Investigación en Inteligencia Artificial

Dr. Pablo Moreno Ger

Dr. Ismael Sagredo Olivenza

Dr. Luis Miguel Garay Gallastegui

Tema 2 – Ciencia y método científico

De qué vamos a hablar hoy...

- ¿Cómo estudiar este tema?
- ▶ La ciencia y su método.
- Método científico.
- Diseño experimentos.

¿Cómo estudiar este tema?

Consejo: Te puedes basar en este proceso... para investigar en Inteligencia Artificial... y ¿por qué no? para el desarrollo de los trabajos de la asignatura

Ciencia:

 Conjunto de conocimientos obtenidos mediante la observación y el razonamiento, sistemáticamente estructurados y de los que se deducen principios y leyes generales con capacidad predictiva y comprobables experimentalmente.

Real Academia Española (RAE)

Ciencia: Ejemplo Eclipse

- Obtención de conocimiento.
- Basada en la observación y el razonamiento.
- Repetitividad de los experimentos realizados.

Método científico:

- Observación
- Hipótesis
- Experimentación
- Conclusión

Resultado investigación

Metodologías + Diseño experimentos

Método científico

La pregunta científica

La pregunta es más importante que la técnica.

Ejemplos de preguntas.

- ¿Puedo predecir el comportamiento de un sistema en base a sus datos históricos?
- ¿Puedo crear un vehículo que sea conducido de forma autónoma?
- ¿Puedo crear un agente que gane a los campeones humanos de StarCraft?
- ¿Puedo crear un agente que se haga pasar por un ser humano en un determinado ámbito?

Método científico

- Y cuando ya tengo una "buena" pregunta...
 - ¿Qué tipo de experimentos necesito desarrollar?
 - ¿Cuántos recursos necesito?
- Y normalmente necesitaré recursos
 - ¿Necesito adquirir materiales?
 - ¿Necesito un espacio físico para investigar?
 - ¿Necesito contratar a gente?
 - ¿Podré pagar mi alquiler/hipoteca mientras investigo?

Método científico

Resultado investigación

Metodologías

+
Diseño experimentos

Método científico

► Recursos...

https://home.cern/

https://www.youtube.com/watch?v=yyCbvWLtoZw

Formas de abordar un problema

1. Métodos lógicos

Utilización del pensamiento y su deducción

"Si te acostaste tarde, hoy puedes tener sueño"

2. Métodos empíricos

 Basados en experiencia y observaciones

1. Métodos lógicos

 Utilización del pensamiento y su deducción

Método deductivo / inductivo

INDUCTION

DANIEL MIESSLER 2020

1. Métodos lógicos

Utilización del pensamiento y su deducción

1.1 Deductivo

- Axiomas
 Conjunto de reglas básicas que se suponen como verdaderas
- Reglas de inferencia
 Establecen la forma de operar
 con axiomas y elementos

Inferencia directa

"Si haces deporte, puedes adelgazar"

Inferencia indirecta

"Los hombres son mortales. Sócrates es un hombre, luego Sócrates es mortal"

1. Métodos lógicos

Utilización del pensamiento y su deducción

1.2 Inductivo

- De casos particulares, extraigo leyes generales.
- Bueno para generar hipótesis.
 Basado en la observación.

Inducción completa

Inducción incompleta

"Se pueden enumerar todos los casos de estudio"

"Se toma una muestra representativa que permita generalizar"

2. Métodos empíricos

Basados en experiencia y observaciones

HIPOTESIS

No existen axiomas ya que se parte de la experimentación, observación y de hipótesis previamente planteadas que se pretenden demostrar

EXPERIMENTO

Se emplea el experimento (controlado, aislado de ruido y reproducible) para establecer relaciones causales que permitan explicar las variables

2. Métodos empíricos

Basados en experiencia y observaciones

- El niño que aprende el idioma materno o se quema por primera vez con el fuego
- Remedios caseros basados en experiencias exitosas
- Andar en bicicleta...

Diseño experimental

¿Cómo podría montar mi experimento?

¿Qué es un diseño Experimental?

► Es la descripción de cómo se va a realizar un experimento

- Qué metodología se va a usar
- Qué pasos se van a seguir
- Qué variables se van a medir
- Con que se va a comparar ¿Grupo de control?, ¿Otra solución?
- Cómo se va a garantizar que el experimento no afecte a las variables a estudiar.
- Si hay individuos, cómo vamos a seleccionar a los individuos
 (De qué franjas de edad, localización, etnias, nivel cultural, etc)

Experimento

Las variables de un experimento

- En cualquier experimento se presentan tres tipos de variables:
 - La independiente
 - La dependiente
 - Las intervinientes (contaminadoras)
- ► La independiente.
 - La que controla el investigador (causa)
- La dependiente
 - Aquella que queremos estudiar (efecto)
 - Modificando la independiente veremos efectos en la dependiente.
 - Es la que se mide

Tipos de experimentos

	Pre-experimento	Cuasi experimento	Experimento
¿Grupo de control?	Puede	Si	Si
Selección aleatoria sujetos	No	Si, pero con estricciones	Si
Asignación aleatoria sujetos a grupos	No	No	Si
Grado de control sobre variables externas	Bajo	Moderado	Alto

Cómo podemos controlar las variables externas

Algunas técnicas:

- Eliminación de la variable
- Mantener la variable constante
- Aleatorizar la formación de los grupos
- Igualar grupos: la presencia de variable extrañas debe ser similar en los grupos
- Repetir los experimentos
- Grupo de control: un grupo no se someterá a la influencia de la variable independiente

Ejemplos concretos

Porque no es una ciencia exacta...

Ejemplo #1

- Medir el sistema de reconocimiento de lenguaje escrito.
 - Grupo de control: Escribir con teclado
 - Grupo experimental: Reconocimiento manual
 - ¿Qué medimos?
 - Número de palabras escritas por minuto entre los dos grupos
 - Errores cometidos entre los dos grupos.

Grupos

- Los participantes solo formaran parte de uno de los grupos
- ¿Número de participantes? 12 voluntarios alumnos pertenecientes a ESIT por cada grupo.
- 6 hombres y 6 mujeres.
- Todos con el castellano como primera lengua.

Ejemplo #1

- ¿Qué aparatos se han usado?
 - Cámara modelo XXX de 1920x1080p
 - Tablet PC
 - PC con XXXX capacidad y memoria.
 - Pantalla de 1920x1080p
- Condiciones del experimento
 - Condiciones lumínicas
 - Hora del dia
- ¿Cómo se va a desarrollar el experimento?
 - Los participantes harán el experimento a la vez
 - Tendrán cada grupo un investigador que puede ayudarles si tiene dudas.

Ejemplo #1

Análisis de datos – Velocidad de escritura

- Limpieza de casos extremos/anómalos
- Promedio de palabras por minuto en cada grupo
- Análisis de varianza (¿la diferencia es significativa o es un error estadístico?)

Análisis de datos – Número de errores

- Limpieza de casos extremos/anómalos
- Promedio de errores en cada grupo
- Análisis de varianza (¿la diferencia es significativa o es un error estadístico?)

Otros Ejemplos:

- Experimento demostrar precisión de una técnica
 - https://openaccess.thecvf.com/content_ICCV_2017/papers/Zheng_Lear_ning_Multi-Attention_Convolutional_ICCV_2017_paper.pdf
 - Supporting sketch-based retrieval from a library of reusable behaviours (sciencedirectassets.com)
 - https://www.sciencedirect.com/science/article/pii/S0167865510000954?
 casa_token=liAVFWZYhsYAAAAA: 7TDGMrQQtkGcgiLDPl5Yq6l1k2UEkcaSClBFmVJO6lulw7SLJhOzR9fmN3Avv5-qvAx58s
 - https://dialnet.unirioja.es/descarga/articulo/6907743.pdf
- Experimento con usuarios
 - https://upcommons.upc.edu/bitstream/handle/2099/15090/063.pdf
 - http://ceur-ws.org/Vol-1682/CoSeCiVi16_paper_11.pdf

Actividad #1

Propuesta de un diseño experimental

Objetivo

- Proponer un experimento
 - Del estilo de los anteriores
 - Explicando los pasos a seguir y cómo hacer el análisis
- ¡No hay que hacer el experimento!
 - Es un ejercicio ficticio
 - La temática la elegís vosotros
 - Debería ser internamente consistente

Contenido

Hipótesis a verificar

- Basada en un problema real
- Que no sea trivial de resolver
- Que no esté 100% resuelto

Descripción de la metodología

- Pasos a seguir, pruebas a realizar.
- ¿De dónde se van a sacar los datos? ← ¿De la NASA? OK.
- ¿Cómo se van a trabajar?

Comparación con otras técnicas

Intentar identificar algún estudio similar.

Otros aspectos

Rúbrica de evaluación

- Argumentación de la motivación: 20%
- Planteamiento de la hipótesis y del experimento: 20%
- Consistencia interna y rigor del experimento: 40%
- Redacción y presentación del trabajo: 20%

Extensión

Máximo 5 páginas (pueden ser menos)

Cerrando

Resumen

► Hoy nos hemos centrado en ver más ejemplos de diseños experimentales y hemos presentado la actividad #1.

Para la próxima semana

- Tema 3: proyectos de investigación
 - Alguien tendrá que pagar todo esto... ©
 - El impacto de la financiación en la estructura de la ciencia.

Antes de la clase

- Repasar el tema.
- Avanzar en la actividad para poder preguntar.

www.unir.net