Lecture Two

Second Order Differential Equations

Section 2.1 – Second-Order Linear Differential Equations

A second order linear differential equation is an equation which can be written in the form

$$y'' + p(x)y' + q(x)y = f(x)$$

Where p, q, and f are continuous functions on some interval I.

The function f(x) is called the *forcing function* or the *nonhomogeneous* term.

The equation is said to be *homogeneous* when:

$$y'' + p(t)y' + q(t)y = 0$$

Second-Order Equations and Planar Systems

$$y'' = f(t, y, y')$$

Let's re-write in first-order system:

$$y' = v$$
$$v' = F(t, y, v)$$

$$y'' + p(t)y' + q(t)y = F(t)$$

$$y'' = F(t) - p(t)y' - q(t)y$$

$$v' = F(t) - p(t)v - q(t)y$$

$$y' = v$$

$$v' = F(t) - p(t)v - q(t)y$$

Example

Consider a damped unforced spring: y'' + 0.4y' + 3y = 0; which satisfies the initial conditions y(0) = 2 and v(0) = y'(0) = -1

Solution

$$\begin{cases} y' = v \\ v' = -0.4v - 3y \end{cases}$$
$$v' + 0.4v = -3y$$

$$ve^{\int 0.4dy} = \int -3ye^{\int 0.4dy} + C$$

$$ve^{0.4y} = -3\int ye^{0.4y} + C$$

$$= -3\frac{e^{0.4y}}{0.4^2}(0.4y - 1) + C$$

$$= -18.75e^{0.4y}(0.4y - 1) + C$$

$$v = -7.5y + 18.75 + Ce^{-0.4y}$$

$$v(0) = -7.5(0) + 18.75 + Ce^{-0.4(0)}$$

$$-1 = 18.75 + C$$

$$C = -19.75$$

$$v(y) = -7.5y + 18.75 - 19.75e^{-0.4y}$$

$$y' = v = -7.5y + 18.75 - 19.75e^{-0.4y}$$

$$\frac{dy}{dt} = -7.5y + 18.75 - 19.75e^{-0.4y}$$

$$y(t) = -\frac{3\sqrt{74}}{74}e^{-t/5}\sin\left(\frac{\sqrt{74}}{5}t\right) + 2e^{-t/5}\cos\left(\frac{\sqrt{74}}{5}t\right)$$

The *yv*-plane is called the *phase plane*.

Phase Plane Plot

 $\int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$

Displacement y and the velocity v

Proposition

$$y'' + p(t)y' + q(t)y = 0$$

Solutions: $y = C_1 y_1 + C_2 y_2$

 C_1 , C_2 are any constant.

 $y_1(t) & y_2(t)$ are linearly independent solutions forming a *fundamental set of solutions*.

Linear

Set
$$L[y] = y'' + p(t)y' + q(t)y$$

Then, for any two twice differentiable functions $y_1(t) & y_2(t)$,

Proof

$$\begin{split} L \Big[y_1(t) \Big] + L \Big[y_2(t) \Big] &= y_1'' + p y_1' + q y_1 + y_2'' + p y_2' + q y_2 \\ &= y_1'' + y_2'' + p \Big(y_1' + y_2' \Big) + q \Big(y_1 + y_2 \Big) \\ &= \Big(y_1 + y_2 \Big)'' + p \Big(y_1 + y_2 \Big)' + q \Big(y_1 + y_2 \Big) \\ &= L \Big[y_1(t) + y_2(t) \Big] \end{split}$$

$$ightharpoonup L | cy(t) | = cL | y(t) |$$

Proof

$$L[cy(t)] = (cy)'' + p(t)(cy)' + q(t)(cy)$$

$$= cy'' + cp(t)y' + cq(t)y$$

$$= c(y'' + p(t)y' + q(t)y)$$

$$= cL[y(t)]$$

That is, L is a linear differential operator.

Definition

A linear combination of the two functions u & v is any function of the form

$$w = Au + Bv$$

Definition

Two functions u & v are said to be linearly independent on the interval (α, β) , if neither is a constant multiple of the order on that interval. If one is a constant multiple of the other on (α, β) , they said to be linearly dependent there.

Existence and Uniqueness for Linear Equations

Theorem

Suppose that the functions p, q, and f are continuous on the open interval I containing the point a. Then, given any two numbers b_1 and b_2 , the equation

$$y'' + p(x)y' + q(x)y = f(x)$$

Has a unique solution on the entire interval I that satisfies the initial conditions

$$y(a) = b_1, \quad y'(a) = b_2$$

Example

Verify that the functions $y_1(x) = e^x$ and $y_2(x) = xe^x$ are solutions of the differential equation y'' - 2y' + y = 0 and then find a solution satisfying the initial conditions y(0) = 3, y'(0) = 1

Solution

$$y(x) = C_1 e^x + C_2 x e^x$$

$$y'(x) = C_1 e^x + C_2 e^x + C_2 x e^x = (C_1 + C_2) e^x + C_2 x e^x$$

$$y(0) = \underline{C_1 = 3}$$

$$y'(0) = C_1 + C_2 = 1 \implies C_2 = -2$$

Hence the solution of the original initial value problem is

$$y(x) = 3e^x - 2xe^x$$

The plot shows several addition solutions of y'' - 2y' + y = 0, all having the same initial value y(0) = 3

Linearly Independent (LI) Solutions

Definition

Two functions defined on an open interval *I* are said to be *linearly independent* on *I* provided that neither is a constant multiple of the other.

Example

The following pair functions are linearly independent on the entire real line.

$$f(x) = \sin x$$
 and $g(x) = \cos x$

$$f(x) = e^x$$
 and $g(x) = e^{-2x}$

$$f(x) = x + 1$$
 and $g(x) = x^2$

Two functions are said to be *linearly dependent* on an open interval provided that they are not linearly independent there; that is, one of them is a constant multiplication of the other.

Example

Let
$$f(x) = \sin 2x$$
 and $g(x) = \sin x \cos x$

Are linearly dependent on any interval because f(x) = 2g(x).

Wronskian

The Wronskian is a function named after the Polish mathematician Józef Hoene-Wroński and it is used to determine whether a set of differentiable functions (solutions) is *linearly independent* on a given interval.

$$W(x) = \begin{vmatrix} f_1(x) & f_2(x) & f_n(x) \\ f_1'(x) & f_2'(x) & f_n'(x) \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & f_n^{(n-1)}(x) \end{vmatrix}$$

5

$$W = \begin{vmatrix} u & v \\ u' & v' \end{vmatrix} = uv' - vu'$$

If $W = 0 \implies u \& v$ are linearly dependent.

If $W \neq 0 \implies u \& v$ are linearly independent.

Theorem

Suppose that y_1 and y_2 are two solutions of the homogeneous second-order linear equation

$$y'' + p(x)y' + q(x)y = 0$$

On an open interval I on which p and q are continuous

- 1. If y_1 and y_2 are linearly dependent, then $W(y_1, y_2) \equiv 0$ on I.
- 2. If y_1 and y_2 are linearly independent, then $W(y_1, y_2) \neq 0$ at each point of I.

Example

Use the Wronskian to show that $\mathbf{f}_1 = x$, $\mathbf{f}_2 = \sin x$ are linearly independence

<u>Solution</u>

The Wronskian is

$$W(x) = \begin{vmatrix} x & \sin x \\ 1 & \cos x \end{vmatrix} = x \cos x - \sin x \neq 0$$

This function is not identically zero. Thus, the functions are linearly independent.

Example

Use the Wronskian to show that $\mathbf{f}_1 = 1$, $\mathbf{f}_2 = e^x$, $\mathbf{f}_3 = e^{2x}$ are linearly independence **Solution**

The Wronskian is

$$W(x) = \begin{vmatrix} 1 & e^x & e^{2x} \\ 0 & e^x & 2e^{2x} \\ 0 & e^x & 4e^{2x} \end{vmatrix} = e^x 4e^{2x} - 2e^{2x}e^x = 2e^{3x} \neq 0$$

Thus, the functions are linearly independent.

Exercises Section 2.1 – Second-Order Linear Differential Equations

Use the substitution v = y' to write each second-order equation as a system of two first-order differential equation.

1.
$$y'' + 2y' - 3y = 0$$

2.
$$y'' + 3y' + 4y = 2\cos 2t$$

3.
$$y'' + 2y' + 2y = 2\sin 2\pi t$$

4.
$$y'' + \mu(t^2 - 1)y' + y = 0$$

$$5. \quad 4y'' + 4y' + y = 0$$

- 1. Show that the functions $y_1(x) = e^{-3x}$, $y_2(x) = \cos 2x$, $y_3(x) = \sin 2x$ are linearly independent.
- 2. Determine whether $\{e^x, xe^x, (x+1)e^x\}$ is a set of linearly independent.

Use the Wronskian to show that are linearly independence

3.
$$y_1(x) = e^{-3x}, y_2(x) = e^{3x}$$

4.
$$\mathbf{f}_1 = 1$$
, $\mathbf{f}_2 = e^x$, $\mathbf{f}_3 = e^{2x}$

$$5. \quad \left\{ e^x, xe^x, (x+1)e^x \right\}$$

6.
$$y_1(x) = e^{-3x}$$
, $y_2(x) = \cos 2x$, $y_3(x) = \sin 2x$

7.
$$y_1(x) = e^x$$
, $y_2(x) = e^{2x}$, $y_3(x) = e^{3x}$

8.
$$y_1(x) = \cos^2 x$$
, $y_2(x) = \sin^2 x$, $y_3(x) = \sec^2 x$, $y_4(x) = \tan^2 x$

Determine whether the functions $y_1(t)$ and $y_2(t)$ are linearly dependent on the interval (0, 1)

9.
$$y_1(t) = \cos t \sin t, \quad y_2(t) = \sin 2t$$

12.
$$y_1(t) = t^2 \cos(\ln t), \quad y_2(t) = t^2 \sin(\ln t)$$

10.
$$y_1(t) = e^{3t}$$
, $y_2(t) = e^{-4t}$

13.
$$y_1(t) = \tan^2 t - \sec^2 t$$
, $y_2(t) = 3$

11.
$$y_1(t) = te^{2t}$$
, $y_2(t) = e^{2t}$

14.
$$y_1(t) \equiv 0, \quad y_2(t) = e^t$$

Find a particular solution satisfying the given initial conditions

15.
$$y'' - 4y = 0$$
; $y_1(t) = e^{2t}$, $y_2(t) = 2e^{-2t}$; $y(0) = 1$, $y'(0) = -2$

16.
$$y'' - y = 0$$
; $y_1(t) = 2e^t$, $y_2(t) = e^{-t+3}$; $y(-1) = 1$, $y'(-1) = 0$

17.
$$y'' + y = 0$$
; $y_1(t) = 0$, $y_2(t) = \sin t$; $y(\frac{\pi}{2}) = 1$, $y'(\frac{\pi}{2}) = 1$

18.
$$y'' + y = 0$$
; $y_1(t) = \cos t$, $y_2(t) = \sin t$; $y(\frac{\pi}{2}) = 1$, $y'(\frac{\pi}{2}) = 1$

19.
$$y'' - 4y' + 4y = 0$$
; $y_1(t) = e^{2t}$, $y_2(t) = te^{2t}$; $y(0) = 2$, $y'(0) = 0$

20.
$$2y'' - y' = 0$$
; $y_1(t) = 1$, $y_2(t) = e^{t/2}$; $y(2) = 0$, $y'(2) = 2$

21.
$$y'' - 3y' + 2y = 0$$
; $y_1(t) = 2e^t$, $y_2(t) = e^{2t}$; $y(-1) = 1$, $y'(-1) = 0$

22.
$$ty'' + y' = 0$$
; $y_1(t) = \ln t$, $y_2(t) = \ln 3t$; $y(3) = 0$, $y'(3) = 3$

23.
$$t^2y'' - ty' - 3y = 0$$
; $y_1(t) = t^3$, $y_2(t) = -\frac{1}{t}$; $y(-1) = 0$, $y'(-1) = -2$ $(t < 0)$

24.
$$y'' + \pi^2 y = 0$$
; $y_1(t) = \sin \pi t + \cos \pi t$, $y_2(t) = \sin \pi t - \cos \pi t$; $y(\frac{1}{2}) = 1$, $y'(\frac{1}{2}) = 0$

25.
$$x^3 y^{(3)} - x^2 y'' + 2xy' - 2y = 0$$

 $y(1) = 3, \quad y'(1) = 2, \quad y''(1) = 1$ $y_1(x) = x, \quad y_2(x) = x \ln x, \quad y_3(x) = x^2$

26.
$$y^{(3)} + 2y'' - y' - 2y = 0$$

 $y(0) = 1, \quad y'(0) = 2, \quad y''(0) = 0$ $y_1(x) = e^x, \quad y_2(x) = e^{-x}, \quad y_3(x) = e^{-2x}$

27.
$$y^{(3)} - 6y'' + 11y' - 6y = 0$$

 $y(0) = 0, \quad y'(0) = 0, \quad y''(0) = 3$ $y_1(x) = e^x, \quad y_2(x) = e^{2x}, \quad y_3(x) = e^{3x}$

28.
$$y^{(3)} - 3y'' + 3y' - y = 0$$

 $y(0) = 2$, $y'(0) = 0$, $y''(0) = 0$ $y_1(x) = e^x$, $y_2(x) = xe^x$, $y_3(x) = x^2e^x$

29.
$$y^{(3)} - 5y'' + 8y' - 4y = 0$$

 $y(0) = 1$, $y'(0) = 4$, $y''(0) = 0$ $y_1(x) = e^x$, $y_2(x) = e^{2x}$, $y_3(x) = xe^{2x}$

30.
$$y^{(3)} + 9y'' = 0$$

 $y(0) = 3$, $y'(0) = -1$, $y''(0) = 2$ $y_1(x) = 1$, $y_2(x) = \cos 3x$, $y_3(x) = \sin 3x$

31.
$$y^{(3)} - 3y'' + 4y' - 2y = 0$$

 $y(0) = 1$, $y'(0) = 0$, $y''(0) = 0$ $y_1(x) = e^x$, $y_2(x) = e^x \cos x$, $y_3(x) = e^x \sin x$

32.
$$x^3 y^{(3)} - 3x^2 y'' + 6xy' - 6y = 0$$

 $y(1) = 6, \quad y'(1) = 14, \quad y''(1) = 1$ $y_1(x) = x, \quad y_2(x) = x^2, \quad y_3(x) = x^3$

33.
$$x^3 y^{(3)} + 6x^2 y'' + 4xy' - 4y = 0$$

 $y(1) = 1, \quad y'(1) = 5, \quad y''(1) = -11$ $y_1(x) = x, \quad y_2(x) = x^{-2}, \quad y_3(x) = x^{-2} \ln x$

34. When the values of a solution to a differential equation are specified at two different points, these conditions. (In contrast, initial conditions specify the values of a function and its derivative at the same point). The purpose of this is to show that for boundary value problems there is no existence-uniqueness theorem. Given that every solution to

$$y'' + y = 0$$
 is of the form $y(t) = c_1 \cos t + c_2 \sin t$

Where \boldsymbol{c}_1 and \boldsymbol{c}_2 are arbitrary constants, show that

- a) There is a unique solution to the given differential equation that satisfies the boundary conditions y(0) = 2 and $y(\frac{\pi}{2}) = 0$
- b) There is no solution to given equation that satisfies y(2) = 0 and $y(\pi) = 0$
- c) There are infinitely many solution to the given DE equation that satisfy y(0) = 2 and $y(\pi) = -2$