Prowadząca: dr Iwona Mróz

Ćwiczenie nr 22

Pomiar wilgotności powietrza atmosferycznego

Spis treści

1	Wstęp teoretyczny	2
2	Opis doświadczenia	2
3	Opracowanie wyników pomiarów 3.1 Tabele pomiarowe	2 2 2
4	Ocena niepewności pomiaru 4.1 Złożona niepewność standardowa pomiaru wilgotności względnej	3
5	Wnioski	3
6	Wykresy	4

- 1 Wstęp teoretyczny
- 2 Opis doświadczenia
- 3 Opracowanie wyników pomiarów

3.1 Tabele pomiarowe

Nr. pomiaru	Wilgotność	
1	59%	
2	61%	

Tabela 1: Wilgotność powietrza odczytana z higrometru włosowego.

$T_s [^{\circ}C]$	$T_m [^{\circ}C]$	$\Delta T [^{\circ}C]$	wilgotność względna
25,00	20,00	5,00	63,00%

Tabela 2: Wyniki pomiarów dla Psychrometru Assmanna.

Nr. pomiaru	$T_1 [°C]$	$T_2[^{\circ}C]$
1	11,4	14,0
2	12,0	14,7
3	11,9	16,0
4	12,3	13,8
5	12,5	14,5
6	12,5	14,1
7	12,5	13,5
8	11,9	14,4
9	11,5	15,7
10	12,0	14,9
11	12,0	15,4
12	12,3	14,9
13	11,8	15,4
14	12,4	15,1
15	12,2	14,2

Tabela 3: Wyniki pomiarów metodą punktu rosy.

3.2 Temperatura punktu rosy

Temperatura punktu rosy obliczana jest jako średnia z temperatur pojawienia i znikania mgiełki. Wartość ciśnienia pary nasyconej p_t dla każdej z temperatur punktu rosy T_{rosy} została odczytana ze strony internetowej [1] (wykorzystując równanie Antoine'a). Ciśnienie pary nasyconej dla temperatury otoczenia $T_s = 25,00\,^{\circ}C$ wynosi $p_0 = 3158\,Pa$.

Wilgotność względna S obliczana jest ze wzoru:

$$S = \frac{p_t}{p_0} \tag{1}$$

Powyższe wartości zostały zapisane w tabeli 4.

Nr. pomiaru	$T_{rosy} [^{\circ}C]$	$p_t[Pa]$	S
1	12,70	1461,3	0,461
2	$13,\!35$	1525,0	0,481
3	13,95	1586,0	0,500
4	13,05	1495,3	0,472
5	13,50	1540,0	0,486
6	13,30	1520,0	0,479
7	13,00	1490,4	0,470
8	$13,\!15$	1505,0	$0,\!475$
9	13,60	1550,0	0,489
10	13,45	1535,0	0,484
11	13,70	1560,2	0,492
12	13,60	1550,0	0,489
13	13,60	1550,0	0,489
14	13,75	1565,3	0,494
15	13,20	1510,0	0,476

Tabela 4: Temperatura punktu rosy oraz ciśnienie pary nasyconej dla każdego pomiaru.

Średnia arytmetyczna wartości wilgotności względnej wynosi $\hat{S}=0.4824.$

4 Ocena niepewności pomiaru

4.1 Złożona niepewność standardowa pomiaru wilgotności względnej

Złożoną niepewność standardową obliczono na podstawie wzoru:

$$u_c(S) = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (S_i - \hat{S})^2}$$
 (2)

gdzie:

- n = 15 liczba pomiarów
- \bullet S_i wartość wilgotności względnej dla i-tego pomiaru

Po podstawieniu wartości do wzoru otrzymujemy:

$$u_c(S) = 0.0027 (3)$$

5 Wnioski

Na podstawie przeprowadzonych pomiarów wilgotności powietrza atmosferycznego przy pomocy różnych metod pomiarowych można sformułować następujące wnioski:

1. Metodą punktu rosy wyznaczono wilgotność względną powietrza:

$$S = 0.4824 \pm 0.0027 \tag{4}$$

co wyrażone w procentach daje wartość $(48,24 \pm 0,27)\%$.

- 2. Za pomocą higrometru włosowego uzyskano dwa odczyty wilgotności względnej: 59% na początku wykonywania pomiarów oraz 61% na końcu.
- 3. Psychrometr Assmanna wskazał wilgotność względną na poziomie 63%, przy temperaturze suchego termometru $T_s=25{,}00^\circ C$ i mokrego termometru $T_m=20{,}00^\circ C$.
- 4. Występują znaczące różnice między wynikami uzyskanymi różnymi metodami pomiarowymi. Wartość zmierzona metodą punktu rosy (najbardziej dokładną w tym doświadczeniu) jest znacząco niższa od wartości otrzymanych pozostałymi metodami.

6 Wykresy

Literatura

[1] The Engineering Toolbox. Water vapor saturation pressure. https://www.engineeringtoolbox.com/water-vapor-saturation-pressure-d_599.html?vA=25&units=C#, 2025. Dostęp: 25.05.2025.