Prova di Matematica Applicata - 28 giugno 2004

- Completare subito questa pagina con cognome, nome, matricola, corso di laurea e docente.
- Scrivere nome, cognome e matricola su ogni foglio.
- Scrivere solamente su questi fogli, anche dietro se occorre.
- Non sono ammessi libri, quaderni o altri fogli; è ammesso l'uso di una calcolatrice tascabile.
- Le risposte non motivate non saranno prese in considerazione

Cognome	Nome	Matricola	Corso di Laurea	Docente	

Tavole della funzione di ripartizione della legge N(0, 1).

Х	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56750	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76731	.77035	.77337	.77637	.77935	.78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
1.0	.84134	.84375	.84614	.84850	.85083	.85314	.85543	.85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92786	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
1.7	.95543	.95637	.95728	.95819	.95907	.95994	.96080	.96164	.96246	.96327
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
2.0	.97725	.97778	.97831	.97882	.97933	.97982	.98030	.98077	.98124	.98169
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899
2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361
2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520
2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.99643
2.7	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.99736
2.8	.99745	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.99807
2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.99861

Esercizio 1: Sia X una v. a. continua con varianza finita. Si dimostri che la grandezza E $[(X-t)^2]$ assume il suo valore minimo per $t=\mathrm{E}\,[X]$.

Esercizio 2: Sia (X,Y) un vettore aleatorio con funzione di densità

$$f_{XY}(x,y) = \begin{cases} ky & \text{se} & 0 \le x \le 1, & 0 \le y \le 1\\ cx & \text{se} & 0 \le x \le 1, & 1 < y \le 2\\ 0 & \text{altrove} \end{cases}$$

Sapendo che $\mathrm{E}\left[X\right]+\mathrm{E}\left[Y\right]=\frac{5}{3},$ determinare i valori di ke di c.

Esercizio 3: Da un'urna contenente m palline bianche ed altrettante nere $(m \geq 1)$ si effettuano due estrazioni consecutive senza reimmissione. Sia X la v. a. che vale 1 se la seconda pallina estratta è bianca e vale 0 altrimenti, e sia Y la differenza tra il numero di palline bianche e di palline nere nel campione estratto.

Verificare che $\lim_{m\to\infty} \text{Cov}(X,Y) = \frac{1}{2}$.

Cognome, nome e matricola:

Esercizio 4: Da un mazzo di carte da briscola si estraggono quattro carte senza reimmissione.

- a) Qual'è la probabilità che la quaterna estratta contenga l'asso di denari?
- **b)** Ripetendo l'esperimento 100 volte, qual'è la probabilità che l'asso di denari compaia in almeno 9 quaterne?

Esercizio 5: Si consideri un lotto di interruttori, il 40% dei quali ha tempo di vita governato da legge esponenziale di parametro $\lambda=1$, mentre il restante 60% ha tempo di vita governato da legge esponenziale di parametro $\lambda=2$. Scelto a caso un interruttore e indicata con X la v. a. che indica il suo tempo di vita, determinare $\mathrm{E}\left[X\right]$.

Cognome, nome e matricola:

Esercizio 6: Enunciare e dimostrare la disuguaglianza di Chebyshev.