Geometry Processing

2 Discrete Differential Geometry

Ludwig-Maximilians-Universität München

Session 2: Discrete Differential Geometry

Motivation

- Discrete Geometric Quantifies
 - Normals
 - Curvature
 - o Laplace-Beltrami
- Summary
- Discussion
 - OBJ Mesh Loader
 - Blender Python APIs
 - Blender BMesh Structure

Euclidean v.s. Non Euclidean: Parallel Postulate

"In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the point."

$$\alpha + \beta = \pi$$

Euclid

Geometry principles works differently on curved spaces...

Euclidean

Elliptic

Hyperbolic

Differential Geometry

Leonhard Euler

Carl Gauss

Differential Geometry

Leonhard Euler

Carl Gauss

Bernhard Riemann

Example: Smooth Settings

In smooth settings, the sum of the tip angle is always 2π

$$\sum \theta_i = 2\pi$$

Example: Discrete Settings

In discrete settings, the sum of the tip angle is not 2π but approximately 2π if we have infinite tessellated triangles

$$\sum heta_i < 2\pi$$
 (why?)

Example: Discrete Settings

In discrete settings, the sum of the tip angle is not 2π but approximately 2π if we have infinite tessellated triangles

$$\sum \theta_i < 2\pi$$

Redefine
$$\hat{\theta_j} = \theta_j \frac{2\pi}{\sum_i \theta_i}$$

$$\Rightarrow \sum_{j} \hat{\theta_{j}} = \sum_{j} \theta_{j} \frac{2\pi}{\sum_{i} \theta_{i}} = \frac{2\pi}{\sum_{i} \theta_{i}} \sum_{j} \theta_{j} = 2\pi$$

By redefining the meaning of "angle", we preserved the geometric property that the sum of the tip angle is 2π

Example: Discrete Settings

In discrete settings, the sum of the tip angle is not 2π but approximately 2π if we have infinite tessellated triangles

$$\sum \theta_i < 2\pi$$

Redefine
$$\hat{\theta_j} = \theta_j \frac{2\pi}{\sum_i \theta_i}$$

$$\Rightarrow \sum_{j} \hat{\theta_{j}} = \sum_{j} \theta_{j} \frac{2\pi}{\sum_{i} \theta_{i}} = \frac{2\pi}{\sum_{i} \theta_{i}} \sum_{j} \theta_{j} = 2\pi$$

Caution (Ambiguity of Interpretation):

We are assuming the mesh is representing a smooth surface, but what if it is intended to represent a "hard" surface?

Angle Defect

Important idea: Represent how flatten (or how curved) around a vertex i

The *angle defect* at a vertex is the deviation of the sum of interior angles from the

Euclidean angle sum of 2π :

$$\Omega_i = 2\pi - \sum \theta_i$$

Angle Defect

Basic idea: Represent how flatten (or how curved) around a vertex i

The *angle defect* at a vertex is the deviation of the sum of interior angles from the

Euclidean angle sum of 2π :

$$\Omega_i = 2\pi - \sum \theta_i$$

Discrete Gauss-Bonnet Theorem:

For a simplicial surface, the total angle defect is

$$\sum_{i} \Omega_{i} = 2\pi \chi$$
 (Euler Characteristic)

E.g. Given a convex polyhedra, the total angle defect is 4π (Try to verify this)

Session 2: Discrete Differential Geometry

- Motivation
- Discrete Geometric Quantifies
 - Normals
 - Curvature
 - Laplace-Beltrami
- Summary
- Discussion
 - OBJ Mesh Loader
 - Blender Python APIs
 - Blender BMesh Structure

Normals

On a curve: A vector is **normal** to a surface if it is orthogonal to all tangent vectors

Normals

On a curve: A vector is **normal** to a surface if it is orthogonal to all tangent vectors

On a surface: A normal is a unit vector along with the cross product of any given two tangent vectors

Normals

On a curve: A vector is **normal** to a surface if it is orthogonal to all tangent vectors

On a surface: A normal is a unit vector along with the cross product of any given two tangent vectors

Q: How to discretize the definition on polygonal meshes?

Discrete Normals

Discrete Normals

Face Normal

Face normals are well-defined:

$$N = \frac{(f_j - f_i) \times (f_k - f_i)}{||(f_j - f_i) \times (f_k - f_i)||}$$

Vertex Normal

Basic idea: weighted average of the normal vectors of incident faces

$$N_i = \frac{\sum_i w_{ijk} N_{ijk}}{||\sum_i w_{ijk} N_{ijk}||}$$

Variances:

ullet Uniform (or Equally) Weighted $\,w_{ijk}=1\,$

Vertex Normal

Basic idea: weighted average of the normal vectors of incident faces

$$N_i = \frac{\sum_i w_{ijk} N_{ijk}}{||\sum_i w_{ijk} N_{ijk}||}$$

Variances:

- ullet Uniform (or Equally) Weighted $\,w_{ijk}=1\,$
- Area Weighted

$$w_{ijk} = A_{ijk}$$

Vertex Normal

Basic idea: weighted average of the normal vectors of incident faces

$$N_i = \frac{\sum_i w_{ijk} N_{ijk}}{||\sum_i w_{ijk} N_{ijk}||}$$

Variances:

ullet Uniform (or Equally) Weighted $\,w_{ijk}=1\,$

Area Weighted

$$w_{ijk} = A_{ijk}$$

Angle Weighted

$$w_{ijk} = \theta_i^{jk}$$

• ...

Caution: face normal v.s. vertex normal v.s. normal interpolation

Curvature

Intuitively, curvature describes "how much a curve bends", or

Normal Curvature κ_n

The rate at which normal is bending along a given tangent direction

Normal Curvature κ_n

The rate at which normal is bending along a given tangent direction

Q: which direction does the surface bend the most?

Principal Curvature $\kappa_{\min}, \kappa_{\max}$

Principal directions: Axes that describe the direction along which the normal changes the most/least

• Principal curvatures: along all directions, the two principal directions where normal curvature has minimum and

maximum value respectively

Some facts:

- (Euler's Theorem) principal directions are orthogonal
- $dN = \kappa df(X)$

Principal Curvature: Examples

Principtal Curvature: Visualized

 κ_{max}

Gaussian and Mean Curvature

$$K = \kappa_1 \kappa_2$$

$$H = \frac{\kappa_1 + \kappa_2}{2}$$

Q: Why Gaussian/Mean curvature is interesting to us?

Discussion Break: Smooth Curvature

How do we actually compute curvatures in a discrete world?

Discrete Curvature

Curvature is the change in normal direction as we travel along the curve

In discrete settings: No change along each edge ⇒ zero curvature?

Revisit: Fundamental Theorem of Calculus

$$\int_{a}^{b} \mathrm{d}f = f(b) - f(a)$$

Revisit: Fundamental Theorem of Calculus and Stokes' Theorem

$$\int_{a}^{b} \mathrm{d}f = f(b) - f(a)$$

Insights from Stokes' Theorem:

The change we see on the outside is

purely a function of the change within.

Example: Discrete *Differential*

Discrete differential is just edge vectors in discrete settings

$$(\mathrm{d}f)_{ij} = f_j - f_i$$

$$\uparrow$$
(Stokes' theorem)

Discrete *Principal Curvature*

$$K = \kappa_1 \kappa_2$$

$$\kappa_1 = ||H|| - \sqrt{H^2 - K}$$

$$\Longrightarrow$$

$$H = \frac{\kappa_1 + \kappa_2}{2}$$

$$\kappa_2 = ||H|| + \sqrt{H^2 - K}$$

Then the question is: how to compute gaussian and mean curvature?

Discrete Gaussian Curvature

We already know how to compute Gaussian curvature: the angle defect is a good approximation

Discrete Mean Curvature

7

Laplacian

Basic idea: Laplacian is (scalar) deviation from local average

$$\Delta f = \nabla \cdot \nabla f = \sum_{i} \frac{\partial^2 f}{\partial x_i^2}$$

(Discrete) Laplacian is the divergence of gradient

$$(\Delta f)_i = w_i \sum_{ij} w_{ij} (f_j - f_i)$$

Cotangent Formula

A more accurate discretization of the Laplace-Beltrami operator

Basic idea: integrate the divergence of the gradient of a piecewise linear function over a *local averaging region*

(e.g. voronoi cell):

$$\int_{A_i} \Delta f \mathrm{d}A = \int_{\partial A_i} \nabla f \cdot N \mathrm{d}s$$
 (Stokes' theorem)

One can prove:

$$\int_{A_i} \Delta f dA = \frac{1}{2} \sum_{ij} (\cot \alpha_{ij} + \cot \beta_{ij}) (f_j - f_i)$$

Local Averaging Region

Barycentric Cell

 c_i = barycenter

Voronoi Cell

 C_i = circumcenter

The Laplace-Beltrami Operator

The discrete version of the Laplace operator, of a function at a vertex i is given as

$$(\Delta f)_i = w_i \sum_{ij} w_{ij} (f_j - f_i)$$

This (cotan-version) is the most widely used discretization of the Laplace-Beltrami operator for geometry processing:

$$(\Delta f)_i = \frac{1}{2A_i} \sum_{ij} (\cot \alpha_{ij} + \cot \beta_{ij}) (f_j - f_i)$$

The mean curvature is tightly related to the cotan Laplace-Beltrami:

$$H = \frac{1}{2}||(\Delta f)_i||$$

Discrete Mean Curvature

The Laplace-Beltrami operator is tightly related to the mean curvature:

$$||\Delta f|| = 2||H||||N|| \Rightarrow ||H|| = \frac{1}{2}||(\Delta f)_i||$$

Implementation thinking: Is it necessary to keep the ½ factor?

Computing Discrete Curvatures

Mean curvature: via Laplace-Beltrami (length of Laplacian vector)

$$||H|| = \frac{1}{2}||(\Delta f)_i||$$

Gaussian curvature: via angle defect

$$K = \Omega_i$$

Principal curvature: via Gaussian and Mean

$$\kappa_1 = ||H|| - \sqrt{H^2 - K}$$

$$\kappa_2 = ||H|| + \sqrt{H^2 - K}$$

Input Mesh

^{*} This is not an novel idea, we will see more advances later in our remeshing session.

Session 2: Discrete Differential Geometry

- Motivation
- Discrete Geometric Quantifies
 - Normals
 - Curvature
 - o Laplace-Beltrami

Summary

- Discussion
 - OBJ Mesh Loader
 - Blender Python APIs
 - Blender BMesh Structure

Summary

- Different discretized definition of a geometry quantity preserves different properties
- Curvature and the Laplacian are the core tools for geometry processing
- No free lunch (again): Compare discretized version to its smooth setting, not all properties can be preserved in discrete settings. Understand the landscape of possibilities of when we should apply a certain definition in a context

Session 2: Discrete Differential Geometry

- Motivation
- Discrete Geometric Quantifies
 - Normals
 - Curvature
 - Laplace-Beltrami
- Summary

Discussion

- OBJ Mesh Loader
- o Blender Python APIs
- Blender BMesh Structure

Implementing A Mesh Loader

Questions

- What information must be loaded for a minimum implementation?
- How to define a data structure?
- How's the performance of loading?
- What was changed from constructing triangle soup to halfedge representation?

Blender + Python

https://docs.blender.org/api/current/

Key Concepts

Types: bpy.types

Data: bpy.data

Operator: bpy.ops

Context: bpy.context

BMesh

BMesh: A Non-Manifold Boundary Representation

Blender's Mesh Editing APIs

Low-level Operators

Mid-level Operators

Top-level Operators

Code Completion

pip install fake-bpy-module-2.93

https://github.com/nutti/fake-bpy-module

Further Readings (Mesh Structures)

Paul Bourke. Data Formats: 3D, Audio, Image. http://paulbourke.net/dataformats/

Weiler, K.J.: The Radial Edge Structure: A Topological Representation for Non-Manifold Geometric Modeling. in Geometric Modeling for CAD Applications, Springer Verlag, May 1986.

Further Readings (Discrete Differential Geometry)

Jin S, Lewis RR, West D. A comparison of algorithms for vertex normal computation. The visual computer. 2005 Feb 1;21(1-2):71-82.

Wardetzky, Max, et al. Discrete Laplace operators: no free lunch. Symposium on Geometry processing. 2007.

Keenan Crane. Discrete Differential Geometry: An Applied Introduction. 2020.