Югорский государственный университет Институт цифровой экономики

Отчёт по проекту А

На тему «Модель обслуживания клиентов в отделении банка»

Выполнил:

Аббазов Валерьян Ринатович

Группа: 1191б\1

Оглавление

Введение	3
2. Концептуальная модель реального процесса	4
3. Формализация	5
4. Компьютерная модель	7
5. Эксперименты	9
Заключение:	18
Список использованных источников	19

Введение

Банковская сфера является одним из основных элементов экономики любой страны. Изучение и оптимизация их деятельности — это важный и актуальный вид деятельности. Одним из методов для этого является имитационное моделирование.

Имитационное моделирование — метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему (построенная модель описывает процессы так, как они проходили бы в действительности), с которой проводятся эксперименты с целью получения информации об этой системе.

Является мощным инструментом исследования сложных бизнеспроцессов и систем и позволяет решать трудно формализуемые задачи в условиях неопределенности. Поэтому данный метод позволяет совершенствовать системы поддержки принятия решений, улучшая тем самым экономические показатели организаций, уменьшая риск от реализации решений и экономя средства для достижения той или иной цели.

2. Концептуальная модель реального процесса

Клиенты посещают банковское отделение, чтобы воспользоваться банкоматом или услугами банковских клерков.

Часть банковских операций клиенты совершают с помощью банкомата, а более сложные операции— с помощью сотрудников банка (клерки). В случае, когда банкомат, либо клерки заняты, клиент встаёт в очередь.

Со временем, в обслуживании были замечены проблемы, например, чрезмерно большие очереди, продолжительное время нахождение клиентов в офисе, снижение общего числа обслуженных клиентов, и отказы в обслуживании.

Цель моделирования: оценка эффективности работы банковского офиса Для оценки эффективности определим следующие задачи:

- 1. Оценить пропускную способность отделения
- 2. Оценить распределение времени клиента в системе и времени ожидания клиента в очереди
- 3. Оценить процент отказов

Будем считать процент отказов целевым критерием для оценки эффективности.

3. Формализация

Время между появлениями клиентов, а также время обслуживания банкоматом/клерком в отделении будем считать случайной величиной. Очередь к банкомату и клеркам будет иметь ограниченную вместимость. Структурно модель будет иметь следующий вид:

Рис. 1 — структурно-функциональная схема

Модель имеет следующие входные данные:

Обозначение	Название	
\mathbf{x}_1	Интенсивность прибытия	
\mathbf{x}_2	Вероятность выбора услуги	
X_3	Вместимость очереди банкомата	
X4	Нижний предел треугольного распределения для	
	обслуживания банкоматом	
X5	Верхний предел треугольного распределения для	
	обслуживания банкоматом	
X ₆	Мода треугольного распределения для обслуживания	
	банкоматом	
X ₇	Вместимость очереди у кассиров	
X8	Нижний предел треугольного распределения для	
	обслуживания кассирами	
X 9	Верхний предел треугольного распределения для	
	обслуживания кассирами	

X ₁₀	Мода треугольного распределения для обслуживания		
	кассирами		
X ₁₁	Количество кассиров		

Табл. 1 — входные данные эксперимента

Выходные данные включают следующие пункты:

Обозначение	Название				
\mathbf{y}_1	Средняя пропускная способность за 1 день				
\mathbf{y}_2	Статистика времени клиента в системе				
y ₃	Количество отказов в обслуживании банкоматом				
y 4	Вероятность обработки банкоматом				
y ₅	Среднее время обработки банкоматом				
y 6	Средняя длина очереди к банкомату				
y ₇	Коэффициент занятости АТМ				
y 8	Статистика времени ожидания клиента в очереди				
y 9	Количество отказов в обслуживании кассирами				
y ₁₀	Вероятность обработки кассиром				
y ₁₁	Среднее время обработки 1 заявки кассиром				
y ₁₂	Средняя длина очереди к кассирам				
y ₁₃	Коэффициент занятости клерков				

Табл. 2 — выходные данные эксперимента

4. Компьютерная модель

Компьютерная модель построена в среде AnyLogic. Модель имеет следующий вид:

Рис. 2 — Модель обслуживания клиентов в отделении банка

Поток посетителей формируется в блоке Bxoд (Source). Блок создаёт агентов, используется в качестве начальной точки потока агентов. После этого агенты попадают в блок Выбор (SelectOutput), который направляет входящих агентов в один из двух выходных портов в зависимости от выполнения заданного условия.

Часть клиентов направляется к банкомату и попадает в блок Очередь (Queue), который моделирует очередь агентов, ожидающих приема объектами. (Очередь имеет ограниченную вместимость, в случае переполнения, вытесненные клиенты попадут в блок Отказ_ATM (Sink), который уничтожает поступивших агентов, используется в качестве конечной точки потока агентов.) После чего, клиенты попадают в блок ATM (Delay), который задерживает

агентов на заданный период времени, это имитирует работу банкомата. После чего клиенты покидают систему через блок Выход ATM (Sink).

Другая часть клиентов направляется к клеркам и попадает в блок service, который захватывает для агента (клерка) заданное количество ресурсов, задерживает их, а затем освобождает захваченные им ресурсы, это позволяет эмулировать работу клерков с клиентами. (В случае если очередь будет переполнена, часть клиентов будет вытеснена в блок Отказ_serv (Sink), после чего они покинут систему). После чего клиенты покидают систему через блок Выход клерк (Sink).

5. Эксперименты

5.1 Эксперимент 1

Задачи:

- 1.Подсчитать значения выходных данных Y=(y1,...,y13).
- 2.Построить гистограммы для отображения распределений времён ожидания клиента и пребывания клиента в системе.

Данные эксперимента, согласно варианту 1:

Обозначение	Название	Значение	
X1	Интенсивность прибытия	3	
X2	Вероятность выбора услуги	50/50	
X3	Вместимость очереди банкомата	11	
X4	Нижний предел треугольного	3	
	распределения для обслуживания		
	банкоматом		
X 5	Верхний предел треугольного	7	
	распределения для обслуживания		
	банкоматом		
X6	Мода треугольного распределения для	5	
	обслуживания банкоматом		
X7	Вместимость очереди у кассиров	10	
X8	Нижний предел треугольного	4	
	распределения для обслуживания		
	кассирами		
X9	Верхний предел треугольного	8	
	распределения для обслуживания		
	кассирами		
X ₁₀	Мода треугольного распределения для	6	
	обслуживания кассирами		
X ₁₁	Количество кассиров	4	

Результаты эксперимента:

Обозначение	Название	Значение		
y ₁	Средняя пропускная способность за неделю день	3465 (рис. 3)		
y ₂	Статистика времени клиента в системе	Мин: 4 Среднее: 29 Макс: 68 (рис. 4)		
у3	Количество отказов в обслуживании банкоматом	5273 (рис. 5)		
y 4	Вероятность обработки банкоматом	0.132 (рис. 5)		
y 5	Среднее время обработки банкоматом	5 (рис. 6)		

y 6	Средняя длина очереди к банкомату	11 (рис. 7)
y 7	Коэффициент занятости АТМ	1 (рис 8.)
y 8	Статистика времени ожидания клиента в	Мин: 0
	очереди	Среднее: 54
		Макс: 62
		(рис. 9)
y 9	Количество отказов в обслуживании	3296
	кассирами	(рис. 10)
y 10	Вероятность обработки кассиром	0.447 (рис. 10)
y 11	Среднее время обработки 1 заявки	1.5 (рис. 11)
	кассиром	
y 12	Средняя длина очереди к кассирам	10 (рис. 12)

Пропускная способность:

Пропускная способнотсть

Рис. 3

Статистика времени клиента в системе:

Рис. 4

Работа банкомата:

Рис. 5

Среднее время обработки банкоматом (на 1 клиента):

Время работы АТМ Минимум: 3.178 Среднее: 5.004 Максимум: 6.896

Рис. 6

Средняя длина очереди к банкомату:

Длинна очереди АТМ

Рис. 7

Коэффициент занятости АТМ:

Занятость АТМ

Рис. 8

Статистика времени ожидания клиента в очереди:

Время пребывания в очереди

Время пребывания в очереди

Рис. 9

Работа кассиров:

Рис. 10

Среднее время обработки 1 заявки кассиром:

Рис. 11

Средняя длина очереди к кассирам:

Рис. 12

Вывод: исходя из количества отказов, можно судить о неэффективной работе банка, в особенности той его части, в которой находится АТМ. С целью повышения эффективности можно заменить АТМ, на другой с более удобным интерфейсом и большей скоростью работы, чтобы клиенты проводили меньше времени за ним, а следовательно, можно было обслужить больше людей. Также возможно дополнительное обучение кассиров, чтобы они могли быстрее проводить работу. Также можно увеличить кол-во кассиров и банкоматов.

5.2 Эксперимент 2

Исследовать зависимость выходной переменной y_3 (количество отказов в обслуживании банкоматом) от входной переменной x_1 . Переменная x_1 изменяется от а до b с шагом h (используется запись [a:b:h]).

Задачи:

Построить график зависимости выходной переменной y_3 от изменения входной переменной x_1 .

Данные эксперимента, согласно варианту 1:

Обозначение	Название	Значение		
X1	Интенсивность прибытия	[1:5:0.5]		
X2	Вероятность выбора услуги	30/70		
X 3	Вместимость очереди банкомата	7		
X4	Нижний предел треугольного	2		
	распределения для обслуживания			
	банкоматом			
X5	Верхний предел треугольного	6		
	распределения для обслуживания			
	банкоматом			
X6	Мода треугольного распределения для	4		
	обслуживания банкоматом			
X7	Вместимость очереди у кассиров	8		
X8	Нижний предел треугольного	3		
	распределения для обслуживания			
	кассирами			
X 9	Верхний предел треугольного	7		
	распределения для обслуживания			
	кассирами			
X ₁₀	Мода треугольного распределения для	5		
	обслуживания кассирами			
X ₁₁	Количество кассиров	2		

Результат:

X :	1	1.5	2	2.5	3	3.5	4	4.5	5
Y:	208	750	1364	1954	2579	3240	3726	4493	5012

График зависимости:

Рис. 13 — зависимость кол-ва отказов от интенсивности прибытия **Вывод**: количество отказов в обслуживании банкоматом имеет прямую зависимость от интенсивности прибытия клиентов, чем больше клиентов, тем больше отказов.

5.3 Эксперимент 3

Рассчитать минимальное количество кассиров (x11), при котором общий процент отказов не превысит 20%.

Данные эксперимента, согласно варианту 1:

Обозначение	Название	Значение
\mathbf{x}_1	Интенсивность прибытия	2
X2	Вероятность выбора услуги	50/50
X 3	Вместимость очереди банкомата	7
X4	Нижний предел треугольного	2
	распределения для обслуживания	
	банкоматом	
X5	Верхний предел треугольного	6
	распределения для обслуживания	
	банкоматом	
X6	Мода треугольного распределения для	4
	обслуживания банкоматом	
X7	Вместимость очереди у кассиров	12
X8	Нижний предел треугольного	3
	распределения для обслуживания	
	кассирами	
X9	Верхний предел треугольного	7
	распределения для обслуживания	
	кассирами	
X10	Мода треугольного распределения для	5
	обслуживания кассирами	
X11	Количество кассиров	?

Результат:

X ₁₁ :	1	2	3	4 (проводилось несколько прогонов)	5
%	79.5	60	38.7	18.3, 18, 20, 18.3, 19.8, 18.6, 18.7, 21.2	3.4, 1.8, 5, 4.9, 4.5
отказов:					В среднем: 3,92

Вывод: процент отказов не превысит 20% при 5 кассирах.

Заключение:

Проведена оценка эффективности работы банковского офиса.

В связи с большим процентом отказов, можно судить о неэффективной работе банка, в особенности той его части, в которой находится АТМ.

С целью повышения эффективности можно заменить АТМ, на другой с более удобным интерфейсом и большей скоростью работы, чтобы клиенты проводили меньше времени за ним, а следовательно, можно было обслужить больше людей. Также возможно дополнительное обучение кассиров, чтобы они могли быстрее проводить работу. Также можно увеличить кол-во кассиров и банкоматов.

Список использованных источников

- 1. https://eluniver.ugrasu.ru/course/view.php?id=1689
- 2. https://help.anylogic.ru/index.jsp?nav=%2F0
- 3. https://ru.wikipedia.org/wiki/Имитационное_моделирование