OBSERVACIONES DEL RETO 2

Martín Rincón Cod 201914114 Mariana Ruiz Cod 202011140

	Máquina 1	Máquina 2	
Procesadores	Intel(R) Core(TM) i5-	Intel(R) Core(TM) i3-	
	9300H CPU @ 2.40GHz	1005G1 CPU @ 1.20GHz	
	2.40 GHz	1.19 GHz	
Memoria RAM (GB)	16GB 8GB		
Sistema Operativo	Windows 10 64-bits	Windows 10 Pro 64 bits	

Tabla 1. Especificaciones de las máquinas para ejecutar las pruebas de rendimiento.

Carga del catálogo

<u>Máquina 1</u>

Reto	Consumo de Datos [kB]	Tiempo de Ejecución [ms]
1	1320898	14659,45
2	1388618.35	85467.3

Tabla 2. Comparación de consumo de datos y tiempo de ejecución para carga de catálogo con el índice por categorías y países entre ambos retos para la máquina 1

Máquina 2

Reto	Consumo de Datos [kB]	Tiempo de Ejecución [ms]
1	1055576,18	17040,63
2	1729351.81	76771.07

Tabla 3. Comparación de consumo de datos y tiempo de ejecución para carga de catálogo con el índice por categorías y países entre ambos retos para la máquina 2

Como es posible evidenciar en las Tablas 2 y 3, la carga del catálogo es más eficiente, tanto en tiempo como en memoria, en el Reto 1. Para el Reto 1, la carga se realizó con el TAD LIST con la estructura de datos ARRAY_LIST. Para el Reto 2, la carga se realizó con el TAD MAP con el sistema de colisiones PROBING con un factor de carga de 0.8. Este valor fue elegido de acuerdo a las pruebas realizadas a los laboratorios previos. Es de esperarse que la carga en el Reto 2 requiriera de mayor tiempo y mayor memoria, pues realiza el proceso de transformación y compresión de las llaves para poder almacenar la pareja llave-valor en la tabla de hash.

Requerimiento 1

Máquina 1

Reto	Consumo de Datos [kB]	Tiempo de Ejecución [ms]
1	867,505	10555,728
2	22,1	28139,48

Tabla 4. Comparación de consumo de datos y tiempo de ejecución para el requerimiento 1 entre ambos retos para la máquina 1

Máquina 2

Reto	Consumo de Datos [kB]	Tiempo de Ejecución [ms]
1	474,25	11828,20
2	21,95	24181,91

Tabla 5. Comparación de consumo de datos y tiempo de ejecución para el requerimiento 1 entre ambos retos para la máquina 2.

En las Tablas 4 y 5 es posible evidenciar que el consumo de datos para el Reto 2 se redujo significativamente respecto al Reto 1. Sin embargo, el tiempo de ejecución aumentó sustancialmente. Esto se puede explicar porque en el Reto 2 se realizó una verificación más para evitar que aparecieran videos repetidos en la vista.

Requerimiento 2

Máquina 1

Reto	Consumo de Datos [kB]	Tiempo de Ejecución [ms]
1	1,751	1007,112
2	12,8	673,59

Tabla 6. Comparación de consumo de datos y tiempo de ejecución para el requerimiento 2 entre ambos retos para la máquina 1

Máquina 2

Reto	Consumo de Datos [kB]	Tiempo de Ejecución [ms]
1	0,663	1137,325333
2	12.3	470.987

Tabla 7. Comparación de consumo de datos y tiempo de ejecución para el requerimiento 2 entre ambos retos para la máquina 2.

Notamos que para ambas maquinas la implementación con maps fue más costosa en memoria, pero tambien da tiempos bastante mejores.

Requerimiento 3

Máquina 1

Reto	Consumo de Datos [kB]	Tiempo de Ejecución [ms]	
1	0,445	766,19	
2	1.72	240.26	

Tabla 8. Comparación de consumo de datos y tiempo de ejecución para el requerimiento 3 entre ambos retos para la máquina 1

Máquina 2

Reto	Consumo de Datos [kB]	Tiempo de Ejecución [ms]
1	0,44	920,13
2	1,15	382,7

Tabla 9. Comparación de consumo de datos y tiempo de ejecución para el requerimiento 3 entre ambos retos para la máquina 2.

En este caso también se ve que el consumo de memoria aumenta, mientras disminuye el tiempo requerido.

Requerimiento 4

Máguina 1

Reto	Consumo de Datos [kB] Tiempo de Ejecución [
1	1283,4	27046,23
2		

Tabla 10. Comparación de consumo de datos y tiempo de ejecución para el requerimiento 4 entre ambos retos para la máquina 1

Máquina 2

Reto	Consumo de Datos [kB]	Tiempo de Ejecución [ms]	
1	708,83	28620,27	
2			

Tabla 11. Comparación de consumo de datos y tiempo de ejecución para el requerimiento 4 entre ambos retos para la máquina 2.

En este requerimiento el tiempo de ejecución en ambas máquinas superaba los 20 minutos. Es posible afirmar que el Reto 1 es mucho más eficiente en cuanto a tiempo que el Reto 2. El reto 2 requeria hacer un sort de hasta 40000 videos, lo cual toma mucho tiempo.