2024/02/15 セミナー資料

大柴寿浩

記号

- $\overline{\mathbf{R}} := [-\infty, +\infty] = \mathbf{R} \cup \{\pm \infty\}$
- 集合 U の開近傍系を I_U とかき、点 x の開近傍系を I_x とかく.

1 コホモロジー構成可能層

1.1 理想複体

A を可換環とする. $M \in \mathsf{D}^{\mathsf{b}}(A) \coloneqq \mathsf{D}^{\mathsf{b}}(\mathsf{Mod}(A))$ を A 加群の導来圏の対象とする. M が理想対象*1 (perfect object) であるとは,有限生成射影的 A 加群の有界複体と擬同型であることをいう. 命題 **1.1** ([KS90, Exercise I.30]). A を可換環とする.

- (i) $X \to Y \to Z \to$ が $\mathsf{D}^{\mathrm{b}}(A)$ における完全三角で,X と Y が理想的ならば,Z も理想的である.
- (ii) 理想対象の直和因子も理想対象である.
- (iii) $M \in \mathsf{D}^{\mathrm{b}}(A)$ を理想対象とする. $M^* \coloneqq \mathrm{RHom}_A(M,A)$ とおく. M^* は理想対象であり,標準的な射 $M \to M^{**}$ は同型である.

A がネーター環で大域次元が有限であるとする.

- (iv) $\operatorname{Mod}^{\mathrm{f}}(A)$ の導来圏 $\mathsf{D}^{\mathrm{b}}(\operatorname{Mod}^{\mathrm{f}}(A))$ の任意の対象は理想的である.
- (v) $\mathsf{D}^{\mathsf{b}}_{\mathsf{f}}(A)$ で各コホモロジーが $\mathsf{Mod}^{\mathsf{f}}(A)$ に属す対象の導来圏を表す。 $\mathsf{D}^{\mathsf{b}}(\mathsf{Mod}^{\mathsf{f}}(A)) \to \mathsf{D}^{\mathsf{b}}_{\mathsf{f}}(\mathsf{Mod}(A))$ は圏同値である。 \blacksquare

証明は略.

擬連接かつ tor 次元が有限であることと同値らしい. ([SP, lem 15.74.2])

 $^{^{*1}}$ [Ue] による訳にしたがった.定訳は未だ無いと思われる.

2γ 位相

■錐 (体) [KS90] に錐の定義が書いてなかったのでまとめておく. [BouTVS, Mo76] を参考に した.

定義 2.1. n 次元実ベクトル空間 V の部分集合 γ が次の条件をみたすとき、錐(あるいは錐体) (cone) であるという.

任意の実数 t > 0 に対し, $v \in \gamma \Longrightarrow tv \in \gamma$.

コメント 2.2. [Mo76] では $\gamma \neq 0$ も課している. 空集合は錐である.

$$\gamma = \{(x_1, x_2) \in \mathbf{R}^2; 0 < \arg(x_1, x_2) < 7\pi/4\}$$

は錐である. (図1).

図1 錐の例

次の例を見ると, 有界でないことが大事っぽい.

例 2.3. $\gamma \coloneqq \left\{ (x_1, x_2) \in \mathbf{R}^2; 0 < \arg(x_1, x_2) < \pi/3, \|(x_1, x_2)\| < 1 \right\}$ は錐ではない. (図 2)

 $■\gamma$ 位相 γ から定まる位相を定義する.

定義 2.4. V を n 次元実ベクトル空間とし、 γ を 0 を頂点とする閉凸錐とする. V の γ 位相 $(\gamma$ -topology) とは、V の位相であって、その開集合 $\Omega \subset V$ が次の条件 (i)-(ii) をみたすものをいう.

- (i) Ω は V の元の位相に関して開集合である.
- (ii) $\Omega + \gamma = \Omega$.

図2 錐でない例

例 2.5. $X=\mathbf{R}, \ \gamma=[0,+\infty[$ のとき, \mathbf{R} の γ 位相に関する開集合は, $-\infty \le c \le +\infty$ を用いて $]c,+\infty[$ とかかれるものである.

 $:: \mathbf{R}$ の開区間 $\Omega \coloneqq [c,d]$ に対し,

$$\begin{split} \varOmega + \gamma &= \{ x + x' \in \mathbf{R} \mid x \in \varOmega, x' \in \gamma \} \\ &= \{ x + x' \in \mathbf{R} \mid c < x < d, 0 < x' < \infty \} \\ &= \{ x + x' \in \mathbf{R} \mid c < x + x' < \infty \} \\ &=]c, + \infty [\, . \end{split}$$

 γ に対し、反転錐 (opposite cone) γ^a を

$$\gamma^a := -\gamma$$

で定める.*²

 γ 位相に関する開集合・閉集合・近傍をそれぞれ γ 開集合・ γ 閉集合・ γ 近傍とよぶ.

 γ 位相に関する開集合 X はもとの V の位相に関する開集合になるので, γ 位相は元の位相よりも荒い.したがって,X を γ 位相に関する開集合と考えるとき, X_γ とかくことにすると,自然な連続写像 $\phi_\gamma\colon X\to X_\gamma$ が定まる.

命題 2.6. X_{γ} を V_{γ} の開集合とし,F を X_{γ} 上の層とする.

^{*2} あとで導入する体蹠点写像 $a: X \to X; x \mapsto -x$ の像としてもよい (はず?).

(i) $U \subset X$ を凸開集合とすると,

$$R\Gamma(U+\gamma;F) \to R\Gamma(U;\phi_{\gamma}^{-1}F)$$

は同型である.

(ii) $K \subset X$ を凸コンパクト集合とすると,

$$R\Gamma(K + \gamma; F) \to R\Gamma(K; \phi_{\gamma}^{-1}F)$$

は同型である.

- (iii) $F \to \mathbf{R}\phi_{\gamma_*}\phi_{\gamma}^{-1}F$ は同型である.
- (i) の射の構成は以下の通り. $U+\gamma$ は $U+\gamma+\gamma=U+\gamma$ をみたすので, U の γ 開近傍である. したがって, F の切断の射 $\Gamma(U+\gamma;F)\to \varinjlim_{U+\gamma\in I_U}\Gamma(U+\gamma;F)=\phi_\gamma^pF(U)$ が存在する. これに層化から定まる射 $\phi_\gamma^pF(U)\to\phi_\gamma^{-1}F(U)$ を合成することで

$$\Gamma(U+\gamma;F) \to \Gamma(U;\phi_{\gamma}^{-1}F)$$

を得る. これを導来圏に持ち上げれば、(i) の射が得られる.

証明,次の5段階に分けて証明する.

- (a) ψ : $\Gamma(U+\gamma;F) \to \Gamma(U;\phi_{\gamma}^{-1}F)$ が同型であることを示す.
- (b) コンパクト凸集合 K に対し $\Gamma(K+\gamma;\phi_{\gamma}^{-1}F)\to\Gamma(K;\phi_{\gamma}^{-1}F)$ が同型であることを示す.
- (c) 随伴から定まる射 $F \stackrel{\sim}{\longrightarrow} \phi_{\gamma_*} \phi_{\gamma}^{-1} F$ が同型であることを示す.
- (d) F が脆弱層ならば, $\mathrm{R}\Gamma(U+\gamma;F)\cong\mathrm{R}\Gamma(U;\phi_{\gamma}^{-1}F)$ である.
- (e) 一般の F に対し $\mathrm{R}\Gamma(U+\gamma;F)\cong\mathrm{R}\Gamma(U;\phi_{\gamma}^{-1}F)$ である.
 - (a) ψ : $\Gamma(U + \gamma; F) \to \Gamma(U; \phi_{\gamma}^{-1}F)$ が同型であることを示す.

単射性:

全射性:

■ここから新しい話. $\phi_{\gamma}^{-1}\mathbf{R}\phi_{\gamma_*}F$ を得る別の方法について述べる. X=V のとき,

(2.1)
$$Z(\gamma) := \{(x, y) \in X \times X; y - x \in \gamma\}$$

とおき, q_1, q_2 を $X \times X$ から X への射影とする.

例えば、 $X = \mathbf{R}$ で $\gamma = [0, \infty]$ のとき、

$$Z(\gamma) = \{(x, y) \in \mathbf{R}^2; y - x \in [0, \infty[\}$$

= \{(x, y) \in \mathbb{R}^2; y - x \geq 0\}

である. (図3)

命題 2.7. $F \in D^+(X)$ に対し,

$$\operatorname{R}q_{1*}\left(\left(q_{2}^{-1}F\right)_{Z(\gamma)}\right) \cong \phi_{\gamma}^{-1}\operatorname{R}\phi_{\gamma*}F$$

が成り立つ.

証明. 証明の方針は,

- 射を作って,
- 擬同形であることを示す.

 $\widetilde{q}_i\colon Z(\gamma)\to X$ を q_i の制限とする. このとき, X の任意の γ 開集合 Ω に対し,

$$\widetilde{q_1}^{-1}\varOmega=\{(x,y)\in X\times X; x\in\varOmega, y\in x+\gamma\}\subset \widetilde{q_2}^{-1}\varOmega$$

が成り立つ.

参考文献

[BouTVS] ブルバキ, 位相線形空間 1, 東京図書, 1968.

[B+84] Borel, Intersection Cohomology, Progress in Mathematics, 50, Birkhäuser, 1984.

[G58] Grauert, On Levi's problem and the embedding of real analytic manifolds, Ann. Math. 68, 460–472 (1958).

[GP74] Victor Guillemin, Alan Pollack, Differential Topology, Prentice-Hall, 1974.

[KS90] Masaki Kashiwara, Pierre Schapira, Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990.

5

[KS06] Masaki Kashiwara, Pierre Schapira, *Categories and Sheaves*, Grundlehren der Mathematischen Wissenschaften, 332, Springer, 2006.

[Le13] John M. Lee, Introduction to Smooth Manifolds, Second Edition, Graduate Texts in Mathematics, 218, Springer, 2013.

[Mo76] 森本光生, 佐藤超函数入門, 共立出版, 1976.

[R55] de Rham, Variétés différentiables, Hermann, Paris, 1955.

[Sa59] Mikio Sato, Theory of Hyperfunctions, 1959–60.

[S66] Schwartz, Théorie de distributions, Hermann, Paris, 1966.

[Sh16] 志甫淳, 層とホモロジー代数, 共立出版, 2016.

[SP] The Stacks Project.

[Sp65] Michael Spivak, Calculus on Manifolds, Benjamin, 1965.

[Ike21] 池祐一, 超局所層理論概説, 2021.

[Tak17] 竹内潔, D 加群, 共立出版, 2017.

[Ue] 植田一石, ホモロジー的ミラー対称性, https://www.ms.u-tokyo.ac.jp/~kazushi/course/hms.pdf 2024/02/04 最終閲覧.