Úkol

- 1. Změřte účiník:
 - (a) rezistoru,
 - (b) kondenzátoru ($C = 10 \,\mu\text{F}$),
 - (c) cívky.
- 2. Spočtěte fázový posun proudu a napětí. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky.
- 3. Pro cívku vypočtěte indukčnost a odpor v sériovém a paralelním náhradním zapojení.
- 4. Změřte účiník sériového a paralelního zapojení rezistoru a kondenzátoru pro kapacity v intervalu C=1 $10\,\mu\text{F}$ a spočtěte fázový posuv. Výsledky zpracujte graficky. Z naměřených hodnot stanovte odpor rezistoru a porovnejte ho s hodnotou přímo naměřenou digitálním multimetrem. Určete chyby měření a rozhodněte, které z obou zapojení je v daném případě vhodnější pro stanovení odporu.
- 5. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu pro kapacity do 10 µF. Výsledky zpracujte graficky, v závislosti na zařazené kapacitě vyneste účiník, fázový posuv napětí vůči proudu a výkon.
- 6. V průběhu měření seriového RC obvodu připojte na kondenzátor digitální osciloskop Tektronix a pozorujte změnu fáze napětí na kondenzátoru vzhledem k průběhu napětí zdroje v závislosti na velikosti nastavené kapacity v intervalu 1 10 μF. Popište kvalitativně pozorované jevy a vysvětlete je. Stručný popis ovládání a schema připojení osciloskopu je přiloženo u úlohy.

Teorie

Výkon střídavého proudu závisí na fázovém posunu napětí vůči proudu φ vztahem

$$P = UI\cos\varphi,\tag{1}$$

kde U a I jsou efektivní hodnoty napětí a proudu.

Pomocí komplexního formalismu řešení střídavých obvodů je možné odvodit vztahy pro absolutní hodnotu komplexní impedance $Z=\frac{U}{I}$ a fázový posun napětí vůči proudu φ sériového RL obvodu

$$Z = \sqrt{R^2 + \omega^2 L^2},\tag{2}$$

$$\varphi = \arctan \frac{\omega L}{R} \tag{3}$$

a paralelního RL obvodu

$$\frac{1}{Z} = \sqrt{\frac{1}{R^2} + \frac{1}{\omega^2 L^2}},\tag{4}$$

$$\varphi = \arctan\left(\frac{R}{\omega L}\right). \tag{5}$$

Z těchto vztahů pak plynou rovnice pro odpor a indukčnost prvků

$$R_s = \frac{U}{I} \frac{1}{\sqrt{1 + \tan^2 \varphi}},\tag{6}$$

$$L_s = \frac{1}{\omega} \frac{U}{I} \sqrt{\frac{\tan^2 \varphi}{1 + \tan^2 \varphi}} \tag{7}$$

v sériovém a

$$R_p = \frac{U}{I}\sqrt{1 + \tan^2\varphi},\tag{8}$$

$$L_p = \frac{1}{\omega} \frac{U}{I} \sqrt{\frac{1 + \tan^2 \varphi}{\tan^2 \varphi}} \tag{9}$$

v paralelním zapojení. V těchto vztazích je $\omega=2\pi f$ úhlová frekvence střídavých veličin. Pro měření účiníku bylo použito zapojení z obrázku 1.

Obrázek 1: Zapojení pro měření účiníku

Výsledky měření

	<i>U</i> [V]	σ_U [V]	<i>I</i> [A]	σ_U [A]	P [W]	-	,	$\sigma_{\cos \varphi}$	$ arphi $ $[^{\circ}]$	$\sigma_{ \varphi }$ [°]
\overline{R}	50,8	0,5	0,0504	0,0011	2,50	0,07	0,98	0,04	12	10
L	51,0	0,5	0,0300	0,0005	0,50	0,07	$0,\!33$	0,05	71,0	3,0
\mathbf{C}	49,6	0,5	$0,\!1522$	0,0026	$0,\!12$	0,07	0,017	0,010	89,1	0,6

Tabulka 1: Tabulka

	U $[V]$	σ_U [V]	<i>I</i> [A]	σ_U [A]	P [W]	σ_P [W]	$\cos \varphi$	$\sigma_{\cos arphi}$	φ [°]	$\sigma_{ \varphi }$ $[^{\circ}]$
R	50,1	0,7	0,051	0,005	2,548	0,030	1,00	0,10	0	8
${ m L}$	50,3	0,7	0,030	0,005	0,594	0,015	0,39	0,07	67	4
\mathbf{C}	50,7	0,7	0,163	0,006	0,012	0,010	0,0015	0,0012	89,92	0,07

Tabulka 2: Tabulka

С [µF]	U [V]	σ_U [V]	<i>I</i> [A]	σ_U [A]	P [W]	σ_P [W]	$\cos \varphi$	σ_{\cosarphi}	$ arphi $ $[^{\circ}]$	$\sigma_{ arphi }$ [°]
1	51,1	0,7	0,015	0,005	0,243	0,012	0,32	0,11	72	7
2	50,8	0,7	0,027	0,005	0,740	0,016	$0,\!54$	0,10	57	7
3	50,3	0,7	0,035	0,005	1,213	0,020	0,69	$0,\!10$	46	8
4	50,2	0,7	0,040	0,005	$1,\!564$	0,023	0,78	$0,\!10$	39	9
5	50,1	0,7	0,043	0,005	1,800	0,024	0,84	$0,\!10$	33	11
6	49,9	0,7	0,045	0,005	1,967	$0,\!026$	0,88	$0,\!10$	29	12
7	49,9	0,7	0,046	0,005	2,083	0,027	0,91	$0,\!10$	25	14
8	49,8	0,7	0,047	0,005	2,167	0,027	0,93	$0,\!10$	22	16
9	49,8	0,7	0,047	0,005	2,233	0,028	0,95	$0,\!11$	17	20
10	49,7	0,7	0,048	0,005	$2,\!273$	0,028	0,95	0,10	18	20

Tabulka 3: Tabulka

C	U	σ_U	I	σ_U	P	σ_P	$\cos \varphi$	$\sigma_{\cos \varphi}$	$ \varphi $	$\sigma_{ \varphi }$
[µF]	[V]	[V]	[A]	[A]	[W]	[W]			[°]	[°]
1	50,1	0,7	0,053	0,005	$2,\!533$	0,030	0,95	0,10	17	18
2	50,1	0,7	0,060	0,005	$2,\!555$	0,030	0,85	0,08	32	8
3	50,1	0,7	0,070	0,005	2,500	0,030	0,71	0,06	45	5
4	50,4	0,7	0,083	0,005	$2,\!577$	0,031	0,62	0,04	52,0	3,0
5	50,5	0,7	0,096	0,005	$2,\!583$	0,031	0,533	0,031	57,8	2,1
6	50,5	0,7	$0,\!110$	0,005	$2,\!581$	0,031	$0,\!465$	0,024	62,3	1,6
7	50,7	0,7	$0,\!110$	0,005	$2,\!591$	0,031	$0,\!465$	0,024	62,3	1,6
8	50,6	0,7	0,140	0,006	$2,\!591$	0,031	$0,\!366$	0,016	68,5	1,0
9	50,6	0,7	$0,\!155$	0,006	$2,\!589$	0,031	0,330	0,013	70,7	0,8
10	50,8	0,7	$0,\!171$	0,006	2,595	0,031	$0,\!299$	0,011	72,6	0,7

Tabulka 4: Tabulka

C	U	σ_U	I	σ_U	P	σ_P	$\cos \varphi$	$\sigma_{\cos \varphi}$	$ \varphi $	$\sigma_{ \varphi }$
$[\mu F]$	[V]	[V]	[A]	[A]	[W]	[W]			[°]	[0]
1,0	49,7	0,7	0,021	0,005	0,668	0,015	0,64	0,16	50	1
1,1	49,7	0,7	0,023	0,005	0,826	0,017	0,72	$0,\!16$	44	1
1,2	49,4	0,7	0,024	0,005	0,978	0,018	0,82	0,18	34	1
1,3	49,3	0,7	0,026	0,005	1,107	0,019	$0,\!86$	$0,\!17$	30	1
1,4	49,1	0,7	0,027	0,005	1,211	0,020	0,91	$0,\!17$	24	2
1,5	49,0	0,7	0,028	0,005	1,291	0,020	0,94	$0,\!17$	20	2
1,6	49,0	0,7	0,029	0,005	1,351	0,021	0,95	$0,\!17$	18	3
1,7	48,9	0,7	0,029	0,005	1,391	0,021	0,98	$0,\!17$	10	5
1,8	48,8	0,7	0,029	0,005	1,408	0,021	0,99	0,18	5	5
1,9	48,7	0,7	0,029	0,005	$1,\!421$	0,021	1,00	$0,\!18$	0	5
2,0	48,7	0,7	0,029	0,005	$1,\!436$	0,021	1,00	$0,\!18$	0	5
2,1	48,8	0,7	0,029	0,005	$1,\!423$	$0,\!021$	1,00	$0,\!18$	0	5
2,2	48,8	0,7	0,029	0,005	$1,\!427$	0,021	1,00	$0,\!18$	0	5
2,3	48,7	0,7	0,029	0,005	$1,\!417$	0,021	1,00	$0,\!18$	0	5
2,4	48,7	0,7	0,029	0,005	$1,\!405$	0,021	0,99	$0,\!18$	6	5
2,5	48,8	0,7	0,029	0,005	1,391	0,021	0,98	$0,\!17$	11	5
2,6	48,9	0,7	0,029	0,005	1,382	0,021	0,97	$0,\!17$	13	4
2,7	48,7	0,7	0,029	0,005	1,368	$0,\!021$	0,97	$0,\!17$	14	4
2,8	48,8	0,7	0,029	0,005	1,360	$0,\!021$	0,96	$0,\!17$	16	3
2,9	48,9	0,7	0,028	0,005	1,346	0,021	0,98	$0,\!18$	11	5
3,0	49,0	0,7	0,028	0,005	1,332	$0,\!021$	0,97	$0,\!18$	14	4
4	48,9	0,7	0,027	0,005	$1,\!224$	0,020	0,93	$0,\!18$	22	2
5	49,1	0,7	$0,\!026$	0,005	$1,\!152$	0,019	0,90	$0,\!18$	26	2
6	49,0	0,7	$0,\!026$	0,005	1,103	0,019	$0,\!87$	$0,\!17$	30	2
7	49,2	0,7	$0,\!025$	0,005	1,071	0,019	$0,\!87$	$0,\!18$	29	2
8	49,2	0,7	$0,\!025$	0,005	1,047	0,018	$0,\!85$	$0,\!17$	32	1
9	49,2	0,7	0,025	0,005	1,021	0,018	$0,\!83$	$0,\!17$	34	1
10	49,2	0,7	0,025	0,005	1,007	0,018	0,82	$0,\!17$	35	1

Tabulka 5: Tabulka

Obrázek 2: Závislost účiníku a fázového posunu sériového zapojení rezistoru a kondenzátoru

Obrázek 3: Závislost účiníku a fázového posunu paralelního zapojení rezistoru a kondenzátoru

Obrázek 4: Průběh výkonu sériového RLC obvodu v závislosti na kapacitě

Obrázek 5: Závislost účiníku a fázového posunu sériového RLC obvodu

Diskuse

Závěr

Literatura

[1] Studijní text "Měření účiníku", dostupné z http://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_206.pdf, 13.12.2017