

Obliczanie odwrotności macierzy nad ciałem \mathbb{Z}_p

Dla macierzy A nad ciałem Z_p rozmiaru $n \times n$ macierz B tworzymy następująco: (1) zamieniamy wiersz r z ostatnim wierszem A, (2) zamieniamy kolumnę c z ostatnią kolumną A, (3) usuwamy ostatni wiersz oraz ostatnią kolumnę A. Napisz program, który dla danych na wejściu macierzy kwadratowej A oraz A^{-1} rozmiaru n nad ciałem Z_p oraz liczb r oraz c sprawdzi, czy B jest odwracalna i w przypadku odpowiedzi pozytywnej wypisze macierz odwrotną do B.

Twój program powinien działać w czasie $O(n^2)$.

Wejście

Pierwsza linia wejścia zawiera liczbę z ($1 \le z \le 100$) oznaczającą liczbę zestawów danych wejścia oraz liczbę pierwszą p. Każdy zestaw jest opisany następująco:

Pierwsza linia zestawu zawiera liczbę n oznaczającą rozmiar macierzy wejściowej oraz liczby r oraz c ze zbioru $\{0, \ldots, n-1\}$. Kolejne n linii zawiera kolejne wiersze macierzy A, których elementy (z ciała Z_p) są oddzielone spacją. Następne n linii zawiera kolejne wiersze macierzy A^{-1} , których elementy są oddzielone spacją.

Wyjście

W przypadku, gdy B jest odwracalna wypisz YES oraz elementy macierzy B^{-1} (w każdej z kolejnych n-1 linii wiersze macierzy B^{-1}); NO, w przeciwnym przypadku.

Przykład

Wejście:	Wyjście:
3 7	YES
2 0 0	4
1 1	NO
1 2	YES
2 6	1
6 1	
2 0 1	
1 0	
0 1	
1 0	
0 1	
2 0 1	
0 1	
1 0	
0 1	
1 0	