

FILTER DESIGN ASSIGNMENT

Digital Signal Processing

APRIL 11, 2018
Arunabh Ghosh
150070006

Contents

Student Details	2
Filter-1 (Bandpass) details	2
Unnormalized Discrete time specifications	2
Normalized Digital Filter Specifications	2
Analog filter specifications for Band-pass filter using Bilinear transformation	3
Frequency transformation and relevant parameters	3
Frequency transformed lowpass analog filter specifications	4
Analog Lowpass Transfer function	4
Analog Bandpass Transfer function	6
Realization using Direct Form II	6
FIR Filter Transfer Function using Kaiser Window	8
Filter-2(Bandstop) Details	9
Un-normalized Discrete Time Filter Specifications	9
Normalized Digital Filter Specifications	10
Analog filter specifications for Band-pass filter using Bilinear transformation	10
Frequency Transformation & Relevant Parameters	11
Frequency Transformed Lowpass Analog Filter Specifications	11
Analog Lowpass Transfer Function	12
Analog Bandstop Transfer Function	13
Discrete Time Filter Transfer Function	13
Realization using Direct Form II	14
FIR Filter Transfer Function using Kaiser Window	14
MATLAB Plots	16
Filter 1 – Bandpass	16
IIR Filter	16
FIR Filter	17
Filter 2 – Bandstop	18
IIR Filter	18
FIR Filter	20

EE 338: Filter Design Assignment

Student Details

Name: Arunabh Ghosh Roll Number: 150070006

Filter Number: 16

Filter-1 (Bandpass) details

Unnormalized Discrete time specifications

Filter number: 16

Since filter number is < 75, m = 16.

q(m) = greatest integer less than 0.1m = 1

r(m) = m - 10q(m) = 6

BL(m) = 5 + 1.4 q(m) + 4 r(m) = 30.4

BH(m) = BL(m) + 10 = 40.4

The first filter is given to be a Band-Pass filter with passband from BL(m) to BH(m) kHz. Therefore, the specifications are:

Passband: 30.4 kHz to 40.4 kHz

• Transition band: 2 kHz on either side of passband

• Stopband: 0 to 28.4 kHz and 42.4 kHz to 150 kHz (Sampling rate is 300 kHz)

• Tolerance: 0.15 in magnitude for both Passband and Stopband

Passband Nature: MonotonicStopband Nature: Monotonic

Normalized Digital Filter Specifications

Sampling rate: 300 kHz

In the normalized frequency axis, sampling rate corresponds to 2π . Thus, any frequency (Ω), up to 150 kHz can be represented on the normalized axis ω as:

$$\omega = \frac{\Omega * 2\pi}{\Omega_{\rm S}(Sampling\ rate)}$$

Therefore, the corresponding normalized discrete filter specifications are:

• Passband: 0.20π to 0.27π

• Transition band: 0.013π on either side of passband

• Stopband: 0 to 0.19π and 0.28π to π (Sampling rate is 300 kHz)

• Tolerance: 0.15 in magnitude for both Passband and Stopband

Passband Nature: MonotonicStopband Nature: Monotonic

Analog filter specifications for Band-pass filter using Bilinear transformation

The bilinear transformation is given as:

$$\Omega = \tan(\frac{\omega}{2})$$

Applying the bilinear transformation to the frequencies at the band edges, we get:

ω	Ω
0.20π	0.32
0.27π	0.45
0.19π	0.31
0.28π	0.47
0	0
π	∞

Therefore, the corresponding analog filter specifications for the same type of analog filter using the bilinear transformation are:

• Passband: $0.32(\Omega_{P1})$ to $0.45(\Omega_{P2})$

• Stopband: 0 to 0.31(Ω_{S1}) and 0.47(Ω_{S2}) to ∞

Tolerance: 0.15 in magnitude for both Passband and Stopband

Passband Nature: MonotonicStopband Nature: Monotonic

Frequency transformation and relevant parameters

We need to transform a Bandpass analog filter to a Lowpass analog filter. We require two parameters in such a case. We can make use of the Bandpass transformation which is given as:

$$\Omega_L = \frac{\Omega^2 - \Omega_0^2}{R\Omega}$$

The two parameters in the above equation are B and Ω_0 . They can be determined using the specifications of bandpass analog filter using the following relations:

$$\Omega_0 = \sqrt{\Omega_{P1}\Omega_{P2}} = \sqrt{0.32 * 0.45} = 0.38$$

$$B = \Omega_{P1} - \Omega_{P2} = 0.45 - 0.32 = 0.13$$

Ω	$\Omega_{ m L}$
0+	-∞
0.31	-1.20
0.32	-1.00
0.38	0
0.45	1.00
0.47	1.25
∞	∞

Frequency transformed lowpass analog filter specifications

• Passband edge: 1 (Ω_{LP})

• Stopband edge: min $(-\Omega_{LS1}, \Omega_{LS2})$ = 1.20 (Ω_{LS})

Tolerance: 0.15 in magnitude for both Passband and Stopband

Passband Nature: Monotonic

Stopband Nature: Monotonic

Analog Lowpass Transfer function

We need an Analog Filter which has a monotonic passband and a monotonic stopband. Therefore, we need to design using the Butterworth approximation. Since the tolerance in both passband and stopband is 0.15, we define two new quantities in the following way:

$$D_1 = \frac{1}{(1 - \delta)^2} - 1 = 0.3841$$

$$D2 = \frac{1}{\delta^2} - 1 = 43.44$$

Now using the inequality on the order N of the filter for the Butterworth Approximation we get:

$$N_{min} = \left[\frac{\log \sqrt{\frac{D_2}{D_1}}}{\log \frac{\Omega_S}{\Omega_P}} \right]$$

$$N_{min} = 13$$

The cut off frequency (Ω_c) of the Analog LPF should satisfy the following constraint:

$$\frac{\Omega_P}{D_1^{\frac{1}{2N}}} \le \Omega_C \le \frac{\Omega_S}{D_2^{\frac{1}{2N}}}$$

$$1.03748 \le \Omega_c \le 1.0380$$

Thus, we can choose the value of Ω_c as 1.0375. Now, the poles of the transfer function can be obtained by solving the equation:

$$1 + \left(\frac{s}{j\Omega_c}\right)^{2N} = 1 + \left(\frac{s}{j1.0375}\right)^{26} = 0$$

Solving for the roots (using Wolfram) we get:

Note that the above figure shows the poles of the Magnitude Plot of the Transfer Function. To get a stable Analog LPF, we must include the poles lying in the Left Half Plane in the Transfer Function.

```
p1 = -1.00735 + 0.24829i;

p2 = -1.00735 - 0.24829i;

p3 = -0.918661 - 0.48215i;

p4 = -0.918661 + 0.48215i;

p5 = -0.77658 + 0.68799i;

p6 = -0.77658 - 0.68799i;

p7 = -0.589367 - 0.853846i;

p8 = -0.589367 + 0.853846i;

p9 = -0.367903 + 0.970079i;
```

```
p10 = -0.367903 - 0.970079i;

p11 = -0.125057 - 1.02994i;

p12 = -0.125057 + 1.02994i;

p13 = -1.0375;
```

Using the above poles which are in the left half plane we can write the Analog Lowpass Transfer Function as:

$$H_{analog,LPF = \overline{(s_L - p_1)(s_L - p_2)(s_L - p_3)(s_L - p_4)(s_L - p_5)(s_L - p_6)(s_L - p_7)(s_L - p_8)(s_L - p_9)(s_L - p_{10})(s_L - p_{11})(s_L - p_{12})(s_L - p_{13})}}$$

Analog Bandpass Transfer function

The transformation equation is given by:

$$s_L = \frac{s^2 + \Omega_0^2}{Bs}$$

Substituting the values of B (0.13) and Ω_0 (0.38), we get:

$$s_L = \frac{s^2 + 0.144}{0.13s}$$

To transform the analog domain transfer function into the discrete domain, we need to make use of the Bilinear Transformation which is given as:

$$s = \frac{1 - z^{-1}}{1 + z^{-1}}$$

Using the above equations, we can obtain the $H_{discrete.BPF}(z)$.

Realization using Direct Form II

Here are the coefficients of the numerator. The odd coefficients of z have value 0.

1	z^{-2}	z^{-4}	z^{-6}	z^{-8}	z^{-10}	z^{-12}
1.25e - 13	-1.62e - 12	9.74e - 11	-3.57e - 10	8.93e - 10	-1.61 <i>e</i> - 9	2.41 <i>e</i> – 9
z^{-14}	z^{-16}	z^{-18}	z^{-20}	z^{-22}	z^{-24}	z^{-26}
-2.41e - 9	1.61 <i>e</i> – 9	-8.93e - 10	3.57e - 10	-9.74e - 11	1.62e - 12	-1.2e - 13

Here are the coefficients of the Denominator.

1	z^{-1}	z^{-2}	z^{-3}	z^{-4}	z^{-5}	z^{-6}
1	-17.94	159.87	-938.77	4071	-13861	38467
z^{-7}	z^{-8}	z^{-9}	z^{-10}	z^{-11}	z^{-12}	z^{-13}
-89206	175886	-298522	440023	-566805	640492	-637019
z^{-14}	z^{-15}	z^{-16}	z^{-17}	z^{-18}	z^{-19}	z^{-20}
557541	-429227	289971	-171190	87772	-38738	14536
z^{-21}	z^{-22}	z^{-23}	z^{-24}	z^{-25}	z^{-26}	
-4558	1165	-223	34.64	-3.38	0.1641	

FIR Filter Transfer Function using Kaiser Window

The tolerance in both the stopband and passband is given to be 0.15. Therefore δ = 0.15 and we get the minimum stopband attenuation to be:

$$A = -20 \log(0.15) = 16.482 dB$$

Since A < 21, we get β to be 0 where β is the shape parameter of Kaiser window. Now to estimate the window length required, we use the empirical formula for the lower bound on the window length.

$$N \ge \frac{A - 7.95}{2.285 * \Delta\omega_T}$$

Here $\Delta \omega_T$ is the minimum transition bandwidth. In our case, the transition width is the same on either side of the passband.

$$\Delta\omega_T=0.013\pi$$

This gives us A > 91. On successive trials in MATLAB, it was found that a window length of 135 is required to satisfy the required constraints. Also, since β is 0, the window is a rectangular window.

The time domain coefficients were obtained by first generating the ideal impulse response samples for the same length as that of the window. The Kaiser Window was generated using the MATLAB function and applied on the ideal impulse response samples. For generating the ideal impulse response, a separate function was made to generate the impulse response of Low-Pass filter. It took the cut off value and the number of samples as input argument. The band-pass impulse response samples were generated as the difference between two low-pass filters as done in class.

Columns 1 through	11						
0.0056 0.0003 0.0089 0.0037		-0.0097	-0.0083	-0.0022	0.0051	0.0096	
Columns 12 through	22						
-0.0068 -0.0066 0.0021 0.0049		0.0006	0.0023	0.0016	0.0000	-0.0001	
Columns 23 through	33						
0.0019 -0.0048 0.0099 -0.0022		-0.0117	-0.0058	0.0047	0.0139	0.0163	
Columns 34 through	44						
-0.0169 -0.0117 0.0029 -0.0000		0.0088	0.0123	0.0088	0.0021	-0.0027	-
Columns 45 through	55						
-0.0020 -0.0092 0.0032 -0.0274		-0.0110	0.0025	0.0204	0.0316	0.0262	
Columns 56 through	66						
-0.0447 -0.0150 0.0753 -0.0469		0.0599	0.0625	0.0308	-0.0203	-0.0638	-
Columns 67 through	77						

	0.0800 0.0625		0.0074	-0.0469	-0.0753	-0.0638	-0.0203	
Columns	78 through	88						
	-0.0150 0.0025		-0.0481	-0.0274	0.0032	0.0262	0.0316	
Columns	89 through	99						
	-0.0092 0.0123		0.0014	-0.0000	-0.0029	-0.0027	0.0021	
Columns	100 throug	h 110						
	-0.0117 -0.0058		-0.0132	-0.0022	0.0099	0.0163	0.0139	
Columns	111 throug	h 121						
	-0.0048 0.0023		0.0055	0.0049	0.0021	-0.0001	0.0000	
Columns	122 throug	h 132						
	-0.0066 -0.0083		-0.0028	0.0037	0.0089	0.0096	0.0051	-
Columns	133 throug	h 135						
-0.0060	0.0003	0.0056						

The z-transform can be formed from the coefficients of this finite sequence.

Filter-2(Bandstop) Details

Un-normalized Discrete Time Filter Specifications

Filter number: 16

Since filter number < 75, m = 16.

q(m) = greatest integer less than 0.1m = 1

r(m) = m - 10q(m) = 6

BL(m) = 5 + 1.2 q(m) + 2.5 r(m) = 21.2

BH(m) = BL(m) + 6 = 27.2

The second filter is given to be a Band-Stop filter with stopband from BL(m) kHz to BH(m) kHz. Therefore, the specifications are:

• Stopband: 21.2 kHz to 27.2 kHz

• Transition band: 2 kHz on either side of passband

• Passband: 0 to 19.2 kHz and 29.2 kHz to 100 kHz (Sampling rate is 200 kHz)

• Tolerance: 0.15 in magnitude for both Passband and Stopband

Passband Nature: Equiripple

• Stopband Nature: Monotonic

Normalized Digital Filter Specifications

Sampling rate: 200 kHz

In the normalized frequency axis, sampling rate corresponds to 2π .

This any frequency (Ω) , up to 150 kHz can be represented on the normalized axis ω as:

$$\omega = \frac{\Omega * 2\pi}{\Omega_s(Sampling\ rate)}$$

Therefore, the corresponding normalized discrete filter specifications are:

• Stopband: 0.21π to 0.27π

• Transition band: 0.02π on either side of passband

• Passband: 0 to 0.19π and 0.29π to π (Sampling rate is 300 kHz)

• Tolerance: 0.15 in magnitude for both Passband and Stopband

Passband Nature: Equiripple

• Stopband Nature: Monotonic

Analog filter specifications for Band-pass filter using Bilinear transformation

The bilinear transformation is given as:

$$\Omega = \tan(\frac{\omega}{2})$$

Applying the bilinear transformation to the frequencies at the band edges, we get:

ω	Ω
0.20π	0.34
0.27π	0.45
0.19π	0.31
0.1911	
0.28π	0.49
0	0
$ \pi$	∞

Therefore, the corresponding analog filter specifications for the same type of analog filter using the bilinear transformation are:

• Stopband: $0.34(\Omega_{S1})$ to $0.45(\Omega_{S2})$

• Passband: 0 to 0.31(Ω_{P1}) and 0.49(Ω_{P2}) to ∞

Tolerance: 0.15 in magnitude for both Passband and Stopband

Passband Nature: Equiripple

• Stopband Nature: Monotonic

Frequency Transformation & Relevant Parameters

We need to transform a Band-Stop analog filter to a Lowpass analog filter. We require two parameters in such a case. We can make use of the Bandstop transformation which is given as:

$$\Omega_L = \frac{B\Omega}{\Omega_0^2 - \Omega^2}$$

The two parameters in the above equation are B and Ω_0 . They can be determined using the specifications of the bandpass analog filter using the following relations:

$$\Omega_0 = \sqrt{\Omega_{P1}\Omega_{P2}} = \sqrt{0.31 * 0.49} = 0.39$$

$$B = \Omega_{P1} - \Omega_{P2} = 0.49 - 0.31 = 0.18$$

Ω	$\Omega_{ m L}$
0+	0+
0.31	+1
0.34	+1.6
$0.39 (\Omega_0^-)$	∞
$0.39 (\Omega_0^+)$	-∞
0.45	-1.48
0.49	-1
∞	0-

Frequency Transformed Lowpass Analog Filter Specifications

• Passband edge: 1 (Ω_{LP})

• Stopband edge: min $(\Omega_{LS1}, -\Omega_{LS2})$ = 1.48 (Ω_{LS})

Tolerance: 0.15 in magnitude for both Passband and Stopband

• Passband Nature: Equiripple

• Stopband Nature: Monotonic

Analog Lowpass Transfer Function

We need an Analog Filter which has an equiripple passband and a monotonic stopband. Therefore, we need to design using the Chebyshev approximation. Since the tolerance (δ) in both passband and stopband is 0.15, we define two new quantities in the following way:

$$D_1 = \frac{1}{(1 - \delta)^2} - 1 = 0.3841$$
$$D2 = \frac{1}{\delta^2} - 1 = 43.44$$

Now choosing the parameter ϵ of the Chebyshev filter to be $\sqrt{D_1}$, we get the minimum value of N as:

$$N_{min} = \left[\frac{\cosh^{-1} \left(\frac{\sqrt{D_1}}{\sqrt{D_2}} \right)}{\cosh^{-1} \left(\frac{\Omega_{LS}}{\Omega_{LP}} \right)} \right]$$

$$N_{min} = 4$$

Now, the poles of the transfer function can be obtained by solving the equation:

$$1 + D_1 \cosh^2(N_{min} \cosh^{-1}(\frac{s}{j})) = 1 + 0.3841 \cosh^2(4 \cosh^{-1}(\frac{s}{j})) = 0$$

Solving for the roots (using Wolfram) we get:

Note that the above figure shows the poles of the Magnitude Plot of the Transfer Function. To get a stable Analog LPF, we must include the poles lying in the Left Half Plane in the Transfer Function.

```
p1 = -0.12216 - 0.96981i;

p2 = -0.12216 + 0.96981i;

p3 = -0.29492 + 0.40171i;

p4 = -0.29492 - 0.40171i;
```

Using the above poles which are in the left half plane and the fact that N is odd we can write the Analog Lowpass Transfer Function as:

$$H_{analog,LPF}(s_L) = \frac{(-1)^4 p_1 p_2 p_3 p_4}{\sqrt{1 + D_1} (s_L - p_1)(s_L - p_2)(s_L - p_3)(s_L - p_4)}$$

Note that since it is even order we take the DC Gain to be $\frac{1}{\sqrt{1+\epsilon^2}}$

Analog Bandstop Transfer Function

The transformation equation is given by:

$$s_L = \frac{Bs}{\Omega_0^2 + s^2}$$

Substituting the values of the parameters B and Ω_0 , we get,

$$s_L = \frac{0.16s}{0.38^2 + s^2}$$

Substituting this value in $H_{analog,LPF}(s_L)$ we get $H_{analog,BSF}(s)$.

Discrete Time Filter Transfer Function

To transform the analog domain transfer function into the discrete domain, we need to make use of the Bilinear Transformation which is given as:

$$s = \frac{1 - z^{-1}}{1 + z^{-1}}$$

Using this equation, we get $H_{discrete,BSF}(z)$ from $H_{analog,BSF}(s)$.

$$\frac{0.53 - 3.16z^{-1} + 9.12z^{-2} - 16.31z^{-3} + 19.67z^{-4} - 16.31z^{-5} + 9.12z^{-6} - 3.16z^{-7} + 0.53z^{-8}}{1.00 - 5.16z^{-1} + 13.14z^{-2} - 20.88z^{-3} + 22.58z^{-4} - 16.96z^{-5} + 8.70z^{-6} - 2.81z^{-7} + 0.45z^{-8}}$$

Realization using Direct Form II

FIR Filter Transfer Function using Kaiser Window

The tolerance in both the stopband and passband is given to be 0.15. Therefore δ = 0.15 and we get the minimum stopband attenuation to be:

$$A = -20\log(0.15) = 16.482dB$$

Since A < 21, we get β to be 0 where β is the shape parameter of Kaiser window. Now to estimate the window length required, we use the empirical formula for the lower bound on the window length.

$$N \ge \frac{A - 7.95}{2.285 * \Delta\omega_T}$$

Here $\Delta\omega_T$ is the minimum transition bandwidth. In our case, the transition width is the same on either side of the passband.

$$\Delta\omega_T = 0.02\pi$$

This gives us A > 60. The above equation gives a loose bound on the window length when the tolerance is not very stringent. On successive trials in MATLAB, it was found that a window length of 85 is required to satisfy the required constraints. Also, since β is 0, the window is a rectangular window.

The time domain coefficients were obtained by first generating the ideal impulse response samples for the same length as that of the window. The Kaiser Window was generated using the MATLAB function and applied on the ideal impulse response samples. For generating the ideal impulse response, a separate function was made to generate the impulse response of Low-Pass filter. It took the cut off value and the number of samples as input argument. The band-stop impulse response samples were generated as the difference between three low-pass filters (all-pass - bandpass) as done in class.

0.0124	1 through 0.0123 0.0158	0.0047	-0.0068	-0.0155	-0.0160	-0.0074	0.0053	
Columns	12 through	22						
-0.0026 0.0004	-0.0101 0.0068	-0.0105 0.0145	-0.0053	0.0004	0.0022	0.0000	-0.0024	-
Columns	23 through	33						
0.0151 0.0492	0.0043 0.0242		-0.0306	-0.0315	-0.0125	0.0190	0.0454	
Columns	34 through	44						
-0.0561 0.0582	-0.0651 0.9200		0.0136	0.0605	0.0761	0.0498	-0.0050	-
Columns	45 through	55						
	0.0498 0.0242		0.0605	0.0136	-0.0375	-0.0651	-0.0561	-
Columns	56 through	66						
0.0454 0.0145	0.0190 0.0068		-0.0315	-0.0306	-0.0146	0.0043	0.0151	
Columns	67 through	77						
-0.0024 0.0082	0.0000 0.0158		0.0004	-0.0053	-0.0105	-0.0101	-0.0026	
Columns	78 through	85						
0.0053	-0.0074	-0.0160	-0.0155	-0.0068	0.0047	0.0123	0.0124	

MATLAB Plots

Filter 1 – Bandpass

IIR Filter

Figure 1: Frequency Response

From the above plot, I have verified that the passband tolerance and stopband attenuation have been satisfied. The phase response is not linear.

Figure 2: Pole-Zero map (all poles within unit circle, hence stable)

Figure 3: Magnitude Plot

In the above plot, the band edge frequencies have been marked. From the magnitude at these frequencies, the specifications required in the passband and the stopband have been met.

FIR Filter

Figure 4: Frequency Response

From the above plot, I have verified that the passband tolerance and stopband attenuation have been satisfied. The FIR Filter is indeed giving us a Linear Phase response which is desired.

Figure 5: Magnitude Plot

In the above plot, the band edge frequencies have been marked. From the magnitude at these frequencies, it can be seen that the specifications required in the passband and the stopband have been met.

Filter 2 – Bandstop

IIR Filter

Figure 6: Frequency response

From the above plot, I have verified that the passband tolerance and stopband attenuation have been satisfied. The phase response is not linear.

Figure 7: Pole-Zero map (all poles within unit circle, hence stable)

Figure 8: Magnitude Plot

In the above plot, the band edge frequencies have been marked. From the magnitude at these frequencies, the specifications required in the passband and the stopband have been met.

FIR Filter

Figure 9: Frequency Response

From the above plot, I have verified that the passband tolerance and stopband attenuation have been satisfied. The FIR Filter is indeed giving us a Linear Phase response which is desired.

Figure 10: Magnitude Plot

In the above plot, the band edge frequencies have been marked. From the magnitude at these frequencies, the specifications required in the passband and the stopband have been met.