Exersise 7

- a. For any even integer n we can write it as the product n=2k for some $k \in \mathbb{Z}$. Therefore $n^2=(2k)^2=4k^2$ and therefore 4 divides n^2
- b. For any even integer n we can write it as the product n=4k for some $k \in \mathbb{Z}$. Therefore $n^3=(2k)^3=8k^3$ and therefore 8 divides n^3
- c. In the prime factorization of twice and odd cube, $2k^3$ where k odd, we know 2 does not divide k and therefore does not divide k^3 and so there is only 2^1 in the prime factorization of $2k^3$. Therefore 8 cannot divide $2k^3$ since $8=2^3$ does not divide the powers of 2 in the prime factorization of $2k^3$
- d. Suppose for contradiction $\sqrt[3]{2} = \frac{a}{b}$ where a, b are relatively prime. Then we have $2b^3 = a^3$. Since $2b^3$ is even, a^3 is even. The only way it is possible for a^3 to be divisible by 2 is if 2 divides a. Therefore a must be even, which means a = 2n for some $n \in F$ so $a^3 = 8n^3 = 2b^3$, So $b^3 = 4n^3$. Therefore b^3 is even which means b must be even

Exersise 10 Let x=A|B, by definition we have -x=C|D where $C=\{r\in\mathbb{Q}:$ for some $b\in B$, not the smallest element of $B,r=-b\}$ and D is the rest of \mathbb{Q} . By definition we have x+(-x)=E|F where $E=\{r\in\mathbb{Q}:$ for some $a\in A$ and some $c\in C$ we have $a+c=r\}$ and F is the rest of \mathbb{Q} . Since $0^*=N|M=\{r\in\mathbb{Q}:r<0\}|\{r\in\mathbb{Q}:r\geq 0\}$, we wish to show $N=E\Rightarrow x+(-x)=0$. For any $e\in E$ we have e=a+c for some $a\in A$ and $c\in C$. From how C was defined we know c=-b for some $b\in B$. By definition of a cut we know a< b, therefore (subtracting b on both sides) we have a-b<0. And so from how N was defined we have that $e=a+(-b)\in N$, and therefore $E\subseteq N$. Now take any element $n\in N$. We know that n<0. Let a be an element of A chosen such that a+|n/2| is not in A. We know such an a exists since if we start with any element of A and iteratively add |n/2| we will get arbitrarily large, since A is bounded from above by some element of B there must be a iteration which is no longer in A, and so the previous iteration is our desired a. Therefore we have $a+|n/2|\in B$ and so (since n<0) we have $x=a\in A$ and $y=a-n\in B$. We have $x+(-y)\in E$ and x+(-y)=a-(a-n)=n so $n\in E$ which means $N\subseteq E$ and thus we have equality of the two sets. Thus $x+(-x)=0^*$

Exersise 13

a. If there was no $s \in S$ such that $b - \epsilon < s$ then by definition $b - \epsilon$ would be an upper bound of S. However $b - \epsilon < b$ and thus contradicting b being a least upper bound. Therefore there must exist $s \in S$ with $b - \epsilon < s$

b.

Exersise 1

a.

$$\{x \in \mathbb{Q} : x^2 = 2\} = \emptyset$$

b. If $x \in \mathbb{Q}$ and x > 0 then $\exists n \in \mathbb{N}$ such that $\frac{1}{n} < x$

Exersise 2

- a. Let x=A|B. We know by definition B is nonempty and therefore there exists $y\in B$ with $y\in \mathbb{Q}$, to avoid the case that $y^*=x,$
- b.