10/11/2022

NMAP SCANNING

Riepilogo

SOURCE	TARGET	SCAN TYPE	RESULTS		
192.168.50.100	192.168.50.101	TCP CONNECT SCAN			
192.168.50.100	192.168.50.101	TCP SYN SCAN	12 open well-known ports		
192.168.50.100	192.168.50.101	AGGRESSIVE SCAN	1		

PORT	STATUS	SERVICE		
21/tcp	Open	ftp		
22/tcp	Open	Ssh		
23/tcp	Open	telnet		
25/tcp	Open	Smtp		
53/tcp	Open	Domain		
80/tcp	Open	http		
111/tcp	Open	Rpcbind		
139/tcp	Open	Netbios-ssn		
445/tcp	Open	Microsoft-ds		
512/tcp	Open	Exec		
513/tcp	Open	Logic		
514/tcp	Open	shell		

1. TCP CONNECT SCAN

Avviamo la scansione delle porte well-known eseguendo il comando **nmap 192.168.50.101** -p **0-1023 -sT**

```
(kali⊗kali)-[~]
$ nmap 192.168.50.101 -p 0-1023 -sT
Starting Nmap 7.92 ( https://nmap.org ) at 2022-11-10 09:44 EST
Nmap scan report for 192.168.50.101
Host is up (0.00089s latency).
Not shown: 1012 closed tcp ports (conn-refused)
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
25/tcp open smtp
53/tcp open domain
80/tcp open http
111/tcp open rpcbind
139/tcp open netbios-ssn
445/tcp open microsoft-ds
512/tcp open shell
Nmap done: 1 IP address (1 host up) scanned in 13.40 seconds
```

Analizzando il traffico TCP con Wireshark e applicando un filtro sul **source IP** ed uno sui **pacchetti ACK**, possiamo notare la presenza di pacchetti TCP con flag **ACK** inviati dalla macchina Kali 192.168.50.100 a Metasploitable 192.168.50.101, in quanto questo tipo di scansione completa tutti i passaggi del three-way handshake.

2. TCP SYN SCAN

Avviamo la scansione delle porte well-known eseguendo il comando **sudo nmap 192.168.50.101 -p 0-1023 -sS**

```
-(kali⊛kali)-[~]
 -$ <u>sudo</u> nmap 192.168.50.101 -p 0-1023 -sS
[sudo] password for kali:
Starting Nmap 7.92 ( https://nmap.org ) at 2022-11-10 10:01 EST
Nmap scan report for 192.168.50.101
Host is up (0.0013s latency).
Not shown: 1012 closed tcp ports (reset)
     STATE SERVICE
PORT
21/tcp open
              ftp
22/tcp open
              ssh
23/tcp open
              telnet
25/tcp
              smtp
      open
53/tcp open
              domain
80/tcp open
              http
111/tcp open
              rpcbind
139/tcp open
             netbios-ssn
445/tcp open
             microsoft-ds
512/tcp open
              exec
513/tcp open
             login
514/tcp open
             shell
MAC Address: 08:00:27:05:79:1F (Oracle VirtualBox virtual NIC)
Nmap done: 1 IP address (1 host up) scanned in 13.43 seconds
```

Questo tipo di scansione è più leggera e non completa i passaggi del three-way handshake, in quanto la macchina con source IP 192.168.50.100 chiude la connessione inviando pacchetti con flag **RST.** Non viene inviato quindi <u>nessun pacchetto ACK</u>.

No. ▼	Time 🔻	Source 🔻	Destination 🔻	Protocol 🏋	Length 💌	Info		v
15	13,09889137	192.168.50.100	192.168.50.101	TCP	60	54780 > 199	[SYN]	Seq=0 Win=1024 Len=0 MSS=1460
16	13,0991182	192.168.50.100	192.168.50.101	TCP	60	54780 > 80	SYN] S	eq=0 Win=1024 Len=0 MSS=1460
17	13,09916103	192.168.50.100	192.168.50.101	TCP	60	54780 > 21	SYN] S	eq=0 Win=1024 Len=0 MSS=1460
18	13,09933649	192.168.50.100	192.168.50.101	TCP	60	54780 > 13	[SYN]	Seq=0 Win=1024 Len=0 MSS=1460
19	13,09937506	192.168.50.100	192.168.50.101	TCP	60	54780 > 25	[SYN]	Seq=0 Win=1024 Len=0 MSS=1460
21	13,09959425	192.168.50.100	192.168.50.101	TCP	60	54780 > 25	SYN] S	eq=0 Win=1024 Len=0 MSS=1460
24	13,09991715	192.168.50.100	192.168.50.101	TCP	56	54780 > 80	RST] S	eq=1 Win=0 Len=0
25	13,09994951	192.168.50.100	192.168.50.101	TCP	56	54780 > 21	RST] S	eq=1 Win=0 Len=0
29	13,1001394	192.168.50.100	192.168.50.101	TCP	56	54780 > 25	RST] S	eq=1 Win=0 Len=0
30	13,10111666	192.168.50.100	192.168.50.101	TCP	60	54780 > 58	[SYN]	Seq=0 Win=1024 Len=0 MSS=1460
31	13,10115551	192.168.50.100	192.168.50.101	TCP	60	54780 > 11	[SYN]	Seq=0 Win=1024 Len=0 MSS=1460
32	13,10117279	192.168.50.100	192.168.50.101	TCP	60	54780 > 44	[SYN]	Seq=0 Win=1024 Len=0 MSS=1460
33	13,10118761	192.168.50.100	192.168.50.101	TCP	60	54780 > 22	SYN] S	eq=0 Win=1024 Len=0 MSS=1460
38	13,10169758	192.168.50.100	192.168.50.101	TCP	56	54780 > 22	RST] S	eq=1 Win=0 Len=0
39	13,10191641	192.168.50.100	192.168.50.101	TCP	60	54780 > 23	SYN] s	eq=0 Win=1024 Len=0 MSS=1460
40	13,10210352	192.168.50.100	192.168.50.101	TCP	60	54780 > 554	[SYN]	Seq=0 Win=1024 Len=0 MSS=1460
41	13,10214495	192.168.50.100	192.168.50.101	TCP	60	54780 > 139	[SYN]	Seq=0 Win=1024 Len=0 MSS=1460
42	13,10224177	192.168.50.100	192.168.50.101	TCP	60	54780 > 110	[SYN]	Seq=0 Win=1024 Len=0 MSS=1460

3. AGGRESSIVE SCAN

Avviamo la scansione delle porte well-known eseguendo il comando **nmap 192.168.50.101** -p **0-1023 -A**

Questo tipo di scansione, oltre alle informazioni sullo stato delle porte, analizza informazioni aggiuntive. In figura 2 possiamo ad esempio vedere che vengono anche rilevate le specifiche relative al **Sistema Operativo**.

```
(kali@ kali)-[~]
$ nmap 192.168.50.101 -p 0-1023 -A

Starting Nmap 7.92 ( https://nmap.org ) at 2022-11-10 10:45 EST

Nmap scan report for 192.168.50.101

Host is up (0.0014s latency).
Not shown: 1012 closed tcp ports (conn-refused)

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4 |
ftp-syst:
| STAT:
| FTP server status:
| Connected to 192.168.50.100 |
| Logged in as ftp |
| TYPE: ASCII |
No session bandwidth limit |
| Session timeout in seconds is 300 |
| Control connection is plain text |
| Data connections will be plain text |
| UsFTPd 2.3.4 - secure, fast, stable |
| End of status |
| End of status |
| ftp-anon: Anonymous FTP login allowed (FTP code 230)

22/tcp open ssh OpenSSH 4.7p1 Debian Subuntu1 (protocol 2.0)
```

Figura 1

```
Host script results:
| smb-os-discovery:
| OS: Unix (Samba 3.0.20-Debian) |
| Computer name: metasploitable |
| NetBIOS computer name:
| Domain name: localdomain |
| FQDN: metasploitable.localdomain |
| System time: 2022-11-10T10:46:33-05:00 |
| nbstat: NetBIOS name: METASPLOITABLE, NetBIOS user: <unknown>, NetBIOS MAC: <unknown> (unknown) |
| smb-security-mode: |
| account_used: <br/>| authentication_level: user |
| challenge_response: supported |
| message_signing: disabled (dangerous, but default) |
| clock-skew: mean: 2h30m01s, deviation: 3h32m08s, median: 0s |
| smb2-time: Protocol negotiation failed (SMB2)
```

Figura 2