Running head: LEBA 1

Light Exposure Behavior Assessment (LEBA): Develop of a novel instrument to
 capture light exposure-related behaviours

- Mushfiqul Anwar Siraji<sup>1</sup>, Rafael Robert Lazar<sup>2</sup>, & Manuel Spitschan<sup>3</sup>
- Department of Psychology, Jeffrey Cheah School of Medicine and Health
   Sciences, Monash University, Malaysia
- <sup>2</sup> University of Basel

7 Author Note

- Add complete departmental affiliations for each author here. Each new line herein must be indented, like this line.
- <sub>10</sub> Enter author note here.
- The authors made the following contributions. Mushfiqul Anwar Siraji:
- Data Analysis, Writing Original Draft Preparation, Data Visualization; Rafael
- 3 Robert Lazar: Data Analysis, Writing Original Draft Preparation, Data
- <sup>14</sup> Visualization; Manuel Spitschan: Data Analysis, Writing Original Draft
- 15 Preparation, Data Visualization.
- Correspondence concerning this article should be addressed to Manuel Spitschan, . E-mail:

18 Abstract

One or two sentences providing a **basic introduction** to the field,

20 comprehensible to a scientist in any discipline.

Two to three sentences of **more detailed background**, comprehensible

to scientists in related disciplines.

One sentence clearly stating the **general problem** being addressed by

24 this particular study.

One sentence summarizing the main result (with the words "here we

26 **show**" or their equivalent).

Two or three sentences explaining what the **main result** reveals in direct

comparison to what was thought to be the case previously, or how the main

result adds to previous knowledge.

One or two sentences to put the results into a more **general context**.

Two or three sentences to provide a **broader perspective**, readily

comprehensible to a scientist in any discipline.

Keywords: keywords

Word count: X

33

Light Exposure Behavior Assessment (LEBA): Develop of a novel instrument to capture light exposure-related behaviours

#### 37 Introduction

### 38 Methods

# Participants

- 1. Describe EFA and CFA sample separately.
- 2. Sampling technique: Convince sampling (non-probability sample)
- 3. Method: cross-sectional survey
- 4. How many missing data?
- 5. How incomplete data were addressed.
- 6. Why such sample was chosen?
- EFA: For exploring initial factor structure, a sample of 250-300 is recommended (Comrey & Lee, 1992; Schönbrodt & Perugini, 2013)
- CFA: For estimating the sample size for the confirmatory factor analysis
  we followed the N:q rule (Bentler & Chou, 1987; Jackson, 2003; Kline, 2015;
  Worthington & Whittaker, 2006) where 10 participants per parameter is
  required to earn trustworthiness of the result. Our sample size exceeds the

#### ₃ Procedure

52

54

55

requirement.

### Development of the Scale.

1. How the items were generated

2. How the literature was reviewed to identify construct adequacy of the items.

3. Discuss the expert panel review process to assess content validity

## Procedure

58

Our study had four objectives. First, to develop an instrument to assess an individual's light exposure behavior. Second, to conduct an exploratory factor analysis(EFA) to understand the latent structure. The third one is to gather structural validity evidence for the latent structure obtained in EFA. Lastly, we gathered item information using Item response theory (IRT)(Baker, 2017)

Data Collection. Timeline of data collection, ethical approval mode of data collection how consent was recorded.

# 67 Analytic Strategies

We used R (version 4.1.0), including several R packages, for our analyses. 68 Necessary assumptions of EFA, including sample adequacy, normality 69 assumptions, quality of correlation matrix, were assessed. Our data violated both the univariate and multivariate normality assumptions. Due to these 71 violations and the ordinal nature of our response data, we used a polychoric correlation matrix (C. Desjardins & Bulut, 2018) for the EFA. We employed 73 principal axis (pa) a factor extraction method with varimax rotation. PA is robust to the normality assumption violations (Watkins, 2020). The obtained 75 latent structure was confirmed by the minimum residuals extraction method as well. We used a combination factor identification method including scree plot(Cattell, 1966), Horn's parallel analysis (Horn, 1965), minimum average partials method(Velicer, 1976), and hull method (Lorenzo-Seva, Timmerman, &

Kiers, 2011) to identify factor numbers. Additionally, to determine the simple structure, we followed the following guidelines recommended by psychometricians (i) no factors with fewer than three items (ii) no factors with a factor loading <0.3 (iii) no items with cross-loading greater than .3 across factors [Bandalos and Finney (2018);

85 Results

Sampling adequacy was checked using Kaiser-Meyer-Olkin (KMO) 86 measures of sampling adequacy(Kaiser, 1974). The overall KMO vale for 48 87 items was 0.63 which was above the cutoff value (.50) indicating a mediocre 88 sample (Hutcheson, 1999). Table1 summarizes the univariate descriptive 89 statistics for the 48 items. some of the items were skewed with high Kurtosis 90 values. Our data violated both univariate normality (Shapiro-Wilk statistics; 91 (Shapiro & Wilk, 1965)) and multivariate normality assumptions (Marida's 92 test; (Mardia, 1970)). Multivariate skew was = 583.80 (p < 0.001) and multivariate kurtosis was = 2,749.15 (p < 0.001). Due to these violations and ordinal nature of the response data polychoric correlations over Pearson's correlations was chosen (C. Desjardins & Bulut, 2018). Bartlett's test of sphericity (Bartlett, 1954),  $\chi^2$  (1128) = 5042.86, p < .001] indicated the correlations between items are adequate for the EFA. However only 4.96% of the inter-item correlation coefficients were greater than .30. The inter item correlation ranged between .44 to .91. And the corrected item-total 100 correlations ranged between .10 to .44. 101

102

103

104

Scree plot (Figure 3) suggested a six-factor solution. Horn's parallel analysis (Horn, 1965) with 500 iterations also indicated a six-factor solution.

However, the MAP method (Velicer, 1976) and Hull method (Lorenzo-Seva,
Timmerman, & Kiers, 2011) suggested a five-factor solution. As a result, we
tested both five-factor and six-factor solutions.

Three rounds of EFA starting with all 48 items were conducted and 108 problematic items were gradually discarded (cross-loading items and poor 109 factor loading (<.30) items). Finally, a five-factor EFA solution with 25 items 110 was accepted with low RMSR = 0.08 (Brown, 2015), all factor-loading higher 111 than .30 and no cross-loading greater than .30. We confirmed this five-factor 112 latent structure using varimax rotation with a minimum residual extraction 113 method (see the supplementary). Table 2 displays the factor-loading (structural 114 coefficients) and communality of the items. The absolute value of the 115 factor-loading ranged from -.49 to .99 indicating strong coefficients. The 116 commonalities ranged between .11 to .99. However, the histogram of the 117 absolute values of non-redundant residual-correlations (Fig5 showed 26.00% 118 correlations greater than the absolute value of .05, indicating a possible 119 under-factoring. (C. D. Desjardins, 2018). Subsequently, we fitted a six-factor 120 solution. However, a factor emerged with only one salient variable loading in the six-factor solution, thus disqualifying the six-factor solution. 122

In the five-factor solution, the first factor contained three items and 123 explained 10.25% of the total variance with a satisfactory internal reliability 124 coefficient ( $\alpha = .86$ ). All the items in this factor stemmed from the individual's 125 preference to use blue light filters in different light environments. The second 126 factor contained six items and explained 9.93% of the total variance with a 127 satisfactory internal reliability coefficient ( $\alpha = .71$ ). Items under this factor 128 commonly investigate an individual's hours spent outdoor. The third factor 129 contained five items and explained 8.83% of the total variance. Items under 130 this factor dealt with the specific behaviors pertaining to sleep. However, the

internal consistency reliability coefficient was not satisfactory ( $\alpha = .68$ ). The fourth factor contained five items and explained 8.44% of the total variance 133 with an internal consistency coefficient,  $\alpha = .62$ . These five items stemmed 134 from the behavior related to an individual's cellphone usage during the 135 sleep-wakeup time. Lastly, the fifth factor contained six items and explained 136 6.14% of the total variance. This factor tried to measure an individual's 137 behavior lead by the awareness of light's influence on health. However, this 138 factor showed unsatisfactory internal consistency reliability ( $\alpha = .53$ ). It is 139 essential to attain a balance between psychometric properties and the 140 interpretability of the common themes when exploring the latent structure. As 141 all of the emerged factors are highly interpretable, regardless of the apparent 142 low reliability of the two factors, we retain the five-factor solution with 23 items 143 for our confirmatory factor analysis (CFA). Two items showed negative 144 factor-loading (items 44 and 21). Upon inspection, it was understood that these items are negatively correlated to the common theme, and thus in the CFA analysis, we reversed the response code for these two items.

# **Confirmatory Factor Analysis**

149 **IRT** 

148

150 Discussion

| 151 | References                                                                    |
|-----|-------------------------------------------------------------------------------|
| 152 | Aust, F., & Barth, M. (2020). papaja: Prepare reproducible APA journal        |
| 153 | articles with R Markdown. Retrieved from                                      |
| 154 | https://github.com/crsh/papaja                                                |
| 155 | Baker, F. B. (2017). The Basics of Item Response Theory Using R (1st ed       |
| 156 | 2017.). Springer.                                                             |
| 157 | Bandalos, D. L., & Finney, S. J. (2018). Factor analysis: Exploratory and     |
| 158 | confirmatory. In The reviewer's guide to quantitative methods in the          |
| 159 | social sciences (pp. 98–122). Routledge.                                      |
| 160 | Barth, M. (2021). tinylabels: Lightweight variable labels. Retrieved from     |
| 161 | https://github.com/mariusbarth/tinylabels                                     |
| 162 | Bartlett, M. (1954). A Note on the Multiplying Factors for Various            |
| 163 | Chi-square Approximations. Journal of the Royal Statistical Society.          |
| 164 | Series B, Methodological, 16(2), 296–298.                                     |
| 165 | Bentler, P. M., & Chou, CP. (1987). Practical Issues in Structural            |
| 166 | Modeling. Sociological Methods & Research, 16(1), 78–117.                     |
| 167 | https://doi.org/10.1177/0049124187016001004                                   |
| 168 | Brown, T. A. (2015). Confirmatory factor analysis for applied research        |
| 169 | (2nd ed.). New York, NY, US: The Guilford Press.                              |
| 170 | Buchanan, E. M., Gillenwaters, A., Scofield, J. E., & Valentine, K. D. (2019) |
| 171 | MOTE: Measure of the Effect: Package to assist in effect size                 |
| 172 | calculations and their confidence intervals. Retrieved from                   |
| 173 | http://github.com/doomlab/MOTE                                                |
| 174 | Cattell, R. B. (1966). The Scree Test For The Number Of Factors.              |
| 175 | Multivariate Behavioral Research, 1(2), 245–276.                              |

| 176        | https://doi.org/10.1207/s15327906mbr0102_10                                                                                                                                                        |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 177        | Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Borges, B. (2021). <i>Shiny: Web application framework for r</i> . Retrieved from https://CRAN.R-project.org/package=shiny |
| 179        | Hom https://chan.n-project.org/package=smiry                                                                                                                                                       |
| 180        | Comrey, A. L., & Lee, H. B. (1992). <i>A first course in factor analysis, 2nd ed</i> . Hillsdale, NJ, US: Lawrence Erlbaum Associates, Inc.                                                        |
| 182<br>183 | Desjardins, C., & Bulut, O. (2018). Handbook of Educational Measurement and Psychometrics Using R. https://doi.org/10.1201/b20498                                                                  |
| 184        | Desjardins, C. D. (2018). <i>Handbook of educational measurement and psychometrics using R</i> (O. Bulut & ProQuest (Firm), Eds.). Boca Raton,                                                     |
| 186        | FL : CRC Press.                                                                                                                                                                                    |
| 187        | Dinno, A. (2018). Paran: Horn's test of principal components/factors.                                                                                                                              |
| 188        | Retrieved from https://CRAN.R-project.org/package=paran                                                                                                                                            |
| 189        | Epskamp, S. (2019). semPlot: Path diagrams and visual analysis of                                                                                                                                  |
| 190        | various SEM packages' output. Retrieved from                                                                                                                                                       |
| 191        | https://CRAN.R-project.org/package=semPlot                                                                                                                                                         |
| 192        | Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., &                                                                                                                               |
| 193        | Borsboom, D. (2012). qgraph: Network visualizations of relationships                                                                                                                               |
| 194        | in psychometric data. Journal of Statistical Software, 48(4), 1–18.                                                                                                                                |
| 195        | Fox, J., & Weisberg, S. (2019). An R companion to applied regression                                                                                                                               |
| 196        | (Third). Thousand Oaks CA: Sage. Retrieved from                                                                                                                                                    |
| 197        | https://socialsciences.mcmaster.ca/jfox/Books/Companion/                                                                                                                                           |
| 198        | Fox, J., Weisberg, S., & Price, B. (2020). carData: Companion to applied                                                                                                                           |
| 199        | regression data sets. Retrieved from                                                                                                                                                               |
| 200        | https://CRAN.R-project.org/package=carData                                                                                                                                                         |

| 201 | Harrell Jr, F. E., Charles Dupont, with contributions from, & others., many   |
|-----|-------------------------------------------------------------------------------|
| 202 | (2021). Hmisc: Harrell miscellaneous. Retrieved from                          |
| 203 | https://CRAN.R-project.org/package=Hmisc                                      |
| 204 | Henry, L., & Wickham, H. (2020). Purrr: Functional programming tools.         |
| 205 | Retrieved from https://CRAN.R-project.org/package=purrr                       |
| 206 | Horn, J. L. (1965). A rationale and test for the number of factors in factor  |
| 207 | analysis. Psychometrika, 30(2), 179–185.                                      |
| 208 | https://doi.org/10.1007/BF02289447                                            |
| 209 | Hutcheson, G. D. (1999). The multivariate social scientist: Introductory      |
| 210 | statistics using generalized linear models. London : SAGE.                    |
| 211 | Iannone, R. (2016). DiagrammeRsvg: Export DiagrammeR graphviz                 |
| 212 | graphs as SVG. Retrieved from                                                 |
| 213 | https://CRAN.R-project.org/package=DiagrammeRsvg                              |
| 214 | Iannone, R. (2021). DiagrammeR: Graph/network visualization. Retrieved        |
| 215 | from https://github.com/rich-iannone/DiagrammeR                               |
| 216 | Jackson, D. L. (2003). Revisiting Sample Size and Number of Parameter         |
| 217 | Estimates: Some Support for the N:q Hypothesis. Structural Equation           |
| 218 | Modeling, 10(1), 128–141.                                                     |
| 219 | https://doi.org/10.1207/S15328007SEM1001_6                                    |
| 220 | Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y.       |
| 221 | (2021). semTools: Useful tools for structural equation modeling.              |
| 222 | Retrieved from https://CRAN.R-project.org/package=semTools                    |
| 223 | Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), |
| 224 | 31-36. https://doi.org/10.1007/bf02291575                                     |
| 225 | Kassambara, A. (2019). Ggcorrplot: Visualization of a correlation matrix      |

| 226 | using 'ggplot2'. Retrieved from                                            |
|-----|----------------------------------------------------------------------------|
| 227 | https://CRAN.R-project.org/package=ggcorrplot                              |
| 228 | Kline, R. B. (2015). Principles and practice of structural equation        |
| 229 | modeling. The Guilford Press.                                              |
| 230 | Lishinski, A. (2021). lavaanPlot: Path diagrams for 'lavaan' models via    |
| 231 | 'DiagrammeR'. Retrieved from                                               |
| 232 | https://CRAN.R-project.org/package=lavaanPlot                              |
| 233 | Lorenzo-Seva, U., Timmerman, M., & Kiers, H. (2011). The Hull Method       |
| 234 | for Selecting the Number of Common Factors. Multivariate Behavioral        |
| 235 | Research, 46, 340–364.                                                     |
| 236 | https://doi.org/10.1080/00273171.2011.564527                               |
| 237 | Makowski, D., Ben-Shachar, M. S., Patil, I., & Lüdecke, D. (2020). Methods |
| 238 | and algorithms for correlation analysis in r. Journal of Open Source       |
| 239 | Software, 5(51), 2306. https://doi.org/10.21105/joss.02306                 |
| 240 | Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with  |
| 241 | applications. Biometrika, 57(3), 519–530.                                  |
| 242 | https://doi.org/10.1093/biomet/57.3.519                                    |
| 243 | Müller, K., & Wickham, H. (2021). Tibble: Simple data frames. Retrieved    |
| 244 | from https://CRAN.R-project.org/package=tibble                             |
| 245 | Navarro-Gonzalez, D., & Lorenzo-Seva, U. (2021). EFA.MRFA:                 |
| 246 | Dimensionality assessment using minimum rank factor analysis.              |
| 247 | Retrieved from https://CRAN.R-project.org/package=EFA.MRFA                 |
| 248 | Ooms, J. (2021). Rsvg: Render SVG images into PDF, PNG, PostScript, or     |
| 249 | bitmap arrays. Retrieved from                                              |
| 250 | https://CRAN.R-project.org/package=rsvg                                    |

| 251 | R Core Team. (2021). R: A language and environment for statistical      |
|-----|-------------------------------------------------------------------------|
| 252 | computing. Vienna, Austria: R Foundation for Statistical Computing.     |
| 253 | Retrieved from https://www.R-project.org/                               |
| 254 | Revelle, W. (2021). Psych: Procedures for psychological, psychometric,  |
| 255 | and personality research. Evanston, Illinois: Northwestern University.  |
| 256 | Retrieved from https://CRAN.R-project.org/package=psych                 |
| 257 | Rosseel, Y. (2012). lavaan: An R package for structural equation        |
| 258 | modeling. Journal of Statistical Software, 48(2), 1–36. Retrieved from  |
| 259 | https://www.jstatsoft.org/v48/i02/                                      |
| 260 | Ryu, C. (2021). Dlookr: Tools for data diagnosis, exploration,          |
| 261 | transformation. Retrieved from                                          |
| 262 | https://CRAN.R-project.org/package=dlookr                               |
| 263 | Sarkar, D. (2008). Lattice: Multivariate data visualization with r. New |
| 264 | York: Springer. Retrieved from http://lmdvr.r-forge.r-project.org       |
| 265 | Schönbrodt, F. D., & Perugini, M. (2013). At what sample size do        |
| 266 | correlations stabilize? Journal of Research in Personality, 47(5),      |
| 267 | 609-612. https://doi.org/10.1016/j.jrp.2013.05.009                      |
| 268 | Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for  |
| 269 | normality (complete samples). Biometrika, 52(3-4), 591-611.             |
| 270 | https://doi.org/10.1093/biomet/52.3-4.591                               |
| 271 | Terry M. Therneau, & Patricia M. Grambsch. (2000). Modeling survival    |
| 272 | data: Extending the Cox model. New York: Springer.                      |
| 273 | van Lissa, C. J. (2021). tidySEM: Tidy structural equation modeling.    |
| 274 | Retrieved from https://CRAN.R-project.org/package=tidySEM               |
| 275 | Velicer, W. (1976). Determining the Number of Components from the       |

| 276 | Matrix of Partial Correlations. <i>Psychometrika</i> , 41, 321–327.       |
|-----|---------------------------------------------------------------------------|
| 277 | https://doi.org/10.1007/BF02293557                                        |
| 278 | Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s |
| 279 | (Fourth). New York: Springer. Retrieved from                              |
| 280 | https://www.stats.ox.ac.uk/pub/MASS4/                                     |
| 281 | Watkins, M. (2020). A Step-by-Step Guide to Exploratory Factor Analysis   |
| 282 | with R and RStudio. https://doi.org/10.4324/9781003120001                 |
| 283 | Wickham, H. (2016). ggplot2: Elegant graphics for data analysis.          |
| 284 | Springer-Verlag New York. Retrieved from https://ggplot2.tidyverse.org    |
| 285 | Wickham, H. (2019). Stringr: Simple, consistent wrappers for common       |
| 286 | string operations. Retrieved from                                         |
| 287 | https://CRAN.R-project.org/package=stringr                                |
| 288 | Wickham, H. (2021a). Forcats: Tools for working with categorical          |
| 289 | variables (factors). Retrieved from                                       |
| 290 | https://CRAN.R-project.org/package=forcats                                |
| 291 | Wickham, H. (2021b). Tidyr: Tidy messy data. Retrieved from               |
| 292 | https://CRAN.R-project.org/package=tidyr                                  |
| 293 | Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, |
| 294 | R., Yutani, H. (2019). Welcome to the tidyverse. Journal of Open          |
| 295 | Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686         |
| 296 | Wickham, H., & Bryan, J. (2019). Readxl: Read excel files. Retrieved from |
| 297 | https://CRAN.R-project.org/package=readxl                                 |
| 298 | Wickham, H., François, R., Henry, L., & Müller, K. (2021). Dplyr: A       |
| 299 | grammar of data manipulation. Retrieved from                              |
| 300 | https://CRAN.R-project.org/package=dplyr                                  |

| 301 | Wickham, H., & Hester, J. (2021). Readr: Read rectangular text data.        |
|-----|-----------------------------------------------------------------------------|
| 302 | Retrieved from https://CRAN.R-project.org/package=readr                     |
| 303 | Worthington, R. L., & Whittaker, T. A. (2006). Scale Development            |
| 304 | Research: A Content Analysis and Recommendations for Best                   |
| 305 | Practices. The Counseling Psychologist, 34(6), 806-838.                     |
| 306 | https://doi.org/10.1177/0011000006288127                                    |
| 307 | Zeileis, A., & Croissant, Y. (2010). Extended model formulas in R: Multiple |
| 308 | parts and multiple responses. Journal of Statistical Software, 34(1),       |
| 309 | 1–13. https://doi.org/10.18637/jss.v034.i01                                 |
| 310 | Zhu, H. (2021). kableExtra: Construct complex table with 'kable' and        |
| 311 | pipe syntax. Retrieved from                                                 |
| 312 | https://CRAN.R-project.org/package=kableExtra                               |

Table 1

Descriptive Statistics

|        | Mean | SD   | Skew  | Kurtosis | Shapiro-Wilk Statistics | Item-Total Correlation |
|--------|------|------|-------|----------|-------------------------|------------------------|
| Item1  | 2.27 | 1.39 | 0.74  | -0.81    | 0.81*                   | .25                    |
| Item2  | 2.87 | 1.59 | 0.08  | -1.60    | 0.81*                   | .19                    |
| Item3  | 3.36 | 1.38 | -0.48 | -1.03    | 0.87*                   | .16                    |
| Item4  | 1.47 | 1.18 | 2.38  | 4.00     | 0.43*                   | .28                    |
| Item5  | 4.01 | 1.40 | -1.22 | 0.07     | 0.70*                   | .13                    |
| Item6  | 2.79 | 1.55 | 0.19  | -1.48    | 0.85*                   | .20                    |
| Item7  | 2.26 | 1.25 | 0.70  | -0.60    | 0.85*                   | .19                    |
| Item8  | 2.97 | 1.20 | -0.06 | -0.94    | 0.91*                   | 10                     |
| Item9  | 2.94 | 1.03 | -0.12 | -0.40    | 0.91*                   | .10                    |
| Item10 | 2.74 | 1.04 | 0.09  | -0.74    | 0.91*                   | .28                    |
| ltem11 | 2.18 | 0.90 | 0.60  | 0.12     | 0.86*                   | .26                    |
| Item12 | 2.36 | 1.22 | 0.59  | -0.62    | 0.87*                   | .25                    |
| Item13 | 2.73 | 1.46 | 0.20  | -1.36    | 0.87*                   | .33                    |
| Item14 | 2.14 | 1.31 | 0.77  | -0.78    | 0.80*                   | .26                    |
| Item15 | 3.26 | 1.09 | -0.26 | -0.45    | 0.80*                   | .14                    |
| Item16 | 1.56 | 1.23 | 2.00  | 2.45     | 0.50*                   | .32                    |
| Item17 | 1.54 | 1.21 | 2.07  | 2.75     | 0.49*                   | .31                    |
| Item18 | 1.12 | 0.49 | 5.02  | 27.80    | 0.25*                   | .16                    |
| Item19 | 1.05 | 0.36 | 7.23  | 52.98    | 0.13*                   | .18                    |
| Item20 | 1.04 | 0.33 | 8.99  | 85.28    | 0.10*                   | .16                    |
| Item21 | 1.14 | 0.59 | 4.79  | 24.05    | 0.25*                   | .16                    |
| Item22 | 3.57 | 1.07 | -0.65 | -0.17    | 0.88*                   | .21                    |
| Item23 | 2.56 | 1.27 | 0.33  | -1.00    | 0.89*                   | .11                    |

Table 1 continued

|        | Mean | SD   | Skew  | Kurtosis | Shapiro-Wilk Statistics | Item-Total Correlation |
|--------|------|------|-------|----------|-------------------------|------------------------|
| Item24 | 4.14 | 0.99 | -1.23 | 1.14     | 0.79*                   | .19                    |
| Item25 | 2.59 | 1.41 | 0.27  | -1.27    | 0.86*                   | .19                    |
| Item26 | 2.25 | 1.27 | 0.69  | -0.64    | 0.84*                   | .18                    |
| Item27 | 3.80 | 1.29 | -0.87 | -0.42    | 0.82*                   | .17                    |
| Item28 | 3.76 | 1.14 | -0.68 | -0.45    | 0.86*                   | .00                    |
| Item29 | 2.44 | 1.31 | 0.38  | -1.14    | 0.86*                   | .11                    |
| Item30 | 1.48 | 1.11 | 2.18  | 3.35     | 0.48*                   | .24                    |
| Item31 | 3.00 | 1.62 | -0.08 | -1.61    | 0.83*                   | .44                    |
| Item32 | 3.55 | 1.65 | -0.60 | -1.34    | 0.76*                   | .43                    |
| Item33 | 3.62 | 1.64 | -0.68 | -1.25    | 0.74*                   | .32                    |
| Item34 | 3.42 | 1.83 | -0.45 | -1.69    | 0.69*                   | .33                    |
| Item35 | 3.86 | 1.67 | -0.99 | -0.85    | 0.65*                   | .23                    |
| Item36 | 1.54 | 1.25 | 2.13  | 2.86     | 0.46*                   | .36                    |
| Item37 | 1.33 | 0.91 | 3.03  | 8.43     | 0.41*                   | .01                    |
| Item38 | 4.30 | 1.08 | -1.79 | 2.53     | 0.67*                   | .22                    |
| Item39 | 1.96 | 0.98 | 1.02  | 0.69     | 0.82*                   | .05                    |
| Item40 | 2.16 | 1.19 | 0.71  | -0.54    | 0.84*                   | .14                    |
| Item41 | 1.31 | 0.81 | 2.75  | 6.92     | 0.43*                   | .21                    |
| Item42 | 3.93 | 1.48 | -1.06 | -0.44    | 0.71*                   | .18                    |
| Item43 | 1.64 | 1.18 | 1.79  | 2.02     | 0.60*                   | .15                    |
| Item44 | 3.51 | 1.30 | -0.70 | -0.59    | 0.85*                   | .39                    |
| Item45 | 2.22 | 1.48 | 0.71  | -1.02    | 0.76*                   | .30                    |
| Item46 | 1.76 | 1.23 | 1.35  | 0.44     | 0.66*                   | .38                    |
| Item47 | 2.11 | 1.17 | 0.77  | -0.39    | 0.83*                   | .32                    |

Table 1 continued

|        | Mean | SD   | Skew Kurtosis |       | Shapiro-Wilk Statistics | Item-Total Correlation |  |
|--------|------|------|---------------|-------|-------------------------|------------------------|--|
| Item48 | 2.60 | 1.25 | 0.29          | -0.86 | 0.89*                   | .35                    |  |

*Note.* \*p<.001

Table 2

|                      | F1    | F2   | F3    | F4    | F5   | Communality |
|----------------------|-------|------|-------|-------|------|-------------|
| item16               | 0.99  | -    | -     | -     | -    | 0.99        |
| item36               | 0.94  | -    | -     | -     | -    | 0.9         |
| item17               | 8.0   | -    | -     | -     | -    | 0.66        |
| item11               | -     | 0.8  | -     | -     | -    | 0.64        |
| item10               | -     | 0.76 | -     | -     | -    | 0.59        |
| item12               | -     | 0.65 | -     | -     | -    | 0.47        |
| item7                | -     | 0.5  | -     | -     | -    | 0.27        |
| item8                | -     | -0.5 | -     | -     | -    | 0.25        |
| item9                | -     | 0.32 | -     | -     | -    | 0.11        |
| item27               | -     | -    | 8.0   | -     | -    | 0.66        |
| item3                | -     | -    | 8.0   | -     | -    | 0.68        |
| item40               | -     | -    | 0.65  | -     | -    | 0.46        |
| item30               | -     | -    | 0.45  | -     | -    | 0.35        |
| item41               | -     | -    | -0.36 | -     | -    | 0.33        |
| item33               | -     | -    | -     | 0.74  | -    | 0.56        |
| item32               | -     | -    | -     | 0.73  | -    | 0.62        |
| item35               | -     | -    | -     | 0.66  | -    | 0.45        |
| item37               | -     | -    | -     | -0.39 | -    | 0.17        |
| item38               | -     | -    | -     | 0.36  | -    | 0.18        |
| item46               | -     | -    | -     | -     | 0.6  | 0.42        |
| item45               | -     | -    | -     | -     | 0.59 | 0.37        |
| item25               | -     | -    | -     | -     | 0.41 | 0.19        |
| item4                | -     | -    | -     | -     | 0.41 | 0.22        |
| item1                | -     | -    | -     | -     | 0.4  | 0.17        |
| item26               | -     | -    | -     | -     | 0.39 | 0.17        |
| internal Consistency | .86   | .71  | .68   | .62   | .53  | -           |
| % of variance        | 10.25 | 9.93 | 8.83  | 8.44  | 6.14 | -           |



Figure 1. Development and psychometric properties of LEBA



Figure 2. Correlation plot of the items



Figure 3. Factor Identification (A) Parallel analysis (B) Scree Plot, (C) Hull method



Figure 4. Five Factor Solution



Figure 5. Histogram of residulas: five-factor solution



Figure 6. (A) Five Factor Model of LEBA