Exercices:

Ils porteront sur les notions vues en MPSI pour les fonctions numériques de 2 ou 3 variables : (continuité, existence des dérivées partielles d'ordre 1, fonction numérique de classe C1 définie sur un ouvert de \mathbb{R}^2 , \mathbb{R}^3) et le début du cours de calcul différentiel de Spé.

Cours

Ch16 Calcul différentiel et optimisation

CONTENUS CAPACITÉS & COMMENTAIRES

Révisions du programme précédent

c) Opérations sur les applications différentiables

Différentielle d'une combinaison linéaire d'applications différentiables, de $M(f_1,...,f_p)$ où M est multilinéaire et où $f_1,...,f_p$ sont des applications différentiables. (\star) Preuve dans le cas où p=2.

 (\star) Règle de la chaîne : différentielle d'une composée d'applications différentiables.

Dérivée le long d'un arc : si γ est une application définie sur l'intervalle I de \mathbb{R} , dérivable en t, (\star) si f est différentiable en $\gamma(t)$, alors $(f \circ \gamma)'(t) = \mathrm{d} f(\gamma(t)) \cdot \gamma'(t)$.

(*) Dérivées partielles d'une composée d'applications différentiables.

Interprétation géométrique en termes de tangentes.

Cas particulier fondamental : $\gamma(t) = x + tv$.

- (★) Dérivation de $t \mapsto f(x_1(t), ..., x_n(t))$.
- (★) Dérivées partielles de

$$(u_1,...,u_m) \mapsto f(x_1(u_1,...,u_m),...,x_n(u_1,...,u_m)).$$

d) Applications de classe \mathscr{C}^1

Une application f est dite de classe \mathscr{C}^1 sur un ouvert Ω si elle est différentiable sur Ω et si df est continue sur Ω .

L'application f est de classe \mathscr{C}^1 sur Ω si et seulement si les dérivées partielles relativement à une base de E existent en tout point de Ω et sont continues sur Ω .

Opérations algébriques sur les applications de classe \mathscr{C}^1 .

La démonstration n'est pas exigible.

CONTENUS CAPACITÉS & COMMENTAIRES

(*) Si f est une application de classe \mathscr{C}^1 de Ω dans F, si γ est une application de classe \mathscr{C}^1 de [0,1] dans Ω , si $\gamma(0) = a$ et $\gamma(1) = b$, alors :

Cas particulier $\gamma(t) = a + tv$ pour tout $t \in [0, 1]$.

$$f(b) - f(a) = \int_0^1 \mathrm{d}f(\gamma(t)) \cdot \gamma'(t) \, \mathrm{d}t.$$

(*) Si Ω est connexe par arcs, caractérisation des fonctions constantes sur Ω .

Démonstration pour Ω convexe.

e) Vecteurs tangents à une partie d'un espace normé de dimension finie

Si X est une partie de E et x un point de X, un vecteur v de E est tangent à X en x s'il existe $\varepsilon > 0$ et un arc γ défini sur $] - \varepsilon$, ε [, à valeurs dans X, dérivable en 0, tel que $\gamma(0) = x$, $\gamma'(0) = v$.

Si g est une fonction numérique définie et de classe \mathscr{C}^1 sur l'ouvert Ω de E, si $x \in X$ et $dg(x) \neq 0$, alors $T_x X$ est égal au noyau de dg(x).

Notation T_xX pour l'ensemble des vecteurs tangents à X en x.

Exemples : (\star) sous-espace affine, (\star) sphère d'un espace euclidien, (\star) graphe d'une fonction numérique définie sur un ouvert de \mathbb{R}^2 . La démonstration de cet énoncé et le théorème des fonctions implicites sont hors programme.

Traduction en termes de gradient si E est euclidien, en particulier pour $E = \mathbb{R}^n$ muni de sa structure euclidienne canonique.

Exemple :(\star) plan tangent à une surface de \mathbb{R}^3 définie par une équation.

g) Applications de classe \mathscr{C}^k

Dérivées partielles d'ordre k d'une fonction définie sur un ouvert de \mathbb{R}^n .

Une application est dite de classe \mathscr{C}^k sur un ouvert Ω de \mathbb{R}^n si ses dérivées partielles d'ordre k existent et sont continues sur Ω .

 (\star) Opérations algébriques sur les applications de classe \mathscr{C}^k . Composition d'applications de classe \mathscr{C}^k .

Notations
$$\frac{\partial^k f}{\partial x_{j_k} \dots \partial x_{j_1}}$$
, $\partial_{j_k} \dots \partial_{j_1} f$, $\partial_{j_1, \dots, j_k} f$.

La notion de différentielle seconde est hors programme.

Les démonstrations ne sont pas exigibles mais ont été faites.