C++ DP-GBDT Side-channel Analysis

Contents

1	\mathbf{Sev}	erity L	ist	2
2	mair	n		3
3	clas	ss DPTı	ree	3
	3.1 3.2	Creati	on / destruction / global variables ds	3 3 4 6 7 8 9
4	clas	ss DPEr	nsemble	9
	4.1	Creati	on / destruction / global variables	Ĝ
	4.2	Metho	${ m ds}$	Ć
		4.2.1	train	Ĝ
		4.2.2	predict	6
		4.2.3	update_gradients	ć
		4.2.4	add_laplacian_noise	Ĝ
		4.2.5	remove_rows	ć
		4.2.6	get_subset	ć
5	oth	er clas	ses	9

1 Severity List

General

entity	secrecy
X	√
X_{cols_size}	×
X_{rows_size}	×
У	✓
y_rows_size	×

parameter	secret
nb_trees	×
learning_rate	×
privacy_budget	×
task	×
\max_depth	×
$min_samples_split$	×
balance_partition	×
gradient_filtering	×
leaf_clipping	×
$scale_y$	×
use_decay	×
l2_threshold	×
l2_lambda	×
cat_idx	×
num_idx	×

inferrable from those	secret
nb_samples per tree	×

While building a single tree

0 0	
entity	secrecy
X_subset	✓
$X_{subset_cols_size}$	×
X_subset_rows_size	✓
y_subset	✓
y_subset_rows_size	√
gradients	√
$\operatorname{gradients_size}$	✓

- $\mathbf{2}$ main
- 3 class DPTree
- ${\bf 3.1} \quad {\bf Creation} \ / \ {\bf destruction} \ / \ {\bf global} \ {\bf variables}$ Side channel leakage
- 3.2 Methods
- 3.2.1 fit

3.2.2 make_tree_DFS

Caller graph

Call graph

Arguments / used variables

variable	secret
dataset	✓
gradients	✓
curr_depth	?
live_samples	✓

params.min_samples_split	×
${ m params.max_depth}$	×

Algorithm 1: make_tree_DFS

```
1 Function make_tree_DFS(live_samples[], curr_depth)
      // max depth reached or not enough samples -> leaf node
     if curr_depth == params.max_depth || len(live_samples) < params.min_samples_split</pre>
2
         {\tt TreeNode} \ *{\tt leaf} \ = \ {\tt make\_leaf\_node(curr\_depth, \ live\_samples)}
3
        return leaf
      // get actual sample rows and respective gradients from indices in live_samples
      X_live = dataset \rightarrow X[live_samples]
5
      gradients_live = dataset -> gradients[live_samples]
      // find best split
      TreeNode *node = find_best_split(X_live, gradients_live, curr_depth)
7
      // no split found
     if node.is_leaf then
8
      return node
      // prepare the new live samples to continue recursion
      {\tt lhs} = {\it samples\_left\_right\_partition(X\_live, node.feature\_index, node.feature\_value)}
10
      for sample: live_samples do
11
         if lhs.contains(sample) then
12
         | lhs_live_samples.insert(sample)
13
         else
14
15
         rhs_live_samples.insert(sample)
      // recurse
     node -> left = make_tree_DFS(lhs_live_samples, curr_depth+1)
16
      node -- right = make_tree_DFS(rhs_live_samples, curr_depth+1)
17
      return node
18
```

Side channel leakage

ullet leakage in called methods

From branches/loops:

• params.max_depth

- params.min samples split
- $\operatorname{curr} \operatorname{depth} == \max \operatorname{depth}$
- number of features (columns of X)

- number of live samples resp. rows in X_live
- whether node becomes a leaf / #leaves
- whether split is done on a categorical feature

• split details (how many samples go left/right)

Recursion leakage: ?

- e.g. #splits in the tree by measuring time
- ullet #nodes observable by watching memory allocations for node

Mitigations TODO

3.2.3 exponential_mechanism

TODO

3.2.4 find_best_split

Caller graph

Call graph

Arguments / used variables

variable	secret
X	✓
gradients	√
$\operatorname{curr_depth}$?
tree_budget	×
	I .

params.use_decay	×
params. Δg	×
$params.max_depth$	×

Algorithm 2: find best split

```
1 Function find_best_split(X[][], gradients[], curr_depth)
       // determine node privacy budget
2
       if params.use_decay then
 3
          if curr_depth == 0 then
             \texttt{node\_budget} = \frac{\texttt{tree\_budget}}{2*(2^{\texttt{max\_depth}+1} + 2^{\texttt{curr\_depth}+1})}
 4
 5
              \mathtt{node\_budget} = \frac{\mathtt{tree\_budget}}{2*2^{\mathtt{curr\_depth}+1}}
 6
       else
 7
          node\_budget = \frac{tree\_budget}{2*max\_depth}
 8
       // iterate over all possible splits
9
       for feature_index : features do
           for feature_value : X[feature_index] do
10
              if "already encountered feature_value" then
11
12
              gain = compute_gain(X, gradients, feature_index, feature_value)
13
              if gain < 0 then
14
                  continue
15
               gain = \frac{node\_budget*gain}{2+\Delta g}
16
                            2*\Delta g
              candidates.insert(Candidate(feature_index, feature_value, gain))
17
       // choose a split using the exponential mechanism
       index = exponential\_mechanism(candidates)
18
       // construct the node
      TreeNode *node = new TreeNode(candidates[index])
19
       return node
20
```

Side channel leakage

- leakage in compute_gain and exponential_mechanism_
- From branches/loops:
 - params.use decay
 - $\operatorname{curr} \operatorname{depth} == 0$
 - number of features (columns of X)
 - number of rows in X resp. length of gradients

- number of unique feature values of a feature
- number of splits that don't give any gain
- number of split candidates

Potential arithmetic leakage: ?

- Not sure about this in SGX though
- edge cases of variables appearing in formulas \rightarrow tree_budget and curr_depth and Δg and gain

Mitigations TODO

3.2.5 compute_gain

Caller graph

Call graph

Arguments / used variables

variable	secret	
X	✓	
gradients	√	
feature_index	×	
feature_value	×	
params.l2_lambda	×	

Algorithm 3: compute gain

```
1 Function compute_gain(X[][], gradients[], feature_index, feature_value)
       // // partition into lhs/rhs
       \verb|lhs, rhs| = samples\_left\_right\_partition(X, feature\_index, feature\_value)|
 \mathbf{2}
3
       lhs\_size = lhs.size()
       rhs_size = rhs.size()
 4
       // return on useless split
      if lhs_size == 0 || rhs_size == 0 then
5
       return -1
 6
       // sums of lhs/rhs gains
       lhs_gain = sum(gradients[lhs])
 7
       rhs_gain = sum(gradients[rhs])
8
                            lhs_gain^2
       {\tt lhs\_gain} = \tfrac{{\tt lhs\_gain}}{{\tt lhs\_size+params.12\_lambda}}
 9
                            rhs_gain
       \texttt{rhs\_gain} = \tfrac{\texttt{rns\_gain}}{\texttt{rhs\_size} + \texttt{params.12\_lambda}}
10
       total_gain = lhs_gain + rhs_gain
11
       total_gain = max(total_gain, 0)
12
       return total_gain
13
```

Side channel leakage

- leakage in samples_left_right_partition
- From branches/loops/function calls:
 - size (#rows) of X/gradients
 - lhs/rhs size
- Mitigations TODO

- whether it's a useless split
- memory access pattern of left/right gradients
- max function might leak whether total_gain < 0 Potential arithmetic leakage: ?
 - edge cases of variables appearing in formulas → lhs_gain and lhs_size, rhs respectively.

- 3.2.6 make_leaf_node
- 3.2.7 predict
- ${\bf 3.2.8} \quad {\tt samples_left_right_partition}$
- 3.2.9 predict

4 class DPEnsemble

4.1 Creation / destruction / global variables

Side channel leakage

- 4.2 Methods
- **4.2.1** train
- **4.2.2** predict
- 4.2.3 update_gradients
- ${\bf 4.2.4} \quad {\tt add_laplacian_noise}$
- 4.2.5 remove_rows
- 4.2.6 get_subset

5 other classes