

EXERCISES 5.1.A

In Exercises 1–26, find all real solutions of each equation. Find exact solutions when possible and approximate ones otherwise.

1.
$$\sqrt{x+2} = 3$$

2.
$$\sqrt{x-7} = 4$$

3.
$$\sqrt{4x+9}=5$$

4.
$$\sqrt{3x-2}=7$$

5.
$$\sqrt[3]{5-11x}=3$$

6.
$$\sqrt[3]{6x-10}=2$$

7.
$$\sqrt[3]{x^2 - 1} = 2$$

8.
$$(x+1)^{2/3}=4$$

9.
$$\sqrt{x^2 - x - 1} = 1$$

10.
$$\sqrt{x^2 - 5x + 4} = 2$$

11.
$$\sqrt{x+7} = x-5$$

12.
$$\sqrt{x+5} = x-1$$

13.
$$\sqrt{3x^2 + 7x - 2} = x + 1$$

14.
$$\sqrt{4x^2 - 10x + 5} = x - 3$$

15.
$$\sqrt[3]{x^3 + x^2 - 4x + 5} = x + 1$$

16.
$$\sqrt[3]{x^3 - 6x^2 + 2x + 3} = x - 1$$

17.
$$\sqrt[5]{9-x^2} = x^2 + 1$$

18.
$$\sqrt[4]{x^3 - x + 1} = x^2 - 1$$

19.
$$\sqrt[3]{x^5 - x^3 - x} = x + 2$$

20.
$$\sqrt{x^3 + 2x^2 - 1} = x^3 + 2x - 1$$

21.
$$\sqrt{x^2 + 3x - 6} = x^4 - 3x^2 + 2$$

22.
$$\sqrt[3]{x^4 + x^2 + 1} = x^2 - x - 5$$

23.
$$\sqrt{5x+6} = 3 + \sqrt{x+3}$$

24.
$$\sqrt{3y+1}-1=\sqrt{y+4}$$

25.
$$\sqrt{2x-5}=1+\sqrt{x-3}$$

26.
$$\sqrt{x-3} + \sqrt{x+5} = 4$$

27. The surface area S of the right circular cone in the figure is given by $S = \pi r \sqrt{r^2 + h^2}$. What radius should be used to produce a cone of height 5 inches and surface area 100 square inches?

- **28.** What is the radius of the base of a cone whose surface area is 18π square centimeters and whose height is 4 cm?
- **29.** Find the radius of the base of a conical container whose height is 1/3 of the radius and whose volume is 180 cubic inches. [*Note:* The volume of a cone of radius r and height h is $\pi r^2 h/3$.]