MAY 0 8 7001 1

GENERAL INFORMATION:

- (i) APPLICANTS: Van der Bruggen, Pierre; Van den Eynde, Benoit; DeBacker, Olivier; Boon-Falleur, Thierry
- (ii) TITLE OF INVENTION: Isolated, Polypeptides Which Bind to HLA-A29 Molecules, Nucleic Acid, The Molecules Encoding These, and Uses Thereof
- (iii) NUMBER OF SEQUENCES: 31
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Fulbright & Jaworski L.L.P.
 - (B) STREET: 666 Fifth Avenue
 - (C) CITY: New York City
 - (D) STATE: New York
 - (E) COUNTRY: USA
 - (F) ZIP: 10103-3198
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3.5 inch, 1.44 kb storage
 - (B) COMPUTER: IBM PS/2
 - (C) OPERATING SYSTEM: PC
 - (D) SOFTWARE: Wordperfect
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION: 435
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 09/012,818
 - (B) FILING DATE: 23-January-1998
 - (C) CLASSIFICATION: 435
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/531,662
 - (B) FILING DATE: 21-September-1995
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/370,648
 - (B) FILING DATE: 10-January-1995
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/250,162
 - (B) FILING DATE: 27-May-1994

Í	_	-
	,	
Ė	i	_
	1000	
1		=
Ĭ	7	
4	٠,	
	=	2
=	1	
	:	
Target de	Ī	7
3		
15,44.31	=	
7777	ì	-
Harry P	≈ ≈	
1		
f.	=	
į	ني	

Br

(vii)

PRIOR APPLICATION DATA:

(B) FILING DATE: 22-July-1993

(viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Hanson, Norman D.

(A) APPLICATION NUMBER: 08/096,039

(B) REGISTRATION NUMBER: 30,946

(C) REFERENCE/DOCKET NUMBER: LUD 5531 PCT

	(TELECOMMUN (A) TELEPHON (B) TELEFAX:	E: (212) 318-31			
(2)	(i)	MATION FOR S SEQUENCE CH (A) LENGTH: 6 (B) TYPE: nucle (C) STRANDED (D) TOPOLOGY SEQUENCE DE	ARACTERISTI 46 base pairs ic acid NESS: single ': linear			
CTGC(CGTCCG	GACTCTTTTT	CCTCTACTGA	GATTCATCTG	TGTGAAATAT	50
GAGT"	TGGCGA	GGAAGATCGA	CCTATCGGCC	TAGACCAAGA	CGCTACGTAG	100
AGCC'	TCCTGA	AATGATTGGG	CCTATGCGGC	CCGAGCAGTT	CAGTGATGAA	150
GTGG	AACCAG	CAACACCTGA	AGAAGGGGAA	CCAGCAACTC	AACGTCAGGA	200
TCCT	GCAGCT	GCTCAGGAGG	GAGAGGATGA	GGGAGCATCT	GCAGGTCAAG	250
GGCC	GAAGCC	TGAAGCTGAT	AGCCAGGAAC	AGGGTCACCC	ACAGACTGGG	300
TGTG	AGTGTG	AAGATGGTCC	TGATGGGCAG	GAGATGGACC	CGCCAAATCC	350
AGAG	GAGGTG	AAAACGCCTG	AAGAAGAGAT	GAGGTCTCAC	TATGTTGCCC	400
AGAC'	TGGGAT	TCTCTGGCTT	TTAATGAACA	ATTGCTTCTT	AAATCTTTCC	450
CCAC	GGAAAC	CTTGAGTGAC	TGAAATATCA	AATGGCGAGA	GACCGTTTAG	500
TTCC'	TATCAT	CTGTGGCATG	TGAAGGGCAA	TCACAGTGTT	AAAAGAAGAC	550
ATGC'	TGAAAT	GTTGCAGGCT	GCTCCTATGT	TGGAAAATTC	TTCATTGAAG	600
TTCT	CCCAAT	AAAGCTTTAC	AGCCTTCTGC	AAAGAAAAA	AAAAA	646

ũ
in the state of th
M
N
Tages
=
VI
æ
U
Ф
ş-i

(2)	INFC (i)	PRMATION FOR SEQ ID NO: 2: SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
	(xi)	(D) TOPOLOGY: linear SEQUENCE DESCRIPTION: SEQ	ID NO: 2:
AGA	.CGCTA	ACG TAGAGCCT	18
(2)	INFO	PRMATION FOR SEQ ID NO: 3: SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ	ID NO: 3:
CCA	TCAGO	GAC CATCTTCA	18
(2)	INFO (i) (xi)	DRMATION FOR SEQ ID NO: 4: SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear SEQUENCE DESCRIPTION: SEQ	
Tyr 1	Arg Pro	Arg Pro Arg Arg Tyr 5	
(2)	INFO (i) (xi)	DRMATION FOR SEQ ID NO: 5: SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (D) TOPOLOGY; linear SEQUENCE DESCRIPTION: SEQ	
Thr '	Гуг Arg	Pro Arg Pro Arg Arg Tyr 5	

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Tyr Arg Pro Arg Pro Arg Arg Tyr Val
1 5

DV

- (2) INFORMATION FOR SEQ ID NO: 7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

Thr Tyr Arg Pro Arg Pro Arg Arg Tyr Val 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Arg Pro Arg Pro Arg Arg Tyr Val Glu
1 5

- (2) INFORMATION FOR SEQ ID NO: 9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

GACCAAGACG CTACGTAG

bv

GTCAGGATCC	TGCAGCTGCT	CAGGAGGGAG	AGGATGAGGG	AGCATCTGCA	300
GGTCAAGGGC	CGAAGCCTGA	AGCTGATAGC	CAGGAACAGG	GTCACCCACA	350
GACTGGGTGT	GAGTGTGAAG	ATGGTCCTGA	TGGGCAGGAG	ATGGACCCGC	400
CAAATCCAGA	GGAGGTGAAA	ACGCCTGAAG	AAGGTGAAAA	GCAATCACAG	450
TGTTAAAAGA	AGGCACGTTG	AAATGATGCA	GGCTGCTCCT	ATGTTGGAAA	500
TTTGTTCATT	AAAATTCTCC	CAATAAAGCT	TTACAGCCTT	CTGCAAAGAA	550
AAAAAAAA					560

Br

(2) INFORMATION FOR SEQ ID NO: 16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 540 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

CGCCAGGGAG	CTGTGAGGCA	GTGCTGTGTG	GTTCCTGCCG	TCCGGACTCT	50
TTTTCCTCTA	CTGAGATTCA	TCTGTGTGAA	ATATGAGTTG	GCGAGGAAGA	100
TCGACCTATT	ATTGGCCTAG	ACCAAGGCGC	TATGTACAGC	CTCCTGAAAT	150
GATTGGGCCT	ATGCGGCCCG	AGCAGTTCAG	TGATGAAGTG	GAACCAGCAA	200
CACCTGAAGA	AGGGGAACCA	GCAACTCAAC	GTCAGGATCC	TGCAGCTGCT	250
CAGGAGGGAG	AGGATGAGGG	AGCATCTGCA	GGTCAAGGGC	CGAAGCCTGA	300
AGCTGATAGC	CAGGAACAGG	GTCACCCACA	GACTGGGTGT	GAGTGTGAAG	350
ATGGTCCTGA	TGGGCAGGAG	ATGGACCCGC	CAAATCCAGA	GGAGGTGAAA	400
ACGCCTGAAG	AAGGTGAAAA	GCAATCACAG	TGTTAAAAGA	AGGCACGTTG	450
AAATGATGCA	GGCTGCTCCT	ATGTTGGAAA	TTTGTTCATT	AAAATTCTCC	500
CAATAAAGCT	TTACAGCCTT	CTGCAAAAAA	ААААААААА		540

(2)	INFOR	MATION FOR	SEQ ID NO: 17			
		SEQUENCE CH		CS:		
		(A) LENGTH: 5				
		(B) TYPE: nucle				
		(C) STRANDED				
		(D) TOPOLOGY SEQUENCE DE		EQ ID NO: 17:		
AGCT	'GTGAGG	CAGTGCTGTG	TGGTTCCTGC	CGTCCGGACT	CTTTTTCCTC	50
TACT	'GAGATT	CATCTGTGTG	AAATATGAGT	TGGCGAGGAA	GATCGACCTA	100
TTAT	TGGCCT	AGACCAAGGC	GCTATGTACA	GCCTCCTGAA	GTGATTGGGC	150
CTAT	GCGGCC	CGAGCAGTTC	AGTGATGAAG	TGGAACCAGC	AACACCTGAA	200
GAAG	GGGAAC	CAGCAACTCA	ACGTCAGGAT	CCTGCAGCTG	CTCAGGAGGG	250
AGAG	GATGAG	GGAGCATCTG	CAGGTCAAGG	GCCGAAGCCT	GAAGCTGATA	300
GCCA	.GGAACA	GGGTCACCCA	CAGACTGGGT	GTGAGTGTGA	AGATGGTCCT	350
GATG	GGCAGG	AGATGGACCC	GCCAAATCCA	GAGGAGGTGA	AAACGCCTGA	400
AGAA	.GGTGAA	AAGCAATCAC	AGTGTTAAAA	GAAGGCACGT	TGAAATGATG	450
CAGG	CTGCTC	CTATGTTGGA	AATTTGTTCA	TTAAAATTCT	CCCAATAAAG	500
CTTT	ACAGCC	TTCTGCAAAG	ААААААААА	AA		532
(2)		MATION FOR				
		SEQUENCE CH		CS:		
		(A) LENGTH: 5	-			
		(B) TYPE: nucle (C) STRANDED				
		(D) TOPOLOGY				
		QUENCE DESC		ID NO: 18:		
GCCA	.GGGAGC	TGTGAGGCAG	TGCTGTGTGG	TTCCTGCCGT	CCGGACTCTT	50
TTTC	CTCTAC	TGAGATTCAT	CTGTGTGAAA	TATGAGTTGG	CGAGGAAGAT	100
CGAC	CTATTA	TTGGCCTAGA	CCAAGGCGCT	ATGTACAGCC	TCCTGAAGTG	150
א שושורי	addam.	macaaaaaa	CC3 CTTC3 CT	כאיירא אכייירים	אארייארייאארי	200

250

ACCTGAAGAA GGGGAACCAG CAACTCAACG TCAGGATCCT GCAGCTGCTC

ļ.

AGGA	GGGAGA	GGATGAGGGA	GCATCTGCAG	GTCAAGGGCC	GAAGCCTGAA	300
GCTG	ATAGCC	AGGAACAGGG	TCACCCACAG	ACTGGGTGTG	AGTGTGAAGA	350
TGGT	CCTGAT	GGGCAGGAGG	TGGACCCGCC	AAATCCAGAG	GAGGTGAAAA	400
CGCC'	TGAAGA	AGGTGAAAAG	CAATCACAGT	GTTAAAAGAA	GACACGTTGA	450
AATG.	ATGCAG	GCTGCTCCTA	TGTTGGAAAT	TTGTTCATTA	AAATTCTCCC	500
AATA	AAGCTT	TACAGCCTTC	TGCAAAAAA	AAAAAAAA		539
(2)	(i) S	MATION FOR S SEQUENCE CH (A) LENGTH: 1' (B) TYPE: nucle (C) STRANDED (D) TOPOLOGY SEQUENCE DE	ARACTERISTI 7 base pairs ic acid NESS: single 7: linear			
ACTO	CCATGA	G GTATTTC			. 17	

(2) INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

TTTCACCACA TGCGTGT

17

(2) INFORMATION FOR SEQ ID NO: 21:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 14 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

Arg Ser Thr Tyr Tyr Trp Pro Arg Pro Arg Arg Tyr Val Gln
1 5 10

Bu

- INFORMATION FOR SEQ ID NO: 22: (2) SEQUENCE CHARACTERISTICS: (i)
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - SEQUENCE DESCRIPTION: SEQ ID NO: 22: (xi)

Tyr Tyr Trp Pro Arg Pro Arg Arg Tyr 5

- INFORMATION FOR SEQ ID NO: 23: (2)
 - SEQUENCE CHARACTERISTICS: (i)
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - FEATURE: (ix)
 - Each Xaa may be any amino acid (D) OTHER INFORMATION:
 - SEQUENCE DESCRIPTION: SEQ ID NO: 23: (xi)

Xaa Xaa Trp Pro Xaa Xaa Xaa Xaa Tyr 5

- INFORMATION FOR SEQ ID NO: 24: (2)
 - SEQUENCE CHARACTERISTICS: (i)
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - FEATURE: (ix)
 - Each Xaa may be any amino acid (D) OTHER INFORMATION:
 - SEQUENCE DESCRIPTION: SEQ ID NO: 24: (xi)

Xaa Xaa Trp Xaa Arg Xaa Xaa Xaa Tyr 5

(2)

(i)

	(A) LENGTH: 9 amino acids (B) TYPE: amino acid
	(D) TOPOLOGY: linear
	(ix) FEATURE:
	(D) OTHER INFORMATION: Each Xaa may be any amino acid (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:
	Xaa Xaa Trp Xaa Xaa Xaa Arg Tyr 1 5
Br	(2) INFORMATION FOR SEQ ID NO: 26:
7	(i) SEQUENCE CHARACTERISTICS:
n	(A) LENGTH: 138 amino acids
ď	(B) TYPE: protein
****	(C) STRANDEDNESS: single (D) TOPOLOGY: linear
Œ.	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:
71	(AI) BEQUERCE BESCHIE HOW. BEQ ID NO. 20.
	Met Ser Trp Arg Gly Arg Ser Thr Tyr Arg Pro Arg Pro Arg Tyr
Ú	1 5 10 15
5 5	Val Glu Pro Pro Glu Met Ile Gly Pro Met Arg Pro Glu Gln Phe Ser
₩ IM	20 25 30
	Asp Glu Val Glu Pro Ala Thr Pro Glu Glu Gly Glu Pro Ala Thr Gln
Ţ	35 40 45
COPETAL " CECEL	Arg Gln Asp Pro Ala Ala Ala Gln Glu Gly Glu Asp Glu Gly Ala Ser 50 55 60
1	Ala Gly Gln Gly Pro Lys Pro Glu Ala Asp Ser Gln Glu Gln Gly His
•	65 70 75 80
	Pro Gln Thr Gly Cys Glu Cys Glu Asp Gly Pro Asp Gly Gln Glu Met 85 90 95
	Asp Pro Pro Asn Pro Glu Glu Val Lys Thr Pro Glu Glu Glu Met Arg
	100 105 110
	Ser His Tyr Val Ala Gln Thr Gly Ile Leu Trp Leu Leu Met Asn Asn 115 120 125
	Cys Phe Leu Asn Leu Ser Pro Arg Lys Pro 130 135

INFORMATION FOR SEQ ID NO: 25:

SEQUENCE CHARACTERISTICS:

(2)	INFO (i)	SEQUENCE CH (A) LENGTH: 1 (B) TYPE: prote (C) STRANDEL	IARACTERIST 116 amino acids in ONESS: single		
	(xi)	(D) TOPOLOGY SEQUENCE DE		EQ ID NO: 27	':
1		Arg Gly Arg Ser T 5 Pro Glu Met Ile G	10	1	5
vai		20	25	30	
Asp		Glu Pro Ala Thr F		Glu Pro Ala T 45	hr Gln
	50	Pro Ala Ala Ala (55		60	
	Gly Gln	Gly Pro Lys Pro C	Glu Ala His Ser (75	in Glu Gln G	ly His
65	∩1 Th	70 Gly Cys Glu Cys	• -	Asn Glv Gln	
Pro	JII III	85	90	Tiop Gij Giii	95
Asp	Pro Pro	Asn Pro Glu Glu	Val Lys Thr Pro 105	Glu Glu Gly (110	Glu Lys
Gln	Ser Gln 115	Cys			
(2)	INF	ORMATION FOR	SEQ ID NO: 28	3:	
	(i)		HARACTERIST		
·		` '	118 amino acid	S	
		(B) TYPE: prot	DNESS: single		
		(C) STRAINDE			
	(xi)	SEQUENCE D	ESCRIPTION:	SEQ ID NO: 2	28:
Met 1	Asn Le	eu Ser Arg Gly Lys 5	s Ser Thr Tyr Ty 10	r Trp Pro Arg	Pro Arg 15
Arg		l Gln Pro Pro Glu 20	25	30	
	3	p Glu Val Glu Pro 5	40	45	
	50	g Gln Asp Pro Ala 53	5	60	
	Ser Ala	a Gly Gln Gly Pro	Lys Pro Glu Ala	Asp Ser Gln	Glu Gln 80
65		70	Clu Cua Glu As	n Gly Dro Aer	
Gly	His Pr	o Gln Thr Gly Cys 85	90	h Ord I to wel	95

Glu Met Asp Pro Pro Asn Pr	o Glu Glu Val Lys	Thr Pro Glu Glu Gly
100	105	110
Glu Lys Gln Ser Gln Cys		
115		

- (2) INFORMATION FOR SEQ ID NO: 29:
 - SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 amino acids
 - (B) TYPE: protein
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - SEQUENCE DESCRIPTION: SEQ ID NO: 29: (xi)

Met Ser Trp Arg Gly Arg Ser Thr Tyr Tyr Trp Pro Arg Pro Arg Arg Tyr Val Gln Pro Pro Glu Met Ile Gly Pro Met Arg Pro Glu Gln Phe 25 Ser Asp Glu Val Glu Pro Ala Thr Pro Glu Glu Glu Glu Pro Ala Thr 40 Gin Arg Gin Asp Pro Ala Ala Ala Gin Glu Gly Glu Asp Glu Gly Ala Ser Ala Gly Gln Gly Pro Lys Pro Glu Ala Asp Ser Gln Glu Gln Gly

His Pro Gln Thr Gly Cys Glu Cys Glu Asp Gly Pro Asp Gly Gln Glu 90

Met Asp Pro Pro Asn Pro Glu Glu Val Lys Thr Pro Glu Glu Glu Glu 110 105 100

Lys Gln Ser Gln Cys

115

- (2) INFORMATION FOR SEQ ID NO: 30:
 - SEQUENCE CHARACTERISTICS: (i)
 - (A) LENGTH: 117 amino acids
 - (B) TYPE: protein
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - SEQUENCE DESCRIPTION: SEQ ID NO: 30: (xi)

Met Ser Trp Arg Gly Arg Ser Thr Tyr Tyr Trp Pro Arg Pro Arg Arg 10 Tyr Val Gln Pro Pro Glu Val Ile Gly Pro Met Arg Pro Glu Gln Phe 25 Ser Asp Glu Val Glu Pro Ala Thr Pro Glu Glu Glu Glu Pro Ala Thr 45 35

₫
, er [
Ш
ΓIJ

=
M
£
ΨŢ
ũ

1

Gln Arg Gln Asp Pr	o Ala Ala Ala (Gln Glu Gly G	lu Asp Glu Gly	Ala
50	55		60	
Ser Ala Gly Gln Gly	Pro Lys Pro C	ilu Ala Asp Se	r Gln Glu Gln C	ily
65	70	75	``	80
His Pro Gln Thr Gly	/ Cys Glu Cys (Glu Asp Gly P	ro Asp Gly Gln	Glu
8	5	90	95	
Met Asp Pro Pro As	n Pro Glu Glu	Val Lys Thr P	ro Glu Glu Gly	Glu
100		105	110	
Lys Gln Ser Gln Cy	'S			
115				

(TV

(2)

INFORMATION FOR SEQ ID NO: 31:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 117 amino acids

(B) TYPE: protein

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

Met Ser Trp Arg Gly Arg Ser Thr Tyr Trp Pro Arg Pro Arg Arg

1 5 10 15

Tyr Val Gln Pro Pro Glu Val Ile Gly Pro Met Arg Pro Glu Gln Phe 20 25 30

Ser Asp Glu Val Glu Pro Ala Thr Pro Glu Glu Glu Glu Pro Ala Thr
35 40 45

Gln Arg Gln Asp Pro Ala Ala Gln Glu Gly Glu Asp Glu Gly Ala 50 55 60

Ser Ala Gly Gln Gly Pro Lys Pro Glu Ala Asp Ser Gln Glu Gln Gly 65 70 75 80

His Pro Gln Thr Gly Cys Glu Cys Glu Asp Gly Pro Asp Gly Gln Glu 85 90 95

Val Asp Pro Pro Asn Pro Glu Glu Val Lys Thr Pro Glu Glu Glu Glu Glu I00 105 110

Lys Gln Ser Gln Cys