# Convex Optimization Homework 3

Soël Megdoud

October 2024

## 1 Exercise 1

1)

Let's introduce a change of variables by setting z = Xw - y. This reformulates the original LASSO problem as:

$$\min_{w \in R^d, z \in R^n} \left\{ \frac{1}{2} \|z\|_2^2 + \lambda \|w\|_1 \right\} \quad \text{subject to } z = Xw - y.$$

The Lagrangian for this constrained problem is:

$$L(w, z, \nu) = \frac{1}{2} ||z||_{2}^{2} + \lambda ||w||_{1} + \nu^{T} (Xw - y - z),$$

where  $\nu \in \mathbb{R}^n$  is the dual variable associated with the constraint z = Xw - y. Separating the terms involving w and z, the Lagrangian becomes:

$$L(w, z, \nu) = (\nu^T X w + \lambda ||w||_1) + (\frac{1}{2} ||z||_2^2 - \nu^T z) - \nu^T y.$$

To find the dual function  $g(\nu)$ , we minimize the Lagrangian with respect to w and z separately.

This minimization of the w-dependent part involves the conjugate of the  $\ell_1$ -norm. Using the known conjugate of  $||w||_1$ , we have:

$$\inf_{w \in R^d} \left( \nu^T X w + \lambda \|w\|_1 \right) = \begin{cases} 0, & \text{if } \|X^T \nu\|_{\infty} \le \lambda, \\ -\infty, & \text{otherwise.} \end{cases}$$

Thus, the dual variable  $\nu$  must satisfy  $||X^T \nu||_{\infty} \leq \lambda$ .

The infimum over z can also bu computed using the conjugate function as well and has been calculated in the previous homework. We have:

$$\inf_{z \in R^n} \left( \frac{1}{2} \|z\|_2^2 - \nu^T z \right) = -\frac{1}{2} \|\nu\|_2^2.$$

Substituting the results of the minimizations into the Lagrangian, the dual problem is to maximize  $g(\nu)$ , which is equivalent to:

$$\max_{\nu \in R^n} \left\{ -\frac{1}{2} \|\nu\|_2^2 - \nu^T y \right\} \quad \text{subject to } \|X^T \nu\|_\infty \leq \lambda.$$

Turning it to a minimization problem:

$$\min_{\nu \in R^n} \left\{ \frac{1}{2} \|\nu\|_2^2 + \nu^T y \right\} \quad \text{subject to} \quad \|X^T \nu\|_\infty \leq \lambda.$$

The constraint  $||X^T \nu||_{\infty} \leq \lambda$  can be rewritten using inequality constraints:

$$\begin{cases} X^T \nu \le \lambda \mathbf{1}_d, \\ -X^T \nu \le \lambda \mathbf{1}_d, \end{cases}$$

Now, we can write the dual problem in the standard QP form:

$$\min_{\nu \in R^n} \quad \frac{1}{2} \nu^T \nu + y^T \nu$$
  
subject to  $A\nu \le b$ ,

where the constraint matrix A and vector b are:

$$A = \begin{bmatrix} X^T \\ -X^T \end{bmatrix} \in R^{2d \times n}, \quad b = \lambda \begin{bmatrix} \mathbf{1}_d \\ \mathbf{1}_d \end{bmatrix} \in R^{2d}.$$

We can now match the QP standard form:

$$\min_{\nu \in R^n} \quad \nu^T Q \nu + p^T \nu$$
subject to  $A\nu \le b$ ,

with:

- $Q = \frac{1}{2}I_n$ , where  $I_n$  is the  $n \times n$  identity matrix.
- $\bullet$  p = y
- $\bullet \ \ A = \begin{bmatrix} X^T \\ -X^T \end{bmatrix}.$
- $b = \lambda \begin{bmatrix} \mathbf{1}_d \\ \mathbf{1}_d \end{bmatrix}$ .

 $Q \succeq 0$  since it is a scaled identity matrix.

2)

#### Effect of $\mu$ on Convergence Precision and Rate.

- Larger values of  $\mu$  (e.g.,  $\mu = 50, 100$ ) result in faster convergence than  $\mu = 2$ ), with fewer iterations needed. However, this seems less stable as for  $\mu = 15$  for exemple, the final precision is worse than for  $\mu = 2$
- Smaller values of  $\mu$  (e.g.,  $\mu = 2$ ) might result in higher convergence precision.

### Effect of $\mu$ on w Values.

- The final values of  $w^*$  are consistent across all tested values of  $\mu$  ( $\mu = 2, 15, 50, 100$ ). This consistency arises because the barrier term's relative importance decreases as  $t \to \infty$ , allowing the optimization to focus primarily on the original quadratic objective function.
- The final solutions  $w^*$  are sparse, with many coefficients close to zero, which reflects the expected behavior of LASSO due to the  $\ell_1$ -regularization.

#### Choice for $\mu$ .

For high precision and a more stable convergence, I would choose a small  $\mu$  like 2. Especially if I have the time to compute all steps. However if time is a constraint I would rather choose a higher  $\mu$ , it is a trade-off.



Figure 1: Gap iterations  $f(v_t) - f^*$  for Different Values of  $\mu$  (Log Scale).



Figure 2: Final values of  $w^*$  coefficients for different values of  $\mu$ .