湖南科技大学考试试题参考答案及评分细则

(2020-2021 学年度第 一 学期)

课程(A卷)	离散数学	_上课学院	计算机学院	班级	本部 2020	年级所	有专业	<u> </u>	
F-1-700 th 1 Wh		<i>☆ ७</i> ★ ᠈┺ ᠈᠈᠘ 십		±₹.٧ <u>-</u> ₽π.ҍ	∃. 100	/ \	4.1.		
应试学生人数		实际考试学生	E人剱	_考试时直	<u>100</u>	分	钾		
命题教师	本志刚	宙核人		老试时	间•	年	月	Ħ	

- 一、单项选择题 (本题共 20 分, 每小题 2 分)。
- 1-10 CDCCA CBDDB
- 二、填空题 (本题共20分,每空2分)。

1.
$$\{a, b, c, f, g\}$$
 2. 0, 0, 1, 0, 0, 1, 0, 1 3. $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$

- 4. 9
- 5. 1
- $6. \{(1, 1), (2, 2), (3, 3), (3, 2)\}$
- 7. $\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$
- 8. 7
- 9. 0 10. $\{\phi, \{0\}, \{1\}, \{0,1\}\}$
- 三、(本大题包含 4 小题, 每题 10 分, 共 40 分)
- 1. 解:由欧几里得算法有

273 =2×119+35, 119 =3×35+14, 35 =2×14+7, 14=2×7+0 所以 GCD(273,119) =7。 由上述过程倒推可得

 $7 = 35 - 2 \times 14 = 35 - 2 \times (119 - 3 \times 35) = 7 \times 35 - 2 \times 119 = 7 \times (273 - 2 \times 119) - 2 \times 119 = 7 \times 273 - 16 \times 119$ 所以 s = 7 , t = -16。

- 2. 从自反,对称,传递三个方面证明,证明的规范性合计8分。
 - (2,3)所在类的元素有: (1,2),(2,3),(3,4),(4,5) 合计 2 分

3. 哈斯图 ■ 4 分 $B = \{2,4\}$ 的最小上界不存在 最大下界 1 2 分

A 的最大元不存在, 最小元 1, 极大元 3,5, 极小元 1。4 分

- 4. 计算机语言 Python、R、C 分别是 *A*, *B*, *C*, |*U*|= 150, |*A* ∪ *B* ∪ *C*| = 109, |*A*| = 61, |*B*| = 45, |*C*| $= 53, |A \cap B| = 18, |A \cap C| = 23, |B \cap C| = 15;$
 - (1) $|U| |A \cup B \cup C| = 41$ 2分
 - (2) $|A \cap B \cap C| = |A \cup B \cup C| |A| |B| |C| + |A \cap B| + |A \cap C| + |B \cap C| = 6$
 - (3) $|B| (|A \cap B| + |B \cap C|) + |A \cap B \cap C| = 18$
- 四、综合题(本大题包含 4 小题, 每题 5 分, 共 20 分)

1. 解: $((\neg q) \Rightarrow p) \lor r$ 的真值表为

p	q	r	~q	~q ⇒ p	结果
0	0	0	1	0	0
0	0	1	1	0	1
0	1	0	0	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	1	1
1	1	1	0	1	1

2. 解: 该递归关系的特征方程为 x^2 -6x +5 = 0,解得特征根为 x_1 = 1, x_2 = 5,故可设该递归关系的显示公式为 $b_n = u \times (1)^n + v \times 5^n$ 。由 b_1 = 2, b_2 = 3,可得

$$\begin{cases} 2 = u + 5v \\ 3 = u + 25v \end{cases}, \text{ $m \in U$ } = \frac{7}{4} \quad v = \frac{1}{20}$$

所以该递归关系的显示公式为 $b_n = \frac{7}{4} + \frac{1}{20}5^n = \frac{7}{4} + \frac{1}{4}5^{n-1}$ 。

3.
$$A^2B^T = \begin{bmatrix} 2 & 0 \\ -1 & 2 \end{bmatrix}^2 \begin{bmatrix} 1 & -2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -4 & 4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -8 \\ 8 & 12 \end{bmatrix}$$

4. 答案不唯一 *f*={(1,5),(2,6),(3,7),(4,8)}