SC1004 Part 2

Lectured by Prof Guan Cuntai (teaching materials by Prof Chng Eng Siong)

Email: ctguan@ntu.edu.sg

Quiz 2 and Exam:

1. Quiz 2

- Coverage: Ch 6,7,8

- Time/Date: Week 13, last lecture time (10:30-11.20am, 17th April

2024)

2. Final Exam

- Coverage : Ch 6, 7, 8 (Q3 & Q4)

- Date/Time: 2 May 2024 (Thursday), 1.00-3.00pm

(Ch 9 will not be tested)

Syllabus for Part 2

Chapte r	Topics	Week (Lecture)	Week (Tut)
6	Orthogonality	8-9	9-10
7	Least Squares	9-10	10-11
8	EigenValue and Eigenvectors	11-12	12-13
9	Singular Value Decomposition (SVD)	13	

Table 1: schedule

Online Video learning Schedule

https://www.youtube.com/channel/UCBzG5jg3huxiPkCt-Serrjw

Week	Part	Topic	Notes
8	6.1.1-6.2.3	Orthogonality, Normalization, Dot-Product, Inequalities,	Lecture 1: 6.1.1 - 6.1.3 Lecture 2: 6.1.4 - 6.2.3
9	6.2.4-6.3.2	Orthogonal/Orthonormal Sets, Basis, Gram Schmidt and QR Decomposition	Lecture 3: 6.2.4 Lecture 4: 6.2.5 – 6.3.2
10	7.1.1-7.2.1	Least Squares and Normal Eqn, Projection Matrix, Applications	Lecture 5: 7.1.1 – 7.1.3 Lecture 6: 7.1.4 – 7.2.1
11	8.1.1-8.1.2	Eigenvectors, Eigen-values, Characteristics Eqn	Lecture 7: 8.1.1 Lecture 8: 8.1.2
12	8.1.3-8.1.5	Diagonalisation, Power of A, Change of basis	Lecture 9: 8.1.3 Lecture 10: 8.1.4 – 8.1.5
13	9.1.1-9.2	Introduction to SVD and PCA (Not examined in quiz/exam)	Lecture 11: 9.1.1 – 9.2 Lecture 12: Quiz 2

How will we conduct the course?

- 1) Before the lectures, watch the videos according to the schedule in Table 1
 - You can watch past years zoom video recordings at https://www.youtube.com/@linearalgebra1884/playlists?view=50&sort=dd&shelf_id=2

- 2) During lecture hours
 - We will summarize the lectures and highlight the key points
 - Q&A.

References

Linear Algebra and Its Applications by David Lay, Steven Lay, Judi McDonald

3Blue1Brown on YouTube

Essence of linear algebra preview

https://www.youtube.com/playlist?list=PLZ HQObOWTQDPD3MizzM2xVFitgF8hE_ab

Lecture (Week 8)

(Chapter 6.1.1- 6.2.3)

Key points – 6.1.1 Geometric Vectors

• Vector
$$oldsymbol{v} = egin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

Vector direction & length

$$0 \| \boldsymbol{v} \| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Vector addition & subtraction

$$\circ \boldsymbol{u} = \boldsymbol{v}_1 + \boldsymbol{v}_2$$

$$0 u = v_1 - v_2$$

• Euclidean space: $R^n - n$ dimensional real numbers

<u>Key points – 6.1.2 Norm (Euclidean Norm)</u>

- Norm: $\|v\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$ • $\|v\| \ge 0$ • $\|v\| = 0$ iif v = 0• $\|kv\| = |k| \|v\|$
- Normalizing a vector (unit length vector)

$$\circ \boldsymbol{u} = \frac{v}{\|v\|}$$

Vector distance

$$0 dist (u, v) = ||u - v|| = \sqrt{(u_1 - v_1)^2 + \dots + (u_n - v_n)^2}$$

<u>Key points – 6.1.3 Dot Product/Inner Product</u>

• Definition

$$\circ \boldsymbol{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}, \boldsymbol{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$

o Geometric formula:
$$\boldsymbol{u} \cdot \boldsymbol{v} = \|\boldsymbol{u}\| \|\boldsymbol{v}\| \cos \theta$$

$$\circ \cos\theta = \frac{u \cdot v}{\|u\| \|v\|}$$

$$\circ if ||u|| = 1, ||v|| = 1, cos\theta = u \cdot v$$

$$\|u\|^2 = u \cdot u$$
, or $\|u\| = \sqrt{u \cdot u}$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \, \boldsymbol{\omega} = \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_n \end{bmatrix}$$

 $f(\sum_i \omega_i x_i + b)$

- \circ Component formula: $oldsymbol{u}\cdotoldsymbol{v}=u_1\ v_1+\cdots+u_n\ v_n$
- Explanation of dot product using the geometric formula
 - o Projection: $\boldsymbol{u} \cdot \boldsymbol{v} = \|\boldsymbol{u}\| (\|\boldsymbol{v}\| \cos \theta) = \|\boldsymbol{v}\| (\|\boldsymbol{u}\| \cos \theta)$
 - \circ Perpendicular: $oldsymbol{u}\cdotoldsymbol{v}=0$

Key points — 6.1.3 Dot Product/Inner Product (2).

Properties of dot product

Dot products have many of the same algebraic properties as products of real numbers.

THEOREM 3.2.2 If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then:

(a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

[Symmetry property]

(b) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

[Distributive property]

(c) $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$

- [Homogeneity property]
- (d) $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = \mathbf{0}$
- [Positivity property]
- Transformation on dot product

$$\begin{cases} \circ \underline{A}\underline{u} \cdot \underline{v} = \underline{u} \cdot \underline{A}^T \underline{v} \\ \circ \underline{u} \cdot \underline{A}\underline{v} = \underline{A}^T \underline{u} \cdot \underline{v} \end{cases}$$

$$\triangleright$$
 Using $\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u}^T \boldsymbol{v}$, and $(AB)^T = B^T A^T$ to derive

$$\vec{u}(\vec{A}\vec{v}) = \vec{u} \cdot (\vec{A}\vec{v})$$

Key points – 6.1.4 Inequalities

- Inequalities
 - $|u \cdot v| \leq ||u|| \, ||v||$
 - \circ Triangular inequality: $\|u+v\| \leq \|u\| + \|v\|$

THEOREM 3.2.4 Cauchy–Schwarz Inequality

If
$$\mathbf{u} = (u_1, u_2, \dots, u_n)$$
 and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are vectors in \mathbb{R}^n , then
$$|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| ||\mathbf{v}|| \tag{22}$$

or in terms of components

$$|u_1v_1 + u_2v_2 + \dots + u_nv_n| \le (u_1^2 + u_2^2 + \dots + u_n^2)^{1/2}(v_1^2 + v_2^2 + \dots + v_n^2)^{1/2}$$
(23)

Prove

Explain

$$|u \cdot v| \leq ||u|| \, ||v||$$

$$||u+v|| \le ||u|| + ||v||$$

$$|\vec{\mathcal{U}}\cdot\vec{\mathcal{U}}| = u^2 + u^2$$

$$= ||\vec{\mathcal{U}}||^2$$

$$||\vec{u} + \vec{v}||^{2} = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = |\vec{u} + \vec{v} \cdot \vec{v} + 2 \cdot \vec{u} \cdot \vec{v}|$$

$$||\vec{u} + \vec{v}||^{2} = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = |\vec{u} + \vec{v} \cdot \vec{v} + 2 \cdot \vec{u} \cdot \vec{v}|$$

$$\leq ||\vec{u}|| + ||\vec{v}||^{2} + 2 ||\vec{u}|| ||\vec{v}|| = (||\vec{u}|| + ||\vec{v}||^{2})$$

<u>Key points – 6.2.1 Orthogonality</u>

Definition (vectors orthogonal to each other)

$$0 \underbrace{\boldsymbol{u} \cdot \boldsymbol{v}} = 0 = \| \boldsymbol{v} \| \| \boldsymbol{v} \| \quad \text{and} \quad 0 = 0 \text{ or } \theta = 0 \text{ or } \theta = \pi/2$$

- Orthonormal
 - u and v are orthogonal with unit length (||u||=1, ||v||=1)

<u>Key points – 6.2.2 Orthogonal Projection</u>

- Decomposition of a vector
 - \circ Standard basis in \mathbb{R}^n

Projection theorem

$$\circ w_1 = Proj_a u = \frac{u \cdot a}{a \cdot a} a$$
 projection) – prove & example

$$\circ w_2 = u - Proj_a u = u - \frac{u \cdot a}{a \cdot a} a \text{ (residual)}$$

$$\circ u = w_1 + w_2$$

$$\circ$$
 Distance from \boldsymbol{u} to \boldsymbol{a} : $\|\boldsymbol{u}-\boldsymbol{w}_1\| = \|\boldsymbol{w}_2\|$

$$=||\vec{u}|| \cdot c_{90} \cdot \frac{a}{|\vec{a}|}$$

$$=||\vec{a}|| \cdot a$$

$$=||\vec{a}|| \cdot a$$

$$=||\vec{a}|| \cdot a$$

Explain

•
$$\mathbf{w}_1 = \operatorname{Proj}_a \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}$$

$$\overrightarrow{\mathbf{w}}_1 = \underbrace{\mathbf{w}}_1 \cdot (\mathbf{a})$$

$$\overrightarrow{\mathbf{w}}_1 = \underbrace{\mathbf{w}}_2 \cdot (\mathbf{a})$$

$$\overrightarrow{\mathbf{w}}_2 \cdot (\mathbf{a})$$

$$\overrightarrow{\mathbf{w}}_1 = \underbrace{\mathbf{w}}_2 \cdot (\mathbf{a})$$

$$\overrightarrow{\mathbf{w}}_2 \cdot (\mathbf{a})$$

$$\overrightarrow{\mathbf{w}}_2 \cdot (\mathbf{a})$$

$$\overrightarrow{\mathbf{w}}_1 = \underbrace{\mathbf{w}}_2 \cdot (\mathbf{a})$$

$$\overrightarrow{\mathbf{w}}_2 \cdot (\mathbf{a})$$

$$\overrightarrow{\mathbf{w}}_2 \cdot (\mathbf{a})$$

Key points – 6.2.3 Orthogonal Sets and Basis

- A set of vectors $\{u_1, u_2 \cdots u_p\}$ in \mathbb{R}^n is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is, if $u_i \cdot u_j = 0$, whenever $i \neq j$.
 - o If p = n, $\{u_1, u_2 \cdots u_n\}$ spans R^n
 - \circ If p < n, $\{u_1, u_2 \cdots u_p\}$ spans a subspace W in \mathbb{R}^n
 - $ightharpoonup \{u_1, u_2 \cdots u_p\}$ are the basis of the subspace

Standard basis for Euclidian space of
$$\begin{bmatrix} R^3 \\ 0 \\ 0 \end{bmatrix}$$
, $u_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $u_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $u_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

<u>Key points – 6.2.3 Orthogonal Decomposition</u>

- Project a vector ${m y}$ on to subpace spanned by $\{{m u}_1, {m u}_2 \cdots {m u}_p\}$ in ${m R}^n$
 - Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written **uniquely** in the form:

$$y = \hat{y} + z$$

Where \hat{y} is in W and z is in W^{\perp} .

If $\{u_1, u_2 \cdots u_p\}$ is any orthogonal basis of W, then

$$\widehat{\mathbf{y}} = Proj_{\mathbf{w}}\mathbf{y} = \frac{\mathbf{y}(\mathbf{u}_1)}{\widehat{\mathbf{u}_1}\cdot\mathbf{u}_1}(\mathbf{u}_1) + \dots + \frac{\mathbf{y}(\mathbf{u}_p)}{\mathbf{u}_p\cdot\mathbf{u}_p}(\mathbf{u}_p)$$

• Explain using: $\hat{y} = y - z = c_1 u_1 + c_2 u_2 + \cdots + c_p u_p$

Explain

•
$$\hat{y} = Proj_w y = \underbrace{\begin{vmatrix} y \cdot u_1 \\ u_1 \cdot u_1 \end{vmatrix}} u_1 + \dots + \underbrace{\begin{vmatrix} y \cdot u_p \\ u_p \cdot u_p \end{vmatrix}} u_p$$

$$\underbrace{y} = (, \overrightarrow{U}_1 + (, \overrightarrow{U}_2 + \dots + (, \overrightarrow{U}_2 + \dots + (, \overrightarrow{U}_3 + \dots + (, \overrightarrow{U}_4 + \dots + (, \overrightarrow{U}_3 + \dots + (, \overrightarrow{U}_4 + \dots$$

Key points – for tutorial questions

o If A is square with orthonormal columns (in fact, the row of an orthogonal matrix is also orthonormal)

- Vector orthogonal to a subspace
 - o If a vector u is orthogonal to every vector in a subspace W of \mathbb{R}^n , then u is said to be orthogonal to W - all u called the orthogonal complement of W (W^{\perp})

$$Ax=0$$

Subspace.
$$\begin{cases} u=0 \\ \overline{u} = 0 \end{cases}$$
 w^{-1} w^{-1} w^{-1} w^{-1}

End