A Spectral Approach To Meshes

Eli Griffiths

November 12, 2024

A **triangular mesh** is a triple K = (V, E, F) such that

- $V \subseteq \mathbb{R}^3$ is a finite set representing the vertices
- $E \subseteq [V]^2$ is a set representing non-intersecting edges
- $F \subseteq [E]^3$ is the set of faces such that for any $f = \{e_1, e_2, e_3\} \in F$,

$$e_1 \cap e_2 = \{v_1\}$$

 $e_2 \cap e_3 = \{v_2\}$
 $e_3 \cap e_1 = \{v_3\}$

for
$$v_1 \neq v_2 \neq v_3$$
.

A **triangular mesh** is a triple

- K = (V, E, F) such that
 - $V \subseteq \mathbb{R}^3$ is a finite set representing the vertices
 - $E \subseteq [V]^2$ is a set representing non-intersecting edges
 - $F \subseteq [E]^3$ is the set of faces such that for any $f = \{e_1, e_2, e_3\} \in F$

$$e_1 \cap e_2 = \{v_1\}$$

 $e_2 \cap e_3 = \{v_2\}$

for $v_1 \neq v_2 \neq v_3$.

A **triangular mesh** is a triple K = (V, F, F) such that

- K = (V, E, F) such that
 - $V \subseteq \mathbb{R}^3$ is a finite set representing the vertices
 - E ⊆ [V]² is a set representing non-intersecting edges
 - $F \subseteq [E]^3$ is the set of faces such that for any $f = \{e_1, e_2, e_3\} \in F$,

$$e_1 \cap e_2 = \{v_1\}$$

 $e_2 \cap e_3 = \{v_2\}$
 $e_3 \cap e_4 = \{v_2\}$

for $v_1 \neq v_2 \neq v_3$.

A **triangular mesh** is a triple K = (V, E, F) such that

- $V \subseteq \mathbb{R}^3$ is a finite set representing the vertices
- E ⊆ [V]² is a set representing non-intersecting edges
- $F \subseteq [E]^3$ is the set of faces such that for any $f = \{e_1, e_2, e_3\} \in F$,

$$e_1 \cap e_2 = \{v_1\}$$

 $e_2 \cap e_3 = \{v_2\}$

$$e_3 \cap e_1 = \{v_3\}$$

for
$$v_1 \neq v_2 \neq v_3$$
.

