4.3 MOVIMIENTOS EN UN ESPACIO APIN EUELIDEO

Def 4,3.1. Sea A = (A, E) un españo afin euclideo. Una aplicación afin f: A - A se llema maximiento o isometría si conserva les distensions entre puntos:

$$d(f(p), f(q)) = d(p,q) \quad \forall p,q \in A$$
.

Es fa'ul comprebaz que la composition de dos movimientos f_1 y f_2 en un espacio afin euclèdec es otro movimiento y a que si $p_1q \in A$ $d(f_1of_2(p), f_1of_2(q)) = d(f_2(p_1,f_2(q)) = d(p_1q)$.

Proposition 4.3.2 Sea $f:A \to A$ un movimiento en un espano afin euclidea y sea $f:E \to E$ su aplication lineal asociada. Entenas, f es una aplicación exchogenal.

D/ Recordar que fes outogonal si conserva la longitud de los vectores. Seen pigeA y pg eE. Como fes una aplicación afén

$$\|f(pq)\| = \|f(p)f(q)\| = d(f(p),f(q)) = d(p(q) = \|pq\|.$$

Elizamos un sistema de referencia ordonoxemal Ren A, e.a. de dim n. Las ecuavores de f en R son

$$f\begin{pmatrix} x_1 \\ x_n \end{pmatrix} = \begin{pmatrix} a_1 \\ a_n \end{pmatrix} + A\begin{pmatrix} x_1 \\ x_n \end{pmatrix} = a + Ax$$

donde A es cha matriz de terreiro nxn de f en R. Entonies A es eva matriz ortogoral, e. d. $A^{\dagger}A = AA^{\dagger} = I_{n}$

- 1. Fijado en sistema de referencia artonoxeme R en A podemos identifican $A=IR^n$ usually $E=IR^n$ usually para evolution f(x)=a+Ax, $x\in IR^n$, $a\in IR^n$, ten A matriz artogonal de arden n
- 2. Borno A es astogoral, IAI=II. Sc IAI=1, f se dive directo y sc IAI=-1, f se dive inverse.
- 3. Useremos la clasificación de aplicaciones codonormels en \mathbb{R}^2 y \mathbb{R}^3 dada en el capibolo 1 para estat clasifican los movimientos en \mathbb{R}^2 y \mathbb{R}^3 .

EJEMPIO A Dado N=(NI,-, Nn) EIR", la treslación To de rector N es un movamiento

$$T\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

EJEMPIOB. En R2 una rectauch o girco de angulo d con centro en PER1 es un movemiento que se denotora por Gp, a. Como A= Gp, a= (send una) des emanores de Gpid en un s.de re, overtonorenel son

y (a1) se determina lon el punto Pijo: Gp, x (P) = P.

EJEMPIOC. Halla les ecuacions de la restación de contro P=(1,2) y angulo de girco d= #

S/
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
. Como $P = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ os Pyo

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = -\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = -\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{2}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & +\frac{2}{\sqrt{2}} \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 + \frac{1}{\sqrt{2}} \\ 2 + \frac{3}{\sqrt{2}} \end{pmatrix}$$

EJEMPLO O. En 12° una reflexión respecto a una recta r, Sp-sometriaes un movimiento: a cada ponto pER2 le hau ceroespondoz el

ponto p'= Sr(p) que es el simeltaire de P con respecto a r. Todos los puntos de r quedan figos por Sr.

En una base \$= {A; u, u, u, i on Acr, i 1.12 unitarios y millor la matrior de Sr. es (10). Les emanions de So en \$= 40; E, E) se hallon mediante un combis de base.

EJEMPLO E. Halla les ecuacions de la reflexion Sp en 12 con respecto a la recta r de eccación X+24=4

5/ Tomaz Q=(2,4) = y Q=(1,2) = - En la base == (2,4)

$$A = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{3} & 0 \\ 0 - 1 \end{pmatrix} \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}^{-1} =$$

les equations de 5x son

$$Sr\left(\frac{x}{y}\right) = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} \frac{3}{5} - \frac{4}{5} \\ -\frac{4}{5} - \frac{3}{5} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

 $y \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ se calcula usendo un ponto de r: 2x+y=4, que que de figo; con $P = \begin{pmatrix} 0 \\ 2 \end{pmatrix} \in Y$,

luego

$$S_r(x) = \begin{pmatrix} x/5 \\ y/5 \end{pmatrix} + \frac{1}{5} \begin{pmatrix} 3 - 4 \\ -4 - 9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Sal2/ las emaniones de 5n preden obtenoese de mareza greométrica. Sea n' un vectore uniters Lar. Dado pER2

con 2=1PP'11=2d(P,r). Con ger y demo en la figura

$$d(P_1r) = ||\vec{aP}||\omega_2 = ||\vec{aP}|| \frac{\langle \vec{aP}, \vec{n} \rangle}{||\vec{aP}|| ||\vec{n}||} = \langle \vec{aP}, \vec{n} \rangle$$

Par tanto,

En el ejemplo, $P=\begin{pmatrix} X\\ Y\end{pmatrix}$, $P=\begin{pmatrix} X'\\ Y'\end{pmatrix}$ s $q=\begin{pmatrix} 0\\ 2\end{pmatrix}$ s $\vec{n}=\frac{1}{\sqrt{5}}\begin{pmatrix} 1\\ 2\end{pmatrix}$ presoduce

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} - 2 < \begin{pmatrix} x \\ y-2 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} \frac{1}{2} \end{pmatrix} > \frac{1}{\sqrt{3}} \begin{pmatrix} \frac{1}{2} \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} - \frac{2}{5} (x+2y-4) \begin{pmatrix} \frac{1}{2} \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 8/5 \\ 16/5 \end{pmatrix} + \frac{1}{5} \begin{pmatrix} 3 & -4 \\ -4 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

NOTA; Prede collaborse A=2P-I con P de matriz de proyectión sobre $r=\langle \binom{2}{-1} \rangle$ y P se Cellula como en 5.14

EJEMPLO F. En IR² una reflexion/simetria con deslizamiento es la composición de una reflexión con respecto a una recta r segunda de una treslación de vector \vec{n} II r: $S_{r,\vec{n}} = T_{r} \circ S_{r}$. Como $S_{r,\vec{n}} = T_{o} S_{r}$ = S_{r} la parte lineal de $S_{r,\vec{n}} = S_{r}$ se halla como en el ejemplo E.

Ahora, 50,02 no trone puntos fijos, pero r es invaciante. Con esta información preden caladarse las ecuacion de la simetra con dessissamionto.

ETEMPIO 6 Halla lassefle ecuaciones de la reflexion con destizamiento de eje r: x+2y=4 y vector de treslacion $\vec{v}=(4,3)$

5/ Sabemos del ejemplo E que

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = S_{\gamma, \sqrt{2}} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \frac{1}{5} \begin{pmatrix} 3 - 4 \\ -4 - 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Con
$$q = {0 \choose 2} \in r$$
, $S_r, z(q) = T_{r2} \circ S_r \cdot (q) = T_{r2} \cdot (q) = {1 \choose 2} + {1 \choose 3} = {1 \choose 5}$. Entonus,
$${1 \choose 5} = {a_1 \choose a_2} + {1 \choose 5} {3 - 4 \choose -4 - 3} {0 \choose 2} = {a_1 \choose a_2} + {1 \over 5} {-8 \choose -6} \Rightarrow {a_1 \choose a_2} = {1 \choose 5} - {1 \choose 5} = {1 \choose 3 \choose 5}$$

PROBLEMOS: TODOS LOS MOVIMIENTOS DE 12º SON DE ALGUNO DE LOS TIPOS ANTERIORES
Pronemos ahora ejemplos de monúmientos/ asometicos en R 3

EJEMPLO H. En IR³ una reflexión/simetra, 5_{R} , con respecto a un plemo JT es sen monomiento. Todo ponto P do lleva a un punto $P' = 5_{R}(p)$ tal que $PP \perp JT$ y PT

divide al segmento PP' en dos partes iguales. En ura base $\beta' = d\vec{u}_1, \vec{u}_2, \vec{u}_3$ como en la figura, un $\vec{u}_3 \perp \pi$ la natura de 5_{π} es $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 \end{pmatrix}$. Se puede halla 5_{τ} un respecto a $\beta = d\vec{e}_1, \vec{e}_2, \vec{e}_3$ realizando en cambio de base.

ETEMPLO I. Halla las ecuacions de la resflexión en 123 con respecto al plano \mathcal{T} de ecuación 2x+y+2=2.

$$S/\vec{n} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{2}{1} \end{pmatrix} \perp \pi$$
; $\vec{u}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{2}{1} \end{pmatrix}$, $\vec{u}_2 = \vec{u}_3 \times \vec{u}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{2}{1} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} -2, 2, 2 \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} -1, 1, 1 \end{pmatrix}$

En la base
$$\beta = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$$
, $\tilde{S}_r = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ y en la base $\beta = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$

$$A = \begin{pmatrix} 0 & -k_3 & k_2 \\ k_2 & k_3 & k_2 \\ -k_2 & k_3 & k_2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 &$$

Entones

$$S_{r}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x^{1} \\ y^{1} \\ z^{1} \end{pmatrix} = \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} + \frac{1}{3}\begin{pmatrix} -1 - 2 - 2 \\ -2 & 2 - 1 \\ -2 & -1 & 2 \end{pmatrix} \begin{pmatrix} y \\ y \\ z \end{pmatrix}$$

Hallemos (az az) userdo que los puntos de 5n guadan figos: p=(b) produe

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} -1 & -2 & -2 \\ -2 & 2 & -1 \\ -2 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} -1 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

50L2/ El ejemplo I predi resolverse geométricamente, como se hozo en el ejemplo E para la simetoura respecto a una recta, la formula

donde quet y n'es un ventor uniterno normal a IT. Para el $P=\begin{pmatrix} x \\ t \end{pmatrix}, \quad p'=\begin{pmatrix} x' \\ t' \end{pmatrix}, \quad q=\begin{pmatrix} 0 \\ 1 \\ t \end{pmatrix}, \quad \vec{n}=\frac{1}{\sqrt{n}}\begin{pmatrix} 2 \\ 1 \\ t \end{pmatrix}$

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} y \\ Y \\ Z \end{pmatrix} - 2 < \begin{pmatrix} x' - 0 \\ Y \cdot 1 \\ Z - 1 \end{pmatrix}, \begin{cases} \frac{1}{4} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} > \frac{1}{4} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{4}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{pmatrix} + \frac{1}{3} \begin{pmatrix} -1 - 2 - 2 \\ -2 - 2 & -1 \\ -2 - 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ 2 \end{pmatrix}$$

NOTA: A puede calcularise con A=I-2Pa, con a= (3) y Pais

$$A = 1 - 2P = \frac{1}{3} \begin{pmatrix} -1 - 2 - 2 \\ -2 - 2 - 1 \\ -2 - 1 - 2 \end{pmatrix}.$$

EJEMPIO J. Sûmetaia (con respecto a un pleno) con deslizamiento

La composition Skin = Toto Sk de una sometian Si con respecto al plano it signida de una traslación de viector 2 11 T es una scimetrala con deslizamiento. El plano IT no es de puntos fijos, pero es invoccionte por 5/2, n2

ya que Siche (A) 2 P+V N PEN. La parte lineal de Sirine trone como matrita la de Sx ya que la matriz de Tr es I. Esto ros permite calular sus emaciones.

EJEMPIO La riotanoh / guro, Gn, x, de angulo x respecto a la recta r: k+tv], orcientada segon n] (uniterio) es un movemento de 123. En la base \$=1N], NZIN3 1 O.M. y positivament ordente du (N3=N ×N2) la mabiez de Gna es

(1 0 0 0 cond ond)

A postir de aqué se obtiene la matriz A de G_{nd} on le base $\beta=d\vec{e}_i,\vec{e}_i,\vec{e}_j$? con un centous de base. El punto $\alpha=\begin{pmatrix} a_i \\ a_3 \end{pmatrix}$ se balla useroles que analquier punto de r queda fijo.

EJEMPLO L. Halla las emacions del goras de 90º con respecto a la reda r=p+60 ordentada según ~= (1,1,0). (p=(1,0,-1))

5/ Sea
$$\vec{N_1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\vec{N_2} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $\vec{N_3} = \vec{N_1} \times \vec{N_2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 11 \\ -1 \\ 0 \end{pmatrix}$. En la bax $\vec{p} = -1$ $\vec{N_1}, \vec{N_2}, \vec{N_3}$ la matriz de $\vec{B}_{r,d}$ es $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$ y en la bax \vec{p}

$$A = \begin{pmatrix} \sqrt{2} & 0 & + \sqrt{2} \\ \sqrt{2} & 0 & - \sqrt{2} \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{2} & \sqrt{2} & 0 \\ 0 & 0 & 1 \\ \sqrt{2} & \sqrt{2} & 0 \end{pmatrix} = \begin{pmatrix} \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & 0 \\ \sqrt{2} & \sqrt{2} & 0 \end{pmatrix} = \begin{pmatrix} 1/2 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Entones $G_{r,x}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \begin{pmatrix} y_2 & y_2 & y_2 \\ y_2 & y_2 & -y_2 \\ -y_0 & y_0 & Q \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$

$$\begin{aligned} & (a_1) &= \begin{pmatrix} 0 \\ -1 \end{pmatrix} \in Y & \text{Rijo} \\ & \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} &= \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}$$

EJEMPLO M. Un movimiento helicocalel en IR3 es la composicion de

und motavan Gr, a browntada y una traslavian Tro de nector no paraleto a r. ta matriz A de la parte liveal de sen movemento heliciodel es la misma que la de Gr, a ya que Tro = I.

Este movimiento no tone puntos fijos, pero ni per, MH(p)=p+r.

ETEMPIO N°. Halla los ecuacions del movemiento helicardal (p=0,0,-1) de angulo $d=90^{2}$ con respecto a la recta $r=p+t\vec{u}_{i}$ con $\vec{u}_{i}=(4,1,0)$ orientada seguin \vec{N}_{i} y vector de treslacion $\vec{v}=(-1,0,2)$

S/ Del ejemplo L
$$MH\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{2} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

Ponerlo paralelo a r por ahora

Como MH
$$\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 se there

$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \begin{pmatrix} \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \begin{pmatrix} \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} + \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & -\frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

ETEMPRO O. Una antimotación en \mathbb{R}^3 es la composición de un gere oxientado $G_{r,x}$ y una xeflexación con xespecto a un plano π , S_{π} , e.d. $Ar = S_{\pi} \circ G_{r,x}$, de manora que π es perpondicular a r.

la matrice A de ura entourotanon es $A = \widetilde{S}_{H} \circ \widetilde{G}_{H} d$ y antiens matrices, \widetilde{S}_{H} y $\widetilde{G}_{H} d$ subernes evaluatorles.

les artionotamores touren un ulmis ponto fijs, que en la pontersección de V y K.

· Cuendo en la proxima seculoir estudiernos la clasificación de los movimientos/Osometración en IR3 mostraremos que los estudiados con, escrualmente, todos los movimientos posibles en IR3.

4.4. CLASIFICACIÓN DE LOS MOVIMIENTOS EN \mathbb{R}^2 y \mathbb{R}^3 Montimiento $f: \mathbb{R}^n \to \mathbb{R}^n$, f(x) = a + Ax, $a \in \mathbb{R}^n$, A matriz oxetegenal.

Lema 4.4.1. Si $A \in O(n)$, $\ker(A^t - I) = \ker(A - I)$

D/ Si x ER",

 $||(A-I)x|| = ||(A-AA^{t})x|| = ||A(I-A^{t})x||$ | A conserve la largeted de los perfectos =

= ||(I-Ab) x || = ||(Ab-I)x||.

Lema 4.4.2 So A & O(n), Im (A-I) = (free (A-I))

D/ Probaremos a) $\operatorname{Im}(A-I) \subset (\ker(A^{t}-I))^{\perp}$ b) $(\operatorname{Im}(A-I))^{\perp} \subset \ker(A^{t}-I)$

ya que a) y b) junto con el lema 4.4.1 proceba el lorra 4.2.2.

a) Si $\vec{X} \in \text{Im}(A-I)$, $\vec{J} \vec{N} \in \mathbb{R}^n + q$. $(A-I)\vec{N} = \vec{X}$. Entonus, para todo $\vec{W} \in \text{tan}(\Delta^t - I)$,

 $\langle \vec{x}, \vec{w} \rangle = \langle (\Delta - I)\vec{v}, \vec{w} \rangle = \langle \vec{v}, A^{\dagger}\vec{w} \rangle - \langle \vec{v}, \vec{w} \rangle =$ $= \langle \vec{v}, (A^{\dagger} - I)\vec{v} \rangle = \langle \vec{v}, \vec{o} \rangle = 0$ Por tanto $\vec{x} \in (\text{ter}(A^{\dagger} - I))^{\perp}$

b) Sea $\vec{x} \in (\mathbf{Im} (A-I))^{\perp}$. Se tione $||(A^{\dagger} - I)\vec{x}||^2 = ||A(A^{\dagger} - I)\vec{x}||^2 = ||\mathbf{a} - A)\mathbf{x}||^2 = \langle (\mathbf{I} - A)\mathbf{x}, (\mathbf{f} - A)\mathbf{x} \rangle$ A conserva

= $\langle \times, (I-A) \times \rangle + \langle A \times, (I-A) \times \rangle = O + \langle (I-A^{t}) A \times, \times \rangle$ $\in Im(I-A)$

= $\langle (A-I)\vec{X}, \vec{X} \rangle = 0$. Portanto $(A^{t}-I)\vec{X} \neq \vec{B}$. $\in Arg(A-I)$

E

1

Sea P la proyection ortogonal de \mathbb{R}^n sobre for (A-I). Como for $(P)=(\ker(A-I))^{\perp}$ por el lema 4.4.2 se trone

$$kar(P) = Im(A-I)$$
 (1)

Lema 4.4.3. Si $f(x) = a + A \times es$ un movimiento en \mathbb{R}^n , el punto d = P(f(x) - x) es imdependiente de $x \in \mathbb{R}^n$ (diremos que d es el viertos de disseizamiento de f)

D/ Si x' = x + v es obre ponto de \mathbb{R}^n , $P(f(x') - x') = P(\alpha + Ax' - x') = P(\alpha + Ax + Av - x - v) = P(f(x) - x) + P(A - I) \cdot v = P(f(x) - x) + P(A - I) \cdot v = P(f(x) - x) = P(f(x$

Lema 4.4.4. Un movemento f(x) = a + Ax en \mathbb{R}^n thore puntos f(y) = a + Ax en \mathbb{R}^n

D/ \Rightarrow) Si existe $p \in \mathbb{R}^n$ fijo para f, d = P(f(p)-p) = P(p-p) = 0 \Leftarrow) Si d = 0, analysis. $x \in \mathbb{R}^n$ satisface $0 = d = P(f(x)-x) \Rightarrow f(x)+x \in \ker P = \operatorname{Im}(A-I)$. hugo existe $V \in \mathbb{R}^n$ tel que $f(x)-x = (A-I)v \Leftrightarrow A+Ax-x = Av-v \Leftrightarrow A+A(x-v) = x-v \Leftrightarrow f(x-v) = x-v \Leftrightarrow por tento x-v es un punto fipo de f.$

Lema 4.4.5. Sea $f(x) = a + A \times un movimiento en IR"$ y L= $\{x \in IR^n: f(x) = x + d\}$. Se trone que Les una voire.

Wheal up direction fur(A-I) (duml= dum (her(A-I))

NOTA: Harmomos be be a workedad caracteristica de f.

D/ Problemos premero que $L \neq \emptyset$.

Si $\times \in \mathbb{R}^n$, $d = P(f(x) - x) = P(d) = P^2(f(x) - x) =$

$$= P(f(x)-x) \Rightarrow P(f(x)-x-d)=0 \Rightarrow f(x)-x-d \in \ker(p)$$

(1) = Im(A-I). Pox tento, existe $V \in \mathbb{R}^N$ tel que $AV-V = f(x)-x-d \Rightarrow AV-V = a+Ax=x-d \Rightarrow a+A(x-V)=x-N+d$ $= f(x)-x-d \Rightarrow AV-V = a+Ax=x-d \Rightarrow a+A(x-V)=x-N+d$ = f(x-N)=(x-N)+d, un le que $x-N \in L$ y $L \neq \emptyset$.

Tomemos XoEL fijo y XEL malquiera. Teremos que proban que X-XoE toz(A-I):

$$x-x_0 = (x+d) - (x_0+d) = f(x) - f(x_0) = a + Ax - a - Ax_0 =$$

$$= A(x-x_0) \Rightarrow x-x_0 \in \ker(A-t).$$

4.4.2. Clasification de los montmientos en \mathbb{R}^2 $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x) = a + A \times$, $A^{t}A = AA^{t} = I$

De la sección 1.7 teremos los casos siguientes:

Tupos	Autoadjunt	os A=At	i on one	base adminde \$={14,42}	Merinis	coete de -
	(1 8)	Autovilous 1, 1	tra(A)	Tupo f=Id.	Since	CIP C
doer internative size	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	1,-1	O	Î = Simetria , & il; >	cars:	547W 22022
	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	-1, -1	-2	J' Simetrus T' respecto al orcigen (Tambien giro de angulo 180 ²)	Sum Lower	X
Tipo no Autoadynto:						
4	(wod-knd (-knd wod (+0, d+59		Lund	f = give de ainquio d un ientro el oragen	Bare/	X

- 1. Identidad y traslaciones (mor directos) f(x)=a+x: & a=0, fer la cdentidad; & a to, fer una traslauch (d=0)
- 2. Sûmetwal o simetaia deslizante (mov. inversos) Si d=0, there puntes Pipos est Simebana Si d \$0, no tione pontos figos e.d. simetroa dislizante.
- 3. Sometroa antral $A-I = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} \Rightarrow \ln(A-I) = \ln(A-I) = \ln(A-I)$ P = 0 => d=0 => trene puntos fijos
- 4. Giro o restauon A = (bod - tond); | A-I | = 2-2 mod + 0 (x + 0, x + 11) her (A-I) = 101 y Phasa-I) = 0 = d=0 y there storge puntos figos

Ejemplo A. Identifica el movimiento que en 12º de euravione, 解: (x')=(1)+(½½)(x)(x)

5/ A= (1/2 1/2) es autoadjunta; tra (A) = 0 => A es simetroa

o simetrata dus lizante $(A-I) = \begin{pmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \end{pmatrix} ; \begin{pmatrix} 3 & -1 & 2 \\ 2 & -3 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 3 & -1 \\ 2 & -1 \end{pmatrix} \times + \frac{1}{2}y = 0$ $\operatorname{kor}(\Delta \cdot \mathbf{I}) = \langle \vec{A} = \begin{pmatrix} \mathbf{I} \\ \mathbf{I} - \mathbf{I} \end{pmatrix} \rangle = \langle \begin{pmatrix} \mathbf{I} \\ \mathbf{I} - \mathbf{I} \end{pmatrix} \rangle$

(Semon 1.4) $P\left(\frac{x}{y}\right) = \frac{1}{1+(2-\sqrt{3})^2} \left(\frac{1}{2-\sqrt{3}}\right) \left(\frac{1}{y}\right) = \frac{1}{0-4\sqrt{3}} \left(\frac{1}{2-\sqrt{3}}\right) \left(\frac{x}{y}\right)$

Tomando
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0$$

$$d = P\left(f(0) - 0\right) = P\left(\frac{1}{0}\right) = \frac{1}{8 - 4\sqrt{3}} \left(\frac{1}{2 - \sqrt{3}}\right) \left(\frac{1}{0}\right) = \frac{1}{8 - 4\sqrt{2}} \left(\frac{1}{2 - \sqrt{3}}\right) \neq 0$$

No toure purtos figo: es una simetra distizante.

L:
$$\binom{1}{0} + \binom{\frac{13}{2}}{\frac{1}{2}} \binom{\frac{1}{2}}{\frac{1}{2}} \binom{\frac{1}{2}}$$

Esta es la recta cazadorística (invazionte)

$$p' = f(p) = {\binom{1}{0}} + {\binom{13}{2}} {\binom{1}{2}} {\binom{1}{2}}$$

Observa que 2º = d (vector de, distizamiento) p.q

$$\frac{1}{8-4\sqrt{3}} \begin{pmatrix} 1 \\ 2-\sqrt{3} \end{pmatrix} = \begin{pmatrix} \frac{8+4\sqrt{3}}{64-48} \\ \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{8+4\sqrt{3}}{16} \\ \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} + \frac{\sqrt{3}}{4} \\ \frac{1}{4} \end{pmatrix}$$

EJEMPIOB I tondifica el movemiento $f(x) = {2 \choose 4} + {-1 \choose 0} {1 \choose 4}$

 $S/A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, $\frac{\text{unboudpula}}{\text{tra} A = 0}$; Simetria o simetrosa con deslizamiento

$$(A-I)=\begin{pmatrix} -2 & 0 \\ 0 & 0 \end{pmatrix}; \ker(A-I)=\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle; \Pr_{\ker(A-I)}(\overset{\times}{Y})=\frac{1}{3}\begin{pmatrix} 0 \\ 1 \end{pmatrix}(1,0)\begin{pmatrix} \times \\ Y \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} \times \\ Y \end{pmatrix}$$

 $d = P(f(0)-0) = P(\frac{2}{1}) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ vector de distizamento $(d \neq 0 \text{ sim - dist.})$

L:
$$\binom{2}{1} + \binom{-1}{0}\binom{x}{y} = \binom{x}{y} + \binom{0}{0} \Leftrightarrow \binom{-2}{0}\binom{x}{y} = \binom{-2}{0} \Leftrightarrow x = 1$$

reeta de simetrua

4.4.3. Clasificación de los movimientos en \mathbb{R}^3 $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x) = a + Ax, $A^tA = AA^t = I$

Tipos Autoadjuntos (A=At)

Autoralores	A en una base adecidado \$= {\vec{u}_{11}\vec{u}_{2},\vec{u}_{3}}en,	Traza(A)	Tupo de É
1. 1, 1, 1	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	3	Identidad
2. 1, 1, -1	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	1	Reflexion/sometrica en el plono W = Sluggly
3,	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	-1	Reflexión/simetria axial en la xecta L= < Mz> Sind (Tambén xotauch de 180°)
41,-1,-1	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	-3	Reflexio Simetru a control So on el oxugen. (También antorotación de 300°)

Topos No Autoadpintos (A = At)

		1000 100 2000000000	× / / × /
5.	det (A) 1	(1 0 0 (0 and - End) 1+2100d (0 End and) (Send=Aliz,) En base orientada B #70, #411	Rotanon axial/Giro con respecto a recta \vec{u}_3) $\dot{r} = p + \langle \vec{u}_1 \rangle$ oxiontada según \vec{u}_3 : $\vec{G}_{r,d}$
6.	-1,	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & \omega & d & -4nd \end{pmatrix}$ $-1+2\omega$ $\begin{pmatrix} 0 & \omega & d & \omega & d \end{pmatrix}$ (send = $\langle \Delta \hat{u}_{0} \rangle$) En who base whether \hat{b} $d \neq 0$, $d \neq 11$	والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراج

Para dasificar los movimientos f de R3 salo hay que estudior de en cada uno de los casos antenaves. Recuerda

d=P (f(x)-x) para analysier XETR" (p.e. X=0) (Deslizamiento)

L = {xer : f(x) = x + d} (wardedad característica)

1. Identidad y traslaciones

1a) Si $d \neq 0$, identidad ($l = \mathbb{R}^3$, todos les punto de $l = \mathbb{R}^3$ fijos)

1b) Si $d \neq 0$, treslaudin de veitore d ($l = l = \mathbb{R}^3$)

2. Reflexión/sometroa o sometria deslizante

- 2a) Si d=0 (hay purpos Ripos) Reflexión o simetro a un respecto a un plano $\mathcal{H}=L=M_{\rm tot} + {\rm tot}(A-I) = \langle \vec{u}_i, \vec{u}_i \rangle$

3. Reflexio'n/simetria axial con o son distizamento

- 3a) Si d=0 (hay puntes figos) Reflexion o simetra axial con respecto a la resta $V=E=tar(A-I)=\langle \vec{n}_1 \rangle$
- 3b) Si d $\neq 0$ (No hay portos fijos) Reflexión o simetros axialles. Con resigento a la routa $V=L=a_0+ke_1(A-I)=a_0+ku_1^2>y$ revor de traslavon d (Mov. heliwoodel wn x=re)

4. Reflexión / simetria entral

Como $A = I = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \end{pmatrix}$, fue $(A-I)=\{0\}$ y $P_{kn}(A-I)=0$ Entenus $d = P_{kn}(A=I) (f(0)-0) = 0$ y scenyore those puntos figos.

La vouvedud caraclarística E es un punto (el centro de scimetouse)

5. Rotalión/simetria axial o Movimiento helicocidal

- 5a) Si d=0 (hay puntos foros) Give $G_{n,d}$ con respecte a la recta ordentada $L=A_0+\langle \vec{u}_1\rangle$ y angulo d, $\dim L=1$
- 5b) Si $d \neq 0$ (No hey purpos figs) Movimionto helicocalel $T_{n} \neq 0$ $G_{n,d}$ ion $r = a_0 + \langle \vec{u}_i \rangle = L$ ordente du, abquie $d \neq 0$ vector de traslacion $\vec{v} = d$ (din l = 1).

6. Antimotación Sto Gnd

 $A = \begin{pmatrix} -2 & 0 & 0 \\ 0 & \cos d & - \cos d \end{pmatrix}, & d \neq 0, & d \neq M, & her (A-I) = log , & P_{ker(A-I)} = 0$ Entonies $d = P_{ker(A-I)} \begin{pmatrix} f(0) - 0 \end{pmatrix} = 0$ y siempre there points f(0) = 0.

Como diam $h = dim \left(her (A-I) \right) = 0$, Salo trone on points f(0) = 0. $V = a_0 + \langle \vec{n}_1 \rangle$ orientada y $H \perp V$ on $H = b_0 + \langle \vec{n}_2, \vec{n}_3 \rangle$.

MOVIMIENTOS EN IR3

Topo A=At (autoadjuntas)

1 1A1=1	d = 0 Identidad	d ≠ 0 Traslavon de vector d
2, 101=-1 Inverso	Sumetria/reflexion respecto a un pleno H=L (Sr.)	Simetroia deslizante tacs, un n=L.
3. Denedo	Simetria/seflexión axial Sp en r=L.	Simetria/reflexion axial deslizante TdoSp con n=1
4 . IA1=-1 Inverse	Reflexion/Scimetria control an control L=1p3	

Topo A # At

Topo A # At

The promote helicidal

The orientada

Th

4.5 I DENTIFICACIÓN DE MOVIMIENTOS EN IR3: EJEMPLOS

Ejemple A. Identifica el morrimiento f de ecuaciones $f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 - 2 - 2 \\ -2 & 1 - 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

 $5/A = \frac{1}{3}\begin{pmatrix} 1 - 2 - 2 \\ -2 & 1 - 2 \\ -2 - 2 & 1 \end{pmatrix}$, $A = A^{t}$, traza $A = 1 = 5_{17}$ or $T_{d} \circ S_{17}$ (Simetria $S_{17} \circ S_{17} \circ S_{17$

 $A - \Gamma = \frac{1}{3} \begin{pmatrix} -2 - 2 - 2 \\ -2 - 2 - 2 \\ -2 - 2 - 2 \end{pmatrix} \implies \ker(A - \Gamma) = \left\{ x + y + 2 = 0 \right\} = \left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle^{\perp}$

 $P_{\ker(\Delta-1)} = I - P_{(\ker(\Delta-1))^{\perp}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} (1,1,1) \cdot \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$

 $d = P_{\text{Her}(A=I)}(f(0)-0) = P_{\text{Her}(A=I)}\begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix} = \frac{1}{3}\begin{pmatrix} 2-1-1 \\ -1 & 2-1 \\ -1 & -1 & 2 \end{pmatrix}\begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix}$

Es una simetrou dislizante con $d = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$. El plano de simetron es

 $L: \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 2 \end{pmatrix} = \begin{pmatrix} x \\ y \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix} \quad (=)$

EJEMPLO B Identifica el movimiento f de eccaciones $f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ z \end{pmatrix} + \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

5/ A= (00-1), A = At, |A|=-1: Antervotación Sne Gnd

traza A = -1 = 1 = 1 = 1 (word =) (word = 0 , | d = 1/2 o' d = 31/2 |

Hay que calculor una base de autorectores \$ = 1 \vec{u}_1, \vec{u}_2, \vec{u}_3 \cdot orciontada

 $\ker(A+I):\begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 0 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \vec{\mathcal{M}}_{I} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

 $\vec{u}_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \vec{u}_{3} = \vec{u}_{1} \times \vec{u}_{2} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \quad ;$

Sen
$$\alpha = \langle A\vec{u}_2, \vec{u}_3 \rangle = \langle \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle = \langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle = -1$$

r=p+(11/2) (ordentada Jegun 11/1) y 11=p+(11/2,11/3>11

El ponto p poede soe es L: como d=0

$$\begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \iff \begin{pmatrix} -1 & 0 & -1 \\ 0 & -\mathbf{Q} & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \\ -2 \end{pmatrix}$$

$$y=1$$
, $x+y=2$ $z=2$, $x=0$ $p=\begin{pmatrix} 0\\ 1\\ 2 \end{pmatrix}$

$$r = \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix} + \langle \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix} \rangle \iff r \begin{pmatrix} 0 & x - 0 \\ \frac{1}{2} & y - 1 \\ 0 & z - 2 \end{pmatrix} = 0 \iff \begin{cases} x = 0 \\ z = 2 \end{cases}$$

$$\pi: \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix} + \langle \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix} \rangle \xrightarrow{1} \Leftrightarrow \boxed{y=1}$$

EJEMPIOC. Identifica el movimiento f de executores

$$\varphi\begin{pmatrix} X \\ Y \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ \frac{1}{2} \end{pmatrix}$$

$$5/A=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
; $A=A^{t}$; $braza(A)=-1$: Sometria axial o movimiento holioidal con $x=\pi$.

$$A - I = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix}; \ker(A - I) : \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{array}{c} x = 0 \\ y = 2 \\ \end{array}$$

$$\ker(A-\Gamma) = \langle \vec{u}_1 \rangle$$
 con $\vec{u}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ 1\\ 1 \end{pmatrix}$

El vertor de deslizamiento es d= (%)

L:
$$\binom{1}{0} + \binom{-1}{0} \times \binom{1}{0} \times \binom{1}{1} = \binom{1}{1} + \binom{1}{1} \times \binom{1}{1} = \binom{1}{1} \times \binom{1}{1} \times \binom{1}{1} \times \binom{1}{1} = \binom{1}{1} \times \binom{1}{1} \times$$

$$f = T_0 S_r$$
 con $r = \left\{ \begin{array}{l} x = \frac{1}{2} \\ -y + \lambda = \frac{1}{2} \end{array} \right\} = \left(\begin{array}{l} \frac{y_2}{0} \\ \frac{1}{2} \end{array} \right) + \left\langle \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\rangle.$

EJEMPLO Da) Halla las equationes de la composition de un gives /resteurón de aingrelo π con respecto a la recta $\mathbf{t}:(0,0,1)+<(0,1,1)>$ con la traslación de vertor $\mathbf{x}=(4,1,0):\mathbf{T}_{\mathbf{z}}\circ G_{\mathbf{z},\mathbf{n}}=\mathbf{T}_{\mathbf{z}}\circ S_{\mathbf{t}}$.

b) Identifica el movimiento obtenido

S/a) Puede haurse un combios de base somo se hizo en la securón 4.3. Pero tembién podemos aprovicihar los resultados de la Securón 4.4. Como

$$k = {0 \choose 1} + {1 \choose 1} >$$

$$free (A-I) = {0 \choose 1} > y P_{hes(A-I)} = \frac{1}{2} {0 \choose 1} (0,1,1) = \frac{1}{2} {0 \choose 0,1} = \frac{1}{2}$$

Como A en una simetra a respecto a hec (A-I):

$$A = 2P_{\text{ten}(A-I)} - I = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Pose tando
$$f\begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

ton
$$f\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = T_{ab} \circ S_{r} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = T_{ab} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \text{lines}_{co}$$

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} + \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$f\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$f\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

b) Este es el movimiento del ejemple C, luego es una scinetria axial deslizante un eje de girco $r = \binom{r_2}{r_2} + \binom{0}{1}$ y vector de delizantionto $d = \binom{0}{2} - 0$ b serva que r | 1 | L, poso no coinciden y $d \neq n^2$ is