Aggregation methods: optimality and fast rates.

Guillaume Lecué

Université Paris 6

18 Mai 2007

General Framework.

M prior estimators ('weak' estimators) : f_1, \ldots, f_M

n observations : D_n

Motivation.

General Framework.

M prior estimators ('weak' estimators) : f_1, \ldots, f_M

n observations : D_n

Aim

Construction of a new estimator which is approximatively as good as the best 'weak' estimator:

Aggregation method or Aggregate

Optimality in classification.

Examples.

Adaptation:

Observations : D_{m+n}

Estimation : $D_m \rightarrow \text{non-adaptive estimators } f_1, \dots, f_M$.

learning : $D_{(n)} \rightarrow aggregate \tilde{f}_n$ (adaptive).

Examples.

General Framework.

```
Adaptation:
```

Observations : D_{m+n}

Estimation : $D_m \rightarrow \text{non-adaptive estimators } f_1, \dots, f_M$.

learning : $D_{(n)} \rightarrow \text{aggregate } \tilde{f}_n \text{ (adaptive)}.$

Estimation:

 ϵ -net : f_1, \ldots, f_M (functions)

learning: $D_n \rightarrow \text{aggregate } \tilde{f}_n$.

General Framework.

 $(\mathcal{Z}, \mathcal{T})$ a measurable space,

 \mathcal{P} the set of all probability measures on $(\mathcal{Z}, \mathcal{T})$,

 $F: \mathcal{P} \longmapsto \mathcal{F}$ (example : $F(\pi) = d\pi/d\mu$),

General Framework.

 $(\mathcal{Z},\mathcal{T})$ a measurable space,

 \mathcal{P} the set of all probability measures on $(\mathcal{Z}, \mathcal{T})$,

 $F: \mathcal{P} \longmapsto \mathcal{F}$ (example: $F(\pi) = d\pi/d\mu$),

Z: random variable with values in \mathcal{Z} ,

 π probability distribution of Z,

 $D_n = (Z_1, \ldots, Z_n) : n \text{ i.i.d. observations of } Z.$

General Framework.

 $(\mathcal{Z},\mathcal{T})$ a measurable space,

 \mathcal{P} the set of all probability measures on $(\mathcal{Z}, \mathcal{T})$,

 $F: \mathcal{P} \longmapsto \mathcal{F}$ (example: $F(\pi) = d\pi/d\mu$),

Z: random variable with values in \mathcal{Z} ,

 π probability distribution of Z,

 $D_n = (Z_1, \ldots, Z_n) : n \text{ i.i.d. observations of } Z.$

Problem : Estimation of $F(\pi)$ from D_n .

General Framework.

loss : $Q: \mathcal{Z} \times \mathcal{F} \longmapsto \mathbb{R}$,

General Framework.

loss :
$$Q: \mathcal{Z} \times \mathcal{F} \longmapsto \mathbb{R}$$
,
risk : $A(f) = \mathbb{E}[Q(Z, f)]$,
 $A^* \stackrel{\text{def}}{=} \inf_{f \in \mathcal{F}} A(f) = A(f^*), (f^* = F(\pi))$

General Framework.

$$\begin{aligned} & \text{loss}: \ Q: \mathcal{Z} \times \mathcal{F} \longmapsto \mathbb{R}, \\ & \text{risk}: \ A(f) = \mathbb{E}[Q(Z,f)], \\ & A^* \stackrel{\text{def}}{=} \inf_{f \in \mathcal{F}} A(f) = A(f^*), (f^* = F(\pi)) \\ & \text{excess risk}: \ A(f) - A^* \geq 0 \end{aligned}$$

General Framework.

loss :
$$Q : \mathcal{Z} \times \mathcal{F} \longmapsto \mathbb{R}$$
,
risk : $A(f) = \mathbb{E}[Q(Z, f)]$,

$$A^* \stackrel{\mathrm{def}}{=} \inf_{f \in \mathcal{F}} A(f) = A(f^*), (f^* = F(\pi))$$

excess risk : $A(f) - A^* \ge 0$

Empirical Risk:

$$A_n(f) = \frac{1}{n} \sum_{i=1}^n Q(Z_i, f).$$

General Framework.

00000

loss:
$$Q((x,y),f) = (y-f(x))^2$$
,

excess risk :
$$A(f) - A^* = ||f^* - f||_{L^2(P^X)}^2$$
 where $f^*(x) = \mathbb{E}\left[Y|X = x\right]$.

Optimality in classification.

Regression

loss :
$$Q((x,y),f)=(y-f(x))^2,$$

excess risk : $A(f)-A^*=||f^*-f||^2_{L^2(P^X)}$ where $f^*(x)=\mathbb{E}\left[Y|X=x\right].$
Density estimation $(f^*=d\pi/d\mu)$
KL loss : $Q(z,f)=-\log f(z),$

Optimality in classification.

excess risk :
$$A(f) - A^* = K(f^*|f)$$
.
 L^2 -loss : $Q(z, f) = \int_{\mathcal{Z}} f^2 d\mu - 2f(z)$,

excess risk :
$$A(f) - A^* = ||f^* - f||_{L^2(\mu)}^2$$
.

General Framework

Regression

loss:
$$Q((x, y), f) = (y - f(x))^2$$
,

excess risk :
$$A(f) - A^* = ||f^* - f||^2_{L^2(P^X)}$$
 where $f^*(x) = \mathbb{E}[Y|X = x]$.

Optimality in classification.

Density estimation ($f^* = d\pi/d\mu$)

$$\mathsf{KL}\;\mathsf{loss}:\;Q(z,f)=-\log f(z),$$

excess risk :
$$A(f) - A^* = K(f^*|f)$$
.

$$L^2$$
-loss: $Q(z, f) = \int_{\mathcal{Z}} f^2 d\mu - 2f(z)$,

excess risk :
$$A(f) - A^* = ||f^* - f||_{L^2(\mu)}^2$$
.

Classification

loss :
$$\phi : \mathbb{R} \longrightarrow \mathbb{R}$$
, $Q((x,y),f) = \phi(yf(x))$, $y \in \{-1,1\}$

$$\phi$$
-risk : $A^{\phi}(f) = \mathbb{E}[Q((X,Y),f)] = \mathbb{E}[\phi(Yf(X))].$

$$f^* = f^{\phi *}$$
 s.t. $A^{\phi}(f^{\phi *}) = \min_{f:\mathcal{X} \longmapsto \mathbb{R}} A^{\phi}(f)$.

Selectors.

General Framework.

$$\mathcal{F}_0 = \{f_1, \dots, f_M\} \subset \mathcal{F}$$
 a dictionary.

• Empirical Risk Minimization (ERM) :(Vapnik, Chervonenkis...)

$$\tilde{f}_n^{ERM} \in \operatorname{Arg} \min_{f \in \mathcal{F}_0} A_n(f).$$

Selectors.

General Framework

$$\mathcal{F}_0 = \{f_1, \dots, f_M\} \subset \mathcal{F}$$
 a dictionary.

• Empirical Risk Minimization (ERM) :(Vapnik, Chervonenkis...)

$$\tilde{f}_n^{ERM} \in \operatorname{Arg} \min_{f \in \mathcal{F}_0} A_n(f).$$

penalized Empirical Risk Minimization (pERM) :

$$\tilde{f}_n^{ERM} \in \operatorname{Arg} \min_{f \in \mathcal{F}_0} [A_n(f) + \operatorname{pen}(f)],$$

where pen is a penalty function. (Barron, Bartlett, Birgé, Boucheron, Koltchinski, Lugosi, Massart,...)

Aggregation methods with exponential weights.

General Framework

$$\mathcal{F}_0 = \{f_1, \dots, f_M\} \subset \mathcal{F}$$
 a dictionary.

Aggregate with Exponential weights (AEW) :

$$\tilde{f}_{n,T}^{AEW} = \sum_{f \in \mathcal{F}_0} w_T^{(n)}(f) f, \text{ where } w_T^{(n)}(f) = \frac{\exp\left(-nTA_n(f)\right)}{\sum_{g \in \mathcal{F}_0} \exp\left(-nTA_n(g)\right)},$$

 T^{-1} : temperature parameter.

Aggregation methods with exponential weights.

$$\mathcal{F}_0 = \{f_1, \dots, f_M\} \subset \mathcal{F}$$
 a dictionary.

Aggregate with Exponential weights (AEW) :

$$\tilde{f}_{n,T}^{AEW} = \sum_{f \in \mathcal{F}_0} w_T^{(n)}(f) f, \text{ where } w_T^{(n)}(f) = \frac{\exp\left(-nTA_n(f)\right)}{\sum_{g \in \mathcal{F}_0} \exp\left(-nTA_n(g)\right)},$$

Optimality in classification.

 T^{-1} : temperature parameter.

 Cumulative Aggregate with Exponential Weights (CAEW): (Catoni, Yang....)

$$\tilde{f}_{n,T}^{CAEW} = \frac{1}{n} \sum_{k=1}^{n} \tilde{f}_{k,T}^{AEW}.$$

Optimality in classification.

Aim of Aggregation(1): Optimal rate of aggregation.

Definition

$$orall \mathcal{F}_0 = \{f_1, \dots, f_M\} \subseteq \mathcal{F}, \ \exists ilde{f}_n \ ext{such that} \ orall \pi \in \mathcal{P}, \ orall n \geq 1$$

$$\mathbb{E}\left[A(ilde{f}_n) - A^*\right] \leq \min_{f \in \mathcal{F}_0} \left(A(f) - A^*\right) + C_0 \gamma(n, M).$$

Aim of Aggregation(1): Optimal rate of aggregation.

Definition

$$\forall \mathcal{F}_0 = \{f_1, \dots, f_M\} \subseteq \mathcal{F}, \ \exists \tilde{f}_n \text{ such that } \forall \pi \in \mathcal{P}, \ \forall n \geq 1$$

$$\mathbb{E}\left[A(\tilde{f}_n)-A^*\right] \leq \min_{f \in \mathcal{F}_0} \left(A(f)-A^*\right) + C_0 \gamma(n,M).$$

Optimality in classification.

$$\exists \mathcal{F}_0 = \{f_1, \dots, f_M\}$$
 such that for any aggregate \overline{f}_n , $\exists \pi \in \mathcal{P}$, $\forall n \geq 1$

$$\mathbb{E}\left[A(\overline{f}_n)-A^*\right] \geq \min_{f \in \mathcal{F}_n} (A(f)-A^*) + C_1 \gamma(n,M).$$

Aim of Aggregation(1): Optimal rate of aggregation.

Definition

$$\forall \mathcal{F}_0 = \{\mathit{f}_1, \ldots, \mathit{f}_M\} \subseteq \mathcal{F} \textrm{, } \exists \tilde{\mathit{f}}_n \textrm{ such that } \forall \pi \in \mathcal{P} \textrm{, } \forall n \geq 1$$

$$\mathbb{E}\left[A(\tilde{f}_n)-A^*\right] \leq \min_{f \in \mathcal{F}_0} \left(A(f)-A^*\right) + C_0 \gamma(n, M).$$

Optimality in classification.

$$\exists \mathcal{F}_0 = \{f_1, \dots, f_M\}$$
 such that for any aggregate \overline{f}_n , $\exists \pi \in \mathcal{P}$, $\forall n \geq 1$

$$\mathbb{E}\left[A(\bar{f}_n)-A^*\right] \geq \min_{f \in \mathcal{F}_0} \left(A(f)-A^*\right) + C_1 \gamma(n, M).$$

 $\gamma(n, M)$ is an optimal rate of aggregation and \tilde{f}_n is an optimal aggregation procedure.

Aim of Aggregation(2): Adaptation.

General Framework

Definition (Oracle Inequality)

$$\forall \mathcal{F}_0 = \{f_1, \dots, f_M\} \subseteq \mathcal{F}, \ \exists \tilde{f}_n \text{ such that } \forall \pi \in \mathcal{P}, \ \forall n \geq 1$$

$$\mathbb{E}\left[A(\tilde{f}_n) - A^*\right] \leq C \min_{f \in \mathcal{F}_0} \left(A(f) - A^*\right) + C_0 \gamma(n, M),$$

where C > 1.

Classification problem : $A^{\phi}(f) = \mathbb{E}[\phi(Yf(X))], Y \in \{-1, 1\}, X \in \mathcal{X}.$

Optimality in classification.

$$\phi(x) = \phi_h(x) = \begin{cases} (1 - h)\phi_0(x) + h\phi_1(x) & \text{if } 0 \le h \le 1\\ (h - 1)x^2 - x + 1 & \text{if } h > 1, \end{cases} \quad \forall x \in \mathbb{R}$$

General Framework

Classification problem : $A^{\phi}(f) = \mathbb{E}[\phi(Yf(X))], Y \in \{-1, 1\}, X \in \mathcal{X}.$

Optimality in classification.

$$\phi(x) = \phi_h(x) = \begin{cases} (1 - h)\phi_0(x) + h\phi_1(x) & \text{if } 0 \le h \le 1\\ (h - 1)x^2 - x + 1 & \text{if } h > 1, \end{cases} \quad \forall x \in \mathbb{R}$$

General Framework

Classification problem : $A^{\phi}(f) = \mathbb{E}[\phi(Yf(X))], Y \in \{-1, 1\}, X \in \mathcal{X}.$

$$\phi(x) = \phi_h(x) = \begin{cases} (1 - h)\phi_0(x) + h\phi_1(x) & \text{if } 0 \le h \le 1\\ (h - 1)x^2 - x + 1 & \text{if } h > 1, \end{cases} \quad \forall x \in \mathbb{R}$$

Optimality in classification.

Classification problem : $A^{\phi}(f) = \mathbb{E}[\phi(Yf(X))], Y \in \{-1, 1\}, X \in \mathcal{X}.$

Optimality in classification.

$$\phi(x) = \phi_h(x) = \begin{cases} (1 - h)\phi_0(x) + h\phi_1(x) & \text{if } 0 \le h \le 1\\ (h - 1)x^2 - x + 1 & \text{if } h > 1, \end{cases} \quad \forall x \in \mathbb{R}$$

Classification problem : $A^{\phi}(f) = \mathbb{E}[\phi(Yf(X))], Y \in \{-1, 1\}, X \in \mathcal{X}.$

Optimality in classification.

$$\phi(x) = \phi_h(x) = \begin{cases} (1-h)\phi_0(x) + h\phi_1(x) & \text{if } 0 \le h \le 1\\ (h-1)x^2 - x + 1 & \text{if } h > 1, \end{cases} \quad \forall x \in \mathbb{R}$$

Classification problem : $A^{\phi}(f) = \mathbb{E}[\phi(Yf(X))], Y \in \{-1, 1\}, X \in \mathcal{X}.$

Optimality in classification.

$$\phi(x) = \phi_h(x) = \begin{cases} (1-h)\phi_0(x) + h\phi_1(x) & \text{if } 0 \le h \le 1\\ (h-1)x^2 - x + 1 & \text{if } h > 1, \end{cases} \quad \forall x \in \mathbb{R}$$

000000

ORA in classification

Loss function	$0 \le h < 1$	h = 1	h > 1
Optimal rate of aggregation (ORA)	$\sqrt{\frac{\log M}{n}}$	$\sqrt{\frac{\log M}{n}}$	log M n
Optimal aggregation procedure	ERM	ERM, AEW, CAEW	CAEW

Loss function	$0 \le h < 1$	h = 1	h > 1
Optimal rate of aggregation (ORA)	$\sqrt{\frac{\log M}{n}}$	$\sqrt{\frac{\log M}{n}}$	log M n
Optimal aggregation procedure	ERM	ERM, AEW, CAEW	CAEW

Loss function	$0 \le h < 1$	h = 1	h > 1
Optimal rate of aggregation (ORA)	$\sqrt{\frac{\log M}{n}}$	$\sqrt{\frac{\log M}{n}}$	log M n
Optimal aggregation procedure	ERM	ERM, AEW, CAEW	CAEW

Loss function	$0 \le h < 1$	h = 1	h > 1
Optimal rate of aggregation (ORA)	$\sqrt{\frac{\log M}{n}}$	$\sqrt{\frac{\log M}{n}}$	log M n
Optimal aggregation procedure	ERM	ERM, AEW, CAEW	CAEW

Loss function	$0 \le h < 1$	h = 1	h > 1
Optimal rate of aggregation (ORA)	$\sqrt{\frac{\log M}{n}}$	$\sqrt{\frac{\log M}{n}}$	log M n
Optimal aggregation procedure	ERM	ERM, AEW, CAEW	CAEW

Loss function	$0 \le h < 1$	h = 1	h > 1
Optimal rate of aggregation (ORA)	$\sqrt{\frac{\log M}{n}}$	$\sqrt{\frac{\log M}{n}}$	log M n
Optimal aggregation procedure	ERM	ERM, AEW, CAEW	CAEW

2 Questions.

General Framework.

Question 1: Why is there such a breakdown just after the Hinge loss?

2 Questions.

General Framework.

Question 1: Why is there such a breakdown just after the Hinge loss?

$$0 \le h \le 1, \sqrt{\frac{\log M}{n}} \longrightarrow \frac{\log M}{n}, h > 1.$$

2 Questions.

General Framework.

Question 1: Why is there such a breakdown just after the Hinge loss?

$$0 \le h \le 1, \sqrt{\frac{\log M}{n}} \longrightarrow \frac{\log M}{n}, h > 1.$$

Question 2: Do we really need aggregation procedures with exponential weights to achieve the optimal rates of aggregation?

2 Questions.

General Framework.

Question 1: Why is there such a breakdown just after the Hinge loss?

$$0 \le h \le 1, \sqrt{\frac{\log M}{n}} \longrightarrow \frac{\log M}{n}, h > 1.$$
 ERM \longrightarrow CAEW

Question 2: Do we really need aggregation procedures with exponential weights to achieve the optimal rates of aggregation?

Margin assumption for the loss function ϕ :

The probability measure π satisfies the ϕ -margin assumption ϕ -MA(κ), with margin parameter $\kappa > 1$ if

Optimality in classification.

$$\mathbb{E}[(\phi(Yf(X)) - \phi(Yf^{\phi*}(X)))^2] \leq c_{\phi}(A^{\phi}(f) - A^{\phi*})^{1/\kappa},$$

for any $f: \mathcal{X} \longmapsto \mathbb{R}$.

cf. Mammen and Tsybakov 99 (discriminant analysis) and Tsybakov 04 (classification).

Margin assumption for the loss function ϕ :

The probability measure π satisfies the ϕ -margin assumption ϕ -MA(κ), with margin parameter $\kappa > 1$ if

Optimality in classification.

$$\mathbb{E}[(\phi(Yf(X)) - \phi(Yf^{\phi*}(X)))^2] \le c_{\phi}(A^{\phi}(f) - A^{\phi*})^{1/\kappa},$$

for any $f: \mathcal{X} \longmapsto \mathbb{R}$.

cf. Mammen and Tsybakov 99 (discriminant analysis) and Tsybakov 04 (classification).

$$\phi_0 - \mathsf{MA}(\kappa) \Longleftrightarrow \mathbb{P}[|2\eta(X) - 1| \le t] \le t^{\alpha}, \forall 0 < t < 1, \alpha = \frac{1}{\kappa - 1}$$

$$\eta(x) = \mathbb{P}[Y = 1|X = x]$$

Margin assumption for the loss function ϕ :

The probability measure π satisfies the ϕ -margin assumption ϕ -MA(κ), with margin parameter $\kappa > 1$ if

$$\mathbb{E}[(\phi(Yf(X)) - \phi(Yf^{\phi*}(X)))^2] \le c_{\phi}(A^{\phi}(f) - A^{\phi*})^{1/\kappa},$$

for any $f: \mathcal{X} \longmapsto \mathbb{R}$.

General Framework

cf. Mammen and Tsybakov 99 (discriminant analysis) and Tsybakov 04 (classification).

$$\phi_0 - \mathsf{MA}(\kappa) \Longleftrightarrow \mathbb{P}[|2\eta(X) - 1| \le t] \le t^{\alpha}, \forall 0 < t < 1, \alpha = \frac{1}{\kappa - 1}$$

$$\eta(x) = \mathbb{P}[Y = 1 | X = x]$$

 $(\kappa = 1 \iff \exists h > 0, |2\eta(X) - 1| > h)$

General Framework.

$$\kappa = +\infty$$
 for any $0 \le h \le 1$.

0000000

Question 1. Why there is a breakdown at h = 1?

$$\kappa = +\infty$$
 for any $0 \le h \le 1$.

General Framework.

0000000

Question 1. Why there is a breakdown at h = 1?

$$\kappa = +\infty$$
 for any $0 \le h \le 1$.

General Framework

General Framework.

$$\kappa = +\infty$$
 for any $0 \le h \le 1$.

General Framework

$$\kappa = 1$$
 for any $h > 1$.

Optimality in classification.

0000000

General Framework

$$\kappa = 1$$
 for any $h > 1$.

Question 2: Do we really need agg. with exp. weights?

Theorem (suboptimality of selectors)

For any $M \geq 2$, $\phi : \mathbb{R} \longrightarrow \mathbb{R}$ s.t. $\phi(-1) \neq \phi(1)$, $\exists f_1, \ldots, f_M : \mathcal{X} \longmapsto \{-1, 1\}$ s.t. for any selector \tilde{f}_n , $\exists \pi$ s.t.

$$\mathbb{E}\left[A^{\phi}(\frac{\mathbf{\tilde{f}_n}}{\mathbf{\tilde{f}_n}}) - A^{\phi*}\right] \geq \min_{j=1,\dots,M}\left(A^{\phi}(f_j) - A^{\phi*}\right) + C\sqrt{\frac{\log M}{n}}.$$

Optimality in classification.

Question 2: Do we really need agg. with exp. weights?

Theorem (suboptimality of selectors under the margin assumption)

For any M > 2, $\kappa > 1$, $\phi : \mathbb{R} \longrightarrow \mathbb{R}$ s.t. $\phi(-1) \neq \phi(1)$, $\exists f_1, \dots, f_M : \mathcal{X} \longmapsto \{-1, 1\}$ s.t. for any selector $\overline{f_n}$, $\exists \pi$ satisfying the

$$\mathbb{E}\left[A^{\phi}(\frac{\tilde{f}_{n}}{f_{n}})-A^{\phi*}\right]\geq \min_{j=1,\ldots,M}\left(A^{\phi}(f_{j})-A^{\phi*}\right)+C\left(\frac{\log M}{n}\right)^{\frac{\kappa}{2\kappa-1}}.$$

Optimality in classification.

$$\sqrt{\frac{\log M}{n}} >> \left(\frac{\log M}{n}\right)^{\frac{\kappa}{2\kappa-1}} >> \frac{\log M}{n}, 1 < \kappa < \infty.$$

 ϕ_0 -MA(κ) s.t.

Question 2: Do we really need agg. with exp. weights?

Suboptimality of Penalized ERM.

For any $M \geq 2$, $\kappa > 1$ and $\phi : \mathbb{R} \longmapsto \mathbb{R}$ s.t. $\phi(-1) \neq \phi(1)$, $\exists f_1, \dots, f_M : \mathcal{X} \longmapsto \{-1, 1\}, \exists \pi \text{ satisfying the } \phi_0 - \mathsf{MA}(\kappa) \text{ s.t. the pERM}$ aggregate

Optimality in classification.

$$\tilde{f}_n^{PERM} \in \operatorname{Arg} \min_{j=1,\dots,M} (A_n^{\phi}(f_j) + \operatorname{pen}(f_j)),$$

where $|pen(f)| < \frac{1}{6} \sqrt{\frac{\log M}{n}}$, satisfies

$$\mathbb{E}\left[A^{\phi}(\tilde{f}_{n}^{\mathsf{pERM}}) - A^{\phi*}\right] \geq \min_{j=1,\dots,M}\left(A^{\phi}(f_{j}) - A^{\phi*}\right) + C\sqrt{\frac{\log M}{n}}$$

if $\sqrt{M \log M} \leq \sqrt{n}/(132e^3)$, for any integer $n \geq 1$.

$$\mathcal{F}_0 = \{f_1, \dots, f_M\} \subseteq \mathcal{F}$$
. Assume that π satisfies $(\mathsf{MA})(\kappa, c, \mathcal{F}_0)$ and $|Q(Z, f) - Q(Z, f^*)| \leq K, \forall f \in \mathcal{F}_0$.

Optimality in classification.

$$\mathbb{E}[A(\tilde{f}_n^{ERM}) - A^*] \leq \min_{f \in \mathcal{F}_n} (A(f) - A^*) + 4\gamma(n, M, \kappa, \mathcal{B}),$$

where the residual $\gamma(n, M, \kappa, \mathcal{B})$ equals to

$$\left\{ \begin{array}{ll} \left(\frac{\mathcal{B}^{\frac{1}{\kappa}}\log M}{\beta_1 n}\right)^{1/2} & \text{if } \mathcal{B} \geq \left(\frac{\log M}{\beta_1 n}\right)^{\frac{\kappa}{2\kappa-1}} \\ \left(\frac{\log M}{\beta_1 n}\right)^{\frac{\kappa}{2\kappa-1}} & \text{otherwise,} \end{array} \right.$$

where $\mathcal{B} = \min_{f \in \mathcal{F}_0} (A(f) - A^*)$ and $\beta_1 > 0$.

General Framework

Theorem (Exact Oracle Inequalities for the general framework)

$$\mathcal{F}_0 = \{f_1, \dots, f_M\} \subseteq \mathcal{F}$$
. Assume that π satisfies $(\mathsf{MA})(\kappa, c, \mathcal{F}_0)$ \bullet MH and $|Q(Z, f) - Q(Z, f^*)| \leq K, \forall f \in \mathcal{F}_0$. If $Q(z, \cdot)$ is convex for any $z \in \mathcal{Z}$, then

Optimality in classification.

$$\mathbb{E}[A(\tilde{f}_n^{AEW}) - A^*] \leq \min_{f \in \mathcal{F}_0} (A(f) - A^*) + 4\gamma(n, M, \kappa, \mathcal{B}),$$

where the residual $\gamma(n, M, \kappa, \mathcal{B})$ equals to

$$\begin{cases} \left(\frac{\mathcal{B}^{\frac{1}{\kappa}} \log M}{\beta_1 n}\right)^{1/2} & \text{if } \mathcal{B} \geq \left(\frac{\log M}{\beta_1 n}\right)^{\frac{\kappa}{2\kappa - 1}} \\ \left(\frac{\log M}{\beta_1 n}\right)^{\frac{\kappa}{2\kappa - 1}} & \text{otherwise,} \end{cases}$$

where $\mathcal{B} = \min_{f \in \mathcal{F}_0} (A(f) - A^*)$ and $\beta_1 > 0$.

Oracle Inequality in density estimation

Corollary. In density estimation (Margin parameter $\kappa = 1$.)

Let $f_1, \ldots, f_M : \mathcal{X} \longmapsto [0, B]$. Assume that f^* is bounded by B. For any $\epsilon > 0$, we have

Optimality in classification.

$$\mathbb{E}[||f^* - \tilde{f}_n^{AEW}||_{L^2(\mu)}^2] \le (1 + \epsilon) \min_{j=1,\dots,M} (||f^* - f_j||_{L^2(\mu)}^2) + \frac{C}{\epsilon} \frac{\log M}{n}.$$

Oracle Inequality in density estimation

General Framework

Corollary. In density estimation (Margin parameter $\kappa = 1$.)

Let $f_1, \ldots, f_M : \mathcal{X} \longmapsto [0, B]$. Assume that f^* is bounded by B. For any $\epsilon > 0$, we have

$$\mathbb{E}[||f^* - \tilde{f}_n^{AEW}||_{L^2(\mu)}^2] \le (1 + \epsilon) \min_{j=1,\dots,M} (||f^* - f_j||_{L^2(\mu)}^2) + \frac{C}{\epsilon} \frac{\log M}{n}.$$

Aggregation of wavelet thresholded estimators

adaptive minimax procedure over all Besov Balls $B_{p,\infty}^s$ for s > 1/p. (Chesneau, L. (2007))

Oracle Inequality in the regression framework

Corollary. In bounded regression (Margin parameter $\kappa = 1$.)

Let $f_1, \ldots, f_M : \mathcal{X} \longmapsto [0, 1]$. For any $\epsilon > 0$, we have

$$\mathbb{E}[||f^* - \tilde{f}_n^{AEW}||_{L^2(P^X)}^2] \le (1 + \epsilon) \min_{j=1,\dots,M} (||f^* - f_j||_{L^2(P^X)}^2) + \frac{C}{\epsilon} \frac{\log M}{n}.$$

Optimality in classification.

Oracle Inequality in the regression framework

General Framework

Corollary. In bounded regression (Margin parameter $\kappa = 1$.)

Let $f_1, \ldots, f_M : \mathcal{X} \longmapsto [0, 1]$. For any $\epsilon > 0$, we have

$$\mathbb{E}[||f^* - \tilde{f}_n^{AEW}||_{L^2(P^X)}^2] \le (1 + \epsilon) \min_{j=1,\dots,M} (||f^* - f_j||_{L^2(P^X)}^2) + \frac{C}{\epsilon} \frac{\log M}{n}.$$

Aggregation of wavelet thresholded estimators

$$\downarrow$$

adaptive minimax procedure over all Besov Balls $B_{p,\infty}^s$ for s>1/p. (Chesneau, L. (2007))

Oracle Inequality in classification

General Framework.

Corollary. In classification under the Margin Assumption.

Let $f_1, \ldots, f_M : \mathcal{X} \longmapsto [-1, 1]$ and $\kappa \geq 1$. For any π satisfying the margin assumption ϕ_0 -MA(κ) and any $\epsilon > 0$, we have

$$\mathbb{E}[A_1(\tilde{f}_n^{AEW}) - A_1^*] \leq (1+\epsilon) \min_{j=1,\dots,M} (A_1(f_j) - A_1^*) + C\Big(\frac{\log M}{\epsilon n}\Big)^{\frac{\kappa}{2\kappa-1}}.$$

Oracle Inequality in classification

General Framework

Corollary. In classification under the Margin Assumption.

Let $f_1, \ldots, f_M : \mathcal{X} \longmapsto [-1, 1]$ and $\kappa \geq 1$. For any π satisfying the margin assumption ϕ_0 -MA(κ) and any $\epsilon > 0$, we have

$$\mathbb{E}[A_1(\tilde{f}_n^{AEW}) - A_1^*] \leq (1+\epsilon) \min_{j=1,\dots,M} (A_1(f_j) - A_1^*) + C\left(\frac{\log M}{\epsilon n}\right)^{\frac{\kappa}{2\kappa-1}}.$$

Aggregation of SVM classifiers (or plug-in classifiers)

procedure adaptive simultaneously to the complexity and to the margin parameters.

(Gaïffas, L. (2007))

Single-index model

$$(X,Y) \in \mathbb{R}^d \times \mathbb{R}, \qquad Y = g(X) + \sigma(X)\epsilon$$

where $\exists \vartheta \in S^{d-1}_+ = \left\{ v \in \mathbb{R}^d \mid \|v\|_2 = 1 \text{ et } v_d \geq 0 \right\}$ (index) and a function $f: \mathbb{R} \longmapsto \mathbb{R}$ (link function) s.t.

$$g(x) = f(\vartheta^{\top} x).$$

Optimality in classification.

(Gaïffas, L. (2007))

Single-index model

$$(X,Y) \in \mathbb{R}^d \times \mathbb{R}, \qquad Y = g(X) + \sigma(X)\epsilon$$

where $\exists \vartheta \in S^{d-1}_+ = \left\{ v \in \mathbb{R}^d \mid \|v\|_2 = 1 \text{ et } v_d \geq 0 \right\}$ (index) and a function $f: \mathbb{R} \longmapsto \mathbb{R}$ (link function) s.t.

$$g(x) = f(\vartheta^{\top} x).$$

Optimality in classification.

- $\varepsilon \perp X$ and $\epsilon \sim N(0,1)$;
- $\sigma_0 < \sigma(\cdot) < \sigma_1 \ (\sigma_1 \ \text{known})$;

Aim: estimation of g from n observations $D_n := [(X_i, Y_i); 1 \le i \le n]$

Reduction of dimension

Without the assumption of Single-Index and if $g \in H_d(s)$ (Hölder class) $n^{-s/(2s+d)}$ is the minimax rate of convergence.

Reduction of dimension

General Framework

Without the assumption of Single-Index and if $g \in H_d(s)$ (Hölder class) $n^{-s/(2s+d)}$ is the minimax rate of convergence.

"Open" question 2 of Stone (82)

is $n^{-s/(2s+1)}$ the minimax rate of estimation of the regression function in the Single-Index model, if the link function f belongs to a s-Hölder Class?

Assumption (D)

General Framework

- P_X is compactly supported and $P^X << \lambda_d$
- For any $v \in S^{d-1}_{\perp}$, if $\mu := dP_{v^{\top}X}/Leb$:
 - μ is **continuous**:
 - Card $\{z \in \text{Supp } \mu \text{ s.t. } \mu(z) = 0\} < \infty$;
 - if $\mu(z) = 0$, then μ is **U-shaped** around z;
- $\exists \beta \geq 0, \gamma > 0$ s.t. $\forall \nu \in S^{d-1}_+$ and \forall interval $I \subset \text{Supp } P_{\nu^\top X}$;

$$P_{\mathbf{v}^{\top}X}[I] \ge \gamma |I|^{\beta+1}.$$

Hölder Balls

1-dimensional Hölder Balls H(s, L) (regularity of the link function)

• H(s, L) is made of all functions $f : \mathbb{R} \longmapsto \mathbb{R} |s|$ —times differentiable satisfying $\forall z_1, z_2 \in \mathbb{R}$

$$|f^{(\lfloor s\rfloor)}(z_1)-f^{(\lfloor s\rfloor)}(z_2)|\leq L|z_1-z_2|^{s-\lfloor s\rfloor}.$$

• For Q > 0, define

$$H^{Q}(s,L) := H(s,L) \cap \{f \mid ||f||_{\infty} := \sup_{x} |f(x)| \le Q\}.$$

Upper bound

Theorem

If P_X satisfies assumption (D), we can construct an estimator \hat{g} satisfying for any $s \in [s_{\min}, s_{\max}]$:

$$\sup_{\vartheta \in S_+^{d-1}} \sup_{f \in H^Q(s,L)} E^n \|\hat{g} - g\|_{L^2(P_X)}^2 \le C n^{-2s/(2s+1)},$$

Optimality in classification.

where $g(\cdot) = f(\vartheta^{\top} \cdot)$. The constant C > 0 depends on $\sigma_1, L, s_{\min}, s_{\max}$ and P_X .

• \hat{g} adapts both to the **index** and the **regularity**.

Lower bound

General Framework.

Theorem

Let s, L, Q > 0 and P_X satisfying assumption (D). For any $\theta \in S^{d-1}_{\perp}$:

$$\inf_{\tilde{g}} \sup_{f \in H(s,L)} E^n \|\tilde{g} - g\|_{L^2(P_X)}^2 \ge C' n^{-2s/(2s+1)}$$

where $\inf_{\tilde{e}}$ denotes the infimum over all estimator \tilde{g} constructed on D_n .

• $n^{-2s/(2s+1)}$ is the minimax rate of convergence in the single-index model conjectured by Stone (1982).

Construction of the estimator

General Framework

We split the sample in two subsamples

• Training sample :

$$D_m := [(X_i, Y_i); 1 \le i \le m]$$
 (for instance $m = 3n/4$)

• Learning sample :

$$D_{(m)} := [(X_i, Y_i); m+1 \le i \le n].$$

Construction of the weak estimators: We fixe a parameter

$$\lambda = (v, \textbf{s}) \in \Lambda_n = S^{d-1}_+(\Delta_n) \times [s_{min}, s_{min} + (\log n)^{-1}, \dots, s_{max}],$$

Optimality in classification.

where $\Delta_n = (n \log n)^{-1/(2s_{min})}$.

Construction of the weak estimators: We fixe a parameter

$$\lambda = (v, s) \in \Lambda_n = S^{d-1}_+(\Delta_n) \times [s_{min}, s_{min} + (\log n)^{-1}, \dots, s_{max}],$$

where $\Delta_n = (n \log n)^{-1/(2s_{min})}$.

• We work with the data projected in the direction v :

$$D_m(v) = [(v^{\top} X_i, Y_i); 1 \le i \le m];$$

Construction of the weak estimators: We fixe a parameter

$$\lambda = (v, \textbf{s}) \in \Lambda_n = S^{d-1}_+(\Delta_n) \times [s_{min}, s_{min} + (\log n)^{-1}, \dots, s_{max}],$$

Optimality in classification.

where $\Delta_n = (n \log n)^{-1/(2s_{min})}$.

• We work with the data projected in the direction v :

$$D_m(\mathbf{v}) = [(\mathbf{v}^\top X_i, Y_i); 1 \le i \le m];$$

• Construction of a 1-dimensional polynomial estimator $f^{(\lambda)}(\cdot)$ with the data $D_m(v)$ for the regularity s PLPE.

Construction of the weak estimators: We fixe a parameter

$$\lambda = (\mathbf{v}, \mathbf{s}) \in \Lambda_n = S_+^{d-1}(\Delta_n) \times [s_{min}, s_{min} + (\log n)^{-1}, \dots, s_{max}],$$

where $\Delta_n = (n \log n)^{-1/(2s_{min})}$.

• We work with the data projected in the direction v :

$$D_m(v) = [(v^{\top} X_i, Y_i); 1 \le i \le m];$$

- Construction of a 1-dimensional polynomial estimator $f^{(\lambda)}(\cdot)$ with the data $D_m(v)$ for the regularity s PLPE.
- $\bar{g}^{(\lambda)}(x) := \tau_O(\bar{f}^{(\lambda)}(v^\top x))$ where $\tau_O(g) := \max(-Q, \min(Q, g))$.

We do this for any $\lambda \in \Lambda_n$!

Adaptation to the regularity and the index by aggregation. Once we have the dictionary $\{\bar{g}^{(\lambda)}; \lambda \in \Lambda_n\}$ of weak estimators.

• Empirical risk of \bar{g} :

$$A_{(m)}(\bar{g}) := \sum_{i=m+1}^{n} (Y_i - \bar{g}(X_i))^2.$$
 (1)

• For a temperature $T^{-1} > 0$, we put a Gibbs measure • Gibbs on $\{\bar{g}^{(\lambda)}; \lambda \in \Lambda_n\}$:

$$w(\bar{g}) := \frac{\exp\left(-TA_{(m)}(\bar{g})\right)}{\sum_{\lambda \in \Lambda_n} \exp\left(-TA_{(m)}(\bar{g}^{(\lambda)})\right)}.$$
 (2)

 the final estimator is the AEW aggregate of local polynomial estimators:

$$\hat{g} := \sum_{\lambda \in \Lambda_{-}} w(\bar{g}^{(\lambda)}) \bar{g}^{(\lambda)}.$$

Remarks on the temperature parameter

General Framework.

- if T^{-1} large \Rightarrow exponential weights are close to the uniform weights.
- if T^{-1} small \Rightarrow all the weights equal zero except one : \hat{g} is the ERM.

Remarks on the temperature parameter

- if T^{-1} large \Rightarrow exponential weights are close to the uniform weights.
- if T^{-1} small \Rightarrow all the weights equal zero except one : \hat{g} is the ERM.

 ${\it T}$ is a parameter of a trade-off between an aggregate with uniform weights and the ERM.

- if T^{-1} large \Rightarrow exponential weights are close to the uniform weights.
- if T^{-1} small \Rightarrow all the weights equal zero except one : \hat{g} is the ERM.

 ${\cal T}$ is a parameter of a trade-off between an aggregate with uniform weights and the ERM.

Quality of the aggregate depends on the choice of T.

Aggregation phenomenon depending on the temperature

Weights $\{w(\bar{g}^{(\lambda)}):\lambda\in\Lambda_n\}$ on $\bar{S}^1_+(\Delta_n)$ for $\vartheta=(1/\sqrt{2},1/\sqrt{2})$ and T=0.05,0.2,0.5,10

900

Weights
$$\{w(\bar{g}^{(\lambda)}):\lambda\in\Lambda_n\}$$
 on $\bar{S}^1_+(\Delta_n)$ for $\vartheta=(1/\sqrt{2},1/\sqrt{2})$ and $T=0.05, 0.2, 0.5, 10$

Applications.

General Framework.

Aggregation phenomenon depending on the temperature

Weights $\{w(\bar{g}^{(\lambda)}): \lambda \in \Lambda_n\}$ on $\bar{S}^1_+(\Delta_n)$ for $\vartheta=(1/\sqrt{2},1/\sqrt{2})$ and T=0.05,0.2,0.5,10

900

Weights
$$\{w(\bar{g}^{(\lambda)}):\lambda\in\Lambda_n\}$$
 on $\bar{S}^1_+(\Delta_n)$ for $\vartheta=(1/\sqrt{2},1/\sqrt{2})$ and $T=0.05,0.2,0.5,\frac{10}{2}$

General Framework.

900

Applications.

Weights $\{w(\bar{g}^{(\lambda)}):\lambda\in\Lambda\}$ on $\bar{S}^2_+(\Delta_n)$ for $\vartheta=(0,0,1)$ and T=0.05,0.3,0.5,10

General Framework.

Applications.

Aggregation phenomenon depending on the temperature

Weights $\{w(\bar{g}^{(\lambda)}):\lambda\in\Lambda\}$ on $\bar{S}^2_+(\Delta_n)$ for $\vartheta=(0,0,1)$ and T=0.05,0.3,0.5,10

Weights $\{w(ar{g}^{(\lambda)}):\lambda\in\Lambda\}$ on $ar{S}^2_+(\Delta_n)$ for artheta=(0,0,1) and $T=0.05,0.3,0.5,f{10}$

General Framework

For 100 simulations

General Framework

MISE against T for f = hardsine, $\vartheta = (2/\sqrt{14}, 1/\sqrt{14}, 3/\sqrt{14})$ and n = 4000.020 0.015 MISE 0.010 0.005 25 5 10 15 20 30 Т

Applications.

For 100 simulations

General Framework.

MISE against \mathcal{T} $(f= ext{hardsine},artheta=(2/\sqrt{14},1/\sqrt{14},3/\sqrt{14}))$												
n \ T	0.1	0.5	0.7	1.0	1.5	2.0	ERM	aggCVT				
100	0.029	0.021	0.019	0.018	0.017	0.018	0.037	0.020				
	(.011)	(800.)	(800.)	(.007)	(800.)	(.009)	(.022)	(800.)				
200	0.016	0.010	0.010	0.009	0.009	0.010	0.026	0.010				
	(.005)	(.003)	(.003)	(.002)	(.002)	(.003)	(800.0)	(.003)				
400	0.007	0.006	0.005	0.005	0.006	0.007	0.017	0.006				
	(.002)	(.001)	(.001)	(.001)	(.001)	(.002)	(.003)	(.001)				

MISE against T $(f = \text{hardsine}, \vartheta = (1/\sqrt{21}, -2/\sqrt{21}, 0, 4/\sqrt{21}))$											
n \ T	0.1	0.5	0.7	1.0	1.5	2.0	ERM	aggCVT			
100	0.038	0.027	0.021	0.019	0.017	0.017	0.038	0.020			
	(.016)	(.010)	(.009)	(800.)	(.007)	(.007)	(.025)	(.010)			
200	0.019	0.013	0.012	0.012	0.013	0.014	0.031	0.013			
	(.014)	(.009)	(.010)	(.011)	(.012)	(.012)	(.016)	(.010)			
400	0.009	0.006	0.005	0.005	0.006	0.007	0.017	0.006			
	(.002)	(.001)	(.001)	(.001)	(.001)	(.002)	(.004)	(.001)			

Applications.

Applications.

Some perspectives.

General Framework

General Framework.

• To introduce a margin parameter in the problem of prediction of individual sequences.

Optimality in classification.

- To introduce a margin parameter in the problem of prediction of individual sequences.
- To construct of aggregation methods in a framework without empirical risk (pointwise estimation, L^p -risk for $p \neq 2,...$).

• To introduce a margin parameter in the problem of prediction of individual sequences.

Optimality in classification.

- To construct of aggregation methods in a framework without empirical risk (pointwise estimation, L^p -risk for $p \neq 2,...$).
- To explore the quality of some randomized aggregates for non-convex losses:

$$\tilde{f}_n^{Rand} = f_j$$
, with probability $w_T(f_j)$.

General Framework

- To introduce a margin parameter in the problem of prediction of individual sequences.
- To construct of aggregation methods in a framework without empirical risk (pointwise estimation, L^p -risk for $p \neq 2,...$).
- To explore the quality of some randomized aggregates for non-convex losses:

$$\tilde{f}_n^{Rand} = f_j$$
, with probability $w_T(f_j)$.

 To explore the quality of aggregation of the ERM over the convex class of the dictionary:

$$ilde{f}_n \in \operatorname{Arg} \min_{f \in \mathcal{C}} A_n(f), ext{ where } \mathcal{C} = \{ \sum_{i=1}^M \lambda_j f_j; \lambda_j \geq 0, \sum \lambda_j = 1 \}.$$

General Framework

- To introduce a margin parameter in the problem of prediction of individual sequences.
- To construct of aggregation methods in a framework without empirical risk (pointwise estimation, L^p -risk for $p \neq 2,...$).
- To explore the quality of some randomized aggregates for non-convex losses:

$$\tilde{f}_n^{Rand} = f_j$$
, with probability $w_T(f_j)$.

 To explore the quality of aggregation of the ERM over the convex class of the dictionary :

$$ilde{f}_n \in \mathop{
m Arg\,min}_{f \in \mathcal{C}} A_n(f), \ \ {
m where} \ \mathcal{C} = \{\sum_{i=1}^M \lambda_j f_j; \lambda_j \geq 0, \sum \lambda_j = 1\}.$$

• To construct of sparse aggregate for models selection.

 To introduce a margin parameter in the problem of prediction of individual sequences.

Optimality in classification.

- To construct of aggregation methods in a framework without empirical risk (pointwise estimation, L^p -risk for $p \neq 2,...$).
- To explore the quality of some randomized aggregates for non-convex losses:

$$\tilde{f}_n^{Rand} = f_j$$
, with probability $w_T(f_j)$.

 To explore the quality of aggregation of the ERM over the convex class of the dictionary :

$$ilde{f}_n \in \operatorname{Arg} \min_{f \in \mathcal{C}} A_n(f), \ ext{where } \mathcal{C} = \{ \sum_{j=1}^M \lambda_j f_j; \lambda_j \geq 0, \sum \lambda_j = 1 \}.$$

- To construct of sparse aggregate for models selection.
- To find the optimal Temperature parameter.

Margin Assumption:

General Framework

The probability measure π satisfies the margin assumption $MA(\kappa, c, \mathcal{F}_0)$, where $\kappa > 1$, c > 0 and $\mathcal{F}_0 \subset \mathcal{F}$ if

$$\mathbb{E}[(Q(Z,f) - Q(Z,f^*))^2] \le c(A(f) - A^*)^{1/\kappa},$$

for any function $f \in \mathcal{F}_0$.

Where does this Gibbs measure come from?

• The weights $w = (w_{\lambda})_{{\lambda} \in {\Lambda}} := (w(\bar{g}^{({\lambda})}))_{{\lambda} \in {\Lambda}}$ are solution of

$$\min \Big(\tilde{R}_{(m)}(\theta) + \frac{1}{T} \sum_{\lambda \in \Lambda} \theta_{\lambda} \log \theta_{\lambda} \bigm| (\theta_{\lambda}) \in \mathcal{C} \Big),$$

Optimality in classification.

where
$$ilde{R}_m(heta) := \sum_{\lambda \in \Lambda} heta_\lambda R_{(m)}(ar{g}^{(\lambda)})$$
 and

$$\mathcal{C}:=\Big\{(\theta_\lambda)_{\lambda\in\Lambda}\text{ s.t. }\theta_\lambda\geq0\text{ and }\sum_{\lambda\in\Lambda}\theta_\lambda=1\Big\}.$$

iterative Construction of the dictionary : step 1, 2, 3, 4 ($\vartheta=(2/\sqrt{14},1/\sqrt{14},3/\sqrt{14})$)

iterative Construction of the dictionary : step 1, 2, 3, 4 ($\vartheta=(2/\sqrt{14},1/\sqrt{14},3/\sqrt{14})$)

Reduction of complexity: "preselection" of the weak estimators.

iterative Construction of the dictionary : step 1, 2, 3, 4 ($\vartheta = (2/\sqrt{14}, 1/\sqrt{14}, 3/\sqrt{14}))$

Reduction of complexity: "preselection" of the weak estimators.

iterative Construction of the dictionary : step 1, 2, 3, 4 ($\vartheta = (2/\sqrt{14}, 1/\sqrt{14}, 3/\sqrt{14}))$

weak estimators : local polynomial estimators

Construction of the weak estimators : the parameter

$$\lambda = (v, s) \in \Lambda_n = S^{d-1}_+(\Delta_n) \times [s_{min}, s_{min} + (\log n)^{-1}, \dots, s_{max}]$$
 is fixed

ullet We work with the data projected in the direction v:

$$D_m(v) = [(Z_i, Y_i); 1 \le i \le m] \text{ where } Z_i := v^\top X_i;$$

• If h > 0 (window), define $\bar{P}_{(z,h)} \in \mathsf{Pol}_r$ minimizing

$$\sum_{i=1}^{m} (Y_i - P(Z_i - z))^2 \mathbf{1}_{Z_i \in [z-h,z+h]},$$

with the window at the point z given by

$$H_m(z) := \operatorname*{argmin}_{h>0} \left\{ Lh^{\mathbf{s}} \geq \frac{\sigma_1}{(m\bar{P}_Z[z-h,z+h])^{1/2}} \right\}$$

where $\bar{P}_Z(A) := \frac{1}{m} \sum_{i=1}^m \mathbf{1}_{Z_i \in A}$

• Set $\bar{f}(z) := \bar{P}_{(z,H_m(z))}(z)$, and for Q > 0 fixed and all $x \in \mathbb{R}^d$,

$$ar{g}^{(\lambda)}(x) := au_Qig(ar{f}^{(\lambda)}(v^ op x)ig) ext{ where } au_Q(g) := ext{max}(-Q, ext{min}(Q, g)).$$

We do this for any $\lambda \in \Lambda_n$! PRECO

