Московский физико-технический институт Физтех-школа прикладной математики и информатики

Лектор: Генерал теории Меры, Александр Иванович Тюленев

Для вас техали: Потапов Станислав, Сысоева Александра, Цеденов Артем, Бадоля Пётр, Баронов Михаил, Шуминов Эзра Петракова Анастасия Габидулин Андрей Некрылов Леонид Тюленев Александр

Содержание

1	ведение	2
	1 Полнота пространств L_p	2
	2 Неполнота $\mathbb{R}L_p$	5
	3 Функции ограниченной вариации	6
	4 Абсолютно непрерывные функции	8
2	яды Фурье	9
	1 Неформальная идея	9
	2 Строгая теория	10
	3 Компактная форма записи	11
	4 Теорема Римана–Лебега	12
	5 Вторая теорема о среднем	12
3	ходимость ряда Фурье в точке.	14
	1 Признаки поточечной сходимости рядов Фурье (продолжение)	16
	2 Суммы Фейера.	18
	3 Теорема Фейера	20
	4 Скорость убывания коэффициентов Фурье	22
4	ведение в теорию евклидовых пространств.	2 3
5	ппроксимация функций	27
	1 Аппроксимативная едининца	30
6	екции 8, 9	3 0
7	екции 10, 11	31
	1 Интеграл Дирихле	31
	2 Преобразование Фурье	34
	3 Интеграл Фурье	35
	4 Преобразование Фурье свертки	37
8	бобщенные функции	40
9	некдоты	42

1 Введение

1.1 Полнота пространств L_p

 (X,\mathfrak{M},μ) — пространство с мерой.

$$p \in [1, +\infty]$$

 $L_p(\mu)$ — полунормированное линейное пространство. Лишь *полу*нормированное потому, что равенство 0 интеграла в *p*-ой степени от функции не означает равенство 0 этой функции, а лишь равенство этой функции нулю почти всюду.

 $L_p(\mu)$ — нормированное линейное пространство.

Это всё было в прошлом семестре, теперь же мы докажем полноту пространства L_p .

Определение 1.1. Пусть $E = (E, \|\cdot\|)$ — линейное нормированое пространсвто (л.н.п.) Оно называется *полным*, если

 \forall фундаментальная (по норме $\|\cdot\|$) последовательность $\{x^n\}$ пространства E сходится по норме пространства E к некоторому элементу $x \in E$.

Определение 1.2. Дано $E=(E,\|\cdot\|)$ — л.н.п. Пара последовательностей $\{x^n\}_{n=1}^{\infty}$ и $\{S^k\}_{k=1}^{\infty}$, где

$$S^k := \sum_{n=1}^k x^n,$$

называется формальным рядом в E. При этом $\{S^k\}_{k=1}^\infty$ называется последовательностью частичных сумм ряда, а $\{x^n\}_{n=1}^\infty$ — членами ряда. Часто пишут просто

$$\sum_{k=1}^{\infty} x^k - \text{формальный ряд.}$$

Примечание. В определении выше ряд мы называем *формальным* потому, что ещё не было ничего сказано про его сходимость.

Определение 1.3. Ряд $\sum_{k=1}^{\infty} x^k$ называется сходящимся в л.н.п. E, если

$$\exists x \in E: \left\| x - \sum_{k=1}^{n} x^k \right\| \to 0, n \to \infty$$

Определение 1.4. Ряд $\sum_{k=1}^{\infty} x^k$ называется абсолютно сходящимся в л.н.п. E, если:

$$\sum_{k=1}^{\infty} \|x^k\| - \text{сходится}$$

Напоминание. Последовательность $\{x_n\}$ называется ϕ ундаментальной, если выполнено условие Komu:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n \geqslant N, \forall m \geqslant N \hookrightarrow |x_n - x_m| < \varepsilon.$$

- 1. Каждая сходящаяся последовательность является фундаментальной, но не каждая фундаментальная последовательность сходится к элементу из своего пространства.
- 2. Метрическое пространство, в котором каждая фундаментальная последовательность сходится к элементу этого же пространства, называется полным.

3. Числовая последовательность сходится тогда и только тогда, когда она фундаментальна.

Теорема 1.1. (Критерий полноты) $E - \Lambda.н.п.$ полно $\iff \forall abconomic cxodsщийся в <math>E$ ряд является сходящимся.

Доказательство.

 (\Longrightarrow)

Пусть E полно и $\sum_{k=1}^{\infty} x^k$ — сходится абсолютно $\implies \sum_{k=1}^{\infty} \|x^k\|$ — сходящийся числовой ряд, а значит последовательность частичных сумм фундаментальна:

$$\forall \varepsilon > 0 \; \exists N(\varepsilon) \in \mathbb{N} : \forall n, m \geqslant N(\varepsilon) \hookrightarrow \sum_{k=n}^{m} ||x^{k}|| < \varepsilon.$$

В силу неравенства треугольника: $\left\|\sum_{k=n}^{m}x^{k}\right\| \leqslant \sum_{k=n}^{m}\|x^{k}\| < \varepsilon$. Тогда $\{S^{n}\}_{n=1}^{\infty}$ — поседовательность частичных сумм исходной последовательности фундаментальна в E.

Но
$$E$$
 — полно $\Longrightarrow \exists x \in E : \|x - S^n\| \to 0, n \to \infty \Longrightarrow$ ряд $\sum_{k=1}^{\infty} x^k$ — сходится в E (\Longleftrightarrow)

Пусть $\{x^n\}$ — фундаментальная последовательноть в E. Это означает, что

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n, m \geqslant N(\varepsilon) \hookrightarrow ||x^n - x^m|| < \varepsilon.$$

Берём $\forall k \in \mathbb{N} \quad \varepsilon_k = 2^{-k}$.

 $\exists \{N_k\}$ — строго возрастающая последовательность натуральных чисел такая, что

$$\forall k \in \mathbb{N} \ \forall n, m \geqslant N_k \hookrightarrow ||x^n - x^m|| \leqslant 2^{-k}$$

Рассмотрим $\{x^{N_k}\}_{k=1}^{\infty}$ — подпоследовательность п-ти $\{x^n\}$. Возьмём $y_k:=x^{N_{k+1}}-x^{N_k}$ $\forall k\in\mathbb{N}.$ Положим $y_0:=x^{N_1}.$

Рассмотрим формальный ряд $\sum_{k=0}^{\infty} y_k$. В силу выбора подпоследовательности, если в качестве nвыбрать N_k , а в качестве m выбрать N_{k+1} , то неравенство $\|x^n-x^m\|\leqslant 2^{-k}$ будет выполнено $\implies ||y_k|| \leqslant 2^{-k} \implies \sum_{k=0}^{\infty} y_k$ абсолютно сходится в E.

Но по условию доказываемого утверждения, любой абсолютно сходящийся в Е ряд сходится в

ряд
$$\sum_{k=0}^{\infty} y_k$$
 сходится $\implies \exists x \in E : \left\| x - \sum_{k=0}^l y_k \right\| \to 0, l \to \infty.$

При этом

$$\sum_{k=0}^{l} y_k = y_0 + y_1 + \dots + y_l = x^{N_1} + x^{N_2} - x^{N_1} + \dots + x^{N_{l+1}} - x^{N_l} = x^{N_l}$$

Объединив два последних результата, получим

$$\exists x \in E : ||x - x^{N_l}|| \to 0, l \to \infty.$$

В итоге доказали существование элемента $x \in E$ т.ч. к нему сходится подпоследовательности

Теперь остаётся воспользоваться условием фундаментальности и получить сходимость всей последовательности.

$$\forall \varepsilon > 0 \; \exists L \in \mathbb{N} : \forall l \geqslant L \hookrightarrow ||x - x^{N_l}|| < \frac{\varepsilon}{2}.$$

$$\forall \varepsilon > 0 \; \exists M \in \mathbb{N} : \forall n, m \geqslant M \hookrightarrow \|x^n - x^m\| < \frac{\varepsilon}{2}.$$

$$\forall \varepsilon > 0 \; \exists N := \max\{L, M\} \in \mathbb{N} : \forall n \geqslant N \hookrightarrow \|x - x^n\| \leqslant \|x - x^{N_m}\| + \|x^{N_m} - x^n\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Теорема 1.2. Пусть $p \in [1, +\infty]$. Тогда $L_p(\mu)$ полно.

Доказательство. Разберём случай $p \in [1, +\infty)$. В силу предыдущей теоремы достаточно доказать, что любой абсолютно сходящийся ряд в $L_p(\mu)$ сходится в $L_p(\mu)$.

Пусть $\sum_{k=1}^{\infty} f_k$ — абсолютно сходящийся ряд в $L_p(\mu)$. То есть $\sum_{k=1}^{\infty} \|f_k\|_p$ сходится как числовой ряд. Используем неравенство Минковского:

$$\forall N \in \mathbb{N} \hookrightarrow \left(\int_X \left(\sum_{k=1}^N |f_k| \right)^p \right)^{1/p} \leqslant \sum_{k=1}^N ||f_k||_p \leqslant \sum_{k=1}^\infty ||f_k||_p < +\infty.$$

Определим $F_n := \left(\sum_{k=1}^N |f_k|\right)^p$. Тогда $\{F_N\}_{N=1}^\infty$ — монотонная (неубывающая) функциональная последовательность.

Напоминание. Монотонность функциональной последовательности — это монотонность последовательность по n при каждом фиксированом x.

Тогда по теореме Леви

$$\exists \lim_{N \to \infty} \left(\int_X F_n(x) d\mu(x) \right)^{1/p} = \left(\int_X \lim_{N \to \infty} F_n(x) d\mu(x) \right)^{1/p}$$

$$\implies \left(\int_X \left(\sum_{k=1}^\infty |f_k| \right)^p d\mu(x) \right)^{1/p} \leqslant \sum_{k=1}^\infty \|f_k\|_p < +\infty.$$

$$\implies \sum_{k=1}^\infty |f_k(x)| \text{ конечна при μ-п.в. } x \in X.$$

При фиксированном x имеем $\sum\limits_{k=1}^{\infty}f_k(x)$ — обычный числовой ряд, а для него из абсолютной сходимости следует сходимость.

$$\Longrightarrow$$
 при μ -п.в. $x \in X$ $\sum_{k=1}^{\infty} f_k(x)$ конечна.

Положим $F(x) := \sum_{k=1}^{\infty} f_k(x)$, эта функция корректно определена μ -п.в. При этом μ — полная мера (меру считаем полной, если не было оговорено обратного).

$$F(x) = \lim_{n \to \infty} \sum_{k=1}^n f_k(x)$$
, этот предел существует для μ -п.в. $x \in X$.

Остаётся доказать, что $\left\|F-\sum\limits_{k=1}^{\infty}f_k\right\|_p \to 0, n\to\infty.$ Обозначим n-ый член этой последовательности как J_n .

$$J_n = \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty f_k(x) \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg(\sum_{k=n+1}^\infty |f_k(x)| \bigg)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg| \sum_{k=n+1}^\infty |f_k(x)| \bigg|^p d\mu(x) \right|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \bigg$$

Рассмотрим сумму ряда, как предел:

$$\sum_{k=n+1}^{\infty} |f_k(x)| = \lim_{m \to \infty} \sum_{k=n+1}^{m} |f_k(x)|.$$

Вспомним лемму Фату:

При
$$g_k\geqslant 0$$
 верно $\int\limits_X\lim_{k\to\infty}g_k(x)d\mu(x)\leqslant \varliminf_{k\to\infty}\int\limits_Xg_k(x)d\mu(x).$

Тогда по лемме Фату:

$$\left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)|\right)^p d\mu(x)\right)^{1/p} \bigotimes \sum_{k=n+1}^\infty \left(\int\limits_X |f_k(x)|^p d\mu(x)\right)^{1/p} \to 0, n \to \infty.$$

Итого $J_n \to 0, n \to \infty$.

1.2 Неполнота $\mathbb{R}L_p$

Определение 1.5. Пусть $\mathbb{R}L_p([a,b])$ — лин. пространство функций, p-ая степень модуля которых интегрируема по Риману.

Замечание. С таким определением это не является нормированным пространством. Чтобы сделать его нормированным, нужно аккуратно ввести класс эквивалентности.

Теорема 1.3. Пространство $\mathbb{R}L_p([a,b])$ неполно.

Доказательство.

Без ограничения общности, [a, b] = [0, 1].

Пусть $\varepsilon \in (0, \frac{1}{2})$.

Перенумеруем рациональные точки отрезка [0,1]: $\mathbb{Q} \cap [0,1] = \{r_k\}$.

$$G_n := \bigcup_{k=1}^n \left(r_k - \frac{\varepsilon}{2^{k+2}}, r_k + \frac{\varepsilon}{2^{k+2}} \right) \cap [0, 1].$$

$$G := \bigcup_{n=1}^\infty G_n.$$

Тогда χ_{G_n} интегрируема по Риману по критерию Лебега, потому что как характеристическая фия объединения конечного набора интервалов, пересечённых с отрезком, она обладает конечным числом разрывов.

Докажем, что χ_G имеет мн-во точек разрыва положительной меры Лебега. Для этого рассмотрим $F = [0,1] \setminus G$. Тогда $\chi_G(F) = 0$, но так как $\mathbb Q$ плотно в $\mathbb R$, во всех точках F ф-ия χ_G разрывна. При этом по счётной полуаддитивности меры Лебега $\mathcal L^n(G) \leqslant \frac{1}{2}$, а значит $\mathcal L^n(F) \geqslant \frac{1}{2} > 0$.

Введём обозначения

$$E_k := \left(r_k - \frac{\varepsilon}{2^{k+2}}, r_k + \frac{\varepsilon}{2^{k+2}}\right) \cap [0, 1]$$

$$G_m^n := \bigcup_{k=n}^m E_k$$

(в новых обозначениях $G_n = G_n^1$) и покажем фундаментальность последовательности $\{\chi_{G_n}\}$:

$$\int_0^1 |\chi_{G_m}(x) - \chi_{G_n}(x)| dx = \text{так как } G_n \subseteq G_m = \int_0^1 \chi_{G_m \backslash G_n}(x) dx \leqslant \int_0^1 \chi_{G_m^n}(x) dx \leqslant$$

$$\leqslant \sum_{k=n+1}^m \int_0^1 \chi_{E_k}(x) dx = \sum_{k=n+1}^m \frac{\varepsilon}{2^k} \to 0, \text{ при } n, m \to \infty.$$

Итого, последовательность $\{\chi_{G_n}\}\subset \mathbb{R}L_p([0,1])$ фундаментальна, но её предел χ_G не лежит в пространстве $\mathbb{R}L_p([0,1])$, значит это пространство не полно.

1.3 Функции ограниченной вариации

Определение 1.6. Пусть T — разбиение отрезка [a, b], т.е.

$$T = \{x_i\}_{i=0}^{N_T}, \quad N_T \in \mathbb{N}$$

$$a = x_0 < x_1 < \dots < x_{N_T} = b.$$

Пусть $f:[a,b] \to \mathbb{R}$.

 $V_T(f)$ — вариация ф-ии f по разбиению T

$$V_T(f) := \sum_{k=0}^{N_T - 1} |f(x_{k+1}) - f(x_k)|$$

$$V_a^b(f) := \sup_{T \text{ - pas6. } [a,b]} V_T(f)$$

Определение 1.7. f называется ф-ией ограниченной вариации на [a,b], если

$$V_a^b(f) < +\infty.$$

Обозначается $f \in BV([a,b])$

Теорема 1.4. BV([a,b]) — линейное пространство.

Доказательство.

Покажем, что $f_1, f_2 \in BV([a,b]) \implies \alpha f_1 + \beta f_2 \in BV([a,b]).$

Пусть T — произвольное разбиение [a,b]. Тогда по неравенству треугольника

$$V_T(\alpha f_1 + \beta f_2) \leqslant |\alpha| V_T(f_1) + |\beta| V_T(f_2).$$

 Π емма 1.1. Eсли $\forall f:[a,b] \rightarrow \mathbb{R}$ монотонна на $[a,b],\ mo\ f\in BV([a,b])$ и $e\ddot{e}\ V_a^b(f)=|f(b)-f(a)|.$

Доказательство. Очевидно.

 Φ ПМИ М Φ ТИ, 9 мая 2025 г.

Лемма 1.2. Пусть $-\infty < a < c < b < +\infty$. Тогда

$$f \in BV([a,b]) \Longleftrightarrow \begin{cases} f \in BV([a,c]) \\ f \in BV([c,b]) \end{cases}.$$

B случае, если $f \in BV([a,b])$, тогда

$$V_a^b(f) = V_a^c(f) + V_c^b(f).$$

Доказательство.

1. ⇒ и ≥

Пусть
$$f \in BV([a,b]), T_1$$
 — произв. разб. $[a,c], T_2$ — произв. разб. $[c,b]$. $T = T_1 \cup T_2$ — разб. о-ка $[a,b]$. $V_{T_1}(f) + V_{T_2}(f) \leqslant V_T(f) \leqslant V_a^b(f)$.

Взяв sup сначала по T_1 , а потом по T_2 , получим $V_a^c(f) + V_c^b(f) \leqslant V_a^b(f)$.

2. ⇐ и ≼

Пусть
$$\begin{cases} f \in BV([a,c]) \\ f \in BV([c,b]) \end{cases}$$

Пусть $T = \{x_i\}_{i=0}^N$ — произв. разб. отрезка [a, b].

Если $c=x_i$ при некотором i, то это простой случай, так как тогда можно $\{x_j\}_{j=0}^i$ выбрать в качестве T_1 , а $\{x_j\}_{j=i}^N$ выбрать в качестве T_2 . И тогда очевидным образом $V_T(f)=V_{T_1}(f)+V_{T_2}(f)\leqslant V_a^c(f)+V_c^b(f)<+\infty$, а взяв sup по всем T получим $V_a^b(f)\leqslant V_a^c(f)+V_c^b(f)<+\infty$.

Теперь рассмотрим более интересный случай, когда ни при каком i x_i не равно c. Тогда $c \in (x_i, x_i + 1)$ при некотором i.

$$V_{T}(f) = \sum_{k=0}^{N-1} |f(x_{k+1}) - f(x_{k})| =$$

$$= \sum_{k=0}^{i-1} |f(x_{k+1}) - f(x_{k})| + |f(x_{i}) - f(x_{i+1})| + \sum_{k=i+1}^{N-1} |f(x_{k+1}) - f(x_{k})| \le$$

$$\le \sum_{k=0}^{i-1} |f(x_{k+1}) - f(x_{k})| + |f(x_{i}) - f(c)| + |f(c) - f(x_{i+1})| + \sum_{k=i+1}^{N-1} |f(x_{k+1}) - f(x_{k})| \le$$

Обозначим разбиения:

$$T_1 = \{x_0, x_1, \dots, x_i, c\},\$$

 $T_2 = \{c, x_{i+1}, \dots, x_N\}.$

Тогда полученный ранее результат можно оценить как

$$\bigotimes V_{T_1}(f) + V_{T_2}(f) \leqslant V_a^c(f) + V_c^b(f)$$

Итого $V_T(f) \leq V_a^c(f) + V_c^b(f)$. Взяв sup по всем T, получим:

$$\sup_{T} V_T(f) \leqslant V_a^c(f) + V_c^b(f)$$

$$V_a^b(f) \leqslant V_a^c(f) + V_c^b(f)$$

Если оба слагаемых в правой части конечны, то и V_a^b конечна.

Итого из первого и второго пункта

$$V_a^b(f) = V_a^c(f) + V_c^b(f)$$

Теперь воспользуемся этой леммой для доказательства следующей теоремы.

Теорема 1.5. Пусть $f \in BV([a,b])$. Тогда ф-ия $g(x) := V_a^x$ монотонно не убывает на [a,b]

Доказательство. Пусть $x_2 > x_1$. Тогда применим только что доказанную лемму, выбрав $a = a, c = x_1, b = x_2$.

$$V_a^{x_2}(f) = V_a^{x_1}(f) + V_{x_1}^{x_2}(f)$$

$$V_a^{x_2}(f) - V_a^{x_1}(f) = V_{x_1}^{x_2}(f) \ge 0$$

$$g(x_2) - g(x_1) \ge 0$$

$$g(x_2) \ge g(x_1)$$

Теорема 1.6. Пусть $f \in BV([a,b])$. Тогда $\exists f_1 \ u \ f_2$ монотонно неубывающие на [a,b] такие, что $f = f_1 - f_2$.

Доказательство. Определим $f_1(x) := V_a^x(f) \quad \forall x \in [a,b]$. По только что доказанной теореме это монотонно неубывающая функция.

Докажем, что ф-ия $f_2(x) = f_1(x) - f(x)$ монотонно не убывает.

$$a \leqslant x \leqslant y \leqslant b$$
.

 $f_2(y) - f_2(x) = [f_1(y) - f(y)] - [f_1(x) - f(x)] = [f_1(y) - f_1(x)] - [f(y) - f(x)] \stackrel{(1)}{=} V_x^y(f) - [f(y) - f(x)].$

(1) В силу аддитивности вариации по отрезкам

Заметим, что $V_x^y(f)=\sup_T V_T(f)\geqslant V_{\{x,y\}}(f)=|f(y)-f(x)|$. Тогда предыдущее выражение не меньше 0, а значит f_2 не убывает.

Следствие. $\forall f \in BV([a,b])$ имеет не более чем счётное множество т. разрыва 1-го рода.

1.4 Абсолютно непрерывные функции

Определение 1.8. Ф-ия $f:[a,b] \to \mathbb{R}$ называется абсолютно непрерывной на [a,b], если

$$\forall \varepsilon \; \exists \delta(\varepsilon) > 0 : \forall \; \text{дизъюнктивной системы} \; \{(a_k, b_k)\}_{k=1}^N : \sum_{k=1}^N |a_k - b_k| < \delta(\varepsilon)$$

$$\hookrightarrow \sum_{k=1}^n |f(b_k) - f(a_k)| < \varepsilon. \tag{1.4.1}$$

AC([a,b]) — мн-во всех абсолютно непрерывных на [a,b] функций.

Замечание. $f \in AC([a,b])$ является непрерывной на [a,b]. Обратное неверно

Контрпример.

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}.$$

 $f \in C([0,1])$, но $f \notin BV([0,1])$, а значит по теореме, которая будет доказана ниже, $f \notin AC([0,1])$.

Теорема 1.7. Если $f \in AC([a,b])$, то $f \in BV([a,b])$.

Доказательство. Запишем (1.4.1) при $\varepsilon=1$. Тогда $\exists \delta=\delta(1)>0: \forall$ конечного попарно непересекающегося набора интервалов $\{(a_k,b_k)\}_{k=1}^N: \sum\limits_{k=1}^N |b_k-a_k|<\delta\hookrightarrow\sum_{k=1}^N |f(b_k)-f(a_k)|<1$. Теперь разобъём отрезок [a,b]. Пусть $\mathbb{N}\ni M:=\left\lceil\frac{|b-a|}{\delta}\right\rceil+1$.

$$x_0 = a$$

$$x_1 = a + \frac{b - a}{M}$$

$$\vdots$$

$$x_M = a + b - a = b.$$

То есть поделили отрезок [a,b] на одинаковые куски.

Так как $x_{i+1} - x_i < \delta$ (специально для выполнение этого было взято достаточно большое M), то \forall разб. о-ка $[x_i, x_{i+1}]$ образует естественным образом конечным набор дизъюнктных интервалов суммарной длины меньше δ , а значит по абсолютной непрерывности $V_{x_i}^{x_{i+1}}(f) < 1 \quad \forall i$ Тогда в силу аддитивности вариации

$$V_a^b(f) = \sum_{i=0}^{M-1} V_{x_i}^{x_{i+1}}(f) < \sum_{i=0}^{M-1} 1 = M < +\infty.$$

2 Ряды Фурье

Идея представления функции тригонометрическим рядом являлась одной из центральных на рубеже 18-19 веков. Однако, строгая теория оформилась лишь к началу 20-века.

2.1 Неформальная идея

Прежде чем переходить к строгим формулировкам, поясним неформально корни идей, лежащих в основе теории рядов Фурье.

Если $V:=(V,<\cdot,\cdot>)$ – конечномерное евклидово пространство, а $\{e_n\}_{n=1}^N$ – ортогональный базис в V, то любой вектор $x\in V$ имеет следующее разложение по базису $\{e_n\}_{n=1}^N$:

$$x = \sum_{n=1}^{N} \frac{\langle x, e_n \rangle}{\langle e_n, e_n \rangle} e_n. \tag{2.1.1}$$

Естественно поставить вопрос, имеется ли аналог (2.1.1) для бесконечномерных евклидовх пространств?

Оказывается, в некоторых важных случаях ответ на этот вопрос положительный. Более точно, если $H:=(H,<\cdot,\cdot>)$ – бесконечномерное гильбертово пространство (то есть евклидово пространство, полное относительно нормы, порожденной скалярным произведением), а $\{e_n\}_{n=1}^{\infty}$ – ортонормированный базис в нем, то для всякого $x\in H$ имеем

$$x = \sum_{n=1}^{\infty} \frac{\langle x, e_n \rangle}{\langle e_n, e_n \rangle} e_n. \tag{2.1.2}$$

При этом числа

$$c_n(x) := \frac{\langle x, e_n \rangle}{\langle e_n, e_n \rangle}, \quad n \in \mathbb{N}$$
(2.1.3)

называются коэффициентами Фурье элемента x по системе $\{e_n\}_{n=1}^{\infty}$, а ряд в правой части (2.1.2) – рядом Фурье элемента x по системе $\{e_n\}_{n=1}^{\infty}$.

Частный случай гильбертова пространства – $L_2([-l,l])$, где l>0 – фиксированное число. Действительно, скалярное произведение, порождающее L_2 -норму, задается формулой (мы рассматриваем случай комплексного пространства)

$$\langle f,g \rangle := \int_{-l}^{l} f(x)\overline{g}(x) dx.$$

Можно показать, что система функций

$$1, \sin(\frac{\pi x}{l}), \cos(\frac{\pi x}{l}), \dots, \sin(\frac{\pi n x}{l}), \cos(\frac{\pi n x}{l}), \dots$$

$$(2.1.4)$$

является ортогональным базисом в пространстве $L_2([-l,l])$. Иными словами, для любой функции $f \in L_2([-l,l])$ ее ряд Фурье сходится к ней в смысле среднего квадратичного. Кроме того, ортогональным базисом является также система комплексных экспонент

$$\left\{e^{\frac{i\pi kx}{l}}\right\}_{k\in\mathbb{Z}}.\tag{2.1.5}$$

Отметим, однако, что формально, при $k \in \mathbb{N}$ коэффициенты

$$a_k(f) := \frac{1}{l} \int_{-l}^{l} f(x) \cos(\frac{\pi kx}{l}) dx, \quad b_k(f) := \frac{1}{l} \int_{-l}^{l} f(x) \sin(\frac{\pi kx}{l}) dx$$

имеют смысл для $f \in L_1([-l,l])$.

Примечание. Здесь и далее a_k, b_k это коффиценты перед косинусом и синусом соответсвенно, а c_k перед компелксной экспонентой.

2.2 Строгая теория

Определение 2.1. Гильбертово пространство — это вещественное линейное пространство H, на котором задано скалярное произведение

$$\langle \cdot, \cdot \rangle : H \times H \to \mathbb{R},$$

удовлетворяющее следующим аксиомам для всех $x, y, z \in H$ и $\alpha \in \mathbb{R}$:

- 1. $\langle x, y \rangle = \langle y, x \rangle$ (симметричность),
- 2. $\langle \alpha x + y, z \rangle = \alpha \langle x, z \rangle + \langle y, z \rangle$ (линейность по первому аргументу),
- 3. $\langle x, x \rangle \geqslant 0$, причём $\langle x, x \rangle = 0 \iff x = 0$ (положительная определённость).

При этом пространство H считается **полным** по норме, индуцированной внутренним произведением:

$$||x|| = \sqrt{\langle x, x \rangle}.$$

То есть всякая фундаментальная последовательность в H сходится в H.

Определение 2.2. (Топологический базис или базис Шаудера) Пусть у нас есть X - л.н.п, будем говорить что система ненулевых векторов $\{e_n\}_{n=1}^{\infty}$ является базисом Шаудера пространства X, если:

$$\forall x \in X \exists ! \{\alpha_k\}_{k=1}^{\infty} \in \mathbb{R} \hookrightarrow \|x - \sum_{k=1}^{N} \alpha_k(x) e_k\| \to 0, N \to \infty$$

То есть $x = \sum_{k=1}^{\infty} \alpha_k(x) e_k$. Из единсвтенности в определнии следует линейная лезависимость системы векторов.

Без ограничения общности будем работать с элементами $f \in L_1([-\pi,\pi])$. Каждому такому элементу можно сопоставить формальный ряд Фурье по стандартной тригонометрической системе

$$f \sim a_0(f) + \sum_{k=1}^{\infty} a_k(f) \cos(kx) + b_k(f) \sin(kx),$$

а также по системе комплексных экспонент

$$f \sim \sum_{k \in \mathbb{Z}} c_k(f) e^{ikx}.$$

При $n\in\mathbb{N}$ рассмотрим оператор n-ой частичной суммы ряда Фурье $S_n:L_1([-\pi,\pi])\to C([-\pi,\pi]).$ При $f\in L_1([-\pi,\pi])$ положим

$$S_n[f](x) := a_0(f) + \sum_{k=1}^n a_k(f)\cos(kx) + b_k(f)\sin(kx).$$

2.3 Компактная форма записи

Заметим, что

$$S_n[f](x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt + \frac{1}{\pi} \sum_{k=1}^{n} \int_{-\pi}^{\pi} f(t) \cos(kt) \cos(kx) dt + \frac{1}{\pi} \sum_{k=1}^{n} \int_{-\pi}^{\pi} f(t) \sin(kt) \sin(kx) dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) (\frac{1}{2} + \sum_{k=1}^{n} \cos(k(t-x))) dt = \int_{-\pi}^{\pi} f(t) D_n(t-x) dt,$$
(2.3.1)

где D_n – ядро Дирихле, то есть

$$D_n(x) := \frac{1}{2} + \sum_{k=1}^n \cos(kx) = \frac{1}{2\sin(\frac{x}{2})} \left[\sin(\frac{x}{2}) + \sum_{k=1}^n \sin(k(x+\frac{1}{2})) - \sin(k(x-\frac{1}{2})) \right]$$

$$= \frac{\sin(n+\frac{1}{2})x}{2\pi\sin(\frac{x}{2})}.$$
(2.3.2)

Свойства ядра Дирихле:

- $1) \int_{0}^{\pi} D_n(x) dx = 1;$
- $\stackrel{-\pi}{D_n}$ четная 2π -периодическая функция.

2.4 Теорема Римана-Лебега

Докажем теперь важную теорему Римана-Лебега об осцилляции.

Примечание. (От редакторов) Эту теорему более наглядной делает ее более простая версия, без компелксных экспонент, а с тригонометрическими функциями, тогда мы понимаем что $y=\omega$ это "частота колебаний" нашего синуса:

Функция f абсолютно интегрируема на конечном или бесконечном интервале (a,b). Тогда

$$\lim_{\omega \to \infty} \int_a^b f(x) \cos(\omega x) \, dx = \lim_{\omega \to \infty} \int_a^b f(x) \sin(\omega x) \, dx = 0.$$

Теорема 2.1. Пусть $E \subset \mathbb{R}^n$ -измеримое по Лебегу множество и $f \in L_1(E)$. Тогда

$$I(y) := \int_{E} f(x)e^{i\langle x,y\rangle} dx \to 0, \quad ||y|| \to +\infty.$$
 (2.4.1)

Доказательство. Будем считать функцию f продолженной нулем вне множества E. При $y \neq 0$ рассмотрим вектор $h = h(y) := \frac{\pi y}{\|y\|^2}$. Тогда сделав замену переменной x = x' - h имеем

$$I(y) = \int_{\mathbb{R}^n} f(x)e^{i\langle x,y\rangle} dx = \int_{\mathbb{R}^n} f(x'-h)e^{-i\pi}e^{i\langle x',y\rangle} dx' = -\int_{\mathbb{R}^n} f(x-h)e^{i\langle x,y\rangle} dx.$$

Таким образом, поскольку $h(y) \to 0$, $||y|| \to \infty$, получим

$$2|I(y)| = \left| \int_{\mathbb{R}^n} (f(x) - f(x - h(y)))e^{i\langle x, y \rangle} \, dx \right| \le \int_{\mathbb{R}^n} |f(x) - f(x - h(y))| \, dx \to 0, \quad ||y|| \to +\infty. \quad (2.4.2)$$

Теорема доказана.

Следствие. Если $f \in L_1([-\pi,\pi])$, то

$$\lim_{k \to \infty} a_k(f) = \lim_{k \to \infty} b_k(f) = \lim_{k \to \infty} c_k(f) = 0.$$

2.5 Вторая теорема о среднем

В этом пункте мы докажем одно вспомогательное утверждение из теории интеграла Римана, которое будет очень важно при доказательстве достаточных условий сходимости ряда Фурье в точке.

Теорема 2.2. Пусть $g \in R([a,b])$, а f нестрого монотонна на [a,b]. Тогда существует точка $\xi \in [a,b]$ такая, что

$$\int_{a}^{b} f(x)g(x) dx = f(a) \int_{a}^{\xi} g(x) dx + f(b) \int_{\xi}^{b} g(x) dx.$$
 (2.5.1)

Если, кроме того, f неотрицательна на [a,b], то справедливы более простые формулы: a) если f нестрого убывает, то при некотором $\xi \in [a,b]$

$$\int_{a}^{b} f(x)g(x) dx = f(a) \int_{a}^{\xi} g(x) dx;$$
 (2.5.2)

б) если f нестрого возрастает, то при некотором $\xi \in [a,b]$

$$\int_{a}^{b} f(x)g(x) dx = f(b) \int_{\xi}^{b} g(x) dx.$$
 (2.5.3)

Доказательство. Отметим, что $fg \in R([a,b])$, что легко следует из критерия Лебега. Поэтому, левые части формул (2.5.1)–(2.5.3) имеют смысл.

Мы докажем лишь формулу (2.5.2), поскольку (2.5.3) доказывается аналогично, а равенство (2.5.1) легко вытекает из (2.5.2) и (2.5.3).

 $Step\ 1.$ Итак, пусть f неотрицательна и нестрого убывает на [a,b]. Пусть $T=\{x_i\}_{i=0}^n,\ n\in\mathbb{N}$ – произвольное разбиение отрезка [a,b]. То есть $a=x_0< x_1< ...< x_n=b.$ Тогда, очевидно, в силу линейности интеграла Римана имеем

$$\int_{a}^{b} f(x)g(x) dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x)g(x) dx$$

$$= \sum_{i=0}^{n-1} f(x_{i}) \int_{x_{i}}^{x_{i+1}} g(x) dx + \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} (f(x) - f(x_{i}))g(x) dx =: \Sigma_{1}(T) + \Sigma_{2}(T).$$
(2.5.4)

 $Step\ 2$. Поскольку $g\in R([a,b])$, она ограничена на [a,b]. Следовательно, $\sup_{x\in [a,b]}|g(x)|<+\infty$. Легко видеть, что

$$\left| \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} (f(x) - f(x_i))g(x) \, dx \right| \leqslant \sup_{x \in [a,b]} |g(x)| \sum_{i=0}^{n-1} \omega_i(f) |x_i - x_{i+1}|,$$

где $\omega_i := \sup_{x',x'' \in [x_i,x_{i+1}]} |f(x') - f(x'')|$ – колебание функции f на отрезке $[x_i,x_{i+1}]$. Таким образом, в силу критерия интегрируемости, имеем (здесь и далее через l(T) обозначена мелкость разбиения T)

$$\Sigma_1(T) \to 0, \quad l(T) \to 0.$$
 (2.5.5)

 $Step\ 3$. Рассмотрим функцию $G(x):=\int\limits_a^x g(t)\ dt$. Очевидно, что G непрерывна на [a,b]. Используя преобразование Абеля, имеем (здесь использовано, что $G(x_0)=G(a)=0$)

$$\Sigma_{2}(T) = \sum_{i=0}^{n-1} f(x_{i})(G(x_{i+1}) - G(x_{i})) = \sum_{i=1}^{n} f(x_{i-1})G(x_{i}) - \sum_{i=0}^{n-1} f(x_{i})G(x_{i})$$

$$= f(x_{n-1})G(b) + \sum_{i=1}^{n-1} (f(x_{i-1}) - f(x_{i}))G(x_{i}).$$
(2.5.6)

В силу непрерывности G на [a,b] найдутся константы m,M, для которых $m \leqslant G(x) \leqslant M$ при всех $x \in [a,b]$. Ключевое наблюдение состоит в том, что в силу невозрастания f, имеем $f(x_{i-1}) - f(x_i) \geqslant 0$ при всех i. Суммируя сделанные наблюдения, имеем

$$mf(a) = m \sum_{i=1}^{n-1} (f(x_{i-1}) - f(x_i)) + mf(x_{n-1})$$

$$\leq \Sigma_2(T) \leq M \sum_{i=1}^{n-1} (f(x_{i-1}) - f(x_i)) + Mf(x_{n-1}) = Mf(a).$$
(2.5.7)

Из (2.5.4), (2.5.5) и (2.5.7) следует, что $\exists \lim_{l(T) \to 0} \Sigma_1(T) = \int_a^b f(x)g(x) \, dx$ и, кроме того,

$$mf(a) \leqslant \int_{a}^{b} f(x)g(x) dx \leqslant Mf(a). \tag{2.5.8}$$

 $Step\ 4$. Если f(a)=0, то в силу (2.5.8) в качестве ξ можно взять любую точку отрезка [a,b]. Если $f(a)\neq 0$, то в силу теоремы о промежуточном значении, примененной к непрерывной функции G, из (2.5.8) выводим, что найдется точка $\xi\in [a,b]$, для которой

$$G(\xi) = \frac{1}{f(a)} \int_{a}^{b} f(x)g(x) dx.$$
 (2.5.9)

Теорема полностью доказана.

3 Сходимость ряда Фурье в точке.

Мы начнём с формулировки общего критерия сходимости, не требующего знания конкретных свойств регулярности функций. Поэтому мы называем его "абстрактным". Он бесполезен с практической точки зрения, поскольку по сути является переформулировкой определения. С другой стороны, такая формулировка окажется полезной при доказательстве конкретных признаков сходимости рядов Фурье.

Абстрактный критерий сходимости.

Комбинируя (??), (??), и пользуясь четностью ядра Дирихле, при $f \in L_1([-\pi,\pi])$ получим

$$S_n[f](x) := \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sin(n + \frac{1}{2})(t - x)}{\sin(\frac{(t - x)}{2})} f(t) dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sin(n + \frac{1}{2})u}{\sin(\frac{u}{2})} f(x - u) du = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sin(n + \frac{1}{2})u}{\sin(\frac{u}{2})} f(x + u) du.$$
(3.0.1)

Лемма 3.1. При $n \in \mathbb{N}$ и $u \in (-\pi,\pi)$ справедливо равенство

$$D_n(u) = \frac{\sin(nu)}{\pi u} + \frac{1}{2\pi}(\cos(nu) + g(u)\sin(nu)), \tag{3.0.2}$$

где функция $g:(-\pi,\pi)\to\mathbb{R}$ не зависит от n и ограничена на интервале $(-\pi,\pi)$.

Доказательство. Используя формулу синуса суммы, получим

$$D_n(u) = \frac{\sin(nu)\cos(\frac{u}{2})}{2\pi\sin(\frac{u}{2})} + \frac{\cos(nu)}{2\pi} = \frac{\sin(nu)}{\pi u} + \frac{1}{2\pi}(\cos(nu) + g(u)\sin(nu)), \tag{3.0.3}$$

где мы положили g(0) = 0 и

$$g(u) := \frac{1}{\lg(\frac{u}{2})} - \frac{2}{u}, \quad u \in (-\pi, \pi) \setminus \{0\}.$$

Нетрудно видеть, что g – нечетная на $(-\pi,\pi)$ и монотонно убывает. Поэтому, $|g(u)| \leq 2/\pi$ при всех $u \in (-\pi,\pi)$.

Лемма доказана.

Теперь мы готовы сформулировать "абстрактный" критерий сходимости ряда Фурье в точке.

Теорема 3.1. Пусть $f: \mathbb{R} \to \mathbb{R}$ является 2π -периодичной, и $f \in L_1([-\pi,\pi])$. Ряд Фурье f сходится в точке $x \in \mathbb{R}$ к числу $S \in \mathbb{R}$ в том и только том случае, если существует $\delta \in (0,\pi]$ такое, что

$$\lim_{n \to \infty} \int_{0}^{\delta} \left[\frac{f(x+u) + f(x-u)}{2} - S \right] \frac{\sin(nu)}{u} du = 0.$$
 (3.0.4)

Доказательство. Нам будет удобно сделать несколько шагов. Шаг 1. В силу леммы 3.1 мы можем переписать (3.0.1) в виде

$$S_n[f](x) = \int_{-\pi}^{\pi} \frac{\sin(nu)}{\pi u} f(x+u) du + \varepsilon_n[f](x) = \int_{-\pi}^{\pi} \frac{\sin(nu)}{\pi u} f(x-u) du + \varepsilon_n[f](x)$$

$$= \int_{-\pi}^{\pi} \left[\frac{f(x-u) + f(x+u)}{2} \right] \frac{\sin(nu)}{\pi u} du + \varepsilon_n[f](x),$$
(3.0.5)

где мы положили (равенство справедливо в силу четности косинуса и в силу четности произведения $g(u)\sin(nu)$)

$$\varepsilon_n[f](x) := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+u)(\cos(nu) + g(u)\sin(nu)) du$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-u)(\cos(nu) + g(u)\sin(nu)) du.$$
(3.0.6)

По теореме Римана–Лебега ?? имеем $\varepsilon_n[f](x) \to 0, n \to \infty$.

Шаг 2. Используя рассуждения предыдущего шага для $f \equiv 1$, получим

$$\int_{-\pi}^{\pi} \frac{\sin(nu)}{\pi u} du = 1 + o(1), \quad n \to \infty.$$
 (3.0.7)

Шаг 3. Комбинируя (3.0.4) и (3.0.7), имеем

$$|S - S_n[f](x)| = \int_{-\pi}^{\pi} \left[\frac{f(x+u) + f(x-u)}{2} - S \right] \frac{\sin(nu)}{\pi u} du + o(1), \quad n \to \infty.$$
 (3.0.8)

Шаг 4. Функция 1/u ограничена на интервале (δ,π) (при любом фиксированном $\delta>0$). Следовательно, по теореме Римана–Лебега получим

$$\int_{\delta}^{\pi} \left[\frac{f(x+u) + f(x-u)}{2} - S \right] \frac{\sin(nu)}{\pi u} du = o(1), \quad n \to \infty.$$

Следовательно, учитывая четность функции $\sin(nu)/u$, получим

$$\int_{-\pi}^{\pi} \left[\frac{f(x+u) + f(x-u)}{2} - S \right] \frac{\sin(nu)}{\pi u} du = 2 \int_{0}^{\delta} \left[\frac{f(x+u) + f(x-u)}{2} - S \right] \frac{\sin(nu)}{\pi u} du
+ 2 \int_{\delta}^{\pi} \left[\frac{f(x+u) + f(x-u)}{2} - S \right] \frac{\sin(nu)}{\pi u} du
= 2 \int_{0}^{\delta} \left[\frac{f(x+u) + f(x-u)}{2} - S \right] \frac{\sin(nu)}{\pi u} du + o(1), \quad n \to \infty.$$
(3.0.9)

Комбинируя (3.0.8) и (3.0.9), получим (3.0.4).

Теорема доказана.

Теперь установим признак Дирихле-Жордана.

Теорема 3.2. Если функция $f: \mathbb{R} \to \mathbb{R}$ 2π -периодична, и $f \in BV((a,b)) \cap L_1([-\pi,\pi])$ для некоторого интервала (a,b), то её ряд Фурье сходится в каждой точке $x \in (a,b)$, причем

$$S_n[f](x) \to \frac{f(x+0) + f(x-0)}{2}, \quad n \to \infty.$$

 \mathcal{A} оказательство. В силу теоремы о представлении функции ограниченной вариации в виде разности двух неубывающих функций, достаточно рассмотреть случай, когда f не убывает.

Шаг 1. Зафиксируем точку $x_0 \in (a,b)$. В силу теоремы 3.1 достаточно доказать, что при некотором $\delta > 0$

$$I_n := \int_0^\delta \frac{\sin(nu)}{u} [f(x_0 + u) - f(x + 0)] du \to 0, \quad n \to \infty.$$

Шаг 2. По признаку Дирихле несобственный интеграл (понимаемый в смысле Римана или в смысле Лебега)

$$J := \int_{-\infty}^{+\infty} \frac{\sin x}{x} \, dx$$

является сходящимся. Поэтому существует постоянная C>0 такая, что

$$\left| \int_{t_1}^{t_2} \frac{\sin(nu)}{u} \, du \right| = \left| \int_{nt_1}^{nt_2} \frac{\sin(t)}{t} \, dt \right| \leqslant C \quad \forall t_1 < t_2.$$
 (3.0.10)

 $extit{Шаг}$ 3. Фиксируем $\varepsilon > 0$ и выберем $\delta(\varepsilon) > 0$ столь малым, что $U_{\delta}(x_0) \subset (a,b)$ и при этом $|f(x_0+0)-f(x_0+u)| < \frac{\varepsilon}{2C}$ при всех $u \in (0,\delta(\varepsilon))$. В силу второй теоремы о среднем имеем

$$I_n^1 := \int_0^{\delta(\varepsilon)} \frac{\sin(nu)}{u} [f(x_0 + u) - f(x + 0)] du = [f(x_0 + \xi) - f(x + 0)] \int_{\xi}^{\delta(\varepsilon)} \frac{\sin(nu)}{u} du.$$

Отсюда и из (3.0.10) имеем $|I_n^1| < \varepsilon/2$.

Шаг 4. В силу теоремы Римана–Лебега ?? имеем существование такого числа $N_{\varepsilon}:=N(\delta(\varepsilon))\in\mathbb{N},$ что при $n\geqslant N_{\varepsilon}$

$$|I_n^2| := \left| \int_{\delta(\varepsilon)}^{\delta} \frac{\sin(nu)}{u} [f(x_0 + u) - f(x + 0)] du \right| < \varepsilon/2.$$

Шаг 5. Собирая вышеприведенные оценки, получаем, что $|I_n| < \varepsilon$ при всех $n \geqslant N_{\varepsilon}$. Теорема полностью доказана.

3.1 Признаки поточечной сходимости рядов Фурье (продолжение).

Определение 3.1. Будем говорить, что точка x_0 функции $f: \mathbb{R} \to \mathbb{R}$ является регулярной, если в ней $\exists f(x_0 \pm 0)$ и $\exists f'_{\pm}(x_0)$.

Следствие (Из признака Дини). Пусть дана 2π -периодическая функция $f \in L_1([-\pi,\pi])$. Тогда если x_0 — регулярная точка функции f, то ряд Фурье f сходится в ней к $\frac{f(x_0+0)+f(x_0-0)}{2}$.

Доказательство. Для доказательства в силу признака Дини достаточно проверить, что $\exists \delta > 0$ такое, что

$$\int_0^{\delta} |f(x_0 + u) - f(x_0 + 0) + f(x_0 - u) - f(x_0 - 0)| \frac{du}{u} < +\infty.$$

Поскольку

$$\frac{f(x_0+u)-f(x_0+0)}{u} \to f'_+(x_0), u \to +0 \quad \frac{f(x_0-u)-f(x_0-0)}{u} \to f'_-(x_0), u \to +0.$$

To есть существует $\delta > 0$ такое, что

$$\left| \frac{f(x_0 + u) - f(x_0 + 0)}{u} \right| \in \left[\frac{|f'_+(x_0)|}{2}, 2|f'_+(x_0)| \right] \quad \left| \frac{f(x_0 - u) - f(x_0 - 0)}{u} \right| \in \left[\frac{|f'_-(x_0)|}{2}, 2|f'_-(x_0)| \right] \forall u \in (0, \delta).$$

А значит выполнено условие Дини и ряд сходится к полусумме односторонних пределов.

Пример (Шварц). Существует непрерывная 2π -периодическая функция такая, что её ряд Фурье расходится в нуле.

Определим функцию f как

$$f(x) = \begin{cases} 0, & x = 0\\ \frac{1}{\sqrt{k}} \sin n_k t & t \in [t_k, t_{k-1}], k = 2, \dots \end{cases}$$

где $n_k=2^{k!},\, t_1=\pi$ и $t_k=\frac{2\pi}{n_k}, k>1.$ Определим $J_n[f]$ как

$$J_n[f](0) = \int_0^{\pi} \frac{\sin nt}{t} f(t) dt.$$

Исследуем поведение $J_n[f]$ на гармониках n_k :

$$J_{n_k}[f](0) = \int_0^\pi \frac{\sin n_k t}{t} f(t) dt = \int_0^{t_k} \frac{\sin n_k t}{t} f(t) dt + \int_{t_k}^{t_{k-1}} \frac{\sin^2 n_k t}{t \sqrt{k}} dt + \int_{t_{k-1}}^\pi \frac{\sin n_k t}{t} f(t) dt = F_k + J_k + H_k.$$

Рассмотрим для начала поведение интеграла J_k :

$$\frac{1}{\sqrt{k}} \int_{2\pi}^{A_k} \sin^2 \tau \frac{d\tau}{\tau} = \frac{1}{\sqrt{k}} \int_{2\pi}^{A_k} \frac{1 - \cos 2\tau}{2\tau} d\tau.$$

где $A_k = 2\pi \frac{n_k}{n_{k-1}}$. Заметим, что

$$\int_{2\pi}^{+\infty} \frac{\cos 2\tau}{\tau} d\tau.$$

сходится по признаку Дирихле, а значит

$$\exists C > 0 \ \forall k \in \mathbb{N} \hookrightarrow \left| \int_{2\pi}^{A_k} \frac{\cos 2\tau}{2\tau} d\tau \right| < C.$$

С другой стороны,

$$\int_{2\pi}^{A_k} \frac{d\tau}{2\tau} = \ln \frac{A_k}{2\pi} = \frac{1}{2} (k! - (k-1)!) \ln 2 \geqslant \frac{k! \ln 2}{3}.$$

А значит

$$J_k \geqslant \frac{\ln 2}{3\sqrt{k}}k! + O(1).$$

Оценим H_k :

$$|H_k| \leqslant \int_{t_{k-1}}^{\pi} \ln \frac{\pi}{t_{k-1}} \ln \frac{n_{k-1}}{2} \leqslant (k-1)! \ln 2.$$

И последний интеграл:

$$|F_k| \leqslant \int_0^{t_k} \left| \frac{\sin n_k t}{t} f(t) \right| dt \leqslant \int_0^{t_k} \frac{|\sin n_k t|}{t} |f(t)| dt \leqslant \int_0^{t_k} |n_k f(t)| dt \leqslant \frac{n_k t_k}{\sqrt{k}} = \frac{2\pi}{\sqrt{k}} \to 0, k \to +\infty.$$

Таким образом, получается:

$$J_{n_k}[f](0) \geqslant \frac{\ln 2}{3\sqrt{k}}k! + O(1) - (k-1)! \ln 2 - \frac{2\pi}{\sqrt{k}} \geqslant (k-1)! \ln 2(\frac{\sqrt{k}}{3} - 1) + O(1) \to +\infty, k \to +\infty.$$

А значит $S_{n_k}[f](0) \to +\infty, k \to +\infty$ и ряд Фурье функции f расходится в нуле.

3.2 Суммы Фейера.

Определение 3.2. Пусть дана 2π -периодическая $f \in L_1([-\pi, \pi])$. Суммой Фейера для f будем называть

$$\sigma_n[f] = \frac{1}{n} \sum_{i=0}^{n-1} S_i[f].$$

Распишем подробнее сумму Фейера через выражение для ядер Дирихле:

$$\sigma_n[f](x) = \frac{1}{2\pi n} \int_{-\pi}^{\pi} \frac{f(x-u)}{\sin u/2} \sum_{k=0}^{n-1} \sin(k+1/2)udu.$$

В тоже время,

$$\frac{1}{\sin u/2}(\sin u/2 + \dots + \sin(n-1/2)u)\sin u/2 = \frac{1}{2\sin u/2}(1-\cos nu).$$

Определение 3.3. Ядром Фейера будем называть

$$\Phi_n = \frac{1}{n} \sum_{k=0}^{n-1} D_k = \frac{\sin^2 nu/2}{2\pi n \sin^2 u/2}.$$

Тогда сумма Фейера для f может быть записана как свёртка ядра Фейера и функции f:

$$\sigma_n[f](x) = \Phi_n * f = \int_{-\pi}^{\pi} \Phi_n(x - u) f(u) du.$$

Ядро Фейера можно также записать в виде

$$\Phi_n(u) = \frac{1}{n} \sum_{k=0}^{n-1} D_k(u) = \frac{1}{2\pi n} \sum_{k=0}^{n-1} \sum_{|j| < k} e^{iku} = \frac{1}{2\pi} \sum_{|k| < n} \left(1 - \frac{|k|}{n}\right) e^{iku}$$

Утверждение 3.1. Нетрудно заметить некоторые свойства ядра Фейера:

- $\forall n \in \mathbb{N} \hookrightarrow \Phi_n \geqslant 0.$
- $\triangleright \Phi_n 2\pi$ -периодичная функция.
- ightarrow Поскольку $\int_{-\pi}^{\pi} D_n(u) du = 1$, то

$$\int_{-\pi}^{\pi} \Phi_n(u) du = \frac{1}{n} \sum_{k=0}^{n-1} \int_{-\pi}^{\pi} D_n(u) du = 1.$$

ightharpoonup Для ядра Фейера справедливо т.н. «фокусирующее свойство»: при всяком $\delta>0$ и $\delta<|u|<\pi$ верно

$$\Phi_n(u) = \frac{1}{2\pi n} \left(\frac{\sin nu/2}{\sin u/2} \right)^2 \leqslant \frac{1}{2\pi n \sin^2 \delta/2} \leqslant \frac{\pi}{2n\delta^2} \to 0, n \to +\infty.$$

Таким образом,

$$\forall \delta > 0 \hookrightarrow \sup_{\delta < |u| < \pi} \Phi_n(u) \to 0, n \to +\infty.$$

Определение 3.4. Будем говорить, что для $\alpha \in (0,1)$ функция лежит в $H^{\alpha}(\mathbb{R})$ (т.е. удовлетворяет условию Гёльдера с показателем α) если

$$\exists C > 0 \forall x', x'' \in \mathbb{R} \hookrightarrow |f(x') - f(x'')| \leqslant C|x' - x''|^{\alpha}.$$

Теорема 3.3. Пусть дана 2π -периодическая $f \in H^{\alpha}(\mathbb{R})$, $\alpha \in (0,1)$. Тогда ряд Фурье f сходится к ней равномерно на \mathbb{R} . Более того,

$$\left| S_n[f](x) - f(x) \right| \leqslant C \cdot \frac{\ln n}{n^{\alpha}} \quad \forall n \in \mathbb{N}, \forall x \in \mathbb{R}.$$

Доказательство. Для начала рассмотрим отклонения от суммы Фейера:

$$\sigma_n[f](x) - f(x) = \int_{-\pi}^{\pi} f(x - t)\Phi_n(t)dt - \int_{-\pi}^{\pi} \Phi_n(t)f(x)dt = \int_{-\pi}^{\pi} (f(x - t) - f(x))\Phi_n(t)dt.$$

То есть

$$|\sigma_n[f](x) - f(x)| \le \int_{-\pi}^{\pi} |f(x-t) - f(x)| \Phi_n(t) dt \le \frac{C}{2\pi n} \int_0^{\pi} t^{\alpha} \cdot \frac{\sin^2(nt/2)}{\sin^2 t/2} dt \le (*)$$

Ho, поскольку $\sin t/2 \geqslant \frac{2}{\pi} \cdot \frac{t}{2} = \frac{t}{\pi}$, то

$$(*) \leqslant \frac{C\pi}{2n} \int_0^{\pi} t^{\alpha-2} \sin^2(nt/2) dt = (*)$$

Теперь сделаем замену nt/2 = u и получим

$$(*) = \frac{C\pi}{2n} \int_0^{\pi n/2} \left(\frac{2u}{n}\right)^{\alpha-2} \cdot \sin^2 u \cdot \frac{2u}{n} du \leqslant \frac{2^{\alpha-2}C\pi}{n^{\alpha}} \int_0^{\pi n/2} \frac{\sin^2 u}{u^{2-\alpha}} du.$$

Но $\int_0^{+\infty} \frac{\sin^2 u}{u^{2-\alpha}} du$ сходится в несобственном смысле, а значит $\exists \widetilde{C}>0$ такая, что

$$\left| \int_0^{\pi n/2} \frac{\sin^2 u}{u^{2-\alpha}} du \right| \leqslant \widetilde{C}.$$

И отклонение суммы Фейера от функции оценивается как

$$|\sigma_n[f](x) - f(x)| \le \frac{M}{n^{\alpha}}.$$

Пусть $\varphi_n = f - \sigma_n[f]$. Тогда

$$\left| S_n[f](x) - f(x) \right| = \left| S_n[\varphi_n](x) - \varphi_n(x) \right|,$$

поскольку

$$S_n[\sigma_n[f]] = \sigma_n[f].$$

А это верно из того, что сумма Фейера – это тригонометрический полином *n*-ой степени. Тогда

$$\left| S_n[f](x) - f(x) \right| \leqslant \left| S_n[\varphi_n](x) \right| + \left| \varphi_n(x) \right| = (*)$$

Оценка для φ_n уже есть выше. Для оператора частичной суммы некоторой 2π -периодической функции g мы можем дать следующую оценку:

$$S_{n}[g](x) \leqslant \int_{-\pi}^{\pi} |g(x-t)| \left| \frac{\sin(n+1/2)t}{\sin t/2} \right| dt \leqslant$$

$$\leqslant 2 \sup_{[-\pi,\pi]} |g| \cdot \int_{0}^{\pi} \left| \frac{\sin(n+1/2)t}{\sin t/2} \right| dt \leqslant$$

$$\leqslant C_{1} \sup |g| \int_{0}^{\pi(n+1/2)} \frac{|\sin v|}{v} dv \leqslant \widetilde{C} \sup |g| \ln n.$$

Таким образом

$$(*) \leqslant \widehat{C} \frac{M \ln n}{n^{\alpha}}.$$

Что доказывает равномерную сходимость и показывает требуемую оценку на отклонение частичной суммы. □

Замечание. Рассуждая аналогично, в случае $\alpha = 1$ можно получить более грубую оценку:

$$||S_n[f] - f||_{C([-\pi,\pi])} \le \frac{C \ln^2 n}{n}.$$

Но на самом деле можно при условии $f \in LIP(\mathbb{R})$ справедлива более сильная оценка:

$$||S_n[f] - f||_C \leqslant \frac{C \ln n}{n}.$$

3.3 Теорема Фейера

Теорема 3.4. Пусть $f \in C([-\pi,\pi])$ и $f-2\pi$ - периодична. Тогда $\sigma_n[f] \underset{\mathbb{R}}{\Longrightarrow} f, \ n \to \infty.$

Доказательство. В силу периодичности $\sigma_n[f]$ и f достаточно доказать, что $\sigma_n[f] \underset{[-\pi,\pi]}{\Rightarrow} f, \ n \to \infty.$

Поскольку $f \in C([-\pi, \pi]])$, то по теореме Кантора она равномерно непрерывна. Значит её модуль непрерывности стремится к нулю:

$$\omega(\delta) = \sup_{\substack{x', x'' \in [-2\pi, 2\pi] \\ |x' - x''| < \delta}} |f(x') - f(x'')| \to 0, \delta \to +0.$$

Формально, описанное выше выражение определено для $\delta \in (0,4\pi)$. Запишем по определению сумму Фейера:

$$\sigma_n[f](x) = \int\limits_{-\pi}^{\pi} f(x-t)\Phi_n(t)dt = \int\limits_{-\pi}^{\pi} f(t)\Phi_n(x-t)dt \ , \ \text{где } \Phi_n(t) \ - \ \text{ ядро Фейера}.$$

Тогда:

$$|\sigma_n[f](x) - f(x)| = \left| \int_{-\pi}^{\pi} f(x - t) \Phi_n(t) dt - \int_{-\pi}^{\pi} \Phi_n(t) f(x) dt \right| \leqslant I_n = \int_{-\pi}^{\pi} \Phi_n(t) |f(x - t) - f(t)| dt = I_1(\delta) + I_2(\delta).$$

$$I_1(\delta) = \int_{-\pi}^{\delta} \Phi_n(t) |f(x - t) - f(x)| dt \leqslant \omega_{\delta}[f] \int_{-\pi}^{\delta} \Phi_n(t) dt \leqslant \omega_{\delta}[f].$$

В этой оценке мы ограничиваем сверху |f(x-t)-f(t)| через модуль непрерывности, а $\int\limits_{s}^{\delta}\Phi_{n}(t)dt\leqslant 1.$

$$I_2(\delta) = \int_{[-\pi,\pi]\setminus[-\delta,\delta]} \Phi_n(t)|f(x-t) - f(x)|dt.$$

Так как f — непрерывна на $[-2\pi, 2\pi]$, то $\exists M > 0$ такое, что $|f(x)| \le M \ \forall x \in [-2\pi, 2\pi]$. Тогда можем оценить $|f(x-t) - f(x)| \le |f(x)| + |f(x-t)| \le 2M$.

Из вышеприведенного утверждения и того, что $\forall \delta > 0 \sup_{\delta < |u| < \pi} \Phi_n(u) \to 0, n \to \infty$ и ограничения, описанного выше, получаем:

$$I_2(\delta) \leqslant 2M \int_{[-\pi,\pi]\setminus[-\delta,\delta]} \Phi_n(t)dt \leqslant 2M \sup_{\delta \leqslant |t| \leqslant \pi} \Phi_n(t) \to 0, n \to \infty.$$

 $\forall \varepsilon > 0$ найдем $\delta(\varepsilon)$ такое, что $I_1(\delta) < \frac{\varepsilon}{2}$. Затем, при фиксированном $\delta(\varepsilon)$ выберем $N(\varepsilon) \in \mathbb{N}$ таким, что $\forall n > N(\varepsilon) \ I_2(\delta) \leqslant \frac{\varepsilon}{2}$.

Итого, получается, $\forall \varepsilon > 0 \ \exists N(\delta(\varepsilon)) = \tilde{N}(\varepsilon)$ такой, что $\forall n > \tilde{N}(\varepsilon) \hookrightarrow I_n < \varepsilon$.

Определение 3.5. Функция $T_n(x) = c_0 + \sum_{k=0}^n a_k \cos(kx) + \sum_{k=0}^n \sin(kx)$ называется тригонометрическим полиномом степени n, если $|a_n| + |b_n| \neq 0$.

Следствие (Первая теорема Вейерштрасса). Пусть $f \in C([-\pi, \pi]])$ и $f(-\pi) = f(\pi)$. Тогда, $\forall \varepsilon > 0$ \exists тригонометрический полином T_{ε} такой, что $||f - T_{\varepsilon}||_{C([-\pi, \pi])} \leq \varepsilon$.

Следствие (Теорема Вейерштрасса). Пусть $-\infty < a < b < \infty$ и $f \in C([a,b])$. Тогда $\forall \varepsilon > 0$ \exists полином $P_{\varepsilon}[f]$ такой, что $||f - P_{\varepsilon}[f]||_{C([a,b])} < \varepsilon$.

Доказательство. Для удобства доказательства перенесем отрезок [a,b] в отрезок $[0,\pi]$. Пусть $x \in [a,b]$, а $t \in [0,\pi]$. Обозначим $\varphi(x)$ — взаимно однозначная функция, преобразующая точку из первого отрезка в точку из второго отрезка. Тогда $x(t) = \varphi^{-1}(t) = a + \frac{b-a}{\pi}t$.

Заметим, что $f \circ \varphi \in C([0,\pi])$. Продолжим f чётным образом. Получим функцию $\tilde{f} \in C([-\pi,\pi])$ и $\tilde{f}(-\pi) = \tilde{f}(\pi)$.

Применим теорему Фейера к функции \tilde{f} .

$$\forall \varepsilon > 0 \; \exists N(\varepsilon) \in \mathbb{N} \; \forall n \geqslant N(\varepsilon) \hookrightarrow \sigma_n[\tilde{f}] \; \text{такая, что} \; ||\tilde{f} - \sigma_n[\tilde{f}]||_{C([-\pi,\pi])} < \varepsilon.$$

$$\sigma_n[f] = \frac{1}{n} \sum_{k=1}^{n-1} S_k[\tilde{f}]$$
, где $S_k[\tilde{f}] = \frac{a_0}{2} + \sum_{j=1}^k a_j(\tilde{f}) \cos(jx) + \sum_{j=1}^k b_j(\tilde{f}) \sin(jx)$

Вспомним, что $\cos(jx)$ и $\sin(jx)$ — аналитические $\forall j \in \mathbb{N}$. Следовательно, на любом отрезке $[-A,A] \subset \mathbb{R}$ к ним равномерно сходятся их ряды Тейлора. Тогда мы можем приблизить $\cos(jx)$ и $\sin(jx)$ полиномами Тейлора настолько, чтобы после сложения получилось что-то «небольшое». Обозначим $P_j(x)$ — полином Тейлора для $\sin(jx)$, а $Q_j(x)$ — полином Тейлора для $\cos(jx)$. Можно выбрать полиномы Тейлора так, чтобы существовали ε_j и $\tilde{\varepsilon_j}$ такие, что:

$$\sup_{x \in [-\pi,\pi]} |P_j(x) - \sin(jx)| < \varepsilon_j$$

$$\sup_{x \in [-\pi,\pi]} |Q_j(x) - \cos(jx)| < \tilde{\varepsilon_j}$$

И при этом выполнялось:

$$\frac{1}{n}\sum_{k=0}^{n-1}\left(\frac{a_0}{2} + \sum_{j=1}^{k}|a_j|\varepsilon_j + |b_j|\tilde{\varepsilon_j}\right) < \varepsilon$$

Тогда, полагая

$$P_{\varepsilon}[\tilde{f}] := \frac{1}{n} \sum_{k=0}^{n-1} (\frac{a_0}{2} + \sum_{j=1}^{k} a_j(\tilde{f})Q_j + b_j(\tilde{f})P_j)$$

 $P_{\varepsilon}[f](t)$ «живет» на отрезке $[-\pi,\pi]$. Теперь мы хотим перенести его на [0,1]. Положим $t(x)=\frac{x-a}{b-a}\pi$. Тогда $P_{\varepsilon}[f]=P_{\varepsilon}[\tilde{f}](t(x))$ — искомый полином, так как $\tilde{f}(t(x))=f(x)$. Тогда заметим, что $\sup_{t\in [-\pi,\pi]}|\tilde{f}(t)-P_{\varepsilon}[\tilde{f}](t)|=\sup_{x\in [a,b]}|f(x)-P_{\varepsilon}[f](x)|<\varepsilon$.

3.4 Скорость убывания коэффициентов Фурье

Общая концепция: чем более гладкая функция, тем быстрее убывают коэффициенты Фурье.

Лемма 3.2 (Основная). Пусть $f \in \tilde{L}_1(\mathbb{R}) \cap BV(\mathbb{R})$. Тогда $c_f(y) = f(x)e^{-ixy} = O(\frac{1}{n}), y \to \infty$.

Доказательство. Так как $f \in BV(\mathbb{R})$, то f(x) = u(x) + v(x), $x \in \mathbb{R}$, где u(x) — нестрого возрастающая функция на \mathbb{R} , а v(x) — нестрого убывающая функция на \mathbb{R} . Тогда можно записать $\forall a,b:-\infty < a < b < \infty$:

$$c_{[a,b]}(y) = \int_{a}^{b} f(x)e^{-ixy}dx = \int_{a}^{b} u(x)e^{-ixy}dx + \int_{a}^{b} v(x)e^{-ixy}dx \Rightarrow$$

$$\exists \ \xi \in [a,b], \zeta \in [a,b] : c_{[a,b]}(y) = u(a+0) \int_{a}^{\xi} e^{-ixy}dx + u(b-0) \int_{\xi}^{b} e^{-ixy}dx + v(a+0) \int_{a}^{\xi} e^{-ixy}dx + v(b-0) \int_{\xi}^{b} e^{-ixy}dx.$$

Ключевое наблюдение: если $f \in BV(\mathbb{R})$ и интрегрируема, то $f(x) \to 0, x \to \infty$. Пусть $f \to 0$. Тогда $\exists > 0$ такой, что $\forall \delta > 0 \; \exists \; x : |f(x)| > C$. Но при этом, $f \in L_1(\mathbb{R})$, так как интегрируема. Тогда, $\exists \; \tilde{x} : |\tilde{x}| > \delta \; |f(\tilde{x})| < \frac{C}{2}$. Получаем противоречие, так как можно получить бесконечный набор точек $\{x_n\}$ и $\{\tilde{x}_n\}$, которые мы набираем по описанному выше условию. Ограничим:

$$\left| \int_{a}^{\xi} e^{-ixy} dx \right| < \frac{2}{|y|} \qquad \left| \int_{\xi}^{b} e^{-ixy} dx \right| < \frac{2}{|y|}$$

$$\left| \int_{a}^{\zeta} e^{-ixy} dx \right| < \frac{2}{|y|} \qquad \left| \int_{\zeta}^{b} e^{-ixy} dx \right| < \frac{2}{|y|}$$

$$u(a+0) \le V_{\mathbb{R}}(f) \qquad u(b-0) \le V_{\mathbb{R}}(f)$$

$$v(a+0) \le V_{\mathbb{R}}(f) \qquad v(b-0) \le V_{\mathbb{R}}(f)$$

Получаем: $|c_{[a,b]}(y)| \leqslant \frac{8V_{\mathbb{R}}(f)}{|y|}$ — оценка не зависит от выбора интервала [a,b]. Устремляя $a \to -\infty,\ b \to +\infty,$ получаем требуемое.

Теорема 3.5 (б/д). Пусть $F \in AC([a,b])$. Тогда F почти всюду имеет классическую производную и, более того, восстанавливается через свою производную по формуле Ньютона - Лейбница.

Теорема 3.6 (Интегрирование по частям, 6/д). Пусть $F \in AC([a,b]), g \in L_1([a,b])$. Тогда верна формула интегрирования по частям: $\int\limits_a^b F(x)g(x)dx = F(x)G(x)\big|_a^b - \int\limits_a^b F'(x)G(x)dx$,

$$e\partial e\ G(x) = \int_{a}^{x} g(t)dt$$

Следствие. Пусть функция $f: \mathbb{R} \to \mathbb{R} - 2\pi$ -периодическая, такая, что $f^{(k-1)} \in AC([-\pi,\pi])$. Пусть $f^{(k)}$ почти всюду может быть изменена на множестве меры ноль таким образом, что $f^{(k)} \in$ $BV([-\pi,\pi])$. Тогда $c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx}dx = O\left(\frac{1}{n^{k+1}}\right)$.

Доказательство.

$$\int_{-\pi}^{\pi} f'(x)e^{inx}dx = f(x)e^{-inx}\Big|_{-\pi}^{\pi} + in\int_{-\pi}^{\pi} f(x)e^{-inx}dx.$$

Проделаем эту операцию k раз. Так как $f-2\pi$ -периодична и $f^{(k)}\in AC([-\pi,\pi])$ — 2π -периодична:

$$\int_{-\pi}^{\pi} f^{(k)}e^{-inx}dx = (in)^k \int_{-\pi}^{\pi} f(x)e^{-inx}dx.$$

Ho $f^{(k)}$ можно считать $BV([-\pi,\pi])$.

Рассмотрим функцию $F=\begin{cases} f^{(k)}(x), x\in [-\pi,\pi] \\ 0, \text{ иначе} \end{cases}$. Тогда $F\in BV([-\pi,\pi])$ и $\int\limits_{-\pi}^{\pi}f(x)e^{-inx}dx=\int\limits_{\mathbb{R}}F(x)e^{-inx}dx=O\left(\frac{1}{n}\right), n\to\infty$ в силу леммы. С учетом того, что $\int\limits_{-\pi}^{\pi}f(x)e^{-inx}dx=\frac{1}{(in)^k}\int\limits_{-\pi}^{\pi}f^{(k)}(x)e^{inx}dx$

получаем требуемое.

4 Введение в теорию евклидовых пространств.

Определение 4.1. Пусть $E = (E, \langle \cdot, \cdot \rangle)$ — евклидово пространство. Пусть $\{e_n\}_{n=1}^{+\infty}$ — ортогональная система из ненулевых векторов в нём. Тогда $\forall f \in E$ будем называть

$$\alpha_k(f) = \frac{\langle f, e_k \rangle}{\langle e_k, e_k \rangle}, k \in \mathbb{N}.$$

коэффициентом Фурье элемента f по системе $\{e_n\}_{n=1}^{+\infty}$

Теорема 4.1 (минимальное свойство коэффициентов Фурье). Пусть $E = (E, \langle \cdot, \cdot \rangle) - e \varepsilon \kappa n u do so$ пространство. Тогда $\forall f \in E \hookrightarrow$

$$\inf_{\beta_1, \dots, \beta_n} \| f - \sum_{k=1}^n \beta_k e_k \| = \| f - \sum_{k=1}^n \alpha_k(f) e_k \|.$$

Доказательство. Пусть $d_n = \sum_{k=1}^n (\alpha_k(f) - \beta_k) e_k$, где β_i — произвольные вещественные коэффициенты. Тогда

$$\|f - \sum_{k=1}^{n} \beta_k e_k\|^2 = \|f - S_n[f] + S_n[f] - \sum_{k=1}^{n} \beta_k e_k\|^2 =$$

$$= \langle f - S_n + d_n, f - S_n + d_n \rangle = \langle f - S_n, f - S_n \rangle + 2\langle d_n, f - S_n \rangle + \langle d_n, d_n \rangle,$$

Где под $S_n[f]$ понимается n-ая сумма ряда Фурье, то есть $S_n[f] = \sum_{k=1}^n a_k(f)e_k$. Заметим, что $\forall k \in \{1,\ldots,n\}$ верно, что

$$\langle e_k, f - S_n[f] \rangle = \langle e_k, f \rangle - \langle e_k, S_n[f] \rangle = \langle e_k, f \rangle - \langle e_k, \alpha_k(f) e_k \rangle = 0.$$

Значит $2\langle d_n, f - S_n \rangle = 0$, и квадрат отклонения выражается как

$$\left\| f - \sum_{k=1}^{n} \beta_k e_k \right\|^2 = \langle f, f \rangle + \langle d_n, d_n \rangle \geqslant \langle f, f \rangle,$$

причём минимум достигается при $d_n=0$. Но, тогда, из ортогональности системы и определения d_n , мы получаем что $\forall n\in\mathbb{N}$

$$||f - S_n[f]|| \le ||f - \sum_{k=1}^n \beta_k e_k||.$$

для всяких $\{\beta_i\}$. То есть

$$||f - S_n[f]|| \le \inf_{\beta_i \in \mathbb{R}, i = \overline{1,k}} ||f - \sum_{k=1}^n \beta_k e_k||.$$

Поскольку $S_n[f] = \sum_{k=1}^n a_k(f)e_k$, то утверждение теоремы доказано.

Примечание (Геометрическая интерпретация теоремы.). По сути теорема говорит, о том что при проектировании вектора на подпространство, натянутое на первые n базисных векторов наименьшую «длину» (то есть норму) имеет ортогональная проекция на него.

Теорема 4.2 (О единственности). Пусть $E = (E, \langle \cdot, \cdot \rangle)$ — евклидово пространство $u \ f \in E$. Пусть $\{e_n\}_{n=1}^{+\infty}$ — ортогональная система в $E \ u \ f = \sum_{k=1}^{+\infty} \alpha_k e_k$ (где сходимость ряда понимается в смысле нормы) Тогда $\forall k \in \mathbb{N}\alpha_k$ — коэффициент Фурье f.

 \mathcal{A} оказательство. Пусть $S_n = \sum_{k=1}^n \alpha_k e_k$. Тогда

$$|\langle f, e_k \rangle - \langle S_n, e_k \rangle| = |\langle f - S_n, e_k \rangle| \leqslant ||f - S_n|| ||e_k|| \to 0, n \to +\infty.$$

А значит $\forall k \in \mathbb{N} \ \exists \lim_{n \to +\infty} \langle S_n, e_k \rangle = \langle f, e_k \rangle$. В силу ортогональности системы мы получаем искомое утверждение.

Лемма 4.1. Пусть дано $E = (E, \langle \cdot, \cdot \rangle)$ — евклидово пространство и $\{e_n\}_{n=1}^{+\infty}$ — ортогональная система в нём. Тогда $\forall n \in \mathbb{N}$ справедливо следующее:

$$||f||^2 = ||f - S_n[f]||^2 + \sum_{k=1}^n \alpha_k^2(f) \langle e_k, e_k \rangle$$

П

Доказательство. Доказательство очевидно в силу ортогональности системы и линейности скалярного произведения. \Box

Следствие (Неравенство Бесселя). В условиях предыдущей леммы $\forall f \in E$ справедливо неравенство Бесселя

$$\sum_{k=1}^{+\infty} ||e_k||^2 \leqslant ||f||^2.$$

Доказательство. В силу предыдущей леммы и неотрицательности нормы $\forall n \in \mathbb{N} \hookrightarrow$

$$\sum_{k=1}^{n} \alpha_k^2(f) \|e_k\|^2 \leqslant \|f\|^2.$$

Взятие супремума по $n \in \mathbb{N}$ завершает доказательство.

Теорема 4.3 (Рисс, Фишер). Пусть $H = (H, \langle \cdot, \cdot \rangle)$ — гильбертово пространство (то есть полное относительно нормы евклидово пространство). Пусть $\{e_n\}_{n=1}^{+\infty}$ — ортогональная система в нём. Тогда следующие условия эквивалентны:

- 1. $\sum_{k=1}^{+\infty} \alpha_k e_k$ сходится к некоторому элементу $f \in H$ в смысле евклидовой нормы.
- 2. Для некоторой $f \in H$ выполняется $\alpha_k = \alpha_k(f)$ при всяком натуральном k.
- 3. Числовой ряд $\sum_{k=1}^{+\infty} |\alpha_k|^2 ||e_k||^2 cxodumcs$.

Импликация $2) \Rightarrow 3$) очевидна в силу неравенства Бесселя.

Покажем что 3) \Rightarrow 1). Пусть, без ограничения общности, m и n — натуральные и m > n. Тогда

$$\left\langle \sum_{k=n}^{m} \alpha_k e_k, \sum_{k=n}^{m} \alpha_k e_k \right\rangle = \left\| \sum_{k=n}^{m} \alpha_k e_k \right\|.$$

В силу ортогональности системы и Критерия Коши сходимости числового ряда

$$\sum_{k=n}^{m} |\alpha_k|^2 ||e_k||^2 \to 0, n, m \to +\infty.$$

Тогда последовательность частичных сумм ряда фундаментальна и он сходится к $f \in H$, поскольку H — полно. Импликация доказана.

Определение 4.2. Пусть $E = (E, \|\cdot\|) - ЛНП$. Система векторов $\{e_n\}_{n=1}^{+\infty}$ называется полной в E, если $\forall f \ \forall \varepsilon > 0 \exists c_1, \dots, c_n \in \mathbb{R}$ такая, что $\|f - \sum_{k=1}^n c_k e_k\| < \varepsilon$.

Примечание. Всякий базис Шаудера является полной системой. Обратное неверно: контрпримером является $\{x^n\}_{n=0}^{+\infty}$ в C([-1,1]). Она полна по теореме Вейерштрасса, но не является базисом. Предположим противное. Тогда для

$$f(x) = |x| \exists ! \{c_k\}_{k=0}^{+\infty} : |x| = \sum_{k=0}^{+\infty} c_k x^k.$$

причём равенство понимается в равномерном смысле. Но тогда по теореме о дифференцируемости степенного ряда мы получаем дифференцируемость f в нуле – противоречие.

Определение 4.3. Пусть $E = (E, \langle \cdot, \cdot \rangle)$ — евклидово пространство. Ортоональная система $\{e_n\}_{n=1}^{+\infty}$ называется замкнутой, если из ортогональности f каждому e_k следует то, что f = 0.

Теорема 4.4 («Основная» теорема.). Пусть $H = (H, \langle \cdot, \cdot \rangle)$ — гильбертово пространство. Пусть $\{e_k\}_{k=0}^{+\infty}$ — ортогональная система в нём. Следующие условия эквивалентни:

- 1. Система $\{e_n\}_{n=1}^{+\infty}$ полна.
- 2. Система $\{e_n\}_{n=1}^{+\infty}$ базис.
- 3. $\forall f \in H$ ряд Фурье по системе $\{e_k\}$ сходится κ f.
- 4. Справедливо равенство Парсеваля:

$$||f||^2 = \sum_{k=1}^{+\infty} |\alpha_k|^2 ||e_k||^2.$$

5. Система $\{e_n\}_{n=1}^{+\infty}$ — замкнута.

Доказательство. Покажем импликацию $1) \Rightarrow 2$).

Пусть $\Delta_n = \inf_{\beta_1,\dots,\beta_n} \|f - \sum_{k=1}^n \beta_k e_k\|$, $n \in \mathbb{N}$. Нетрудно заметить, что $\Delta_{n+1} \leqslant \Delta_n \forall n \in \mathbb{N}$, поскольку занулением лишнего коэффициента сводится к предыдущей дельте. Тогда, из монотонности последовательности и неотрицательности каждого из её членов следует существование предела, равного инфинуму:

$$\exists \lim_{n \to +\infty} \Delta_n = \inf_n \Delta_n.$$

Поскольку по определению полноты $\forall f \in H \forall \varepsilon > 0 \exists n \in \mathbb{N} \exists c_1, \dots, c_n \in \mathbb{R}$:

$$||f - \sum_{k=1}^{n} c_k e_k|| < \varepsilon.$$

то $\inf_n \Delta_n = 0$. В силу минимального свойства коэффициентов Фурье $\Delta_n = \|f - S_n[f]\|$. А значит $\{e_n\}_{n=1}^{+\infty}$ — базис (из существования предела Δ_n и теоремы о единственности).

Импликация $2) \Rightarrow 3$) верна по теореме о единственности – эти коэффициенты в единственном разложении по базису и будут коэффициентами ряда Фурье.

Импликация $3) \Rightarrow 4$) следует из ранее доказанной леммы:

$$||f||^2 = ||f - S_n[f]||^2 + \sum_{k=1}^n |\alpha_k(f)e_k| \langle e_k, e_k \rangle.$$

При устремлении n в бесконечность получаем равенство Парсеваля.

Заметим, что та же самая лемма даёт нам из выполнения равенства Парсеваля базисность системы, а значит $4) \Rightarrow 2$. Ранее было замечено, что из базисности системы векторов следует её полнота, то есть $2) \Rightarrow 1$). При этом, в вышеприведённых рассуждениях полнота нигде не использовалась, а значит 1), 2), 3), 4) эквивалентны и при условии отсутствия полноты.

Покажем 4) \Rightarrow 5). Пусть существует $f \in H$ такой, что $\forall k \in \mathbb{N} \hookrightarrow f \perp e_k$. Тогда $\forall k \in \mathbb{N} \alpha_k(f) = 0$ и $||f||^2 = 0$ по равенству Парсеваля. По определению нормы f = 0 и система замкнута.

Покажем 5) \Rightarrow 1). Зафиксируем $f \in H$. Из неравенства Бесселя следует:

$$\sum_{k=1}^{+\infty} |\alpha_k(f)| \|e_k\|^2 \le \|f\|^2 < +\infty.$$

По теореме Рисса-Фишера ряд $\sum\limits_{k=1}^{+\infty}\alpha_k(f)e_k$ сходится к некоторому элементу $S\in H$. Заметим, что $\langle S,e_k\rangle=\alpha_k(f)\langle e_k,e_k\rangle$ — по теореме о единственности. Тогда $\langle S,e_k\rangle=\langle f,e_k\rangle \forall k\in\mathbb{N}$. Из замкнутости системы $\{e_k\}$ следует что $S-f=0\Rightarrow S=f$ и теорема доказана.

Примечание. В неполных евклидовых пространствах система может быть замкнута, но не полна. Введём обозначение $e_k = (0, \dots, 1, 0, \dots)$ (где 1 стоит на k-ом месте).

И пусть $e = (1, 1/2, 1/3, \dots, 1/n, \dots)$. Рассмотрим тогда подпространство l_2 , которое обозначим за E и определим как

$$E = Lin(e, e_2, e_3, \ldots).$$

с индуцированным скалярным произведением. Очевидно, что E — неполно:

$$\left\| \left(e - \sum_{k=2}^{n} \frac{e_k}{k} \right) - e_1 \right\| \to 0, n \to +\infty.$$

но $e_1 \notin E$.

В E система $\{e_2, e_3, \ldots\}$ — замкнута (вектор $(c, 0, \ldots) \notin E$, а значит если вектор ортогонален всем e_k , то он равен 0), но не полна (e не выражается через e_k).

5 Аппроксимация функций

Для наших целей понадобится приближать наши функции другими, более понятными.

Определение 5.1. Функция $f: \mathbb{R}^n \to \mathbb{R}$ называется ступенчатой, если она является линейной комбинацией индикаторов ячеек.

Теперь докажем, что такое функции приближают по норме L_p .

Теорема 5.1. Пусть множество $E \subseteq \mathbb{R}^n$ измеримо, $f \in L_p(E)$, где $p \in [1, +\infty)$. Тогда верно следующее:

$$\forall \varepsilon > 0 \; \exists \; cmyneнчатая функция \; h_{\varepsilon} : ||f - h_{\varepsilon}||_{L_p(E)} < \varepsilon.$$

<u>Идея доказательства:</u> как обычно мы доказываем это сначала для простых функций, а позже для всех, сводя к уже доказанному с помощью приближений.

Доказательство. Разобьем доказательство на шаги

1. Пусть $f = I_G$, где множество G имеет конечную меру. Тогда из определения верхней меры следует:

$$\forall \varepsilon > 0 \ \exists \{P_k\}_{k=1}^{\infty} : \ \lambda^n(G) + \varepsilon \geqslant \sum_{k=1}^{\infty} \lambda(P_k).$$

Теперь из сходимости ряда мер ячеек следует, что можно взять такой большой номер N:

$$\sum_{k=N+1}^{\infty} \lambda^n(P_k) < \varepsilon.$$

По теореме о дизъюнктном представлении в полукольце существует набор непересекающихся $\{Q_l\}_{l=1}^m:\ P_1\cup\ldots\cup P_N=\bigsqcup_{l=1}^mQ_l.$ Обозначим за $A=\bigcup_{i=1}^\infty P_k, B=P_1\cup\ldots\cup P_N.$ Тогда

$$I_B = \sum_{l=1}^m I_{Q_l}.$$

Возьмем в качестве приближающей ступенчатой функции I_B . Осталось доказать, что она приближает с точностью до ε по норме.

$$||f - h||_{L_p} = \left(\int_{\mathbb{R}^n} |I_G(x) - I_B(x)|^p dx\right)^{\frac{1}{p}} \leqslant$$

$$\leqslant \left(\int_{\mathbb{R}^n} |I_G(x) - I_A(x)|^p dx\right)^{\frac{1}{p}} + \left(\int_{\mathbb{R}^n} |I_A(x) - I_B(x)|^p dx\right)^{\frac{1}{p}} =$$

$$= \left(\lambda^n (A \setminus G)\right)^{\frac{1}{p}} + \left(\lambda^n (A \setminus B)\right)^{\frac{1}{p}} \leqslant 2\varepsilon^{\frac{1}{p}}$$

- 2. Если f простая, то есть линейная комбинация индикаторов множеств конечной меры, явно сводится к пункту 1 с помощью неравенства треугольника.
- 3. $f \in L_p(E)$ произвольная, тогда из определения интеграла Лебега можно ее приблизить простой с точностью до $\varepsilon/2$,а простые мы уже умеем приближать ступенчатыми с точностью до $\varepsilon/2$. Осталось применить неравенство треугольника и требуемое будет доказано

Теперь, благодаря доказанной технике можем доказать следующую теорему:

Теорема 5.2. Пусть $f \in L_p(\mathbb{R}^n)$, где $p \in [1, +\infty)$. Тогда верно следующее:

$$||f(x) - f(x-h)||_{L_n} \to 0, h \to 0$$

<u>Идея доказательства:</u> Обозначим за $f_h(x) = (x - h)$, заметим, что в силу неравенства треугольника:

$$||f - f_h|| \le ||f - g|| + ||g - g_h|| + ||f_h - g_h|| \ \forall g \in L_p(\mathbb{R}^n)$$

Ясно, что можно g можно подобрать, чтобы 1 и 3 слагаемые были маленькими, проблема лишь в том, чтобы уменьшить второе слагаемое.

Доказательство. Заметим, что для любой функции $g \in L_p(\mathbb{R}^n)$:

$$||f_h-g_h||=\int_{\mathbb{R}^n}|f(x-h)-g(x-h)|dx=\{$$
выполним замену переменной $t=x-h\}=$
$$=\int_{\mathbb{R}^n}|f(t)-g(t)|dt=||f-g||$$

Тогда в качестве g возьмем ступенчатую функцию, которая приближает f. Осталось теперь доказать, что g можно приблизить g_h . Из теоремы о дизъюнктном представлении следует, что g можно представить в виде:

$$g(x)=\sum_{k=1}^n a_k I_{Q_k}(x), \ Q_k$$
 — ячейка

$$||g - g_h||_p \leqslant \sum_{k=1}^n |a_k| \cdot ||I_{Q_k} - I_{Q_k+h}||$$

Что стремится к нулю при $h \longrightarrow 0$.

Лемма 5.1. Пусть $f: \mathbb{R}^n \to \mathbb{R}$ измеримая функция, тогда отображения

$$(x,y) \rightarrow f(x-y)$$

$$(x,y) \rightarrow f(x+y)$$

измеримы.

Доказательство. Докажем первое утверждение, второе доказывается аналогично. Обозначим за $E_c = \{x | f(x) > c\}$, оно является измеримым из условия леммы. Теперь рассмотрим следующее линейное отображение:

$$T:(x,y)\longrightarrow (x-y,y).$$

Оно обратимо, так как определено обратное отображение $T^{-1}((x,y)) = (x+y,y)$. Осталось лишь заметить, что верно:

$$\{(x,y)|x-y\in E_c\} = T^{-1}(E_C\times\mathbb{R}^n) = \{(x,y)|\ f(x-y) > c\}.$$

Отсюда следует требуемое.

Теперь мы готовы к определению свертки функций и к доказательству корректности этого определения.

Теорема 5.3. Пусть $f, g \in L_1(\mathbb{R}^n)$. Тогда

- 1. Для λ -почти всех $x \in \mathbb{R}^n$ корректно определена функция (будет называть ее сверткой) $f * g(x) := \int_{\mathbb{R}^n} f(x-y)g(y)dy$.
- 2. f * g измерима в широком смысле.
- 3. $f * g \in L_1(\mathbb{R}^n)$
- 4. $||f * g||_{L_1} \leq ||f||_{L_1} \cdot ||g||_{L_1}$

Доказательство. Рассмотрим следующую функцию:

$$H(x,y) = |f(x-y)| \cdot |g(y)|.$$

Ясно, что это неотрицательная, измеримая функция, тогда по теореме Тонелли:

$$\iint_{\mathbb{R}^{2n}} H(x,y) dx dy = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} H(x,y) dy \right) dx = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} H(x,y) dx \right) dy.$$

Подробнее остановимся на втором интеграле, внутренний интеграл преобразуется так:

$$\int_{\mathbb{R}^n} H(x,y) dx = \int_{\mathbb{R}^n} |f(x-y)| \cdot |g(y)| dx = |g(y)| \int_{\mathbb{R}^n} |f(x-y)| dx = |g(y)| \cdot ||f||_{L_1}$$

Тогда весь интеграл:

$$\int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} H(x, y) dx \right) dy = ||f||_{L_1} \cdot \int_{\mathbb{R}^n} |g(y) dy = ||f||_{L_1} \cdot ||g||_{L_1} < +\infty$$

Теперь применим теорему Фубини для F(x,y) = f(x-y)g(y), так как выше мы показали, что $F(x,y) \in L_1(\mathbb{R}^{2n})$. Тогда пункты 1, 2 из нее сразу следуют. Покажем оставшиеся:

$$\int_{\mathbb{R}^n} |f * g|(x) dx \le \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x - y)| \cdot |g(y)| dy \right) dx = ||f||_{L_1} \cdot ||g||_{L_1}$$

Сформулируем еще одну теорему

Теорема 5.4. Пусть $p \in [1, +\infty)$, $f \in L_p(\mathbb{R}^n)$, $g \in L_{p'}(\mathbb{R}^n)$, $\epsilon \partial e^{-\frac{1}{p}} + \frac{1}{p'} = 1$. Тогда:

1. f * g(x) корректно определена для всех $x \in \mathbb{R}^n$.

2. f * g(x) равномерно непрерывна на \mathbb{R}^n .

Доказательство. Докажем последовательно

1. По неравенству Гельдера получаем:

$$|f * g(x)| \le \int_{\mathbb{R}^n} |f(x-y)| \cdot |g(y)| dy \le ||f||_{L_p} \cdot ||g||_{L_{p'}} < +\infty$$

2. Обозначим за $(f * g)_h(x) = f * g(x - h), f_h(x) = f(x - h)$. Верно равенство:

$$(f * g)_h(x) - f * g(x) = \int_{\mathbb{R}^n} f(x - y - h)g(y)dy - f * g(x) = f_h * g(x) - f * g(x)$$

Теперь оценим отклонение свертки при сдвиге:

$$|(f * g)_h(x) - f * g(x)| = |f_h * g(x) - f * g(x)| \le ||f_h - f| * g(x)| \le ||f - f_h||_{L_n} \cdot ||g||_{L_n'}$$

Теперь по уже доказанному утверждению, получаем, что правая часть стремится к 0 и при этом оценка не зависит от x. Таким образом, требуемое доказано.

3. Осталось рассмотреть случаи, когда одно из p, p' равно $+\infty$. А именно рассмотрим случай, когда $p = \infty, p' = 1$. Для этого случая достаточно лишь заметить, что совершенно аналогично доказывается неравенство:

$$|f * g(x)| \leq ||f||_{L_1} \cdot ||g||_{L_{\infty}}$$

5.1 Аппроксимативная едининца

Определение 5.2. Назовем семейство функций $\{w_t(x)\}_{t\in(0,+\infty)}$ аппроксимативной единицей, если $\forall t>0$:

1.

$$w_t(x) \geqslant 0, \forall x \in \mathbb{R}^n$$

2.

$$\int_{\mathbb{R}^n} w_t(x) dx = 1$$

3.

$$\forall \delta > 0 \lim_{t \to +0} \int_{\mathbb{R}^n \backslash B_{\delta}(0)} w_t(x) dx = 0$$

Пример. Соболевской шапкой назовем следующую функцию:

$$\psi(x) = \begin{cases} e^{-\frac{1}{1-||x||^2}}, & x \in (-1,1) \\ 0, & x \notin (-1,1) \end{cases}$$

6 Лекции 8, 9

B npouecce...

ФПМИ МФТИ, 9 мая 2025 г.

Лекции 10, 11 7

7.1Интеграл Дирихле

$$\int_{0}^{+\infty} \frac{\sin x}{x} dx -$$
интеграл Дирихле

Примечание. Понимаем как собственный интеграл Лебега

Теорема 7.1.

$$\int_{0}^{+\infty} \frac{\sin x}{x} \, dx = \frac{\pi}{2}$$

Доказательство.

Сделаем регуляризацию (добавим множитель, чтобы сделать интеграл собственным) Рассмотрим функцию:

$$F(x,y) := \frac{\sin x}{x} \cdot e^{-xy},$$

 $x, y \in [0, +\inf)$

$$F(x,0) = \frac{\sin x}{x},$$

Доопределим в нуле:

$$F(0,0) = 1,$$

Тогда функция непрерывна на $[0, +\inf)^2$

Рассмотрим интеграл:

$$D := \int_{0}^{+\infty} F(x, y) \, dx$$

Сначала действуем формально (продифферинцируем):

$$D'(y) = \int_{0}^{+\infty} \frac{d}{dy} \left(e^{-xy} \right) \cdot \frac{\sin x}{x} dx = -\int_{0}^{+\infty} e^{-xy} \cdot \sin x dx$$

Из формулы Эйлера $e^{ix} = i \sin x + \cos x$:

$$D'(y) = -\text{Im} \int_{0}^{+\infty} e^{-xy} \cdot e^{ix} \, dx = -\text{Im} \int_{0}^{+\infty} e^{-x(i-y)} \, dx = -\text{Im} \left(\frac{e^{-x(i-y)}}{i-y} \Big|_{0}^{+\infty} \right) = -\text{Im} \left(0 - \frac{1}{i-y} \right) =$$

$$= \text{Im} \left(\frac{1}{i-y} \right) = \text{Im} \left(\frac{-i-y}{1+y^2} \right) = \frac{-1}{y^2+1}$$
Итого:
$$D'(y) = \frac{-1}{y^2+1}, y > 0$$

$$\forall\,y_1,y_2>0\quad\text{при }y_2>y_1\quad D(y_2)-D(y_1)=\int\limits_{y_1}^{y_2}D'(y)\,dy=-\int\limits_{y_1}^{y_2}\frac{1}{y^2+1}\,dy=\arctan y_1-\arctan y_2$$

При $y_2 \to +\infty$:

$$D(y_2) = \int_0^{+\infty} \frac{\sin x}{x} \cdot e^{-xy_2} dx$$

Возьмем под модуль:

$$|D(y_2)| = \left| \int_0^{+\infty} \frac{\sin x}{x} \cdot e^{-xy_2} dx \right| \le \int_0^{+\infty} e^{-xy_2} dx = \frac{1}{y_2} \longrightarrow +0, \quad y_2 \to +\infty$$

Перейдем к приделу, когда $y_2 \to +\infty, y_1 \to +0$:

$$-\lim_{y_1 \to +0} D(y_1) = -\frac{\pi}{2} \Rightarrow \lim_{y_1 \to +0} D(y_1) = \frac{\pi}{2}$$

Примечание. Если доказать, что D(y) непрерывен в нуле справа, т.е. что $\lim_{y\to+0} D(y) = D(0)$, то получим искомое

Покажем, что D(y) — непрерывна и существует D'(y), $\forall y > 0$. Зафиксируем произвольные y_1, y_2 , такие что $0 < y_1 < y < y_2$

Примечание. Чтобы можно было дифференцировать по y, достаточно проверить, что интеграл D(y) сходится $\forall y>0$ и что $-\int\limits_0^{+\infty} \sin x \cdot e^{-xy} \, dx$ сходится равномероно по y.

Очевидно, что $\sin x \cdot e^{-xy}$ непрерывна на $[y_1, y_2] \times [0, +\infty)$. $\frac{\sin x}{x} \cdot e^{-xy}$, доопределенная в нуле тоже непрерывна на $[y_1, y_2] \times [0, +\infty)$.

$$\left| \frac{\sin x}{x} \cdot e^{-xy} \right| \leqslant e^{-xy}$$

 $\Rightarrow \frac{\sin x}{x} \cdot e^{-xy} \in L_1([0,+\infty))$ (принадлежит L_1 как функция от x) $\forall y > 0$

$$\Rightarrow D(x)$$
 сходится $\forall y > 0$

Назовем $J(y) = -\int\limits_1^{+\infty} \frac{\sin x}{x} e^{-xy} \, dx$. (от 1 потому что так будет проще применить признак Дирихле)

Покажем, что J(y) сходится равномерно по y на $[y_1, y_2]$ Воспользуемся признаком Дирихле:

1.

$$\sup_{y>0} \sup_{A} \left| \int_{1}^{A} \sin x \, dx \right| \leqslant 2$$

2.

$$\frac{e^{-x \cdot y}}{x} \downarrow 0, \quad x \to +\infty \quad \forall y > 0$$

3.

$$0 \leqslant \frac{e^{-xy}}{x} \leqslant \frac{e^{-x \cdot y_1}}{x} \to 0, x \to +\infty \, \forall y \in [0, y_2], \forall x > 1 \Rightarrow$$

$$\sup_{y \in [0, y_2]} e^{-xy} \to 0, \ x \to +\infty.$$

 \Rightarrow В силу признака Дирихле $\int_1^{+\infty} \frac{\sin x}{x} \, e^{-xy} \, dx$ сходится равномерно по y В силу признака Вейерштрасса $\int_0^{+\infty} \sin x \, e^{-xy} \, dx$ сходится равномерно по $y \in [y_1, y_2]$

$$|\sin x \, e^{-xy}| \leqslant e^{-x \cdot y_1}, \quad \int_0^{+\infty} e^{-x \cdot y_1} \, dx - \text{сход.}$$

Это доказывает, что можно дифференцировать интеграл по параметру при любом y>0 $\int_1^{+\infty} \frac{\sin x}{x} \, e^{-xy} \, dx$ сходится равномерно по y

 $\Rightarrow \int_0^{+\infty} \frac{\sin x}{x} e^{-xy} \, dx$ сходится равномерно по $y \in [0, y_2]$ $\forall y_2 > 0$.

Примечание. Мы доказали от 1 до $+\infty$. Но интеграл от 0 до $+\infty$ отличается минимально:

На $[0,1] \times [0,y_2]$ функция $F(x,y) = \frac{\sin x}{x} e^{-xy}$ непрерывна по совокупности переменных.

⇒ Следующие утверждения эквивалентны:

- 1. $\int_{0}^{+\infty} \frac{\sin x}{x} e^{-xy} dx$ сходится равномерно по y на множестве $[0, y_2]$.
- 2. $\int_{1}^{+\infty} \frac{\sin x}{x} e^{-xy} dx$ сходится равномерно по y на множестве $[0, y_2]$.
- 1. $\int_0^{+\infty} \frac{\sin x}{x} e^{-xy} dx$ сход. равномерно по y на $[0, y_2] \forall y_2 > 0$
- $2. \ \frac{\sin x}{x} = \lim_{y \to +0} e^{-xy} \frac{\sin x}{x}$
- 3. В силу непрерывности F: $\frac{\sin x}{x} \stackrel{\Leftarrow}{[0,t]} e^{-xy} \frac{\sin x}{x} \forall t > 0$

Из этого в совокупности следует:

$$\int_{0}^{t} e^{-xy} \frac{\sin x}{x} dx \longrightarrow \int_{0}^{t} \frac{\sin x}{x} dx \quad \forall t > 0$$

Выполнены все условия теоремы о переходе к пределу по параметру в несобственном интеграле

$$\Rightarrow \exists \lim_{y \to +0} \int_{0}^{+\infty} \frac{\sin x}{x} e^{-xy} dx = \int_{0}^{+\infty} \frac{\sin x}{x} dx,$$

А это и означает непрерывность функции D в нуле справа.

 \Rightarrow все переходы в настоящем доказательстве обоснованы \Rightarrow интеграл Дирихле полностью посчитан

7.2 Преобразование Фурье

Определение 7.1. Пусть $f \in L_1^{loc}(\mathbb{R})$.

Тогда
$$\mathcal{F}[f]_{(x)} := \mathrm{V.\,P.\,} \frac{1}{\sqrt{2\pi}} \int\limits_{\mathbb{R}} e^{-ixy} \, f(y) \, dy, \quad x \in \mathbb{R}.$$

Примечание. V.P. (от фран. *Valeur Principale*) — интеграл в смысле главного значения.

V. P.
$$\int_{\mathbb{R}} e^{-ixy} f(y) dy := \lim_{A \to +\infty} \int_{-A}^{A} f(y) e^{-ixy} dy$$

Обратное преобразование Фурье:

$$\mathcal{F}^{-1}[f](y) := V. P. \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ixy} f(y) dy$$

Примечание.

Если
$$f \in L_1(\mathbb{R}), \,\, ext{то} \,\, \int_{\mathbb{R}} f(x) \, dx = ext{V. P.} \int_{\mathbb{R}} f(x) \, dx$$

Ключевое отличие от несобственного интеграла Лебега: Пределы интегрирования берутся симметрично.

В обычном несобсвтенном интеграле имеем незавсимые друг от друга пределы A_1 и A_2 :

$$\int_{\mathbb{R}} e^{-ixy} f(y) dy = \int_{-\infty}^{+\infty} f(y) e^{-ixy} dy = \lim_{\substack{A_1 \to +\infty \\ A_2 \to -\infty}} \int_{A_2}^{A_1} f(y) e^{-ixy} dy$$

Пример. Пусть g - произвольная нечетная функция на $\mathbb{R}.$ $g \in L_1^{loc}(\mathbb{R})$

$$V. P. \int_{-\infty}^{+\infty} g(y) \, dy = 0.$$

(а интеграл Лебега, и даже несобственный интеграл Лебега может не существовать)

Вопрос.

Когда
$$\mathcal{F}^{-1}[\mathcal{F}[f]] = \mathcal{F}[\mathcal{F}^{-1}[f]] = f$$
?

На первый взгляд кажется, что всегда. Однако не все так просто.

Пусть
$$I_A[f](x) := \int_{-A}^{A} \mathcal{F}[f](y) e^{ixy} dy, \quad \forall A > 0.$$

 Φ ПМИ М Φ ТИ, 9 мая 2025 г.

Лемма 7.1 (Ключевая). Пусть $f \in L_1(\mathbb{R})$ и $x \in \mathbb{R}$. Тогда $\forall A > 0$ справедливо равенство:

$$I_A[f](x) = \int_{-\infty}^{+\infty} f(x-t) \frac{\sin(At)}{\pi t} dt.$$

Доказательство. Заметим, что $F(y,u) = f(u)e^{i(x-u)y}$ интегрируема на множестве $(-A,A) \times \mathbb{R}$ при любом фиксированном $x \in \mathbb{R}$. По y значения меняются от -A до A, а по u - по всей числовой прямой. $|F(y,u)| \leqslant |f(u)|$, а она интегрируема в полосе, потому что полоса — это конечный промежуток

⇒ по теореме Фубини:

$$= \frac{1}{2\pi} \int_{\mathbb{R}} f(u) \frac{2\sin A(x-u)}{x-u} du = \int_{\mathbb{R}} f(u) \frac{\sin A(x-u)}{\pi (x-u)} du = \{x-u=t\} = \int_{\mathbb{R}} f(x-t) \frac{\sin (At)}{\pi t} dt$$

7.3 Интеграл Фурье

Определение 7.2. Пусть $f \in L_1^{loc}(\mathbb{R})$.

Если $\exists\lim_{A\to+\infty}I_A[f](x)$ при $x\in\mathbb{R},\;$ то говорят, что \exists интеграл Фурье функции f

По сути интеграл Фурье совпадает с $F^{-1}[F[f]]$.

 Φ ПМИ М Φ ТИ, 9 мая 2025 г.

Теорема 7.2. Пусть $\tilde{f} \in L_1(-\pi, \pi)$ и 2π -периодична.

Пусть $f \in L_1(\mathbb{R})$ и совпадает с \widetilde{f} в некоторой окрестности точки $\underline{x} \in \mathbb{R}$. Тогда интеграл Фурье в точке \underline{x} сходится к \widetilde{f} в этой точке. \Leftrightarrow ряд Фурье функции \widetilde{f} сходится в точке \underline{x} . Более того, в случае сходимости справедливо равенство:

$$\frac{1}{\sqrt{2\pi}} \text{ V. P.} \int_{-\infty}^{+\infty} \mathcal{F}[f](y) e^{ixy} dy = \sum_{n \in \mathbb{Z}} c_n(\widetilde{f}) e^{inx}$$

Доказательство. Докажем, что

$$I_A[f](\underline{x}) - S_{[A]}[\widetilde{f}](\underline{x}) \longrightarrow 0, \quad A \to +\infty,$$
 где $[A]$ - целая часть числа A

Из ключевой леммы (7.1) следует, что $I_A[f](\underline{x})=\int\limits_{\mathbb{R}}f(\underline{x}-t)rac{\sin(At)}{\pi t}\,dt$

Предположим, что $f \equiv \widetilde{f}$ в $U_{\delta}(\underline{x})$

$$I_A[f](\underline{x}) = \int_{-S}^{0} f(\underline{x} - t) \cdot \frac{\sin(At)}{\pi t} dt + O(1), \quad A \to +\infty$$

Это следует из теоремы Риммана об осцилляции С другой имеем формулу:

$$S_n\left[\widetilde{f}\right](x) = \int_{-\pi}^{\pi} \widetilde{f}(\underline{x} - t) \frac{\sin(nt)}{\pi t} dt + \varepsilon_n\left[\widetilde{f}\right](\underline{x})$$

По теореме Риммана об осцилляции:

$$S_n\left[\widetilde{f}\right](x) = \int_{-\pi}^{\pi} \widetilde{f}(\underline{x} - t) \frac{\sin(nt)}{\pi t} dt + \varepsilon_n\left[\widetilde{f}\right](\underline{x}) = \int_{-\delta}^{\delta} \widetilde{f}(\underline{x} - t) \frac{\sin(nt)}{\pi t} dt + O(1), \quad n \to +\infty$$

Если
$$A=n$$
, то $I_A[f](\underline{x})-S_{[A]}[\widetilde{f}](\underline{x})\longrightarrow 0$ очевидно доказано

В общем случае, окгда A — нецелое, можем посмотреть на целую часть A (вспомним, что I_A — это интеграл от преобразования Фурье).

$$\left|I_{A}\left[f\right]\left(\underline{x}\right) - I_{A}\left[f\right]\left(\underline{x}\right)\right| \leqslant \int_{A-1}^{A} \left|\mathcal{F}[f](y)\right| \, dy + \int_{A}^{A+1} \left|\mathcal{F}[f](y)\right| \, dy$$
$$\leqslant 2 \sup_{|y| \geqslant A-1} \left|\mathcal{F}[f](y)\right| \longrightarrow 0, \quad A \to +\infty$$

Действительно, по теореме Риммана обосцилляции

$$\mathcal{F}[f](y) \longrightarrow 0, \quad y \to +\infty,$$

$$\mathcal{F}[f](y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(y) e^{-ixy} dy \longrightarrow 0, y \longrightarrow \infty$$

Так как $f \in L_1(\mathbb{R})$ по усл, имеем право брать обычный Лебеговский интеграл

В итоге по неравенству треугольника:

$$|I_A[f](\underline{x}) - S_{[A]}[f](\underline{x})| \leq |I_A[f](\underline{x}) - I_{[A]}[f](\underline{x})| + |I_{[A]}[f](\underline{x}) - S_{[A]}[f](\underline{x})|.$$

Первое слогаемое $\left|I_A[f](\underline{x})-I_{[A]}[f](\underline{x})\right|\to 0, A\to +\infty$ так как мы только что доказали следующее:

$$\leq 2 \sup_{|y| \geq A-1} |\mathcal{F}[f](y)| \longrightarrow 0, \quad A \to +\infty$$

Второе слогаемое тоже $\left|I_{[A]}[f](\underline{x}) - S_{[A]}[f](\underline{x})\right| \to 0, A \to +\infty$, так как при целых A $I_A[f](\underline{x}) = S_n[\widetilde{f}(x)]$ с точностью до o(1), потому что $f = \widetilde{f}$ в δ -окрестности \underline{x}

Следствие. Все признаки поточечной сходимости рядов Фурье переносятся и на интеграл Фурье (т е от функции требуются такие же условия локального поведения)

Пример. Если $f \in L_1(\mathbb{R})$ и $f \in BV(U_\delta(\underline{x}))$ при $\delta > 0$. Тогда $F^{-1}[\mathcal{F}[f]](\underline{x}) = f(\underline{x})$. Аналогично для условия Дини и условия Гёльдера.

Следствие. Все признаки которые были для рядов Фурье, для них есть аналоги:

1. Пусть $f \in \mathbb{L}_1^{loc}(\mathbb{R})$ в некоторой $U_{\delta}(\underline{x})$ и имее тограниченую вариацию, тогда:

$$f(\underline{x}) = F^{-1}[F[f]](\underline{x})$$

2. Пусть $f \in \mathbb{L}_1(\mathbb{R})$ удовлетворяет условию Гёльдера с степенью $\alpha \in (0;1]$ в некоторой $U_{\delta}(\underline{x})$. Тогда:

$$f(\underline{x}) = F^{-1}[F[f]](\underline{x})$$

3. (Условие Дини) Пусть $f \in \mathbb{L}_1(\mathbb{R})$ и $\exists \delta > 0$ и $\exists c > 0$ такие что:

$$\int_0^{\delta} \left| \frac{f(\underline{x} - u) + f(\underline{x} - u)}{2} - C \right| \frac{du}{u} < +\infty$$

Тогда $F^{-1}[F[f]](\underline{x}) = C$

7.4 Преобразование Фурье свертки

Напоминание. Пусть $f,g \in L_1(\mathbb{R}^n)$. Сверктой называют $f*g = \int_{\mathbb{R}^n} f(x-t)g(t)dt$. f*g корректо определенная измеримая функция. Она является интегриуемой, если f и g интегрируемы. Свертка обладает свойствами:

- ightharpoonup Коммутативность. f*g=g*f
- \triangleright Ассациативность. (f*g)*h=f(g*h)

Теорема 7.3. Пусть $f,g \in L^1(\mathbb{R})$. Тогда

$$F[f * g](x) = \sqrt{2\pi} F[f](x) F[g](x),$$

 $\epsilon \partial e$

$$F[h](x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ixy} h(y) \, dy.$$

Доказательство. По определению

$$F[f*g](x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ixy} (f*g)(y) dy = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ixy} \left(\int_{\mathbb{R}} f(y-t) g(t) dt \right) dy.$$

Меняем порядок интегрирования и расписываем $e^{-ixy} = e^{-ix(y-t+t)} = e^{-ixt}e^{-ix(y-t)}$:

$$F[f * g](x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \int_{\mathbb{R}} e^{-ixt} e^{-ix(y-t)} f(y-t) g(t) dy dt$$
$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g(t) e^{-ixt} \left(\int_{\mathbb{R}} e^{-ix(y-t)} f(y-t) dy \right) dt.$$

Внутренний интеграл по y при замене переменной u=y-t даёт

$$\int_{\mathbb{R}} e^{-ix(y-t)} f(y-t) \, dy = \int_{\mathbb{R}} e^{-ixu} f(u) \, du = \sqrt{2\pi} \, F[f](x).$$

Следовательно

$$F[f * g](x) = \frac{1}{\sqrt{2\pi}} \left(\sqrt{2\pi} F[f](x) \right) \int_{\mathbb{R}} g(t)e^{-ixt} dt = \sqrt{2\pi} F[f](x) F[g](x).$$

Примечание. Интеграл двойного интегрирования можно менять местами по теореме Фубини (а для неотрицательных функций по теореме Тонелли), поскольку

$$\iint_{\mathbb{R}^2} |f(y-t)| |g(t)| dy dt = \int_{\mathbb{R}} |g(t)| \Big(\int_{\mathbb{R}} |f(y-t)| dy \Big) dt = ||g||_{L^1} ||f||_{L^1} < \infty.$$

Таким образом все переходы с перестановкой интегралов обоснованы.

Теорема 7.4 (преобразование Фурье производной). Пусть

$$f \in L^1(\mathbb{R}) \cap C^1(\mathbb{R}), \quad f' \in L^1(\mathbb{R}),$$

и существуют конечные пределы

$$\lim_{x \to +\infty} f(x) = 0.$$

Tог ∂a ∂ ля любого $y \in \mathbb{R}$

$$\mathcal{F}[f'](y) = iy \, \mathcal{F}[f](y),$$

 $extit{Доказательство}.$ Шаг 1. Сначала докажем, что $\lim_{x \to \pm \infty} f(x) = 0$. По формуле Ньютона–Лейбница

$$f(x) = f(0) + \int_0^x f'(t) dt.$$

Так как $f' \in L^1(\mathbb{R})$, то

$$\lim_{x \to +\infty} f(x) = f(0) + \int_0^{+\infty} f'(t) \, dt =: A$$

существует. Предположим $A \neq 0$. Тогда найдётся X_A такое, что при $x > X_A$ есть

$$|f(x)| > \frac{|A|}{2} \implies \int_{X_A}^{+\infty} |f(x)| dx = +\infty,$$

что противоречит условию $f \in L^1(\mathbb{R})$. Аналогичным рассуждением получаем и $\lim_{x \to -\infty} f(x) = 0$.

Шаг 2. Интегрируем преобразование Фурье f' по частям:

$$\mathcal{F}[f'](y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x)e^{-ixy} dx$$

$$= \frac{1}{\sqrt{2\pi}} \left[f(x)e^{-ixy} \right]_{-\infty}^{+\infty} - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)(-iy)e^{-ixy} dx$$

$$= iy \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ixy} dx = iy \mathcal{F}[f](y).$$

Поскольку $f(x)e^{-ixy}\Big|_{x\to +\infty}=0$, граничные слагаемые равны нулю.

Следствие. Пусть $k \in \mathbb{N}$,

$$f, f', \ldots, f^{(k-1)} \in L^1(\mathbb{R}) \cap C(\mathbb{R}), \quad f^{(k)} \in L^1(\mathbb{R})$$
 и кусочно непрерывна на \mathbb{R} .

Тогда для каждого $y \in \mathbb{R}$

$$\mathcal{F}[f^{(k)}](y) = (iy)^k \mathcal{F}[f](y),$$

и при $|y| \to \infty$ выполняется

$$\mathcal{F}[f](y) = o(|y|^{-k}).$$

Доказательство. Докажем по индукции по k.

Eаза (k=1) — это теорема о преобразовании Фурье производной:

$$\mathcal{F}[f'](y) = iy \, \mathcal{F}[f](y).$$

UUаг индукции. Предположим, что для k-1 уже доказано

$$\mathcal{F}[f^{(k-1)}](y) = (iy)^{k-1} \mathcal{F}[f](y).$$

Поскольку $f^{(k)} \in L^1(\mathbb{R}) \cap C(\mathbb{R})$ и $\lim_{x \to \pm \infty} f^{(k-1)}(x) = 0$ (аналогично первому доказательству), применяем к $f^{(k-1)}$ тот же приём интегрирования по частям:

$$\mathcal{F}[f^{(k)}](y) = iy \mathcal{F}[f^{(k-1)}](y) = iy (iy)^{k-1} \mathcal{F}[f](y) = (iy)^k \mathcal{F}[f](y).$$

Асимптотика. Из формулы

$$\mathcal{F}[f^{(k)}](y) = (iy)^k \, \mathcal{F}[f](y)$$

получаем

$$\mathcal{F}[f](y) = (iy)^{-k} \mathcal{F}[f^{(k)}](y).$$

Ho $f^{(k)} \in L^1(\mathbb{R})$, и по лемме Римана–Лебега $\mathcal{F}[f^{(k)}](y) \to 0$ при $|y| \to \infty$. Значит

$$\mathcal{F}[f](y) = o(|y|^{-k}), \quad |y| \to \infty.$$

Теорема 7.5 (Дифференцирование преобразования Фурье). Пусть

$$f \in L^1(\mathbb{R}), \qquad x f(x) \in L^1(\mathbb{R}).$$

Тогда функция

$$\mathcal{F}[f](y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-ixy} f(x) dx$$

непрерывна и имеет непрерывную первую производную по параметру у:

$$\frac{d}{dy} \mathcal{F}[f](y) = \mathcal{F}[-ix f(x)](y).$$

 $\Phi\Pi$ МИ М Φ ТИ, 9 мая 2025 г.

Доказательство. Зафиксируем конечный отрезок $[y_1,y_2]\subset\mathbb{R}$ и положим

$$g(x,y) = \frac{1}{\sqrt{2\pi}} e^{-ixy} f(x).$$

Тогда

$$\mathcal{F}[f](y) = \int_{-\infty}^{+\infty} g(x,y) \, dx.$$

Вычислим частную производную по у:

$$\frac{\partial}{\partial y}g(x,y) = \frac{1}{\sqrt{2\pi}}(-ix)e^{-ixy}f(x).$$

По условию $x f(x) \in L^1(\mathbb{R})$, поэтому

$$\left| \frac{\partial}{\partial y} g(x,y) \right| = \frac{|x \, f(x)|}{\sqrt{2\pi}}$$
 — интегрируемая функция (независимо от y).

Следовательно, по теореме Лебега о дифференцировании параметрического интеграла под знаком интеграла можно переставить дифференцирование и интегрирование:

$$\frac{d}{dy}\mathcal{F}[f](y) = \frac{d}{dy} \int_{-\infty}^{+\infty} g(x,y) \, dx = \int_{-\infty}^{+\infty} \frac{\partial}{\partial y} g(x,y) \, dx = \mathcal{F}[-ix \, f(x)](y).$$

При этом та же теорема гарантирует непрерывность производной по y, а из непрерывности ядра g(x,y) по y и теоремы Лебега об обмене предела и интеграла следует непрерывность $\mathcal{F}[f](y)$. \square

8 Обобщенные функции

Лемма 8.1 (Дю Буа—Реймона). Пусть $f \in L^1_{loc}(\mathbb{R}^n)$ и для любой $\varphi \in C_0^{\infty}(\mathbb{R}^n)$

$$\int_{\mathbb{D}^n} f(x) \, \varphi(x) \, dx = 0.$$

Tогда f = 0 почти везде.

Доказательство. Шаг 1. По теореме Лебега о дифференцировании интеграла почти всюду

$$f(x) = \lim_{r \to 0} \frac{1}{|B_r(x)|} \int_{B_r(x)} f(y) \, dy \tag{*}$$

Пусть $E = \{x : f(x) \neq 0\}$ имеет положительную меру.

Шаг 2. Для $x \in E$ и $\varepsilon > 0$ по (*) существует $\delta > 0$ такое, что

$$\left| \frac{1}{|B_r(x)|} \int_{B_r(x)} f(y) \, dy - f(x) \right| < \varepsilon/2 \quad \forall \, 0 < r < \delta.$$

Возьмём тест-функцию

$$\psi_r(y) = \frac{1}{|B_r(x)|} \psi\left(\frac{y-x}{r}\right),$$

где $\psi \in C_0^\infty, \ \psi \geqslant 0, \ \int \psi = 1, \ \mathrm{supp} \ \psi \subset B_1(0).$ Тогда $\psi_r \in C_0^\infty, \ \int \psi_r = 1, \ \mathrm{supp} \ \psi_r \subset B_r(x),$ и

$$\left| \frac{1}{|B_r(x)|} \int_{B_r(x)} f(y) \, dy - \int f(y) \, \psi_r(y) \, dy \right| \leqslant \frac{1}{|B_r(x)|} \int_{B_{r+\delta}(x) \setminus B_r(x)} |f(y)| \, dy < \varepsilon/2.$$

Шаг 3. По условию $\int f \psi_r = 0$, поэтому

$$|f(x)| \le \left| \frac{1}{|B_r|} \int_{B_r} f - \int f \psi_r \right| + \varepsilon/2 < \varepsilon.$$

Так как $\varepsilon > 0$ произвольна, получаем f(x) = 0 для почти всех x.

Определение 8.1 (Прстранство пробных функций). Пусть

$$\mathcal{D}(\mathbb{R}^n) = C_0^{\infty}(\mathbb{R}^n)$$

— пространство пробных функций. Последовательность $\{\varphi_m\}\subset \mathcal{D}(\mathbb{R}^n)$ сходится к $\varphi\in\mathcal{D}(\mathbb{R}^n)$,

$$\varphi_m \xrightarrow[m\to\infty]{} \varphi,$$

если выполняются одновременно два условия:

- 1) $\exists C > 0$: supp $\varphi_m \subset B_C(0) \quad \forall m \in \mathbb{N}$.
- 2) $\forall \alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n : D^{\alpha} \varphi_m \xrightarrow[m \to \infty]{} D^{\alpha} \varphi$ равномерно на \mathbb{R}^n .

Здесь

$$|\alpha| = \alpha_1 + \dots + \alpha_n, \qquad D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \cdots \partial x_n^{\alpha_n}}.$$

Определение 8.2. Обозначим

$$\mathcal{D}'(\mathbb{R}^n) = \left(C_0^{\infty}(\mathbb{R}^n)\right)'$$

— пространство всех линейных непрерывных функционалов на $\mathcal{D}(\mathbb{R}^n)=C_0^\infty(\mathbb{R}^n)$. Функционал

$$T \in \mathcal{D}'(\mathbb{R}^n) \iff T : \mathcal{D}(\mathbb{R}^n) \to \mathbb{R}$$

удовлетворяет двум условиям:

- 1. (Линейность) $T(\alpha \varphi_1 + \beta \varphi_2) = \alpha T(\varphi_1) + \beta T(\varphi_2), \forall \alpha, \beta \in \mathbb{R}, \forall \varphi_1, \varphi_2 \in \mathcal{D}(\mathbb{R}^n).$
- 2. (Непрерывность) $\varphi_m \xrightarrow[m \to \infty]{} \varphi$ в $\mathcal{D}(\mathbb{R}^n) \Longrightarrow T(\varphi_m) \xrightarrow[m \to \infty]{} T(\varphi)$.

Определение 8.3. Пусть

$$\varphi \in \mathcal{D}'(\mathbb{R}^n).$$

Говорят, что φ является peryлярным обобщённым функционалом (или регулярной обобщённой функцией), если

$$\exists f_{\varphi} \in L^{1}_{loc}(\mathbb{R}^{n}) \quad \text{такое, что} \quad \langle \varphi, \psi \rangle = \int_{\mathbb{R}^{n}} f_{\varphi}(x) \, \psi(x) \, dx, \quad \forall \, \psi \in \mathcal{D}(\mathbb{R}^{n}).$$

В противном случае φ называют *сингулярным* распределением.

9 Анекдоты

1. Но для счастья этого мало, понимаете? В среднеквадратичном смысле это конечно хорошо, но это как средняя зарплата, у кого-то много, у кого-то мало, а в среднем ничего