Aufgabe 1

Berechne jeweils $(g \circ f)'$ direkt durch ausrechnen und differenzieren und nach der Ket-

tenregel.
(a)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x, y, z) = (x + y, y + 2z)$
 $g: \mathbb{R}^2 \to \mathbb{R}$, $g(t, u) = tu$
(b) $f: \mathbb{R}^3 \to \mathbb{R}^4$, $f(x, y, z) = (y, x + z, z^2, xyz)$
 $g: \mathbb{R}^4 \to \mathbb{R}^2$, $g(x, y, z, w) = (x + y + w, zw)$
(c) $f: \mathbb{R}^3 \to \mathbb{R}^2$, $f(x, y, z) = (e^x, z \sin y)$
 $g: \mathbb{R}^2 \to \mathbb{R}^4$, $g(t, u) = (t, t^2u, \sin t, (\log u) + t)$

$$q: \mathbb{R}^2 \to \mathbb{R}, q(t,u) = tu$$

(b)
$$f: \mathbb{R}^3 \to \mathbb{R}^4$$
, $f(x, y, z) = (y, x + z, z^2, xyz)$

$$g: \mathbb{R}^4 \to \mathbb{R}^2, g(x, y, z, w) = (x + y + w, zw)$$

(c)
$$f : \mathbb{R}^3 \to \mathbb{R}^2, f(x, y, z) = (e^x, z \sin y)$$

$$g: \mathbb{R}^2 \to \mathbb{R}^4, g(t, u) = (t, t^2 u, \sin t, (\log u) + t)$$

Bemerkung: Es muss hier nicht explizit überprüft werden, in welchen Bereichen die Funktion bzw. deren Ableitung definiert ist.

(d)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = xy^2$$

 $g: \mathbb{R} \to \mathbb{R}^2, g(t) = (2t, \sin t)$

$$q: \mathbb{R} \to \mathbb{R}^2, q(t) = (2t, \sin t)$$

(e) Berechne ebenso $(f \circ g)'$ mit f,g aus (d).