Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Лабораторная работа №4

"Кластеризация" по дисциплине "Машинное обучение"

Выполнил	Лелюхин Д.О
студент гр. 33504/2	
Руководитель	Селин И.А.

Оглавление

Первое задание
Код программы
Результаты
Второе задание
Код программы
Результаты
Третье задание
Код программы
Результаты
Четвертое задание
Код программы
Результаты
Пятое задание
Код программы
Результаты

Первое задание

Разбейте множество объектов из набора данных pluton в пакете «cluster» на 3 кластера методом центров тяжести (kmeans). Сравните качество разбиения в зависимости от максимального числа итераций алгоритма.

Код программы

```
library(cluster)
data("pluton")
for(i in seq(2, 16, by = 2))
{
    cl <- kmeans(pluton, 3, iter.max = i)
    png(filename = paste(toString(i),'claster.png'))
    plot(pluton, col = cl$cluster, main=paste('max=',toString(i)))
    points(cl$centers, col = 1:3, pch = 8, cex=2)
}</pre>
```

Результаты

Вывод: Качество разбиения при увеличении тах числа итераций увеличивается.

Второе задание

Сгенерируйте набор данных в двумерном пространстве, состоящий из 3 кластеров, каждый из которых сильно "вытянут" вдоль одной из осей. Исследуйте качество кластеризации методом clara в зависимости от 1) использования стандартизации; 2) типа метрики. Объясните полученные результаты.

Код программы

```
library(cluster)
cl1 <- c()
cl2 <- c()
for(i in seq(1,50, by=2))
{
    cl1 <- c(cl1,runif(1, min=10, max=11.5))
    cl1 <- c(cl1,runif(1, min=18, max=18.5))
    cl1 <- c(cl1,runif(1, min=25, max=26))
    cl2 <- c(cl2, i)
}
fr<-data.frame(cl2,cl1)
res<-clara(fr, 3,metric = "manhattan", stand = FALSE)
png(file = 'cl.jpg')
plot(fr, col=res$clustering)
```

metric = "manhattan", stand = FALSE

metric = "manhattan", stand = TRUE

metric = "euclidean", stand = FALSE

metric = "euclidean", stand = TRUE

Вывод: На сгенерированной выборке метод clara работает лучше всего при метрике "manhattan" и "euclidean" и стандартизации TRUE.

Третье задание

Постройте дендрограмму для набора данных votes.repub в пакете «cluster» (число голосов, поданных за республиканцев на выборах с 1856 по 1976 год). Строки представляют 50 штатов, а столбцы - годы выборов (31). Проинтерпретируйте полученный результат.

Код программы

library(cluster)
data(votes.repub)
plot(agnes(votes.repub))

Dendrogram of agnes(x = votes.repub)

votes.repub
Agglomerative Coefficient = 0.77

Четвертое задание

Постройте дендрограмму для набора данных animals в пакете «cluster». Данные содержат 6 двоичных признаков для 20 животных. Переменные - [, 1] war теплокровные; [, 2] fly летающие; [, 3] ver позвоночные; [, 4] end вымирающие; [, 5] gro живущие в группе; [, 6] hai имеющие волосяной покров. Проинтерпретируйте полученный результат.

Код программы

library(cluster)
data(animals)
plot(agnes(animals))

Dendrogram of agnes(x = animals)

animals Agglomerative Coefficient = 0.77

Пятое задание

Рассмотрите данные из файла seeds dataset.txt, который содержит описание зерен трех сортов пшеницы: Kama, Rosa and Canadian. Признаки: 1. область A, 2. периметр P, 3. компактность $C = 4*pi*A/P^2$, 4. длина зерна, 5. ширина зерна, 6. коэффициент ассиметрии, 7. длина колоска.

Код программы

library(cluster) A_raw <- read.table("seeds_dataset.txt", stringsAsFactors = TRUE) cl <- kmeans(A_raw[,-8], 3, iter.max = 20)</pre> plot(A_raw, col = cl\$cluster)

