Homework #2

MTH 9899 Baruch College DATA SCIENCE II: Machine Learning

Due: May 1, 2019 - 18:00

Notes

• Code for this MUST be written in Python 3.x.

- \bullet Do NOT use 3^{rd} Party Packages for the regression functions unless specified.
- The Due Date is Friday night, not at the beginning of class. Note however that more homework will be assigned the upcoming week so it is best to start early.

Problem 1 Implement a simple regression tree. We will use point estimates in the leaves and use the CART Variance Reduction measure for a splitting criteria.

$$VR(S) = \operatorname{var} S - \sum_{i=0}^{1} \frac{|S_i|}{|S|} \operatorname{var} S_i$$

Use the attached code as your starting point

- For simplicity's sake, divide each attribute up into 5 equal sized bins, and test each end point of a bin as a potential split point. Test your algorithm on a 50000 row dataset generated using the attached generate_test_data function. Test against different max_depths and report a graph of depth vs R^2 . Now, on the same graph, plot R^2 where you are using a new dataset, generated independently of the one used to train the tree. Does it look different? Why?
- One way to improve this is to build a random forest of these trees. Generate 100 of these trees, each with a different bootstrapped sample of X. At each split point, select $\frac{1}{3}$ of the features randomly as potential split variables. For values of $T \in \{1, 2, 5, 10, 20, 30, 50, 75, 100\}$, select multiple random boostrapped samples of these 100 trees, and for each forest of size T, predict on a test data set and calculate the mean and median R^2 for the forests. Plot these as a function of T and calculate the average pairwise correlation of the predictions from each tree.
- Make the number of features to consider splitting on at each split point a parameter instead of hard-coded to $\frac{1}{3}$. Generate more trees with this set to 1 and calculate the pairwise correlation of these trees. Is it higher or lower than when we used $\frac{1}{3}$?