

#### УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

| Группа        | M32021         | К работе допущен |            |
|---------------|----------------|------------------|------------|
| Студент       | Лопатенко      | Работа выполнена | 08.05.2023 |
| Преподаватель | Тимофеева Э.О. | Отчет принят     |            |

# Рабочий протокол и отчет по лабораторной работе №5.IBM.2

Многокубитные цепи в IBM Quantum

### 1. Цель работы:

Получить навыки применения управляемых многокубитных вентилей и реализации квантовых алгоритмов на их основе.

#### 2. Задачи, решаемые при выполнении работы:

- 1. Построить многокубитные квантовые цепи;
- 2. Зарегистрировать результаты моделирования цепочек;
- 3. Сравнить данные моделирований с теоретическими распределениями.

## 3. Объект исследования:

Квантовый компьютер, распределение вероятности многокубитных цепей.

#### 4. Метод экспериментального исследования:

Внедрение вентилей в построение схем, проведение моделирований.

### 5. Выполнение упражнения №3:

**5.1. Реализовать схему построения запутанного состояния** ( $\sqrt{0.55}$  | 00>+  $\sqrt{0.45}$  | 11>) Запутанное состояние можно получить контролируемым вентилем *CNOT* на два кубита, тогда для первого кубита можно применить поворот относительно оси *RY* на угол  $\theta = 2arccos(\sqrt{0.55}) \approx 1.47063$ 



|       | Frequency (quantity) |      | Frequency (out of 1) |        |
|-------|----------------------|------|----------------------|--------|
| Shots | 11>                  | 00>  | 11>                  | 00>    |
| 2048  | 946                  | 1102 | 0.4619               | 0.5381 |

# **5.2.** Реализовать запутанное состояние ( $\sqrt{0.55}$ | 001>+ $\sqrt{0.45}$ | 111>)



Очевидно, что состояние суперпозиции системы из трех кубитов получается из предыдущего пунктом добавлением дополнительного кубита в состоянии | 1>. Заметим, что распределение вероятностей не изменилось, так как присоединенный кубит находится в детерминированном состоянии.

|       | Frequency (quantity) |      | Frequency (out of 1) |        |
|-------|----------------------|------|----------------------|--------|
| Shots | 111>                 | 001> | 111>                 | 001>   |
| 2048  | 926                  | 1122 | 0.4521               | 0.5479 |

## **5.3.** Реализовать запутанное состояние ( $\sqrt{0.55}$ | 001> - $\sqrt{0.45}$ | 111>)



Как и в случае с одним кубитом, достаточно применить оператор Паули, соответсвующий компоненте  $\sigma_{_{_{\! 2}}}$  для инвертирования состояния |1>.

Распределение вероятностей не изменилось, так как присоединенный кубит детерминирован, а оператор Паули лишь меняет знак перед состоянием | 111>.

|       | Frequency (quantity) |      | Frequency (out of 1) |        |
|-------|----------------------|------|----------------------|--------|
| Shots | 111>                 | 001> | 111>                 | 001>   |
| 2048  | 958                  | 1090 | 0.4678               | 0.5322 |

## **5.4.** Реализовать запутанное состояние ( $\sqrt{0.55}$ | 010>+ $\sqrt{0.45}$ | 111>)



Для получения соответствующей системы необходимо лишь изменить порядок следования кубитов.

Симуляция подтверждает, что распределение вероятностей не изменилось.

|       | Frequency (quantity) |      | Frequency (out of 1) |        |
|-------|----------------------|------|----------------------|--------|
| Shots | 111>                 | 010> | 111>                 | 010>   |
| 2048  | 923                  | 1125 | 0.4507               | 0.5493 |

#### 6. Вывол:

В ходе выполнения лабораторной работы были разобраны особенности построения многокубитных квантовых систем в симуляторе IBM Quantum и сделаны выводы о том, что в сущности системы на нескольких кубитов собираются достаточно просто в кубитах по отдельности (с применением тех знаний о построениях, которые были получены в предыдущих упражнениях).