一个最简单的神经网络项目。

Data: 一般输入是文件地址,或者数据内容, 输出是一个存储了数据X,Y的数据结构。 torch中一般用dataloader 来装载。

练

流

程

Model: 定义自己的模型

输入X, 输出预测值

hyperPara: 除模型外的超参

一般包含: 学习率, 优化器,

损失函数等

回归损失函数: $LOSS = |\hat{y} - y|$

Dataset:

init

getitem

len

Model

init

forward

取数据

•我们一定要用所有的数据算一次loss? 这样会不会有什么问题,

我这一步要走多远?

一个数据更新一次就好吗?

Optimization of New Model

训练集,测试集,和验证集。

训练集,测试集,和验证集。

尝试设计网络并计算参数。

Linear (3, 4)

Num_weights = $3 \times 4 + 4$

有多少参数量

Linear (4, 1)

Num_weights = $4 \times 1 + 1$

Linear (1000, 1000)

Num_weights = $1000 \times 1000 + 1000$

新冠病毒感染人数预测。

说的是啊这个美国,有40个州,这四十个州呢,统计了连续三天的新冠阳性人数,和每天的一些社会特征,比如带口罩情况,居家办公情况等等。现在有一群人比较坏,把第三天的数据遮住了,我们就要用前两天的情况以及第三天的特征,来预测第三天的阳性人数。但幸好的是,我们还是有一些数据可以作为参考的,就是我们的训练集。

新冠病毒感染人数预测。

• 正则化: loss = loss+ W*W

• 相关系数: 线性相关。(SelectKBest)

• 主成分分析 PCA。

Optimization of New Model

房价预测

此数据集是King County地区2014年五月至2015年五月的房 屋销售信息,适合于训练回归模型。

• https://www.kaggle.com/datasets/harlfoxem/housesalesprediction?sel ect=kc house data.csv

• id: 唯一id

• date: 售出日期

• price: 售出价格(标签值)

• bedrooms: 卧室数量

• bathrooms: 浴室数量

• sqft_living: 居住面积

• sqft_lot: 停车场面积

• floors: 楼层数

• waterfront: 泳池

•view:有多少次看房记录

•condition:房屋状况

•grade: 评级

•sqft_above: 地面上的面积

•sqft_basement: 地下室的面积

•yr_built: 建筑年份

•yr_renovated: 翻修年份

•zipcode: 邮政编码

•lat: 维度 •long: 经度

•sqft_living15: 2015年翻修后的居住面积 •sqft_lot15: 2015年翻修后的停车场面积

思考:

如何处理日期和邮政

编码。

Label值太大怎么办 (统一除以一个值)

总结

在回归这一章, 应该记住的

Linear (4, 1)

Linear (4, 100)

Linear (100, 1)

Loss 与梯度下降

答疑和结束

THANKS

从零设计一个线性回归模型。

理解代码的每一步是在做什么事情。

回顾昨天的代码。

先找到对应的部分。模型。 数据, loss, 参数, 训练

尝试加深网络层数。

尝试加宽网络。

增加输入维度。

自己写一个数学公式, 设计回归网络, 并计算参数量。