Nome:	Cognome:	Matricola:

Esercizio 1

Dare la definizione di indice secondario sparso.

Indice secondario è una tabella T2 composta da coppie <chiave, puntatore> dove la chiave è un elemento delle tuple di un'altra tabella T1, ma non l'elemento su cui e' fatto l'ordinamento in T1; è sparso se T2 ha meno elementi di T1.

Esercizio 2

Considerare uno schema di relazione

R (E, N, L, C, S, D, M, P,A),

con le dipendenze E \rightarrow NS, NL \rightarrow EMD, EN \rightarrow LCD, C \rightarrow S, EPD \rightarrow AE.

Parte A

Calcolare una copertura ridotta per tale insieme.

Passo 1: portare le dipendenze in forma canonica

- 1. $E \rightarrow N$
- 2. $E \rightarrow S$
- 3. $NL \rightarrow E$
- 4. $NL \rightarrow M$
- 5. NL → D
- 6. EN → L
- 7. EN → C
- 8. $EN \rightarrow D$
- 9. **C** → **S**
- 10. EPD → A
- 11. EPD → E (banale)

Passo 2: togliere gli attributi estranei a sinistra. Dato $XY \to Z$, Y è estraneo se $Z \in X^+$, in particolare può succedere se $X \to Y$

- 1. $E \rightarrow N$
- 2. **E** → **S**
- 3. $NL \rightarrow E$
- $4. \ NL \to M$
- 5. $NL \rightarrow D$
- 6. $E \rightarrow L$
- 7. $E \rightarrow C$
- 8. $E \rightarrow D$
- 9. $C \rightarrow S$
- 10. **EP** → **A**

Passo 3: togliere le dipendenze ridondanti. Una dipendenza $X \to Y$ appartenente all'insieme F è ridondante se $Y \in X^+$ anche in $\{F - \{X \to Y\}\}\$.

```
1. E → N
```

- 2. $NL \rightarrow E$
- 3. $NL \rightarrow M$
- $4. E \rightarrow L$
- 5. E → D
- 5. **E** → **C**
- 6. C → S
- 7. EP → A

Parte B

Decomporre la relazione in terza forma normale

```
Chiave EP
```

Una tabella per dipendenza.

R1(E,N,L,C,D)

R2 (N,L,M,E)

R3(C,S)

R4(E,P,A)

La chiave è già contenuta in R4, quindi la decomposizione in 4 tabelle conserva le dipendenze ed è senza perdite sul join.

Esercizio 3

Si consideri la seguente basi di dati:

```
MATERIE (Codice, Facoltà, Nome, Professore)
STUDENTI (Matricola, Cognome, Nome, Facoltà)
PROFESSORI (Matricola, Cognome, Nome)
ESAMI (Studente, Materia, Voto, Data)
PIANIDISTUDIO (Studente, Materia, Anno)
```

Scrivere una espressione in algebra relazionale che elenchi gli studenti che hanno superato tutti gli esami previsti dal rispettivo piano di studio e che hanno nel piano di studio solo insegnamenti della propria facoltà.

Esercizio 4.

Date le due relazioni $R_1(A,B,C)$, $R_2(D,E,F)$, scrivere un'interrogazione SQL equivalente alla seguente espressione dell'algebra relazionale.

```
\pi_{AB}(R_1) - \pi_{AB}(R_1 \triangleright \triangleleft_{C=D}R_2))
```

```
select distinct A, B
from R1 left join R2
on (C = D)
where C <> D.
```

Esercizio 5

Date le definizioni:

```
create domain Dato as integer default 1
create table Lista (ELEMENTO Dato default 0)
```

indicare cosa avviene in seguito ai comandi:

- 1. alter table Lista alter column Elemento drop default
- 2. alter domain Dato drop default
- 3. drop domain Dato

Soluzione:

- 1. Il comando cancella il valore di default di Elemento. Il valore di default dopo il comando sarà quello impostato in Dato, ossia 1.
- 2. Il comando cancella il valore di default di Dato. Dopo l'operazione il valore di default sarà NUL
- 3. Il comando cancella l'intero dominio Dato. In Lista il dominio di Elemento diventerà integer