Lecture 3 Entity-Relationship Model Constraints

Outline

- Cardinality Constraints
- Participation Constraints
- Constraints for Ternary Relationship Sets

Relationship Constraints

- In most cases, database designers want to include some additional information about relationship sets to answer the questions like:
 - "how many entities can be associated with one entity at most (or at least)?"
- For example, we add the relationship set "major" to model "students have majors" in the exercise of the last lecture.
- But the description is not accurate.
 - Can one student have multiple majors?
 - Can one program have multiple students?
 - Does every student have a major?
 - Is every program the major for some students?

Relationship Constraints

- To express the answers, ER diagrams have constraints on relationship sets.
- Constraints indicate some conditions under the context of the modeled problem.
- Two types of constraints
 - Cardinality constraints
 - Participation constraints
- "Cardinality" is a term from set theory. It is the number of items in a set.

- First, let's consider the questions:
- Can one student have multiple majors?
 - No, one student can only associate with at most one program as his/her major.
- Can one major program have multiple students?
 - Yes, one major program can have many students.
- This "major" relationship set is a many-to-one relationship set.
- The entity set "student" is on the many side, while the entity set "program" is on the one side.
- This type of constraints is called cardinality constraint.

- To express the cardinality constraints, ER diagrams use an arrow (→) pointing to the one side.
- For the many side, the links simply have no arrow (–).

A one-to-many relationship is the reverse of many-to-one.

- One-to-one relationship:
 - One entity from one entity set is associated with at most one entity from the other entity set and vice versa.
 - For example, one instructor can be the program director of at most one program, and one program has at most one program director.

- Many-to-many relationship:
 - One entity from one entity set can be associated with multiple entities from the other entity set and vice versa.
 - For example, one student can borrow multiple books, and one book can be borrowed by multiple students.

Participation Constraints

- To express the answers to the other two questions:
 - Does every student have a major?
 - Is every program the major for some students?
- ER diagrams have participation constraints.
- Total participation:
 - Every entity participates a relationship.
 - The link is a **double line** (=).
- Partial participation:
 - There are some entities do not participate any relationship.
 - The link is a single line (−).

Participation Constraints

- Back to the example,
 - Every student has a major. (Students totally participate in the relationship set.)
 - Every program is the major for some students. (Programs also totally participate.)
- Combining the cardinality constraints,

Participation Constraints

- Consider another example, the relationship set "program director".
 - It's possible that an instructors is not a program director for any program.
 - But every program has a program director.
- Thus, "instructor" is on the partial side, while "program" is on the total side.
- Combining the cardinality constraints,

Alternative Notations

- Instead of using lines and arrows, relationship constraints can be expressed by numbers in the form a..b besides links.
- a is the minimum number of entities associated with.
- b is the maximum number of entities associated with.
- * means multiple.
- For example,

Constraints for Ternary Relationship Sets

- Constraints for ternary relationship sets are not easy.
- They easily creates ambiguous, meaning that an ER diagram can be understood in different ways.
- Thus, we usually avoid using constraints on ternary relationship sets.
- If expressing constraints is important, ternary relationship sets can always be converted into several binary ones.

Constraints for Ternary Relationship Sets

- Consider the ternary relationship "enroll" associating "student", "instructor", and "course".
- Assume we want to express that
 - one course is instructed by at most one instructor; and
 - one instructor instructs at most one course at a time. (Let's just assume this for the example purpose. Even it is not the real case.)
- So, both of "instructor" and "course" are pointed by arrows.
- One may draw the ER diagram naively as follows.

Constraints for Ternary Relationship Sets

- However, this ER diagram can be understood in different ways.
- Meaning 1:
 - One student is only associated with one combination of a course and an instructor. But, no constraints is between course and instructor.
- Meaning 2:
 - One course is instructed by at most one instructor.
 - One instructor can instruct at most one course.
 - But there is no constraints on students.

Relationships	Meaning 1	Meaning 2
(s_1,i_1,c_1)		
(s_2,i_2,c_1)		Not allowed
(s_3,i_1,c_2)		Not allowed
(s_1,i_2,c_1)	Not allowed	Not allowed
(s_2,i_1,c_2)	Not allowed	Not allowed
(s_4,i_1,c_1)		

Assuming s_n , i_n , and c_n are students, instructors, and courses respectively.

- To express complex constraints on a ternary relationship, one can always convert the ternary relationship to binary ones by introducing artificial entity sets and relationship sets.
- For meaning 1, one entity is associated with at most one combination of two entities.
- This type of many-to-one constraints (the many side is a combination of entities) can be converted into

- E is an artificial entity set.
- R_1 , R_2 , and R_3 are artificial relationship sets.
- Constraints are on the next page.

- First, for each relationship (s, i, c) in "enroll", the entity set E contains an artificial entity e.
- Then, to represent the relationship (s, i, c),
 - (s, e) to the relationship set R_1 ,
 - (i, e) to the relationship set R_2 ,
 - (c,e) to the relationship set R_3 .

To represent Meaning 1.

•	$E = \{e_1, e_2, e_3, e_6\}$	
	$R_1 = \{(s_1, e_1), (s_2, e_2), (s_3, e_3), (s_4, e_6)\}$	
	$R_2 = \{(i_1, e_1), (i_2, e_2), (i_1, e_3), (i_1, e_6)\}$	
	$R_3 = \{(c_1, e_1), (c_1, e_2), (c_2, e_3), (c_1, e_6)\}$	

Relationships	Meaning 1
$e_1 = (s_1, i_1, c_1)$	
$e_2 = (s_2, i_2, c_1)$	
$e_3 = (s_3, i_1, c_2)$	
$e_4 = \underbrace{(s_{\perp}, i_2, c_{\perp})}$	Not allowed
$e_5 = (s_2, i_1, c_2)$	Not allowed
$e_6 = (s_4, i_1, c_1)$	

• Therefore, R_2 and R_3 are one-to-many relationship sets ("instructor" and "course" are on the "one" side.) and R_1 is a one-to-one relationship set.

Adding the constraints to the ER diagram,

- Finally, the entity set E has at least one attribute for the key and inherits all attributes from the original relationship set, if any.
- The above conversion can be generalized to all other similar cases.

- Next, we move on to the meaning 2.
 - One course is instructed by at most one instructor.
 - One instructor can instruct at most one course.
 - But there is no constraints on students.
- However, the above construction does not work for this case.
 (Please have a try.)
- This constraint is between two entity sets and free from other entity sets.
- For this type of constraints, the structure is like this.

Only three relationship sets are added.

- For each relationship (s_n, i_n, c_n) , we add
 - (s_n, i_n) to the relationship set R_1 ,
 - (i_n, c_n) to the relationship set R_2 , and
 - (c_n, s_n) to the relationship set R_3 .

Relationships	Meaning 2
$e_1 = (s_1, i_1, c_1)$	
$e_2 = \frac{(s_2, i_2, c_1)}{}$	Not allowed
$e_3 = (s_3, i_1, c_2)$	Not allowed
$e_4 = \underbrace{(s_{\perp}, i_2, c_{\perp})}$	Not allowed
$e_5 = (s_2, i_1, c_2)$	Not allowed
$e_6 = (s_4, i_1, c_1)$	

Thus, Meaning 2 is represented as

$$R_1 = \{(s_1, i_1), (s_4, i_1)\}, R_2 = \{(i_1, c_1)\}, R_3 = \{(s_1, c_1), (s_4, c_1)\}$$

R₂ is a one-to-one relationship set.

 R_1 and R_3 are many-to-many. (Try more examples, then you

will see.)

- Sometimes more complex constraints is possible in the applications.
- For example, combining Meaning 1 and 2,
 - One course is instructed by at most one instructor.
 - One instructor can instruct at most one course.
 - One student is associated with at most one combination of instructors and courses.
- The previous conversion cannot work. (Please also have a try)
- To handle this case, some extended features will be introduced in the next lecture.
- We have only discussed cardinality constraints for ternary relationship sets. Participation constraints are actually the same.

Exercises

- Combining the constraints that we have discussed.
- 1. Try to make reasonable constraints on the relationship sets "major" and "PD".
- 2. Add a new entity set "transcript".
- 3. Model some reasonable relationship sets among "student", "transcript", and "course".

Exercises

End of Lecture 3