DA8

2025-06-29

9.6.1 Support Vector Classifier

```
set.seed(1)
x=matrix(rnorm (20*2), ncol=2)
y=c(rep(-1,10), rep(1,10))
x[y==1,]=x[y==1,] + 1
plot(x, col=(3-y))
```


We generated the observations to check whether they are linearly separable. They are not.

```
dat=data.frame(x=x, y=as.factor(y))
library(e1071)
svmfit=svm(y~., data=dat , kernel ="linear", cost=10, scale=FALSE)
```

The sym won't scale each feature to have mean zero or standard deviation one because scale = FALSE

svmfit\$index

[1] 1 2 5 7 14 16 17

summary(svmfit)

```
##
## svm(formula = y ~ ., data = dat, kernel = "linear", cost = 10, scale = FALSE)
##
##
## Parameters:
##
     SVM-Type: C-classification
   SVM-Kernel: linear
##
##
         cost: 10
##
## Number of Support Vectors: 7
##
   (43)
##
##
## Number of Classes: 2
```

```
##
## Levels:
## -1 1
```

This tells us, for instance, that a linear kernel was used with cost=10, and that there were seven support vectors, four in one class and three in the other.

What if we use a smaller value of cost parameter?

```
svmfit=svm(y~., data=dat , kernel ="linear", cost =0.1,
    scale=FALSE)
plot(svmfit , dat)
```

SVM classification plot

svmfit\$index

```
## [1] 1 2 3 4 5 7 9 10 12 13 14 15 16 17 18 20
```

we have a larger number of support vectors, because the margin is now wider

```
set.seed(1)
tune.out=tune(svm ,y~.,data=dat ,kernel ="linear",
   ranges=list(cost=c (0.001, 0.01, 0.1, 1,5,10,100) ))
summary(tune.out)
```

```
## Parameter tuning of 'svm':
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
   0.1
##
##
## - best performance: 0.05
## - Detailed performance results:
##
      cost error dispersion
## 1 1e-03 0.55 0.4377975
## 2 1e-02 0.55 0.4377975
## 3 1e-01 0.05 0.1581139
## 4 1e+00 0.15 0.2415229
## 5 5e+00 0.15 0.2415229
## 6 1e+01 0.15 0.2415229
## 7 1e+02 0.15 0.2415229
0.05 error is for 0.1 cost, so it is the best one. Tune() stores the best function and we can assess:
best.mod = tune.out$best.model
summary(best.mod)
##
## Call:
## best.tune(METHOD = svm, train.x = y \sim ., data = dat, ranges = list(cost = c(0.001,
       0.01, 0.1, 1, 5, 10, 100)), kernel = "linear")
##
##
## Parameters:
##
      SVM-Type: C-classification
  SVM-Kernel: linear
##
##
         cost: 0.1
##
## Number of Support Vectors: 16
##
## (88)
##
## Number of Classes: 2
## Levels:
## -1 1
xtest=matrix(rnorm (20*2) , ncol=2)
ytest=sample (c(-1,1), 20, rep=TRUE)
```

now we made the test set

xtest[ytest==1,] = xtest[ytest==1,] + 1

testdat=data.frame(x= xtest , y=as.factor(ytest))

```
ypred=predict(best.mod ,testdat)
table(predict = ypred , truth=testdat$y)

## truth
## predict -1 1
## -1 9 1
## 1 2 8

mean(ypred == testdat$y)

## [1] 0.85
```

We see that the model predicted with 85% accuracy

##

##

Levels: ## -1 1

Number of Classes: 2

Now let's imagine that the observations are barely linearly separable. We fit the support vector classifier and plot the resulting hyperplane, using a very large value of cost so that no observations are misclassified.

```
dat=data.frame(x=x,y=as.factor(y))
svmfit=svm(y~., data=dat , kernel ="linear", cost=1e5)
summary(svmfit)
##
## Call:
## svm(formula = y ~ ., data = dat, kernel = "linear", cost = 1e+05)
##
##
## Parameters:
##
      SVM-Type: C-classification
##
    SVM-Kernel: linear
##
          cost: 1e+05
##
## Number of Support Vectors: 7
##
##
   (43)
```

```
x[y==1,]=x[y==1,]+0.5
plot(x, col=(y+5)/2, pch =19)
```


No training errors were made and only three support vectors were used, however we can see that the margin is very narrow which might lead to the errors with test data.

```
dat=data.frame(x=x,y=as.factor(y))
svmfit=svm(y~., data=dat , kernel ="linear", cost=1e5)
summary(svmfit)
```

```
##
## Call:
## svm(formula = y \sim ., data = dat, kernel = "linear", cost = 1e+05)
##
##
## Parameters:
##
      SVM-Type:
                 C-classification
##
    SVM-Kernel:
                 linear
##
          cost:
                1e+05
##
  Number of Support Vectors: 3
##
##
##
    (12)
##
##
## Number of Classes: 2
##
## Levels:
   -1 1
##
```

```
xtest=matrix(rnorm (20*2) , ncol=2)
ytest=sample (c(-1,1), 20, rep=TRUE)
xtest[ytest==1,] = xtest[ytest==1,] + 1
testdat=data.frame(x= xtest , y=as.factor(ytest))
ypred=predict(svmfit ,testdat)
table(predict = ypred , truth=testdat$y)
##
          truth
## predict -1 1
       -1 8 1
##
       1
           2 9
mean(ypred == testdat$y)
## [1] 0.85
it is only 65% accuracy
svmfit=svm(y~., data=dat , kernel ="linear", cost=1)
summary(svmfit)
##
## svm(formula = y ~ ., data = dat, kernel = "linear", cost = 1)
##
##
## Parameters:
##
      SVM-Type: C-classification
   SVM-Kernel: linear
##
##
         cost: 1
##
## Number of Support Vectors: 7
## (43)
##
##
## Number of Classes: 2
##
## Levels:
## -1 1
plot(svmfit ,dat)
```


Using cost=1, we misclassify a training observation, but we also obtain a much wider margin and use seven support vectors. This will eventually perform better on test data.

```
xtest=matrix(rnorm (20*2) , ncol=2)
ytest=sample (c(-1,1), 20, rep=TRUE)
xtest[ytest==1,] = xtest[ytest==1,] + 1
testdat=data.frame(x= xtest , y=as.factor(ytest))
ypred=predict(svmfit ,testdat)
table(predict = ypred , truth=testdat$y)

## truth
## predict -1 1
## -1 13 4
## 1 0 3

mean(ypred == testdat$y)
mean(ypred == testdat$y)
```

[1] 0.8

This has a 80% accuracy.

9.6.2 Support Vector Machine

```
set.seed(1)
x=matrix(rnorm (200*2) , ncol=2)
x[1:100,]=x[1:100,]+2
x[101:150 ,]=x[101:150,]-2
y=c(rep(1,150) ,rep(2,50))
dat=data.frame(x=x,y=as.factor(y))
```

we created the non-linear class boundary

```
plot(x, col=y)
```


This the plot of data

```
train=sample (200,100)
svmfit=svm(y~., data=dat[train ,], kernel ="radial", gamma=1,
    cost=1)
plot(svmfit , dat[train ,])
```


We randomly divided the data into 2 parts and plotted it. There are some mistakes in training set.

summary(svmfit)

```
##
## Call:
   svm(formula = y \sim ., data = dat[train, ], kernel = "radial", gamma = 1,
##
       cost = 1)
##
##
##
##
   Parameters:
                 C-classification
##
      SVM-Type:
                 radial
##
    SVM-Kernel:
##
          cost:
##
## Number of Support Vectors:
##
    (16 15)
##
##
##
## Number of Classes: 2
##
## Levels:
    1 2
```

Maybe we can decrease the errors by increasing the cost, however it might be overfitting.

```
svmfit=svm(y~., data=dat[train ,], kernel ="radial", gamma=1,
   cost=1e5)
plot(svmfit ,dat[train ,])
```


Let's now check the performance

##

##

##

cost gamma

1 0.5

- best performance: 0.07

- Detailed performance results:

1 1e-01 0.5 0.26 0.15776213

cost gamma error dispersion

```
set.seed(1)
tune.out=tune(svm , y~., data=dat[train ,], kernel ="radial",
    ranges=list(cost=c(0.1,1,10,100,1000),
    gamma=c(0.5,1,2,3,4) ))
summary (tune.out)

##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
```

```
## 5
     1e+03
              0.5 0.11 0.07378648
## 6
     1e-01
              1.0 0.22 0.16193277
## 7
     1e+00
             1.0 0.07 0.08232726
## 8
    1e+01
             1.0 0.09 0.07378648
## 9 1e+02
              1.0 0.12 0.12292726
## 10 1e+03
              1.0 0.11 0.11005049
## 11 1e-01
              2.0 0.27 0.15670212
## 12 1e+00
              2.0 0.07 0.08232726
## 13 1e+01
              2.0 0.11 0.07378648
## 14 1e+02
              2.0 0.12 0.13165612
## 15 1e+03
              2.0 0.16 0.13498971
## 16 1e-01
              3.0 0.27 0.15670212
## 17 1e+00
              3.0 0.07 0.08232726
## 18 1e+01
              3.0 0.08 0.07888106
## 19 1e+02
              3.0 0.13 0.14181365
## 20 1e+03
              3.0 0.15 0.13540064
## 21 1e-01
              4.0 0.27 0.15670212
## 22 1e+00
              4.0 0.07 0.08232726
## 23 1e+01
              4.0 0.09 0.07378648
              4.0 0.13 0.14181365
## 24 1e+02
## 25 1e+03
              4.0 0.15 0.13540064
The best is when cost is 1 and gamma is 1
table(true=dat[-train ,"y"], pred=predict(tune.out$best.model,
 newdata =dat[-train ,]))
      pred
##
## true 1 2
      1 67 10
      2 2 21
##
mean(predict(tune.out$best.model, newdata =dat[-train ,]) == dat[-train ,"y"])
## [1] 0.88
there is 88% accuracy.
9.6.3 ROC Curves
```

2 1e+00

3 1e+01

library(ROCR)

plot(perf, ...)}

rocplot = function(pred , truth , ...){
 predob = prediction(pred, truth)

perf = performance(predob , "tpr", "fpr")

1e+02

4

0.5 0.07 0.08232726

0.5 0.07 0.08232726

0.5 0.14 0.15055453

A short function to plot an ROC curve given a vector containing a numerical score for each observation, pred, and a vector containing the class label for each observation, truth.

Here we obtained fitted values

```
par(mfrow=c(1,2))
rocplot(fitted, dat[train, "y"], main="Training Data")
```

Training Data

False positive rate

This curve is not as good, but it is for training data.

Test Data

Although the curve is still pretty bad, it is better on test data set.