Design and Analysis of Content Caching Networks

Jim Kurose
Department of Computer Science
University of Massachusetts
Amherst MA USA

Visiting Scientist, Technicolor Paris/Palo Alto Labs Professeur Invite, LINCS

Workshop on Storage, Nov. 2012

Overview

- networks of caches
- breadcrumbs: content location/caching
- analysis of networks of caches
 - approximation algorithms
 - network calculus for cache networks
 - ergodicity

Networks of caches: ICN scenario

- consumer requests content
- request routed (e.g., shortest path) to known content custodian
- en-route to custodian, caches inspect request
 - hit: return local copy
 - miss: forward request towards custodian
- during download, content stored at caches along path
- content requests from different users interact: cache replacement

Note: ICN thinks wide area, but CamCube fits this model

Cache networks

- network effect: interaction among content request/ reply flows from different users:
 - content replacement: requested content by one user replaces content previously requested by others

Packet-switching: queueing networks (Kleinrock, 1963)

Networks of caches: challenges!

- locating content: known content location; opportunistic caching within network
 - implicit: search for content on shortest path to custodian
 - explicit: adaptive, state-dependent, and/or randomized search
 - similarities/difference from P2P search
- managing content: cache replacement, cache loading/ prefetching
- analyzing networks of caches

Overview

- introduction: content-centric networks
- caching networks
- breadcrumbs: best-effort content location/caching
- analysis of networks of caches
 - approximation algorithms*
 - network calculus for cache networks*
 - ergodicity*

Breadcrumbs: motivation

- goal: access content, given known custodian location
- explicit or implicit cache search policy
 - *implicit:* search for content on shortest path to custodian
 - explicit: adaptive, statedependent, and/or randomized search
- Q: how much state to maintain about network cache contents?

Breadcrumbs

Breadcrumb: per-file soft state - next-hop neighbor where file was last forwarded

Breadcrumbs search

- request starts on route (shortest path) to custodian
- enroute cache holding file sends file to requestor
- cache with recent (breadcrumb can route request following breadcrumb) or to custodian
 - if dead-end reached: reroute to custodian
- soft-state timeout

breadcrumb path properties: stability, invalidation

Breadcrumbs: simulation analysis

- nxn torus, Zipf and uniform content access probability, 300 files, varying cache sizes
- compared to
 - caching w/ no Breadcrumbs ("Basic"),
 - coordinated caching with upstream neighbor
- performance metric
 - minimize load on custodians
- sample results
 - Breadcrumbs performance improves (relatively) as network size grows, and as the files-to-cache size ratio grows

Breadcrumbs: sample results

Breadcrumbs: future work

- tradeoff between time to locate content, cache/ custodian load balancing
- estimating, exploiting cache eviction rates of neighbors

NEC implementation

"Breadcrumbs: efficient, best-effort content location in cache networks," Elisha J. Rosensweig and Jim Kurose, 2009 IEEE INFOCOM Mini-conference

"Performance Evaluation of Partial Deployment of Breadcrumbs in Content-Oriented Networks," T. Tatsuhiro et al, 2012 IEEE ICC Futurenet

Overview

- introduction: content-centric networks
- networks of caches
- content location/caching
- analyzing networks of caches
 - approximation algorithms
 - network calculus for cache networks
 - ergodicity

Why is the problem hard?

- simultaneous allocation of resources (cache storage) from point where content is located back to requestor
- asynchronous resource release, depending on cross flows
- inter-cache flows complex:
 - miss stream from downstream caches
 - lack of independence

content

Modeling a network of caches

- node i: exogenous (external) arrivals for content j: $\lambda(i,j)$
- node i: internal arrivals (miss stream) for content j from downstream neighbors h: m(j,h)
- r(i,j): aggregate rate of arrival requests at i for content j

$$r(i,j) = \lambda(i,j) + \sum_{\substack{\text{all downstream neighbors, } h}} m(j,h)$$

 ZDD: zero download delay assumption

Approximating cache network performance

- **SCA:** standalone cache *i* approximation algorithm: given r(i,j), compute miss rate for all content j
- Independence Reference Model (IRM) of incoming requests:

$$Pr(X_t = f_j \mid X_1,...,X_{t-1}) = Pr(X_t = f_i)$$

SCA approximation algorithm for LRU: [Dan 1985]

Fixed-point iteration

Note: tree-network (feed-forward) require single iteration

Fixed point approximation error

- line topology with9 nodes
- errors decrease in networks with high node degree

Error factor analysis

sources of approximation errors:

- SCA algorithm inaccuracies?
- cascading errors?
 - approximated output rates of one iteration is input to next iteration
- violating IRM assumed by SCA algorithm?
 - miss process for file j negatively correlated

Error factor analysis

 Factor analysis reveals that non-IRM input to SCA is main cause of error

[&]quot;Approximate Models for General Cache Networks," Elisha J. Rosensweig, Jim Kurose, Don Towsley, 2010 IEEE INFOCOM

Overview

- introduction: content-centric networks
- caching networks
- breadcrumbs: best effort content location/caching
- analysis of networks of caches
 - approximation algorithms
 - network calculus for cache networks
 - ergodicity

(σ_i, ρ_i) analyses of cache networks

 (σ_i, ρ_i) bounds # requests for f_i over $[t_1, t_2]$:

$$\int_{t_1} r_i(t)dt \leq \rho_i(t_2 - t_1) + \sigma_i$$

where $r_i(t)$ = request rate for f_i at time t

Goal: a network calculus for cache networks:

(σ_i, ρ_i) cache networks: observations

not all requests arriving at cache will leave (unlike queue)

- stream of input requests for one file only generates no output
 - interactions among files in cache critical
- "burst" of request for same file generates one output
 - different intuition (from queues) about "performance damage" of bursts

Building block: miss set, M_i

miss set for f_i: set of requests for c unique files, other than i

 $M_i(x_1, ..., x_{n,c})$: max number miss sets for file f_i , given $\{x_i^{in}\}$ arrivals, cache of size c.

properties:

- $\bullet M_i = min(x_i^{in}, M) \longleftarrow \coprod$
- $x_i^{out} \leq M_i$, and this bound is achievable

From $(\sigma_i^{in}, \rho_i^{in})$ to $(\sigma_i^{out}, \rho_i^{out})$:

Theorem: For a cache of size *c*:

$$\rho_i^{out} = \min(\rho_i^{in}, M_i(\rho_1^{in}, \dots, \rho_n^{in}, c))$$

Can calculate ρ_i^{out} from $\{\rho_i^{in}\}$

Numerical example

- cache size = 2 at each node
 - homogeneous IRM arrivals, exponential interarrival times
- 4 files, uniform popularity distribution

Numerical example: bounding results

E. Rosensweig, J. Kurose, "A Network Calculus for Cache Networks," to appear in *IEEE Infocom 2013.*

Ergodicity of cache networks

- does steady state performance depend on initial conditions (ergodicity)?
 - shown existence of nonergodic cases (replacement policy, topology, cache size)
 - derived sufficient conditions for ergodicity
 - topology (single-custodian trees)
 - from individual ergodicity to system ergodicity

Ergodicity of cache networks

- ergodicty (continued):
 - showed random replacement: ergodic
 - defined class of non-protective policies (including LRU): all ergodic

E. Rosensweig, D. Menasche, J. Kurose, "On the Steady-State of Cache Networks," to appear in *IEEE Infocom 2013*.

Future work

- cache network protocols
 - multipath: download from multiple custodians
 - mobility
 - proactive caching, replacement in video-content distribution nets
- network calculus
 - continued development of deterministic bounds
 - stochastic bounding techniques
- approximate analysis of cache networks
 - asymptotic (Kelly, Bonald) results

The end

?? || /* */