

Don W. Martens
 James B. Bear
 Darrell L. Olafson
 William B. Burkhardt
 William H. Nieman
 Arthur S. Rose
 James F. Lenahan
 Ned A. Israelsen
 Drew S. Hamilton
 Jerry T. Sewell
 John B. Ganguly, Jr.
 Edward A. Schlaeter
 Gerard von Hoffmann
 Joseph R. Re
 Catherine J. Holland
 John M. Caron
 Karen Vogel Well
 Andrew M. Simpson
 Jeffrey L. Van Hoosier
 Daniel E. Allman
 Stephen C. Jensen
 Vito A. Canuso III
 William H. Shreve
 Lynda J. Zdrah-Symest
 Steven J. Nalupsky
 Paul A. Stewart
 Joseph F. Jennings
 Craig G. Summers
 AnneMarie Kalsar
 Brendon R. Babcock
 Thomas F. Smogol, Jr.
 Michael H. Tronholm
 Diane M. Reed
 Ronald J. Schoenbaum
 John R. King
 Frederick S. Berreuta
 Nancy W. Vencko
 John P. Gleentanner
 Adet S. Akhtar
 Thomas R. Arno
 David N. Weiss
 Daniel Hart, Ph.D.
 Douglas G. Muehlhauser
 Lori Lee Yamato
 Michael K. Friedland
 Dale C. Hunt, Ph.D.
 Richard E. Campbell
 Stacey R. Halpern
 Lee W. Henderson, Ph.D.
 Mark M. Abumari

Jon W. Gurke
 John W. Holcomb
 Joseph M. Relman, Ph.D.
 Michael L. Fuller
 Eric M. Nelson
 Mark R. Benedict, Ph.D.
 Paul N. Conover
 Robert J. Roby
 Sabrina H. Lee
 Karolyn A. Detanyay
 Joseph S. Cianfrani
 William R. Zimmerman
 Paul C. Steinhardt
 Eric S. Furman, Ph.D.
 Susan M. Nadang
 James W. Hill, M.D.
 Deborah S. Shepherd
 Glen L. Nutall
 Tirzah Abd Lowe
 Sanjivpal S. Gill
 Rose M. Thlesser, Ph.D.
 Michael A. Gulliana
 Mark J. Ketz
 Rabinder N. Narula
 Bruce S. Ilchawitz, Ph.D.
 Michael S. Okamoto
 John M. Grover
 Mallary K. De Merlier
 Irfan A. Letoof
 Amy C. Christensen
 Sharon S. Ng
 Mark J. Gallagher, Ph.D.
 Davy G. Jankowski, Ph.D.
 Brian C. Horne
 Payson J. LeMeilleur
 Sheila N. Swanson
 Ben A. Kettensilvabogen
 Linda H. Liu
 Andrew N. Merickel, Ph.D.
 David L. Hauser
 James F. Herkenhoff
 Scott Loras Murray
 Andrew M. Douglas
 Marc T. Morley
 Salima A. Morani, Ph.D.
 Sam K. Tahmassabi, Ph.D.
 Christy G. Lee
 Jonathan A. Hyman
 Curtiss C. Doster
 Joseph J. Malon, Ph.D.

Knobbe Martens Olson & Bear LLP

Intellectual Property Law

550 West C Street
 Suite 1200
 San Diego CA 92101
 Tel 619-235-6550
 Fax 619-235-0176
 kmob.com

May 19, 2004
 5:20 PM

ORIGINAL WILL FOLLOW VIA:

- Mail
- Courier
- International Airmail
- Hand Delivery
- Will Not Follow
- With Enclosures
- Without Enclosures

Facsimile Transmittal Sheet

Confidentiality Notice:

The documents accompanying this facsimile transmission contain confidential information which may be legally privileged. The information is intended only for the use of the recipient named below. If you have received this facsimile in error, please immediately notify us by telephone to arrange for return of the original documents to us; any disclosure, copying, distribution or the taking of any action in reliance on the contents of this faxed information is strictly prohibited.

TO: Examiner Maria B. Marvich, Ph.D.
 FIRM: U.S. Patent and Trademark Office
 FACSIMILE NO.: 703-872-9306
 FROM: Erik T. Anderson
 CLIENT CODE: UC081.001A
 PAGES: 5 (INCLUDING THIS SHEET)

IF YOU DID NOT RECEIVE ALL OF THE PAGES, PLEASE CALL BACK IMMEDIATELY.

MESSAGE:

I attach possible claim amendments for discussion purposes only. We look forward to the Telephonic Interview scheduled for 1:00 p.m. (EST) on 5/20/04.

RECEIVED
 CENTRAL FAX CENTER

MAY 19 2004

Unofficial

2040 Main Street
 14th Floor
 Irvine, CA 92614
 Tel 949-780-0404

201 California Street
 Suite 1150
 San Francisco CA 94111
 Tel 415-354-4114

1901 Avenue of the Stars
 Suite 1500
 Los Angeles CA 90067
 Tel 310-851-3450

3403 Tenith Street
 Suite 700
 Riverside CA 92501
 Tel 909-781-9231

1114 Marsh Street
 San Luis Obispo CA 93407
 Tel 805-547-5530
 Fax 805-547-5530

To: Examiner Maria B. Marvich, Ph.D.

Possible Claim Amendments for discussion during Interview 5/20/04

U.S. Application No. 10/042,775

Attorney ref: UC081.001A

NOT FOR ENTRY INTO THE FILE

1. A method for recombinantly producing functional ataxia-telangiectasia (ATM) protein, comprising:

providing a viral vector comprising a cDNA encoding the ATM protein operably linked to a promoter;

infecting ATM deficient mammalian L3 cells with said viral vector, wherein said mammalian L3 cells are thereby made to produce functional ATM protein; and

isolating said functional ATM protein produced by said mammalian L3 cells.

2. The method of Claim 1, wherein said viral vector comprising a cDNA encoding the ATM protein operably linked to a promoter is a vaccinia viral vector.

3. ~~The method of Claim 1, wherein said viral vector comprising a cDNA encoding the ATM protein operably linked to a promoter is a variola viral vector.~~

4. (cancelled)

5. The method of Claim 1, wherein said promoter is a synthetic early/late viral promoter.

6. ~~The method of Claim 1, wherein said mammalian cells are human cells.~~

7. ~~The method of Claim 1, wherein said ATM-deficient mammalian cells are HeLa cells.~~

8. (cancelled)

9. ~~The method of Claim 1, wherein said ATM-deficient mammalian cells are L3 cells.~~

10. The method of Claim 1, further wherein said ATM-deficient mammalian L3 cells producing said functional ATM protein exhibit regain of ATM function.

11. The method of Claim 1 wherein isolating said functional ATM protein comprises binding an anti-ATM antibody to said ATM protein.

12. The method of Claim 1, where said cDNA encoding the ATM protein is modified to comprise a FLAG epitope.

13. The method of Claim 12, wherein isolating said functional ATM protein comprises binding an antibody specific for the FLAG epitope to said ATM protein.

14. The method of Claim 1, wherein said functional ATM protein is produced at a level of greater than 2 µg substantially purified ATM protein per 300 grams fresh weight of host cells or host tissue.

15. The method of Claim 1, further wherein said functional ATM protein is capable of phosphorylating ATM substrates.

16. The method of Claim 15, wherein said substrates comprise p53 and PHAS-1.

17. A method for recombinantly producing functional ataxia-telangiectasia (ATM) protein, comprising:

providing a vaccinia viral vector comprising a cDNA encoding the ATM protein operably linked to a promoter;

infecting mammalian cells with said vaccinia viral vector, wherein said mammalian cells produce functional ATM protein; and

isolating said functional ATM protein produced by said mammalian cells by binding an anti-ATM antibody to the ATM protein;

wherein the yield of functional ATM protein is at least 2 µg substantially purified ATM protein per 300 grams fresh weight of mammalian cells.

18. The method of Claim 17, wherein the yield of functional ATM protein is greater than 5 µg substantially purified ATM protein per 300 grams fresh weight of mammalian cells.

19. The method of Claim 17, wherein said mammalian cells are human cells.

20. (cancelled)

21. The method of Claim 17, where said cDNA encoding the ATM protein is modified to comprise a FLAG epitope.

22. (cancelled)

23. A method for recombinantly producing functional ataxia-telangiectasia (ATM) protein, comprising:

| providing a vaccinia viral vector comprising a cDNA encoding the ATM protein operably linked to a promoter;

| infecting mammalian cells with said vaccinia viral vector, wherein said mammalian cells produce functional ATM protein; and

isolating said functional ATM protein produced by said mammalian cells wherein said functional ATM protein is produced at a level of greater than 2 µg substantially purified ATM protein per 300 grams fresh weight of host cells or host tissue.

24. The method of Claim 23, wherein said mammalian cells are human cells.

25. The method of Claim 23 wherein said mammalian cells are L3 cells.

26. The method of Claim 23, wherein isolating said functional ATM protein comprises binding an anti-ATM antibody to the ATM protein.

27. The method of Claim 23, where said cDNA encoding the ATM protein is modified to comprise a FLAG epitope.

28. The method of Claim 23, wherein isolating said functional ATM protein comprises binding an antibody specific for the FLAG epitope to said ATM protein.

29. (new) A method for recombinantly producing functional ataxia-telangiectasia (ATM) protein, comprising:

| providing a vaccinia viral vector comprising a cDNA encoding the ATM protein operably linked to a promoter;

| infecting ATM deficient mammalian cells with said vaccinia viral vector, wherein said mammalian cells are thereby made to produce functional ATM protein; and

| isolating said functional ATM protein produced by said mammalian cells.

30. (new) The method of Claim 29 wherein said promoter is a synthetic early/late viral promoter.

31. (new) The method of Claim 29 wherein said mammalian cells are human cells.

32. (new) The method of Claim 29 wherein said ATM deficient mammalian cells are L3 cells.

33. (new) The method of Claim 29, wherein said ATM-deficient mammalian cells producing said functional ATM protein exhibit regain of ATM function.

34. (new) The method of Claim 29 wherein isolating said functional ATM protein comprises binding an anti-ATM antibody to said ATM protein.

35. (new) The method of Claim 29, wherein said cDNA encoding the ATM protein is modified to comprise a FLAG epitope.

36. (new) The method of Claim 35, wherein isolating said functional ATM protein comprises binding an antibody specific for the FLAG epitope to said ATM protein.

37. (new) The method of Claim 29, further wherein said functional ATM protein is capable of phosphorylating ATM substrates.

38. (new) The method of Claim 37, wherein said substrates comprise p53 and PHAS-1.

S:\DOCS\ETA\ETA-2134.DOC
051904