ECE 322 Assignment 2

Arun Woosaree XXXXXXX

October 19, 2019

1 Credit Union

Conditions	Rules						
	1	2	3	4			
city dweller	1	X	0	X			
male	1	1	0	1			
female	0	0	1	0			
age < 25	X	1	0	0			
25 < age < 65	\mathbf{x}	0	1	0			
age > 65	X	0	0	1			
Actions							
Show Product A	1	X	X	X			
Show Product B	X	1	X	X			
Show Product C	X	X	1	X			
Do Not Show Product D	0	0	0	1			

a) Maximal number of rules

Given 6 condutions, the maximal number of rules is $2^6=64$

b) Simplified table

The table above is already simplified, so here are the resulting test cases:

Test	city dweller	$_{\mathrm{male}}$	female	age < 25	25 < age < 65	age > 65	Expected
1	1	1	0	1	0	0	Show Product A
2	1	1	0	1	0	0	Show Product B
3	0	0	1	0	1	0	Show Product C
4	1	1	0	0	0	1	Do Not Show Product D

 $\mathbf{2}$

For the given subdomain, the following lines form the boundaries:

- $y = 5, 0 \le x \le 7$
- $x = 0, 0 \le y \le 5$
- $y = -x, 0 \le x \le 1$
- $y = x 2, 1 \le x \le 7$

a) EPC Strategy

From the boundary lines, we see that the maximum value that x can have is 7, its minimum is -1, and that the maximum value that y can have is 5 while its minimum value is 0. Using the EPC testing strategy, $4^2 + 1 = 17$ test cases are expected. The extreme points chosen are (7, 7.1, 0, -0.1) for x, and (5, 5.1, 0, -0.1) for y. For the additional test case within the boundary, (x = 1, y = 1) is chosen. The full list of suggested test cases is found below:

test id	X	У
1	7	5
2	7	5.1
3	7	-1
4	7	-0.1
5	7.1	5
6	7.1	5.1
7	7.1	-1
8	7.1	-0.1
9	0	5
10	0	5.1
11	0	-1
12	0	-0.1
13	-0.1	5
14	-0.1	5.1
15	-0.1	-1
16	-0.1	-0.1
17	1	1

b) Weak n x 1 Strategy

Given that there are 4 boundaries, we expect 4(2+1)+1=13 test cases. The dimensionality is 2, so 2 points are chosen on each boundary, as well as one additional point just outside of each boundary. The last test case is one point inside the boundaries. The full list of suggested test cases is found below:

test id	description	x	У
1	on $y = 5, 0 \le x \le 7$ boundary	2	5
2	on $y = 5, 0 \le x \le 7$ boundary	4	5
3	outside $y = 5, 0 \le x \le 7$ boundary	3	5.1
4	on $x = 0, 0 \le y \le 5$ boundary	0	2
5	on $x = 0, 0 \le y \le 5$ boundary	0	4
6	outside $x = 0, 0 \le y \le 5$ boundary	-0.1	3
7	on $y = -x, 0 \le x \le 1$ boundary	0.3	-0.3
8	on $y = -x, 0 \le x \le 1$ boundary	0.7	-0.7
9	outside $y = -x, 0 \le x \le 1$ boundary	0.5	-0.6
10	on $y = x - 2, 1 \le x \le 7$ boundary	3	1
11	on $y = x - 2, 1 \le x \le 7$ boundary	5	3
12	outside $y = x - 2, 1 \le x \le 7$ boundary	4	1.9
13	Inside the boundaries	1	1

3 Cause-Effect Graph

From the following decision table, the cause effect graph below is generated:

Conditions

Conditions												
C1: $a < b + c$?	0	1	1	1	1	1	1	1	1	1	1	
C2: $b < a + c$?	X	0	1	1	1	1	1	1	1	1	1	
C3: $c < a + b$?	\mathbf{x}	\mathbf{x}	0	1	1	1	1	1	1	1	1	
C4: $a = b$?	\mathbf{x}	\mathbf{x}	\mathbf{x}	1	1	1	1	0	0	0	0	
C5: $a = c$?	X	X	X	1	1	0	0	1	1	0	0	
C6: $b = c$?	X	X	X	1	0	1	0	1	0	1	0	
Actions												
A1: Not a Triangle	1	1	1	X	X	X	X	X	X	X	X	
A2: Scalene	\mathbf{x}	X	X	X	\mathbf{x}	\mathbf{x}	X	X	\mathbf{x}	X	1	
A3: Isosceles	X	X	X	X	X	X	1	X	1	1	X	
A3: Equilateral	X	X	X	1	X	X	X	X	X	X	X	
A4: Impossible	x	x	X	x	1	1	X	1	x	x	X	

4 Test Cases

The following description table is derived from the cause effect graph (Because of the requires, (C3 = 1, C6 = 0) will never happen)

	1	2	3	4	5
Conditions					
C3	1	0	0	X	0
C4	X	X	1	X	0
C5	1	X	1	0	x
C6	1	0	1	X	x
Effects					
E	1	0	1	0	0

From the decision table above, the following test cases are generated:

Test	C3	C4	C5	C6	Expected
1	1	0	1	1	1
2	0	1	1	0	0
3	0	1	1	1	1
4	1	1	0	1	0
5	0	0	1	1	0

5 Combinatorial Testing

There are $2 \times 3 \times 3 \times 3 \times 3 \times 2 \times 3 \times 3 = 2916$ total possible combinations to test. Ideally, the orthogonal array should be 2^23^6 , resulting in

some fucking magic later:

The following mapping is created:

#todo: explain

	PRINTERS	PLUGINS	BROWSERS	OPERATING SYSTEMS	SERVERS	MONITORS	EMAIL SYSTEMS	SOFTWARE PACKAGES
1	printer2	plugin2	browser3	os1	server2	monitor2	email1	software2
2	printer1	plugin1	browser1	os3	server1	monitor1	email2	software 2
3	printer1	plugin2	browser1	os2	server3	monitor2	email3	software1
4	printer2	plugin1	browser2	os2	server2	monitor1	email1	software3
5	printer2	plugin2	browser2	os3	server3	monitor2	email2	software3
6	printer1	plugin1	browser3	os1	server1	monitor1	email3	software3
7	printer2	plugin2	browser3	os2	server1	monitor1	email2	software1
8	printer1	plugin1	browser2	os3	server2	monitor2	email3	software1
9	printer1	plugin1	browser3	os3	server3	monitor1	email1	software 2
10	printer2	plugin1	browser1	os1	server1	monitor2	email1	software1
11	printer2	plugin1	browser2	os2	server1	monitor2	email3	software 2
12	printer1	plugin1	browser2	os1	server3	monitor1	email2	software3
13	printer1	plugin2	browser1	os2	server2	monitor2	email2	software3

resulting in 13 test cases, as opposed to 2916 if we were to test all possible combinations, a huge improvement.