Kyle Nabors, Worked with Ricardo and Bibang

I.1 When we regress age on married and schooling on married using a linear model we receive the following outputs:

Age Married Linear: Coefficient: 0.557 Standard Errors: 0.016 S Married Linear: Coefficient: 0.130 Standard Errors: 0.008

I.2 When we regress age on married and schooling on married using a probit model we receive the following outputs:

Age Married Probit: Coefficient: 0.144 Standard Errors: 0.043 S Married Probit: Coefficient: 0.034 Standard Errors: 0.020

Probit Objective function:
$$\sum_{i=1}^{n} (Y_{i} \ln \mathbb{D}(J_{0} + \mathcal{B}_{i} X_{i}) + (1-Y_{i}) \ln (1-\mathbb{D}(1-J_{0} + \mathcal{B}_{i} X_{i})))$$

The linear model estimates the linear explotion of y given X. Probit is the probability of x given X ranging from O to I witch is a nonlinear model. Probit is better if the x is or binary outcome.

Is Based on our MSE for Age Probit is the better model with a MSE of 0.43808903 versus linear with ankmsE of 0.43814897 for our subsample

For schooling Probit is a better model with a MSE of 0.474444 33 versus linear with a RMSE of 0.47470787 for our subsample

- Ib According to our RSME for our entire model, probit is better for estimating age with a value of 0.48485471 versus linear with 0.48491913. for Schooling our linear model yields a better fit with a RMSE of 0.4893582 versus the probit model with a fit of 0.48936767
- I7 The only coefficients that can be interpreted as on effect of a unit change of the regressor are the slope coefficients of our OLS model.

Is Probability of being married by age

<u> LIN</u>	bav	
	AGE	Mean
	27	.2976796
	28 29	.3534031
	30	.46485
	31	.5205736
_		

1 (00)19	
AGE	Mean
27 28 29 30 31	.3001313 .3523128 .4074364 .4644593 .5222231
· ·	·

Daibil

In The marginal probability of getting married after 27,29, and 31 is the following for each model

```
Expression: Linear prediction, predict()
dy/dx wrt: AGE
1._at: AGE = 27
2._at: AGE = 29
3._at: AGE = 31
                           Delta-method
                                                              [95% conf. interval]
                     dy/dx
                              std. err.
                                                   P>|t|
AGE
         _at
                  .0557235
                               .016204
                                            3.44
                                                              .0238869
                                                                           .0875601
                                                   0.001
                  .0557235
                               .016204
                                            3.44
                                                   0.001
                                                              .0238869
                                                                           .0875601
                  .0557235
                               .016204
                                            3.44
                                                   0.001
                                                              .0238869
                                                                           .0875601
```

```
Expression: Pr(MARRIED), predict()
dy/dx wrt: AGE
1._at: AGE = 27
2._at: AGE = 29
3._at: AGE = 31
                            Delta-method
                     dy/dx
                              std. err.
                                                   P> | z |
                                                              [95% conf. interval]
AGE
                  .0504043
                              .0128045
                                            3.94
                                                   0.000
                                                              .0253079
                                                                           .0755006
                  .0562589
                              .0167136
                                            3.37
                                                              .0235008
                                                                            .089017
                                                   0.001
                                                              .0247474
                                            3.43
                                                   0.001
```

MARRIED	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
AGE	.2290208	.0710142	3.22	0.001	.0898355	.3682061
S	.0573351	.0359714	1.59	0.111	0131675	.1278377
HEIGHT	.0257718	.0235736	1.09	0.274	0204316	.0719753
EARNINGS	.0133591	.0092017	1.45	0.147	004676	.0313941
URBAN	6720038	.2165565	-3.10	0.002	-1.096447	2475609
_cons	-9.357966	2.773062	-3.37	0.001	-14.79307	-3.922864

+ (1- /i) 1/ (1- 1 (Bo+), Age: + Dz S, + B3 HE16HT; + B4 Forn ings: + Ds URBANi))]

II3 For our logit model we have a RMSE of 0.47667635 witch is lower than our probit or linear.

I'M The marginal effect of age is Zind E[Married: | Age:]/n witch does

depend on our other regressors. This is unlike linear where our wors, not effect would be dx and would be constant regardless of the value of X.

To show that it depends on other variables we will calculate the the coefficients at an amount and then change one variable to show the other coefficients change witch can be seen below

Marginal ef	ffects after	logit					
y =	Pr(MARRIED)	(predict)					
	.42173904						
variable	dy/dx	Std. err.		P> z	[95%	C.I.]	l x
AGE	.0558525	.01616	3.46	0.001	.024185	.08752	2 2
s	.0139826	.00896	1.56	0.118	003572	.031537	7 1
HEIGHT	.0062851	.00571	1.10	0.271	004899	.017469	9 6
EARNINGS	.0032579	.00223	1.46	0.145	001119	.007635	5 1
URBAN∗	150361	.0512	-2.94	0.003	250714	050008	3
		ete change of (27,16,66,18		variable	from 0 t	0 1	
. mfx compu	ıte, dydx at	(27,16,66,18		variable	from 0 t	o 1	
. mfx compu Marginal ef	ite, dydx at	(27,16,66,18		variable	from 0 t	o 1	
. mfx compu Marginal ef	ıte, dydx at	(27,16,66,18		variable	from 0 t	o 1	
. mfx compu Marginal ef y =	ute, dydx at ffects after Pr(MARRIED)	(27,16,66,18 logit (predict)	,1)		from 0 t		ı x
. mfx compu Marginal ef y = =	ffects after Pr(MARRIED) .27137801	(27,16,66,18 logit (predict)	,1)		[95%	c.i.]	
. mfx compu Marginal ef y = = variable	ffects after Pr(MARRIED) .27137801 dy/dx	(27,16,66,18 logit (predict) Std. err.	z 4.00	P> z	[95%	C.I.]	3 2
. mfx compu Marginal ef y = = variable	rite, dydx at ffects after Pr(MARRIED) .27137801 dy/dx .0452847	(27,16,66,18 logit (predict) Std. err.	z 4.00 1.54	P> z 0.000 0.123	[95% .023112 003084	C.I. 1	3 2 3 1
. mfx compu Marginal ef y = = variable AGE S	te, dydx at ffects after Pr(MARRIED) .27137801 dy/dx .0452847 .011337	(27,16,66,18 logit (predict) Std. err. .01131 .00736 .00455	z 4.00 1.54	P> z 0.000 0.123 0.263	[95% .023112003084003824	C.I. 1	3 2 3 1 5 6

$$\mathbb{I} \left[\sum_{i=1}^{n} \log \left[\left(1 - \emptyset \left(\frac{B_0 + B_1 S_0 + \log \log_{10} + B_2 (S_0 + \log_{10} \log_{10} + B_3 \exp(i + \log_{10} + B_4 \exp(i + \log_{10} + \log_{1$$

	lny	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
	S	.0964689	.0107491	8.97	0.000	.0753496	.1175882
	S_URB	0026287	.0037242	-0.71	0.481	0099459	.0046885
٠	EXP	.0022166	.0343286	0.06	0.949	0652308	.069664
	EXP2	.003259	.0023837	1.37	0.172	0014244	.0079424
	_cons	1.202117	.2170589	5.54	0.000	.7756492	1.628586
	var(e.lny)	.2617688	.0165557			.2311806	.2964041

II2 B, is the change in probability of y based on X above the limit of earnings being greater than 2. The model may be biased and inconsistent because we are not observing the earnings of people that are in school or unemployed

IV | Likelihool(x) =
$$P(x=2) \cdot P(x=5) \cdot P(x=2) = e^{\lambda} \cdot \frac{\lambda^2}{2!} \cdot e^{\lambda} \cdot \frac{\lambda^5}{5!} \cdot e^{-\lambda} \cdot \frac{\lambda^2}{2!}$$

2
$$\left| n\left(\left| kelinood\left(\lambda \right) \right) \right| = \left| n\left(e^{\lambda} \cdot \frac{\lambda^2}{2!} \cdot e^{-\lambda} \cdot \frac{\lambda^5}{5!} \cdot e^{-\lambda} \cdot \frac{\lambda^2}{2!} \right) \right|$$

$$= |n(e^{-3\lambda} + 2|n\lambda - |n(2!) + 5|n(\lambda) - |n(5!) + 2|n(\lambda) - |n(2!))|$$

$$\frac{\int \ln(\int |ke| |hood(\lambda)|)}{\int \lambda} = -3 + \frac{1}{\lambda} + \frac{5}{\lambda} + \frac{2}{\lambda} = 0$$