Implementing Factor Analysis and PCA in Python

Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Assemble a data set of returns from correlated stocks

Use Python to calculate principal components of the financial data

Eliminate low-value principal components using eigenvalues

Relate the principal components to underlying latent factors

PCA in Python

Explain Google's returns

Yahoo finance

Using returns of correlated stocks

Eigen Decomposition

Python library function

On covariance matrix

Principal Components

From eigen vectors

Uncorrelated components

Covariance and Correlation

Correlation matrix signals trouble

Multicollinearity problems

Scree Plot

Number of dimensions

Discard low-value dimensions

Interpret and Regress

Beta, bonds, sectors

Now regress Google

Demo

Implement Eigen analysis and PCA in Python

Negative Indices in R

goog[-nrow(goog),-1]

Negative Indices In Python

PCA should always be applied on the covariance matrix of standardised vectors

Standardising Data

X11 X_{1k} **X**21 X₂k **X**31 X₃k X_{n1} Xnk $avg(X_1)$ $avg(X_k)$ $stdev(X_1)$ $stdev(X_k)$

Standardising Data

$$\frac{x_{11} - avg(X_1)}{stdev(X_1)}$$

$$\frac{x_{1k} - avg(X_k)}{stdev(X_k)}$$

$$\frac{x_{1k} - avg(X_k)}{stdev(X_k)}$$

$$\frac{x_{1k} - avg(X_k)}{stdev(X_k)}$$

Each column of the standardised data has mean 0 and variance 1

Reshaping in NumPy

Reshaping in NumPy


```
PCA_3 \longrightarrow [ F_{31} F_{32} \dots ]
```


Data

Linear Regression


```
zip(PCA<sub>1</sub>.T, PCA<sub>2</sub>.T, PCA<sub>3</sub>.T)
                               [F<sub>11</sub>]
                                                                              [F<sub>31</sub>]
                                                        [F_{21}]
                               [F<sub>12</sub>]
                                                       [\mathsf{F}_{22}]
                                                                              [F<sub>32</sub>]
                               [F<sub>1n</sub>]
                                                       [F_{2n}]
```

```
zip(PCA<sub>1</sub>.T, PCA<sub>2</sub>.T, PCA<sub>3</sub>.T)
                               [F<sub>11</sub>]
                                                                              [F<sub>31</sub>]
                                                       [F_{21}]
                               [F<sub>12</sub>]
                                                       [\mathsf{F}_{22}]
                                                                             [F<sub>32</sub>]
                               [F<sub>1n</sub>]
                                                       [F_{2n}]
```

```
zip(PCA<sub>1</sub>.T, PCA<sub>2</sub>.T, PCA<sub>3</sub>.T).reshape(-1,3)
```

```
[F<sub>11</sub>, F<sub>21</sub>, F<sub>31</sub>]
[F<sub>12</sub>, F<sub>22</sub>, F<sub>32</sub>]
... ...
[F<sub>1n</sub>, F<sub>2n</sub>, F<sub>3n</sub>]
```


Principal Components Analysis

Eigenvalue Decomposition

Principal Components:

Eigenvectors:

Eigenvalues:

Keeping things simple is quite complicated

Similar, yet Different

Regression

Connect the dots

Factor Analysis

Cut through the clutter

Regression

Causes
Independent variables

EffectDependent variable

Factor Analysis

Many Observed Causes

Few Underlying Causes

One Effect

A Question of Dimensionality

Pop quiz: Do we really need two dimensions to represent this data?

Bad Choice of Dimensions

If we choose our axes (dimensions) poorly then we do need two dimensions

Good Choice of Dimensions

If we choose our axes (dimensions) well then one dimension is sufficient

Intuition Behind PCA

In general, there are as many principal components as there are dimensions in the original data

Intuition Behind PCA

Re-orient the data along these new axes

Summary

Python has powerful libraries for PCA and eigen analysis

PCA of equity returns reveals three important principal components