Model Card - Natural Product Fingerprint

Model Details

- Developed by University of Münster, Germany, 2021.
- Multilayer Perceptron and Autoencoder.
- Trained to extract Natural Product Score and Natural Product Fingerprint.

Intended Use

- Intended to encode implicit natural product information while keeping enough information on the chemical space of those natural products.
- Not intended to do fingerprintbased virtual screening (FBVS).

Factors

 Fingerprints are built using fragments frequently found in natural products.

Metrics

- Area under the curve (AUC), measures area under receiver operating characteristics (ROC) curve, it ranges from 0 to 1 while 1 is the perfect classification.
- Enrichment Factor, measures how good active molecules are identified based on similarity.

Recommendation

 Improvement could be achieved by per-training the neural networks on completely unrelated data, the focus here is on correctly predicting descriptors and only the final stage models are trained to identify natural products.

Training Data

- A dataset consisting of natural products and synthetic molecules was made, the Coconut database [2] was updated and used, synthetic molecules were in Zinc [3] "instock" library.
- Synthetic compounds had to have similarity of over 0.5 to assure the performance of the neural network.

Validation Data

- Datasets were collected by Seo et al. [4].
- First dataset to differentiate between synthetic and natural products.
- Second dataset to differentiate between active and inactive natural products
- Third dataset is used to combine the use of the other two, to differentiate between both synthetic and natural and active and inactive.

Quantative Analysis

Fig. 1. Distribution of Natural Product Likeness

Fig. 2. Similarity of the NP_AUX and Baseline versus the ECFP4 before and after training

References

- [1] Menke, J., Massa, J., & Koch, O. (2021). Natural product scores and fingerprints extracted from artificial neural networks. Computational and Structural Biotechnology Journal. https://doi.org/10.26434/chemrxiv.14347073
- [2] M. Sorokina, P. Merseburger, K. Rajan, M.A. Yirik, C. Steinbeck *COCONUT online: Collection of Open Natural Products database* J Cheminformatics, 13 (2021), pp. 1-13
- [3] T. Sterling, J.J. Irwin **ZINC 15-ligand discovery for everyone** J Chem Inform Modeling, 55 (2015), pp. 2324-2337
- [4] M. Seo, H.K. Shin, Y. Myung, S. Hwang, K.T. No **Development of Natural Compound Molecular Fingerprint (NC-MFP) with the Dictionary of Natural Products (DNP) for natural product-based drug development** J Cheminformatics, 12 (2020), p. 6