Hyperspectral Image Segmentation Using Quantum Annealing

Student

Haytam El Merabeti

M.Eng. High Performance Data Analytics HPDA CY Tech

M.Sc. High Performance Computing HPC
University of A Coruña

elmerabeti@cy-tech.fr

Supervisors

Gabriele Cavallaro

Head of Simulation and Data Lab Jülich Supercomputing Centre

g.cavallaro@fz-juelich.de

Adjunct Associate Professor University of Iceland

gcavallaro@hi.is

Piotr Gawron

Scientific Computing & Information Technology
Group Leader

AstroCeNT: Particle Astrophysics Science and
Technology Centre
International Research Agenda,
Nicolaus Copernicus Astronomical Centre

gawron@camk.edu.pl

Classical Computing vs Quantum Computing

Unit of information

Bits

Qubits

- Binary
- Deterministic
- Relatively stable
- Boolean logic
 - $\rightarrow \ Logic \ Gates$

- Superposition
- Entanglement
- Decoherence / Extreme sensitivity
- Quantum measurement
 - \rightarrow Quantum Gates

Advantages & Limits

Classical Computing

• Advantages :

- Reliability
- Accuracy
- Cost-effectiveness

• Limits:

- Transistor density in Integrated Circuits (IC)
 - → Moore's law
- Exponential time complexity
 - \rightarrow NP-Hard problems
- Simulation of large-scale quantum systems
 - \rightarrow Richard Feynman: "Nature isn't classical"

Quantum Computing

• Advantages :

- Exponential speedup for certain problems
 - ightarrow Shor's algorithm, Grover's algorithm
- Large-scale memory capacity
 - ightarrow Superposition of states represents large number of values simultaneously
- Efficient simulation of real-world systems
 - ightarrow Based on Quantum Mechanics

• Limits:

- Decoherence
- Error correction
- Scalability

Quantum Annealers

Quantum

Annealing

- Qubits
- Superposition
- Entanglement
- Interference

- Probabilistic
- Randomness
- Exploration vs Exploitation
- Temperature schedule

Hyperspectral Image Segmentation

Using Quantum Annealing

Indian Pines Dataset

- 145*145 pixels.
- 200 spectral reflectance bands (for the corrected version).
- Wavelength range: 400nm 2500nm.
- One-vs-Rest Classification Algorithm.

Indian pines Dataset : Sample

Ground state: Target Class N°11

Step 1

Choose a Classifier

Support Vector Machine SVM

$$f(x) = w^T x + b$$

Given training data (x_i,y_i) for i=1...N, with $x_i\in\mathbb{R}^d$ and $y_i\in\{-1,1\}$, learn a classifier f(x) such that :

$$f(x_i) = \left\{ egin{array}{l} \geq 0 \; if \; y_i = +1 \ < 0 \; if \; y_i = -1 \end{array}
ight.$$

i.e. $y_i f\left(x_i
ight) > 0$ for a correct classification.

Trade off between the margin and the number of mistakes on the training data!

Result

- SVM.
- Parameters (GridSearchCV):

SVC(C=100, cache_size=1024, kernel="poly", probability=True)

Step 2

Construct the adapted model for the problem formulation

Markov Random Fields

- Undirected graph G=(V,E).
- Nodes V:
 - ightarrow Discrete or Gaussian Probability distribution of Random Variables RV : $\{u_j\}_{j\in V}$.
- Edges E:
 - \rightarrow Binary edges.
 - \rightarrow Strength of the dependence between both variables.
- ullet Given N_i Markov blanket of Node i (Neighborhood) : $orall i\in 1,2,...,N$: $p(u_i|\{u_j\}_{j\in V-i})=p(u_i|\{u_j\}_{j\in N_i})$
- Energy expression : $E(u) = E_{data}(u) + E_{smoothness}(u)$

Ising model

- Originated from Statistical Physics (Ferromagnetism).
- Hamiltonian:

$$ightarrow H\left(s
ight) = -\sum_{i} h_{i} * s_{i} - eta \sum_{i \sim j} s_{i} * s_{j}$$

- Parameters :
 - \circ s : Spin configuration.
 - \circ s_i : Pixel index i of the image (as a 1D vector).
 - \circ h_i : Likelihood / Energy of being in a particular class.

$$ightarrow h_i = -1/4 log(1/Pi(c)-1)$$

 \circ β : How strongly its neighbors wants it to be in their class (magnetic moment).

$$\rightarrow \beta = 1$$

Result

- Classical Simulated Annealing.
- Metropolis-Hastings algorithm:
 - \circ State transition probability : $e^{-\delta \, E \, / \, T}$
- Parameters:
 - \circ temperature: 4 \rightarrow 0.5
 - beta: 0.5

Step 3

Embed the model into the Quantum Annealer

Embedding

Host graph

Problem graph

Embedding N°1

Embedding N°2

Chimera Graph

Pegasus Graph

Result

- Quantum Annealing
 - o Patches: 16 * (47, 47, 2)
 - Default "minorminer" embedding algorithm.
- Parameters :
 - ∘ beta: 0.5
 - o num_reads: 100

Thank you!

Appendix

One-vs-Rest Classification Algorithm

- 1. Normalize the data.
- 2. For each class $c \in C$:
 - 2.1 Split X_{train} into classes: c, $\neg c$ (not c).
 - 2.2 Train a binary SVM using X_{train} and y_{train} .
 - 2.3 Calculate probabilities $P_i(c)$, $P_i(\lnot c)$ of i-th pixel from X having/not having class c.
 - 2.4 Calculate local energy: $h_i = -1/4log(1/Pi(c)-1)$.
 - 2.5 Build Ising model: $H(s) = -\sum_i h_i * s_i \beta * \sum_{i \sim j} s_i * s_j$.
 - 2.6 Embed grid model into chimera graph.
 - 2.7 Sample K = 10 low energy states samples using DWave annealer.
 - 2.8 Unembed the model back to grid.
 - 2.9 For each pixel i: $P_i'(c) = \sum_{k=1}^K \frac{1}{\sum_{\xi=1}^K exp(-H(s^{[\xi]}) + H(s^{[k]}))} \times \delta(s_i^{[k]} = 1)$, where $s^{[k]}$ is a configuration and $H(s^{[k]})$ is energy of sample k.
- 3. For each pixel i assign class $c_i^*\colon c_i^*=argmax_{c\in C}P{\prime}_i(c).$