Generalizing Species Diversification Models

Francisco Richter **, Ernst Wit * & Rampal Etienne *

* Johann Bernoulli Institute for Mathematics and Computer Science, * Groningen Institute for Evolutionary Life Sciences.

Background

The mechanisms that control the diversification of species are poorly understood. Sophisticated diversification models have been developed, but they have been developed on a case-by-case basis and no general method to study the combined effect of ecological factors exists. We propose a general diversification model expressing the network characterization of the evolutionary species diversification dynamics as a combination of two generalized linear models. Because we typically only have data on currently existing species we make use of an MCEM-type algorithm within the model selection framework.

Set up

The phylogenetic tree is mathematically determined by

- A set of branching times \mathcal{T}
- The topology Υ.

And its likelihood function is defined as

$$L(Y|\Theta) = \prod_{i=1}^{p} \sigma_i e^{-\sigma_i t_i} \frac{\rho_i}{\sigma_i}$$
 (1)

Where $\sigma_i = \sum_{j=1}^{n_i} \lambda_{i,j} + \mu_{i,j}$; $\lambda_{i,j}$ is defined as the **speciation rate** of the species j at time t_i and $\mu_{i,j}$ corresponds to the **extinction rate** of the same species. $\rho_i \in \Upsilon$ is the topology variable corresponding to the speciation or extinction rate taking place on waiting time t_i . Both λ and μ are linear functions of many potential explanatory variables.

Challenges

• Decay and fossilization degrade crucial evidence useful for phylogenetic analyses that could infer underlying mechanisms. In fact, we normally observe extant species only.

Figure: Phylogenetic trees where we can visualize the loss of information on reconstructed trees. At the left we have a tree with all extinct species whereas the right plot shows the same tree with only observable species.

• Diversification processes have many potential explanatory variables, which increases the dimensionality and the complexity of current models enormously.

Coral and fish communities

Microbial communities

Tropical forest communities

Savanna communities

MCEM & Case studies (work in progress)

The fact that we typically only have data on currently existing species is described as a missing data problem. Thus, we perform an MCEM algorithm

$$Q(\theta|\theta_{(i)}) = \int_{\theta} \log L(\theta|\Psi) d\Psi \longrightarrow \theta_{(i+1)} = \arg\max_{\theta} Q\left(\theta|\theta_{(i)}\right)$$

Diversity-dependence

For the first case studies we plug in the diversity-dependence model [1] under the framework:

$$\begin{cases} \lambda_{i,j} = \lambda_0 + (\lambda_0 - \mu_0) \frac{N_i}{K} \\ \mu_{i,j} = \mu_0 \end{cases}$$

Case study 1: Dendroica

EM it	au	\overline{K}	μ_0
		30	
2	1.51	36	0.7'
3	0.97	116	0.63
4	0.88	811	0.50
5	0.85	3165	0.53
6	0.85	∞	0.52
7	0.85	∞	0.52

Table: MCEM iterations for Dentroica phylogeny.

Figure: Expectation of lineages through time for the obtained parameters

Case study 2: Foraminifera

EM iter	λ_0	K	μ_0
1	4.00	30	1.00
2	0.79	35	0.30
3	0.37	42	0.13
4	0.25	47	0.07
5	0.19	46	0.05
6	0.19	46	0.04
7	0.16	45	0.03
8	0.16	45	0.03

Table: MCEM iterations for Foraminifera phylogeny.

Figure: Expectation of lineages through time for the obtained parameters

Contact Information

References

[1] R. S. Etienne, B. Haegeman, T. Stadler, T. Aze, P. N. Pearson, A. Purvis, and A. B. Phillimore. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. *Proceedings of the Royal Society of London B: Biological Sciences*, page rspb20111439, 2011.