Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

РАСЧЕТНАЯ РАБОТА

по дисциплине «Представление и обработка информации в интеллектуальных системах» на тему «Задача поиска числовой характеристики графа (диаметра)»

Выполнил: К.А. Артюхов

Студент группы 121701

Проверил: А.Г. Загорский

Цель: Получить навыки формализации и обработки информации с использованием семантических сетей

Задача: Найти циклы указанной длины в взвешенном неориентированном графе

1. Список понятий

- 1.1. *Граф (абсолютное понятие)* совокупность непустого множества вершин и наборов пар вершин (связей между вершинами). (см. рис 1.1)
 - а. Вершина (относительное понятие, ролевое отношение);
 - b. Связка (относительное понятие, ролевое отношение).

Рисунок 1.1 - Граф

1.2. *Неориентированный граф (абсолютное понятие)* – граф, в котором все связки-ребра. (см. рис 1.2)

Рисунок 1.2 – Неориентированный граф

1.3. Взвешенный граф (абсолютное понятие) — граф, каждому ребру которого поставлено в соответствие некое значение (вес ребра). (см. рис 1.3)

Рисунок 1.3 – Взвешенный граф

1.4. *Ориентированный граф (абсолютное понятие)* - это такой граф, в котором все связки являются дугами (см. рис. 1.4).

Рисунок 1.4 – Ориентированный граф

1. Алгоритм

Алгоритм Форда (пункты 1 - 5)

- 1. Фиксируем одну вершину x_k приписываем ей вес V(k) = 0, остальным вершинам приписываем ∞ , переходим к пункту 2.
- 2. Берём произвольную вершину $x_j = x_k$, и находим смежную с x_j вершину x_i , имеющую вес r_{ij} (В начальный момент в качестве вершины x_i берём фиксированную x_k), переходим к пункту 3.
 - 3. Проверяем вершины x_j и x_i на выполнение неравенства

$$V(j) > V(i) + r_{ij}$$

переходим к пукту 4.

- 4. Если неравенство истинно, то прежний вес V(j) вершины x_j заменяется на сумму $V(i)+r_{ij}$ и заносится во множество Ekscentrisitets, в противном случае остаётся неизменным, переходим к пункту 5.
- 5. Если рассмотрены все вершины, переходим к пункту 6, в противном случаеповторяем пункты 1 5.
- 6. Среди всех значений во множестве Ekscentrisitets выбираем наибольшее, это и будет диаметр исходного графа, переходим к пункту 7. Завершаем алгоритм.

2. Пример выполнения алгоритма в SC-памяти:

Тесты:

3.1. Тест 1

Вход:

Найти диаметр неориентированного графа.

Шаг 1. Фиксируем первую (V1) вершину, приписываем ей вес V1 = 0, остальным вершинам приписываем INF = ∞ .

Шаг 2. Находим смежную вершину, например V2, и проверяем на выполнение неравенства $V2 > V1 + r_{21}$, а именно V2 > V1 + E1, а это значит: $\infty > 0 + 1$.

Шаг 3. Т.к. $\infty > 0 + 1$ истинно, значит, вес V2 мы заменяем на V2 = 1 и заносим его во множество Ekscentrisitets.

Шаг 4. Т.к. все смежные с V1 вершины ещё не были рассмотрены, продолжаем просматривать вершины.

Шаг 5. Находим ещё одну смежную вершину, например V3, и проверяем на выолнение неравенства $V3 > V1+ r_{31}$, а именно V3 > V1+ E3, а это значит: $\infty > 0+3$.

Шаг 6. Т.к. $\infty > 3$ истинно, значит, вес V3 мы заменяем на V3 = 3 и заносим его во множество Ekscentrisitets.

Шаг 7. Т.к. все смежные с V1 вершины были рассмотрены, фиксируем новую вершину, например V2, приписываем ей вес V2 = 0, остальным вершинам приписываем INF = ∞ .

Шаг 8. Находим смежную вершину, например V1, и проверяем на выполнение неравенства $V1 > V2 + r_{12}$, а именно V1 > V2 + E1, а это значит: $\infty > 0+1$.

Шаг 9. Т.к. $\infty > 1$ истинно, значит, вес V1 мы заменяем на V1 = 1 и заносим его во множество Ekscentrisitets.

Шаг 10. Т.к. все смежные с V2 вершины ещё не были рассмотрены, продолжаем просматривать вершины.

Шаг 11. Находим ещё одну смежную вершину, например V3, и проверяем на выолнение неравенства $V3 > V2 + r_{32}$, а именно V3 > V2 + E2, а это значит: $\infty > 0+3$.

Шаг 12. Т.к. ∞ > 3 истинно, значит, вес V3 мы оставляем V3 = 3 и заносим его во множество Ekscentrisitets.

Шаг 13. Т.к. все смежные с V2 вершины были рассмотрены, фиксируем новую вершину, например V3, приписываем ей вес V3 = 0, остальным вершинам приписываем INF = ∞ .

Шаг 14. Находим смежную вершину, например V1, и проверяем на выполнение неравенства $V1 > V3 + r_{13}$, а именно V1 > V3 + E3, а это значит: $\infty > 0+3$.

Шаг 15. Т.к. $\infty > 3$ истинно, значит, вес V1 мы заменяем на V1 = 3 и заносим его во множество Ekscentrisitets.

Шаг 16. Т.к. все смежные с V3 вершины ещё не были рассмотрены, продолжаем просматривать вершины.

Шаг 17. Находим смежную вершину, например V2, и проверяем на выполнение неравенства $V2 > V3 + r_{23}$, а именно V2 > V3 + E2, а это значит: $\infty > 0+3$.

Шаг 18. Т.к. $\infty > 3$ истинно, значит, вес V2 мы заменяем на V2 = 3 и заносим его во множество Ekscentrisitets.

Шаг 19. Т.к. все смежные с V3 вершины были рассмотрены и все вершины были рассмотрены, то выбираем наибольшее значение из множества Ekscentrisitets, этим значением будет 3.

Выход: 3

3.2. Тест 2 Вход:

Найти диаметр неориентированного графа.

Выход: 5

Тест 3

Вход:

Найти диаметр неориентированного графа.

Выход: 5

Вывод

В ходе проделанной работы были изучен способ формализации знаний с помощью семантических сетей, понятие о теории графов и применении теории в конкретной ситуации, а также были изучены принципы обработки графовых структур в интеллектуальных системах. Был изучен алгоритм форда для поиска кратчайших маршрутов(цепей) и применение его в конкретной ситуации. Также были изучены понятия, относящиеся к теории графов, которые были нужны для решения поставленной задачи.

Список использованных источников

[1] Голенков, В. В. Открытая технология онтологического проектирования, производства и эксплуатации семантически совместимых гибридных интеллектуальных компьютерных систем / В. В. Голенков, Н. А. Гулякина, Д. В. Шункевич. — Минск: Бестпринт, 2021. — 690 с.