Тема: Сила Ампера

Мета уроку: сформувати знання про силу Ампера та магнітну індукцію як силову характеристику магнітного поля.

Хід уроку

Ми знаємо, що магнітне поле, створене провідником зі струмом, діє на магнітну стрілку (Дослід Ерстеда).

Чи може магнітне поле постійного магніту чинити дію на провідник зі струмом?

. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

1. Сила яка діє на провідник зі струмом

Проведемо дослід

Візьмемо прямий провідник, виготовлений зі слабомагнітного матеріалу, наприклад алюмінію, і підвісимо його на тонких і гнучких проводах таким чином, щоб він перебував між полюсами підковоподібного постійного магніту (рис. а).

Якщо замкнути коло, провідник почне рухатися (у випадку, зображеному на рис. б – втягуватись до підковоподібного магніту).

Якщо поміняти напрямок магнітного поля (положення полюсів магніту) на протилежний (рис. в), провідник у магнітному полі підковоподібного магніту буде рухатися у протилежний бік.

Напрямок руху провідника зміниться на протилежний і у випадку зміни напрямку струму в провіднику.

Рух провідника пояснюється взаємодією двох полів: магнітного поля, що створюється струмом, і поля постійного магніту. Французький фізик Андре Марі Ампер був першим, хто дослідив таку взаємодію та взаємодію двох провідників зі струмом.

Сила Ампера – це сила, з якою магнітне поле діє на провідник зі струмом.

Проблемне питання

• Від чого залежить значення сили Ампера?

$$F_{\rm A} = BIl \sin \propto$$

 $F_{\rm A}$ – сила Ампера;

 ${\it B}$ — індукція магнітного поля, в якому розташований провідник;

I – сила струму в провіднику;

 $m{l}$ — довжина активної частини провідника (тобто частини провідника, розташованої в магнітному полі);

 α – кут між напрямком вектора магнітної індукції і напрямком струму в провіднику.

Проблемне питання

• Поясніть чому.

Сила Ампера:

- буде найбільшою, якщо провідник розташований перпендикулярно до магнітних ліній поля; ($\propto 90^\circ$, sin $\propto = 1$)
- дорівнюватиме нулю, якщо провідник розташований паралельно магнітним лініям поля. ($\propto = 0^\circ$, sin $\propto = 0$)

Проблемне питання

• Як визначити напрямок сили Ампера?

Правило лівої руки:

Якщо ліву руку розташувати так, щоб лінії магнітного поля входили в долоню, а чотири витягнуті пальці вказували напрямок струму в провіднику, то відігнутий на 90° великий палець укаже напрямок сили Ампера.

Проблемне питання

• Визначте напрямок сил, що діють на провідники зі струмом у магнітному полі.

2. Магнітна індукція

Якщо провідник розташований перпендикулярно до ліній магнітного поля ($\propto = 90^\circ$, sin $\propto = 1$), то поле діє на провідник із максимальною силою:

$$F_{A \max} = BIl$$
 \Longrightarrow $B = \frac{F_{A \max}}{Il}$

Магнітна індукція — це векторна фізична величина, що характеризує силову дію магнітного поля та чисельно дорівнює відношенню максимальної сили, з якою магнітне поле діє на розташований у цьому полі провідник зі струмом, до добутку сили струму в провіднику на довжину активної частини провідника.

Одиниця магнітної індукції в $CI - \mathbf{тесла}$ ([B] = 1 $\mathbf{T}\mathbf{л}$)

$$1 \, \mathrm{T} \pi = 1 \frac{\mathrm{H}}{\mathrm{A} \cdot \mathrm{M}}$$

 $1\ T_{\rm J}$ — це індукція такого однорідного магнітного поля, яке діє із силою $1\ H$ на провідник завдовжки $1\ M$, у якому тече струм силою $1\ A$.

IV. ЗАКРІПЛЕННЯ НОВИХ ЗНАНЬ І ВМІНЬ

1. Визначте напрямок сил, що діють на провідники зі струмом у магнітному полі.

2. Визначте напрямок струму в провіднику, який перебуває у магнітному полі.

3. Визначте полюси постійного магніту.

4. Визначте напрямок дії сили Ампера. У якому випадку магнітне поле не діє на провідник зі струмом?

5. Визначте модуль сили Ампера, що діє на провідник зі струмом завдовжки 25 см у магнітному полі з індукцією 0,04 Тл, якщо кут між вектором магнітної індукції й напрямком струму становить 30°. Сила струму в провіднику дорівнює 0,25 А.

Дано:

$$l = 25 \text{ cm} = 0.25 \text{ m}$$
 $B = 0.04 \text{ T} \pi$
 $\alpha = 30^{\circ}$
 $I = 0.25 \text{ A}$
 $F_{A} = 7$

Розв'язання

На провідник зі струмом у магнітному полі діє сила $F_{\rm A}=BIl\sin \propto$

$$[F_{\rm A}] = {\rm T} {\rm J} \cdot {\rm A} \cdot {\rm M} = \frac{{\rm H}}{{\rm A} \cdot {\rm M}} \cdot {\rm A} \cdot {\rm M} = {\rm H}$$

$$\sin 30^\circ = 0.5$$

$$F_{\rm A} = 0.04 \cdot 0.25 \cdot 0.25 \cdot 0.5 = 0.00125 = 1.25 \cdot 10^{-3} ({\rm H})$$
 Відповідь: $F_{\rm A} = 1.25$ мН.

6. Прямолінійний провідник довжиною 0,5 м, по якому проходить струм силою 2 А, знаходиться в однорідному магнітному полі під кутом 30° до ліній індукції. При цьому на нього діє сила Ампера, модуль якої 0,5 Н. Визначити модуль індукції магнітного поля.

Дано:

$$l = 0.5 \text{ M}$$
 $I = 2 \text{ A}$
 $\alpha = 30^{\circ}$
 $F_{A} = 0.5 \text{ H}$
 $B = 7$

Розв'язання

На провідник зі струмом у магнітному полі діє сила

$$F_{\rm A} = BIl \sin \propto =$$
 $= > B = \frac{F_{\rm A}}{Il \sin \propto}$

$$[B] = \frac{H}{A \cdot M} = T\pi$$

 $\sin 30^{\circ} = 0.5$
 $B = \frac{0.5}{2 \cdot 0.5 \cdot 0.5} = 1 (T\pi)$

Відповідь: $B = 1 \, \text{Тл.}$

ПІДБИТТЯ ПІДСУМКІВ УРОКУ

Бесіда за питаннями

- 1. Опишіть дослід на підтвердження того, що в магнітному полі на провідник зі струмом діє сила.
 - 2. Дайте означення сили Ампера.
- 3. Від яких чинників залежить значення сили Ампера? За якою формулою визначають її значення?
- 4. Як слід розташувати провідник, щоб сила Ампера була найбільшою? У якому випадку магнітне поле не діє на провідник?
 - 5. Сформулюйте правило для визначення напрямку сили Ампера.
 - 6. Дайте означення індукції магнітного поля.
 - 7. Дайте означення одиниці магнітної індукції.

VI. ДОМАШНЄ ЗАВДАННЯ

Опрацювати § 4, Вправа № 4 (1, 2)

Виконане Д/з відправте на Нитап,

Або на елетронну адресу Kmitevich.alex@gmail.com