

Cancer Survival

Reference:

Cameron, E. and Pauling, L. (1978)
Supplemental ascorbate in the supportive treatment of cancer: re-evaluation of prolongation of survival times in terminal human cancer.
Proceedings of the National Academy of Science USA, 75, 4538-4542.

Georgia Tech

3

ANOVA Example Data

Response Variable:

 Y_{ij} = The number of survival days for the j^{th} patient with i^{th} type of cancer

Categories:

Cancer type i for i = 1,2,3,4,5

Stomach	Bronchus	Colon	Ovary	Breast
124	81	248	1234	1235
42	461	377	89	24
25	20	189	201	1581
45	450	1843	356	1166
412	246	180	2970	40
51	166	537	456	727
1112	63	519		3808
46	64	455		791
103	155	406		1804
876	859	365		3460
146	151	942		719
340	166	776		
396	37	372		
	223	163		
	138	101		
	72	20		
	245	283		

Georgia Tech

/

Exploratory Data Analysis in R

Read data with 'read.table' R command for reading ASCII files cancer_data = read.table("CancerStudy.txt", header=T) ## Response Variable survival = cancer_data\$Survival

Explore the shape of the distribution of the response variable hist(survival, xlab="", ylab="Number of Survival Days", main="", nclass=15)

Transform due to skewness of the distribution hist(log(survival), xlab="", ylab="Number of Survival Days", main="", nclass=15)

Georgia Tech

5

ANOVA in R

Need to specify Response & Categorical Variables survival = log(survival) cancertype = cancer_data\$Organ ## Convert into categorical variable in R

an ace the real conference recent and

cancertype = as.factor(cancertype)

boxplot(survival~cancertype, xlab = "Cancer Type", ylab = "Log(Number of Survival Days)")....

- Within-variability some groups have higher variability than others
- Between-variability there is some variability between the means of the five groups
- Is the between-variability significantly larger than the withinvariability?

6

ANOVA in R (cont'd)

ANOVA in R: Is the between-variability significantly larger than within-variability model = aov(survival ~ cancertype)

summary(model)

Df Sum Sq Mean Sq F value Pr(>F) cancertype 4 24.49 6.122 4.286 0.00412 ***

Residuals 59 84.27 1.428

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Obtain estimated means model.tables(model, type="means")

Tables of means Grand mean

5.555785

cancertype

Breast Bronchus Colon Ovary Stomach 6.559 4.953 5.749 6.151 4.968 11.000 17.000 17.000 6.000 13.000

Georgia Tech

7

Pairwise Comparison in R

Which means are statistically significantly different? Pairwise Comparison TukeyHSD(model)

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = survival ~ cancertype)

\$cancertype

diff lwr p adj Bronchus-Breast -1.60543320 -2.906741 -0.3041254 0.0083352 Colon-Breast -0.80948110 -2.110789 0.4918267 0.4119156 Ovary-Breast -0.40798703 -2.114754 1.2987803 0.9615409 Stomach-Breast -1.59068365 -2.968399 -0.2129685 0.0158132 Colon-Bronchus 0.79595210 -0.357534 1.9494382 0.3072938 Ovary-Bronchus 1.19744617 -0.399483 2.7943753 0.2296079 Stomach-Bronchus 0.01474955 -1.224293 1.2537924 0.9999997 Ovary-Colon 0.40149407 -1.195435 1.9984232 0.9540004 -0.78120255 Stomach-Colon -2.020245 0.4578403 0.3981146 Stomach-Ovary -1.18269662 -2.842480 0.4770864 0.2763506

Statistically significant:

 $\log (\hat{\mu}_{Bronchus}) - \log (\hat{\mu}_{Breast})$ $\log (\hat{\mu}_{Stomach}) - \log (\hat{\mu}_{Breast})$

> Georgia Tech

Residual Analysis in R

par(mfrow=c(2,2))
qqnom(residuals(model))
qqline (residuals(model))
hist(residuals(model), main="Histogramof residuals",
xlab="Residuals")
plot(residuals(model), xlab="Order", ylab="Residuals")
abline (0, 0, lty=1, col="red")
plot(fitted(model), residuals(model), xlab="Fitted values",
ylab="Residuals")
abline (0, 0, lty=1, col="red")

- The quantiles align on the line and the histogram is approx. symmetric thus normality assumption holds
- Residuals are scattered around zero line with no pattern thus both the constant variance and uncorrelated errors hold

a

Cancer Survival: Findings

- There is strong evidence for the difference in the survival time across the five different types of cancer;
- Survival time: Breast cancer vs. Bronchus or Stomach cancer.

