Measuring Association in Contingency Tables

Ryan Miller

Outline

- $1. \ \ Contingency \ tables \ and \ probability$
- 2. Study design, odds, and odds ratios

Introduction

- Lately we've been using the Chi-squared test of association to identify statistically significant relationships between two categorical variables
- ➤ This presentation will focus on how to report the *clinical significance* of the observed effect following a significant Chi-squared test

Contingency tables and probability

- ► Statisticians define the **probability** of an outcome as it's long-run relative frequency
 - ► For example, the probability of a coin flip resulting in "heads" is 0.5 because over a very large number of coin flips you'll see "heads" half of the time

Contingency tables and probability

- Statisticians define the **probability** of an outcome as it's long-run relative frequency
 - ► For example, the probability of a coin flip resulting in "heads" is 0.5 because over a very large number of coin flips you'll see "heads" half of the time
- ▶ Under this definition, it's reasonable to *estimate* an outcome's probability using the corresponding *sample proportion* (ie: \hat{p})

Diagnostic tests

Probability is often applied to contingency tables in applications involving *diagnostic testing*:

	Positive	Negative
Present	True Positive	False Positive
Absent	False Negative	True Negative

- Here, subjects are grouped according to the presence or absence of a disease or exposure (rows)
 - ► Their outcome on a diagnostic test is recorded as either positive (suggesting they have the disease) or negative (suggesting they do not have the disease)

Diagnostic tests

Diagnostic tests:

	Positive	Negative
Present	True Positive	False Positive
Absent	False Negative	True Negative

- ► If the diagnostic test is effective, you'd expect the proportion of "true positives" in the "present" group to be high
 - The probability corresponding to this proportion is the test's sensitivity

Diagnostic tests

Diagnostic tests:

	Positive	Negative
Present	True Positive	False Positive
Absent	False Negative	True Negative

- ▶ If the diagnostic test is effective, you'd expect the proportion of "true positives" in the "present" group to be high
 - The probability corresponding to this proportion is the test's sensitivity
- ➤ You'd also expect the proportion of "true negatives" in the "absent" group to be high
 - The probability corresponding to this proportion is the test's specificity

Practice

Radionuclide ventriculography (RNV) is a non-invasive approach to diagnosing coronary artery disease (CAD). Summarized below are data collected from a population at high risk of coronary artery disease:

	positive	negative
CAD Present	302	179
CAD Absent	80	372

- 1) Use StatKey to perform a Chi-squared test to determine if there's a statistically significant relationship between an individual's RNV result and the presence CAD.
- 2) Estimate the sensitivity and specificity of RNV, then comment upon it's clinical significance as a diagnostic test.

Practice (solution)

- 1) Using StatKey, $X^2 = 195.907$ and the *p*-value is nearly zero, so there is overwhelming statistical evidence of an association.
- 2) The sensitivity is 302/481=0.628 and the specificity is 372/452=0.823; so, while the relationship is highly statistically significant, the clinical significance might only be considered moderate

Epidemiology

Epidemiology is a branch of the biomedical sciences that focuses on relationships between health-related exposures and outcomes:

	Disease	Absent
Exposed		
Unexposed		

Two important study designs used in epidemiology are:

- 1) Cohort studies a single group is followed forward in time and both variables (exposure status and disease status) are directly observed
- 2) Case-control studies separate groups of disease-positive (cases) and disease-negative (controls) are asked about their past exposures

Case-control studies

A well-known case-control study published in 1969 examined the relationship between oral contraceptive (OC) use and the risk of blood clots. Data from the study is summarized in the table below:

	Cases (blood clots)	Controls (no clots)
Didn't use OC	42	145
Used OC	42	23

- Notice that 42 of 65 individuals (64.6%) in this study that had used OC also had developed blood clots
 - ▶ Based upon your prior knowledge, does this seem like an accurate estimate of the risk of developing blood clots for an OC user?

Case-control studies

- ▶ 64.6% is nowhere close to the actual probability of an OC user developing blood clots (the real probability is less than 1%)
- In a case-control study, we cannot use conditional proportions to estimate the risk of an outcome given an exposure
 - So, the risk difference and relative risk cannot be estimated in a case-control study!

Odds

- ▶ The **odds ratio** (OR) can be estimated in a case-control study
 - ► Instead of a ratio of two probabilities (relative risk), the odds ratio is a ratio of two odds

)dds

- ▶ The **odds ratio** (OR) can be estimated in a case-control study
 - Instead of a ratio of two probabilities (relative risk), the odds ratio is a ratio of two odds
- ▶ The **odds** of an event are the number of times that event occurs relative to the number of times it doesn't occur
 - Suppose the probability of an event is 50%, the odds here are 1 (.5/.5), which people tend to express as "1 to 1 odds"
 - Suppose the probability of an event is 75%, the odds here are 3 (.75/.25), or "3 to 1 odds"

Odds Ratios

Odds ratios have two major advantages:

- 1. Can be used in case-control studies
- 2. Symmetry the OR for survival of cases relative to controls = the OR for death of controls relative to cases

Practice

Below are the results of the OC case-control study:

	Cases (blood clots)	Controls (no clots)
Didn't use OC	42	145
Used OC	42	23

- 1) Find the *odds* of blood clots for OC users
- 2) Find the *odds* of blood clots for those not using OC
- 3) Find the *odds ratio* describing the risk of blood clots for OC users relative to non-users

Practice (solution)

- 1) The odds of blood clots were 1.83 (42/23) for OC users
- 2) The odds of blood clots were 0.29 (45/145) for those not using OC
- 3) The odds ratio for blood clots given OC use is 1.83/0.29 = 6.31; so the odds of blood clots were 6.31 times higher for OC users relative to those not using OC

Comments - confidence intervals

- As with any measure of effect size, it's a generally a good idea to report it using a *confidence interval estimate*
- Calculating these intervals for a relative risk or odds ratio is beyond the scope of this class
 - ► However, you should feel comfortable interpreting these intervals (for example, in the article review project)

Summary

This presentation covered several ways to describe the clinical significance of data displayed in a contingency table:

- Sensitivity and specificity are used to describe the efficacy of a diagnostic test
- Odds ratios are used to describe effect sizes in any type of study (with a particular advantage in case-control studies)