# Identifier le comportement d'un système

# Table des matières

| Objectifs                                                                                                 | 3           |
|-----------------------------------------------------------------------------------------------------------|-------------|
| I - Identification d'un premier ordre                                                                     | 4           |
| 1. Identification temporelle                                                                              | 4<br>4      |
| 1.1. Réponse indicielle                                                                                   | 5<br>5      |
| 2. Identification harmonique                                                                              | 6           |
| II - Identification d'un second ordre                                                                     | 7           |
| Identification temporelle (avec la réponse indicielle)  1.1. Régime pseudo-périodique  1.2. Régime amorti | 7<br>7<br>8 |
| 2. Identification harmonique                                                                              | 9           |

# **Objectifs**



Par l'observation de sa réponse à une sollicitation, on propose un modèle pouvant représenter le système étudié.

# Identification d'un premier ordre



## 1. Identification temporelle

## 1.1. Réponse indicielle

#### Détermination du gain statique K



Le gain statique est simplement le **rapport** de la valeur asymptotique de la sortie sur l'amplitude de l'échelon d'entrée :  $K = \lim_{t \to +\infty} \left( \frac{s(t)}{e(t)} \right)$ 

#### Détermination de la constante de temps



Plusieurs moyens sont possibles:

- 1. le temps au bout duquel la réponse atteint 95% de sa valeur asymptotique est  $t=3\tau$
- 2. le temps au bout duquel la réponse atteint 63% de sa valeur asymptotique est t= au
- 3. la pente de la tangente à l'origine est égale à  $\frac{K}{\tau}$  (peu précis)
- 4. la durée entre  $t_1$  et  $t_2$  est égale à  $\tau$ :
  - on trace une tangente à la réponse en un instant  $t_1$
  - $\circ$  l'instant où cette tangente coupe l'asymptote horizontale de la réponse est  $t_2$

#### 1.2. Réponse indicielle avec retard



La fonction de transfert d'un premier ordre avec retard peut s'écrire :  $H(p) = e^{-\tau_r p} \frac{K}{1 + \tau p}$ 

#### Détermination du gain statique K



Procéder comme pour la réponse indicielle non retardée.

#### Détermination de la constante de temps



Le point 4 de la méthode employée pour la réponse indicielle non retardée semble préférable.

#### Détermination du retard



Le retard  $\tau_r$  correspond à l'instant où la sortie commence à réagir.

## 1.3. Réponse à une rampe



L'asymptote de la réponse est  $y(t) = K a_0 \cdot (t - \tau)$ . Cette droite est de pente  $K a_0$ , et coupe l'axe des abscisses en  $t = \tau$ .

#### Détermination du gain statique K



Mesurer la pente de la droite asymptotique, et diviser par la pente  $a_0$  de la rampe d'entrée.

#### Détermination de la constante de temps



Mesurer l'instant où la droite asymptotique coupe l'axe des abscisses.

## 2. Identification harmonique

#### Détermination du gain statique K



L'asymptote horizontale correspond à  $20\log K$ , il suffit donc de lire la valeur du gain en décibels (soit G

G) et de calculer  $10\overline{20}$ .

#### Détermination de la constante de temps



La pulsation "de cassure" au niveau de laquelle les asymptotes (horizontale et de pente -20dB/déc) **se rejoignent** correspond à l'inverse de la constante de temps.

La **courbe de phase** peut grandement faciliter l'obtention de la pulsation de cassure, puisque celle-ci correspond à la valeur de phase située "à mi-chemin" entre la phase initiale et la phase finale (par exemple -45° entre 0° et -90°).





# Identification d'un second ordre



# 1. Identification temporelle (avec la réponse indicielle)

#### Détermination du gain statique K



Le gain statique est simplement le **rapport** de la valeur asymptotique de la sortie sur l'amplitude de l'échelon d'entrée :  $K = \lim_{t \to +\infty} \left( \frac{s(t)}{e(t)} \right)$ 

### 1.1. Régime pseudo-périodique

La réponse présente des dépassements et une périodicité plus ou moins visible.



Réponse indicielle d'un second ordre oscillant

#### Détermination du coefficient d'amortissement



La valeur du premier dépassement relatif ne dépend que du coefficient d'amortissement, il suffit donc de :

- 1. mesurer la valeur du maximum au premier dépassement
- 2. en calculer le rapport par rapport à la valeur asymptotique de la sortie pour obtenir le dépassement relatif

3. résoudre l'équation 
$$D_1\%=e^{\dfrac{-\pi m}{\sqrt{1-m^2}}}$$

#### Détermination de la pulsation propre



Une fois le coefficient d'amortissement connu, il suffit de mesurer la pseudo-période T, et de résoudre

l'équation 
$$T=rac{2\pi}{\omega_0\,\sqrt{1-m^2}}$$

Une autre façon de procéder consiste à mesurer en plus le temps de réponse à 5% et d'utiliser l'abaque du temps de réponse réduit pour en déduire m.

#### 1.2. Régime amorti

La réponse ne présente pas de dépassement ni de périodicité. En revanche, il y a un point d'inflexion plus ou moins visible.

Le système de second ordre peut être modélisé comme l'assemblage en série de deux premier ordre. L'idée est donc ici d'obtenir  $\tau_1$  et  $\tau_2$ , les deux constantes de temps, dans l'expression de la réponse

$$s(t) = K e_0 \left( 1 + \frac{\tau_1}{\tau_2 - \tau_1} e^{-t/\tau_1} - \frac{\tau_2}{\tau_2 - \tau_1} e^{-t/\tau_2} \right) \cdot u(t)$$



Réponse indicielle d'un système de second ordre amorti

#### Détermination de la constante de temps dominante



C'est la constante de temps  $\tau_1$  qui est dominante, car elle correspond au pôle dominant  $p_1$  (celui qui a la partie réelle la plus petite).

Pour la déterminer, on se place au niveau du point d'inflexion, et on considère que le tracé qui se situe **après** correspond à la réponse d'un premier ordre (on néglige la première partie de la courbe jusqu'au point d'inflexion).

L'expression de la réponse est alors considérée comme  $s(t) = K e_0 \left(1 - \frac{\tau_1}{\tau_1 - \tau_2} e^{-t/\tau_1}\right) \cdot u(t)$ 

On utilise la méthode du tracé de la tangente en un point quelconque (cf. premier ordre) pour obtenir la valeur de la première constante de temps  $\tau_1$ .

Pour la deuxième constante de temps  $\tau_2$ , il suffit de relever la valeur de la sortie après le point d'inflexion à un instant  $t_3$  par exemple, et d'utiliser l'expression approchée de la sortie à cet instant :

$$s(t_3) = K e_0 \left( 1 - \frac{\tau_1}{\tau_1 - \tau_2} e^{-t_3/\tau_1} \right)$$

# 2. Identification harmonique

#### Détermination du gain statique K



L'asymptote horizontale correspond à  $20\log K$ , il suffit donc de lire la valeur du gain en décibels (soit G

G) et de calculer  $10\overline{20}$ .

#### Détermination de la pulsation propre



La pulsation "de cassure" au niveau de laquelle les asymptotes (horizontale et de pente -40dB/déc) se rejoignent correspond à la pulsation propre.

La courbe de phase peut grandement faciliter l'obtention de la pulsation de cassure, puisque celle-ci correspond à la valeur de phase située "à mi-chemin" entre la phase initiale et la phase finale (par exemple -90° entre 0° et -180°).

#### Détermination du coefficient d'amortissement



Lorsque  $\omega=\omega_0$ , le gain exact vaut  $G_{dB}=20\log\frac{K}{2m}$ . Ainsi, en connaissant déjà K, on obtient approximativement une valeur de m.

La valeur de *m* obtenue devra être **cohérente** avec la présence ou non d'un pic de **résonance**.



