#### **General Disclaimer**

# One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
  of the material. However, it is the best reproduction available from the original
  submission.

Produced by the NASA Center for Aerospace Information (CASI)

# NASA TM X-63879

# EXPLORER 32 ELECTROSTATIC PROBE DATA ANALYSIS: TESTING THE RESULTS FOR ACCURACY

E. J. GREGG

**MARCH 1970** 



- GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

| 7        | N70-25                        | 5092           |
|----------|-------------------------------|----------------|
| FORM 602 | (ACCESSION NUMBER)            | (THRU)         |
| וחג      | TMX 183879                    | (CODE),<br>2.5 |
| FA       | (NASA CR OR TMX OR AD NUMBER) | (CATEGORY)     |



# EXPLORER 32 ELECTROSTATIC PROBE DATA ANALYSIS: TESTING THE RESULTS FOR ACCURACY

E. J. Gregg

March 1970

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland

# PRECEDING PAGE BLANK NOT FILMED.

# EXPLORER 32 ELECTROSTATIC PROBE DATA ANALYSIS: TESTING THE RESULTS FOR ACCURACY

E. J. Gregg

#### ABSTRACT

Computer analysis of electrostatic probe data from approximately 10,000 passes has been completed. From a selection of data corresponding to a wide range of electron temperature and density, a detailed comparison was made with hand and computer methods. The accuracy of the initial analysis was better than 10% in most of the passes. Errors exceeding this value were found to be caused by the following: (1) curves taken in the wake of the satellite were not always excluded from the analysis. (2) The curves with limited ions reference were sometimes analyzed improperly by the program. (3) The program sometimes failed to select the proper detector range for the most accurate analysis of electron temperatures.

# PRECEDING PAGE BLANK NOT FILMED.

# CONTENTS

|                                       | Page |
|---------------------------------------|------|
| ABSTRACT                              | iii  |
| INTRODUCTION                          | 1    |
| ELECTRON TEMPERATURE PROBE EXPERIMENT | 1    |
| METHOD OF ANALYSIS                    | 6    |
| THE PRODUCTION ANALYSIS PROGRAM       | 6    |
| ERROR ANALYSIS                        | 7    |
| SOURCES OF ERROR                      | 9    |
| SUMMARY                               | 16   |
| ACKNOWLEDGMENT                        | 16   |

# ILLUSTRATIONS

| Figure |                                                                                                                                                                                                                                                                                          | Page |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | Timing sequence and electrical arrangement of probe system number 2. Probe 1 system was identical except that the current sensitivities were greater (50, 5, 0.5, 0.05 $\mu$ a, respectively)                                                                                            | 2    |
| 2      | High Va sequence from probe 2. Approximately 15 voltampere curves are taken on each current range. The current range has a sequence interval of 5-seconds                                                                                                                                | 3    |
| 3      | Illustration of volt-ampere characteristics showing the retarding and saturation region on a typical pass. The points are the telemetered counts, and the line is a free-hand fit to the points                                                                                          |      |
| 4      | A good example of raw telemetry data points on his a (150 my sampling interval) showing a full sequence retarding region electron currents. This sequence curves were recorded in a 5-second interval has every similar in shape and the temperature derived from each would agree well. | 5    |
| 5      | Tabulation format of Explorer 32 data                                                                                                                                                                                                                                                    | 7    |
| 6      | A sample of Explorer 32 latitudinal density plots over a period of four days. Density points can be picked and analyzed for accuracy                                                                                                                                                     | 8    |
| 7      | Latitudinal temperature plots from data taken over a period of four days. This type of plot provides the necessary data format for identifying possible errors in electron density and temperature                                                                                       | 8    |
| 8      | Explorer 32 altitude plots over the same period as Figures 6 and 7. This figure provides necessary data for locating points of temperature and density values to be examined                                                                                                             | a    |

| Figure |                                                                                                                                                                        | Page |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 9      | Local time plots corresponding to data in Figures 6 and 7                                                                                                              | 9    |
| 10     | Bar graph of temperature error as function of temperature and density                                                                                                  | 12   |
| 11     | Temperature percentage error as a function of temperature. The temperature errors greater than 10% were further analyzed. Positive errors indicate that the production |      |
|        | program gave temperatures too high                                                                                                                                     | 13   |

# EXPLORER 32 ELECTROSTATIC PROBE DATA ANALYSIS: TESTING THE RESULTS FOR ACCURACY

### INTRODUCTION

The Explorer 32 cylindrical electrostatic probe measures the electron temperature and density in the vicinity of the spacecraft. Production computer analysis has been completed for over a million and a half temperature and density measurements taken by this experiment.

To test the accuracy of the temperature analysis a selected group of data was hand and computer analyzed. Over four hundred temperature curves from low, medium and high temperature ranges were chosen to be analyzed by these more detailed methods. This report describes the results of that study.

# ELECTRON TEMPERATURE PROBE EXPERIMENT

The electrostatic probe experiment is composed of two cylindrical collectors mounted 135 degrees apart at the equator of the spacecraft. While the spacecraft is operating, a sawtooth voltage (Va) is applied between the collector and the spacecraft shell causing the current to the collector to vary. The current is a function of the applied voltage and of the surrounding plasma. The current, in the microampere range, is collected and converted to a voltage suitage for telemetry.

The experiment employed four linear current ranges and two sawtooth amplitudes in sequence to provide the current and voltage resolution needed to encompass the range of temperature and density experienced in flight. The electronic system and data sequence are shown in Figure 1. The voltage sweep period was 330 milliseconds. The current range was sequenced at 5 second intervals, thus 15 volt-ampere curves were obtained in each of the four current ranges. The amplitude of Va was changed on alternate current sequences to provide additional voltage resolution of the curves.

Figure 2 shows the nature of the raw telemetry data in a complete sequence for the high Va. The figure also illustrates the effects of the satellite wake on the curves. The wake curves are labelled ( $\omega$ ) in the figure. In these curves, the electron and ion currents are greatly reduced in amplitude, and are characteristically distorted.

Figure 3 illustrates a single volt-ampere characteristic taken on high Va with a current range which resolves the entire characteristic. To the right of



Figure 1. Timing sequence and electrical arrangement of probe system number 2. Probe 1 system was identical except that the current sensitivities were greater (50, 5, 0.5, 0.05  $\mu$ a, respectively).

the plasma potential, is the electron saturation region, which is employed in determining density. To the left of plasma potential is the electron retardation region employed to derive electron temperature.

Figure 4 represents raw telemetry data points on high Va (150 millivoltage sampling interval) showing a full sequence of retarding region electron currents. The figure also shows the physical characteristics of the wake curves in relation to non-wake curves. This clearly shows how the wake curves are distorted.



Figure 2. High Va sequence from probe 2. Approximately 15 volt-ampère curves are taken on each current range. The current range has a sequence interval of 5-seconds.



Figure 3. Illustration of volt-ampese characteristics showing the retarting and saturation region on a typical pass. The points are the telemetered counts, and the line is a free-hand fit to the points.



Figure 4. A good example of raw telemetry data points on high Va (150 mv sampling interval) showing a full sequence of retarding region electron currents. This sequence of curves were recorded in a 5-second interval, but are overlapped in time on the plot to compress them onto a single figure. Curves 6, 12 and 13 are distorted by wake effects in both the ion and electron current regions. The other curves are very similar in shape and the temperature derived from each would agree well.

## METHOD OF ANALYSIS

The electron saturation current I e is given by

$$I_e = \frac{AN_e e}{\pi} (2 eV/M_e)^{1/2}, \frac{eV}{kT_e} >> 1$$
 (1)

where

A = probe area

 $N_e$  = electron concentration

I e electron temperature

e = electron charge

V = potential of the probe relative to the plasma

 $M_e$  = electron mass

This equation is employed in the region  $1 \le V \le 2$  volts to derive H<sub>e</sub>.

The electron current in the retardation region is given by

$$I_e = AN_e e (kT_e/2\pi M_e)^{1/2} exp (eV/kT_e)$$
 (2)

where

k = Boltzmann constant

T<sub>e</sub> = electron temperature

I = electron current

This relationship is employed to derive T<sub>e</sub>.

## THE PRODUCTION ANALYSIS PROGRAM

In production analysis we combined the experiment data tape, the orbitaspect data tape and the analysis program to obtain measurements of temperature and density combined with coordinate information. Because errors in the individual values of temperature can occur owing to wake distortions of the curves, and perhaps poor resolution of the retarding region, we average the values of temperature from each sequence of 15 curves. Individual outlying temperatures are rejected until the standard deviation is less than 5% of the mean values or until half of the individual values of temperature have been rejected, whichever occurs first. Usually, at least 80% of the temperature values are retained. This averaging procedure provides one value of temperature in each 20 second period from each probe.

The outputs from the program consist of (1) a tape that is used later to produce microfilm plots of the raw data, (2) punched data cards for each value of averaged temperature and density (3) summary listings of the temperature and density measurements and (4) a printout describing any problems encountered in the analysis.

The data cards are sorted and edited, then listed with coordinate information on a tape which we call a master tape. The master tape includes all recognizable bad data, such as erroneous altitude and time readings. After the tape has been properly edited, it is used as input to an SC-4020 plotter which produced tabulation plots such as shown in Figures 5, 6 and 7. Plots of the corresponding altitude and local time of the orbit are shown in Figures 8 and 9, respectively. Figure 5 through 9 give a complete grouping of data for a period of four days. Similar—ts were made for the entire 10 months of data received.

#### ERROR ANALYSIS

Since the development of the production program employed for Explorer 32, a more accurate temperature analysis program has been developed. This newer method has been employed on a selected set of Explorer 32 data to evaluate any short-comings of the earlier analysis. Data selected for this study were taken from various latitudes, longitudes and from three temperature ranges; high, medium and low. The high temperature is in the range of 5000°K or above which occurs at high altitude with densities of about  $10^4/\text{cc}$ . The medium temperature is in the range of 1500°K to 4000°K at altitudes of approximately 300 km to 700 km with density ranges of  $4 \times 10^4/\text{cc}$  to  $7 \times 10^5/\text{cc}$ . The third selection of temperature is in the range of  $1000^\circ\text{K}$  to  $1500^\circ\text{K}$  which occurs at low altitude with higher density  $N_c > 10^5/\text{cc}$ . Applied voltage (high or low) and current detector sensitivity were also factors used to determine the data selection.

These temperature curves were taken from microfilm files and punched on cards in groups. After completing the punching, the cards were computer analyzed using the newer program. Then values that were derived from these two programs were compared. Table 1 lists the results of twenty-two sets that were compared in this manner. Also, shown is the percentage error.

| BTA        | PASS  | arti     | 10   | ÁLŤ.             | DATE       | GMT         | TIES         | HORY       |         | t.     | DIP      | DIF      | GRO    | 440      | 6.7          | BEN          | ALPI             |              | BÁ           | T (          | đ.          |
|------------|-------|----------|------|------------------|------------|-------------|--------------|------------|---------|--------|----------|----------|--------|----------|--------------|--------------|------------------|--------------|--------------|--------------|-------------|
| DAN        |       | EAT I    | (N)  | (KM)             | Y84004     | HEMMIN      | KM,.         | NO./CC     |         |        | DAY      |          | LAT    | LONG     | HAS          | ANG          |                  |              | PO           | r t          | )           |
| KON        | . 43  | 16       | -70  | 1977             | 66 Ö 7 1 O | 131844      | 0            | 8.1F 03    | 0.19    | 1.00   | 25       | 51       | 29     | -11      | 7.9          | 50           | 4                | **           | -0.          | .96 (        | 214         |
| KON        | 845   | 17       | -79  | 3000             | 660719     | 131916      | •            | 0.2F G3    | 0.10    | 1.77   | 30       | 49       | 20     | -10      | 8.0          | 57           | •                | 96           | +1           | 13 8         | 22A         |
| HOH        | 483   | 17       | +79  | 2010             | 660719     | 131010      | •            | 7.3E 03    | 0,10    | 1.74   | 30       | 40       | 26     | -10      | 6.0          | 67           | 4                | 96           | -0.          | 93 7         | 214         |
| MOR        | 495   | 15       | -76  | 2043             | 640719     | 131955      | •            | 0.0F 03    | 0.17    | 1.73   | 29       | 46       | 21     | • 9      | # . 0        | 51           | 4                | 96           | • } »        | 15           | 2 S V       |
| ROS        | 003   | 15       | -7#  | 2043             | 660719     | 131955      | •            | 8.5K 03    | 0 : 17  | 1.73   | 29       | 4.6      | 21     | - 9      | <b>0</b> . 0 | 57           | 4                | 98           | • <b>0</b> 6 | 94 7         | 214         |
| 614        | 662   | 2        | -73  | 3331             | 360710     | 138541      | •            | 1.18 04    | 9.13    | 1.50   | 14       | 29       | 13     | -3       | 6.5          | 55           | 4                | 90           | -1.          | 10           | 34          |
| 1.14       | 993   | 2        | -7.3 | 2334             | 660719     | 132548      | 6260         | 0.0        | 0.13    | 1.50   | 15       | 29       | 13     | - 3      | 8.5          | 35           | 4                | 96           | 0.           | . 0          | 24          |
| 1,14       | 682   | 1        | -73  | 2345             | 660719     | 135000      | · •          | 9,4K 03    | 0.13    | 1.50   | 15       | 26       | 12     | - 3      | 8.5          | 55           | 4                | 64           | -1           | 00           | 14          |
| 1,14       | 445   | 1        | -73  | J2 34 B          | 630719     | 132405      | 6 25 0       | 0.0        | 0.12    | 1 4 0  | 15       | 3.6      | 13     | - 3      | 6.5          | 55           | 4                | 98           | Ô,           | . 0          | 14          |
| : 14       | 682   | 1        | -73  | 2 34 6           | 880719     | 132695      | 6320         | 0.0        | 0.12    | 1.49   | 15       | 3.8      | 12     | - 3      | 6.5          | 65           | 4                | 911          | Ö .          |              | 3 A         |
| 614        | 662   | •        | -73  | 2350             | 660719     | 135050      | •            | 1.1F 04    | 0.12    | 1.40   | 14       | 27       | 13     | - 3      | 6.5          | 55           | 4                | 18           | -1.          |              | 24          |
| 1,114      | 683   | 0        | -12  | 3 34 I           | 460719     | 135055      | 4630         | 0,0        | 0.12    | 1.49   | 14       | 27       | 12     | -3       | 6.5          | 55           | 4                | 56           | 0 .          |              | 14          |
| 1.14       | 992   | 0        | -72  | 3 34 2           | 671719     | 1 326 25    | 5130         | 0.0        | 0.13    | 1.49   | 14       | 26       | 13     | - 3      | 8.5          | 50           | 4                | 98           | 0 .          |              | ξA          |
| LIM        | 863   | ٥        | -72  | 2370             | 660719     | 1 3 2 6 3 5 | 0            | 9.0K Q3    | 0 1 1 5 | 1.48   | 14       | 26       | 14     | - 3      | 8.5          | 55           | 4                | 96           | -1           |              | 14          |
| l. FM      |       | 8        | -72  | 2373             | 860719     | 132640      | 5490         | 0.0        | 0.12    | 1.46   | 13       | 26       | 11     | - 3      | 8.5          | 65           | 4                | 69           | ٥.           |              | 1 4         |
| 1.14       | 495   | 0        | -72  | 2376             | 660719     | 132644      | 4740         | 0.0        | 0.12    | 1.48   | 13       | 25       | - 11   | -3       | \$ e         | P 5          | 5                | **           | 9.,          |              | 24          |
| 614        | 662   | 0        | -72  | 2365             | 860719     | 132657      | 4660         | 0.0        | 0.15    | 1.46   | 13       | 24       | 10     | • 2      | 8.8          | RA.          | di               | 88           | 0 ,          |              | 14          |
| 6.14       | 662   | 0        | -72  | 5366             | 660710     | 132650      | 0            | 1.15 04    | 0.13    | 1.48   | 13       | 24       | 10     | -2       | 8.8          | 64           | 4                | #8           | •¢.          |              | , 2A        |
| LIM        | 662   | •        | -72  | 2369             | 440719     | 132704      | 5530         | 0.0        | 0.12    | 1.48   | 13       | 24       | 10     | -3       | 6.0          | 49           | 63               | 68           | 0            |              | 24          |
| LIM        | 662   | -1       | -72  | 2304             | 660719     | 132711      | 0            | 9,4K 03    | 0.12    | 1.47   | 12       | 24       | 50     | +2       | 6.6          | 55           | 6                | 614          | -1.          | -            | 14          |
| 6/M        | 662   | -1       | -72  | 2397             | 660719     | 132715      | 8160         | 0.0        | 0.12    | 1 - 47 | 12       | 23       | 10     | -2       | 8.6          | 55           | -3               | 95           | 0.           |              | 14          |
| 1.14       | 662   | -1       | -72  | 2403             | 660719     | 132723      | 4880         | 0.0        | 0,12    | 1.47   | 12       | 3)       | 9      | -2       | h.6          | 6°) **;      | -0,              | (1 A         | 0            | -            | 24          |
| LIM        | 662   | -1       | -72  | 2409             | 660719     | 132733      | 4960         | 0.0        | 0.12    | 1.47   | 12       | 5.5      | 9      | - 3      | 6.6          | 6) 5         | •                | 86           | 0            |              | 1.4         |
| 1,114      | 682   | - 5      | -71  | 2412             | 660719     | 132736      | .0           | 1.2K 04    | 0.12    | 1.47   | 11       | 22       | •      | -5       | 6.6          | 55           | 4                | 96           | -1.<br>-0.   |              | 2A          |
| LIM        | 6 # 2 | - 2      | -71  | 2416             | 660719     | 132743      | 5110         | 0.0        | 0.12    | 1.47   | 11       | 23       | •      | +2<br>+2 | 9.6<br>8.6   | 55<br>55     | •)<br>▲          | 98<br>90     | •0           |              | y d         |
| 1,114      | 662   | -2       | -71  | 2418             | 660719     | 132747      | 6            | 9.75 03    | 0.11    | 1.47   | 11       | 21       | .6     | -5<br>-5 | 9.0          | 77<br>55     | •                | 9 ti         | •U.,         |              | 10          |
| 614<br>614 | 682   | -2<br>-3 | -71  | 24 2 1<br>24 2 8 | 660719     | 132752      | 5270<br>5050 | 0.0<br>0.0 | 0.11    | 1.47   | 11<br>10 | 21<br>20 | я<br>8 | -1       | 8.6          | 55           |                  | 90           | 0            | -            | 34          |
| 1.14       | 642   | -3       | -71  | 2433             | 660719     | 132810      | 4850         | 0.0        | 0.11    | 1.46   | 10       | 20       | 8      | -1       | 8.7          | 5.5          | 43               | 86           | 6            |              | 14          |
| LIM        | 662   | -3       | -71  | 24 38            | 660719     | 132817      | 0            | 1.15 04    | 0.11    | 1.46   | 10       | 19       | 7      | 41       | 6.7          | P            | 2.               | 9.5          | -1           | 1            | 25          |
| LIM        | 662   | -3       | -71  | 2441             | 360719     | 132822      | 5110         | 0.0        | 0.11    | 1.46   | 10       | 19       | 7      |          | 6            | 45           | -i               | 90           | . وا         | 0            | 2           |
| 1.14       | 682   | -3       | -71  | 2442             | 660719     | 132824      | .,,,,        | 9,3K 03    | 0.11    | 1.46   | 10       | 19       | 4      | 4.8      | p. 7         | · 1          | 8                | G: -         |              |              | 14          |
| 6.14       | 662   | -3       | -71  | 2445             | 660719     | 132020      | 5380         | 0.0        | 0.11    | 1.46   | 10       | Αú       | · V    | ~ A      |              |              | .1               | 6-66         | ji.          | Ġ            | ð.          |
| 1.14       | 682   | -4       | -71  | 2453             | 660719     | 132841      | 4890         | 0.0        | 0.11    | 1.46   | 9        | ı        | 7      | * 8      | 14 14        | 4.4          |                  |              |              |              | 3#          |
| LIM        | 682   | -4       | -71  | 2457             | 660719     | 132847      | 4170         | 0.0        | 0.11    | 1,46   | 9        | 17       | 6      | • \$     | v)           |              |                  | Ų            |              |              | 40          |
| LIM        | 6 8 2 | -5       | -70  | 2462             | 660719     | 132856      | 0            | 1.1F 04    | 0.11    | 1.45   | 9        | 17       | 8      | +1       | 8.7          | Bu           |                  |              | is           | 2            | 30          |
| 1.14       | 6 8 2 | -5       | -70  | 2465             | 660719     | 132901      | 0            | 9.4E 03    | 0.11    | 1.45   | 8        | 10       | 8      | 4. 1.    | <b>4</b> 9   | 6.3          | $\theta_{\rm s}$ | ý.           | - B          | \$14         | 14          |
| 1.14       | 682   | -5       | -70  | 2465             | 660719     | 132901      | 5520         | 0.0        | 0.11    | 15,45  | 6        | 16       | 6.     |          | Å.           | : J(\$       | 3                | <b>P</b> fi  | ij           | Ą.           | 45          |
| LIM        | 682   | -5       | -70  | 2466             | 660719     | 132906      | 5270         | 0.0        | 0.11    | 1.45   | ø        | n G      | ŕ      |          | 4            |              |                  | 4ª ú         | ù.,          | .0           | ij <b>4</b> |
| 6tM        | 662   | -10      | -68  | 2554             | 660719     | 133141      | 0            | 1.1E 04    | 0.10    | 1.45   | 3        |          |        | U:       | A 19         | <b>*</b> ,   |                  |              | ÷1.          | . 24         | 45          |
| 6.14       | 682   | -1 f     | -6 B | 2557             | 660719     | 133146      | 5310         | Ö,Ö        | 0.10    | 1.45   | 3        | 6        | ā      |          | 8.8          | <b>*</b> 3 ≥ |                  | w()          | Ô.           | . C          | 24          |
| LIM        | 682   | 91.1     | -68  | 2564             | 660719     | 133201      | 0            | 8.0F 03    | 0.10    | 1.45   | -3       | -4       | 0      | 4        | <b>8.9</b>   | 56           | á                | <b>3</b> 0   | -0           | .52          | IA          |
| 1,1M       | 682   | -11      | -66  | 2546             | 660719     | 133206      | 5560         | 0.0        | 0.10    | 1.45   | -2       | -4       | 0      | 1        | 6.9          | 56           | à                | . 17         |              |              | 24          |
| LIM,       | 6 # 5 | -11      | -68  | 2567             | 660719     | 133206      | 5460         | 0.0        | 0.10    | 1.45   | -2       | -4       | Ó      | 1        | 8.9          | 6.6          | 4                | , 1 <u>9</u> |              | . 0          | 14          |
| LIM        | 682   | -12      | -66  | 2573             | 660719     | 133220      | 0            | 1.1R 04    | 0.10    | 1.45   | - 3      | - 3      | 0      | 1        | 0.9          | 86           | 4                | 94           |              |              | 34          |
| LIM        | 662   | -12      | -66  | 2575             | 660719     | 133224      | 4660         | 0.0        | 0.10    | 1.45   | -1       | - 3      | -1     | 1        | 9.9          | 55           | Ä                | 84           |              | .0           | 1 A         |
| LIM        | 4 # 2 | -12      | -68  | 2576             | 660719     | 133225      | 5740         | 0.0        | 0.10    | 1.45   | -1       | - 3      | -1     | \$       | 9.0          | 4            | Ð                | ∯€)          | -            | . 0          | 24          |
| LIM        | 662   | -13      | -67  | 25 65            | 660719     | 133245      | 5150         | 0.0        | 0.10    | 1.45   | -1       | -1       | •1     | ì        | 9.0          | 57           | .A               | 96           |              | 0            | 24          |
| LIM        | 645   | -13      | -67  | 2591             | 660719     | 133259      | 0            | 1.0R 04    | 0.10    | 1.45   | 0        | 0        | 4-12°  | Æ        | 9 0          | -1 ¶         | **               | -4           |              | .) <b>()</b> | 2.4         |
| EIM        | 6 8 2 | -13      | -67  | 25 94            | 660719     | 133304      | 5320         | 0.0        | 0.10    | 1.45   | 0        | Ū        | 44     | ė        | 9.6          | · · · ·      | 3                | Par.         |              | ė            | 24          |
|            |       |          |      |                  |            |             |              |            |         |        |          |          |        |          |              |              |                  |              |              |              |             |

Figure 5. Tabulation format of Explorer 32 data.

Figure 10 shows the temperature error as a function of temperature and density. The errors are usually less then 10%. It is clear, that the error is not closely related to the values of temperature and density in the range of density examined.

Figure 11 shows the same temperature errors plotted against temperature alone. The temperature errors greater than 10% were further analyzed to determine the causes of these unacceptable errors.



Figure 6. A sample of Explorer 32 latitudinal density plots over a period of four days. Density points can be picked and analyzed for accuracy.

# SOURCES OF ERROR

As suggested earlier, several factors influence the accuracy of the analysis for  $T_{\rm e}$ . Wake distortion of the curves causes the temperature information to be lost, and this error is not always eliminated in the averaging and rejection process discussed earlier. In addition, the program sometimes erroneously selects an improper current range and must work with lower resolution of the retarding region. This also reduces the measurement accuracy. It appears that the rejection of wake curves and the selection of current range permits errors as great as 15% to occur.

In addition, when large variation of temperature occurs within a sequence of curves, the analysis program is limited in its ability to select the accurate group



Figure 7. Lathfuld we tenger three plots from data taken over a period of the says. This type of plot provides the necessary safa fermat to identifying possible errors in a second sand temperature.



Figure 8. Explorer 32 altitude plots over the same period as Figures 6 and 7. This figure provides necessary data for locating points of temperature and density values to be examined for accuracy.



Figure 9. Losal time plats comesponding to data to Tigus . 6 and 7.

Table 1
Temperature Comparison

| Curve<br>No. | Group No. | Sta. | Pass | Det. | New<br>T <sub>e</sub> | Old<br>T <sub>e</sub> | % Err. | N <sub>e</sub> | Probe | Alt. · |
|--------------|-----------|------|------|------|-----------------------|-----------------------|--------|----------------|-------|--------|
| 1            | Group 3   | SKA  | 3209 | 1    | 6692                  | 6930                  | -3.55  | 4.0E04         | 1     | 1529   |
| 2            | Group 7   | SNT  | 3222 | 1    | 5631                  | 6370                  | -13.12 | 1.8E04         | 1     | 2241   |
| 3            | Group 14  | NFL  | 3319 | 1    | 6840                  | 6470                  | 5.86   | 6.0E04         | 1     | 1912   |
| 4            | Group 7   | NFL  | 3319 | 1    | 8757                  | 7390                  | 15.61  | 1.8E04         | 1     | 1981   |
| 5            | Group 9   | QUI  | 60   | 1    | 3974                  | 3630                  | 8.65   | 6.3E04         | 1     | 329    |
| 6            | Group 10  | QUI  | 60   | 5    | 3526                  | 3250                  | 7.82   | 6.3E04         | 1     | 565    |
| 7            | Group 19  | QUI  | 60   | 1    | 3844                  | 3690                  | 4      | 6.3E04         | 2     | 581    |
| 8            | Group 20  | QUI  | 60   | 5    | 3782                  | 3360                  | 11.15  | 6.3E04         | 2     | 565    |
| 9            | Group 7   | WNK  | 72   | 6    | 3248                  | 3130                  | 3.6    | 5.9E05         | 1     | 328    |
| 10           | Group 19  | WNK  | 72   | 6    | 3430                  | 3220                  | 6.12   | 5.9E05         | 1     | 370    |
| 11           | Group 17  | WNK  | 72   | 1    | 3602                  | 3290                  | 8.66   | 5.8E05         | 2     | 363    |
| 12           | Group 11  | JOB  | 2224 | 3    | 2318                  | 2320                  | -0.08  | 1.7E06         | 1     | 405    |
| 13           | Group 12  | JOB  | 2224 | 2    | 2185                  | 2230                  | -2.05  | 1.7E06         | 1     | 403    |
| 14           | Group 13  | JOB  | 2224 | 7    | 2349                  | 2330                  | .8     | 1.7E06         | 1     | 395    |
| 15           | Group 14  | JOB  | 2224 | 6    | 1911                  | 1720                  | 10.02  | 1.7E06         | 1     | 392    |
| 16           | Group 5   | JOB  | 2224 | 2    | 2635                  | 2640                  | -0.18  | 6.0E05         | 1     | 472    |
| 17           | Group 6   | JOB  | 2224 | 6    | 2437                  | 2330                  | 4.39   | 7.6E05         | 1     | 459    |
| 18           | Group 26  | QUI  | 1673 | 5    | 1416                  | 1300                  | 8.2    | 2.7E05         | 2     | 369    |
| 19           | Group 30  | QUI  | 1673 | 5    | 1512                  | 1370                  | 9.38   | 2.4E05         | 2     | 336    |
| 20           | Group 5   | LIM  | 1599 | 1    | 1352                  | 1400                  | -3.55  | 5.3E04         | 1     | 545    |
| 21           | Group 6   | LIM  | 1599 | 1    | 1238                  | 1090                  | 11.95  | 5.3E04         | 1     | 532    |
| 22           | Group 2   | QUI  | 1673 | 5    | 1136                  | 1160                  | -2.11  | 1.8E05         | 1     | 379    |



Figure 10. Bar groph of amperdation



Figure 11. Temperature percentage error as a function of temperature. The temperature errors greater than 10% were further analyzed. Positive errors indicate that the production program gave temperatures too high.

temperature. The average temperature may not be very meaningful in this situation.

#### SUMMARY

Temperatures derived from the cylindrical electrostatic probe Explorer 32 program show an accuracy within 10% when compared with a more accurate analysis method. Based on this study corrections are being made to improve the accuracy of the production data.

## ACKNOWLEDGMENT

I am very grateful to Mr. L. H. Brace for his supervision in preparing this report. I also thank Mr. R. F. Theis and Mr. L. P. Rudolph for the use of their programs which made the data available for analysis.