فایل final NNSider

1: تمامی کتابخانه های مورد نیاز را فراخوانی میکنیم.

2: فراخوانی داده ها ازفایل دیتاها و جایگزینی مقادیر گمشده درفیچرها با مقادیر میانگین سایر مشاهدات هر فیچر سپس حذف مشاهداتی که لیبل نامعلوم دارند(تعداد566 مشاهده از 7831 مشاهده).

3: استفده از روش Grid Search CV جهت پیدا کردن بهترین هایپرپارامترها در شبکه با یک لایه پنهان .

انتخاب تصادفی 90 درصد دیتاها به عنوان داده آموزشی، 5 درصد به عنوان داده آزمایشی و 5 درصد داده اعتبار سنج(این نوع انتخاب سایز مجموعه داده ها با توجه به تجربیاتی که بدست آمد انجام شد و انتخاب یشتر داده ها به عنوان تست و اعتبار سنج مفید نبود)

مرحله اول: ساختن مدل در تابعي تحت عنوان cteate model for GS با مقادير اوليه دلخواه هابيريار امترها.

مرحله دوم: استفاده از کتابخانه Keras و مشخص کردن Optimizer مدل و تعداد neurons لایه پنهان با استفاده از مدل تعریف شده در قسمت قبل و Sk-cross-validation. بدست آوردن دقت این مدل بر روی دیناها ی آزمایشی

استفاده از Optimizer و تعداد neurons لایه پنهان بدست آمده در قسمت قبل به جای مقادیر اولیه دلخواه در مدل سپس بدست مشخص کردن init_mode لایه نهان و لایه خروجی و dropout_rate پس از لایه پنهان لایه ا استفاده از مدل جدید و -5k cross-validation. بدست آوردن دقت این مدل بر روی دیتاها ی آزمایشی.

مرحله سوم :ساخت مدل نهایی با توجه به پار امتر های بدست آمده مرحه قبل،بررسی دقت وخطای مدل روی دیتاهای آموزشی و اعتبار سنج ،نمودار های مدل و دقت و خطای مدل بر روی داده های آزمایشی

4 : استفاده از روش Keras Tuning جهت پیدا کردن بهترین پارامترها در شبکه با یک و دو لایه پنهان

انتخاب تصادفی 90 درصد دیناها به عنوان داده آموزشی، 10 درصد داده اعتبار سنج(این نوع انتخاب سایز مجموعه داده ها با توجه به تجربیاتی که بدست آمد انجام شد و دلیل اینکه داده تست در نظر نگرفتیم این بود که تجربه نشان داد دقت اعتبارسنج کم میشود وقتی بخشی را برای آزمایش در نظر بگیریم).

برای هر دو مدل شبکه عصبی با یک و دو لایه پنهان بترتیب مراحل زیر طی میشود:

مرحله اول: ساختن مدل بر روی داده های آموزشی در تابعی تحت عنوان cteate model for KT .

مرحله دوم: استفاده از كتابخانه Keras tuner و بدست آوردن بهترین هابیرپارامترها با استفاده از داده های اعتبارسنج

مرحله سوم :ساخت مدل نهایی با توجه به پار امتر های بدست آمده مرحه قبل،بررسی دقت وخطای مدل روی دیتاهای آموزشی و اعتبار سنج ،نمودار های مدل.

5:اجرای bagging بر روی بهترین مدل بدست آمده از قسمت 3 و 4

GS : محاسبه دقت و خطای مدل با همه داده ها جز داده های آزمایشی -محاسبه دقت وخطای مدل بر روی داده های آزمایشی

اجرای bagging با جداکردن داده های out of bag پس از مدل سازی و محاسبه دقت بر روی این داده ها-محاسبه دقت مدل بر روی داده های آزمایشی

KT : محاسبه دقت و خطای مدل -محاسبه دقت وخطا مدل بر روی داده های اعتبار سنج که از آنها استفاده ای در bagging نشد و میتوان به آنها به چشم داده آزمایشی نگاه کرد.

اجرای bagging با جداکردن داده های out of bag پس از مدل سازی و محاسبه دقت وخطا مدل بر روی داده های اعتبارسنج که از آنها استفاده ای در bagging نشد و میتوان به آنها به چشم داده آزمایشی نگاه کرد. انتخاب 10 داده ابتدایی از داده های آزمایشی و مشاهده لیبل اصلی و لیبل های پیش بینی شده آنها توسط مدلهای زده شده با GS ومقایسه مدلها.

انتخاب 10 داده ابتدایی از داده های اعتبار سنج و مشاهده لیبل اصلی و لیبل های پیش بینی شده آنها توسط مدلهای زده شده با bagging KT ومقایسه مدلها.

برای KT چون داده آز مایشی در نظرنگرفتیم قسمت پیش بینی نداریم.

فایل final_sele_NNSider

دراین فایل از سه روش انتخاب متغیر استفاده شده و و سپس روش Keras Tuning طبق قبل و مراحل گفته شده انجام میشود. انتخاب 10 داده ابتدایی از داده های اعتبارسنج متناسب(به عنوان دیتای تست به دلیل گفته شده) با روش انتخاب متغیر Ch2 و مشاهده لیبل اصلی و لیبل های پیش بینی شده آنها توسط bagging های زده شده ومقایسه آنها.

جدول مدلها:

		Number hidden layer	loss	accuracy	val_loss	val_accuracy	test set loss	test set accuracy
GS_model	50	1	0.1854	0.9456	0.7668	0.6765	0.7461	0.7361
KT_model_1	50	1	0.5604	0.7196	0.6028	0.7203	_	_
KT_model_2	50	2	0.5516	0.7212	0.6084	0.6853	-	-
KT_model_f1	50	1	0.5837	0.6963	0.6016	0.7063	-	-
KT_model_ch1	50	1	0.5780	0.7033	0.6119	0.6573	-	-
KT_model_mi1	100	1	0.5479	0.7243	0.6114	0.6783	-	-
KT_model_f2	50	2	0.5760	0.6955	0.5861	0.7203	-	-
KT_model_ch2best	25	2	0.0944	0.9730	0.0911	0.9801	-	-
KT_model_mi2	50	2	0.5751	0.7025	.5997	0.6713	-	-

جدول ensemble ها:

model	epoch	Number hidden layer	test set accurac Y	accurac y for out-of- bag	val set accurac y
bag_clf_GS	50	1	0.70833	-	-
outbag_clf_GS	50	1	0.70833	0.6878	-
bag_clf_KT1	50	1	-	-	0.6713
outbag_clf_KT1	50	1	-	0.63785	0.6713
bag_clf_KT2	50	2	-	-	0.6853
outbag_clf_KT2	50	2	-	0.6573	0.6783
bag_clf_KTch1	50	1	-	_	0.6853
outbag_clf_KTch 1	50	1	-	0.6495	0.6853
bag_clf_KTch2	50	2	-	_	67832
outbag_clf_KTch 2	50	2	-	0.6495	0.6993

همانگونه که از تحلیل دقت مدلها پیداست بهترین مدل KT_model_ch2best است که بالاترین دقت روی آموزش و دیناهای اعتبارسنج را دارد و شکل نمودار learning curve ان بصورت زیر است.

