Lecture 3: Multivariate Regression

Homework review

- Question C2.4 ask you to estimate a simple bivariate regression using IQ to predict wages.
- In Stata this looks like
- . reg wage IQ

not

- . reg IQ wage
- What does the latter command give you?

Homework review

. reg wage IQ

Source	SS	df	MS	5		Number of obs	=	935
Model Residual	14589782.6 138126386	1 933	1458978 148045.			F(1, 933) Prob > F R-squared Adj R-squared	= =	98.55 0.0000 0.0955 0.0946
Total	152716168	934	163507.	675		Root MSE	=	384.77
wage	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
IQ _cons	8.303064 116.9916	.8363 85.64		9.93 1.37	0.000 0.172	6.661631 -51.08078		.944498 85.0639

- What is the predicted increase in monthly salary for a 15 point increase in IQ?
- Common mistake: 8.3*15 + 117
 - Why is this wrong?
- What is the predicted monthly salary for IQs of 100, 115, 145?

- Two weeks ago, we modeled state homicide rates as being dependent on one variable: poverty. In reality, we know that state homicide rates depend on numerous variables.
- Our estimation of homicide rates using multiple regression will look something like this: $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_k X_{ik} + \varepsilon_i$
- This allows us to estimate the "effect" of any one factor while holding "all else constant."

The "true" model:

$$Y_{i} = \mu_{0} + \mu_{1}E_{i1} + \mu_{2}E_{i2} + \dots + \mu_{p}E_{ip} + R_{i}$$

$$= \mu_{0} + \sum_{i=1}^{p} \mu_{j}E_{ij} + R_{i}$$

Our estimation model:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_k X_{ik} + \varepsilon_i$$

= $\beta_0 + \sum_{i=1}^k \beta_i X_{ij} + \varepsilon_i$

- Usually, the independent variables in our estimation model are some subset of the "true" model.
- We can rewrite the "true" model in terms of k observed and p-k unobserved variables:

$$Y_{i} = \mu_{0} + \sum_{j=1}^{k} \beta_{j} X_{ij} + \sum_{j=k+1}^{p} \mu_{j} E_{ij} + R_{i}$$

Re-arranging the "true" equation:

$$\sum_{j=1}^k \beta_j X_{ij} = (Y_i - \mu_0) - \sum_{j=k+1}^p \mu_j E_{ij} - R_i$$
 Re-arranging the estimation equation:

$$\varepsilon_i = Y_i - \beta_0 - \sum_{j=1}^{\kappa} \beta_j X_{ij}$$

And substituting:

$$\varepsilon_{i} = Y_{i} - \beta_{0} - Y_{i} + \mu_{0} + \sum_{j=k+1}^{p} \mu_{j} E_{ij} + R_{i}$$

$$= (\mu_0 - \beta_0) + \sum_{i=k+1}^{p} \mu_i E_{ij} + R_i$$

- This means that the error term in a regression reflects both the random component in the dependent variable, and the impact of all excluded variables.
- Variables besides poverty thought to influence homicide rates:
 - Region, high school graduation, incarceration, unemployment, gun ownership, female headed households, population heterogeneity, income, welfare, law enforcement officers, IQ, smokers, other crime

Recall, in a bivariate regression, we found the following:

$$E(\text{hom } rate_i) = -.973 + .475 poverty_i + u_i$$

- Download multivariate homicide rate data "murder_multi.dta" from <u>www.public.asu.edu/~gasweete/crj604/data/</u>
- Adding imprisonment rate and rate of female-headed households to the model yields the

 $E(\text{formowe}_i)$ 7.34 – .005 $poverty_i + .0077 \ prison_i + .89 \ femhh_i + u_i$

- Add imprisonment rate and rate of femaleheaded households to the regression model predicting homicide rates.
- You should get a model like this:

```
E(\text{hom } rate_i) = -7.34 - .005 poverty_i + .0077 prison_i + .89 femhh_i + u_i
```

- What happened to the relationship between poverty and homicide? Why?
- What does it mean that our intercept is now -7.34?

- Of the three predictors in our model, which is the "strongest"?
- Poverty is no longer statistically significant. How precise is our estimate of the poverty effect? Hint: what is the 95% confidence interval?
 - Does this interval contain large effects. Another hint: what is the 95% confidence interval for the standardized coefficient?

- In the bivariate regression, imprisonment rates and rates of female-headed households were in the error term, and assumed to be uncorrelated with poverty rates.
- This assumption was false. In fact, explicitly controlling for just these two variables reduces the estimate for the effect of poverty on homicide rates from .475 to -.005

- It's important to know how to interpret the regression results.
- -7.34 is the expected homicide rate if poverty rates, imprisonment rates, and female-headed household rates were zero. This is never the case, so it's not a meaningful estimate.
- .0077 is the effect of a 1 point increase in the imprisonment rate on the homicide rate, holding poverty and femhh constant.
- .89 is the effect of a 1 point increase in the femaleheaded household rate on the homicide rate, holding poverty and prison constant.
- See Wooldridge pp. 78-9 (partialling out)

- Is the effect of female-headed households 115 times bigger than the effect of the imprisonment rate?
- prison: mean=404, s.d.=141
- femhh: mean=10.2, s.d.=1.4
- Because the standard deviation of *prison* is 100 times larger than *femhh*, it's not easy to directly compare the two estimates, unless we calculate standardized effects:
 - prison: .422, femhh: .499

- The fitted value (or predicted value) for each state is the expected homicide rate given the poverty, imprisonment and female-headed household rate.
- For Arizona:

```
E(\text{hom } rate_i) = -7.34 - .005*15.2 + .0077*529 + .89*10.06= -7.34 - .076 + 4.07 + 8.95= 5.60
```

 $E(\text{hom } rate_i) = -7.34 - .005 poverty_i + .0077 prison_i + .89 femhh_i + u_i$

 The actual homicide rate in Arizona was 7.5, so the residual is 1.9

$$u_i = y_i - \hat{y}_i = 7.5 - 5.6 = 1.9$$

- That's just one of 50 residuals. The sum of all residuals is zero.
- The sum of the squares of all residuals is as small as possible. That's how the estimates are chosen

- Rather than calculating the predicted values and residuals "by hand", you can have Stata do it:
- For predicted values, after your regression model ("homhat" is the name of the new variable. It can be anything you want to call it.):

```
. predict homhat
(option xb assumed; fitted values)
```

For residuals (again, "resid" can be anything):

```
    predict resid, r
```

- You can also estimate predicted values for hypothetical cases.
- For example, if we wanted to look at the "average state":

. summ poverty prison fem

Variable	Obs	Mean	Std. Dev.	Min	Max
poverty	50	12.09	3.01	5.6	20.1
prison	50	405.34	141.3413	141	835
fem_hh	50	10.16597	1.445036	7.533991	14.21424

. reg homrate poverty prison fem hh

	Source	SS	df	MS	Number of obs = 50
-					F(3, 46) = 30.34
	Model	216.069398	3	72.0231325	Prob > F = 0.0000
	Residual	109.215601	46	2.3742522	R-squared = 0.6642
-					Adj R-squared = 0.6423
	Total	325.284999	49	6.63846936	Root MSE = 1.5409

homrate	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
poverty prison	0048145 .0077024	.1003278	-0.05 3.75	0.962	2067639 .003568	.1971349
fem_hh	.889994	.2051466	4.34	0.000	. 4770552	1.302933
_cons	-7.341531	1.59615	-4.60	0.000	-10.55441	-4.128649

[.] di _b[_cons]+_b[poverty]*12.09+_b[prison]*405.34+_b[fem_hh]*10.16597

^{4.7699969}

We can also look at a more disadvantaged hypothetical state:

```
. di _b[_cons]+_b[poverty]*15+_b[prison]*600+_b[fem_hh]*12
7.8876081
```

 Or an unusual state, where poverty and imprisonment rates are low but female headed household rate is high:

```
. di _b[_cons]+_b[poverty]*7+_b[prison]*200+_b[fem_hh]*12
4.8451712
```

Is this last prediction reasonable?

 Estimating and interpreting R² remains the same in multivariate regression.

$$R^{2} = \frac{SSE}{SST} = \frac{\sum (\hat{y}_{i} - \overline{y})^{2}}{\sum (y_{i} - \overline{y})^{2}}$$

- As more variables are included in the model,
 R² will either stay the same or increase.
- One danger is overfitting, where variables are included in the model that are "explaining" noise or random error in the dependent variable

R², example

. reg hom pov

R², example

Source | SS df MS

. reg homrate pov IQ gdp leo welfare smokers income het gunowner fem_ unemp prison gradrate pop65

Number of obs =

50

+-					F(14, 35)	= 7.57
Model	244.511494	14 17.46	551067		Prob > F	= 0.0000
Residual	80.7735048	35 2.307	781442		R-squared	= 0.7517
+-					Adj R-squared	= 0.6524
Total	325.284999	49 6.638	346936		Root MSE	= 1.5191
homrate	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
poverty	1260969	.1570399	-0.80	0.427	444905	.1927111
IQ	2960415	.2012222	-1.47	0.150	7045442	.1124613
gdp_percap	0000843	.0000675	-1.25	0.220	0002214	.0000527
leo	.0078023	.0062672	1.24	0.221	0049209	.0205255
welfare	.0043498	.0046595	0.93	0.357	0051096	.0138091
smokers	.0731863	.0906833	0.81	0.425	1109106	.2572833
income_per~p	.0000533	.0001005	0.53	0.599	0001508	.0002574
het	1.716118	3.287625	0.52	0.605	-4.958115	8.390351
gunowner	.0026661	.0301547	0.09	0.930	0585511	.0638834
fem hh l	5857682	2843154	2 06	0 047	0085773	1 162959

R², example

 Our R² went up to .75! We can explain 75% of the variance in homicide rates, or can we? It could be that our high R² is due to overfitting.

Solutions

- If you have enough cases, split your sample and build your model on half the cases. Test it once on the remaining cases.
- If you can't do that, avoid iterative or stepwise modeling as it produces biased estimates.
- Pay more attention to adjusted R².

Adjusted R²

$$R^{2} = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

$$\tilde{R}^{2} = 1 - \frac{SSR / (N - k)}{SST / (N - 1)} = 1 - (1 - R^{2}) \frac{N - 1}{N - k}$$

 Adjusted r-squared "penalizes" our estimate of explained variance by the number of parameters used.

F-test

$$F_{k-1,N-k} = \frac{SSE/k-1}{SSR/N-k} = \frac{R^2}{1-R^2} \cdot \frac{n-k}{k-1}$$

- The formula for the F-statistic remains the same in a multivariate context, we just have to adjust the degrees of freedom depending on how many parameters are in the model
- You can use the last expression above to calculate the F-statistic if Stata doesn't provide it, and all you have is R²

F-test, cont.

The F-test can be thought of as a formal test of the significance of R²

$$H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$$

$$H_1: \exists j \in [1, k]: \beta_j \neq 0$$

That last line reads: "There exists j in the set of values from 1 to k such that β_j does not equal zero." In other words, at least one variable is statistically significant.

Gauss-Markov Assumptions

Linear in Parameters:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{2} + \ldots + \beta_{k}X_{k} + \varepsilon$$

- Random Sampling: we have a random sample from the population that follows the above model.
- No Perfect Collinearity: None of the independent variables is a constant, and there is no exact linear relationship between independent variables.
- Zero Conditional Mean: The error has zero expected value for each set of values of k independent variables: $E(\varepsilon_i) = 0$
- Unbiasedness of OLS: The expected value of our beta estimates is equal to the population values (the true model).

Next time:

Homework: Problems 3.2, 3.4, C3.2, C3.4, C3.6

Read: Wooldridge Chapters 3 (again) & 4