10.1. MC Fragen.

(a) Kreuze die richtigen Aussagen an

Nur die Aufgaben mit einem * werden korrigiert.

- $\hfill \square$ Ist der Graph einer Funktion eine Gerade, dann ist die zugehörige Ableitung konstant.
- \square Ist eine Funktion f das Doppelte einer Funktion g, dann ist auch die Ableitung von f das Doppelte der Ableitung von g.
- \Box Ist f(0) < 0, dann gilt auch f'(0) < 0.
- (b) Seien a < b relle Zahlen, $g : \mathbb{R} \to \mathbb{R}$ eine beschränkte Funktion und $f : [a, b] \to \mathbb{R}$ eine beschränkte Funktion mit f(a) < f(b). Welche Aussagen treffen zu?
 - Falls es für jedes $c \in [f(a), f(b)]$, ein $x \in [a, b]$ gibt mit f(x) = c, so folgt, dass f stetig ist.
 - \square Falls $g \circ f$ und g differenzierbar sind, so folgt, dass f differenzierbar ist.
 - \square Falls f differenzierbar ist, gibt es $x_0 \in [a, b]$ so, dass

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}.$$

(c) Sei $f: \mathbb{R} \to \mathbb{R}$ und $h: \mathbb{R} \to [0, +\infty)$ so dass

$$\lim_{x \to +\infty} f(x) = -\infty, \lim_{x \to \infty} h(x) = 0.$$

Kreuzen Sie die Richtige Aussagen an.

- \square $\lim_{x\to\infty} h(x) \cdot f(x) = 0$ ist möglich.
- \Box $\lim_{x\to\infty} h(x) \cdot f(x) = -\infty$ ist nicht möglich.
- \square $\lim_{x\to-\infty} h(x) \cdot f(x) = +\infty$ ist möglich.

*10.2. Ableitung I.

Zeige:

(a)

$$\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$$

ist streng monton wachsend.

(b)

$$\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \tan(x) = +\infty \text{ und } \lim_{x \to \left(-\frac{\pi}{2}\right)^{+}} \tan(x) = -\infty.$$

- (c) Schliesse, dass tan: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ bijektiv ist. Die inverse wird arctan gennant.
- (d) Berechne die Ableitung von arctan.

10.3. Ableitung II. Berechnen Sie die Ableitung der $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = x \sin(\frac{1}{x})$.

Ist

$$g \colon \mathbb{R} \to \mathbb{R}, \qquad g(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

in x = 0 differenzierbar?

*10.4. L'Hospital Regel. Berechnen Sie die Folgende Grenzwerte.

(a)
$$\lim_{x \to 3} \frac{x^3 - 4x^2 + 9}{x^2 + x - 12}$$

(b)
$$\lim_{x \to \infty} \frac{\ln(2x)}{x^2}$$

(c)
$$\lim_{x \to \infty} (e^x + x)^{1/x}$$