

第五章 磁介质

§ 5-1 磁介质及其磁化

§ 5-2 有磁介质时的恒定磁场

§ 5-3 磁场的边界条件

• 磁性:

- 物质的基本属性之一, 即物质的磁学特性
- 吸铁石——天然磁体 —— 具有强磁性
- 多数物质一般情况下没有明显的磁性

• 磁介质 (magnetic medium) :

- 对磁场有一定响应,并能反过来影响磁场的物质
- 一般物质在较强磁场的作用下都显示出一定程度的磁性, 即都能对磁场的作用有所响应,所以都是磁介质

• 磁化 (magnetization) :

在外磁场的作用下,原来没有磁性的物质,变得具有磁性,简称磁化。磁介质被磁化后,会产生附加磁场,从而改变原来空间磁场的分布

一、磁本质

- 1. 磁荷模型
 - 磁荷有正、负,同号相斥,异号相吸
 - 磁荷遵循磁的库仑定律(类似于电库仑定律)
 - · 定义磁场强度H为单位点磁荷所受的磁场力
 - 把磁介质分子看作磁偶极子
 - 认为磁化是大量分子磁偶极子规则取向使正、负磁荷聚集两端的过程,磁体间的作用源于其中的磁荷
 - 但没有单独的磁极存在——?

2. "分子电流"模型

安培的大胆假设

- 磁介质的"分子"相当于一个环形电流,是电荷的某种运动形成的,它没有像导体中电流所受的阻力,分子的环形电流具有磁矩——分子磁矩,在外磁场的作用下可以自由地改变方向
- 3. 现代的观点

分子电流 —— 卢瑟福行星模型

近代物理:量子化轨道 (n,l,m,m_s)

$$\vec{\mu}_l = -\frac{e}{2m}\vec{L} \qquad \qquad \mu_S = -\frac{e}{m}S_Z$$

- 分子磁矩 $\overrightarrow{p_{m}}_{OF} = \overrightarrow{m_l} + \overrightarrow{m_s}$ (矢量和)
 - 轨道磁矩*mi*: 由原子内各电子绕原子核的轨道 运动决定
 - 自旋磁矩째: 由电子自旋与核自旋决定
- 所谓磁化:
 - -就是在外磁场 B_{0} 作用下,大量分子电流混乱分布(无序) \rightarrow 整齐排列(有序)
 - -每一个分子电流提供一个分子磁矩 $\overrightarrow{p_{m}}$ 分子
 - 磁化了的介质内分子磁矩矢量和 $\sum \overrightarrow{p_{m}}_{2} \neq 0$
 - 分子磁矩的整齐排列贡献宏观上的磁化电流I', 进而产生附加磁场B',总磁场 $B=B_0+B'$

二、磁介质及其磁化

电介质 \longrightarrow 产生极化电荷 q'

 \Rightarrow 介质中总场 $\vec{E} = \vec{E}_{\theta} + \vec{E}'$

电介质中 \vec{E} '总是与 \vec{E}_{θ} 反向,即恒有: $\vec{E} < \vec{E}_{\theta}$

磁介质 — 磁化后 产生磁化电流 I'

⇒介质中总场 $\vec{B} = \vec{B}_0 + \vec{B}'$

磁介质中 \vec{B} '与 \vec{B}_{θ} 可能同向,也可能反向,即磁介质中可能有 $B > B_{\theta}$,也可能是 $B < B_{\theta}$ 。

$$\mu_r = B / B_\theta$$
 — 磁数介

——磁介质的相对磁导率

$$\mu = \mu_r \mu_\theta$$

——磁介质的磁导率

二、磁介质及其磁化

- (1)无外磁场时,物质在宏观上对外都不显磁性。在外磁场中,它们会表现出不同磁性。
- (2) 在外磁场 \vec{B}_{θ} 作用下,
- 分子磁距受外磁场 \vec{B}_0 的磁力矩的作用,使分子磁距转向外磁场方向排列,则沿外磁场产生一附加磁场 \vec{B}' 。

$$\vec{p}_{m} \uparrow \uparrow \vec{B}_{0}$$
 $\vec{B}' \uparrow \uparrow \vec{B}_{0}$
 $\vec{B} = \vec{B}_{0} + \vec{B}' > \vec{B}_{0}$

• 外磁场 \vec{B}_0 使分子磁矩 \vec{P}_m 产生一个附加磁矩 $\Delta \vec{P}_m$,且 $\Delta \vec{P}_m$ 的方向与外磁场 \vec{B}_0 方向相反。

P_m受到力矩作用

$$\vec{M}_o = \frac{d\vec{L}}{dt} = \vec{p}_m \times \vec{B}_0$$

⇒e进动⇒圆电流

$$\Rightarrow \vec{B}' \uparrow \downarrow \vec{B}_0$$

⇒ 附加磁矩 Δp_m (恒与 \vec{B}_0 反向)

$$B = B_0 - B' < B_0$$

1. 顺磁质: 如锰, 铬, 氧等

对每个顺磁质分子: $\vec{p}_m \neq 0$,

外磁场中,每个分子磁矩都受 到磁力矩作用:

$$\vec{M} = \vec{P}_m \times \vec{B}$$

有序排列的分子磁矩就产生一个附

加磁场 \vec{B} 。 \vec{B} '与外场 \vec{B} 。同向.

故有:
$$B = B_{\theta} + B', B > B_{\theta}, \quad \mu_r = \frac{B}{B_{\theta}} > 1$$

对顺磁质, 附加磁矩<<分子磁矩;

故分子磁矩产生附加磁场是顺磁质显示磁性的主 要原因。

2. 抗磁质 如水银,铜,氢等

在抗磁质中,每个分子的: $\vec{P}_m = 0$

只有在外磁场作用下产生的附加磁矩: $\Delta \vec{P}_m \neq \theta$

电子进动产生的附加磁矩是抗磁质产生磁性的唯 一原因。

另外,由于附加磁矩 $\Delta \vec{P}_m$ 的方向(即由于磁化而产生的附加磁感应强度 \vec{B} '的方向)恒与外磁场的方向相反,所以抗磁质内部的 $B < B_{\theta}$ 。

即抗磁质的: $\mu_r = \frac{B}{B_o} < 1$

但在上述两类磁介质中,都有: $B pprox B_{\theta}$ 即 $\mu_r pprox 1$

且 $\mu_r = const(常量)$,它们统称为弱磁质。

3.铁磁质: 固有磁矩为零 如铁, 钴, 镍等

磁畴: 自发饱和磁化微区,

线度: μ m ~ mm,

$$\vec{B}_{\theta} = \theta$$
 时,取向不同,

$$\vec{B}_{\theta} \neq \theta$$
时, $\sum \vec{p}_{m} = \theta$

磁畴变化时存在阻力 ⇒ 磁化不可逆, 磁滞, 剩磁

 $T \uparrow \Rightarrow$ 磁畴内规则排列 $\downarrow \Rightarrow T > T_c$ 时顺磁

居里温度

・ \vec{B} 変化滞后于 I_0 或 \vec{B}_0 \Rightarrow <mark>磁滞回线</mark>

如图.
$$O \underset{I_0}{\longrightarrow} S \underset{I_0}{\longrightarrow} R \underset{I_0}{\longrightarrow} C \underset{I_0}{\longrightarrow} S' \xrightarrow{\cdots} \longrightarrow S$$

OS: 起始磁化曲线,

BR: 剥磁:人造磁铁, 磁带, 磁盘等

磁滞回线的面积 ∞ 功耗

按磁滞回线的形状,铁磁质可分为

软磁质:磁头、交流电器铁芯等硬磁质:永久磁铁(天然/人造)

铁磁材料的分类及其应用

• 软磁材料

- B_R小, H_c小, 磁滞回线瘦, 磁滞损耗小;
- 通电后立即磁化获得强磁场,断电立即退磁。

磁头、交流电器铁芯等

• 硬磁材料

- B_R大, H_C大,
- H_c : $10^4 \sim 10^6 A/m$;
- 磁滞回线胖,磁滞损耗大;
- 撤去外场后仍能保持强磁性

磁性材料在信息技术中的应用

- •随着信息时代的到来,多种磁性材料在信息高新技术中获得广泛而重要的应用
- ·磁记录:主要有(用永磁材料制成的)存储装置和写入、 读出设备。存储装置包括磁头和磁记录介质

■磁头:

■写入过程中:磁头将电信号——磁场

■读出过程中:将磁记录介质的磁场-

转变为电信号

■磁记录介质:内存、外存、磁盘和磁带等

图 5-16 矩磁材料的磁滞回线

三、介质磁化的宏观规律

类比电极化的讨论, 定义磁化强度:

I'为所有未抵消的分子电流代数和, 与载流子无关, 称为磁化电流或束缚电流。

均匀磁介质:

内部各处小分子电流相

互抵消:表面未被抵消

→磁化面电流。

可证: 对任意闭合回路L有:

定义磁化面电流密度i': 垂直磁化面电流方向单位

长度上的磁化面电流

可证
$$\vec{i}' = \vec{M} \times \vec{n}^0$$
 或 $\vec{i}' = M_t$

 \vec{n}^{θ} 一介质外法线单位矢量

 M_{L} 一 \dot{M} 在介质表面的切向分量

磁化面电流: I' = i'l

磁化电流与传导电流:

- ・传导电流
 - 载流子的定向流动,是电荷迁移的结果,产生焦耳热, 产生磁场,遵从电流产生磁场规律
- 磁化电流
 - 磁介质受到磁场作用后被磁化的后果,是大量分子电流叠加形成的在宏观范围内流动的电流,是大量分子电流统计平均的宏观效果
- 相同之处:同样可以产生磁场, 遵从电流产生磁确场规律
- 不同之处:电子都被限制在分子范围内运动,与因电荷的宏观迁移引起的传导电流不同;分子电流无热效应

求解时有类似电场的循环:

・传导电流产生 磁化电流产生

$$egin{cases} iggledown_S B_{ heta} \cdot dS = 0 \ iggridge B_{ heta} \cdot dl = \mu_{ heta} \sum_{L
eq 1} I_{ heta} \end{cases}$$

$$egin{cases} igoplus_S B_{ heta} \cdot dS = 0 \ igoplus_S B_{ heta} \cdot dl = \mu_0 \sum_{L
ho} I_0 \ igoplus_L B_{ heta} \cdot dl = \mu_0 \sum_{L
ho} I' \end{cases}$$

$$\begin{cases} \iint_S B \cdot dS = 0 \end{cases}$$
 —磁介质中Gauss定理 $\begin{cases} \oint_L B \cdot dl = \mu_0 \sum_{L \mid D} I_0 + \mu_0 \sum_{L \mid D} I' \end{cases}$

- •用上述公式计算磁场遇到麻烦
 - -/' 和B 互相牵扯,难于测量和控制,通常未知
 - -B-S定律和安培环路定理以已知电流分布为前提
- •解决办法——需补充有关磁介质磁化性质的已知条件

$$\int_{I} \vec{B} \cdot d\vec{l} = \mu_0 \sum_{L \nmid j} I + \mu_0 \sum_{L \nmid j} I' \qquad \sum_{I' = j} \vec{M} \cdot d\vec{l}$$

$$\oint\limits_{L}ec{B}\cdot dec{l}=\mu_{ heta}\sum_{L
eq}I_{ heta}+\mu_{ heta}\ointec{M}\cdot dec{l}$$

$$\oint_L (\frac{\vec{B}}{\mu_\theta} - \vec{M}) \cdot d\vec{l} = \sum_{L \nmid 1} I_\theta$$

传导电流

引入 辅助 量:

有介质时的Ampère 环路定理(H-ACL):

$$\oint_{L} \vec{H} \cdot d\vec{l} = \sum_{\theta} I_{\theta}$$

磁场强度

归入所有磁化效应, 不必再求 M或I'.

二、磁场强度

$$\frac{\vec{H} = \frac{\vec{B}}{\mu_{\theta}} - \vec{M}}{\mu_{\theta}} \quad (对任何磁质均适用)$$

弱磁质: $\vec{M} = \chi_m \vec{H}$

$$\chi_m = \mu_r - 1$$
 为磁化率, $\Rightarrow \vec{H} = \frac{\vec{B}}{\mu_0(1 + \chi_m)}$
L介质: χ 为标量, 有

各向同性介质: χ_m 为标量, 有

$$\vec{B} = \mu_0 \mu_r \vec{H} = \mu \vec{H}$$
 其中 $\mu = \mu_0 \mu_r$

$$\mu_r = 1 + \chi_m$$
 是一般定义,

而 $\vec{B} = \mu_r \vec{B}_o$ 仅适用于磁介质充满整个磁场时.

真空中, M=0, $\chi_m=0$, $\mu_r=1$, $B=\mu_0H$ 无磁化现象。

三. H-环路定理的应用

$$\oint_{L} \vec{H} \cdot d\vec{l} = \sum_{l} I_{\theta}$$

$$\vec{B} = \mu_0 \mu_r \vec{H} = \mu \vec{H}$$

 I_0 和均匀磁介质分布具有特定对称性时,可用H-ACL求 \vec{H} 进而求 \vec{B} , \vec{M} , \vec{i} 等量

即:
$$\begin{vmatrix} I_{\theta} \\ \mu_{r} \end{vmatrix}$$
 对称性 $\rightarrow \vec{H} \rightarrow \begin{cases} \vec{B} = \mu \vec{H} \rightarrow \Phi_{m} = \int_{S} \vec{B} \cdot d\vec{S} \\ \vec{M} = \chi_{m} \vec{H} \rightarrow \vec{i}' = \vec{M} \times \vec{n}^{\theta} \end{vmatrix}$

例: 充磁介质密绕螺线环. 已知 I, n, μ 求 $\vec{H}, \vec{B}, \vec{M}$ 和磁化分子电流I'.

解: H与磁芯物质无关

$$\oint \vec{H} \cdot d\vec{l} = n2\pi r I$$

$$H=nI;B=\mu nI$$
 方向: ()

$$M = \frac{B}{\mu_0} - H = \left(\frac{\mu}{\mu_0} - 1\right)$$
nI, 方向: ()

$$m{i'} = m{M} \implies m{I'_{\mathred{\%}}} = m{i'}/m{n} = \left(rac{\mu}{\mu_0} - 1
ight) m{I}$$

 $\mu_r > 1$, 顺磁, $I_{\text{\tilitet{\text{\tilitet{\text{\tilitet{\text{\tint{\text{\te}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\tex{\text{\texi}\text{\texi}\text{\text{\texi{\text{\text{\texi}\text{\texi{\$

例: 如图,已知 $R_1, \mu_{r1}, R_2, \mu_{r2}, I(R_1)$.

求: ① \vec{H} , \vec{B} ,② \vec{M} , \vec{i}'_{R_1} , \vec{i}'_{R_2} μ_{r_1} R_2

解: 半径r的同心圆上各点, \vec{H} , \vec{B} 相同,方向与I成右旋

① $\mathbf{r} < \mathbf{R}_1 : \oint \vec{H} \cdot d\vec{l} = H2\pi r = \frac{\pi r^2}{\pi R_1^2} I$

$$H = \frac{rI}{2\pi R_1^2}$$
; $B = \mu_0 \mu_{r1} H = \frac{\mu_0 \mu_{r1} rI}{2\pi R_1^2}$, 与*I*右旋

$$R_1 < r < R_2 : \oint \vec{H} \cdot d\vec{l} = H2\pi r = I$$

$$H=I/2\pi r;\;B=\mu_0\mu_{r2}I/2\pi r$$
 方向同上

$$r > R_2$$
: $H = I/2\pi r$; $B = \mu_0 I/2\pi r$ 方向同上

- 例:有一磁介质细铁环,在外磁场 撤消后, 仍处于磁化状态, 度矢量M 的大小处处相同,M的方 向如图所示。求环内的磁场强度H 和磁感应强度B
- 问: 公式B=μ₀ μ H 是否适用?
- 答: 不适用, 因为铁环属于铁磁质
- 可以用 $B=\mu_0(H+M)$ 来讨论
- 方法一: 用H的安培环路定理 求H-M-B
- 方法二: M——I'——B——H

$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} = 0 \iff \vec{B} = \mu_0 \vec{H} + \mu_0 \vec{M} \iff \vec{B} = \mu_0 \vec{i}' = \mu_0 \vec{M}$$

$$\vec{i}' = \vec{M} \times \vec{n}$$
 $\vec{i}' = nI$ 与螺绕环类比

B和M方向一致为

$$\vec{B} = \mu_0 \vec{i}' = \mu_0 \vec{M}$$

• 要点:

- 界面上介质的性质有一突变,这将导致磁场也会有突变
- 必须考虑用新的形式来给出边界上各物理量的关系,亦即给出边界条件
- 磁场的高斯定理、环路定理的积分形式在边界上依然成立,可以把不同介质的场量用积分方程联系起来
- 实际上边界条件就是把积分方程放到边界突变处 得到的结果

在两种磁介质分界面上

•由磁高斯定理可得: B法向连续

$$\iint_{S} \vec{B} \cdot d\vec{S} = \iint_{\vec{k}_{1}} \vec{B} \cdot d\vec{S} + \iint_{\vec{k}_{2}} \vec{B} \cdot d\vec{S} + \iint_{\vec{k}_{1}} \vec{B} \cdot d\vec{S} = 0$$

$$-B_{1n}\Delta S \qquad B_{2n}\Delta S \qquad \boxed{\text{侧面积} \to 0}$$

$$(\vec{B}_2 - \vec{B}_1) \cdot \vec{n} = 0 \quad \vec{\boxtimes} \quad B_{2n} = B_{1n}$$

设界面上无传导电流,则

·由环路定理可得: H切向连续

$$\vec{n} \times (\vec{H}_2 - \vec{H}_1) = 0$$

磁感应线在边界上的"折射"

B法向分量连续,切向分量不连续,在两种 界面发生折射

$$\frac{\mathbf{tg}\,\theta_1}{\mathbf{tg}\,\theta_2} = \frac{\mathbf{B}_{1t}}{\mathbf{B}_{2t}} = \frac{\mu_1 \mathbf{H}_{1t}}{\mu_2 \mathbf{H}_{2t}} = \frac{\mu_1}{\mu_2}$$

$$\theta_1 \approx 90^{\circ}, \quad \theta_2 \approx 0$$

B线折射

即铁磁质B线几乎与分界面平行——磁屏蔽

磁屏蔽效果没有静电屏蔽好

课后作业

课后习题:

5.1, 5.3, 5.5, 5.6

截止日期: 2025-06-10 24:00

谢谢!