Finding the Next Generations of Tennis Stars

Naoki Tsumoto, Roselyn Rozario, Ankit Gubiligari, Nakul Vadlamudi Data Engineering Platforms for Analytics Group 4

Contents

- 1. Business Use Case
- 2. Project Goals/Research Objective(s)
- 3. Executive Summary
- **4. Methodology:**Data Preparation, Relational Modeling & Relational Database Implementation
- **5. Reporting and Visualization:** Insights, Data Analysis & Visuals
- 6. Conclusion(s):
 Recommendations, Reflection & Lessons Learned
- 7. Appendix:
 Visuals and Sample Code

Business Use Case

- **Situation:** An apparel company is trying to find tennis players who will become the next generation of stars to take after greats like Roger Federer and Rafa Nadal before any other company can.
- Business Problem: The company does not know what kind of players will be successful in the tennis world in the future, and therefore are unsure of which players to sign. The company wants to find the next generation of players before other companies can and sign sponsorship deals with them.
- Strategy: The company has opted to take a data-driven approach. They have hired a group of data scientists to evaluate several years' worth of previous data to determine what factors or metrics drive player performance. The findings of this exploratory data analysis will help the company make strategic decisions, or rather, inform on which players to sign.

Project Goals/Research Objective(s)

How can the apparel company determine which players show talent similar to the greats of the game?

- Perform an exploratory data analysis on tennis data, which includes the following:
 - Player characteristics (e.g., height, dominant hand, country, etc.)
 - Match information (e.g., points won, aces, etc.)
 - Tournament information (e.g., surface type)
- Determine factors that will help inform on player performance.
 - For example, do left-handed players perform better overall? Or do players from a certain country have an advantage on certain types of courts (e.g., grass)?
- Present findings to apparel company so that they can use the factors to determine which players to sign.

Executive Summary

In response to the business problem, a dataset on tennis was found, which focuses on players, rankings, tournaments and matches.

Used Excel and SQL to work with the extracted data from Kaggle.

Conducted an exploratory data analysis was conducted to look at factors that drive player performance based on the dataset.

Showcased findings/insights as visuals created using Tableau and Python.

Methodology

Methodology Overview

Pipeline

Tools

Extract/Ingest

Data Preparation (i.e. Pre-Processing)

Store (i.e. Database Construction)

Analyze

Visualize/Report

Data Source

Dataset: ATP Matches

Kaggle serves as the data source hub in that a dataset was found on "ATP Matches," specifically of data of matches from 1968 until 2022.

CSV Files in Dataset:

- 1. ATP Matches
- 2. ATP Players
- 3. ATP Rankings

Per the description on Kaggle, under those listed to be given credits, <u>Tennis Abstract</u> was mentioned, which appears to be a location for tennis statistics/information and is likely where the dataset or its information was extracted from.

Dataset & Design Considerations

Category	Consideration
Data Preparation	 There are a lot of data types (e.g., INT, CHAR, etc.) in the CSV files. When creating the tables, the types will need to be checked to ensure they match the data.
Data Integrity	 Foreign keys are needed when creating relationships between tables. In some cases, a column needs to be created to serve as the primary key which in turn will be a foreign key. By ensuring that the CONSTRAINT clause is being used in conjunction with the foreign key, it preserves referential integrity, and that the data is being added accurately.
Data Consistency	 The dataset spans over 50 years, during which tennis rules or formats might have changed. Such changes might affect data consistency.
Data Redundancy	 With multiple CSV files like match data, player data, and ranking data, there's potential for data redundancy.
Data Tools	• Running queries that return large amounts of data may impact the run time in MySQL and Tableau.
Complex Queries	 Complex queries might be needed to generate analyses or reports and to join data from the various tables that have been created from the multiple CSV files.
NULL Values	 Several columns have NULL values, which will have to be taken into consideration when running queries and analyses.

Relational Database Implementation Overview

Download

CSVs

Extract Transform Load

ATP Matches Dataset

1. ATP Matches

Tournament information, surface, winning and losing player information, and game information (e.g., points, aces, breakpoints, etc.)

2. ATP Players

Player information (e.g., name, dominant hand, country, DOB, height, etc.)

3. ATP Rankings

Rank, points, player and ranking date

Pre-Processing

- Reviewed data in Excel.
- Determined which columns need cleaning and data types needed.
- Investigated amount of data available by reviewing NULL values.

Relational Database (Database Creation & Data Loading)

- Used SQL to create an EER model that is normalized and based off the Classical Model Schema.
- Created DML and DDL scripts to create a structured and normalized database and load extracted data from CSV files.

Extract, Transform and Load (ETL) Process

- Downloaded data from Kaggle.
- •3 CSV files were extracted covering information on players, matches and rankings.

Data

Data Preparation

- Pre-processing involved examining the columns, NULL values and data types.
- Normalization was done on the data.

- •The Classical Model Diagram structure was used.
- •The data first is represented as a Conceptual and Logical Model Design, which the the EER model is based off of.

Relational Modeling and Database Schema

Database Creation and Data Load

- •DDL script created for database structures, such as tables.
- •DML script created for loading data from extracted CSV files into relational tables created.

 Database contains at least 5 relational tables in 3NF+ form.

Relational Database

Normalization

1NF

2NF

 The data from the 3 CSV files were used for normalization.

3NF

- The data was first put in 1NF then 2NF and finally in 3NF.
- The result of the normalization process is 6 relationship database tables.

^{*}Sample data from the CSV files used for normalization.

^{**}Not all columns in each table shown in image due to space limitations.

Relational Modeling

Initial Form

atp matches till 2022 tourney_id VARCHAR(255) tourney_name VARCHAR(255) surface VARCHAR(255) draw size INT tourney_level CHAR(1) tourney date DATE ⊋match num INT winner id INT winner seed INT winner_entry VARCHAR(255) winner name VARCHAR(255) winner_hand CHAR(1) winner ht INT winner_joc CHAR(3) winner_age INT ○loser id INT loser_seed INT √loser_entry VARCHAR(255)

31 more.

- atp_players_till_2022 ▼

 player_id INT

 name_first VARCHAR(255)

 name_last VARCHAR(255)

 hand CHAR(1)

 dob DATE

 ioc CHAR(3)

 height INT

 wikidata_id VARCHAR(255)
- atp_rankings_till_2022 ▼

 ◇ ranking_date DATE

 ◇ rank INT

 ◇ player INT

 ◇ points INT

Conceptual and Logical Model Design

Enhanced Entity Relationship (EER) Model

Classical Model Schema

- 1. players
- 2. countries
- 3. rankings
- 4. players_matches
- 5. tournaments
- 6. matches

Database Creation & Data Loading

DDL

- Created the database structure, such as by creating tables.
- Ensured data types appropriate for attribute.
- Preserved data integrity through primary and foreign keys and CONSTRAINT clauses.

DML

- Loaded data from extracted CSV files into relational tables.
- Cleaned up and formatted data through SQL queries.

Examples from DDL and DML Scripts

```
-- Importing Data - `Rankings` Table

LOAD DATA INFILE 'C:\\ProgramData\\MySQL\\MySQL Server 8.0\\Uploads\\atp_rankings_till_2022_ranking_id.csv'
INTO TABLE Rankings
FIELDS TERMINATED BY ','
OPTIONALLY ENCLOSED BY '''
LINES TERMINATED BY '\n'
IGNORE 1 LINES

(
    ranking_id,
    @ranking_date,
    `rank',
    player_id,
    @points_value
)
SET
ranking_date = STR_TO_DATE(@ranking_date, '%Y%m%d'),
points = CASE
    WHEN @points_value = ' ' OR @points_value REGEXP '^[^0-9]+$' THEN NULL
    ELSE CAST(@points_value AS SIGNED)
END;
```

Data Analysis, Reporting & Visualization

Data Analysis Overview

• Factors that drive player performance were approached in several folds:

Factor	Examples		
Player Characteristics	AgeCountryDominant Hand		
Players' Game Performance	AcesService PointsDouble Faults		
External	Surface TypeEntrySeed		
Combined (e.g., Player Characteristics and External)	Player Winning Counts by Country		

SQL (i.e., through moderately completely queries)

Tableau

Python

```
# Filter player stats for selected countries
selected_countries = ['USA', 'ARG', 'GER', 'FRA', 'AUS', 'ESP']
filtered_player_stats = player_stats[player_stats['Country'].isin(selected_countries)]

# Prepare win/loss data from match data
match_data['Winner'] = 1 # Marking the winner
match_data['Loser'] = 0 # Marking the loser
win_data = match_data[['Winner Id', 'Winner']].rename(columns={'Winner Id': 'Player Id', 'Winner': 'Win'})
loss_data = match_data[['Loser'] Id', 'Loser']].rename(columns={'Loser Id': 'Player Id', 'Loser': 'Win'})
combined_results = pd.concat([win.data, loss_data])
win_rate_data = combined_results.groupby('Player Id').mean().reset_index()
```

Player Characteristics

Winning Probability by Hand Used

Hand	Winning Probability		
Left	14.46%		
Right	84.48%		

Right-handed players appear to be more likely to win. This is purely based on correlation and does not imply causation.

Age vs. Performance and Winning Probability

Age Group	Winning Probability		
Teen	3.93%		
205	78.18%		
30s	16.86%		
40S	0.32%		
50s	0.01%		
Other	0.71%		

- Players in their 20s have the highest probability to win followed by those in their 30s.
- Performance levels were suboptimal at the youngest age extremes.

Player Country

Total Winner Counts by Country

European, Americas and Australia have the most wins in terms of countries compared to the rest of the world.

Total Winner Counts in Surface Types by Country

Clay and Hard surface types seem to be where players from most, if not all, countries perform the best.

External (Tournament) Factors

Entry Type	Winning Probability		
Special Exempt	91.39%		
Qualifier	5.39%		
Wild Card	2.55%		
Lucky Loser	0.57%		
Protected Ranking	0.09%		

Seed Group	Winning Probability		
Low	63.15%		
Lower Medium	0.96%		
Upper Medium	5.14%		
High	30.75%		

Entry Type	Winning Probability (Loser)		
Special Exempt	85.32%		
Qualifier	9.06%		
Wild Card	4.43%		
Lucky Loser	1.09%		
Protected Ranking	0.11%		

Seed Group	Winning Probability (Loser)			
Low	81.38%			
Lower Medium	0.73%			
Upper Medium	3.46%			
High	14.43%			

Player Game Performance

Not all factors were insightful in this visual form and that too told us something.

Players' Game Performance - Most Insightful Factors

- The system is overwhelmingly in favor of players with strong serves, indicating that they tend to win.
- The fact that aces are frequently scored suggests a clear distinction in skill level even among professionals.
- Therefore, monitoring specific indicators such as control and speed can help in identifying players with significantly stronger serves.

Player Game Performance - Top 6 Performing Countries

In general, there is a positive association between winning rate and total aces hit, as well as between winning rate and total service points won.

Player Ranking vs. Performance

Player's Rank vs. Performance (Aces)

- Number of aces scored exhibits a positive correlation with player rank, rising consistently as ranks increase.
- There is a noticeably consistent decline in the number of aces scored as ranks descend.

Player's Rank vs. Performance (Break Points Saved)

• Similarly, to aces scored, breakpoints won also steadily decreases as player rank decreases.

Tableau Dashboard Demo

Conclusion(s)

Recommendations

- Focus on players from USA, Australia, Spain, France, Germany and Australia.
 - Players from these countries play best on Clay and Hard surfaces. If players from the top 6 countries are signed, they should be encouraged to play in tournaments with these surfaces.
 - Observe a player's past game performance:
 - ☐ If they are more likely to win service points and hit aces, they have a positive association with winning and ranking higher.
 - ☐ More double faults mean their losing probability increases.
- Special Exempt players have the highest chance of winning.
- Players should be encouraged to play as many tournaments as they can, as earning any form of points will help their ranking. Higher ranks mean lower seeds, which means there is a higher probability of winning.
- Players are most in their prime in their 20s, so those players should be targeted. However, players in their 30s show success and can be considered too.
- Player's dominant hand is not a factor that should be considered as the findings do not point to causation.

Reflection

Scope for Improvement

- Given that the data was collected over a period of time, a historical time analysis could have been done to evaluate performance on a yearly basis.
- There were a lot of NULL values for certain attributes. Using other sources to fill the gaps could have been done.
- Using models and regression analysis to determine ideal predictors of interest to explain player performance.

Corrective Measures

- Using more interaction predictors, such as player hand by country.
- Using platforms such as OpenRefine or R for data preparation instead of SQL.

Lessons Learned

Group's Perspective

- Learning the intricacies of tennis datasets, tennis rules, and the data needed when it comes to analyzing tennisrelated projects.
- Creating DDL and DML scripts and code based off extracted data.

Client Perspective

- Factors that they should look for when considering players to sponsor.
- The factors go beyond just looking at one specific aspect, and instead should include interactions/combined factors.

Appendix

Examples of SQL Code and Output*

SQL queries included using joins, CASE statements, functions sorting and grouping data, and created view.

```
SELECT
   c.ioc AS countryInitials,
   p.name first AS firstName
   p.name_last AS lastName,
   COUNT(a.winner id) as winnerCount
   countries c
       INNER JOIN
   players p ON c.country_id = p.country_id
   players_matches m ON p.player_id = m.player_id
       INNER JOIN
   matches a ON m.match_id = a.match_id
       INNER JOIN
   tournaments t ON a.tourney_id = t.tourney_id
   c.ioc, p.name_first, p.name_last
ORDER BY
   c.ioc, COUNT(a.winner id) DESC;
```

```
CREATE VIEW WinnerSeedWinningProbability AS

SELECT

CASE

WHEN m.winner_seed BETWEEN 1 AND 10 THEN 'High'

WHEN m.winner_seed BETWEEN 11 AND 20 THEN 'Upper Medium'

WHEN m.winner_seed BETWEEN 21 AND 30 THEN 'Lower Medium'

ELSE 'Low'

END AS seedGroup,

CONCAT(ROUND(100.0*COUNT(*)/(SELECT COUNT(*) FROM matches),2),'%') AS winningProbability

FROM players p

JOIN matches m

ON p.player_id=m.winner_id

GROUP BY seedGroup

ORDER BY COUNT(*)/(SELECT COUNT(*) FROM matches) DESC;
```

player_id	name_first	name last	WinnerName	WinnerAge	LoserName	LoserAge	TournevLevel
100001	Gardnar	Mullov	Mark Cox	54	Gardnar Mulloy	63	A
100002	Pancho	Segura	Torben Ulrich	50	Richard Gonzalez	53	G
100003	Frank	Sedgman	Tony Roche	47	Victor Eke	49	М
100004	Giuseppe	Merlo	Teimuraz Kakulia	46	Ray Keldie	46	M
100005	Richard	Gonzalez	Vijay Amritraj	48	Zeljko Franulovic	48	M
100006	Grant	Golden	Larry Turville	29	Grant Golden	49	M
100007	Abe	Segal	Zeljko Franulovic	41	Pieter Soeters	41	G
100009	Istvan	Gulyas	Zeljko Franulovic	42	Wilhelm Bungert	45	M
100010	Luis	Ayala	Tony Roche	39	Steve Turner	49	M
100011	Torben	Ulrich	Wilhelm Bungert	45	Torben Ulrich	53	M
100012	Nicola	Pietrangeli	Zeljko Franulovic	39	Thomas Lejus	44	M
100013	Neale	Fraser	Syd Ball	41	Takeshi Koura	42	G
100014	Trevor	Fancutt	Trevor Fancutt	34	Trevor Fancutt	40	G
100015	Sammy	Giammalva	Roy Emerson	32	Sammy Giammalva	37	G
100016	Ken	Rosewall	Zeljko Franulovic	46	Zeljko Franulovic	49	M
100017	Mal	Anderson	Vijay Amritraj	47	Yong Ho Chung	47	G
100018	Barry	Mackay	Tom Gorman	35	William Brown	39	M
100019	Wieslaw	Gasiorek	Zeljko Franulovic	40	Wieslaw Gasiorek	39	M
100020	Alejandro	Olmedo	Vladimir Zednik	47	Zan Guerry	41	M
100021	Ashley	Cooper	Raul Ramirez	32	Isao Watanabe	37	G
100022	Roy	Emerson	Zeljko Franulovic	41	Zeljko Franulovic	49	M
100023	Ramanat	Krishnan	Wilhelm Bungert	40	Warren Jacques	40	M
100024	Jan Erik	Lundquist	Wilhelm Bungert	38	Zeljko Franulovic	38	M
100025	Barry	Phillips M	Zeljko Franulovic	41	William Brown	64	М

^{*}Please review SQL files for full DML, DDL, and Queries.

Snapshot of Python Code for Data Analysis

```
[5]: # Filter player stats for selected countries
      selected_countries = ['USA', 'ARG', 'GER', 'FRA', 'AUS', 'ESP']
      filtered_player_stats = player_stats[player_stats['Country'].isin(selected_countries)]
      # Prepare win/loss data from match data
      match_data['Winner'] = 1 # Marking the winner
      match data['Loser'] = 0 # Marking the loser
      win_data = match_data[['Winner Id', 'Winner']].rename(columns={'Winner Id': 'Player Id', 'Winner': 'Win'})
      loss_data = match_data[['Loser Id', 'Loser']].rename(columns={'Loser Id': 'Player Id', 'Loser': 'Win'})
      combined_results = pd.concat([win_data, loss_data])
      win rate data = combined results.groupby('Player Id').mean().reset index()
 [6]: # Merge with the filtered player stats data
      merged_data = pd.merge(filtered_player_stats, win_rate_data, on='Player Id', how='inner')
 [7]: # Apply thresholds to filter out potential non-active players or incomplete records
      threshold_aces = 10
      threshold_service_points = 50
      filtered data = merged data[(merged data['Total Aces Won'] >= threshold aces) &
                                  (merged data['Total Service Points Won'] >= threshold service points)]
 [8]: # Perform linear regression analysis
      X_aces_filtered = sm.add_constant(filtered_data[['Total Aces Won']])
      X_service_points_filtered = sm.add_constant(filtered_data[['Total Service Points Won']])
      y_filtered = filtered_data['Win']
      model_aces_filtered = sm.OLS(y_filtered, X_aces_filtered).fit()
      model_service_points_filtered = sm.OLS(y_filtered, X_service_points_filtered).fit()
[12]: # Total Aces Won vs Win Rate plot with green scatter points and a red regression line
      fig1, ax1 = plt.subplots(figsize=(7, 6))
      sns.regplot(x='Total Aces Won', y='Win', data=filtered_data, ax=ax1,
                  scatter_kws={'color': 'green', 'alpha': 0.5}, line_kws={'color': 'red'})
      ax1.set title('Total Aces Won vs Win Rate')
      ax1.set xlabel('Total Aces Won')
      ax1.set_ylabel('Win Rate')
      plt.show()
```

- Extracted data from SQL
- Used Python to clean data up further for regression analysis
- 3. Created visuals based on analysis

Visualization 1 (Tableau) Winner Counts by Country

Visualization 2 (Tableau) Winner Counts by Surface

Visualization 3 (Tableau) Player's Game Performance

Visualization 4 (Tableau) Players' Game Performance - Most Insightful Factors

Visualization 5 (Python) Total Aces Won and Winning Rate

Visualization 6 (Python) Total Service Points Won and Winning Rate

Visualization 7 (Tableau): Total Points Earned by Year of Birth

Visualization 8 (Tableau): Evaluation of Player Rank vs. Performance (Number of Aces Hit)

Visualization 10 (Tableau):
Evaluation of Player Rank vs. Performance (Number of Breakpoints Won)

Dashboard 1 (Tableau)

