# On a coloring of a $\delta$ -complement graph

Wipawee Tangjai (Joint work with P. Vichitkunakorn and W. Pho-on)

Department of Mathematics, Faculty of Science, Mahasarakham University, Thailand

45th Australasian Combinatorics Conference
December 2023

1/39

## Table of Contents

- Introduction
- 2 Structure of a  $\delta$ -complement graph
- $oldsymbol{3}$  Chromatic number of a  $\delta$ -complement graph
- 4 Cartesian Product

## Table of Contents

- Introduction
- 2 Structure of a  $\delta$ -complement graph
- ${ exttt{3}}$  Chromatic number of a  $\delta$ -complement graph
- 4 Cartesian Product

### Introduction

In 2022, Pai et al. [2] introduced a  $\delta$ -complement graph with the concept of a complement graph by complementing the subgraphs consisting of the vertices of the same degree.

## Definition (Pai et al., 2022)

For a graph G, the  $\delta$ -complement graph of G, denoted by  $G_{\delta}$ , is a graph in which  $V(G_{\delta}) = V(G)$  and  $uv \in E(G_{\delta})$  if either

- $uv \in E(G)$  and  $deg(u) \neq deg(v)$ , or
- $uv \notin E(G)$  and deg(u) = deg(v).

### For example,



Figure: G



Figure:  $G_{\delta}$ 

Note  $G \ncong (G_{\delta})_{\delta}$  and  $\overline{G} \ncong G_{\delta}$ .

## Introduction

### Application:

- ocollaboration's graph [2],
- network of data centers [5].

### Introduction

#### Network of data centers:

- each vertex in the network G represents a data center;
- edge appears when two data centers are sharing information at a specific time;
- in each center, the number of centers that it is sharing information with is the degree of that center;
- to avoid a problem of losing information due to a malfunction of a center, if two centers of the same rank have already shared information, then we try to find another center with the same rank and both centers have yet communicated;
- however, we do not allow a new information sharing if two centers of different ranks have never directly communicated before;
- the chromatic number is the minimum number of security keys needed at a given time.

## Table of Contents

- Introduction
- 2 Structure of a  $\delta$ -complement graph
- $oxed{3}$  Chromatic number of a  $\delta$ -complement graph
- 4 Cartesian Product

# Structure of a $\delta$ -complement graph

Several structural properties of the  $\delta$ -complement graph had been given in the work of Pai et al. [2].

## Theorem (Pai et al., 2022)

A graph  $G_{\delta}$  is a complete graph if and only if G is a complete multipartite graph with the partition of the point set  $\{V_1, V_2, \ldots, V_k\}$  with  $|V_i| \neq |V_j|$  for  $i \neq j$ .



Figure:  $G_{\delta}$ 

# Structure of a $\delta$ -complement graph

## Result's from Pai et al. [2]

- neccessary and sufficient condition on the degree of vertices for a graph so that G is  $G \cong G_{\delta}$  or  $\overline{G} \cong G_{\delta}$ ,
- Vertex-degree preservation property,
- ullet a sufficient condition for an Eulerian  $G_\delta$  graph
- sufficient conditions for a Hamiltonian  $G_{\delta}$  graph
- sufficeint condition for a graph  $G_{\delta}$  to be disconnected.

## Table of Contents

- Introduction
- 2 Structure of a  $\delta$ -complement graph
- 3 Chromatic number of a  $\delta$ -complement graph
- 4 Cartesian Product

### Definition

The *chromatic number* of a graph G, denoted by  $\chi(G)$ , is the minimum number of colors needed so that G has a proper coloring.

#### **Definition**

The *chromatic number* of a graph G, denoted by  $\chi(G)$ , is the minimum number of colors needed so that G has a proper coloring.

For a graph G, we use the following notations:

### **Definition**

The *chromatic number* of a graph G, denoted by  $\chi(G)$ , is the minimum number of colors needed so that G has a proper coloring.

For a graph G, we use the following notations:

- $\chi = \chi(G)$ ,
- $\overline{\chi} = \chi(\overline{G})$ ,
- $\chi_{\delta} = \chi(G_{\delta}).$

### Definition

The *chromatic number* of a graph G, denoted by  $\chi(G)$ , is the minimum number of colors needed so that G has a proper coloring.

For a graph G, we use the following notations:

- $\chi = \chi(G)$ ,
- $\overline{\chi} = \chi(\overline{G})$ ,
- $\chi_{\delta} = \chi(G_{\delta}).$

We denoted  $\chi_{\delta}$  by a  $\delta$ -chromatic number of G.

In a study of a relation between the chromatic numbers of a graph G and its complement  $\overline{G}$ , one of the well-known relation is the Nordhaus-Gaddum type bounds [1].

In a study of a relation between the chromatic numbers of a graph G and its complement  $\overline{G}$ , one of the well-known relation is the Nordhaus-Gaddum type bounds [1].

## Theorem (Nordhaus-Gaddum, 1956)

Let G be a graph with n vertices. Then

$$2\sqrt{n} \le \chi + \overline{\chi} \le n + 1 \tag{1}$$

and

$$n \le \chi \cdot \overline{\chi} \le \left(\frac{n+1}{2}\right)^2. \tag{2}$$

In 2023, P. Vichitkunakorn, R. Maungchang and W. Tangjai [5] investigated a Nordhaus-Gaddum type relation between the chromatic numbers of a graph and that of its  $\delta$ -complement graph.

# Theorem (Vichitkunakorn et al., 2023)

For  $n \ge 4$ , let G be a graph with n vertices. Let  $d_1, \ldots, d_m$  be all the distinct values of the degrees of the vertices in G. Partition V(G) into non-empty sets  $V_{d_1}, V_{d_2}, \ldots, V_{d_m}$ . We have that

$$2 \cdot \sqrt{\max_{1 \le i \le m} \{|V_{d_i}|\}} \le \chi + \chi_{\delta} \le m + n, \tag{3}$$

and

$$\max_{1 \le i \le m} \{|V_{d_i}|\} \le \chi \cdot \chi_{\delta} \le \left(\frac{m+n}{2}\right)^2. \tag{4}$$

The bounds are sharp and there infinite number of non-regular graphs satisfied such bounds.

Consider G with its  $\chi$ -coloring. In each  $V_{d_i}$ , we list the number of vertices with the same color, say  $n_1 \geq n_2 \geq \ldots \geq n_\chi \geq 0$ . We note that  $n_1 + n_2 + \cdots + n_\chi = |V_{d_i}|$  and  $n_1 \geq \frac{|V_{d_i}|}{\chi}$ .



Figure: Vertex partition

Hence,  $\chi_{\delta} \geq n_1 \geq |V_{d_i}|/\chi$ , implying that  $\chi \cdot \chi_{\delta} \geq |V_{d_i}|$ .

Thus  $\max_{1 \leq i \leq m} \{|V_{d_i}|\} \leq \chi \cdot \chi_{\delta}$ . Since

$$0 \leq (\chi - \chi_\delta)^2 \text{ and } \max_{1 \leq i \leq m} \{|V_{d_i}|\} \leq \chi \cdot \chi_\delta,$$

we have

$$2 \cdot \sqrt{\max_{1 \le i \le m} \{|V_{d_i}|\}} \le \chi + \chi_{\delta}.$$

Thus  $\max_{1 \leq i \leq m} \{|V_{d_i}|\} \leq \chi \cdot \chi_{\delta}$ . Since

$$0 \le (\chi - \chi_{\delta})^2$$
 and  $\max_{1 \le i \le m} \{|V_{d_i}|\} \le \chi \cdot \chi_{\delta}$ ,

we have

$$2 \cdot \sqrt{\max_{1 \le i \le m} \{|V_{d_i}|\}} \le \chi + \chi_{\delta}.$$

Next, we investigate the upper bound on  $\chi \cdot \chi_{\delta}$  and  $\chi + \chi_{\delta}$ . Let  $G_i = G[V_{d_i}]$  be the subgraph of G induced by  $V_{d_i}$  and let  $\chi_i = \chi(G_i)$  for  $i = 1, \ldots, m$ . We have

$$\chi \le \sum_{i=1}^{m} \chi_i. \tag{5}$$



The graph  $G_{\delta}$  consists of  $\overline{G}_1, \ldots, \overline{G}_m$ , and an edge in  $G_{\delta}$ , if any, appears between distinct pair of  $G_i$  and  $G_j$  for  $i, j \in \{1, \ldots, m\}$ . Let  $\overline{\chi}_i = \chi(\overline{G}_i)$  and  $n_i = |V(G_i)|$ . Similar to (5), we also have

$$\chi_{\delta} \le \sum_{i=1}^{m} \overline{\chi}_{i}. \tag{6}$$

By Theorem 4, we have  $\chi_i + \overline{\chi}_i \leq n_i + 1$ . Therefore, by (5) and (6),

$$\chi + \chi_{\delta} \leq \sum_{i=1}^{m} (\chi_i + \overline{\chi}_i) \leq \left(\sum_{i=1}^{m} n_i\right) + m = n + m.$$
 (7)

Since 
$$4\chi \cdot \chi_{\delta} \leq (\chi + \chi_{\delta})^2$$
, we get  $\chi \cdot \chi_{\delta} \leq \left(\frac{m+n}{2}\right)^2$ .

The graphs achieving the bounds will be given.



Let us recall operation on graphs.

#### **Definition**

Let G and H be graphs. The Cartesian product graph of G and H is a graph  $G \square H$  where  $V(G \square H) = V(G) \times V(H)$  and and  $uv \in E(G \square H)$  if either x = x' and  $yy' \in E(H)$  or y = y' and  $xx' \in E(G)$  for u = (x, y) and v = (x', y').

Let  $P_n$  be a path with n vertices.

## Examples

 $P_3\square P_4$ 



Figure:  $P_3 \square P_4$ 

#### **Definition**

A *join* of the graphs  $G_1$  and  $G_2$ , denoted  $G_1 \vee G_2$ , is a graph whose the vertex set  $V(G_1 \vee G_2)$  is the disjoint union  $V(G_1) \sqcup V(G_2)$ , and each pair of  $u, v \in V(G_1 \vee G_2)$  is adjacent if and only if  $uv \in E(G_1) \cup E(G_2)$  or  $(u, v) \in V(G_1) \times V(G_2)$ .

## Examples

 $P_2 \vee P_3$ 



Figure:  $P_2 \vee P_3$ 

| m and n                           | G                                     | sharpness of                              |  |  |
|-----------------------------------|---------------------------------------|-------------------------------------------|--|--|
| <i>n</i> ≥ 4                      | $P_2\square P_n$                      | lower bound on $\chi \cdot \chi_\delta$   |  |  |
| $n \ge 3$                         | $P_{n+2}\square K_n$                  | lower bound on $\chi + \chi_\delta$       |  |  |
| $1 \leq n_1 < n_2 < \cdots < n_m$ | $K_{n_1,,n_m}$                        | upper bound on $\chi + \chi_{\delta}$     |  |  |
| $1 < n_1 < \cdots < n_{m-1}$      | $K_{n_1,\ldots,n_{m-1}} \vee K_{n_m}$ | upper bound on $\chi \cdot \chi_{\delta}$ |  |  |
| $n_m = n_1 + \cdots + n_{m-1}$    |                                       |                                           |  |  |
| -m+2                              |                                       |                                           |  |  |

Table: Sharpness [Vichitkunakorn et al., 2023]

## Theorem (Vichitkunakorn et al., 2023)

Let G be a graph with n vertices and  $m = |\{\deg(v) : v \in V(G)\}|$ . Then  $\chi \cdot \chi_{\delta} = \left(\frac{m+n}{2}\right)^2$  if and only if  $\chi = \chi_{\delta} = \frac{m+n}{2}$ .

## Theorem (Vichitkunakorn et al., 2023)

Let G be a graph with n vertices where n > 1. Then

$$\chi \cdot \chi_{\delta} \leq \begin{cases} n(n-1) & \text{if } n = 2, 3, \\ 9 & \text{if } n = 4, \\ n(n-2) & \text{if } n \geq 5, \end{cases}$$
 (8)

and

$$\chi + \chi_{\delta} \le \begin{cases} 2n - 1 & \text{if } n = 2, 3, \\ 2(n - 1) & \text{if } n \ge 4. \end{cases}$$
(9)

## Theorem (Vichitkunakorn et al., 2023)

Let G be a graph with n vertices, and let  $\omega = \omega(G)$  be the clique number of G. If  $2 \le \omega \le n-2$ , then  $\chi_{\delta} \le \min\{\omega, n-\omega\} + n-\omega$ .

## Table of Contents

- Introduction
- 2 Structure of a  $\delta$ -complement graph
- $\bigcirc$  Chromatic number of a  $\delta$ -complement graph
- 4 Cartesian Product

### Cartesian Product

Later, W. Tangjai, W. Pho-on and V. Vichitkunakorn [4] investigates the  $\delta$ -chromatic number of the Cartesian product of graphs.

For graphs G and H, we have  $(G \square H)_{\delta} = (V, E)$  where  $V = V(G \square H)$  and  $E = E(G_{\delta} \square H_{\delta}) \cup S$  where  $S = \{uv : u = (u_1, u_2) \in V(G \square H) \text{ and } v = (v_1, v_2) \in V(G \square H) \text{ where } u_1 \neq v_1, u_2 \neq v_2 \text{ and } d_{G \square H}(u) = d_{G \square H}(v)\}.$ 



Figure:  $G \square H$  Figure:  $G_{\delta} \square H_{\delta}$ 



Figure: The purple edge is an edge in S

For graphs  $G_1, \ldots, G_k$ , we have  $(G_1 \square \cdots \square G_k)_{\delta} = (V, E)$  where  $V = V(G_1 \square \cdots \square G_k)$  and  $E = E((G_1)_{\delta} \square \cdots \square (G_k)_{\delta}) \cup S$  such that S is the set of uv where  $u = (u_1, \ldots, u_k) \in V$ ,  $v = (v_1, \ldots, v_k) \in V$ , there are at least two indices i that  $u_i \neq v_i$ , and  $d_{G_1 \square \cdots \square G_k}(u) = d_{G_1 \square \cdots \square G_k}(v)$ .

 $(G_1 \square \cdots \square G_k)_{\delta} = (G_1)_{\delta} \square \cdots \square (G_k)_{\delta}$  if and only if there are at most one i such that  $G_i \neq K_1$ .

The following theorem gave the chromatic number of the Cartesian product graph.

# Theorem (Sabidussi [3], 1957)

Let G and H be graphs. We have  $\chi(G \square H) = \max{\{\chi(G), \chi(H)\}}$ .

#### Theorem

Let  $G_1, \ldots, G_k$  be graphs. We have

$$\max\{\chi_{\delta}(G_1),\ldots,\chi_{\delta}(G_k)\} \leq \chi_{\delta}(G_1 \square \cdots \square G_k).$$

Let G and H be graphs. If any positive degree difference of vertices in G is not equal to that of in H, then

$$\chi_{\delta}(G \square H) \leq n_{\mathsf{max}}(H) \cdot \mathsf{max}(\chi_{\delta}(G), m(H))$$

where  $n_{\text{max}}(H)$  denotes the maximum number of vertices of the same degree in H and m(H) is the number of distinct degrees in H. Furthermore, the bound is sharp.

Since any positive degree difference of vertices in G is not equal to that of in H, the edges in S are uv where  $u=(u_1,u_2),\ v=(v_1,v_2)$  such that  $u_1\neq v_1,\ u_2\neq v_2,\ d_G(u_1)=d_G(v_1)$  and  $d_H(u_2)=d_H(v_2)$ .

Since any positive degree difference of vertices in G is not equal to that of in H, the edges in S are uv where  $u=(u_1,u_2),\ v=(v_1,v_2)$  such that  $u_1\neq v_1,\ u_2\neq v_2,\ d_G(u_1)=d_G(v_1)$  and  $d_H(u_2)=d_H(v_2)$ . We partition V(H) according to vertex degree into  $W_1,W_2,\ldots,W_{m(H)}$ . Write  $W_i=\{h_{i,1},h_{i,2},\ldots,h_{i,n_i}\}$  for  $1\leq j\leq m(H)$ .

Since any positive degree difference of vertices in G is not equal to that of in H, the edges in S are uv where  $u=(u_1,u_2),\ v=(v_1,v_2)$  such that  $u_1\neq v_1,\ u_2\neq v_2,\ d_G(u_1)=d_G(v_1)$  and  $d_H(u_2)=d_H(v_2)$ . We partition V(H) according to vertex degree into  $W_1,W_2,\ldots,W_{m(H)}$ . Write  $W_j=\{h_{j,1},h_{j,2},\ldots,h_{j,n_j}\}$  for  $1\leq j\leq m(H)$ .



Define  $p = \max(\chi_{\delta}(G), m(H))$ . Let  $c_0 : V(G) \to \{1, 2, \dots, \chi_{\delta}(G)\}$  be a proper coloring of  $G_{\delta}$ . We define a coloring  $c : V(G) \times V(H) \to \{1, 2, \dots, n_{\max}(H) \cdot p\}$  as

$$c(g, h_{j,k}) = f(g, j) + (k-1)p,$$

for  $k = 1, ..., n_j$ , where  $f(g, j) \in \{1, 2, ..., p\}$  and  $f(g, j) \equiv c_0(g) + j - 1 \pmod{p}$ .

|       | $h_{1,1}$ | $h_{1,2}$ | $h_{2,1}$ | $h_{3,1}$ | $h_{3,2}$ | $h_{4,1}$ | $h_{4,2}$ |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| $g_1$ | 1         | 5         | 2         | 3         | 7         | 4         | 8         |
| $g_2$ | 3         | 7         | 4         | 1         | 5         | 2         | 6         |
| $g_3$ | 1         | 5         | 2         | 3         | 7         | 4         | 8         |
| $g_4$ | 2         | 6         | 3         | 4         | 8         | 1         | 5         |
| $g_5$ | 3         | 7         | 4         | 1         | 5         | 2         | 6         |

Figure: An example of a coloring  $c_0$  where  $\chi_{\delta}(G)=3$ , m(H)=4 and  $n_{\max}(H)=2$ .

We see that the vertices in the same copy of G received a coloring equivalent to  $c_0$  and a cyclic permutation modulo p up to an additive constant (k-1)p for some  $k=1,\ldots,n_j$ . For a fixed  $g\in V(G)$ , the vertices in the same copy of H, written in the form  $(g,h_{j,k})$  where  $1\leq j\leq m(H)$  and  $1\leq k\leq n_j$ , received distinct colors because  $j\leq p$  and  $k\leq n_{\max}(H)$ .

Lastly, any endpoints of an edge in S are of the form  $(g, h_{j,k})$  and  $(g', h_{j,k'})$  where  $g \neq g'$  and  $k \neq k'$ , which received different colors as  $k \neq k'$ .

The sharpness will be given in the next theorem.



# Cartesian product

## Theorem

For  $n \geq 5$ , we have  $\chi_{\delta}(C_n \square P_3) = 2\chi_{\delta}(C_n) = 2\lceil \frac{n}{2} \rceil$ .







Figure: Coloring

Let H be a k-regular graph. Let  $G = \{u\} \lor H$  be the join of a singleton and H. Suppose  $|V(H)| \ge 3$  and  $\chi_{\delta}(H) \ge 2$ . If |V(H)| > k + 2, then  $\chi_{\delta}(G \square P_3) \le 2\chi_{\delta}(H)$ .

The following are the lists of the computed  $\delta$ -chromatic number of a Cartesian product of special classes of graphs.

- $\chi_{\delta}(C_n \square P_n) = 2 \left\lceil \frac{n}{2} \right\rceil$  for  $n \ge 5$  (sharpness),
- $\chi_{\delta}(S_{1,m}\square S_{1,n}) = mn$  for  $m, n \geq 3$ ,
- $\chi_{\delta}(S_{1,m}\Box P_n)=m\left\lceil \frac{n-2}{2}\right\rceil$  for  $m\geq 3$  and  $n\geq 3$ ,
- $\chi_{\delta}(P_n \square P_k) = \left\lceil \frac{(n-2)(k-2)}{2} \right\rceil$  for  $6 \le n \le k$ .

# Cartesian product

$$\chi_{\delta}(S_{1,m}\square S_{1,n})=mn$$
 for  $m,n\geq 3$ 



Figure:  $S_{1,m} \square S_{1,n}$ 

# Cartesian product

$$\chi_{\delta}(S_{1,m}\square P_n)=m\left\lceil \frac{n-2}{2}
ight
ceil$$
 for  $m\geq 3$  and  $n\geq 3$ 



Figure:  $S_{1,m} \square P_n$ 

- E. A. Nordhaus and J. W. Gaddum.
  On complementary graphs.
  - The American Mathematical Monthly, 63(3):175–177, 1956.
- $\delta$ -complement of a graph.

  Mathematics, 10(8):1203, 2022.
- G. Sabidussi.
  Graphs with given group and given graph-theoretical properties.

  Canadian Journal of Mathematics, 9:515–525, 1957.
  - W. Tangjai, W. Pho-on, and P. Vichitkunakorn. On the  $\delta$ -chromatic numbers of the cartesian products of graphs. *Preprint*.
- P. Vichitkunakorn, R. Maungchang, and W. Tangjai. On nordhaus-gaddum type relations of  $\delta$ -complement graphs. *Heliyon*, 9(6):e16630, 2023.