

Let $f: \mathbb{R}^n \to \mathbb{C}$ be a continuous function. Then the support of f, denoted supp f, is the closure of the set on which $f(x) \neq 0$. That is,

$$\operatorname{supp} f = \overline{\{x \in \mathbb{R}^n \mid f(x) \neq 0\}}.$$

 $C^k(\Omega)$ is the set of k-times differentiable functions on Ω . Functions in $C^k(\Omega)$ for every k > 0 are said to be in $C^{\infty}(\Omega)$, that is, infinitely differentiable functions. $C_C^{\infty}(\Omega)$ is the set of infinitely differentiable functions on Ω which have support bounded and contained in Ω (compact when $\Omega = \mathbb{R}^n$). That is,

$$C^{k}(\Omega) = \left\{ f : \Omega \to B \mid \frac{\partial^{i} f}{\partial x^{i}} \text{ for } i = 0, \dots, k \in C(\Omega) \right\}$$

$$C^{\infty}(\Omega) = \{ f : \Omega \to B \mid f \in C^k(\Omega) \text{ for } k \in \mathbb{N} \}$$

$$C_C^{\infty}(\Omega) = \{ f \in C^{\infty}(\Omega) \mid \text{supp}(f) \text{ is compact} \}$$

Let $\Omega \subset \mathbb{R}^n$ be an open set and let $K \subset \Omega$ be compact. Then there exists a nonnegative function $\psi \in C_C^{\infty}$ with $\psi(x) = 1$ for $x \in K$.

Let Σ be a collection of subsets of Ω . Then Σ is called a σ -algebra if

- (i) If $A \in \Sigma$, then $A^C \in \Sigma$;
- (ii) If A_1, A_2, \ldots is a countable family of sets in Σ , then $\bigcup_{n=1}^{\infty} A_i \in \Sigma$;
- (iii) and $\Omega \in \Sigma$.

In English,

- (i) Σ is closed under complemets;
- (ii) Σ is closed under countable unions;
- (iii) and Σ contains the entire set Ω .

The Borel sets is the smallest σ -algebra containing the open sets of \mathbb{R}^n , i.e the smallest σ -algebra generated by the open balls of \mathbb{R}^n (sets of the form $B_{x,R} = \{y \in \mathbb{R}^n \mid |x-y| < R\}$).

A measure $\mu: \Sigma \to \mathbb{R}_0^+ \cup \infty$ is a function from Σ into the nonnegative real numbers (including infinity) such that

- (i) $\mu(\emptyset) = 0$,
- (ii) and $\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A)i$ for any sequence of disjoint sets (A_i) in Σ .

In English, a measure is a function which sends the empty set to 0 and has "countable additivity".

Define measure space	
Lieb and Loss	CHAPTER 1

ure space is o	denoted $(\Omega,$	(Σ, μ) .		·