Part 1

Perspective Camera Model

3D information

- Ideally (but rarely in practice), we would like to know for every pixel:
 - How far the location depicted in that pixel is from the camera.
- What other types of 3D information would we want to know about objects and surfaces visible in the image?

3D information

- Ideally (but rarely in practice), we would like to know for every pixel:
 - How far the location depicted in that pixel is from the camera.
- For the objects and surfaces that are visible in the image, we would like to know:
 - what their 3D shape is.
 - where they are located in 3D.
 - how big they are.
 - how far they are from the camera and from each other.

The Need for 3D Information

 What kind of applications would benefit from estimating 3D information?

The Need for 3D Information

- What kind of applications would benefit from estimating 3D information?
 - A robot that wants to grasp an object must know how far its hand is from the object.
 - An unmanned vehicle needs to know how far obstacles are, in order to determine if it is safe to continue moving or not.
 - 3D information can tell us, for a person viewed from the side,
 whether the left leg or the right leg is at the front.
 - 3D information can help determine the object where someone is pointing.

From 2D to 3D and Vice Versa

- To estimate 3D information, we ask the question:
 - Given a pixel (u, v), what 3D point (x, y, z) is seen at that pixel?
- That is a hard problem (one-to-many).
 - Can be solved if we have additional constraints.
 - For example, if we have two cameras (stereo vision).
- We start by solving the inverse problem, which is easier:
 - Given a 3D point (x, y, z), what pixel (u, v) does that 3D point map to?
 - This can be easily solved, as long as we know some camera parameters.

Pinhole Model

Terminology:

- image plane is a planar surface of sensors. The response of those sensors to light is the signal that forms the image.
- The focal length f is the distance between the image plane and the pinhole.
- A set of points is collinear if there exists a straight line going through all points in the set.

Pinhole Model

• Pinhole model:

- light from all points enters the camera through an infinitesimal hole, and then reaches the image plane.
- The focal length f is the distance between the image plane and the pinhole.
- the light from point A reaches image location P(A), such that
 A, the pinhole, and P(A) are collinear.

Different Coordinate Systems

- World coordinate system (3D):
 - Pinhole is at location t, and at orientation R.
- Camera coordinate system (3D):
 - Pinhole is at the origin.
 - The camera faces towards the positive side of the z axis.

Different Coordinate Systems

- Normalized image coordinate system (2D):
 - Coordinates on the image plane.
 - The (x, y) values of the camera coordinate system.
 - We drop the z value (always equal to f, not of interest).
 - Center of image is (0, 0).
- Image (pixel) coordinate system (2D):
 - pixel coordinates.

Pinhole Model

A simple example:

- Assume that world coordinates = camera coordinates.
- Assume that the z axis points right, the y axis points up.
 - The x axis points away from us.
- If A is at position (A_x, A_y, A_z), what is P(A)?
 - Note: A is in world coordinates, P(A) is in normalized image coordinates.

Pinhole Model

- $P(A) = (-A_x/A_z * f, -A_y/A_z * f).$
 - P(A) is two-dimensional (normalized image coordinates).
- This is a simple formula, because we chose a convenient coordinate system (world coordinates = camera coordinates).
- What happens if the pinhole is at (C_x, C_y, C_z)?

- If the pinhole is at (C_x, C_y, C_z)?
- We define a change-of-coordinates transformation T.
 - In new coordinates, the hole is at $T(C_x, C_y, C_z) = (0, 0, 0)$.
 - If V is a point, $T(V) = V (C_x, C_y, C_z)$.
 - $T(A) = T(A_x, A_y, A_z) = (A_x C_x, A_y C_y, A_z C_z)$
- $P(A) = (-(A_x-C_x)/(A_z-C_z) * f, -(A_y-C_y)/(A_z-C_z) * f).$
 - Remember, P(A) is in normalized image coordinates.

- If the pinhole is at (C_x, C_v, C_z):
 - $P(A) = (-(A_x-C_x)/(A_z-C_z) * f, -(A_y-C_y)/(A_z-C_z) * f).$
- The concept is simple, but the formulas are messy.
- Formulas get a lot more messy in order to describe arbitrary camera placements.
 - We also need to allow for rotations.
- We simplify notation using homogeneous coordinates.

Homogeneous Coordinates

 Homogeneous coordinates are used to simplify formulas, so that camera projection can be modeled as matrix multiplication.

• For a 3D point:

instead of writing we write where c can be any constant.
 How many ways are there to write in homogeneous coordinates?

- INFINITE (one for each real number c).
- For a 2D point $\begin{pmatrix} u \\ v \end{pmatrix}$: we write it as $\begin{pmatrix} cu \\ cv \end{pmatrix}$

Revisiting Simple Case

World coordinates = camera coordinates.

• Let
$$A = \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix}$$
, $P(A) = \begin{bmatrix} (-A_x/A_z) * f \\ (-A_y/A_z) * f \\ 1 \end{bmatrix}$. Then:

How do we write P(A) as a matrix multiplication?

Revisiting Simple Case

• World coordinates = camera coordinates.

• Let
$$A = \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix}$$
, $P(A) = \begin{bmatrix} (-A_x/A_z) * f \\ (-A_y/A_z) * f \\ 1 \end{bmatrix}$. Then:

$$\begin{pmatrix} (-A_x/A_z) * f \\ (-A_y/A_z) * f \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/f & 0 \end{pmatrix} \begin{pmatrix} A_x \\ A_y \\ A_z \\ 1 \end{pmatrix} \quad \text{Why?} \quad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/f & 0 \end{pmatrix} \begin{pmatrix} A_x \\ A_y \\ A_z \\ 1 \end{pmatrix} = \begin{pmatrix} A_x \\ A_y \\ A_z/f \end{pmatrix} = \begin{pmatrix} (-A_x/A_z) * f \\ (-A_y/A_z) * f \\ 1 \end{pmatrix}$$

Revisiting Simple Case

World coordinates = camera coordinates.

• Let
$$A = \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix}$$
. $P(A) = \begin{bmatrix} (-A_x/A_z) * f \\ (-A_y/A_z) * f \\ 1 \end{bmatrix}$. Define $C_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/f & 0 \end{bmatrix}$.

- Then: $P(A) = C_1 * A$.
 - We map world coordinates to normalized camera coordinates using a simple matrix multiplication.

- Suppose camera is at (C_x, C_v, C_z).
 - Camera coordinates and world coordinates are different.
- Define T(A) to be the transformation from world coordinates to camera coordinates.
- If we know T(A), what is P(A)?

- Suppose camera is at (C_x, C_v, C_z).
 - Camera coordinates and world coordinates are different.
- Define T(A) to be the transformation from world coordinates to camera coordinates.
- If we know T(A), what is P(A)?
- $P(A) = C_1 * T(A)$.

- Suppose camera is at (C_x, C_v, C_z).
- Define T(A) to be the transformation from world coordinates to camera coordinates.
- If we know T(A), $P(A) = C_1 * T(A)$.
- How can we write T(A) as a matrix multiplication?

• First of all, how can we write T(A) in the most simple form, in non-homogeneous coordinates? (Forget about matrix multiplication for a second).

- First of all, how can we write T(A) in the most simple form, in non-homogeneous coordinates?
- $T(A) = (A_x, A_y, A_z) (C_x, C_y, C_z).$
- How can we represent that as a matrix multiplication?

- $T(A) = (A_x, A_y, A_z) (C_x, C_y, C_z).$

In homogeneous coordinates:
$$\begin{pmatrix} A_{x} - C_{x} \\ A_{y} - C_{y} \\ A_{z} - C_{z} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & -C_{x} \\ 0 & 1 & 0 & -C_{y} \\ 0 & 0 & 1 & -C_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} A_{x} \\ A_{y} \\ A_{z} \\ 1 \end{pmatrix}$$

 Homogeneous coordinates allow us to represent translation as matrix multiplication.

• Let
$$A = \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix}$$
. Define $C_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/f & 0 \end{bmatrix}$, $T = \begin{bmatrix} 1 & 0 & 0 & -C_x \\ 0 & 1 & 0 & -C_y \\ 0 & 0 & 1 & -C_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$

- Then: $P(A) = C_1 * T * A$.
- P(A) is still a matrix multiplication:
 - We multiply A by $(C_1 * T)$.

• Let
$$A = \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix}$$
. Define $C_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/f & 0 \end{bmatrix}$, $T = \begin{bmatrix} 1 & 0 & 0 & -C_x \\ 0 & 1 & 0 & -C_y \\ 0 & 0 & 1 & -C_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$

- Then: $P(A) = C_1 * T * A$.
- Why is C₁ of size 3x4 and T of size 4x4?

- Then: $P(A) = C_1 * T * A$.
- Why is C₁ 3x4 and T 4x4?
 - T maps 3D coordinates to 3D coordinates.
 - C1 maps 3D coordinates to normalized image (2D) coordinates.27

- The camera can be rotated around the x axis, around the y axis, and/or around the z axis.
- Rotation transformation R:
 - rotates the world coordinates, so that the x, y, and z axis of the world coordinate system match the x, y, and z axis of the camera coordinate system.

- In non-homogeneous coordinates, rotation of A around the origin can be represented as R*A.
 - R: 3x3 rotation matrix.
- How does camera rotation affect the image?

- In non-homogeneous coordinates, rotation of A around the origin can be represented as R*A.
 - R: 3x3 rotation matrix.
- How does camera rotation affect the image?
 - It changes the viewing direction.
 - Determines what is visible.
 - It changes the image orientation.
 - Determines what the "up" direction in the image corresponds to in the 3D world.
- Rotating the camera by R_c has the same affect as rotating the world by the inverse of R_c.
 - That is, rotating every point in the world, around the origin, the opposite way of what is specified in R_c .

- Any rotation R can be decomposed into three rotations:
 - a rotation R_x by θ_x around the x axis.
 - a rotation R_v by θ_v around the y axis.
 - a rotation R, by θ , around the z axis.
- Rotation of point $A = R * A = R_7 * R_V * R_X * A$.
- ORDER MATTERS.
 - $-R_z*R_v*R_x*A$ is not the same as $R_x*R_v*R_z*A$.

$$\begin{pmatrix} \cos \theta_y & 0 & \sin \theta_y \\ 0 & 1 & 0 \\ -\sin \theta_y & 0 & \cos \theta_y \end{pmatrix}$$

$$\begin{pmatrix}
\cos\theta_z & -\sin\theta_z & 0 \\
\sin\theta_z & \cos\theta_z & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$R_z$$

- In homogeneous coordinates, rotation of A around the origin can be represented as R*A.
 - R: 4x4 rotation matrix.

• Let R' =
$$\begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$
. Then, R = $\begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

• Let R' =
$$\begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$
. Then, R = $\begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

 What is the right way to write P(A) so that we include translation and rotation?

• Let R' =
$$\begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$
. Then, R = $\begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

- What is the right way to write P(A) so that we include translation and rotation?
- Would it be P(A) = C₁ * T * R *A?

• Let R' =
$$\begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$
. Then, R = $\begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

- Is it true that P(A) = C₁ * T * R *A?
 - NO, we must first translate and then rotate.
 - Why?

• Let R' =
$$\begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$
. Then, R = $\begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

- Is it true that P(A) = C₁ * T * R *A?
 - NO, we must first translate and then rotate.
 - Rotation is always around the origin. First we must apply T to move the pinhole to the origin, and then we can apply R.

Handling Camera Rotation

• Let R' =
$$\begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$
. Then, R = $\begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

- $P(A) = C_1 * R * T * A$.
- P(A) is still modeled as matrix multiplication.
 - We multiply A with matrix ($C_1 * R * T$).

• Let
$$A = \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix}$$
, $C_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/f & 0 \end{bmatrix}$, $R = \begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, $T = \begin{bmatrix} 1 & 0 & 0 & -C_x \\ 0 & 1 & 0 & -C_y \\ 0 & 0 & 1 & -C_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

- $-P(A) = C_1 * R * T * A$ accounts for translation and rotation.
- Translation: moving the camera.
- Rotation: rotating the camera.
- Scaling: what does it correspond to?

• Let
$$A = \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix}$$
, $C_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/f & 0 \end{bmatrix}$, $R = \begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, $T = \begin{bmatrix} 1 & 0 & 0 & -C_x \\ 0 & 1 & 0 & -C_y \\ 0 & 0 & 1 & -C_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

- $P(A) = C_1 * R * T * A$ accounts for translation and rotation.
- Translation: moving the camera.
- Rotation: rotating the camera.
- Scaling: corresponds to zooming (changing focal length).

• Let
$$A = \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix}$$
, $C_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/f & 0 \end{bmatrix}$, $R = \begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, $T = \begin{bmatrix} 1 & 0 & 0 & -C_x \\ 0 & 1 & 0 & -C_y \\ 0 & 0 & 1 & -C_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

- $-P(A) = C_1 * R * T * A$ accounts for translation and rotation.
- Translation: moving the camera.
- Rotation: rotating the camera.
- How do we model scaling?

• Let
$$A = \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix}$$
, $C_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/f & 0 \end{bmatrix}$, $R = \begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, $T = \begin{bmatrix} 1 & 0 & 0 & -C_x \\ 0 & 1 & 0 & -C_y \\ 0 & 0 & 1 & -C_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

- $-P(A) = C_1 * R * T * A$ accounts for translation and rotation.
- How do we model scaling?
 - Scaling is already handled by parameter f in matrix C₁.
 - If we change the focal length we must update f.

World to Normalized Image Coords

• Let
$$A = \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix}$$
, $C_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/f & 0 \end{bmatrix}$, $R = \begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, $T = \begin{bmatrix} 1 & 0 & 0 & -C_x \\ 0 & 1 & 0 & -C_y \\ 0 & 0 & 1 & -C_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

- P(A) = C₁ * R * T * A maps world coordinates to normalized image coordinates
- Equation holds for any camera following the pinhole camera model.

- The normalized image coordinate system does not produce pixel coordinates.
 - Example: the center of the image is at (0, 0).
- What is needed to map normalized image coordinates to pixel coordinates?
 - Translation?
 - Scaling?
 - Rotation?

- The normalized image coordinate system does not produce pixel coordinates.
 - Example: the center of the image is at (0, 0).
- What is needed to map normalized image coordinates to pixel coordinates?
 - Translation? Yes, we must move center of image to (image_columns/2, image_rows/2).
 - Scaling?
 - Rotation?

- The normalized image coordinate system does not produce pixel coordinates.
 - Example: the center of the image is at (0, 0).
- What is needed to map normalized image coordinates to pixel coordinates?
 - Translation? Yes, we must move center of image to (image_columns/2, image_rows/2).
 - Scaling? Yes, according to pixel size (how much area of the image plane does a pixel correspond to?).
 - In the general case, two constants, S_x and S_y , if the pixel corresponds to a non-square rectangle on the image plane.
 - In the typical case, $S_x = S_v$.
 - Rotation?

- The normalized image coordinate system does not produce pixel coordinates.
 - Example: the center of the image is at (0, 0).
- What is needed to map normalized image coordinates to pixel coordinates?
 - Translation? Yes, we must move center of image to (image_columns/2, image_rows/2).
 - Scaling? Yes, according to pixel size.
 - In the general case, two constants, S_x and S_y , if the pixel corresponds to a non-square rectangle on the image plane.
 - In the typical case, $S_x = S_y$.
 - Rotation? NO.
 - The x and y axes of the two systems match.

Homography

- The matrix mapping normalized image coordinates to pixel coordinates is called a homography.
- A homography matrix H looks like this:

$$H = \begin{pmatrix} S_x & 0 & u_0 \\ 0 & S_y & v_0 \\ 0 & 0 & 1 \end{pmatrix}$$

where:

- $-S_x$ and S_y define scaling (typically $S_x = S_y$).
- u_0 and v_0 translate the image so that its center moves from (0, 0) to (u_0, v_0) .

Putting It All Together

• Let
$$A = \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix}$$
.

What pixel coordinates (u, v) will A be mapped to?

$$C_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/f & 0 \end{pmatrix}, R \qquad \begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, T = \begin{pmatrix} 1 & 0 & 0 & -C_{x} \\ 0 & 1 & 0 & -C_{y} \\ 0 & 0 & 1 & -C_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}, H = \begin{pmatrix} S_{x} & 0 & u_{0} \\ 0 & S_{y} & v_{0} \\ 0 & 0 & 1 \end{pmatrix}.$$

Putting It All Together

• Let
$$A = \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix}$$
.

What pixel coordinates (u, v) will A be mapped to?

$$\mathbf{C_{1}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/f & 0 \end{pmatrix}, \ \mathbf{R} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ \mathbf{T} = \begin{pmatrix} 1 & 0 & 0 & -C_{x} \\ 0 & 1 & 0 & -C_{y} \\ 0 & 0 & 1 & -C_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ \mathbf{H} = \begin{pmatrix} S_{x} & 0 & u_{0} \\ 0 & S_{y} & v_{0} \\ 0 & 0 & 1 \end{pmatrix}.$$

$$\bullet \begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = H * C_1 * R * T * A.$$

•
$$u = u'/w'$$
, $v = v'/w'$.

An Alternative Formula

• Let
$$A = \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix}$$
, $R = \begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, $T = \begin{bmatrix} 1 & 0 & 0 & -C_x \\ 0 & 1 & 0 & -C_y \\ 0 & 0 & 1 & -C_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$, $H = \begin{bmatrix} -fS_x & 0 & u_0 & 0 \\ 0 & -fS_y & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$.

- C_1 was only useful for storing f, but we can store f in H.
- What pixel coordinates (u, v) will A be mapped to?

$$\bullet \quad \begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = H * R * T * A.$$

- u = u'/w', v = v'/w'.
- (H * R * T) is called the *camera* matrix.
 - What size is it? What does it map to what?

Calibration Matrix

• Let
$$A = \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix}$$
, $R = \begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, $T = \begin{bmatrix} 1 & 0 & 0 & -C_x \\ 0 & 1 & 0 & -C_y \\ 0 & 0 & 1 & -C_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$, $H = \begin{bmatrix} -fS_x & 0 & u_0 & 0 \\ 0 & -fS_y & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$.

- C_1 was only useful for storing f, but we can store f in H.
- What pixel coordinates (u, v) will A be mapped to?

$$\bullet \begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = H * R * T * A.$$

- u = u'/w', v = v'/w'.
- H is called the calibration matrix.
 - It does not change if we rotate/move the camera.

Orthographic Projection

• Let
$$A = \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix}$$
, $R = \begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, $T = \begin{bmatrix} 1 & 0 & 0 & -C_x \\ 0 & 1 & 0 & -C_y \\ 0 & 0 & 1 & -C_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$, $H = \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$.

What pixel coordinates (u, v) will A be mapped to?

$$\bullet \quad \begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = H * R * T * A.$$

- u = u'/w', v = v'/w'.
- Main difference from perspective projection: z coordinate gets ignored.
 - To go from camera coordinates to normalized image coordinates, we just drop the z value.

Part 2

Calibration

Calibration

$$\bullet \ \ \text{Let A} = \begin{pmatrix} A_x \\ A_y \\ A_z \\ 1 \end{pmatrix}, \ R = \begin{pmatrix} r_{11} \, r_{12} \, r_{13} \, 0 \\ r_{21} \, r_{22} \, r_{23} \, 0 \\ r_{31} \, r_{32} \, r_{33} \, 0 \\ 0 \, 0 \, 0 \, 1 \end{pmatrix}, \ T = \begin{pmatrix} 1 \, 0 \, 0 \, -C_x \\ 0 \, 1 \, 0 \, -C_y \\ 0 \, 0 \, 1 \, -C_z \\ 0 \, 0 \, 0 \, 1 \end{pmatrix}, \ H = \begin{pmatrix} -fS_x \, 0 \, u_0 \, 0 \\ 0 \, -fS_y \, v_0 \, 0 \\ 0 \, 0 \, 1 \, 0 \end{pmatrix}.$$

- $\bullet \quad \begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = H * R * T * A.$
- C = (H * R * T) is called the camera matrix.
- Question: How do we compute C?
- The process of computing C is called camera calibration.

Calibration

Camera matrix C is always of the following form:

$$C = \begin{pmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & 1 \end{pmatrix}$$

- C is equivalent to any sC, where s != 0.
 - Why?

Calibration

Camera matrix C is always of the following form:

$$C = \begin{pmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & 1 \end{pmatrix}$$

- C is equivalent to any sC, where s != 0.
 - That is why we can assume that $c_{34} = 1$. If not, we can just multiply by $s = 1/c_{34}$.
- To compute C, one way is to manually establish correspondences between points in 3D world coordinates and pixels in the image.

Using Correspondences

- Suppose that $[x_i, y_i, z_i, 1]$ maps to $[u_i, v_i, 1]$.
- This means that $C * [x_i, y_i, z_i, 1]' = [s_i u_i, s_i v_i, s_i]'$.
 - Note that vectors $[x_j, y_j, z_j, 1]$ and $[s_j u_j, s_j v_j, s_j]$ are transposed.
- This gives the following equations:
 - 1. $s_j u_j = c_{11} * x_j + c_{12} * y_j + c_{13} * z_j + c_{14}$.
 - 2. $s_j v_j = c_{21} * x_j + c_{22} * y_j + c_{23} * z_j + c_{24}$.
 - 3. $s_j = c_{31} * x_j + c_{32} * y_j + c_{33} * z_j + 1$.
- Multiplying Equation 3 by u_i we get:
 - $s_j u_j = c_{31} * u_j * x_j + c_{32} * u_j * y_j + c_{33} * u_j * z_j + u_j.$
- Multiplying Equation 3 by v_i we get:
 - $s_j v_j = c_{31} * v_j * x_j + c_{32} * v_j * y_j + c_{33} * v_j * z_j + v_j.$

Obtaining a Linear Equation

We combine two equations:

```
 - s_{j}u_{j} = c_{11} * x_{j} + c_{12} * y_{j} + c_{13} * z_{j} + c_{14}. 
 - s_{j}u_{j} = c_{31} * u_{j} * x_{j} + c_{32} * u_{j} * y_{j} + c_{33} * u_{j} * z_{j} + u_{j}. 
 to obtain: 
 c_{11}x_{j} + c_{12}y_{j} + c_{13}z_{j} + c_{14} = c_{31}u_{j}x_{j} + c_{32}u_{j}y_{j} + c_{33}u_{j}z_{j} + u_{j} = > 
 u_{j} = c_{11}x_{j} + c_{12}y_{j} + c_{13}z_{j} + c_{14} - c_{31}u_{j}x_{j} - c_{32}u_{j}y_{j} - c_{33}u_{j}z_{j} = > 
 u_{j} = [x_{j}, y_{j}, z_{j}, 1, -u_{j}x_{j}, -u_{j}y_{j}, -u_{j}z_{j}] * [c_{11}, c_{12}, c_{13}, c_{14}, c_{31}, c_{32}, c_{33}]^{trans} = > 
 u_{j} = [x_{j}, y_{j}, z_{j}, 1, 0, 0, 0, 0, -u_{j}x_{j}, -u_{j}y_{j}, -u_{j}z_{j}] * 
 [c_{11}, c_{12}, c_{13}, c_{14}, c_{21}, c_{22}, c_{23}, c_{24}, c_{31}, c_{32}, c_{33}]^{trans} = >
```

- In the above equations:
 - What is known, what is unknown?

Obtaining a Linear Equation

We combine two equations:

```
 - s_{j}u_{j} = c_{11} * x_{j} + c_{12} * y_{j} + c_{13} * z_{j} + c_{14}. 
 - s_{j}u_{j} = c_{31} * u_{j} * x_{j} + c_{32} * u_{j} * y_{j} + c_{33} * u_{j} * z_{j} + u_{j}. 
 to obtain: 
 c_{11}x_{j} + c_{12}y_{j} + c_{13}z_{j} + c_{14} = c_{31}u_{j}x_{j} + c_{32}u_{j}y_{j} + c_{33}u_{j}z_{j} + u_{j} = > 
 u_{j} = c_{11}x_{j} + c_{12}y_{j} + c_{13}z_{j} + c_{14} - c_{31}u_{j}x_{j} - c_{32}u_{j}y_{j} - c_{33}u_{j}z_{j} = > 
 u_{j} = [x_{j}, y_{j}, z_{j}, 1, -u_{j}x_{j}, -u_{j}y_{j}, -u_{j}z_{j}] * [c_{11}, c_{12}, c_{13}, c_{14}, c_{31}, c_{32}, c_{33}]^{trans} = > 
 u_{j} = [x_{j}, y_{j}, z_{j}, 1, 0, 0, 0, 0, -u_{j}x_{j}, -u_{j}y_{j}, -u_{j}z_{j}] * 
 [c_{11}, c_{12}, c_{13}, c_{14}, c_{21}, c_{22}, c_{23}, c_{24}, c_{31}, c_{32}, c_{33}]^{trans} = >
```

- In the above equations:
 - $c_{11}, c_{12}, c_{13}, c_{14}, c_{21}, c_{22}, c_{23}, c_{24}, c_{31}, c_{32}, c_{33}$ are unknown.
 - x_i , y_i , z_i , u_i , v_i are assumed to be known.

Obtaining Another Linear Equation

We combine two equations:

```
 - s_{j}v_{j} = c_{21} * x_{j} + c_{22} * y_{j} + c_{23} * z_{j} + c_{24}. 
 - s_{j}v_{j} = c_{31} * v_{j} * x_{j} + c_{32} * v_{j} * y_{j} + c_{33} * v_{j} * z_{j} + v_{j}. 
 to obtain: 
 c_{21}x_{j} + c_{22}y_{j} + c_{23}z_{j} + c_{24} = c_{31}v_{j}x_{j} + c_{32}v_{j}y_{j} + c_{33}v_{j}z_{j} + v_{j} = > 
 v_{j} = c_{21}x_{j} + c_{22}y_{j} + c_{23}z_{j} + c_{24} - c_{31}v_{j}x_{j} - c_{32}v_{j}y_{j} - c_{33}v_{j}z_{j} = > 
 v_{j} = [x_{j}, y_{j}, z_{j}, 1, -v_{j}x_{j}, -v_{j}y_{j}, -v_{j}z_{j}] * [c_{21}, c_{22}, c_{23}, c_{24}, c_{31}, c_{32}, c_{33}]^{trans} = > 
 v_{j} = [0, 0, 0, 0, x_{j}, y_{j}, z_{j}, 1, -v_{j}x_{j}, -v_{j}y_{j}, -v_{j}z_{j}] * 
 [c_{11}, c_{12}, c_{13}, c_{14}, c_{21}, c_{22}, c_{23}, c_{24}, c_{31}, c_{32}, c_{33}]^{trans} = >
```

- In the above equations:
 - What is known, what is unknown?

Obtaining Another Linear Equation

• We combine two equations:

```
 - s_{j}v_{j} = c_{21} * x_{j} + c_{22} * y_{j} + c_{23} * z_{j} + c_{24}. 
 - s_{j}v_{j} = c_{31} * v_{j} * x_{j} + c_{32} * v_{j} * y_{j} + c_{33} * v_{j} * z_{j} + v_{j}. 
 to obtain: 
 c_{21}x_{j} + c_{22}y_{j} + c_{23}z_{j} + c_{24} = c_{31}v_{j}x_{j} + c_{32}v_{j}y_{j} + c_{33}v_{j}z_{j} + v_{j} = > 
 v_{j} = c_{21}x_{j} + c_{22}y_{j} + c_{23}z_{j} + c_{24} - c_{31}v_{j}x_{j} - c_{32}v_{j}y_{j} - c_{33}v_{j}z_{j} = > 
 v_{j} = [x_{j}, y_{j}, z_{j}, 1, -v_{j}x_{j}, -v_{j}y_{j}, -v_{j}z_{j}] * [c_{21}, c_{22}, c_{23}, c_{24}, c_{31}, c_{32}, c_{33}]^{trans} = > 
 v_{j} = [0, 0, 0, 0, x_{j}, y_{j}, z_{j}, 1, -v_{j}x_{j}, -v_{j}y_{j}, -v_{j}z_{j}] * 
 [c_{11}, c_{12}, c_{13}, c_{14}, c_{21}, c_{22}, c_{23}, c_{24}, c_{31}, c_{32}, c_{33}]^{trans} = >
```

- In the above equations:
 - $c_{11}, c_{12}, c_{13}, c_{14}, c_{21}, c_{22}, c_{23}, c_{24}, c_{31}, c_{32}, c_{33}$ are unknown.
 - x_i , y_i , z_i , u_i , v_i are assumed to be known.

Setting Up Linear Equations

- Let $x = [c_{11}, c_{12}, c_{13}, c_{14}, c_{21}, c_{22}, c_{23}, c_{24}, c_{31}, c_{32}, c_{33}]'$.
 - Note the transpose.
- Let b = $[u_j, v_j]'$.
 - Again, note the transpose.
- Then, A*x = b.
- This is a system of linear equations with 11 unknowns, and 2 equations.
- To solve the system, we need at least 11 equations.
- How can we get more equations?

Solving Linear Equations

- Suppose we use 20 point correspondences between [x_i, y_i, z_i, 1] and [u_i, v_i, 1].
- Then, we get 40 equations.
- They can still be jointly expressed as A*x = b, where:
 - A is a 40*11 matrix.
 - x is an 11*1 matrix.
 - b is a 40 * 1 matrix.
 - Row 2j-1 of A is equal to: x_j , y_j , z_j , 1, 0, 0, 0, 0, x_ju_j , y_ju_j , z_ju_j .
 - Row 2j of A is equal to: 0, 0, 0, 0, x_j , y_j , z_j , 1, $-x_jv_j$, $-y_jv_j$, $-z_jv_j$
 - Row 2j-1 of b is equal to u_i .
 - Row 2j of b is equal to v_i.
 - $x = [c_{11}, c_{12}, c_{13}, c_{14}, c_{21}, c_{22}, c_{23}, c_{24}, c_{31}, c_{32}, c_{33}]'$.
- How do we solve this system of equations?

Solving A*x = b

- If we have > 11 equations, and only 11 unknowns, then the system is *overconstrained*.
- If we try to solve such a system, what happens?

Solving A*x = b

- If we have > 11 equations, and only 11 unknowns, then the system is *overconstrained*.
- There are two cases:
 - (Rare). An exact solution exists. In that case, usually only 11 equations are needed, the rest are redundant.
 - (Typical). No exact solution exists. Why?

Solving A*x = b

- If we have > 11 equations, and only 11 unknowns, then the system is *overconstrained*.
- There are two cases:
 - (Rare). An exact solution exists. In that case, usually only 11 equations are needed, the rest are redundant.
 - (Typical). No exact solution exists. Why? Because there is always some measurement error in estimating world coordinates and pixel coordinates.
- We need an approximate solution.
- Optimization problem. We take the standard two steps:
 - Step 1: define a measure of how good any solution is.
 - Step 2: find the best solution according to that measure.
- Note. "solution" here is not the BEST solution, just any proposed solution. Most "solutions" are really bad!

Least Squares Solution

- Each solution produces an error for each equation.
- Sum-of-squared-errors is the measure we use to evaluate a solution.
- The least squares solution is the solution that minimizes the sum-of-squared-errors measure.
- Example:
 - let x2 be a proposed solution.
 - Let b2 = A * x2.
 - If x2 was the mathematically perfect solution, b2 = b.
 - The error e(i) at position i is defined as |b2(i) b(i)|.
 - The squared error at position i is defined as $|b2(i) b(i)|^2$.
 - The sum of squared errors is sum(sum((b2(i) b(i)).^2)).

Least Squares Solution

- Each solution produces an error for each equation.
- Sum-of-squared-errors is the measure we use to evaluate a solution.
- The least squares solution is the solution that minimizes the sum-of-squared-errors measure.
- Finding the least-squares solution to a set of linear equations is mathematically involved.
- However, in Matlab it is really easy:
 - Given a system of linear equations expressed as A*x = b, to find the least squares solution, type:
 - -x = A b

Producing World Coordinates

- Typically, a calibration object is used.
- Checkerboard patterns and laser pointers are common.
- A point on the calibration object is designated as the origin.
- The x, y and z directions of the object are used as axis directions of the world coordinate system.
- Correspondences from world coordinates to pixel coordinates can be established manually or automatically.
 - With a checkerboard pattern, automatic estimation of correspondences is not hard.

Calibration in the Real World

- Typically, cameras do not obey the perspective model closely enough.
- Radial distortion is a common deviation.
- Calibration software needs to account for radial distortion.

Two types of radial distortion: barrel distortion and pincushion distortion. Images from Wikipedia