Towards Evaluating Human-Instructable Software Agents

Robert D. Grant, David DeAngelis, Dan Luu, Dewayne E. Perry

Empirical Software Engineering Laboratory
Center for Advanced Research in Software Engineering
University of Texas at Austin

Kathy Ryall

Advanced Information Technologies BAE Systems

25 June 2011

Background

Definition

Bootstrapped Learning is a novel approach to machine learning whose goal is to produce computational agents (e-students) that can be instructed by human teachers in the same ways that humans instruct one another.

Background

Method: Exploratory Case Studies

...leading to future controlled benchmarking experiments

Phase I | What instruction methods would human teachers try to use to teach an e-student?

Phase II Can we use human students to develop a benchmark set of lessons and tests (a curriculum) by which to evaluate e-students' success in learning by natural instruction?

Phase III

Can we use human students to develop a curriculum covering a broader range of instruction methods and increasing the difficulty and complexity of tasks given to e-students?

Hidden Domain

- Must be kept secret until after e-student testing
- Lessons were presented in three forms:
 - by telling,
 - by example,
 - by feedback

E-student Testing

Human Student Testing

- 15 minutes background knowledge
 - Students interacted with the knowledge domain through a simulator
- 15 minutes pre-test
- 3 hours lessons and quizzes
- 30 minutes post-tests

Phase II: Initial Study Design

- Direct analog e-student/e-teacher interaction
- Teacher typed transliterations of e-student curriculum into Google Chat, performed examples on simulator laptop
- Took far too long
- Tedious and error prone
- No protocol for reporting or correcting mistakes
- No way for student to ack

Phase II: Final Study Design

- Self-paced curriculum:
 PDF and PPT lessons
 given directly to students
- Example lessons used screenshots
- Feedback lessons in "choose-your-ownadventure" style
- Faster, more scalable, more consistent, more enjoyable

Phase III

- Domain and testing procedure similar to Phase II
- Curriculum extensions supporting additional aspects of human teaching
 - Learning via analogy
 - Question and Answer
 - Restricted NIM subsets
 - More complex tasks
 - Real-time simulator instead of subject-advanced
- Much more automation: up to 6 students at a time, easily scalable to more
- 75 students total

Qualitative Results

- Human- and e-students differ in fundamental ways
- Small semantic details can be critically important
- Self-pacing and automation were key
- Training versus education was an unexpected issue

Questions?

Phase II Quantitative Results

Quantitative Results

Quantitative Results

