Wstęp do bioinformatyki

Dopasowywanie par sekwencji – algorytm kropkowy

Link: https://github.com/monikaRegula/Bioinformatics

1. Analiza złożoności obliczeniowej dla funkcji:

```
function dotPlot = createDotPlot(comparison, window, mistake)
%Function using comparison matrix of sequences and parameter such as window siz-
%and mistake threshold. In loop of window size checks values from comparison.
%There is counting for cells that equal 1. If counter is within acceptable
%limits (equal or more than differnece between windows size and mistake)
%then new matrix's cell equal 1.
counter = 0;
[sizel, size2] = size(comparison);
dotPlot = zeros(size1, size2);
m = size2 - (window-1);
n = sizel - (window-1);
for x=1:n
    for y=1:m
        for z = 1:window
            %counting cells that are equal 1
            if(comparison(x+z-1,y+z-1) == 1)
                counter = counter+1:
            end
        %checking if counter exceeds acceptance limit
        %and creating new data for plot
        if (counter >= (window-mistake))
            for z = 1:window
                dotPlot(x+z-1,v+z-1) = 1;
            end
        end
        %restarting value of counter
        counter = 0:
    end
end
```

Pamięć:

```
size1*size2 + counter + size1*size2 + m + n + window + mistake + x + y + z = 1 + 2ab + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8 + 2ab
```

Jest to pamięć przeznaczona dla argumentów funkcji (macierz logiczna (ab),rozmiar okna(1), próg błędu(1)) oraz zmienne: licznik counter(1), macierz dotPlot(ab), rozmiar m (1), rozmiar n (1), licznik x(1), y(1), z(1)

Złożoność czasowa:

1+1+1+n+m+z + z(warunek 'if counting cell that equals 1') +z(inkrementacja counter) + y(warunek 'if counter exceeds limit') + z (przypisanie wartości dotPlot) + y(restarting value of counter) = 3+n+m+3z+2y

Odpowiada liczbie przypisaniu zmiennych, zainicjowaniu pętli (3*1), inkrementacji z każdym przebiegiem pętli, przypisaniu wartości w kolejnym miejscu macierzy dotPlot, inkrementacji licznika (counter), zerowania licznika (counter)

2. Porównanie par sekwencji

Rysunek 1 Macierz kropkowa dla sekwencji nosorożca oraz mastodonta dla parametrów: rozmiar okna = 6 próg blędu = 1

Rysunek 2 Powiększenie wykresów w miejscach substytucji oraz duplikacji

Rysunek 3 Powiększenie wykresu w miejscu prawdopodobnej delecji/insercji

Za pomocą wygenerowanej macierzy kropkowej można dostrzec powiązanie między sekwencjami cytochromu b dla nosorożca oraz mastodonta (rys1). Świadczy o tym linia przechodząca wzdłuż głównej przekątnej ograniczona różowym prostokątem. Przerwy w linii sygnalizują substytucję towarzyszącej mutacji białek (rys2). Aczkolwiek insercja czy delecja zachodzi w przypadku, gdy dwie części są delikatnie przesunięte względem siebie (rys3). Istnieje również mutacja w postaci duplikacji(replikacji) widoczna w pobliżu lokalnych zgrubień na wykresie. Dzięki wysokiej ciągłości przekątnej można stwierdzić, że nosorożec oraz mastodont są homologami.

Rysunek 4 Macierz kropkowa dla sekwencji nosorożca i człowieka dla parametrów: rozmiar okna = 6, granica blędu = 1

Na rys 4. Widać brak ciągłości linii wzdłuż przekątnej. Wynika to z niskiego powiązania pomiędzy organizmami oraz różnicą w długościach sekwencji.

Rysunek 5 Macierz kropkowa dla sekwencji słonia azjatyckiego oraz nosorożca dla parametrów: rozmiar okna = 6, próg blędu=1

Rysunek 6 Macierz kropkowa sekwencji słonia azjatyckiego i nosorożca dla parametrów: rozmiar okna = 10 próg błędu = 1

Rysunek 7 Macierz kropkowa sekwencji słonia azjatyckiego i nosorożca dla parametrów: rozmiar okna = 8, próg błędu = 3

Rysunek 8 Macierz kropkowa sekwencja słonia azjatyckiego i nosorożca dla parametrów: rozmiar okna = 8 próg blędu = 1

Wybranie parametrów dla algorytmu kropkowego ma wpływ na jakość odczytu macierzy. Niski próg wraz z wysokim rozmiarem okna powoduje, że macierz jest bardziej przejrzysta. Wyższy próg błędu powoduje, że macierz jest trudna do odczytu. Najbardziej optymalne parametry dla wybranych sekwencji to te z rys 8, ponieważ można dostrzec mutacje m.in. duplikacje "których nie można odczytać z rys 6 oraz insercje/delecje, których nie można odczytać z rys 7.

WNIOSKI: Dzięki zastosowaniu algorytmu kropkowego możliwe było wykazanie pokrewieństwa między sekwencjami. Słoń azjatycki, mastodont czy nosorożec są homologami o czym świadczy główna przekątna. Inaczej jest w przypadku porównania sekwencji człowieka z nosorożcem, gdzie pomimo pewnego zarysu przekątnej organizmy nie są homologami.

Na jakość macierzy końcowej mają wpływ parametry, które powinny być dopasowane do konkretnego zestawu sekwencji. Jednakże można wywnioskować, że im większy próg błędu tym mniejsza czytelność macierzy. Może to skutkować utratą informacji o występujących mutacjach.