Chapter 20. Elementary Graph Algorithms

Joon Soo Yoo

May 29, 2025

Assignment

- ► Read §20.2, §20.3
- ► Problems
 - ▶ §20.2 1

Chapter 20: Elementary Graph Algorithms

- ► Chapter 20.1: Representations of Graphs
- ► Chapter 20.2: Breadth-First Search
- Chapter 20.3: Depth-First Search
- Chapter 20.4: Topological Sort
- Chapter 20.5: Strongly Connected Components

Breadth-First Search (BFS): Introduction

- ▶ Breadth-First Search (BFS) is a fundamental graph traversal algorithm.
- It serves as the foundation for more advanced algorithms, such as:
 - ▶ Prim's Minimum Spanning Tree algorithm (§21.2)
 - Dijkstra's Single-Source Shortest Paths algorithm (§22.3)

Purpose of BFS

- ▶ Given a graph G = (V, E) and a source vertex s, BFS performs the following:
 - Systematically explores all vertices reachable from s.
 - Computes the shortest path (in edge count) from s to each reachable vertex v.
 - Builds a breadth-first tree rooted at s containing all reachable vertices.
- ► For each reachable vertex *v*, the path from *s* to *v* in the BFS tree is a shortest path in *G*.

Why It's Called Breadth-First

- BFS explores the graph level by level, or in "waves":
 - First it discovers all vertices at distance 1 from s.
 - ▶ Then all vertices at distance 2, and so on.
- This layered discovery is why it's called "breadth-first".

Queue-Based Exploration

- ▶ BFS uses a single **first-in**, **first-out (FIFO) queue** to manage the frontier of exploration.
- At any point, the queue contains some vertices at distance k and possibly some at distance k + 1.
- ► This queue maintains the order of discovery and ensures vertices are processed by increasing distance.

Coloring Scheme and Tree Structure

- BFS uses a color scheme to track the state of each vertex:
 - ▶ WHITE: undiscovered
 - GRAY: discovered but not fully explored (in queue)
 - ► **BLACK**: fully explored
- Initially, all vertices are white; unreachable vertices remain white.
- ► Each time a white vertex *v* is discovered from a gray vertex *u*, BFS:
 - Marks v gray and adds it to the queue
 - ightharpoonup Sets v.d = u.d + 1
 - Sets $v.\pi = u$ and adds edge (u, v) to the BFS tree
- ▶ Once all neighbors of *u* are explored, *u* is marked black.

BFS: Inputs and Vertex Attributes

- ▶ BFS operates on a graph G = (V, E) represented as an adjacency list.
- **Each** vertex $v \in V$ maintains three attributes:
 - v.color ∈ {WHITE, GRAY, BLACK}
 - v.d: distance from source vertex s
 - \triangleright v. π : predecessor (or parent) in the BFS tree
- ► A **queue** Q is used to manage discovered (GRAY) vertices.

BFS Algorithm

```
BFS(G,s)
    for each vertex u \in G. V - \{s\}
       u.color = WHITE
3 \qquad u.d = \infty
4 u.\pi = NIL
5 \quad s.color = GRAY
6 \quad s.d = 0
7 s.\pi = NIL
S Q = \emptyset
9 ENQUEUE(Q, s)
    while Q \neq \emptyset
10
u = \text{DEQUEUE}(Q)
        for each vertex v in G. Adj[u] // search the neighbors of u
12
            if v.color == WHITE
                                      // is v being discovered now?
13
                 v.color = GRAY
14
15
                v.d = u.d + 1
16
                 v.\pi = u
17
                 ENQUEUE(Q, v) // v is now on the frontier
18
       u.color = BLACK
                                      // u is now behind the frontier
```

Understanding the BFS Queue

- ► The queue *Q* maintains the **frontier** vertices discovered but not fully explored.
- ▶ Invariant: at any time, Q contains only GRAY vertices.
- Vertices are dequeued in the order they were discovered, ensuring:
 - \blacktriangleright Vertices at distance k are fully explored before those at k+1
 - ▶ This leads to the correct computation of shortest paths

BFS Diagram

BFS: Time Complexity Analysis

- Let the input graph be G = (V, E) and represented as an adjacency list.
- ▶ BFS performs the following:
 - ► Initialization: each vertex is colored and initialized once ⇒ O(V)
 - Queue operations:
 - Each vertex is enqueued and dequeued at most once
 - Each enqueue/dequeue takes O(1) time
 - ▶ Total queue time: O(V)
 - Adjacency list scanning:
 - Each vertex's adjacency list is scanned once when it is dequeued
 - ▶ Total length of all adjacency lists: $\Theta(E)$
 - ▶ Total scanning time: $\Theta(E)$
- ► Total time complexity: O(V + E)
- ▶ BFS runs in linear time relative to the size of the input graph.

Shortest Paths and BFS: Lemma 20.1

Lemma

Let G = (V, E) be a directed or undirected graph, and let $s \in V$. Define $\delta(s, v)$ as the **shortest-path distance** from s to v, i.e., the minimum number of edges in any path from s to v. If v is unreachable from s, then $\delta(s, v) = \infty$. Then, for any edge $(u, v) \in E$, we have:

$$\delta(s,v) \leq \delta(s,u) + 1$$

Proof of Lemma 20.1

- **Case 1:** *u* is reachable from *s*
 - ▶ Then there is a shortest path from s to u of length $\delta(s, u)$
 - Since $(u, v) \in E$, we can extend this path by one edge to reach v
 - ▶ So, there exists a path from s to v of length $\delta(s, u) + 1$
 - ► Therefore, $\delta(s, v) \leq \delta(s, u) + 1$
- **Case 2:** *u* is not reachable from *s*
 - ▶ Then $\delta(s, u) = \infty$
 - So $\delta(s, v) \leq \infty + 1 = \infty$
 - Inequality still holds

Lemma 20.2

Lemma

Let G = (V, E) be a directed or undirected graph, and suppose BFS is run from a source vertex $s \in V$. Then for every vertex $v \in V$, the value v.d computed by BFS satisfies:

$$v.d \geq \delta(s, v)$$

This holds at all times during the execution of BFS, including at termination.

Proof of Lemma 20.2

- Proof by induction on the number of ENQUEUE operations.
- ▶ Base case: after enqueuing s (line 9 of BFS)

 - ▶ All other vertices v have $v.d = \infty \ge \delta(s, v)$
- Inductive step: suppose a white vertex v is discovered from u
 - ▶ By inductive hypothesis: $u.d \ge \delta(s, u)$
 - ▶ BFS sets v.d = u.d + 1
 - ▶ By Lemma 20.1: $\delta(s, v) \le \delta(s, u) + 1$
 - ► Therefore:

$$v.d = u.d + 1 \ge \delta(s, u) + 1 \ge \delta(s, v)$$

- ▶ Once set, v.d never changes again.
- ► Hence, the inductive hypothesis is maintained.

Lemma 20.3: Structure of the BFS Queue

Lemma

Suppose that during the execution of BFS on a graph G = (V, E), the queue Q contains the vertices $\langle v_1, v_2, \dots, v_r \rangle$, where v_1 is at the head and v_r is at the tail. Then:

$$\begin{aligned} v_r.d &\leq v_1.d+1 \\ v_i.d &\leq v_{i+1}.d \quad \textit{for } i=1,2,\ldots,r-1 \end{aligned}$$

▶ That is, the d-values in the queue are either all equal or increase from k to k + 1.

Proof Sketch of Lemma 20.3

- Proof by induction on the number of queue operations (enqueue/dequeue).
- ▶ Base case: Queue starts as Q = [s]. Then s.d = 0, and the lemma trivially holds.
- Dequeue step:
 - ▶ Removing v_1 shifts the queue to $\langle v_2, \ldots, v_r \rangle$.
 - ▶ By induction: $v_r.d \le v_1.d + 1 \le v_2.d + 1$, so the inequality is maintained.
- Enqueue step:
 - ightharpoonup Suppose v is discovered via v_1 .
 - ▶ Then $v.d = v_1.d + 1$, and v is enqueued at the end.
 - At that time, $v_r.d \le v_1.d + 1 = v.d$, so the non-decreasing order is preserved.
- ▶ In both enqueue and dequeue steps, the *d*-value ordering in the queue remains valid.

Corollary 20.4

Corollary

Suppose vertices v_i and v_j are enqueued during BFS and v_i is enqueued before v_j . Then at the moment v_j is enqueued,

$$v_i.d \leq v_j.d.$$

- ► Follows directly from Lemma 20.3: the queue maintains non-decreasing *d*-values.
- Since vertices are enqueued only once, the distance of v_j must be at least that of v_i .

Theorem 20.5: Correctness of BFS (Part 1)

Theorem (Correctness of Breadth-First Search)

Let G = (V, E) be a directed or undirected graph. Suppose BFS is run from a source vertex $s \in V$. Then:

- Every vertex v reachable from s is discovered by BFS.
- Upon termination, $v.d = \delta(s, v)$ for all $v \in V$.
- Moreover, for any reachable $v \neq s$, one of the shortest paths from s to v is formed by taking a shortest path to $v.\pi$ and following the edge $(v.\pi, v)$.

Proof idea: Use contradiction and properties from Lemmas 20.1–20.3.

Correctness of BFS (Part 2): Assume a Contradiction

- ▶ Suppose **some vertex** v receives $v.d \neq \delta(s, v)$.
- Let v be a vertex with **minimum** $\delta(s, v)$ among such incorrect vertices.
- ▶ By Lemma 20.2: $v.d \ge \delta(s, v)$. So if incorrect, $v.d > \delta(s, v)$.
- \triangleright $v \neq s$ (since $s.d = 0 = \delta(s, s)$).
- \triangleright Let u be the predecessor of v on a shortest path from s.
- ▶ Then $\delta(s, v) = \delta(s, u) + 1$.
- ▶ By minimality of v, $u.d = \delta(s, u)$.

Correctness of BFS (Part 3): Analyze When u is Dequeued

Now consider the moment BFS dequeues u from Q:

- ▶ Vertex v must be white, gray, or black at this point.
- ► Case 1: v is white:
 - ▶ Then BFS sets v.d = u.d + 1.
 - ▶ But $u.d = \delta(s, u)$, so $v.d = \delta(s, v)$ (contradiction).
- Case 2: v is black:
 - Then v has already been removed from Q.
 - ▶ By Corollary 20.4: $v.d \le u.d$.
 - ► So $v.d \le \delta(s, u) < \delta(s, v)$ (contradiction).

Correctness of BFS (Part 4): Remaining Case v is Gray

- ► Case 3: v is gray:
 - ightharpoonup Then v was discovered while dequeuing some earlier vertex w.
 - ► So v.d = w.d + 1.
 - ▶ By Corollary 20.4: $w.d \le u.d = \delta(s, u)$.
 - So $v.d = w.d + 1 \le u.d + 1 = \delta(s, v)$ (contradiction).
- In all cases, we reached a contradiction.
- ► Therefore, $v.d = \delta(s, v)$ for all v.

Breadth-First Trees

- ▶ As BFS explores the graph from a source *s*, it builds a tree structure rooted at *s*.
- ► Each vertex v reachable from s gets a parent $v.\pi$ from which it was discovered.
- ► These parent pointers form the **predecessor subgraph**, which encodes shortest paths from *s*.

Visual: Blue edges in Figure 20.3 represent this tree structure.

Definition: Predecessor Subgraph

Let G = (V, E) be a graph with source vertex s. The **predecessor** subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$ is defined as:

$$V_{\pi} = \{ v \in V \mid v.\pi \neq \mathsf{NIL} \} \cup \{ s \}$$

$$E_{\pi} = \{ (v.\pi, v) \mid v \in V_{\pi} \setminus \{ s \} \}$$

- ▶ This forms the tree structure discovered by BFS.
- ► Each edge $(v.\pi, v)$ is called a **tree edge**.

Lemma 20.6: BFS Builds a Breadth-First Tree

Lemma

When BFS is applied to a graph G = (V, E) from a source vertex $s \in V$, the resulting predecessor subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$ forms a breadth-first tree.

Proof of Lemma 20.6

- Line 16 of BFS sets $v.\pi = u$ only if $(u, v) \in E$ and v is undiscovered.
- ► Therefore, v is reachable from s, and so V_{π} consists of all vertices reachable from s.
- ► The set $E_{\pi} = \{(v.\pi, v) \mid v \in V_{\pi} \setminus \{s\}\}$ defines edges from each discovered node to its predecessor.
- ▶ By Theorem B.2, since G_{π} is connected and has $|V_{\pi}| 1$ edges, it forms a tree.
- From Theorem 20.5, $v.d = \delta(s, v)$, and each $(v.\pi, v)$ lies on a shortest path.
- ▶ Thus, G_{π} is a tree of shortest paths: a breadth-first tree.

Exercise: BFS Tree Construction

Graph Description:

Consider the undirected graph G = (V, E) with vertex set $V = \{1, 2, 3, 4, 5\}$. The graph is given in adjacency list form:

- ▶ Adj[1] = [2, 3]
- ightharpoonup Adj[2] = [1, 4, 5]
- ▶ Adj[3] = [1, 4]
- ightharpoonup Adj[4] = [2, 3, 5]
- ightharpoonup Adj[5] = [2, 4]

Tasks:

- (a) Draw the original undirected graph based on the adjacency list.
- (b) Run **BFS** starting from the source vertex s = 1. For each vertex, record:
 - Its distance v.d from the source.
 - lts predecessor $v.\pi$ in the BFS tree.
- (c) Draw the **breadth-first tree** formed by BFS. Include only the tree edges determined by the π values.

BFS Print Path

```
PRINT-PATH(G, s, v)

1 if v == s

2 print s

3 elseif v.\pi == NIL

4 print "no path from" s "to" v "exists"

5 else PRINT-PATH(G, s, v.\pi)

6 print v
```

Question?