DATA STRUCTURES COMPUTERS 303B

Prof. Dr. Khaled Fouad Elsayed

Course Information

- Instructors:
 - Prof. Dr. Khaled Fouad Elsayed
 - Dr. Omar Nasr
 - Teaching Assistant: Eng. Yossif
- □ Office Hours for Dr. KFE: Sunday 12-2 PM
- □ Textbooks:
 - Data Structures and Algorithms in C++: Adam Drozdek
 - Data Structures via C++: M. Berman

Course Contents/Schedule

Midterm after Lists or at the end

Grading

- □ 70% Final Exam
- □ Midterm: 13-16 Points
- □ 4 Programming Assignments: 17-14 Points
- ☐ First Assignment distributed this week

Some good resources

- □ C++
 - http://www.cplusplus.com/doc/tutorial
 - https://softwareengineering.stackexchange.com/
 - https://stackoverflow.com/questions/tagged/c%2b%2b
- More advanced
 - https://www.codeproject.com/
 - http://en.cppreference.com

So why teach E&C Engineers Data Structures?

- Ask department graduates [©]
 - Opens best jobs in the market in and outside Egypt for those who tried their best
- Data Structures is basis for serious programming
- Learn an indispensable skill for an Elec/Comm Eng
 - Serious Embedded Systems (e.g. communication protocols implementation)
 - EDA software
 - Machine learning/Data Analytics/....
 - Hardware design IS now software-based
 -
- Innovate

□ Consider the course as a workshop

Get your hands dirty \rightarrow The more the better

8 Increasing importance of software

Apple	1	692.8	
Alphabet (Google)	2	573.8	
Microsoft	3	489.5	
Berkshire Hathaway	4	402.0	
Amazon.com	5	391.0	
Facebook	6	387.8	
Exxon Mobil	7	338.0	
Johnson & Johnson	8	308.5	
JPMorgan Chase	9	306.9	
Wells Fargo	10	279.0	
General Electric	11	258.8	
Alibaba Group	12	257.4	
AT&T	13	253.0	

Hot Topics

- Big Data/Analytics
- □ AI/Machine Learning
- Autonomous Driving
- □ Internet of Things (IoT)
- Business processes
- Mobile Apps
- Games

Software is pervasive throughout our economy and culture

- Modern civilization runs on software.
- Nearly all of the products, services and innovations that power the industrialized world depend on software.
- Software is largely invisible. You can't see it. You can only experience it indirectly.
- ☐ The Platform companies ...

For Example

- Did you know there is a ton of software in the average luxury car?
- □ The average luxury car contains almost 100 million lines of code.
- Printed and bound,
 100 million lines of code weighs over
 1.5 tons!

Cost of a car's electronics (hardware and software combined) now exceeds that of material components such as steel, aluminum, and glass.

The Demand for Software is Strong and Growing

- □ Moore's Law
- Software replacing hardware
- Product differentiation with software
- Open Source
- Growing interest in mobile devices (smart phones, tablet computers, etc.) (Post-PC era)
- Autonomous Vehicles

Software Engineering

What is Engineering?

- Engineers apply science and technology to develop costeffective solutions to practical problems.
- Engineering disciplines have a core body of knowledge or underlying science that can be used to solve practical problems.
- For example, chemical engineering has chemistry and electrical engineering has math and physics.
- Software Engineering?

Software Engineering

17

Software engineering is "the application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software, that is, the application of engineering to software" [IEEE]

Software Engineering vs Computer Science

- Computer science focuses on theory and fundamentals
- Software engineering is concerned with the practicalities of developing and delivering useful software

19 Program Design

Importance of Design

- 20
- Complex programs need to be designed and analysed before coding starts.
- Don't Start by Coding
- The Seduction of screen and keyboard
- □ Software is hard ---Donald Knuth
- Typical design process is longer than development
 - Specification: WHAT system does NOT HOW it is done
 - Detailed design: Describe how a certain system achieves specs
- Most projects experience a 4-2-4 time plan
 - 4 Design, 2 Coding, 4 Testing (or even 3-1-6)

Software complexity can run out-of-control

- 21
- Usually used to automate some process or solve a problem
- □ → Complexity is "built-in"
- Adding lines is easy and can be without boundaries (not the case in other engineering systems)
- Complexity increases as team size increases

Means to manage complexity

- 22
- Abstractions (Modeling, more later)
- Decomposition: Divide and Conquer

Abstractions as a Means to Manage Complexity

Data Structures == Abstract Data Types

- □ So, what is abstractions all about?
- Abstraction: A model of a complex system that captures only the necessary details.
- Different abstractions are used by different stakeholders of the system.

Complex Systems Example: Modern Car

25

 Driver cannot know all details of complex working of the car.

IC

- You use the IC by reading datasheet and knowing what each PIN does.
- Then you build a larger system out of this
- This is abstraction
- Another engineering team designs the IC

Abstractions in SW Design

27

- In SW design, modules hide internal complexity and provide external interface through which its functionality can be used.
- Information hiding/data abstraction: hiding details of a function or data structure with the goal of controlling access to the details of a module/structure.
- □ Software design process must help us divide a complex system into smaller, more manageable modules easier to build.
- Modules must be:
 - Good abstraction
 - Cohesive

- □ Each module should have a single purpose of identity.
- Modules should stick together well.
- Changes in a module don't result in changes in modules that use it.
- Good exercise:
 - Identify all modules used in a mobile phone system

Homework

- □ Review C++ from 1st year
- Watch these videos
 - □ goo.gl/GXc5FP
 - □ goo.gl/lpqX6k