МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Вятский государственный университет» Факультет автоматики и вычислительной техники Кафедра ЭВМ

Отчёт Лабораторная работа № 3 по дисциплине «Организация памяти ЭВМ»

Выполнил студент группы ИВТб-3301	/ Колесников Р.К./
Проверил преполаватель	/Мельнов В. Ю./

1. Задание

Исследовать ОЗУ в режиме произвольного доступа при записи и чтении:

- а) Выполнить запись данных во все ячейки ОЗУ в режимах:
- Записи одновременно по порту А и В;
- Раздельной записи по одному из портов А и В.
- б) Выполнить сочетание процедур чтения и записи одновременно по портам А и В:
 - Порт А чтение, порт В запись;
 - Порт А запись, порт В чтение;
 - Порт А чтение, порт В чтение;
 - Раздельное чтение по порту А или В.
- в) Выполнить попытку записи по портам А и В в одну и ту же ячейку и сделать выводы.

На основе ОЗУ организовать стек типа FIFO для очереди команд с возможностью параллельного пополнения очереди команд через каждые 4 считанные из очереди команды:

- Запись 8-и чисел;
- Запись 4-х чисел;
- Запись 4-х чисел с параллельным считыванием из очереди;
- Запись 4-х чисел с параллельным считыванием из очереди;
- Сброс очереди команд (команда БП).
- 2. Функциональная схема

Управляющие сигналы:

EWRA, EWRB - сигналы разрешения записи по входам D3-D0 RgA/CT;

UA, UB - сигналы задания режима работы счётчика (инкремент/декремент);

STA, STB - сигналы записи в регистры данных портов A и B;

СА, СВ - сигналы синхронизации записи/счёта RgA/CT;

~EOA, ~EOB - сигналы разрешения выходов регистров данных портов A и B;

~RA, ~WA, ~EA, ~RB, ~WB, ~EB - интерфейсные сигналы чтения, записи, выбора канала портов A и B соответственно.

Функциональная схема представленная на рисунке 1.

Рисунок 1 - Функциональная схема двухпортового ЗУ.

3. Граф-схема алгоритма

Граф-схема алгоритмов чтения из стека FIFO и записи в стек на основе двухпортового ЗУ представлены на рисунках 2-5.

Рисунок 2 - ГСА чтения из стека по порту А

Рисунок 3 - ГСА записи в стек по порту А

Рисунок 4 - ГСА чтения из стека по порту В

Рисунок 5 - ГСА записи в стек по порту В

4. Текст микропрограммы

Текст микропрограммы представлен на рисунке 6.

Νŝ	Адр.	DIOA	~EA~RA~WA			EWR U C		ST	~EO	Адр.	DIOB	~EB~RB~WB			EWRUC			ST	~E0	
0.0	0000	11111010	1						1		0000	00000000				1		1		1
0.	0000	11111111	0	1	0	0	0	0	0	0	0000	00010101	1	1	1	0	0	1	1	1
02	0011	00000000	1	1	1	1	0	1	0	1	0000	11111111	0	1	0	0	0	0	0	0
0;	0000	10110011	1	1	1	0	0	0	1	1	0000	01100010	1	1	1	0	0	1	1	1
04	1 0000	11111111	0	1	0	0	0	0	0	0	0000	11111111	0	1	0	0	0	0	0	0
0.9	0000	10111111	1	1	1	0	0	1	1	1	0100	11100011	1	1	1	1	0	1	1	1
0	0000	11111111	0	1	0	0	0	0	0	0	0000	11111111	0	1	0	0	0	0	0	0
0.	0110	01000000	1	1	1	1	0	1	1	1	0000	00001000	1	1	1	0	0	1	1	1
08	0000	11111111	0	1	0	0	0	0	0	0	0000	11111111	0	1	0	0	0	0	0	0
0.9	0000	00111101	1	1	1	0	0	1	1	1	0000	00000000	1	1	1	0	0	0	0	1
0.2	0000	11111111	0	1	0	0	0	0	0	0	0000	00000000	1	1	1	0	0	0	0	1
OI	0000	11111111	0	0	1	0	0	0	1	1	0000	00000000	1	1	1	1	0	1	0	1
00	0010	00000000	1	1	1	1	0	1	0	0	0000	11111111	0	0	1	0	0	0	1	1
01	0000	00000000	1	1	1	0	0	0	0	1	0000	00000000	1	1	1	0	0	1	0	1
OI	0000	11111111	0	0	1	0	0	0	1	1	0000	11111111	0	0	1	0	0	0	1	1
03	0000	00000000	1	1	1	0	0	1	0	0	0011	00000000	1	1	1	1	0	1	0	0
10	0000	11111111	0	0	1	0	0	0	1	1	0000	11111111	0	0	1	0	0	0	1	1
1	0111	00000000	1	1	1	1	0	1	0	0	0111	00000000	1	1	1	1	0	1	0	0
13	0000	00010000	1	1	1	0	0	0	1	1	0000	00000000	1	1	1	0	0	0	0	1
13	0000	11111111	0	1	0	0	0	0	0	0	0000	00000000	1	1	1	0	0	0	0	1
14	1 0000	00000000	1	1	1	0	0	0	0	1	0000	11111111	0	0	1	0	0	0	1	1
13	0000	11100011	1	1	1	0	0	1	1	1	0000	00000000	1	1	1	0	0	1	0	0
1	0000	11111111	0	1	0	0	0	0	0	0	0000	00000000	1	1	1	0	0	0	0	1
1	7 0000	00001011	1	1	1	0	0	1	1	1	0000	11111111	0	0	1	0	0	0	1	1
18	0000	11111111	0	1	0	0	0	0	0	0	0000	00000000	1	1	1	0	0	1	0	1
19	0000	10001101	1	1	1	0	0	1	1	1	0000	11111111	0	0	1	0	0	0	1	1
1A	0000	11111111	0	1	0	0	0	0	0	0	0000	00000000	1	1	1	0	0	1	0	0
1B	0000	00000000	1	1	1	0	0	1	0	1	0000	11111111	0	0	1	0	0	0	1	1
10	0000	00000000	1	1	1	0	0	0	0	1	0000	00000000	1	1	1	0	0	1	0	0

Рисунок 6 - Микропрограмма работы со стеком FIFO на основе двухпортового ЗУ

5. Экранные формы

Экранные формы работы микропрограммы представлены на рисунках 7-13.

Рисунок 7 - Запись по порту А в стек

Рисунок 8 - Запись по порту В в стек

Рисунок 9 - Запись по порту А и В в одну ячейку

Рисунок 10 - Запись по порту А и В в разные ячейки

Рисунок 11 - Чтение по порту А

Рисунок 12 - Чтение по портам А и В из одной ячейки

Рисунок 13 - Чтение по портам А и В из разных ячеек

Вывод: в процессе выполнения данной лабораторной работы были изучены основные принципы работа двухпортового запоминающего устройства. Была разработана микропрограмма для работы со стеком FIFO, построенном на основе двухпортового ЗУ, в которую входят подмикропрограммы записи данных в стек, а также считывание данных из стека разными вариациями по портам А и В. Знания, полученные в процессе выполнения данной лабораторной работы, будут полезны в будущем.