Assignment 3

Deadline: 25th January, 11:59pm

Instructions:

- 1) This assignment consists of 4 problems. All problems are compulsory.
- 2) Mention all assumptions while answering the questions.
- 3) Be clear in your arguments. Vague arguments shall not be given full credit.
- 4) Only Handwritten Submissions are allowed. Scan and upload it on moodle.

Problems:

- 1. If A, B, C are matrices over a field F such that the products BC and A(BC) are well defined, and so are the products AB and (AB)C, then prove A(BC) = (AB)C.
- 2. Let e be an elementary row operation and let E be an elementary matrix of size $m \times m$ such that $E = e(I_{m \times m})$ then prove that e(A) = EA holds \forall matrices A of size $m \times n$.
- 3. If A is an $n \times n$ matrix, prove that the following statements are equivalent.
 - (a) A is invertible.
 - (b) A is row-equivalent to the $n \times n$ identity matrix.
 - (c) A is a product of elementary matrices.
- 4. Let A be a $n \times m$ matrix and B be a $n \times 1$ vector with real entries, suppose the equation AX = B (here, X belonds to R^m) admits a unique solution, then we can conclude that:
 - (a) m >= n
 - (b) n >= m
 - (c) m = n
 - (d) n > m

Support your answer with appropriate reasoning.