Performance metrics

1. Metrics

2. Precision and recall

3. Receiver Operating Characteristic (ROC) curves

Outline

1. Metrics

2. Precision and recall

3. Receiver Operating Characteristic (ROC) curves

Metrics

It is extremely important to use quantitative metrics for evaluating a machine learning model

- Until now, we relied on the cost function value for regression and classification
- Other metrics can be used to better evaluate and understand the model

For classification

✓ Accuracy/Precision/Recall/F1-score, ,...

For regression

✓ Normalized RMSE, Normalized Mean Absolute Error (NMAE),...

Outline

1. Metrics

2. Precision and recall

3. Receiver Operating Characteristic (ROC) curves

Precision and recall

Suppose that y = 1 in presence of a rare class that we want to detect

Precision (How much we are precise in the detection)

Of all patients where we predicted y = 1, what fraction actually has the disease?

$$\frac{\text{True Positive}}{\text{# Predicted Positive}} = \frac{\text{True Positive}}{\text{True Positive} + \text{False Positive}}$$

Recall (How much we are good at detecting)

Of all patients that actually have the disease, what fraction did we correctly detect as having the disease?

$$\frac{\text{True Positive}}{\text{# Actual Positive}} = \frac{\text{True Positive}}{\text{True Positive} + \text{False Negative}}$$

Confusion matrix

Actual class

	1 (p)	0 (n)		
1 (Y)	True positive (TP)	False positive (FP)		
0 (N)	False negative (FN)	True negative (TN)		

Predicted class

F1-score

It is usually better to compare models by means of one number only. The 11 -score can be used to combine precision and recall

	Precision(P)	Recall (R)	Average	F ₁ Score	
Algorithm 1	0.5	0.4	0.45	0.444	The best is Algorithm 1
Algorithm 2	0.7	0.1	0.4	0.175	
Algorithm 3	0.02	1.0	0.51	0.0392	
Algorithm 3 predict always 1			Average sa that Algorit	ys not correct thm 3 is the be	etly

$$Average = \frac{P+R}{2} \qquad F_1score = 2\frac{PR}{P+R}$$

•
$$P = 0$$
 or $R = 0 \Rightarrow F_1$ score = 0

•
$$P = 1$$
 and $R = 1 \Rightarrow F_1$ score = 1