5. Matricer og lineære transformationer

- Definition
- Egenskaber
- Sætning 4.2.1
- Lemma 4.2.3
- Sætning 4.2.4

Definition: En lineær transformation $L: V \to W$ er en afbildning som respekterer lineær struktur, dvs.:

$$\forall v_1, v_2 \in V, \forall \alpha, \beta \in \mathbb{F}$$
:

$$L(\alpha v) = \alpha L(v)$$

$$L(v_1 + v_2) = L(v_1) + L(v_2)$$

Dette kan sættes sammen til:

$$L(\alpha v_1 + \beta v_2) = \alpha L(v_1) + \beta L(v_2)$$

Der er nogle forskellige egenskaber for lineære transformationer. Herunder opremses tre:

Egenskaber:

(i)
$$L(0_V) = 0_W$$

(ii)
$$L(\alpha_1 v_1 + \dots + \alpha_n v_n) = \alpha_1 L(v_1) + \dots + \alpha_n L(v_n)$$

(iii)
$$L(-v) = -L(v)$$
 , $\forall v \in V$

Bevis:

(i)
$$L(0_V) = L(00_V) = 0L(0_V) = 0_W$$

(ii)
$$L(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 L(v_1) + \alpha_2 L(v_2)$$

Hvis vi antager, at det gælder for n = k, og så kigger på n = k + 1:

$$L(\alpha_1 v_1 + \dots + \alpha_k v_k + \alpha_{k+1} v_{k+1}) \stackrel{IH}{=} \alpha_1 L(v_1) + \dots + \alpha_k L(v_k) + L(\alpha_{k+1} v_{k+1})$$

Fra def. har vi, at sidste led således bliver det ønskede.

$$(iii) L(-v) = L((-1)v) = (-1)L(v) = -L(v)$$

Et lille eksempel til at tjekke, at en lineær transformation overholder lineær struktur – og for at lede os over i matrixrepræsentationer af lineære transformationer:

Eksempel: Vi har afbildningen $L: \mathbb{R}^2 \to \mathbb{R}^1$, $L(x) = x_1 + x_2$. Vi tjekker:

$$L(\alpha x + \beta y) = (\alpha x_1 + \beta y_1) + (\alpha x_2 + \beta y_2) = \alpha (x_1 + x_2) + \beta (y_1 + y_2) = \alpha L(x) + \beta L(y)$$

Hvis vi så definerer $A=(1\ 1)\in Mat_{2\times 1}\in (\mathbb{F})$, så kan vi skrive den lineære transformation som:

$$Ax = (1 \ 1) {x_1 \choose x_2} = x_1 + x_2 = L(x)$$

Herefter har vi en sætning, som formaliserer lineær transformation og matrixrepræsentationer heraf:

Sætning 4.2.1: Hvis L er en lineær transformation, som afbilder $\mathbb{R}^n \to \mathbb{R}^m$, så er der en $m \times n$ -matrix således at L(x) = Ax for hvert $x \in \mathbb{R}^n$. Den j'te søjlevektor i A er givet ved

$$a_i = L(e_i)$$
, $j = 1, 2, ..., n$

Bevis: Først definerer vi vores a_i som i sætningen og skriver

$$A = (a_{ij}) = (a_1, \dots, a_n)$$

Vi skriver *x* som en linear kombination:

$$x = x_1 e_1 + \dots + x_n e_n$$

(x er et arbitrært element i \mathbb{R}^n). Så skriver vi:

$$L(x) = L(x_1e_1 + \dots + x_ne_n) \stackrel{ii}{=} x_1L(e_1) + \dots + x_nL(e_n) = x_1a_1 + \dots + x_na_n$$
$$= (a_1, \dots, a_n) \binom{x_1}{\vdots} = Ax$$

Det er også muligt at finde matricer, der repræsenterer lineære transformationer fra et vektorum Vtil et andet W. Så arbejder vi med ordnede baser for hhv. V og W.

Lemma 4.2.3: Vi har to ordnede baser: $E = [u_1, ..., u_n]$ og $F = [b_1, ..., b_m]$ for \mathbb{R}^n og \mathbb{R}^m . Vi skriver $B = (b_1, ..., b_m)$ og har en lineær transformation: $L: \mathbb{R}^n \to \mathbb{R}^m$ og A er matricen der repræsenterer L mht. E og F, så er:

$$a_j = B^{-1}L(u_j)$$
 , $j = 1, ..., n$

Dette resultat bruger vi i næste sætning, hvor vi kan finde A.

Sætning 4.2.4: A er matrixrepræsentationen for $L: \mathbb{R}^n \to \mathbb{R}^m$ med de ordnede baser: $E = [u_1, ..., u_n]$ og $F = [b_1, ..., b_m]$ så er den RREF af matrixen $(b_1, ..., b_m | L(u_1), ..., L(u_n)) \sim (I|A)$.

Bevis: Hvis vi har $B = (b_1, ..., b_m)$ Så har vi $(B|L(u_1), ..., L(u_n))$ er rækkeækvivalent med:

$$B^{-1}\big(B\big|L(u_1),\dots,L(u_n)\big)=\big(I\big|B^{-1}L(u_1),\dots,B^{-1}L(u_n)\big)=(I|a_1,\dots,a_n)=(I|A)$$