■ Dynamic Scaling:

$$W(L,t) \sim t^{eta}
ightarrow W_{sat} \sim L^{lpha}, rac{\log w}{\delta}$$
 $t_{ imes} \sim L^{z}, \ \xi_{\parallel} \sim t^{1/z}
ightarrow L,$
 $\frac{W(L,t)}{L^{lpha}} \sim f(rac{t}{L^{z}})$
 $\log t$

Self affinity:

$$|h(x_1)-h(x_2)| \sim |x_1-x_2|^{\alpha}$$

Surfaces are self-affine random fractals.

Random deposition with surface relaxation:

-0.2

L = 700

Edward-Wilkinson equation:

$$\frac{\partial h}{\partial t} = \nu \nabla^2 h + \eta(x, t)$$

Invariant under,

$$x \to bx, h \to b^{\alpha}h, t \to b^{z}t$$

$$\alpha = \frac{2 - d}{2} (0.49)$$

$$\beta = \frac{2 - d}{4} (0.25 \pm 0.02)$$

$$z = 2$$

Ballistic deposition:

KPZ equation:

$$\frac{\partial h}{\partial t} = \nu \nabla^2 h + \frac{\lambda}{2} (\nabla h)^2 + \eta(x, t)$$

 $\nu,~\lambda$ and D change under scaling

For
$$d=1$$
;

$$\alpha = \frac{1}{2} (0.45)$$
$$\beta = \frac{1}{3} (0.34 \pm 0.03)$$

$$Z = \frac{J}{J}$$