Master 1, Conceptions Formelles Projet du module ALTARICA Synthèse (assistée) d'un contrôleur du niveau d'une cuve

Alain Griffault

Mardi 31 mars 2015

Cahier des charges

Le système que l'on souhaite concevoir est composé :

- d'un réservoir contenant **toujours** suffisamment d'eau pour alimenter l'exploitation,
- d'une cuve.
- de deux canalisations parfaites amont reliant le réservoir à la cuve, et permettant d'amener l'eau à la cuve,
- d'une canalisation parfaite aval permettant de vider l'eau de la cuve,
- chaque canalisation est équipée d'une vanne commandable, afin de réguler l'alimentation et la vidange de la cuve,
- d'un contrôleur.

Détails techniques

La vanne

Les vannes sont toutes de même type, elles possèdent trois niveaux de débits correspondant à trois diamètres d'ouverture : 0 correspond à la vanne fermée, 1 au diamètre intermédiaire et 2 à la vanne complètement ouverte. Les vannes sont commandables par les deux instructions inc et dec qui respectivement augmente et diminue l'ouverture. Malheureusement, la vanne est sujet à défaillance sur sollicitation, auquel cas le système de commande devient inopérant, la vanne est désormais pour toujours avec la même ouverture.

La Cuve

Elle est munie de nbSensors capteurs (au moins quatre) situés à nbSensors hauteurs qui permettent de délimiter nbSensors + 1 zones. La zone 0 est comprise entre le niveau 0 et le niveau du capteur le plus bas; la zone 1 est comprise entre ce premier capteur et le second, et ainsi de suite.

Elle possède en amont un orifice pour la remplir limité à un débit de 4, et en aval un orifice pour la vider limité à un débit de 2.

Le contrôleur

Il commande les vannes avec les objectifs suivants ordonnés par importance :

- 1. Le système ne doit pas se bloquer, et le niveau de la cuve ne doit jamais atteindre les zones 0 ou nbSensors.
- 2. Le débit de la vanne aval doit être le plus important possible.

On fera également l'hypothèse que les commandes ne prennent pas de temps, et qu'entre deux pannes et/ou cycle temporel, le contrôleur à toujours le temps de donner au moins un ordre. Réciproquement, on fera l'hypothèse que le système à toujours le temps de réagir entre deux commandes.

Les débits

Les règles suivantes résument l'évolution du niveau de l'eau dans la cuve :

- Si (amont > aval) alors au temps suivant, le niveau aura augmenté d'une unité.
- Si (amont < aval) alors au temps suivant, le niveau aura baissé d'une unité.
- Si (amont = aval = 0) alors au temps suivant, le niveau n'aura pas changé.
- Si (amont = aval > 0) alors au temps suivant, le niveau pourra :
 - avoir augmenté d'une unité,
 - avoir baissé d'une unité,
 - être resté le même.

L'étude

Rappel méthodologique

Comme indiqué en cours, le calcul par point fixe du contrôleur est exact, mais l'opération de projection effectuée ensuite peut perdre de l'information et générer un contrôleur qui n'est pas satisfaisant. Plus précisemment, le contrôleur AltaRica généré :

- garanti la non accessibilité des Situations Redoutées.
- ne garanti pas l'absence de nouvelles situations de blocages.

Dans le cas ou il existe de nouvelles situations de blocages, vous pouvez au choix :

- 1. Corriger manuellement le contrôleur calculé (sans doute très difficile).
- 2. Itérer le processus du calcul du contrôleur jusqu'à obtenir un contrôleur sans blocage, donc correct.

Remarque: Pour vos calculs, vous pouvez utiliser au choix les commandes:

- altarica-studio xxx.alt xxx.spe
- arc -b xxx.alt xxx.spe
- make pour utiliser le Makefile fourni

Le travail a réaliser

Avant de calculer les contrôleurs, vous devez répondre aux questions suivantes.

- 1. Expliquez le rôle de la constante nbFailures et de la contrainte nbFailures >= (V[0].fail + V[1].fail + V[2].fail) présente dans le composant System.
- 2. Expliquez le rôle du composant ValveVirtual et de son utilisation dans le composant NoCtrl, qui remplace le composant CtrlPermissif utilisé en travaux dirigés.

L'étude consiste à étudier le système suivant deux paramètres :

- $1. \ nbFailures$: une constante qui est une borne pour le nombre de vannes pouvant tomber en panne.
- 2. nbSensors: une constante qui permet de discrétiser plus ou moins bien le niveau dans la cuve.

Pour chacun des quatre systèmes (de 0 à 3 pannes possibles), vous devez décrire votre méthodologie pour calculer les différents contrôleurs et répondre aux questions suivantes :

- 1. Est-il possible d'avoir un contrôleur sans blocage qui évite les situations critiques?
- 2. Si oui, donnez quelques caractéristiques de ce contrôleur, si non, expliquez pourquoi c'est impossible.
- 3. Est-il possible d'avoir un contrôleur sans blocage qui évite les situations critiques, et qui optimise le débit aval?
- 4. Si oui, donnez quelques caractéristiques de ce contrôleur, si non, expliquez pourquoi c'est impossible.

Conditions générales

- Vous pouvez utiliser les fichiers sources de l'archive tank.tgz.
- Groupes de trois ou quatre étudiants acceptés.
- Le rapport comprends les sources AltaRica initiales et générées; les fichiers résultats s'il y en a; et les réponses aux questions. Il sera envoyé par mail à Alain.Griffault@labri.fr
- Date limite de remise du travail : lundi 4 mai 2015.