LABORATÓRIO DE PROGRAMAÇÃO AVANÇADA QUARTO TRABALHO PRÁTICO COMPARAÇÃO DE MÉTODOS DE ORDENAÇÃO

OBJETIVO

Relembrar os conceitos de ordenação através da implementação de seis métodos e da comparação do desempenho entre eles.

PARTE 1

Deve ser enviado um relatório (formato PDF) contendo os dados abaixo.

Métrica	n	Aleatórios					
		1K	5K	10K	20K	50K	100K
Número de comparações	Bolha						
	Seleção						
	Inserção						
	Heapsort						
	Mergesort						
	Quicksort						
Número de trocas	Bolha						
	Seleção						
	Inserção						
	Heapsort						
	Mergesort						
	Quicksort						
Tempo	Bolha						
	Seleção						
	Inserção						
	Heapsort						
	Mergesort						
	Quicksort						

Como pode-se perceber, os seguintes métodos de ordenação devem ser implementados: Bolha, Inserção, Seleção, Heapsort, Mergesort, e Quicksort. A comparação entre os métodos de ordenação será feita através dos seguintes parâmetros: (a) número de comparações; (b) número de trocas; e (c) tempo de execução. Considere comparações feitas somente em **estruturas de seleção** que podem levar a uma troca, desconsiderando todas as outras.

As ordenações devem ser feitas em diferentes tamanhos de vetores, isto é, 1 mil, 5 mil, 10 mil, 20 mil, 50 mil e 100 mil. Estes vetores deverão ser gerados ALEATORIAMENTE. Usar a mesma massa de dados para TODOS os algoritmos de ordenação.

IMPORTANTE: Para minimizar possibilidades de que sejam gerados efeitos locais e, consequentemente, evitar viés no experimento, os dados que vão para o relatório acima são o VALOR MÉDIO de 10 (dez) execuções de cada algoritmo. Em cada uma das dez execuções, deve-se gerar novos números aleatórios. Não esqueça de usar a mesma massa de dados para TODOS os algoritmos de ordenação.

Resumindo: gera-se um vetor aleatório de **1000** elementos e aplica-se os algoritmos Bolha, Inserção, Seleção, Heapsort, Mergesort e Quicksort sobre esse vetor e armazena-se o número de comparações, o número de trocas e o tempo de execução de cada um dos **seis** algoritmos. Gera-se **novo vetor** aleatório de 1000 elementos e aplica-se novamente os seis algoritmos de ordenação e armazena-se novamente os três parâmetros de comparação. Repete-se mais **oito** vezes. Ao final, tira-se a **MÉDIA** do número de comparações, do número de trocas e do tempo de execução dos seis algoritmos. Preenche-se na tabela acima na coluna 1K.

OBSERVAÇÃO: Apesar de estar 1K, não significa 1024, mas sim 1 mil.

Repete-se o mesmo procedimento acima para as quantidades 5 mil, 10 mil, 20 mil, 50 mil e 100 mil.

PARTE 2

O objetivo é gerar três gráficos (**formato PDF**) das medições feitas, um para cada parâmetro: (a) número de comparações; (b) número de trocas; e (c) tempo de execução.

Para cada gráfico, deve-se incluir os dados dos seis métodos de ordenação, isto é, Bolha, Inserção, Seleção, Heapsort, Mergesort e Quicksort. Não esqueça de adicionar legendas para os métodos de ordenação.

Nos três gráficos, o eixo das abcissas (X) deve ser os tamanhos dos vetores: 1000, 5000, 10000, 20000, 50000 e 100000. No eixo das ordenadas (Y) deve ser um dos 3 parâmetros da comparação (comparações, trocas e tempo).

Resumindo, deverão ser entregues 3 gráficos, um para o número de comparações, um para o número de trocas, e outro para o tempo de execução. Sugiro que os gráficos sejam em linha.

OBSERVAÇÃO: como os dados do bolha devem ser bem maiores do que os dos outros, recomendo que, **se for o caso**, vocês coloquem o eixo dos Y (ordenadas) em ESACALA LOGARÍTMICA. Vi que o Excel, Calc do LibreOffice e GNU Plot tem essa opção. Vocês podem usar **qualquer software para fazer os gráficos.**

PARTE 3

Além da tabela e dos gráficos, incluir um relatório (**formato PDF**) contendo as respostas para as seguintes perguntas:

1. Considerando somente a métrica "tempo de execução" diga qual foi seu o melhor e o pior caso observado para cada método de ordenação?

Por exemplo: Para o método da bolha o melhor caso foi para n=5 mil e o pior caso foi para n=100 mil. Para o método da inserção, o melhor caso foi . . .

2. Considerando somente a métrica "quantidade de comparações" diga qual função de n melhor descreve o desempenho de cada método de ordenação?

Função aqui pode ser n, n^2 , log_2n , $n.log_2n$, $n^2.log_2n$, $n^2-n.log_2n$, $n^2-(n.log_2n)^2$, etc. Vamos supor que os dados das quantidade de comparações do método da bolha para cada valor de n sejam: 959.639, 24.540.091, 98.711.127, 396.084.194, 2.487.915.240 e 9.951.660.960. Quando você compara com, por exemplo, n^2 , dá os seguintes valores: 1.000.000, 25.000.000, 100.000.000, 400.000.000, 2.500.000.000, 10.000.000. Note que a quantidade de comparações se assemelha bastante com o valor de n^2 . Repita o mesmo procedimento de busca para os outros métodos de ordenação considerando outras opções de funções. Sinta-se livre para propor a função que melhor se ajuste aos dados. Justifique através de dados numéricos o porquê da tua resposta.

3. Considerando as métricas "quantidade de trocas" e "quantidade de comparações" faça uma relação entre essas duas métricas e diga uma função que represente tal relação.

Por exemplo, suponha que os dados de trocas sejam: 501.965, 12.480.626, 49.859.336, 200.026.552, 1.250.162.081; e os dados de comparações sejam: 959.639, 24.540.091, 98.711.127, 396.084.194 e 2.487.915.240. Pode-se concluir que a relação entre a quantidade de comparações (f(x)) e a quantidade de trocas (x) é: f(x) = x/2.

OBSERVAÇÕES GERAIS

- Se você jugar necessário, envie na parte 1 um arquivo README.txt para facilitar a reprodução do experimento.
- Todos os relatórios deve estar no formato PDF.
- Use somente as linguagens C ou C++.
- É obrigatório usar o sistema operacional Linux.
- Use a função gettimeofday() para calcular tempos, e srand() e rand() para gerar os números aleatórios.
- Mantenha sempre as mesmas unidades para comparação, por exemplo, tempo sempre em milissegundos ou segundos.
- Data de entrega: até o dia 13/04/2017 (quinta) até 23:59. Após este prazo começa a contar o desconto progressivo, isto é, 0,1 ponto por hora de atraso.
- As três partes desse trabalho devem ser enviadas via GIT HUB. Será dado uma explicação na aula do dia 7 de abril de 2017.