

Phishing Detector

Tianhao Wu, Qian Liu, Mengjun Wang, Fujiao Ji

May 03, 2024

Outline:

- Introduction
- Motivation
- Model Overview

• Model Design

- Data Collection
- Faster-RCNN: used for crop the logo from screenshot
- ViT: used for compare logo similarity with the target list
- Involution: same as ViT
- Results

Introduction

Background:

A phishing website is a fraudulent site that mimics legitimate websites with the intent to deceive users into providing sensitive information such as usernames and passwords.

google.com

Motivation:

It is not fair to determine the website is a phishing website or not based only on domain information.

facebook.com

Research Goal:

Develop a phishing detector framework to recognize the phishing websites based on brands' logo and domain information.

ebay.com

Overview of Our Framework

Dataset

1. Faster RCNN: benign30k

4. Threshold: benign25k and phish25k

2. ViT & Involution: Logo2K+

4. Evaluation: Web Archive

Logo Clip: Faster R-CNN

Faster R-CNN (Region-based Convolutional Neural Network) is an advanced deep learning model that builds on the foundations of previous models like R-CNN and Fast R-CNN to efficiently and accurately **detect objects** within images.

Method — ViT

ViT is used to **compare logo similarity** by encoding logos as sequences of image patches and then comparing their embeddings to a target list.

Model Structure:

- The input image is divided into fixed-size patches.
- * These patches are linearly embedded into a higher-dimensional space.
- A sequence of positional embeddings is added to these patch embeddings to retain positional information.
- The resulting sequence of vectors is fed into a standard transformer encoder that uses self-attention mechanisms.
- The output of the transformer can be used for various tasks, including classification and similarity comparison.

Method — Involution

Similar to ViT, involution can be adapted for tasks like **comparing visual similarities** by generating dynamic kernels that adapt to the specific features of each logo.

Model Structure:

- ❖ Instead of using fixed kernels, involution generates kernels based on the input feature map itself.
- This generation process involves a kernel-generating function that maps the input features to kernel weights.
- These dynamic kernels are then applied spatially across the input feature map.
- The output feature map reflects more adaptive and input-specific processing, which can be beneficial for detailed tasks like logo comparison.

Method — Novelty

- **ViT** introduces the application of transformers, previously used primarily in natural language processing, to the domain of image recognition. It treats images as sequences of patches and processes them using a transformer encoder, which allows it to *capture complex spatial hierarchies*.
- Involution is designed as an alternative to convolution, aiming to reduce computational complexity and increase model efficiency. Unlike convolution, which aggregates features over a spatial area using shared weights, involution uses spatial-specific weights. This means the weights are generated dynamically based on the input, allowing for *more adaptable and data-dependent processing*.

Evaluation Dataset: collected from Archive.org for recent 7 years change

• Total: 1,941 with 3 brands

o Benign: 501

o Phishing: 1440

Results

Brand	Total	ViT Detection Rate	Involution Detection Rate
Ebay	390	0.8051282051	0.9923076923
Google	393	0.2875318066	0.8727735369
Facebook	1158	0.2815198618	0.9343696028
Total	1941	0.3879443586	0.9335394127

Any Question?

