1) Find function $f:(-1,1) \rightarrow \mathbb{R}$ that some one one to one

 $f(x) = \tan x$ has domain $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ but question said to find domain from (-1,1) so we increase it by multiplying \times by $\frac{\pi}{2}$ so now, $f(x) = \tan(\frac{\pi}{2}x)$ where domain is (-1), i)

Now we have to show its onto and one to one to show its a bjectur:

Onto
$\forall y \in \mathbb{R} \Rightarrow \exists x, f(x) = y, -1 \leq x \leq 1 \notin (\frac{\pi}{2}y) = x$
$\tan \left(\frac{\pi}{2}\right) = y [switch \times [y]]$
$\frac{\pi}{2}$ y = $\tan^{-1}(x)$
$y = \frac{2}{\pi} (x)$
$x = \frac{2}{\pi} \tan^{-1}(y) \left[\text{switch } x \in y \right]$
$\frac{2}{\pi}$ tan-1 domain is (-1,1) so
f is ontol

One to one
$$f(x_1) = f(x_2) \rightarrow x_1 = x_2$$

$$\tan \left(\frac{\pi}{2}x_1\right) = \tan \left(\frac{\pi}{2}x_2\right)$$

$$\frac{\pi}{2}x_1 = \frac{\pi}{2}x_2$$

$$x_1 = x_2$$
This means that f is one to one!

domain of f is (-1,1) and its onto and one to one, it's a bijection

= draw secont line from origin, projecting to every point of seniciple and hit points on the y=1 line, extending and man faring projection = draw line verheally down to hit IR, y=0 line

Since every point on R can map to a point on semicircle uniquely and each point on the semi circle can uniquely map back down to one unique R, its one to one and onto, hence a bijection!

2) PF(N) is all finite subsets of N Every finite subset has a largest element.

of subsets where 1 is the largest number = $1 \frac{13}{2}$,
of subsets where 2 is the largest number = $2 \frac{13}{2}$, $\frac{1}{2}$, \frac

We can observe how the # of subsets where ; is the largest number is always 2i-1

P_F(N) { x ∈ P(N) | x is finite?}
P_F(N) is countable if it can be ordered.
Largest element in P_F(N);;;
of numbers less than i is i-1
size of power set is defined as 2^x
Since we can order the elements in P_F(N) like
{2⁰, 2¹, 2², 2³, ... 2ⁱ⁻¹}, P_F(N) is countable!

infinity binary word	subset of N	
000000000		
1000000000	٤١٤	
01 1000000	{ 2,3,4 }	
0101 010000	{2,4,6 }	
1010 01010	{1,3,5,7,9}or{2k-1 kEB}	
1001 001001	{3k-2 k∈ N}) k:
	72	ا د

8 3 k - 2 k=1=3(1)-2=1] 3 = 1001001 ... k=2=3(2)-2=7] 3 = 1001001 ... k=3=3(3)-2=7] 3 every 3. Hore

- An infinite word is made of 0's and 1's
- Cantors diagonal theorem is only used when you want to show something is uncountable
- The diagonal is made by choosing the ith element of the ith row like bit 9 in now 9 etc
- Making an infinte word at of the numbers the diagonal hits:

- A complement of something is its opposible thing so I turns to 0,0 turns into 1 so:

We know an infinite buryword is made up of 0's and 1's so S_n^c is an infinite bury word. The table shows all the infinite binary words we can make. However, the complement of S_n , S_n^c will never show up there as at least one digit will always not match from the ones given in the table. If something is a bijection, I subset of N = 1 infinite bury word 1. Since S_n^c is an unfinite word that is not in subset of N, I subset of $N \neq 1$ infinite bury word so no bijection. So P(N) is uncompable

4) $f: \mathbb{N} \to S$ is onto so all y's have an x. So all elements of S have an element of N that is mapped onto S

$$f: \mathbb{N} \to S$$
; f is onto
 S has to
be countable

Something is comtable if it is a bijection. Il bijection is when something is orto add to she can make something by restricting the domain. Like if 2×10^{-5} values here the same y, choose the smallest or largest one. So,

14	\rightarrow 5
2 -	Z a
3/	1
5	ي د
8/	\ \ \ 4

This is onto as all y values are used up but to make it one for one, we make each input fied to one output. So choose min or make from N when they have some y so:

19	→ S
ι –	, a
7 —	→ 6
3 —	
4 —	→ 3

1,2,3 all had out put by min is 1 so 1 has a.
Repeat this for others and now the function is onto t one to one so a bijection

Now that we limited the domain, every element of N maps to one element of S which we can call N'.

So f: N' -> 5 is a bijection which means S is contable

5) Total birds = 100

Chirping birds = 46

Chirping + singing birds = 17

Singing birds = ?

chirp + sing = 46

only chirp = 46-17=29

total sing = dotal - chirp
= 100 - 29

= 71

n = 100 chirp = c = 46 $chirp \land sing = c \land s = 17$ sing s = ? $without using a vent diagram we can use the inclusion-exclusion way

<math>n = [c|+|s|-|c \land s|]$ 100 = 46+|s|-17 100 = 29+|s| 100-29=|s| 100-29=|s|

6) Total amount of numbers = 546

Negation = divisible by 2:
$$\frac{x}{2} = \alpha \ge 1$$
 $5_2 = \text{divisible by 2}$ divisible by 3: $\frac{x}{3} = b \ge 1$ $5_3 = \text{divisible by 3}$ divisible by $7: \frac{x}{7} = c \ge 1$ $5_7 = \text{divisible by 7}$

$$|S_{2}| = \lfloor \frac{546}{2} \rfloor = 273$$

$$|S_{3}| = \lfloor \frac{546}{3} \rfloor = 182$$

$$|S_{7}| = \lfloor \frac{546}{7} \rfloor = 78$$

$$|S_{2} \land S_{3}| = \lfloor \frac{546}{7} \rfloor = \lfloor \frac{546}{6} \rfloor = 91$$

$$|S_{2} \land S_{7}| = \lfloor \frac{546}{2 \cdot 3} \rfloor = \lfloor \frac{546}{6} \rfloor = 39$$

$$|S_{3} \land S_{7}| = \lfloor \frac{546}{2 \cdot 7} \rfloor = \lfloor \frac{546}{14} \rfloor = 39$$

$$|S_{3} \land S_{7}| = \lfloor \frac{546}{3 \cdot 7} \rfloor = \lfloor \frac{546}{21} \rfloor = 26$$

$$|S_{2} \land S_{3} \land S_{7}| = \lfloor \frac{546}{3 \cdot 7} \rfloor = 13$$

Inclusion - exclusion =
$$|5_2 \vee 5_3 \vee 5_7| = |5_2| + |5_3| + |5_7|$$

 $-|5_2 \wedge 5_3| - |5_2 \wedge 5_7| - |5_3 \wedge 5_7|$
 $+|5_2 \wedge 5_3 \wedge 5_7|$
 $=|5_2 \wedge 5_3| + |5_2 \wedge 5_7|$
 $=|5_2 \wedge 5_3| + |5_2 \wedge 5_7|$
 $=|5_2 \wedge 5_3| + |5_2 \wedge 5_7|$
 $=|5_2 \wedge 5_3| + |5_3 \wedge 5_7|$

390 is # of numbers divisible by 2,3 and 7 but we want the ones not divisible by 2,3 and 7 so we subtract that from the total which is 546. So 546-390 is 156

= 390

7a

8 choices because it can't be 0 (if its 0, itd be a 2 digit #)
it can't be 1 (prompt said no 1 first digit)

9 choices becase it cant be 2 (prompt said no 2 second dyst)

9 choices becase it cant be 3 (prompt said no 3 third dyit)

Product rule = 8.9.9 = 648

b) Total if prompt had no restrictions (1 can be 1^{st} , 2 can be 2^{rd} , $3=3^{rd}$)

9.10.10 = 900

Negation: $|B_1| = n$ umbes with $|A_1| = |A_2| = |A_3| = |$

Finchesion - exclusion:
$$|B_1 \vee B_2 \vee B_3| = |B_1| + |B_2| + |B_3|$$

$$-|B_1 \wedge B_2| - |B_2 \wedge B_3| - |B_1 \wedge B_3|$$

$$+|B_1 \wedge B_2 \wedge B_3|$$

$$= 100 + 90 + 90$$

$$-10 - 9 - 10$$

$$+|B_1 \wedge B_2 \wedge B_3|$$

$$= 252$$

252 is # without the restrictions but we want the # with restrictions to we subtract from the total which is 900 giving us 900-232 = 648

```
c) If all 3 digits have to be different then
      9 choices because it cant be 0 (if its 0, itd be a 2 digit #)
     9 choices becase if contresone as first digit
      8 choices becase it cant be some as first or second digit
    9.9.8 = 648
```

Negation: |B| = numbes with | first digit = (1.9.8) 1B, = numbes with 2 second digit = (9.1.8) |B2 = numbers with 3 third digit = (9.9.1) $|B_1 \wedge B_2| = \text{numbers}$ with a first digit = $(1 \cdot 1 \cdot 8)$ and a second digit $|B_2 \wedge B_3| = \text{numbers}$ with a second digit = $(9 \cdot 1 \cdot 1)$ and a third digit | B3 nB1 | = numbers with a third digit = (1.9.1) [B, nB2nB3]= numbers with a first digit
a secund digit and a _ (1.1.1)

Inclusion - exclusion: | B, v B2 v B3 |= |B1 + |B2 + |B3 | - | B, 1 B2 | - | B2 1 B3 | - |B, 1 B3 | + | B, 1 B2 1 B2 | = 72 +72 + 81 - 8 - 9 - 9 = 202

203 is # of "bad digits" but we want the # of "good digits" we subtract from the total which is 648 giving us 648-203 = 445