Introduction to Software Verification - HW No. 1

Winter 2022-2023

TA in charge of this HW: Roy Deutch

Pay attention: an answer without explanation will not be checked.

Question 1

Let P be the next program:

Which of the next specifications are correct?

Explain your answer (there is no need to prove it).

- A. $\{false\}P\{x = 1 \land y = 1\}$
- B. $\{true\}P\{y \ge 0 \lor x \ge 0\}$
- C. $\{x = y\}P\{true\}$
- D. $\{x < y \land x > 0 \land y < 10\}P\{false\}$
- $\mathsf{E.} \ \langle x^2 < y^2 \rangle P \langle x^2 < y^2 \rangle$
- F. $\{x^2 < y^2\}P\{x^2 < y^2\}$
- G. $\langle z = 5 \rangle P \langle z = 5 \rangle$
- H. $\{z = 5\}P\{z = 5\}$
- I. $\{z = y \land x > 0\}P\{z^2 = y^2\}$
- J. $\langle x \ge y \wedge y \rangle > 0 \wedge x < 8 \rangle P \langle x^2 + y^2 < 100 \rangle$
- K. $\langle x^2 2xy + 2y^2 < 10 \land x > 0 \land y > x \rangle P \langle true \rangle$
- L. $\{x > y \land x < 0 \land x^2 + y^2 < 50\}P\{false\}$

Note: in questions 2,3 you can use the binary operators +, and the relations =, <, > only.

You **can't** assume the existence of predicates like odd(x), prime(x) etc.

Question 2

Let k be a non-negative integer.

Remainder: Fibonacci sequence is defined by the next recursive formula

$$F_n = F_{n-1} + F_{n-2}$$
, when $F_0 = 0$, $F_1 = 1$.

- A. Write a specification for a program that gets a non-negative integer r, in the variable r returns the value 1 if $r > F_k$, the value 0 if $r = F_k$ and the value -1 if $r < F_k$.
- B. Assume the existence of first-order logic formula $Fib_k(r)$, which is satisfied if and only if $r = F_k$. Use it, and write a specification for a program that gets a non-negative integer x, in the variable y returns the minimal multiple of F_k which is greater than x, also the value of x need to be preserved.

Question 3

Write a specification for the next programs:

- A. A program that doesn't stop if the initial value of x is not a square of a prime number
- B. A program which stops if the initial value of x and the initial value of y are coprime (i.e. gcd(x, y) = 1).

Question 4

In this question we'll see how we can compute $R_{\tau}(\bar{x})$ and $T_{\tau}(\bar{x})$ which were defined in the first tutorial in forward computation.

Let $\tau=l_{i_0}, l_{i_1}, ..., l_{i_k}$ be a path in the length of k+1 in the program, and let's define $R^{l^m}_{\ \tau}(\bar{x})$ and $T^{l^m}_{\ \tau}(\bar{x})$ as the reachability condition and state transformer for the **prefix** $l_{i_0}, ..., l_{i_m}$ of τ .

There for $R_{\tau}^{\prime k}(\bar{x}) = R_{\tau}(\bar{x})$ and $T_{\tau}^{\prime k}(\bar{x}) = T_{\tau}(\bar{x})$.

Show how to recursively compute $R_{\tau}^{m}(\bar{x})$ and $T_{\tau}^{m}(\bar{x})$ (In a similar way to the computation of $R_{\tau}^{m}(\bar{x})$ and $T_{\tau}^{m}(\bar{x})$ you saw in the tutorial).

Good luck!