Optymalizacja

Zadanie 1. Wyznacz punkty krytyczne każdej z poniższych funkcji. Scharakteryzuj każdy znaleziony punkt jako minimum, maksimum lub punkt siodłowy. Dla każdej funkcji zbadaj, czy posiada minimum globalne lub maksimum globalne na zbiorze \mathbb{R}^2 .

$$f_1(x,y) = x^2 - 4xy + y^2 \tag{1}$$

$$f_2(x,y) = x^4 - 4xy + y^4 (2)$$

$$f_3(x,y) = 2x^3 - 3x^2 - 6xy(x - y - 1)$$
(3)

$$f_4(x,y) = (x-y)^4 + x^2 - y^2 - 2x + 2y + 1$$
 (4)

Zadanie 2. Należy wyznaczyć najkrótszą ścieżkę robota pomiędzy dwoma punktami $x^{(0)}$ i $x^{(n)}$. Problemem są przeszkody usytuowane na trasie robota, których należy unikać. Zadanie polega na minimalizacji funkcja kosztu, która sprowadza problem nieliniowej optymalizacji z ograniczeniami do problemu nieograniczonej optymalizacji.

Macierz $X \in \mathbb{R}^{(n+1)\times 2}$ opisuje ścieżkę złożoną z n+1 punktów $x^{(0)}, x^{(1)}, x^{(2)}, \dots x^{(n)}$. Każdy punkt posiada 2 współrzędne, $x^{(i)} \in \mathbb{R}^2$. Punkty początkowy i końcowy ścieżki, $x^{(0)}$ i $x^{(n)}$, są ustalone.

Punkty z przeszkodami (punkty o 2 współrzędnych), $r^{(i)}$ dane są w macierzy przeszkód $R \in \mathbb{R}^{k \times 2}$.

W celu optymalizacji ścieżki robota należy użyć metody największego spadku. Funkcja celu użyta do optymalizacji $F(x^{(0)},x^{(1)},\ldots,x^{(n)})$ zdefiniowana jest jako

$$F(x^{(0)}, x^{(1)} \dots x^{(n)}) = \lambda_1 \sum_{i=0}^{n} \sum_{j=1}^{k} \frac{1}{\epsilon + \|x^{(i)} - r^{(j)}\|_2^2} + \lambda_2 \sum_{i=0}^{n-1} \|x^{(i+1)} - x^{(i)}\|_2^2$$

Symbole użyte we wzorze mają następujące znaczenie:

- Stałe λ_1 i λ_2 określają wpływ każdego członu wyrażenia na wartość F(X).
 - λ_1 określa wagę składnika zapobiegającego zbytniemu zbliżaniu się do przeszkody
 - $-\ \lambda_2$ określa wagę składnika zapobiegającego tworzeniu bardzo długich ścieżek

- $\bullet \,\, n$ jest liczbą odcinków, a n+1liczbą punktów na trasie robota.
- k jest liczbą przeszkód, których robot musi unikać.
- \bullet Dodanie ϵ w mianowniku zapobiega dzieleniu przez zero.
- 1. Wyprowadź wyrażenie na gradient ∇F funkcji celu F względem $x^{(i)}$: $\nabla F = \left[\frac{\partial F}{\partial x^{(0)}}, \dots, \frac{\partial F}{\partial x^{(n)}}\right].$

Wzór wyraź poprzez wektory $x^{(i)}$ i ich składowe, wektory $r^{(j)}$ i ich składowe, ϵ , λ_1 , λ_2 , n i k (niekoniecznie wszystkie).

$$Wskaz \acute{o}wka. \frac{\partial ||x||^2}{\partial x} = 2x.$$

- 2. Opisz matematycznie i zaimplementuj kroki algorytmu największego spadku z przeszukiwaniem liniowym, który służy do minimalizacji funkcji celu F. Do przeszukiwania liniowego (ang. line search) użyj metody złotego podziału (ang. golden section search). W tym celu załóż, że F jest unimodalna (w rzeczywistości tak nie jest) i że można ustalić początkowy przedział, w którym znajduje się minimum.
- 3. Znajdź nakrótszą ścieżkę robota przy użyciu algorytmu zaimplementowanego w w poprzednim punktcie. Przyjmij następujące wartości parametrów:
 - n = 20, k = 50
 - $x^{(0)} = [0, 0], \ x^{(n)} = [20, 20]$
 - $r^{(i)} \sim \mathcal{U}(0, 20) \times \mathcal{U}(0, 20)$
 - $\lambda_1 = \lambda_2 = 1$
 - $\varepsilon = 10^{-13}$
 - liczba iteracji = 400

Ponieważ nie chcemy zmieniać położenia punktu początkowego i końcowego, $x^{(0)}, x^{(n)}$, wyzeruj gradient funkcji F względem tym punktów.

Obliczenia przeprowadź dla 5 różnych losowych inicjalizacji punktów wewnątrz ścieżki $x^{(1)},\dots,x^{(n-1)}.$

Narysuj przykładowy wykres wartości funkcji F w zależności od iteracji.