Atomová fyzika

- a) Celková energie elektronu v základním stavu je $E_1 = -13,6$ eV. Považujme ho za klasickou částici, která obíhá proton po kruhové dráze. Určete tento poloměr, potenciální energii, kinetickou energii a rychlost elektronu. (pozn: potenciální energie v radiálním poli se počítá $E_P = -k \frac{Q_1 Q_2}{r}$)
- b) Porovnejte de Broglieho vlnovou délku elektronu a délku trajektorie elektronu
- c) jak velký proud vytváří obíhající elektron v atomu vodíku? Jak velké magnetické pole elektron vytváří? $[r=ke^2/2E_1=5,3.10^{-11}m, E_p=2E_1=-27,2eV, E_k=-E_1=13,6eV, v^2=2E_k/m=(2,2.10^6 m/s)^2, b)$ rovnají se, c) 1,06mA, 12,6T]

Jaká je energie prvního excitovaného stavu elektronu v atomu vodíku? Jakou energii vyzáří při přechodu do základního stavu? Jakou vlnovou délku a barvu bude mít pozorovaná spektrální čára? Jakému přechodu odpovídá světlo vodíkové výbojky o vlnové délce 656 nm? $[E_n=E_1/n^2=-3.4 \text{ eV}, \Delta E=10.2 \text{ eV}, \lambda=122 \text{ nm}, 3 \rightarrow 2]$

Určete hodnotu energie potřebnou k ionizaci 1 molu atomárního vodíku ze základního stavu. [1,31 MJ/mol]

Při jaké teplotě je průměrná energie jedné molekuly plynného vodíku rovna energii potřebné k odtržení elektronu z atomu vodíku?

[E=5/2.kT, T = 63 000 K]

Kolik stavů s různými hodnotami vedlejšího (orbitálního) l, magnetického m a spinového s kvantového čísla existuje pro hlavní kvantové číslo n=4? [2+6+10+14]

Odvoďte vazebnou energii připadající na jeden nukleon pomocí ekvivalence hmoty a energie pro jádro 4 He. Hmotnost volného protonu je m_p =1,00727 u, hmotnost volného neutronu je m_n =1,00866 u. Hmotnost jádra 4 He je m_{He} =4,0026 u.

$$[4,89.10^{-29} \text{ kg}, E = 4,4.10^{-12} \text{ J} = 27 \text{ MeV}]$$

Konečným produktem rozpadu ${232 \over 90}$ Th je izotop olova ${208 \over 82}$ Pb . Určete, kolik částic α a kolik částic β se při této přeměně uvolnilo?

Velmi pomalý neutron byl zachycen jádrem ${10 \atop 5}B$ a vyvolal jadernou reakci ${10 \atop 5}B + {1 \atop 0}n \rightarrow {7 \atop 3}Li + {4 \atop 2}He$. Pří tom se uvolnila energie Er = 2,8 MeV. Jaká bude energie jádra lithia (m(Li) = 6,941 u) a částice α (m(He) = 4,003 u)? [platí ZZE, ZZH, energii i hybnost před zachycením považujme za nulové; E(He) = 1,78 MeV, E(Li) = 1,02 MeV]

- a) Vypočtěte, kolik ²³⁵U spotřebuje za rok jeden Temelínský reaktor o elektrickém výkonu 1000 MW. Účinnost elektrárny je 30 %. Při štěpení jednoho jádra ²³⁵U se uvolní energie asi 200 MeV.
- b) Odhadněte, kolik je potřeba k zajištění tohoto výkonu vytěžit uranové rudy, která obsahuje 0,2 % čistého uranu, který obsahuje 0,7 % izotopu ²³⁵U.
- c) Kolik hnědého uhlí o výhřevnosti 15000 kJkg⁻¹ by bylo potřeba k zajištění tohoto výkonu? [1235 kg, 88000t, 7000000t]

V atmosféře Země neustále probíhá jaderná reakce při níž kosmické záření bombarduje jádra dusíku ¹⁴N, z nějž beta plus rozpadem vzniká radioaktivní uhlík ¹⁴C, který se rozpadá beta mínus rozpadem s poločasem rozpadu 5730 let.

- a) Zapište rovnice těchto jaderných reakcí.
- b) Vysvětlete princip radioaktivního datování pomocí uhlíku ¹⁴C
- c) Vzorek dřevěného uhlí obsahuje 21 % koncentraci uhlíku ¹⁴C oproti živému dřevu. Určete stáří vzorku. [12,9 tis. roků]

Jeden gram uranu 238 vyzáří za 1 sekundu 1,24.10⁴ částic alfa. Určete aktivitu vzorku a poločas rozpadu.

$$[A = 1,24.10^4 \text{ Bq}; A = -\Delta N/t = N.\lambda; T = \ln 2/\lambda = 4,5.10^9 \text{ let}]$$

- a) Jaké rozlišujeme druhy radioaktivního záření? Proč jsou v přírodě pouze 4 rozpadové řady?
- b) Čím je ionizující záření nebezpečné pro člověka?
- c) Vysvětlete význam jednotek gray a sievert. Jaká hodnota ekvivalentní dávky už je nebezpečná?
- d) Jaké jsou hlavní zdroje radioaktivity v běžném životě? V jakých hodnotách se pohybuje velikost ekvivalentní dávky?
- e) K čemu se ionizující záření používá v medicíně?

Popište základní princip konstrukce a) štěpné a fúzní bomby, b) štěpné a fúzní elektrárny.

Vysvětlete pojmy: lepton, hadron, mezon, baryon, kvark, antičástice