Матанализ 3 семестр ПИ, Лекции

Собрано 26 сентября 2022 г. в 13:50

Содержание

1.	Метрические пространства	
	1.1. Нормированные пространства	,
	1.2. Отображения	13
	1.3. Непрерывность отображений	1.
	1.4. Линейные отображения	1'

Раздел #1: Метрические пространства

Пусть X – некоторое множество. Зададим функцию $\rho: X \times X \to \mathbb{R}$.

Определение 1 (Метрика). ρ называется метрикой, если выполняются следующие три свойства:

- 1. $\rho(x,y) \ge 0 \ \forall x,y \in X$ $\rho(x,y) = 0 \Leftrightarrow x = y$
- 2. $\forall x, y \in X \ \rho(x, y) = \rho(y, x)$
- 3. $\forall x, y, z \in X \ \rho(x, y) \leq \rho(x, z) + \rho(z, y)$ неравенство треугольника.

Определение 2 (Метрическое пространство). Пара (X, ρ) называется *метрическим пространством*.

Пример. Метрика на \mathbb{R}^2 : $\rho_2(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$

Пример. Метрика на \mathbb{R}^d : $\rho_2(x,y) = \sqrt{\sum_{i=1}^d (x_i - y_i)^2}$

Пример (Дискретная метрика). Пусть X – некоторое множество. Зададим

$$\rho(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$$

Действительно, все свойства выполняются, поэтому ρ – метрика.

Пример (Манхэттенская метрика). В \mathbb{R}^2 :

$$\rho_1(x,y) = |x_1 - y_1| + |x_2 - y_2|$$

Пример.
$$\rho_{\infty}(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$$

Пример. Рассмотрим C[a,b]. Тогда $\rho(f,g) = \int_a^b |f-g|$ — метрика.

Обозначение (Открытый шар). $B_r(a) = \{x \in X, \ \rho(x,a) < r\}$

Обозначение (Замкнутый шар). $\overline{B}_r(a) = \{x \in X, \ \rho(x,a) \le r\}$

Обозначение (Сфера). $S_r(a) = \{x \in X, \ \rho(x,a) = r\}$

Пример. В дискретной метрике при r < 1 замкнутый шар $\overline{B}_r(a)$ включает только одну точку -a, а при $r \geqslant 1$ — всё множество X.

Пример. Замкнутый шар в манхэттенской метрике:

Пример. Замкнутый шар в ρ_{∞} :

Утверждение 1. Пусть $B_{r_1}(a)$ и $B_{r_2}(a)$ – шары. Тогда

$$B_{r_1}(a) \cap B_{r_2}(a) = B_{\min(r_1, r_2)}(a)$$

Доказательство. Возьмем $x \in B_{r_1}(a) \cap B_{r_2}(a)$. Тогда $\rho(x,a) < r_1$ и $\rho(x,a) < r_2$, значит $\rho(x,a) < \min(r_1,r_2)$.

Утверждение 2. $\forall a \neq b \ \exists r : \overline{B}_r(a) \cap \overline{B}_r(b) = \emptyset.$

Доказательство. Возьмем $r = \frac{\rho(a,b)}{3}$. Предположим, что пересечение непусто, т.е. $\exists x : x \in \overline{B}_r(a)$ и $x \in \overline{B}_r(b)$. Тогда

$$\rho(a,b) \leqslant \rho(a,x) + \rho(x,b) \leqslant \frac{\rho(a,b)}{3} + \frac{\rho(a,b)}{3}$$

Обозначение. V_x – окрестность точки x (шар).

Обозначение. \dot{V}_x — проколотая окрестность x (шар, не содержащий точку x).

Определение 3 (Внутренняя точка множества). Пусть $A \subset X$. Точка a называется внутрен- ней точкой A, если $\exists V_a \subset A$.

Определение 4 (Внешняя точка множества). Пусть $A \subset X$. Тогда точка b называется *внешней* точкой A, если b – внутренняя точка $X \setminus A$.

Определение 5 (Граничная точка множества). Пусть $A \subset X$. Тогда c является c является c является ни внутренней, ни внешней. Иначе, точка c

назывется граничной, если

$$\forall V_c \ \exists x, y \in V_c : x \in A \land y \in X \setminus A$$

Определение 6 (Открытое множество). Множество $A \subset X$ называется *открытым*, если любая его точка — внутренняя.

Теорема 1 (Об открытых множествах). 1. \emptyset и X – открытые множества

- 2. Объединение любого числа открытых множеств открытое множество
- 3. Пересечение конечного числа открытых множеств открытое множество
- 4. Открытый шар это открытое множество

Доказательство. 1. Очевидно

- 2. Пусть $B = \bigcup_{\alpha \in I} A_{\alpha}$. Возьмем $x \in B$. Тогда $\exists \beta \in I : x \in A_{\beta}$. Т.к. A_{β} открытое множество, то x принадлежит A_{β} с какой-то своей окрестностью, а значит она принадлежит и всему объединению с этой окрестностью.
- 3. Пусть $B = \bigcap_{i=1}^n A_i$. Возьем $x \in B$. Тогда $x \in A_i \ \forall i$. Точка x принадлежит всем A_i с какой-то круговой окрестностью r_i . Тогда она принадлежит пересечению с круговой окрестностью $\min r_i$.
- 4. Рассмотрим $B_R(a) = \{x \in X, \ \rho(x,a) < R\}$. Пусть точка $x \in B_R(a), \ \rho(x,a) < R$. Положим $r = R \rho(x,a)$. Возьмем y из окрестности x радиуса r. Тогда в силу неравенства треугольника

$$\rho(a,y) \leqslant \rho(a,x) + \rho(x,y) < \rho(a,x) + R - \rho(x,a) = R$$

А значит $\forall y \in V_x(r) \ y \in B_R(a)$, т.е. любая точка $x \in B_R(a)$ принадлежит шару $B_R(a)$ с какой-то своей окрестностью.

4/19

Замечание. Конечность в пункте 3 существенна: рассмотрим $\bigcap_{n=1}^{\infty} \left(-\frac{1}{n};1\right) = [0,1)$.

Обозначение. Int A – множество всех внутренних точек множества A.

Теорема 2 (Свойства). 1. $\operatorname{Int} A \subset A$

- 2. Int $A = \bigcup$ всех открытых множеств, которые содержатся в A
- 3. $\operatorname{Int} A$ открытое множество
- 4. A открытое $\Leftrightarrow A$ = Int A
- 5. $A \subset B \Rightarrow \operatorname{Int} A \subset \operatorname{Int} B$
- 6. $\operatorname{Int}(A \cap B) = \operatorname{Int} A \cap \operatorname{Int} B$
- 7. Int(Int A) = Int A

Определение 7 (Замкнутое множество). Множество $A \subset X$ называется *замкнутным*, если $X \setminus A$ – открыто.

Теорема 3 (О замкнутых множествах). 1. \emptyset , X – замкнутые множества.

- 2. Пересечение любого числа замкнутых множеств замкнутое множество
- 3. Конечное объединение замкнутых множеств замкнутое множество
- 4. Замкнутый шар это замкнутое множество.

Доказательство. 1. Очевидно

2. Пусть $B = \bigcap_{\alpha \in I} A_{\alpha}$. Тогда

$$X \setminus B = X \setminus \left(\bigcap_{\alpha \in I} A_{\alpha}\right) = \bigcup_{\alpha \in I} \left(X \setminus A_{\alpha}\right)$$

Поскольку $\forall \alpha \in I \ A_{\alpha}$ – замкнутое, т.е. $X \setminus A_{\alpha}$ – открытое, то $X \setminus B$ – открытое (по теореме об открытых множествах), значит B – замкнутое множество.

- 3. Доказывается аналогично предыдущему пункту.
- 4. Рассмотрим $\overline{B}_R(a)$. Возьмем $x \in X \setminus \overline{B}_R(a)$ и y из окрестности x, т.е. $y \in B_r(x)$, где $r = \rho(a, x) R$. По неравенству треугольника:

$$\rho(a,x) \leqslant \rho(a,y) + \rho(y,x)$$

Поэтому

$$\rho(a,y) \ge r + R - \rho(y,x) > R$$

Замечание. Конечность в пункте 3 существенна: $\bigcup \left[\frac{1}{n};1\right] = (0;1]$ – незамкнутое множество.

Пусть $E \subset \mathbb{R}^n$, $F \subset E$.

Определение 8. Точка $a \in F$ называется внутренней для F в E, если $\exists V_a^E \subset F$.

Определение 9. F называется открытым в E, если все его точки внутренние в E.

Замечание. Если множество E открыто, то ничего не изменилось. Если же множество E не открыто, то мы получаем новые определения.

Пример. Множество $(0,1) \cap \mathbb{Q}$ открыто в \mathbb{Q} .

Пример. (1,2] открыто в (0,2].

Замечание. Множество F открыто в $E \Leftrightarrow \exists G$ – открытое в $\mathbb{R}^n : F = E \cap G$.

Пример. (0,1] – замкнуто в (0,2].

Обозначение (Замыкание множества). $\operatorname{Cl} A$ – пересечение всех замкнутых множеств, которые содержат A.

Пример. Cl(0,1) = [0,1].

Теорема 4 (Свойства). 1. $A \subset \operatorname{Cl} A$

- 2. $\operatorname{Cl} A$ замкнутое множество
- 3. A замкнуто $\Leftrightarrow A = \operatorname{Cl} A$.
- 4. $A \subset B \Rightarrow \operatorname{Cl} A \subset \operatorname{Cl} B$

- 5. $Cl(A \cup B) = Cl A \cup Cl B$
- 6. Cl(ClA) = ClA

Теорема 5. $x \in \operatorname{Cl} A \Leftrightarrow \forall r > 0$ $B_r(x) \cap A \neq \emptyset$.

Доказательство. Докажем, что $x \notin \operatorname{Cl} A \Leftrightarrow \exists r > 0 \ B_r(x) \cap A = \emptyset$.

$$x \in (X \setminus \operatorname{Cl} A) \Leftrightarrow x \in \operatorname{Int}(X \setminus A)$$

Пусть A' – множество предельных точек A. Тогда

Теорема 6 (Свойства). 1. $Cl A = A \cup A'$

- 2. $A \subset B \Rightarrow A' \subset B'$
- 3. A замкнуто $\Leftrightarrow A' \subset A$

Доказательство. 3. A – замкнуто \Leftrightarrow $\operatorname{Cl} A$ = A, $\operatorname{Cl} A$ = $A \cup A'$.

Теорема 7. $x \in A' \Leftrightarrow \forall B_r(x)$ содержит бесконечно много точек из A.

1.1. Нормированные пространства

Пусть X – векторное пространство над $\mathbb R.$

Определение 10 (Норма). Функция $\|\cdot\|: X \to \mathbb{R}$ называется *нормой*, если выпоняются следующие свойства:

- 1. $||x|| \ge 0$ $||x|| = 0 \Leftrightarrow x = 0$
- 2. $\|\lambda x\| = |\lambda| \cdot \|x\|$, $\lambda \in \mathbb{R}$
- 3. $||x + y|| \le ||x|| + ||y||$.

Пример. $||x||_1 = |x_1| + |x_2|$

Пример. $||x||_2 = \sqrt{x_1^2 + x_2^2}$

Пример. $||x||_{\infty} = \max_{i \in \{1,\dots\}} |x_i|$

Пример. $C[a,b], ||f|| = \max_{x \in [a,b)} |f|$

Определение 11 (Скалярное произведение). $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$ – скалярное произведение, если выполняются:

1. $\langle x, x \rangle \geqslant 0$

 $\langle x, x \rangle = 0 \Leftrightarrow = x = 0$

- 2. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ 3. $\langle x, y \rangle = \langle y, x \rangle$ 4. $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$.

Упражнение. Вспомнить неравенство Коши-Буняковского

Утверждение 3. $||x|| = \sqrt{\langle x, x \rangle}$

Доказательство. 1-2 очевидно.

3.

$$\langle x + y, x + y \rangle \le \langle x, x \rangle + \langle y, y \rangle + 2\sqrt{\langle x, x \rangle \cdot \langle y, y \rangle}$$

С другой стороны:

$$\langle x + y, x + y \rangle = \langle x, x \rangle + \langle y, y \rangle + 2\langle x, y \rangle$$

Определение 12 (Полное пространство). Пространство называется полным, если в нем любая фундаментальная последовательность сходится.

Упражнение. Доказать, что \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^n – полные пространства.

Обозначение. $\overline{\mathbb{R}}^d = \mathbb{R}^d \cup \{\infty\}$

Замечание. Под V_{∞} будем понимать $\{x : ||x|| > \delta\}$.

Теорема 8 (Сходимость и покоординатная сходимость). $x^i \in \mathbb{R}^d \ (x^i = (x^i_1, x^i_2, ..., x^i_d))$. Рассмотрим последовательность $\{x^i\}_{i=1}^{\infty}$. Тогда равносильны утверждения:

- 1. $\{x^i\}_{i=1}^{\infty}$ сходится
- 2. $\{x^i\}_{i=1}^{\infty}$ сходится покоординатно.

Доказательство. $1 \Rightarrow 2$.

$$\forall \varepsilon > 0 \ \exists N : \forall n > N \ ||x^n - a|| < \varepsilon$$

$$|x_k^n - a_k| \le ||x^n - a||$$

 $2 \Rightarrow 1$.

$$\sqrt{(x_1^n - a_1)^2 + (x_2^n - a_2)^2 + \dots + (x_d^n - a_d)^2}$$

Замечание. Если $\lim_{k\to\infty} x^k = \infty$, то координатные последовательности $\{x^k\}$ могут и не иметь предела. Пусть, например, последовательность в \mathbb{R}^2 определяется формулой

$$x^k = \left(k\cos\frac{\pi k}{2}, k\sin\frac{\pi k}{2}\right)$$

Тогда

$$||x^k||\sqrt{k^2\cos^2\frac{\pi k}{2} + k^2\sin^2\frac{\pi k}{2}} = k \to +\infty$$

To есть $x^k \to \infty$. Тем не менее, последовательности $x_1^k = k \cos \frac{\pi k}{2}$ и $x_2^k = k \sin \frac{\pi k}{2}$ предела не имеют.

Теорема 9 (Арифметические действия и пределы). Пусть $\{x^k\}$, $\{y^k\} \subset \mathbb{R}^n$, $\lim x^k = a$, $\lim y^k = a$

- *b*. Тогда
- $1. \lim (x^k + y^k) = a + b$
- 2. Пусть $\{\lambda_n\}$ последовательность из \mathbb{R} , $\lim \lambda_k = \lambda$. Тогда

$$\lim \lambda_k x_k = \lambda a$$

- 3. $\lim ||x^k|| = ||a||$
- 4. $\lim \langle x^k, y^k \rangle = \langle a, b \rangle$

Доказательство. 1. По теореме 8 для любого i = 1, ..., n

$$\lim_{k \to \infty} x_i^k = a_i, \quad \lim_{k \to \infty} y_i^k = b_i$$

Тогда $\lim_{k\to\infty}(x_i^k+y_i^k)=a_i+b_i$. Применяя теорему 8 еще раз, получаем, что $\lim_{k\to\infty}(x^k+y^k)=a+b$.

4. Заметим, что

$$\frac{1}{4}(||a+b||-||a-b||) = \frac{1}{4}(\langle a+b, a+b \rangle - \langle a-b, a-b \rangle) =$$
$$= \frac{1}{4}(4\langle a, b \rangle) = \langle a, b \rangle$$

Применяя пункты 1 и 3, получаем нужное утверждение.

Определение 13 (Ограниченное множество). Множество E называется ограниченным в \mathbb{R}^n , если $\exists c : E \subset V_0(c)$, т.е. $\forall x \in E \mid |x|| < c$.

Замечание. Ограниченность множества в \mathbb{R}^n равносильна следующему условию:

$$\sup_{x \in E} ||x|| < +\infty$$

Определение 14. Проекцией $E \subset \mathbb{R}^n$ будем называть $E_i = \{x_i : x \in E\}$.

Замечание. Ограниченность множества E равносильна ограниченности всех проекций.

Теорема 10 (Принцип выбора Больцано-Вейерштрасса). Пусть $\{x^k\}$ – последовательность в \mathbb{R}^n . Тогда

- 1. Если $\{x^k\}$ ограничена, то из неё можно выделить сходящуюся подпоследовательность.
- 2. Если $\{x^k\}$ не ограничена, то из неё можно выделить подпоследовательность, стремящуюся к ∞ .

Доказательство. 1. $\{x_1^k\}$ — ограниченная последовательность в $\mathbb{R} \Rightarrow \exists x_1^{r_k}$ — сходящаяся подпоследовательность (по принципу выбора Больцано-Коши для числовых последовательностей). Рассмотрим теперь $\{x_2^{r_k}\}$ — ограничена в $\mathbb{R} \Rightarrow \exists \{x_2^{s_k}\}$ — сходящаяся подпоследовательность, где $\{s_k\}$ — подпоследовательность $\{r_k\}$. После n-ного шага мы построили последовательность $\{x_n^{l_k}\} \Rightarrow \{x_n^{l_k}\}$ сходится.

2. Можем построить $\{x^{r_k}\}: ||x^{r_k}|| > k$. Будем выбирать $r_1 < r_2 < r_3 < \dots$

Теорема 11 (Критерий Больцано-Коши). Пусть $\{x^k\}$ – последовательность из \mathbb{R}^n . Тогда равносильны следующие условия:

- 1. $\{x^k\}$ сходится
- $2. \ \forall \varepsilon > 0 \ \exists N : \forall m,n > N \ ||x^m x^n|| < \varepsilon.$

Доказательство. Заметим, что

$$|x_i| \le ||x|| \le \sqrt{n} \cdot \max_{i \in [1,n]} |x_i|$$

 $1\Rightarrow 2.$ Поскольку $\{x^k\}$ сходится, то

$$\forall i = 1..n \ \forall \varepsilon > 0 \ \exists N : \forall n, m > N \ |x_i^m - x_i^n| < \frac{\varepsilon}{\sqrt{n}}$$

Тогда

$$||x^n - x^m|| < \sqrt{n} \cdot \frac{\varepsilon}{\sqrt{n}}$$

 $2 \Rightarrow 1$.

$$|x_i^m - x_i^n| \le ||x_i^m - x_i^n|| \le \varepsilon$$

Определение 15 (Покрытие). Ω – семейство множеств из \mathbb{R}^n . Ω называется *покрытием* множества $E \subset \mathbb{R}^n$, если $E \subset \bigcup_{A \in \Omega} A$.

Определение 16 (Открытое покрытие). Если все множества из Ω открытые, то Ω называется *открытым* покрытием.

Определение 17. Пусть $\widetilde{\Omega}$ – подсемейство Ω , которое также покрывает E. Тогда $\widetilde{\Omega}$ называется $nodno\kappa pumuem\ \Omega$.

Определение 18. Множество E называется *компактным*, если из любого его открытого покрытия можно выбрать конечное подпокрытие.

Пример. (0,1) – не компакт. $\Omega = \{\left(\frac{1}{n},1\right), n \in \mathbb{N}\}$ – покрытие (0,1). Из него нельзя выбрать конечное подпокрытие (0,1).

Определение 19. Пусть $a, b \in \mathbb{R}^n : a_1 \leq b_1, a_2 \leq b_2, ..., a_n \leq b_n$. Тогда замкнутым парамлелепипедом будем называть следующее множество:

$$[a;b] = [a_1,b_1] \times [a_2,b_2] \times ... \times [a_n,b_n]$$

Открытым парамеленипедом называется множество:

$$(a;b) = (a_1,b_1) \times (a_2,b_2) \times ... \times (a_n,b_n)$$

Упражнение. Открытый параллелепипед – открытое множество, замкнутый параллелепипед – замкнутое множество.

Определение 20 (Диаметр множества). diam $E = \sup_{x,y \in E} ||x-y||$

Теорема 12 (О стягивающихся параллелепипедах). Рассмотрим параллелепипеды $P_k \subset \mathbb{R}^n$ – замкнутые, $P_1 \supset P_2 \supset P_3 \supset ...$, diam $P_k \xrightarrow[k \to \infty]{} 0$. Тогда существует только одна точка, принадлежащая всем параллелепипедам.

Теорема 13. Замкнутый куб в \mathbb{R}^n является компактом.

Лемма 1. $E \subset \mathbb{R}^n$. E замкнуто $\Leftrightarrow \forall$ сходящаяся последовательность в E имеет пределом точку из E.

Доказательство. \Rightarrow . Пусть $\{x^k\}_{k=1}^{\infty}$ — последовательность в $E, a \in \mathbb{R}^n$, $\lim_{k \to \infty} x_k = a$. По-кажем, что $a \in E$. Если это не так, то $a \in \mathbb{R}^n \setminus E$, и в силу открытости $\mathbb{R}^n \setminus E$ найдется окрестность V_a точки a, лежащая в $\mathbb{R}^n \setminus E$. По определению предела при всех достаточно больших $k \in \mathbb{N}$ справедливо включение $x^k \in V_a \subset \mathbb{R}^n \setminus E$. С другой стороны, $x^k \in E \ \forall k \in \mathbb{N}$, и мы получаем противоречие.

$$\Leftarrow$$
. $E' \subset E \Rightarrow E$ – замкнуто.

Лемма 2. Замкнутое подмножество компакта – компакт.

Доказательство. Пусть F – замнутое подмножество компакта E, Ω – открытое покрытие F. Покажем, что из Ω можно выбрать конечное подпокрытие. Добавляя к Ω множество $\mathbb{R}^n \setminus F$, мы получим открытое покрытие компакта E. Выберем из этого покрытия конечное подсемейство $\widetilde{\Omega}$, которое также покрывает E. Если множество $\mathbb{R}^n \setminus F$ входит в $\widetilde{\Omega}$, удалим его оттуда. Мы получим конечное подпокрытие Ω множества F.

Теорема 14. Пусть $E \subset \mathbb{R}^n$. Тогда равносильны следующие условия:

- 1. E компакт
- $2. \, \, E$ ограничено и замкнуто
- 3. Из любой последовательности в E можно выбрать подпоследовательность, сходящуюся к точке из E.

Доказательство. $3 \Rightarrow 2$. Пусть $\{x^k\}$ – последовательность в E, сходящаяся к некоторой точке $a \in \mathbb{R}^n$. Из условия 3) вытекает, что у $\{x^k\}$ есть подпоследовательность, предел которой лежит в E. Но любая подпоследовательность $\{x^k\}$ сходится к a, откуда $a \in E \Rightarrow E$ замкнуто.

Докажем теперь ограниченность. Если E не ограничено, то по любому $k \in \mathbb{N}$ найдется $x^k \in E$, для которого $||x^k|| \ge k$. Но тогда $x^k \to \infty$ при $k \to \infty \Rightarrow$ все подпоследовательности $\{x^k\}$ также стремятся к бесконечности. Получили противоречие с условием 3).

2 ⇒ 1. E ограничено ⇒ $\exists c: [-c,c]^n \supset E$. Тогда E — замкнутое подмножество компакта ⇒ E — компакт.

 $1\Rightarrow 3$. Пусть a – предел последовательности из E, но $a\notin E$. Положим $\Omega=\{\mathbb{R}^n\setminus\overline{B}_\varepsilon(a)\}$. Тогда $\bigcup_{A\in\Omega}A=\mathbb{R}^n\setminus\{a\}\Rightarrow\Omega$ – покрытие E. Пусть $\widetilde{\Omega}$ – произвольное конечное подсемейство Ω . Тогда, для некоторого $m\in\mathbb{N}$ и положительных чисел $\varepsilon_1,...,\varepsilon_m$

$$\widetilde{\Omega} = \left\{ \mathbb{R}^n \setminus \overline{B}_{\varepsilon_k}(a) \right\}_{k=1}^m$$

Множество $B(a) = \bigcap_{k=1}^{m} B_{\varepsilon_k}(a)$ является окрестность точки a. Заметим, что

$$\bigcup_{A\in\widetilde{\Omega}}A=\mathbb{R}^n\setminus\bigcap_{k=1}^m\overline{B}_{\varepsilon_k}(a)\subset\mathbb{R}^n\setminus B(a)$$

Таким образом, множество $\widetilde{\Omega}$ не покрывает E, что противоречит компактности E.

1.2. Отображения

 $f: E \subset \mathbb{R}^n \to \mathbb{R}^m$.

Пример. m = 1 – функция нескольких переменных. $f(x_1, x_2, ..., x_n)$.

Пример. n = 1 – вектор-функция. $(f_1(x), f_2(x), ..., f_m(x)) = f(x)$.

Определение 21 (Ограниченное отображение). Отображение f называется *ограниченным*, если

$$\sup_{x \in E} ||f(x)|| < +\infty$$

Замечание. Ограниченность f равносильна ограниченности координатных функций.

Определение 22 (Предел по Коши). $f: E \subset \mathbb{R}^n \to \mathbb{R}^m, \ a$ – предельная точка $E, \ (a \in \overline{R}^n)$.

$$\lim_{x \to a} f(x) = A \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in E \cap \dot{B}_{\delta}(a) \ f(x) \in B_{\varepsilon}(A)$$

Иначе, пусть $a \in \mathbb{R}^n, A \in \mathbb{R}^m$. Тогда A – предел, если

$$\forall \varepsilon > 0 \ \exists \Delta > 0 : \forall x \in E0 < ||x - a|| < \delta \ ||f(x) - A|| < \varepsilon$$

Определение 23 (Предел по Гейне). $f:E\subset\mathbb{R}^n\to\mathbb{R}^m,\ a$ — предельная точка E. Тогда $\lim_{x\to a}f(x)=A,$ если

$$\forall \{x^n\} \ x^k \to a, \ x^k \neq a, \ x^k \in E \ \lim f(x_k) = A$$

Теорема 15 (Эквивалентность определений предела). Пусть $f: E \subset \mathbb{R}^n \to \mathbb{R}^m$, точка $a \in \overline{\mathbb{R}^n}$ является предельной для $E, A \in \overline{\mathbb{R}^m}$. Тогда равносильны утверждения:

- 1. $\lim_{x\to a} f(x) = A$ в смысле Коши
- 2. $\lim_{x\to a} f(x) = A$ в смысле Гейне

Доказательство. 1) \Rightarrow 2). Пусть A – предел f в смысле Коши. Возьмем последовательность $\{x^k\}_{k=1}^{\infty}$ в $E \setminus \{a\}$, стремящуюся к a. В силу 1) по любому $\varepsilon > 0$ можно подобрать $\delta > 0$, для которого

$$f(x) \in V_A(\varepsilon) \quad \forall x \in \dot{V}_a(\delta) \cap E$$

Поскольку $x^k \to a$, существует такое $N \in \mathbb{N}$, что при всех k > N справедливо включение $x^k \in V_a(\delta)$. Кроме того, $x^k \in E \setminus \{a\}$, откуда $x^k \in \dot{V}_a(\delta) \cap E$. Поэтому

$$f(x^k) \in V_A(\varepsilon) \quad \forall k > N$$

Таким образом, $f(x^k) \to A$ при $k \to \infty$, то есть $\lim_{x\to a} f(x) = A$ и в смысле Гейне. 2) \Rightarrow 1). Пусть A – предел f по Гейне. Докажем, что предел f в смысле Коши также существует и равен A. Действительно, если это не так, то

$$\exists \varepsilon : \forall \delta > 0 \ \exists x \in \dot{V}_a(\delta) \cap E : f(x) \notin V_A(\varepsilon)$$

Положим

$$F = \{x \in E \setminus \{a\} : f(x) \notin V_A(\varepsilon)\}\$$

Таким образом, $\dot{V}_a(\delta) \cap F = \emptyset$ при любом $\delta > 0$, то есть a является предельной точкой $F \Rightarrow$ найдется последовательность $\{x^k\}_{k=1}^{\infty}$ в F, стремящаяся к a. Тогда $\lim_{k\to\infty} f(x^k) = A$, что невозможно, т.к. $f(x^k) \notin V_A(\varepsilon)$ при всех $k \in \mathbb{N}$.

Теорема 16 (Единственность предела отображения). Пусть $f: \mathbb{R}^n \to \mathbb{R}^m$, $A, B \in \overline{\mathbb{R}^m}$, $\lim_{x\to a} f(x) = A$, $\lim_{x\to a} f(x) = B$. Тогда A = B.

Теорема 17. Пусть $f: \mathbb{R}^n \to \mathbb{R}^m, \ A \in \mathbb{R}^m$. Тогда равносильны следующие условия:

- 1. $\lim_{x\to a} f(x) = A$
- $2. \lim_{x\to a} f_i(x) = A_i$

Пример. Пусть

$$f(x) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0\\ 0, & x^2 + y^2 = 0 \end{cases}$$

Положим

$$z^k = \left(\frac{1}{k}, 0\right), \quad w^k = \left(\frac{1}{k}, \frac{1}{k}\right), \quad (k \in \mathbb{N})$$

Тогда $z^k \to (0,0)$ и $w^k \to (0,0)$ при $k \to \infty$. Кроме того,

$$f(z^k) \to 0$$
, $f(w^k) = \frac{1/k^2}{2/k^2} \to \frac{1}{2}$

Если бы предел f в точке (0,0) существовал, то он был бы равен одновременно 0 и $\frac{1}{2}$, что невозможно.

Пример. Пусть

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}$$

Заметим, что

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = 1, \quad \lim_{y \to 0} \lim_{x \to 0} f(x, y) = -1$$

 $\left(\frac{1}{k},0\right),\left(0,\frac{1}{k}\right)$ – по Гейне предела не существует.

Теорема 18 (Арифметические действия с пределами). Пусть $E \subset \mathbb{R}^n, \ f,g:E \to \mathbb{R}^m, \ a \in \overline{\mathbb{R}^n}, \ f(x) = A, \ \lim_{x \to a} g(x) = B, \ A, B \in \mathbb{R}^m$. Тогда

- 1. $\lim_{x\to a} f(x) + g(x) = A + B$
- 2. Если $\lambda \in \mathbb{R}$, то $\lim_{x \to a} \lambda f(x) = \lambda A$
- 2'. Если $\lambda(x): E \to \mathbb{R}$, $\lim_{x\to a} \lambda(x) = \alpha \in \mathbb{R}$, то

$$\lim_{x \to a} \lambda(x) f(x) = \alpha A$$

- 3. $\langle f, g \rangle \xrightarrow[x \to a]{} \langle A, B \rangle$
- 4. Если m = 1, B ≠ 0, то $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{A}{B}$

Теорема 19 (Предел композиции). Пусть $E \subset \mathbb{R}^n$, $F \subset \mathbb{R}^m$, $f : E \to F$, $g : F \to \mathbb{R}^s$, $\lim_{x \to a} f(x) = b$, $\lim_{x \to b} g(x) = c$. Тогда

$$\lim_{x \to a} g(f(x)) = c$$

Теорема 20 (Критерий Больцано-Коши). Пусть $E \subset \mathbb{R}^n$, $a \in \overline{\mathbb{R}^n}$ — предельная точка E, $f: E \to \mathbb{R}^m$. Тогда равносильны следующие условия:

- 1. f имеет пределом в точке a точку в \mathbb{R}^m
- 2. $\forall \varepsilon > 0 \ \exists V_a : \forall x_1, x_2 \in V_a \cap E \ ||f(x_1) f(x_2)|| < \varepsilon$

1.3. Непрерывность отображений

Определение 24 (Непрерывные отображения). $E \subset \mathbb{R}^n, \ f: E \to \mathbb{R}^m, \ a \in \mathbb{R}^n.$ Отображение f называется n

$$\forall \varepsilon > 0 \ \exists \delta : \forall x \in E \cap V_{\delta}(a) \ f(x) \in V_{\varepsilon}(f(a))$$

Замечание. Если точка a – изолированная точка E, то отображение в a всегда непрерывно.

Замечание (Непрерывность на языке неравенств).

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \ ||x - a|| < \delta \ ||f(x) - f(a)|| < \varepsilon$$

Замечание. f непрерывна \Leftrightarrow все её координатные функции непрерывны.

Теорема 21 (Непрерывность композиции). Пусть $E \subset \mathbb{R}^n$, $F \subset \mathbb{R}^m$, $f : E \to F$, $g : F \to \mathbb{R}^s$, Если f непрерывно в точке a и g непрерывно в точке f(a), то $g \circ f$ непрерывно в точке a.

Доказательство. Пусть $\{x^k\}_{k=1}^{\infty}$ – последовательность в E, стремящаяся к a. Тогда

$$f(x^k) \to f(a), \quad g(f(x^k)) \to g(f(a))$$

Таким образом, $g(f(x^k)) \to (g \circ f)(a)$ при $k \to \infty$, что и означает непрерывность $g \circ f$ в точке a.

Теорема 22. Пусть $E \subset \mathbb{R}^n, f, g: E \to \mathbb{R}^m$ непрерывны в точке $a \in E$. Тогда

- 1. f + g непрерывно в точке a
- 2. Если функция $\lambda: E \to \mathbb{R}$ непрерывна в точке a, то λf непрерывно в точке a
- 3. $f \cdot g$ непрерывно в точке a
- 4. Если m=1 и $g(a)\neq 0$, то функция $\frac{f}{g}$ непрерывна в точке a.

Определение 25 (Непрерывное на множестве отображение). Будем называть отображение $f: E \to \mathbb{R}^m, \ E \subset \mathbb{R}^n$ непрерыным на E, если оно непрерывно в каждой точке E.

Обозначение. $C(E \to \mathbb{R}^m)$, $C(E, \mathbb{R}^m)$, $C(\mathbb{R}^n, \mathbb{R}^m)$.

Теорема 23 (Непрерывный образ компакта). Пусть $E \subset \mathbb{R}^n$ — компактное, f непрерывно на E. Тогда образ множества E — компакт. Таким образом, непрерывный образ компакта — компакт.

Доказательство. Рассмотри $f(E) \subset \mathbb{R}^m$. Пусть $\{y_k\} \in f(E)$. Тогда $\exists x_k \in E : f(x_k) = y_k$. Поскольку E – компакт, то $\exists \{x_{k_l}\} : \lim_{l \to \infty} x_{k_l} = a \in E$. Рассмотрим теперь последовательность $y_{k_l} = f(x_{k_l})$. При $l \to \infty$ она стремится к f(a) (по непрерывности). $a \in E \Rightarrow f(a) \in f(E)$

Теорема 24 (Вейерштрасса). Пусть $E \subset \mathbb{R}^n, \ f: E \to \mathbb{R}^m$ – непрерывна на $E, \ E$ – компакт. Тогда

- 1. f ограничена на E
- 2. Если m = 1, то f достигает своего наибольшего и наименьшего значения.

Доказательство. 1. По предыдущей теореме.

2. Положим

$$M = \sup_{x \in E} f(x) \in \mathbb{R}$$

Построим последовательность $\{y_k\}: M-\frac{1}{k} < y_k \leqslant M, \ y_k \in f(E). \ y_k \to M \Rightarrow M \in E \Rightarrow M = \max_{x \in E} f(x) \in \mathbb{R}.$

Замечание. Любой отрезок в \mathbb{R}^n есть компакт.

$$\Delta_{a,b} = \{a + t(b-a), t \in [0,1], a, b \in \mathbb{R}^n\}$$

Теорема 25. Пусть $E \subset \mathbb{R}^n, \ f: E \to \mathbb{R}^m$. Тогда равносильны следующие условия

- 1. f непрерывно на E
- 2. \forall открытого $G \subset \mathbb{R}^m$ $f^{-1}(G)$ открыто в E.

1.4. Линейные отображения

Определение 26. Пусть $E \subset \mathbb{R}^n, \ T: E \to \mathbb{R}^m$. Будем называть отображение f линейным, если $\forall x,y \in E, \ \forall \alpha,b \in \mathbb{R}$

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$$

Обозначение. T(x) = T_x

Обозначение. \mathbb{O}_x = $0 \ \forall x \in \mathbb{R}^m$

Обозначение.
$$x_k = \begin{pmatrix} k \\ k \\ \vdots \\ k \end{pmatrix}, T(x_k) = k \cdot T(x_1)$$

Замечание (Композиция линейных операторов). Если $S \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, $T \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^l)$ Тогда $T(S(x)) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^l)$.

Теорема 26. Пусть $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. Тогда

- 1. T непрерывен на \mathbb{R}^n
- 2. $\exists C \ge 0 : ||T_x|| \le C \cdot ||x|| \ \forall x \in \mathbb{R}^n$

3. Пусть E – ограниченное подмножество \mathbb{R}^n . Тогда T(E) ограничен в \mathbb{R}^m .

Доказательство. 2. Ранее было доказано, что сфера $S = \{x \in \mathbb{R}^n : ||x|| = 1\}$ компактна в \mathbb{R}^n . Положим

$$C = \sup_{x \in S} ||T_x||$$

Так как сам оператор T непрерывен, то по теореме Вейерштрасса $C < +\infty$. При x = 0 требуемое неравенство очевидно. Для $x \neq 0$ положим $z = \frac{x}{\|x\|}$. Тогда $z \in S$, и в силу линейности T

$$||T_x|| = ||T(z||x||) = ||T_z|| \cdot ||x|| \le C \cdot ||x||$$

1. Пусть множество E ограничено в \mathbb{R}^n . Тогда существует такое $\delta > 0$, что $E \subset V_{\delta}(0)$. По предыдущему пункту,

$$||T_x|| \leqslant C||x|| \leqslant C\delta$$

Поэтому $T(E) \subset V_{C\delta}(0)$, что и дает ограниченность T(E).

Определение 27 (Операторная норма). $||T|| = \sup \frac{||T_x||}{||x||}, \ x \in \mathbb{R}^n \setminus \{0\}.$

Замечание. Если нам удалось подобрать C, что выполняется неравенство из пункта 2 теоремы, то $||T|| \le C$. Если же для какого-то $x \in \mathbb{R}^n \setminus \{0\}$ верно неравенство $||T_x|| \ge C||x||$, то $||T|| \ge C$.

Замечание. $||T|| = \sup_{\|x\|=1} ||T_x|| = \sup_{\|x\| \le 1} ||T_x||$

Доказательство. Пусть $A = \sup_{\|x\|=1} \|T_x\|, \ B = \sup_{\|x\|\leqslant 1} \|T_x\|$

- 1. $A \leq B$ очевидно.
- 2.

$$||T|| = \sup_{x \neq 0} \frac{||T_x||}{||x||} = \sup_{x \neq 0} \left| \left| T\left(\frac{x}{||x||}\right) \right| \right| = A$$

3.

$$||T|| = \sup_{x \neq 0} \frac{||T_x||}{||x||} \geqslant \sup_{0 < ||x|| \leqslant 1} \frac{||T_x||}{||x||} \geqslant \sup_{||x|| \leqslant 1} ||T_x|| = B$$

Теорема 27. Операторная норма – это действительно норма.

Доказательство. 1. Неравенство $||T|| \ge 0$ очевидно. Если ||T|| = 0, то

$$||T_x|| \le ||T|| \cdot ||x|| = 0 \quad \forall x \in \mathbb{R}^n$$

Глава #1.

откуда T_x = 0 для любых $x \in \mathbb{R}^n$, поэтому $T = \mathbb{O}$

- 2. $\|\lambda T\| = \sup_{\|x\|=1} \|\lambda T(x)\|$
- 3. Возьмем x: ||x|| = 1. Тогда

$$||T + S|| = \sup_{||x|| = 1} ||T_x + S_x|| \le \sup_{||x|| = 1} (||T_x|| + ||S_x||) \le \sup_{||x|| = 1} ||T_x|| + \sup_{||x|| = 1} ||S_x||$$

Теорема 28 (Оценка нормы линейного оператора). $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m), A$ — матрица оператора T. Тогда

$$||T|| \le \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2}$$

Доказательство. Хотим доказать, что $\forall x \in \mathbb{R}^n$

$$||T_x|| \le \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2} \cdot ||x||$$

$$||T_x||^2 = \sum_{i=1}^m (T_i(x))^2 = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij} \cdot x\right)^2 \le \sum_{i=1}^m \left(\sum_{j=1}^n (a_{ij})^2 \cdot \sum_{j=1}^n x_j^2\right)$$

Теорема 29. Пусть A – матрица размером $n \times n$. Тогда равносильны следующие утверждения:

- 1. $\det A \neq 0$
- 2. Неоднородная система

$$A \cdot x = y, \quad y - n \times 1$$

имеет единственное решение при каждом $y \in \mathbb{R}^n$

3. Однородная система

$$A \cdot x = 0$$

имеет только нулевое решение.