A Simple Regression Problem

- We observe a real-valued input variable x and we wish to use this observation to predict the value of a real-valued target variable t.
- We use synthetically generated data from the function $\sin(2\pi x)$ with random noise included in the target values.
 - A small level of random noise having a Gaussian distribution
- We have a training set comprising N observations of x, written $x = (x_1, ..., x_N)^T$, together with corresponding observations of the values of t, denoted $t = (t_1, ..., t_N)^T$.
- Our goal is to predict the value of t for some new value of x,

- A training data set of N = 10 points, (blue circles),
- The green curve shows the actual function $\sin(2\pi x)$ used to generate the data.
- Our goal is to predict the value of t for some new value of x, without knowledge of the green curve.

• We try to fit the data using a polynomial function of the form

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$

- The values of the coefficients will be determined by fitting the polynomial to the training data.
- This can be done by minimizing an error function that measures the misfit between the function y(x,w), for any given value of w, and the training set data points.
- Error Function: the sum of the squares of the errors between the predictions $y(x_n, w)$ for each data point x_n and the corresponding target values t_n .

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

- We can solve the curve fitting problem by choosing the value of w for which E(w) is as small as possible.
- Since the error function is a quadratic function of the coefficients w, its derivatives with respect to the coefficients will be linear in the elements of w, and so the minimization of the error function has a unique solution, denoted by w*,
- The resulting polynomial is given by the function $y(x,w^*)$.
- Choosing the order M of the polynomial → model selection.

0th Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

- The 0th order (M=0) and first order (M=1) polynomials give rather poor fits to the data and consequently rather poor representations of the function $\sin(2\pi x)$.
- The third order (M=3) polynomial seems to give the best fit to the function $sin(2\pi x)$ of the examples.
- When we go to a much higher order polynomial (M=9), we obtain an excellent fit to the training data.
 - In fact, the polynomial passes exactly through each data point and $E(w^*) = 0$.

- We obtain an excellent fit to the training data with 9th order.
- However, the fitted curve oscillates wildly and gives a very poor representation of the function $\sin(2\pi x)$.

This behaviour is known as over-fitting

Over-fitting

- We can then evaluate the residual value of $E(w^*)$ for the training data, and we can also evaluate $E(w^*)$ for the test data set.
- Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$
 - in which the division by N allows us to compare different sizes of data sets, and the square root ensures that E_{RMS} is measured on the same scale as the target variable t.

Polynomial Coefficients

- Magnitude of coefficients increases dramatically as order of polynomial increases.
- Large positive and negative values so that the corresponding polynomial function matches each of the data points exactly, but between data points the function exhibits the large oscillations → over-fitting

	M = 0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^\star				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43

• Increasing the size of the data set reduces the over-fitting problem.

• 9th Order Polynomial.

regularization

- We may wish to use relatively complex and flexible models with data sets of limited size.
- The over-fitting phenomenon can be controlled with **regularization**, which involves adding a penalty term to the error function.
- Regularization: Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

where
$$\|\mathbf{w}\|^2 \equiv \mathbf{w}^T \mathbf{w} = w_0^2 + w_1^2 + \ldots + w_M^2$$

• the coefficient λ governs the relative importance of the regularization term compared with the sum-of-squares error term.

regularization

• Plots of M = 9 polynomials fitted to the data set using the regularized error function

no regularization (λ =0)

too much regularization

regularization

Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Graph of the root-mean-square error versus $\ln \lambda$ for the M=9 polynomial.