TIPE

Asservissement d'une bouée Argo et ses enjeux énergétiques

Historique

Pourquoi vouloir cartographier l'océan?

-Mieux comprendre son fonctionnement -

Témoin du réchauffement climatique

Moyens utilisés avant :

- -sonde bathytermographe
- -rosettes
- -points fixes près des côtes

Faible couverture de la surface de l'océan

Historique de la cartographie des océans

Couverture de la planète

Couvertures par les rosettes

Couvertures par les bouées Argo

Exploitation des données

Cartographie 3D de l'océan en données physiques et biochimiques en effectuant un maillage régulier

Pouvoir alimenter des modèles avec des données in situ (notamment en météorologie)

Calcul d'intégrales de contenu de chaleur ou sel

Faire des cartes pour l'analyse des courants

Profils récupérés

Cycle de fonctionnement

Fonctionnement d'un type de bouées : système moteur/piston

Fonctionnement d'un type de bouées : système pompe/electrovanne

Modélisation d'un cycle

Domaine de la simulation

- influence des paramètres sur la batterie, temps de parcours etc..

Modèle Matlab

Système Vessie Pompe

Système piston-vis

Modélisation sans contrainte extérieure sur la vessie donc peu réaliste à cet instant

Contrôle du moteur

Modélisation de la force de frottement

Nombre de Reynolds

$$Re=rac{\mu vD}{\eta}\sim 2.10^4$$
 Avec $\mu=10^3 kg.m^{-3}$
$$v\sim 0.09 \ m.s^{-1}$$

$$D\sim 0.2 \ m$$

$$\eta\sim 10^{-3} \ Pl$$

Résultante force de frottement fluide

$$F = \frac{1}{2}\mu v^2 * Cx * S = K * v^2 \text{ avec } K = \frac{1}{2}\mu * Cx * S$$

Détermination de Cx

Modélisation sur Simscale

Détermination de Cx

Vitesse d'écoulement autour de la bouée

Détermination de Cx

Coefficient de trainée en fonction du temps

Suite envisagée mais arrêtée car TIPE annulé

- ☐ Poursuite du modèle matlab :
 - Asservissement de la vitesse en plus de
 - la position
 - -Modélisation des contraintes de pression sur
 - la vessie du système piston-vis
- ☐ Recherche des meilleurs paramètres pour chaque système
- ☐ Comparer les résultats