• Exponential Smoothing uses *all* the time series values to generate a forecast with lesser weights given to the observations further back in time.

Exponential Smoothing (1 of 2)

- A weighted moving average
 - Weights decline exponentially
 - Most recent observation weighted most
- Used for smoothing and short term forecasting (often one or two periods into the future)

• Exponential smoothing is actually a way of "smoothing" out the data by eliminating much of the "noise" (random effects).

Exponential Smoothing (2 of 2)

- The weight (smoothing coefficient) is α
 - Subjectively chosen
 - Range from 0 to 1
 - Smaller α gives more smoothing, larger α gives less smoothing
- The weight is:
 - Low value (closer to 0) for smoothing out unwanted cyclical and irregular components
 - Higher value (closer to 1) for forecasting, especially for smoother time series

Exponential Smoothing Model

1. Obtain the smoothed series:

$$\hat{x_1} = x_1$$
 $\hat{x_t} = (1-\alpha)\hat{x_{t-1}} + (\alpha)x_t$ $(0 < \alpha < 1; t = 2, 3, ..., n)$

2. From time *n*, the forecasts of future values are

$$\hat{x}_{n+h} = \hat{x}_n \qquad (h = 1, 2, \dots)$$

where:

 $\hat{\mathcal{X}}_t$ = exponentially smoothed value for period t $\hat{\mathcal{X}}_{t-1}$ = exponentially smoothed value already computed for period i-1

 x_t = observed value in period t α = weight (smoothing coefficient), $0 < \alpha < 1$

Exponential Smoothing Example

• Suppose we use weight $\alpha = 0.2$ $\hat{x}_t = (1 - 0.2)\hat{x}_{t-1} + 0.2x_t$

Time Period (<i>t</i>)	Sales (X _t)	Forecast from prior period ($\hat{\mathcal{X}}_{t-1}$)	Exponentially Smoothed Value for this period (\hat{x}_t)	
1	23		23 ———	$\hat{x}_1 = x_1$ since no prior information exists
2	40	23	(.8)(23)+(.2)(40)=26.4	
3	25	26.4	(.8)(26.4)+(.2)(25)=26.12	
4	27	26.12	(.8)(26.12)+(.2)(27)=26.296	
5	32	26.296	(.8)(26.296)+(.2)(32)=27.437	
6	48	27.437	(.8)(27.437)+(.2)(48)=31.549	
7	33	31.549	(.8)(31.549)+(.2)(33)=31.840	
8	37	31.840	(.8)(31.840)+(.2)(37)=32.872	
9	37	32.872	(.8)(32.872)+(.2)(37)=33.697	
10	50	33.697	(.8)(33.697)+(.2)(50)=36.958	
etc.	etc.	etc.	etc.	

Sales vs. Smoothed Sales

- Fluctuations have been smoothed
- Note: the smoothed value in this case is generally a little low, since the trend is upward sloping and the weighting factor is only 0.2

How Much Smoothing Is There?

• We said the lower the value of α, the more "smooth" the time series will become.

Exponential Smoothing ($\alpha = .1$)

What About Larger Values of α ?

• Here is the "smoothed" series for $\alpha = .7$:

Forecasting Time Period (t + 1)

- The smoothed value in the current period (t) is used as the forecast value for next period (t + 1)
- Standing at time n, we obtain the forecasts of future values, X_{n+h} of the series

$$\hat{x}_{n+h} = \hat{x}_n \quad (h=1,2,3...)$$

Exponential Smoothing in Excel

- Use Data / Data Analysis / exponential smoothing
 - The "damping factor" is $(1-\alpha)$

