Intel FPGA Cloud Services

Larry Landis, Senior Manager University Outreach, Intel Programmable Solutions Group

- Larry Landis University Outreach Senior Manager, Intel Programmable Solutions Group
- 31 years in semiconductor industry design, sales, marketing, training for ASIC, FPGA
- Adjunct Lecturer for Digital Electronics Course Santa Clara University

BSEE

MSEE

Adjunct Lecturer

Intel® FPGA Academic

Ecosystem

- Train the next generation of FPGA Designers
- Increase Intel® FPGA presence in academia

 Academic access to the latest generation of Intel FPGAs

- Nurture the talent pipeline for Intel and our customers
- Engage research on Intel FPGAs

Undergraduate Teaching Resources for Computer Engineering Profs and TAs

INTEL® FPGA EE Undergrad Coursework Offerings

- Undergraduate
- Digital Logic
- Digital Systems
- Computer Organization
- Embedded Systems

What's included?

Tutorials on tool usage

Semester worth of labs

http://fpgauniversity.intel.com

Remote Learning Tools for Undergrad Coursework

DESim

 Devkit like GUI that that runs Modelsim under the hood. Great for first time learners of Verilog/VHDL for stimulus/response type labs. No hardware required.

Remote Console

- "Video game" like GUI that connects to Terasic development kits
- Enables remote hosting of boards ideal for work from home environments

DESim

DESim

- Student prepares Verilog/VHDL code
- Prof provides testbench and student can observe behavior through GUI – great for new learners to visualize logic design behavior

ttps://github.com/fpgacademy/DESim/releases/tag/v1.0.1

Remote Console

Linux or Windows*
Server

USB

Method 1: Intel Quartus® Prime Software Hosted on Server

-or-

Method 2: Intel Quartus® Prime Software Hosted on Student's PC

Does not require 1 Devkit per Server – use USB port replicator

Install setup at university engineering department cluster

Host on Windows or Linux server running Intel Quartus Prime Programmer

Graduate Level and Research: Intel Devclouds and HARP

INTEL® FPGAS ACCELERATING THE CLOUD & ENTERPRISE

LOOKASIDE ACCELERATION

58G/112G I/O

100G/400G Ethernet

INLINE ACCELERATION

PCI-Express*
Intel® UPI
Compute Express

Intel FPGA University Graduate Level Coursework

- Graduate level FPGA coursework focuses on AI, Machine Learning, Heterogeneous Computing using C++ extension languages: HLS, OpenCL, DPC++ and OpenVino for Visual Inferencing
- Run a web search on Intel FPGA Training for various topics
- Partner university links for FPGA devcloud coursework through Mindshare Grants:
 - U of Florida RTL AFU
 - U Mass Lowell OpenCL / OpenAPI
 - UC Davis OneAPI
- Intel offers free FPGA HARP (aka vlab) for Research or Devcloud (Teaching) cloud services

Intel FPGA Academic Clouds

Cloud access to Intel servers with FPGAs for academics

FPGAs/SW tools already installed. Just login remotely. Ready to use!

HARP (vlab) for long-term research

Hardware accelerator research program (HARP), originally offered cloud access to integrated (MCP) Xeon+FPGA

Now expanded to offer servers with FPGAs cards, hosted in Intel's Academic Compute Env.

Exclusively for long-term academic research (e.g., 1+ year PhD research)

DevClouds for teaching and beyond

Offers servers with FPGA cards

Suitable for teaching (e.g., lab projects) and short-term research efforts. Move to HARP when research grows

And for short-term development projects in general (academic and industry)

What's available

FPGA flows/framework	Devcloud	HARP
Traditional RTL flow	Υ	Υ
HLS Compiler	Υ	Υ
FPGA SDK for OpenCL	Υ	Υ
DPC++ (part of OneAPI)	Υ	Upon Request
OpenVino (Al framework)	Υ	Upon Request

FPGA hardware

- Intel Xeon with Arria 10 Programmable Acceleration Cards (PAC)
- Intel Xeon with Stratix 10 Programmable Acceleration Cards (PAC)
- Integrated Xeon+FPGA systems (HARP only)

HARP: Getting access

To get access

Send email to: IL Academic Res Env@intel.com
Put email subject "[HARP] new account request".
Include a short (1 page max) research proposal
Include the type of workloads you are planning to run

More details

The following website offers information of available FPGA systems in HARP. It also provides detailed tutorials and examples on how to get started. https://wiki.intel-research.net/FPGA.html

Intel Devclouds –Teaching and Short-term Research Focus

FPGA Instance: OneAPI Instance: OneAPI (DPC++) RTL OpenCL CPU, GPU, FPGA CPU, FPGA Shared Login

Edge Instance:

OpenVino CPU, GPU, VPU, FPGA

*Free Access!

Website Access for the Intel Devclouds

Gaining access to the FPGA Devcloud

- Signup @ https://intelsoftwaresites.secure.force.com/fpgadevcloud
- Check out our github site for instructional material: https://github.com/intel/FPGA-Devcloud
- Quickstart guides for a variety of flows: https://github.com/intel/FPGA-Devcloud/tree/master/main/QuickStartGuides
- You get access for 3 months, look for cancellation notices and extend access. Data is lost if you fail to extend access
- Use batch mode for longer compiles (timeout after 6 hours)! Use walltime extends beyond 6 hour FPGA compiles

Access method 1: Mobaxterm (multi-tab console)

Linux based – makes PC look like Linux filesystem Doesn't support GUI programs – use X2Go

Intel Programmable Solutions Group intel

Access method 2: x2go

Multi window system – using sparingly - for Quartus GUI

Access method 3: JupyterLab

Multi tab system through browser – use native editor, not vi; no Quartus GUI

Intel Programmable Solutions Group intel.

Contacts for Intel FPGA Devcloud help

University Outreach – San Jose, California

Larry Landis
Sr Manager University Outreach
Intel Programmable Solutions Group
lawrence.landis@intel.com

+1 669 544-6956

Terry Barrette:

Academic Program Manager, CTO Office Diversity and Inclusion Director

<u>terry.barrette@intel.com</u>

+1 669 544-6735

Also: fpgauniversity@intel.com

Lab – Focus is Access Methods, not language instruction

- 1. Sign-up (if not done yet make sure to select FPGA instance)
- 2. Mobaxterm download, ssh key, etc
- 3. devcloud_login and tools_setup commands for simplified access
- 4. Run OpenCL example with emulation
- 5. Run same example in batch mode
- 6. Jupyter Lab access

Notes for lab:

- Access to compute machines might get queued, if bottleneck, try interactive lab later
- Interactive sessions consume node for 6 hours, we show interactive mode, however we prefer you use batch processing!
- Walltime command can extend access for 24 hours see github instructions

#