Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3115</u>	Работа выполнена <u>06.05.2021</u>
Студент Девяткин Арсени й	<u>и</u> Отчет сдан
Преподаватель Боярский К.	К. Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.07

«Изучение свойств ферромагнетика »

Цель работы

- 1. Измерение зависимости магнитной индукции в ферромагнетике от напряженности магнитного поля B = B(H).
- 2. Определение по предельной петле гистерезиса индукции насыщения, остаточной индукции и коэрцитивной силы.
- 3. Получение зависимости магнитной проницаемости от напряженности магнитного поля $\mu = \mu(H)$ и оценка максимального значения величины магнитной проницаемости.
- 4. Расчет мощности потерь энергии в ферромагнетике в процессе его перемагничивания.

Схема установки

В лабораторной работе в качестве образца для изучения магнитных свойств ферромагнитного материала выбран сердечник (магнитопровод) трансформатора, размещенного на лабораторном стенде. Объект измерений имеет прямоугольную форму с прямоугольным же поперечным сечением (рис. 2).

Рис. 2. Магнитопровод (сердечник) трансформатора

Рис. 3. Принципиальная электрическая схема установки

Принципиальная схема экспериментальной установки представлена на рис. 3.

Измерительные приборы

№ п/п	Наименование	Используемый диапазон	Погрешность прибора	
1	Электронный осциллограф	Настраиваемый	Настраиваемая	

Исходные данные

$$R1 = 68 \text{ Om} \pm 10\%$$
 $L = 7.8 \pm 0.1 \text{ cm}$ $R2 = 470 \text{ kOm} \pm 10\%$ $S = 0.64 \pm 0.05 \text{ cm}^2$

C1=0,47 мК
$$\Phi$$
±10% \int , Γ ІЦ = 30

Магнитная постоянная $\mu_0 = 4\pi \cdot 10^{-7} \ \Gamma$ н/м

Число витков намагничивающей обмотки N1 = 1665 ВИТ

Число витков измерительной обмотки N2= 970 ВИТ

Результаты прямых измерений и их обработки

Измерим координаты X_c и Y_r пересечения петли гистерезиса с осями координат и занесем в таблицу 1.

Таблица 1:

$$K_x = 0.1 \; B/дел \ K_v = 0.05 \; B/дел$$

X_c , дел.	<i>Y_r</i> , дел.	H_c , А/м	B_r , Тл	
1	1,2	31,4	0,213	

Вычислим коэффициенты α и β по формулам

$$\alpha = \frac{N_1}{l \cdot R_1} \qquad \beta = \frac{R_2 \cdot C_1}{N_2 \cdot S}$$

$$\alpha = \frac{1665}{0.078 \cdot 68} = 314 \qquad \beta = \frac{470 \cdot 10^3 \cdot 47 \cdot 10^{-8}}{970 \cdot 64 \cdot 10^{-6}} = 3,55$$

Используя полученные значения, вычислим коэрцитивную силу ${\rm H}$ и остаточную индукцию ${\it B}$ по формулам

$$H = \alpha \cdot K_x \cdot X$$
 $B = \beta \cdot K_y \cdot Y$
 $H = 314 \cdot 0, 1 \cdot 1 = 31, 4 \text{ A/M}$
 $B = 3,55 \cdot 0,05 \cdot 1, 2 = 0,213 \text{ T}_{\pi}$

Измерим координаты X_m и Y_m пересечения петли гистерезиса с осями координат и занесем в таблицу 2. Определим H_m , μ_m и B_m . Результаты занесем в таблицу 2. Используем при этом следующие формулы:

$$H_m = \alpha \cdot K_x \cdot X_m$$

$$B_m = \beta \cdot K_y \cdot Y_r$$

$$\mu = \frac{B_m}{\mu_0 \cdot H_m}$$

$$\begin{split} &H_m \!\!= 314 \cdot 0.1 \cdot 2.4 = 75.36 \ A/M \\ &B_m \!\!= 3.55 \cdot 0.05 \cdot 2 = 0.355 \ T_{\pi} \\ &\mu_m \!\!=\! \frac{B}{\mu_0 H} = \frac{0.355}{4 \cdot \mathrm{pi} \cdot 10^{-7} \cdot 75.36} \!\!=\! 3750 \end{split}$$

Таблица 2:

X_m , дел.	Y_m , дел.	H_m , А/м	B_m , Тл	μ_m
2,4	2	75,36	0,355	3750

Рассчитаем коэффициент х по формуле

$$\chi = K_x K_y \frac{N_1 R_2 C_1}{N_2 R_1} f$$

$$\chi = K_x K_y \frac{N_1 R_2 C_1}{N_2 R_1} f = 0.1 \cdot 0.05 \cdot \frac{1665 \cdot 470000 \cdot 4,7 \cdot 10^{-7}}{970 \cdot 68} \cdot 30 = 0,00084$$

Оценим площадь петли на экране осциллографа:

$$S_{\rm nr} \approx 5$$
 дел 2

Рассчитаем значение средней мощности Р, расходуемой на перемагничивание образца:

$$P = \chi \cdot S_{nr}$$

$$P = 0.00084 \cdot 5 = 0.0042 \text{ BT}$$

Затем, устанавливая поочередно меньшие амплитуды напряжения генератора $(10 \div 15)$ значений) с шагом $0.5 \div 1.0$ В, получим соответствующие им петли гистерезиса и повторим для каждой частной петли гистерезиса измерения амплитудных значений напряженности и индукции магнитного поля. Результаты занесем в таблицу 3.

Таблица 3: результаты прямых измерений и расчётов

U, B	<i>X</i> , дел.	K_{x} , $\frac{\mathrm{B}}{\mathrm{дел}}$	Н,А/м	Ү, дел.	K_{y} , $\frac{B}{дел}$	В,Тл	μ
20	3,6	100	113009	3,0	50	534	3760
19	3,0	100	94174	2,8	50	498	4212
18	2,8	100	87896	2,6	50	463	4190
17	2,6	100	81618	2,4	50	427	4165
16	2,4	100	75339	2,2	50	391	4136
15	2,2	100	69061	2,1	50	374	4307
14	2,0	100	62783	2,0	50	356	4512
13	3,6	50	56505	1,8	50	320	4512
12	3,4	50	53365	1,6	50	285	4247
11	3,0	50	47087	1,4	50	249	4212
10	3,0	50	47087	3,6	20	256	4332
9	2,8	50	43948	3,4	20	242	4384

8	2,4	50	37670	3,2	20	228	4813
7	2,2	50	34531	2,8	20	199	4595
6	2,0	50	31391	2,4	20	171	4332
5	1,8	50	28252	2,2	20	157	4412

Расчет погрешностей

Данный график демонстрирует линейную зависимость магнитной индукции от напряженности.

Данный график демонстрирует нелинейность зависимость проницаемости от напряженности, также на ней явно виден максимум магнитной проницаемости $\mu_{max}=4500~$ и соответствующая ей напряженность поля H=41~A/M

Окончательные результаты

1. Коэрцитивная сила: $H_m = 75.36$ А/м

Остаточная индукция: $B_m = 0.355 \, \mathrm{T} \pi$

Магнитная проницаемость: $\mu_m = 3750$

- 2. Мощность потерь на перемагничивание: $P = 0.0042 \; \mathrm{Bt}$
- 3. Построены графики зависимостей $B_m=B_m(H_m)$ и $\mu=\mu(H_m)$
- 4. Максимальное значение магнитной проницаемости $\mu_{max}=4500\,$ и значение напряженности поля $H=41\,\mathrm{A/m}$ при котором она наблюдается

Выводы

В ходе выполнения лабораторной работы были рассчитаны коэрцитивная сила, остаточная индукция и магнитная проницаемость для каждого напряжения, а также построены графики зависимостей $B_m = B_m(H_m)$ и $\mu = \mu(H_m)$.

Рассчитаны мощность потерь на перемагничивание ферромагнетика и максимальное значение проницаемости.