09_Explicit MPC

1. Model and Motivation of LQR

Motivation

2. MPC=Parametric Quadratic Programming

MPC to Parametric Quadratic Programming

KKT Optimality Condition

3. Parametric Linear Complementarity Problems

Parametric Linear Complementarity

The Geometry Perspective

The Algebra Perpsective

Efficient Solution Methods

Basic Idea

Computing Adjacent Regions

Degeneracy

4. Point Location Problem

4.1. Sequential Search

4.2. Bisection Search

Summary

1. Model and Motivation of LQR

Motivation

Traditional MPC cannot guarantee **real-time**. And a classical MPC problem has following properties:

- · Optimization problem is function parameterized by state
- Control law piecewise affine for linear systems/constraints
- Pre-compute control law as function of state x

So we can build a **pre-compute control law**.

2. MPC=Parametric Quadratic Programming

09_Explicit MPC 1

MPC to Parametric Quadratic Programming

A classical MPC can be translated from

$$egin{aligned} J^\star(x) &= \min x_N^T Q_f x_N + \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i \ & ext{s.t. } x_0 = x \ &x_{i+1} = A x_i + B u_i \ &C x_i + D u_i < b \end{aligned}$$

to

$$J^\star(x) = \min_u rac{1}{2} u^T Q u + (Fx+f)^T u$$
 s.t. $Gu \leq Ex + e$

KKT Optimality Condition

For optimization problem:

$$\min_{x} f(x)$$
s.t. $g(x) \leqslant 0$
 $h(x) = 0$

The optimum always meet:

Proposition (Karush-Kuhn-Tucker conditions)

$$egin{aligned}
abla f(x) +
abla g(x) \mu +
abla h(x) \lambda &= 0 \ \mu^T g(x) &= 0 \ \mu &\geqslant 0 \ h(x) &= 0 \ g(x) &\leqslant 0 \end{aligned}$$

KKT for ConvexQPs

For Convex QPs:

$$\min f(z) := rac{1}{2} z^ op Q z$$
 s.t. $Az \leq b$

We have

$$egin{aligned} Qz + A^ op \lambda &= 0, \lambda \geq 0 \ Az \leq b \ \lambda^ op (Az - b) &= 0 \end{aligned}$$

Gradient is in the normal cone Optimal point must be feasible Normal cone contains only active constraints

3. Parametric Linear Complementarity Problems

Parametric Linear Complementarity

Definition (Parametric Linear Complementarity Problem)

Given matrices M, q and Q, find functions w(x), z(x) such that

$$egin{aligned} w - Mz &= q + Qx \ w^ op z &= 0 \ w, z &\geq 0 \end{aligned}$$

we can always convert a pQP problem to pLCP problem by the following way:

$$J^\star(x) := \min_u rac{1}{2} u^T Q u + (Fx+f)^T u \ ext{s.t.} \ Gu \geq Ex + e \ u \geq 0$$

1. derives the KKT Conditions

$$egin{aligned} Qu+Fx+f-G^T\lambda-
u&=0 & ext{Stationarity} \ -s+Gu&=Ex+e, u&\geq 0 & s\geqslant 0 & ext{Primary feasibility} \ \lambda,
u&\geq 0 & ext{Dual feasibility} \
u^Tu&=0, \lambda^Ts&=0 & ext{Complementarity} \end{aligned}$$

2. Then transform to Matrix Format

$$egin{bmatrix} \left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight] \left(egin{array}{cc}
u \ s \end{array}
ight) - \left[egin{array}{cc} Q & -G^T \ G & 0 \end{array}
ight] \left(egin{array}{cc} u \ \lambda \end{array}
ight) = \left[egin{array}{cc} F \ -E \end{array}
ight] x + \left[egin{array}{cc} f \ -e \end{array}
ight]
onumber \
u, s, u, \lambda \geq 0
onumber \
u^T u = s^T \lambda = 0
onumber \end{array}$$

The Geometry Perspective

we have

$$ullet \ \ w^ op z = 0, w, z \geq 0$$
 : either w_i or z_i is zero for all i

• Iw-Mz=q : q is in the cone of non-zero variables

The Algebra Perpsective

Define the matrix
$$A := [l-M] \in \mathbb{R}^{n imes 2n} \quad A \cdot [w,z] = Q_x + q$$

Definition: Basis

The index set $B\subset \{1,\cdots,2n\}$ is a **basis** if

- ullet B contains n elements |B|=n
- ullet Columns of A indexed by B are full-rank, rank $A_B=n$

Definition: Complementary Basis

B is a **complementary basis** if

$$i \in B \Leftrightarrow i+n \notin B ext{ for all } i \in \{1,\ldots,n\}$$

Notes:

Complementary bases define complementary cones

$$\mathcal{C}(B) := \left\{q \in \mathbb{R}^n \mid A_B^{-1}q \geq 0
ight\}$$

Theorem

Basis B 'solves' the LCP (M,q) if and only if $q\in\mathcal{C}(B)$

Method: Simple Parametric LCP Solver

Simple Parametric LCP Solver

- For each complementary basis B
 - If CR(B) is non-empty

$$\begin{bmatrix} w(x) \\ z(x) \end{bmatrix}_{B} = A_{B}^{-1}(q + Qx) \quad \text{ for all } x \in CR(B)$$

Efficient Solution Methods

We can define a graph G, in which vertices are non-empty CRs and edges are adjacent CRs, then we can find all critical regions by standard graph enumeration

Basic Idea

Definition (Sufficient Matrix)

A matrix $M \in {}^{n imes n}$ is called **column sufficient** if it satisfies the implication

$$[z_i(Mz)_i \leq 0 ext{ for all } i] \Longrightarrow [z_i(Mz)_i = 0 ext{ for all } i]$$
 .

The matrix M is called <u>row sufficient</u> if its transpose is column sufficient. If M is both column and row sufficient, then it is called **sufficient**.

Proposition

Positive semi-definite matrices are sufficient. (applies to non-symmetric PSD matrices too)

Proposition (LCPs with Sufficient Matrices)

- If M is a sufficient matrix, then the relative interiors of any two distinct complementary cones are disjoint (Cones cannot overlap)
- If M is a sufficient matrix, then the union of all complementary cones K(M) is a convex polyhedral cone K(M)=cone([I-M]) (Neighbour graph is connected)

Computing Adjacent Regions

09_Explicit MPC 5

• for each row $(A_B^{-1}(q+Qx))_i \ge 0$ which forms a facet of CR(B)

① Case 1 : Diagonal pivot return $B\setminus\{i\}\cup\{\overline{i}\}$

2 Case 2 : Exchange pivot

for each j if $CR(B\setminus\{i,j\}\cup\{\overline{i},\overline{j}\})\cap CR(B)\neq\emptyset$ return $B\setminus\{i,j\}\cup\{\overline{i},\overline{j}\}$

Degeneracy

All previous statements rely on S being in **general position:** S intersects $CR(B) \Rightarrow S$ intersects int(C(B))

Remain To Check

• Multiple solutions for same parameter

• We can simulate general position artificially

4. Point Location Problem

4.1. Sequential Search

Method: Sequential Search

Test each region one by one whether the given point meets its constraints

4.2. Bisection Search

Method: Bisection Sea

- 1. Find hyperplane that separates regions into two equal sized sets
- 2. Repeat for left and right sets

Summary

- implement MPC in **real-time scenarios**: by using **Explicit MPC**. That is we calculated all input-output pair **offline and store the mapping** into the controller.
- In order to do that,
 - need to transfer normal MPC problem to parametric Quadratic Programming Problem,
 - then translated to **Parametric Linear Complementarity** based on KKT condition.
 - Then we can use **geometry or algebra method** to solve it.
- When facing complex problem, we need to **optimize the framework** in order to improve the performance. We then use **some advanced graph methods** to present and store the mapping.