山东大学___________学院

计算机组成与设计 课程实验报告

学号: 202000130143 | 姓名: 郑凯饶 | 班级: 2020 级 1 班

实验题目: 控制器实验

实验目的:

采用微程序方法设计控制器。

实验软件和硬件环境:

软件环境:

Quartus II 软件

硬件环境:

- 1. 实验室台式机
- 2. 计算机组成与设计实验箱

实验原理和方法:

1. 微程序控制器电路结构如下,有控制存储器 CROM、微程序 uPC 计数器和伪指令寄存器 uIR 构成:

图 13-1 微程序控制器框图

- ->UPC 提供 8 位微地址
- ->在控存信号的作用下,读出一条长 24 位的微指令代码
- ->在打入命令 CPUIR 的作用下送入 UIR
- 2. 时钟信号控制原理

每当按一次脉冲键便产生一个负脉冲, 该脉冲的作用是:

- 作为读控存的命令 uRD。
- · 负脉冲当作 CP μIR 将读出的微指令打入微指令寄存器 μIR。
- · 负脉冲的上升沿使 µPC+1 形成下一条微指令的地址。
- 负脉冲反相后的上升沿作为寄存器打入脉冲。

微程序时序如图 13-2。

3. UPC 设计

(1) 微程序计数器 µ PC 的设计,完成 8 位具有加 1 功能和清除功能的计数器设计并封装,如图 13-3。

图 13-3 UPC 的设计图

其中, CLR: 清零端,, 低电平有效; CLR=0 时, Q7Q6Q5Q4Q3Q2Q1Q0=000000000;

LOAD: 置数端,低电平有效; LOAD=0时,在CLK的上升沿,

Q7Q6Q5Q4Q3Q2Q1Q0=D7D6D5D4D3D2D1D0;

当 CLR=1, LOAD=1, ET=1, EP=1 时,对 CLK 进行增 1 计数。

注意:本实验使用时,只有 clk、CLR 两引脚引出,其它引脚,ET、EP、LOAD 接高电平。

altera_reserved_tck altera_reserved_tdi	Input								
					PIN_16	2.5 V (default)	8mA (default)		
	Input				PIN_15	2.5 V (default)	8mA (default)		
altera_reserved_tdo	Output				PIN_20	2.5 V (default)	8mA (default)	2 (default)	
altera reserved tms	Input				PIN_18	2.5 V (default)	8mA (default)		
_ dk	Input	PIN 84	5	B5 N0	PIN_84	2.5 V (default)	8mA (default)		
_ dr	Input	PIN_34	2	B2_N0	PIN 34	2.5 V (default)	8mA (default)		
_ d0	Input	_		_	PIN 30	2.5 V (default)	8mA (default)		
_ d1	Input				PIN_121	2.5 V (default)	8mA (default)		
_ d2	Input				PIN_88	2.5 V (default)	8mA (default)		
_ d3	Input				PIN_89	2.5 V (default)	8mA (default)		
_ d4	Input				PIN_42	2.5 V (default)	8mA (default)		
_ d5	Input				PIN 77	2.5 V (default)	8mA (default)		
_ d6	Input	П			PIN_43	2.5 V (default)	8mA (default)		
_ d7	Input	*****			PIN_124	2.5 V (default)	8mA (default)		
out[23]	Output	PIN 144	8	B8_N0	PIN_144	2.5 V (default)	8mA (default)	2 (default)	
out[22]	Output	PIN_143	8	B8_N0	PIN_143	2.5 V (default)	8mA (default)	2 (default)	
out[21]	Output	PIN 142	8	B8 N0	PIN_142	2.5 V (default)	8mA (default)	2 (default)	
out[20]	Output	PIN_141	8	B8_N0	PIN_141	2.5 V (default)	8mA (default)	2 (default)	
out[19]	Output	PIN 138	8	B8 N0	PIN 138	2.5 V (default)	8mA (default)	2 (default)	
out[18]	Output	PIN_137	8	B8_N0	PIN_137	2.5 V (default)	8mA (default)	2 (default)	
out[17]	Output	PIN_136	8	B8_N0	PIN_136	2.5 V (default)	8mA (default)	2 (default)	
out[16]	Output	PIN 135	8	B8 N0	PIN_135	2.5 V (default)	8mA (default)	2 (default)	
out[15]	Output	PIN_125	7	B7_N0	PIN_125	2.5 V (default)	8mA (default)	2 (default)	
out[14]	Output	PIN 128	8	B8 NO	PIN 128	2.5 V (default)	8mA (default)	2 (default)	
out[13]	Output	PIN 114	7	B7 N0	PIN_114	2.5 V (default)	8mA (default)	2 (default)	
out[12]	Output	PIN_120	7	B7_N0	PIN_120	2.5 V (default)	8mA (default)	2 (default)	
out[11]	Output	PIN_125	6	B6 N0	PIN 105	2.5 V (default)	8mA (default)	2 (default)	
out[10]	Output	PIN_113	7	B7_N0	PIN_113	2.5 V (default)	8mA (default)	2 (default)	
out[9]	Output	PIN 100	6	B6 N0	PIN_100	2.5 V (default)	8mA (default)	2 (default)	
out[8]	Output	PIN_101	6	B6_N0	PIN_101	2.5 V (default)	8mA (default)	2 (default)	
out[7]	Output	PIN_80	5	B5_N0	PIN_80	2.5 V (default)	8mA (default)	2 (default)	
out[6]	Output	PIN 85	5	B5 N0	PIN 85	2.5 V (default)	8mA (default)	2 (default)	
out[5]	Output	PIN_73	5	B5_N0	PIN_73	2.5 V (default)	8mA (default)	2 (default)	
out[4]	Output	PIN_76	5	B5 N0	PIN_76	2.5 V (default)	8mA (default)	2 (default)	
out[3]	Output	PIN_71	4	B4_N0	PIN_71	2.5 V (default)	8mA (default)	2 (default)	
out[2]	Output	PIN_71 PIN_72	4	B4_N0	PIN_72	2.5 V (default)	8mA (default)	2 (default)	
5 out[2]	Output	PIN_72 PIN 68	4	B4_N0	PIN_72 PIN 68	2.5 V (default)	8mA (default)	2 (default)	
5 out[1]	Output	PIN_68 PIN 69	4	84_N0	PIN_68 PIN 69	2.5 V (default)	8mA (default)	2 (default)	
snew node>>	συψυί	L114_03	7	טאַרַדּט	F114_05	2.5 v (uelduit)	onia (uelault)	2 (ucrault)	

测试、调试:

初始化 ROM 数据文件如下:

Addr	+0	- 11							
		+1	+2	+3	+4	+5	+6	+7	ASCII
0	0	7	14	21	28	35	42	49	#*1
8	56	63	70	77	84	91	98	105	8?FMT[b
16	112	119	126	133	140	147	154	161	pw~
24	168	175	182	189	196	203	210	217	
32	224	231	238	245	252	259	266	273	
40	280	287	294	301	308	315	322	329	
48	336	343	350	357	364	371	378	385	
56	392	399	406	413	420	427	434	441	
64	448	455	462	469	476	483	490	497	
72	504	511	518	525	532	539	546	553	
80	560	567	574	581	588	595	602	609	
88	616	623	630	637	644	651	658	665	
96	672	679	686	693	700	707	714	721	
104	728	735	742	749	756	763	770	777	
112	784	791	798	805	812	819	826	833	
120	840	847	854	861	868	875	882	889	
128	896	903	910	917	924	931	938	945	
136	952	959	966	973	980	987	994	1001	
144	1008	1015	1022	1029	1036	1043	1050	1057	
152	1064	1071	1078	1085	1092	1099	1106	1113	
160	1120	1127	1134	1141	1148	1155	1162	1169	

读取 0 号内存单元为 0H

读取 1 号内存单元为 7H

读取 2 号内存单元为 EH

读取 3 号内存单元为 15H

读取 4 号内存单元为 1CH

读取 5 号内存单元为 23H

验证通过!

结论分析与体会:

这次实验我们实践了简单的控制器,最让我印象深刻的是控制信号的设计,按键之后首 先作为读控存信号,读出当前微指令,同时其反相作为寄存器打入脉冲,将微指令"显示",而后其上升沿使 UPC+1 形成下一条微指令的地址。控制单元的设计中节拍安排是一个

比较有意思的问题,	希望在课设中深入理解。