Machine Learning HW3

Student ID: 111652015

(1) Reading and Explaining Lemmas

[Lemma 3.1] Let $k \in \mathbb{N}_0$ and $s \in 2\mathbb{N} - 1$. Then it holds that for all $\varepsilon > 0$ there exists a shallow tanh neural network $\Psi_{s,\varepsilon} : [-M,M] \to \mathbb{R}^{\frac{s+1}{2}}$ of width $\frac{s+1}{2}$ s.t.

$$\max_{\substack{p \leq s \\ p \text{ odd}}} \| f_p - (\Psi_{s,\varepsilon})_{\frac{p+1}{2}} \|_{W^{k,\infty}} \leq \varepsilon.$$

Moreover, the weights of $\Psi_{s,\varepsilon}$ scale as

$$O\left(\varepsilon^{\frac{s}{2}}\left(2(s+1)\sqrt{2M}\right)^{s(s+3)}\right)$$
 for small ε and large s .

Lemma 3.1 explains that using a single-hidden-layer neural network $\Psi_{s,\varepsilon}$ (activation function tanh) can approximate all odd monomials $(x^p, p \text{ is odd})$.

The function $\Psi_{s,\varepsilon}: [-M,M] \to \mathbb{R}^{\frac{s+1}{2}}$ means on the interval from -M to M. If the maximal degree is s, then there are s monomials (x^1,x^3,x^5,\ldots,x^s) .

Since the neural network is single-layer and uses tanh as the activation function, it can be written as

$$g(x) = \sum_{i=1}^{N} a_i \tanh(b_i x + c_i) + d.$$

And $\max_{\substack{p \leq s \\ p \text{ odd}}} \|f_p - (\Psi_{s,\varepsilon})_{\frac{p+1}{2}}\|_{W^{k,\infty}} \leq \varepsilon$ means the odd monomials f_p with degree less than s, and

the prediction error of the neural network can all be controlled within ε , and k denotes the order. For each m-th derivative of f_p , $m \leq k$, there exists $g_p^{(m)}(x)$ so that their difference is less than ε

The O in the last line says that the magnitudes of the weights in the neural network are proportional to

$$\varepsilon^{-s/2} (2(s+1)\sqrt{\mu})^{s(s+3)}$$
.

 \Rightarrow the smaller ε is, or the more odd monomials are required, the larger the weights.

[Lemma 3.2] Let $k \in \mathbb{N}_0$, $s \in 2\mathbb{N} - 1$ and M > 0. For every $\varepsilon > 0$, there exists a shallow tanh neural network $\Psi_{s,\varepsilon} : [-M,M] \to \mathbb{R}^{\frac{3(s+1)}{2}}$ of width $\frac{s+1}{2}$ s.t.

$$\max_{p \le s} \| f_p - (\Psi_{s,\varepsilon}) \|_{W^{k,\infty}} \le \varepsilon.$$

Furthermore, the weights scale as $O\left(\varepsilon^{-s/2}\left((s+2)\sqrt{M}\right)^{\frac{3s(s+3)}{2}}\right)$ for small ε and large s.

Difference from 3.1 Slightly different from 3.1 is that, Lemma 3.2 assumes that to simultaneously fit x, x^2, \ldots, x^s the number of hidden-layer neurons required is $\frac{3(s+1)}{2}$; the rest is the same as Lemma 3.1.

(2) Unanswered Question

- 1. How do the size of the training dataset and the number of training epochs affect the effectiveness of training?
- 2. Does there exist a formula that can describe data size, number of repetitions, and other parameters, and the influence on the error of the target of the trained neural network?