

APRENDIZAJE DE MÁQUINAS

JOHN W. BRANCH

Profesor Titular

Departamento de Ciencias de la Computación y de la Decisión

Director del Grupo de I+D en Inteligencia Artificial – GIDIA

jwbranch@unal.edu.co

https://github.com/jwbranch/AprendizajeDeMaquinas https://www.coursera.org/programs/unal-iuukt

METODOLOGÍA ENSEÑANZA – APRENDIZAJE

El <u>aprendizaje sincrónico</u> involucra estudios online a través de una plataforma. Este tipo de aprendizaje sólo ocurre en línea. Al estar en línea, el estudiante se mantiene en contacto con el docente y con sus compañeros. Se llama aprendizaje sincrónico porque la plataforma estudiantes permite los que pregunten al docente o compañeros de manera instantánea a través de herramientas como el chat o el video chat.

Sesiones Remotas vía Google.Meet Sincrónicas y Asincrónicas

El aprendizaje asincrónico puede ser llevado a cabo online u offline. El aprendizaje asincrónico implica un trabajo de curso proporcionado a través de la plataforma o el correo electrónico para que el estudiante desarrolle. de acuerdo las a orientaciones del docente, de forma independiente. Un beneficio que tiene el aprendizaje asincrónico es que el estudiante puede ir a su propio ritmo.

Descripción del Curso

El curso introduce los conceptos fundamentales y los métodos más utilizados en el campo del aprendizaje de máquinas enfocados desde las perspectivas de la naturaleza del problema que se requiere resolver, esto es, aprendizaje supervisado orientado a los problemas de clasificación y regresión para aplicaciones de predicción o pronóstico. Aprendizaje no supervisado orientado a tareas de agrupar o etiquetar un conjunto de datos, También se incluyen la aproximación general de técnicas modernas de aprendizaje tales como el aprendizaje por refuerzo y aprendizaje profundo.

Contenido

- 1. Introducción.
- 2. Los datos en Aprendizaje de Máquinas.
- 3. Aprendizaje Supervisado.
- 4. Aprendizaje NO Supervisado.
- 5. Aprendizaje por Refuerzo.
- 6. Aprendizaje con Clases Desbalanceadas y Combinación de Modelos.
- 7. Aplicaciones y Casos de Éxito.

Bibliografía Recomendada

Osvaldo Simeone (2018), "A Brief Introduction to Machine Learning for Engineers", Foundations and TrendsR in Signal Processing: Vol. 12, No. 3-4, pp 200–431. DOI: 10.1561/2000000102.

Goodfellow, I., Bengio, Y. y Courville, A. (2016) Deep Learning, MIT Press.

Murphy, K. (2012). Machine Learning: A Probabilistic Perspective, MIT Press.

Hastie, T., Tibshirani, R. y Friedman, J. (2011). The Elements of Statistical Learning. Springer. (Available for download on the authors' web-page.)

Szepesvári, C. (2010). Algorithms for Reinforcement Learning. Morgan and Claypool.

Haykin, S. (2008). Neural Networks and Learning Machines. Pearson.

Sutton, R. y Barto, A. (1998). Reinforcement Learning: An Introduction. MIT Press.

Mitchell, T. M. (1997). Machine Learning. 1st. McGraw-Hill Higher Education. (Chapter 1)

EVALUACIÓN

Certificado Coursera	20%
Sesenta años de inteligencia artificial — UNAM (Obligatorio)	(Máx. 31 de Dic/2020)
IA para todos – Andrew Ng (Obligatorio)	(1110/11 01 010 110)
Structuring Machine Learning Projects – Andrew Ng (Obligatorio)	
Machine Learning - University of Washington-→Curso #1: Machine Learning Foundations: A Case Study Approach (Obligatorio)	
Informe de Lectura (Individual)	20%
Machine Learning Algorithms: A Review	(Máx. 21 de Nov/2020)
Machine Learning aspects and its Applications Towards Different Research Areas	
Trabajo Final (Debe ser en Grupos de 3 ó 5 personas)	60%
Obtener el conjunto de datos (texto o audio o video o imagen) de los siguientes repositorios o cualquier otro disponible:	(Máx. 21 de Dic/2020)
http://www.ics.uci.edu/~mlearn/databases/	
https://www.kaggle.com/datasets	
Origen, atributos, clases	
"Scatter plot" de los datos	
Visualización del conjunto en 2D (PCA o MDS)	
Seleccionar un método de Entrenamiento y Evaluar el Desempeño.	

APRENDIZAJE DE MÁQUINAS

"Calidad de los Datos"

JOHN W. BRANCH

Profesor Titular

Departamento de Ciencias de la Computación y de la Decisión

Director del Grupo de I+D en Inteligencia Artificial – GIDIA

jwbranch@unal.edu.co

https://github.com/jwbranch/AprendizajeDeMaquinas https://www.coursera.org/programs/unal-iuukt

En el mundo, la cantidad de datos recolectados cada segundo a través de diferentes dispositivos electrónicos es realmente grande. Con un conjunto de estos, y utilizando técnicas matemáticas y computacionales, somos capaces de crear información.

Existen diferentes métodos y caminos para convertir los datos en información. Algunos buscan entender los datos desde el área estadística, mientras otros buscan predecir ciertos valores (clasificación y regresión).

En la actualidad, la recolección de datos e información se ha vuelto uno de los objetivos principales en la mayoría de empresas. Con ellos, una compañía puede mejorar sus estrategias de ventas, así como atraer a nuevos clientes dependiendo de sus gustos y/o necesidades.

Actualmente, la utilización de datos no solo nos sirve para un análisis estadístico. Con los avances computacionales en inteligencia artificial, hemos logrado poder automatizar procesos que, años atrás, nos era poco rentable.

Utilizando diferentes técnicas, se han remplazado procesos muy costosos en tiempo y dinero por sistemas automáticos con el mismo o mejor desempeño obtenido por un grupo de profesionales.

Datos

Datos: Son elementos aislados y en bruto, obtenidos mediante algún proceso de medición, observación o registro, susceptibles de ser transformados para producir información.

Dato Estadístico: Es aquel que se obtiene a través de técnicas, métodos o procedimientos estadísticos. También a través de representaciones numéricas o codificaciones de hechos, cualidades o características.

DATOS ELEMENTALES SOBRE OBJETOS INDIVIDUALES (EMPRESAS, FAMILIAS, PERSONAS, ETC.) OBTENIDOS DIRECTAMENTE DE DONDE SE PRODUCEN.
RECOPILADOS A TRAVÉS DE ENCUESTAS, CENSOS Ó REGISTROS ADMINISTRATIVOS.
SEXO, EDAD, PROFESIÓN, INGRESO MENSUAL

SON LOS DATOS QUE SE OBTIENEN A PARTIR DE LOS MICRODATOS MEDIANTE UN PROCESO DE AGREGACIÓN. DATOS ORIGINADOS POR APLICACIÓN DE MÉTODOS ESTADÍSTICOS TALES COMO: TOTALES, PROMEDIOS, FRECUENCIAS, SOBRE GRUPOS O AGREGACIONES DE

CALIDAD DEL DATO

Estructurados, semi-estructurados, no estructurados TIPOS DE DATOS **DISCIPLINAS Y** Estadística - Analítica - Big Data - BI - Ciencia de Datos TENDENCIAS Descriptivo - Correlacional - Predictivo - Explicativo - Prescriptivo **APROXIMACIONES ENFASIS** Conteos, proporciones, tasas, razones, proporciones, distribuciones, visualizaciones, medidas de tendencia central o dispersión, . . . Diseño de experimentos, series de tiempo, regresiones lineales, regresiones logísticas, muestreo, epidemiología, demografía, METODOS análisis bayesiano, . . . **TECNICAS** Minería de texto, minería de audios, minería de imágenes, minería de procesos, árboles de decisión, inteligencia artificial, aprendizaje de máquinas, . . . Análisis de asociación, clasificación, análisis de componentes principales, análisis factorial, análisis de correspondencias simples y múltiples Aritmética, indicadores, estadísticas, KPI, . . . **FUNDAMENTOS** -Preguntas de investigación, hipótesis, teorías, inferencia estadística, probabilidad, muestras, poblaciones, ... **BASES TEORICAS** Algoritmos, datos de prueba, datos de entrenamiento, correlaciones, . . . Map Reduce, computación distribuida, computación paralela, . . .

INSTRUMENTOS

Bodegas de datos, data marts, repositorios, data cubos, dashboards, Tableau, PowerBI, R, Pentahoo, Qlick, SIG, bases de datos relacionales (SQL) . . .

SAS, SPSS, Matlab, R, Kmine, R, Python, RapidMiner, ...

Bases de datos NOSQL, bases de datos NoSQL, Hadoop, SPARK, Data Likes

Cifras, Estadísticas, Indicadores, Estudios, Investigaciones, Concultoría y Asesorías

Datos

Estándares Jerárquicos de Calidad para los Datos

Disponibilidad.

Accesibilidad: los datos pueden hacerse fácilmente públicos o fáciles de adquirir. Oportunidad: los datos llegan a tiempo. Los datos se actualizan regularmente.

Usabilidad

Confiabilidad

Exactitud: Los datos proporcionados son precisos.

Consistencia: Todos los datos son consistentes o verificables.

Integridad: El formato de los datos es claro y cumple los criterios

Completitud: Una deficiencia de un componente afectará la precisión y la integridad de los datos

Pertinencia

Conveniencia: Los datos recogidos exponen completamente el tema de interés o parte de él.

Calidad de presentación

Legibilidad:

Los datos (contenido, formato, etc.) son claros y comprensibles

La descripción de los datos, la clasificación y el contenido de codificación satisfacen la especificación y son fáciles de entender

Ciclo de un Producto Basado en Datos

Adquisición de Datos

Los datos pueden ser clasificados en 4 dominios, dependiendo de su origen:

TEXTO

CUANDO EL OJO VE UN COLOR SE EXCITA INMEDIATAMENTE, Y ÉSTA ES SU NATURALEZA, ESPONTÁNEA Y DE NECESIDAD, PRODUCIR OTRA EN LA QUE EL COLOR ORIGINAL COMPRENDE LA ESCALA CROMÁTICA ENTERA. UN ÚNICO COLOR EXCITA, MEDIANTE UNA SENSACIÓN ESPECÍFICA, LA TENDENCIA A LA UNIVERSALIDAD. EN ESTO RESIDE LA LEY FUNDAMENTAL DE TODA ARMONÍA DE LOS COLORES...

AUDIO

VIDEO

IMAGEN

Adquisición de Datos

Con ayuda de estos datos podemos predecir comportamientos y patrones. Esto con el fin de generar información vital para la toma de decisiones.

Datos – Texto (Estructurado)

New York City Airbnb Open Data - Kaggle

#	B AB_NYC_2019.csv (6.75 MB)					liews 💉 🔟 🗆 🛓		
	Q _e id ▼ listing ID	A name T name of the listing	A host_id Thost ID	A host_name	A neighbourhood_gro ▼ location	A neighbourhood $ extbf{ $	✓ latitude ▼ latitude coordinates	✓ longitude
	2539 36.5m	47905 unique values	2438 274m	11452 unique values	Manhattan 44% Brooklyn 41% Other (3) 15%	Williamsburg 8% Bedford-Stuyves 8% Other (219) 84%	40.5 40.9	-74.2 -73.7
1	2539	Clean & quiet apt home by the park	2787	John	Brooklyn	Kensington	40.64749	-73.97237
2	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362	-73.98377
3	3647	THE VILLAGE OF HARLEMNEW YORK !	4632	Elisabeth	Manhattan	Harlem	40.80902	-73.9419
4	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514	-73.95976
5	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851	-73.94399
6	5099	Large Cozy 1 BR Apartment In Midtown East	7322	Chris	Manhattan	Murray Hill	40.74767	-73.975
7	5121	BlissArtsSpace!	7356	Garon	Brooklyn	Bedford-Stuyvesant	40.68688	-73.95596
8	5178	Large Furnished Room Near B'way	8967	Shunichi	Manhattan	Hell's Kitchen	40.76489	-73.98493

Datos – Texto (No estructurado)

Cortas frases de textos con el fin de encontrar la similitud de diferentes documentos.

Text Similarity - Kaggle

Datos - Audio

Un conjunto de datos de audios de gatos y perros con el fin de clasificar a que animal pertenece cada sonido.

Data (59 MB)

Data Sources

- v 🗅 cats
 - cat_110.wav
 - cat 112.wav
 - cat_115.wav
 - cat 126.wav
 - cat 129.wav
 - cat 130.wav
 - cat_133.wav
 - cat_135.wav
 - cat 137.wav
 - cat_14.wav
 - ... 10 more
- v 🗅 test
 - dog_barking_112.wav
 - dog_barking_12.wav
 - dog_barking_15.wav
 - dog_barking_19.wav
 - dog barking 24.wav
 - dog_barking_3.wav
 - dog_barking_34.wav
 - dog_barking_43.wav

Audio Cats and Dogs - Kaggle Classify raw sound events

Datos - Video

Un conjunto de datos de videos provenientes de la plataforma de Google YouTube con el fin de hacer seguimiento a la tendencia de videos dentro de la plataforma.

Trending YouTube Video Statistics - Kaggle

Natural Images - Kaggle

Datos - Imagen

Clasificación de 8 diferentes clases de un conjunto de imágenes "naturales".

Preprocesamiento de Datos

Los datos a utilizar deben pasar por un proceso de preprocesamiento. Esto para seguir un estándar en los datos y lograr un mayor desempeño y exactitud a la hora de resolver el problema.

Si los datos no pasan por este proceso, los resultados en las futuras etapas no podrán alcanzar los valores reales de precisión posibles.

Preprocesamiento de Datos - Texto

Raw	Lowercased
Canada CanadA CANADA	canada
TOMCAT Tomcat toMcat	tomcat

Preprocesamiento de Datos - Audio

Preprocesamiento de Datos - Video

Preprocesamiento de Datos - Imagen

El etiquetado de datos es una de las tareas más importantes a la hora de extraer información de estos.

Al tener imágenes etiquetadas correctamente, el computador es capaz de aprender a diferenciar entre diferentes clases. Por ejemplo, entre gatos y perros

Machine Learning:

cat

horse

Human Learning:

We learn through

Long Ear Black nose

Examples

Diagrams

Comparisons

En imágenes, los datos pre-procesados y útiles (para el problema de clasificación) deben estar compuestos por un ejemplo (la imagen de un tamaño y rango de color especifico) y una etiqueta (la clase a la que pertenece tal ejemplo).

Una etiqueta errada de los ejemplos nos llevaría a tener dato que impediría a nuestro modelo alcanzar su máximo potencial.

relevant elements

En el proceso de clasificación de imágenes es importante que nuestros datos etiquetados cumplan una distribución igual o parecida entre ellos.

Es decir, que nuestras clases tengan el mismo número de ejemplos con la misma desviación estándar en la información de las imágenes.

Image classification

Easiest classes

red fox (100) hen-of-the-woods (100) ibex (100) goldfinch (100) flat-coated retriever (100)

tiger (100)

hamster (100)

porcupine (100) stingray (100)

Blenheim spaniel (100)

Hardest classes

muzzle (71)

hatchet (68) water bottle (68) velvet (68)

loupe (66)

spotlight (66)

ladle (65)

restaurant (64) letter opener (59)

Todo esto, con el fin de realizar tareas como:

Si el proceso de etiquetado no se realizó correctamente, este puede traer grandes consecuencias en el resultado final del modelo diseñado.

Preguntas

Motivación

- OBSERVE EL VIDEO Y RESPONDA A LAS SIGUIENTES PREGUNTAS:
- ¿Cuántos datos se requieren para entrenar un sistema de visión artificial?
- Es posible decir que los computadores ya sobrepasaron la capacidad humana?
- ¿Qué problemas evidencian los sistemas de visión artificial, y en general de los sistemas de Reconocimiento de Patrones?

https://www.ted.com/talks/fei fei li how we re teaching computers to understand pictures?language=es

