

Sequence Listing

<110> Baker, Kevin
Botstein, David
Eaton, Dan
Ferrara, Napoleone
Filvaroff, Ellen
Gerritsen, Mary
Goddard, Audrey
Godowski, Paul
Grimaldi, Christopher
Gurney, Austin
Hillan, Kenneth
Kljavin, Ivar
Napier, Mary
Roy, Margaret
Tumas, Daniel
Wood, William

<120> SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME

<130> P2548P1C1

<150> 60/067,411

<151> December 3, 1997

<150> 60/069,334

<151> December 11, 1997

<150> 60/069335

<151> December 11, 1997

<150> 60/069,278

<151> December 11, 1997

<150> 60/069,425

<151> December 12, 1997

<150> 60/069,696

<151> December 16, 1997

<150> 60/069,694

<151> December 16, 1997

<150> 60/069,702

<151> December 16, 1997

<150> 60/069,870

<151> December 17, 1997

<150> 60/069,873

<151> December 17, 1997

<150> 60/068,017

<151> December 18, 1997

<150> 60/070,440

<151> January 5, 1998

<150> 60/074,086

<151> February 9, 1998

<150> 60/074,092

<151> February 9, 1998

<150> 60/075,945

<151> February 25, 1998

<150> 60/112,850

<151> December 16, 1998

<150> 60/113,296

<151> December 22, 1998

<150> 60/146,222

<151> July 28, 1999

<150> PCT/US98/19330

<151> September 16, 1998

<150> PCT/US98/25108

<151> December 1, 1998

<150> 09/216,021

<151> December 16, 1998

<150> 09/218,517

<151> December 22, 1998

<150> 09/254,311

<151> March 3, 1999

<150> PCT/US99/12252

<151> June 22, 1999

<150> PCT/US99/21090

<151> September 15, 1999

<150> PCT/US99/28409

<151> November 30, 1999

<150> PCT/US99/28313

<151> November 30, 1999

<150> PCT/US99/28301

<151> December 1, 1999

<150> PCT/US99/30095

<151> December 16, 1999

<150> PCT/US00/03565

<151> February 11, 2000

<150> PCT/US00/04414

<151> February 22, 2000

<150> PCT/US00/05841
<151> March 2, 2000

<150> PCT/US00/08439
<151> March 30, 2000

<150> PCT/US00/14042
<151> May 22, 2000

<150> PCT/US00/20710
<151> July 28, 2000

<150> PCT/US00/32678
<151> December 1, 2000

<150> PCT/US01/06520
<151> February 28, 2001

<160> 120

<210> 1
<211> 2454
<212> DNA
<213> Homo Sapien

<400> 1
ggactaatct gtgggagcag tttattccag tatcacccag ggtgcagcca 50
caccaggact gtgttgaagg gtgtttttt tcttttaat gtaataacctc 100
ctcatctttt cttcttacac agtgtctgag aacatttaca ttatagataa 150
gtagtacatg gtggataact tctactttt ggaggactac tctcttctga 200
cagtcctaga ctggcttct acactaagac accatgaagg agtatgtgct 250
cctattatttc ctggctttgt gctctgccaa acccttcttt agcccttcac 300
acatcgact gaagaatatg atgctgaagg atatggaaga cacagatgat 350
gatgatgatg atgatgatga tgatgatgat gatgaggaca actctctttt 400
tccaacaaga gagccaagaa gccatTTTT tccatttgat ctgtttccaa 450
tgtgtccatt tggatgtcag tgctattcac gagttgtaca ttgctcagat 500
ttaggTTTGA CCTCAGTCCC aaccaacatt ccatttgata ctcgaatgct 550
tgatcttcaa aacaataaaa ttaaggaaat caaagaaaat gatTTTAAAG 600
gactcacttc actttatggt ctgatcctga acaacaacaa gctaacgaag 650
attcacccaa aagccttct aaccacaaag aagttgcgaa ggctgtatct 700
gtcccacaat caactaagtg aaataccact taatcttccc aaatcattag 750
cagaactcag aattcatgaa aataaagtta agaaaataca aaaggacaca 800

ttcaaaggaa tgaatgctt acacgtttg gaaatgagtg caaaccctct 850
tgataataat gggatagagc cagggcatt tgaaggggtg acgggtttcc 900
atatcagaat tgcagaagca aaactgacct cagttcctaa aggcttacca 950
ccaactttat tggagcttca cttagattat aataaaattt caacagtgg 1000
acttgaggat tttaaacgt acaaagaact acaaaggctg ggccttaggaa 1050
acaacaaaat cacagatatc gaaaatgggaa gtcttgctaa cataccacgt 1100
gtgagagaaa tacatttggaa aaacaataaa ctaaaaaaaaaa tcccttcagg 1150
attaccagag ttgaaatacc tccagataat cttccttcat tctaattcaa 1200
ttgcaagagt gggagtaaat gacttctgtc caacagtgcc aaagatgaag 1250
aaatctttat acagtcaat aagtttattc aacaacccgg tgaaatactg 1300
gaaaatgcaa cctgcaacat ttcgttgtgt tttgagcaga atgagtgttc 1350
agcttggaa ctggaaatg taataattag taattggtaa tgtccattta 1400
atataagatt caaaaatccc tacatttggaa atacttgaac tctattaata 1450
atggtagtat tatataataca agcaaatac tatttcaag tggtaagtcc 1500
actgacttat tttatgacaa gaaatttcaa cgaaattttg ccaaactatt 1550
gatacataag gggttgagag aaacaagcat ctattgcagt ttccttttg 1600
cgtacaaatg atcttacata aatctcatgc ttgaccattc ctttcttcat 1650
aacaaaaaag taagatattc ggtatttaac actttgttat caagcacatt 1700
ttaaaaagaa ctgtactgt aatggaatgc ttgacttagc aaaattgtg 1750
ctcttcatt tgctgttaga aaaacagaat taacaaagac agtaatgtga 1800
agagtgcatt acactattct tattcttag taacttgggt agtactgtaa 1850
tatttttaat catcttaaag tatgattga tataatctta ttgaaattac 1900
cttatcatgt cttagagccc gtctttagt ttaaaaactaa tttcttaaaa 1950
taaaggcttc agtaaatgtt cattaccaac ttgataaattg ctactcataa 2000
gagctggttt gggctatag catatgctt tttttttta attattacct 2050
gatttaaaaaa tctctgtaaa aacgtgttagt gtttcataaa atctgttaact 2100
cgcattttaa tgatccgcta ttataagctt ttaatagcat gaaaattgtt 2150
aggctatata acattgccac ttcaactcta aggaatattt ttgagatatac 2200
ccttggaaag accttgcttgc gaaagcctg gacactaaca attctacacc 2250

aaattgtctc ttcaaatacg tatggactgg ataactctga gaaacacatc 2300
tagtataact gaataagcag agcatcaa ataaacagaca gaaaccgaaa 2350
gctctatata aatgctcaga gttctttatg tatttcttat tggcattcaa 2400
catatgtaaa atcagaaaac agggaaat ttcataaaaa tattggtttg 2450
aaat 2454

<210> 2
<211> 379
<212> PRT
<213> Homo Sapien

<400> 2
Met Lys Glu Tyr Val Leu Leu Leu Phe Leu Ala Leu Cys Ser Ala
1 5 10 15
Lys Pro Phe Phe Ser Pro Ser His Ile Ala Leu Lys Asn Met Met
20 25 30
Leu Lys Asp Met Glu Asp Thr Asp Asp Asp Asp Asp Asp Asp
35 40 45
Asp Asp Asp Asp Asp Glu Asp Asn Ser Leu Phe Pro Thr Arg Glu
50 55 60
Pro Arg Ser His Phe Phe Pro Phe Asp Leu Phe Pro Met Cys Pro
65 70 75
Phe Gly Cys Gln Cys Tyr Ser Arg Val Val His Cys Ser Asp Leu
80 85 90
Gly Leu Thr Ser Val Pro Thr Asn Ile Pro Phe Asp Thr Arg Met
95 100 105
Leu Asp Leu Gln Asn Asn Lys Ile Lys Glu Ile Lys Glu Asn Asp
110 115 120
Phe Lys Gly Leu Thr Ser Leu Tyr Gly Leu Ile Leu Asn Asn Asn
125 130 135
Lys Leu Thr Lys Ile His Pro Lys Ala Phe Leu Thr Thr Lys Lys
140 145 150
Leu Arg Arg Leu Tyr Leu Ser His Asn Gln Leu Ser Glu Ile Pro
155 160 165
Leu Asn Leu Pro Lys Ser Leu Ala Glu Leu Arg Ile His Glu Asn
170 175 180
Lys Val Lys Lys Ile Gln Lys Asp Thr Phe Lys Gly Met Asn Ala
185 190 195
Leu His Val Leu Glu Met Ser Ala Asn Pro Leu Asp Asn Asn Gly
200 205 210

Ile Glu Pro Gly Ala Phe Glu Gly Val Thr Val Phe His Ile Arg
215 220 225
Ile Ala Glu Ala Lys Leu Thr Ser Val Pro Lys Gly Leu Pro Pro
230 235 240
Thr Leu Leu Glu Leu His Leu Asp Tyr Asn Lys Ile Ser Thr Val
245 250 255
Glu Leu Glu Asp Phe Lys Arg Tyr Lys Glu Leu Gln Arg Leu Gly
260 265 270
Leu Gly Asn Asn Lys Ile Thr Asp Ile Glu Asn Gly Ser Leu Ala
275 280 285
Asn Ile Pro Arg Val Arg Glu Ile His Leu Glu Asn Asn Lys Leu
290 295 300
Lys Lys Ile Pro Ser Gly Leu Pro Glu Leu Lys Tyr Leu Gln Ile
305 310 315
Ile Phe Leu His Ser Asn Ser Ile Ala Arg Val Gly Val Asn Asp
320 325 330
Phe Cys Pro Thr Val Pro Lys Met Lys Lys Ser Leu Tyr Ser Ala
335 340 345
Ile Ser Leu Phe Asn Asn Pro Val Lys Tyr Trp Glu Met Gln Pro
350 355 360
Ala Thr Phe Arg Cys Val Leu Ser Arg Met Ser Val Gln Leu Gly
365 370 375
Asn Phe Gly Met

<210> 3
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 3
ggaaatgagt gcaaaccctc 20

<210> 4
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 4
tcccaagctg aacactcatt ctgc 24

<210> 5
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 5
gggtgacggt gttccatatac agaattgcag aagcaaaact gacctcagtt 50

<210> 6
<211> 3441
<212> DNA
<213> Homo Sapien

<400> 6
cggacgcgtg ggccggacgcg tggggcccgcs gcacccgcccc cggcccccggcc 50
ctccgcgcctc cgcaactcgcg cctccctccc tccgcccgt cccgcgcctc 100
cctccctccc tcctcccccag ctgtcccggtt cgcgcatgc cgagcctccc 150
ggcccccgcgcg gccccgcgtgc tgctcctcgg gctgctgctg ctccgctccc 200
ggccggcccg cggcgccggc ccagagcccc ccgtgctgcc catccgttct 250
gagaaggagc cgctgcgggt tcggggagcg gcaggctgca cttcggcgg 300
gaagggtctat gccttggacg agacgtggca cccggaccta gggcagccat 350
tcgggggtat gcgctgcgtg ctgtgcgcct gcgaggcgcc tcagtgggt 400
cgccgtacca ggggcctgg cagggtcagc tgcaagaaca tcaaaccaga 450
gtgccaacc cccgcctgtg ggcagccgcg ccagctgccg ggacactgct 500
gccagacctg cccccaggag cgcagcagtt cggagcggca gccgagcggc 550
ctgtccttcg agtatccgcg ggacccggag catcgcagtt atagcgaccg 600
cggggagcca ggcgtgagg agcggggcccg tggtaacggc cacacggact 650
tcgtggcgct gctgacaggg ccgaggtcgc aggccgtggc acgagccccga 700
gtctcgctgc tgctgccttag cctccgccttc tctatctcct acaggccgt 750
ggaccgcctt accaggatcc gtttcaga cttcaatggc agtgtccctgt 800
ttgagcaccc tgcagcccc acccaagatg gcctggcttg tgggggtgtgg 850
cgggcagtgc ctgcgttgc tctgcggctc cttaggcag aacagctgca 900
.tgtggactt gtgacactca ctcacccttc agggaggc tgggggcctc 950
tcatccggca cccgcctg gctgcagaga cttcagtgc catcctgact 1000
ctagaaggcc ccccacagca gggcgttaggg ggcacacccc tgctcactct 1050

cagtgacaca gaggactcct tgcattttt gctgctttc cgagggctgc 1100
tggaacccag gagtgaaaa ctaacccagg ttccctttag gctccagatt 1150
ctacaccagg ggcagctact gcgagaactt caggccaatg tctcagccca 1200
ggaaccaggc tttgctgagg tgctgccaa cctgacagtc caggagatgg 1250
actggctggt gctggggag ctgcagatgg ccctggagtg ggcagggcagg 1300
ccagggctgc gcatcagtgg acacattgtc gccaggaaga gctgcgacgt 1350
cctgcaaagt gtccttgtg gggctgatgc cctgatccca gtccagacgg 1400
gtgctgccgg ctcagccagc ctcacgctgc taggaaatgg ctccctgatc 1450
tatcaggtgc aagtggtagg gacaaggagt gaggtggtgg ccatgacact 1500
ggagaccaag cctcagcgga gggatcagcg cactgtcctg tgccacatgg 1550
ctggactcca gccaggagga cacacggccg tgggtatctg ccctggctg 1600
ggtgccccag gggctcatat gctgctgcag aatgagctt tcctgaacgt 1650
gggcaccaag gacttcccag acggagagct tcggggcac gttggctgccc 1700
tgccctactg tgggcatagc gcccgcattc acacgctgcc cgtcccccta 1750
gcaggagccc tggtgctacc ccctgtgaag agccaagcag cagggcacgc 1800
ctggcttcc ttggataccc actgtcacct gcactatgaa gtgctgctgg 1850
ctgggcttgg tggctcagaa caaggcactg tcactgccc cctccttggg 1900
cctcctggaa cgccagggcc tcggcggtcg ctgaagggat tctatggctc 1950
agaggcccag ggtgtggta aggacctgga gccggaactg ctgcggcacc 2000
tggcaaaagg catggcctcc ctgatgatca ccaccaaggg tagccccaga 2050
ggggagctcc gagggcaggt gcacatagcc aaccaatgtg aggttggcgg 2100
actgcgcctg gaggcgccg gggccgaggg ggtgcggcg ctggggctc 2150
cgatatacgc ctctgctgcg ccgcctgtgg tgcctggctt cccggcccta 2200
gcgcggccca aacctggtgg tcctggcgcc ccccgagacc ccaacacatg 2250
cttcttcgag gggcagcagc gccccacgg ggctcgctgg gcgcggcaact 2300
acgacccgct ctgctcaact tgcacactgcc agagacgaac ggtgatctgt 2350
gacccgggtgg tgtgcccacc gcccagctgc ccacacccgg tgcaggctcc 2400
cgaccagtgc tgccctgttt gccctgagaa acaagatgtc agagacttgc 2450
cagggctgcc aaggagccgg gacccaggag agggctgcta ttttcatgg 2500

gaccggagct ggcgggcagc gggtaacgcgg tggcaccccg ttgtgcccc 2550
 ctttggctta attaagtgtg ctgtctgcac ctgcaagggg ggcactggag 2600
 aggtgcactg tgagaaggtg cagtgtcccc ggctggcctg tgcccagct 2650
 gtgcgtgtca accccaccga ctgctgcaaa cagtgtccag tggggtcggg 2700
 ggcccacccc cagctgggg accccatgca ggctgatggg ccccgggct 2750
 gccgtttgc tggcagtg 2800
 gtgccccctt ttggagagat gagctgtatc acctgcagat gtggggcagg 2850
 ggtgcctcac tgtgagcggg atgactgttc actgccactg tcctgtggct 2900
 cggggaaagga gagtcgatgc tgttcccgct gcacggccca ccggcggccc 2950
 ccagagacca gaactgatcc agagctggag aaagaagccg aaggcttta 3000
 gggagcagcc agagggccaa gtgaccaaga gnatggggcc tgagctgggg 3050
 aagggggtggc atcgaggacc ttcttgatt ctcctgtggg aagcccagt 3100
 cctttgtcc tctgtcctgc ctctactccc acccccacta cctctggaa 3150
 ccacagctcc acaaggggga gaggcagctg ggccagaccg aggtcacagc 3200
 cactccaagt cctgccctgc caccctcgcc ctctgtcctg gaagccccac 3250
 cccttcctc ctgtacataa tgtaactggc ttgttggat ttttaattta 3300
 ttttcaactca gcaccaaggg ccccgacac tccactcctg ctgcccctga 3350
 gctgagcaga gtcattattg gagagtttg tatttattaa aacatttctt 3400
 tttcagtcaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa a 3441

<210> 7
 <211> 954
 <212> PRT
 <213> Homo Sapien

<400> 7
 Met Pro Ser Leu Pro Ala Pro Pro Ala Pro Leu Leu Leu Gly
 1 5 10 15
 Leu Leu Leu Leu Gly Ser Arg Pro Ala Arg Gly Ala Gly Pro Glu
 20 25 30
 Pro Pro Val Leu Pro Ile Arg Ser Glu Lys Glu Pro Leu Pro Val
 35 40 45
 Arg Gly Ala Ala Gly Cys Thr Phe Gly Gly Lys Val Tyr Ala Leu
 50 55 60
 Asp Glu Thr Trp His Pro Asp Leu Gly Gln Pro Phe Gly Val Met
 65 70 75

Arg Cys Val Leu Cys Ala Cys Glu Ala Pro Gln Trp Gly Arg Arg
80 85 90

Thr Arg Gly Pro Gly Arg Val Ser Cys Lys Asn Ile Lys Pro Glu
95 100 105

Cys Pro Thr Pro Ala Cys Gly Gln Pro Arg Gln Leu Pro Gly His
110 115 120

Cys Cys Gln Thr Cys Pro Gln Glu Arg Ser Ser Ser Glu Arg Gln
125 130 135

Pro Ser Gly Leu Ser Phe Glu Tyr Pro Arg Asp Pro Glu His Arg
140 145 150

Ser Tyr Ser Asp Arg Gly Glu Pro Gly Ala Glu Glu Arg Ala Arg
155 160 165

Gly Asp Gly His Thr Asp Phe Val Ala Leu Leu Thr Gly Pro Arg
170 175 180

Ser Gln Ala Val Ala Arg Ala Arg Val Ser Leu Leu Arg Ser Ser
185 190 195

Leu Arg Phe Ser Ile Ser Tyr Arg Arg Leu Asp Arg Pro Thr Arg
200 205 210

Ile Arg Phe Ser Asp Ser Asn Gly Ser Val Leu Phe Glu His Pro
215 220 225

Ala Ala Pro Thr Gln Asp Gly Leu Val Cys Gly Val Trp Arg Ala
230 235 240

Val Pro Arg Leu Ser Leu Arg Leu Leu Arg Ala Glu Gln Leu His
245 250 255

Val Ala Leu Val Thr Leu Thr His Pro Ser Gly Glu Val Trp Gly
260 265 270

Pro Leu Ile Arg His Arg Ala Leu Ala Ala Glu Thr Phe Ser Ala
275 280 285

Ile Leu Thr Leu Glu Gly Pro Pro Gln Gln Gly Val Gly Gly Ile
290 295 300

Thr Leu Leu Thr Leu Ser Asp Thr Glu Asp Ser Leu His Phe Leu
305 310 315

Leu Leu Phe Arg Gly Leu Leu Glu Pro Arg Ser Gly Gly Leu Thr
320 325 330

Gln Val Pro Leu Arg Leu Gln Ile Leu His Gln Gly Gln Leu Leu
335 340 345

Arg Glu Leu Gln Ala Asn Val Ser Ala Gln Glu Pro Gly Phe Ala
350 355 360

Glu Val Leu Pro Asn Leu Thr Val Gln Glu Met Asp Trp Leu Val

365	370	375
Leu Gly Glu Leu Gln Met Ala Leu Glu Trp Ala Gly Arg Pro Gly		
380	385	390
Leu Arg Ile Ser Gly His Ile Ala Ala Arg Lys Ser Cys Asp Val		
395	400	405
Leu Gln Ser Val Leu Cys Gly Ala Asp Ala Leu Ile Pro Val Gln		
410	415	420
Thr Gly Ala Ala Gly Ser Ala Ser Leu Thr Leu Leu Gly Asn Gly		
425	430	435
Ser Leu Ile Tyr Gln Val Gln Val Val Gly Thr Ser Ser Glu Val		
440	445	450
Val Ala Met Thr Leu Glu Thr Lys Pro Gln Arg Arg Asp Gln Arg		
455	460	465
Thr Val Leu Cys His Met Ala Gly Leu Gln Pro Gly Gly His Thr		
470	475	480
Ala Val Gly Ile Cys Pro Gly Leu Gly Ala Arg Gly Ala His Met		
485	490	495
Leu Leu Gln Asn Glu Leu Phe Leu Asn Val Gly Thr Lys Asp Phe		
500	505	510
Pro Asp Gly Glu Leu Arg Gly His Val Ala Ala Leu Pro Tyr Cys		
515	520	525
Gly His Ser Ala Arg His Asp Thr Leu Pro Val Pro Leu Ala Gly		
530	535	540
Ala Leu Val Leu Pro Pro Val Lys Ser Gln Ala Ala Gly His Ala		
545	550	555
Trp Leu Ser Leu Asp Thr His Cys His Leu His Tyr Glu Val Leu		
560	565	570
Leu Ala Gly Leu Gly Gly Ser Glu Gln Gly Thr Val Thr Ala His		
575	580	585
Leu Leu Gly Pro Pro Gly Thr Pro Gly Pro Arg Arg Leu Leu Lys		
590	595	600
Gly Phe Tyr Gly Ser Glu Ala Gln Gly Val Val Lys Asp Leu Glu		
605	610	615
Pro Glu Leu Leu Arg His Leu Ala Lys Gly Met Ala Ser Leu Met		
620	625	630
Ile Thr Thr Lys Gly Ser Pro Arg Gly Glu Leu Arg Gly Gln Val		
635	640	645
His Ile Ala Asn Gln Cys Glu Val Gly Gly Leu Arg Leu Glu Ala		
650	655	660

Ala Gly Ala Glu Gly Val Arg Ala Leu Gly Ala Pro Asp Thr Ala
 665 670 675
 Ser Ala Ala Pro Pro Val Val Pro Gly Leu Pro Ala Leu Ala Pro
 680 685 690
 Ala Lys Pro Gly Gly Pro Gly Arg Pro Arg Asp Pro Asn Thr Cys
 695 700 705
 Phe Phe Glu Gly Gln Gln Arg Pro His Gly Ala Arg Trp Ala Pro
 710 715 720
 Asn Tyr Asp Pro Leu Cys Ser Leu Cys Thr Cys Gln Arg Arg Thr
 725 730 735
 Val Ile Cys Asp Pro Val Val Cys Pro Pro Ser Cys Pro His
 740 745 750
 Pro Val Gln Ala Pro Asp Gln Cys Cys Pro Val Cys Pro Glu Lys
 755 760 765
 Gln Asp Val Arg Asp Leu Pro Gly Leu Pro Arg Ser Arg Asp Pro
 770 775 780
 Gly Glu Gly Cys Tyr Phe Asp Gly Asp Arg Ser Trp Arg Ala Ala
 785 790 795
 Gly Thr Arg Trp His Pro Val Val Pro Pro Phe Gly Leu Ile Lys
 800 805 810
 Cys Ala Val Cys Thr Cys Lys Gly Gly Thr Gly Glu Val His Cys
 815 820 825
 Glu Lys Val Gln Cys Pro Arg Leu Ala Cys Ala Gln Pro Val Arg
 830 835 840
 Val Asn Pro Thr Asp Cys Cys Lys Gln Cys Pro Val Gly Ser Gly
 845 850 855
 Ala His Pro Gln Leu Gly Asp Pro Met Gln Ala Asp Gly Pro Arg
 860 865 870
 Gly Cys Arg Phe Ala Gly Gln Trp Phe Pro Glu Ser Gln Ser Trp
 875 880 885
 His Pro Ser Val Pro Pro Phe Gly Glu Met Ser Cys Ile Thr Cys
 890 895 900
 Arg Cys Gly Ala Gly Val Pro His Cys Glu Arg Asp Asp Cys Ser
 905 910 915
 Leu Pro Leu Ser Cys Gly Ser Gly Lys Glu Ser Arg Cys Cys Ser
 920 925 930
 Arg Cys Thr Ala His Arg Arg Pro Pro Glu Thr Arg Thr Asp Pro
 935 940 945
 Glu Leu Glu Lys Glu Ala Glu Gly Ser

<210> 8
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide probe

<400> 8
gactagttct agatcgcgag cggccgcctt tttttttt tttt 44

<210> 9
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 9
cggacgcgtg gggcctgcgc acccagct 28

<210> 10
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 10
gccgctcccc gaacgggcag cggctccttc tcagaa 36

<210> 11
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 11
ggcgcacagc acgcagcgca tcacccgaa tggctc 36

<210> 12
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 12
gtgctgccca tccgttctga gaagga 26

<210> 13

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 13
gcagggtgct caaacaggac ac 22

<210> 14
<211> 3231
<212> DNA
<213> Homo Sapien

<400> 14
ggcggagcag ccctagccgc caccgtcgct ctgcagctc tcgtcgccac 50
tgccacccgc gcccgggtca ctgcgtcctg gtcgggtc cccggccctc 100
ccggccggcc atgcagcccc gccggccca ggcccgggt gcgcagctgc 150
tgcccgcgct ggccctgctg ctgcgtgc tcggagcggg gccccgaggc 200
agctccctgg ccaaccggc gcccggcgcc cccttgcctg cggccggcc 250
gtgcggcccg cagccctgcc ggaatgggg tttgtgcacc tcgcgcctg 300
agccggaccc gcagcacccg gccccggccg gcggactgg ctacagctgc 350
acctgccccg cgggatctc cggcccaac tgccagcttgc ttgcagatcc 400
ttgtgccagc aacccttgc accatggcaa ctgcagcagc agcagcagca 450
gcagcagcga tggctaccc tcgcatttgc atgaaggcta tgaaggccc 500
aactgtgaac aggcaattcc cagtctccca gccactggct ggaccgaatc 550
catggcaccc cgacagcttc agcctgttcc tgctactcag gagcctgaca 600
aaatcctgcc tcgcctcag gcaacggta cactgcctac ctggcagccg 650
aaaacagggc agaaatgtt agaaatgaaa tggatcaag tggaggttat 700
cccagatatt gcctgtggga atgcggatcc taacagctct gcgggtggcc 750
gcctggatcc ctttgaagtgc ccacagaaca cctcagtcaa gattcggcaa 800
gtgccactg cctcaactgat tttgcgttgg aaggcacgg ccacaggatt 850
ccaacagtgc tccctcatag atggacgaag tgtgacccccc cttcaggctt 900
cagggggact ggtccctctg gaggagatgc tcgccttggg gaataatcac 950
tttattggtt ttgtgaatga ttctgtgact aagtctattg tggctttcg 1000
cttaactctg gtggtaagg tcagcacctg tgcggccgggg gagagtcacg 1050

caaatgactt ggagtgttca gaaaaaggaa aatgcaccac gaagccgtca 1100
gaggcaactt tttcctgtac ctgtgaggag cagtacgtgg gtactttctg 1150
tgaagaatac gatgcttgcc agaggaaacc ttgccaaaac aacgcgagct 1200
gtattgatgc aaatgaaaag caagatgggaa gcaatttcac ctgtgttgc 1250
cttcctgggtt atactggaga gctttgccag tccaagatttgc attactgcat 1300
cctagaccca tgcagaaatg gagcaacatg catttcagt ctcagtggat 1350
tcacctgcca gtgtccagaa ggatacttcg gatctgcttgc tgaagaaaag 1400
gtggacccct gcgcctcgac tccgtgccag aacaacggca cctgctatgt 1450
ggacggggta cactttaccc gcaactgcag cccgggcttc acagggccga 1500
cctgtgcccac gcttatttgc ttctgtgccc tcagccccctg tgctcatggc 1550
acgtgcccac gcgtgggcac cagctacaaa tgcctctgtg atccagggtt 1600
ccatggcctc tactgtgagg aggaatataa tgagtgcctc tccgctccat 1650
gcctgaatgc agccacactgc agggaccttcg ttaatggcta tgagtgtgt 1700
tgccctggcag aatacaaagg aacacactgt gaattgtaca aggtccctg 1750
cgctaacgtc agctgtctga acggagccac ctgtgacagc gacggcctga 1800
atggcacgtg catctgtgca cccgggttta caggtgaaga gtgcgacatt 1850
gacataaaatg aatgtgacag taacccctgc caccatggtg ggagctgcct 1900
ggaccagccc aatggttata actgccactg cccgcattgt tgggtggag 1950
caaactgtga gatccacctc caatggaaatgc ccgggcacat ggcggagagc 2000
ctcaccaaca tgccacggca ctccctctac atcatcattt gaggccctcg 2050
cgtggccttc atccttatgc tgatcatcct gatcggtggg atttgccgca 2100
tcagccgcatt tgaataccag gtttttcca gccgcattttt tgaggagttc 2150
tacaactgcc gcagcatcga cagcgagttc agcaatgccat ttgcattccat 2200
ccggcatgcc aggtttggaa agaaatcccg gcctgcaatg tatgtatgt 2250
ccccccatgc cttatggaaatgc tacatgcctg atgacaaacc cttggtcaca 2300
ctgattaaaa ctaaagattt gtaatcttttttttggattat ttttcaaaaa 2350
gatgagatac tacactcatt taaatattttt taagaaaata aaaagcttaa 2400
gaaatttaaa atgcttagctg ctcaagagtt ttcagtagaa tatttaagaa 2450
ctaattttctt gtagctttta gtttggaaaaaatattttaa aaacaaaaattt 2500

tgtgaaacct atagacgatg ttttaatgta ccttcagctc tctaaactgt 2550
gtgcttctac tagtgtgtgc tctttcaact gtagacacta tcacgagacc 2600
cagattaatt tctgtggttg ttacagaata agtctaatac aggagaagtt 2650
tctgtttgac gtttgagtgc cggcttctg agtagagtta ggaaaaccac 2700
gtaacgtac atatgatgta taatagagta tacccgttac taaaaaagaa 2750
gtctgaaatg ttcgtttgt ggaaaagaaa ctagttaat ttactattcc 2800
taacccgaat gaaatttagcc tttgccttat tctgtgcattt ggtaagtaac 2850
ttatctgc actgtttgt tgaactttgt ggaaacattc tttcgagttt 2900
gttttgcata tttcgtaac agtcgtcgaa ctaggcctca aaaacatacg 2950
taacgaaaag gcctagcgag gcaaattctg attgatttga atctatattt 3000
ttctttaaaa agtcaagggt tctatattgt gagtaaatta aatttacatt 3050
tgagttgtt gttgctaaga ggtagtaat gtaagagagt actggttcct 3100
tcagtagtga gtatttctca tagtgcagct ttatttatct ccaggatgtt 3150
tttggctg tatttgattt atatgtgctt cttctgattt ttgctaattt 3200
ccaaccatat tgaataaaatg tgatcaagtc a 3231

<210> 15
<211> 737
<212> PRT
<213> Homo Sapien

<400> 15
Met Gln Pro Arg Arg Ala Gln Ala Pro Gly Ala Gln Leu Leu Pro
1 5 10 15
Ala Leu Ala Leu Leu Leu Leu Leu Gly Ala Gly Pro Arg Gly
20 25 30
Ser Ser Leu Ala Asn Pro Val Pro Ala Ala Pro Leu Ser Ala Pro
35 40 45
Gly Pro Cys Ala Ala Gln Pro Cys Arg Asn Gly Gly Val Cys Thr
50 55 60
Ser Arg Pro Glu Pro Asp Pro Gln His Pro Ala Pro Ala Gly Glu
65 70 75
Pro Gly Tyr Ser Cys Thr Cys Pro Ala Gly Ile Ser Gly Ala Asn
80 85 90
Cys Gln Leu Val Ala Asp Pro Cys Ala Ser Asn Pro Cys His His
95 100 105
Gly Asn Cys Ser Ser Ser Ser Ser Ser Asp Gly Tyr Leu

110	115	120
Cys Ile Cys Asn Glu Gly Tyr Glu Gly Pro Asn Cys Glu Gln Ala		
125	130	135
Leu Pro Ser Leu Pro Ala Thr Gly Trp Thr Glu Ser Met Ala Pro		
140	145	150
Arg Gln Leu Gln Pro Val Pro Ala Thr Gln Glu Pro Asp Lys Ile		
155	160	165
Leu Pro Arg Ser Gln Ala Thr Val Thr Leu Pro Thr Trp Gln Pro		
170	175	180
Lys Thr Gly Gln Lys Val Val Glu Met Lys Trp Asp Gln Val Glu		
185	190	195
Val Ile Pro Asp Ile Ala Cys Gly Asn Ala Ser Ser Asn Ser Ser		
200	205	210
Ala Gly Gly Arg Leu Val Ser Phe Glu Val Pro Gln Asn Thr Ser		
215	220	225
Val Lys Ile Arg Gln Asp Ala Thr Ala Ser Leu Ile Leu Leu Trp		
230	235	240
Lys Val Thr Ala Thr Gly Phe Gln Gln Cys Ser Leu Ile Asp Gly		
245	250	255
Arg Ser Val Thr Pro Leu Gln Ala Ser Gly Gly Leu Val Leu Leu		
260	265	270
Glu Glu Met Leu Ala Leu Gly Asn Asn His Phe Ile Gly Phe Val		
275	280	285
Asn Asp Ser Val Thr Lys Ser Ile Val Ala Leu Arg Leu Thr Leu		
290	295	300
Val Val Lys Val Ser Thr Cys Val Pro Gly Glu Ser His Ala Asn		
305	310	315
Asp Leu Glu Cys Ser Gly Lys Gly Lys Cys Thr Thr Lys Pro Ser		
320	325	330
Glu Ala Thr Phe Ser Cys Thr Cys Glu Glu Gln Tyr Val Gly Thr		
335	340	345
Phe Cys Glu Glu Tyr Asp Ala Cys Gln Arg Lys Pro Cys Gln Asn		
350	355	360
Asn Ala Ser Cys Ile Asp Ala Asn Glu Lys Gln Asp Gly Ser Asn		
365	370	375
Phe Thr Cys Val Cys Leu Pro Gly Tyr Thr Gly Glu Leu Cys Gln		
380	385	390
Ser Lys Ile Asp Tyr Cys Ile Leu Asp Pro Cys Arg Asn Gly Ala		
395	400	405

Thr Cys Ile Ser Ser Leu Ser Gly Phe Thr Cys Gln Cys Pro Glu
410 415 420

Gly Tyr Phe Gly Ser Ala Cys Glu Glu Lys Val Asp Pro Cys Ala
425 430 435

Ser Ser Pro Cys Gln Asn Asn Gly Thr Cys Tyr Val Asp Gly Val
440 445 450

His Phe Thr Cys Asn Cys Ser Pro Gly Phe Thr Gly Pro Thr Cys
455 460 465

Ala Gln Leu Ile Asp Phe Cys Ala Leu Ser Pro Cys Ala His Gly
470 475 480

Thr Cys Arg Ser Val Gly Thr Ser Tyr Lys Cys Leu Cys Asp Pro
485 490 495

Gly Tyr His Gly Leu Tyr Cys Glu Glu Glu Tyr Asn Glu Cys Leu
500 505 510

Ser Ala Pro Cys Leu Asn Ala Ala Thr Cys Arg Asp Leu Val Asn
515 520 525

Gly Tyr Glu Cys Val Cys Leu Ala Glu Tyr Lys Gly Thr His Cys
530 535 540

Glu Leu Tyr Lys Asp Pro Cys Ala Asn Val Ser Cys Leu Asn Gly
545 550 555

Ala Thr Cys Asp Ser Asp Gly Leu Asn Gly Thr Cys Ile Cys Ala
560 565 570

Pro Gly Phe Thr Gly Glu Glu Cys Asp Ile Asp Ile Asn Glu Cys
575 580 585

Asp Ser Asn Pro Cys His His Gly Gly Ser Cys Leu Asp Gln Pro
590 595 600

Asn Gly Tyr Asn Cys His Cys Pro His Gly Trp Val Gly Ala Asn
605 610 615

Cys Glu Ile His Leu Gln Trp Lys Ser Gly His Met Ala Glu Ser
620 625 630

Leu Thr Asn Met Pro Arg His Ser Leu Tyr Ile Ile Ile Gly Ala
635 640 645

Leu Cys Val Ala Phe Ile Leu Met Leu Ile Ile Leu Ile Val Gly
650 655 660

Ile Cys Arg Ile Ser Arg Ile Glu Tyr Gln Gly Ser Ser Arg Pro
665 670 675

Ala Tyr Glu Glu Phe Tyr Asn Cys Arg Ser Ile Asp Ser Glu Phe
680 685 690

Ser Asn Ala Ile Ala Ser Ile Arg His Ala Arg Phe Gly Lys Lys

695

700

705

Ser Arg Pro Ala Met Tyr Asp Val Ser Pro Ile Ala Tyr Glu Asp
710 715 720

Tyr Ser Pro Asp Asp Lys Pro Leu Val Thr Leu Ile Lys Thr Lys
725 730 735

Asp Leu

<210> 16

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 16

tgtaaaacga cggccagttt aatagacctg caattattaa tct 43

<210> 17

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 17

caggaaacag ctatgaccac ctgcacacct gcaaattcat t 41

<210> 18

<211> 508

<212> DNA

<213> Homo Sapien

<400> 18

ctctggaagg tcacggccac aggattccaa cagtgcctcc tcatacatgg 50

acgaaagtgt gacccccctt tcaggcttcc agggggactg gtcctcctgg 100

aggagatgct cgccttgggg aataatcaact ttattggttt tgtgaatgtat 150

tctgtgacta agtctattgt ggcttgcgc ttaactctgg tggtaaggt 200

cagcacctgt gtgccggggg agagtcacgc aaatgacttg gagtgttcag 250

aaaaaggaaa atgcaccacg aagccgtcag agccaacttt ttccctgtacc 300

tgtgaggagc agtacgtggg tactttctgt gaagaatacg atgcttgcca 350

gaggaaaccc tgccaaaaca acgcgagctg tattgatgca aatgaaaagc 400

aagatggagc caatttcacc tgtgtttgcc ttccctggta tactggagag 450

ctttgccaac cgaactgaga ttggagcgaa cgacctacac cgaactgaga 500

tagggag 508

<210> 19
<211> 508
<212> DNA
<213> Homo Sapien

<400> 19
ctctggaagg tcacggccac aggattccaa cagtgcgtccc tcatagatgg 50
acgaaaagtgt gacccccctt tcaggcttc agggggactg gtcctcctgg 100
aggagatgct cgccctgggg aataatcaact ttattggttt tgtgaatgat 150
tctgtgacta agtctattgt ggcttgcgcc ttaactctgg tggtaaggt 200
cagcacctgt gtgccggggg agagtcacgc aaatgacttg gagtgttcag 250
gaaaaggaaa atgcaccacg aagccgtcag aggcaacttt ttccctgtacc 300
tgtgaggagc agtacgtggg tactttctgt gaagaatacg atgcttgcca 350
gaggaaacct tgccaaaaca acgcgagctg tattgatgca aatgaaaagc 400
aagatgggag caatttcacc tgtgtttgcc ttccctggta tactggagag 450
cttgccaaac cgaactgaga ttggagcgaa cgacctacac cgaactgaga 500

tagggag 508

<210> 20
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 20
ctctggaagg tcacggccac agg 23

<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 21
ctcagttcgg ttggcaaagc tctc 24

<210> 22
<211> 69
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 22

cagtgcctcc tcatagatgg acgaaagtgt gaccccccctt tcaggcgaga 50
gctttgccaa ccgaactga 69

<210> 23

<211> 1520

<212> DNA

<213> Homo Sapien

<400> 23

gctgagtcgt ctgctccctgc tgctgctgt ccagcctgtta acctgtgcct 50
acaccacgccc aggccccccc agagccctca ccacgctggg cgccccccaga 100
gccccacacca tgccgggcac ctacgctccc tcgaccacac tcagtagtcc 150
cagcacccag ggcctgcaag agcaggcacg ggcctgtatg cgggacttcc 200
cgctcgtgga cggccacaac gacctgcccc tggtcctaag gcaggtttac 250
cagaaagggc tacaggatgt taacctgcgc aatttcagct acggccagac 300
cagcctggac aggcttagag atggcctcgt gggcgcccag ttctggtcag 350
cctatgtgcc atgccagacc caggaccggg atgcctgcg cctcaccctg 400
gagcagattg acctcatacg ccgcattgtgt gcctcctatt ctgagctgga 450
gcttgtgacc tcggctaaag ctctgaacga cactcagaaa ttggcctgcc 500
tcatcggtgt agagggtgcc cactcgctgg acaatagcct ctccatctta 550
cgtaccttct acatgctggg agtgcgtac ctgacgctca cccacacctg 600
caacacaccc tggcagaga gtcggctaa gggcgccac tccttctaca 650
acaacatcag cgggctgact gactttgggt agaagggtggt ggcagaaatg 700
aaccgcctgg gcatgatggt agacttatcc catgtctcag atgctgtggc 750
acggcgggccc ctggaagtgt cacaggcacc tgtgatctc tcccactcgg 800
ctgcccgggg tgtgtcaac agtgctcgga atgttcctga tgacatcctg 850
cagttctga agaagaacgg tggcgtcggt atgggtgtt tgtccatggg 900
agtaatacag tgcaacccat cagccaatgt gtccactgtg gcagatcact 950
tcgaccacat caaggctgtc attggatcca agttcatcgg gattgggtgga 1000
gattatgatg gggccggcaa attccctcag gggctggaaag acgtgtccac 1050
atacccggtc ctgatagagg agttgctgag tcgtggctgg agtgaggaaag 1100
agcttcaggg tgtccttcgt ggaaacctgc tgccgggtctt cagacaagtg 1150

gaaaaggtac aggaagaaaa caaatggcaa agccccttgg aggacaagtt 1200
cccgatgag cagctgagca gttcctgccca ctccgacctc tcacgtctgc 1250
gtcagagaca gagtctgact tcaggccagg aactcaactga gattcccata 1300
cactggacag ccaagttacc agccaagtgg tcagtcctcag agtcctcccc 1350
ccacatggcc ccagtccttg cagttgtggc caccttccca gtccttattc 1400
tgtggctctg atgaccctagt tagtcctgcc agatgtcaact gtagcaagcc 1450
acagacacccc cacaaagttc ccctgttgtg caggcacaaa tatttcctga 1500
aataaatgtt ttggacatag 1520

<210> 24

<211> 433

<212> PRT

<213> Homo Sapien

<400> 24

Met	Pro	Gly	Thr	Tyr	Ala	Pro	Ser	Thr	Leu	Ser	Ser	Pro	Ser	
1									10				15	
Thr	Gln	Gly	Leu	Gln	Glu	Gln	Ala	Arg	Ala	Leu	Met	Arg	Asp	Phe
					20					25				30
Pro	Leu	Val	Asp	Gly	His	Asn	Asp	Leu	Pro	Leu	Val	Leu	Arg	Gln
					35					40				45
Val	Tyr	Gln	Lys	Gly	Leu	Gln	Asp	Val	Asn	Leu	Arg	Asn	Phe	Ser
					50					55				60
Tyr	Gly	Gln	Thr	Ser	Leu	Asp	Arg	Leu	Arg	Asp	Gly	Leu	Val	Gly
					65				70					75
Ala	Gln	Phe	Trp	Ser	Ala	Tyr	Val	Pro	Cys	Gln	Thr	Gln	Asp	Arg
					80				85					90
Asp	Ala	Leu	Arg	Leu	Thr	Leu	Glu	Gln	Ile	Asp	Leu	Ile	Arg	Arg
					95				100					105
Met	Cys	Ala	Ser	Tyr	Ser	Glu	Leu	Glu	Leu	Val	Thr	Ser	Ala	Lys
					110				115					120
Ala	Leu	Asn	Asp	Thr	Gln	Lys	Leu	Ala	Cys	Leu	Ile	Gly	Val	Glu
					125				130					135
Gly	Gly	His	Ser	Leu	Asp	Asn	Ser	Leu	Ser	Ile	Leu	Arg	Thr	Phe
					140				145					150
Tyr	Met	Leu	Gly	Val	Arg	Tyr	Leu	Thr	Leu	Thr	His	Thr	Cys	Asn
					155				160					165
Thr	Pro	Trp	Ala	Glu	Ser	Ser	Ala	Lys	Gly	Val	His	Ser	Phe	Tyr
					170				175					180

Asn	Asn	Ile	Ser	Gly	Leu	Thr	Asp	Phe	Gly	Glu	Lys	Val	Val	Ala
					185				190				195	
Glu	Met	Asn	Arg	Leu	Gly	Met	Met	Val	Asp	Leu	Ser	His	Val	Ser
					200			205					210	
Asp	Ala	Val	Ala	Arg	Arg	Ala	Leu	Glu	Val	Ser	Gln	Ala	Pro	Val
					215			220					225	
Ile	Phe	Ser	His	Ser	Ala	Ala	Arg	Gly	Val	Cys	Asn	Ser	Ala	Arg
					230			235					240	
Asn	Val	Pro	Asp	Asp	Ile	Leu	Gln	Leu	Leu	Lys	Lys	Asn	Gly	Gly
					245			250					255	
Val	Val	Met	Val	Ser	Leu	Ser	Met	Gly	Val	Ile	Gln	Cys	Asn	Pro
					260			265					270	
Ser	Ala	Asn	Val	Ser	Thr	Val	Ala	Asp	His	Phe	Asp	His	Ile	Lys
					275			280					285	
Ala	Val	Ile	Gly	Ser	Lys	Phe	Ile	Gly	Ile	Gly	Gly	Asp	Tyr	Asp
					290			295					300	
Gly	Ala	Gly	Lys	Phe	Pro	Gln	Gly	Leu	Glu	Asp	Val	Ser	Thr	Tyr
					305			310					315	
Pro	Val	Leu	Ile	Glu	Glu	Leu	Leu	Ser	Arg	Gly	Trp	Ser	Glu	Glu
					320			325					330	
Glu	Leu	Gln	Gly	Val	Leu	Arg	Gly	Asn	Leu	Leu	Arg	Val	Phe	Arg
					335			340					345	
Gln	Val	Glu	Lys	Val	Gln	Glu	Glu	Asn	Lys	Trp	Gln	Ser	Pro	Leu
					350			355					360	
Glu	Asp	Lys	Phe	Pro	Asp	Glu	Gln	Leu	Ser	Ser	Ser	Cys	His	Ser
					365			370					375	
Asp	Leu	Ser	Arg	Leu	Arg	Gln	Arg	Gln	Ser	Leu	Thr	Ser	Gly	Gln
					380			385					390	
Glu	Leu	Thr	Glu	Ile	Pro	Ile	His	Trp	Thr	Ala	Lys	Leu	Pro	Ala
					395			400					405	
Lys	Trp	Ser	Val	Ser	Glu	Ser	Ser	Pro	His	Met	Ala	Pro	Val	Leu
					410			415					420	
Ala	Val	Val	Ala	Thr	Phe	Pro	Val	Leu	Ile	Leu	Trp	Leu		
					425			430						

<210> 25
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 25
agtttctggtc agcctatgtg cc 22

<210> 26
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 26
cgtgatggtg tctttgtcca tggg 24

<210> 27
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 27
ctccaccaat cccgatgaac ttgg 24

<210> 28
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 28
gagcagattt acctcatacg ccgcattgtt gcctccatt ctgagctgga 50

<210> 29
<211> 1416
<212> DNA
<213> Homo Sapien

<400> 29
aaaacctata aatattccgg attattcata ccgtccccacc atcgggcgcg 50
gatccgcggc cgcaattct aaaccaacat gccgggcacc tacgctccct 100
cgaccacact cagtagtccc agcacccagg gcctgcaaga gcaggcacgg 150
gccctgatgc gggacttccc gtcgtggac ggccacaacg acctgcccct 200
ggtcctaagg caggtttacc agaaagggtt acaggatgtt aacctgcgca 250
atttcagcta cggccagacc agcctggaca ggcttagaga tggcctcgtg 300
ggcgcccagt tctggtcagc ctatgtgcca tgccagaccc aggaccggga 350
tgccctgcgc ctcaccctgg agcagattga cctcatacgc cgcatgttg 400

cctcctattc tgagctggag cttgtgaccc cggttaaagc tctgaacgac 450
actcagaaat tggcctgcct catcggtgt aagggtggcc actcgctgga 500
caatagcctc tccatcttac gtaccttcta catgctggga gtgcgctacc 550
tgacgctcac ccacacctgc aacacaccct gggcagagag ctccgctaag 600
ggcgtccact ctttctacaa caacatcagc gggctgactg actttggta 650
gaagggtggtg gcagaaatga accgcctggg catgatggta gacttatccc 700
atgtctcaga tgctgtggca cggcgggccc tggaagtgtc acaggcacct 750
gtgatcttct cccactcggc tgccccgggt gtgtgcaaca gtgctcgaa 800
tgttcctgat gacatcctgc agcttctgaa gaagaacggt ggcgtcgtga 850
tggtgtcttt gtccatggga gtaatacagt gcaacccatc agccaatgtg 900
tccactgtgg cagatcactt cgaccacatc aaggctgtca ttggatccaa 950
gttcatcggg attgggtggag attatgatgg ggccggcaaa ttccctcagg 1000
ggctggaaga cgtgtccaca taccgggtcc tgatagagga gttgctgagt 1050
cgtggctgga gtgaggaaga gcttcaggggt gtccttcgtg gaaacctgct 1100
gcgggtcttc agacaagtgg aaaaggtaca ggaagaaaaac aaatggcaaa 1150
gcccccttggg ggacaagttc ccggatgagc agctgagcag ttccctgccac 1200
tccgacctct cacgtctgcg tcagagacag agtctgactt caggccagga 1250
actcactgag attcccatac actggacagc caagttacca gccaaagtgg 1300
cagtctcaga gtcctcccccc caccctgaca aaactcacac atgcccaccc 1350
tgcccagcac ctgaactcct ggggggaccc tcagtcttcc tcttcccccc 1400
aaaacccaag gacacc 1416

<210> 30
<211> 446
<212> PRT
<213> Homo Sapien

<400> 30
Met Pro Gly Thr Tyr Ala Pro Ser Thr Thr Leu Ser Ser Pro Ser
1 5 10 15
Thr Gln Gly Leu Gln Glu Gln Ala Arg Ala Leu Met Arg Asp Phe
20 25 30
Pro Leu Val Asp Gly His Asn Asp Leu Pro Leu Val Leu Arg Gln
35 40 45
Val Tyr Gln Lys Gly Leu Gln Asp Val Asn Leu Arg Asn Phe Ser

50	55	60
Tyr Gly Gln Thr Ser Leu Asp Arg Leu Arg Asp Gly Leu Val Gly		
65	70	75
Ala Gln Phe Trp Ser Ala Tyr Val Pro Cys Gln Thr Gln Asp Arg		
80	85	90
Asp Ala Leu Arg Leu Thr Leu Glu Gln Ile Asp Leu Ile Arg Arg		
95	100	105
Met Cys Ala Ser Tyr Ser Glu Leu Glu Leu Val Thr Ser Ala Lys		
110	115	120
Ala Leu Asn Asp Thr Gln Lys Leu Ala Cys Leu Ile Gly Val Glu		
125	130	135
Gly Gly His Ser Leu Asp Asn Ser Leu Ser Ile Leu Arg Thr Phe		
140	145	150
Tyr Met Leu Gly Val Arg Tyr Leu Thr Leu Thr His Thr Cys Asn		
155	160	165
Thr Pro Trp Ala Glu Ser Ser Ala Lys Gly Val His Ser Phe Tyr		
170	175	180
Asn Asn Ile Ser Gly Leu Thr Asp Phe Gly Glu Lys Val Val Ala		
185	190	195
Glu Met Asn Arg Leu Gly Met Met Val Asp Leu Ser His Val Ser		
200	205	210
Asp Ala Val Ala Arg Arg Ala Leu Glu Val Ser Gln Ala Pro Val		
215	220	225
Ile Phe Ser His Ser Ala Ala Arg Gly Val Cys Asn Ser Ala Arg		
230	235	240
Asn Val Pro Asp Asp Ile Leu Gln Leu Leu Lys Lys Asn Gly Gly		
245	250	255
Val Val Met Val Ser Leu Ser Met Gly Val Ile Gln Cys Asn Pro		
260	265	270
Ser Ala Asn Val Ser Thr Val Ala Asp His Phe Asp His Ile Lys		
275	280	285
Ala Val Ile Gly Ser Lys Phe Ile Gly Ile Gly Gly Asp Tyr Asp		
290	295	300
Gly Ala Gly Lys Phe Pro Gln Gly Leu Glu Asp Val Ser Thr Tyr		
305	310	315
Pro Val Leu Ile Glu Glu Leu Leu Ser Arg Gly Trp Ser Glu Glu		
320	325	330
Glu Leu Gln Gly Val Leu Arg Gly Asn Leu Leu Arg Val Phe Arg		
335	340	345

Gln	Val	Glu	Lys	Val	Gln	Glu	Glu	Asn	Lys	Trp	Gln	Ser	Pro	Leu
				350					355					360
Glu	Asp	Lys	Phe	Pro	Asp	Glu	Gln	Leu	Ser	Ser	Ser	Cys	His	Ser
				365					370					375
Asp	Leu	Ser	Arg	Leu	Arg	Gln	Arg	Gln	Ser	Leu	Thr	Ser	Gly	Gln
				380					385					390
Glu	Leu	Thr	Glu	Ile	Pro	Ile	His	Trp	Thr	Ala	Lys	Leu	Pro	Ala
				395					400					405
Lys	Trp	Ser	Val	Ser	Glu	Ser	Ser	Pro	His	Pro	Asp	Lys	Thr	His
				410					415					420
Thr	Cys	Pro	Pro	Cys	Pro	Ala	Pro	Glu	Leu	Leu	Gly	Gly	Pro	Ser
				425					430					435
Val	Phe	Leu	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr				
				440					445					

<210> 31
<211> 1790
<212> DNA
<213> Homo Sapien

<400> 31
cgcccagcga cgtgcggcg gcctggcccg cgccctccccg cgcccgccct 50
gcgtcccgcg ccctgcgcca cccgcgcgca gccgcagccc gcccgcgc 100
cccgccagcg cccggcccat gcccgcggc cgccggggcc cccgcgc 150
atccgcgcgg cggccgcgc cgttgctgcc cctgctgctg ctgctctgcg 200
tcctcggggc gccgcgagcc ggatcaggag cccacacagc tgtgatcagt 250
ccccaggatc ccacgcttct catcgctcc tccctgctgg ccacctgctc 300
agtgcacgga gaccaccagg gagccaccgc cgagggcctc tactggaccc 350
tcaacggcg cccgcctgccc cctgagctct cccgtgtact caacgcctcc 400
accttggctc tggccctggc caacctcaat gggtccaggc agcggtcggg 450
ggacaacctc gtgtgccacg cccgtgacgg cagcatcctg gctggctct 500
gcctctatgt tggcctgccc ccagagaaac ccgtcaacat cagctgctgg 550
tccaagaaca tgaaggactt gacctgccgc tggacgccc gggccacgg 600
ggagaccttc ctccacacca actactccct caagtacaag ctttaggttgt 650
atggccagga caacacatgt gaggagtacc acacagtggg gccccactcc 700
tgccacatcc ccaaggacct ggctctcttt acgcccattg agatctgggt 750
ggaggccacc aaccgcctgg gctctgccccg ctccgatgta ctcacgctgg 800

atatcctgga tgtggtgacc acggacccccc cgcccgacgt gcacgtgagc 850
cgcgtcgaaa gcctggagga ccagctgagc gtgcgctggg tgtcgccacc 900
cgccctcaag gatttcctct ttcaagccaa ataccagatc cgctaccgag 950
tggaggacag tgtggactgg aaggtggtgg acgatgttag caaccagacc 1000
tcctgccgcc tggccggcct gaaacccggc accgtgtact tcgtgcaagt 1050
gcgcgtcaac cccttggca tctatggctc caagaaagcc gggatctgga 1100
gtgagtggag ccacccccaca gcccctcca ctcccccgag tgagcgcccg 1150
ggcccgcccg gcggggcggt cgaaccgcgg ggccggagagc cgagctcggg 1200
gccgggtgcgg cgcgagctca agcagttcct gggctggctc aagaagcacg 1250
cgtactgctc caacccctcagc ttccgcctct acgaccagtg gcgcgcctgg 1300
atgcagaagt cgcacaagac ccgcaaccag gacgagggga tcctgcctc 1350
gggcagacgg ggcacggcga gaggtcctgc cagataagct gtaggggctc 1400
aggccaccct ccctgccacg tggagacgca gagggccaaac ccaaactggg 1450
gcacacctctg taccctcact tcagggcacc tgagccaccc tcagcaggag 1500
ctgggggtggc ccctgagctc caacggccat aacagctctg actcccacgt 1550
gaggccaccc ttgggtgcac cccagtggt gtgtgtgtgt gtgtgagggt 1600
tggttgagtt gcctagaacc cctgccaggg ctgggggtga gaaggggagt 1650
cattactccc cattacctag ggccctcca aaagagtctt ttaataaaa 1700
tgagctattt aggtgctgtg attgtaaaaaaa aaaaaaaaaa 1750
aaaaaaaaaaa aaaaaaaaaa aaaaacaaaa aaaaaaaaaa 1790

<210> 32
<211> 422
<212> PRT
<213> Homo Sapien

<400> 32
Met Pro Ala Gly Arg Arg Gly Pro Ala Ala Gln Ser Ala Arg Arg
1 5 10 15
Pro Pro Pro Leu Leu Pro Leu Leu Leu Leu Cys Val Leu Gly
20 25 30
Ala Pro Arg Ala Gly Ser Gly Ala His Thr Ala Val Ile Ser Pro
35 40 45
Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Leu Ala Thr Cys
50 55 60

Ser Val His Gly Asp Pro Pro Gly Ala Thr Ala Glu Gly Leu Tyr
 65 70 75
 Trp Thr Leu Asn Gly Arg Arg Leu Pro Pro Glu Leu Ser Arg Val
 80 85 90
 Leu Asn Ala Ser Thr Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly
 95 100 105
 Ser Arg Gln Arg Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp
 110 115 120
 Gly Ser Ile Leu Ala Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro
 125 130 135
 Glu Lys Pro Val Asn Ile Ser Cys Trp Ser Lys Asn Met Lys Asp
 140 145 150
 Leu Thr Cys Arg Trp Thr Pro Gly Ala His Gly Glu Thr Phe Leu
 155 160 165
 His Thr Asn Tyr Ser Leu Lys Tyr Lys Leu Arg Trp Tyr Gly Gln
 170 175 180
 Asp Asn Thr Cys Glu Glu Tyr His Thr Val Gly Pro His Ser Cys
 185 190 195
 His Ile Pro Lys Asp Leu Ala Leu Phe Thr Pro Tyr Glu Ile Trp
 200 205 210
 Val Glu Ala Thr Asn Arg Leu Gly Ser Ala Arg Ser Asp Val Leu
 215 220 225
 Thr Leu Asp Ile Leu Asp Val Val Thr Thr Asp Pro Pro Pro Asp
 230 235 240
 Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln Leu Ser Val
 245 250 255
 Arg Trp Val Ser Pro Pro Ala Leu Lys Asp Phe Leu Phe Gln Ala
 260 265 270
 Lys Tyr Gln Ile Arg Tyr Arg Val Glu Asp Ser Val Asp Trp Lys
 275 280 285
 Val Val Asp Asp Val Ser Asn Gln Thr Ser Cys Arg Leu Ala Gly
 290 295 300
 Leu Lys Pro Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro
 305 310 315
 Phe Gly Ile Tyr Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp
 320 325 330
 Ser His Pro Thr Ala Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly
 335 340 345
 Pro Gly Gly Gly Ala Cys Glu Pro Arg Gly Gly Glu Pro Ser Ser

350 355 360
Gly Pro Val Arg Arg Glu Leu Lys Gln Phe Leu Gly Trp Leu Lys
365 370 375
Lys His Ala Tyr Cys Ser Asn Leu Ser Phe Arg Leu Tyr Asp Gln
380 385 390
Trp Arg Ala Trp Met Gln Lys Ser His Lys Thr Arg Asn Gln Asp
395 400 405
Glu Gly Ile Leu Pro Ser Gly Arg Arg Gly Thr Ala Arg Gly Pro
410 415 420
Ala Arg

<210> 33
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 33
cccgccccgac gtgcacgtga gcc 23

<210> 34
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 34
tgagccagcc caggaactgc ttg 23

<210> 35
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 35
caagtgcgct gcaaccctt tggcatctat ggctccaaga aagccggat 50

<210> 36
<211> 1771
<212> DNA
<213> Homo Sapien

<400> 36
cccacgcgtc cgctgggttt agatcgagca accctctaaa agcagtttag 50

agtggtaaaa aaaaaaaaaa acacaccaaa cgctcgagc cacaaaaggg 100
atgaaatttc ttctggacat ctcctgtttt ctcccggtac tgatcgcttg 150
ctcccttagag tccttcgtga agctttttat tcctaagagg agaaaatcag 200
tcaccggcga aatcgctgtg attacaggag ctgggcattgg aattgggaga 250
ctgactgcct atgaatttgc taaacttaaa agcaagctgg ttctctggga 300
tataaataag catggactgg aggaaacagc tgccaaatgc aagggactgg 350
gtgccaagg tcatcacccc gtggtagact gcagcaaccg agaagatatt 400
tacagctctg caaagaaggt gaaggcagaa attggagatg ttagtatttt 450
agtaaataat gctgggttag tctatacatc agatttgggtt gctacacaag 500
atcctcagat tgaaaagact tttgaagttt atgtacttgc acatttctgg 550
actacaaagg catttcttcc tgcaatgacg aagaataacc atggccatat 600
tgtcactgtg gcttcggcag ctggacatgt ctgggtcccc ttcttactgg 650
cttactgttc aagcaagttt gctgctgtt gatttcataa aactttgaca 700
gatgaactgg ctgcottaca aataactgga gtcaaaacaa catgtctgtg 750
tcctaatttc gtaaaacactg gtttcatcaa aaatccaagt acaagtttgg 800
gaccctactt ggaacctgag gaagtggtaa acaggctgat gcatgggatt 850
ctgactgagc agaagatgat ttttattcca tcttctatag ctttttaac 900
aacattggaa aggatccttc ctgagcggtt cctggcagtt taaaaacgaa 950
aaatcagtgt taagttttagt gcagtttattt gatataaaat gaaagcgcaa 1000
taagcaccta gttttctgaa aactgattt ccaggttttag gttgatgtca 1050
tctaatacgat ccagaattttt aatgtttgaa cttctgtttt ttcttaattat 1100
ccccatttct tcaatatcat ttttgaggct ttggcagtct tcatttacta 1150
ccacttgttc ttttagccaaa agctgattac atatgatata aacagagaaa 1200
tacctttaga ggtgacttta aggaaaaatga agaaaaagaa ccaaaatgac 1250
tttattaaaa taatttccaa gattatttgc ggctcacctg aaggcttgc 1300
aaaatttgc ccataaccgt ttattnaca tatatttttta ttttgatttgc 1350
cacttaaattt ttgtataattt tttgtttttt tttctgttct acataaaatc 1400
agaaaacttca agctctctaa ataaaaatgaa ggactatatc tagtggtatt 1450
tcacaatgaa tatcatgaac tctcaatggg taggtttcat cctaccattt 1500

gccactctgt ttcctgagag atacctcaca ttccaatgcc aaacatttct 1550
gcacaggaa gctagaggtg gatacacgtg ttgcaagtat aaaagcatca 1600
ctgggattta aggagaattg agagaatgta cccacaaaatg gcagcaataa 1650
taaatggatc acacttaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1700
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1750
aaaaaaaaaa aaaaaaaaaa a 1771

<210> 37

<211> 300

<212> PRT

<213> Homo Sapien

<400> 37

Met	Lys	Phe	Leu	Leu	Asp	Ile	Leu	Leu	Leu	Pro	Leu	Leu	Ile	
1													15	
Val	Cys	Ser	Leu	Glu	Ser	Phe	Val	Lys	Leu	Phe	Ile	Pro	Lys	Arg
													30	
Arg	Lys	Ser	Val	Thr	Gly	Glu	Ile	Val	Leu	Ile	Thr	Gly	Ala	Gly
													45	
His	Gly	Ile	Gly	Arg	Leu	Thr	Ala	Tyr	Glu	Phe	Ala	Lys	Leu	Lys
													60	
Ser	Lys	Leu	Val	Leu	Trp	Asp	Ile	Asn	Lys	His	Gly	Leu	Glu	Glu
													75	
Thr	Ala	Ala	Lys	Cys	Lys	Gly	Leu	Gly	Ala	Lys	Val	His	Thr	Phe
													90	
Val	Val	Asp	Cys	Ser	Asn	Arg	Glu	Asp	Ile	Tyr	Ser	Ser	Ala	Lys
													105	
Lys	Val	Lys	Ala	Glu	Ile	Gly	Asp	Val	Ser	Ile	Leu	Val	Asn	Asn
													120	
Ala	Gly	Val	Val	Tyr	Thr	Ser	Asp	Leu	Phe	Ala	Thr	Gln	Asp	Pro
													135	
Gln	Ile	Glu	Lys	Thr	Phe	Glu	Val	Asn	Val	Leu	Ala	His	Phe	Trp
													150	
Thr	Thr	Lys	Ala	Phe	Leu	Pro	Ala	Met	Thr	Lys	Asn	Asn	His	Gly
													165	
His	Ile	Val	Thr	Val	Ala	Ser	Ala	Ala	Gly	His	Val	Ser	Val	Pro
													180	
Phe	Leu	Leu	Ala	Tyr	Cys	Ser	Ser	Lys	Phe	Ala	Ala	Val	Gly	Phe
													195	
His	Lys	Thr	Leu	Thr	Asp	Glu	Leu	Ala	Ala	Leu	Gln	Ile	Thr	Gly

200	205	210
Val Lys Thr Thr Cys Leu Cys Pro Asn Phe Val Asn Thr Gly Phe		
215	220	225
Ile Lys Asn Pro Ser Thr Ser Leu Gly Pro Thr Leu Glu Pro Glu		
230	235	240
Glu Val Val Asn Arg Leu Met His Gly Ile Leu Thr Glu Gln Lys		
245	250	255
Met Ile Phe Ile Pro Ser Ser Ile Ala Phe Leu Thr Thr Leu Glu		
260	265	270
Arg Ile Leu Pro Glu Arg Phe Leu Ala Val Leu Lys Arg Lys Ile		
275	280	285
Ser Val Lys Phe Asp Ala Val Ile Gly Tyr Lys Met Lys Ala Gln		
290	295	300

<210> 38
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 38
ggtgaaggca gaaattggag atg 23

<210> 39
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 39
atccccatgca tcagcctgtt tacc 24

<210> 40
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 40
gctggtgtag tctatacatc agatttgttt gctacacaag atcctcag 48

<210> 41
<211> 1377
<212> DNA
<213> Homo Sapien

<400> 41

gactagttct cttggagtct gggaggagga aagcggagcc ggcagggagc 50
gaaccaggac tggggtgacg gcagggcagg gggcgctgg ccggggagaa 100
gcgcgggggc tggagcacca ccaactggag ggtccggagt agcgagcgcc 150
ccgaaggagg ccatcgggga gccgggaggg gggactgcga gaggacccc 200
gcgtccgggc tccccgtgcc agcgctatga ggccactcct cgtcctgctg 250
ctcctgggcc tggcgccgg ctgcggccca ctggacgaca acaagatccc 300
cagcctctgc cggggcacc cggccttcc aggcacgccc ggccaccatg 350
gcagccaggg cttggccggc cgcgatggcc gcgacggccg cgacggcg 400
cccgggctc cgggagagaa aggcgagggc gggaggccgg gactgccgg 450
acctcgaggg gacccgggc cgcgaggaga ggcgggaccc gcggggccca 500
ccggcctgc cggggagtgc tcggtgccctc cgcgatccgc cttcagcgcc 550
aagcgctccg agagccgggt gcctccgccc tctgacgcac cttgcctt 600
cgaccgcgtg ctggtaacg agcagggaca ttacgacgcc gtcacccggca 650
atttcacctg ccaggtgcct ggggtctact acttcgcccgt ccatgccacc 700
gtctaccggg ccagcctgca gtttgcgtt gtgaagaatg gcaatccat 750
tgccctttc ttccagttt tgggggggtg gccaagcca gcctcgctct 800
cggggggggc catggtgagg ctggagccctg aggaccaagt gtgggtgcag 850
gtgggtgtgg gtgactacat tggcatctat gccagcatca agacagacag 900
caccttctcc ggattctgg tgtactccga ctggcacagc tccccagttct 950
ttgcttagtg cccactgcaa agtgagctca tgctctact cctagaagga 1000
gggtgtgagg ctgacaacca ggtcatccag gagggctggc cccctggaa 1050
tattgtaat gactagggag gtgggtttaga gcactctccg tcctgctgt 1100
ggcaaggaat gggAACAGTG GCTGTCTGCG ATCAGGTCTG GCAGCATGGG 1150
gcagtggctg gatttctgcc caagaccaga ggagtgtgt gtgctggcaa 1200
gtgttaagtcc cccagttgtctggtccagg agcccacgggt ggggtgtct 1250
cttcctggtc ctctgcttct ctggatccctc cccacccct cctgctcctg 1300
ggccggccccc ttttctcaga gatcactcaa taaacctaag aaccctcata 1350
aaaaaaaaaaa aaaaaaaaaa aaaaaaaa 1377

<210> 42

<211> 243
<212> PRT
<213> Homo Sapien

<400> 42

Met Arg Pro Leu Leu Val Leu Leu Leu Gly Leu Ala Ala Gly
1 5 10 15

Ser Pro Pro Leu Asp Asp Asn Lys Ile Pro Ser Leu Cys Pro Gly
20 25 30

His Pro Gly Leu Pro Gly Thr Pro Gly His His Gly Ser Gln Gly
35 40 45

Leu Pro Gly Arg Asp Gly Arg Asp Gly Arg Asp Gly Ala Pro Gly
50 55 60

Ala Pro Gly Glu Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly
65 70 75

Pro Arg Gly Asp Pro Gly Pro Arg Gly Glu Ala Gly Pro Ala Gly
80 85 90

Pro Thr Gly Pro Ala Gly Glu Cys Ser Val Pro Pro Arg Ser Ala
95 100 105

Phe Ser Ala Lys Arg Ser Glu Ser Arg Val Pro Pro Pro Ser Asp
110 115 120

Ala Pro Leu Pro Phe Asp Arg Val Leu Val Asn Glu Gln Gly His
125 130 135

Tyr Asp Ala Val Thr Gly Lys Phe Thr Cys Gln Val Pro Gly Val
140 145 150

Tyr Tyr Phe Ala Val His Ala Thr Val Tyr Arg Ala Ser Leu Gln
155 160 165

Phe Asp Leu Val Lys Asn Gly Glu Ser Ile Ala Ser Phe Phe Gln
170 175 180

Phe Phe Gly Gly Trp Pro Lys Pro Ala Ser Leu Ser Gly Gly Ala
185 190 195

Met Val Arg Leu Glu Pro Glu Asp Gln Val Trp Val Gln Val Gly
200 205 210

Val Gly Asp Tyr Ile Gly Ile Tyr Ala Ser Ile Lys Thr Asp Ser
215 220 225

Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser Pro
230 235 240

Val Phe Ala

<210> 43
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 43
 tacaggccca gtcaggacca gggg 24

<210> 44
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 44
 agccagcctc gctctcg 18

<210> 45
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 45
 gtctgcgatc aggtctgg 18

<210> 46
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 46
 gaaaaggcca atggattcgc 20

<210> 47
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 47
 gacttacact tgccagcaca gcac 24

<210> 48
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 48
ggagcaccac caactggagg gtccggagta gcgagcgccc cgaag 45

<210> 49
<211> 1876
<212> DNA
<213> Homo Sapien

<400> 49
ctctttgtc caccagccca gcctgactcc tggagattgt gaatagctcc 50
atccagcctg agaaacaaagc cgggtggctg agccaggctg tgcacggagc 100
acctgacggg cccaacagac ccatgctgca tccagagacc tcccctggcc 150
gggggcatct cctggctgtg ctccctggccc tccttggcac cacctgggca 200
gaggtgtggc cacccagct gcaggagcag gctccgatgg ccggagccct 250
gaacaggaag gagagttct tgctcctctc cctgcacaac cgccctgcgca 300
gctgggtcca gccccctgcg gctgacatgc ggaggctgga ctggagtgac 350
agcctggccc aactggctca agccaggca gcccctgtg gaatcccaac 400
cccgagcctg gcatccggcc tgtggcgcac cctgcaagtg ggctggaaca 450
tgtagctgct gccccgggc ttggcgtcct ttgttgaagt ggtcagccata 500
tggttgcag aggggcagcg gtacagccac gcggcaggag agtgtgctcg 550
caacgccacc tgccacccact acacgcagct cgtgtggcc acctaagcc 600
agctgggctg tggccggcac ctgtgctctg caggccagac agcgatagaa 650
gcctttgtct gtgcctactc ccccgagggc aactgggagg tcaacggaa 700
gacaatcatc ccctataaga agggtgcctg gtgttcgctc tgcacagcca 750
gtgtctcagg ctgcttcaaa gcctgggacc atgcaggggg gctctgtgag 800
gtccccagga atccttgcgt catgagctgc cagaaccatg gacgtctcaa 850
catcagcacc tgccactgcc actgtcccc tggctacacg ggcagatact 900
gccaagtgag gtgcagcctg cagtgtgtgc acggccgggt ccgggaggag 950
gagtgctcgt gcgtctgtga catcggtac gggggagccc agtgtgccac 1000
caaggtgcat tttcccttcc acacctgtga cctgaggatc gacggagact 1050
gcttcatggt gtcttcagag gcagacacct attacagagc caggatgaaa 1100
tgtagagga aaggcggggt gctggcccaag atcaagagcc agaaagtgca 1150

ggacatcctc gccttctatc tggccgcct ggagaccacc aacgaggta 1200
ctgacagtga cttcgagacc aggaacttct ggatcggtct cacctacaag 1250
accgccaagg actccttccg ctgggccaca ggggagcacc aggccttcac 1300
cagtttgcc tttggcagc ctgacaacca cgggctggtg tggctgagt 1350
ctgcccattggg gtttggcaac tgcgtggagc tgcaggcttc agctgccttc 1400
aactggaacg accagcgctg caaaaacccga aaccgttaca tctgccagtt 1450
tgcccaggag cacatctccc ggtggggccc agggcctga ggcctgacca 1500
catggctccc tcgcctgccc tgggagcacc ggctctgctt acctgtctgc 1550
ccacctgtct ggaacaaggg ccaggttaag accacatgcc tcatgtccaa 1600
agaggtctca gaccttgac aatgccagaa gttggcaga gagaggcagg 1650
gaggccagtg agggccaggg agtgagtgtt agaagaagct gggcccttc 1700
gcctgctttt gattgggaag atgggcttca attagatggc gaaggagagg 1750
acaccgcccag tggtccaaaa aggctgctct cttccacctg gcccagaccc 1800
tgtggggcag cggagcttcc ctgtggcatg aaccccacgg ggtattaaat 1850
tatgaatcag ctgaaaaaaaaaaaaa 1876

<210> 50

<211> 455

<212> PRT

<213> Homo Sapien

<400> 50

Met	Leu	His	Pro	Glu	Thr	Ser	Pro	Gly	Arg	Gly	His	Leu	Leu	Ala
1				5				10					15	
Val	Leu	Leu	Ala	Leu	Leu	Gly	Thr	Thr	Trp	Ala	Glu	Val	Trp	Pro
				20				25					30	
Pro	Gln	Leu	Gln	Glu	Gln	Ala	Pro	Met	Ala	Gly	Ala	Leu	Asn	Arg
				35				40					45	
Lys	Glu	Ser	Phe	Leu	Leu	Leu	Ser	Leu	His	Asn	Arg	Leu	Arg	Ser
				50				55					60	
Trp	Val	Gln	Pro	Pro	Ala	Ala	Asp	Met	Arg	Arg	Leu	Asp	Trp	Ser
				65				70					75	
Asp	Ser	Leu	Ala	Gln	Leu	Ala	Gln	Ala	Arg	Ala	Ala	Leu	Cys	Gly
				80				85					90	
Ile	Pro	Thr	Pro	Ser	Leu	Ala	Ser	Gly	Leu	Trp	Arg	Thr	Leu	Gln
				95				100					105	
Val	Gly	Trp	Asn	Met	Gln	Leu	Leu	Pro	Ala	Gly	Leu	Ala	Ser	Phe

110	115	120
Val Glu Val Val Ser Leu Trp Phe Ala Glu Gly Gln Arg Tyr Ser		
125	130	135
His Ala Ala Gly Glu Cys Ala Arg Asn Ala Thr Cys Thr His Tyr		
140	145	150
Thr Gln Leu Val Trp Ala Thr Ser Ser Gln Leu Gly Cys Gly Arg		
155	160	165
His Leu Cys Ser Ala Gly Gln Thr Ala Ile Glu Ala Phe Val Cys		
170	175	180
Ala Tyr Ser Pro Gly Gly Asn Trp Glu Val Asn Gly Lys Thr Ile		
185	190	195
Ile Pro Tyr Lys Lys Gly Ala Trp Cys Ser Leu Cys Thr Ala Ser		
200	205	210
Val Ser Gly Cys Phe Lys Ala Trp Asp His Ala Gly Gly Leu Cys		
215	220	225
Glu Val Pro Arg Asn Pro Cys Arg Met Ser Cys Gln Asn His Gly		
230	235	240
Arg Leu Asn Ile Ser Thr Cys His Cys His Cys Pro Pro Gly Tyr		
245	250	255
Thr Gly Arg Tyr Cys Gln Val Arg Cys Ser Leu Gln Cys Val His		
260	265	270
Gly Arg Phe Arg Glu Glu Cys Ser Cys Val Cys Asp Ile Gly		
275	280	285
Tyr Gly Gly Ala Gln Cys Ala Thr Lys Val His Phe Pro Phe His		
290	295	300
Thr Cys Asp Leu Arg Ile Asp Gly Asp Cys Phe Met Val Ser Ser		
305	310	315
Glu Ala Asp Thr Tyr Tyr Arg Ala Arg Met Lys Cys Gln Arg Lys		
320	325	330
Gly Gly Val Leu Ala Gln Ile Lys Ser Gln Lys Val Gln Asp Ile		
335	340	345
Leu Ala Phe Tyr Leu Gly Arg Leu Glu Thr Thr Asn Glu Val Thr		
350	355	360
Asp Ser Asp Phe Glu Thr Arg Asn Phe Trp Ile Gly Leu Thr Tyr		
365	370	375
Lys Thr Ala Lys Asp Ser Phe Arg Trp Ala Thr Gly Glu His Gln		
380	385	390
Ala Phe Thr Ser Phe Ala Phe Gly Gln Pro Asp Asn His Gly Leu		
395	400	405

Val Trp Leu Ser Ala Ala Met Gly Phe Gly Asn Cys Val Glu Leu
410 415 420

Gln Ala Ser Ala Ala Phe Asn Trp Asn Asp Gln Arg Cys Lys Thr
425 430 435

Arg Asn Arg Tyr Ile Cys Gln Phe Ala Gln Glu His Ile Ser Arg
440 445 450

Trp Gly Pro Gly Ser
455

<210> 51

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 51

aggaacttct ggatcgggct cacc 24

<210> 52

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 52

gggtctgggc caggtggaag agag 24

<210> 53

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 53

gccaaggact cttcccgctg ggccacaggg gagcaccagg cttc 45

<210> 54

<211> 2331

<212> DNA

<213> Homo Sapien

<400> 54

cggacgcgtg ggctgggcgc tgcaaagcgt gtcccgccgg gtccccgagc 50

gtcccgcgcc ctgcgcgcgc catgctcctg ctgctggggc tgtgcctggg 100

gctgtccctg tgtgtggggc cgccaggaaga ggcgcagagc tggggccact 150

cttcggagca ggatggactc agggtcccga ggcaagtca gactgttgca 200

aggctgaaaa ccaaaccctt gatgacagaa ttctcagtga agtctaccat 250
catttccgt tatgccttca ctacggttc ctgcagaatg ctgaacagag 300
cttctgaaga ccaggacatt gagttccaga tgcagattcc agctgcagct 350
ttcatcacca acttcactat gcttattgga gacaagggtgt atcagggcga 400
aattacagag agagaaaaga agagtggtga taggtaaaa gagaaaagga 450
ataaaaaccac agaagaaaat ggagagaagg ggactgaaat attcagagct 500
tctgcagtga ttcccagcaa ggacaaagcc gccttttcc tgagttatga 550
ggagcttctg cagaggggcc tggcaagta cgagcacagc atcagcgtgc 600
ggccccagca gctgtccggg aggctgagcg tggacgtgaa tatcctggag 650
agcgccggca tcgcattccct ggaggtgctg ccgcattcaca acagcaggca 700
gaggggcagt gggcgccggg aagatgattc tggcctccc ccatctactg 750
tcattaacca aaatgaaaaca tttgccaaca taattttaa acctactgta 800
gtacaacaag ccaggattgc ccagaatgga attttggag acttttatcat 850
tagatatgac gtcaatagag aacagagcat tggggacatc caggttctaa 900
atggctattt tgtgcactac tttgctccta aagaccttcc tcctttaccc 950
aagaatgtgg tattcgtgct tgacagcagt gcttctatgg tggAACCAA 1000
actccggcag accaaggatg ccctcttac aattctccat gacctccgac 1050
cccaggaccg tttcagtatc attggatttt ccaaccggat caaagtatgg 1100
aaggaccact tgatatcagt cactccagac agcatcaggg atggaaaagt 1150
gtacattcac catatgtcac ccactggagg cacagacatc aacggggccc 1200
tgcagaggc catcaggctc ctcaacaagt acgtggccca cagtggcatt 1250
ggagaccgga gcgtgtccct catcgcttc ctgacggatg ggaagccac 1300
ggtcggggag acgcacaccc tcaagatcct caacaacacc cgagaggccg 1350
cccgaggcca agtctgcate ttcaccattg gcatcgccaa cgacgtggac 1400
ttcaggctgc tggagaaact gtcgctggag aactgtggcc tcacacggcg 1450
cgtgcacgag gaggaggacg caggctcgca gctcatcggt ttctacgatg 1500
aaatcaggac cccgctctc tctgacatcc gcatcgatta tccccccagc 1550
tcagtggtgc aggccaccaa gaccctgttc cccaaactact tcaacggctc 1600
ggagatcatc attgcgggaa agctggtgga caggaagctg gatcacctgc 1650

acgtggaggt caccgccagc aacagtaaga aattcatcat cctgaagaca 1700
gatgtgcctg tgcggcctca gaaggcaggg aaagatgtca caggaagccc 1750
caggcctgga ggcgtggag agggggacac caaccacatc gagcgtctct 1800
ggagctacct caccacaaag gagctgctga gtcctggct gcaaagtgac 1850
gatgaaccgg agaaggagcg gtcgcggcag cggcccccagg ccctggctgt 1900
gagctaccgc ttccctcaactc cttcacctc catgaagctg agggggccgg 1950
tccccacgcat ggtatggcctg gaggaggccc acggcatgtc ggctgccatg 2000
ggacccgaac cggtggtgca gagcgtgcga ggagctggca cgccagccagg 2050
acctttgctc aagaagccaa actccgtcaa aaaaaaaca aacaaaaca 2100
aaaaaaagaca tgggagagat ggtgttttc ctctccacca cctgggata 2150
cgatgagaag atggccacct gcaagccagg aagacggccc tcaccagaca 2200
ccatgtctgc tggcaccttg atcttgacc tcccaaccc cagaactgtg 2250
agaaataaat gtgtttgtt taagctaaaa aaaaaaaaaa aaaaaaaaaa 2300
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa a 2331

<210> 55
<211> 694
<212> PRT
<213> Homo Sapien

<400> 55
Met Leu Leu Leu Leu Gly Leu Cys Leu Gly Leu Ser Leu Cys Val
1 5 10 15

Gly Ser Gln Glu Glu Ala Gln Ser Trp Gly His Ser Ser Glu Gln
20 25 30

Asp Gly Leu Arg Val Pro Arg Gln Val Arg Leu Leu Gln Arg Leu
35 40 45

Lys Thr Lys Pro Leu Met Thr Glu Phe Ser Val Lys Ser Thr Ile
50 55 60

Ile Ser Arg Tyr Ala Phe Thr Thr Val Ser Cys Arg Met Leu Asn
65 70 75

Arg Ala Ser Glu Asp Gln Asp Ile Glu Phe Gln Met Gln Ile Pro
80 85 90

Ala Ala Ala Phe Ile Thr Asn Phe Thr Met Leu Ile Gly Asp Lys
95 100 105

Val Tyr Gln Gly Glu Ile Thr Glu Arg Glu Lys Lys Ser Gly Asp
110 115 120

Arg Val Lys Glu Lys Arg Asn Lys Thr Thr Glu Glu Asn Gly Glu
 125 130 135
 Lys Gly Thr Glu Ile Phe Arg Ala Ser Ala Val Ile Pro Ser Lys
 140 145 150
 Asp Lys Ala Ala Phe Phe Leu Ser Tyr Glu Glu Leu Leu Gln Arg
 155 160 165
 Arg Leu Gly Lys Tyr Glu His Ser Ile Ser Val Arg Pro Gln Gln
 170 175 180
 Leu Ser Gly Arg Leu Ser Val Asp Val Asn Ile Leu Glu Ser Ala
 185 190 195
 Gly Ile Ala Ser Leu Glu Val Leu Pro Leu His Asn Ser Arg Gln
 200 205 210
 Arg Gly Ser Gly Arg Gly Glu Asp Asp Ser Gly Pro Pro Pro Ser
 215 220 225
 Thr Val Ile Asn Gln Asn Glu Thr Phe Ala Asn Ile Ile Phe Lys
 230 235 240
 Pro Thr Val Val Gln Gln Ala Arg Ile Ala Gln Asn Gly Ile Leu
 245 250 255
 Gly Asp Phe Ile Ile Arg Tyr Asp Val Asn Arg Glu Gln Ser Ile
 260 265 270
 Gly Asp Ile Gln Val Leu Asn Gly Tyr Phe Val His Tyr Phe Ala
 275 280 285
 Pro Lys Asp Leu Pro Pro Leu Pro Lys Asn Val Val Phe Val Leu
 290 295 300
 Asp Ser Ser Ala Ser Met Val Gly Thr Lys Leu Arg Gln Thr Lys
 305 310 315
 Asp Ala Leu Phe Thr Ile Leu His Asp Leu Arg Pro Gln Asp Arg
 320 325 330
 Phe Ser Ile Ile Gly Phe Ser Asn Arg Ile Lys Val Trp Lys Asp
 335 340 345
 His Leu Ile Ser Val Thr Pro Asp Ser Ile Arg Asp Gly Lys Val
 350 355 360
 Tyr Ile His His Met Ser Pro Thr Gly Gly Thr Asp Ile Asn Gly
 365 370 375
 Ala Leu Gln Arg Ala Ile Arg Leu Leu Asn Lys Tyr Val Ala His
 380 385 390
 Ser Gly Ile Gly Asp Arg Ser Val Ser Leu Ile Val Phe Leu Thr
 395 400 405
 Asp Gly Lys Pro Thr Val Gly Glu Thr His Thr Leu Lys Ile Leu

410	415	420
Asn Asn Thr Arg Glu Ala Ala Arg Gly Gln Val Cys Ile Phe Thr		
425	430	435
Ile Gly Ile Gly Asn Asp Val Asp Phe Arg Leu Leu Glu Lys Leu		
440	445	450
Ser Leu Glu Asn Cys Gly Leu Thr Arg Arg Val His Glu Glu Glu		
455	460	465
Asp Ala Gly Ser Gln Leu Ile Gly Phe Tyr Asp Glu Ile Arg Thr		
470	475	480
Pro Leu Leu Ser Asp Ile Arg Ile Asp Tyr Pro Pro Ser Ser Val		
485	490	495
Val Gln Ala Thr Lys Thr Leu Phe Pro Asn Tyr Phe Asn Gly Ser		
500	505	510
Glu Ile Ile Ile Ala Gly Lys Leu Val Asp Arg Lys Leu Asp His		
515	520	525
Leu His Val Glu Val Thr Ala Ser Asn Ser Lys Lys Phe Ile Ile		
530	535	540
Leu Lys Thr Asp Val Pro Val Arg Pro Gln Lys Ala Gly Lys Asp		
545	550	555
Val Thr Gly Ser Pro Arg Pro Gly Gly Asp Gly Glu Gly Asp Thr		
560	565	570
Asn His Ile Glu Arg Leu Trp Ser Tyr Leu Thr Thr Lys Glu Leu		
575	580	585
Leu Ser Ser Trp Leu Gln Ser Asp Asp Glu Pro Glu Lys Glu Arg		
590	595	600
Leu Arg Gln Arg Ala Gln Ala Leu Ala Val Ser Tyr Arg Phe Leu		
605	610	615
Thr Pro Phe Thr Ser Met Lys Leu Arg Gly Pro Val Pro Arg Met		
620	625	630
Asp Gly Leu Glu Glu Ala His Gly Met Ser Ala Ala Met Gly Pro		
635	640	645
Glu Pro Val Val Gln Ser Val Arg Gly Ala Gly Thr Gln Pro Gly		
650	655	660
Pro Leu Leu Lys Lys Pro Asn Ser Val Lys Lys Lys Gln Asn Lys		
665	670	675
Thr Lys Lys Arg His Gly Arg Asp Gly Val Phe Pro Leu His His		
680	685	690
Leu Gly Ile Arg		

<210> 56
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 56
gtgggaacca aactccggca gacc 24

<210> 57
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 57
cacatcgagc gtctctgg 18

<210> 58
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 58
agccgctcct tctccggttc atcg 24

<210> 59
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 59
tggaaaggacc acttgatatac agtcactcca gacagcatca gggatggg 48

<210> 60
<211> 1413
<212> DNA
<213> Homo Sapien

<400> 60
cggacgcgtg gggtgcccgta catggcgagt gtatgtctgc cgagcggatc 50
ccagtggtcg gcggcagcgg cggcgccggc gcctccggg ctccggcttc 100
tgctgttgct cttctccgccc gcggcactga tccccacagg ttagtggcag 150
aatctgttta cgaaagacgt gacagtgtatc gagggagagg ttgcgaccat 200

cagttgccaa gtcaataaga gtgacgactc tgtgattcag ctactgaatc 250
ccaacaggca gaccatttat ttcagggact tcagggcttt gaaggacagc 300
aggttcagt tgctgaattt ttcttagcgt gaactcaaag tatcattgac 350
aaacgtctca atttctgatg aaggaagata ctttgccag ctctataccg 400
atcccccaca ggaaagttac accaccatca cagtcctggt cccaccacgt 450
aatctgatga tcgatatcca gaaagacact gcggtgaaag gtgaggagat 500
tgaagtcaac tgcactgcta tggccagcaa gccagccacg actatcaggt 550
ggttcaaagg gaacacagag ctaaaaggca aatcgaggt ggaagagtgg 600
tcagacatgt acactgtgac cagtcagctg atgctgaagg tgcacaagga 650
ggacgatggg gtcccagtga tctgccaggt ggagcacccct gcggtcactg 700
gaaacctgca gaccagcgg tatctagaag tacagtataa gcctcaagtg 750
cacattcaga tgacttatcc tctacaaggc ttaacccggg aaggggacgc 800
gcttgagtta acatgtgaag ccatcggaa gccccagcct gtgatggtaa 850
cttgggtgag agtcgatgat gaaatgcctc aacacgcccgt actgtctggg 900
cccaacctgt tcatcaataa cctaaacaaa acagataatg gtacataccg 950
ctgtgaagct tcaaacatag tggggaaagc tcactcggat tatatgctgt 1000
atgtatacga tccccccaca actatccctc ctccccacaac aaccaccacc 1050
accaccacca ccaccaccac caccatcctt accatcatca cagattcccg 1100
agcaggtgaa gaaggctcga tcagggcagt ggatcatgcc gtgatcggtg 1150
gcgtcgtggc ggtgggtggc ttgcgcattgc tgtgcttgct catcattctg 1200
ggcgctatt ttgcgcacaca taaaggtaca tacttcactc atgaagccaa 1250
aggagccgat gacgcagcag acgcagacac agctataatc aatgcagaag 1300
gaggacagaa caactccgaa gaaaagaaag agtacttcat ctagatcagc 1350
cttttgttt caatgaggtg tccaaactggc cctatttgc tgataaagag 1400
acagtgatat tgg 1413

<210> 61
<211> 440
<212> PRT
<213> Homo Sapien

<400> 61
Met Ala Ser Val Val Leu Pro Ser Gly Ser Gln Cys Ala Ala Ala
1 5 10 15

Ala	Ala	Ala	Ala	Ala	Pro	Pro	Gly	Leu	Arg	Leu	Leu	Leu	Leu	Leu
					20				25					30
Phe	Ser	Ala	Ala	Ala	Leu	Ile	Pro	Thr	Gly	Asp	Gly	Gln	Asn	Leu
					35			40						45
Phe	Thr	Lys	Asp	Val	Thr	Val	Ile	Glu	Gly	Glu	Val	Ala	Thr	Ile
					50			55						60
Ser	Cys	Gln	Val	Asn	Lys	Ser	Asp	Asp	Ser	Val	Ile	Gln	Leu	Leu
					65			70						75
Asn	Pro	Asn	Arg	Gln	Thr	Ile	Tyr	Phe	Arg	Asp	Phe	Arg	Pro	Leu
					80			85						90
Lys	Asp	Ser	Arg	Phe	Gln	Leu	Leu	Asn	Phe	Ser	Ser	Ser	Glu	Leu
					95			100						105
Lys	Val	Ser	Leu	Thr	Asn	Val	Ser	Ile	Ser	Asp	Glu	Gly	Arg	Tyr
					110			115						120
Phe	Cys	Gln	Leu	Tyr	Thr	Asp	Pro	Pro	Gln	Glu	Ser	Tyr	Thr	Thr
					125			130						135
Ile	Thr	Val	Leu	Val	Pro	Pro	Arg	Asn	Leu	Met	Ile	Asp	Ile	Gln
					140			145						150
Lys	Asp	Thr	Ala	Val	Glu	Gly	Glu	Glu	Ile	Glu	Val	Asn	Cys	Thr
					155			160						165
Ala	Met	Ala	Ser	Lys	Pro	Ala	Thr	Thr	Ile	Arg	Trp	Phe	Lys	Gly
					170			175						180
Asn	Thr	Glu	Leu	Lys	Gly	Lys	Ser	Glu	Val	Glu	Glu	Trp	Ser	Asp
					185			190						195
Met	Tyr	Thr	Val	Thr	Ser	Gln	Leu	Met	Leu	Lys	Val	His	Lys	Glu
					200			205						210
Asp	Asp	Gly	Val	Pro	Val	Ile	Cys	Gln	Val	Glu	His	Pro	Ala	Val
					215			220						225
Thr	Gly	Asn	Leu	Gln	Thr	Gln	Arg	Tyr	Leu	Glu	Val	Gln	Tyr	Lys
					230			235						240
Pro	Gln	Val	His	Ile	Gln	Met	Thr	Tyr	Pro	Leu	Gln	Gly	Leu	Thr
					245			250						255
Arg	Glu	Gly	Asp	Ala	Leu	Glu	Leu	Thr	Cys	Glu	Ala	Ile	Gly	Lys
					260			265						270
Pro	Gln	Pro	Val	Met	Val	Thr	Trp	Val	Arg	Val	Asp	Asp	Glu	Met
					275			280						285
Pro	Gln	His	Ala	Val	Leu	Ser	Gly	Pro	Asn	Leu	Phe	Ile	Asn	Asn
					290			295						300
Leu	Asn	Lys	Thr	Asp	Asn	Gly	Thr	Tyr	Arg	Cys	Glu	Ala	Ser	Asn

305	310	315
Ile Val Gly Lys Ala His Ser Asp Tyr Met Leu Tyr Val Tyr Asp		
320	325	330
Pro Pro Thr Thr Ile Pro Pro Pro Thr Thr Thr Thr Thr Thr		
335	340	345
Thr Thr Thr Thr Thr Ile Leu Thr Ile Ile Thr Asp Ser Arg		
350	355	360
Ala Gly Glu Glu Gly Ser Ile Arg Ala Val Asp His Ala Val Ile		
365	370	375
Gly Gly Val Val Ala Val Val Phe Ala Met Leu Cys Leu Leu		
380	385	390
Ile Ile Leu Gly Arg Tyr Phe Ala Arg His Lys Gly Thr Tyr Phe		
395	400	405
Thr His Glu Ala Lys Gly Ala Asp Asp Ala Ala Asp Ala Asp Thr		
410	415	420
Ala Ile Ile Asn Ala Glu Gly Gly Gln Asn Asn Ser Glu Glu Lys		
425	430	435
Lys Glu Tyr Phe Ile		
440		

<210> 62
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 62
ggcttctgct gttgctcttc tccg 24

<210> 63
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 63
gtacactgtg accagtcagc 20

<210> 64
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 64
atcatcacag attcccgagc 20

<210> 65
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 65
ttcaatctcc tcacaccttcca ccgc 24

<210> 66
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 66
atagctgtgt ctgcgtctgc tgcg 24

<210> 67
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 67
cgcgccactg atccccacag gtgatgggca gaatctgttt acgaaagacg 50

<210> 68
<211> 2555
<212> DNA
<213> Homo Sapien

<400> 68
ggggcggttg gacgcggact cgaacgcagt tgcttcggga cccaggaccc 50
cctcgccccc gacccgcccag gaaagactga ggccgcggcc tgccccgccc 100
ggctccctgc gccgcgcgcg cctcccgaaa cagaagatgt gctccaggg 150
ccctctgttg ctgccgtgc tcctgtact ggccctgggg cctgggggtgc 200
agggctgccc atccggctgc cagtgccagcc agccacagac agtcttctgc 250
actgcccggcc aggggaccac ggtgccccga gacgtgccac ccgacacgg 300
ggggctgtac gtcttgaga acggcatcac catgctcgac gcaaggagct 350
ttgccggccct gccgggcctg cagtcctgg acctgtcaca gaaccagatc 400

gccagcctgc gcctgccccg cctgctgctg ctggacctca gccacaacag 450
cctcctggcc ctggagcccg gcatcctgga cactgccaac gtggaggcgc 500
tgccggctggc tggctctgggg ctgcagcagc tggacgaggg gctttcagc 550
cgcttgcgca acctccacga cctggatgtg tccgacaacc agctggagcg 600
agtgccacct gtgatccgag gcctccgggg cctgacgcgc ctgcggctgg 650
ccggcaacac ccgcattgcc cagctgcggc ccgaggacct ggccggcttg 700
gctgccctgc aggagctgga tgtgagcaac ctaagcctgc aggccctgcc 750
tggcgacctc tcgggcctct tcccccgctt gcggctgctg gcagctgccc 800
gcaaccctt caactgcgtg tgccccctga gctggtttg 850
cgcgagagcc acgtcacact ggccagccct gaggagacgc gctgccactt 900
cccggccaaag aacgctggcc ggctgctctt ggagcttgac tacgcccact 950
ttggctgccc agccaccacc accacagcca cagtgcac cacgaggccc 1000
gtgggtcgaaa agccacacgc cttgtcttctt agcttggctc ctacctggct 1050
tagccccaca gcgcggcca ctgaggcccc cagccccccc tccactgccc 1100
caccgactgt agggcctgtc ccccaaaaa aggactgccc accgtccacc 1150
tgccctcaatg ggggcacatg ccacctgggg acacggcacc acctggcggt 1200
cttggccccc gaaggcttca cgggcctgtt ctgtgagagc cagatggggc 1250
aggggacacg gcccagccct acaccagtca cgccgaggcc accacggtcc 1300
ctgaccctgg gcatcgagcc ggtgagccccc acctccctgc gcgtggggct 1350
gcagcgctac ctccagggga gtcggcgca gtcaggagc ctccgtctca 1400
cctatcgcaa cctatcgggc cctgataagc ggctgggtac gctgcgactg 1450
cctgcctcgc tcgctgagta cacggtcacc cagctgcggc ccaacgcccac 1500
ttactccgtc tgtgtcatgc ctttggggcc cgggcgggtg ccggaggccg 1550
aggaggcctg cggggaggcc catacaccac cagccgtcca ctccaaccac 1600
gccccagtcg cccaggcccc cgagggcaac ctgcccgtcc tcattgcgcc 1650
cgccctggcc ggggtgctcc tggccgcgtt ggctggcggtg ggggcagccct 1700
actgtgtgcg gccccggccgg gccatggcag cagcggctca ggacaaagg 1750
caggtggggc caggggctgg gccccctggaa ctggagggag tgaaggtccc 1800
cttggagcca ggcccgaaagg caacagaggg cggtggagag gcccctgccc 1850

gcgggtctga gtgtgaggtg ccactcatgg gcttcccagg gcctggcctc 1900
cagtcacccc tccacgcaaa gccctacatc taagccagag agagacaggg 1950
cagctggggc cgggctctca gccagtgaga tggccagccc cctcctgctg 2000
ccacaccacg taagttctca gtcccaacct cggggatgtg tgcagacagg 2050
gctgtgtgac cacagctggg ccctgttccc tctggacctc ggtctcctca 2100
tctgtgagat gctgtggccc agctgacgag ccctaacgtc cccagaaccg 2150
agtgcctatg aggacagtgt ccgcctgcc ctccgcaacg tgcagtcct 2200
gggcacggcg ggccctgcca tgtgctggta acgcatgcct gggccctgct 2250
gggctctccc actccaggcg gaccctgggg gccagtgaag gaagctcccg 2300
gaaagagcag agggagagcg ggtaggcggc tgtgtgactc tagtcttggc 2350
cccaggaagc gaaggaacaa aagaaactgg aaaggaagat gctttagaa 2400
catgtttgc tttttaaaa tatatatata tttataagag atccttccc 2450
atttattctg ggaagatgtt tttcaaactc agagacaagg actttggtt 2500
ttgtaagaca aacgatgata tgaaggcctt ttgtaagaaa aaataaaaaaa 2550
aaaaaa 2555

<210> 69

<211> 598

<212> PRT

<213> Homö Sapien

<400> 69

Met	Cys	Ser	Arg	Val	Pro	Leu	Leu	Leu	Pro	Leu	Leu	Leu	Leu	Leu
1				5					10					15

Ala	Leu	Gly	Pro	Gly	Val	Gln	Gly	Cys	Pro	Ser	Gly	Cys	Gln	Cys
					20				25					30

Ser	Gln	Pro	Gln	Thr	Val	Phe	Cys	Thr	Ala	Arg	Gln	Gly	Thr	Thr
					35			40						45

Val	Pro	Arg	Asp	Val	Pro	Pro	Asp	Thr	Val	Gly	Leu	Tyr	Val	Phe
				50					55					60

Glu	Asn	Gly	Ile	Thr	Met	Leu	Asp	Ala	Ser	Ser	Phe	Ala	Gly	Leu
					65				70					75

Pro	Gly	Leu	Gln	Leu	Leu	Asp	Leu	Ser	Gln	Asn	Gln	Ile	Ala	Ser
				80				85						90

Leu	Arg	Leu	Pro	Arg	Leu	Leu	Leu	Asp	Leu	Ser	His	Asn	Ser	
					95				100					105

Leu Leu Ala Leu Glu Pro Gly Ile Leu Asp Thr Ala Asn Val Glu

110	115	120
Ala Leu Arg Leu Ala Gly Leu Gly Leu Gln Gln Leu Asp Glu Gly		
125	130	135
Leu Phe Ser Arg Leu Arg Asn Leu His Asp Leu Asp Val Ser Asp		
140	145	150
Asn Gln Leu Glu Arg Val Pro Pro Val Ile Arg Gly Leu Arg Gly		
155	160	165
Leu Thr Arg Leu Arg Leu Ala Gly Asn Thr Arg Ile Ala Gln Leu		
170	175	180
Arg Pro Glu Asp Leu Ala Gly Leu Ala Ala Leu Gln Glu Leu Asp		
185	190	195
Val Ser Asn Leu Ser Leu Gln Ala Leu Pro Gly Asp Leu Ser Gly		
200	205	210
Leu Phe Pro Arg Leu Arg Leu Leu Ala Ala Ala Arg Asn Pro Phe		
215	220	225
Asn Cys Val Cys Pro Leu Ser Trp Phe Gly Pro Trp Val Arg Glu		
230	235	240
Ser His Val Thr Leu Ala Ser Pro Glu Glu Thr Arg Cys His Phe		
245	250	255
Pro Pro Lys Asn Ala Gly Arg Leu Leu Leu Glu Leu Asp Tyr Ala		
260	265	270
Asp Phe Gly Cys Pro Ala Thr Thr Thr Ala Thr Val Pro Thr		
275	280	285
Thr Arg Pro Val Val Arg Glu Pro Thr Ala Leu Ser Ser Ser Leu		
290	295	300
Ala Pro Thr Trp Leu Ser Pro Thr Ala Pro Ala Thr Glu Ala Pro		
305	310	315
Ser Pro Pro Ser Thr Ala Pro Pro Thr Val Gly Pro Val Pro Gln		
320	325	330
Pro Gln Asp Cys Pro Pro Ser Thr Cys Leu Asn Gly Gly Thr Cys		
335	340	345
His Leu Gly Thr Arg His His Leu Ala Cys Leu Cys Pro Glu Gly		
350	355	360
Phe Thr Gly Leu Tyr Cys Glu Ser Gln Met Gly Gln Gly Thr Arg		
365	370	375
Pro Ser Pro Thr Pro Val Thr Pro Arg Pro Pro Arg Ser Leu Thr		
380	385	390
Leu Gly Ile Glu Pro Val Ser Pro Thr Ser Leu Arg Val Gly Leu		
395	400	405

Gln Arg Tyr Leu Gln Gly Ser Ser Val Gln Leu Arg Ser Leu Arg
410 415 420

Leu Thr Tyr Arg Asn Leu Ser Gly Pro Asp Lys Arg Leu Val Thr
425 430 435

Leu Arg Leu Pro Ala Ser Leu Ala Glu Tyr Thr Val Thr Gln Leu
440 445 450

Arg Pro Asn Ala Thr Tyr Ser Val Cys Val Met Pro Leu Gly Pro
455 460 465

Gly Arg Val Pro Glu Gly Glu Ala Cys Gly Glu Ala His Thr
470 475 480

Pro Pro Ala Val His Ser Asn His Ala Pro Val Thr Gln Ala Arg
485 490 495

Glu Gly Asn Leu Pro Leu Leu Ile Ala Pro Ala Leu Ala Ala Val
500 505 510

Leu Leu Ala Ala Leu Ala Ala Val Gly Ala Ala Tyr Cys Val Arg
515 520 525

Arg Gly Arg Ala Met Ala Ala Ala Gln Asp Lys Gly Gln Val
530 535 540

Gly Pro Gly Ala Gly Pro Leu Glu Leu Glu Gly Val Lys Val Pro
545 550 555

Leu Glu Pro Gly Pro Lys Ala Thr Glu Gly Gly Glu Ala Leu
560 565 570

Pro Ser Gly Ser Glu Cys Glu Val Pro Leu Met Gly Phe Pro Gly
575 580 585

Pro Gly Leu Gln Ser Pro Leu His Ala Lys Pro Tyr Ile
590 595

<210> 70
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 70
ccctccactg cccccaccgac tg 22

<210> 71
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 71
cggttctggg gacgttaggg ctcg 24

<210> 72
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 72
ctgcccaccc tccacacctgc tcaat 25

<210> 73
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 73
aggactgcc accgtccacc tgcctcaatg ggggcacatg ccacc 45

<210> 74
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 74
acgcaaagcc ctacatctaa gccagagaga gacagggcag ctggg 45

<210> 75
<211> 1077
<212> DNA
<213> Homo Sapien

<400> 75
ggcacttagga caaccttctt cccttctgca ccactgcccc taccccttacc 50
cgcccccggcca cctccttgct accccactct tgaaaccaca gctgttggca 100
gggtccccag ctcatgccag cctcatctcc tttcttgcta gcccccaaag 150
ggcctccagg caacatgggg ggcccagtca gagagccggc actctcagtt 200
gcctctggc tgagttgggg ggcagctctg gggggcgtgg cttgtgccat 250
ggctctgctg acccaacaaa cagagctgca gagcctcagg agagaggtga 300
gccggctgca ggggacagga ggcccctccc agaatgggga agggtatccc 350
tggcagagtc tcccgagca gagttccgat gcccctggaag cctgggagaa 400

tggggagaga tccccgaaaa ggagagcagt gctcacccaa aaacagaaga 450
agcagcac tcgtcctgcac ctggttccca ttaacgccac ctccaaggat 500
gactccgatg tgacagaggt gatgtggcaa ccagcttta ggcgtgggag 550
aggcctacag gcccaaggat atggtgtccg aatccaggat gctggagttt 600
atctgctgta tagccaggta ctgtttcaag acgtgacttt caccatgggt 650
caggtggtgt ctgcagaagg ccaaggaagg caggagactc tattccgatg 700
tataagaagt atgcctccc acccgaccg gcctacaac agctgctata 750
gcgcagggtgt cttccattta caccaagggg atattctgag tgtcataatt 800
ccccgggcaa gggcgaaact taacctctt ccacatggaa cttccctggg 850
gtttgtgaaa ctgtgattgt gttataaaaa gtggctccca gcttggaaga 900
ccagggtggg tacatactgg agacagccaa gagctgagta tataaaggag 950
aggaaatgtg caggaacaga ggcatttcc tgggttggc tccccgttcc 1000
tcactttcc ctttcattc ccaccccta gacttgatt ttacggatat 1050
cttgcttctg ttccccatgg agctccg 1077

<210> 76
<211> 250
<212> PRT
<213> Homo Sapien

<400> 76

Met	Pro	Ala	Ser	Ser	Pro	Phe	Leu	Leu	Ala	Pro	Lys	Gly	Pro	Pro
1														15
Gly	Asn	Met	Gly	Gly	Pro	Val	Arg	Glu	Pro	Ala	Leu	Ser	Val	Ala
														30
Leu	Trp	Leu	Ser	Trp	Gly	Ala	Ala	Leu	Gly	Ala	Val	Ala	Cys	Ala
														45
Met	Ala	Leu	Leu	Thr	Gln	Gln	Thr	Glu	Leu	Gln	Ser	Leu	Arg	Arg
														60
Glu	Val	Ser	Arg	Leu	Gln	Gly	Thr	Gly	Gly	Pro	Ser	Gln	Asn	Gly
														75
Glu	Gly	Tyr	Pro	Trp	Gln	Ser	Leu	Pro	Glu	Gln	Ser	Ser	Asp	Ala
														90
Leu	Glu	Ala	Trp	Glu	Asn	Gly	Glu	Arg	Ser	Arg	Lys	Arg	Arg	Ala
														105
Val	Leu	Thr	Gln	Lys	Gln	Lys	Lys	Gln	His	Ser	Val	Leu	His	Leu
														120
110														115

Val	Pro	Ile	Asn	Ala	Thr	Ser	Lys	Asp	Asp	Ser	Asp	Val	Thr	Glu
					125					130				135
Val	Met	Trp	Gln	Pro	Ala	Leu	Arg	Arg	Gly	Arg	Gly	Leu	Gln	Ala
					140				145					150
Gln	Gly	Tyr	Gly	Val	Arg	Ile	Gln	Asp	Ala	Gly	Val	Tyr	Leu	Leu
					155				160					165
Tyr	Ser	Gln	Val	Leu	Phe	Gln	Asp	Val	Thr	Phe	Thr	Met	Gly	Gln
					170				175					180
Val	Val	Ser	Arg	Glu	Gly	Gln	Gly	Arg	Gln	Glu	Thr	Leu	Phe	Arg
				185					190					195
Cys	Ile	Arg	Ser	Met	Pro	Ser	His	Pro	Asp	Arg	Ala	Tyr	Asn	Ser
				200					205					210
Cys	Tyr	Ser	Ala	Gly	Val	Phe	His	Leu	His	Gln	Gly	Asp	Ile	Leu
				215					220					225
Ser	Val	Ile	Ile	Pro	Arg	Ala	Arg	Ala	Lys	Leu	Asn	Leu	Ser	Pro
				230					235					240
His	Gly	Thr	Phe	Leu	Gly	Phe	Val	Lys	Leu					
				245					250					

<210> 77
<211> 2849
<212> DNA
<213> Homo Sapien

<400> 77
cactttctcc ctctcttcct ttactttcga gaaaccgcgc ttcccgcttct 50
ggtcgcagag acctcgagaga ccgcgcgggg gagacggagg tgctgtgggt 100
gggggggacc tgtggctgct cgtaccgccc cccaccctcc tcttctgcac 150
tgccgtcctc cggaagacot tttccctgc tctgtttctc tcaccgagtc 200
tgtgcacatcgc cccggacactg gccgggagga ggcttggccg gcgggagatg 250
ctcttaggggc ggcgcgggag gagcggccgg cgggacggag ggcccgccag 300
gaagatgggc tcccgtggac agggactctt gctggcgtac tgccctgtcc 350
ttgcctttgc ctctggcctg gtcctgagtc gtgtgccccca tgtccagggg 400
gaacagcagg agtgggaggg gactgaggag ctgccgtcgc ctccggacca 450
tgccgagagg gctgaagaac aacataaaaa atacaggccc agtcaggacc 500
aggggctccc tgcttcccg tgcttgcgt gctgtgaccc cggtacctcc 550
atgtacccgg cgaccgcccgt gccccagatc aacatcacta tcttgaaagg 600
ggagaagggt gaccgcgagatc atcgaggcct ccaaggaaaa tatggcaaaa 650

caggctcagc aggggccagg ggccacactg gacccaagg gcagaaggc 700
tccatgggg cccctgggg gcggtgcaag agccactacg ccgcctttc 750
ggtggccgg aagaagccca tgcacagcaa ccactactac cagacggta 800
tcttcgacac ggagttcgtg aacctctacg accacttcaa catgttcacc 850
ggcaagttct actgctacgt gcccggcctc tacttcttca gcctcaacgt 900
gcacacctgg aaccagaagg agacctacct gcacatcatg aagaacgagg 950
aggaggttgt gatcttgttc gcgcaggtgg gcgcacgcag catcatgcaa 1000
agccagagcc tgatgctgga gctgcgagag caggaccagg tgtgggtacg 1050
cctctacaag ggcgaacgtg agaacgcctt cttcagcgag gagctggaca 1100
cctacatcac ttcaagtggc tacctggtca agcacgcccc cgagccctag 1150
ctggccggcc acctccttcc ctctcgccac cttccacccc tgcgtgtgc 1200
tgacccacc gcctttccc cgatccctgg actccgactc cctggctttg 1250
gcattcagtg agacgcctg cacacacaga aagccaaagc gatcggtgct 1300
cccagatccc gcagcctctg gagagagctg acggcagatg aaatcaccag 1350
ggcgccccac ccgcgagaac cctctggac cttccgcggc cctctctgca 1400
cacatcctca agtgaccccg cacggcgaga cgcgggtggc ggcagggcgt 1450
cccagggtgc ggcacgcgg ctccagtccct tggaaataat taggcaaatt 1500
ctaaaggctc caaaaggagc aaagtaaacc gtggaggaca aagaaaaggg 1550
ttgttatttt tgccttcca gccagcctgc tggctccaa gagagaggcc 1600
tttcagttt agactctgct taagagaaga tccaaagtta aagctctggg 1650
gtcagggag gggccggggg cagggaaacta cctctggctt aattctttta 1700
agccacgtag gaactttctt gagggatagg tggaccctga catccctgtg 1750
gccttgccta agggctctgc tggctttctt gagtacacgc tgcgaggtga 1800
tggggctgg ggccccaggc gtcagcctcc cagagggaca gctgagccccc 1850
ctgccttggc tccaggttgg tagaagcagc cgaagggttc ctgacagtgg 1900
ccagggaccc ctgggtcccc caggcctgca gatgtttcta tgagggcag 1950
agtccttgg tacatccatg tgcgtgtctg ctccacccct gtgccacccc 2000
agagccctgg ggggtggctt ccatgcctgc caccctggca tcggctttct 2050
gtgccgcctc ccacacaaat cagccccaga aggccccggg gccttggctt 2100

ctgttttta taaaacacct caagcagcac tgcagtctcc catctccctcg 2150
tgggctaagg atcaccgctt ccacgtgtgt tgtgttggtt ggcagcaagg 2200
ctgatccaga ccccttctgc ccccactgcc ctcatccagg cctctgacca 2250
gtagccttag aggggctttt tctaggcttc agagcagggg agagctggaa 2300
ggggctagaa agctcccgct tgtctgttcc tcaggctcct gtgagcctca 2350
gtcctgagac cagagtcaag aggaagtaca cgtcccaatc acccggtgtca 2400
ggattcaactc tcaggagctg ggtggcagga gaggcaatag cccctgtggc 2450
aattgcagga ccagctggag cagggttgcg gtgtctccac ggtgctctcg 2500
ccctgccccat ggccacccca gactctgatc tccaggaacc ccatagcccc 2550
tctccacctc accccatgtt gatgcccagg gtcactcttg ctacccgctg 2600
ggcccccaaa ccccccgtgc ctctcttccct tccccccatc ccccacctgg 2650
ttttgactaa tcctgcttcc ctctctggc ctggctgccc ggatctgggg 2700
tccctaagtc cctctcttta aagaacttct gcgggtcaga ctctgaagcc 2750
gagttgctgt gggcgtgccc ggaagcagag cgccacactc gctgcttaag 2800
ctcccccagc tcttccaga aaacattaaa ctcagaattt tgtttcaa 2849

<210> 78
<211> 281
<212> PRT
<213> Homo Sapien

<400> 78

Met	Gly	Ser	Arg	Gly	Gln	Gly	Leu	Leu	Leu	Ala	Tyr	Cys	Leu	Leu
1				5				10					15	
Leu	Ala	Phe	Ala	Ser	Gly	Leu	Val	Leu	Ser	Arg	Val	Pro	His	Val
				20				25					30	
Gln	Gly	Glu	Gln	Gln	Glu	Trp	Glu	Gly	Thr	Glu	Glu	Leu	Pro	Ser
				35				40					45	
Pro	Pro	Asp	His	Ala	Glu	Arg	Ala	Glu	Glu	Gln	His	Glu	Lys	Tyr
				50				55					60	
Arg	Pro	Ser	Gln	Asp	Gln	Gly	Leu	Pro	Ala	Ser	Arg	Cys	Leu	Arg
				65				70					75	
Cys	Cys	Asp	Pro	Gly	Thr	Ser	Met	Tyr	Pro	Ala	Thr	Ala	Val	Pro
				80				85					90	
Gln	Ile	Asn	Ile	Thr	Ile	Leu	Lys	Gly	Glu	Lys	Gly	Asp	Arg	Gly
					95			100					105	
Asp	Arg	Gly	Leu	Gln	Gly	Lys	Tyr	Gly	Lys	Thr	Gly	Ser	Ala	Gly

110	115	120
Ala Arg Gly His Thr Gly Pro Lys Gly Gln Lys Gly Ser Met Gly		
125	130	135
Ala Pro Gly Glu Arg Cys Lys Ser His Tyr Ala Ala Phe Ser Val		
140	145	150
Gly Arg Lys Lys Pro Met His Ser Asn His Tyr Tyr Gln Thr Val		
155	160	165
Ile Phe Asp Thr Glu Phe Val Asn Leu Tyr Asp His Phe Asn Met		
170	175	180
Phe Thr Gly Lys Phe Tyr Cys Tyr Val Pro Gly Leu Tyr Phe Phe		
185	190	195
Ser Leu Asn Val His Thr Trp Asn Gln Lys Glu Thr Tyr Leu His		
200	205	210
Ile Met Lys Asn Glu Glu Val Val Ile Leu Phe Ala Gln Val		
215	220	225
Gly Asp Arg Ser Ile Met Gln Ser Gln Ser Leu Met Leu Glu Leu		
230	235	240
Arg Glu Gln Asp Gln Val Trp Val Arg Leu Tyr Lys Gly Glu Arg		
245	250	255
Glu Asn Ala Ile Phe Ser Glu Glu Leu Asp Thr Tyr Ile Thr Phe		
260	265	270
Ser Gly Tyr Leu Val Lys His Ala Thr Glu Pro		
275	280	

<210> 79

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 79

tacaggccca gtcaggacca gggg 24

<210> 80

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 80

ctgaagaagt agaggccggg cacg 24

<210> 81

<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 81
cccggtgctt gcgcgtgtgt gaccccggtt cctccatgtt cccgg 45

<210> 82
<211> 2284
<212> DNA
<213> Homo Sapien

<400> 82
gcggagcattt cgctgcggtc ctcgcccaga ccccccgcgcg gattcgccgg 50
tccttcccgc gggcgcgaca gagctgttctt cgcacccgtt tggcagcagg 100
ggcgccgggg tcctctcgac gccagagaga aatctcatca tctgtgcagc 150
cttcttaaag caaactaaga ccagagggag gattatcctt gacctttgaa 200
gaccaaaaact aaactgaaat taaaatgtt ctgcggggaa gaagggagct 250
tgacttacac ttggtaata atttgcttcc tgacactaag gctgtctgt 300
agtcagaatt gcctcaaaaaa gagtcttagaa gatgttgtca ttgacatcca 350
gtcatctctt tctaaggaa tcagaggcaa tgagccgtt tataacttcaa 400
ctcaagaaga ctgcattaat tcttgctgtt caacaaaaaa catatcaggg 450
gacaaagcat gtaacttgat gatcttcgac actcgaaaaa cagctagaca 500
acccaactgc tacctatttt tctgtcccaa cgaggaagcc tgtccattga 550
aaccagcaaa aggacttatg agttacagga taattacaga tttccatct 600
ttgaccagaa atttgccaag ccaagagttt ccccaggaag attctctctt 650
acatggccaa tttcacaag cagtcactcc cctagcccat catcacacag 700
attattcaaa gcccaccgat atctcatgtt gagacacact ttctcagaag 750
tttggatcct cagatcacct ggagaaacta tttaagatgg atgaagcaag 800
tgcccagctc ttgcattata aggaaaaagg ccattctcag agttcacaat 850
tttcctctga tcaagaaata gtcacatgtc tgcctgaaaa tgtgagtgcg 900
ctccccagcta cggtggcagt tgcttctcca cataccacctt cggctactcc 950
aaagccccgcc acccttctac ccaccaatgc ttcagtgaca cttctggga 1000
cttccccagcc acagctggcc accacagctc cacctgttaac cactgtcaact 1050

tctcagcctc ccacgaccct catttctaca gttttacac gggctgcggc 1100
tacactccaa gcaatggcta caacagcagt tctgactacc acctttcagg 1150
cacctacgga ctcgaaaaggc agcttagaaa ccataccgtt tacagaaaatc 1200
tccaacttaa ctttgaacac aggaaatgtg tataacccta ctgcactttc 1250
tatgtcaa at gtggagtctt ccactatgaa taaaactgtt tcctggaaag 1300
gtagggaggc cagtccaggc agttcctccc agggcagtgt tccagaaaaat 1350
cagtagggcc ttccatttga aaaatggctt cttatcggtt ccctgctctt 1400
tggtgtcctg ttcctggta taggcctcgt ctcctgggt agaatccttt 1450
cggaatcact ccgcaggaaa cgttactcaa gactggatta tttgatcaat 1500
gggatctatg tggacatcta aggatggaac tcgggtgtc ttaattcatt 1550
tagtaaccag aagccaaat gcaatgagtt tctgctgact tgctagtctt 1600
agcaggaggt tgtatTTGA agacaggaaa atgccccctt ctgctttcct 1650
ttttttttt ggagacagag tcttgctctg ttgcccaggc tggagtgcag 1700
tagcacgatc tcggctctca ccgcaacctc cgtctcctgg gttcaagcga 1750
ttctcctgcc tcagcctctt aagtatctgg gattacaggc atgtgccacc 1800
acacctgggt gatTTTGTa ttttagtag agacggggtt tcaccatgtt 1850
ggtcaggctg gtctcaaact octgacctag tgatccaccc tcctcggcct 1900
cccaaagtgc tgggattaca ggcattgagcc accacagctg gcccccttct 1950
gttttatgtt tggttttga gaaggaatga agtggaaacc aaatttaggtt 2000
atTTTGGGTa atctgtctct aaaatattag ctaaaaacaa agctctatgt 2050
aaagtaataa agtataattg ccatataat ttcaaaattc aactggcttt 2100
tatgcaaaga aacaggttag gacatctagg ttccaattca ttcacattct 2150
tggttccaga taaaatcaac tgTTTATATC aatttctaatt ggatttgctt 2200
ttcttttat atggattcct taaaactta ttccagatgt agttccttcc 2250
aattaaatat ttgaataaaat ctTTTGTtac tcaa 2284

<210> 83

<211> 431

<212> PRT

<213> Homo Sapien

<400> 83

Met Phe Phe Gly Gly Glu Gly Ser Leu Thr Tyr Thr Leu Val Ile
1 5 10 15

Ile	Cys	Phe	Leu	Thr	Leu	Arg	Leu	Ser	Ala	Ser	Gln	Asn	Cys	Leu
				20					25				30	
Lys	Lys	Ser	Leu	Glu	Asp	Val	Val	Ile	Asp	Ile	Gln	Ser	Ser	Leu
				35				40				45		
Ser	Lys	Gly	Ile	Arg	Gly	Asn	Glu	Pro	Val	Tyr	Thr	Ser	Thr	Gln
				50				55				60		
Glu	Asp	Cys	Ile	Asn	Ser	Cys	Cys	Ser	Thr	Lys	Asn	Ile	Ser	Gly
				65				70				75		
Asp	Lys	Ala	Cys	Asn	Leu	Met	Ile	Phe	Asp	Thr	Arg	Lys	Thr	Ala
				80				85				90		
Arg	Gln	Pro	Asn	Cys	Tyr	Leu	Phe	Phe	Cys	Pro	Asn	Glu	Glu	Ala
				95				100				105		
Cys	Pro	Leu	Lys	Pro	Ala	Lys	Gly	Leu	Met	Ser	Tyr	Arg	Ile	Ile
				110				115				120		
Thr	Asp	Phe	Pro	Ser	Leu	Thr	Arg	Asn	Leu	Pro	Ser	Gln	Glu	Leu
				125				130				135		
Pro	Gln	Glu	Asp	Ser	Leu	Leu	His	Gly	Gln	Phe	Ser	Gln	Ala	Val
				140				145				150		
Thr	Pro	Leu	Ala	His	His	His	Thr	Asp	Tyr	Ser	Lys	Pro	Thr	Asp
				155				160				165		
Ile	Ser	Trp	Arg	Asp	Thr	Leu	Ser	Gln	Lys	Phe	Gly	Ser	Ser	Asp
				170				175				180		
His	Leu	Glu	Lys	Leu	Phe	Lys	Met	Asp	Glu	Ala	Ser	Ala	Gln	Leu
				185				190				195		
Leu	Ala	Tyr	Lys	Glu	Lys	Gly	His	Ser	Gln	Ser	Ser	Gln	Phe	Ser
				200				205				210		
Ser	Asp	Gln	Glu	Ile	Ala	His	Leu	Leu	Pro	Glu	Asn	Val	Ser	Ala
				215				220				225		
Leu	Pro	Ala	Thr	Val	Ala	Val	Ala	Ser	Pro	His	Thr	Thr	Ser	Ala
				230				235				240		
Thr	Pro	Lys	Pro	Ala	Thr	Leu	Leu	Pro	Thr	Asn	Ala	Ser	Val	Thr
				245				250				255		
Pro	Ser	Gly	Thr	Ser	Gln	Pro	Gln	Leu	Ala	Thr	Thr	Ala	Pro	Pro
				260				265				270		
Val	Thr	Thr	Val	Thr	Ser	Gln	Pro	Pro	Thr	Thr	Leu	Ile	Ser	Thr
				275				280				285		
Val	Phe	Thr	Arg	Ala	Ala	Ala	Thr	Leu	Gln	Ala	Met	Ala	Thr	Thr
				290				295				300		
Ala	Val	Leu	Thr	Thr	Thr	Phe	Gln	Ala	Pro	Thr	Ser	Lys	Gly	

305	310	315
Ser Leu Glu Thr Ile Pro Phe Thr Glu Ile Ser Asn Leu Thr Leu		
320	325	330
Asn Thr Gly Asn Val Tyr Asn Pro Thr Ala Leu Ser Met Ser Asn		
335	340	345
Val Glu Ser Ser Thr Met Asn Lys Thr Ala Ser Trp Glu Gly Arg		
350	355	360
Glu Ala Ser Pro Gly Ser Ser Ser Gln Gly Ser Val Pro Glu Asn		
365	370	375
Gln Tyr Gly Leu Pro Phe Glu Lys Trp Leu Leu Ile Gly Ser Leu		
380	385	390
Leu Phe Gly Val Leu Phe Leu Val Ile Gly Leu Val Leu Leu Gly		
395	400	405
Arg Ile Leu Ser Glu Ser Leu Arg Arg Lys Arg Tyr Ser Arg Leu		
410	415	420
Asp Tyr Leu Ile Asn Gly Ile Tyr Val Asp Ile		
425	430	

<210> 84
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 84
agggaggatt atccttgacc tttgaagacc 30

<210> 85
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 85
gaagcaagtg cccagctc 18

<210> 86
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 86
cggggtccctg ctctttgg 18

<210> 87
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 87
caccgttagct gggagcgcac tcac 24

<210> 88
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 88
agtgtaaatc aagctccc 18

<210> 89
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 89
gcttcctgac actaaggctg tctgcttagtc agaattgcct caaaaagag 49

<210> 90
<211> 957
<212> DNA
<213> Homo Sapien

<400> 90
ccttggaaat gcgcccatgg gctggtgcc tgctcaagggt ggtgttcgtg 50
gtcttcgcct ctttgtgtgc ctggattcg gggtaacctgc tcgcagagct 100
catccatgcat gcacccctgt ccagtgctgc ctatagcatc cgccatcg 150
gggagaggcc tgcctcaaa gtcggatcc ccaaaaggca aaaatgtgac 200
caactggactc cctgccccatc tgacacctat gcctacagggt tactcagcgg 250
agggtggcaga agcaagtacg ccaaaatctg ctttgaggat aacctactta 300
tgggagaaca gctggaaat gttgccagag gaataaacat tgccattgtc 350
aactatgtaa ctggaaatgt gacagcaaca cgatgttttgc atatgtatga 400
aggcgataac tctggaccga tgacaaagtt tattcagagt gctgctccaa 450
aatccctgtc cttcatggtg acctatgacg acggaaagcac aagactgaat 500

aacgatgcc aagaatccat agaagcactt ggaagtaaag aaatcaggaa 550
catgaaaattc aggtcttagct gggttattat tgccagaaaa ggcttggAAC 600
tcccttcga aattcagaga gaaaagatca accactctga tgctaagaac 650
aacagatatt ctggctggcc tgcagagatc cagatagaag gctgcataacc 700
caaagaacga agctgacact gcagggtcct gagtaaatgt gttctgtata 750
aacaaaatgca gctggaatcg ctcaagaatc ttattttct aaatccaaca 800
gcccatattt gatgagtatt ttgggtttgt tgtaaaccAA tgaacatttg 850
.ctagttgtat caaatcttgg tacgcagtat ttttatacca gtatTTATG 900
tagtgaagat gtcaattAGC aggaaactaa aatgaatgGA aattcttaaa 950
aaaaaaaa 957

<210> 91

<211> 235

<212> PRT

<213> Homo Sapien

<400> 91

Met Arg Pro Leu Ala Gly Gly Leu Leu Lys Val Val Val Val
1 5 10 15

Phe Ala Ser Leu Cys Ala Trp Tyr Ser Gly Tyr Leu Leu Ala Glu
20 25 30

Leu Ile Pro Asp Ala Pro Leu Ser Ser Ala Ala Tyr Ser Ile Arg
35 40 45

Ser Ile Gly Glu Arg Pro Val Leu Lys Ala Pro Val Pro Lys Arg
50 55 60

Gln Lys Cys Asp His Trp Thr Pro Cys Pro Ser Asp Thr Tyr Ala
65 70 75

Tyr Arg Leu Leu Ser Gly Gly Arg Ser Lys Tyr Ala Lys Ile
80 85 90

Cys Phe Glu Asp Asn Leu Leu Met Gly Glu Gln Leu Gly Asn Val
95 100 105

Ala Arg Gly Ile Asn Ile Ala Ile Val Asn Tyr Val Thr Gly Asn
110 115 120

Val Thr Ala Thr Arg Cys Phe Asp Met Tyr Glu Gly Asp Asn Ser
125 130 135

Gly Pro Met Thr Lys Phe Ile Gln Ser Ala Ala Pro Lys Ser Leu
140 145 150

Leu Phe Met Val Thr Tyr Asp Asp Gly Ser Thr Arg Leu Asn Asn
155 160 165

Asp Ala Lys Asn Ala Ile Glu Ala Leu Gly Ser Lys Glu Ile Arg
170 175 180

Asn Met Lys Phe Arg Ser Ser Trp Val Phe Ile Ala Ala Lys Gly
185 190 195

Leu Glu Leu Pro Ser Glu Ile Gln Arg Glu Lys Ile Asn His Ser
200 205 210

Asp Ala Lys Asn Asn Arg Tyr Ser Gly Trp Pro Ala Glu Ile Gln
215 220 225

Ile Glu Gly Cys Ile Pro Lys Glu Arg Ser
230 235

<210> 92

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 92

aatgtgacca ctggactccc 20

<210> 93

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 93

aggcttggaa ctcccttc 18

<210> 94

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 94

aagattcttg agcgattcca gctg 24

<210> 95

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 95

aatccctgct cttcatggtg acctatgacg acggaagcac aagactg 47

<210> 96
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 96
ctcaagaagc acgcgtactg c 21

<210> 97
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 97
ccaacctcag cttccgcctc tacga 25

<210> 98
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 98
catccaggct cgccactg 18

<210> 99
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 99
tggcaaggaa tggAACAGT 20

<210> 100
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 100
atgctgccag acctgatcgc agaca 25

<210> 101
<211> 19
<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 101
gggcagaaat ccagccact 19

<210> 102

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 102
cccttcgcct gctttga 18

<210> 103

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 103
gccatctaat tgaagccat cttccca 27

<210> 104

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 104
ctggcggtgt cctctcctt 19

<210> 105

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 105
cctcggtctc ctcatctgtg a 21

<210> 106

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 106
tggcccaagct gacgagccct 20

<210> 107
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 107
ctcataggca ctcggttctg g 21

<210> 108
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 108
tggctcccaag cttggaaaga 19

<210> 109
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 109
cagctttgg ctgtctccag tatgtaccca 30

<210> 110
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 110
gatgcctctg ttcctgcaca t 21

<210> 111
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 111

ggattctaat acgactcaact atagggctgc ccgcaacccc ttcaactg 48
<210> 112
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 112
ctatgaaatt aaccctcaact aaagggaccc cagctgggtg accgtgta 48

<210> 113
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 113
ggattctaat acgactcaact atagggccgc cccgccaccc cct 43

<210> 114
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 114
ctatgaaatt aaccctcaact aaagggactc gagacaccac ctgaccac 48

<210> 115
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 115
ggattctaat acgactcaact atagggccca aggaaggcag gagactct 48

<210> 116
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide probe

<400> 116
ctatgaaatt aaccctcaact aaagggacta ggggtggga atgaaaag 48

<210> 117

<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 117
ggattctaat acgactcaact atagggcccc cctgagctct cccgtgtt 48

<210> 118
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 118
ctatgaaatt aaccctcaact aaagggaagg ctcgccactg gtcgttaga 48

<210> 119
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 119
ggattctaat acgactcaact atagggcaag gagccgggac ccaggaga 48

<210> 120
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 120
ctatgaaatt aaccctcaact aaaggggaggg ggcccttggt gctgagt 47