

实验报告

实验任务: 垃圾邮件分类 (二分类任务)

PB22050983 胡延伸

一、数据预处理流程

1. 原始数据清洗

• 缺失值处理: 删除包含空值的样本

· 标签过滤: 仅保留标签为 ham 和 spam 的样本

· 文本合并: 将 Subject 和 Message 字段拼接为完整文本

2. 文本标准化

标准化步骤:

1. 小写化: text.lower()

2. 特殊字符过滤: re.sub(r'[^a-zA-Z\s]', '', text)

3. 停用词移除: 过滤英语停用词 (nltk.corpus.stopwords)

4. 词干提取: PorterStemmer().stem(word)

3. 特征工程

步骤	参数	作用
词表构建	max_vocab_size=20,000	保留高频词,包含 <pad> 和 <unk></unk></pad>
序列截断	max_seq_len=200	保留尾部200个token (左填充)
向量化	padding_idx=0	将文本映射为词索引序列

二、模型架构对比

1. MultiHeadAttention 模型 (Transformer-based)

核心组件:

```
class MultiHeadAttentionClassifier(nn.Module):
 def __init__(
    self,
    vocab_size: int,
    d_{model}: int = 128,
    n_heads: int = 4,
    num_classes: int = 2,
    max_seq_len: int = 200,
 ):
    super().__init__()
    self.embedding = nn.Embedding(vocab_size, d_model, padding_idx=0)
    self.pos_encoder = PositionalEncoding(d_model, max_seq_len)
    # 自定义多头注意力
     self_attention = DIYMultiHeadAttention(
        embed_dim=d_model,
        num_heads=n_heads,
        dropout=0.1
    # 分类器
    # nn.Sequential是一个容器模块,可以将多个层组合在一起
    self.classifier = nn.Sequential(
        nn.Linear(d_model, d_model * 2),
        nn.ReLU(),
        nn.Dropout(0.1),
        nn.Linear(d_model * 2, num_classes),
```

2. RNN 模型

核心组件:

```
class SimpleRNNClassifier(nn.Module):
def __init__(
    self.
    vocab_size: int,
    embed_dim: int = 128,
    hidden dim: int = 256,
    num_layers: int = 1,
    num_classes: int = 2,
    dropout: float = 0.2
):
    super():__init__()
    self.hidden_dim = hidden_dim
    self num_layers = num_layers
    # 嵌入层
    self.embedding = nn.Embedding(vocab_size, embed_dim, padding_idx=0)
    # 手动实现RNN参数
    # 输入到隐藏的权重和偏置
    self.Wxh = nn.ParameterList([
        nn.Parameter(torch.Tensor(embed_dim if l == 0 else hidden_dim, hidden_dim))
        for l in range(num_layers)
    1)
    # 隐藏到隐藏的权重
    self.Whh = nn.ParameterList([
        nn.Parameter(torch.Tensor(hidden_dim, hidden_dim))
        for l in range(num_layers)
    ])
    self.bh = nn.ParameterList([
        nn.Parameter(torch.Tensor(hidden_dim))
        for l in range(num_layers)
    ])
    # 初始化参数
    for layer in range(num_layers):
        # 使用Kaiming初始化输入到隐藏的权重和偏置,使用正交初始化隐藏到隐藏的权重
```

三、实验分析方向

1. 模型架构对比

指标	МНА	RNN	LSTM	关键分析
训练速度	55s/ batch	150s/ batch	160s/ batch	MHA 的并行计算优势: Transformer自注意力机制可并行 LSTM因时间步依赖存在计算瓶颈
准确率	97.61%	97.18%	98.30%	LSTM的门控优势 :输入/遗忘/ 输出门有效过滤噪声,在中等长度序列任务中(如文本经
F1	97.63%	97.21%	98.31%	LSTM的均衡能力:对类别不平衡数据(如垃圾邮件检测
Recall	98.10%	97.41%	97.80%	MHA的全局感知:自注意力机制减少信息丢失,在漏检

模型参数量比较:

Model	Parameters	Size (MB)
МНА	2.66M	10.64MB
RNN	2.63M	10.51MB
LSTM	2.69M	10.77MB

2. 超参数影响

由于 MultiHeadAttentionClassifier 训练速度最快,采用该模型做对比实验。

具体实验方法很简单,调整 max_seq_len 和 max_vocab_size 这两个超参数大小,实验结果如下:

关键参数实验:

• 词表大小: (控制序列长度为200)

比较	2w	5w	10w
训练速度	55s/batch	70s/batch	90s/batch
预测准确率	97.61%	97.18%	97.03%
F1	97.63%	97.22%	97.03%
recall	98.10%	97.83%	96.48%

· 序列长度: (控制词表大小 2w)

比较	100	200	500
训练速度	20s/batch	55s/batch	300s/batch
预测准确率	96.97%	97.61%	97.47%
F1	96.99%	97.63%	97.01%
recall	96.84%	98.10%	97.11%

从表中可以看出,序列长度显著影响训练速度。适当增加序列长度有助于提高模型 性能,但太高反而会降低训练速度,而且对模型性能提高没太大帮助。

3. 损失函数对比

二元交叉熵 (BCEWithLogitsLoss) vs 交叉熵 (CrossEntropyLoss):

输出设计	输出维度	适用场景	实验Acc
Sigmoid + BCE	1	二分类	98.35%

输出设计	输出维度	适用场景	实验Acc
Softmax + CE	2	多分类	97.61%

二元交叉熵性能更好,这是因为它为单目标,直接预测正类概率,梯度仅通过单节点反向传播; 并且输出层数更少,鲁棒型更强。而交叉熵函数输出层数翻倍,过拟合风险增加了。