(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2003-268196 (P2003-268196A)

(43)公開日 平成15年9月25日(2003.9.25)

(51) Int.Cl. ⁷	識別記号	F I 7-73-	·ド(参考)	
CO8L 61/0	6	C 0 8 L 61/06 4	4J002	
C 0 8 K 5/3477		C 0 8 K 5/3477 5 H 6 1 3		
7/1	4	7/14		
H 0 2 K 13/0	0	H 0 2 K 13/00 D		
		審査請求 未請求 請求項の数4 〇L	(全 4 頁	
(21)出願番号 特願2002-75879(P2002-75879)		(71)出顧人 000002141		
		住友ベークライト株式会社		
(22)出顧日	平成14年3月19日(2002.3.19)	東京都品川区東品川2丁目5番8号		
		(72)発明者 鶴田 忠利		
		東京都品川区東品川2丁目5番	8号 住友	
		ベークライト株式会社内		
		Fターム(参考) 4J002 CCO41 DE237 DJ007 DJ037		
		DJ047 DL007 EN046	FA047	
		FD017 FD146 CN00		
		5H613 AA03 BB04 CB08 CB17 KK01		
	•			

(54) 【発明の名称】 コンミテーター用フェノール樹脂成形材料

(57)【要約】

【課題】 機械的強度が向上し、耐熱性、耐湿性に優れたコンミテーター用フェノール樹脂成形材料を提供する。

【解決手段】 有機ホスホン酸を触媒としたノボラック型フェノール樹脂、硬化剤としてヘキサメチレンテトラミン、及びガラス繊維を含む無機基材を含有するコンミテーター用フェノール樹脂成形材料であり、好ましくは、成形材料全体に対して、それぞれ、前記ノボラック型フェノール樹脂が25~40重量%、ヘキサメチレンテトラミンが3~10重量%、及び前記無機基材が55~70重量%である。

【特許請求の範囲】

【請求項1】 有機ホスホン酸を触媒としたノボラック 型フェノール樹脂、硬化剤としてヘキサメチレンテトラ ミン、及びガラス繊維を含む無機基材を含有することを 特徴とするコンミテーター用フェノール樹脂成形材料。 【請求項2】 成形材料全体に対して、それぞれ、前記

ノボラック型フェノール樹脂が25~40重量%、ヘキ サメチレンテトラミンが3~10重量%、及び前記無機 基材が55~70重量%である請求項1記載のコンミテ ーター用フェノール樹脂成形材料。

【請求項3】 前記ノボラック型フェノール樹脂が、ポ リスチレンを基準物質としたときの数平均分子量700 ~1000、重量平均分子量1000~1500である 請求項1または2記載のコンミテーター用フェノール樹 脂成形材料。

【請求項4】 前記ノボラック型フェノール樹脂が、遊 離フェノール量0.1重量%以下、2核体成分量2.5 重量%以下である請求項3記載のコンミテーター用フェ ノール樹脂成形材料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、コンミテーター用 フェノール樹脂成形材料に関するものである。

[0002]

【従来の技術】ガラス繊維入りフェノール樹脂成形材料 は耐熱性、寸法安定性、成形性等に優れ、自動車分野、 電気分野、電子分野等の基幹産業分野で長期に渡り使用 されている実績を有する。近年は、ガラス繊維入りフェ ノール樹脂成形材料に対して更なる特性の向上が求めら は常温での強度だけでなく熱時での強度向上や熱による 劣化の抑制及び寸法変化の低減が必要となってきてい る。その中でもコンミテーターに使用される材料に要求 される基本的な特性として、熱時強度や熱時寸法安定性 などの耐熱性、耐湿寸法安定性がある。また小型モータ ーに使用されるコンミテーターは、フェノール樹脂成形 材料で成形したコンミテーターの内径に、内径寸法より やや太いシャフトを直接圧入する場合が多いため、圧入 時にコンミテーターが割れないよう靭性に優れることが 要求される。

[0003]

【発明が解決しようとする課題】本発明は、従来のフェ ノール樹脂製コンミテーターに比べて、機械的強度が向 上し、耐熱性、耐湿性に優れたフェノール樹脂製コンミ テーターを提供することを目的とするものである。

[0004]

【課題を解決するための手段】とのような目的は、下記 (1)~(4)記載の本発明により達成される。

(1) 有機ホスホン酸を触媒としたノボラック型フェノ

びガラス繊維を含む無機基材を含有することを特徴とす るコンミテーター用フェノール樹脂成形材料。

- (2) 成形材料全体に対して、それぞれ、前記ノボラッ ク型フェノール樹脂が25~40重量%、ヘキサメチレ ンテトラミンが3~10重量%、及び前記無機基材が5 5~70重量%である前記(1)記載のコンミテーター 用フェノール樹脂成形材料。
- (3) 前記ノボラック型フェノール樹脂が、ポリスチレ ンを基準物質としたときの数平均分子量700~100 10 0、重量平均分子量1000~1500である前記
 - (1) または(2) 記載のコンミテーター用フェノール 樹脂成形材料。
 - (4) 前記ノボラック型フェノール樹脂が、遊離フェノ ール量0.1重量%以下、2核体成分量2.5重量%以 下である前記(3)記載のコンミテーター用フェノール 樹脂成形材料。

【0005】本発明は、有機ホスホン酸を触媒としたノ ボラック型フェノール樹脂、硬化剤としてヘキサメチレ ンテトラミン、及びガラス繊維を含む無機基材を含有す 20 ることを特徴とするコンミテーター用フェノール樹脂成 形材料である。

【0006】通常、成形材料に用いられるノボラック型 フェノール樹脂は、ポリスチレンを基準物質としたとき の数平均分子量が800~1000、重量平均分子量が 5000~15000、遊離フェノール量が4~5重量 %、2核体成分量が10重量%以下のものが成形材料化 するときの作業性、成形するときの成形性、得られた成 形物の特性が比較的良好であることから使用されてい る。本発明においては、有機ホスホン酸を触媒としたノ れているが、特に、自動車部品などの基幹部品の分野で 30 ボラック型フェノール樹脂を使用する。このノボラック 型フェノール樹脂は、例えば、以下のような処方により 製造することができ、分子量分布が狭く遊離フェノール や2核体成分が少ないことを特徴とするものである。即 ち、フェノール類とホルムアルデヒド類とを有機ホスホ ン酸を触媒として、好ましくは、反応系中の水分を30 重量%以下とし反応温度を110~200℃として反応 させることにより、目的とする分子量分布が狭い、遊離 フェノールや2核体成分が少ないノボラック型フェノー ル樹脂を得る。

40 【0007】かかるノボラック型フェノール樹脂を使用 することにより以下のような効果が得られる。即ち、遊 離フェノールや2核体成分が少ないことにより、硬化時 の架橋の密度が向上し、揮発分が低減され、成形の際ガ スの発生を抑えることができることから、ガスの巻き込 み、ボイドの生成、金型の曇り等を抑えることができ る。また、分子量分布が狭いので、均一に硬化させるこ とができ、硬化後に残存する低分子量成分が少なくな る。その結果、均一な硬化により耐熱性や耐湿性が向上 し、熱時における寸法の変化が抑えられる。このノボラ ール樹脂、硬化剤としてヘキサメチレンテトラミン、及 50 ック型フェノール樹脂は従来のものに比べて溶融粘度が

低く、成形材料化の際の混練によるガラス繊維の折れを 低減できること、及び成形材料化の際の混練時間を長く することができ樹脂とガラス繊維の濡れの向上効果も有 しており強度が大きくなる。本発明において、好ましく は、前記ノボラック型フェノール樹脂はポリスチレンを 基準物質としたときの数平均分子量が700~100 0、重量平均分子量が1000~1500のものであ り、さらに好ましくは、遊離フェノール量が0.1重量 %以下、2核体成分量が2.5重量%以下のものを使用 うな効果がより大きく発現する。

【0008】フェノール樹脂の配合量は、成形材料全体 に対して、25~40重量%である。樹脂量が25重量 %未満では、成形材料としての流動が十分でないことが あり、40重量%を越えるとガラス繊維量が少なくなり 耐熱性や寸法安定性などのコンミテーターの特性を満足 しなくなることがある。本発明において、硬化剤として ヘキサメチレンテトラミンを使用する。ヘキサメチレン テトラミン配合量は、好ましくは成形材料全体に対して 3~10重量%である。3重量%未満では、硬化が不十 20 ノボラック樹脂B:住友ベークライト(株)製「A-10 分となることがあり、10重量%を越えて配合しても硬 化性はこれ以上良くなることはなく、逆に分解ガス等に より成形不良の原因となることがある。

【0009】無機基材としてガラス繊維を用いる。ガラ ス繊維は、繊維径が10~15 μm、繊維長が1~3 m mのチョップドストランドタイプのものが、成形材料化 段階での作業性、得られた成形物の強度の点から好まし い。また寸法安定性を向上させる場合には無機粉末を併 用して用いることができる。無機粉末としては、クレ られ、特に限定されない。これらのガラス繊維を含む無 機基材の配合量は、成形材料全体に対し55~70重量 %が好ましい。55重量%未満では満足し得る強度・耐 熱・耐湿寸法安定性が得られにくい場合があり、70重 量%を越えると成形材料化段階での作業性が困難となる ことがある。

【0010】本発明のフェノール樹脂成形材料を製造す る方法は、通常の方法が採用される。すなわち、ノボラ ック樹脂、硬化剤、無機基材、離型剤、硬化助剤、顔料 軸押出し機等の混練機単独又はロールと他の混合機との 組合せで加熱混練し、粉砕して得られる。 本発明のフ ェノール樹脂成形材料は、常温及び熱時において、高い 機械的強度を有しており、フェノール樹脂製のコンミテ ーター用材料に適用できる。

[0011]

【実施例】以下、実施例により本発明を説明する。 「部」は「重量部」を、濃度、配合等の「%」は「重量 %」を示す。表1に示した配合からなる材料を90~1 00°Cの加熱ロールで約15分間混練し、冷却後粉砕し 50 て成形材料を得た。実施例及び比較例の材料配合と特性 を表1に示す。

(使用した材料)

ノボラック樹脂A:1-ヒドロキシエチリデン-1, 1'ージホスホン酸60%水溶液(フェリオックス11 5、(株)ライオン製) 1000部を脱水して80%の濃 度とした。フェノール1000部を添加して100℃に 昇温し、37%ホルムアルデヒド水溶液550部を30 分掛けて逐次添加し、常圧蒸留を行いつつ130℃まで する。かかる特性の樹脂を用いることにより、上記のよ 10 昇温させ反応系中の水分量を6%とした。その後130 ℃温度を維持し、水分量を約6%に維持し、常圧蒸留を 行いながら37%ホルムアルデヒド水溶液140部を3 0分かけて添加した。その後、1時間還流反応を行っ た。反応終了後、水洗を3回行った。常圧蒸留、次いで 減圧蒸留を行って150℃まで昇温し、目的のノボラッ ク型フェノール樹脂Aを得た。得られたフェノール樹脂 の特性は数平均分子量700、重量平均分子量が100 0、遊離フェノール量0.1%以下、2核体成分量2. 5%であった。

> 82」(数平均分子量800、重量平均分子量が650 0、遊離フェノール量4.0%、2核体成分量7.5

ガラス繊維: CS-3E479FB (日東紡績(株)製) クレー: ECKALITEI (シール・カオリン(株) 製)

顔料:カーボンブラック45 (三菱化学(株)製)

硬化助剤:水酸化カルシウム 離型剤:ステアリン酸カルシウム

ー、ワラストナイト、タルク、炭酸カルシウム等があげ 30 【0012】特性評価用試験片はトランスファー成形に より下記条件で成形し、評価方法は下記の通りである。 (成形条件)

> 予熱温度:95~100℃ 金型温度:170~175℃

注入圧力:50MPa 硬化時間:3分間

アニール条件:180℃、8時間(曲げ強さ試験片及び 加湿寸法変化評価用試験片について評価)

【0013】(評価方法)曲げ強さ、曲げ弾性率、曲げ 等を加えて、均一に混合後、加熱ロール、コニーダ、二 40 伸び率:JIS K6911による(試験片はアニール 処理を行った)

> 加湿寸法変化率:外径50mm、厚さ3mmの円板状試 験片を用い、アニール処理後の外径寸法を基準とし、加 湿処理(60℃、95%、500時間)後の外径寸法変 化率を求めた。

成形収縮率: J I S K 6911による。 荷重たわみ温度:JIS K6911による。

[0014]

【表1】

実施例1 実施例2 実施例3 比較例1 比較例2 比較例3 ノポラック樹脂A 組成 ノボラック樹脂B 25 30 40 ヘキサメチレンテトラミン 6.5 4 4.8 6.5 ガラス繊維 54.2 42.5 54.2 42.5 クレー 5 5 5 5 5 5 その他(顔料、硬化助剤、離型剤) 曲げ強さ(MPa) - 230 220 200 220 215 190 特性 曲げ弾性率(MPa) 17500 17000 18300 17300 16000 16800 曲げ伸び率(%) 1.35 1.40 1.50 1.30 1.35 1.45 150℃曲げ強さ(MPa) 160 155 140 150 130 120 250℃曲げ強さ(MPa) 120 115 110 110 105 100

120

0.18

0.17

215

120

0.23

0.19

210

100

0.22

0.15

220

110

0.16

0.15

230

【0015】実施例は、比較例に比べて、機械的強度、 特に熱時の強度が向上し、加重たわみ温度及び加湿寸法 変化率の向上がみられた。このことから、実施例で得ら 20 のコンミテーター用材料に比べて、機械的強度、特に熱 れたフェノール樹脂成形材料は、機械的強度が向上し、 耐熱性、耐湿性に優れていることがわかる。 [0016]

引張り強さ(MPa)

成形収縮率(%)

加湿寸法変化率(%)

荷重たわみ温度(℃)

【発明の効果】以上の説明からも明らかなように、本発 明のコンミテーター用フェノール樹脂成形材料は、従来 時の機械的強度が向上し、加湿時の寸法変化が小さく、 加重たわみ温度が向上しており、各種コンミテーター用 として好適である。

110

0.24

0.17

200

110

0.27

0.19

195