基于 Pytorch 的 CNN 实现

171860659 吴紫航

实现步骤

- 1.加载并标准化 Mnist 数据集(60000 训练集和 10000 测试集)
- 2.原训练集随机划分(55000 训练集和 5000 验证集)
- 3.定义卷积神经网络模型
- 4.定义损失函数
- 5.用训练集数据训练网络参数并用验证集验证
- 6.用测试集数据测试训练成果
- 7.人工调整超参数

测试性能

对应第3题第1问, 运行代码 CNN main.py 会打印训练和测试的细节

- (1) 训练过程打印: training loss、validation loss、validation accuracy
- 注: 若连续两次 validation loss 上升,则停止训练,并记录 validation loss 最小时的轮次 EPOCH,测试时采用该轮次对应的网络结果

```
epoch: 1
training progress: 0 %
training progress: 50 %
training progress: 100 %
training loss: 0.3194630
validation loss: 0.0988722
Accuracy of the network on the 5000 validation images: 96.9800000 %
epoch: 2
training progress: 0 %
training progress: 50 %
training progress: 100 %
training loss: 0.0825507
validation loss: 0.0920766
Accuracy of the network on the 5000 validation images: 97.3800000 %
```

Figure 1 - 训练过程

(2) 测试过程打印: test accuracy、accuracy for each class

```
Accuracy of the network on the 10000 test images: 99 %
Accuracy of zero: 99 %
Accuracy of one: 99 %
Accuracy of two: 99 %
Accuracy of three: 100 %
Accuracy of four: 99 %
Accuracy of five: 99 %
Accuracy of six: 99 %
Accuracy of seven: 97 %
Accuracy of eight: 97 %
Accuracy of nine: 98 %
```

Figure 2 - 测试结果

网络结构

对应第3题的第2问,本题的神经网络结构图如下

Figure 3 - 卷积神经网络结构

单个输入图片的数据流变换过程为:

(1) Section1-Conv2d[0]

输入图片(28×28×1); 卷积核(3×3×64); padding=1; stride=1

输出(28×28×64)

(2) Section1-ReLU[1]

输入(28×28×64)

输出(28×28×64)

(3) Section1-MaxPool2d[2]

输入(28×28×64)

输出(14×14×64)

(4) Section1-Conv2d[3]

输入图片(14×14×64); 卷积核(3×3×128); padding=1; stride=1

输出(14×14×128)

(5) Section1-ReLU[4]

输入(14×14×128)

输出(14×14×128)

(6) Section1-MaxPool2d[5]

输入(14×14×128)

输出(7×7×128)

(7) Section2-Linear[0]

输入(7×7×128)

输出(1024)

(8) Section2-ReLU[1]

输入(1024)

输出(1024)

(9) Section2-Dropout[2]

输入(1024)

输出(1024)

(10) Section2-Linear[3]

输入(1024)

输出(120)

(11) Section2-ReLU[4]

输入(120)

输出(120)

(12) Section2-Linear[5]

输入(120)

输出(84)

(13) Section2-ReLU[6]

输入(84)

输出(84)

(14) Section2-Linear[7]

输入(84)

输出(10)

即最后得到 10 个类的预测概率

优化方法和超参数确定

对应于第3题第3问

采用了两种优化方法: Adam 和 SGD, 每批次大小 Batch size=25

learning rate 和 epoch 的学习情况(关于 accuracy) 如下表:

(1) Adam:

Epoch/轮次	LR=5e-3/%	LR=1e-3/%	LR=5e-4/%	LR=1e-4/%
1	95. 38	97. 64	96. 76	96. 98
2	96. 22	97. 16	98. 16	97. 38
3	95. 84	98. 48	98. 18	98. 36
4	96. 54	98. 66	98. 78	98. 48
5	96. 28	98. 86	97. 70	98. 48
6	96. 32	99. 14	98. 66	98. 56
7	96. 68	99. 08	98. 58	98. 88
8	96. 44	98. 82	98. 50	98. 76
9	96. 88	/	/	99. 00
10	/	/	/	98. 86
11	/	/	/	98. 84

Table 1 - Adam 方法超参数学习情况

由表得, adam 法的**学习速率 Ir 设为 1e-3** 最合适,过大会难以收敛,过小则收敛过慢;在此学习率下,迭代轮次到**第 6 轮**的时效果最好,**验证集准确率为 99.14**%。

(2) SGD:

Epoch/轮次	LR=1e-2/%	LR=5e-3/%	LR=1e-3/%	LR=5e-4/%
1	94. 16	85. 72	19. 40	15. 88
2	97. 06	94. 28	38. 02	18. 20
3	97. 44	96. 70	59. 20	20. 16
4	97. 88	97. 34	81. 08	26. 30
5	98. 04	97. 58	87. 88	34. 22
6	98. 16	97. 98	90. 62	42. 52
7	98. 44	98. 08	91. 92	64. 92
8	98. 32	98. 30	93. 28	78. 46
9	98. 72	98. 44	94. 72	83. 54
10	98. 54	98. 52	95. 20	87. 10
11	98. 86	98. 66	96. 18	89. 12

12	98. 54	98. 64	96. 02	90. 36
13	98. 86	98. 62	96. 34	91.88
14	98. 74	98. 60	96. 70	92. 12
15	98. 82	98. 64	96. 70	93. 02
16	98. 92	98. 70	96. 92	93. 54
17	98. 70	98. 78	97. 02	93. 90
18	98. 90	98. 92	96. 88	94. 36
19	/	98. 76	97. 08	94. 82

Table 2 - SGD 方法超参数学习情况

由表得, SGD 法的学习速率 Ir 设为 1e-2 最合适,过大会难以收敛,过小则收敛过慢;在此学习率下,迭代轮次到第16轮的时效果最好,验证集准确率为98.92%。

Loss 可视化

对应于第3题第4问

(1) 当优化算法为 SGD (学习速率设为 1e-2), loss-epochs 曲线如下

Figure 4 training loss curve for SGD

Figure 5 validation loss curve for SGD

(2) 当优化算法为 Adam (学习速率设为 1e-3), loss-epochs 曲线如下

Figure 6 training loss curve for Adam

Figure 7 validation loss curve for Adam

参考文献

- [1] pytorch 官方教程 理解了 pytorch 框架的基本使用接口和方法 https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
- [2] 卷积神经网络原理指南 理解了 CNN 的计算原理和基本步骤 https://zhuanlan.zhihu.com/p/27908027
- 3. pytorch 学习笔记 参考了验证集的划分方法 https://blog.csdn.net/SHU15121856/article/details/88827238
- 4. 如何理解卷积 加深了对图像处理步骤中卷积的理解 https://www.zhihu.com/question/30888762
- 5. pytorch 教程 参考了 torch.nn.Sequential 方法和 torch.nn.Dropout 方法的使用 https://zhuanlan.zhihu.com/p/128137225