$\sqrt{(a^2-x^2)}$

$x=a*sin\theta$, $-\pi/2 \le \theta \le \pi/2$ $1-sin^2\theta = cos^2\theta$

$\sqrt{(a^2+x^2)}$

$x=a*tan\theta, -\pi/2 \le \theta \le \pi/2$ $1+tan^2\theta = sec^2\theta$

$\sqrt{(x^2-a^2)}$

$x=a*\sec\theta$, $0 \le \theta \le \pi/2$ or $\pi \leq \theta \leq 3\pi/2$ $\sec^2\theta$ -1= $\tan^2\theta$

$\int 1/x dx$

$\ln |x| + c$

$\int \cos(x) dx$

$\sin(x)+c$

$\int \cot(x) dx$

$\ln|\sin(x)| + c$

$\int \csc(x) \cot(x) dx$

$-\csc(x)+c$

$\int \csc^2(x) dx$

$-\cot(x)+c$

$\int e^n dn$

$e^{n}+c$

$\int \sec(x) \tan(x) dx$

sec(x)+c

$\int \sec^2(x) dx$

tan(x)+c

$\int \sin(x) dx$

$-\cos(x)$

$\int \tan(x) dx$

$\ln|\sec(x)| + c$

$\cos^2\theta$

$1-\sin^2\theta$

$\cot(\theta)$

$\cos(\theta) / \sin(\theta)$

$\cot(\theta)$

$1/\tan(\theta)$

$\cot^2\theta$

$\csc^2\theta$ -1

$\csc(\theta)$

$1/\sin(\theta)$

$csc^2\theta$

$\cot^2\theta + 1$

d/dx [cos(x)]

$-\sin(x)$

d/dx [cot(x)]

$-\csc^2(x)$

d/dx [csc(x)]

$-\csc(x)\cot(x)$

d/dx [sec(x)]

sec(x) tan(x)

d/dx [sin(x)]

$\cos(x)$

d/dx [tan(x)]

$sec^2(x)$

Half-angle: cos²x

$1/2 [1+\cos(2x)]$

Half-angle: sin²x

$1/2 [1-\cos(2x)]$

Harmonic Series

Sum of 1/n from 1 to infinity. Always divergent.

How do you determine whether or not a Geometric Series converges using the common ratio?

if $|\mathbf{r}| < 1$, then the series converges if $|\mathbf{r}| > 1$, then the series diverges

How do you find the common ratio |r| for a geometric series {a1 + $a_2 + a_3 + ...$?

$$|r| = (a_2/a_1)$$

How do you tell whether or not a pseries converges?

Sum of 1/n^p from 1 to infinity.

If p > 1, then the series

converges.

If p <= 1 then the series diverges.

nth Term Test (Divergence Test)

If Limit as n -> oo of nth term is o, test is inconclusive!

Diverges if Limit as n -> oo of nth term is anything other than O.

$sec(\theta)$

$1/\cos(\theta)$

$sec^2\theta$

$1+\tan^2\theta$

$\sin(x)\cos(x)$

$1/2 [\sin(2x)]$

$\sin^2\theta$

$1-\cos^2\theta$

Sum of Geometric Series

Sn = a / (1-r) Note: beginning index must be n=1

$tan(\theta)$

$\sin(\theta) / \cos(\theta)$

$tan^2\theta$

$sec^2\theta$ -1