

PCT
WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5 : C07D 261/04, A01N 25/32	A1	(11) Internationale Veröffentlichungsnummer: WO 91/08202 (43) Internationales Veröffentlichungsdatum: 13. Juni 1991 (13.06.91)
(21) Internationales Aktenzeichen: PCT/EP90/01966		(74) Gemeinsamer Vertreter: HOECHST AKTIENGESELLSCHAFT; Zentrale Patentabteilung, Postfach 80 03 20, D-6230 Frankfurt am Main 80 (DE).
(22) Internationales Anmeldedatum: 17. November 1990 (17.11.90)		
(30) Prioritätsdaten: P 39 39 010.1 25. November 1989 (25.11.89) DE		(81) Bestimmungsstaaten: AT (europäisches Patent), AU, BE (europäisches Patent), CA, CH (europäisches Patent), DE (europäisches Patent), DK (europäisches Patent), ES (europäisches Patent), FR (europäisches Patent), GB (europäisches Patent), GR (europäisches Patent), HU, IT (europäisches Patent), JP, KR, LU (europäisches Patent), NL (europäisches Patent), SE (europäisches Patent), SU, US.
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): HOECHST AKTIENGESELLSCHAFT [DE/DE]; Postfach 80 03 20, D-6230 Frankfurt am Main 80 (DE).		
(72) Erfinder; und		Veröffentlicht
(75) Erfinder/Anmelder (<i>nur für US</i>): LÖHER, Heinz, Josef [DE/DE]; Amselweg 9, D-6238 Hofheim am Taunus (DE). SCHWAB, Wilfried [DE/DE]; Auf den Erlen 1d, D-6200 Wiesbaden (DE). BAUER, Klaus [DE/DE]; Dorner Straße 53d, D-6450 Hanau (DE). BIERINGER, Hermann [DE/DE]; Eichenweg 26, D-6239 Eppstein/Taunus (DE).		<i>Mit internationalem Recherchenbericht.</i>

(54) Title: ISOXAZOLINES, METHOD OF PREPARATION THEREOF, AND THEIR USE AS PLANT-PROTECTION AGENTS

(54) Bezeichnung: ISOXAZOLINE, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERWENDUNG ALS PFLANZENSCHÜTZENDE MITTEL

(57) Abstract

Disclosed are compounds of the formula (I), in which Z, X and n are as defined in claim 1. Such compounds can be used as antidotes against the phytotoxicity of many herbicides used on crops, without diminishing the effect of the herbicide against weeds.

(57) Zusammenfassung

Verbindungen der Formel (I), worin Z, X und n wie in Anspruch 1 definiert sind, sind als Antidote gegen die Phytotoxizität von vielen Herbiziden bei Kulturpflanzen einsetzbar, ohne daß die herbizide Wirksamkeit gegen Schadpflanzen beeinträchtigt wird.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	ES	Spanien	MG	Madagaskar
AU	Australien	FI	Finnland	ML	Mali
BB	Barbados	FR	Frankreich	MN	Mongolci
BE	Belgien	GA	Gabon	MR	Mauritanien
BF	Burkina Faso	GB	Vereinigtes Königreich	MW	Malawi
BG	Bulgarien	GN	Guinea	NL	Niederlande
BJ	Benin	GR	Griechenland	NO	Norwegen
BR	Brasilien	HU	Ungarn	PL	Polen
CA	Kanada	IT	Italien	RO	Rumänien
CF	Zentrale Afrikanische Republik	JP	Japan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SN	Senegal
CI	Côte d'Ivoire	LI	Liechtenstein	SU	Soviet Union
CM	Kamerun	LK	Sri Lanka	TD	Tschad
DE	Deutschland	LU	Luxemburg	TG	Togo
DK	Dänemark	MC	Monaco	US	Vereinigte Staaten von Amerika

Beschreibung**Isoxazoline, Verfahren zu ihrer Herstellung und ihre Verwendung als pflanzenschützende Mittel**

Die Erfindung betrifft Safener oder Antidote, die in Kombination mit Herbiziden die Phytotoxizität der Herbizide bei Kulturpflanzen herabsetzen können.

- 5 Gegenstand der Erfindung sind pflanzenschützende Isoxazoline der allgemeinen Formel (I) oder deren Salze

worin

- 15 Z unabhängig voneinander Halogen, Nitro, Cyano oder Alkyl, Alkoxy, Alkylthio oder Cycloalkyl, wobei die letzten vier genannten Reste unsubstituiert oder ein- oder mehrfach durch Alkoxy, Hydroxy oder Halogen substituiert sind, oder ferner Amino, Mono- oder Dialkylamino, Phenyl oder Phenoxy, wobei Phenyl und Phenoxy unabhängig voneinander unsubstituiert oder ein- oder mehrfach durch Halogen oder Halogenalkyl substituiert sind, oder zwei benachbarte Substituenten Z zusammen für eine divalente Gruppe der Formel $-OCH_2O-$, $-S-CH_2-O-$ oder $-S-CH_2-S-$, die unsubstituiert oder durch 20 Alkyl substituiert ist, stehen,

n eine ganze Zahl von 0 bis 5,

- 30 X Hydroxy oder Alkoxy, Alkenyloxy, Alkinyloxy, Alkylthio oder Cycloalkoxy, wobei die fünf letztgenannten Reste

unsubstituiert oder ein- oder mehrfach durch Reste aus der Gruppe Alkoxy, Alkylthio, Mono- und Dialkylamino, Phenyl, substituiertes Phenyl, Cyano und Halogen substituiert sind, oder

5 ferner Phenoxy oder substituiertes Phenoxy, oder ferner Trialkylsilylmethoxy, einen Rest der Formel

worin jeweils R Wasserstoff oder Alkyl bedeutet, Z^1 unabhängig von Z die oben bei Z genannten Bedeutungen hat und n^1 eine ganze Zahl von 0 bis 5 ist, oder ferner Amino, Mono- oder Dialkylamino, Cycloalkylamino, Hydrazino, Alkyl- oder Dialkylhydrazino, Pyridino, Morpholino, Dimethylmorpholino, einen Rest der Formel

worin R^1 und R^2 unabhängig voneinander Alkylreste bedeuten oder R^1 und R^2 gemeinsam mit dem sie verknüpfenden C-Atom einen Cycloalkylrest bilden, oder ferner einen Rest der Formel

worin R^3 und R^4 unabhängig voneinander für Wasserstoff oder Alkyl stehen, bedeuten.

In der Formel (I) können Alkyl-, Alkoxy-, Haloalkyl-,
Alkylamino- und Alkylthioreste sowie die entsprechenden
ungesättigten und/oder substituierten Reste jeweils
geradkettig oder verzweigt sein. Alkylreste, auch in den
5 zusammengesetzten Bedeutungen wie Alkoxy, Haloalkyl usw.,
bedeuten Methyl, Ethyl, n- und i-Propyl, n-, i-, t- und
2-Butyl, die isomeren Pentyl-, Hexyl-, Heptyl-, Octyl-,
Nonyl-, Decyl-, Undecyl- und Dodecylreste sowie die
längerkettigen Fettalkylreste mit bis zu 24 C-Atomen;
10 bevorzugt sind C₁-C₁₂-Alkylreste. Alkenyl- und Alkinylreste
haben die Bedeutung der den Alkylresten entsprechenden
möglichen ungesättigten Reste, vorzugsweise (C₂-C₁₂)-Alkenyl-
und -Alkinylreste. Halogen bedeutet Fluor, Chlor, Brom oder
Jod, vorzugsweise Fluor, Chlor oder Brom, insbesondere Fluor
15 oder Chlor.

Im Falle X = OH können die Verbindungen der Formel (I) Salze
bilden. Erfindungsgemäß einsetzen lassen sich die in der
Landwirtschaft verwendbaren Salze. Als solche kommen
20 beispielsweise Metallsalze wie Alkali- oder Erdalkalisalze,
insbesondere Natrium- oder Kaliumsalze, Ammoniumsalze oder
substituierte Ammoniumsalze, die 1 bis 4-fach durch Alkyl-
und/oder Alkanolreste mit vorzugsweise bis zu 4 C-Atomen
substituiert sind, in Frage.

25 Ferner erfaßt Formel (I) auch alle Stereoisomeren und deren
Gemische, insbesondere auch reine Enantiomere und deren
Gemische (z.B. Racemate). Stereoisomere können vor allem
auftreten, wenn asymmetrische C-Atome oder geeignet
30 substituierte Doppelbindungen in der Formel (I) vorhanden
sind. Ein asymmetrisches C-Atom ist das an dem Sauerstoffatom
im Isoxazolinring gebundene C-Atom.

Von besonderem Interesse sind erfindungsgemäß
35 pflanzenschützende Verbindungen der Formel (I), in der
Z unabhängig voneinander Halogen, Nitro, Cyano, (C₁-C₄)-
Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, wobei die Alkyl-,
Alkoxy- und Alkylthiogruppen unsubstituiert oder ein-

oder mehrfach durch Halogenatome, insbesondere Fluor oder Chlor substituiert sind, (C_3-C_6)Cycloalkyl, das unsubstituiert oder durch (C_1-C_4)Alkyl substituiert ist, Amino, (C_1-C_4)Alkylamino, Di-(C_1-C_4)alkylamino,
 5 Hydroxymethyl, (C_1-C_4)Alkoxy-methyl, Phenyl oder Phenoxy, wobei Phenyl und Phenoxy unsubstituiert oder ein- oder mehrfach durch Halogen oder einfach durch Trifluormethyl oder durch ein oder mehrere Halogenatome und ein
 10 Trifluormethyl substituiert ist, oder zwei benachbarte Substituenten Z für die divalente Gruppe -O-CH₂-O-, -S-CH₂-O- oder -S-CH₂-S- stehen und
 n 0, 1, 2 oder 3
 bedeuten.

15 Von besonderem Interesse sind erfindungsgemäße Mittel mit Verbindungen der Formel (I), in der

X Hydroxy, -OCH₂Si(CH₃)₃, (C_3-C_6)Cycloalkoxy,
 20 Phenyl(C_1-C_6)alkoxy, Phenoxy, (C_2-C_6)Alkenyloxy, (C_2-C_6)Alkinyloxy, (C_1-C_6)Alkoxy, (C_1-C_6)Alkylthio, wobei die Alkoxy oder Alkylthiogruppe unsubstituiert oder ein- oder zweifach durch (C_1-C_2)Alkoxy, Mono- oder Di-(C_1-C_6)Alkylamino, (C_1-C_2)Alkylthio, Cyano oder ein- oder mehrfach durch Halogen substituiert ist,
 25 einen Rest der Formel

worin jeweils R Wasserstoff oder (C_1-C_4)Alkyl bedeutet,
 Z¹ die bei Z oben genannte Bedeutung hat und n¹ 0, 1, 2 oder 3 ist, oder
 35 ferner Amino, Mono- oder Di-(C_1-C_4)alkylamino, (C_5-C_6)-Cycloalkylamino, Hydrazino, Piperidino, Morpholino oder 2,6-Dimethylmorpholino, einen Rest der Formel

5 worin

R^1 und R^2 unabhängig voneinander ($\text{C}_1\text{-}\text{C}_4$)-Alkyl bedeuten oder R^1 und R^2 gemeinsam mit dem sie verknüpfenden C-Atom einen 5-, 6- oder 7-gliedrigen Cycloalkylrest bilden,

10 oder einen Rest der Formel

15 worin R^3 und R^4 unabhängig voneinander für Wasserstoff oder ($\text{C}_1\text{-}\text{C}_4$)-Alkyl stehen,
bedeutet.

20 Bevorzugt sind erfindungsgemäße Verbindungen der Formel (I)
oder deren Salzen,

worin

Z unabhängig voneinander Halogen, insbesondere Fluor oder Chlor, Nitro, ($\text{C}_1\text{-}\text{C}_4$)-Alkyl, ($\text{C}_1\text{-}\text{C}_4$)-Alkoxy oder Trifluormethyl und

25 n 0, 1 oder 2 bedeuten,
sowie solche Verbindungen der Formel (I), in denen

X Hydroxy, ($\text{C}_1\text{-}\text{C}_4$)-Alkoxy oder einen Rest der Formel

30 worin R^3 für Wasserstoff oder CH_3 und R^4 für Wasserstoff oder ($\text{C}_1\text{-}\text{C}_4$)-Alkyl stehen,
bedeutet.

Besonders bevorzugt sind erfundungsgemäße Verbindungen der Formel (I), in der Z, n und X jeweils für bevorzugt genannte Bedeutungen stehen.

- 5 Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Herstellung der Verbindungen der Formel (I) und deren Salze, dadurch gekennzeichnet, daß man eine Verbindung der Formel (II)

10

worin $(Z)_n$ die in Formel (I) angegebenen Bedeutungen hat, mit einem Nitriloxid der Formel (III)

15

worin X die in Formel (I) angegebene Bedeutung hat, umgesetzt.

20

Als Lösungsmittel eignen sich unpolare organische Lösungsmittel, z.B. Ether wie Diethylether oder THF.

25

Die Ausgangsverbindungen der Formel (II) und (III) sind literaturbekannt (vgl. J. Org. Chem. 25, 1160 (1960); J. Med. Chem. 17 (1974), 549-552; J. Chem. Soc. Chem.

Commun. 1984, 968-969; und dort genannte Zitate) oder lassen sich analog bekannten Verbindungen herstellen.

30

Die Nitriloxide der Formel (III) werden dabei in der Regel *in situ* aus 2-Halogeno-2-hydroximinoessigsäure(derivaten) unter Einwirkung von Basen hergestellt und direkt mit schon in der Reaktionsmischung enthaltender Verbindung der Formel (II) umgesetzt. Die Umsetzung wird vorzugsweise bei einer Temperatur von -15°C bis zur Siedetemperatur des Lösungsmittels insbesondere bei Raumtemperatur durchgeführt.

35

Die Verbindungen der Formel (I) enthalten ein Asymmetriezentrum am C-Atom, das im Isoxazolinring an dem Sauerstoffatom gebunden ist. Entsprechende enantiomere Formen können nach üblichen Methoden, beispielsweise durch Racemattrennung, erfolgen. Eine Racemattrennung ist in der Regel über

diastereomere Salze der Verbindungen der Formel I, in der X = OH bedeutet, mit optisch aktiven Basen möglich.

Die Verbindungen der Formel (I) reduzieren oder unterbinden unerwünschte phytotoxische Nebenwirkungen, die beim Einsatz von Herbiziden in Nutzpflanzenkulturen auftreten können.

Die Verbindungen der Formel (I) und die herbiziden Wirkstoffe können zusammen oder in beliebiger Reihenfolge nacheinander ausgebracht werden. Die Verbindungen der Formel (I) sind dann in der Lage, schädliche Nebenwirkungen der Herbizide bei Kulturpflanzen zu vermindern oder völlig aufzuheben, ohne die Wirksamkeit dieser Herbizide gegen Schadpflanzen zu beeinträchtigen.

Hierdurch kann das Einsatzgebiet herkömmlicher Pflanzenschutzmittel ganz erheblich erweitert werden. Solche Verbindungen, die die Eigenschaft besitzen, Kulturpflanzen gegen phytotoxische Schäden durch Herbizide zu schützen, werden "Antidote" oder "Safener" genannt.

Herbizide, deren phytotoxische Nebenwirkungen mittels der Verbindungen der Formel (I) herabgesetzt werden können, sind z.B. Carbamate, Thiocarbamate, Halogenacetanilide, substituierte Phenoxy-, Naphthoxy-, Phenoxyphenoxy-, Benzyloxyphenoxy- und Heteroaryloxyphenoxy-carbonsäurederivate sowie Cyclohexandionederivate. Heteroaryloxy-phenoxykarbonsäurederivate sind z.B. Chinolyloxy-, Chinoxalyloxy-, Pyridyloxy-, Benzoxazolyloxy-, Benzthiazolyloxy-phenoxy-carbonsäureester. Bevorzugt sind Phenoxyphenoxy- und Heteroaryloxyphenoxykarbonsäureester. Als Ester kommen hierbei insbesondere niedere Alkyl-, Alkenyl- und Alkinylester in Frage.

Beispielsweise seien, folgende Herbizide genannt, ohne daß dadurch eine Beschränkung erfolgen soll:

A) Herbizide vom Typ der Phenoxyphenoxy-, Benzylphenoxy- und Heteroaryloxy-phenoxykarbonsäure- (C_1-C_4)alkyl-, - (C_2-C_4)alkenyl- und - (C_3-C_4)alkinylester, wie
2-(4-(2,4-Dichlorphenoxy)-phenoxy)-propionsäuremethylester,
5 2-(4-(4-Brom-2-chlorphenoxy)-phenoxy)-propionsäuremethylester,
2-(4-(4-Trifluormethylphenoxy)-phenoxy)-propionsäuremethylester,
2-(4-(2-Chlor-4-trifluormethylphenoxy)-phenoxy)-
propionsäuremethylester, 2-(4-(2,4-Dichlorbenzyl)-phenoxy)-
propionsäuremethylester,
10 4-(4-(4-Trifluormethylphenoxy)-phenoxy)-pent-2-en-
säureethylester, 2-(4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy)-
propionsäureethylester, 2-(4-(3,5-Dichlorpyridyl-2-oxy)-
phenoxy)-propionsäurepropargylester,
2-(4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy)-
15 propionsäureethylester, 2-(4-(3-Chlor-5-trifluormethyl-2-
pyridyloxy)-phenoxy)-propionsäuremethylester,
2-(4-(5-Trifluormethyl-2-pyridyloxy)-phenoxy)-
propionsäurebutylester, 2-(4-(3-Fluor-5-chlorpyridyl-2-oxy)-
phenoxy)-propionsäuremethylester, 2-(4-(3-Fluor-5-
20 chlorpyridyl-2-oxy)-phenoxy)-propionsäurepropargylester,
2-(4-(6-Chlor-2-chinoxalyloxy)phenoxy)-propionsäuremethylester,
2-(4-(6-Fluor-2-chinoxalyloxy)phenoxy)-propionsäuremethylester,
2-(4-(6-Chlor-2-chinolyloxy)-phenoxy)-propionsäuremethylester,
2-(4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy)-thiopropionsäure-
25 5-methoxycarbonylmethylester,

B) Chloracetanilid-Herbizide wie
N-Methoxymethyl-2,6-diethyl-chloracetanilid,
N-(3'-Methoxyprop-2'-yl)-methyl-6-ethyl-chloracetanilid,
30 N-(3-Methyl-1,2,4-oxadiazol-5-yl-methyl)-chloressigsäure-2,6-
dimethylanilid,

C) Thiocarbamate wie
S-Ethyl-N,N-dipropylthiocarbamat oder S-Ethyl-N,N-
35 diisobutylthiocarbamat,

D) Cyclohexandion-Derivate wie
Methyl-3-(1-allyloxyimino)butyl-4-hydroxy-6,6-dimethyl-
2-oxocyclohex-3-encarboxylat
2-(N-Ethoxybutyrimidoyl)-5-(2-ethylthiopropyl)-3-hydroxy-
5 2-cyclohexen-1-on,
2-(N-Ethoxybutyrimidoyl)-5-(2-phenylthiopropyl)-3-hydroxy-
2-cyclohexen-1-on,
2-(1-Allyloxyiminobutyl)-4-methoxycarbonyl-5,5-dimethyl-3-
oxocyclohexenol,
10 2-(1-(3-Chlorallyloxy)-iminobutyl)-5-(2-ethylthio)propyl)-
3-hydroxy-cyclohex-2-enon
2-(1-(Ethoxyimino)-butyl)-3-hydroxy-5-(thian-3-yl)-
cyclohex-2-enon oder
2-(1-Ethoxyiminopropyl)-5-(2,4,6-trimethylphenyl)-3-
15 hydroxy-2-cyclohexen-1-on.

Das Mengenverhältnis Safener:Herbizid kann innerhalb weiter Grenzen, vorzugsweise im Bereich zwischen 1:10 und 10:1, insbesondere zwischen 2:1 und 1:10, liegen. Die jeweils 20 optimalen Mengen an Herbizid und Safener sind abhängig vom Typ des verwendeten Herbizids oder vom verwendeten Safener sowie von der Art des zu behandelnden Pflanzenbestandes und lassen sich von Fall zu Fall durch entsprechende Versuche ermitteln.

25 Haupteinsatzgebiete für die Anwendung der Safener sind vor allem Getreidekulturen (Weizen, Roggen, Gerste, Hafer), Reis, Mais, Sorghum, aber auch Baumwolle, Zuckerrübe, Zuckerrohr und Sojabohne.

30 Die Safener der Formel (I) können je nach ihren Eigenschaften zur Vorbehandlung des Saatgutes der Kulturpflanze (Beizung der Samen) verwendet werden oder vor der Saat in die Saatfurchen eingebracht werden oder zusammen mit dem 35 Herbizid vor oder nach dem Auflaufen der Pflanzen angewendet werden. Vorauflaufbehandlung schließt sowohl die Behandlung

der Anbaufläche vor der Aussaat als auch die Behandlung der angesäten, aber noch nicht bewachsenen Anbauflächen ein. Bevorzugt ist die gemeinsame Anwendung mit dem Herbizid. Hierzu können Tankmischungen oder Fertigformulierungen 5 eingesetzt werden.

Die benötigten Aufwandmengen der Verbindungen der Formel (I) können je nach Indikation und verwendetem Herbizid innerhalb weiter Grenzen schwanken und variieren im allgemeinen 10 zwischen 0,01 und 10 kg Wirkstoff je Hektar.

Gegenstand der vorliegenden Erfindung ist deshalb auch ein Verfahren zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, das dadurch gekennzeichnet 15 ist, daß eine wirksame Menge einer Verbindung der Formel (I) vor, nach oder gleichzeitig mit dem Herbizid auf die Pflanzen Pflanzensamen oder die Anbaufläche appliziert wird.

Darüber hinaus weisen die erfindungsgemäßen Verbindungen 20 wachstumsregulatorische Eigenschaften bei Kulturpflanzen auf. Sie greifen regulierend in den pflanzeneigenen Stoffwechsel ein und können damit zur Ernteerleichterung wie z.B. durch Auslösen von Desikkation, Abszission und Wuchsstauchung eingesetzt werden. Des Weiteren eignen sie 25 sich auch zur generellen Steuerung und Hemmung von unerwünschtem vegetativen Wachstum, ohne dabei die Pflanzen abzutöten. Eine Hemmung des vegetativen Wachstums spielt bei vielen mono- und dikotylen Kulturen eine große Rolle, da das Lagern hierdurch verringert oder völlig verhindert 30 werden kann.

Die Verbindungen der Formel (I) oder deren Kombination mit einem oder mehreren der genannten Herbizide bzw. 35 Herbizidgruppen können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch- physikalischen Parameter vorgegeben sind. Als

Formulierungsmöglichkeiten kommen beispielsweise in Frage:
Spritzpulver (WP), emulgierbare Konzentrate (EC),
wasserlösliche Pulver (SP), wasserlösliche Konzentrate (SL),
Emulsionen (EW), versprühbare Lösungen, Kapselsuspensionen (CS)
5 Dispersionen auf Öl- oder Wasserbasis, Suspoemulsionen,
Suspensionskonzentrate (SC), Stäubemittel (DP), ölmischbare
Lösungen (OL), Beizmittel, Granulate (GR) in Form von
Mikro-, Sprüh-, Aufzugs- und Adsorptions-Granulaten,
Granulate zur Boden- bzw. Streuapplikation, wasserlösliche
10 Granulate (SG), wasserdispersierbare Granulate (WG),
ULV-Formulierungen, Mikrokapseln und Wachse.

Diese einzelnen Formulierungstypen sind im Prinzip bekannt
und werden beispielsweise beschrieben in: Winnacker-Küchler,
15 "Chemische Technologie", Band 7, C. Hauser Verlag München,
4. Aufl. 1986; van Valkenburg, "Pesticides Formulations",
Marcel Dekker N.Y., 2nd Ed. 1972-73; K. Martens, "Spray
Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.

20 Die notwendigen Formulierungshilfsmittel wie
Inertmaterialien, Tenside, Lösungsmittel und weitere
Zusatzstoffe sind ebenfalls bekannt und werden
beispielsweise beschrieben in: Watkins, "Handbook of
Insecticide Dust Diluents and Carriers", 2nd Ed., Darland
25 Books, Caldwell N.J.; H.v.Olphen, "Introduction to Clay
Colloid Chemistry"; 2nd Ed., J. Wiley & Sons, N.Y.,
Marsden, "Solvents Guide", 2nd Ed., Interscience, N.Y.
1950; McCutcheon's, "Detergents and Emulsifiers Annual",
MC Publ. Corp., Ridgewood N.J.; Sisley and Wood,
30 "Encyclopedia of Surface Active Agents", Chem. Publ. Co.
Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive
Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976;
Winnacker-Küchler, "Chemische Technologie", Band 7,
C. Hauser Verlag München, 4. Aufl. 1986.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix.

5

Gegenstand der Erfindung sind deshalb auch die Mittel, welche die erfindungsgemäßen Verbindungen der Formel (I) enthalten. Vor allem sind diese einerseits pflanzenschützende Mittel die einen oder mehrere Verbindungen der Formel (I) und dem jeweiligen Formulierungstyp entsprechende übliche inerte Hilfsmittel enthalten, und andererseits herbizide Mittel, die eine Kombination von Verbindungen der Formel (I) und ein oder mehrere Herbizide und dem jeweiligen Formulierungstyp entsprechende übliche Hilfsmittel enthalten.

15

Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Netzmittel, z.B. polyoxethylierte Alkylphenole, polyoxethylierte Fettalkohole und Fettamine, Fettalkoholpolyglykolethersulfate, Alkansulfonate oder Alkylphenolsulfonate und Dispergiermittel, z.B. ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutynaphthalin-sulfonsaures Natrium oder auch 25 oleylmethyltaurinsaures Natrium enthalten.

Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel, z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calcium-Salze wie Ca-Dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, 30 Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-

Kondensationsprodukte, Alkylpolyether, Sorbitanfettsäureester, Polyoxyethylensorbitanfettsäureester oder Polyoxethylensorbitester.

5 Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit, Pyrophillit, oder Diatomeenerde.

10 Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, 15 Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.

20 Die agrochemischen Zubereitungen enthalten in der Regel 0,1 bis 99 Gewichtsprozent, insbesondere 0,1 bis 95 Gew.-%, Wirkstoff der Formel (I), oder Wirkstoffgemisch Antidot/Herbizid, 1 bis 99,9 Gew.-%, insbesondere 5 bis 99,8 Gew.-%, eines festen oder flüssigen Zusatzstoffes und 0 bis 25 Gew.-%, insbesondere 0,1 bis 25 Gew.-%, eines Tensides.

In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren 30 Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 80 Gew.-%, vorzugsweise 5 bis 80 Gew.-% betragen. Staufförmige Formulierungen enthalten meistens 1 bis 25 Gew.-%, vorzugsweise 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen etwa 0,2 bis 25 Gew.-%, vorzugsweise 2 bis 20 Gew.-% Wirkstoff. Bei Granulaten wie wasserdispergierbaren 35 Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt. In der Regel liegt der Gehalt bei den in Wasser dispergierbaren Granulaten zwischen 10 und 90 Gew.-%.

Daneben enthalten die genannten Wirkstoffformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll- oder Trägerstoffe.

5

Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen gegebenenfalls in üblicher Weise verdünnt, z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw. Streugranulate, sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.

10

Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Herbizids u.a. variiert die erforderliche Aufwandmenge der Verbindungen der Formel (I). Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,005 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,01 und 5 kg/ha.

20

Folgende Beispiele dienen zur Erläuterung der Erfindung:

A. Formulierungsbeispiele

25

a) Ein Stäubmittel wird erhalten, indem man 10 Gew.-Teile einer Verbindung der Formel (I) und 90 Gew.-Teile Talkum oder Inertstoff mischt und in einer Schlagmühle zerkleinert.

30

b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der Formel (I), 64 Gewichtsteile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.

35

- c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gewichtsteile einer Verbindung der Formel (I) mit 6 Gew.-Teilen Alkylphenolpolyglykolether (@Triton X 207), 3 Gew.-Teilen Isotridecanolpolyglykolether (8 EO) und 71 Gew.-Teilen paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 277°C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
- 5
- 10 d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gew.-Teilen einer Verbindung der Formel (I), 75 Gew.-Teilen Cyclohexanon als Lösemittel und 10 Gew.-Teilen oxethyliertes Nonylphenol als Emulgator.
- 15 e) Ein in Wasser dispergierbares Granulat wird erhalten indem man
- 75 Gewichtsteile einer Verbindung der Formel I,
- 10 " ligninsulfonsaures Calcium,
- 20 5 " Natriumlaurylsulfat,
- 3 " Polyvinylalkohol und
- 7 " Kaolin
- mischt, auf einer Stiftmühle mahlt und das Pulver in
- 25 einem Wirbelbett durch Aufsprühen von Wasser als
- Granulierflüssigkeit granuliert.
- f) Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man
- 30

25 Gewichtsteile einer Verbindung der Formel (I),
5 " 2,2'-Dinaphthylmethan-6,6'-disulfonsaures
Natrium,
2 " oleoylmethyltaurinsaures Natrium,
5 1 Gewichtsteil Polyvinylalkohol,
17 Gewichtsteile Calciumcarbonat und
50 " Wasser

10 auf einer Kolloidmühle homogenisiert und vorzerkleinert,
anschließend auf einer Perlühle mahlt und die so
erhaltene Suspension in einem Sprühturm mittels einer
Einstoffdüse zerstäubt und trocknet.

B) Chemische Beispiele

15 5-(2,4-Dichlorbenzyl)-2-isoxazolin-3-carbonsäureethylester
(Beispiel Nr. 93)

20 Zu 10,7 g 2,4-Dichlor-1-allylbenzol in 270 ml Ether läßt man
18,8 ml Triethylamin tropfen. Anschließend läßt man langsam
innerhalb von 5 Stunden eine Lösung aus 20,55 g 2-Chlor-2-
hydroximino-essigsäureethylester in 270 ml Ether zutropfen.
Danach wird 24 Stunden lang gerührt, mit Wasser extrahiert,
die Etherphase getrocknet und Ether abdestilliert. So werden
25 35,5 g (98 % der Theorie) des oben bezeichneten Produkts
mit einem Brechungsindex von $n_D^{25} = 1,534$ erhalten.

2-Chlor-2-hydroximino-essigsäureethylester
(Ausgangsmaterial für Beispiel Nr. 93)

30 69,8 g Glycinethylesterhydrochlorid werden in 120 ml Wasser
und 41 ml konzentrierter Salzsäure vorgelegt. Bei -10°C
werden dann innerhalb 1 Stunde 38 g NaNO₂ in 60 ml Wasser
zugetropft. Nach einer halben Stunde gibt man weitere 42,5 ml
35 konzentrierte Salzsäure zu und dann innerhalb 1 Stunde
weitere 38 g NaNO₂ in 60 ml Wasser. Es wird 1 Stunde bei
-10°C nachgerührt. Daraufhin wird mit Ether extrahiert

und die Etherphase mehrmals mit Wasser gewaschen. Der Ether wird abdestilliert und die Kristalle getrocknet. So werden 38 g (50 % der Theorie) 2-Chlor-2-hydroximino-essigsäureethylester mit einem Schmelzpunkt von 81 - 82°C erhalten.

5

In der folgenden Tabelle I ist das obengenannte Beispiel zusammen mit weiteren Beispielen aufgeführt, die in analoger Weise hergestellt werden können.

10

Die analogen Isoxazolincarbonsäuren können aus den entsprechenden Estern bzw. die Isoxazolinester wahlweise aus den entsprechenden Carbonsäuren nach im Prinzip bekannten Methoden hergestellt werden.

15

20

25

30

35

Tabelle I

Nr.	(Z) _n	X	Schmp. (n ²⁰ _D)
1	n = O	-O-C ₂ H ₅	Öl
2	"	-OCH ₃	75 - 77°C
3	"	-OH	128°C
4	"	-OC ₃ H ₇	(1,5199)
5	"	-OCH(CH ₃) ₂	
6	"	-OC ₄ H ₉	
7	"	-OCH ₂ CH(CH ₃) ₂	
8	"	-OCH ₂ CO ₂ CH ₃	
9	"	-OCH ₂ CO ₂ C ₂ H ₅	
10	"	-OCH(CH ₃)CO ₂ C ₂ H ₅	(1,5091)
11	"	-NH-NH ₂	
12	"	-OCH ₂ -C ₆ H ₅	
13	"	-N(CH ₃) ₂	
14	"	-NH ₂	
15	"	-OCH(CH ₃)CO ₂ CH ₃	
16	"	-NHC ₆ H ₅	
17	"	-OCH ₂ CH=CH ₂	
18	"	-OCH ₂ C≡CH	
19	"	-O ⁻ K ⁺	
20	"	-O ⁻ Na ⁺	
21	"	-O ⁻ NH ₄	
22	"	-OCH ₂ Si(CH ₃) ₃	
23	"	-OC ₆ H ₅	

Fortsetzung Tabelle I

Nr.	$(Z)_n$	X	Schmp. (n_D^{20})
24	4-F	-O-C ₂ H ₅	Öl
25	"	-OCH ₃	
26	"	-OH	138 - 140°C
27	"	-OC ₃ H ₇	
28	"	-OCH(CH ₃) ₂	
29	"	-OC ₄ H ₉	
30	"	-OCH ₂ CH(CH ₃) ₂	
31	"	-OCH ₂ CO ₂ CH ₃	
32	"	-OCH ₂ CO ₂ C ₂ H ₅	
33	"	-OCH(CH ₃)CO ₂ C ₂ H ₅	
34	"	-NH-NH ₂	Öl
35	"	-OCH ₂ -C ₆ H ₅	
36	"	-N(CH ₃) ₂	
37	"	-NH ₂	
38	"	-OCH(CH ₃)CO ₂ CH ₃	
39	"	-NHC ₆ H ₅	
40	"	-OCH ₂ CH=CH ₂	
41	"	-OCH ₂ C≡CH	
42	"	-O ⁻ K ⁺	
43	"	-O ⁻ Na ⁺	
44	"	-O ⁻ NH ₄	
45	"	-OCH ₂ Si(CH ₃) ₃	
46	"	-OC ₆ H ₅	

Fortsetzung Tabelle I

Nr.	$(Z)_n$	X	Schmp. (n_D^{20})
47	4-Cl	-O-C ₂ H ₅	Öl
48	"	-OCH ₃	92 °C
49	"	-OH	140 °C
50	"	-OC ₃ H ₇	(1,5075)
51	"	-OCH(CH ₃) ₂	
52	"	-OC ₄ H ₉	
53	"	-OCH ₂ CH(CH ₃) ₂	
54	"	-OCH ₂ CO ₂ CH ₃	
55	"	-OCH ₂ CO ₂ C ₂ H ₅	
56	"	-OCH(CH ₃)CO ₂ C ₂ H ₅	(1,514)
57	"	-NH-NH ₂	
58	"	-OCH ₂ -C ₆ H ₅	
59	"	-N(CH ₃) ₂	
60	"	-NH ₂	
61	"	-OCH(CH ₃)CO ₂ CH ₃	
62	"	-NHC ₆ H ₅	
63	"	-OCH ₂ CH=CH ₂	
64	"	-OCH ₂ C≡CH	
65	"	-O ⁻ K ⁺	
66	"	-O ⁻ Na ⁺	
67	"	-O ⁻ NH ₄	
68	"	-OCH ₂ Si(CH ₃) ₃	
69	"	-OC ₆ H ₅	

Fortsetzung Tabelle I

Nr.	$(Z)_n$	X	Schmp. (n_D^{20})
70	2-Cl	-O-C ₂ H ₅	(1,526)
71	"	-OCH ₃	(1,547)
72	"	-OH	80°C
73	"	-OC ₃ H ₇	(1,533)
74	"	-OCH(CH ₃) ₂	
75	"	-OC ₄ H ₉	(1,523)
76	"	-OCH ₂ CH(CH ₃) ₂	
77	"	-OCH ₂ CO ₂ CH ₃	
78	"	-OCH ₂ CO ₂ C ₂ H ₅	
79	"	-OCH(CH ₃)CO ₂ C ₂ H ₅	
80	"	-NH-NH ₂	
81	"	-OCH ₂ -C ₆ H ₅	
82	"	-N(CH ₃) ₂	
83	"	-NH ₂	
84	"	-OCH(CH ₃)CO ₂ CH ₃	
85	"	-NHC ₆ H ₅	
86	"	-OCH ₂ CH=CH ₂	
87	"	-OCH ₂ C≡CH	
88	"	-O ⁻ K ⁺	
89	"	-O ⁻ Na ⁺	
90	"	-O ⁻ NH ₄	
91	"	-OCH ₂ Si(CH ₃) ₃	
92	"	-OC ₆ H ₅	

Fortsetzung Tabelle I

Nr.	$(Z)_n$	X	Schmp. (n_D^{20})
93	2,4-Cl ₂	-O-C ₂ H ₅	(1,534)
94	"	-OCH ₃	(1,544)
95	"	-OH	40°C
96	"	-OC ₃ H ₇	
97	"	-OCH(CH ₃) ₂	
98	"	-OC ₄ H ₉	
99	"	-OCH ₂ CH(CH ₃) ₂	
100	"	-OCH ₂ CO ₂ CH ₃	
101	"	-OCH ₂ CO ₂ C ₂ H ₅	
102	"	-OCH(CH ₃)CO ₂ C ₂ H ₅	
103	"	-NH-NH ₂	Öl
104	"	-OCH ₂ -C ₆ H ₅	
105	"	-N(CH ₃) ₂	
106	"	-NH ₂	
107	"	-OCH(CH ₃)CO ₂ CH ₃	
108	"	-NHC ₆ H ₅	
109	"	-OCH ₂ CH=CH ₂	
110	"	-OCH ₂ C≡CH	
111	"	-O ⁻ K ⁺	
112	"	-O ⁻ Na ⁺	
113	"	-O ⁻ NH ₄	
114	"	-OCH ₂ Si(CH ₃) ₃	
115	"	-OC ₆ H ₅	

Fortsetzung Tabelle I

Nr.	$(Z)_n$	X	Schmp. (n_D^{20})
116	2-OCH ₃	-O-C ₂ H ₅	Öl
117	"	-OCH ₃	
118	"	-OH	
119	"	-OC ₃ H ₇	
120	"	-OCH(CH ₃) ₂	
121	"	-OC ₄ H ₉	
122	"	-OCH ₂ CH(CH ₃) ₂	
123	"	-OCH ₂ CO ₂ CH ₃	
124	"	-OCH ₂ CO ₂ C ₂ H ₅	
125	"	-OCH(CH ₃)CO ₂ C ₂ H ₅	
126	"	-NH-NH ₂	
127	"	-OCH ₂ -C ₆ H ₅	
128	"	-N(CH ₃) ₂	
129	"	-NH ₂	
130	"	-OCH(CH ₃)CO ₂ CH ₃	
131	"	-NHC ₆ H ₅	
132	"	-OCH ₂ CH=CH ₂	
133	"	-OCH ₂ C≡CH	
134	"	-O ⁻ K ⁺	
135	"	-O ⁻ Na ⁺	
136	"	-O ⁻ NH ₄	
137	"	-OCH ₂ Si(CH ₃) ₃	
138	"	-OC ₆ H ₅	

Fortsetzung Tabelle I

Nr.	$(Z)_n$	X	Schmp. (n_D^{20})
139	2-CH ₃ , 4-Cl	-O-C ₂ H ₅	
140	"	-OCH ₃	
141	"	-OH	
142	"	-OC ₃ H ₇	
143	"	-OCH(CH ₃) ₂	
144	"	-OC ₄ H ₉	
145	"	-OCH ₂ CH(CH ₃) ₂	
146	"	-OCH ₂ CO ₂ CH ₃	
147	"	-OCH ₂ CO ₂ C ₂ H ₅	
148	"	-OCH(CH ₃)CO ₂ C ₂ H ₅	
149	"	-NH-NH ₂	
150	"	-OCH ₂ -C ₆ H ₅	
151	"	-N(CH ₃) ₂	
152	"	-NH ₂	
153	"	-OCH(CH ₃)CO ₂ CH ₃	
154	"	-NHC ₆ H ₅	
155	"	-OCH ₂ CH=CH ₂	
156	"	-OCH ₂ C≡CH	
157	"	-O ⁻ K ⁺	
158	"	-O ⁻ Na ⁺	
159	"	-O ⁻ NH ₄ ⁺	
160	"	-OCH ₂ Si(CH ₃) ₃	
161	"	-OC ₆ H ₅	

Fortsetzung Tabelle I

Nr.	$(Z)_n$	X	Schmp. (n_{D}^{20})
162	2,3,4,5,6-F ₅	-O-C ₂ H ₅	89°C
163	"	-OCH ₃	121°C
164	"	-OH	
165	"	-OC ₃ H ₇	
166	"	-OCH(CH ₃) ₂	
167	"	-OC ₄ H ₉	
168	"	-OCH ₂ CH(CH ₃) ₂	
169	"	-OCH ₂ CO ₂ CH ₃	
170	"	-OCH ₂ CO ₂ C ₂ H ₅	
171	"	-OCH(CH ₃)CO ₂ C ₂ H ₅	
172	"	-NH-NH ₂	
173	"	-OCH ₂ -C ₆ H ₅	
174	"	-N(CH ₃) ₂	
175	"	-NH ₂	
176	"	-OCH(CH ₃)CO ₂ CH ₃	
177	"	-NHC ₆ H ₅	
178	"	-OCH ₂ CH=CH ₂	
179	"	-OCH ₂ C≡CH	
180	"	-O ⁻ K ⁺	
181	"	-O ⁻ Na ⁺	
182	"	-O ⁻ NH ₄ ⁺	
183	"	-OCH ₂ Si(CH ₃) ₃	
184	"	-OC ₆ H ₅	

Fortsetzung Tabelle I

Nr.	$(Z)_n$	X	Schmp. (n_{D}^{20})
185	3,4-O-CH ₂ -O-	-O-C ₂ H ₅	(1,541)
186	"	-OCH ₃	102 °C
187	"	-OH	147-149 °C
188	"	-OC ₃ H ₇	(1,516)
189	"	-OCH(CH ₃) ₂	
190	"	-OC ₄ H ₉	(1,528)
191	"	-OCH ₂ CH(CH ₃) ₂	
192	"	-OCH ₂ CO ₂ CH ₃	
193	"	-OCH ₂ CO ₂ C ₂ H ₅	
194	"	-OCH(CH ₃)CO ₂ C ₂ H ₅	
195	"	-NH-NH ₂	
196	"	-OCH ₂ -C ₆ H ₅	
197	"	-N(CH ₃) ₂	
198	"	-NH ₂	
199	"	-OCH(CH ₃)CO ₂ CH ₃	
200	"	-NHC ₆ H ₅	
201	"	-OCH ₂ CH=CH ₂	
202	"	-OCH ₂ C≡CH	
203	"	-O ⁻ K ⁺	
204	"	-O ⁻ Na ⁺	
205	"	-O ⁻ NH ₄	
206	"	-OCH ₂ Si(CH ₃) ₃	
207	"	-OC ₆ H ₅	
208	4-CF ₃	-OCH ₃	
209	2-CF ₃	-OCH ₃	
210	4-CF ₃	-OC ₂ H ₅	
211	2-CF ₃	-OC ₂ H ₅	
213	4-CF ₃	-OCH ₂ CO-OCH ₃	
214	2-CF ₃	-OCH(CH ₃)COOC ₂ H ₅	

Fortsetzung Tabelle I

Nr.	(Z) _n	X	Schmp. (n _D ²⁰)
215	2-OCHF ₂	-OCH ₃	
216	"	-OC ₂ H ₅	
217	"	-OCH ₂ CO ₂ CH ₃	
218	4-OCHF ₂	-OCH(CH ₃)CO ₂ C ₂ H ₅	
219	"	-OCH ₃	
220	"	-OC ₂ H ₅	
221	3-CF ₃	-OCH ₃	
222	3-F	-OCH ₃	
223	3-Cl	-OC ₂ H ₅	
224	3,5-Cl ₂	-OH	
225	3,5-F ₂	-OCH ₃	
226	2-OCF ₃	-OCH ₃	
227	"	-OC ₂ H ₅	
228	"	-OCH ₂ CO ₂ CH ₃	
229	4-OCF ₃	-OCH ₃	
230	"	-OC ₂ H ₅	
231	"	-OC ₄ H ₉	
232	3-OCF ₃	-OCH ₃	
233	2-SCH ₃	-OCH ₃	
234	3-SCH ₃	-OCH ₃	
235	4-SCH ₃	-OCH ₃	
236	2-SC ₂ H ₅	-OCH ₃	
237	3-SC ₂ H ₅	-OCH ₃	
238	4-SC ₂ H ₅	-OCH ₃	
239	2-CH ₂ CH ₂ OH	-OCH ₃	
240	4-CH ₂ CH ₂ OH	-OCH ₃	
241	2-CH ₂ CH ₂ OH	-OCH ₃	
242	2-OCH ₂ CH ₂ OH	-OCH ₃	
243	3-OCH ₂ CH ₂ OH	-OCH ₃	
244	4-OCH ₂ CH ₂ OH	-OCH ₃	
245	2-OCH ₂ CH ₂ OCH ₃	-OCH ₃	

Fortsetzung Tabelle I

Nr.	(Z) _n	X	Schmp. (n _D ²⁰)
246	4-OCH ₂ CH ₂ OCH ₃	-OCH ₃	
247	2-N(CH ₃) ₂	-OCH ₃	
248	3-N(C ₂ H ₅) ₂	-OCH ₃	
249	4-N(CH ₃) ₂	-OCH ₃	
250	4-NO ₂	-OCH ₃	
251	"	-OC ₂ H ₅	
252	2,4-(NO ₂) ₂	-OCH ₃	
253	2-NO ₂	-OCH ₃	
254	3-NO ₂	-OCH ₃	
255	2-CN	-OCH ₃	
256	3-CN	-OCH ₃	
257	4-CN	-OCH ₃	
258	2-CN, 4-Cl	-OCH ₃	
259	2-Cl, 4-CN	-OCH ₃	
260	2-CH ₃ , 4-CN	-OCH ₃	
261	4-Cyclo-C ₆ H ₁₁	-OCH ₃	
262	4-Cyclo-C ₅ H ₉	-OCH ₃	
263	4-C ₆ H ₅	-OCH ₃	
264	4-OC ₆ H ₅	-OCH ₃	
265	4-(2,4-C ₆ H ₃ Cl ₂)	-OCH ₃	
266	4-OC ₆ H ₃ Cl ₂ (2,4)	-OCH ₃	
267	4-(2-CF ₃ -C ₆ H ₄)	-OCH ₃	
268	4-(4-CF ₃ -C ₆ H ₄)	-OCH ₃	
269	4-(2-CF ₃ -C ₆ H ₄ -O-)	-OCH ₃	
270	4-(4-CF ₃ -C ₆ H ₄ -O-)	-OCH ₃	
271	4-CH ₃	-OC ₂ H ₅	(1,505)

C. Biologische Beispiele

Beispiel 1

Weizen und Gerste wurden im Gewächshaus in Plastiktöpfen bis zum 3-4-Battstadium herangezogen und dann mit erfindungsgemäßen Verbindungen und Herbiziden im Nachauflaufverfahren behandelt. Die Herbizide und die Verbindungen der Formel (I) wurden dabei in Form wässriger Suspensionen bzw. Emulsionen mit einer Wasseraufwandmenge von umgerechnet 800 l/ha ausgebracht. 3-4 Wochen nach der Behandlung wurden die Pflanzen visuell auf jede Art von Schädigung durch die ausgebrachten Herbizide bonitiert, wobei insbesondere das Ausmaß der anhaltenden Wachstumshemmung berücksichtigt wurde. Die Bewertung erfolgte in Prozentwerten im Vergleich zu unbehandelten Kontrollen.

Die Ergebnisse aus Tabelle II veranschaulichen, daß die erfindungsgemäßen Verbindungen starke Herbizidschäden an Kulturpflanzen effektiv reduzieren können.

Selbst bei starken Überdosierungen der Herbizide werden bei den Kulturpflanzen auftretende schwere Schädigungen deutlich reduziert und geringere Schäden völlig aufgehoben. Mischungen aus Herbiziden und erfindungsgemäßen Verbindungen eignen sich deshalb in ausgezeichneter Weise zur selektiven Unkrautbekämpfung in Getreidekulturen.

Tabelle II

Safenerwirkung der erfindungsgemäßen Verbindungen

Herbizid (H)

Safener Nr.	Dosis kg a.i./ha	Kulturpflanzenschädigung (%)	
		TRAЕ	HOVU
H	2,0	80	-
	0,2	-	85 - 90
H+1	2,0 + 1,25	20	-
H+1	0,2 + 1,25	-	30
H+3	2,0 + 1,25	25	-
H+3	0,2 + 1,25	-	35
H+2	0,2 + 1,25	-	40
H+4	"	-	40
H+10	"	-	40
H+24	"	-	50
H+47	"	-	40
H+49	"	-	50
H+26	"	-	40
H+70	"	-	18
H+71	"	-	20
H+72	"	-	20
H+73	"	-	28
H+75	"	-	20
H+94	"	-	10
H+95	"	-	50

Abkürzungen:

TRAЕ = Triticum aestivum (Weizen)

HOVU = Hordeum vulgare (Gerste)

a.i. = Aktivsubstanz (d.h. bezogen auf reinen Wirkstoff)

H = 2-(4-(6-Chlorbenzoxazol-2-yloxy)phenoxy-propionsäureethylester (Fenoxaprop-ethyl)

Safener Nr. = s. Nr. des Herstellungsbeispiels aus Tabelle I

PATENTANSPRÜCHE

1. Verbindungen der Formel (I) oder deren Salze

worin

Z unabhängig voneinander Halogen, Nitro, Cyano oder
 Alkyl, Alkoxy, Alkylthio oder Cycloalkyl, wobei die
 10 letzten vier genannten Reste unsubstituiert oder ein-
 oder mehrfach durch Alkoxy, Hydroxy oder Halogen
 substituiert sind, oder ferner Amino, Mono- oder
 Dialkylamino, Phenyl oder Phenoxy, wobei Phenyl und
 Phenoxy unabhängig voneinander unsubstituiert oder
 15 ein- oder mehrfach durch Halogen oder Halogenalkyl
 substituiert sind, oder zwei benachbarte Substituenten
 Z zusammen für eine divalente Gruppe der Formel -OCH₂O-,
 -S-CH₂-O- oder -S-CH₂-S-, die unsubstituiert oder durch
 Alkyl substituiert ist, stehen,

20

n eine ganze Zahl von 0 bis 5,

x Hydroxy oder Alkoxy, Alkenyloxy, Alkinyloxy, Alkylthio
 oder Cycloalkoxy, wobei die fünf letzten genannten Reste
 25 unsubstituiert oder ein- oder mehrfach durch Reste aus
 der Gruppe Alkoxy, Alkylthio, Mono- und Dialkylamino,
 Phenyl, substituiertes Phenyl, Cyano und Halogen
 substituiert sind, oder
 ferner Phenoxy oder substituiertes Phenoxy,
 30 ferner Trialkylsilylmethoxy, einen Rest der Formel

5

worin jeweils R Wasserstoff oder Alkyl bedeutet, Z¹ unabhängig von Z die oben bei Z genannten Bedeutungen hat und n¹ eine ganze Zahl von 0 bis 5 ist, oder ferner Amino, Mono- oder Dialkylamino, Cycloalkylamino, Hydrazino, Alkyl- oder Dialkylhydrazino, Pyridino, Morpholino, Dimethylmorpholino, einen Rest der Formel

10

15

worin R¹ und R² unabhängig voneinander Alkylreste bedeuten oder R¹ und R² gemeinsam mit dem sie verknüpfenden C-Atom einen Cycloalkylrest bilden, oder ferner einen Rest der Formel

20

$\begin{array}{c} -\text{O}-\text{CH}-\text{CO}_2\text{R}^4 \\ | \\ \text{R}^3 \end{array}$

worin R³ und R⁴ unabhängig voneinander für Wasserstoff oder Alkyl stehen, bedeuten.

25

2. Verbindungen oder deren Salze nach Anspruch 1, dadurch gekennzeichnet, daß in Formel (I) Z unabhängig voneinander Halogen, Nitro, Cyano, (C₁-C₄)-Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, wobei die Alkyl-, Alkoxy- und Alkylthiogruppen unsubstituiert oder ein- oder mehrfach durch Halogenatome, insbesondere Fluor oder Chlor substituiert sind, (C₃-C₆)Cycloalkyl, das unsubstituiert oder durch (C₁-C₄)Alkyl substituiert ist, Amino, (C₁-C₄)Alkylamino, Di-(C₁-C₄)alkylamino, Hydroxymethyl, (C₁-C₄)Alkoxy-methyl, Phenyl oder Phenoxy, wobei Phenyl und Phenoxy unsubstituiert oder ein- oder mehrfach durch Halogen oder einfach durch Trifluormethyl oder durch ein oder mehrere Halogenatome und ein

Trifluormethyl substituiert ist, oder zwei benachbarte Substituenten Z für die divalente Gruppe $-O-CH_2-O-$, $-S-CH_2-O-$ oder $-S-CH_2-S-$ stehen und n 0, 1, 2 oder 3 bedeuten.

5

3. Verbindungen oder deren Salze nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß

X Hydroxy, $-OCH_2Si(CH_3)_3$, $(C_3-C_6)Cycloalkoxy$,

10

Phenyl(C_1-C_6)alkoxy, Phenoxy, $(C_2-C_6)Alkenyloxy$,

$(C_2-C_6)Alkinyloxy$, $(C_1-C_6)Alkoxy$, $(C_1-C_6)Alkylthio$,

wobei die Alkoxy oder Alkylthiogruppe unsubstituiert

oder ein- oder zweifach durch $(C_1-C_2)Alkoxy$, Mono- oder

Di- $(C_1-C_6)Alkylamino$, $(C_1-C_2)Alkylthio$, Cyano oder ein-

15

oder mehrfach durch Halogen substituiert ist,

einen Rest der Formel

20

25

worin jeweils R Wasserstoff oder $(C_1-C_4)Alkyl$ bedeutet, Z^1 die bei Z oben genannte Bedeutung hat und $n^1 0, 1, 2$

oder 3 ist, oder

ferner Amino, Mono- oder Di- $(C_1-C_4)alkylamino$, $(C_5-C_6)-$

Cycloalkylamino, Hydrazino, Piperidino, Morpholino oder

2,6-Dimethylmorpholino, einen Rest der Formel

30

worin

35 R^1 und R^2 unabhängig voneinander $(C_1-C_4)Alkyl$ bedeuten oder R^1 und R^2 gemeinsam mit dem sie verknüpfenden

C-Atom einen 5-, 6- oder 7-gliedrigen Cycloalkylrest bilden,
oder einen Rest der Formel

worin R³ und R⁴ unabhängig voneinander für Wasserstoff oder (C₁-C₄)-Alkyl stehen,
10 bedeutet.

4. Verbindungen oder deren Salze nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Z unabhängig voneinander Halogen, insbesondere Fluor oder 15 Chlor, Nitro, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy oder Trifluormethyl und n 0, 1 oder 2 und X Hydroxy, (C₁-C₄)-Alkoxy oder einen Rest der Formel

worin R³ für Wasserstoff oder CH₃ und R⁴ für Wasserstoff oder (C₁-C₄)-Alkyl stehen,
25 bedeuten.

5. Verfahren zur Herstellung der nach einem oder mehreren der Ansprüche 1 bis 4 definierten Verbindungen der Formel (I) oder deren Salze, dadurch gekennzeichnet, daß man eine 30 Verbindung der Formel (II)

worin $(Z)_n$ die in Formel (I) angegebenen Bedeutungen hat,
mit einem Nitriloxid der Formel (III)

5

worin X die in Formel (I) angegebene Bedeutung hat,
umsetzt.

10 6. Pflanzenschützende Mittel, dadurch gekennzeichnet, daß
sie Verbindungen der Formel (I) oder deren Salze nach einem
oder mehreren der Ansprüche 1 bis 4 und inerte Zusatzstoffe
enthalten.

15 7. Selektive herbizide Mittel, dadurch gekennzeichnet, daß
sie Herbizide in Kombination mit Verbindungen der Formel (I)
oder deren Salze die nach einem oder mehreren der Ansprüche
1 bis 4 definiert sind, enthalten.

20 8. Mittel nach Anspruch 7, dadurch gekennzeichnet, daß
sie als Herbizide Wirkstoffe aus der Gruppe Carbamate,
Thiocarbamate, Halogenacetanilide, substituierte Phenoxy-,
Naphthoxy-, Phenoxyphenoxy-, Benzyloxyphenoxy- und
Heteroaryloxyphenoxy-carbonsäurederivate und
Cyclohexandion-derivate enthalten.

25

9. Verfahren zur Bekämpfung von unerwünschten Pflanzen in
Nutzpflanzenkulturen, dadurch gekennzeichnet, daß man
Herbizid in Kombination mit nach einem oder mehreren der
Ansprüche 1 bis 4 definierten Verbindungen der Formel (I)
30 oder deren Salze auf die Pflanzen, Pflanzensamen oder die
Anbaufläche appliziert.

10. Verfahren zum Schutz von Nutzpflanzen gegen
phytotoxische Nebenwirkungen von Herbiziden, dadurch
35 gekennzeichnet, daß man Herbizide in Kombination mit nach

einem oder mehreren der Ansprüche 1 bis 4 definierten Verbindungen der Formel (I) oder deren Salze auf die Pflanzen, Pflanzensamen oder die Anbaufläche appliziert.

- 5 11. Verwendung von nach einem oder mehreren der Ansprüche 1 bis 4 definierten Verbindungen der Formel (I) oder deren Salze zum Schutz von phytotoxischen Nebenwirkungen von Herbiziden.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/EP 90/01966

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ⁶

According to International Patent Classification (IPC) or to both National Classification and IPC

Int.Cl. ⁵ C 07 D 261/04, A 01 N 25/32

II. FIELDS SEARCHED

Minimum Documentation Searched ⁷

Classification System	Classification Symbols
Int.Cl. ⁵	C 07 D; A 01 N

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched ⁸

III. DOCUMENTS CONSIDERED TO BE RELEVANT*

Category ⁹	Citation of Document, ¹⁰ with indication, where appropriate, of the relevant passages ¹¹	Relevant to Claim No. ¹²
A	EP, A2, 0148795 (MONTEDEISON S.P.A.) 17 July 1985, see the whole document --	1-11
A	EP, A1, 0334120 (BASF AG) 27 September 1989, see the whole document --	1-11
A	Patent Abstracts of Japan, Volume 11, No. 317; C452, abstract from JP 62-103070, publ. 1987-05-13 MITSUI TOATSU CHEM INC -----	1-11

- * Special categories of cited documents: ¹⁰
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

5 February 1991 (05.02.91)

Date of Mailing of this International Search Report

8 March 1991 (08.03.91)

International Searching Authority

European Patent Office

Signature of Authorized Officer

ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.PCT/EP 90/01966

SA 41629

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on 28/12/90
The European Patent office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A2- 0148795	17/07/85	AT-A-B-	383724	10/08/87
		AU-B-	585493	22/06/89
		AU-D-	3790185	31/07/86
		CA-A-	1250299	21/02/89
		JP-A-	60226865	12/11/85
		US-A-	4661599	28/04/87
		US-A-	4810281	07/03/89
		ZA-A-	8500367	16/07/85
-----	-----	-----	-----	-----
EP-A1- 0334120	27/09/89	DE-A-	3809765	05/10/89

For more details about this annex : see Official Journal of the European patent Office, No. 12/82

EPO FORM P0479

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/EP 90/01966

I. KLASSEKIFIKATION DES ANMELDUNGSGENSTANDS (bei mehreren Klassifikationssymbole sind alle anzugeben)⁶

Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC
Int.CI.5 C 07 D 261/04, A 01 N 25/32

II. RECHERCHIERTE SACHGEBiete

Recherchierter Mindestprüfstoff⁷

Klassifikationssystem	Klassifikationssymbole
Int.CI.5	C 07 D; A 01 N

Recherchierte nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Sachgebiete fallen⁸

III. EINSCHLÄGIGE VERÖFFENTLICHUNGEN⁹

Art	Kennzeichnung der Veröffentlichung ¹¹ , soweit erforderlich unter Angabe der maßgeblichen Teile ¹²	Betr. Anspruch Nr. ¹³
A	EP, A2, 0148795 (MONTEDISON S.P.A.) 17 Juli 1985, siehe Dokument insgesamt --	1-11
A	EP, A1, 0334120 (BASF AG) 27 September 1989, siehe Dokument insgesamt --	1-11
A	Patent Abstracts of Japan, Band 11, Nr 317, C452, Zusammenfassung von JP 62-103070, publ 1987-05-13 MITSUI TOATSU CHEM INC -----	1-11

* Besondere Kategorien von angegebenen Veröffentlichungen¹⁰:

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfahrung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

IV. BESCHEINIGUNG

Datum des Abschlusses der internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
5. Februar 1991	- 8. 03. 91
Internationale Recherchenbehörde Europäisches Patentamt	Unterschrift des bevollmächtigten Bediensteten M. PEIS H. Peis

**ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT
ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR.PCT/EP 90/01966**

SA 41629

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am 28/12/90
Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP-A2- 0148795	17/07/85	AT-A-B- 383724 AU-B- 585493 AU-D- 3790185 CA-A- 1250299 JP-A- 60226865 US-A- 4661599 US-A- 4810281 ZA-A- 8500367	10/08/87 22/06/89 31/07/86 21/02/89 12/11/85 28/04/87 07/03/89 16/07/85
EP-A1- 0334120	27/09/89	DE-A- 3809765	05/10/89

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EPO FORM P0473