数字逻辑 Digital Logic Circuit

丁贤庆

ahhfdxq@163.com

Home work (P218)

- ~1、下次课会有一次10分钟的随堂测验。
- 2、今天的作业:
 - **~4.4.14**
 - **4.4.20**
 - **4.4.26**
 - **4.4.36**
 - **4.4.37**

第4章 组合逻辑电路

Combinational Logic Circuit

4.4 若干典型的组合逻辑电路

- 4.4.1 编码器
- 4.4.2 译码器/数据分配器
- 4.4.3 数据选择器
- 4.4.4 数值比较器
- 4.4.5 算术运算电路

4.4.2 译码器/数据分配器

Decoders

1 译码器的定义与分类

译码:译码是编码的逆过程,它能将二进制码翻译成代表某一特定含义的信号.(即电路的某种状态)

译码器: 具有译码功能的逻辑电路称为译码器。

译码器的分类:

地址译码器将一系列代码转换成与之一一对应的有效信号。

代码变换器 将一种代码转换成另一种代码。

常见的地址译码器:

二进制译码器

→ 二—十进制译码器

显示译码器

2. 典型译码器电路及应用

(1) 二进制译码器

设输入端的个数为n,输出端的个数为M则有 $M=2^n$

在使能信号E=1的情况下,四个输出全部为1。(静态电流比较小,功耗比较小) 在使能信号有效(E=0)的情况下,对应的输出中,只有1个为0,其它输出全部为1。

说明: 当电路的输出状态变化时,静态电流比较大,漏电流比较大,功耗比较大。

2线 - 4线译码器的逻辑电路(分析) 低电平有效标识

対能表 輸入 類出 \overline{E} A_1 A_0 \overline{Y}_0 \overline{Y}_1 \overline{Y}_2 \overline{Y}_3 $1 \times \times \times 1 \ 1 \ 1 \ 1$ $0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1$ $0 \ 1 \ 1 \ 0 \ 1$ $0 \ 1 \ 1 \ 0 \ 1$

根据真值表中输出F=1的情况 能够写出F的最小项表达式。

根据真值表中输出F=0的情况 能够写出F的最小项表达式。

$$\overline{Y}_{0} = \overline{E}\overline{A}_{1}\overline{A}_{0}$$

$$\overline{Y}_{1} = \overline{E}\overline{A}_{1}A_{0}$$

$$\overline{Y}_{2} = \overline{E}A_{1}\overline{A}_{0}$$

$$\overline{Y}_{3} = \overline{E}A_{1}A_{0}$$

不考虑使能信号E的情况下,译码器 的每个输出是一个最小项的非。 逻辑符号框外部的符号,表示外部输入或输出信号名称,字母 上面的"—"号说明该输入或输出是低电平有效。在推导表达式 的过程中,表示低有效的输入或输出变量(如)上面的"—"号只 是一个提示符,不是"非",不能参与运算。

(b) 3线-8线译码器(74HC138芯片)

低电平有效标识

3线-8线译码器	(74HC138芯片)	功能表
プングーロング ゲードブ 竹口		

	低电	平有效	标识									低电	1平有	效核
输入														
E_3	\overline{E}_2	E_1	A_2	A_1	A_0	\overline{Y}_0	\overline{Y}_1	\overline{Y}_2	\overline{Y}_3	\overline{Y}_4	\overline{Y}_5	$\overline{\overline{Y}}_6$	Y ₇	
X	1	X	X	X	X	1	1	1	1	1	1	1	1	
X	X	1	×	×	×	1	1	1	1	1	1	1	1	
0	×	X	×	X	X	1	1	1	1	1	1	1	1	
1	0	0	0	0	0	0	1	1	1	1	1	1	1	
1	0	0	0	0	1	1	0	1	1	1	1	1	1	
1	0	0	0	1	0	1	1	0	1	1	1	1	1	
1	0	0	0	1	1	1	1	1	(0)	1	1	1	1	
1	0	0	1	0	0	1	1	1	1	0	1	1	1	
1	0	0	1	0	1	1	1	1	1	1	0	1	1	
1	0	0	1	1	0	1	1	1	1	1	1	0	1	
1	0	0	1	1	1	1	1	1	1	1	1	1	0	

根据真值表中输出F=1的情况 能够写出F的最小项表达式。

$$\overline{Y}_0 = \overline{\overline{A}_2 \cdot \overline{A}_1 \cdot \overline{A}_0};$$

根据真值表中输出F=0的情况 能够写出F的最小项表达式。 计算机学院

数字逻辑电路

 $\overline{Y}_0 = \overline{\overline{A}}_2 \cdot \overline{A}_1 \cdot \overline{A}_0; \ \overline{Y}_1 = \overline{\overline{A}}_2 \cdot \overline{A}_1 \cdot A_0; \ \overline{Y}_2 = \overline{\overline{A}}_2 \cdot A_1 \cdot \overline{A}_0; \ \overline{Y}_3 = \overline{\overline{A}}_2 \cdot A_1 \cdot A_0;$

Y_{\perp}	$A_1 = A_2 \cdot \overline{A_1} \cdot \overline{A_0};$	$\overline{Y}_5 = A_2 \cdot \overline{A_1}$	$\cdot A_0$;	$\overline{Y}_6 = A_2$	$\cdot A_1 \cdot \overline{A_0};$	\overline{Y}_{7}	$y = A_2 \cdot A_2$	$\mathbf{A}_{1}\cdot\mathbf{A}_{0}$
	输	λ		输		出		

	输			入				输			出		
E_3	\overline{E}_{2}	\overline{E}_1	A_2	A_1	A_0	\overline{Y}_0	\overline{Y}_1	\overline{Y}_2	\overline{Y}_3	\overline{Y}_4	\overline{Y}_5	\overline{Y}_6	\overline{Y}_7
X	1	X	X	X	X	1	1	1	1	1	1	1	1
X	X	1	X	×	X	1	1	1	1	1	1	1	1
0	×	×	×	×	×	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	9	1	1	1	1
1	0	0	1	0	0	1	1	1	1 (0	1	1	1
1	0	0	1	0	1	1	1	1	1	1	0	1	1
1	0	0	1	1	0	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	

不考虑使能信号E的情况下,译码器的每个输出是一个最小项的非。

1、译码器的扩展

用74HC139和74HC138构成5线-32线译码器

74HC139是2线-4线译码器

74HC138是3线-8线译码器

5线中的3线分给138芯片, 另外2线分给139芯片。

32线的输出可以看成 是由4个8线的输出组成。

2、用译码器实现逻辑函数。

当 $\mathbf{E}_3=1$, $\mathbf{E}_2=\mathbf{E}_1=0$ 时,如果A2、A1、A0分别连接A、B、C三路信号。则:

3线-8线译码器的 $Y_0 \sim Y_7$ 是三变量函数的最小项的非.

基于这一点用该器件能够方便地实现三变量逻辑函数。

例:用一片74HC138和与非门实现函数

$$L = \overline{A}\overline{C} + AB$$

解答: 首先将函数式变换为最小项之和的形式

在译码器的输出端加一个与非门,即可实现给定的组合逻辑函数.

下图所示的电路,输出L对应的表达式,正确的是()

$$L=\overline{m}_1+\overline{m}_2+\overline{m}_5+\overline{m}_6$$

$$D L = \frac{1}{m_1 + m_2 + m_5 + m_6}$$

提交

(2) 二-十进制译码器的真值表

对于BCD代码以外的伪码(1010~1111这6个代码) $Y_0 \sim Y_0$ 均 为高电平。

每种输入,对应的输出中,只有1位输出为0,其它位输出全部为1。

二-十进制译码器

功能:将8421BCD码译成为10个状态输出。

(3) 显示译码器

最常用的显示器有: 半导体发光二极管和液晶显示器。

共阴极显示器

显示器分段布局图

b

当共阳极接0V时,共阳极显示器不亮。

当共阴极接5V时,共阴极显示器不亮。

常用的集成七段显示译码器

------CMOS七段显示译码器74HC4511

显示译码器与显示器的连接方式

74HC4511输入与输出

CMOS七段显示译码 器74HC4511功能表

 f
 g
 b
 f
 g
 b

 e
 C
 e
 C

 显示 "0" 字形
 显示 "1" 字形

十进			斩	介入				输 出							
制或功能	LE	\overline{BL}	LT	D_3	D_2	D_1	D_0	а	b	c	d	e	f	g	字形
0	0	1	1	Ó	0	0	0	1	1	1	1	1	1	0	0
1	0	1	1	0	0	0	1	0	1	1	0	0	0	0	-
2	0	1	1	0	0	1	0	1	1	0	1	1	0	1	2
3	0	1	1	0	0	1	1	1	1	1	1	0	0	1	3
4	0	1	1	0	1	0	0	0	1	1	0	0	1	1	4
5	0	1	1	0	1	0	1	1	0	1	1	0	1	1	5
6	0	1	1	0	1	1	0	0	0	1	1	1	1	1	Ь
7	0	1	1	0	1	1	1	1	1	1	0	0	0	0	
8	0	1	1	1	0	0	0	1	1	1	1	1	1	1	8
9	0	1	1	1	0	0	1	1	1	1	1	0	1	1	9

CMOS七段显示译码器74HC4511功能表(续)

						输	入					输出				
计算机	十进 J或功能	<u>LE</u>	BL	LT	D_3	D_2	D_1	D_0	a	b	c	d	e	$\int f$	g	字形
学院	10	0	1	1	1	0	1	0	0	0	0	0	0	0	0	熄灭
	11	0	1	1	1	0	1	1	0	0	0	0	0	0	0	熄灭
	12	0	1	1	1	1	0	0	0	0	0	0	0	0	0	熄灭
	13	0	1	1	1	1	0	1	0	0	0	0	0	0	0	熄灭
	14	0	1	1	1	1	1	0	0	0	0	0	0	0	0	熄灭
101	15	0	1	1	1	1	1	1	0	0	0	0	0	0	0	熄灭
数字逻	灯 测 试	×	×	0	×	×	×	×	1	1	1	1	1	1	1	00
辑电路	灭 灯	×	0	1	×	×	×	×	0	0	0	0	0	0	0	熄灭
路	锁存	1	1	1	×	×	×	×				*				*

例 由译码器、显示译码及4个七段显示器构成的4位<mark>动态显示</mark> 电路如图所示,试分析工作原理。

位选择信号A1、A0控制 $\overline{Y}_3 \sim \overline{Y}_0$ 依次产生低电平,使4个显示器轮流显示。要显示的数据组依次送到 $D_3D_2D_1D_0$ 分别在4个显示器上显示。利用人的视觉暂留时间,可以看到稳定的数字。 $25\text{Hz} < f_{\text{C}} < 100\text{Hz}$

用74HC138组成数据分配器

Demultiplexers

数据分配器示意图

数据分配器:相当于多输出的单刀多掷开关,是将公共数据线上的数据按需要送到不同的通道上去的逻辑电路。

$$\overline{Y}_2 = \overline{E}_3 \overline{E}_2 \overline{D} \overline{A} B \overline{C}$$

74HC138译码器作为数据分配器时的功能表

	输			λ				输			出		
E ₃	E ₂	E ₁	$\mathbf{A_2}$	\mathbf{A}_1	$\mathbf{A_0}$	$\overline{\overline{\mathbf{Y}}}_{0}$	$\overline{\mathbf{Y}}_{1}$	$\overline{\mathbf{Y}}_2$	$\overline{\mathbf{Y}}_{3}$	$\overline{\overline{Y}}_4$	$\overline{\mathbf{Y}}_{5}$	$\overline{\mathbf{Y}}_{6}$	$f{ar{Y}}_7$
0	0	X	X	X	X	1	1	1	1	1	1	1	1
1	0	D	0	0	0	D	1	1	1	1	1	1	1
1	0	D	0	0	1	1	D	1	1	1	1	1	1
1	0	D	0	1	0	1	1	D	1	1	1	1	1
1	0	D	0	1	1	1	1	1	D	1	1	1	1
1	0	D	1	0	0	1	1	1	1	D	1	1	1
1	0	D	1	0	1	1	1	1	1	1	D	1	1
1	0	D	1	1	0	1	1	1	1	1	1	D	1
1	0	D	1	1	1	1	1	1	1	H	1	1	D

例: 试用门电路设计一个具有低电平使能控制的1线-4线数据分配器,使能信号无效时,电路所有的输出为高阻态。当通道选择信号将1路输入信号连接到其中1路输出端时,其他输出端为高阻状态。

1. 列真值表 输出端有3种状态 (0、1、z),输出 级是4个三态门组成。 其控制信号由Ē、S1、 S0共同作用产生。

	输入		输 出						
\overline{E}	S_1	S_0	Y_3	Y_2	Y_1	Y_0			
0	0	0	Z	Z	Z	In			
0	0	1	Z	Z	In	Z			
0	1	0	Z	In	Z	Z			
0	1	1	In	Z	Z	Z			
1	X	X	Z	Z	Z	Z			

2. 写出4个三态门控制端的逻辑表达式(见下页图)

$$C_0 = \overline{\overline{E}} \cdot \overline{S_1} \cdot \overline{S_0}$$
; $C_1 = \overline{\overline{E}} \cdot \overline{S_1} \cdot S_0$; $C_2 = \overline{\overline{E}} \cdot S_1 \cdot \overline{S_0}$; $C_3 = \overline{\overline{E}} \cdot S_1 \cdot S_0$;

4.4.3 数据选择器 Multiplexers (Data Selectors)

1、数据选择器的定义与功能

数据选择器:能实现数据选择功能的逻辑电路。它的作用相当于多个输入的单刀多掷开关,又称"多路开关"。

数据选择的功能:在通道选择信号的作用下,将多个通道的数据分时传送到公共的数据通道上去的。

表 4.3.1 4 选 1 数据选择器功能表

	输	λ	输出
G	$A_{_{ m I}}$ $A_{_{ m O}}$	D_2 D_2 D_1 D_0	Y
1	× ×	x x x x	0
	0 0	× × × 0	0
		× × × 1	1
0	0 1	x x 0 x	0
		× × 1 ×	1
	1 0	× 0 × ×	0
		× 1 × ×	1
	1 1	0 × × ×	0
	1 *	1 × × ×	1

4选1数据选择器

$$Y = \overline{S_1} \overline{S_0} D_0 + \overline{S_1} S_0 D_1 + S_1 \overline{S_0} D_2 + S_1 S_0 D_3$$

简化真值表

选择	译输	输出				
S_1	S_0	Y				
0	0	D_0				
0	1	D_1				
1	0	D_2				
1	1	D_3				

$$Y = \overline{S_1} \overline{S_0} D_0 + \overline{S_1} S_0 D_1 + S_1 \overline{S_0} D_2 + S_1 S_0 D_3$$

$$Y = D_0 m_0 + D_1 m_1 + D_2 m_2 + D_3 m_3$$
 这两个公式常用

(3) 数据选择器实现逻辑函数

例4.4.8 试用数据选择器实现下列逻辑函数

- ① 用4选1数据选择器实现 $L_0 = \overline{AB} + A\overline{B}$
- ② 用2选1数据选择器和必要的逻辑门实现 $L_1 = AB + AC + BC$

$$Y = \overline{S_1} \overline{S_0} D_0 + \overline{S_1} S_0 D_1 + S_1 \overline{S_0} D_2 + S_1 S_0 D_3$$

$$L_0 = \overline{AB} \cdot 0 + \overline{AB} \cdot 1 + A\overline{B} \cdot 1 + AB \cdot 0$$

① $\stackrel{\mathcal{L}}{=}$ $S_1 = A$, $S_0 = B$, $D_0 = D_3 = 0$, $D_1 = D_2 = 1$

2选1数据选择器只有1个选通端接输入A,表达式有3个变量。 因此数据端需要输入2个变量。考察真值表B、C与L的关系。

$$Y = SD_0 + SD_1$$

当S=A时,

$$L_{1} = AB + A\overline{C} + BC \cdot (A + \overline{A})$$

$$= A \cdot (B + \overline{C} + BC) + \overline{A} \cdot BC$$

$$= A \cdot (B + \overline{C}) + \overline{A} \cdot BC$$

令S=A, D0=BCD1=B+ *c* 时, **Y=L1**

输入	输出
S	Y
0	$Y=D_0$
1	$Y=D_1$

(6) 集成电路数据选择器

8选1数据选择器74HC151

74HC151逻辑符号

74HC151的功能表

 $Y = D_0 m_0 + D_1 m_1 + D_2 m_2 + D_3 m_3 + D_4 m_4 + D_5 m_5 + D_6 m_6 + D_7 m_7$

•当 \overline{E} =1时,Y=0。

·当*Ē*=0时

Y=1的情况共有八种情况,可以写出对应表达式:

- (1) $S2S1S0D_0=0001$ (5) $S2S1S0D_4=1001$
- (2) $S2S1S0D_1=0011$ (6) $S2S1S0D_5=1011$
- (3) $S2S1S0D_2=0101$ (7) $S2S1S0D_6=1101$
- (4) $S2S1S0D_3=0111$ (8) $S2S1S0D_7=1111$

$$Y = S_2 S_1 S_0 D_0 + S_2 S_1 S_0 D_1 + S_2 S_1 S_0 D_2$$

 $+ S_2 S_1 S_0 D_3 + S_2 S_1 S_0 D_4 + S_2 S_1 S_0 D_5$

 $+S_2S_1S_0D_6+S_2S_1S_0D_7$

$$Y = \sum_{i=0}^{7} D_i m_i$$

输		入		输	出
使能		选择		Y	Y
E	S_2	S_1	S_0		
1	X	X	X	L	Н
0	0	0	0	D_0	$\overline{\mathbf{D}}_0$
0	0	0	1	D_1	$\overline{\mathbf{D}}_{\!1}$
0	0	1	0	D_2	$\overline{\mathbf{D}}_2$
0	0	1	1	$egin{array}{c} D_3 \ D_4 \ D_5 \ \end{array}$	$\overline{\mathbf{D}}_3$
0	1	0	0	D_4	$\overline{\mathrm{D}}_{\!\scriptscriptstyle{4}}$
0	1	0	1	D_5	$\overline{\mathbf{D}}_{5}$
0	1	1	0	D.	$\overline{\mathbf{D}}_{c}$

数值比较器:对两个1位数字进行比较(A,B),以

判断其大小的逻辑电路。 Determine whether two numbers are equal

Comparators

1. 1位数值比较器(设计)

输入:两个一位二进制数 $A \setminus B$ 。

输出: $F_{A>B}=1$,表示A大于B

$$F_{A < B} = 1$$
,表示 A 小于 B

- 1, If A = 1 and B = 0, number A is greater than number B;
- 2, If A = 0 and B = 1, number A is less than number B;
- 3, If A = B, number A is equal to number B.

一位数值比较器真值表

$$F_{A>B} = A\overline{B}$$

$$F_{A < B} = \overline{A} B$$

$$F_{A=B} = \overline{A} \overline{B} + AB$$

输入		输出		
$oldsymbol{A}$	В	$F_{A>B}$	$F_{A < B}$	$F_{A=B}$
0	0	0	0	1
0	1	0	1	0
1	0	1	0	0
1	1	0	0	1

2、2位数值比较器:

比较两个2 位二进制数的大小的电路

输入:两个2位二进制数 $A=A_1A_0$ 、 $B=B_1B_0$

能否用1位数值比较器设计两位数值比较器?

用一位数值比较器设计多位数值比较器的原则

当高位 (A_1, B_1) 不相等时,无需比较低位 (A_0, B_0) ,高位比较的结果就是两个数的比较结果。

当高位相等时,两数的比较结果由低位比较的结果决定。

真值表

输入	箱	i i	±
A_1 B_1 A_0 B_0	$F_{A>B}$	$F_{A < B}$	$F_{A=B}$
$A_1 > B_1 \times$	1	0	0
$A_1 < B_1 \times$	0	1	0
$A_1 = B_1 A_0 > B_0$	1	0	0
$A_1 = B_1 A_0 < B_0$	0	1	0
$A_1 = B_1 A_0 = B_0$	0	0	1

$$\begin{aligned} & F_{\text{A>B}} = (A_1 > B_1) + (A_1 = B_1)(A_0 > B_0) \\ & F_{\text{A$$

注意:上述不是真正的逻辑函数表达式,只示意逻辑关系。

$$F_{A>B} = (A_1>B_1) + (A_1=B_1)(A_0>B_0)$$

$$F_{A=B}=(A_1=B_1)(A_0=B_0)$$

$$F_{A < B} = (A_1 < B_1) + (A_1 = B_1)(A_0 < B_0)$$

两位数值比较器逻辑图

3、集成数值比较器

(1.) 集成数值比较器74HC85的功能

74HC85是四位数值比较器,其工作原理和两位数值比较器相同。

74HC85的示意框图