HOMEWORK 2

- (1) Show that the two definitions $\mathscr{T}_{\mathcal{B}}$ and $\mathscr{T}'_{\mathcal{B}}$ of topologies generated by a basis \mathcal{B} are equivalent to each other.
- (2) Complete the proof that the basis C generates the same topology as \mathcal{T}_X under given conditions. (We have checked in the notes that this is actually a basis.)
- (3) Let X be the set of all functions f(x) from [0,1] to [0,1]. Given any subset $A \subseteq [0,1]$, define $B_A := \{f(x) : f(x) = 0 \text{ for all } x \in A\}.$

This is a subset of X for each A. Then show that $\mathcal{B} := \{B_A : A \subseteq [0,1]\}$ is a basis on X.

(4)(a) Let $d, r \in \mathbb{Z}$ with $d \neq 0$. Define $B_{d,r} := \{dn + r : n \in \mathbb{Z}\}$. Show that the collection $\mathcal{B} := \{B_{d,r}\}_{d,r}$

is a basis on \mathbb{Z} .

- (b) Show that no nonempty finite set can be open in the topology generated by \mathcal{B} .
- (c) Show that $\mathbb{Z} \setminus B_{d,r}$ is open for any basic open set $B_{d,r}$.
- (d) Show that for any distinct integers a and b, there are disjoint open sets U and V such that $a \in U$ and $b \in V$.
- (5) For a prime p, define $S_p := \{n \in \mathbb{N} : p|n\}$. Show that

$$\mathcal{S} := \{ S_p : p \text{ prime} \} \cup \{1\}$$

is a subbasis on \mathbb{N} . How do the open sets in the topology generated by \mathcal{S} look like?

- (6) Topology (Munkres), Chapter 2, Section 13, Exercise (7).
- (7) Topology (Munkres), Chapter 2, Section 13, Exercise (8).