Содержание

1	Линейный оператора: определение, примеры	2
2	Ядро и образ линейного оператора: теорема о ядре и образе	2
3	Пространство линейных операторов	3
4	Матрица линейного оператора	4
5	Теорема о базисе пространства линейных операторов 5.1 То, чего нет в билетах, но оно важно	5
6	Композиция линейных операторов	6
7	Алгебра линейных операторов и алгебра матриц 7.1 Примеры алгебр	
8	Обратный оператор	7
9	Обратимость в алгебре матриц	8

Билеты к коллоку

i.g. i.a.

х марта 2023 г.

1 Линейный оператора: определение, примеры

Определение. Отображение $\varphi: X \to Y$ линейного пространства X в линейное пространство Y называется **линейным оператором**, если $\forall x, x_1, x_2 \in X, \quad \forall \alpha \in \mathbb{K}$

$$\varphi(x_1 + x_2) = \varphi(x_1) + \varphi(x_2), \quad \varphi(\alpha x) = \alpha \varphi(x)$$

Notabene. Множество линейных операторов из $X(\mathbb{K})$ в $Y(\mathbb{K})$ обозначается $\operatorname{Hom}_{\mathbb{K}}(X,Y)$.

Notabene. Оператор $\varphi: X \to X$, отображающий X в себя, называют эндоморфизмом и пишут $\varphi \in End(X)$, а в случае отображения на себя - автоморфизмом.

Примеры:

- 1. Нульоператор: $\Theta: X \to Y$, $\Theta x = 0_Y$
- 2. Единичный оператор или тождественный: $\mathcal{I}: X \to Y, \quad \mathcal{I}x = x$
- 3. Проекторы: $\mathcal{P}_{L_1}^{||L_2}: X \to X$, $X = L_1 \oplus L_2$ $\mathcal{P}_{L_1}^{||L_2}x = x_1$, $x_1 \in L_1$

2 Ядро и образ линейного оператора: теорема о ядре и образе

Определение. Ядром линейного оператора $\varphi \in \operatorname{Hom}_{\mathbb{K}}(X,Y)$ называется подмножество X:

$$\ker \varphi = \{ x \in X : \quad \varphi(x) = 0 \}$$

Определение. Образом линейного отображения $\varphi \in \operatorname{Hom}_{\mathbb{K}}(X,Y)$ называется подмножество Y:

$$\operatorname{Im}\varphi = \{ y \in Y : \exists x \in X \quad \varphi(x) = y \} = \varphi(X)$$

Notabene. Образ и ядро являются линейными подпространствами..

Теорема(база). Пусть $\varphi \in \operatorname{Hom}_{\mathbb{K}}(X,Y)$, тогда имеет место изоморфизм

$$X/\ker\varphi\simeq\mathrm{Im}\varphi$$

Доказательство. Отображение $\bar{\varphi}: X/\ker \varphi \to \operatorname{Im}\varphi$, заданное как

$$x + \ker \varphi \mapsto \varphi(x)$$

Гомоморфио (выполнена линейность), сюрьективно и инъективно - а значит является изоморфизмом.

Определение. Пусть $L \leq X$ - линейное подпространство X. Набор $\{v_j\}_{j=1}^m \in X$ называется линейно независимым над $\mathbb K$ относительно L, если

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_m v_m \in L \quad \Rightarrow \quad \lambda_1 = \lambda_2 = \dots = \lambda_m = 0$$

то есть набор векторов ЛНЗ между собой и любыми векторами из L.

Определение. Говорят, что $\{v_j\}_{j=1}^m$ порождает X относительно L, если

$$X = \langle v_1, v_2, v_3, \dots, v_m \rangle + L$$

то есть X это сумма линейной оболочки набора и подпространства L.

Определение. Говорят, что $\{v_j\}_{j=1}^m$ базис X относительно L, если набор ЛНЗ над L и порождает X относительно L

Лемма. Следующие условия эквивалентны: .

- 1. $\{v_j\}_{j=1}^m$ базис X относительно L;
- 2. $\{\bar{v}_1, \bar{v}_2, \bar{v}_3, \dots, \bar{v}_m\}$ базис X/L;
- 3. $X = \{v_1, v_2, v_3, \dots, v_m\} \oplus L$.

Доказательство. Очевидно, но поясню

- 1. $1 \Rightarrow 2$: Так как набор базис, значит ЛНЗ в X относительно L, из чего следует ЛНЗ в X/L, а полнота следует отсюда же.
- 2. $2 \Rightarrow 3$: Очевидно
- 3. 3 ⇒ 1: Очевидно

Лемма. Если $L \leq X$, тогда имеет место:.

 $\dim X = \dim L + \dim X/L$

доказательство очевидно следует из прошлой леммы и к тому же, так как линейная оболочка Π HЗ набора в пересечении с L дает пустое множество - то сумма является прямой и из нее следует сумма размерностей.

Теорема(о ядре и образе). Пусть $\varphi \in \text{Hom}_{\mathbb{K}}(X,Y)$, тогда имеет место

$$\dim \ker \varphi + \dim \operatorname{Im} \varphi = \dim X$$

Доказательство. Так как ${\rm Im}\varphi\simeq X/\ker\varphi$, то ${\rm dim}\,{\rm Im}\varphi={\rm dim}\,X/\ker\varphi$, тогда из прошлой леммы получим требуемое.

3 Пространство линейных операторов

Определение. Говорят, что операторы $\varphi,\psi\in \operatorname{Hom}_{\mathbb K}(X,Y)$ равны, если

$$\varphi x = \psi x, \quad \forall x \in X$$

Определение. Отображение χ называется **суммой** линейных операторов $\varphi, \psi \in \operatorname{Hom}_{\mathbb{K}}(X,Y)$, если

$$\forall x \in X \quad \chi(x) = \varphi(x) + \psi(x)$$

Лемма. Имеет место $\chi \in \operatorname{Hom}_{\mathbb{K}}(X,Y)$.

$$\chi(x_1 + x_2) = \chi(x_1) + \chi(x_2)$$
$$\chi(\lambda x) = \lambda \chi(x)$$

Доказательство.

$$\chi(x_1 + x_2) = \varphi(x_1 + x_2) + \psi(x_1 + x_2) = (\varphi + \psi)x_1 + (\varphi + \psi)x_2 = \chi(x_1) + \chi(x_2)$$
$$\chi(\lambda x) = (\varphi + \psi)\lambda x = \lambda(\varphi + \psi)x = \lambda\chi(x)$$

Определение. Отображение ζ называется **умножением** линейного оператора φ на число λ , если

$$\forall x \in X \quad \zeta x = \lambda \varphi(x)$$

Лемма. Имеет место $\zeta \in \operatorname{Hom}_{\mathbb{K}}(X,Y)$.

Доказательство. Очевидно. Так же, как для суммы.

$$\zeta(x_1 + x_2) = \lambda(\varphi(x_1) + \varphi(x_2)) = \lambda\varphi(x_1) + \lambda\varphi(x_2) = \zeta(x_1) + \zeta(x_2)$$
$$\zeta(\lambda_1 x) = \lambda_1 \lambda_2 \varphi(x) = \lambda_1 \zeta(x)$$

Теорема. Множество $\mathrm{Hom}_{\mathbb{K}}(X,Y)$ - линейное пространство над полем $\mathbb{K}.$

Доказательство. Пусть $\varphi, \psi, \zeta \in \text{Hom}_{\mathbb{K}}(X, Y)$, а $\lambda, \mu \in \mathbb{K}$.

1. Коммутативность сложения

$$\varphi + \psi = \psi + \varphi$$

2. Ассоциативность сложения

$$\varphi + (\psi + \zeta) = (\varphi + \psi) + \zeta$$

3. Существование нуля

$$\exists \Theta: \quad \varphi(x) + \Theta(x) = \varphi(x) + 0_Y = \varphi(x)$$

4. Существование противоположного элемента

$$-\varphi + \varphi = \Theta$$

5.

$$\lambda(\varphi + \psi) = \lambda\varphi + \lambda\psi$$

6.

$$(\lambda + \mu)\varphi = \lambda\varphi + \mu\varphi$$

7.

$$\lambda(\mu\varphi) = (\lambda\mu)\varphi$$

8.

$$\exists \mathbb{I}: \quad \mathbb{I} \cdot \varphi = \varphi$$

4 Матрица линейного оператора

Определение. Матрицей линейного оператора φ в паре базисов $\{e_i\}_{i=1}^n$ и $\{g_j\}_{j=1}^m$ называется матрица A, по столбцам которой координаты образов векторов базиса $\{e_i\}_{i=1}^n$ в базисе $\{g_j\}_{j=1}^m$

$$\varphi(e_i) = \sum_{j=1}^m \alpha_i^j g_j$$

Теорема. Задание линейного оператора φ эквивалентно заданию его матрицы в фиксированной паре базисов.

Доказательство. Докажем импликации

- ⇒ Очевидно. То есть задали оператор автоматически можем задать матрицу по определению.
- \Leftarrow Пусть $\varphi \in \operatorname{Hom}_{\mathbb{K}}(X,Y)$ линейный оператор и $\{e_i\}_{i=1}^n, \{g_j\}_{j=1}^m$ базисы пространств X,Y соответственно. Рассмотрим элементы $x \in X, y \in Y$ такие, что

$$x = \sum_{i=1}^{n} \xi^{i} e_{i}, \quad y = \sum_{j=1}^{m} \eta^{j} g_{j}, \quad \varphi(x) = y$$

Рассмотрим действие оператора:

$$\varphi(x) = \varphi(\sum_{i=1}^{n} \xi^{i} e_{i}) = \sum_{i=1}^{n} \xi^{i} \varphi(e_{i}) = \sum_{i=1}^{n} \xi^{i} \sum_{j=1}^{m} \alpha_{i}^{j} g_{j} = \sum_{j=1}^{m} \eta^{j} g_{j}$$

Откуда следует, мелкими преобразованиями

$$\eta^j = \sum_{i=1}^n \xi^i \alpha_i^j$$

то есть мы смогли получить действие оператора на вектор, зная коэффициенты матрицы линейного оператора.

5 Теорема о базисе пространства линейных операторов

Теорема. Набор операторов $\{i_i \varepsilon\}$, действующих на произвольный вектор $x \in X$ по правилу

$$_{j}^{i}\varepsilon(x) = \xi^{i}g_{j}, \quad x = \sum_{i=1}^{n} \xi^{i}e_{i}$$

образует базис пространства $\operatorname{Hom}_{\mathbb{K}}(X,Y)$.

Доказательство. Необходимо показать, что набор операторов $\{i_k \varepsilon\}$ является полным и ЛНЗ в $\operatorname{Hom}_{\mathbb{K}}(X,Y)$: ПН: Пусть $\varphi \in \operatorname{Hom}_{\mathbb{K}}(X,Y)$, тогда

$$\varphi(x) = \varphi(\sum_{i=1}^{n} \xi^{i} e_{i}) = \sum_{i=1}^{n} \xi^{i} \varphi(e_{i}) = \sum_{i=1}^{n} \xi^{i} \sum_{j=1}^{m} a_{i}^{j} g_{j} =$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \xi^{i} a_{i}^{j} g_{j} = \sum_{i=1}^{n} \sum_{j=1}^{m} \cdot \sum_{j=1}^{i} (x) a_{i}^{j}, \quad \forall x \in X$$

Откуда следует, что

$$\varphi = \sum_{i=1}^{n} \sum_{j=1}^{m} ._{j}^{i} \varepsilon a_{i}^{j}, \quad \forall \varphi \in \text{Hom}(X, Y)$$

ЛНЗ: рассмотрим линейную комбинацию векторов набора $\{^i_i \varepsilon\}$:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \cdot_{j}^{i} \varepsilon \beta_{i}^{j} = \Theta$$

и применим обе части равенства к базисному элементу e_k :

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \cdot_{j}^{i} \varepsilon(e_{k}) \beta_{i}^{j} = \sum_{i=1}^{n} \sum_{j=1}^{m} \delta_{k}^{i} g_{j} \beta_{i}^{j} = \sum_{j=1}^{m} g_{j} \beta_{k}^{j} = 0_{Y}$$

Но так как набор $\{g_j\}_{j=1}^m$ - ЛНЗ, а значит $\beta_k^j = 0 \forall k$. А так как k - любое, то это верно для всех векторов набора $\{e_i\}_{i=1}^n$.

5.1 То, чего нет в билетах, но оно важно

Определение. Преобразованием подобия матрицы A называется преобразование

$$A \mapsto T^{-1} \cdot A \cdot T$$
, $\det T \neq 0$

что позволяет находить матрицу оператора для другого базиса, зная старый и новый базисы и матрицу ЛО.

6 Композиция линейных операторов

Определение. Пусть X,Y,K - линейные пространства. Композицией линейных операторов $\psi \in \operatorname{Hom}_{\mathbb{K}}(Y,Z)$ и $\varphi \in \operatorname{Hom}_{\mathbb{K}}(X,Y)$ называется отображение $\chi \in \operatorname{Hom}_{\mathbb{K}}(X,Z)$ такое, что

$$\chi = \psi \circ \varphi \quad \psi \varphi x = \psi(\varphi x) \quad \forall x \in X$$

Лемма. Отображение χ - линейный оператор.

Доказательство.

$$\chi(x_1 + x_2) = \psi(\varphi(x_1 + x_2)) = \psi(\varphi x_1 + \varphi x_2) = \psi(\varphi x_1) + \psi(\varphi x_2) = \chi x_1 + \chi x_2$$
$$\chi(\lambda x) = \psi(\varphi \lambda x) = \psi(\lambda \varphi x) = \lambda \psi(\varphi x) = \lambda \chi x$$

Теорема(о матрице оператора-композиции операторов). Пусть $\chi=\psi\circ\varphi$, тогда $C_\chi=B_\psi\cdot A_\varphi$

Доказательство. Из определения следует:

$$\chi e_i = \psi(\varphi e_i) = \psi(\sum_{j=1}^m \alpha^j g_j) = \sum_{j=1}^m \alpha^j \psi(g_j) = \sum_{j=1}^m \alpha^j (\sum_{k=1}^p \beta_j^k h_k) =$$

$$= \sum_{k=1}^p (\sum_{j=1}^m \alpha_i^j \beta_j^k) h_k = \sum_{i=1}^p \gamma_i^k h_k \quad \Rightarrow \quad \gamma_i^k = \sum_{j=1}^m \alpha_i^j \beta_j^k$$

7 Алгебра линейных операторов и алгебра матриц

Лемма. Операция композиции операторов ассоциативна.

$$\varphi \in \operatorname{Hom}(X,Y), \quad \psi \in \operatorname{Hom}(Y,Z), \quad \chi \in \operatorname{Hom}(Z,W)$$

Доказательство. Покажем, что композиция ассоциативна всегда:

$$(\chi\circ(\psi\circ\varphi))(x)=\chi((\psi\circ\varphi)(x))=\chi(\psi(\varphi(x)))=(\chi\circ\psi)(\varphi(x))=((\chi\circ\psi)\circ\varphi)(x)$$

Notabene. Множество End(X) имеет структуру полугруппы(ассоциативная операция) относительно операции композиции и структуру кольца относительно композиции и сложения.

Определение. Алгеброй называется кольцо, снабженное структурой линейного пространства.

Определение. Алгебра $\operatorname{End}(X,Y)$ называется алгеброй операторов над пространством $X(\mathbb{K})$.

7.1 Примеры алгебр

- 1. \mathbb{R} алгебра вещественных чисел;
- $2. \ \mathbb{C}$ алгебра комплексных чисел.

7.2 Алгебра матриц

Notabene. Очевидно, что каждому оператору можно сопоставить свою матрицу, а значит алгебра линейных операторов изоморфна алгебре квадратных матриц $n \times n$.

Лемма. Имеет место изоморфизм алгебры ΠO и алгебры квадратных матриц $n \times n$.

$$\operatorname{E} nd(X,Y) \simeq \operatorname{Mat}_n$$

Доказательство. Выберем базис $\{i_i \varepsilon\}$ в $\operatorname{End}(X,Y)$ и отобразим

$$\varphi = \sum_{i,j=1}^{n} \cdot_{j}^{i} \varepsilon \alpha_{i}^{j} \quad \leftrightarrow \quad ||\alpha_{i}^{j}|| = A_{\varphi}$$

8 Обратный оператор

Определение. Обратным оператором к данному называется отображение $\bar{\varphi} \text{Im} \varphi \to X$, такое что

$$\overline{(y)} = x \quad \forall y \in \operatorname{Im} \varphi$$

Лемма. Отображение $\bar{\varphi}$ - линейный оператор.

Доказательство. Очевидно.

Определение. Оператор, для которого существует обратный, называется обратимым.

Определение. Линейный оператор $\varphi^{-1} \in \text{Hom X Y}$ называется **обратным оператором** к оператору φ , если

$$(\bar{\varphi} \circ \varphi)(x) = x \quad \forall x \in X$$

$$(\varphi \circ \bar{\varphi})(y) = y \quad \forall y \in Y$$

Теорема(критерий существования обратного оператора). Для оператора $\varphi \in \text{Hom X Y}$ существует обратный ему тогда и только тогда, когда

$$\ker \varphi = 0$$
, $\operatorname{Im} \varphi = Y$

Notabene. Необходимым условием существования обратного оператора является изоморфность пространств $X\ u\ Y.$

$$X \simeq Y \quad \Leftrightarrow \quad \dim X = \dim Y$$

Лемма. Отображение $\varphi \mapsto \varphi^{-1}$ обладает следующими свойствами:.

$$(\varphi^{-1})^{-1} = \varphi, \quad (\psi \circ \varphi)^{-1} = \varphi^{-1} \circ \psi^{-1}$$

Доказательство. Очевидно.

9 Обратимость в алгебре матриц