

1 DISTANCE MEASURING DEVICE

2

3 Background Information

4

5 The present invention is directed to a distance measuring device according to the
6 definition of the species of Claim 1.

7

8 A distance measuring device which represents the general class is known from
9 DE 198 11 550 C2, with which a plurality of signals at different frequencies is
10 produced by a single oscillator by dividing and filtering out harmonic frequencies.

11

12 Advantages of the Invention

13

14 The present invention is directed to a distance measuring device, in particular a
15 laser distance measuring device, with at least one oscillator which produces a
16 basic signal at a fundamental frequency, and a first circuit device which produces
17 a first signal at a frequency which is higher than the fundamental frequency. It is
18 proposed, according to the present invention, that the first circuit device include
19 at least one PLL circuit and at least one VCO circuit.

20

21 A distance measuring device with a circuit device of this nature offers the
22 advantage that the first frequency of the first signal produced by the circuit device
23 can be much higher than the frequency of a signal which is suitable for use for
24 the distance measuring device, and the first signal can be obtained by filtering a
25 harmonic vibration and by amplification. The requirements on the phase
26 resolution for achieving a certain measurement accuracy are therefore reduced,
27 and a higher level of accuracy is attainable. A further advantage lies in the fact
28 that the first frequency can be produced digitally, and no measurement frequency
29 requirements due to filter elements need be taken into consideration. The
30 present invention also offers the advantage that the circuit device functions

1 without filter elements, including the associated adapter network and
2 amplification circuits. Costs can be spared as a result.

3

4 A PLL ("phase locked loop") circuit and a VCO ("voltage-controlled oscillator")
5 circuit are sufficiently known in the field of electronics. A PLL circuit compares the
6 phase position of two signals and outputs a voltage which is a function of the
7 phase position. A VCO circuit produces a signal at a frequency which is a
8 function of the voltage input to the VCO circuit. Via the combination of a PLL
9 circuit and a VCO circuit, a circuit device is therefore attainable with which a
10 starting frequency produced by the VCO circuit can be adapted to a fundamental
11 frequency with a high level of accuracy. Very high initial frequencies or starting
12 frequencies with the same stability as the fundamental frequency of the oscillator
13 are therefore attainable, whereby starting frequencies of over 1 GHz are
14 possible. The desired starting frequency of the circuit device is attained by
15 selecting a suitable VCO circuit, the starting frequency range of which includes
16 the desired frequency.

17

18 The circuit device can be located directly behind the oscillator, so the basic signal
19 at the fundamental frequency is forwarded to the PLL circuit. It is also possible,
20 however, to locate one or more circuits which change the basic signal of the
21 oscillator between the oscillator and the circuit device. For example, a frequency
22 divider can be located between the oscillator and the circuit device, which divides
23 the fundamental frequency produced by the oscillator into one or more lower
24 frequencies. One or more of the lower starting frequencies of the frequency
25 divider are forwarded to a circuit device, or a particular first circuit device, which
26 produces a first signal at a first frequency which is higher than the fundamental
27 frequency.

28

29 Advantageously, the circuit device includes a frequency divider which is provided
30 to divide the first frequency. Frequency multiplication is thereby made possible in
31 a simple manner. The frequency divider is used to divide the starting frequency

1 of the VCO circuit, whereby the starting signal of the frequency divider is input to
2 the PLL circuit for comparison with the signal which is forwarded directly to the
3 PLL circuit or indirectly from the oscillator. The frequency divider advantageously
4 divides the starting frequency of the VCO circuit down to the same frequency
5 which is forwarded directly to the PLL circuit or indirectly from the oscillator.

6

7 A particularly simple circuit device is obtained by integrating the frequency divider
8 in the PLL circuit.

9

10 In a preferred embodiment of the present invention, the first circuit device
11 includes an LC filter which is located downstream from the VCO circuit. An LC
12 filter of this type has inductance (L) and capacitance (C), and is used to improve
13 signal quality, e.g., by filtering out harmonic vibrations produced by the circuit
14 device. In this manner, a substantially sinusoidal starting signal of the first circuit
15 device is obtained, which permits phase determination with a high level of
16 accuracy in a subsequent measuring process.

17

18 In a further embodiment of the present invention, the distance measuring device
19 includes a phase-shifting element which produces a second signal out of the
20 basic signal, whereby the second signal has a second frequency which is
21 different from the fundamental frequency, and the second signal is produced by
22 transferring an input signal between discrete phase positions and whereby a
23 second circuit device with a PLL circuit and a VCO circuit is located downstream
24 from the phase-shifting element for producing a third signal at a third frequency
25 which is higher than the second frequency. The second signal can be produced
26 indirectly or directly from the basic signal. It is possible, for example, to locate a
27 further element such as a frequency divider between the oscillator and the
28 phase-shifting element, and to process the output signal from this further element
29 using the phase-shifting element. With the second circuit device, the second
30 signal is processed directly or indirectly after an intermediate signal processing
31 element such that a third signal at a third and high frequency is produced. The

1 first signal at the first frequency and the third signal at the third frequency are
2 therefore derived from the basic signal produced by the oscillator; as a result, the
3 two signals have a stable relationship with each other without any adjustment. As
4 a result, the advantage can be obtained that the low-frequency mixed product of
5 the first and third signal is just as stable as the basic signal from the oscillator
6 and, in fact, without any adjustment. A frequency error between the individual
7 signals at different frequencies is therefore ruled out, since they all trace back to
8 a basic signal from the oscillator.

9

10 The phase-shifting element produces the second signal via synthetic, i.e., purely
11 digital frequency shifting, for example. As a result, even slight frequency
12 deviations which are due to different sources of the signals, e.g., from a plurality
13 of oscillators, are effectively avoided. Frequency pairs with closely adjacent and
14 very high frequencies can be obtained, whereby "closely adjacent" is understood
15 to mean a frequency difference which cannot be obtained via division from a
16 starting frequency.

17

18 Advantageously, the first and/or second circuit device is provided to multiply its
19 input frequency by a non-linear multiple. As a result, a simple evaluation of the
20 phases of signals with frequencies which are shifted relative to each other can be
21 achieved.

22

23 Drawing

24

25 Further advantages result from the following description of the drawing. An
26 exemplary embodiment of the present invention is shown in the drawing. The
27 drawing, description, and claims contain numerous features in combination. One
28 skilled in the art will also advantageously consider them individually and combine
29 them to form further reasonable combinations.

30

1 Figure 1 shows a basic schematic diagram of a distance measuring device which
2 is configured as a laser distance measuring device. Any signal which does not
3 stand constantly on one direct-current value is considered hereinbelow to have a
4 frequency f . The signal can be sinusoidal, rectangular or sinusoidal or
5 rectangular only for a limited time. If the signal is rectangular, further frequencies
6 occur in addition to the fundamental oscillation frequency f , the further
7 frequencies being referred to as harmonic oscillations. The underlying theory is
8 known from mathematics and will not be explained in further detail here.

9

10 If the signal is sinusoidal or rectangular only for a limited time—which is the case,
11 for example, with signals whose phases are shifted by a constant phase angle in
12 a regular chronological sequence—the signal is also referred to as having a
13 frequency f . In this case, the numerical value f represents that frequency in the
14 frequency spectrum with the greatest amplitude. In this case, frequencies can
15 occur which are not a multiple of the frequency f . Frequencies of this type are
16 also referred to hereinbelow as harmonic oscillations.

17

18 Figure 1 shows a basic schematic diagram of a distance measuring device
19 labelled 10. It includes an optical transmitter 12, e.g., a laser diode, and an
20 optical receiver 14, e.g., a photodiode. Using optical transmitter 12, a collimated,
21 visible, continuous-wave laser beam is produced as transmitted signal 16, which
22 is visible on an object 18, also referred to hereinbelow as the target. Transmitted
23 signal 16 is reflected by object 18 according to the laws of optics and is received
24 as received signal 20 by optical receiver 14. Immediately after the target
25 measurement, transmitted signal 16 is forwarded, as reference signal 16', to
26 optical receiver 14 via an optical change-over switch 22, e.g., a movable flap.

27

28 A circuit arrangement 24 is provided which controls laser distance measuring
29 device 10. It includes an oscillator 26, which is configured as a quartz oscillator.
30 Oscillator 26 provides a fundamental frequency f_0 , from which all frequencies
31 explained in greater detail hereinbelow for operation of distance measuring

1 device 10 are derived. To increase the unambiguous range of the distance
2 measurement with distance measuring device 10, the device is operated at a
3 total of three modulation frequencies for transmitted signal 16. Transmitted signal
4 16 itself is amplitude-modulated in known fashion. As a result, the received signal
5 is also amplitude-modulated, in the same manner. Due to the fact that optical
6 change-over switch 22 is switched over at a known point in time, it can be
7 unambiguously determined based on the chronological sequence whether the
8 instantaneous optical received signal came directly from optical change-over
9 switch 22 or object 18.

10

11 Optical receiver 14 is configured as a known avalanche photodiode and allows a
12 plurality of frequencies to be mixed simultaneously. The configuration and mode
13 of operation of an avalanche photodiode of this type are known, so they will not
14 be discussed in greater detail within the framework of the present description.

15

16 A first switchable frequency divider 28 is assigned to oscillator 26, via which the
17 frequency f_0 provided by oscillator 26 is capable of being divided down to a
18 frequency f_{10} , a frequency f_{20} , or frequency f_{30} . Frequencies f_{10} , f_{20} , f_{30} can
19 assume any value which is attainable by dividing fundamental frequency f_0 . In
20 addition, at least two of the frequencies can be identical.

21

22 A circuit device 30 is located downstream from frequency divider 28, which
23 produces, out of the signal at frequency f_{10} , a first signal at a frequency f_1 which
24 is higher than fundamental frequency f_0 . Circuit device 30 includes a PLL circuit
25 32 and a VCO circuit 34. A frequency divider 36 is integrated in PLL circuit 32.
26 VCO circuit 34 is a voltage-controlled oscillator and is designed to output a signal
27 at frequency f_1 or a frequency which is located in a range around frequency f_1 .
28 Frequency divider 36 is designed to divide a signal at frequency f_1 down to a
29 signal in the range of frequency f_{10} . PLL circuit 32 is a phase-locked loop and is
30 provided for performing a phase comparison of the signal coming from frequency
31 divider 36 with the signal of frequency f_{10} coming from frequency divider 28.

1 Circuit device 30 includes an LC filter 35, which has inductance and capacitance.
2 LC filter 35 filters out harmonic oscillations produced by circuit device 30 and is
3 used to improve signal quality.

4

5 The first signal at frequency f_1 and the two other signals at frequencies f_2 and f_3
6 coming from frequency divider 28 are forwarded via a summing element 38 to
7 optical receiver 14. Frequency f_2 corresponds to frequency f_{20} output by
8 frequency divider 28, and frequency f_3 corresponds to frequency f_{30} . It is also
9 possible to direct signals at frequency f_{20} or frequency f_{30} output by frequency
10 divider 28 through a bandpass filter and/or an amplifier, neither of which is
11 shown, so that frequency f_2 or frequency f_3 need not necessarily correspond to
12 frequency f_{20} or f_{30} . It is also possible to locate circuit device 30 directly behind
13 oscillator 26, so that the basic signal at fundamental frequency f_0 is used as the
14 input signal for PLL circuit 32.

15

16 A further switchable frequency divider 28' is assigned to oscillator 26. Frequency
17 divider 28' includes a digital circuit arrangement, which is configured as phase-
18 shifting element 40. Signals at frequencies f_{10} , f_{20} and f_{30} can be applied at the
19 outputs of frequency divider 28'. These frequencies are transferred by phase-
20 shifting element 40 at frequency f_5 in their phase. A mixture of a plurality of
21 frequencies in the frequency spectrum therefore results. At least two of the
22 frequencies f_{10} , f_{20} and f_{30} can be identical.

23

24 Circuit device 30' includes a PLL circuit 32' and a VCO circuit 34'. A frequency
25 divider 36' is integrated in PLL circuit 32'. VCO circuit 34' is designed to output a
26 signal at frequency f_1 or a frequency which is located in a range around
27 frequency f_1 . Frequency divider 36' is designed to divide down a signal with
28 frequency f_1 to a signal in the range of frequency f_{10} . PLL circuit 32' is provided
29 to perform a phase comparison of the signal coming from frequency divider 36'
30 with the signal at frequency f_{10} coming from frequency divider 28'. Every time
31 phase-shifting element 40 shifts the phase of the signal at frequency f_{10} slightly,

1 PLL circuit 32' builds up again, in conjunction with VCO circuit 34', until the signal
 2 at frequency f_{10} coming from frequency divider 36' again has the same phase
 3 position as the signal at frequency f_{10} coming from frequency divider 28'. In a
 4 manner analogous to that of circuit device 30, circuit device 30' also includes an
 5 LC filter 35', which has inductance and capacitance.

6

7 Optical receiver 14 is acted upon in chronological sequence by the optical signals
 8 listed below under A, and simultaneously with each optical signal, by the
 9 electrical signal listed under B:

10

List A	List B
Optical signals:	Associated electrical signals:
Target signal 20 at frequency f_1	Mixed signal at frequency f_1
Target signal 20 at frequency f_2	Mixed signal at frequency f_2
Target signal 20 at frequency f_3	Mixed signal at frequency f_3
Reference signal 16' at frequency f_1	Mixed signal at frequency f_1
Reference signal 16' at frequency f_2	Mixed signal at frequency f_2
Reference signal 16' at frequency f_3	Mixed signal at frequency f_3

11

12 As a result, a transformation to an evaluation signal 42 takes place in a known
 13 manner via mixing. This evaluation signal 42 contains the necessary basic
 14 information, i.e., the phase angle of target signal 20 relative to an A/D converter
 15 clock cycle 52 and, chronologically thereafter, the phase angle of reference
 16 signal 16' relative to A/D converter clock cycle 52. Calculating the difference
 17 between the two phase angles per measurement frequency results in the
 18 reference variable, since it is unchanged in all consecutive measurements. The
 19 result is one phase angle per measurement frequency pair f_1-f_1 , f_2-f_2 and f_3-f_3 ,
 20 i.e., a total of three phase angles. The smallest frequency of frequencies f_1 , f_2 ,
 21 and f_3 determines the unambiguous range of the entire distance measurement.
 22 The largest frequency of frequencies f_1 , f_2 , and f_3 determines the maximum
 23 possible measurement accuracy at a given measurement time. The frequency of

1 f_1 , f_2 , and f_3 which is located between the smallest and largest frequency is
2 basically not required. It is used advantageously, however, when the
3 measurement accuracy of the smallest frequency is not sufficient to place the
4 measured result of the largest frequency in the correct range. The latter is
5 necessary to measure distances which are greater than the unambiguous range
6 of the highest frequency.

7

8 Frequency f_3 is selected to be relatively small, so that a slow A/D converter with
9 high resolution can be used. Evaluation signal 42 is directed through an anti-
10 aliasing filter 44 which is a bandpass filter for the evaluation signal at frequency f_4
11 and, from this, to an amplifier 46 and then an analog-to-digital converter 48.
12 Converted evaluation signal 42 is forwarded to a microprocessor 50, which
13 includes the appropriate arithmetic-logic units, memory units, counting units, etc.,
14 which determine the distance of object 18 from distance measuring unit 10. A/D
15 converter clock cycle 52 is provided simultaneously via microprocessor 50 to
16 control analog-to-digital converter 48. Furthermore, a frequency signal f_5 (trigger
17 signal) from microprocessor 50—the signal being in an at least partially fixed
18 ratio to A/D converter clock cycle 52—is used to shift frequencies f_{10} , f_{20} and f_{30}
19 to frequencies f'_{10} , f'_{20} , and f'_{30} .

20

21 In the exemplary embodiment it is assumed that oscillator 26 produces a basic
22 signal at a fundamental frequency $f_0 = 60$ MHz. Frequency divider 28 divides
23 fundamental frequency f_0 into frequency $f_{10} = 30$ MHz, frequency $f_{20} = 15$ MHz,
24 and frequency $f_{30} = 1.875$ MHz. Frequencies f_{20} and f_{30} are forwarded,
25 unchanged, as frequencies $f_2 = 15$ MHz and $f_3 = 1.875$ MHz to summing element
26 38. The signal at frequency f_{10} is input to PLL circuit. The phase position of this
27 signal is compared with the phase position of a signal coming from frequency
28 divider 36, whereby the comparison of the phases of the two signals is converted
29 to an output voltage of PLL circuit 32. This voltage is used as the input variable
30 for VCO circuit 34, which uses it to produce a signal at frequency $f_1 = 900$ MHz.
31 The signal at frequency f_1 is input to frequency divider 36, which divides

1 frequency f_1 of the signal down to frequency f_{10} . By comparing the phases of the
2 two signals at frequency f_{10} coming from frequency dividers 28 and 36 and the
3 resultant output voltage of PLL circuit 32, VCO circuit 34 is triggered such that
4 the signal at frequency f_1 output by it has the same stability and accuracy as the
5 basic signal at fundamental frequency f_0 of oscillator 26.

6

7 Second frequency divider 28' assigned to oscillator 26 divides fundamental
8 frequency f_0 of 60 MHz down—in a manner similar to that of frequency divider
9 28—into signals at frequencies f'_{10} , f'_{20} and f'_{30} , whereby frequencies f'_{10} , f'_{20} and
10 f'_{30} are digitally shifted by frequency f_4 relative to frequencies f_{10} , f_{20} , and f_{30} .
11 Frequency f_4 is 2.929 kHz, so that frequency f'_1 , which is obtained in a manner
12 similar to that used to obtain frequency f_1 , is 899.997 MHz. Frequency f'_2 is
13 29.997 MHz, and frequency f'_3 is 1.872 MHz. All frequencies are produced
14 digitally with the aid of the trigger signal of frequency f_5 of microprocessor 50. In
15 the exemplary embodiment it is assumed that trigger signal f_5 at frequency $f_1 =$
16 900 MHz and frequency $f_2 = 15$ MHz have exactly the 4-fold frequency of f_4 . With
17 each clock cycle of the trigger signal at frequency $f_5 = 11.716$ kHz, the phase of
18 the signal at frequency f_1 or f_2 is shifted by 90°, so that a shift of 360° at
19 frequency $f_4 = 2.929$ kHz takes place. At frequency $f_3 = 1.875$ MHz, trigger signal
20 f_5 has the 32-fold frequency of f_4 . The frequencies mentioned in this exemplary
21 embodiment are stated as examples only. Other frequencies are also possible in
22 other exemplary embodiments, of course.

1

Reference numerals

10	Distance measuring device	34'	VCO circuit
12	Optical transmitter	35	LC filter
14	Optical receiver	35'	LC filter
16	Transmitted signal	36	Frequency divider
18	Object	36'	Frequency divider
20	Received signal	38	Summing element
22	Switch-over device	38'	Summing element
24	Circuit arrangement	40	Phase-shifting element
26	Oscillator	42	Evaluation signal
28	Frequency divider	44	Anti-aliasing filter
28'	Frequency divider	46	Amplifier
30	Circuit device	48	A/D converter
30'	Circuit device	50	Microprocessor
32	PLL circuit	52	A/D converter clock cycle
32'	PLL circuit		
34	VCO circuit		

2

3

4

5