# Aula 03

TIC – Tecnólogia da Informação e Comunicação

Prof.: Roberto

# O que vamos ver hoje?

- Classificação das redes de computadores por abrangência(PAN, LAN, CAN, MAN, WAN, WLAN, WWAN)
- Conceitos fundamentais de endereçamento IP(IPv4 e IPv6 públicos, privados, reservados)
- Diferenças entre os modelos de endereçamento(tamanho, estrutura e aplicação)
- Introdução à estrutura da Internet e sua governança(CGI.br, NIC.br, IANA, LACNIC)
- Atividade prática no Packet Tracer: Criando uma rede simples com IPs atribuídos manualmente

2. Revisão

#### Revisão

- Uma rede de computadores é a interligação de dois ou mais dispositivos que compartilham informações, recursos e serviços.
- A comunicação entre os dispositivos ocorre por meio de protocolos, como o TCP/IP.
- Exemplo prático: quando você envia um e-mail, assiste a um vídeo online ou imprime algo a partir de outro computador.
- Redes estão em todo lugar em casa, na escola, no trabalho e na indústria!

# Revisão - Tipo e Topologia de Redes

## Classificação por abrangência:

- **PAN:** rede pessoal (ex: Bluetooth entre celular e fone)
- LAN: rede local (ex: escritório)
- **MAN:** rede metropolitana (ex: provedores locais)
- **WAN:** rede de longa distância (ex: Internet)

## Principais topologias:

- **Estrela:** dispositivos conectados a um ponto central (switch)
- **Anel:** dados circulam entre os dispositivos
- **Barramento:** todos conectados a um único meio
- Malha: todos conectados entre si

# Revisão - OSI e TCP/IP: Modelos de Comunicação

O modelo OSI organiza a comunicação em 7 camadas, da aplicação até o meio físico, já o modelo TCP/IP, possui 4 camadas.

# Camadas principais e seus exemplos:

- Aplicação: HTTP, FTP, SMTP
- Transporte: TCP, UDP
- Rede: IP, ICMP
- Enlace e Física: Ethernet, Wi-Fi, cabo
- Ambos os modelos seguem o processo de encapsulamento de dados.

# 2. Endereço IP



O endereço IP (Internet Protocol) é um identificador lógico e único atribuído a cada dispositivo conectado a uma rede. Ele permite que os dispositivos se encontrem, se comuniquem e troquem informações dentro de uma rede ou pela internet.

# Endereço de IP

# Um endereço IP é como o endereco da sua casa:



Sem ele, os dados (como pacotes) não sabem para onde ir ou de onde vieram.

# Endereço de IP - Características

- Cada dispositivo em uma rede precisa de um endereço IP único.
- Pode ser configurado manualmente (estático) ou automaticamente (via DHCP).
- Serve tanto para redes locais (LAN) quanto para comunicação na Internet.

# Endereço de IP - Tipos de IP

| Tipo | Descrição                                                           | Exemplo      |
|------|---------------------------------------------------------------------|--------------|
| IPv4 | Formado por 4 blocos decimais separados por pontos. Possui 32 bits. | 192.168.0.10 |
| IPv6 | Mais moderno, usa 128 bits e notação hexadecimal.                   | 2001:db8::1  |

#### MAC Address

- MAC significa Media Access Control.
- É o endereço físico da placa de rede (NIC) de um dispositivo.
- É gravado na fábrica e serve para identificar unicamente cada dispositivo em uma rede local (LAN).
- Exemplo de endereço MAC:

00:1A:2B:3C:4D:5E

Pense no MAC como o "RG" da placa de rede — único, fixo e usado para comunicação local.

# **MAC Address** 00:1A:2B:3C:4D:5E **Fabricante** IANA

# Endereço IP vs Endereço MAC

| Endereço IP         | Endereço MAC                   |  |
|---------------------|--------------------------------|--|
| Lógico (software)   | Físico (placa de rede)         |  |
| Pode mudar          | Fixo por padrão                |  |
| Usado no roteamento | Usado na entrega dentro da LAN |  |
| Ex: 192.168.1.5     | Ex: 00:1A:2B:3C:4D:5E          |  |

3. IPv4

## IPv4

IPv4 é a versão 4 do protocolo IP, criado nos anos 1980.

Utiliza endereços de 32 bits, normalmente representados em 4 números decimais separados por pontos.

Exemplo: 192.168.0.1

- Cada endereço IPv4 é dividido em:
  - Parte da rede (Network ID)
  - Parte do host (Host ID)
- A separação entre essas partes é feita por uma máscara de sub-rede.

# Estrutura de um endereço IPv4

192 168 1.

10

PARTE DA REDE

**PARTE DO HOST** 

255.255.555.0

/24

A máscara define onde termina a rede e onde começa o host.

Exemplo: 192.168.1.10

**Está dividido em 4 octetos:** 

► 192 • 168 • 1 • 10 → cada octeto possui 8 bits



Cada número do IP é chamado de octeto e representa 8 bits. O IPv4 possui 32 bits no total.

# IPv4 – Classe de IPs

| Classe | Intervalo                   | Uso comum                                  |
|--------|-----------------------------|--------------------------------------------|
| А      | 0.0.0.0 - 127.255.255.255   | Grandes redes (ex: operadoras)             |
| В      | 128.0.0.0 - 191.255.255.255 | Redes médias (ex: universidades)           |
| С      | 192.0.0.0 – 223.255.255.255 | Pequenas redes (ex: residências, empresas) |
| D      | 224.0.0.0 - 239.255.255.255 | Multicast                                  |
| Е      | 240.0.0.0 - 255.255.255.255 | Reservado para pesquisa                    |



- IP público: acessível pela Internet (fornecido pelo provedor).
- IP privado: usado internamente, não é roteável na Internet.

| Faixa de IP Privado | Classe |  |
|---------------------|--------|--|
| 10.0.0.0/8          | A      |  |
| 172.16.0.0/12       | В      |  |
| 192.168.0.0/16      | С      |  |

• Esses IPs precisam de NAT para acessar a Internet.

4. CIDR e Máscara de subrede



A máscara de sub-rede define qual parte do IP representa a rede e qual parte representa os dispositivos (hosts).

#### CIDR

CIDR significa Classless Inter-Domain Routing

Substitui o antigo sistema de classes de IP (A, B, C)

Permite definir o tamanho da rede de forma mais flexível, usando o número de bits da parte da rede

#### CIDR

CIDR (Classless Inter-Domain Routing): permite usar qualquer quantidade de bits para rede e host.

Exemplo: 192.168.1.0/24 → máscara 255.255.255.0

192.168.1.0 é a rede, e os hosts vão de 192.168.1.1 até 192.168.1.254.

# CIDR

| CIDR | Máscara decimal | Bits p/ host | Quantidade de<br>hosts válidos |
|------|-----------------|--------------|--------------------------------|
| /30  | 255.255.255.252 | 2 bits       | 2                              |
| /29  | 255.255.255.248 | 3 bits       | 6                              |
| /28  | 255.255.255.240 | 4 bits       | 14                             |
| /27  | 255.255.255.224 | 5 bits       | 30                             |
| /26  | 255.255.255.192 | 6 bits       | 62                             |
| /25  | 255.255.255.128 | 7 bits       | 126                            |
| /24  | 255.255.255.0   | 8 bits       | 254                            |

# $N^{\circ}$ de hosts válidos = $2^{\circ}-2$



n = número de bitsrestantes para aparte do host



Exemplo: 
$$/26 \rightarrow 32-26 = 6 \rightarrow 2^{6}-2 = 62$$
 hosts válidos

# CIDR – Dica para não errar

- Sempre subtraia 2 do total de IPs (1 p/ rede, 1 p/ broadcast)
- O tamanho da sub-rede muda conforme o prefixo CIDR
- ✓ IPs privados mais comuns usam /24 (até 254 hosts)
- ✓ Você não precisa decorar todas as máscaras apenas entender o padrão

# O que é Endereço de rede?

- 📌 O endereço de rede é o primeiro IP de uma sub-rede.
- Ele representa a sub-rede como um todo, e não pode ser atribuído a nenhum host.
- É obtido mantendo os bits da parte de rede e zerando todos os bits da parte do host.
- Usado por roteadores e switches para identificar destinos de rede.

#### Exemplo com /24:

Rede: 192.168.1.0/24

→ Endereço de rede: 192.168.1.0

→ Hosts válidos: 192.168.1.1 a 192.168.1.254

# O que é Endereço de Broadcast

- 📝 O endereço de broadcast é o último IP da sub-rede.
- Ele é usado para enviar mensagens a todos os hosts daquela rede ao mesmo tempo.
- É obtido mantendo os bits da parte de rede e preenchendo todos os bits da parte do host com 1.
- Assim como o endereço de rede, não pode ser usado por hosts.

#### Exemplo com /24:

Rede: 192.168.1.0/24

→ Broadcast: 192.168.1.255

# Por que não podemos usar o primeiro e o último IP?

- Endereço de rede (todos os bits de host = 0)
- $\rightarrow$  É reservado para identificar a sub-rede.
- → Usado por roteadores e protocolos para roteamento e identificação de rede.
- Endereço de broadcast (todos os bits de host = 1)
- → É reservado para comunicação em massa dentro da sub-rede.
- → Permite que um dispositivo envie um pacote para todos os outros ao mesmo tempo.
- Usar esses endereços em hosts causaria conflitos de comunicação.

#### Curiosidade

#### Confirmação teórica com base na RFC 950A

RFC 950 – Internet Standard Subnetting Procedure, publicada em agosto de 1985 por J. Mogul e J. Postel, define o uso de sub-redes com máscaras variáveis e estabelece claramente o papel reservado do primeiro e do último endereço de uma sub-rede.

#### Trechos importantes da RFC 950:

- "The host-number of all zeros is used to refer to the network itself."
- Ou seja: o endereço com todos os bits de host em 0 é reservado para identificar a sub-rede → endereço de rede.
- "The host-number of all ones is used to address all hosts on the specified subnet."
- Ou seja: o endereço com todos os bits de host em 1 é reservado para enviar pacotes a todos os hosts da sub-rede → endereço de broadcast.

5. IPv6

# Por que IPv6?

- O IPv4 está limitado a cerca de 4,3 bilhões de endereços.
- Com a popularização de celulares, dispositivos IoT e Internet em massa, o IPv4 se esgotou.

# O IPv6 foi criado para:

- Suportar trilhões de dispositivos
- Tornar o roteamento mais eficiente
- Eliminar a necessidade de NAT em muitos casos

#### IPv6

- IPv6 tem 128 bits, em vez dos 32 do IPv4
- Representado em 8 blocos de 4 dígitos hexadecimais
- Separados por dois-pontos :
  - 2001:0db8:85a3:0000:0000:8a2e:0370:7334

- Pode ser abreviado:
  - 2001:db8:85a3::8a2e:370:7334

| Tipo      | Finalidade                                                                  | Exemplo                    |
|-----------|-----------------------------------------------------------------------------|----------------------------|
| Unicast   | Comunicação de um para um                                                   | 2001:db8::1                |
| Multicast | Comunicação de um para <b>vários</b> simultaneamente                        | ff02::1                    |
| Anycast   | Um endereço compartilhado por <b>vários hosts</b> — responde o mais próximo | (não tem forma específica) |



Não existe broadcast em IPv6!

## IPv6 - Configuração

- Autoconfiguração automática (stateless);
- Segurança integrada com IPSec;
- Melhor suporte para mobilidade (Mobile IPv6);
- Cada interface pode ter vários endereços IPv6;
- Pode coexistir com IPv4 em modo dual stack

## IPv6 – Regras de Abreviação

✓ 1. Remova os zeros à esquerda de cada bloco

#### Exemplo:

2001:0db8:0000:0000:0000:1428:57ab

- 2001:db8:0:0:0:0:1428:57ab
- 2. Substitua blocos consecutivos de zeros por :: (uma única vez)

#### Exemplo:

2001:db8::1428:57ab

Regra de abreviação do IPv6 permite remover apenas os zeros à esquerda, não os zeros à direita dentro de um bloco

## IPv6 – Regras de Abreviação

## Regras de abreviação de endereços IPv6



**Pode** 

Não pode

0db8

→ db8

 $ff00 \rightarrow ff$ 

**0042** → **42** 

2001::1:::1234

0000:0000 → :::

# 5. Exercícios Práticos



- Objetivo: Compreender como IPs e máscaras funcionam para estabelecer comunicação básica.
- Instruções:
  - Adicione dois PCs e conecte com cabo crossover direto entre eles.
  - Configure IPs manualmente:
    - PC1: 192.168.1.1/24
    - ▶ PC2: 192.168.1.2/24
  - Teste a comunicação com ping.

Objetivo: Verificar o funcionamento básico de uma LAN com switch.

### Instruções:

- Adicione 3 PCs e 1 switch.
- Conecte todos os PCs ao switch com cabos diretos.
- Configure IPs na mesma rede:
  - PC1: 192.168.0.10/24
  - PC2: 192.168.0.11/24
  - PC3: 192.168.0.12/24
- Teste ping entre todos os PCs.

Objetivo: Praticar cálculo de rede e broadcast manualmente + validação prática.

- Instruções:
  - Dado o IP 192.168.10.65/26, calcule:
    - ▶ IP de rede
    - ▶ IP de broadcast
    - ▶ IPs válidos
  - Configure um cenário com 2 PCs e 1 switch usando dois IPs válidos dentro da sub-rede.
  - Teste o ping.

Objetivo: Demonstrar a limitação de comunicação entre sub-redes sem roteamento.

- Instruções:
  - Crie dois PCs conectados a um switch.
  - Configure:
    - PC1: 192.168.1.10/24
    - PC2: 192.168.2.10/24
  - Tente realizar um ping entre eles.

Objetivo: Identificar erros comuns de configuração.

- Instruções:
  - Monte um cenário com dois PCs e um switch.
  - Configure os IPs, mas insira um IP de máscara incorreta (ex: 192.168.1.1/24 e 192.168.1.2/30).

## **Obrigado!**