UNIVERSITE LIBANAISE

FACULTE DE GENIE

COMPLEX NUMBERS

The complex plane is referred to a direct orthonormal system $(O; \overrightarrow{u}, \overrightarrow{v})$.

Let z_1 and z_2 be the roots in the set of complex numbers of the equation $4z^2 + (1+i)z + 1 + i\sqrt{3} = 0$.

- **1-** $|z_1 z_2| =$
 - a) 0.25.
 - **b**) 1.
 - **c)** 0.5.
 - **d**) none of the above answers is correct.

2- An argument of $z_1 + z_2$ is

- a) $\frac{\pi}{4}$.
- **b**) $-\frac{3\pi}{4}$.
- **c**) $-\frac{3\pi}{16}$.
- $\mathbf{d)} \ \frac{3\pi}{4}.$
- **3-** $arg(z_1) =$
 - a) $\pi \arg(z_2)$.
 - **b**) $\frac{\pi}{6}$ arg (z_2)
 - **c**) $\arg(z_2) \frac{\pi}{3}$.
 - **d**) $\frac{\pi}{3} \arg(z_2)$.

4- The roots of the equation $4\overline{z}^2 - (1+i)\overline{z} + 1 + i\sqrt{3} = 0$ are

- **a)** z_1 and z_2 .
- **b)** $\overline{z_1}$ and $\overline{z_2}$.
- c) $-\overline{z_1}$ and $-\overline{z_2}$.
- d) non of the above answers is correct.

- **5-** The number $(1-i)^{14}$ is
 - a) a pure real number.
 - **b)** a pure imaginary number whose imaginary part is positive.
 - c) a pure imaginary number whose imaginary part is negative.
 - **d**) non of the above answers is correct.
- **6** Let θ be an argument of the complex number $(1-\sqrt{3}i)^{12}+(4+3i)^9$.

If
$$z = \frac{(1 - \sqrt{3}i)^{12} + (4 + 3i)^9}{(1 + \sqrt{3}i)^{12} + (4 - 3i)^9}$$
, then:

- a) |z|=1 and 2θ is an argument of z.
- **b)** |z| = 0 and 2θ is an argument of z.
- c) |z| = 1 and 0 is an argument of z.
- **d)** non of the above answers is correct.
- f is the mapping that , to each point M of affix $z \neq 0$, associates the point M' of affix $z' = \frac{4i}{\overline{z}}$.
- **7-** The set of invariant points by f is:
 - a) $\{I(0;2); J(0;-2)\}$.
 - **b)** the set of points of the circle of center O and radius 2.
 - c) the set of points of the axis of ordinates.
 - **d**) the empty set.
- **8-** The points M and M' are such that :
 - a) (OM) and (OM') are perpendicular.
 - **b)** O, M and M' are collinear.
 - c) M and M' belong to the circle of center O and radius 2.
 - **d)** M and M' belong to the axis $(O; \overrightarrow{v})$.

PROBABILITY

The students committee in a high school consists of five girls and three boys . Two members of the committee are selected in succession .

9- The probability that the two members selected are of same sex is equal to :

- **a**) $\frac{17}{32}$.
- **b**) $\frac{13}{28}$.
- **c**) $\frac{13}{14}$.
- **d**) $\frac{15}{32}$.

10- The probability that the second member selected is a girl knowing that the first is a boy, is equal to :

- **a**) $\frac{5}{7}$.
- **b**) $\frac{4}{7}$.
- c) $\frac{15}{56}$.
- **d**) $\frac{3}{7}$.

11- A and B are two events of a certain experiment,

If $p(\overline{A}) = \frac{5}{8}$, $p(B) = \frac{1}{2}$ and $p(A \cap \overline{B}) = \frac{1}{4}$, then $p(B/\overline{A})$ is equal to:

- **a**) $\frac{3}{4}$.
- **b**) $\frac{1}{4}$.
- c) $\frac{3}{8}$.
- **d**) $\frac{3}{5}$.

a box F containing 1 red balls, 2 white balls and 3 yellow ones. We randomly draw 2 balls from each box.

- **12-** The probability that the 4 balls have the same color is equal to :
 - **a**) $\frac{1}{7}$.
 - **b**) $\frac{1}{35}$.
 - c) $\frac{2}{35}$.
 - **d**) 0.4.
- 13- The probability that only 3 of the 4 balls are yellow is equal to:
 - **a**) $\frac{5}{63}$.
 - **b**) $\frac{2}{7}$.

 - **d**) non of the above answers is correct.

Two basket ball teams A and B are to play a series of three games such that the team who wins two games will win the series .

We know that , in each game , the probability that team A wins is equal to $\frac{2}{3}$.

- 14- The probability that team B will win the series is equal to:
 - **a**) $\frac{4}{27}$.
 - **b**) $\frac{1}{9}$.
 - **c**) $\frac{7}{27}$.
 - **d**) $\frac{4}{9}$.
- 15- Knowing that team A won the series, the probability that team B won the first game is equal to:
 - **a**) $\frac{2}{7}$.
 - **b**) $\frac{1}{5}$. **c**) $\frac{2}{7}$.

 - **d**) $\frac{2}{5}$.

EQUATIONS AND INEQUALITIES

16- The solution set of the inequality $\exp(\ell n(4-x^2)) \ge 1-2x$ is:

- a) [-1;3].
- **b)** $]-\infty$; $-1] \cup [3; +\infty[$.
- c)]-2;2[.
- **d**) [-1; 2[.

17- The solution set of the inequality $e^{\frac{1}{x}} > -e^{-\frac{1}{3}}$ is:

- **a**) *IR* .
- **b**) $IR \{0\}$.
- c) [-3;0[.
- **d**) [-3;0].

18- The solution set of the equation $e^{4x} - e^{2x} = 2$ is:

- a) $\{-1; 2\}$.
- **b**) $\{\ell n 2\}$.
- **c**) $\{\ell n1\}.$
- $\mathbf{d)} \ \left\{ \ell n \sqrt{2} \right\}.$

19- The solution set of the inequality $\ell n(4-\sqrt{4-x}) < \ell n2$ is:

- a) [-12; 4].
- **b**)]-12;4[.
- **c**)]-12;0[.
- d) non of the previous answers is correct.

20- The solution set of the inequality $\ell n(x-1) + \ell n(x-3) \le 3\ell n2$ is:

- **a**)]3;5].
- **b**) [3;5[.
- c) $]3; +\infty[$.
- **d**) [-3; 5[.

FUNCTIONS

The plane is referred to a direct orthonormal system $(O; \overrightarrow{i}, \overrightarrow{j})$

21- The function f defined on IR by $f(x) = \begin{cases} 1 - e^{x-1} & \text{if } x \le 1 \\ -\ell n x & \text{if } x > 1 \end{cases}$ is :

- a) continuous and not differentiable at 1.
- **b)** differentiable and not continuous at 1.
- c) continuous and differentiable at 1.
- **d)** neither continuous nor differentiable at 1.

The function h is defined on $]0; 2[\cup]2; +\infty[$ by $h(x) = \frac{\ell n x}{x-2}$.

22- $\lim_{x\to 0^+} h(x) = \ell_1$ and $\lim_{x\to +\infty} h(x) = \ell_2$ where :

- a) $\ell_1 = +\infty$ and $\ell_2 = -\infty$.
- **b)** $\ell_1 = -\infty$ and $\ell_2 = 0$.
- c) $\ell_1 = -\infty$ and $\ell_2 = -\infty$.
- **d)** $\ell_1 = +\infty$ and $\ell_2 = 0$.

23- $\lim_{x \to 2^{-}} h(x) = L_1$ and $\lim_{x \to 2^{+}} h(x) = L_2$ where :

- a) $L_1 = -\infty$ and $L_2 = -\infty$.
- **b)** $L_1 = -\infty$ and $L_2 = +\infty$.
- c) $L_1 = -\infty$ and $L_2 = 0$.
- **d**) $L_1 = 0$ and $L_2 = +\infty$.

The function g is defined on]0; $+\infty[$ by $g(x) = x^2 \left(\frac{3}{2} - \ln x\right)$.

The representative curve (C) of g cuts the axis of abscissas at a point A.

- **24-** The tangent to (C) at A cuts the axis of ordinates at the point with ordinate:
 - a) $-e\sqrt{e}$.
 - **b**) $e\sqrt{e}$.
 - **c**) e^3 .
 - **d**) e^2 .
- 25- The tangent to (C) at the point of inflection cuts the axis of abscissas at the point with abscissa:
 - a) $\frac{1}{4}$.
 - **b**) -2.
 - **c**) $\frac{7}{4}$.
 - **d**) 1.

The function f is defined on IR by $f(x) = (x+1)e^{-x}$.

Let (γ) be the representative curve of f.

26- The tangent to (γ) at the point of abscissa α cuts the axis of ordinates at the point of ordinate $\beta = 1$

- **a**) $(\alpha^2 + 1)e^{-\alpha}$.
- **b**) $\alpha^2 e^{-\alpha}$.
- c) $(\alpha^2 + \alpha + 1)e^{-\alpha}$.
- **d**) $\alpha^2 e^{-\alpha}$.

27- Let S(m) be the measure, in units of area, of the area of the domain bounded by (γ) , the two axes of coordinates and the straight line of equation x = m where m > 0; $\ell im S(m) =$

- a) e.
- **b**) 1.
- **c**) e+1.
- **d**) 2.

The function F is defined on]0; $+\infty[$ by $F(x) = x \ln x - \ln x$.

Let (L) be the representative curve of F.

28- The sign of F(x) is such that :

- **a)** F(x) < 0 in]0; 1[and F(x) > 0 in]1; $+\infty$ [.
- **b**) For all x in $]0; +\infty[, F(x) \ge 0]$.
- c) F(x) > 0 in]0; 1[and F(x) < 0 in $]1; +\infty[$.
- **d)** For all x in $]0; +\infty[, F(x) \le 0$.

29- The straight line of equation y = 2x - 2 cuts (L) at the points of respective abscissas:

- **a)** 1 and e^2 .
- **b)** 2 and d = e.
- c) 1 and e.
- **d**) \sqrt{e} and 1.

30- The curve (L):

- a) does not have any common point with the axis of abscissas.
- \mathbf{b}) cuts the axis of abscissas at the points of abscissas 0 and 1.
- c) is tangent to the axis of abscissas at the point of abscissa 1.
- **d**) is tangent to the axis of abscissas at the point of abscissa e.

INTEGRALS

31-
$$\int_{0}^{\ln 2} \frac{e^x}{e^x - 3} dx$$
 is equal to:

- a) $\ell n2$.
- **b)** $-\ell n2$.
- \mathbf{c}) -1.5.
- **d)** non of the above answers is correct.

32-
$$\int_{-1}^{1} \left(2x + \frac{x+1}{x^2 + 2x + 3}\right) dx$$
 is equal to:

- **a)** $2 + \ell n \sqrt{3}$.
- **b)** $\ell n3$.
- c) $\ell n \sqrt{3}$.
- **d)** $2 + \ell n 3$.

33-
$$\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \tan^9 x \, dx$$
 is equal to:
a) 0.

- **b**) $2(\sqrt{3})^{10}$.
- c) $0.2(\sqrt{3})^{10}$.
- **d**) non of the above answers is correct.
- **34-** f is a continuous function defined on IR by $f(x) = \begin{cases} 2x-2 & \text{if } x < 1 \\ \ell n x & \text{if } x \ge 1 \end{cases}$; $\int_{-\infty}^{e} f(x) dx$ is equal to :
 - **a**) 8.
 - **b**) -8.
 - c) -10.
 - **d)** non of the above answers is correct.
- **35-** The function g is defined on $]-\infty$; [0] by g(x) = ln(-x).

An antiderivative G of g is defined on $]-\infty$; 0[by G(x) = :

- a) $x \ell n(-x) + x$.
- **b**) $-x \ln(-x) + x$.
- c) $-x \ln(-x) x$.
- **d)** $x \ell n(-x) x$.

TRANSFORMATIONS

The plane is referred to a direct orthonormal system $(O; \overrightarrow{u}, \overrightarrow{v})$

In the figure , ABCD and EFBA are two direct squares .

Let T be the translation of vector \overrightarrow{CD} and S the similitude

of center A , ratio $\sqrt{2}$ and angle $\frac{\pi}{4}$.

a)
$$T \circ S(B) = D$$
 and $S \circ T(B) = D$

b)
$$T \circ S(B) = A$$
 and $S \circ T(B) = A$.

c)
$$T \circ S(B) = D$$
 and $S \circ T(B) = A$.

d) non of the previous answers is correct.

37- The points $T \circ S(E)$ and $S \circ T(F)$ are such that :

a)
$$T \circ S(E) = E$$
 and $S \circ T(F) = C$.

b)
$$T \circ S(E) = B$$
 and $S \circ T(F) = F$.

c)
$$T \circ S(E) = F$$
 and $S \circ T(F) = E$.

d)
$$T \circ S(E) = E$$
 and $S \circ T(F) = F$.

38- The ratio k and the angle α of the similar tude $T \circ S$ are :

a)
$$k = \frac{1}{\sqrt{2}}$$
 and $\alpha = \frac{\pi}{4}$.

b)
$$k = \sqrt{2}$$
 and $\alpha = \frac{\pi}{4}$.

c)
$$k=2$$
 and $\alpha=-\frac{\pi}{4}$.

d) non of the previous answers is correct.

g is the transformation defined by its complex relation $z' = (1 - \sqrt{3}i)z + 3i$.

39- The image by g of a circle of radius $\sqrt{2}$ is a circle of area:

a)
$$2\pi$$
 units of area.

b)
$$4\pi$$
 units of area.

c)
$$8\pi$$
 units of area.

d)
$$4\sqrt{2} \pi$$
 units of area.

40- If $f = g \circ g \circ g$, then f is:

a) the central symmetry of center
$$G(0; \sqrt{3})$$

b) the similitude of center
$$L(-\sqrt{3};0)$$
, ratio 2 and angle $-\frac{\pi}{2}$.

c) the similar of center
$$I(\sqrt{3}; 0)$$
, ratio 8 and angle $-\frac{\pi}{3}$

d) the dilation (homothecy) of center
$$J(\sqrt{3}; 0)$$
 and ratio -8 .

Grille de correction

Question	Réponse	Question	Réponse
1	С	21	С
2	b	22	d
3	d	23	b
4	С	24	С
5	b	25	a
6	a	26	c
7	d	27	d
8	a	28	b
9	b	29	a
10	a	30	С
11	d	31	b
12	С	32	c
13	b	33	a
14	c	34	b
15	b	35	d
16	d	36	c
17	b	37	d
18	d	38	b
19	С	39	С
20	a	40	d