華中科技大学 课程实验报告

课程名称:	大数据分析
* 个リエ´ーリリン・	7 × 3× 3/H 21 1/1

专业班级	:	计科 2003 班		
学 号	:	U202015374		
姓名	·	张隽翊		
指导教师	• •	崔金华		
报告日期	: 2	2022年12月28日		

计算机科学与技术学院

目录

实验	<u>} _</u>	PageRa	nk 算法及其实现	1
			的	
	2. 2	字验 P	内容	1
	2. 3	实验证	过程	1
		2. 3. 1	编程思路	1
		2. 3. 2	遇到的问题及解决方式	2
		2. 3. 3	实验测试与结果分析	3
	2. 4	实验总	总结	3

实验二 PageRank 算法及其实现

2.1 实验目的

- 1、学习 pagerank 算法并熟悉其推导过程;
- 2、实现 pagerank 算法¹; (可选进阶版)理解阻尼系数的作用;
- 3、将 pagerank 算法运用于实际,并对结果进行分析。

2.2 实验内容

提供的数据集包含邮件内容(emails.csv),人名与 id 映射(persons.csv), 别名信息(aliases.csv), emails 文件中只考虑 MetadataTo 和 MetadataFrom 两列, 分别表示收件人和寄件人姓名,但这些姓名包含许多别名,思考如何对邮件中人 名进行统一并映射到唯一 id? (提供预处理代码 preprocess.py 以供参考)。

完成这些后,即可由寄件人和收件人为节点构造有向图,不考虑重复边,编 写 pagerank 算法的代码,根据每个节点的入度计算其 pagerank 值,迭代直到误 差小于 10-8。

实验进阶版考虑加入 teleport β,用以对概率转移矩阵进行修正,解决 dead ends 和 spider trap 的问题。

输出人名 id 及其对应的 pagerank 值。

2.3 实验过程

2.3.1 编程思路

(1) 构建邻接矩阵 M

预处理代码输出的 sent receive.csv 文件给出了每一封邮件的发件人和收件 人,从中可以得到通信对<sent id, receive id>,每个通信对代表在网络图中存在 一条由用户 sent id 指向 receive id 的有向边。

初始创建一个 $N \times N$ 的全零矩阵 M,当存在用户 i 到用户 j 的有向边时,令

¹ 基本 pagerank 公式 r=Mr

 $^{^2}$ 进阶版 pagerank 公式: $\mathbf{r}=\beta\,Mr+(1-\beta)\left[rac{1}{N}
ight]_{N\times N}$,其中 β 为阻尼系数,常见值为 0.85

M[i,j]=1。然后归一化矩阵 M,先对 M 的每一列进行求和,再让这一列的元素除以这个和,使得矩阵的每一列元素之和为 1 (全 0 列除外)。

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r = M \cdot r$$

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

图 1.1 邻接矩阵构造过程

(2) 迭代计算结果

对于基础版,将矩阵 M 带入基本公式计算 r_new ; 对于进阶版,利用矩阵 M 构建矩阵 A,再带入计算。迭代至相邻两次的秩向量之差小于 10^{-8} 时停止。每次 迭代更新后将 r_new 归一化,计算误差后用 r_new 更新 r 再进入下一步迭代。

2.3.2 遇到的问题及解决方式

(1) 构造归一化前的邻接矩阵 M 较慢

直接由<sent_id, receive_id>通信对构造邻接矩阵 M 比较缓慢,可以先利用 Pandas 读取,然后利用其 groupby 方法快速构建。

```
for (sent_id, tmp_df) in list(df.groupby('sent_id')):
    receivers = []
    for (receiver_id, _) in list(tmp_df.groupby('receive_id')):
        receivers.append(int(receiver_id))
    M[receivers, int(sent_id)] = 1
```

图 1.2 构造邻接矩阵的代码

(2) 对更新后的 r new 也要进行归一化操作

这是由计算误差的方式决定的。误差在 r_new 与 r 之差的基础上计算得到,需要 r_new 与 r 的计算规则一致,而 r 初始时进行了归一化,因此 r_new 也要进

行归一化操作。

2.3.3 实验测试与结果分析

(1) 基础 pagerank 测试

迭代次数: 122

最后一次误差: 9.928944647803513e-09 r1 中因子之和: 0.999999999999999

图 1.3 基础 pagerank 测试结果

由测试结果可知,最终得到的 r 向量因子之和在误差允许的范围内等于 1, 迭代次数较多, 退出时的误差小于 10-8, 满足要求。

(2) 进阶 pagerank 测试

迭代次数: 80

最后一次误差: 8.035260691603027e-09

r2 中因子之和: 1.0

图 1.4 进阶 pagerank 测试结果

由测试结果可知,最终得到的r向量因子之和在误差允许的范围内等于1, 迭代次数较少,退出时的误差小于10⁻⁸,满足要求。

2.4 实验总结

本次实验实现了 pagerank 算法的基础版本的进阶版本。

在基础版本的 pagerank 算法中,仅使用归一化的邻接矩阵 M 更新秩向量 r。在这种情况下,当 M 非满秩时会导致 r 在若干次迭代后变成 0。导致 M 非满秩的可能情况有 Spider traps(蜘蛛陷阱问题)和 Dead ends(死角问题)。在 Spider traps 情况下,pagerank 算法的随机选择局限在某些结点组成的集团内部,因为集团内部的这些结点只有指向集团内部结点的边,而没有指向集团外部结点的边,在若干次迭代后集团内部的结点会聚集大多数权重;在 Dead ends 情况下,pagerank 算法的随机选择无路可走,直接导致 r 变为 0。为解决这一问题,Google提出了改进的 pagerank 算法。

在进阶版本的 pagerank 算法中,引入了随机跳转系数 beta,每次随机选择有 1-beta 的概率通过 teleport 进行 rank 传递。这一机制的引入实质上是在邻接矩阵 M 中引入了一个元素值较小的常量矩阵,对于存在 Spider traps 和 Dead ends 情况的结点进行修正,从而使得修正后的矩阵有极大概率满秩。

在实践中,要注意及时对秩向量 r 进行归一化,否则会得出错误的结果。算法迭代过程中误差的变化趋势如图 1.5 所示。

图 1.5 误差随迭代次数变化趋势图