ELECTRONICS HUB

PROJECTS | TUTORIALS | REVIEWS | KITS

	MINI PROJECTS	ARDUINO	FREE CIRCUITS	TUTORIALS	SYMBOLS	DIY	REVIEWS	CONTACT US
J ARE HERE: HOME / ARM	/ INTERFACING 16X2 LCE)				Sear	ch this website	
Interfacion	_						PCB Asse	mbly Services
 Pin Configuration Interfacing LCD Initializing the LO 	2 LCD with LPC21- on Module with LPC21 CD Module erfacing LCD with Li 2 LCD Images	48 PC2148		l icrocontr	oller			
The next importan		_						

either HD44780 or KS0066U Display Controller. HD44780 is manufactured by Hitachi and KS0066U is manufactured by Samsung. Both the controllers are compatible with

each other.

row consisting of 16 characters.

display. A LCD display or liquid crystal display is a display module with liquid crystals and backlight by LEDs. A 16 \times 2 LCD display consists of two rows of display with each

The most common type of 16 x 2 LCD display available in the market is JHD162A with

PROJECTS BY CATEGORY

Arduino Projects (200+)
Electronics Projects (250+)
Mini Project Circuits (160+)
Mini Project Ideas (150+)
ECE Projects (150+)
EEE Projects (150+)
8051 Projects (110+)
Raspberry Pi Projects (101+)

Electrical Project Ideas (100+)

This LCD Module has 16 pins and operates on 5V supply. The standard pin out of a 16 \times 2 LCD display is as follows.

Pin Configuration

	. 9	
Pin Number	· Name	Function
1	VSS	Power supply (GND)
2	VDD	Power supply +5V
3	VO or VEE	Contrast adjustment: through a variable resistor.
4	RS	Selects command register when low; and data register when high
5	RW	Low to write to the register; High to read from the register
6	Е	Sends data to data pins when a high lo low pulse is given
7	DB0	Data bus line
8	DB1	Data bus line
9	DB2	Data bus line
10	DB3	Data bus line
11	DB4	Data bus line
12	DB5	Data bus line
13	DB6	Data bus line
14	DB7	Data bus line
15	Α	Power supply for LED Backlight (+5V)
16	K	Power supply for LED Backlight (GND)

From the pin configuration, it is clear that the pins can be sorted according to Power pins, control pins and data pins. Power pins i.e. pins 1, 2, 3, 15 and 16 are used to supply for the module as well as the backlight LEDs. The voltage to the Contract Adjust Pin (Pin 3 or VEE) is usually given from a Potentiometer and will control the contrast of the actual display when the POT is adjusted.

Embedded Projects (100+)

Latest Electronics Ideas (100+)

Microcontroller Mini Projects (100+)

Robotics Projects (100+)

VLSI Projects (100+)

Solar Projects (100+)

IOT Projects (100+)

Communication Projects (70+)

LED Projects (70+)

Power Electronics Projects (60+)

RFID Projects (60+)

Home Automation Projects (50+)

Matlab Projects (50+)

EIE Projects (50+)

Wireless Projects (50+)

LabView Projects (45+)

Zigbee Projects (45+)

GSM Projects (40+)

555 Timer Circuits (40+)

Sensor Projects (40+)

ARM Projects (60+)

DTMF Projects (30+)

PIC Projects (30+)

Electrical Mini Projects (25)

ESP8266 Projects (15)

KITS

Best Rgb Led Strip Light Kits

Arduino Starter Kit

Electronics Books Beginners

Breadboard Kits Beginners

Best Arduino Books

Diy Digital Clock Kits

Drone Kits Beginners

Best Brushless Motors

Raspberry Pi Books

Electronics Component Kits Beginners

Soldering Stations

Electronics Repair Tool Kit Beginners

Raspberry Pi Starter Kits

Best Waveform Generators

Arduino Robot Kits

Oscilloscope Kits Beginners

Raspberry Pi LCD Display Kits

Robot Cat Toys

FM Radio Kit Buy Online

Best Resistor Kits

Soldering Iron Kits

Best Power Supplies

Best Capacitor Kits

Arduino Sensors

Best Function Generator Kits

Led Christmas Lights

Best lot Starter Kits

Best Gaming Headsets

Best Python Books

Best Robot Dog Toys Best Robot Kits Kids

There are 8 data pins for transmitting 8 – bits of data i.e. 1 byte of data at a time. The LCD can be used in either 8 – bit mode or 4 – bit mode. In 4 – bit mode, only 4 of the 8 data lines will be utilized for transmitting the data.

The remaining three pins i.e. RS (Pin 4), RW (Pin 5) and E (Pin 6) are called the Control Pins and are very important pins.

The RS pin, which is short for Register Select pin, is used to select either Instruction Register when it is LOW or Data Register when it is HIGH.

The RW pin or the Read / Write Pin is used for selecting Read Mode or Write Mode. When RW is HIGH, read mode is selected and data is read from the register. When RW is LOW, write mode is selected and data can be written in to the register.

Since we are using the write mode only, we can connect the RW pin to ground (through a pull down resistor).

The Enable (E) pin, as the name indicates, is used to enable the execution of the data or instructions. The data or instruction are executed by the LCD module only when a HIGH to LOW pulse is given to the Enable pin i.e. only on the falling edge of a pulse.

Interfacing LCD Module with LPC2148

The circuit for interfacing a 16 x 2 LCD Module with LPC2148 MCU is shown in the following image.

From the circuit diagram, the four data pins of the LCD (D4 - D7) are connected to P0.17 to P0.20 pins of the LPC2148. The control pins RS and E are connected to P0.12 and P.13 pins of the LPC2148 MCU.

It is clear from the circuit diagram that the LCD is used in 4 – bit mode. The advantage of using 4 – bit mode in LCD is it requires only 4 pins from the microcontroller, which is very important in resource intensive applications.

There is also a tradeoff of using the 4 – bit mode in LCD. Since only 4 – pins are used, we can send only 4 – bits of data at a time. Hence, in order to send a byte of data, the time will be taken will double that of an 8 – bit mode.

If the number of I/O pins on a MCU are limited and timing is not an issue, then we can go for 4- bit mode. Also, the 4- bit mode requires additional lines of code for shifting the data in the lower nibble to higher nibble every time we send an instruction or data.

Important Note: The ARM7 MCUs and in particular the LPC2148 MCU works on a 3.3V supply. The ARM7 development board used in the project has a separate 5V supply for the LCD module and doesn't draw any power from the MCU.

Best Solar Panel Kits
Led Strip Light Kits Buy Online
Top Robot Vacuum Cleaners
Digital Multimeter Kit Reviews
Solar Light Kits Beginners
Best Jumper Wire Kits
Best Gaming Earbuds
Best Wireless Routers
3d Printer Kits Buy Online
Best Gaming Mouse
Electric Lawn Mowers
Best Gaming Monitors

While interfacing the 5V LCD module with a 3.3V MCU like a LPC2148, there is a chance that the connection might work if connected directly. In this case, we need to use a Level Shifter IC as an intermediate module between the MCU i.e. LPC2148 and the LCD Module.

The commonly used level shifter is HEF4050B, which is a Hex non – inverting buffer. It can be used to convert logic levels to standard TTL levels. There are other buffers or Level Shifters in 74 series if ICs.

Initializing the LCD Module

After connecting the LCD module as per the circuit diagram, the first step is to initialize the LCD module. For that, we need to use some of the commands for the LCD in our program. The following table shows a list of commands used for configuring the LCD Module and also their respective functions.

001111111				СО	ММА	ND C	ODE				001111111111111111111111111111111111111
COMMAND	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	COMMAND CODE
SCREEN CLEAR	0	0	0	0	0	0	0	0	0	1	Screen Clear, Set AC to 0 Cursor Reposition
CURSOR RETURN	0	0	0	0	0	0	0	0	1	*	DDRAM AD=0, Return, Content Changeless
INPUT SET	0	0	0	0	0	0	0	1	I/D	S	Set moving direction of cursor, Appoint if move
DISPLAY SWITCH	0	0	0	0	0	0	1	D	C	В	Set display on/off,cursor on/off, blink on/off
SHIFT	0	0	0	0	0	1	S/C	R/L	*	*	Remove cursor and whole display,DDRAM changeless
FUNCTION SET	0	0	0	0	1	DL	N	F	*	*	Set DL,display line,font
CGRAM AD SET	0	0	0	1	TEC	CTO	AC	CG	4211	2	Set CGRAM AD, send receive data
DDRAM AD SET	0	0	1	13.6	7		ADD		MARKE 2		Set DDRAM AD, send receive data
BUSY/AD READ CT	0	1	BF				AC				Executing internal function, reading AD of CT
CGRAM/ DDRAM DATA WRITE	1	0			D	ATA	WRIT	E			Write data from CGRAM or DDRAM
CGRAM/ DDRAM DATA READ	1	1				ATA	REA	D			Read data from CGRAM or DDRAM
	S= S/ R/ DI N= F= BF	D=1: li =1: Sh C=1: l L=1: l =1: 2F =1: 5x =1: E =0: C	Displation Displation Display No. 10 St.	Shift; L=0: 4 =0: 11 yle; te Inte	ift; S/0 R/L=1 4D R F=0: ernal I	C=0: (0: Lef 5x7 : Funct	Curso t Shift	r Shif		de	DDRAM: Display data RAM CGRAM: Character Generator RAM ACG: CGRAM AD ADD: DDRAM AD & Cursor AD AC: Address counter for DDRAM & CGRAM

The above table seems confusing and is difficult to understand. Hence, the following table will give you a simplified list of LCD commands and their respective functions.

1	Function Set: 8 – bit Mode, 1 Line, 5×7 Dots	0x30
2	Function Set: 8 – bit Mode, 2 Line, 5×7 Dots	0x38
3	Function Set: 4 – bit Mode, 1 Line, 5×7 Dots	0x20
4	Function Set: 4 – bit Mode, 2 Line, 5×7 Dots	0x28
5	Entry Mode	0x06
6	Display off Cursor off	0x08
7	Display on Cursor on	0x0E
8	Display on Cursor off	0x0C
9	Display on Cursor blinking	0x0F
10	Shift entire display left	0x18
11	Shift entire display right	0x1C
12	Move cursor left by one character	0x10

13 Move	e cursor right by one character	0x14
14 Clea	r Display (also clear DDRAM content)	0x01
15 Set [DDRAM address or cursor position on display	0x80 + address
16 Set (CGRAM address or set pointer to CGRAM location	0x40 + address

Out of these commands, we are going to five commands in our project. They are listed below along with their function in the project.

- 0x28: This command is used to enable 4 bit mode for a 2 line module with 5 x 7 dots per character.
- 0x0C: It is a display switch command and is used to turn on the display and turn off the cursor.
- 0x01: This command is used to clear the contents of the display. To be more specific, it clears the contents of the DDRAM.
- 0x80: It is used to set the cursor position to the beginning of the first line. It also
 means that the DDRAM address is set with this value.
- 0xC0: It is also used to set the position of the cursor but this time, the position is set to the starting position in the second line.

Program for Interfacing LCD with LPC2148

As we have seen in the previous tutorial how to setup the PLL so that the CPU clock is running at 60 MHz (maximum for LPC2148), we will include that in this code as well. The steps for writing the programming the LCD interface with LPC2148 will be as follows.

• Setup the PLL Module

unsigned int i=0;

- Initialize the LCD Module
- Send the data to the LCD Module

```
More detailed steps are explained with the program.

#include<|pc214x.h>

/* Define 17, 18, 18 and 20 pins of PORT0 as the data pins and 12 and 13 pins of PORT0 as RS and E pins for the LCD*/

#define LCD 0x001e0000

#define RS (1<<12)

#define E (1<<13)

/* Define the functions used in the program*/

void delay (int);

void cmd (unsigned char);

void display (unsigned char);

void LCDinit (void);

void string (char *);

/* Function definition of delay function */

void delay (int d)

{
```

```
for(;d>0;d-)
for(i=11998;i>0;i-);
}
/* Function definition of cmd function. It is used to send initializing commands to the
LCD module. Hence, the RS pin is set to LOW. Also the code is written two times: once
the 4 bits are received, they are shifted and the next 4 bits are captured*/
void cmd (unsigned char c)
IOPIN0 = (IOPIN0 & 0xffe1ffff) | ((c&0x000000f0)<<13);
IOCLR0 = RS;
IOSET0 = E;
delay(10);
IOCLR0 = E;
IOPIN0 = (IOPIN0 & 0xffe1ffff) | ((c&0x0000000f)<<17);
IOCLR0 = RS;
IOSET0 = E;
delay(10);
IOCLR0 = E;
}
/* Function definition of display function. It is used to send the actual data to the LCD
module. Hence, the RS pin is set to HIGH*/
void display (unsigned char c)
{
IOPIN0 = (IOPIN0 & 0xffe1ffff) | ((c&0xf0)<<13);
IOSET0 |=RS;
IOSET0 |=E;
delay(10);
IOCLR0 |=E;
IOPIN0 = (IOPIN0 & 0xffe1ffff) | ((c&0xf)<<17);
```

```
IOSET0 |=RS;
IOSET0 |=E;
delay(10);
IOCLR0 |=E;
/*Function to capture the data and pass it to the display command */
void string (char *p)
while(*p)
{
display(*p++);
}
^{\prime\star} Function definition of the LCD initializing function. The commands to initialize the LCD
Module are given using this function */
void init (void)
cmd(0x00000028);
cmd(0x0000000c);
cmd(0x00000001);
cmd(0x00000080);
int main()
PINSEL0=0x00;
PINSEL1=0x00;
IODIR0=LCD|RS|E;
^{\prime\prime} Initialize the PLL and assigning it as the system clock and peripheral clock ^{\ast\prime}
PLL0CON = 0x01;
PLL0CFG = 0x24;
PLL0FEED = 0xaa;
PLL0FEED = 0x55;
while(!(PLL0STAT & 0x00000400));
PLL0CON = 0x03;
```

```
PLLOFEED = 0xaa;

PLLOFEED = 0x55;

VPBDIV = 0x01;

LCDinit();

while(1)

{

string("Electronics Hub");

cmd(0xc0);

string(" LCD Tutorial ");

while(1);

}
```

Interfacing 16X2 LCD Images

Related Posts:

- Interfacing 16×2 LCD with 8051
- Interfacing 16x2 LCD with Raspberry Pi
- Interfacing 16X2 LCD with STM32F103C8T6 | STM32 Blue...
- Interfacing I2C LCD with STM32F103C8T6 | STM32 I2C...
- How to use 74HC595 Shift Register with Arduino?
- Displaying Hindi Alphabets on LCD Using 8051

FILED UNDER: ARM

Leave a Reply

Your email address will not be published. Required fields are marked *

Comment					
Name *					
Email *					
EIIIali					
Website					
DOST COMMENT					
POST COMMENT					
POST COMMENT					
POST COMMENT					
	PROJECTS	PROJECTS	TUTORIALS	TUTORIALS	FOLLOW US
POST COMMENT GENERAL Tutorials	PROJECTS Electrical	PROJECTS Mini projects	tutorials Capacitors	TUTORIALS Amplifiers	FOLLOW US Instagram
GENERAL					
general Tutorials	Electrical	Mini projects	Capacitors	Amplifiers	Instagram
GENERAL Tutorials Symbols	Electrical Electronics	Mini projects Microcontroller	Capacitors Resistors	Amplifiers IO Devices	Instagram Youtube
GENERAL Tutorials Symbols Courses	Electrical Electronics Embedded	Mini projects Microcontroller Arduino	Capacitors Resistors Filters	Amplifiers IO Devices Thyristors	Instagram Youtube Facebook Google Plus
GENERAL Tutorials Symbols Courses Calculator	Electrical Electronics Embedded Power	Mini projects Microcontroller Arduino Solar	Capacitors Resistors Filters Diodes Transistors	Amplifiers IO Devices Thyristors DC Circuits	Instagram Youtube Facebook Google Plus Twitter
GENERAL Tutorials Symbols Courses Calculator Contact	Electrical Electronics Embedded Power Robotics	Mini projects Microcontroller Arduino Solar Free circuits	Capacitors Resistors Filters Diodes Transistors	Amplifiers IO Devices Thyristors DC Circuits Number System	Instagram Youtube Facebook Google Plus Twitter
GENERAL Tutorials Symbols Courses Calculator Contact HomeZene	Electrical Electronics Embedded Power Robotics ARM	Mini projects Microcontroller Arduino Solar Free circuits Home Automation	Capacitors Resistors Filters Diodes Transistors	Amplifiers IO Devices Thyristors DC Circuits Number System	Instagram Youtube Facebook Google Plus Twitter
GENERAL Tutorials Symbols Courses Calculator Contact HomeZene Best Arduino Kits	Electrical Electronics Embedded Power Robotics ARM	Mini projects Microcontroller Arduino Solar Free circuits Home Automation Seminar Topics	Capacitors Resistors Filters Diodes Transistors	Amplifiers IO Devices Thyristors DC Circuits Number System	Instagram Youtube Facebook Google Plus Twitter
GENERAL Tutorials Symbols Courses Calculator Contact HomeZene Best Arduino Kits	Electrical Electronics Embedded Power Robotics ARM	Mini projects Microcontroller Arduino Solar Free circuits Home Automation Seminar Topics Electronics	Capacitors Resistors Filters Diodes Transistors	Amplifiers IO Devices Thyristors DC Circuits Number System	Instagram Youtube Facebook Google Plus Twitter

[footer_backtotop]
Copyright © 2020 Electronicshub.org