Dr. Kundan Kumar

Ph.D. (IIT Kharagpur) Assistant Professor ECE Department (Cabin - E139)

Institute of Technical Education & Research (ITER) Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India-751030

© 2017 Kundan Kumar, All Rights Reserved

Image Interpolation

Image Interpolation

- ▶ Interpolation is a basic tool which helps to perform specific tasks in digital image processing like zooming, shrinking, rotating, and geometric corrections.
- Fundamentally, interpolation is the process of using known data to estimate values at unknown locations.
- ▶ Type of interpolations:
 - Nearest neighbor interpolation
 - Bilinear interpolation
 - ▶ Bicubic interpolation
 - ▶ Higher order interpolation: SPLINE & SINC

Image Interpolation 0000000

▶ This approach is simple but, it has the tendency to produce undesirable artifacts.

Nearest Neighbor Interpolation: Example

▶ Upscale 3×3 image by factor two using Nearest Neighbor Interpolation.

3	3	4	4	5	5
3	3	4	4	5	5
6	6	2	2	4	4
6	6	2	2	4	4
2	2	4	4	7	7
2	2	4	4	7	7

Quiz Questions

Image Interpolation

0000000

Image Interpolation

00000000

$$f(n+a)=(1-a)\times f(n)+a\times f(n+1), 0$$

Note: when a=0.5, we simply have the average of two

Bilinear Interpolation

$$f(n+a)=(1-a)\times f(n)+a\times f(n+1), 0$$

Note: when a=0.5, we simply have the average of two

$$f(n)=[0,120,180,120,0]$$

Interpolate at 1/2-pixel

$$f(x)=[0,60,120,150,180,150,120,60,0], x=n/2$$

Interpolate at 1/3-pixel

f(x) = [0,20,40,60,80,100,120,130,140,150,160,170,180,...], x=n/6

Bilinear Interpolation

▶ What is the interpolated value at Y?

Bilinear Interpolation

▶ What is the interpolated value at Y?

Image Interpolation

▶ For bilinear interpolation, the assign value is obtained using the equation

$$v(x,y) = ax + by + cxy + d$$

where the four coefficients are determined from the four equations in four unknowns.

▶ For bicubic interpolation, the assign value is obtained using the equation

$$v(x,y) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^{i} y^{j}$$

where the sixteen coefficients are determined from the sixteen equations in sixteen unknown.

Bilinear Interpolation: Example

 \blacktriangleright Upscale 3×3 image by factor two using Bilinear Interpolation.

3	4	5
6	2	4
2	4	7

3	3.5	4	4.5	5
4.5	3.75	3	3.75	4.5
6	4	2	3	4
4	3.5	3	4.25	5.5
2	3	4	5.5	7

Image Interpolation: Comparision

Original image: X 10

Nearest-neighbor interpolation

Bilinear interpolation

Bicubic interpolation

Relationships between pixels: Neighbors of a pixel

	(x-1, y)	
(x, y-1)	(x, y) p	(x, y+1)
	(x+1, y)	

A pixel p at location (x, y) has two horizontal and two vertical neighbors. whose coordinates are

$$(x+1,y), (x-1,y), (x,y+1), (x,y-1)$$

- ▶ This set of four pixels is called the 4-neighbors of p, denoted as $N_4(p)$.
- ▶ Each of these neighbors is at a unit distance from *p*.
- If p is a boundary pixel then it will have less number of neighbors.

Relationships between pixels: Neighbors of a pixel

(x-1, y-1)		(x-1, y+1)
	(x, y) p	
(x+1, y-1)		(x+1, y+1)

▶ A pixel p has four diagonal neighbors

$$(x+1,y+1), (x+1,y-1), (x-1,y+1), (x-1,y-1)$$

denoted by $N_D(p)$.

- Combining 4-neighbors and diagonal-neighbors gives 8-neighbors of p, denoted as $N_8(p)$.
- If p is a boundary pixel then both $N_D(p)$ and $N_8(p)$ will have less number of pixels.

Adjacency

- ▶ Let *V* be the set of intensity values used to define adjacency.
- For a binary image $V=\{0\}$ or $\{1\}$
- \blacktriangleright For a grayscale image $V\subset\{0,1,\dots,255\}$
- There are three types of adjacency:
 - ▶ 4-adjacency: Two pixel p and q with values from V are 4-adjacent if $q \in N_4(p)$
 - lacksquare 8-adjacency: Two pixel p and q with values from V are 8-adjacent if $q \in N_8(p)$
 - m-adjacency (mixed adjacency): Two pixel p and q with values from V are m-adjacent if
 - $q \in N_4(p)$, or
 - $q \in N_D(p)$ and the set $N_4(p) \cap N_4(q)$ has no pixels whose values are from V.

Path

A path from pixel p with coordinate (x,y) to pixel q with coordinates (s,t) is a sequence of distinct pixels with coordinates

$$(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)$$

where $(x_0, y_0) = (x, y)$, $(x_n, y_n) = (s, t)$, and pixels (x_i, y_i) and (x_{i-1}, y_{i-1}) are adjacent for $1 \le i \le n$.

- ▶ Here, *n* is the length of the path.
- ▶ If $(x_0, y_0) = (x_n, y_n)$, the path is closed path.
- ▶ We can define 4-, 8-, or m-paths depending on the type of adjacency specified.

Why m-adjacency?

- Mixed adjacency is a modification of 8-adjacency.
- ▶ It is introduced to eliminate the ambiguities that often arise when 8-adjacency is used.
- Example: $V = \{1\}$

4-connected

8-connected

m-connected

Connectivity

- Connectivity between pixels is a very important concept.
- ▶ Let S represent a subset of pixels in an image.
- ▶ Two pixel p and q are said to be connected in S if there exits a path between them consisting entirely of pixels in S.
- For any pixel p in S, the set of pixels that are connected to it in S is called a *connected component* of S
- ▶ If S only has connected component, then set S is called a connected set.
- ▶ Let R be a subset of pixels in an image. Then R is a region of the image if R is a connected set.

Image Interpolation

Connected Components

- ▶ Two regions, R_i and R_j are said to be adjacent if their union forms a connected set.
- Regions that are not adjacent are said to be disjoint.
- ▶ We consider 4- and 8-adjacency when referring to regions.

$$\begin{array}{cccc}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}$$

$$\begin{array}{cccc}
R_i \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}$$

$$\begin{array}{cccc}
R_j \\
R$$

- Suppose that an image contains K disjoint regions, R_k , $k=1,2,\ldots,K$, none of which touches the image border.
- All the points in R_u the foreground, and all the points in $(R_u)^c$ the background.
- $ightharpoonup R_u$ denote the union of all the K regions.

Boundary

▶ The boundary (also called the border or contour) of a region R is the set of points that are adjacent to points in the R^c .

- ▶ Depending on the type of connectivity and edge operators used, the edge extracted from a binary region will be the same as the region boundary.
- Edges as intensity discontinuities and boundaries as closed paths.

Connected component labeling

▶ Ability to assign different labels to various disjoint connected set of an image.

- Connected component labeling is a fundamental step in automated image analysis
 - Shape
 - Area
 - Boundary
 - ► Shape/Area/Boundary based features

Connected component labeling: Algorithm

- Scan an image from left to right and from top to bottom.
- Assume 4-connectivity
- \triangleright Suppose p be a pixel at any step in the scanning process

Before p, point r and t are scanned

Connected component labeling: Algorithm

- 1. $I(p) \Rightarrow \text{Pixel value at position } p$.
- 2. $L(p) \Rightarrow \text{Label assigned to pixel location } p$.
- 3. If I(p)=0, move to next scanning position. if I(p)=1 and I(r)=I(t)=0 then assign a new label to position p
- 4. If I(p) = 1 and only one of the two neighbor is 1. Then assign its label to p.
- 5. If I(p)=1 and both r and t are 1's, then If L(r)=L(t) then L(p)=L(r) If $L(r)\neq L(t)$ then assign one of the labels to p and make a note that the two labels are equivalent.

Connected component labeling: Algorithm

- At end of the scan all pixels with value 1 are labeled.
- Some labels are equivalent.
- During second pass process equivalent pairs to from equivalence classes.
- ► Assign a different label to each class. In the second pass through the image replace each label by the label assigned to its equivalence class.

Image Interpolation

Pixel Relationship

0000000000000

Equivalent pairs: (1,2)

Equivalent pairs: (1,2)

Equivalent pairs: (1,2) (3,4)

Equivalent pairs:

Equivalent pairs:

Equivalent pairs:

Equivalent pairs:

Equivalent pairs:

Final result obtained by updating labels as

$$(1,2),(1,5)=1$$

$$(3,4) = 3$$

Quiz Questions

Image Interpolation

Distance Measures

- For pixel p, q, and z, with coordinates (x,y), (s,t), and (v,w), respectively, D is a distance function or metric if
 - (a) $D(p,q) \ge 0$ (D(p,q) = 0 iff p = q),
 - (b) D(p,q) = D(q,p), and
 - (c) $D(p,z) \le D(p,q) + D(q,z)$
- Types of distance
 - Euclidean distance
 - City-block distance
 - ► Chessboard distance
 - M-distance

Euclidean Distance

ightharpoonup The Euclidean distance between p and q is defined as

$$D_e(p,q) = \left[(x-s)^2 + (y-t)^2 \right]^{\frac{1}{2}}$$

For this distance measure, the pixels having a distance less than or equal to some value r from (x, y) are the points contained in a disk of radius r centered at (x, y).

Euclidean Distance

ightharpoonup The Euclidean distance between p and q is defined as

$$D_e(p,q) = \left[(x-s)^2 + (y-t)^2 \right]^{\frac{1}{2}}$$

- For this distance measure, the pixels having a distance less than or equal to some value r from (x,y) are the points contained in a disk of radius r centered at (x,y).
- Set of points $S = \{q \mid D_e(p,q) \le r\}$ are the points contained in a disk of radius r centered at p.

City-Block Distance

- ▶ Also called *D*₄-distance/*Manhattan distance*.
- ▶ City-block distance between p and q is defined as

$$D_4(p,q) = |x-s| + |y-t|$$

- ▶ The pixels having a D_4 distance from (x, y) less than or equal to r form a diamond centered at (x, y).
- For example D_4 distance ≤ 2

Chessboard Distance

- Also called D₈ distance.
- Chessboard distance between p and q is defined as

$$D_8(p,q) = \max(|x-s|, |y-t|)$$

- ▶ Set of points $S = \{q \mid D_8(p,q) \le r\}$ forms a square centered at p
- For example D_8 distance < 2

ſ	2	2	2	2	2	
ſ	2	1	1	1	2	
	2	1	р	1	2	
ĺ	2	1	1	1	2	
ľ	2	2	2	2	2	
ľ						

▶ The pixels with $D_8 = 1$ are the 8-neighbors of (x, y).

D_m -distance

- ▶ The D_4 and D_8 distances between p and q are independent of any path that might between the points.
- ▶ D_m distance between two points is defined as the shortest m-path between the points.
- The D_m -distance between two pixels will depend on the values of the pixels along the path, as well as the values of their neighbors.
- Assume that p, p_2 , and p_4 have value 1 and that p_1 and p_3 can have a value of 0 or 1.

$$p_3$$
 p_4 p_1 p_2 p

D_m -distance

- ightharpoonup Consider $V = \{1\}$.
- ▶ If p_1 and p_3 are 0, the length of the shortest m-path between p and p_4 is 2.
- ▶ If p_1 is 1, then p_2 and p will no longer be m-adjacent and the length of the shortest m-path becomes 3.
 - ightharpoonup the path goes through the points $pp_1p_2p_4$
- If p_3 is 1 and p_1 is 0; the length of the shortest m-path also is 3.
- ▶ If both p_1 and p_3 are 1, the length of the shortest m-path between p and p_4 is 4.
 - ▶ The path goes through the sequence of points $pp_1p_2p_3p_4$

Arithmetic/Logical Operations

lacktriangleright Following Arithmetic/Logical Operations between two pixels p and q are used extensively

Arithmetic	Logical
p+q	$p \cdot q$
p-q	p+q
p*q	p'
p%q	

Logical operations apply to binary images only ⇒ Usually pixel by pixel.

Arithmetic/Logical Operations

NOT(A)

Arithmetic/Logical Operations

Neighborhood Operations

► The value assigned to a pixel is a function of its gray label and the gray labels of its neighbors.

$$z = \frac{1}{9}(z_1 + z_2 + \ldots + z_9) = \text{Average}$$

Template

▶ More general form

$$z = w_1 z_1 + w_2 z_2 + \ldots + w_9 z_9$$
$$= \sum_{i=1}^{9} w_i z_i$$

• Same as averaging if $w_i = \frac{1}{9}$

Neighborhood Operations

- Various important operations can be implemented by proper selection of coefficient w_i .
 - Noise filtering,
 - ► Thinning,
 - Edge detection, etc.

Question 01:

In the following figure which of the option are true?

- (a) $q \in N_4(p)$
- (b) $q \in N_8(p)$
- (b) $q \in N_D(p)$

Image Interpolation

Question 02:

Find out

- (a) Euclidean
- (b) City Block
- (b) Chess Board

distances between p and q in the given figures.

		q
p		

Question 02:

Find out

- (a) Euclidean
- (b) City Block
- (b) Chess Board

distances between p and q in the given figures.

Question 03:

Consider the two image subset, S_1 and S_2 , shown in the following figure. For $V=\{1\}$, determine whether these two subsets are

- (a) 4-connected,
- (b) 8-connected,
- (c) m-connected

	S_1				S_2				
0	[0	0	0	0	0	0	1	1	0
1	0	0	1	0	0	1	0	0	1
1	0	0	1	0	1	1	0	0	0
0		1	1_	_1_	0	0	0	0	0
0	0	1	1	1	0	0	1	1	1

Question 04:

Consider the image segment shown.

(a) Let $V = \{0,1\}$ and compute the lengths of the shortest 4-, 8-, and m-path between p and q. If a particular path does not exist between these two points, explain why.

Question 04:

Consider the image segment shown.

- (a) Let $V = \{0, 1\}$ and compute the lengths of the shortest 4-, 8-, and m-path between p and q. If a particular path does not exist between these two points, explain why.
- (b) Repeat for $V = \{1, 2\}.$

