Assignment -3 Build CNN model for classification of Flowers

Assignment Date	03 October 2022
Team ID	PNT2022TMID14214
Project Name	AI BASED DISCOURSE FOR BANKING INDUSTRY
Student Name	B.CHERRISH
Student Roll Number	111619104012

Question-1. Load the dataset

Solution:

!unzip Flowers-Dataset.zip

```
inflating: flowers/daisy/1396526833 fb867165be n.jpg
inflating: flowers/daisy/13977181862_f8237b6b52.jpg
inflating: flowers/daisy/14021430525 e06baf93a9.jpg
inflating: flowers/daisy/14073784469_ffb12f3387_n.jpg
inflating: flowers/daisy/14087947408_9779257411_n.jpg
inflating: flowers/daisy/14088053307 1a13a0bf91 n.jpg
inflating: flowers/daisy/14114116486_0bb6649bc1_m.jpg
inflating: flowers/daisy/14147016029 8d3cf2414e.jpg
inflating: flowers/daisy/14163875973 467224aaf5 m.jpg
inflating: flowers/daisy/14167534527_781ceb1b7a_n.jpg
inflating: flowers/daisy/14167543177_cd36b54ac6_n.jpg
inflating: flowers/daisy/14219214466_3ca6104eae_m.jpg
inflating: flowers/daisy/14221836990_90374e6b34.jpg
inflating: flowers/daisy/14221848160 7f0a37c395.jpg
inflating: flowers/daisy/14245834619_153624f836.jpg
inflating: flowers/daisy/14264136211_9531fbc144.jpg
inflating: flowers/daisy/14272874304_47c0a46f5a.jpg
inflating: flowers/daisy/14307766919_fac3c37a6b_m.jpg
inflating: flowers/daisy/14330343061_99478302d4_m.jpg
inflating: flowers/daisy/14332947164 9b13513c71 m.jpg
inflating: flowers/daisy/14333681205_a07c9f1752_m.jpg
inflating: flowers/daisy/14350958832_29bdd3a254.jpg
inflating: flowers/daisy/14354051035 1037b30421 n.jpg
inflating: flowers/daisy/14372713423_61e2daae88.jpg
inflating: flowers/daisy/14399435971_ea5868c792.jpg
inflating: flowers/daisy/14402451388 56545a374a n.jpg
inflating: flowers/daisy/144076848_57e1d662e3_m.jpg
```

```
inflating: flowers/daisy/14372713423_61e2daae88.jpg
inflating: flowers/daisy/14399435971_ea5868c792.jpg
inflating: flowers/daisy/14402451388 56545a374a n.jpg
inflating: flowers/daisy/144076848 57e1d662e3 m.jpg
inflating: flowers/daisy/144099102 bf63a41e4f n.jpg
inflating: flowers/daisy/1441939151 b271408c8d n.jpg
inflating: flowers/daisy/14421389519_d5fd353eb4.jpg
inflating: flowers/daisy/144603918_b9de002f60_m.jpg
inflating: flowers/daisy/14471433500 cdaa22e3ea m.jpg
inflating: flowers/daisy/14485782498_fb342ec301.jpg
inflating: flowers/daisy/14507818175_05219b051c_m.jpg
inflating: flowers/daisy/14523675369_97c31d0b5b.jpg
inflating: flowers/daisy/14551098743_2842e7a004_n.jpg
inflating: flowers/daisy/14554906452_35f066ffe9_n.jpg
inflating: flowers/daisy/14564545365 1f1d267bf1 n.jpg
inflating: flowers/daisy/14569895116_32f0dcb0f9.jpg
inflating: flowers/daisy/14591326135 930703dbed m.jpg
inflating: flowers/daisy/14600779226_7bbc288d40_m.jpg
inflating: flowers/daisy/14613443462_d4ed356201.jpg
inflating: flowers/daisy/14621687774 ec52811acd n.jpg
inflating: flowers/daisy/14674743211_f68b13f6d9.jpg
inflating: flowers/daisy/14698531521_0c2f0c6539.jpg
inflating: flowers/daisy/147068564_32bb4350cc.jpg
inflating: flowers/daisy/14707111433_cce08ee007.jpg
inflating: flowers/daisy/14716799982 ed6d626a66.jpg
inflating: flowers/daisy/14816364517_2423021484_m.jpg
inflating: flowers/daisy/14866200659_6462c723cb_m.jpg
```

```
#importing required libraries to build a CNN classification model with accuracy
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
import matplotlib.pyplot as plt
batch_size = 32
img_height = 180
img_width = 180
data_dir = "/content/flowers"
```

Solution:

 $from\ tensor flow. keras. preprocessing. image\ import\ Image Data Generator$

 $train_datagen = ImageDataGenerator(rescale = 1./255, horizontal_flip = True, vertical_flip = True, z \\ oom_range = 0.2)$

 $x_train = train_datagen.flow_from_directory(r''/content/flowers'', target_size = (64,64) \ , class_mode \\ = ''categorical'', batch_size = 100)$

Found 4317 images belonging to 5 classes.

```
#Image Augumentation accuracy
data_augmentation = Sequential(
[
    layers.RandomFlip("horizontal",input_shape=(img_height, img_width, 3)),
    layers.RandomRotation(0.1),
    layers.RandomZoom(0.1),
]
)
```

Question-3. Create model - Model Building and also Split dataset into training and testing sets

Solution:

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Convolution2D,MaxPooling2D,Flatten,Dense model = Sequential()

```
train_ds = tf.keras.utils.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="training",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)
```

```
Found 4317 files belonging to 5 classes.
    Using 3454 files for training.
val_ds = tf.keras.utils.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
 Found 4317 files belonging to 5 classes.
 Using 863 files for validation.
class_names = train_ds.class_names
print(class_names)
['daisy', 'dandelion', 'rose', 'sunflower', 'tulip']
plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
for i in range(9):
 ax = plt.subplot(3, 3, i + 1)
 plt.imshow(images[i].numpy().astype("uint8"))
 plt.title(class_names[labels[i]])
```

plt.axis("off")

Question-4. Add the layers (Convolution, MaxPooling, Flatten, Dense-(HiddenLayers), Output)

Solution:

```
model.add(Convolution2D(32, (3,3), activation = "relu", input_shape = (64,64,3) ))
model.add(MaxPooling2D(pool_size = (2,2)))
model.add(Flatten())
model.add(Dense(300, activation = "relu"))
model.add(Dense(150, activation = "relu")) #mulitple dense layers
model.add(Dense(5, activation = "softmax")) #output layer
```

```
#Adding the layers for accuracy
num_classes = len(class_names)

model = Sequential([
   data_augmentation,
   layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
   layers.Conv2D(16, 3, padding='same', activation='relu'),
   layers.MaxPooling2D(),
   layers.Conv2D(32, 3, padding='same', activation='relu'),
   layers.MaxPooling2D(),
   layers.Conv2D(64, 3, padding='same', activation='relu'),
   layers.MaxPooling2D(),
   layers.Flatten(),
   layers.Dense(128, activation='relu'),
   layers.Dense(num_classes)
])
```

Question-5. Compile The Model

Solution:

```
model.compile(loss = "categorical_crossentropy", metrics = ["accuracy"], optimizer = "adam") len(x_train)
```

44

#Compile the model for further accuracy

```
Epoch 1/10
108/108 [==
                                  ===] - 132s 1s/step - loss: 1.2821 - accuracy: 0.4537 - val_loss: 1.0988 - val_accuracy: 0.5458
   Epoch 2/10
                                   ==] - 130s 1s/step - loss: 1.0298 - accuracy: 0.5921 - val_loss: 0.9494 - val_accuracy: 0.6304
   Epoch 3/10
   108/108 [==
Epoch 4/10
                           ======] - 129s 1s/step - loss: 0.9000 - accuracy: 0.6642 - val_loss: 0.9264 - val_accuracy: 0.6419
   Epoch 5/10
                                   ==] - 136s 1s/step - loss: 0.8432 - accuracy: 0.6778 - val_loss: 0.8499 - val_accuracy: 0.6674
   Epoch 6/10
   108/108 [==
Epoch 7/10
                                   ===] - 130s 1s/step - loss: 0.8166 - accuracy: 0.6888 - val_loss: 0.8714 - val_accuracy: 0.6732
   108/108 [==
Epoch 8/10
                           108/108 [==:
                          ========] - 130s 1s/step - loss: 0.7262 - accuracy: 0.7250 - val_loss: 0.7957 - val_accuracy: 0.6860
   108/108 F==
                              =======] - 128s 1s/step - loss: 0.7094 - accuracy: 0.7284 - val loss: 0.7960 - val accuracy: 0.7068
    Epoch 10/10
                          ========] - 130s 1s/step - loss: 0.6820 - accuracy: 0.7383 - val_loss: 0.7914 - val_accuracy: 0.6941
   108/108 [===
```

#To find the Training and Validation- Accuracy & Loss (Visualization)

```
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(epochs)
plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
```


Question-6. Fit The Model

Solution:

model.fit(x_train, epochs = 15, steps_per_epoch = len(x_train))

```
Epoch 1/15
   44/44 [=========== ] - 31s 684ms/step - loss: 1.7914 - accuracy: 0.3588
   Epoch 2/15
   44/44 [============ ] - 29s 648ms/step - loss: 1.1730 - accuracy: 0.5045
   Epoch 3/15
   44/44 [=========== ] - 29s 650ms/step - loss: 1.0967 - accuracy: 0.5529
   Epoch 4/15
   44/44 [=========== ] - 29s 648ms/step - loss: 1.0351 - accuracy: 0.5939
   Epoch 5/15
   44/44 [============ - 29s 645ms/step - loss: 0.9920 - accuracy: 0.6127
   Epoch 6/15
   44/44 [============] - 30s 677ms/step - loss: 0.9659 - accuracy: 0.6259
   Epoch 7/15
   44/44 [============ ] - 29s 648ms/step - loss: 0.9129 - accuracy: 0.6426
   Epoch 8/15
   44/44 [========== ] - 29s 647ms/step - loss: 0.9085 - accuracy: 0.6433
   Epoch 9/15
   44/44 [============ ] - 32s 717ms/step - loss: 0.8597 - accuracy: 0.6620
   Epoch 10/15
   44/44 [============ ] - 30s 674ms/step - loss: 0.8350 - accuracy: 0.6824
   Epoch 11/15
   44/44 [=========== - 295 648ms/step - loss: 0.8420 - accuracy: 0.6718
   Epoch 12/15
   44/44 [===========] - 29s 650ms/step - loss: 0.7857 - accuracy: 0.7030
   Epoch 13/15
   44/44 [======== - 29s 649ms/step - loss: 0.7868 - accuracy: 0.7000
   Epoch 14/15
   44/44 [============= ] - 29s 650ms/step - loss: 0.7542 - accuracy: 0.7132
   Epoch 15/15
   44/44 [=========== ] - 30s 676ms/step - loss: 0.7467 - accuracy: 0.7107
   <keras.callbacks.History at 0x7f602ce90090>
```

Question-7. Save The Model

Solution:

model.save("flowers.h1")

model.save("flowers.m5")#another model to show the accuracy

Question-8. Test The Model

Solution:

from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image import numpy as np

```
model = load_model("/content/flowers.h1")
# Testing with a random rose image from Google
img = image.load_img("/content/rose.gif", target_size = (64,64) )
img
x = image.img_to_array(img)
x.ndim
 3
x = np.expand_dims(x,axis = 0)
x.ndim
4
pred = model.predict(x)
pred
 array([[0., 0., 1., 0., 0.]], dtype=float32)
labels = ['daisy','dandelion','roses','sunflowers','tulips']
labels[np.argmax(pred)]
'roses'
```

```
sunflower_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/592
px-Red_sunflower.jpg"
sunflower_path = tf.keras.utils.get_file('Red_sunflower', origin=sunflower_url)
img = tf.keras.utils.load_img(
  sunflower_path, target_size=(img_height, img_width)
)
img_array = tf.keras.utils.img_to_array(img)
img_array = tf.expand_dims(img_array, 0) # Create a batch
predictions = model.predict(img_array)
score = tf.nn.softmax(predictions[0])
print(
  "This image most likely belongs to {} with a {:.2f} percent confidence."
  .format(class_names[np.argmax(score)], 100 * np.max(score))
)
 {\tt Downloading\ data\ from\ \underline{https://storage.googleapis.com/download.tensorflow.org/example\_images/592px-Red\_sunflower.jpg}}
 122880/117948 [=========] - 0s Ous/step
 131072/117948 [===========] - 0s Ous/step
 This image most likely belongs to sunflower with a 99.85 percent confidence.
```