MATH110C Homework 1

Boran Erol

April 2024

1 Exercise 1

Lemma 1.1. Let K/F be a field extension. Assume that $charF \neq 2$ and [K:F] = 2. Then, there exists $\alpha \in K$ such that $\alpha^2 \in K$.

Proof. Let $\alpha \in K$ but not in F. Then, $[F(\alpha):F]=2$. Then, $m_F(\alpha)=x^2+ax+b$ for some $a,b\in F$. Then, by completing the square, $m_F(\alpha)=(\alpha+\frac{a}{2})^2+(b-\frac{a^2}{4})=0$, so $(\alpha+\frac{a}{2})^2$ is in F. However, $\alpha+\frac{a}{2}$ is not in F since α is not in F. Thus, we conclude the proof.

2 Exercise 2

Let K/F be a field extension and let $\alpha, \beta \in K$. Assume α and β are algebraic over F, of respective degrees m and n.

Lemma 2.1. Let m' be the degree of α over $F(\beta)$. Then, β has degree $\frac{m'n}{m}$ over $F(\alpha)$.

Proof. Notice that $[F(\alpha, \beta) : F(\alpha)][F(\alpha) : F] = [F(\alpha, \beta) : F(\beta)][F(\beta) : F].$

Since $[F(\alpha):F]=m$ and $[F(\beta):F]=n$ and $[F(\alpha,\beta):F(\beta)]=m'$, the result immediately follows. The only lemma we need to continuously apply is that the degree of an element over a field is also the degree of the extension.

Lemma 2.2. If m and n are coprime, $[F(\alpha, \beta) : F] = mn$.

Proof. By a lemma proven in class, $[F(\alpha, \beta) : F] \leq [F(\alpha) : F][F(\beta) : F] = mn$.

Also notice that $m \mid [F(\alpha, \beta) : F]$ and $n \mid [F(\alpha, \beta) : F]$. Since m and n are coprime, $mn \leq [F(\alpha, \beta) : F]$.

We thus conclude the proof.

3 Exercise 3

We give an example where it fails.

Let $p(x) = x^3 - 2 \in \mathbb{Q}[x]$. Notice that p is irreducible with two of its roots being $\alpha = \sqrt[3]{2}$ and $\beta = \sqrt[3]{2}w$ with $w = e^{2\pi i/3}$. Then, $[\mathbb{Q}(\alpha):\mathbb{Q}] = [\mathbb{Q}(\beta):\mathbb{Q}] = 3$.

We showed in lecture on April 14 that $K=\mathbb{Q}(\alpha,\beta)$ is a splitting field of p over \mathbb{Q} with $[K:\mathbb{Q}]=6$. Notice that this implies $[\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\alpha)]=2$ since

$$[\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha):\mathbb{Q}]=6$$

Then, $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\alpha)] = 3$ and $2 = [\mathbb{Q}(\beta) : \mathbb{Q}]$.

Since $2 \nmid 3$, we have a counterexample.

Lemma 4.1. Let $u = \sqrt{2} + \sqrt[3]{5}$. Then, $\mathbb{Q}(u) = \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$.

Proof. Clearly, $\mathbb{Q}(u) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$. Thus, we'd like to show the opposite inclusion. It suffices to show that $\sqrt{2} \in \mathbb{Q}(u)$ since $\sqrt[3]{5} = u - \sqrt{2}$.

Cubing both sides of this equation and rearranging by combining all $\sqrt{2}$ terms, we have that

$$\sqrt{2} = \frac{u^{3-6u-5}}{3u^2+2}$$

Notice that $3u^2 + 2 \neq 0$ since $u \in \mathbb{R}$. Thus, $\sqrt{2} \in \mathbb{Q}(u)$ and we conclude the proof.

To find all $w \in \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$ such that $\mathbb{Q}(w) = \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$, we'd need to find all elements of $\mathbb{Q}(u)$ with degree 6 over \mathbb{Q} . Then, $[\mathbb{Q}(u):\mathbb{Q}(w)] = 1$ and therefore they have to be equal.

Lemma 5.1. $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = 4.$

Proof. Notice that $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}) : \mathbb{Q}].$

 $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$ since $\sqrt{2}\notin\mathbb{Q}$ and $\sqrt{2}$ satisfies $p(x)=x^2-2$.

To show $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2})]=2$, it suffices to show that $\sqrt{3}\notin\mathbb{Q}(\sqrt{2})$ since $\sqrt{3}$ satisfies $p(x)=x^2-3$.

Now, by contradiction, assume that $\sqrt{3} \in \mathbb{Q}(\sqrt{2})$. Then, there exists rationals a, b such that

$$a + b\sqrt{2} = \sqrt{3}$$

Squaring both sides,

$$a^2 + \sqrt{2}ab + 2b^2 = 3$$

Rearranging this equation proves that $\sqrt{2}$ is rational, which is a contradiction.

We thus conclude the proof.

Lemma 6.1. Let $\xi = \cos(\pi/6) + i\sin(\pi/6)$. $[Q(\xi):\mathbb{Q}] = 4$.

Proof. Notice that ξ is a root of $p(x)=x^4-x^2+1$. Thus, it suffices to show that p(x) is irreducible. p doesn't have real roots since $x^4-x^2+1=(x^2-\frac{1}{2})^2+\frac{3}{4}>0$.

Notice now that $x^4 - x^2 + 1 = (x^2 + \sqrt{3}x + 1)(x^2 - \sqrt{3}x + 1)$. Notice that the polynomials in the RHS are irreducible polynomials in $\mathbb{R}[x]$, so we don't have a factorization of p in $\mathbb{Q}[x]$ using the fact that $\mathbb{R}[x]$ is a UFD. Therefore, p is irreducible.

Lemma 7.1. Let K = F(u) where u is algebraic over F with odd degree. Then, $K = F(u^2)$.

Proof. Let f be the minimal polynomial for u and let $\deg(f) = 2k + 1$ for some $k \ge 0$.

Let g be the minimal polynomial for u^2 and let $\deg(g) = s$ for some $s \ge 1$.

Notice that $g(x^2)(u) = 0$ so $2s \ge 2k + 1$. Since they can't be equal as one is odd and the other is even, 2s > 2k + 1.

Also notice that

$$[F(u):F] = [F(u):F(u^2)][F(u^2):F]$$

. In other words, we have that

$$2k + 1 = [F(u) : F(u^2)]s$$

Since 2s > 2k + 1, the only possible value of $[F(u): F(u^2)]$ is 1. We thus conclude the proof.

Lemma 8.1. If a^n is algebraic over a field F for some n > 0, a is algebraic over F.

Proof. Assume that a^n is algebraic over a field F for some n > 0. Recall that $[F(a^n) : F] = F[(a^n) : F(a)][F(a) : F]$ with both sides finite or infinite. Also recall that $[F(a^n) : F]$ is finite if and only if a^n is algebraic over F. Then, $F[(a^n) : F(a)][F(a) : F]$ is finite so [F(a) : F] is finite and thus a is algebraic over F.