EECS 496: Sequential Decision Making

Soumya Ray

sray@case.edu

Office: Olin 516

Office hours (today): T 4:30-5:30 or by appointment

Recap

- What is the Markov Blanket?
- How do we represent probabilities in a BN?
- There are two kinds of inference algorithms for BNS: ____ and ___. Why do we need two kinds?
- What is the intuition behind variable elimination?
- In VE we first _____. In each iteration we _____ the ____ involving the variable, then _____ it ____.
- How does the first step work? How does the second step work?
- What happens if there is evidence?
- The key idea in approximate inference is to generate _____, then ____ how many meet a specified condition.
- How does Monte Carlo inference work from a joint pdf?
- In order to construct a sample from a BN, we first ______. Then we _____ each variable given its _____.

Today

- Inference in Bayesian Networks (Ch 14, Russell and Norvig)
- Reasoning over time (Ch 15)

Approximate Inference 1 (Monte Carlo)

- How to generate a sample from a BN?
- Idea: Topologically sort the variables according to the graph structure
- Sample each according to the conditional distribution (well-defined due to the sorting)
- Count the samples with desired values
- Easy!
 - Right?

Approximate Inference 2: Incorporating Evidence

- What if we have evidence?
- Well, let's just throw away the samples that have the evidence variables wrong
 - "Rejection Sampling"

Approximate Inference 3: Incorporating Evidence

- What if we have evidence?
- Rejection Sampling is obviously wasteful

- Alternatively, sample only the non-evidence variables, and weight the samples according to the likelihood of the evidence given the rest
 - "Likelihood Weighting"

Problems

- If there's:
 - Lots of evidence,
 - Highly improbable evidence (according to the BN),
 - Evidence occurring late in the topological sort
- We will end up with
 - Many samples thrown away (Rejection sampling)
 - A large set of low-likelihood samples (Likelihood weighting)
- What to do?

Approximate Inference 4: MCMC to the Rescue

- Key idea: Stop drawing independent samples
 - Let the $i+1^{st}$ sample depend on the i^{th} sample
- This creates a "Markov chain" of samples
- Under appropriate conditions, this chain will converge to a "stationary distribution", where the frequency of encountering a sample is proportional to its (true) probability
- This idea is called "Markov Chain Monte Carlo", or MCMC

MCMC Algorithm Loop

- Initialize the chain (choose first sample, arbitrarily)
- Run the chain (choose the next sample, MCMC algorithms differ here)
- After a sufficiently long time (burn-in time), start counting the samples with the desired property
- Count however long you want to get an accurate estimate

Gibbs Sampling

Simplest MCMC algorithm for BN inference

 The "state" of the chain corresponds to all the variables in the BN being assigned values (evidence variables are fixed)

• Sample a random non-evidence variable V proportional to Pr(V|MB(V)), where MB is the Markov Blanket

Distribution given the MB

• We can show that:

$$\Pr(V = v \mid MB(V)) \propto$$

$$\Pr(V = v \mid Pa(V)) \times \prod_{C_j \in Children(V)} \Pr(C_j = c_j \mid Pa(C_j))$$

MCMC

Why does this work?

- Let $\pi_t(x)$ be the probability of the chain being in state x at time t
- Let T(x, x') be the probability of the chain transitioning to x' after x
 - We choose this and it is independent of time
- We'll assume the chain is "regular," i.e. the chain can't have "pieces" so you can't get from one piece to another (also called "irreducible")

Stationary Distribution

Note:

$$\pi_{t+1}(x') = \sum_{x} \pi_{t}(x) T(x, x')$$

A "stationary distribution" satisfies:

$$\pi_{t+1}(x) = \pi_t(x)$$

Detailed Balance

• A Markov chain satisfies "detailed balance" if there exists some distribution π so that

$$\pi(x)T(x,x') = \pi(x')T(x',x)$$

• If a regular chain satisfies detailed balance, then there exists some t so that for all T > t, $\pi_t = \pi$ (detailed balance implies convergence to a stationary distribution)

Convergence of Gibbs Sampling for BNs

- We can show that the MC produced by Gibbs sampling satisfies detailed balance with π =the probability distribution represented by the Bayes net
- Further, this distribution is unique—the chain has no other stationary distribution
- So Gibbs sampling will produce the correct answer–eventually