Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

"Белгородский государственный технологический университет им. В. Г. Шухова"

(БГТУ им. В.Г. Шухова)

Институт энергетики, информационных технологий и управляющих систем

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа № 2.1 по дисциплине дискретная математика тема: Алгоритмы порождения комбинаторных объектов

Выполнил: студент группы ПВ-223
Игнатьев Артур Олегович
Проверил: доцент
Рязанов Юрий Дмитриевич
старший преподаватель
Бондаренко Татьяна Владимировна

Лабораторная работа № 2.1

Тема: Алгоритмы порождения комбинаторных объектов

Цель работы: изучить основные комбинаторные объекты, алгоритмы их порождения, программно реализовать и оценить временную сложность алгоритмов.

Задания

- 1. Реализовать алгоритм порождения подмножеств.
- 2. Построить график зависимости количества всех подмножеств от мощности множества.
- 3. Построить графики зависимости времени выполнения алгоритмов п.1 на вашей ЭВМ от мошности множества.
- 4. Определить максимальную мощность множества, для которого можно получить все подмножества не более чем за час, сутки, месяц, год на вашей ЭВМ.
- 5. Определить максимальную мощность множества, для которого можно получить все подмножества не более чем за час, сутки, месяц, год на ЭВМ, в 10 и в 100 раз быстрее вашей.
 - 6. Реализовать алгоритм порождения сочетаний.
- 7. Построить графики зависимости количества всех сочетаний из n по k от k при n=(5, 7, 9).
 - 8. Реализовать алгоритм порождения перестановок.
- 9. Построить график зависимости количества всех перестановок от мощности множества.
- 10. Построить графики зависимости времени выполнения алгоритма п.8 на вашей ЭВМ от мощности множества.
- 11. Определить максимальную мощность множества, для которого можно получить все перестановки не более чем за час, сутки, месяц, год на вашей ЭВМ.

- 12. Определить максимальную мощность множества, для которого можно получить все перестановки не более чем за час, сутки, месяц, год на ЭВМ, в 10 и в 100 раз быстрее вашей.
 - 13. Реализовать алгоритм порождения размещений.
- 14. Построить графики зависимости количества всех размещений из n по k от k при n=(5,7,9).

Решение заданий:

1. Реализовать алгоритм порождения подмножеств.

```
#include <stdio.h>
void printSubset(int subset[], int size) {
   printf("{ ");
        printf("%d ", subset[i]);
void generateSubsets(int set[], int subset[], int n, int
subsetSize, int nextIndex) {
   printSubset(subset, subsetSize);
        subset[subsetSize] = set[i];
        generateSubsets(set, subset, n, subsetSize + 1, i +
void generateAllSubsets(int set[], int n) {
    int subset[n]; // Временный массив для хранения
    generateSubsets(set, subset, n, 0, 0);
int main() {
    int n = sizeof(set) / sizeof(set[0]);
    generateAllSubsets(set, n);
```

2. Построить график зависимости количества всех подмножеств от мощности множества.

3. Построить графики зависимости времени выполнения алгоритмов п.1 на вашей ЭВМ от мощности множества.

4. Определить максимальную мощность множества, для которого можно получить все подмножества не более чем за час, сутки, месяц, год на вашей ЭВМ.

Кол-во элем.	Секунды	Секунды по формуле (а*2^кол-во элем.)	a
15	0,001	0,00047514	0,0000000145
16	0,001	0,00095027	
17	0,001	0,00190054	
18	0,004	0,00380109	
19	0,006	0,00760218	
20	0,009	0,01520435	
21	0,025	0,03040870	
22	0,058	0,06081741	
23	0,070	0,12163482	
24	0,142	0,24326963	
25	0,509	0,48653926	
26		0,97307853	
27		1,94615706	
28		3,89231411	
29		7,78462822	
30		15,56925645	
31		31,13851290	
32		62,27702579	
33		124,55405158	
34		249,10810317	
35		498,21620634	
36		996,43241267	
37		1992,86482534	час
38		3985,72965069	
39		7971,45930138	
40		15942,91860275	
41		31885,83720550	
42		63771,67441101	сутки
43		127543,34882202	
44		255086,69764403	
45		510173,39528806	
46		1020346,79057613	
47		2040693,58115226	месяц
48		4081387,16230451	
49		8162774,32460902	
50		16325548,64921800	год

Час-37

Сутки-42

Месяц-47

Год-50

5. Определить максимальную мощность множества, для которого можно получить все подмножества не более чем за час, сутки, месяц, год на ЭВМ, в 10 и в 100 раз быстрее вашей.

Кол-во элем.	В 10 раз быстрее		В 100 раз быстрее	
15	0,00004751		4,75136E-06	
16	0,00009503		9,50272E-06	
17	0,00019005		1,90054E-05	
18			3,80109E-05	
19	0,00076022		7,60218E-05	
20	0,00152044		0,000152044	
21	0,00304087		0,000304087	
22	0,00608174		0,000608174	
23	0,01216348		0,001216348	
24	0,02432696		0,002432696	
25	0,04865393		0,004865393	
26	0,09730785		0,009730785	
27	0,19461571		0,019461571	
28	0,38923141		0,038923141	
29	0,77846282		0,077846282	
30	1,55692564		0,155692564	
31	3,11385129		0,311385129	
32	6,22770258		0,622770258	
33	12,45540516		1,245540516	
34	24,91081032		2,491081032	
35	49,82162063		4,982162063	
36	99,64324127		9,964324127	
37	199,28648253		19,92864825	
38	398,57296507		39,85729651	
39	797,14593014		79,71459301	
40	1594,29186028		159,429186	
41	3188,58372055	час	318,8583721	
42	6377,16744110		637,7167441	
43	12754,33488220		1275,433488	
44	25508,66976440		2550,866976	час
45	51017,33952881	день	5101,733953	
46	102034,67905761		10203,46791	
47	204069,35811523		20406,93581	
48	408138,71623045		40813,87162	
49	816277,43246090		81627,74325	день
50	1632554,86492180	месяц	163255,4865	
51	3265109,72984361		326510,973	
52	6530219,45968722		653021,946	
53	13060438,91937440		1306043,892	месяц
54	26120877,83874890	год	2612087,784	
55	52241755,67749780		5224175,568	
56	104483511,35499600		10448351,14	
57	208967022,70999100		20896702,27	год
5.8	417934045 41998200		41793404 54	

В 10 раз быстрее:	В 100 раз быстрее:
-------------------	--------------------

Yac-41 Yac-44

День-45 День-49

Месяц-53

Год-54 Год-57

6. Реализовать алгоритм порождения сочетаний.

```
#include <stdio.h>
void generate combinations(int arr[], int data[], int start,
   if (index == r) {
       data[index] = arr[i];
       generate combinations (arr, data, i + 1, end, index + 1,
void print combinations(int arr[], int n, int r) {
   int data[r];
   generate combinations (arr, data, 0, n - 1, 0, r);
int main() {
   print combinations(arr, n, r);
```

7. Построить графики зависимости количества всех сочетаний из n по k от k при n= (5, 7, 9).

Для построения графиков была использована формула сочетания C(n, k) = n! / (k! * (n - k)!), где n - количество элементов, а k - размер сочетания.

8. Реализовать алгоритм порождения перестановок.

```
#include <stdio.h>
void swap(int *a, int *b) {
void generatePermutations(int elements[], int size, int index) {
   for (int i = index; i < size; i++) {</pre>
       swap(&elements[index], &elements[i]);
       generatePermutations(elements, size, index + 1);
       swap(&elements[index], &elements[i]);
int main() {
   int size = sizeof(elements) / sizeof(elements[0]);
   generatePermutations(elements, size, 0);
```

9. Построить график зависимости количества всех перестановок от мощности множества.

Зависимость количества перестановок от мощности множества

10. Построить графики зависимости времени выполнения алгоритма п.8 на вашей ЭВМ от мошности множества.

Модифицированная программа:

```
#include <stdio.h>
#include <time.h>
#include <windows.h>
void swap(int *a, int *b) {
   *b = temp;
void generatePermutations(int elements[], int size, int index) {
            printf("%d ", elements[i]);
   for (int i = index; i < size; i++) {</pre>
       swap(&elements[index], &elements[i]);
       generatePermutations(elements, size, index + 1);
       swap(&elements[index], &elements[i]);
int main() {
   SetConsoleOutputCP(CP UTF8);
   int elements[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
   generatePermutations(elements, size, 0);
```

```
clock_t end = clock();
  double time_spent = (double)(end - start) / CLOCKS_PER_SEC;
  printf("Время выполнения: %f cek\n", time_spent);
  return 0;
}
```


11. Определить максимальную мощность множества, для которого можно получить все перестановки не более чем за час, сутки, месяц, год на вашей ЭВМ.

Мощность множ.	Время, с	Кол-во перестановок	
1	0.001	1	
2	0.001	2	
3	0.004	6	
4	0.021	24	
5	0.144	120	
6	0.999	720	
7	7.228	5040	
8	56.568	40320	
9	557.964	362880	час
10	6409.956	3628800	
11	65437.592	39916800	день
12	720812.741	479001600	месяц
13	7928930.505	4790016000	год
14	87218222.557	62270208000	
15	961400472.02	87178291200	

Час-9

Сутки-11

Месяц-12

Год-13

12. Определить максимальную мощность множества, для которого можно получить все перестановки не более чем за час, сутки, месяц, год на ЭВМ, в 10 и в 100 раз быстрее вашей.

Можность множ.	В 10 раз быстрее	Кол-во перестановок	В 100 раз быстрее		
1	0,0001	1	0,00001		
2	0,0001	2	0,00001		
3	0,0001	6	0,00001		
4	0,0004	24	0,00004		
5	0,0144	120	0,00144		
6	0,0999	720	0,00999		
7	0,7228	5040	0,07228		
8	5,6568	40320	0,56568		
9	55,7964	362880	5,57964		
10	640,9956	3628800	64,09956	час	
11	6543,7592	39916800	654,37592		час
12	72081,2741	479001600	7208,12741	сутки	
13	792893,0505	4790016000	79289,30505	месяц	сутки
14	8721822,2557	62270208000	872182,22557	год	месяц
15	96140047,2020	87178291200	9614004,72020		год

В 10 раз быстрее: В 100 раз быстрее:

Час-10 Час-11

Сутки-12 Сутки-13

Месяц-13 Месяц-14

Год-14 Год-15

13. Реализовать алгоритм порождения размещений.

```
#include <stdio.h>
#include <windows.h>
void swap(int *a, int *b) {
   int temp = *a;
   *a = *b;
void printArr(int arr[], int n) {
void generatePermutations(int arr[], int size, int n) {
   if (size == 1) {
   for (int i = 0; i < size; i++) {</pre>
        generatePermutations(arr, size - 1, n);
            swap(&arr[i], &arr[size - 1]);
int main() {
   scanf("%d", &n);
```

```
scanf("%d", &arr[i]);
}

printf("Размещения:\n");
generatePermutations(arr, n, n);

return 0;
}
```

14. Построить графики зависимости количества всех размещений из n по k от k при n= (5, 7, 9).

Вывод: на этой лабораторной работе я изучил основные комбинаторные объекты, алгоритмы их порождения, программно реализовал и оценил временную сложность алгоритмов.