

APPENDIX B

1 25. (Amended) A diode laser system, comprising:
2 a laser head assembly generating an output beam, the laser head assembly including:
3 M modules which generate M laser beams, wherein each of said M laser beams
4 has a different [single] unconstrained wavelength; and
5 M-2 dichroic filters, wherein each of said M-2 dichroic filters transmits a
6 corresponding one of said M laser beams and reflects all other of said M laser
7 beams into a predetermined optical path to produce said output beam,
8 where M is an integer [\geq] ≥ 2 .

unclear
new material

1 26. (Amended) A diode laser system, comprising:
2 a laser head assembly which generates an output beam, the laser head assembly including:
3 M modules which generate M laser beams, wherein each of said M laser beams
4 occupies a different wavelength band;
5 M-R dichroic bandedge filters, wherein each of said M-R dichroic bandedge
6 filters transmits at least a respective one of said M laser beams occupying a given
7 wavelength band and reflects all other of said M laser beams not occupying the
8 given wavelength band; and
9 an optical device which combines said M laser beams to thereby produce said
10 output beam,

new material

11 wherein:

12 M and R are positive integers; and
13 M is an integer ≥ 2 .

1 31. (Amended) A laser head assembly which generates an output beam including M laser
2 beams, comprising:

3 M modules generating M laser beams, wherein each of said M laser beams has a different
4 single wavelength; and
5 M-2 dichroic bandedge filters, wherein each of said M-2 dichroic bandedge filters
6 transmits a corresponding one of said M laser beams and reflects all other of said M laser
7 beams;
8 wherein M is an integer [\geq] ≥ 2 .

1 32. (Amended) The laser head assembly as recited in claim 31, further comprising a fiber
2 coupling device collecting said M laser beams to produce an output beam[;].

1 33. (Amended) A method for generating a high energy laser beam, comprising:
2 (a) generating P collimated laser beams, each of the P collimated laser beams having an
3 unconstrained wavelength within an Mth wavelength band;
4 (b) repeating step (a) M times so as to produce MxP collimated laser beams [having]
5 grouped into M different [wavelengths] wavelength bands; and
6 (c) coupling said MxP collimated laser beams into an optical path to produce a high
7 energy beam,
8 wherein M and P are integers ≥ 2 .

1 36. (Amended) A diode laser system, comprising:
2 laser head assembly (LHA) which generates an output beam, the LHA including:
3 M modules generating M laser beams, wherein each of said M laser beams has a different
4 single wavelength;
5 M-1 first dichroic bandedge filters defining an optical waveguide for directing all of said
6 M laser beams into the optical path, wherein each of said M-1 [first] bandedge dichroic filters
7 transmits a corresponding one of said M laser beams and reflects all other said M laser beams;
8 and

9 a fiber coupling device disposed adjacent to the optical path for collecting said M laser
10 beams to thereby produce an output beam;
11 wherein M is an integer ≥ 2 .

1 40. (Amended) A diode laser system, comprising:

2 first means for generating M first laser beams, wherein each of said M first laser beams
3 has a different single wavelength;

4 M-1 first filter means defining a first optical waveguide for directing all of said M first
5 laser beams into [an] a first optical path, wherein each of said M-1 filter means transmits a
6 corresponding one of said M first laser beams and reflects all other said M first laser beams;

7 second means for generating M second laser beams, wherein each of said M second laser
8 beams has a different single wavelength;

9 M-1 second filter means defining a second optical waveguide for directing all of said M
10 second laser beams into a second optical path, wherein each of said M-1 second filter means
11 transmits a corresponding one of said M second laser beams and reflects all other said M second
12 laser beams;

13 polarization combining means disposed at the intersection of said first and second optical
14 paths for coupling said M first and said M second laser beams into said second optical path to
15 thereby produce 2M polarization coupled laser beams; and

16 fiber coupling means disposed adjacent to said second optical path for collecting said 2M
17 polarization coupled laser beams to thereby produce an output laser beam,
18 wherein M is an integer ≥ 2 .

path

cutout
output

1 41. (Amended) A method for generating a high energy laser beam, comprising:

2 (a) generating P collimated laser beams, each of the P collimated laser beams having an
3 unconstrained wavelength within an Mth wavelength band;

4 (b) repeating step (a) M times so as to produce MxP collimated laser beams [having]

5 grouped into M different [wavelengths] wavelength bands;

6 (c) coupling said $M \times P$ collimated laser beams into an optical oath; and

7 (d) coupling said $M \times P$ collimated laser beams into an i^{th} optical fiber to thereby produce
8 a corresponding i^{th} output laser beam, where $i = 1$ to N ;

9 where M , N and P are positive integers and both M and $P \geq 2$.