Task-Space Inverse Dynamics

Optimization-based Robot Control

Andrea Del Prete

University of Trento

Table of contents

- 1. From Joint Space to Task Space Control
- 2. Task Models
- 3. Optimization-Based Control
- 4. Multi-Task Control
- 5. Computational Aspects

From Joint Space to Task Space

Control

Limits of Joint-Space Control

Joint-space control needs reference joint trajectory $q^r(t)$.

Limits of Joint-Space Control

Joint-space control needs reference joint trajectory $q^r(t)$.

What if we have reference trajectory $x^r(t)$ for end-effector?

Compute joint trajectory $q^r(t)$ corresponding to $x^r(t)$, then apply joint-space control:

Compute joint trajectory $q^r(t)$ corresponding to $x^r(t)$, then apply joint-space control:

Find
$$q^r(t)$$
 such that $FG(q^r(t)) = x^r(t)$ $\forall t \in [0, T],$

Compute joint trajectory $q^r(t)$ corresponding to $x^r(t)$, then apply joint-space control:

Find
$$q^r(t)$$
 such that $FG(q^r(t)) = x^r(t)$ $\forall t \in [0, T],$
 $\rightarrow q^r(t) = FG^{\dagger}(x^r(t))$ $\forall t \in [0, T],$ (1)

where:

- FG(.) ≜ forward geometry function of end-effector
- $FG^{\dagger}(.)$ is such that $FG(FG^{\dagger}(x)) = x, \forall x$

Compute joint trajectory $q^r(t)$ corresponding to $x^r(t)$, then apply joint-space control:

Find
$$q^r(t)$$
 such that $FG(q^r(t)) = x^r(t)$ $\forall t \in [0, T],$
 $\rightarrow q^r(t) = FG^{\dagger}(x^r(t))$ $\forall t \in [0, T],$ (1)

where:

- FG(.) ≜ forward geometry function of end-effector
- $FG^{\dagger}(.)$ is such that $FG(FG^{\dagger}(x)) = x, \forall x$

ISSUES

Problem (1) is challenging (Inverse Geometry, nonconvex problem with infinitely many solutions).

Compute joint trajectory $q^r(t)$ corresponding to $x^r(t)$, then apply joint-space control:

Find
$$q^r(t)$$
 such that $FG(q^r(t)) = x^r(t)$ $\forall t \in [0, T],$
 $\rightarrow q^r(t) = FG^{\dagger}(x^r(t))$ $\forall t \in [0, T],$ (1)

where:

- $FG(.) \triangleq$ forward geometry function of end-effector
- $FG^{\dagger}(.)$ is such that $FG(FG^{\dagger}(x)) = x, \forall x$

ISSUES

Problem (1) is challenging (Inverse Geometry, nonconvex problem with infinitely many solutions).

Tracking $q^r(t)$ is sufficient but not necessary to track $x^r(t)$: controller rejects also perturbations affecting q without affecting FG(q).

Feedback directly end-effector configuration:

$$\dot{\nu}^d = \dot{\nu}^r - K_d(\nu - \nu^r) - K_p(x - x^r)$$
 (2)

Feedback directly end-effector configuration:

$$\dot{\nu}^d = \dot{\nu}^r - K_d(\nu - \nu^r) - K_p(x - x^r)$$
 (2)

Differenciate relationship between q and x:

$$x = FG(q)$$

Feedback directly end-effector configuration:

$$\dot{\nu}^{d} = \dot{\nu}^{r} - K_{d}(\nu - \nu^{r}) - K_{p}(x - x^{r})$$
 (2)

Differenciate relationship between q and x:

$$x = FG(q)$$

$$\nu = \dot{x} = \frac{d}{dt}FG(q) = \underbrace{\frac{\partial FG}{\partial q}}_{l} \frac{dq}{dt} = Jv$$

Feedback directly end-effector configuration:

$$\dot{\nu}^d = \dot{\nu}^r - K_d(\nu - \nu^r) - K_p(x - x^r) \tag{2}$$

Differenciate relationship between q and x:

$$x = FG(q)$$

$$\nu = \dot{x} = \frac{d}{dt}FG(q) = \underbrace{\frac{\partial FG}{\partial q}}_{J}\frac{dq}{dt} = Jv$$

$$\dot{\nu} = J\dot{v} + \dot{J}v$$
(3)

Feedback directly end-effector configuration:

$$\dot{\nu}^{d} = \dot{\nu}^{r} - K_{d}(\nu - \nu^{r}) - K_{p}(x - x^{r})$$
 (2)

Differenciate relationship between q and x:

$$x = FG(q)$$

$$\nu = \dot{x} = \frac{d}{dt}FG(q) = \underbrace{\frac{\partial FG}{\partial q}}_{J}\frac{dq}{dt} = Jv$$
(3)

$$\dot{\nu} = J\dot{v} + \dot{J}v$$

Desired accelerations should be:

$$\dot{v}^d = J^{\dagger} (\dot{\nu}^d - \dot{J}v) \tag{4}$$

Feedback directly end-effector configuration:

$$\dot{\nu}^{d} = \dot{\nu}^{r} - K_{d}(\nu - \nu^{r}) - K_{p}(x - x^{r}) \tag{2}$$

Differenciate relationship between q and x:

$$x = FG(q)$$

$$\nu = \dot{x} = \frac{d}{dt}FG(q) = \underbrace{\frac{\partial FG}{\partial q}}_{J}\frac{dq}{dt} = Jv$$
(3)

$$\dot{\nu} = J\dot{v} + \dot{J}v$$

Desired accelerations should be:

$$\dot{\mathbf{v}}^d = J^{\dagger} (\dot{\mathbf{v}}^d - \dot{J}\mathbf{v}) \tag{4}$$

Finally compute joint torques as:

$$\tau = M\dot{v}^d + h \tag{5}$$

To summarize, both options compute joint torques as:

$$\tau = M\dot{v}^d + h \tag{6}$$

To summarize, both options compute joint torques as:

$$\tau = M\dot{v}^d + h \tag{6}$$

Option 1 computes \dot{v}^d as:

$$\dot{v}^d = \dot{v}^r - PD(q - FG^{\dagger}(x^r)) \tag{7}$$

FG is "inverted" at configuration level.

To summarize, both options compute joint torques as:

$$\tau = M\dot{v}^d + h \tag{6}$$

Option 1 computes \dot{v}^d as:

$$\dot{v}^d = \dot{v}^r - PD(q - FG^{\dagger}(x^r)) \tag{7}$$

FG is "inverted" at configuration level.

Option 2 computes \dot{v}^d as:

$$\dot{v}^d = J^{\dagger}(\dot{\nu}^r - PD(x - x^r) - \dot{J}v)$$
(8)

FG is "inverted" at acceleration level.

Option 2 typically preferred:

+ Gains defined in Cartesian space

- + Gains defined in Cartesian space
- + No pre-computations

- + Gains defined in Cartesian space
- + No pre-computations
- + Online specification of reference trajectory

- + Gains defined in Cartesian space
- + No pre-computations
- + Online specification of reference trajectory
- More complex controller

End-Effector Control as LSP

End-effector control law (Option 2):

$$\tau = M\dot{v}^d + h$$

$$\dot{v}^d = J^{\dagger}(\dot{\nu}^d - \dot{J}v)$$

$$\dot{\nu}^d = \dot{\nu}^r - PD(x - x^r)$$
(9)

End-Effector Control as LSP

End-effector control law (Option 2):

$$\tau = M\dot{v}^d + h$$

$$\dot{v}^d = J^{\dagger}(\dot{v}^d - \dot{J}v)$$

$$\dot{v}^d = \dot{v}^r - PD(x - x^r)$$
(9)

can be computed as:

minimize
$$||J\dot{v} + \dot{J}v - \dot{v}^d||^2$$
 subject to $M\dot{v} + h = \tau$ (10)

Task Models

Generalize concept of end-effector with Task.

Generalize concept of end-effector with Task.

 $\mathsf{Task} = \mathsf{control} \ \mathsf{objective}.$

Generalize concept of end-effector with Task.

Task = control objective.

Describe tasks as functions e to minimize (as in optimal control).

Generalize concept of end-effector with Task.

Task = control objective.

Describe tasks as functions e to minimize (as in optimal control).

Assume *e* measures error between real and reference output $y \in \mathbb{R}^m$:

$$e(x, u, t) = \underbrace{y(x, u)}_{\text{real}} - \underbrace{y^*(t)}_{\text{reference}}$$

Generalize concept of end-effector with Task.

Task = control objective.

Describe tasks as functions e to minimize (as in optimal control).

Assume *e* measures error between real and reference output $y \in \mathbb{R}^m$:

$$\underbrace{e(x, u, t)}_{\text{error}} = \underbrace{y(x, u)}_{\text{real}} - \underbrace{y^*(t)}_{\text{reference}}$$

N.B.

Here: e depends on instantaneous state-control value.

In optimal control: e depends on state-control trajectory.

IDEA

Given e(x, u, t), find affine function of \dot{v} and u to minimize.

IDEA

Given e(x, u, t), find affine function of \dot{v} and u to minimize.

Three kinds of task functions:

- Affine functions of u: $e(u,t) = A_u u a(t)$
- Nonlinear functions of v: $e(v, t) = y(v) y^*(t)$
- Nonlinear functions of q: $e(q, t) = y(q) y^*(t)$

IDEA

Given e(x, u, t), find affine function of \dot{v} and u to minimize.

Three kinds of task functions:

- Affine functions of u: $e(u,t) = A_u u a(t)$
- Nonlinear functions of v: $e(v, t) = y(v) y^*(t)$
- Nonlinear functions of q: $e(q, t) = y(q) y^*(t)$

Issue

q and v are not variables in Inverse Dynamics LSP.

IDEA

Given e(x, u, t), find affine function of \dot{v} and u to minimize.

Three kinds of task functions:

- Affine functions of u: $e(u,t) = A_u u a(t)$
- Nonlinear functions of v: $e(v, t) = y(v) y^*(t)$
- Nonlinear functions of q: $e(q, t) = y(q) y^*(t)$

Issue

q and v are not variables in Inverse Dynamics LSP.

Solution

Impose dynamics of e(x,t) (e.g., $\dot{e}=...$) which should be affine function of \dot{v} such that $\lim_{t\to\infty} e(x,t)=0$

Consider task function: $e(v, t) = y(v) - y^*(t)$.

Consider task function: $e(v, t) = y(v) - y^*(t)$.

Impose first-order linear dynamic:

$$\dot{e} = -Ke$$

Consider task function: $e(v, t) = y(v) - y^*(t)$.

Impose first-order linear dynamic:

$$\dot{e} = -Ke$$

$$\underbrace{\frac{\partial y}{\partial v}}_{Jacobian} \dot{v} - \dot{y}^* = -Ke$$

Consider task function: $e(v, t) = y(v) - y^*(t)$.

Impose first-order linear dynamic:

$$\dot{e} = -Ke$$

$$\underbrace{\frac{\partial y}{\partial v}}_{Jacobian} \dot{v} - \dot{y}^* = -Ke$$

$$\underbrace{\int_{A_v} \dot{v} = \dot{y}^* - Ke}_{a}$$
(11)

Consider task function: $e(v, t) = y(v) - y^*(t)$.

Impose first-order linear dynamic:

$$\dot{e} = -Ke$$

$$\underbrace{\frac{\partial y}{\partial v}}_{Jacobian} \dot{v} - \dot{y}^* = -Ke$$

$$\underbrace{\int_{A_v} \dot{v} = \dot{y}^* - Ke}_{a}$$
(11)

We got affine function of \dot{v} .

Consider task function: $e(v, t) = y(v) - y^*(t)$.

Impose first-order linear dynamic:

$$\dot{e} = -Ke$$

$$\underbrace{\frac{\partial y}{\partial v}}_{Jacobian} \dot{v} - \dot{y}^* = -Ke$$

$$\underbrace{J}_{A_v} \dot{v} = \underbrace{\dot{y}^* - Ke}_{a}$$
(11)

We got affine function of \dot{v} .

N.B.

Could also impose nonlinear dynamics, but linear is ok for most cases.

Consider task function: $e(q, t) = y(q) - y^*(t)$.

Consider task function: $e(q, t) = y(q) - y^*(t)$.

Impose second-order linear dynamics:

$$\ddot{e} = -Ke - D\dot{e}$$

Consider task function: $e(q, t) = y(q) - y^*(t)$.

Impose second-order linear dynamics:

$$\ddot{e} = -Ke - D\dot{e}$$

$$J\dot{v} + \dot{J}v - \ddot{y}^* = -Ke - D\dot{e}$$

Consider task function: $e(q, t) = y(q) - y^*(t)$.

Impose second-order linear dynamics:

$$\ddot{e} = -Ke - D\dot{e}$$

$$J\dot{v} + \dot{J}v - \ddot{y}^* = -Ke - D\dot{e}$$

$$\underbrace{J}_{A_v}\dot{v} = \underbrace{\ddot{y}^* - \dot{J}v - Ke - D\dot{e}}_{a}$$
(12)

Consider task function: $e(q, t) = y(q) - y^*(t)$.

Impose second-order linear dynamics:

$$\ddot{e} = -Ke - D\dot{e}$$

$$J\dot{v} + \dot{J}v - \ddot{y}^* = -Ke - D\dot{e}$$

$$\underbrace{J}_{A_v}\dot{v} = \underbrace{\ddot{y}^* - \dot{J}v - Ke - D\dot{e}}_{a}$$
(12)

We got affine function of \dot{v} .

Consider task function: $e(q, t) = y(q) - y^*(t)$.

Impose second-order linear dynamics:

$$\ddot{e} = -Ke - D\dot{e}$$

$$J\dot{v} + \dot{J}v - \ddot{y}^* = -Ke - D\dot{e}$$

$$\underbrace{J}_{A_v}\dot{v} = \underbrace{\ddot{y}^* - \dot{J}v - Ke - D\dot{e}}_{a}$$
(12)

We got affine function of \dot{v} .

N.B.

Could also impose nonlinear dynamics, but linear is ok for most cases.

Functions of $u \rightarrow affine$.

Functions of $u \to affine$.

Functions of $x \to \text{nonlinear}$, but cannot be directly imposed.

Functions of $u \to affine$.

Functions of $x \to \text{nonlinear}$, but cannot be directly imposed.

• For functions of *v* impose first derivative.

Functions of $u \to affine$.

Functions of $x \to \text{nonlinear}$, but cannot be directly imposed.

- For functions of *v* impose first derivative.
- For functions of q impose second derivative.

Functions of $u \to affine$.

Functions of $x \to \text{nonlinear}$, but cannot be directly imposed.

- For functions of v impose first derivative.
- For functions of q impose second derivative.

End up with affine function of \dot{v} and u:

$$g(y) \triangleq \underbrace{\left[A_{v} \quad A_{u}\right]}_{A} \underbrace{\left[\begin{matrix} \dot{v} \\ u \end{matrix}\right]}_{y} - a$$

Optimization-Based Control

Task-Space Inverse Dynamics (TSID)

Find τ that minimizes task function:

minimize
$$||Ay - a||^2$$

 $y = (\dot{v}, \tau)$ (13)
subject to $\begin{bmatrix} M & -S^{\top} \end{bmatrix} y = -h$

TSID for Robots in Soft Contact

If system in contact \rightarrow account for contact forces f.

TSID for Robots in Soft Contact

If system in contact \rightarrow account for contact forces f.

If contacts are soft, use estimated forces \hat{f} :

minimize
$$||Ay - a||^2$$

 $y = (\dot{v}, \tau)$ $[M - S^{\top}] y = -h + J^{\top} \hat{f}$ (14)

TSID for Robots in Rigid Contact

Rigid contacts constrain motion.

$$c(q) = \text{const} \iff \text{Contact points do not move}$$

TSID for Robots in Rigid Contact

Rigid contacts constrain motion.

$$c(q)={
m const} \iff {
m Contact\ points\ do\ not\ move}$$
 $Jv=0 \iff {
m Contact\ point\ velocities\ are\ null}$
 $J\dot{v}+\dot{J}v=0 \iff {
m Contact\ point\ accelerations\ are\ null}$

TSID for Robots in Rigid Contact

Rigid contacts constrain motion.

$$c(q)={
m const} \qquad \Longleftrightarrow \qquad {
m Contact\ points\ do\ not\ move}$$
 $Jv=0 \qquad \Longleftrightarrow \qquad {
m Contact\ point\ velocities\ are\ null}$ $J\dot{v}+\dot{J}v=0 \qquad \Longleftrightarrow \qquad {
m Contact\ point\ accelerations\ are\ null}$

Introduce forces and constraints:

minimize
$$||Ay - a||^2$$

subject to
$$\begin{bmatrix} J & 0 & 0 \\ M & -J^{\top} & -S^{\top} \end{bmatrix} y = \begin{bmatrix} -j_V \\ -h \end{bmatrix}$$
(15)

Inequality Constraints

Benefit of optimization: inequality constraints.

Inequality Constraints

Benefit of optimization: inequality constraints.

Any inequality affine in $y = (\tau, f, \dot{v})$:

- joint torque bounds: $\tau^{\min} \le \tau \le \tau^{\max}$
- (linearized) force friction cones: $Bf \leq 0$
- joint bounds: $\dot{v}^{min} \leq \dot{v} \leq \dot{v}^{max}$
- collision avoidance (more complicated)

Multi-Task Control

Complex robots are redundant w.r.t. task they perform

Complex robots are redundant w.r.t. task they perform:

 7-DoF manipulator that controls end-effector placement (6 DoFs) has 1 DoF of redundancy

Complex robots are redundant w.r.t. task they perform:

- 7-DoF manipulator that controls end-effector placement (6 DoFs) has 1 DoF of redundancy
- 18-DoF biped that controls placement of two feet (12 DoFs) has 6 DoFs of redundancy

Complex robots are redundant w.r.t. task they perform:

- 7-DoF manipulator that controls end-effector placement (6 DoFs) has 1 DoF of redundancy
- 18-DoF biped that controls placement of two feet (12 DoFs) has 6 DoFs of redundancy

Can use redundancy to execute secondary tasks, but how?

N tasks, each defined by task function

$$g_i(y) = ||A_i y - a_i||^2$$
 $i = 1 ... N$

N tasks, each defined by task function

$$g_i(y) = ||A_i y - a_i||^2$$
 $i = 1...N$

Simplest strategy: sum functions using user-defined weights w_i :

minimize
$$\sum_{y=(\dot{v},f, au)}^{N} w_i g_i(y)$$
 subject to
$$\begin{bmatrix} J & 0 & 0 \\ M & -J^\top & -S^\top \end{bmatrix} y = \begin{bmatrix} -\dot{J}v \\ -h \end{bmatrix}$$

N tasks, each defined by task function

$$g_i(y) = ||A_i y - a_i||^2$$
 $i = 1...N$

Simplest strategy: sum functions using user-defined weights w_i :

minimize
$$\sum_{y=(\dot{v},f, au)}^{N} w_i g_i(y)$$
 subject to
$$\begin{bmatrix} J & 0 & 0 \\ M & -J^\top & -S^\top \end{bmatrix} y = \begin{bmatrix} -\dot{J}v \\ -h \end{bmatrix}$$

PROS Problem remains computationally-efficient LSP.

N tasks, each defined by task function

$$g_i(y) = ||A_i y - a_i||^2$$
 $i = 1...N$

Simplest strategy: sum functions using user-defined weights w_i :

minimize
$$\sum_{y=(\dot{v},f, au)}^{N} w_i g_i(y)$$
 subject to
$$\begin{bmatrix} J & 0 & 0 \\ M & -J^\top & -S^\top \end{bmatrix} y = \begin{bmatrix} -\dot{J}v \\ -h \end{bmatrix}$$

PROS Problem remains computationally-efficient LSP.

CONS Hard to find weights \rightarrow too large/small weights lead to numerical issues.

Hierarchical Multi-Objective Optimization

Alternative: order tasks according to priority

Alternative: order tasks according to priority

• task 1 more important than task 2

Alternative: order tasks according to priority

- task 1 more important than task 2
- ...
- task N-1 more important than task N

Solve sequence (cascade) of N problems, from i = 1:

$$\begin{split} g_i^* &= \underset{y = (\dot{v}, f, \tau)}{\text{minimize}} &\quad g_i(y) \\ \text{subject to} &\quad \begin{bmatrix} J & 0 & 0 \\ M & -J^\top & -S^\top \end{bmatrix} y = \begin{bmatrix} -Jv \\ -h \end{bmatrix} \\ g_j(y) &= g_j^* \qquad \forall j < i \end{split}$$

Alternative: order tasks according to priority

- task 1 more important than task 2
- ...
- task N-1 more important than task N

Solve sequence (cascade) of N problems, from i = 1:

$$\begin{split} g_i^* &= \underset{y = (\dot{v}, f, \tau)}{\text{minimize}} & g_i(y) \\ \text{subject to} & \begin{bmatrix} J & 0 & 0 \\ M & -J^\top & -S^\top \end{bmatrix} y = \begin{bmatrix} -Jv \\ -h \end{bmatrix} \\ g_j(y) &= g_j^* & \forall j < i \end{split}$$

PROS Easier to find priorities than weights.

Alternative: order tasks according to priority

- task 1 more important than task 2
- ...
- task N-1 more important than task N

Solve sequence (cascade) of N problems, from i = 1:

$$\begin{split} g_i^* &= \underset{y = (\dot{v}, f, \tau)}{\text{minimize}} &\quad g_i(y) \\ \text{subject to} &\quad \begin{bmatrix} J & 0 & 0 \\ M & -J^\top & -S^\top \end{bmatrix} y = \begin{bmatrix} -\dot{J}v \\ -h \end{bmatrix} \\ g_j(y) &= g_j^* \qquad \forall j < i \end{split}$$

PROS Easier to find priorities than weights.

CONS More computationally expensive to solve several LSPs.

Computational Aspects

TSID solves LSP at each loop (embedded optimization, as MPC).

TSID solves LSP at each loop (embedded optimization, as MPC). \rightarrow Limited computation time (1-10 ms).

TSID solves LSP at each loop (embedded optimization, as MPC). \rightarrow Limited computation time (1-10 ms).

For n_v DoFs, n_{va} motors, and n_f contact constraints:

- $n_v + n_{va} + n_f$ variables (≈ 70 for humanoid)
- $n_v + n_f$ equality constraints (≈ 40 for humanoid)
- $n_v + n_{va} + \frac{4}{3}n_f$ inequality constraints (assuming friction cones approximated with 4-sided pyramids)

TSID solves LSP at each loop (embedded optimization, as MPC). \rightarrow Limited computation time (1-10 ms).

For n_v DoFs, n_{va} motors, and n_f contact constraints:

- $n_v + n_{va} + n_f$ variables (≈ 70 for humanoid)
- $n_v + n_f$ equality constraints (≈ 40 for humanoid)
- $n_v + n_{va} + \frac{4}{3}n_f$ inequality constraints (assuming friction cones approximated with 4-sided pyramids)

Computational cost dominated by Hessian (Cholesky) decomposition: $\mathcal{O}(n^3)$, with n= number of variables.

TSID solves LSP at each loop (embedded optimization, as MPC). \rightarrow Limited computation time (1-10 ms).

For n_v DoFs, n_{va} motors, and n_f contact constraints:

- $n_v + n_{va} + n_f$ variables (≈ 70 for humanoid)
- $n_v + n_f$ equality constraints (≈ 40 for humanoid)
- $n_v + n_{va} + \frac{4}{3}n_f$ inequality constraints (assuming friction cones approximated with 4-sided pyramids)

Computational cost dominated by Hessian (Cholesky) decomposition: $\mathcal{O}(n^3)$, with n= number of variables.

QUESTIONS

- Can we solve itin 1 ms?
- Can we speed up computation?

IDEA: Exploit problem structure to speed up computation.

IDEA: Exploit problem structure to speed up computation.

Equality constraints have special structure:

$$\begin{bmatrix} J & 0 & 0 \\ M_u & -J_u^\top & -0 \\ M_a & -J_a^\top & -I \end{bmatrix} \begin{bmatrix} \dot{v} \\ f \\ \tau \end{bmatrix} = \begin{bmatrix} -\dot{J}v \\ -h_u \\ -h_a \end{bmatrix}$$

IDEA: Exploit problem structure to speed up computation.

Equality constraints have special structure:

$$\begin{bmatrix} J & 0 & 0 \\ M_u & -J_u^\top & -0 \\ M_a & -J_a^\top & -I \end{bmatrix} \begin{bmatrix} \dot{v} \\ f \\ \tau \end{bmatrix} = \begin{bmatrix} -\dot{J}v \\ -h_u \\ -h_a \end{bmatrix}$$

Identity matrix is easy to invert \rightarrow Easy to express τ as affine function of other variables.

$$\underbrace{\begin{bmatrix} \dot{v} \\ f \\ \tau \end{bmatrix}}_{y} = \underbrace{\begin{bmatrix} I & 0 \\ 0 & I \\ M_{a} & -J_{a}^{\top} \end{bmatrix}}_{D} \underbrace{\begin{bmatrix} \dot{v} \\ f \end{bmatrix}}_{\bar{y}} + \underbrace{\begin{bmatrix} 0 \\ 0 \\ h_{a} \end{bmatrix}}_{d}$$

Original problem:

minimize
$$||Ay - a||^2$$

subject to $By \le b$

$$\begin{bmatrix} J & 0 & 0 \\ M_u & -J_u^\top & -0 \\ M_a & -J_a^\top & -I \end{bmatrix} \begin{bmatrix} \dot{v} \\ f \\ \tau \end{bmatrix} = \begin{bmatrix} -Jv \\ -h_u \\ -h_a \end{bmatrix}$$

Original problem:

minimize
$$||Ay - a||^2$$

subject to $By \le b$

$$\begin{bmatrix} J & 0 & 0 \\ M_u & -J_u^\top & -0 \\ M_a & -J_a^\top & -I \end{bmatrix} \begin{bmatrix} \dot{v} \\ f \\ \tau \end{bmatrix} = \begin{bmatrix} -Jv \\ -h_u \\ -h_a \end{bmatrix}$$

Original problem:

minimize
$$||Ay - a||^2$$

subject to $By \le b$

$$\begin{bmatrix} J & 0 & 0 \\ M_u & -J_u^\top & -0 \\ M_a & -J_a^\top & -I \end{bmatrix} \begin{bmatrix} \dot{v} \\ f \\ \tau \end{bmatrix} = \begin{bmatrix} -Jv \\ -h_u \\ -h_a \end{bmatrix}$$

Removed n_{va} variables and n_{va} equality constraints!

Can improve more?

Can improve more?

Yes:

- for floating-base, remove first 6 variables of \dot{v} exploiting structure of first 6 columns of M_u
- remove (either all [3, 4] or some [1]) force variables by projecting dynamics in null space of *J*

Can improve more?

Yes:

- for floating-base, remove first 6 variables of \dot{v} exploiting structure of first 6 columns of M_u
- remove (either all [3, 4] or some [1]) force variables by projecting dynamics in null space of *J*

BUT these tricks either limit expressiveness, or lead to small improvements (while making software more complex).

Can improve more?

Yes:

- for floating-base, remove first 6 variables of \dot{v} exploiting structure of first 6 columns of M_u
- remove (either all [3, 4] or some [1]) force variables by projecting dynamics in null space of *J*

BUT these tricks either limit expressiveness, or lead to small improvements (while making software more complex).

My opinion: not worth it!

From Euclidian Spaces to Lie Groups

So far $y(x, u) \in \mathbb{R}^m$.

From Euclidian Spaces to Lie Groups

So far $y(x, u) \in \mathbb{R}^m$.

What if $y(x, u) \in SE(3)$? (very common in practice)

From Euclidian Spaces to Lie Groups

So far $y(x, u) \in \mathbb{R}^m$.

What if $y(x, u) \in SE(3)$? (very common in practice)

SOLUTION Represent SE(3) elements using homogeneous matrices $y \in \mathbb{R}^{4\times 4}$ and redefine error function:

$$e(q, t) = \log(y^*(t)^{-1}y(q)),$$

where $\log \triangleq$ inverse operation of matrix exponential (i.e. exponential map): transforms displacement into twist.

References i

A. Del Prete, N. Mansard, F. Nori, G. Metta, and L. Natale. **Partial Force Control of Constrained Floating-Base Robots.** In *Intelligent Robots and Systems (IROS 2014), IEEE International Conference on*, 2014.

A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, and L. Righetti.

Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid.

Autonomous Robots, 40(3):473-491, 2016.

M. Mistry, J. Buchli, and S. Schaal.

Inverse dynamics control of floating base systems using orthogonal decomposition.

2010 IEEE International Conference on Robotics and Automation, (3):3406–3412, may 2010.

References ii

L. Righetti, J. Buchli, M. Mistry, and S. Schaal.

Inverse dynamics control of floating-base robots with external constraints: A unified view.

 $2011\ IEEE\ International\ Conference\ on\ Robotics\ and\ Automation,$ pages $1085{-}1090,\ may\ 2011.$