

중간 고사2

[1] $t = 0^+$ 순간에 switch가 그림과 같이 동작한다. (20점)

- (a) $v_C(0^+)$, $i_L(0^+)$, $\frac{dv_C}{dt}\Big|_{0^+}$, $\frac{di_L}{dt}\Big|_{0^+}$ 를 구하라. (각 1점, 총 4점)
- (b) $t>0^+$ 의 회로방정식을 i_L 을 변수로 하여 정리해라. (4점)
- (c) $i_L(t)$ 를 구하라. (8점)
- (d) $v_C(t)$ 를 구하라. (4점)

[1] The switches move as shown in the figure at $t = 0^+$. (20pts.)

- (a) Find $v_C(0^+)$, $i_L(0^+)$, $\frac{dv_C}{dt}\Big|_{0^+}$, $\frac{di_L}{dt}\Big|_{0^+}$. (each 1pts, total 4 pts.)
 - (b) Express the circuit equation of $t > 0^+$ with i_L as a variable. (4pts.)
 - (c) Find $i_L(t)$. (8pts.)
 - (d) Find $v_C(t)$. (4pts.)

[2] 다음은 이상적인 연산증폭기가 포함되어있는 회로이다. 각 전원과 소자의 값이 아래와 같을 때 물음에 답하시오. (이때, u(t)는 unit step function이다.) (20점)

The figure below is a circuit including ideal Op-amp. Given the component values, solve the problems. (u(t) is unit step function.) (20 pts)

 $v_x = 1.5u(t) \text{ V}, v_y = 3u(t) \text{ V}, V_{DC} = 3 \text{ V}, R_1 = 2 \text{ k}\Omega, R_2 = 4 \text{ k}\Omega, R_3 = 8 \text{ k}\Omega, R_L = 4 \Omega, R_C = 2 \Omega, C = 0.125 \text{ F}, L = 4 \text{ H}$

- (a) v_i(t)를 구하시오. (t>0)(2점) Calculate v_i(t) (t>0) (2 pts).
- **(b)** i_L(0+), v_C(0+)를 구하시오. (각 2점) Calculate i_L(0+), v_C(0+) (2 pts each).

- (c) $i_L(t)$, $v_C(t)$ 를 구하시오. (t>0)(각 5점) Calculate $i_L(t)$, $v_C(t)$. (t>0) (5 pts each).
- **(d)** $i_L(\infty)$, $v_C(\infty)$ 를 구하시오. (각 2점) Calculate $i_L(\infty)$, $v_C(\infty)$ (2 pts each).

*아래 문제의 답은 모두 <u>유효숫자 4개</u>로 표시하시오 (예: $10.00+1.361e^{1.123t}$)

[3] 그림 (a)는 세포막 전압(V_m)을 커패시터, 전원장치, 저항, 스위치로 나타낸 것이다. 그림에 표시된 것 처럼, 일부 전원장치와 저항은 시간에 따라 변화하고, V_m 은 세포막 바깥쪽 전압에 대한 안쪽 전압으로 표현된다. S_1 , S_2 는 t=0~5ms 시간동안 닫혀있다. 세포가 t=0에서 자극을 받으면, 시간에 따라 연속적으로 그림 (b) \rightarrow (c) \rightarrow (d) \rightarrow (e)의 회로가 표현하는 상태로 변하게되고, 이후 충분한 시간이 지나면 다시 그림 (b)의 상태로 돌아오게 된다. 아래 물음에 답하여라.

- (a) t≤0 일 때 이 회로는 정상상태에 있다. 그림 (b)의 회로를 이용하여 t=0 일 때 의 V_m의 값을 구하여라. (2점)
- (b) 0≤t<3ms 일 때의 세포의 상태를 나타내는 그림 (c)의 회로를 이용하 여 V_m(t)를 구하여라. (4점)
- (c) 3ms≤t<5ms 일 때의 세포의 상태를 나타내는 그림 (d)의 회로를 이 용하여 V_m(t)를 구하여라. (4점)
- (d) 5ms≤t<7ms 일 때의 세포의 상태를 나타내는 그림 (e)의 회로를 이 용하여 V_m(t)를 구하여라. (4점)
- (e) 이상을 종합하여 -1ms≤t<7ms 에서 V_m(t)의 그래프의 개형을 그리시 오.(t=0, 3ms, 5ms, 7ms 에서의 값을 함께 표시하시오) (6점)

*Express the answers with <u>four significant figures</u>. (example: 10.00+1.361e^{1.123t})

[3] Cell membrane potential(V_m) can be expressed with the combination of a capacitor, voltage sources, resistors, and switches as illustrated in the figure (a). The values of voltage sources and resistors may vary over time while S_1 and S_2 is closed for $0\sim5$ ms. V_m is the voltage inside of the cell membrane, with respect to the outside of the membrane. When the cell is excited at t=0, it will go through the states represented by figures (b) \rightarrow (c) \rightarrow (d) \rightarrow (e) and then eventually return to the state represented by figure (b). Answer the following questions.

- For $t \le 0$, the circuit is in the steady-state. Using figure (b), find the value of V_m at t=0. (2pts)
- (b) Find $V_m(t)$ for $0 \le t < 3ms$, using figure (c) that represents the state of the cell during that period. (4pts)
- (c) Find V_m(t) for 3ms≤t<5ms, using figure (d) that represents the state of the cell during that period. (4pts)
- (d) Find V_m(t) for 5ms≤t<7ms, using figure (e) that represents the state of the cell during that period. (4pts)
- (e) Schematically draw V_m(t) for -1ms≤t<7ms using the answers obtained above. (annotate the values at t=0, 3ms, 5ms, and 7ms) (6pts)

[4] Cascaded integrating amplifier가 아래와 같다. Ideal op-amp라 가정하고, 다음에 질문에 답하여라. (20점) For the cascaded integrating amplifier below, answer the following questions. (Suppose the op-amp is ideal) (20pts)

(a) v_g 와 v_{o1} , v_g 와 v_o 의 관계를 나타내는 미분방정식을 구하시오. (5점) Find the differential equations expressing the relations between v_g and v_{o1} , v_g and v_o . (5pts)

(b) v_g 가 (그림2)와 같을 때, $0 \le t \le 0.5(s)$, $0.5 \le t \le t_{sat}$ 에서 $v_{o1}(t)$, $v_o(t)$ 를 구하시오. $R_1C_1 = 50~ms$, $R_2C_2 = 80~ms$, capacitor의 initial charge는 0 으로 가 정한다. (10점) (t_{sat} 은 v_o 가 V_{ss} 또는 $-V_{ss}$ 로 saturation 되는 시간을 뜻한다.) For the given v_g as in figure 2, find each $v_{o1}(t)$, $v_o(t)$ for $0 \le t \le 0.5(s)$ and $0.5 \le t \le t_{sat}$. Suppose the $R_1C_1 = 50~ms$, $R_2C_2 = 80~ms$, and initial charge

For the given v_g as in figure 2, find each $v_{o1}(t)$, $v_o(t)$ for $0 \le t \le 0.5(s)$ and $0.5 \le t \le t_{sat}$. Suppose the $R_1C_1 = 50 \, ms$, $R_2C_2 = 80 \, ms$, and initial charge of capacitor is zero. (10pts) (t_{sat} is a saturation time when v_o is saturated to V_{ss} or $-V_{ss}$.)

(c) t_{sat} 을 구하시오. (5점) Calculate the t_{sat} . (5pts)