

endliche Automaten (Maschinen)

Reguläre Ausdrücke

Nicht-Reguläre Sprachen

Entscheidbarkeit

DFA M

von einem DFA akzeptierte Sprache ist: $L(M) = w \in \sum^* |\hat{\delta}(z_0, w)| \in E$

Eine Sprache $L \supseteq \sum^*$ ist regulär, wenn es einen DFA mit L(M) = L gibt

NFA M

Jede von einem NFA akzeptierte Sprache ist regulär

Satz

Wenn L_1 und L_2 reguläre Sprachen sind, dann ist auch

 $L_1 \cup L_2$ regulär

 $L_1 \cap L_2$ regulär

 L_1L_2 regulär

 L_1^+/L_1^* regulär

Jede reguläre Sprache ist rechtslinear

Definition

Die Menge $Reg(\sum)$ der regulären Ausdrücke über dem Alphabet \sum ist die kleinste Menge mit folgenden Eigenschaften:

 $\varnothing \in Reg(\sum), \lambda \in Reg(\sum), \sum \subseteq Reg(\sum)$

Wenn $\alpha, \beta \in Reg(\sum)$, dann auch $(\alpha * \beta), (\alpha + \beta), (\alpha^*) \in Reg(\sum)$

für $\alpha * \beta$ schreibt man oft $\alpha\beta$

für $\alpha + \beta$ schreibt man auch $\alpha | \beta$

Für einen regulären Ausdruck $\alpha \in Reg(\sum)$ ist die Sprache $L(\alpha) \subseteq \sum^*$ induktiv definiert

zu jedem regulären Ausdruck γ gibt es einen NFA M mit $L(\gamma) = L(M)$

zu jedem DFA M gibt es einen regulären Ausdruck γ mit $L(M) = L(\gamma)$

Pumping Lemma

L sei reguläre Sprache, dann gibt es $n \leq 1$ derart, dass für alle $x \in L$ mit $|x| \geq n$ gilt: es gibt Wörter $u, v, w \in \sum^*$ mit

 $x = uvw, |uv| \le n, |v| \ge 1$

 $uv^iw \in L$ für alle $i \geq 0$

geeignet um Aussagen über Nicht-Regularität zu machen

Myhill-Nerode Äquivalenz

binäre Relation $R_L \subseteq \sum^* \times \sum^*$

 $\forall x, y \in \sum^* \text{ setze } (x, y) \in R_L$ genau dann, wenn $\forall z \in \sum^* :$ $(xy \in L \leftrightarrow yz \in L) \text{ gilt. } xR_Ly$

Für Sprache L und Wort $x \in \sum^*$ ist $[x]_L = \{y \in \sum^* | xR_L y\}$ die Äquivalenzklasse von x

Satz: L ist regulär $\leftrightarrow index(R_L) < \infty$

Wortproblem

Gilt $w \in L$ für eine gegebene reguläre Sprache L und $w \in \sum^*$?

Leerheitsproblem

Gilt $L = \emptyset$ für eine gegebene reguläre Sprache L?

Endlichkeitsproblem

Ist eine gegebene reguläre Sprache L endlich?

Schnittproblem

Gilt $L_1 \cap L_2 = \emptyset$ für gegebene reguläre L_1, L_2 ?

Inklusionsproblem

Gilt $L_1 \subseteq L_2$ für gegebene reguläre L_1, L_2 ?

Äquivalenzproblem

Gilt $L_1 = L_2$ für gegebene reguläre L_1, L_2 ?

deterministischer endlicher Automat M

- 5-Tupel $M=(Z,\sum,z_0,\delta,E)$ Z eine endliche Menge von Zuständen
- \sum das Eingabealphabet (mit $Z \cap \sum = \emptyset$)
- $z_0 \in Z$ der Startzustand
- $\delta: Z \times \sum \to Z$ die Übergangsfunktion $E \subseteq Z$ die Menge der Endzustände
- kurz: DFA (deterministic finite automaton)

Linksableitung CYK-Algorithmus Kellerautomaten die Greibach-Normalform das Lemma von Ogden (William Ogden) Halteproblem Reduktion Satz von Rice Semi Entscheidbarkeit Universelle Turing Maschine Totale berechenbare Funktionen Einige unentscheidbare Probleme

Turingmaschine

Definition: Eine Turingmaschine (TM) ist ein 7-Tupel M = $(Z, \sum, \Phi, \delta, z_o, \square, E)$, wobei

- \sum das Eingabealphabet
- $\overline{\Phi}$ mit $\Phi \supseteq \sum$ und $\Phi \cap Z \neq 0$ das Arbeits- oder Bandalphabet,
- $z_0 \in Z$ der Startzustand,
- δ : $Z \times \Phi \rightarrow (Z \times \Phi \times \{L, N, R\})$ die Überführungsfunktion
- $\Box \in \Phi / \sum$ das Leerzeichen oder Blank und
- $E \subseteq Z$ die Menge der Endzustände ist