INSTITUT DES SCIENCES APPLIQUEES ET ECONOMIQUES (ISAE) Centre associé au CNAM de Paris

MVA 006: APPLICATIONS DE L'ANALYSE A LA GEOMETRIE, INITIATION A L'ALGEBRE LINEAIRE

Feuille de TD Nº7

Exercice 1:

Considérons les matrices suivantes : $M = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 3 \\ 1 & 1 & 0 \end{pmatrix}, I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- 1) Calculer M^2 , M^3
- 2) Déterminer trois constantes réelles a,b,c telles que $M^3 = aM^2 + bM + cI$
- 3) En déduire que M est inversible et déterminer M^{-1} .
- 4) Retrouver cette matrice inverse en utilisant la méthode des cofacteurs.

Exercice 2:

- 1-Calculer A^2 . En déduire que A est inversible et donner A^{-1} .
- 2-Que valent A^3 , A^4 ?
- 3-Déterminer det(A) et Rang(A).
- 4-Les polynômes suivants de $\mathbb{R}[x]$ sont-ils liés? :

$$1+x+x^2+x^3$$
; $1+x-x^2-x^3$; $1-x+x^2-x^3$; $1-x-x^2+x^3$

Exercice 3:

Soit la matrice $A = \begin{pmatrix} m & 3 & 0 \\ 1 & m & 1 \\ 0 & 1 & m \end{pmatrix}$ où m est un paramètre réel.

- 1-Calculer le déterminant de A.
- 2-Quelles valeurs faut-il donner à m pour que A soit inversible ?
- 3-On pose m=1 pour cette question.
 - 3-1) Montrer alors que A est inversible et calculer A^{-1} .
 - 3-2) Déterminer dans chaque cas la matrice X vérifiant la relation donnée :

a)
$$AX = B$$
 où $B = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ b) $AX = C$ où $C = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ -1 & 3 \end{pmatrix}$

4-Résoudre le système linéaire suivant dans \mathbb{R}^3 : $\begin{cases} mx + 3y = 1 \\ x + my + z = 2 \end{cases}$ où m est un paramètre réel. y + mz = -1

Exercice 4:

Considérons les vecteurs de \mathbb{R}^4 suivants:

$$\overrightarrow{u_1} = (1, 4, 2, -1), \quad \overrightarrow{u_2} = (0, -2, -2, 1), \quad \overrightarrow{u_3} = (3, 8, 2, -1), \quad \overrightarrow{u_4} = (2, 2, -2, 1)$$

- 1-Etudier le rang de la famille $F = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}, \overrightarrow{u_4}\}.$
- 2-Préciser une base et la dimension du sous-espace vectoriel $\,$ E engendré par la famille $\,$ $\,$ $\,$.

Exercice 5:

Considérons l'endomorphisme f de \mathbb{R}^3 suivant $f: \mathbb{R}^3 \to \mathbb{R}^3$

$$(x, y, z) \mapsto (x+y+z, x-y-z, x-y+z)$$

- 1-Quelle est la matrice A associée à f dans la base canonique $B_0 = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ de \mathbb{R}^3 ?
- 2-Montrer que f est un isomorphisme de \mathbb{R}^3 dans lui-même (c-à-d un automorphisme de \mathbb{R}^3). Déterminer la matrice associée à l'endomorphisme f^{-1} dans la base canonique de \mathbb{R}^3 .
- 3-Résoudre alors dans \mathbb{R}^3 les systèmes linéaires suivants :

$$\begin{cases} x+y+z=0\\ x-y-z=0\\ x-y+z=0 \end{cases}$$

b)
$$\begin{cases} x+y+z=1\\ x-y-z=1\\ x-y+z=1 \end{cases}$$

Exercice 6:

Soient $\mathbb{R}_2[X]$ l'ensemble des polynômes à coefficients réels de degré ≤ 2 , et $\mathbb{R}_1[X]$ l'ensemble des polynômes à coefficients réels de degré ≤ 1 .

Considérons l'application linéaire $\varphi: \mathbb{R}_2[X] \to \mathbb{R}_1[X]$

$$P(X) \mapsto P'(X) + X.P''(X)$$

- 1) Calculer les polynômes suivants : $\varphi(1)$, $\varphi(X)$, $\varphi(X^2)$, $\varphi(1+X)$ et $\varphi(1+X-X^2)$.
- 2) Montrer que $B_1 = (1, 1+X, 1+X-X^2)$ est une base de $\mathbb{R}_2[X]$
- 3) Soient B_0 et C_0 les bases canoniques de $\mathbb{R}_2[X]$ et $\mathbb{R}_1[X]$ respectivement. Déterminer alors les matrices suivantes : $A = mat(\varphi, B_0, C_0)$ et $B = mat(\varphi, B_1, C_0)$
- 4) Calculer le polynôme $\varphi(2-3X+5X^2)$.
 - a) sans utiliser la matrice A ni la matrice B
 - b) en utilisant la matrice A
 - c) en utilisant la matrice B
- 5) Déterminer tous les polynômes $P \in \mathbb{R}_2[X]$ tels que $P'(X) + X \cdot P''(X) = 2 + X$

Exercice 7:

On note $M_{2,2}(\mathbb{R})$ l'ensemble des matrices carrées d'ordre 2 à coefficients réels.

On considère alors l'ensemble $E = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$

- 1-Montrer que E est un sous-espace vectoriel de $M_{2,2}(\mathbb{R})$. Préciser une base et la dimension de E
- 2- Montrer que pour toutes matrices A,B appartenant à E on a : A. $B \in E$. En déduire que $\forall M \in E$, $\forall n \in \mathbb{N}$, $M^n \in E$.
- 3-Déterminer toutes les matrices inversibles de E , et montrer que $\forall M \in E$, si M est inversible alors $M^{-1} \in E$.

Exercice 8:

Considérons l'endomorphisme f de \mathbb{R}^2 suivant $f: \mathbb{R}^2 \to \mathbb{R}^2$

$$(x,y) \mapsto (2x + \frac{2}{3}y, -\frac{5}{2}x - \frac{2}{3}y)$$

- 1-Quelle est la matrice A associée à f dans la base canonique $B_0 = (\overrightarrow{e_1}, \overrightarrow{e_2})$ de \mathbb{R}^2 ?
- 2-Considérons alors les vecteurs $\overrightarrow{u_1} = (-2,3)$ et $\overrightarrow{u_2} = (-2,5)$
 - 2-1) Montrer que $B_1 = (\overrightarrow{u_1}, \overrightarrow{u_2})$ est une base de \mathbb{R}^2 et déterminer $D = mat(f, B_1)$.
 - 2-2) Quelle relation existe-t-il entre A et D ?
- 3-Quelles sont les valeurs propres et les vecteurs propres de la matrice A ? f est-elle bijective ?
- 4-Calculer D^{2008} et en déduire A^{2008} .

Exercice 9:

On note $B = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

On considère l'endomorphisme suivant $f: \mathbb{R}^3 \to \mathbb{R}^3$

$$(x, y, z) \mapsto (-4x - y, -x - 4y + z, -2z)$$

- 1-Déterminer la matrice A de f relativement à la base canonique $B=(e_1,e_2,e_3)$.
- 2-Calculer les valeurs propres de A, et déterminer les sous-espaces propres correspondants.
- 3-En déduire que A est diagonalisable et donner alors une matrice inversible P et une matrice diagonale D telles que $P^{-1}AP = D$.
- 4-Donner alors l'expression de A^n où $n \in \mathbb{N}$.