Logiche Temporali e Model Checking

Francesco Goretti

Alma Mater Studiorum - Università di Bologna Presentazione per il corso di Metodi Logici per la Filosofia

26/04/2023

Logiche temporali

- Michele ha sempre guidato
- Michele guidò
- Michele aveva guidato
- Michele guiderà
- Michele guiderà sempre

Logiche temporali - Sintassi

Sia $\phi := \{p_0, p_1, p_2, ...\}$ l'insieme delle variabili enunciative.

L'insieme delle formule temporali F_m^{ϕ} è definito come segue:

- $p_i \in \phi$ implica $p_i \in F_m^{\phi}$
- $\bot \in F_m^{\phi}$
- $A \in F_m^{\phi}$ implica $\neg A \in F_m^{\phi}$
- $A, B \in F_m^{\phi}$ implica $(A \land B), (A \lor B), (A \to B) \in F_m^{\phi}$
- $A \in F_m^{\phi}$ implica $HA, GA, PA, FA \in F_m^{\phi}$
- Nient'altro appartiene a F_m^ϕ

Logiche temporali - Operatori temporali

H: "Si è sempre dato il caso che"

G: "Si darà sempre il caso che"

P: "Si è dato il caso che"

F: "Si darà il caso che"

$$H,G \quad \sim \quad \square$$

$$P, F \sim \Diamond$$

Dualità:

$$\neg H \neg A = PA$$

$$\neg G \neg A = FA$$

Logiche temporali - Esempi

•	Michele	ha	sempre	guidato	Н	р
---	---------	----	--------	---------	---	---

- Michele guidò Pp
- Michele aveva guidato PPp
- Michele guiderà Fp
- Michele guiderà sempre Gp

Logiche temporali - Semantica

Un modello temporale M è definito come segue:

$$M := \langle T, \langle, I \rangle$$

dove

- $T := \{t_0, t_1, t_2, ...\}$ insieme non vuoto di istanti
- $\leq T \times T$ relazione di precedenza temporale
- I : $\phi \to \mathcal{P}(T)$ funzione di valutazione

Una struttura temporale F è definita come segue:

$$F := < T, < >$$

Logiche temporali - Verità di una formula

Verità di una formula A in un istante $t \in T$ di un modello M:

```
sse t \in I(p_i)
\bullet \models_t p_i
\bullet \not\models_t \bot

    ⊨<sub>+</sub> ¬B

                                                  ⊭ + B
                                 sse
• ⊨<sub>+</sub> B ∧ C
                                                   \models_{t} B \in \models_{t} C
                                  sse
• ⊨<sub>+</sub> B ∨ C
                         sse
                                                    \models_t B oppure \models_t C

    ⊨<sub>t</sub> B → C

                                                   \not\vdash_t B oppure \vdash_t C
                                  sse
                                               \forall t' \in \mathrm{T}(t' < t \text{ implica } \models_{t'} B)
• ⊨<sub>+</sub> HB
                              sse
                                               \forall t' \in \mathrm{T}(t < t' \text{ implica } \models_{t'} B)
• ⊨<sub>+</sub> GB
                              sse
                                               \exists t' \in \mathrm{T}(t' < t \in \models_{t'} B)
• ⊨<sub>+</sub> PB
                              sse
                                               \exists t' \in \mathrm{T}(t < t' \in \mathsf{F}_{t'} B)
• ⊨<sub>+</sub> FB
                              sse
```

Logica K_t

È un insieme di formule Γ tale che:

- TAUT $\in \Gamma$
- $H(A \rightarrow B) \rightarrow (HA \rightarrow HB) \in \Gamma$
- $G(A \to B) \to (GA \to GB) \in \Gamma$
- $A \rightarrow HFA \in \Gamma$
- A → GPA ∈ Γ
- $\frac{A \to B \in \Gamma}{B \in \Gamma}$ $\frac{A \in \Gamma}{B \in \Gamma}$ (modus ponens)
- $\underbrace{A \in \Gamma}_{HA \in \Gamma} \qquad \underbrace{A \in \Gamma}_{GA \in \Gamma} \qquad \text{(necessitazione)}$

Logica K4_t

se t < t' e t' < t'' allora t < t''

Passato e futuro lineare

In K4_t, passato e futuro sono ramificati.

Per avere un passato lineare si aggiunge la seguente clausola alla definizione di Γ :

$$FPA \rightarrow PA \lor A \lor FA \in \Gamma$$

che corrisponde alla tricotomia:

$$t < t''$$
 e $t' < t''$ implica $t < t'$ oppure $t = t'$ oppure $t' < t$

Per avere un futuro lineare, invece, si aggiunge la seguente clausola:

$$PFA \rightarrow PA \lor A \lor FA \in \Gamma$$

Futuro ramificato

Model Checking

Il model checking è un metodo di verifica automatico di proprietà su un modello a stati finiti.

Struttura di Kripke

Una struttura di Kripke è una quadrupla $< S, S_0, R, I >$ dove:

- $S = \{s_0, s_1, s_2\}$ insieme di stati
- $S_0 = s_0$ stato iniziale
- $R \subseteq S \times S$ relazione di transizione
- $I: \Phi \to \mathcal{P}(S)$ funzione di interpretazione

Computation tree logic (CTL)

CTL - Sintassi

L'insieme delle formule di CTL F_m^{ϕ} è definito come segue:

- Contiene tutte le formule proposizionali
- $B, C \in F_m^{\phi}$ implica $AXB, AFB, AGB, A(BUC) \in F_m^{\phi}$
- $B, C \in F_m^{\phi}$ implica $EXB, EFB, EGB, E(BUC) \in F_m^{\phi}$
- Nient'altro appartiene a F_m^ϕ

Quantificatori:	Operatori:
All	ne X t
E xists	F uture
	G lobally
	U ntil

CTL - Esempi di formule

 $B \vee AG(C \wedge E(BUD))$

 $B \wedge C$

<i>B</i> / (c	Ц
$AG(B \wedge C)$	K
$\mathbf{EX} B$	AB
AG EF B	AE B

 \mathcal{F}

 $A (B \rightarrow C)X$

Percorso

Un percorso è una sequenza non vuota di stati tra cui esistono transizioni.

$$s_0 \rightarrow s_1 \rightarrow s_1 \rightarrow s_2 \rightarrow s_0 \rightarrow \dots$$

Percorso

CTL - Semantica

Verità di una formula CTL in uno stato $s_0 \in S$ di una struttura di Kripke (casi temporali):

•
$$\models_{s_0} AXB$$
 sse $\forall s_0 \rightarrow s_1(\models_{s_1} B)$

•
$$\models_{s_0} EXB$$
 sse $\exists s_0 \rightarrow s_1(\models_{s_1} B)$

•
$$\models_{s_0} AGB$$
 sse $\forall s_0 \to s_1 \to s_2 \to \dots (\forall i (\models_{s_i} B))$

•
$$\models_{s_0} EGB$$
 sse $\exists s_0 \to s_1 \to s_2 \to \dots (\forall i (\models_{s_i} B))$

•
$$\models_{s_0} AFB$$
 sse $\forall s_0 \to s_1 \to s_2 \to \dots (\exists i (\models_{s_i} B))$

•
$$\models_{s_0} EFB$$
 sse $\exists s_0 \to s_1 \to s_2 \to \dots (\exists i (\models_{s_i} B))$

•
$$\models_{s_0} A(BUC)$$
 sse $\forall s_0 \to s_1 \to s_2 \to \dots (\exists i (\models_{s_i} C \in \forall j < i (\models_{s_i} B)))$

•
$$\vDash_{s_0} \mathrm{E}(B\mathrm{U}\,C)$$
 sse $\exists s_0 \to s_1 \to s_2 \to \dots (\exists i (\vDash_{s_i} C \ \mathrm{e} \ \forall j < i (\vDash_{s_j} B)))$

 $\models_{s_0} AG(p_1 \vee p_2)$

 $\vDash_{s_0} \mathrm{EX}\ p_0$

 $\models_{s_0} EF p_2$

 $\nvDash_{s_0} \mathrm{A}((p_0 \vee p_1) \mathrm{U} p_2)$

Linear temporal logic (LTL)

Conclusioni

LTL vs CTL vs CTL* vs $\mu\text{-calcolo}$