Harvard University Computer Science 20

In-Class Problems 15

Wednesday, March 02, 2016

Author: Crystal Chang

Executive Summary

- 1. **Definition of Recursive Data Types:** common way of defining mathematical objects, which says how to construct new data elements from previous ones.
 - Base Case(s): specify that some known mathematical elements are in the data type
 - Constructor Rule(s): specify how to construct new data elements from previously constructed elements or from base elements.
 - Nothing else (generally implicit): the only way you can get whatever is you defining is by starting from the base case(s) and applying the constructor rule(s) one or more times.
- 2. The Principle of Structural Induction: to prove P(x) holds for all x in a recursively defined set S, prove
 - Basis Step: P(b) is true for each base case element $b \in S$, and
 - Recursive Step: $P(c(x_1,...,x_k))$ for each constructor c, assuming as the induction hypothesis that $P(x_1),...$, and $P(x_k)$ all hold.

PROBLEM 1

Recursive Definition:

- (A) There's an error in the following definition of the set of even integers (E). Find the error and fix it.
 - Base Case: $0 \in E$
 - Constructor Rule: For any element x in E, x+2 is in E.
 - Nothing else (generally implicit): Nothing is in E unless it is obtained from the base case and constructor rule.
- (B) Give a recursive definition of the natural numbers \mathbb{N} .
- (C) Give a recursive definition of the sequence b_n , $b_n = 2n + 5$, $n \in \mathbb{N}$

Solution.

(A) It doesn't include negative Even Integer. There should be one more constructor rule x-2 is in EI.

(B)

- Base Cases: $1 \in \mathbb{N}$
- Constructor Rule: If $n \in \mathbb{N}$, then $n+1 \in \mathbb{N}$.
- Nothing else (generally implicit): Nothing is in N unless it is obtained from the base case and constructor rule.

(C)

- Base Cases: $b_1 = 7$
- Constructor Rule: $b_{n+1} = b_n + 2$ for $n \in \mathbb{N}$
- Nothing else (generally implicit): Nothing is in b_n unless it is obtained from the base case and constructor rule.

PROBLEM 2

Let S be the set defined as follows:

- Base Case: $(1,2) \in S$
- Constructor Rules: If $(x,y) \in S$, then C1: $(x+2,y) \in S$ and C2: $(y,x) \in S$
- (A) Is $(4,3) \in S$? If it is, how can you derive it from (1,2)?
- (B) Use induction to prove that $(2n+2, 2n+1) \in S$ for all $n \in \mathbb{N}$.

Solution.

- (A) Yes, it is. Apply C1 to (1,2), we can get (3,2); Apply C2 to (3,2), we can get (2,3); Apply C1 to (2,3), we can get (4,3).
- (B) Let P(n): $(2n+2,2n+1) \in S$. We must show that for all $n \in \mathbb{N}, P(n)$.
 - Base case: When $n=1, (4,3) \in S$. (Already proved in (A))
 - Induction step:

Assuming P(n): $(2n + 2, 2n + 1) \in S$ holds, we want to prove that $P(n + 1) : (2(n + 1) + 2, 2(n + 1) + 1) = (2n + 4, 2n + 3) \in S$.

Apply C1 to (2n+2, 2n+1), we then could get $(2n+4, 2n+1) \in S$. Then apply C2 to (2n+4, 2n+1), we could get $(2n+1, 2n+4) \in S$. Then, apply C1 to (2n+1, 2n+4), then we can get $(2n+3, 2n+4) \in S$. Finally, apply C2 again to (2n+3, 2n+4), then we can get $(2n+4, 2n+3) \in S$.

PROBLEM 3

(Bonus) Construct a recursive definition for the set of strings S over the alphabet a,b excepting empty string, i.e. set of string consisting of a's and b's such as abbab, bbabaa, etc.

Solution.

- Base Cases: $a \in S$, and $b \in S$
- Constructor Rule: For any element x in S, $as \in S$, and $bx \in S$
- Nothing else (generally implicit): Nothing is in S unless it is obtained from the base case and constructor rule.

PROBLEM 4

(Bonus) Let S be the set defined as follows:

- Base Case: $(0,0) \in S$
- Constructor Rules: If $(a,b) \in S$, then C1: $(a,b+1) \in S$, C2: $(a+1,b+1) \in S$ and C3: $(a+2,b+1) \in S$
- (A) List 5 elements.
- (B) Use structural induction to prove that for every $(a, b) \in S, a \leq 2b$.

Solution.

- (A) (0,1), (1,1), (2,1), (1,2), (2,2)...
- (B)
 - Basis step: By the base case of the definition of S, $(0,0) \in S$. $0 \le 2(0)$.
 - Recursive step:

Now consider the constructor rule in the definition of S. Assume elements $a, b \in S$ and $a \le 2b$. We must show that $a \le 2(b+1)$, $(a+1) \le 2(b+1)$ and $(a+2) \le 2(b+1)$.

- 1. prove $a \le 2(b+1)$: $a \le 2b \to a \le (2b+2) = 2(b+1)$
- 2. prove $(a+1) \le 2(b+1)$: $a \le 2b \to (a+1) \le (2b+1) \le (2b+2) = 2(b+1)$
- 3. prove $(a+2) \le 2(b+1)$: $a \le 2b \to (a+2) \le (2b+2) = 2(b+1)$