HOJA DE EJERCICIOS 4

Análisis Matemático.

CURSO 2020-2021.

Problema 1. Para cada aplicación $f: \mathbb{R}^n \to \mathbb{R}^n$ y el correspondiente conjunto E que se dan, demuestra que hay un único punto $a \in E$ tal que f(a) = a. Describe un procedimiento para calcular a con dos decimales de precisión.

(a)
$$f(x,y) = \left(\frac{1}{3}\sin x - \frac{1}{3}\cos y + 2, \frac{1}{6}\cos x + \frac{1}{2}\sin y - 1\right), E = \{|x-2| \le 1, |y+1| \le 1\}.$$

(b)
$$f(x,y) = \left(\frac{xe^y}{40}, 1 + \frac{x^2 + 2\cos y}{10}\right), E = \{|x|, |y-1| \le 1\}.$$

(c) $f(x,y) = \left(2 + \frac{\cos(xy)}{7}, \frac{x^2 + y^3}{20}\right), E = \{|x-2|, |y| \le 1\}.$

(c)
$$f(x,y) = \left(2 + \frac{\cos(xy)}{7}, \frac{x^2 + y^3}{20}\right), E = \{|x - 2|, |y| \le 1\}$$

(d)
$$f(x,y,z) = \left(\frac{x}{5}\sin y + \frac{z}{5}, 1 + \frac{\cos(x+z)}{3}, \frac{xz}{10} + \frac{1}{2}\right), E = \{|x|, |y-1|, |z| \le 1\}.$$

(e)
$$f(x,y) = \left(\frac{e^{x/3}}{4} + \frac{y^2}{10}, \frac{1}{5} + \frac{x^2y}{10}\right), E = \{|x|, |y| \le 1\}.$$

Problema 2. Sea $A: \mathbb{R}^2 \to \mathbb{R}^2$ la aplicación lineal dada por la matriz

$$A = \frac{1}{10} \begin{pmatrix} 5 & 6 \\ 4 & 3 \end{pmatrix}.$$

Demuestra que A es contractiva en $(\mathbb{R}^2, \|\cdot\|_1)$ pero no lo es en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.

Problema 3. Sea (X,d) un espacio métrico compacto y $f:X\to X$ una aplicación que cumple lo siguiente:

para cualesquiera
$$x, y \in X$$
 , $x \neq y \implies d(f(x), f(y)) < d(x, y)$.

- 1. Demuestra que f es continua.
- 2. Demuestra que f tiene un punto fijo $p \in X$ y que tal punto es único. *Indicación*: considera la función $X \to \mathbb{R}$, $x \longmapsto d(x, f(x))$. ¿Es esto también verdad para (X, d) no compacto?
- 3. Demuestra que f no es suprayectiva. *Indicación:* considera la función $X \to \mathbb{R}$, $x \longmapsto d(x,p)$, siendo p el punto fijo.

Problema 4. En este ejercicio exploramos lo que pasa al debilitar alguna hipótesis del teorema de la aplicación contractiva.

- a) (Espacio compacto, K=1). Sea $C=\{(x,y)\in\mathbb{R}^2: x^2+y^2=1\}$ la circunferencia unidad. Da un ejemplo de una $f: C \to C$ sin punto fijo, pero que cumpla ||f(p) - f(q)|| = ||p - q|| para cualesquiera $p, q \in C$.
- b) (Espacio no completo). Da un ejemplo de una $f : \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ contractiva pero sin punto fijo.
- c) (Dominio y codominio distintos). Explica por qué ninguna aplicación $f:[-1,1] \to [2,4]$ puede tener puntos fijos. Da un ejemplo de una tal f que cumpla |f(x') - f(x)| = (1/2)|x' - x| para cualesquiera $x, x' \in [-1, 1]$.
- d) (Dominio y codominio distintos como espacios métricos). Consideramos en \mathbb{R} las distancias d(x,y) = |x-y|, d'(x,y) = |x-y|/2. Exhibe una $f: \mathbb{R} \to \mathbb{R}$ sin puntos fijos pero tal que d'(f(x), f(x')) = (1/2) d(x, x'), es decir que tenemos una aplicación $f:(\mathbb{R},d)\to(\mathbb{R},d')$ que es de Lipschitz con constante 1/2 pero sin puntos fijos.

Problema 5.

Se llama inversa local de una función f a la inversa $(f|_U)^{-1}: f(U) \to \mathbb{R}^n$ de cualquier restricción suya a un abierto $f|_U$ que sea inyectiva.

Elige una inversa local del cambio a polares $x(r,\theta) = r\cos\theta$, $y(r,\theta) = r\sin\theta$, definida alrededor del punto x = 2, $y = -2\sqrt{3}$. Calcula la matriz jacobiana en este punto de la inversa local elegida.

Problema 6. Vamos a hacer uso del siguiente resultado, donde tanto las normas involucradas como las bolas son las euclídeas estándar.

Sean un abierto de $U \subseteq \mathbb{R}^n$, un punto $a \in U$ y $f: U \to \mathbb{R}^n$ de clase \mathcal{C}^1 . Supongamos que existen dos números $r, \lambda > 0$ y una matriz **ortogonal** P tales que

para todo
$$x \in \overline{B}(a,r)$$
 y todo $v \in \mathbb{R}^n$ se tiene $v^t(Df(x)P) v \ge \lambda ||v||^2$.

Entonces f es inyectiva en B(a,r) y $f(B(a,r)) \supset B(f(a), \lambda r)$.

Se pide dar un radio r de invectividad alrededor de a y una bola centrada en f(a) en la que esté definida la inversa local con $f(a) \mapsto a$, para cada una de las funciones $f : \mathbb{R}^2 \to \mathbb{R}^2$ y puntos $a \in \mathbb{R}^2$ siguientes:

[Indicación: acuérdate de aprovechar la desigualdad $v_1v_2 \ge -(v_1^2 + v_2^2)/2$]

a)
$$a=(4,2)$$
 y $f(x,y)=\begin{pmatrix} xy+e^{y/10}\\5x-\frac{y^2}{2} \end{pmatrix}$. Sugerencia: $P=\begin{pmatrix} 0&1\\1&0 \end{pmatrix}$.

b)
$$a = (1,1)$$
 y $f(x,y) = \begin{pmatrix} x^3 + \frac{\sin y}{6} \\ \frac{x}{10} - e^y \end{pmatrix}$. Sugerencia: $P = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

c)
$$a = (0,1)$$
 y $f(x,y) = {5 e^y x + \cos y \choose x + y^4}$. Sugerencia: $P = I_2$.

Problema 7. Estudia alrededor de qué puntos tienen inversa diferenciable los cambios a cilíndricas y esféricas:

$$\begin{cases} x(r,\varphi,h) &= r\cos\varphi \\ y(r,\varphi,h) &= r\sin\varphi \\ z(r,\varphi,h) &= h, \end{cases} \begin{cases} x(r,\theta,\phi) &= r\cos\theta\sin\phi \\ y(r,\theta,\phi) &= r\sin\theta\sin\phi \\ z(r,\theta,\phi) &= r\cos\phi. \end{cases}$$