Двоичная куча (heap, пирамида)

Булгаков Илья, Гусев Илья

Московский физико-технический институт

Москва, 2020

Содержание

🕕 Двоичная куча

2 Библиотечные функции для работы с кучей

Двоичная куча (heap, пирамида)

- Двоичное дерево (связный ациклический граф, у которого у любой вершины не больше 2 потомков)
- Если узел В являетсея потомком узла А, то A.key ≥ B.key (тах-куча). Для тіп-кучи наоборот.
- Глубина всех листьев (расстояние до корня) отличается не более чем на 1 слой.
- Последний слой заполняется слева направо без «дырок».

Реализация

0	1	2	3	4	5	6	7	8	9
16	11	9	10	5	6	8	1	2	4

- A[0] корень
- ullet $\forall i \ A[2i+1]$ левый потомок A[i]
- ullet $\forall i \ A[2i+2]$ правый потомок A[i]

Подъем элемента в куче

Просеивание (heapify)

- Применяется, если корень не удовлетворяет свойству кучи
- Правое и левое поддерево удовлетворяют
- Итеративно меняем местами с любым потомком, пока свойство кучи не будет восстановлено

Двоичная куча Действия и сложность

- **①** Добавить элемент в кучу: добавить в конец и осуществить подъем. Сложность $\mathcal{O}(\log n)$
- ② Исключить максимальный элемент из кучи: поставить последний элемент в корень, уменьшить количество элементов, выполнить heapify. Время работы $\mathcal{O}(\log n)$
- lacktriangle Изменить значение любого элемента. Время работы $\mathcal{O}(\log n)$
 - Превратить неупорядоченный массив элементов в кучу. Сложность $\mathcal{O}(n)$

Построение за $\mathcal{O}(n)$

 $\lceil \frac{n}{2^{h+1}} \rceil$ - максимум количества элементов на уровне h $\mathcal{O}(h)$ - сложность вставки элемента на уровень h $\lfloor \lg(n) \rfloor$ - высота n-элементной пирамиды

$$\sum_{h=0}^{\lfloor \lg(n) \rfloor} \lceil \frac{n}{2^{h+1}} \rceil \mathcal{O}(h) = \mathcal{O}(n \sum_{h=0}^{\lfloor \lg(n) \rfloor} \frac{h}{2^h})$$

$$\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2$$

$$\mathcal{O}(n \sum_{h=0}^{\lfloor \lg(n) \rfloor} \frac{h}{2^h}) = \mathcal{O}(n \sum_{h=0}^{\infty} \frac{h}{2^h}) = \mathcal{O}(2n) = \mathcal{O}(n)$$

Маленькая лемма

$$\sum_{h=0}^{\infty} x^k = \frac{1}{1-x}$$
$$(\sum_{h=0}^{\infty} x^k)' = (\frac{1}{1-x})'$$
$$\sum_{h=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}$$
$$\sum_{h=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$
$$k = h, x = \frac{1}{2}$$

Библиотечные функции для работы с кучей

std::make_heap - метод построения кучи Объявлен в заголовочном файле <algorithm>

```
#include <algorithm>
int main() {
    std::vector<int> v { 3, 2, 4, 1, 5, 9 };
    std::make_heap(v.begin(), v.end());
    std::pop_heap(v.begin(), v.end());
}
```

Полезные ссылки І

Т.Кормен, Ч.Лейзерсон, Р.Ривест, К.Штайн - Алгоритмы. Построение и анализ. Глава 6 https://bit.ly/2wFzphU

Lecture Slides for Algorithm Design https://algs4.cs.princeton.edu/lectures/