金融与经济大数据挖掘作业——基于混合分布的EGARCH模型

16300200020 张言健

数据说明

低频日数据:沪深300-恒生指数-标准普尔

	时间	开盘价	最高价	最低价	收盘价
沪深-300	time	op_sh	high_sh	low_sh	cl_sh
恒生指数	time	op_hs	high_hs	low_hs	cl_hs
标准普尔	time	op_sp	high_sp	low_sp	cl_sp

高频5分钟数据:台湾指数期货与现货

日期时间	期货	现货
dateid	index_futures	index_spot

建立单变量的基于混合正态分布的AR-EGARCH模型

EGARCH模型是考虑杠杆效应GARCH模型,其基本形式为:

$$r_t = \mu_t + \alpha_t$$

$$lpha_t = \delta_t arepsilon_t$$
 , $arepsilon_t \in N(0, \delta_t)$

$$\ln\!\left(\sigma_t^2
ight) = lpha_0 + \sum_{i=1}^p lpha_i \ln\!\left(\sigma_{t-i}^2
ight) + \sum_{j=1}^q eta_j g\left(arepsilon_{t-j}
ight)$$

其中
$$g\left(arepsilon_{t}
ight)=\left\{egin{array}{l} \left(heta+\gamma
ight)\!arepsilon_{t}-\gamma E\left|arepsilon_{t}
ight|,arepsilon_{t}\geq0 \ \left(heta-\gamma
ight)\!arepsilon_{t}-\gamma E\left|arepsilon_{t}
ight|,arepsilon_{t}<0 \end{array}
ight.$$

由于随机时间序列变量常具有厚尾特征,上述条件均值 ε_t 的处理可以服从正态分布外, 还可服从能够刻画厚尾性的混合正态分布。

混合正态分布的概率密度函数为

$$arepsilon_t \sim i.\,i.\,d. \quad MN(\xi,p) = egin{cases} N\left(0,\sigma^2
ight) & 1-p \ N\left(0,\xi\sigma^2
ight) & p \end{cases}$$

其中,
$$0<\xi<1$$
, $\sigma^2=(1-p+\xi p)^{-1}$, $Var(arepsilon_t)=1$

故 ε_t 的混合正态分布概率密度函数为

$$f\left(arepsilon_{t}
ight)=rac{p}{\sqrt{2\piarepsilon\sigma^{2}}}\mathrm{exp}\!\left(-rac{arepsilon_{t}^{2}}{2arepsilon\sigma^{2}}
ight)+rac{1-p}{\sqrt{2\pi\sigma^{2}}}\mathrm{exp}\!\left(-rac{arepsilon_{t}^{2}}{2\sigma^{2}}
ight)$$

低频数据以沪深100指数为例

1. 序列描述性分析

在视图中点击View-graph-line,得到如下图

2. 考察序列的平稳性

可以使用根检验来考察平稳性,点击View-Unit Root Test,Test Type选择Augmented Dickey-Fuller

Augmented Dickey-Fuller Unit Root Test on CL_SH

Null Hypothesis: CL SH has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=25)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.393755	0.5869
Test critical values:	1% level	-3.433218	
	5% level	-2.862693	
	10% level	-2.567430	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(CL_SH)

Method: Least Squares Date: 05/01/19 Time: 22:28

Sample (adjusted): 4/29/2003 3/18/2013 Included observations: 2133 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CL_SH(-1)	-0.001634	0.001172	-1.393755	0.1635
C	4.237215	3.035339	1.395961	0.1629

可以看出原始时间序列不平稳,需要对原始时间序列进行一阶差分后再检验

Augmented Dickey-Fuller Unit Root Test on D(CL_SH)

Null Hypothesis: D(CL SH) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=25)

		t-Statistic	Prob.*
Augmented Dickey-F	fuller test statistic	-47.85173	0.0001
Test critical values:	1% level	-3.433220	
	5% level	-2.862694	
	10% level	-2.567430	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(CL_SH,2)

Method: Least Squares Date: 05/01/19 Time: 22:29

Sample (adjusted): 4/30/2003 3/18/2013 Included observations: 2132 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CL_SH(-1))	-1.036219	0.021655	-47.85173	0.0000
C	0.355346	1.162771	0.305603	0.7599

t统计量-47,85,对应P值接近0,可以看出此时时间序列已经平稳

3. 序列的自相关性和偏自相关性检验

在视图中点击View-correlogram,选择1st difference(我们刚刚检验过),将滞后阶数Lags to include设置为12

由于序列不存在显著的相关性,因此将均值方程设定为白噪声。

首先我们获得一阶差分的结果:

 $d_t = r_t - r_{t-1}$, 存入新的序列dcl_sh中,具体操作为Quick/Generate Series,输入如下表达式

新序列dcl_sh的综合信息如下

设立模型 $d_t = \pi_t + \varepsilon_t$

CL_SH去均值化,得到w,具体操作为Quick/Generate Series输入

w=dcl_sh-0.329267, 新序列w的综合信息如下

4. 检验ARCH效应

检验ARCH效应有两种方法:LM法(拉格朗日乘数检验法)和对残差的平方相关图检验。在此我们采用第二种方法。

首先建立w的平分方程z,在Quick/Generate Series输入z=w*w,然后在视图中点击view-correlogram,得到如下结果

Correlogram of Z

Date: 05/01/19 Time: 23:53 Sample: 4/28/2003 3/18/2013 Included observations: 2133

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ф		1	0.124	0.124	32.958	0.000
ı <mark>n</mark>	<u> </u>	2	0.129	0.115	68.583	0.000
ı <mark>n</mark>	<u> </u>	3	0.116	0.090	97.168	0.000
ı	i	4	0.237	0.208	217.28	0.000
ı <mark>.</mark>		5	0.133	0.076	255.37	0.000
ı	1	6	0.111	0.044	281.56	0.000
ı	1	7	0.118	0.055	311.52	0.000
ı	l b	8	0.128	0.045	346.74	0.000
1		9	0.212	0.148	443.10	0.000
ı	1	10	0.104	0.024	466.32	0.000
6	1 1	11	0.120	0.038	497.13	0.000
	1 1	12	0.111	0.029	523.72	0.000

序列存在自相关,所以有ARCH效应。

5. 建立GARCH模型

常用的GARCH模型包括GARCH(1,1), GARCH(1,2), GARCH(2,1)

尝试GARCH(1,1), 使用Quick/Estimate Equation,设置Method为ARCH,Model为GARCH, Order中ARCH与GARCH填(1,1),可得结果如下

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 05/02/19 Time: 00:02

Sample (adjusted): 4/29/2003 3/18/2013 Included observations: 2133 after adjustments Convergence achieved after 25 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(1) + C(2)*RESID(-1)^2 + C(3)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.
	Variance	Equation		
С	3.381203	0.836777	4.040747	0.0001
RESID(-1)^2	0.060981	0.005054	12.06604	0.0000
GARCH(-1)	0.941036	0.004111	228.8886	0.0000
R-squared	0.000000	Mean depe	ndent var	-2.40E-07
Adjusted R-squared	0.000469	S.D. dependent var		53.70182
S.E. of regression	53.68923	Akaike info criterion		10.01344
Sum squared resid	6148445.	Schwarz criterion		10.02141
Log likelihood	-10676.33	Hannan-Qu	inn criter.	10.01635
Durbin-Watson stat	2.072018	18.00		

所有系数都通过检验, 因此GARCH (1,1) 可以用于建模

6. 建立E-GARCH模型

建立EGARCH(1,1), 使用Quick/Estimate Equation,设置Method为ARCH, Model为EGARCH,得到如下结果

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 05/02/19 Time: 00:10

Sample (adjusted): 4/29/2003 3/18/2013 Included observations: 2133 after adjustments Convergence achieved after 48 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7)

LOG(GARCH) = C(1) + C(2)*ABS(RESID(-1)/@SQRT(GARCH)

-1))) + C(3)*RESID(-1)/@SQRT(GARCH(-1)) + C(4)

*LOG(GARCH(-1))

Variable	Coefficient	Std. Error	z-Statistic	Prob.
	Variance	Equation		
C(1)	-0.064463	0.008087	-7.971435	0.0000
C(2)	0.121921	0.009882	12.33729	0.0000
C(3)	0.022633	0.004801	4.713750	0.0000
C(4)	0.996678	0.000628	1585.823	0.0000
R-squared	0.000000	Mean depe	ndent var	-2.40E-07
Adjusted R-squared	0.000469	S.D. dependent var		53.70182
S.E. of regression	53.68923	Akaike info criterion		10.01131
Sum squared resid	6148445.	Schwarz criterion		10.02193
Log likelihood	-10673.06	Hannan-Qu	inn criter.	10.01520
Durbin-Watson stat	2.072018			

EGARCH(1,1)模型的参数均显著,说明序列具有杠杆性。

7. 检验ARCH-M过程

进一步加入"ARCH-M"检验,配置时将ARCH-M设置为"std-dev"或者"variance", "std-dev"结果如下

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 05/02/19 Time: 00:14

Sample (adjusted): 4/29/2003 3/18/2013 Included observations: 2133 after adjustments Convergence achieved after 41 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7)

LOG(GARCH) = C(2) + C(3)*ABS(RESID(-1)/@SQRT(GARCH(

-1))) + C(4)*RESID(-1)/@SQRT(GARCH(-1)) + C(5)

*LOG(GARCH(-1))

Variable	Coefficient	Std. Error	z-Statistic	Prob.
@SQRT(GARCH)	0.001013	0.021130	0.047963	0.9617
	Variance	Equation		7
C(2)	-0.064489	0.008311	-7.759352	0.0000
C(3)	0.121910	0.009879	12.34079	0.0000
C(4)	0.022729	0.005547	4.097548	0.0000
C(5)	0.996686	0.000724	1376.729	0.0000
R-squared	-0.000018	Mean dependent var		-2.40E-07
Adjusted R-squared	-0.000018	S.D. dependent var		53.70182
S.E. of regression	53.70231	Akaike info criterion		10.01225
Sum squared resid	6148555.	Schwarz criterion		10.02553
Log likelihood	-10673.06	Hannan-Qu	inn criter.	10.01711
Durbin-Watson stat	2.071978			

[&]quot;variance"结果如下

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 05/02/19 Time: 00:16

Sample (adjusted): 4/29/2003 3/18/2013 Included observations: 2133 after adjustments Convergence achieved after 56 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7)

LOG(GARCH) = C(2) + C(3)*ABS(RESID(-1)/@SQRT(GARCH)

-1))) + C(4)*RESID(-1)/@SQRT(GARCH(-1)) + C(5)

*LOG(GARCH(-1))

Variable	Coefficient	Std. Error	z-Statistic	Prob.
GARCH	-0.000243	0.000368	-0.659428	0.5096
	Variance	Equation		
C(2)	-0.063133	0.008794	-7.178878	0.0000
C(3)	0.121324	0.009898	12.25703	0.0000
C(4)	0.021884	0.005147	4.252156	0.0000
C(5)	0.996511	0.000856	1164.433	0.0000
R-squared	-0.000065	Mean dependent var		-2.40E-07
Adjusted R-squared	-0.000065	S.D. dependent var		53.70182
S.E. of regression	53.70356	Akaike info criterion		10.01201
Sum squared resid	6148843.	Schwarz criterion		10.02529
Log likelihood	-10672.81	Hannan-Qu	inn criter.	10.01687
Durbin-Watson stat	2.072008			

可以看出其结果均不显著,说明不存在ARCH-M过程

8. 模型验证

对建立的EARCH(1, 1)模型进行残差ARCH效应检验,点击EARCH(1, 1)结果输出窗口View /Residual Test /ARCH LM Test,将Lag依次设置为,1,4,8,12得到如下结果

Lag=1

Heteroskedasticity Test: ARCH

F-statistic	0.339287	Prob. F(1,2130)	0.5603
Obs*R-squared	0.339552	Prob. Chi-Square(1)	0.5601

Lag=4

Heteroskedasticity Test: ARCH

F-statistic	1.660160	Prob. F(4,2124)	0.1566	
Obs*R-squared		Prob. Chi-Square(4)	0.1564	

Heteroskedasticity Test: ARCH

12 - 12 7 2 12		and the second second second second	
F-statistic	0.910193	Prob. F(8,2116)	0.5068
Obs*R-squared	7.287436	Prob. Chi-Square(8)	0.5060

Lag=12

Heteroskedasticity Test: ARCH

F-statistic	1.009127	Prob. F(12,2108)	0.4374
Obs*R-squared	12.11461	Prob. Chi-Square(12)	0.4365

在各种lag值情形下,F统计量均不显著,说明模型已经不存在ARCH效应。

因而我们最终得到的模型为

$$egin{align*} r_t - r_{t-1} &= 0.329267 + a_t \ a_t &= \sigma_t arepsilon_t, \quad arepsilon_t \sim N\left(\mathrm{O}, \sigma_arepsilon
ight) \ \ln \sigma_t^2 &= -0.064 + 0.122 \left|arepsilon_{t-1} / \sqrt{\sigma_{t-1}^2}
ight| + 0.023 arepsilon_{t-1} / \sqrt{\sigma_{t-1}^2} + 0.997^* \ln \sigma_{t-1}^2 \ \end{array}$$

9. 残差混合正态分布建模

现在我们回到 w的综合信息这里,发现Jarque-Bera 统计量过大,对应概率为0,因此统计的正态分布检验没有通过,为此我们需要对厚尾特征进行建模,此处我们采用混合正态分布。

我们将w导出到txt文件中,使用python进行建模, arch_model的参数dist传入误差分布的名字

```
from itertools import islice
file = open("./w.txt","r")
series = []
for line in islice(file,2,None):
    series.append(float(line.strip()))
# series
from scipy import stats
import statsmodels.api as sm # 统计相关的库
import numpy as np
import pandas as pd
```

```
import matplotlib.pyplot as plt
import arch # 条件异方差模型相关的库
am = arch.arch_model(series, mean='zero', p=1, o=1,dist='StudentsT', q=1,vol =
"EGARCH")
print(am.distribution('StudentsT'))
res = am.fit()
```

由于arch_model中没有关于混合正太分布的误差分布,因此我们对arch_model所在的mean.py文件以及它所调用的distribution文件进行修改

其中mean.py修改如下

```
# append
from arch.univariate.distribution import (GeneralizedError, Normal,
                                          SkewStudent, StudentsT, MixNormal)
# decorate
def arch_model(y, x=None, mean='Constant', lags=0, vol='Garch', p=1, o=0,
q=1, p_ = None,power=2.0, dist='Normal', hold_back=None ):# p_
   if dist in ('skewstudent', 'skewt'):
        d = SkewStudent()
    elif dist in ('studentst', 't'):
       d = StudentsT()
    elif dist in ('ged', 'generalized error'):
       d = GeneralizedError()
    elif dist in ('mix', 'mix norm'):
       d = MixNormal(p_)
    else: # ('gaussian', 'normal')
       d = Normal()
```

distribution.py修改如下

$$\sigma^2 = (1 - p + \xi p)^{-1} => \xi = \frac{(\sigma^2)^{-1} - 1}{p} + 1 => \xi \sigma^2 = \frac{1 - \sigma^2}{p} + \sigma^2$$

```
class MixNormal(Distribution):
    """

Standard normal distribution for use with ARCH models
    """

def __init__(self, p_ , random_state=None):
    super(MixNormal, self).__init__('MixNormal', random_state=random_state)
    self.name = 'MixNormal' # 修改名称
    self.p_ = p_

def constraints(self):
    return empty(0), empty(0)

def bounds(self, resids):
    return tuple([])

def loglikelihood(self, parameters, resids, sigma2, individual=False):
    # newsigma2 为 乘以xi之后新的sigma2, 公式见上
```

```
newsigma2 = abs(((1-sigma2)/self.p_)+sigma2)
        111 = (\log(\text{self.p}_{-}) - 0.5 * (\log(2 * pi) + \log(\text{newsigma2}) + \text{resids } ** 2.0 /
newsigma2))
        112 = (\log(1-\text{self.p}_-) - 0.5 * (\log(2 * pi) + \log(\text{sigma2}) + \text{resids ** } 2.0 /
sigma2))
        lls = log(exp(111)+exp(112))
        if individual:
             return 11s
        else:
            return sum(11s)
    def starting_values(self, std_resid):
        return empty(0)
    def _simulator(self, size):
        return self._random_state.standard_normal(size)
    def simulate(self, parameters):
        return self._simulator
    def parameter_names(self):
        return []
    def cdf(self, resids, parameters=None):#过程不涉及此处
        return None
    def ppf(self, pits, parameters=None): # 过程不涉及此处
        return None
```

定义混合正太分布后,使用以下命令调用混合正态模型

```
am = arch.arch_model(series, mean='zero', dist="mix", p=1, o=1, q=1, p_=0.5, vol =
"EGARCH")
```

```
Zero Mean - EGARCH Model Results
______
Dep. Variable:
                                 R-squared:
                                                            9.999
Mean Model:
                      Zero Mean Adj. R-squared:
                                                            0.000
Vol Model:
                         EGARCH Log-Likelihood:
                                                        -10672.8
Distribution:
                       MixNormal AIC:
                                                          21353.6
Method:
              Maximum Likelihood BIC:
                                                          21376.3
                                No. Observations:
                                                             2133
                 Sun, May 05 2019 Df Residuals:
Date:
                                                             2129
                       22:45:53 Df Model:
Time:
                                                               1
                         Volatility Model
             coef std err t P>|t| 95.0% Conf. Int.
         0.03292.180e-021.5100.131 [-9.804e-03,7.564e-02]0.11943.505e-023.4066.603e-04[5.067e-02, 0.188]0.02281.256e-021.8186.911e-02 [-1.787e-03,4.747e-02]
omega
alpha[1]
gamma[1]
           0.9967 2.840e-03 350.988
                                     0.000 [ 0.991, 1.002]
beta[1]
______
```

为了做对比,下面展示了正态分布所得结果

```
am = arch.arch_model(series, mean='zero', dist="mix", p=1, o=1, q=1, vol = "EGARCH")
```

```
Zero Mean - EGARCH Model Results
_______
Dep. Variable:
                                    y R-squared:
                                                                           0.000
Mean Model:
                           Zero Mean Adj. R-squared:
                                                                          0.000
Vol Model:
                               EGARCH Log-Likelihood:
                                                                       -10672.8
Distribution:
                               Normal AIC:
                                                                        21353.5
Method:
                Maximum Likelihood BIC:
                                                                         21376.2
                                       No. Observations:
                                                                           2133
                     Sun, May 05 2019 Df Residuals:
Date:
                                                                            2129
                             22:53:49 Df Model:
Time:
                                                                               1
                               Volatility Model
                                         t P>|t| 95.0% Conf. Int.
                        std err
            0.03242.170e-021.4950.135 [-1.009e-02,7.497e-02]0.11943.503e-023.4086.538e-04[5.074e-02, 0.188]0.02291.257e-021.8236.834e-02 [-1.724e-03,4.754e-02]0.99672.829e-03352.3510.000[ 0.991, 1.002]
omega
alpha[1]
gamma[1]
```

)可以看到,混合正太分布的系数与正态分布的结果仅有微小差别,然而考虑了厚尾性的混合正态分布的结果t值更小(alpha、gamma、beta)。

高频数据以台湾指数期货为例

1. 序列描述性分析

2. 考察序列的平稳性,原序列不平稳,进行一阶差分,下图为一阶差分结果,一阶差分平稳

Augmented Dickey-Fuller Unit Root Test on D(INDEX_FUTURES)

Null Hypothesis: D(INDEX_FUTURES) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=33)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-76.42745	0.0001
Test critical values:	1% level	-3.431305	
	5% level	-2.861847	
	10% level	-2.566976	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(INDEX FUTURES,2)

Method: Least Squares Date: 05/05/19 Time: 23:09

Sample (adjusted): 4/16/2010 10:00 9/27/2010 15:50 Included observations: 5760 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(INDEX_FUTURES(-1))	-1.007003	0.013176	-76.42745	0.0000
C	0.096026	0.446887	0.214878	0.8299

3. 序列的自相关性和偏自相关性检验

Correlogram of D(INDEX_FUTURES)

Date: 05/05/19 Time: 23:11

Sample: 4/16/2010 09:50 9/27/2010 15:50

Included observations: 5761

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1		1	-0.007	-0.007	0.2827	0.595
dı	l di	2	-0.026	-0.026	4.0761	0.130
į.		3	-0.013	-0.013	5.0276	0.170
ili	i iii	4	0.006	0.005	5.2023	0.267
ili	30	5	-0.002	-0.002	5.2202	0.390
i))	6	0.010	0.010	5.8283	0.443
ų.	ļi ir	7	0.007	0.007	6.1102	0.527
•	(8	-0.016	-0.015	7.5924	0.474
i	ф	9	-0.004	-0.003	7.6698	0.568
1	i ii	10	0.005	0.004	7.7877	0.650
ı)		11	0.008	0.008	8.1847	0.697
ψ		12	-0.000	0.000	8.1849	0.771

存在自相关性。

首先我们获得一阶差分的结果:

 $d_t = r_t - r_{t-1}$, 存入新的序列dfuture中, 由于随机误差项之间有自相关性,因此不能进行去均值化

4. 检验ARCH效应

dfuture的平方的相关图检验: z=dfuture*dfuture

不存在自相关性,没有ARCH效应,不适合建立ARCH类模型

综上,我们在低频数据沪深100指数上建立了基于混合分布的EGARCH模型,在高频数据台湾指数期货中,我们发现其没有ARCH效应,因此不再建立ARCH类模型。