Lecture 9

Topics

- Concept of Angle Modulation
- Phase Modulation
- Frequency Modulation
- Graphical Representation of PM and FM
- PM <-> FM Conversion

Amplitude Modulation

• **Carrier:** $A\cos(\omega_c t + \theta)$

If we consider θ =0, then the carrier becomes

Acosωct

• In frequency modulation, we will change the frequency of the carrier with respect to m(t) -> ω_c +km(t)

In frequency modulation, we will change the frequency of the carrier with respect to m(t) -> ω_c +km(t)

Upper limit = ω_c +km(t) Lower limit = ω_c -km(t) Let, x=km(t) If k is very small, then ω_c +x and ω_c -x will be very close -> bandwidth will be almost negligible!! Difference (bandwidth) = 2km(t) So, if k->0, b/w->0

Unfortunately, this is not true!!! (In reality, the bandwidth requirement is a lot more than AM, at best equal to AM!!!)

Instantaneous Frequency: ω_c changes constantly with m(t), but frequency is a periodic behaviour (at least over a full/half/quarter cycle)

Fxample
$$\rightarrow$$
 instantaneous velocity displacement, $s(t) = t^3 + t^2 + 2$
 $\Rightarrow ds(t) = v(t) = 3 + 2 + 2 + 4 \leftarrow changes$
 $everce second, so we$

use in stantaneous velocity.

Instantaneous Frequency: ω_c changes constantly with m(t), but frequency is a periodic behaviour (at least over a full/half/quarter cycle)

over a small interval
$$\Delta t$$
, $\phi = A\cos\theta(t)$ and $A\cos(\omega_c t + \phi \theta)_0$ are equal identical $\Rightarrow \phi(t) = A\cos(\omega_c t + \theta_0)$: $t_1 < t < t_2$
So, ω ; $(t) = d\theta$ [instantaneous freq]

Since
$$w_{c}t + \theta_{0}$$
 is tangential write $\theta(t)$, at the that point, the slope of $w_{c}t + \theta_{0} = slope$ of $\theta(t)$

=instantaneous frequency

 $\theta = \int_{-\infty}^{\infty} t (x) dx$

Phase Modulation

Phase modulation;
$$\theta(t) = \omega_c t + \phi \theta + k \rho m(t)$$

Let, $\theta = 0$
 $\theta(t) = \omega_c t + k \rho m(t)$

So PM wave $\Rightarrow \phi_{PM}(t) = A \cos[\omega_c t + k \rho m(t)]$
 $\omega_i(t) = \frac{d\theta}{dt} = \omega_c t k \rho m(t)$

Phase Modulation

Frequency Modulation

Frequency Modulation

Graphical Representation of PM and FM

PM <-> FM Conversion

- Converting PM to FM -> Replace m'(t) by m(t)
- Converting FM to PM -> Replace m(t) by m'(t)

PM <-> FM Conversion

- Which one is better in practice?
 - Phase modulation is better than frequency modulation
 - Even better: Using an in between transfer function (in place of derivative)

