

(19) RU (11) 2039019 (13) C1

(51) 6 С 03 С 13/02

Комитет Российской Федерации
по патентам и товарным знакам

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ
к патенту Российской Федерации

1

(21) 5040473/33

(22) 29.04.92

(46) 090795 Бюл. № 19

(71) Научно-исследовательская лаборатория базальтовых волокон Института проблем материаловедения АН Украины (UA)

(72) Трефилов Виктор Иванович (UA); Сергеев Владимир Петрович (UA); Махова Мария Федоровна (UA); Джигирис Дмитрий Давыдович (UA); Мицenko Евгений Семенович (UA); Чувашов Юрий Николаевич (UA); Бочарова Ирина Николаевна (UA); Горбачев Григорий Федорович (UA)

(73) Научно-исследовательская лаборатория базальтовых волокон Института проблем материаловедения АН Украины (UA)

(56) Авторское свидетельство СССР N 525634, кт С 03 С 13/00, 1975.

Авторское свидетельство СССР N 1261923, кт С 03 С 13/00, 1986.

2

(54) СТЕКЛО ДЛЯ СТЕКЛОВОЛОКНА

(57) Использование: для производства непрерывных и грубых волокон. Сущность изобретения: стекло для стекловолокна содержит, в мас%: оксид кремния 47,5 - 57,8 БФ SiO_2 , оксид алюминия 17,1 - 19 БФ Al_2O_3 , оксид титана 12 - 2 БФ TiO_2 , оксид железа 3,8 - 8,5 БФ Fe_2O_3 , оксид железа 3,4 - 7,0 БФ FeO , оксид марганца 0,11 - 0,19 БФ MnO , оксид кальция 6,5 - 10,8 БФ CaO , оксид магния 2,3 - 7,5 БФ MgO , оксид калия 0,8 - 2,5 БФ K_2O , оксид натрия 2,2 - 4,8 БФ Na_2O , оксид серы 0,01 - 0,20 БФ SO_3 , оксид фосфора 1,1 - 2,0 БФ P_2O_5 , оксид скандия 0,03 - 1,2 БФ Sc_2O_3 , оксид цинка 0,05 - 1,0 БФ ZnO . Соотношение $Al_2O_3/(CaO+MgO) < 2,0$. Устойчивость в 2N HCl (98°C, 3 ч) 98 - 98,9% в $Ca(OH)_2$, 99,1 - 99,8% 1 зл. ф-лы, 4 габп.

RU

2039019

C1

Изобретение относится к составам стекол, предназначенным для производства непрерывных и грубых волокон, которые могут быть использованы для получения различных тканей и нетканых материалов, фильтров, для армирования цементных и гипсовых вяжущих, а также полимеров – и других целей.

Цель изобретения – снижение кристаллизационной способности, удлинение температурного интервала выработки, обеспечение надежности процесса и повышение устойчивости в кислых средах.

В известных составах стекол, применяемых для стекловолокна, содержится SiO_2 , TiO_2 , Al_2O_3 , Fe_2O_3 , FeO , CaO , MgO , MnO , K_2O , Na_2O , P_2O_5 , La_2O_3 . Для составления шихты в качестве исходного материала используется андезит, корректирующийся кварцевым песком, мелом, доломитом, содой и трехокисью лантана, а в ряде случаев пиролюзитом [1].

Известен состав стекла, содержащий SiO_2 , Al_2O_3 , TiO_2 , Fe_2O_3 , FeO , MnO , CaO , MgO , K_2O , Na_2O , SO_3 [2].

Исходным сырьем для получения минерального волокна этого состава служит порода типа ортоамфиболитов и амфиболитов как однокомпонентная шихта. Однако такое стекло обладает высокой кристаллизационной способностью, низкой кислотоустойчивостью и из-за узкого интервала выработки не может быть использовано в производстве непрерывных и грубых волокон.

Для устранения указанных недостатков и достижения цели предложены составы, конкретные из которых приведены в табл. 1.

Технологические свойства расплавов и физико-химические свойства волокон приведены в табл. 2 и 3 соответственно. Как видно из табл. 1, предлагаемое стекло отличается от известного более высоким содержанием оксидов алюминия и трехвалентного железа, что приводят к увеличению кислотоустойчивости. Этот эффект усиливают оксиды фосфора и скандия (как элементы III и V групп таблицы Д.И. Менделеева).

Известно, что оксиды железа, кальция и магния значительно повышают кристаллизационную способность расплава, что отрицательно отражается на процессе волокнообразования (особенно непрерывных волокон). За счет этого интервал выработки волокон сужается, возрастает обрывистость и процесс извлечения волокон неустойчив. Уменьшение указанных погрешностей обеспечивает снижение температуры варкиного предела кристаллизации (Твпк.).

Удлинение температурного интервала выработки и надежность процесса. Введение оксида цинка приводит к образованию с Al_2O_3 твердого раствора, устойчивого к кислотам. Важным условием является соблюдение соотношения $\frac{\text{Al}_2\text{O}_3}{\text{CaO} + \text{MgO}}$, которое должно быть более 1,2, но менее 2,0.

Стекло указанного состава может быть получено как из обычных, используемых в стекловарении исходных компонентов, так и на основе различных природных материалов, например андезитов, андезитобазальтов, базальтов, диабазов, габбро.

Процесс варки стекла предлагаемого состава осуществляли в печах при температуре 1450°C до получения гомогенного расплава. Формирование волокон происходило устойчиво.

Как следует из табл. 3 в сравнении с прототипом, Тв.п.к. предлагаемого состава стекла на 50-80°C ниже, интервал выработки волокна расширен в 6-9 раз, а кислотоустойчивость выше в 2,2-5,3 раза.

Из предлагаемого состава стекла получены также и грубые волокна. Результаты испытаний их физико-химических свойств представлены в табл. 4.

Из табл. 4 видно, что грубые волокна из стекла предлагаемого состава обладают высокой стойкостью не только к кислотам, но и к насыщенному раствору $\text{Ca}(\text{OH})_2$, что определяет их использование при изготовлении фибробетона.

Ассортимент получаемых волокон (непрерывных и грубых), высокая химическая устойчивость в агрессивных средах дает возможность использовать их для производства тканых и нетканых, фильтровальных материалов, наполнителей композитов, армирования бетонов на основе минеральных вяжущих и др., стойких при эксплуатации в агрессивных средах в химической и других отраслях промышленности, в качестве фильтров грубой, тонкой и сверхтонкой очистки агрессивных сред.

Долговечность тканей, изготовленных из волокна предлагаемого состава превышает долговечность стеклянных тканей примерно в 1,5 раза. Из стекла предлагаемого состава наработаны и испытаны партии непрерывного и грубого волокна в количестве 800 и 1000 кг соответственно.

Физико-химические исследования полученного волокна подтвердили его высокую химическую устойчивость в агрессивных средах.

Таблица 1

Компоненты	Состав волокна, мас. %				
	1	2	3	4	5
SiO ₂	56,26	52,40	49,00	57,8	47,5
Al ₂ O ₃	17,20	17,80	18,28	19,0	17,1
TiO ₂	1,20	1,26	1,45	1,2	2,0
Fe ₂ O ₃	4,41	5,54	5,80	3,8	7,4
FeO	3,50	3,98	4,20	3,4	5,2
MnO	0,12	0,13	0,18	0,11	0,15
CaO	6,90	7,30	8,18	7,2	6,75
MgO	4,00	5,00	5,40	2,3	7,5
K ₂ O	2,31	1,56	0,90	0,8	1,2
Na ₂ O	2,91	2,28	2,31	2,2	3,0
SO ₃	0,01	0,05	0,10	0,05	0,1
P ₂ O ₅	1,10	1,45	2,00	1,1	1,4
Sc ₂ O ₃	0,03	0,75	1,20	0,04	0,5
ZnO	0,05	0,50	1,00	1,0	0,2
Al ₂ O ₃	1,58	1,45	1,35	2,0	1,2
CaO + MgO					

Таблица 2

Состав. №	Вязкость, Па · с при °C				
	1450	1400	1350	1300	1250
1	510	940	1900	2900	1800
2	155	220	500	1000	200
3	76	135	246	565	1150
4	710	1250	2250	4000	8600
5	70	124	220	395	1250

Таблица 3

Технологические свойства расплавов и волокон	Состав волокна				
	1	2	3	4	5
Температура верхнего предела кристаллизации, Тв.п.к., °C	1220	1230	1250	1210	1250
Температурный интервал выработки, °C	1320-1380	1300-1370	1280-1370	1340-1400	1290-1370
Средний диаметр волокна, мкм	9,0	8,9	9,3	-	-
Предел прочности при растяжении, МПа	2200	2380	2240	-	-
Потери массы в 2 HCl (90 °C, 3 ч), мг/5000 см ²	324,1	388,5	789,4	-	-

Таблица 4

Свойства волокон	Составы стекла		
	1	2	3
Диаметр, мкм	160	150	155
Предел прочности при растяжении, МПа	280	300	305
Устойчивость в средах (98°C, 3 ч), %			
2NHCl	98,9	98,0	97,1
Ca(OH)2	99,1	99,6	99,8

Ф о р м у л а изобретения

1. СТЕКЛО ДЛЯ СТЕКЛОВОЛОКНА, включающее SiO_2 , Al_2O_3 , TiO_2 , Fe_2O_3 , FeO , MnO , CaO , MgO , K_2O , Na_2O и SO_3 , отличающееся тем, что оно дополнительно содержит P_2O_5 , ZnO и SC_2O_3 при следующем соотношении компонентов, мас.%:

SiO_2	47,5 - 57,8	10
Al_2O_3	17,1 - 19,0	
TiO_2	1,2 - 2,0	
Fe_2O_3	3,8-8,5	
FeO	3,4 - 7,0	15

MnO	0,11 - 0,19
CaO	6,5 - 10,8
MgO	2,3 - 7,5
K ₂ O	0,8 - 2,5
Na ₂ O	2,2 - 4,6
SO ₃	0,01 - 0,20
P ₂ O ₅	1,1 - 2,0
SC ₂ O ₃	0,03 - 1,2
ZnO	0,05 - 1,0

2. Стекло по п.1, отличающееся тем, что отношение

$$1,2 < \frac{\text{Al}_2\text{O}_3}{\text{CaO}+\text{MgO}} < 2,0.$$

Редактор Н.Семенова

Заказ 528

Составитель В.Трефилов

Техред М.Моргентай

Тираж

ИПО "Посик" Роспатента
113035, Москва, Ж-35, Раушская наб., 4/5

Корректор М.Керецман

Подписьное