Family list
1 family member for:
JP2002289864
Derived from 1 application.

1 THIN-FILM TRANSISTOR AND MANUFACTURING METHOD THEREFOR Publication Info: JP2002289864 A - 2002-10-04

Data supplied from the esp@cenet database - Worldwide

DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat

(c) 2004 EPO. All rts. reserv.

18211693

Basic Patent (No,Kind,Date): JP 2002289864 A2 20021004 <No. of Patents:

001>

THIN-FILM TRANSISTOR AND MANUFACTURING METHOD THEREFOR

(English)

Patent Assignee: TOKYO SHIBAURA ELECTRIC CO

Author (Inventor): TORIYAMA SHIGETAKA

IPC: *H01L-029/786; H01L-021/336; G02F-001/1368; H01L-021/28; H01L-021/768

Derwent WPI Acc No: G 03-063929 Language of Document: Japanese

Patent Family:

Patent No Kind Date Applic No Kind Date

JP 2002289864 A2 20021004 JP 200190968 A 20010327 (BASIC)

Priority Data (No,Kind,Date): JP 200190968 A 20010327

DIALOG(R)File 347:JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

Image available 07421354

THIN-FILM TRANSISTOR AND MANUFACTURING METHOD THEREFOR

PUB. NO.:

2002-289864 [JP 2002289864 A]

PUBLISHED:

October 04, 2002 (20021004)

INVENTOR(s): TORIYAMA SHIGETAKA

APPLICANT(s): TOSHIBA CORP

APPL. NO.:

2001-090968 [JP 200190968]

FILED:

March 27, 2001 (20010327)

INTL CLASS:

H01L-029/786; H01L-021/336; G02F-001/1368; H01L-021/28;

H01L-021/768

ABSTRACT

PROBLEM TO BE SOLVED: To prevent the occurrence of voids in the bottom section of a contact, as much as possible.

SOLUTION: A thin film transistor is provided with a semiconductor layer 5, in which a source region 7 and a drain region 8 are formed, insulating films 10 and 14 formed on the semiconductor layer 5, and a contact hole made to the source and drain regions 7 and 8 through the insulation films 10 and 14. The contact hole has a cross-sectional shape that becomes narrower in width, as going toward the source or drain region 7 or 8. The source and drain regions 7 and 8 on the bottom of the contact hole are partially shaved. Inclined angles è1 of the cross sections of the partially shaved portions of the source and drain regions 7 and 8 on the bottom of the contact hole, and inclined angle è2 of the insulating film 10 and 14 immediately above the regions 7 and 8 are adjusted to satisfy the relation 90°)è2)è1.

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2002-289864

(P2002-289864A) (43)公開日 平成14年10月4日(2002.10.4)

(51) Int. Cl. 7	識別記号	FI		テーマコート' (参考)
H01L 29/786 21/336 G02F 1/1368		G02F 1/1368		2H092
		H01L 21/28		V 4M104
		29/78	616	J 5F033
H01L 21/28		21/90		D 5F110
21/768		29/78	627	C
		審査請求未	請求請求項の数	(5 OL (全7頁)
(21)出願番号	特願2001-90968(P2001-90968)	(71)出願人 000	0003078	
		株式	式会社東芝	
(22) 出願日	平成13年3月27日(2001.3.27)	127日(2001.3.27) 東京都港区芝浦-		目1番1号
		(72)発明者 鳥	山重隆	
		埼玉	玉県深谷市幡羅町	1-9-2 株式会社
	•	東之	芝深谷工場内	
		(74)代理人 100		
		弁理	理士 吉武 賢次	(外4名)
	•			
•				
·		E there is the a		
				最終頁に続く

(54) 【発明の名称】薄膜トランジスタおよびその製造方法

(57) 【要約】

【課題】 コンタクト底部でのボイドが発生することを可及的に防止することを可能にする。

【解決手段】 ソース領域 7 およびドレイン領域 8 が形成された半導体層 5 と、この半導体層上に形成された絶縁膜 1 0、1 4 と、ソース領域およびドレイン領域にそれぞれ通ずる絶縁膜に開けられたコンタクトホールと、を備え、コンタクトホールの断面形状は、ソース領域またはドレイン領域に向かうにつれて細くなるように構成され、コンタクトホール底部のソース領域およびドレイン領域の一部が削られたソース領域およびドレイン領域の断面傾斜角度 θ 1、とソース領域およびドレイン領域の断面傾斜角度 θ 2、との関係が 9 0 度> θ 2 > θ 1 となる関係を満たしていることを特徴とする。

20

【特許請求の範囲】

【請求項1】ソース領域およびドレイン領域が形成され た半導体層と、この半導体層上に形成された絶縁膜と、 前記ソース領域およびドレイン領域にそれぞれ通ずる前 記絶縁膜に開けられたコンタクトホールと、を備え、前 記コンタクトホールの断面形状は、前記ソース領域また はドレイン領域に向かうにつれて細くなるように構成さ れ、前記コンタクトホール底部の前記ソース領域および ドレイン領域の一部が削れており、前記コンタクトホー ル底部において一部が削られた前記ソース領域およびド 10 レイン領域の断面傾斜角度heta」と前記ソース領域および ドレイン領域直上の前記絶縁膜の断面傾斜角度 θ₂との 関係が90度 $>\theta_2>\theta_1$ となる関係を満たしていること を特徴とする薄膜トランジスタ。

【請求項2】前記絶縁膜内のコンタクトホールは断面が 少なくとも2段の連続したテーパ形状を有しており、前 記ソース領域およびドレイン領域直上の前記絶縁膜の、 下段のテーパ形状に対応する断面傾斜角 62 と、上段の テーパ形状に対応する、絶縁膜の断面傾斜角 θ 。との間 の関係が90度 $\geq \theta_3 > \theta_2$ とを満たしていることを特 徴とする請求項1記載の薄膜トランジスタ。

【請求項3】ソース領域およびドレイン領域が形成され た半導体層上に絶縁膜を形成するステップと、

前記絶縁膜上に、開口部を有するマスクを形成し、この マスクを用いて第1ガス雰囲気で、前記絶縁膜をエッチ ングすることにより、前記ソース領域およびドレイン領 域にそれぞれ達しないテーパ形状のホールを形成するス テップと、

その後、前記マスクを用いて、第2ガス雰囲気で前記絶 縁膜をエッチングするとともに前記ソース領域およびド レイン領域それぞれの一部分をエッチングすることによ り、前記ソース領域およびドレイン領域にそれぞれ通じ る、断面が少なくとも3段の連続したテーパ形状のコン タクトホールを開口し、前記コンタクトホールの底部に おける前記ソース領域およびドレイン領域の、下段のテ ーパ形状に対応する断面傾斜角 θ 1 と、前記ソース領域 およびドレイン領域直上の前記絶縁膜の、中段のテーパ 形状に対応する断面傾斜角 02との関係が90度>02> θ , となる関係を満たしているようにするステップと、 を備えたことを特徴とする薄膜トランジスタの製造方

【請求項4】前記コンタクトホールの上段のテーパ形状 に対応する前記絶縁膜の断面傾斜角 θ 。は、90度 $\geq \theta$ 3 > θ 2 を満たしていることを特徴とする請求項3記載 の薄膜トランジスタの製造方法。

【請求項5】前記半導体層はシリコンからなり、前記絶 縁膜はシリコン酸化膜であり、前記ソース領域およびド レイン領域にそれぞれ達しないテーパ形状のホールを形 成するステップは、フッ素と酸素ガスを少なくとも含む 混合ガスで前記絶縁膜をプラズマエッチングし、断面が 50

少なくとも3段の連続したテーパ形状の前記コンタクト ホールを開口するステップは、炭素、水素、フッ素ガス を含んだプラズマで前記絶縁膜および前記半導体層をエ ッチングすることを特徴とする請求項3または4記載の 薄膜トランジスタの製造方法。

【発明の詳細な説明】

[0001]

【利用される産業分野】本発明は、薄膜トランジスタお よびその製造方法に関し、主としてアクティプマトリッ クス型液晶表示素子に用いられる。

[0002]

【従来の技術】一般に、アクティブマトリックス型液晶 表示素子では1画素の液晶を1つの薄膜トランジスタで 駆動している。この薄膜トランジスタの一般的な製造方 法を図4および5を参照して説明する。まず、図4に示 すように、ガラス基板2上に、絶縁膜3を形成し、この 絶縁膜3上に島状に加工された、例えばポリシリコンか らなる半導体層5を形成する。続いて、この半導体層5 を覆うようにゲート絶縁膜10を形成し、このゲート絶 緑膜10上に、ゲート電極材料、例えばMoWからなる 膜を形成する。その後、MoWからなる膜をパターニン グしてゲート電極12を形成する。このゲート電極12 をマスクとして半導体層5にPH。を不純物注入し、ソ ース領域7およびドレイン領域8を形成する。そして、 全面に層間絶縁膜14を成膜する。続いて、層間絶縁膜 14に、ソース領域7およびドレイン領域8との接続を とるためのコンタクトホールを開けた後、配線材料、例 えばMoを薄く堆積し、続いてAlを堆積し、パターニ ングすることにより信号線等になる配線18を形成す る。すなわち配線18は、Moからなる膜16とAlか らなる膜17とが積層された構造となる。ソース領域7 およびドレイン領域8は半導体領域で、信号線配線は金 属であることが多い。このため、金属とのオーミック接 触を取るためにソースおよびドレインとなる半導体領域 7. 8の表面に燐(P)やボロン(B)が不純物として注入 されていることが多い。また、コンタクトホールの加工 は微細化の要求からプラズマエッチングによって加工さ れることが多い。プラズマエッチングとは真空中におい てエッチングガスを電離させることで活性種を発生さ 40 せ、被エッチング物と気層一固層反応によって生じる揮 発性生成物を形成除去する技術である。信号線配線を形 成後、保護膜(図示せず)を成膜し、この保護膜にコン タクトホールを開け、画素電極を形成することで薄膜ト ランジスタを形成している。

【0003】層間絶縁膜14のコンタクトホール形成時 のプラズマエッチングでは、例えば層間絶縁膜にSiO 2 を、半導体領域7、8 にSiを用いた場合、エッチン グガスとして、CF、と水素の混合ガスを用いてエッチ ングする。これらのガスを用いると基板表面ではガス自 身の重合によるデポジションとプラズマで生成したFイ

オンによるエッチングとの競争反応によって反応が進行する。SiO2からなる層間絶縁膜14中には酸素が含まれるのでSiO2をエッチングしている間は層間絶縁膜14からの酸素供給によって炭素主体の重合膜が酸素と結合して二酸化炭素などになりデポジションが進行しない。一方、半導体領域7、8を構成しているSiをエッチングしようとすると膜中からの酸素供給が無いために、デポジションが優勢になりエッチングが進行しなくなる。こうしてSiO2のみをエッチングし、コンタクトに必要なSiを残存させることができる。

【0004】エッチングにはRIE (Reactive Ion Etc hing)と呼ばれるリアクティブ・イオン・エッチング装置が用いられることが少なくない。特にイオンの引き込み電圧とプラズマ生成のための電圧発生装置が分離した2周波の電源をもつリアクタが用いられることが多い。誘導結合型やECRプラズマもこの中にはいる。

【0005】コンタクトホールサイズの微細化の要求によりコンタクトホール径は小さくなる。金属配線18とSiとのコンタクト抵抗はコンタクト面積Sに反比例するため、コンタクトホールサイズが小さくなると1/S 20でコンタクト抵抗が高くなる。これを解決する方法として、コンタクトホール底部のSiの一部をエッチングし膜厚方向に面積を広げる方法が提案されている。たとえば、コンタクトホール径が 2μ mとすると、コンタクトホール径が 2μ mとすると、コンタクト面積は 3.14μ m²となる。これを膜厚方向に 0.1μ mだけ彫り込むと増加面積は 0.62μ m²となり、合計で 3.76μ m²と拡張できる。これにより、コンタクトホールが微細化されてもコンタクト抵抗を低く保つことが可能となるものである。

[0006]

【発明が解決しようとする課題】コンタクトホールのエ ッチングは前述した通り、エッチングガスの重合による デポジションとFイオンによるエッチングの競争反応で 行う。コンタクト底部は基板側に引き込み電圧をかけて いるため基板垂直にFイオンが入射し、エッチングがデ ポジションより優勢になる。一方、コンタクトホール側 壁ではFイオンの入射方向とは垂直になり入射量が少な いため、デポジションが優勢になる。すなわち、コンタ クトホール側壁に重合膜が堆積し、これがエッチング保 護膜として働くためコンタクトホール形状は垂直形状に 40 近い形状となる。従って、これに続いてエッチングする Siも垂直に近い形状で加工される。Siが垂直に加工 されると、その上に配備される配線金属の被覆性が悪く なる。特に、金属配線18をスパッタで形成すると、図 5に示すように、コンタクト底部でポイド30ができ、 このためコンタクト抵抗が増加したりコンタクト不良が 生じ、歩留まりが低下するという問題が発生する。

【0007】本発明は上記事情を考慮してなされたもの 絶縁膜上に、開口部を有するマスクを形成し、このマス であって、コンタクト底部でのポイドが発生することを クを用いて第1ガス雰囲気で、前記絶縁膜をエッチング 可及的に防止することができる薄膜トランジスタおよび 50 することにより、前記ソース領域およびドレイン領域に

その製造方法を提供することを目的とする。

[0008]

【課題を解決するための手段】本発明による薄膜トランジスタは、ソース領域およびドレイン領域が形成された半導体層と、この半導体層上に形成された絶縁膜と、前記ソース領域およびドレイン領域にそれぞれ通ずる前記絶縁膜に開けられたコンタクトホールと、を備え、前記コンタクトホールの断面形状は、前記ソース領域またはドレイン領域に向かうにつれて細くなるように構成され、前記コンタクトホール底部の前記ソース領域およびドレイン領域の一部が削れており、前記コンタクトホール底部において一部が削られた前記ソース領域およびドレイン領域の断面傾斜角度 θ , と前記ソース領域およびドレイン領域の断面傾斜角度 θ , と前記ソース領域およびドレイン領域の断面傾斜角度 θ , と前記ソース領域およびドレイン領域の断面傾斜角度 θ , と前記ソース領域およびドレイン領域の断面傾斜角度 θ , とかる関係を満たしていることを特徴とする。

【0009】このように構成された本発明の薄膜トランジスタによれば、半導体層の断面傾斜角度 θ 」を絶縁膜の傾斜角度 θ 。より小さくすることで、上層にくる配線金属などの被覆性を向上させ、コンタクトホール底部でのボイドの発生を可及的に防止することが可能となり、これによりコンタクト抵抗増加を避けることができる。【0010】なお、前記絶縁膜内のコンタクトホールは断面が少なくとも2段の連続したテーパ形状を有しており、前記ソース領域およびドレイン領域直上の前記絶縁膜の、下段のテーパ形状に対応する断面傾斜角 θ 。と、上段のテーパ形状に対応する、絶縁膜の断面傾斜角 θ 。との間の関係が90度 \ge θ 。> θ 2 とを満たしているように構成することが好ましい。

【0011】 ここでいう半導体層のもつ断面傾斜角度 θ ,は直上に当たる絶縁膜の断面傾斜角度 θ 2 に大きく依存する。 θ 2 は被覆性が良くなる傾斜角度である必要がある。ところが、 θ 2 を形成しようとすると側壁のデポジションを減らすことになり、半導体層との選択エッチングが困難となる。そのため、はじめに θ 2 となる角度で絶縁膜をエッチングし、続いて半導体層との選択エッチングする。デポジションが起こるガスで絶縁膜をエッチングするとほぼ直角となる θ 3 の角度で形成され、絶縁膜の形状が 9 0 度 \geq θ 2 となる。このようにすることで半導体層に対してある程度選択性を有し(要は半導体層のエッチング量をコントロールでき、コンタクト不良を低減できる。

【0012】また、本発明による薄膜トランジスタの製造方法によれば、ソース領域およびドレイン領域が形成された半導体層上に絶縁膜を形成するステップと、前記絶縁膜上に、開口部を有するマスクを形成し、このマスクを用いて第1ガス雰囲気で、前記絶縁膜をエッチングすることにより、前記ソース領域およびドレイン領域に

;

それぞれ達しないテーパ形状のホールを形成するステップと、その後、前記マスクを用いて、第2ガス雰囲気で前記絶縁膜をエッチングするとともに前記ソース領域およびドレイン領域それぞれの一部分をエッチングすることにより、前記ソース領域およびドレイン領域にそれぞれ通じる、断面が少なくとも3段の連続したテーパ形状のコンタクトホールを開口し、前記コンタクトホールの底部における前記ソース領域およびドレイン領域の、下段のテーパ形状に対応する断面傾斜角 θ 1と、前記ソース領域およびドレイン領域直上の前記絶縁膜の、中段の「10テーパ形状に対応する断面傾斜角 θ 2との関係がg0度g0,2g1、となる関係を満たしているようにするステップと、を備えたことを特徴とする。

 $[0\ 0\ 1\ 3]$ なお、前記コンタクトホールの上段のテーパ形状に対応する前記絶縁膜の断面傾斜角 θ ,は、 $9\ 0$ 度 $\ge \theta$ 。 $> \theta$ 。を満たしていることが好ましい。

【0014】なお、前記半導体層はシリコンからなり、前記絶縁膜はシリコン酸化膜であり、前記ソース領域およびドレイン領域にそれぞれ達しないテーパ形状のホールを形成するステップは、フッ素と酸素ガスを少なくと 20も含む混合ガスで前記絶縁膜をプラズマエッチングし、断面が少なくとも3段の連続したテーパ形状の前記コンタクトホールを開口するステップは、炭素、水素、フッ素ガスを含んだプラズマで前記絶縁膜および前記半導体層をエッチングすることが好ましい。

 $[0\ 0\ 1\ 5]$ 絶縁膜の断面傾斜角 θ_2 を形成するのにフッ素と酸素ガスを少なくとも含む混合ガスでプラズマエッチングすることで θ_2 の断面傾斜角度を低めることを可能とする。続いて、絶縁膜の断面傾斜角を θ_3 となるようにデポジションが生じるエッチングガスである、炭 30素、水素、フッ素を含むガスでエッチングする。これによって半導体層との選択エッチング性を向上させ、かつ、断面傾斜角 θ_2 をもつ絶縁膜を異方性エッチングする。異方性エッチングすることで、 θ_2 をもつ絶縁膜の形状は断面傾斜角 θ_2 を保ちながら相似形で縮小することになる。縮小につられてコンタクトホール径が広がり、直下の半導体層に θ_2 > θ_1 の低断面傾斜角度の形状が得られ、コンタクト不良を低減できる。

[0016]

【発明の実施の形態】本発明による薄膜トランジスタの 40 一実施形態を図面を参照して説明する。この実施形態の 薄膜トランジスタはアクティブマトリックス型液晶表示 素子に用いられる。まず、アクティブマトリックス型液晶表示素子について図3を参照して説明する。一般にアクティブマトリックス型液晶表示素子は、各々が、電極を有する2枚の透明基板の間に液晶を狭持し、2枚の基板の周囲が液晶封入口を除いて接着剤で固定され、上記液晶封入口が封止材で封止された構成となっている。例えば図3に示すように、アクティブマトリックス型液晶表示素子は、アレイ基板100と、対抗基板200との 50

間に液晶を狭持した構成となっている。アレイ基板10 0は透明な絶縁性基板(たとえばガラス基板)101の 表示領域102aに、マトリクス状に配設された複数の 信号線103および複数の走査線104と、上記信号線 103と走査線104との交差部毎に形成された薄膜トランジスタ(以下、TFT(Thin Film Transistor)と も云う)からなるスイッチング素子105と、このスイッチング素子毎に設けられた画素電極106と、が形成 された構成となっている。各スイッチング素子105の ゲートは対応する走査線104に接続され、ソースおよ びドレインのうちの一方が対応する信号線103に接続 され、他方が画素電極106に接続された構成となっている。

【0017】またアレイ基板100は、透明な絶縁性基板101の周辺の非表示領域102bに、TFTを有する駆動回路110およびこれらの駆動回路110に接続されて外部から電力や信号を供給するための外部端子120が更に形成された構成となっていても良い。

【0018】一方、対向基板200は透明な絶縁性基板201の位置表面上にITO (Indium Tin Oxide) からなる透明導電膜が対向電極203として形成された構成となっている。

【0019】これらの基板100、200は所定の間隔を有するように対向配置される。そして、アレイ基板100の表示領域102aを囲むように非表示領域102b上に塗布したシール材300によって貼り合わされる。シール材300には、図3に示すように液晶材料を注入する注入口301が形成されている。そして上記基板100、200の貼り合わせ後にこの注入口301を通して液晶組成物(図示せず)が間隙内に注入され、封止されることによって液晶表示素子が完成される。なお、液晶表示素子がカラー液晶表示素子である場合には、対抗基板200またはアレイ基板100の一方にカラーフィルタ層が形成される構成となる。

【0020】次に、本実施形態の薄膜トランジスタの製造方法を図1および図2を参照して説明する。図1は、本発明による薄膜トランジスタのソース・ドレイン領域とのコンタクトホールを開口する際の工程断面図であり、図2は、本発明による薄膜トランジスタの構成を示す断面図である。

【0021】まず、図2に示すように、ガラス基板2上にPE-CVD(Plasma Enhanced Chemical Vapor Deposition)法により絶縁膜3を形成し、この絶縁膜3上にアモルファスシリコン層5を成膜する。このアモルファスシリコン層5の膜厚は50nmとした。続いて、このアモルファスシリコン層5が形成された基板を例えばアニール炉中に置き、500℃で1時間加熱し、アモルファスシリコン中に含まれる水素量を減らす。次に、アモルファスシリコン膜5を結晶化させるために、例えばXeC1等のエキシマーレーザーをアモルファスシリコン

層5上から照射し、アモルファスシリコン層5をポリシ リコン層5とする。その後、フォトリソ工程を行ってポ リシリコン層5を島状にエッチングする。エッチングは CF』等のフッ素系のガスを用いたダウンフロー型のド ライエッチングで実施した。エッチング後、使用したレ ジストマスクは有機アルカリ液で剥離する。

【0022】次に、PE-CVD法を用いてシリコン酸 化膜からなるゲート絶縁膜10を形成した後、このゲー ト絶縁膜10上に、ゲート電極となるモリブデンとタン グステンの合金(以下、MoWと云う)膜を成膜する。ゲ 10 ート絶縁膜10および合金膜の膜厚は、それぞれ100 nm、300nmとした。

[0023] 次に、MoW膜上にフォトレジストマスク を形成し、フォトリソグラフィ技術を用いてMoW膜を ゲート電極12となるように、フッ素と酸素を含む混合 ガスでプラズマエッチングした。エッチング後、使用し たレジストマスクは有機アルカリ液で剥離する。

【0024】この後、ゲート電極12をマスクとして、 ソース・ドレインとなる部分にホスフィン(PH。)を注 入する。これはポリシリコン膜5の抵抗を下げ、金属と 20 のオーミックコンタクトを取るためである。PH。のポ リシリコン層への注入は加速電圧70keVでドーズ量 1×10¹ c m⁻² とした。このときシート抵抗は1 k Ω/c m² であった。この後、500℃で熱処理を行 い、ソース領域7およびドレイン領域8の活性化処理を 行う。

【0025】次に、PE-CVD法を用いてシリコン酸 化物からなる層間絶縁膜14を膜厚500nmで成膜し た。続いて、フオトリソグラフィ工程を行って、形成し コンタクトをとるためのコンタクトホールを形成する。 【0026】このコンタクトホールの形成を図1を参照 して説明する。まず、図1 (a) に示すように、層間絶 緑膜14上に開口部を有するフォトレジストパターン2 0を形成する。

【0027】続いて、図1(b)に示すように、ヘキサ フルオロ硫黄(SF。)ガスと酸素ガスの混合比が7: 3の混合ガスを用いて、シリコン酸化膜からなる層間絶 縁膜14を膜厚方向に300nmエッチングする。エッ チング装置はイオン引き込み電源を有する誘導結合型プ 40 ラズマエッチング装置を用いた。これは層間絶縁膜14 をエッチングする装置と揃えることで連続処理すること が可能でスループットが向上するためである。もちろん そういった要求がなければ、装置にこだわる必要はない が、基板を保持する電極側に電源を有するタイプが好ま しい。というのは、シリコン酸化膜はイオン性エッチン グでないとエッチング速度が遅いためである。このと き、断面傾斜角 θ_2 は50°であった(図1(b)参 照)。断面傾斜角 θ_2 はエッチングするガスのフッ素と 酸素のガス比に依存する。酸素ガスを多くするとマスク 50

として用いているレジストのエッチング量が多くなり、 コンタクトホールパターンが拡大する。パターン端部が 拡大するため、拡大する量に応じて断面傾斜角 θ 。は小 さくなる。断面傾斜角度 θ 2を小さくするとパターンが 広がり、パターン精度が落ちるためコンタク ト不良率と の兼ね合いで適当な角度を決める。本実施形態では、5 0°としたが、製品の要求仕様に応じてはもっと低角度 も可能だし、広角度でも構わない。ただし、 あまり広角 度にするとコンタクト不良を引き起こす。経験的には6 0°以下が妥当である。

【0028】その後、シクロオクタフルオロプタン(以 下、C、F。と略す)ガスと水素(以下H2と略す)ガス を3:7で混合させたガスを用いてプラズマエッチング する。プラズマエッチングにはイオン引き込み電源を有 する誘導結合型プラズマエッチング装置を用いた。エッ チング時間は削れて生成したガスのプラズマ発光をモニ ターし、エッチングの終点(エッチングすべき 層間絶縁 膜14およびゲート絶縁膜10が無くなった時点)を検 出し、その後、更にポリシリコンからなる半導体層(ソ ース領域7またはドレイン領域8)を削るためにこれま でに有したエッチング時間の50%の時間を同一エッチ ング条件で追加エッチングした。こうして層間絶縁膜1 4の断面傾斜角 θ 。は8.5°で形成された(201 (c) 参照)。このとき、ポリシリコンからなる半導体層7、 8は約20nm削れ、この半導体層の断面傾斜角 θ 」は 45°であった(図1(d)参照)。

【0029】エッチング後、レジストマスク 20を有機 アルカリ溶液で取り除き、図2に示すように、 例えばモ リプデン(以下M o とも云う)とアルミニウム (以下A l たソース領域7およびドレイン領域8に信号線配線との 30 とも云う)の積層膜をスパッタ法により成膜し、信号線 配線18を形成する。Mo膜16およびA1膜17の膜 厚はそれぞれ50nm、500nmとした。 このとき、 コンタクトホール部のMo膜16とA1膜1 7 の積層膜 18の被覆性は良好であった。

> 【0030】続いて、フォトリソ工程を行って信号線配 線となるようにMo膜16とA1膜17の積層膜18を エッチングした。エッチングには燐酸と硝酸の混合酸を 用いてエッチングした。

> 【0031】続いて、基板全面に保護膜として、シリコ ン窒化膜(図示せず)をPE-CVD法で成膜した。膜 厚は500nmとした。続いて、信号線の上部にフォト リソグラフィ工程とエッチングを行ってコンタクトホー ルを形成した。エッチングはテトラフルオロ メ*タン*(C F、)ガスと酸素ガスを用いたプラズマエッチングによ って行った。最後に、前記コンタクトホールを介して画 素電極 (図示せず) となる透明導電膜をスパッタ法によ り成膜し、フォトリソフィエ程およびエッチ ングを行っ て画索形状にパターニングした。エッチングには蓚酸を 用いた。

【0032】こうして形成した、アクティプマトリック

ス型液晶表示素子は、コンタクト抵抗は良好で歩留まりが向上した。

【0033】以上説明したように、本実施形態によって 形成された薄膜トランジスタは、コンタクトホール底部 の半導体層 7、8が低テーパー形状に加工され、層間絶 縁膜 14 およびゲート絶縁膜 10 の断面形状が 2 種類の 角度によって構成される。半導体層 7、8の断面傾斜角度を θ_1 、半導体層 7、8直上の絶縁膜(ゲート絶縁膜 10)の断面傾斜角度を θ_2 、その上の絶縁膜(層間絶 縁膜 14)の断面傾斜角度を θ_3 とすると、90 度 $\geq \theta$ 10 面図。 $3 > \theta_2 > \theta_1$ の関係を満足する。半導体層 7、8に θ_1 の断面傾斜角度を持たせることで、コンタクトホール底 10 部での配線材料の被覆性が向上し、ボイドの発生を可及 的に防止することができる。このため、コンタクト抵抗 10 増大によるコンタクト抵抗不良低減が可能となる。 10 個 10 第 10 9

【0034】なお、上記実施形態においては、薄膜トランジスタはコプラナ型であったが、正スタガ型または逆スタガ型の薄膜トランジスタに本発明を適用できることは云うまでもない。

[0035]

【発明の効果】以上述べたように、本発明によれば、ボイドの発生を可及的に防止することができる。

【図面の簡単な説明】

【図1】本発明による薄膜トランジスタのソース・ドレイン領域とのコンタクトホールを開口する際の工程断面 🛛

【図2】本発明による薄膜トランジスタの構成を示す断面図。

【図3】アクティブマトリクス型液晶表示素子の構成を 示す図。

【図4】薄膜トランジスタの一般的構成を示す断面図。

【図5】従来の薄膜トランジスタの問題点を説明する断0 面図。

【符号の説明】

- 2 ガラス基板
- 3 絶縁膜
- 5 半導体層
- 7 ソース領域
- 8 ドレイン領域
- 10 ゲート絶縁膜
- 12 ゲート電極
- 14 層間絶縁膜
- 16 MoW膜
 - 17 A I 膜
 - 18 配線

20

20 レジストパターン

【図1】

[図2]

[図3]

【図4】

[図5]

フロントページの続き

Fターム(参考) 2H092 JA25 JA34 JA37 JA41 JA46

KA04 KA10 KA12 KA18 KB24

KB25 MA07 MA08 MA18 MA27

NA24 NA29

4M104 BB16 CC01 DD08 DD12 DD16

DD37 DD65 FF17 FF22 FF27

GG20 HH13 HH15

5F033 HH22 JJ08 JJ20 KK04 MM05

MM13 NN06 NN07 NN13 NN32

PP15 QQ08 QQ09 QQ10 QQ12

QQ15 QQ34 QQ37 RR04 SS15

VV15 WW00

5F110 AA26 BB01 CC02 DD02 DD11

EE06 FF02 FF30 GG02 GG13

GG25 HJ01 HJ04 HJ13 HJ23

HL03 HL04 HL11 HL14 HL23

NN03 NN04 NN23 NN24 NN35

NN72 PP03 PP35 QQ04 QQ11