

Computação Gráfica

Visualização e Mapeamento para a tela

Professor: Luciano Ferreira Silva, Dr.

Computação Gráfica

Visualização

- A visualização de uma cena 3D consiste na conversão dos dados tridimensionais no espaço ambiente para informações bidimensionais na imagem.
- O processo de visualização consiste basicamente em uma sequência de operações que visam mapear objetos 3D da cena em projeções 2D na imagem

Pipeline de Visualização

Pipeline de Visualização (Outra abordagem)

Espaço do Modelo

- Usa o sistema de coordenadas local do objeto.
- Em geral, ele tem as seguintes características: a origem corresponde ao centro de massa do objeto, uma das direções principais está alinhada com o maior eixo do objeto.
- As dimensões são normalizadas.
- Neste espaço são efetuadas as operações de modelagem e os cálculos geométricos com o objeto.

Espaço da Cena

- Usa o sistema de coordenadas global da aplicação.
- Ele serve como referencial comum para todos os objetos da cena.
- Suas dimensões são definidas em unidades naturais para a aplicação.
- Neste espaço são realizadas as operações de iluminação.

Espaço de Câmera

- Usa o sistema de coordenadas do observador.
- Nele, a direção de observação corresponde ao eixo z, o plano da imagem é paralelo ao plano xy e centro corresponde ao centro de projeção.
- Além disso, o volume de visão é mapeado na pirâmide normalizada.
- Neste espaço é realizada a operação de recorte.

Espaço de Ordenação

- Usa um sistema de coordenadas resultante de uma transformação projetiva.
- Nele o centro de projeção é mapeado em um ponto ideal.
- Com isso, o volume de visão se torna um paralelepípedo.
- Neste espaço é realizado o cálculo das superfícies visíveis.

Espaço da Imagem

 Usa o sistema de coordenadas do dispositivo gráfico.

Ele tem coordenadas discretas.

Neste espaço é realizada a rasterização

Problema

- Cena é 3D, mas eventualmente será projetada para 2D.
- Cena 2D está num plano infinito, mas o dispositivo possui uma área visível retangular finita.
- O que fazer?
 - ✓ Resposta: mapear uma região retangular da cena 2D para o dispositivo.

Sistemas de Coordenadas

- Dispositivo físico: grade retangular de localizações endereçáveis: 'display rectangle' ou 'graphics i/o rectangle'
 - ✓ Parâmetros importantes
 - *ndh* => n° de localizações gráficas endereçáveis horizontalmente;
 - *ndv* => n° de localizações gráficas endereçáveis verticalmente;

Sist. Coordenadas do usuário - WC

- Sistema que o usuário escolhe para trabalhar;
- Frequentemente: cartesiano / polar;
- Objeto: definido no sistema do usuário e deve ser convertido para o sistema de coord. do equipamento;
- Window: porção do objeto que aparece na tela do equipamento, ou seja, região retangular de interesse na cena;
 - ✓ Window (min_x, max_x, min_y, max_y);
- Viewport: posição da tela para a qual a window e todo o seu conteúdo é mapeada, ou seja, é região retangular no dispositivo;
 - ✓ Viewport (min_x, max_x, min_y, max_y)

Transformações

Window

Dispositivo

Windows

Com Clipping

- A window pode apresentar uma parte do objeto, o objeto todo ou pode estar vazia.
- Clipping → efeito pelo qual há uma porção visível do objeto na window e porções invisíveis de objeto fora da window.

Viewport – Razão de Aspecto

Sejam:

- ✓ Comprimento e altura da *Window* são *Lw* e *Hw*.
- ✓ Comprimento e altura da *Viewport* são *Lv* e *Hv*.
- Obs: Pode ser que o mapeamento para uma viewport gere soluções com desfiguração de imagem caso os razão de aspecto da window e viewport não correspondam;

$$\frac{L_{W}}{H_{W}} \neq \frac{L_{V}}{H_{V}}$$

Imagem 1024 x 768 (4:3)

Mesma Imagem 1024 x 614 (10:6)

TV 4:3 e 16:9

16:9 - Wide Screen 2:1 - Film

Problemas

- Uso de escalas diferentes: problemas relativos a alterações nos desenhos quando o dispositivo de saída é alterado;
- wraparound a parte da figura que ultrapassa os limites do dispositivos aparecem no lado oposto do mesmo;

Desentrelaçamento

Transformação WC-NDC

Sist. Coordenadas Normalizadas - NDC

Normalização: evitar os problemas anteriores;
✓ As coordenadas: variam de 0.0 a 1.0

Sist. Coordenadas Normalizadas

Exemplo:

✓ Sejam quatro *viewport* definidas por:

VIEWPORT-1 (0.0, 0.5, 0.0, 0.5) VIEWPORT-2(0.5, 1.0, 0.0, 0.5) VIEWPORT-3 (0.0, 0.5, 0.5, 1.0) VIEWPORT-4(0.5, 1.0, 0.5, 1.0)

Transformação de Normalização

Graficamente:

Transformação de Normalização

- As fórmulas que surgem da proporcionalidade, ou seja, de um posicionamento relativo de um ponto na window deve refletir no ponto correspondente na viewport
 - ✓ Por interpolação, obtém-se, para X:

$$\frac{X_W - X_{W \min}}{X_{W \max} - X_{W \min}} = \frac{X_N - X_{N \min}}{X_{N \max} - X_{N \min}}$$

$$X_{N} = \frac{\left(X_{W} - X_{W \min}\right)}{X_{W \max} - X_{W \min}} * \left(X_{N \max} - X_{N \min}\right) + X_{N \min}$$

$$X_{N} = \frac{(X_{N \max} - X_{N \min})}{X_{W \max} - X_{W \min}} * (X_{W} - X_{W \min}) + X_{N \min}$$

Transformação de Normalização

Finalmente, teríamos:

$$X_N = S_X * (X_W - X_{W \min}) + X_{N \min}$$

Com o fator de escala window/viewport: $S_X = \frac{\left(X_{N \max} - X_{N \min}\right)}{X_{W \max} - X_{W \min}}$

Analogamente, para y, teríamos:

$$Y_N = S_Y * (Y_W - Y_{W \min}) + Y_{N \min}$$

Com o fator de escala window/viewport: $S_Y = \frac{\left(Y_{N \max} - Y_{N \min}\right)}{Y_{W \max} - Y_{W \min}}$

Transformação de Estação

É obtida pelo algoritmo:

```
\begin{aligned} \text{Map-NDC-DC}(X_N, Y_N, X_D, Y_D) :- \\ X_{D1} \text{ is } X_N^* \text{NPX}, \\ Y_{D1} \text{ is } Y_N^* \text{NPY}, \\ round(X_{D1}, 0, X_{D2}), \\ round(Y_{D1}, 0, Y_{D2}), \\ X_D \text{ is } integer(X_{D2}), \\ YD \text{ is NPY- } integer(Y_{D2}). \end{aligned}
```

onde: *round*(A, C, R) => arredonda A com C casas decimais, devolvendo o resultado R.

ndh : N° de localizações gráficas endereçáveis horizontalmente;

ndv : Nº de localizações gráficas endereçáveis verticalmente;

Exemplo: ndh = 640; ndv = 200 (baixa resolução)

NPX = ndh - 1; NPY = ndv - 1