Previously.

This Section.

- Ideals

– Ring Homomorphisms

- Principal Ideals

- First Isomorphism Theorem for Rings

- Prime Ideals

- Maximal Ideals

Exercise 1. Consider $\theta: M_2(\mathbb{Z}) \to M_2(\mathbb{Z})$ defined by

$$\theta\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}.$$

(a) What is
$$\theta \left(\begin{bmatrix} 7 & 23 \\ 67 & -535 \end{bmatrix} \right)$$
?

(b) Does
$$\theta$$
 satisfy $\theta(A+B) = \theta(A) + \theta(B)$?

(c) Does
$$\theta$$
 satisfy $\theta(AB) = \theta(A)\theta(B)$?

(d) What is
$$\theta^{-1} \left(\begin{bmatrix} \bar{0} & \bar{0} \\ \bar{0} & \bar{0} \end{bmatrix} \right)$$
?

Definition. If R and S are rings with unity, we call a map $\theta:R\to S$ a ring homomorphism if

1.
$$\theta(r_1 + r_2) =$$

2.
$$\theta(r_1r_2) =$$

3.
$$\theta(1_R) = 1_S$$

Example. (a) $\theta: \mathbb{Z} \to \mathbb{Z}_n, \ \theta(a) = \overline{a}$

(b)
$$\theta: R \to R/I, \, \theta(r) = r + I$$

(c)
$$\pi_1: R_1 \times R_2 \to R_1, \, \pi_1(r_1, r_2) = r_1$$

Theorem 3.4.1. Let $\theta: R \to R_1$ be a ring homomorphism and let $r \in R$.

1.
$$\theta(0) = 0$$

2.
$$\theta(-r) = -\theta(r)$$
 for all $r \in R$

3.
$$\theta(kr) = k\theta(r)$$
 for all $r \in R$ and $k \in \mathbb{Z}$

4.
$$\theta(r^n) = \theta(r)^n$$
 for all $r \in R$ and $n \ge 0$ in \mathbb{Z}

5. If
$$u \in R^*$$
, $\theta(u^k) = \theta(u)^k$ for all $k \in \mathbb{Z}$.

Exercise 2. Consider $\theta : \mathbb{Z} \to \mathbb{Z}_9$ with $\theta(a) = \overline{a}$.

Use this map, Theorem 3.4.1, and contradiction to show there are no integers a, b, c for which

$$a^3 + b^3 + c^3 = 31.$$

Theorem 3.4.2. Let $R \neq 0$ be a commutative ring with characteristic p, and define

$$\phi: R \to R$$
 by $\phi(r) = r^p$ for all $r \in R$.

Then ϕ is a ring homomorphism.

We call this ϕ the Frobenius Endomorphism. If ϕ is a finite field, we call ϕ the Frobenius Automorphism, which is an isomorphism.

.

Definition. If $\theta: R \to S$ is a ring homomorphism, then the **kernel** of θ is

$$\ker(\theta) = \{ r \in R \mid \theta(r) = 0_S \}.$$

The image of θ is

$$\operatorname{im}(\theta) = \theta(R) = \{\theta(r) \mid r \in R\}.$$

Theorem 3.4.3. Let $\theta: R \to S$ be a ring homomorphism. Then

1. $\theta(R)$ is ______ of _____

2. $\ker \theta$ is ______ of _____

First Isomorphism Theorem for Rings (Theorem 3.4.4). Let $\theta: R \to S$ be a ring homomorphism and write $A = \ker \theta$. Then θ induces a ring isomorphism

 $\bar{\theta}: R/A \to \theta(R)$ given by $\bar{\theta}(r+A) = \theta(r)$ for all $r \in R$.

Note. Now's a great time to discuss some notation.

In R/A, elements look like r + A where $r \in R$.

If A is clear, we can simplify our notation by writing \overline{r} .

Example. In $\mathbb{Z}/n\mathbb{Z}$, elements are of the form $k + n\mathbb{Z}$ for $k \in \mathbb{Z}$. These correspond to \overline{k} in \mathbb{Z}_n .

Example. Though to make our lives easier, if m|n, we might want to use the longer version in the restriction map,

$$\phi: \mathbb{Z}_n \to \mathbb{Z}_m$$
 with $\phi(k+n\mathbb{Z}) = k + m\mathbb{Z}$.

Corollary. Let A and B be ideals of the rings R and S, respectively. Then $A \times B$ is an ideal of $R \times S$ and

$$\frac{R \times S}{A \times B} \cong \frac{R}{A} \times \frac{S}{B}.$$

Corollary. Let A be an ideal of the ring R. Then $M_n(A)$ is an ideal of $M_n(R)$ and

$$\frac{M_n(R)}{M_n(A)} \cong M_n(R/A).$$