Nome:	Matrícula:

$3\underline{a}$	Prova - MTM1039 - T	11
	6 de Julho de 2016	

2.	
3.	
4.	
5.	

 \sum

Coloque o nome em todas as folhas. É proibido usar calculadora ou similares. Respostas sem justificativas ou que não incluam os cálculos necessários não serão consideradas.

Questão 1. (2pts) Encontre uma base ortonormal para o subespaço do \mathbb{R}^4 dos vetores (a, b, c, d) tais que

$$a + 3b - c + d = 0.$$

Questão 2. (2pts) A matriz

$$A = \left[\begin{array}{rrr} 4 & 0 & -16 \\ -1 & 4 & -12 \\ 0 & -1 & 4 \end{array} \right]$$

é diagonalizável? Para tanto encontre todos os autovalores e para cada um encontre uma base para o autoespaço. Se A for diagonalizável, encontre as matrizes P invertível e D diagonal tais que $P^{-1}AP = D$.

Questão 3. (2pts) Considere o vetor $U_1 = (\frac{5}{7}, -\frac{2\sqrt{6}}{7})$.

- (a) Escolha U_2 de forma que $S = \{U_1, U_2\}$ seja base ortonormal de \mathbb{R}^2 . Mostre que S é base;
- (b) Escreva a matriz mudança de base $[M]_{SCC \leftarrow SCO}$ que realiza a mudança de coordenadas do novo sist. de coord. ortogonais (que manteve a origem O) $SCO_1 = (O, \{U_1, U_2\})$ para o sist. de coord. cartesianas usual $SCC = (O, \{E_1, E_2\})$;
- (c) Considere P = (1, 1). Encontre $[P]_{SCO_1}$, as coordenadas de P no novo sistema de coordenadas SCO_1 .

Questão 4. (2pts) Responda VERDADEIRO ou FALSO, com uma breve justificativa:

- i-() Se A é uma matriz 2×2 com somente um autovalor, então A é diagonalizável;
- ii-() Os vetores $W_1=(1,1,0),\,W_2=(0,1,1)$ geram o espaço $\mathbb{R}^3;$
- iii-() Os vetores $W_1=(1,1,0),\,W_2=(0,1,1)$ e $W_3=(2,3,1)$ de \mathbb{R}^3 são LI;
- iv-() O conjunto de pontos $(x,y,z,w)\in\mathbb{R}^4$ que satisfaz a equação

$$x + y + z + w = 0$$

é um espaço vetorial que tem dimensão 2.

Questão 5. (2pts)

(a) Encontre matrizes P ortogonal $(P^{-1} = P^t)$ e D diagonal tais que $D = P^tAP$, onde

$$A = \left[\begin{array}{cc} 8 & -8 \\ -8 & 8 \end{array} \right]$$

(b) Identifique a cônica de equação

$$8x^2 - 16xy + 8y^2 + 33\sqrt{2}x - 31\sqrt{2}y + 70 = 0$$

e reescreva a equação num novo sistema de coordenadas ortogonais que torne a equação mais simples de reconhecer.