In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pandas.plotting import autocorrelation_plot
from statsmodels.graphics.tsaplots import plot_pacf
from statsmodels.tsa.arima_model import ARIMA, ARMAResults
import datetime
import sys
import seaborn as sns
import statsmodels
import statsmodels.stats.diagnostic as diag
from statsmodels.tsa.stattools import adfuller
from scipy.stats.mstats import normaltest
from matplotlib.pyplot import acorr
#plt.style.use('fivethirtyeight')
import warnings
warnings.warn('ignore')
%matplotlib inline
```

C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:17: UserW
arning: ignore

In [2]:

```
df = pd.read_csv(r'C:\Users\datas\Desktop\Python files\data_stocks.csv')
df.head()
```

Out[2]:

								_
	DATE	SP500	NASDAQ.AAL	NASDAQ.AAPL	NASDAQ.ADBE	NASDAQ.ADI	N	
0	1491226200	2363.6101	42.3300	143.6800	129.6300	82.040		
1	1491226260	2364.1001	42.3600	143.7000	130.3200	82.080		
2	1491226320	2362.6799	42.3100	143.6901	130.2250	82.030		
3	1491226380	2364.3101	42.3700	143.6400	130.0729	82.000		
4	1491226440	2364.8501	42.5378	143.6600	129.8800	82.035		
5 rows × 502 columns								~
4							•	

```
In [3]:
```

```
stock_features =['NASDAQ.AAPL','NASDAQ.ADP','NASDAQ.CBOE','NASDAQ.CSCO','NASDAQ.EBAY']
col_list = ['DATE'] + stock_features
df1 = df[col_list]
df1.head()
```

Out[3]:

	DATE	NASDAQ.AAPL	NASDAQ.ADP	NASDAQ.CBOE	NASDAQ.CSCO	NASDAQ.EB#
0	1491226200	143.6800	102.2300	81.03	33.7400	33.397
1	1491226260	143.7000	102.1400	81.21	33.8800	33.39
2	1491226320	143.6901	102.2125	81.21	33.9000	33.410
3	1491226380	143.6400	102.1400	81.13	33.8499	33.33
4	1491226440	143.6600	102.0600	81.12	33.8400	33.400
4						•

In [4]:

```
df1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41266 entries, 0 to 41265
Data columns (total 6 columns):
DATE
               41266 non-null int64
NASDAQ.AAPL
               41266 non-null float64
               41266 non-null float64
NASDAQ.ADP
NASDAQ.CBOE
               41266 non-null float64
               41266 non-null float64
NASDAQ.CSCO
NASDAQ.EBAY
               41266 non-null float64
dtypes: float64(5), int64(1)
memory usage: 1.9 MB
```

In [5]:

```
df1.isnull().sum()
```

Out[5]:

DATE 0
NASDAQ.AAPL 0
NASDAQ.ADP 0
NASDAQ.CBOE 0
NASDAQ.CSCO 0
NASDAQ.EBAY 0
dtype: int64

In [6]:

```
df1 =df1.copy()
df1['DATE'] = pd.to_datetime(df1['DATE'],unit='s')
```

In [9]:

df1.head()

Out[9]:

	DATE	NASDAQ.AAPL	NASDAQ.ADP	NASDAQ.CBOE	NASDAQ.CSCO	NASDAQ.EBAY
0	2017- 04-03 13:30:00	143.6800	102.2300	81.03	33.7400	33.3975
1	2017- 04-03 13:31:00	143.7000	102.1400	81.21	33.8800	33.3950
2	2017- 04-03 13:32:00	143.6901	102.2125	81.21	33.9000	33.4100
3	2017- 04-03 13:33:00	143.6400	102.1400	81.13	33.8499	33.3350
4	2017- 04-03 13:34:00	143.6600	102.0600	81.12	33.8400	33.4000

In [10]:

df1.tail()

Out[10]:

						_
	DATE	NASDAQ.AAPL	NASDAQ.ADP	NASDAQ.CBOE	NASDAQ.CSCO	NASDAQ.
41261	2017- 08-31 19:56:00	164.11	106.565	100.89	32.185	;
41262	2017- 08-31 19:57:00	164.12	106.590	100.88	32.200	;
41263	2017- 08-31 19:58:00	164.01	106.520	100.86	32.200	;
41264	2017- 08-31 19:59:00	163.88	106.400	100.83	32.195	;
41265	2017- 08-31 20:00:00	163.98	106.470	100.89	32.225	₹
4						+

In [11]:

```
df1 = df1.copy()
df1['Month'] = df1['DATE'].dt.date
```

In [12]:

df1.head()

Out[12]:

	DATE	NASDAQ.AAPL	NASDAQ.ADP	NASDAQ.CBOE	NASDAQ.CSCO	NASDAQ.EBAY
0	2017- 04-03 13:30:00	143.6800	102.2300	81.03	33.7400	33.3975
1	2017- 04-03 13:31:00	143.7000	102.1400	81.21	33.8800	33.3950
2	2017- 04-03 13:32:00	143.6901	102.2125	81.21	33.9000	33.4100
3	2017- 04-03 13:33:00	143.6400	102.1400	81.13	33.8499	33.3350
4	2017- 04-03 13:34:00	143.6600	102.0600	81.12	33.8400	33.4000
4						•

In [13]:

```
col_list = ['Month']+ stock_features
df2 = df1[col_list]
df2.head()
```

Out[13]:

	Month	NASDAQ.AAPL	NASDAQ.ADP	NASDAQ.CBOE	NASDAQ.CSCO	NASDAQ.EBAY
0	2017- 04-03	143.6800	102.2300	81.03	33.7400	33.3975
1	2017- 04-03	143.7000	102.1400	81.21	33.8800	33.3950
2	2017- 04-03	143.6901	102.2125	81.21	33.9000	33.4100
3	2017- 04-03	143.6400	102.1400	81.13	33.8499	33.3350
4	2017- 04-03	143.6600	102.0600	81.12	33.8400	33.4000

In [14]:

```
df2.isnull().sum()
```

Out[14]:

Month 0
NASDAQ.AAPL 0
NASDAQ.ADP 0
NASDAQ.CBOE 0
NASDAQ.CSCO 0
NASDAQ.EBAY 0
dtype: int64

In [15]:

```
df2.describe().transpose()
```

Out[15]:

. <u> </u>	count	mean	std	min	25%	50%	75%	max
NASDAQ.AAPL	41266.0	150.453566	6.236826	140.160	144.640	149.9450	155.065	164.51
NASDAQ.ADP	41266.0	103.480398	4.424244	95.870	101.300	102.4400	104.660	121.77
NASDAQ.CBOE	41266.0	89.325485	5.746178	80.000	84.140	89.3150	93.850	101.35
NASDAQ.CSCO	41266.0	32.139336	0.985571	30.365	31.455	31.7733	32.790	34.49
NASDAQ.EBAY	41266.0	34.794506	1.099296	31.890	34.065	34.7700	35.610	37.46

In [16]:

```
final = df2.copy()
final['Month']=pd.to_datetime(final['Month'])
```

In [18]:

```
# Time Series Forecasting for NASDAQ.AAPL
df_AAPL = final[['Month',stock_features[0]]]
df_AAPL.head()
```

Out[18]:

	Month	NASDAQ.AAPL
0	2017-04-03	143.6800
1	2017-04-03	143.7000
2	2017-04-03	143.6901
3	2017-04-03	143.6400
4	2017-04-03	143.6600

In [19]:

```
df_AAPL.set_index('Month',inplace=True)
df_AAPL.head()
```

Out[19]:

NASDAQ.AAPL

Month	
2017-04-03	143.6800
2017-04-03	143.7000
2017-04-03	143.6901
2017-04-03	143.6400
2017-04-03	143.6600

In [20]:

```
df_AAPL.index
```

Out[20]:

```
DatetimeIndex(['2017-04-03', '2017-04-03', '2017-04-03', '2017-04-03', '2017-04-03', '2017-04-03', '2017-04-03', '2017-04-03', '2017-04-03', '2017-04-03', '2017-04-03', '2017-04-03', '2017-08-31', '2017-08-31', '2017-08-31', '2017-08-31', '2017-08-31', '2017-08-31', '2017-08-31'], dtype='datetime64[ns]', name='Month', length=41266, freq=None)
```

In [22]:

```
# Lets review the vital stats
df_AAPL.describe()
```

Out[22]:

NASDAQ.AAPL

count	41266.000000
mean	150.453566
std	6.236826
min	140.160000
25%	144.640000
50%	149.945000
75%	155.065000
max	164.510000

In [23]:

```
# Now lets visualize the data
import seaborn as sns
sns.set_style('whitegrid')
df_AAPL.plot()
plt.title('Time Series Plot for NASDAQ_AAPL')
plt.show()
```


In [24]:

```
# Plotting the moving mean or moving Standard Deviation
# NOTE: Moving mean and moving standard deviation - At any instant 't', we take the mea
n/std of the last year which in
# this case is 12 months)
from statsmodels.tsa.stattools import adfuller
def test_stationarity(timeseries):
    #Determing rolling statistics
    rolmean = timeseries.rolling(12).mean()
    rolstd = timeseries.rolling(12).std()
    #Plot rolling statistics:
    plt.plot(timeseries, color='blue',label='Original')
    plt.plot(rolmean, color='red', label='Rolling Mean')
    plt.plot(rolstd, color='black', label = 'Rolling Std')
    plt.legend(loc='best')
    plt.title('Rolling Mean & Standard Deviation')
    plt.show()
    Pass in a time series, returns ADF report
    result = adfuller(timeseries)
    print('\nAugmented Dickey-Fuller Test:')
    labels = ['ADF Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used'
]
    for value, label in zip(result, labels):
        print(label+' : '+str(value) )
    for k,v in result[4].items():
        print('Crtical {} : value {}'.format(k,v))
    if result[1] <= 0.05:</pre>
        print("strong evidence against the null hypothesis, reject the null hypothesis.
Data has no unit root and is stationary")
        print("weak evidence against null hypothesis, time series has a unit root, indi
cating it is non-stationary ")
```

In [25]:

test_stationarity(df_AAPL['NASDAQ.AAPL'])

Augmented Dickey-Fuller Test:

ADF Test Statistic : -0.9128532997926634

p-value: 0.7837101772613879

#Lags Used : 31

Number of Observations Used : 41234 Crtical 1% : value -3.4305085998723857 Crtical 5% : value -2.8616100975579815 Crtical 10% : value -2.5668073106689477

weak evidence against null hypothesis, time series has a unit root, indica

ting it is non-stationary

In [26]:

```
# Note: This is not stationary because :
# - Mean is increasing even though the std is small
# - Test stat is > critical value.
# - The signed values are compared and the absolute values.
# MAKING THE TIME SERIES STATIONARY
# There are two major factors that make a time series non-stationary. They are:
# - Trend: non-constant mean
# - Seasonality: Variation at specific time-frames
# Differencing
# The first difference of a time series is the series of changes from one period to the
next. We can do this easily with
# pandas. You can continue to take the second difference, third difference, and so on u
ntil your data is stationary.
# First Difference
df_AAPL = df_AAPL.copy()
df AAPL.loc[:,'First Difference'] = df AAPL['NASDAQ.AAPL'] - df AAPL['NASDAQ.AAPL'].shi
ft(1)
```

In [27]:

```
df_AAPL.head()
```

Out[27]:

NASDAQ.AAPL First_Difference

Month		
2017-04-03	143.6800	NaN
2017-04-03	143.7000	0.0200
2017-04-03	143.6901	-0.0099
2017-04-03	143.6400	-0.0501
2017-04-03	143.6600	0.0200

In [28]:

```
df_AAPL = df_AAPL.copy()
df_AAPL.dropna(inplace=True)
```

In [29]:

test_stationarity(df_AAPL['First_Difference'])

Augmented Dickey-Fuller Test:

ADF Test Statistic : -35.73774148340116

p-value : 0.0
#Lags Used : 30

Number of Observations Used : 41234 Crtical 1% : value -3.4305085998723857 Crtical 5% : value -2.8616100975579815 Crtical 10% : value -2.5668073106689477

strong evidence against the null hypothesis, reject the null hypothesis. D

ata has no unit root and is stationary

In [33]:

```
# Seasonal decomposition
from statsmodels.tsa.seasonal import seasonal_decompose
plt.figure(figsize=(11,8))
decomposition = seasonal_decompose(df_AAPL['NASDAQ.AAPL'],freq=12)
trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid
plt.subplot(411)
plt.plot(df AAPL['NASDAQ.AAPL'],label='Original')
plt.legend(loc='best')
plt.subplot(412)
plt.plot(trend, label='Trend')
plt.legend(loc='best')
plt.subplot(413)
plt.plot(seasonal, label='Seasonal')
plt.legend(loc='best')
plt.subplot(414)
plt.plot(residual, label='Residual')
plt.legend(loc='best')
```

Out[33]:

<matplotlib.legend.Legend at 0x1a8020597f0>

In [35]:

This data is seasonal as interpreted by seasonal decomposition plot

In [36]:

```
ts_log_decompose = residual
ts_log_decompose.dropna(inplace=True)
test_stationarity(ts_log_decompose)
```


Augmented Dickey-Fuller Test:

ADF Test Statistic : -43.04343353554242

p-value : 0.0
#Lags Used : 55

Number of Observations Used: 41197 Crtical 1%: value -3.4305087423235587 Crtical 5%: value -2.861610160516496 Crtical 10%: value -2.566807344180027

strong evidence against the null hypothesis, reject the null hypothesis. D

ata has no unit root and is stationary

In [37]:

```
# Note - This is stationary because:
# - Test statistic is lower than critical values.
# - The mean and std variations have small variations with time.
# Autocorrelation and Partial Autocorrelation Plots
# Autocorrelation Interpretation
# The actual interpretation and how it relates to ARIMA models can get a bit complicate
d, but there are some basic common
# methods we can use for the ARIMA model. Our main priority here is to try to figure ou
t whether we will use the AR or MA
#components for the ARIMA model (or both!) as well as how many lags we should use. In g
eneral you would use either AR or MA,
# using both is less common.
# If the autocorrelation plot shows positive autocorrelation at the first lag (lag-1),
then it suggests to use the AR terms
# in relation to the lag
# If the autocorrelation plot shows negative autocorrelation at the first lag, then it
 suggests using MA terms
```

In [38]:

```
from statsmodels.graphics.tsaplots import plot_acf,plot_pacf
```

In [39]:

```
plt.figure(figsize=(20,8))
fig_first = plot_acf(df_AAPL["First_Difference"],lags=30,title='Autocorrelation-NASDAQ.
AAPL')
```

<Figure size 1440x576 with 0 Axes>

In [40]:

```
plt.figure(figsize=(20,8))
fig_pacf_first = plot_pacf(df_AAPL["First_Difference"],lags=30,title='Partial Autocorre
lation-NASDAQ.AAPL')
```

<Figure size 1440x576 with 0 Axes>

In [41]:

```
from pandas.plotting import autocorrelation_plot
autocorrelation_plot(df_AAPL['First_Difference'])
```

Out[41]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a802153d68>

In [42]:

```
# Forecasting a Time Series
# Auto Regressive Integrated Moving Average(ARIMA) -
# It is like a liner regression equation where the predictors depend on parameters (p,
d,q) of the ARIMA model .
# Let me explain these dependent parameters:
# p : This is the number of AR (Auto-Regressive) terms . Example - if p is 3 the predic
tor for y(t) will be y(t-1), y(t-2), y(t-3).
# q : This is the number of MA (Moving-Average) terms . Example — if p is 3 the predict
or for y(t) will be y(t-1),y(t-2),y(t-3).
# d :This is the number of differences or the number of non-seasonal differences .
# Now let's check out on how we can figure out what value of p and q to use. We use two
popular plotting techniques; they are:
# Autocorrelation Function (ACF): It just measures the correlation between two consecut
ive (lagged version). example at lag 4,
# ACF will compare series at time instance t1...t2 with series at instance t1-4...t2-4
# Partial Autocorrelation Function (PACF): is used to measure the degree of association
between y(t) and y(t-p).
```

In [43]:

```
import statsmodels.api as sm
from statsmodels.tsa.arima_model import ARIMA, ARIMAResults
from statsmodels.tsa.stattools import acf, pacf
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
```

In [44]:

```
fig = plt.figure(figsize=(12,8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(df_AAPL['First_Difference'].iloc[30:], lags=40, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(df_AAPL['First_Difference'].iloc[30:], lags=40, ax=ax2)
```


In [45]:

```
lag_acf = acf(df_AAPL['First_Difference'],nlags=80)
lag_pacf = pacf(df_AAPL['First_Difference'],nlags=80,method='ols')
```

In [46]:

```
plt.figure(figsize=(10,10))
plt.subplot(121)
plt.plot(lag_acf)
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y=-1.96/np.sqrt(len(df_AAPL['First_Difference'])),linestyle='--',color='gra
plt.axhline(y=-1.96/np.sqrt(len(df_AAPL['First_Difference'])),linestyle='--',color='gra
y')
plt.title('Autocorrelation')
plt.subplot(122)
plt.plot(lag_pacf)
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y=-1.96/np.sqrt(len(df_AAPL['First_Difference'])),linestyle='--',color='gra
plt.axhline(y=-1.96/np.sqrt(len(df_AAPL['First_Difference'])),linestyle='--',color='gra
y')
plt.title('Partial Autocorrelation')
plt.tight_layout()
```


In [47]:

- # Note
- # The two dotted lines on either sides of 0 are the confidence intervals.
- # These can be used to determine the 'p' and 'q' values as:
- # p: The first time where the PACF crosses the upper confidence interval, here its clos e to 0. hence p = 0.
- # q: The first time where the ACF crosses the upper confidence interval, here its close to 0. hence p=0.

In [48]:

```
# Lets do analysis using Seasonal ARIMA model

model= sm.tsa.statespace.SARIMAX(df_AAPL['NASDAQ.AAPL'],order=(0,1,0),seasonal_order=(0,1,0,12))
   results = model.fit()
   print(results.summary())
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.
py:225: ValueWarning: A date index has been provided, but it has no associ
ated frequency information and so will be ignored when e.g. forecasting.
 ' ignored when e.g. forecasting.', ValueWarning)

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\statespace\representation.py:375: FutureWarning: Using a non-tuple sequence for multidime nsional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return matrix[[slice(None)]*(matrix.ndim-1) + [0]]

```
Statespace Model Results
______
=============
Dep. Variable:
                            NASDAQ.AAPL No. Observations:
41265
              SARIMAX(0, 1, 0)x(0, 1, 0, 12) Log Likelihood
Model:
24925.552
Date:
                        Tue, 23 Apr 2019
                                     ATC
-49849.104
Time:
                              10:54:15
                                      BTC
-49840.477
Sample:
                                    0
                                       HQIC
-49846.377
                               - 41265
Covariance Type:
                                  opg
______
====
            coef std err
                                   P>|z| [0.025
                              Z
                                                      0.
975]
           0.0175 4.57e-06 3828.710
                                    0.000
sigma2
0.017
______
=======
Ljung-Box (Q):
                         10611.64
                                 Jarque-Bera (JB): 3462
262306.74
Prob(Q):
                            0.00
                                 Prob(JB):
0.00
Heteroskedasticity (H):
                            2.92
                                 Skew:
-2.00
Prob(H) (two-sided):
                            0.00
                                 Kurtosis:
1422.26
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (com
plex-step).
4
```

In [49]:

results.resid.plot()

Out[49]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a801c69400>

In [50]:

results.resid.plot(kind='kde')

Out[50]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a80128d748>

In [51]:

```
df_AAPL = df_AAPL.copy()
df_AAPL['Forecast'] = results.predict()
```

In [52]:

df_AAPL.head()

Out[52]:

NASDAQ.AAPL First_Difference Forecast

Month			
2017-04-03	143.7000	0.0200	0.0000
2017-04-03	143.6901	-0.0099	143.7000
2017-04-03	143.6400	-0.0501	143.6901
2017-04-03	143.6600	0.0200	143.6400
2017-04-03	143.7800	0.1200	143.6600

In [53]:

```
# Prediction of future values
df_AAPL[['NASDAQ.AAPL','Forecast']].plot(figsize=(12,8))
```

Out[53]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a8012ef6a0>

In [54]:

```
results.forecast(steps=10)
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.
py:531: ValueWarning: No supported index is available. Prediction results
will be given with an integer index beginning at `start`.
 ValueWarning)

Out[54]:

41265 163.960 41266 163.935 41267 163.910 41268 163.810 41269 163.940 41270 163.950 41271 163.890 41272 163,860 41273 163.870 41274 163.760 dtype: float64

In [55]:

```
results.predict(start=41264,end=41274)
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.
py:531: ValueWarning: No supported index is available. Prediction results
will be given with an integer index beginning at `start`.
 ValueWarning)

Out[55]:

41264 163.930 41265 163.960 41266 163.935 41267 163.910 41268 163.810 41269 163.940 41270 163.950 41271 163.890 41272 163.860 41273 163.870 163.760 41274 dtype: float64

In [56]:

```
# Accuracy of the Forecast using MSE-Mean Squared Error
from sklearn.metrics import mean_squared_error,mean_absolute_error
print('Mean Squared Error NASDAQ.AAPL -', mean_squared_error(df_AAPL['NASDAQ.AAPL'],df_
AAPL['Forecast']))
print('Mean Absolute Error NASDAQ.AAPL -', mean_absolute_error(df_AAPL['NASDAQ.AAPL'],d
f_AAPL['Forecast']))
```

Mean Squared Error NASDAQ.AAPL - 0.6426408211595875 Mean Absolute Error NASDAQ.AAPL - 0.07550728209100216

In [58]:

```
# Time Series Forecasting for NASDAQ.ADP

df_ADP = final[['Month',stock_features[1]]]

df_ADP.head()
```

Out[58]:

	Month	NASDAQ.ADP
0	2017-04-03	102.2300
1	2017-04-03	102.1400
2	2017-04-03	102.2125
3	2017-04-03	102.1400
4	2017-04-03	102.0600

In [59]:

```
df_ADP.set_index('Month',inplace=True)
df_ADP.head()
```

Out[59]:

NASDAQ.ADP

Month	
2017-04-03	102.2300
2017-04-03	102.1400
2017-04-03	102.2125
2017-04-03	102.1400
2017-04-03	102.0600

In [60]:

```
# Visualize data

df_ADP.plot()
plt.title('Time Series Plot for NASDAQ_ADP')
plt.show()
```


In [61]:

test_stationarity(df_ADP['NASDAQ.ADP'])

Augmented Dickey-Fuller Test:

ADF Test Statistic : -1.7041735251574752

p-value: 0.42896344420668664

#Lags Used : 39

Number of Observations Used : 41226 Crtical 1% : value -3.4305086306509716 Crtical 5% : value -2.861610111161057 Crtical 10% : value -2.5668073179094897

weak evidence against null hypothesis, time series has a unit root, indica

ting it is non-stationary

In [63]:

```
# We need to make the time series stationary

df_ADP = df_ADP.copy()
df_ADP['First_Difference'] = df_ADP['NASDAQ.ADP'] - df_ADP['NASDAQ.ADP'].shift(1)
df_ADP.head()
```

Out[63]:

NASDAQ.ADP First_Difference

Month		
2017-04-03	102.2300	NaN
2017-04-03	102.1400	-0.0900
2017-04-03	102.2125	0.0725
2017-04-03	102.1400	-0.0725
2017-04-03	102.0600	-0.0800

In [65]:

```
df_ADP.dropna(inplace=True)
test_stationarity(df_ADP['First_Difference'])
#Now subtract the rolling mean from the original series
```


Augmented Dickey-Fuller Test:

ADF Test Statistic : -31.055662244631648

p-value : 0.0
#Lags Used : 38

Number of Observations Used : 41226 Crtical 1% : value -3.4305086306509716 Crtical 5% : value -2.861610111161057 Crtical 10% : value -2.5668073179094897

strong evidence against the null hypothesis, reject the null hypothesis. D

ata has no unit root and is stationary

In [66]:

```
# Seasonal decompostion
from statsmodels.tsa.seasonal import seasonal_decompose
plt.figure(figsize=(11,8))
decomposition = seasonal_decompose(df_ADP['First_Difference'],freq=12)
trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid
plt.subplot(411)
plt.plot(df ADP['First Difference'],label='Original')
plt.legend(loc='best')
plt.subplot(412)
plt.plot(trend, label='Trend')
plt.legend(loc='best')
plt.subplot(413)
plt.plot(seasonal, label='Seasonal')
plt.legend(loc='best')
plt.subplot(414)
plt.plot(residual, label='Residual')
plt.legend(loc='best')
```

Out[66]:

<matplotlib.legend.Legend at 0x1a80b2ceb70>

In [67]:

Note: The data for NASDAQ.ADP is seasonal as interpreted from the seasonal plot of se asonal decomposition.

In [68]:

```
ts_log_decompose = residual
ts_log_decompose.dropna(inplace=True)
test_stationarity(ts_log_decompose)
```


Augmented Dickey-Fuller Test:

ADF Test Statistic : -57.84866544114175

p-value : 0.0
#Lags Used : 55

Number of Observations Used: 41197 Crtical 1%: value -3.4305087423235587 Crtical 5%: value -2.861610160516496 Crtical 10%: value -2.566807344180027

strong evidence against the null hypothesis, reject the null hypothesis. D

ata has no unit root and is stationary

In [69]:

```
# Note - This is stationary because:
# - Test statistic is lower than 1% critical values
# - The mean and std variations have small variations with time
```

In [71]:

```
# Autocorrelation and Partial Corelation plot
fig = plt.figure(figsize=(20,8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(df_ADP['First_Difference'].iloc[38:], lags=80, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(df_ADP['First_Difference'].iloc[38:], lags=80, ax=ax2)
```


In [72]:

```
lag_acf = acf(df_ADP['First_Difference'],nlags=80)
lag_pacf = pacf(df_ADP['First_Difference'],nlags=80,method='ols')
```

In [73]:

```
plt.figure(figsize=(20,8))
plt.subplot(121)
plt.plot(lag_acf)
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y=-1.96/np.sqrt(len(df_ADP['First_Difference'])),linestyle='--',color='gray')
plt.axhline(y=-1.96/np.sqrt(len(df_ADP['First_Difference'])),linestyle='--',color='gray')
plt.title('Autocorrelation')
plt.subplot(122)
plt.plot(lag_pacf)
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y=-1.96/np.sqrt(len(df_ADP['First_Difference'])),linestyle='--',color='gray')
plt.axhline(y=-1.96/np.sqrt(len(df_ADP['First_Difference'])),linestyle='--',color='gray')
plt.axhline(y=-1.96/np.sqrt(len(df_ADP['First_Difference'])),linestyle='--',color='gray')
plt.title('Partial Autocorrelation')
```

Out[73]:

Text(0.5, 1.0, 'Partial Autocorrelation')

In [74]:

```
# Note - The two dotted lines on either sides of 0 are the confidence intervals. # These can be used to determine the 'p' and 'q' values as: # - p: The first time where the PACF crosses the upper confidence interval, here its close to 0. hence p = 0. # - q: The first time where the ACF crosses the upper confidence interval, here its close to 0. hence p = 0.
```

```
In [77]:
```

```
model= sm.tsa.statespace.SARIMAX(df_ADP['NASDAQ.ADP'],order=(0,1,0),seasonal_order=(0,1,0,12))
results = model.fit()
print(results.summary())
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model. py:225: ValueWarning: A date index has been provided, but it has no associ ated frequency information and so will be ignored when e.g. forecasting.

'ignored when e.g. forecasting.', ValueWarning)

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\statespace\representation.py:375: FutureWarning: Using a non-tuple sequence for multidime nsional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array (seq)]`, which will result either in an error or a different result.

return matrix[[slice(None)]*(matrix.ndim-1) + [0]]

```
Statespace Model Results
______
-----
                             NASDAO.ADP No. Observations:
Dep. Variable:
41265
              SARIMAX(0, 1, 0)x(0, 1, 0, 12) Log Likelihood
Model:
34733.013
                        Tue, 23 Apr 2019
Date:
                                     AIC
-69464.026
Time:
                              11:25:46
                                      BTC
-69455.399
Sample:
                                   a
                                      HQIC
-69461.299
                               - 41265
Covariance Type:
                                  opg
______
====
            coef std err
                              Z
                                   P>|z| [0.025
                                                     0.
975]
           0.0109 5.34e-06 2036.710
                                    0.000
sigma2
0.011
______
=======
                                 Jarque-Bera (JB):
Ljung-Box (Q):
                         10628.96
                                                     275
266211.71
Prob(Q):
                            0.00
                                 Prob(JB):
0.00
Heteroskedasticity (H):
                            2.20
                                 Skew:
-1.59
Prob(H) (two-sided):
                            0.00
                                 Kurtosis:
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (com
plex-step).
```

4

In [78]:

```
plt.plot(results.resid)
```

Out[78]:

[<matplotlib.lines.Line2D at 0x1a80d332550>]

In [79]:

```
import seaborn as sns
sns.set_style('whitegrid')
sns.kdeplot(results.resid)
```

Out[79]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a80b5d48d0>

In [80]:

```
df_ADP['Forecast'] = results.predict()
```

In [81]:

```
df_ADP[['NASDAQ.ADP','Forecast']].tail()
```

Out[81]:

NASDAQ.ADP Forecast

Month		
2017-08-31	106.565	106.705
2017-08-31	106.590	106.525
2017-08-31	106.520	106.510
2017-08-31	106.400	106.480
2017-08-31	106.470	106.430

In [82]:

```
results.forecast(steps=10)
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.
py:531: ValueWarning: No supported index is available. Prediction results
will be given with an integer index beginning at `start`.
 ValueWarning)

Out[82]:

41265 106.470 41266 106.470 41267 106.440 41268 106.380 41269 106.440 41270 106.420 41271 106.450 41272 106.385 41273 106.410 41274 106.340 dtype: float64

In [83]:

```
results.predict(start=41264,end=41275)
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.
py:531: ValueWarning: No supported index is available. Prediction results
will be given with an integer index beginning at `start`.
 ValueWarning)

Out[83]:

41264 106.430 41265 106.470 41266 106.470 41267 106.440 41268 106.380 41269 106.440 41270 106.420 106.450 41271 41272 106.385 41273 106.410 41274 106.340 41275 106.220 dtype: float64

In [84]:

```
df_ADP[['NASDAQ.ADP','Forecast']].plot(figsize=(20,8))
```

Out[84]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a80166fb70>

In [85]:

```
from sklearn.metrics import mean_squared_error,mean_absolute_error
print('Mean Squared Error NASDAQ.AAPL -', mean_squared_error(df_ADP['NASDAQ.ADP'],df_AD
P['Forecast']))
print('Mean Absolute Error NASDAQ.AAPL -', mean_absolute_error(df_ADP['NASDAQ.ADP'],df_
ADP['Forecast']))
```

Mean Squared Error NASDAQ.AAPL - 0.32679381129889773 Mean Absolute Error NASDAQ.AAPL - 0.05339673819156222

In [86]:

```
# Times Series Forecasting for 'NASDAQ.CBOE'
df_CBOE= final[['Month',stock_features[2]]]
print(df_CBOE.head())
df_CBOE.set_index('Month',inplace=True)
print(df_CBOE.head())

df_CBOE.plot()
plt.title('Time Series Plot for NASDAQ_CBOE')
plt.show()
#test Stationarity
test_stationarity(df_CBOE['NASDAQ.CBOE'])
```

	Month	NASDAQ.CBOE
0	2017-04-03	81.03
1	2017-04-03	81.21
2	2017-04-03	81.21
3	2017-04-03	81.13
4	2017-04-03	81.12
	1	NASDAQ.CBOE
Mc	onth	
26	017-04-03	81.03
26	017-04-03	81.21
26	017-04-03	81.21
26	017-04-03	81.13
26	017-04-03	81.12

Augmented Dickey-Fuller Test:

ADF Test Statistic : 0.16633930282612888

p-value : 0.9703092030510062

#Lags Used : 27

Number of Observations Used: 41238 Crtical 1%: value -3.430508584487571 Crtical 5%: value -2.8616100907584228 Crtical 10%: value -2.5668073070497304

weak evidence against null hypothesis, time series has a unit root, indica

ting it is non-stationary

In [87]:

```
# Making the time series data stationary

df_CBOE = df_CBOE.copy()
```

In [88]:

```
df_CBOE.head()
```

Out[88]:

NASDAQ.CBOE

Month	
2017-04-03	81.03
2017-04-03	81.21
2017-04-03	81.21
2017-04-03	81.13
2017-04-03	81.12

In [89]:

```
df_CBOE['First_Difference'] = df_CBOE['NASDAQ.CBOE'] - df_CBOE['NASDAQ.CBOE'].shift(1)
df_CBOE.head()
```

Out[89]:

NASDAQ.CBOE First_Difference

Month		
2017-04-03	81.03	NaN
2017-04-03	81.21	0.18
2017-04-03	81.21	0.00
2017-04-03	81.13	-0.08
2017-04-03	81.12	-0.01

In [90]:

```
df_CBOE.dropna(inplace=True)
```

In [91]:

```
# Test Seasonality
test_stationarity(df_CBOE['First_Difference'])
```


Augmented Dickey-Fuller Test:

ADF Test Statistic : -41.642093645431686

p-value : 0.0
#Lags Used : 26

Number of Observations Used: 41238 Crtical 1%: value -3.430508584487571 Crtical 5%: value -2.8616100907584228 Crtical 10%: value -2.5668073070497304

strong evidence against the null hypothesis, reject the null hypothesis. D

ata has no unit root and is stationary

In [92]:

```
#Seasonal Decomposition
from statsmodels.tsa.seasonal import seasonal_decompose
plt.figure(figsize=(11,8))
decomposition = seasonal_decompose(df_CBOE['NASDAQ.CBOE'],freq=12)
trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid
plt.subplot(411)
plt.plot(df_CBOE['NASDAQ.CBOE'],label='Original')
plt.legend(loc='best')
plt.subplot(412)
plt.plot(trend, label='Trend')
plt.legend(loc='best')
plt.subplot(413)
plt.plot(seasonal, label='Seasonal')
plt.legend(loc='best')
plt.subplot(414)
plt.plot(residual, label='Residual')
plt.legend(loc='best')
```

Out[92]:

<matplotlib.legend.Legend at 0x1a801d9eba8>

In [93]:

```
ts_log_decompose = residual
ts_log_decompose.dropna(inplace=True)
test_stationarity(ts_log_decompose)
```


Augmented Dickey-Fuller Test:

ADF Test Statistic : -46.21672053215827

p-value : 0.0
#Lags Used : 55

Number of Observations Used: 41197 Crtical 1%: value -3.4305087423235587 Crtical 5%: value -2.861610160516496 Crtical 10%: value -2.566807344180027

strong evidence against the null hypothesis, reject the null hypothesis. D

ata has no unit root and is stationary

In [94]:

```
# Note : This is stationary because:
# - Test statistic is lower than 1% critical values.
# - The mean and std variations have small variations with time
```

In [95]:

```
# Autocorrelation and Partial Corelation plot

fig = plt.figure(figsize=(20,8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(df_CBOE['First_Difference'].iloc[26:], lags=80, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(df_CBOE['First_Difference'].iloc[26:], lags=80, ax=ax2)
```


In [96]:

```
lag_acf = acf(df_CBOE['First_Difference'],nlags=80)
lag_pacf = pacf(df_CBOE['First_Difference'],nlags=80,method='ols')
```

In [97]:

```
plt.figure(figsize=(11,8))
plt.subplot(121)
plt.plot(lag_acf)
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y=-1.96/np.sqrt(len(df_CBOE['First_Difference'])),linestyle='--',color='gra
plt.axhline(y=-1.96/np.sqrt(len(df_CBOE['First_Difference'])),linestyle='--',color='gra
y')
plt.title('Autocorrelation')
plt.subplot(122)
plt.plot(lag_pacf)
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y=-1.96/np.sqrt(len(df_CBOE['First_Difference'])),linestyle='--',color='gra
plt.axhline(y=-1.96/np.sqrt(len(df_CBOE['First_Difference'])),linestyle='--',color='gra
y')
plt.title('Partial Autocorrelation')
plt.tight_layout()
```


In [99]:

```
# Note - The two dotted lines on either sides of 0 are the confidence intervals. # These can be used to determine the 'p' and 'q' values as: # - p: The first time where the PACF crosses the upper confidence interval, here its close to 0. hence p = 0. # - q: The first time where the ACF crosses the upper confidence interval, here its close to 0. hence p = 0.
```

In [100]:

```
# fit model
model= sm.tsa.statespace.SARIMAX(df_CBOE['NASDAQ.CBOE'],order=(0,1,0),seasonal_order=(0
,1,0,12))
results = model.fit()
print(results.summary())
print(results.forecast())
df_CBOE['Forecast'] = results.predict()
df_CBOE[['NASDAQ.CBOE','Forecast']].plot(figsize=(20,8))
plt.show()
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model. py:225: ValueWarning: A date index has been provided, but it has no associ ated frequency information and so will be ignored when e.g. forecasting.

'ignored when e.g. forecasting.', ValueWarning)

Statespace Model Results

______ ========== Dep. Variable: NASDAQ.CBOE No. Observations: 41265 SARIMAX(0, 1, 0)x(0, 1, 0, 12) Log Likelihood Model: 53414.092 Date: Tue, 23 Apr 2019 AIC -106826.184 Time: 11:34:29 BTC -106817.556 Sample: HQIC -106823.457 - 41265 Covariance Type: opg ______ coef std err Z P>|z| [0.025 0. 975] ______ 0.0044 5.33e-06 824.276 0.000 0.004 sigma2 0.004 ______ ======= Ljung-Box (Q): 11084.06 Jarque-Bera (JB): 011759.87 Prob(Q): 0.00 Prob(JB): 0.00 Heteroskedasticity (H): 0.94 Skew: -0.46 Prob(H) (two-sided): 0.00 Kurtosis: 66.86 ______ ======= [1] Covariance matrix calculated using the outer product of gradients (com plex-step).

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model. py:531: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.

ValueWarning)

41265 100.84 dtype: float64

In [101]:

```
results.forecast(steps=10)
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.
py:531: ValueWarning: No supported index is available. Prediction results
will be given with an integer index beginning at `start`.
 ValueWarning)

Out[101]:

100.8400 41265 41266 100.8900 41267 100.9100 41268 100.8700 41269 100.8800 41270 100.8700 41271 100.8799 41272 100.8800 41273 100.8700 41274 100.8500 dtype: float64

In [102]:

```
results.predict(start=41264,end=41273)
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.
py:531: ValueWarning: No supported index is available. Prediction results
will be given with an integer index beginning at `start`.
 ValueWarning)

Out[102]:

41264 100.8200 41265 100.8400 41266 100.8900 41267 100.9100 41268 100.8700 41269 100.8800 41270 100.8700 41271 100.8799 41272 100.8800 41273 100.8700 dtype: float64

In [103]:

```
from sklearn.metrics import mean_squared_error,mean_absolute_error
print('Mean Squared Error NASDAQ.CBOE -', mean_squared_error(df_CBOE['NASDAQ.CBOE'],df_
CBOE['Forecast']))
print('Mean Absolute Error NASDAQ.CBOE -', mean_absolute_error(df_CBOE['NASDAQ.CBOE'],d
f_CBOE['Forecast']))
```

Mean Squared Error NASDAQ.CBOE - 0.2039940019832608 Mean Absolute Error NASDAQ.CBOE - 0.04356630559048824

In [104]:

```
# Time Series ForeCasting for 'NASDAQ.CSCO'
df_CSCO = final[['Month',stock_features[3]]]
print(df_CSCO.head())
df_CSCO.set_index('Month',inplace=True)
print(df_CSCO.head())
df_CSCO.plot()
plt.title("Time Series Plot for NASDAQ.CSCO")
plt.show()
#Test Staionarity
test_stationarity(df_CSCO['NASDAQ.CSCO'])
```

	Month	NASDAQ.CSCO
0	2017-04-03	33.7400
1	2017-04-03	33.8800
2	2017-04-03	33.9000
3	2017-04-03	33.8499
4	2017-04-03	33.8400
	1	NASDAQ.CSCO
Mc	onth	
26	017-04-03	33.7400
26	017-04-03	33.8800
26	017-04-03	33.9000
26	017-04-03	33.8499
26	017-04-03	33.8400

Augmented Dickey-Fuller Test:

ADF Test Statistic: -2.3955546108894694

p-value: 0.14299501995164238

#Lags Used: 47

Number of Observations Used : 41218 Crtical 1% : value -3.430508661441506 Crtical 5% : value -2.8616101247694137 Crtical 10% : value -2.566807325152842

weak evidence against null hypothesis, time series has a unit root, indica

ting it is non-stationary

In [105]:

```
# Making time series

df_CSC0 = df_CSC0.copy()
df_CSC0['First_Difference'] = df_CSC0['NASDAQ.CSCO'] - df_CSC0['NASDAQ.CSCO'].shift(1)
df_CSC0.dropna(inplace=True)
test_stationarity(df_CSC0['First_Difference'])
```


Augmented Dickey-Fuller Test:

ADF Test Statistic : -30.35668253256657

p-value : 0.0
#Lags Used : 46

Number of Observations Used: 41218 Crtical 1%: value -3.430508661441506 Crtical 5%: value -2.8616101247694137 Crtical 10%: value -2.566807325152842

strong evidence against the null hypothesis, reject the null hypothesis. D

ata has no unit root and is stationary

In [106]:

```
#Seasonal Decomposition
from statsmodels.tsa.seasonal import seasonal_decompose
plt.figure(figsize=(11,8))
decomposition = seasonal_decompose(df_CSCO['NASDAQ.CSCO'],freq=12)
trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid
plt.subplot(411)
plt.plot(df_CSCO['NASDAQ.CSCO'],label='Original')
plt.legend(loc='best')
plt.subplot(412)
plt.plot(trend, label='Trend')
plt.legend(loc='best')
plt.subplot(413)
plt.plot(seasonal, label='Seasonal')
plt.legend(loc='best')
plt.subplot(414)
plt.plot(residual, label='Residual')
plt.legend(loc='best')
```

Out[106]:

<matplotlib.legend.Legend at 0x1a8056c6ac8>

In [107]:

```
ts_log_decompose = residual
ts_log_decompose.dropna(inplace=True)
test_stationarity(ts_log_decompose)
```


Augmented Dickey-Fuller Test:

ADF Test Statistic : -43.9451778054345

p-value : 0.0
#Lags Used : 55

Number of Observations Used: 41197 Crtical 1%: value -3.4305087423235587 Crtical 5%: value -2.861610160516496 Crtical 10%: value -2.566807344180027

strong evidence against the null hypothesis, reject the null hypothesis. D

ata has no unit root and is stationary

In [108]:

```
# Note - This is stationary because:
# - Test statistic is lower than critical values.
# - The mean and std variations have small variations with time
```

In [109]:

```
# Auto Corealtion and Partial Autocorelation Plots
fig = plt.figure(figsize=(20,8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(df_CSCO['First_Difference'].iloc[46:], lags=80, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(df_CSCO['First_Difference'].iloc[46:], lags=80, ax=ax2)
```


In [110]:

```
lag_acf = acf(df_CSCO['First_Difference'],nlags=80)
lag_pacf = pacf(df_CSCO['First_Difference'],nlags=80,method='ols')
```

In [111]:

```
plt.figure(figsize=(20,8))
plt.subplot(121)
plt.plot(lag_acf)
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y=-1.96/np.sqrt(len(df_CSCO['First_Difference'])),linestyle='--',color='gra
plt.axhline(y=-1.96/np.sqrt(len(df_CSCO['First_Difference'])),linestyle='--',color='gra
y')
plt.title('Autocorrelation')
plt.subplot(122)
plt.plot(lag_pacf)
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y=-1.96/np.sqrt(len(df_CSCO['First_Difference'])),linestyle='--',color='gra
plt.axhline(y=-1.96/np.sqrt(len(df_CSCO['First_Difference'])),linestyle='--',color='gra
y')
plt.title('Partial Autocorrelation')
plt.tight_layout()
```


In [112]:

```
# Note -The two dotted lines on either sides of 0 are the confidence intervals. # These can be used to determine the 'p' and 'q' values as: # - p: The first time where the PACF crosses the upper confidence interval, here its close to 0. hence p = 0. # - q: The first time where the ACF crosses the upper confidence interval, here its close to 0. hence p = 0.
```

In [113]:

```
# fit model
model= sm.tsa.statespace.SARIMAX(df_CSCO['NASDAQ.CSCO'],order=(0,1,0),seasonal_order=(0,1,0,12))
results = model.fit()
print(results.summary())
df_CSCO['Forecast'] = results.predict()
df_CSCO[['NASDAQ.CSCO','Forecast']].plot(figsize=(20,8))
plt.show()
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model. py:225: ValueWarning: A date index has been provided, but it has no associ ated frequency information and so will be ignored when e.g. forecasting.

' ignored when e.g. forecasting.', ValueWarning)

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\statespace\representation.py:375: FutureWarning: Using a non-tuple sequence for multidime nsional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array (seq)]`, which will result either in an error or a different result.

return matrix[[slice(None)]*(matrix.ndim-1) + [0]]

Statespace Model Results

_____ Dep. Variable: NASDAQ.CSCO No. Observations: 41265 Model: SARIMAX(0, 1, 0)x(0, 1, 0, 12) Log Likelihood 85502.595 Date: Tue, 23 Apr 2019 AIC -171003.190 11:41:37 BIC Time: -170994.563 HQIC Sample: 0 -171000.463 - 41265 Covariance Type: opg coef std err z P>|z| [0.025 0. 975] sigma2 0.0009 1.54e-07 6012.819 0.000 0.001 0.001 _____ ======= Ljung-Box (Q): 11736.64 Jarque-Bera (JB): 21073 382447.00 Prob(Q): 0.00 Prob(JB): 0.00 Heteroskedasticity (H): 0.30 Skew: 2.67 Prob(H) (two-sided): 0.00 Kurtosis: 3504.46 ======= Warnings: [1] Covariance matrix calculated using the outer product of gradients (com plex-step).

In [114]:

df_CSCO.head()

Out[114]:

	NASDAQ.CSCO	First_Difference	Forecast
Month			
2017-04-03	33.8800	0.1400	0.0000
2017-04-03	33.9000	0.0200	33.8800
2017-04-03	33.8499	-0.0501	33.9000
2017-04-03	33.8400	-0.0099	33.8499
2017-04-03	33.8800	0.0400	33.8400

In [115]:

```
results.forecast(steps=10)
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.
py:531: ValueWarning: No supported index is available. Prediction results
will be given with an integer index beginning at `start`.
 ValueWarning)

Out[115]:

41265 32.225 41266 32,190 41267 32.170 41268 32.150 41269 32.180 32.170 41270 41271 32.150 41272 32.165 41273 32,180 41274 32.180 dtype: float64

In [116]:

```
results.predict(start=41264,end=41275)
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.
py:531: ValueWarning: No supported index is available. Prediction results
will be given with an integer index beginning at `start`.
 ValueWarning)

Out[116]:

41264 32.195 41265 32,225 41266 32.190 32.170 41267 41268 32.150 41269 32,180 41270 32,170 41271 32.150 41272 32.165 41273 32.180 41274 32.180 41275 32.175 dtype: float64

In [117]:

```
from sklearn.metrics import mean_squared_error,mean_absolute_error
print('Mean Squared Error NASDAQ.CSCO -', mean_squared_error(df_CSCO['NASDAQ.CSCO'],df_
CSCO['Forecast']))
print('Mean Absolute Error NASDAQ.CSCO -', mean_absolute_error(df_CSCO['NASDAQ.CSCO'],d
f_CSCO['Forecast']))
```

Mean Squared Error NASDAQ.CSCO - 0.035693784496960784 Mean Absolute Error NASDAQ.CSCO - 0.015775407730929034

In [118]:

```
# Time Series Forecasting for NASDAQ.EBAY

df_EBAY = final[['Month',stock_features[4]]]
print(df_EBAY.head())

df_EBAY.set_index('Month',inplace=True)
print(df_EBAY.head())

df_EBAY.plot()
plt.title("Time Series Plot for NASDAQ.EBAY")
plt.show()
#Test Staionarity
test_stationarity(df_EBAY['NASDAQ.EBAY'])
```

	Month	NASDAQ.EBAY
0	2017-04-03	33.3975
1	2017-04-03	33.3950
2	2017-04-03	33.4100
3	2017-04-03	33.3350
4	2017-04-03	33.4000
		NASDAQ.EBAY
Mc	onth	
26	017-04-03	33.3975
26	017-04-03	33.3950
26	017-04-03	33.4100
26	017-04-03	33.3350
26	017-04-03	33.4000

Augmented Dickey-Fuller Test:

ADF Test Statistic : -1.8757616359414275

p-value : 0.3435480878024693

#Lags Used : 47

Number of Observations Used : 41218 Crtical 1% : value -3.430508661441506 Crtical 5% : value -2.8616101247694137 Crtical 10% : value -2.566807325152842

weak evidence against null hypothesis, time series has a unit root, indica

ting it is non-stationary

In [119]:

```
# Making time series data stationary
df_EBAY = df_EBAY.copy()
df_EBAY['First_Difference'] = df_EBAY['NASDAQ.EBAY'] - df_EBAY['NASDAQ.EBAY'].shift(1)
df_EBAY.dropna(inplace=True)
#test Stationarity
test_stationarity(df_EBAY['NASDAQ.EBAY'])
```


Augmented Dickey-Fuller Test:

ADF Test Statistic : -1.8639133106584216

p-value: 0.3492231149987369

#Lags Used: 47

Number of Observations Used : 41217 Crtical 1% : value -3.4305086652911636 Crtical 5% : value -2.8616101264708296 Crtical 10% : value -2.5668073260584587

weak evidence against null hypothesis, time series has a unit root, indica

ting it is non-stationary

In [120]:

```
#Seasonal Decomposition
from statsmodels.tsa.seasonal import seasonal_decompose
plt.figure(figsize=(11,8))
decomposition = seasonal_decompose(df_EBAY['NASDAQ.EBAY'],freq=12)
trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid
plt.subplot(411)
plt.plot(df_EBAY['NASDAQ.EBAY'],label='Original')
plt.legend(loc='best')
plt.subplot(412)
plt.plot(trend, label='Trend')
plt.legend(loc='best')
plt.subplot(413)
plt.plot(seasonal, label='Seasonal')
plt.legend(loc='best')
plt.subplot(414)
plt.plot(residual, label='Residual')
plt.legend(loc='best')
```

Out[120]:

<matplotlib.legend.Legend at 0x1a801567dd8>

In [121]:

```
ts_log_decompose = residual
ts_log_decompose.dropna(inplace=True)
test_stationarity(ts_log_decompose)
```


Augmented Dickey-Fuller Test:

ADF Test Statistic : -44.88049175892022

p-value : 0.0
#Lags Used : 55

Number of Observations Used: 41197 Crtical 1%: value -3.4305087423235587 Crtical 5%: value -2.861610160516496 Crtical 10%: value -2.566807344180027

strong evidence against the null hypothesis, reject the null hypothesis. D

ata has no unit root and is stationary

In [122]:

```
# Note - This is stationary because:
# - Test statistic is lower than critical values.
# - The mean and std variations have small variations with time
```

In [123]:

```
# Autocorealtion plot and Partial Autocorelation plots
fig = plt.figure(figsize=(20,8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(df_EBAY['First_Difference'].iloc[47:], lags=80, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(df_EBAY['First_Difference'].iloc[47:], lags=80, ax=ax2)
```


In [124]:

```
lag_acf = acf(df_EBAY['First_Difference'],nlags=80)
lag_pacf = pacf(df_EBAY['First_Difference'],nlags=80,method='ols')
```

In [125]:

```
plt.figure(figsize=(20,8))
plt.subplot(121)
plt.plot(lag_acf)
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y=-1.96/np.sqrt(len(df_EBAY['First_Difference'])),linestyle='--',color='gra
plt.axhline(y=-1.96/np.sqrt(len(df_EBAY['First_Difference'])),linestyle='--',color='gra
y')
plt.title('Autocorrelation')
plt.subplot(122)
plt.plot(lag_pacf)
plt.axhline(y=0,linestyle='--',color='gray')
plt.axhline(y=-1.96/np.sqrt(len(df_EBAY['First_Difference'])),linestyle='--',color='gra
plt.axhline(y=-1.96/np.sqrt(len(df_EBAY['First_Difference'])),linestyle='--',color='gra
y')
plt.title('Partial Autocorrelation')
plt.tight_layout()
```


In [126]:

```
# Note - The two dotted lines on either sides of 0 are the confidence intervals. # These can be used to determine the 'p' and 'q' values as: # - p: The first time where the PACF crosses the upper confidence interval, here its c lose to 0. hence p = 0. # - q: The first time where the ACF crosses the upper confidence interval, here its cl ose to 0. hence p = 0.
```

In [127]:

```
# fit model
model= sm.tsa.statespace.SARIMAX(df_EBAY['NASDAQ.EBAY'],order=(0,1,0),seasonal_order=(0,1,0,12))
results = model.fit()
print(results.summary())
df_EBAY['Forecast'] = results.predict()
df_EBAY[['NASDAQ.EBAY','Forecast']].plot(figsize=(20,8))
plt.show()
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.
py:225: ValueWarning: A date index has been provided, but it has no associ
ated frequency information and so will be ignored when e.g. forecasting.

' ignored when e.g. forecasting.', ValueWarning)

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\statespace\representation.py:375: FutureWarning: Using a non-tuple sequence for multidime nsional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array (seq)]`, which will result either in an error or a different result.

return matrix[[slice(None)]*(matrix.ndim-1) + [0]]

Statespace Model Results

_____ Dep. Variable: NASDAQ.EBAY No. Observations: 41265 Model: SARIMAX(0, 1, 0)x(0, 1, 0, 12) Log Likelihood 82104.712 Date: Tue, 23 Apr 2019 AIC -164207.424 11:46:53 BIC Time: -164198.797 HQIC Sample: 0 -164204.697 - 41265 Covariance Type: opg coef std err z P>|z| [0.025 0. 975] sigma2 0.0011 9.43e-07 1158.843 0.000 0.001 0.001 _____ ======= Ljung-Box (Q): 10939.63 Jarque-Bera (JB): 28 223015.36 Prob(Q): 0.00 Prob(JB): 0.00 Heteroskedasticity (H): 1.21 Skew: 0.35 Prob(H) (two-sided): 0.00 Kurtosis: 131.14 ======= Warnings: [1] Covariance matrix calculated using the outer product of gradients (com plex-step).

In [128]:

df_EBAY.head()

Out[128]:

NASDAQ.EBAY	First	_Difference	Forecast
-------------	-------	-------------	----------

Month			
2017-04-03	33.395	-0.0025	0.000
2017-04-03	33.410	0.0150	33.395
2017-04-03	33.335	-0.0750	33.410
2017-04-03	33.400	0.0650	33.335
2017-04-03	33.430	0.0300	33.400

In [129]:

```
from sklearn.metrics import mean_squared_error,mean_absolute_error
print('Mean Squared Error NASDAQ.EBAY -', mean_squared_error(df_EBAY['NASDAQ.EBAY'],df_
EBAY['Forecast']))
print('Mean Absolute Error NASDAQ.EBAY -', mean_absolute_error(df_EBAY['NASDAQ.EBAY'],d
f_EBAY['Forecast']))
```

Mean Squared Error NASDAQ.EBAY - 0.03483567894300385 Mean Absolute Error NASDAQ.EBAY - 0.021688033531735183

In [130]:

```
results.forecast(steps=10)
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.
py:531: ValueWarning: No supported index is available. Prediction results
will be given with an integer index beginning at `start`.
 ValueWarning)

Out[130]:

41265 36.090 41266 36,030 41267 36.030 41268 36.020 41269 36.020 36.025 41270 41271 36.020 41272 36.025 41273 36.020 41274 36.020 dtype: float64

In [131]:

```
results.predict(start=41265,end=41275)
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_model.
py:531: ValueWarning: No supported index is available. Prediction results
will be given with an integer index beginning at `start`.
 ValueWarning)

Out[131]:

36.090 41265 41266 36.030 41267 36.030 41268 36.020 36.020 41269 41270 36.025 41271 36.020 36.025 41272 41273 36.020 41274 36.020 41275 36.010 dtype: float64

In []:

Conclusion-The predicted stock prices values have been stored in the the forecast col umns of the each stock entity dataframe