Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Лабораторная работа №5

Комбинированное применение ключевых операций. Определение времени интервалов между радиоимпульсами.

Выполнил		
студент гр. в $3530904/00030$		В.С. Баганов
Руководитель		
доцент, к.т.н.		В.С. Тутыгин
Acident, K.T.III.		B.C. Tylbirnii
	« »	202 г.

Санкт-Петербург 2023

Содержание

1.	Циф	рровая фильтрация	3
	1.1.	Цель работы	
	1.2.	Программа работы	Ç
	1.3.	Результаты работы	4
		1.3.1. Сравнение результатов, получаемых с помощью методов МА и АКМ	4
		1.3.2. Статистические испытания методов МА и АКМ	6
	1.4.	Вывод	6
		1.4.1. Листинг Matlab. lab_5M_2017.m	7
		1.4.2. Листинг Matlab. lab 5M stat 2017.m	

1. Цифровая фильтрация

1.1. Цель работы

Цель данной работы — исследовать зависимость относительной погрешности при определении времени задержки радиоимпульса с помощью метода максимальной амплитуды и с помощью метода AKM.

При измерении времени задержки радиоимпульса с помощью метода АКМ использовать оконную функцию Хемминга. В качестве коэффициента сходства использовать коэффициент ковариации. Вариант 22.

1.2. Программа работы

- 1. Исследуйте сравнительную точность определения временной задержки радиоимпульса при использовании методов МА и АКМ при различных СКО шума на входе, заданных виде оконной функции с помощью которой сформирован радиоимпульс и способа сравнения задержанного радиоимпульса с эталонными.
- 2. Исследуйте влияние выбора вида оконной функции (Барлетта, Хемминга, Хеннинга, экспоненциальной), используемой для формирования радиоимпульса, способа сравнения задержанного радиоимпульса с эталонными (с помощью ковариации, корреляции, нормы Минковского, нормы Поддорогина) на точность определения временной задержки.
- 3. Исследуйте статистические характеристики: функции распределения и СКО погрешностей вычисленных методами MA и AKM значений временной задержки

Измерить временную задержку в диапазоне 300.0–350.0 (шаг 10.0) при уровне шума 0–0.2 (шаг 0.1) с помощью методов максимальной амплитуды и АКМ. Результаты измерений занести в протокол.

Провести статистические испытания обоих методов для уровня шума 0–0.2. Зарегистрировать полученные погрешности в протоколе.

1.3. Результаты работы

1.3.1. Сравнение результатов, получаемых с помощью методов МА и АКМ

В качестве метода определения сходства использовались оконная функция Хемминга и коэффициент ковариации. Получены следующие результаты:

коэффициент ковариации. Получены следующие результаты:					
СКО шума	Временная				
на входе	задержка				
		MA	Отн, погрешность	AKM	Отн, погрешность
		10171	MA, %	TITIVI	AKM, %
0	300,00	299	0,3333	299,8333	0,0556
	310,00	309	0,3226	309,8333	0,0538
	320,00	319	0,3125	319,8333	0,0521
	330,00	329	0,3030	329,8333	0,0505
	340,00	339	0,2941	339,8333	0,0490
	350,00	349	0,2857	349,8333	0,0476
0,1	300,00	301	0,3333	299,5833	0,1389
	310,00	308	0,6452	310,0845	0,0829
	320,00	319	0,3125	319,8333	0,0521
	330,00	328	0,6061	330,0855	0,0259
	340,00	337	0,8824	339,9125	0,0257
	350,00	346	1,1429	350,1747	0,0499
0,2	300,00	302	0,6667	300,3333	0,1111
	310,00	308	0,6452	310,0845	0,0272
	320,00	317	0,9375	319,9243	0,0236
	330,00	328	0,0259	330,0855	0,6061
	340,00	335	1,4706	340,4229	0,1244
	350,00	355	1,4286	349,5882	0,1176

Графически полученные результаты представленны в виде следующих графиков.

1.3.2. Статистические испытания методов МА и АКМ

В ходе статистических испытаний методов МА и АКМ получены следующие результаты.

СКО шума на входе	Погрешности		
	CKO_MA, %	CKO_AKM, %	
0	0	5.6857e-13	
0,05	0.4716	0.0382	
0,1	0.6425	0.0560	
0,15	0.7894	0.0760	
0,2	0.9352	0.1000	

График зависимости погрешности вычисленной временной задержки от СКО шума для обоих методов.

1.4. Вывод

Результаты работы показывают, что определение временного сдвига радиоимпульса с помощью метода нахождения максимума амплитуды MA отраженного сигнала имеет большую погрешность чем у AKM, при использовании оконной функции Хемминга и коэффициента ковариации.

Погрешность измерений растет прямо пропорционально уровню зашумленности сигнала, но при AKM меняется в очень малых значениях (сотые доли процента), тогда как при MA меняется сильно, погрешность при шуме 0.2 достигает почти 1%.

Результаты работы показывают, что метод AKM (аппроксимационно-корреляционный метод) позволяет точнее определять временную задержку отраженного радиоимпульса, чем метод MA.

1.4.1. Листинг Matlab. lab 5M 2017.m

```
%Программа определения времени задержки радиоимпульса
1
     %Используется сочетание приближенного определения времени задержки
2
     %по сдвигу максимума радиоимпульса с вычислением функции коэффициентов
3
     %сходства радиоимпульса с серией эталонных сигналов,
     %передискретизацией, нахождением максимума этой функции, итерационным
5
     → %процессом вычисления.
6
     kt=1024;%количество отсчетов сигнала
     shift=330;% сдвиг отраженного модельного сигнала
     h=100;%полуширина радиоимпульса
     Q=0.1;%1уровень шума в долях СКО
10
11
     clc; %очистка Command Window
12
     for i=1:kt
13
         v(i)=0;
14
         sy(i)=0;
15
         w(i) = 0;
16
         w1(i)=0;
17
     end
18
19
     %ПРОГРАММНАЯ ГЕНЕРАЦИЯ СИГНАЛА
20
           noise=randn(kt);%генерация массива нормально распределенного шума
21
            for i=1:kt %генерация оконной функции
22
             if(i>(shift-h)&(i ≤ shift+h))
23
                      w(i)=1-abs(i-shift)/h;%окно Барлетта(треугольное)
     %
24
                    %w(i)=0.5*(1+cos(pi*(i-shift)/h));%окно Хеннинга
25
                    w(i)=0.54+0.46*cos(pi*(i-shift)/h);%окно Хемминга
26
                    %w(i) = exp(-0.0003*(i-shift)^2.0); %экспоненциальное окно
27
             end
28
           end
          for i=1:kt %генерация задержанного радиоимпульса
30
               v(i)=w(i)*cos(2*pi*(i-(shift))/75);
31
               y(i)=y(i)+Q*noise(i);
32
          end
33
     i=1:kt;
34
     plot(i,y);
35
     title('y');
36
     %нахождение макс. знач. у[і] массива Ү
37
     C=\max(y);
38
     %нахождение номера элемента массива Y, соответствующего макс. знач. y[i]
39
     for i=1:kt
40
         if (y(i)=C)
41
             shiftmax=i-1;
42
             break
43
         end
44
     end
45
     if(shiftmax<0)|(shiftmax≥550000)
46
         dt int=shiftmax;
47
     else
48
         dt=shiftmax; %оценка времени задержки по методу максимума амплитуды
49
         search area=h/(2*dt); %область поиска относительно центра
50
        for ki=1:3 %Цикл определяет количество итераций
51
             shagkor=dt*search_area/3;
             k=0;
53
             dt1=dt-dt*search_area;
54
             dt2=dt+dt*search_area;
55
             %диапазон сдвигов должен быть ограничен - от 0 до 800
56
```

```
if (dt1<0) dt1=0;end;
57
              if (dt2>800) dt2=800; end;
58
              for j=dt1:shagkor:dt2 %цикл для создания 6 эталонов в окрестности
59
                  %приближенного значения сдвига, определенного по МАХ
60
                      амплитуды.
                  k=k+1;
61
                  xkor(k)=j;
62
                  shift1=j;
63
                  kor(k)=0;
64
                  for i=1:kt
65
                      x(i)=0;
66
                  end
67
               %Вычисление массива эталонного радиоимпульса X
68
          for i=1:kt %генерация оконной функции для эталонного радиоимпульса
69
                 if(i>(shift1-h)\delta(i \leq shift1+h))
70
                      w1(i)=1-abs(i-shift1)/h;%окно Барлетта(треугольное)
     %
71
                    %w1(i)=0.5*(1+cos(pi*(i-shift1)/h));%окно Хеннинга
72
                    w1(i)=0.54+0.46*cos(pi*(i-shift1)/h);%oкно Хемминга
73
                   % w1(i) = exp(-0.001*(i-shift1)^2.0); %экспоненциальное окно
74
                 end
75
           end
76
           for i=1:kt %генерация эталонного радиоимпульса
                 x(i)=w1(i)*cos(2*pi*(i-(shift1))/75);
78
          end
79
     %вычисление средних значений X и Y
80
                  x_sr=mean(x);
81
                  v sr=mean(v);
82
                  x sko=0:
83
                  y_sko=0;
                  kor1(k)=0; % начальное значение суммы модулей суммы
85
                  kor(k)=0; % начальное значение коэф. корреляции
86
     %вычисление СКО и коэффициента корреляции X и Y
87
                  for i=1:kt
88
                    x   sko=x   sko+(x(i)-x   sr)*(x(i)-x   sr);
89
                    y_sko=y_sko+(y(i)-y_sr)*(y(i)-y_sr);
                    kor(k)=kor(k)+(x(i)-x_sr)*(y(i)-y_sr);
91
92
     %
                        sxy(i)=(abs(x(i)-y(i))); %вычисление нормы Минковского
93
                % sxy(i)=(abs(x(i)+y(i))); %вычисление нормы Поддорогина
94
     %
                        kor1(k)=kor1(k)+sxy(i);%вычисление нормы Минковского и
95
         Поддорогина
                kor1(k)=kor(k); %вычисление коэффициента ковариации
97
                % kor1(k)=kor(k)/(sqrt(x sko*y sko));%вычисление коэффициента
98
                 → корреляции
                 kor(k)=kor1(k);
99
              end
100
              xx=1:k;
101
              xi=1:0.1:k;
              yint=interp1(xx,kor,xi,'spline');% сплайн-интерполяция коэф
103
              → корреляции
              r1=kor;
104
              %следующие 5 строк - отображение графика функции коэф.
105
                  корреляции/
              %коэф. Минковского/коэф. Поддорогина от сдвига эталонов
106
              %график получен с помощью ф-и сплайн-аппроксимации spaps
               apr=spaps(xkor,kor,0.000001);
108
               figure
109
               fnplt(apr)
110
               hold on
111
```

```
plot(xkor,r1,'ro')
112
               hold off
113
114
              cmax=max(yint); %нахождение максимума функции коэф. корр./ковар.
115
                cmax=min(yint); %нахождение минимума функции коэф. Минковского
116
              for i=1:round((k-1)/0.1+1)
117
                  if (yint(i)=cmax)
118
                       dt_int=dt-dt*search_area+(i-1)*shagkor/10; %уточненное
                       → значение врем.задержки по МАХ функции коэф. корр.
                  end
120
              end
121
              dt=dt_int;
122
              search_area=search_area/2;
123
        end
124
     end
125
     dt_acm=dt% %оценка времени задержки по методу АКМ
     dt_ma=shiftmax %оценка времени задержки по методу максимума амплитуды
127
      \rightarrow (MA)
     err acm= abs(dt-shift)/shift*100
128
     err_ma=abs(dt_ma-shift)/shift*100
129
130
     pause;
131
     close all; %закрытие окон графического вывода
132
     clear; %очистка Workspace
133
```

1.4.2. Листинг Matlab. lab 5M stat 2017.m

```
%Программа определения времени задержки радиоимпульса
1
     %Используется сочетание приближенного определения времени задержки
2
     %по сдвигу максимума радиоимпульса с вычислением функции коэффициентов
3
     %сходства радиоимпульса с серией эталонных сигналов,
     %передискретизацией, нахождением максимума этой функции, итерационным
     → %процессом вычисления.
6
     kt=1024;%количество отсчетов сигнала
     shift=330;% сдвиг отраженного модельного сигнала
     h=100;%полуширина радиоимпульса
     Q=0.1;%1уровень шума в долях СКО
10
11
     clc; %очистка Command Window
12
     for i=1:kt
13
         y(i)=0;
14
         sy(i)=0;
15
         w(i) = 0;
16
         w1(i)=0;
17
     end
18
19
     %ПРОГРАММНАЯ ГЕНЕРАЦИЯ СИГНАЛА
20
           noise=randn(kt);%генерация массива нормально распределенного шума
21
            for i=1:kt %генерация оконной функции
22
             if(i>(shift-h)&(i ≤ shift+h))
23
                      w(i)=1-abs(i-shift)/h;%окно Барлетта(треугольное)
     %
24
                    %w(i)=0.5*(1+cos(pi*(i-shift)/h));%окно Хеннинга
25
                    w(i)=0.54+0.46*cos(pi*(i-shift)/h);%окно Хемминга
26
                    %w(i) = exp(-0.0003*(i-shift)^2.0); %экспоненциальное окно
27
             end
28
           end
          for i=1:kt %генерация задержанного радиоимпульса
30
               v(i)=w(i)*cos(2*pi*(i-(shift))/75);
31
               y(i)=y(i)+Q*noise(i);
32
          end
33
     i=1:kt;
34
     plot(i,y);
35
     title('y');
36
     %нахождение макс. знач. у[і] массива Ү
37
     C=\max(y);
38
     %нахождение номера элемента массива Y, соответствующего макс. знач. y[i]
39
     for i=1:kt
40
         if (y(i)=C)
41
             shiftmax=i-1;
42
             break
43
         end
44
     end
45
     if(shiftmax<0)|(shiftmax≥550000)
46
         dt int=shiftmax;
47
     else
48
         dt=shiftmax; %оценка времени задержки по методу максимума амплитуды
49
         search area=h/(2*dt); %область поиска относительно центра
50
        for ki=1:3 %Цикл определяет количество итераций
51
             shagkor=dt*search_area/3;
             k=0;
53
             dt1=dt-dt*search_area;
54
             dt2=dt+dt*search_area;
55
             %диапазон сдвигов должен быть ограничен - от 0 до 800
56
```

```
if (dt1<0) dt1=0;end;
57
              if (dt2>800) dt2=800; end;
58
              for j=dt1:shagkor:dt2 %цикл для создания 6 эталонов в окрестности
59
                  %приближенного значения сдвига, определенного по МАХ
60
                      амплитуды.
                  k=k+1;
61
                  xkor(k)=j;
62
                  shift1=j;
63
                  kor(k)=0;
64
                  for i=1:kt
65
                      x(i)=0;
66
                  end
67
               %Вычисление массива эталонного радиоимпульса X
68
          for i=1:kt %генерация оконной функции для эталонного радиоимпульса
69
                 if(i>(shift1-h)\delta(i \leq shift1+h))
70
                      w1(i)=1-abs(i-shift1)/h;%окно Барлетта(треугольное)
     %
71
                    %w1(i)=0.5*(1+cos(pi*(i-shift1)/h));%окно Хеннинга
72
                    w1(i)=0.54+0.46*cos(pi*(i-shift1)/h);%oкно Хемминга
73
                   % w1(i) = exp(-0.001*(i-shift1)^2.0); %экспоненциальное окно
74
                 end
75
           end
76
           for i=1:kt %генерация эталонного радиоимпульса
                 x(i)=w1(i)*cos(2*pi*(i-(shift1))/75);
78
          end
79
     %вычисление средних значений X и Y
80
                  x_sr=mean(x);
81
                  v sr=mean(v);
82
                  x sko=0:
83
                  y_sko=0;
                  kor1(k)=0; % начальное значение суммы модулей суммы
85
                  kor(k)=0; % начальное значение коэф. корреляции
86
     %вычисление СКО и коэффициента корреляции X и Y
87
                  for i=1:kt
88
                    x   sko=x   sko+(x(i)-x   sr)*(x(i)-x   sr);
89
                    y_sko=y_sko+(y(i)-y_sr)*(y(i)-y_sr);
                    kor(k)=kor(k)+(x(i)-x_sr)*(y(i)-y_sr);
91
92
     %
                        sxy(i)=(abs(x(i)-y(i))); %вычисление нормы Минковского
93
                % sxy(i)=(abs(x(i)+y(i))); %вычисление нормы Поддорогина
94
     %
                        kor1(k)=kor1(k)+sxy(i);%вычисление нормы Минковского и
95
         Поддорогина
                kor1(k)=kor(k); %вычисление коэффициента ковариации
97
                % kor1(k)=kor(k)/(sqrt(x sko*y sko));%вычисление коэффициента
98
                 → корреляции
                 kor(k)=kor1(k);
99
              end
100
              xx=1:k;
101
              xi=1:0.1:k;
              yint=interp1(xx,kor,xi,'spline');% сплайн-интерполяция коэф
103
              → корреляции
              r1=kor;
104
              %следующие 5 строк - отображение графика функции коэф.
105
                  корреляции/
              %коэф. Минковского/коэф. Поддорогина от сдвига эталонов
106
              %график получен с помощью ф-и сплайн-аппроксимации spaps
               apr=spaps(xkor,kor,0.000001);
108
               figure
109
               fnplt(apr)
110
               hold on
111
```

```
plot(xkor,r1,'ro')
112
               hold off
113
114
              cmax=max(yint); %нахождение максимума функции коэф. корр./ковар.
115
                cmax=min(yint); %нахождение минимума функции коэф. Минковского
116
              for i=1:round((k-1)/0.1+1)
117
                  if (yint(i)=cmax)
118
                       dt_int=dt-dt*search_area+(i-1)*shagkor/10; %уточненное
                       → значение врем.задержки по МАХ функции коэф. корр.
                  end
120
              end
121
              dt=dt_int;
122
              search_area=search_area/2;
123
        end
124
     end
125
     dt_acm=dt% %оценка времени задержки по методу АКМ
     dt_ma=shiftmax %оценка времени задержки по методу максимума амплитуды
127
      \rightarrow (MA)
     err acm= abs(dt-shift)/shift*100
128
     err_ma=abs(dt_ma-shift)/shift*100
129
130
     pause;
131
     close all; %закрытие окон графического вывода
132
     clear; %очистка Workspace
133
```