Лабораторная работа № 3

Необходимо настроить сеть для небольшой компании. Офис компании представляет собой здание, состоящее из двух этажей. На первом этаже находится холл с ресепшеном и серверная. Второй этаж разделен на два отдела. Вам предстоит настроить как проводную, так и беспроводную сеть.

Рисунок 1 – Топология сети

Таблица 1 – Планирование VLAN

VLAN	Описание	
10	Сотрудники первого отдела	
20	Сотрудники второго отдела	
30	Ресепшен	
40	Беспроводная сеть для сотрудников	
50	Беспроводная сеть для клиентов	
60	Для управления точками доступа	
70	Для управления сетевыми устройствами	
80	Серверы	
100	Соединение между Sw-Core и Router	

Таблица 2 – Планирование ІР-адресации

Устройство	Интерфейс	IP-адрес / Маска
	VLANIF 10	10.0.10.1/24
Sw-Core	VLANIF 20	10.0.20.1/24
	VLANIF 30	10.0.30.1/24
	VLANIF 40	10.0.40.1/24
	VLANIF 50	10.0.50.1/24
	VLANIF 60	10.0.60.1/24
	VLANIF 70	10.0.70.1/24
	VLANIF 80	10.0.80.1/24
	VLANIF 100	10.0.100.1/24
Sw-Hall	VLANIF 70	10.0.70.2/24
Sw-Dept-1	VLANIF 70	10.0.70.3/24
Sw-Dept-2	VLANIF 70	10.0.70.4/24
AC	VLANIF 60	10.0.60.2/24
	VLANIF 70	10.0.70.5/24
Router	GE 0/0/0	10.0.100.2/24
Server	GE 0/0/0	10.0.80.2/24

Таблица 3 – Параметры портов

Устройство	Порты	Тип порта	Настройки VLAN	
Sw-Core	GE 0/0/1	Trunk	Allow-pass VLAN: 30, 40, 50, 60, 70	
	GE 0/0/2	Trunk Allow-pass VLAN: 10, 40, 60, 70		
	GE 0/0/3	Trunk Allow-pass VLAN: 20, 40, 60, 70		
Sw-Core	GE 0/0/4	Trunk Allow-pass VLAN: 60, 70		
	GE 0/0/5	Access	Access PVID: 80	
	GE 0/0/24	Access	PVID: 100	
Sw-Hall	GE 0/0/1	Trunk	Allow-pass VLAN: 30, 40, 50, 60, 70	
	GE 0/0/2	Trunk	Allow-pass VLAN: 40, 50, 60	
			PVID: 60	
	E 0/0/1	Access	PVID: 30	
Sw-Dept-1	GE 0/0/1	Trunk	Allow-pass VLAN: 10, 40, 60, 70	
	GE 0/0/2	72 Trunk	Allow-pass VLAN: 40, 60	
	GE 0/0/2		PVID: 60	
	E 0/0/1 – 10	Access	PVID: 10	
	GE 0/0/1	Trunk	Allow-pass VLAN: 20, 40, 60, 70	
Sw-Dept-2	GE 0/0/2	Trunk	Allow-pass VLAN: 40, 60	
		TTUIK	PVID: 60	
	E 0/0/1 – 10	Access	PVID: 20	
AC	GE 0/0/1	Trunk	Allow-pass VLAN: 60, 70	

Таблица 4 – Планирование данных LAN и WLAN

Элемент	Конфигурация			
DHCP-сервер	Server выполняет функци	и DHCP-сервера, которые		
	назначает IP-адреса PC, AP и STA.			
Пул IP-адресов для PC	Отдел 1: 10.0.10.2 – 10.0.10.254			
	Отдел 2: 10.0.20.2 – 10.0.20.254			
	Ресепшен: 10.0.30.2 – 10.0.30.254			
Пул IP-адресов для AP	10.0.60.2 - 10.0.60.254			
Пул IP-адресов для STA	Сотрудники: 10.0.40.2 – 10.0.40.254			
	Клиенты: 10.0.50.2 – 10.0.50.254			
Адрес интерфейса-источника АС	VLANIF 60: 10.0.60.1/24			
Группа АР	Имя: Employee	Имя: Guest		
	Профили: профиль VAP и профиль регулирующего			
	домена			
Профиль регулирующего домена	Имя: WLAN			
	Код страны: RU			
Профиль SSID	Имя профиля: Employee	Имя профиля: Guest		
профиль эзи	Имя SSID: Employee	Имя SSID: Guest		
	Имя: Employee	Имя: Guest		
Профили беропосности	Политика безопасности:	Политика безопасности:		
Профиль безопасности	WPA2+PSK+AES	открытая система		
	Пароль: qwerty123			
	Имя: Employee	Имя: Guest		
	Режим передачи: прямая	Режим передачи: прямая		
Профиль VAP	передача	передача		
προφειιο ν τι	Service VLAN: 40	Service VLAN: 50		
	Профили: профиль SSID и	Профили: профиль SSID и		
	профиль безопасности	профиль безопасности		

План работы:

- 1. Настройка сетевого подключения.
- 2. Конфигурирование WLAN.
- 3. Настройка подключения АР к сети.
- 4. Настройка выхода в сеть.

Процедура конфигурирования:

Шаг 1. Настройте сетевое подключение.

Настройте имя и создайте VLAN на Sw-Core.

```
<Huawei>system-view
[Huawei]sysname Sw-Core
[Sw-Core]vlan batch 10 20 30 40 50 60 70 80 100
```

На Sw-Core настройте порты и разрешите прохождение пакетов из соответствующих VLAN на основе таблицы 3.

```
[Sw-Core]interface GigabitEthernet 0/0/1
[Sw-Core-GigabitEthernet0/0/1]description to Sw-Hall
[Sw-Core-GigabitEthernet0/0/1]port link-type trunk
[Sw-Core-GigabitEthernet0/0/1]port trunk allow-pass vlan 30 40 50 60 70
[Sw-Core-GigabitEthernet0/0/1]quit
[Sw-Core]interface GigabitEthernet 0/0/2
[Sw-Core-GigabitEthernet0/0/2]description to Sw-Dept-1
[Sw-Core-GigabitEthernet0/0/2]port link-type trunk
[Sw-Core-GigabitEthernet0/0/2]port trunk allow-pass vlan 10 40 60 70
[Sw-Core-GigabitEthernet0/0/2]quit
[Sw-Core]interface GigabitEthernet 0/0/3
[Sw-Core-GigabitEthernet0/0/3]description to Sw-Dept-2
[Sw-Core-GigabitEthernet0/0/3]port link-type trunk
[Sw-Core-GigabitEthernet0/0/3]port trunk allow-pass vlan 20 40 60 70
[Sw-Core-GigabitEthernet0/0/3]quit
[Sw-Core]interface GigabitEthernet 0/0/4
[Sw-Core-GigabitEthernet0/0/4]description to AC
[Sw-Core-GigabitEthernet0/0/4]port link-type trunk
[Sw-Core-GigabitEthernet0/0/4]port trunk allow-pass vlan 60 70
[Sw-Core-GigabitEthernet0/0/4] quit
[Sw-Core]interface GigabitEthernet 0/0/5
[Sw-Core-GigabitEthernet0/0/5]description to Server
[Sw-Core-GigabitEthernet0/0/5]port link-type access
[Sw-Core-GigabitEthernet0/0/5]port default vlan 80
[Sw-Core-GigabitEthernet0/0/5]quit
[Sw-Core]interface GigabitEthernet 0/0/24
[Sw-Core-GigabitEthernet0/0/24]description to Router
[Sw-Core-GigabitEthernet0/0/24]port link-type access
[Sw-Core-GigabitEthernet0/0/24]port default vlan 100
[Sw-Core-GigabitEthernet0/0/24]quit
```

Команда **description** позволяет добавить описание интерфейсу. Это помогает быстро понять, что находится за интерфейсом, и сориентироваться в случае, когда с ним связана какая-либо неисправность.

Командой display interface description можно посмотреть состояние и описание интерфейсов.

```
[Sw-Core]display interface description
PHY: Physical
*down: administratively down
(1): loopback
(s): spoofing
(b): BFD down
(e): ETHOAM down
```

```
(dl): DLDP down
(d): Dampening Suppressed
                                     Protocol Description
Interface
                             PHY
GE0/0/1
                                     up to Sw-Hall
                             up
                                             to Sw-Dept-1
GE0/0/2
                             up
                                     up
GE0/0/3
                                     up
                                             to Sw-Dept-2
                             up
GE0/0/4
                             up
                                     up
                                             to AC
GE0/0/5
                                             to Server
                             up
                                     up
GE0/0/6
                             down
                                     down
GE0/0/7
                             down
                                     down
GE0/0/8
                             down
                                     down
GE0/0/9
                             down
                                     down
GE0/0/10
                             down
                                     down
GE0/0/11
                             down
                                     down
GE0/0/12
                             down
                                     down
GE0/0/13
                                    down
                             down
GE0/0/14
                             down
                                    down
GE0/0/15
                                    down
                             down
GE0/0/16
                             down
                                    down
GE0/0/17
                             down
                                    down
GE0/0/18
                             down
                                    down
GE0/0/19
                             down
                                    down
                             down
                                    down
GE0/0/20
                             down
                                    down
GE0/0/21
GE0/0/22
                             down
                                     down
GE0/0/23
                             down
                                     down
GE0/0/24
                             up
                                              to Router
                                     up
MEth0/0/1
                             down
                                     down
NULL0
                             up
                                     up(s)
Vlanif1
                                     down
                             up
```

Описание можно добавлять не только физическим интерфейсам, но и виртуальным.

```
[Sw-Core]vlan 10
[Sw-Core-vlan10]description department-1
[Sw-Core-vlan10]quit
[Sw-Core]vlan 20
[Sw-Core-vlan20]description department-2
[Sw-Core-vlan20]quit
[Sw-Core]vlan 30
[Sw-Core-vlan30]description reception
[Sw-Core-vlan30]quit
[Sw-Core]vlan 40
[Sw-Core-vlan40]description employee_wlan
[Sw-Core-vlan40]quit
[Sw-Core]vlan 50
[Sw-Core-vlan50]description guest wlan
[Sw-Core-vlan50]quit
[Sw-Core]vlan 60
[Sw-Core-vlan60]description ap control
[Sw-Core-vlan60]quit
[Sw-Core]vlan 70
[Sw-Core-vlan70]description management
[Sw-Core-vlan70]quit
[Sw-Core]vlan 80
[Sw-Core-vlan80]description servers
[Sw-Core-vlan80]quit
[Sw-Core]vlan 100
[Sw-Core-vlan100]description uplink
[Sw-Core-vlan100]quit
```

Отключите неиспользуемые порты на Sw-Core.

```
[Sw-Core]port-group group-member g 0/0/6 to g 0/0/23 [Sw-Core-port-group]shutdown
```

Команда **port-group group-member** *interfaces* позволяет объединить интерфейсы во временную группу для ускорения выполнения однотипных команд.

```
[Sw-Core]port-group unused_ports
[Sw-Core-port-group-unused_ports]group-member g 0/0/6 to g 0/0/23
[Sw-Core-port-group-unused ports]shutdown
```

Команда **port-group** *port-group-name* позволяет создать постоянную группу интерфейсов, которая выполняет те же функции, что и временная, но не пропадает после выхода из режима конфигурирования. К ней можно повторно обратиться по имени и в ней сохранятся все ранее сконфигурированные члены группы.

Создайте интерфейсы VLANIF на Sw-Core и настройте для них IP-адреса (таблица 2).

```
[Sw-Corelinterface vlanif 10
[Sw-Core-Vlanif10]ip address 10.0.10.1 24
[Sw-Core-Vlanif10]interface vlanif 20
[Sw-Core-Vlanif20]ip address 10.0.20.1 24
[Sw-Core-Vlanif20]interface vlanif 30
[Sw-Core-Vlanif30]ip address 10.0.30.1 24
[Sw-Core-Vlanif30]interface vlanif 40
[Sw-Core-Vlanif40]ip address 10.0.40.1 24
[Sw-Core-Vlanif40]interface vlanif 50
[Sw-Core-Vlanif50]ip address 10.0.50.1 24
[Sw-Core-Vlanif50]interface vlanif 60
[Sw-Core-Vlanif60]ip address 10.0.60.1 24
[Sw-Core-Vlanif60]interface vlanif 70
[Sw-Core-Vlanif70]ip address 10.0.70.1 24
[Sw-Core-Vlanif70]interface vlanif 80
[Sw-Core-Vlanif80]ip address 10.0.80.1 24
[Sw-Core-Vlanif80]interface vlanif 100
[Sw-Core-Vlanif100]ip address 10.0.100.1 24
```

- Шаг 2. Руководствуясь таблицами 1-3, повторите действия из шага 1 для остальных устройств. На Router настройте необходимые статические маршруты.
- Шаг 3. Настройте DHCP-сервер.

Задайте имя устройству и включите DHCP.

```
<Huawei>system-view
[Huawei]sysname Server
[Server]dhcp enable
```

Создайте пулы адресов согласно таблице 4.

```
[Server]ip pool dept-1
[Server-ip-pool-dept-1]network 10.0.10.0 mask 24
[Server-ip-pool-dept-1]gateway-list 10.0.10.1
[Server-ip-pool-dept-1]dns-list 8.8.8.8
[Server-ip-pool-dept-1]quit
[Server]
[Server]ip pool dept-2
[Server-ip-pool-dept-2]network 10.0.20.0 mask 24
[Server-ip-pool-dept-2]gateway-list 10.0.20.1
[Server-ip-pool-dept-2]dns-list 8.8.8.8
[Server-ip-pool-dept-2]quit
[Server]
[Server]ip pool reception
[Server-ip-pool-reception] network 10.0.30.0 mask 24
[Server-ip-pool-reception]gateway-list 10.0.30.1
[Server-ip-pool-reception]dns-list 8.8.8.8
[Server-ip-pool-reception]quit
[Server]
[Server]ip pool ap
[Server-ip-pool-ap]network 10.0.60.0 mask 24
[Server-ip-pool-ap]gateway-list 10.0.60.1
[Server-ip-pool-ap]dns-list 8.8.8.8
[Server-ip-pool-ap]quit
[Server]
[Server]ip pool sta empl
[Server-ip-pool-sta empl]network 10.0.40.0 mask 24
[Server-ip-pool-sta_empl]gateway-list 10.0.40.1
[Server-ip-pool-sta_empl]dns-list 8.8.8.8
[Server-ip-pool-sta_empl]quit
[Server]
[Server]ip pool sta_guest
[Server-ip-pool-sta_guest]network 10.0.50.0 mask 24
[Server-ip-pool-sta guest]gateway-list 10.0.50.1
[Server-ip-pool-sta guest]dns-list 8.8.8.8
```

Шлюзами являются адреса VLANIF интерфейсов коммутатора Sw-Core. Адресом DNS был выбран адрес публичного DNS-сервера Google.

Добавьте маршрут по умолчанию.

```
[Server]ip route-static 0.0.0.0 0.0.0.0 10.0.80.1
```

Включите DHCР на интерфейсе.

```
[Server]interface g 0/0/0
[Server-GigabitEthernet0/0/0]dhcp select global
```

Поскольку DHCP-запросы распространяются широковещательно (на канальном уровне), то они не смогут достигнуть DHCP-сервера, который находится в другом широковещательном домене. Для решения этой проблемы необходимо настроить перенаправление DHCP-запросов.

Настройте DHCP-Relay.

```
[Sw-Core]dhcp enable
[Sw-Corelinterface vlanif 10
[Sw-Core-Vlanif10]dhcp select relay
[Sw-Core-Vlanif10]dhcp relay server-ip 10.0.80.2
[Sw-Core-Vlanif10]quit
[Sw-Core]interface vlanif 20
[Sw-Core-Vlanif20]dhcp select relay
[Sw-Core-Vlanif20]dhcp relay server-ip 10.0.80.2
[Sw-Core-Vlanif20]quit
[Sw-Core]interface vlanif 30
[Sw-Core-Vlanif30]dhcp select relay
[Sw-Core-Vlanif30]dhcp relay server-ip 10.0.80.2
[Sw-Core-Vlanif30]quit
[Sw-Corelinterface vlanif 40
[Sw-Core-Vlanif40]dhcp select relay
[Sw-Core-Vlanif40]dhcp relay server-ip 10.0.80.2
[Sw-Core-Vlanif40]quit
[Sw-Core]interface vlanif 50
[Sw-Core-Vlanif50]dhcp select relay
[Sw-Core-Vlanif50]dhcp relay server-ip 10.0.80.2
[Sw-Core-Vlanif50]quit
[Sw-Core]interface vlanif 60
[Sw-Core-Vlanif60]dhcp select relay
[Sw-Core-Vlanif60]dhcp relay server-ip 10.0.80.2
```

Теперь все широковещательные запросы, приходящие на коммутатор Sw-Core, будут перенаправляться на IP-адрес 10.0.80.2 (адрес DHCP-сервера), но уже в виде одноадресных сообщений.

Шаг 4. Настройка WLAN

Создайте группы АР.

```
[AC]wlan
[AC-wlan-view]ap-group name Employee
[AC-wlan-ap-group-Employee]quit
[AC-wlan-view]ap-group name Guest
[AC-wlan-ap-group-Guest]quit
```

Создайте профиль регулирующего домена и настройте код страны.

```
[AC-wlan-view]regulatory-domain-profile name WLAN
[AC-wlan-regulate-domain-WLAN]country-code RU
Warning: Modifying the country code will clear channel, power and antenna gain configurations of the radio and reset the AP.
Continue?[Y/N]:y
```

Профиль регулирующего домена предоставляет конфигурации кода страны, каналов и полосы пропускания для точки доступа. Код страны определяет страну, в которой развернуты AP. В разных странах требуются разные атрибуты радиосвязи AP, включая мощность передачи и поддерживаемые каналы. Правильная конфигурация кода страны гарантирует, что атрибуты радиосвязи точек доступа будут соответствовать местным законам и правилам. По умолчанию установлен код страны CN.

Привяжите профиль регулирующего домена к группам АР.

```
[AC-wlan-view]ap-group name Employee
[AC-wlan-ap-group-Employee]regulatory-domain-profile WLAN
Warning: Modifying the country code will clear channel, power and
antenna gain configurations of the radio and reset the AP.
Continue?[Y/N]:y
[AC-wlan-ap-group-Employee]quit
[AC-wlan-view]ap-group name Guest
[AC-wlan-ap-group-Guest]regulatory-domain-profile WLAN
Warning: Modifying the country code will clear channel, power and
antenna gain configurations of the radio and reset the AP.
Continue?[Y/N]:y
[AC-wlan-ap-group-Guest]quit
```

Укажите интерфейс для установления туннелей CAPWAP.

```
[AC] capwap source interface Vlanif 60
```

Создайте профили безопасности и настройте политику безопасности.

```
[AC-wlan-view]security-profile name Employee
[AC-wlan-sec-prof-Employee]security wpa2 psk pass-phrase qwerty123 aes
[AC-wlan-sec-prof-Employee]quit
[AC-wlan-view]security-profile name Guest
[AC-wlan-sec-prof-Guest]security open
```

Создайте профили SSID.

```
[AC-wlan-view]ssid-profile name Employee
[AC-wlan-ssid-prof-Employee]ssid Employee
[AC-wlan-ssid-prof-Employee]quit
[AC-wlan-view]ssid-profile name Guest
[AC-wlan-ssid-prof-Guest]ssid Guest
[AC-wlan-ssid-prof-Guest]quit
```

– Создайте профили VAP для сотрудников и клиентов, настройте режим передачи данных, Service VLAN и примените профиль безопасности и профиль SSID.

```
[AC-wlan-view]vap-profile name Employee
[AC-wlan-vap-prof-Employee]forward-mode direct-forward
[AC-wlan-vap-prof-Employee]service-vlan vlan-id 40
[AC-wlan-vap-prof-Employee]security-profile Employee
[AC-wlan-vap-prof-Employee]ssid-profile Employee
[AC-wlan-vap-prof-Employee]quit
[AC-wlan-view]vap-profile name Guest
[AC-wlan-vap-prof-Guest]forward-mode direct-forward
[AC-wlan-vap-prof-Guest]service-vlan vlan-id 50
[AC-wlan-vap-prof-Guest]security-profile Guest
[AC-wlan-vap-prof-Guest]ssid-profile Guest
[AC-wlan-vap-prof-Guest]ssid-profile Guest
```

Команда **vap-profile** позволяет создавать профили VAP. В профиле VAP можно настроить режим передачи данных и привязку профиля SSID, профиля безопасности и профиля трафика.

Команда **forward-mode** позволяет настроить режим передачи данных в профиле VAP. По умолчанию установлен режим прямой передачи данных.

Команда **service-vlan** позволяет настроить Service VLAN для VAP. После обращения STA к WLAN пользовательские данные, передаваемые AP, будут содержать тег Service VLAN.

Привяжите профиль VAP к группам AP и примените конфигурацию к радиомодулям точек доступа.

```
[AC]wlan
[AC-wlan-view]ap-group name Employee
[AC-wlan-ap-group-Employee]vap-profile Employee wlan 1 radio all
[AC-wlan-ap-group-Employee]quit
[AC-wlan-view]ap-group name Guest
[AC-wlan-ap-group-Guest]vap-profile Employee wlan 1 radio all
[AC-wlan-ap-group-Guest]vap-profile Guest wlan 2 radio all
```

Настройте для точек доступа режим аутентификации по МАС-адресу, импортируйте их в АС и добавьте в соответствующие группы.

Добавление AP в AC может осуществляться следующими способами:

- Ручная настройка: предварительная настройка MAC-адресов и серийных номеров (SN) AP на AC. При подключении точек доступа контроллер доступа определяет, соответствуют ли их MAC-адреса и серийные номера предварительно сконфигурированным, и устанавливает с ними соединения.
- **Автоматическое обнаружение**: АС автоматически обнаруживает подключенные АР и, если для АР используется режим без аутентификации или аутентификации по MAC-адресу или SN, и MAC-адреса или SN содержатся в белом списке, устанавливает с ними соединения.
- **Ручное подтверждение**: в режиме аутентификации AP по MAC-адресам или серийным номерам, а MAC-адрес или SN подключенной AP не включен в белый список на AC, AC добавляет AP в список неавторизованных AP. Для выхода AP в сеть можно ручную подтвердить ее подлинность.

```
[AC-wlan-view]ap auth-mode mac-auth
```

Команда **ap auth-mode** используется для настройки режима аутентификации AP. Только аутентифицированные точки доступа могут подключаться к сети. В качестве режима аутентификации AP по умолчанию используется аутентификация по MAC-адресу.

Примечание: у всех сетевых устройств уникальные MAC-адреса, посмотреть MAC-адрес точки доступа вы можете:

во вкладке Config (ПКМ по AP → Settings → Config)

Рисунок 2 – МАС-адрес и серийный номер точки доступа

- с помощью команды display interface vlanif 1 на AP
- с помощью команды display ap unauthorized record на AC

```
[AC-wlan-view]ap-id 0 ap-mac 00e0-fc62-80d0
```

Команда **ap-id** используется для добавления AP или перехода в режим конфигурирования AP. Аргумент **ap-mac** определяет аутентификацию по MAC-адресу, а аргумент **ap-sn** определяет аутентификацию по SN.

```
[AC-wlan-ap-0]ap-name Ap-Dept-1
```

Командой **ар-пате** можно указать имя AP. Имена AP должны быть уникальными. Если имя точки доступа не указано, то именем по умолчанию является MAC-адрес точки доступа.

```
[AC-wlan-ap-0]ap-group Employee Warning: This operation may cause AP reset. If the country code changes, it will clear channel, power and antenna gain configurations of the radio, Whether to continue? [Y/N]:y
```

Команда **ap-group** позволяет настроить группу AP. АС передает конфигурацию точкам доступа. Например, при добавлении точки доступа в группу **Employee** она получит настройки профиля регулирующего домена, профиля радиосвязи и профиля VAP, которые имеют привязку к группе **Employee**. По умолчанию точки доступа не добавлены в группы. При добавлении AP в группу или изменении настроек группы AP контроллер доступа автоматически передаст конфигурацию группы, а также AP автоматически перезапустится, чтобы присоединиться к группе.

Аналогичным образом добавьте оставшиеся точки доступа и затем выведите информацию о них командой **display ap all**.

- Шаг 5. Запретите клиентам доступ в сеть компании.
- Шаг 6. Добавьте возможность выхода в Интернет.

Чтобы связать устройства в eNSP с внешним миром, можно воспользоваться Cloud. Добавьте его в свою топологию и откройте настройки.

1. В поле BindingInfo выберите UDP, в поле Port type выберите GE и нажмите Add.

2. В поле BindingInfo выберите VMware Network Adapter VMnet8, в поле Port Туре выберите GE и нажмите Add.

3. В настройках Port Map Setting: в поле Port Туре выберите GE, в поле Local Port Num выберите 1, в поле Remote Port Num выберите 2, поставьте галочку Two-way Channel и нажмите Add.

4. Соедините Cloud и Router с помощью интерфейсов G0/0/1. Настройте интерфейс маршрутизатора на получение IP-адреса по DHCP.

```
[Router]dhcp enable
[Router]interface GigabitEthernet 0/0/1
[Router-GigabitEthernet0/0/1]ip address dhcp-alloc
```

5. Настройте NAT.

```
[Router] acl 2000

[Router-acl-basic-2000] rule 5 permit source any

[Router-acl-basic-2000] quit

[Router] interface GigabitEthernet 0/0/1

[Router-GigabitEthernet0/0/1] nat outbound 2000
```

6. Добавьте маршрут по умолчанию на Sw-Core.

```
[Sw-Core]ip route-static 0.0.0.0 0.0.0.0 10.0.100.2
```

7. Проверьте соединение с Интернетом.

```
Ping google.com [173.194.73.138]: 32 data bytes, Press Ctrl_C to break
From 173.194.73.138: bytes=32 seq=1 ttl=128 time=16 ms
From 173.194.73.138: bytes=32 seq=2 ttl=128 time=31 ms
From 173.194.73.138: bytes=32 seq=3 ttl=128 time=15 ms
From 173.194.73.138: bytes=32 seq=4 ttl=128 time=32 ms
From 173.194.73.138: bytes=32 seq=4 ttl=128 time=32 ms
From 173.194.73.138: bytes=32 seq=5 ttl=128 time=15 ms

--- 173.194.73.138 ping statistics ---
5 packet(s) transmitted
5 packet(s) received
0.00% packet loss
round-trip min/avg/max = 15/21/32 ms
```