Appunti di Geometria 2 Frigerio - Salpo - Szamuely

Ludovico Sergiacomi a.a. 2025/2026

Indice

		•
1.1	Trasformazioni proiettive	
	Sottospazi proiettivi	
1.3	Riferimenti proiettivi	7
1.4	Coordinate omogenee	1(
1.5	Prospettività	12
1.6	Carte affini e punti all'infinito	13
1.7	Dualità	16
	1.7.1 Sistemi lineari di iperpiani	17

1 Spazi Proiettivi

Def. Sia V spazio vettoriale su \mathbb{K} , allora si chiama spazio proiettivo su V

$$\mathbb{P}(V) = \frac{V \setminus \{0\}}{\sim}$$

dove $v \sim w \Leftrightarrow \exists \lambda \in \mathbb{K}^* \text{ t.c. } v = \lambda w.$

Osservazione. La relazione \sim è di equivalenza e ci dice che $v \sim w$ se giacciono sulla stessa retta. Perciò, insiemisticamente, $\mathbb{P}(V) \cong \{\text{rette di } V\}$:

$$[v] \leftrightarrow \operatorname{span}(v)$$
.

Def. Se dimV = n, la dimensione di $\mathbb{P}(V)$ è n - 1.

Esempi

1. $V = \{0\} \Rightarrow \mathbb{P}(V) = \emptyset$ $\dim \mathbb{P}(V) = 0 - 1 = -1$.

Osservazione. Negli spazi proiettivi il vuoto è accettato.

- 2. $\dim V=1\Rightarrow \mathbb{P}(V)=\{*\}$ consiste di una sola classe di equivalenza: V è già una retta. Infatti $\dim \mathbb{P}(V)=1-1=0$.
- 3. $V = \mathbb{K}^n$ $\mathbb{P}(\mathbb{K}^n)$ si indica con $\mathbb{P}^{n-1}(\mathbb{K})$.
- 4. Chi è $\mathbb{P}^1(\mathbb{R})$? $\mathbb{P}^1(\mathbb{R}) = \mathbb{P}(\mathbb{R}^2)$ cioè l'insieme delle rette di \mathbb{R}^2 .

L'insieme delle semirette (uscenti da O) è chiaramente parametrizzato da S^1 , cioè la circonferenza unitaria: a ogni semiretta s faccio corrispondere $s \cap S^1$, che è un punto.

Le rette sono parametrizzate da $[0,\pi)$, quindi $\mathbb{P}^1(\mathbb{R})$ è in bigezione con $[0,\pi)$. Però si va a perdere l'idea che, avvicinandosi a π , ci stiamo avvicinando anche a 0. Quindi è meglio pensarlo come $[0,\pi]$, con 0 identificato a π : partiamo dalla semicirconferenza e avviciniamo sempre di più 0 e π finché non coincidono.

1.1 Trasformazioni proiettive

Def. Una trasformazione proiettiva è una funzione

$$\begin{split} f: \mathbb{P}(V) &\longrightarrow \mathbb{P}(W) \text{ tale che} \\ \exists \ \varphi: V &\longrightarrow W \text{ lineare t.c.} \\ f([v]) &= [\varphi(v)] \quad \forall v \in V \smallsetminus \{0\} \end{split}$$

Osservazione. Su $\mathbb{P}(V)$ non sono definite operazioni, quindi abbiamo definito le t.p. come mappe indotte da funzioni lineari.

Ma ogni $\varphi: V \to W$ induce una trasformazione proiettiva?

Proposizione 1. Una mappa lineare $\varphi: V \to W$ induce una t.p. $f: \mathbb{P}(V) \to \mathbb{P}(W)$ se e solo se φ è iniettiva. In tal caso porremo $f = [\varphi]$.

Dimostrazione. Partiamo dalla freccia \Leftarrow

$$f([v]) = [\varphi(v)] \ \forall v \in V \smallsetminus \{0\}$$

ottenendo tutti elementi diversi. Inoltre $v \neq 0 \Rightarrow \varphi(v) \neq 0 \Rightarrow [\varphi(v)]$ è ben definita. Noto che f è ben definita, cioè $v \sim v' \Rightarrow f([v]) = f([v'])$, il che segue dalla linearità di φ

$$v = \lambda v' \Rightarrow \varphi(v) = \varphi(\lambda v') = \lambda \varphi(v') \Rightarrow \varphi(v) \sim \varphi(v').$$

Viceversa (freccia \Rightarrow), se f è indotta da φ , necessariamente deve essere φ iniettiva, perché altrimenti, dato $v \in \text{Ker}\varphi \setminus \{0\}$ (e dato che f non è iniettiva, c'è almeno un $v \neq 0$ nel nucleo), si avrebbe $f([v]) = [\varphi(v)] = [0]$, che è assurdo.

Corollario 1.1. Ogni trasformazione proiettiva è iniettiva.

Dimostrazione. Se $f: \mathbb{P}(V) \to \mathbb{P}(W)$ è indotta da $\varphi: V \to W$, sapendo che φ è iniettiva, abbiamo

$$f([v]) = f([v']) \Rightarrow [\varphi(v)] = [\varphi(v')] \Rightarrow \varphi(v) = \lambda \varphi(v') \Rightarrow \varphi(v) = \varphi(\lambda v') \Rightarrow v = \lambda v' \ \lambda \in \mathbb{K}^* \Rightarrow [v] = [v'].$$

Proposizione 2.

- 1. Id: $\mathbb{P}(V) \to \mathbb{P}(V)$ è una trasformazione proiettiva.
- 2. Se $f: \mathbb{P}(V) \to \mathbb{P}(W)$ e $g: \mathbb{P}(W) \to \mathbb{P}(Z)$ sono trasformazioni proiettive, allora anche $g \circ f: \mathbb{P}(V) \to \mathbb{P}(Z)$ è una trasformazione proiettiva.

Dimostrazione.

- 1. Id: $V \to V$ è lineare e induce Id: $\mathbb{P}(V) \to \mathbb{P}(V)$.
- 2. $f = [\varphi], g = [\psi], \quad \psi \circ \varphi : V \to Z$ è iniettiva e induce $g \circ f$.

$$\forall v \ g(f([v])) = g([\varphi(v)]) = [\psi(\varphi(v))].$$

Osservazione. Inoltre, se $f = [\varphi], g = [\psi], \text{ vale } g \circ f = [\psi \circ \varphi].$

Proposizione 3. Sia $f : \mathbb{P}(V) \to \mathbb{P}(W)$ una t.p., allora sono fatti equivalenti:

- 1. f è surgettiva
- 2. f è iniettiva
- 3. $f \ \dot{e} \ invertibile \ e \ f^{-1} \ \dot{e} \ a \ sua \ volta \ t.p.$
- 4. $\dim \mathbb{P}(V) = \dim \mathbb{P}(W)$

Dimostrazione.

 $1. \Rightarrow 2.$ È ovvia: f è iniettiva di base, per cui si aggiunge la surgettività.

 $2. \Rightarrow 3.$ Già sappiamo che $\varphi: V \to W$ è iniettiva, facciamo vedere che è anche surgettiva:

sia $w \in W$, $w \neq 0$ (se w = 0, $w = \varphi(0)$);

$$f$$
 bigettiva $\Rightarrow \exists v \in V$ t.c. $[w] = f([v]) = [\varphi(v)] \Rightarrow w = \lambda \varphi(v) = \varphi(\lambda v) \Rightarrow \varphi$ surgettiva.

Sappiamo da G1 che $\varphi^{-1}:W\to V$ è anch'essa lineare. Quindi, presa $g:\mathbb{P}(W)\to\mathbb{P}(V),$ con $g=[\varphi^{-1},$ vale

$$f \circ g = [\varphi \circ \varphi^{-1}] = [\mathrm{Id}] = \mathrm{Id} \Rightarrow g = f^{-1}.$$

Osservazione. Ci è servito dimostrare che φ è invertibile, così da poter indurre $g = [\varphi^{-1}]$.

3. \Rightarrow 4. Se $\varphi: V \to W$ è lineare e invertibile, allora $\dim V = \dim W \Rightarrow \dim \mathbb{P}(V) = \dim \mathbb{P}(W)$.

 $\boxed{4. \Rightarrow 1.}$ $f: \mathbb{P}(V) \to \mathbb{P}(W)$ indotta da $\varphi: V \to W$, sapendo che φ è iniettiva e che dim $V = \dim W$, ottengo φ surgettiva, da cui anche f surgettiva. Infatti

 $\forall w \in W \ \exists v \in V \ \text{t.c.} \ \varphi(v) = w \Rightarrow \forall [w] \in \mathbb{P}(W) \ \exists [v] \in \mathbb{P}(V) \ \text{t.c.} \ f([v]) = [w] \ \text{ovvero} \ [\varphi(v)] = [w] \Rightarrow \varphi(v) = w$ e questo è garantito da φ surgettiva.

 $\mathbf{Def.}$ Se f soddisfa una delle condizioni della proposizione, f si dice isomorfismo

Def. Se $\mathbb{P}(V) = \mathbb{P}(W)$ ogni t.p. $f : \mathbb{P}(V) \to \mathbb{P}(W)$ è un isomorfismo e si dice proiettività L'insieme delle proiettività di $\mathbb{P}(V)$ è un gruppo, che si denota con $\mathbb{P}\mathcal{GL}(V)$ (per ragioni che saranno chiare più avanti).

Proposizione 4. Sia $f : \mathbb{P}(V) \to \mathbb{P}(V)$, $f = [\varphi]$. Allora i punti fissi di f sono in bigezione con le rette di autovettori di φ .

Dimostrazione.

$$\underbrace{f([v]) = [v]}_{[v] \text{ punto fisso di } f} \Leftrightarrow [\varphi(v)] = [v] \Leftrightarrow \underbrace{\varphi(v) = \lambda(v),}_{v \text{ autovettore di } \varphi} \quad \lambda \in \mathbb{K}$$

Corollario 4.1.

- 1. Se \mathbb{K} è algebricamente chiuso e $\mathbb{P}(V) \neq \emptyset$, ogni proiettività $f : \mathbb{P}(V) \to \mathbb{P}(V)$ ha almeno un punto fisso.
- 2. Se $\mathbb{K} = \mathbb{R}$ e dim $\mathbb{P}(V)$ è pari, allora ogni proiettività $f : \mathbb{P}(V) \to \mathbb{P}(V)$ ha almeno un punto fisso.

Dimostrazione.

- 1. Ogni endomorfismo ha almeno un punto fisso (ovviamente se $\dim V > 0$).
- 2. $\dim \mathbb{P}(V)$ pari $\Rightarrow \dim V$ dispari \Rightarrow il polinomio caratteristico ha almeno uno zero in \mathbb{R} . Quindi c'è un autovalore (con corrispondente autovettore) in \mathbb{R} .

1.2 Sottospazi proiettivi

Def. $S \subseteq \mathbb{P}(V)$ si dice sottospazio proiettivo se $\exists W \subseteq V$ sottospazio vettoriale t.c. se, detta

$$\pi: V \setminus \{0\} \to \mathbb{P}(V)$$

la proiezione,

$$S = \pi(W \setminus \{0\}) = \mathbb{P}(W).$$

Osservazione. Esiste una bigezione tra i ssp di $\mathbb{P}(V)$ e i ssv di V.

$$\begin{array}{ccc} S & \xrightarrow{\alpha} & \pi^{-1}(S) \cup \{0\} \\ \mathbb{P}(W) \xleftarrow{\beta} & W \end{array}$$

E si verifica che α e β sono inverse una dell'altra.

Def. Se $S \in ssp$ di $\mathbb{P}(V)$, $W \in ssv$ di V, con $S = \mathbb{P}(W)$, allora $\dim S = \dim W - 1$.

Fatti

1. $S_i = \mathbb{P}(W_i)$ è ssp di $\mathbb{P}(V)$, $i \in I$, allora si verifica facilmente che

$$\bigcap_{i\in I} S_i = \mathbb{P}\big(\bigcap_{i\in I} W_i\big).$$

In particolare, l'intersezione di ssp è a sua volta un ssp. Infatti (pensando le classi di S_i come span) in un caso sto considerando gli span comuni a tutti i sottospazi proiettivi, nell'altro prendo i vettori comuni a tutti i sottospazi vettoriali e faccio lo span:

$$\{[v] \mid [v] \in S_i \ \forall i\} = \{[v] \mid v \in W_i \ \forall i\}$$

2. Come nel caso vettoriale, l'unione di ssp non è ssp. Allora, dati S_1 e S_2 vorrei definire una somma, in modo che $S_1 + S_2$ sia ssp.

3. Se S_1, S_2 sono sottospazi proiettivi tali che $S_1 \subseteq S_2$, allora $\dim S_1 \leq \dim S_2$ e in particolare $\dim S_1 = \dim S_2 \Rightarrow S_1 = S_2$. Discende dall'analoga proprietà vettoriale.

Def. Sia $K \subseteq \mathbb{P}(V)$ un sottoinsieme. Allora si dice il ssp generato da K il più piccolo ssp di $\mathbb{P}(V)$ che contiene K. Si scrive L(K). È ben definito per il fatto 1, infatti

$$L(K) = \bigcap_{S \supset K} S$$

con S sottospazio di $\mathbb{P}(V)$.

Def. Siano S_1, S_2 ssp di $\mathbb{P}(V)$, allora $L(S_1, S_2) = L(S_1 \cup S_2)$

Lemma 1. $S_1 = \mathbb{P}(W_1), \ S_2 = \mathbb{P}(W_2) \ allora$

$$L(S_1, S_2) = \mathbb{P}(W_1 + W_2)$$

dove ricordiamo che $W_1 + W_2$ è il più piccolo ssv che contiene W_1 e W_2 .

Dimostrazione. Doppio contenimento

• $L(S_1, S_2) \subseteq \mathbb{P}(W_1 + W_2)$

$$W_1 \subseteq W_1 + W_2 \Rightarrow S_1 \subseteq \mathbb{P}(W_1 + W_2)$$

$$W_2 \subseteq W_1 + W_2 \Rightarrow S_2 \subseteq \mathbb{P}(W_1 + W_2)$$

Quindi $S_1 \cup S_2 \subseteq \mathbb{P}(W_1 + W_2)$ e, per definizione di L, vale $L(S_1, S_2) \subseteq \mathbb{P}(W_1 + W_2)$.

• $L(S_1, S_2) \supseteq \mathbb{P}(W_1 + W_2)$

Sia W il sottospazio t.c. $L(S_1, S_2) = \mathbb{P}(W)$, allora

$$S_1 \subseteq L(S_1, S_2) = \mathbb{P}(W) \Rightarrow \mathbb{P}(W_1) \subseteq \mathbb{P}(W) \Rightarrow W_1 \subseteq W$$

$$S_2 \subseteq L(S_1, S_2) = \mathbb{P}(W) \Rightarrow \mathbb{P}(W_2) \subseteq \mathbb{P}(W) \Rightarrow W_1 \subseteq W$$

Quindi $W_1 + W_2 \subseteq W \Rightarrow \mathbb{P}(W_1 + W_2) \subseteq L(S_1, S_2)$.

Teorema 1 (Grassmann). Siano S_1, S_2 sottospazi di $\mathbb{P}(V)$, allora

$$\dim L(S_1, S_2) = \dim S_1 + \dim S_2 - \dim(S_1 \cap S_2)$$

Dimostrazione. Scriviamo $S_i = \mathbb{P}(W_i)$, allora per il Lemma, vale $\dim L(S_1, S_2) = \dim(W_1 + W_2) - 1$. Quindi, sfruttando Grassmann vettoriale, si ha

$$\dim(W_1 + W_2) - 1 = \dim W_1 + W_2 - \dim(W_1 \cap W_2) - 1 = (\dim W_1 - 1) + (\dim W_2 - 1) - (\dim(W_1 \cap W_2) - 1) =$$

$$= \dim S_1 + \dim S_2 - \dim(S_1 \cap S_2)$$

Corollario 1.1. $\dim S_1 + \dim S_2 \ge \dim \mathbb{P}(V) \Rightarrow S_1 \cap S_2 \ne \emptyset$.

Dimostrazione.

$$\dim(S_1 \cap S_2) = \dim S_1 + \dim S_2 - \dim L(S_1, S_2) \ge \dim S_1 + \dim S_2 - \mathbb{P}(V) \ge 0$$

Osservazione. Due rette in un piano proiettivo si intersecano sempre. Le rette parallele si incontrano all'infinito.

Corollario 1.2. Siano P,Q punti distinti di $\mathbb{P}(V)$, allora L(P,Q) è una retta ed è l'unica retta che li contiene.

Dimostrazione. $P \neq Q \Rightarrow \dim L(P,Q) = \dim P + \dim Q - \dim(P \cap Q) = 0 + 0 - (-1) = 1$ cioè è una retta.

Sia ora r una retta che contiene P e Q; per definizione $L(P,Q) \subseteq r$ da cui, visto che hanno la stessa dimensione, coincidono.

Osservazione. In generale si vede che, se S è ssp e $P \notin S$, vale $\dim L(S, P) = \dim S + 1$ ed è l'unico ssp che contine sia S che P.

1.3 Riferimenti proiettivi

Def. Sia $\mathbb{P}(V)$ spazio proiettivo, allora $P_1, \ldots, P_k \in \mathbb{P}(V)$ si dicono indipendenti se, presi $v_i \in V$ t.c. $P_i = [v_i] \ \forall i$, si ha che i v_i sono linearmente indipendenti.

Osservazione. La definizione è ben posta: scegliendo altri rappresentanti dei P_i , tali che $[v'_i] = [v_i]$ allora $\exists \lambda_i \neq 0$ t.c. $v'_i = \lambda v_i \Rightarrow v_i$ indipendenti $\Leftrightarrow v'_i$ indipendenti.

Osservazione. $P_1, \ldots, P_k \in \mathbb{P}(V)$ sono indipendenti sse dim $L(\{P_1, \ldots, P_k\}) = k-1$. In particolare detta $n = \dim \mathbb{P}(V)$ (da cui si ha dimV = n+1), allora P_1, \ldots, P_k indipendenti $\Rightarrow k \leq n+1$. L'idea è quella di usare i vettori, sfruttando le loro proprietà, per poi riportarle nello spazio proiettivo.

Def. $P_1, \ldots, P_k \in \mathbb{P}(V)$ sono in posizione generale sse qualsiasi sottoinsieme di h punti, con $h \leq n+1$, è indipendente.

Osservazione. Cioè se $k \le n+1$, allora i punti sono indipendenti. Se $k \ge n+2$, invece, equivale a dire che qualsiasi (n+1)-upla dei P_i è indipendente.

Esempi

- 1. $\dim \mathbb{P}(V) = 1$ P_1, \ldots, P_k in posizione generale se sono a due a due distinti: nello spazio proiettivo, su una retta, i punti sono indipendenti se sono diversi (perché corrispondono a classi di vettori indipendenti: i vettori di una retta in V vanno a finire nello stesso punto di $\mathbb{P}(V)$).
- 2. $\dim \mathbb{P}(V) = 2$ sono indipendenti se sono a tre a tre non allineati (cioè il terzo vettore non giace sul piano generato dai primi due, nello spazio vettoriale).

Osservazione. In entrambi i casi, se il campo di base è infinito, per qualsiasi $k \in \mathbb{N}$, si trovano P_1, \ldots, P_k in posizione generale.

Def. Un riferimento proiettivo di $\mathbb{P}(V)$, detta n la dimensione dello spazio proiettivo, è una (n+2)-upla

$$\mathcal{R} = (P_0, \dots, P_{n+1})$$

di punti di $\mathbb{P}(V)$ in posizione generale.

Osservazione. Usiamo le parentesi tonde, perché è importante l'ordine in cui considero i punti.

Esempi

- 1. $\dim \mathbb{P}(V) = 1$ $\mathcal{R} = (P_0, P_1, P_2)$ distinti.
- 2. $\dim \mathbb{P}(V) = 2$ $\mathcal{R} = (P_0, P_1, P_2, P_3)$ tre a tre non allineati.

Def. Sia \mathcal{R} un riferimento proiettivo di $\mathbb{P}(V)$, allora si dice base normalizzata di V associata a \mathcal{R} una base

$$(v_0, \dots, v_{n+1})$$
 t.c. $[v_i] = P_i \quad \forall i = 0, \dots, n$ e $P_{n+1} = [v_0 + \dots + v_n]$

Osservazione. Con la seconda condizione sto limitando quanto si possano scalare i v_i : o li scalo tutti per lo stesso λ o niente. Lo vediamo meglio più avanti.

Terminologia.

- I punti P_0, \ldots, P_n si chiamano **punti fondamentali**.
- P_{n+1} si chiama **punto unità**, perché scritto in coordinate (rispetto alla base normalizzata) è $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

Teorema 2. Sia \mathcal{R} un riferimento proiettivo di $\mathbb{P}(V)$. Allora

- 1. Esiste una base normalizzata (v_1, \ldots, v_n) di V rispetto a \mathbb{R} .
- 2. Se (v'_1, \ldots, v'_n) è un'altra base normalizzata di V rispetto a \mathcal{R} , allora

$$\exists \lambda \in \mathbb{K}^* \quad t.c. \quad v_i' = \lambda v_i \quad \forall i = 0, \dots, n.$$

Dimostrazione.

1. Partiamo dal riferimento proiettivo $\mathcal{R} = (P_0, \dots, P_{n+1})$ e scegliamo $v_i \in V$ tali che $[v_i] = P_i \ \forall i = 0, \dots, n$. Quindi (v_0, \dots, v_n) è una base di V, visto che i punti di R sono indipendenti (quindi per definizione di riferimento - posizione generale - indipendenza).

Scegliamo anche $v_{n+1} \in V$ t.c. $[v_{n+1}] = P_{n+1}$. Scriviamo allora

$$v_{n+1} = \sum_{i=1}^{n} a_i v_i \quad a_i \in \mathbb{K}, \ v_i \in \text{ base}$$

in modo unico.

Adesso ci interessa che il punto unità sia effettivamente tale: se tutti gli a_i fossero uguali a 1, avremmo finito... però non è detto che sia così. Quindi consideriamo, a_iv_i , al posto dei semplici v_i , come rappresentanti dei P_i . Se però un qualche $a_j = 0$? Dimostriamo che non è possibile: se, per assurdo, si avesse $a_j = 0$, allora l'equazione di prima ci darebbe una relazione di indipendenza

$$0 = a_1 v_1 + \ldots + a_i \hat{v}_i + \ldots - v_{n+1} \quad a_i \neq 0,$$

ma sappiamo che v_{n+1} è dipendente dagli altri $\rightarrow assurdo$.

Quindi possiamo fare quanto segue, con tranquillità: poniamo

$$v_i'=a_iv_i\ a_i\neq 0\ \forall i\ \Rightarrow (v_0',\dots,v_n')$$
è base di V e $[v_i']=[a_iv_i]=[v_i]=P_i$

e inoltre, per costruzione,

$$P_{n+1} = [v_{n+1}] = [a_0v_0 + \ldots + a_nv_n] = [v'_0 + \ldots + v'_n].$$

2. Sia ora (v''_1, \ldots, v''_n) un'altra base normalizzata di V rispetto a \mathcal{R} . Sappiamo che

$$[v_i''] = P_i = [v_i']$$

quindi, per come sono definite le classi,

$$\exists \lambda_i \in \mathbb{K}^* \text{ t.c. } v_i'' = \lambda_i v_i.$$

Però potrebbero essere tutti λ_i diversi... Allora osserviamo che

$$P_{n+1} = [v'_0 + \dots + v'_n] = [v''_0 + \dots + v''_n] \Rightarrow \exists \lambda \in \mathbb{K}^* \text{ t.c. } \sum_{i=0}^n v''_i = \lambda \sum_{i=0}^n v'_i$$

$$\Rightarrow \sum_{i=0}^{n} \lambda_i v_i' = \sum_{i=0}^{n} \lambda v_i'$$

e, poiché i v_i sono base di V, i coefficienti devono essere gli stessi (per l'unicità della scomposizione nello spazio vettoriale).

Osservazione. Quindi la base normalizzata è unica, a meno di riscalare tutti i vettori per uno stesso fattore.

Teorema 3. Siano $f, g : \mathbb{P}(V) \to \mathbb{P}(W)$ trasformazioni proiettive $e \varphi, \psi : V \to W$ applicazioni lineari tali che $f = [\varphi]$ e $g = [\psi]$. Sia \mathcal{R} riferimento proiettivo di $\mathbb{P}(V)$, allora TFAE:

- 1. $\exists \lambda \in \mathbb{K}^*$ t.c. $\varphi = \lambda \psi$ come applicazioni lineari.
- 2. f = g.
- 3. $f(P) = g(P) \ \forall P \in \mathcal{R}$.

Dimostrazione.

 $1. \Rightarrow 2. \quad \varphi = \lambda \psi$ allora per qualsiasi P di $\mathbb{P}(V)$, scelto v t.c. [v] = P, vale

$$f(P) = [\varphi(v)] = [\lambda \psi(v)] = [\psi(v)] = g(P).$$

 $2. \Rightarrow 3.$ È ovvia: $f = g \Rightarrow f_{|\mathcal{R}} = g_{|\mathcal{R}}$.

 $3. \Rightarrow 1.$ Sia (v_0, \ldots, v_n) una base normalizzata di V rispetto a $\mathcal{R} = (P_0, \ldots, P_{n+1})$ allora vale

$$[\varphi(v_i)] = f(P_i) = g(P_i) = [\psi(v_i)] \Rightarrow \varphi(v_i) = \lambda_i \psi(v_i)$$
 per qualche $\lambda_i \in \mathbb{K}^*$;

inoltre

$$[\varphi(v_0 + \dots + v_n)] = f(P_{n+1}) = g(P_{n+1}) = [\psi(v_0 + \dots + v_n)]$$

$$\Rightarrow \exists \lambda \in \mathbb{K}^* \text{ t.c. } \varphi(v_0 + \dots + v_n) = \lambda \psi(v_0 + \dots + v_n)$$

$$\Rightarrow \lambda_0 \psi(v_0) + \dots + \lambda_n \psi(v_n) = \lambda \psi(v_0) + \dots + \lambda \psi(v_n).$$

Dato che ψ è iniettiva, i vari $\psi(v_i)$ sono indipendenti (lo "ereditano" dalle controimmagini) e quindi $\lambda_i = \lambda \ \forall i$. Quindi, dato che $\varphi = \lambda \psi$ per tutti i vettori della base, vale anche per la funzione in generale.

Osservazione. Un po' l'analogo di quello che succede con le basi vettoriali. Inoltre non è detto che gli $\psi(v_i)$ siano base di W, per la dimostrazione mi basta l'indipendenza.

Corollario 3.1. Sia $\mathbb{P}G\mathcal{L}(V)$ il gruppo delle proiettività di $\mathbb{P}(V)$ allora vale

$$\mathbb{P}G\mathcal{L}(V) \cong G\mathcal{L}(V)/N$$

dove $N \triangleleft G\mathcal{L}(V)$ è il sottogruppo delle matrici scalari: $N = \{\lambda \cdot \operatorname{Id}_V \mid \lambda \in \mathbb{K}^*\}.$

Dimostrazione. Consideriamo la mappa naturale

$$G\mathcal{L}(V) \longrightarrow \mathbb{P}G\mathcal{L}(V)$$
$$\varphi \longmapsto [\varphi]$$

- È omomorfismo: $[\varphi \circ \psi] = [\varphi] \circ [\varphi]$.
- È surgettivo per definizione di trasformazione proiettiva.
- Il Ker è proprio N per il Teorema appena visto:

$$\operatorname{Id}_V \longmapsto \operatorname{Id}_{\mathbb{P}(V)}$$
$$\lambda \operatorname{Id}_V \longmapsto \operatorname{Id}_{\mathbb{P}(V)}$$

Notazione. Se $V = \mathbb{K}^{n+1}$ (e quindi $\mathbb{P}(V) = \mathbb{P}^n(\mathbb{K})$), il gruppo delle proiettività $\mathbb{P}G\mathcal{L}(\mathbb{K}^{n+1})$ si indica con $\mathbb{P}G\mathcal{L}_{n+1}(\mathbb{K})$ perché n+1 indica la taglia delle matrici che rappresentano le trasformazioni.

Teorema 4 (Teorema fondamentale delle trasformazioni proiettive). Siano $\mathbb{P}(V)$, $\mathbb{P}(W)$ spazi proiettivi, con dim $\mathbb{P}(V) = \dim \mathbb{P}(W) = n$ e siano \mathcal{R} , \mathcal{R}' due riferimenti proiettivi, rispettivamente di $\mathbb{P}(V)$ e $\mathbb{P}(W)$. Allora esiste un'unica trasformazione proiettiva $f: \mathbb{P}(V) \to \mathbb{P}(W)$ che manda (ordinatamente) \mathcal{R} in \mathcal{R}' .

Dimostrazione. L'unicità segue dal Teorema precedente: se ci fossero due trasformazioni che mandano \mathcal{R} in \mathcal{R}' , allora sarebbero uguali.

Dimostriamo ora l'esistenza. Fissiamo due basi normalizzate:

$$(v_0,\ldots,v_n)$$
 di V (w_0,\ldots,w_n) di W ,

sappiamo da G1 che $\exists ! \varphi : V \to W$ t.c. $\varphi(v_i) = w_i \ \forall i = 0, \dots, n$. Prendiamo allora la trasformazione $f = [\varphi] : \mathbb{P}(V) \to \mathbb{P}(W)$ indotta da φ e verifichiamo che soddisfa le richieste.

Scriviamo i due riferimenti come

$$\mathcal{R} = (P_0, \dots, P_{n+1})$$
 $\mathcal{R}' = (Q_0, \dots, Q_{n+1})$

e concludiamo

$$f(P_i) = [\varphi(v_i)] = [w_i] = Q_i \quad \forall i = 0, \dots, n$$

$$f(P_{n+1}) = [\varphi(v_1 + \dots + v_n)] = [\varphi(v_1) + \dots + \varphi(v_n)] = [w_1 + \dots + w_n] = Q_{n+1}.$$

1.4 Coordinate omogenee

Caso "tautologico" Come l'isomorfismo tra uno spazio vettoriale V di dimensione n e \mathbb{K}^n induce un sistema di coordinate, così possiamo fare in $\mathbb{P}(V) = \mathbb{P}^n(\mathbb{K})$.

Def. Si dice che il punto $[(x_0, \ldots, x_n)] \in \mathbb{P}^n(\mathbb{K})$ ha coordinate omogenee $[x_0, \ldots, x_n]$ (anche scritto $[x_0 : \ldots : x_n]$), rispetto al riferimento proiettivo standard di $\mathbb{P}(\mathbb{K})$ - ovvero quello indotto dalla base standard di \mathbb{K}^{n+1} : i vari P_i con $0 \le i \le n$ hanno tutte coordinate nulle, tranne l'*i*-esima, che è 1; come si può immaginare, P_{n+1} ha tutte le coordinate uguali a 1.

Osservazione. Le coordinate omogenee non sono uniche, ma lo sono a meno di riscalamento simultaneo.

Osservazione. La scrittura $\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ non ha senso.

Caso generale Sia $\mathbb{P}(V)$ spazio proiettivo, con dim $\mathbb{P}(V) = n$. Fissato un riferimento $\mathcal{R} = (P_0, \dots, P_{n+1})$, esso induce su $\mathbb{P}(V)$ le coordinate omogenee nel modo seguente:

Dal Teorema fondamentale sappiamo che $\exists!$ trasformazione proiettiva $f: \mathbb{P}(V) \to \mathbb{P}^n(\mathbb{K})$ che manda il riferimento \mathcal{R} nel riferimento proiettivo standard di $\mathbb{P}^n(\mathbb{K})$.

Def. Le coordinate omogenee di P in $\mathbb{P}(V)$ sono la sua immagine tramite f, ovvero $f(P) \in \mathbb{P}^n(\mathbb{K})$.

Equivalentemente, data (v_0, \ldots, v_n) base normalizzata rispetto a \mathcal{R} , dato $P \in \mathbb{P}(V)$, si sceglie un $v \in V$ t.c. [v] = P e si scrive $v = a_0v_0 + \ldots + a_nv_n \ (v \neq 0 \Rightarrow \exists a_i \neq 0)$.

Allora le coordinate di $P \in \mathbb{P}(V)$ sono date da $[a_0, \dots, a_n] \in \mathbb{P}^n(\mathbb{K})$. Il punto è che la t.p. del punto 1. è indotta dall'isomorfismo lineare

$$\varphi: V \longrightarrow \mathbb{K}^{n+1}$$
$$v_i \longmapsto e_i$$

Osservazione. Nel vettoriale, fissare una base di V equivale ad un isomorfismo lineare con \mathbb{K}^{n+1} .

Osservazione. Usando le coordinate omogenee si possono rappresentare le t.p e i s.s.p. tramite matrici ed equazioni.

Trasformazioni proiettive

 $f: \mathbb{P}(V) \to \mathbb{P}(W)$ è t.p. e $\mathcal{R}, \mathcal{R}'$ sono i riferimenti in partenza e in arrivo, fissiamo B, B' basi normalizzate corrispondenti.

Se $\varphi:V\to W$ è un'applicazione lineare t.c. $[\varphi]=f,\ M$ è la matrice associata, si dice che M rappresenta anche f, nel senso che

$$[f(P)]_{\mathcal{R}'} = M[P]_{\mathcal{R}}$$
 scritto male
= $[M([v]_B)]$

Proposizione 5. La matrice che rappresenta f non è unica, ma lo è a meno di riscalamento.

Osservazione. Se $n = \dim \mathbb{P}(V)$, $m = \dim \mathbb{P}(W)$, la matrice ha taglia (m+1)(n+1).

Sottospazi proiettivi

Ho due modi per descriverli: equazioni e immagine di una mappa (cioè come span di una base).

1. Rappresentazione cartesiana

Se $S \subseteq \mathbb{P}(V)$ è sottospazio proiettivo, per definizione ho $S = \mathbb{P}(W)$, dove $W \subseteq V$ è sottospazio vettoriale. Chiamiamo $n = \dim \mathbb{P}(V)$ e $k = \dim \mathbb{P}(W) = S$.

Fissato \mathcal{R} di $\mathbb{P}(V)$ e B base normalizzata, W può essere descritto come luogo delle soluzioni di un sistema lineare, di (n+1)-(k+1)=n-k equazioni lineari omogenee, nelle coordinate indotte da B.

$$\{f_1 = \ldots = f_{n-k} = 0\} = W.$$

Queste stesse equazioni descrivono $S \subseteq \mathbb{P}(V)$, infatti

$$P \in S \Leftrightarrow f_1(P) = \ldots = f_{n-k}(P) = 0.$$

Osservazione. Le f sono polinomi lineari omogenei, in n+1 variabili x_0, \ldots, x_n , la scrittura $f_i(P)$ non ha senso: dipende dal rappresentante vettoriale di P; tuttavia la condizione f(P) = 0 è ben definita.

Esempio. in $\mathbb{P}^2(\mathbb{K})$, scegliamo $f(x_0, x_1, x_2) = x_0 + 3x_1 + x_2$

$$f([1,1,1])$$
 non ha senso, infatti $f(1,1,1) = 5$ $f(-1,-1,-1) = -5$

e invece dovrebbero essere uguali, visto che [1, 1, 1] = [-1, -1, -1].

La condizione $f([a_0, a_1, a_2]) = 0$ però va bene, perché

$$f[\lambda a_0, \lambda a_1, \lambda a_2] = \lambda f(a_0, a_1, a_2).$$

2. 2. Rappresentazione parametrica

 $S \subseteq \mathbb{P}(V)$ come immagine di trasformazioni proiettive in $\mathbb{P}(V)$ (immagine di span di vettori in V). Fissato \mathcal{R} riferimento e B base normalizzante, $W \subseteq V$ sottospazio vettoriale t.c. $S = \mathbb{P}(W)$, si scrive W in termini di generatori:

$$w_1, \dots, w_k \to W = \left\{ \sum_{i=1}^k a_i w_i \right\}$$

e si guarda la sua immagine.

Esempio. in \mathbb{K}^3 consideriamo il $ssv\ x_1 - x_2 + x_3 = 0$. Questo $ssv\ si$ può anche descrivere come $span\{(1,1,0),(0,1,1)\}$ e quindi il vettore generico sarà descritto da

$$v = t_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} t_1 \\ t_1 + t_2 \\ t_2 \end{pmatrix} \quad (t_1, t_2) \in \mathbb{K}^2$$

Il ssp corrispondente in $\mathbb{P}^2(\mathbb{K})$ (che è una retta proiettiva) è descritta di nuovo dall'equazione $x_1 - x_2 + x_3 = 0$ e si può rappresentare in forma parametrica

$$\{ [t_1, t_1 + t_2, t_2] \mid (t_1, t_2) \in \mathbb{K}^2 \setminus \{(0, 0)\} \}.$$

1.5 Prospettività

Def. Sia $\mathbb{P}(V)$ un piano proiettivo, $r, s \subseteq \mathbb{P}(V)$ due rette distinte e $O \in \mathbb{P}(V) \setminus (r \cup s)$ un punto esterno a entrambe.

Si definisce prospettività di centro O la seguente funzione

$$\pi_O: r \longrightarrow s$$

$$P \longmapsto L(O, P) \cap s.$$

Proposizione 6. π_0 è una trasformazione proieittiva (quindi un isomorfismo).

Dimostrazione. Facciamo vedere che π_O è indotta da un'applicazione lineare $\varphi: V_r \to V_s$, dove $V_r, V_s \subseteq V$ sono i sottospazi vettoriali corrispondenti a r e s.

Fissiamo un riferimento proiettivo "comodo" di $\mathbb{P}(V)$ in questo modo:

Dove $A = r \cap s$, scelgo $B \in r$ arbitrario, $C \in s$, $C \neq A$, $C \notin L(B, O)$. Dunque ho $\mathcal{R} = (A, B, C, O)$. In coordinate omogenee, scrivo i miei punti come

$$A = [1, 0, 0], \quad B = [0, 1, 0], \quad C = [0, 0, 1], \quad O = [1, 1, 1]$$

Un'equazione della retta r è $x_2=0$ (basta notare che sia A che B la soddisfano). Analogamente, per s prendo $x_1=0$. Quindi

$$r = \{ [x_0, x_1, 0] \mid [x_0, x_1] \in \mathbb{P}^1(\mathbb{K}) \},$$

$$s = \{ [x_0, 0, x_2] \mid [x_0, x_2] \in \mathbb{P}^1(\mathbb{K}) \}.$$

Scriviamo π_O in queste coordinate: dato $P \in r$, P = [a, b, 0] con a, b non entrambi nulli; calcoliamo l'equazione della retta L(O, P) e intersechiamola con s, per determinare le coordinate di $\pi_O(P)$.

O = [1, 1, 1] P = [a, b, 0]

$$[x_0, x_1, x_2] \in L(O, P) \Leftrightarrow (x_0, x_1, x_2) \in \operatorname{span}((a, b, 0), (1, 1, 1))$$

$$\Leftrightarrow \det \begin{pmatrix} x_0 & x_1 & x_2 \\ a & b & 0 \\ 1 & 1 & 1 \end{pmatrix} = 0$$

$$\Leftrightarrow x_0 b - x_1 a + x_2 (a - b) = 0$$

Adesso mettiamo a sistema con s:

$$\begin{cases} x_0b - x_1a + x_2(a-b) = 0 \\ x_1 = 0 \end{cases}$$

da cui otteniamo $x_0b + x_2(a - b) = 0$ e prendiamo la soluzione proiettiva $x_0 = a - b$, $x_2 = -b$. Quindi $\pi_O(P) = [a - b, 0, -b]$.

Ciò significa che, nelle coordinate omogenee di r e s, π_O si scrive

$$[a,b] \longmapsto [a-b,-b]$$

(perché le coordinate di r e s prendono in input due valori e li inseriscono nella definizione).

Osserviamo che l'applicazione lineare associata a π_O è rappresentata dalla matrice

$$\begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix},$$

che è invertibile. Quindi è π_O è associata a un isomorfismo, ovvero è a sua volta un isomorfismo. \square

Osservazione. Notiamo in particolare che $\pi_O(A) = A$, ovvero A rimane fisso.

Teorema 5. Se r e s sono due rette distinte in un piano $\mathbb{P}(V)$ e $f: r \to s$ è una trasformazione proiettiva, allora

$$f$$
 proiettività $\iff f(A) = A, \quad A = (r \cap s).$

Dimostrazione. La freccia \Rightarrow la abbiamo appena vista.

Occupiamoci quindi di \Leftarrow . Cerchiamo di capire chi sia il centro O della proiettività.

Preso $B \neq A \in r$, il punto O deve stare per forza sulla retta L(B, f(B)).

Scegliendo un secondo punto $B' \in r \setminus \{A, B\}$, O dovrà stare anche su L(B', f(B')) e, visto che le due rette sono distinte, l'intersezione (che è sicuramente non vuota: siamo nello spazio proiettivo) sarà per forza il centro che sto cercando.

Segue che $f = \pi_O$, applicando l'unicità garantita dal *Teorema fondamentale delle trasformazioni proiettive*, perché le due trasformazioni coincidono sul riferimento (A, B, B') di r.

Osservazione. π_O è la restrizione a r di una funzione $\pi_O : \mathbb{P}(V) \setminus \{O\} \to s$, la proiezione da O a s, che prende un punto P, disegna la retta passante per P e O e la interseca con s.

Questa è quella che si chiama una trasformazione proiettiva **degenere**, perché la trasformazione lineare che la induce ha un kernel non banale. Vd. quaderno per una costruzione di π_0 analoga a quella della dimostrazione, ma con il dominio esteso.

1.6 Carte affini e punti all'infinito

In $\mathbb{P}^n(\mathbb{K})$, per ogni $i = 0, \dots, n$ c'è un **iperpiano coordinato**, di equazione

$$H_i = \{x_i = 0\}.$$

Denotiamo con U_i il suo complementare:

$$U_i = \mathbb{P}^n(\mathbb{K}) \setminus H_i = \{ [x_0, \dots, x_n] \mid x_i \neq 0 \}.$$

Considerato come spazio proiettivo, $H_i \cong \mathbb{P}^{n-1}(\mathbb{K})$.

Def. Definisco l' *i*-esima carta affine

$$j_i: \mathbb{K}^n \longrightarrow U_i$$

$$(y_1, \dots, y_n) \longmapsto [y_1, \dots, \underset{i \text{-esimo}}{1}, \dots, y_n]$$
posto i -esimo

e inoltre

$$j_i^{-1}: U_i \longrightarrow \mathbb{K}^n$$

$$[x_0, \dots, x_n] \longmapsto \left(\frac{x_0}{x_i}, \dots, \frac{\hat{x}_i}{x_i}, \dots, \frac{x_n}{x_i}\right)$$

che è ben definita, perché se cambio rappresentante in $(\lambda x_0, \dots, \lambda x_n), \lambda \in \mathbb{K}^*$, allora

$$\left(\frac{\lambda x_0}{\lambda x_i}, \dots, \frac{\hat{\lambda x_i}}{\lambda x_i}, \dots, \frac{\lambda x_n}{\lambda x_i}\right) = \left(\frac{x_0}{x_i}, \dots, \frac{\hat{x_i}}{x_i}, \dots, \frac{x_n}{x_i}\right).$$

Proposizione 7. j_i e j_i^{-1} sono una l'inversa dell'altra.

Dimostrazione.

$$\begin{aligned} j_i^{-1} \circ j_i(y_1, \dots, y_n) &= & j_i \circ j_i^{-1} \left([x_0, \dots, x_n] \right) = \\ &= j_i^{-1} \left([y_1, \dots, 1, \dots, y_n] \right) = \\ &= \left(\frac{y_1}{1}, \dots, \frac{\hat{1}}{1}, \dots, \frac{y_n}{1} \right) = \\ &= (y_1, \dots, y_n) \end{aligned} \qquad \begin{aligned} &= \left[\frac{x_1}{x_i}, \dots, \frac{x_i}{x_i}, \dots, \frac{x_n}{x_i} \right] = \\ &= \left[x_1, \dots, x_i, \dots, x_n \right] \\ &= \left[x_1, \dots, x_i, \dots, x_n \right] \end{aligned}$$

Quindi $\mathbb{P}^n(\mathbb{K}) = U_i \cup H_i \cong \mathbb{K}^n \cup \mathbb{P}^{n-1}(\mathbb{K})$ può essere pensato come "ampliamento" di \mathbb{K}^n , in cui si aggiunge un $\mathbb{P}^{n-1}(\mathbb{K})$ "all'infinito".

Esempio.

1.
$$\mathbb{P}^1(\mathbb{K}) = \mathbb{K} \cup \{\infty\}$$

2.
$$\mathbb{P}^2(\mathbb{K}) = \mathbb{K}^2 \cup \mathbb{P}^1(\mathbb{K}) = \mathbb{K}^2 \cup \mathbb{K} \cup \{\text{punto}\}\$$

D'ora in avanti, a meno che non sia specificato altrimenti, useremo la carta j_0 per identificare $U_0 \subseteq \mathbb{P}^n(\mathbb{K})$ con \mathbb{K}^n .

L'iperpiano H_0 viene chiamato [iperpiano all'infinito] e i suoi punti [punti all'infinito] (o **punti** impropri).

Proposizione 8.

1. Sia $S \subseteq \mathbb{P}^n(\mathbb{K})$ un sottospazio proiettivo, non contenuto in H_0 , allora

$$j_0^{-1}(S \cap U_0) \subseteq \mathbb{K}^n$$

è un sottospazio affine di \mathbb{K}^n , chiamato la parte affine di S. La sua dimensione affine coincide con la dimensione proiettiva di S.

2. Se $Z \subseteq \mathbb{K}^n$ è un sottospazio affine non vuoto, allora c'è un unico sottospazio proiettivo $\overline{Z} \subseteq \mathbb{P}^n(\mathbb{K})$ (non contenuto in H_0) la cui **parte affine** sia Z. \overline{Z} si chiama chiusura proiettiva di Z; la sua dimensione proiettiva è uquale alla dimensione affine di Z.

Questo dà una bigezione (tramite j_0) tra sottospazi proiettivi di $\mathbb{P}^n(\mathbb{K})$ non contenuti in H_0 e sottospazi affini di $\mathbb{K}^n \cong U_0$.

Dimostrazione.

1. Sia $k = \dim S$. Scriviamo S come luogo delle soluzioni di un sistema lineare omogeneo di rango (n+1) - (k+1) = n - k (questo perché riporto $S \in \mathbb{P}(V)$ ai corrispettivi spazi vettoriali)

$$\begin{cases} a_{1,0}x_0 + \dots + a_{1,n}x_n = 0 \\ \vdots \\ a_{n-k,0}x_0 + \dots + a_{n-k,n}x_n = 0 \end{cases}$$
 (1)

Notiamo che $(y_1, \ldots, y_n) \in \mathbb{K}^n$ sta in $j_0^{-1}(U_0 \cap S)$ sse $j_0(y_1, \ldots, y_n) = [1, y_1, \ldots, y_n] \in U_0 \cap S$, cioè sostituendo nel sistema (1), vale

$$\begin{cases}
 a_{1,1}y_1 + \dots + a_{1,n}y_n = -a_{1,0} \\
 \vdots \\
 a_{n-k,1}y_1 + \dots + a_{n-k,n}y_n = -a_{n-k,0}
\end{cases}$$
(2)

Quindi $j_0^{-1}(U_0 \cap S)$ è un sottospazio affine di \mathbb{K}^n : ho scritto un sistema lineare non omogeneo (per questo è affine, altrimenti sarebbe stato vettoriale), in n variabili.

Notiamo ora che la matrice dei coefficienti di (1) ha rango n-k (per ipotesi) e lo stesso è vero per la matrice completa del sistema (2) (ho semplicemente spostato la prima colonna alla fine, cambiando segno).

Inoltre, visto che (2) ha per ipotesi almeno una soluzione (poiché $S \nsubseteq H_0$, c'è almeno un elemento di S in U_0 e quindi l'intersezione non è vuota), per Rouché-Capelli il rango della matrice dei coefficienti (cioè la matrice senza la colonna dei termini noti) del sistema (2) è pure n - k.

Questo implica che la dimensione del sottospazio affine descritto da (2) è proprio k.

2. Rovesciamo il procedimento visto nel punto precedente.

Partiamo da un $Z\subseteq\mathbb{K}^n$ non vuoto, sottospazio affine di dimensione k; esso sarà definito da un sistema lineare non omogeneo

$$Ay = b$$

con A matrice $(n-k) \times n$ di rango n-k e $y=(y_1,\ldots,y_n)$.

Consideriamo adesso il sottospazio proiettivo $\overline{Z} \subseteq \mathbb{P}^n(\mathbb{K})$ definito dal sistema lineare omogeneo

$$(-b \mid A)x = 0$$

con la matrice $(n-k) \times (n+1)$ e $x = (x_0, \dots, x_n)$. In pratica stiamo facendo $j_0(Z) : (y_1, \dots, y_n) \mapsto [1, y_1, \dots, y_n]$. Di nuovo, per *Rouché-Capelli*, la matrice ha rango n-k: la seconda equazione diventa

$$-b \begin{pmatrix} x_0 \\ \vdots \\ x_0 \end{pmatrix} + A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = -b \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} + A \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = 0$$

soddisfatta perché $(y_1, \ldots, y_n) \in Z$. Quindi la dimensione proiettiva di \overline{Z} è k. Inoltre, proprio per come lo abbiamo costruito, la parte affine di \overline{Z} è Z, infatti

$$j_0^{-1}(\overline{Z} \cap U_0) = j_0^{-1}(\overline{Z}) = j_0^{-1}(j_0(Z)) = Z.$$
 $x_0 \neq 0$

Verifichiamo l'unicità: sia $\overline{Z}' \neq \overline{Z}$ un altro sottospazio proiettivo la cui parte affine sia Z.

Osserviamo che $\overline{Z} \cap \overline{Z}'$ è un sottospazio di entrambi, di dimensione < k (altrimenti coinciderebbero). Calcoliamone la parte affine:

$$j_0^{-1}\big(U_0\cap(\overline{Z}\cap\overline{Z}')\big)=j_0^{-1}(U_0\cap\overline{Z})\cap j_0^{-1}(U_0\cap\overline{Z}')=Z\overline{Z}=Z$$

la cui dimensione è k; questo, tuttavia, contraddice il fatto che la parte affine di $\overline{Z} \cap \overline{Z}'$ dovesse avere dimensione uguale alla sua chiusura proiettiva (grazie al punto 1.), che ha dimensione < k.

Le equazioni della chiusura proiettiva di un ssa si ottengono da quelle del ssa "omogeneizzato", cioè rese omogenee tramite moltiplicazione di termini noti (oppure dal fatto che è il procedimento inverso rispetto alla sostituzione $y_i = \frac{x_i}{x_0}$).

Esempio. Rette in \mathbb{K}^2 Data la retta affine $ay_1 + by_2 = c$, con $(a, b) \neq (0, 0)$, i punti all'infinito si ottengono intersecando la sua chiusura proiettiva con la retta all'infinito.

Effettuiamo la sostituzione, per ottenere il proiettivizzato:

$$a\frac{x_1}{x_0} + b\frac{x_2}{x_0} = c$$
$$ax_1 + bx_2 = cx_0,$$

la cui intersezione con x=0 (cioè l'iperpiano improprio H_0) è data da

$$\begin{cases} x_0 = 0 \\ ax_1 + bx_2 = cx_0 \end{cases} .$$

Il punto all'infinito della retta affine, allora, è [0, -b, a]. Di conseguenza, date dure rette affini, esse si intersecheranno all'infinito sse hanno gli stessi coefficienti, ovvero sono parallele.

Per convincerci che $\mathbb{P}(V)$ estende lo spazio affine, ci mancano da considerare i morfismi.

Teorema 6. Identifichiamo U_0 con \mathbb{K}^n tramite la carta $j_0 : \mathbb{K}^n \to U_0$. Sia $G = \{ f \in \mathbb{P}GL_{n+1}(\mathbb{K}) \mid f(U_0) = U_0 \}$, ovvero le trasformazioni proiettive che preservano U_0 . Allora

$$\psi: G \longrightarrow \mathrm{Aff}(\mathbb{K}^n)$$

$$f \longmapsto f_{|U_0} = j_0^{-1} f j_0.$$

è un ben definito isomorfismo di gruppi.

Dimostrazione. Presa una $f \in G$, $f = [\varphi] : \mathbb{K}^{n+1} \to \mathbb{K}^{n+1}$, notiamo che, poiché f è bigettiva (proprietà delle proiettività), $f(U_0) = U_0 \Leftrightarrow f(H_0) = H_0 \Leftrightarrow \varphi$ preserva l'iperpiano vettoriale $x_0 = 0$. Se e_0, \dots, e_n è la base canonica di \mathbb{K}^{n+1} , questo è equivalente a dire $\varphi(e_i) \in \operatorname{span}(e_1, \dots, e_n) \quad \forall i \geq 1$.

Cioè: e_0 va dove gli pare, gli altri rimangono fra di loro.

Dunque $f \in G \Leftrightarrow \mathcal{M}_B(\varphi)$ è della forma

$$\begin{pmatrix} a & 0 \\ \hline b & A \end{pmatrix}$$
 $a \in \mathbb{K}, b \text{ vettore colonna}, A \text{ matrice } n \times n.$

Poiché f deve essere invertibile, vale $a \neq 0$ e $\det A \neq 0$. Dunque, a meno di moltiplicazione per a^{-1} ,

$$\varphi = \left(\begin{array}{c|c} 1 & 0 \\ \hline b & A \end{array}\right) \qquad \text{(con nuovi } b \in A\text{)}.$$

Come agisce f su $\mathbb{K}^n = U_0$? Dato $v \in \mathbb{K}^n$ vediamo cosa succede:

$$v \in \mathbb{K}^n \xrightarrow{j_0} v \in U_0 \xrightarrow{f} v' \in U_0 \xrightarrow{j_0^{-1}} v' \in \mathbb{K}^n.$$

Che, calcolato, sarebbe

$$j_0^{-1}\left(f([1,v_1,\ldots,v_n])\right) = j_0^{-1}\left(\left[\varphi(1\mid v)\right]\right) = j_0^{-1}\left(\left[\left(\frac{1\mid 0}{b\mid A}\right)\begin{pmatrix} 1\\v\end{pmatrix}\right]\right) = j_0^{-1}\left(\left[\begin{pmatrix} 1\\b+Av\end{pmatrix}\right]\right) = Av + b.$$
(divido per la prima coord. e poi la butto)

Quindi $\psi(f)(v) = Av + b$ è davvero un'affinità. Inoltre, poiché se $f, g \in G$, allora $(f \circ g)_{|U_0} = f_{|U_0} \circ g_{|U_0}$, ψ è omomorfismo.

È chiaramente surgettivo: f(v) = Av + b è ottenuta come $\psi(\varphi)$, con $\varphi = \begin{pmatrix} 1 & 0 \\ \hline b & A \end{pmatrix}$.

È iniettivo, poiché se $(v \mapsto Av + b) = \text{Id}$, allora $Av + b = v \ \forall v$ e quindi $A = I, \ b = 0$, da cui $\varphi = \mathrm{Id} \Rightarrow f = \mathrm{Id}.$

1.7 Dualità

Def. $\mathbb{P}(V)^* = \mathbb{P}(V^*)$ si chiama proiettivo duale di $\mathbb{P}(V)$ ed è l'insieme dei funzionali $f \in V^* \setminus \{0\}$.

Fatto C'è una corrispondenza biunivoca tra $\mathbb{P}(V^*)$ e gli iperpiani di $\mathbb{P}(V)$. Partiamo da $[f] \mapsto \mathbb{P}(\ker f)$ e facciamo vedere che funziona.

- $\dim(\ker f) = \dim V 1$, per cui $\mathbb{P}(\ker f)$ è effettivamente un iperpiano; $= \dim(\operatorname{Im}_{f}^{f}) = \dim \mathbb{K}$
- $\ker f = \ker g \Leftrightarrow \exists \lambda \in \mathbb{K}^*$ t.c. $f = \lambda g$, quindi sono nella stessa classe (cioè [f] = [g]) e la corrispondenza risulta ben definita, perché vanno a finire nello stesso iperpiano;
- ogni iperpiano di V è nucleo di qualche funzionale (nello specifico una retta di funzionali, che nel proiettivo rientrano nella medesima classe), per cui la corrispondenza è biunivoca.

Come si può descrivere l'inversa?

{iperpiani di
$$\mathbb{P}(V)$$
} $\longrightarrow \mathbb{P}(V^*)$

Dato qualsiasi sottospazio $W \subseteq V$, il suo annullatore è l'insieme $\mathrm{Ann}(W) = \{f \in V^* \mid f_{|W} = 0\}$ è un ssv di dimensione $\dim V - \dim W$.

In particolare, dato W iperpiano, il suo annullatore è una retta di V^* , che identifica perciò un punto in $\mathbb{P}(V^*)$ e tale punto è esattamente l'elemento di $\mathbb{P}(V^*)$ che corrisponde all'iperpiano $\mathbb{P}(W) \subseteq \mathbb{P}(V)$ (tramite la corrispondenza di cui si parlava prima).

Questa dualità si estende a sottospazi di qualsiasi codimensione: $\forall k=0,\ldots,n=\dim\mathbb{P}(V)$ poniamo

$$\delta_k : \{ ssp \text{ di } \mathbb{P}(V) \text{ di dim} = k \} \longleftrightarrow \{ ssp \text{ di } \mathbb{P}(V^*) \text{ di dim} = n - k - 1 \}$$

$$\mathbb{P}(W) \longleftrightarrow \mathbb{P}(\operatorname{Ann}(W))$$

Teorema 7. δ_k è una bigezione per ogni k.

Dimostrazione. Chiamiamo δ : $\{ ssp \text{ di } \mathbb{P}(V) \} \rightarrow \{ ssp \text{ di } \mathbb{P}(V^*) \} = \bigcup_k \delta_k$ l'unica funzione che estende tutti i δ_k .

Tramite l'isomorfismo canonico $V \cong V^{**}$ si ha Ann (Ann(W)) = W (sono gli α_w tali che $\alpha_w(f) = f(w) = 0$, corrispondenti ai $w \in W$); per cui, se identifichiamo $\mathbb{P}(V)$ con $\mathbb{P}(V)^{**}$, tramite $V = V^{**}$,

$$\delta \circ \delta : \{ssp \text{ di } \mathbb{P}(V)\} \longrightarrow \{ssp \text{ di } \mathbb{P}(V^*)\} \longrightarrow \{ssp \text{ di } \mathbb{P}(V^{**}) = \mathbb{P}(V)\} = \mathrm{Id}.$$

Teorema 8. Siano S_1, S_2 sottospazi proiettivi di $\mathbb{P}(V)$, allora

- 1. $S_1 \subseteq S_2 \Rightarrow \delta(S_1) \supseteq \delta(S_2)$;
- 2. $\delta(L(S_1, S_2)) = \delta(S_1) \cap \delta(S_2);$
- 3. $\delta(S_1 \cap S_2) = L(\delta(S_1), \delta(S_2))$.

Dimostrazione.

- 1. Segue da $W_1 \subseteq W_2 \Rightarrow \operatorname{Ann}(W_1) \supseteq \operatorname{Ann}(W_2)$;
- 2. segue da $\operatorname{Ann}(W_1 + W_2) = \operatorname{Ann}(W_1) \cap \operatorname{Ann}(W_2)$;
- 3. segue da $\operatorname{Ann}(W_1 \cap W_2) = \operatorname{Ann}(W_1) + \operatorname{Ann}(W_2)$.

Teorema 9 (Principio di dualità). Sia P un enunciato che riguarda sottospazi proiettivi di $\mathbb{P}(V)$, relazioni e operazioni tra di essi (contenimenti, intersezioni, somme, ecc.).

 $Sia \ P^* \ l'enunciato \ duale \ di \ P, \ ottenuto \ da \ P \ tramite \ le \ sostituzioni \ seguenti.$

$$\mathbb{P}(V) \longmapsto \mathbb{P}(V)^*
\subseteq \longmapsto \supseteq
\cdot \cap \cdot \longmapsto L(\cdot, \cdot)
L(\cdot, \cdot) \longmapsto \cdot \cap \cdot
\dim k \longmapsto \dim(n-k)$$

Allora P è vero se e solo se P^* è vero.

Dimostrazione. Se P è vero, applico δ e ottengo un altro enunciato vero, che è proprio P^* . Viceversa, se P^* è vero, applico $\delta^{-1} = \delta$ e ottengo P vero.

1.7.1 Sistemi lineari di iperpiani

Un sistema lineare di iperpiani di dimensione k è un insieme di iperpiani di $\mathbb{P}(V)$ che corrisponde a un ssp di $\mathbb{P}(V)^*$ di dimensione k.

I sistemi lin. di dimensione 1 si dicono <u>fasci</u>. Le rette di questi insiemi passano sempre per almeno un punto (nel caso delle rette parallele, si incontrano all'infinito).

Tramite dualità sappiamo che ogni sottospazio \mathcal{L} , k-dimensionale, di $\mathbb{P}(V)^*$ è $\mathcal{L} = \delta(S)$, con S ssp di $\mathbb{P}(V)$ di dimensione n-k-1.