#### AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions and listings of claims in the application.

#### **Listing of Claims**

1. (Currently Amended) A graphics processing method, comprising:

defining a plurality of rows of tiles in a graphics display field comprising a plurality of rows of pixels, each tile including pixels from at least two rows of pixels;

setting occlusion flags for respective tiles of a row of tiles for a graphics primitive based on whether respective representative depth values for the tiles of the row of tiles meet an occlusion criterion;

processing pixels in rows of pixels corresponding to the row of tiles for the graphics primitive in a row-by-row manner responsive to the occlusion flags, wherein the step of processing pixels includes:

processing a portion of the pixels in a first tile of the row of tiles responsive to the occlusion flags; and

depending on the geometry of the primitive, processing pixels in a second tile of the row of tiles responsive to the occlusion flags before processing additional pixels in the first tile responsive to the occlusion flags;

wherein the occlusion flags are stored in a tile occlusion information cache that is configured to store respective occlusion flags for respective tiles of a row of tiles and respective occlusion threshold depth values for the respective tiles of the row of tiles, and wherein the step of setting occlusion flags includes:

determining a maximum depth value for the graphics primitive within a tile;

comparing the maximum depth value to the cached occlusion threshold

depth value for the tile in the tile occlusion information cache; and

setting the occlusion flag for the tile responsive to the comparison.

#### 2. (Canceled)

3. (Currently Amended) A method according to claim 2 claim 1, wherein processing pixels comprises processing rows of pixels in the row of tiles using a zig-zag traversal algorithm.

#### 4. (Canceled)

5. (Currently Amended) A method according to claim 4 claim 1, further comprising:

establishing a depth buffer configured to store respective occlusion threshold depth values for respective pixels of the graphics display field; and

wherein setting the occlusion flags comprises setting an occlusion flag for a tile to indicate non-occlusion; and

wherein processing pixels comprises:

detecting that the tile has a occlusion flag indicating non-occlusion; and responsively processing a pixel for the graphics primitive in the tile without retrieving an occlusion threshold depth value for the pixel from the depth buffer.

- 6. (Original) A method according to claim 5, further comprising establishing a color buffer configured to store respective color values for respective ones of the pixels of the graphics display field, and wherein responsively processing a pixel for the graphics primitive in the tile without retrieving an occlusion threshold depth value for the pixel from the depth buffer comprises responsively storing a color value and a depth value for the graphics primitive for the pixel in the color buffer and the depth buffer, respectively.
- 7. (Original) A method according to claim 6, wherein the occlusion flags are stored in a tile occlusion information cache that is configured to store respective occlusion flags for respective tiles of a row of tiles, respective occlusion threshold depth values for the respective tiles of the row of tiles, and wherein the method further comprises:

determining a depth value for the graphics primitive for the pixel;

comparing the determined depth value for the graphics primitive for the pixel to the occlusion threshold depth value for the tile in the tile occlusion information cache; and

updating the occlusion threshold depth value for the tile in the tile occlusion information threshold cache to the determined depth value for the graphics primitive for the pixel responsive to the comparison.

#### 8. (Original) A method according to claim 7:

wherein setting occlusion flags comprises setting an occlusion flag for a tile to indicate non-occlusion, and wherein processing pixels is preceded by:

establishing an aggregate tile occlusion information memory configured to store respective occlusion threshold depth values for all of the rows of tiles; and

loading the tile occlusion information cache with occlusion threshold depth values from the aggregate time occlusion information memory; and

wherein updating the occlusion threshold depth value for the tile in the tile occlusion information threshold cache is followed by updating threshold occlusion depth values in the aggregate tile occlusion information memory from the tile occlusion information cache.

# 9. (Currently Amended) A method according to claim 1, further comprising: <u>A graphics processing method, comprising:</u>

defining a plurality of rows of tiles in a graphics display field comprising a plurality of rows of pixels, each tile including pixels from at least two rows of pixels;

setting occlusion flags for respective tiles of a row of tiles for a graphics primitive based on whether respective representative depth values for the tiles of the row of tiles meet an occlusion criterion;

processing pixels in rows of pixels corresponding to the row of tiles for the graphics primitive in a row-by-row manner responsive to the occlusion flags;

establishing a depth buffer configured to store respective occlusion threshold depth values for respective pixels of the graphics display field; and

wherein setting occlusion flags comprises setting the occlusion flag for a tile to indicate possible occlusion; and

wherein processing pixels comprises:

detecting that the tile has an occlusion flag indicating possible occlusion; and

comparing a depth value for the graphics primitive for a pixel in the tile to an occlusion threshold depth value for the pixel in the depth buffer responsive to detecting that the tile has an occlusion flag indicating possible occlusion;

processing the pixel responsive to the comparison; and

updating the occlusion threshold depth value for the tile in the tile occlusion information cache responsive to the written z-value of the pixel.

- 10. (Original) A method according to claim 9, further comprising establishing a color buffer configured to store respective color values for respective ones of the pixels of the graphics display field, and wherein processing the pixel comprises storing a color value and a depth value in the color buffer and the depth buffer, respectively, if the comparison of the depth value for the graphics primitive for the pixel in the tile to the occlusion threshold depth value for the pixel in the depth buffer indicates non-occlusion and updating the occlusion threshold depth value for the tile in the tile occlusion information cache responsive to the written z-value of the pixel.
- 11. (Currently Amended) A method according to claim 1, A graphics processing method, comprising:

defining a plurality of rows of tiles in a graphics display field comprising a plurality of rows of pixels, each tile including pixels from at least two rows of pixels;

setting occlusion flags for respective tiles of a row of tiles for a graphics primitive based on whether respective representative depth values for the tiles of the row of tiles meet an occlusion criterion, wherein the occlusion flags are stored in a tile occlusion information cache that is configured to store respective occlusion flags for respective tiles of a row of tiles, respective occlusion threshold depth values for the respective tiles of the row of tiles, and respective status flags for respective tiles of the row of tiles;

processing pixels in rows of pixels corresponding to the row of tiles for the graphics primitive in a row-by-row manner responsive to the occlusion flags, and wherein the method further comprises said processing step including:

processing a first row of pixels responsive to the tile occlusion information cache, wherein processing a first row of pixels comprises setting occlusion and status flags for at least one tile in the first row of tiles to indicate that occlusion status of the at least one tile has been determined:

determining whether a second row of pixels is in the first row of tiles; and processing a second row of pixels using information in the tile occlusion cache gained from the first row of pixels if the second row of pixels is in the first row of tiles.

12. (Original) A method according to claim 11, wherein processing a first row of pixels is preceded by:

establishing an aggregate tile occlusion information memory configured to store respective occlusion threshold depth values for all tiles in all rows of tiles;

setting the occlusion and status flags in the tile occlusion information cache to predetermined values; and

storing occlusion threshold depth values for the first row of tiles from the aggregate tile occlusion information memory in the tile occlusion information cache.

13. (Currently Amended) A method according to claim 1, A graphics processing method, comprising:

defining a plurality of rows of tiles in a graphics display field comprising a plurality of rows of pixels, each tile including pixels from at least two rows of pixels;

setting occlusion flags for respective tiles of a row of tiles for a graphics primitive based on whether respective representative depth values for the tiles of the row of tiles meet an occlusion criterion, wherein the occlusion flags are stored in a tile occlusion information cache that is configured to store respective occlusion flags for respective tiles of a row of tiles, respective occlusion threshold depth values for the respective tiles of the row of tiles, and respective status flags for respective tiles of the row of tiles, and wherein the method further comprises:

establishing an aggregate tile occlusion information memory configured to store respective occlusion threshold depth values for all tiles of the rows of tiles;

processing a first row of pixels responsive to the tile occlusion information cache, wherein processing a first row of pixels comprises setting occlusion flags and status flags for a first row of tiles having pixels in the first row of pixels to indicate that at least one occlusion status of at least one tile in the first row has been determined;

determining whether a second row of pixels is in the first row of tiles; and

responsive to determining that the second row of pixels is in a second row of tiles, writing back the occlusion threshold depth values from the tile occlusion information cache to the aggregate tile occlusion information in the tile occlusion information cache, loading occlusion threshold depth values into the tile occlusion information cache with corresponding occlusion threshold depth values for the second row of tiles from the aggregate tile occlusion information memory, and processing the second row of pixels using the updated tile occlusion cache.

14. (Original) A method according to claim 13, wherein determining whether a second row of pixels is in the first row of tiles is followed by updating occlusion threshold depth values for the first row of tiles in the aggregate tile occlusion information memory with occlusion threshold depth values from the tile occlusion cache responsive to determining that the second row of pixels is in a second row of tiles.

15. (Currently Amended) An apparatus, comprising:

a display; and

a graphics processor coupled to the display and operative to define a plurality of rows of tiles in a graphics display field of the display, each tile including pixels from at least two rows of pixels, to set occlusion flags for respective tiles of a row of tiles for a graphics primitive based on whether respective representative depth values for the tiles of the row of tiles meet an occlusion criterion, and to process pixels in rows of pixels corresponding to the row of tiles for the graphics primitive in a row-by-row manner responsive to the occlusion flags configured to perform the method of claim 1.

16. (Canceled)

17. (Original) An apparatus according to claim 15, wherein the graphics processor is operative to process rows of pixels in the row of tiles using a zig-zag traversal algorithm.

18. (Canceled)

19. (Original) An apparatus according to claim 15, wherein the display and the

graphics processor are housed in a portable electronic device.

20. (Currently Amended) An apparatus, comprising:

a display; and

a graphics processor coupled to the display and operative to define a plurality of rows of tiles in the graphics display field, each of the tiles comprising a plurality of pixels, to set an occlusion flag for a tile to indicate non-occlusion for a graphics primitive in the tile, to detect that the tile has a occlusion flag indicating non-occlusion, and to responsively process a pixel for a graphics primitive in the tile configured to perform the method of claim 41.

21. (Original) An apparatus according to claim 20, wherein the graphics processor is operative to maintain a depth buffer configured to store respective occlusion threshold depth values for respective pixels of a graphics display field of the display and to process the pixel without retrieving an occlusion threshold depth value from the depth buffer.

22. (Original) An apparatus according to claim 20, wherein the graphics processor is operative to maintain a tile occlusion information cache that is configured to store respective occlusion flags for respective tiles of a row of tiles and respective occlusion threshold depth values for the respective tiles of the row of tiles, to determine a maximum depth value for the graphics primitive for a tile, to compare the maximum

depth value to the cached occlusion threshold depth value for the tile in the tile occlusion information cache, and to set the occlusion flag for the tile responsive to the comparison.

23. (Currently Amended) A computer program product comprising program code embodied in a computer-readable medium, the program code comprising:

program code configured to define a plurality of rows of tiles in a graphics display field of the display, each tile including pixels from at least two rows of pixels, to set occlusion flags for respective tiles of a row of tiles for a graphics primitive based on whether respective representative depth values for the tiles of the row of tiles meet an occlusion criterion, and to process pixels in rows of pixels corresponding to the row of tiles for the graphics primitive in a row-by-row manner responsive to the occlusion flags program code configured to perform the method of claim 1.

### 24. (Canceled)

- 25. (Original) A computer program product according to claim 24, wherein the program code is further configured to process rows of pixels in the row of tiles using a zig-zag traversal algorithm.
- 26. (Currently Amended) A computer program product comprising program code embodied in a computer-readable medium, the program code comprising:

program code configured to define a plurality of rows of tiles in the graphics display field, each of the tiles comprising a plurality of pixels, to set an occlusion flag for a tile to indicate non-occlusion for a graphics primitive in the tile, to detect that the tile has a occlusion flag indicating non-occlusion, and to responsively process a pixel for a graphics primitive in the tile program code configured to perform the method of claim 41.

27. (Original) A computer program product according to claim 26, wherein the program code is further configured to maintain a depth buffer configured to store respective occlusion threshold depth values for respective pixels of a graphics display

field of the display and to process the pixel without retrieving an occlusion threshold depth value from the depth buffer.

28-30. (Canceled)

- 31. (Currently Amended) A method according to Claim 30 claim 41, wherein processing a pixel for the graphics primitive responsive to the occlusion flag comprises includes rendering the pixel without comparing a depth value thereof to an occlusion threshold value responsive to detecting determining that the occlusion flag setting indicates that the graphics primitive is not occluded in the tile.
- 32. (Currently Amended) A method according to Claim 29 claim 41, wherein the step of determining a maximum depth value represents includes determining a depth greater than or equal to all possible depth values that the graphics primitive may have in a tile.
- 33. (Currently Amended) A method according to Claim 32, wherein the step of determining a maximum depth value comprises includes determining a maximum depth of vertices of the graphics primitive.
- 34. (Currently Amended) A method according to Claim 32, wherein the step of determining a maximum depth value comprises includes determining a maximum depth of a plane of the graphics primitive in the tile.
- 35. (Currently Amended) A method according to Claim 29 claim 41, further comprising establishing a tile occlusion information cache that is configured to store respective occlusion flags for respective tiles of a row of tiles and respective minimum depth values for the respective tiles of the row of tiles, and wherein the step of setting an occlusion flag for a tile responsive to a comparison of a previously-determined minimum depth value for the tile to the maximum depth value for the graphics primitive comprises the given tile includes:

comparing the maximum depth value for the graphic primitive to a minimum depth value for the given tile stored in the tile occlusion information cache; and

setting [[an]] the occlusion flag for the given tile in the tile occlusion information cache responsive to the comparison.

- 36. (Currently Amended) A method according to Claim 29 claim 41, wherein the given tile comprises is a first tile in a row of tiles, each row of tiles including at least two rows of pixels, and said method further comprising processing pixels for the graphics primitive in a row-by-row fashion.
- 37. (Currently Amended) A method according to Claim claim 36, wherein processing pixels for the graphics primitive in a row-by-row fashion comprises includes processing the graphics primitive using a zig-zag traversal algorithm.
- 38. (Currently Amended) A method according to Claim 29 claim 41, further comprising:

processing a first portion of a first the given tile for the graphics primitive; processing at least a portion of a second tile for the graphics primitive; and then subsequently processing a second portion of the first given tile for the graphics primitive.

- 39. (Currently Amended) An apparatus comprising a graphics processor configured to perform the method of Claim 29 claim 41.
- 40. (Currently Amended) A computer program product comprising program code embodied in a computer-readable medium, the program code comprising program code configured to perform the method of Claim 29 claim 41.

## 41. (New) A graphics processing method, comprising:

dividing a graphics display field into a plurality of tiles, each tile comprising a plurality of pixels;

determining a maximum depth value for a graphic primitive within a given tile; determining a minimum depth value for pixels in said given tile;

determining whether the minimum depth value for the given tile exceeds the maximum depth value for the graphic primitive;

setting an occlusion flag for the given tile to indicate that the graphics primitive is not occluded in the given tile upon determining that the minimum depth value for the given tile exceeds the maximum depth value for the graphics primitive; and

processing a pixel within the given tile for the graphics primitive responsive to the setting of the occlusion flag.