Algebra II (ISIM), lista 10 (18.01.2022, deklaracje do godziny 9:00)

Teoria: Dziedzina noetherowska, w której każdy element nierozkładalny jest pierwszy, jest UFD. Każdy PID jest UFD. NWD i NWW: istnienie w UFD. Opis NWD w PID. Algorytm Euklidesa w pierścieniu euklidesowym.

R oznacza pierścień przemienny z $1 \neq 0$.

- 1. Dowieść, że R^* jest zbiorem elementów stowarzyszonych z 1.
- 2. Niech $\emptyset \neq A \subseteq R$ oraz niech $D \subseteq R$ składa się ze skończonych sum elementów R postaci $\pm a_1 \dots a_n$, gdzie $n \in \mathbb{N}, a_1, \dots, a_n \in A$. Dowieść, że D jest najmniejszym podpierścieniem pierścienia R zawierającym A (tzw. podpierścieniem generowanym przez A).
- 3. Niech $I=\{W\in\mathbb{Z}[X]:$ wyraz wolny W jest parzysty}. Dowieść, że: (a)– $I\triangleleft\mathbb{Z}[X]$
 - (b) I nie jest główny (wsk: rozważyć $I \cap \mathbb{Z}$. Które wielomiany dzielą wszystkie elementy tego zbioru? Czy ktoryś z nich generuje I?).
 - (c)-I = (2, X).
 - (d)* Dla dowolnego $n \in \mathbb{N}$ znaleźć $J \triangleleft \mathbb{Z}[X]$, który nie jest generowany przez n wielomianów.
- 4. Algorytm Euklidesa. Załóżmy, że R jest euklidesowy, z normą δ , oraz $a, b \in \mathbb{R} \setminus \{0\}$. Wykonując dzielenie z resztą znajdujemy ciągi $r_1, r_2, r_3, \ldots \in R$ i $q_1, q_2, q_3, \ldots \in R$ takie, że

Proces dzielenia z resztą kończy się po skończeniu wielu krokach sytuacją, gdy $r_{k+1}|r_k$. W przeciwnym razie dostalibyśmy nieskończony malejący ciąg liczb naturalnych $\delta(b) > \delta(r_1) > \delta(r_2) > \ldots$, co jest niemozliwe. Niech $c = r_{k+1}$. Udowodnić, że:

- (a) c|a i c|b.
- (b) Załóżmy, że d|a i d|b. Wtedy d|c. Zatem c jest NWD(a,b).
- 5. Stosując algorytm Euklidesa znaleźć NWD i NWW:
 - (a) liczb 510 i 858 w pierścieniu \mathbb{Z} ,
 - (b) liczb -1 + 3i oraz 2 w pierścieniu $\mathbb{Z}[i]$,
 - (c) wielomianów $X^3 + 2X 3$, $X^3 + 3X^2 5X + 1$ w pierścieniu $\mathbb{Q}[X]$.
- 6. Stosując algorytm Euklidesa udowodnić, że liczby całkowite 858 i 665 są względnie pierwsze, a następnie znaleźć takie liczby całkowite x i y, że 858x+665y=1.

- 7. Załóżmy, że R jest UFD i $a,b \in R$. Udowodnić, że $(a) \cap (b)$ jest ideałem głównym.
- 8. Rozstrzygnąć, czy losowo wybrany $x \in \mathbb{Z}_{2075}$ jest odwracalny. Jesli tak, obliczyć jego odwrotność w \mathbb{Z}_{2075} .
- 9. * Załóżmy, że K jest ciałem. (a) Dowieść, że $K[X]/(X^n) \cong K[X]/(X^n)$. (b) Dowieść, że pierścień ilorazowy $K[X]/(X^n)$ ma dokładnie n właściwych ideałów.
- 10. –Dowieść, że jesli R jest dziedziną, to R[X] też.
- 11. Załóżmy, że $d \in \mathbb{Z}$ jest ujemna. Niech $\sqrt{d} = i\sqrt{-d}$. Udowodnić, że
 - (a) Każda liczba $x \in \mathbb{Z}[\sqrt{d}] \setminus \{0\}$ ma skończenie wiele podzielników w pierścieniu $\mathbb{Z}[\sqrt{d}]$ (wsk: rozważyć normę $\delta(a + b\sqrt{d}) = |a^2 b^2 d|$).
 - (b) Udowodnić, że w pierścieniu $\mathbb{Z}[\sqrt{d}]$ jest nieskończenie wiele elementów nierozkładalnych.
- 12. Udowodnić, że homomorficzny obraz pierścienia noetherowskiego jest noetherowski.