Лабораторная работа №3.4.2 Закон Кюри - Вейсса

Цель работы:

Изучение температурных зависимостей магнитной восприимчивости ферромагнетизм выше точки Кюри.

В работе используются:

Катушка самоиндукции из гадолиния, термостат, частотомер, цифровой вольтметр, LC - автогенератор, термопара медь - константан.

Теоретические основы:

Вещества с отличными от нуля атомными магнитными моментами обладают парамагнитными свойствами. Внешнее магнитное поле ориентирует магнитные моменты, которые в отсутствие поля располагались в пространстве хаотичным образом.

При повышении температуры возрастает дезориентирующее действие теплового движения частиц, и магнитная восприимчивость парамагнетиков убывает, в простейшем случае (в постоянном магнитном поле – по закону Кюри:

$$\chi = \frac{c}{T}$$

где c — постоянная Кюри.

Для парамагнитных веществ, которые при понижении температуры становятся ферромагнитными, формула [1] должна быть видоизменена. Эта формула показывает, что температура является особой точкой температурной кривой, в которой неограниченно возрастает.

При $T \to 0$ тепловое движение всё меньше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно слабом внешнем поле. В ферромагнетиках — под влиянием обменных сил — это происходит при понижении температуры не до абсолютного нуля, а до температуры Кюри Θ . Оказывается, что у ферромагнетиков закон Кюри должен быть заменен законом Кюри - Вейсса:

$$x \sim \frac{1}{T - \Theta_{p}}$$

где Θ_{p} – температура, близкая к температуре Кюри.

Эта формула хорошо описывает поведение ферромагнитных веществ после их перехода в парамагнитную фазу при заметном удалении температуры от Θ , но недостаточно точна при $T \approx \Theta$. Иногда для уточнения формулы (2) вводят вместо одной две температуры Кюри, одна из которых описывает точку фазового перехода — ферромагнитная точка Кюри Θ , а другая является параметром в формуле (2) — парамагнитная точка Кюри Θ _D(рис. 1).

Рис. 1. Зависимость обратной величины магнитной восприимчивости от температуры.

В нашей работе изучается температурная зависимость $\chi(T)$ гадолиния при температурах выше точки Кюри. Выбор материала определяется тем, что его точка Кюри лежит в интервале комнатных

температур.

Экспериментальная установка.

Схема установки для проверки закона Кюри - Вейсса показана на рис. 2. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC-автогенератора. Автогенератор собран на полевом транзисторе КП-103 и смонтирован в виде отдельного блока.

Рис. 2. Схема экспериментальной установки.

Гадолиний является хорошим проводником электрического тока, а рабочая частота генератора достаточно велика (~50 кГц), поэтому для уменьшения вихревых токов образец изготовлен из мелких кусочков размером около 0,5 мм. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и термостатируемой (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближенной оценки температуры. Температура образца регулируется с помощью термостата.

Магнитная восприимчивость образца определяется по изменению самоиндукции катушки. Обозначив через самоиндукцию катушки с образцом и через - её самоиндукцию в отсутствие образца, получим:

$$(L - L_0) \sim \chi$$

При изменении самоиндукции образца меняется период колебаний автогенератора:

$$ln[3]:=$$
 $\tau = 2\pi\sqrt{Lc}$

где с – ёмкость контура автогенератора.

Период колебаний в отсутствие образца определяется самоиндукцией пустой катушки:

$$In[4]:=$$
 $\tau_0 = 2 \pi \sqrt{L_0 c}$

Отсюда имеем:

$$(L - L_{\theta}) \sim (\tau^2 - \tau_{\theta}^2)$$

Таким образом,

$$\chi \sim (\tau^2 - \tau_0^2)$$

Из формул (2) и (6) следует, что закон Кюри - Вейсса справедлив, если выполнено соотношение:

In[5]:=
$$\frac{1}{\chi} \sim \left(\mathsf{T} - \Theta_{\mathsf{p}}\right) \sim \frac{1}{\left(\tau^2 - \tau_{\mathsf{0}}^2\right)}$$

Измерения проводятся в интервале температур от 14°C до 40°C. С целью экономии времени следует начинать измерения с низких температур.

Для охлаждения образца используется холодная водопроводная вода, циркулирующая вокруг сосуда с рабочей жидкостью (дистиллированной водой); рабочая жидкость постоянно перемешивается. Величина стабилизирующей температуры задается на дисплее 5 термостата. Для нагрева служит внутренний электронагреватель, не показанный на рисунке. Когда температура рабочей жидкости в сосуде приближается к заданной, непрерывный режим работы нагревателя автоматически переходит в импульсный – начинается процесс стабилизации температуры.

Температура исследуемого образца всегда несколько отличается от температуры дистиллированной воды в сосуде. После того, как вода достигла заданной температуры, идёт медленный процесс выравнивания температур образца и воды. Разность их температур контролируется с помощью медно-константановой термопары 6 и цифрового вольтметра. Один из спаев термопары находится в тепловом контакте с образцом, а другой погружён в воду. Концы термопары подключены к цифровому вольтметру.

Задание

- 1. Подготовим приборы к работе.
- 2. Оценим допустимую ЭДС термопары, если допустимая разность температур образца и рабочей жидкости $\Delta T = 0.5$ °C, а постоянная термопары k = 24 град/мВ.

$$\triangle U = \frac{0.5}{24} = 2.08333 \times 10^{-2} \text{ MB} / c \approx 21 \text{ MKB} / c$$

Исследуем зависимость периода колебаний LC-генератора от температуры образца, отмечая период колебаний τ по частотомеру, а температуру T – по показаниям дисплея и цифровому вольтметру (ΔU с учетом знака). Термопара подключена так, что при знаке «+» на табло вольтметра температура образца выше температуры рабочей жидкости.

T,°C ∆U, мВ t, мкс 12.73 0.002 10.8325 14 -0.014 10.8046 16.1 -0.001 10.6618 17.99 -0.005 10.495 20.12 -0.003 10.1451 22.05 -0.006 9.795 24.04 -0.012 9.537 26.04 -0.013 9.403 28.04 -0.012 9.327 30.05 -0.08 9.28 32.05 -0.007 9.242 34.02 -0.013 9.21			
14 -0.014 10.8046 16.1 -0.001 10.6618 17.99 -0.005 10.495 20.12 -0.003 10.1451 22.05 -0.006 9.795 24.04 -0.012 9.537 26.04 -0.013 9.403 28.04 -0.012 9.327 30.05 -0.08 9.28 32.05 -0.007 9.242	T,°C	∆ U, мВ	t, MKC
16.1 -0.001 10.6618 17.99 -0.005 10.495 20.12 -0.003 10.1451 22.05 -0.006 9.795 24.04 -0.012 9.537 26.04 -0.013 9.403 28.04 -0.012 9.327 30.05 -0.08 9.28 32.05 -0.007 9.242	12.73	0.002	10.8325
17.99 -0.005 10.495 20.12 -0.003 10.1451 22.05 -0.006 9.795 24.04 -0.012 9.537 26.04 -0.013 9.403 28.04 -0.012 9.327 30.05 -0.08 9.28 32.05 -0.007 9.242	14	-0.014	10.8046
20.12 -0.003 10.1451 22.05 -0.006 9.795 24.04 -0.012 9.537 26.04 -0.013 9.403 28.04 -0.012 9.327 30.05 -0.08 9.28 32.05 -0.007 9.242	16.1	-0.001	10.6618
22.05 -0.006 9.795 24.04 -0.012 9.537 26.04 -0.013 9.403 28.04 -0.012 9.327 30.05 -0.08 9.28 32.05 -0.007 9.242	17.99	-0.005	10.495
24.04 -0.012 9.537 26.04 -0.013 9.403 28.04 -0.012 9.327 30.05 -0.08 9.28 32.05 -0.007 9.242	20.12	-0.003	10.1451
26.04 -0.013 9.403 28.04 -0.012 9.327 30.05 -0.08 9.28 32.05 -0.007 9.242	22.05	-0.006	9.795
28.04 -0.012 9.327 30.05 -0.08 9.28 32.05 -0.007 9.242	24.04	-0.012	9.537
30.05 -0.08 9.28 32.05 -0.007 9.242	26.04	-0.013	9.403
32.05 -0.007 9.242	28.04	-0.012	9.327
02100 01001 01212	30.05	-0.08	9.28
34 02 -0 013 9 221	32.05	-0.007	9.242
31.02 0.013 3.221	34.02	-0.013	9.221
360.015 9.203	36.	-0.015	9.203
38.02 -0.013 9.187	38.02	-0.013	9.187
40. -0.014 9.176	40.	-0.014	9.176

Построим график зависимости $f(T) = \frac{1}{(\tau^2 - \tau_0^2)}$

$$\tau_0 = 9.050$$

Out[233]=

т, К	f
285,778	0.02

	,	, ,
	285.778	0.0282163
	286.664	0.0287052
=	289.076	0.0314748
	290.87	0.0354065
	293.048	0.0475725
	294.906	0.0712275
	296.752	0.110474
	298.728	0.153518
	300.752	0.196447
	301.13	0.237197
	304.882	0.284733

Out[346]=

306.708 0.320067 308.64 0.358075 310.708 0.400245 312.664 0.43545

Определим параметры графика, воспользовавшись методом наименьших квадратов:

Out[340]=
$$-6.01127 + 0.0206351 x$$

Рассчитаем значение Θ_p и σ_{Θ_p} :

$$\Theta_p = -\frac{b}{a} = 18.3 \, ^{\circ}\text{C}$$

$$\sigma_{\Theta} = 0.01$$

$$\Theta_p = (18.3 \pm 0.2)^{\circ}$$
C

Вывод: исследовали поведение гадолиния при температуре выше температуры Кюри, убедились в выполнении для ферромагнитных веществ закона Кюри - Вейсса. Экспериментально для гадолиния

вычислили точку Кюри Θ_p = (18.3 ± 0.2)°C, что близко к табличному значению Θ_p =16 °C.