Working with Gradients Using the Autograd Library

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Gradient descent to train a neural network

Forward and backward passes

Different methods for gradient calculation

Automatic differentiation using Autograd

Gradient Descent

Neural Network Model

Interconnected neurons arranged in layers

Each Connection Associated with a Weight

If the second neuron is sensitive to the output of the first neuron, the connection between them gets stronger

The weights and biases of individual neurons are determined during the training process

Regression: The Simplest Neural Network

Regression: The Simplest Neural Network

Regression: The Simplest Neural Network

The "best fit" line is called the regression line

Minimize the sum of the squares of the distances of the points from the regression line

The actual training of a neural network happens via Gradient Descent Optimization

Gradient Descent

Training the Algorithm

Start Somewhere

Gradient Descent

Forward and Backward Passes

Forward Pass

Use the current model weights and biases to make a prediction

Forward Pass

Compare actual values with predicted values and calculate the error

Optimizer Calculates Gradients

The backward pass allows the weights and biases of the neurons to converge to their final values

Training Using Autograd in PyTorch

Training a neural network uses Gradient Descent to find the weights of the model parameters

Gradient Descent

MSE = Mean Square Error of Loss

Loss =
$$\theta$$
 = $y_{predicted}$ - y_{actual}

MSE

Mean Square Error (MSE) is the metric to be minimized during training of regression model

Given x, model outputs predicted value of y

Loss = θ = $y_{predicted}$ - y_{actual}

Loss Function θ

Loss function measures inaccuracy of model on a specific instance

Actual label, available in training data

Loss =
$$\theta$$
 = $y_{predicted}$

Loss Function θ

Loss function measures inaccuracy of model on a specific instance

Gradient(θ) = $\nabla \theta(W_1, b_1)$ = $(\partial \theta/\partial W_1, \partial \theta/\partial b_1)$

Gradient: Vector of Partial Derivatives

For a function $y = f(x_1, x_2, x_3)$, the Greek character "nabla" (∇) denotes the gradient

Partial derivative of loss w.r.t to parameter W

Holding all other parameters and the input constant - how much does loss change when you change W

Gradient(
$$\theta$$
) = $\nabla \theta(W_1)$ b_1) = $(\partial \theta/\partial W_1)$ $\partial \theta/\partial b_1$)

Gradient: Vector of Partial Derivatives

For a function $y = f(x_1, x_2, x_3)$, the Greek character "nabla" (∇) denotes the gradient

Gradient(
$$\theta$$
) = $\nabla\theta(W_1, b_1)$ = $(\partial\theta/\partial W_1, \partial\theta/\partial b_1)$

Gradient: Vector of Partial Derivatives

For a function $y = f(x_1, x_2, x_3)$, the Greek character "nabla" (∇) denotes the gradient

Gradient(θ) = $\nabla \theta(W_1, b_1)$ = $(\partial \theta/\partial W_1, \partial \theta/\partial b_1)$

Gradient Descent to Minimize Loss

Find values of W_1 , b_1 where loss has "lowest" gradient - i.e. minimize gradient of θ

Condition of minimum:

Gradient(θ) = $\nabla \theta(W_1, b_1)$ = $(\partial \theta/\partial W_1, \partial \theta/\partial b_1)$ = zero

Gradient Descent to Minimize Loss

Find values of W_1 , b_1 where loss has "lowest" gradient - i.e. minimize gradient of θ

Gradient(θ) = $\nabla \theta(W_1, b_1)$ = $(\partial \theta/\partial W_1, \partial \theta/\partial b_1)$

Gradient Descent to Minimize Loss

Find values of W_1 , b_1 where loss has "lowest" gradient - i.e. minimize gradient of θ

In NN with 10,000 Neurons:

```
Gradient(\theta) = \nabla \theta(W<sub>1</sub>, b<sub>1...</sub>W<sub>10000</sub>, b<sub>10000</sub>)
= (\partial \theta / \partial W_1, \partial \theta / \partial b_1, ... \partial \theta / \partial W_{10000}, \partial \theta / \partial b_{10000})
```

Gradient Descent for Complex Networks

The gradient vector gets very large for complex networks, need sophisticated math to calculate and optimize

Actually Calculating Gradients

Symbolic Differentiation

Conceptually simple but hard to implement

Numeric Differentiation

Easy to implement but won't scale

Automatic Differentiation

Conceptually difficult but easy to implement

PyTorch, TensorFlow and other packages rely on automatic differentiation

These gradients are used to update the model parameters

Forward Pass

Use the current model weights and biases to make a prediction

Forward Pass

Compare actual values with predicted values and calculate the error

Optimizer Calculates Gradients

Backward Pass

Autograd is the PyTorch package for calculating gradients for back propagation

Back propagation is implemented using a technique called reverse auto-differentiation

Gradient(θ)

Gradient: Vector of Partial Derivatives

These gradients apply to a specific time t

Gradient: Vector of Partial Derivatives

These gradients apply to a specific time t

t+1
Parameters = Parameters - learning_rate x Gradient(θ)

For Next Time Step: Update Parameter Values

Move each parameter value in the direction of reducing gradient

Exact math and mechanics are complex and will vary by optimization algorithm

Gradient Descent


```
t+1 t
Parameters = Parameters - learning_rate x Gradient(θ)
```

For Next Time Step: Update Parameter Values

```
t+1
Parameters = Parameters - learning_rate x Gradient(θ)
```

For Next Time Step: Update Parameter Values

t+1
Parameters = Parameters - learning_rate x Gradient(θ)

For Next Time Step: Update Parameter Values

Learning Rate

Calculated in backward pass of time t

Parameters = Parameters - learning_rate x Gradient(θ)

For Next Time Step: Update Parameter Values

Backward Pass at Time t


```
Updated in backward pass
    of time t...

Parameters = Parameters - learning_rate x Gradient(θ)
```

For Next Time Step: Update Parameter Values

```
...then used in forward pass
    of time t+1

Parameters = Parameters - learning_rate x Gradient(θ)
```

For Next Time Step: Update Parameter Values

Forward Pass at Time t+1

Use the current model weights and biases to make a prediction

Why Two Passes?

Symbolic Differentiation

Conceptually simple but hard to implement

Numeric Differentiation

Easy to implement but won't scale

Automatic Differentiation

Conceptually difficult but easy to implement

Because reverse auto-differentiation needs two passes

Automatic Differentiation

Conceptually difficult but easy to implement

Reverse-mode auto-differentiation
Used in TF, PyTorch
Two passes in each training step

- Forward step: Calculate loss
- Backward step: Update parameter values

Actually Calculating Gradients

Symbolic Differentiation

Conceptually simple but hard to implement

Numeric Differentiation

Easy to implement but won't scale

Automatic Differentiation

Conceptually difficult but easy to implement

PyTorch, TensorFlow and other packages rely on automatic differentiation

Actually Calculating Gradients

Symbolic Differentiation

Conceptually simple but hard to implement

Numeric Differentiation

Easy to implement but won't scale

Automatic Differentiation

Conceptually difficult but easy to implement

Symbolic Differentiation

Conceptually simple but hard to implement

Actually calculate each element of gradient vector

(Approach adopted in example above)

Easy to understand, hard to implement

- complex neural networks
- Some activation functions are hard to differentiate
- Output function may be nondifferentiable

Actually Calculating Gradients

Symbolic Differentiation

Conceptually simple but hard to implement

Numeric Differentiation

Easy to implement but won't scale

Automatic Differentiation

Conceptually difficult but easy to implement

Numeric Differentiation

Easy to implement but won't scale

Trivial to implement

$$y = f(x)$$

Add small "perturbation" ∂x to x

$$y + \partial y = f(x + \partial x)$$

$$\partial y/\partial x = [f(x + \partial x) - f(x)]/\partial x$$

Numeric Differentiation

Easy to implement but won't scale

Problem: need to do for each parameter
Will not scale to complex networks
(May have thousands of parameters)

Actually Calculating Gradients

Symbolic Differentiation

Conceptually simple but hard to implement

Numeric Differentiation

Easy to implement but won't scale

Automatic Differentiation

Conceptually difficult but easy to implement

Conceptually difficult but easy to implement

Relies on a mathematical trick

Based on Taylor's Series Expansion

Allow fast approximation of gradients

Conceptually difficult but easy to implement

Two flavors

- Forward-mode
- Reverse-mode

Conceptually difficult but easy to implement

Forward-mode ~ numeric differentiation Suffers from same flaw...

...Requires one pass per parameter
Will not scale to complex networks

Conceptually difficult but easy to implement

Reverse-mode used in TF, PyTorch...

Two passes in each training step

- Forward step: Calculate loss
- Backward step: Update parameter values

Back propagation is only required during training: to do so in PyTorch, invoke the .backward() method

Deprecation of the Variable API in PyTorch

PyTorch used to wrap Tensors within Variables which kept track of changing parameter values; Variables are now deprecated

Variables (Deprecated)

Used to be necessary to use autograd with tensors

Now autograd automatically supports Tensors with requires_grad = True

Variables (Deprecated)

Variable creation now returns tensors instead of variables

var.data is identical to tensor.data

Methods such as var.backward(), var.detach() work on tensors

Tensor method names stay the same

Demo

Introducing Autograd in PyTorch

Demo

Using Autograd with variables

Demo

Building a linear model with Autograd

Summary

Gradient descent to train a neural network

Forward and backward passes

Different methods for gradient calculation

Automatic differentiation using Autograd