TABLE 12.2 IUPAC Names for the First Ten Continuous-Chain Alkanes*

Molecular Formula	IUPAC Prefix	IUPAC Name	Condensed Structural Formula
$\mathrm{CH_4}$	meth-	methane	CH_4
C_2H_6	eth-	ethane	CH ₃ —CH ₃
C_3H_8	prop-	propane	CH_3 — CH_2 — CH_3
C_4H_{10}	but-	butane	CH_3 — CH_2 — CH_3
C_5H_{12}	pent-	pentane	CH_3 — CH_2 — CH_2 — CH_3
C_6H_{14}	hex-	hexane	CH_3 — CH_2 — CH_2 — CH_2 — CH_3
C_7H_{16}	hept-	heptane	CH_3 — CH_2 — CH_2 — CH_2 — CH_2 — CH_3
C_8H_{18}	oct-	octane	CH ₃ —CH ₂ —CH ₂ —CH ₂ —CH ₂ —CH ₂ —CH ₃
C_9H_{20}	non-	nonane	CH ₃ —CH ₂ —CH ₂ —CH ₂ —CH ₂ —CH ₂ —CH ₂ —CH ₃
$C_{10}H_{22}$	dec-	decane	$CH_{3}-\!$

*The IUPAC naming system also includes prefixes for naming continuous-chain alkanes that have more than 10 carbon atoms, but we will not consider them in this text.

carbon atoms. Note that substituent is a general term that applies to carbon-chain attachments in all organic molecules, not just alkanes.

For branched-chain alkanes, the substituents are specifically called *alkyl groups*. An **alkyl group** is the group of atoms that would be obtained by removing a hydrogen atom from an alkane.

The two most commonly encountered alkyl groups are the two simplest: the onecarbon and two-carbon alkyl groups. Their formulas and names are

$$---CH_3$$
 $----CH_2--CH_3$ Methyl group Ethyl group

The extra long bond in these formulas (on the left) denotes the point of attachment to the carbon chain. Note that alkyl groups do not lead a stable, independent existence; that is, they are not molecules. They are always found attached to another entity (usually a carbon chain).

Alkyl groups are named by taking the stem of the name of the alkane that contains the same number of carbon atoms and adding the ending -yl. Table 12.3 gives the names for small continuous-chain alkyl groups.

We are now ready for the IUPAC rules for naming branched-chain alkanes.

Rule 1: Identify the longest continuous carbon chain (the parent chain), which may or may not be shown in a straight line, and name the chain.

CH₃—CH₂—CH₂—CH—CH₃
CH₃
CH₃—CH—CH₂—CH₂—CH₃

The parent chain name is *pentane*, because it has five carbon atoms.

The parent chain name is *hexane*, because it has six carbon atoms.

An additional guideline for identifying the longest continuous carbon chain: If two different carbon chains in a molecule have the same largest number of carbon atoms, select as the parent chain the one with the larger number of substituents (alkyl groups) attached to the chain.

TABLE 12.3 Names for the First Six Continuous-Chain Alkyl Groups

The ending -yl, as in methyl, ethyl, propyl, and butyl, appears in the names of all alkyl groups.

Number of Carbons	Structural Formula	Stem of Alkane Name	Suffix	Alkyl Group Name
1 2 3 4 5 6	CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	meth- eth- prop- but- pent- hex-	-yl -yl -yl -yl -yl -yl	methyl ethyl propyl butyl pentyl hexyl