

Modelos de Markov ocultos

Albert Sanchis Alfons Juan Jorge Civera

Departamento de Sistemas Informáticos y Computación

Objetivos formativos

- Interpretar un *HMM (modelo de Markov oculto)*
- Calcular la probabilidad de una cadena de forma directa

Índice

1	Definición de HMM	3
2	Probabilidad de una cadena	5

1. Definición de HMM

Un *modelo de Markov oculto o HMM (Hidden Markov Model)* es un modelo probabilístico para *procesos Markovianos...*

... el estado en t+1 solo depende del estado en t y solo se observa x (la secuencia de estados visitados permanece *oculta*).

Definición de HMM (cont.)

Un HMM es un modelo $M=(Q,\Sigma,\pi,A,B)$, donde:

- $\blacksquare Q$ es un conjunto finito de *estados* (que incluye uno *final*, F)
- ullet es un conjunto finito de *símbolos* o *alfabeto*
- $\blacksquare \pi \in [0,1]^Q$ es un vector de *probabilidades iniciales*
- $\blacksquare A \in [0,1]^{Q \times Q}$ es una matriz de *probabilidades de transición*
- $lacksquare B \in [0,1]^{Q imes \Sigma}$ es una matriz de *probabilidades de emisión*

Ejemplo:

$$Q = \{0, 1, F\}$$
$$\Sigma = \{a, b\}$$

π	0	1
	0.6	0.4

A	0	1	F
0	0.3	0.7	
1		0.6	0.4

B	\overline{a}	b
0	0.5	0.5
1	0.2	0.8

2. Probabilidad de una cadena

La probabilidad de que M genere $x = x_1x_2 \cdots x_T$ es:

$$P_M(x) = \sum_{\boldsymbol{q} = q_1 q_2 \cdots q_T} P_M(x, \boldsymbol{q})$$

donde

$$P_M(x, \mathbf{q}) = \left[\pi_{q_1} B_{q_1, x_1}\right] \cdot \left[A_{q_1, q_2} B_{q_2, x_2}\right] \cdot \ldots \cdot \left[A_{q_{T-1}, q_T} B_{q_T, x_T}\right] \cdot A_{q_T, F}$$

Ejemplo (cont.): tomemos x = ab

$$P_{M}(ab) = P_{M}(01F, ab) + P_{M}(11F, ab)$$

$$= [0.6 \cdot 0.5] \cdot [0.7 \cdot 0.8] \cdot 0.4$$

$$+ [0.4 \cdot 0.2] \cdot [0.6 \cdot 0.8] \cdot 0.4$$

$$= 0.06720 + 0.01536 = 0.08256$$

