

## Phishing Website Classification (Data Mining Project)

Authors

Himanshu Yadav, Swastika Tiwari

Faculty Advisor

Prof Sharanjit Kaur

**Affiliations** 

Computer Science Department, Acharya Narendra Dev

College, Delhi University

Load ARFF file using liac-arff

Convert data to pandas

**Feature Selection** 

 Training Testing dataset division(75%, 25%)

• Train classification models:

· Optimize model parameters using

Decision Tree, K-Nearest

Neighbors.

library.

DataFrame.

## Introduction

Phishing is a deceptive online practice where attackers impersonate legitimate entities to steal sensitive information. It causes significant financial and reputational damage to individuals and organizations

Traditional methods of phishing detection, such as blacklisting and manual inspection, are often inadequate

This project explores the potential of machine learning to automate phishing website detection and improve accuracy

## Objective

To identify the most influential features and build models with high accuracy to assist in automated phishing detection systems.

## Methodology

## Class Distribution of Websites 6000 5000 5000 3000 1000 1000 -

Figure 1. Count of Phishing vs Non Phishing Websites

here -1 indicates Phishing websites and 1 indicates Non-Phishing based websites

## **Dataset and Features**



- Source: <u>UC Irvine Machine Learning Repo</u>
- Size: dataset of 11,056 web URLs with lexical and
   security features
- Key Attributes : SSLfinal\_State, URL\_Length, anno web\_traffic
- Lexical: URL Length, having\_IP\_Address, having\_At\_Symbol, double\_slash\_redirecting, HTTPS\_token.
- Host-based: SSLfinal\_State,
   Domain\_registeration\_length, age\_of\_domain,
   DNSRecord.
- Content-based: Request\_URL, URL\_of\_Anchor,
   SFH, popUpWidnow, web\_traffic
- Irrelevant features like Shortining\_Service,
   Prefix\_Suffix were dropped to prevent data
   leakage and overfitting, ensuring better model
   generalization.

### Results





Confusion Matrix

Figure 2. Confusion Matrix of (a) knn vs (b) decision tree model

# Feature Importance from Decision Tree having\_IP\_Address URL\_Length having\_At\_Symbol double\_slash\_redirecting SSLfinal\_State Domain\_registeration\_length HTTPS\_token Request\_URL URL\_of\_Anchor SFH popUpWidnow age\_of\_domain DNSRecord web\_traffic -

Figure 3.Feature importance using decision tree

## **Data Preprocessing**

- Selected the most impactful features using domain specific knowledge.
- 15 attributes dropped and 14 attributes kept.

## **Model Building**

Evaluate performance using:

- Accuracy
- Confusion Matrix
- Classification Report

## **Model Evaluation**

cross-validation.

## Conclusion

- Manually identified influential features for phishing website detection.
- Both the Decision Tree and KNN models perform well, achieving comparable accuracies of 92.94% and 92.43%, respectively.
- Demonstrated the potential of automated systems for phishing detection.

## References

1. Tan P.N., Steinbach M, Karpatne A. and Kumar V. Introduction to Data Mining, Second edition, Sixth Impression, Pearson, 2023.

- SSL certificate (Secure Sockets Layer)
- is one of the most critical factors.
- A secure and valid SSLfinal\_State suggests that the website is likely to be legitimate.
- A missing, invalid, or suspicious SSLfinal\_State strongly signals a phishing attempt.



Figure 4: knn accuracy for k values



Figure 5. Model performance comparison