(19)日本国特許庁(JP)

(12) 公開特許公報(A) (11)特許出願公開番号

特開平6-133220

(43)公開日 平成6年(1994)5月13日

(51) Int.Cl.5

H 0 4 N 5/265

識別配号

庁内整理番号 7337-5C

FΙ

技術表示箇所

審査請求 未請求 請求項の数4(全 6 頁)

(21)出願番号

特願平4-283084

(22)出願日

平成4年(1992)10月21日

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 佐竹 善文

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

(72) 発明者 山本 行則

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

(74)代理人 弁理士 田中 常雄

(54) 【発明の名称】 番組制作装置、情報伝送方式及び再生装置

(57)【要約】

【目的】 番組制作を容易にする。

【構成】 音声信号を、画像周期、例えば60Hzに合 致する周期の音声フレームに区分し、その音声フレーム 単位で編集及び加工する。音声フレーム単位で、音量の 制御情報を持たせる。

【特許請求の範囲】

【請求項1】 画像及び音声からなる番組を制作する番 組制作装置であって、当該画像の周期に合致する周期の 音声フレームを単位として、音声を扱うことを特徴とす る番組制作装置。

【請求項2】 音声情報とは別に音声フレーム単位で音 量情報を具備する請求項1に記載の番組制作装置。

【請求項3】 画像及び音声からなる番組情報を伝送す る方式であって、音声情報のフェード制御情報を、当該 音声情報自体とは別に設けたことを特徴とする情報伝送 10 方式。

【請求項4】 画像及び音声からなる番組情報を再生す る再生装置であって、再生音声信号のレベルを調節する ゲイン可変アンプと、音声情報自体とは別に設けられ た、音声情報のフェード制御情報に従い、当該ゲイン可 変アンプのゲインを制御する音声出力制御手段とを設け たことを特徴とする再生装置。

【発明の詳細な説明】

[0001]

と音声情報からなる番組又はプログラムを制作又は編集 する番組制作装置、制作又は編集した情報を伝送する方 式、及び再生装置に関する。

[0002]

【従来の技術】光磁気ディスク、光ディスクなどの大容 量の記録媒体が安価大量に供給され、また、コンピュー 夕の処理速度及び画像処理技術の向上により、大掛かり な装置を用意しなくても、多数の静止画(又は動画)に ナレーションや音楽を組み合わせた番組又はプログラム を制作又は編集できるようになってきた。例えば、展 30 示、教育、案内などの各種の分野の資料を専門の制作会 社によらずに作成できるようになってきた。

【0003】例えば、日本放送協会が提案する髙品位テ レビジョン信号であるハイビジョンは、静止画像の表示 能力に優れ、これを活かして、絵画などの芸術作品を光 ディスクなどに記録し、モニタ画面上で観賞できるよう にしたシステムも実用化されている。このようなシステ ムでも、画像のみでなく、画像の再生表示中に、その説 明などを音声出力できるのが望ましく、上記のような番 組制作装置又はシステムが望まれる。

【0004】従来の番組制作システムは、画像の編集と 音声の編集をそれぞれの性質に合わせて別々に行なった 後、完成した画像情報及び音声情報を光ディスクなどの 配録媒体に配録していた。

[0005]

【発明が解決しようとする課題】しかし、このように制 作した番組を、ある限られた伝送回線を介して伝送し て、再生する場合、回線容量に比べてデータ量が多過る と、音声が途切れたり、画像の表示が遅れるといった不 都合が生じる。

【0006】このような不都合を回避するには、画像と 音声を独立に編集するのではなく、両データの総量を考 慮しつつ、相互のタイミング(同期)を簡単に調節でき

【0007】本発明は、このような要望を満たす番組制 作装置を提示することを目的とする。

るような制作システムが望まれる。

【0008】また、音声情報を編集する場合、音声の継 ぎ目で適宜にフェードイン/アウトしたいときがある が、従来例では、素材としての音声情報をフェードイン **ノアウトした状態で配録媒体に配録しておくしかなく、** 記録後に変更したいときには、素材から編集し直すしか なかった。

【0009】本発明は、記録された素材情報には手を加 えずに、その継ぎ目等に適宜にフェードイン/アウト処 理やワイプ、スクロール、ディゾルプ等の画面切換え処 理を選択できるようにした情報伝送方式及び再生装置を 提示することを目的とする。

[0010]

【課題を解決するための手段】本発明に係る番組制作装 【産業上の利用分野】本発明は、動画像を含む画像情報 20 置は、画像及び音声からなる番組を制作する番組制作装 置であって、当該画像の周期に合致する周期の音声フレ 一ムを単位として、音声を扱うことを特徴とする。音声 情報とは別に音声フレーム単位で音量情報を具備する。

> 【0011】本発明に係る情報伝送方式では、音声情報 のフェード制御情報を、当該音声情報自体とは別に設け

> 【0012】本発明に係る再生装置は、画像及び音声か らなる番組情報を再生する再生装置であって、再生音声 信号のレベルを調節するゲイン可変アンプと、音声情報 自体とは別に設けられた、音声情報のフェード制御情報 に従い、当該ゲイン可変アンプのゲインを制御する音声 出力制御手段とを設けたことを特徴とする。

[0013]

【作用】音声情報を、画像周期に合致する周期の音声フ レームを単位として扱うことにより、画像との同期をと るのが容易になり、編集、合成などが簡単になる。

【0014】また、フェード制御情報を音声情報自体と は別に持たせるので、フェードイン/アウトを後で変更 する場合にも、音声情報自体に修整を加える必要はなく 40 なる。従って、また音声情報自体のパックアップを確保 しなくてもよくなる。

【0015】これらにより、番組制作及び再生の装置構 成が簡略化され、コストを低減できる。

[0016]

【実施例】以下、図面を参照して本発明の実施例を説明

【0017】図1は、本発明の一実施例の概略構成プロ ック図を示す。

【0018】10は画像入力装置であり、静止画像を入 50 力するイメージ・スキャナや、動画像を入力するビデオ ・カメラなどからなる。12は、音声データを入力するための音声入力装置である。画像音声処理回路14は、画像入力装置10から入力された画像データ、及び音声入力装置12から入力された音声データを磁気テープ、光ディスク、光磁気ディスクなどの大容量記憶装置16に蓄積する。 画像音声処理回路14はまた、記憶装置16に配憶される画像情報及び音声情報を加工編集して、1つの番組を制作する。その際、記憶装置16に記憶される画像情報及び音声情報を読み出して、それぞれ映像モニタ18及びスピーカ20に出力し、映像表示及 10び音声出力する。画像音声処理回路14は、制作した番組データを記憶装置16に格納し、必要により通信回路22を介して外部に送信できる。

【0019】本実施例では、音声データと画像データとの同期を取りやすくするため、音声信号を1/60秒を単位として区分する。これを音声フレームと呼ぶ。図2は、音声入力装置12から入力され、記憶装置16に記憶される音声データの記録フォーマットを示す。音声フレーム数Nは、1/60秒を単位とした音声データの全体サイズを示す。1音声フレームのサンブル数は、サンプリング周波数が44.1KH2の場合735サンプル、48KH2の場合800サンブルである。画像音声処理回路14は音声入力装置12から出力される音声信号を音声フレームの整数倍だけ記憶装置16に記憶する。従って、音声長は離散的な値になる。各フレームの音量を示す項目は、フェードイン/アウト制御用であり、例えば編集時に書き込まれ、再生時の音声出力制御に利用される。

【0020】図3を参照して、画像A,B,C,・・・と音声A,B,・・・を編集する場合を説明する。音声データは音声フレームで刻まれたスロット単位で配置される。画像と同期をとるため、音声データを画像に対して前後させる処理や、各音声A,B,・・・の長さを短縮する処理は、音声フレームのスロット単位で行なわれる。このような処理方法では、音声フレーム未満の細かい時間調整は不可能になるが、実用上、1/60秒単位で充分であると考えられる。むしろ、画像データとの同期が常に確保されていることの利点が大きい。

 17.

【0022】各音声フレームの音量情報を音声データとは別に持たせているので、音声データ自身に手を加えずに、即ち、フェードイン/アウトのための音量変更の演算を施すことなしに、所望のフェードイン/アウトを実現できる。この結果、修整用などのために、音声データのオリジナル・データを別にバックアップしておく必要もなくなり、フェードイン/アウト特性の事後的な変更も容易になる。

【0023】図5は、画像に対して音声のタイミングを 微調整する方法を示す。図5(a)はオリジナルの音声 データを示す。これに対して、図5(b)は、間引きに より音声を短くする場合を示す。ここでは、音声フレー ムの#2と#8を間引いている。図5(c)は、補間に より音声を長くした場合を示す。ここでは、音声フレー ムの#2と#7を2回続けて出力している。

【0024】上記実施例は、画像周期が60Hzの場合であり、ヨーロッパのPAL方式のように画像周期が50Hzの場合や、ワークステーションにおける70Hzなどの場合には、それぞれに応じた長さの音声フレームを設定すればよく、本発明は、特定の画像周期に限定されない。画像周期は、インターリープ方式のフィールド周期又はフレーム周期であってもよい。

【0025】このように、音声データを画像周期と等しい周期の音声フレーム単位で処理することにより、画像と音声からなる番組を制作編集する上で、画像と音声の同期をとるのが容易になる。

[0026] 図2では、各音声フレームの音量制御情報をヘッダに持たせたが、通常、フェードイン/アウトは 30 その開始時点と継続時間により完全に定義することができる。この点では、音声制御データとしてフェードイン/アウト制御してもよい。以下、その実施例を説明する。

【0027】図6は、本発明の第2の実施例の概略構成 プロック図を示す。記憶装置30には、例えば図1に示 すような番組制作装置で制作された番組のデータが、図 7に示すようなフォーマットで記憶されており、再生回 路32が、操作装置34の使用者による操作(再生、ス トップ、ボーズ等)に従い記憶装置30の記憶情報を再 40生する。

【0028】配憶装置30に配憶される情報は、図7に示すように、画像制御データ、ヘッダ付きの画像データ、音声制御データ及びヘッダ付きの音声データからなる。画像制御データは、基準時間の設定、静止画データを書き込むフレーム・メモリの指定、フレーム・メモリから静止画データを読み出す時刻の指定、並びに、画像の混合、ワイプ及びスクロール等の映像効果の設定などを制御する情報からなる。

く、従ってステップの段差をより細かくとることが可能 【0029】音声制御データは、図8に示すフェードイになり、音感上、従来例との差異はほとんど感知されな 50 ン・パケット及び図9に示すフェードアウト・パケット

を含む。フェードイン・パケットは、フェードインを開 始したい音声フレームに対して配置され、フェードアウ ト・バケットはフェードアウトを開始したい音声フレー ムに対して配置される。フェードイン・パケットはフェ ードイン制御信号とフェード指定時間からなり、フェー ドアウト・パケットはフェードアウト制御信号とフェー ド指定時間からなる。フェード指定時間は共に、フェー ドイン及びフェードアウトの持続時間を示す。

【0030】音声データのヘッダは、図2でも説明した ように、量子化ピット、サンプリング周波数、及びステ 10 いうまでもない。 レオ/モノラル等のモード情報を具備する。

【0031】分離回路36は、再生回路32により再生 された図?に示すフォーマットのデータ列を分離し、画 像データを静止画デコーダ38に、画像制御データをメ モリ制御回路42に供給する。なお、画像データのヘッ ダも、メモリ制御回路42に印加される。

【0032】分離回路36はまた、音声フレーム単位 で、音声データを音声デコーダ48に、音声制御データ を音声出力制御回路52に供給する。音声データのヘッ ダも、音声出力制御回路52に印加される。

【0033】静止画デコーダ38は、圧縮されている画 像データを伸長し、フレーム・メモリ40に出力する。 フレーム・メモリ40は複数画面の静止画像を記憶で き、メモリ制御回路42により制御されている。即ち、 メモリ制御回路42は、画像制御データに従い、静止画 デコーダ38の出力画像をフレーム・メモリ40のどの メモリ部に書き込むかを制御し、記憶する静止画像デー タを指定の時刻にD/A変換器44に読み出す。D/A 変換器44は、静止画データをアナログ信号に変換し、 モニタ46に印加する。これにより、画像制御データで 30 指定される順序及びタイミングで、静止画像が逐次、モ ニタ46に表示される。

【0034】音声デコーダ48は、分離回路36からの 音声データを復号し、D/A変換器50に出力する。音 声出力制御回路52は、分離回路36からの音声データ のヘッダ情報に従いD/A変換器50を制御する。D/ A変換器50によりアナログ信号に変換された音声信号 は、フェード制御端子付きのアンプ54に入力する。

【0035】音声出力制御回路52は、分離回路36か フェードアウト・パケットに従いアンプ54を制御す る。即ち、フェードイン・パケットに応じて、その指定 時間に応じた音量変化でフェードインするようにアンプ 54を制御し、また、フェードアウト・パケットに応じ て、その指定時間に応じた音量変化でフェードアウトす るようにアンプ54を制御する。

【0036】アンプ54の出力はスピーカ56に印加さ

れ、音声として出力される。

【0037】図6に示す実施例では、オリジナルの音声 データとは独立に、フェードイン/アウトの制御情報を 割り付けたので、この制御情報を編集することにより、 フェードイン/アウトの持続時間などを変更できる。

【0038】上記実施例では、フェードイン/アウトの 制御情報を音声制御データとしてフォーマット化した が、画像制御データを音声をも含めた全体の制御データ とし、フェード制御信号をこの中に含めてもよいことは

[0039]

【発明の効果】以上の説明から容易に理解できるよう に、本発明によれば、画像と音声の複合的な取り扱いが 容易になり、画像と音声を適宜に組み合わせた番組等を 容易に制作できるようになる。

【0040】また、音声のフェードイン/アウト等の制 御情報を音声データとは別に持たせることにより、オリ ジナルの音声データに変更せずに、音声出力を制御で き、また、その制御態様を事後的にも修整できる。

【図面の簡単な説明】 20

【図1】 本発明の一実施例の概略構成プロック図であ る。

【図2】 音声フレーム化した音声データのフォーマッ **トである。**

【図3】 画像と音声のタイミング説明図である。

【図4】 従来例と、図1の装置との音声フェードイン /アウトの比較図である。

【図5】 音声時間の微調方法の説明図である。

[図6] 本発明の第2の実施例の概略構成プロック図 である。

【図7】 図6の実施例におけるデータフォーマットで ある。

【図8】 フェードイン・パケットのフォーマットであ る.

【図9】 フェードアウト・パケットのフォーマットで ある。

【符号の説明】

10: 画像入力装置 12: 音声入力装置 14: 画像 音声処理回路 16:大容量記憶装置 18:映像モニ らの音声制御データ、特にフェードイン・パケット及び 40 タ 20:スピーカ 22:通信回路 30:記憶装置 32: 再生回路 34: 操作装置 36: 分離回路 38:静止画デコーダ 40:フレーム・メモリ 4 2:メモリ制御回路 44:D/A変換器 46:モニタ 48:音声デコーダ 50:D/A変換

器 52:音声出力制御回路 54:フェード制御端子 付きアンプ 56:スピーカ

【図6】

[図7]

		•			<u> </u>
画像制御データ	ヘッダ	画像データ	音声制御 データ	ヘッダ	音声データ