El protocolo IPv6

Integrantes:

Martín Moloeznik, Nicolás Paz Reyes martinmoloeznik@gmail.com, rubenpaz2105@gmail.com

 $Repositorio: \verb|https://github.com/N1CO-P4Z/Protocolo-IPv6||$

Índice

1.	Introducción	2
	IPv6 SLAAC and EUI-64 Basics2.1. Configuración del Router en IPv6	
3.	Escenario 2: Neighbor Discovery y NDP	3
4.	Conclusiones	3
5.	Referencias	3

1. Introducción

El protocolo IPv6 fue desarrollado para reemplazar a IPv4 debido a la necesidad de una mayor cantidad de direcciones IP en el mundo. Dentro de IPv6 existen mecanismos esenciales para la configuración de direcciones y la comunicación entre dispositivos, entre los cuales se destacan SLAAC, EUI-64 y el protocolo Neighbor Discovery (NDP).

2. IPv6 SLAAC and EUI-64 Basics

2.1. Configuración del Router en IPv6

Figura 1: Red a ensayar

Aquí se detalla la configuración necesaria en el router, incluyendo la activación de IPv6, asignación de direcciones LLA y GUA, y otros comandos.

2.2. Explicacion algoritmo EUI-64

La pc se autoconfigura su Link Local Addres siguiendo los pasos a continuacion: +

48 bit MAC	00-E0-F9-98-8A-07
Separa al medio	00-E0-F9 / 98-8A-07
Insertar FF-FE	00-E0-F9 FF-FE 98-8A-07
Primeros dos hexa a binario	0000-0000-E0-F9 FF-FE 98-8A-07
Se invierte el septimo bit	0000-00 1 0-E0-F9 FF-FE 98-8A-07
64 bits host interface ID	02 -E0-F9- FF-FE -98-8A-07
Link Local Address	FE80:: 2E0:F9FF:FE98:8A07

Algoritmo EUI-64

0	4	12			32
Ver:6	TRFC		$FLOW\ LABEL$		
	PL:12		NEXT:0x3a	HOP LIMIT:255	
	Link Local Address				
	All Routers Multicast address				

3. Escenario 2: Neighbor Discovery y NDP

En esta sección se describe el proceso de descubrimiento de vecinos en IPv6, incluyendo:

- Configuración de las interfaces en el router y dispositivos.
- Flujo de mensajes de NDP y explicación de cada uno (por ejemplo, RS y RA).
- Análisis de los PDUs involucrados y la conversión de direcciones MAC.

4. Conclusiones

Aquí se sintetizan los resultados obtenidos y se discuten las ventajas y desventajas de la autoconfiguración en IPv6, así como el impacto del proceso de Neighbor Discovery en el rendimiento de la red.

5. Referencias

Para la elaboración de este informe utilizamos el contenido de los siguientes videos.

- Video 1: "IPv6 SLAAC and EUI-64 Basics in Packet Tracer", Dan Alberghetti, 2019, at https://www.youtube.com/watch?v=yMK1NVHksDE.
- Video 2: "IPv6 NDP and ICMPv6 using Packet Tracer", Dan Alberghetti, 2020, at https://www.youtube.com/watch?v=y2GpG9a0IFI
- Video 3: "Detección de vecinos IPv6 (Packet Tracer Lab 9.3.4)", RedesNetw channel, 2022, at https://www.youtube.com/watch?v=ZBVXbgF39gw +