Due: 2013/09/27 before class

Homework 1

Problem 1. Calculate the following:

- (a) $\binom{10}{8}$;
- (b) The inverse of 1, 2, 3, 4, 5, 6 in \mathbb{Z}_7 , i.e. for each $1 \le i \le 6$, find $j = i^{-1}$ such that $ij \equiv 1 \mod 7$;
- (c) The rightmost digit in the decimal $\binom{449}{137}$, i.e. $\binom{449}{137}$ mod 10.

Problem 2. Find the number of ordered pairs (A, B) such that $A, B \subseteq [n]$ and $A \cap B = \emptyset$.

Problem 3. Consider a 2-d array of 9×9 unit squares. If each unit square is filled with a distinct number from [81], prove that there are always two neighboring squares (vertically or horizontally adjacent) with difference at least 9.

Problem 4. n people are in a big party. There are many triples (a group of 3 among the n) called fun. All we know is that, among any 4 people, the number of fun triples is even (that is, 0, 2, or 4). For any two persons a and b, the club \overline{ab} is the set of people including a, b, and anyone who forms a fun triple with a and b.

Prove that, either there is a club of size n, or there are at least n different clubs.