

FUNDAMENTOS DE COMPUTADORES 1° Curso del Grado en Ingeniería Informática

TEMA 3

Problemas resueltos

Problemas resueltos del tema 3

1. Dado el circuito de la figura:

Se pide realizar un análisis estacionario del mismo, representando la expresión de la función y su tabla de verdad con el siguiente orden en las variables: **CBA**.

Solución:

a)
$$S = (A + \overline{B}) \cdot B + \overline{A} \cdot \overline{\overline{B}} \cdot C = A \cdot B + B \cdot \overline{B} + \overline{A} \cdot B \cdot C = B \cdot A + C \cdot B \cdot \overline{A}$$

СВА	S
0 0 0	0
0 0 1	0
0 1 0	0
0 1 1	1
1 0 0	0
1 0 1	0
1 1 0	1
1 1 1	1

$$S = \sum_{3} (3,6,7) = \prod_{3} (0,1,2,4,5)$$

2. Simplificar la siguiente función por el método de Karnaugh, obteniendo sus dos expresiones mínimas.

$$F = \sum_{4} (0,2,3,7,9,11,15)$$

Solución:

$\mathbf{DC}^{\mathbf{B}A}$	00	01	11	10
00	1	0	1	1
01	0	0	1	0
11	0	0	1	0
10	0	1	1	0

$$F = \overline{DCA} + BA + D\overline{C}A$$

$$F = (D + B + \overline{A}) \cdot (\overline{C} + A) \cdot (\overline{C} + B) \cdot (\overline{D} + A)$$

3. Simplificar la siguiente función incompleta por el método de Karnaugh, obteniendo sus dos expresiones mínimas.

$$G = \prod_{4} (1,2,3,8,10,12,14) \cdot \prod_{b} (5,7,13,15)$$

Solución:

$$G = \overline{DBA} + \overline{DC} + DA$$

$$G = (D + \overline{A}) \cdot (D + C + \overline{B}) \cdot (\overline{D} + A)$$

4. Transformar la expresión mínima disyuntiva obtenida en el ejercicio 2 para que pueda ser implementada usando únicamente puertas NAND.

Solución:

$$F = \overline{DCA} + BA + \overline{DCA} = \overline{\overline{DCA} + BA + \overline{DCA}} = \overline{\overline{DCA} \cdot \overline{BA} \cdot \overline{DCA}}$$

5. Transformar la expresión mínima conjuntiva obtenida en el ejercicio 2 para que pueda ser implementada usando únicamente puertas NAND.

Solución:

$$F = (D + B + \overline{A}) \cdot (\overline{C} + A) \cdot (\overline{C} + B) \cdot (\overline{D} + A) = \overline{D + B + \overline{A} \cdot \overline{C} + A} \cdot \overline{\overline{C} + B} \cdot \overline{D} + A = \overline{D \cdot \overline{B} \cdot A} \cdot \overline{C \cdot \overline{A}} \cdot \overline{C \cdot \overline{B} \cdot D} \cdot \overline{A}$$

6. Transformar la expresión mínima disyuntiva obtenida en el ejercicio 3 para que pueda ser implementada usando únicamente puertas NOR.

Solución:

$$G = \overline{DBA} + \overline{DC} + \overline{DA} = \overline{DBA} + \overline{DC} + \overline{DA} = \overline{D+B+A} + \overline{D+C} + \overline{D+A}$$

7. Transformar la expresión mínima conjuntiva obtenida en el ejercicio 3 para que pueda ser implementada usando únicamente puertas NOR.

Solución:

$$G = (D + \overline{A}) \cdot (D + C + \overline{B}) \cdot (\overline{D} + A) = \overline{(D + \overline{A}) \cdot (D + C + \overline{B}) \cdot (\overline{D} + A)} = \overline{D + \overline{A} + \overline{D} + C + \overline{B} + \overline{D} + A}$$