Hipótesis e Intervalos de confianza

Prueba	Hipótesis nula	Hipótesis alter- nativa	Intervalo de confianza asociado	Comando en R	Criterio de decisión para rechazar
Prueba de	H = H + H	$H_1: \mu \neq \mu_0$	$\left(\bar{x} \pm Z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$	No tiene	Se rechaza H_0 si μ_0
inpotesis para ia media con varianza	$\mu = \mu_0$	$H_1: \mu < \mu_0$	$\left(-\infty, \bar{x} + Z_{1-\alpha} \frac{\sigma}{\sqrt{n}}\right)$	No tiene	intervalo de
popiacional conocida.		$H_1: \mu > \mu_0$	$\left(ar{x}-Z_{1-lpha}rac{\sigma}{\sqrt{n}},\infty ight)^{-1}$	No tiene	comianza.
Prueba de hipótesis para la	$H_0: \mu = \mu_0$	$H_1: \mu eq \mu_0$	$\left(\bar{x} \pm t_{1-\alpha/2, n-1} \frac{S}{\sqrt{n}}\right)$	<pre>t.test(x= ,conf.level= , alternative="two.sided", mu=)</pre>	Se rechaza H_0 si μ_0 NO está en el
media con varianza poblacional		$H_1: \mu < \mu_0$	$\left(-\infty, \bar{x} + t_{1-\alpha,n-1} \frac{S}{\sqrt{n}}\right)$	<pre>t.test(x= , conf.level= , alternative="less", mu=)</pre>	intervalo de confianza.
		$H_1: \mu > \mu_0$	$\left(ar{x} - t_{1-lpha,n-1} rac{S}{\sqrt{n}}, \infty ight)$	<pre>t.test(x= , conf.level= , alternative="greater", mu=)</pre>	
Prueba de hipótesis para la diferencia	$H_0: \mu_X - \mu_Y = d_0$	$H_1: \mu_X - \mu_Y \neq d_0$	$\left(\bar{x} - \bar{y} \pm Z_{1-\alpha/2} \sqrt{\frac{\sigma_X^2}{n_x} + \frac{\sigma_Y^2}{n_y}}\right)$	No tiene	Se rechaza H_0 si d_0 NO está en el
de medias con varianzas		$H_1: \mu_X - \mu_Y < d_0$	$\left(-\infty, \bar{x} - \bar{y} + Z_{1-\alpha} \sqrt{\frac{\sigma_X^2}{n_x} + \frac{\sigma_Y^2}{n_y}}\right)$	No tiene	intervalo de confianza.
poblacionales conocidas.		$H_1: \mu_X - \mu_Y > d_0$	$\left(\bar{x} - \bar{y} - Z_{1-\alpha} \sqrt{\frac{\sigma_X^2}{n_x} + \frac{\sigma_Y^2}{n_y}}, \infty\right)$	No tiene	
Prueba de hipótesis para la diferencia de medias con	$H_0: \mu_X - \mu_Y = d_0$	$H_1: \mu_X - \mu_Y \neq d_0$	$\left(\bar{x} - \bar{y} \pm t_{1-\alpha/2,k} S_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}\right)$	<pre>t.test(x= , y= , conf.level= , alternative="two.sided", mu= , var.equal=T)</pre>	Se rechaza H_0 si d_0 NO está en el intervalo de
varianzas poblacionales desconocidas e iguales.		$H_1: \mu_X - \mu_Y < d_0$	$\left(-\infty, \bar{x} - \bar{y} + t_{1-\alpha,k} S_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}\right)$	<pre>t.test(x= , y= , conf.level= , alternative="less", mu= , var.equal=T)</pre>	confianza.
		$H_1: \mu_X - \mu_Y > d_0$	$\left(\bar{x} - \bar{y} - t_{1-\alpha,k} S_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}, \infty\right)$	<pre>t.test(x= , y= , conf.level= , alternative="greater", mu= , var.equal=T)</pre>	

Prueba	Hipótesis nula	Hipótesis alternativa	alter- Intervalo de confianza asociado	Comando en R	Criterio de decisión para la hipótesis
Prueba de hipótesis para la diferencia de medias con	$H_0: \mu_X - \mu_Y = d_0$	$H_1: \mu_X - \mu_Y \neq d_0$	$\left(\bar{x} - \bar{y} \pm t_{1-\alpha/2,k} \sqrt{\frac{S_X^2}{n_X} + \frac{S_Y^2}{n_Y}}\right)$	<pre>t.test(x= , y= , conf.level= , alternative="two.sided", mu= , var.equal=F)</pre>	Se rechaza H_0 si d_0 NO está en el intervalo de
varianzas poblacionales desconocidas y diferentes.		$H_1: \mu_X - \mu_Y < d_0$	$\left(-\infty, \bar{x} - \bar{y} + t_{1-\alpha,k} \sqrt{\frac{S_X^2}{n_X} + \frac{S_Y^2}{n_Y}}\right)$	<pre>t.test(x= , y= , conf.level= , alternative="less", mu= , var.equal=F)</pre>	соппапzа.
		$H_1: \mu_X - \mu_Y > d_0$	$\left(\bar{x} - \bar{y} - t_{1-\alpha,k} \sqrt{\frac{S_X^2}{n_X} + \frac{S_Y^2}{n_Y}}, \infty\right)$	<pre>t.test(x= , y= , conf.level= , alternative="greater", mu= , var.equal=F)</pre>	
Prueba de hipóte- $H_0: \sigma_X^2 = \sigma_Y^2$ sis para la compara-	$H_0:\sigma_X^2=\sigma_Y^2$	$H_1:\sigma_X^2 eq\sigma_Y^2$	$\left(F_1 \frac{S_2^2}{S_X^2}, F_2 \frac{S_2^2}{S_X^2}\right)$	<pre>var.test(x= , y= , alternative="two.sided",</pre>	Se rechaza H_0 si el 1 NO está en el

Fórmulas extras:

Prueba de hipótesis para la diferencia de medias con varianzas poblacionales desconocidas e iguales:

$$k = n_X + n_Y - 2$$

sis para la comparación de varianzas

conf.level=)

intervalo de confianza.

$$S_p^2 = \frac{(n_X - 1)S_X^2 + (n_Y - 1)S_Y^2}{n_X + n_Y - 2}$$

 $\frac{(S_X^2/n_X + S_Y^2/n_Y)^2}{(S_X^2/n_X)^2/(n_X - 1) + (S_Y^2/n_Y)^2/(n_Y - 1)}$ Prueba de hipótesis para la diferencia de medias con varianzas poblacionales desconocidas y diferentes: dónde k es el entero más cercano a

Prueba de hipótesis para la comparación de varianzas :

$$F_1 = \frac{1}{f_{1-\alpha/2}, n_Y - 1, n_X - 1}$$

$$F_2 = f_{1-\alpha/2}, n_X - 1, n_Y - 1$$