CS392 - Introduction to Database Systems

姚斌

yaobin@cs.sjtu.edu.cn

手机: 15921379438

What Is a Database <u>System?</u>?

- Database: a very large, integrated collection of data.
- Models a real-world <u>enterprise</u> (e.g. ER model)
 - Entities (e.g., students, teams, games)
 - Relationships
 (e.g., faculty teaching courses, use of classroom)
- A <u>Database Management System (DBMS)</u> is a software system designed to store, manage, and facilitate access to databases.

Is the WWW a DBMS?

Fairly sophisticated search available

- crawler *indexes* pages on the web
- Keyword-based search for pages

But, currently

- data is mostly unstructured and untyped
- search only:
 - can't modify the data
 - can't get summaries, complex combinations of data
- few guarantees provided for freshness of data, consistency across data items, fault tolerance, ...
- Web sites (e.g. e-commerce) typically have a DBMS in the background to provide these functions.

The picture is changing

- New standards like XML can help data modeling
- Research groups are working on providing some of this functionality across multiple web sites.
- The WWW/DB boundary is blurring!

Is a File System a DBMS?

Thought Experiment 1:

- You and your project partner are editing the same file.
- You both save it at the same time.
- Whose changes survive?

A) Yours B) Partner's C) Both D) Neither E) ???

•Thought Experiment 2:

- -You're updating a file.
- -The power goes out.
- –Which of your changes survive?

Q: How do you write programs over a subsystem when it promises you only "???"?

A: Very, very carefully!!

A) All B) None C) All Since last save D) ???

Why Study Databases??

Shift from <u>computation</u> to <u>information</u>

- always true for corporate computing
- Web made this point for personal computing
- more and more true for scientific computing

Need for DBMS has exploded in the last years

- Corporate: retail swipe/clickstreams, "customer relationship mgmt", "supply chain mgmt", "data warehouses", etc.
- Scientific: digital libraries, Human Genome project, NASA Mission to Planet Earth, physical sensors, grid physics network

DBMS encompasses much of CS in a practical discipline

- OS, languages, theory, AI, multimedia, logic
- Yet traditional focus on real-world apps

What's the intellectual content?

- representing information
 - data modeling
- languages and systems for querying data
 - complex queries with real semantics*
 - over massive data sets
- concurrency control for data manipulation
 - controlling concurrent access
 - ensuring transactional semantics
- reliable data storage
 - maintain data semantics even if you pull the plug

^{*} semantics: the meaning or relationship of meanings of a sign or set of signs

Rest of Today

- A "free tasting" of things to come in this class:
 - data modeling
 - query languages
 - DBMSs
 - Application development and web data management
- Today's lecture is from Chapter 1 in R&G

OS Support for Data Management

Data can be stored in RAM

- this is what every programming language offers!
- RAM is fast, and random access
- Isn't this heaven?

Every OS includes a File System

- manages files on a magnetic disk
- allows open, read, seek, close on a file
- allows protections to be set on a file
- drawbacks relative to RAM?

Database Management Systems

- What more could we want than a file system?
 - Simple, efficient ad hoc¹ queries
 - concurrency control
 - recovery
 - benefits of good data modeling
- S.M.O.P.²? Not really...
 - as we'll see this semester
 - in fact, the OS often gets in the way!

¹ad hoc: formed or used for specific or immediate problems or needs

²SMOP: Small Matter Of Programming

Describing Data: Data Models

- A <u>data model</u> is a collection of concepts for describing data.
- A <u>schema</u> is a description of a particular collection of data, using a given data model.
- The <u>relational model of data</u> is the most widely used model today.
 - Main concept: <u>relation</u>, basically a table with rows and columns.
 - Every relation has a <u>schema</u>, which describes the columns, or fields.

Levels of Abstraction

- Views describe how users see the data.
- Conceptual schema defines logical structure
- Physical schema describes the files and indexes used.

Users

Example: University Database

Conceptual schema:

- Students(sid: string, name: string, login: string, age: integer, gpa:real)
- Courses(cid: string, cname:string, credits:integer)
- Enrolled(sid:string, cid:string, grade:string)

Physical schema:

- Relations stored as unordered files.
- Index on first column of Students.

• External Schema (View):

Course_info(cid:string,enrollment:integer)

Concurrency Control

- Concurrent execution of user programs: key to good DBMS performance.
 - Disk accesses frequent, pretty slow
 - Keep the CPU working on several programs concurrently.
- Interleaving actions of different programs: trouble!
 - e.g., account-transfer & print statement at same time
- DBMS ensures such problems don't arise.
 - Users/programmers can pretend they are using a single-user system. (called "Isolation")
 - Thank goodness! Don't have to program "very, very carefully".

Structure of a DBMS

- A typical DBMS has a layered architecture.
- The figure does not show the concurrency control and recovery components.
- Each system has its own variations.
- The book shows a somewhat more detailed version.

These layers must consider concurrency control and recovery

FYI: A text search engine

Less "system" than DBMS

- Uses OS files for storage
- Just one access method
- One hardwired query
 - regardless of search string

Typically no concurrency or recovery management

- Read-mostly
- Batch-loaded, periodically
- No updates to recover
- OS a reasonable choice

Smarts: text tricks

- Search string modifier (e.g. "stemming" and synonyms)
- Ranking Engine (sorting the output, e.g. by word or document popularity)
- no semantics: WYGIWIGY

There may be time to talk about some of these text tricks in this class, but it won't be a focus.

Advantages of a DBMS

- Data independence
- Efficient data access
- Data integrity & security
- Data administration
- Concurrent access, crash recovery
- Reduced application development time
- So why not use them always?
 - Expensive/complicated to set up & maintain
 - This cost & complexity must be offset by need
 - General-purpose, not suited for special-purpose tasks (e.g. text search!)

Databases make these folks happy ...

DBMS vendors, programmers

- Oracle, IBM, MS, Sybase, SUN, ...

End users in many fields

Business, education, science, ...

DB application programmers

- Build enterprise applications on top of DBMSs
- Build web services that run off DBMSs

Database administrators (DBAs)

- Design logical/physical schemas
- Handle security and authorization
- Data availability, crash recovery
- Database tuning as needs evolve

...must understand how a DBMS works

Summary

- DBMS used to maintain, query large datasets.
 - can manipulate data and exploit semantics
- Other benefits include:
 - recovery from system crashes,
 - concurrent access,
 - quick application development,
 - data integrity and security.
- In this course we will explore:

How to be a sophisticated user of DBMS technology

Summary, cont.

 DBAs, DB developers the bedrock of the information economy

 DBMS R&D represents a broad, fundamental branch of the science of computation