# Licence 3 Informatique : cours Graphes I6S3 Chapitre II : Parcours, Arbres, Plus courts chemins et Flots

Olivier Togni, IEM/LE2I olivier.togni@u-bourgogne.fr

Modifié le 17 janvier 2024

### Plan

- 1. Parcours
  - en largeur, en profondeur
  - chemins/cycles Eulériens/Hamiltoniens
- 2. Arbres couvrants minimaux
  - algorithme de Prim
  - algorithme de Kruskal
- 3. Plus courts chemins
  - algorithme de Dijkstra
  - algorithme de Bellman-Ford
  - algorithme de Floyd-Warshall
- 4. Flots dans les graphes
  - algorithme de Ford-Fulkerson

Licence 3 Informatique : cours Graphes I6S3 Chapitre II : Parcours, Arbres, Plus courts chemins et Flots  $\sqcup$  Parcours de graphe

## Parcours en largeur

L'algorithme de parcours en largeur (BFS, *Breadth First Search*) : parcours d'un graphe par niveaux, à partir d'un sommet (racine)  $\Rightarrow$  de manière itérative, en utilisant une file

Utilisé par exemple pour déterminer la connexité d'un graphe ou calculer les distances depuis un sommet

Entrée : un graphe G orienté ou non

Sortie : un arbre BFS T avec pour chaque sommet p fonction prédécesseur (indique pour chaque sommet qui est son père dans l'arbre BFS),

 $\ell$  niveau (distance de chaque sommet à la racine de l'arbre BFS), t temps (indique l'ordre de visite des sommets)

# Algorithme BFS

```
ParcoursLargeur(Sommet r):
{
  F = CreerFile(); F.enfiler(r);
  marquer(r);
  i = 0; t(r) = i++; l(r) = 0; p(r) = -1;
  TANT QUE NON F. vide() FAIRE
      x = F.defiler();
      traiter(x):
      POUR TOUT voisin y de x FAIRE
           SI y non marqué FAIRE
                p(y) = x; l(y) = l(x)+1; t(y) = i++;
                F.enfiler(y);
                marquer(y);
           FIN ST
      FIN POUR TOUT
  FIN TANT QUE
```

## Exemple BFS

```
ParcoursLargeur(Sommet r):
 F = CreerFile(): F.enfiler(r):
 marquer(r);
  i = 0; t(r) = i++; l(r) = 0; p(r) = -1;
 TANT QUE NON F. vide() FAIRE
      x = F.defiler():
      traiter(x);
      POUR TOUT voisin y de x FAIRE
           SI y non marqué FAIRE
                p(y) = x; 1(y) = 1(x)+1;
                t(y) = i++;
                F.enfiler(v):
                marquer(y);
           FIN ST
      FIN POUR TOUT
 FIN TANT QUE
```



Ordre BFS: A, B, J, C, F, I, D, E, H, G, K

## Propriétés algorithme BFS

#### Proposition

Pour tout sommet x de G,  $\ell(x) = d_T(r, x) = d_G(r, x)$ 

### Proposition

Toute arête de G joint deux sommets sur le même niveau ou sur deux niveaux consécutifs.

Tout sommet ne peut être ajouté et extrait plus d'une fois  $\Rightarrow$  l'algorithme termine!

Initialisation : marquage de tous les sommets O(|V|) opérations Boucle principale : passage en revue de toutes les arêtes O(|E|) (si listes d'incidence)

Complexité globale : O(|V| + |E|)

## Parcours en profondeur

L'algorithme de parcours en profondeur (DFS, *Depth First Search*) : parcours de graphe de manière récursive (ou itérative avec un pile)

Permet de déterminer :

- la connexité (d'un graphe non orienté, comme BFS),
- un tri topologique,
- les composante fortement connexes (lancer DFS sur G puis sur G<sup>T</sup>)

Arbre DFS T représenté par fonction prédécesseur p

## Algorithme DFS

```
DFS (graphe G, sommet x)
 Marquer(x);
 POUR CHAQUE voisin y de x FAIRE
    SI y non marqué ALORS
      p(y)=x;
      traiter(y);
      DFS(G,y);
    FIN-SI
 FIN-POUR
```

## **Exemple DFS**

```
DFS (graphe G, sommet x)
{
   Marquer(x);
   POUR CHAQUE voisin y de x FAIRE
   SI y non marqué ALORS
      p(y)=x;
      traiter(y);
      DFS(G,y);
   FIN-SI
   FIN-POUR
}
```



Ordre DFS: A, B, C, D, E, I, J, K, H, G, F

Licence 3 Informatique : cours Graphes I6S3 Chapitre II : Parcours, Arbres, Plus courts chemins et Flots

Parcours de graphe

## Propriétés algorithme DFS

### Proposition

Pour chaque appel récursif de DFS(x), tous les sommets qui sont marqués entre l'invocation de l'appel et son retour sont des descendants de x dans T.

### Proposition

Toute arête xy de G non dans T est telle que soit x est ancêtre de y, soit le contraire.

Tout sommet ne peut être ajouté et extrait plus d'une fois  $\Rightarrow$  l'algorithme termine! Initialisation : marquage de tous les sommets O(|V|) opérations Boucle principale : passage en revue de toutes les arêtes O(|E|) (si listes d'incidence)

Complexité globale : O(|V| + |E|)

## Composantes fortement connexes

Il existe des algorithmes efficaces pour trouver les composantes fortement connexes d'un graphe orienté :

- ➤ Tarjan (1972) : un seul parcours (en profondeur) du graphe + pile et marquage pour distinguer les sommets racine de chaque composante
- ► Kosaraju (1978) et Sharir (1981) : 2 parcours DFS
  - 1. DFS sur *G* à partir de sommet arbitraire + empiler les sommets visités en post-ordre
  - 2. DFS sur  $G^T$  (graphe dans lequel on a inversé le sens des arcs) à partir des sommets en haut de pile

#### Remarques:

- on peut utiliser BFS du moment que remplissage post-ordre
- ightharpoonup utilise la propriété que G et  $G^T$  ont les mêmes composantes fortement connexes

Licence 3 Informatique : cours Graphes I6S3 Chapitre II : Parcours, Arbres, Plus courts chemins et Flots

Parcours de graphe

## Chemins/cycles Eulériens

#### **Définition**

Un chemin (cycle) Eulérien dans un graphe G est un chemin passant par chaque arête de G une fois et une seule. Un graphe est Eulérien s'il possède un cycle Eulérien.

## Théorème (Euler (1732)

Un graphe G connexe est Eulérien si et seulement si tous ses sommets sont de degré pair.

Egalement, G possède un chemin Eulérien s'il a au plus deux sommets de degré impair.  $\Rightarrow$  Problème facile!

## Chemins/cycles Hamiltoniens

#### Définition

Un chemin (cycle) Hamiltonien dans un graphe G est un chemin passant par chaque sommet de G une fois et une seule. Un graphe est Hamiltonien s'il possède un cycle Hamiltonien.

Déterminer si un graphe est Hamiltonien est un problème difficile (NP-complet)



Jeu Icosian game de W. R. Hamilton (image de Wikipédia)

## Arbre couvrant de poids minimum

#### **Définition**

Un arbre couvrant d'un graphe G = (V, E) est un sous-graphe  $T = (V_T, E_T)$  de G qui est un arbre et tel que  $V_T = V$ 

### Problème ACPM (MWST):

Entrée Graphe G non orienté, connexe, avec pondération des arêtes (coûts)

Sortie un arbre couvrant T de G dont le poids w(T) (la somme des poids des arêtes) est minimal

Utilité : optimiser les ressources (ex. protocole STP dans les réseaux Ethernet commutés)

# Algorithme de Prim (1956)

```
PRIM (graphe G, poids w)
  T=(\{r\},0); // r arbitraire
  TANT QUE il existe un sommet x NON dans T FAIRE
       choisir arête xy avec y dans T et w(xy) minimum
  FIN-TANT QUE
Complexité : O(|V| \times |E|) dans le pire cas avec listes d'incidence
Optimisation : utiliser une file de priorité pour passer à
O(\log |V| \times |E|)
```

## **Exemple PRIM**

```
PRIM (graphe G, poids w)
{
   T=({r},0);
   TANT QUE T non couvrant
        choisir xy tq y dans T
        et w(xy) min
   FIN-TANT QUE
}
```



# Algorithme de Kruskal (1957)

```
KRUSKAL(graphe G, poids w) {  T=(V,0); \\ TANT QUE T n'est pas connexe FAIRE \\ ajouter à T une arête de poids minimal \\ ne formant pas de cycle \\ FIN-TANT QUE \\ \} \\ Complexité: <math>O(|E| \times \log |E|) dans le pire cas
```

# Exemple KRUSKAL

```
KRUSKAL(graphe G, poids w)
{
    T=(V,0);
    TANT QUE T non connexe FAIRE
        ajouter à T une arête
        de poids minimal
        ne formant pas de cycle
    FIN-TANT QUE
}
```

#### Plus courts chemins

Problème PCC (plus courts chemins):

Entrée Graphe G orienté ou non, (fortement) connexe, avec pondération w des arêtes (coûts)

Sortie les distances entre un sommet source s et tous les sommets avec un arbre des plus courts chemins

Plusieurs algorithmes existent :

- Dijsktra: PPC depuis un sommet vers tous les autres (pas de cycles de poids négatif)
- Bellman-Ford : PPC depuis un sommet vers tous les autres, détecte les cycles de poids négatif

Basés sur la découverte de raccourcis : depuis le sommet r, s'il existe un voisin u d'un sommet v tel que dist(r, u) + w(uv) < dist(r, v) alors dist(r, v) = dist(r, u) + w(uv)

## Algorithme de Dijkstra (1959)

utilisation de file de priorité en tas binaire

```
p : prédécesseur dans l'arbre des plus courts chemins
\ell: distance depuis la source s
Dijkstra (graphe G, poids w, source s)
  l(s)=0; p(s)=-1; l(v)=1000000 pour tout autre sommet v;
  TANT QUE il existe un sommet non marqué FAIRE
      choisir le sommet x non marqué avec l(x) minimal;
      marquer x;
      POUR CHAQUE voisin y de x non marqué avec
      l(y) > l(x) + w(xy) FAIRE
        p(y)=x; l(y) = l(x) + w(xy);
      FIN POUR
  FIN-TANT QUE
Complexité : O((|E| + |V|) \times \ln |V|) dans le pire cas avec
```

# Exemple DISJKSTRA



# Algorithme de Bellman-Ford (1959)

```
Bellman-Ford (graphe G d'ordre n, poids w, source s)
  l(s)=0; p(s)=-1; l(v)=1000000 pour tout autre sommet v;
  POUR i de 1 à n-1
    POUR TOUT sommet x FAIRE
      POUR CHAQUE voisin y de x avec l(y) > l(x) + w(xy) FAIRE
        1(y)=1(x) + w(x,y);
        p(y)=x;
      FIN POUR
    FIN POUR
  FIN POUR
Complexité : O(|E| \times |V|)
```

# Exemple BELLMAN-FORD avec poids négatifs



## Plus courts chemins entre toutes les paires de sommets

Algorithme de Floyd-Warshall : simple à coder (3 boucles imbriquées, complexité en  $O(n^3)$ )

```
Floyd-Warshall (graphe G d'ordre n, poids w)
  POUR i, j entre 0 et n-1 FAIRE
    dist[i,j]=w(i,j) si ij est une arête; dist[i,i]=0
      et dist[i,j]=MAX-INT sinon
  POUR i de 0 à n-1 FATRE
    POUR j de 0 à n-1 FAIRE
      POUR k de 0 à n-1 FATRE.
dist[i,j]=min(dist[i,j],dist[i,k]+dist[k][j])
      FIN POUR
    FIN POUR
  FIN POUR
```

### Introduction aux flots

- Problème du plus court chemin : acheminer une unité d'une source vers une destination
- Problème de flot : acheminer une quantité de marchandises (divisibles : on peut acheminer nos marchandises par des routes différentes) de la source vers la destination

#### Applications:

- logistique : transport de marchandises (train, camion , ...)
- distribution de liquide (eau, pétrole, ...) par canalisations
- la électricité : réseau ERDF, ...
- information : internet, réseaux sociaux, ...

Licence 3 Informatique : cours Graphes I6S3 Chapitre II : Parcours, Arbres, Plus courts chemins et Flots — Flots dans les graphes

#### Réseau

#### **Définition**

Un réseau (de distribution) est un quadruplet (G, c, s, t) avec

- ightharpoonup G = (V, E) graphe orienté connexe et sans boucle
- ightharpoonup capacité c(x, y) sur chaque arc
- ▶ sommet *s* de degré entrant nul (source)
- ▶ sommet t de degré sortant nul (puit)

#### **Définition**

Un flot sur un réseau (G, c, s, t) est une fonction  $f : E(G) \to \mathbb{R}$  qui vérifie la loi des nœuds (loi de Kirchoff, 1847) : ce qui entre = ce qui sort de chaque nœud (différent de s, t).

# Exemple de flot

Sur chaque arc : flot/capacité



## Flot réalisable

#### **Définition**

Le flot f est réalisable si pour tout arc (x, y) on a :

$$0 \le f(x,y) \le c(x,y)$$

#### **Définition**

La valeur du flot f de s à t est  $v(f) = \sum_{(x,t) \in E(G)} f(x,t) = \sum_{(s,y) \in E(G)} f(s,y)$ .

## Exemple de flot réalisable

Valeur du flot en rouge : v = 19



### Flot maximum

Problème Flot maximum (FM) :

Entrée réseau (G, c, s, t)

Sortie flot f réalisable de valeur maximum

Algorithme de Ford-Fulkerson (1956) :

- procéder par marquage successifs des sommets depuis la source vers le puit
- on traite chaque sommet x marqué successivement
- on marque tout successeur y positivement si l'arc n'est pas saturé (c(x,y) > f(x,y))
- on marque tout prédécesseur z négativement si l'arc (z,x) a un flot non nul
- ceci permet de trouver des chaînes augmentantes

# Algorithme FF (Ford-Fulkerson)

```
FF(G, c, s, t)
 marque(s)=+;
 TANT QUE le flot n'est pas maximal FAIRE
   TANT QUE on marque des sommets FAIRE
      POUR CHAQUE sommet marqué x non encore traité FAIRE
        POUR CHAQUE arc (x,y) FAIRE
          SI v n'est pas marqué et c(x,y) > f(x,y) ALORS
            marque(v)=(+,x)
          FINST
        FINPRCH
        POUR CHAQUE arc (y,x) FAIRE
          SI y n'est pas marqué et f(y,x) > 0 ALORS
            marque(y)=(-,x)
          FINSI
        FINPRCH
      FINPRCH
      SI le puit t n'est pas marqué ALORS
        le flot est maximum (on s'arrête)
      STNON
        augmenter le flot et continuer
      FINST
    FINTQ
 FINTQ
```

## Exemple



# Chaîne augmentante



# Flot augmenté



# Propriétés algorithme FF

#### **Définition**

Une coupe dans un réseau (G, c, s, t) est une partition de V(G) en deux ensemble X et  $\overline{X}$  telle que :

- $\triangleright$   $V(G) = X \cup \overline{X}$ ;
- $\triangleright X \cap \overline{X} = \emptyset;$
- ▶  $s \in X$  et  $t \in \overline{X}$

La capacité de la coupe est définie par  $c(X, \overline{X}) = \sum_{x \in X, y \in \overline{X}} c(x, y)$ 

### Théorème (Flot Max Coupe Min)

La valeur d'un flot maximum est égale à la capacité minimum d'une coupe.

#### Le flot est maximum

car sa valeur est de 23 qui est la capacité de la coupe  $(X, \overline{X})$ 



## Réseau des écarts ou réseau résiduel

Soit G = (V, E) un graphe orienté et f un flot sur le réseau (G, c, s, t). Le réseau résiduel  $(G_f, c', s, t)$  est obtenu ainsi :

- $ightharpoonup G_f = (V, E')$  avec
- ▶ si f(x,y) < c(x,y) alors  $(x,y) \in E'$  et c'(x,y) = c(x,y) f(x,y);
- ▶ si f(x,y) > 0 alors  $(y,x) \in E'$  et c'(y,x) = f(x,y).

### Propriété

Il existe un chaîne augmentante entre s et t dans G pour f si et seulement si il existe un chemin de s à t dans  $G_f$ 

## Finitude et complexité

Si capacités à valeurs entières, l'algorithme FF converge en un nombre fini d'opérations :

- O(m) opérations pour recherche de chaîne augmentante et amélioration du flot
- ► capacité d'une coupe en  $O(n \times c_{\text{max}})$  où  $c_{\text{max}}$  est le maximum des capacités des arcs
- dans le pire des cas, le flot augmente d'une seule unité à chaque fois
- $\Rightarrow O(nmc_{max})$  opérations pour l'algorithme de Ford-Fulkerson

Licence 3 Informatique : cours Graphes I6S3 Chapitre II : Parcours, Arbres, Plus courts chemins et Flots  $\sqcup$  Flots dans les graphes

## Variantes et applications

### Algorithme d'Edmonds-Karp (1972)

Implantation particulière de l'algorithme FF avec parcours en largeur (BFS) et qui consiste toujours à choisir une chaîne augmentante de plus court chemin de s à t, c'est à dire celle avec le moins d'arcs possible

Cet algorithme se termine toujours (même pour des capacités non entières, avec une complexité en  $O(nm^2)$ 

## Théorème (Menger (1927))

Dans un graphe non orienté, le nombre maximum de chemins arête-disjoints entre deux sommets s et t est égal à la capacité minimum d'une coupe entre s et t