গণিত ৮ম অধ্যায় বৃৎ

Prepared by: ISRAFIL SHARDER AVEEK

 O কেন্দ্রবিশিষ্ট বৃত্তে AB ও CD দুইটি সমান জ্যা। O থেকে AB ও CD এর উপর যথাক্রমে OP ও OQ লম।

[ঢাকা বোর্ড ২০২৪]

- (ক) প্রমাণ কর অর্ধবৃত্তন্ত্ব কোণ এক সমকোণ।
- (খ) প্রমাণ কর যে; P. AB এর মধ্যবিন্দ।
- (গ) প্রমাণ কর যে, OP = OQ.

<u>১</u> নং প্রশ্নের উত্তর

 (क) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে AB একটি ব্যাস এবং ∠ACB একটি অর্ধবৃত্তয়্থ কোণ। প্রমাণ করতে হবে যে, ∠ACB = এক সমকোণ।

অঙ্কন : AB এর যে পাশে C বিন্দু অবস্থিত তার বিপরীত পাশে বৃত্তের উপর একটি বিন্দু D নিই।

প্রমাণ :

ধাপ-১ : ADB চাপের উপর দণ্ডায়মান

বৃত্তস্থ $\angle ACB = \frac{1}{2}$ (কেন্দ্রস্থ সরলকোণ $\angle AOB$)

 $[\because$ বৃত্তের একই চাপের উ<mark>পর দণ্ডায়মান বৃত্তন্থ কোণ কেন্দ্রন্থ কোণের অর্ধেক]</mark> ধাপ-২ : কিন্তু সরলকোণ $\angle AOB =$ দুই সমকোণ।

- ∴ ∠ACB = $\frac{1}{2}$ (দুই সমকোণ)
- ∴ ∠ACB = এক সমকোণ। (প্রমাণিত)
- (খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে AB জ্যার উপর OP লম্ব। প্রমাণ করতে হবে যে, P, AB এর মধ্যবিন্দু।

অঙ্কন : A, O ও B, O যোগ করি।

প্রমাণ

Δ AOP & Δ BBOP-4

AO = BO [একই বৃত্তের ব্যাসার্ধ]

OP = OP [সাধারণ বাহু]

 $\angle APO = \angle BPO$ [প্রত্যেকে সমকোণ]

- $\therefore \Delta AOP \cong \Delta BOP$
- \therefore AP = BP

অতএব, P, AB এর মধ্যবিন্দু। (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে AB ও CD দুইটি সমান জ্যা। AB এবং CD জ্যা এর উপর যথাক্রমে OP এবং OQ লম্ব। O, A এবং O, C যোগ করি।

প্রমাণ করতে হবে যে, OP = OQ.

প্রমাণ :

ধাপ $\mathbf{i}: \mathrm{OP} \perp \mathrm{AB}$ ও $\mathrm{OQ} \perp \mathrm{CD}$.

সুতরাং AP=BP এবং CQ=DQ. [কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো জ্যা এর উপর অঙ্কিত লম্ব ঐ জ্যাকে সমদ্বিখণ্ডিত করে]

$$A P = \frac{1}{2} AB$$
 এবং $CQ = \frac{1}{2} CD$.

ধাপ ২ : কিন্তু AB = CD [কল্পনা]

 \therefore AP = CO.

ধাপ ৩ : এখন OAP এবং OCQ সমকোণী ত্রিভূজদ্বয়ের মধ্যে,

অতিভুজ OA = অতিভুজ OC [উভয়ে একই বৃত্তের ব্যাসার্ধ] [ধাপ ২ হতে] এবং AP = CO

- Arr Arr Arr OAP Arr Arr OCQ [সমকোণী ত্রিভুজের অতিভুজ-বাহু সর্বসমতা উপপাদ্য]
- ∴ OP = OQ. (প্রমাণিত)

চিত্রে, O বৃত্তের কেন্দ্র।

[রাজশাহী বোর্ড ২০২৪]

- ক) কোনো বৃত্তের বহিঃছ একটি বিন্দু থেকে বৃত্তটিতে একটি স্পর্শক আঁক।
 অঙ্কনের বিবরণ নিষ্প্রয়োজন।
- (খ) প্রমাণ কর যে, $\angle ABC + \angle ADC = 180^\circ$.
- (গ) প্রমাণ কর যে, OE সরলরেখা স্পর্শ জ্যা AD এর লম্ব সমদ্বিখণ্ডক।

২ নং প্রশ্নের উত্তর

(ক)

চিত্রে, AP, BP উভয়ই নির্ণেয় স্পর্শক।

(খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে ABCD চতুর্ভুজটি অন্তর্লিখিত হয়েছে। প্রমাণ করতে হবে যে, $\angle ABC + \angle ADC = 180^\circ$.

অঙ্কন : O, C এবং O, A যোগ করি।

প্রমাণ

ধাপ $m{\lambda}$: একই চাপ ADC এর উপর দন্ডায়মান কেন্দ্রন্থ $\angle AOC=2$ (বৃত্তন্থ $\angle ABC$)

[একই চাপের উপর দন্ডায়মান কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দিগুণ]

অর্থাৎ, ∠AOC = 2∠ABC

ধাপ ২ : আবার, একই চাপ ABC এর উপর দন্ডায়মান কেন্দ্রন্থ প্রবৃদ্ধ কোণ $\angle AOC = 2$ (বৃত্তন্থ $\angle ADC$)

্রিএকই চাপের উপর দন্ডায়মান কেন্দ্রস্থ কোণ বৃত্তন্থ কোণের দ্বিগুণ]

অর্থাৎ প্রবৃদ্ধ কোণ $\angle AOC = 2 \angle ADC$

 \therefore $\angle AOC +$ প্রবৃদ্ধ কোণ $\angle AOC = 2(\angle ABC + \angle ADC)$

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

বত্ত

কিন্তু $\angle AOC$ + প্রবৃদ্ধ কোণ $\angle AOC$ = 4 সমকোণ

∴ 2(∠ABC + ∠ADC) = 4 সমকোণ

বা, $\angle ABC + \angle ADC = 2$ সমকোণ।

∠ABC + ∠ADC = 180°. (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট ABCD বৃত্তের বহিঃছ বিন্দু E থেকে বৃত্তে AE ও DE দুইটি স্পর্শক এবং AD হচ্ছে স্পর্শ জ্যা। OE রেখাংশ AD জ্যাকে F বিন্দৃতে ছেদ করে।

প্রমাণ করতে হবে যে, OE সরলরেখা স্পর্শ জ্যা AD এর লম্ব সমদ্বিখন্ডক।

অঙ্কন : O, A এবং O, D যোগ করি।

প্রমাণ:

ধাপ-১ : \triangle OAE এবং \triangle ODE এর মধ্যে,

OA = OD [একই বৃত্তের ব্যাসার্ধ]

AE = DE [বহিঃস্থ কোনো বিন্দু থেকে বৃত্তে অঙ্কিত স্পর্শকম্বয় সমান]

এবং OE = OE [সাধারণ বাহু]

∴ OAE ≅ ODE [বাহু-বাহু-বাহু সর্বসমতা উপপাদ্য]

 $\therefore \angle AOE = \angle DOE$

অর্থাৎ, ∠AOF = ∠DOF

ধাপ-২ : এখন, Δ OAF ও Δ ODF-এ

OA = OD [একই বৃত্তের ব্যাসার্ধ]

OF = OF [সাধারণ বাহু]

এবং অন্তর্ভুক্ত $\angle AOF =$ অন্তর্ভুক্ত $\angle DOF$ [ধাপ (১) হতে]

∴ Δ OAF ≅ Δ ODF [বাহু-কোণ-বাহু সর্বসমতা উপপাদ্য]

AF = DF

এবং ∠AFO = ∠DFO

ধাপ-৩ : এখন , ∠AFD = 1 সরলকোণ

বা, $\angle AFO + \angle DFO = 2$ সমকোণ [: এক সরলকোণ = 2 সমকোণ]

বা, $\angle AFO + \angle AFO = 2$ সমকোণ [ধাপ (২) হতে]

বা. 2∠AFO = 2 সমকোণ

বা, $\angle AFO = 1$ সমকোণ

∴ ∠DFO = ∠AFO = 1 সমকোণ

∴ OF ⊥ AD

অর্থাৎ OE ⊥ AD

আবার, AF = DF

∴ OE. AD কে সমদ্বিখণ্ডিত করে।

অতএব, OE সরলরেখা স্পর্শ জ্যা AD এর লম্ব-সমদ্বিখণ্ডক। (প্রমাণিত)

૭.

চিত্রে QO স্পর্শক এবং CQ স্পর্শবিন্দুগামী ব্যাসার্ধ।

[যশোর বোর্ড ২০২৪]

(ক) চিত্র হতে $CQ=3.5\ cm$ হলে বৃত্তের ক্ষেত্রফল নির্ণয় কর।

(খ) প্রমাণ কর যে, ∠RCS = 2/RPS.

(গ) প্রমাণ কর যে, QO ⊥ CQ.

৩ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, CQ = 3.5 cm অর্থাৎ, বৃত্তের ব্যাসার্ধ r = 3.5 cm

 \therefore বৃত্তের ক্ষেত্রফল $=\pi r^2$

নির্ণেয় ক্ষেত্রফল 38.4846 cm² (প্রায়)।

(খ) এখানে, C কেন্দ্রবিশিষ্ট PRQS বৃত্তে RQS উপচাপের উপর দণ্ডায়মান বৃত্তম্থ কোণ \angle RPS এবং কেন্দ্রম্থ কোণ \angle RCS । প্রমাণ করতে হবে যে, \angle RCS = $2\angle$ RPS ।

অঙ্কন : চ এবং ঈ যোগ করে পর্যন্ত বর্ধিত করি। জ

প্রমাণ

ধাপ $\mathbf{S}:\Delta$ PRC এর বহিন্থ কোণ \angle RCT = \angle CPR + \angle CRP

ধাপ ২ : Δ PRC এ CP = CR [একই বৃত্তের ব্যাসার্ধ]

অতএব, ∠CPR = ∠CRP

[∵ ত্রিভুজের সমান সমান বাহুর বিপরীত কোণদ্বয় পরস্পর সমান]

ধাপ ৩ : ধাপ (১) ও (২) থেকে পাই ∠RCT = 2∠CPR

ধাপ 8 : একইভাবে Δ PCS থেকে পাই \angle SCT = $2\angle$ SPC

ধাপ ৫: ধাপ (৩) ও (৪) থেকে পাই,

 \angle RCT + \angle SCT = $2\angle$ CPR + $2\angle$ SPC

অর্থাৎ $\angle RCS = 2 \angle RPS$. (প্রমাণিত)

(গ) মনে করে, C কেন্দ্র বিশিষ্ট বৃত্তের ওপরস্থ Q বিন্দুতে QO একটি স্পর্শক এবং CQ স্পর্শ বিন্দুগামী ব্যাসার্ধ। প্রমাণ করতে হবে যে, $QO \perp CQ$.

আঙ্কন : QO স্পর্শকের ওপর যেকোনো একটি বিন্দু M নিই এবং C, M যোগ করি।

প্রমাণ:

ধাপ $m{\lambda}$: যেহেতু বৃত্তের Q বিন্দুতে QO একটি স্পর্শক, সুতরাং ঐ Q বিন্দু ব্যতীত QO এর ওপরস্থ অন্য সকল বিন্দু বৃত্তের বাইরে থাকবে। সুতরাং M বিন্দুটি বৃত্তের বাইরে অবস্থিত।

ধাপ-২ : CM বৃত্তের ব্যাসার্থ CQ এর চেয়ে বড় , অর্থাৎ , CM>CQ এবং তা স্পর্শ বিন্দু ব্যতীত QO এর ওপরস্থ M বিন্দুর সকল অবস্থানের জন্য সত্য ।

∴ কেন্দ্র C থেকে QO স্পর্শকের ওপর CQ হলো ক্ষুদ্রতম দূরত্ব। সুতরাং QO ⊥ CQ. (প্রমাণিত)

8.

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

চিত্রে, O বৃত্তের কেন্দ্র।

[কুমিল্লা বোর্ড ২০২৪]

- (ক) দুইটি বৃত্তের ব্যাস যথাক্রমে 8 সে.মি. এবং 6 সে.মি.। বৃত্তদ্বয় পরস্পরকে বহিঃস্পর্শ করলে কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব নির্ণয় কর।
- (খ) প্রমাণ কর যে, $\angle EDG + \angle EFG =$ দুই সমকোণ।
- (গ) DF এবং EG কর্ণছয় পরস্পর T বিন্দুতে ছেদ করলে প্রমাণ কর যে, $\angle DOE + \angle FOG = 2\angle DTE$ ।

৪ নং প্রশ্নের উত্তর

(क) চিত্রে, P ও Q কেন্দ্রবিশিষ্ট দুইটি বৃত্ত পরম্পারকে A বিন্দুতে বহিঃস্পর্শ করেছে। $P \ \text{কেন্দ্রবিশিষ্ট বৃত্তের ব্যাস} = 8 \ \text{সোমি অর্থাৎ ৮ ব্যাসার্ধ } r_1 = PA = \frac{8}{2} = 4$ সেমি।

Q কেন্দ্রবিশিষ্ট বৃত্তের ব্যাস = 6 সেমি

অর্থাৎ ব্যাসার্ধ
$$P_2 = QA = \frac{6}{3} = 3$$
 সেমি।

∴ বৃত্ত দুইটির কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব = PQ

নির্ণেয় দূরত্ব 7 সেমি।

(খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে EFGD চতুর্ভুজটি অন্তর্লিখিত হয়েছে। প্রমাণ করতে হবে যে, ∠EDG + ∠EFG = 2 সমকোণ।

প্রমাণ

ধাপ-১ : একই চাপ EFG এর উপর দণ্ডায়মান কেন্দ্রন্থ $\angle EOG = 2$ (বৃত্তন্থ $\angle EDG$)

্বিতের একই চাপের উপর দন্ডায়মান কেন্দ্রন্থ কোণ বৃত্তন্থ কোণের দিগুণ] অর্থাৎ ∠EOG = 2∠EDG.

ধাপ-২ : আবার, একই চাপ EDG এর উপর দণ্ডায়মান কেন্দ্রন্থ প্রবৃদ্ধ ∠EOG = 2 (বৃত্তন্থ ∠EFG) অর্থাৎ, প্রবৃদ্ধ ∠EOG = 2∠EFG

[বৃত্তের একই চাপের উপর দণ্ডায়মান কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দিগুণ]

কিন্তু, ∠EOG + প্রবৃদ্ধ ∠EOG = 360°

বা, $2(\angle EDG + \angle EFG) = 360^{\circ}$

∴ ∠EDG + ∠EFG = 2 সমকোণ | (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে DEFG চতুর্ভুজটি অন্তর্লিখিত। DEFG চতুর্ভুজের DF ও EG কর্ণদ্বর পরস্পর T বিন্দুতে ছেদ করেছে। প্রমাণ করতে হবে যে, $\angle DOE + \angle FOG = 2\angle DTE$.

অঙ্কন : O, D; O, E; O, F এবং O, G যোগ করি।

প্রমাণ :

ধাপ ১ : DE চাপের উপর অবস্থিত।

∠DOE = 2∠DGE [কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দ্বিগুণ]

ধাপ ২ : FG চাপের উপর অবস্থিত

∠FOG = 2∠GDF [একই কারণে]

ধাপ ৩ : ∠DOE + ∠FOG

= 2(∠DGE + ∠GDF) [ধাপ (১) ও (২) থেকে]

 $=2(\angle DGT + \angle GDT)$

ধাপ 8 : Δ GDT এর বহিঃস্থ \angle DTE = অন্তঃস্থ (\angle DGT + \angle GDT)

 \therefore $\angle DOE + \angle FOG = 2\angle DTE$. (প্রমাণিত) [ধাপ (৩) থেকে]

৫.

চিত্রে O কেন্দ্রবিশিষ্ট PLMN বত্তে OL = 5 সে.মি.।

চিউগ্রাম বোর্ড ২০২৪]

- (ক) চিত্রের বৃত্ত<mark>টির</mark> পরিধি ও ব্যাসের অন্তর নির্ণয় কর।
- (খ) উদ্দীপকের <mark>আ</mark>লোকে প্রমাণ কর যে, $\angle LMN = \frac{1}{2}$ প্রবৃদ্ধ $\angle LON$.
- (গ) উদ্দীপকের বৃত্তন্থ চতুর্ভুজটির PM ও LN কর্ণদ্বয় পরস্পর E বিন্দুতে ছেদ করলে প্রমাণ কর যে, ∠MON + ∠LOP = 2∠MEN.

৫ নং প্রশ্নের উত্তর

- (ক) দেওয়া আছে, O কেন্দ্রবিশিষ্ট PLMN বৃত্তের OL = 5 সে.মি. অর্থাৎ ব্যাসার্ধ r = 1 সে.মি.
 - 🗀 চিত্রের বৃত্তটির পরিধি = 2πr

ব্যাস =
$$2r = 2 \times 5 = 10$$
 সে.মি.

- \therefore পরিধি ও ব্যাসের অন্তর = 31.416 10 = 21.416 সে.মি.
- (খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PLMN চতুর্ভুজটি অন্তর্লিখিত হয়েছে। প্রমাণ করতে হবে যে, $\angle LMN = \frac{1}{2}$ প্রবৃদ্ধ $\angle LON$.

প্রমাণ :

ধাপ ১: LMN চাপের উপর দন্ডায়মান বৃত্তন্ত্ব ∠LPN এবং কেন্দ্রন্ত্র ∠LON.

∴ ∠LON = 2 ∠LPN [কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দ্বিগুণ]

ধাপ ২ : আবার , বৃত্তের কেন্দ্রে উৎপন্ন কোণ 360°

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

অর্থাৎ, প্রবৃদ্ধ ∠LON + ∠LON = 360°

বা, প্রবৃদ্ধ ∠LON = 360° – ∠LON

বা, প্রবৃদ্ধ ∠LON = 360° – 2 ∠LPN

ধাপ ৩ : PLMN বৃত্তস্থ চতুর্ভুজে,

$$\angle$$
LMN + \angle LPN = 180°

[বৃত্তস্থ চতুর্ভুজের বিপরীত কোণদ্বয়ের সমষ্টি 180°]

বা, $2 \angle LMN + 2 \angle LPN = 360^{\circ}$

বা, $2 \angle LMN = 360^{\circ} - 2 \angle LPN$

বা, 2 ∠LMN = প্রবৃদ্ধ ∠LON

$$Arr$$
 Arr Arr

(গ) এখানে, PLMN চতুর্ভুজটি O কেন্দ্রবিশিষ্ট বৃত্তে অন্তর্লিখিত। PM ও LN কর্ণদ্বর পরম্পর E বিন্দুতে ছেদ করেছে। প্রমাণ করতে হবে যে, $\angle MON + \angle LOP = 2 \angle MEN$

প্রমাণ:

ধাপ ১ : PL চাপের উপর অবস্থিত ∠LOP = 2∠PNL

[বৃত্তের একই চাপের উপ<mark>র দণ্ডায়মান কেন্দ্রন্থ</mark> কোণ বৃত্তন্থ কোণের দিণ্ডণ]

ধাপ ২ : MN চাপের উপর অবস্থিত

 \angle MON = $2\angle$ NPM [একই কারণে]

ধাপ ৩ : $\angle LOP + \angle MON = 2(\angle PNL + \angle NPM)$ [ধাপ (১) ও (২) থেকে]

$$= 2(\angle PNE + \angle NPE)$$

ধাপ 8 : Δ NPE এর বহিঃস্থ \angle MEN = অন্তঃস্থ (\angle PNE + \angle NPE)

∴ ∠MON + ∠LOP = 2∠MEN. [ধাপ (৩) থেকে]
(প্রমাণিত)

৬. একটি ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য যথাক্রমে 3.5 সে.মি., 4 সে.মি. এবং 4.5 সে.মি.।

[চট্টগ্রাম বোর্ড ২০২৪]

- (ক) উদ্দীপকের বৃহত্তম বাহুর সমান বাহুবিশিষ্ট সমবাহু ত্রিভুজ অঙ্কন কর।
- (খ) উদ্দীপকের ত্রিভুজটির অন্তর্বৃত্ত অঙ্কন কর। [অঙ্কনের চিহ্ন ও বিবরণ আবশ্যকা
- (গ) উদ্দীপকের ক্ষুদ্রতম বাহুকে ব্যাসার্ধ ধরে অঙ্কিত বৃত্তে এমন দুটি স্পর্শক আঁক যেন তাদের অন্তর্ভুক্ত কোণ 90° হয়। [অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক]

৬ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, উদ্দীপকের ত্রিভুজটির বৃহত্তম বাহু 4.5 সে.মি.।

ABC একটি সমবাহু ত্রিভূজ আঁকা হলো। যার প্রতিটি বাহুর দৈর্ঘ্য a=4.5 সে মি

(খ) মনে করি, ত্রিভুজের তিনটি বাহু a=3.5 সে.মি., b=4 সে.মি. এবং c=4.5 সে.মি. দেওয়া আছে। এর অন্তর্বন্ত আঁকতে হবে।

অষ্কন : যেকোনো রশ্মি BE হতে a এর সমান করে BC কেটে নিই। BC রেখাংশের B ও C বিন্দুকে কেন্দ্র করে যথাক্রমে c ও b এর সমান ব্যাসার্থ নিয়ে BC এর একই পাশে দুইটি বৃত্তচাপ, আঁকি। বৃত্তচাপদ্বয় পরস্পর A বিন্দুতে ছেদ করে। A, B এবং A, C যোগ করি। তাহলে Δ ABC অঙ্কিত হলো যার অন্তর্বন্ত আঁকতে হবে।

এখন, Δ ABC এর \angle ABC ও \angle ACB এর সমিদ্বিগণ্ডক যথাক্রমে BL ও CM আঁকি। মনে করি, তারা পরক্ষার O বিন্দুতে ছেদ করে। O থেকে BC এর উপর OD লম্ব আঁকি এবং মনে করি, তা BC কে D বিন্দুতে ছেদ করে। O কে কেন্দ্র করে OD এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত আঁকি। তাহলে এই বৃত্তটিই নির্দেশ্ব অন্তর্বৃত্ত।

(গ) মনে করি, r=3.5 সে.মি. ব্যাসার্ধবিশিষ্ট ABC একটি বৃত্ত যার কেন্দ্র O , উক্ত বৃত্তে এমন দুইটি স্পর্শক আঁকতে হবে যাদের অন্তর্ভুক্ত কোণ 90° ।

অঙ্কন :

- OA যেকোনো ব্যাসার্ধ নিই এবং $\angle AOB = 90^\circ$ আঁকি। OB রশ্মি বৃত্তটিকে B বিন্দুতে ছেদ করেছে।
- ২. এখন, OA এর A বিন্দুতে AP এবং OB এর B বিন্দুতে BP লম্ব আঁকি। AP ও BP লম্বময় পরস্পরকে P বিন্দুতে ছেদ করেছে। তাহলে AP ও BP-ই উদ্দীষ্ট স্পর্শকদ্বয় যাদের অন্তর্ভুক্ত কোণ 90° .

চিত্রে P বৃত্তের কেন্দ্র।

[সিলেট বোর্ড ২০২৪]

- (ক) DP = 4.5 cm হলে, বৃত্তটির পরিধি নির্ণয় কর।
- (খ) DE = DF হলে, প্রমাণ কর যে, DE ও DF, P বিন্দু হতে সমদূরবর্তী।
- (গ) Δ DEF-এর অন্তবৃত্ত আঁক। অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক]

৭ নং প্রশ্নের উত্তর

- (ক) ধরি, DEF বৃত্তে ব্যাসার্ধ, DP = r = 4.5 cm
 - ightharpoonup বৃত্তটির পরিধি $=2\pi r$

 $= 2 \times 3.1416 \times 4.5 \text{ cm} = 28.274 \text{ cm}$

(খ) মনে করি, P কেন্দ্রবিশিষ্ট DEF বৃত্তের DE = DF। প্রমাণ করতে হবে যে, DE ও DF, P বিন্দু হতে সমদূরবর্তী।

গণিত ৮ম অধ্যায় বৃত্ত

Prepared by: ISRAFIL SHARDER AVEEK

অন্ধন : কেন্দ্র P হতে DE ও DF জ্যা এর উপর যথাক্রমে PR ও PQ লম্ব আঁকি । P. E এবং P, F যোগ করি ।

প্রমাণ :

ধাপ-১ : PR \perp DE এবং PO ও DF

Arr DR = RE এবং DQ = QF [Arr বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো জ্যা এর উপর অঙ্কিত লম্ব ঐ জ্যাকে সমদ্বিখন্ডিত করে]

ৰা,
$$RE = \frac{1}{2}DE$$

এবং
$$QF = \frac{1}{2}DF$$

ধাপ-২ : যেহেতু DE = DF

বা,
$$\frac{1}{2}$$
 DE = $\frac{1}{2}$ DF

∴ RE = QF [ধাপ ১ হতে]

ধাপ-৩ : এখন , Δ EPR এবং Δ FPQ সমকোণী ত্রিভুজদ্বয়ের মধ্যে অতিভুজ PE = অতিভুজ PF [উভয়ই একই ব্রন্তের ব্যাসার্ধ]

এবং RE = QF [ধাপ-২ হতে]

 Δ EPR $\cong \Delta$ FPQ [সমকোণী ত্রিভূজের অতিভূজ বাহু সর্বসমতা উপপাদ্য]

$$\therefore$$
 PR = PO

ধাপ-8 : কিন্তু PR এবং PQ কেন্দ্র P হতে যথাক্রমে জ্যা DE এবং DF এর দূরত্ব। সুতরাং DE ও DF কেন্দ্র P বিন্দু হতে সমদূরবর্তী। (প্রমাণিত)

(গ) মনে করি, DEF একটি ত্রিভুজ। এর অন্তবৃত্ত আঁকতে হবে। অর্থাৎ △ DEF এর ভিতর এমন একটি বৃত্ত আঁকতে হবে, যা DE; EF এবং DF বাহু তিনটির প্রত্যেকটিকে স্পর্শ করে।

আঙ্কন : \angle DEF এবং \angle DFE এর সমদ্বিখণ্ডক যথাক্রমে EM এবং FN আঁকি। মনে করি, তারা P বিন্দুতে ছেদ করে। P হতে EF এর উপর PR লম্ব আঁকি। PR রেখা EF কে R বিন্দুতে ছেদ করে। এখন P কে কেন্দ্র করে PR এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত আঁকি। তাহলে অঙ্কিত বৃত্তই Δ DEF এর অন্তবৃত্ত।

8. a = 4 সে.মি., b = 6.5 সে.মি., $\angle x = 30^{\circ}$.

[বরিশাল বোর্ড ২০২৪]

- ক) 12 সে.মি. পরিসীমাবিশিষ্ট একটি বর্গ অঙ্কন কর।
 শুধুমাত্র অঙ্কনের চিহ্ন আবশ্যক।
- (খ) একটি ত্রিভুজের ভূমি b, ভূমি সংলগ্ন $\angle x$ এবং অপর দুই বাহুর অন্তর $\frac{a}{2}$ হলে ত্রিভুজটি আঁক। [অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক]
- (গ) a ব্যাসবিশিষ্ট বৃত্তের বহিঃস্থ কোনো বিন্দু হতে উক্ত বৃত্তের দুইটি স্পর্শক আঁক যেন তাদের অন্তর্ভুক্ত কোণ 2∠x হয়। [অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক]

৮ নং প্রশ্নের উক্ত

- (5) দেওয়া আছে, বর্গের পরিসীমা = 12 সে.মি.
 - \therefore বর্গের এক বাহুর দৈর্ঘ্য $a=rac{12}{4}=3$ সে.মি.

a 3 সে.মি.

ABCD বর্গ অঙ্কন করা হলো যার বাহু = 3 সে.মি.।

(খ) এখানে, ত্রিভুজের ভূমি b=6.5 সে.মি., ভূমি সংলগ্ন কোণ $\angle x=30^\circ$ এবং অপর দুই বাহুর অন্তর $d=\frac{a}{2}=\frac{d}{2}=2$ সে.মি.। ত্রিভুজটি আঁকতে হবে।

অঙ্কন :

- ১. যেকোনো একটি রশ্মি BE থেকে ভূমি a এর সমান করে BC রেখাংশ কেটে নিই।
- ২. BC রেখাংশের B বিন্দুতে ∠x এর সমান ∠CBF আঁকি।
- ৩. BF রশ্মি থেকে d এর সমান BD অংশ কাটি।
- 8. C, D যোগ করি।
- e. DC রেখাংশের যে পাশে F বিন্দু আছে সেই পাশে C বিন্দুতে $\angle FDC$ এর সমান $\angle DCA$ আঁকি। CA রশ্মি BF রশ্মিকে A বিন্দুতে ছেদ করে।

তাহলে, ∆ ABC-ই উদ্দিষ্ট ত্রিভুজ।

(গ) মনে করি, O কেন্দ্রবিশিষ্ট অইন্ট বৃত্তের ব্যাসার্ধ $r=\frac{a}{2}=\frac{4}{2}=2$ সে.মি.। ABC বৃত্তে এরূপ দুইটি স্পর্শক আঁকতে হবে যেন তাদের অন্তর্ভুক্ত কোণ $2\ \angle x=2\ \times 30^\circ=60^\circ$ হয়।

ABC বৃত্তের পরিধির উপর P যেকোনো একটি বিন্দু নিই। $O,\ P$ যোগ করি এবং OP কে L পর্যন্ত বর্ধিত করি যেন OP=PL হয়।

P কে কেন্দ্র করে OP বা PL এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত আঁকি । এ বৃত্তটি ABC বৃত্তকে C ও A বিন্দুতে ছেদ করে । $C,\ L$ এবং $A,\ L$ যোগ করি ।

তাহলে, CL এবং AL উদ্দীষ্ট স্পর্শকদ্বয় যাদের অন্তর্ভুক্ত কোণ 60° ।

৯. O কেন্দ্রবিশিষ্ট EFHG বৃত্তের FHG চাপের উপর দণ্ডায়মান বৃত্তস্থ ∠FEG এবং কেন্দ্রস্থ ∠FOG।

[বরিশাল বোর্ড ২০২৪]

- (ক) প্রমাণ কর যে, কোনো বর্গক্ষেত্র তার কর্ণের উপর অন্ধিত বর্গক্ষেত্রের অর্ধেক।
- (খ) প্রমাণ কর যে, 2∠FEG = ∠FOG.
- (গ) যদি ∠FEH + ∠HEG = 90° হয়, তবে প্রমাণ কর যে, F, O, G বিন্দু তিনটি সমরেখ।

৯ নং প্রশ্নের উত্তর

(क) মনে করি, ABCD একটি বর্গক্ষেত্র। এর AC কর্ণ। প্রমাণ করতে হবে যে, $AB^2 = \frac{1}{2}\,AC^2.$

গণিত ৮ম অধ্যায

বত্ত

Prepared by: ISRAFIL SHARDER AVEEK

প্রমাণ :

ধাপ $\mathbf{S}:\Delta \ ABC$ -এ $\angle B=$ এক সমকোণ

[বর্গক্ষেত্রের সকল কোণ সমকোণ]

∴ Δ ABC সমকোণী এবং AC এর অতিভূজ।

ধাপ ২ : $AC^2 = AB^2 + BC^2$ [পিথাগোরাসের উপপাদ্য অনুযায়ী]

বা, $AC^2 = AB^2 + AB^2$ [বর্গক্ষেত্রের বাহুগুলো পরস্পার সমান]

বা, $2AB^2 = AC^2$

 \therefore AB = $\frac{1}{2}$ AC². (প্রমাণিত)

(খ) মনে করি, O কেন্দ্রবিশিষ্ট EFHG বৃত্তের FHG চাপের উপর দন্ডায়মান বৃত্তস্থ \angle FEG এবং কেন্দ্রন্থ \angle FOG. প্রমাণ করতে হবে যে, $2\angle$ FEG = \angle FOG.

অঙ্কন : ধরি, EG রেখাংশ কেন্দ্রগামী নয়। এক্ষেত্রে E বিন্দু দিয়ে কেন্দ্রগামী রেখাংশ EP আঁকি।

প্রমাণ •

ধাপ-১ : △ EOF এর বহিঃস্থ কোণ

 $\angle FOP = \angle FOE + \angle EFO$

[বহি:স্থু কোণ অন্ত:স্থু বিপরীত কোণদ্বয়ের সমষ্টির সমান]

ধাপ-২ : \triangle EOF-এ OE = OF [একই ব্রুত্তের ব্যাসার্ধ]

∴ ∠FEO = ∠EFO সমিদ্ববাহু ত্রিভুজের ভূমি সংলগ্ন কোণ দুইটি সমান]

ধাপ-৩ : ∠FOP = 2∠FEO [ধাপ ১ ও ধাপ-২ হতে]

ধাপ-8 : একইভাবে \triangle EOG থেকে পাই, \angle GOP = $2\angle$ GEO

ধাপ-৫ : $\angle FOP + \angle GOP = 2\angle FEO + 2\angle GEO$ [ধাপ-(৩) ও (৪) হতে

বা, ∠FOG = 2∠FEG

∴ 2∠FEG = ∠FOG. (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট EFHG বৃত্তে $\angle FEH + \angle HEG = 90^\circ$ । প্রমাণ করতে হবে যে, F. O. G বিন্দু তিনটি সমরেখ।

অঙ্কন : O, H যোগ করি।

ধাপ-১ : যেহেতু কেন্দ্রন্থ ∠FOH এবং বৃত্তন্থ ∠FEH একই চাপ FH এর উপর দভায়মান। সেহেতু ∠FOH = 2∠FEH

[: বুত্তের একই চাপের উপর দন্ডায়মান কেন্দ্রস্থ কোণ বুত্তস্থ কোণের দ্বিগুণ]

ধাপ-২ : অনুরূপভাবে, HG চাপের উপর দণ্ডায়মান ∠HOG = 2∠HEG

ধাপ-৩ : $\angle FOH + \angle HOG = 2 \angle FEH + 2 \angle HEG$ $= 2(\angle FEH + \angle HEG)$

 $= 2 \times 90^{\circ}$ [: \angle FEH + \angle HEG =

90°1

 $= 180^{\circ}$

যেহেতু ∠FOH এবং ∠HOG সন্নিহিত কোণ। সুতরাং F, O. G বিন্দু তিনটি সমরেখ। (প্রমাণিত)

১০. (i) O কেন্দ্রবিশিষ্ট বৃত্তে PQRS একটি বৃত্তস্থ চতুর্ভুজ।

(ii) M কেন্দ্রবিশিষ্ট বৃত্তে ABCD চতুর্ভুজটি অন্তর্লিখিত। AC ও BD কর্ণদ্বয় পরস্পরকে E বিন্দুতে ছেদ করে।

[দিনাজপুর বোর্ড ২০২৪]

(ক) প্রমাণ কর যে, বৃত্তের ব্যাসই বৃহত্তম জ্যা।

(খ) প্রমাণ কর যে, $\angle POR + \angle PSR = দুই সমকোণ।$

(গ) দেখাও যে, ∠AMB + ∠CMD = 2∠AEB.

১০ নং প্রশ্নের উত্তর

(क) মনে করি, O কেন্দ্রবিশিষ্ট ADBC বৃত্তে AD ব্যাস। BC ব্যাস ভিন্ন যেকোনো একটি জ্যা নিই। O, C এবং O, B যোগ করি। প্রমাণ করতে হবে যে, বৃত্তের ব্যাসই বৃহত্তম জ্যা অর্থাৎ AD > BC.

প্রমাণ : ধাপ $\mathbf{S}: \mathbf{OA} = \mathbf{OB} = \mathbf{OC} = \mathbf{OD}$ [একই বৃত্তের ব্যাসার্ধ]

ধাপ ২ : এখন, Δ OCB এ OC + OB > BC

[∵ ত্রিভুজের দুই বাহুর সমষ্টি তৃতীয় বাহু অপেক্ষা বৃহত্তর]

বা, OA + OD > BC [ধাপ (১) হতে]

 \therefore AD > BC [\because OA + OD = AD] (প্রমাণিত)

(খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQRS একটি বৃত্তস্থ চতুর্ভুজ। প্রমাণ করতে হবে যে, $\angle PQR + \angle PSR = দুই সমকোণ।$

অঙ্কন : O, P এবং O, R যোগ করি।

ধাপ ১ : একই চাপ PSR এর উপর দন্ডায়মান কেন্দ্রন্থ ∠POR = 2 (বৃত্তন্থ ∠PQR)

[একই চাপের উপর দন্ডায়মান কেন্দ্রস্থ কোণ বৃত্তন্থ কোণের দিগুণ]

অর্থাৎ, ∠POR = 2∠PQR

ধাপ ২ : আবার, একই চাপ PQR এর উপর দন্ডায়মান কেন্দ্রন্থ প্রবৃদ্ধ কোণ ∠POR = 2 (বৃত্তম্ ∠PSR)

[একই চাপের উপর দন্ডায়মান কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দিগুণ]

অর্থাৎ প্রবৃদ্ধ কোণ ∠POR = 2∠PSR

∴ ∠POR + প্রবৃদ্ধ কোণ ∠POR = 2(∠PQR + ∠PSR)

কিন্তু $\angle POR +$ প্রবৃদ্ধ কোণ $\angle POR = 4$ সমকোণ

 \therefore 2($\angle PQR + \angle PSR$) = 4 সমকোণ

∴ ∠PQR + ∠PSR = 2 সমকোণ । (প্রমাণিত)

(গ) মনে করি, M কেন্দ্রবিশিষ্ট বৃত্তে ABCD চতুর্ভুজটি অন্তর্লিখিত। ABCD চতুর্ভুজের AC ও BD কর্ণদ্বয় পরস্পর E বিন্দুতে ছেদ করেছে। M, A; M,

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

 $= 2 \angle AEB$.

প্রমাণ :

ধাপ ১ : AB চাপের উপর অবস্থিত

 $\angle AMB = 2\angle ADB$

[: বুত্তের একই চাপের উপর দন্ডায়মান কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দ্বিগুণ]

ধাপ ২ : CD চাপের উপর অবস্থিত

 $\angle CMD = 2\angle DAC$ [একই কারণে]

ধাপ ৩ : $\angle AMB + \angle CMD = 2(\angle ADB + \angle DAC)$

[ধাপ (১) ও (২) থেকে]

$$= 2(\angle ADE + \angle DAE)$$

ধাপ 8 : \triangle DAE এর বহিঃছ \angle AEB = অন্তঃছ (\angle ADE + \angle DAE)

∴ ∠AMB + ∠CMD = 2∠AEB. [ধাপ (৩) থেকে] (দেখানো হলো)

۵۵.

O কেন্দ্রবিশিষ্ট বৃত্তে PQ ব্যাসভিন্ন জ্যা এবং OR ⊥ PQ.

[ময়মনসিংহ বোর্ড ২০২৪]

- (ক) ∠OQS কোণের পরিমাণ নির্ণয় কর।
- (খ) প্রমাণ কর যে, PR = QR.
- (গ) দেখাও যে, Δ QOS ও বৃত্তকলা QOS এর ক্ষেত্রফলের অনুপাত $3\sqrt{3}$:

১১ নং প্রশ্নের উত্তর

(ক) এখানে, ∠OQP =30°

 $\angle PQS$ অর্ধবৃত্তম্থ কোণ বলে $\angle PQS = 90^{\circ}$

$$\angle OQS = 90^{\circ} - \angle OQP$$
$$= 90^{\circ} - 30^{\circ} = 60^{\circ}$$

আবার, OP = OQ = OS

[একই বৃত্তের ব্যাসার্ধ]

 $ilde{\cdot}\cdot$ $\angle OSQ = \angle OQS = 60^\circ$ [সমান সমান বাহুর বিপরীত কোণ]

∴
$$\angle QOS = 180^{\circ} - (\angle OQS + \angle OSQ)$$

= $180^{\circ} - (60^{\circ} + 60^{\circ})$
= $180^{\circ} - 120^{\circ}$
= 60° .

নির্ণেয় $\angle QOS = 60^{\circ}$.

B; M, C এবং M, D যোগ করি। দেখাতে হবে যে, $\angle AMB + \angle CMD \mid (খ)$ মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQ ব্যাস ভিন্ন জ্যা এবং $OR \perp PQ$ । প্রমাণ করতে হবে যে, PR = OR.

প্রমাণ :

ধাপ-১ : যেহেতু OR ⊥ PQ

সেহেতু ∠ORP = ∠ORQ এক সমকোণ।

 \therefore Δ OPR ও অ Δ OQR দুইটি সমকোণী ত্রিভূজ।

ধাপ-২ : Δ OPR এবং Δ OQR সমকোণী ত্রিভুজদ্বয়ে

OP = OO [একই বৃত্তের ব্যাসার্ধ]

এবং OR = OR [সাধারণ বাহু]

∴ Δ OPR ≅ OQR [সমকোণী ত্রিভুজের অতিভূজ-বাহু সর্বসমতা উপপাদ্য]

∴ PR = QR. (প্রমাণিত)

(গ) 'ক' হতে পাই.

$$\angle OSQ = \angle QOS = \angle OQS = 60^{\circ}$$

$$\therefore$$
 OQ = OS = QS

∴ Δ OOS সমবাহু ত্রিভুজ।

ধরি, সমবাহু ত্রিভু<mark>জে</mark>র বাহুর দৈর্ঘ্য = a একক

$$\therefore \ \Delta \ \mathrm{QOS}$$
 এর ক্ষেত্রফল $= \frac{\sqrt{3}}{4} \ \mathrm{a}^2$ বর্ণ একক

এবং বৃত্তকলা QOS এর ক্ষেত্রফল
$$= \frac{\theta}{360^\circ} \times \pi a^2$$

$$= \frac{60^\circ}{360} \times \pi a^2$$

$$= \frac{\pi a^2}{6}$$
 বর্গ একক

 ${}...$ Δ QOS এর ক্ষেত্রফল : বৃত্তকলা QOS এর ক্ষেত্রফল

$$= \frac{\sqrt{3}}{4} a^{2} : \frac{\pi a^{2}}{6}$$

$$= \frac{\sqrt{3}}{4} : \frac{\pi}{6}$$

$$= 12 \times \frac{\sqrt{3}}{4} : 12 \times \frac{\pi}{6} [12 \text{ দ্বারা গুণ করে}]$$

$$= 3\sqrt{3} : 2 \pi$$

∴ Δ QOS এর ক্ষেত্রফল : বৃত্তকলা QOS এর ক্ষেত্রফল $= 3\sqrt{3} : 2 \pi$ (দেখানো হলো)

১২.

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

চিত্রে C বৃত্তের কেন্দ্র এবং MN = OP.

 $NA^2 + AC^2 - CN^2$

- ্ঢাকা বোর্ড ২০২৩]
 (ক) ব্যত্তের পরিধি 25 সে.মি. হলে, ব্যতের ব্যাসার্ধ নির্ণয় কর।
- (খ) প্রমাণ কর যে, AC = BC.
- (গ) যদি MN > OP হয়, তবে প্রমাণ কর যে, AC < BC.

১২ নং প্রশ্নের উত্তর

- (Φ) মনে করি, বৃত্তের ব্যাসার্ধ = r
 - ightharpoonup বৃত্তের পরিধি $=2\pi t$ একক

দেওয়া আছে, বৃত্তের পরিধি = 25 সে. মি.

অর্থাৎ, $2\pi r=25$ সে. মি.

বা,
$$r = \frac{25}{2\pi}$$
 সে. মি. $= \frac{25}{2 \times 3.1416}$ সে. মি.

∴ r = 3.979 সে. মি. (প্রায়)

নির্ণেয় বৃত্তের ব্যাসার্থ 3.979 সে. মি. (প্রায়)।

(খ) মনে করি, C কেন্দ্রবিশিষ্ট MNPO বৃত্তে MN ও OP ব্যাস ভিন্ন দুইটি জ্যা মেখানে MNOP, AC ⊥ MN এবং BC ⊥ OP. প্রমাণ করতে হবে যে, AC = BC।

প্রমাণ :

ধাপ ১ : AC \perp MN এবং BC \perp OP

সুতরাং, MA = NA এবং OB = PB [\because বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন থেকোনো জ্যা এর উপর অঙ্কিত লম্ব ঐ জ্যাকে সমদ্বিখণ্ডিত করে]

$$\therefore$$
 NA = $\frac{1}{2}$ MN এবং OB = $\frac{1}{2}$ OP.

ধাপ ২ : কিন্তু MN = OP

ৰা,
$$\frac{1}{2}MN = \frac{1}{2}OP$$

∴ NA = OB [ধাপ (১) হতে]

ধাপ ৩ : এখন, ΔACN এবং ΔBCO সমকোণী ত্রিভুজদ্বরের মধ্যে অতিভুজ CN= অতিভুজ CO (উভরে একই বৃত্তের ব্যাসার্ধ)

এবং NA = OB [ধাপ (২) হতে]

Arr $\Delta ACN\cong \Delta BCO$ [সমকোণী ত্রিভুজের অতিভুজ বাহু সর্বসমতা উপপাদা]

অতএব, AC = BC (প্রমাণিত)

(গ) মনে করি, C কেন্দ্রবিশিষ্ট MNPO বৃত্তে MN ও OP ব্যাস ভিন্ন দুইটি জ্যা যেখানে MN > OP, $AC \perp$ MN এবং $BC \perp OP$ । প্রমাণ করতে হবে যে, AC < BC

প্রমাণ : ধাপ ১ : AC ⊥ MN এবং BC ⊥ OP

সুতরাং MA = NA এবং OB = PB [\because বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন থেকোনো জ্যা এর উপর অঙ্কিত লম্ব ঐ জ্যাকে সমদ্বিখন্ডিত করে]

$$\therefore$$
 NA = $\frac{1}{2}$ MN এবং OB = $\frac{1}{2}$ OP

ধাপ ২ : ACN সমকোণী ত্রিভূজে

 $NA^2 + AC^2 = CN^2$ [পিথাগোরাসের উপপাদ্য অনুসারে]

$$\sqrt{1}$$
. $NA^2 = CN^2 - AC^2$

ধাপ ৩ : আবার, BCO সমকোণী ত্রিভুজে

$$OB^2 + BC^2 = CO^2$$

বা, $OB^2 = CO^2 - BC^2$ [পিথাগোরাসের উপপাদ্য অনুসারে]

ধাপ 8 : এখন, MN > OP

ৰা,
$$\frac{1}{2}$$
 MN $> \frac{1}{2}$ OP

- বা, NA > OB [ধাপ (১) হতে]
- বা, $NA^2 > OB^2$
- বা, $CN^2 AC^2 > CO^2 BC^2$
- বা, $CN^2 AC^2 > CN^2 BC^2$ [: একই বুত্তের ব্যাসার্ধ CN = CO]
- বা, $-AC^2 > -BC^2$
- বা, AC² < BC²
- ∴ AC < BC. (প্রমাণিত)</p>

১৩.

চিত্রে PORS বৃত্তের কেন্দ্র O এবং OP = 4.5 সে.মি.।

[ঢাকা বোর্ড ২০২৩]

- (ক) উদ্দীপকের বৃত্তের ক্ষেত্রফল নির্ণয় কর।।
- (খ) প্রমাণ কর যে, $\angle QPS = \frac{1}{2} \angle QOS$.
- (গ) যদি PR এবং QS কর্ণদ্বয় পরস্পর M বিন্দুতে ছেদ করে তবে প্রমাণ কর যে, $\angle POQ + \angle ROS = 2\angle PMQ$.

১৩ নং প্রশ্নের উত্তর

(ক) এখানে, O কেন্দ্রবিশিষ্ট PQRS বৃত্তের ব্যাসার্ধ, r = OP = 4.5 সে. মি.।

- ∴ PQRS বৃত্তের ক্ষেত্রফল
 - $=\pi r^2$ বৰ্গ একক
 - $= 3.1416 \times (4.5)^2$ বর্গ সে. মি.
 - = 3.1416 × 20.25 বৰ্গ সে. মি.
 - = 63.617 বর্গ সে. মি. (প্রায়)

নির্ণেয় বৃত্তের ক্ষেত্রফল 63.617 বর্গ সে. মি. (প্রায়)।

(খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQRS একটি অন্তর্লিখিত চতুর্ভুজ। O, Q এবং O, S যোগ করি। বৃত্তটির একই উপচাপ QRS এর উপর দন্ডায়মান বৃত্তহে কোণ

 $\angle QPS$ এবং কেন্দ্রস্থ কোণ $\angle QOS$ । প্রমাণ করতে হবে যে, $\angle QPS = \frac{1}{2}$ $\angle QOS$ ।

www.schoolmathematics.com.bd

গণিত ৮ম অধ্যায

Prepared by: ISRAFIL SHARDER AVEEK

অঙ্কন : P বিন্দু দিয়ে কেন্দ্রগামী রেখাংশ PD আঁকি।

ধাপ $\mathbf{i}:\Delta$ POQ এর বহিঃস্থ কোণ $\angle \mathbf{QOD}=\mathbf{\angle QPO}+\mathbf{\angle PQO}$

[∵ ত্রিভুজের বহিঃস্থ কোণ এর অন্তঃস্থ বিপরীত কোণদ্বয়ের সমষ্টির সমান]

ধাপ ২ : Arr POQ এ OP = OQ [একই বৃত্তের ব্যাসার্ধ]

অতএব, ∠QPO = ∠PQO [সমদ্বিবাহু ত্রিভুজের ভূমিসংলগ্ন কোণ দুইটি সমান]

ধাপ ৩ : ধাপ (১) ও (২) থেকে $\angle QOD = 2\angle QPO$

ধাপ 8 : একইভাবে Δ POS থেকে \angle SOD = $2\angle$ SPO

ধাপ ৫ : ধাপ (৩) ও (৪) থেকে ∠QOD + ∠SOD = 2∠QPO + 2∠SPO

$$\therefore$$
 $\angle QPS = \frac{1}{2} \angle QOS.$ (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQRS একটি অন্তর্লিখিত চতুর্ভুজ। PQRS চতুর্ভূজের PR ও QS কর্ণদ্বয় পরস্পর M বিন্দুতে ছেদ করেছে। O, P; O, Q; O~R এবং O,~S যোগ করি। প্রমাণ করতে হবে যে, $\angle POQ + \angle ROS = 2$ $\angle PMQ$

প্রমাণ :

ধাপ ১ : একই চাপ PO এর উপর দন্ডায়মান কেন্দ্রন্থ কোণ ∠POO এবং বত্তম্ব কোণ ∠PSQ।

∴ ∠POQ = 2∠PSQ [∵ বৃত্তের একই চাপের উপর দণ্ডায়মান কেন্দ্রয় কোণ বৃত্তস্থ কোণের দিগুণ]

ধাপ ২ : আবার, একই চাপ RS এর উপর দভায়মান কেন্দ্রন্থ কোণ ∠ROS এবং বৃত্তস্থ কোণ ∠SPR।

∴ ∠ROS = 2 ∠SPR [∵ বৃত্তের একই চাপের উপর দভায়মান কেন্দ্রয় কোণ বৃত্তস্থ কোণের দিগুণ]

ধাপ ৩ : Δ PMS-এর বহিঃছ \angle PMQ = অন্তঃছ বিপরীত (\angle PSM +

ধাপ 8 : এখন, $\angle POQ + \angle ROS = 2 (PSQ + \angle SPR)$

[ধাপ (১) ও (২) হতে]

 $= 2 (\angle PSM + \angle SPM)$

= 2 ∠PMQ (ধাপ (৩) হতে]

 $\therefore \angle POQ + \angle ROS = 2\angle PMQ$ (প্রমাণিত)

১৪. ABC সমবাহু ত্রিভুজের পরিকেন্দ্র O এবং পরিবৃত্তের বহিঃস্থ বিন্দু P হতে বৃত্তটিতে PM ও PN দুইটি স্পর্শক। [রাজশাহী বোর্ড ২০২৩]

- (ক) ∠AOB এর মান নির্ণয় কর।
- (খ) পরিবৃত্তটি অঙ্কন কর। (অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক)
- (গ) প্রমাণ কর যে, PM = PN.

১৪ নং প্রশ্নের উত্তর

(क) এখানে, ABC সমবাহু ত্রিভুজের পরিবৃত্তের কেন্দ্র O। পরিকেন্দ্র O বিন্দুতে উৎপন্ন কোণ = 360°

∴ ∠AOB এর মান = $\frac{360^\circ}{3}$ $= 120^{\circ}$

নির্ণেয় ∠AOB এর মান 120°.

(খ) মনে করি, ABC একটি সমবাহু ত্রিভূজ। এর এর পরিবৃত্ত আঁকতে হবে। অর্থাৎ এমন একটি বৃত্ত আঁকতে হবে যা, ABC ত্রিভুজের তিনটি শীর্ষবিন্দু A, B ও C বিন্দু দিয়ে যায়।

অঙ্কন :

- AB ও AC রেখাংশের লম্ব সমদ্বিখন্ডক যথাক্রমে NO ও MP আঁকি। মনে করি, এরা পরস্পর O বিন্দুতে ছেদ করে।
- ২. O, A যোগ করি। O কে কেন্দ্র করে OA এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত আঁকি। তাহলে বৃত্তটি $A, B \circ C$ বিন্দুগামী হবে এবং-এ বৃত্তটিই Δ ABC এর নির্ণেয় পরিবৃত্ত।
- (গ) মনে করি, ABC ত্রিভূজের পরিবৃত্তের কেন্দ্র O এবং পরিবৃত্তের বহিঃস্থ একটি বিন্দু P । P হতে PM ও PN দুইটি স্পর্শক। প্রমাণ করতে হবে যে, PM = PN

অঙ্কন : O, M ও O, N এবং O, P যোগ করি।

ধাপ ১ : যেহেতু PM স্পর্শক , OM স্পর্শবিন্দুগামী ব্যাসার্ধ।

সুতরাং, PM \perp OM [∵ স্পর্শক, স্পর্শবিন্দুগামী ব্যাসার্ধের উপর লম্ব]

∴ ∠PMO = এক সমকোণ

অনুরূপভাবে, ∠PNO = এক সমকোণ

অর্থাৎ, Δ PMO ও Δ PNO সমকোণী ত্রিভুজ।

ধাপ ২ : Δ PMO ও Δ PNO সমকোণী ত্রিভুজদ্বয়ে,

অতিভূজ PO = অতিভুজ PO [সাধারণ বাহু]

OM = ON [একই বৃত্তের ব্যাসার্ধ]

- \therefore $\Delta PMO \cong \Delta PNO [সমকোণী ত্রিভূজের অতিভূজ-বাহু সর্বসমতা]$

ኔ৫.

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

চিত্রে O কেন্দ্র এবং SQ, ∠PSR এর সমদ্বিখন্ডক।

[রাজশাহী বোর্ড ২০২৩]

- (ক) S, O, Q সমরেখ হলে ∠SPQ এর মান নির্ণয় কর।
- (খ) প্রমাণ কর যে, $\angle PSR + \angle PQR = 180^{\circ}$.
- (গ) প্রমাণ কর যে, PQ = QR.

১৫ নং প্রশ্নের উত্তর

(ক) এখানে, O কেন্দ্রবিশিষ্ট বৃত্তে PQRS একটি বৃত্তন্থ চতুর্ভুজ।

 $S,\ O,\ Q$ সমরেখ অর্থাৎ SOQ একটি সরল রেখা। SQ সরল রেখা কেন্দ্র O বিন্দুগামী হওয়ায় বৃত্তটির ব্যাস হবে SQ।

অতএব, ∠SPO একটি অর্ধবৃত্তস্থ কোণ।

∴ ∠SPQ = এক সমকোণ [∵ অর্ধবৃত্তয়্থ কোণ এক সমকোণ]

নির্ণেয় ∠SPQ = 90°.

(খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQRS একটি অন্তর্লিখিত চতুর্ভুজ এবং $\angle PSR$ এর সমদ্বিখন্ডক SQ । SQ সরলরেখাটি কেন্দ্র O বিন্দুগামী । প্রমাণ করতে হবে যে, $\angle PSR + \angle PQR = 180^\circ$ ।

প্রমাণ

ধাপ ১ : একই চাপ PQR এর উপর দণ্ডায়মান কেন্দ্রন্থ $\angle POR = 2$ (বৃত্তন্থ $\angle PSR$)

[∵ বৃত্তের একই চাপের উপর দণ্ডায়মান কেন্দ্রন্থ কোণ বৃত্তন্থ কোণের দিণ্ডণ] অর্থাৎ ∠POR = 2∠PSR

ধাপ ২ : আবার একই চাপ PSR এর দণ্ডায়মান কেন্দ্রন্থ প্রবৃদ্ধ কোণ $\angle POR = 2$ (বৃত্তন্থ $\angle PQR$)

অর্থাৎ প্রবৃদ্ধ কোণ ∠POR = 2 ∠PQR

এখন, $\angle POR +$ প্রবৃদ্ধ $\angle POR = 2(\angle PSR + \angle PQR)$

কিন্তু, $\angle POR +$ প্রবৃদ্ধ $\angle POR = 4$ সমকোণ = 360°

 \therefore 2(\angle PSR + \angle PQR) = 360°

ৰা,
$$\angle PSR + \angle PQR = \frac{360^{\circ}}{2}$$

অতএব ∠PSR + ∠PQR = 180° (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQRS একটি অন্তর্লিখিত চতুর্ভুজ এবং $\angle PSR$ এর সমদ্বিখন্ডক SQ প্রমাণ করতে হবে যে, PQ=QR।

প্রমাণ : ধাপ $\mathbf S$: $\mathbf PQ$ চাপের উপর দন্ডায়মান কেন্দ্রস্থ কোণ $\angle \mathbf POQ$ এবং বৃত্তস্থ কোণ $\angle \mathbf PSO$ ।

$$\therefore$$
 $\angle PSQ = \frac{1}{2} \angle POQ$

$$\angle RSQ = \frac{1}{2}ROQ$$

ধাপ ২ : যেহেতু ∠PSR এর সমদ্বিখন্ডক SQ

সেহেতু $\angle PSQ = \angle RSQ$

বা, চাপ PQ = চাপ QR [∵ কেন্দ্রস্থ কোণ চাপের সমানুপাতিক]

১৬.

চিত্রে, O বৃত্তের কেন্দ্র এবং জ্যা XY > জ্যা XZ.

[যশোর বোর্ড ২০২৩]

- (ক) OZ = 3 সে.মি. হলে, XYZ বৃত্তের পরিধি কত সে.মি. হবে?
- (খ) প্রমাণ কর যে, $\angle YOZ = 2\angle YXZ$.
- (গ) যদি OE \perp XY এবং OF \perp XZ হয় তবে প্রমাণ কর যে, OE < OF

১৬ নং প্রশ্নের উত্তর

(ক) এখানে, O কেন্দ্রবিশিষ্ট XYZ বৃত্তের ব্যাসার্ধ, r = OZ = 3 সে. মি.।

- \therefore XYZ বুত্তের পরিধি $=2\pi r$ একক
 - $= 2 \times 3.1416 \times 3$ সে. মি.
 - = 18.85 সে. মি. (প্রায়)

নির্নেয় বৃত্তের পরিধি 18.85 সে. মি. (প্রায়)।

(খ) মনে করি,

O কেন্দ্রবিশিষ্ট বৃত্তে জ্যা XY> জ্যা XZ। বৃত্তের একই উপচাপ YZ এর উপর দণ্ডায়মান কেন্দ্রন্থ কোণ $\angle YOZ$ এর বৃত্তন্থ কোণ $\angle YXZ$.

প্রমাণ করতে হবে যে, ∠YOZ = 2∠YXZ

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

আঙ্কন : X বিন্দু দিয়ে কেন্দ্রগামী রেখাংশ XT আঁকি।

প্রমাণ :

ধাপ-১ : ΔXOY এর বহিঃছ $\angle YOT =$ অন্তঃস্থ বিপরীত ($\angle YXO + (\angle XYO)$

[∵ ত্রিভুজের বহিঃস্থ কোণ এর অন্তঃস্থ বিপরীত কোণদ্বয়ের সমষ্টির সমান]

ধাপ-২ : ΔXOY -এ , OX=OY [একই বৃত্তের ব্যাসার্ধ]

 \therefore $\angle XYO = \angle YXO$

[: সমদ্বিবাহু ত্রিভুজের ভূমি সংলগ্ন কোণ দুইটি সমান]

ধাপ-৩ : ধাপ (১) ও (২) থেকে পাই,

 \angle YOT = $2\angle$ YXO

ধাপ-8 : একইভাবে ΔXOZ থেকে পাই,

∠ZOT = 2∠ZXO

ধাপ-৫: ধাপ (৩) ও (৪) থেকে পাই,

 $\angle YOT + \angle ZOT = 2\angle YXO + 2\angle ZXO$ [যোগ করে]

বা, \angle YOZ = 2(\angle YXO + \angle ZXO) [∵ \angle YOT + \angle ZOT = \angle YOZ]

ৰা, $\angle YOZ = 2\angle YXZ$ [$\because \angle YXO + \angle ZXO = \angle YXZ$]

অতএব, ∠YOZ= 2 ∠XYZ. (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে জ্যা XY> জ্যা XZ, $OE\perp XY$ এবং $OF\perp XZ$ । প্রমাণ করতে হবে যে, $OE<\!OF$ ।

ধাপ-১ :

য়েহেতু XY ⊥ PQ এবং OF ⊥ XZ

Arr YE = $rac{1}{2}$ XY এবং ZF = $rac{1}{2}$ XZ [বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন জ্যা-এর

উপর অঙ্কিত লম্ব ঐ জ্যাকে সমদ্বিখণ্ডিত করে]

ধাপ-২ : Δ OYE ও Δ OZF সমকোণী ত্রিভূজদ্বয়ের মধ্যে

$$OY^2 = YE^2 + OE^2$$
 এবং $OZ^2 = ZF^2 + OF^2$

[পিথাগোরাসের উপপাদ্যের সাহায্যে]

ধাপ-৩ : কিন্তু $\mathbf{OY} = \mathbf{OZ}$ (একই বৃত্তের ব্যাসার্ধ)

বা, $OY^2 = OZ^2$

বা, $YE^2 + OE^2 = ZF^2 + OF^2$ [ধাপ (২) হতে]

 \P , $YE^2 - ZF^2 = OF^2 - OE^2$

ধাপ-8 : আবার, XY > XZ

বা,
$$\frac{1}{2}XY > \frac{1}{2}XZ$$

বা, YE > ZF [ধাপ (১) হতে]

বা, $YE^2 > ZF^2$

বা, $YE^2 - ZF^2 > 0$

বা, $OF^2 - OE^2 > 0$ [ধাপ (৩) হতে]

বা, $OF^2 > OE^2$

বা, OF > OE

∴ OE < OF. (প্রমাণিত)

۵٩.

চিত্রে, O বৃত্তের কেন্দ্র এবং BD ব্যাস, PA ও PB দুইটি স্পর্শক।

[যশোর বোর্ড ২০২৩]

(ক) AB = 6 সে.মি. এবং OB = 5 সে.মি. হলে, AD এর দৈর্ঘ্য নির্ণয় কর।

(খ) প্রমাণ কর যে, $\angle ADC + \angle ABC = 2$ সমকোণ।

(গ) প্রমাণ কর যে, OP স্পর্শক জ্যা AB এর লম্ব-দ্বিখন্ডক।

১৭ নং প্রশ্নের উত্তর

 (Φ) এখানে, O কেন্দ্রবিশিষ্ট ABCD বৃত্তে BD ব্যাস।

জ্যা AB = 6 সে. মি.,

ব্যাসার্থ r = OB = 5 সে. মি.

Arr BD = 2.0 = 2 × 5 সে. মি. = 10 সে. মি.

BD ব্যাস হওয়ায় ∠BAD একটি অর্ধবৃত্তস্থ কোণ।

∴ ∠BAD = সমকোণ [∵ অর্ধবৃত্তয়্ব কোণ এক সমকোণ]

BAD সমকোণী ত্রিভূজে $AD^2 = BD^2 - AB^2$

$$=(10)^2-6^2=100-36=64$$

 \therefore AD = $\sqrt{64}$ = 8 সে. মি.

নির্ণেয় AD এর দৈর্ঘ্য ৪ সে. মি.।

(খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে ABCD চতুর্ভুজটি অন্তর্লিখিত। প্রমাণ করতে হবে যে, $\angle ADC + \angle ABC = 2$ সমকোণ।

অঙ্কন : O, C যোগ করি।

প্রমাণ :

ধাপ $\boldsymbol{\varsigma}$: একই চাপ ADC এর উপর দন্ডায়মান কেন্দ্রন্থ $\angle AOC = 2$ (বৃত্তন্থ $\angle ABC$)

[একই চাপের উপর দন্ডায়মান কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দ্বিগুণ]

অর্থাৎ, ∠AOC = 2∠ABC

ধাপ ২ : আবার, একই চাপ ABC এর উপর দন্ডায়মান কেন্দ্রছু প্রবৃদ্ধ কোণ $\angle AOC = 2$ (বৃত্তম্থ $\angle ADC$)

্রিকই চাপের উপর দন্ডায়মান কেন্দ্রস্থ কোণ বৃত্তন্থ কোণের দ্বিগুণ]

অর্থাৎ প্রবৃদ্ধ কোণ ∠AOC = 2∠ADC

∴ ∠AOC + প্রবৃদ্ধ কোণ ∠AOC = 2(∠ABC + ∠ADC)

কিন্তু $\angle AOC +$ প্রবৃদ্ধ কোণ $\angle AOC = 4$ সমকোণ

 \therefore 2($\angle ABC + \angle ADC$) = 4 সমকোণ

∴ ∠ABC + ∠ADC = 2 সমকোণ।

একইভাবে, প্রমাণ করা যায় যে, ∠BAD + ∠BCD = 2 সমকোণ

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

অতএব, ∠ADC + ∠ABC = 2 সমকোণ। (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে ABCD চতুর্ভুজটি অন্তর্লিখিত। বৃত্তটির ব্যাস BD, ব্যাসার্থ OA এবং বহিঃস্থ PA বিন্দু হতে PA ও PB দুইটি স্পর্শক। O, P যোগ করি। OP স্পর্শ জ্যা AB কে E বিন্দুতে ছেদ করে।

প্রমাণ করতে হবে যে, OP স্পর্শ জ্যা AB এর লম্ব-দ্বিখন্ডক।

ধাপ ১. যেহেত OA এবং OB উভয়ই স্পর্শ বিন্দুগামী ব্যাসার্থ।

সুতরাং ∠PAO = এক সমকোণ

এবং $\angle PBO$ এক সমকোণ [PA ও PB যথাক্রমে A ও B বিন্দুতে স্পর্শক]

সমকোণী Δ PAO ও সমকোণী Δ PBO-এর মধ্যে

অতিভুজ PO = অতিভুজ PO

OA = OB [একই বৃত্তের ব্যাসার্ধ]

- \therefore $\Delta PAO \cong \Delta PBO$ [অতিভূজ-বাহু সর্বসমতা উপপাদ্য]
- $\therefore \angle POA = \angle POB$ $\angle AOE = \angle BOE$

avc 2. এখন Δ OAE ও Δ OBE-এর মধ্যে

OA = OB [একই বৃত্তের ব্যাসার্ধ]

OE = OE [সাধারণ বাহু]

এবং অন্তর্ভুক্ত ∠AOE = অন্তর্ভুক্ত ∠BOE

অতএব, Δ OAE \cong Δ OBE [বাহু-কোণ-বাহু উপপাদ্য]

∴ AE = BE এবং ∠AEO = ∠BEO

কিন্তু কোণদ্বয় সন্নিহিত বলে প্রত্যেকে এক সমকোণ।

সুতরাং OE, AB-এর লম্বদ্বিখন্ডক।

অর্থাৎ OP রেখাংশ স্পর্শ জ্যা AB-এর লম্বদ্বিখন্ডক। (প্রমাণিত)

۵৮.

চিত্রে, PQRS চতুর্ভুজটি বৃত্তে অন্তর্লিখিত যার কেন্দ্র O।

[কুমিল্লা বোর্ড ২০২৩]

- (ক) বৃত্তটির ব্যাস 8.4 সে.মি. হলে বৃত্তটির পরিধি নির্ণয় কর।
- (খ) প্রমাণ কর যে, 2∠QPS = ∠QOS.
- (গ) PR এবং QS কর্ণদ্বয় পরস্পরকে M বিন্দুতে ছেদ করলে প্রমাণ কর যে, $\angle POO + \angle ROS = 2\angle PMO$.

১৮ নং প্রশ্নের উত্তর

(ক) এখানে, O কেন্দ্রবিশিষ্ট PQRS বৃত্তের ব্যাস, d = 8.4 সে. মি.

ightharpoonup PQRS বৃত্তের পরিধি = πd

= 3.1416 × 8.4 সে. মি.

= 26.389 সে. মি. (প্রায়)

নির্ণেয় বৃত্তের পরিধি 26.389 সে. মি. (প্রায়)

(খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQRS চতুর্ভুজটি অন্তর্লিখিত। বৃত্তটির একই উপচাপ QRS এর উপর দন্ডায়মান বৃত্তম্থ কোণ $\angle QPS$ এবং কেন্দ্রম্থ কোণ $\angle QOS$ ।

প্রমাণ করতে হবে যে, 2 ∠QPS = ∠QOS।

অঙ্কন : P বিন্দু দিয়ে কেন্দ্রগামী রেখাংশ PD আঁকি।

প্রয়াপ •

ধাপ $\mathbf{\lambda}: \Delta \text{ POO}$ এর বহিঃস্থ কোণ $\angle \text{OOD} = \angle \text{OPO} + \angle \text{POO}$

ি ত্রিভুজের বহিঃস্থ কোণ এর অন্তঃস্থ বিপরীত কোণদ্বয়ের সমষ্টির সমান]

ধাপ ২ : Δ POO এ OP = OO [একই বুত্তের ব্যাসার্ধ]

অতএব, ∠QPO = ∠PQO [সমদ্বিবাহু ত্রিভুজের ভূমিসংলগ্ন কোণ দুইটি সমান]

ধাপ ৩ : ধাপ (১) ও (২) থেকে $\angle QOD = 2\angle QPO$

ধাপ 8 : একইভাবে Δ POS থেকে \angle SOD = $2\angle$ SPO

ধাপ ϵ : ধাপ (৩) ও (৪) থেকে $\angle QOD + \angle SOD = 2 \angle QPO + 2\angle SPO$

ৰা, $\angle QOS = 2(\angle QPO + \angle SPO)$ [$\because \angle QOD + \angle SOD = \angle QOS$]

 \triangleleft ₹ \triangleleft QOS = $2 \angle$ QPS [\because \angle QPO + \angle SPO = \angle QPS]

∴ 2∠QPS = ∠QOS. (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQRS চতুর্ভুজটি অন্তর্লিখিত। PQRS চতুর্ভুজের PR ও QS কর্ণদ্বয় পরস্পর M বিন্দুতে ছেদ করেছে।
প্রমাণ করতে হবে যে, ∠POQ + ∠ROS = 2∠PMQ

অঙ্কন : O, P এবং O, R যোগ করি।

থমাণ :

ধাপ $\mathbf S: PQ$ চাপের উপর দন্ডায়মান কেন্দ্রস্থ কোণ $\angle POQ$ এবং বৃত্তস্থ কোণ $\angle PSQ$ ।

∴ ∠POQ = 2∠PSQ [কেন্দ্রয় কোণ বৃত্তয় কোণের দিওণ]

ধাপ ২ : RS চাপের উপর দভায়মান কেন্দ্রন্থ কোণ $\angle ROS$ এবং বৃত্তন্থ কোণ $\angle SPR$ ।

∴ ∠ROS = 2∠SPR [একই কারণে]

ধাপ ৩ : ∠POQ + ∠ROS

= 2(∠PSQ + ∠SPR) [ধাপ (১) ও (২) থেকে]

 $= 2(\angle PSM + \angle SPM)$

ধাপ 8 : Δ SPM এর বহিঃস্থ \angle PMQ অন্তঃস্থ (\angle PSM+ \angle SPM)

∴ ∠POQ + ∠ROS = 2∠PMQ. [ধাপ (৩) থেকে] (প্রমাণিত)

১৯. DEFG চতুর্ভুজের বিপরীত কোণদ্বয় পরস্পর সম্পুরক।

[কুমিল্লা বোর্ড ২০২৩]

- প্রমাণ কর যে, অর্ধবৃত্তয় কোণ এক সমকোণ।
- (খ) প্রমাণ কর যে, D, E, F ও G বিন্দু চারটি সমবৃত্ত।

www.schoolmathematics.com.bd

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

(গ) DF রেখা যদি $\angle EDG$ এর সমদ্বিখণ্ডক হয়, তবে প্রমাণ কর যে, EF = FG.

১৯ নং প্রশ্নের উত্তর

(क) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে AB একটি ব্যাস এবং ∠ACB একটি অর্ধবৃত্তস্থ কোণ। প্রমাণ করতে হবে যে, ∠ACB = এক সমকোণ।

অঙ্কন : AB এর যে পাশে C বিন্দু অবছিত তার বিপরীত পাশে বৃত্তের উপর একটি বিন্দু D নিই।

প্রমাণ : ধাপ-১ : ADB চাপের উপর দণ্ডায়মান

বৃত্তম্থ $\angle ACB = \frac{1}{2}$ (কেন্দ্রন্থ সরলকোণ $\angle AOB$)

ৄ
 বৃত্তের একই চাপের উপর দভায়মান বৃত্তয় কোণ কেন্দ্রয় কোণের
 অর্থেক
]

ধাপ-২ : কিন্তু সরলকোণ ∠AOB = দুই সমকোণ।

$$Arr$$
 $Arr ACB = \frac{1}{2} \, ($ দুই সমকোণ $)$

(খ) মনে করি, DEFG চতুর্ভুজের বিপরীত কোণদ্বয় সম্পূরক অর্থাৎ $\angle DEF + \angle DGF = দু$ ই সমকোণ এবং $\angle EDG + \angle EFG = দু$ ই সমকোণ। প্রমাণ করতে হবে যে, D, E, F ও G বিন্দু চার্টি সমনৃত।

আঙ্কন : যেহেতু D, E, F বিন্দু তিনটি সমরেখ নয়। সুতরাং, বিন্দু তিনটি দিয়ে যায় এরূপ একটি ও কেবল একটি বৃত্ত আছে। মনে করি, বৃত্তটি DG রেখাংশকে M বিন্দতে ছেদ করে। F, M যোগ করি।

প্রমাণ :

ধাপ $\mathbf{3}$: অঙ্কন অনুসারে উউঋগ বৃত্তন্ত্ব চতুর্ভুজ। সূতরাং $\angle DEF + \angle DMF = দুই সমকোণ$

ি∵ বৃত্তে অন্তর্লিখিত চতুর্ভুজের <mark>দুইটি</mark> বিপরীত কোণের সমষ্টি দুই সমকোণ] ধাপ ২ : কিন্তু ∠DEF + ∠DGF = দুই সমকোণ [দেওয়া আছে]

 $\therefore \angle DMF = \angle DGF$

কিন্তু তা অসম্ভব। কারণ ΔFMG এর বহিঃছ্ $\angle DMF >$ বিপরীত অন্তঃছ্ $\angle DGF$ সুতরাং M এবং G বিন্দুদ্বয় ভিন্ন হতে পারে না। M বিন্দু অবশ্যই G বিন্দুর সাথে মিলে যাবে।

অতএব D, E, F ও G বিন্দু চারটি সমবৃত্ত। (প্রমাণিত)

মনে করি, DEFG চতুর্ভুজের বিপরীত কোণদ্বয় পরস্পর সম্পূরক অর্থাৎ
 DEFG একটি বৃত্তে অন্তর্লিখিত চতুর্ভুজ। DF রেখা, ∠EDG-এর সমদিখন্তক।

প্রমাণ করতে হবে যে, EF = FG.

প্রমাণ :

ধাপ ১ : DF রেখা ∠EDG এর সমদ্বিখন্ডক হওয়ায়

 $\angle FDE = \angle FDG$.

EF চাপের উপর দণ্ডায়মান বৃত্তম্ $\angle FDE$ এবং FG চাপের উপর দণ্ডায়মান বৃত্তম্ $\angle FDG$ উভয়ই সমান হওয়ায় চাপ EF= চাপ FG [চাপদ্বয় সমান হলে চাপের উপর অবস্থিত জ্যাগুলো পরম্পর সমান]

Arr EF = FG. (প্রমাণিত)

২০. একটি ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য যথাক্রমে a=b=5 সে.মি., c=6 সে.মি. এবং একটি বৃত্তের ব্যাসার্ধ 4.5 সে.মি.।

কিমিলা বোর্ড ২০২৩

- (ক) 3.5 সে.মি. দৈর্ঘ্যবিশিষ্ট একটি সমবাহু ত্রিভজ অঙ্কন কর।
- (খ) উদ্দীপকের আলোকে ত্রিভুজটি আঁক এবং ত্রিভুজটির অস্কংবৃত্ত অঙ্কন কর।
 [অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক]
- (গ) উদ্দীপকের তথ্য অনুসারে বৃত্তটি অঙ্কন কর এবং উক্ত বৃত্তে এমন দুইটি স্পর্শক অঙ্কন কর যেন তাদের অন্তর্ভুক্ত কোণ 50° হয়। আ্রিকনের চিহ্ন ও বিবরণ আবশ্যক।

২০ নং প্রশ্নের উত্তর

(ক)

ABC সমবাহু ত্রিভুজ অঙ্কন করা হলো যার বাহু d=AB=BC=AC=3.5 সে. মি.।

(খ)

মনে করি, ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য যথাক্রমে a=5 সে. মি., b=5 সে. মি. ও c=6 সে. মি. দেওয়া আছে। ত্রিভুজটি অঙ্ক করে এর অর্গুবৃত্ত আঁকতে হবে।

অঙ্কন :

- (১) যেকোনো রশ্মি AE থেকে এর সমান করে AB অংশ কেটে নিই।
- (২) AB রেখাংশের A ও B বিন্দুকে কেন্দ্র করে যথাক্রমে b ও a এর সমান ব্যাসার্থ নিয়ে AB এর একই পাশে দুইটি বৃত্তচাপ আঁকি। বৃত্তচাপ দুইটি পরম্পর C বিন্দুতে ছেদ করে।
- (৩) A, C এবং B, C যোগ করি। তাহলে, ΔABC -ই উদ্দীষ্ট ত্রিভুজ যার অন্তর্বৃত্ত আঁকতে হবে।
- (8) ∠BAC ও ∠ABC এর সমদ্বিখন্ডক যথাক্রমে AL ও BM আঁকি। মনে করি, তারা পরস্পর O বিন্দুতে ছেদ করে।
- (৫) O থেকে AB এর উপর OD লম্ব আঁকি এবং মনে করি, তা AB কে D বিন্দুতে ছেদ করে।
- (৬) O কে কেন্দ্র করে OD এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত আঁকি। তাহলে, এই বৃত্তটিই নির্ণেয় অন্তর্বৃত্ত।

(গ)

গণিত ৮ম অধ্যায় বৃৎ

মনে করি, বৃত্তের ব্যাসার্ধ, r=4.5 সে. মি. দেওয়া আছে। বৃত্তটি অঙ্কন করে বৃত্তটিতে এমন দুইটি স্পর্শক আঁকতে হবে যেন এদের অন্তর্ভুক্ত কোণ 50° হয়। **অঙ্কন** :

- ১. যেকোনো বিন্দু O নিই। O কে কেন্দ্র করে r এর সমান ব্যাসার্ধ নিয়ে ABD বৃত্ত অঙ্কন করি।
- ২. ABD বৃত্তে যেকোনো ব্যাসার্থ OA=r নিই। OA এর O বিন্দুতে $\angle AOB=130^\circ$ আঁকি। OB রেখাংশ বৃত্তটিকে B বিন্দুতে ছেদ করে।
- ৩. OA এর A বিন্দুতে AC এবং OB এর B বিন্দুতে BC লম্ব আঁকি। AC ও BC লম্বদ্ধর পরস্পর C বিন্দুতে মিলিত হয়।

তাহলে, AC ও BC-ই নির্ণেয় স্পর্শকদ্বয় যাদের অন্তর্ভুক্ত কোণ, $\angle ACB = 50^\circ$ ।

২১. a=4 সে.মি., b=4.5 সে.মি. ও c=5.5 সে.মি. । a ও b ব্যাসার্ধবিশিষ্ট দুটি বৃত্তের কেন্দ্র যথাক্রমে M ও N.

[চট্টগ্রাম বোর্ড ২০২৩]

- (ক) DEF একটি বৃত্তচাপ হলে, এর কেন্দ্র নির্ণয় কর।
- (খ) M ও N কেন্দ্রবিশিষ্ট বৃত্তদ্বয় পরস্পরকে P বিন্দুতে বহিঃস্পর্শ করলে, প্রমাণ কর যে, M, P ও N বিন্দু তিনটি একটি সরলরেখায় অবস্থিত।
- (গ) অঙ্কনের চিহ্ন ও বিবরণসহ a, b ও c বাহুবিশিষ্ট একটি ত্রিভুজের পরিবৃত্ত অঙ্কন কর।

২১ নং প্রশ্নের উত্তর

(ক)

DEF বৃত্তচাপের কেন্দ্র নির্ণয় করা হলো।

(খ) মনে করি, a=4 সে.মি. ও b=4.5 সে.মি. ব্যাসার্ধবিশিষ্ট দুইটি বৃত্তের কেন্দ্র যথাক্রমে M ও N এবং বৃত্তদ্বয় পরস্পর P বিন্দুতে বহিঃস্পর্শ করে। প্রমাণ করতে হবে যে, M, P ও N বিন্দু তিনটি একই সরলরেখায় অবস্থিত।

4 সে.মি.

অঙ্কন : যেহেতু বৃত্তদ্বয় পরস্পর P বিন্দুতে স্পর্শ করেছে। সেহেতু P বিন্দুতে এদের একটি সাধারণ স্পর্শক থাকবে। এখন, P বিন্দুতে সাধারণ স্পর্শক APB অঙ্কন করি। P, M এবং P, N যোগ করি।

প্রমাণ : M কেন্দ্রগামী বৃত্তে PM স্পর্শবিন্দুগামী ব্যাসার্ধ এবং APB স্পর্শক। সুতরাং $\angle APM =$ এক সমকোণ।

অনুরূপভাবে, ∠APN = এক সমকোণ।

এখন, $\angle APM + \angle APN =$ এক সমকোণ + এক সমকোণ = দুই সমকোণ

বা , MPN = দুই সমকোণ [\because \angle APM + \angle APN = \angle PMN] অর্থাৎ , \angle MPN একটি সরলকোণ ।

: M, P ও N বিন্দু তিনটি একই সরলরেখায় অবস্থিত। (প্রমাণিত)

Prepared by: ISRAFIL SHARDER AVEEK

a 4 সে.মি.. b 4.5 সে.মি. c 5.5 সে.মি.

মনে করি, একটি ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য a=4 সে.মি., b=4.5 সে.মি. ও c=5.5 সে.মি. দেওয়া আছে। ত্রিভুজটির পরিবৃত্ত অঙ্কন করতে হবে।

অঙ্কন :

যেকোনো রশ্মি BM থেকে a এর সমান করে BC অংশ কেটে নিই।

BC রেখাংশের B ও C বিন্দুকে কেন্দ্র করে যথাক্রমে c ও b এর সমান ব্যাসার্ধ নিয়ে BC এর একই পাশে দুইটি বৃত্তচাপ আঁকি। বৃত্তচাপ দুইটি পরস্পর A বিন্দুতে ছেদ করে। B, A এবং C, A যোগ করি। তাহলে ΔABC -ই উদ্দিষ্ট ত্রিভুজ যার পরিবৃত্ত আঁকতে হবে।

AB ও AC বাহুর লম্ব সমদ্বিখন্ডক যথাক্রমে EF ও GH অঙ্কন করি। মনে করি, তারা পরম্পরকে O বিন্দুতে ছেদ করে।

O, A যোগ করি।

O কে কেন্দ্র করে OA এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত অঙ্কন করি । বৃত্তটি $A,\ B$ ও C বিন্দু দিয়ে যায় ।

তাহলে, এই বৃত্তটির উদ্দিষ্ট ত্রিভূজের পরিবৃত্ত।

२२.

চিত্রে, CDE বৃত্তের কেন্দ্র M এবং CD = CE.

[চট্টগ্রাম বোর্ড ২০২৩]

- (ক) PQRS এ<mark>ক</mark>টি বৃত্তে অম্ভর্লিখিত চতুর্ভুজ এবং $\angle PQR = 2\angle PSR$ হলে, $\angle PQR$ এর মান নির্ণয় কর।
- (খ) প্রমাণ কর যে, $\angle DCE = \frac{1}{2} \angle DME$.
- (গ) প্রমাণ কর যে, CD ও CE জ্যাদ্বয় কেন্দ্র হতে সমদূরবর্তী।

২২ নং প্রশ্নের উত্তর

(ক) এখানে, O কেন্দ্রবিশিষ্ট বৃত্তে PQRS একটি অন্তর্লিখিত চতুর্ভুজ

$$\angle PQR = 2 \angle PSR$$

PQRS চুর্ভুজে ∠PQR এর বিপরীত কোণ ∠PSR।

 \therefore $\angle PQR + \angle PSR = 180^{\circ}$

[: বৃত্তে অন্তর্লিখিত চতুর্ভুজের যেকোনো দুইটি বিপরীত কোণের সমষ্টি দুই সমকোণ বা 180°]

$$\triangleleft$$
 ₹ \triangle PQR + \triangle PQR = 180° [\therefore \triangle PSR = $\frac{1}{2}$ \triangle PQR]

ৰা,
$$\frac{3}{2} \angle PQR = 180^{\circ}$$

(গ)

Prepared by: ISRAFIL SHARDER AVEEK

ৰা,
$$\angle PQR = \frac{2 \times 180^{\circ}}{3}$$

∴ ∠POR = 120°

নির্ণেয় ∠PQR এর মান 120°.

(খ) মনে করি, O কেন্দ্রবিশিষ্ট CDE বৃত্তে DE চাপের উপর দন্ডায়মান বৃত্তম্থ $\angle DCE$ এবং কেন্দ্রন্থ $\angle DME$ । প্রমাণ করতে হবে যে, $\angle DCE = \frac{1}{2}$ $\angle DME$.

অঙ্কন : C বিন্দু দিয়ে কেন্দ্রগামী রেখাংশ CT আঁকি।

প্রমাণ

ধাপ- $oldsymbol{\lambda}:\Delta$ CMD এর বহিঃছ্ \angle DMT = অন্তঃছ্ বিপরীত (\angle DCM + \angle CDM)

ে ত্রিভুজের বহিঃস্থ কোণ এর অন্তঃস্থ বিপরীত কোণদ্বয়ের সমষ্টির সমান] ধাপ-২: Δ CMD-এ, MC = MD [একই বৃত্তের ব্যাসার্ধ]

 \therefore \angle CDM = \angle DCM

[· সমদ্বিবাহু ত্রি<mark>ভূ</mark>জের ভূমি সংলগ্ন কোণ দুইটি সমান]

ধাপ-৩: ধাপ (১) ও (২) থেকে পাই,

 $\angle DMT = 2\angle DCM$

ধাপ-8 : একইভাবে Δ CME থেকে পাই,

 $\angle EMT = 2\angle ECM$

ধাপ-৫: ধাপ (৩) ও (৪) থেকে পাই,

 $\angle DMT + \angle EMT = 2 \angle DCM + 2 \angle ECM$ [যোগ করে]

$$[\because \angle DMT + \angle EMT = \angle DME]$$

বা, $\angle DME = 2\angle DCE$ [∴ $\angle DCM + \angle ECM = \angle DCE$]

বা, 2∠DCE = ∠DME

∴ $\angle DCE = \frac{1}{2} \angle DME$. (প্রমাণিত)

(গ) মনে করি, M কেন্দ্রবিশিষ্ট CDE বৃত্তের জ্যা CD = জ্যা CE। প্রমাণ করতে হবে যে, CD ও CE জ্যাম্ব্য় কেন্দ্র M হতে সমদূরবর্তী।

অঙ্কন : কেন্দ্র M হতে CD ও CE জ্যা এর উপর যথাক্রমে MP ও MQ লম্ব রেখাংশ আঁকি ।

প্রমাণ :

ধাপ ১ : MP \perp CD এবং MQ \perp CE

সুতরাং, CP = DP এবং CQ = EQ

ি বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো জ্যা এর উপর অঙ্কিত লম্ব ঐ জ্যাকে সমদ্বিখণ্ডিত করে]

$$\therefore$$
 DP = $\frac{1}{2}$ CD এবং EQ = $\frac{1}{2}$ CE

ধাপ ২ : কিন্তু CD=CE [ধরে নেওয়া]

বা,
$$\frac{1}{2}$$
 CD = $\frac{1}{2}$ CE

∴ DP = EQ [ধাপ (১) হতে]

ধাপ ৩ : এখন, ΔDMP এবং Δ EMQ সমকোণী ত্রিভুজদ্বরের মধ্যে অতিভুজ DM = অতিভুজ EM [উভয়ে একই বৃত্তের ব্যাসার্ধ]

এবং DP = EQ [ধাপ (২) হতে]

 \therefore \triangle DMP \cong \triangle EMO

[সমকোণী ত্রিভুজের অতিভুজ বাহু সর্বসমতা উপপাদ্য]

 \therefore MP = MO

ধাপ 8: কিন্তু MP এবং MQ কেন্দ্র M হতে যথাক্রমে CD জ্যা এবং CE জ্যা এর দরত ।

অতএব, CD ও CE জ্যাদ্বয় বৃত্তের কেন্দ্র হতে সমদূরবর্তী। (প্রমাণিত)

২৩.

চিত্রে C বৃত্তের কেন্দ্র।

[সিলেট বোর্ড ২০২৩]

(ক) প্রমাণ কর যে, অর্ধবৃত্তস্থ কোণ এক সমকোণ।

(খ) PO = MN হলে প্রমাণ কর যে, AC = BC।

(গ) বৃত্তের বহিঃ বন্দু E হতে দুইটি স্পর্শক PE ও ME; প্রমাণ কর যে, PE = ME।

২৩ নং প্রশ্নের উত্তর

(ক) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে AB একটি ব্যাস এবং $\angle ACB$ একটি অর্ধবৃত্তস্থ কোণ। প্রমাণ করতে হবে যে, $\angle ACB =$ এক সমকোণ।

অঙ্কন : AB এর যে পাশে C বিন্দু অবৃদ্ধিত তার বিপরীত পাশে বৃত্তের উপর একটি বিন্দু D নিই।

প্রমাণ :

ধাপ-১: ADB চাপের উপর দন্ডায়মান

বৃত্তস্থ $\angle ACB = \frac{1}{2}$ (কেন্দ্রস্থ সরলকোণ $\angle AOB$)

 ${}^{\circ}$ বৃত্তের একই চাপের উপর দণ্ডায়মান বৃত্তন্থ কোণ কেন্দ্রন্থ কোণের অর্থেক] ধাপ-২ : কিন্তু সরলকোণ \angle{AOB} দুই সমকোণ ।

∴
$$\angle ACB = \frac{1}{2} (দুই সমকোণ)$$

∴ ∠ACB = এক সমকোণ। (প্রমাণিত)

(খ) মনে করি, C কেন্দ্রবিশিষ্ট PQNM বৃত্তে জ্যা PQ = জ্যা MN, AC \perp PQ এবং BC \perp MN

প্রমাণ করতে হবে যে, AC = BC।

____ ৮ম অধ্যায়

বৃত্ত

গণিত

Prepared by: ISRAFIL SHARDER AVEEK

আন্ধন : C. P এবং C. M যোগ করি।

প্রমাণ :

ধাপ ১ : $AC \perp PQ$ এবং $BC \perp MN$ সুতরাং , AP = AQ এবং BM = BN

ে বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো জ্যা এর উপর অঙ্কিত লম্ব ঐ জ্যাকে সমদ্বিখণ্ডিত করে

$$\therefore$$
 AP = $\frac{1}{2}$ PQ এবং BM = $\frac{1}{2}$ MN

ধাপ ২ : কিন্তু PQ = MN [ধরে নেওয়া]

ৰা,
$$\frac{1}{2}$$
 PQ = $\frac{1}{2}$ MN

∴ AP = BM [ধাপ (১) হতে]

ধাপ ৩ : এখন, $\Delta ACP\cong\Delta BCM$ [সমকোণী অতিভুজ বাহু সর্বসমতা উপপাদ্য]

অতএব, AC = BC (প্রমাণিত)

(গ) মনে করি, C কেন্দ্রবিশিষ্ট PQNM বৃত্তের E একটি বহিঃছ বিন্দু এবং PE ও ME রেখাংশদ্বয় বৃত্তের P ও M বিন্দুতে দুইটি স্পর্শক। প্রমাণ করতে হবে যে, PE = ME।

অঙ্কন : C, P; C, M এবং C, E যোগ করি।

अधार

ধাপ-১: যেহেতু EP স্পর্শক এবং CP স্পর্শবিন্দুগামী ব্যাসার্ধ।

সেহেতু EP \perp CP [: বৃত্তের স্পর্শক স্পর্শবিন্দুগামী ব্যাসার্ধের উপর লম্ব]

∴ ∠EPC = এক সমকোণ

অনুরূপে, ∠EMC = এক সমকোণ

∴ ΔΕΡC ও ΔΕΜC উভয়ঽ সমকোণী ত্রিভুজ।

ধাপ-২ : এখন , ΔEPC ও ΔEMC সমকোণী ত্রিভুজদ্বয়ের মধ্যে অতিভুজ EC = অতিভজ EC [সাধারণ বাহু]

এবং CP = CM [একই বৃত্তের ব্যাসার্ধ]

∴ Δ EPC ≅ EMC [সমকোণী ত্রিভুজের অতিভুজ-বাহু সর্বসমতা]

∴ PE = ME. (প্রমাণিত)

২৪. সমকোণী ত্রিভুজ BCD এর BC = 5 সে.মি. এবং BC ও CD বাহুদ্বয়ের অন্তর্ভুক্ত কোণ 45° ।

[সিলেট বোর্ড ২০২৩]

- (ক) 16 সে.মি. পরিসীমাবিশিষ্ট একটি বর্গ অঙ্কন কর।
- (খ) BC ব্যাসবিশিষ্ট বৃত্তের কেন্দ্র হতে 7 সে.মি. দূরে বহিঃছ বিন্দু F হতে দুইটি স্পর্শক অঙ্কন কর। [অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক]
- (গ) Δ BCD এর অঞ্ভবৃত্ত অঙ্কন কর। [অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক]

২৪ নং প্রশ্নের উত্তর

(季)

ABCD বর্গ অঙ্কন করা হলো যার পরিসীমা P=16 সে. মি.।

(খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তের ব্যাস a=BC=5 সে.মি. এবং বৃত্তের কেন্দ্র হতে 7 সে. মি. দূরে বহিঃস্থ একটি বিন্দু F। বহিঃস্থ বিন্দু F হতে উক্ত বৃত্তে দুইটি স্পর্শক আঁকতে হবে।

অঙ্কন :

- (১) O, F যোগ করি। OF রেখাংশের মধ্যবিন্দু M নির্ণয় করি।
- (২) এখন M কে কেন্দ্র করে MO এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত আঁকি। মনে করি, নতুন অঙ্কিত বৃত্তটি প্রদত্ত বৃত্তকে X ও Y বিন্দুতে ছেদ করে।
- (৩) X, F ও Y, F যোগ করি।

তাহলে, XF ও YF উভয়েই নির্ণেয় দুইটি স্পর্শক।

(গ) মনে করি, BCD সমকোণী ত্রিভুজের একটি বায়ু a=BC=5 সে. মি. এবং BC ও CD বাহুদ্বয়ের অন্তর্ভুক্ত কোণ $\angle x=\angle BCD=45^\circ$ দেওয়া আছে। ত্রিভুজটির অন্তবৃত্ত আঁকতে হবে। অর্থাৎ $\triangle BCD$ এর ভিতরে এমন একটি বৃত্ত আঁকতে হবে যা BC, CD ও BD বাহু তিনটির প্রত্যেকটিকে স্পর্শ করে।

আছন : Δ BCD এর \angle CBD ও \angle BCD এর সমদ্বিখণ্ডক যথাক্রমে BL ও CM আঁকি। মনে করি, তারা পরস্পর O বিন্দুতে ছেদ করে। O থেকে BC এর উপর ON লম্ব আঁকি এবং মনে করি, তা BC কে N বিন্দুতে ছেদ করে। O কে কেন্দ্র করে ON এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত আঁকি। তাহলে এই বৃত্তটিই নির্দেশ্ব অন্তবৃত্ত।

২৫.

চিত্রে PQRS বৃত্তের কেন্দ্র O এবং OM = ON.

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

[বরিশাল বোর্ড ২০২৩]

- (ক) প্রমাণ কর যে, বৃত্তের ব্যাসই বৃহত্তম জ্যা।
- (খ) প্রমাণ কর যে, PQ = PS.
- (গ) প্রমাণ কর যে, $\angle QPS + \angle QRS = 180^\circ$.

২৫ নং প্রশ্নের উত্তর

(ক) মনে করি, O কেন্দ্রবিশিষ্ট ABDC একটি বৃত্ত। AB ব্যাস এবং CD ব্যাস ভিন্ন যেকোনো একটি জ্যা।

প্রমাণ করতে হবে যে, AB > CD অর্থাৎ, বুত্তের ব্যাসই বৃহত্তম জ্যা।

অঙ্কন : O, C এবং O, D যোগ করি।

প্রমাণ : OA = OB = OC = OD [একই বুত্তের ব্যাসার্ধ]

এখন, $\triangle OCD$ -এ, OC + OD > CD

[: ত্রিভুজের যেকোনো দুই বাহুর সমষ্টি তৃতীয় বাহু অপেক্ষা বৃহত্তর]

 \therefore AB > CD.

অর্থাৎ, বৃত্তের ব্যাসই বৃহত্ত<mark>ম জ্যা। (প্রমাণিত)</mark>

(খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQRS চতুর্ভুজটি অন্তর্লিখিত।

OM
$$\perp$$
 PQ, ON \perp PS

এবং OM = ON।

প্রমাণ করতে হবে যে, PQ = PS।

অঙ্কন : O, Q এবং O, S যোগ করি।

প্রমাণ : ধাপ $oldsymbol{\flat}$: যেহেতু $OM \perp PQ$ এবং $ON \perp PS$

সুতরাং $\angle OMQ = \angle ONS =$ এক সমকোণ।

ধাপ ২ : এখন, ΔOMQ এবং ΔONS সমকোণী ত্রিভুজদ্বয়ের মধ্যে অতিভুজ OQ = অতিভুজ OS [উভয়ে একই বৃত্তের ব্যসার্ধ]

এবং OM = ON [ধরে নেওয়া]

 \therefore \triangle OMQ \cong \triangle ONS

[সমকোণী ত্রিভূজের অতিভূজ বাহু সর্বসমতা উপপাদ্য]

$$\therefore$$
 QM = SN

ধাপ ৩ : $QM = \frac{1}{2} PQ$ এবং $SN = \frac{1}{2} PS$ [\because বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন থেকোনো জ্যা উপর অঙ্কিত লম্ব ঐ জ্যাকে সমদ্বিখণিত করে]

ধাপ 8 : সুতরাং,
$$\frac{1}{2}$$
 PQ = $\frac{1}{2}$ PS

∴ PQ = PS (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQRS চতুর্ভুজটি অন্তর্লিখিত হয়েছে। প্রমাণ করতে হবে যে, $\angle QPS + \angle QRS = 180^\circ$.

অঙ্কন : O, Q ও O, S যোগ করি।

প্রমাণ :

ধাপ $oldsymbol{\varsigma}$: একই চাপ QRS এর উপর দন্ডায়মান কেন্দ্রন্থ $\angle QOS=2$ (বৃত্তন্থ $\angle QPS$)

[একই চাপের উপর দন্ডায়মান কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দ্বিগুণ]

অর্থাৎ ∠OOS = 2∠OPS

ধাপ ২ : আবার একই চাপ QPS এর উপর দন্ডায়মান কেন্দ্রন্থ প্রবৃদ্ধ কোণ

 $\angle QOS = 2$ (বৃত্তম্ $\angle QRS$) [একই কারণে]

অর্থাৎ প্রবৃদ্ধ ∠QOS = 2∠QRS

 \therefore $\angle QOS + প্রবৃদ্ধ কোণ <math>\angle QOS = 2(\angle QPS + \angle QRS)$

কিন্তু $\angle QOS +$ প্রবৃদ্ধ কোণ $\angle QOS = 360^{\circ}$

 \therefore 2($\angle QPS + \angle QRS$) = 360°

ৰা,
$$\angle QPS + \angle QRS = \frac{360^{\circ}}{2}$$

Arr Arr

- ২৬. (i) O কেন্দ্রবিশিষ্ট বৃত্তের বহিঃছ কোনো বিন্দু R থেকে ঐ বৃত্তে RL ও RK দুইটি স্পর্শক।
 - (ii) O কেন্দ্রবিশিষ্ট একটি বৃত্তে MNTS একটি অন্তর্লিখিত চতুর্ভুজ। MT ও NS কর্ণদ্বয় পরস্পারকে P বিন্দুতে ছেদ করে।

[বরিশাল বোর্ড ২০২৩]

- (ক) প্রমাণ কর <mark>যে</mark>, অর্ধবৃত্তস্থ কোণ এক সমকোণ।
- (খ) প্রমাণ কর যে, RL = RK;
- (গ) প্রমাণ কর যে, $\angle MON + \angle TOS = 2 \angle MPN$.

২৬ নং প্রশ্নের উত্তর

(क) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে AB একটি ব্যাস এবং $\angle ACB$ একটি অর্ধবৃত্তস্থ কোণ। প্রমাণ করতে হবে যে, $\angle ACB =$ এক সমকোণ।

অঙ্কন : AB এর যে পাশে C বিন্দু অবস্থিত তার বিপরীত পাশে বৃত্তের উপর একটি বিন্দু D নিই।

প্রমাণ

ধাপ-১: অউই চাপের উপর দণ্ডায়মান

বৃত্তম্থ $\angle ACB = \frac{1}{2}$ (কেন্দ্রম্খ সরলকোণ $\angle AOB$)

[∵ বৃত্তের একই চাপের উপর দন্ডায়মান বৃত্তস্থ কোণ কেন্দ্রস্থ কোণের অর্ধেক]

ধাপ-২ : কিন্তু সরলকোণ $\angle AOB =$ দুই সমকোণ।

∴ ∠ACB = (দুই সমকোণ)

∴ ∠ACB = এক সমকোণ। (প্রমাণিত)

৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

বত্ত

(খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তের বহিঃছ বিন্দু R হতে L ও K বিন্দুতে RL ও RK দুইটি স্পর্শক। প্রমাণ করতে হবে যে, RL=RK.

অঙ্কন : O. R: O. L এবং O. K যোগ করি।

গণিত

প্রমাণ :

ধাপ-১ : যেহেতু RL স্পর্শক এবং OL স্পর্শবিন্দুগামী ব্যাসার্ধ। সেহেতু $RL \perp$

OL।[∵ স্পর্শক স্পর্শবিন্দুগামী ব্যাসার্ধের উপর লম্ব]

∴ ∠OLR = 1 সমকোণ।

অনুরূপভাবে, ∠OKR = 1 সমকোণ

∴ Δ OLR এবং Δ OKR উভয়ই সমকোণী ত্রিভূজ।

ধাপ-২ : এখন, Δ OLR ও Δ OKR সমকোণী ত্রিভুজে,

অতিভূজ OR = অতিভূজ OR [সাধারণ বাহু]

OL = OK [একই বৃত্তের ব্যাসার্ধ]

Arr Arr Arr OLR Arr Arr OKR [সমকোণী ত্রিভুজের অতিভুজ-বাহু সর্বসমতা] সুতরাং, Arr Arr RL Arr (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে MNTS চতুর্ভুজটি অন্তর্লিখিত। MT ও NS কর্ণদ্বয় পরম্পর P বিন্দুতে ছেদ করেছে।

প্রমাণ করতে হবে যে, $\angle MON + \angle TOS = 2 \angle MPN$.

অঙ্কন : O, M; O, N, O, T ও O, S যোগ করি।

প্রমাণ :

ধাপ-১: MN চাপের দণ্ডায়মান কেন্দ্রন্থ ∠MON এবং বৃত্তন্থ ∠MSN.

∴ ∠MON = 2∠MSN

[: বৃত্তের একই চাপের উপর দ<mark>ভা</mark>য়মান কেন্দ্রন্থ কোণ বৃত্তন্থ কোণের দিগুণ]

ধাপ-২ : TS চাপের উপর দভায়মান কেন্দ্রন্থ ∠TOS এবং বৃত্তন্থ ∠TMS.

∴ ∠TOS = 2∠TMS [একই কারণ]

ধাপ-৩ : ধাপ (১) ও (২) হতে পাই,

 \angle MON + \angle TOS = $2\angle$ MSN + $2\angle$ TMS [যোগ করে]

 \triangleleft \bot MON + \bot TOS = $2(\bot$ MSP + \bot SMP)

ধাপ-8 : △MPS-এ বহিঃস্থ ∠MPN অন্তঃস্থ বিপরীত (∠MSP + ∠SMP)

[∵ ত্রিভুজের বহিঃস্থ কোণ এর অন্তঃস্থ বিপরীত কোণদ্বয়ের সমষ্টির সমান]

ধাপ-৫: ধাপ (৩) ও (৪) হতে পাই,

 \angle MON + \angle TOS = $2\angle$ MPN. (প্রমাণিত)

- ২৭. (i) একটি ত্রিভুজের ভূমি a=6 সে.মি., ভূমি সংলগ্ন একটি কোণ $\angle x=30^\circ,$ অপর দুই বাহুর অন্তর d=2 সে.মি.।
 - (ii) Δ ABC এর AB = 5 সে.মি., BC = 6 সে.মি. এবং AC = 4 সে.মি. ।

[বরিশাল বোর্ড ২০২৩]

- (ক) একটি বৃত্তের ব্যাসার্ধ 3.5 সে.মি., বৃত্তটির কোনো বিন্দুতে একটি স্পর্শক আঁক। (অঙ্কনের চিহ্ন আবশ্যক)
- (খ) (i) নং তথ্যের আলোকে ত্রিভূজটি আঁক। (অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক)
- (গ) (ii) নং তথ্যের আলোকে ত্রিভুজটির পরিবৃত্ত আঁক।(অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক)

২<u>৭ নং</u> প্রশ্নের উত্তর

(क) মনে করি, একটি বৃত্তের ব্যাসার্ধ r=3.5 সে.মি. দেওয়া আছে। বৃত্তটির কোনো বিন্দুতে একটি স্পর্শক আঁকতে হবে।

এখানে, O কেন্দ্রবিশিষ্ট বৃত্তের ব্যাসার্ধ OA=r=3.5 সে.মি.। বৃত্তটির A বিন্দুতে AP স্পর্শক আঁকা হলো।

(খ) মনে করি, একটি ত্রিভুজের ভূমি a=6 সে.মি., ভূমি সংলগ্ন একটি সূক্ষ্মকোণ $\angle x=30^\circ$ ও অপর বাহুদ্বয়ের অন্তর d=2 সে.মি. দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

অঙ্কন :

- যেকোনো একটি রশ্মি BE থেকে ভূমি a এর সমান করে BC রেখাংশ কেটে নিই।
- ২. BC রেখাংশের B বিন্দুতে $\angle x$ এর সমান করে $\angle CBF$ আঁকি।
- ৩. BF রশ্মি থেকে d এর সমান BD অংশ কেটে নিই।
- 8. C. D যোগ করি।
- ৫. DC রেখাংশের যে পাশে F বিন্দু আছে সেই পাশে C বিন্দুতে ∠FDC
 এর সমান ∠DCA আঁকি। CA রশ্মি BF রশ্মিকে A বিন্দুতে ছেদ
 করে।

তাহলে, ∆ABC-ই উদ্দিষ্ট ত্রিভুজ।

(গ) মনে করি, ABC ত্রিভুজের তিনটি বাহু AB=5 সে.মি., BC=6 সে.মি. এবং AC=4 সে.মি. দেওয়া আছে। ত্রিভুজটির পরিবৃত্ত আঁকতে হবে।

অঙ্কন -

- ১. BC বাহুর লম্বদ্বিখণ্ডক PQ এবং AB বাহুর লম্বদ্বিখণ্ডক LM অঙ্কন করি। PQ ও LM পরম্পর O বিন্দুতে ছেদ করে।
- ২. O, A যোগ করি।
- ত. এখন, O কে কেন্দ্র করে OA বা OB বা OC এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত আঁকি। বৃত্তটি A, B, C বিন্দু দিয়ে যাবে।

তাহলে এই বৃত্তটি ABC ত্রিভুজের নির্ণেয় পরিবৃত্ত।

২৮.

চিত্রে , O কেন্দ্রবিশিষ্ট বৃত্তে PQRS একটি অন্তর্লিখিত চতুর্ভুজ যার PQ=QR. [দিনাজপুর বোর্ড ২০২৩]

- (ক) 5 সে.মি. ও 6 সে.মি. ব্যাসবিশিষ্ট দুটি বৃত্ত পরম্পরকে অন্তঃস্পর্শ করলে, তাদের কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব নির্ণয় কর।
- (খ) প্রমাণ কর যে, PQ ও QR জ্যাদ্বয় বৃত্তটির কেন্দ্র হতে সমদূরবর্তী।
- (গ) প্রমাণ কর যে, ∠PQR ও এর বিপরীত কোণ ∠PSR-এর সমষ্টি দুই সমকোণ।

২৮ নং প্রশ্নের উত্তর

(ক) প্রথম বৃত্তের ব্যাস = 5 সে. মি.

প্রথম বৃত্তের ব্যাসার্ধ,
$$r_1 = \frac{5}{2}$$
 সে. মি. $= 2.5$ সে. মি.

দ্বিতীয় বৃত্তের ব্যাস = 6 সে. মি.

$$ightharpoonup$$
 দ্বিতীয় বৃত্তের ব্যাসার্ধ, $r_2=rac{6}{2}$ সে. মি. $=3$ সে. মি.

আমরা জানি, দুইটি বৃত্ত পরস্পরকে অন্তঃস্পর্শ করলে, তাদের কেন্দ্রদয়ের মধ্যবর্তী দূরত্ব হবে বৃত্তদ্বয়ের ব্যাসার্ধের অন্তরের সমান। এখন, বৃত্তদ্বয় পরস্পরকে অন্তঃস্পর্শ করলে,

তাদের কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব $= r_2 - r_1$

= 0.5 সে. মি.

- ∴ বৃত্তদ্বয়ের কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব 0.5 সে. মি.
- (খ) মনে করি, O কেন্দ্রবিশিষ্ট্য বৃত্তে PQRS একটি অন্তর্লিখিত চতুর্ভুজ যার PQ=QR। প্রমাণ করতে হবে যে, PQ ও QR জ্যাদ্বয় বৃত্তটির O কেন্দ্র থেকে

আঙ্কন : O থেকে \overrightarrow{PQ} এবং QR জ্যা \overrightarrow{u} র উপর যথাক্রমে OE এবং OF লম্ব রেখাংশ আঁকি। O, P এবং O, R যোগ করি।

প্রমাণ:

ধাপ ১ : OE \perp PQ এবং OF \perp QR

সুতরাং, PE = QE এবং QF = RF $[\because]$ বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো জ্যা এর উপর অঙ্কিত লম্ব ঐ জ্যাকে সমদ্বিখণ্ডিত করে]

$$\therefore$$
 PE = $\frac{1}{2}$ PQ এবং RF = $\frac{1}{2}$ QR

ধাপ ২ : কিন্তু PQ=QR [ধরে নেওয়া]

বা,
$$\frac{1}{2}$$
 PQ = $\frac{1}{2}$ QR

∴ PE = RF (ধাপ (১) হতে]

ধাপ ৩ : এখন, ΔPOE এবং ΔROF সমকোণী ত্রিভুজদ্বয়ের মধ্যে অতিভুজ OP = অতিভুজ OR [উভয়ে একই বৃত্তের ব্যাসার্ধ]

এবং PE = RF ধাপ (২) হতে]

- ightharpoonup hoPOE ho hoROF [সমকোণী ত্রিভুজের অতিভুজ বাহু সর্বসমতা উপপাদ্য ।]
- \therefore OE = OF

ধাপ 8 : কিন্তু OE এবং OF কেন্দ্র O থেকে যথাক্রমে PQ ও QR জ্যা এর

সুতরাং PQ ও QR জ্যাদ্বয় বৃত্তটির কেন্দ্র থেকে সমদূরবর্তী। (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQRS একটি অন্তর্লিখিত চতুর্ভুজ যার PQ = QR। প্রমাণ করতে হবে যে, $\angle PQR$ ও এর বিপরীত কোণ $\angle PSR$ এর সমষ্টি দুই সমকোণ অর্থাৎ ∠PQR + ∠PSR = 2 সমকোণ।

অঙ্কন : O, P এবং O, R যোগ করি।

ধাপ ১. PSR চাপের উপর দন্ডায়মান কেন্দ্রন্থ ∠POR এবং বৃত্তন্থ ∠PQR।

Arr POR = 2 (বৃত্তন্থ \angle PQR) [বৃত্তের একই চাপের উপর দন্ডায়মান কেন্দ্রন্থ কোণ বৃত্তস্থ কোণের দিগুণ]

বা, ∠POR = 2∠PQR

ধাপ ২. আবার, PQR চাপের উপর দণ্ডায়মান কেন্দ্রস্থ প্রবৃদ্ধ ∠POR এবং বৃত্তস্থ

∴ প্রবৃদ্ধ ∠POR = 2 (বৃত্তয় ∠PSR) [বৃত্তের একই চাপের উপর দভায়মান কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দিগুণ]

বা, প্রবৃদ্ধ ∠POR = 2∠PSR

ধাপ ৩. ধাপ (১) ও ধাপ (২) হতে পাই,

 $\angle POR + প্রবৃদ্ধ \ \angle POR = 2 (\angle PQR + \angle PSR)$

কিন্তু $\angle POR + প্রবৃদ্ধ \angle POR = 4$ সমকোণ

অর্থাৎ, $2(\angle PQR + \angle PSR) = 4$ সমকোণ

- \therefore ∠PQR + ∠PSR = 2 সমকোণ । (প্রমাণিত)
- ২৯. একটি রেখাংশের দৈর্ঘ্য a=3.5 সে.মি.। a এর সমান ব্যাসার্ধবিশিষ্ট একটি বৃত্তের কেন্দ্র C <mark>এ</mark>বং বৃত্তটির বহিঃস্থ A বিন্দু হতে এর P এবং Q বিন্দুতে যথা<mark>ক্রমে AP ও AQ দুইটি স্পর্শক।</mark>

[দিনাজপুর বোর্ড ২০২৩]

- (ক) যেকোনো বৃত্তচাপ DEF এর কেন্দ্র নির্ণয় কর।
- (খ) প্রমাণ কর যে, AP = AQ.
- (গ) a এর সমান বাহুবিশিষ্ট একটি সমবাহু ত্রিভুজের পরিবৃত্ত অঙ্কন কর। (অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক)

২৯ নং প্রশ্নের উত্তর

(ক)

DEF বৃত্তচাপের কেন্দ্র O নির্ণয় করা হলো।

(খ) মনে করি, C কেন্দ্রবিশিষ্ট PQR বৃত্তের ব্যসার্ধ a=3.5 সে. মি. । PQR বৃত্তের বহিঃছ একটি বিন্দু $A \mid A$ বিন্দু হতে বৃত্তের P ও Q বিন্দুতে যথাক্রমে AP ও AQ দুইটি স্পর্শক।

প্রমাণ করতে হবে যে, AP = AQ।

অঙ্কন : C, P; C, Q এবং A, C যোগ করি।

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

প্রমাণ : ধাপ ১ : যেহেতু AP স্পর্শক এবং CP স্পর্শবিন্দুগামী ব্যাসার্ধ

- ∴ AP ⊥ CP [∵ স্পর্শক, স্পর্শবিন্দুগামী ব্যাসার্ধের উপর লম্ব]
- ∴ ∠APC = 1 সমকোণ

অনুরূপভাবে, $\angle AQC = 1$ সমকোণ

∴ Δ ACP ও Δ ACQ উভয়ই সমকোণী ত্রিভুজ।

ধাপ ২ : Δ ACP ও Δ ACQ সমকোণী ত্রিভুজদ্বয়ে অতিভুজ AC = অতিভুজ AC [সাধারণ বাহু]

CP = CO (একই বত্তের ব্যাসার্ধ)

- \therefore Δ ACP \cong Δ ACQ [সমকোণী ত্রিভূজের অতিভূজ বাহু সর্বসমতা]
- A P = AQ. (প্রমাণিত)

(গ)

মনে করি, একটি সমবাহু ত্রিভুজের বাহুর দৈর্ঘ্য $a=3.5\,$ সে. মি. দেওয়া আছে । ত্রিভুজটি আঁকতে হবে ।

অঙ্কন :

- ১. যেকোনো রশ্মি BM থেকে BC = a নিই।
- ৩. $A, B \circ A, C$ যোগ করি। ফলে ΔABC -ই উদ্দিষ্ট সমবাহু ত্রিভুজ যার পরিবত্ত আঁকতে হবে।।
- 8. AB ও AC এর লম্ব সমদ্বিখণ্ডক যথাক্রমে EF ও GH আঁকি। এরা পরস্পরকে O বিন্দুতে ছেদ করে।
- ৫. A, O যোগ করি। O কে কেন্দ্র করে OA এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত আঁকি। তাহলে, বৃত্তটি A, B ও C বিন্দুগামী হবে এবং এই বৃত্তটিই Δ ABC এর নির্ণেয় পরিবৃত্ত।

30.

চিত্রে, O বৃত্তের কেন্দ্র এবং AD || BC.

[ময়মনসিংহ বোর্ড ২০২৩]

- (ক) বৃত্তটির পরিধি 12π হলে, ক্ষেত্রফল নির্ণয় কর।
- (খ) প্রমাণ কর যে, AB = CD।
- (গ) যদি ∠ADB + ∠BDC = 90° হয়, প্রমাণ কর য়ে, A, O এবং C একই সরলরেখায় অবস্থিত।

৩০ নং প্রশ্নের উত্তর

(ক) এখানে, O কেন্দ্রবিশিষ্ট বৃত্তের পরিধি $=12\pi$ একক

ধরি, বৃত্তটির ব্যসার্ধ, r = OA

ightharpoonup বৃত্তটির পরিধি $=2\pi r$

শর্তমতে, $2\pi r = 12\pi$

বা , $\mathbf{r} = \frac{12\pi}{2\pi} = 6$ বৰ্গ একক

 \therefore বৃত্তটির ক্ষেত্রফল $=\pi r^2$ বর্গ একক $=\pi \times 6^2$ বর্গ একক $=3.1416 \times 36$ বর্গ একক

= 113.0976 বর্গ একক (প্রায়)

নির্ণেয় বৃত্তের ক্ষেত্রফল 113.0976 বর্গ একক।

(খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে অন্তর্লিখিত ABCD চতুর্ভুজে $AD \parallel BC$ এবং অপর দুইটি বাহু AB ও CD।

প্রমাণ করতে হবে যে. AB = CD।

অঙ্কন : B, D যোগ করি।

প্রমাণ

ধাপ ১. যেহেতু AD || BC এবং BD এদের ছেদক।

∴ ∠ADB = ∠CBD [একান্তর কোণ]

ধাপ ২. AB চাপের উর দভায়মান বৃত্তম্থ কোণ $\angle ADB$ এবং CD চাপের উপর দভায়মান বৃত্তম্থ কোণ $\angle CBD$.

এখন, $\angle ADB = \angle CBD$ হওয়ায় চাপ AB = চাপ DC

[∵ সমান সমান চাপ বৃত্তে সমান কোণ উৎপন্ন করে]

- ∴ AD = BC. [বৃত্তে সমান সমান চাপ সমান সমান জ্যা ছিন্ন করে]
 অতএব, AD = BC (প্রমাণিত)
- র্গে) মনে করি, Q কেন্দ্রবিশিষ্ট বৃত্তে ABCD একটি অন্তর্লিখিত চতুর্ভুজ। B,D যোগ করি। $\angle ADB + \angle BDC = 90^\circ$ । প্রমাণ করতে হবে যে, A,O এবং C এক সরলরেখায় অবস্থিত।

অঙ্কন : O, A এবং O, C যোগ করি।

প্রমাণ

ধাপ ১. যেহেতু কেন্দ্রন্থ $\angle AOB$ এবং বৃত্তন্থ $\angle ADB$ একই চাপ AB-এর উপর দন্ডায়মান, সেহেতু $\angle AOB = 2$ $\angle ADB$ [একই চাপের উপর দন্ডায়মান কেন্দ্রন্থ কোণ বৃত্তন্থ কোণের দিগুণ]

ধাপ ২. অনুরূপভাবে, BC চাপের ওপর দণ্ডায়মান $\angle BOC = 2\angle BDC$ ধাপ ৩. $\angle AOB + \angle BOC = 2(\angle ADB + \angle BDC)$ [ধাপ (১) ও (২) হতে)

=
$$2 \times 90^{\circ}$$
 [\therefore $\angle ADB + \angle BDC = 90^{\circ}$]
= 180°

∴ ∠AOB + ∠<math>BOC = 1 সরলকোণ ।

যেহেতু ∠AOB এবং ∠BOC সন্নিহিত কোণ।

সুতরাং A, O এবং C একই সরলরেখায় অবস্থিত। **(প্রমাণিত)**

৩১.

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

চিত্রে বৃত্তের কেন্দ্র O.

[ময়মনসিংহ বোর্ড ২০২৩]

- (ক) প্রমাণ কর যে, বৃত্তের ব্যাসই বৃহত্তম জ্যা।
- (খ) বৃত্তটির বহিঃস্থ একটি বিন্দু S হতে PS এবং RS দুইটি স্পর্শক হলে, প্রমাণ কর যে, PS = RS.
- (গ) প্রমাণ কর যে, $\angle QPT + \angle QRT = 180^\circ$.

৩১ নং প্রশ্নের উত্তর

 মনে করি, O কেন্দ্রবিশিষ্ট ABDC একটি বৃত্ত। AB ব্যাস এবং CD ব্যাস ভিন্ন যেকোনো একটি জ্যা।

প্রমাণ করতে হবে যে, বৃত্তের ব্যাসই বৃহত্তম জ্যা; অর্থাৎ AB>CD.

অঙ্কন : O, C এবং O, D যোগ করি।

প্রমাণ : OA = OB = OC = OD [একই বৃত্তের ব্যাসার্ধ]

এখন, $\triangle OCD$ -এ, OC + OD > CD

[: ত্রিভুজের যেকোনো দুই বাহুর সমষ্টি তৃতীয় বাহু অপেক্ষা বৃহত্তর]

- (খ) মনে করি, O কেন্দ্রবিশিষ্ট একটি PQRT বৃত্তে বহিঃছ S বিন্দু থেকে PS ও RS দুইটি স্পর্শক । প্রমাণ করতে হবে যে, PS=RS.

অঙ্কন : O, P; O, R এবং S, O যোগ করি।

প্রয়াথ -

ধাপ ১ : যেহেতু PS স্পর্শক এবং OP স্পর্শবিন্দুগামী ব্যাসার্ধ

- ∴ ∠SPO = 1 সমকোণ

অনুরূপভাবে, $\angle SRO = 1$ সমকোণ,

∴ Δ SOP ও Δ SOR উভয়ই সমকোণী ত্রিভূজ।

ধাপ ২ : Δ SOP ও Δ SOR সমকোণী ত্রিভুজদ্বয়ে

অতিভূজ SO = অতিভূজ SO [সাধার<mark>ণ</mark> বাহু]

OP = OR [একই বৃত্তের ব্যাসার্ধ]

- Arr Arr Arr SOP Arr Arr Arr SOR [সমকোণী ত্রিভূজের অতিভূজ বাহু সর্বসমতা]
- ∴ PS = RS. (প্রমাণিত)
- (গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQRT চতুর্ভুজটি অন্তর্লিখিত। প্রমাণ করতে হবে যে, $\angle QPT + \angle QRT = 180^\circ$.

অঙ্কন : O, Q ও O, T যোগ করি।

প্রমাণ

ধাপ $oldsymbol{\flat}$: একই চাপ QRT এর উপর দন্ডায়মান কেন্দ্রন্থ $\angle QOT=2$ (বৃত্তন্থ $\angle QPT$)

[একই চাপের উপর দন্ডায়মান কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দিগুণ]

অর্থাৎ ∠QOT = 2∠QPT

ধাপ ২ : আবার একই চাপ QPT এর উপর দন্ডায়মান কেন্দ্রন্থ প্রবৃদ্ধ কোণ $\angle OOT = 2$ (বৃত্তন্থ $\angle ORT$) [একই কারণে]

অর্থাৎ প্রবৃদ্ধ ∠ OOT = 2∠ORT

Arr Arr

কিন্তু, $\angle QOT +$ প্রবৃদ্ধ কোণ $\angle QOT = 360^\circ$

- \therefore 2(\angle QPT + \angle QRT) = 360°
- বা, $\angle QPT + \angle QRT = 360^{\circ}$
- ∠OPT + ∠ORT = 180°. (প্রমাণিত)
- ৩২. O কেন্দ্রবিশিষ্ট PQRS বৃত্তে QS চাপের উপর দণ্ডায়মান বৃত্তন্থ ∠QPS এবং কেন্দ্রন্থ ∠QOS।

[ঢাকা বোর্ড ২০২২]

- (ক) OS = 7 সে.মি. হলে, বৃত্তটির পরিধি নির্ণয় কর।
- (খ) প্রমাণ কর যে, ∠QOS = 2∠OPS.
- (গ) প্রমাণ কর যে. ∠PRQ = ∠PSQ.

৩২ নং প্রশ্নের উত্তর

(ক) এখানে, O কেন্দ্রবিশিষ্ট PQRS বৃত্তের ব্যাসার্ধ, r = OS = 7 সে.মি.

∴ বৃত্তটির পরিধি= 2πr

= 2 × 3.1416 × 7 সে.মি.

= 43.9824 সে.মি. (প্রায়)

নির্ণেয় বৃত্তের পরিধি 43.9824 সে.মি. (প্রায়)।

(খ) মনে করি, O কেন্দ্রবিশিষ্ট PQRS বৃত্তে QRS চাপের উপর দণ্ডায়মান বৃত্তম্থ $\angle QPS$ এবং কেন্দ্রম্ভ $\angle QOS$ ।

প্রমাণ করতে হবে যে, $\angle QOS = 2\angle QPS$.

আঙ্কন : মনে করি, PS রেখাংশ কেন্দ্রগামী নয়। এক্ষেত্রে P বিন্দু দিয়ে কেন্দ্রগামী রেখাংশ PM আঁকি।

প্রমাণ :

ধাপ-১ : ΔPOQ এর বহিঃস্থ $\angle QOM = \angle QPO + \angle PQO$

[: ত্রিভূজের বহিঃস্থ কোণ অল্পস্থ বিপরীত কোণদ্বয়ের সমষ্টির সমান]

ধাপ-২ : ΔPOQ-এ OQ = OP [∵ একই বৃত্তের ব্যাসার্ধ]

 \therefore $\angle QPO = \angle PQO$

[∵ সমদ্বিবাহু ত্রিভুজের ভূমি সংলগ্ন কোণ দুইটি সমান]

ধাপ-৩ : ধাপ (১) ও (২) থেকে, ∠QOM = 2∠QPO

ধাপ-8 : একইভাবে $\triangle POS$ থেকে, $\angle SOM = 2\angle SPO$

ধাপ-৫: ধাপ (৩) ও (৪) থেকে,

 $\angle QOM + \angle SOM = 2\angle QPO + 2\angle SPO$ [যোগ করে]

 \therefore $\angle QOS = 2\angle QPS \ [\because \angle QPO + \angle SPO = \angle QPS]$

www.schoolmathematics.com.bd

Prepared by: ISRAFIL SHARDER AVEEK

(গ) মনে করি, O কেন্দ্রবিশিষ্ট PQRS বৃত্তে QS চাপের উপর দণ্ডায়মান বৃত্তস্থ ∠OPS এবং কেন্দ্রন্থ ∠OOS । P, R; O, R এবং O, S যোগ করি । PO চাপের উপর দণ্ডায়মান ∠PRO এবং ∠PSO দুইটি বৃত্তস্থ কোণ। প্রমাণ করতে হবে যে, ∠PRQ = ∠PSQ.

অঙ্কন : O, P যোগ করি।

প্রমাণ :

ধাপ-১ : এখানে PQ চাপের উপর দন্ডায়মান কেন্দ্রন্থ কোণ ∠POQ।

সুতরাং ∠POQ = 2∠PRQ এবং ∠POQ = 2∠PSQ

একই চাপের উপর দন্ডায়মান কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দ্বিগুণ

অর্থাৎ, 2∠PRQ = 2∠PSQ

∴ ∠PRQ = ∠PSQ. (প্রমাণিত)

99.

O কেন্দ্রবিশিষ্ট ABC বৃত্তে জ্যা AB = y সে.মি. এবং OM ⊥ AB।

[ঢাকা বোর্ড ২০২২]

- (ক) ∠BOC এর পরিমাণ কত ডিগ্রী?
- (খ) $OM = \left(\frac{y}{2} 2\right)$ সে.মি. হলে, y এর মান নির্ণয় কর।
- (গ) বহিঃস্থ একটি বিন্দু T থেকে C বিন্দুতে স্পর্শক আঁক।

৩৩ নং প্রশ্নের উত্তর

(ক) $\triangle AOB$ -এ, OA = OB [একই বৃত্তের ব্যাসার্ধ]

$$\angle OAB = \angle OBA$$

সিমান সমান বাহুর বিপরীত কোণদ্বয় প্রস্পর সমান

∴ ∠OAB = ∠OBA = 30° [∵ চিত্র হতে, ∠OBA = 30°]

আবার, $\triangle AOB$ -এ,

বহিঃস্থ ∠BOC = ∠OAB + ∠OBA

[ত্রিভুজের বহিঃস্থ কোণ অন্তঃস্থ বিপরীত কোণদ্বয়ের সমষ্টি সমান]

$$=30^{\circ} + 30^{\circ}$$

$$= 60^{\circ}$$

∴ ∠BOC এর পরিমাণ 60°.

(খ) এখানে, O কেন্দ্রবিশিষ্ট বৃত্তে জ্যা AB=y সে.মি., ব্যাসার্থ OB=10 সে.মি.,

$$OM = \left(\frac{y}{2} - 2\right)$$
 সে.মি.।

 $OM \perp AB$

$$\therefore$$
 AM = BM = $\frac{1}{2}$ AB = $\frac{y}{2}$ সে.মি.

এখন, OBM সমকোণী ত্রিভুজে

 $\mathbf{O}\mathbf{M}^2 + \mathbf{B}\mathbf{M}^2 = \mathbf{O}\mathbf{B}^2$ [পিথাগোরাসের উপপাদ্য অনুসারে]

$$\sqrt{\frac{y}{2}}^2 - 2 \cdot \frac{y}{2} \cdot 2 + 2^2 + \frac{y^2}{4} = 100$$

$$\overline{4}, \quad \frac{y^2}{4} - 2y + 4 + \frac{y^2}{4} = 100$$

$$\overline{4}, \quad \frac{2y^2}{4} - 2y + 4 - 100 = 0$$

$$41, \quad \frac{y^2}{2} - 2y - 96 = 0$$

$$4y - 4y - 192 = 0$$

$$41, \quad y^2 - 16y + 12y - 192 = 0$$

$$(y-16) + 12 (y-16) = 0$$

$$\overline{1}$$
, $(y-16)(y+12)=0$

হয়,
$$y - 16 = 0$$
 আবার, $y + 12 = 0$

বা ,
$$y=16$$
 বা , $y=-12$; যা গ্রহণযোগ্য নয় কারণ দৈর্ঘ্য ঋণাত্মক হতে পারে না ।

∴ y এর মান 16.

দ্রষ্টব্য : উপরোক্ত সমস্যাটির সমাধান করার ক্ষেত্রে $\angle OBM = 30^\circ$ কে বিবেচনা করা হয়নি। এক্ষেত্রে $\angle OBM = 30^\circ$ বিবেচনা করলে অসঙ্গতি লক্ষ কবা যায়।

সমস্যাটি সমাধানের ক্ষেত্রে বাহু ও কোণের মধ্যে অসঙ্গতি লক্ষ করা যায়। তাই সমস্যাটির আরও কয়েকভাবে সমাধান দেওয়া হলো :

এখানে, O কেন্দ্রবিশিষ্ট বৃত্তে জ্যা AB = y সে.মি., ব্যাসার্ধ OB = 10 সে.মি.,

$$OM = \left(\frac{y}{2} - 2\right)$$
 সে.মি.

OM ⊥ AB

$$\therefore$$
 AM = BM = $\frac{1}{2}$ AB = $\frac{y}{2}$ সে.মি.

 $\angle OBM = 30^{\circ}$

বিবেচনা করে:

এখন, OBM সমকোণী ত্রিভুজ হতে

$$tan \angle OBM = \frac{OM}{BM}$$

st \mathbf{OM} এবং \mathbf{BM} বাহুর সম্পর্ক st \mathbf{OM} এবং \mathbf{OB} বাহুর সম্পর্ক বিবেচনা করে:

OBM সমকোণী ত্রিভুজ হতে পাই,

$$\sin \angle OBM = \frac{OM}{BM}$$

ৰা,
$$\sin 30^{\circ} = \frac{\frac{y}{2} - 2}{10}$$

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

ৰা, tan
$$30^\circ = \frac{\frac{y}{2} - 2}{\frac{y}{2}}$$

$$\overline{4}, \frac{1}{\sqrt{3}} = \frac{\frac{y-4}{2}}{\frac{y}{2}}$$

$$\overline{4}, \frac{1}{\sqrt{3}} = \frac{y-4}{2} \times \frac{2}{y}$$

ৰা,
$$\frac{1}{\sqrt{3}} = \frac{y-4}{y}$$

ৰা,
$$\sqrt{3}(y-4) = y$$

বা ,
$$\sqrt{3}y - 4\sqrt{3} = y$$

ৰা,
$$\sqrt{3}y - y = 4\sqrt{3}$$

ৰা,
$$y(\sqrt{3} - 1) = 4\sqrt{3}$$

ৰা, $y = \frac{4\sqrt{3}}{\sqrt{3} - 1}$

$$= \frac{4\sqrt{3}(\sqrt{3}+1)}{2}$$
$$= 2\sqrt{3}(\sqrt{3}+1)$$

$$\therefore y = 6 + 2\sqrt{3}.$$

নির্ণেয় মান : $y = 6 + 2\sqrt{3}$.

ৰা, $1 = \frac{y-4}{10}$

বা,
$$y = 10 + 4$$

$$\therefore$$
 y = 14

BM এবং OB বাহুর সম্পর্ক বিবেচনা করে:

OBM সমকোণী ত্রিভুজ হতে পাই,

$$\cos \angle OBM = \frac{BM}{OB}$$

ৰা,
$$\cos 30^\circ = \frac{\frac{y}{2}}{10}$$

ৰা,
$$\frac{\sqrt{3}}{2} = \frac{y}{20}$$

বা,
$$2y = 20\sqrt{3}$$

ৰা,
$$2y = 20\sqrt{3}$$

ৰা, $y = \frac{20\sqrt{3}}{2}$

$$2y = 10\sqrt{3}$$

(গ) মনে করি, O কেন্দ্রবিশিষ্ট ABC বৃত্তের T একটি বহিঃছ বিন্দু। T বিন্দু থেকে ঐ বৃত্তে C বিন্দুতে স্পর্শক আঁকতে হবে।

অঙ্কন :

- (১) O, T যোগ করি। OT রেখাংশের মধ্যবিন্দু N নির্ণয় করি।
- (২) N क किन्तु करत ON अत সমान न्यात्रार्थ निराय अकिं नृख आँकि। মन করি, নতুন অঙ্কিত বৃত্তটি প্র<mark>দত্ত বৃত্তকে B</mark> ও C বিন্দুতে ছেদ করে।
- (৩) C, T যোগ করি, তাহলে CT-ই নির্ণেয় স্পর্শক।

೦8.

চিত্রে, O বৃত্তের কেন্দ্র।

[রাজশাহী বোর্ড ২০২২]

- (ক) প্রমাণ কর যে, বৃত্তের ব্যাসই বৃহত্তম জ্যা।
- (খ) প্রমাণ কর যে, $\angle NMT = \frac{1}{2} \angle NOT$.
- (গ) প্রমাণ কর যে, ∠MNS + ∠MTS = 180°.

(ক) মনে করি, O কেন্দ্রবিশিষ্ট ABDC একটি বৃত্ত। AB ব্যাস এবং CD ব্যাস ভিন্ন যেকোনো একটি জ্যা।

প্রমাণ করতে হবে যে, AB > CD.

অঙ্কন : O, C এবং O, D যোগ করি।

প্রমাণ : OA = OB = OC = OD [একই বৃত্তের ব্যাসার্ধ]

এখন, $\triangle OCD$ -এ, OC + OD > CD

[∵ ত্রিভূজের যেকোনো দুই বাহুর সমষ্টি তৃতীয় বাহু অপেক্ষা বৃহত্তর]

∴ AB > CD. (প্রমাণিত)

(খ) এখানে, O কেন্দ্রবিশিষ্ট MNST বৃত্তে NST চাপের উপর দন্ডায়মান কেন্দ্রন্থ কোণ ∠NOT ও বৃত্তস্থ কোণ ∠NMT.

প্রমাণ করতে হবে যে, $\angle NMT = \frac{1}{2} \angle NOT$.

অঙ্কন : M বিন্দু দিয়ে O কেন্দ্রগামী রেখাংশ MP আঁকি।

ধাপ-১ : △ MON-এর বহিঃছ ∠NOP= ∠NMO + ∠MNO

তিতুজের বহিঃস্থ কোণ এর অন্তঃস্থ বিপরীত কোণদ্বয়ের সমষ্টির সমান]

ধাপ-২ : Δ MON-এ, OM = ON [∵ একই বুতের ব্যাসার্ধ]

∴ ∠MNO = ∠NMO

[∵ সমদ্বিবাহু ত্রিভুজের ভূমি সংলগ্ন কোণ দুইটি সমান]

ধাপ-৩ : ধাপ (১) ও (২) থেকে পাই,

 $\angle NOP = \angle NMO + \angle NMO$

বা, ∠NOP = 2∠NMO

ধাপ-8 : একইভাবে, Δ MOT থেকে পাই,

 $\angle TOP = 2\angle TMO$

ধাপ-৫: ধাপ (৩) ও (৪) থেকে পাই,

 $\angle NOP + \angle TOP = 2\angle NMO + 2\angle TMO$ [যোগ করে]

 $[\because \angle NOP + \angle TOP = \angle NOT]$

বা, 2∠NMT = ∠NOT

 \therefore $\angle NMT = \frac{1}{2} NOT.$ (প্রমাণিত)

(গ) এখানে, O কেন্দ্রবিশিষ্ট বৃত্তে MNST চতুর্ভুজটি অন্তর্লিখিত হয়েছে। প্রমাণ করতে হবে যে, $\angle MNS + \angle MTS = 180^{\circ}$.

ধাপ-১ : একই চাপ NMT এর উপর দণ্ডায়মান প্রবৃদ্ধ কেন্দ্রস্থ ∠NOT = 2(বৃত্তয় ∠NST)

[: বৃত্তের একই চাপের উপর দণ্ডায়মান কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দিণ্ডণ]

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

অর্থাৎ, প্রবৃদ্ধ $\angle NOT = 2 \angle NST$.

ধাপ-২ : আবার, একই চাপ NST এর উপর দন্ডায়মান কেন্দ্রন্থ \angle NOT = $2(998 \ \angle$ NMT)

অর্থাৎ, ∠NOT = 2∠NMT.

ধাপ-৩ : প্রবৃদ্ধ $\angle NOT + \angle NOT = 2 \angle NST + 2 \angle NMT$

[ধাপ (১) ও (২) যোগ করে]

[∵ প্রবৃদ্ধ ∠NOT + ∠NOT = 360°]

ৰা,
$$\angle NST + \angle NMT = \frac{360^{\circ}}{2}$$

 \therefore $\angle NST + \angle NMT = 180^{\circ}$

ধাপ-8: আবার, MNST বৃত্ত চতুর্ভুজে,

$$\angle MNS + \angle MTS + \angle NST + \angle NMT = 360^{\circ}$$

[∵ চতুর্ভুজের চার কোণের সমষ্টি 360°]

বা,
$$\angle MNS + \angle MTS + 180^{\circ} = 360^{\circ}$$
 [ধাপ (৩) থেকে]

 \triangleleft d, ∠MNS + ∠MTS = 360° – 180°

৩৫. p = 3 সে.মি. ও q = 3.5 সে.মি.।

রাজশাহী বোর্ড ২০২২

- (ক) একটি বৃত্তচাপের কেন্দ্র নির্ণয় কর। [অঙ্কনের চিহ্ন আবশ্যক]
- (খ) q ব্যাসার্ধবিশিষ্ট বৃত্তের বহিঃস্থ কো<mark>নো</mark> বিন্দু T থেকে উক্ত বৃত্তে দুইটি স্পর্শক আঁক। [অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক]
- (গ) p ও q কে <mark>এ</mark>কটি সমকোণী ত্রি<mark>ভু</mark>জের সমকোণ সংলগ্ন বাহু ধরে উক্ত ত্রিভুজের পরিবৃত্ত <mark>অঙ্কন কর</mark>। [অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক]

৩৫ নং প্রশ্নের উত্তর

ABC বৃত্তচাপের কেন্দ্র O নির্ণয় করা হলো।

(খ)

মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তের ব্যাসার্ধ q=3.5 সে.মি. দেওয়া আছে। বৃত্তের বহিঃস্থ কোনো বিন্দু T থেকে উক্ত বৃত্তে দুইটি স্পর্শক আঁকতে হবে।

অঙ্কন :

- (১) O, T যোগ করি। OT রেখাংশের মধ্যবিন্দু M নির্ণয় করি।
- (২) এখন M কে কেন্দ্র করে MO এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত আঁকি। মনে করি, নতুন অঙ্কিত বৃত্তটি প্রদত্ত বৃত্তকে A ও B বিন্দুতে ছেদ করে।

(৩) A, T ও B, T যোগ করি। তাহলে, AT ও BT উভয়েই নির্ণেয় দুইটি স্পর্শক।

(গ)

মনে করি, একটি সমকোণী ত্রিভুজের সমকোণ সংলগ্ন বাহুদ্বয় p=3 সে.মি. ও q=3.5 সে.মি. দেওয়া আছে। ত্রিভুজটির পরিবৃত্ত আঁকতে হবে।

অঙ্কন :

- (১) যেকোনো রশ্মি BX থেকে BC=p নিই। BC রেখাংশের B বিন্দুতে BY লম্ব আঁকি। BY থেকে BA=q নিই। A,C যোগ করি। ফলে ΔABC পাওয়া যাবে যার পরিবৃত্ত অঙ্কন করতে হবে।
- (২) AB ও AC এর লম্ব সমদ্বিখণ্ডক EF ও GH আঁকি। এরা পরস্পারকে O বিন্দুতে ছেদ করে।
- (৩) O কে কেন্দ্র করে OA বা OC এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত আঁকি। তাহলে, বৃত্তটি A,B ও C কিন্দুগামী হবে এবং এই বৃত্তটিই Δ ABC এর নির্ণেয় পরিবৃত্ত।

৩৬.

[যশোর বোর্ড ২০২২]

- (ক) প্রমাণ কর যে, $\angle POE = এক সরলকোণ।$
- (খ) OS \perp PQ হলে দেখাও যে, PS = QS.
- (গ) প্রমাণ কর যে, ∠POQ = 2∠PAQ.

০৬ নং প্রশ্নের উত্তর

(क) মনে করি, O কেন্দ্রবিশিষ্ট PQEA একটি বৃত্ত। O কেন্দ্রগামী PE একটি রেখাংশ। প্রমাণ করতে হবে যে, $\angle POE =$ এক সরলকোণ।

অঙ্কন : অ , উ যোগ করি।

প্রমাণ :

ধাপ-১ : $\angle PAE = 90^\circ$ $[\because$ অর্ধবৃত্তস্থ কোণ $= 90^\circ$]

 \therefore $\angle PAQ + \angle QAE = 90^{\circ} \ [\because \angle PAE = \angle PAQ + \angle QAE]$

ধাপ-২ : PQ চাপের উপর দন্ডায়মান কেন্দ্রস্থ ∠POQ ও বৃত্তস্থ ∠PAQ.

∴ ∠POQ = 2∠PAQ [∵ কেন্দ্রয় কোণ বৃত্তয় কোণের দিওণ]

ধাপ-৩ : QE চাপের উপর দন্ডায়মান কেন্দ্রস্থ ∠QOE ও বৃত্তস্থ ∠QAE.

∴ ∠QOE = 2∠QAE

ধাপ-8 : ধাপ (২) ও (৩) থেকে,

 $\angle POQ + \angle QOE = 2\angle PAQ + 2\angle QAE$ [যোগ করে]

ৰা, $\angle POE = 2(\angle PAQ + \angle QAE)$ [\therefore $\angle POQ + \angle QOE = \angle POE$]

www.schoolmathematics.com.bd

গণিত ৮ম অধ্যায় বৃত্ত

Prepared by: ISRAFIL SHARDER AVEEK

বা, $\angle POE = 2 \times 90^{\circ}$ [ধাপ (১) হতে]

বা, ∠POE = 180°

ightharpoonup POE = এক সরলকোণ । [ightharpoonup এক সরলকোণ = 180°]

(প্রমাণিত)

(খ) মনে করি, O কেন্দ্রবিশিষ্ট PQEA বৃত্তে ব্যাস নয় এমন একটি জ্যা PQ এবং $OS \perp PO$ । দেখাতে হবে যে, PS = OS.

প্রমাণ :

ধাপ-১ : যেহেতু OS \perp PQ

সেহেতু ∠OSP = ∠OSQ এক সমকোণ।

∴ Δ OPS ও Δ OQS দুইটি সমকোণী ত্রিভুজ।

ধাপ-২ : $\Delta ext{OPS}$ এবং $\Delta ext{ OQS}$ সমকোণী ত্রিভূজদ্বয়ে

OP = OQ [∵ একই বৃত্তের ব্যাসার্ধ]

এবং $\mathbf{OS} = \mathbf{OS}$ [সাধারণ বাহু]

 $\therefore \Delta OPS \cong \Delta OOS$

[সমকোণী ত্রিভুজের অতিভুজ-বাহু সর্বসমতা উপপাদ্য]

Arr PS = QS. (দেখানো হলো)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট PQEA বৃত্তে PQ চাপের উপর দণ্ডায়মান কেন্দ্রস্থ $\angle POQ$ ও বৃত্তয় $\angle PAQ \mid A$ বিন্দু দিয়ে কেন্দ্রগামী রেখাংশ $AS \mid$ প্রমাণ করতে হবে যে, $\angle POQ = 2 \angle PAQ$.

প্রমাণ :

ধাপ-১ : △AOP এর বহিঃছ ∠POS = ∠PAO + ∠APO

[ত্রিভূজের বহিঃস্থ কোণ তার অন্তঃস্থ বিপরীত কোণদ্বয়ের সমষ্টি সমান]

ধাপ-২ : △AOP-এ OP = OA [: একই বৃত্তের ব্যাসার্ধ]

 $\therefore \angle PAO = \angle APO$

[∵ সমদ্বিবাহু ত্রিভুজের ভূমি সংলগ্ন কোণ দুইটি পরস্পর সমান]

ধাপ-৩ : ধাপ (১) ও ধাপ (২) থেকে, $\angle POS = \angle PAO + \angle PAO$

বা, ∠POS = 2∠PAO

ধাপ-8 : একইভাবে $\triangle AOQ$ থেকে $\angle QOS = 2\angle QAO$

ধাপ-৫: ধাপ (৩) ও (৪) থেকে,

 $\angle POS + \angle QOS = 2\angle PAO + 2\angle QAO$ [যোগ করে]

 $[\because \angle POS + \angle QOS = \angle POQ]$

 \therefore $\angle POQ = 2\angle PAQ [\because \angle PAO + \angle QAO = \angle PAQ]$

(প্রমাণিত)

৩৭. একটি ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য যথাক্রমে 4 সে.মি., 5 সে.মি. এবং 6 সে.মি.।

[যশোর বোর্ড ২০২২]

- (ক) পেন্সিল কম্পাসের সাহায্যে 75° কোণ অঙ্কন কর।
- (খ) উদ্দীপকের বাহু তিনটি নিয়ে একটি ত্রিভুজ অঙ্কন করে ত্রিভুজটির পরিবৃত্ত অঙ্কন কর। [অঙ্কনের চিহ্ন এবং বিবরণ আবশ্যক]

(গ) উদ্দীপকের বৃহত্তম বাহুকে কোনো বৃত্তের ব্যাস ধরে উক্ত বৃত্তে এমন, দুইটি স্পর্শক অঙ্কন কর যেন এদের অন্তর্ভুক্ত কোণ 60° হয়। [অঙ্কনের চিহ্ন এবং বিবরণ আবশ্যক]

৩৭ নং প্রশ্নের উত্তর

(ক)

পেন্সিল কম্পাসের সাহায্যে $\angle AOC = 75^\circ$ কোণ অঙ্কন করা হলো।

(খ)

মনে করি, একটি ত্রিভুজের তিনটি বাহুর দৈর্ঘ্য a=4 সে.মি., b=5 সে.মি. ও c=6 সে.মি. দেওয়া আছে। ত্রিভুজটির পরিবৃত্ত অঙ্কন করতে হবে।

অঙ্কন :

যেকোনো রশ্মি BM থেকে a এর সমান করে BC অংশ কেটে নিই।

BC রেখাংশের B ও C বিন্দুকে কেন্দ্র করে যথাক্রমে c ও b এর সমান ব্যাসার্ধ নিয়ে BC এর একই পাশে দুইটি বৃত্তচাপ আঁকি। বৃত্তচাপ দুইটি পরস্পর A বিন্দুতে ছেদ করে। B, A এবং C, A যোগ করি। তাহলে ΔABC -ই উদ্দিষ্ট ত্রিভুজ যার পরিবৃত্ত আঁকতে হবে।

AB ও AC বা<mark>হু</mark>র লম্ব সমদ্বিখন্ডক যথাক্রমে EF ও GH অঙ্কন করি। মনে করি, তারা পরস্পরকে O বিন্দুতে ছেদ করে।

O. A যোগ করি।

O কে কেন্দ্র করে OA এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত অঙ্কন করি। বৃত্তটি A, B ও C বিন্দু দিয়ে যায়।

তাহলে, এই বৃত্ত<mark>ির</mark> উদ্দিষ্ট ত্রিভূজের পরিবৃত্ত।

(গ) মনে করি O কেন্দ্রবিশিষ্ট ABD বৃত্তের ব্যাস, c=6 সে.মি.। ABD বৃত্তে এরপ দুইটি স্পর্শক আঁকতে হবে যাদের অন্তর্ভুক্ত কোণ 60° হয়।

অঙ্কন : ABD বৃত্তের পরিধির উপর M যেকোনো একটি বিন্দু নিই। O, M যোগ করি এবং OM কে C পর্যন্ত বর্ধিত করি যেন OM = MC হয়। M কে কেন্দ্র করে OM বা MC এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত আঁকি। এ বৃত্তটি ABD বৃত্তকে A ও B বিন্দুতে ছেদ করে। A, C ও B, C যোগ করি। তাহলে AC ও BC উদ্দীষ্ট স্পর্শকদ্বয় যাদের অন্তর্ভুক্ত কোণ 60° ।

৩৮. P কেন্দ্রবিশিষ্ট বৃত্তে AB ও CD দুইটি জ্যা।

[যশোর বোর্ড ২০২২]

- (ক) 4 সে.মি. ব্যাসার্ধবিশিষ্ট বৃত্তের ক্ষেত্রফল নির্ণয় কর।
- (খ) যদি AB = CD হয়, তবে প্রমাণ কর যে, P থেকে AB ও CD এর দূরতু সমান।
- (গ) যদি AB ও CD জ্যা দুইটি বৃত্তের অভ্যন্তরে কোনো বিন্দুতে সমকোণে ছেদ করে তবে প্রমাণ কর যে , $\angle APC + \angle BPD = 2$ সমকোণ।

৩৮ নং প্রশ্নের উত্তর

 (Φ) এখানে, বৃত্তের ব্যাসার্ধ, r = 4 সে.মি.

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

 $oldsymbol{\cdot}$ বৃত্তের ক্ষেত্রফল $=\pi r^2$

 $= 3.1416 \times 4^2$ বর্গ সে.মি.

 $= 3.1416 \times 16$ বর্গ সে.মি.

= 50.2656 বর্গ সে.মি. (প্রায়)

নির্ণেয় বৃত্তের ক্ষেত্রফল 50.2656 বর্গ সে.মি. (প্রায়)।

(খ) মনে করি, P কেন্দ্রবিশিষ্ট বৃত্তে AB ও CD দুইটি সমান জ্যা অর্থাৎ AB = CD। প্রমাণ করতে হবে যে, P থেকে AB ও CD এর দূরত সমান।

অঙ্কন : P থেকে AB ও CD জ্যা এর উপর যথাক্রমে PE ও PF লম্ব রেখাংশ আঁকি : P, A ও P, C যোগ করি :

প্রমাণ :

ধাপ-১ : PE ⊥ AB এবং PF ⊥ CD

সুতরাং AE = BE এবং CF = DF

[∵ কেন্দ্র থেকে ব্যাস ভিন্ন <mark>যেকোনো</mark> জ্যা এর উপর অঙ্কিত লম্ব জ্যাকে সমদ্বিখণ্ডিত করে]

∴ AE = AB এবং CF =
$$\frac{1}{2}$$
 CD

ধাপ-২ : কিন্তু AB=CD [ধরে নেওয়া]

বা,
$$\frac{1}{2}AB = \frac{1}{2}CD$$

 \therefore AE = CF

ধাপ-৩ : এখন ΔPAE এবং ΔPCF সমকোণী ত্রিভুজদ্বয়ের মধ্যে অতিভুজ AP = অতিভুজ CP [উভয়ে একই বৃত্তের ব্যাসার্ধ]

এবং AE = CF [ধাপ (২) হতে]

- ∴ ΔPAE = ΔPCF [সমকোণী ত্রিভুজের অতিভুজ-বাহু সর্বসমতা উপপাদ্য]
- \therefore PE = PF

ধাপ-8 : কিন্তু PE এবং PF কেন্দ্র P থেকে যথাক্রমে AB জ্যা এবং CD জ্যা এর দূরতু নির্দেশ করে।

সুতরাং P থেকে AB ও CD এর দূরত্ব সমান। (প্রমাণিত)

(গ) মনে করি, P কেন্দ্রবিশিষ্ট বৃত্তের AB ও CD জ্যা দুইটি বৃত্তের অভ্যন্তরে M বিন্দৃতে সমকোণে ছেদ করেছে। P, A; P, B; P, C ও P, D যোগ করি। প্রমাণ করতে হবে যে, $\angle APC + \angle BPD = 2$ সমকোণ।

অঙ্কন : A, D যোগ করি।

প্রমাণ

ধাপ-১ : AC চাপের উপর দন্ডায়মান কেন্দ্রন্থ \angle APC এবং বৃত্তন্থ \angle ADC.

 \therefore $\angle APC = 2\angle ADC$

[∵ বৃত্তের একই চাপের উপর দভায়মান কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দ্বিগুণ]

ধাপ-২ : BD চাপের উপর দণ্ডায়মান কেন্দ্রন্থ $\angle BPD$ এবং বৃত্তন্থ $\angle BAD$.

 $\angle BPD = 2\angle BAD$

ধাপ-৩ : ধাপ (১) ও ধাপ (২) হতে,

 $\angle APC + \angle BPD = 2(\angle ADC + \angle BAD)$ [যোগ করে]

ধাপ-8 : △AMD-এ; ∠AMD এক সমকোণ

 \therefore $\angle ADM + \angle DAM = 1$ সমকোণ

বা, $\angle ADC + \angle BAD = 1$ সমকোণ

ধাপ-৫: ধাপ (৩) ও ধাপ (৪) হতে পাই,

 \angle APC + \angle BPD = 2 × 1 সমকোণ
∴ \angle APC + \angle BPD = 2 সমকোণ । (প্রমাণিত)

[কুমিল্লা বোর্ড ২০২২]

- (ক) বৃত্তটির ব্যাসার্ধ 4.5 সে.মি. হলে ক্ষেত্রফল নির্ণয় কর।
- (খ) প্রমাণ কর যে, $\angle EDG + \angle EFG = 180^{\circ}$.
- (গ) DF ও EG কর্ণদ্বয় পরম্পরকে বিন্দুতে ছেদ করলে প্রমাণ কর যে, $\angle DOE + \angle FOG = 2\angle DPE$.

৩৯ নং প্রশ্নের উত্তর

- (Φ) এখানে, বুত্তের ব্যাসার্ধ, r = 4.5 সে.মি.
 - $\cdot\cdot$ বৃত্তের ক্ষেত্রফল $=\pi r^2$

 $= 3.1416 \times (4.5)^2$ বর্গ সে.মি.

= 3.1416 × 20.25 বর্গ সে.মি.

= 63.6174 বর্গ সে.মি. (প্রায়)

নির্ণেয় ক্ষেত্রফল 63.6174 বর্গ সে.মি. (প্রায়)।

(খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে DEFG চতুর্ভুজটি অন্তর্লিখিত হয়েছে। প্রমাণ করতে হবে যে, $\angle EDG + \angle EFG = 180^\circ$.

প্রমাণ :

ধাপ-১ : একই চাপ EFG এর উপর দভায়মান E কেন্দ্রন্থ $\angle EOG$ এবং বৃত্তন্থ $\angle EDG$.

- ∴ ∠EOG = 2∠EDG
- ি বুত্তের একই চাপের উপর দন্ডায়মান কেন্দ্রস্থ কোণ বুত্তন্থ কোণের দিগুণ]

ধাপ-২ : একই চাপ EDG এর উপর দভায়মান কেন্দ্রন্থ প্রকৃষ্ \angle EOG এবং বৃত্ত্ব \angle EFG.

∴ প্রবৃদ্ধ ∠EOG = 2∠EFG [একই কারণে]

ধাপ-৩ : ধাপ (১) ও (২) হতে পাই,

∠EOG + প্রবৃদ্ধ ∠EOG = 2∠EDG + 2∠EFG

- বা, 2(∠EDG + ∠EFG) = 360° [∵ ∠EOG + প্রবৃদ্ধ ∠EOG = 360°]
- ∠EDG + ∠EFG = 180°. (প্রমাণিত)
- (গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে DEFG চতুর্ভুজটি অন্তর্লিখিত। DF ও EG কর্ণদ্বয় পরম্পর বিন্দুতে ছেদ করেছে। প্রমাণ করতে হবে যে, $\angle DOE + \angle FOG = 2\angle DPE$.

www.schoolmathematics.com.bd

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

বত্ত

অঙ্কন : O. D; O, E; O, F ও O, G যোগ করি।

প্রমাণ :

ধাপ-১: DE চাপের দণ্ডায়মান কেন্দ্রন্থ ∠DOE এবং বৃত্তন্থ ∠DGE.

∴ ∠DOE = 2∠DGE

[: বত্তের একই চাপের উপর দণ্ডায়মান কেন্দ্রস্থ কোণ বৃত্তন্থ কোণের দিণ্ডণ]

ধাপ-২ : FG চাপের উপর দভায়মান কেন্দ্রস্থ ∠FOG এবং বৃত্তস্থ ∠FDG.

∴ FOG = 2∠FDG [একই কারণ]

ধাপ-৩ : ধাপ (১) ও (২) হতে পাই,

 $\angle DOE + \angle FOG = 2\angle DGE + 2\angle FDG$ [যোগ করে]

ধাপ-8 : ΔDPG -এ বহিঃস্থ $\angle DPE =$ অন্তঃস্থ ($\angle DGP + \angle GDP$)

ধাপ-৫: ধাপ (৩) ও (৪) হতে পাই,

∴ ∠DOE + ∠FOG = 2∠DPE. (প্রমাণিত)

8o. 'O' কেন্দ্ৰবিশিষ্ট বৃত্তে PQ এবং RS দুইটি সমান জ্যা। OM \perp PO এবং ON \perp RS. MN এর একই পাশে 'P' ও 'R' অবস্থিত।

[কুমিল্লা বোর্ড ২০২২]

- (ক) PQ = 16 সে.মি., OM = 6 সে.মি. হলে OP এর দৈঘ্য নির্ণয় কর।
- (খ) প্রমাণ কর যে, OM = ON.
- (গ) PQ \parallel RS এবং \angle MPO = 30° হলে প্রমাণ কর যে, Δ POR একটি সমবাহু গ্রিভুজ।

৪০ নং প্রশ্নের উত্তর

(ক) এখানে, PQ = 16 সে.মি. এবং OM = 6 সে.মি.। যেহেতু OM ⊥ PQ সেহেতু PM = QM.

্রে বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো জ্যা-এর উপর অঙ্কিত লম্ব ঐ জ্যাকে সম্মন্তিখণ্ডিত করে।

$$Arr$$
 Arr Arr

এখন. OPM সমকোণী ত্রিভুজে.

$$OP^2 = OM^2 + PM^2 = 6^2 + 8^2 = 36 + 64 = 100$$

- \therefore OP = $\sqrt{100}$ = 10
- ∴ OP এর দৈর্ঘ্য 10 সে.মি.।
- (খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQ ও RS দুইটি সমান জ্যা। $OM \perp PQ$ এবং $ON \perp RS$. প্রমাণ করতে হবে যে, OM = ON.

আঙ্কন : O, P এবং O, R যোগ করি।

প্রমাণ :

ধাপ-১ : $OM \perp PQ$ এবং ঙঘ জঝ.

সুতরাং PM = QM এবং RN = SN

[∵ বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো জ্যা-এর উপর অঙ্কিত লম্ব ঐ জ্যাকে সমদ্বিখভিত করে]

$$\therefore$$
 PM = $\frac{1}{2}$ PQ এবং RN = $\frac{1}{2}$ RS

ধাপ-২ : কিন্তু PQ = RS [ধরে নেওয়া)

 \therefore PM = RN

ধাপ-৩ : এখন, Δ OPM এবং Δ ORN সমকোণী ত্রিভূজদ্বয়ের মধ্যে অতিভূজ

OP = অতিভুজ OR [উভয়ে একই বৃত্তের ব্যাসার্ধ]

এবং PM = RN [ধাপ (২) হতে]

 $\therefore \quad \triangle \text{ OPM} \cong \triangle \text{ORN}$

[সমকোণী ত্রিভুজের অতিভুজ-বাহু সর্বসমতা উপপাদ্য]

∴ OM = ON. (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQ ও RS দুইটি সমান জ্যা।

OM ⊥ PQ এবং ON ⊥ RS । O, P; O, R ও P, R যোগ করি ।

 $PQ \parallel RS$ এবং $\angle MPO = 30^\circ$ হলে, প্রমাণ করতে হবে যে, $\triangle POR$ একটি সমবাহু ত্রিভুজ।

প্রমাণ :

ধাপ-১ : $\triangle OPM$ -এ, $\angle MPO = 30^\circ$ [দেওয়া আছে]

এবং ∠OMP = 90° [∵ OM ⊥ PQ]

 \therefore $\angle POM + \angle MPO + \angle OMP = 180^{\circ}$

[∵ ত্রিভুজের তিন কোণের সমষ্টি 180°]

[∵ ∠MPO = 30° এবং ∠OMP = 90°]

বা, ∠POM + 120°= 180°

 $\therefore \angle POM = 60^{\circ}$

ধাপ-২ : Δ OMP ও Δ ONR সমকোণী ত্রিভুজদ্বয়ে

অতিভূজ OP = অতিভূজ OR [একই বৃত্তের ব্যাসার্ধ]

OM = ON [: PQ = RS]

 \therefore \triangle OMP \cong \triangle ONR

[সমকোণী ত্রিভুজের অতিভূজ-বাহু সর্বসমতা উপপাদ্য]

 \therefore $\angle POM = \angle RON$

∴ ∠RON = 60° [ধাপ (১) হতে]

ধাপ-৩ : $\angle POM + \angle POR + \angle RON =$ এক সরলকোণ

বা, $60^{\circ} + \angle POR + 60^{\circ} = 180^{\circ}$ [\because এক সরলকোণ = 180°]

বা, ∠POR + 120° = 180°

বা, ∠POR = 180° - 120° = 60°

ধাপ-8 : Δ POR-এ,

OP = OR [একই বৃত্তের ব্যাসার্ধ]

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

[: সমদ্বিবাহু ত্রিভুজের ভূমি সংলগ্ন কোণদ্বয় পরস্পর সমান]

এবং
$$\angle OPR + \angle POR + \angle ORP = 180^{\circ}$$

ত্রিভজের তিন্ কোণের সমষ্টি 180°

বা,
$$\angle OPR + \angle POR + \angle OPR = 180^{\circ}$$
 [∵ $\angle OPR = \angle ORP$]

বা,
$$2\angle OPR + 60^{\circ} = 180^{\circ}$$
 [ধাপ (৩) হতে]

$$\therefore \quad \angle OPR = \frac{120^{\circ}}{2} = 60^{\circ}$$

$$\therefore$$
 $\angle ORP = \angle OPR = 60^{\circ}$

ধাপ- $\mathbf{c}: \Delta \text{ POR}$ -এ.

$$\angle POR = \angle OPR = \angle ORP = 60^{\circ}$$

- ∴ Δ POR একটি সমবাহু ত্রিভুজ। (প্রমাণিত)
- 8১. 'O' কেন্দ্রবিশিষ্ট বৃত্তে PQ ও RS ব্যাস ভিন্ন দুইটি জ্যা। OM \perp PQ এবং ON \perp RS.

[চট্টগ্রাম বোর্ড ২০২২]

- (ক) প্রমাণ কর যে, বৃত্তের ব্যাসই বৃহত্তম জ্যা।
- (খ) যদি OM = ON হয়, তবে প্রমাণ কর যে, PQ = RS.
- (গ) যদি PQ ও RS জ্যাদ্বয় বৃত্তের অভ্যন্তরে E বিন্দুতে পরম্পরকে সমকোণে ছেদ করে, তবে প্রমাণ কর যে, $\angle POS + \angle QOR = দুই সমকোণ।$

৪১ নং প্রশ্নের উত্তর

(ক) মনে করি, O কেন্দ্রবিশিষ্ট ABDC একটি বৃত্ত। AB ব্যাস এবং CD ব্যাস ভিন্ন যেকোনো একটি জ্যা।

প্রমাণ করতে হবে যে, AB > CD.

অঙ্কন : O, C এবং O, D যোগ করি।

প্রমাণ : OA = OB = OC = OD [একই বৃত্তের ব্যাসার্ধ]

এখন, $\triangle OCD$ -এ, OC + OD > CD

[∵ ত্রিভুজের যেকোনো দুই বাহুর সমষ্টি তৃতীয় বাহু অপেক্ষা বৃহত্তর]

- (খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQ ও RS ব্যাস ভিন্ন দুইটি জ্যা। O থেকে PQ ও RS এর উপর যথাক্রমে OM ও ON লম্ব। OM = ON হলে প্রমাণ করতে হবে যে, PO = RS.

অঙ্কন : O, P এবং O, R যোগ করি।

প্রমাণ

ধাপ-১ : যেহেতু $OM \perp PQ$ ও $ON \perp RS$

সুতরাং ∠OMP = ∠ONR = এক সমকোণ।

ধাপ-২ : এখন, $\Delta ext{OPM}$ এবং $\Delta ext{ORN}$ সমকোণী ত্রিভূজদ্বয়ের মধ্যে অতিভূজ

OP = অতিভুজ OR [উভয়ে একই বৃত্তের ব্যাসার্ধ]

এবং OM = ON [ধরে নেওয়া]

 $\therefore \quad \triangle OPM \cong \triangle OPN$

[সমকোণী ত্রিভুজের অতিভুজ-বাহু সর্বসমতা উপপাদ্য]

$$\therefore$$
 PM = RN

ধাপ-৩ : $PM = \frac{1}{2} PQ$ এবং $RN = \frac{1}{2} RS$ $[\because]$ কেন্দ্র থেকে ব্যাস ভিন্ন থেকোনো জ্যা-এর উপর অঙ্কিত লম্ব ঐ জ্যা-কে সমদ্বিখভিত করে

ধাপ-
$$8:$$
 সুতরাং $\frac{1}{2}$ $PQ=\frac{1}{2}$ RS

- (গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQ ও RS ব্যাস ভিন্ন জ্যাদ্বয় বৃত্তের অভ্যন্তরে E বিন্দুতে পরস্পারকে সমকোণে ছেদ করেছে। O, P; O, Q; O, R ও O, S যোগ করি। প্রমাণ করতে হবে যে, $\angle POS + \angle QOR = দুই সমকোণ।$

অঙ্কন : P, R যোগ করি।

প্রমাণ :

ধাপ-১: PS চাপের উপর দন্ডায়মান কেন্দ্রস্থ ∠POS এবং বৃত্তস্থ ∠PRS.

$$\therefore \angle POS = 2\angle PRS$$

[∵ বৃত্তের একই চাপের উপর দভায়মান কেন্দ্রন্থ কোণ বৃত্তন্থ কোণের দিওণ]
ধাপ-২: OR চাপের উপর দঙায়মান কেন্দ্রন্থ ∠OOR এবং বৃত্তন্থ ∠OPR.

∴ ∠OOR = 2∠OPR [একই কারণে]

ধাপ-৩: ধাপ (১) ও (২) থেকে পাই,

ধাপ-8 : $\triangle PER$ -এ, $\angle PER = 1$ সমকোণ

$$\therefore$$
 $\angle PRE + \angle RPE = 1$ সমকোণ

বা,
$$\angle PRS + \angle OPR = 1$$
 সমকোণ

$$\angle POS + \angle QOR = 2 \times 1$$
 সমকোণ

$$\therefore$$
 ∠POS + ∠QOR = 2 সমকোণ \cdot (প্রমাণিত)

8২. О কেন্দ্রবিশিষ্ট বৃত্তের বহিঃছ বিন্দু L থেকে উক্ত বৃত্তে LM ও LN দুইটি স্পর্শক।

[চট্টগ্রাম বোর্ড ২০২২]

- ক) 2.0 সে.মি. ব্যাসার্ধবিশিষ্ট বৃত্তের কোনো নির্দিষ্ট বিন্দুতে একটি স্পর্শক আঁকতে হবে। [শুধুমাত্র অঙ্কনের চিহ্ন আবশ্যক]
- (খ) প্রমাণ কর যে, LM = LN.
- (গ) প্রমাণ কর যে, OL রেখাংশ MN স্পর্শ জ্যা এর লম্ব দ্বিখন্ডক।

৪২ নং প্রশ্নের উত্তর

(<u></u>क)

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

এখানে, O কেন্দ্রবিশিষ্ট বৃত্তের ব্যাসার্ধ OA=2.0 সে.মি.। বৃত্তটির A বিন্দুতে AP স্পর্শক আঁকা হলো।

(খ) মনে করি, O কেন্দ্রবিশিষ্ট MPN বৃত্তের L একটি বহিঃছ বিন্দু এবং LM ও LN রেখাংশবয় বৃত্তের M ও N বিন্দুতে দুইটি স্পর্শক। প্রমাণ করতে হবে যে, LM = LN.

অঙ্কন : O, M; O, N এবং O, L যোগ করি।

প্রমাণ :

ধাপ-১ : যেহেতু LM স্পর্শক এবং OM স্পর্শবিন্দুগামী ব্যাসার্ধ।

সেহেতু LM \perp OM [: স্পর্শক স্পর্শবিন্দুগামী ব্যাসার্ধের উপর লম্ব]

∴ ∠LMO = এক সমকোণ অনুরূপভাবে, ∠LNO = এক সমকোণ।

∴ ΔLMO এবং ΔLNO উভয়ই সমকোণী ত্রিভুজ।

ধাপ-২ : এখন , ΔLMO এবং ΔLNO সমকোণী ত্রিভুজদ্বয়ে

অতিভুজ LO= অতিভুজ LO [সাধারণ বাহু]

এবং OM = ON [: uকই বৃত্তের ব্যাসার্ধ]

 $\therefore \Delta LMO \cong \Delta LNO$

[সমকোণী ত্রিভুজের অতিভুজ-বাহু সর্বসমতা উপপাদ্য]

∴ LM = LN. (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তের বহিঃস্থ বিন্দু L থেকে বৃত্তে LM ও LN দুইটি স্পর্শক M, N এবং O, L যোগ করি। MN হচ্ছে স্পর্শ জ্যা। OL রেখাংশ MN জ্যাকে E বিন্দতে ছেদ করে।

প্রমাণ করতে হবে যে, OL রেখাংশ MN স্পর্শ জ্যা-এর লম্বদ্বিখন্ডক।

অঙ্কন : O, M এবং O, N যোগ করি।

প্রমাণ •

ধাপ-১ : Δ OML এবং Δ ONL এর মধ্যে

 $\mathrm{OM} = \mathrm{ON} \left[m{:} \cdot \cdot \cdot \cdot \right]$ একই বৃত্তের ব্যাসার্ধ]

LM=LN [বহিঃস্থ কোনো বিন্দু থেকে বৃত্তে অঙ্কিত স্পর্শকদ্বয় সমান] এবং OL=OL [সাধারণ বাহু]

 \therefore \triangle OML \cong \triangle ONL [বাহু-বাহু-বাহু উপপাদ্য]

 \therefore \angle MOL = \angle NOL

অর্থাৎ, ∠MOE = ∠NOE

ধাপ-২ : এখন, Δ OME ও Δ ONE-এ,

OM = ON [একই বৃত্তের ব্যাসার্ধ]

OE = OE [সাধারণ বাহু]

এবং অন্তর্ভুক্ত ∠MOE = অন্তর্ভুক্ত ∠NOE [ধাপ (১) হতে]

Arr Arr Arr OME Arr Arr Arr Arr ONE [বাহু-কোণ-বাহু উপপাদ্য]

ME = NE

এবং ∠MEO = ∠NEO

ধাপ-৩ : এখন, $\angle MEN = 2$ সমকোণ [সরণকোণ বলে]

বা. $\angle MEO + \angle NEO = 2$ সমকোণ

বা, $\angle MEO + \angle MEO = 2$ সমকোণ [ধাপ (২) হতে]

বা, $2 \angle MEO = 2$ সমকোণ

∴ ∠MEO = 1 সমকোণ

 \therefore $\angle NEO = \angle MEO = 1$ সমকোণ

∴ OE ⊥ MN

অর্থাৎ, OL \perp MN

আবার, ME = NE

∴ OL, MN কে সমদ্বিখন্ডিত করে।

অতএব, OL রেখাংশ MN স্পর্শ জ্যা-এর লম্বদ্বিখন্ডক। (প্রমাণিত)

80.

[সিলেট বোর্ড ২০২২]

(ক) বৃত্তের ব্যাসার্ধ 3 সে.মি. হলে, পরিধির মান বের কর।

(খ) প্রমাণ কর যে, OE = OF.

(গ) প্রমাণ কর যে, ∠AOC = 2∠ABC.

৪৩ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, বৃত্তের ব্যাসার্থ, r = 3 সে.মি.

বৃত্তের পরিধি = 2πr

= 2 × 3.1416 × 3 সে.মি.

= 18.8496 সে.মি. (প্রায়)

নির্ণেয় পরিধি 18.8496 সে.মি. (প্রায়)।

(খ) মনে করি, O বৃত্তের কেন্দ্র এবং AB = CD অর্থাৎ AB ও CD বৃত্তের দুইটি সমান জ্যা। O থেকে AB এবং CD জ্যা এর উপর যথাক্রমে OF ও OE লম্ব রেখাংশ।

প্রমাণ করতে হবে যে, OE = OF

প্রমাণ:

ধাপ-১ : OF ⊥ AB এবং OE ⊥ CD

Arr Arr

যেকোনো জ্যা-এর উপর অঙ্কিত লম্ব জ্যা-কে সমদ্বিখন্ডিত করে]

ধাপ-২ : কিন্তু AB = CD [দেওয়া আছে]

 \therefore AF = CE.

ধাপ-৩ : এখন, ΔOAF এবং ΔOCE সমকোণী ত্রিভুজদ্বয়ের মধ্যে অতিভুজ OA = অতিভুজ OC [উভয়ে একই বৃত্তের ব্যাসার্ধ]

এবং AF = CE [ধাপ (২) হতে]

 $\therefore \triangle OAF \cong \triangle OCE$

[সমকোণী ত্রিভূজের অতিভূজ বাহু-সর্বসমতা উপপাদ্য]

ightharpoonup OE = OF. (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে BC রেখাংশ কেন্দ্রগামী। বৃত্তের একই উপচাপ AC এর উপর দন্ডায়মান কেন্দ্রন্থ কোণ $\angle AOC$ এবং বৃত্তম্থ কোণ $\angle ABC$ । প্রমাণ করতে হবে যে, $\angle AOC = 2\angle ABC$ ।

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

ধাপ $\wp: \Delta \text{ AOB}$ এ OA = OB [একই বৃত্তের ব্যাসার্ধ] $\angle OBA = \angle OAB$

[∵ ত্রিভুজের সমান সমান বাহুর বিপরীত কোণদ্বয় পরস্পর সমান]

ধাপ ২ : আবার, Δ AOB এর বহিঃস্থ $\angle AOC = \angle OAB + \angle OBA$

ি ত্রিভুজের বহিঃস্থ কোণ এর অন্তঃস্থ বিপরীত কোণদ্বয়ের সমষ্টির সমান]
= ∠OBA + ∠OBA [ধাপ (১) হতে]

বা, ∠AOC = 2 ∠OBA

∴ ∠AOC = 2∠ABC [∵ ∠OBA = ∠ABC] (প্রমাণিত)

88. O কেন্দ্রবিশিষ্ট PQSR বৃত্তে QR চাপের উপর দণ্ডায়মান বৃত্তয় ∠QPR এবং কেন্দ্রয় ∠QOR.

[সিলেট বোর্ড ২০২২]

(ক) OP = 7 সে.মি. হলে, বৃত্তের ক্ষেত্রফল নির্ণয় কর।

- (খ) প্রমাণ কর যে, $\angle QPR = \frac{1}{2} \angle QOR$
- (গ) যদি $\angle QPS + \angle SPR = 90^\circ$ হয় তবে, প্রমাণ কর যে, Q, Q এবং R একই সরলরেখায় অবস্থিত।

88 নং প্রশ্নের উত্তর

(ক) এখানে, O কেন্দ্রবিশিষ্ট বৃত্তের ব্যাসার্ধ, r = OP = 7 সে.মি.

 $\cdot\cdot$ বৃত্তের ক্ষেত্রফল $=\pi r^2$

 $= 3.1416 \times 7^2$ বর্গ সে.মি.

= 3.1416 × 49 বর্গ সে.মি.

= 153.9384 বর্গ সে.মি. (প্রায়)

নির্ণেয় ক্ষেত্রফল 153.9384 বর্গ সে.মি. (প্রায়)।

- (খ) মনে করি, O কেন্দ্রবিশিষ্ট PQSR বৃত্তে QR চাপের উপর দভায়মান বৃত্তস্থ
 - $\angle QPR$ এবং কেন্দ্রন্থ $\angle QOR$ । প্রমাণ করতে হবে যে, $\angle QPR = \frac{1}{2}$ $\angle QOR$.

অঙ্কন : O, P যোগ করি। O কেন্দ্রগামী Q রেখাংশ PT আঁকি।

প্রমাণ

ধাপ-১ : ΔPOQ এর বহিঃস্থ $\angle QOT$ অন্তঃস্থ ($\angle QPO + \angle PQO$)

[∵ ত্রিভুজের বহিঃস্থ কোণ এর অন্তঃস্থ বিপরীত কোণদ্বয়ের সমষ্টির সমান]

ধাপ-২ : ΔPOQ -এ, OP = OQ [একই বৃত্তের ব্যাসার্ধ]

 \therefore $\angle PQO = \angle QPO$

[: সমদ্বিবাহু ত্রিভুজের ভূমি সংলগ্ন কোণ দুইটি সমান]

ধাপ-৩ : ধাপ (১) ও (২) থেকে পাই,

 $\angle QOT = 2\angle QPO$

ধাপ-8: একইভাবে অচঙজ থেকে পাই,

 $\angle ROT = 2\angle RPO$

ধাপ-৫: ধাপ (৩) ও (৪) থেকে পাই,

 $\angle QOT + \angle ROT = 2\angle QPO + 2\angle RPO$ [যোগ করে]

 $[\because \angle QOT + \angle ROT = \angle QOR]$

ৰা, 2 ∠QPR = ∠QOR

 \therefore $\angle QPR = \frac{1}{2} \angle QOR$. (প্রমাণিত)

(গ) O কেন্দ্রবিশিষ্ট PQSR বৃত্তে $\angle QPS + \angle SPR = 90^\circ$ । প্রমাণ করতে হবে যে, Q,O এবং R একই সরলরেখায় অবস্থিত।

অঙ্কন : O, S যোগ করি।

প্রমাণ :

ধাপ ১ : যেহেতু কেন্দ্রন্থ $\angle QOS$ এবং বৃত্তন্থ $\angle QPS$ একই চাপ QS- এর উপর দঙায়মান, সেহেতু $\angle QOS=2$ $\angle QPS$

[∵ বৃত্তের একই চাপের উপর দন্ডায়মান কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দিগুণ]

ধাপ ২ : অনুরূপভাবে, SR চাপের ওপর দণ্ডায়মান ∠SOR = 2 ∠SPR

ধাপ ৩ : \therefore $\angle QOS + \angle SOR = 2(\angle QPS + \angle SPR)$

[ধাপ (১) ও (২) থেকে]

 $= 2 \times 90^{\circ} [\angle QPS + \angle SPR = 90^{\circ}]$ = 2×1 সমকোণ

∴ ∠QOS + ∠SOR = 2 সমকোণ।

যেহেতু ∠QO<mark>S এ</mark>বং ∠SOR সন্নিহিত কোণ।

সুতরাং Q, O এবং R একই সরলরেখায় অবস্থিত। (প্রমাণিত)

8৫. \triangle ABC এর a=3.5 সে.মি., b=4 সে.মি., c=4.6 সে.মি. এবং $\angle y=60^{\circ}$.

[সিলেট বোর্ড ২০২২]

- (ক) পেন্সিল কম্পাস ব্যবহার করে 30° কোণ অঙ্কন কর।
- (খ) কোনো বৃত্তে এমন দুইটি স্পর্শক আঁক যেন এদের অন্তর্ভুক্ত কোণ ∠y এর সমান হয়।
- (গ) ΔABC এর পরিবৃত্ত আঁক। [অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক]

৪৫ নং প্রশ্নের উত্তর

(ক) পেন্সিল কম্পাসের সাহায্যে $\angle BAD = 30^\circ$ অঙ্কন করা হলো।

(খ) মনে করি O কেন্দ্রবিশিষ্ট ABD একটি বৃত্ত। ABD বৃত্তে এরূপ দুইটি স্পর্শক আঁকতে হবে যাদের অন্তর্ভুক্ত কোণ $\angle y = 60^\circ$ হয়।

অঙ্কন :

- ১. ABD বৃত্তের পরিধির উপর M যেকোনো একটি বিন্দু নিই। O, M যোগ করি এবং OM কে C পর্যন্ত বর্ধিত করি যেন OM = MC হয়।
- ২. M কে কেন্দ্র করে OM বা MC এর সমান ব্যাসার্থ নিয়ে একটি বৃত্ত আঁকি। এ বৃত্তটি ABD বৃত্তকে A ও B বিন্দুতে ছেদ করে। A, C ও B, C যোগ কবি।

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

তাহলে AC এবং BC উদ্দীষ্ট স্পর্শকদ্বয় যাদের অন্তর্ভুক্ত কোণ $\angle y = 60^\circ$ ।

(গ)

মনে করি, Δ ABC এর তিনটি বাহুর দৈর্ঘ্য a=3.5 সে.মি., b=4 সে.মি. c=4.6 সে.মি. দেওয়া আছে। এিভূজটির পরিবত্ত আঁকতে হবে।

- ১. যেকোনো রশ্মি BM থেকে BC = a নিই।
- B ও C বিন্দুকে কেন্দ্র করে যথাক্রমে c ও b এর সমান ব্যাসার্ধ নিয়ে BC
 এর একই পাশে দুইটি বৃত্তচাপ আঁকি। বৃত্তচাপদ্বয় পরক্ষার A বিন্দুতে ছেদ
 করে।
- 8. AB ও AC এর লম্ব সমদ্বিখণ্ডক যথাক্রমে EF ও GH আঁকি। এরা পরস্পারকে বিন্দুতে ছেদ করে।
- ৫. A, O যোগ করি। O কে কেন্দ্র করে OA এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত আঁকি। তাহলে, বৃত্তটি A, B ও C বিন্দুগামী হবে এবং এই বৃত্তটি ΔABC এর নির্ণেয় পরিবৃত্ত।
- 46. O কেন্দ্রবিশিষ্ট বৃত্তটির PQ এবং RS দুইটি জ্যা। OE ⊥ PQ এবং OF ⊥ RS.

[বরিশাল বোর্ড ২০২২]

- (ক) প্রমাণ কর : PE = QE.
- (খ) যদি PQ = RS হয় তবে প্রমাণ কর : OE = OF.
- (গ) যদি PO > RS হয় তবে প্রমাণ কর : OE < OF.

৪৬ নং প্রশ্নের উত্তর

(ক) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে ব্যাস নয় এমন একটি জ্যা PQ এবং $OE \perp PQ$ । প্রমাণ করতে হবে যে, PE = QE.

প্রমাণ :

ধাপ-১ : যেহেতু $OE \perp PQ$ সেহেতু $\angle OEP = \angle OEQ$ এক সমকোণ। অতএব, $\triangle OPE$ ও $\triangle OQE$ দুইটি সমকোণী ত্রিভুজ।

ধাপ-২ : $\triangle OPE$ ও $\triangle OQE$ -সমকোণী ত্রিভুজদ্বয়ে

অতিভূজ OP = অতিভূজ OQ [একই বৃত্তের ব্যাসার্ধ]

 $\overrightarrow{OE} = \overrightarrow{OE}$ [সাধারণ বাহু]

∴ ΔΟΡΕ ≅ ΔΟΟΕ [সমকোণী ত্রিভুজের অতিভুজ-বাহু সর্বসমতা

উপপাদ্য] \therefore PE = OE. (প্রমাণিত)

(খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQ ও RS দুইটি জ্যা এবং $PQ \perp RS \mid OE \perp PQ$ এবং $OF \perp RS \mid$ প্রমাণ করতে হবে যে, OE = OF.

অঙ্কন : O, P ও O, R যোগ করি।

প্রমাণ :

ধাপ-১ : যেহেতু OE \perp PQ এবং OF \perp RS.

সুতরাং PE = QE এবং RF = SF [\because বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন থেকোনো জ্যা-এর উপর অঙ্কিত লম্ব জ্যাকে সমদ্বিখণ্ডিত করে]

$$PE = \frac{1}{2} PQ$$
 একং $RF = \frac{1}{2} RS$.

ধাপ-২ : কিন্তু PQ=RS [দেওয়া আছে]

ৰা,
$$\frac{1}{2}$$
 PQ = $\frac{1}{2}$ RS

$$\therefore$$
 PE = RF

ধাপ-৩ : এখন, $\triangle OPE$ এবং $\triangle ORF$ সমকোণী ত্রিভুজদ্বয়ের মধ্যে অতিভুজ OP = অতিভুজ OR [উভয়ে একই বৃত্তের ব্যাসার্ধ]

এবং PE = RF [ধাপ (২) হতে]

- Arr Arr
- ∴ OE = OF. (প্রমাণিত)
- (গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQ এবং RS দুইটি জ্যা এবং PQ > RS \mid OE \perp PQ এবং OF \perp RS \mid প্রমাণ করতে হবে যে, OE < OF.

অঙ্কন : O, P এবং O, R যোগ করি।

প্রমাণ :

ধাপ-১ : যেহেতু OE ⊥ PQ এবং OF ⊥ RS

 $ightharpoonup PE = rac{1}{2} \ PQ$ এবং $RF = rac{1}{2} \ RS$ [বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন জ্যা-এর

উপর অঙ্কিত লম্ব ঐ জ্যাকে সমদ্বিখণ্ডিত করে

ধাপ-২ : ΔΟΡΕ ও ΔΟRF সমকোণী ত্রিভূজদ্বয়ের মধ্যে

$$OP^2 = PE^2 + OE^2$$
 এবং $OR^2 = RF^2 + OF^2$

[পিথাগোরাসের উপপাদ্যের সাহায্যে]

ধাপ-৩ : কিন্তু OP = OR [একই বৃত্তের ব্যাসার্ধ]

বা, $OP^2 = OR^2$

বা, $PE^2 + OE^2 = RF^2 + OF^2$ [ধাপ (২) হতে]

বা, $PE^2 - RF^2 = OF^2 - OE^2$

ধাপ-8 : আবার, যেহেতু PQ > RS

বা,
$$\frac{1}{2}$$
 PQ > $\frac{1}{2}$ RS

বা, PE > RF [ধাপ (১) হতে]

ৰা. $PE^2 > RF^2$

বা, $PE^2 - RF^2 > 0$

বা, $OF^2 - OE^2 > 0$ [ধাপ (৩) হতে]

বা, $OF^2 > OE^2$

বা, OF > OE

∴ OE < OF. (প্রমাণিত)</p>

89.

চিত্রে O বৃত্তটির কেন্দ্র।

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

[বরিশাল বোর্ড ২০২২]

- (Φ) প্রমাণ কর : AE = DE.
- (খ) প্রমাণ কর যে, $\angle BAD + \angle BCD = 180^{\circ}$.
- (গ) প্রমাণ কর যে, OE সরলরেখা স্পর্শ জ্যা AD এর লম্ব-সমদ্বিখন্ডক।

৪৭ নং প্রশ্নের উত্তর

(क) মনে করি, O কেন্দ্রবিশিষ্ট \overline{ABCD} বৃত্তের E একটি বহিঃছ বিন্দু এবং AE ও DE রশ্মিরয় বৃত্তের A ও B বিন্দুতে দুইটি স্পর্শক। প্রমাণ করতে হবে যে, AE = DE.

অঙ্কন : O, A ও O, D যোগ করি।

প্রমাণ :

ধাপ-১ : যেহেতু EA স্পর্শক এবং OA স্পর্শবিন্দুগামী ব্যাসার্ধ। সেহেতু $EA \perp$

OA [: বৃত্তের স্পর্শক স্পর্শবিন্দুগামী ব্যাসার্ধের উপর লম্ব]

- ∴ ∠EAO = এক সমকোণ
- ∴ ΔEAO ও ΔEDO উভয়ই সমকোণী ত্রিভুজ।

ধাপ-২: এখন, ∆EAO ও ∆EDO সমকোণী ত্রিভুজদ্বয়ের মধ্যে অতিভুজ EO = অতিভুজ EO [সাধারণ বাহু]

অনুরূপে, ∠EDO = এক সমকোণ

এবং OA = OD [একই বৃত্তের ব্যাসার্ধ]

- ∴ ΔΕΑΟ ≅ EDO [সমকোণী ত্রিভূজের অতিভূজ-বাহু সর্বসমতা]
- (খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে ABCD চতুর্ভুজটি অন্তর্লিখিত হয়েছে। প্রমাণ করতে হবে যে, $\angle BAD + \angle BCD = 180^\circ$.

অঙ্কন : O, B এবং O, D যোগ করি।

প্রমাণ

ধাপ-১ : একই চাপ BCD এর উপর দভায়মান কেন্দ্রন্থ $\angle BOD$ এবং বৃত্তন্থ $\angle BAD$.

 $\therefore \angle BOD = 2 \angle BAD$

 $[\because]$ বৃত্তের একই চাপের উপর দন্ডায়মান কেন্দ্রন্থ কোণে বৃত্তন্থ কোণের দিশুণ] ধাপ-২ : একই চাপ BAD এর উপর দণ্ডায়মান কেন্দ্রন্থ প্রবৃদ্ধ $\angle BOD$ এবং বৃত্তন্থ $\angle BCD$.

∴ প্রবৃদ্ধ ∠BOD = 2∠BCD [একই কারণে]

ধাপ-৩ : ধাপ (১) ও (২) হতে,

 $\angle BOD +$ প্রবৃদ্ধ $\angle BOD = 2\angle BAD + 2\angle BCD$ [যোগ করে]

[∵ ∠BOD + প্রবৃদ্ধ ∠BOD = 360°]

$$\blacktriangleleft, \quad \angle BAD + \angle BCD = \frac{360^{\circ}}{2}$$

∠BAD + ∠BCD = 180°. (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট ABCD বৃত্তের বহিঃছ বিন্দু E থেকে বৃত্তে AE ও DE দুইটি স্পর্শক এবং AD হচেছ স্পর্শ জ্যা। OE রেখাংশ AD জ্যাকে F বিন্দুতে ছেদ করে।

প্রমাণ করতে হবে যে, OE সরলরেখা স্পর্শ জ্যা AD এর লম্ব সমদ্বিখন্ডক।

অঙ্কন : O, A এবং O, D যোগ করি।

প্রমাণ :

ধাপ-১ : ΔOAE এবং ΔODE এর মধ্যে,

OA = OD (একই বত্তের ব্যাসার্ধ)

AE = DE [বহিঃস্থ কোনো বিন্দু থেকে বৃত্তে অঙ্কিত স্পর্শকদ্বয় সমান]

এবং OE = OE [সাধারণ বাহু]

∴ OAE ≅ AODE [বাহু-বাহু-বাহু সর্বসমতা উপপাদ্য]

 \therefore $\angle AOE = \angle DOE$

অর্থাৎ, ∠AOF = ∠DOF

ধাপ-২ : এখন, ΔΟΑF ও ΔΟDF-এ

OA = OD [একই বৃত্তের ব্যাসার্ধ]

OF = OF [সাধারণ বাহু]

এবং অন্তর্ভুক্ত $\angle AOF =$ অন্তর্ভুক্ত $\angle DOF$ [ধাপ (১) হতে]

Arr Arr

AF = DF

এবং ∠AFO = ∠DFO

ধাপ-৩ : এখন, ∠AFD = 1 সরলকোণ

বা, $\angle AFO + \angle DFO = 2$ সমকোণ [: এক সরলকোণ = 2 সমকোণ]

বা, $\angle AFO + \angle AFO = 2$ সমকোণ [ধাপ (২) হতে]

বা. 2∠AFO = 2 সমকোণ

বা, $\angle AFO = 1$ সমকোণ

∴ ∠DFO = ∠AFO = 1 সমকোণ

∴ OF ⊥ AD

অর্থাৎ OE ⊥ AD

আবার, AF = DF

∴ OE, AD কে সমদ্বিখণ্ডিত করে।

অতএব, OE সরলরেখা স্পর্শ জ্যা AD এর লম্ব-সমদ্বিখন্ডক। (প্রমাণিত)

8b.

চিত্রে বৃত্তের কেন্দ্র C.

[দিনাজপুর বোর্ড ২০২২]

(ক) 2 সে.মি. বাহুবিশিষ্ট সমবাহু ত্রিভুজের ক্ষেত্রফল নির্ণয় কর।

- (খ) প্রমাণ কর যে, $\angle ADB = \frac{1}{2} \angle ACB$.
- (গ) প্রমাণ কর যে, $\angle ADB + \angle AEB = 2$ সমকোণ।

৪৮ নং প্রশ্রেব উত্তব

- (Φ) এখানে, সমবাহু ত্রিভুজের বাহুর দৈর্ঘ্য, a=2 সে.মি.
 - \therefore সমবাহু ত্রিভুজের ক্ষেত্রফল $= \frac{\sqrt{3}}{4} a^2 = \frac{\sqrt{3}}{4} \times 2^2$

www.schoolmathematics.com.bd

গণিত ৮ম অধ্যায়

বৃত্ত

Prepared by: ISRAFIL SHARDER AVEEK

$$=rac{\sqrt{3}}{4} imes 4=\sqrt{3}$$
 বর্গ সে.মি.।

নির্ণেয় ক্ষেত্রফল $\sqrt{3}$ বর্গ সে.মি.।

(খ) মনে করি, C কেন্দ্রবিশিষ্ট AEBD বৃত্তে AEB চাপের উপর দভায়মান কেন্দ্রন্থ কোণ ∠ACB এবং বৃত্তন্থ কোণ ∠ADB।

প্রমাণ করতে হবে যে , $\angle ADB = \frac{1}{2} \angle ACB$

আন্ধন : C কেন্দ্রগামী রেখাংশ DP আঁকি।

প্রমাণ

ধাপ-১ : ΔADC এর বহিঃস্থ কোণ $\angle ACP = \angle ADC + \angle CAD$

[ত্রিভুজের বহিঃস্থ কোণ এর অন্তস্থ বিপরীত কোণদ্বয়ের সমষ্টির সমান]

ধাপ-২ : $\triangle ADC$ -এ AC = CD [একই বৃত্তের ব্যাসার্ধ]

∴ ∠ADC = ∠CAD [সমদিবাহু ত্রিভুজের ভূমি সংলগ্ন কোণ দুইটি সমান]

ধাপ-৩ : ধাপ (১) ও (২) হতে পাই, ∠ACP = 2∠ADC।

ধাপ-8 : একইভাবে, $\triangle BCD$ থেকে, $\angle BCP = 2\angle BDC$ ।

ধাপ-৫: ধাপ (৩) ও (৪) হতে পাই,

$$\angle ACP + \angle BCP = 2\angle ADC + 2\angle BDC$$

- ∴ ∠ADB = ∠ACB. (প্রমাণিত)
- (গ) মনে করি, C কেন্দ্রবিশিষ্ট বৃত্তে AEBD চতুর্ভুজটি অন্তলিখিত হয়েছে। প্রমাণ করতে। হবে যে, $\angle ADB + \angle AEB = 2$ সমকোণ।

প্রমাণ :

ধাপ-১ : একই চাপ AEB এর উপর দণ্ডায়মান কেন্দ্রন্থ $\angle ACB = 2$ (বৃত্তন্থ $\angle ADB$)

[বৃত্তের একই চাপের উপর দভায়মান কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দিগুণ]

অর্থাৎ $\angle ACB = 2\angle ADB$ ধাপ-২ : আবার, একই চাপ ADB এর উপর দন্ডায়মান কেন্দ্রন্থ প্রবৃদ্ধ $\angle ACB$

= 2 (বৃত্তন্থ ZAEB) অর্থাৎ, প্রবৃদ্ধ ZACB = 2 ZAEB

[বৃত্তের একই চাপের উপর দন্ডায়মান কেন্দ্রন্থ কোণ বৃত্তন্থ কোণের দ্বিগুণ]

কিন্তু, ∠ACB + প্রবৃদ্ধ ∠ACB = 360°

বা, $\angle ADB + \angle AEB = 2 \times 90^{\circ}$

∴ ∠ADB + ∠AEB = 2 সমকোণ । (প্রমাণিত)

চিত্রে বৃত্তের কেন্দ্র O, PQ ও MN জ্যায়ের মধ্যবিন্দু A, B.

[দিনাজপুর বোর্ড ২০২২]

- (ক) 10 সে.মি. ব্যাসবিশিষ্ট বৃত্তের ক্ষেত্রফল নির্ণয় কর।
- (খ) OA ⊥ PQ, OB ⊥ MN এবং OA = OB হলে প্রমাণ কর যে, PQ
 = MN.
- (গ) বৃত্তের বহিঃছ D বিন্দু হতে Q ও N বিন্দুতে দুইটি স্পর্শক টানা হলো, প্রমাণ কর যে, DQ=DN.

৪৯ নং প্রশ্নের উত্তর

- (ক) এখানে, বৃত্তের ব্যাস, 2r = 10 সে.মি.
 - ∴ বৃত্তের ব্যাসার্ধ, $r = \frac{10}{2} = 5$ সে.মি.

বৃত্তটির ক্ষেত্রফল $=\pi r^2$

 $= 3.1416 \times 5^2$ বর্গ সে.মি.

 $= 3.1416 \times 25$ বর্গ সে.মি.

= 78.54 বর্গ সে.মি. (প্রায়)।

নির্ণেয় বৃত্তের ক্ষেত্রফল 78.54 বর্গ সে.মি. (প্রায়)।

(খ) এখানে, O কেন্দ্রবিশিষ্ট বৃত্তে PQ ও MN দুইটি জ্যা। $OA \perp PQ$, $OB \perp MN$ এবং OA = OB. প্রমাণ করতে হবে যে, PQ = MN.

অঙ্কন : O, Q ও O, N যোগ করি।

প্রমাণ :

ধাপ-১ : যেহেতু, <mark>O</mark>A ⊥ PQ এবং OB ⊥ MN

∴ ∠OAQ = ∠OBN = এক সমকোণ।

অর্থাৎ, Δ OAQ এবং Δ OBN উভয়ই সমকোণী ত্রিভুজ।

ধাপ-২ : ΔOAQ ও ΔOBN সমকোণী ত্রিভূজদ্বয়ের মধ্যে,

অতিভূজ OQ = অতিভূজ ON [উভয়ে একটি বৃত্তের ব্যাসার্ধ]

এবং OA = OB [দেওয়া আছে]

 $\therefore \Delta OAQ \cong \Delta OBN$

[সমকোণী ত্রিভুজের অতিভুজ-বাহু সর্বসমতা উপপাদ্য]

 \therefore AO = BN

ধাপ-৩ : $AQ = \frac{1}{2} PQ$ এবং $BN = \frac{1}{2} MN$ [\because বৃত্তের কেন্দ্র হতে ব্যাস ভিন্ন থেকোনো জ্যা এর উপর অঙ্কিত লম্ব ঐ জ্যাকে সমদ্বিখণ্ডিত করে]

ধাপ-8 : সুতরাং ,
$$\frac{1}{2}$$
 PQ = $\frac{1}{2}$ MN

- (গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তের বহিঃছ বিন্দু D হতে Q ও N বিন্দুতে DQ ও DN দুইটি স্পর্শক। প্রমাণ করতে হবে যে, DQ = DN.

অঙ্কন : O, D; O, Q এবং O, N যোগ করি।

Prepared by: ISRAFIL SHARDER AVEEK

প্রমাণ :

ধাপ-১ : যেহেতু DQ স্পর্শক এবং OQ স্পর্শবিন্দুগামী ব্যাসার্ধ। সেহেতু DQ ⊥ OO। [∵ স্পর্শক স্পর্শবিন্দুগামী ব্যাসার্ধের উপর লম]

∴ ∠OOD = 1 সমকোণ।

অনুরূপভাবে, ∠OND = 1 সমকোণ

ightarrow Δ OQD এবং Δ OND উভয়ই সমকোণী ত্রিভুজ।

ধাপ-২ : $\triangle OQD$ ও $\triangle OND$ সমকোণী ত্রিভূজে,

অতিভূজ OD = অতিভূজ OD [সাধারণ বাহু]

OQ = ON [একই বৃত্তের ব্যাসার্ধ]

Arr Arr

সুতরাং, DQ = DN. (প্রমাণিত)

- ৫০. (i) O কেন্দ্রবিশিষ্ট বৃত্তের PQ এবং RS দুইটি জ্যা। OM ⊥ PQ এবং ON । RS
 - (ii) C কেন্দ্রবিশিষ্ট বৃত্তের EF এবং GH দুইটি জ্যা বৃত্তের অভ্যন্তরে T বিন্দুতে ছেদ করেছে।

[ময়মনসিংহ বোর্ড ২০২২]

- (ক) 4 সে.মি. ব্যাসার্ধবিশিষ্ট একটি বৃত্তের ক্ষেত্রফল নির্ণয় কর।
- (খ) যদি PQ = RS হয় তবে প্রমাণ কর যে, OM = ON.
- (গ) প্রমাণ কর : $\angle ECH + \angle FCG = 2 \angle ETH$.

৮০ নং প্রশ্নের উত্তর

- (Φ) এখানে, বৃত্তের ব্যাসার্ধ, r = 4 সে.মি.
 - \therefore বৃত্তের ক্ষেত্রফল = $\pi r^2 = 3.1416 \times 4^2$ বর্গ সে.মি. = 3.1416×16 বর্গ সে.মি. = 50.2656 বর্গ সে.মি. (প্রায়)

নির্ণেয় ক্ষেত্রফল 50.2656 বর্গ সে.মি. (প্রায়)।

(খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQ ও RS দুইটি সমান জ্যা। $OM \perp PQ$ এবং $ON \perp RS$. প্রমাণ করতে হবে যে, OM = ON.

অঙ্কন : O, P এবং O, R যোগ করি।

প্রমাণ :

ধাপ-১ : OM \perp PQ এবং ঙঘ জঝ.

সুতরাং PM = QM এবং RN = SN

[∵ বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো জ্যা-এর উপর অঙ্কিত লম্ব ঐ জ্যাকে সমদ্বিখভিত করে]

$$Arr$$
 PM = $\frac{1}{2}$ PQ এবং RN = $\frac{1}{2}$ RS

ধাপ-২ : কিন্তু PQ = RS [ধরে নেওয়া)

 \therefore PM = RN

ধাপ-৩ : এখন , Δ OPM এবং Δ ORN সমকোণী ত্রিভুজদ্বয়ের মধ্যে অতিভুজ OP = অতিভুজ OR [উভয়ে একই বুত্তের ব্যাসার্ধ]

এবং PM = RN [ধাপ (২) হতে]

 $\therefore \quad \triangle \text{ OPM} \cong \triangle \text{ORN}$

[সমকোণী ত্রিভুজের অতিভূজ-বাহু সর্বসমতা উপপাদ্য]

(গ) মনে করি, C কেন্দ্রবিশিষ্ট বৃত্তের EF এবং GH দুইটি জ্যা বৃত্তের অভ্যন্তরে T বিন্দুতে ছেদ করেছে। C, E, C, F, C, G ও C, H যোগ করি। প্রমাণ করতে হবে যে, $\angle ECH + \angle FCG = 2$ $\angle ETH$.

অঙ্কন : G, E যোগ করি।

প্রমাণ -

ধাপ-১ : EH চাপের উপর দণ্ডায়মান কেন্দ্রস্থ ∠ECH এবং বৃত্তস্থ ∠EGH.

∴ ∠ECH = 2∠EGH

ি বৃত্তের একই চাপের উপর দভায়মান কেন্দ্রন্থ কোণ বৃত্তন্থ কোণের দিগুণ] ধাপ-২ : GF চাপের উপর দভায়মান কেন্দ্রন্থ ∠FCG এবং বৃত্তন্থ ∠FEG.

∴ ∠FCG = 2∠FEG [একই কারণে]

ধাপ-৩ : ধাপ (১) ও (২) হতে,

$$\angle$$
ECH + FCG = $2\angle$ EGH + $2\angle$ FEG

$$= 2(\angle EGT + \angle FEG)$$

 $= 2(\angle EGT + \angle TEG)$

[∵ ∠EGH ∠ EGT এবং ∠FEG = ∠TEG]

ধাপ-8 : Δ ETG-এ, বহিঃস্থ \angle ETH অন্তঃস্থ (\angle EGT + \angle TEG)

[: ত্রিভুজের বহিঃস্থ কোণ অন্তঃস্থ বিপরীত কোণদ্বয়ের সমষ্টি সমান]

ধাপ-৫ ধাপ (৩) ও (৪) হতে পাই,

∠ECH + ∠FCG = 2∠ETH. (প্রমাণিত)

- ৫১. (i) M কেন্দ্রবিশিষ্ট বৃত্তে ABCD একটি বৃত্তস্থ চতুর্ভুজ।
 - (ii) O কেন্দ্রবিশিষ্ট বৃত্তের বহিঃস্থ বিন্দু P হতে PE এবং PF দুইটি স্পর্শক। [ময়মনসিংহ বোর্ড ২০২২]

(ক) প্রমাণ কর যে, অর্ধবৃত্তয় কোণ এক সমকোণ।

- (খ) প্রমাণ কর যে, $\angle BAD + \angle BCD = দুই সমকোণ।$
- (গ) প্রমাণ কর যে, OP রেখাংশ স্পর্শ জ্যা EF এর সমদ্বিখন্ডক।

৫১ নং প্রশ্নের উত্তর

 (क) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে AB একটি ব্যাস এবং ∠ACB একটি অর্ধবৃত্তয়্থ কোণ। প্রমাণ করতে হবে যে, ∠ACB = এক সমকোণ।

অঙ্কন : AB এর যে পাশে C বিন্দু অবছিত তার বিপরীত পাশে বৃত্তের উপর একটি বিন্দু D নিই।

প্রমাণ :

ধাপ-১ : ADB চাপের উপর দণ্ডায়মান

বৃত্তম্ $\angle ACB = \frac{1}{2}$ (কেন্দ্রন্থ সরলকোণ $\angle AOB$)

- ∴ ∠ACB = $\frac{1}{2}$ (দুই সমকোণ)
- ∴ ∠ACB এক সমকোণ। (প্রমাণিত)

৮ম অধ্যায

ζ'

Prepared by: ISRAFIL SHARDER AVEEK

(খ) মনে করি, M কেন্দ্রবিশিষ্ট বৃত্তে ABCD একটি বৃত্তন্থ চতুর্ভুজ। প্রমাণ করতে হবে যে, $\angle BAD + \angle BCD =$ দুই সমকোণ।

অঙ্কন : B, M এবং D, M যোগ করি।

প্রমাণ

ধাপ-১ : একই চাপ BCD এর উপর দণ্ডায়মান কেন্দ্রন্থ $\angle BMD$ এবং বৃত্তন্থ $\angle BAD$.

 $[\because]$ বৃত্তের একই চাপের উপর দন্ডায়মান কেন্দ্রন্থ কোণ বৃত্তন্থ কোণের দ্বিগুণ] ধাপ-২ : একই চাপ BAD এর উপর দন্ডায়মান কেন্দ্রন্থ প্রবৃদ্ধ $\angle BMD$ এবং বৃত্তন্থ $\angle BCD$.

∴ প্রবৃদ্ধ ∠BMD = 2∠BCD [একই কারণে]

ধাপ-৩ : ধাপ (১) ও (২) থেকে,

 $\angle BMD +$ প্রদ্ধ $\angle BMD = 2\angle BAD + 2\angle BCD$ [যোগ করে]

[∵ ∠BMD + প্রবৃদ্ধ ∠BMD = 360°]

বা,
$$∠BAD + ∠BCD = 180^\circ$$

$$\therefore$$
 ∠BAD + ∠BCD = দুই সমকোণ । (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তের বহিঃস্থ বিন্দু P হতে PE এবং PF দুইটি স্পর্শক। E, F এবং O, P যোগ করি। OP রেখাংশ EF স্পর্শ জ্যাকে A বিন্দুতে ছেদ করে।

প্রমাণ করতে হবে যে, OP রেখাংশ স্পর্শ জ্যা EF এর সমদ্বিখণ্ডক।

অঙ্কন : O, E এবং O, F যোগ করি।

প্রমাণ

ধাপ-১ : ΔOEP এবং ΔOFP এর মধ্যে

OE = OF [একই বৃত্তের ব্যাসার্ধ]

PE = PF

[বৃত্তের বহিঃস্থ কোনো বিন্দু থেকে বৃত্তে অঙ্কিত স্পর্শকদ্বয় পরস্পর সমান] এবং OP = OP [সাধারণ বাহু]

 \therefore Δ OEP \cong Δ OFP [বাহু-বাহু-বাহু সর্বসমতা উপপাদ্য]

 \therefore $\angle EOP = \angle FOP$

অর্থাৎ ∠EOA = ∠FOA

ধাপ-২ : \triangle AOE ও \triangle AOF-এ,

OE = OF [একই বৃত্তের ব্যাসার্ধ]

OA = OA [সাধারণ বাহু]

এবং অন্তর্ভুক্ত $\angle EOA =$ অন্তর্ভুক্ত $\angle FOA$ [ধাপ (১) হতে]

 \therefore \triangle AOE \cong \triangle AOF [বাহু-কোণ-বাহু সর্বসমতা উপপাদ্য]

 \therefore AE = AF

∴ OP, EF কে সমদ্বিখণ্ডিত করে।
অতএব, OP রেখাংশ স্পর্শ জ্যা EF এর সমদ্বিখণ্ডক। (প্রমাণিত)

৫২. O কেন্দ্রবিশিষ্ট একটি বৃত্তে PQ ও RS দুইটি সমান জ্যা।

[ঢাকা বোর্ড ২০২০]

- (ক) উদ্দীপকের বৃত্তে $\angle POR = 120^\circ$ হলে, $\frac{1}{2} \angle PSR$ এর মান নির্ণয় কর।
- (খ) বৃত্তের কেন্দ্র O থেকে OE ও OF যথাক্রমে PQ ও RS এর উপর লম্ব হলে প্রমাণ কর যে, OE = OF.
- (গ) PQ ও RS জ্যাদ্বয় বৃত্তের অভ্যন্তরন্থ M বিন্দুতে লম্বভাবে ছেদ করলে, প্রমাণ কর যে, $\angle POR + \angle QOS = 180^\circ$.

৫২ নং প্রশ্নের উত্তর

(ক) দেওয়া আছে, O কেন্দ্রবিশিষ্ট বৃত্তে PQ ও RS দুইটি সমান জ্যা। PR চাপের উপর অঙ্কিত কেন্দ্রস্থ কোণ ∠POR এবং বৃত্তস্থ কোণ ∠PSR.

আমরা জানি, একই চাপের উপর অঙ্কিত কেন্দ্রন্থ কোণ, বৃত্তন্থ কোণের দিণ্ডণ। অর্থাৎ, $\angle POR = 2\angle PSR$

বা,
$$\angle PSR = \frac{120^{\circ}}{2} \left[\because \angle POR = 120^{\circ} \right]$$

বা,
$$\frac{1}{2} \angle PSR = \frac{1}{2} \times 60^{\circ}$$

$$\therefore \frac{1}{2} PSR = 30^{\circ}$$

নির্ণেয় মান 30°.

(খ) মনে করি, O কেন্দ্রবিশিষ্ট একটি বৃত্তে PQ ও RS দুইটি সমান জ্যা $OE \perp PQ$ এবং $OF \perp RS$ । প্রমাণ করতে হবে যে, OE = OF ।

অঙ্কন : O, P এবং O, R যোগ করি।

প্রমাণ : ধাপ ১ : যেহেতু OE \perp PQ এবং OF \perp RS

∴ PE ⊥ QE, RF = SF [কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো জ্যা'র উপর অঙ্কিত লম্ব জ্যা'টিকে সমদ্বিখণ্ডিত করে]

$$\therefore PE = \frac{1}{2}PQ$$

এবং
$$RF = \frac{1}{2}RS$$

ধাপ ২ : PQ = RS [প্রদত্ত]

$$\therefore$$
 PE = RF

ধাপ ৩ : Δ OPE ও Δ ORF সমকোণী ত্রিভুজদ্বয়ে, অতিভুজ OP = অতিভুজ OR [একই বৃত্তের ব্যাসার্ধ]

$$PE = RF$$
 [ধাপ (২) হতে]

 $\therefore \quad \triangle \text{ OPE} \cong \triangle \text{ ORF}$

[সমকোণী ত্রিভূজের অতিভূজ-বাহু সর্বসমতা উপপাদ্য]

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

(গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তের PQ ও RS জ্যা দুইটি বৃত্তের অভ্যন্তরে অবস্থিত M বিন্দুতে লম্বভাবে ছেদ করেছে। প্রমাণ করতে হবে যে, $\angle POR + \angle QOS = 180^\circ$.

অঙ্কন : P, S যোগ করি।

প্রমাণ : ধাপ ১ : একই চাপ PR-এর উপর দন্ডায়মান কেন্দ্রস্থ

∠POR এবং বৃত্তস্থ ∠PSR
∴ ∠POR = 2 ∠PSR

[একই চাপের উপর কেন্দ্রস্থ কোণ বৃত্তস্থ কোণের দিণ্ডণ]

ধাপ ২ : তদ্রূপ $\angle QOS = 2 \angle QPS$

ধাপ ৩ : \therefore $\angle POR + \angle QOS = 2 (\angle PSR + \angle QPS) [(১) ও (২) থেকে]$

কিন্তু Δ PMS-এ, ∠PMS = 90°

∠SPM + ∠PSM = 90° [কল্পনা]

ধাপ $8: \angle POR + \angle QOS = 2 \times 90^{\circ}$ [(৩) থেকে]

 \therefore $\angle POR + \angle OOS = 180^{\circ}$

অতএব, $\angle POR + \angle QOS = 180^{\circ}$. (প্রমাণিত)

- ৫৩. a=5 সে. মি., b=4 সে. মি. দুইটি রেখাংশ এবং $\angle x=45^\circ$ একটি কোণ। [ঢাকা বোর্ড ২০২০]
 - (ক) এমন একটি সমদ্বিবাহু ত্রিভুজ আঁক যার ভূমির দৈর্ঘ্য b এবং সমান সমান বাহুর দৈর্ঘ্য a এর সমান। (অঙ্কনের চিহ্ন আবশ্যক)
 - (খ) এমন একটি ত্রিভুজ আঁক যার ভূমির দৈর্ঘ্য a, ভূমি সংলগ্ন কোণ $\angle x$ এবং অপর দুই বাহুর সমষ্টি b এর সমান। (অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক)
 - (গ) $\frac{b}{2}$ ব্যাসার্ধবিশিষ্ট একটি বৃত্ত এঁকে এতে এমন দুইটি স্পর্শক আঁক যাদের অন্তর্ভুক্ত কোণ 90° হয়। (অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক)

৫৩ নং প্রশ্নের উত্তর

(ক)

চিত্রে, ABC একটি সমদ্বিবাহু ত্রিভুজ যার ভূমির দৈর্ঘ্য AC=b=8 সে.মি. এবং সমান সমান বাহুর দৈর্ঘ্য AB=BC=a=5 সে.মি. ।

(খ) এখানে, কোনো ত্রিভুজের ভূমি a=5 সে. মি., অপর দুই বাহুর সমষ্টি b=8 সে. মি. এবং ভূমিসংলগ্ন একটি কোণ $\angle x=45^\circ$ । ত্রিভুজটি আঁকতে হবে।

অঙ্কন :

- যেকোনো একটি রশ্মি BE থেকে ভূমি a এর সমান করে BC রেখাংশ কেটে, নিই। BC রেখাংশের B বিন্দুতে ∠x এর সমান ∠CBF আঁকি।
- ২. BF রশ্মি থেকে b এর সমান BD অংশ কাটি।
- ৩. C, D যোগ করি। C বিন্দুতে CD রেখাংশের যে পাশে B বিন্দু আছে সেই পাশে ∠BDC এর সমান ∠DCG আঁকি।
- 8. CG রশাি BD কে A বিন্দুতে ছেদ করে। তাহলে, △ABC-ই উদ্দিষ্ট ত্রিভূজ।
- (গ) এখানে, b = 4 সে.মি.

$$\therefore \frac{b}{2} = \frac{8}{2} = 4$$
 সে.মি.

মনে করি, $\frac{b}{2}=4$ সে.মি. ব্যাসার্ধবিশিষ্ট ABC একটি বৃত্ত যার কেন্দ্র O , উক্ত বৃত্তে এমন দুইটি স্পর্শক আঁকতে হবে যাদের অন্তর্ভক্ত কোণ 90° ।

অঞ্চন :

- OA যেকোনো ব্যাসার্ধ নিই এবং ∠AOB = 90° আঁকি। OB রশ্মি বৃত্তিকৈ B বিন্দুতে ছেদ করেছে।
- ২. এখন, OA এর A বিন্দুতে AP এবং OB এর B বিন্দুতে BP লম্ব আঁকি। AP ও BP লম্বর পরস্পারকে P বিন্দুতে ছেদ করেছে। তাহলে AP ও BP-ই উদ্দীষ্ট স্পার্শকদ্বয় যাদের অন্তর্ভুক্ত কোণ 90° .
- ৫৪. (i) O কেন্দ্রবিশিষ্ট বৃত্তের PQ ও RT দুটি জ্যা। OA ⊥ PQ ও OB ⊥ RT.
 - (ii) C কেন্দ্রবিশিষ্ট বৃত্তের বহিঃছ বিন্দু D এবং DE ও DF উহার দুইটি স্পর্শক।

[রাজশাহী বোর্ড ২০২০]

- (ক) Δ PQR <mark>এ</mark> ∠Q= 90° এবং QT ⊥ PR হলে, দেখাও যে, Δ PQT ও Δ PQR সদৃশ।
- (খ) প্রমাণ কর যে, DE = DF.
- (গ) PQ > RT হলে, প্রমাণ কর যে, OA < OB.

৫৪ নং প্রশ্নের উত্তর

(ক) মনে করি, Δ PQR-এ $\angle Q=90^\circ$ এবং QT \perp PR । প্রমাণ করতে হবে যে, Δ PQT ও Δ PQR সদৃশ ।

প্রমাণ :

ধাপ ১ : যেহেতু QT ⊥ PR

 \therefore $\angle PTQ = 1$ সমকোণ

ধাপ ২ : Δ PQR ও Δ PQT-এ,

 $\angle PQR = \angle PTQ$ [উভয়েই সমকোণ]

∠RPQ = ∠TPQ [সাধারণ কোণ]

এবং অবশিষ্ট ∠PRQ = অবশিষ্ট ∠PQT

- ∴ Δ PQT ও ΔPQR সদৃশ। (দেখানো হলো)
- (খ) মনে করি, C কেন্দ্রবিশিষ্ট একটি বৃত্ত যার বহিঃছ বিন্দু D থেকে DE ও DF দুইটি স্পর্শক। প্রমাণ করতে হবে যে, DE = DF.

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

অঙ্কন : C, D ও C, E এবং C, F যোগ করি। প্রমাণ : ধাপ $: DE \perp CE$ ও $DF \perp CF$

[স্পর্শক, স্পর্শবিন্দুগামী ব্যাসার্ধের উপর লম্ব]

 \therefore $\angle DEC = \angle DFC = 1$ সমকোণ

ধাপ ২ : Δ DEC ও Δ DFC সমকোণী ত্রিভূজদ্বয়ে,

CE = CF

[একই বৃত্তের ব্যাসার্ধ]

অতিভুজ, CD = অতিভুজ CD [সাধারণ বাহু]

 \therefore Δ DEC \cong Δ DFC [সমকোণী ত্রিভূজের অতিভূজ বাহু সর্বসমতা]

∴ DE = DF. (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQ ও RT দট্টি জ্যা।

 $OA \perp PQ$, $OB \perp RT$ এবং PQ > RT হলে , প্রমাণ করতে হবে যে , OA < OB .

অঙ্কন : O, P ও O, R যোগ করি।

প্রমাণ : ধাপ 🕽 : OA 👃 PQ, OB 🗘 RT

 ${
m PA}=rac{1}{2}~{
m PQ},~{
m RB}=oldsymbol{\perp}~{
m RT}$ [কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো জ্যা'র উপর

অঙ্কিত লম্ব জ্যা'টিকে সমদ্বিখণ্ডিত করে]

ধাপ ২ : Δ PAO সমকোণী ত্রিভূজে,

$$\mathrm{OP}^2 = \mathrm{AP}^2 + \mathrm{OA}^2$$
 [পিথাগোরাসের উপপাদ্য]

বা, $AP^2 = OP^2 - OA^2$

আবার. Δ ROB সমকোণী ত্রিভূজে.

 $OR^2 = OB^2 + RB^2$ [পিথাগোরাসের উপপাদ্য]

বা, $RB^2 = OR^2 - OB^2$

ধাপ ৩ : PQ > RT

বা,
$$\frac{1}{2}$$
 PQ > $\frac{1}{2}$ RT

বা, PA > RB [ধাপ (১) হতে]

ৰা, $PA^2 > RB^2$

ৰা, $OP^2 - OA^2 > OR^2 - OB^2$ [ধাপ (২) হতে]

বা, $-OA^2-OB^2$ [OP = OR একই বৃত্তের ব্যাসার্থ বলে $OP^2=OR^2$]

ৰা, $OA^2 < OB^2$

∴ OA <OB. (প্রমাণিত)</p>

- ৫৫. (i) XYZ একটি ত্রিভুজ যার $XD = \frac{1}{2}XY$ এবং $XE = \frac{1}{2}XZ$.
 - (ii) O কেন্দ্রবিশিষ্ট বৃত্তে PQRS চতুর্ভুজটি অন্তর্লিখিত। PR এবং QS কর্ণদ্বয় পরস্পর E বিন্দুতে ছেদ করে।

যিশোর বোর্ড ২০২০

- (ক) কোনো বৃত্তের ব্যাসার্ধ 4 সে. মি. হলে, বৃত্তের পরিধি ও ব্যাসের মধ্যে পার্থক্য নির্ণয় কর।
- (খ) প্রমাণ কর যে, $DE \parallel YZ$ এবং $DE = \frac{1}{2} YZ$.

(গ) প্রমাণ কর যে, $\angle POQ + \angle ROS = 2 \angle PEQ$.

৫৫ নং প্রশ্নের উত্তর

(5) দেওয়া আছে, বুতের ব্যাসার্ধ = 4 সে.মি.

 \therefore বুত্তের ব্যাস = (2×4) সে.মি. = 8 সে.মি.

বৃত্তের ব্যাসার্ধ r হলে,

বৃত্তের পরিধি $=2\pi r$ একক $=2\pi \times 4$ সে.মি. $=8\pi$ সে.মি.

$$= 8 \times 3.1416$$
 সে.মি. $= 25.13$ সে.মি. (প্রায়)

 \therefore বৃত্তের পরিধি ও ব্যাসের পার্থক্য = (25.13 - 8) সে.মি.

নির্ণেয় বৃত্তের পরিধি ও ব্যাসের মধ্যে পার্থক্য 17.13 সে.মি. (প্রায়)।

(খ) এখানে, XYZ ত্রিভুজের $XD=\frac{1}{2}$ XY এবং $XE=\frac{1}{2}$ XZ অর্থাৎ, XYZ ত্রিভুজের D এবং E যথাক্রমে XY এবং XZ এর মধ্যবিন্দু।

D, E যোগ করি। প্রমাণ করতে হবে যে, $DE \parallel YZ$ এবং $DE = \frac{1}{2} YZ$.

অঙ্কন : DE কে F পর্যন্ত বর্ধিত করি যেন EF=DE হয়। $Z,\,F$ যোগ করি। প্রমাণ :

ধাপ $\mathbf{S}:\Delta$ XDE ও Δ ZEF এর মধ্যে

XE = EZ [XZ এর মধ্যবিন্দু E]

DE = EF [অঙ্কনানুসারে]

Δ XED = ∠ZEF [বিপ্রতীপ কোণ]

Δ XDE ≅ Δ ZEF [বাহু-কোণ-বাহু উপপাদ্য]

 \therefore XD = ZF

∠XDE = ∠EFZ এবং ∠DXE = ∠EZF [একান্তর কোণ]

আবার, YD = XD = ZF এবং YD || ZF

সুতরাং YDFZ একটি সমান্তরিক

∴ DF || YZ বা DE || YZ

ধাপ ২ : আবার, DF = YZ

বা, DE + DE = YZ [ধাপ (১) থেকে]

বা, 2DE = YZ

$$\therefore$$
 DE = $\frac{1}{2}$ YZ

সুতরাং DE \parallel YZ এবং DE = YZ. (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQRS চতুর্ভুজটি অন্তর্লিখিত। PQRS চতুর্ভুজের PR ও QS কর্ণদ্বয় পরস্পর B বিন্দৃতে ছেদ করেছে। দেখাতে হবে যে, $\angle POQ + \angle ROS = 2\angle PEQ$.

অঙ্কন : O, P; O, Q; O, R এবং O, S যোগ করি।

প্রমাণ :

ধাপ 🕽 : PQ চাপের উপর অবস্থিত

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

 $\angle POO = 2\angle PSO$ [কেন্দ্রন্থ কোণ বৃত্তন্থ কোণের দিগুণ]

ধাপ ২ : RS চাপের উপর অবস্থিত

 $\angle ROS = 2\angle SPR$ (একই কারণে)

ধাপ ৩ : ∠POO + ∠ROS

 $= 2(\angle PSQ + \angle SPR)$ [ধাপ (১) ও (২) থেকে]

 $= 2(\angle PSE + \angle SPE)$

ধাপ 8 : Δ SPE এর

বহিঃস্থ $\angle PEQ =$ অন্তঃস্থ ($\angle PSE + \angle SPE$)

Arr $Arr POQ + \angle ROS = 2 \angle PEQ$. [ধাপ (৩) থেকে] (প্রমাণিত)

৫৬. O কেন্দ্রবিশিষ্ট BCD বৃত্তের বহিঃস্থ বিন্দু A থেকে বৃত্তে AB ও AC দুটি স্পর্শক।

[কুমিল্লা বোর্ড ২০২০]

- (ক) OB = 5 সে.মি. হলে, BCD বুত্তের পরিধি নির্ণয় কর।
- (খ) প্রমাণ কর যে, AB = AC.
- (গ) প্রমাণ কর যে, AO ⊥ BC.

৫৬ নং প্রশ্নের উত্তর

(ক) আমরা জানি,

বৃত্তের পরিধি = $2\pi r$ [যেখানে বৃত্তের ব্যাসার্ধ r] BCD বৃত্তে বৃত্তের ব্যাসার্ধ, OB = 5 সে.মি.

 \therefore বৃত্তের পরিধি = $2\pi \times 5$ সে.মি.

 $=10\pi$ সে.মি.

= 10 × 3.1416 সে.মি.

= 31.416 সে.মি. (প্রায়)

নির্ণেয় বৃত্তের পরিধি 31.416 সে.মি. (প্রায়)।

(খ) মনে করি, O কেন্দ্রবিশিষ্ট একটি BCD বৃত্তে বহিঃছ A বিন্দু থেকে AB ও AC দুইটি D স্পর্শক।

প্রমাণ করতে হবে যে, AB = AC.

অঙ্কন : O, B; O, C এবং A, O যোগ করি।

প্রমাণ :

ধাপ 🕽 : যেহেতু AB স্পর্শক এবং OB স্পর্শবিন্দুগামী ব্যাসার্ধ

- ∴ AB ও OB [∵ স্পর্শক, স্পর্শবিন্দুগামী ব্যাসার্ধের উপর লম্ব]
- \therefore $\angle ABO = 1$ সমকোণ

অনুরূপভাবে, ∠ACO = 1 সমকোণ

ধাপ ২ : Δ AOB ও Δ AOC সমকোণী ত্রিভুজদ্বয়ে অতিভুজ AO = অতিভুজ AO [সাধারণ বাহু]

OB = OC [একই বৃত্তের ব্যাসার্ধ]

- \therefore \triangle AOB \cong \triangle AOC [সমকোণী ত্রিভুজের অতিভুজ বাহু সর্বসমতা]

(গ) মনে করি, O কেন্দ্রবিশিষ্ট BCD বৃত্তে বহিঃন্থ A বিন্দু থেকে AB ও AC দুইটি স্পর্শক । B, C যোগ করা হলো। প্রমাণ করতে হবে যে, $AO \perp BC$.

অন্ধন : A, O যোগ করি যা BC কে D বিন্দুতে ছেদ করে। O, B ও O, C যোগ করি।

প্রমাণ:

ধাপ $\mathbf{S}:\Delta \ \mathrm{OBC}$ -এ $\mathrm{OB}=\mathrm{OC}$ [একই বৃত্তের ব্যাসার্ধ]

∠OCB = ∠OBC [সমান সমান বাহুর বিপরীত কোণ সমান]

ধাপ ২ : Δ OBD ও Δ OCD-এ

OB = OC [একই বৃত্তের ব্যাসার্ধ]

OD = OD [সাধারণ বাহু]

অন্তর্ভুক্ত ∠OBD = অন্তর্ভুক্ত ∠OCD [ধাপ (১)]

- Arr Arr OBD Arr Arr OCD [বাহু-কোণ-বাহু উপপাদ্য]
- \therefore $\angle ODB = \angle ODC$

কিন্তু এরা রৈখিক যুগল কোণ।

- \therefore $\angle ODB = \angle ODC = 1$ সমকোণ
- \therefore OD \perp BC

অতএব, AO \perp BC. [OA, OD এরই বর্ধিতাংশ]

- ∴ AO ⊥ BC. (প্রমাণিত)
- 57. ABCD একটি চতুর্ভুজ যার ∠ABC + ∠ADC = 180°.

[চট্টগ্রাম বোর্ড ২০২০]

- (ক) O কেন্দ্রবিশিষ্ট বৃত্তের বহিঃস্থ বিন্দু P হতে PA এবং PB দুইটি স্পর্শক। $\angle PAB = 35^{\circ}$ হলে, $\angle AOB$ এর মান কত?
- (খ) প্রমাণ কর যে, A, B, C, D বিন্দু চারটি সমবৃত্ত।
- (গ) AC রেখা $\angle BAD$ এর সমদ্বিখন্ডক হলে, প্রমাণ কর যে, BC = CD.

৫৭ নং প্রশ্নের উত্তর

(क) মনে করি, O কেন্দ্রবিশিষ্ট একটি বৃত্তে বহিঃছ P রিন্দু থেকে PA ও PB দুটি স্পর্শক । $\angle PAB = 35^{\circ}$.

এখানে, ∠PAOB একটি চতুর্ভুজ। কিন্তু PA ⊥ OA এবং PB ⊥ OB স্পর্শক,

 $\therefore \angle PAO = \angle PBO = 90^{\circ}$

আবার, $\angle OAB + \angle PAB = 90^{\circ}$

বা, ∠OAB + 35° = 90°

বা, ∠OAB = 90° – 35°

 $\therefore \angle OAB = 55^{\circ}$

কিন্তু OA = OB [একই বৃত্তের ব্যাসার্ধ]

 \therefore $\angle OBA = \angle OAB = 55^{\circ}$

[সমান সমান বাহুর বিপরীত কোণ সমান]

 \triangle AOB-4, \angle AOB + \angle OBA + \angle OAB = 180°

[ত্রিভুজের তিন কোণের সমষ্টি 180°]

বা, ∠AOB + 110° = 180°

www.schoolmathematics.com.bd

গণিত ৮ম অধ্যায় বৃত্

Prepared by: ISRAFIL SHARDER AVEEK

বা, ∠ $AOB = 180^{\circ} - 110^{\circ}$

 \therefore $\angle AOB = 70^{\circ}$

নির্ণেয় ∠AOB এর মান 70°.

(খ) এখানে, ABCD চতুর্ভুজে $\angle ABC + \angle ADC = 180^\circ$ প্রমাণ করতে হবে যে, A, B, C, D বিন্দু চারটি সমবৃত্ত।

অঙ্কন : যেহেতু A, B, C বিন্দু তিনটি সমরেখ নয়।

সুতরাং, বিন্দু তিনটি দিয়ে যায় এরপ একটি ও কেবল একটি বৃত্ত আছে। মনে করি, বৃত্তটি AD রেখাংশকে E বিন্দুতে ছেদ করে। C, E যোগ করি।

প্রমাণ :

ধাপ 🕽 : অঙ্কন অনুসারে ABCE বৃত্তস্থ চতুর্ভুজ।

সুতরাং $\angle ABC + \angle AEC = 180^{\circ}$

 \because বৃত্তে অন্তর্লিখিত চতুর্ভুজের দুইটি বিপরীত কোণের সমষ্টি দুই সমকোণ] ধাপ ২ : কিন্তু $\angle ABC + \angle ADC = 180^\circ$ [দেওয়া আছে]

 $\therefore \angle AEC = \angle ADC$

কিন্তু তা অসম্ভব। কারণ অ<mark>ঈ</mark>উউ এর বহিঃন্থ $\angle AEC >$ বিপরীত অল্পন্থ $\angle ADC$ সুতরাং E এবং D বিন্দুদ্বয় ভিন্ন হতে পারে না। E বিন্দু অবশ্যই D বিন্দুর সাথে মিলে যাবে।

অতএব A, B, C, D বিন্দু চারটি সমবৃত্ত। (প্রমাণিত)

(গ) মনে করি, ABCD চতুর্ভুজের বিপরীত কোণদ্বয় পরস্পর সম্পূরক অর্থাৎ ABCD একটি বৃত্তে অন্তর্লিখিত চতুর্ভুজ। AC রেখা, ∠BAD-এর সমদ্বিখণ্ডক। প্রমাণ করতে হবে যে, BC = CD.

প্রমাণ :

ধাপ $oldsymbol{>}: AC$ রেখা $\angle BAD$ এর সমদ্বিখন্ডক হওয়ায় $\angle CAD = \angle CAB$. CD চাপের উপর দণ্ডায়মান বৃত্তস্থ $\angle CAB$, BC চাপের উপর দণ্ডায়মান বৃত্তস্থ $\angle CAB$ উভয়ই সমান হওয়ায় চাপ CD = চাপ BC

[চাপদ্বয় সমান হলে চাপের উপর অবস্থিত জ্যাণ্ডলো পরস্পর সমান]

BC = CD. (প্রমাণিত)

৫৮.

[সিলেট বোর্ড ২০২০]

- (ক) বৃত্তের পরিধি 4π হলে বৃত্তের ক্ষেত্রফল নির্ণয় কর।
- (খ) প্রমাণ কর যে, $\angle QPS + \angle QRS = 180^\circ$.
- (গ) উদ্দীপকের চিত্রে যদি $\angle QPR + \angle RPS = 90^\circ$ হয়, তবে প্রমাণ কর যে, O, O এবং S একই সরলরেখায় অবস্থিত।

৫৮ নং প্রশ্নের উত্তর

(ক) আমরা জানি,

বৃত্তের পরিধি $=2\pi r$ একক [যেখানে, বৃত্তের ব্যাসার্ধ r]

বৃত্তের ক্ষেত্রফল $=\pi r^2$ বর্গএকক

প্রশ্নতে, $2\pi r=8\pi$

$$\overline{4}, \quad r = \frac{8\pi}{2\pi} = 4$$

 \therefore বৃত্তের ক্ষেত্রফল $=\pi(4)^2$ বর্গ একক

= 16 π বর্গ একক

=16 imes 3.1416 বর্গ একক

= 50.27 বর্গ একক (প্রায়)

নির্ণেয় বৃত্তের ক্ষেত্রফল 50.27 বর্গ একক (প্রায়)।

(খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQRS চতুর্ভুজটি অন্তর্লিখিত হয়েছে। প্রমাণ করতে হবে যে, $\angle QPS + \angle QRS = 180^\circ$.

অঙ্কন : O, Q ও O, S যোগ করি।

প্রয়াথ

ধাপ $\boldsymbol{\varsigma}$: একই চাপ QRS এর উপর দন্ডায়মান কেন্দ্রন্থ $\angle QOS = 2$ (বৃত্তন্থ $\angle QPS$) [একই চাপের উপর দন্ডায়মান কেন্দ্রন্থ কোণ বৃত্তন্থ কোণের দ্বিগুণ]

অর্থাৎ ∠QOS = 2∠QPS

ধাপ ২ : আবার একই চাপ QPS এর উপর দন্ডায়মান কেন্দ্রন্থ প্রবৃদ্ধ কোণ $\angle QOS = 2(9 \cdot 9 \cdot 8 \cdot 2 \cdot QRS)$ [একই কারণে]

অর্থাৎ প্রবৃদ্ধ ∠ QOS = 2∠QRS

 \therefore $\angle QOS + প্রবৃদ্ধ কোণ <math>\angle QOS = 2(\angle QPS + \angle QRS)$

কিন্তু $\angle QOS +$ প্রবৃদ্ধ কোণ $\angle QOS = 360^\circ$

 \therefore 2($\angle QPS + \angle QRS$) = 360°

∠QPS + ∠QRS = 180°. (প্রমাণিত)

(গ) মনে করি, O কেন্দ্রবিশিষ্ট একটি বৃত্তে PQRS একটি অন্তর্লিখিত চতুর্ভুজ। P, R যোগ করি। ∠QPR + ∠RPS = 90° হলে প্রমাণ করতে হবে যে, Q, O, S একই সরলরেখায় অবস্থিত।

অঙ্কন : Q, O; R, O এবং S, O যোগ করি।

প্রমাণ

ধাপ ১ : QR চাপের উপর দন্ডায়মান কেন্দ্রন্থ ∠QOR = 2 (বৃত্তন্থ ∠QPR) একই চাপের উপর দণ্ডায়মান কেন্দ্রন্থ কোণ বৃত্তন্থ কোণের দ্বিগুণ]

অর্থাৎ, ∠QOR = 2∠QPR

ধাপ ২ : RS চাপের উপর দন্ডায়মান, কেন্দ্রন্থ ∠ROS = 2(বৃত্তন্থ ∠RPS)
[একই চাপের ওপর দন্ডায়মান কেন্দ্রন্থ কোণ বৃত্তন্থ কোণের দ্বিগুণ]

অর্থাৎ, ∠ROS = 2∠RPS

ধাপ ৩ : $\angle QOR + \angle ROS = 2(\angle QPR + \angle RPS)$

[ধাপ (১) ও (২) যোগ করে]

বা, $\angle QOR + \angle ROS = 2 \times 90^{\circ}$ প্রদন্ত

 \therefore $\angle OOR + \angle ROS = 180^{\circ}$

∴ O, O, S একই সরলরেখায় অবন্থিত। (প্রমাণিত)

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

৫৯.

চিত্রে, M বৃত্তের কেন্দ্র।

[বরিশাল বোর্ড ২০২০]

 (Φ) প্রমাণ কর যে, QT > PQ.

(খ) প্রমাণ কর যে, $\angle QPS = \frac{1}{2} \angle QMS$.

(গ) প্রমাণ কর যে, $\angle PQR + \angle PSR = 180^{\circ}$.

৫৯ নং প্রশ্নের উত্তর

(ক) মনে করি, M কেন্দ্রবিশিষ্ট একটি বৃত্তে QT ব্যাস ও PQ ব্যাস ভিন্ন কোনো জ্যা। প্রমাণ করতে হবে যে, QT>PQ.

অঙ্কন : P, M যোগ করি।

প্রমাণ:

ধাপ $\mathbf{S}:\mathbf{QM}=\mathbf{MT}=\mathbf{PM}$ [একই বৃত্তের ব্যাসার্ধ]

ধাপ ২ : Δ PQM-এ

QM + PM > PQ

[ত্রিভুজের যেকোনো দুই বাহুর যোগফল তৃতীয় বাহু অপেক্ষা বৃহত্তর]

বা, QM + MT > PQ [(১) থেকে]

ightharpoonup QT > PQ. (প্রমাণিত) [ightharpoonup QM + MT = QT]

(খ) মনে করি, M কেন্দ্রবিশিষ্ট একটি বৃত্তে QRS চাপের ওপর দন্ডায়মান কেন্দ্রন্থ কোণ $\angle QMS$ ও বৃত্তহু কোণ $\angle QPS$. প্রমাণ করতে হবে যে, $\angle QPS = \frac{1}{2}$ $\angle QMS$.

অঙ্কন : M, S যোগ করি। M কেন্দ্রগামী রেখাংশ PD আঁকি।

প্রমাণ :

ধাপ ১ : Δ PMQ এর বহিঃস্থ কোণ \angle QMD = \angle QPM + \angle PQM

[∵ ত্রিভূজের বহিঃস্থ কোণ এর অন্তঃস্থ বিপরীত কোণদ্বয়ের সমষ্টির সমান]

ধাপ ২ : Δ PMQ এ MP = MQ [একই বৃত্তের ব্যাসার্ধ]

অতএব, $\angle QPM = \angle PQM$ [সমদ্বিবাহু ত্রিভুজের ভূমিসংলগ্ন কোণ দুইটি সমান]

ধাপ ৩ : ধাপ (১) ও (২) থেকে $\angle QMD = 2\angle QPM$

ধাপ 8 : একইভাবে Δ PMS থেকে \angle SMD = $2\angle$ SPM

ধাপ ৫: ধাপ (৩) ও (৪) থেকে

 \angle QMD + \angle SMD = $2\angle$ QPM + $2\angle$ SPM

Arr $Arr QPS = \frac{1}{2} \angle QMS$. (প্রমাণিত)

(গ) মনে করি, M কেন্দ্রবিশিষ্ট একটি বৃত্তে PQRS চতুর্ভুজটি অন্তর্লিখিত হয়েছে। প্রমাণ করতে হবে যে, ∠PQR + ∠PSR = 180°.

অঙ্কন : M, S যোগ করি।

প্রমাণ :

ধাপ $oldsymbol{3}$: একই চাপ QPS এর উপর দণ্ডায়মান প্রবৃদ্ধ কেন্দ্রন্থ $\angle QMS=2$ (বৃত্তন্থ $\angle QRS$)

[একই চাপের উপর দণ্ডায়মান কেন্দ্রন্থ কোণ, বৃত্তন্থ কোণের দ্বিণ্ডণ]

অর্থাৎ, প্রবৃদ্ধ ∠QMS = 2∠QRS

ধাপ ২ : আবার, একই চাপ QRS এর উপর দন্ডায়মান কেন্দ্রন্থ \angle QMS = 2 (বৃত্তন্থ \angle QOPS)

্রিএকই চাপের উপর দণ্ডায়মান কেন্দ্রন্থ কোণ, বৃত্তন্থ কোণের দিগুণ]

অর্থাৎ, ∠QMS = 2∠QPS.

ধাপ ৩ : $\angle QMS +$ প্রবৃদ্ধ $\angle QMS = 2(\angle QRS + \angle QPS)$

[ধাপ (১) ও ধাপ (২) যোগ করে]

কিন্তু $\angle QMS +$ প্রবন্ধ $\angle QMS = 360^{\circ}$ [বৃত্তের কেন্দ্রে উৎপন্ন কোণ 360°]

 \therefore 2(\angle QRS + \angle QPS) = 360°

ধাপ 8 : আবার, PQRS বৃত্তস্থ চতুর্ভুজে,

 $\angle PQR + \angle PSR + \angle QRS + \angle QPS = 360^{\circ}$

চিত্রভূজের চারকোণের সমষ্টি 360°

বা, ∠PQR + ∠PSR + 180° = 360° [ধাপ (৩) হতে]

 \triangleleft ₹ $\angle PQR + \angle PSR = 360^{\circ} - 180^{\circ}$

∴ ∠PQR + ∠PSR = 180°. (প্রমাণিত)

60. S = 12 সে.মি., $\angle x = 75^{\circ}$, $\angle y = 60^{\circ}$.

বিরিশাল বোর্ড ২০২০

(ক) 5 সে.মি. বাহু এবং ∠y কোণবিশিষ্ট একটি রম্বস অঙ্কন কর।

(খ) বিবরণসহ Δ PQR অঙ্কন কর যার পরিসীমা S এবং ভূমি সংলগ্ন কোণদ্বয় $\angle x$ ও $\angle y$ এর সমান।

(গ) বিবরণসহ $\frac{S}{4}$ ব্যাসার্ধবিশিষ্ট বৃত্তে এমন দুইটি স্পর্শক অঙ্কন কর যেন তাদের অন্তর্ভূক্ত কোণ \angle $_{
m V}$ এর সমান হয়।

৬০ নং প্রশ্নের উত্তর

(ক) মনে করি, রম্বসের একটি বাহু a=5 সে.মি. ও একটি কোণ $\angle y=60^\circ$ দেওয়া আছে, রম্বসটি আঁকতে হবে।

অঙ্কন :

১. যেকোনো রশ্মি BE নিই।

২. BE হতে a এর সমান করে BC অংশ কাটি।

৩. BC এর B বিন্দুতে $\angle y$ এর সমান $\angle CBF$ আঁকি। BF হতে a এর সমান করে BA কাটি যা BF কে A বিন্দুতে ছেদ করে।

A ও C কে কেন্দ্র করে a এর সমান ব্যাসার্ধ নিয়ে ∠CBF এর অভ্যন্তরে
দুইটি বৃত্তচাপ আঁকি। বৃত্তচাপদ্বয় পরক্ষার D বিন্দুতে ছেদ করে।

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

৫. A ও D; C ও D যোগ করি। তাহলেই ABCD-ই উদ্দিষ্ট রম্বস।

(খ) মনে করি, PQR ত্রিভুজের পরিসীমা S=12 সে.মি. এবং ভূমি সংলগ্ন দুইটি কোণ $\angle x=75^\circ$ এবং $\angle y=60^\circ$ দেওয়া আছে। ত্রিভুজটি আঁকতে হবে।

অঙ্কন :

- যেকোনো একটি রশা DF থেকে S এর সমান করে DE অংশ কেটে
 নিই।
- ২. D ও E বিন্দুতে DE অংশের একই পাশে $\angle x$ এর সমান $\angle EDL$ এবং $\angle y$ এর সমান $\angle DEM$ আঁকি।
- ৩. কোণ দুইটির দ্বিখন্ডক DG ও EH আঁকি। DG ও EH রশ্মিদ্বয় পরক্ষারকে P বিন্দুতে ছেদ করে।
- P বিন্দুতে ∠PDE এর সমান ∠DPQ এবং ∠PED এর সমান ∠EPR
 আঁকি। PQ এবং PR রশাদ্বয় DE অংশকে যথাক্রমে Q ও R বিন্দুতে
 ছেদ করে।

তাহলে, Δ PQR-ই উদ্দিষ্ট ত্রিভুজ।

(গ) দেওয়া আছে, S = 12 সে.মি.।

$$\therefore \frac{S}{4} = \frac{12}{4} = 3$$
 সে.মি. এবং $\angle y = 60^\circ$

মনে করি, O কেন্দ্রবিশিষ্ট ABC বৃত্তের ব্যাসার্থ $r=\dfrac{S}{4}=3$ সে.মি.।

ABC বৃত্তে এরূপ দুইটি স্পর্শক আঁকতে হবে যেন তাদের অন্তর্ভুক্ত কোণ $\angle y = 60^\circ$ হয়।

অঙ্কন :

- ১. ABC বৃত্তের পরিধির উপর P যেকোনো একটি বিন্দু নিই। O, P যোগ করি এবং OP কে L পর্যন্ত বর্ধিত করি যেন OP = PL হয়।
- ২. P কে কেন্দ্র করে OP বা PL এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত আঁকি। এ বৃত্তটি ABC বৃত্তকে A ও C বিন্দুতে ছেদ করে। A, L এবং C, L যোগ করি।

তাহলে, AL এবং CL উদ্দীষ্ট স্পর্শকদ্বয় যাদের অন্তর্ভুক্ত কোণ $\angle y = 60^\circ$ ।

৬১.

চিত্রে O কেন্দ্রবিশিষ্ট একটি বৃত্ত। বৃত্তটির জ্যা AB= জ্যা CD.

[দিনাজপুর বোর্ড ২০২০]

- (Φ) OA=5 সে.মি. হলে, বৃত্তটির ক্ষেত্রফল নির্ণয় কর।
- (খ) প্রমাণ কর যে, OE = OF.
- (গ) বহিঃছ কোনো P বিন্দু থেকে ঐ বৃত্তে PM ও PN দুটি স্পর্শক টানা হলো। প্রমাণ কর যে, PM=PN.

৬১ নং প্রশ্নের উত্তর

(ক) আমরা জানি,

বৃত্তের ক্ষেত্রফল $=\pi r^2$ বর্গ একক [যেখানে বৃত্তের ব্যাসার্থ r] এখানে , বৃত্তের ব্যাসার্থ , r=OA=5 সে.মি.

 \therefore বৃত্তের ক্ষেত্রফল $=\pi r^2$ বর্গ একক $=\pi(5)$ বর্গ সে.মি.

 $= 3.1416 \times 25$ বর্গ সে.মি.

= 78.54 বর্গ সে.মি. (প্রায়)

নির্ণেয় বৃত্তের ক্ষেত্রফল 78.54 বর্গ সে.মি.। (প্রায়)

(খ) দেওয়া আছে, O কেন্দ্রবিশিষ্ট একটি বৃত্তে জ্যা AB= জ্যা CD. $OE \perp AB$ ও $OF \perp CD.$ প্রমাণ করতে হবে যে, OE=OF.

অঙ্কন : O, A এবং O, C যোগ করি।

প্রমাণ

ধাপ ১ : OE \perp AB এবং OF \perp CD

 $AB = BE, \ CF = DF$ [কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো জ্যা'র উপর অঙ্কিত লম্ব জ্যাটিকে সমদ্বিখণ্ডিত করে]

$$\therefore$$
 AE = $\frac{1}{2}$ AB, CF = $\frac{1}{2}$ CD

ধাপ ২ : AB = CD প্রদত্ত

 \therefore AE = CF

ধাপ ৩ : Δ OAE ও Δ OFC সমকোণী ত্রিভুজদ্বয়ে, অতিভজ OA = অতিভজ OC (একই ব্রুত্তের ব্যাসার্ধ)

AE = CF [ধাপ ২]

- ∴ Δ OAE ≅ Δ OFC [সমকোণী ত্রিভুজের অতিভুজ-বাহু সর্বসমতা]
- ∴ OE = OF. (প্রমাণিত)
- (গ) মনে করি, O কেন্দ্রবিশিষ্ট একটি বৃত্ত বহিঃছ কোনো বিন্দু P থেকে ঐ বৃত্তে PM ও PN দুটি স্পর্শক আঁকা হলো। প্রমাণ করতে হবে যে, PM = PN.

অঙ্কন : O, M ও O, N এবং O, P যোগ করি।

প্রমাণ :

ধাপ ১ : যেহেতু PM স্পর্শক , OM স্পর্শবিন্দুগামী ব্যাসার্ধ।

সুতরাং, PM \perp OM [: স্পর্শক, স্পর্শবিন্দুগামী ব্যাসার্ধের উপর লম্ব]

∴ ∠PMO = এক সমকোণ

অনুরূপভাবে, ∠PNO = এক সমকোণ

অর্থাৎ, Δ PMO ও Δ PNO সমকোণী ত্রিভুজ।

ধাপ ২ : Δ PMO ও Δ PNO সমকোণী ত্রিভুজদ্বয়ে,

অতিভুজ PO= অতিভুজ PO [সাধারণ বাহু]

OM = ON [একই বৃত্তের ব্যাসার্ধ]

- \therefore \triangle PMO \cong \triangle PNO [সমকোণী ত্রিভুজের অতিভুজ-বাহু সর্বসমতা]
- ∴ PM = PN. (প্রমাণিত)
- ৬২. একটি ত্রিভুজের ভূমি a=4.2 সে.মি., ভূমি সংলগ্ন সৃক্ষকোণ $\angle x=30^\circ$ এবং অপর দুই বাহুর অন্তর d=2.2 সে.মি.।

[দিনাজপুর বোর্ড ২০২০]

(ক) 'a' এর দৈর্ঘ্যের সমান বাহুবিশিষ্ট একটি বর্গ আঁক।

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

- (খ) ত্রিভূজটি অঙ্কন কর। (অঙ্কনের চিহ্ন ও বিবরণ আবশ্যক)
- (গ) অঙ্কনের বিবরণসহ 'a' এর সমান ব্যাসার্ধবিশিষ্ট বৃত্তে এমন একটি স্পর্শক আঁক যেন তা কোনো নির্দিষ্ট সরলরেখার সমান্তরাল হয়।

৬২ নং প্রশ্নের উত্তর

(季)

ABCD বৰ্গ অঙ্কন করা হলো যার বাহু a=4.2 সে.মি.।

(খ) এখানে, কোনো ত্রিভুজের ভূমি a=4.2 সে.মি., ভূমিসংলগ্ন কোণ $\angle x=30^\circ$ এবং অপর দুই বাহুর অন্তর d=2.২ সে.মি.। ত্রিভুজটি আঁকতে হবে।

অঙ্কন :

- যেকোনো একটি রশ্মি BE থেকে ভূমি a এর সমান করে BC রেখাংশ কেটে নিই।
- ২. BC রেখাংশের ই বিন্দুতে ∠x এর সমান ∠CBF আঁকি।
- ৩. BF রশ্মি থেকে d এর সমান BD অংশ কাটি।
- 8. C, D যোগ করি।
- ϵ . DC রেখাংশের যে পাশে F বিন্দু আছে সেই পাশে C বিন্দুতে $\angle FDC$ এর সমান $\angle DCA$ আঁকি। CA রশ্মি BF রশ্মিকে A বিন্দুতে ছেদ করে। তাহলে, Δ ABC-ই উদ্দিষ্ট ত্রিভূজ।
- (গ) মনে করি, O কেন্দ্রবিশিষ্ট XYZ একটি বৃত্ত যার ব্যাসার্ধ a=4.2 সে.মি.। LM একটি নির্দিষ্ট সরলরেখা। XYZ বৃত্তে এমন একটি স্পর্শক অঙ্কন করতে হবে যা LM এর সমান্তরাল হয়।

অঙ্কন :

- ১. O বিন্দু থেকে LM এর উপর ON লম্ব আঁকি । ON বৃত্তকে Z বিন্দুতে ছেদ করে ।
- ২. ON কে বর্ধিত করলে তা বৃত্তটিকে E বিন্দুতে ছেদ করে।
- ৩. ZE রেখার উপর Z ও E বিন্দুতে যথাক্রমে AB ও CD লম্ব আঁকি। তাহলে AB ও CD ই নির্ণেয় স্পর্শক হবে।

৬৩.

চিত্রে, CQ = 6 সে.মি. PQ > RS এবং ∠QPS = 60°.

[ময়মনসিংহ বোর্ড ২০২০]

- (ক) বৃত্তটির ক্ষেত্রফল নির্ণয় কর।
- (খ) উদ্দীপকের আলোকে প্রমাণ কর যে , $\angle QRS = \frac{1}{2}$ প্রবৃদ্ধ $\angle QCS$.
- (গ) উদ্দীপকের আলোকে প্রমাণ কর যে, PQ জ্যা, RS জ্যা অপেক্ষা কেন্দ্রের নিকটতর।

৬৩ নং প্রশ্নের উত্তর

 (Φ) দেওয়া আছে, বৃত্তের ব্যাসার্ধ, r = CQ = 6 সে.মি.

$$\therefore$$
 বৃত্তটির ক্ষেত্রফল $=\pi {
m r}^2$ বর্গ একক

 $=\pi(6)^2$ বর্গ সে.মি.

= 3.1416 × 36 বৰ্গ সে.মি.

= 113.098 বর্গ সে.মি. (প্রায়)

নির্ণেয় বৃত্তটির ক্ষেত্রফল 113.098 বর্গ সে.মি. (প্রায়)।

প্রমাণ :

ধাপ ১ : QRS চাপের উপর দন্ডায়মান বৃত্তস্থ ∠QPS এবং কেন্দ্রস্থ ∠QCS.

∴ ∠QCS = 2 ∠QPS [কেন্দ্রয় কোণ বৃত্তয় কোণের দিওণ]

ৰা, $\angle QCS = 2 \times 60^{\circ} [\because \angle QPS = 60^{\circ}]$

বা, ∠QCS = 120°

ধাপ ২ : আবার, বৃত্তের কেন্দ্রে উৎপন্ন কোণ 360°

অর্থাৎ, প্রবৃদ্ধ ∠QCS + ∠QCS = 360°

বা, প্রবৃদ্ধ ∠QCS + 120° = 360°

বা, প্রবৃদ্ধ ∠QCS = 360° – 120°

বা, প্রবৃদ্ধ ∠QCS = 240°

ধাপ ৩ : PQRS বৃত্তস্থ চতুর্ভুজে,

$$\angle QRS + \angle QPS = 180^{\circ}$$

[বৃত্তস্থ চতুর্ভুজের বিপরীত কোণদ্বয়ের সমষ্টি 180°]

বা, ∠ORS + 60° = 180°

বা, $\angle QRS = 180^{\circ} - 60^{\circ}$

বা, ∠QRS = 120°

বা, $\angle QRS = \frac{1}{2} \times 240^{\circ}$

 $\therefore \angle QRS = \frac{1}{2} \times$ প্রবৃদ্ধ $\angle QCS$. (প্রমাণিত)

(গ) মনে করি, C কেন্দ্রবিশিষ্ট বৃত্তে PQ>RS. প্রমাণ করতে হবে যে, PQ জ্যা, RS জ্যা অপেক্ষা কেন্দ্রের নিকটতর।

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

অঙ্কন : CM ⊥PQ, CN ⊥ ST আঁকি।

প্রমাণ

ধাপ ১ : $PM = \frac{1}{2} PQ$ [বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো জ্যা'র উপর অঙ্কিত লম্ব জ্যা'টিকে সমদ্বিখন্ডিত করে]

এবং
$$RN = \frac{1}{2}RS$$

ধাপ ২ : সমকোণী ত্রিভুজ PCM-এ

 $PC^2 = PM^2 + MC^2$ [পিথাগোরাসের উপপাদ্য]

বা. $PM^2 = PC^2 - MC^2$

ধাপ ৩ : সমকোণী ত্রিভুজ RCN-এ

 $RC^2 = CN^2 + NR^2$ [পিথাগোরাসের উপপাদ্য]

বা, $RN^2 = RC^2 - CN^2$

ধাপ 8 : PC = RC

Arr Arr Arr Arr Arr [একই বৃত্তের ব্যাসার্ধ]

ধাপ ৫ : PQ > RS [প্রদত্ত]

বা,
$$\frac{1}{2} PQ > \frac{1}{2} RS [$$
ধাপ (১)]

বা. PM > RN

বা, $PM^2 > RN^2$

ৰা,
$$PC^2 - MC^2 > R^2 - CN^2$$

বা,
$$-MC^2 > -CN^2$$
 [ধাপ (৪) থেকে]

বা, $MC^2 < CN^2$

 \therefore CM < CN

কিন্তু CM ও CN কেন্দ্র থেকে যথাক্রমে PQ ও RS এর দূরত্ব নির্দেশ করে। অর্থাৎ PQ জ্যা, RS জ্যা অপেক্ষা কেন্দ্রের নিকটতর। (প্রমাণিত)

৬8.

চিত্রে, PQRS বৃত্তের কেন্দ্র o এবং OM < ON.

[ঢাকা বোর্ড ২০১৯]

- (ক) ∠QOS এর মান নির্ণয় কর।
- (খ) প্রমাণ কর যে, ∠PQR এবং বিপরীত কোণ ∠PSR এর সমষ্টি দুই সমকোণ।
- (গ) প্রমাণ কর যে, PQ > PS.

৬৪ নং প্রশ্নের উত্তর

(ক) এখানে, ∠OPS = 50°

এখন, QS চাপের উপর দণ্ডায়মান বৃত্তন্থ কোণ $\angle QPS$ এবং কেন্দ্রন্থ কোণ $\angle QOS$

$$\therefore$$
 $\angle QOS = 2\angle QPS = 2 \times 50^{\circ} = 100^{\circ}$

অতএব, ∠QOS এর মান 100°.

(খ) মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে PQRS চতুর্ভুজটি অন্তর্লিখিত। প্রমাণ করতে হবে যে, $\angle PQR + \angle PSR =$ দুই সমকোণ।

অঙ্কন : O, P এবং O, R যোগ করি।

প্রমাণ :

ধাপ 🕽 : একই চাপ PQR এর উপর দন্ডায়মান

কেন্দ্রস্থ ∠POR = 2 (বৃত্তন্থ ∠PSR)

অর্থাৎ $\angle POR = 2\angle PSR$ [\because বৃত্তের একই চাপের উপর দণ্ডায়মান কেন্দ্রস্থ কোণ বৃত্তন্থ কোণের দিণ্ডণ]

ধাপ ২ : আবার একই চাপ PSR এর কেন্দ্রন্থ প্রবৃদ্ধ কোণ $\angle POR = 2$ (বৃত্তন্থ $\angle POR$)

অর্থাৎ প্রবৃদ্ধ কোণ ∠POR = 2∠PQR

এখন, $\angle POR + প্রবৃদ্ধ \angle POR = 2(\angle PSR + \angle PQR)$

কিন্তু, $\angle POR +$ প্রবৃদ্ধ $\angle POR =$ চার সমকোণ

∴ 2(∠PSR + ∠PQR) = চার সমকোণ

বা, $\angle PSR + \angle PQR =$ দুই সমকোণ

অর্থাৎ ∠PQR + ∠PSR দুই সমকোণ। (প্রমাণিত)

(গ) মনে করি, O বৃত্তের কেন্দ্র এবং PQ ও PS দুইটি ব্যাস ভিন্ন জ্যা। O থেকে PQ ও PS এর উপর OM ও ON লম্ব। তাহলে OM ও ON কেন্দ্র থেকে যথাক্রমে PQ ও PS জ্যায়ের দূরত্ব নির্দেশ করে। এখানে OM < ON প্রমাণ করতে 'হবে যে, PQ > PS.

অঙ্কন : O. P যোগ করি।

প্রমাণ : ধাপ ১ : এখানে, OM \perp PQ

Arr Arr

অনুরূপভাবে, $PN = \frac{1}{2} PS$

ধাপ ২ : এখন সমকোণী ত্রিভূজ POM-এ

 ${
m OP^2} = {
m OM^2} + {
m PM^2}$ [পিথাগোরাসের উপপাদ্য অনুসারে]

 \therefore OM² = OP² – PM²

ধাপ ৩ : তদ্রুপ সমকোণী ত্রিভুজ ∠PON-এ

 $OP^2 = ON^2 + PN^2$ [পিথাগোরাসের উপপাদ্য অনুসারে]

 \therefore ON² = OP² – PN²

ধাপ 8 : এখানে, OM < ON

বা, $OM^2 < ON^2$

বা, $OP^2 - PM^2 < OP^2 - PN^2$ [ধাপ (২) ও ধাপ (৩) হতে]

বা, $M^2 \leftarrow PN2^2$

ৰা, $PM^2 > PN^2$

বা, PM > PN

বা,
$$\frac{1}{2}$$
 PQ > $\frac{1}{2}$ PS [ধাপ (১) হতে]

গণিত ৮ম অধ্যায়

Prepared by: ISRAFIL SHARDER AVEEK

৬৫.

[সকল বোর্ড ২০১৮]

- (ক) কেন্দ্রস্থ কোণ ও বৃত্তস্থ কোণের সংজ্ঞা দাও।
- (খ) প্রমাণ কর যে, $\angle RCS = 2 \angle RPS$.
- (গ) প্রমাণ কর যে, $\angle PCR + \angle QCS = 180^\circ$.

৬৫ নং প্রশ্নের উত্তর

- (ক) কেন্দ্রন্থ কোণ: একটি কোণের শীর্ষবিন্দু কোনো বৃত্তের কেন্দ্রে অবস্থিত হলে কোণটিকে ঐ বৃত্তের একটি কেন্দ্রন্থ কোণ বলা হয় এবং কোণটি বৃত্তে যে চাপ খডিত করে সেই চাপের উপর তা দন্ডায়মান বলা হয়।
 - বৃত্তম্ব কোণ: একটি কোণের শীর্ষবিন্দু কোনো বৃত্তের একটি বিন্দু হলে এবং কোণটির প্রত্যেক বাহুতে শীর্ষবিন্দু ছাড়াও বৃত্তের একটি বিন্দু থাকলে কোণটিকে ঐ বৃত্তের একটি বৃত্তম্থ কোণ বলা হয়।
- (খ) এখানে, C কেন্দ্রবিশিষ্ট PRQS বৃত্তে RQS উপচাপের উপর দন্ডায়মান বৃত্তম্থ কোণ $\angle RPS$ এবং কেন্দ্রম্ভ কোণ $\angle RCS$ । প্রমাণ করতে হবে যে, $\angle RCS = 2\angle RPS$ ।

অঙ্কন : P এবং C কে যোগ করে T পর্যন্ত বর্ধিত করি।

প্রমাণ:

ধাপ $\mathbf{\lambda}:\Delta$ PRC এর বহিন্তু কোণ \angle RCT = \angle CPR + \angle CRP

ধাপ ২ : Δ PRC এ CP = CR [একই বৃত্তের ব্যাসার্ধ]

অতএব, ∠CPR = ∠CRP

[: ত্রিভুজের সমান সমান বাহুর বিপরীত কোণদ্বয় পরস্পর সমান]

ধাপ ৩ : ধাপ (১) ও (২) থেকে পাই ∠RCT = 2∠CPR

ধাপ 8 : একইভাবে অ চঈঝ থেকে পাই ∠SCT = 2∠SPC

ধাপ ৫: ধাপ (৩) ও (৪) থেকে পাই,

 $\angle RCT + \angle SCT = 2\angle CPR + 2\angle SPC$

অর্থাৎ ∠RCS = 2∠RPS. (প্রমাণিত)

(গ) এখানে, C কেন্দ্রবিশিষ্ট বৃত্তে PQ এবং RS জ্যা দুইটি বৃত্তের অভ্যন্তরে O বিন্দুতে সমকোণে ছেদ করেছে। C, P; C, R; C, Q এবং C, S যোগ করায় কেন্দ্রে $\angle PCR$ ও $\angle QCS$ উৎপন্ন হলো। প্রমাণ করতে হবে যে, $\angle PCR$ + $\angle QCS = 180^\circ$.

অঙ্কন : P, R ও P, S যোগ করি।

প্রমাণ :

ধাপ ১ : বৃত্তের একই চাপের উপর দণ্ডায়মান কেন্দ্রস্থ কোণ বৃত্তন্থ কোণের দ্বিগুণ বলে, PR চাপের উপর দণ্ডায়মান কেন্দ্রস্থ কোণ, $\angle PCR = 2 \times$ বৃত্তন্থ কোণ $\angle PSR$

ৰা, ∠PCR = 2 ∠PSR
ধাপ ২ : একইভাবে, ∠QCS = 2∠QPS
ধাপ ৩ : ধাপ (১) ও (২) হতে পাই,
∠PCR + ∠QCS = 2∠PSR + 2∠QPS
= 2(∠PSR + ∠QPS)
= 2(∠PSO + ∠OPS) = 2 × 90°= 180°
∴ ∠PCR + ∠QCS = 180°. (প্রমাণিত)