Federated Reinforcement Learning

Paul Mangold, École Polytechnique

REDEEM Retreat @ Annecy, September 24th 2025

Refresher on Reinforcement Learning

In RL, agent:

- take actions in an environment
- collect reward after their action
- learn to obtain better rewards

Refresher on Reinforcement Learning

Environment:

- ullet set of states ${\cal S}$
- ullet set of actions ${\cal A}$
- rewards, typically in [0, 1]
- transition $P(\cdot|s,a)$ for $s,a \in \mathcal{S} \times \mathcal{A}$

Goal: learn π to get good rewards

Example: CartPole

Goal: keep the stick up

- state: angle of the stick
- reward: 1 if still up, 0 otherwise

Idea: run episodes of length H = 250 \rightarrow adapt policy after each episode

Example: CartPole

Cumulative reward, 1 cart

Two Big Questions in Reinforcement Learning

- 1. Policy evaluation: evaluate if a policy is good
- 2. Policy optimization: find a good policy

Two Big Questions in Reinforcement Learning

1. Policy evaluation: evaluate if a policy is good

take a policy π goal: approximate the expected sum of reward for each $s \in \mathcal{S}$

$$V^{\pi}(s) = \mathbb{E}\Big[\sum_{t=0}^{\infty} \gamma^t R(S_t, A_t) | S_0 = s\Big]$$

where $A_t \sim \pi(\cdot|S_t)$ and $S_{t+1} \sim P(\cdot|S_t,A_t)$

2. Policy optimization: find a good policy

Two Big Questions in Reinforcement Learning

- 1. Policy evaluation: evaluate if a policy is good
- 2. Policy optimization: find a good policy

find the best policy (according to value), for all $s \in \mathcal{S}$

$$\pi_\star(\cdot|s) \in rg \max_\pi V^\pi(s)$$

State Value function:

$$V^{(\pi)}(s) = \mathbb{E}\left[\left. \sum_{t=0}^{\infty} \gamma^t R(S_t, A_t) \; \right| \; S_0 = s
ight]$$

State Value function:

$$V^{(\pi)}(s) = \mathbb{E}\left[\left. \sum_{t=0}^{\infty} \gamma^t R(S_t, A_t) \; \right| \; S_0 = s
ight]$$

Expanding the first step, we obtain the Bellman equation:

$$egin{aligned} V^{(\pi)}(s) &= \mathbb{E}[R(s,A_0)] + \gamma \sum_{a \in \mathcal{A}} \pi(a|s) \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} R(S_t,A_t)
ight] \ &= \mathbb{E}[R(s,A_0)] + \gamma \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{s' \in \mathcal{S}} P(s'|s,a) V^{(\pi)}(s') \end{aligned}$$

The function $V^{(\pi)}$ satisfies the Bellman equation

$$V^{(\pi)} - R - \gamma P V^{(\pi)} = 0 \tag{*}$$

The function $V^{(\pi)}$ satisfies the Bellman equation

$$V^{(\pi)} - R - \gamma P V^{(\pi)} = 0 \tag{*}$$

Temporal difference learning finds $V^{(\pi)}$ by solving this equation:

- take action $A_t \sim \pi(\cdot|S_t)$
- ullet receive reward $R(S_t, A_t)$ and $S_{t+1} \sim P(\cdot|S_t, A_t)$
- update the current estimate $\hat{V}_t^{(\pi)}$ with the error from (\star)

$$\hat{V}_{t+1}^{(\pi)}(S_t) = \hat{V}_t^{(\pi)}(S_t) - \alpha(V_t^{(\pi)}(S_t) - R(S_t, A_t) + \gamma PV_t^{(\pi)}(S_t))$$

 \Rightarrow eventually, $\hat{V}_t^{(\pi)}$ converges to $V^{(\pi)}$

2. Policy Optimization: Policy Gradient Method

2. Policy Optimization: Policy Gradient Method

The value function is

$$egin{aligned} V^{(\pi)}(s) &= \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R(S_t, A_t) \mid S_0 = s
ight] \ &= \sum_{t=0}^{\infty} \gamma^t \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \mathbb{P}(S_t = s, A_t = a) \mathbb{E}[R(S_t, A_t)] \end{aligned}$$

Parameterize the policy π_{θ} by $\theta \in \mathbb{R}^{SA}$, and update

$$\theta_{t+1} = \theta_t + \alpha \nabla_\theta V^{(\pi_\theta)}$$

 \Rightarrow the policy π_{θ_t} converges to an optimal policy π_{\star}

The problem of Reinforcement Learning:

All these methods require a lot of samples to converge

from John Schulman et al. "Proximal policy optimization algorithms". In: arXiv preprint arXiv:1707.06347 (2017)

Federated Reinforcement Learning

Federated Reinforcement Learning

Idea: collaborate to solve these problems together faster

Example: CartPole

Cumulative reward, 1 cart vs. 10 carts

Question:

How does RL benefit from federated learning?

Question:

How does RL benefit from federated learning?

- → Can it accelerate the training?
- → How to handle heterogeneity?
- → How to reduce communications?

Heterogeneity in Reinforcement Learning

Take N agents with transition kernels $P^{(c)}$ and rewards $r^{(c)}$

Two types of heterogeneity, for $c \neq c' \in \{1, \dots, N\}$

→ transition kernel heterogeneity:

for
$$s, a, s' \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}$$
, $P^{(c)}(s'|s, a) \neq P^{(c')}(s'|s, a)$

→ rewards heterogeneity

for
$$s, a \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}$$
, $R^{(c)}(s, a) \neq R^{(c')}(s, a)$

Federated temporal difference learning method, with shared policy π :

- for each agent c = 1 to N
 - take action $A_t^{(c)} \sim \pi(\cdot|S_t^{(c)})$
 - receive reward $R^{(c)}(S_t^{(c)}, A_t^{(c)})$ and $S_{t+1}^{(c)} \sim P^{(c)}(\cdot | S_t^{(c)}, A_t^{(c)})$
 - update the current estimate $\hat{V}_t^{(c,\pi)}$ with the error from (\star)

$$\hat{V}_{t+1}^{(c,\pi)}(S_t^{(c)}) = \bar{V}_t^{(\pi)}(S_t^{(c)}) - \alpha(\bar{V}_t^{(\pi)}(S_t^{(c)}) - R^{(c)}(S_t^{(c)}, A_t^{(c)}) + \gamma P^{(c)}\bar{V}_t^{(\pi)}(S_t^{(c)}))$$

• aggregate $ar{V}_{t+1}^{(\pi)} = rac{1}{N} \sum_{c=1}^N \hat{V}_t^{(c,\pi)}$

Federated temporal difference learning method, with shared policy π :

- for each agent c = 1 to N
 - take action $A_t^{(c)} \sim \pi(\cdot|S_t^{(c)})$
 - receive reward $R^{(c)}(S_t^{(c)}, A_t^{(c)})$ and $S_{t+1}^{(c)} \sim P^{(c)}(\cdot | S_t^{(c)}, A_t^{(c)})$
 - update the current estimate $\hat{V}_t^{(c,\pi)}$ with the error from (\star)

$$\hat{V}_{t+1}^{(c,\pi)}(S_t^{(c)}) = \bar{V}_t^{(\pi)}(S_t^{(c)}) - \alpha(\bar{V}_t^{(\pi)}(S_t^{(c)}) - R^{(c)}(S_t^{(c)}, A_t^{(c)}) + \gamma P^{(c)}\bar{V}_t^{(\pi)}(S_t^{(c)}))$$

• aggregate $\bar{V}_{t+1}^{(\pi)} = \frac{1}{N} \sum_{c=1}^{N} \hat{V}_{t}^{(c,\pi)}$

Theorem: this algorithm converges to a solution of

$$\bar{V}^{(\pi)} - \frac{1}{N} \sum_{c=1}^{N} R^{(c)} - \frac{1}{N} \sum_{c=1}^{N} \gamma P^{(c)} \bar{V}^{(\pi)} = 0$$

We show that this algorithm

- 1. converges even with local training
- 2. can benefit from control variate to mitigate heterogeneity drift
- 3. accelerates the learning (N times less samples per agent)

$$\Rightarrow$$
 Problem: the solution to $\bar{V}^{(\pi)} - \frac{1}{N} \sum_{c=1}^{N} R^{(c)} - \frac{1}{N} \sum_{c=1}^{N} \gamma P^{(c)} \bar{V}^{(\pi)} = 0$

...may not be the right value function for each agent

...unless agents are similar enough!

What about federated policy gradient?

$$heta_{t+1} = heta_t + rac{lpha}{ extsf{N}} \sum_{c=1}^{ extsf{N}}
abla_{ heta} V^{(c,\pi_{ heta_t})}$$

What about federated policy gradient?

$$\theta_{t+1} = \theta_t + \frac{\alpha}{N} \sum_{c=1}^{N} \nabla_{\theta} V^{(c, \pi_{\theta_t})}$$

Some remarks about regularity: each $V^{(c,\pi_{\theta})}$ is:

- L-smooth for some L > 0
- satisfies a non-uniform Łojasiewicz property for $\mu: \mathbb{R}^p \to \mathbb{R}$:

$$\|\nabla_{\pi} V^{(c,\pi_{\theta})}\|^{2} \ge 2\mu(\theta) (V^{(c,\star)} - V^{(c,\pi_{\theta})})^{2}$$
 (*)

Problem: due to heterogeneity, $\frac{1}{N} \sum_{c=1}^{N} V^{c,\pi_{\theta}}$ does not satisfy (\star)

With $\mu = \min_t \mu(\theta_t)$, we prove that

$$\frac{1}{N} \sum_{c=1}^{N} V^{(c,\star)} - \mathbb{E} V^{(c,\pi_t)} \lesssim \frac{L}{\mu T} \frac{1}{N} \sum_{c=1}^{N} (V^{(c,\star)} - V^{(c,\pi_{\theta_0})}) + \frac{\eta^{1/2}}{\mu^{1/2} N^{1/2}} + \frac{\zeta^{1/2}}{\mu^{1/2}}$$

where $\zeta \neq 0$ if agents are heterogeneous

On the Impact of Heterogeneity on Federated RL

We can measure heterogeneity by

- ightarrow transition heterogeneity: $\epsilon_P = \sup_{c \neq c', s, a \in \mathcal{S} \times \mathcal{A}} |P^{(c)}(\cdot|s, a) P^{(c')}(\cdot|s, a)||_{TV}$
- \rightarrow rewards heterogeneity $\epsilon_r = \sup_{c \neq c', s, a \in S \times A} |R^{(c)}(s, a) R^{(c')}(s, a)|$

Federated error is always of order $\epsilon_P + \epsilon_r$

This is due to the fact that objectives are fundamentally mis-aligned

Conclusion

Federated reinforcement learning is still at its beginning

In this talk, we studied

- a federated TD learning algorithm
- a federated policy gradient algorithm

Contrary to classical FL, there is no "analogy with centralized"

 \rightarrow we necessarily pay heterogeneity somewhere...

Perspectives

Contrary to classical FL, there is no "analogy with centralized" → we necessarily pay heterogeneity somewhere...

But there is hope:

- in homogeneous cases, everything works
- under heterogeneity... we should personalize!

In fact, maybe it is the same in all federated learning:)

Thank you!

Works related to this talk:

- Safwan Labbi et al. "On Global Convergence Rates for Federated Policy Gradient under Heterogeneous Environment". In: arXiv (2025)
- Safwan Labbi et al. "Federated ucbvi: Communication-efficient federated regret minimization with heterogeneous agents". In: AISTATS (2024)
- Lorenzo Mancini et al. "Joint Channel Selection using FedDRL in V2X". In: MECOM. 2024
- Paul Mangold et al. "Scafflsa: Taming heterogeneity in federated linear stochastic approximation and td learning". In: NeurIPS (2024)

Thanks to my collaborators on these projects: Safwan Labbi, Lorenzo Mancini, Eric Moulines, Daniil Tiapkin