Key	Input Order	Defaults	Remarks
bm	Wx, Wy (waist sizes), WDistx, WDisty (waist positions from beam origin), W1, P, X, Y, Z (position of origin in space), Theta, Phi (orientation), Alpha (rotation of eigenbase for orthogonal beams), Name, Ref X, Y, Z (position of center of HR chord), Theta,	$\label{eq:wx} \begin{array}{ll} \text{Wx} = 1.\text{mm}, \text{Wy} = 1.\text{mm}, \text{WDistx} = 0., \\ \text{WDisty} = 0., \text{W1} = 1064.\text{nm}, \text{P} = 1.\text{W}, \\ \text{X} = 0., \text{Y} = 0., \text{Z} = 0., \text{Theta} = \text{pi}/2., \\ \text{Phi} = 0., \text{Alpha} = 0., \text{Name} = \text{"Beam"}, \\ \text{Ref} = \text{None} \\ \text{X} = 0., \text{Y} = 0., \text{Z} = 0., \end{array}$	Alpha = 0. \leftrightarrow eigen X is \bot to beam direction and has maximum Z component. If direction is $\pm e_Z$ then eigen X is $\pm e_X$ Wedges are counted positive if
mr	Phi (orientation of HR Norm, pointing out), Wedge, Alpha (wedge and wedge rotation), HRK, ARK (curvatures), Diameter, Thickness (of the construction cylinder), N, HRr, HRt, ARr, ARt (power reflectances and transmit- tances), KeepI, Name, Ref	$\label{eq:helicity} \begin{array}{lll} \mbox{Theta} = \mbox{pi}/2., \mbox{Phi} = 0., \mbox{Wedge} = 0., \\ \mbox{Alpha} = 0., \mbox{HRK} = 0.01, \mbox{ARK} = 0., \\ \mbox{Diameter} = 10.\mbox{cm}, \mbox{Thickness} = 2.\mbox{cm}, \\ \mbox{N} = 1.4585, \mbox{HRr} = .99, \mbox{HRt} = .01, \\ \mbox{ARr} = .1, \mbox{ARt} = .9, \mbox{KeepI} = \mbox{False}, \\ \mbox{Name} = \mbox{"Mirror"}, \mbox{Ref} = \mbox{None} \end{array}$	you add material when you increase the wedge.
th	X, Y, Z (position of center of lens), Theta, Phi (orientation of HR Norm, pointing out), Focal (focal length), Diameter, R, T (power reflectance and transmittance), KeepI, Name, Ref	$\begin{array}{llllllllllllllllllllllllllllllllllll$	All parameters which are not present here are internally ajusted in order to fit the input Focal, Diameter and a $N = 1.4584$ value for the optical index
tk	X, Y, Z (position of apex of HR face of lens), Theta, Phi (orientation of HR Norm, pointing out), K1, K2 (curvatures), Diameter, Thickness, N, R, T (power reflectance and transmittance), KeepI, Name, Ref	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Thickness: on optical axis (from apex to apex)
bd	X, Y, Z (position of center of HR), Theta, Phi (orientation of HR Norm, pointing out), Diameter, Thickness, Name, Ref	X=0., Y=0., Z=0., Theta=pi/2., Phi=0., Diameter=5.cm, Thickness=2.cm, Name="Beam-Dump", Ref=None	

Units. (km, m = 1., cm, mm, um, nm), (kW, W = 1., mW, uW, nW), (THz, GHz, MHz, kHz, Hz = 1., mHz, uHz), (ppm = 1.e-6, rad = 1., deg), pi

 $\textbf{Functions.} \quad \sin,\,\cos,\,\tan,\,\arcsin,\,\arccos,\,\arctan,\,\mathrm{sqrt},\,\exp$

Notes.

- ullet Theta, Phi are spherical coordinates around e_Z and Phi = 0. \leftrightarrow $+e_X$
- All constructors can be called without arguments, all parameters have default values.

