

ESc201, Lecture 33: (Digital) Examples of DMUX

An input in BCD is to be displayed decimally over 7-segment displays. There would be 4-bit inputs (w, x, y, z) and from the DMUX there should be 10 outputs (4x10 DMUX). The Truth Table has to be written first.

 $\sqrt{3x8} d_8$

w x y z 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1	$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	This has to be minimized now by writing 10 K-maps (for d_0 to d_9 , but one can do it by just one K-map as this is to be implemented with a DMUX with a few don't care states.
0100	$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$	$d_0 = \overline{w}.\overline{x}.\overline{y}.\overline{z}$
01101	0 0 0 0 0 0 1 0 0 0	$\mathbf{d}_{1} = \mathbf{w} \cdot \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{z} \qquad \mathbf{yz} \qquad 00 \qquad \mathbf{d_{0}} \qquad \mathbf{d_{4}} \qquad \mathbf{x} \qquad 8 \qquad \mathbf{d_{8}}$
$egin{array}{c} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{array}$	$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	$d_5 = x.y.z$ 01 d_1 d_2 d_3 d_4 d_5 d_5 d_5 d_5
$1001 \\ 1010$	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ x & x & x & x & x & x & x & x & x & x$	$d_0 = w.v.z$
1011	X	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$
$\begin{array}{c} 1100\\ 1101 \end{array}$	X	$- \mathbb{E} \overset{3\times8}{\mathbf{d}_0} \longrightarrow \overset{11}{\overset{2}{\overset{3}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{1$
1110	X X X X X X X X X X X X X X X X X X X	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
This can l	be implemented with two 3x8	$\equiv_{\mathbf{C}}^{\mathbf{x}}, \mathbf{y}, \mathbf{z}$

This can be implemented with two 3x8

DMUX. The input to the 1st is controlled by inputs x, y, z where w=0, and the other input as 1 with E=1. The second is also controlled by x, y, z where w=1, E=1 when w=1.

The 0-9 outputs can each be used by to run a seven segment display by a MUX.

ESc201, Lecture 33: (Sequential logic)

Sequential Circuits Need Memory to Store the Previous State Information.

- 1. Sequential circuit consists of combinational circuit to which memory elements are connected to form a feedback path.
- 1. The binary information stored in the memory elements at any given time defines the 'state' of the sequential circuit.
- 2. The external outputs in a sequential circuit are a function of external inputs and the present state of the memory element
- 3. Next state of the memory elements is also a function of external inputs and the present state
- 4. There are two main types of sequential circuits.
- 5. A 'Synchronous' sequential circuit is a system whose behavior can be defined from the knowledge of its signals at discrete instance of time.
- 6. The behavior of an 'Asynchronous' sequential circuit depends upon the order in which its input signals change and can be affected at ant instant of time.
- 7. In synchronous sequential logic systems synchronization is achieved by a timing device called a master-clock generator, Which generates a periodic train of 'clock pulses'.
- 8. The memory elements change state in synchronization with the clock pulses.

Flip Flop is one kind of a memory element.

NOR SR Latch/Flip-Flop

$$Q=1; \overline{Q}=0$$
 Set State
 $Q=0; \overline{Q}=1$ Reset State

ESc201, Lecture 33: Digital (Memory using Combinational Logic)

S	R	Q	Q	State
1	0	1	0	SET
0	0	1	0	HOLD
0	1	0	1	RESET
0	0	0	1	HOLD

S	R	Q	Q	State
1	0	1	0	SET
0	1	0	1	RESET
0	0	Q	_ Q	HOLD
1	1	0	0	INVALID

NAND SR Flip-Flop/Latch

 S	R	Q	Q	State
0	1	1	0	SET
1	0	0	1	RESET
1	1	Q	Q	HOLD
0	0	1	1	INVALID

ESc201, Lecture 33: Digital: SR Flip-Flop/Latch—Invalid inputs

Both the outputs are well defined and 0. The first problem is that the output is not complementary.

A more serious problem occurs when S/R switches the latch to the hold state by changing RS from $11 \rightarrow 00$. Suppose the inputs do not change

simultaneously and the situation $11 \rightarrow 01^* \rightarrow 00$ arises, because the R-input has changed faster than S. So the 00 input which should have held 00 at the output is now set at 10.

To avoid this situation, a clock (Ck) can be used at the input, such that the inputs are not allowed to the NOR/NAND gates till it is ensured by the Ck that the inputs are stable.