

Department of Physics

Indian Institute of Technology Kharagpur Kharagpur-721302, West Bengal, India

Subject No. PH41023(Statistical Physics-I) Assignment Due date: 1th February 2023 Tuesday 31st January, 2023 Total Marks: 10

Assignment # 3

- §1. An ideal gas with adiabatic exponent γ undergoes a process in which its pressure P is related to its volume V by the relation $P = P_0 \alpha V$, where P_0 and α are positive constants. The volume starts from being very close to zero and increases monotonically to $\frac{P_0}{\alpha}$. At what value of the volume during the process does the gas have maximum entropy?
- §2. Consider a system maintained at temperature T, with two available energy states E_1 and E_2 each with degeneracies g_1 and g_2 . If p_1 and p_2 are probabilities of occupancy of the two energy states, what is the entropy of the system?
- §3. uppose that the number of microstates available to a system of N particles depends on N and the combined variable 2UV, where U is the internal energy and V is the volume of the system. The system initially has volume $2m^3$ and energy 200 J . It undergoes an isentropic expansion to volume $4m^3$. What is the final pressure of the system in SI units?
- §4. Assume that the energy E of a system can be given by the sum of n independent quadratic terms, so that

$$E = \sum_{i=1}^{n} \alpha_i \ x^2_i$$

where α_i are constants and xi are some variables. Assume also that each x_i could in principle take any value with equal probability. Calculate the mean energy.