Weighted Symbolic Automata with Data Storage

Luisa Herrmann, Heiko Vogler Weighted Symbolic Automata with Data Storage DLT 2016: 203-215

paper

- https://link.springer.com/chapter/10.1007/978-3-662-53132-7_17
- https://dl.acm.org/citation.cfm?id=3081476.3081493
- doi: 10.1007/978-3-662-53132-7 17

slides

• https://wwwtcs.inf.tu-dresden.de/~herrmann/pdf/slides_dlt16.pdf

see also

Luisa Herrmann Weighted Automata with Storage PhD thesis. Technische Universität Dresden, 2020, urn:nbn ■bsz:14-qucosa2-740685

https://tud.qucosa.de/api/qucosa%3A74068/attachment/ATT-0/

abstract

We introduce weighted symbolic automata with data storage, which combine and generalize the concepts of

- automata with storage types,
- weighted automata, and
- symbolic automata.

By defining two particular data storages, we show that this combination is rich enough to capture

- symbolic visibly pushdown automata and
- weighted timed automata.

We introduce a weighted MSO-logic and prove a Büchi-Elgot-Trakhtenbrot theorem, *i.e.*, the new logic and the new automaton model are expressively equivalent.

Definition

 $A=(Q,\Pi,Q_0,Q_f,T,wt,\eta)$ Weighted Symbolic Automata with Data Storage over (S,D,K) where:

- $S = (C, M, P, F, c_0)$ is a data storage type:
 - \circ C set of configurations
 - $\circ M$ set of storage inputs
 - $\circ P$ set of predicates over $C \times M$
 - \circ F set of functions $C \times M \to C$ (instructions)

- $\circ \ c_0 \in C$ (initial configuration)
- ullet D infinite set of input labels
- \bullet K semiring
- ullet Q finite set of states
- Π set of decidable predicates over D, Boolean-closed
- $Q_0 \subseteq Q$ (initial states)
- $Q_f \subseteq Q$ (final states)
- ullet $T\subseteq Q imes\Pi imes P imes Q imes F$ (transitions)
- $ullet \ wt: T imes D o K$ (weight assignement)
- $\eta:D \to M$ (storage encoding)

A-configuration = triple of $Q \times D^* \times C$.

move with transition $\tau = (q, \pi, p, q', f)$:

$$(q,dw,c)
ightarrow_{ au}(q',w,f(c,\eta(d)))$$

such that

- $ullet q,q'\in Q$
- $d \in D$
- ullet $w\in D^*$
- $c \in C$
- $\pi(d)$ is true
- $p(c, \eta(d))$ is true
- $f(c, \eta(d))$ is defined

computation = sequence of configurations chained with $\to_{ au_i}$ its weight is the semiring K-product of $wt(au_i,d_i)$

Expressiveness

- can express Symbolic Visibly Pushdown Automata with a specific data storage type (nested sets)
- can express Weighted Timed Automata with a specific data storage type (simulating clocks)
- Weighted Symbolic MSO-Logic with Storage Behaviour