Inferência Estatística I

Amostra aleatória

Prof. Paulo Cerqueira Jr Faculdade de Estatística - FAEST Instituto de Ciências Exatas e Naturais - ICEN

https://github.com/paulocerqueirajr (7)

Introdução

Introdução

- Os avanços científicos são, na maioria das vezes, atribuídos aos experimentos realizados.
- Um pesquisador realiza o experimento e obtém dados.
- Baseado nos dados, algumas conclusões podem ser retiradas.
- Estas conclusões vão, geralmente, além dos que foi observado nos dados.
- Dessa forma, o pesquisador generaliza, partindo de um experimentos para os demais que são similares.
- Esta generalização é denominada de Inferência.

Uma função da Estatística:

Fornecer um conjunto de metodologias para realizar a inferência e medir o grau de incerteza dessa inferência, através da teoria das probabilidades.

Introdução

Exemplo 1

- Suponha um recepiente com 10 milhões de sementes de flores.
- Cada semente pode produzir flores brancas ou vermelhas.
- Pergunta-se: Qual a porcentagem de flores brancas que serão geradas?
- Para saber o resultado real, teríamos que plantar todas as sementes.
- Seria uma tarefa muito trabalhosa!
- Solução: Plantar algumas sementes, e baseando-se nos resultados podemos obter alguma informação para a porcentagem de flores brancas.

Definição 1 (População) É um conjunto que contém todos os elementos do problema a ser discutido, com pelo menos uma característica em comum. Desejamos obter informação sobre esta população.

Exemplo 2

- Preços da carne em um mês na região metropolitana de Belém.
- Preços do pão em certo dia em Belém.
- Produção de leite por animal em uma fazenda.
- Queremos estudar a proporção de votos para um determinado candidato ao governo do Estado do Pará.
- Queremos estudar o grau de satisfação dos usuários de uma determinada operadora de telefonia celular.

Definição 2 (Amostra aleatória - a.a) Sejam $X_1, X_2, ..., X_n$ uma sequência de variáveis aleatórias com distribuição conjunta $f_{X_1, ..., X_n}(x_1, ..., x_n)$ que fatora como na seguinte igualdade:

$$f_{X_1, \dots, X_n}(x_1, \dots, x_n) = f_{X_1}(x_1) \times f_{X_2}(x_2) \times \dots \times f_{X_n}(x_n) = \prod_{i=1}^n f_{X_i}(x_i),$$

em que $f(\cdot)$ é a função de probabilidade (f.p) ou função de densidade de probabilidade (f.d) para cada X_i . Então, $X_1, X_2, ..., X_n$ é uma amostra aleatória de tamanho n retirada de uma população com p.d/f.d.

Exemplo 3 Imagine 10 milhões de sementes em um recepiente e a produção de flores brancas e vermelhas.

- População: Sementes dentro do recipiente.
- Unidade experimental: Uma semente.
- Característica: Flor branca ou vermelha.
- Não temos um valor numérico associado a cada elemento, mas podemos definir o seguinte tipo de resposta:

Flor branca = 1 e Flor vermelha = 0.

Variável aleatória: $X_i = 1$ ou $X_i = 0$, para i = 1, 2, ..., n.

- A variável aleatória X_i é uma representação do valor numérico que a i ésima unidade amostral irá assumir.
- Depois que a amostra $X_1, X_2, ..., X_n$ observada os valores serão conhecidos e denotados por $x_1, x_2, ..., x_n$.
- Logo:

Suponha que X pode assumir apenas os valores 0 ou 1 com probabilidades $1-\theta\in\theta$, respectivamente. Então, sejam $X_1,X_2,...,X_n$ uma a.a de $X\sim Ber(\theta)$, sua distribuição conjunta $P(X_1=x_1;X_2=x_2;...;X_n=x_n)$ é dada por

$$= \theta^{x_1} (1 - \theta)^{1 - x_1} \times \theta^{x_2} (1 - \theta)^{1 - x_2} \times \dots \times \theta^{x_n} (1 - \theta)^{1 - x_n}$$

$$= \theta^{x_1 + x_2 + \dots + x_n} (1 - \theta)^{(1 - x_1) + (1 - x_2) + \dots + (1 - x_n)}$$

$$= \theta^{\sum_{i=1}^{n} x_i} (1 - \theta)^{\sum_{i=1}^{n} (1 - x_i)}$$

$$= \theta^{\sum_{i=1}^{n} x_i} (1 - \theta)^{(n - \sum_{i=1}^{n} x_i)}$$

Estatísticas e Parâmetros

Estatísticas e Parâmetros - Introdução

Um dos problemas principais da Estatística envolve o seguinte:

- Estudar uma população com f.p/f.d $f(\cdot \mid \theta)$, onde a forma da f.p/f.d é conhecida com parêmetro desconhecido θ .
- Se θ fosse conhecido f.p/f.d estaria completamente especificada.

Procedimento de inferência envolverá:

- A obtenção de uma amostra aleatória $X_1, X_2, ..., X_n$ desta f.p/f.d.
- O uso de uma função $T(x_1, x_2, ..., x_n)$ como estimativa para o parâmetro θ (desconhecido).

Estatísticas

- O problema aqui consiste em determinar qual será a melhor função para estimar θ .
- Iremos avaliar certas funções (funções amostrais) de uma amostra aleatória.

Definição 3 (Estatísticas) É uma função da amostra, $T(x) = f(X_1, X_2, ..., X_n)$, representando uma característica da amostra.

(1) Importante:

A formulação de uma estatística não pode envolver quantidades desconhecidas.

Estatísticas

Os exemplos mais comuns:

- Média amostral: $X = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- Variância amostral: $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i X)^2$.
- Mediana amostral: $\tilde{X} = \text{med}(X_1, X_2, ..., X_n)$.
- Mínimo amostral: $X_{(1)} = \min (X_1, X_2, ..., X_n)$.
- Máximo amostral: $X_{(n)} = \max (X_1, X_2, ..., X_n)$.
- Ponto médio amostral: $\frac{1}{n}(X_{(1)} + X_{(n)})$.

Parâmetros

Definição 4 (Parâmetro) Uma parâmetro é uma medida (desconhecida) usada para descrever uma característica da população.

• As relação das estatísticas com seus respectivos parâmetros:

Medida	Estatística	Parâmetro
Média	\overline{X}	μ
Variância	σ^2	σ^2
N de elementos	n	N
Proporção	$\hat{ heta}$	θ

Estatísticas e Parâmetros

Exemplo 4 Considere uma variável aleatória observável com f.d:

- $f(x) = N[x \mid \mu, \sigma^2]$, com μ e σ desconhecidos.
- Logo,

$$X - \mu$$
 e X/σ são Estatísticas??

- Não são, pois contém elementos desconhecidos.
- X, X + 3 e $X^2 + \log X^2$ são estatísticas.

Estatísticas e Parâmetros

Exemplo 5 Seja $X_1, X_2, ..., X_n$ uma amostra aleatória com f.p/f.d $f(\cdot; \theta)$ então:

$$X_{n} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \quad e \quad \frac{1}{2} \left\{ \min (X_{1}, ..., X_{n}) + \max (X_{1}, ..., X_{n}) \right\}$$

são exemplos de estatísticas.

Exemplo 6 Se $f(x; \theta) = N[x \mid \theta, 1]$, com θ desconhecido.

$$X_n - \theta$$
 é uma Estatística?

• Não é uma estatística, pois depende de θ .

Seja $X_1, ..., X_n$ uma a.a com f.p/f.d $f(\cdot)$. O r-ésimo momento amostral em relação à 0 é definido por

$$M_r' = \frac{1}{n} \sum_{i=1}^n (X_i - 0)^r = \frac{1}{n} \sum_{i=1}^n (X_i)^r.$$

• Em particular, quando r = 1, temos a média amostral X ou X_n , em que

$$X_n = \frac{1}{n} \sum_{i=1}^n (X_i).$$

O r-ésimo momento em relação à X_n é dado por

$$M_r = \frac{1}{n} \sum_{i=1}^n \left(X_i - X_n \right)^r$$

Momentos amostrais são exemplos de estatísticas!

Teorema 1 (Momentos Amostrais) Seja $X_1, ..., X_n$ uma a.a com f.p/f.d $f(\cdot)$. O valor esperado do r-ésimo momento amostral (em relação à 0) é igual ao r-ésimo momento populacional, isto é,

$$E(M_r^{'}) = \mu_r^{'}$$
, se $\mu_r^{'}$ existir.

- Temos que $\mu_r = E(X^r)$ é o r-ésimo momento populacional de uma população com f.p/f.d $f(x) = f_X(x)$.
- Além disso:

$$Var(M_{r}^{'}) = \frac{1}{n} \left[E(X^{2r}) - E^{2}(X^{r}) \right]$$
$$= \frac{1}{n} \left[\mu_{2r}^{'} - (\mu_{r}^{'})^{2} \right].$$

Demonstração: (cont.)

A média:

$$E(M_r^{'}) = E\left[\frac{1}{n}\sum_{i=1}^{n} (X_i)^r\right] = \frac{1}{n}E\left[\sum_{i=1}^{n} (X_i)^r\right] =$$

$$= \frac{1}{n} \sum_{i=1}^{n} E[(X_i)^r] = \frac{1}{n} \sum_{i=1}^{n} \mu_r' = \mu_r'.$$

A variância:

$$Var(M_r^{'}) = Var \left[\frac{1}{n} \sum_{i=1}^{n} (X_i)^r \right] = \frac{1}{n^2} Var \left[\sum_{i=1}^{n} (X_i)^r \right]$$

Demonstração:(cont.)

Supondo independência, temos

$$Var(M_{r}^{'}) = \frac{1}{n^{2}} \sum_{i=1}^{n} Var\Big[\Big(X_{i}\Big)^{r}\Big] = \frac{1}{n^{2}} \sum_{i=1}^{n} \Big[E\Big(X_{i}\Big)^{2r} - E^{2}\Big(X_{i}^{r}\Big)\Big]$$
$$= \frac{1}{n^{2}} \sum_{i=1}^{n} \Big[\mu_{2r}^{'} - (\mu_{r}^{'})^{2}\Big] = \frac{1}{n} \Big[\mu_{2r}^{'} - (\mu_{r}^{'})^{2}\Big].$$

Quando r = 1, temos o seguinte corolário.

Corolário 1 Seja $X_1, ..., X_n$ uma a.a com f.p/f.d $f(\cdot)$ e se $X_n = \frac{1}{n} \sum_{i=1}^n (X_i)$ é a média amostral, então,

$$E(X_n) = \mu, \text{ e } Var(X_n) = \frac{\sigma^2}{n}.$$

em que μ e σ^2 são a média e a variância de $f(\cdot)$.

- O Teorema 1 fornece a média e a variância, em termos de momentos populacionais, do résimo momento amostral em relação a 0.
- Um resultado similar, porém mais complicado, pode ser derivado para a média e variância do r-ésimo momento amostral em relação a média amostral.
- Considere r = 2, tal que $M_2 = \frac{1}{n} \sum_i (X_i \overline{X})^2$.
- M_2 as vezes é chamado de variância amostral.
- Entretanto, definiremos a variância amostral de outra forma.

Definição 5 Seja $X_1, ..., X_n$ uma a.a com f.p/f.d $f(\cdot)$,

$$S_n^2 = S^2 = \frac{1}{n-1} \sum_i (X_i - X)^2$$
, para $n > 1$,

é definida como variância amostral.

A razão para considerarmos S^2 ao invés de M_2 como variância é devido

$$E(S^2) = \sigma^2 e E(M_2) \neq \sigma^2$$

• Revisando: $\mu_r^{'} = E(X^r)$ é o r-ésimo momento de X (em relação a 0).

Definição 6 (Momento central) O r-ésimo momento central de uma variável aleatória X com relação ao ponto $\mathfrak a$ é definido por

$$\mu_r = E\Big[(X - \mathbf{a})^r \Big]$$

• Se $\mathbf{a} = E(X) = \mu$, temos $\mu_r = E[(X - \mathbf{a})^r]$, então

$$\mu_1 = E[(X - \mu)^1] = 0$$
 e $\mu_2 = E[(X - \mu)^2] = Var(X) = \sigma^2$.

Teorema 2 Seja $X_1, ..., X_n$ uma a.a com f.p/f.d $f(\cdot)$ e seja

$$S^{2} = \frac{1}{n-1} \sum_{i} (X_{i} - X)^{2},$$

Então,

$$E(S^2) = \sigma^2$$
 e $Var(S^2) = \frac{1}{n} \left[\mu_4 - \frac{n-3}{n-1} \sigma^2 \right].$

Prova: Para $E(S^2) = \sigma^2$, temos que $\sigma^2 = E\left[(X - \mu)^2\right]$ e $\mu_r = E\left[(X - \mu)^r\right]$. Note que,

$$\sum_{i} (X_{i} - \mu)^{2} = \sum_{i} \left(X_{i} + X - X - \mu \right)^{2}$$

$$= \sum_{i} \left[\left(X_{i} - X \right)^{2} - 2 \left(X_{i} - X \right) \left(X - \mu \right) + \left(X - \mu \right)^{2} \right]$$

$$= \sum_{i} \left(X_{i} - X \right)^{2} - 2 \left(X - \mu \right) \sum_{i} \left(X_{i} - X \right) + n \left(X - \mu \right)^{2}$$

$$= \sum_{i} \left(X_{i} - X \right)^{2} - 2 \left(X - \mu \right) \left(nX - nX \right) + n \left(X - \mu \right)^{2}$$

$$= \sum_{i} \left(X_{i} - X \right)^{2} - 2 \left(X - \mu \right) \left(nX - nX \right) + n \left(X - \mu \right)^{2}$$

$$= \sum_{i} \left(X_{i} - X \right)^{2} - 2 \left(X - \mu \right) \left(nX - nX \right) + n \left(X - \mu \right)^{2}$$

$$= \sum_{i} \left(X_{i} - X \right)^{2} + n \left(X - \mu \right)^{2}$$

Prova (cont.):

Assim,

$$E(S^2) = E\left[\frac{1}{n-1}\sum_{i}(X_i - X)^2\right]$$

$$= E\left[\frac{1}{n-1}\sum_{i}\left(X_{i}-\mu\right)^{2}-n\left(X-\mu\right)^{2}\right]$$

$$= \frac{1}{n-1}E\left[\sum_{i}\left(X_{i}-\mu\right)^{2}-n\left(X-\mu\right)^{2}\right]$$

$$= \frac{1}{n-1}E\left[\sum_{i}\left(X_{i}-\mu\right)^{2}\right]-\frac{n}{n-1}E\left[\left(X-\mu\right)^{2}\right]$$

$$= \frac{n}{n-1}\sigma^2 - \frac{n}{n-1}Var(X)$$

$$= \frac{n}{n-1}\sigma^2 - \frac{n}{n-1}\frac{\sigma^2}{n}$$

$$= \sigma^2$$

• De forma similar,

$$E(M_2) = E\left[\frac{1}{n}\sum_{i}(X_i - X)^2\right]$$

$$= \frac{1}{n}\sigma^2 - \frac{n}{n}Var(X)$$

$$= \sigma^2\left(\frac{n-1}{n}\right)$$

- Momentos amostrais são exemplos de **exemplos de estatísticas** que podem ser usados para estimar quantidades populacionais.
- Por exemplo:
 - M_r para estimar μ_r ;
 - X para estimar μ ;
 - S^2 para estimar σ^2 .

Definição 7 (Função de verossimilhança) A f.p/p.d.f conjunta é denominada função de verossimilhança de θ , correspondente a amostra observada $\mathbf{x} = (x_1, x_2, ..., x_n)$ e será denotada por

$$L(\theta \mid \mathbf{x}) = \prod_{i=1}^{n} f(x_i \mid \theta) = f(x_1 \mid \theta) \times f(x_2 \mid \theta) \times \dots \times f(x_n \mid \theta).$$

Dada a amostra $\mathbf{x} = (x_1, x_2, ..., x_n)$, podemos encontrar o ponto mais verossímil para θ .

Exemplo 7 (Caso discreto) Sejam $X_1, X_2, ..., X_n$ uma a.a de $X \sim Pois(\theta)$. Temos que a função de verossimilhança é dada por

$$L(\theta \mid \mathbf{x}) = \prod_{i=1}^{n} \frac{\exp\{-\lambda\}\lambda^{x_i}}{x_i!}$$

$$= \frac{\exp\{-\lambda\}\lambda^{x_1}}{x_1!} \times \frac{\exp\{-\lambda\}\lambda^{x_2}}{x_2!} \times \dots \times \frac{\exp\{-\lambda\}\lambda^{x_n}}{x_n!}$$

$$= \frac{\exp\{-n\lambda\}\lambda^{\sum_{i=1}^{n}x_i}}{\prod_{i=1}^{n}x_i!}.$$

Exemplo 8 (Caso contínuo) Sejam $X_1, X_2, ..., X_n$ uma a.a de $X \sim N(\mu, \sigma^2)$. Temos que a função de verossimilhança é dada por

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{\frac{1}{2\sigma^2} (x_i - \mu)^2\right\}$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{\frac{1}{2\sigma^2} (x_1 - \mu)^2\right\} \times \dots \times \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{\frac{1}{2\sigma^2} (x_n - \mu)^2\right\}$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left\{\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right\}$$

$$= \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left\{\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right\}$$

$$= \left(2\pi\sigma^2\right)^{-n/2} \exp\left\{\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right\}$$

Distribuição amostral

Introdução

Para este caso temos:

- *X*: Variável de interesse;
- θ : parâmetro de interesse;
- $T = f(X_1, X_2, ..., X_n)$ Função da amostra que vai fornecer informação sobre θ .

Té uma variável aleatória.

Pergunta: Qual a distribuição de T quando $X_1, X_2, ..., X_n$ assume valores observados?

Exemplo 9 Suponha que selecionamos todas as amostras de tamanho 2, com reposição, da população $\{1, 3, 5, 5, 7\}$

$$X$$
 1 3 5 7 $P(X = x)$ 1/5 1/5 2/5 1/5

• Encontrar a distribuição conjunta da v.a. (X_1, X_2) , sendo X_1 sendo o número selecionado na primeira extração e X_2 o número da segunda.

• Encontre a distribuição de
$$X = \frac{X_1 + X_2}{2}$$
.

Combinação	Prob.	X_1	X_2	X
(1,1)	1/25	1	1	1
(1, 3)	1/25	1	3	2
(1, 5)	2/25	1	5	3
(1, 7)	1/25	1	7	4
(3,1)	1/25	3	1	2
(3,3)	1/25	3	3	3
(3,5)	2/25	3	5	4
(3, 7)	1/25	3	7	5
(5,1)	2/25	5	1	3
(5, 3)	4/25	5	3	4
(5, 5)	2/25	5	5	5
(5, 7)	1/25	5	7	6
(7, 1)	1/25	5	7	4
(7, 3)	1/25	5	7	5
(7,5)	1/25	5	7	6
(7 7)	1/25	5	7	7

Distribuição conjunta:

X_1/X_2	1	3	5	7	Total
1	1/25	1/25	2/25	1/25	1/5
3	1/25	1/25	2/25	1/25	1/5
5	2/25	2/25	4/25	2/25	2/5
7	1/25	1/25	2/25	1/25	1/5
Total	1/5	1/5	2/5	1/5	Total

Distribuição amostral da média X:

```
X 1 2 3 4 5 6 7
- - 1 25 \frac{5}{25} \frac{6}{25} \frac{6}{25} \frac{4}{25} \frac{1}{25}
```

```
1 require(ggplot2)
2 mx <- c(1, 2, 3, 4, 5, 6, 7)
3 pmx <-c(1/25, 2/25, 5/25, 6/25, 6/25, 4/25, 1/25)
4 dados <- data.frame(mx, pmx)
5 ggplot(data=dados, aes(x = factor(mx), ymin=0, ymax=pmx))+geom_linerange()+
6 scale_x_discrete(breaks=1:7)+ylab("P(X=x)")+
7 xlab("Média amostral") + theme_bw()</pre>
```


• O primeiro momento amostral é a média definida como:

$$X = X_n = \frac{1}{n} \sum_{i=1}^{n} (X_i).$$

onde $X_1, X_2, ..., X_n$ é uma amostra aleatória com f.p/f.d $f(\cdot)$.

- Xé função das v.a $X_1, X_2, ..., X_n$ e, portanto a distribuição pode ser encontrada teoricamente.
- Pode ser útil pensar na média amostral X como uma estimativa da média μ da f.p/f.d $f(\cdot)$ a partir de qual amostra foi selecionada.

Um dos objetivos da amostragem é estimar μ a partir de X.

Teorema 3 Seja $X_1, X_2, ..., X_n$ uma a.a com f.p/f.d $f(\cdot)$, média μ e variância σ^2 . Considere:

$$X = \frac{1}{n} \sum_{i=1}^{n} (X_i).$$

Então,
$$E(X) = \mu_X^- = \mu e \ Var(X) = \sigma_X^2 = \frac{\sigma^2}{n}$$
.

 $E(X) = \mu$: diz que em média X é igual ao parâmetro μ sendo estimado ou que a distribuição de X está centrada em μ .

 $Var(X) = \frac{\sigma^2}{n}$: diz que a dispersão dos valoers de X em torno de μ é pequena para amostras grandes em comparação com tamanhos menores.

Teoremas de convergência

Teoremas de convergência

• Para amostras grandes, os valores de X (que são usados para estimar μ) tendem a estar mais concentrados de μ do que em amostras pequenas.

- Esta noção será definida pela Lei dos Grandes Números
- Seja $E(X) = \mu$ para a f.p/f.d $f(\cdot)$. Desejamos estimar μ .
- De maneira não rigorosa, E(X) é a média de um número infinito de valores da variável aleatória X.
- Em qualquer problema real podemos observar apenas um número finito de valores da variável aleatória X.
- Questão: Usando apenas um número finito de valores de X (uma amostra aleatória de tamanho n) pode ser feita qualquer inferência confiável sobre E(X)? A resposta é sim.
- Usaremos isso através da Lei Fraca dos Grandes Números.

Teoremas de convergência

Teorema 4 (Lei fraca dos Grandes Números) Seja $X_1, X_2, ..., X_n$ uma a.a de tamanho n de uma população com variável X, com média $E(X) = \mu$ e $Var(X) = \sigma^2 < \infty$. Sejam, $\epsilon > 0$ e $0 < \delta < 1$. Se, $n > \frac{\sigma^2 \epsilon^2}{\delta}$, então,

$$P(\mid X_n - \mu \mid < \epsilon) \ge 1 - \delta,$$

ou seja, X_n converge em probabilidade para μ .

Teorema de convergência

Seja $X_1, X_2, ..., X_n$ uma a.a. de $X \sim Ber(0.5)$. Observe que,

$$X_i = \begin{cases} 0, & \text{fracasso} \\ 1, & \text{sucesso} \end{cases}, i = 1, 2, ..., n.$$

A proporção amostral é determinada por

$$\hat{p}_n = X_n = \frac{\sum_{i=1}^n X_i}{n} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Para
$$n = 1$$
 \Rightarrow $\hat{p}_1 = \frac{X_1}{1}$.

Para
$$n=2$$
 \Rightarrow $\hat{p}_2 = \frac{X_1 + X_2}{2}$.

•

Para
$$n = n$$
 \Rightarrow $\hat{p}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$.

Teorema de convergência

Teorema central do limite

O Teorema Central do Limite é um dos mais importantes resultados em toda área de Probabilidade e Estatística. Ele nos diz aproximadamente como a **média amostral** é distribuída.

Teorema 5 (Teorema Central do Limite - TCL) Seja $X_1, X_2, ..., X_n$ uma sequência de v.a.'s independentes com $E(X_i) = \mu_i$ e $Var(X_i) = \sigma^2$ $< \infty, i = 1, 2, ..., n$. Tome $S_n = X_1 + X_2 + \cdots + X_n$, então, sob determinadas condições gerais,

$$Z_{n} = \frac{S_{n} - E(S_{n})}{\sqrt{Var(S_{n})}} = \frac{S_{n} - \sum_{i=1}^{n} \mu_{i}}{\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}}} \to N(0, 1).$$

A distribuição de Z_n se aproxima da N(0, 1) quando $n \to \infty$.

O Teorema 5 nos diz que a ditribuição limite de Z_n (S_n padronizado) será a distribuição N(0, 1)

•

Corolário 2 Seja $(X_1, X_2, ..., X_n)$ uma a.a. de X com $E(X) = \mu$ e $Var(X) = \sigma^2 < \infty$. Então, para $n \to \infty$,

$$Z_n = \frac{X_n - \mu}{\sqrt{\sigma^2/n}} \to N(0, 1).$$

- Em outras palavras X_n é assintoticamente distribuído como uma Normal com média μ e variância σ^2/n .
- Um aspecto importante sobre o Teorema 5 é o fato de que nada é dito sobre a forma da f.p ou f.d original. Qualquer que seja a distribuição, dado que possui variância finita, a média amostral terá aproximadamente distribuição Normal para amostras grandes.

Representação do TCL graficamente

Algumas distribuições exatas

- Se $X \sim Ber(\theta)$, então: P(\bar{X}=\bar{x}_{n})={n\choose n\bar{x}_{n}} \theta^{n} \text{n}} (1-\theta)^{n-n\cdot}, \bar{x}_{n}, \bar{x}_{n}=0,1/n, 2/n, \dots, 1.
- Se X\sim Pois(\theta), então: P(\bar{X}=\bar{x}_{n})=\dfrac{e^{-n}theta} \theta^{n}bar{x}_{n}}{n\bar{x}_{n}}, \bar{x}_{n}=0,1/n, 2/n, \dots
- Se X\sim Normal(\mu, \sigma^2), então: \bar{X}_{n}\sim N(\mu, \sigma^2).
- Se X\sim Exp(\theta), então: \bar{X}_{n}\sim Gama(n, n\theta).

Distribuição amostral da proporção

- Seja X_1, X_2, \dots, X_n uma a.a. de X \sim Ber(\theta).
- Em que \theta representa a proporção de elementos com uma determinada característica na população.
- Temos que

 $E(X_{i})=\theta \cdot (1-\theta).$

• Seja S_{n}=X_{1}+X_{2}+\dots+X_{n}, então a proporção amostral é definida por

 $\hat{S}_{n}=\frac{X_{1}+X_{2}+\dot{x}_{n}}{n}=\bar{X}.$

Distribuição amostral da proporção

Distribuição exata:

• Temos que S_{n}=X_{1}+X_{2}+\dots+X_{n}\sim Bin(n, \theta), então

• Temos que \hat{p}=\dfrac{S_{n}}{n}=\dfrac{X_{1}+X_{2}+\dots+X_{n}}{n}=\bar{X}_{n}., então

\hat{p}\sim N\left(\theta, \dfrac{\theta(1-\theta)}{n}\right).