Практическая работа №12: «Ансамбли».

Оглавление

Цель работы	1
Задачи работы	
Перечень обеспечивающих средств	
Общие теоретические сведения	
Описание метода	
Бэггинг	
Бустинг	
Задание	5
Требования к отчету	5
Литература	5

Цель работы

Получить практические навыки решения задач регрессии и классификации с помощью различных типов ансамблей.

Задачи работы

- 1. Сравнить несколько моделей для решения задачи регрессии с помощью ансамблей.
- 2. Сравнить несколько моделей для решения задачи классификации с помощью ансамблей.

Перечень обеспечивающих средств

- ΠΚ.
- 2. Учебно-методическая литература.
- 3. Задания для самостоятельного выполнения.

Общие теоретические сведения

Описание метода

Ансамбль – это модель машинного обучения, которая включает в себя набор более «слабых» моделей.

Задача, которую отдельные «слабые» модели решают плохо, т.е. с низкими значениями метрики производительности, в совокупности ансамбль решает хорошо.

Бэггинг

Параллельное обучение нескольких «слабых» моделей и агрегация полученных от них результатов.

Бутстрэп:

Набор данных: $\{X_1, X_2, ..., X_N\}$.

Из набора данных формируется m бутстрэп-выборок, каждая длиной n.

Элементы выбираются случайным образом, с повторениями.

Основная идея: сделать выборки, а значит и модели, построенные на них как можно более различными.

Алгоритм бэггинга:

- 1. Выбираем алгоритм для построения «слабых» моделей.
- 2. Из имеющегося набора данных генерируем несколько бутстреп-выборок.
- 3. На каждой из получившихся выборок строим «слабую» модель.
- 4. Результаты работы полученных моделей агрегируем.

Все «слабые» модели обучаются независимо, т.е. обучение можно проводить параллельно.

Случайный лес — это реализация бэггинга, когда в качестве «слабых» моделей используются деревья принятия решений.

Т.к. бэггинг предполагает, что «слабые» модели имеют большой разброс, но малое смещение, деревья для леса обычно строят без отсечения ветвей.

Чтобы избежать переобучения, к которому склонны деревья принятия решений, при построении случайного леса делается дополнительный шаг – для обучения модели используются не все параметры, представленные в наборе данных, а только некоторое их подмножество.

Обычно, для каждого дерева случайным образом отбирается некоторое заранее выбранное число параметров (одинаковое для всех деревьев).

Бустинг

Последовательное обучение «слабых» моделей таким образом, чтобы каждая следующая модель старалась научиться на той части данных, на которой ошибалась предыдущая.

Алгоритм:

- 1. Выбираем алгоритм для построения «слабых» моделей.
- 2. Устанавливаем одинаковую «сложность» для всех элементов набора данных.
- 3. Обучаем «слабую» модель на наборе данных с учётом «сложности» элементов.
- 4. Определяем, на каких элементах модель ошибается
- 5. Вычисляем новые значения «сложности» для всех элементов набора данных.
- 6. Если критерий остановки не достигнут, возвращаемся к шагу 3.

«Слабые» модели обучаются последовательно, поэтому полезно выбирать алгоритмы с низкой вычислительной сложностью.

Градиентный бустинг

На каждом шаге мы обучаем очередную «слабую» модель в сторону, противоположную градиенту текущей ошибки по отношению к текущей модели.

Если (X_i,y_i) - набор данных и $e(y_i,\hat{y}_i)$ – функция ошибки, то

$$r_{Ni} = - \left[rac{\partial e\left(y_i, M(x_i)
ight)}{\partial M(x_i)}
ight]_{M(x) = M_{N-1}(x)}$$
 – псевдо-остатки.

«Слабая» модель m_N обучается на синтетическом наборе данных $\{X_i, r_{Ni}\}$.

$$M_N = M_{N-1} + a_N m_N$$

 $a_{\it N}$ подбирается так, чтобы значение ошибки было минимально:

$$a_N = \arg\min_{a} \sum_{i} e(y_i, M_{N-1}(X_i) + am_N(X_i))$$

Алгоритм:

- 1. Установить псевдо-остатки равными элементам набора данных.
- 2. Обучить наилучшую возможную «слабую» модель на псевдо-остатках.
- 3. Вычислить значение коэффициента обновления, который показывает, насколько должен быть учтен вклад «слабой» модели.
- 4. Обновить общую модель, добавив новую «слабую» модель, умноженную на её коэффициент обновления.
- 5. Вычислить новые псевдо-остатки, которые показывают, в каком направлении мы хотели бы обновить прогнозы модели на следующем шаге.

Пункты 2-5 повторяются столько раз, сколько «слабых» моделей мы хотим использовать.

Задание

Пояснение

Для сохранения результатов данной работы вам понадобится файл ipynb. Если требуется, для удобства можно создать также второй файл формата doc/docx. Названия файла или файлов должны иметь вид «Фамилия – задание 12».

Часть 1

• Обновите свой репозиторий, созданный в практической работе №1, из оригинального репозитория:

https://github.com/mosalov/Notebook For Al Main.

Часть 2

- Откройте свой репозиторий в Binder (https://mybinder.org/).
- Откройте файл «2022 Весенний семестр\task2.ipynb».
- Изучите, при необходимости выполните повторно, приведённый в файле код.
- По аналогии с изученным выполните два задания, приведённых в ячейках в конце ноутбука.
- Сохраните код в ірупb-файле. При необходимости пояснения опишите в doc/docx-файле.

Требования к отчету

Готовые файлы загрузите в свой репозиторий, созданный в практическом задании №1 по пути: «Notebook_For_Al_Main/2022 Весенний семестр/Практическое задание 12/», и сделайте пул-реквест.

Литература

- 1. https://neurohive.io/ru/osnovy-data-science/ansamblevye-metody-begging-busting-i-steking/
- 2. https://dyakonov.org/2016/11/14/случайный-лес-random-forest/
- 3. https://habr.com/ru/company/ods/blog/327250/