1) 同步时序电路与异步时序电路的区别是什么?

项目栏	同步时序电路	异步时序电路
核心逻辑	触发器	组合电路
时钟信号控制	一个统一的时钟信号(各个触发器的时钟端全部连接在一起,并连接到系统时钟端)	没有统一的时钟信号(电路中有不带时钟的触发器和延迟元件作为存储元件)
电路状态改变	与时钟脉冲信号同步,且每一个状态都很稳定	由外部输入的变化直接引起,触发器 的状态改变有先有后(与时钟脉冲信 号不同步,且状态容易受环境影响
电路示意图	A Z Combinational Logic Y Digital Storage Y	A Combinational Logic Y
一般代码	always@(posedge clk1) begin if(!rst) q <= 0; else q <= d; end	always@(posedge clk or negedge reset) begin if(!rst) q <= 0; else q <= d; end

2) Mealy 型与 Moore 型时序电路的区别是什么?

项目栏	Mealy 型时序电路	Moore 型时序电路
输出	由电路状态和原始输入同时决定	仅由电路状态决定
电路示意图	输入 ・ 組合 変報	输入→ 組介 逻辑 CLOCK Moore State Machine

3)以书上任何一个同步时序逻辑电路为例,完整走完整个分析的流程:形成状态表、状态图、画出波形图,对功能进行简要说明。

①题目描述 (P209 例题 6.9)

图 1课本 P201 例题 6.9

②变量说明

y1、y2表示当前状态变量; Y1、Y2表示次态变量; w表示输入信号; z表示输出信号。根据电路图写次态函数和输出函数:

$$Y_1 = w\overline{y_1} + wy_2$$
$$Y_2 = wy_1 + wy_2$$

 $z = y_1 y_2$

③画状态表

现态	次态 /	输出 / z						
y2 y1	w=0	w=1	刑山 / 2					
00	00	01	0					
01	00	10	0					
10	00	11	0					
11	00	11	1					

表格 1 状态分配表

现态	次态 /	次态 / Y2 Y1						
y2 y1	w=0	w=1	输出/z					
А	Α	В	0					
В	А	C	0					
С	А	D	0					
D	Α	D	1					

表格 2 状态表

4 画状态图

图 2 Moore 状态图

⑤波形图

输入序列 0101_1011_1011_1100, 进行测试(c 代表时钟 clock)

С	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
W	0	0	0	1	1	0	0	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	0	0	0	0
Z	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1	1	1	0	0

表格 3 序列表格

图 3 波形图

图 4 程序测试仿真图

⑥功能说明

检测可重叠 111 序列, 当输入的序列中出现 3 个连续的'1'时,输出信号 1,且可以叠加上一个'1'的信息。