Exercise Sheet 2

Exercise 1

A polynomial $f(X) \in \mathbb{Z}[X]$ is primitive if the greatest common divisor of its coefficients is 1. Show the following:

- 1. If $f(X), g(X) \in \mathbb{Z}[X]$ are primitive, then the product f(X)g(X) is also primitive.
- 2. $f(X) \in \mathbb{Z}[X]$ is irreducible in $\mathbb{Z}[X]$ if and only if it is primitive and irreducible in $\mathbb{Q}[X]$.
- 3. If a monic $f(X) \in \mathbb{Z}[X]$ factors as f(X) = g(X)h(X) with $g(X), h(X) \in \mathbb{Q}[X]$ monic, then $g(X), h(X) \in \mathbb{Z}[X]$.

Do the analogous statements hold if we replace \mathbb{Z} by any UFD A, and \mathbb{Q} by its field of fractions $K = \operatorname{Quot}(A)$.

Solution

1.

Denote the coefficients of f and g with a_i and b_j for $1 \le i \le \deg f$ and $1 \le j \le \deg g$ such that

$$f(X) = \sum_{i=0}^{\deg f} a_i X^i \qquad g(X) = \sum_{j=0}^{\deg g} b_j X^j$$
 (1)

Assume there is a prime $p \in \mathbb{Z}$ that divides all coefficients of fg and let a_n and b_m be the first coefficients in f and g respectively that are not divisble by p. Such a_n and b_m must exist because f and g are primitive.

Consider X^{n+m} in the polynomial fg. The coefficient for this term is the sum of products of a_i and b_j for which i + j = n + m, i.e.

$$a_n b_m + a_{n-1} b_{m+1} + a_{n+1} b_{m-1} + a_{n-2} b_{m+2} + \dots$$
 (2)

This coefficient is however not divisible by p as p divides all but the first term. Hence we have a contradiction.

 $\mathbf{2}.$

Let f be irreducible in $\mathbb{Z}[X]$ and assume that is reducible in $\mathbb{Q}[X]$. From the assumption, we have that f(X) = g(X)h(X) for some $g, h \in \mathbb{Q}[X]$ that are not units in $\mathbb{Q}[X]$.

For two rational numbers, the greatest common divisor is defined as in the following manner

$$\gcd\left(\frac{a}{b}, \frac{c}{d}\right) = \frac{\gcd(a \cdot d, b \cdot c)}{b \cdot d}.$$
(3)

We also have

$$\left(\frac{b \cdot d}{\gcd(a \cdot d, b \cdot c)}\right) \cdot \left(\frac{a}{b}\right) = \frac{a \cdot d}{\gcd(a \cdot d, b \cdot c)} \in \mathbb{Z}.$$
 (4)

as $gcd(a \cdot d, b \cdot c)$ divides a or d.

Define d_g and d_h to be the greatest common divisor of the coefficients of g and h respectively. Consider $\tilde{g} := d_g^{-1}g$ and $\tilde{h} := d_h^{-1}h$. From above, we know that $\tilde{g}, \tilde{h} \in \mathbb{Z}[X]$, and moreover, these are primitive. Hence their product

$$\tilde{g}\tilde{h} = d_g^{-1}d_h^{-1}gh = d_g^{-1}d_h^{-1}f \tag{5}$$

is also primitive.

But f is also already primitive and since $\tilde{g}\tilde{h} \in \mathbb{Z}[X]$ we have that $d_g^{-1}d_h^{-1} = 1$. In other words, we have a factorization $f(X) = \tilde{g}(X)\tilde{h}(X)$ which is a contradiction.

On the other hand, let f be primitive and irreducible in $\mathbb{Q}[X]$, but assume it is reducible in $\mathbb{Z}[X]$.

If f is a constant, then it is $f(X) = \pm 1$ as f is primitive. This is a contradiction, however, because ± 1 is a unit in $\mathbb{Q}[X]$.

Consider the case where deg ≥ 1 . From the assumption, we have a factorization f(X) = g(X)h(x) with $g, h \in \mathbb{Z}[X]$ but $g, h \neq \pm 1$.

Assume g is a constant, then g divides all coefficient of f in \mathbb{Z} . This cannot be since f is primitive. Therefore, we have $\deg g \geq 1$ which means that g is not a unit in $\mathbb{Q}[X]$.

Apply the same argument for h and we have f(X) = g(X)h(X) is a non-trivial factorization in $\mathbb{Q}[X]$. This is a contradiction with the first assumption.

3.

Let $f \in \mathbb{Z}[X]$ be monic and f(X) = g(X)h(X) with g and h monic. Assume $g, h \notin \mathbb{Z}[X]$. There are some $n \in \mathbb{Z}$ such that $nf(X) = \tilde{g}(X)\tilde{h}(X)$ such that $\tilde{g}, \tilde{h} \in \mathbb{Z}[X]$ (e.g. least common multiple) and let n be the smallest of such integers.

Since from the assumption we know that $n \geq 1$, there is a $p \in \mathbb{Z}$ that divides n. Now assume p does not divide all coefficients of \tilde{g} nor \tilde{h} . Similarly to 1., let a_n and b_m be the first coefficients that are not divisble by p and consider the coefficient for X^{n+m} . We again have

$$a_n b_m + a_{n-1} b_{m+1} + a_{n+1} b_{m-1} + a_{n-2} b_{m+2} + \dots$$
 (6)

which is not divisble by p. Therefore, p must divide \tilde{g} or \tilde{h} . We have

$$\frac{n}{p}f(X) = \hat{g}\hat{h} \tag{7}$$

with $\hat{g}, \hat{h} \in \mathbb{Z}[X]$. This is a contradiction however, as we required n to be the smallest integer.

All three proofs can be analogously applied to any UFD A and Quot(A).