Эконометрика 1 осень 2021

Лекция 2 14.09.2021

Маленькие классы → лучшие результаты? Способ 1

- 1. Сравнить средние значения STR в округах с маленькими классами и в округах с большими классами ("оценка")
- 2. Проверить "нулевую" гипотезу о том, что средние в округах двух типов совпадают против "альтернативной" гипотезы о том, что они различаются ("тестирование гипотезы")
- 3. Оценить интервал для разности средних в районах с маленькими и большими классами ("доверительный интервал")

Сравним округа с «маленькими» (STR < 20) и «большими» (STR ≥ 20) классами:

Размер класса	Средний балл (\overline{Y})	Стандартное отклонение (s_Y)	\boldsymbol{n}
Маленький	657,4	19,4	238
Большой	650,0	17,9	182

- 1. *Оценка* Δ = разность групповых средних
- 2. Тестирование гипотезы Δ =0
- **3.Построение доверительного интервала** для **Δ**

1. Оценка

$$\bar{Y}_{small} - \bar{Y}_{large} = \frac{1}{n_{small}} \sum_{i=1}^{n_{small}} Y_i - \frac{1}{large} \sum_{i=1}^{n_{large}} Y_i = 657,4 - 650,0 = 7,4$$

Велико ли это различие?

Стандартная ошибка по всем округам= 19,1

Разность между 60% и 75% процентилями результатов тестов равна 667,6-659,4=8,2

Является ли эта разность достаточно большой, чтобы принимать ее по внимание при реформировании системы образования?

2. Тестирование гипотезы

Тест на различие в средних: вычисляем t-статистику,

$$t = \frac{\bar{Y}_S - \bar{Y}_l}{\sqrt{\frac{s^2}{n_S} + \frac{l}{n_l}}} = \frac{\bar{Y}_S - \bar{Y}_l}{SE(\bar{Y}_S - \bar{Y}_l)}$$

где $SE(\bar{Y}_s - \bar{Y}_l)$ – "стандартная ошибка" разности

средних
$$(\bar{Y}_S - \bar{Y}_l)$$
 и $s^2_S = \frac{1}{n_S - 1} \sum_{i=1}^{n_S} (Y_i - \bar{Y}_S)^2$ и т.д.

2. Тестирование гипотезы:

вычисление статистики

Размер класса	Средний балл (\overline{Y})	Стандартное отклонение (s_Y)	n
Маленький	657,4	19,4	238
Большой	650,0	17,9	182

$$t = \frac{\overline{Y}_S - \overline{Y}_l}{\sqrt{\frac{s_S^2}{n_S} + \frac{s_l^2}{n_l}}} = \frac{657,4 - 650,0}{\sqrt{\frac{19,4^2}{238} + \frac{17,9^2}{182}}} = \frac{7,4}{1,83} = 4,05$$

 $|t|>1,96 \to$ отвергаем нулевую гипотезу на 5%-м уровне значимости

3. Доверительный интервал

95%-й доверительный интервал для разности средних имеет вид:

$$(\bar{Y}_S - \bar{Y}_l) \pm 1,96 \times SE(\bar{Y}_S - \bar{Y}_l) =$$

= 7,4 \pm 1,96 \times 1,83 = (3,8; 11,0)

Два эквивалентных утверждения:

- 1. 95%-й доверительный интервал ∆ не включает 0;
- 2. Нулевая гипотеза Δ =0 отвергается на уровне значимости 5%.

Какое это имеет отношение к эконометрике?

- Рассмотренная концепция может быть распространена на регрессионный анализ
- Схема действий аналогична (оценка, тестирование нулевой гипотезы, построение доверительного интервала)

Еще способы: идеальный — эксперимент (экспериментальные данные)

Случайным образом поделить (всех) детей (и обучающих их учителей!) на группы и обучать одних в больших классах, а других – в маленьких

Проводить регулярное тестирование и сравнивать различия (как?)

Проблемы:

- Технические сложности
- 2. Очень дорого (4-летний проект STAR, вторая половина 80-х \$12 млн (см. СУ, раздел 13.3))
- Родителя хотят, чтобы их ребенок учился в маленьком классе → мешают эксперименту

Реалистичный способ (3) — наблюдаемые данные

Эконометристы работают с наблюдаемыми данными и моделями

Наша задача: что мы хотим понять?

→ Как меняются результаты обучения (баллы за тесты) при изменении размера класса?

Пример: данные по результатам тестов в Калифорнии (продолжение)

$$\beta_{ClassSize} = \frac{\text{изменение } TestScore}{\text{изменение } ClassSize} = \frac{\Delta TestScore}{\Delta ClassSize} = \frac{\Delta Y}{\Delta X}$$
 (1)

ИЛИ

$$\Delta TestScore = \beta_{ClassSize} \ \Delta ClassSize$$
 (2)

Пример: данные по результатам тестов в Калифорнии (продолжение)

Уравнение (1) – определение коэффициента наклона прямой, которая может быть записана

$$TestScore = \beta_0 + \beta_{ClassSize} \times ClassSize$$
 (3)

 β_0 — константа, свободный член $\beta_{ClassSize}$ —коэффициент наклона Ho!

 $TestScore = \beta_0 + \beta_{ClassSize} \times ClassSize +$ другие факторы

Формальная модель (1)

Пусть

 Y_i — среднее значение за тест в i-м школьном округе

 X_i — среднее значение размера класса в i-м школьном округе

 u_i — прочие факторы, влияющие на результаты обучения в i-м школьном округе

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$
 (5)

Формальная модель (2)

Уравнение (5) – модель парной линейной регрессии или линейная модель наблюдений или линейная эконометрическая модель или линейная регрессионная модель

i — номер наблюдения (i = 1, ..., n)

 Y_i — зависимая переменная

 X_i — независимая переменная или регрессор

 u_i — случайная ошибка регрессии или ошибка i – го наблюдения

 $Y = \beta_0 + \beta_1 X$ — линия (функция) теоретической регрессии

(регрессии генеральной совокупности) или линейная модель связи

eta $_0$ - свободный член (константа) линии теоретической регрессии

 β_1 - коэффициент наклона линии теоретической регрессии

Пример: гипотетические данные по результатам тестов в Калифорнии

Рисунок 4.1. Диаграмма рассеяния результатов тестов относительно числа учеников в классе (гипотетические данные)

Оценка коэффициентов в модели парной линейной регрессии

Как оценить

 $\beta_{ClassSize}$

ИЛИ

 β_1

в более общей постановке?

Что такое оценка?

Оценка (an estimator) – функция от результатов наблюдения (выборки), выбранных случайным образом из генеральной совокупности.

Оценка (an estimate) – численное значение оценки, полученной по данным из конкретной случайной выборки.

Какие бывают оценки: примеры

Пусть μ_Y - математическое ожидание Y в генеральной совокупности (обозначаем E(Y)).

Пусть $Y_1, Y_2, ..., Y_n$ - выборка n независимых одинаково распределенных случайных величин (i.i.d) из рассматриваемой генеральной совокупности. Как мы можем оценить μ_Y ?

Оценка 1:
$$\hat{\mu}_{Y} = \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}$$

Оценка 2: $\tilde{\mu}_{Y} = Y_{1}$

Оценка 3:
$$\bar{\bar{\mu}}_Y = \frac{1}{n} \left(\frac{1}{2} Y_1 + \frac{3}{2} Y_2 + \frac{1}{2} Y_3 + \frac{3}{2} Y_4 + \dots + \frac{1}{2} Y_{n-1} + \frac{3}{2} Y_n \right)$$
,

при четном *п* (для удобства)

Свойства оценок

Смещенность (несмещенность)

 $\hat{\mu}_Y$ - несмещенная оценка μ_Y , если $E(\hat{\mu}_Y) = \mu_Y$

Смещением $\hat{\mu}_Y$ называется величина $E(\hat{\mu}_Y) - \mu_Y$

Состоятельность

 $\hat{\mu}_Y$ - состоятельная оценка μ_Y , если $\hat{\mu}_Y \overset{p}{\longrightarrow} \mu_Y$ $\underline{}$ $\underline{}$

 $\hat{\mu}_{Y}$ и $\tilde{\mu}_{Y}$ - несмещенные оценки μ_{Y} . Тогда $\hat{\mu}_{Y}$ (более) эффективная чем $\tilde{\mu}_{Y}$, если $\mathrm{var}(\hat{\mu}_{Y}) < \mathrm{var}(\tilde{\mu}_{Y})$

МНК оценка

$$\min_{m} \sum_{i=1}^{n} (Y_i - m)^2$$

Пример: выборочное среднее – МНК оценка математического ожидания

МНК оценка коэффициентов парной линейной регрессии

$$Y_{i} = \beta_{0} + \beta_{1} X_{i} + u_{i}$$

$$\min_{b_{0}, b_{1}} \sum_{i=1}^{n} (Y_{i} - b_{0} - b_{1} X_{i})^{2}$$

$$\rightarrow \hat{\beta}_{0}, \hat{\beta}_{1}$$
(5)
$$(6)$$

 $\hat{\beta}_{0}$, $\hat{\beta}_{1}$ - МНК оценки коэффициентов β_{0} и β_{1} Y_{i} = $\hat{\beta}_{0}$ + $\hat{\beta}_{1}$ X_{i} + u_{i} - МНК оценка линии регрессии, (линия выборочной регрессии или функция выборочной регрессии);

 $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$ - предсказанное значение Y_i ;

$$\hat{u}_i = Y_i - \hat{Y}_i$$
 - остаток МНК регрессии

МНК оценка коэффициентов парной линейной регрессии

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

Предположения МНК

Предположение №1: условное распределение u_i относительно X_i имеет нулевое среднее: $E(u_i|X_i)=0$ Предположение №2: (X_i,Y_i) , i=1,...,n, независимы и одинаково распределены (i.i.d.)

Предположение №3: большие выбросы

маловероятны: X_i и Y_i имеют ненулевые конечные

четвертые моменты

Предположение №1: $E(u_i|X_i) = 0$

Предположение №2:
$$(X_i, Y_i)$$
, $i = 1, ..., n$, - (i.i.d.)

Это утверждение о способе формирования выборки – простым случайным образом из одной генеральной совокупности

Предположение №3: большие выбросы маловероятны

Рисунок 4.5. Чувствительность МНК к большим выбросам

Зачем нужны эти предположения?

- Математическая роль: при их выполнении МНК оценка имеет некоторые хорошие свойства
- Позволяют понять проблемы, возникающие при оценке МНК регрессии, если они нарушаются