S>
$$2^a + 2^b = c!$$
 and a, b, c are non-negative integers. Find the number of ordered tuple (a, b, c) satisfying above equation.

$$|| = 1 \quad ? \quad || = 2^b = 0 \quad || = 2^b = 0$$

Regnetion.

$$|1| = 1$$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 4$
 $|2| = 4$
 $|2| = 4$
 $|2| = 4$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$
 $|2| = 2$

Q> P(n) =
$$(x-1)(x^2-2)(x^3-3)...(x^{11}-11)$$
. Find the coefficient of x^{60} .

Ans: $- deg(P) = \frac{11 \times 12}{2} = 66$
 $(-6) = -6$
 $(-6) = 5$
 $(-4)(-2) = 8$

Find the sum of all natural numbers
$$n$$
 such that $n''+1$ is prime and has almost 19 digits.

Cost $n = 0$ and $n''+1 = even$
 $n'' < 10^{19}$
 $n'' < 10^{1$

Con In = [5dd x even sold foctor exist

$$x^{\alpha} + y^{\alpha} = (x+y)(x^{\alpha-1}y - x^{\alpha-2}y^{2} + --)$$

Con N = even = 2 = 2,4,8,16 K = K = 1 $[n-2] \Rightarrow 2^2 + 1 = 5$ $[n=4] \Rightarrow 4^4 + 1 = 257$ $n=8 \Rightarrow 88 + 1 = 24 + 1 = (28 + 1)(28(3-1) - 28(3-2))$ Not prime

/ $h = 16 \Rightarrow 16^{16} + 1 = 2^{2} + 1 \Rightarrow i + i \Rightarrow \alpha \text{ prime}$ $16^{16} + 1 = 2^{2} + 1 \Rightarrow i + i \Rightarrow \alpha \text{ prime}$ $16^{16} + 1 = 2^{2} + 1 \Rightarrow i + i \Rightarrow \alpha \text{ prime}$ $16^{16} + 1 = 2^{2} + 1 \Rightarrow i + i \Rightarrow \alpha \text{ prime}$ $16^{16} + 1 = 2^{2} + 1 \Rightarrow i + i \Rightarrow \alpha \text{ prime}$ $16^{16} + 1 = 2^{2} + 1 \Rightarrow i + i \Rightarrow \alpha \text{ prime}$ $16^{16} + 1 = 2^{2} + 1 \Rightarrow i + i \Rightarrow \alpha \text{ prime}$ $\log_{10} 2 > 0.3 \implies \log_{10} 6 > 1.2$ $\log_{10} 2 > 0.3 \implies \log_{10} 6 > 1.2$ $\log_{10} 6 \log_{10} 6 > 1.2 > 19.2 > 19$ $2^{5-7} < 10^{19}$ 50 16 vol- in nowner