Overview

Wöden Kusner Department of Mathematics University of Pittsburgh

November 25, 2013

Density

A packing of a region $X \subseteq \mathbb{R}^n$ by objects $C_i \subseteq X$ is a family $\mathscr{C} = \{C_i\}_{i \in I}$ with disjoint interiors.

The $upper\ density\ \rho^+$ of a packing $\mathscr C$ in $\mathbb R^n$ will be defined as

$$\rho^{+}(\mathscr{C}) = \limsup_{r \to \infty} \sum_{C_i \subseteq B(r)} \frac{\operatorname{Vol}(C_i)}{\operatorname{Vol}(B(r))},$$

where B(r) is the ball of radius r centered at 0.

Density

Non-trivial upper bounds on density are known for a relatively small class of objects, for example those derived from spheres, tetrahedra, and circular cylinders.

Density

Non-trivial upper bounds on density are known for a relatively small class of objects, for example those derived from spheres, tetrahedra, and circular cylinders.

Upper bounds on density of unit radius cylinders relative to their length.

Blue: W. Kuperberg and G. Fejes Tóth.

Purple: New bound.

Yellow: Conjectured bound.

A Dirichlet cell is sometimes a good way to compute density.

• In a packing \mathscr{C} , the *Dirichlet cell* D_i associated to an object C_i is the set of points no further from C_i than from any other object C_j , $i \neq j$.

- In a packing \mathscr{C} , the *Dirichlet cell* D_i associated to an object C_i is the set of points no further from C_i than from any other object C_j , $i \neq j$.
- Dirichlet cells can be thought of in \mathbb{R}^n or restricted to $X \subseteq \mathbb{R}^n$..

- In a packing \mathscr{C} , the *Dirichlet cell* D_i associated to an object C_i is the set of points no further from C_i than from any other object C_j , $i \neq j$.
- Dirichlet cells can be thought of in \mathbb{R}^n or restricted to $X \subseteq \mathbb{R}^n$...
- ullet Decompose the packed region X.

- In a packing \mathscr{C} , the *Dirichlet cell* D_i associated to an object C_i is the set of points no further from C_i than from any other object C_j , $i \neq j$.
- Dirichlet cells can be thought of in \mathbb{R}^n or restricted to $X \subseteq \mathbb{R}^n$...
- Decompose the packed region *X*.
- By definition, $C_i \subseteq D_i$, so if a generic Dirichlet cell D_i is large, we can get an upper bound on density.

A. Bezdek and W. Kuperberg show that the density of a packing by congruent infinite cylinders is at most the planar disk packing density. They show that the Dirichlet cells of infinite cylinders are large.

Lower bound for density of a packing of space by unit radius cylinders:

Obvious construction.

Upper bound for density:

• Fix a packing of \mathbb{R}^3 with infinite cylinders.

Upper bound for density:

- Fix a packing of \mathbb{R}^3 with infinite cylinders.
- Decompose \mathbb{R}^3 into Dirichlet cells associated with (the axes of) said cylinders.

Two cylinders and associated Dirichlet cells.

Upper bound for density:

- Fix a packing of \mathbb{R}^3 with infinite cylinders.
- Decompose \mathbb{R}^3 into Dirichlet cells associated with (the axes of) said cylinders.

Two cylinders and associated Dirichlet cells.

 Slice the Dirichlet cells perpendicular to the axis of associated cylinder.

Upper bound for density:

- Fix a packing of \mathbb{R}^3 with infinite cylinders.
- Decompose \mathbb{R}^3 into Dirichlet cells associated with (the axes of) said cylinders.

Two cylinders and associated Dirichlet cells.

- Slice the Dirichlet cells perpendicular to the axis of associated cylinder.
- Show that the area of each such Dirichlet slice is large. They are special "parabola-sided polygons."

A slice of a random packing. Dirichlet Slice in white is a "parabola-sided polygon".

In the case of t-cylinders: unit radius cylinders with length t.

• Quandary: The Dirichlet cell of (the axis of) a finite *t*-cylinder need not contain the cylinder.

In the case of t-cylinders: unit radius cylinders with length t.

- Quandary: The Dirichlet cell of (the axis of) a finite t-cylinder need not contain the cylinder.
- Solution: Consider packings of capped t-cylinders: t-cylinders C_i^0 with hemispherical caps C_i^1 and C_i^2 . Decompose the capped-cylinder Dirichlet cell D_i .

 Quandary: Dirichlet slices are not the same type of "parabola-sided polygons."

 Quandary: Dirichlet slices are not the same type of "parabola-sided polygons."

• Solution: We can characterize *some* Dirichlet slices.

Lemma

Slices sufficiently far away from the ends of any axis satisfy conditions that allow the area estimates of Bezdek and Kuperberg to apply.

 Quandary: We don't know the area of the remaining slices, or "how many" small slices there are.

- Quandary: We don't know the area of the remaining slices, or "how many" small slices there are.
- ullet Solution: As the capped cylinder is contained in its Dirichlet cell, we also know that the area of any Dirichlet slice is greater than π . We can show that most slices are far from the ends of any axis when t is large. By restricting to a finite container, we can quantify this.

- Quandary: We don't know the area of the remaining slices, or "how many" small slices there are.
- Solution: As the capped cylinder is contained in its Dirichlet cell, we also know that the area of any Dirichlet slice is greater than π . We can show that most slices are far from the ends of any axis when t is large. By restricting to a finite container, we can quantify this.
- ullet Quandary: We don't know the volume of the regions D^1 and D^2 .

- Quandary: We don't know the area of the remaining slices, or "how many" small slices there are.
- Solution: As the capped cylinder is contained in its Dirichlet cell, we also know that the area of any Dirichlet slice is greater than π . We can show that most slices are far from the ends of any axis when t is large. By restricting to a finite container, we can quantify this.
- Quandary: We don't know the volume of the regions D^1 and D^2 .
- Solution: We know the volume of C^1 and C^2 .

Packings Revisited

A packing of $X \subseteq \mathbb{R}^3$ by capped t-cylinders is a countable family $\mathscr{C} = \{C_i\}_{i \in I}$ of congruent capped t-cylinders C_i with mutually disjoint interiors and $C_i \subseteq X$.

Packings Revisited

A packing of $X\subseteq\mathbb{R}^3$ by capped t-cylinders is a countable family $\mathscr{C}=\{C_i\}_{i\in I}$ of congruent capped t-cylinders C_i with mutually disjoint interiors and $C_i\subseteq X$.

For a packing \mathscr{C} of \mathbb{R}^3 , the restriction of \mathscr{C} to $X \subseteq \mathbb{R}^3$ is defined to be a packing of \mathbb{R}^3 by capped t-cylinders $\{C_i : C_i \subseteq X\}$.

Density Revisited

The *density* $\rho(\mathscr{C}, R, R')$ of a packing \mathscr{C} of \mathbb{R}^3 by capped t-cylinders with $R \leq R'$ is defined as

$$\rho(\mathscr{C}, R, R') = \sum_{C_i \subseteq B(R)} \frac{\operatorname{Vol}(C_i)}{\operatorname{Vol}(B(R'))}.$$

Then the upper density ρ^+ of a packing $\mathscr C$ of $\mathbb R^3$ by capped t-cylinders may be written as

$$\rho^{+}(\mathscr{C}) = \limsup_{R \to \infty} \rho(\mathscr{C}, R, R).$$

Main Theorem

Fix
$$t_0 = \frac{4}{3}(\frac{4}{\sqrt{3}} + 1)^3 = 48.3266786...$$

Theorem

Fix $t \geq 2t_0$. Fix $R \geq 2/\sqrt{3}$. Fix a packing $\mathscr C$ of $\mathbb R^3$ by capped t-cylinders. Then

$$\rho(\mathscr{C}, R - 2/\sqrt{3}, R) \le \frac{t + \frac{4}{3}}{\frac{\sqrt{12}}{\pi}(t - 2t_0) + (2t_0) + \frac{4}{3}}.$$

Main Theorem

Fix
$$t_0 = \frac{4}{3}(\frac{4}{\sqrt{3}} + 1)^3 = 48.3266786...$$

Theorem

Fix $t \geq 2t_0$. Fix $R \geq 2/\sqrt{3}$. Fix a packing $\mathscr C$ of $\mathbb R^3$ by capped t-cylinders. Then

$$\rho(\mathscr{C}, R - 2/\sqrt{3}, R) \le \frac{t + \frac{4}{3}}{\frac{\sqrt{12}}{\pi}(t - 2t_0) + (2t_0) + \frac{4}{3}}.$$

This implies the bound for the upper density of a packing of \mathbb{R}^3 .

Main Theorem gives the general bound

Corollary

Fix $t \geq 2t_0$. The upper density of a packing $\mathscr C$ of $\mathbb R^3$ by capped t-cylinders satisfies the inequality

$$\rho^{+}(\mathscr{C}) \le \frac{t + \frac{4}{3}}{\frac{\sqrt{12}}{\pi}(t - 2t_0) + (2t_0) + \frac{4}{3}}.$$

Let V_R and W_R be subsets of the index set I, with $V_R=\{i:C_i\subseteq B(R)\}$ and $W_R=\{i:C_i\subseteq B(R-2/\sqrt{3})\}$. By definition,

$$\rho^{+}(\mathscr{C}) = \limsup_{R \to \infty} \left(\sum_{W_R} \frac{\operatorname{Vol}(C_i)}{\operatorname{Vol}(B(R))} + \sum_{V_R \setminus W_R} \frac{\operatorname{Vol}(C_i)}{\operatorname{Vol}(B(R))} \right).$$

Main Theorem gives the general bound

$$\rho^{+}(\mathscr{C}) = \limsup_{R \to \infty} \left(\sum_{W_R} \frac{\operatorname{Vol}(C_i)}{\operatorname{Vol}(B(R))} + \sum_{V_R \setminus W_R} \frac{\operatorname{Vol}(C_i)}{\operatorname{Vol}(B(R))} \right).$$

As R grows, the term $\sum_{V_R \smallsetminus W_R} \operatorname{Vol}(C_i)/\operatorname{Vol}(B(R))$ tends to 0. Further analysis of the right-hand side yields

$$\rho^+(\mathscr{C}) = \limsup_{R \to \infty} \rho(\mathscr{C}, R - 2/\sqrt{3}, R).$$

By the Main Theorem, the stated inequality holds.

Density Computation

Fix a packing \mathscr{C} . Fix $R \geq 2/\sqrt{3}$ and restrict to \mathscr{C}^* .

- A is the union of the axes a_i over I^* .
- μ is the 1-dimensional Hausdorff measure on A.
- X is the subset of qualified points of A.
- Y is the subset of A given by $\{x \in A : B_x(\frac{4}{\sqrt{3}}) \text{ contains no ends}\}.$
- Z is the subset of A given by $\{x \in A : B_x(\frac{4}{\sqrt{3}}) \text{ contains an end}\}.$

 $Y\subseteq X\subseteq A$ from our Proposition and Z=A-Y by definition. The sets are A,X,Y, and Z are measurable. The set A is just a finite disjoint union of lines in \mathbb{R}^3 . The area of the Dirichlet slice d_x is piecewise continuous on A, so X is a Borel subset of A. The conditions defining Y and Z make them Borel subsets of A. The ball B(R) is finite volume, so I^* has some finite cardinality n.

Density Computation

By Definition:

$$\rho(\mathscr{C}, R - 2/\sqrt{3}, R) = \frac{\sum_{I^*} Vol(C_i)}{\sum_{I^*} Vol(D_i)} = \frac{\sum_{I^*} Vol(C_i^0) + \sum_{I^*} Vol(C_i^{1,2})}{\sum_{I^*} Vol(D_i^0) + \sum_{I^*} Vol(D_i^{1,2})}.$$

$$Vol(C_i^0) = t\pi.$$

$$Vol(C_i^{1,2}) = \frac{4}{3}\pi.$$

$$C_i^j \subseteq D_i^j.$$

Therefore:

$$\rho(\mathscr{C}, R - 2/\sqrt{3}, R) \le \frac{nt\pi + n\frac{4}{3}\pi}{\sum_{I^*} Vol(D_i^0) + n\frac{4}{3}\pi}.$$

Bound Lemma

The main theorem follows from a bound:

Lemma

For $t \geq 2t_0$,

$$\sum_{I^*} Vol(D_i^0) \ge n(\sqrt{12}(t - 2t_0) + \pi(2t_0)).$$

The sum $\sum_{I^*} \mathrm{Vol}(D^0_i)$ may be written as an integral of the area of the Dirichlet slices d_x over A

$$\sum_{I^*} \operatorname{Vol}(D_i^0) = \int_A \operatorname{Area}(d_x) \, \mathrm{d}\mu.$$

Bound Lemma

Using the area estimates from the main proposition, there is an inequality

$$\int\limits_{A} \operatorname{Area}(d_x) \, \mathrm{d}\mu \geq \int\limits_{X} \sqrt{12} \, \mathrm{d}\mu + \int\limits_{A-X} \pi \, \mathrm{d}\mu.$$

As $\sqrt{12}>\pi$ and the integration is over a region A with $\mu(A)<\infty$, passing to the subset $Y\subseteq X$ gives

$$\int\limits_X \sqrt{12} \,\mathrm{d}\mu + \int\limits_{A-X} \pi \,\mathrm{d}\mu \geq \int\limits_Y \sqrt{12} \,\mathrm{d}\mu + \int\limits_{A-Y} \pi \,\mathrm{d}\mu \ = \int\limits_{A-Z} \sqrt{12} \,\mathrm{d}\mu + \int\limits_Z \pi \,\mathrm{d}\mu.$$

Bound Lemma

The measure of Z is the measure of the subset of A that is contained in all the balls of radius $4/\sqrt{3}$ about all the ends of all the cylinders in the packing. This is bounded from above by considering the volume of cylinders contained in balls of radius $4/\sqrt{3}+1$. If the cylinders completely filled the ball, they would contain at most axis length $\frac{4}{3}(\frac{4}{\sqrt{3}}+1)^3=t_0$. As each cylinder has two ends, there are at worst 2n disjoint balls to consider. Therefore $2nt_0 \geq \mu(Z)$.

Provided
$$t \geq 2t_0$$
, we have the inequality

$$\int_{A-Z} \sqrt{12} \, d\mu + \int_{Z} \pi \, d\mu \ge (nt - 2nt_0)\sqrt{12} + 2n(t_0)\pi.$$

Corollaries

Corollary

(Main Theorem) Fix $t \geq 2t_0$. If the density of a packing of \mathbb{R}^3 by capped t-cylinders exists then it does not exceed

$$\left(\frac{t+\frac{4}{3}}{\frac{\sqrt{12}}{\pi}(t-2t_0)+(2t_0)+\frac{4}{3}}\right).$$

Corollary

Fix $t \ge 2t_0 + 2$. If the density of a packing of \mathbb{R}^3 by t-cylinders exists then it does not exceed

$$\left(\frac{t}{\frac{\sqrt{12}}{\pi}(t-2-2t_0)+(2t_0)+\frac{4}{3}}\right).$$

Other Implications

- We can leverage the packing result for finite capped cylinders to get bounds for other objects. For example:
 - The maximum packing density of infinite circular cylinders with ray axes is exactly $\frac{\pi}{\sqrt{12}}$.
 - Any objects we can pack densely with capped cylinders. For example, tubes with low but strictly positive curvature.
 - Non-congruent cylinders of sufficiently length.
- We can find a dominating hyperbola numerically, giving

$$\rho^+(\mathscr{C}) \le \pi/\sqrt{12} + 10/t$$

for a packing $\mathscr C$ given by congruent capped t-cylinders when $t \geq 0$.