

SEQUENCE LISTING

<110> The Regents of the University of California
Martin, Paul Taylor

<120> AMYLOID-SPECIFIC PEPTIDES AND USES THEREOF

<130> 00015-022US1

<140> US 10/551,619
<141> 2005-09-30

<150> US 60/461,168
<151> 2003-04-07

<150> PCT/US04/10939
<151> 2004-04-07

<160> 33

<170> PatentIn version 3.3

<210> 1

<211> 10

<212> PRT

<213> Artificial sequence

<220>

<223> consensus peptide sequence

<220>

<221> X

<222> (1)..(1)

<223> X = W OR F

<220>

<221> X

<222> (2)..(6)

<223> X = any amino acid having two positively charged residues and
no
negatively charged residues

<220>

<221> X

<222> (7)..(7)

<223> X = W OR F

<220>

<221> X

<222> (8)..(9)

<223> X = Any amino acid

<220>

<221> X

<222> (10)..(10)

<223> X = W OR F

<400> 1

Xaa
1 5 10

<210> 2

<211> 20

<212> PRT

<213> Artificial sequence

<220>

<223> Phage display peptide library sequence

<400> 2

Asp Trp Gly Lys Gly Gly Arg Trp Arg Leu Trp Pro Gly Ala Ser Gly
1 5 10 15

Lys Thr Glu Ala
20

<210> 3

<211> 20

<212> PRT

<213> Artificial sequence

<220>

<223> Phage display peptide library sequence

<400> 3

Pro Gly Arg Ser Pro Phe Thr Gly Lys Lys Leu Phe Asn Gln Glu Phe
1 5 10 15

Ser Gln Asp Gln
20

<210> 4

<211> 26

<212> PRT

<213> Artificial sequence

<220>

<223> Phage display peptide library sequence

<400> 4

Ala Glu Cys Asp Trp Gly Lys Gly Gly Arg Trp Arg Leu Trp Pro Gly
1 5 10 15

Ala Ser Gly Lys Thr Glu Ala Cys Gly Pro
20 25

<210> 5
<211> 22
<212> PRT
<213> Artificial sequence

<220>
<223> Phage display peptide library sequence

<400> 5

Cys Asp Trp Gly Lys Gly Gly Arg Trp Arg Leu Trp Pro Gly Ala Ser
1 5 10 15

Gly Lys Thr Glu Ala Cys
20

<210> 6
<211> 22
<212> PRT
<213> Artificial sequence

<220>
<223> Phage display peptide library sequence

<400> 6

Cys Pro Gly Arg Ser Pro Phe Thr Gly Lys Lys Leu Phe Asn Gln Glu
1 5 10 15

Phe Ser Gln Asp Gln Cys
20

<210> 7
<211> 20
<212> PRT
<213> Artificial sequence

<220>
<223> Phage display peptide library sequence

<400> 7

Leu Gly Ser Gly Arg Ile Gly Asp Gly Trp Ser Asp Gly Gly Leu Ala
1 5 10 15

Arg Arg Leu Lys
20

<210> 8
<211> 20
<212> PRT
<213> Artificial sequence

<220>
<223> Phage display peptide library sequence

<400> 8

Asp Gly Gly Gly Ala Gly Arg Trp Thr Thr Lys Asp Arg Ser Ala
1 5 10 15

Ala Lys Thr Glu
20

<210> 9
<211> 20
<212> PRT
<213> Artificial sequence

<220>
<223> Phage display peptide library sequence

<400> 9

Val Asp Asp Gly Ala Gln Gly Lys Arg Trp Gly Gly Met Gly Leu Gly
1 5 10 15

Lys Gly Arg Arg
20

<210> 10
<211> 20
<212> PRT
<213> Artificial sequence

<220>
<223> Phage display peptide library sequence

<400> 10

Ser Gly Ser Gly Val Gly Leu Arg Met Ala Ser Gln Arg His Glu Gly
1 5 10 15

Arg Lys Val Tyr
20

<210> 11
<211> 20
<212> PRT
<213> Artificial sequence

<220>
<223> Phage display peptide library sequence

<400> 11

Gln Leu Pro Gln Asn Gly Gly Pro Ala Trp Phe Thr Arg Lys Ala Gly
1 5 10 15

Gln Gly Gly Arg
20

<210> 12
<211> 20
<212> PRT
<213> Artificial sequence

<220>
<223> Phage display peptide library sequence

<400> 12

Leu Gly Tyr Ala Gly Gly Gln Gly Met Val Glu Gly Ser Phe Trp
1 5 10 15

Pro Thr Ser Trp
20

<210> 13
<211> 20
<212> PRT
<213> Artificial sequence

<220>
<223> Phage display peptide library sequence

<400> 13

Gly Leu Arg Gly Met Glu Gly Arg Gly Tyr Pro Lys Asp Arg Arg Asp
1 5 10 15

Arg Asn Leu Glu
20

<210> 14
<211> 20
<212> PRT
<213> Artificial sequence

<220>
<223> Phage display peptide library sequence

<400> 14

Leu Ile Gly Gly Asn Lys Ala Gly Arg Gly Ala Trp Gly Val Val Ala
1 5 10 15

Ser Ser Gly Arg
20

<210> 15
<211> 20
<212> PRT
<213> Artificial sequence

<220>
<223> Phage display peptide library sequence

<400> 15

Glu Leu Glu Ser Arg Gly Gly Leu Gly Tyr Ala Trp Arg Gly Ser Ala
1 5 10 15

Ser Thr Met Asp
20

<210> 16
<211> 20
<212> PRT
<213> Artificial sequence

<220>
<223> Phage display peptide library sequence

<400> 16

Lys Gly Glu Thr Gly Asn Gly Gly Arg Ala Lys Ala Gly Thr Val Asp
1 5 10 15

Leu Ile Arg Arg
20

<210> 17
<211> 33

<212> PRT
<213> Artificial sequence

<220>
<223> Consensus peptide sequence

<220>
<221> X
<222> (1)..(1)
<223> X = any amino acid with at least one cysteine residue having the formula $(Xaa)_n$, where Xaa is any amino acid and n is an integer from 1 to 20

<220>
<221> X
<222> (2)..(2)
<223> X = W or F

<220>
<221> X
<222> (3)..(17)
<223> X = any positively charged amino acid

<220>
<221> X
<222> (18)..(18)
<223> X = W or F

<220>
<221> X
<222> (19)..(31)
<223> X = any amino acid

<220>
<221> X
<222> (32)..(32)
<223> X = W or F

<220>
<221> X
<222> (33)..(33)
<223> X = any amino acid with at least one cysteine residue having the formula $(Xaa)_n$, where Xaa is any amino acid and n is an integer from 1 to 20

<400> 17

Xaa
1 5 10 15

xaa

```
<210> 18
<211> 32
<212> PRT
<213> Artificial sequence

<220>
<223> Consensus peptide sequence
```

<220>
<221> X
<222> (1)..(1)
<223> X = any amino acid with at least one cysteine residue having
the
formula (Xaa)_n, where Xaa is any amino acid and n is an
integer
from 1 to 20

<220>
<221> X
<222> (2) .. (2)
<223> X = W or F

<220>
<221> X
<222> (3)..(17)
<223> X = any positively charged amino acid

<220>
<221> X
<222> (18)..(18)
<223> X = W or F

<220> X
<221> X
<222> (19)..(31)
<223> X = any amino acid

<220>
<221> X
<222> (32) .. (32)
<223> X = W or E

<400> 18

Xaa														
	20													30

<210> 19
<211> 32
<212> PRT
<213> Artificial sequence

<220>
<223> Consensus peptide sequence

<220>
<221> X
<222> (1)..(1)
<223> X = W or F

<220>
<221> X
<222> (2)..(16)
<223> X = Any positively charged amino acid

<220>
<221> X
<222> (17)..(17)
<223> X = W or F

<220>
<221> X
<222> (18)..(30)
<223> X = any amino acid

<220>
<221> X
<222> (31)..(31)
<223> X = W or F

<220>
<221> X
<222> (32)..(32)
<223> X = any amino acid with at least one cysteine residue having the formula $(Xaa)_n$, where Xaa is any amino acid and n is an integer from 1 to 20

<400> 19

Xaa													
1	5												15

Xaa													
20													30

<210> 20
<211> 31
<212> PRT
<213> Artificial sequence

<220>
<223> Consensus peptide sequence

<220>
<221> X
<222> (1)..(1)
<223> X = W or F

<220>
<221> X
<222> (2)..(16)
<223> X = Any positively charged amino acid

<220>
<221> X
<222> (17)..(17)
<223> X = W or F

<220>
<221> X
<222> (18)..(30)
<223> X = any amino acid

<220>
<221> X
<222> (31)..(31)
<223> X = W or F

<400> 20

Xaa
1 5 10 15

Xaa
20 25 30

<210> 21
<211> 41
<212> PRT
<213> Artificial sequence

<220>
<223> Consensus peptide sequence

<220>

```

<221> X
<222> (1)..(1)
<223> X = any amino acid with at least one cysteine residue having
the
      formula (Xaa)n, where Xaa is any amino acid and n is an
integer
      from 1 to 20

<220>
<221> X
<222> (2)..(2)
<223> X = W or F

<220>
<221> X
<222> (3)..(17)
<223> X = Any positively charged amino acid

<220>
<221> X
<222> (18)..(18)
<223> X = W or F

<220>
<221> X
<222> (19)..(39)
<223> X = any amino acid

<220>
<221> X
<222> (40)..(40)
<223> X = W or F

<220>
<221> X
<222> (41)..(41)
<223> X = any amino acid with at least one cysteine residue having
the
      formula (Xaa)n, where Xaa is any amino acid and n is an
integer
      from 1 to 20

```

<400> 21

Xaa															
1															15

Xaa															
															30
20															

Xaa															
35															
40															

```

<210> 22
<211> 40
<212> PRT
<213> Artificial sequence

<220>
<223> Consensus peptide sequence

<220>
<221> X
<222> (1)..(1)
<223> X = any amino acid with at least one cysteine residue having
the
      formula (Xaa)n, where Xaa is any amino acid and n is an
integer
      from 1 to 20

<220>
<221> X
<222> (2)..(2)
<223> X = W or F

<220>
<221> X
<222> (3)..(17)
<223> X = any positively charged amino acid

<220>
<221> X
<222> (18)..(18)
<223> X = W or F

<220>
<221> X
<222> (19)..(39)
<223> X = any amino acid

<220>
<221> X
<222> (40)..(40)
<223> X = W or F

<400> 22

Xaa Xaa
1           5           10          15

Xaa Xaa
20          25          30

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
35          40

```

```

<210> 23
<211> 40
<212> PRT
<213> Artificial sequence

<220>
<223> Consensus peptide sequence

<220>
<221> X
<222> (1)..(1)
<223> X = W or F

<220>
<221> X
<222> (2)..(16)
<223> X = any positively charged amino acid

<220>
<221> X
<222> (17)..(17)
<223> X = W or F

<220>
<221> X
<222> (18)..(38)
<223> X = any amino acid

<220>
<221> X
<222> (39)..(39)
<223> X = W or F

<220>
<221> X
<222> (40)..(40)
<223> X = any amino acid with at least one cysteine residue having
      the
          formula (Xaa)n, where Xaa is any amino acid and n is an
      integer
          from 1 to 20

<400> 23

```

Xaa			
1	5	10	15

Xaa		
20	25	30

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa	
35	40

<210> 24
<211> 39
<212> PRT
<213> Artificial sequence

<220>
<223> Consensus peptide sequence

<220>
<221> X
<222> (1)..(1)
<223> X = W or F

<220>
<221> X
<222> (2)..(16)
<223> X = any positively charged amino acid

<220>
<221> X
<222> (17)..(17)
<223> X = W or F

<220>
<221> X
<222> (18)..(38)
<223> X = any amino acid

<220>
<221> X
<222> (39)..(39)
<223> X = W or F

<400> 24

Xaa
1 5 10 15

Xaa
20 25 30

Xaa Xaa Xaa Xaa Xaa Xaa Xaa
35

<210> 25
<211> 5
<212> PRT
<213> Artificial sequence

<220>

<223> Flanking peptide sequence

<400> 25

Ser Arg Lys Asn Gln
1 5

<210> 26

<211> 9

<212> PRT

<213> Artificial sequence

<220>

<223> Phage display peptide library sequence

<400> 26

His Cys Ser Gln Asn Glu Asp Gly Ala
1 5

<210> 27

<211> 9

<212> PRT

<213> Artificial sequence

<220>

<223> Phage display peptide library sequence

<400> 27

Tyr Ser Thr Thr Ser Trp Tyr Tyr Trp
1 5

<210> 28

<211> 40

<212> PRT

<213> Artificial sequence

<220>

<223> Alpha-Beta 1-40 fragment

<400> 28

Asp Ala Glu Phe Lys His Asp Ser Gly Thr Glu Val His His Gln Lys
1 5 10 15

Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile
20 25 30

Gly Leu Met Val Gly Gly Val Val
35 40

<210> 29
<211> 20
<212> DNA
<213> Artificial sequence

<220>
<223> primer

<400> 29
gtttgtcgtc tttccagacg
20

<210> 30
<211> 105
<212> DNA
<213> Artificial sequence

<220>
<223> Nucleotide cloning sequence

<400> 30
cggggtagct gcagaatgcg attggggaa ggggggtcgg tggcggttgt ggccgggtgc
60

gtcgggaaag acggaggcgt gcggccgcgt gtattagtct agagc
105

<210> 31
<211> 105
<212> DNA
<213> Artificial sequence

<220>
<223> Nucleotide cloning sequence

<400> 31
gctctagact aatacggcgg gccgcacgcc tccgtttcc ccgacgcacc cggccacaac
60

cggccaccgac cccccttccc ccaatcgcat tctgcaggtt ccccg
105

<210> 32
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Flanking sequence from phage coat

<400> 32

Cys Gly Pro Pro Tyr
1 5

<210> 33
<211> 11
<212> PRT
<213> Artificial sequence

<220>
<223> Consensus peptide sequence

<220>
<221> X
<222> (1)..(1)
<223> X = W or F

<220>
<221> X
<222> (2)..(6)
<223> X = any positively charged amino acid

<220>
<221> X
<222> (7)..(7)
<223> X = W or F

<220>
<221> X
<222> (8)..(10)
<223> X = any amino acid

<220>
<221> X
<222> (11)..(11)
<223> X = W or F

<400> 33

Xaa
1 5 10