

UE19CS252

Dr. D. C. Kiran

Department of Computer Science and Engineering

Unit 3: Memory

Dr. D. C. Kiran

Department of Computer Science and Engineering

Syllabus

Unit 1: Basic Processor Architecture and Design

Unit 2: Pipelined Processor and Design

Unit 3: Memory

Unit 4: Input/Output Device Design

Unit 5: Advanced Architecture

Cache

PES UNIVERSITY ONLINE

 Cache memory is an architectural arrangement which makes the main memory appear faster to the processor than it really is.

General Cache Requirement

Why Block Transfer?

Fast memory technology is more expensive per bit than slower memory

Solution: 90/10 rule comes from empirical observation:

"A program spends 90% of its time in 10% of its code"

i.e The data or code accessed recently, may get accessed soon

Locality of Reference or Principle of Locality

Locality of Reference

Temporal Locality:

if an item is referenced, it will tend to be referenced again soon.

Spatial Locality:

if an item is referenced, items whose addresses are close by will tend to be referenced soon.

```
// Multiply the two matrices together

for ( ty = 0 ; ty < BLOCK_SIZE ; ty++ ) {
    for ( tx = 0 ; tx < BLOCK_SIZE ; tx++ ) {
        Csub = 0.0 ;
        for (k = 0; k < BLOCK_SIZE; ++k ) {
            Asub = As[ty][k] ;
            Bsub = Bs[k][tx] ;
            Csub += Asub * Bsub ;
        c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
        C[c + wB * ty + tx] += Csub;
        }// for tx ;
}// for ty
```

Both properties hold for data and instructions

Block?

The term "block" refers to a set of contiguous addresses locations of some size.

Block vs Line?

The term "block" refers to a set of contiguous addresses locations of some size.

2^K Line

Block vs Line?

• A simple processor example:

- Main memory is addressable by a 16-bit address.
- Main memory has 65536 (64 k)words.
- Main memory has 4096 (4 K) Blocks of 16 words each.
- Consecutive addresses refer to consecutive words.
- Cache consisting of 128 Lines of 16 words each.
- Total size of cache is 2048 (2 K) words.

Word 0
Word 1
Word 2
Word 3
Word 65536

Block vs Line?

• A simple processor example:

- Main memory is addressable by a 16-bit address.
- Main memory has 65536 (64 k) words.
- Main memory has 4096 (4 K) Blocks of 16 words each.
- Consecutive addresses refer to consecutive words.
- Cache consisting of 128 Lines of 16 words each.
- Total size of cache is 2048 (2K) words.
- 4096/128= 32 possible Blocks for one Line

Line 0
Line 1
Line 2
Line 126
Line 127

128 Block Cache

To Note and Few Terminology

- Cache Lines vs Blocks
- Block Size
- Line Size
- # Cache lines <<< # Blocks
- Block Transfer
- Cache Hit
 - Read Hit
 - Write Hit
- Cache Miss
 - Read Miss
 - Write Miss

Rear or Write MISS

Rear or Write HIT

Four Questions in Cache Design

Cache Design is controlled by Four Questions:

Q1: Where can a block be placed in the cache?

- Block Placement

Q2: How is a block found if it is in the cache?

- Block Identification.

Q3: Which block should be replaced on a miss?

- Block Replacement.

Q4: What happens on a write?

- Write Strategy.

Next Session

Cache Design Principles

Next Session

Cache Design Principles

THANK YOU

Dr. D. C. Kiran

Department of Computer Science and Engineering

dckiran@pes.edu

9829935135