Intelligent Decision Support System

Practical work 3 January 8, 2024

"Educational Success Predictor"

Group 2
Gustavo Rayo
Umberto Salviati
Giacomo Sanguin

Abstract

A general idea:

- In this project, an Intelligent Decision Support System has been crafted to forecast student academic outcomes by amalgamating traditional features with expert opinions.
- The IDSS is designed as a web application, in which the user can predict whether a student is going to graduate or not
- The IDSS features customizable models, accommodating users with a choice between basic and advanced configurations. An approach that aspires to empower educational institutions with an effective tool for tailored student support and strategic academic planning.

Domain of application

- **Educational Sphere:** Our IDSS operates at the heart of education, focusing on predicting and optimizing student academic outcomes.
- Data Driven Foundation: Leveraging a rich dataset, including demographic info, academic history, and socio-economic factors, our IDSS employs predictive modeling for insights into students' academic trajectories.
- **Expert Opinion Integration:** incorporation of an expert opinion component, simulating a college interview scenario.
- **Stakeholders:** targeting academic advisors, administrators, and educators, our IDSS offers a proactive approach to identify at-risk students early.

Main identified decisions

- Grant or deny an application
- Decide special guidance to accepted students more likely to drop out
- Grant scholarship
- Improve learning experience

Functional architecture of the IDSS prototype

Components:

- Web Application
 React, Materia-kit-react
- APIFastAPI
- Ensemble predictorSMV, Logistic Regression,Random Forest

Data pre-processing

- Thorough Analysis with Python:
 - Used Matplotlib and Seaborn for comprehensive data visualization
- Data Filtering:
 - Focused on certainty by excluding students with unclear outcomes
 - Target variable: "graduate" or "dropout" status.
- Observed significant imbalance more graduates than dropouts.
 - Explored various balancing techniques.
- SMOTE Oversampling:
 - o outperform Kaggle past analysis
 - Achieved a 50% balance between graduates and dropouts, provides a fairer basis for analysis.

Outcome:

- Improved model performance through effective data pre-processing.
- Balanced dataset enhances predictive accuracy.

Data-driven IDSS model

Model Exploration:

- Experimented with various algorithms for data-driven models:
 - Random Forest, Logistic
 Regression, SVM (multiple
 kernels), KNN,linear
 discriminant analysis and
 Gaussian Naive Bayes

Model Selection:

- Chose Three Models:
 - Random Forest
 - Logistic Regression
 - o SVM

Ensemble Learning

Validation

- Model validation crucial for IDSS functionality.
 - Collaboration between data-driven models and expert-based component.
- Accuracy Scores:
 - o Simple features: 0.654
 - o Basic features: 0.673
 - Basic with academic features: 0.67
 - Basic with financial features: 0.76
 - Basic with full academic: 0.913
 - Basic with full academic and financial: 0.924
 - Full data model: 0.937

Post-prediction and Evaluation

Model Output Treatment:

- Data-driven model outputs not independently treated.
- Weighted differently based on the accuracy of individual models.

Comparison with Kaggle previous analysis:

- Kaggle project focused on logistic regression, achieving around 92% accuracy.
- Our project, incorporating various models, slightly outperforms with a full model accuracy just below 94%.

Model-driven IDSS techniques

- Expert Opinion
- Data Mining Models
- Statistical models
- Rule Based Models
- Logistic Regression

Future work and improvements

- Multi-Expert Evaluation: Allow the selection of a student and evaluation by multiple experts.
- User Feedback Mechanism: Incorporation of a feedback method from the users where they could report issues in the predictions and areas of improvement.
- **Explainability Features:** Incorporate tools for explainability of the results. It could be implemented using techniques such as LIME or SHAP.

Gantt diagram and tasks planning

Educational Success Predictor																		
Group 2			Project	Project Start:														
Gustavo Rayo, Umberto Salviati, Giacomo Sanguin			Display Week:		1	27/11/2023		4/12/2023		11/12/2	023	18/12/202	:3	25/12/20	23	1/1/20	24	
						27 28 29 30 1	2 3	4 5 6 7	8 9 10	11 12 13	14 15 16 17	18 19 20 2	1 22 23 2	4 25 26 27 3	28 29 30 3	1 1 2 3	3 4 5	6 7
TASK ASSIGNED	P	ROGRESS	START	DAYS	END	MTWTF	s s	мтwт	F S S	мтw	TFSS	мтwп	r F S S	мтw	TFSS	мту	N T F	s s
Phase 1	100%		1/12/2023		21/12/2023													
Dataset Selection	100%		1/12/2023	7	7/12/2023													
Defining Scope and Objectives	100%		8/12/2023	6	13/12/2023													
Dataset Analysis	100%		8/12/2023	6	13/12/2023													
Web App Framework Selection	100%		14/12/2023	8	21/12/2023								Ú					
Phase 2	100%		22/12/2023		7/1/2024													
Data Preparation	100%		22/12/2023	3	24/12/2023													
Model Development	100%		26/12/2023	6	31/12/2023													
Application development	100%		28/12/2023	6	2/1/2024													
Expert opinion Integration	100%		3/1/2024	1	3/1/2024													
Customization Options	100%		4/1/2024	1	4/1/2024													
Testing and Deployment	100%		5/1/2024	2	6/1/2024													
Report Documentation	100%		26/12/2023	13	7/1/2024													

Thanks for the attention