双光子 HOM 干涉实验报告

何金铭 PB21020660

实验目的,实验原理,实验内容已于预习报告中给出,本实验报告中不再复述。

实验结果与分析 1

1.1 光子单路计数和复合计数与泵浦功率的关系实验

表 1: 单路计数和符合计数与泵浦功率的关系表

光强 mW	单路计数 Counts	单路计数 Counts	符合计数 Counts
0.03	19000	15000	878
0.1	37000	35000	2777
0.2	66000	66000	10521
0.4	128000	123000	22290

图 1: 光强-单路 1 计数图

USTC 2024.4.9

图 2: 光强-单路 2 计数图

图 3: 光强-符合计数图

如上图所示, 单路计数和符合计数都正比于泵浦光子数即泵浦功率, 符合预习报告中的公式 (5)、(6), 合理。

2024.4.9 USTC

1.2 符合信噪比与泵浦功率的关系

表 2: 符合信噪比与泵浦功率的关系表

光强 mW	符合计数 Counts	暗符合计数 Counts	CAR
0.03	878	4	220.5
0.1	2777	7	397.71429
0.2	10521	18	585.5
0.4	22290	50	446.8
0.6	35957	98	367.90816
1	54213	210	259.15714
1.5	85590	520	165.59615
2	10935	780	15.01923
2.5	130835	1000	131.835
3.06	149005	1500	100.33667
4.02	173334	2000	87.667

用预习报告中的公式 (7) 拟合得:

图 4: 光强-CAR 图

发现随着功率的增加, CAR 值先增加后减小, 在增加的区间主要是光子产生率增加, 相对于暗噪声的有效符合数增加, 然而在高产生率情况下, 由于多光子效应明显, 导致符合信噪比下降。

2024.4.9 USTC

1.3 HOM 干涉曲线测量

表 3: HOM 干涉曲线记录表

位置 mm	符合计数 Counts	位置 mm	符合计数 Counts
16	84224	16.83	40319
16.1	85275	16.84	41520
16.2	84477	16.85	39465
16.3	84635	16.86	41783
16.4	84073	16.87	38952
16.5	82151	16.88	41577
16.6	79213	16.89	42050
16.7	52606	16.9	42020
16.75	45010	16.95	51766
16.76	44086	17	70114
16.77	42755	17.1	72595
16.78	43079	17.2	72407
16.79	42574	17.3	74381
16.8	40937	17.4	70928
16.81	41096	17.5	67575
16.82	41343		

用预习报告中的公式 (2) 拟合得:

图 5: HOM 干涉曲线,符合计数与光子相对延迟时间的关系

2024.4.9 USTC

发现存在一定的误差

2 实验总结

- 1. 发现单路计数和符合计数都正比于泵浦光子数即泵浦功率
- 2. 发现发现随着功率的增加, CAR 值先增加后减小, 在增加的区间主要是光子产生率增加, 相 对于暗噪声的有效符合数增加,然而在高产生率情况下,由于多光子效应明显,导致符合信噪 比下降。
- 3. 实验测得了 HOM 干涉曲线, 发现存在一定的误差, 可能是:
 - (a) 曲线左右高低不一致是因为两路单路符合计数有一些差异, 这是由于左右单路空间-光纤 耦合效率不同以及其他种种因素造成的。
 - (b) 曲线底部数据不平滑,可能是由于实验中的环境噪声等因素导致的。

思考题 3

3.1 观测 HOM 干涉需要满足哪些条件?

- 1. 双光子源: HOM 干涉是基于双光子的相互作用效应, 因此需要使用双光子源来产生两个光子 的纠缠态或准纠缠态。
- 2. 空间和时间匹配: 两个入射光子应该在空间和时间上足够接近, 以便在光学器件中相互干涉。 这意味着它们的空间模式(波前形状)和时间延迟应该足够匹配
- 3. 50:50 分束器: HOM 干涉通常使用一个 50:50 的光学分束器(如非极化的光学器件或偏振分束 器)来将两个光子分别引导到两个不同的路径上。分束器应具有高的耦合效率和低的损耗,以 保持干涉的高可见度
- 4. 光子计数: 观测 HOM 干涉需要对来自两个输出路径的光子进行单光子探测和计数。这样可以 测量干涉效应, 并计算出干涉可见度和干涉图案。
- 5. 相干性: 观测 HOM 干涉需要光子源具有足够的相干性, 以产生干涉图案。相干性可以通过光 子源的频谱特性和相干长度来衡量。
- 6. 背景噪声和误差控制: 在 HOM 干涉实验中, 需要控制背景噪声和误差, 以获得清晰的干涉信 号。这包括控制环境的光和振动噪声,并采取适当的探测器和测量技术来减少噪声和误差的影 响。

3.2 自发参量下转换过程中,光子的产生率依赖于哪些参数?其辐射带宽与什么有关? 光子的产生率依赖于以下参数:

- 1. 光子源的非线性系数: SPDC 是一种非线性过程, 光子的产生率与材料或器件的非线性系数有 关。常见的非线性材料包括二硫化铟(InSb)、铁电晶体和周期极化波导等。
- 2. 抽运光子的功率: SPDC 过程通常是通过抽运光子与非线性材料的相互作用来实现的。抽运光 子的功率越高,产生的信号光子和辅助光子的产生率也就越高。

USTC 2024.4.9

- 3. 抽运光子的波长: 抽运光子的波长决定了 SPDC 过程中产生的信号光子和辅助光子的波长。 SPDC 过程是一个能量守恒的过程,信号光子和辅助光子的波长满足能量守恒条件。
- 4. 非线性材料的长度: 非线性材料的长度决定了光子在其中的作用时间和相互作用的强度。较长 的非线性材料长度可以增加光子的产生率、但也会引入相位匹配条件的挑战。

辐射带宽的大小与非线性材料的色散特性、非线性过程的相位匹配条件和非线性材料的长度等 因素有关。

3.3 符合与暗符合信噪比与哪些因素有关?

- 1. 信号强度: 符合事件的信号强度是 CAR 的一个重要影响因素。较高的信号强度可以提高符合 事件的计数率,从而增加 CAR。在光学实验中,信号强度通常与光子的产生率、探测器的灵敏 度以及光学器件的传输效率等因素相关。
- 2. 底座噪声: 底座噪声是指在没有信号的情况下探测器产生的暗计数。底座噪声的大小取决于探 测器的特性、环境噪声以及测量系统的设计和优化等因素。 较低的底座噪声可以提高 CAR, 因 为它减少了暗符合事件的计数率。
- 3. 暗计数率: 暗计数率是指在没有信号输入时, 探测器产生的计数率。暗计数率可以由探测器的 特性和环境条件引起,例如热噪声、光电子倍增管的暗电子产生率等。较低的暗计数率可以提 高 CAR、因为它减少了暗符合事件的计数率。
- 4. 测量时间: 测量时间对 CAR 的影响非常明显。较长的测量时间可以积累更多的符合事件和暗 符合事件的计数,从而提高 CAR。然而,长时间的测量也可能增加底座噪声和暗计数率的影 响。

3.4 如何通过 HOM 干涉来表征光子的辐射带宽? 如何通过 HOM 干涉测量一个已 知折射率的透明材料的厚度?

通过 HOM 干涉来表征光子的辐射带宽的方法如下: 已知符合计数表达式为:

$$N_{cd} = \kappa (T^2 + R^2) \left[1 - \frac{2RT}{T^2 + R^2} \exp\{(-\Delta \omega \delta \tau)\}\right]$$
 (1)

可以通过采的数据和上述公式拟合得到 $\Delta\omega$, 即为光子的辐射带宽。

通过 HOM 干涉测量已知折射率的透明材料的厚度, 具体方法如下:

在 HOM 干涉的输入光路(迈克尔逊干涉仪的一路)中加入样品,加入之后测得的 HOM 干涉 曲线干涉峰的 X 轴位置, 即迈克尔逊干涉仪一路反射镜的位置, 可以推测出加入样品前后的光程差, 而又已知折射率,即可求得厚度。

USTC 2024.4.9