Communications and Wireless Networks @CS.NYCU

Lab. 2: Analog and Digital Beamforming

Instructor: Kate Ching-Ju Lin (林靖茹)

Deadline: 2024.06.19 23:59

Agenda

- Overview
- Topology & Parameters
- Tasks
- Report
- Submission
- Grading Policy

Overview

In this lab, we are going to write a Matlab program that simulates analog beamforming and digital beamforming

Topology and Parameters

- Tx/Rx locations
 - 1 Tx: [0, 0]
 - 2 Rx: random $[x_1, y_1] [x_2, y_2]$
- Power: P_{tx} = 10 dBm, N0 = -95 dBm
- Analog beamforming
 - Frequency: 24GHz
 - 16-antenna Tx with linear phased array / 1-antenna Rx
 - Default codebook: [0:10:180]
- Digital beamforming
 - Frequency: 2.4GHz
 - 2-antenna Tx / 1-antenna Rx
 - Random channel of each link: a+bi
 - Gaussian normal: a,b~N(0,1)

Task 1: Analog Beamforming

- a) Identify the optimal beam by linear beam scanning
- b) Calculate receiving power & SNR of the primal user (user 1)
- c) Calculate interfering power & INR of the secondary user (user 2)
 - Derive SNR only
 - No need to transmit actual symbols
 - Follow the TODO & Hints in Matlab code
 - You can add code to show results, but make sure lab2_studentID can run

Task 2: Digital Beamforming

- a) Decode (equalize) the non-precoded signals (without ZFBF)
 - Find the equalizer h_{eq} for two users
 - Calculate decoding errors & SNR of two users without ZF beamforming
- b) Generate precoding weight W
- c) Decode (equalize) the precoded signals (with ZFBF)
 - Find the equalizer h_{eq} for two users
 - Calculate decoding errors & SNR of two users with ZF beamforming
 - Simulate the transmission of signal x~N(0,1)
 - Calculate the decoding errors and SNR

Task 1a: Analog Beam Scanning

- Find the actual sector angle ⊕₁ and ⊕₂ of user 1 and user 2
- Given the feasible beams [0:10:180] degrees, scan all the beams and identify the optimal beam θ* for user 1
 - i.e., the direction that maximizes the gain for user 1
- Plot the beam pattern of the optimal beam θ^*

Task 1b-c: SNR with Analog BF

- Identify the Tx gains of users 1 and 2 based on θ_1 and θ_2 from the optimal beam θ^* found in task 1a
- Calculate receiving power and SNR for user 1
 - Pathloss: Use Friis' Free space model with the identified
 Tx gain
 - Convert power and SNR to dBm
- Calculate interfering power and INR for user 2
 - Pathloss: Use Friis' Free space model with the identified Tx gain
 - Convert power and INR to dBm

Task 2a: Original SNR w/o ZFBF

Channel model
 Tx
 Find the equalizer (decoder)

Rx
Rx
Rx

- $h_{eq.1} = h_{11} + h_{12}$
- $h_{eq,2} = h_{21} + h_{22}$
- Equalize (decode) the signal by
 - $\widehat{x}_1 = y_1 / h_{eq,1}$
 - $\widehat{x}_2 = y_2 / h_{eq,2}$
- Calculate the mean decoding errors
 - $|\hat{x_1} x_1|^2$ and $|\hat{x_2} x_2|^2$
- Calculate the SNR (in dBm) of user 1 and user 2

Task 2b: ZFBF Precoding

Channel model:

•
$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \mathbf{H} * \mathbf{W} * \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \mathbf{n};$$

- Find the precoding weight matrix W
 - W = pseudo inverse of H
 - Scale W into unit power (|W|²=1)

Task 2c: Equalization with ZFBF

- Find the equalizer (decoder)
 - h_{eq} = H * W (deem h_{eq} as the new channel)
- Calculate the mean decoding errors
 - $|\hat{x_1} x_1|^2$ and $|\hat{x_2} x_2|^2$
- Calculate the SNR (in dBm) for user 1 and user 2

Report for Task 1

A report in PDF format, contains:

- Output your results for d=[50:50:500]m, antenna number 8 and 16
 - For each distance, repeat your code 10 times to generate 10 random topology
 - Plot the average SNR_{dBm} of user 1 and INR_{dBm} of user 2 (x-axis: distances)
- Plot the SNR_{dBm} and INR_{dBm} of 10 topologies when d=200m, antenna number = 16
 - Explain your observation about the size lobe interference
- Plot the P_{rx,1} (in dBm) of 10 topologies for various codebook sizes (19, 37, 73, i.e., [0:10:180], [0:5:180], [0:2.5:180]) when d=200m, antenna number = 16
 - Explain your observation about the impact of codebook sizes

Report for Task 2

A report in PDF format, contains:

- Output your results for d=[50:50:500]m
 - For each distance, repeat your code 10 times to generate 10 random topology
 - Plot the average SNR_{dBm} of two users w/ and w/o ZFBF (x-axis: distances)
- Plot the \mathbf{h}_{eq} , error(in dBm) of R_1 with ZFBF when d=200m
 - Repeat your code 10 times to generate 10 random channel H
 - Explain why error varies across different rounds of experiments
 - Discuss why h_{eq} would be different in different rounds of experiments
 - Explain your observation about the correlation between \mathbf{h}_{eq} and error

13

Report for additional questions

A report in PDF format, contains:

- Answer the following question in short:
 - What have you learned from this lab?
 - What difficulty have you met in this lab?

Notice: You should write your report in English

Submission

- Replace [studentID] in filenames with your studentID
- Zip your matlab code and report(studentID.pdf) to StudentID.zip
- File structure:

```
lab2_studentID.m
studentID.pdf

-ewa_function
bwidth.m
dtft.m
friis_equation.m
scan.m
steer.m
uniform.m

-tasks
analog_beamforming.m
digital_beamforming.m
```

Submission

- Submit your zip files to the assignment in Teams 112-2 CWN
- Deadline: 2024.06.19 23:59

Notice: Remember to press the submit button after you upload your files

Notice: You will get penalty with wrong file structure and naming

Grading Policy

- Grade
 - Code correctness 40%
 - Report 60%
- Late Policy
 - (Your score) * 0.8^D, where D is the number of days over due
- Cheating Policy
 - Academic integrity: Homework must be your own
 cheaters share the score
 - Both the cheaters and the students who aided the cheater equally share the score