

Tutorium Theoretische Grundlagen der Informatik

Institut für Kryptographie und Sicherheit

Zum Übungsblatt

- beim "Simulieren" alle Konfigurationen angeben, außer es steht explizit was anderes da
- Zwischenschritte beim Umformen in Chomsky-NF machen es dem Tutor einfacher

Gödels Unvollständigkeitssatz

Jedes "hinreichend m\u00e4chtige" formale System ist entweder widerspr\u00fcchlich oder unvollst\u00e4ndig.

Gödels Unvollständigkeitssatz

- Jedes "hinreichend m\u00e4chtige" formale System ist entweder widerspr\u00fcchlich oder unvollst\u00e4ndig.
- Bsp. für hinreichend mächtig: $\mathbb N$ mit + und * (Th($\mathbb N$, +, *))

(Nicht-)Entscheidbarkeit von wichtigen Theorien

■ $Th(\mathbb{N}, +)$ ist entscheidbar.

(Nicht-)Entscheidbarkeit von wichtigen Theorien

■ $Th(\mathbb{N}, +)$ ist entscheidbar.

■ $Th(\mathbb{N}, +, *)$ ist unentscheidbar.

Was ist ein Beweis?

- Ein Beweis ist (maschinen-)überprüfbar.
- Alle beweisbaren Aussagen sind wahr ("Soundness").

Was ist ein Beweis?

- Ein Beweis ist (maschinen-)überprüfbar.
- Alle beweisbaren Aussagen sind wahr ("Soundness").
- Die Menge der beweisbaren Aussagen in $Th(\mathbb{N}, +, *)$ ist rekursiv aufzählbar.
- \Rightarrow Es existieren nicht beweisbare Aussagen in Th(\mathbb{N} , +, *).

Was ist ein Beweis?

- Ein Beweis ist (maschinen-)überprüfbar.
- Alle beweisbaren Aussagen sind wahr ("Soundness").
- Die Menge der beweisbaren Aussagen in $Th(\mathbb{N}, +, *)$ ist rekursiv aufzählbar.
- \Rightarrow Es existieren nicht beweisbare Aussagen in Th(\mathbb{N} , +, *).
 - Für jedes Kalkül (mit "Soundness" und Turingentscheidbarkeit der Gültigkeit von Ableitungen) gibt es eine Aussage, die im Kalkül nicht beweisbar ist.

Turingreduzierbarkeit

- Ein Orakel für eine Sprache L ist ein "externes Gerät", das als Hilfe für eine TM entscheidet, ob ein Wort $w \in L$ ist.
- $TM^O :=$ Turingmaschine mit Zugriff auf Orakel O.

Turingreduzierbarkeit

- Ein Orakel für eine Sprache L ist ein "externes Gerät", das als Hilfe für eine TM entscheidet, ob ein Wort $w \in L$ ist.
- TM^O := Turingmaschine mit Zugriff auf Orakel O.
- A ≤_T B := es existiert eine Orakel-TM TM^O, die A entscheidet, wobei O Orakel für B (Turingreduzierbarkeit).

Turingreduzierbarkeit

- Ein Orakel für eine Sprache L ist ein "externes Gerät", das als Hilfe für eine TM entscheidet, ob ein Wort $w \in L$ ist.
- TM^O := Turingmaschine mit Zugriff auf Orakel O.
- $A \leq_T B :=$ es existiert eine Orakel-TM TM^O , die A entscheidet, wobei O Orakel für B (Turingreduzierbarkeit).
- $A \leq_T B$ und B entscheidbar $\Rightarrow A$ entscheidbar
- Halteproblem für TM mit Orakel O nicht durch Turingmaschinen mit Orakel O entscheidbar.

Kolmogorow-Komplexität

- stelle Wort w durch $\langle M \rangle$ 01w' dar, wobei
 - 01 ist "Trennzeichen"
 - lacktriangle M bei Eingabe w' hält und w aufs Band schreibt

Kolmogorow-Komplexität

- stelle Wort w durch $\langle M \rangle 01w'$ dar, wobei
 - 01 ist "Trennzeichen"
 - M bei Eingabe w' hält und w aufs Band schreibt
- K(w) ist die Länge der kürzesten Codierung für $w \in \{0,1\}^*$ nach obiger Form (Kolmogorow-Komplexität)