/O devices

מהם התקני ?0/

- מכשירים המספקים קלט בלבד)מקלדת ,עכבר ,שלט
 - מכשירם המספקים רק פלט)מסך, רמקולים •
 - מכשירים שמספקים גם וגם)הדיסק, כרטיס הרשת (•

disks disks USB controller Hardware Storage

התמשקות התקנים BUS

- קו התקשורת המחבר התקנים למערכת
 - מחבר רכיבים שונים במחשב
 - דרכו עובר מידע. •

יתרונות בBUS

- קל להוסיף רכיבים חדשים
- BUS מעבר בין מחשבים הוא קל אם לכולם משתמשים באתו סטנדרט
 - זול למימוש •

disks disks USB controller Hardware Storage

חסרונות בBUS

- צוואר בקבוק במערכת •
- אמור להתאים לכל סוגי ההתקנים -גנרי •

תפקיד מערכת ההפעלה ביחס ל0

- להציג אבסטרקציה לוגית להתקנים •
- החבאת תוכן ההתקן והמימוש שלו מהמשתמש
 - החבאת טיפול בשגיאות
 - לאפשר הפעלת Olותוך כדי לנצל את המעבד •
- לאפשר גישה להתקן במקביל ולהגן על הגישה אליו •

Controllers

- התקן לרוב מורכב מרכיבים פיזיים מכאניים, ואלקטרוניים
 - low-level בין ה controller להתקן יש ממשק •
 - בדיסק קשיח ה controller למשל בדיסק קשיח ה •
- לקבל כתובת, אוסף של בתים שייצג מידע, ובתים לתיקון שגיאות
 - לתקן את השגיאות •
 - להמיר את המידע לבלוק •
 - להכניס בלוק לפי כתובת)מספר צילינדר, וגזרה •

Hardware drivers Apps Apps Apps Apps provide usable interface to Shell Windows hardware Libraries **OS Abstractions** Disk drive **Drivers** Disk Interrupt CPU controller controller Hardware

Drivers

- לאחר חיבור ההתקנים באופן חומרתי יש צורך לדעת לתקשר איתם
 - מערכת ההפעלה ליצור קשר עם ההתקן

User process User User program space Rest of the operating system Kernel space CD-ROM Camcorder Printer driver driver driver Camcorder controller CD-ROM controller Printer controller Hardware Devices

Drivers

- CPUרץ על גבי הDriver הקוד של ה kernel mode. ב
 - לרוב נכתב על ידי הייצרן של ההתקן •
- : open, close, read, מוגדר וקבוע API יש להם write, seek, flush

Drivers

- bus אל ההתקן עוברת דרך ה driver התקשורת בין ה
 - read/ write block כשמתקבלת פקודה כמו מתקשר עם ה controller מתקשר עם ה
 - בצע יכול לבצע CPU איכול לבצע CPU אשר ה
 - פקודות רגילות כמו lw,sw, פקודות רגילות כמו controller לכתובות שבפועל ימופו ל
 - פקודת סומיוחדת י

Parallel Port האוד

ממשק לשלוח או לקבל מידע על כבל

Simple hardware has three control registers:

• Every bit except IRQ corresponds to a pin on 25-pin connector:

[image credits: Wikipedia]

לרוב משמש במדפסות •

• ניתן להעביר מידע בכבל על ידי מספר קוים יעודים

Parallel Port analt

ממשק לשלוח או לקבל מידע על כבל

```
void
sendbyte(uint8_t byte)
 /* Wait until BSY bit is 1. */
 while ((inb (0x379) \& 0x80) == 0)
   delay ();
 /* Put the byte we wish to send on pins D7-0. */
 outb (0x378, byte);
 /* Pulse STR (strobe) line to inform the printer
  * that a byte is available */
 uint8_t ctrlval = inb (0x37a);
 outb (0x37a, ctrlval | 0x01);
 delay ();
 outb (0x37a, ctrlval);
```

- כל עוד busy bit כל עוד המתן
- d0 דעd7 רשום ביט בעזרת
 - שדר pulse שרשמת משהו (strobe) חדש

controllerל סיים למאינטרפיים

פעולות USB

- בעבר לכל התקן היה חיבור מיוחד •
- שונים תחת סטנדרט אחיד USB
 - זהו פרוטוקול לזיהוי ההתקן שמחובר
 - :סוגי תקשורת
 - מעט דאטה שנשלח ע"י ההתקן המחובר Interupt:
 - בתים עם תיקון שגיאות Bulk: 64 •
 - טרים של דאטה בלי תיקון שגיאות olsochronous:
 - לקנפג ולשלוט בהתקן Control: •

Polling vs Interupts

- ?מי אחרי על העברת המידע
- יודע שההתקן מוכן) ?ראינו גישה אחת לזה (driver איך ה-driver) שההתקן מוכן

Polling vs Interupts Polling

- אחראי על CPU ה •
- כסחtroller העברת כל תו ותו מ /אל הבאפר של ה•
 - אחראי לזהות מתי פעולת O/והסתיימה •
- עושה זאת על ידי תשאול של הרגיסטרים המתאימים אצל ה) controller parallel ports)

Polling vs Interupts Polling

- 1. מלא רגיסטרים מתאימים לבקשה בצד הקונטרולר.
 - 2. שלח פקודה לקונטרולר
 - 3. ההתקן מבצע את מה שצריך
 - 4. המעבד בזמן הזה ממתין בלולאה ושואל האם הפעולה הסתיימה
 - 5. בדוק שהכל תקין
 - 6. שמור את התוצאה בזיכרון

Polling vs Interupts Interupts

- הגישה הנפוצה
- עדיין אחראי על העברת המידע CPU ה •
- ם מקבל סיגנל אינטרפט כדי לדעת שהפעולת Ola מקבל סיגנל אינטרפט כדי לדעת שהפעולת •

Polling vs Interupts Interupts

- 1. מלא רגיסטרים מתאימים לבקשה בצד הקונטרולר.2. שלח פקודה לקונטרולר
 - 3. ההתקן מבצע את מה שצריך
 - 4. המעבד ממשיך הלאה עד שמקבל סיגנל סיום מההתקן
 - 5. בדוק שהכל תקין
 - 6. שמור את התוצאה בזיכרון

Polling vs Interupts Interupts

DMA: Direct Memory Access

רכיב המבצע בפועל את ההעברה של מידע בין הזיכרון לבין התקן •

DMA: Direct Memory Access

DMA: Direct Memory Access Cycle stealing

- על גישה לזיכרון DMA יש תחרות בין המעבד לבין ה
 - אם ה CPUמנסה לגשת לזיכרון בזמן CPU שה DMA שה בזיכרון אז הערכרון איז היצתטרך להמתין.
 - זו לא בעיה בגלל שלרוב ה CPUינצל ויפנה cache.ל

התייחסות להתקנים במערכת ההפעלה

- מערכת ההפעלה מחלקתדרייברים ל 3סוגים:
 - עובדים לפי בלוקים •
 - streams עובדים לפיבית אחרי בית
 - עובדים לפי פקטות •

מערכת הקבצים כאינטרפייס

- אינטרפייס אחיד הוא נוח •
- מערכת הקבצים מהווה אינטרפייס לרוב ההתקנים שנשתמש בהם
- למשל ב sockets משתמשים בעזרת פעולות של כתיבה וקריאה מקובץ

ניהול התקנים

- למערכת ההפעלה מספר שיטות שונות להתנהל עם התקנים
 - Buffering •
 - מיזעור שגיאות \טיפול בשגיאות
 - תזמון גישה להתקן •

ניהול התקנים Buffering

- consumer iproducer מאפשר פעילות אסנכרונית של
 - מאפשר חסכון בגישה למשאב יקר •

ניהול התקנים

שגיאות

- מספר סוגי שגיאות :עקבית ,רגעית •
- לרוב בעיה בהשגת משאב, או תוכן שנפגע בזמן שינוע להתקן
 - ניתן לנסות שוב)לנסות לגשת שוב להתקן
 - ניתן למנוע בעזרת קודים לתיקון שגיאות •

ביהול התקנים תזמון

- מערכת ההפעלה צריכה להבטיח גישה מסודרת להתקן •
- יכולה לתזמן את הגישות להתקן כדי לנצל את מבנה ההתקן)למשל גישה לדיסק לפי המיקום שמבקשים לקרוא או לכתוב(