Diszkrét matematika 1.

Relációk

Juhász Zsófia jzsofia@inf.elte.hu jzsofi@gmail.com Mérai László diái alapján

Komputeralgebra Tanszék

2020 tavasz

Relációk

A relációk

- a függvényfogalom általánosításai;
- "hagyományos" függvények pontos definiálása;
- "többértékű függvények"
- kapcsolatot ír le
- ullet =, <, \leq , oszthatóság, . . .

Rendezett pár

Adott $x \neq y$ és (x, y) rendezett pár esetén számít a sorrend:

- $\bullet \ \{x,y\} = \{y,x\}$
- $(x,y) \neq (y,x)$.

Definíció (rendezett pár)

Az (x, y) rendezett párt a $\{\{x\}, \{x, y\}\}$ halmazzal definiáljuk. Az (x, y) rendezett pár esetén x az első, y a második koordináta.

Definíció (halmazok Descartes-szorzata)

Az X, Y halmazok Descartes-szorzatán (direkt szorzatán) az

$$X \times Y = \{(x, y) : x \in X, y \in Y\}$$

rendezett párokból álló halmazt értjük.

Binér relációk

Definíció (binér reláció)

Ha valamely X, Y halmazokra $R \subseteq X \times Y$, akkor azt mondjuk, hogy R reláció X és Y között. Ha X = Y, akkor azt mondjuk, hogy R X-beli reláció (homogén binér reláció).

Ha R binér reláció, akkor gyakran $(x, y) \in R$ helyett x R y-t írunk.

- $\mathbb{I}_X = \{(x, x) \in X \times X : x \in X\}$ az egyenlőség reláció az X halmazon.
- $\{(x,y) \in \mathbb{Z} \times \mathbb{Z} : x|y\}$ az osztója reláció.
- **9** \mathscr{F} halmazrendszer esetén az $\{(X,Y) \in \mathscr{F} \times \mathscr{F} : X \subseteq Y\}$ a részhalmazként tartalmazás reláció.
- **③** Adott $f : \mathbb{R} \to \mathbb{R}$ függvény esetén a függvény grafikonja $\{(x, f(x)) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}.$

Relációk értelmezési tartománya, értékkészlete

Ha R reláció X és Y között ($R\subseteq X\times Y$) és $X\subseteq X'$, $Y\subseteq Y'$, akkor R reláció X' és Y' között is!

Definíció (értelmezési tartomány, értékkészlet)

Az $R \subseteq X \times Y$ reláció értelmezési tartománya:

$$dmn(R) = \{x \in X \mid \exists y \in Y : (x,y) \in R\},\$$

értékkészlete:

$$rng(R) = \{ y \in Y \mid \exists x \in X : (x, y) \in R \}.$$

- **1** Ha $R = \{(x, 1/x^2) : x \in \mathbb{R}\}$, akkor $dmn(R) = \{x \in \mathbb{R} : x \neq 0\}$, $rng(R) = \{x \in \mathbb{R} : x > 0\}$.
- **Q** Ha $R = \{(1/x^2, x) : x \in \mathbb{R}\}$, akkor $dmn(R) = \{x \in \mathbb{R} : x > 0\}$, $rng(R) = \{x \in \mathbb{R} : x \neq 0\}$.

Relációk kitejesztése, leszűkítése, inverze

Definíció (reláció kiterjesztése, leszűkítése)

Egy R binér relációt az S binér reláció kiterjesztésének, illetve S-et az R leszűkítésének (megszorításának) nevezzük, ha $S \subseteq R$. Ha A egy halmaz, akkor az R reláció A-ra való leszűkítése (az A-ra való megszorítása) az

$$R|_{A} = \{(x, y) \in R : x \in A\}.$$

Példa

Legyen $R = \{(x, x^2) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}$, $S = \{(\sqrt{x}, x) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}$. Ekkor R az S kiterjesztése, S az R leszűkítése, $S = R|_{\mathbb{R}^+_0}$ (ahol \mathbb{R}^+_0 a nemnegatív valós számok halmaza).

Definíció (reláció inverze)

Egy R binér reláció inverze az $R^{-1} = \{(y, x) : (x, y) \in R\}$ reláció.

$$R^{-1} = \{(x^2, x) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}, \ S^{-1} = \{(x, \sqrt{x}) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}$$

Példa

Legyen R az ábrán szemléltetett reláció az $X = \{a,b,c,d,e,f,g\}$ halmazon.

- $dmn(R) = \{a, b, d, e, f, g\}.$
- $rng(R) = \{a, b, c, d, e, f, g\} = X.$
- $R|_{\{a,b,c,d\}} = \{(a,d),(a,e),(b,d),(d,b),(d,d),(d,f)\}.$

Halmaz képe, inverz képe

Definíció (halmaz képe, inverz képe)

Legyen $R \subseteq X \times Y$ egy binér reláció, A egy halmaz. Az A halmaz (R szerinti) képe az

$$R(A) = \{ y \in Y \mid \exists x \in A : (x, y) \in R \}$$

halmaz. Adott B halmaz inverz képe, vagy ősképe a B halmaz R^{-1} szerinti képe, azaz $R^{-1}(B)$. (Ez nem más, mint:

$$R^{-1}(B) = \{ x \in X \mid \exists y \in B : (x, y) \in R \}$$

Példa

Legyen $R = \{(x^2, x) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}, S = \{(x, \sqrt{x}) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}.$

- $R({9}) = {-3, +3}$ (vagy röviden $R({9}) = {-3, +3}$),
- $S(9) = \{+3\}.$

Kompozíció

Definíció (relációk kompozíciója)

Legyenek R és S binér relációk. Ekkor az $R \circ S$ kompozíció (összetétel, szorzat) reláció:

$$R \circ S = \{(x,z) \mid \exists y : (x,y) \in S, (y,z) \in R\}.$$

Kompozíció esetén a relációkat "jobbról-balra írjuk":

Példa

Legyen
$$R_{sin} = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid \sin x = y\},\$$

 $S_{log} = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid \log x = y\}.$

Ekkor

$$R_{\sin} \circ S_{\log} = \{(x, z) \in \mathbb{R} \times \mathbb{R} \mid \exists y : \log x = y, \sin y = z\}$$

= \{(x, z) \in \mathbb{R} \times \mathbb{R} \ | \sin \log x = z\}.

Kompozíció

Példa: Legyen $S\subseteq X\times Y$, $R\subseteq Y\times Z$ két reláció. Tekintsük a $T=R\circ S$ kompozíciót:

11.

2020 tayasz

Állítás (Relációk kompozíciójának tulajdonságai)

Legyenek R, S, T relációk. Ekkor

- $(R \circ S)^{-1} = S^{-1} \circ R^{-1} \text{ (kompozíció inverze)}.$

Bizonyítás.

- $(z,x) \in (R \circ S)^{-1} \Leftrightarrow (x,z) \in R \circ S \Leftrightarrow \exists y : (x,y) \in S \land (y,z) \in R \Leftrightarrow \exists y : (y,x) \in S^{-1} \land (z,y) \in R^{-1} \Leftrightarrow (z,x) \in S^{-1} \circ R^{-1}$

12.

Homogén binér relációk tulajdonságai

Példa

Relációk: =, <, \leq (pl. \mathbb{R} -en), | (pl. \mathbb{Z} -n), \subseteq , $T = \{(x, y) : x, y \in \mathbb{R}, |x - y| < 1\}$.

Definíció (homogén relációk tulajdonságai)

Legyen R reláció X-en. Ekkor azt mondjuk, hogy

- ① R tranzitív, ha $\forall x, y, z \in X : (x R y \land y R z) \Rightarrow x R z; (=, <, \leq, |, \subseteq)$
- 2 R szimmetrikus, ha $\forall x, y \in X : x R y \Rightarrow y R x$; (=, T)
- 3 R antiszimmetrikus, ha $\forall x, y \in X : (x R y \land y R x) \Rightarrow x = y; (=, \leq, \subseteq)$
- **1** R szigorúan antiszimmetrikus, ha $\forall x, y \in X : x R y \Rightarrow \neg y R x$; (<)
- **6** *R* irreflexív, ha $\forall x \in X : \neg x \ R \ x$; (<)
- ② R trichotóm, ha $\forall x, y \in X$ esetén x = y, x R y és y R x közül pontosan egy teljesül; (<)

Homogén relációk tulajdonságai: példa

A reflexív, trichotóm, dichotóm tulajdonságok nem csak a relációtól függnek, hanem az alaphalmaztól is:

Az $\{(x,x)\mid x\in\mathbb{R}\}\subseteq\mathbb{R}\times\mathbb{R}\subseteq\mathbb{C}\times\mathbb{C}$ mint \mathbb{R} -en értelmezett reláció reflexív, de mint \mathbb{C} -n értelmezett reláció nem reflexív.

tranzitív	×	szigorúan antiszimmetrikus	×	trichotóm	×
szimmetrikus	×	reflexív	×	dichotóm	×
antiszimmetrikus	√	irreflexív	×		

14.

Ekvivalenciarelációk, ekvivalenciaosztályok

Definíció (ekvivalenciareláció)

Legyen X egy halmaz, R reláció X-en. Az R relációt ekvivalenciarelációnak nevezzük, ha reflexív, szimmetrikus és tranzitív.

Példák

- $\bullet = (pl. az \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R} \text{ vagy a } \mathbb{C} \text{ halmazon});$
- \bullet ~ a \mathbb{Z} -n, ahol $\forall x,y \in \mathbb{Z}$ -re: $x \sim y$, ha 5|(x-y);
- párhuzamosság egy sík egyeneseinek halmazán.

Definíció (ekvivalenciaosztály)

Legyen \sim egy ekvivalenciareláció az X halmazon. Tetszőleges $x \in X$ esetén az

$$\tilde{x} = [x] = \{y \mid y \sim x\}$$

halmazt az x ekvivalenciaosztályának nevezzük.

15.

Halmaz osztályozásai

Definíció (halmaz osztályozásai)

Egy (nemüres) X halmaz részhalmazainak egy $\mathscr O$ rendszerét az X osztályozásának nevezzük, ha

- O nemüres halmazokból áll,
- Ø páronként diszjunkt halmazrendszer és
- $\bullet \ \cup \mathscr{O} = X.$

Ekkor az \mathscr{O} elemeit (melyek maguk is halmazok) az X osztályainak nevezzük.

- $X = \{a, b, c, d, e, f, g\}$ egy osztályozása: $\{\{a, c\}, \{b\}, \{e\}, \{d, f, g\}\}$
- ② \mathbb{R} egy osztályozása: $\{\{a\}: a \in \mathbb{R}\}$
- **3** \mathbb{R} egy másik osztályozása: $\{\{a \in \mathbb{R} : |a| = r\} : r \in \mathbb{R}_0^+\}$

16.

Ekvivalenciarelációk, osztályozások

Tétel (Ekvivalenciareláció által meghatározott osztályozás)

Egy nemüres X halmazon értelmezett ~ ekvivalenciareláció esetén az ekvivalenciaosztályok halmaza $\{[x] \mid x \in X\}$ az X egy osztályozása. Ezt az osztályozást X/\sim -mal jelöljük.

Bizonyítás: csak a teljesség kedvéért; nem kell tudni.

Legyen \sim egy X-beli ekvivalenciareláció. Azt kell megmutatni, hogy $X/\sim=\{[x]:x\in X\}$ az X egy osztályozását adja.

- Mivel \sim reflexív, így $x \in [x] \Rightarrow$
 - $\cup \{[x] : x \in X\} = X \text{ és}$
 - $[x] \neq \emptyset$
- Különböző ekvivalenciaosztályok páronként diszjunktak. Tfh. $[x] \cap [y] \neq \emptyset$, legyen $z \in [x] \cap [y]$. Mivel $z \in [x]$, ezért $z \sim x$, ahonnan a szimmetria miatt $x \sim z$. Hasonlóan $z \in [y]$ miatt $z \sim y$. Ha $x_1 \in [x]$, akkor $x_1 \sim x$, így a tranzitivitás miatt $x_1 \sim x \land x \sim z \Rightarrow x_1 \sim z$, továbbá $x_1 \sim z \land z \sim y \Rightarrow x_1 \sim y \Rightarrow x_1 \in [y]$. Hasonlóan $y_1 \in [y]$ -ról megmutatható, hogy $y_1 \in [x]$, (gy [x] = [y].

Ekvivalenciarelációk, osztályozások

Tétel (Osztályozás által meghatározott ekvivalenciareláció)

Tetszőleges X halmaz bármely $\mathscr O$ osztályozása esetén az alábbi R reláció ekvivalenciareláció X-en:

$$R = \{(x, y) : x \text{ \'es } y \text{ ugyanabban az } \mathcal{O}\text{-beli osztályban vannak}\},$$

és az R-hez tartozó ekvivalenciaosztályok halmaza 🕜.

Bizonyítás: csak a teljesség kedvéért; nem kell tudni.

R ekvivalenciareláció X-en:

- R reflexív: Minden $x \in X$ ugyanabban az \mathscr{O} -beli osztályban van mint saját maga, így x R x.
- R szimmetrikus: Ha \times R y, akkor x és y ugyanabban az \mathscr{O} -beli osztályban vannak, így nyilván y és x is ugyanabban az osztályban vannak, tehát y R x.
- R tranzitív: Ha x R y és y R z valamely x, y, z ∈ X-re, akkor x és y, illetve y és z azonos Ø-beli osztályban vannak, így x és z is azonos Ø-beli osztályban vannak, tehát x R z.

17.

Ekvivalenciarelációk, osztályozások

Az ekvivalenciarelációk illetve osztályozások kölcsönösen egyértelműen meghatározzák egymást.

- = reláció \mathbb{R} -en $\leftrightarrow \{\{a\} : a \in \mathbb{R}\};$
- Tetszőleges $x, y \in \mathbb{R}$ -re: $x \sim y$, ha $|x| = |y| \leftrightarrow \{\{x, -x\} : x \in \mathbb{R}\}.$
- ullet A síkon két egyenes legyen \sim szerint relációban, ha párhuzamosak. Ekkor az osztályok az irány fogalmát adják.
- ullet A síkon két szakasz legyen \sim szerint relációban, ha egybevágóak. Ekkor az osztályok a hossz fogalmát adják.

19.

Részbenrendezés, rendezés

Definíció (részbenrendezés, rendezés)

- Az X halmazon értelmezett reflexív, tranzitív és antiszimmetrikus relációt részbenrendezésnek nevezzük. (Jele: <, <, ...)
- Ha ≤ egy részbenrendezés X-en, akkor az (X; ≤) párt részbenrendezett halmaznak nevezzük.
- Ha valemely x, y ∈ X-re x ≤ y vagy y ≤ x teljesül, akkor x és y összehasonlítható. (Ha minden elempár összehasonlítható, akkor a reláció dichotóm.)
- Ha az X halmazon értelmezett részbenrendezés dichotóm (azaz, ha bármely két elem összehasonlítható), akkor rendezésnek nevezzük.

- a \leq reláció rendezés \mathbb{R} -en (\mathbb{Q} -n, \mathbb{Z} -n, \mathbb{N} -en vagy pl. az $\{1,2,\ldots,6\}$ halmazon): $\forall x,y\in\mathbb{R}:x\leq y$ vagy $y\leq x$.
- A \subseteq reláció részbenrendezés az $\{a,b,c\}$ hatványhalmazán, $X = \mathcal{P}(\{a,b,c\})$ -n, de nem rendezés: $\{a\} \not\subseteq \{b,c\}, \{b,c\} \not\subseteq \{a\}.$
- N-en az | (osztója) reláció részbenrendezés, de nem rendezés: 4 /5, 5 /4.

20.

Részbenrendezések Hasse-diagramja

Definíció (közvetlenül megelőző elem)

Legyen (X, \preceq) egy részbenrendezett halmaz. Ha valamely $x \neq y \in X$ -re $x \preceq y$, de nem létezik olyan $z \in X$, amelyre $z \neq x$, $z \neq y$ és $x \preceq z \preceq y$, akkor azt mondjuk, hogy x közvetlenül megelőzi y-t.

Ha egy részbenrendezett halmaz elemeit pontokkal ábrázoljuk, és csak azon x,y párok esetén rajzolunk irányított élt, amelyre x közvetlenül megelőzi y-t, akkor a részbenrendezett halmaz Hasse-diagramját kapjuk. Néha irányított élek helyett irányítatlan élt rajzolunk, és a kisebb elem kerül lejjebb. Példa: Legyen $X = \{1, 2, \dots, 8\}$ az oszthatósággal:

Legkisebb, legnagyobb, minimális, maximális elem

Definíció (Legkisebb, legnagyobb, minimális, maximális elem)

Az (X, \preceq) részbenrendezett halmaz

legkisebb eleme: olyan $x \in X$: $\forall y \in X$, $x \preceq y$; legnagyobb eleme: olyan $x \in X$: $\forall y \in X$, $y \preceq x$;

minimális eleme: olyan $x \in X$: $\neg \exists y \in X, x \neq y, y \leq x$; maximális eleme: olyan $x \in X$: $\neg \exists y \in X, x \neq y, x \leq y$.

Legyen $X = \{1, 2, \dots, 8\}$ az oszthatósággal:

legkisebb elem: 1, legnagyobb elem: nincs, minimális elem: 1,

maximális elemek: 5, 6, 7, 8.

21.

2020 tayasz

22.

Szigorú részbenrendezés, szigorú rendezés

Definíció (szigorú részbenrendezés, szigorú rendezés)

Az X halmazon értelmezett tranzitív és irreflexív relációt szigorú részbenrendezésnek nevezzük. (Jele: <, \prec , \ldots) Ha egy szigorú részbenrendezés trichotóm, akkor szigorú rendezésnek nevezzük.

- \mathbb{R} -en a < reláció szigorú rendezés: $\forall x, y \in \mathbb{R}$ esetén pontosan egyik teljesül a következő három feltételből: x = y, x < y és y < x.
- A \subsetneq reláció szigorú részbenrendezés az $\{a,b,c\}$ hatványhalmazán, $X=\mathscr{P}(\{a,b,c\})$ -n, de nem szigorú rendezés: $\{a\}=\{b,c\}$, $\{a\}\subsetneq\{b,c\}$ és $\{b,c\}\subsetneq\{a\}$ közül egyik sem teljesül.

23.

Függvények

Definíció (függvény)

Egy $f \subseteq X \times Y$ relációt függvénynek (leképezésnek, transzformációnak, hozzárendelésnek, operátornak) nevezünk, ha

$$\forall x, y, y' : (x, y) \in f \land (x, y') \in f \Rightarrow y = y'.$$

Az $(x,y) \in f$ jelölés helyett ilyenkor az f(x) = y (vagy $f: x \mapsto y$, $f_x = y$) jelölést használjuk. Az y az f függvény x helyen (argumentumban) felvett értéke.

- $f = \{(x, x^2) \in \mathbb{R} \times \mathbb{R}\}$ reláció függvény: $f(x) = x^2$.
- Az $f^{-1} = \{(x^2, x) \in \mathbb{R} \times \mathbb{R}\}$ inverz reláció nem függvény: $(4, 2), (4, -2) \in f^{-1}$.
- Legyen F_n a Fibonacci sorozat: $F_0=0, F_1=1$ és $F_n=F_{n-1}+F_{n-2}$, ha $n\geq 2$: $0,1,1,2,3,5,8,\ldots$ Ekkor az $F\subseteq \mathbb{N}\times \mathbb{N}$ reláció függvény, n helyen az értéke $F(n)=F_n$.

24.

Függvények

Definíció (az $X \to Y$ jelölés)

Az $f \subseteq X \times Y$ függvények halmazát $X \to Y$ jelöli, így használható az $f \in X \to Y$ jelölés. Ha dmn(f) = X, akkor az $f : X \to Y$ jelölést használjuk (ez a jelölés csak akkor használható, ha dmn(f) = X).

Megjegyzés: Ha $f: X \to Y$, akkor dmn(f) = X és $rng(f) \subseteq Y$.

Példa

Legyen $f(x) = \sqrt{x}$. Ekkor

- $f \in \mathbb{R} \to \mathbb{R}$, de nem $f : \mathbb{R} \to \mathbb{R}$.
- $f: \mathbb{R}_0^+ \to \mathbb{R}$.
- $f: \mathbb{R}_0^+ \to \mathbb{C}$.

25

Függvények

Definíció (injektív, szürjektív és bijektív függvények)

Az $f: X \to Y$ függvény

- injektív, ha $\forall x_1, x_2 \in X : f(x_1) = f(x_2) \Rightarrow x_1 = x_2;$
- szürjektív, ha rng(f) = Y;
- bijektív, ha injektív és szürjektív.

Megjegyzés: Egy f függvény pontosan akkor injektív, ha az f^{-1} reláció függvény.

Példák

- Az $f: \mathbb{R} \to \mathbb{R}$, $f: x \mapsto x^2$ függvény nem injektív, és nem szürjektív: f(-1) = f(1), $rng(f) = \mathbb{R}_0^+$.
- Az $f: \mathbb{R} \to \mathbb{R}_0^+$, $f: x \mapsto x^2$ függvény nem injektív, de szürjektív.
- Az $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$, $f: x \mapsto x^2$ függvény injektív és szürjektív, tehát bijektív.

Megjegyzés: Az, hogy egy $f: X \to Y$ függvény szürjektív-e, függ Y -tól. Ha $Y \subsetneq Y'$, akkor $rng(f) \subseteq Y \subsetneq Y'$, így az $f: X \to Y'$ függvény biztosan nem szürjektív.

Függvények

Definíció (permutáció)

Egy $f: X \to X$ bijektív függvényt permutációnak nevezünk.

- Ha $X=\{1,2,\ldots,n\}$, akkor az $X\to X$ permutációk száma n!: az $f(1),f(2),\ldots,f(n)$ az $1,2,\ldots,n$ elemek egy ismétlés nélküli permutációja.
- Az $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$ a valós számok egy permutációja.
- Az $f(x) = x^2$ függvény nem permutációja \mathbb{R} -nek: nem injektív és nem is szürjektív.

27.

Függvények kompozíciója

Emlékeztető

Relációk kompozíciója: $R \circ S = \{(x,y) | \exists z : (x,z) \in S \land (z,y) \in R\}$. Függvény: Az f reláció függvény, ha $(x,y) \in f \land (x,y') \in f \Rightarrow y = y'$.

Tétel (Függvények kompozíciójának tulajdonságai)

- Ha f és g függvény, akkor g ∘ f is függvény.
- **②** Ha f és g függvény, akkor $(g \circ f)(x) = g(f(x))$.
- Ha f és g injektív, akkor g ∘ f is injektív.
- Ha $f: X \to Y$, $g: Y \to Z$ szürjektívek, akkor $g \circ f: X \to Z$ is szürjektív.

Bizonyítás.

• Legyen $(x, z) \in g \circ f$ és $(x, z') \in g \circ f$. Ekkor $\exists y : (x, y) \in f, (y, z) \in g$ és $\exists y' : (x, y') \in f, (y', z') \in g$. Mivel f függvény, y = y', mivel g függvény, z = z'.

2020 tayasz

Függvények kompozíciója

Bizonyítás.

- ② Legyen $(g \circ f)(x) = z$. Ekkor létezik $y : (x, y) \in f \land (y, z) \in g$. Mivel f és g függvények, ezért f(x) = y és g(y) = z, így g(f(x)) = y.
- Legyen $(g \circ f)(x) = (g \circ f)(x')$, vagyis g(f(x)) = g(f(x')). Mivel g injektív, ezért f(x) = f(x'). Mivel f injektív, ezért x = x'.
- 4 HF.

29

Műveletek

Definíció (unér és binér műveletek)

Egy X halmazon értelmezett binér (kétváltozós) művelet egy $*: X \times X \to X$ függvény. Gyakran *(x,y) helyett x*y-t írunk. Egy X halmazon értelmezett unér (egyváltozós) művelet egy $*: X \to X$ függvény.

- ullet R halmazon az +, \cdot binér, $z\mapsto -z$ (ellentett) unér művelet.
- \mathbb{R} halmazon az \div (osztás) nem művelet, mert $dmn(\div) \neq \mathbb{R} \times \mathbb{R}$.
- $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ halmazon az \div binér, az $x \mapsto \frac{1}{x}$ (reciprok) unér művelet.

Műveletek

Egy véges halmazon bármely binér művelet megadható a műveleti táblájával.

Definíció (műveletek függvényekkel)

Legyen X tetszőleges halmaz, Y halmaz a * binér művelettel, $f,g:X\to Y$ függvények. Ekkor

$$(f * g)(x) = f(x) * g(x) \quad (\forall x \in X)$$

Példa

A sin, cos : $\mathbb{R} \to \mathbb{R}$ függvényekre:

$$(\sin + \cos)(x) = \sin x + \cos x \quad (\forall x \in X)$$

31.

Műveleti tulajdonságok

Definíció (asszociatív és kommutatív műveletek)

- $A * : X \times X \rightarrow X$ művelet
 - asszociatív, ha $\forall a, b, c \in X : (a * b) * c = a * (b * c);$
 - kommutatív, ha $\forall a, b \in X : a * b = b * a$.

- ullet R-en az + ill. a \cdot műveletek asszociatívak, kommutatívak.
- A függvények halmazán a kompozíció művelete asszociatív: $(f \circ g) \circ h = f \circ (g \circ h)$.
- Az $\mathbb{R} \to \mathbb{R}$ függvények halmazán a kompozíció művelete nem kommutatív: $f(x) = x + 1, g(x) = x^2$: $(f \circ g)(x) = x^2 + 1 \neq (x + 1)^2 = (g \circ f)(x)$.
- Az osztás nem asszociatív \mathbb{R}^* -on: $(a \div b) \div c = \frac{a}{bc} \neq \frac{ac}{b} = a \div (b \div c)$

32.

Művelettartó leképezések

Definíció (művelettartó leképezések)

Legyen X halmaz a * binér művelettel, Y a \diamond binér művelettel. Az $f:X\to Y$ függvény művelettartó, ha $\forall x_1,x_2\in X$ esetén

$$f(x_1*x_2)=f(x_1)\diamond f(x_2).$$

Példák

• Legyen $X=\mathbb{R}$ az + művelettel, $Y=\mathbb{R}^+$ a \cdot művelettel. Ekkor $a\in\mathbb{R}^+$ esetén az $x\mapsto a^x$ művelettartó:

$$\forall x_1, x_2 \in \mathbb{R} : a^{x_1+x_2} = a^{x_1} \cdot a^{x_2}$$

• Legyen $X=Y=\mathbb{R}$ az + művelettel. Ekkor a $x\mapsto -x$ művelettartó:

$$\forall x_1, x_2 \in \mathbb{R} : -(x_1 + x_2) = (-x_1) + (-x_2)$$