

Exploiting Asymmetry in Performance and Security Requirements for I/O in High-end Computing

HEC FSIO Conference '08

Patrick McDaniel (co-PI) and Anand Sivasubramaniam (PI)

August 6, 2008

Question

- How do you serve divergent security and performance requirements of the high end storage systems?
 - What security can you afford (optimization and scheduling)?
 - QDSL (Queuing model for Differential Service Levels)
 - How you provide security (policy/architecture)?
 - ASD (Autonomously Secure Disks)

QDSL: Differential Service Levels

- Optimization: how do I optimize "goodness of service" in QDSL?
 - Response time (minimize response under target revenue per unit time)?
 - Revenue (maximize revenue under hard minimum response time)?

Chaitanya, S., Urgaonkar, B., and Sivasubramaniam, A. 2008. QDSL: a queuing model for systems with differential service levels. SIGMETRICS Perform. Eval. Rev. 36, 1 (Jun. 2008), 289-300.

QDSL Contributions/Results

- Characterization of QDSL class capturing environment
 - fixSL (fixed service level) reduced to MDP (avg. reward max.)
 - varSL (variable) reduced to MDP
- Performance analysis (qSecStore)
 - Service increasing security levels (integ, conf, integ+conf)
 - On live iSCSI disk system over IP (fixed 16k blocks reqs)

- (a) Resp. time bound 0.2 msec
- (b) Resp. time bound 0.6 msec
- (c) Resp. time bound 1.2 msec

Figure 5: rQDSL policy meeting the three response time bounds for a range of arrival rates

Autonomously Secure Disks

- Disks now provide more computing power and security features (FDE) and have ancillary storage (e.g., NVRAM)
- ... thus, they provide a platform for enforcing a tightly constrained security perimeter around sensitive data,

... with smaller and more stable TCB and

... moves work to storage.

Rootkit Resistant Disks

- Rootkits are now common and difficult to defend against.
 - Replaces operating system components and bypasses internal security measures (e.g., system call table replacement)
 - Often well hidden/difficult to detect

- Idea: use the ASD to isolate persistent storage from OS
 - Label all disks blocks with a mutable/immutable label
 - Use security token to ensure protected blocks modified only under the control of the system administrator.

Kevin Butler, Stephen McLaughlin, and Patrick McDaniel. Rootkit-Resistant Disks. Proceedings of the 15th ACM Conference on Computer and Communications Security (CCS), November 2008. Alexandria, VA.

RRD Use

- During system critical install and upgrade, token is inserted into USB slot on disk, blocks labeled (flash used to hold block labels)
 - Disk contains a "write capability" that enables modification or destruction of immutable blocks
- During normal operation, token not available
 - Writes to immutable blocks are blocked
- Provides a extensible read-only filesystem (more sophisticated "live-CD")
 - without the performance problems, allows mixing of mutable system and user data

Prototype

- Hardware
 - ▶ Linksys NSLU2 (SlugOS Linux), SG ATA disk
 - IMB Thumb drive token
- Software
 - Modified* host operating system
 - Modified netblockd service (I/O over IP)

Performance/Future

- In general, costs small (not optimized)
- Label management largely hidden by I/O
 - Block ranges and caching help reduce overheads enormously
- Label creep not a problem.
- Prevents rootkits from persisting.

Configuration	Completion (s)	% Overhead	95% C.I.
nosec	501.1	_	[497.0, 505.5]
sec	508.2	1.4%	[505.3, 511.2]

Table 1: Average completion time in seconds for Postmark

Configuration	TPS	% Decrease	95% C.I.
nosec	235.1	_	[233.2, 236.7]
sec	231.7	1.4%	[230.3, 232.7]

Table 2: Average Transactions Per Second for Postmark

Component	Total Time	% Of Measured	95% C.I.
disk	132.9	59.0 %	[130.6, 135.2]
net	78.4	34.8 %	[77.0, 79.9]
security	14.1	6.2 %	[12.6, 15.5]

Table 3: Average microbenchmark results showing the amount of time spent on disk and network I/O and security operations in the RRD for Postmark.

- Future: ASDs are a platform for implementing security policies
 - Extending to more complex policy [with Seagate]
 - XACML integration
 - MLS (extending label models)
 - More applications
 - Scaling to large distributed environments, mobile storage.

Questions?

Sponsors

- URL: http://siis.cse.psu.edu/storage.html
- Contact: mcdaniel@cse.psu.edu