MÉTODOS NUMÉRICOS Curso 2020–2021

Entregas

Hoja 3. Resolución de sistemas lineales: métodos iterativos

- 1 Sea $A \in \mathcal{M}_n$ una matriz de diagonal estrictamente dominante.
- a) Demostrar que si A se descompone en la forma A = M N, siendo

$$m_{ii} = a_{ii}$$
 y $m_{ij}n_{ij} = 0$

para i, j = 1, ..., n, entonces el método iterativo asociado a tal descomposición de A está bien definido y es convergente.

- b) Deducir, a partir de a), resultados de convergencia para los métodos de Jacobi y Gauss-Seidel.
- 2 Se considera la matriz tridiagonal

$$A = \begin{pmatrix} 2 + \alpha_1 & -1 & & & \\ -1 & 2 + \alpha_2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 + \alpha_{n-1} & -1 \\ & & & -1 & 2 + \alpha_n \end{pmatrix}$$

donde $\alpha_i \geq 0, i = 1, 2, \dots, n$.

a) Demostrar por inducción que para cada $k \in \{1, 2, ..., n\}$ se verifica que

$$\delta_k > \delta_{k-1} > \cdots > \delta_1 > \delta_0 = 1$$

(Indicación: Utilizar el apartado a) del Problema 7 de la Hoja 3). Deducir que la matriz A es definida positiva.

b) Para cada $\beta \geq 0$ se considera la descomposición $A = M_{\beta} - N_{\beta}$ donde

$$N_{\beta} = \operatorname{diag} (\beta - \alpha_1, \beta - \alpha_2, \dots, \beta - \alpha_n).$$

Encontrar valores del parámetro β para los cuales el método iterativo asociado a esta descomposición M-N de A sea convergente.