Apuntes de programación lineal

Karem Torres Salinas

19 de febrero de 2020

Índice

1.	Intr	oduccion	ı]
	1.1.	Ejercicios	s .											 				-
	1.2.	Tabla .												 				-
	1.3	Matriz																•

1. Introduccion

La forma estándar de un problema de programación lineal es: Dados una matriz A y vectores b, c, maximizar $c^T x$ sujeto a $Ax \leq b$.

1.1. Ejercicios

Ejercicio 1: Una compañia produce frutas mezcladas tiene en almacén 10,000 kilos de peras, 12,000 kilos de duraznos y 8,000 kilos de cerezas. La compañia produce tres mezclas de frutas que venden en latas de un kilo. La primera combinación contiene la mitad de peras y la mitad de duraznos. La segunda combinación contiene la mitad de cada fruta . La tercera combinación tiene la mitad de duraznos y la mitad de cerezas. Los ingresos por lata vendida por cada combinación son de 3,4 y 5 pesos respectivamente. Platea el problema de encontrar la producción que da la ganancia máxima como un problema de programación lineal. Escribe el problema en forma estándar y en forma simplex.

1.2. Tabla

	A	В
Maquina1	1	2
Maquina2	1	1

1.3. Matriz

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 4 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$