福宁古五校教学联合体 2024-2025 学年第一学期期中质量检测

高二数学试卷

(考试时间: 120 分钟, 试卷总分: 150 分)

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选

项中,只有一项是符合题目要求的. 1. 直线 $3x-4y+1=0$ 的一个方向向量是					
1.		(4,3)		C. (4,-3)	D. (3,4)
2.	已知 S_n 是等差数列 $\{a_n\}$ 的前 n 项和,若 a_{11} =8,则 S_{21} =				
	A.	168	B. 196	C. 200	D. 210
3.	已知	数列 $\{a_n\}$ 各项都是	是正数的数列,下列说	法正确的是	
	A.	若 $\{a_n\}$ 是等差数	列,则 $\left\{2^{a_n}\right\}$ 是等差数 3	刊	
	В.	若 $\{a_n\}$ 是等比数数	列,则 $\left\{2^{a_n}\right\}$ 是等比数 ${\mathfrak Z}$	ńΙ	
	C.	若 $\{a_n\}$ 是等差数数	列,则 $\left\{2^{a_n} ight\}$ 是等比数 $oldsymbol{5}$	رآ]	
	D.	若 $\{a_n\}$ 是等比数列	刊,则 $\left\{2^{a_n}\right\}$ 是等差数 $oldsymbol{eta}$	Ŋ	
4.	A. B. C.	数列从第 3 项起 当 $n=5$ 时, a_n 取 -14 是该数列的			<u>1</u>
5.	. 圆 $C_1: x^2 + y^2 + 2x - 6y + 1 = 0$ 与圆 $C_2: x^2 + y^2 - 4x + 2y = 11$ 的位置关系为				
6.		外离 直线 $y = x \cos \theta +$	B. 相交 1,则这条直线的倾斜	C. 外切 角α的取值范围是	D. 内切
	A.	[0, π]	B. $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$	C. $\left[\frac{\pi}{4}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{4}\right]$	D. $[0, \frac{\pi}{4}] \cup [\frac{3\pi}{4}, \pi)$
7.	己知』	直线 <i>l</i> : y−2=k(x	$(x-1)$ 将圆 $x^2 + y^2 = 9$ 分	r 成面积分别为 S_1,S_2 的	的两个部分,当 $ S_1 - S_2 $

C. $-\frac{1}{3}$ D. $-\frac{1}{2}$

的值取最大时,k 的值为

A. 0 B. 2

8. 一个弹力球从 1m 高处自由落下,每次着地后又弹回到原来高度的 $\frac{4}{5}$ 处,那么在第 n 次 着地后,它经过的总路程超过5m,则n的最小值是 B. 6 C. 7 二、多项选择题: 本题共 3 小题,每小题 6 分, 共 18 分. 在每题的选项中有 多项符合题目要求,全部选对的得6分,部分选对的得部分分,选错得0分. 9. 已知直线 $l_1:(a-2)x+3y+a=0$, $l_2:ax+3(a-2)y-3=0$,则下列说法正确的是 A. 若 l_1 满足在x轴上的截距与在y轴上的截距相等,则a=5B. l_2 必过定点 $\left(\frac{3}{2}, -\frac{1}{2}\right)$ C. 若 l₁ // l₂,则 a=1 或 4 D. 若 $l_1 \perp l_2$, 则a=210. 已知圆 $M: x^2 + y^2 = r^2 (r > 0)$,点 N(m,n),直线 $l: mx + ny - r^2 = 0$ (m, n 不全为 0), 则下列说法正确的是 A. 若 l 与圆 M 相切,则 N 点在 l 上 B. 若 l 与圆 M 相交,则 N 点在 l 外 11. 斐波那契数列又称"兔子数列",在现代物理、化学等领域都有着广泛的应用. 斐波那 契数列 $\{a_n\}$ 可以用如下方法定义: $F_1 = F_2 = 1$, $F_n = F_{n-1} + F_{n-2} (n \geqslant 3, n \in N^*)$. 则 B. $F_n^2 = F_n F_{n+1} - F_n F_{n-1}$ A. $F_{12} = 145$ C. $F_1^2 + F_2^2 + \dots + F_n^2 = F_n F_{n+1}$ D. $F_1 + F_2 + \dots + F_n = F_{n+2} - F_2$ 三、填空题: 本大题共3小题,每小题5分,共15分. 12. 直线 x-y-1=0 与直线 x-y+1=0 的距离是 13. 已知圆 $O: x^2 + y^2 = 4 = x$ 轴交于 A , B 两点(点 A 在点 B 的左边),动点 C 满足 $|CA| = \sqrt{2} |CB|$,则 $\triangle CAB$ 的面积最大值为______. 14. 定义在R上的函数f(x)满足对任意的x,y都有f(xy)=f(x)+f(y)-t (t 为常数), 且 $f\left(\frac{1}{2}\right)=t+1$,设 $a_n=f\left(2^n\right)$,数列 $\{a_n\}$ 的前 n 项和为 S_n ,当且仅当 n=4 时, S_n 取到最 大值,则 t 的取值范围是

四、解答题:本大题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.

15. (本题满分 13 分)

已知数列 $\{a_n\}$ 的前 n 项和 $S_n = n^2$,其中 $n \in N^*$.

- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 若对于任意正整数 n,都有 $\frac{1}{a_1a_2} + \frac{1}{a_2a_3} + \dots + \frac{1}{a_na_{n+1}} \le \lambda$,求实数 λ 的最小值.

16. (本题满分 15 分)

已知直线l过点A(-3,2),且l的一个法向量是(4,3).

- (1) 求直线l的方程;
- (2) 若直线 l 与 y 轴交于点 C,将直线 AC 绕着点 A 逆时针旋转 90°,点 C 所对应的点为 D,求直线 AD 的方程;
- (3) 在(2)的条件下,求 ZCAD的角平分线所在的直线方程.

17. (本题满分 15 分)

设数列 $\{a_n\}$ 满足 $a_1 = 2$, $a_{n+1} = a_n + 4 \cdot 3^{n-1}$.

- (1)求数列 $\{a_n\}$ 的通项公式;
- (2)令 $b_n = na_n$,求数列 $\{b_n\}$ 的前n项和 S_n .

18. (本题满分17分)

已知直线 $l: y = k(x+1)(k \neq 0)$ 和圆 $C: x^2 + y^2 = 4$ 交于 $A \cdot B$ 两点.

- (1) 当 k=1 时,求直线 l 被圆 C 所截得的弦长 |AB|;
- (2) 探究: x 轴的负半轴上是否存在一个定点 M,使得 x 轴平分 $\angle AMB$,如果有,求出 M 点坐标,如果没有,说明理由.

19. (本题满分17分)

定义: 对于数列 $\{a_n\}$ 若存在常数t, 对任意的 $n \in N^*$ 都有

 $|a_{n+1}-a_n|+|a_n-a_{n-1}|+\cdots+|a_2-a_1|\leq t$, 则称数列 $\{a_n\}$ 为和谐数列.

- (1) 已知数列 $a_n = \left(\frac{1}{2}\right)^n$, 判断 $\{a_n\}$ 是否为和谐数列, 并说明理由;
- (2) 设 S_n 是数列 $\{a_n\}$ 的前n项和,证明:若 $\{S_n\}$ 是和谐数列,则 $\{a_n\}$ 也是和谐数列;
- (3) 若 $\{a_n\}$, $\{b_n\}$ 都是和谐数列,证明 $\{a_nb_n\}$ 也是和谐数列.