Chapter 2, Section 9

James Lee

April 23, 2025

- 1. Let X be a Noetherian scheme, Y a closed subscheme, and \hat{X} the completion of X along Y. We call the ring $\Gamma(\hat{X}, \mathcal{O}_{\hat{X}})$ the ring of formal-regular functions on X along Y. In this exercise we show that if Y is a connected, nonsingular, positive dimensional subvariety of $X = \mathbb{P}^n_k$ over an algebraically closed field k, then $\Gamma(\hat{X}, \mathcal{O}_{\hat{X}}) = k$.
 - (a) Let \mathscr{J} be the ideal sheaf of Y. Use (8.13) and (8.17) to show that here is an inclusion of sheaves on Y, $\mathscr{J}/\mathscr{J}^2 \hookrightarrow \mathscr{O}_Y(-1)^{n+1}$.
 - (b) Show that for any $r \geq 1$, $\Gamma(Y, \mathcal{J}^r/\mathcal{J}^{r+1}) = 0$.
 - (c) Use the exact sequences

$$0 \to \mathcal{J}^r/\mathcal{J}^{r+1} \to \mathcal{O}_X/\mathcal{J}^{r+1} \to \mathcal{O}_X/\mathcal{J}^r \to 0$$

and induction on r to show that $\Gamma(Y, \mathcal{O}_X/\mathcal{J}^r) = k$ for all $r \geq 1$.

- (d) Conclude that $\Gamma(\hat{X}, \mathcal{O}_{\hat{X}}) = k$.
- **2.** Use the result of (Ex. 9.1) to prove the following geometric result. Let $Y \subseteq X = \mathbb{P}^n_k$ be as above, and let $f: X \to Z$ be a morphism of k-varieties. Suppose that f(Y) is a single closed point $P \in Z$. Then f(X) = P also.
- 3. Prove the analogue of (5.6) for formal schemes, which says, if \mathfrak{X} is an affine formal scheme, and if

$$0 \to \mathfrak{F}' \to \mathfrak{F} \to \mathfrak{F}'' \to 0$$

is an exact sequence of $\mathscr{O}_{\mathfrak{X}}$ -modules, and if \mathfrak{F}' is coherent, then the sequence of global sections

$$0 \to \Gamma(\mathfrak{X}, \mathfrak{F}') \to \Gamma(\mathfrak{X}, \mathfrak{F}) \to \Gamma(\mathfrak{X}, \mathfrak{F}'') \to 0$$

is exact. For the proof, proceed in the following steps.

(a) Let \mathfrak{J} be an ideal of definition for \mathfrak{X} , and for each n>0 consider the exact sequence

$$0 \to \mathfrak{F}'/\mathfrak{J}^n\mathfrak{F}' \to \mathfrak{F}/\mathfrak{J}^n\mathfrak{F} \to \mathfrak{F}'' \to 0.$$

Use (5.6), slightly modified, to show that for every open affine subset $\mathfrak{U} \subseteq \mathfrak{X}$, the sequence

$$0 \to \Gamma(\mathfrak{U}, \mathfrak{F}'/\mathfrak{J}^n \mathfrak{F}') \to \Gamma(\mathfrak{U}, \mathfrak{F}/\mathfrak{J}^n \mathfrak{J}) \to \Gamma(\mathfrak{U}, \mathfrak{F}'') \to 0$$

is exact.

- (b) Now pass to the limit, using (9.1), (9.2), and (9.6). Conclude that $\mathfrak{F} \cong \varprojlim \mathfrak{F}/\mathfrak{JF}$ and that the sequence of global sections above is exact.
- 4. Use (Ex. 9.3) to prove that if

$$0 \to \mathfrak{F}' \to \mathfrak{F} \to \mathfrak{F}'' \to 0$$

is an exact sequence of $\mathscr{O}_{\mathfrak{X}}$ -modules on a Noetherian formal scheme \mathscr{X} , and if \mathfrak{F}' , \mathfrak{F}'' are coherent, then \mathscr{F} is coherent.

- 5. If \mathscr{F} is a coherent sheaf on a Noetherian formal scheme \mathscr{X} , which can be generated by global sections, show in fact that it can be generated by a finite number of its global sections.
- 6. Let \mathfrak{X} be a Noetherian formal scheme, let \mathfrak{J} be an ideal of definition, and for each n, let Y_n be the scheme $(\mathfrak{X}, \mathscr{O}_{\mathfrak{X}}/\mathfrak{J}^n)$. Assume that the inverse system of groups $(\Gamma(Y_n, \mathscr{O}_{Y_n}))$ satisfies the Mittag-Leffler condition. Then prove that $\operatorname{Pic} \mathfrak{X} = \varprojlim \operatorname{Pic} Y_n$. As in the case of a scheme, we define $\operatorname{Pic} \mathfrak{X}$ to be the group of locally free $\mathscr{O}_{\mathfrak{X}}$ -modules of rank 1 under the operation \otimes . Proceed in the following steps.

1

- (a) Use the fact that $\ker(\Gamma(Y_{n+1}, \mathcal{O}_{Y_{n+1}})) \to \Gamma(Y_n, \mathcal{O}_{Y_n})$ is a nilpotent ideal to show that the inverse system $(\Gamma(Y_n, \mathcal{O}_{Y_n}^*))$ of units in the respective rings also satisfies (ML).
- (b) Let \mathfrak{F} be a coherent sheaf of $\mathscr{O}_{\mathfrak{X}}$ -modules, and assume that for each n, there is some isomorphism $\varphi_n : \mathfrak{F}/\mathfrak{F}^n\mathfrak{F} \cong \mathscr{O}_{Y_n}$. Be careful, because the φ_n may not be compatible with the maps in the two inverse systems $(\mathfrak{F}/\mathfrak{F}^n\mathfrak{F})$ and $(\mathscr{O}_{Y_n})!$ Then show that there is an isomorphism $\mathfrak{F} \cong \mathscr{O}_{\mathfrak{X}}$. Conclude that the natural map $\operatorname{Pic} \mathfrak{X} \to \varprojlim \operatorname{Pic} Y_n$ is injective.
- (c) Given an invertible sheaf \mathcal{L}_n on Y_n for each n, and given isomorphism $\mathcal{L}_{n+1} \otimes \mathcal{O}_{Y_n} \cong \mathcal{L}_n$, construct maps $\mathcal{L}_{n'} \to \mathcal{L}_n$ for each $n' \geq n$ so as to make an inverse system, and show that $\mathfrak{L} = \varprojlim \mathcal{L}_n$ is a coherent sheaf on \mathfrak{X} . Then show that \mathfrak{L} is locally free of rank 1, and thus conclude that the map $\operatorname{Pic} \mathfrak{X} \to \varprojlim \operatorname{Pic} Y_n$ is surjective. Again be careful, because even though each \mathcal{L}_n is locally free of rank 1, the open sets needed to make them free might get smaller and smaller with n.
- (d) Show that the hypothesis " $(\Gamma(Y_n, \mathscr{O}_{Y_n}))$ satisfies (ML)" is satisfied if either \mathfrak{X} is affine, or each Y_n is projective over a field k.