Схемы вычисления полиномов и их приложения

Михаил Кожевников

17 июня 2010 г.

Схемы вычисления полиномов

Приложения

▶ Символьно-численные интерфейсы

Приложения

- ▶ Символьно-численные интерфейсы
- ▶ Метод редукции на основе СВП

▶ Сравнение методов построения СВП

- ▶ Сравнение методов построения СВП
- ▶ Реализация метода редукции на основе СВП (РСВП)

- ▶ Сравнение методов построения СВП
- ▶ Реализация метода редукции на основе СВП (РСВП)
- ▶ Оценка эффективности РСВП

- ▶ Сравнение методов построения СВП
- ▶ Реализация метода редукции на основе СВП (РСВП)
- Оценка эффективности РСВП
- Рассмотрение возможных улучшений РСВП

 Редукция – это поиск остатка от деления полинома на набор полиномов

- Редукция это поиск остатка от деления полинома на набор полиномов
- Применяется для
 - проверки принадлежности идеалу

- Редукция это поиск остатка от деления полинома на набор полиномов
- Применяется для
 - проверки принадлежности идеалу
 - построения базиса Грёбнера
 - ...

- Редукция это поиск остатка от деления полинома на набор полиномов
- Применяется для
 - проверки принадлежности идеалу
 - построения базиса Грёбнера
 - **>**
- Простейший алгоритм последовательное исключение старшего монома

- Редукция это поиск остатка от деления полинома на набор полиномов
- Применяется для
 - проверки принадлежности идеалу
 - построения базиса Грёбнера
 - **>**
- Простейший алгоритм последовательное исключение старшего монома
- ▶ Сложность существенно зависит от входных данных

- Редукция это поиск остатка от деления полинома на набор полиномов
- Применяется для
 - проверки принадлежности идеалу
 - построения базиса Грёбнера
 - **>**
- Простейший алгоритм последовательное исключение старшего монома
- ▶ Сложность существенно зависит от входных данных
- ▶ Количество членов в полиноме может интенсивно расти

$$N(\lambda p + \mu q) = \lambda N(p) + \mu N(q)$$
$$N(p \cdot q) = N(N(p) \cdot N(q))$$

▶ Вычисляет нормальную форму снизу вверх

$$N(\lambda p + \mu q) = \lambda N(p) + \mu N(q)$$
$$N(p \cdot q) = N(N(p) \cdot N(q))$$

- Вычисляет нормальную форму снизу вверх
- ▶ Сохраняет нормальные формы мономов

$$N(\lambda p + \mu q) = \lambda N(p) + \mu N(q)$$
$$N(p \cdot q) = N(N(p) \cdot N(q))$$

- ▶ Вычисляет нормальную форму снизу вверх
- Сохраняет нормальные формы мономов
- Нормальная форма каждого монома вычисляется лишь единожды

$$N(\lambda p + \mu q) = \lambda N(p) + \mu N(q)$$

 $N(p \cdot q) = N(N(p) \cdot N(q))$

- ▶ Вычисляет нормальную форму снизу вверх
- ▶ Сохраняет нормальные формы мономов
- Нормальная форма каждого монома вычисляется лишь единожды
- Сокращается число промежуточных членов

Достаточное множество мономов

Метод РСВП

Эффективность зависит от используемой схемы

Методы построения схем

▶ Тривиальная схема

Методы построения схем

- ▶ Тривиальная схема
- ▶ Обобщенный метод Горнера

Методы построения схем

- Тривиальная схема
- ▶ Обобщенный метод Горнера
- ► Метод «минимального покрывающего дерева» (ММПД)

$$p \rightarrow mq + r$$

$$p \rightarrow mq + r$$

$$p \rightarrow mq + r$$

$$x^4 + x^3y^2 + x^2 + xy^2 + y^2 + y^4 + y^5$$

$$x(x^3 + x^2y^2 + x + y^2) + y^2 + y^4 + y^5$$

$$p \rightarrow mq + r$$

$$x^4 + x^3y^2 + x^2 + xy^2 + y^2 + y^4 + y^5$$

$$x(x^3 + x^2y^2 + x + y^2) + y^2 + y^4 + y^5$$

$$x(x(x^2+xy^2+1)+y^2)+y^2+y^4+y^5$$

$$p \rightarrow mq + r$$

$$x^4 + x^3y^2 + x^2 + xy^2 + y^2 + y^4 + y^5$$

$$x(x^3 + x^2y^2 + x + y^2) + y^2 + y^4 + y^5$$

$$x(x(x^2+xy^2+1)+y^2)+y^2+y^4+y^5$$

$$x(x(x(1+y^2)+1)+y^2)+y^2+y^4+y^5$$

$$p \rightarrow mq + r$$

$$x^4 + x^3y^2 + x^2 + xy^2 + y^2 + y^4 + y^5$$

$$x(x^3 + x^2y^2 + x + y^2) + y^2 + y^4 + y^5$$

$$x(x(x^2+xy^2+1)+y^2)+y^2+y^4+y^5$$

$$x(x(x(1+y^2)+1)+y^2)+y^2+y^4+y^5$$

$$x(x(x(1+y^2)+1)+y^2)+y^2(1+y^2+y^3)$$

$$p \rightarrow mq + r$$

$$x^4 + x^3y^2 + x^2 + xy^2 + y^2 + y^4 + y^5$$

$$x(x^3 + x^2y^2 + x + y^2) + y^2 + y^4 + y^5$$

$$x(x(x^2+xy^2+1)+y^2)+y^2+y^4+y^5$$

$$x(x(x(1+y^2)+1)+y^2)+y^2+y^4+y^5$$

$$x(x(x(1+y^2)+1)+y^2)+y^2(1+y^2+y^3)$$

$$x(x(x(1+y^2)+1)+y^2)+y^2(1+y^2(1+y))$$

Метод «минимального покрывающего дерева»

Минимальный остовный граф с заданными свойствами

▶ Стоимость операций умножения существенно варьируется

- ▶ Стоимость операций умножения существенно варьируется
- ▶ Ее нельзя с достаточной точностью предсказать заранее

- ▶ Стоимость операций умножения существенно варьируется
- ▶ Ее нельзя с достаточной точностью предсказать заранее
- ▶ Сложность редукции не связана с ее результатом

- ▶ Стоимость операций умножения существенно варьируется
- ▶ Ее нельзя с достаточной точностью предсказать заранее
- ▶ Сложность редукции не связана с ее результатом
- Равномерный критерий качества не отвечает нашим требованиям

- ▶ Стоимость операций умножения существенно варьируется
- ▶ Ее нельзя с достаточной точностью предсказать заранее
- ▶ Сложность редукции не связана с ее результатом
- Равномерный критерий качества не отвечает нашим требованиям
- ▶ Поиск оптимальной схемы не нужен

▶ Прототип на Python

- ▶ Прототип на Python
- ▶ Реализация на кроссплатформенном С++ с использованием GMP

- ▶ Прототип на Python
- ▶ Реализация на кроссплатформенном С++ с использованием GMP
- ▶ Юнит-тесты

- ▶ Прототип на Python
- ▶ Реализация на кроссплатформенном С++ с использованием GMP
- ▶ Юнит-тесты

Особенности:

▶ Каждому моному присваивается уникальный идентификатор

- ▶ Прототип на Python
- ▶ Реализация на кроссплатформенном С++ с использованием GMP
- Юнит-тесты

Особенности:

- ▶ Каждому моному присваивается уникальный идентификатор
- Полиномы списки с общим пулом элементов

Детали реализации

- ▶ Прототип на Python
- ▶ Реализация на кроссплатформенном С++ с использованием GMP
- Юнит-тесты

Особенности:

- ▶ Каждому моному присваивается уникальный идентификатор
- Полиномы списки с общим пулом элементов
- ▶ Коэффициенты из поля рациональных чисел или конечного поля

Детали реализации

- ▶ Прототип на Python
- ▶ Реализация на кроссплатформенном С++ с использованием GMP
- Юнит-тесты

Особенности:

- Каждому моному присваивается уникальный идентификатор
- Полиномы списки с общим пулом элементов
- Коэффициенты из поля рациональных чисел или конечного поля
- Исключается повторное вычисление нормальной формы мономов

Методология тестирования

▶ Тестирование на отдельных примерах

Методология тестирования

- ▶ Тестирование на отдельных примерах
- ▶ Сравнение с Maple 13

Методология тестирования

- Тестирование на отдельных примерах
- ▶ Сравнение с Maple 13
- ▶ Особенности редукции над ℚ

Схемы с точки зрения равномерного критерия

Количество операций умножения:

	TC	МГ	ММПД
p_1	8684	1221	2995
<i>p</i> ₂	39246	6865	10345
<i>p</i> ₃	121796	34361	41772

Метод Горнера показывает наилучшие результаты благодаря возможности добавления узлов

Редукция полиномов над $\mathbb Q$

Время редукции, мс:

	TC	МГ	ММПД	Maple
p_1	827	187	684	3270
p ₂	1863	320	520	15868
<i>p</i> ₃	210557	75846	127671	391264

Редукция полиномов над GF(31)

Время редукции, мс:

	TC	МГ	ММПД	Maple
q_1	34	62	150	3716
q_2	2908	5552	2366	1674390
q ₃	25183	65732	39224	_

Метод РСВП

▶ обладает высокой гибкостью и эффективностью,

Метод РСВП

- ▶ обладает высокой гибкостью и эффективностью,
- допускает частично параллельную реализацию,

Метод РСВП

- обладает высокой гибкостью и эффективностью,
- допускает частично параллельную реализацию,
- позволяет редуцировать несколько полиномов совместно.

Метод РСВП

- обладает высокой гибкостью и эффективностью,
- допускает частично параллельную реализацию,
- позволяет редуцировать несколько полиномов совместно.

Однако,

 равномерный критерий сложности не отвечает фактической сложности.

Метод РСВП

- обладает высокой гибкостью и эффективностью,
- допускает частично параллельную реализацию,
- позволяет редуцировать несколько полиномов совместно.

Однако,

- равномерный критерий сложности не отвечает фактической сложности.
- схема, построенная заранее, может быть сколь угодно далека от оптимальной,

Метод РСВП

- обладает высокой гибкостью и эффективностью,
- допускает частично параллельную реализацию,
- позволяет редуцировать несколько полиномов совместно.

Однако,

- равномерный критерий сложности не отвечает фактической сложности,
- схема, построенная заранее, может быть сколь угодно далека от оптимальной,
- направление подъема существенно влияет на эффективность алгоритма.

Для повышения эффективности данного подхода необходимо

▶ строить схему в процессе редукции,

Для повышения эффективности данного подхода необходимо

- ▶ строить схему в процессе редукции,
- тщательно выбирать направление подъема,

Для повышения эффективности данного подхода необходимо

- строить схему в процессе редукции,
- тщательно выбирать направление подъема,
- добавлять промежуточные мономы лишь если они мало отклоняются от заданного направления.

Для повышения эффективности данного подхода необходимо

- строить схему в процессе редукции,
- тщательно выбирать направление подъема,
- добавлять промежуточные мономы лишь если они мало отклоняются от заданного направления.

Также необходимо исследовать эффективность данного алгоритма в при работе с булевыми полиномами и другими полиномами высокой размерности.

▶ Выполнена эффективная реализация РСВП

- Выполнена эффективная реализация РСВП
- ▶ Рассмотрены различные методы создания СВП и их эффективность в контексте РСВП

- Выполнена эффективная реализация РСВП
- Рассмотрены различные методы создания СВП и их эффективность в контексте РСВП
- Выполнено сравнение с современной системой компьютерной алгебры

- Выполнена эффективная реализация РСВП
- ▶ Рассмотрены различные методы создания СВП и их эффективность в контексте РСВП
- Выполнено сравнение с современной системой компьютерной алгебры
- ▶ Предложена модификация рассматриваемого подхода

Спасибо за внимание!

Полиномы

Полиномы над полем рациональных чисел:

	# пер.	Степень	# мономов	Размерность б.	Степень б.
p_1	2	374	45	4	11
p ₂	2	1444	54	12	20
<i>p</i> ₃	3	821	267	17	19

Полиномы над конечным полем GF(31):

	# пер.	Степень	# мономов	Размерность б.	Степень б.
q_1	3	53	36	30	20
q_2	3	289	72	30	20
q ₃	3	126	132	14	30