Python for Data Science 2

Lecture 11- Machine Learning

Amir Farbin

ML Basics

- In this context, 3 things define a ML model
 - Technique: What type of technique are you applying? e.g. Multilayered Perceptron (MLP)- a type of Neural Network.
 - Hyper-parameters: Specific to the technique. e.g. number of neurons.
 - Parameters: What is learned. e.g. weight of connections between neurons.
- Generally 2 primary modes a ML model is used
 - *Training*: Example data → Trained Model
 - Inference: Trained model is applied to data → predictions
- Training Data generally separated into sub-sets
 - *Training* → obtain parameters
 - *Test* → select technique and hyper-parameters
 - *Validation* → used to assess performance

Data Representation

- Data are stored in "tensors".
 - Basically an N- Dimensional Array with a "shape"
 - shape = (): Scalar
 - shape = (N,): Vector
 - shape = (N,M): Matrix
 - shape = $(N_1, N_2, N_3, ..., N_R)$: Rank R Tensor
 - Inputs: X
 - Can be arbitrary shape. Typically first dimension is the example index (usually an "event" or collision in HEP)
 - Example: Let's say your examples are students, and your data is their age, sex, years at University, undergrad/grad, and department
 - X = [[20, 0, 2, 0, 4] , # 20 year old, 0=male, 2=junior, 0=undergrad, 4=computer science
 [25, 1, 2, 1, 3] , # 25 year old, 1=female, 2=3nd year, 0=grad, 4=physics
 [23, 0, 0, 1, 3]] # 25 year old, 1=make, 2=1st year, 0=grad, 4=physics
 - X[0] = [20, 0, 2, 0, 4]: the first students data.
 - X[0][3] = 1. This is a graduate student
 - Outputs: Y
 - Can be arbitrary shape. Typically first dimension is the example index (usually an "event" or collision in HEP)
 - Example: Y = 0/1, student does not / does know python

Machine Learning Problem Formulation

• Split Datasets:

- $(\mathbf{X}_{train}, \mathbf{Y}_{train}) = training dataset$
- (**X**_{test}, **Y**_{test}) = test dataset
- $(\mathbf{X}_{\text{val}}, \mathbf{Y}_{\text{val}})$ = validation dataset
- (X) = unlabeled data
- Set Goal:
 - Inference algorithm/function F(X | a) = Y_{predict}.
 - F can be a heuristic. e.g. if (computer science student) then (student knows python).
 - F can be anything
 - a are parameters of the function, for Neural Networks, these are weights.
 - Note that in a simple classification problem, Y_{train} can be 0 or 1 for any example. But Y_{predict} will usually be between 0 and 1.
- *Training*: (for Neural Networks)
 - Optimize (usually a minimization) a cost function $F(\mathbf{X} \mid \mathbf{a}) = C(F(\mathbf{X}_{train} \mid \mathbf{a}), \mathbf{Y}_{train})$ w.r.t. \mathbf{a}
 - For example, $C = [F(X \mid a) Y_{train}]^2$
 - a_{trained} = result of training

• Test:

- Compute cost function on test data C(F(X_{test} | a_{trained}), Y_{test})
- Determine (e.g. via significance optimization) the cut-off $F(\mathbf{X}_{test}|\mathbf{a}_{trained}) > c$, e.g. c=0.5
- Other metrics. For example:
 - Select Y_{test}=1 and see how often F(X_{test}| a_{trained}) > 0.5
- Retrain/test to try/compare different techniques/hyper-parameters

• Validation:

- Assess performance metrics \rightarrow e.g. TPR for F($\mathbf{X}_{\text{val}} | \mathbf{a}_{\text{trained}}) > 0.5$
- Inference:
 - $\mathbf{Y}_{predict} = F(\mathbf{X} | \mathbf{a}_{trained})$

Artificial Neural Network

- A simple one layer NN
 - $F(X \mid a = W,b) = f(WX + b)$
 - **W, b** = "weights", "biases"
 - f(x)= "activation function"
 - Must be non-linear.
- Universal Computation Theorem.

Assessing Performance

		True condition				
	Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\sum \text{Total population}} = \frac{\sum \text{Condition positive}}{\sum \text{Total population}}$	Σ True positive	cy (ACC) = e + Σ True negative l population
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, Power $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds ratio (DOR)	F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR–) = $\frac{FNR}{TNR}$	= <u>LR+</u> <u>LR-</u>	2 · Precision · Recall Precision + Recall

		True condition					
	Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\sum \text{Total population}} = \frac{\sum \text{Condition positive}}{\sum \text{Total population}}$	Σ True positive	cy (ACC) = e + Σ True negative I population	
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive		
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$		
		True positive rate (TPR), Recall, Sensitivity, probability of detection, Power $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds ratio (DOR)	F ₁ score =	
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR–) = $\frac{FNR}{TNR}$	$= \frac{LR+}{LR-}$	2 · Precision · Recall Precision + Recall	

- Condition Positive/Negative → Ground Truth
- Predicted Condition Positive/Negative → From ML
- Prevalence → Fraction where Truth=Positive in Population
 - Training Population and Inference Populations are generally different.

Deep Learning

Artificial Neural Networks

- Biologically inspired computation, (first attempts in 1943)
 - Probabilistic Inference: e.g. signal vs background
 - Universal Computation Theorem (1989)
- Multi-layer (*Deep*) Neutral Networks:
 - Not a new idea (1965), just impractical to train. *Vanishing Gradient problem* (1991)
 - Solutions:
 - New techniques: e.g. better activation or layer-wise training
 - *More training*: big training datasets and lots of computation ... *big data and GPUs*
 - **Deep Learning Renaissance**. First DNN in HEP (2014).
 - **Amazing Feats**: Audio/Image/Video recognition, captioning, and generation. Text (sentiment) analysis. Language Translation. Video game playing agents.
 - *Rich field*: Variety of architectures, techniques, and applications.

ILSVRC top-5 error on ImageNet

Feature Learning

- Feature Engineering: e.g. Event Reconstruction ~ Feature Extraction, Pattern Recognition, Fitting, ...
- Deep Neutral Networks can Learn Features from raw data.
- Example: *Convolutional Neural Networks* Inspired by visual cortex
 - *Input*: Raw data... for example 1D = Audio, 2D = Images, 3D = Video
 - **Convolutions** ~ learned feature detectors
 - · Feature Maps
 - **Pooling** dimension reduction / invariance
 - Stack: Deeper layers recognize higher level concepts.

Deep Neutral Networks

DEEP LEARNING IN HEP

