Clase 31

La sesión anterior enunciamos y demostramos el Teorema de Rolle:

Teorema 1 (de Rolle) Sea $f : [a,b] \longrightarrow \mathbb{R}$ una función. Si f es continua en [a,b], derivable en (a,b) y f(a) = f(b), entonces existe $c \in (a,b)$ tal que f'(c) = 0.

Y como corolario de este teorema obtuvimos el Teorema del Valor Medio:

Corolario 2 (Teorema del Valor Medio) Sea $f : [a,b] \longrightarrow \mathbb{R}$ una función. Si f es continua en [a,b] y derivable en (a,b), entonces existe $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Esta sesión la dedicaremos a enunciar y demostrar algunos resultados donde aplicamos el Teorema del Valor Medio.

Consecuencias del Teorema del Valor Medio

Corolario 3 Sea $f:(a,b) \longrightarrow \mathbb{R}$ una función derivable en (a,b). Si f'(x)=0 para toda $x \in (a,b)$, entonces f es una función constante en (a,b), es decir, existe $k \in \mathbb{R}$ tal que f(x)=k para toda $x \in (a,b)$.

Demostración. Sean $c, d \in (a, b)$ distintos, digamos que c < d. Como f es derivable en (a, b), entonces es continua en (a, b), en particular es derivable en (c, d) y continua en [c, d]. Así, por el Teorema del Valor Medio, existe $\xi \in (c, d)$ tal que

$$f'(\xi) = \frac{f(d) - f(c)}{d - c}.$$

Se sigue, de que f'(x) = 0 para toda $x \in (a,b)$, que f(d) = f(c). Lo anterior muestra que f toma el mismo valor en cada punto de (a,b), es decir, existe $k \in \mathbb{R}$ tal que f(x) = k para cualquier $x \in (a,b)$.

Corolario 4 Sea $f:[a,b] \longrightarrow \mathbb{R}$ una función continua en [a,b] y derivable en (a,b). Si f'(x)=0 para toda $x \in (a,b)$, entonces f es una función constante en [a,b].

Demostración. Por el corolario anterior, tenemos que f es constante en (a,b), es decir, existe $k \in \mathbb{R}$ tal que f(x) = k para toda $x \in (a,b)$. Veamos entonces que f(a) = f(b) = k.

Supongamos que $f(a) \neq k$, digamos que f(a) > k. Se tiene, por el Teorema del Valor Intermedio aplicado a f en [a, (a+b)/2], que existe $\xi \in (a, (a+b)/2)$ tal que $f(\xi) = \frac{k+f(a)}{2}$, pero esto contradice que f(x) = k para todo $x \in (a,b)$. Así, f(a) = k. De manera similar se demuestra que f(b) = k. Por lo tanto f(x) = k para todo $x \in [a,b]$.

Corolario 5 Sean $f, g : [a, b] \longrightarrow \mathbb{R}$ dos funciones continuas en [a, b] y derivables en (a, b). Si f'(x) = g'(x) para toda $x \in (a, b)$, entonces existe $k \in \mathbb{R}$ tal que f(x) = g(x) + k para todo $x \in [a, b]$.

Demostración. Sea $h:[a,b] \to \mathbb{R}$ la función dada por h(x)=f(x)-g(x). Note que h es continua en [a,b], derivable en (a,b) y además h'(x)=f'(x)-g'(x)=0 para toda $x\in(a,b)$. Así, por el corolario anterior, se tiene que existe $k\in\mathbb{R}$ tal que h(x)=k para toda $x\in[a,b]$, esto es, f(x)=g(x)+k para toda $x\in[a,b]$.

El Corolario 5 aparecerá, en repetidas ocaciones, en su curso de Cálculo II y la manera de recordarlo es con la siguiente frase: Dos funciones con la misma derivada difieren por una constante.

El siguiente corolario nos proporciona información útil para esbozar la gráfica de una función derivable en un intervalo.

Corolario 6 Sea $f:(a,b) \longrightarrow \mathbb{R}$ una función derivable en (a,b). Si f'(x) > 0 (f'(x) < 0) para toda $x \in (a,b)$, entonces f es creciente (decreciente) en (a,b).

Demostración. Supongamos que f'(x) > 0 para toda $x \in (a, b)$ y sean $c, d \in (a, b)$, con c < d. Por el Teorema del Valor Medio, aplicado a f en el intervalo [c, d], se tiene que existe $\xi \in (c, d)$ tal que

$$f'(\xi) = \frac{f(d) - f(c)}{d - c}.$$

Como $f'(\xi) > 0$ y d - c > 0, se sigue que f(d) - f(c) > 0, es decir, f(d) > f(c). Por lo tanto, f es creciente.

De manera simétrica se demuestra que f es decreciente si f'(x) < 0 para todo $x \in (a, b)$.

El siguiente corolario extiende el resultado anterior a intervalos cerrados y la demostración, ejercicio para ustedes, usa la continuidad de f de manera similar que en la demostración del Corolario 4.

Corolario 7 Sea $f:[a,b] \longrightarrow \mathbb{R}$ una función continua en [a,b] y derivable en (a,b). Si f'(x) > 0 (f'(x) < 0) para toda $x \in (a,b)$, entonces f es creciente (decreciente) en [a,b].

Ejemplo 8 Sea $f:[1,7/2] \longrightarrow \mathbb{R}$ la función dada por $f(x)=(x-2)^3-(x-2)+1$.

Figura 1: Gráfica de la función f.

[&]quot;Justifique" la gráfica de la figura 1.

Solución. En la Clase 30 vimos que el valor mínimo de f en [1,7/2] es $\frac{9-2\sqrt{3}}{9}$ y lo alcanza en

Solution. En la chace de vinnes que el valor máximo de f en [1,7/2] es $\frac{23}{8}$ y lo alcanza en x=7/2.

Ahora, como $f'(x)=3(x-2)^2-1$, se tiene que f'(x)>0 si y sólo si $3(x-2)^2-1>0$ mientras que f'(x)<0 si y sólo si $3(x-2)^2-1<0$. Pero, $3(x-2)^2-1>0$ ocurre si y sólo si $x>2+\frac{1}{\sqrt{3}}$ o $x<2-\frac{1}{\sqrt{3}}$ mientras que $3(x-2)^2-1<0$ ocurre si y sólo si $2-\frac{1}{\sqrt{3}}<0$. Lo anterior muestra que f es creciente en $\left[1, 2 - \frac{1}{\sqrt{3}}\right]$ y en $\left[2 + \frac{1}{\sqrt{3}}, \frac{7}{2}\right]$ y decreciente en $\left[2 - \frac{1}{\sqrt{3}}, 2 + \frac{1}{\sqrt{3}}\right]$.

¿Hemos justificado totalmente la gráfica de la figura 1? ¿Por qué en el intervalo $\left[1, 2 + \frac{1}{\sqrt{3}}\right]$ es dibujada "abriendo hacia abajo" y en el intervalo $\left[2+\frac{1}{\sqrt{3}},\frac{7}{2}\right]$ es dibujada "abriendo hacia arriba"? Muy pronto podremos justificar este hecho.

Figura 2: Gráfica de la función h.

Aprovechando la función del ejemplo anterior, podemos hacer lo siguiente: Si $h:\mathbb{R} \longrightarrow \mathbb{R}$ es la función dada por $h(x)=(x-2)^3-(x-2)+1$, se tiene que h es derivable en todo \mathbb{R} y además

$$h'(x) = 3(x-2)^2 - 1.$$

Así, h'(x) > 0 si y sólo si $x > 2 + \frac{1}{\sqrt{3}}$ o $x < 2 - \frac{1}{\sqrt{3}}$ mientras que h'(x) < 0 si y sólo si $2-\frac{1}{\sqrt{3}} < x < 2+\frac{1}{\sqrt{3}}$. Por lo tanto h es creciente en $\left(-\infty,2-\frac{1}{\sqrt{3}}\right]$ y en $\left[2+\frac{1}{\sqrt{3}},\infty\right)$ y decreciente en $\left[2-\frac{1}{\sqrt{3}},\frac{7}{2}\right]$. Además, como $\lim_{x\to\infty}h(x)=\infty$ y $\lim_{x\to-\infty}h(x)=-\infty$ entonces la figura 2 muestra una buena

representación de la gráfica de h.

Note que analizar los límites al infinito es necesario para conocer el comportamiento cuando x es muy grande o bien cuando es muy pequeño, no basta con saber que la función es creciente o decreciente en algunos intervalos como lo muestra el siguiente ejemplo.

Ejemplo 9 Analice la función g, que está dada por la siguiente regla de correspondencia

$$g(x) = \frac{x-2}{x-1},$$

para obtener un esbozo de su gráfica.

Solución. Primero notemos que $Dom(g) = \mathbb{R} \setminus \{1\}$. Ahora,

$$\lim_{x \to 1^+} g(x) = \lim_{x \to 1^+} \frac{x-2}{x-1} = \lim_{x \to 1^+} \left(1 - \frac{1}{x-1} \right) = -\infty$$

У

$$\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{+}} \frac{x-2}{x-1} = \lim_{x \to 1^{+}} \left(1 - \frac{1}{x-1} \right) = \infty.$$

Luego, q(x) = 0 si y sólo si x = 2, mientras que q(0) = 2 (note que esto nos proporciona la intersección de la gráfica de g con los ejes coordenados).

Por otro lado, la función q es derivable en todo su dominio y

$$g'(x) = \frac{1(x-1) - 1(x-2)}{(x-1)^2} = \frac{1}{(x-1)^2}.$$

Así, g'(x) > 0 para todo x en el dominio de q, de donde q es creciente en todo su dominio. Note también que

$$\lim_{x\to\infty}g(x)=\lim_{x\to\infty}\frac{x-2}{x-1}=\lim_{x\to\infty}\left(1-\frac{1}{x-1}\right)=1$$

У

$$\lim_{x \to -\infty} g(x) = \lim_{x \to 1^+} \frac{x-2}{x-1} = \lim_{x \to -\infty} \left(1 - \frac{1}{x-1} \right) = 1.$$

Pero, g(x) < 1 si x > 1 mientras que g(x) > 1 si x < 1, así que la figura 3 es un buen esbozo de la gráfica de g.

Figura 3: Gráfica de la función g.