Efficient Structural Clustering on Probabilistic Graphs

Consider an unweighted and undirected probabilistic graph G=(V,E,P) where V is the set of vertices, E is the set of edges, and P denotes the set of probabilities. In G,each edge $e\in E$ is associated with a probability $P_e\in P$

Let $G'=(V,E_G)$ be a possible world which is realized by sampling each edge in G according to the probability P_e clearly we have $E_G\in E$ the probability Pr[G'|G] of sampling this possible world is calculated as

$$P_r[G'|G] = \prod_{e \in E_G} P_e \prod_{e \in E \setminus E_G} (1 - P_e)$$

we make use of $G' \sqsubseteq G$ to indicate that G is a possible world of G' clearly there are a total of $2^{|E|}$ possible worlds in graph G because each edge provides a binary sampling decision. for convenience,we sue a notation G to denote a probabilistic graph, and utilize a notation G' to denote a possible world or a deterministic graph.

Definition

1. Structural Neighborhood

Given a deterministic graph $G=(V,E_G)$ the structural neighborhood of a vertex $u\in V$ denoted by N[u] is the closed neighborhood of u

 $the\ Structural\ neighborhood\ of\ a\ vertex\ includes\ itself$

2. Structural Similarity

Given a deterministic graph $G=(V,E_G)$ the structural similarity between vertices u and v,denoted by $\sigma(u,v)$ is defined as the number of common vertices in N[u] and N[v] normalized by $|N[u] \cup N[v]|$

$$\sigma(u,v) = rac{|N[u] \cap N[v]|}{|N[u] \cup N[v]|}$$

3. ϵ -Structural Similarity

Given any two neighbor vertices u,v, and a similarity threshold ϵ ,u is structural similar to v in a deterministic graph G if $\sigma(u,v) \geq \epsilon$ and $e=(u,v) \in E_G$

Problem Formulation

Definition

1. Probability of Structural Similarity

Given a similarity threshold $0<\epsilon\le 1$ the probability of structural similarity that $\sigma(e)\ge \epsilon$ is defined as the sum of the probabilities of all the possible worlds $G'\sqsubseteq G$ such that the structural similarity of e=(u,v) is no less than ϵ in each possible world G

$$Pr[e,\epsilon] = \sum_{G' \sqsubset G} Pr[G'|G] \cdot I(\sigma(e) \ge \epsilon)$$

where $I(\sigma(e) \ge \epsilon)$ is a indicator function which equals 1 if $\sigma(e) \ge \epsilon$ and 0 otherwise. If $e \notin E_G$ $I(\sigma(e) \ge \epsilon) = 0$

2. Reliable Structural Similarity

Given an edge e=(u,v) and a threshold η , u is called reliable structural similar to v if $Pr[e,\epsilon] \geq \eta$

3. (ϵ, η) -Reliable Neighborhood

Given a similarity threshold $0 < \epsilon \le 1$ and a probability threshold $0 < \eta \le 1$ the (ϵ, η) -reliable neighborhood of u is defined as the subset of vertices in N[u] such that $Pr[e = (u, v), \epsilon] \ge \eta$

A vertex is termed as a reliable core vertex if it has a sufficient number of reliable similar neighbors.

4. (ϵ, η, μ) -Reliable Core Vertex

Given a similarity threshold $0<\epsilon\leq 1$,a probability threshold $0<\eta\leq 1$,and an integer $\mu>2$ a vertex u is a (ϵ,η,μ) -reliable core vertex if $|N_{(\epsilon,\eta)}[u]|\geq \mu$

5. Reliable Structural reachable

Given parameters $0<\epsilon\leq 1$, $0<\eta\leq 1$ and $\mu\geq 2$ vertex v is a reliable structural reachable form vertex u if there is a sequence of vertices $v_1,v_2,\ldots,v_l\in V(l\geq 2)$ such that

- $\circ v_1 = u$ and $v_l = v$
- $\circ v_1, v_2, \ldots, v_{l-1}$ are reliable core vertices;
- $ullet v_{i+1} \in N_{\epsilon,\eta}(v_i)$ for $1 \leq i \leq l-1$

The Probabilistic Graph Clustering Problem Given a probabilistic graph G=(V,E,P) and parameters $0<\epsilon\le 1, 0<\eta\le 1$ and $\mu\ge 2$ the problem of probabilistic graph clustering is to compute the set $\mathbb C$ of reliable clusters in G,Each reliable cluster $C\in\mathbb C$ should have at least two vertices and satisfy:

- **Maximality** for each reliable core vertex $u \in C$, all vertices that are reliable structure-reachable from u must belong to C;
- Connectivity for any two vertices $v_1, v_2 \in C$ there existed a vertex $u \in C$ such that both v_1 and v_2 are reliable structure-reachable from u

6. Hub and Outlier

Given the set of $\mathbb C$ of reliable clusters in a probabilistic graph G,a vertex u that not in any reliable cluster in $\mathbb C$ is a hub vertex if it connects two or more reliable clusters,and it is an outlier vertex otherwise.

for each $e=(u,v)\in G$ the number of possible values of the structural similarity

between u and v over all the possible worlds can be bounded by $O(k_{join} \times k_{union})$, where $k_{join} = |\overline{N}[u] \cap \overline{N}[v]|$ and $k_{union} = |\overline{N}[u] \cup \overline{N}[v]|$

记 $N(u)=N[u]\setminus u$ 记 $N(v)=N[v]\setminus v$ 记 $NV[e]=N(u)\cup N(v)$ 将NV[e]中的项点按照项点ID进行排序。

对于一条边
$$e = (u, v)$$
, $\sigma(e) = \frac{m}{n}$

现在记
$$NV'[e] = \{u, v\} \ X(0, 2, 2) = P_e$$
,

现在按顺序在NV[e]中取第h个元素 $w_h=NV[e][h]$,将其加入到NV'[e]中,对于新加入的顶点,顶点u,v和该顶点分别存在连接 $e_1=(u,w_h)$ $e_2=(v,w_h)$

对于下面的三种情况

1. 边
$$e_1$$
, e_2 同时存在,则在这一步中, $m_{new}=m_{pre}+1$ $n_{new}=n_{pre}+1$ 概率 $X(h+1,m_{new},n_{new})=P_{e_1}P_{e_2}X(h,m_{pre},n_{pre})$

2. 边
$$e_1$$
, e_2 只有一条边存在,在该步中, $m_{new}=m_{pre}$, $n_{new}=n_{pre}+1$ $X(h+1,m_{new},n_{new})=(P_{e_1}(1-P_{e_2})+(1-P_{e_1})P_{e_2})X(h,m_{pre},n_{pre})$

3. 边
$$e_1$$
和 e_2 都不存在,在该步中, $m_{new}=m_{pre}$, $n_{new}=n_{pre}$

$$X(h+1,m_{new},n_{new})=(1-P_{e_1})(1-P_{e_2})X(h,m_{pre},n_{pre})$$
설素 는

$$egin{aligned} X(h+1,m_{new},n_{new}) &= P_{e_1}P_{e_2}X(h,m_{pre},n_{pre}) \ &+ (P_{e_1}(1-P_{e_2}) + (1-P_{e_1})P_{e_2})X(h,m_{pre},n_{pre}) \ &+ (1-P_{e_1})(1-P_{e_2})X(h,m_{pre},n_{pre}) \end{aligned}$$

伪代码如下:

Input: G=(V,E,P),an edge $e=(u,v)\in E$,and similarity threshold ϵ

Output: the probability $Pr(e,\epsilon)$ when the structural similarity of e is no less than ϵ

- 1. Initialize $X(h,m,n) \leftarrow 0$,for all $h \in [0,k_{union}]$, $m \in [0,k_{union}']$, and $n \in [0,k_{union}']$.
- 2. $Pr(e, \epsilon) \leftarrow 0$
- 3. $X(0,2,2) \leftarrow 1$
- 4. **for** h in $range(1, k_{union} 2)$:
- 5. $e_1 = (u, w_h), e_2 = (v, w_h)$
- 6. **for** n in $range(2, k'_{union} 2)$:
- 7. for $m \text{ in } range(2, min(n, k'_{join}))$:

$$X(h, m, n) = p_{e_1} p_{e_2} X(h - 1, m - 1, n - 1) + ((1 - p_{e_1}) p_{e_2} + p_{e_1} (1 - p_{e_2})) X(h - 1, m, n - 1) + (1 - p_{e_1}) (1 - p_{e_2}) X(h - 1, m, n)$$

- 8. for n in $range(2, k_{union})$:
- 9. **for** m in $range([n\epsilon]), min(n, k_{join})$:

10.
$$Pr(e,\epsilon) = Pr(e,\epsilon) + X(k_{union} - 2, m, n)$$

11. return $P_e * Pr(e, \epsilon)$

时间复杂度分析

对于一条边e计算 $P(e,\epsilon)$ 的时间复杂度是 $O(k_{union}^2 k_{join}) \; k_{union} \leq 2*d_{max}$

$$k_{join} \leq min\{d_u, d_v\}$$
,原式的上界为 $O(d_{max}^2 \times \sum_{(u,v) \in E} min\{d_u, d_v\}) = O(d_{max}^2 \times \alpha \times m)$

lpha denotes the arboricity of the graph G and m=|E|

空间复杂度

在计算时,需要使用一个二维矩阵存储值,空间复杂度为 $O(k_{union}k_{join})$

Optimization

- 1. Basic Pruning Rules
 - Pruning Improper Edges

For any edge
$$e=(u,v)\in E$$
 if $P_e<\eta$ we have $Pr[e,\epsilon]<\eta$

o Avoiding Duplicate Computation

For any edge
$$e=(u,v)\in E$$
 , $Pr[e=(u,v),\epsilon]=Pr[e=(v,u),\epsilon]$ always holds

2. Early Termination

在第h次的计算中,如果 $N[u]\cap N[v]$ 中的所有节点都被处理,如果此时小于 ϵ 则在处理非公共节点的时候,不会再大于 ϵ

Algorithm 3. Improved DP for Computing $Pr(e, \epsilon)$

```
1 if p_e < \eta then
      return; /* Property 1 pruning rule */
 3 Lines 1-3 in Algorithm 2;
 4 for h \leftarrow 1 to k_{union} - 2 do
      for m' \leftarrow 2 to \min\{h+2, k_{join}\} do
 5
         \tau \leftarrow \frac{m'}{2}:
 6
         for n' \leftarrow m' to \min\{h+2, k_{union}\} do
 7
            if h > k_{ioin} - 2 and n' \ge \tau then
              break; /* early termination */
 9
            X(h, m', n') \leftarrow p_{(w_h, u)} p_{(w_h, v)} X(h - 1, m' - 1, n' - 1) +
10
            ((1 - p_{(w_h,u)})p_{(w_h,v)} + p_{(w_h,u)}(1 - p_{(w_h,v)}))X(h - 1, m',
           (n'-1) + ((1-p_{(w_h,u)})(1-p_{(w_h,v)}))X(h-1,m',n')
11 Lines 8-11 in Algorithm 2;
```

3. Pruning by Lower and Upper Bounds

对于分母来说, $n \leq k_{union}$ 如果固定分母为 k_{union} 我们能够得到 $Pr[e,\epsilon]$ 的下界。

则在变量 X(h, m, n)中, n 不起作用,源公式可简化为

$$X(h,m) = P_{e_1}P_{e_2}X(h-1,m-1) + (((1-P_{e_1})P_{e_2} + P_{e_1}(1-P_{e_2})) + (1-P_{e_1})(1-P_{e_2}))X(h-1,m)$$

对于分子来说, $m \leq k_{join}$ 固定分子为 k_{join} ,可以得到 $Pr[e,\epsilon]$ 的上界

在变量X(h, m, n)的计算中,m不起作用,原公式可以简化为

$$X(h,n) = (P_{e_1}P_{e_2} + P_{e_1}(1 - P_{e_2}) + P_{e_2}(1 - P_{e_1}))X(h - 1, n - 1) + (1 - P_{e_1})(1 - P_{e_2})X(h - 1, n)$$
 一个约束更强的上界

将 $V = (N[u] \cup N[v]) \setminus (N[u] \cap N[v])$ 中的节点去除,不参与 $Pr[e, \epsilon]$ 的计算。

因为将V中的节点加入到集合中,会增加分母,减小数值。

实验结果

1. Clustering Precision with Varying Parameters

2. Average Expected Density of Different Algorithms.

$$AED = rac{1}{n'} imes \sum_{i=1}^{n'} \sum_{e_j \in E_i} p(e_j) imes / (|V_i| imes (|V_i| - 1))$$

n'是聚类的个数

 E_i 是第i 个类的边的个数

 V_i 是第i 个类的点的个数

3. Expected Modularity of Various Algorithms

$$\overline{Q} = rac{1}{N} imes \sum_{G' \in G} Q_{G'}$$

G' 是概率图G 的一种可能,N 是G中可能的个数

$Q_{G^{\prime}}$ 是modularity of G

4. Sensitive Analysis

(b) Modularity

5. Statistics of the Reliable Structural Clustering.

运行时间

可扩展性

(c) DBLPAII (vary |V|)

(b) Youtube (vary |E|)

(d) DBLPAII (vary |E|)