Final_Project_1_Markdown

Meher Mankikar

June 20, 2019

##

lift

R Markdown

```
First, I loaded all the data using the pre-given code for this project.
 if(!require(tidyverse)) install.packages("tidyverse", repos = "http://cran.us.r-proje
 ct.org")
 ## Loading required package: tidyverse
 ## — Attaching packages —
                                                                           tidyverse
 1.2.1 —
 ## ✓ ggplot2 3.1.1
                          ✓ purrr
                                     0.3.2
 ## ✓ tibble 2.1.1

✓ dplyr 0.8.0.1
 ## ✓ tidyr 0.8.3

✓ stringr 1.4.0

 ## ✓ readr 1.3.1
                          ✓ forcats 0.4.0
 ## — Conflicts -
                                                                      - tidyverse_confli
 cts() —
 ## * dplyr::filter() masks stats::filter()
 ## * dplyr::lag() masks stats::lag()
 if(!require(caret)) install.packages("caret", repos = "http://cran.us.r-project.org")
 ## Loading required package: caret
 ## Loading required package: lattice
 ##
 ## Attaching package: 'caret'
 ## The following object is masked from 'package:purrr':
 ##
```

```
dl <- tempfile()</pre>
 download.file("https://grouplens.org/datasets/movielens/10m/", dl)
 ratings <- read.table(text = gsub("::", "\t", readLines("/Users/mehermankikar/Downloa</pre>
 ds/ml-10M100K/ratings.dat")),
                         col.names = c("userId", "movieId", "rating", "timestamp"))
 movies <- str split fixed(readLines("/Users/mehermankikar/Downloads/ml-10M100K/movies
 .dat"), "\\::", 3)
 colnames(movies) <- c("movieId", "title", "genres")</pre>
 movies <- as.data.frame(movies) %>% mutate(movieId = as.numeric(levels(movieId))[movi
 eId],
                                               title = as.character(title),
                                               genres = as.character(genres))
 movielens <- left join(ratings, movies, by = "movieId")</pre>
 set.seed(1) # if using R 3.6.0: set.seed(1, sample.kind = "Rounding")
 test_index <- createDataPartition(y = movielens$rating, times = 1, p = 0.1, list = FA
 LSE)
 edx <- movielens[-test index,]</pre>
 temp <- movielens[test index,]</pre>
 validation <- temp %>%
   semi_join(edx, by = "movieId") %>%
   semi join(edx, by = "userId")
 removed <- anti join(temp, validation)</pre>
 ## Joining, by = c("userId", "movieId", "rating", "timestamp", "title", "genres")
 edx <- rbind(edx, removed)</pre>
 rm(dl, ratings, movies, test index, temp, movielens, removed)
Then, I created a preliminary algorithm that predicts the ratings using just the average of the sample.
 mu_hat <- mean(edx$rating)</pre>
```

library(dplyr)

mu hat

rmse 1

[1] 3.512465

rmse 1 <- RMSE(edx\$rating, mu hat)</pre>

```
## [1] 1.060331

predictions <- rep(2.5, nrow(edx))
RMSE(edx$rating, predictions)

## [1] 1.466079

rmse results <- data frame(method = "Just the average", RMSE = rmse 1)</pre>
```

```
## Warning: `data_frame()` is deprecated, use `tibble()`.
## This warning is displayed once per session.
```

Next, an algorithm was made that uses userID as the only factor.

```
# fit <- lm(rating ~ as.factor(userId), data = movielens)
mu <- mean(edx$rating)
movie_avgs <- edx %>%
    group_by(movieId) %>%
    summarize(b_i = mean(rating - mu))

movie_avgs %>% qplot(b_i, geom = "histogram", bins = 10, data = ., color = I("black"))
```


method	RMSE
Just the average	1.0603313
Movie Effect Model	0.9423475

Next, an algorithm was made that takes into account movield and userld, which decreased the RMS.

method	RMSE
Just the average	1.0603313
Movie Effect Model	0.9423475
Movie + User Effects Model	0.8567039

Finally, an algorithm was made that takes into account movield, userld, and genre

```
#lm(rating ~as.factor(movieId) + as.factor(rating) + as.factor(genre))
genre avgs <- edx %>%
  left join(movie avgs, by='movieId') %>%
  left join(user avgs, by='userId') %>%
  group by(genres) %>%
  summarize(b y = mean(rating - mu - b i - b u))
predicted ratings <- validation %>%
  left join(movie avgs, by='movieId') %>%
  left join(user avgs, by='userId') %>%
  left join(genre avgs, by='genres') %>%
  mutate(pred = mu + b i + b u + b y) %>%
  .$pred
model 3 rmse <- RMSE(predicted ratings, validation$rating)</pre>
rmse_results <- bind_rows(rmse_results,</pre>
                             data frame(method="Movie + User + Genre Effects Model",
                                        RMSE = model_3_rmse ))
rmse results %>% knitr::kable()
```

method

Just the average	1.0603313
Movie Effect Model	0.9423475
Movie + User Effects Model	0.8567039
Movie + User + Genre Effects Model	0.8649469