Assignment 1

1.develop a function poly (double x, int n, double [] a) to evaluate the n-degree polynomial of x (array a store the coefficients of polynomial).

poly (x, n, a) =
$$a[0] + a[1] * x + a[2] * x^2 + ... + a[n] * x^n$$

then discuss the time and storage complexity of your algorithm.

Solution: Polynomial function code:

Time Complexity: Here, the for loop is executed if there are n values then the loop executes n times.

Hence, the time complexity is n

Storage Complexity: It will be the size of an array.

2. Prove by induction that: $1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Solution:

Basic Step: when n=1

Left Hand Side (L.H.S)	Right Hand Side (R.H.S)
L.H. $S=n^2$ $= 1^2$ $= 1$	R.H.S = $\frac{n(n+1)(2n+1)}{6}$ = $\frac{1(1+1)(2(1)+1)}{6}$ = $\frac{1(2)(3)}{6}$ = $\frac{6}{6}$ = 1

Hence L.H.S = R.H.S when n=1.

Inductive Step:

Inductive Hypothesis: Assuming that n=k holds true then

$$1^{2} + 2^{2} + 3^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$

Let's prove that it holds true when n=k+1

Left Hand Side (L.H.S)	Right Hand Side (R.H.S)
L.H. $S=1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2$ $= \frac{k(k+1)(2k+1)}{6} + (k+1)^2$ $= \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6}$ $= \frac{1/6[k(k+1)(2k+1) + 6(k+1)]}{6}$ $= \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$ $= \frac{(k+1)[(2k^2 + k + 6k + 1)]}{6}$ $= \frac{(k+1)(2k^2 + 7k + 1)}{6}$ $= \frac{(k+1)(2k+3)(k+2)}{6}$	R.H.S = $\frac{(k+1)(k+1+1)(2(k+1)+1)}{6}$ = $\frac{(k+1)(k+2)(2k+2+1)}{6}$ = $\frac{(k+1)(k+2)(2k+3)}{6}$ = $\frac{(k+1)(2k+3)(k+2)}{6}$

Therefore, L.H.S = R.H.S when n=k+1 is true by Induction.

3. Prove by induction that $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{(-1)^n}{n}$ is always positive

Or
$$\sum_{i=1}^{n} - \frac{(-1)^{n}}{n} > 0$$
(0 is neutral)

Solution: Let's assume that summation as x_n

Basic Step: when n=1

$$x_{n} = \frac{-(-1)^{n}}{n}$$

$$= -(-1)^{1}/1$$

$$= 1 > 0$$

Hence basic step holds true.

Inductive Step:

Let's assume that $x_k > 0$ for an integer k when is even.

Then,
$$\sum_{i=1}^{k} -\frac{(-1)^k}{k} > 0$$

Then note that k+1 will be odd (as we have assumed k as even) then

$$\sum_{i=1}^{k+1} - \frac{(-1)^{k+1}}{k+1} > 0$$

When k+1 is odd then it becomes: $-\left(\frac{-1^{k+1}}{k+1}\right) = -\frac{-1}{k+1}$

So, we can write this as:
$$x_{k+1} = x_k + \left(-\left(-\frac{1^{k+1}}{k+1}\right)\right) = x_k + \left(-\left(-\frac{1}{k+1}\right)\right)$$

Or
$$x_{k+1} = x_k + \frac{1}{k+1}$$

Hence, both the steps hold true that is >0(by basic step 1>0 and by inductive step) because when you sum even number with any number then it will be greater that zero therefore the case is true when k is even and k+1 is odd.

4. Prove by induction that: $1 + 3 + 5 + ... + (2n-1) = n^2$

Solution:

Basic Step: when n=1

Left Hand Side (L.H.S)	Right Hand Side (R.H.S)
L.H. S= 2n-1 =2(1)-1 =1	R.H. $S=n^2$ $= 1^2$ $= 1$

L.H. S=R.H. S holds true.

Inductive Step:

Inductive Hypothesis: Assuming that n=k holds true

Then:
$$1 + 3 + 5 + ... + (2k-1) = k^2$$

Let's prove that it holds true when n=k+1

Left Hand Side (L.H.S)	Right Hand Side (R.H.S)
$=1 + 3 + 5 + \dots + (2k-1) + (2(k+1)-1)$ $=k^{2} + 2(k + 1) - 1$ $=k^{2} + 2k + 2 - 1$ $=k^{2} + 2k + 1$ $=(k + 1)^{2}$	$=(k+1)^2$

L.H.S = R.H.S when n=k+1 is true by induction.

5. For all positive integers n, (n^2+n+1) is odd.

Solution:

Basic step: Suppose when n=1

$$n^2 + n + 1 = 1^2 + 1 + 1$$

This is odd Hence the basic step holds True

Inductive Step:

For some integers of $k:k^2 + k + 1$ is odd.

From the definition of odd, $\exists p \in \mathbb{Z}$, such that $k^2 + k + 1 = 2p + 1$

Subtract 1 from both sides, $k^2 + k = 2p$

Now let us take k + 1:

$$(k + 1)^{2} + (k + 1) + 1 = (k + 1)(k + 1) + (k + 1) + 1$$

$$= k^{2} + 2k + 1 + k + 1 + 1$$

$$= (k^{2} + k) + 2k + 2 + 1$$

$$= 2p + 2k + 2 + 1$$

$$= 2(p + k + 1) + 1 by inductive hypothesis where $\in \mathbb{Z}$$$

Hence that $(k + 1)^2 + (k + 1) + 1, \exists p \in \mathbb{Z}, such that k^2 + k + 1 = 2p + 1$

Hence by definition that $(k + 1)^2 + (k + 1) + 1$ is odd.

Therefore, it is true by Induction.