Функції комплексної змінної

доц. І.В. Орловський

1. Комплексні числа

ДЗ. Зробити короткий конспект з відповідної теми 2-го семестру

2. Множини на комплексній площині

Комплексне число z=x+iy зображають на площині Oxy точкою M(x;y) або радіусом-вектором \overline{OM} . Це встановлює взаємну однозначну відповідність між множиною комплексних чисел $\mathbb C$ і множиною точок площини $\mathbb R^2$. Площину, на якій зображають комплексні числа, називають комплексною площиною і позначають $\mathbb C$.

Віддаль між двома точками $z_1=x_1+iy_1$ та $z_2=x_2+iy_2$ комплексної площини визначають за формулою

$$\rho(z_1, z_2) = |z_1 - z_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Зафіксуємо деяке число $\varepsilon>0$. ε -околом точки $z_0\in\mathbb{C}$ називають множину всіх точок $z\in\mathbb{C}$, які задовольняють нерівності

$$|z-z_0|<\varepsilon,$$

і позначають $U_{\varepsilon}(z_0) = \{z \in \mathbb{C} : |z - z_0| < \varepsilon\}.$

Помітимо, що ε -окіл точки z_0 ε відкритим кругом із центром в точці z_0 радіусом ε . Дійсно,

$$|z - z_0| < \varepsilon \iff (x - x_0)^2 + (y - y_0)^2 < \varepsilon^2.$$

Точку $M \in D$ називають внутрішньою точкою множини D, якщо існує такий окіл цієї точки, що повністю міститься у множині D

Означення 3

Mножину D називають відкритою, якщо кожна її точка ϵ внутрішньою.

Множину D називають зв'язною, якщо будь-які дві її точки можна з'єднати неперервною кривою (зокрема ламаною), що повністю лежить у множині D.

Означення 5

Відкриту зв'язну множину називають областю.

Точку M називають межовою точкою множини D, якщо будь-який окіл цієї точки містить як точки, що належать множині D так і точки, що їй не належать. Множину всіх межових точок множини називають межею множини D і позначають ∂D .

Означення 7

Точку M називають граничною точкою множини D, якщо будь-який окіл цієї точки містить нескінченно багато точок множини D.

Означення 8

Об'єднання множини D і множини всіх її граничних точок називають замиканням множини D і позначають \overline{D} .

Множину D називають замкненою, якщо вона містить усі свої граничні точки, тобто збігається зі своїм замиканням.

Означення 10

Замкнену криву без самоперетинів називають контуром.

Будь-який контур розбиває площину на дві різні області і є межею кожної з них. Одна з областей – внутрішність контуру є обмеженою, а інша – зовнішність контуру – необмежена.

Означення 11

Область D називають однозв'язною, якщо для будь-якого контуру, що належить D, його внутрішність також буде належати D.

Послідовність комплексних чисел

Розглянемо послідовність $\{z_n\}$ комплексних чисел

$$z_1, z_2, ..., z_n, ...$$

Тоді для кожного $n \geq 1$

$$z_n = x_n + iy_n, \ x_n, y_n \in \mathbb{R},$$

тобто послідовності $\{z_n\}$ можна поставити у відповідність дві послідовності дійсних чисел $\{x_n\}$ та $\{y_n\}$, які її однозначно задають.

Означення 12

Комплексне число A=a+ib називають границею послідовності комплексних чисел $\{z_n\}$ (позначають $\lim_{n\to\infty}z_n=A$), якщо для будь-якого $\varepsilon>0$ існує такий номер $N=N(\varepsilon)$, що для всіх n>N виконується нерівність

$$|z_n - A| < \varepsilon (z_n \in U_{\varepsilon}(A))$$
.

З означення випливає, що

$$\lim_{n \to \infty} (x_n + iy_n) = \lim_{n \to \infty} z_n = A = a + ib \iff \lim_{n \to \infty} x_n = a \land \lim_{n \to \infty} y_n = b.$$

Останнє означає, що властивості границі послідовності комплексних чисел будуть аналогічними відповідним властивостям дійсних чисел.

Означення 13

Якщо для будь-якого числа M>0 існує таке N, що для всіх n>N, буде виконуватись нерівність

$$|z_n| > M$$
,

то послідовність $\{z_n,\ n\geq 1\}$ називають збіжною до нескінченно віддаленої точки (до нескінченності) і позначають

$$\lim_{n\to\infty} z_n = \infty.$$

Окіл нескінченно віддаленої точки

Доповнюючи комплексну площину так чином заданою нескінченно віддаленою точкою $z=\infty$ дістають розширену комплексну площину.

Означення 14

R-околом нескінченно віддаленої точки називають сукупність усіх точок $z\in\mathbb{C}$, які задовольняють нерівності

$$|z| > R$$
,

тобто сукупність усіх точок z, які лежать за межами круга досить великого радіуса R з центром у початку координат.

Криві на комплексній площині

Нехай $x=x(t),\ y=y(t),\ t\in T$, – неперервні або неперервно диференційовні дійсні функції. Тоді комплексна функція

$$z(t) = x(t) + iy(t), \ t \in T,$$

визначає на комплексній площині $\mathbb C$ неперервну або гладку криву L, яку на площині Oxy задають параметричні рівняння

$$\begin{cases} x = x(t), \\ y = y(t), \end{cases} t \in T.$$

3. Финкції комплексної змінної

Нехай задано дві множини D та E, елементами яких ϵ комплексні числа

$$z = x + iy \in D, \quad w = u + iv \in E.$$

Якщо кожному числу $z \in D$ за деяким правилом f поставлено у відповідність певне число $w \in E$, то кажуть, що на множині D задано однозначну функцію комплексної змінної

$$w = f(z)$$
.

Якщо кожному $z\in D$ відповідає декілька значень w, то функцію w=f(z) називають багатозначною.

Функція w=f(z) відображає комплексні числа z=x+iy в комплексні числа w=u+iv, тобто

$$f(z) = f(x+iy) = u(x,y) + iv(x,y).$$

Отже, задавання функції комплексної змінної w=f(z) буде рівносильне задаванню двох функцій

$$u = u(x, y), \quad v = v(x, y),$$

дійсних змінних x, y.

Функцію $u(x,y)=\mathrm{Re}\ w$ називають дійсною частиною функції w=f(z), а $v(x,y)=\mathrm{Im}\ w$ — її уявною частиною.

Приклад 1

Знайти дійсну та уявну частини функції $w=z^2-2\overline{z}+i.$

4. Границя функції комплексної змінної

Нехай однозначна функція w=f(z) визначена в деякому околі точки $z_0=x_0+iy_0$, за винятком, можливо, самої точки z_0 .

Означення 15

Комплексне число A=a+ib називають границею функції f(z) в точці z_0 (або при $z\to z_0$), якщо для будь-якого $\varepsilon>0$ існує $\delta>0$ таке, що для всіх точок z, таких що $|z-z_0|<\delta$ та $z\neq z_0$ виконано нерівність

$$|f(z) - A| < \varepsilon$$

і записують $\lim_{z \to z_0} f(z) = A$.

Зауважимо, що функція w=f(z) прямує до границі A незалежно від способу наближення точки z до точки z_0 .

Існування границі

$$\lim_{z \to z_0} f(z) = A = a + ib$$

рівносильно існуванню наступних двох границь дійсних функцій u(x,y) та v(x,y):

$$\lim_{\substack{x\to x_0\\y\to y_0}}u(x,y)=a,\quad \lim_{\substack{x\to x_0\\y\to y_0}}v(x,y)=b.$$

ДЗ. записати властивості функцій, що мають скінченні границі

5. Неперервність функції

Означення 16

Функцію w=f(z) задану на множині D, називають неперервною в точці $z_0\in D$, якщо

$$\lim_{z \to z_0} f(z) = f(z_0).$$

Функція комплексної змінної

$$f(z) = u(x, y) + iv(x, y).$$

неперервна у точці $z_0 = x_0 + iy_0$ тоді й лише тоді, коли її дійсна u(x,y) та уявна v(x,y) частини ϵ функціями, які неперервні в точці (x_0,y_0) .

Функцію w=f(z) називають неперервною на множині D, якщо вона неперервна в кожній точці цієї множини.

Література

- [1] *Ряди. Функції комплексної змінної. Операційне числення. Конспект лекцій /* Уклад.: В.О. Гайдей, Л.Б. Федорова, І.В. Алєксєєва, О.О. Диховичний. К: НТУУ «КПІ», 2013. 108 с.
- [2] Дубовик В.П., Юрик І.І. *Вища математика*, К.: Вища школа, 1998.
- [3] Письменный Д.Т. Конспект лекций по высшей математике, 2 часть. М.: Рольф, 2000.