

Canal Seguro para Compartilhamento de Chave Diffie-Hellman Key Exchange

Dênio Mariz denio@ifpb.edu.br

Fevereiro, 2020

Sistema Criptográfico Simétrico

Enigma In Action https://youtu.be/H8jZ-cXLz70

Problema da troca de chaves

of Dênio Mariz IFPR

Estabelecendo um Canal Seguro

Diffie-Hellman é um método de criptografia desenvolvido por Whitfield Diffie e Martin Hellman e publicado em 1976.

Martin Hellman

ALICE

BOB

COR COMUM (COMPARTILHADA)

COR SECRETA (INDIVIDUAL)

COR COMUM + SECRETA

MISTURA DIVULGADA

COR SECRETA (INDIVIDUAL)

SEGREDO COMUM

Propriedade	Exemplo
Associatividade	$a + (b + c) \mod n = (a + b) + c \mod n$ $a * (b * c) \mod n = (a * b) * c \mod n$
Comutatividade	$a + b \mod n = b + a \mod n$ $a * b \mod n = b * a \mod n$
Distributividade	a * (b + c) mod n = ((a * b) + (a * c)) mod n
Redutibilidade	$(a + b) \mod n = ((a \mod n) + (b \mod n)) \mod n$ $(a * b) \mod n = ((a \mod n) * (b \mod n)) \mod n$
Potenciação	$a^{x} \mod n = (a \mod n)^{x} \mod n$

$$a^{x} \mod n = (a \mod n)^{x} \mod n$$

- \rightarrow a=10, x=3, n=7
- \rightarrow (a mod n)^x mod n = (10 mod 7)³ mod 7 = 3^3 mod 7 = 27 mod 7 = 6

 \rightarrow a^x mod n = 10³ mod 7 = 1000 mod 7 = 6

Diffie-Hellman Key Exchange

ALICE

- Escolhe um n primo tal que (n-1)/2 também seja primo
- 2. Escolhe g, um gerador módulo n
- 3. Escolhe x, um inteiro (segredo)
- 4. Calcula a=gx mod n
- 5. Envia n, g e a para Bob

<AGUARDA BOB>

- 6. Recebe b de Bob
- 7. Calcula o segredo $s_A = b^x \mod n$

PÚBL

BOB

<AGUARDA ALICE>

- 1. Recebe n, g, a de Alice
- 2. Escolhe um inteiro y (segredo)
- 3. Calcula **b=g^y mod n**
- 4. Envia b para Alice
- 5. Calcula o segredo $s_B = a^y \mod n$

- Se alguém capturar b=g^y mod n e a=g^x mod n não consegue obter s
- Acredite: $s_A = s_B$ Portanto, $s_A = s_B = S$ é o segredo compartilhado

Quer dizer que s_A é igual a s_B ?

- → Lembrar que:
 - \bullet a^x mod n = (a mod n)^x mod n
- → Alice
 - \bullet $s_A = b^x \mod n = (g^y \mod n)^x \mod n = g^{yx} \mod n$
- → Bob
 - \bullet s_B=a^y mod n = (g^x mod n)^y mod n = g^{xy} mod n

of Dênio Mariz IFPR

Diffie-Hellman Key Exchange

rof. Dênio Mariz. IFPB

Diffie-Hellman Key Exchange

→ Exemplo:

- Alice: n=47, g=3, x=8
- Alice calcula $a=g^x \mod n = 3^8 \mod 47 = 28$
- Mensagem de Alice para Bob: {n=47,g=3,a=28}
- Bob pega y=10 e calcula $b=g^y \mod n = 3^{10} \mod 47=17$
- Mensagem de Bob para Alice: {b=17}
- Alice calcula s=b^x mod n= 17⁸ mod 47 = 4
- Bob calcula $s=a^y \mod n = 28^{10} \mod 47 = 4$
- Bob e Alice têm um segredo em comum: s=4
- O segredo pode ser a chave AES 128bits para (cifrar/decifrar)
- Atacante tem que resolver a equação 3^x mod 47=28

of Dênio Mariz IFP

Man-in-the-middle Attack

Prof. Dênio Mariz. IFPB

Autenticação baseada em Chave Secreta

- → Encontrar x em g^x mod n é conhecido como o "Problema do logaritmo discreto"
- → Pode levar muito tempo quando g e n são grandes
- → Tamanhos típicos para g e n:
 - 512 bits (155 dígitos)
 - Número de 0 até
 134078079299425970995740249982058461274793658205923933777235614437217640300735
 46976801874298166903427690031858186486050853753882811946569946433649006084095
 - 1024 bits (309 dígitos)
 - Número de 0 até 179769313486231590772930519078902473361797697894230657273430081157732675805500 963132708477322407536021120113879871393357658789768814416624928474306394741243 777678934248654852763022196012460941194530829520850057688381506823424628814739 13110540827237163350510684586298239947245938479716304835356329624224137215