$0.1 \quad 24.10.2019$

0.1.1 Экстремумы

Теорема (необходимое условие лок. экстремума)

$$f:D\subset\mathbb{R}^n o\mathbb{R}$$
 x^0 - внутр. точка D, f - диф. в x^0 в x^0 лок. экстр. $\Rightarrow \forall j$ $\dfrac{\partial f}{\partial x_0}(x^0)=0$

Опр

$$\int x^0$$
 - страционарная, если $\forall g \quad \frac{\partial f}{\partial x_0}(x^0) = 0$

Пример

$$f = x^3$$
 $f'(0) = 0$, но $x_0 = 0$ - не экстр. точка

y_{TB}

Достаточное условие лок. экстремума: Пусть $f \in C^2$, x^0 - страционарная точка, тогда:

- 1. d^2f строго пол. определен \Rightarrow в x^0 лок. мин.
- 2. $d^2 f$ отриц. опр. \Rightarrow лок. макс.

3.
$$\exists e_1, e_2 \in \mathbb{R}^n : \frac{d^2 f(x^0)[e_1] > 0}{d^2 f(x^0)[e_2] < 0} \Rightarrow \mathbf{B} \ x^0 \text{ нет экстр.}$$

$$d^{2}f = \sum_{i,j=0}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} dx_{i} dx_{j} = dx^{T} A dx$$

$$dx = \frac{dx_1}{dx_n} \quad A = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{i,j=1}^2$$

Опр

Кв. форма пол. определена \Leftrightarrow она принимает пол. значения на вект $\neq 0$ Кв. форма отр. определена \Leftrightarrow -//- отр. знач.

$$f(x) = f(x^{0}) + d^{2}f(x^{0})[x - x^{0}] + \overline{o}(|x - x^{0}|^{2})$$

1

Теорема (критерий Сильвестра)

$$A = (a_{ij})_{i,j=1}^n$$
 $a_{ij} = a_{ji}$ $F(x) = \sum_{i,j=1}^n x_i x_j$

Кв. форма пол. опр. $\Leftrightarrow A_1 > 0, \ A_2 > 0, \ ..., \ A_n > 0$ Кв. форма отр. опр. $\Leftrightarrow A_1 < 0, \ A_2 < 0, \ ..., \ A_n < 0$

$$A_k = \det((a_{ij})_{i,j=1}^k) = \det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & & & \\ \dots & & & \\ a_{k1} & & & a_{kk} \end{pmatrix}$$

Пример (n=2)

$$f: \mathbb{R}^2 \Rightarrow \mathbb{R}$$
 (x_0, y_0) - стац.
$$\begin{pmatrix} f''_{xx} & f''_{xy} \\ f''_{xy} & d'_{yy} \end{pmatrix} = \begin{pmatrix} A & B \\ B & C \end{pmatrix}$$

 x^0 - лок. мин $\Leftrightarrow A>0$ и $AC-B^2>0$ x^0 - лок. макс $\Leftrightarrow A<0$ и $AC-B^2<0$ Если $AC-B^2>0$ \Rightarrow нет экстр.

Пример

$$f = x^2 - xy + y^2 - 2x + y$$

$$\frac{\partial f}{\partial x} = 2x - y - 2 = 0$$

$$\Rightarrow (1,0) - \text{стац. точка}$$

$$\frac{\partial f}{\partial y} = -x + 2y + 1 = 0$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial x \partial y}$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial x \partial y}$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial x \partial y}$$

$$A = 2 > 0$$

$$AC - B^2 = 5 > 0$$

$$\Rightarrow (1, 0) - \text{лок. экстр.}$$