$12n_{0753} \ (K12n_{0753})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -1.36970 \times 10^{192}u^{71} + 1.13541 \times 10^{192}u^{70} + \dots + 8.77978 \times 10^{191}b - 2.52244 \times 10^{193}, \\ &- 2.76575 \times 10^{194}u^{71} + 7.05669 \times 10^{194}u^{70} + \dots + 6.36534 \times 10^{194}a - 1.06301 \times 10^{196}, \\ &2u^{72} - 3u^{71} + \dots - 314u - 29 \rangle \\ I_2^u &= \langle 1624226u^{15} + 189101u^{14} + \dots + 2048967b - 3069244, \\ &1675780u^{15} - 2140649u^{14} + \dots + 2048967a + 298066, \ u^{16} - u^{15} + \dots - u + 1 \rangle \\ I_3^u &= \langle b + a + 2, \ a^2 + 3a + 3, \ u + 1 \rangle \\ I_4^u &= \langle b - 1, \ a, \ u + 1 \rangle \\ I_5^u &= \langle b - 1, \ a - 3, \ 2u - 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 92 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -1.37 \times 10^{192} u^{71} + 1.14 \times 10^{192} u^{70} + \dots + 8.78 \times 10^{191} b - 2.52 \times 10^{193}, \ -2.77 \times 10^{194} u^{71} + 7.06 \times 10^{194} u^{70} + \dots + 6.37 \times 10^{194} a - 1.06 \times 10^{196}, \ 2u^{72} - 3u^{71} + \dots - 314u - 29 \rangle$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.434501u^{71} - 1.10861u^{70} + \dots + 347.297u + 16.7000 \\ 1.56006u^{71} - 1.29321u^{70} + \dots + 356.879u + 28.7301 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.0355412u^{71} + 0.176136u^{70} + \dots - 11.6952u - 6.02177 \\ 3.01683u^{71} - 1.28760u^{70} + \dots + 385.689u + 33.1010 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1.01568u^{71} - 0.393073u^{70} + \dots + 193.878u + 14.0114 \\ -2.66963u^{71} + 1.21209u^{70} + \dots - 462.369u - 40.0424 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1.45544u^{71} + 1.03210u^{70} + \dots - 279.270u - 26.0870 \\ -2.04836u^{71} + 1.02912u^{70} + \dots - 383.249u - 33.0258 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1.33808u^{71} - 0.482894u^{70} + \dots + 103.747u + 5.16521 \\ 0.454400u^{71} + 0.395730u^{70} + \dots - 29.3983u - 1.94875 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1.99456u^{71} - 2.40182u^{70} + \dots + 704.175u + 45.4301 \\ 1.56006u^{71} - 1.29321u^{70} + \dots + 356.879u + 28.7301 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1.11558u^{71} + 1.08287u^{70} + \dots - 292.574u - 16.4833 \\ 0.445103u^{71} - 0.585548u^{70} + \dots + 202.903u + 17.1718 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2.49602u^{71} + 1.67951u^{70} + \dots - 453.851u - 30.5168 \\ 0.204348u^{71} - 0.282806u^{70} + \dots + 112.741u + 9.83185 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-10.8009u^{71} + 8.28607u^{70} + \cdots 2650.54u 220.978$

Crossings	u-Polynomials at each crossing
c_1	$2(2u^{72} - 7u^{71} + \dots + 3152u + 248)$
c_2, c_5	$u^{72} + 2u^{71} + \dots + 3215u + 491$
c_3, c_7	$2(2u^{72} - 3u^{71} + \dots - 314u - 29)$
c_4, c_9	$2(2u^{72} + 3u^{71} + \dots - 3289u + 373)$
c_6, c_{11}	$u^{72} + 2u^{71} + \dots - 32u - 13$
c ₈	$u^{72} - 9u^{71} + \dots - 34u - 16$
c_{10}	$u^{72} - u^{71} + \dots - 868u + 172$
c_{12}	$4(4u^{72} + 7u^{71} + \dots + 3105391u - 546509)$

Crossings	Riley Polynomials at each crossing
c_1	$4(4y^{72} + 315y^{71} + \dots + 1.07828 \times 10^7 y + 61504)$
c_2, c_5	$y^{72} - 34y^{71} + \dots - 7263547y + 241081$
c_3, c_7	$4(4y^{72} - 149y^{71} + \dots - 158162y + 841)$
c_4,c_9	$4(4y^{72} - 273y^{71} + \dots - 1.06512 \times 10^7 y + 139129)$
c_6, c_{11}	$y^{72} + 40y^{71} + \dots + 1758y + 169$
c ₈	$y^{72} + 13y^{71} + \dots - 21636y + 256$
c_{10}	$y^{72} + 71y^{71} + \dots + 1106584y + 29584$
c_{12}	$16(16y^{72} + 383y^{71} + \dots - 2.25832 \times 10^{13}y + 2.98672 \times 10^{11})$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.503006 + 0.831688I		
a = -0.259579 + 1.246850I	3.45543 - 1.25801I	0
b = 0.058808 - 1.112600I		
u = 0.503006 - 0.831688I		
a = -0.259579 - 1.246850I	3.45543 + 1.25801I	0
b = 0.058808 + 1.112600I		
u = -1.041580 + 0.024317I		
a = 1.23868 - 0.87697I	-2.31888 + 0.24644I	0
b = 0.394506 + 1.005270I		
u = -1.041580 - 0.024317I		
a = 1.23868 + 0.87697I	-2.31888 - 0.24644I	0
b = 0.394506 - 1.005270I		
u = -0.815728 + 0.487376I		
a = -1.208560 - 0.387306I	-1.33286 - 0.50784I	0
b = 0.117552 + 0.652833I		
u = -0.815728 - 0.487376I		
a = -1.208560 + 0.387306I	-1.33286 + 0.50784I	0
b = 0.117552 - 0.652833I		
u = -0.728632 + 0.606808I		
a = 1.05815 + 1.44602I	6.64396 + 5.86161I	0
b = 0.832891 - 1.079930I		
u = -0.728632 - 0.606808I		
a = 1.05815 - 1.44602I	6.64396 - 5.86161I	0
b = 0.832891 + 1.079930I		
u = 0.882988 + 0.321194I		
a = 0.989354 - 0.026371I	7.66910 + 0.75809I	0
b = 0.554950 + 1.267330I		
u = 0.882988 - 0.321194I		
a = 0.989354 + 0.026371I	7.66910 - 0.75809I	0
b = 0.554950 - 1.267330I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.907468 + 0.164522I		
a = 1.83157 - 1.23603I	-2.88359 - 0.80432I	0. + 8.12297I
b = 0.368044 + 0.713795I		
u = 0.907468 - 0.164522I		
a = 1.83157 + 1.23603I	-2.88359 + 0.80432I	0 8.12297I
b = 0.368044 - 0.713795I		
u = 0.895691 + 0.175371I		
a = -0.042597 - 1.012350I	7.94630 - 2.89493I	-8.00000 + 0.I
b = -0.31696 + 1.83412I		
u = 0.895691 - 0.175371I		
a = -0.042597 + 1.012350I	7.94630 + 2.89493I	-8.00000 + 0.I
b = -0.31696 - 1.83412I		
u = 0.092924 + 1.093780I		
a = -0.61636 - 1.43773I	0.22901 - 1.56376I	0
b = 0.263182 + 1.078450I		
u = 0.092924 - 1.093780I		
a = -0.61636 + 1.43773I	0.22901 + 1.56376I	0
b = 0.263182 - 1.078450I		
u = -1.072600 + 0.291310I		
a = 0.186386 - 0.014835I	-3.76116 + 2.21241I	0
b = 1.228110 + 0.658249I		
u = -1.072600 - 0.291310I		
a = 0.186386 + 0.014835I	-3.76116 - 2.21241I	0
b = 1.228110 - 0.658249I		
u = -0.225907 + 0.857311I		
a = 0.29618 - 1.73173I	11.23550 - 2.92648I	0
b = 0.175849 + 1.362810I		
u = -0.225907 - 0.857311I		
a = 0.29618 + 1.73173I	11.23550 + 2.92648I	0
b = 0.175849 - 1.362810I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.898595 + 0.693854I		
a = 0.495800 + 0.631045I	6.17897 - 0.78005I	0
b = -0.623277 - 1.241630I		
u = -0.898595 - 0.693854I		
a = 0.495800 - 0.631045I	6.17897 + 0.78005I	0
b = -0.623277 + 1.241630I		
u = -0.851572 + 0.098574I		
a = -0.44810 - 2.02667I	-0.33014 + 2.90561I	-12.38642 - 2.35566I
b = -0.307315 + 1.330400I		
u = -0.851572 - 0.098574I		
a = -0.44810 + 2.02667I	-0.33014 - 2.90561I	-12.38642 + 2.35566I
b = -0.307315 - 1.330400I		
u = 0.425042 + 0.726403I		
a = -0.375790 + 0.136052I	5.42275 - 0.09793I	-5.98952 + 0.I
b = 0.749628 - 0.466090I		
u = 0.425042 - 0.726403I		
a = -0.375790 - 0.136052I	5.42275 + 0.09793I	-5.98952 + 0.I
b = 0.749628 + 0.466090I		
u = 1.146890 + 0.239896I		
a = -1.34749 + 1.59261I	2.40983 - 6.94246I	0
b = -0.446655 - 1.147350I		
u = 1.146890 - 0.239896I		
a = -1.34749 - 1.59261I	2.40983 + 6.94246I	0
b = -0.446655 + 1.147350I		
u = 0.169569 + 0.808248I		
a = 0.473104 - 1.295420I	1.56234 + 4.15508I	-3.60189 - 5.54738I
b = -0.444943 + 1.156660I		
u = 0.169569 - 0.808248I		
a = 0.473104 + 1.295420I	1.56234 - 4.15508I	-3.60189 + 5.54738I
b = -0.444943 - 1.156660I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.071170 + 0.491622I		
a = -0.926908 + 0.936678I	1.52629 - 3.66253I	0
b = -0.454134 - 1.102540I		
u = 1.071170 - 0.491622I		
a = -0.926908 - 0.936678I	1.52629 + 3.66253I	0
b = -0.454134 + 1.102540I		
u = 1.002430 + 0.646161I		
a = -0.621070 + 1.079490I	3.91147 - 4.95776I	0
b = -0.772604 - 0.519623I		
u = 1.002430 - 0.646161I		
a = -0.621070 - 1.079490I	3.91147 + 4.95776I	0
b = -0.772604 + 0.519623I		
u = -0.798501		
a = -0.785864	-1.17921	-8.47920
b = -0.447077		
u = 1.202480 + 0.283076I		
a = 0.138975 - 0.079543I	-6.45016 - 1.40130I	0
b = -1.153200 + 0.368484I		
u = 1.202480 - 0.283076I		
a = 0.138975 + 0.079543I	-6.45016 + 1.40130I	0
b = -1.153200 - 0.368484I		
u = -1.235190 + 0.143374I		
a = 0.617261 - 0.416546I	-2.50871 + 2.84294I	0
b = 0.447349 - 0.814159I		
u = -1.235190 - 0.143374I		
a = 0.617261 + 0.416546I	-2.50871 - 2.84294I	0
b = 0.447349 + 0.814159I		
u = -1.244310 + 0.423740I		
a = 0.0054853 - 0.0913034I	0.98123 + 9.65251I	0
b = -1.309550 - 0.242884I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.244310 - 0.423740I		
a = 0.0054853 + 0.0913034I	0.98123 - 9.65251I	0
b = -1.309550 + 0.242884I		
u = -1.233970 + 0.484514I		
a = -1.36969 - 0.62929I	8.05277 + 7.84555I	0
b = -0.365240 + 1.167500I		
u = -1.233970 - 0.484514I		
a = -1.36969 + 0.62929I	8.05277 - 7.84555I	0
b = -0.365240 - 1.167500I		
u = 1.314710 + 0.242671I		
a = 1.134490 + 0.342556I	-3.79390 - 2.56082I	0
b = 0.114449 + 0.782911I		
u = 1.314710 - 0.242671I		
a = 1.134490 - 0.342556I	-3.79390 + 2.56082I	0
b = 0.114449 - 0.782911I		
u = 0.154651 + 1.330290I		
a = -0.363017 + 1.326710I	8.31993 + 9.72275I	0
b = 0.447735 - 1.196460I		
u = 0.154651 - 1.330290I		
a = -0.363017 - 1.326710I	8.31993 - 9.72275I	0
b = 0.447735 + 1.196460I		
u = 1.236540 + 0.527449I		
a = 0.836971 - 1.017340I	-1.67018 - 9.17442I	0
b = 0.73985 + 1.21388I		
u = 1.236540 - 0.527449I		
a = 0.836971 + 1.017340I	-1.67018 + 9.17442I	0
b = 0.73985 - 1.21388I		
u = 0.207226 + 0.606021I		
a = -0.89244 + 1.68919I	4.92815 - 5.65520I	-7.10674 + 3.77487I
b = 0.559166 + 0.057445I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.207226 - 0.606021I		
a = -0.89244 - 1.68919I	4.92815 + 5.65520I	-7.10674 - 3.77487I
b = 0.559166 - 0.057445I		
u = 0.633327		
a = 2.67730	-3.55339	-29.9400
b = 0.903177		
u = 1.348140 + 0.296280I		
a = 0.203425 + 0.158263I	-5.73500 - 3.48707I	0
b = 0.811304 - 0.216892I		
u = 1.348140 - 0.296280I		
a = 0.203425 - 0.158263I	-5.73500 + 3.48707I	0
b = 0.811304 + 0.216892I		
u = -0.606261		
a = -1.45762	-1.75883	-2.53260
b = -1.05497		
u = -1.399550 + 0.110346I		
a = -0.124373 - 0.433867I	-0.46262 + 2.79739I	0
b = -0.634981 - 0.141517I		
u = -1.399550 - 0.110346I		
a = -0.124373 + 0.433867I	-0.46262 - 2.79739I	0
b = -0.634981 + 0.141517I		
u = 0.576573 + 0.148773I		
a = -3.20227 + 0.71254I	4.97316 - 5.48093I	-7.15436 + 1.78291I
b = 0.134280 + 0.503659I		
u = 0.576573 - 0.148773I		
a = -3.20227 - 0.71254I	4.97316 + 5.48093I	-7.15436 - 1.78291I
b = 0.134280 - 0.503659I		
u = -1.27477 + 0.62767I		
a = -0.508037 - 1.269480I	-3.45946 + 7.92978I	0
b = -0.67450 + 1.28161I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.27477 - 0.62767I		
a = -0.508037 + 1.269480I	-3.45946 - 7.92978I	0
b = -0.67450 - 1.28161I		
u = 1.36637 + 0.66092I		
a = -0.690847 + 1.216050I	4.4898 - 16.5640I	0
b = -0.68777 - 1.34270I		
u = 1.36637 - 0.66092I		
a = -0.690847 - 1.216050I	4.4898 + 16.5640I	0
b = -0.68777 + 1.34270I		
u = -1.42815 + 0.61310I		
a = 0.607526 + 1.114140I	-2.66048 + 8.50861I	0
b = 0.530368 - 1.219960I		
u = -1.42815 - 0.61310I		
a = 0.607526 - 1.114140I	-2.66048 - 8.50861I	0
b = 0.530368 + 1.219960I		
u = -0.236862 + 0.337792I		
a = -0.751492 + 0.941497I	-0.679533 + 0.910759I	-9.46747 - 7.43737I
b = -0.262698 + 0.288681I		
u = -0.236862 - 0.337792I		
a = -0.751492 - 0.941497I	-0.679533 - 0.910759I	-9.46747 + 7.43737I
b = -0.262698 - 0.288681I		
u = 1.49094 + 0.88314I		
a = -0.089296 + 1.196100I	2.84660 - 0.20549I	0
b = -0.296159 - 1.050160I		
u = 1.49094 - 0.88314I		
a = -0.089296 - 1.196100I	2.84660 + 0.20549I	0
b = -0.296159 + 1.050160I		
u = -0.0772319		
a = -9.75455	-1.59790	-5.22370
b = -0.694596		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.13305 + 2.22143I		
a = 0.247002 + 1.038800I	1.94667 - 0.60383I	0
b = -0.131303 - 0.926881I		
u = -1.13305 - 2.22143I		
a = 0.247002 - 1.038800I	1.94667 + 0.60383I	0
b = -0.131303 + 0.926881I		

II.
$$I_2^u = \langle 1.62 \times 10^6 u^{15} + 1.89 \times 10^5 u^{14} + \dots + 2.05 \times 10^6 b - 3.07 \times 10^6, \ 1.68 \times 10^6 u^{15} - 2.14 \times 10^6 u^{14} + \dots + 2.05 \times 10^6 a + 2.98 \times 10^5, \ u^{16} - u^{15} + \dots - u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.817866u^{15} + 1.04475u^{14} + \dots + 2.00021u - 0.145471 \\ -0.792705u^{15} - 0.0922909u^{14} + \dots + 0.278948u + 1.49795 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.729637u^{15} - 0.967738u^{14} + \dots - 2.98482u + 0.0399850 \\ 0.196193u^{15} + 0.378990u^{14} + \dots + 2.20563u + 0.831459 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.192246u^{15} + 0.746718u^{14} + \dots + 2.69815u - 0.322782 \\ 0.958092u^{15} - 0.390810u^{14} + \dots + 0.0247515u - 1.89818 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.686458u^{15} + 0.569194u^{14} + \dots + 3.16943u - 1.78296 \\ 0.404897u^{15} - 0.320210u^{14} + \dots - 0.673557u - 1.13918 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.358525u^{15} - 0.111506u^{14} + \dots + 0.107810u + 1.23687 \\ -0.816934u^{15} + 0.884996u^{14} + \dots + 2.49795u + 1.60964 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1.61057u^{15} + 0.952455u^{14} + \dots + 2.27916u + 1.35248 \\ -0.792705u^{15} - 0.0922909u^{14} + \dots + 0.278948u + 1.49795 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.0112340u^{15} - 0.628733u^{14} + \dots - 0.0790242u + 0.753342 \\ 0.196193u^{15} - 0.621010u^{14} + \dots - 2.79437u - 1.16854 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.226867u^{15} - 0.858932u^{14} + \dots - 0.848647u + 0.482979 \\ 0.0412032u^{15} - 0.257966u^{14} + \dots - 2.25495u - 0.906080 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-\frac{305674}{682989}u^{15} + \frac{1878059}{682989}u^{14} + \dots + \frac{12968633}{682989}u - \frac{6937978}{682989}u^{14} + \dots$$

Crossings	u-Polynomials at each crossing
c_1	$u^{16} + 4u^{15} + \dots + 6u + 9$
c_2	$u^{16} + 6u^{15} + \dots - 8u + 1$
c_3	$u^{16} + u^{15} + \dots + u + 1$
c_4	$u^{16} - u^{15} + \dots + 3u - 1$
<i>C</i> ₅	$u^{16} - 6u^{15} + \dots + 8u + 1$
c ₆	$u^{16} + 2u^{15} + \dots - u - 1$
c_7	$u^{16} - u^{15} + \dots - u + 1$
c_8	$u^{16} - 5u^{15} + \dots - 24u + 3$
<i>c</i> ₉	$u^{16} + u^{15} + \dots - 3u - 1$
c_{10}	$u^{16} + 2u^{15} + \dots + 3u + 1$
c_{11}	$u^{16} - 2u^{15} + \dots + u - 1$
c_{12}	$u^{16} - 4u^{15} + \dots - 84u + 19$

Crossings	Riley Polynomials at each crossing
c_1	$y^{16} - 24y^{14} + \dots - 342y + 81$
c_2, c_5	$y^{16} - 14y^{15} + \dots - 92y + 1$
c_3, c_7	$y^{16} - 3y^{15} + \dots - 9y + 1$
c_4,c_9	$y^{16} + 3y^{15} + \dots - 57y + 1$
c_6, c_{11}	$y^{16} + 12y^{15} + \dots - 7y + 1$
c ₈	$y^{16} + 7y^{15} + \dots + 30y + 9$
c_{10}	$y^{16} + 10y^{15} + \dots - 7y + 1$
c_{12}	$y^{16} + 42y^{15} + \dots - 1470y + 361$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.783327 + 0.431259I		
a = 1.98472 + 1.73130I	4.95066 + 6.44197I	-7.47929 - 9.49903I
b = 0.506320 - 0.759510I		
u = -0.783327 - 0.431259I		
a = 1.98472 - 1.73130I	4.95066 - 6.44197I	-7.47929 + 9.49903I
b = 0.506320 + 0.759510I		
u = -0.769550		
a = -2.06724	-2.77589	-9.30260
b = -0.416003		
u = 1.317990 + 0.153219I		
a = -0.959345 - 0.606084I	-3.89973 - 3.06301I	-14.8110 + 10.7308I
b = -0.254210 - 0.816200I		
u = 1.317990 - 0.153219I		
a = -0.959345 + 0.606084I	-3.89973 + 3.06301I	-14.8110 - 10.7308I
b = -0.254210 + 0.816200I		
u = 1.280500 + 0.351953I		
a = 0.077547 - 0.163165I	-6.99938 - 2.30685I	-14.4564 + 3.2518I
b = -1.028010 + 0.495475I		
u = 1.280500 - 0.351953I		
a = 0.077547 + 0.163165I	-6.99938 + 2.30685I	-14.4564 - 3.2518I
b = -1.028010 - 0.495475I		
u = 0.633765 + 0.175934I		
a = 0.413970 + 0.029249I	8.56738 - 2.49160I	-1.63187 + 0.22782I
b = 0.27230 - 1.64247I		
u = 0.633765 - 0.175934I		
a = 0.413970 - 0.029249I	8.56738 + 2.49160I	-1.63187 - 0.22782I
b = 0.27230 + 1.64247I		
u = -1.36049 + 0.59822I		
a = -0.543626 - 1.179430I	-4.42847 + 8.52038I	-13.6558 - 6.9155I
b = -0.660633 + 1.247720I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.36049 - 0.59822I		
a = -0.543626 + 1.179430I	-4.42847 - 8.52038I	-13.6558 + 6.9155I
b = -0.660633 - 1.247720I		
u = 0.231185 + 0.455324I		
a = -1.15238 - 2.20524I	0.70911 - 2.87401I	-4.30985 + 2.68066I
b = 0.325781 + 1.209720I		
u = 0.231185 - 0.455324I		
a = -1.15238 + 2.20524I	0.70911 + 2.87401I	-4.30985 - 2.68066I
b = 0.325781 - 1.209720I		
u = -0.482422		
a = -2.04540	-2.53212	-15.5700
b = 0.358793		
u = -0.19364 + 2.07771I		
a = 0.235435 + 1.139290I	2.10949 - 0.54207I	0.7802 - 14.5628I
b = -0.132938 - 0.978059I		
u = -0.19364 - 2.07771I		
a = 0.235435 - 1.139290I	2.10949 + 0.54207I	0.7802 + 14.5628I
b = -0.132938 + 0.978059I		

III.
$$I_3^u = \langle b+a+2, \ a^2+3a+3, \ u+1 \rangle$$

$$a_3 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a \\ -a - 2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -a - 2 \\ -a - 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -a-1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -a - 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -a - 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -a - 3 \\ -a - 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -a - 3 \\ -a - 1 \end{pmatrix}$$
$$a_{11} = \begin{pmatrix} -2 \\ -a - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -a - 2 \\ 2a + 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 2a+1\\ -a-2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a-1 \\ -a-2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -15

Crossings	u-Polynomials at each crossing
c_1	u^2
c_2, c_4, c_6	$u^2 + u + 1$
c_3, c_{10}	$(u-1)^2$
c_5, c_9, c_{11}	$u^2 - u + 1$
c_7, c_{12}	$(u+1)^2$
c_8	$u^2 - 3u + 3$

Crossings	Riley Polynomials at each crossing
c_1	y^2
$c_2, c_4, c_5 \\ c_6, c_9, c_{11}$	$y^2 + y + 1$
c_3, c_7, c_{10} c_{12}	$(y-1)^2$
c_8	$y^2 - 3y + 9$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.50000 + 0.86603I	-3.28987	-15.0000
b = -0.500000 - 0.866025I		
u = -1.00000		
a = -1.50000 - 0.86603I	-3.28987	-15.0000
b = -0.500000 + 0.866025I		

IV.
$$I_4^u = \langle b-1, a, u+1 \rangle$$

$$a_3 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{n} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_8	u
c_2, c_3, c_4 c_6, c_{10}	u-1
$c_5, c_7, c_9 \\ c_{11}, c_{12}$	u+1

Crossings	Riley Polynomials at each crossing	
c_1, c_8	y	
c_2, c_3, c_4 c_5, c_6, c_7 c_9, c_{10}, c_{11} c_{12}	y-1	

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0	-3.28987	-12.0000
b = 1.00000		

V.
$$I_5^u = \langle b-1, \ a-3, \ 2u-1 \rangle$$

$$a_3 = \begin{pmatrix} 0 \\ 0.5 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0.25 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -0.5\\ 0.375 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 2 \\ 1.5 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 2.75 \\ 0.9375 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 0.5 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0.25 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1.25 \\ 0.0625 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 2.0625

Crossings	u-Polynomials at each crossing
c_1	2(2u-3)
c_2, c_6, c_{10}	u-1
c_3, c_4	2(2u+1)
c_5,c_{11}	u+1
c_{7}, c_{9}	2(2u-1)
<i>C</i> ₈	u
c_{12}	4(4u+1)

Crossings	Riley Polynomials at each crossing
c_1	4(4y-9)
$c_2, c_5, c_6 \\ c_{10}, c_{11}$	y-1
c_3, c_4, c_7 c_9	4(4y-1)
c_8	y
c_{12}	16(16y - 1)

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000		
a = 3.00000	-3.28987	2.06250
b = 1.00000		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	
c_2	$((u-1)^2)(u^2+u+1)(u^{16}+6u^{15}+\cdots-8u+1)$ $\cdot (u^{72}+2u^{71}+\cdots+3215u+491)$
<i>c</i> ₃	$4(u-1)^{3}(2u+1)(u^{16}+u^{15}+\cdots+u+1)$ $\cdot (2u^{72}-3u^{71}+\cdots-314u-29)$
c_4	$4(u-1)(2u+1)(u^{2}+u+1)(u^{16}-u^{15}+\cdots+3u-1)$ $\cdot (2u^{72}+3u^{71}+\cdots-3289u+373)$
c_5	$((u+1)^2)(u^2 - u + 1)(u^{16} - 6u^{15} + \dots + 8u + 1)$ $\cdot (u^{72} + 2u^{71} + \dots + 3215u + 491)$
<i>c</i> ₆	$((u-1)^2)(u^2+u+1)(u^{16}+2u^{15}+\cdots-u-1)$ $\cdot (u^{72}+2u^{71}+\cdots-32u-13)$
<i>c</i> ₇	$4(u+1)^{3}(2u-1)(u^{16}-u^{15}+\cdots-u+1)$ $\cdot (2u^{72}-3u^{71}+\cdots-314u-29)$
c_8	$u^{2}(u^{2} - 3u + 3)(u^{16} - 5u^{15} + \dots - 24u + 3)(u^{72} - 9u^{71} + \dots - 34u - 16)$
c_9	$4(u+1)(2u-1)(u^{2}-u+1)(u^{16}+u^{15}+\cdots-3u-1)$ $\cdot (2u^{72}+3u^{71}+\cdots-3289u+373)$
c_{10}	$((u-1)^4)(u^{16} + 2u^{15} + \dots + 3u + 1)(u^{72} - u^{71} + \dots - 868u + 172)$
c_{11}	$((u+1)^2)(u^2 - u + 1)(u^{16} - 2u^{15} + \dots + u - 1)$ $\cdot (u^{72} + 2u^{71} + \dots - 32u - 13)$
c_{12}	$16(u+1)^{3}(4u+1)(u^{16}-4u^{15}+\cdots-84u+19)$ $\cdot (4u^{72}+7u^{71}+\cdots+3105391u-546509)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$16y^{3}(4y - 9)(y^{16} - 24y^{14} + \dots - 342y + 81)$ $\cdot (4y^{72} + 315y^{71} + \dots + 10782816y + 61504)$
c_2, c_5	$((y-1)^2)(y^2+y+1)(y^{16}-14y^{15}+\cdots-92y+1)$ $\cdot (y^{72}-34y^{71}+\cdots-7263547y+241081)$
c_3, c_7	$16(y-1)^{3}(4y-1)(y^{16}-3y^{15}+\cdots-9y+1)$ $\cdot (4y^{72}-149y^{71}+\cdots-158162y+841)$
c_4, c_9	$16(y-1)(4y-1)(y^{2}+y+1)(y^{16}+3y^{15}+\cdots-57y+1)$ $\cdot (4y^{72}-273y^{71}+\cdots-10651163y+139129)$
c_6, c_{11}	$((y-1)^2)(y^2+y+1)(y^{16}+12y^{15}+\cdots-7y+1)$ $\cdot (y^{72}+40y^{71}+\cdots+1758y+169)$
c ₈	$y^{2}(y^{2} - 3y + 9)(y^{16} + 7y^{15} + \dots + 30y + 9)$ $\cdot (y^{72} + 13y^{71} + \dots - 21636y + 256)$
c_{10}	$((y-1)^4)(y^{16} + 10y^{15} + \dots - 7y + 1)$ $\cdot (y^{72} + 71y^{71} + \dots + 1106584y + 29584)$
c_{12}	$256(y-1)^{3}(16y-1)(y^{16}+42y^{15}+\cdots-1470y+361)$ $\cdot (16y^{72}+383y^{71}+\cdots-22583235390339y+298672087081)$