Computer Architecture: Adders

Kasper Engelen Laurens De Wachter

00101110 + 00100111


```
0101110
00101110
+ 00100111
01010101
```

```
0101110
00101110
+ 00100111
01010101
```

Inputs			Outputs		
a	b	Carryin	CarryOut	Sum	Comments
0	0	0	0	0	$0 + 0 + 0 = 00_{two}$
0	0	1	0	1	$0 + 0 + 1 = 01_{two}$
0	1	0	0	1	$0 + 1 + 0 = 01_{two}$
0	1	1	1	0	$0 + 1 + 1 = 10_{two}$
1	0	0	0	1	$1 + 0 + 0 = 01_{two}$
1	0	1	1	0	$1 + 0 + 1 = 10_{two}$
1	1	0	1	0	$1 + 1 + 0 = 10_{two}$
1	1	1	1	1	1 + 1 + 1 = 11 _{two}

1-Bit Full Adder

1-bit addition:

 CarryOut output is 1 when at least two inputs are 1

• Sum output is 1 when exactly one input is 1 or all three inputs are 1

1-Bit Full Adder

1-bit addition:

 CarryOut output is 1 when at least two inputs are 1

$$CarryOut = (b \cdot CarryIn) + (a \cdot CarryIn) + (a \cdot b)$$

• Sum output is 1 when exactly one input is 1 or all three inputs are 1

$$Sum = (a \cdot \overline{b} \cdot \overline{CarryIn}) + (\overline{a} \cdot b \cdot \overline{CarryIn}) + (\overline{a} \cdot \overline{b} \cdot CarryIn) + (a \cdot b \cdot CarryIn)$$

Ripple Carry Adder

n-bit addition:

Series of 1-bit full adders

Carry ripples through addition = Slow!

Calculate Carry

```
????? ?????
0010 1110
+ 0010 0111
```

Propagate and Generate

Generate: "When do ai and bi generate a carry?" gi = ai . bi

Propagate: "When do ai and bi propagate a carry?" pi = ai + bi c3 c2 c1 c0 a3 a2 a1 a0 b3 b2 b1 b0 s3 s2 s1 s0

CarryIn:

$$C_{i+1} = g_i + p_i$$
. Ci

Carry Lookahead Adder

```
c1 = g0 + (p0 \cdot c0)
c2 = g1 + (p1 \cdot g0)
            + (p1 \cdot p0 \cdot c0)
c3 = g2 + (p2 \cdot g1)
            + (p2 \cdot p1 \cdot g0)
            + (p2 \cdot p1 \cdot p0 \cdot c0)
c4 = g3 + (p3 \cdot g2)
            + (p3 \cdot p2 \cdot g1)
            + (p3 \cdot p2 \cdot p1 \cdot g0)
            + (p3 \cdot p2 \cdot p1 \cdot p0 \cdot c0)
```

c3 c2 c1 c0 a3 a2 a1 a0 + b3 b2 b1 b0 s3 s2 s1 s0

Carry Lookahead Adder

```
?????
0010 1110
+0010 +0111
```

Super Propagates and -Generates

Calculate CarryIn of each 4-bit carry-lookahead adder.

Superpropagate Pi and supergenerate Gi:

Calculate Ci:

8-bit Carry Lookahead Adder

