Aufgabe 1

a) Erstellen Sie für die Gruppe (\mathbb{Z}, \oplus) eine Gruppentafel. (Hinweis: $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$) und \oplus (manchmal \oplus_6) bedeutet + mit mod 6)

\oplus	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

b) Bestimmen Sie für die Elemente 3 und 4 in \mathbb{Z}_6 die bezüglich \oplus inversen Elemente.

Das inverse Element verknüpft mit dem eigentlichen Element muss gleich dem neutralen Element sein. Also $(3+x) \mod 6 = 0$, bzw. $(4+x) \mod 6 = 0$.

- Inverses von 3: 3
- Inverses von 4: 2
- c) Lösen Sie in \mathbb{Z}_6 die Gleichung $x \oplus 4 = 1$

x = 3

Aufgabe 2

Gegeben sei die Menge \mathbb{Z}_{10} zusammen mit der bekannten Multiplikation \otimes .

a) Geben Sie eine Verknüpfungstafel an.

\otimes	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

b) Bestimmen Sie alle bezüglich dieser Verknüfung invertierbaren Elemente $\mathbb{U}(\mathbb{Z}_{10})\subseteq\mathbb{Z}_{10}$

Das inverse Element verknüpft mit dem eigentlichen Element muss gleich dem neutralen Element sein.

$$\mathbb{U}(\mathbb{Z}_{10}) = \{1, 3, 7, 9\}$$

c) Ist $\mathbb{U}(\mathbb{Z}_{10}) \subseteq \mathbb{Z}_{10}$ bezüglich \otimes abgeschlossen? Es ist abgeschlossen, da jedes Element genau einmal in jeder Zeile und Spalte vorkommt (Sudoku).

d) Geben Sie eine Verknüpfungstafel für $(\mathbb{U}(\mathbb{Z}_{10}), \otimes)$ an. Definiert diese Verknüpfung eine Gruppenstruktur? Zu welcher bekannten Gruppe ist (eventuell) diese Gruppe isomorph? Geben Sie ggf. einen Isomorphismus an.

\otimes	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

Es ist eine Gruppe:

- 1. Ist Abgeschlossen
- 2. Das neutrale Element existiert
- 3. Für jedes Element existiert ein neutrales Element.

- $4. \ Es \ ist \ assoziativ$
- e) Lösen Sie in \mathbb{Z}_{10} die Gleichung $3\otimes x\oplus 4=5$

 $\underbrace{3 \otimes x \oplus 4}_{1} = 5$, damit die Gleichung aufgeht muss x = 7.

Aufgabe 3

Wir betrachten die Symmetriegruppe (\mathbb{S}_7 , \circ) der Permutationen der 7 Elemente $\{1, 2, 3, 4, 5, 6, 7\}$ mit der Abbildungskomposition als Verknüpfung.

a) Berechnen Sie für die Elemente
$$\phi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 5 & 6 & 1 & 4 & 7 \end{pmatrix}$$
 und $\psi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 2 & 3 & 7 & 1 & 5 \end{pmatrix}$

$$\phi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 1 & 2 & 6 & 3 & 4 & 7 \end{pmatrix}$$

$$\phi^4 = \phi^2 \circ \phi^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 1 & 4 & 2 & 6 & 7 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 1 & 4 & 2 & 6 & 7 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{pmatrix}$$

$$\psi^3 = \psi^2 \circ \psi^1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 6 & 2 & 5 & 4 & 7 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 2 & 3 & 7 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 1 & 6 & 7 & 3 & 5 \end{pmatrix}$$

$$\phi \circ \psi^3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 5 & 6 & 1 & 4 & 7 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 1 & 6 & 7 & 3 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 2 & 4 & 7 & 5 & 1 \end{pmatrix}$$

$$\psi^{2} \circ \phi \circ \psi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 1 & 4 & 2 & 6 & 7 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 5 & 6 & 1 & 4 & 7 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 3 & 4 & 1 & 7 & 2 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 1 & 4 & 2 & 6 & 7 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 2 & 7 & 3 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 5 & 4 & 1 & 7 & 6 & 3 \end{pmatrix}$$

b) Bestimmen Sie die kleinste Zahl k>0, sodass ϕ^k das neutrale Element der Gruppe ergibt.

4 und 6 tauschen somit muss k eine gerade Zahl sein. 1, 2, 3, 5 werden so aufeinander abgebildet, dass es 4 Verknüpfungen braucht damit jedes Element auf sich selbst abgebildet wird, somit ist k=4

c) Lösen Sie in (\mathbb{S}_7, \circ) die folgende Gleichung für die Unbekannte ξ :

$$\phi^2 \, \circ \, \psi \, \circ \, \xi \, \circ \, \phi^3 = \psi \, \circ \, \phi^2$$

d) Zeigen Sie, dass die Menge $\mathbb{T}=\{\rho\in\mathbb{S}_7\mid \rho(\{1,2,5\})\subseteq\{1,2,5\}\}\subseteq\mathbb{S}_7$ eine Untergruppe ist.

e) Geben Sie die von $\sigma=\begin{pmatrix}1&2&3&4&5&6&7\\2&4&5&3&1&7&6\end{pmatrix}$ erzeuge Untergruppe von \mathbb{S}_7 an.