Домашняя работа 2 (дедлайн – 12:00 9.10.21)

October 8, 2021

Задача 1 (3 балла)

Пусть X_1, \ldots, X_n – независимые одинаково распределенные случайные величины (н.о.р.с.в.) с функцией распределения F(x). Найти функции распределения $\max_{1 \le i \le n} X_i$ и $\min_{1 \le i \le n} X_i$.

Решение

По определению: $F_{X_i}(x) = P(X_i < x)$, тогда рассмотрим фунцию распределения случайной величины $\eta = \max_{1 \le i \le n} X_i \Rightarrow F_{\eta}(x) = P(\eta < x) = P(\max_{1 \le i \le n} X_i < x) = P(\bigcap_{i=1}^n (X_i < x))$, тогда пользуясь независимостью величин:

 $F_{\eta}(x) = \prod_{i=1}^{n} P(X_i < x) = F^n(x)$. Аналогично во втором пункте: $\eta = \min_{1 \le i \le n} X_i \Rightarrow F_{\eta}(x) = P(\bigcup_{i=1}^{n} (X_i < x)),$ используя формулу вулючений-исключений, получаем:

используя формулу вулючений-исключений, получаем:
$$F_{\eta}(x) = \sum_{J \subset [n]} (-1)^{|J|+1} P(B_J) \ , \ \text{где } B_J = \bigcap_{j \in J} (X_j < x)$$

Задача 2 (3 балла) Случайная величина ξ имеет функцию распределения F(x). Найти функцию распределения случайной величины $\frac{1}{2}(\xi+|\xi|)$

Решение

Заметим, что при
$$\xi > 0$$
 $\eta = \frac{1}{2}(\xi + |\xi|) = \xi$, а при $\xi < 0$: $\eta = 0$. Тогда : $F_{\eta}(x) = \begin{cases} 0 & x < 0 \\ F_{\xi}(x) & x \geq 0 \end{cases}$

Задача 3 (3 балла)

В круглой комнате произвольным образом провели диаметр и в одном из концов этого диаметра поставили прожектор так, чтобы он мог светить внутрь комнаты (направление, в котором светит прожектор задаётся углом α , который отсчитывается от направления проведённого диаметра; $\alpha \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ — отрицательный угол отсчитывается по часовой стрелке от направления диаметра, положительный — против часовой). Найти функцию распределения длины луча от прожектора до стены, если угол α — это равномерно распределённая случайная величина на отрезке $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

Решение

Перефразируем задачу в терминах теории вероятности: для этого найдем, как зависит длина хорды от

Формула длины хорды, (L):

$$L = 2 \frac{R}{r} \cdot \sin(\alpha/2)$$

угла, образованного хордой и диаметром.

Положим радиус окружности равным 1 для удобства. Тогда, обозначив угол между хордой и диаметром за β , получим, что длина луча будет равна:

 $L=2\cos\beta$, то есть задача сводится к нахождению фунции распределения случайной величины $\eta=2\cos\alpha$, где α - с.в., равномерно распределенная на $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$

Рассмотрим фунцию распределения
$$\alpha$$
: $F_{\alpha}(x)=P(\alpha < x)= \begin{cases} 0 & x<-\frac{\pi}{2}\\ \frac{x+\frac{\pi}{2}}{\pi} & x\in(-\frac{\pi}{2};\frac{\pi}{2}],\ F_{\eta}(y)=P(2\cos\alpha < y),\\ 1 & x<\frac{\pi}{2} \end{cases}$

если y<0, то $F_{\eta}(y)=0$, при y>2 $F_{\eta}(y)=1$, если $y\in(0;2]$, то $F_{\eta}(y)=P(2\cos\alpha< y)=P(-\frac{\pi}{2}<\alpha<-\arccos y\bigcup\arccos y<\alpha<\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\arccos y)+P(\arccos y<\alpha<\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\arccos y)+P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2}<\alpha<-\frac{\pi}{2})=P(-\frac{\pi}{2})=P$

$$F_{\eta}(y) = \begin{cases} 0 & y < 0 \\ \frac{\pi - 2\arccos y}{\pi} & y \in (0; 2] \\ 1 & y > 2 \end{cases}$$

Допустим, что вероятность столкновения молекулы с другими молекулами в промежутке времени $[t, t+\Delta t)$ равна $p = \lambda \Delta t + o(\Delta t)$ и не зависит от времени, прошедшего после предыдущего столкновения ($\lambda = const$). Найти распределение времени свободного пробега молекулы (показательное распределение) и вероятность того, что это время превысит заданную величину t^{\star}

Разобьем полуинтревал [0;t) на n равных отрезков длины $\frac{t}{n}$. Тогда рассмотрим событие A_i , которое заключается в том, что на i-ом из отрезков произошло столкновение молекул. Тогда:

 $P(A_i) = \frac{\lambda \cdot t}{n} + o(\frac{1}{n})$, рассмотрим вторую часть задачи то, что время свободного пробега превысит заданную величину t^* означает, что $\forall t < t^*$ столкновения не было. Обозначим это событие за B. Тогда $P(B) = P(\bigcap^n \overline{A_i})$ $= (1 - (\frac{\lambda \cdot t}{n} - o(\frac{1}{n})))^n \to_{n \to \infty} e^{-\lambda \cdot t} \Rightarrow.$

Распределение $F_{\xi}(t) = e^{-\lambda t}$, вероятность того, что это время превысит заданную величину t^{\star} : $e^{-\lambda t^{\star}}$ **Задача 5** (2 балла)

Диаметр круга измерен приближенно. Считая, что его величина равномерно распределена в отрезке [a,b], найти распределение площади круга, её среднее значение и дисперсию.

Решение

Площадь круга выражается через диаметр по известной формуле:

 $S = \frac{\pi d^2}{4}$, где d-св-равномерно распределенная на отрезке [a;b]. Функция плотности распределения

$$f_d(x) = \begin{cases} \frac{1}{b-a} & x \in [a;b] \\ 0 & \notin [a;b] \end{cases}$$

Тогда рассмотрим
$$F_S(y): F_S(y)=\int\limits_{-\sqrt{\frac{4y}{\pi}}}^{\sqrt{\frac{4y}{\pi}}}\frac{dx}{b-a}=\frac{4\sqrt{y}}{(b-a)\cdot\sqrt{\pi}}$$

Среднее значение, очевидно, равно: $d=\frac{a+b}{2}$ Для вычисления дисперсии воспользуемся формулой: $Dd=Ed^2-(Ed)^2,\ f_d(x)=\frac{1}{(b-a)\cdot\sqrt{y}}\Rightarrow Ed^2=$ $\int_{-\infty}^{+\infty} x^2 \frac{1}{(b-a)\cdot \sqrt{x}} = \int_{-\infty}^{+\infty} \frac{x^2}{2\sqrt{x}}$ Задача 6 (2 балла)

Пусть случайные величины ξ и η независимы и $\mathbb{E}\xi=1, \mathbb{E}\eta=2, \mathbb{D}\xi=1, \mathbb{D}\eta=4$. Найти математические ожидания случайных величин:

a)
$$\xi^2 + 2\eta^2 - \xi\eta - 4\xi + \eta + 4$$
; 6) $(\xi + \eta + 1)^2$

a)
$$\mathbb{E}\xi^2 = \mathbb{D}\xi + (\mathbb{E}\xi)^2 = 2 \mathbb{E}\eta^2 = \mathbb{D}\eta + (\mathbb{E}\eta)^2 = 6 \mathbb{E}(\xi^2 + 2\eta^2 - \xi\eta - 4\xi + \eta + 4) = \mathbb{E}\xi^2 + 2\mathbb{E}\eta^2 - \mathbb{E}\xi \cdot \mathbb{E}\eta - 4\mathbb{E}\xi + \mathbb{E}\eta + 4 = 14$$

6) $\mathbb{E}((\xi + \eta + 1)^2) = \mathbb{E}\xi^2 + \mathbb{E}\eta^2 + 1 + 2\mathbb{E}\xi + 2\mathbb{E}\eta + 2\mathbb{E}\eta\mathbb{E}\xi = 19$

Задача 7 (3 балла)

а) Пусть ξ – положительная невырожденная случайная величина с конечным математическим ожиданием. Доказать, что

$$\frac{1}{\mathbb{E}\xi} \le \mathbb{E}\frac{1}{\xi}$$

б) Пусть ξ и η – независимые положительные случайная величины, с конечным математическим ожиданием. Доказать, что

$$\mathbb{E}\left(\frac{\xi}{\eta}\right)^r \ge \frac{\mathbb{E}\xi^r}{\mathbb{E}\eta^r}$$

Решение

а) тк $g(x) = \frac{1}{x}$ - выпуклая на $(0; +\infty)$, то $g(x) \ge g(\mathbb{E}x) + g'(x)(x - \mathbb{E}x)$ тогда возьмем MO от обеих частей. Получим: $\mathbb{E}(g(x)) \ge g(\mathbb{E}x) + \mathbb{E}(g'(x)) \cdot (\mathbb{E}(x) - \mathbb{E}(x)) \Rightarrow \mathbb{E}(g(x)) \ge g(\mathbb{E}x)$, подставляя $g(x) = \frac{1}{x} : \mathbb{E}\frac{1}{x} \ge \frac{1}{\mathbb{E}x}$ 6) Задача 8 (5 баллов)

На небольшом кластере GPU прямо сейчас очередь на обучение из 30 нейросетей. Единовременно на кластере может обучаться только одна сеть. За каждую нейросеть отвечают разные ML-инженеры. Нейросети имеют разные свойства: 10 из них больших (время их обучения 15 часов) и 20 маленьких (время их обучения 1 час). Пока не наступил момент начала обучения, разработчик переживает и внимательно следит за очередью, бесполезно растрачивая время. Посчитайте математическое ожидание, сколько человеко-часов будет потрачено на переживания разработчиков ровно с текущего момента (кластер освободился и начинает обрабатывать очередь, описанную выше), если задачи в очереди расположены в случайном порядке

Решение

Пусть времена обучения нейросетей записаны в массив A, где A_i время обучения i-ой нейросети, $i \in [1; n]$. Тогда время ожидания i-ого инженера есть: $\sigma_i = \sum_{k=1}^{i-1} A_i$, тогда нам нужно найти M.O. следующей величины:

$$S = \sum_{i=1}^{n} \sigma_i = \sum_{i=1}^{n} \left(\sum_{k=1}^{i-1} A_i \right).$$

$$\mathbb{E} S = \sum$$

Понятно, что все исходы равновероятны, но посчитать значения этих исходов - NPh задача. Поэтому, я не знаю, как это сделать, кроме как перебрать руками.