Due: 7 February, 2014

Problem 1

a A gamble that offered \$2,000 with probability $\frac{1}{5}$ and \$-500 with probability $\frac{4}{5}$ would strictly increase Bob's expected utility.

With probability $\frac{1}{5}$ he ends up with \$3,500 and has a utility of 2, and with probability $\frac{4}{5}$ he ends up with \$1,000, which has a utility of 1. Thus, Bob's expected utility is $\frac{1}{5} \cdot 2 + \frac{4}{5} \cdot 1 = \frac{6}{5} > 1$. This gamble is fair because the expected value is $\frac{1}{5} \cdot \$2,000 + \frac{4}{5} \cdot \$500 = \$400 + \$ - 400 = 0$.

b A gamble that offered \$500 with probability $\frac{3}{4}$ and \$-1,500 with probability $\frac{1}{4}$ would strictly decrease Bob's expected utility.

With probability $\frac{3}{4}$ he would end up with \$2,000 (u(b)=1) and with probability $\frac{1}{4}$ Bob ends up with \$0 (u(b)=0). Thus, his expected utility is $\frac{3}{4} \cdot 1 + \frac{1}{4} \cdot 0 = \frac{3}{4} < 1$. This is a fair gamble because the expected value is $\frac{3}{4} \cdot \$500 + \frac{1}{4}\$ - 1,500 = \$375 + \$ - 375 = 0$.

Problem 2

Problem 3

	Left	Center	Right
Top	5, 0	1, 2	4, 0
Middle	2, 4	2, 4	3, 5
Bottom	0, 1	4, 0	4, 0

Table 1: Normal-form game for Problem 3(a) with labeled actions.

a Table 1 represents the normal-form game for this problem with the additional convenience of labeled strategies. Neither player has a strictly dominant pure strategy. Additionally, the column player does not have a strictly dominant mixed strategy: no mix over L and R can dominate C (if the row player plays T), no mix over L and C can dominate R (if the row player plays M), and no mix over C and R can dominate L (if the row player plays B).

For the row player, no mixed strategy over M and B can dominate T (if the column player plays L) and no mixed strategy over T and M can dominate B (if the column player plays C), but M is dominated by a mix over T and B (e.g. $p_T = \frac{2}{5}, p_B = \frac{3}{5}$).

We can now solve the subgame with row M eliminated, and see that a mix over L and C will dominate R for the column player. There are no dominant pure strategies in this subgame, so we must find the mixed strategy equilibrium. The column player mixes

Due: 7 February, 2014

such that

$$5p_L + 1p_C = 0p_L + 4p_C$$

 $5p_L = 3p_C$
 $p_L = \frac{3}{8}$, $p_C = \frac{5}{8}$,

and the row player mixes such that

$$0p_T + 1p_B = 2p_T + 0p_B$$

 $p_B = \frac{2}{3}$, $p_T = \frac{1}{3}$,

both of which make the other player indifferent.

The unique Nash equilibrium is the row player mixing between T and B with probability $(\frac{1}{3}, \frac{2}{3})$, and the column player mixing between L and C with probability $(\frac{3}{3}, \frac{5}{8})$.

Problem 4

a The normal-form representation of this game is presented in Table 2.

$$\begin{array}{c|ccc} & L & R \\ L & 5, 2 & 0, 3 \\ M & 0, 3 & 5, 2 \\ R & 3, 2 & 1, 1 \end{array}$$

Table 2: Normal-form game for Problem 4(a) with Player 1 on the row and Player 2 on the column.