Course: Math 6397 Spring 2015 Instructor: Robert Azencott Lecture Date: 2/19/2015

Notes prepared by Renat Tatarin

Draft 1

Project 2:

Using your 2 data sets from project 1 for which you performed LDA, now perform Support Vector Machine (SVM) classification. If your results for a data set exceeded 90% using LDA, consult with Dr. Azencot about possibly choosing another data set for analysis as we are interested in improving our results with SVM.

SVM Classification:

Suggested Software Package \rightarrow SVM Light, e1071, and many others that can be found online

Website Suggestions for SVM Light:

R: http://www.inside-r.org/packages/cran/klaR/docs/svmlight

Matlab: http://mex-svm.sourceforge.net/

Mathematica: http://malchiodi.di.unimi.it/software/svMathematica/

- Use 2 different kernels:
 - Polynomial kernels of degree $l \in \{2, 3, 4\}$: $K(x, y) = [1 + \langle x, y \rangle_{\mathbb{R}} >]^l$
 - Gaussian kernel: $K(x, y) = \exp\left(\frac{-|x-y|^2}{\sigma^2}\right)$
- For the Gaussian kernel, you will choose σ
 - Report all classification performance for various σ you chose. You can explore the range of σ values by successive dichotomies
 - For $\sigma \ll mean|x-y|$, good training performance, but poor testing performance will be achieved
 - For $\sigma \gg mean|x-y|$, the program will not learn well

- Construct a "Confusion (or Error) Matrix" for the training set and another confusion matrix for the test set
- Compare the two to evaluate the generalization capacity of the SVM classifier

SVM Classification

Separator: Sep(x)

We would like to find an explicit separator in the Hilbert space H such that the data, after being transformed into a higher dimension, can be separated into classes -1 and +1 by a hyperplane. For N cases with k attributes we have the attribute vectors $X(i) \in \mathbb{R}^k$, $i \in N$. Then

$$w = \sum_{i=1}^{N} \alpha_i \overline{Z_i}$$
 where $\mathbb{R}^k \ni \overline{X(i)} \to \overline{Z_i} \in H$ (Hilbert)

Here, α_i are the support vector coefficients and therefore w is a linear combination of these support vectors. They will either be given after running the program or you need to call for them. Many will be equal to 0 and may not be shown.

Case i is a support vector if and only if $|\alpha_i| > 0$. For some of the cases, you will have $\alpha_i < 0$ which represents the -1 class and for others you will have $\alpha_i > 0$ which represents the +1 class

If $j \in S$ = support vectors remaining after all $\alpha_i = 0$ have been eliminated, then $1 \le S \le N$. For robust classification: $S \ll N$.

Then the explicit Sep(x) will be:

$$Sep(x) = \sum_{j=1}^{N} \alpha_{j} K\left[\frac{X(j), x}{j}\right] + b$$

The larger the α_i , the harder it is to classify that corresponding case. You should look at at least 10 support vectors having coefficients α_i with the highest absolute

values and examine their corresponding cases to see if there are any errors in the data. This should look something like this:

$$|\alpha(1)| \geq |\alpha(2)| \geq |\alpha(3)| \geq \dots \geq |\alpha(j)|$$

Be careful to keep track of the corresponding cases when ranking the support vectors.

Toy Problem: To be included in project 2

Construct a data set with the following information:

- N = 5 cases $X(i) \in \mathbb{R}^k$, $i \in N$
- k = 2 attributes
- 2 classes
 - -x(1), x(2), x(3) in class 1
 - x(4), x(5)in class 2
- $2 \le ||x(i)|| \le 4, i \in \text{class } 1$
- $||x(i) x(j)|| \ge 1, i \ne j$
- ||x(4)|| < 1.5
- $||x(5)|| \le 1.5$
- $||x(4) x(5)|| \ge 1$

It should look somewhat like this; one class forming a triangle around the other:

Perform separation with SVM

- Polynomial kernel of degree $k \in \{2,4\}$
- Gaussian kernel
- LDA

You will see that the best separator is a polynomial kernel of degree 2.