Computer Networks

Equal-Cost Multi-Path Routing (§5.2.1, 5.6.6)

Topic

- More on shortest path routes
 - Allow multiple shortest paths

Multipath Routing

- Allow multiple routing paths from node to destination be used at once
 - Topology has them for redundancy
 - Using them can improve performance
- Questions:
 - How do we find multiple paths?
 - How do we send traffic along them?

Equal-Cost Multipath Routes

- One form of multipath routing
 - Extends shortest path model by keeping set if there are ties
- Consider A→E

$$-$$
 ABE = 4 + 4 = 8

$$-$$
 ABCE = 4 + 2 + 2 = 8

$$-$$
 ABCDE = 4 + 2 + 1 + 1 = 8

Use them all!

Source "Trees"

- With ECMP, source/sink "tree" is a directed acyclic graph (DAG)
 - Each node has set of next hops
 - Still a compact representation

Source "Trees" (2)

- Find the source "tree" for E
 - Procedure is Dijkstra, simply remember set of next hops
 - Compile forwarding table similarly, may have set of next hops
- Straightforward to extend DV too
 - Just remember set of neighbors

Computer Networks

6

Source "Trees" (3)

E's Forwarding Table

Node	Next hops	
Α	B, C, D	
В	B, C, D	
С	C, D	
D	D	
E		
F	F	
G	F	
Н	C, D	

Computer Networks

7

Forwarding with **ECMP**

- Could randomly pick a next hop for each packet based on destination
 - Balances load, but adds jitter
- Instead, try to send packets from a given source/destination pair on the same path
 - Source/destination pair is called a <u>flow</u>
 - Map flow identifier to single next hop
 - No jitter within flow, but less balanced

Forwarding with ECMP (2)

Multipath routes from F/E to C/H E's Forwarding Choices

Flow	Possible next hops	Example choice
$F \rightarrow H$	C, D	D
$F \rightarrow C$	C, D	D
$E \rightarrow H$	C, D	С
$E \rightarrow C$	C, D	C

Use both paths to get to one destination

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey