Experimento sobre complejidad temporal en algoritmos de ordenamiento.

Dueños del experimento	 Danna Garcia Camilo Gutierrez Andrea Nuñez Camilo Escobar 	
Revisores	Juan ReyesFelipe Sanchez	
Status	• Completo	
En este documento	 Revisión Medición Objetivo de la situación experimental Variaciones Resultados 	

Planeación del experimento

- Revisión:

• **Tipo de experimento:** Un experimento es un cambio en las condiciones de operación de un sistema o PROCESO, que se hace con el objetivo de medir el efecto del cambio sobre una o varias propiedades del producto o resultado

Este es un experimento de tipo aleatorio que analiza los cambios en las condiciones en un sistema informático encargado de aplicar un orden predefinido a una estructura de datos.

Medición

• Tiempo empleado en el proceso de ejecución (milisegundos)

Objetivo de la situación experimental

- Donde será realizado el experimento?: El experimento será realizado en un entorno informático no controlado.
- ¿Quién va a ver el experimento?: Un equipo de análisis estadístico avanzado compuesto por 4 observadores equipados con tecnologías de medición desarrolladas.
- Las pruebas deben ser sobre entradas pequeñas fijas y entradas grandes generadas aleatoriamente.

Variaciones

	A: Tamaño de la entrada	B: Orden predefinido de la entrada	C: Algoritmo	D: Número de repeticiones
Caso 1	fija	ascendente	Burbuja	100
Caso 2	fija	descendente	Burbuja	100
Caso 3	fija	aleatoria	Burbuja	100
Caso 4	aleatorio	ascendente	Burbuja	100
Caso 5	aleatorio	ascendente	Quick	100
Caso 6	aleatorio	descendente	Quick	100
Caso 7	aleatorio	descendente	Burbuja	100
Caso 8	fija	descendente	Quick	100
Caso 9	fija	aleatorio	Quick	100
Caso 10	fija	descendente	Burbuja	1000
Caso 11	fija	descendente	Quick	1000

Resultados

	A: Tamaño de la entrada	A.a: Tamaño	B: Orden predefinido de la entrada	C: Algoritmo	D: Número de repeticiones	RESULTADO (Milisegundos)
Caso 1	fija	1234	ascendente	Burbuja	100	2,6103
Caso 2	fija	1234	descendente	Burbuja	100	2,8099
Caso 3	fija	1234	aleatoria	Burbuja	100	1,9731
Caso 4	aleatorio	1000	ascendente	Burbuja	120	2,3400
Caso 5	aleatorio	10	ascendente	Quick	120	0,0072
Caso 6	aleatorio	100	descendente	Quick	150	0,0209
Caso 7	aleatorio	1000	descendente	Burbuja	150	1,7980
Caso 8	fija	10000	descendente	Quick	100	0,4200
Caso 9	fija	10000	aleatorio	Quick	200	0,6909
Caso 10	fija	10000	descendente	Burbuja	100	203,4376
Caso 11	fija	1000	descendente	Quick	1000	0,0476

Inicio del experimento	6 mar. 2021
Fin del experimento	14 mar. 2021

- UNIDAD EXPERIMENTAL: milisegundos.
- FACTORES CONTROLABLES:
 - 1. Tamaños fijos de la entrada.
 - 2. Factor de ordenamiento de las entradas.
 - 3. Algoritmo implementado para cada caso experimental.
 - 4. Número de repeticiones.

• FACTORES NO CONTROLABLES:

- 1. Tamaño aleatorio de la entrada.
- 2. Ordenamiento aleatorio de la entrada.
- 3. Uso externo del poder de procesamiento del sistema de cómputo.

- VARIABLE DE RESPUESTA: En este caso la variable de respuesta vendría siendo el tiempo medido en milisegundos que tarda el algoritmo en ejecutarse.
- ANÁLISIS DE COMPLEJIDAD ESPACIAL Complejidad espacial para el algoritmo de ordenamiento Bubble Sort

Tipo de variable	Nombre de Variable	Cantidad de valores atómicos
Entrada	array	n
Salida	vector	n
Auxiliar	aux	1
Auxiliar	i	1
Auxiliar	j	1

$$\Sigma = 1 + 1 + 1 + n + n$$

 $\Sigma = 3 + n$

La complejidad espacial de algoritmo Bubble Sort es de O(n)

Complejidad espacial para el algoritmo de ordenamiento Quick Sort

Tipo de variable	Nombre de Variable	Cantidad de valores atómicos
Entrada	Vector	n
Entrada	primero	1
Entrada	ultimo	1
Auxiliar	i	1
Auxiliar	j	1
Auxiliar	central	1
Auxiliar	pivote	1
Auxiliar	temp	1

$$\Sigma = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + n$$

 $\Sigma = 7 + n$

La complejidad espacial de algoritmo Quick Sort es de O(n)

Complejidad Temporal para el algoritmo de ordenamiento Bubble Sort

Instrucción	Veces que se repiten
int[] vector = array;	n
int aux;	1
for (int i = 1; i < vector.Length; i++)	n
for (int $j = \text{vector.Length} - 1$; $j \ge i$; j)	$\frac{n(n+1)}{2} + n$
if (vector[j - 1] > vector[j])	$\frac{n(n+1)}{2}$
aux = vector[j - 1];	$\frac{n(n+1)}{2}$
vector[j - 1] = vector[j];	$\frac{n(n+1)}{2}$
vector[j] = aux;	$\frac{n(n+1)}{2}$

$$\Sigma = n + n + 1 + \frac{n(n+1)}{2} + n + \frac{n(n+1)}{2} + \frac{n(n+1)}{2} + \frac{n(n+1)}{2} + \frac{n(n+1)}{2}$$

$$\Sigma = n + 1 + n + 1 + 2n^{2} + 2n$$

$$\Sigma = \frac{5}{2}(n+1)n + 3n + 1$$

$$\Sigma = \frac{1}{2}(5x+1)(x+2)$$

La complejidad temporal del algoritmo de ordenamiento Bubble Sort es de $O(n^2)$.

Complejidad espacial para el algoritmo de ordenamiento Quick Sort

La complejidad temporal del algoritmo de ordenamiento Quicksort es de $\theta(n \log n)$.

Conclusiones

Según los resultados obtenidos, se pudo evidenciar la notoria diferencia entre ambos algoritmos de ordenamiento, principalmente cuando los arreglos superaban tamaños de 100 elementos. De acuerdo con la tabla de tratamientos, mientras que el algoritmo de Bubble Sort tomaba mayor tiempo en el ordenamiento de un arreglo cuyos elementos venían ordenados descendentemente, el algoritmo QuickSort lo hacía en un tiempo mucho menor.

Esto evidencia claramente que para tamaños más grandes, la diferencia entre tiempos en ambos algoritmos se iba a evidenciar mucho más. Sin embargo, cuando se estaban trabajando pequeñas cantidades en los arreglos, los algoritmos tenían un comportamiento similar, pues ambos tardaban tiempos parecidos en ejecutarse.

Tal aspecto apunta claramente al comportamiento de la gráfica asintótica de n^2 y nlogn, que en valores pequeños tienden a ser similares, pero a medida que los valores aumentan, n^2 crece exponencialmente con mayor rapidez, mientras que nlogn crece de una forma muy lenta.

