Connaissances professionnelles écrites Série 2019

Installatrice-électricienne CFC Installateur-électricien CFC

PQ selon orfo 2015

Position 7
Technique des systèmes électriques, incl. bases technologiques

Nom:	Prénom:	N° de candidat:	Date:

90	Minutes	21	Exercices	13	Pages	44	Points
----	---------	----	-----------	----	-------	----	--------

Moyens auxiliaires autorisés:

- Règle, équerre, chablon
- Recueil de formules sans exemple de calcul
- Calculatrice de poche, indépendante du réseau (tablettes, smartphones, etc. ne sont pas autorisés)

Cotation – Les critères suivants permettent l'obtention de la totalité des points:

- Les formules et les calculs doivent figurer dans la solution.
- Les résultats sont donnés avec leur unité.
- Le cheminement vers la solution doit être clair.
- Les réponses et leur unité doivent être soulignés deux fois.
- Le nombre de réponses demandé est déterminant.
- Les réponses sont évaluées dans l'ordre.
- Les réponses données en plus ne sont pas évaluées.
- Le verso est à utiliser si la place manque. Par exercice, un commentaire adéquat tel que par exemple « voir la solution au dos » doit être noté.

Barème	•										
6	5,5	5	4,5	4	3,5	3	2,5	2		1,5	1
44,0-42,0	41,5-37,5	37,0-33,0	32,5-29,0	28,5-24,5	24,0-20,0	19,5-15,5	15,0-11,0	10,5-7,	,0	6,5-2,5	2,0-0,0
Experte	es / Expe	rts									
Page	2	3	4	5 6	5 7	8	9	10	11	12	13
Points:											
Signatu experte			Sigr	nature de erte/expe	:		oints			ote	

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente:

Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2020.

Créé par:

Groupe de travail PQ de l'USIE pour la profession d'installatrice-électricienne CFC / installateur-électricien CFC

Editeur:

CSFO, département procédures de qualification, Berne

1. Grue / travaux de levage

2

Une grue de chantier soulève une charge de 1,4 t en 16 secondes à une hauteur de 7 m.

$$(g = 9.81 \frac{N}{kg})$$

Calculez la puissance utile (puissance mécanique) de la grue.

2. Transformateur

2

Un transformateur monophasé (400 V / 230 V) possède 1000 spires au primaire. Le courant au primaire est de 2,2 A.

Calculez, en négligeant les pertes du transformateur:

a) le courant au secondaire.

1

b) le nombre de spires au secondaire.

1

3.	Systeme d'eclairage		2	
	halle de stockage doit é une 3000 lm.	être éclairée avec des lampes TL de 36 W produisant		
Dime	irement: ension de la halle: dement global:	310 lux Longueur 12,5 m / largeur 10 m 0,4		
a)	Déterminez le nombre	e de TL.	1,5	
b)	Quelle technologie d'é Justifiez votre réponse	éclairage proposeriez-vous comme alternative?	0,5	
une i	Cellule électrochimic lément primaire, ayant résistance de 10 Ω. ourant de 150 mA circu	une force électromotrice à vide de 1,58 V, est chargé avec	3	
a)	Calculez la tension au	x bornes de l'élément.	1	
b)	Calculez la résistance	interne.	2	
				Point par page:

5. Réfrigérateur

3

a) Attribuez la lettre correspondant aux différents composants de ce réfrigérateur.

\bigcirc	Compresseur	0,5
0	Soupape de détente	0,5
0	Condenseur	0,5
	Evaporateur	0,5

b) Cochez pour chaque affirmation si elle est juste ou fausse.

Affirmations	Juste	Fausse	
Il y a une émission de chaleur dans l'environnement de .			
La puissance P d'un réfrigérateur domestique est d'environ 2000 W.			

6. Densité de courant

Evaporateur

2

0,5

0,5

La bobine d'un relais est constituée de fil de cuivre émaillé (d = 0,12 mm). La densité de courant est de 3 A/mm².

Calculez le courant.

3

1

1

7. Circuit mixte

Calculez pour ce circuit:

a) le courant circulant dans R₂.

b) la tension aux bornes de R₄.

c) la résistance R₃.

1

8.	Spire sous tension dans un champ magnétique			2	
a)	Tracez les lignes de champ entre les pôles.			0,5	
b)	Tracez les lignes de champ autour des deux conducte	urs alimentés.		0,5	
c)	Indiquez où a lieu le renforcement et l'affaiblissement d	du champ mag	nétique.	0,5	
d)	Indiquez le sens de rotation de la spire.			0,5	
9. Co	Sources de tension ochez pour chaque affirmation si elle est juste ou fausse.		S	1	
	Affirmations	Juste	Fausse		
	L'électrolyte utilisé dans une batterie au plomb est une solution d'hydroxyde de potassium.			0,5	
	La densité de l'électrolyte des batteries au plomb augmente durant la charge.			0,5	
10	. Photovoltaïque otez deux facteurs qui influent sur la performance d'une ce	llule solaire.		1	
Fa	cteur 1:			0,5	
Fa	cteur 2:			0,5	
					Points par page:

1

0,5

0,5

1

2

1

1

11. Résistances et fréquences des résistances

Cochez pour chaque affirmation si elle est juste ou fausse.

Affirmations	Juste	Fausse
Une résistance ohmique dépend de la fréquence.		
Une inductance avec un noyau de fer bloque le courant continu.		

12. Technologie à courant alternatif

Une lampe de rétroprojecteur de 24 V / 8 A doit être connectée à une tension de 230 V / 50 Hz.

On connecte donc un condensateur en série avec la lampe à incandescence halogène.

Calculez la tension aux bornes du condensateur.

13. Circuits à diodes

a) Quel schéma est un circuit en pont de Graetz.

Entourez la bonne réponse.

b) Quel est le rôle d'un circuit en pont de Graetz?

14. Système triphasé

2

a) Que valent les courants I_{L2} et I_{L3} si les trois récepteurs sont connectés conformément au schéma?

1

Tous les récepteurs sont purement ohmiques.

b) Que se passe-t-il pour le courant dans le conducteur de neutre si l'on ajoute une charge symétrique triphasée de 5,4 kW?

1

Cochez la bonne réponse pour l'affirmation suivante.

Affirmation	ne change pas	augmente	diminue
Le courant dans le conducteur de neutre			

2

15. Charge asymétrique

Déterminez graphiquement le courant dans le conducteur de neutre. Echelle 1 cm \triangleq 1 A.

16. Mise à terre

2

Un bandeau de cuivre de 20 mm x 2,5 mm est posé comme indiqué en traitillé autour du bâtiment à 1 m de celui-ci.

Aux angles du bâtiment, le bandeau est placé conformément à l'illustration.

$$(\rho=8.9~\frac{kg}{dm^3})$$

a) Quelle est la longueur du bandeau?

1

b) Quelle est la masse ce bandeau?

1

2

17. Moteur triphasé

Plaquette signalétique d'un moteur triphasé

Calculez à l'aide des informations de la plaquette signalétique:

a) la puissance active électrique absorbée.

- 1
- b) quelle valeur faut-il régler sur le relais thermique de protection du moteur lorsque le moteur fonctionne sur le réseau 3 x 400 V?

1

18. Puissance et variation de tension

2

Quelle est la puissance d'un chauffe-eau $(400\ V\ /\ 4\ kW)$, si la tension du réseau chute de $7\ \%$?

3

19. Microcontrôleurs programmables

Le schéma logique ci-dessous doit être remplacé par une commande à relais. Vous devez utiliser quatre interrupteurs et un relais.

Dessinez le schéma électrique.

2

0,5

0,5

0,5

0,5

4

2

2

20. Caractéristiques des moteurs

Cochez pour chaque affirmation si elle est juste ou fausse.

Affirmations	Juste	Fausse	
Le rendement est d'environ 30 %.			
Le sens de rotation peut être inversé en croisant les conducteurs L et N.			
Le moteur est également adapté au courant continu.			
Le moteur est utilisé pour les stores en raison de sa petite taille.			

21. Plaque à induction

Lors d'une mesure, vous obtenez les grandeurs électriques suivantes pour un four à induction.

P = 3000 W, U = 400 V, I = 12 A

Calculez:

a) le cos φ de ce circuit.

b) la capacité d'un condensateur connecté en parallèle afin d'améliorer le facteur de puissance à 0,95.

IE_Pos_7_Techn_système_élec_incl_bases_techn_cand_PQ19