TÖL101G Tölvunarfræði 1

TOLIVIG TOIVUIIai ii ævi i								
Laugardagur 10. október 2015, kl. 10:00–11:30 Miðmisser								
Nafn:	Sýnislausn	Kennitala:						
		Dæmahópur:						
	eyfilegu hjálpargögnin eru eitt A4 blað (báðar :. Notið ekki prófbók heldur færið öll svör inn	hliðar!), sem nemandinn hefur búið til. Prófið er á þetta próf.						
hve	%; hver liður 5%] Svarið eftirfarandi krossasp rjum lið. Ekki er dregið frá fyrir rangt svar. Ef luð þið velja svarið sem ykkur finnst "réttast".	ykkur finnst fleiri en eitt svar koma til greina						
a)	Eru Java forrit þýdd eða túlkuð? []Þau eru þýdd []Þau eru túlkuð [x]Þau eru þýdd yfir í millikóða, sem er túlka [] Þau eru hvorki þýdd né túlkuð [] Þau eru bæði þýdd og túlkuð	ður						
,	Hver af eftirfarandi skipunum býr til jafndreif 60 (báðar meðtaldar)?	ðar slembi heiltölur (<i>random integers</i>) á bilinu 5						
	<pre>[] r = (int)Math.random()*46+5; [x] r = (int) (Math.random()*46)+ [] r = (int) (Math.random()*45)+ [] r = (int)Math.random()*45+5; [] r = Math.random(5, 50);</pre>							
c)	Hvernig er tugatalan 87 á tvíundarformi (<i>bina</i> [] 1100111 [] 1010101 [] 1100111 [x] 1010111 [] 1001011	ry)?						
	Efiogjeru heiltölubreytur, þar sem i = 2 onkvæmd setningarinnar hér að neðan? i += j ++i; []ier 2 og jer 5 []ier 2 og jer 4 []ier 4 og jer 5 [x]ier 4 og jer 4 []ier 0 og jer 4	og j = 5, hvert er þá lokagildi breytanna eftir						
	[] Let U og] er 4							

Skrifið ekki hér fyrir neðan							
1	2	3	4	5	6	\sum_{i}	
	1					_	

e) Hver eru lokagildi breytanna **a** og **b** í eftirfarandi forritsbút?

```
int a = 10;
int b = 2;
while (b < a) {
    if (a % b == 0) {
        a = a / b;
        b = 2;
    } else {
        b++;
    }
}
[]aer 10 og ber 2
[]aer 5 og ber 2
[]aer 2 og ber 5
[]aer 2 og ber 5</pre>
```

f) Hér að neðan er Java forritsbútur sem býr til fylki. Hvers konar fylki verður til?

```
int[][] b = new int[N][];
for (int i=0; i<N; i++) {
    b[i] = new int[(int) (Math.random()*N)];
}

[] Fylkið er tvívítt NxN fylki
[] Fylkið er einvítt fylki með slembigildum
[] Fylkið er tvívítt fylki þar sem dálkarnir eru mislangir
[x] Fylkið er tvívítt fylki þar sem línurnar eru mislangar
[] Fylkið er tvívítt Nx1 fylki</pre>
```

2. [10%] Reiknið út **gildi** eftirfarandi segða (*expressions*) og skrifið það í svæðið hægra megin. Tilgreinið einnig af hvaða **tagi** gildin eru.

3. [15%] Sigga er að byrja að vinna í fataverslun. Verslunarstjórinn býður henni þrjá möguleika á launakjörum. Möguleiki *A* er að fá fastar kr. 100.000 á viku. Möguleiki *B* er að fá kr. 2000 á tímann fyrir 40 stunda vinnuviku og einnig 5% af þeim sölum sem hún skilar. Loks er möguleiki *C* að Sigga fái engin föst laun, heldur aðeins 15% af sölunni sinni.

Skrifið Java forritið **Laun. java** sem biður notandann um áætlaða sölu Siggu á viku og reiknar út áætluð laun hennar miðað við ofangreinda þrjá möguleika. Forritið á síðan að skrifa út hvaða möguleiki er bestur og hver launin væru þá.

```
public class Laun {
   public static void main(String[] args) {

        StdOut.print("Sláið inn sölu: ");
        double sala = StdIn.readDouble();

        double A = 100000;
        double B = 40*2000 + 0.05*sala;
        double C = 0.15*sala;

        if (A >= B && A >= C)
            StdOut.println("Möguleiki A bestur: " + A);
        else if (B >= A && B >= C)
            StdOut.println("Möguleiki B bestur: " + B);
        else
            StdOut.println("Möguleiki C bestur: " + C);
        }
    }
}
```

4. [15%] Skrifið Java forritið **Collatz.java**, sem fær inn á skipanalínu heiltöluna *n*. Forritið á að endurtaka eftirfarandi aðgerð þar til *n* er komið niður í 1: Ef *n* er oddatala þá margfalda hana með 3 og leggja 1 við. Ef *n* er jöfn tala þá deila í hana með 2. Forritið á að telja hversu oft þetta var gert (þar til *n* er komið niður í 1). Í lok forritsins á að skrifa út fjölda ítrana á snyrtilegan hátt.

5. [15%] Skrifið Java <u>forritsbút</u> sem finnur alla *toppa* í *MxN* **double** fylkinu **a**. Toppur í tvívíðu fylki er innra stak **a**[i][j], sem er stærra en allir fjórir nágrannar þess í fylkinu. Nágrannar staks eru stökin fyrir ofan, neðan, til vinstri og til hægri við stakið sjálft. Forritsbúturinn ykkar á að skrifa út hnit allra toppa sem finnast í fylkinu **a**.

6. [15%] Skrifið Java forritið **JafnaUt.java**. Það er sía (*filter*), sem fær kommutölur af staðalinntaki og skrifar kommutölur á staðalúttak. Forritið á að jafna talnastrauminn út þannig að hver úttakstala er meðaltal þriggja inntakstalna. Til dæmis ef inntakið væri 3 2 4 9 2 1, þá væri úttakið 3.0 5.0 5.0 4.333333333, því meðaltalið af 3, 2, 4 er 3.0, meðaltal 2, 4, 9 er 5.0, o.s.frv. Athugið að úttakið hefur alltaf tveimur færri tölur en inntakið. Þið megið gera ráð fyrir að inntakið hafi að minnsta kosti þrjár tölur.

```
public class JafnaUt {
    public static void main(String[] args) {

        double a, b, c;

        a = StdIn.readDouble();
        b = StdIn.readDouble();

        while (!StdIn.isEmpty()) {

            c = StdIn.readDouble();
            StdOut.println((a+b+c)/3.0);
            a = b;
            b = c;
        }
    }
}
```