03*	+*03*
Nonlint (S.A.)Regression Equation:	+.28*	*07.	444	+°57* +°39*	**************************************	+*T.* +*S.**	+.15*	**51. +-15*	***************************************
Constant (a)Regression Coef. for:	+12.02	+180.92	+68.41	46.42	+5.25	竹*66+	+86.73	+10.91	+7.35
Tellowness	+ 23 + 25 + 25	-3.39	-1.28	. 26	16	-1.23	-11	4-12	+,12
Nonlint (S.A.)	1.50	-5.17 9.72	24.4 24.4 24.0	50. + 71. +	3 7 %	7. 1. 8. 1. 8. 9. 1.	50°+ 50°+	-1- 5-1- 5-1- 5-1-	1 i 0
	*Statistically insignifi	y insignificant							1

			реде	Dependent Variables					
Ctatictical Ttems		Yarn skein	skein strength	Yarn elongation	ngation	Yarn appearance	earance	Yarn imperfections	rfections
SCALLS CLCCAL LCCIES	Comber waste	22s o r 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 te x	22s or 27 tex	50s or 12 tex
DEPENDENT VARIABLE with GRAINESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN FRANCH	Pet.	<u>Ibs.</u>	<u>lbs.</u>	Pet.	Pct.	Index	Index	No.	No.
Multiple Cor. Coef	.62	.76	.78	.53	74.	•38	છં	•30	.22
Grayness. Vellowness. Nonlint (S.A.). 2.5% span length. Peta Coefficients for:	. + + . 22933 119983	38 654 39 654 39 654	37 37 4 4 4	寸····· 90. 1. ·····	. + + + 2037 2037	 		40 40 41	+.05 10 07
Grayness Yellowness Nonlint (S.A.) 2.5% span length	02* +.26* +.16* 41*	24* 28* 30* +.37*		**************************************	**************************************	* * * * * * * * * * * * * * * * * * *	**************************************	+.04* 31* +.10* 15*	+.05* 08* 24*
Constant (a)Regression Coef. for:	+ 56.69	-104.28	-56.50	L9°4+	66*+	-50.26	LO*†+	+37.52	+43.72
Grayness Yellowness Yellowness Nonlint (S.A.) 2.5% span length Standard Error (±) DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN TENGTH MICHONALDE	07 +.87 +.29 -37.49 1.45	-4.82 -6.68 -3.85 -240.06 8.63	-1.92 -2.84 -1.84 -105.16 3.58	26 +.11 +.15 +.14 +.146 33	55. 55. 55. 55.	-1.49 44.09 72.55 +125.22 8.52	30 +2.83 +4.45 49.23 7.50	+.19 -1.68 +.31 -22.29 2.91	+.21 51 30,46 55 2.55
Multiple Cor. Coef	-65	.87	·86	62.	.70	.63	.55	45.	64.
Grayness. Yellowness. Nonlint (S.A.) 2.5% span length Mcronaire. Beta Coefficients for:	····· ···· ···· ·····		88888	18 +.4 +.30 +.10 69	. + + + 34 . • • • • • • • • • • • • • • • • • • •		28 00 +.23 +.21 +.57	+.27 12 04 17	+ + 26 + 07 - 21 - 25 - 45
Grayness. Yellowness Nonlint (S.A.) 2.5% span length Micronaire Regression Equation:	14* +.17* 41* +.27*	01* 10* 36 53	02* 12* 45 47	13* +.40* +.22* +.07* 73	1.10 1.30 1.4.4.4.55 1.68	*********	29* 00* +.19* +.19*	+ 28* - 12* - 16* - 16*	+ + 28* + 07* - 22* - 55* - 54*
Constant (a)Regression Coef. for:	+52.26	-40.91	-32.53	+7.19	+2.68	-102.94	-39.04	+52.72	+56.43
	3921 +.57 -2.45 +.42 -5.61 -37.14 +235.03 +1.28 -18.34 1.40 6.51 *Statistically insignificant	21 -2.45 -5.61 +235.03 -18.34 6.51 insignificant	1.18 1.24 1.24 1.24 1.53 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54	08 +28 1.26 73 24	4.1. 4.1. 5.1. 5.2. 5.3. 5.3. 5.3.	-5.30 +.58 +4.01 +129,40 +15.24 7.10	-3,43 -,04 11.65 772.65 112.47 6,44	1.29 1.1.1.1.1.2.2.3.50 2.57	1.13 1.13 1.55 1.368 1.368

Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 35 long staple samples, combed yarn, collected at triweekly intervals from selected gin points, crop of 1974 Table 23. -- Cotton:

			Depe	Dependent Variables					
Statistical Items		Yarn skein strength	strength	Yarn elc	Yarn elongation	Yarn app	appearance	Yarn impe	Yarn imperfections
	Comber waste	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex
Mean Values for: Dependent variable. 2.5% span length. Micronaire Fiber str. (1/8" gage).	Pet. 16.6 1.15 3.9	133 1.15 3.9 24	1.15 1.15 3.9 24	Pct. 6.7 1.15 3.9	Pet. 5.1 1.15 3.9	Index 111 1.15 3.9	Index 92 1.15 3.9	No. 8.9 1.15 3.9	No. 6.9 1.15 3.9
Uniformity ratio	т.9 †††	4.9 44	1.9 111	47.9 6.4	†•9 † † 1	4.9 44	1.9	4.9	7.9
Dependent variable. 2.5% span length. Micronaire. Fiber str. (1/8" gage).	1.85	13.3 .02 .39 2.2 1.5	5.7 .002 .33 .20 .21	4.0.5.9.4. 9.8.9.2.	.3 .39 .39 .5-	9.2 .00 .00 .00 .00 .00	7.7 .02 .39 2.2	3.0. 3.39 1.5	6.5. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.
Elongation (1/8" gage) Simple Correlation Coef. for: 2.5% span length.	.67	79.	. + st.	79.	79٠ +	79.	79*	.67	.67
Micronaire	. + + 7.67 14 +	. + + 1 581 54	 	993 993 993 993 993 993 993	 	- + - + + - + - + + - 10	. + : + 1.18 1.18 1.03	548844 54884	
Multiple Cor. Data for: DEPENDENT VARIABLE with 2.5% SPAN IENCTH, MICRONAIRE									
Multiple Cor. Coef	.59	.75	•73	.67	1 9•	≢.	74.	<i>∠</i> †.•	.39
2.5% span length	55	+.61	+.61	15	+.19	+,14+,42	+•13 +•46	11 47	20
2.5% span length	53	+.51 +2	+.53	*11.*	+.15*	+.13*	+.11* +.46*	10*	19*
Constant (a)	+66.83	-179.46	-95.53	+11.58	44.54	46.16	+7.36	+40.14	+43.62
2.5% span length	-47.82 +1.26 1.49	+333.57 -18.69 8.78	+148.24 -7.23 3.92	-2.06 66 28	+2.00 45 21	+57.12 +9.98 8.27	+42.86 +9.13 6.80	-14.73 -3.68 2.68	-23.81 -2.37 2.40
2.5% SPAN LENGTH, MICRONAIRE, FIBER SIR. (1/8" GAGE)									
Multiple Cor. Coef	.71	98.	.85	92.	•65	84.	84.	.50	.45
2.5% span length	32 +.03 49	+ - + + - + + - +	+ · · + · · · · · · · · · · · · · · · ·	+.16 76 50	+.25	+.24 +.28 22	+.16 +.37 09	18 35 +.17	30 +.24
2.5% span length Micronaire Fiber str. (18" gage).	28* +.02* 53	+ - 52. + . 56. + . 56.	+.25* +.22* +.59	+.12*	+.23* 70 17*	+ + + 30*	+,16* +,41* -,11*	19* 38* +.19*	+ .21* + .30*
Regression Equation: Constant (a)	+56.11	19.96-	-58.56	64.6+	+4.01	-20.50	-1.60	+46.71	+52.19
2.5% span length Micronaire Fiber str. (1/8" gage) Standard Error (±).	-25.34 +.12 44	+159.85 -9.84 +3.41	+70.69 -3.28 +1.52	4 6 8 8 9 9 9 9	+3.11 51 02	+113.04 +7.13 -1.10	+61.66	-28.50 -2.97 + + 27	-41.80 -1.45 +.35
•••••••••••••••••••••••••••••••••••••••	*Statistical]	*Statistically insignificant	3.01	٢۶.	. Z.	8.07	6.77	2.65	2-33

			Дере	Dependent Variables					
Ctaticis Itoms		Yarn skein	strength	Yarn elongation	ngation	Yarn appearance	earance	Yarn imperfections	rfections
2000	Comber	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICHONAIRE, FIBER STR. (1/8" GAGE), INTECPARTY RATIO	Pet.	<u>rbs.</u>	Lbs.	Pct.	Pct.	Index	Index	No.	No.
Multiple Cor. Coef	.71	88	88.	.81	99•	64.	64.	.50	Lt1.
2.5% span length	26	+.27	+.27	+*.34	+.25	60°+	や。 +	80	41
Fiber str. (1/8" gage)	+ • • • • • • • • • • • • • • • • • • •	#. . +. . *.37	4.7 +.53 40	71 35 40	57 11 10	+.26 +.14	+.34 +.13	+ + 19 + 19 - 09	+.28 14
Beta Coefficients for: 2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio.	* * * * * * * * * * * * * * * * * * *	+.17* 38 +.44 +.25*	+.17* 32* +.45 +.28*	+.29* 76 33* 34*	+.30* 67 12* 10*	+.12* +.24* 34* +.16*	+.05* +.36* 18* +.15*	- 11* - 34* + 24* - 10*	
Regression Equation: Constant (a)Regression Coef. for:	+55.50	-105.74	-63.33	+8.53	+3.41	+16.66	+23.88	+39.67	+41.23
2.5% span length. Micronaire. Fiber str. (1/8" gage) Uniformity ratio. Standard Error (‡).	-23.36 - 1.20 - 1.29	+109.16 -12.98 +2.67 +2.24 6.25	46.66 -4.79 -1.17 -1.07 2.75	+5.45 76 06 09	\$	+54.19 +5.70 -1.43 1.02 7.99	+19.69 +7.10 62 +.76 6.72	-17.03 -2.69 -4.34 -2.64	-24.73 -1.05 -1.45 -2.30
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER SIR. (1/8" GAGE), UNIFORMITY RATIO, ELONGATION (1/8" AND									
(1/o CAME) Multiple Cor. Coef Partial Cor. Coef. for:	.71	888.	88.	48.	.82	.50	.50	.50	74.
2.5% span length. Micropolire Fiber str. (1/8" gage)		* 1 + 1 + 1 + 1 + 1	+.28 +.47 +.46	+.28 72 14	+.15 61 +.28	+.07	+.07 +.29 19	07 30 +.14	41+ 26+
Uniformity ratio Elongation (1/8" gage) Beta Coefficients for:	.05	% 90. + •	+.39 07	+.39	+.01 +.65	+.15	+.10 14	60°-	13 +.04
2.5% span length.	25* +.03*	+.18*	+.18*	+.22*	+.13*	+ 10*	*60°+	10*	*12
Fiber str. (1/8" gage)	53*	*+ + - + *42*	*****	*41	*.28*+	* * *0 • - +	* * * * * * * * * * * * * * * * * * *	***	* * * * * * * * * * * * * * * * * * *
Elongation (1/8" gage)Regression Equation:	*†0	05*	*50*-	*30*	+.62	***************************************	15*	*50	* 70 +
Constant (a)Regression Coef. for:	+56.31	-97.79	-60.23	+7.36	+5°0¢	+11.89	+33.02	+40.74	+40.43
2.5% span length.	-22.49	+115.64 -13.24	+49.16 -4.89	44.17	+1.80	445.38 +5.96	+35.49	-15.16 -2.74	-26.25
Fiber str. (1/8" gage) Uniformity ratio	 30	+2.47 +2.16	11.09 11.05	02	÷ • •	-1.24 -1.09	76+-	£ 53.	* 1
Standard Error (±)	1.29	6.22		7.T.	.16	7.97	-1.76 6.65	21 2.64	+.16 2.30
	*Statistical	*Statistically insignificant							

MEASURES USED IN STATISTICAL ANALYSIS

Some of the statistical concepts used in this study may be unfamiliar to many who will find the information in this report useful. Results reported in this study include the means, standard deviations, simple and multiple correlation coefficients, beta values, partial correlation coefficients and regression equations for each cotton quality measurement. Formulas of each of these results may be found in any good textbook on statistical correlation. However, for those not familiar with these concepts the following common language explanation is given for each item as it is used in this report:

- (1) Mean Value is the simple arithmetical average of each measured property for the spinning lots included in the study.
- (2) Standard deviation is a measure of dispersion around the mean value, expressed in the same terms as the variable. For a normal distribution, approximately 68 percent of the values will be within plus or minus one standard deviation of the mean, 95 percent within plus or minus two standard deviations, and nearly all values will be within plus or minus three standard deviations.

Example: (from Table 15, column 1, page 79)
The mean or average value for picker and card waste, the dependent variable is 6.3 percent and the standard deviation is .95 percent. This indicates that 68 percent of the lots tested in the medium staple group should contain between 5.4 and 7.2 percent waste $(6.3 \pm .95)$. Ninety five percent of the lots tested would have from 4.4 to 8.2 percent waste (6.3 ± 1.90) and nearly all of the test lots would show waste values between 3.4 and 9.2 percent (6.3 ± 2.85) .

(3) Simple correlation coefficient (r) is a measure of the linear relationship between two variables, ie. how one variable is associated with the other. A correlation coefficient of O indicates no relationship, and 1.0 indicates a perfect relationship. A plus sign before the correlation coefficient indicates that the values for both variables change in the same direction, whereas a minus sign indicates that they change in opposite directions.

Example: (from Table 15, column 1, page 79)
The simple correlation coefficient (r) of grade index with picker and card waste is -.63. This indicates that grade index and picker and card waste are related. It further indicates by the - sign that as one goes up or down the other goes in the opposite direction.

(4) <u>Multiple correlation coefficient (R)</u> is a measure of the linear relationship between one dependent variable and two or more independent variables. It has no plus or minus sign because one independent variable may contribute positively, and another negatively, in explaining the variation in the dependent variable. The multiple R may fall between 0 and 1.0, with 0 indicating no relationship and 1.0 a perfect relationship.

Example: (from Table 15, column 1, page 79)
The multiple R for the dependent variable of picker and card waste with independent variables of grade index, staple length and micronaire is .65.
This indicates that the combination of grade index, staple length and micronaire shows a definite relationship to picker and card waste. It does not explain, however, whether grade index, staple length and micronaire contribute postively or negatively to picker and card waste or which of the three is most important.

(5) Although the coefficient of determination (R^2 , or r^2) is not given, it may be easily obtained by squaring the simple r's or multiple R's and multiplying by 100. This gives the percentage of variation explained, a measure of the amount of variation in the dependent variable which is explained by variation in the independent variables.

Example:

The multiple R in the example above is .65. When squared and multiplied by 100 the result is 42.2. This means that 42.2 percent of the variation in picker and card waste is explained by grade index, staple length and micronaire. The remaining 57.8 percent of the variation is unexplained.

(6) Partial correlation coefficient (r) in a multiple analysis is similar to a simple correlation coefficient. The simple r indicates the statistical relationship between two variables without any control of other variables. In a multiple analysis, the partial correlation coefficient is one measure of the net relationship between one independent variable and the dependent variable while the influence of the other independent variables are statistically removed.

Example: (from Table 15, column 1, page 79)
The partial correlation coefficients (r) for picker and card waste with grade index, staple length and micronaire are: -.60 for grade index, -.16 for staple length and -.02 for micronaire. This shows that picker and card waste is related to grade index and that when one goes up or down the other goes in the opposite direction. It further shows that staple length and micronaire have less affect on picker and card waste than grade index since the values for these two variables are much smaller.

(7) Beta coefficients (B) in a multiple correlation are sometimes preferred over use of partial r's. A Beta coefficient is another measure of the relative importance of a variable in a multiple correlation, with the influence of the other variables removed. Quite often, only one of these measures (Beta or partial r) is used for interpretation; both are included in this report. An asterisk beside the Beta value indicates that the result is statistically insignificant (less than three times its standard error). Example:

The Beta (B) coefficients in the above example are -.60 for grade index, -.12* for staple length and -.02* for micronaire. This shows the same relative results as the partial correlation coefficients (r) and the * further indicates that the -.12 Beta value for staple length and -.02 for micronaire are statistically insignificant.

(8) <u>Regression equation</u> or estimating equation is used to predict changes in the dependent variable which will result from changes in the independent variable or variables. It is written:

$$Y= a + b_1X_1 + b_2X_2 + \dots b_NX_N$$

where Y is the dependent variable and the X's are independent variables.

The constant "a" indicates the starting point or height of the regression line when it is to be plotted on a graph or to be used in calculating changes in the dependent variable. The regression coefficient "b" indicates the change in the dependent variable that is associated with each unit change in the independent variable. The spread or scatter of the data around the regression line is measured by the standard error. The standard error has the same relationship to the regression line as the standard deviation has to the mean value. (see paragraph (2) above)

Example: (from Table 15, column 1, page 79)

Regression equation for picker and card waste:

Constant (a)	+22.29
Regression coefficients (b)	
Grade index	12
Staple length	14
Micronaire	03
Standard error	±.72

With regression coefficients (b) of -.12 for grade index, -.14 for staple length and -.03 for micronaire reading the following average conditions should exist:

- 1. With any unit change in grade index, picker and card waste percentage should change .12 in the opposite direction.
- 2. With any unit change (32nd) in staple length, picker and card waste percentage should change .14 in the opposite direction.
- 3. With any unit change (1.0) in micronaire reading, picker and card waste percentage should change .03 in the opposite direction.

Expressing this equation algebraically we have:

Estimated picker and card waste (percent) = 22.29 - .12 (grade index) -.14 (staple length) -.03 (micronaire)

Thus if we wished to predict the amount of picker and card waste from a bale of cotton of Strict Low Middling (94 index), a staple length of 1-3/32 inches (35 32ds) and a micronaire of 4.5, the equation would be:

Estimated picker and card waste = 22.29 - .12(94) - .14(35) - .03(4.5)

Estimated picker and card waste = 5.98%

The standard error of the equation of \pm .72 indicates that actual picker and card waste obtained from this kind of cotton would be within plus or minus .72 percent (between 5.26 and 6.70) 68 times in 100.

A check on the accuracy of this figure can be made from the average results for SLM grade, 1-3/32 inch staple, in Table 3 for the different Areas.

Regression equations are given in the tables for multiple relationships only. Equations for simple relationships may be calculated by using the formula:

Y = a + bX

where a = Mean Y - b(Mean X)

 $b = r \frac{Std. Dev. Y}{Std. Dev. X}$

INTERPRETING STATISTICAL DATA

In referring to the data presented in the tables of this report, it is well to keep in mind several factors which influence the results and could lead to erroneous conclusions.

Correlation values are significantly influenced by the specific variables included, and by their number. This is due to the interrelationships of fiber properties. As interrelated properties are added to a correlation, the specific contribution of a given property may decrease sharply while at the same time the overall correlation will increase. For example, a correlation of staple length with yarn strength usually shows a good relationship, with a large amount of the variation in yarn strength explainable by differences in staple length. But, as other measures are taken into consideration, particularly fiber strength at 1/8-inch gage, the importance of staple length in explaining the total variation in yarn strength decreases rather sharply, even though the total variation explained is increased. This situation occurs because fiber strength is more closely related to yarn strength than is staple length. Yet, when fiber strength is not included in the correlation, some of the effects of strength are evidenced through the interrelation of strength and staple length.

Perhaps the most important fact to be kept in mind is that the use of only one statistic, such as a multiple R, a partial r, or a Beta value, can lead to erroneous conclusions. In order to determine the importance of any variable, all of the statistical items for each study should be considered.

BASIS FOR INTERPRETATION OF TEST RESULTS

The following explanation of the data published in Tables 1 through 8 of this report may be helpful in the interpretation of test results:

Classification

Classification was made in accordance with the official Cotton Standards for grade and staple length. These results are presented under the usual terms for the individual lots but the grade values were converted to an index for averaging in the summary tables.

Grade index, as reported in the summary tables is designed to reflect differences in market value and provides a method for averaging the grade for a number of individual lots. Middling grade is used as the basis of 100, and higher or lower index numbers reflect higher or lower average market values, respectively. Index values for white, spotted, tinged and gray grades of upland cotton are shown below:

	:_			Gra	de Inde	x		
Grade Name	Code:	Plus		Light: Spotted: (2):			Light Gray (5)	: Gray : (6)
Good Middling	(1):		105	103	101	94	99	93
Strict Middling	(2):		104	102	99	91	98	91
Middling	(3):	102	100	97	93	82	92	84
Strict Low Middling	(4):	97	94	89	83	75	85	75
Low Middling	(5):	90	85	80	75	68		
Strict Good Ordinary	(6):	81	76					
Good Ordinary	(7):	73	70					
Below Grade	(8):		60					

The grade of cotton is obtained by evaluating color, leaf and preparation in relation to the official standards. Grade provides an indication of fiber color and the waste content of a sample of cotton. Experience has shown the average relationship between picker and card waste and various grades of upland cotton to be approximately as given in the tabulation shown in the

subsequent section on manufacturing waste. In comparing these average grade figures with the picker and card waste data, it should be understood that variations from the averages for individual samples are attributable to the nature of the extraneous material present in the cotton, the characteristics of the fiber, and whether the grade designation was low because of poor color.

Staple length is the length of a typical portion of the fibers in the samples as determined by the classer in comparison with official standards. Uniformity of fiber length, as well as other fiber properties, influence to some extent the classer's selection of the typical portion of the fibers on which the staple length designation is based. In general, there is a fairly close relationship between the staple length as designated by the classer and the fineness and strength of the yarn that can be manufactured from the cotton. These relationships, however, are also influenced by other fiber properties, the measurements of which will be discussed in the paragraphs which follow.

Fiber Tests

Fiber length data were obtained by the Digital Fibrograph method for the short, medium and long staple American upland samples and by the array method for the extra long American Pima and upland samples. Briefly, the Digital Fibrograph method consists of placing representative specimens of cotton weighing approximately 30 centigrams at random on a pair of combs, parallelizing the beards of cotton extending from one side of the combs, and scanning these beards photoelectrically on the instrument at 3 length intervals beginning at 0.15 inch from the teeth of the combs and ending near the outer fringe. The 2.5 percent span length and the 50/2.5 uniformity ratio values reported for each lot are based on five specimens tested by each of two technicians.

The Digital Fibrograph 2.5 percent span length values reported indicate the length which will be spanned by 2.5 percent of the fibers when they are parallel and randomly distributed. It is also the length where the amount of fibers indicated by the instrument is 2.5 percent of the amount at the starting point of 0.15 inch. The Digital Fibrograph 2.5 percent span length values are closely related to staple length designations.

The Digital Fibrograph 50/2.5 uniformity ratio values reported indicate the relative uniformity of fiber length in the samples. They represent the ratios between the 50 percent span length and the 2.5 percent span length, expressed as percentages. Larger values indicate more uniform fiber length distribution. Unusually low fiber length uniformity tends to increase manufacturing waste, to make processing more difficult, and to lower the quality of the product. The following adjective descriptions will serve to classify cottons from the standpoint of 2.5 percent span length and fiber length uniformity:

2.5 percent	span length	50/2.5 uni	formity ratio
Below 1.00 1.00 - 1.14 1.15 - 1.29 Above 1.29	Long	Below 42 42 - 43 44 - 45 46 - 47 Above 47	Very low Low Average High Very high

Data source - 1575 American upland lots tested from the crops of 1966-68.

Array tests for the extra long staple American Pima and upland samples were performed on the Suter-Webb fiber sorter. Briefly, this method consists of parallelizing the fibers in a representative 75-milligram specimen of cotton through a series of combs, separating the fibers into length groups at 1/8-inch intervals, and weighing the fibers in each length group. The upper quartile length and coefficient of variation values reported are based on one specimen tested by each of two technicians.

The array upper quartile length values reported indicate the length which is exceeded by 25 percent of the weight of the fibers in the samples. They are closely related to and longer than both the Fibrograph and the classer's staple designations. This relationship may vary, however, because the methods measure different fiber length characteristics.

The array coefficient of length variation values reported indicate the relative variability of fiber length in the samples. They represent the standard deviation of the weight-length frequencies expressed as a percentage of the mean length. Smaller values indicate more uniform fiber length distributions. Excessive fiber length variation tends to increase manufacturing waste, to make processing more difficult, and to lower the quality of the product. It is, therefore, considered desirable for a cotton to have a low coefficient of variation. The following adjective descriptions will serve to classify cottons from the standpoint of upper quartile length and fiber length variation:

Upper Quartile	Length	Coefficient of	Fiber Length Variation
1.25 - 1.39	Short Medium Long Extra Long	Below 26 26 - 29 30 - 33 34 - 37 Above 37	Very low variation Low variation Average variation High variation Very high variation

Data source - 830 American upland lots tested from the crops of 1958-60 (more recent data not available).

Fiber fineness and maturity in combination were determined by the micronaire test. This is an instrument test which measures the resistance of a plug of cotton to air flow. A representative standard weight of cotton fibers is placed in the instrument specimen holder and compressed to a fixed

volume. Air at a known pressure is forced through the specimen and the amount of flow is indicated by a direct reading scale. Readings obtained are relative measures of either the weight per unit length, or the cross sectional size of the fibers. Because the instrument measures may differ from the actual weight per inch, depending upon the fiber characteristics of the sample, the results are reported in terms of "micronaire reading" instead of micrograms per inch. These readings are taken from the curvilinear scale adopted in 1950, and now in international use. Fiber fineness contributes to yarn strength, particularly when fine numbers are spun, but it also tends to increase neppiness and to require a reduced rate of processing.

Fiber maturity, also an important factor affecting the appearance of yarns and fabrics, is a desirable characteristic from the standpoint of low picker and card waste. Immature fibers are susceptible to the formation of neps, and contribute to lower yarn appearance grades. The desirability of micronaire reading, therefore, depends on the specific end product or use of the cotton.

Several instruments, including the Micronaire, Fibronaire, and Port-Ar, may be used for these tests. All instruments now use the same scale and report results in the same terms, i.e. "micronaire reading". The micronaire reading is now a part of the official standards for upland cotton along with grade and staple length.

Fiber strength is an important factor in determining yarn strength. Cottons with good fiber strength usually give less trouble in the manufacturing processes than the weak fibered cottons. Tests for fiber strength were made without a space between the clamp jaws (0 gage) using the Pressley flat bundle tester, and with a 1/8-inch spacer between the clamp jaws (1/8-inch gage) using the Stelometer. Strength results from both the Pressley and the Stelometer were controlled at the same level by use of standard calibration cottons. Use of the Stelometer also provides a measure of fiber elongation. Comparative tests have shown that the results of the 1/8-inch gage tests are more highly correlated with yarn strength than the results of the zero gage tests. Results for both methods are reported, however, because the zero gage tests are widely used by the cotton industry.

The results for the Pressley zero gage test are reported in terms of thousand pounds per square inch, as calculated by the use of Formula 1. These results may be converted to other methods of expressing fiber strength by use of Formulas 2, 3, and 4:

(1) Thousand pounds per square inch (Mpsi) =

breaking load in 1b x 10.81 bundle weight in mg

(2) Grams per tex $(gm/tex) = Mpsi \times 0.496$

- (3) Strength-weight ratio = Mpsi : 10.81
- (4) Strength-weight ratio = gm/tex : 5.36

The results of the 1/8-inch gage tests are reported in terms of grams per tex in accordance with the recommendations of the American Society for Testing and Materials (ASTM), and the International Standards Organization (ISO). A tex unit is equal to the weight in grams of 1000 meters of the material. There is a correlation between the 1/8-inch gage strength test results and fiber length. Cottons with short lengths tend to have lower average strength values than long staple cottons. Results for 1/8-inch gage tests are calculated by use of Formula 5. Stelometer results are adjusted to Pressley level by use of calibration cottons.

(5) Grams per tex = $\frac{\text{breaking load (kg)} \times 15}{\text{bundle weight in mg}}$

The following descriptive terms may be applied to the data shown in this report:

		10
Staple length group and descriptive designation	Zero gage strength (thousand psi)	1/8-inch gage strength (grams per tex)
Short staple:		
Low Average	70 - 75 76 - 81	18 - 19 20 - 21
High	82 - 87	22 - 23
Medium staple:		
Low Average	74 - 80 81 - 87	20 - 21 22 - 23
High	88 - 94	24 - 25
Long staple:	05 00	
Low Average	85 - 88 89 - 92	23 - 24 25 - 26
High	93 - 96	27 - 28
Extra-long staple:		
Low	93 - 96 97 - 100	31 - 32 33 - 34
Average High	101 - 104	35 - 36

Data source - 291 short staple, 1206 medium staple, 78 long staple, and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Fiber elongation results were obtained in connection with the 1/8-inch gage fiber strength tests by using the Stelometer instrument. The following adjective ratings will assist in the interpretation of the fiber elongation results reported:

Descriptive designation		Fiber elongation (percent)
Very low Low Average	· [] · .	5.3 and below 5.4 - 6.2 6.3 - 7.1
High Very high	e en	7.2 - 8.0 8.1 and above

Data source - 1575 American upland lots tested from the crops of 1966 - 68.

Color measurements were made on samples of raw stock from each lot by using the Nickerson-Hunter Colorimeter. The basic color values reported are in terms of grayness and yellowness scales designed especially for cotton. The grayness scale ranges from 0 for the brightest samples (no gray) through 9 for the darkest color. The yellowness scale ranges from 0 for the lightest color (no yellow) to 9 for the yellowest color. In other words, the larger the number reported the darker or yellower the cotton becomes. The relationship of these new cotton color scales to Rd and +b values and to the color of the Universal Grade Standards for upland cotton is shown in Figure 2 and for American Pima cotton in Figure 3.

The color of raw cotton is also reported as a single index number. The relationship of the index number to Rd and +b and the color of the Universal Grade Standards for upland cotton is shown in Figure 4.

Fig. 2--Colorimeter diagram for upland cotton

Figure 3.--Colorimeter diagram for American Pima cotton.

Fig. 4--Conversion diagram for converting raw cotton color to color index

Nonlint content for the various lots was determined by the use of the Shirley Analyzer which separates the lint from the foreign matter. The total nonlint values reported include both visible and invisible loss. These results are distinguished from total picker and card waste in that practically no fiber is included, whereas textile mill wastes include appreciable amounts of fiber. Tests performed in previous years show the following average relationship of Shirley Analyzer nonlint to grade:

American upland grade	Code	Average nonlint content (percent)
Strict Middling Middling Strict Low Middling Low Middling Strict Good Ordinary Good Ordinary	(21) (31) (41) (51) (61) (71)	1.7 2.2 2.9 3.9 5.3 6.9

Data source - 5725 American Upland Color and Trash Survey samples tested from crops of 1968-72.

The following scale has been developed to represent the average nonlint content for grades of American Pima cotton:

American Pima grade	Average nonlint content (percent)
1 2 3 4 5 6	2.0 2.3 2.6 3.3 4.1 5.3 7.0 8.5
9	9.9

Data source - 935 American Pima Color and Trash Survey samples tested from the crops of 1968-72.

Differences between results obtained for individual lots and the average percentages shown for the grades may be caused by: (1) Grade is a combination of color, leaf and preparation; any one of which may be the limiting factor, (2) there is a range of trash allowable within each specific grade and (3) these data are based on weight and do not take into consideration the nature of the trash, which may be as important as weight in determining the final grade.

Yarn Processing Tests

The results of yarn processing tests reported in this summary were obtained by procedures adopted in 1962 which include heavier weights for laps, slivers and rovings than those used in previous years. These procedures also include spinning from single roving instead of double roving for the two standard yarn numbers and the spinning of a third yarn number on all the samples to provide a small-scale measure of spinning end-breakage or spinning performance. In 1965, metallic card clothing was installed on the carding machines to replace the conventional fillet clothing used previously, and in 1966, crusher rolls were installed on the card machines. These changes reflect similar changes that have taken place in the cotton textile industry including increased emphasis on running quality since the Mid-1940's when long-draft systems were adopted for both the roving and spinning processes in the routine laboratory spinning test procedures. These changes were designed to bring the laboratory processing procedures more in line with current textile mill practices and thus make the processing evaluations more applicable to present day mill operations.

The card production rate employed and the yarn numbers spun for each cotton were selected on the basis of the staple length expected in the specified area of growth as described in the earlier section on test procedures. Four different length groupings were used to cover the range of cottons grown in this country and to approach commercial practices in processing these cottons. The spinning twist multipliers were selected to provide maximum yarn strength on the basis of staple length. Details of the spinning test procedures are shown at the end of this section of the report (Table 24). Results of previous tests show that decreasing the card production rate results in fewer neps, improved yarn appearance grades, and removal of more waste at the card. Results of tests on the various lots should therefore be compared directly for only those lots in the same length group which were processed in a comparable manner.

Manufacturing waste reported for a sample of cotton is important because excessive waste increases the cost of cotton products. The percentage of waste extracted by the picking and carding processes in performing a spinning test provides a measure of manufacturing waste. There is an average relationship between this waste and grade as discussed in the previous section on the grade of cotton. The rate at which the cotton is carded, however, affects the picker and card waste values because the more thorough carding action obtained when the carding rate is decreased extracts a larger quantity of waste. The longer staple cottons are generally carded at a lower rate than the shorter cottons in order to obtain acceptable yarn quality. Tests performed in recent years show the following average relationship of picker and card waste to grade:

American upland grade	Code	Average picker and card waste (percent)	American Pima	Average picker and card waste (percent)
Strict Middling Middling Strict Low Middling Low Middling Strict Good Ordinary Good Ordinary	(21) (31) (41) (51) (61) (71)	4.7 5.1 5.7 6.7 7.8 8.9	1 2 3 4 5 6 7 8 9	7.5 7.9 8.4 9.5 10.8 11.7 13.7 15.2 17.5

Data source - 5561 samples of American upland cotton and 431 samples of American Pima cotton tested for Shirley Analyzer nonlint content from the crops of 1966-68 and picker and card waste calculated from its relationship to Shirley Analyzer nonlint content.

The percentage of waste removed by the comber is reported in addition to the picker and card waste for cottons processed into combed yarn. The shorter staple cottons are processed through the comber with a closer setting than for the longer staple cottons because smaller comber waste percentages are usually extracted from this cotton in commercial practice.

Yarn strength is perhaps the most important and reliable test of yarn quality. Yarn strength not only determines the range of the usefulness of a given cotton, but is also an indication of spinning and weaving performance. The yarn strength test is performed on 120 yard skeins (80 turns on a 1.5 yard reel). Results reported are based on the average of 25 skeins for each yarn number. Yarn strength is reported in terms of skein strength since studies have shown that such strength values are more closely related to fabric strength as well as to fiber properties than single strand yarn strength. Skein strength data for the two numbers spun are reported for each lot. Length, strength and fineness influence yarn strength more than other fiber properties.

The following descriptive terms may be of help in determining the relative level of yarn strength in their report:

Kind of yarn, staple length group and description	Yarn skein str in pounds for specified yarn	the
Carded yarns: Short staple group: Low Average High	8s 265 - 290 291 - 316 317 - 342	22s 78 - 86 87 - 95 96 - 104
Medium staple group: Low Average High	22s 95 - 104 105 - 114 115 - 125	50s 30 - 35 36 - 41 42 - 47
Long staple group: Low Average High	22s 125 - 131 132 - 138 139 - 145	50s 45 - 48 49 - 52 53 - 56
Combed yarns: Long staple group: Low Average High	22s 142 - 149 150 - 157 158 - 165	50s 52 - 55 56 - 59 60 - 63
Extra-long staple group: Low Average High	50s 66 - 68 69 - 71 72 - 74	80s 36 - 37 38 - 39 40 - 41

Data source - 291 short staple, 1206 medium staple, 78 long staple and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Yarn elongation results were obtained in connection with yarn skein strength tests. Elongation in the yarn is highly correlated with fiber elongation. Yarns with high elongation give less end breakage in weaving than yarns with low elongation.

The following descriptive terms may be of some help in determining the relative levels of yarn elongation:

Kind of yarn, staple length group, and description	Yarn elon in percent specified ya	for the
Carded yarns: Short staple group: Low Average High	8s 6.5 - 7.3 7.4 - 8.1 8.2 - 9.0	22s 5.5 - 6.2 6.3 - 7.0 7.1 - 7.8
Medium staple group: Low Average High	22s 5.4 - 5.9 6.0 - 6.5 6.6 - 7.1	50s 4.0 - 4.5 4.6 - 5.1 5.2 - 5.7
Long staple group: Low Average High	22s 6.2 - 6.5 6.6 - 6.9 7.0 - 7.3	50s 5.2 - 5.4 5.5 - 5.7 5.8 - 6.0
Combed yarns: Long staple group: Low Average High	22s 6.6 - 6.9 7.0 - 7.3 7.4 - 7.7	50s 5.5 - 5.7 5.8 - 6.0 6.1 - 6.3
Extra-long staple group: Low Average High	50s 5.6 - 5.8 5.9 - 6.1 6.2 - 6.4	80s 4.6 - 4.8 4.9 - 5.1 5.2 - 5.4

Data source - 291 short staple, 1206 medium staple and 78 long staple and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Yarn Appearance refers to the relative evenness, smoothness and freedom from foreign material of the yarn as evaluated by a visual comparison of the yarn with the latest standards adopted by the American Society for Testing and Materials. Since appearance is very important in many types of cotton products, high yarn appearance grades are desirable. The following descriptive terms may be of help in determining the relative levels of yarn appearance in this report.

Kind of yarn, staple length group, and description	Yarn appear for t specified ya	he
Carded yarns: Short staple group: Low Average High	8s 105 - 113 114 - 122 123 - 130	22s 92 - 104 105 - 117 118 - 130
Medium staple group:	<u>22s</u>	<u>50s</u>
Low	93 - 105	77 - 87
Average	106 - 118	88 - 98
High	119 - 130	99 - 109
Long staple group:	<u>22s</u>	<u>50s</u>
Low	71 - 86	65 - 78
Average	87 - 102	79 - 92
High	103 - 118	93 - 106
Combed yarns: Long staple group: Low Average High	22s 81 - 97 98 - 114 115 - 130	50s 70 - 85 86 - 101 102 - 117
Extra-long staple group:	<u>50s</u>	80s
Low	102 - 111	98 - 106
Average	112 - 121	107 - 115
High	122 - 130	116 - 124

Data source - 291 short staple, 1206 medium staple, 78 long staple and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Yarn Appearance Grades

Grade	Index
A	130
B+	120
В	110
C+	100
C	90
D+	80
D	70
Below D	60

Yarn imperfections are reported for the two yarn numbers spun for each lot of cotton. These results were obtained on "Neptel" instruments which electronically count the abrupt changes in the silhouette of the yarn while passing it through a beam of light. They are expressed as the number of imperfections per 50 yards of yarn and are based on the average of 10 determinations. This value is an instrument measure of product quality which is associated with the characteristics of the cotton. It is more highly correlated with fiber properties than either neps in card web or yarn appearance grade. The following descriptive terms may be of help in determining the relative level of yarn imperfections in this report:

Kind of yarn, staple length group, and description	Yarn imper for the specified ya	ne
Carded yarns: Short staple group: Low Average High	8 <u>s</u> 6 - 31 32 - 57 58 - 83	22s 6 - 21 22 - 37 38 - 53
Medium staple group: Low Average High	22s 3 - 15 16 - 28 29 - 41	50s 2 - 11 12 - 21 22 - 31
Long staple group: Low Average High	22s 7 - 22 23 - 38 39 - 54	50s 6 - 17 18 - 29 30 - 41
Combed yarns: Long staple group: Low Average High	22s 0 - 8 9 - 20 21 - 32	50s 0 - 6 7 - 16 17 - 26
Extra-long staple group: Low Average High	50s 0 - 1 2 - 3 4 - 5	80s 0 - 1 2 - 3 4 - 5

Data source - 291 short staple, 1206 medium staple, 78 long staple and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Spinning potential yarn number indicates the finest yarn number that can be spun from a cotton sample without any end-breakage when using specific processing procedures. In performing these tests, new travelers, draft gears, and twist gears are installed for the selected yarn number and it is spun for a 15-minute trial period. The yarn number selected is considered acceptable if there is an end-breakage involving 5 to 15 of the 96 spindles employed during the trial run. If end-breakages occur on less than 5 or more than 15 of the 96 spindles during the trial period, a different yarn number is selected to be spun for another 15-minute trial period until the acceptable end-breakage rate is obtained. The acceptable trial period is also used for a warm-up period which is followed by a l-hour test period. The spinning potential yarn number is calculated from the deviation of the actual yarn number spun from the desired yarn number and the number of spindles with endbreakages during the 1-hour test run. The following descriptive terms may be of help in determining the relative level of spinning potential yarn numbers in this report:

Spinning Potential (SPY No.)

	Short staple group	Medium staple group	Long staple group
Low	31 - 39	55 - 63	77 - 83
Average	40 - 48	64 - 72	84 - 90
High	49 - 57	73 - 81	91 - 97

Data source - 123 short staple, 688 medium staple and 48 long staple lots of cotton tested from the crops of 1967-68.

Chemical Finishing Tests

Information with respect to the bleaching and dyeing properties of different varieties and growths of cotton is of particular significance to textile manufacturers from the standpoint of providing a basis for avoiding problems that may result from blending different varieties and growths having different dyeing properties. Data with respect to the chemical finishing properties of the principal varieties and growths of cotton as herein reported may thus be used as a basis for selecting cottons of similar finishing properties. Details of the chemical finishing tests are described in Agricultural Information Bulletin No. 167 - "Bleaching, Dyeing, and Mercerizing Test Results on Some Varieties of Cotton Grown by Selected Cotton Improvement Groups, Crop of 1955".

Color measurements of cotton yarn samples were made on a Gardner Automatic Color Difference Meter. These values are reported in terms of Rd and b, two of the three scales on the instrument. The $R_{\rm d}$ scale measures percentages of diffuse reflectance from O to 100. The b scale provides a measure of yellowness in the direction of +b and of blueness in the direction of -b. The degree of either yellowness or blueness increases as the scale numbers increase. These data when plotted with $R_{\rm d}$ on the vertical ordinate and with

b on the horizontal ordinate are similar to the color values for raw cotton when plotted in relation to the official grade standards as described in the earlier section on color of raw stock.

While the color factors R_d and b are not independent of each other and should be considered together in any overall interpretation, for many purposes it would be convenient in evaluating results to have them in terms of a single number. For raw cotton the grade index provides one way to do this in a straightforward manner. A similar method has been followed in developing conversion formulae and diagrams for each form of cotton measured for color as a part of the chemical finishing studies of the Cotton Division. In each, the index for Middling is held at 100 and that for Good Ordinary is held close to 70. By use of such indices the color measurements of raw stock, gray yarns, bleached yarns, and bleached and dyed yarns may be converted to a single number specification. For details see "Grade and Color Indexes Developed for Evaluating Results of USDA Cotton Finishing Tests", (AMS-245, June 1958).

Table 24--Cotton: Standard machine settings and specifications for processing specified staple length groupings

	Process		Staple length groups			
		Short	Medium	Long	Extra long	
1.	PICKER					
	Standard atmospheric conditions:					
	Temperaturedegrees F.	75	75	75	75	
	Relative humiditypercent	60	60	60	60	
	Each test lot is processed through a finisher type	•	-	00	00	
	picker twice to produce the specified weight of					
	lapounces per yard	14 .	14	14	11	
	Type of beater	Kirschner	Kirschner	Kirschner	Kirschner	
	Beater speedr.p.m.	1,000	1,000	1,000	1,000	
	Settings:			*		
	Feed roll to beaterinches	3/16	3/16	3/16	3/8	
	Grids to beater, topinches	5/16	5/16	5/16	9/16	
	Grids to beater, bottominches	11/16	11/16	11/16	11/16	
2.	CARD					
	Standard atmospheric conditions:					
	Temperaturedegrees F.	75	75	75	75	
	Relative humiditypercent	60	60	60	60	
	Picker lap fedounces per yard	14	14	14	11	
	Sliver deliveredgrains per yard	50	50	50	40	
	Production ratepounds per hour	12-1/2	9-1/2	6-1/2	4-1/2	
	Doffer speedr.p.m.	11	8`	6	4	
	Cylinder speedr.p.m.	165	165	165	165	
	Flat speedinches per minute Licker-in speedr.p.m.	2-7/8	2-7/8	2-7/8	2-7/8	
	Clothing:	435	435	435	435	
	Cylinder, Hollingsworth metallicnumber	35	35	25	25	
	Doffer, Hollingsworth metallicnumber	29	29	29	29	
	Flats, Filletnumber	110	110	130	130	
	Settings:	110	110	130	100	
	Feed plate to licker-ininches	0.010	0.010	0.010	0.017	
	Mote knife to licker-in, topinches	.012	.012	.012	.012	
	Mote knife to licker-in, bottominches	.010	.010	,010	.010	
	Licker-in screen, frontinches	.029	.029	.029	.029	
	Licker-in screen, backinches	.017	.017	.017	.017	
	Licker-in to cylinderinches	.007	.007	.007	.007	
	Flats to cylinder, back, center, and frontinches	.009	.009	.009	.009	
	Back plate to cylinder, topinches	.029	.029	.029	.029	
	Back plate to cylinder, bottominches	.034	.034	.034	.031	
	Front plate to cylinder, topinches	.029	.029	.029	.029	
	Front plate to cylinder, bottominches	•034	.034	.034	.034	
	Doffer to cylinderinches	.007	.007	.007	.007	
	Cylinder screen, backinches	.029	.029	.029	.029	
	Cylinder screen, centerinches	.034	.034	.034	.034	
	Cylinder screen, frontinches	3/16	3/16	3/16	3/16	
	Doffer comb to dofferinches	.022	.022	.022	.022	
	Crusher rolls pressurepounds	281	281	281	281	
_	OT TIME I APPEND (and ad and a)					
3.	SLIVER LAPFER (combed only)					
	Standard atmospheric conditions:			75	75	
	Temperaturedegrees F.		-	75 60	60	
	Relative humiditypercent		-	50	40	
	Sliver fcd, 20 eachgrains per yard			595	525	
	Lap dcliveredgrains per yard			46	46	
	Speedyards per minute Roll settings (center to center):			40	1.5	
	First to secondinches plus fiber length 1/			5/16	5/16	
	Second to thirdinches plus fiber length 1/			9/16	9/16	
	become to unite pras irbei rengui 1/			7, -3	71.00	

^{1/} Allowances listed are in addition to fiber lengths in terms of "pulls" made on card sliver. These pulls are estimated from Fibrograph length tests except for extra long staple cottons.

Table 24--Cotton: Standard machine settings and specifications for processing specified staple length groupings--Continued

	Process	Staple length groups			
	rrocess	Short	Medium	Long	Extra long
4.	RIBBON LAPPER (combed only)	1			·
	Standard atmospheric conditions:				
	Temperaturedegrees F.			75	75
	Relative humiditypercent Laps fed, 4grains per yard			60	60
	Laps deliveredgrains per yard			595 610	525 610
	Speedyards per minute Roll settings (center to center):	,		47	47
	First to secondinches plus fiber length 1/			4/16	4/16
	Second to thirdinches plus fiber length			7/16	7/16
	Third to fourthinches plus fiber length			10/16	10/16
5.	COMBER (Model D-4)				
	Standard atmospheric conditions: Temperaturedegrees F.			75	76
	Relative humiditypercent			75 60	75 60
	Laps fed, 8 eachgrains per yard			610	610
	Sliver deliveredgrains per yard			50	40
	Production per hourpounds			16	13
	Setting of cushion plate to detaching rollinches			.48	•54
	Nominal wastepercent			16 to 17	16 to 17
6.	DRAWING FRAME (synthetic top rolls) Standard atmospheric conditions:				
	Temperaturedegrees F.	75	75	75	75
	Relative humiditypercent	60	60	60	60
	Sliver fed, 6 eachgrains per yard	50	50	50	40
	Sliver deliveredgrains per yard	60	53	53	. 42
	Second process:				·-
	Sliver fed, 6 eachgrains per yard	60	53	5 3	42
	Sliver deliveredgrains per yard	70	55	55	44
	Speedyards per minute Roll settings (center to center):	36	36	36	36
	First to secondinches plus fiber length 1/	4/16	4/16	4/16	4/16
	Second to thirdinches plus fiber length 1/	7/16	7/16	7/16	7/16
	Third to fourthinches plus fiber length	10/16	10/16	10/16	10/16
7.	LONG DRAFT ROVING (8 x 4, 2 apron type)				
	Standard atmospheric conditions:				
	Temperaturedegrees F.	75	75	75	75
	Relative humiditypercent	60	60	60	60 44
	Sliver fedgrains per yard Roving deliveredgrains per hank	70 1.10	55 1.80	55 1.80	4.25
	Spindle speedr.p.m.	1235	1235	1235	1235
	Roll settings (center to center):				
	First to second, standardinches	2-1/4	2-1/4	2-1/4	2-1/4
	Third to fourthinches plus fiber length 1/	1/4	1/4	1/4	1/4
8.	LONG DRAFT SPINNING (2 apron type)				
	Standard atmospheric conditions: Temperaturedegrees F.	75	75	75	75
	Relative humiditypercent	65	65	65	65
	Roving fed singlehank	1.10	1.80	1.80	4.25
	Twist multipliernumber	4.4	4.0	3.8	3.6
	Carded yarnsnumber 2/	8s & 22s	22s & 50s	22s & 50s	· · · · ·
	Combed yarnsnumber	0000	·	22s & 50s	50s & 80s
	Spindle speedr.p.m. 3/ Roll settings (center to center):	9000	9000	9000	9000
	First to second, standardinches	2-1/16	2 - 1/16	2-1/16	2-1/16
	Second to third, standardinches	1-3/4	1-3/4	1-3/4	1-3/4

^{2/} Additional yarn is spun on a 96 spindle wide gage frame at 9,000 r.p.m. spindle speed to determine the spinning potential yarn number or the finest yarn number that can be spun without end-breaksque.

^{3/} All standard yarn numbers are spun on narrow gage frames with spindle speeds of 9,000 r.p.m. except for 8s, which are spun on a wide gage frame with spindle speed of 5,500 r.p.m.

