Sparse coding and dictionary learning

INTRODUCTION

- An Unsupervised training procedure, only need to give the inputs
- Goal is to recreate the given input at the output
- While doing that, model will extract a sparse representation of the input vector
- Sparse representation of an input vector is very unique with respect to a given Dictionary.
- Dictionary consists of most dominant and principle components which will explain entire training set
- Because of that we can use this sparse representation for classification instead of using raw inputs.
- Due to that reason people use Sparse coding with Supervised learning and it's a very robust and efficient method in classification

$$H = [h^{(1)}, \dots, h^{(T)}]$$

Training inputs

Reconstruction Example of one single input $x^{(i)} = 7$

In order to reconstruct the input $x^{(i)}$, $h^{(i)}$ will tell you which components needed to be added from the dictionary, and with which frequencies

$$x^{(i)} \approx \widehat{x}^{(i)} = Dh^{(i)}$$

For classification – semi supervised learning

Training Process

- Learning will be alternating between computing $h^{(t)}$ (sparse codes for each training input) and updating the Dictionary
- This process will go back and forth until it satisfies the convergence requirement
- Constrain the columns of D to be of unit norm $\|d_i\|_2 = 1$
- ullet If not D could grow bigger while $h^{(t)}$ becomes small to satisfy the sparsity constraints
- First, consider optimizing **H** and after that optimize **D**

Optimizing $h^{(t)}$

- Matching Pursuit
- Orthogonal Matching Pursuit

- Interior point methods [Chen, Donoho, & Saunders (`95)]
- Sequential Shrinkage for union of ortho-bases[Bruce et.al(`98)]
- Iterative Shrinkage Threshold Algorithm [Figuerido & Nowak(`03)]
- Fast ISTA [Koray & Marc`Aurelio(`09)]
- Coordinate descent algorithm [Learning fast approximation for sparse coding Gregor and Lecun (`10)]

Iterative Shrinkage Threshold Algorithm(ISTA)

$$\mathbf{h}(\mathbf{x}^{(t)}) = \underset{\mathbf{h}^{(t)}}{\arg\min} \frac{1}{2} ||\mathbf{x}^{(t)} - \mathbf{D} \; \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$$

Now the optimization will be
$$l(\mathbf{x}^{(t)}) = \frac{1}{2}||\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$$
 w.r.t. $\mathbf{h}^{(t)}$

 $\frac{1}{2}||\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}^{(t)}||_2^2$

Gradient Descend method can be apply $\nabla_{\mathbf{h}^{(t)}} l(\mathbf{x}^{(t)}) = \mathbf{D}^{\top} (\mathbf{D} \mathbf{h}^{(t)} - \mathbf{x}^{(t)}) + \lambda \operatorname{sign}(\mathbf{h}^{(t)})$

For a single element in
$$h^{(t)}$$

$$\frac{\partial}{\partial h_k^{(t)}} l(\mathbf{x}^{(t)}) = (\mathbf{D}_{\cdot,k})^\top (\mathbf{D} \ \mathbf{h}^{(t)} - \mathbf{x}^{(t)}) + \lambda \ \underline{\operatorname{sign}(h_k^{(t)})}$$

Algorithm try to minimize $\boldsymbol{h}_k^{(t)}$ to zero in order to get a sparse representation

But L_1 norm not differentiable at 0 so its very unlikely for gradient descent to land on zero even if it is the solution

Assume $w_1 = h_k^{(t)}$

Each element $h^{(t)}_{k}$ update:

•
$$h_k^{(t)} \leftarrow h_k^{(t)} - \alpha (D_{.,k})^T (Dh^{(t)} - x^{(t)})^T$$
 Update from Reconstruction

Update from sparsity

• if
$$sign(h_k^{(t)}) \neq sign(h_k^{(t)} - \alpha \lambda sign(h_k^{(t)}))$$

•
$$then: h_k^{(t)} \leftarrow 0$$

• else

•
$$h_k^{(t)} \leftarrow h_k^{(t)} - \alpha \lambda sign(h_k^{(t)})$$

Algorithm

- initialize $h^{(t)}$ (for instance to 0)
- while $h^{(t)}$ has not converged
 - $h^{(t)} \leftarrow h^{(t)} \alpha D^T (Dh^{(t)} x^{(t)})$
 - $h^{(t)} \Leftarrow shrink(h^{(t)}, \alpha\lambda)$
- $return h^{(t)}$

 $shrink(a,b) = [sign(a_i) \max(|a_i| - b_i, 0)]$

Will converge if $\frac{1}{\alpha}$ is bigger than the largest eigenvalue of D^TD

Dictionary learning

- K-SVD
 - The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representations [M. Aharon, M. Elad, and A. M. Bruckstein (`06)]
- Projected Gradient Descent
- Block coordinate Descent
- Online Dictionary learning
 - Online Dictionary Learning for Sparse Coding [Mairal, Bach, Ponce and Sapiro (`09)]

Block Coordinate Descent

- Now the optimization will be
- $min_D \frac{1}{T} \sum_{t=1}^{T} min_{h^{(t)}} l(x^{(t)}) = min_D \frac{1}{T} \sum_{t=1}^{T} \frac{1}{2} ||x^{(t)} Dh^{(t)}||_2^2 + \lambda ||h^{(t)}||_1$
- For a given $h^{(t)}$
- $min_D \frac{1}{T} \sum_{t=1}^{T} \frac{1}{2} ||x^{(t)} Dh^{(t)}||_2^2$
- we must also constrain the columns of D to be of unit norm $(\|D_{\cdot,j}\|_2 = 1)$
- This algorithm doesn't need a learning rate
- Idea of this algorithms is to minimize one column at a time

Set the gradient of optimization function to zero with respect to $oldsymbol{D}_{...j}$

$$0 = \nabla_{D_{.,j}} \left(\frac{1}{T} \sum_{t=1}^{T} \frac{1}{2} \| x^{(t)} - Dh^{(t)} \|_{2}^{2} \right)$$

$$0 = \frac{1}{T} \sum_{t=1}^{T} (x^{(t)} - Dh^{(t)}) h_j^{(t)}$$

$$0 = \sum_{t=1}^{T} \left(x^{(t)} - \left(\sum_{i \neq j} D_{.,i} h_i^{(t)} \right) - D_{.,j} h_j^{(t)} \right) h_j^{(t)}$$

$$\sum_{t=1}^{T} D_{.,j} h_j^{(t)^2} = \sum_{t=1}^{T} \left(x^{(t)} - \left(\sum_{i \neq j} D_{.,i} h_i^{(t)} \right) \right) h_j^{(t)}$$

$$D_{.,j} = \frac{1}{\sum_{1}^{T} h_{j}^{(t)^{2}}} \sum_{t=1}^{T} \left(x^{(t)} - \left(\sum_{i \neq j} D_{.,i} h_{i}^{(t)} \right) \right) h_{j}^{(t)}$$

If
$$A = \sum_{t=1}^{T} h^{(t)} h^{(t)^{T}}$$
 and $B = \sum_{t=1}^{T} x^{(t)} h^{(t)^{T}}$

$$D_{.,j} = \frac{1}{\sum_{1}^{T} h_{j}^{(t)^{2}}} \left(\left(\sum_{t=1}^{T} x^{(t)} h_{j}^{(t)} \right) - \sum_{i \neq j} D_{.,i} \left(\sum_{t=1}^{T} h_{i}^{(t)} h_{j}^{(t)} \right) \right)$$

$$A_{j,j} \qquad B_{.,j} \qquad A_{i,j}$$

$$D_{.,j} = \frac{1}{A_{j,j}} (B_{.,j} - \sum_{i \neq j} D_{.,i} A_{i,j})$$

Find the best value for j^{th} column with respect to all the other parameters (including fixing of other columns of **D** matrix)

Then iterate cycles over each columns $1^{st} \rightarrow 2^{nd} \rightarrow 3^{rd} \rightarrow 4^{th} \dots \rightarrow 1^{st} \dots$ until we get an stable values for **D**

Pseudocode for block coordinate descent algorithm

while **D** hasn't converged

for each column D_{.,j} perform updates

$$D_{.,j} = \frac{1}{A_{j,j}} \Big(B_{.,j} - \sum_{i \neq j} D_{.,i} A_{i,j} \Big) \leftarrow \text{coordinate descent update}$$

$$D_{.,j} = \frac{D_{.,j}}{\|D_{.,j}\|_2} \leftarrow \text{projection ; normalizing to satisfy the column constrain of D (unit norm)}$$

Implementation note:-

Since **A** and **B** not depend of **D**, we can calculate **A** and **B** before doing any optimization to **D** and keep it in memory. It will be efficient and save lot of resources

Complete Pseudo-code For Sparse Coding And Dictionary Learning

- Initialize D and normalize the columns
- while **D** has not converged:
 - o find the sparse codes $h^{(t)} \forall x^{(t)}$ in training set using **ISTA** for a given **D**
 - oupdate the dictionary
 - compute **A** and **B** for calculated $h^{(t)}$
 - run **block coordinate descend** algorithm

- As we can see no learning rate will be required by Block coordinate descent
- Learning will be alternating between computing $h^{(t)}$ (sparse codes for each training input) and updating the Dictionary.
- This process will go back and forth until it satisfies the convergence requirement
- This method is related to batch learning category
- It means for a single update, it will pass through the whole given training set
- This method could be inefficient for a big amount of training data
- The solution is an online learning algorithm and this means algorithm update while data is coming
- This can apply context where constantly obtaining new data in online fashion (like downloading images, solar irradiance)

Online Dictionary Learning Algorithm

This method required an update of running averages for A and B

•
$$B_{new} \Leftarrow \beta B_{pre} + (1 - \beta) x^{(t)} h^{(t)^T}$$

- $A_{new} \Leftarrow \beta A_{pre} + (1 \beta) h^{(t)} h^{(t)^T}$
- Now the previously mentioned A and B has changed with a running average
- β is a hyper parameter and if β close to 1 then model will give more priority to previous **B** and give less priority to incoming new data

Initializing D

- Not to 0
 - Because columns of D vectors should have unit norm
 - It is impossible to reconstruct and do the learning
- Use random matrix and then normalize each of the column
- Normalize first few training vectors and use those as columns in matrix D

Online Dictionary Learning Algorithm

- Initialize **D**
- While **D** hasn't converged
 - for each $x^{(t)}$
 - infer sparse codes $h^{(t)}$ using **ISTA** Run ISTA to extract the sparse code for new data
 - update Dictionary

•
$$B_{new} \Leftarrow \beta B_{prev} + (1 - \beta) x^{(t)} h^{(t)^T}$$

• $A_{new} \Leftarrow \beta A_{prev} + (1 - \beta) h^{(t)} h^{(t)^T}$

Calculate the running average

- while **D** hasn't converged
 - for each D_{..i} column perform Gradient update

•
$$D_{.,j} = \frac{1}{A_{j,j}} (B_{.,j} - \sum_{i \neq j} D_{.,i} A_{i,j})$$

•
$$D_{.,j} = \frac{D_{.,j}}{\|D_{.,j}\|_2}$$

Run Block Coordinate Descent

Thank You