

Accidentes Aéreos

Equipo de trabajo: Ana Bulla y Melissa Díaz

INDICE

- **01** Presentación del Caso
- **02** Preguntas y objetivos de la investigación
- **03** EDA
- **Q4** Aplicación de Algoritmos de ML
- **05** Conclusiones

Presentación del caso

Contexto

La empresa Air Test Group, encargada de la construcción de aviones nos contactó para que identifiquemos patrones de las fatalidades mediante visualizaciones que los ayuden a tomar acciones preventivas para el armado de nuevas aeronaves.

Nuestra recomendación se centrará en un DataSet con información de accidentes aéreos transcurridos en el período de 1908 a 2019. Este DS contiene información de todos los accidentes aéreos civiles, comerciales programados y no programados, aviones de cargo, de posicionamiento, de transporte, militares, helicópteros comerciales, helicópteros militares y dirigibles.

Dataset

50	Date	Location	Operator	Route	AC Type	Aboard	Fatalities	
0	1908-09-17	Fort Myer, Virginia	Military - U.S. Army	Demonstration	Wright Flyer III	2.0	1.0	
1	1909-09-07	Juvisy-sur-Orge, France	NaN	Air show	Wright Byplane	1.0	1.0	
2	1912-07-12	Atlantic City, New Jersey	Military - U.S. Navy	Test flight	Dirigible	5.0	5.0	
3	1913-08-06	Victoria, British Columbia, Canada	Private	NaN	Curtiss seaplane	1.0	1.0	
4	1913-09-09	Over the North Sea	Military - German Navy	NaN	Zeppelin L-1 (airship)	20.0	14.0	
4962	2019-04-16	Puerto Montt, Chile	Archipelagos Service Aereos	Puerto Montt - Ayacara	Pilatus-Britten Norman BN-2B-27 Islander	6.0	6.0	
4963	2019-05-05	Near Monclava, Mexico	TVPX Aircraft Solutions	Las Vegas - Monterrey	Canadair CL-600-2B16-Challenger	13.0	13.0	
4964	2019-05-05	Moscow, Russia	Aeroflot Russian International Airlines	Moscow - Murmansk	Sukhoi Superjet-100-95B	78.0	41.0	
4965	2019-06-03	Near Lipo, India	Military - Indian Air Force	Jorhat-Rowriah - Mechuka	Antonov An-32	13.0	13.0	
4966	2019-07-30	Rawalpindi, India	Military - Pakistan Army	Training	Beechcraft B300 King Air	5.0	5.0	
4967 rc	4967 rows x 7 columns							

Este DS incluye variables como localidad, operador, ruta, tipo de avión así como también pasajes a bordo y fatalidades.

Audiencia

Este análisis da respuesta, con evidencia, a lo solicitado por Air Test Group, donde será de utilidad para el armado de nuevas aeronaves que generen seguridad en los vuelos.

Limitaciones

El documento contenía información desde 1908 por lo que tuvimos que adaptarnos al contexto histórico para poder sacar conclusiones actuales.

Audiencia

Preguntas y objetivos

Preguntas de Interés

Preguntas

- ¿El aumento del flujo aéreo es directamente proporcional al aumento de los accidentes aéreos?
- ¿El desarrollo de la tecnología aseguró mayor seguridad a los pasajeros?
- ¿Qué avión es más seguro?
- ¿Qué avión es más inseguro?

Objetivos

Nuestro objetivo es analizar la evolución de las fatalidades a lo largo de ese período de tiempo para poder identificar que tipo de avión es más seguro y cuál es mas inseguro detallando a la empresa mejores métodos de construcción disminuyendo la cantidad de fatalidades en caso de accidentes.

EDA

¿El aumento del flujo aéreo es directamente proporcional al aumento de los accidentes aéreos?

Fatalidades vs Gente a bordo

A partir de esta interrogante y dados los datos de nuestro DS, fue que decidimos graficar fatalidades vs gente a bordo.

Por medio de la gráfica logramos identificar que cuando ocurre un accidente aéreo, hay una tendencia a que las fatalidades sean totales.

¿El desarrollo de la tecnología aseguró mayor seguridad a los pasajeros?

Fatalidades por año

Por medio de este análisis identificamos que en el transcurso del tiempo no sólo hubo un aumento de gente a bordo sino que también observamos que las fatalidades disminuyeron.

Por este motivo podemos considerar que por medio del transcurso de los años hubo un gran avance tecnológico en cuanto a seguridad.

Aplicación de Algoritmos de ML

Método de Regresión Lineal

Evaluación de Método de Regresión Lineal

Regresión lineal: 0.11824094729754465 ARIMA: 0.11824094729754465

Obtenemos valores de 12% de presición

Método Arima

Evaluación de Método Arima

Evaluando modelo Arima p-value: 0.12529784462142668

Conclusiones

Conclusiones

Para poder responder a lo solicitado por la empresa Air Test Group y su incógnita sobre el armado de aviones seguros que garanticen eficacia en los vuelos comenzamos realizando un análisis exploratorio de datos para identificar tendencias.

Calculamos el ratio de Fatalidades y ordenamos nuestro DS en base a eso, donde pudimos identificar que tipo de aviones son más y menos seguros dentro del mismo. Los que tenían mayor ratio eran los aviones menos seguros mientras que los que tenían menor ratio eran los más seguros.

Así logramos identificar qué Lockheed L-1011 TriStar, McDonnell Douglas MD-80 y McDonnell Douglas DC-9 fueron los aviones más seguros, por lo que la empresa Air Test Group tendría que basarse en estos modelos para la construcción de aeronaves más seguras.

Lockheed L-1011 TriStar, McDonnell Douglas MD-80 y McDonnell Douglas DC-9

Por medio del análisis realizado y luego de depurar los datos, obtuvimos una lista de los 10 aviones más seguros, donde tomando los que tenían mayor cantidad de pasajeros, pudimos deducir que los más seguros son: **Lockheed L-1011 TriStar, McDonnell Douglas MD-80 y McDonnell Douglas DC-9.** Podemos identificar esto ya que su tasa de fatalidades respecto a la cantidad de gente a bordo fue menor. Por tal motivo, estos tipos de aviones son los que podemos recomendar a las empresas que quieran elaborar aviones con mayor seguridad.

¿Qué avión es más seguro?

Boeing B-747-168B, Lockheed L-1011 TriStar y **Boeing 777**

Por medio del análisis realizado y luego de depurar los datos, obtuvimos una lista de los 10 aviones menos seguros, siendo los 3 primeros de la lista: Boeing B-747-168B, Lockheed L-1011 TriStar y Boeing 777. Logramos identificar esto ya que los mismos, son los que tienen mayor tasa de fatalidad. Teniendo en cuenta esta información nosotros como empresa no recomendamos el uso de los mismos como ejemplo para la elaboración de nuevas aeronaves.

¿Qué avión es el menos seguro?

Insights & Recomendaciones

Insights:

- Notamos que cuando ocurre un accidente aéreo, hay una tendencia a que las fatalidades sean totales.
- Detectamos desde el análisis del DS que los aviones más seguros son: Lockheed L-1011 TriStar, McDonnell Douglas MD-80 y McDonnell Douglas DC-9 y lo aviones menos seguros son: Boeing B-747-168B, Lockheed L-1011 TriStar y Boeing 777

Recomendaciones:

- Identificar los mejores años en los que las fatalidades fueron menores en los diferentes accidentes aéreos y tomar esa tecnología para la mejora del desarrollo de las nuevas aeronaves.
- Tomar como punto de partida para la creación de nuevas aeronaves, la estructura y tecnología de los aviones más seguros que garanticen la seguridad de los vuelos.

Insights & Recomendaciones

Gracias