

Agenda

- Given m+n-1 nonzero entries in A. Can we compute to rank 1 matrix (mxn). This leads to bipartite graphs
- Convolution and Cyclic convolution eigen values/eigen vectors of Circulant matrices

Source: Section IV.8 and IV.2 in Linear Algebra and Learning from Data (2019) by Gilbert Strang

Take rank 1 matrix $A = uv^T$ this means that $a_{ij} = u_iv_j$, i=1, m and j=1, n

Let us take m=n=3 and m+n-1 nonzero entries in A(mxn) matrix, i.e., m+n-1 = 5 nonzero entries in which positions in A

$$A = \begin{pmatrix} x & x & x \\ x & \bullet & \bullet \\ x & \bullet & \bullet \end{pmatrix}$$

In any rank 1 matrix, every (2x2) determinant must be zero. So (2, 2) entry of A is decided by $a_{22}a_{33} = a_{23}a_{32}$

Check the failure of A

In this matrix, any (2x2) determinant fails to zero A fails to have rank 1

Take an example of combinatorics. To explain this, by constructing a graph with mxn nodes

Take m=n=4 and m+n-1=7 entries in matrix A

There are seven x's, as seven edges are there. And it is a bipartite graph

Four nodes here, four nodes another end. Total eight nodes. It's a bipartite graph because one part of nodes over there, one part of nodes here

Bipartite means two parts

Complete rank 1 matrix there? what's the rule? Can't complete the matrix as we have 2 by 2 To avoid this, a 2 by 2, in other four entries

We have seven altogether entries, that's a failure we do not have a zero determinant here. We won't have rank 1

It is a Cycle graph = failure to have rank 1 matrix. Rank 1 matrix has no cyclic graph

Convolution matrix-- a cyclic convolution matrix cyclic convolution matrix is circulant

A circulant has constant diagonals. Convolution means constant down each diagonal

Cyclic means complete, circle around again, the diagonals circle around

1st column, 2, 0, 1, 5. 2nd column is 5, 2, 0, 1 shifted by one. 3rd column again shifted by one, 1, 5, 2, 0
Last column is 0, 1, 5, 2.

They're all the same columns after a cyclic shift

Take 0, 1, 0, 0, 0, 0-- it has one non-zero diagonal. And then it's cyclic

If it is square matrix, this is a shift by one again and is multiplying it again by P i.e., P²
It's a shift by two

It's shifted it by two and cyclically x_2 , x_3 got shifted off the bottom come back to the top

Every Circulant matrix is polynomial of P, i.e., C=C₀I+C₁P +C₂P²+ C₃P³ (I is an identity matrix)

$$C = C_0 I + C_1 P + C_2 P^2 + C_3 P^3 = \begin{cases} 1 & 2 & 3 & 4 \\ C_0 & C_1 & C_2 & C_3 \\ C_3 & C_0 & C_1 & C_2 \\ 3 & C_2 & C_3 & C_0 & C_1 \\ 4 & C_1 & C_2 & C_3 & C_0 \end{cases}$$

Every circulant matrix is C_0 times the identity circulant plus C_1 times the single shift plus C_2 times the double shift plus C_3 times the triple shift. It takes to put C_0 , C_1 , C_2 , and C_3 on those diagonals

Suppose C and D are Circulant matrices

Fact 1: C is polynomial in P and D is polynomial in P

CD= Polynomial in P and question is how to get degree 3?

CD=
$$(C_0I+C_1P+C_2P^2+C_3P^3)(D_0I+D_1P+D_2P^2+D_3P^3)$$

P is 4x4 circular shift. So $P^4 = I$

P⁶ is really a P². P⁵ is really a P term. P⁴ is really a P⁰

Eigen Vector and Eigen Values of C with $Px = \lambda x$

Now, $x_0 = \lambda x_3 = \lambda^2 x_2 = \lambda^3 x_1 = \lambda^4 x_0$, So $\lambda^4 = 1$ This gives evalues of P which are i,-1, -i, 1

In a circulant world, draw a circle.

Back-up slides

Seven positions or any m+ n-1 positions like that, Create a graph like following the rule

And it's a bipartite graph because every edge goes from this part over to this part. And that's a failure

Because we have here a cycle, That would be a cycle equals failure

In combinatorics, only compute complete rank 1 matrix if and only if no cycles

Convolution: Let us take the convolution of (3,1,2) * (4,6,1) we have got vectors (3,1,2) and (4,6,1) and there is a polynomial $(3+x+2x^2)$ * $(4+6x+x^2)$

Hence, (3,1,2) * (4,6,1) = (12,22,17,13,2)

It is non-cyclic convolution

Ordinary convolution is the multiplication you learned in second grade

(made easier because there is no "carrying" to the next

column):

4 6 1

12 18 3

12 22 17 13 2

Cyclic Convolution: $(3,1,2) \otimes (4,6,1) = (12,22,17,13,2) = (12+13,22+2,13) = (25,24,17)$

So this represents 12, 22P, 17P², 13P³. And what's 13P³? If n is 3 and we are handling 3 by 3 matrices, then 13P³ cubed is the same 13, right? P³ is I.

So the 13 will go back there. And the 2 will be P4.

And it will go back as P. So now with convolution, cyclic convolution gives 12 and 13, 25; 22 and 2, 24; and 17

So we are getting back a vector of length 3 just as we wanted to. Check with 25+24+17=66 and (3+1+2) *(4+6+1)=66