Math 112 Chapter 6.5: Integrals and Averages

If we have a set of data $x_1, x_2, x_3, \dots x_N$, we define the average \bar{x} as:
EXAMPLE:
In order to calculate the average outside temperature over a period of 10 hours, we could collect data at a set of times.
Calcuate \bar{T} :
For a more accurate average, we can collect more data.

If we let the number of data points N go to infinity, we can produce an integral

DEFINITION:

The average value of a function f on an interval [a,b] is \bar{f}

EXAMPLE:

Find the average value of $f(x) = \sqrt[3]{x}$ on the interval [0,8].

APPLICATION:

A growing fish has length that is modeled by the function $L(t) = 20 - \frac{20}{t+1}$.

- 1. What is the average length of the fish over the first 10 years of its life?
- 2. What is the average length of the fish over the first T years of its life?
- 3. What happens to this average as T gets large?

APPLICATION:

The velocity of fluid flowing slowly in a cylindrical tube of radius R is a function of the radial distance from the center.

$$v(r) = \frac{P}{4\eta L}(R^2 - r^2)$$

Find the average velocity from r=0 in the center to r=R on the edge. Make a comparision to the maximum velocity.

Geometric meaning:

EXAMPLE:

Find a value of x^* in $[0, \pi]$ so that $\int_0^{\pi} \sin x \, dx = \pi \sin x^*$.

Mean Value Theorem for Integrals

If f is a continuous function on [a,b], then there exists a number c in [a,b] such that

$$\int_{a}^{b} f(x) dx = f(c)(b - a)$$

EXAMPLE:

Find the value of c described in the theorem for $f(x) = e^x$ on the interval [-1, 3].