Improper ferroelectricity and multiferroism in 2H-BaMnO₃

Julien Varignon¹ and Philippe Ghosez¹

¹Physique Théorique des Matériaux, Université de Liège (B5), B-4000 Liège, Belgium (Dated: February 11, 2013)

Using first-principles calculations, we study theoretically the stable 2H hexagonal structure of $BaMnO_3$. We show that from the stable high temperature $P6_3/mmc$ structure, the compound should exhibit an improper ferroelectric structural phase transition to a $P6_3cm$ ground state. Combined with its antiferromagnetic properties, $2H-BaMnO_3$ is therefore expected to be multiferroic at low temperature. The phase transition mechanism in $BaMnO_3$ appears similar to what was reported in $YMnO_3$ in spite of totally different atomic arrangement, cation sizes and Mn valence state.

PACS numbers: 63.20.kk, 78.30.-j, 63.20.dk, 75.85.+t, 63.20.-e

Multiferroic compounds combining ferroelectric and (anti-)ferromagnetic orders present both fundamental and technological interests and have been the topic of intensive researches during the last decade¹⁻³. The identification of new single-phase multiferroics has been particularly challenging. In this search, a special emphasis was placed on the family of multifunctional ABO₃ compounds within which belong many popular ferroelectric and magnetic materials. Unfortunately, few multiferroic ABO₃ oxides have been identified to date. This scarcity was justified in terms of typical antagonist metal d-state occupacy requirements⁴: on the one hand, ferroelectricity in typical compounds like BaTiO₃ arises from the hybridization between occupied O 2p orbitals and empty Ti 3d states and requires d^0 -ness while, on the other hand, magnetism requires partial d orbitals occupacy, so that ferroelectricity and magnetism often appear to be mutually exclusive.

Exceptions to this rule exist however. In the antiferromagnetic CaMnO₃ perovskite, a ferroelelectric instability exists in spite of partial d-state occupacy. In bulk samples, this instability is suppressed by antiferrodistortive oxygen motions but it was predicted theoretically⁵, and recently confirmed experimentally⁶, that CaMnO₃ can be made ferroelectric, and de facto multiferroic, under appropriate tensile epitaxial strain. In the same spirit, it was proposed that, due to its larger volume, the perovskite form of BaMnO₃ should develop a ferroelectric antiferromagnetic ground state^{5,7}.

BaMnO₃ does however not naturally crystallize in the perovskite structure with corner-sharing oxygen octahedra. Due to its large Goldschmidt tolerance factor, it stabilizes instead in a hexagonal 2H structure with facesharing oxygen octahedra (Figure 1)^{8,9}. Increasing pressure decreases the hexagonal character, yielding at high pressure various possible forms including a 4H hexagonal structure combining corner- and face-sharing octahedra, which is intermediate between 2H and cubic perovskite structures⁹. The stability of the 2H structure was confirmed from first-principles calculations¹⁰ but its exact symmetry remains under debate.

From the similarity of spectra with BaNiO₃¹¹, Hardy originally assigned the 2H phase of BaMnO₃ at room

FIG. 1. Crystallographic structure of $2H-BaMnO_3$ compound at low temperature ($P6_3cm$ space group). (a) Face-sharing MnO₆ octahedra forming chains along the \vec{c} axis. (b) Triangular arrangement of the MnO₆ octahedra in the (\vec{a}, \vec{b}) plane.

temperature to the polar $P6_3mc$ space group⁸. Combined Raman and infra-red phonon measurements performed by Roy and Budhani¹² are compatible with such a polar character, that is also in line with a recent report of room temperature ferroelectricity in $2H - BaMnO_3$ by Satapathy et al¹³.

Nevertheless, Christensen and Ollivier reported that 2H-BaMnO₃ should better belong to the $P6_3/mmc$ space group¹⁴. We notice that a similar re-assignment to $P6_3/mmc$ was also proposed for $BaNiO_3^{15}$ that had served as reference material to Hardy. This was also the choice of Cussen and Battle¹⁶ who found no clear evidence to assign the room temperature structure of 2H-BaMnO₃ to the polar $P6_3mc$ space group but instead chose the non-polar $P6_3/mmc$ space group. Going further, they highlighted a structural phase transition between room temperature and 80 K to a polar P63cm space group, yielding unit-cell tripling. Moreover, while Christensen and Ollivier¹⁴ were not observing any clear magnetic order above 2.4 K, Cussen and Battle¹⁶ reported an antiferromagnetic ordering below $T_N = 59K$ in the $P6_3cm$ phase, with neighboring spins antiferromagnetically coupled along the polar axis and forming a triangular arrangement perpendicular to it. Although it was not explicitly emphasized, according to this, BaMnO₃ should be multiferroic at low temperature in its stable 2H polymorph. Nevertheless this has to be taken with caution since Cussen and Battle cannot rule out the possibility of a centrosymmetric $P\bar{3}c1$

space group (subgroup of $P6_3/mcm$) at low temperature¹⁶. Also, no consensus has been achieved yet regarding the stable structure at room temperature¹³.

In order to get additional insight into the possible ferroelectric nature of $2H-BaMnO_3$, we performed first-principles calculations. We show that the high-temperature phase should belong to the $P6_3/mmc$ space group and that the compound should undergo an improper ferroelectric structural phase transition to a $P6_3cm$ phase, through a mechanism similar to what happens in hexagonal YMnO₃. Combined with its antiferromagnetic properties, this study confirms that $2H-BaMnO_3$ should be multiferroic at low temperature.

Our calculations have been performed within density functional theory (DFT) using the CRYSTAL09 package¹⁷. We used the B1-WC hybrid functional¹⁸ that was previously found appropriate for the study of multiferroic oxides¹⁹. Relativistic pseudopotentials and a 3ζ valence basis sets were used for the barium atoms²⁰. Small core Hay-Wadt pseudopotentials, associated with 2ζ valence basis sets²¹, were used for the manganese atoms. All-electron 2ζ basis sets, specifically optimized for O^{2-} , were used for the oxygen atoms²². The calculations were carried out on a $4 \times 4 \times 8$ k-point grid for the tripled unit cell (30 atoms). The polarization was computed from the displacement of Wannier function centers^{23,24}. We worked within a collinear-spin framework assuming an Atype antiferromagnetic order with spins antiparallel along the \vec{c} direction and aligned in the (\vec{a}, \vec{b}) plane. Calculations with a ferromagnetic ordering provided similar results. We performed geometry optimization of atomic positions until the root mean square values of atomic forces were lower than $5 \times 10^{-5} \, \mathrm{Ha.Bohr^{-1}}$ and until the root mean square of atomic displacements were lower than 5×10^{-5} Bohr. For better comparison with the experiment, results reported below have been obtained at fixed experimental lattice parameters as reported by Cussen and Battle at room temperature¹⁶. Similar results have been obtained adopting the lattice parameters reported at $1.7~\mathrm{K}$ and $80~\mathrm{K}$. Full structural optimization including lattice parameters were also performed providing qualitatively similar results but yielding a smaller ferroelectric distortion, due to small theoretical errors on the lattice parameters.

First, we performed a structural optimization of $2H-BaMnO_3$ starting from a polar $P6_3mc$ configuration as initially proposed by $Hardy^8$. Surprisingly, the system went back to a $P6_3/mmc$ configuration, with atomic positions (one degree of freedom, $x_O=0.1473$) in good agreement with what was reported by Cussen and Battle $(x_O=0.1495)^{16}$. This demonstrates theoretically that the system does not want a priori to be ferroelectrically distorted but prefers to adopt a non-polar $P6_3/mmc$ symmetry as first proposed by Christensen and Ollivier. This is in conflict with the recent claim of a room temperature $P6_3mc$ ferroelectric phase by Satapathy $et~al^{13}$. However the crystal structure they report corresponds in fact to a $P6_3/mmc$ phase²⁵ and is therefore inconsistent

Theory Exp. 16 Exp.	16
() (1 FTZ) (OC	
(present) (1.7K) (80	(K)
$x_{Ba} = 0.334 = 0.339 = 0.3$	332
z_{Ba} 0.208 0.230 0.2	238
z_{Mn_1} 0.000 0.000 0.0	000
z_{Mn_2} -0.067 -0.048 -0.0	037
$x_{O_1} = 0.147 = 0.149 = 0.1$.50
z_{O_1} 0.251 0.248 0.2	250
x_{O_2} 0.667 0.664 0.6	667
y_{O_2} 0.481 0.482 0.4	183
z_{O_2} 0.182 0.200 0.2	212

TABLE I. Atomic positions (in fractional coordinates) in the $P6_3cm$ structure of 2H-BaMnO₃. Experimental values are those of Cussen and Battle at 1.7K and $80K^{16}$.

	Γ_1^+	Γ_2^-	_	K_3	
Exp. (1.7K)	0.015	0.144	0.154	0.534	0.574
Exp. (80K)	0.035	0.139	0.035	0.420	0.445
Theory	0.001	0.034	0.005	0.766	0.767

TABLE II. Amplitude (in Å) of symmetry allowed displacements for experimental and theoretical structures (at fixed lattice parameters).

with the polarization they measure. In order to further confirm our result, we computed the zone-center phonon modes of the relaxed $P6_3/mmc$ phase without identifying any zone-center unstable mode, the lowest polar Γ_2^- mode being at a frequency around $56~cm^{-1}$.

In order to test the possibility of a phase transition to a $P6_3cm$ or a $P\bar{3}c1$ phase, we computed the phonons at the zone-boundary point $q=(1/3,\ 1/3,\ 0)$. In this case, we identified an unstable mode at $25i\ \mathrm{cm}^{-1}$ of K_3 symmetry. This mode is related to oxygen and manganese motions along the polar axis. Its condensation produces a unit-cell tripling and brings the system into the $P6_3cm$ symmetry. We notice that no unstable mode of K_1 symmetry is identified, rulling out the possibility of a transition to a phase of $P6_3/mcm$ or $P\bar{3}c1$ symmetry.

Atomic relaxation of the $P6_3cm$ phase has been performed, yielding a gain of energy of 21 meV/f.u. respect to the $P6_3/mmc$ structure. The relaxed atomic positions are reported in Table I and show qualitative agreement with experimental data. BaMnO₃ appears in our hybrid functional calculation as an insulator with an electronic bandgap of 4.15 eV. As allowed by the polar nature of the $P6_3cm$ space group, this phase also develops a sizable spontaneous polarization $P_s = 0.92\,\mu C.cm^{-2}$ along the polar axis. Since this polarization can be either up or down (and is so a priori switchable), this phase can be labelled as ferroelectric.

Interestingly, although the condensation of the K_3 mode breaks inversion symmetry, this mode is non-polar (i.e. its mode effective charge is zero) and its condensation alone does not induce any significant polarization²⁶.

FIG. 2. Evolution of the energy (in meV) of 2H-BaMnO₃ in terms of the amplitude \mathcal{Q}_{K_3} and $\mathcal{Q}_{\Gamma_2^-}$ (in fractional units) of the K_3 and Γ_2^- modes. The $P6_3/mmc$ structure was taken as reference.

Further insight into the mechanism yielding a significant polarization at the phase transition from $P6_3/mmc$ to $P6_3cm$ is therefore needed and can be obtained from a decomposition of the atomic distortion condensed at the transition into symmetry adapted modes, as achievable with the Amplimodes software of the $Bilbao\ Crystallo-graphic\ server\ ^{27,28}$.

The results of this decomposition are reported in Table II. Both theory and experiment find the structural distortion to be principally dominated by a K_3 character. Then, and although underestimating the experiment, another significant atomic motion observed theoretically has a Γ_2^- character. As further discussed below, it is in fact this additional polar distortion that will produce a sizable polarization. We notice that the appearance of additional Γ_1^+ and K_1 atomic distortions are also possible by symmetry but are not observed in our calculations. This last result contrasts with experimental data that suggest the presence of a sizable K_1 contribution. We notice however that experimental data at 1.7K and 80K are not fully compatible in that respect, so that further refined experimental characterization of this phase would likely be very useful to clarify that issue.

The interplay between dominant K_3 and Γ_2^- atomic distortions can be better understood from an expansion of the energy around the $P6_3/mmc$ phase in terms of their amplitude \mathcal{Q}_{K_3} and $\mathcal{Q}_{\Gamma_2^-}$:

$$\mathcal{F}(\mathcal{Q}_{K_3}, \mathcal{Q}_{\Gamma_2^-}) = \alpha_{20} \mathcal{Q}_{K_3}^2 + \alpha_{02} \mathcal{Q}_{\Gamma_2^-}^2 + \beta_{40} \mathcal{Q}_{K_3}^4 + \beta_{04} \mathcal{Q}_{\Gamma_2^-}^4 + \beta_{31} \mathcal{Q}_{K_3}^3 \mathcal{Q}_{\Gamma_2^-} + \beta_{22} \mathcal{Q}_{K_3}^2 \mathcal{Q}_{\Gamma_2^-}^2$$

$$(1)$$

The coefficients of this energy expansion were determined from DFT calculations on a $\sqrt{3}\vec{a}_{PE} \times \sqrt{3}\vec{b}_{PE} \times \vec{c}_{PE}$ optimized $P6_3/mmc$ supercell with various amplitudes of \mathcal{Q}_{K_3} and $\mathcal{Q}_{\Gamma_2^-}$ condensed. The results are summarized in Fig. 2 and are consistent with what was previously discussed. The Γ_2^- polar mode is stable and associated to a single well while the K_3 mode is unstable and has a typical double-well shape.

The phase transition of 2H-BaMnO₃ from $P6_3/mmc$ to $P6_3cm$ is therefore clearly driven by the unstable K_3

primary mode. Then the sizable polarization arises from the additional condensation of the stable polar Γ_2^- secondary mode which, as further illustrated in Fig. 3, results from a progressive shift of the minimum of the single well, produced by \mathcal{Q}_{K_3} through the $\beta_{31}\mathcal{Q}_{K_3}^3\mathcal{Q}_{\Gamma_2^-}$ coupling term.

FIG. 3. Energy (in meV) as a function of Γ_2^- allowed displacements at fixed \mathcal{Q}_{K_3} (in fractional units).

This mechanism is similar to what was reported by Fennie and Rabe 29 in YMnO₃ and allows us to identify 2H-BaMnO₃ as an *improper* ferroelectric. The evolution of the polarization with \mathcal{Q}_{K_3} is represented in Fig. 4. We first notice that the polarization estimated within the model from the amplitude of $\mathcal{Q}_{\Gamma_2^-}$ assuming constant Born effective charges $(Z_{Ba}^*=+2.10e,$ $Z_{Mn}^*=+6.45e$ and $Z_O^*=-2.85e$ along the \vec{c} axis in the $P6_3/mmc$ phase 30) properly reproduces the DFT calculation. As discussed by Fennie and Rabe 29 , two independent regimes can be identified: at small \mathcal{Q}_{K_3} amplitude, $\mathcal{Q}_{\Gamma_2^-}$ (and therefore P_s) evolves like $\mathcal{Q}_{K_3}^3$ while at larger amplitude it evolves linearly. Contrary to YMnO₃ that has its ground state in the linear regime, BaMnO₃ is still in the small amplitude regime in our calculation.

Although they both crystallize in the same hexagonal $P6_3/mmc$ space group at high-temperature, the similarity between BaMnO₃ and YMnO₃ is astonishing. First, the valence state of the cations are different in both compounds (+2/+4 in BaMnO₃ versus +3/+3 in YMnO₃). The cation sizes are also distinct in both compounds

FIG. 4. Spontaneous polarization (in $\mu C.cm^{-2}$) as a function of the primary order parameter Q_{K_3} (in fractional units).

yielding a Goldschmidt tolerance factor t > 1 in BaMnO₃ and t < 1 in YMnO₃. Consequently, the atomic structure is totally different in both compounds: the Mn atom is surrounded by face-sharing oxygen octahedra in BaMnO₃ and corner-sharing oxygen trigonal bipyramids in YMnO₃. The atomic motion associated to the unstable K_3 mode is also rather different. In YMnO₃, K_3 motions correspond to a tilt of MnO₅ bipyramids accompanied by a shift of Y atoms and O atoms forming the basis of MnO₅ bipyramids along the polar axis. This leads to a more symmetric environment for the Mn atom, reducing its oxidation degree and making the charge of all O atoms similar. In BaMnO₃, the K_3 mode is associated only to a shift of Mn and O atoms along the polar axis, increasing the absolute value of the oxidation degree of all atoms. The fact that both compounds exhibit an unstable K_3 mode, that can drive improper ferroelectricity appears therefore rather fortuitous.

Finally, we studied the magnetic properties of ground state $2{\rm H}-{\rm BaMnO_3}$. In their seminal work, Christensen and Ollivier¹⁴ did not identify any clear magnetic order above 2.4 K but more recently, Cussen and Battle¹⁶ reported an antiferromagnetic ordering below $T_N=59K$ in the $P6_3cm$ phase: they proposed a configuration comparable to YMnO₃ in which neighboring spins are antiferromagnetically aligned along the polar axis and forming a triangular arrangement perpendicular to it.

Although working within a collinear-spin approximation, we estimated the coupling constants J_{ij} between spins at site i and j in the $P6_3cm$ phase through the fit of the Heisenberg effective Hamiltonian limited to nearestneighbor interactions: $H_{Heisenberg} = -\sum_{i < j} J_{ij} \vec{S}_i \cdot \vec{S}_j$. 2H-BaMnO₃ presents two distinct magnetic interactions: one along the polar axis and one perpendicular to it. We found a strong antiferromagnetic coupling $J_c = -32.77$ meV along the polar axis and a much weaker interchain antiferromagnetic coupling $J_{ab} = -0.14$ meV in plane, comparable to that computed in YMnO₃³¹. The estimate of J_{ab} has certainly to be taken with more caution than J_c : in YMnO₃, collinear-spin calculations

significantly underestimated the magnitude of J_{ab} on a similar triangular arrangement of spins³¹ (0.59 meV instead of 2.3-3 meV experimentally). Nevertheless, a strong anisotropy of the magnetic interactions seems to be likely and can be explained from simple geometry arguments. Along the polar axis, there are face-sharing octahedra and the super-exchange term between two neighboring Mn atoms goes through three different Mn-O-Mn exchange paths, increasing the overlap between Mn 3d and O 2p orbitals and the magnetic coupling. On the other hand, Mn-Mn interchain distances are longer and the super-exchange term in-plane has to go consecutively through O and Ba atoms (see Fig. 1); the overlap between orbitals will be smaller and the magnetic exchange interactions weaker. So, although it is proposed that both share the same magnetic arrangement, the antiferromagnetic coupling in 2H-BaMnO₃ appears substantially different than in YMnO₃ for which the strongest magnetic interactions are in-plane.

In summary, we propose in this Letter that 2H-BaMnO₃ is an *improper* ferroelectric. Our calculations moreover confirms its antiferromagnetic character, making it a multiferroic compound amazingly similar to YMnO₃, in spite of a radically different atomic arrangement. Improper ferroelectrics have recently generated increasing interest in view of their unusual electrical properties³². Not so many ABO₃ improper ferroelectrics have been reported yet and our study illustrates that such behavior can also happen in hexagonal 2H compounds. We hope that our theoretical work will motivate the search of new improper ferroelectrics and multiferroics in this class of compounds.

ACKNOWLEDGMENTS

This work was supported by the European project Ox-IDes (FP7) and the ARC project TheMoTher. PhG acknowledges Research Professorship from the Francqui foundation.

¹ T. Kimura, T. Goto, H. Shintanl, K. Ishizaka, T. Arima and Y. Tokura, Nature 426, 55 (2003).

² T. Goto, T. Kimura, G. Lawes, A. P. Ramirez and Y. Tokura, Phys. Rev. Lett. **92**, 257201 (2004).

³ N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha and S. W. Cheong, Nature **429**, 392 (2004).

⁴ N. A. Hill, J. Phys. Chem. B **104**, 6694 (2000).

⁵ S. Bhattacharjee, E. Bousquet and Ph. Ghosez, Phys. Rev. Lett. **102**, 117602 (2009).

⁶ T. Günter, E. Bousquet, A. David, Ph. Boullay, Ph. Ghosez, W. Prellier, and M. Fiebig, Phys. Rev. B 85, 214120 (2012).

⁷ J. M. Rondinelli, A. S. Eidelson and N. A. Spaldin, Phys. Rev. B **79**, 205119 (2009).

⁸ A. Hardy, Acta Cryst. **15**, 179 (1962).

⁹ B. L. Chamberland, A. W. Sleight and J. F. Weiher, J. Solid State Chem. 1, 506 (1970).

¹⁰ R. Sondena, S. Stolen and P. Ravindran, Phys. Rev. B **75** 184105 (2007).

¹¹ J. J. Lander, Acta Cryst. **4**, 148 (1951).

¹² C. Roy and R. C. Budhani, Phys. Rev. B **58**, 8174 (1998).

¹³ S. Satapathy, M. K. Singh, P. Pandit and P. K. Gupta, App. Phys. Letters **100**, 042904 (2012).

¹⁴ A. N. Christensen and G. Ollivier, J. Solid State Chem. 4, 131 (1972).

Y. Takeda, F. Kanamaru, M. Shimada and M. Koisumi Acta Cryst. B32, 2464 (1976).

¹⁶ E. J. Cussen and P. D. Battle, Chem. Mater **12**, 831 (2000).

¹⁷ R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V.R. Saunders, C.M. Zicovich-Wilson, Z. Kristallogr. 220, 571

- (2005); R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, Ph. D'Arco, M. Llunell, *CRYSTAL09 User's Manual*, University of Torino, Torino, (2009).
- ¹⁸ D. I. Bilc, R. Orlando, R. Shaltaf, G. M. Rignanese, J. Iñiguez and Ph. Ghosez, Phys. Rev. B, 77, 165107 (2008).
- A. Prikockyte, D. Bilc, P. Hermet, C. Dubourdieu and Ph. Ghosez, Phys. Rev. B84, 214301 (2011).
- ²⁰ I. S. Lim, H. Stoll and P. Schwerdtfeger, J. Chem. Phys. 124, 034107 (2006). The basis set has been reduced to exponent greater than 0.1.
- ²¹ P. J. Hay and W. R. Wadt, J. Chem. Phys. **82**, 299 (1985)
- ²² A. Gellé and C. Calzado, private communication.
- ²³ D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48, 4442 (1993).
- ²⁴ C. M. Zicovich-Wilson, R. Dovesi and V. R. Saunders, J. Chem. Phys. **115**, 9708 (2001).
- ²⁵ In Table 1 of Ref. 13, Ba and Mn positions were inverted. Then shifting back the z/c coordinates by z_{Mn} , we recover atomic position consistent with a non-polar $P6_3/mmc$ phase within the experimental accuracy (i.e. the deviation

- is extremely small and totally incompatible with the large polarization they report).
- ²⁶ Condensation of the non-polar K_3 mode alone does not give rise to any sizable polarization: we get $P_s = 0.01$ $\mu\text{C.cm}^{-2}$ as a result of the purely electronic response.
- ²⁷ D. Orobengoa, C. Capillas, M. I. Aroyo and J. M. Perez-Mato, J. Appl. Cryst., **A42**, 820-833 (2009).
- ²⁸ J. M. Perez-Mato, D. Orobengoa and M. I. Aroyo, Acta Cryst, **A66**, 558-590 (2010).
- ²⁹ C. J. Fennie and K. M. Rabe, Phys. Rev. **72**, 100103(R) (2005).
- Although still anomalous (and larger than in YMnO3), the Z_{Mn}^* and Z_O^* are significantly smaller in the $P6_3/mmc$ phase than in the cubic perovskite structure ($Z_{Ba}^* = +1.89e$, $Z_{Mn}^* = +7.97e$ and $Z_O^* = -1.55e/-6.72e$ at the relaxed $a_0 = 3.88$ Å)).
- ³¹ A. Gellé, J. Varignon and M. B. Lepetit, Eur. Phys. Letters 88, 37003 (2009).
- ³² M. Stengel, C. J. Fennie and Ph. Ghosez, Phys. Rev. B 86, 094112 (2012).