

Planiranje pogona EES-a

Auditorne vježbe

prof. dr. sc. Igor Kuzle Hrvoje Pandžić

Na slici je prikazana krivulja trajanja opterećenja aproksimirana s tri pravca.

Vršna maksimalna snaga: $P_{pm} = 24 \text{ MW}$

Vršna varijabilna snaga: $P_{\mu\nu} = 17 \text{ MW}$

Vršna konstantna snaga: $P_{pk} = P_{pm} - P_{pv} = 7 \text{ MW}$

Vrijeme trajanja varijabilnog dijela snage: $T_v = 17.5 \,\mathrm{h}$

Koeficijenti: $\alpha - 0.8$ $\beta = 0.65$

- a) Izvesti analitičke izraze koji vrijede za snage u pojedinim trenucima tijekom dana.
- b) Izvesti izraze za ukupno utrošenu energiju do pojedinih trenutaka vremena tijekom dana.
- c) Izračunati utrošenu energiju do karakterističnih trenutaka:

$$t_1 = \alpha T_v = 14 \text{ h}$$
 $t_2 = T_v = 17,5 \text{ h}$ $t_3 = T = 24 \text{ h}$

Za dnevni dijagram opterećenja na slici odrediti minimalnu i maksimalnu snagu ($P_{dmin} = P_{dk}$ i P_{dmax}). Izračunati ukupnu dnevno potrošenu energiju (W_d) , faktor opterećenja (m_d) , odnos minimalne i maksimalne snage (P_{dmin}/P_{dmax}) te vrijeme iskorištenja maksimalne snage (T_{dmax}). Potrebno je nacrtati dnevnu krivulju trajanja opterećenja, uz uvjet da prikazuje istu utrošenu energiju kao i u slučaju dnevnog dijagrama opterećenja.

Dnevno opterećenje

Dnevna krivulja trajanja opterećenja

Na slici je prikazan kronološki godišnji dijagram opterećenja elektrane čija je nominalna snaga jednaka maksimalnoj i instaliranoj snazi. Potrebno je:

- a) Izračunati ekvivalentno vrijeme trajanja maksimalnog opterećenja i vrijeme iskorištenja instalirane snage.
- b) Nacrtati uređeni godišnji dijagram opterećenja (krivulju trajanja opterećenja).
- c) Izračunati faktor opterećenja, faktor neravnomjernosti opterećenja i faktor iskorištenja instalirane snage.

Krivulja trajanja opterećenja:

Dnevni dijagram opterećenja EES-a ima minimalno (konstantno) opterećenje $P_{dmin} = P_{dk} = 5$ MW i maksimalno opterećenje $P_{dmax} = 12$ MW. Dijagram je aproksimiran dnevnom krivuljom opterećenja s tri pravca, prema slici. Vrijeme trajanja minimalnog opterećenja je $T_{dmin} = 7$ h, a faktor opterećenja iznosi $m_d = 0.75$. Potrebno je:

- a) Odrediti koeficijente $(a + \beta)$ kao funkciju poznatih veličina $(m_a, P_{dmin}/P_{dmax} i T_{dv})$ i brojčano.
- b) Navesti područje vrijednosti za faktore a i β te prikazati karakteristične slučajeve.

U elektroenergetskom sustavu s termoelektranom i protočnom hidroelektranom postoji dnevni gubitak energije u obliku preljeva u iznosu od 1000 MWh. Zbroj snaga tehničkih minimuma termoelektrane i protočne hidroelektrane iznosi 400 MW.

Poznati su sljedeći podaci o dnevnoj krivulji trajanja opterećenja u sustavu:

- · maksimalno dnevno opterećenje P_{dmax} = 1000 MW
- · minimalno dnevno opterećenje (konstantna dnevna djelatna snaga) P_{dmin} = 300 MW
- · trajanje varijabilne dnevne djelatne snage T_{dv} = 16 h
- koeficijent $\beta = 0.5$
- · zbroj tehničkih minimuma TE i raspoloživih snaga protočnih HE je $\sum P_{t\min TE} + \sum P_{dHE} = 400 \text{ MW}$
- · dnevni gubitak energije W_{dg} = 1000 MWh

Potrebno je:

- · odrediti iznos proizvedene varijabilne energije
- · nacrtati dnevnu krivulju trajanja opterećenja

Planiranje pogona EES-a

Auditorne vježbe

prof. dr. sc. Igor Kuzle Hrvoje Pandžić

Potrošnja električne energije na području elektroenergetskog sustava u razdoblju 2004.-2010. godine slijedila je zakon promjene po logaritamskom pravcu. Ostvarene potrošnje u navedenom razdoblju iznosile su:

Godina	2004	2005	2006	2007	2008	2009	2010
<i>W(†</i>) [Gwh]	9750	10042	10544	11282	11507	12197	12624

Izračunajte koeficijente a i b te potrošnju električne energije koja se može očekivati u 2013. godini.

Ostvarena godišnja potrošnja električne energije u razdoblju 2006.-2010. godine prikazana je u tablici. Potrebno je:

- a) Aproksimirati ovisnost ostvarene potrošnje logaritamskim pravcem i metodom najmanjeg zbroja kvadrata odstupanja odrediti parametre modela a i b te srednju godišnju stopu porasta potrošnje p_{sr} .
- b) Predvidjeti potrošnju u 2015. i 2020. godini.

Godina	2006	2007	2008	2009	2010
<i>W(†</i>) [Gwh]	10	12	16	22	30

Ostvarena godišnja potrošnja električne energije u razdoblju 2006.-20100. godine prikazana je u tablici. Potrebno je:

- a) Aproksimirati ovisnost ostvarene potrošnje logaritamskom parabolom i metodom najmanjeg zbroja kvadrata odstupanja odrediti parametre modela a i b te srednju godišnju stopu porasta potrošnje p_{sr} .
- b) Predvidjeti potrošnju u 2015. i 2020. godini.
- c) Usporediti rezultate s prethodnim zadatkom.

Godina	2006	2007	2008	2009	2010
<i>W(†</i>) [Gwh]	10	12	16	22	30

Ako se u modelu prognoze godišnje potrošnje električne energije po logaritamskom pravcu shodno razvoju funkcije e $^p_{sr}$ u Taylorov red izvrši zamjena $1 + p_{sr} = e^p_{sr}$ dobije se eksponencijalni model oblika $W_g = W_0$ e $^p_{sr}$. Naći razliku u predviđanju potrošnje električne energije primjenom eksponencijalnog oblika umjesto logaritamske parabole pri udvostručenju potrošnje za 10, odnosno za 20 godina.

Planiranje pogona EES-a

Auditorne vježbe

prof. dr. sc. Igor Kuzle Hrvoje Pandžić

Zadatak 1:

Uređeni godišnji dijagram opterećenja agregata u parnoj TE zadan je u tablici. Funkcija troškova goriva ima oblik:

$$C = 0,002 \cdot P_g^2 + 9 \cdot P_g + 180 \frac{\text{Eur}}{\text{h}}$$

a) izvesti izraz za srednje godišnje troškove pogona termoagregata

j	\mathcal{T}_j (h)	P_{gj} (MW)
1	1760	250
2	3000	200
3	1500	180
4	1500	150
5	1000	130

b) izračunati srednju godišnju snagu termoagregata i srednje godišnje troškove pogona termoagregata

Rješenje a):

Ukupni godišnji troškovi pogona termoagregata:

$$C_T = \sum_{j} C_j \cdot T_j = \sum_{j} (\alpha \cdot P_g^2 + \beta \cdot P_g + \gamma) \cdot T_j$$

Srednja godišnja snaga termoagregata (općenito):

$$P_{g,sr} = \frac{1}{T} \int_{0}^{T} P_{g}(t) dt$$

Srednja godišnja snaga termoagregata (u slučaju zadanih diskretnih vrijednosti):

$$P_{g,sr} = \frac{1}{T} \sum_{i} P_{gj} \cdot T_{j}$$

Rješenje a):

Efektivna godišnja snaga termoagregata (općenito):

$$P_{g,ef} = \sqrt{\frac{1}{T} \int_{0}^{T} P_g^2(t) dt}$$

Efektivna godišnja snaga termoagregata (u slučaju zadanih diskretnih vrijednosti):

$$P_{g,ef} = \sqrt{\frac{1}{T} \sum_{j} P_{gj}^{2} \cdot T_{j}}$$

Rješenje a):

Faktor oblika dijagrama opterećenja: $m = \frac{P_{g,ef}}{P_{g,sr}}$

Srednja godišnja vrijednost funkcije troškova pogona termoagregata:

$$C_{sr} = \frac{C_T}{T} = \alpha \cdot m^2 \cdot P_g^2 + \beta \cdot P_g + \gamma$$

Rješenje b):

$$P_{g,sr} = \frac{1}{T} \sum_{j=1}^{5} P_{gj} \cdot T_j = 190,07 \text{ MW}$$

$$P_{g,ef} = \sqrt{\frac{1}{T} \sum_{j=1}^{5} P_{gj}^2 \cdot T_j} = 193,87 \text{ MW}$$

$$m = \frac{P_{g,ef}}{P_{g,sr}} = 1,02$$

Rješenje b):

Srednji godišnji satni troškovi pogona termoagregata iznose:

$$C_{sr} = \frac{C_T}{T} = \alpha \cdot m^2 \cdot P_g^2 + \beta \cdot P_g + \gamma = 1965, 8 \frac{\text{Eur}}{\text{h}}$$

Zadatak 2:

Za termoagregat eksperimentalno su određeni troškovi pogona agregata pri različitim snagama. Za aproksimaciju funkcije troškova koristi se kvadratni oblik:

 $C = \alpha \cdot P_g^2 + \beta \cdot P_g + \gamma \frac{\text{Eur}}{\text{h}}$

i	C_i (Eur/h)	P_{gi} (MW)
1	1100	100
2	1580	150
3	2060	200

Metodom najmanjih kvadrata odrediti koeficijente kvadratne krivulje kojom se aproksimiraju troškovi pogona termoagregata.

Rješenje:

Funkcija sume kvadrata odstupanja eksperimentalno određenih troškova pogona od kvadratne krivulje:

$$F = \sum_{i=1}^{n} \left[C_i - \left(\alpha \cdot P_g^2 + \beta \cdot P_g + \gamma \right) \right]^2 \implies \min.$$

Funkciju F potrebno je diferencirati po a, β i γ te izjednačiti derivacije s nulom.

Rješenje:

Diferenciranjem po a dobije se:

$$\frac{\partial F}{\partial \alpha} = \sum_{i=1}^{n} 2 \cdot \left[C_i - \left(\alpha \cdot P_g^2 + \beta \cdot P_g + \gamma \right) \right] \cdot \left(-P_g^2 \right) = 0$$

Nakon sređivanja:

$$\sum_{i=1}^{n} C_{i} \cdot P_{g}^{2} = \alpha \cdot \sum_{i=1}^{n} P_{g}^{4} + \beta \cdot \sum_{i=1}^{n} P_{g}^{3} + \gamma \cdot \sum_{i=1}^{n} P_{g}^{2}$$

Rješenje:

Diferenciranjem po β dobije se:

$$\frac{\partial F}{\partial \beta} = \sum_{i=1}^{n} 2 \cdot \left[C_i - \left(\alpha \cdot P_g^2 + \beta \cdot P_g + \gamma \right) \right] \cdot \left(-P_g \right) = 0$$

Nakon sređivanja:

$$\sum_{i=1}^{n} C_{i} \cdot P_{g} = \alpha \cdot \sum_{i=1}^{n} P_{g}^{3} + \beta \cdot \sum_{i=1}^{n} P_{g}^{2} + \gamma \cdot \sum_{i=1}^{n} P_{g}$$

Rješenje:

Diferenciranjem po y dobije se:

$$\frac{\partial F}{\partial \gamma} = \sum_{i=1}^{n} 2 \cdot \left[C_i - \left(\alpha \cdot P_g^2 + \beta \cdot P_g + \gamma \right) \right] \cdot (-1) = 0$$

Nakon sređivanja:

$$\sum_{i=1}^{n} C_i = \alpha \cdot \sum_{i=1}^{n} P_g^2 + \beta \cdot \sum_{i=1}^{n} P_g + \gamma \cdot n$$

Rješenje:

Uvrštavanjem zadanih vrijednosti dobije se linearni sustav tri jednadžbe s tri nepoznanice:

$$4740 = 72500 \cdot \alpha + 450 \cdot \beta + 3 \cdot \gamma$$

$$759000 = 12,375 \cdot 10^{6} \cdot \alpha + 72500 \cdot \beta + 450 \cdot \gamma$$

$$1,2895 \cdot 10^{8} = 2.20625 \cdot 10^{9} \cdot \alpha + 12,375 \cdot 10^{6} \cdot \beta + 72500 \cdot \gamma$$

Konačno rješenje:

$$\alpha = 0,002 \frac{\text{Eur}}{(\text{MW})^2 \text{h}}$$
 $\beta = 9 \frac{\text{Eur}}{\text{MWh}}$ $\gamma = 180 \frac{\text{Eur}}{\text{h}}$

Ciljevi pogona EES-a

U dereguliranom sustavu:

- Proizvođači:
 - · maksimizacija profita
 - · ispunjenje ugovorene isporuke
 - privlačenje novih kupaca
- OPS:
 - · ispunjenje ugovora vezanih za prijenos električne energije
 - · maksimizacija profita
- Operator sustava
 - sigurnost i pouzdanost cjelokupnog sustava

Radnje vezane za kratkoročno planiranje pogona EES-a

1 dan do 1 tjedan:

- Load Forecast predviđanje opterećenja
- Unit Commitment određivanje pogonskog stanja elektrana (TE)
- Hydro Scheduling raspored pogona hidroelektrana

5 min do 1 sat:

- Economic Load Dispatch ekonomska raspodjela opterećenja (koja elektrana će koliko proizvoditi)
- Optimal Power Flow simuliranje i određivanje optimalnih tokova snaga u svrhu smanjenja gubitaka i povećanja sigurnosti opskrbe

Koliko košta proizvodnja električne energije?

Ekonomska raspodjela opterećenja

Tko treba koliko proizvoditi?

Osnovni zahtjev:

$$P_1 + P_2 + ... + P_n = P_{demand} + P_{loss}$$

Potrebno je minimizirati ukupne troškove:

$$C_1 + C_2 + ... + C_n$$

Ekonomska raspodjela opterećenja

Funkcija cilja je minimizacija troškova proizvodnje:

Minimize
$$C(P_i) = a_i P_i^2 + b_i P_i + c_i$$

- · Ograničenja:
 - Proizvodni kapaciteti

$$P_i^{\min} \le P_i \le P_i^{\max}$$

Jednakost proizvodnje i potrošnje

$$\sum_{i=1}^{n} P_i = P_{demand} + P_{loss}$$

Općenita struktura optimizacijskog problema

Funkcija cilja je minimizacija troškova proizvodnje:

Minimize
$$f(x)$$

· Subject to:

$$g(x) \le b$$
$$h(x) = c$$
$$x \ge 0$$

Lagrangeova funkcija:

$$F(x,\lambda,\mu) = f(x) + \lambda^T \left[c - h(x) \right] + \mu^T \left[g(x) - b \right]$$

Karusch-Kuhn-Tuckerovi uvjeti optimalnosti

a)
$$\frac{\partial F}{\partial x_i} = 0 \quad \forall i = 1, ..., n$$

b)
$$\frac{\partial F}{\partial \lambda_{j}} = 0 \quad \forall j = 1, ..., m$$

c)
$$\mu_k [g_k(x) - b_k] = 0 \quad \forall k = 1, ..., r$$

d)
$$\mu_k \ge 0 \quad \forall k = 1, ..., r$$

e)
$$x_i \ge 0 \quad \forall i = 1, ..., n$$

UVJETI KOMPLEMENTARNOSTI

znači sljedeće: ako je $\mu \neq 0$ -> g(x)-b=0 ako je g(x)-b $\neq 0$ -> μ =0

Ukratko:

Ignoriraj ograničenje ukoliko je µ=0, a koristi ga ukoliko je µ≠0!

Ekonomska raspodjela epiterećenja uz zanemarenje gubitaka

Funkcija cilja je minimizacija troškova proizvodnje:

Minimize
$$\sum_{i=1}^{n} C_i(P_i)$$

· Uz ograničenja:

$$\sum_{i=1}^{n} P_{i} = P_{demand}$$

$$P_{i}^{\min} \leq P_{i} \leq P_{i}^{\max} \Rightarrow P_{i} - P_{i}^{\max} \leq 0$$

$$P_{i}^{\min} - P_{i} \leq 0$$

$$\vdots \mu$$

Ekonomska raspodjela epiterećenja uz zanemarenje gubitaka

Lagrangeova funkcija:

$$\begin{split} F(P,\lambda,\mu,\gamma) &= \sum_{i=1}^{n} C_{i}(P_{i}) + \lambda \left[P_{demand} - \sum_{i=1}^{n} P_{i} \right] + \\ &+ \mu_{1} \left[P_{1}^{\min} - P_{1} \right] + \gamma_{1} \left[P_{1} - P_{1}^{\max} \right] + \\ &+ \mu_{2} \left[P_{2}^{\min} - P_{2} \right] + \gamma_{2} \left[P_{2} - P_{2}^{\max} \right] + \\ &+ \dots + \\ &+ \mu_{n} \left[P_{n}^{\min} - P_{n} \right] + \gamma_{n} \left[P_{n} - P_{n}^{\max} \right] \end{split}$$

Ekonomska raspodjela epiterećenja uz zanemarenje gubitaka

Karusch-Kuhn-Tuckerovi uvjeti:

$$\begin{split} \frac{\partial F}{\partial P_i} &= 0 \Rightarrow \frac{dC_i(P_i)}{dP_i} - \lambda - \mu_i + \gamma_i = 0 \quad \forall i = 1, ..., n \\ \frac{\partial F}{\partial \lambda} &= 0 \Rightarrow P_{demand} - \sum_{i=1}^n P_i = 0 \\ \mu_1 \Big[P_1^{\min} - P_1 \Big] &= 0 \quad \gamma_1 \Big[P_1 - P_1^{\max} \Big] = 0 \\ \mu_2 \Big[P_2^{\min} - P_2 \Big] &= 0 \quad \gamma_2 \Big[P_2 - P_2^{\max} \Big] = 0 \\ \cdots \\ \mu_n \Big[P_n^{\min} - P_n \Big] &= 0 \quad \gamma_n \Big[P_n - P_n^{\max} \Big] = 0 \\ \gamma_i &\geq 0 \end{split}$$

Ekonomska raspodjela poterećenja uz zanemarenje gubitaka

- · Što predstavljaju dualne varijable?
 - 1 marginalni trošak (trošak sustava da bi povisio proizvodnju za 1 MW)
 - μ promjena u marginalnom trošku agregata u slučaju da radi na donjoj granici
 - y promjena u marginalnom trošku agregata u slučaju da radi na gornjoj granici

Primjer

	Agregat 1	Agregat 2	
ρ min	100 MW	50 MW	
₱ ma×	500 MW	250 MW	
Krivulja troškova	AP^2+BP+C		
Α	1,0	3,4	
В	8,5	25,5	
C	5,0	9,0	

· Opterećenje sustava: 700 MW

Lagrangeova jednadžba:

$$F = (P_1^2 + 8, 5P_1 + 5) + (3, 4P_2^2 + 25, 5P_2 + 9) + \lambda [700 - P_1 - P_2]$$

KKT:

$$\frac{\partial F}{\partial P_1} = 0 \Rightarrow 2P_1 + 8, 5 - \lambda = 0$$

$$\frac{\partial F}{\partial P_2} = 0 \Rightarrow 6, 8P_2 + 25, 5 - \lambda = 0$$

$$\frac{\partial F}{\partial \lambda} = 0 \Rightarrow P_1 + P_2 - 700 = 0$$

· Rješenje:

$$P_1 = 542,841 \text{ MW}$$

 $P_2 = 157,159 \text{ MW}$
 $\lambda = 1094,18 \text{ Eur/MW}$

- Ukupna cijena iznosi 387 288,5 Eur
- · S obzirom da agregati nisu ograničeni vrijedi:

$$\frac{dC_1(P_1)}{dP_1} = \frac{dC_2(P_2)}{dP_2} = \lambda$$

· Lagrangeova jednadžba:

$$F = (P_1^2 + 8, 5P_1 + 5) + (3, 4P_2^2 + 25, 5P_2 + 9) + \lambda [700 - P_1 - P_2] + \gamma_1 [P_1 - 500]$$

· KKT:

$$\frac{\partial F}{\partial P_1} = 0 \Rightarrow 2P_1 + 8, 5 - \lambda + \gamma = 0$$

$$\frac{\partial F}{\partial P_2} = 0 \Rightarrow 6, 8P_2 + 25, 5 - \lambda = 0$$

$$\frac{\partial F}{\partial \lambda} = 0 \Rightarrow P_1 + P_2 - 700 = 0$$

$$\gamma_1 (P_1 - 500) = 0$$

· Rješenje:

$$P_1 = 500 \text{ MW}$$

 $P_2 = 200 \text{ MW}$
 $\lambda = 1385, 5 \text{ Eur/MW}$
 $\gamma_1 = 377 \text{ Eur/MW}$

Ukupna cijena iznosi 395 364 Eur (povećanje 2,1%)

Ekonomska raspodjela opterećenja uzimajući u obzir gubitke

Funkcija cilja je minimizacija troškova proizvodnje:

Minimize
$$\sum_{i=1}^{n} C_i(P_i)$$

· Uz ograničenja:

$$\sum_{i=1}^{n} P_{i} - P_{loss} - P_{demand} = 0 \qquad : \lambda$$

$$P_{i}^{\min} \leq P_{i} \leq P_{i}^{\max} \Rightarrow P_{i} - P_{i}^{\max} \leq 0 \qquad : \gamma$$

$$P_{i}^{\min} - P_{i} \leq 0 \qquad : \mu$$

Ekonomska raspodjela opterećenja uzimajući u obzir gubitke

Lagrangeova funkcija:

$$F(P,\lambda) = \sum_{i=1}^{n} C_i(P_i) + \lambda \left[P_{demand} + P_{loss}(P_1, P_2, ..., P_n) - \sum_{i=1}^{n} P_i \right]$$

Parcijalna derivacija se izjednačava s nulom:

$$\left| \frac{\partial F}{\partial P_i} = \frac{dC_i}{dP_i} - \lambda \left[1 - \frac{\partial P_{loss}}{\partial P_i} \right] = 0$$

• Na kraju se dobije:
$$\left(\frac{1}{1-\frac{\partial P_{loss}}{\partial P_i}}\right)\frac{\partial C_i}{\partial P_i}=\lambda$$

Ekonomska raspodjela propinska raspodjela opterećenja uzimajući u obzir gubitke

•
$$\frac{\partial P_{loss}}{\partial P_i}$$
 je inkrementalni gubitak na sabirnici *i*

•
$$pf_i = \frac{1}{1 - \frac{\partial P_{loss}}{\partial P_i}}$$
 je penalizirajući faktor na sabirnici *i*

Uvjet optimalnosti se može zapisati kao:

$$pf_i \cdot \frac{dC_i}{dP_i} = \lambda \quad \forall i = 1, ..., n$$

Ekonomska raspodjela propinska raspodjela opterećenja uzimajući u obzir gubitke

- Ukoliko se povećanjem snage u sabirnici i gubici povećaju:
 - inkrementalni gubici > 0
 - penalizirajući faktor > 1

- Ukoliko se povećanjem snage u sabirnici i gubici smanje:
 - inkrementalni gubici < 0
 - penalizirajući faktor < 1

Primjer

	Agregat 1	Agregat 2	
ρ min	100 MW	50 MW	
₽ ma×	500 MW	250 MW	
Krivulja troškova	AP^2+BP+C		
Α	1,0	3,4	
В	8,5	25,5	
C	5,0	9,0	

$$P_{loss} = 0,00009 \cdot P_1^2 + 0,00003 \cdot P_2^2$$

· Opterećenje sustava: 700 MW

· Iz zadane funkcije gubitaka dobije se:

$$\frac{\partial P_{loss}}{\partial P_1} = 0,00018 \cdot P_1 \Rightarrow pf_1 = \frac{1}{1 - 0,00018 \cdot P_1}$$

$$\frac{\partial P_{loss}}{\partial P_2} = 0,00006 \cdot P_2 \Rightarrow pf_2 = \frac{1}{1 - 0,00006 \cdot P_2}$$

$$\lambda = pf_1 \cdot \frac{\partial C_1}{\partial P_1} = pf_1 \cdot (2P_1 + 8, 5) = \frac{1}{1 - 0,00018 \cdot P_1} \cdot (2P_1 + 8, 5)$$

$$\lambda = pf_2 \cdot \frac{\partial C_2}{\partial P_2} = pf_2 \cdot (6, 8P_2 + 25, 5) = \frac{1}{1 - 0,00006 \cdot P_2} \cdot (6, 8P_2 + 25, 5)$$

Iz prethodna dva retka se izraze snage:

$$P_{1} = \frac{\lambda - 8.5}{2 + 0.00018 \cdot \lambda}$$

$$P_{2} = \frac{\lambda - 25.5}{6.8 + 0.00006 \cdot \lambda}$$

 Numeričkom metodom se u ovisnosti o 1 traži rješenje unutar dozvoljenog odstupanja

Л	P_1	<i>P</i> ₂	P_{loss}	P ₁ +P ₂ -P _{loss} - P _{demand}
1200	537,68 MW	170,91 MW	26,90 MW	-18,31 MW
1240	553,93 MW	176,67 MW	28,55 MW	2,05 MW
1236	552,31 MW	176,09 MW	28,38 MW	0,02 MW

· Rješenje:

$$P_1 = 552,31 \text{ MW}$$

 $P_2 = 176,09 \text{ MW}$
 $P_{loss} = 28,38 \text{ MW}$
 $\lambda = 1236 \text{ Eur/MW}$

Ukupna cijena iznosi 419 671,4 Eur

• Budući da P_1 prelazi maksimalnu snagu 500 MW, dodajemo ograničenje:

$$P_1 \le 500 \text{ MW}$$

- Odnosno, postavljamo $P_1 = 500 \text{ MW}$
- Lagrangeova funkcija sada izgleda:

$$F(P, \lambda, \gamma) = \sum_{i=1}^{n} C_i(P_i) + \lambda \left[P_{demand} + P_{loss}(P_1, P_2, ..., P_n) - \sum_{i=1}^{n} P_i \right] - \gamma_1 \left[P_1 - 500 \right]$$

• Parcijalna derivacija: $\frac{\partial F}{\partial P_1} = \frac{dC_1}{dP_1} - \lambda \left[1 - \frac{\partial P_{loss}}{\partial P_1} \right] + \gamma_1 = 0$

Odakle se dobiva:

$$\frac{dC_1}{dP_1} + \gamma_1 = \lambda \left[1 - \frac{\partial P_{loss}}{\partial P_1} \right] \Rightarrow \lambda = \frac{1}{1 - \frac{\partial P_{loss}}{\partial P_1}} \cdot \left(\frac{dC_1}{dP_1} + \gamma_1 \right)$$

Nakon uvrštavanja:

$$\lambda = \frac{1}{1 - 0.09} \cdot (1008.5 + \gamma_1) = \frac{1008.5 + \gamma_1}{0.91}$$

$$\gamma_1 = 0.91 \cdot \lambda - 1008.5$$

· Iz zadane funkcije gubitaka dobije se:

$$\frac{\partial P_{loss}}{\partial P_2} = 0,00006 \cdot P_2 \Rightarrow pf_2 = \frac{1}{1 - 0,00006 \cdot P_2}$$

· Imamo:

$$\lambda = pf_2 \cdot \frac{\partial C_2}{\partial P_2} = pf_2 \cdot (6, 8P_2 + 25, 5) = \frac{1}{1 - 0,00006 \cdot P_2} \cdot (6, 8P_2 + 25, 5)$$

• Odakle je:
$$P_2 = \frac{\lambda - 25,5}{6,8 + 0,00006 \cdot \lambda}$$

• Gubici iznose: $P_{loss} = 22,5+0,00003 \cdot P_2^2$

Л	P_1	P ₂	P _{loss}	P ₁ +P ₂ -P _{loss} - P _{demand}
1400	500 MW	199,67 MW	23,70 MW	-24,03 MW
1500	500 MW	214,01 MW	23,87 MW	-9,86 MW
1600	500 MW	228,32 MW	24,06 MW	4,26 MW
1590	500 MW	226,89 MW	24,04 MW	2,85 MW
1570	500 MW	224,03 MW	24,01 MW	0,02 MW

· Rješenje:

$$P_1 = 500 \text{ MW}$$

$$P_2 = 224,03 \text{ MW}$$

$$P_{loss} = 24,04 \text{ MW}$$

$$\lambda = 1570 \text{ Eur/MWh}$$

$$\gamma_1 = 420.2$$
 Eur/MWh

Ukupna cijena iznosi 430 620,9 Eur (povećanje 2,6%)