Prawdopodobieństwo & Statystyka - rozwiązania.

Ekonometria WNE UW

Sebastian Zalas

s.zalas@uw.edu.pl

Proszę nie rozpowszechniać!

Rozwiązania wybranych zadań.

I. Rachunek prawdopodobieństwa.

Zadanie 1. Pokazać, że $Cov(x_i, x_j) = \mathbb{E}(x_i, x_j) - \mathbb{E}(x_i) \mathbb{E}(x_j)$

Rozwiązanie: skorzystajmy z definicji kowariancji:

$$Cov(x_i, x_j) = (\mathbb{E}(x_i - \mathbb{E}(x_i)))(\mathbb{E}(x_j - \mathbb{E}(x_j)))$$

$$Cov(x_i, x_j) = \mathbb{E}(x_i x_j - x_i \mathbb{E}(x_j) - x_j \mathbb{E}(x_i) + \mathbb{E}(x_j) \mathbb{E}(x_i))$$

$$Cov(x_i, x_j) = \mathbb{E}(x_i x_j) - \mathbb{E}(x_i) \mathbb{E}(x_j) - \mathbb{E}(x_j) \mathbb{E}(x_i) + \mathbb{E}(x_j) \mathbb{E}(x_i)$$

$$Cov(x_i, x_j) = \mathbb{E}(x_i x_j) - \mathbb{E}(x_i) \mathbb{E}(x_j)$$

Zadanie 2. Pokazać, że jeśli $\mathbb{E}(x_i) = 0$ to $\mathbb{V}(x_i) = \mathbb{E}(x_i^2)$

Rozwiązanie: skorzystajmy z definicji wariancji:

$$V(x_i) = \mathbb{E}((x_i - \mathbb{E}(x_i))^2)$$
$$V(x_i) = \mathbb{E}(x_i^2 - 2x_i \mathbb{E}(x_i) - (\mathbb{E}(x_i))^2)$$

ponieważ $\mathbb{E}(x_i) = 0$

$$\mathbb{V}(x_i) = \mathbb{E}(x_i^2)$$

Zadanie 3. Które z macierzy mogą być macierzami kowariancji?

$$m{A} = egin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 1 \\ 4 & 2 & 3 \end{bmatrix}, \ m{B} = egin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 2 \\ 2 & 2 & 3 \end{bmatrix}, \ m{C} = egin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 4 \end{bmatrix}$$

Rozwiązanie: Macierzami kowariancji mogą byc macierze B i C, ponieważ są symetryczne.

Zadanie 4. Pokazać, że dla dowolnego wektora losowego ε , wektora nielosowego a i macierzy nielosowej B

$$\mathbb{E}[oldsymbol{a} + oldsymbol{B} oldsymbol{arepsilon}] = oldsymbol{a} + oldsymbol{B} oldsymbol{arepsilon}] = oldsymbol{B} \mathbb{V}[oldsymbol{arepsilon}] oldsymbol{B}'$$

Rozwiązanie:

$$\mathbb{E}[a+B\varepsilon] = \underbrace{a}_{\text{Wektor }a \text{ zawiera tylko stałe, wiec możemy opuścić wart. ocz.}} + \mathbb{E}[B\varepsilon]$$

$$\text{Wektor }a \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}}$$

$$\mathbb{E}[\varepsilon]$$

$$\text{Macierz }B \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}}$$

$$\mathbb{E}[\varepsilon]$$

$$\mathbf{E}[a+B\varepsilon] = \underbrace{\mathbb{E}[B\varepsilon]}_{\text{Macierz }B \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}}$$

$$\mathbb{E}[a+B\varepsilon] = \underbrace{\mathbb{E}[B\varepsilon]}_{\text{Macierz }B \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}}$$

$$= \mathbb{E}[B\varepsilon] = \underbrace{\mathbb{E}[B\varepsilon]}_{\text{Macierz }B \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}$$

$$= \mathbb{E}[B\varepsilon] = \underbrace{\mathbb{E}[B\varepsilon]}_{\text{Macierz }B \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}$$

$$= \mathbb{E}[B\varepsilon] = \underbrace{\mathbb{E}[B\varepsilon]}_{\text{Macierz }B \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}$$

$$= \mathbb{E}[B\varepsilon] = \underbrace{\mathbb{E}[B\varepsilon]}_{\text{Macierz }B \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}$$

$$= \mathbb{E}[B\varepsilon] = \underbrace{\mathbb{E}[B\varepsilon]}_{\text{Macierz }B \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}$$

$$= \mathbb{E}[B\varepsilon] = \underbrace{\mathbb{E}[B\varepsilon]}_{\text{Macierz }B \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}$$

$$= \mathbb{E}[B\varepsilon] = \underbrace{\mathbb{E}[B\varepsilon]}_{\text{Macierz }B \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}$$

$$= \mathbb{E}[B\varepsilon] = \underbrace{\mathbb{E}[B\varepsilon]}_{\text{Macierz }B \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}$$

$$= \mathbb{E}[B\varepsilon] = \underbrace{\mathbb{E}[B\varepsilon]}_{\text{Macierz }B \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}$$

$$= \mathbb{E}[B\varepsilon] = \underbrace{\mathbb{E}[B\varepsilon]}_{\text{Macierz }B \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}$$

$$= \mathbb{E}[B\varepsilon] = \underbrace{\mathbb{E}[B\varepsilon]}_{\text{Macierz }B \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}$$

$$= \mathbb{E}[B\varepsilon] = \underbrace{\mathbb{E}[B\varepsilon]}_{\text{Macierz }B \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}$$

$$= \mathbb{E}[B\varepsilon] = \underbrace{\mathbb{E}[B\varepsilon]}_{\text{Macierz }B \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}$$

$$= \mathbb{E}[B\varepsilon] = \underbrace{\mathbb{E}[B\varepsilon]}_{\text{Macierz }B \text{ zawiera tylko stałe, wiec również możemy opuścić wart. ocz.}$$

$$= \mathbb{E}[B\varepsilon] = \underbrace{\mathbb{E}[B\varepsilon]}_{\text{Macierz }B \text{ zawiera tylko stałe, wie$$

Zadanie 5. Mamy wektor losowy x, przy czym $\mathbb{E}[x] = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbb{V}[x] = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Policz wartość oczekiwaną i wariancję $y = \begin{bmatrix} x_1 + 2x_2 + 5 \\ x_1 + x_2 + 1 \end{bmatrix}$. Rozwiązanie: Zauważmy najpierw że wektor losowy y to przekształcenie liniowe wektora losowego x:

$$egin{aligned} oldsymbol{y} &= egin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} egin{bmatrix} x_1 \\ x_2 \end{bmatrix} + egin{bmatrix} 5 \\ 1 \end{bmatrix} \ oldsymbol{y} &= oldsymbol{B} oldsymbol{x} + oldsymbol{a} \end{aligned}$$

Aby obliczyć wartość oczekiwaną i wariancję y, wystarczy zastosować wzory udowodnione w zadaniu 5.

Zadanie 6. Mamy wektor losowy $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, przy czym $\mathbb{E}[x] = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbb{V}[x] = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$. Rozwiązanie:

(a) odchylenie standardowe x_1 , x_2 - korzystamy z macierzy wariancji-kowariancji:

$$\sigma[x_1] = \sqrt{\mathbb{V}[x_1]} = 1$$

$$\sigma[x_2] = \sqrt{\mathbb{V}[x_5]} = \sqrt{5}$$

(b) współczynnik korelacji między x_1 , x_2 - używamy wzoru na wsp. korelacji:

$$\rho_{x_1, x_2} = \frac{\text{Cov}[x_1, x_2]}{\sigma[x_1]\sigma[x_2]} = \frac{2}{2\sqrt{5}}$$

(c) wartość oczekiwaną i wariancję dla $y = 5 + x_1 + 2x_2$

$$\mathbb{E}[y] = \mathbb{E}[5 + x_1 + 2x_2] = 5 + \mathbb{E}[x_1] + 2 \mathbb{E}[x_2]$$

$$= 5 + 1 + 4 = 10$$

$$\mathbb{V}[y] = \mathbb{V}[5 + x_1 + 2x_2]$$

$$= \mathbb{V}[x_1 + 2x_2]$$

$$= \operatorname{Cov}[x_1, x_1] + \operatorname{Cov}[x_1, 2x_2] + \operatorname{Cov}[2x_2, x_1] + \operatorname{Cov}[2x_2, 2x_2]$$

$$= \mathbb{V}[x_1] + 2 \operatorname{Cov}[x_1, x_2] + 2 \operatorname{Cov}[x_2, x_1] + 4 \mathbb{V}[x_2]$$

$$= 1 + 4 + 4 + 20 = 29$$

Zadanie 7. Udowodnić, że dla dowolnej macierzy losowej A: $\mathbb{E}[tr(A)] = tr[\mathbb{E}(A)]$. Rozwiązanie: Zacznijmy od definicji śladu:

$$E[tr(\mathbf{A})] = E\left[\sum_{i=1}^{n} a_{ii}\right]$$

$$= \sum_{i=1}^{n} E[a_{ii}]$$

$$= tr\left(\begin{bmatrix} E[a_{11}] & \dots & E[a_{1n}] \\ \vdots & \ddots & \vdots \\ E[a_{n1}] & \dots & E[a_{nn}] \end{bmatrix}\right)$$

$$= tr(E[\mathbf{A}]).$$

Zadanie 8. Załóżmy, że $\mathbb{E}(x) > 0$. Jaka jest relacja między $\mathbb{E}(x)$ i $\mathbb{E}(\frac{1}{x})$? Rozwiązanie: Nierówność Jensena. Dla wypukłej funkcji $\phi(.)$ zachodzi:

$$\phi(\mathbb{E}(X)) \le \mathbb{E}(\phi(X))$$

Zadanie 9. Załóżmy że Y i X są zmiennymi losowymi. Czemu jest równe $\mathbb{E}(\frac{Y}{X}|X)$? Rozwiązanie:

$$\mathbb{E}(\frac{Y}{X}|X) = \mathbb{E}(\frac{Y}{x}|X = x)$$
$$= \frac{1}{x}\mathbb{E}(Y|X = x)$$

Zadanie 10. Wiemy, $\dot{z} \in \mathbb{E}(x) = 2$ oraz $\mathbb{E}(y|x) = 1 + 2x$. Czemu równe jest $\mathbb{E}(y)$?

Rozwiązanie: Skorzystaj z wzoru na całkowitą wartość oczekiwaną (LIE law of iterated expecatations)

$$\mathbb{E}(y) = \mathbb{E}(\mathbb{E}(y|x))$$

II. Własności rozkładu normalnego

Zadanie 2. Pokazać, że dla k-wymiarowego wektora losowego $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$, forma kwadratowa $\varepsilon' \mathbf{\Sigma} \varepsilon \sim \chi^2$ Rozwiązanie: Wyznaczmy formę kwadratową, załóżmy że wielowymiarowy rozkład normalny jest standardowy:

$$\boldsymbol{\varepsilon}' \boldsymbol{\Sigma} \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 & \cdots & \varepsilon_k \end{bmatrix} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}_{k \times k} \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_k \end{bmatrix}$$
$$= \sum_{i=1}^k \varepsilon_i^2 \sim \chi_k^2$$

Widzimy, że forma kwadratowa $\varepsilon'\Sigma\varepsilon$ to suma kwadratów k zmiennych losowych o rozkładzie normalnym; taka suma ma rozkład χ^2 o k stopniach swobody.

Zadanie 3. Mamy wektor losowy $x \sim \mathcal{N}(\mu, \Sigma)$, gdzie $\mu = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{2} \end{bmatrix}$, $\mathbb{V}[x] = \begin{bmatrix} \frac{1}{1} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{1} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$. Jaki rozkład ma zmienna losowa $v = x_1 + 2x_2 + x_3$?

Rozwiązanie: Zmienna losowa v ma rozkład normalny, ponieważ suma zmiennych losowych o rozkładzie normalnym, ma rozkład normalny. Policzmy parametry rozkładu:

$$\mathbb{E}[v] = \mathbb{E}[x_1 + 2x_2 + x_3] = \mathbb{E}[x_1] + 2\mathbb{E}[x_2] + \mathbb{E}[x_3] = 1 + 6 + 2 = 9$$

$$\mathbb{V}[v] = \operatorname{Cov}[x_1 + 2x_2 + x_3, x_1 + 2x_2 + x_3]$$

$$= \mathbb{V}[x_1] + 4\mathbb{V}[x_2] + \mathbb{V}[x_3] + 2\operatorname{Cov}[x_1, 2x_2] + 2\operatorname{Cov}[2x_2, x_3] + 2\operatorname{Cov}[x_1, x_3]$$

$$= 1 + 8 + 2 + 4 + 4 + 1 = 20$$

Zatem $v \sim \mathcal{N}(9, 20)$.

Zadanie 4. Mamy wektor losowego $x \sim \mathcal{N}(\mu, \Sigma)$, gdzie $\mu = \left[\begin{smallmatrix} 2 \\ 3 \end{smallmatrix} \right]$, $\mathbb{V}[x] = \left[\begin{smallmatrix} 5 & 3 \\ 3 & 2 \end{smallmatrix} \right]$.

(i). Pokazać, że wektor $m{v} = \left[egin{array}{c} x_1 - x_2 + 1 \\ -x_1 + 2x_2 - 4 \end{array}
ight]$ ma rozkład $m{v} \sim \mathcal{N}(m{0}, m{I})$.

Rozwiązanie: Pokażmy że v jest przekształceniem liniowym x:

$$oldsymbol{v} = egin{bmatrix} 1 \\ -4 \end{bmatrix} + egin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} egin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 $oldsymbol{v} = oldsymbol{a} + oldsymbol{B} oldsymbol{x}$

Możemy skorzystać ze wzorów z zadania 4, z pierwszej części zadań (Rachunek Prawdopodobieństwa).

$$\mathbb{E}[\boldsymbol{v}] = \boldsymbol{a} + \boldsymbol{B} \, \mathbb{E}[\boldsymbol{x}]$$

$$= \begin{bmatrix} 1 \\ -4 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\mathbb{V}[\boldsymbol{v}] = \boldsymbol{B} \, \mathbb{V}[\boldsymbol{x}] \boldsymbol{B}'$$

$$= \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Istotnie, $\boldsymbol{v} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$.

(ii). Pokazać, że
$$(x_1 - x_2 + 1)^2 + (-x_1 + 2x_2 - 4)^2 \sim \chi_2^2$$

Rozwiązanie: Zauważmy że zmienne losowe x_1-x_2+1 oraz $-x_1+2x_2-4$ są sumami zmiennych losowych o rozkładzie normalnym, a więc one także mają rozkład normalny Z parametrami $\mathcal{N}(0,1)$ (Parametry proszę sprawdzić samodzielnie!). Zatem zmienna losowa $(x_1-x_2-1)^2+(-x_1+2x_2+4)^2$ musi mieć rozkład χ^2 o dwóch stopniach swobody, ponieważ jest sumą dwóch kwadratów zmiennych losowych o standardowym rozkładzie normalnym.

Uwaga! W stosunku do oryginalnej wersji zadania zamieniłem znaki w stałej a!.

III. Statystyka

Zadanie 2. Mamy zmienne losowe y_1 i y_2 takie, że $\mathbb{E}(y_1) = \theta$, $\mathbb{E}(y_2) = \frac{1}{2}\theta$, $\mathbb{V}(y_1) = 3\sigma^2$, $\mathbb{V}(y_2) = \sigma^2$, $\mathbb{C}\text{ov}(y_1, y_2) = \sigma^2$.

Rozwiązanie:

(i) podać warunek jaki muszą spełniać a_1 i a_2 , by estymator liniowy $\hat{\theta}=a_1y_1+a_2y_2$ był nieobciążony.

Rozpocznijmy od definicji obciążenia:

$$bias(\hat{\theta},\theta) = \mathbb{E}(\theta) - \hat{\theta}$$

Aby estymator był nieobciążony, musi spełniać warunek:

$$\mathbb{E}(\hat{\theta}) - \theta = 0$$

w naszym przypadku:

$$\mathbb{E}(a_1 y_1 + a_2 y_2) - \theta = 0$$

$$a_1 \mathbb{E}(y_1) + a_2 \mathbb{E}(y_2) - \theta = 0$$

$$a_1 \theta + a_2 \frac{1}{2} \theta - \theta = 0$$

$$(a_1 + a_2 \frac{1}{2} - 1)\theta = 0$$

$$a_1 + a_2 \frac{1}{2} - 1 = 0$$
(1)

(ii) Podać jakie powinny być a_1 i a_2 , by estymator liniowy $\hat{\theta}$ miał najniższą wariancję i był nieobciążony.

Wariancja estymatora:

$$\mathbb{V}(\hat{\theta}) = \mathbb{V}(a_1 y_1 + a_2 y_2)
\mathbb{V}(\hat{\theta}) = \mathbb{V}(a_1 y_1) + \mathbb{V}(a_2 y_2) + \text{Cov}(a_1 y_1, a_2 y_2)
\mathbb{V}(\hat{\theta}) = a_1^2 \mathbb{V}(y_1) + a_2^2 \mathbb{V}(y_2) + a_1 a_2 \text{Cov}(y_1, y_2)
\mathbb{V}(\hat{\theta}) = a_1^2 3\sigma^2 + a_2^2 \sigma^2 + a_1 a_2 \sigma^2$$
(2)

Aby znaleźć nieobciążony estymator o najniższej wariancji, należy zminimalizować (2) z ograniczeniem (1).

(3)

(iii) Dla y_1 i y_2 mających rozkład normalny podać rozkład estymatora $\bar{\theta}$.

Suma dwóch zmiennych losowych o rozkładzie normalnym, ma rozkład normalny:

$$X + Y \sim N(\mu_X + \mu_Y, \ \sigma_X^2 + \sigma_Y^2 + 2\sigma_{X,Y})$$

 $aX + bY \sim N(a\mu_X + b\mu_Y, \ a^2\sigma_X^2 + b^2\sigma_Y^2 + 2ab\sigma_{X,Y})$

Czyli estymator $\hat{\theta}$ ma rozkład normalny z parametrami:

$$\mathbb{E}(\hat{\theta}) = a_1 \theta + a_2 \frac{1}{2} \theta$$

$$\mathbb{V}(\hat{\theta}) = 3a_1^2 \sigma^2 + a_2^2 \sigma^2 + 2a_1 a_2 \sigma^2$$

Zadanie 3. Mamy n wymiarowy wektor \mathbf{x} . Elementy tego wektora mają tę samą wartość oczekiwaną μ i wariancję σ^2 oraz są nieskorelowane.

Rozwiązanie:

(i) Podać postać macierzy wariancji-kowariancji x.

Macierz wariancji-kowariancji:

$$\mathbb{V}(\mathbf{x}) = \begin{bmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma^2 \end{bmatrix}$$

(ii) Udowodnić, że $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ jest nieobciążonym estymatorem μ .

Aby \bar{x} była niobciążonym estymatorem μ , musi zachodzić warunek:

$$\mathbb{E}(\bar{x}) = \mu$$

$$\mathbb{E}(\bar{x}) = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n} x_i\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n} \mathrm{E}(x_i)$$

$$= \frac{1}{n}\sum_{i=1}^{n} \mu$$

$$= \frac{1}{n}n\mu$$

$$= \mu$$

(iii) Pokazać że wariancja \bar{x} maleje, gdy N rośnie.

Innymi słowy, mamy sprawdzić czy \bar{x} jest zgodnym estymatorem. Wyznaczmy wariancję \bar{x} :

$$\mathbb{V}(\bar{x}) = \mathbb{V}\left(\frac{1}{N}\sum_{i=1}^{N} x_i\right)$$

$$= \frac{1}{N^2} \mathbb{V}\left(\sum_{i=1}^{N} x_i\right)$$

$$= \frac{1}{N^2} \sum_{i=1}^{N} \mathbb{V}(x_i)$$

$$= \frac{1}{N^2} N\sigma^2$$

$$= \frac{1}{N} \sigma^2$$

Przy rosnącym N, wariancja \bar{x} maleje:

$$\lim_{i \to N} \frac{\sigma^2}{N} = 0$$

7

(iv) Pokazać, że estymator postaci σ^2 postaci $s^2=\frac{1}{n-1}\sum_{i=1}^n(x_i-\bar{x})$ jest nieobciążony.

Innymi słowy, mamy sprawdzić czy zachodzi następujący warunek:

$$\mathbb{E}(s^2) = \sigma^2$$

Zapiszmy wariancję z próby jeszcze raz:

$$s^{2} = \frac{n}{n-1} \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{n} \left(\sum_{n=1}^{n} (x_{i}^{2} - 2\bar{x}x_{i} + \bar{x}^{2}) \right)$$

$$= \frac{1}{n} \sum_{n=1}^{n} x_{i}^{2} - 2\bar{x} \frac{1}{n} \sum_{n=1}^{n} x_{i} + \bar{x}^{2}$$