AL/Autovalori/2020-05-28

1. Autovalori

Sia A una matrice reale $n \times n$ tale che $A^{2020} = 0$.

- (a) Possiamo dire che dim $\operatorname{Ker}(A) \ge 1$? Sì \checkmark No
- (b) Possiamo dire che A ammette un autovalore uguale a 0? Sì \checkmark No
- (c) Possiamo dire che le righe di A sono linearmente indipendenti? Sì No \checkmark

2. Autovalori

Sia A una matrice reale $n \times n$ tale che $A^{2020} = 0$.

- (a) Possiamo dire che dim Imm(A) = n? Sì No \checkmark
- (b) Possiamo dire che gli autovalori di A sono diversi da 0? Sì No \checkmark
- (c) Possiamo dire che le colonne di A sono linearmente dipendenti? Sì \checkmark No

AL/Sottospazi/2020-05-28

1. Sottospazi

Consideriamo il piano $V\subseteq\mathbb{R}^3$ definito dall'equazione x+4y-6z=0.

(a) Trovare $a \in b$ tali che il vettore

$$u = \begin{pmatrix} -3 \\ a \\ b \end{pmatrix}$$

sia contenuto nell'ortogonale V^{\perp} di V.

Soluzione: $a = \boxed{-12} \quad \checkmark$, $b = \boxed{18} \quad \checkmark$

(b) Trovare $c \in d$ tali che la dimensione dell'intersezione del sottospazio

$$W = \operatorname{Span}\left(\begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} c\\d\\7 \end{pmatrix}\right)$$

 $con V sia \neq 1.$

Soluzione:
$$c = \boxed{7}$$
, $d = \boxed{0}$

2. Sottospazi

Consideriamo il piano $V\subseteq\mathbb{R}^3$ definito dall'equazione x+3y-5z=0.

(a) Trovare $a \in b$ tali che il vettore

$$u = \begin{pmatrix} -2\\a\\b \end{pmatrix}$$

sia contenuto nell'ortogonale V^{\perp} di V.

Soluzione:
$$a = \boxed{-6} \quad \checkmark$$
, $b = \boxed{10} \quad \checkmark$

(b) Trovare $c \in d$ tali che la dimensione dell'intersezione del sottospazio

$$W = \operatorname{Span}\left(\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} c\\9\\d \end{pmatrix}\right)$$

 $con V sia \neq 1.$

Soluzione:
$$c = \boxed{9}$$
, $d = \boxed{0}$

AL/Diagonalizzabile/2020-05-28

1. Diagonalizzabile

Si consideri la matrice

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & a \\ 0 & -a & 0 \end{pmatrix}$$

- (a) Esiste un numero reale $a \neq 0$ tale che A sia diagonalizzabile su \mathbb{R} ? Sì No \checkmark
- (b) Si può dire che per ogni numero reale $a \neq 0$ la matrice A è diagonalizzabile su \mathbb{C} ? Sì \checkmark No
- (c) Si può dire che per ogni numero complesso $a \neq 0$ la matrice A è diagonalizzabile su \mathbb{C} ? Sì \checkmark No

2. Diagonalizzabile

Si consideri la matrice

$$A = \begin{pmatrix} 0 & a & 0 \\ -a & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- (a) Esiste un numero reale $a \neq 0$ tale che A sia diagonalizzabile su \mathbb{R} ? Sì No \checkmark
- (b) Si può dire che per ogni numero reale $a \neq 0$ la matrice A è diagonalizzabile su \mathbb{C} ? Sì \checkmark No
- (c) Si può trovare un numero complesso $a \neq 0$ tale che la matrice A non sia diagonalizzabile su \mathbb{C} ? Sì No \checkmark

MD/Congruenze-esponenziali/2020-05-28

1. Congruenze

Si trovino le soluzioni della congruenza

$$2^x \equiv 31 \pmod{33}$$
.

Scrivere la risposta nella forma $x \equiv a \pmod{m}$ con $0 \le a < m$.

Soluzione:
$$x \equiv \boxed{6 \checkmark} \pmod{\boxed{10 \checkmark}}$$

2. Congruenze

Si trovino le soluzioni della congruenza

$$4^x \equiv 31 \pmod{33}.$$

Scrivere la soluzione nella forma $x \equiv a \pmod{m}$ con $0 \le a < m$.

Soluzione: $x \equiv \boxed{3 \checkmark \pmod{5} \checkmark}$

MD/Counting/2020-05-28

1. Counting

(a) Quante sono le funzioni iniettive $f:\{1,2,3\} \to \{1,2,3,4,5\}$ la cui immagine contiene 4?

Soluzione: Ci sono $\boxed{36}$ \checkmark funzioni con le caratteristiche specificate.

(b) Quante sono le funzioni iniettive $f:\{1,2,3\} \to \{1,2,3,4,5\}$ la cui immagine non contiene 4?

Soluzione: Ci sono $\boxed{24}$ \checkmark funzioni con le caratteristiche specificate.

2. Counting

(a) Quante sono le funzioni iniettive $f:\{1,2,3\} \to \{1,2,3,4\}$ la cui immagine contiene 2?

Soluzione: Ci sono $\boxed{18}$ \checkmark funzioni con le caratteristiche specificate.

(b) Quante sono le funzioni iniettive $f:\{1,2,3\} \to \{1,2,3,4\}$ la cui immagine non contiene 2?

Soluzione: Ci sono $\boxed{6}$ \checkmark funzioni con le caratteristiche specificate.

$\mathrm{MD/Diofantea}/2020\text{-}05\text{-}28$

1. Diofantea

Trovare il minimo $n \geq 20$ tale che l'equazione diofante
an = 60x + 42yha una soluzione.

Soluzione: $n = \boxed{24 \quad \checkmark}$

2. Diofantea

Trovare il minimo n>16 tale che l'equazione diofante
an=35x+56yha una soluzione.

Soluzione: $n = \boxed{21 \quad \checkmark}$