CS738: Advanced Compiler Optimizations

Interprocedural Data Flow Analysis Functional Approach

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur

Interprocedurally Valid Paths

- $ightharpoonup G^*$ ignores the special nature of call and return edges
- ▶ Not all paths in *G** are feasible
 - do not represent potentially valid execution paths
- ▶ IVP (r_1, n) : set of all interprocedurally valid paths from r_1 to n
- ▶ Path $q \in \text{path}_{G^*}(r_1, n)$ is in IVP (r_1, n)
 - ightharpoonup iff sequence of all E^1 edges in q (denoted q_1) is proper

Proper sequence

- $ightharpoonup q_1$ without any return edge is proper
- let $q_1[i]$ be the first return edge in q_1 . q_1 is proper if
 - ightharpoonup i > 1; and
 - $ightharpoonup q_1[i-1]$ is call edge corresponding to $q_1[i]$; and
 - $ightharpoonup q_1'$ obtained from deleting $q_1[i-1]$ and $q_1[i]$ from q_1 is proper

Interprocedurally Valid Complete Paths

- ▶ $IVP_0(r_p, n)$ for procedure p and node $n \in N_p$
- ▶ set of all interprocedurally valid paths q in G^* from r_p to n s.t.
 - Each call edge has corresponding return edge in q restricted to E¹

IVPs

$$\begin{aligned} r_1 \rightarrow c_1 \rightarrow r_2 \rightarrow c_2 \rightarrow r_2 \rightarrow e_2 \rightarrow n_2 \rightarrow e_2 \rightarrow n_1 \rightarrow e_1 \\ & \in \mathsf{IVP}(r_1, e_1) \\ r_1 \rightarrow c_1 \rightarrow r_2 \rightarrow c_2 \rightarrow r_2 \rightarrow e_2 \rightarrow n_1 \rightarrow e_1 \not\in \mathsf{IVP}(r_1, e_1) \\ & r_2 \rightarrow c_2 \rightarrow r_2 \rightarrow e_2 \rightarrow n_2 \in \mathsf{IVP}_0(r_2, n_2) \\ & r_2 \rightarrow c_2 \rightarrow r_2 \rightarrow c_2 \rightarrow e_2 \rightarrow n_2 \not\in \mathsf{IVP}_0(r_2, n_2) \end{aligned}$$

Path Decomposition

$$q \in \mathsf{IVP}(r_{\mathsf{main}}, n)$$
 \Leftrightarrow
 $q = q_1 \parallel (c_1, r_{p_2}) \parallel q_2 \parallel \cdots \parallel (c_{j-1}, r_{p_j}) \parallel q_j$
 $\mathsf{where for each } i < j, q_i \in \mathsf{IVP}_0(r_{p_i}, c_i) \mathsf{and} q_i \in \mathsf{IVP}_0(r_{p_i}, n)$

Functional Approach

- ► (*L*, *F*): a *distributive* data flow framework
- ▶ Procedure p, node $n \in N_p$
- $\phi_{(r_p,n)} \in F$ describes flow of data flow information from start of r_p to start of n
 - ▶ along paths in $IVP_0(r_p, n)$

Functional Approach Constraints

$$\phi_{(r_p,r_p)} \leq id_L$$

$$\phi_{(r_p,n)} = \bigwedge_{(m,n)\in E_p} (h_{(m,n)} \circ \phi_{(r_p,m)}) \quad \text{for } n \in N_p$$

where

$$h_{(m,n)} = \left\{ egin{array}{ll} f_{(m,n)} & ext{if } (m,n) \in E_p^0, \ f_{(m,n)} \in F ext{ associated flow function} \ \phi_{(r_q,e_q)} & ext{if } (m,n) \in E_p^1 ext{ and } m ext{ calls procedure } q \end{array}
ight.$$

Information x at r_p translated to information $\phi_{(r_p,n)}(x)$ at n

Solving ϕ Constraints

► Round-robin iterative approximations to initial values

$$\phi^{0}_{(r_{p},r_{p})} \leq id_{L}$$

$$\phi^{0}_{(r_{p},n)} \leq f_{\Omega} \qquad n \in N_{p} - \{r_{p}\}$$

Reach maximal fixed point

Example

Iterative Solution

			Iteration #			
Function	Constraint	Init	1 <i>st</i>	2 nd	3 rd	
$\overline{\phi_{(r_1,r_1)}}$	id _L	id	id	id	id	
$\phi_{(r_1,c_1)}$	$f_1 \circ \phi_{(r_1,r_1)}$	f_{Ω}	f_1	f_1	f_1	
$\phi_{(r_1,n_1)}$	$\phi_{(r_2,e_2)} \circ \phi_{(r_1,c_1)}$	f_{Ω}	f_{Ω}	f_1	f_1	
$\phi_{(r_1,e_1)}$	$f_1 \circ \phi_{(r_1,n_1)}$	f_{Ω}	f_1	f_1	f_1	
$\phi_{(r_2,r_2)}$	id _L	id	id	id	id	
$\phi(r_2,b_2)$	$id_L \circ \phi_{(r_2,r_2)}$	f_{Ω}	id	id	id	
$\phi(r_2,c_2)$	$f_0 \circ \phi_{(r_2,b_2)}$	f_{Ω}	f_0	f_0	f_0	
$\phi(r_2, n_2)$	$\phi(r_2,e_2) \circ \phi(r_2,c_2)$	f_{Ω}	f_{Ω}	f_0	f_0	
$\phi(r_2,e_2)$	$(f_1 \circ \phi_{(r_2,n_2)}) \wedge (id_L \circ \phi_{(r_2,r_2)})$	f_{Ω}	id	id	id	

Solving Data Flow Problem

- lacktriangle The above process gives solution to ϕ functions
- ▶ Use it to compute data flow information x_n associated with start of block n

$$x_{r_{\text{main}}} = BoundaryInfo$$

for each procedure p

$$x_{r_p} = \bigwedge \left\{ egin{array}{ll} \phi_{(r_q,c)}(x_{r_q}): & q ext{ is a procedure and} \\ & c ext{ is a call to } p ext{ in } q \end{array} \right\}$$
 $x_n = \phi_{(r_p,n)} \quad n \in N_p - \{r_p\}$

lterative algorithm for solution, maximal fixed point solution

Example

main

р

Interprocedural MOP

$$\Psi_n = \bigwedge \{ f_q : q \in \mathsf{IVP}(r_{\mathsf{main}}, n) \} \in F \qquad \forall n \in N^*$$
 $y_n = \Psi_n(\mathsf{BoundaryInfo}) \quad \forall n \in N^*$

 y_n is the *meet-over-all-paths solution* (MOP).

IVP₀ Lemma

$$\phi_{(r_p,n)} = \bigwedge \{ f_q : q \in \mathsf{IVP}_0(r_p,n) \} \qquad \forall n \in N_p$$

Proof: By induction (Exercise/Reading Assignment)

MOP

$$\Psi_n = \bigwedge \{ f_q : q \in \mathsf{IVP}(r_{\mathsf{main}}, n) \} \in F \quad \forall n \in N^*$$

$$\mathcal{X}_n = \bigwedge \{ \phi_{(r_{p_j}, n)} \circ \phi_{(r_{p_{j-1}}, c_{j-1})} \circ \dots \circ \phi_{(r_{p_1}, c_1)} \mid c_i \text{ calls } p_{i+1} \}$$

Then

$$\Psi_n = \mathcal{X}_n$$

Proof: IVP₀ Lemma and Path decomposition

$$y_n = \Psi_n(BoundaryInfo) = \mathcal{X}_n(BoundaryInfo)$$

N /		ο.		N A	
IV	ルノ	Ρ '	VS	IVI	Г

- ightharpoonup F is distributive $\Rightarrow MFP = MOP$
- ▶ F is monotone $\Rightarrow MFP \leq MOP$

Practical Issues

- ▶ How to compute ϕ s effectively?
 - ► For general frameworks
 - L not finite
 - F not bounded
 - ▶ Does the solution process converge?
- ▶ How much space is required to represent ϕ functions?
- Is it possible to avoid explicit function compositions and meets?