ST720 Data Science

Unsupervised Learning

Seung Jun Shin (sjshin@korea.ac.kr)

Department of Statistics, Korea University

Clustering I

- Generate groups of observations (or variables) based on their similarity.
- Given $\mathbf{x}_1, \dots, \mathbf{x}_n, i = 1, \dots, n$,
 - Euclidean Distance:

$$d(\mathbf{x}_i, \mathbf{x}_{i'}) = \|\mathbf{x}_i - \mathbf{x}_{i'}\| = \sqrt{\sum_{j=1}^{p} (x_{ij} - x_{i'j})^2}$$

Manhattan Distance:

$$d(\mathbf{x}_i,\mathbf{x}_{i'}) = \sum_{i=1}^p |x_{ij} - x_{i'j}|$$

Clustering II

- Standardization Required.
 - Mean-Variance

$$x_{ij} \rightarrow x_{ij}^* = \frac{x_{ij} - m_j}{s_j}, \quad j = 1, \cdots, p.$$

where m_j and s_j denote the sample mean and SD, respectively.

Min-Max

$$x_{ij} \rightarrow x_{ij}^* = \frac{x_{ij} - l_j}{u_j - l_j}, \quad j = 1, \cdots, p.$$

where l_j and u_j denote the sample minimum and maximum, respectively.

K-means Clustering I

- ► K-means Clustering: Assume that the number of clusters is given by K,
 - 1. (Initialization) Randomly select k observation and let them be the centers (means) of K clusters, respectively.
 - Assign cluster to every observation based on the distance from the cluster center.
 - 3. Update cluster means (centers).
 - Repeat Steps 2-3 until convergence (membership of all observations remain unchanged) .

K-means Clustering II

- \blacktriangleright Minimizes the within cluster sum of squares (for a given K).
- Computationally efficient.
- Suitable for continuous variables.
- k is assumed to be known.
- Returns local solution.

K-means Clustering III

Figure: K-means Clustering to iris data.

Hierarchical Clustering I

- Types:
 - ▶ Agglomeration: from *n* groups to a single group.
 - ▶ Division: from a single group to *n* groups.
- Visualization via Dendrogram is useful.

Hierarchical Clustering II

► Toy example: Input (Distance Matrix)

► Step 1

Hierarchical Clustering III

▶ Step 2

$$\begin{array}{c|cccc}
(1,3) & 0 & & \\
(2,4) & 6 & 0 & \\
\hline
5 & 8 & 4 & 0 \\
\hline
& (1,3) & (2,4) & 5
\end{array}$$

► Step 3

$$\begin{array}{c|ccc}
(1,3) & 0 \\
(2,4,5) & 6 & 0 \\
\hline
& (1,3) & (2,4,5)
\end{array}$$

► Step 4: Cluster (1,2,3,4,5)

Hierarchical Clustering IV

Figure: Dendrogram

Hierarchical Clustering V

Figure: Hierarchical Clustering to iris data, hclust() function.

Gaussian Mixture Model I

► Gaussian mixture distribution:

$$\mathbf{x}_1, \cdots, \mathbf{x}_n \stackrel{iid}{\sim} \sum_{k=1}^K \pi_k f_k(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- K: Number of Cluster.
- \blacktriangleright π_k : Proportion of the kth cluster.
- $ightharpoonup f_k(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$: Density of the observations in the kth Cluster

$$N(\mu_k, \mathbf{\Sigma}_k)$$

Gaussian Mixture Model II

- ► MLE is used (EM Algorithm)
- ▶ To determine K, model selection criterion can be used.
- Group membership naturally follows after the model parameter estimation.

Gaussian Mixture Model III

Figure: Gaussian Mixture

DBScan I

Figure: Motivating Example

DBScan II

- Density-Based spatial clustering of applications with noise.
- Definition:
 - ▶ Core/High Density Point: at least MinPt points are within its ϵ -neighborhood.
 - ► Border Point: Not a core point, but lies on the c-neighborhood of a core point.
 - Noise Point: neither core nor border point.

DBScan III

- \triangleright \mathbf{x}_i is Directly Density-Reachable (DDR) from \mathbf{x}_j .
- \rightarrow \mathbf{x}_{j} is a core point and \mathbf{x}_{i} is in the ϵ -neighborhood of \mathbf{x}_{j} .

Figure: q is DDR from p, but p is not DDR from q since q is not a core point. That is DDR is asymmetric relation.

DBScan IV

- $ightharpoonup \mathbf{x}_i$ is Density-Reachable (DR) from \mathbf{x}_j :
- \rightarrow There is a sequence of points from $\mathbf{x}_j = p_1, p_2, \cdots, p_n = \mathbf{x}_i$ such that p_{i+1} is directly density-reachable from p_i .

Figure: p is DR from q, but q is not DR from p. That is, DR is also asymmetric.

DBScan V

- \triangleright \mathbf{x}_i and \mathbf{x}_i are Density-Connected (DC)
- \rightarrow here is a point such that both, \mathbf{x}_i and \mathbf{x}_j are density-reachable from the point.

MinPts = 7

Figure: p and q are DC and DC is symmetric.

DBScan VI

- ► Cluster is defined by a set of points C satisfying
 - ▶ $\forall \mathbf{x}_i, \mathbf{x}_j$: if $\mathbf{x}_i \in C$ and \mathbf{x}_j is density-reachable from \mathbf{x}_i then $\mathbf{x}_j \in C$. (Maximality)
 - ▶ $\forall \mathbf{x}_i, \mathbf{x}_j \in C$, \mathbf{x}_i is density-connected to \mathbf{x}_j . (Connectivity)
- dbscan package available.

DBScan VII

Figure: DBscan applied to the synthetic data.

DBScan VIII

Figure: DBscan applied to Iris data.

MDS I

Classical MDS (cmdscale) solves

$$\underset{\mathbf{z}_{1},\cdots,\mathbf{z}_{n}}{\operatorname{argmin}} \sum_{i \neq j} \left(\underbrace{\langle \mathbf{x}_{i},\mathbf{x}_{j} \rangle}_{d_{ij}} - \langle \mathbf{z}_{i},\mathbf{z}_{j} \rangle \right)^{2}$$

(Turns out to be equivalent to PCA)

► Sammon mapping (sammon{MASS})

$$\underset{\mathbf{z}_{1},\dots,\mathbf{z}_{n}}{\operatorname{argmin}} \sum_{i \neq j} \frac{(d_{ij} - \|\mathbf{z}_{i} - \mathbf{z}_{j}\|)^{2}}{d_{ji}^{2}}$$

(A weighted version)

Non-metric scaling: orders (of distances) is used only (isoMDS{MASS})

MDS II

Figure: Two versions of MDS (k = 2) applied to Iris Data.

t-SNE I

- ▶ DR to 2- or 3-dimensional space. (Visualization)
- A version of Stochastic Neighbor Embedding:
- ▶ SNE converts the high-dimensional Euclidean distances between data points into conditional probabilities that represent similarities.
- ► The similarity of x_j to x_i:

$$p_i(\mathbf{x}_j) = \phi_i(\mathbf{x}_j),$$
 (Conditional Probability)

where $\phi_i(\mathbf{x})$ denotes the density of $\mathbf{x} \sim N_p(\mathbf{x}_i, \sigma^2 I)$.

t-SNE II

t-SNE III

- ▶ Let y_i and y_j denote the low-dim. representations of x_i and x_j .
- ▶ Define $q_i(\mathbf{y}_i)$ similar to $p_i(\mathbf{x}_i)$.
- ► SNE solves

$$\min_{\mathbf{y}_1, \dots, \mathbf{y}_n} \sum_{i=1}^n \sum_{j=1}^n p_i(\mathbf{x}_j) \log \frac{p_i(\mathbf{x}_j)}{q_i(\mathbf{y}_j)}, \quad (KL \text{ Divergence})$$

via the gradient decent algorithm.

t-SNE IV

- As p increases, the pairwise distances between \mathbf{x}_i and \mathbf{x}_j tend to be undistiguishable. (Why?).
- ► SNE solutions suffer from Crowding Problem.
- ▶ Gaussian PDF to measure similarity is not a good choice.
- Let's use heavy tailed distribution $t(1)! \rightarrow tSNE!$

t-SNE V

t-SNE VI

Figure: tSNE applied to Iris Data.