Poisson and Related Models

Categorical and Limited
Dependent Variables
Paul A. Jargowsky

Number of Families by Number of Children, by Family Type, 2004

Source: 2006 U.S. Statistical Abstract, Table 62

The Probability of Each Outcome Varies by Family Type

Mean number of Children per Family: the Rate of Child Production Varies by Family Type

Families (1,000) by Number of Children, 2004

	_	Nι		Mean Number		
	Total	0	1	2	3+	Of Children*
Total	76,217	40,273	14,964	13,696	7,283	0.89
Married couple	57,719	31,926	9,763	10,481	5,548	0.87
Male Headed	4,716	2,786	1,146	550	235	0.65
Female Headed	13,781	5,560	4,055	2,665	1,501	1.06

$$\mu = \sum_{i=1}^{n} \Pr(c=i)(i) = \Pr(0)(0) + \Pr(1)(1) + \Pr(2)(2) + \Pr(3+)(3.5)$$

^{*}assuming an average of 3.5 for families in "3+" category.

OLS on Counts?

- Not a continuous DV
- Not really censored or truncated or ordinal, which assume some continuous disturbance term
- Coefficients from OLS on counts are inefficient, inconsistent, and biased
- Need a different approach

Poisson Distribution for Counts

When an event occurs and reoccurs *randomly* and *independently*, the total number of occurrences of an event (*Y*) over *a fixed period of time* will have a Poisson Distribution, given by:

$$\Pr(Y = k) = \frac{e^{-\mu}\mu^k}{k!}, \quad k = 0,1,2,....$$

Note: this is a discrete probability distribution.

$$\mu = E[Y_i]$$

The expected arrival rate, or "incidence rate"

$$\sigma^2 = E \left[\left(Y - \mu \right)^2 \right] = \mu$$

Equidispersion, i.e. mean = variance

Poisson PDF Application

Poisson Distributions with Different Means

The Poisson converges to normal. If the mean is more than 10, OLS works fine.

Count of Articles Published (couart2.dta)

. tab art

Articles in last 3 yrs of PhD Percent. Freq. 275 30.05 0 246 26.89 19.45 178 3 84 9.18 67 7.32 4 5 27 2.95 6 17 1.86 12 1.31 0.11 8 0.22 9 0.11 10 11 0.11 0.22 12 16 0.11 19 0.11 Total 915 100.00

. histogram art, discrete

Is it Poisson?

Not exactly. There are both more zeros and more people with 4+ articles than Poisson would predict, i.e. greater variance in articles.

Overdispersion

Variable	0bs	Mean	Std. Dev.	Min	Max
art	915	1.692896	1.926069	0	19
ment	915	8.767212	9.483915	0	76.99998

$$Y_i = \{0,1,2,3,...,19\}$$
 $\mu = 1.69$ $\sigma = 1.93$ $\sigma^2 = 3.73$ $\sigma^2 > \mu$

Overdispersion: the variance exceeds the mean. Perhaps the underlying mean is not the same for each person, and varies as a function of the person's characteristics, e.g. mentor publications.

Why overdispersion? Perhaps not all observations have the same incidence rate. It depends on the independent variables (**X**). If control for relevant **X**, maybe they have the same *conditional* mean. How do Xs affect the mean?

Some Publish More than Others

$$\mu_i = \mathbf{x}_i \boldsymbol{\beta}$$
 is biased, inconsistent, and inefficient.

$$\mu_i = f(\mathbf{x}_i)$$
 Needs to be positive. Linear does not work.

$$\mu_i = e^{\beta_1 + \beta_2 X_{2i} + \dots + \beta_k X_{ki}} = e^{\mathbf{x}_i \mathbf{\beta}} \quad \text{works.} \qquad 0 < e^{\mathbf{x}_i \mathbf{\beta}} < \infty$$

$$\Pr(Y_i \mid \mathbf{x}_i) = \frac{e^{-\mu_i} \mu_i^{Y_i}}{Y_i!}, \text{ where } \mu_i = e^{\mathbf{x}_i \boldsymbol{\beta}} \text{ and }$$
$$\mathbf{x}_i \boldsymbol{\beta} = \beta_1 + \beta_2 X_{2i} + \ldots + \beta_k X_{ki}$$

$$\mathbf{x}_{i}\boldsymbol{\beta} = \beta_{1} + \beta_{2}X_{2i} + \ldots + \beta_{k}X_{ki}$$

Note that $\mu_i = e^{\mathbf{x}_i \mathbf{\beta}}$ implies $\ln(\mu_i) = \mathbf{x}_i \mathbf{\beta}$, except $\ln(0)$ is undefined.

Poisson Likelihood Function

Poisson Regression: $\mu_i = E(Y_i | \mathbf{x}_i) = e^{\mathbf{x}_i \beta}$

$$\mathbf{\mathcal{L}} = \prod_{i=1}^{n} \Pr(Y_i \mid \mathbf{x}_i) = \prod_{i=1}^{n} \left[\frac{e^{-\mu_i} \mu_i^{Y_i}}{Y_i!} \right] = \prod_{i=1}^{n} \left[\frac{e^{-(e^{\mathbf{x}_i \boldsymbol{\beta}})} (e^{\mathbf{x}_i \boldsymbol{\beta}})^{Y_i}}{Y_i!} \right]$$

Maximize ln(L) with respect to $\hat{\beta}$.

Assuming distribution has equidispersion *after controlling for observed heterogeneity* (i.e. the Poisson model fits the conditional distribution), the MLE coefficient estimates are consistent and asymptotically efficient (general properties of ML estimators).

Poisson (null model)

. poisson art

$$\hat{\mu} = e^{\hat{\beta}} = e^{0.526} = 1.69$$

Poisson Regression

. poisson art fem mar kid5 phd ment

```
Iteration 0: log likelihood = -1651.4574
Iteration 1: log likelihood = -1651.0567
Iteration 2: log likelihood = -1651.0563
Iteration 3: log likelihood = -1651.0563
```

Poisson regression	Number of obs	=	915
	LR chi2(5)	=	183.03
	Prob > chi2	=	0.0000
Log likelihood = -1651.0563	Pseudo R2	=	0.0525

art	 Coef. +	Std. Err.	z	P> z	[95% Conf.	. Interval]
fem	2245942	.0546138	-4.11	0.000	3316352	1175532
mar	.1552434	.0613747	2.53	0.011	.0349512	.2755356
kid5	1848827	.0401272	-4.61	0.000	2635305	1062349
phd	.0128226	.0263972	0.49	0.627	038915	.0645601
ment	.0255427	.0020061	12.73	0.000	.0216109	.0294746
_cons	.3046168	.1029822	2.96	0.003	.1027755	.5064581

Predicted Values

Unmarried male with no kids, mentor = 9, PhD = 3

$$\mathbf{x}_{i}\hat{\mathbf{\beta}} = 0.305 + 0 + 0 + 0 + 0.0129(3) + 0.0255(9) = 0.573$$

The incidence rate (predicted mean): $\mu_i = e^{\mathbf{x}_i \mathbf{\beta}} = e^{0.573} = 1.77$

Probabilities:
$$\Pr(0) = \frac{\left(e^{-1.77}\right)\left(1.77^{0}\right)}{0!} = \frac{\left(0.170\right)\left(1\right)}{1} = 0.17$$

$$\Pr(1) = \frac{\left(e^{-1.77}\right)\left(1.77^{1}\right)}{1!} = \frac{\left(0.170\right)\left(1.77\right)}{1} = 0.30$$

$$\Pr(2) = \frac{\left(e^{-1.77}\right)\left(1.77^{2}\right)}{2!} = \frac{\left(0.170\right)\left(3.13\right)}{2} = 0.27$$

$$Pr(3) = 0.16, Pr(4) = 0.07, and so on...$$

Prvalue

. prvalue, x(fem=0 kid5=0 mar=0 ment=9 phd=3)

```
poisson: Predictions for art
```

Confidence intervals by delta method

```
95% Conf. Interval
                   1.7735 [ 1.5802, 1.9669]
 Rate:
 Pr(y=0|x):
                   0.1697 [ 0.1369,  0.2025]
                  0.3010 [ 0.2756,  0.3264]
 Pr(y=1|x):
 Pr(y=2|x):
                 0.2669 [ 0.2603, 0.2735]
 Pr(y=3|x):
                 0.1578 [ 0.1367,  0.1789]
                  0.0700 [ 0.0530, 0.0870]
 Pr(y=4|x):
                 0.0248 [ 0.0161,  0.0335]
 Pr(y=5|x):
 Pr(y=6|x):
                 0.0073 [ 0.0040, 0.0107]
                 0.0019 [ 0.0008, 0.0029]
 Pr(y=7|x):
 Pr(y=8|x):
                 0.0004 [ 0.0001, 0.0007]
 Pr(y=9|x):
                   0.0001 [ 0.0000, 0.0001]
    fem
         mar kid5
                   phd ment
      0
           0
                0
                           9
x =
```

Marginal Effect on Mean

For the person described above, the marginal effect of an additional publication by the mentor is

$$\frac{\partial \hat{\mu}_{i}}{\partial x_{k}} = \frac{\partial e^{\mathbf{x}_{i}\hat{\boldsymbol{\beta}}}}{\partial x_{k}} = e^{\mathbf{x}_{i}\hat{\boldsymbol{\beta}}}\hat{\boldsymbol{\beta}}_{k} = \mu_{i}\hat{\boldsymbol{\beta}}_{k}$$

$$\frac{\partial \hat{\mu}_{i}}{\partial ment_{i}} = (1.77)(0.0255) = 0.0451$$

. prchange, x(fem=0 kid5=0 mar=0 ment=9 phd=3)

```
poisson: Changes in Rate for art
     min->max
                  0->1
                          -+1/2
                                   -+sd/2
                                          MargEfct
               -0.3568 -0.3992
      -0.3568
                                  -0.1987
                                           -0.3983
 fem
       0.2978 0.2978 0.2756
                                   0.1303 0.2753
mar
                                           -0.3279
kid5 -0.7550
               -0.2994 -0.3284
                                  -0.2510
phd 0.0876
               0.0220 0.0227
                                   0.0224
                                           0.0227
       8.6639
                0.0365
                          0.0453
                                   0.4307
                                            0.0453
ment
exp(xb):
          1.7735
           fem
                          kid5
                                    phd
                   mar
                                           ment
             0
                             0
   x =
                         .76488
sd(x) =
       .498679
               .473186
                                .984249 9.48392
```

Incidence Rate Ratio (IRR), aka Factor Change in the Mean

What is the change in the mean (the expected number of publications, or whatever) if X_2 is increased by 1 unit?

$$X'_{2} = X_{2} + 1$$

$$\mu = e^{\beta_{1} + \beta_{2} X_{2i} + \dots + \beta_{k} X_{ki}}$$

$$\mu' = e^{\beta_{1} + \beta_{2} (X_{2i} + 1) + \dots + \beta_{k} X_{ki}}$$

$$= e^{\beta_{1} + \beta_{2} X_{2i} + \beta_{2} + \dots + \beta_{k} X_{ki}}$$

$$\frac{\mu'}{\mu} = \frac{e^{\beta_1 + \beta_2 X_{2i} + \beta_2 + \dots + \beta_k X_{ki}}}{e^{\beta_1 + \beta_2 X_{2i} + \dots + \beta_k X_{ki}}} = e^{\beta_2}$$

Generally:
$$e^{\beta_j}$$
 when X_j changes by 1 unit, or $e^{\delta\beta_j}$ when X_j changes by δ

Factor Change: Example

How does having a young child affect articles published during last 3 years of Ph.D? For one child:

$$\hat{\beta}_{kid5} = -0.185 \qquad \frac{\mu'}{\mu} = e^{-0.185} = 0.83$$

The mean number of articles declines 17 percent. Note: does not depend on what the original mean was or the values of the other Xs (like odds ratio in logit). (Also, long way works.)

For two children:
$$\frac{\mu''}{\mu} = e^{(2)(-0.185)} = 0.69$$

Could use a standard deviation change in X, if appropriate.

Exposure Time May Vary

- μ is a rate (arrivals per hour, articles per career), etc.
- Observations with longer time period should have greater counts even if the same mean.
- E.g. if rate is 5 per hour, then expected count is 10 over two hours, 15 over three hours, etc.
- If data consist of observations observed for different periods, this "exposure time" must be taken into account.

$$E[y_i \mid \mathbf{x}_i, t_i] = \mu_i t_i$$

Incorporating Exposure Time

$$\mu_{i} = e^{\mathbf{x}_{i}\boldsymbol{\beta}}$$

$$\mu_{i}t_{i} = e^{\mathbf{x}_{i}\boldsymbol{\beta}}t_{i}$$

$$= e^{\mathbf{x}_{i}\boldsymbol{\beta}}e^{\ln t_{i}}$$

$$= e^{(\beta_{1} + \beta_{2}X_{2i} + \dots + \beta_{K}X_{K} + \ln t_{i})}$$

Exposure time can be included in log form with the coefficient constrained to 1.

poisson options:

```
exposure(varname_e)
  include ln(varname_e) in model with coefficient constrained to 1

offset(varname_o)
  include varname o in model with coefficient constrained to 1
```

Poisson vs. Reg: Ment

. poisson a	art ment
-------------	----------

Poisson regres				LR c Prob	er of obs = hi2(1) = chi2 = do R2 =	
art		Std. Err.	Z	P> z	[95% Conf.	Interval]
ment _cons	.0260498	.0019175			.0222917 .1925596	
Model	SS 317.204914 3073.49891	1 317. 913 3.3	 204914 663734 		Number of obs F(1, 913) Prob > F R-squared Adj R-squared Root MSE	= 94.23 $= 0.0000$ $= 0.0936$ $= 0.0926$
	Coef.			' '	[95% Conf.	Interval]
ment		.0063991	9.71	0.000	.0495581 .9861515	

Approximate Log Model

variable name	storage d		value label		variable	label	
art lnart	byte % float %	_			Articles Log of a	in last 3 yrs rt + .5	of PhD
. reg lnart	ment ss	٦£	MC			Number of obs	_ 015
Source	1					F(1, 913)	
	57.10447					Prob > F	= 0.0000
Residual	613.6326 +	024 913	.6/21058	3∠ 		R-squared Adj R-squared	
Total	670.7370	914	.7338480	29		Root MSE	
	Coef					[95% Conf.	Interval]
						.0207441	.0319672
_cons	.208850	.0369	9181 5	.66	0.000	.136396	.2813044

. predict lnarthat

(option xb assumed; fitted values)

. gen arthat=exp(lnarthat)

Poisson vs. Reg: Kid5

. poisson art	kid5					
Poisson regres	sion			Number	of obs	= 915
						= 4.20
						0.0405
Log likelihood	= -1740.475	7		Pseudo	R2 :	0.0012
art	Coef.	Std. Err.	Z	P> z	[95% Con:	f. Interval]
kid5	0697818	.034501	-2.02	0.043	1374026	002161
_cons	.5596001	.0298806	18.73	0.000	.5010353	.6181649
. reg art kid5						
	Coef.					
kid5		.0832528	-1.37	0.172	277245	
kid5	113856 1.749264	.0832528	-1.37	0.172	277245	.0495331
kid5 _cons . reg lnart kilnart	113856 1.749264 d5	.0832528 .0758244	-1.37 23.07	0.172 0.000 	277245 1.600454 	.0495331 1.898075
kid5 _cons . reg lnart ki	113856 1.749264 d5	.0832528 .0758244	-1.37 23.07	0.172 0.000 P> t	277245 1.600454	.0495331 1.898075

Observed vs. Unobserved Heterogeniety

Poisson:
$$\mu_i = E(Y_i | \mathbf{X}_i) = e^{\mathbf{X}_i \mathbf{\beta}} \quad Var(Y_i | \mathbf{X}_i) = \mu_i$$

Assumes all observations with the same Xs have the same mean. This is not realistic (e.g. left out variables). Also assumes independence: publishing one article does not change the mean (contagion effect). Also unrealistic.

Negative Binomial:
$$\mu_i = e^{(\mathbf{X}_i \boldsymbol{\beta} + \boldsymbol{\varepsilon}_i)} \quad Var(Y_i \mid \mathbf{X}_i) = ??$$

Allows for *unobserved* heterogenity, and also allows for non-independence (contagion). Read results the same as Poisson.

Incorporating Overdispersion

$$\mu_i^{NB} = e^{\mathbf{x}_i \mathbf{\beta} + \varepsilon_i} = e^{\mathbf{x}_i \mathbf{\beta}} e^{\varepsilon_i} = \mu_i \delta_i$$

Need an identifying assumption. If we assume $E(\delta_i)=1$ (corresponding to $E(\varepsilon_i)=0$ as in OLS, then:

$$E\left[\mu_{i}^{NB}\right] = E\left[\mu_{i}\delta_{i}\right] = \mu_{i}\left(1\right) = \mu_{i}$$

The NB has the same expected mean as the Poisson, but the standard errors in Poisson are biased downward, leading to incorrectly large z scores.

If we also assume δ_i has a gamma distribution with a constant variance, then $Y_i|\mathbf{X}_i$ has a negative binomial distribution.

$$Var(Y_i \mid X) = \mu_i + \alpha \mu_i^2$$

Alpha is an overdispersion parameter (from either unobserved heterogenity or "contagion").

Negative Binomial Regression

nbreg art fem mar kid5 phd ment

Negative binom Dispersion Log likelihood	= mean			LR ch	er of obs ni2(5) > chi2 lo R2	= = =	915 97.96 0.0000 0.0304
art	Coef.	Std. Err.	z	P> z	 [95% Cc	onf.	Interval]
fem	2164184	.0726724	-2.98	0.003	358853	37	0739832
mar	.1504895	.0821063	1.83	0.067	010435	59	.3114148
kid5	1764152	.0530598	-3.32	0.001	280410)5	07242
phd	.0152712	.0360396	0.42	0.672	055365	52	.0859075
ment	.0290823	.0034701	8.38	0.000	.022281	.1	.0358836
_cons	.256144	.1385604	1.85	0.065	015429	4	.5277174
/lnalpha	8173044	.1199372			-1.05237	7	5822318
alpha	.4416205	.0529667			.349106	59	.5586502
Likelihood-rat	io test of a	 lpha=0: chi	 bar2(01)	= 180.2	:0 Prob>=ch	iba:	r2 = 0.000

Zero Inflated Models

Often more zeros than expected. If we assume that a *separate* process generates at least some of the zeros, we get the ZIP or

ZINB model:
$$\Pr(Y_{i} = 0 \mid \mathbf{x}_{i}) = \Psi_{i} + (1 - \Psi_{i}) (poisson \ part)$$

$$\Pr(Y_{i} > 0 \mid \mathbf{x}_{i}) = (1 - \Psi_{i}) (poisson \ part)$$

$$e.g. \quad \Psi_{i} = \Phi(\mathbf{z}_{i}\gamma)$$

$$E(Y_{i} \mid \mathbf{x}_{i}, \mathbf{z}_{i}) = [0 \times \Psi_{i}] + [\mu_{i} \times (1 - \Psi_{i})]$$

$$= \mu_{i} - \mu_{i} \Psi_{i}$$

You need to specify the equation that generates the extra zeros.

ZIP Analysis

. zip art fem mar kid5 phd ment, inflate(fem mar kid5 phd ment)

Zero-inflated Poisson regression Inflation model = logit Log likelihood = -1604.773					r of obs = cro obs = obs = i2(5) = > chi2 =	915 640 275 78.56 0.0000
art	Coef.	Std. Err.	z 	P> z	[95% Conf.	Interval]
art						
fem	2091446	.0634047	-3.30	0.001	3334155	0848737
mar	.103751	.071111	1.46	0.145	035624	.243126
kid5	1433196	.0474293	-3.02	0.003	2362793	0503599
phd	0061662	.0310086	-0.20	0.842	066942	.0546096
ment	.0180977	.0022948	7.89	0.000	.0135999	.0225955
_cons	.640839	.1213072	5.28	0.000	.4030814	.8785967
inflate						
fem	.1097465	.2800813	0.39	0.695	4392028	.6586958
mar	3540107	.3176103	-1.11	0.265	9765155	.2684941
kid5	.2171001	.196481	1.10	0.269	1679956	.6021958
phd	.0012702	.1452639	0.01	0.993	2834418	.2859821
ment	134111	.0452461	-2.96	0.003	2227918	0454302
_cons	 5770618	.5093853	-1.13	0.257	-1.575439	.421315

Zero Truncated Poisson

- Another possibility is *zero truncated* model.
- In general, the goal of modifications is to adjust for lack of fit by a standard Poisson.
- In this case, maybe you only have data on published authors, so that the minimum in the data is 1.

```
ztp depvar [indepvars] [if] [in] [weight] [, options]
ztnb depvar [indepvars] [if] [in] [weight] [, options]
```

Comparison of Poisson, Poisson on Zero Truncated Data, and Zero Truncated Poisson

	poisson	wrong	ztp
fem	-0.225***	-0.162**	-0.229***
	(-4.11)	(-2.98)	(-3.51)
mar	0.155*	0.0682	0.0965
	(2.53)	(1.11)	(1.32)
kid5	-0.185***	-0.0990*	-0.142**
	(-4.61)	(-2.47)	(-2.93)
phd	0.0128	-0.0131	-0.0127
	(0.49)	(-0.49)	(-0.41)
ment	0.0255***	0.0150***	0.0187***
	(12.73)	(7.08)	(8.22)
_cons	0.305**	0.827***	0.671***
	(2.96)	(8.04)	(5.48)
N	915	640	640

ZTNB Example

. drop if art==0

(275 observations deleted)

. ztnb art fem mar kid5 phd ment

Zero-truncated negative binomial regression Dispersion = mean Log likelihood = -1027.3185					er of obs ni2(5) > chi2 lo R2	= = = =	640 44.58 0.0000 0.0212
art	Coef.	Std. Err.	Z	P> z	[95% C	onf.	Interval]
fem mar kid5 phd ment _cons	2446712 .1034172 1532593 0029336 .0237382 .355125	.0972181 .1094297 .0722291 .0480673 .0042868 .1968307	-2.52 0.95 -2.12 -0.06 5.54 1.80	0.012 0.345 0.034 0.951 0.000 0.071	43521 11106 29482 09714 .01533 03065	11 57 37 62	0541272 .3178955 011693 .0912766 .0321402 .7409062
/lnalpha	6034753	.2249915			-1.0444	51	1625001
alpha	.5469076	.1230496 			.35188	51 	.850016

Likelihood-ratio test of alpha=0: chibar2(01) = 105.43 Prob>=chibar2 = 0.000