Trabalho de Formatura MAP2040

Gustavo Soares Gomes

IME-USP

2024

Contexto

- O mercado de crédito possui papel fundamental na economia brasileira: consumos de familias e investimentos empresariais;
- No cenário atual de déficit da divída pública e demais instabilidades, há uma elevação das taxas de juros e o aumento de inflação levando a uma elevação no custo de crédito;
- Esse cenário implica em altos graus de endividamento com aumento da probabilidade de inadimplência.

Contexto

- Consequente piora do perfil médio de risco dos tomadores de empréstimos no Brasil;
- Como formular políticas de crédito que favoreçam a inclusão financeira de maneira sustentável para as instituições ?
- Será necessário que as instituições financeiras adotem modelos mais conservadores na concessão de crédito?
- Necessidade de modelos preditivos eficazes para decisão de crédito.

Objetivos

- Apresentar um breve contexto do cenário atual do crédito no Brasil;
- Desenvolver, implementar e comparar um modelo preditivo para análise e concessão de crédito em uma população que simule o cenário de crédito atual no Brasil;
- Comparar a eficácia frente a modelos tradicionais de Regressão
 Logística e Random Forest a partir de métricas adequadas para tal.

Fonte dos Dados

- Dados obtidos da plataforma Kaggle com origem do Lending Club, plataforma de empréstimos pessoais peer to peer online nos EUA;
- Empréstimos pessoais sem garantia cujo propósito principal era a consolidação de débitos e dívidas de cartão de crédito realizados dentro do período de 2007 a 2018;
- 2 milhões de registros com 147 variáveis observadas na base original, somado à capacidade de processamento limitada.

Refinamento dos Dados

- Foram obtidas duas amostras aleatórias da base original: amostra de treino com 350 mil registros e amostra de teste com 150 mil, com iguais quantidades de "bons" e "maus" pagadores em cada amostra;
- Bom pagador é aquele que pagou completamente seu empréstimo, mesmo com eventuais parcelas pagas depois do vencimento;
- Mau pagador é aquele em que não há expectativa de pagamento total do empréstimo devido a atrasos recorrentes.

Preparação dos Dados

- Variáveis do tipo texto transformadas em numéricas, observações nulas substituídas por 0 e remoção de variáveis de identificação;
- Clusterização das variáveis conforme correlação: variáveis com mais de 90% de correlação entre si agrupadas no mesmo cluster (algoritmo Linkage);
- Para cada cluster com mais de uma variável (32), foi escolhida uma variável representante;
- Exclusão de variáveis observadas pós fechamento do contrato (14): pagamento até o momento, valor recuperado em caso de perda, etc.

Compactação dos Dados

- Mesmo após aplicação dessas etapas, a base ainda apresentava 68 variáveis;
- Utilização do algoritmo de Random Forest para medir a importância de cada variável na previsão da variável alvo e redução da base às 10 variáveis com maior importância.

Variável	Descrição	Importância
int rate	int rate A taxa de juros do empréstimo	
dti	A relação dívida/renda do mutuário	4.34%
bc open to buy	open to buy Crédito disponível em linhas rotativas	
revol bal	revol bal O saldo total de crédito rotativo do mutuário	
avg cur bal	Saldo médio atual de todas as contas	3.55%
loan amnt	O valor do empréstimo solicitado	3.55%
annual inc	nual inc A renda anual do mutuário	
tot cur bal	Saldo total atual de todas as contas	3.39%
bc util	bc util Utilização da linha de crédito atual	
total bc limit	total bc limit Total de limites de crédito do Banco	

Padronização de Dados

- Teste de Shapiro Wilk: Rejeita-se a hipótese nula de que as variáveis possuem distribuição normal a 5% de siginificância;
- Remoção de outliers baseada em intervalo interquartil e normalização pelo método min-max.

$$x' = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$

Figure: Reprodução Varsha Saini

- Modelos tradicionais como a Regressão Logística e Árvores de decisão não englobam o sentido do risco do crédito:
- A penalização pelo modelo em aceitar um mutuário "ruim" é a mesma do que quando rejeitamos um mutuário "bom", o primeiro possui maior perda financeira envolvida;
- Definiu-se uma variável proxy I (index) que estima a capacidade de pagamento do empréstimo pelo mutuário:

$$I = \frac{\dot{V(1+i)^{60}}}{60R}$$

• Demais variáveis escolhidas foram: relação dívida/renda do indivíduo (dti) e saldo médio atual das contas do mutuário (avg cur bal).

- Mais variáveis poderiam ter sido escolhidas para aumentar o desempenho do modelo, não o fizemos por uma questão de complexidade e tempo para implementação;
- Por questão de interpretabilidade, iremos utilizar um modelo de árvore de decisão;
- Erros que podem ser cometidos pelo modelo:
 - Erro Tipo I : Consiste em aceitar a concessão de empréstimo a um mutuário que futuramente deixará de cumprir as suas obrigações com a instituição;
 - Erro Tipo II: Consiste em não aceitar conceder o empréstimo a um mutuário que futuramente não deixaria de cumprir as suas obrigações com a instituição.

• Parâmetro de Flexibilidade:

$$\alpha = \frac{\text{Contagem do Erro Tipo 1}}{\text{Contagem dos Erros Totais}}$$

- Desejamos encontrar modelos tais que $\alpha < 0.5$. Quanto mais próximo de 0.5, mais tolerável é o modelo às perdas financeiras e quanto mais próximo de 0 mais rígida é sua decisão;
- Parâmetro de flexibilidade será utilizado para a definição dos valores dos pontes de corte de cada variável conforme o algoritmo a seguir:

- Etapa I : Escolher um ponto de corte inicial para a variável index a
 partir de um valor entre entre as medianas dos maus e bons
 pagadores para essa variável. Em nosso caso, utilizamos index = 15.0
 como estimativa inicial;
- Etapa II: Escolher da base de treino uma amostra aleatória de 1000 bons pagadores e 1000 maus pagadores;
- Etapa III: Para o ponto de corte da iteração verificar se o erro tipo 1 representa menos que α do total de erros. Em caso positivo, este será o ponto de corte e em caso negativo reduz-se o ponto de corte em -0.5 até encontrar o ponto de corte que satisfaça essa condição;
- Etapa IV: Repete-se as etapas I, II, III 1000 vezes e tira-se a média dos pontos de cortes obtidos.

- Ponto de corte index = 2.5
- Para representar o conservadorismo em relação à essa população, optamos por seguir trabalhando apenas com os mutuários que possuissem index < 2.5;
- Etapa V consiste em rodar novamente as etapas I a IV com as demais variáveis (dti e avg cur bal);

Figure: Modelo final para $\alpha = 0.33$

Métricas de Avaliação

 A acurácia mede a proporção de previsões corretas em relação ao total de previsões realizadas:

$$Acurácia = \frac{TP + TN}{TP + TN + FP + FN}$$

 A precisão mede a proporção de previsões positivas corretas entre todas as previsões positivas realizadas:

$$Precisão = \frac{TP}{TP + FP}$$

Métricas de Avaliação

 A sensibilidade, ou recall, mede a proporção de positivos verdadeiros corretamente identificados:

$$\mathsf{Sensibilidade} = \frac{\mathit{TP}}{\mathit{TP} + \mathit{FN}}$$

O F1-Score é a média harmônica entre precisão e sensibilidade:

$$F1 = 2 \cdot \frac{\mathsf{Precis\~ao} \cdot \mathsf{Sensibilidade}}{\mathsf{Precis\~ao} + \mathsf{Sensibilidade}}$$

Métricas de Avaliação

 O F1-Score ponderado é uma média ponderada dos F1-Scores de cada classe;

$$F1_{\text{ponderado}} = \frac{\sum_{i=1}^{n} w_i \cdot F1_i}{\sum_{i=1}^{n} w_i}$$

- Em nosso caso n=2, $w_0=1-\alpha$ e $w_1=\alpha$.
- Olhamos principalmente para os indicadores de precisão, sensibilidade e F1- score;
- trade-off entre precisão e sensibilidade.

File containing secrets

Files captured by algorithm

File with no secrets

Low Precision Low Recall

High Precision Low Recall

Low Precision High Recall

High Precision High Recall

Figure: Reprodução GitGardian

Aplicação dos modelos tradicionais

Floresta Aleatória

- Predição da variável loan status a partir das 10 variáveis obtidas no slide 8;
- Pelo funcionamento do algoritmo, n\u00e3o h\u00e1 influ\u00e9ncia ativa de uma vari\u00e1vel sobre a outra;
- Regressão Logística
 - Existem 2¹⁰ − 1 possíveis modelos;
 - Critérios de informação: equilibrio entre verossimilhança e quantidade de variáveis utilizadas, mais comum são BIC e AIC;
 - Iremos utilizar o critério BIC por penalizar de forma mais rigorosa modelos complexos;
 - Modelo escolhido possui todas os coeficientes β das variáveis significativos (Wald).

Simulações

Simulação 1 com $lpha=0.25$							
Modelo	Acurácia	Precisão	Sensibilidade	F1-Score	Aprovação		
Regressão Logística	63,76%	62,58%	62, 32%	64,35%	48, 15%		
Floresta Aleatória	67, 34%	73, 18%	51, 24%	69, 28%	33,86%		
Modelo de Risco	55, 14%	77,09%	10, 29%	66,56%	6, 45%		

Table: Resultados da simulação com $\alpha=0.25$

Simulação 2 com $lpha=0.33$							
Modelo	Acurácia	Precisão	Sensibilidade	F1-Score	Aprovação		
Regressão Logística	63,76%	62,57%	62, 32%	64, 15%	48, 15%		
Floresta Aleatória	67, 34%	73, 18%	51, 24%	68, 32%	33,86%		
Modelo de Risco	55,84%	74,82%	13,07%	66,82%	8,45%		

Table: Resultados da simulação com $\alpha=0.33$

As simulações indicam que

- O Modelo de Risco possui menor acurácia do que os demais modelos, conforme esperado;
- Modelo de Risco possui maior precisão do que demais modelos e essa métrica de "conservadorismo" aumenta conforme diminuímos o parâmetro de flexibilidade;
- Modelos possuem F1-scores muito semelhantes, o que indica que o aumento de precisão do Modelo de Risco é compensado por uma diminuição consideravel na sensibilidade.
- Em outras palavras, o Modelo Risco leva mais em conta não trazer maus pagadores para a instituição do que perder a captação de vários potenciais bons pagadores.

Aplicações

- A instituição poderá utilizar o Modelo de Risco então para populações em que não é compensatório captar o máximo de clientes possíveis devido a alta probabilidade de inadimplência;
- A calibragem do parâmetro α depende essencialmente das perdas registradas no portfólio e dos juros gerados pelos potenciais clientes recusados, então recomenda-se a instituição em um primeiro momento adotar um α pequeno (cenário mais conservador), para ir ajustando seu valor conforme crescimento do seu portfólio.