Dimensionality reduction

© Victor Kitov

v.v.kitov@yandex.ru

Summer school on Machine Learning in High Energy Physics
in partnership with

August 2015

Table of Contents

- Feature extraction
- Principal component analysis
- SVD decomposition
- Mon-linear dimensionality reduction

Definition

Feature selection / Feature extraction

Feature extraction: find transformation of original data which extracts most relevant information for machine learning task.

We will consider unsupervised dimensionality reduction methods, which try to preserve geometrical properties of the data.

Applications of dimensionality reduction

Applications:

- visualization in 2D or 3D
- reduce operational costs (less memory, disc, CPU usage on data transfer)
- remove multi-collinearity to improve performance of machine-learning models

Categorization

Supervision in dimensionality reduction:

- supervised (such as Fisher's direction)
- unsupervied

Mapping to reduced space:

- linear
- non-linear

Fisher's direction

 A direction of best separation between the classes in the following sence:

$$\frac{\left\|w^T(m_1-m_2)\right\|^2}{w^TS_Ww}\to \min_w$$

- Notation:
 - m_i is the mean of samples, belonging to class i
 - \bullet S_w is within class covariance, defined by

$$S_W = rac{N_1}{N} \Sigma_1 + rac{N_2}{N} \Sigma_2$$

 Σ_i is covariance of observations in class i, N_i - number of observations in class i and N is the total number of observations.

Optimal solution:

$$w \propto S_W^{-1}(m_1-m_2)$$

Table of Contents

- Feature extraction
- Principal component analysis
 - Definition
 - Derivation
 - Application details
- SVD decomposition
- 4 Non-linear dimensionality reduction

Kitov Victor - Dimensionality reduction
Principal component analysis
Definition

- Principal component analysis
 - Definition
 - Derivation
 - Application details

Definition

Linear transformation of data, using orthogonal matrix $A = [a_1; a_2; ... a_D] \in \mathbb{R}^{D \times D}$, $a_i \in \mathbb{R}^D$:

$$\xi = A^T x$$

Equivalent ways to derive PCA:

- Find orthogonal transform A yielding new variables ξ_i having stationary values for their variance and uncorrelated ξ_i
- 2 Find line of best fit, plane of best fit, etc.
 - fit is the sum of squares of perpendicular distances.
- Sind line, plane, etc. preserving most of the variability of the data.
 - variability is a sum of squared projections

We will use definition 1 for derivation and then prove that it is equivalent to definitions 2 and 3.

Example: line of best fit

 In PCA sum of squared of perpendicular distances to line is minimized.

- Not invariant to scale features should be standardized.
- Method works for $\mathbb{E}x = 0$. So sample observations should be shifted to guarantee: $\sum_{n=1}^{N} x_{nd} = 0$, d = 1, 2, ...D.

Kitov Victor - Dimensionality reduction
Principal component analysis
Derivation

- Principal component analysis
 - Definition
 - Derivation
 - Application details

Covariance matrix properties

 $\Sigma = cov[x] \in \mathbb{R}^{D \times D}$ is symmetric positive semidefinite matrix

- has $\lambda_1, \lambda_2, ... \lambda_D$ eigenvalues, satisfying: $\lambda_i \in \mathbb{R}, \ \lambda_i \geq 0$.
- if eigenvalues are unique, corresponding eigenvectors are also unique
- always exists a set of orthogonal eigenvectors $z_1, z_2, ... z_D$: $\sum z_i = \lambda_i z_i$.

later we will assume that $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_D \geq 0$.

Derivation: 1st component

Consider first component:

$$\xi_1 = \sum_{j=1}^D a_{1j} x_j$$

Optimization problem:

$$\begin{cases} \operatorname{Var} \xi_1 \to \operatorname{max}_a \\ |a_1|^2 = a_1^T a_1 = 1 \end{cases}$$

Variance is equal:

$$Var[\xi_1] = E[\xi_1^2] - (E\xi_1)^2 = E[a_1^T x x^T a_1] - E[a_1^T x] E[x^T a_1]$$

= $a_1^T (E[x x^T] - E[x] E[x^T]) a_1 = a_1^T \Sigma a_1$

Derivation

Derivation: 1st component

Optimization problem is equivalent to finding unconditional stationary value of

$$\textit{L}(\textit{a}_1, \nu) = \textit{a}_1^{\textit{T}} \Sigma \textit{a}_1 - \nu (\textit{a}_1^{\textit{T}} \textit{a}_1 - 1) \rightarrow \textit{extr}_{\textit{a}_1, \nu}$$

$$\frac{\partial L}{\partial a_1} = 0 : 2\Sigma a_1 - \nu a_1 = 0$$

 a_1 is selected from a set of eigenvectors of A. Since

$$Var[\xi_1] = a_1^T \Sigma a_1 = \lambda_i a_1^T a_1$$

 a_1 is the eigenvector, corresponding to largest eigenvalue λ_i . Eigenvector is not unique if λ_{max} is a repeated root of characteristic equation: $|\Sigma - \nu I| = 0$.

Derivation: 2nd component

$$\xi_{2} = a_{2}^{T} x$$

$$\begin{cases} \operatorname{Var}[\xi_{2}] = a_{2}^{T} \Sigma a_{2} \to \operatorname{max}_{a_{2}} \\ a_{2}^{T} a_{2} = |a_{2}|^{2} = 1 \\ \operatorname{cov}[\xi_{1}, \xi_{2}] = a_{2}^{T} \Sigma a_{1} = \lambda_{1} a_{2}^{T} a_{1} = 0 \end{cases}$$

Lagrangian (assuming $\lambda_1>0$)

$$L(a_2, \nu, \eta) = a_2^T \Sigma a_2 - \nu (a_2^T a_2 - 1) - \eta a_2^T a_1 \rightarrow extr_{a_2, \nu, \eta}$$
$$\frac{\partial L}{\partial a_2} = 0 : 2\Sigma a_2 - 2\nu a_2 - \eta a_1 = 0$$
$$a_1^T \frac{\partial L}{\partial a_2} = 2a_1^T \Sigma a_2 - \eta = 0$$

Derivation: 2nd component

Since $a_1^T \Sigma a_2 = a_2^T \Sigma a_1 = 0$, we obtain $\eta = 0$. Then we have that:

$$\Sigma a_2 = \nu a_2$$

so a_2 is eigenvector of Σ , and since we maximize

$$\operatorname{Var}[\xi_2] = a_2^T \Sigma a_2 = \lambda_i a_2^T a_2$$

this should be eigenvector, corresponding to second largest eigenvalue λ_2 .

Derivation: k-th component

$$\begin{aligned} \xi_k &= a_k^T \, \mathbf{x} \\ \begin{cases} Var[\xi_k] &= a_k^T \boldsymbol{\Sigma} a_k \to \max_{a_k} \\ a_k^T a_k &= |a_k|^2 = 1 \\ cov[\xi_k, \xi_j] &= a_k^T \boldsymbol{\Sigma} a_j = \lambda_j a_k^T a_j = 0, \quad j = 1, 2, ... k - 1. \end{cases} \\ \text{Lagrangian (assuming } \lambda_j > 0, \ j = 1, 2, ... k - 1) \\ L(a_k, \nu, \eta) &= a_k^T \boldsymbol{\Sigma} a_k - \nu (a_k^T a_k - 1) - \sum_{i=1}^{k-1} \eta_i a_k^T a_i \to \text{extr}_{a_2, \nu, \eta} \\ \frac{\partial L}{\partial a_k} &= 0: \ 2\boldsymbol{\Sigma} a_k - 2\nu a_k - \sum_{i=1}^{k-1} \eta_i a_i = 0 \\ \forall j = 1, 2, ... k - 1: \ a_j^T \frac{\partial L}{\partial a_2} &= 2a_j^T \boldsymbol{\Sigma} a_k - \eta_j = 0 \end{cases}$$

16/67

Derivation

Derivation: k-th component

Since
$$a_j^T \Sigma a_k = a_k^T \Sigma a_j = 0$$
, we obtain $\eta_j = 0$ for all $j=1,2,...k-1$, so

 a_k is then the eigenvector.

Variance of ξ_i is

$$Var[\xi_k] = a_k^T \Sigma a_k = \lambda_i a_k^T a_k = \lambda_i$$

 $\Sigma a_k = \nu a_k$

so a_k should be the eigenvector corresponding to the k-th largest eigenvalue λ_k .

Kitov Victor - Dimensionality reduction Principal component analysis Application details

- Principal component analysis
 - Definition
 - Derivation
 - Application details

Number of components

- Data visualization: 2 or 3 components.
- Take most significant components until their variance falls sharply down:

Number of components

Remind that $A = [a_1 | a_2 | ... | a_D], A^T A = I, \xi = A^T x.$ Denote $S_k = [\xi_1, \xi_2, ... \xi_k, 0, 0, ..., 0] \in \mathbb{R}^D$

$$\mathbb{E}[\|S_k\|^2] = \mathbb{E}[\xi_1^2 + \xi_2^2 + \dots + \xi_k^2] = \sum_{i=1}^k \operatorname{var} \xi_i = \sum_{i=1}^k \lambda_i$$

$$\mathbb{E}[\|S_D\|^2] = \mathbb{E}[\xi^T \xi] =$$

$$= \mathbb{E}x^T A A^T x = \mathbb{E}\left[x^T x\right] = \mathbb{E}[\|x\|^2]$$

Select such k^* that

$$\frac{\mathbb{E}[\|S_k\|^2]}{\mathbb{E}[\|x\|^2]} = \frac{\mathbb{E}[\|S_k\|^2]}{\mathbb{E}[\|S_D\|^2]} = \frac{\sum_{i=1}^k \lambda_i}{\sum_{i=1}^D \lambda_i} > threshold$$

We may select k^* to account for 90%, 95% or 99% of total variance.

Transformation $\xi \rightleftharpoons x$

Dependence between original and transformed features:

$$\xi = A^{\mathsf{T}}(x - \mu), \, x = A\xi + \mu,$$

where μ is the mean of the original non-shifted data.

Taking first r components - $A_r = [a_1|a_2|...|a_r]$, we get the image of the reduced transformation:

$$\xi_r = A_r^T (x - \mu)$$

 ξ_r will correspond to

$$x_r = A \begin{pmatrix} \xi_r \\ 0 \end{pmatrix} + \mu = A_r \xi_r + \mu$$

$$x_r = A_r A_r^T (x - \mu) + \mu$$

 $A_r A_r^T$ is projection matrix with rank r.

Application - data filtering

Local linear projection method:

X. Huo and Jihong Chen (2002). Local linear projection (LLP). First IEEE Workshop on Genomic Signal Processing and Statistics (GENSIPS), Raleigh, NC, October. http://www.gensips.gatech.edu/proceedings/.

Application details

Properties of PCA

- Depends on scaling of individual features.
- Assumes that each feature has zero mean.
- Covariance matrix replaced with sample-covariance.
- Does not require distribution assumptions about x.

Application details

Example

Faces database:

Eigenfaces

PCA for visualization

Uncorrelatedness does not imply independence.

Kitov Victor - Dimensionality reduction
Principal component analysis

Application details

Best hyperplane fit

Subspace L_k or rank k best fits points $x_1, x_2, ... x_D$ if sum of squared distances of these points to this plane is maximized over all planes of rank k.

Best hyperplane fit

For point x_i denote p_i the projection on plane L_k and h_i -orthogonal component. Then $\|x_i\|^2 = \|p_i\|^2 + \|h_i\|^2$. For set of points:

$$\sum_{i} \|x_{i}\|^{2} = \sum_{i} \|p_{i}\|^{2} + \sum_{i} \|h_{i}\|^{2}$$

Since sum of squares is constant, minimization of $\sum_i \|h_i\|^2$ is equivalent to maximization of $\sum_i \|p_i\|^2$.

Another view on PCA directions

k-th step optimization problem for $\xi_k = a_k^T x$:

$$\begin{cases} \mathit{Var}[\xi_k] = a_k^T \Sigma a_k \to \max_{a_k} \\ a_k^T a_k = |a_k|^2 = 1 \\ \mathit{cov}[\xi_k, \xi_j] = a_k^T \Sigma a_j = \lambda_j a_k^T a_j = 0, \quad j = 1, 2, ... k - 1. \end{cases}$$

can be equivalently represented as:

$$\begin{cases} \|Xa_{k}\|^{2} \to \max_{a_{k}} \\ \|a_{k}\| = 1 \\ a_{k} \perp a_{1}, a_{k} \perp a_{2}, ... a_{k} \perp a_{k-1} \text{ if } k \geq 2 \end{cases}$$
 (1)

since maximization of $\|Xa_k\|^2$ is equivalent to maximization of $\frac{1}{N}\|Xa_k\|^2 = \frac{1}{N}(Xa_k)^T(Xa_k) = \frac{1}{N}a_k^TX^TXa_k = a_k^T\Sigma a_k$.

Property of PCA

Theorem 1

For $1 \le k \le r$ let L_r be the subspace spanned by $a_1, a_2, ... a_r$. Then for each k L_k is the best-fit k-dimensional subspace for X.

Proof: use induction. For r=1 the statement is true by definition since projection maximization is equivalent to distance minimization.

Suppose theorem holds for r-1. Let L_r be the plane of best-fit of dimension with dim L=r. We can always choose a orthonormal basis of L_r b_1 , b_2 , ... b_r so that

$$\begin{cases} ||b_r|| = 1 \\ b_r \perp a_1, b_r \perp a_2, ... b_r \perp a_{r-1} \end{cases}$$

by setting b_r perpendicular to projections of $a_1, a_2, ... a_{r-1}$ on L_r .

Property of PCA

Consider the sum of squared projections:

$$||Xb_1||^2 + ||Xb_2||^2 + ... + ||Xb_{r-1}||^2 + ||Xb_r||^2$$

By induction proposition:

$$||Xb_1||^2 + ||Xb_2||^2 + ... + ||Xb_{r-1}||^2 \le ||Xa_1||^2 + ||Xa_2||^2 + ... + ||Xa_{r-1}||^2$$

and

$$\|Xb_r\|^2 \leq \|Xa_r\|^2$$

since b_r by (30) satisfies constraints of optimization problem (29) and a_r is its optimal solution.

Table of Contents

- Principal component analysis
- SVD decomposition

SVD decomosition

Every matrix $X \in \mathbb{R}^{N \times D}$ of rank R can be decomposed into the product of three matrices:

$$X = U\Sigma V^T$$

where $U \in \mathbb{R}^{N \times R}$, $\Sigma \in \mathbb{R}^{R \times R}$, $V^T \in \mathbb{R}^{R \times D}$, and $\Sigma = diag\{\sigma_1, \sigma_2, ... \sigma_R\}$, $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_R \geq 0$, $U^T U = I$, $V^T V = I$. I denotes identity matrix.

Applications of SVD

For square matrix X:

- U, V^T represent rotations, Σ represents scaling (with projection and reflection),
 every square matrix may be represented as superposition of rotation, scaling and another rotation.
- For full rank X:

$$X^{-1} = V \Sigma^{-1} U^T,$$

since
$$XX^{-1} = U\Sigma V^T V\Sigma^{-1} U^T = I$$
.

• For not-full-rank X: generalized inverse matrix equals

$$X^+ = V \Sigma^+ U^T$$

 (A^+) is such matrix that $AA^+A=A$

Interpretation of SVD

For X_{ij} let i denote objects and j denote properties.

- U represents standardized coordinates of concepts
- V^T represents standardized concepts representations
- Σ shows the magnitudes of presence of standardized concepts in X.

Example

	The lord of the rings	Harry Potter	Avatar	Titanic	Love story	A walk to remember
Andrew	4	5	5	0	0	0
			_	_		
John	4	4	5	0	0	0
John Matthew	5	5	5 4	0	0	0
Matthew	5	5	4	0	0	0

Example

$$U = \begin{pmatrix} 0. & 0.6 & -0.3 & 0. & 0. & -0.8 \\ 0. & 0.5 & -0.5 & 0. & 0. & 0.6 \\ 0. & 0.6 & 0.8 & 0. & 0. & 0.2 \\ 0.6 & 0. & 0. & -0.8 & -0.2 & 0. \\ 0.6 & 0. & 0. & 0.2 & 0.8 & 0. \\ 0.5 & 0. & 0. & 0.6 & -0.6 & 0. \end{pmatrix}$$

$$\Sigma = \text{diag}\{(14. 13.7 1.2 0.6 0.6 0.5)\}$$

$$V^{T} = \begin{pmatrix} 0. & 0. & 0. & 0.6 & 0.6 & 0.5 \\ 0.5 & 0.6 & 0.6 & 0. & 0. & 0. \\ 0.5 & 0.3 & -0.8 & 0. & 0. & 0. \\ 0. & 0. & 0. & -0.2 & 0.8 & -0.6 \\ -0. & -0. & -0. & 0.8 & -0.2 & -0.6 \\ 0.6 & -0.8 & 0.2 & 0. & 0. & 0. \end{pmatrix}$$

Example (excluded insignificant concepts)

$$U_2 = \begin{pmatrix} 0. & 0.6 \\ 0. & 0.5 \\ 0. & 0.6 \\ 0.6 & 0. \\ 0.6 & 0. \\ 0.5 & 0. \end{pmatrix}$$

$$\Sigma_2 = \mathsf{diag}\{ \begin{pmatrix} 14. & 13.7 \end{pmatrix} \}$$

$$V_2^T = \begin{pmatrix} 0. & 0. & 0. & 0.6 & 0.6 & 0.5 \\ 0.5 & 0.6 & 0.6 & 0. & 0. & 0. \end{pmatrix}$$

Concepts may be

- patterns among movies (along j) fantasy/romance
- patterns among people (along i) boys/girls

Dimensionality reduction case: patterns along j axis.

Applications

• Example: new movie rating by new person

$$x = (5 \ 0 \ 0 \ 0 \ 0 \ 0)$$

• Dimensionality reduction: map x into concept space:

$$y = V_2^T x = (0 \ 2.7)$$

• **Recommendation system:** map y back to original movies space:

$$\hat{x} = yV_2^T = (1.5 \ 1.6 \ 1.6 \ 0 \ 0 \ 0)$$

Fronebius norm

- Fronebius norm of matrix X is $\|X\|_F \stackrel{df}{=} \sqrt{\sum_{n=1}^N \sum_{d=1}^D x_{nd}^2}$
- Using properties $||X||_F = \operatorname{tr} XX^T$ and $\operatorname{tr} AB = \operatorname{tr} BA$, we obtain:

$$||X||_{F} = \operatorname{tr}[U\Sigma V^{T}V\Sigma U^{T}] = \operatorname{tr}[U\Sigma^{2}U^{T}] =$$

$$= \operatorname{tr}[\Sigma^{2}U^{T}U] = \operatorname{tr}[\Sigma^{2}] = \sum_{r=1}^{R} \sigma_{r}^{2}$$
(2)

Matrix approximation

Consider approximation $X_k = U\Sigma_k V^T$, where $\Sigma_k = \text{diag}\{\sigma_1, \sigma_2, ... \sigma_k, 0, 0, ..., 0\} \in \mathbb{R}^{R \times R}$.

Theorem 2

 X_k is the best approximation of X retaining k concepts.

Proof: consider matrix $Y_k = U\Sigma'V^T$, where Σ' is equal to Σ except some R-k elements set to zero:

$$\sigma_{i_1}'=\sigma_{i_2}'=...=\sigma_{i_{R-k}}'=$$
 0. Then, using (2)

$$\|X - Y_k\|_F = \|U(\Sigma - \Sigma')V^T\|_F = \sum_{p=1}^{R-k} \sigma_{i_p}^2 \le \sum_{p=1}^{R-k} \sigma_p^2 = \|X - X_k\|_F$$

since $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_R \geq 0$.

Matrix approximation

How many components to retain?

General case: Since

$$||X - X_k||_F = \left\| U(\Sigma - \Sigma_k) V^T \right\|_F = \sum_{i=k+1}^R \sigma_i^2$$

a reasonable choice is k^* such that

$$\frac{\|X - X_{k^*}\|_F}{\|X\|_F} = \frac{\sum_{i=k^*+1}^R \sigma_i^2}{\sum_{i=1}^R \sigma_i^2} \ge threshold$$

Visualization: 2 or 3 components.

Theorem 3

For any matrix Y_k with rank $Y_k = k \colon \|X - X_k\|_F \le \|X - Y_k\|_F$

Finding U and V

• Finding V $X^TX = (U\Sigma V^T)^T U\Sigma V^T = (V\Sigma U^T)U\Sigma V^T = V\Sigma^2 V^T.$ It follows that

$$X^T X V = V \Sigma^2 V^T V = V \Sigma^2$$

So V consists of eigenvectors of X^TX with corresponding eignvalues $\sigma_1^2, \sigma_2^2, ... \sigma_R^2$.

• Finding *U*:

$$XX^T = U\Sigma V^T (U\Sigma V^T)^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$$
. So $XX^T U = U\Sigma^2 U^T U = U\Sigma^2$.

So *U* consists of eigenvectors of XX^T with corresponding eigenvalues $\sigma_1^2, \sigma_2^2, ... \sigma_R^2$.

Comments

- ullet Denote the average $ar{X} \in \mathbb{R}^D: ar{X}_j = \sum_{i=1}^N x_{ij}$
- ullet Denote the n-th row of X be $X_n \in \mathbb{R}^D$: $X_{nj} = x_{nj}$
- For centered X sample covariance matrix $\widehat{\Sigma}$ equals:

$$\widehat{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} (X_n - \bar{X})(X_n - \bar{X})^T = \frac{1}{N} \sum_{n=1}^{N} X_n X_n^T$$

$$= \frac{1}{N} X^T X$$

- V consists of principal components since
 - V consists of eigenvectors of X^TX ,
 - ullet principal components are eignevectors of $\widehat{\Sigma}$ and
 - $\widehat{\Sigma} \propto X^T X$

Table of Contents

- Feature extraction
- Principal component analysis
- SVD decomposition
- Mon-linear dimensionality reduction
 - Global methods
 - Local methods

Non-linear dimensionality reduction

- Based on assumption that original data $x \in \mathbb{R}^D$ is distributed compactly on non-linear surface with dimensionality d < D.
- Let $y \in \mathbb{R}^d$ denote the coordinates of x on the surface.
- d is usually unknown.
- Sample dataset:

• Linear dimensionality reduction techniques will fail here.

Categorization

Non-linear approaches of dimensionality reduction:

- preserving global properties
 - kernel PCA, autoencoders, MDS, ISOMAP, diffusion maps, MVU
- preserving local properties
 - LLE. LTSA
- global alignment of local linear models (not considered here)

Kitov Victor - Dimensionality reduction Non-linear dimensionality reduction Global methods

- 4 Non-linear dimensionality reduction
 - Global methods
 - Local methods

Multi-dimensional scaling

Multi-dimensional scaling

Map $x \rightarrow y$ preserving distances as much as possible.

- Approaches:
 - absolute difference

$$\sum_{i,j} (\|x_i - x_j\| - \|y_i - y_j\|)^2 \to \min_{Y}$$

• relative difference (more attention to small distances)

$$\sum_{i,j} \frac{(\|x_i - x_j\| - \|y_i - y_j\|)^2}{\|x_i - x_j\|} \to \min_{Y}$$

Example

Issue: small $||x_i - x_j||$ should not always imply small $||y_i - y_j||$, such as in case of red and yellow points.

Isomap

Isomap

Map $x \to y$ preserving correspondence between distance in transformed space and "geodesic" distance along the surface in original space.

- This apprach solves the previous issue of MDS.
- Geodesic distance calculation:
 - ① for each x_n find its K nearest neighbours $x_{n_1,n_2,...n_K}$
 - ② build the pairwise distance matrix, filling distance between samples and their k-NN.
 - calculate all pairwise distances using shortest-path algorithm of Dijkstra or Floyd.
- Finally usual MDS is applied to match $||x_i x_j||_G$ and $||y_i y_j||$, where $||\cdot||_G$ is geodesic distance.

Issues of Isomap

- Noisy observations between distant parts of surfaces may make distant parts close
- Solutions:
 - remove observations with large total flows through them
 - remove nearest neighbours that violate local linearity
- Non-convexity of surface may lead to taking K-NN that are far away in the transformed space.
- Selection of K:
 - if too small, then poor approximation of geodesic distance
 - if too large, then increases chance of "short-circuiting" through noisy observations.

Example of ISOMAP

Maximum variance unfolding

Maximum variance unfolding

Maximally unfold the transformations, preserving local geometry of data.

```
initialize neighbourhood graph G with edges being the samples x_1, x_2, \dots x_N
```

for each x_n :

for
$$k = 1, 2, ...K$$
:

find k-th nearest neighbour x_{n_k} to x_n add a link to G between x_n and x_{n_k}

solve the optimization problem:

$$\sum_{i,j} ||y_i - y_j||^2 \to \max \text{ subject to: } ||y_i - y_j||^2 = ||x_i - x_j||^2 \ \forall (i,j) \in G$$

Issue: noise sample may "short-circuit" leading to redundant constraint, which may prevent manifold unfolding.

Kernel PCA

- Like PCA, but input space is expanded with kernels
- Easy computation of projections of new points
- Issue: kernel selection.
 - linear (reduces to ordinary PCA)
 - Gaussian
 - polynomial

Diffusion maps

- Construct proximity graph
 - nodes: observations
 - edge weight between x_i and x_i :

$$w_{ij}=e^{-\frac{\left\|x_i-x_j\right\|^2}{2\sigma^2}}$$

② for each x_i outgoing probabilities set to normalized weights:

$$p_{ij}^{(1)} = \frac{w_{ij}}{\sum_k w_{ik}}$$

- **3** random walk with probabilities $p_{ij}^{(1)}$ stored in matrix $P^{(1)}$ is assumed.
- based on random walk assumption, the probability of walking from x_i to x_j after T steps is:

$$p_{ij}^{(T)} = \left(P^{(1)}\right)_{ij}^{T}$$

Diffusion maps

• Finally MDS is applied to match $||y_i - y_j||$ to diffusion distance:

$$D^{T}(x_{i}, x_{j}) = \sqrt{\sum_{k} \frac{(p_{ik}^{(T)} - p_{jk}^{(T)})}{\psi(x_{k})}}$$

where $\psi(x_k)$ is normalization term, that attributes more weight to high density regions.

• Benefit: distance between points is based on multiple paths through the graph - more robust to noise.

Autoencoders

- feed-forward neural network, tranined to reproduce input with MSE loss.
- \bullet D input and D output nodes
- d nodes in the central layer
- User-defined number of layers and nodes

Autoencoders

- Benefits: can map new points to reduced space
- Issues:
 - optimization may get stuck in local optima
 - slow convergence (can be improved with specific starting weights)
 - unfeasible to apply to high d (too many connections).

Kitov Victor - Dimensionality reduction Non-linear dimensionality reduction Local methods

- 4 Non-linear dimensionality reduction
 - Global methods
 - Local methods

Local linear embedding

Method preserves reconstruction weights of objects through their nearest neighbors.

INPUT:

Local methods

training sample $x_1, x_2, ... x_N$ number of neighbours K

ALGORITHM:

for each x_i :

find its K nearest neighbours: $x_{i(1)}, x_{i(2)}, ... x_{i(K)}$ find weights to reconstruct x_i using its neighbours: $x_i \approx \sum_{k=1}^K w_{ik} x_{i(k)}$

 $x_i \approx \sum_{k=1}^n w_{ik} x_{i(k)}$

solve optimization problem: $\sum_{n=1}^{N}(y_i-\sum_{k=1}^{K}w_{ik}y_{ik})^2 o \max_Y$

<u>OUTPUT</u>: reduced space representation: $y_1, y_2, ... y_N$.

Laplacian eigenmaps

Laplacian eigenmaps

Forces distances of points with nearest neighbours to be smaller.

INPUT:

training sample $x_1, x_2, ... x_N$ number of neighbours K

ALGORITHM:

for each x_i :

find its K nearest neighbours: $x_{i(1)}, x_{i(2)}, ... x_{i(K)}$ for each nearest neighbour j=i(1), i(2), ... i(K):

calculate distance-based weights: $w_{ij} = e^{-\frac{\left\|x_i - x_j\right\|^2}{2\sigma^2}}$

solve optimization problem:

$$\sum_{n=1}^{N} \sum_{i=1}^{N} \sum_{i \in \{i(1),...,i(K)\}} w_{ij} (y_i - y_j)^2 \to \min_{Y}$$

<u>OUTPUT</u>: reduced space representation: $y_1, y_2, ... y_N$.

Comments on local methods

- short-circuiting affects only local points in space
- local method, relying on K-NN => prone to curse of dimensionality
- prone to overfitting on outliers (when they become nearest neighbors)

Properties

Technique	Convex	Parameters	Computational	Memory
PCA	yes	none	$O(D^3)$	$O(D^2)$
MDS	yes	none	$O(N^3)$	$O(N^2)$
Isomap	yes	K	$O(N^3)$	$O(N^2)$
MVU	yes	K	$O((NK)^3)$	$O((NK)^3)$
Kernel PCA	yes	kernel	$O(N^3)$	$O(N^2)$
Diffusion maps	yes	σ , T	$O(N^3)$	$O(N^2)$
Autoencoders	no	network shape	O(INW)	O(W)
LLE	yes	K	$O(pN^2)$	$O(pN^2)$
Laplacian eigenmaps	yes	K, σ	$O(pN^2)$	$O(pN^2)$

D - input dimension, N - sample size, K - number of nearest neighbors, σ - smoothing parameter of Gaussian kernel, W number of weights in neural network, I - number of iterations (optimization passes), p - the fraction of non-zero entries in the weight matrix.

Other

- Problem of transforming new previously unobserved samples.
 - direct for PCA, Kernel PCA, autoencoders
 - only approximations possible for other methods.
- Intrinsic dimensionality estimation
 - Cross-validation of the original task (e.g. classification)
 - How many components of local PCA explain most of the variance
 - The growth rate of number of samples falling inside a growing hypersphere with center x:

$$\#\{x_i: \|x_i - x\| \le R\}$$

etc.

Evaluation

- L.J.P. van der Maaten, E.O. Postma, H.J. van den Herik.
 Dimensionality Reduction: A Comparative Review. Working paper. 2008.
 - Extensive comparison of different dimensionality reduction methods.
 - Non-linear techniques perform better than PCA on simulated data
 - PCA wins most of the time on real data
 - Problems:
 - global methods: short-circuiting
 - nearest neighbours based methods: curse of dimensionality, overfitting to outliers
 - unstable optimization for local methods: they reduce to eigenproblems, frequently $\lambda_{max}/\lambda_{min}\gg 1$.
 - suboptimal local optima for autoencoders.
- Actively developing field!

References

- Keith D. Copsey Andrew R. Webb. Statistical Pattern Recognition. Wiley, 3rd edition, 2011.
- Ravindran Kannan John Hopcroft.
 Foundations of data science.
 www.cs.cornell.edu/jeh/book11April2014.pdf, 2014.
 [Online; accessed 16-August-2015].
- Jeff Ullman Jure Leskovec, Anand Rajaraman.
 Mining of massive datasets.
 www.mmds.org, 2014.
 [Online; accessed 16-August-2015].
- L.J.P. van der Maaten, E. O. Postma, and H. J. van den Herik. Dimensionality reduction: A comparative review, 2008.