Stochastik I

6. Übung

Aufgabe 20 (3 Punkte)

Es seien $\mathbb{X} := \bigcup_{n \in \mathbb{N}} \{x_n\}$ für eine Folge $(x_n)_{n \in \mathbb{N}}$ reeller Zahlen, $\mu := \sum_{x \in \mathbb{X}} \delta_x$, ℓ das Lebesgue-Maß auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ und $f, g \in \mathcal{L}(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ reellwertige Funktionen. Zeigen Sie die folgenden Aussagen:

- (i) Es gilt $f = g \mu$ -f.s. genau dann, wenn f(x) = g(x) für alle $x \in \mathbb{X}$.
- (ii) Es gilt f = g ℓ -f.s., wenn f(x) = g(x) für alle $x \in \mathbb{R} \setminus \mathbb{X}$.

Aufgabe 21 (2 Punkte)

Betrachten Sie die Folge $(f_n) \subset \mathcal{L}_+(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ mit

$$f_n := \left\{ \begin{array}{ll} \mathbbm{1}_{[0,1)} &, & n \text{ ungerade} \\ \mathbbm{1}_{[-1,0)} &, & n \text{ gerade} \end{array} \right.$$

Verifizieren Sie anhand dieses Beispiels, dass die Ungleichung im Lemma von Fatou strikt sein kann, d. h. dass $\int \liminf_{n\to\infty} f_n d\ell < \liminf_{n\to\infty} \int f_n d\ell$.

Aufgabe 22 (3 Punkte)

Umgekehrtes Lemma von Fatou. Es seien $(\Omega, \mathcal{F}, \mu)$ ein Maßraum und $(f_n) \subset \mathcal{L}_+(\Omega, \mathcal{F})$. Weiterhin existiere ein μ -integrierbares $g \in \mathcal{L}_+(\Omega, \mathcal{F})$ mit $f_n \leq g$ für alle $n \in \mathbb{N}$. Zeigen Sie, dass dann

$$\limsup_{n \to \infty} \int f_n d\mu \le \int \limsup_{n \to \infty} f_n d\mu.$$

Hinweis: Wenden Sie das Lemma von Fatou auf die Funktionen $\widetilde{f}_n := g - f_n, n \in \mathbb{N}$, an.

Aufgabe 23 (4 Punkte)

Satz von Scheffé. Es seien $(\Omega, \mathcal{F}, \mu)$ ein Maßraum und $f, f_1, f_2, \ldots \in \mathcal{L}^1(\Omega, \mathcal{F})$ mit $f_n \longrightarrow f$ μ -f.s. Zeigen Sie, dass dann

$$||f_n - f||_1 \longrightarrow 0 \iff \int |f_n| d\mu \longrightarrow \int |f| d\mu.$$

Aufgabe 24 (4 Punkte)

Für feste $a,b \in \mathbb{R}$ mit a < b sei $h \in \mathcal{L}^1([a,b],\mathcal{B}([a,b]),\ell|_{[a,b]})$. Zeigen Sie, dass die durch

$$F(x) := \int_{[a,x]} h \, d\ell_{[a,b]}, \qquad x \in [a,b]$$

gegebene Funktion $F:[a,b]\to\mathbb{R}$ stetig ist.