第六章 计算机的运算方法

- 6.1 无符号数和有符号数
- 6.2 数的定点表示和浮点表示
- 6.3 定点运算
- 6.4 浮点四则运算
- 6.5 算术逻辑单元

6.1 无符号数和有符号数

一、无符号数

寄存器的位数

反映无符号数的表示范围

8位

 $0 \sim 255$

16 位

 $0 \sim 65535$

二、有符号数

6.1

1. 机器数与真值

真值

带符号的数

+0.1011

-0.1011

+1100

-1100

机器数

符号数字化的数

小数点的位置

小数点的位置

小数点的位置

小数点的位置

6.1

(1) 定义

整数 $[x]_{\mathbb{R}} = \begin{cases} 0, & x & 2^n > x \ge 0 \\ 2^n - x & 0 \ge x > -2^n \end{cases}$

x 为真值 n 为整数的位数

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ 1 - x & 0 \ge x > -1 \end{cases}$$

x 为真值

如
$$x = +0.1101$$

$$[x]_{\mathbb{R}} = 0 \cdot 1101$$

用小数点将符号位和数值位隔开

$$x = -0.1101$$

$$[x]_{\text{p}} = 1 - (-0.1101) = 1.1101$$

$$x = +0.1000000$$

$$[x]_{\mathbb{R}} = 0$$
 $\downarrow 1000000$

用 小数点 将符号 ·位和数值位隔开 ·

$$x = -0.1000000$$

$$[x]_{\text{g}} = 1 - (-0.1000000) = 1.1000000$$

(2) 举例

6.1

例 6.1 已知 $[x]_{\mathbb{R}} = 1.0011$ 求 x - 0.0011

解: 由定义得

 $x = 1 - [x]_{\text{p}} = 1 - 1.0011 = -0.0011$

例 6.2 己知 $[x]_{\mathbb{R}} = 1,1100$ 求 x -1100

解:由定义得

 $x = 2^4 - [x]_{\text{if}} = 100000 - 1,1100 = -11000$

6.1

解: 根据 定义 : [x]_原 = 0.1101

x = +0.1101

解: 设x = +0.0000 [+0.0000]_原 = 0.0000

x = -0.0000 $[-0.0000]_{\text{fi}} = 1.0000$

同理,对于整数

 $[+0]_{\mathbb{R}} = 0,0000$

 $[-0]_{\text{\tiny \'e}} = 1,000$

 $[+0]_{\mathbb{R}} \neq [-\theta]_{\mathbb{R}}$

原码的特点:简单、直观 6.1 但是用原码做加法时,会出现如下问题:

要求	数1	数2	实际操作	结果符号
加法	正	正	加	正
加法	正	负	减	可正可负
加法	负	正	减	可正可负
加法	负	负	加	负

能否 只做加法? 找到一个与负数等价的正数 来代替这个负数 就可使 减 —— 加

3. 补码表示法

6.1

(1) 补的概念

时钟

逆时针

顺时针

可见-3可用+9代替 减法——加法

称+9是-3以12为模的补数

记作
$$-3 \equiv +9 \pmod{12}$$

同理
$$-4 \equiv +8 \pmod{12}$$

$$-5 \equiv +7 \pmod{12}$$

时钟以12为模

6.1

一个负数加上"模"即得该负数的补数

结论

> 两个互为补数的数 它们绝对值之和即为 模 数

可见-1011 可用 + 0101 代替

同理
$$-011 \equiv +101$$
 (mod 2^3)

$$-0.1001 \equiv +1.0111 \pmod{2}$$

自然去掉

(2) 正数的补数即为其本身 6.1 $+ 0101 \pmod{2^4}$ 两个互为补数的数 分别加上模 +10000 +10000+10101+0101结果仍互为补数 $(\text{mod}2^4)$ $\therefore +0101 \equiv +0101$ 丢掉 $+0101 \rightarrow +0101$ **- 1011** $,0101 \rightarrow + 0101$ 1,0101 \longrightarrow \neg -1011 = 100000(mod² **-1011** 用 逗号 将符号位 1,0101 和数值位隔开

(3) 补码定义

整数

$$[x]_{\nmid h} = \begin{cases} 0, & x \\ 2^{n} > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge 2^{n} \pmod{2^{n+1}} \end{cases}$$

x 为真值

n 为整数的位数

$$|x| = -1011000$$

$$|x|_{|x|} = 2^{7+1} + (-1011000)$$

$$= 100000000$$

$$-1011000$$

$$\uparrow$$

小数

$$[x]_{\nmid h} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge 1 \pmod{2} \end{cases}$$

x 为真值

如
$$x = +0.1110$$
 $x = -0.1100000$

$$[x]_{\begin{subarray}{l} [x]_{\begin{subarray}{l} [x]_{\begin{subarra$$

1.0100000

用小数点将符号位

和数值位隔开

(4) 求补码的快捷方式

又
$$[x]_{\mathbb{R}}=$$
 1,1010

当真值为负时,补码可用原码除符号位外 每位取反,末位加1求得 (5) 举例

6.1

例 6.5 已知 $[x]_{\stackrel{}{\uparrow}} = 0.0001$

解: 由定义得 x = +0.0001

例 6.6 已知 $[x]_{\stackrel{}{\mathbb{A}}} = 1.0001$ 求 x

 $[x]_{\uparrow \downarrow} \xrightarrow{?} [x]_{\bar{\mathbb{R}}}$

 $[x]_{\mathbb{R}} = 1.1111$

 $\therefore x = -0.1111$

解:由定义得

 $x = [x]_{\nmid h} - 2$

= 1.0001 - 10.0000

=-0.1111

例 6.7 已知 $[x]_{i}$ = 1,1110

求x

解: 由定义得

$$x = [x]_{\uparrow \uparrow} - 2^{4+1}$$
 $[x]_{\bar{\mathbb{R}}} = 1,0010$
 $= 1,1110 - 100000$
 $\therefore x = -0010$
 $= -0010$

$$[x]_{\text{A}}$$
 $\xrightarrow{?}$ $[x]_{\text{B}}$ $[x]_{\text{B}}$ = 1,0010
∴ $x = -0010$

当真值为负时,原码可用补码除符号位外 每位取反,末位加1求得

练习 求下列真值的补码

6.1

真值		[x] _原
x = +70 = 1000110	0, 1000110	0,1000110
x = -70 = -1000110	1,0111010	1,1000110
x = 0.1110	0.1110	0.1110
x = -0.1110	1.0010	1.1110
$x = \boxed{0.0000} [+0]_{3} = [-$	- 0] _补 0.0000	0.0000
x = -0.0000	0.0000	1.0000
x = -1.0000	1.0000	不能表示
由小数补码定义 [x]*	$ = \begin{cases} x & 1 > x \\ 2+x & 0 > x \end{cases} $	$z \ge 0$ $z \ge -1 \pmod{2}$

$$[-1]_{3/2} = 2 + x = 10.0000 - 1.0000 = 1.0000$$

6.1

(1) 定义

整数

$$[x]_{ar{\mathbb{Z}}} = \begin{cases} 0, & x & 2^n > x \ge 0 \\ (2^{n+1} - 1) + x & 0 \ge x > -2^n \pmod{2^{n+1} - 1} \end{cases}$$
 x 为真值 n 为整数的位数 $x = +1101$ $x = -1101$

和数值位隔开

$$[x]_{\cancel{\boxtimes}} = (2^{4+1} - 1) - 1101$$

$$= 11111 - 1101$$

$$= 1,0010$$

小数

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ (2 - 2^{-n}) + x & 0 \ge x > -1 \pmod{2 - 2^{-n}} \end{cases}$$

x 为真值

如

$$x = +0.1101$$
 $[x]_{\overline{\boxtimes}} = 0.1101$

用小数点将符号位

和数值位隔开

$$x = -0.1010$$

$$[x]_{\cancel{\boxtimes}} = (2-2^{-4}) - 0.1010$$

$$= 1.1111 - 0.1010$$

$$= 1.0101$$

例 6.8 已知
$$[x]_{\xi} = 0,1110$$
 求 x 解: 由定义得 $x = +1110$ 求 x

解: 由定义得 $x = [x]_{\mathbb{Q}} - (2^{4+1} - 1)$ = 1,1110 - 11111 = -0001

例 6.10 求 0 的反码

解: 设x = +0.0000 [+0.0000]_反= 0.0000

x = -0.0000 $[-0.0000]_{\text{p}} = 1.1111$

同理,对于整数 [+0]_反= 0,0000 [-0]_反= 1,1111

$$\vdots \quad [+ \ 0]_{\mathbb{Z}} \neq [- \ 0]_{\mathbb{Z}}$$

三种机器数的小结

- ▶最高位为符号位,书写上用","(整数)或"."(小数)将数值部分和符号位隔开
- ▶ 对于正数,原码=补码=反码
- ▶ 对于负数,符号位为1,其数值部分原码除符号位外每位取反末位加1→补码原码除符号位外每位取反一反码

例6.11 设机器数字长为8位(其中一位为符号位)6.1 对于整数,当其分别代表无符号数、原码、补码和 反码时,对应的真值范围各为多少?

二进制代码	无符号数 对应的真值	原码对应 的真值	补码对应 的真值	反码对应 的真值
00000000	0	+0	±0	+0
00000001	1	+1	+1	+1
00000010	$ar{2}$	+2	+2	+2
:	•	•	•	
•				
01111111	127	+127	+127	+127
10000000	128	-0	-128	-127
10000001	129	-1	-127	-126
	•	•	•	
	:	:	•	
11111101	253	-125	-3	-2
11111110	254	-126	-2	-1
11111111	255	-127	-1	-0

6.1

解: 设 $[y]_{\stackrel{}{\uparrow}} = y_0 \cdot y_1 y_2 \cdot \cdot \cdot y_n$

<**I**>

 $[y]_{\nmid \mid} = 0. y_1 y_2 ... y_n$

[y]**连同符号位在内, 每位取反, 末位加1

 $[-y]_{\not \uparrow \downarrow} = 1.\overline{y_1} \overline{y_2} ... \overline{y_n} + 2^{-n}$

<**||**>

 $[y]_{\nmid h} = 1. y_1 y_2 \cdots y_n$

[y] * 连同符号位在内, 每位取反, 末位加1 即得[-火]补

$$[-y]_{\nmid h} = 0.\overline{y_1}\overline{y_2} \cdots \overline{y_n} + 2^{-n}$$

5. 移码表示法

6.1

补码表示很难直接判断其真值大小

如	十进制	二进制	补码
	x = +21	+10101	0,10101 十 1,01011 大
	x = -21	-10101	1,01011 大
	x = +31	+11111	0,111111 人 错
	x = -31	-11111	1,00001 大
\boldsymbol{x}	+ 2 ⁵		
		0000 = 110101	
	-10101 + 100	0000 = 001011	
	+11111 + 100	0000 = 1111111	大正确
	-111111 + 100	0000 = 000001	11.1/11

(1) 移码定义

6.1

$$[x]_{8} = 2^{n} + x (2^{n} > x \ge -2^{n})$$

x 为真值, n 为 整数的位数

移码在数轴上的表示

如 x=10100

$$[x]_{8} = 2^5 + 10100 = 1,10100$$

 $x = -10100$

用 逗号 将符号位 和数值位隔开

$$[x]_{38} = 2^5 - 10100 = 0,01100$$

(2) 移码和补码的比较

设
$$x = +1100100$$
 $[x]_{8} = 2^{7} + 1100100 = 1,1100100$ $[x]_{4} = 0,1100100$ 设 $x = -1100100$ $[x]_{8} = 2^{7} - 1100100 = 0,0011100$ $[x]_{4} = 1,0011100$ 补码与移码只差一个符号位

(3) 真值、补码和移码的对照表

6	1

真值 x (n=5)	[x] _补	[x] _移	[x] _移 对应的 十进制整数
-100000	100000	000000	0
- 11111	100001	000001	1
- 11110 :	100010	000010	2
- 00001	111111	011111	31
± 00000	000000	100000	32
+ 00001	000001	100001	33
+ 00010	000010	100010	34
+ 11110	011110	111110	62
+ 11111	011111	111111	63

当
$$x = 0$$
 时 $[+0]_{8} = 2^{5} + 0 = 1,00000$

$$[-0]_{8} = 2^{5} - 0 = 1,00000$$

$$[+0]_{8} = [-0]_{8}$$

当 n=5 时 最小的真值为 $-2^5 = -100000$ $[-100000]_{8} = 2^5 -100000 = 000000$

可见,最小真值的移码为全0

用移码表示浮点数的阶码能方便地判断浮点数的阶码大小

6.2 数的定点表示和浮点表示

小数点按约定方式标出

一、定点表示

小数点位置

定点机 小数定点机 整数定点机 原码 $-(1-2^{-n}) \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$ 补码 $-1 \sim +(1-2^{-n})$ $-2^n \sim +(2^n-1)$ 反码 $-(1-2^{-n}) \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$

二、浮点表示

```
N = S \times r^{j} 浮点数的一般形式
 S 尾数 ; 阶码 r 基数 (基值)
 计算机中 r 取 2、4、8、16等
                               二进制表示
 r = 2 N = 11.0101
            ✓=0.110101×2<sup>10</sup> 规格化数
              =1.10101\times2^{1}
              = 1101.01 \times 2^{-10}
            \checkmark = 0.00110101 \times 2^{100}
计算机中 S 小数、可正可负
           i 整数、可正可负
```

1. 浮点数的表示形式

 S_f 代表浮点数的符号

n 其位数反映浮点数的精度

m 其位数反映浮点数的表示范围

j_f和 m 共同表示小数点的实际位置

2. 浮点数的表示范围

6.2

上溢 阶码 > 最大阶玛

下溢 阶码 < 最小阶码 按 机器零 处理

上溢 负数区 下溢 正数区

最小负数

$$-2^{(2^{m}-1)}\times(1-2^{-n})$$

$$-2^{15} \times (1-2^{-10})$$

最小正数

$$2^{-(2^m-1)} \times 2^{-n}$$

$$2^{-15} \times 2^{-10}$$

最大正数

$$2^{(2^m-1)}\times (1-2^{-n})$$

$$2^{15} \times (1-2^{-10})$$

最大负数

$$-2^{-(2^{m}-1)}\times 2^{-n}$$

$$-2^{-15} \times 2^{-10}$$

$$n = 10$$

练习 6.2

设机器数字长为24位,欲表示±3万的十进制数,试问在保证数的最大精度的前提下,除阶符、数符各取1位外,阶码、尾数各取几位?

解:
$$2^{14} = 16384$$
 $2^{15} = 32768$

∴ 15 位二进制数可反映 ±3 万之间的十进制数

满足 最大精度 可取 m=4, n=18

6.2

```
r=2 尾数最高位为1
```

r=4 尾数最高 2 位不全为 0

r=8 尾数最高 3 位不全为 0

基数不同,浮点数的 规格化形式不同

4. 浮点数的规格化

r=2 左规 尾数左移 1 位,阶码减 1

右规 尾数右移1位,阶码加1

r=4 左规 尾数左移 2 位,阶码减 1

右规 尾数右移 2 位, 阶码加 1

r=8 左规 尾数左移 3 位,阶码减 1

右规 尾数右移 3 位, 阶码加 1

基数r越大,可表示的浮点数的范围越大基数r越大,浮点数的精度降低

例如: 设m=4, n=10

尾数规格化后的浮点数表示范围

 $2^{+1111} \times (-0.11111111111)$ = $-2^{15} \times (1-2^{-10})$

三、举例

6.2

例 6.13 将 + 19 写成二进制定点数、浮点数及在定点机和浮点机中的机器数形式。其中数值部分均取 10 位,数符取 1 位,浮点数阶码取 5 位(含1位阶符)。

解: 设 $x = + \frac{19}{128}$

二进制形式 x = 0.0010011

定点表示 x = 0.0010011000

浮点规格化形式 $x = 0.1001100000 \times 2^{-10}$

定点机中 $[x]_{\mathbb{R}} = [x]_{\mathbb{A}} = [x]_{\mathbb{Q}} = 0.0010011000$

浮点机中 $[x]_{\mathbb{R}} = 1,0010; 0.1001100000$

 $[x]_{3} = 1, 1110; 0.1001100000$

 $[x]_{\mathbb{R}} = 1, 1101; 0.1001100000$

例 6.14 将 -58 表示成二进制定点数和浮点数, 6.2 并写出它在定点机和浮点机中的三种机器数及阶码为移码, 尾数为补码的形式(其他要求同上例)。

二进制形式

x = -111010

定点表示

x = -0000111010

浮点规格化形式 $x = -(0.1110100000) \times 2^{110}$

定点机中

 $[x]_{\text{\tiny fi}} = 1,0000111010$

 $[x]_{\nmid \mid} = 1, 1111000110$

 $[x]_{\mathbf{x}} = 1, 1111000101$

浮点机中

 $[x]_{\text{ff}} = 0,0110; 1.1110100000$

 $[x]_{3} = 0,0110; 1.0001100000$

 $[x]_{\mathbf{x}} = 0,0110; 1.0001011111$

 $[x]_{\text{mb}}$ [x] [x

例 6.15 写出对应下图所示的浮点数的补码 6.2 形式。设n=10, m=4, 阶符、数符各取 1位。

- ▶ 当浮点数 尾数为 0 时,不论其阶码为何值 按机器零处理
- 当浮点数阶码等于或小于它所表示的最小数时,不论尾数为何值,按机器零处理

如
$$m=4$$
 $n=10$

当阶码和尾数都用补码表示时,机器零为

$$\times, \times \times \times \times;$$
 0.00 ··· ··· 0

(阶码 =
$$-16$$
) 1, 0 0 0 0; $\times . \times \times \times \cdots \times$

当阶码用移码, 尾数用补码表示时, 机器零为 0,0000; 0.00 ······ 0

有利于机器中"判0"电路的实现

S 阶和	马(含阶符)		尾	数
数符	小拳	↑ 数点位置		
尾数为	规格化表示			
非"0"	的有效位最	高位为	"1" (隐含)
	符号位 S	阶码	尾数	总位数
短实数	1	8	23	32
长实数	1	11	52	64
临时实数	1	15	64	80

6.3 定点运算

- 一、移位运算
 - 1. 移位的意义

15.米=1500.厘米

小数点右移 2 位

机器用语 15 相对于小数点 左移 2 位 (小数点不动)

在计算机中,移位与加减配合,能够实现乘除运算

2. 算术移位规则

符号位不变

	码制	添补代码
正数	原码、补码、反码	0
	原码	0
负数	补 码	左移添0
火蚁	补 码	右移添1
	反 码	1

例 6.16

设机器数字长为8位(含一位符号位),写出 A=+26时,三种机器数左、右移一位和两位后的表 示形式及对应的真值,并分析结果的正确性。

解: A = +26 = +11010 则 $[A]_{\mathbb{R}} = [A]_{\mathbb{A}} = [A]_{\mathbb{R}} = 0,0011010$

移位操作	机 器 数 [A] _原 =[A] _补 =[A] _反	对应的真值
移位前	0,0011010	+26
←1	0,011010 <mark>0</mark>	+52
← 2	0,1101000	+104
→ 1	0,0001101	+13
→2	0,0000110	+6

设机器数字长为8位(含一位符号位),写出 A=-26时,三种机器数左、右移一位和两位后的表 示形式及对应的真值,并分析结果的正确性。

解: A = -26 = -11010

原码

移位操作	机器数	对应的真值
移位前	1,0011010	-26
←1	1,011010 <mark>0</mark>	-52
← 2	1,1101000	-104
→1	1,0001101	-13
→2	1,0000110	-6

_	,	TI
1	K	个中与

移位操作	机器数	对应的真值
移位前	1,1100110	-26
←1	1,1001100	- 52
← 2	1,0011000	-104
→1	1, <mark>1</mark> 110011	-13
→2	1,1111001	-7

反码

移位操作	机器数	对应的真值
移位前	1,1100101	-26
←1	1,1001011	-52
← 2	1,0010111	-104
→ 1	1, <mark>1</mark> 110010	- 13
→2	1, <mark>11</mark> 11001	-6

3. 算术移位的硬件实现

6.3

(a) 真值为正

(b) 负数的原码

(c) 负数的补码

(d) 负数的反码

← 丢 1

出错

出错

正确

正确

→ 丢 1

影响精度

影响精度

影响精度

正确

4. 算术移位和逻辑移位的区别

6.3

算术移位 有符号数的移位

逻辑移位 无符号数的移位

逻辑左移 低位添 0, 高位移丢

逻辑右移 高位添 0, 低位移丢

例如 01010011

逻辑左移 10100110

算术左移 00100110

高位1移丢

 $C_y \leftarrow 0 1 0 1 0 0 1 1$

10110010

01011001

11011001 (补码)

10100110

逻辑右移

算术右移

二、加减法运算

- 1. 补码加减运算公式
 - (1) 加法

整数
$$[A]_{\stackrel{.}{\uparrow}_{1}} + [B]_{\stackrel{.}{\uparrow}_{1}} = [A+B]_{\stackrel{.}{\uparrow}_{1}} \pmod{2^{n+1}}$$

小数 $[A]_{\stackrel{.}{\uparrow}_{1}} + [B]_{\stackrel{.}{\uparrow}_{1}} = [A+B]_{\stackrel{.}{\uparrow}_{1}} \pmod{2}$

(2) 减法

$$A-B = A+(-B)$$

整数 $[A-B]_{\dot{h}} = [A+(-B)]_{\dot{h}} = [A]_{\dot{h}} + [-B]_{\dot{h}} \pmod{2^{n+1}}$ 小数 $[A-B]_{\dot{h}} = [A+(-B)]_{\dot{h}} = [A]_{\dot{h}} + [-B]_{\dot{h}} \pmod{2}$ 连同符号位一起相加,符号位产生的进位自然丢掉

```
2. 举例
                                                           6.3
  例 6.18 设 A = 0.1011, B = -0.0101
              求 [A+B]_{ik}
                                                  验证
        解: [A]_{i} = 0.1011
                                                          0.1011
               +[B]_{3b} = 1.1011
                                                        -0.0101
        [A]_{\not \uparrow \downarrow} + [B]_{\not \uparrow \downarrow} = 10.0110 = [A + B]_{\not \uparrow \downarrow}
                                                          0.0110
              A + B = 0.0110
  例 6.19 设 A = -9, B = -5
              求 [A+B]_{ik}
                                                  验证
         解: [A]_{i} = 1,0111
                                                         -1001
               +[B]_{36} = 1, 1011
                                                   +-0101
        [A]_{\uparrow \uparrow} + [B]_{\uparrow \uparrow} = 11, 0010 = [A + B]_{\uparrow \downarrow} -1110
              A + B = -1110
```

例 6.20 设机器数字长为 8 位(含 1 位符号位) 6.3 且 A=15, B=24,用补码求 A-B

解:
$$A = 15 = 0001111$$
 $B = 24 = 0011000$
 $[A]_{\stackrel{?}{\uparrow}} = 0,0001111$
 $[B]_{\stackrel{?}{\uparrow}} = 0,0011000$
 $+ [-B]_{\stackrel{?}{\uparrow}} = 1,1101000$

$$[A]_{\stackrel{?}{\nmid h}} + [-B]_{\stackrel{?}{\nmid h}} = 1,11101111 = [A-B]_{\stackrel{?}{\nmid h}}$$

 $\therefore A - B = -1001 = -9$

练习2 设机器数字长为8位(含1位符号位) 且A=-97, B=+41, 用补码求A-B 3. 溢出判断

6.3

(1) 一位符号位判溢出

参加操作的两个数(减法时即为被减数和"求补"以后的减数)符号相同,其结果的符号与原操作数的符号不同,即为溢出

硬件实现

最高有效位的进位 中符号位的进位 = 1 溢出

$$[x]_{\nmid h'} = \begin{cases} x & 1 > x \ge 0 \\ 4+x & 0 > x \ge -1 \pmod{4} \end{cases}$$

$$[x]_{\lambda | \cdot} + [y]_{\lambda | \cdot} = [x + y]_{\lambda | \cdot} \pmod{4}$$

$$[x-y]_{\lambda h'} = [x]_{\lambda h'} + [-y]_{\lambda h'} \pmod{4}$$

结果的双符号位 相同

未溢出

00, XXXXX

11, XXXXX

结果的双符号位 不同

溢出

10, ×××××

 $01, \times \times \times \times \times$

最高符号位 代表其 真正的符号

4. 补码加减法的硬件配置

A、X均n+1位 用减法标记 G_S 控制求补逻辑

三、乘法运算

1. 分析笔算乘法

$$A = -0.1101$$
 $B = 0.1011$

 $A \times B = -0.10001111$ 乘积的符号心算求得

```
0.1101 \times 0.1011
1101
```

1101

0000

1101

0.10001111

- ✓ 符号位单独处理
- ✓ 乘数的某一位决定是否加被乘数
- ? 4个位积一起相加
- ✓ 乘积的位数扩大一倍

6.3

2. 笔算乘法改进
$$A \cdot B = A \cdot 0.1011$$

$$= 0.1A + 0.00A + 0.001A + 0.0001A$$

$$= 0.1A + 0.00A + 0.001(A + 0.1A)$$

$$= 0.1A + 0.01[0 \cdot A + 0.1(A + 0.1A)]$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 2^{-1}\{A + 2^{-1}[0 \cdot A + 2^{-1}(A + 2^{-1}(A + 0))]\}$$
第一步 被乘数 $A + 0$
第二步 $\rightarrow 1$,得新的部分积
第三步 部分积 + 被乘数

第八步 \longrightarrow 1,得结果

8

3. 改进后的笔算乘法过程(竖式) 6.3

部分积	乘数	说 明
0.0000	1011	初态,部分积=0
0.1101	_	乘数为1,加被乘数
0.1101		
0.0110	1 1 0 <u>1</u>	→1,形成新的部分积
0.1101	_	乘数为1,加被乘数
1.0011	1	
0.1001	1110	→ 1,形成新的部分积
0.0000	_	乘数为0,加0
0.1001	11	
0.0100	111 <u>1</u>	→ 1,形成新的部分 <mark>积</mark>
0.1101	_	乘数为1,加被乘数
1.0001	111	
0.1000	1111	→1,得结果

小结 6.3

- ▶ 乘法运算 → 加和移位。n=4,加 4 次,移 4 次
- ▶ 由乘数的末位决定被乘数是否与原部分积相加,然后→1形成新的部分积,同时乘数→1(末位移丢),空出高位存放部分积的低位。
- > 被乘数只与部分积的高位相加

硬件 3个寄存器,具有移位功能 一个全加器

4. 原码乘法

(1) 原码一位乘运算规则 以小数为例

设
$$[x]_{\mathbb{R}} = x_0.x_1x_2 \cdots x_n$$

$$[y]_{\mathbb{R}} = y_0.y_1y_2 \cdots y_n$$

$$[x \cdot y]_{\mathbb{R}} = (x_0 \oplus y_0).(0.x_1x_2 \cdots x_n)(0.y_1y_2 \cdots y_n)$$

$$= (x_0 \oplus y_0).x^*y^*$$
式中 $x^* = 0.x_1x_2 \cdots x_n$ 为 x 的绝对值
$$y^* = 0.y_1y_2 \cdots y_n$$
 为 y 的绝对值

乘积的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相乘 $x^* \cdot y^*$

(2) 原码一位乘递推公式

$$z_{0} = 0$$

$$z_{1} = 2^{-1}(y_{n}x^{*} + z_{0})$$

$$z_{2} = 2^{-1}(y_{n-1}x^{*} + z_{1})$$

$$\vdots$$

$$z_{n} = 2^{-1}(y_{1}x^{*} + z_{n-1})$$

例 6.21 已知 x = -0.1110 y = 0.1101 求 $[x \cdot y]_{\mathbb{R}}$ 6.3

解:	数值部分	的运算,数	说 明
	$ \begin{array}{c} 0.0000 \\ 0.1110 \end{array} $	1101	部分积 初态 $z_0 = 0$
	$egin{array}{c} 0.1110 \ 0.0111 \ 0.0000 \ \end{array}$	0110	→1 , 得 z ₁
	$egin{array}{c} 0.0111 \ 0.0011 \ 0.1110 \ \end{array}$	0 1 0 1 <u>1</u>	→1 , 得 z ₂
逻辑右移	$\begin{bmatrix} 1.0001 \\ 0.1000 \\ 0.1110 \end{bmatrix}$	1 0 1 1 0 <u>1</u>	→1 ,得 z ₃
逻辑右移	1.0110 0.1011	1 1 0 0 1 1 0	→1 ,得 z ₄

例6.21 结果

- ① 乘积的符号位 $x_0 \oplus y_0 = 1 \oplus 0 = 1$
- ② 数值部分按绝对值相乘

$$x^* \cdot y^* = 0.10110110$$

则 $[x \cdot y]_{\mathbb{R}} = 1.10110110$

特点 绝对值运算

用移位的次数判断乘法是否结束

逻辑移位

(3) 原码一位乘的硬件配置

6.3

A、X、Q均n+1位

移位和加受末位乘数控制

(4) 原码两位乘

6.3

原码乘

符号位 和 数值位 部分 分开运算

两位乘

每次用乘数的 2 位判断 原部分积 是否加和 如何加被乘数

乘数 $y_{n-1}y_n$	新的部分积
0 0	加 "0"—— 2
0 1	加 1 倍的被乘数 — 2
10	加 2 倍的被乘数 —>2
11	加 3 倍的被乘数 ——2

先 减 1 倍 的被乘数 再 加 4 倍 的被乘数

(5) 原码两位乘运算规则

乘数判断位 $y_{n-1}y_n$	标志位 C_j	操作内容
0 0	0	z -2, y* -2, C _j 保持 "0"
0 1	0	z+x* -2, y* -2, C _j 保持 "0"
10	0	z+2x* -2, y* -2, C; 保持 "0"
11	0	$z-x^*$ -2, y^* -2, 置"1" C_j
0 0	1	$z+x^*$ $\rightarrow 2, y^*-2$,置"0" C_j
0 1	1	$z+2x^*-2, y^*-2, 置"0" C_j$
10	1	z-x* -2, y* -2, C _j 保持 "1"
11	1	z -2, y* -2, C _j 保持 "1"

共有操作 $+x^*$ $+2x^*$ $-x^*$ $\longrightarrow 2$ 实际操作 $+[x^*]_{\stackrel{}{h}}$ $+[2x^*]_{\stackrel{}{h}}$ $+[-x^*]_{\stackrel{}{h}}$ $\longrightarrow 2$ 补码移

例 6.22 已知 x = 0.1111111 y = -0.111001 求 $[x \cdot y]_{原}$ 6.3 解,数估数分和运管 乘数 |C| 证明

解:数值部份物运算	乘数	C_j	说 明
000.00000	00.111001	0	初态 $z_0 = 0$
000.11111			$+x^*$, $C_j=0$
000.111111			
补 000.001111	11 0011 <u>10</u>	0	→ 2
码 001.111110			$+2x^*, C_j=0$
右 移 010.001101	11		
000.100011	$0111 \ 0011$	0	→ 2
111.000001			$-x^*, C_j=1$
111.100100	0111		
码 111.111001	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	→ 2
右 移 000.111111			$+x^*$, $C_j=0$
000.111000	000111		

- ① 乘积的符号位 $x_0 \oplus y_0 = 0 \oplus 1 = 1$
- ②数值部分的运算

 $x^* \cdot y^* = 0.1110000001111$

则 $[x \cdot y]_{\mathbb{R}} = 1.1110000001111$

特点绝对值的补码运算

用移位的次数判断乘法是否结束

算术移位

(6) 原码两位乘和原码一位乘比较 6.3

原码一位乘原码两位乘

符号位 $x_0 \oplus y_0$ $x_0 \oplus y_0$

操作数绝对值绝对值的补码

移位 逻辑右移 算术右移

移位次数 n $\frac{n}{2}(n$ 为偶数)

最多加法次数 n $\frac{n}{2}+1$ (n为偶数)

思考 n 为奇数时,原码两位乘 移?次最多加?次

(1) 补码一位乘运算规则

以小数为例 设被乘数 $[x]_{\uparrow 1} = x_0.x_1x_2 ... x_n$ 乘数 $[y]_{\uparrow 1} = y_0.y_1y_2 ... y_n$

- ① 被乘数任意,乘数为正同原码乘 但加和移位按补码规则运算乘积的符号自然形成
- ② 被乘数任意,乘数为负 乘数[y]_补,去掉符号位,操作同① 最后加[-x]_补,校正

③ Booth 算法(被乘数、乘数符号任意) 6.3

④ Booth 算法递推公式

$$\begin{split} &[z_0]_{\nmid h} = 0 \\ &[z_1]_{\nmid h} = 2^{-1} \{ (y_{n+1} - y_n)[x]_{\nmid h} + [z_0]_{\nmid h} \} \qquad y_{n+1} = 0 \\ &\vdots \\ &[z_n]_{\nmid h} = 2^{-1} \{ (y_2 - y_1)[x]_{\nmid h} + [z_{n-1}]_{\nmid h} \} \end{split}$$

$$[x \cdot y]_{\nmid h} = [z_n]_{\nmid h} + (y_1 - y_0)[x]_{\nmid h}$$

最后一步不移位

如何	实	现
y_{i+1}	$-y_i$?

$$y_i$$
 y_{i+1}
 y_{i+1}
 操作

 0
 0
 0
 $\rightarrow 1$

 0
 1
 1
 $+[x]_{\uparrow}$
 $\rightarrow 1$

 1
 0
 -1
 $+[-x]_{\uparrow}$
 $\rightarrow 1$

 1
 1
 0
 $\rightarrow 1$

例6.23 已知 x = +0.0011 y = -0.1011 求 $[x \cdot y]_{*}$ 6.3

(2) Booth 算法的硬件配置

6.3

A、X、Q 均 n + 2 位 移位和加受末两位乘数控制 乘法小结 6.3

整数乘法与小数乘法完全相同可用 逗号 代替小数点

- ➤ 原码乘 符号位 单独处理 补码乘 符号位 自然形成
- > 原码乘去掉符号位运算 即为无符号数乘法
- > 不同的乘法运算需有不同的硬件支持

四、除法运算

1. 分析笔算除法

$$x = -0.1011$$
 $y = 0.1101$ $\Re x \div y$

$$\begin{array}{c} 0.1101 \\ \hline 0.1101 \\ \hline 0.10110 \\ \hline 0.01101 \\ \hline 0.010010 \\ \hline 0.001101 \\ \hline 0.0001101 \\ \hline 0.00001101 \\ \hline 0.000001111 \\ \hline \end{array}$$

- ✓商符单独处理
- ? 心算上商
- ?余数不动低位补"0" 减右移一位的除数
- ? 上商位置不固定

$$x \div y = -0.1101$$
 商符心算求得
余数 -0.0000111

2. 笔算除法和机器除法的比较

6.3

笔算除法

商符单独处理 心算上商

余数 不动 低位补 "0" 减右移一位 的除数

2 倍字长加法器 上商位置 不固定

机器除法

符号位异或形成

|x| - |y| > 0上商 1

|x| - |y| < 0上商 0

余数 左移一位 低位补 "0" 减 除数

1倍字长加法器

在寄存器 最末位上商

3. 原码除法

以小数为例

$$[x_0]_{\mathbb{R}} = x_0.x_1x_2 \dots x_n$$

$$[y_0]_{\mathbb{R}} = y_0.y_1y_2 \dots y_n$$

$$[\frac{x}{y}]_{\mathbb{R}} = (x_0 \oplus y_0). \frac{x^*}{y^*}$$

式中
$$x^* = 0.x_1x_2 \cdots x_n$$
 为 x 的绝对值 $y^* = 0.y_1y_2 \cdots y_n$ 为 y 的绝对值

商的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相除 $\frac{x^*}{v^*}$

约定 小数定点除法 $x^* < y^*$ 整数定点除法 $x^* > y^*$ 被除数不等于 0 除数不能为 0

(1) 恢复余数法

6.3

例6.24 x = -0.1011 y = -0.1101 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$

解: $[x]_{\mathbb{R}} = 1.1011$ $[y]_{\mathbb{R}} = 1.1101$ $[y^*]_{\mathbb{A}} = 0.1101$ $[-y^*]_{\mathbb{A}} = 1.0011$

(1) $x_0 \oplus y_0 = 1 \oplus 1 = 0$

② 被除数(余数)	商	说明
0.1011	0.0000	
1.0011		+[- <i>y</i> *] _*
1.1110	0	余数为负,上商0
0.1101		恢复余数 +[y*] _补
0.1011	0	恢复后的余数
逻辑左移 1.0110	0	←1
1.0011		+[-y*] _补
0.1001	0 1	余数为正,上商1
逻辑左移 1.0010	0 1	←1
1.0011		+[- <i>y</i> *] _补

			0
被除数(余数)	商	说 明	6.3
0.0101	011	余数为正,上商1	
0.1010	011	←1	
1.0011		+[-ッ*] _补	
1.1101	0110	余数为负,上商 0	
0.1101		恢复余数 +[y*]	
0.1010	0110	恢复后的余数	
逻辑左移 1.0100	0110	←1	
1.0011		+[-y*] _{*\}	
0.0111	01101	余数为正,上商1	
$\frac{x^*}{y^*} = 0.1101$ $\therefore \left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$		上商 5 次第一次上商判溢出	
余数为正 上商	1 7	移 4 次	

余数为负 上商 0,恢复余数

(2) 不恢复余数法(加减交替法)

6.3

•恢复余数法运算规则

余数
$$R_i > 0$$
 上商 "1", $2R_i - y^*$
余数 $R_i < 0$ 上商 "0", $R_i + y^*$ 恢复余数 $2(R_i + y^*) - y^* = 2R_i + y^*$

• 不恢复余数法运算规则

上商"1"
$$2R_i - y^*$$
上商"0" $2R_i + y^*$

加减交替

例 6.25 x = -0.1011 y = -0.1101 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$ 6.3

解:	0.1011	0.0000	
	1.0011		+[-y*] _{*h}
-	1.1110	0	余数为负,上商0
	1.1100	0	←1
	0.1101		+[y*] _补
逻	0.1001	0 1	余数为正,上商1
辑左	1.0010	0 1	←1
· 移·	1.0011		+[- <i>y</i> *] _补
	0.0101	011	余数为正,上商1
	0.1010	011	←1
	1.0011		+[- <i>y</i> *] _补
	1.1101	0110	余数为负,上商0
	1.1010	0110	←1
	0.1101		+[y*] _{≱⊦}
	0.0111	01101	余数为正,上商1

 $[x]_{\text{\tiny \ensuremath{\not{\mbox{\tiny }}}}} = 1.1011$

 $[y]_{\mathbb{R}} = 1.1101$

 $[y^*]_{\ensuremath{\belowderline{\psi}}} = 0.1101$

 $[-y^*]_{*} = 1.0011$

例6.25 结果

②
$$\frac{x^*}{y^*} = 0.1101$$

$$\therefore [\frac{x}{y}]_{\mathbb{R}} = 0.1101$$

特点 上商 n+1 次

第一次上商判溢出

移n次,加n+1次

用移位的次数判断除法是否结束

(3) 原码加减交替除法硬件配置

A、X、Q均n+1位 用 Q_n 控制加减交替

6.3

- (1) 商值的确定
 - ① 比较被除数和除数绝对值的大小

x与y同号

$$x = 0.1011$$
 $[x]_{\mbox{$\frac{1}{3}$}} = 0.1011$ $[x]_{\mbox{$\frac{1}{3}$}} = 0.1000$ "够减"

$$x = -0.0011$$
 $[x]_{*+} = 1.1101$ $[x]_{*+} = 1.1101$ $x^* < y^*$ $y = -0.1011$ $[y]_{*+} = 1.0101$ $+[-y]_{*+} = 0.1011$ $[R_i]_{*+} = [0.1000]$ "不够减"

$$x = 0.1011$$
 $[x]_{3/2} = 0.1011$
 $y = -0.0011$ $[y]_{3/2} = 1.1101$

$$x = -0.0011$$
 $[x]_{3/2} = 1.1101$
 $y = 0.1011$ $[y]_{3/2} = 0.1011$

$$[x]_{\uparrow \downarrow} = 0.1011$$
 $+ [y]_{\uparrow \downarrow} = 1.1101$
 $[R_i]_{\uparrow \downarrow} = 0.1000$
 $[x]_{\uparrow \downarrow} = 1.1101$
 $+ [y]_{\uparrow \downarrow} = 0.1011$
 $[R_i]_{\uparrow \downarrow} = 0.1000$

小结

$[x]_{^{}$ 补和 $[y]_{^{}$	求 $[R_i]$ 补	$[R_i]_{\nmid i} = [y]_{\nmid i}$
同号	$[x]_{ egh} - [y]_{ egh}$	同号,"够减"
异号	$[x]_{ eqh} + [y]_{ eqh}$	异号,"够减"

② 商值的确定 末位恒置"1"法

6.3

 $[x]_{\lambda}$ 与 $[y]_{\lambda}$ 同号 0. 原码 1 正商

[x]_补与[y]_补异号 1. 反码 1 负商

X.XXXX.

X.XXXX.

按原码上商

按反码上商

"够减"上"1"

"不够减"上"0"

"够减"上"0"

"不够减"上"1"

小结

[x] _补 与 [y] _补	商	$[R_i]_{{ ext{$\lambda$}}}$ 与 $[y]_{{ ext{$\lambda$}}}$		商值
同 号	正	够减 (同号) 不够减(异号)	1 0	原码上商
异 号	负	够减 (异号) 不够减(同号)	0 1	反码上商

简化为

$[R_i]_{i}$ 与 $[y]_{i}$	商值
同 号	1
异 号	0

(2) 商符的形成

6.3

除法过程中自然形成

(3) 新余数的形成

加减交替

$[R_i]_{^{}}$ 和 $[y]_{^{}}$	商	新余数
同号	1	$2[R_i]_{\nmid h} + [-y]_{\nmid h}$
异号	0	$2[R_i]_{\nmid h} + [y]_{\nmid h}$

例 6.26 设 x = -0.1011 y = 0.1101 求 $\left[\frac{x}{y}\right]_{i}$ 并还原成真值

6.3

解:	$[x]_{\nmid h} = 1.0$	101 [y] _补 =	= 0.1101 [-	$y]_{\not h} = 1.0011$
	1.0101	0.0000		
	0.1101		异号做加法	
	0.0010	1	同号上"1"	
	0.0100	1	← 1	
	1.0011		+[-y]	
逻	1.0111	10	异号上"0"	
全辑 左 移	> 0.1110	10	←1	
左	0.1101		+[y] _补	
移	1.1011	100	异号上"0"	
	1.0110	100	←1	$\therefore \left[\frac{x}{y}\right]_{\not \! } = 1.0011$
	0.1101		+[y] _补	则 $\frac{x}{v} = -0.1101$
	0.0011	1001	同号上"1"	y
	0.0110	10011	←1 末位恒置	1 "1"

(4) 小结

6.3

- ▶ 补码除法共上商 n+1 次 (末位恒置 1) 第一次为商符
- ▶加n次 移n次
- >第一次商可判溢出
- ▶精度误差最大为 2-n

6.4 浮点四则运算

一、浮点加减运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

1. 对阶

(1) 求阶差

(I) 來所差
$$\Delta j = j_x - j_y = \begin{cases} = 0 & j_x = j_y & \text{已对齐} \\ > 0 & j_x > j_y \begin{cases} x \text{向 } y \text{ 看齐} & S_x - 1, j_x - 1 \\ y \text{ 向 } x \text{ 看齐} & \checkmark S_y \rightarrow 1, j_y + 1 \end{cases} \\ < 0 & j_x < j_y \begin{cases} x \text{ 向 } y \text{ 看齐} & \checkmark S_x \rightarrow 1, j_x + 1 \\ y \text{ 向 } x \text{ 看齐} & S_y \leftarrow 1, j_y - 1 \end{cases}$$

(2) 对阶原则

小阶向大阶看齐

例如 $x = 0.1101 \times 2^{01}$ $y = (-0.1010) \times 2^{11}$ 6.4 求 x+y

解: $[x]_{\stackrel{?}{=}} = 00, 01; 00.1101$ $[y]_{\stackrel{?}{=}} = 00, 11; 11.0110$

1. 对阶

① 求阶差
$$[\Delta j]_{\dot{\gamma}} = [j_x]_{\dot{\gamma}} - [j_y]_{\dot{\gamma}} = 00,01$$

+ 11,01
11,10

阶差为负 (-2) $: S_x \rightarrow 2$ $j_x + 2$

- ② 对阶 $[x]_{*} = 00, 11; 00.0011$
- 2. 尾数求和

$$[S_x]_{rac{h}{V}}$$
 = 00.0011 对阶后的 $[S_x]_{rac{h}{V}}$ + $[S_y]_{rac{h}{V}}$ = 11.0110 11.1001 $\therefore [x+y]_{rac{h}{V}}$ = 00, 11; 11. 1001

3. 规格化

6.4

(1) 规格化数的定义

$$r=2 \qquad \frac{1}{2} \leq |S| < 1$$

(2) 规格化数的判断

S>0	规格化形式	S < 0	规格化形式
真值	$0.1 \times \times \cdots \times$	真值	$-0.1\times\times$ ···×
原码	$0.1 \times \times \cdots \times$	原码	1.11×× ···×
补码	$0.1 \times \times \cdots \times$	补码	$1.0 \times \times \times \times$
反码	$0.1 \times \times \cdots \times$	反码	1.0×× ···×

原码 不论正数、负数,第一数位为1

补码 符号位和第1数位不同

特例

$$S = -\frac{1}{2} = -0.100 \cdots 0$$

$$[S]_{\mathbb{R}} = 1.100 \cdots 0$$

$$[S]_{3} = [1.1] 0 0 \cdots 0$$

 $\therefore \left[-\frac{1}{2}\right]_{i}$ 不是规格化的数

$$S = -1$$

$$[S]_{3} = [1.0] 0 0 \cdots 0$$

∴ [-1] → 是规格化的数

(3) 左规

尾数←1, 阶码减1, 直到数符和第一数位不同为止

上例 $[x+y]_{\stackrel{}{\mathbb{A}}} = 00, 11; 11.1001$ 左规后 $[x+y]_{\stackrel{}{\mathbb{A}}} = 00, 10; 11.0010$

$$x + y = (-0.1110) \times 2^{10}$$

(4) 右规

当尾数溢出(>1)时,需右规

即尾数出现 01.×× ···×或 10.×× ···×时

尾数→1,阶码加1

例6.27 $x = 0.1101 \times 2^{10}$ $y = 0.1011 \times 2^{01}$ 6.4

x+y (除阶符、数符外,阶码取 3 位,尾数取 6 位)

解:
$$[x]_{\uparrow \downarrow} = 00,010;00.110100$$
 $[y]_{\uparrow \downarrow} = 00,001;00.101100$

① 对阶

$$[\Delta j]_{\mbox{\tiny h}} = [j_x]_{\mbox{\tiny h}} - [j_y]_{\mbox{\tiny h}} = 00,010 \\ + 11,111 \\ \hline 100,001$$
 阶差为 +1 $\therefore S_y \rightarrow 1, j_y + 1$ $\therefore [y]_{\mbox{\tiny h'}} = 00,010;00.010110$

②尾数求和

$$[S_x]_{\stackrel{}{ ext{$^{\chi}$}}} = 00. \ 110100$$
 $+ [S_y]_{\stackrel{}{ ext{$^{\chi}$}}} = 00. \ 010110$ 对阶后的 $[S_y]_{\stackrel{}{ ext{$^{\chi}$}}}$ 尾数溢出需右规

③ 右规 6.4

 $[x+y]_{3} = 00, 010; 01.001010$

右规后

 $[x+y]_{3} = 00, 011; 00. 100101$

 $\therefore x+y=0.100101\times 2^{11}$

4. 舍入

在对阶和右规过程中,可能出现尾数末位丢失引起误差,需考虑舍入

- (1) 0 舍 1 入法
- (2) 恒置 "1" 法

例 6.28
$$x = (-\frac{5}{8}) \times 2^{-5}$$
 $y = (\frac{7}{8}) \times 2^{-4}$

 x_{-y} (除阶符、数符外,阶码取 3 位,尾数取 6 位)

解: $x = (-0.101000) \times 2^{-101}$

 $y = (0.111000) \times 2^{-100}$

 $[x]_{\slash} = 11,011; 11.011000 \qquad [y]_{\slash} = 11,100; 00.111000$

① 对阶

$$[\Delta j]_{2} = [j_x]_{2} - [j_y]_{2} = 11,011 + 00,100$$

$$11,111$$

阶差为
$$-1$$
 $\therefore S_x \longrightarrow 1$, j_x+1

 $[x]_{\frac{1}{2}} = 11, 100; 11.101100$

② 尾数求和

③右规

 $[x+y]_{3} = 11, 100; 10. 110100$

右规后

 $[x+y]_{3} = 11, 101; 11.011010$

$$\therefore x - y = (-0.100110) \times 2^{-11}$$
$$= (-\frac{19}{32}) \times 2^{-3}$$

5. 溢出判断

6.4

设机器数为补码,尾数为规格化形式,并假设阶符取 2 位,阶码取 7 位,数符取 2 位,尾数取 n 位,则该补码在数轴上的表示为

6.4

二、浮点乘除运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

1. 乘法

$$x \cdot y = (S_x \cdot S_y) \times 2^{j_x + j_y}$$

2. 除法

$$\frac{x}{y} = \frac{S_x}{S_y} \times 2^{j_x - j_y}$$

- 3. 步骤
 - (1) 阶码采用 补码定点加(乘法)减(除法)运算
 - (2) 尾数乘除同 定点 运算
 - (3) 规格化
- 4. 浮点运算部件 阶码运算部件, 尾数运算部件

6.5 算术逻辑单元

一、ALU 电路

组合逻辑电路

 K_i 不同取值

 F_i 不同

四位 ALU 74181

M=0 算术运算

M=1 逻辑运算

 $S_3 \sim S_0$ 不同取值,可做不同运算

二、快速进位链

1. 并行加法器

2. 串行进位链

6.5

进位链

传送进位的电路

串行进位链 进位串行传送

以 4 位全加器为例,每一位的进位表达式为

$$C_0 = d_0 + t_0 C_{-1} = \overline{d_0 \cdot t_0 C_{-1}}$$

$$C_1 = d_1 + t_1 C_0$$

$$C_2 = d_2 + t_2 C_1$$

设与非门的级延迟时间为t,

$$C_3 = d_3 + t_3 C_2$$

4位全加器产生进位的全部时间为8t,

n 位全加器产生进位的全部时间为 2nt,

3. 并行进位链(先行进位,跳跃进位)

(1) 单重分组跳跃进位链

6.5

n 位全加器分若干小组,小组中的进位同时产生,小组与小组之间采用串行进位 以 n = 16 为例

(2) 双重分组跳跃进位链

6.5

n 位全加器分若干大组,大组中又包含若干小组。每个大组中小组的最高位进位同时产生。 大组与大组之间采用串行进位。

以n=32为例

(3) 双重分组跳跃进位链 大组进位分析

6.5

以第8小组为例

$$C_{3} = d_{3} + t_{3}C_{2} = d_{3} + t_{3}d_{2} + t_{3}t_{2}d_{1} + t_{3}t_{2}t_{1}d_{0} + t_{3}t_{2}t_{1}t_{0}C_{-1}$$

$$= D_{8} + T_{8}C_{-1}$$

D₈ 小组的本地进位 与外来进位无关

T₈ 小组的传送条件 与外来进位无关 传递外来进位

同理 第 7 小组
$$C_7 = D_7 + T_7 C_3$$
 第 6 小组 $C_{11} = D_6 + T_6 C_7$ 第 5 小组 $C_{15} = D_5 + T_5 C_{11}$ 进一步展开得

$$C_3 = D_8 + T_8 C_{-1}$$

$$C_7 = D_7 + T_7 C_3 = D_7 + T_7 D_8 + T_7 T_8 C_{-1}$$

$$C_{11} = D_6 + T_6 C_7 = D_6 + T_6 D_7 + T_6 T_7 D_8 + T_6 T_7 T_8 C_{-1}$$

$$C_{15} = D_5 + T_5 C_{11} = D_5 + T_5 D_6 + T_5 T_6 D_7 + T_5 T_6 T_7 D_8 + T_5 T_6 T_7 T_8 C_{-1}$$

(4) 双重分组跳跃进位链的大组进位线路 6.5

(5) 双重分组跳跃进位链的小组进位线路

6.5 以第8小组为例 只产生低3位的进位和本小组的 D₈ T₈ D_8 ≥1 ≥1 & & & &

(7) n=32 双重分组跳跃进位链

当 $d_i t_i$ 形成后 经 2.5 t_y 产生 C_2 、 C_1 、 C_0 、 $D_1 \sim D_8$ 、 $T_1 \sim T_8$

 $5t_y$ 产生 C_{15} 、 C_{11} 、 C_7 、 C_3

7.5 t_y 产生 $C_{18} \sim C_{16}$ 、 $C_{14} \sim C_{12}$ 、 $C_{10} \sim C_8$ 、 $C_6 \sim C_4$ C_{31} 、 C_{27} 、 C_{23} 、 C_{19}

10 t_y 产生 $C_{30} \sim C_{28}$ 、 $C_{26} \sim C_{24}$ 、 $C_{22} \sim C_{20}$