VERIFICA STATICA DELLE TUBAZIONI DEL SISTEMA DI SMALTIMENTO DELLE ACQUE METEORICHE Revisione 1 – Luglio 2017

INDICE

1 - PREMESSA	3
2 - VERIFICA STATICA DI TUBAZIONI RIGIDE	4
2.1 - VALUTAZIONE DEI CARICHI	4
2.1.1 - CARICHI DOVUTI AL RINTERRO	
2.1.2 - CARICHI DOVUTI AI SOVRACCARICHI VERTICALI MOBILI	5
2.1.3 - CARICHI DOVUTI ALLA MASSA D'ACQUA CONTENUTA NEL TUBO	6
2.2 - VALUTAZIONE DEL COEFFICIENTE DI POSA	6
2.3 - VERIFICA STATICA DELLE TUBAZIONI IN CALCESTRUZZO ARMATO VIBROCOMPRESSO ALLO STA	АТО
LIMITE ULTIMO DI RESISTENZA	7
3 - VERIFICA STATICA DELLE TUBAZIONI FLESSIBILI IN PVC UNI EN 1401	
3.1 - VALUTAZIONE DEI CARICHI	9
3.1.1 - CARICHI DOVUTI AL RINTERRO	9
3.1.2 - CARICHI DOVUTI AI SOVRACCARICHI VERTICALI MOBILI	9
3.2 - CALCOLO E VERIFICA DELL'INFLESSIONE DIAMETRALE	10
3.3 - CALCOLO E VERIFICA DELLA SOLLECITAZIONE MASSIMA DI FLESSIONE	12
3.4 - VERIFICA ALL'INSTABILITÀ ALL'EQUILIBRIO ELASTICO	12
4 - VERIFICHE	14
4.1 - TUBAZIONI RIGIDE	14
4.2 - TUBAZIONI PVC	17

1 - PREMESSA

La presente relazione ha per oggetto le opere per lo smaltimento delle acque meteoriche previste per la riqualificazione della via Lainate in comune di Pogliano Milanese e Nerviano.

Una tubazione interrata è sottoposta a carichi verticali costituiti dal peso del terreno di ricoprimento, da eventuali sovraccarichi accidentali (carichi stradali) e dal peso dell'acqua contenuta nel tubo che tendono ad ovalizzare la tubazione.

La reazione del terreno circostante alla spinta della tubazione contrasta l'ovalizzazione della tubazione contribuendo a migliorarne la stabilità; in particolare, se la tubazione si deforma di più del terreno che la circonda, sarà sollecitata in modo minore poiché deformandosi sensibilmente coinvolge il terreno di rinfianco a collaborare alla resistenza.

Per definire quale sia il comportamento della tubazione, facendo riferimento alla norma UNI 7517/76 "Guida per la scelta della classe dei tubi per condotte di amianto cemento sottoposte a carichi esterni e funzionanti con o senza pressione interna", si definisce il coefficiente d'elasticità di una tubazione di diametro esterno D, spessore s e modulo elastico E_t, posata in un terreno di modulo elastico E_s, il numero dimensionale:

$$n = \frac{E_s}{E_t} \left(\frac{r}{s}\right)^3$$

$$con r = (D - s)/2$$

La tubazione interrata è flessibile se $n \ge 1$, altrimenti è rigida.

Considerando suoli con modulo elastico compreso fra 0,7 e 7 MPa, il comportamento delle tubazioni in c.a. risulta essere sempre rigido, mentre il comportamento delle tubazioni in PVC risulta sempre flessibile¹.

Le verifiche statiche di seguito illustrate sono basate sulle metodologie proposte dal Centro Studi Deflussi Urbani nella pubblicazione "Sistemi di Fognatura. Manuale di Progettazione".

Nelle tubazioni rigide la resistenza massima sotto carico è limitata da uno stato limite ultimo di rottura senza deformazione significativa della sezione; pertanto, tutte le tubazioni rigide hanno un proprio e ben definito carico di rottura per schiacciamento.

Dal momento che la resistenza a rottura di una tubazione rigida interrata dipende in modo sostanziale dalle modalità di rinterro, è assolutamente necessario che in fase di progetto siano esattamente definiti il tipo di posa, il materiale di sottofondo e rinfranco ed il grado di compattazione del medesimo.

In fase esecutiva occorrerà verificare che l'impresa costruttrice si attenga scrupolosamente alle prescrizioni di progetto.

¹ S. Papiri – Realizzazione di reti fognarie con modalità costruttive tradizionali: tipologie di materiali, resistenza meccanica, modalità di posa, resistenza all'aggressione chimica, tenuta idraulica.

2 - VERIFICA STATICA DI TUBAZIONI RIGIDE

La verifica di una tubazione rigida è effettuata garantendo il funzionamento sotto la soglia del carico di rottura.

Per la verifica statica delle tubazioni rigide si seguono le indicazioni della normativa UNI7517/76 e della norma AWWA (*American Water Works Association*) C950/88.

Le verifiche sono condotte considerando le caratteristiche di resistenza medie dei prodotti in commercio.

2.1 - VALUTAZIONE DEI CARICHI

2.1.1 - CARICHI DOVUTI AL RINTERRO

Per quanto riguarda i carichi dovuti al rinterro si distinguono due casi, a seconda del tipo di trincea di posa secondo le indicazioni della UNI 7517/76.

Posa in trincea stretta:

$$B \le 2D$$
 e $H \ge 1,5B$
 $2D \le B \le 3D$ e $H \ge 3,5B$

Posa in trincea larga negli altri casi.

Con

B = larghezza della trincea misurata in corrispondenza della generatrice superiore del tubo [m]

H = ricoprimento sulla generatrice superiore del tubo [m]

D = diametro esterno del tubo [m]

B

Trincea stretta

Trincea larga

Trincea stretta

Per trincee strette il carico di rinterro è calcolato con la formula

$$Q_{st} = C_t \cdot \gamma_{tp} \cdot B^2$$

Con

 Q_{st} = carico verticale agente sul tubo [N/m]

 γ_{tp} = peso specifico pesato del rinterro [kN/m³]

 C_t = coefficiente di carico del terreno nella posa in trincea stretta

 C_t è funzione del rapporto H/B, dell'angolo ρ di attrito interno del rinterno e dell'angolo ρ' tra rinterno e terreno naturale e può essere calcolata con la seguente espressione

$$C_t = \frac{1 - e^{-2k\left(\frac{H}{B}\right)\tan\rho'}}{2k\tan\rho'}$$

Con $k = tan^2(45^{\circ} - \rho/2)$ rapporto tra la pressione orizzontale e verticale del materiale di riempimento. Normalmente² si pone $\rho'=\rho$.

Se il valore di Q_{st} è minore del valore del prisma di terreno sovrastante ($\gamma_t \cdot D \cdot H$), tale valore si assume per Q_{st} .

Trincea larga

Nel caso di posa in trincea larga, il carico di rinterro è calcolato con la formula:

$$Q_{ewt} = C_e \cdot \gamma_t \cdot D^2$$

Con

 Q_{ewt} = carico verticale agente sul tubo [N/m]

 \mathcal{C}_e = coefficiente di carico del terreno nella posa in trincea larga

 C_e è funzione del rapporto H/D, delle caratteristiche del terreno e delle modalità di posa; può essere cautelativamente calcolato con le seguenti espressioni:

$$C_e = 0.1 + 0.85 \cdot \left(\frac{H}{D}\right) + 0.33 \cdot \left(\frac{H}{D}\right)^2$$
 per $H/D \le 2.66$
 $C_e = 0.1 + 1.68 \cdot \left(\frac{H}{D}\right)$ per $H/D > 2.66$

2.1.2 - CARICHI DOVUTI AI SOVRACCARICHI VERTICALI MOBILI

Per il calcolo dei sovraccarichi verticali mobili, derivanti dal carico stradale, è stata considerata la condizione più gravosa che corrisponde a quella del carico concentrato (veicoli su ruote) che può essere calcolato, sempre con riferimento alla UNI 7517 con l'espressione:

$$Q_{vc} = p_v \cdot D \cdot \varphi$$

Con

 Q_{vc} = carico verticale sul tubo [N/m]

 p_v = pressione verticale sul tubo dovuta ai sovraccarichi mobili [N/m²]

 φ fattore dinamico che si calcola con l'espressione $\varphi=1+\frac{0.3}{H}$

D = diametro esterno del tubo [m]

La legge n.313 del 5 maggio 1976, considera le condizioni di carico più onerose per la circolazione su strade ed autostrade come quelle connesse alla circolazione di un convoglio HT45 (massa del convoglio 45 t; tre assi; sovraccarico ruota anteriore 7500 kgf; sovraccarico ruota posteriore 7500 kgf) per il quale può essere utilizzata la eseguente relazione:

$$p_v = 43100 \cdot H^{-1,206}$$

Tuttavia si ritiene opportuno fare riferimento alla classe HT60 come indicato dalla DIN 1072 che risulta essere una condizione peggiorativa ma che va a favore di sicurezza.

Il calcolo della pressione verticale gravante sulla conduttura viene determinato con l'espressione:

$$p_v = \frac{3}{2\pi} \cdot \frac{P}{\left(H + \frac{D}{2}\right)^2}$$

Con

COI

 $^{^2}$ Semplificazione dovuta all'estrema difficoltà di attribuire a ho' un valore diverso giustificabile

P = carico concentrato costituito da una ruota (per veicoli HT60 P=100 kN) [kN]

2.1.3 - CARICHI DOVUTI ALLA MASSA D'ACQUA CONTENUTA NEL TUBO

Il carico verticale sulla generatrice superiore del tubo, dovuto alla massa d'acqua contenuta nel tubo riempito per tre quarti può essere calcolato, in base alla norma UNI 7517, con la formula:

$$Q_a = 5788 \cdot d^2$$

Con

 Q_a = carico verticale sul tubo [N/m]

d = diametro interno del tubo [m]

2.2 - VALUTAZIONE DEL COEFFICIENTE DI POSA

Il carico ovalizzante risultante che provoca rottura per schiacciamento di una tubazione interrata rigida è sempre maggiore del carico di rottura ottenuto con le prove in laboratorio in quanto si ha un miglioramento del comportamento statico della tubazione interrata offerto dalla reazione antiovalizzante del materiale di rinfianco e dal fatto che il carico risulta applicato in maniera distribuita sulla tubazione e non concentrata sulla generatrice superiore.

Pertanto, indicato con Q il carico di rottura per schiacciamento della tubazione ottenuto in laboratorio e con Qr il carico di rottura in trincea, risulta $Q_r = KQ$, dove K è il coefficiente di posa ed è maggiore di 1.

La norma 7517/76 indica per diverse modalità di posa previste, i coefficienti K da adottare in funzione dell'angolo di appoggio, del grado di costipamento del rinfianco e del tipo di trincea, come riportato di seguito

c ≥ 0.30

Tipo 3

Appoggio su letto di materiale granulare fine e rinfianco di materiale granulare fine entrambi accuratamente costipati.

Rinterro leggermente costipato esente da zolle.

$$a = 0.10m + 1/10D$$

 $b = 0.50D$
 $c = 0.5D + 0.30$

Tipo 4

Appoggio su letto di materiale granulare fine e parziale colmatura in calcestruzzo degli spazi laterali.

$$a = 0.10m + 1/10D$$

 $b = 1/4D \ (min \ 0.10)$
 $c \ge 1/3D$

Nel caso in esame, si è utilizzato un coefficiente di posa K=2,0, ad eccezione dei tratti con ricoprimento < 0.80 m, per i quali si è utilizzato il coefficiente di posa pari a 2,8.

2.3 - VERIFICA STATICA DELLE TUBAZIONI IN CALCESTRUZZO ARMATO VIBROCOMPRESSO ALLO STATO LIMITE ULTIMO DI RESISTENZA

La verifica deve dimostrare che sotto l'effetto della azioni agenti sulla condotta, le sollecitazioni che ne derivano siano minori delle resistenze meccaniche di riferimento ottenute dividendo le resistenze caratteristiche per un coefficiente di sicurezza e pertanto:

$$Q_t \leq KQ/\mu$$

 Q_t = carico esterno di schiacciamento della condotta (sommatoria di tutti i carichi agenti) [N/m]

K = coefficiente di posa come definito al paragrafo 2.2

Q = carico di rottura garantito per il tubo [N/m]

 μ = coefficiente di sicurezza allo schiacciamento

Nel caso dei tubi in calcestruzzo armato UNI EN 1916 e UNI 8981-5 la scelta della classe di resistenza deve derivare da una verifica statica della condotta nelle reali condizioni di posa in opera, tenuto conto dei carichi agenti.

Data la classe di resistenza CR della tubazione espressa in kN/m² si calcola il carico di rottura per schiacciamento a metro lineare moltiplicando la classe di resistenza per il diametro nominale DN della tubazione.

In conseguenza dell'incertezza che caratterizza la valutazione dei carichi agenti sulla canalizzazione, le incertezze sul reale valore del coefficiente di posa e per la possibilità che vi sia qualche lieve difetto strutturale sulla tubazione, si ritiene opportuno assegnare il valore 1,5 al coefficiente μ .

Il peso specifico del terreno è stato calcolato come peso specifico *pesato* per tenere conto dei diversi materiali e, laddove non è noto il peso specifico del materiale di riempimento è stato utilizzato in via

cautelativa il valore 20 kN/m³.

Le verifiche relative alle tubazioni hanno dato esito positivo, come evidenziato nella tabella riassuntiva seguente.

La verifica è stata effettuata su due sezioni:

- La sezione con la profondità di interramento minima (riferita alla distanza tra piano stradale e generatrice superiore del tubo) soggetta a maggiori carichi mobili.
- La sezione con la massima profondità sopra tubo dove il carico agente principale è quello dovuto al terreno.

3 - VERIFICA STATICA DELLE TUBAZIONI FLESSIBILI IN PVC UNI EN 1401

Per valutare il comportamento statico di una tubazione flessibile, non si può fare riferimento, come nel caso delle tubazioni rigide, al carico di rottura, semplicemente perché la deformazione del tubo è inaccettabile molto prima che si raggiunga il carico di rottura per schiacciamento.

Pertanto, per la verifica statica delle tubazioni flessibili si possono seguire le indicazioni riportate nella norma AWWA (*American Water Works Association*) C950/88 che si riferisce a tubi a pressione in resine termoindurenti rinforzate con fibre di vetro, ma che può essere ragionevolmente estesa a tutti i materiali plastici e alle tubazioni flessibili in generale.

Le verifiche sono effettuate considerando le caratteristiche di resistenza a lungo termine dei materiali utilizzati; è noto, infatti, che i materiali plastici vanno incontro a un decadimento nel tempo delle loro caratteristiche meccaniche.

Le operazioni da effettuarsi nell'ambito della verifica statica delle tubazioni flessibili sono le seguenti:

- Valutazione e verifica dell'inflessione diametrale a lungo termine;
- Valutazione e verifica della massima sollecitazione a flessione della sezione trasversale;
- Valutazione e verifica del carico critico di collasso.

Per ogni sezione critica vengono scelti i parametri specifici per effettuare la verifica.

3.1 - VALUTAZIONE DEI CARICHI

3.1.1 - CARICHI DOVUTI AL RINTERRO

L'appendice A della norma AWWA (*American Water Works Association*) C950/88 propone di valutare il carico verticale del suolo sul tubo³ come peso del prisma di terreno con base D e altezza H:

$$P_{ST} = \gamma_{tp} \cdot H \cdot D$$

espressione più cautelativa di quella prevista dalla norma UNI 7517 con

 P_{ST} = carico verticale del suolo sul tubo [kN/m]

 γ_{tp} = peso specifico pesato del rinterro [kN/m³]

H = altezza del rinterro [m]

D = Diametro esterno della tubazione [m]

3.1.2 - CARICHI DOVUTI AI SOVRACCARICHI VERTICALI MOBILI

Per il calcolo dei sovraccarichi verticali mobili, derivanti dal carico stradale, è stata considerata la condizione più gravosa che corrisponde a quella del carico concentrato (veicoli su ruote) che può essere calcolato, sempre con riferimento alla UNI 7517 con l'espressione:

$$Q_{vc} = p_v \cdot D \cdot \varphi$$

Con

 Q_{vc} = carico verticale sul tubo [N/m]

 p_v = pressione verticale sul tubo dovuta ai sovraccarichi mobili [N/m²]

 φ fattore dinamico che si calcola con l'espressione $\varphi=1+\frac{0.3}{H}$

D = diametro esterno del tubo [m]

La legge n.313 del 5 maggio 1976, considera le condizioni di carico più onerose per la circolazione su strade e autostrade come quelle connesse alla circolazione di un convoglio HT45 (massa del convoglio 45 t; tre

-

³ Si considerano solo la trincea larga

assi; sovraccarico ruota anteriore 7500 kgf; sovraccarico ruota posteriore 7500 kgf) per il quale può essere utilizzata la seguente relazione:

$$p_{v} = 43100 \cdot H^{-1,206}$$

Tuttavia si ritiene opportuno fare riferimento alla classe HT60 come indicato dalla DIN 1072 che risulta essere una condizione peggiorativa ma che va a favore di sicurezza.

Il calcolo della pressione verticale gravante sulla condotta viene determinato con l'espressione:

$$p_v = \frac{3}{2\pi} \cdot \frac{P}{\left(H + \frac{D}{2}\right)^2}$$

Con

P = carico concentrato costituito da una ruota (per veicoli HT60 P=100 kN) [kN]

3.2 - CALCOLO E VERIFICA DELL'INFLESSIONE DIAMETRALE

Nel caso di una condotta flessibile la verifica statica è soddisfatta se il rapporto tra la deformazione del diametro orizzontale e il diametro esterno D è inferiore al 5%.

$$\frac{\Delta_y}{D} \le 5\%$$

Per condotte in PVC, l'inflessione massima anticipata nella tubazione Δ_y , con il 95% di probabilità, è fornita dall'espressione di Marston-Spangler:

$$\Delta_y = \frac{(D_e \cdot Q_{svt} + Q_{vc}) \cdot k_x}{8RG + 0.061 \cdot k_a \cdot E_{terr}} + \Delta_a$$

Dove

 D_e = fattore di ritardo di inflessione che tiene conto del fatto che il terreno continua a costipare nel tempo

Tabella 1

Tipo di rinterro e grado di costipamento	D_e
Rinterro poco profondo con grado di costipamento da moderato ad elevato	2,0
Materiale scaricato alla rinfusa o grado di costipamento leggero.	1,5

 Q_{svt} = carico verticale del suolo sul tubo come definito al punto 2.1 per trincee larghe [N/cm]

 Q_{vc} = sovraccarico mobile sul tubo [N/cm]

 k_x = coefficiente di inflessione che dipende dalla capacità di sostegno fornita dal suolo all'arco inferiore di appoggio del tubo

Tabella 2

Tipo di installazione	Angolo equivalente di letto in °	k_{x}
Fondo sagomato con materiale di riempimento ben costipato al lato dei tubi (densità Proctor ≥ 95%) o materiale di letto e rinfianco di tipo ghiaioso leggermente costipato (densità Proctor ≥ 70%)	180	0.083
Fondo sagomato con materiale di riempimento moderatamente costipato ai fianchi dei tubi (85% ≤ densità Proctor < 95%) o materiale di letto e rinfianco di tipo ghiaioso	60	0.103

Fondo piatto con materiale di riempimento posato ai fianchi	0	0.110
del tubo (non raccomandato)	0	0.110

RG = fattore di rigidità trasversale della tubazione a lungo termine [N/cm²]

 E_{terr} = modulo elastico del terreno [N/cm²]

Tabella 3 – Valori del modulo elastico del terreno in N/cm²

	Compattazione			
Tino di torrono	Rinfusa	Leggera	Moderata	Alta
Tipo di terreno	Indice Proctor	< 85%	85-94%	> 95%
	Densità relativa	< 40%	40-70%	> 70%
Terreno coesivo	0	0	0	0
Argilla e limo ad alta plasticità	0	0	0	0
Terreno coesivo				
Argilla e limo a media e bassa plasticità con meno del	35	140	280	700
25% di particelle di fango				
Terreno granulare coesivo				
Ghiaia con particelle fini con bassa o media plasticità	700	280	700	1400
Sabbia con particelle fini con bassa o media plasticità				
Terreno senza coesione				
Ghiaia con curva granulometrica ben assortita o non	140	700	1400	2100
ben assortita				
Rocce macinate	700	-	21000	-

 k_a [adimensionale] e Δ_a [m] = parametri che consentono di passare dall'inflessione media (50% di probabilità) all'inflessione massima caratteristica (frattile di ordine 0.95 della distribuzione statistica dell'inflessione)

Tabella 4

Altezza H del rinterro [m]	Δ_a	k_a
H ≤ 4,90 m	0	0.75
H > 4,90 m e materiale scaricato alla rinfusa o con leggero grado di costipamento	0,002D	1,00
H > 4,90 m e materiale con moderato grado di costipamento	0,01D	1,00
H > 4,90 m e materiale con elevato grado di costipamento	0,005D	1,00

Per altezze di ricoprimento H inferiori a 4.0 m, il valore di De è assunto pari a 2.

Il valore del coefficiente di inflessione k_x è stato posto, a favore di sicurezza, pari al suo valore massimo: $k_x = 0.110$. La classe di rigidità nominale delle condotte previste in progetto è classe SN8 (secondo UNI EN 1401-1).

I parametri k_a e D_a sono stati assegnati in funzione all'altezza del rinterro H ed in accordo con quanto indicato nella tabella 4 si è fatto riferimento alla voce per altezze inferiori a 4,90m

Per quanto riguarda infine il valore del modulo di elasticità E_{terr} del materiale di riempimento, terreno misto granulare, questo è stato assimilato a "Terreno granulare coesivo" (Ghiaia con particelle fini con bassa o media plasticità, Sabbia con particelle fini con bassa o media plasticità) sottoposto ad un grado di compattazione moderato: E_{terr} = 700 N/cm².

3.3 - CALCOLO E VERIFICA DELLA SOLLECITAZIONE MASSIMA DI FLESSIONE

La sollecitazione massima di flessione che risulta dall'inflessione del tubo non deve eccedere la resistenza a flessione a lungo termine del prodotto, ridotta tramite un fattore di sicurezza.

In particolare dovrà risultare:

$$\sigma = D_f E_t \left(\frac{\Delta_y}{D}\right) \left(\frac{s}{D}\right) \le \frac{\sigma_{lim}}{\mu}$$
$$\frac{\sigma_{lim}}{\sigma} \ge \mu$$

Con

 σ = tensione dovuta alla deflessione diametrale [N/cm²]

 σ_{lim} = tensione limite ultima a rottura del materiale [N/cm²]

 D_f = fattore di forma i cui valori possono essere ricavati per interpolazione da quelli parametrizzati in funzione dell'indica di rigidezza $RG = \frac{E_t \cdot I}{D_m^3} \operatorname{con} D_m$ diametro medio del tubo

Tabella 5 Tattore at Torrita					
INDICE DI RIGIDEZZA DELLA TUBAZIONE RG [N/m²]	TIPO DI MATERIALE DI SOTTOFONDO E RINFIANCO E GRADO DI COSTIPAMENTO				
	GHIAIOSO		SABBIOSO		
	Da naturale a	Da moderato ad	Da naturale a	Da moderato ad	
	leggero	elevato	leggero	elevato	
1150	5.5	7.0	6.0	8.0	
2300	4.5	5.5	5.0	6.5	
4600	3.8	4.5	4.0	5.5	
9200	3.3	3.8	3.5	4.5	

Tabella 5 - fattore di forma

3.4 - VERIFICA ALL'INSTABILITÀ ALL'EQUILIBRIO ELASTICO

Una tubazione sollecitata da forze radiali uniformemente distribuite e dirette verso il centro di curvatura, dapprima rimane circolare, poi all'aumentare delle forze, si inflette ovalizzazione (deformata a due lobi) e progressivamente si ha deformazione a tre lobi, ecc.

Il carico critico per unità di superficie vale:

$$p_{cr} = \left(n_l^2 - 1\right) \frac{E_t I}{r^3}$$

Con n_l numero dei lobi della deformata; la precedente espressione con $n_l=2$ diventa

$$p_{cr} = 3\frac{E_t I}{r^3}$$

La forza per unità di lunghezza che determina l'instabilità è:

$$P_{cr} = p_{cr}D$$

Con

D = diametro esterno del tubo [m]

Per quanto riguarda le tubazioni interrate, la sollecitazione che determina l'instabilità elastica è legata, oltre alle caratteristiche meccaniche della tubazione, anche al modulo elastico Es del suolo che circonda la tubazione.

La norma ANSI-AWWA C950/88 propone la seguente espressione per la valutazione la pressione ammissibile (definita anche "pressione ammissibile di *Buckling*"):

$$q_{\alpha} = \frac{1}{FS} \sqrt[2]{32 \cdot R_w \cdot B' \cdot E_s \cdot \frac{E_t \cdot I}{D^3}}$$

Con

 q_a = pressione ammissibile di *buckling* [N/cm²]

FS = fattore di progettazione⁴ pari a 2.5

 $R_{w}=1-0.33(H_{w}/H)$ = il fattore di spinta idrodinamica della falda eventualmente presente con

 $0 \le H_w \le H$

 $B' = \frac{1}{1+4e^{-0.213H}}$ è il coefficiente empirico di supporto elastico

H = altezza di rinterro [m]

 H_w = altezza della superficie libera della falda sulla sommità della tubazione [m]

La verifica all'instabilità elastica si esegue confrontando la pressione ammissibile q_a con la risultante dei carichi esterni applicati.

$$\gamma_w H_w + R_w \frac{W_c}{D} + \frac{W_l}{D} \le q_a$$

L'inflessione diametrale, le sollecitazioni e la pressione massima ammissibile di *buckling* in una tubazione flessibile interrata dipendono in maniera determinante dal modulo di elasticità del suolo e quindi dal tipo di terreno utilizzato per letto di posa ed il rinfianco della tubazione e dal grado di costipamento.

⁴ Se la verifica relativa all'inflessione diametrale fornisce valori prossimi al limite massimio accettabile il fattore di progettazione dovrà essere assunto pari a 3.

4 - VERIFICHE

4.1 - TUBAZIONI RIGIDE

Verifica tubo cls diametro interno 400 mm - Ricoprimento 65 cm

Parametri terreno

γ_{tp}	14,75	[KN/m ³]	Peso specifico pesato
ρ	30	۰	angolo attrito interno del rinterro
ρ'	30	۰	angolo attrito interno del terreno naturale
k	0,333		

Parametri geometrici

В	1,00	[m]	Larghezza della trincea
Н	0,65	[m]	Ricoprimento
d	0,40	[m]	Diametro interno del tubo
S	0,055	[m]	Spessore del tubo
D	0,51	[m]	Diametro esterno del tubo

Trincea Larga

Determinazione del carico dovuto al rinterro

Ce	1,719		coefficiente di carico del terreno nella posa in trincea larga
Qswt	6,59	[kN/m]	carico di rinterro

Determinazione del carico dovuto ai sovraccarichi mobili

ф	1,46		fattore dinamico
p_{v}	58,30	$[kN/m^2]$	pressione verticale sul tubo dovuta ai sovraccarichi mobili
Q_{vc}	43,41	[kN/m]	carico dovuto ai sovraccarichi mobili

Determinazione del carico dovuto alla massa di acqua nel tubo

Determinazione del coefficiente di sicurezza

K	2,80		Coefficiente di posa
\mathbf{Q}_{t}	50,93	[kN/m]	carico esterno di schiacciamento della condotta
Q	81,60	[kN/m]	Carico di rottura del tubo
μ_{min}	1,50		Coefficiente di sicurezza allo schiacciamento di progetto
μ	4,49		Coefficiente di sicurezza allo schiacciamento minimo

Verifica soddisfatta

	spessore	p. spec.
Strato	S _i	γ_{i}
	[m]	[KN/m ³]
Tappeto di usura	0,03	17,00
Binder	0,05	17,50
Tout-venant bitumato	0,15	18,00
Fondazione stradale	0,17	20,00
Cls armato	0,10	25,00
rinfianco sabbia	0,15	20,00
	0,65	14,75

Verifica tubo cls diametro interno 400 mm - Ricoprimento 95 cm

Parametri terreno

γ_{tp}	19,46	[KN/m ³]	Peso specifico pesato
ρ	30	•	angolo attrito interno del rinterro
ρ'	30	•	angolo attrito interno del terreno naturale
k	0,333		

Parametri geometrici

В	1,00	[m]	Larghezza della trincea
Н	0,95	[m]	Ricoprimento
d	0,40	[m]	Diametro interno del tubo
S	0,055	[m]	Spessore del tubo
D	0,51	[m]	Diametro esterno del tubo

Trincea Larga

Determinazione del carico dovuto al rinterro

Ce	2,828		coefficiente di carico del terreno nella posa in trincea larga
Qswt	14,31	[kN/m]	carico di rinterro

Determinazione del carico dovuto ai sovraccarichi mobili

ф	1,32		fattore dinamico
$p_{\nu} \\$	32,88	$[kN/m^2]$	pressione verticale sul tubo dovuta ai sovraccarichi mobili
Q_{vc}	22,13	[kN/m]	carico dovuto ai sovraccarichi mobili

Determinazione del carico dovuto alla massa di acqua nel tubo

Q_a	0,93	[kN/m]

Determinazione del coefficiente di sicurezza

K	2,80		Coefficiente di posa
Q_{t}	37,37	[kN/m]	carico esterno di schiacciamento della condotta
Q	81,60	[kN/m]	Carico di rottura del tubo
μ_{min}	1,50		Coefficiente di sicurezza allo schiacciamento di progetto
μ	6,11		Coefficiente di sicurezza allo schiacciamento minimo

Verifica soddisfatta

	spessore	p. spec.
Strato	S _i	γ_{i}
	[m]	[KN/m ³]
Tappeto di usura	0,03	17,00
Binder	0,05	17,50
Tout-venant bitumato	0,15	18,00
Fondazione stradale	0,57	20,00
rinfianco sabbia	0,15	20,00
	0.95	19.46

Verifica tubo cls diametro interno 500 mm - Ricoprimento 80 cm

Parametri terreno

γ_{tp}	19,36	[KN/m ³]	Peso specifico pesato
ρ	30	۰	angolo attrito interno del rinterro
ρ'	30	•	angolo attrito interno del terreno naturale
k	0,333		

Parametri geometrici

В	1,00	[m]	Larghezza della trincea
Н	0,80	[m]	Ricoprimento
d	0,50	[m]	Diametro interno del tubo
S	0,060	[m]	Spessore del tubo
D	0,62	[m]	Diametro esterno del tubo

Trincea Larga

Determinazione del carico dovuto al rinterro

Ce	1,746		coefficiente di carico del terreno nella posa in trincea larga
Qswt	12,99	[kN/m]	carico di rinterro

Determinazione del carico dovuto ai sovraccarichi mobili

φ	1,38		fattore dinamico
p_{ν}	38,75	$[kN/m^2]$	pressione verticale sul tubo dovuta ai sovraccarichi mobili
Q_{vc}	33,15	[kN/m]	carico dovuto ai sovraccarichi mobili

Determinazione del carico dovuto alla massa di acqua nel tubo

Q_{a}	1,45	[kN/m]

Determinazione del coefficiente di sicurezza

K	2,80		Coefficiente di posa
\mathbf{Q}_{t}	47,59	[kN/m]	carico esterno di schiacciamento della condotta
Q	99,20	[kN/m]	Carico di rottura del tubo
μ_{min}	1,50		Coefficiente di sicurezza allo schiacciamento di progetto
μ	5,84		Coefficiente di sicurezza allo schiacciamento minimo

Verifica soddisfatta

	spessore	p. spec.
Strato	S _i	γ_{i}
	[m]	[KN/m ³]
Tappeto di usura	0,03	17,00
Binder	0,05	17,50
Tout-venant bitumato	0,15	18,00
Fondazione stradale	0,42	20,00
rinfianco sabbia	0,15	20,00
	0.80	19.36

4.2 - TUBAZIONI PVC

TUBAZIONI FLESSIBILI

Verifica tubo PVC UNI EN 1401 - DN125 - SN4 - Ricoprimento 70 cm sotto ciclopedonale

Parametri terreno

γ_{tp}	18,66	[KN/m ³]	Peso specifico pesato
ρ	30	0	angolo attrito interno del rinterro
ρ'	30	0	angolo attrito interno del terreno naturale
k	0,333		

Parametri geometrici

В	0,65	[m]	Larghezza della trincea
Н	0,70	[m]	Ricoprimento
d	118,60	[mm]	Diametro interno del tubo
S	3,20	[mm]	Spessore del tubo
D	125	[mm]	Diametro esterno del tubo
Dm	123,40	[mm]	Diametro medio del tubo

Trincea Larga

Determinazione del carico dovuto al rinterro

Ce	9,508		coefficiente di carico del terreno nella posa in trincea larga
Qswt	27,70	[N/cm]	carico di rinterro

Determinazione del carico dovuto ai sovraccarichi mobili

φ	1,43		fattore dinamico
p_{v}	82,12	$[kN/m^2]$	pressione verticale sul tubo dovuta ai sovraccarichi mobili
Q_{vc}	146,80	[N/cm]	carico dovuto ai sovraccarichi mobili

Calcolo e verifica dell'inflessione diametrale

D_e	2,00		Fattore di ritardo
k_{x}	0,083		coefficiente di inflessione
E_{terr}	700,00	[N/cm ²]	Modulo elastico del terreno
\boldsymbol{k}_{a}	0,75		
Δ_{a}	0		
Δ_{y}	0,51	[cm]	
Λ/D	4.09%		Verifica soddisfatta

Calcolo e verifica della sollecitazione massima di flessione

μ_{min}	1,50		Coefficiente di sicurezza
E_t	1500	[Mpa]	Modulo elastico a lungo termine
1	2,73	[mm³]	
RG	2179		Indice di rigidezza
D_f	3,95		fattore di forma
σ_{lim}	2500,00	[N/cm ²]	tensione limite ultima a rottura del materiale
σ	620,37	[N/cm ²]	tensione dovuta alla deflessione diametrale
μ	4,03		Verifica soddisfatta

FS	2,50	Fattore di progettazione
R_{w}	1,00	fattore di spinta idrodinamica della falda

В'	1,00		coefficiente empirico di supporto elastico
q_a	27,43	[N/cm ²]	pressione ammissibile di buckling
R_{q}	13,96	[N/cm ²]	Risultante dei carichi
			Verifica soddisfatta

	spessore	p. spec.
Strato	S _i	γ_{i}
	[m]	[KN/m ³]
Tappeto di usura pista	0,03	17,00
massetto cls	0,10	17,50
Fondazione stradale	0,12	20,00
Riempimento	0,30	18,00
rinfianco sabbia	0,15	20,00
	0,70	18,66

Verifica tubo PVC UNI EN 1401 - DN125 - SN4 - Ricoprimento 90 cm sotto ciclopedonale

Parametri terreno

γ_{tp}	18,51	[KN/m ³]	Peso specifico pesato
ρ	30	0	angolo attrito interno del rinterro
ρ'	30	•	angolo attrito interno del terreno naturale
k	0.333		

Parametri geometrici

В	0,65	[m]	Larghezza della trincea
Н	0,90	[m]	Ricoprimento
d	118,60	[mm]	Diametro interno del tubo
S	3,20	[mm]	Spessore del tubo
D	125	[mm]	Diametro esterno del tubo
Dm	123,40	[mm]	Diametro medio del tubo

Trincea Larga

Determinazione del carico dovuto al rinterro

Ce	12,196		coefficiente di carico del terreno nella posa in trincea larga
Qswt	35,30	[N/cm]	carico di rinterro

Determinazione del carico dovuto ai sovraccarichi mobili

ф	1,33		fattore dinamico
p_{v}	51,54	$[kN/m^2]$	pressione verticale sul tubo dovuta ai sovraccarichi mobili
Q_{vc}	85,70	[N/cm]	carico dovuto ai sovraccarichi mobili

Calcolo e verifica dell'inflessione diametrale

D_e	2,00		Fattore di ritardo
k_{x}	0,083		coefficiente di inflessione
E_{terr}	700,00	[N/cm ²]	Modulo elastico del terreno
\mathbf{k}_{a}	0,75		
Δ_{a}	0		
Δ_{y}	0,40	[cm]	
$\Delta_{\sf v}/{\sf D}$	3,16%		Verifica soddisfatta

Calcolo e verifica della sollecitazione massima di flessione

			•
μ_{min}	1,50		Coefficiente di sicurezza
E_t	1500	[Mpa]	Modulo elastico a lungo termine
1	2,73	[mm³]	
RG	2179		Indice di rigidezza
D_f	3,95		fattore di forma
σ_{lim}	2500,00	[N/cm ²]	tensione limite ultima a rottura del materiale
σ	479,31	[N/cm ²]	tensione dovuta alla deflessione diametrale
μ	5,22		Verifica soddisfatta

FS	2,50	Fattore di progettazione
R_{w}	1,00	fattore di spinta idrodinamica della falda
B'	1,00	coefficiente empirico di supporto elastico

q _a	27,43	$[N/cm^2]$	pressione ammissibile di buckling
R_{q}	9,68	[N/cm ²]	Risultante dei carichi
			Verifica soddisfatta

Verifica tubo PVC UNI EN 1401 - DN160 - SN4 - Ricoprimento 65 cm sotto ciclopedonale

Parametri terreno

γ_{tp}	18,71	[KN/m ³]	Peso specifico pesato
ρ	30	•	angolo attrito interno del rinterro
ρ'	30	•	angolo attrito interno del terreno naturale
k	0,333		

Parametri geometrici

В	0,70	[m]	Larghezza della trincea
Н	0,65	[m]	Ricoprimento
d	152,00	[mm]	Diametro interno del tubo
S	4,00	[mm]	Spessore del tubo
D	160	[mm]	Diametro esterno del tubo
Dm	158,00	[mm]	Diametro medio del tubo

Trincea Larga

Determinazione del carico dovuto al rinterro

Ce	6,925		coefficiente di carico del terreno nella posa in trincea larga
Qswt	33,20	[N/cm]	carico di rinterro

Determinazione del carico dovuto ai sovraccarichi mobili

ф	1,46		fattore dinamico
p_{v}	89,60	$[kN/m^2]$	pressione verticale sul tubo dovuta ai sovraccarichi mobili
Q_{vc}	209,30	[N/cm]	carico dovuto ai sovraccarichi mobili

Calcolo e verifica dell'inflessione diametrale

D_e	2,00		Fattore di ritardo
k_{x}	0,083		coefficiente di inflessione
E_{terr}	700,00	[N/cm ²]	Modulo elastico del terreno
\mathbf{k}_{a}	0,75		
Δ_{a}	0		
Δ_{y}	0,70	[cm]	
$\Delta_{\sf v}$ /D	4,36%		Verifica soddisfatta

Calcolo e verifica della sollecitazione massima di flessione

	o o renjiou uena	50	
μ_{min}	1,50		Coefficiente di sicurezza
\mathbf{E}_{t}	1500	[Mpa]	Modulo elastico a lungo termine
I	5,33	[mm³]	
RG	2027		Indice di rigidezza
D_f	3,88		fattore di forma
σ_{lim}	2500,00	[N/cm ²]	tensione limite ultima a rottura del materiale
σ	634,38	[N/cm ²]	tensione dovuta alla deflessione diametrale
μ	3,94		Verifica soddisfatta

FS	2,50	Fattore di progettazione
R_{w}	1,00	fattore di spinta idrodinamica della falda
В'	1,00	coefficiente empirico di supporto elastico

q_a 26,77 [N/cm²] pressione ammissibile di buckling

R_q 15,16 [N/cm²] Risultante dei carichi

Verifica soddisfatta

	spessore	p. spec.
Strato	S _i	γ_{i}
	[m]	[KN/m ³]
Tappeto di usura pista	0,03	17,00
massetto cls	0,10	17,50
Fondazione stradale	0,12	20,00
Riempimento	0,25	18,00
rinfianco sabbia	0,15	20,00
·	0,65	18,71

Verifica tubo PVC UNI EN 1401 - DN160 - SN4 - Ricoprimento 115 cm sotto ciclopedonale

Parametri terreno

γ_{tp}	18,4	[KN/m ³]	Peso specifico pesato
ρ	30	•	angolo attrito interno del rinterro
ρ'	30	•	angolo attrito interno del terreno naturale
k	0.333		

Parametri geometrici

В	0,70	[m]	Larghezza della trincea
Н	1,15	[m]	Ricoprimento
d	152,00	[mm]	Diametro interno del tubo
S	4,00	[mm]	Spessore del tubo
D	160	[mm]	Diametro esterno del tubo
Dm	158,00	[mm]	Diametro medio del tubo
Dm	158,00	[mm]	Diametro medio del tubo

Trincea stretta Determinazione del carico dovuto al rinterro

Ct	0,050		coefficiente di carico del terreno nella posa in trincea stretta
Qst	0,20	[N/cm]	carico di rinterro

Determinazione del carico dovuto ai sovraccarichi mobili

φ	1,26	fattore dinamico
p_{v}	31,56	[kN/m²] pressione verticale sul tubo dovuta ai sovraccarichi mobili
Q_{vc}	63,60	[N/cm] carico dovuto ai sovraccarichi mobili

Calcolo e verifica dell'inflessione diametrale

D_e	2,00		Fattore di ritardo
k_{x}	0,083		coefficiente di inflessione
E_{terr}	700,00	[N/cm ²]	Modulo elastico del terreno
\mathbf{k}_{a}	0,75		
Δ_{a}	0		
Δ_{y}	0,16	[cm]	
$\Delta_{\sf v}\!/{\sf D}$	1,01%		Verifica soddisfatta

Calcolo e verifica della sollecitazione massima di flessione

iteriale
etrale

FS	2,50	Fattore di progettazione
R_w	1,00	fattore di spinta idrodinamica della falda
В'	1,00	coefficiente empirico di supporto elastico

q_a 26,77 [N/cm²] pressione ammissibile di buckling

R_q 3,99 [N/cm²] Risultante dei carichi

Verifica soddisfatta

	spessore	p. spec.
Strato	S _i	γ_{i}
	[m]	[KN/m ³]
Tappeto di usura pista	0,03	17,00
massetto cls	0,10	17,50
Fondazione stradale	0,12	20,00
Riempimento	0,75	18,00
rinfianco sabbia	0,15	20,00
	1,15	18,40

Verifica tubo PVC UNI EN 1401 - DN200 - SN4 - Ricoprimento 65 cm sotto ciclopedonale

Parametri terreno

γ_{tp}	18,71	[KN/m ³]	Peso specifico pesato
ρ	30	•	angolo attrito interno del rinterro
ρ'	30	•	angolo attrito interno del terreno naturale
k	U 333		

Parametri geometrici

В	0,70	[m]	Larghezza della trincea
Н	0,65	[m]	Ricoprimento
d	190,20	[mm]	Diametro interno del tubo
S	4,90	[mm]	Spessore del tubo
D	200	[mm]	Diametro esterno del tubo
Dm	197,55	[mm]	Diametro medio del tubo

Trincea Larga

Determinazione del carico dovuto al rinterro

Ce	5,560		coefficiente di carico del terreno nella posa in trincea larga
Qswt	41,60	[N/cm]	carico di rinterro

Determinazione del carico dovuto ai sovraccarichi mobili

ф	1,46		fattore dinamico
p_{v}	84,88	$[kN/m^2]$	pressione verticale sul tubo dovuta ai sovraccarichi mobili
Q_{vc}	247,80	[N/cm]	carico dovuto ai sovraccarichi mobili

Calcolo e verifica dell'inflessione diametrale

D_e	2,00		Fattore di ritardo
k_{x}	0,083		coefficiente di inflessione
E_{terr}	700,00	[N/cm ²]	Modulo elastico del terreno
k_{a}	0,75		
Δ_{a}	0		
Δ_{y}	0,84	[cm]	
$\Delta_{\sf v}\!/{\sf D}$	4,18%		Verifica soddisfatta

Calcolo e verifica della sollecitazione massima di flessione

	o o rengiou uemo		in in the second
μ_{min}	1,50		Coefficiente di sicurezza
E_t	1500	[Mpa]	Modulo elastico a lungo termine
I	9,80	$[mm^3]$	
RG	1907		Indice di rigidezza
D_f	3,83		fattore di forma
σ_{lim}	2500,00	[N/cm ²]	tensione limite ultima a rottura del materiale
σ	588,35	[N/cm ²]	tensione dovuta alla deflessione diametrale
μ	4,25		Verifica soddisfatta

FS	2,50	Fattore di progettazione
R_{w}	1,00	fattore di spinta idrodinamica della falda
В'	1,00	coefficiente empirico di supporto elastico

q_a 25,40 [N/cm²] pressione ammissibile di buckling

R_q 14,47 [N/cm²] Risultante dei carichi

Verifica soddisfatta

	spessore	p. spec.
Strato	S _i	γ_{i}
	[m]	[KN/m ³]
Tappeto di usura pista	0,03	17,00
massetto cls	0,10	17,50
Fondazione stradale	0,12	20,00
Riempimento	0,25	18,00
rinfianco sabbia	0,15	20,00
	0.65	18.71

Verifica tubo PVC UNI EN 1401 - DN200 - SN4 - Ricoprimento 170 cm sotto ciclopedonale

Parametri terreno

γ_{tp}	18,27	[KN/m ³]	Peso specifico pesato
ρ	30	0	angolo attrito interno del rinterro
ρ'	30	•	angolo attrito interno del terreno naturale
k	0.333		

Parametri geometrici

В	0,70	[m]	Larghezza della trincea
Н	1,70	[m]	Ricoprimento
d	190,20	[mm]	Diametro interno del tubo
S	4,90	[mm]	Spessore del tubo
D	200	[mm]	Diametro esterno del tubo
Dm	197,55	[mm]	Diametro medio del tubo

Trincea stretta

Determinazione del carico dovuto al rinterro

Ct	0,050		coefficiente di carico del terreno nella posa in trincea stretta
Qst	0,40	[N/cm]	carico di rinterro

Determinazione del carico dovuto ai sovraccarichi mobili

φ	1,18		fattore dinamico
p_{v}	14,74	$[kN/m^2]$	pressione verticale sul tubo dovuta ai sovraccarichi mobili
Q_{vc}	34,80	[N/cm]	carico dovuto ai sovraccarichi mobili

Calcolo e verifica dell'inflessione diametrale

D_e	2,00		Fattore di ritardo
k _x	0,083		coefficiente di inflessione
E _{terr}	700,00	[N/cm ²]	Modulo elastico del terreno
k _a	0,75		
Δ_{a}	0		
Δ_{y}	0,09	[cm]	
$\Delta_{\sf v}\!/{\sf D}$	0,45%		Verifica soddisfatta

Calcolo e verifica della sollecitazione massima di flessione

μ_{min}	1,50		Coefficiente di sicurezza
E_t	1500	[Mpa]	Modulo elastico a lungo termine
1	9,80	[mm³]	
RG	1907		Indice di rigidezza
D_f	3,83		fattore di forma
σ_{lim}	2500,00	[N/cm ²]	tensione limite ultima a rottura del materiale
σ	63,34	[N/cm ²]	tensione dovuta alla deflessione diametrale
μ	39,47		Verifica soddisfatta

FS	2,50	Fattore di progettazione
R_w	1,00	fattore di spinta idrodinamica della falda
В'	1,00	coefficiente empirico di supporto elastico

 q_a 25,40 [N/cm 2] pressione ammissibile di buckling

R_q 1,76 [N/cm²] Risultante dei carichi

Verifica soddisfatta

	spessore	p. spec.
Strato	S _i	γ_{i}
	[m]	[KN/m ³]
Tappeto di usura pista	0,03	17,00
massetto cls	0,10	17,50
Fondazione stradale	0,12	20,00
Riempimento	1,30	18,00
rinfianco sabbia	0,15	20,00
	1,70	18,27

Verifica tubo PVC UNI EN 1401 - DN250 - SN4 - Ricoprimento 60 cm sotto ciclopedonale

Parametri terreno

γ_{tp}	18,77	[KN/m ³]	Peso specifico pesato
ρ	30	•	angolo attrito interno del rinterro
ρ'	30	•	angolo attrito interno del terreno naturale
k	0,333		

Parametri geometrici

В	0,75	[m]	Larghezza della trincea
Н	0,60	[m]	Ricoprimento
d	237,60	[mm]	Diametro interno del tubo
S	6,20	[mm]	Spessore del tubo
D	250	[mm]	Diametro esterno del tubo
Dm	246,90	[mm]	Diametro medio del tubo

Trincea Larga

Determinazione del carico dovuto al rinterro

Ce	4,041		coefficiente di carico del terreno nella posa in trincea larga
Qswt	47,40	[N/cm]	carico di rinterro

Determinazione del carico dovuto ai sovraccarichi mobili

ф	1,50		fattore dinamico
$p_{\text{\tiny v}}$	90,84	$[kN/m^2]$	pressione verticale sul tubo dovuta ai sovraccarichi mobili
Q_{vc}	340,70	[N/cm]	carico dovuto ai sovraccarichi mobili

Calcolo e verifica dell'inflessione diametrale

D_e	2,00		Fattore di ritardo
\mathbf{k}_{x}	0,083		coefficiente di inflessione
E_{terr}	700,00	[N/cm ²]	Modulo elastico del terreno
\mathbf{k}_{a}	0,75		
Δ_{a}	0		
Δ_{y}	1,10	[cm]	
Δ_{v}/D	4,40%		Verifica soddisfatta

Calcolo e verifica della sollecitazione massima di flessione

μ_{min}	1,50		Coefficiente di sicurezza
\mathbf{E}_{t}	1500	[Mpa]	Modulo elastico a lungo termine
I	19,86	[mm³]	
RG	1979		Indice di rigidezza
D_f	3,86		fattore di forma
σ_{lim}	2500,00	[N/cm ²]	tensione limite ultima a rottura del materiale
σ	631,80	[N/cm ²]	tensione dovuta alla deflessione diametrale
μ	3,96		Verifica soddisfatta

FS	2,50	Fattore di progettazione
R_{w}	1,00	fattore di spinta idrodinamica della falda
B'	1,00	coefficiente empirico di supporto elastico

q_a 26,10 [N/cm²] pressione ammissibile di buckling

R_q 15,52 [N/cm²] Risultante dei carichi

Verifica soddisfatta

	spessore	p. spec.
Strato	S _i	γ_{i}
	[m]	[KN/m ³]
Tappeto di usura pista	0,03	17,00
massetto cls	0,10	17,50
Fondazione stradale	0,12	20,00
Riempimento	0,20	18,00
rinfianco sabbia	0,15	20,00
	0,60	18,77

Verifica tubo PVC UNI EN 1401 - DN250 - SN4 - Ricoprimento 120 cm sotto ciclopedonale

Parametri terreno

γ_{tp}	18,38	[KN/m ³]	Peso specifico pesato
ρ	30	0	angolo attrito interno del rinterro
ρ'	30	0	angolo attrito interno del terreno naturale
k	0 333		

Parametri geometrici

В	0,75	[m]	Larghezza della trincea
Н	1,20	[m]	Ricoprimento
d	237,60	[mm]	Diametro interno del tubo
S	6,20	[mm]	Spessore del tubo
D	250	[mm]	Diametro esterno del tubo
Dm	246,90	[mm]	Diametro medio del tubo

Trincea stretta

Determinazione del carico dovuto al rinterro

Ct	0,050		coefficiente di carico del terreno nella posa in trincea stretta
Qst	0,60	[N/cm]	carico di rinterro

Determinazione del carico dovuto ai sovraccarichi mobili

ф	1,25		fattore dinamico
$p_{\nu} \\$	27,20	$[kN/m^2]$	pressione verticale sul tubo dovuta ai sovraccarichi mobili
Q_{vc}	85,00	[N/cm]	carico dovuto ai sovraccarichi mobili

Calcolo e verifica dell'inflessione diametrale

D_e	2,00		Fattore di ritardo
k_{x}	0,083		coefficiente di inflessione
E_{terr}	700,00	[N/cm ²]	Modulo elastico del terreno
\mathbf{k}_{a}	0,75		
Δ_{a}	0		
Δ_{y}	0,22	[cm]	
$\Delta_{\sf v}\!/{\sf D}$	0,87%		Verifica soddisfatta

Calcolo e verifica della sollecitazione massima di flessione

μ_{min}	1,50		Coefficiente di sicurezza
E_t	1500	[Mpa]	Modulo elastico a lungo termine
ı	19,86	[mm³]	
RG	1979		Indice di rigidezza
D_f	3,86		fattore di forma
σ_{lim}	2500,00	[N/cm ²]	tensione limite ultima a rottura del materiale
σ	124,93	[N/cm ²]	tensione dovuta alla deflessione diametrale
μ	20,01		Verifica soddisfatta

FS	2,50	Fattore di progettazione
R_w	1,00	fattore di spinta idrodinamica della falda
В'	1,00	coefficiente empirico di supporto elastico

 q_a 26,10 $\left[N/cm^2\right]$ pressione ammissibile di buckling

R_q 3,42 [N/cm²] Risultante dei carichi

Verifica soddisfatta

	spessore	p. spec.
Strato	S _i	γ_{i}
	[m]	[KN/m ³]
Tappeto di usura pista	0,03	17,00
massetto cls	0,10	17,50
Fondazione stradale	0,12	20,00
Riempimento	0,80	18,00
rinfianco sabbia	0,15	20,00
	1.20	18.38

Verifica tubo PVC UNI EN 1401 - DN315 - SN4 - Ricoprimento 170 cm sotto ciclopedonale

Parametri terreno

γ_{tp}	18,27	$[KN/m^3]$	Peso specifico pesato
ρ	30	0	angolo attrito interno del rinterro
ρ'	30	0	angolo attrito interno del terreno naturale
k	0,333		

Parametri geometrici

В	0,85	[m]	Larghezza della trincea
Н	1,70	[m]	Ricoprimento
d	299,60	[mm]	Diametro interno del tubo
S	7,70	[mm]	Spessore del tubo
D	315	[mm]	Diametro esterno del tubo
Dm	311,15	[mm]	Diametro medio del tubo

Trincea stretta

Determinazione del carico dovuto al rinterro

Ct	0,050		coefficiente di carico del terreno nella posa in trincea stretta
Qst	0,90	[N/cm]	carico di rinterro

Determinazione del carico dovuto ai sovraccarichi mobili

φ	1,18		fattore dinamico
p_{v}	13,84	$[kN/m^2]$	pressione verticale sul tubo dovuta ai sovraccarichi mobili
Q_{vc}	51,40	[N/cm]	carico dovuto ai sovraccarichi mobili

Calcolo e verifica dell'inflessione diametrale

D _e	2,00		Fattore di ritardo
k _x	0,083		coefficiente di inflessione
E_{terr}	700,00	[N/cm ²]	Modulo elastico del terreno
k _a	0,75		
Δ_{a}	0		
Δ_{y}	0,13	[cm]	
$\Delta_{\sf v}/{\sf D}$	0,43%		Verifica soddisfatta

Calcolo e verifica della sollecitazione massima di flessione

μ_{min}	1,50		Coefficiente di sicurezza
E_t	1500	[Mpa]	Modulo elastico a lungo termine
ı	38,04	[mm³]	
RG	1894		Indice di rigidezza
D_f	3,82		fattore di forma
σ_{lim}	2500,00	[N/cm ²]	tensione limite ultima a rottura del materiale
σ	60,12	$[N/cm^2]$	tensione dovuta alla deflessione diametrale
μ	41,58		Verifica soddisfatta

FS	2,50	Fattore di progettazione		
R_{w}	1,00	fattore di spinta idrodinamica della falda		
B'	1,00	coefficiente empirico di supporto elastico		

 q_a 25,40 [N/cm 2] pressione ammissibile di buckling

R_q 1,66 [N/cm²] Risultante dei carichi

Verifica soddisfatta

	spessore	p. spec.
Strato	S _i	γ_{i}
	[m]	[KN/m ³]
Tappeto di usura pista	0,03	17,00
massetto cls	0,10	17,50
Fondazione stradale	0,12	20,00
Riempimento	1,30	18,00
rinfianco sabbia	0,15	20,00
	1,70	18,27