

Deep Learning

Chapter 7 RNN

RNN

학습목표

- 순환 신경망에 대해 알 수 있다.
- Keras를 활용해 순환 신경망을 구성 할 수 있다.
- LSTM, GRU에 대해 알 수 있다.
- 시계열 데이터 처리 방법에 대해 알 수 있다.

개념

- 말이나 문장 등은 이어지는 데이터(Sequential data)로 구성되어 있기 때문에 그 의미를 전달하려면 각 단어가 정해진 순서대로 입력되어야 하므로 과거에 입력된 데이터와 나중에 입력된 데이터 사이의 관계 를 고려해야 함 → RNN 고안

- 여러 개의 데이터가 순서대로 입력되었을 때 이전 입력 데이터를 저장했다가 저장 데이터의 중요도를 판단하여 가중치를 부여하고 가중치를 통해 현재 학습에 반영

- 반복적이고 순차적인 데이터(Sequential data)학습에 특화된 인공신경망의 한 종류

- 특징 : 시간에 따른 순서를 기억한다는 것으로 신경망의 출력이 다른 신경망과 연결되어 여러 개의 신경망으로 이어져 있음
- 단점 : 처음 시작한 Weight의 값이 점차 학습이 될 수록 1보다 작은 값이 곱해져서 상쇄 된다는 것 → Vanishing Gradient Problem

$$H_t = \tanh(W_{hh}H_{t-1} + W_{xh}X_t + b_h)$$

$$y_t = W_{hy}H_t + b_y$$

- W_{hh} : 이전 히든레이어에서 다음 히든레이어로 보내는 가중치

- W_{xh} : 입력x을 히든레이어 H로 보내는 가중치

- W_{hv} : 히든레이어 h에서 출력y로 보내는 가중치

활성화 함수로 tanh를 쓰는 이유

- sigmoid보다 기울기를 더 유지 → 더 많은 시간동안 정보를 유지
- 같은 레이어를 반복하므로 relu보다 효과적 → 1보다 큰 값이 들어오고 반복하면 값이 커짐 (기울기 발산) → 시간이 지남에 따라 멀리 떨어진 층의 영향력은 줄어야 하는데 relu는 그렇지 못함

sigmoid와 tanh의 미분

오늘 날씨가 어때

내일 날씨가 어때

어떤 글자가 주어졌을 때 다음 글자를 예측하는 character-level-model을 만든다면

요리와 날씨에 따른 다음 요리 예측

- 핫도그, 피자, 스파게티 순으로 요리하는 요리사가 있다고 할 때,
 - (1) 다음날 해가 뜰 것 같으면, 오늘 요리와 같은 요리를 내일 요리로 하고
 - (2) 비가 올 것 같으면, 다음 순서의 요리를 선보임

요리와 날씨에 따른 다음 요리 예측

- 심층신경망에는 입력 정보가 벡터로 입력되어 원핫 인코딩으로 변환되어 입력

$$-\begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

요리와 날씨에 따른 다음 요리 예측

- 심층신경망에는 입력 정보가 벡터로 입력되어 원핫 인코딩으로 변환되어 입력

요리와 날씨에 따른 다음 요리 예측

같은 날과 다음 날이 날씨 순서가 나오도록 날씨 순서를 배치한 행렬

요리와 날씨에 따른 다음 요리 예측

- 요리 더하기 날씨 연산

활성화 함수

날씨가 비오는 날인 경우

적용 예 - 일반 신경망

적용 예 - RNN

적용 예

- x는 입력, Wxh는 입력 데이터에 곱해지는 가중치, Whh는 다음 층으로 전달되는 가중치, b는 편향
- 이전 층의 값이 tanh를 통과하여 영향력을 줄여가면서 다음 층으로 전달

- 적용 A : 다수 입력 단일 출력 (문장을 읽고 뜻을 파악하는 경우)

인사말

- 적용 B: 단일 입력 다수 출력 (사진의 캡션을 만드는 경우)

- 적용 C: 다수 입력 다수 출력 (문장 번역)

- 용도

- SimpleRNN로 입력데이터는 (batch_size, timesteps, input_dim)으로 3차원 텐서 형태
 - · batch_size : 자료의 수
 - · timesteps : 순서열의 길이
 - · input_dim : 벡터의 길이
- SimpleRNN은 2가지 모드로 실행
 - (1) 각 타임스텝의 출력을 모은 전체 시퀸스를 반환 (batch_size, timesteps, output_features)
 - (2) 입력 시퀸스에 대한 마지막 출력만 반환 (batch_size, output_freatures)
- SimpleRNN 함수

SimpleRNN(units, activation, return_sequences, ...)

- · units : 출력 공간의 차원
- · return_sequences : 출력 시퀸스의 전체를 반환할 지 여부

- 파라미터 수 계산: units * units + units + units * 입력수

param \rightarrow 15

- SimpleRNN 층 사용

```
from keras.models import Sequential
from keras.layers import Embedding, SimpleRNN

model = Sequential()
model.add(Embedding(10000, 32))
model.add(SimpleRNN(32))
model.summary()
```


- Keras의 SimpleRNN Layer 사용 - 전체 상태 시퀸스를 반환

```
from keras.models import Sequential from keras.layers import Embedding, SimpleRNN
```

```
model = Sequential()
model.add(Embedding(10000, 32))
model.add(SimpleRNN(32, return_sequences=True))
model.summary()
```

IMDB 데이터셋 실습

- 변수 설정, 데이터 로딩

```
from keras.datasets import imdb
   from keras.preprocessing import sequence
   from keras.models import Sequential
   from keras.layers import Embedding, SimpleRNN, Dense
   import matplotlib.pyplot as plt
6
    max_features = 10000 # 전체 단어의 수
   maxlen = 500
                     # 500개의 데이터 (단어)만 사용
    batch_size = 32
10
    (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
   x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
   x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
```

IMDB 데이터셋 실습

- 신경망 설계, 컴파일, 학습하기, 모델 저장

```
model = Sequential()
model.add(Embedding(max_features, 32))
model.add(SimpleRNN(32))
model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])

history = model.fit(x_train, y_train, epochs=10, batch_size=128, validation_split=0.2)

model.save('simpleRNN_model.h5')
```

IMDB 데이터셋 실습

- SimpleRNN은 텍스트처럼 긴 시퀸스 (은닉층의 증가)를 처리하는 데는 적합하지 않음

loss: 0.0204 - acc: 0.9949 - val_loss: 0.6016 - val_acc: 0.8300

- RNN의 목적은 시계열 데이터를 분류하는 것으로 학습은 오차역전파와 경사하강법을 사용
- RNN은 역전파의 확장판인 BPTT (Backpropagation Through Time)을 사용해 계수를 학습
- RNN의 구조가 시간에 따라 연결되어 있기 때문에 역전파는 끝까지 시간을 거슬러 올라가며 적용

- Truncated BPTT (단기 BPTT) : 시간 전체를 거슬러 올라가는 BPTT를 간략화 한 것
- 시계열 데이터가 길어지면 은닉층에 저장해야 하는 양이 계속 늘어나기 때문에 모든 시간에 대한 은닉층 의 값을 저장하는 것은 현실적으로 불가능하므로 적당한 선에서 타협
- 단기 BPTT를 사용하면 기준 길이(보통 5 steps)보다 오래된 값은 반영하지 않으므로 장기간에 걸친 패턴이라면 RNNs의 기억력이 짧아지는 문제가 있음

$$\frac{\partial E3}{\partial W} = \frac{\partial E3}{\partial h3} * \frac{\partial h3}{\partial W_{xh}} + \frac{\partial E3}{\partial h3} * \frac{\partial h3}{\partial h2} * \frac{\partial h2}{\partial W_{xh}} + \frac{\partial E3}{\partial h3} * \frac{\partial h3}{\partial h2} * \frac{\partial h1}{\partial W_{xh}} * \frac{\partial h1}{\partial W_{xh}} * \frac{\partial h2}{\partial h3} * \frac{\partial h3}{\partial W_{xh}} * \frac{\partial h3}{\partial W_{$$

- 은닉층 증가 → Vanishing Gradient 문제 발생 → LSTM, GRU를 사용하여 해결

LSTM

- RNN은 타입 스텝 t에서 이전 스탭 (t-1)의 상태 (h_{t-1}) 를 입력으로 받는 구조이므로 이전스탭(t-1)의 정보가 현재 타입 스탭 t에 영향을 줌
- 메모리 셀 (Memory Cell) : RNN의 최종 출력은 이전 타입 스탭의 모든 입력에 대한 함수를 의미
- 장기의존성 (Long-Term Dependency) : RNN 타입스텝이 길어질수록 영향을 주지 못하는 문제 발생
 - → 입력데이터가 RNN Cell을 지나면서 특정 연산 (Sigmoid)에 의해 사라짐 (Vanishing Gradient)
 - → 장기간 메모리를 가질 수 있는 셀이 필요 → LSTM, GRU

- 기존 RNN의 경우, 정보와 정보 사이의 거리가 멀면, 초기의 weight값이 유지되지 않아 학습능력이 저하 → LSTM은 과거의 data를 계속해서 update 하므로 RNN보다 지속적
- 장점: 각각의 메모리 컨트롤이 가능하다는 점과 결과값이 컨트롤이 가능하다는 점
- 단점: 메모리가 덮어씌워질 가능성이 있고, 연산속도가 느리다는 단점

시계열 데이터에는 여러가지 사건이 다른 시간 주기로 동시에 일어나며 LSTM는 이런 여러가지 요인 분석을 가능하게 함

- 1997년에 등장하였으며 오차의 기울기가 1000단계가 넘는 시간을 거슬러 올라갈 수 있도록 함.
- 정보를 추가하거나 삭제하는 기능을 담당하는 Cell State라고 불리는 특징층을 하나 더 넣어 weight를 계속 기억할 것인지 결정 → Vanishing Gradient의 문제를 해결
- LSTM은 3개의 gates(input, forget, output)로 현재 노드의 상태 정보를 제어
- Forget gate는 이전 상태 정보를 저장할지를 결정하고, Input gate는 입력되는 새로운 정보를 저장할지 결정하고 Output gate는 갱신된 cell의 출력값을 제어 \rightarrow 0~1 사이 값을 가짐 (Sigmoid)

John is my best friend He is still my best friend.

John is my best friend Jane is his wife ... She knows I am best friend of John.

- h는 단기 상태 (Short-Term state)를 c는 장기 상태(Long-Term state)라고 볼 수 있음
- 장기 기억 C_{t-1} 은 왼쪽에서 오른쪽으로 통과하면서 Forget gate를 지나면서 일부 정보를 잃고 (sigmoid가 곱해지므로) 덧셈 연산으로 Input gate로부터 덧셈 (+) 연산을 통해 새로운 정보를 추가
- 연산을 통해 만들어진 C_t는 바로 출력되고 C_t는 타입 스탭마다 일부 기억을 삭제하고 추가하는 과정을 거침
- 덧셈 연산 후에 C_t 는 Output gate의 tanh 함수로 전달되어 단기 상태 h_t 와 셀 출력 y_t 를 만듬

Sigmoid는 통과 여부를 결정, tanh는 출력값을 결정

- Forget gate : 이전 정보를 저장할 것인지 결정 시그모이드 함수 사용, 1에 가까울 수록 저장
- f_t에 의해 제어되며 장기 상태 C_t의 어느 부분을 삭제할지 제어

$$f_t = \sigma(X_t W_{xh_f} + H_{t-1} W_{hh_f} + b_f)$$

- Input gate : 입력되는 정보를 저장할 것인지 결정 시그모이드 함수 사용, 1에 가까울 수록 저장
- I_t에 의해 제어되며(크기성분) g_t의 어느 부분(방향성분)이 장기 상태 C_t에 더해져야 되는지 제어

$$I_{t} = \sigma(X_{t}W_{xh_{i}} + H_{t-1}W_{hh_{i}} + b_{i})$$

- Cell state : 정보를 추가하거나 삭제하는 기능을 수행

$$g_t = \tanh(X_t W_{xh_g} + H_{t-1} W_{hh_g} + b_c)$$

- Cell State

- Output gate : 갱신된 정보를 전달할 것인지 결정
- O_t는 장기 상태 C_t의 어느 부분을 읽어서 h_t와 y_t를 출력해야 하는지 제어

$$O_{t} = \sigma(X_{t}W_{xh_{o}} + H_{t-1}W_{hh_{o}} + b_{o})$$

$$C_{t} = f_{t}C_{t-1} + I_{t}g_{t}$$

$$H_{t} = O_{t} \tanh(C_{t})$$

- 임베딩 차원이나 LSTM 출력 차원 같은 하이퍼파라미터를 튜닝하거나 규제를 사용하여 성능 향상 가능
- 리뷰를 전체적으로 길게 분석하는 것은 감성 분류 문제에 적합하지 않으므로 정확도가 떨어질 수 있음
- LSTM은 질문-응답과 기계 번역 분야에서 뛰어난 성능을 발휘함


```
•••
    from keras, layers import Dense, Embedding, LSTM
4
15
    model = Sequential()
    model.add(Embedding(max_features, 32))
16
    model.add(LSTM(32))
17
    model.add(Dense(1, activation='sigmoid'))
18
19
20
    model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
21
22
    history = model.fit(x_train, y_train, epochs=10, batch_size=128, validation_split=0.2)
23
    model.save('LSTM_model.h5')
24
```


loss: 0.1109 - acc: 0.9617 - val_loss: 0.3866 - val_acc: 0.8818

- 학습된 모델로 예측하기 : 10개의 데이터에 대해 예측

```
from keras.datasets import imdb
     from keras.models import load_model
     from keras.preprocessing import sequence
4
     import numpy as np
5
6
     max_features = 10000
     maxlen = 500
9
     (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
10
     x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
     x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
11
12
13
     model = load_model('LSTM_model.h5')
14
15
     Y_prediction = model.predict(x_test[:10])
16
     prediction = np.where(Y_prediction > .5, "긍정", "부정")
17
18
     for i in range(10):
19
       print("%s --> %s" % (y_test[i:i+1], prediction[i]))
```


- 학습된 모델로 예측하기 : 10개의 데이터에 대해 예측

```
[0] --> ['부정']
[1] --> ['부정']
[0] --> ['부정']
[0] --> ['부정']
[1] --> ['긍정']
[1] --> ['긍정']
[1] --> ['긍정']
[0] --> ['부정']
[0] --> ['긍정']
```


LSTM과 CNN의 조합을 이용한 영화 리뷰 분류하기 (IMDB)

```
from keras.datasets import imdb
    from keras.preprocessing import sequence
    from keras.models import Sequential
4
    from keras.layers import Dense, Embedding, LSTM, Dropout, Conv1D, MaxPooling1D
5
    import numpy as np
6
    import tensorflow as tf
    import matplotlib.pyplot as plt
9
10
    seed = 0
11
    np.random.seed(seed)
12
    tf.set_random_seed(seed)
13
14
    (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=5000)
15
    x_train = sequence.pad_sequences(x_train, maxlen=100)
    x_test = sequence.pad_sequences(x_test, maxlen=100)
16
```


- 모델 설정

```
model = Sequential()
model.add(Embedding(5000, 100))
model.add(Dropout(0.5))
model.add(Conv1D(64, 5, padding='valid', activation='relu', strides=1))
model.add(MaxPooling1D(pool_size=4))
model.add(LSTM(55))
model.add(Dense(1, activation='sigmoid'))
```


- 모델 설정

Layer (type)	Output Shape	Param #		
			=======	-=====
embedding_1 (Embe	dding) (None, I	None, 100)	500000	
1 1 1 1 1 1 1	400 00	400)		
dropout_1 (Dropout)	(None, None	e, 100)		
conv1d_1 (Conv1D)	(None, None	. 64) 320	 5 <i>/</i> 4	
	(NOTIE, NOTIE	:, 04) 320	J 4	
max_pooling1d_1 (M	axPooling1 (None	e. None. 64)	0	
			-	
Istm_1 (LSTM)	(None, 55)	26400		
dense_1 (Dense)	(None, 1)	56		
Tatal manages 550 50			======	=====
Total params: 558,52				
Trainable params: 55	-			
Non-trainable param	s: 0			

- 데이터가 1차원 데이터이므로 Conv1D와 MaxPooling1D를 사용

- MaxPooling1D

- 모델 평가

```
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])

history = model.fit(x_train, y_train, epochs=5, batch_size=100, validation_data=(x_test, y_test))

model.save('LSTM_CNN_model.h5')

print("\text{\text} Test Accuracy %.4f" % (model.evaluate(x_test, y_test)[1]))

31
```

Test Accuracy 0.8532

- 그래프 출력

```
33
     y_vloss = history.history['val_loss']
34
     y_loss = history.history['loss']
35
     x_len = np.arange(len(y_loss))
36
     plt.plot(x_len, y_vloss, marker='.', c='red', label='Testset loss')
     plt.plot(x_len, y_loss, marker='.', c='blue', label='Trainset loss')
37
38
     plt.legend(loc='upper right')
                                      Figure 1
39
     plt.grid()
     plt.xlabel('epoch')
40
41
     plt.ylabel('loss')
                                                                     Trainset loss
42
     plt.show()
                                          0.40
                                          0.35
                                                    1.0
                                                        1.5
                                                            2.0
                                                                2.5
                                                                  3.0
```

☆←→ +Q = □

- 로이터 뉴스 데이터: 11,258개의 뉴스 기사를 46개의 카테고리로 구분된 텍스트 데이터
- 입력된 문장의 의미를 파악하는 것 → 모든 단어를 종합하여 하나의 카테고리로 분류하는 것

MLP를 이용한 로이터 뉴스 카테고리 분류하기

- 라이브러리 로드

- 1 | from keras.datasets import reuters
- 2 | from keras.preprocessing import sequence
- 3 | from keras.utils.np_utils import to_categorical
- 4 | from keras.models import Sequential
- 5 | from keras.layers import Dense, Embedding, Flatten
- 6 | import matplotlib.pyplot as plt
- 7 | import numpy as np

- 데이터 로드

- 9 | max_features = 1000
- 10 | text_max_words = 100
- 11
- 12 | # 빈도수가 1-1000에 해당하는 단어만 선택하고 20%를 테스트 셋으로 설정
- 13 (X_train, Y_train), (X_test, Y_test) = reuters.load_data(num_words=max_features, test_split=0.2)
- 14 ┃ # 단어 수를 100개로 맞춤
- 15 | x_train = sequence.pad_sequences(X_train, maxlen=text_max_words)
- 16 | x_test = sequence.pad_sequences(X_test, maxlen=text_max_words)

MLP를 이용한 로이터 뉴스 카테고리 분류하기

- 원-핫 인코딩

```
19  y_train = to_categorical(Y_train)
20  y_test = to_categorical(Y_test)
```

- 모델 설정
 - Embedding 레이어는 0에서 45의 정수값 (카테고리 종류)으로 지정된 단어를 128벡터로 인코딩
 - 문장의 길이가 100이므로 Embedding 레이어는 128 속성을 가진 벡터를 100개 반환
 - Flatten 레이어를 통해 1차원 벡터로 만든 뒤 전결합층으로 전달
 - 46개 주제를 분류해야 하므로 출력층의 활성화 함수로 softmax를 사용

```
model = Sequential()
model.add(Embedding(max_features, 128, input_length=text_max_words))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(46, activation='softmax'))
```


MLP를 이용한 로이터 뉴스 카테고리 분류하기

- 모델 컴파일 / 실행 / 평가하기

```
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc'])
history = model.fit(x_train, y_train, epochs=10, batch_size=64, validation_data=(x_test, y_test))
model.save_weights('MLP_routers_model.h5')

print("\text{\text{W}}n Test Accuracy %.4f" % (model.evaluate(x_test, y_test)[1]))
```

11s 1ms/step

Test Accuracy 0.6759

MLP를 이용한 로이터 뉴스 카테고리 분류하기

- 결과 시각화

```
y_vloss = history.history['val_loss']
34
      y_loss = history.history['loss']
36
      x_len = np.arange(len(y_loss))
37
      plt.plot(x_len, y_vloss, marker='.', c='red', label='Testset loss')
                                                                                K Figure 1
38
      plt.plot(x_len, y_loss, marker='.', c='blue', label='Trainset loss')
39
      plt.legend(loc='upper right')
40
      plt.grid()
                                                                                   1.75
                                                                                                                  Trainset loss
41
      plt.xlabel('epoch')
                                                                                   1.50
42
      plt.ylabel('loss')
43
      plt.show()
                                                                                   1.25
                                                                                 S 1.00
                                                                                   0.75
                                                                                   0.50
                                                                                   0.25
                                                                                ☆←→ +Q = B
```


LSTM을 이용한 로이터 뉴스 카테고리 분류하기

- 라이브러리 로드

- 1 | from keras.datasets import reuters
- 2 | from keras.preprocessing import sequence
- 3 | from keras.utils.np_utils import to_categorical
- 4 | from keras.models import Sequential
- 5 | from keras.layers import Dense, Embedding, LSTM
- 6 import matplotlib.pyplot as plt
- 7 | import numpy as np

- 모델 설정

- Embedding 레이어에서 반환되는 100개 벡터를 LSTM의 타입스텝으로 입력하는 모델
- LSTM의 input_dim은 Embedding 레이어에서 인코딩된 벡터크기는 128

```
22 model = Sequential()
23 model.add(Embedding(max_features, 128))
24 model.add(LSTM(128))
25 model.add(Dense(46, activation='softmax'))
```


LSTM을 이용한 로이터 뉴스 카테고리 분류하기

- 모델 컴파일 / 실행 / 평가하기

23s 3ms/step

Test Accuracy 0.6990

- 결과 시각화

CNN을 이용한 로이터 뉴스 카테고리 분류하기

- 라이브러리 로드

- 1 from keras.datasets import reuters
- 2 from keras.preprocessing import sequence
- 3 | from keras.utils.np_utils import to_categorical
- 4 | from keras.models import Sequential
- 5 from keras.layers import Dense, Embedding, Dropout
- 6 from keras.layers import Conv1D, GlobalMaxPooling1D
- 7 import matplotlib.pyplot as plt
- 8 import numpy as np

CNN을 이용한 로이터 뉴스 카테고리 분류하기

- 모델 설정
 - Embedding 레이어에서 반환되는 100개 벡터를 컨볼루션 필터를 적용한 모델
 - 필터크기가 3인 Conv1D 레이어는 100개의 벡터를 입력받아 128개의 벡터를 반환
 - 벡터 크기는 Conv1D 레이어를 통과하면서 128개에서 256개로 증가
 - GlobalMaxPooling1D 레이어는 입력되는 128개 벡터 중 가장 큰 벡터 하나를 반환
 - 벡터 하나를 전결합층을 통해서 다중클래스를 분류

```
23
     model = Sequential()
24
     model.add(Embedding(max_features, 128, input_length=text_max_words))
25
     model.add(Dropout(0.2))
     model.add(Conv1D(256, 3, padding='valid', activation='relu', strides=1))
26
27
     model.add(GlobalMaxPooling1D()) #여러 개의 벡터 중 최대 벡터 선택
28
     model.add(Dense(128, activation='relu'))
29
     model.add(Dropout(0.2))
30
     model,add(Dense(46, activation='softmax'))
```


CNN을 이용한 로이터 뉴스 카테고리 분류하기

- 모델 컴파일 / 실행 / 평가하기

17s 2ms/step

Test Accuracy 0.7493

- 결과 시각화

CNN + LSTM을 이용한 로이터 뉴스 카테고리 분류하기

- 라이브러리 로드

- 1 | from keras.datasets import reuters
- 2 | from keras.preprocessing import sequence
- 3 | from keras.utils.np_utils import to_categorical
- 4 | from keras.models import Sequential
- 5 from keras.layers import Dense, Embedding, Dropout, LSTM, Flatten
- 6 from keras.layers import Conv1D, MaxPooling1D
- 7 | import matplotlib.pyplot as plt
- 8 | import numpy as np

CNN + LSTM을 이용한 로이터 뉴스 카테고리 분류하기

- 모델 설정
 - Conv1D 레이어에서 나온 특징벡터들을 MaxPooling1D을 통해 1/4로 줄여준 다음 LSTM의 입력으로 넣어주는 모델

```
model = Sequential()
model.add(Embedding(max_features, 128, input_length=text_max_words))
model.add(Dropout(0.2))
model.add(Conv1D(256, 3, padding='valid', activation='relu', strides=1))
model.add(MaxPooling1D(pool_size=4))
model.add(LSTM(128))
model.add(Dense(46, activation='softmax'))
```

로이터 뉴스 카테고리 분류하기

CNN + LSTM을 이용한 로이터 뉴스 카테고리 분류하기

- 모델 컴파일 / 실행 / 평가하기

20s 2ms/step

Test Accuracy 0.7186

- 결과 시각화

- 악보는 시계열이고 음계가 문장보다 코드화가 쉬움
- 음의 코드와 음의 길이로 데이터 구성
 - c(도), d(레), e(미), f(파), g(솔), a(라), b(시)
 - 4(4분음표), 8(8분음표)

- 첫 두 마디(g8 e8 e4 f8 d8 d4)에서 4개 음표 입력으로 다음 음표를 예측하려면
 - g8 e8 e4 f8 d8 : 1~4번째 음표, 5번째 음표
 - e8 e4 f8 d8 d4 : 2~5번째 음표, 6번째 음표
 - → 2개의 샘플은 4개의 입력 (feature, 속성)과 1개의 라벨 값(class)으로 구성
 - → 윈도우 크기: 4

악보 학습 - 학습 과정

- 첫 4개 음표를 입력하면 나머지를 연주할 수 있는 모델을 만드는 것이 목표
- 학습 과정
 - 파란색 박스가 입력값이고, 빨간색 박스가 원하는 출력값
 - 1~4번째 음표를 데이터로 5번째 음표를 라벨값으로 학습시킴
 - 다음에는 2~5번째 음표를 데이터로 6번째 음표를 라벨값으로 학습시킴
 - 이후 한 음표씩 넘어가면서 노래 끝까지 학습시킴

악보 학습 - 예측 과정

- **한 스텝 예측**: 실제 음표 4개를 입력하여 다음 음표 1개를 예측하는 것을 반복하는 것
- 모델의 입력값으로는 항상 실제 음표가 들어감.
 - 모델에 t0, t1, t2, t3를 입력하면 y0 출력이 나옴
 - 모델에 t1, t2, t3, t4를 입력하면 y1 출력이 나옴
 - 모델에 t2, t3, t4, t5를 입력하면 y2 출력이 나옴
 - 이 과정을 y49 출력까지 반복

악보 학습 - 예측 과정

- **곡 전체 예측 :** 초기의 4개 음표만을 입력으로 곡 전체를 예측하는 것으로 초반부가 지나면, 예측값만으로 모델에 입력되어 다음 예측값이 나오는 방식 ("나비야~ 나"까지 알려주면 나머지 모두 연주)

- 예측 과정

- 모델에 t0, t1, t2, t3를 입력하면 y0 출력이 나옴
- 예측값인 y0를 t4라고 가정하고, 모델에 t1, t2, t3, t4을 입력하면 y1 출력이 나옴
- 예측값인 y1을 t5라고 가정하고, 모델에 t2, t3, t4(예측값), t5(예측값)을 입력하면 y2 출력이 나옴
- 이 과정을 y49 출력까지 반복

악보 학습 - 기본 LSTM

- 데이터 셋 생성 함수 : 시퀸스열을 받아서 window_size 크기로 분리하고 분리된 문자에 맞은 값을 code2idx에서 찾아 dataset에 저장하여 반환

```
def seq2dataset(seq, window_size):
    dataset = []
    for i in range(len(seq)-window_size):
        subset = seq[i:(i+window_size+1)]
        dataset.append([code2idx[item] for item in subset])
    return np.array(dataset)
```


악보 학습 - 기본 LSTM

- 코드 사전 정의 : 음표는 모델 입출력으로 사용할 수 없기 때문에 각 코드를 숫자로 변환

```
17 code2idx = {'c4':0, 'd4':1, 'e4':2, 'f4':3, 'g4':4, 'a4':5, 'b4':6, 'c8':7, 'd8':8, 'e8':9, 'f8':10, 'g8':11, 'a8':12, 'b8':13}
18 idx2code = {0:'c4', 1:'d4', 2:'e4', 3:'f4', 4:'g4', 5:'a4', 6:'b4', 7:'c8', 8:'d8', 9:'e8', 10:'f8', 11:'g8', 12:'a8', 13:'b8'}
```

- seq 변수에 곡 전체 음표를 저장하고 seq2dataset() 함수를 이용하여 데이터셋 생성

```
21
       seq = ['g8', 'e8', 'e4', 'f8', 'd8', 'd4', 'c8', 'd8', 'e8', 'f8', 'g8', 'g8', 'g4',
22
           'g8', 'e8', 'e8', 'e8', 'f8', 'd8', 'd4', 'c8', 'e8', 'g8', 'g8', 'e8', 'e8', 'e4',
23
           'd8', 'd8', 'd8', 'd8', 'd8', 'e8', 'f4', 'e8', 'e8', 'e8', 'e8', 'e8', 'f8', 'g4',
24
           'g8', 'e8', 'e4', 'f8', 'd8', 'd4', 'c8', 'e8', 'g8', 'g8', 'e8', 'e8', 'e4']
25
26
       dataset = seq2dataset(seq, window_size = 4)
27
28
       print(dataset.shape)
29
       print(dataset)
```


악보 학습 - 기본 LSTM

- 4개의 속성 (1-4번째 음표)과 1개의 클래스 (5번째 음표)로 구성된 50개의 데이터 셋 생성

```
(50, 5)
[[11 9 2 10 8]
[9 2 10 8 1]
[210 8 1 7]
[10 8 1 7 8]
[8 1 7 8 9]
[178910]
[7 8 9 10 11]
[8 9 10 11 11]
[9 10 11 11 4]
[10 11 11 4 11]
[11 11 4 11 9]
[11 4 11 9 9]
[411 9 9 9]
[11 9 9 9 10]
[9 9 9 10 8]
[9 9 10 8 1]
[910817]
[10 8 1 7 9]
```

```
[8 1 7 9 11]
[1791111]
[9111199]
[11 11 9 9 2]
[11 9 9 2 8]
[28888]
[999910]
[9 9 9 10 4]
```

```
[9 9 10 4 11]
[9 10 4 11 9]
[10 4 11 9 2]
[411 9 2 10]
[11 9 2 10 8]
[9 2 10 8 1]
[210817]
[10 8 1 7 9]
[8 1 7 9 11]
[1791111]
[7 9 11 11 9]
[9111199]
[11 11 9 9 2]]
```


악보 학습 - 기본 LSTM

- 원-핫 인코딩

```
# 입력(X)과 출력(Y) 변수로 분리하기
30
31
    X_train = dataset[:, 0:4]
32
    y_train = dataset[:, 4]
33
34
    # 음표의 종류 수
35
    max_idx_value = 13
36
37
    # 입력값 정규화 시키기 (0-1 사이 실수로 변환)
38
    X_train = X_train / float(max_idx_value)
39
40
    # 샘플수(전체음표수), 타입스텝(1-4번째 음표), 특성수(5번째 음표) 차원으로 변환
41
    X_train = np.reshape(X_train, (50, 4, 1))
42
43
    # 라벨값에 대한 one-hot 인코딩 수행
44
    y_train = pd.get_dummies(y_train)
```


악보 학습 - 기본 LSTM

- 기본 LSTM 모델
 - 128개의 메모리 셀을 가진 LSTM 레이어와 Dense 레이어로 구성
 - 입력은 샘플이 50개, 타임스텝이 4개, 속성이 1개로 구성
 - 상태유지(stateful) 모드 비활성화

```
46  model = Sequential()
47  model.add(LSTM(128, input_shape = (4, 1)))
48  model.add(Dense(y_train.shape[1], activation='softmax'))
```

- 모델 학습 과정 설정

50 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

악보 학습 - 기본 LSTM

- 모델 학습
 - 4개의 음표가 4개의 시퀸스 입력으로 들어가고, 그 다음 음표가 라벨값으로 지정
 - 이 과정을 곡이 마칠 때까지 반복

51 | model.fit(x_train, y_train, epochs=2000, batch_size=14, verbose=2, callbacks=[history])

악보 학습 - 기본 LSTM - 기본 LSTM 모델

악보 학습 - 기본 LSTM

- 학습 결과

••••

Epoch 2000/2000

- 0s - loss: 0.2958 - acc: 0.8800

악보 학습 - 기본 LSTM

- 학습 결과

악보 학습 - 기본 LSTM

- 모델 평가하기

```
scores = model.evaluate(x_train, y_train, batch_size=1)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
```


악보 학습 - 기본 LSTM

- 모델 사용하기 (한 스텝 예측)

```
63
     pred_count = 50 # 최대 예측 개수 정의
64
65
    # 한 스텝 예측
66
     seq_out = ['g8', 'e8', 'e4', 'f8']
67
     pred_out = model.predict(x_train)
68
69
     for i in range(pred_count):
70
       idx = np.argmax(pred_out[i]) # one-hot 인코딩을 인덱스 값으로 변환
      # seq_out는 최종 악보이므로 인덱스 값을 코드로 변환하여 저장
71
72
       seq_out.append(idx2code[idx])
73
74
     print("one step prediction : ", seq_out)
```


📕 악보 학습 – 기본 LSTM

● 모델 사용하기 (한 스텝 예측)

```
one step prediction: ['g8', 'e8', 'e4', 'f8', 'd8', 'd4', 'c8', 'e8', 'g8', 'f8', 'g8', 'g8', 'g4', 'g8', 'e8', 'd8', 'd8', 'd8', 'd8', 'd8', 'd8', 'd8', 'd8', 'g8', 'g8', 'e8', 'e4', 'f8', 'd8', 'd4', 'c8', 'e8', 'g8', 'g8', 'e8', 'e8', 'e8', 'e4']
```

```
실제 악보 seq: ['g8', 'e8', 'e4', 'f8', 'd8', 'd4', 'c8', 'd8', 'e8', 'f8', 'g8', 'g8', 'g4', 'g8', 'e8', 'e8',
```


📕 악보 학습 – 기본 LSTM

● 모델 사용하기 (곡 전체 예측)

```
96
     seq_in = ['g8', 'e8', 'e4', 'f8']
97
     seq_out = seq_in
     # 코드를 인덱스값으로 변환
98
99
     seq_in = [code2idx[it] / float(max_idx_value) for it in seq_in]
100
101
     for i in range(pred_count):
102
        sample_in = np.array(seq_in)
        sample_in = np.reshape(sample_in, (1, 4, 1)) # 샘플 수, 타입스텝 수, 속성 수
103
104
        pred_out = model.predict(sample_in)
105
        idx = np.argmax(pred_out)
        seq_out.append(idx2code[idx])
106
107
        seq_in.append(idx / float(max_idx_value))
108
        seq_in.pop(0)
109
110
     print("full song prediction : ", seq_out)
```


📕 악보 학습 – 기본 LSTM

● 모델 사용하기 (곡 전체 예측)

```
full song prediction: ['g8', 'e8', 'e4', 'f8', 'd8', 'd4', 'c8', 'e8', 'g8', 'g8', 'e8', 'e8', 'e4', 'd8', 'd8']
```

```
실제 악보 seq: ['g8', 'e8', 'e4', 'f8', 'd8', 'd4', 'c8', 'd8', 'e8', 'f8', 'g8', 'g8', 'g4', 'g8', 'e8', 'e8',
```


■ 악보 학습 – 상태 유지 LSTM 모델

- 상태유지 : 현재 학습된 상태가 다음 학습 시 초기 상태로 전달된다는 것
- 상태유지 LSTM 모델
 - batch_input_shape = (1, 4, 1) : 한개의 데이터가 각 배치 할 때 마다 1개의 데이터가 저장

```
model = Sequential()
model.add(LSTM(128, batch_input_shape = (1, 4, 1), stateful=True))
model.add(Dense(one_hot_vec_size, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])
```


📕 악보 학습 – 상태 유지 LSTM 모델

- 모델 학습 시키기
 - 마지막 샘플 학습이 마치고, 새로운 에포크 수행 시에는 새로운 샘플 학습을 해야하므로 상태 초기 화 필요
 - 한 에포크 안에 여러 시퀀스 데이터 세트가 있을 경우, 새로운 시퀀스 데이터 세트를 학습 전에 상 태 초기화 필요
 - 현재 코드에서는 한 곡을 가지고 계속 학습을 시키고 있으므로 새로운 에포크 시작 시에만 상태 초기화를 수행

```
67
     num_epochs = 2000
68
69
     history = LossHistory() # 손실 이력 객체 생성
70
     history.init()
71
72
     for epoch_idx in range(num_epochs):
73
        print ('epochs : ' + str(epoch_idx) )
74
75
        model.fit(x_train, y_train, epochs=1, batch_size=1, verbose=2, shuffle=False)
76
        model.reset states()
```


■ 악보 학습 – 상태 유지 LSTM 모델

♦ 상태유지 LSTM 모델

■ 악보 학습 – 상태 유지 LSTM 모델

● 학습 결과 시각화

■ 악보 학습 – 상태 유지 LSTM 모델

● 모델 평가하기

```
scores = model.evaluate(x_train, y_train, batch_size=1)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
model.reset_states()
```

acc: 100.00%

📕 악보 학습 – 상태 유지 LSTM 모델

● 모델 사용하기 (한 스텝 예측)

```
pred count = 50 # 최대 예측 개수 정의
90
91
92
     # 한 스텝 예측
93
     seq_out = ['g8', 'e8', 'e4', 'f8']
94
     pred_out = model.predict(x_train, batch_size=1)
95
96
     for i in range(pred_count):
97
       idx = np.argmax(pred_out[i]) # one-hot 인코딩을 인덱스 값으로 변환
       # seq_out는 최종 악보이므로 인덱스 값을 코드로 변환하여 저장
98
        seq out.append(idx2code[idx])
99
100
101
     model.reset_states()
102
103
     print("one step prediction : ", seq_out)
```


■ 악보 학습 – 상태 유지 LSTM 모델

● 모델 사용하기 (한 스텝 예측)

```
one step prediction: ['g8', 'e8', 'e4', 'f8', 'd8', 'd4', 'c8', 'd8', 'e8', 'f8', 'g8', 'g8', 'g4', 'g8', 'e8', 'e8', 'e8', 'e8', 'f8', 'd8', 'e8', 'e4']
```

```
실제 악보 seq : ['g8', 'e8', 'e4', 'f8', 'd8', 'd4', 'c8', 'd8', 'e8', 'f8', 'g8', 'g8', 'g4', 'g8', 'e8', 'e8'
```


■ 악보 학습 – 상태 유지 LSTM 모델

● 모델 사용하기 (곡 전체 예측)

```
105
     seq_in = ['g8', 'e8', 'e4', 'f8']
     seq_out = seq_in
106
     # 코드를 인덱스값으로 변환
107
108
     seq_in = [code2idx[it] / float(max_idx_value) for it in seq_in]
109
110
     for i in range(pred_count):
111
        sample_in = np.array(seq_in)
        sample_in = np.reshape(sample_in, (1, 4, 1)) # 샘플 수, 타입스텝 수, 속성 수
112
113
        pred_out = model.predict(sample_in)
114
        idx = np.argmax(pred_out)
115
        seq_out.append(idx2code[idx])
116
        seq_in.append(idx / float(max_idx_value))
117
        seq in.pop(0)
118
119
     model.reset states()
120
121
     print("full song prediction : ", seq_out)
```


📕 악보 학습 – 상태 유지 LSTM 모델

● 모델 사용하기 (곡 전체 예측)

```
full song prediction: ['g8', 'e8', 'e4', 'f8', 'd8', 'd4', 'c8', 'd8', 'e8', 'f8', 'g8', 'g8', 'g4', 'g8', 'e8', '
```

```
실제 악보 seq: ['g8', 'e8', 'e4', 'f8', 'd8', 'd4', 'c8', 'd8', 'e8', 'f8', 'g8', 'g8', 'g4', 'g8', 'e8', 'e8',
```


■ 악보 학습 – 입력 속성이 여러 개인 LSTM

● 라이브러리 로딩, 시드 고정

```
1 import keras
2 import numpy as np
3 from keras.models import Sequential
4 from keras.layers import Dense, LSTM
5 from keras.utils import np_utils
6 7 # 랜덤시드 고정시키기
8 np.random.seed(5)
9 10 # 음 종류 최대 값 (c, d, e, f, g, a, b)
11 max_scale_value = 6.0
```


■ 악보 학습 – 입력 속성이 여러 개인 LSTM

● 손실 이력 클래스 정의 : epoch가 끝날 때마다 losses에 loss 값을 저장

```
12 class LossHistory(keras.callbacks.Callback):
13 def init(self):
14 self.losses = []
15
16 def on_epoch_end(self, batch, logs={}):
17 self.losses.append(logs.get('loss'))
```


■ 악보 학습 – 입력 속성이 여러 개인 LSTM

◆ 속성 변환 함수 : 현재 입력값이 'c4, e4, g8'등으로 되어 있는 데, 이를 음정과 음길이로 나누어서 2
 개의 속성으로 입력 → 'c4'는 '(c, 4)'로 나누어서 입력

```
def code2features(code):
    features = []
    features.append(code2scale[code[0]] / float(max_scale_value))
    features.append(code2length[code[1]])
    return features
```


■ 악보 학습 – 입력 속성이 여러 개인 LSTM

- 데이터 셋 생성 함수 : 입력 속성을 2개 (dataset_X, dataset_Y)로 분리
 - dataset_X : feature값이 저장
 - dataset_Y : class (5번째 음표의 인덱스)가 저장

```
def seq2dataset(seq, window_size):
25
26
        dataset X = []
27
        dataset Y = []
28
29
        for i in range(len(seg) - window size):
30
           subset = seq[i:(i + window_size + 1)]
31
           for si in range(len(subset) - 1):
              features = code2features(subset[si])
32
33
              dataset_X.append(features)
34
           dataset_Y.append([code2idx[subset[window_size]]])
35
36
        return np.array(dataset_X), np.array(dataset_Y)
```


📕 악보 학습 – 입력 속성이 여러 개인 LSTM

● 코드 사전 정의 : 음표와 길이 데이터 정의 추가

```
# 음표와 길이 데이터 정의
38
39
     code2scale = {'c': 0, 'd': 1, 'e': 2, 'f': 3, 'g': 4, 'a': 5, 'b': 6}
40
     code2length = {'4': 0, '8': 1}
41
42
      code2idx = {'c4': 0, 'd4': 1, 'e4': 2, 'f4': 3, 'g4': 4, 'a4': 5, 'b4': 6,
43
                'c8': 7, 'd8': 8, 'e8': 9, 'f8': 10, 'g8': 11, 'a8': 12, 'b8': 13}
44
45
      idx2code = {0: 'c4', 1: 'd4', 2: 'e4', 3: 'f4', 4: 'g4', 5: 'a4', 6: 'b4',
46
               7: 'c8', 8: 'd8', 9: 'e8', 10: 'f8', 11: 'g8', 12: 'a8', 13: 'b8'}
47
48
      # 시퀀스 데이터 정의
49
      seq = ['g8', 'e8', 'e4', 'f8', 'd8', 'd4', 'c8', 'd8', 'e8', 'f8', 'g8', 'g8', 'g4',
50
            'g8', 'e8', 'e8', 'e8', 'f8', 'd8', 'd4', 'c8', 'e8', 'g8', 'g8', 'e8', 'e8', 'e4',
51
            'd8', 'd8', 'd8', 'd8', 'd8', 'e8', 'f4', 'e8', 'e8', 'e8', 'e8', 'e8', 'f8', 'g4',
52
           'g8', 'e8', 'e4', 'f8', 'd8', 'd4', 'c8', 'e8', 'g8', 'g8', 'e8', 'e8', 'e4']
53
54
      dataset = seq2dataset(seq, window size = 4)
```


■ 악보 학습 – 입력 속성이 여러 개인 LSTM

❷ 원-핫 인코딩

```
# 입력을 (샘플 수, 타임스텝, 특성 수)로 형태 변환
x_train = np.reshape(x_train, (50, 4, 2))

# 라벨값에 대한 one-hot 인코딩 수행
y_train = np_utils.to_categorical(y_train)

one_hot_vec_size = y_train.shape[1]

print("one hot encoding vector size is ", one_hot_vec_size)
```


■ 악보 학습 – 입력 속성이 여러 개인 LSTM

● 모델 구성 : LSTM 모델 생성 시 batch_input_shape 인자의 마지막 값이 1에서 2로 수정

```
model = Sequential()
model.add(LSTM(128, batch_input_shape = (1, 4, 2), stateful=True))
model.add(Dense(one_hot_vec_size, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])
```


■ 악보 학습 – 입력 속성이 여러 개인 LSTM

● 모델 학습 시키기

```
num_epochs = 2000
72
73
74
     history = LossHistory() # 손실 이력 객체 생성
75
     history.init()
76
77
     for epoch_idx in range(num_epochs):
78
        print('epochs : ' + str(epoch_idx))
79
        model.fit(x_train, y_train, epochs=1, batch_size=1, verbose=2, shuffle=False,
80
               callbacks=[history])
81
        model.reset_states()
```


■ 악보 학습 – 입력 속성이 여러 개인 LSTM

● 입력 속성이 여러 개인 LSTM 모델: 'c8'이니 'd4'처럼 코드 자체를 학습하는 것이 아니라 음정과 음길이를 나누어서 학습 → 좀 더 사람에 가까운 학습

■ 악보 학습 – 입력 속성이 여러 개인 LSTM

● 학습 결과 시각화

■ 악보 학습 – 입력 속성이 여러 개인 LSTM

● 모델 평가하기

```
91 scores = model.evaluate(x_train, y_train, batch_size=1)
92 print("%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))
93 model.reset_states()
```

acc: 100.00%

■ 악보 학습 – 입력 속성이 여러 개인 LSTM

● 모델 사용하기 (한 스텝 예측)

```
pred count = 50 # 최대 예측 개수 정의
95
96
97
     # 한 스텝 예측
98
     seq_out = ['g8', 'e8', 'e4', 'f8']
99
     pred_out = model.predict(x_train, batch_size=1)
100
101
     for i in range(pred_count):
102
        idx = np.argmax(pred_out[i]) # one-hot 인코딩을 인덱스 값으로 변환
       # seq_out는 최종 악보이므로 인덱스 값을 코드로 변환하여 저장
103
104
        seq_out.append(idx2code[idx])
105
106
     model.reset_states()
107
108
     print("one step prediction : ", seq_out)
```


■ 악보 학습 – 입력 속성이 여러 개인 LSTM

● 모델 사용하기 (한 스텝 예측)

```
one step prediction: ['g8', 'e8', 'e4', 'f8', 'd8', 'd4', 'c8', 'd8', 'e8', 'f8', 'g8', 'g8', 'g4', 'g8', 'e8', 'e8', 'e8', 'e8', 'f8', 'd8', 'd8', 'd8', 'd8', 'd8', 'd8', 'd8', 'd8', 'd8', 'e8', 'e4']
```

```
실제 악보 seq : ['g8', 'e8', 'e4', 'f8', 'd8', 'd4', 'c8', 'd8', 'e8', 'f8', 'g8', 'g8', 'g4', 'g8', 'e8', 'e8', 'e8', 'e8', 'f8', 'd8', 'd8', 'd8', 'd8', 'd8', 'd8', 'd8', 'd8', 'f4', 'e8', 'e4']
```


■ 악보 학습 – 입력 속성이 여러 개인 LSTM

● 모델 사용하기 (곡 전체 예측)

```
110
     seq_in = ['g8', 'e8', 'e4', 'f8']
111
     seq_out = seq_in
112
113
     seq_in_featrues = []
114
115
     for si in seq_in:
116
        features = code2features(si)
117
        seq_in_featrues.append(features)
118
119
     for i in range(pred_count):
120
        sample_in = np.array(seq_in_featrues)
        sample_in = np.reshape(sample_in, (1, 4, 2)) # 샘플 수, 타입스텝 수, 속성 수
121
122
        pred_out = model.predict(sample_in)
123
        idx = np.argmax(pred_out)
124
        seq_out.append(idx2code[idx])
125
        seq_in.append(idx / float(max_idx_value))
126
        seq_in.pop(0)
127
128
     model.reset states()
129
      print("full song prediction : ", seq_out)
```


■ 악보 학습 – 입력 속성이 여러 개인 LSTM

● 모델 사용하기 (곡 전체 예측)

```
full song prediction: ['g8', 'e8', 'e4', 'f8', 'd8', 'd4', 'c8', 'd8', 'e8', 'f8', 'g8', 'g8', 'g4', 'g8', 'e8', 'e4']
```

```
실제 악보 seq: ['g8', 'e8', 'e4', 'f8', 'd8', 'd4', 'c8', 'd8', 'e8', 'f8', 'g8', 'g8', 'g4', 'g8', 'e8', 'e8',
```


GRU

GRUs (Gated Recurrent Units)

- 2014년에 K. Cho(조경현) 등이 LSTM을 간소화 한 버전으로, Gradient Vanishing의 문제를 해결
- LSTM은 초기의 weight가 계속 지속적으로 업데이트되었지만, GRUs는 Cell State를 없애고 Update Gate와 Reset Gate를 추가하여, 과거의 정보를 어떻게 반영할 것인지 결정
- Update Gate는 과거의 상태를 반영하는 Gate (Input gate와 유사한 동작)이며, Reset Gate는 현시점 정보와 과거시점 정보의 반영 비율을 결정
- 장점: 연산속도가 빠르며, 메모리가 LSTM처럼 덮여 쓰여질 가능성이 없음
- 단점: 메모리와 결과값의 컨트롤이 불가능

GRU (Gated Recurrent Units)

- LSTM의 C_t와 h_t가 h_t로 통합
- 하나의 게이트 제어기인 Z_t가 0이면 이전(t-1) 정보가 전달되고 1이면 현재 (t) 정보가 전달
- ullet 전체 상태 벡터 h_t 가 타입 스텝마다 출력되며 r_t 는 이전 상태 h_{t-1} 의 어느 부분이 출력될 지 제어

$$Z_{t} = \sigma(X_{t}W_{xh_{z}} + h_{t-1}W_{hh_{z}} + b_{z})$$

$$r_{t} = \sigma(X_{t}W_{xh_{r}} + h_{t-1}W_{hh_{r}} + b_{r})$$

$$g_{t} = \tanh(X_{t}W_{xh_{h}} + r_{t}h_{t-1}W_{hh_{h}} + b_{h})$$

$$h_{t} = (1 - Z_{t})h_{t-1} + Z_{t}g_{t}$$

📕 RNN의 고급 사용법

- RNN의 성능과 일반화 능력 향상 기술
 - (1) 순환 드랍아웃 (Recurrent dropout) : RNN 층에서 과대적합을 방지하기 위해 케라스에 내장되어 있는 Dropout을 사용
 - (2) 스태킹 순환 층 (Stacking recurrent layer) : 네트워크의 표현 능력 향상 (계산 비용 상승)
 - (3) 양방향 순환 층 (Bidirectional recurrent layer) : RNN에 같은 정보를 다른 방향으로 주입하여 정확도를 높이고 기억을 좀 더 오래 유지시킴

■ 기온 예측 문제 (24시간 후)

● 데이터 파싱하기 – 폴더로 부터 데이터 읽기

```
import os
import numpy as np
import matplotlib.pyplot as plt

data_dir = 'D:/datasets/jena_climate'
fname = os.path.join(data_dir, 'jena_climate_2009_2016.csv')
f = open(fname)
data = f.read()
f.close()
```


📕 기온 예측 문제 (24시간 후)

● 한 줄씩 읽어서 줄넘김과 컴머(,)로 분리하기

```
["Date Time", '"p (mbar)", '"T (degC)", '"Tpot (K)", '"Tdew (degC)", '"rh (%)", '"VPmax (mbar)", '"VPact (mbar)", '"VPdef (mbar)", '"sh (g/kg)", '"H2OC (mmol/mol)", '"rho (g/m**3)", '"wv (m/s)", '"max. wv (m/s)", '"wd (deg)"]

01.01.2009 00:10:00,996.52,-8.02,265.40,-
8.90,93.30,3.33,3.11,0.22,1.94,3.12,1307.75,1.03,1.75,152.30
```


■ 기온 예측 문제 (24시간 후)

● 데이터 파싱하기 – numpy 배열로 저장

```
float_data = np.zeros((len(lines), len(header)-1))

for i, line in enumerate(lines):
  values = [float(x) for x in line.split(',')[1:]]
  float_data[i, :] = values
```


■ 기온 예측 문제 (24시간 후)

● 데이터 파싱하기

temp = float_data[:, 1]
plt.plot(range(len(temp)), temp)
plt.show()

장기간을 보면 온도변화의 규칙성이 존재 → 온도 예측 쉬움

기온 예측 문제 (24시간 후)

● 10일간의 온도 데이터 보기 : 10분 단위로 데이터가 기록되어 있으므로 하루에 총 144개의 데이터 가 존재

단기간만 보면 온도변화의 규칙성을 알 수 없음 → 온도 예측 가능 ?

■ 기온 예측 문제 (24시간 후)

- 데이터 정규화 값 (온도, 기압 등)의 범위가 다르므로 비슷한 범위를 갖도록 작은 값으로 변경
 - 20만개의 데이터만 사용
 - 각 시계열 데이터에 대해 평균을 빼고 표준편차로 나눔

■ 기온 예측 문제 (24시간 후)

● 시계열 데이터와 타겟을 반환하는 제네레이터 함수

- sample : 입력 데이터로 사용할 배치

- targets : 이에 대응하는 타겟 온도 배열

- 매개변수

- data : 원본 배열

- lookback : 참조할 이전 데이터의 타입스텝

- delay : 타겟으로 사용할 미래의 타입스텝

- min_index / max_index : 추출할 타입 스텝 범위 지정하기 위한 인덱스 배열 → 훈련과 테스트 데이터 분리

- shurffle : 샘플 셔플 여부

- batch_size : 배치 샘플 수

- step : 데이터를 샘플링할 타입스템 간격 (1시간에 1개의 데이터 포인트 추출 → 6)

■ 기온 예측 문제 (24시간 후)

● 시계열 데이터와 타겟을 반환하는 제네레이터 함수

```
30
     def generator(data, lookback, delay, min_index, max_index,
31
               shuffle=False, batch_size=128, step=6):
32
        if max index is None:
33
           max_index = len(data) - delay - 1
        i = min index + lookback
34
35
        while 1:
36
           if shuffle:
37
              rows = np.random.randint(
38
                 min index + lookback, max_index, size=batch_size)
39
           else:
40
              if i + batch size >= max index:
41
                 i = min_index + lookback
42
              rows = np.arange(i, min(i + batch_size, max_index))
43
              i += len(rows)
44
           samples = np.zeros((len(rows),
45
46
                         lookback // step,
47
                         data.shape[-1]))
48
           targets = np.zeros((len(rows),))
```


■ 기온 예측 문제 (24시간 후)

● 시계열 데이터와 타겟을 반환하는 제네레이터 함수

■ 기온 예측 문제 (24시간 후)

● 제네레이터를 이용하여 훈련, 검증, 테스트 데이터 준비

```
56
    lookback = 1440
                      #10일전 데이터
57
                      # 1시간마다 샘플링
    step = 6
58
                      # 24시간이 지난 데이터가 타겟
    delay = 144
59
    batch size = 128
60
61
    train_gen = generator(float_data,
62
                  lookback=lookback,
63
                  delay=delay,
                  min index=0,
64
                  max_index=200000, # 처음부터 20만개 데이터 사용
65
66
                  shuffle=True.
67
                  step=step,
68
                  batch_size=batch_size)
69
    val_gen = generator(float_data,
70
                 lookback=lookback,
71
                 delay=delay,
72
                 min index=200001,
73
                                      # 다음 10만개 데이터 사용
                 max_index=300000,
74
                 step=step,
75
                 batch size=batch size)
```


■ 기온 예측 문제 (24시간 후)

● 제네레이터를 이용하여 훈련, 검증, 테스트 데이터 준비

```
76 test_gen = generator(float_data,
77 lookback=lookback,
78 delay=delay,
79 min_index=300001, # 30만개를 제외한 나머지 데이터 사용
80 max_index=None,
81 step=step,
82 batch_size=batch_size)
```

● 제네레이터 회수 계산

```
# 전체 검증 세트를 순회하기 위해 val_gen에서 추출할 횟수
val_steps = (300000 - 200001 - lookback) // batch_size
# 전체 테스트 세트를 순회하기 위해 test_gen에서 추출할 횟수
test_steps = (len(float_data) - 300001 - lookback) // batch_size
```


📕 기온 예측 문제 (24시간 후)

- 상식적인 기준 모델의 MAE 계산
 - 온도는 연속성이 있고 일자별로 주기성이 있다고 가정 (오늘-내일의 온도는 비슷할 가능성이 높음)
 - 지금부터 24시간 이후의 온도는 지금과 동일하다고 예측하는 것

```
90
     def evaluate_naive_method():
91
        batch_maes = []
92
        for step in range(val_steps):
           samples, targets = next(val_gen)
93
          preds = samples[:, -1, 1]
94
95
           mae = np.mean(np.abs(preds - targets))
           batch_maes.append(mae)
96
97
        print(np.mean(batch_maes))
98
99
     evaluate_naive_method()
```

0.2897359729905486

기온 예측 문제 (24시간 후)

● GRU를 사용한 모델

```
from keras.models import Sequential
101
     from keras import layers
102
     from keras.optimizers import RMSprop
103
104
105
     model = Sequential()
106
     model.add(layers.GRU(32, input_shape=(None, float_data.shape[-1])))
107
     model.add(layers.Dense(1))
108
109
     model.compile(optimizer=RMSprop(), loss='mae')
110
     history = model.fit_generator(train_gen,
111
                          steps_per_epoch=500,
112
                          epochs=20,
113
                          validation_data=val_gen,
114
                          validation_steps=val_steps)
115
116
     model.save('GRU_model.h5')
```


기온 예측 문제 (24시간 후)

● 결과 시각화

```
loss = history.history['loss']
118
      val_loss = history.history['val_loss']
119
120
121
      epochs = range(1, len(loss) + 1)
122
123
      plt.figure()
124
125
      plt.plot(epochs, loss, 'bo', label='Training loss')
      plt.plot(epochs, val_loss, 'b', label='Validation loss')
126
      plt.title('Training and validation loss')
127
128
      plt.legend()
129
130
      plt.show()
```


■ 기온 예측 문제 (24시간 후)

● 결과 시각화

