P530/2	Name of School:
CHEMISTRY	
Paper 1	Name of Student:
Jul./Aug. 2019 2 ³ ⁄ ₄ Hours	Signature: Personal No.

UTEB JOINT MOCK EXAMINATIONS, 2019 Uganda Advanced Certificate of Education CHEMISTRY

Paper 1

2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all questions in Section A and any six questions from Section B.
- All questions must be answered in the spaces provided.
- Molar gas constant R = 8.31JK⁻¹ mol⁻¹.
- Molar gas volume at s.t.p = 22.4 dm³.

SECTION A

Answer **all** questions from this section.

1.		ssium manganate (VII) is often used in volumetric analysis.
	(a)	Write equation for the reaction between potassium manganate (VII) and hydrogen peroxide in solution. (01 ½ marks)
	(b)	Explain why potassium manganate (VII) is not used as a primary standard in
		volume in analysis. (02 marks)
	(c)	Name one compound that is used to standardize potassium manganate (VII).
		(½ mark)
2.	Com	plete the following equations and in each case name the main organic product
		(01 ½ marks each)
	(a)	$\xrightarrow{\text{CONH}_2\text{Br}_2/\text{KOH (aq)}} $ Warm
	Nam	e of product
	(b)	$N_2Cl^- \xrightarrow{ConcHCl/Cucl} 100^0C$
	Nam	e of product
	(c)	$(CH_3)_2C = CH_2 \xrightarrow{Br_2(aq)}$
	Nam	e of product

© UTEB 2019 Joint Mock Examinations

(d)	$OH \qquad \frac{Al_2O_3}{Heat} \rightarrow$	
Name	e of product	
(a)	Explain what is meant by the term solvent extraction.	(01 mark)
(b)		
	The solubility of silver in a given mass of zinc is 300 times its sol	ubility in an
	equal mass of lead at 800°C.	(03 marks)
State	what would be observed and write equation for the reaction that to	akes
place	when the following compounds are reacted.	
(a)	Acidified potassium dichromate solution with tin (II) chloride solution	ion.
		02 marks each)
Obse	ervation	
Equa	ition	
	Name (a) (b) State place (a) Obse	Name of product (a) Explain what is meant by the term solvent extraction. (b) A crude sample of lead contained 2% of Silver by mass. Calcula silver left in 1 kg of lead if it was thoroughly agitates with 1 kg of The solubility of silver in a given mass of zinc is 300 times its solve equal mass of lead at 800°C. State what would be observed and write equation for the reaction that to place when the following compounds are reacted. (a) Acidified potassium dichromate solution with tin (II) chloride solution.

(c) Red lead oxide w	vith dilute nitric acid.	
Observation		
Equation		
(a) What is meant by	the term rate constant?	(01 ½
(b) The following res	sults were obtained for two compo	Durius A ariu b reacting
(b) The following res	uits were obtained for two compo	Julius A aliu b reacting
	uits were obtained for two compo	Junus A and B reacting
give product C.	Initial concentration [B]	Initial rate
give product C. $A + B \rightarrow C$		
give product C. $A + B \rightarrow C$ Initial concentration	Initial concentration [B]	Initial rate
give product C. $A + B \rightarrow C$ Initial concentration $(moldm - 3)$	Initial concentration [B] (moldm – 3)	Initial rate [moldm ⁻³ S –]
give product C. A + B \rightarrow C Initial concentration (moldm – 3) 0.2	Initial concentration [B] (moldm – 3) 0.24	Initial rate [moldm-3 S -] 2.0 x 10 -4

(11)	Calculate the rate constant and give u	nits. (01 ½ mar	KS)
			•••
			•••
In th	e extraction of aluminium from its ores, tl	ne ores is first roasted in air	• • •
	hed into a powder and mixed with conce		
	finally filtered.	iliated socialii flydroxide solution	
ana	many interest.		
(a)	(i) Explain what is meant by the te	rm ore. (01 m	ark)
 (ii)	Write the name and formula of one ore	e from which aluminium can be extrac	
(11)	vine the name and formula of one of	(01 ma	
 (iii)	State why the powdered ore is reacted	with sodium hydroxide solution and	
	filtered.	(01 m	nark)
 (b)	Write equation for the reaction betwee	n the powdered ore and sodium	
	hydroxide solution.	(02 ma	rks)
4.1 g	g of bromo alkane B was reacted with exc	cess sodium hydroxide solution.	
The	resulting solution was acidified with exce	ss nitric acid and dilute to exactly 250)
cm ³	in a volumetric flask. 25.0 cm³ of this so	ution required 33.25 cm ³ of 0.1 M silv	/er
nitra	te solution for complete reaction.		
(a)	Determine the molecular formula of B.	(03ma	rks)
	© UTEB 2019 Joint Mock	Examinations Turn	Ove

		• •
(b)	Write the structural formulae and names of the possible isomers of B.	
	(02 mark	(s)
Drav	w diagrams to show the approximate change in pH for each of the following and	ł
expl	ain why the resulting solution is not neutral in both cases.	
(a)	0.1 M sodium hydroxide solution is added in portions to 25 cm ³ of	
	0.1 M ethanoic acid. (03 marks	;)
(b) 0	0.1 M hydrochloric acid is added in portions to 20 cm ³ of 0.1 M ammonia solutio	n
()	(03 marks	
		• •
		• •

		elements in group VII of the periodic table.	(01 ½ marks)
Э.	(a)	State three reasons as to why fluorine differs in properties	from other
		Answer any six questions from this section.	
		SECTION B	
		ervation	
	Reag		(02 mains)
	(b)	Tin (II) solution and zinc chloride solution.	(02 marks)
	Obse	ervation	
	Reag	ent	
	(a)	Sodium ethanedioate solution and sodium ethanoate.	(02 marks)
		ed with the reagent.	
		oounds. State what is observed when each member of the p	
		e a reagent that can be used to distinguish the following pair	

© UTEB 2019 Joint Mock Examinations

(b)	Write equations for the rea	actions b	etween		
(i)	Fluorine and cold dilute po	otassium	hydroxi	de.	(01 ½ marks)
(ii)	Bromine and hot concentr	ated pot	assium	hydroxid	de. (01 ½ marks)
(iii)	Fluorine and water.				(01 ½ marks)
(c)	The values of the lattice e	nergies (of potas	sium ha	lides are given in the
	table below.				
	Compound	KF	KCl	KI	
	Lattice energy KJmol-1	-813	-710	-643	
Expla	ain the trend in these values	for pota	ssium h	alides.	(03 marks)

(a)	Liquid P (bp 92.5°C) and liquid Q (bp 90.8°C) from an azeotropic	
	mixture of boiling point 73°C.	
(i)	What is meant by azeotropic mixture?	(01 mark)
(ii)	Draw a boiling point – composition diagram for the P – Q mixture.	(04 marks)
(b)	A solution containing 60 g of RCOOH and 50 g of water was boiled	l.
(i)	Calculate the boiling point of the solution. (0)3 marks)
(R =	43, H = 1, C = 12, O = 16, Kb of water = $0.54 \text{ Kmol}^{-1} \text{kg}^{-1}$)	

11.

cepted mechanis
(03 marks

(c)	<u></u>	$+ (CH_3)_2C = CH_2$	H^+	
		de reacts with aqueous sodium + NaOH→ CH₃CH₂OH + NaBr	n hydroxide as in the equation.	
(a)	Nam	e the reaction.	(01 mark)
(b)	(i)	Write the rate equation for the	ne reaction between the hydroxide and	
		ethyl bromide.	(01 mar	k)
(ii)	Outli	ne a mechanism for reaction ir	nvolved. (02 marks	3)
				•

	(iii)	Sketch a labelled diagram to show an energy profile for the reaction. (03 marks)
	(c)	Write equation to show how CH ₃ CH ₂ Br can be converted to HOCH ₂ CH ₂ Br.
		(02 marks)
14.	(a)	A compound K contains 63.7% lead, 14.8% carbon, 1.8% of hydrogen and the
		rest being oxygen. When vapourised, 0.225g of K occupies 15.5 cm ³ at 760
		mmHg and 273k.
	(i)	Calculate the empirical formula of K. (02 marks)

(ii)	Deduce the molecular formula of K.	(03 marks)
(b)	Compound K decomposed on heating forming yellow residue on o	cooling and a
	colourless vapour that turned limewater milky and formed yellow p	recipitate
	with 2, 4 – dinitrophenyl hydrazine in presence of sulphuric acid.	
(i)	Write the name and structural formula of compound K.	(01 mark)
(ii)	Write equation leading to the formation of the yellow precipitate. (01 ½ marks)

15.	Wate	r boiled at 100 ^o at a pressure of 760 mmHg.	
	(a)	When atmospheric pressure is reduced to 660 mmHg, water boiled	at
		96°C. explain why the boiling point is reduced.	(03 marks)
	(b)	When 0.746g of potassium chloride is dissolved in 100 g of water, the	ne solution
	bo	oiled at 100.11 ^o C at a pressure of 760 mmHg.	
	(i)	Explain why the boiling point changes on adding potassium chloride	
			(03 marks)
	(ii)	From the information given, calculate the boiling point constant, Kb.	(03 marks)

16. The table below shows the decomposition temperature of carbonates of elements of group (II) in the periodic table.

Carbonate	BeC ₃	MgCO ₃	CaCO ₃	BaCO ₃
Decomposition temperature (0°)	100	350	900	1350

(a)	(i)	State how the thermal stability of carbonates of the elemen group.	(01 mark)
		ain your answer in (a) (i) above.	
(b)		e three properties in which magnesium resembles lithium in g	
	• • • • • • • • • • • • • • • • • • • •	e a reagent(s) can be used to distinguish between Ca ²⁺ and l	
(c)		what would be observed if each of the ions is treated with the	
	you h	nave named.	
Rea(gent(s)		

Observation	
Write equations to show how the following compounds	can be synthesized. In eac
case indicate the conditions and reagents for the reaction	on.
(a) NH ₂ from cyclohexene	(02 ½ ma
(b) CH ₃ CH ₂ OCH ₂ CH ₃ from ethane.	(02 marks
(c) $N = N$ from benzene.	(04 ½ mar

End