

SAPA Format 1.7

Christopher Perschke

Geo++® GmbH 30827 Garbsen, Germany www.geopp.de

SSR Formats - Overview

SSR Basic Parameters	Multi-stag Scalabilty	e/	SSR/SSA binary/ASCII	SSRG Geo++ 4090.2	RTCM-SSR	RTCM Geo++ 4090.4	RTCM Geo++ 4090.5	SSRZ RTCM Geo++ 4090.7	Compact SSR	SAPA
					RTCM f	raming				
			stand-alone	stand-alone	al	lowed in one strea	am	stand-alone	stand-alone	stand-alone
SV clock			available	available	available			available	available	available
SV orbit			available	available	available			available	available	available
SV code bias			available	available	available			available	available	available
SV phase bias			available	available	proposed			available	available	available
ionosphere	global	VTEC	available		proposed			available		
	global	STEC	available		under discussion	canceled		available		
	regional	STEC	available		under discussion	available		available	available	available
	residual	gridded/ site	available	available	under discussion		canceled	available	available	available
troposphere	global		under discussion		under discussion			available		
	regional		available		under discussion			available		available
	residual	gridded/ site	available	available	under discussion		available	available	available	available
complete SSR model			yes	yes	no	no	no	yes	yes	yes

SSR Formats - Supported Systems and Signals

GNSS	SSRZ	SAPA	Compact SSR
GPS	L1, L2, L5	1C,2W,2L	L1, L2,L5
GLONASS	L1, L2, L3	1C, 2C	L1, L2, L3
Galileo	E1, E5, E6		E1, E5
BDS	B1, B2, B3		B1, B2, B3
SBAS	L1, L5		L1C, L5
QZSS	L1, L5		L1, L5
IRNSS	S, L5		

- L1, L2, L5 :carrier frequencies indicate more than one signal per frequency
- GNSS IDs and signal bitmasks are defined, satellite bitmasks are not defined

SSR Formats – Parameter Resolutions and Timing

SSR Parameter	SSRZ		SA	NPA	Compact SSR	
	resolution	update rate [s]	resolution	update rate [s]	resolution	update rate [s]
clock	1 mm (0.1)	5	2mm	5	1.6mm	5
orbit	32 mm (0.1) 4 mm (0.1) 4 mm (0.1)	30	2mm 2mm 2mm	30	1.6mm 6.4mm 6.4mm	30
code Bias	10mm (0.1)	30	20mm	30	20mm	30
phase Bias	~1mm (cyc)	30	2mm	30	1mm	30
ionosphere (residual)	~1mm	30	0.04TECU	30	0.04 TECU	30
troposphere (residual)	~1mm	30	0.04mm	30	0.04 mm	30

SAPA Format

SAPA Message Types

Туре	Subtype	Message name	Description
	0	GPS OCB	GNSS Orbit, Clock, Bias (OCB) message
0	1	GLONASS OCB	
	2 to 15	TBD	
	0	GPS HPAC	High-Precision Atmosphere Correction (HPAC) message
1	1	GLONASS HPAC	
	2 to 15	TBD	
2	0	GAD	Geographic Area Definition (GAD) message
2	1 to 15	TBD	
3 to 127	TDB	TBD	TBD

SAPA OCB Messages SM 0-0, SM 0-1

• OCB present flag (SF014) allows low rate and high rate messages (30s and 5s update intervals)

Туре	Subtype	Message Name	Parameter	"Low Rate"	"High Rate"			
			GPS Orbit	1	0	OCB pres flag		
0	0 GPS OCB	GPS OCB	GPS Clock	0/1	1	OCB present flag SF014		
		GPS Biases	1	0)14			
	1 GLO				GLO Orbit	1	0	OCB pres flag
0		GLO OCB	GLO Clock	0/1	1	OCB present flag SF014		
			GLO Biases	1	0)14		

SAPA HPAC Messages SM 1-0, SM 1-1

Туре	Subtype	Message name	Area ID	Blocks Indicator (SF040)								
				Atmosphere Block								
				Area data Block								
			1	tropo poly coeff block $(\overline{T_h^z}, T_{00}, T_{10}, T_{01}, T_{11})$								
		CDC /	ID	2	tropo poly coeff block $(\overline{T_h^z}, T_{00}, T_{10}, T_{01}, T_{11})$							
1	0/1	GPS/ GLO HPAC			gridded tropo block							
	GLOTIFAC	GEO TITALE	GLO TITALE	GLO TIITAC	GEO TIITAE	GLO III/IC	GLO TITALE				1	iono poly coeff block per SV (C_{00} , C_{10} , C_{01} , C_{11})
				2	iono poly coeff block per SV (C_{00} , C_{10} , C_{01} , C_{11})							
			2			2	gridded iono block per SV					

SAPA GAD message SM2-0

- maximum number of grids: 32
- reference point (Φ_0, λ_0) ; upper left
- number of grid nodes N_{Φ} , N_{λ} (1-8)
- spacing $\Delta\Phi$, $\Delta\lambda$ (0.1° 3.2°)
- maximum latitude: ±85°

- minimum grid N_{Φ} , $N_{\lambda}=1$, $\Delta\Phi$, $\Delta\lambda=0.1$ \rightarrow 11km x 1km / 11km x 11km
- Maximum grid N_{Φ} , $N_{\lambda} = 8$, $\Delta \Phi$, $\Delta \lambda = 3.2 \Rightarrow 2816$ km x 256km / 2816km x 2816km

SAPA Timing and Data Assignment (30s/5s)

- consistent SSR parameter (i.e. parameters of one solution) are connected with SIOU (SF005)
- an absolute time information is also part of the message

SAPA Bandwidth Optimization Concepts

- satellite bitmask length
- signal bitmask length
- data field length of tropo and iono coefficients
- data field length of tropo and iono residual values
- "tropo offsets"
 - Average vertical hyd. Delay $\overline{T_h^z}$ minus 2.3m
 - T_{00} minus 0.252m

	SF044/ SF056	T_{00} $/C_{00}$	$T_{10} / C_{10} \ T_{01} / C_{10}$	T_{11}/C_{11}
tropo	0	7	7	9
	1	9	9	11
iono	0	12	12	13
	1	14	14	15

	SF051/SF057 / data field length residuals				
	0	1	2	3	
tropo	6	8	-	-	
iono	4	7	10	14	

GNSS	left most bit / satellite bitmask length			
	0	1	2	3
GPS	32	44	56	64
GLO	24	36	48	63

GNSS	left most bit / signal bitmask length		
	0	1	
GPS	6	11	
GLO	5	9	

Implementation Details

- Numerical Constants (c, π) are identical
- Reference Datum: "Therefore, it is not necessary to define the exact realization of ITRF used in SAPA message format".
- Broadcast Ephemeris

GNSS	Document
GPS	IS-GPS-200H
GLO	Version 5.1

GNSS Satellite Clock Correction

- clock correction $\delta \mathcal{C}$
- broadcast satellite clock t_b
- corrected satellite clock t_s

$$t_s = t_b - \frac{\delta C}{c}$$

• Relativistic Effects must be applied for all constellations, except for GLONASS, where relativistic effect is already accounted for in the broadcast clock parameter.

$$t_r - \frac{2\,\boldsymbol{r}\cdot\boldsymbol{i}}{c^2}$$

GNSS Satellite Orbit Calculation

- ullet orbit correction $\delta oldsymbol{o}$
- satellite position correction δX
- broadcast satellite position correction δX_{b}
- corrected satellite nominal antenna phase center position δX_{orb}
- satellite broadcast position(velocity) vector $m{r} = m{X}_b$ ($m{r} = \dot{m{X}}_{
 m b}$)
- e_i direction unit vector, $i = \{radial, along, cross\}$

$$\delta X_{orb} = \delta X_b - \delta X$$

$$egin{aligned} oldsymbol{e}_{along} &= rac{\dot{r}}{|\dot{r}|} \ oldsymbol{e}_{cross} &= rac{r imes \dot{r}}{|r imes \dot{r}|} \end{aligned}$$

$$e_{radial} = e_{along} \times e_{cross}$$

$$\delta X = [e_{radial}, e_{along}e_{cross}] \cdot \delta O$$

GNSS Satellite Bias Calculation

- SAPA OCB message contains parameters for bias correction for various track types. These biases shall be subtracted from the raw pseudorange and carrier phase measurements for the corresponding track types.
- GLONASS biases are aligned to a theoretical zero bias receiver

SAPA Atmospheric Corrections

- regular grids
- User position must be located inside of the area definition for the data to be used.

spacing

Ionosphere Slant Delay Calculation

- slant iono delay of satellite i for carrier phase measurements δI_{CP}^i [m]
- ullet slant iono delay of satellite i for pseudorange measurements δI_{PR}^i [m]
- slant iono delay evaluated from polynomial I_P^i [TECU]
- slant iono delay evaluated from gridded residuals I_G^i [TECU]

$$\delta I_{CP}^{i} = -40.3 \times \frac{10^{-16}}{f_{j}^{2}} \cdot (I_{P}^{i} + I_{G}^{i})$$

$$\delta I_{PR}^{i} = 40.3 \times \frac{10^{-16}}{f_{j}^{2}} \cdot (I_{P}^{i} + I_{G}^{i})$$

Slant TEC Polynomial Evaluation

- latitude of the user Φ_u [deg]
- area centroid latitude Φ_c [deg]
- latitude of the user λ_u [deg]
- area centroid latitude λ_c [deg]

$$I_P^i = C_{00} + C_{01}(\delta\Phi) + C_{10}(\delta\lambda) + C_{11}(\delta\Phi)(\delta\lambda)$$

- Calculation neglects height of the user $\delta \Phi', \delta \lambda' \neq \delta \Phi, \delta \lambda$.
- Does an estimation of this geometric error exist?
- In general: the larger the height difference between reference height and user's height.

Slant TEC Polynomial Evaluation

- latitude of the user Φ_u [deg]
- ullet area centroid latitude Φ_c [deg]
- latitude of the user λ_u [deg]
- area centroid latitude λ_c [deg]

$$I_P^i = C_{00} + C_{01}(\delta\Phi) + C_{10}(\delta\lambda) + C_{11}(\delta\Phi)(\delta\lambda)$$

- Calculation neglects height of the user $\delta \Phi', \delta \lambda' \neq \delta \Phi, \delta \lambda$.
- Does an estimation of this geometric error exist?
- In general: the larger the height difference between reference height and user's height.

Polynomial and gridded Slant TEC

- gridded STEC data also referenced to zeroheight
- bi-linear grid interpolation

$$I_G^i = \sum_{k=1}^4 W_k I_{G_K}^i$$

weighting factor depending on the grid point distance

reference ellipsoid at zero height

Troposphere Delay Calculation

- troposphere slant delay for satellite i at the user's location δT^i
- average zenith hydrostatic delay for a given area (zero ellipsoidal height) $\overline{T_h^z}$
- hydrostatic mapping function (Neill, 1996) for satellite elevation $m_h(\epsilon_i)$
- non-hydrostatic mapping function (Neill, 1996) for satellite elevation $m_{nh}(\epsilon_i)$
- residual troposphere zenith delay for a user interpolated from grid points $T_G[m]$
- residual troposphere zenith delay for satellite i interpolated from polynomial expansion $T_P[m]$

$$\delta T^{i} = \overline{T_{h}^{z}} \cdot m_{h}(\epsilon_{i}) + (T_{P} + T_{G}) \cdot m_{nh}(\epsilon_{i})$$

$$T_P = T_{00} + T_{01}(\delta\Phi) + T_{10}(\delta\lambda) + T_{11}(\delta\Phi)(\delta\lambda)$$

$$T_G = \sum_{k=1}^4 W_k T_{G_K}$$

Compact SSR Message Types

Compact SSR Msg Name	Number	SAPA
Compact SSR Mask	MT4073,1	ОСВ
Compact SSR GNSS Orbit Correction	MT4073,2	OCB,sys,O
Compact SSR GNSS Clock Correction	MT4073,3	OCB,sys,C
Compact SSR GNSS Satellite Code Bias	MT4073,4	OCB,sys,CB
Compact SSR GNSS Satellite Phase Bias	MT4073,5	OCB,sys,PB
Compact SSR GNSS Satellite Code and Phase Bias	MT4073,6	OCB,sys,B
Compact SSR GNSS URA	MT4073,7	
Compact SSR GNSS STEC Correction	MT4073,8	HPAC,sys,RSI
Compact SSR GNSS Gridded Correction	MT4073,9	HPAC,sys,GRI,GRT
Compact SSR GNSS Service Information	MT4073,10	
Compact SSR GNSS Combined Correction	MT4073,11	
Null Message	MT4073,1	

SSRM2SAPA

- **sapalib** is developed in cooperation with Neosoft
 - OCB ready and improved with handle structure to control ocb flag
 - HPAC in test
 - GAD ready
- Implementation of ssrm2sapa_util functions (interfaces between MC structures and SAPA structures) in progress (OCB ready)
- ToDossrm2sapa.exe

Thank you.

Regional STEC 1/2

Regional STEC 2/2

Global STEC 1/2

Global STEC 2/2

