Unit 1: Polynomial Functions 1.1 Power Functions

POLYNOMIAL EXPRESSIONS

A polynomial expression is one or more terms where each term is the product of a constant and a variable raised to a non-negative integral exponent only.

Example 1: Which of the following is a polynomial expression? Explain.

	Yes/No	Reason
5x		
$2x^{-3} + 3\sqrt{x} - 4$		
t² + 3.5t		
3xy+ 4x²		
$\frac{1}{2}x^5 - 3x^2 - x + 1$		

POLYNOMIAL FUNCTIONS

A polynomial function is a function defined by a polynomial in one variable written in the form $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_i x + a_o$.

To be a polynomial function, the following conditions must be met:

- 1. $a_n \neq o$ (This means the lead coefficient cannot equal zero) if n is the highest term
- 2. The coefficients $(a_n, a_{n-1}, ... a_0)$ are all real numbers
- 3. The exponents are all whole numbers
 - \triangleright The degree of a polynomial in one variable x is the highest power of x.
 - > The leading coefficient of a polynomial function is the constant belonging to the power with the highest exponent.
 - ➤ The domain of a polynomial function is all real numbers.
 - ➤ There are n+1 terms in a polynomial function of degree n.

Types of Polynomial Functions

Type	Degree	Standard Form	Example
		a,b,c,d,e are Real numbers	
Constant	0	f(x) = a	
Linear	1	$f(x) = ax + b$, $a \neq 0$	
Quadratic	2	$f(x) = ax^2 + bx + c , a \neq 0$	
Cubic	3	$f(x) = ax^3 + bx^2 + cx + d , a \neq 0$	
Quartic	4	$f(x) = ax^4 + bx^3 + cx^2 + dx + e$, $a \ne 0$	
Quintic	5	$f(x) = ax^5 + bx^4 + cx^3 + dx^2 + ex + f$, $a \ne 0$	

Example 2: Complete the table below:

	Туре	Degree	Leading Coefficient
f(x) = 10 + 7x			
$f(x) = 3.7x^4 - 2x^2 + 7.4$			
g(x) 0.5			
g(x) = 2.5			
$g(x) = -\frac{1}{2}x^2 + \sqrt{2}$			
$s(t) = t^3 - 3t$			
f(x) = x(x+1)(x-2)			
$h(x) = x(2x+1)^2(2-x)^3$			

Example 3: Explain why each of the following are not polynomial functions.

- a) $h(x) = 3x^2 + 2x 5x^{-1}$
- b) $f(x) = \frac{1}{x}$
- c) $g(x) = 2^x$

POWER FUNCTIONS

A power function is a polynomial of the form $f(x) = ax^n$, where n is a whole number. Power functions have similar characteristics depending on whether their degree is even or odd.

Function	Degree	Graph _	Sign of Leading coefficient	End behavior
$y = \frac{1}{3}x$		133 133 133 133 133 133		$As x \to -\infty, y \to \underline{\qquad}$ $As x \to \infty, y \to \underline{\qquad}$
$y = -2x^3$		30 20 40 40 40 40 40 40 40 40 40 40 40 40 40		$As x \to -\infty, y \to \underline{\hspace{1cm}}$ $As x \to \infty, y \to \underline{\hspace{1cm}}$
<i>y</i> = - <i>x</i> ²		12- 12- 12- 13- 23-		$As x \to -\infty, y \to \underline{\hspace{1cm}}$ $As x \to \infty, y \to \underline{\hspace{1cm}}$
<i>y= x</i> ⁴		3 3 3 3 3 3 3 3 3		$As x \to -\infty, y \to \underline{\hspace{1cm}}$ $As x \to \infty, y \to \underline{\hspace{1cm}}$

Summary

If a polynomial function has an *odd degree and its lead coefficient is positive*, then, the function extends from the ____ quadrant to the ____ quadrant.

Therefore:

as
$$x \to -\infty$$
, _______.
as $x \to \infty$, ______.

If a polynomial function has an *odd degree and its lead coefficient is negative*, then, the function extends from the _____ quadrant to the _____ quadrant.

Therefore:

as
$$x \to -\infty$$
, _______.
as $x \to \infty$, ______.

If a polynomial function has an **even degree and its lead coefficient is positive**, then, the function extends from the ____ quadrant to the ____ quadrant.

Therefore:

$$as x \to -\infty, \underline{\qquad}$$

$$as x \to \infty, \underline{\qquad}$$

If a polynomial function has an *even*degree and its lead coefficient is

negative, then, the function extends from
the ____ quadrant to the ____ quadrant.
Therefore:

$$as x \to -\infty, \underline{\qquad}$$

$$as x \to \infty, \underline{\qquad}$$

Polynomial Identities

An equation shows that two mathematical expressions are equal.

$$2x-5=6x-1$$

It can be solved to give the **roots** or **solutions** of the equation. An *identity* is an equation that is true for **all values of** x.

If an equation is an identity, the symbol "="in the equation can be replaced by " \equiv " which means "is identical to".

For example: $(x+1)^3 = x^3 + 3x^2 + 3x + 1$ is an **identity** since the equation is satisfied for all values of x.

Ex#1. Given that $x^3 - 2x^2 + 4x + 3 = (x-1)(x^2 - x + a) + b$, find the value of *a* and *b*.

Ex#2. Given that $15x^3 + Cx^2 - x + 2 = (3x+1)(Ax+B)(x-1)$, find the values of A,B and C.

Ex#3. Given $2x^2 + x + C = A(x+1)^2 + B(x-1) + 4$ for all values of x, find the values of A,B and C.

Exit Card!

Complete the chart below.

Function	Type	degree	leading coefficient	End behavior
$y = x^2 - 2x$				As $x \to -\infty$, $y \to $ As $x \to \infty$, $y \to $
$y = -(x-1)(1-x)^2$				As $x \to -\infty$, $y \to $ As $x \to \infty$, $y \to $
$y = -2x^5 + 7x^4 - 3x^3 - 18x^2 + 5$				As $x \to -\infty$, $y \to $ As $x \to \infty$, $y \to $
$y = -(1-2x)^3(x+1)^2$				$As x \to -\infty, y \to \underline{\hspace{1cm}}$ $As x \to \infty, y \to \underline{\hspace{1cm}}$
$y = -3x^{2} (2-x)^{3} (2x-1)^{2}$				$As x \to -\infty, y \to \underline{\hspace{1cm}}$ $As x \to \infty, y \to \underline{\hspace{1cm}}$

Warm Up

1. Which of the following relations are polynomial functions? For each polynomial function name the type of polynomial, its degree, the leading coefficient and end behaviour. If a relation is not a polynomial function, provide at least one reason why it is not.

a. $y = 3x^5 - 2x + 17$	b. $y = 3x^4 + \sqrt{5x}$
Type of polynomial: Degree : Leading coefficient: $x \to -\infty, y \to$ $x \to \infty, y \to$	Reason:
c. $y = -\frac{1}{2}x(x-4)^2(x+4)^2$	d. $y = (x-2)^2(4-2x)(x+5)$
Type of polynomial: Degree : Leading coefficient: $x \to -\infty, y \to$ $x \to \infty, y \to$	Type of polynomial: Degree : Leading coefficient: $x \to -\infty, y \to$ $x \to \infty, y \to$
e. y = 4	f. $y = (-(x-4))^3 + 1$
Type of polynomial: Degree : Leading coefficient: $x \to -\infty, y \to$ $x \to \infty, y \to$	Type of polynomial: Degree : Leading coefficient: $x \to -\infty, y \to$ $x \to \infty, y \to$

2. From the graphs given, select all graphs that represent power functions of the form $y=ax^n$.

