KONGU ENGINEERING COLLEGE, PERUNDURAL 638 660

CONTINUOUS ASSESSMENT TEST 1

(Regulations 2022)

Month and Year: September 2024	Roll Number: 32/SP237
Programme : B.E Branch : CSE Semester : V	Date : 02.09.2024 Time : 9.15 am to 10.45 am
Course Code: 22CST53 Course Name: Theory of Computation	Duration : 1 % Hours Max. Marks : 50

PART - A $(10 \times 2 = 20 \text{ Marks})$ ANSWER ALL THE QUESTIONS

1.	Mention the steps to be followed to solve problems in mathematical induction	on. [CO1] [K2]

4.	Design a DFA that accep	ts string of the languag	e L={am bn	m and n are	positive [CO1] [K3]
	integers}				

5. If
$$\Sigma = \{ab, \underline{bb}\}$$
, find Σ^4 . [CO1] [K3]

8.	Identify the operators of reg	ular expression and state its priority.	[CO2] [K2]
7 100 150			

Part – B (3 × 10 = 30 Marks) ANSWER ANY THREE QUESTIONS

11.	(i)	Prove by mathematical induction	$, 2+2^2+2^3+\ldots+2^n=2^{n+1}$	-2.	(5)	[CO1] [K2]

(ii)	Prove the statement: Every tree has one node more than its edges.	(5)	[CO1] [K2	1
				450

(10) [CO1] [K3]

12.	Convert	the	following	NFA	to	DFA.	

States	Input	
	0	1
→p	{p,r}	{q}-
qí	{r,s}	{p},
*x	{p,s}	{r}-
*8	{a,r}	{Φ }

Consider the following e-NFA

States	Input		
	A	В	3
→p	{q}	{p,r}	{r}
9	{p}	{Φ}	{Ф}
*r	{r}	{p}	{p,q}

- (i)Compute the ϵ -closure for each state.
- (ii) Convert the &- NFA to DFA.
- (iii)Write the set of all strings of length 3 or less accepted by the automata.

14. Consider the DFA given by the transition table

(10) [CO1] [K3]

States	Input	
	0	1
→q1	{q2}	{q3}
92	{q3}	{q5}
*q3	{q4}	{q3}
q4.	{q3}	{q5}
*q5	{q2}	{q5}

- (i) Draw the table of distinguishabilities for this automaton.
- (ii) Construct the minimum state equivalent DFA.

Bloom's Taxonomy Level	Remembering (K1)	Understanding (K2)	Applying (K3)	Analysing (K4)	Evaluating (K5)	Creating (K6)
Percentage	-	30	70			

KONGU ENGINEERING COLLEGE, PERUNDURAI 638 060 CONTINUOUS ASSESSMENT TEST 2

(Regulations 2022)

Month and Year : October 2024	Roll Number: 22 CSR 237		7
Programme : B.E Branch : CSE Semester : V	Date : 15.10.2024 Time : 1.15 pm to 2.45 pm		
4.7	Duration : 1 ½ Hours Max. Marks : 50		
PART - A (10 × 2 = ANSWER ALL THE	= 20 Marks) QUESTIONS		
Write the regular expression for the language star any number of b's in between.	rting and ending with a and having	[CO2]	[K2]
2. Identify the purpose of pumping lemma in reg- conditions.	ular language. Give the necessary	[CO2]	[K2]
3. Design an E-NFA for the regular expression a+b*c.		[CO2]	[K3]
4. Show that the complement of a regular language is a	also regular.	[CO2]	[K3]
5. Consider the grammar G=(N,T,P,S) and N={S} T={a	a,b}, P=S→aSb, S→ab. Write L(G).	[CO3]	[K2]
6. Consider the context free grammar (CFG) given be for the string bbaa. S→bs aT € T→aT bU €	pelow. Write the leftmost derivation	[CO3]	[K3]
U→a E 7. Show that the given grammar is ambiguous.		[CO3]	[K3]
S→ SbS a			
$\Sigma = \{a,b\}.$		[003]	[K3]
9. Draw pushdown automata to accept strings of the l		[CO3]	
 Specify the different ways of language accepted representations. 	otance in PDA and write their	[CO3]	[K2]
$Part - B (3 \times 10 = ANSWER ANY THREE AND AND AND AND AND AND AND AND AND AND$			
11. i) Demonstrate how the set L={ap/p is prime} is not	regular. (5)	[CO2]	[K2]
ii) Draw an C-NFA for the given regular expression 10+(0+11)0*1	1. (5)	[CO2]	[K2]
12. Deduce into regular expression that denotes the	language accepted by following	[CO2]	[K3]
DFA.	30		
13. Construct PDA for the language $L = \{WcWR \mid WR\}$	E {0,1}}by final_state.	[CO3]	[K3]
14. For the given context free language L={anbcn using empty stack.		[CO3]	[K3]

Remembering Understanding Applying Analysing Evaluating Creating

Bloom's

KONGU ENGINEERING COLLECE, PERUNDURAI 638 060 CONTINUOUS ASSESSMENT TEST 3

(Regulations 2022)

Month and Year : November 2024	Roll Number: 22c5R227		
Programme : B.E Branch : CSE Semester : V	Date : 21-11-2024 Time : 1.15 pm to 2.45 pm		
Course Code : 22CST53 Course Name : Theory of Computation	Duration : 1 % Hours Max. Marks : 50		

		ANSWER ALL THE QUESTIONS			
1.		rove that the language L = (a/b), v=j) is not CFL using pumping lemma.		(COII)	115500
2.	R	S → ABAC A →aA/ _€		ken	
		$B \rightarrow bB/\epsilon$ $C \rightarrow c$			
3.		raw a Turing Machine that accept language $\Sigma = \{a, b\}$ that contain strings that the a.	ends	ICO41	[[C3]
4. 5.	De He	esign s Turing machine to perform $f(x,y) = x * y$, ow to remove unit productions in CFG? Write an example		[CO4]	
6.	Co	mpare recursive and recursively enumerable language.		[005]	
T	Ide	entify the reason for a problem to be undecidable. Give an example of undeci- oblem.		[005]	[K2]
8.	Pro	we that if a language L and its complement L^1 are recursively enumerable the ecursive.	en L	[CO5]	1821
9.		id the solution of an instance of PCP with two lists A and B. A≈[aa, bb, abb] and B=[aab, ba, b]		(CGT)	[123]
10.	Pro	wide example for tractable and intractable problems.		[CO3]	TROD
		Part - B (3 × 10 = 30 Marks) ANSWER ANY THREE QUESTIONS		N: 2009	177
11_		Convert the given CFG to GNF S→AA / a A→SS / b	(10)	[CO+]	fixal
12.		Design a Turing Machine (M) to implement MULTIPLICATION function using the subroutine copy.	(10)	[CO4]	[K3]
13		Prove the following (i) "If L1 and L2 are recursive language then L1 U L2 is a recursive language".	(10)	[CO5]	[K2]
14.	(i)	(ii) Lu is recursively enumerable and Ld is recursive Explain storage in finite control with suitable example.	(5)	[CO4]	[K2]
	(ii)	Obtain the code for the Turing Machine $\mathbf{M} = ([q_0,q_1,q_2,q_3,q_4] \ [0,1] \ [0,1.X,\ Y,\ B],\ \mathcal{S},\ q_0,\ B\ (q_4)) \ \text{where}\ \mathcal{S} \ \text{is}$	(5)	[CO5]	[163]

	$\delta (q_0, 0) = \delta (q_0, Y) =$		$\begin{split} \delta\left(\boldsymbol{q}_{2},\boldsymbol{\theta}\right) &= \left(\boldsymbol{q}_{z},\boldsymbol{\theta},\boldsymbol{L}\right) \\ \delta\left(\boldsymbol{q}_{z},\boldsymbol{X}\right) &= \left(\boldsymbol{q}_{y},\boldsymbol{X},\boldsymbol{R}\right) \end{split}$			
1	Remembering (K1)	Understanding (K2)	Applying (K3)	Analysing (K4)	Evaluating (K5)	Creating (K6)
П		40	60			

given by

s'moe

my Level

entage