Faculty	of Science
Vrije U	niversiteit Amsterdam

Coding and cryptography (X_405041) Exam 25-3-2021 (8:30-11:15)

Note

- (1) This exam consists of 8 problems.
- (2) Calculators, notes, books, etc., may not be used.
- (3) Do not hand in scrap, etc., and when handing in $n \ge 1$ sheets, number them $1/n, \ldots, n/n$.
- (4) Justify your answers!
- (5) Throughout this exam, $K = \{0, 1\}$.

Problems

- (1) For each of the following linear codes in K^9 , explain either why it cannot exist, or construct an example. If you give an example, do show that your code has the right properties.
 - (a) A (9,5,5)-code.
 - (b) A (9, 8, 2)-code.
- (2) Let X be a matrix with as rows all the elements in K^7 of weight 3, and let $H = \begin{bmatrix} I \\ X \end{bmatrix}$. It is given that H is the check matrix of a linear code C.
 - (a) What is the rate of C?
 - (b) Determine d(C).
 - (c) Compute how many received words for C can be decoded under IMLD where we correct any error of weight at most 1. Do not simplify your answer to a number.
- (3) Let $F = GF(2^3)$ be constructed using the primitive irreducible polynomial $1+x^2+x^3$ and let β be the class of x.
 - (a) Find a parity check matrix H (with entries in K) for the cyclic Hamming code C of length 7 with generator polynomial $m_{\beta}(x)$.
 - (b) Decode the received word w = 1011101 for this code.
- (4) Let C be the smallest cyclic linear code in K^{15} that contains $x^7 + x^2 + 1$.
 - (a) Determine the generator polynomial of C.
 - (b) Determine the distance d(C).
- (5) The two parts of this problem are independent of each other.
 - (a) Factorize $f(x) = x^8 + x^7 + x + 1$ into irreducibles in K[x]. (You may use without proof which polynomials in K[x] are irreducible for degrees 1, 2 and 3.)
 - (b) Determine the number of idempotents I(x) in K[x] modulo $1+x^{15}$, and use this to determine the number of divisors in K[x] of $1+x^{30}$.

In problems (6) and (7), $GF(2^4)$ is constructed as K[x] modulo $1 + x^3 + x^4$ and β is the class of x, so $1 + \beta^3 + \beta^4 = 0$. Moreover, β is primitive, and the table for its powers is:

0000	-	1110	β^7
1000	1	0111	β^8
0100	β	1010	β^9
0010	β^2	0101	β^{10}
0001	β^3	1011	β^{11}
1001	β^4	1100	β^{12}
1101	β^5	0110	β^{13}
1111	β^6	0011	β^{14}

- (6) Let β and $GF(2^4)$ be as in the table, let $\alpha = \beta^2 + \beta^8$, and let $m_{\alpha}(x)$ be the minimal polynomial of α in K[x].
 - (a) Determine the degree of $m_{\alpha}(x)$ in an efficient way.
 - (b) Find $m_{\alpha}(x)$ explicitly.
- (7) Let β and $GF(2^4)$ be as in the table. Let $C \subseteq K^{15}$ be the 2-error correcting BCH code with parity check matrix

$$H = \begin{bmatrix} 1 & 1 \\ \beta & \beta^3 \\ \beta^2 & \beta^6 \\ \vdots & \vdots \\ \beta^{14} & \beta^{42} \end{bmatrix}.$$

If w is a received word, determine if $d(v, w) \leq 2$ for some v in C in two cases:

- (a) w has syndrome $wH = [s_1, s_3] = [\beta^7, 0];$ (b) w has syndrome $wH = [s_1, s_3] = [\beta^{13}, \beta^9].$
- (8) Let n = 177.
 - (a) Perform the Miller-Rabin probabilistic primality test for n with a=2.
 - (b) Which conclusions can be drawn from the result in (a) concerning if n is prime or not?

Distribution of points															
1a:	4	2a:	4	3a:	7	4a:	6	5a:	9	6a:	4	7a:	8	8a:	6
1b:	4	2b:	6	3b:	4	4b:	4	5b:	7	6b:	4	7b:	8	8b:	2
		2c:													
Maximum total = 90															
Exam grade = $1 + \text{Total}/10$															