自动化测试AI方向大作业报告

脱晓彤 181250132

测试数据生成

- 本次大作业选择mnist和cifar100两个数据集。mnist是手写数字的图片,无颜色; cifar100是分成 100类的彩色图片。
- 采用python编写,基于Augmentor库进行图像处理
- 代码思路:
 - 1. 将数据集转化为jpg形式的图片放在一个文件夹下
 - 2. 通过Augmentor库中的方法分别对两个数据集生成的图片进行处理,生成多组测试数据
 - 3. 在下述结果评估的部分将这些变异后的图片分别进行准确率评估
- 流程图

数据处理方法

mnist

• 旋转,向左最大旋转角度10,向右最大旋转角度10

p.rotate(probability=1, max_left_rotation=10, max_right_rotation=10)

由于mnist是手写数字,部分地方可能会有倾斜而影响识别,但是旋转角度不能过大,以防出现类似6和9互换的现象

• 透视、形变(上下左右方向的垂直形变)

```
p.skew_tilt(probability=1, magnitude=0.4)
```

magnitude取 (0,1) ,指的是形变程度

• 弹性扭曲

```
p.random_distortion(probability=1, grid_height=3, grid_width=3, magnitude=6)
```

grid_height, grid_width, magnitude越大, 形变程度越大

• 放大, 最小为1.1倍, 最大为1.6倍

```
p.zoom(probability=1, min_factor=1.1, max_factor=1.6)
```

保持图片尺寸不变

• 随机擦除

```
p.random_erasing(probability=1,rectangle_area=0.2)
```

随机遮挡图像部分地方,是一种使模型对遮挡更加鲁棒的技术。

• 将上述方法组合在一起,没有什么意义,主要是为了检测上述方法总效果

说明: mnist是黑白图片,未加入对颜色的处理,多为几何变换的处理

cifar100

- 放大,最小为1.1倍,最大为1.5倍,保持图片尺寸不变
- 透视、形变(同上)
- 弹性扭曲 (同上)
- 随机擦除

```
p.random_erasing(probability=1,rectangle_area=0.3)
```

随机遮挡图像部分地方,是一种使模型对遮挡更加鲁棒的技术,这个对使用神经网络训练物体检测 的时候非常有用

- 改变颜色
- p.random_color(probability=1,min_factor=1.5,max_factor=6)

肉眼可识别,但参数或许还是设置过大

• 改变亮度

```
p.random_brightness(probability=1,min_factor=1.1,max_factor=1.8)
```

肉眼可识别

说明:只将数据集X_train的前10000个数据转成图片,做了处理,生成的测试数据也是每组10000个,测试结果评估时也是只评估这10000个测试数据

References:

- 1. https://augmentor.readthedocs.io/en/master/index.html
- 2. https://github.com/mdbloice/Augmentor

测试结果评估

- 代码思路:
 - 。 将测试数据生成的图片通过numpy转化为和数据集中X_train相同的表现形式。
 - o 对数据进行预处理,包括归一化、独热编码等。 (mnist中1、2模型和3~8模型有一个方法不同)
 - o 对X_train和新的测试数据分别进行评估。
- 流程图

- 评估结果如下所示 (origin代表初始数据集)
 - o mnist

	origin	distortion	erase	rotate	skew_tilt	zoom	combination
dnn_with_dropout	0.6008	0.2704	0.5959	0.6227	0.402	0.5299	0.199
dnn_without_dropout	0.287	0.1759	0.2846	0.3302	0.2443	0.3364	0.1621
lenet5_with_dropout	0.9602	0.46	0.9547	0.9537	0.7365	0.8821	0.2957
lenet5_without_dropout	0.9411	0.4612	0.9354	0.9379	0.7381	0.8836	0.2909
random1_mnist	0.1379	0.1194	0.135	0.1462	0.1267	0.1459	0.1126
random2_mnist	0.4762	0.2449	0.4672	0.466	0.2981	0.333	0.161
vgg16_with_dropout	0.9494	0.4718	0.9428	0.9577	0.7963	0.9297	0.3403
vgg16_without_dropout	0.9444	0.4455	0.9367	0.9533	0.7639	0.9069	0.3098

o cifar100

	origin	distortion	erase	brightness	skew_tilt	zoom	color
CNN_with_dropout	0.4443	0.3107	0.3584	0.3766	0.3403	0.2834	0.2333
CNN_without_dropout	0.8161	0.378	0.6009	0.5907	0.4466	0.3676	0.3432
lenet5_with_dropout	0.5496	0.3454	0.4747	0.4445	0.367	0.3	0.2866
lenet5_without_dropout	0.8991	0.376	0.7018	0.6392	0.3891	0.3073	0.4078
random1	0.491	0.2981	0.3597	0.3854	0.3678	0.292	0.26
random2	0.3425	0.2665	0.318	0.2691	0.2753	0.2625	0.1847
ResNet_v1	0.6217	0.1858	0.285	0.2786	0.2283	0.1545	0.2339
ResNet_v2	0.7304	0.211	0.3655	0.3111	0.261	0.1806	0.2815

• 分析:

o mnist

- 对数据集总体识别能力较为准确的模型是lenet5_with_dropout, lenet5_without_dropout, vgg16_with_dropout, vgg16_without_dropout, random1几乎对各种测试数据的识别准确度无变化
- rotate总体对于识别准确度相较于初始数据集是更高的,对于模型鲁棒性的检测没有太大作用,但对于准确率是有小部分效果的。
- 将所有方法结合在一起对于模型鲁棒性的检测是效果最好的,其次就是distortion (透视、形变)

o cifar100

- 各个模型鲁棒性受干扰因素影响较大,但总体上而言ResNet_v1,ResNet_v2鲁棒性最差,精确度丢失率最高
- 改变颜色 (color) 对于模型的鲁棒性测试有较高的效用,但不排除扰动参数设置过大的原因
- brightness和erase对于模型准确率影响率较小,因此可知模型在这方面表现良好,这两个方法不能很好地帮助模型提高鲁棒性。
- 结合来看,对提升模型鲁棒性较好的方法有distortion, zoom和color三种方法

• 误差分析:

- o cifar100有100个类,对扰动因素的敏感度高,因此与初始数据集相比较而言准确率较低
- 。 测试数据生成的方法种类过少,不能从整体上对各个方面的鲁棒性有一个全面的说明