

Understanding Cryptography – A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl

These slides were prepared by Georg Becker, Christof Paar and Jan Pelzl

Some legal stuff (sorry): Terms of Use

- The slides can used free of charge. All copyrights for the slides remain with Christof Paar and Jan Pelzl.
- The title of the accompanying book "Understanding Cryptography" by Springer and the author's names must remain on each slide.
- If the slides are modified, appropriate credits to the book authors and the book title must remain within the slides.
- It is not permitted to reproduce parts or all of the slides in printed form whatsoever without written consent by the authors.

Content of this Chapter

- The principle of digital signatures
- The RSA digital signature scheme
- The Digital Signature Algorithm (DSA)

Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

- The principle of digital signatures
- The RSA digital signature scheme
- The Digital Signature Algorithm (DSA)

Motivation

- Alice orders a pink car from the car salesmen Bob
- After seeing the pink car, Alice states that she has never ordered it:
- How can Bob prove towards a judge that Alice has ordered a pink car? (And that he did not fabricate the order himself)
- ⇒ Symmetric cryptography fails because both Alice and Bob can be malicious
- ⇒ Can be achieved with public-key cryptography

Main idea

- For a given message x, a digital signature is appended to the message (just like a conventional signature).
- Only the person with the private key should be able to generate the signature.
- · The signature must change for every document.
- ⇒The signature is realized as a function with the 只有拥有私钥的人才能生成有效 message x and the private key as input.
- ⇒The public key and the message *x* are the inputs to the verification function.

Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

Security Services

Digital signatures provide the following security services:

- 1. Integrity: Ensures that a message has not been modified in
- 2. Message Authentication: Ensures that the sender of a message is authentic. An alternative term is data origin authentication.
- Non-repudiation: Ensures that the sender of a message can massage can ma not deny the creation of the message. (c.f. order of a pink car)
 - 尽力 不是加密内容。
 - 因此,若需要机密性,则需要结合 对称加密或非对称加密方

Confidentiality lack数字签名 缺乏 机密性保护功能

- 法来实现。

Content of this Chapter

- The principle of digital signatures
- The RSA digital signature scheme
- The Digital Signature Algorithm (DSA)

Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

Main idea of the RSA signature scheme

To generate the private and public key:

Use the same key generation as RSA encryption.

To generate the signature:

• "encrypt" the message x with the private key

$$s = sig_{K_{priv}}(x) = x^d \mod n$$

Append s to message x

To verify the signature:

"decrypt" the signature with the public key

$$x'=ver_{K_{pub}}(s)=s^e \mod n$$

• If x=x', the signature is valid

Chapter 10 of *Understanding Cryptography* by Christof Paar and Jan Pelzl

答名生成

签名的过程实际上是对消息 xxx 进行"加密",但不同于通常的加密操作,这里使用的是 私钥 ddd,而不是公钥 eee。这确保了只有拥有私钥的发送方才能生成合法的签名。

签名验证:

 验证的过程相当于"解密"签名,但 使用公钥 eee,这意味着任何人都 可以验证签名。这提供了不可否认 性,因为只有私钥持有者能够生成 合注的签名

• 安全性:

 RSA 签名方案的安全性依赖于 RSA 难题 和 整数因子分解难题 的计算 复杂度,即在已知 nnn 和 eee 的情 况下,推导出 d是非常困难的。

The RSA Signature Protocol

Alice

 K_{pub}

Bob

 $K_{pr} = d$ $K_{pub} = (n, e)$

Compute signature: $s = sig_{k_{Dr}}(x) \equiv x^d \mod n$ (x,s)

1. 签名协议流程

- Alice 和 Bob 之间的通信。
- Bob (签名者):
 - 生成公钥 $K_{pub}=(n,e)$ 和私钥 $K_{pr}=d$ 。
 - 计算签名 s:

 $s = \operatorname{sig}_{K_{pr}}(x) = x^d \mod n$

- 将签名 s 和消息 x 一起发送给 Alice,即发送 (x,s)。
- Alice (验证者):
 - 接收到消息 (x,s) 后,使用公钥 $K_{pub}=(\overline{n},e)$ 验证签名:

$$x'=s^e \mod n$$

- 如果 x' = x,则签名有效。
- 如果 $x' \neq x$, 则签名无效。

Verify signature:

 $x' \equiv s^e \mod n$

If $x' \equiv x \mod n \rightarrow \text{valid signature}$

If $x' \not\equiv x \mod n \rightarrow \text{invalid signature}$

Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

Security and Performance of the RSA Signature Scheme

Security:

The same constrains as RSA encryption: n needs to be at least 1024 bits to provide a security level of 80 bit.

⇒ The signature, consisting of s, needs to be at least 1024 bits long

- 签名过程: 使用私钥 d 进行模幂运算 (即 $x^d \mod n$) 。
- 验证过程: 使用公钥 e 进行模幂运算 (即 $s^e \mod n$) 。
- 通常选择较小的 e (如 e=3 或 e=65537) ,以加快验证速度。因此,**签名验证**

Performance:

The signing process is an exponentiation with the private key and the verification process an exponentiation with the public key e. Small & light wordh

⇒ Signature verification is very efficient as a small number can be chosen for the public key.

d 的逆元: 通过 $e imes d \equiv 1 \mod \phi(n)$ 计算私钥 d。

 $\mathbf{h} e$: 选择较小的 e 可以优化验证的计算效率,使验证过程更加轻量

小e: 选择较 が Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

d mersent emodin

■ Existential Forgery Attack against RSA Digital Signature

Alice

Oscar

Bob

(n,e)

(n,e)

 $K_{pr} = d$ $K_{pub} = (n, e)$

1. Choose signature:

 $s \in Z_n$

2. Compute message:

 $x \equiv \dot{s}^e \bmod n$

(x,s)

Verification:

- compute $x' \equiv s^e \mod n$
- Compare x and x':

 $x \equiv s^e \equiv x' mod \ n$

Signature is valid!

Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

Existential Forgery and Padding

- An attacker can generate valid message-signature pairs (x,s)
- But an attack can only choose the signature s and NOT the message x
- → Attacker cannot generate messages like "Transfer \$1000 into Oscar's account"

Formatting the message x according to a padding scheme can be used to make sure that an attacker cannot generate valid (x,s) pairs.

(A messages *x* generated by an attacker during an Existential Forgery Attack will not coincide with the padding scheme. For more details see Chapter 10 in *Understanding Cryptography.*)

Content of this Chapter

- · The principle of digital signatures
- · The RSA digital signature scheme
- The Digital Signature Algorithm (DSA)

Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

Facts about the Digital Signature Algorithm (DSA)

 Federal US Government standard for digital signatures (DSS)

- Proposed by the National Institute of Standards and Technology (NIST)
- DSA is based on the Elgamal signature scheme
- Signature is only 320 bits long
- Signature verification is slower compared to RSA

DSA 的特点

- 签名长度: DSA 生成的签名长度仅为 320 位,相比其他签名方案更短,因此在某些应用 场景下更为高效。
- 签名验证速度:
 - o DSA 的签名验证过程 比 RSA 更慢,这使得 DSA 更适合生成签名,而非频繁验证签

3. 安全性与效率

- DSA的设计初发是提供10种安全国积准化的数学签名分案广确保数据的完整性以认证以
- 验证较慢的原因是其基于离散对数问题(DLP),需要更多的计算资源。

The Digital Signature Algorithm (DSA)

Key generation of DSA:

- 1. Generate a prime p with $2^{1023} [0] <math>1 \sim 1000$ likes. To we,
- Find a prime divisor q of p-1 with 2¹⁵⁹ < q < 2¹⁶⁰
 Find an integer α with ord(α)=q
- 4. Choose a random integer d with 0<d<q
- 5. Compute $\beta \equiv a^d \mod p$

The keys are:

$$k_{pub} = (p,q,\alpha,\beta)$$

$$k_{pr} = (d)$$

X-711/2

dective our ve.

"elliptic curve"(椭圆曲线)

• 这意味着,未来可能会更多采用 椭 圆曲线数字签名算法 (ECDSA), 因 为它在提供相同安全级别的前提 下, 密钥更短, 效率更高。

$$\kappa_{pub} - (p, q, \alpha, p)$$
$$k_{pr} = (d)$$

Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

■ The Digital Signature Algorithm (DSA)

DSA signature generation :

- 1. Choose an integer as random ephemeral key k_E with $0 < k_E < q$
- 2. Compute $r \equiv (a^{kE} \mod p) \mod q$
- 3. Computes $s \equiv (SHA(x)+d \cdot r) k_E^{-1} \mod q$

The signature consists of (r,s)

SHA denotes the hash function SHA-1 which computes a 160-bit fingerprint of message *x*. (See Chapter 11 of *Understanding Cryptography* for more details)

Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

完整性、认证性 和 不可否认性

■ The Digital Signature Algorithm (DSA)

DSA signature verification

Given: message x, signature s and public key (p,q,α,β)

- 1. Compute auxiliar ψ alue $w \equiv s^{-1} \mod q$
- 2. Compute auxiliary value $u_1 \equiv w \cdot SHA(x) \mod q$
- 3. Compute auxiliary value $u_2 \equiv w \cdot r \mod q$
- 4. Compute $v \equiv (\alpha^{u_1} \cdot \beta^{u_2} \mod p) \mod q$

If $v \equiv r \mod q \rightarrow \text{signature is valid}$

If $v \not\equiv r \mod q \rightarrow \text{signature is invalid}$

Proof of DSA:

We show need to show that the signature (r,s) in fact satisfied the condition $r \equiv v \mod q$:

$$s \equiv (SHA(x))+d \cdot r) \cdot k_E^{-1} \mod q$$

$$\Leftrightarrow$$
 $k_E \equiv s^{-1} SHA(x) + d \cdot s^{-1} r \mod q$

$$\Leftrightarrow k_{\mathsf{E}} \equiv u_1 + d \cdot u_2 \bmod q$$

We can raise α to either side of the equation if we reduce modulo p:

$$\Leftrightarrow \quad \alpha^{kE} \mod p \equiv \alpha^{u_1+d\cdot u_2} \mod p$$

Since $\beta \equiv \alpha^d \mod p$ we can write:

$$\Leftrightarrow \alpha^{kE} \mod p \equiv \alpha^{u_1} \beta^{u_2} \mod p$$

We now reduce both sides of the equation modulo q:

$$\Leftrightarrow$$
 $(\alpha^{kE} \mod p) \mod q \equiv (\alpha^{u_1} \beta^{u_2} \mod p) \mod q$

Since $r \equiv (a^{k_E} \mod p) \mod q$ and $v \equiv (a^{u_1} \beta^{u_2} \mod p) \mod q$, this expression is identical to:

Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

Example DSA 签名示例

Alice

Bob

Key generation:

1. choose p = 59 and q = 29

2. choose
$$\alpha = 3$$

3. choose private key d = 7

4.
$$\beta = \alpha^d = 3^7 \equiv 4 \mod 59$$

Sign:

Compute has of message H(x)=26

- 1. Choose ephermal key k_E =10
- 2. $r = (3^{10} \mod 59) \equiv 20 \mod 29$
- 3. $s = ((26 + 7 \cdot 20) \cdot 3) \equiv 5 \mod 29$

 (p, q, α, β) =(59, 29, 3, 4)

(x,(r, s))=(x,20, 5)

Verify:

 $w \equiv 5^{-1} \equiv 6 \mod 29$

 $u_1 \equiv 6 \cdot 26 \equiv 11 \mod 29$

 $u_2 \equiv 6 \cdot 20 \equiv 4 \mod 29$

 $v = (3^{11} \cdot 4^4 \mod 59) \mod 29 = 20$

 $v \equiv r \mod 29 \rightarrow \text{valid signature}$

Security of DSA

calculus method can be applied. But this method cannot be applied to the discrete logarithm problem of the subgroup q.

此选择较大的 ppp 和 qqq 非常重要。

Therefore q can be smaller than p. For details see Chapter 10 and Chapter 8 of Understanding Cryptography.

р	q	hash output (min)	security levels
1024	(160)	160	80
2048	224	224	112
3072	256	256	128

double - birralen

Standardized parameter bit lengths and security levels for the DSA

p 的长度越大,安全性越高。

Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

Security of DSA

ause onece.

一次性会话密钥的重用风险

• 在 DSA (数字签名算法)中,如果重复使用相同的会话密钥(ephemeral key kEk_EkE

- Reuse of ephemeral key can lead to the disclosure of the head to the head to the disclosure of the head to the signing key.
- · Exercise: prove this.
- · Real-world incident:
 - · Sony Playstation uses the same constant as the ephemeral key in its digital signatures.

· This was exploited in 2010 by a hacker to obtain the signing

https://www.bbc.com/news/technology-12116051

签名 (r,s) 中:

$$r = (\alpha^{k_E} \mod p) \mod q$$
 $s = (H(r) + d \cdot r)k^{-1} \mod q$

 $s = (H(x) + d \cdot r)k_E^{-1} \mod q$

• 如果 k_E 重复使用,并且攻击者能截获两个不同消息的签名对 (r,s_1) 和 (r,s_2) ,他可 以通过以下公式推导出d:

$$s_1 - s_2 = (H(x_1) - H(x_2))k_E^{-1} \mod q$$

$$k_E=rac{H(x_1)-H(x_2)}{s_1-s_2}\mod q$$

• 一旦获得 k_E ,攻击者可以进一步解出私钥 d:

 $d = \frac{s \cdot k_E - H(x)}{}$

Chapter 10 of Understanding Cryptography by Christof Paar and Jan Pelzl

■ Elliptic Curve Digital Signature Algorithm (ECDSA)

椭圆曲线密码学提供与 RSA 相同级别的安全性,但所需的密钥长度更短

- Based on Elliptic Curve Cryptography (ECC)
- Bit lengths in the range of 160-256 bits can be chosen to provide security equivalent to 1024-3072 bit RSA (80-128 bit symmetric security level)
- One signature consists of two points, hence the signature is twice the used bit length (i.e., 320-512 bits for 80-128 bit security level). 签名的长度是密钥长度的两倍。例如,对于160位 ECC 密钥,签名长度为320位。
- The shorter bit length of ECDSA often result in shorter

processing time

更短的密钥长度意味着更快的处理时间和更小的存储需求,因此更适合在资源受限的环境 (如移动设备和嵌入式系统) 中使用。

For more details see Section 10.5 in Understanding Cryptography

(如移动设备和嵌入式系统) 中使用。

For more details see Section 10.5 in *Understanding Cryptography*

Chapter 10 of *Understanding Cryptography* by Christof Paar and Jan Pelzl

Lessons Learned

- Digital signatures provide message integrity, message authentication and nonrepudiation.
- RSA)is currently the most widely used digital signature algorithm.
- Competitors are the Digital Signature Standard (DSA) and the Elliptic Curve Digital Signature Standard (ECDSA).
- RSA verification can be done with short public keys e. Hence, in practice, RSA verification is usually faster than signing.
- DSA and ECDSA have shorter signatures than RSA
- In order to prevent certain attacks, RSA should be used with padding.
- The modulus of DSA and the RSA signature schemes should be at least 1024-bits long. For true long-term security, a modulus of length 3072 bits should be chosen. In contrast, ECDSA achieves the same security levels with bit lengths in the range 160–256 bits.

ECDSA 可以在 160-256 位的密钥长度下达到与 1024-3072 位 RSA 相同的安全水平。因此,ECDSA 更适合在资源受限的环境中使用,如嵌入式系统和移动设备。