第18讲 炒股不看股盘看微博一关联规则挖掘与大数据思维

战渡臣

哈尔滨工业大学计算学部教学委员会主任 国家教学名师

炒股不看股盘,看微博,为什么?

假如炒股, 你看什么--股盘? 微博?

怎样运用数据库—数据挖掘

什么是数据挖掘

数据挖掘,又称为数据库中知识发现,它是一个从大量数据中抽取挖掘出未知的、有价值的模式或规律等知识的复杂过程。简单地讲就是从大量数据中挖掘或抽取出知识。

- ●概要归纳
- ●关联规则挖掘
- ●分类与预测
- ●聚类分析
- ●异类分析
- ●演化分析

数据挖掘示例之背景

超市数据库

客户购买习惯 商品组合方式及策略

•••

营销策略 价格策略 货源组织

数据对超市经营有无帮助呢?

数据挖掘示例之背景

超市数据库

超市数据库

商品购买明细

交易号 T1000 , 日期 04/05/2013 , 时间 10:18 , 收款员 E02

顾客 C01 , 支付方式 MasterCard , 总金额 ¥ 1400.00

商品号	商品名	数量	单价	金额
200008	汇源果汁	5	200.00	1000.00
200020	哈啤90	1	300.00	300.00
200035	555香烟	1	100.00	100.00

商品购买单

交易号	日期	时间
T1000	04/05/2013	10:18
T1001	04/05/2013	11:10
🚫>'		,(%)'
T1101	04/06/2013	09:10

ात ४४ घट सेश 🛘 और	/stret			/	
商品购买单明					
交易号	商品号	商品名	数量	单价	金额
T1000	200008	汇源果汁	5	200.00	1000.00
T1000	200020	哈啤90	1	300.00	300.00
T1000	200035	555香烟	1	100.00	100.00
T11001	200020	哈啤90	2	300.00	600.00
T11001	200009	巧克力	2	300.00	600.00
<u> </u>		··· ···	0		
T1101	200008	汇源果汁	1,0	200.00	200.00
T1101	200020	哈啤90	_=Z/1\^	300.00	300.00
	(As.)		(1)		

够的现场小赛 销售单号:XS130113020013 顾客名称: 普通顾客 商品名称 折后价 数量 金額 欧亚宝淡奶油 5900002 12.00 2 24.00 雪花烘焙纸杯 高温杯/马芬杯/耐高 温纸杯 10个 5900226 1.50 1 1.50 sweet烘焙纸杯 高温杯/马芬杯/耐高 温纸杯 1.5元/10个 裱花嘴 曲奇 嘴 5900410 3.20 1 3.20 水玉波点 /雪花/马芬杯/蛋糕杯 小 身 3元/10 ↑ (¥先) 5900073 3.00 1 3.00 中号格子烘培纸杯 高温杯/马芬杯/ 耐高温纸杯 1.5元/10个 5900093 1.50 1 1.50 5900177 1.00 5 消费7项,折启合计:38.7元 倾价合计:39.7元,为您节省:0.0元 位用卡付款: ¥39.70 收租份:可可 M (4 m) a) : 2013-01-13 15:31:55

什么是关联规则

数据挖掘之关联规则挖掘

商品的关联规则

"由尿布的购买,能够推断出啤酒的购买"

商品购买明细

交易号_T1000___,日期_04/05/2013__,时间_10:18___,收款员_E02 顾客_C01_____,支付方式_MasterCard___,总金额_¥1400.00

商品号	商品名	数量	单价	金额
200008	汇源果汁	5	200.00	1000.00
200020	哈啤90	1	300.00	300.00
200035	555香烟	1	100.00	100.00

"尿布" ⇒ "啤酒" [支持度=2%, 置信度=60%]

支持度2%意味着所分析事务的2%同时购买尿布和啤酒

置信度60%意味着购买尿布的顾客60%也购买啤酒。

能否由机器 挖掘出来呢?

条规则呢?

基础概念

1. 项、项集与事务

设 $P = \{ p_1, p_2, ..., p_m \}$ 是所有**项**(Item)的集合。 *D*是数据库中所有事务的集合,其中每个**事务** T(*Transaction*)是项的集合,是P的子集,即 $T \subset P$;

每一个事务有一个关键字属性,称作**交易号**或**事务号**以区分数据库中的每一个事务。设A 是一个**项集(ItemSet)**,事务 T 包含A 当且仅当 $A \subseteq T$ 。

2. 关联规则

关联规则是形如 $A \rightarrow B$ 的蕴涵式,即命题A(如"项集A的购买")蕴涵着命题B("如项集B的购买"),或者说由命题A能够推出命题B,其中 $A \subseteq P$, $B \subseteq P$,并且 $A \cap B = \emptyset$ 。

毒	品则	5 37	яĤ	Lan
16	中中人	リ大	77	쐐

交易号 T1000 , 日期 04/05/2013 , 时间 10:18 , 收款员 E02 顾客 CO1 , 支付方式 MasterCard , 总金额 ¥ 1400.00 商品号 商品名 数量 全额 汇源果汁 200008 200,00 1000.00 200020 哈啤90 300,00 300.00 200035 555香烟 100.00

基础概念

3. 支持度与置信度

 $Support(A \Rightarrow B) = P(A \cup B) = 0$ 包含A和B的事务数 ÷ D中事务总数。 $confidence(A \Rightarrow B) = P(B|A) = 0$ 包含A和B的事务数 ÷ 包含A的事务数。

支持度反映一条规则的实用性,置信度反映规则的"值得信赖性"的程度

4. 强规则

同时满足最小支持度阈值 (min_s) 和最小置信度阈值 (min_c) 的规则称作强规则。

5. k-项集与k-频繁项集

项的集合称为项集,包含k个项的项集称为k-项集。

{*面包,果酱*} --- 2-项集 {*面包,果酱,奶油*} ---3-项集

项集的出现频率是包含项集的事务数,简称为项集的<mark>频率、支持计数或计数</mark>。如果项集的出现频率大于或等于 min_s 与D中事务总数的乘积,则项集满足最小支持度 min_s 。如果项集满足最小支持度,则称它为<mark>频繁项集</mark>。频繁k-项集的集合通常记作 L_k 。

怎样进行关联规则挖掘-基本思想

找出所有频繁项集。依定义,这些项集出现的频率至少和预定义的最小出现频率一样。

如何挖掘频繁项集?

Apriori 算法

由频繁项集产生强关联规则。依定义,这些规则必须满足最小支持度和最小置信度。

对问题域数据进行抽象

商品购买明细数据库

交易号	一次交易中购买的商品列表	交易号	一次交易中购买的商品列表
T0000	P1, P2, P3, P5	T0050	P1, P3, P5
T1000	P1, P2, P6, P8	T1500	P2, P4, P8
T2000	P2, P3, P7, P8	T2500	P1, P3, P5
T3000	P1, P2, P6	T3500	P2, P3, P7
T4000	P1, P2, P3, P5, P6, P7	T4500	P1, P2, P6, P8
T5000	P1, P3, P5, P6	T5500	P1, P2, P5, P6
T6000	P2, P3, P6	T6500	P1, P2, P5, P6
T7000	P1, P4, P6	T7500	P1, P2, P4, P6
T8000	P2, P3, P4, P5	T8500	P1, P2, P4, P5, P6
T9000	P3, P4, P5	T9500	P1, P2, P4, P5, P6

商品购买明细

交易号_T1000_, 日期_04/05/2013_, 时间_10:18_, 收款员_E02 顾客_C01______, 支付方式_MasterCard___, 总金额_¥1400.00____

商品号	商品名	数量	单价	金额
200008	汇源果汁	5	200.00	1000.00
200020	哈啤90	1	300.00	300.00
200035	555香烟	1	100.00	100.00

形成候选1-项集,并求出频繁1-项集

候选1项集.

项集	支持度计数
{ P1 }	14
{ P2 }	15
{ P3 }	10
{ P4 }	7
{ P5 }	11
{ P6 }	12
{P7}	3
{ P8 }	3

频繁1项集. 支持度计数≥最小支持度计数5 (min_sup=5/20=25%)

项集	支持度计数
{ P1 }	14
{ P2 }	15
{ P3 }	10
{ P4 }	7
{ P5 }	11
{ P6 }	12

形成候选2-项集,并求出频繁2-项集

候选2项集. C₂=L₁ Join L₁

项集 支持度计数 { P1, P2 } 10 { P1, P3 } { P1, P4 } { P1, P5 } 9 { P1, P6 } 11 { P2, P3 } 6 { P2, P4} 5 { P2, P5} { P2, P6} 10 { P3, P4 } { P3, P5 } { P3, P6 } { P4, P5 } { P4, P6 } { P5, P6 }

频繁2项集. 支持度计数 ≥ 最小支持度计数5

项集	支持度计数
{ P1, P2 }	10
{P1, P3}	5
{P1, P5}	9
{ P1, P6 }	11
{P2, P3}	6
{ P2, P4}	5
{ P2, P5}	7
{ P2, P6}	10
{ P3, P5 }	7
{ P5, P6 }	6

频繁1项集

项集	支持度计数
{P1}	14
{ P2 }	15
{ P3 }	10
{ P4 }	7
{P5}	11
{ P6 }	12

频繁2项集

支持度计数

10

11

6

10

6

项集

{ P1, P2 }

{ P1, P3 } { P1, P5 } { P1, P6 }

{ P2, P3 }

{ P2, P4} { P2, P5} { P2, P6}

{ P3, P5 }

{ P5, P6 }

频繁项集挖掘计算过程

形成候选3-项集,并剪枝,进一步求出频繁3-项集

候选3项集. C₃=L₂ Join L₂

项集	
{ P1, P2, P3 }	100
{ P1, P2, P5 }	37/2
{ P1, P2, P6 }	
{ P1, P3, P5 }	× *
{ P1, P3, P6 }	被剪掉,因{P3,P6}
{ P1, P5, P6 }	
{ P2, P3, P4 }	被剪掉,因{P3,P4}
{ P2, P3, P5 }	
{ P2, P3, P6 }	被剪掉,因{P3,P6}
{ P2, P4, P5 }	被剪掉,因{P4,P5}
{ P2, P4, P6 }	被剪掉,因{P4,P6}
{ P2, P5, P6 }	
{ P3, P5, P6 }	被剪掉,因{P3,P6}

频繁3项集

候选3项集的支持度计数

项集	支持度计数
{P1, P2, P3}	2
{ P1, P2, P5 }	6
{ P1, P2, P6 }	8
{P1, P3, P5}	4
{ P1, P5, P6 }	6
{ P2, P3, P5 }	3
{ P2, P5, P6 }	5

项集	支持度计数
{ P1, P2, P5 }	6
{ P1, P2, P6 }	8
{ P1, P5, P6 }	6
{ P2, P5, P6 }	5 200

迭代地求出最终结果-频繁项集

频繁3项集

项集	支持度计数
{ P1, P2, P5 }	6
{ P1, P2, P6 }	8
{ P1, P5, P6 }	6
{ P2, P5, P6 }	5

候选 4 项集---频繁 4 项 集支持度计数>=5

频繁项集全集 = 频繁1项集 ○ 频繁 2 项集 ○ 频繁3项集 ○ 频繁4项集

项集	支持度计数
{P1}	14
{ P2 }	15
{P3}	10
{ P4 }	7
{P5}	11
{ P6 }	12
{ P1, P2 }	10
{P1, P3}	5
{P1, P5}	9
{ P1, P6 }	11
{ P2, P3 }	6
{ P2, P4}	5
{ P2, P5}	1
{ P2, P6}	10
{ P3, P5 }	7
{ P5, P6 }	5
{ P1, P2, P5 }	6
{ P1, P2, P6 }	8
{ P1, P5, P6 }	6
{ P2, P5, P6 }	5
{ P1, P2, P5, P6 }	5

怎样进行关联规则挖掘-基本思想

{*面包,果酱,奶油*} ---3-项集

找出所有频繁项集。依定义,这些项集出现的 频率至少和预定义的最小出现频率一样。

由频繁项集产生强关联规则。依定义,这些规则必须满足最小支持度和最小置信度。

关联规则生成

项集	支持度计数
{ P1 }	14
{ P2 }	15
{ P3 }	10
{ P4 }	7
{ P5 }	11
{ P6 }	12
{ P1, P2 }	10
{ P1, P3 }	5
{ P1, P5 }	// g
{ P1, P6 }	11
{ P2, P3 }	6
{ P2, P4}	5
{ P2, P5}	7
{ P2, P6}	10
{ P3, P5 }	7
{ P5, P6 }	(5)
{ P1, P2, P5 }	6
{ P1, P2, P6 }	8
{ P1, P5, P6 }	6
{ P2, P5, P6 }	/> <u>5</u>
{ P1, P2, P5, P6 }	5

度

置信

潜在关联规则的生成并计算

{P1,P2,P5,P6}可以产生的潜在规则A⇒B, 其中A∪B={P1,P2,P5,P6}, A∩B=∅.

项集 A	项集 A 支持度 计数(支持度)	项集 B	项集 A∪B 的支持 度计数(支持度)	置信度=项集(A∪B)的支 持度÷项集 A 的支持度
{ P1, P2, P5 }	6 (30%)	{P6}	5 (25%)	5/6=83.33%
{ P1, P2, P6 }	8 (40%)	{P5}	5 (25%)	5/8=62.50%
{ P2, P5, P6 }	5 (25%)	{P1}	5 (25%)	5/5=100.00%
{ P1, P5, P6 }	6 (30%)	{ P2 }	5 (25%)	5/6=83.33%
{ P1, P2 }	10 (50%)	{ P5, P6}	(5 (25%)	5/10=50.00%
{ P1, P5 }	9 (45%)	{ P2, P6}	5 (25%)	5/9=55.55%
{ P1, P6 }	11 (55%)	{ P2, P5}	5 (25%)	5/11=45.45%
{ P2, P5 }	7 (35%)	{ P1, P6}	5 (25%)	5/7=71.42
{ P2, P6 }	10 (50%)	{ P1, P5}	5 (25%)	5/10=50.00%
{ P5, P6 }	6 (30%)	{ P1, P2}	5 (25%)	5/6=83.33%
{P1}	14 (70%)	{ P2, P5, P6}	5 (25%)	5/14=35.71%
{ P2 }	15 (75%)	{ P1, P5, P6}	5 (25%)	5/15=33.33%
{ P5 }	11 (55%)	{ P1, P2, P6}	5 (25%)	5/11=45.45%
{ P6 }	12 (60%)	{ P1, P2, P5}	5 (25%)	5/12=41.66

项集	支持度计数
{P1}	14
{ P2 }	15
{P3}	10
{ P4 }	7
{P5}	11
{ P6 }	12
{ P1, P2 }	-// 10
{ P1, P3 }	5
{P1, P5}	9
{ P1, P6 }	11
{ P2, P3 }	6
{ P2, P4}	5 (
{ P2, P5}	7
{ P2, P6}	10
{ P3, P5 }	316 7
{ P5, P6 }	⊗ 5
{ P1, P2, P5 }	6
{ P1, P2, P6 }	8
{ P1, P5, P6 }	6
{ P2, P5, P6 }	5
{ P1, P2, P5, P6 }	5

潜在关联规则的生成并计算

输出的规则表, $A \cap B = \emptyset$, "购买A能够推出购买B". 置信度> = 70%的规则.

项集 A	项集 A 支持度 计数(支持度)	项集 B	项集 A∪B 的支持 度计数(支持度)	置信度=项集(A∪B)的支 持度÷项集 A 的支持度
{ P1, P2, P5 }	6 (30%)	{ P6 }	5 (25%)	5/6=83.33%
{ P2, P5, P6 }	5 (25%)	{P1}	5 (25%)	5/5=100.00%
{ P1, P5, P6 }	6 (30%)	{ P2 }	5 (25%)	5/6=83.33%
{ P2, P5 }	7 (35%)	{ P1, P6}	5 (25%)	5/7=71.42
{ P5, P6 }	6 (30%)	{ P1, P2}	5 (25%)	5/6=83.33%

潜在关联规则的生成并计算

组合形成规则表,频繁3项集能推出哪些频繁项集? 置信度标记红色为置信度>=70%的规则.支持度标记蓝色的为满足置信度前提下的支持度>=40%的规则

項集 A	项集 A 支持度 计数(支持度)	項集B	项集 AUB 的文抄 度计数(文抄度)	受俗度 = 项集(A∪B)的文 种度÷项集 A 的文种度
{P1, P2, P5}	6 (30%)	{P6}	5 (25%)	5/6=83.33%
{P1, P2, P6}	8 (40%)	{P5}	5 (25%)	5/8=62.50%
{P2, P5, P6}	5 (25%)	{P1}	5 (25%)	5/5=100.00%
{P1, P5, P6}	6 (30%)	{P2}	5 (25%)	5/6=83.33%
{P1, P2}	10 (50%)	{ P5, P6}	5 (25%)	5/10=50.00%
{P1, P2}	10 (50%)	{P5}	6 (30%)	6/10=60.00%
{P1, P2}	10 (50%)	{P6}	8 (40%)	8/10=80.00%
{P1, P5}	9 (45%)	{ P2, P6}	5 (25%)	5/9=55.55%
{P1, P5}	9 (45%)	{P6}	6 (30%)	6/9=66.66%
{P1, P5}	9 (45%)	{P2}	6 (30%)	6.9=66.66%
{P1, P6}	11 (55%)	{ P2, P5}	5 (25%)	5/11=45.45%
{P1, P6}	11 (55%)	{P2}	8 (40%)	8/11=72.72%
{P1, P6}	11 (55%)	{P5}	6 (30%)	6/11=54.54%
{P2, P5}	7 (35%)	{ P1, P6}	5 (25%)	5/7=71.42
{P2, P5}	7 (35%)	{P1}	6 (30%)	6/7=85.71%
{P2, P5}	7 (35%)	{P6}	5 (25%)	5/7=71.42%
{P2, P6 }	10 (50%)	{ P1, P5}	5 (25%)	5/10=50.00%
{P2, P6}	10 (50%)	{P1}	8 (40%)	8/10=80.00%
{P2, P6}	10 (50%)	{P5}	5 (25%)	5/10=50.00%
{P5, P6 }	6 (30%)	{ P1, P2}	5 (25%)	5/6=83.33%
{P5, P6 }	6 (30%)	{P1}	6 (30%)	6/6=100.00%
{P5, P6 }	6 (30%)	{P2}	5 (25%)	5/6=83.33%
{P1}	14 (70%)	{ P2, P5, P6}	5 (25%)	5/14=35.71%
{P1}	14 (70%)	{P2, P5}	6 (30%)	6/14=42.85%
{P1}	14 (70%)	{P2, P6 }	8 (40%)	8/14=57.14%
{P1}	14 (70%)	{P5, P6}	6 (30%)	6/14=42.85%
{P1}	14 (70%)	{P2}	10 (50%)	10/14=71.42%
{P1}	14 (70%)	{P5}	9 (45%)	9/14=64.28%
{P1}	14 (70%)	{P6}	(55%)	11/14=78/57%

最终输出的关联规则示例

最终输出的规则表

项集 A	项集 A 支持度 计数(支持度)	项集 B	项集 AUB 的支持 度计数(支持度)	置信度=项集(A∪B)的支 持度÷项集 A 的支持度
{P1, P2}	10 (50%)	{P6}	8 (40%)	8/10=80.00%
{ P1, P6 }	11 (55%)	{P2}	8 (40%)	8/11=72.72%
{ P2, P6 }	10 (50%)	{P1}	8 (40%)	8/10=80.00%
{P1}	14 (70%)	{ P2 }	10 (50%)	10/14=71.42%
{P1}	14 (70%)	{ P6 }	11 (55%)	11/14=78.57%
A 为{P2},{P5}, {P6}能推出哪些 B,可类同 A 为{P1}时那样处理,此处略。				

"P1,P2"⇒ "P6"[支持度=40%, 置信度=80%]

"P1,P6"⇒"P2"[支持度=40%,置信度=72.72%]

"P2,P6"⇒ "P1"[支持度=40%, 置信度=80%]

"P1"⇒"P2"[支持度=50%,置信度=71.42%]

"P1"⇒"P6"[支持度=55%, 置信度=78.57%]

还能挖掘什么

还能挖掘什么规则

单维度单层次规则

buys(X,"面包") ⇒ buys(X," 果酱")

X代表顾客

多维度多层次规则

 $age(X,"30...39") \land income(X,"42K...48K") \Rightarrow buys(X,"high_resolution_TV")$

再看微博数据

微博数据挖掘 vs. 超市数据挖掘

数据基本组织形式

被挖掘数据D的集合

事务数据T的涵义

项的集合

频繁项集

规则 "A ⇒ B"

规则挖掘的意义

"微博"挖掘

文本---非结构化数据

众多人、众多次:发表的微博

一次发表的"微博"可以看作是"若干词汇"的集合

"词汇"的集合

频繁使用的"词汇"集合

使用了"词汇A"也使用了"词汇"B

通过分析,可发现"可以组合在一起的关键词 汇",进而进行主题词设置、读者兴趣引导, 以提高某主题的关注度、粉丝的聚集度等 "超市数据"挖掘

"表"---结构化数据

众多人、众多次: 购买的商品

一次购买的商品可以看作是"若干商品"的集合

"商品"的集合

频繁购买的"商品"集合

购买了"商品A"也购买了"商品B"

通过分析,可发现"可被组合在一起的商品" 进而进行位置、政策等的调整,以提高客户

的购买兴趣等

数据挖掘

小结

只求关系,不求因果

不要相信经验,一切以数据说话

大数据环境下什么不能发生呢?

bit & Byte

1KB(Kilobyte) = 2¹⁰字节

 $1MB(Megabyte) = 2^{10}KB$

 $1GB(Gigabyte) = 2^{10}MB$

 $1TB(Trillionbyte) = 2^{10}GB = 2^{20}MB$

 $1PB(Petabyte) = 2^{10}TB = 2^{30}MB$

 $1EB(Exabyte) = 2^{10}PB = 2^{40}MB$

 $1ZB(Zettabyte) = 2^{10}EB = 2^{50}MB$

 $1YB(Yottabyte) = 2^{10}ZB = 2^{60}MB$

 $1BB(Brontobyte) = 2^{10}YB = 2^{70}MB$

