Data Challenges on Prediction of Treatment of Breast Cancer

Lecturers: - Jean-Philippe vert - Yulong JIAO Group Members: - Jeremiah FADUGBA - Belona SONNA

PLAN

- Data
- Techniques/ Model used
- Techniques that didn't work
- Final Model
- Summary

THE DATA

First Class precentage: %64.130435 Second Class precentage: %35.869565

THE ACCURACY IS NOT SUFFICIENT

THE F1 SCORE

Fig: KPCA with 3 components

SOME METHODS USED COMPANSON

Algorithms used

Top 5 Models that still failed

Model	F1 Score	Accuracy	
Random Forest	0.56	60%	
Kernel Ridge Regression	0.55	62%	
Support Vector Machine (Linear)	0.59	61%	
K Nearest Neighbour	0.57	62%	
Logistic Regression (with kernel)	0.61	63%	

Techniques we tested.

Label Propagation

Gaussian Random Projection

RBFSampler

Final Pipeline Model Model Training Data Data Scaling/ Data Transformation Prediction Testing Data Results

Model: Support Vector Machine (with RBF)

We need to:

- >> Have high F1 score for the class with -1
- >> Select the model with high F1 score for all models.

	<u>Precicion</u>	Recall	F1 Score
-1	0.67	0.97	0.79
1	0.43	0.27	0.31

Results of the challenge on test data

Summary

- Gaussian Random Projection works by reducing the dimension and retaining pairwise distance
- Kernel approximation would have been better suited if there were more sample points
- Label Propagation sounds interesting but unfortunately didn't work with our data. wasn't suitable
- Support Vector Machine works on this data with a radial basis function kernel.
- Cross Validation didn't help here.

Always choose a simple model over complicated ones