ING. INFORMATICA

BASI DI DATI

PROGETTO: 2021/22

SPECIFICHE DI PROGETTO

RICCARDO SPAGNOLETTI

L'obiettivo è realizzare un database volto ad acquisire e gestire dati relativi ad un progetto di costruzione/ristrutturazione che coinvolge un determinato edificio. Il tutto arricchito dall'inserimento di alcune funzionalità di data analytics che favoriscono un monitoraggio dinamico degli edifici memorizzati.

Di seguito è rappresentato un indice caratterizzato dalle varie fasi di progettazione, svolto tramite strategia bottom-up

Indice

1) GLOSSARIO 3	3
1.1) AREA TERRITORIO	3
1.2) AREA STRUTTURA	4
1.3) AREA SENSORI	5
1.4) AREA LAVORO6	õ
1.5) AREA MATERIALI	7
2) RISTRUTTURAZIONE 8	
2.1) ELIMINAZIONE GENERALIZZAZIONI	8
2.1.1) SEZIONE LAVORATORI	8
2.1.2) SEZIONE MISURA	.8
2.1.3) SEZIONE MATERIALI	.9
2.2) ANALISI RIDONDANZE	.9
2.3) ELIMINAZIONE ATTRIBUTI COMPOSTI	.9
3) ANALISI DELLE PRESTAZIONI DEL DATABASE	10
3.1) TAVOLA DEI VOLUMI	
4) OPERAZIONI E RIDONDANZE	14
4.1) COSTO PROGETTO	14
4.2) CRITICITA'	16
4.3) MANODOPERA	18
4.4) MPUEDIFICIO	19
4.5) DATACALAMITA'	. 20
4.6) INFOEDIFICIO	21
4.7) INSERIMENTOMISURAZIONE	. 22
4.8) INSERIMENTOTURNO	23
5) PROGETTAZIONE LOGICA	24
5.1) VINCOLI DI TUPLA	26
5.2) VINCOLI DI INTEGRITA' REFERNZIALI	28
5.3) VINCOLI GENERICI	30
6) NORMALIZZAZIONE	31
7) DATA ANALYTICS	32

1) GLOSSARIO

Di seguito vi è sintetizzata tutta la struttura generale del Diagramma basato sull'individuazione di una precisa entità, gli attributi e le relazioni ad essa connesse e da un breve descrizione.

1.1) AREA TERRITORIO

TERMINE	ATTRIBUTI	RELAZIONI	DESCRIZIONE
Area	<u>CodArea</u>	Appartenenza, Pericolo, Registro	Sezione geografica che può essere o meno occupata da un edificio
Rischio	Data, Tipo, Area.CodArea, Coeff_Rischio	Pericolo	Rischi di diverso tipo che varia o per eventi naturali o in generale per cambiamenti morfologici del territorio
Calamità	Data, Tipo, Area.CodArea, (Coordinate: Latitudine, Longitudine,) Intensità	Registro	Eventi naturali (ex: frane, eventi sismici, alluvioni) differenziati l'uno dall'altro per tipo, data in cui avvengono e luogo poi descritti tramite l'intensità.

1.2) AREA STRUTTURA

TERMINE	ATTRIBUTI	RELAZIONI	DESCRIZIONE
Edificio	CodEdificio, CodArea, Latitudine, Longitudine	Appartenenza, Progettazione, Topologia	Struttura a cui è associata una collocazione geografica ed a cui è possibile se c'è, recuperare un progetto su di essa effettuato o in corso.
Piano	Numero CodEdificio	Topologia, Composto	Ogni edificio è strutturato su un certo numero di piani maggiore o uguale ad 1
Vano	CodVano, CodEdificio, Numero Larghezza, Hmax, Lunghezza, Impiego	LavoroVano, Collocazione, Struttura	Ogni piano viene scomposto in più sezioni identificate come vani
Muro	CodMuro, xi, yi, xf, yf	LavoroMuro, Apertura, Struttura	La struttura di ogni vano viene identificata in due dimensioni e descritta nella sua struttura generale dalle mura
PuntoAperto	PuntoMedio: (Px,Py), CodMuro Orientazione, Tipo	Apertura	Ogni muro può avere uno o più punti aperti che variano per posizione tipo e orientazione rispetto ad un certo punto cardinale

1.3) AREA SENSORI

TERMINE	ATTRIBUTI	RELAZIONI	DESCRIZIONE
Sensore	CodSensore, Tipo, Soglia, Posizione: (x, y, z)	LetturaDati, Collocazione	Se un dato vano è provvisto di uno o più sensori questi risultano essere un mezzo di valutazione strutturale nel tempo
Misura	Timestamp, CodSensore	Superamento, LetturaDati	Quel valore che permette di associare ad un preciso sensore delle misurazioni necessarie ai fini di controlli periodici
1D	Timestamp, CodSensore, Valore		Misurazione scalare
2D	Timestamp, CodSensore, x, y		Misurazione e a due dimensioni
3D	Timestamp, CodSensore, x, y, z		Misurazione a tre dimensioni
Alert	Timestamp, CodSensore	Superamento	Tra le misurazioni sono presenti valori che superando una determinata soglia, creano alert

1.4) AREA LAVORO

TERMINE	ATTRIBUTI	RELAZIONI	DESCRIZIONE
Progetto	CodProgetto	Progettazione, GestioneProgetto, Fase	Individua in relazione all'edificio i progetti su di esso in esecuzione o terminati
Responsabile	CodFiscale Nome, Cognome, Compenso	GestioneProgetto	Figura chiave, che valuta ed è incaricata della sicurezza, dei materiali e della gestione economica di un progetto
StadioAvanzamento	CostStadio, DataInizio, StimaFine	Fase, InisemeLavori	Prima suddivisione del progetto in macro sezioni associate ad una valutazione temporale
Lavoro	CodLavoro, DataInizio, DataFine, OggettoLavoro	InsiemeLavori, Suddivisione, Direzione, Acquisto, LavoroMuro LavoroVano	Seconda suddivisione del progetto rivolta all'organizzazione della manodopera e dei materiali utilizzati
CapoCantiere	CodFiscale, MaxOperai, Nome, Cognome, PagaH	Direzione	Figura responsabile dell'andamento dei lavori e del coordinamento della manodopera
Turno	Data, OraTot, CodFiscale, Mansione	Suddivisione, Manodopera	Suddivisione di ogni lavoro in base a singole mansioni svolte in un certo intervallo temporale da 1 o più operai in precisi giorni

Operaio	CodFiscale,	Manodopera	Figura alla base della
	Nome,		manodopera, rivolta
	Cognome,		allo svolgimento delle
	PagaH,		mansioni

1.5) AREA MATERIALI

TERMINE	ATTRIBUTI	RELAZIONI	DESCRIZIONE
Materiale	CodLotto, CostoUnita	Acquisto	Elemento alla base del lavoro descritto per costo e identificatore
Mattone	CodLotto, Composizione Alveolatura Dimensione: x, y, z		Elemento rivolto alla costruzione strutturale di un edificio
Piastrella	CodLotto, Tipo, Lati, Disegno, DimensioneLato, Dimensione: x, y, z		Elemento alla base del processo di pavimentazione di una superficie
Intonaco	<u>CodLotto</u> , Tipo		Elemento con funzionalità strutturale o estetico
Pietra	CodLotto, Tipo, Dimensione: x , y, z		Elemento con funzionalità maggiormente estetico
MaterialeNR	CodLotto, Info, Dimensione: x,y,z		Elemento per cui non è prevista una rappresentazione di base (NR = Non Registrato) ma che risulta comunque

	essere impiegato in
	uno o più lavori

2) RISTRUTTURAZIONE

Individuo la fase di ristrutturazione rispetto l'eliminazione di generalizzazioni e attributi composti , associata ad una breve analisi ed eventuale rimozioni di ridondanze

2.1) ELIMINAZIONE GENERALIZZAZIONI

Le generalizzazioni presenti, pre-ristrutturazione, sono tre:

SEZIONE LAVORATORI

Entità Genitore → Lavoratore

Entità Figlie → CapoCantiere, Operaio

- SEZIONE MISURA

Entità Genitore → Misura

Entità Figlie → 1D, 2D, 3D

- SEZIONE MATERIALI

Entità Genitore → Materiale

Entità Figlie \rightarrow Mattone, Piastrella, Intonaco, Pietra, MaterialeNR

SEZIONE LAVORATORI

In tale sezione le occorrenze di **Lavoratore** prendono tutte parte ad una delle due entità figlie, interessate a loro volta da relazioni e collegate ad entità con finalità differenti. Si procede dunque con una generalizzazione totale con l'eliminazione di **Lavoratore** e, per ereditarietà, il passaggio dei suoi attributi alle entità figlie.

SEZIONE MISURA

In tale sezione le tre entità figlie di **Misura** non sono coinvolte in nessuna relazione, la loro è una pura funzione di registrazione e smistamento delle misurazioni in base alla necessità di rappresentazione ad una, due o tre coordinate. Si Procede quindi con l'accorpamento delle

entità figlie nell'entità genitore, e dunque sia con l'eliminazione delle entità figlie che l'accorpamento da parte dell'entità genitore degli attributi.

SEZIONE MATERIALI

In tale sezione la generalizzazione **Materiali**, nonostante le entità figlie non sono coinvolte in nessuna relazione si procede con una sostituzione della generalizzazione tramite l'utilizzo di associazioni e di identificatori esterni per individuare le occorrenze delle entità figlie mediante l'entità genitore. Nonostante questo si traduce in un maggior numero di accessi rispetto ad una ristrutturazione avvenuta con la **sezione lavoratori**, il problema viene parzialmente omesso dalla rara necessità di effettuare operazioni che richiedano l'acquisizione di informazioni aggiuntive riguardo al singolo materiale. Questo perché La maggior parte delle operazioni si fermano all'analisi di **CodLotto** e **CostoUnità**.

2.2) ANALISI RIDONDANZE

Considerando solo le ridondanze del DataBase in termini di registrazione (e non analisi/calcolo) dei dati l'unica entità ridondante risulterebbe **Alert**. Lo scopo di tale entità risulta però rispondere ad una necessità tra i requisiti del DataBase ossia la capacità di conservare indipendentemente da una qualsiasi cancellazione o reset, le occorrenze di **Misura**, permettendo l'accesso non a tutte le informazioni di tale entità, ma solo quelle che hanno superato una determinata soglia e che altrimenti verrebbero periodicamente cancellate.

2.3) ELIMINAZIONE ATTRIBUTI COMPOSTI

Le entità che presentano attributi composti sono:

Entità	Attributi Composti
Calamità	Coordinate
Sensore	Posizione
PuntoAperto	PuntoMedio
Mattone	Dimensione
Piastrella	Dimensione
Pietra	Dimensione
MaterialeNR	Dimensione

Si procede con l'eliminazione degli attributi composti e il conseguente accorpamento degli attributi caratterizzanti all'entità di riferimento.

3) ANALISI DELLE PRESTAZIONI DEL DATABASE

Si procede con la rappresentazione del volume di dati contenuto dal DataBase, come risultato di stime e/o ipotesi considerando l'impiego finale del database

3.1) TAVOLA DEI VOLUMI

NOME	TIPO	VOLUME	MOTIVAZIONE
Area	E	5	Ipotesi
Pericolo	R	15	Cardinalità (1,1) con
			Rischio
Rischio	E	15	Considero una media
			di 3 rischi per area
Registro	R	25	Media di 5 calamità
			per area
Calamità	E	25	Ipotesi
Appartenenza	R	25	Cardinalità (1,1) con
			Edificio
Edificio	E	25	Ipotesi
Topologia	R	150	Cardinalità (1,1) con
			Piano
Piano	E	150	Considero un media
			di 6 piani per singolo
			edificio
Composto	R	1500	Cardinalità (1,1) con
			Vano
Vano	E	1500	Considero una media
			di 10 vani per singolo
			piano
Struttura	R	1200	Considero che circa il
			20% dei muri
			compongono quella
			che è la struttura

			generale esterna senza essere impegnati in una condivisione
Muro	E	6000	Avendo distinto ogni muro di un vano anche se in condivisione con un altro vano considero una media di 4 muri per vano
Apertura	R	3000	Cardinalità (1,1) con PuntoAperto
PuntoAperto	E	3000	Considero una media di 50% dei muri abbia una porta o una finestra
Collocazione	R	6000	Cardinalità (1,1)con Sensore
Sensore	E	6000	Considero una circa di 4 sensori per vano
LetturaDati	R	604800	Cardinalità (1,1) con Misura
Misura	E	604800	Considero una mole di dati pari alle misurazioni degli ultimi 7 giorni considerando che ogni sensore esegua una media di una misurazione per secondo
Superamento	R	6048	Cardinalità (1,1) con Alert
Alert	E	6048	Considero che fra le misurazioni effettuate circa lo 1% risulta aver superato la soglia
Progettazione	R	50	Cardinalità (1,1) con Progetto

Progetto	E	50	Considero una media di 2 progetti per
			singolo edificio
GestioneProgetto	R	50	Cardinalità (1,1) con Progetto
Responsabile	Е	10	Ipotesi
Fase	R	250	Cardinalità (1,1) con
- use		250	Stadio Avanzamento
StadioAvanzamento	Е	250	Considero una media
Jeaglo Avanzamento	_	250	di 5 stadi di
			avanzamento per
			singolo progetto
InsiemeLavori	R	2000	<u> </u>
IIISIEIIIELAVOIT	IX.	2000	Cardinalità (1,1) con Lavoro
Lavoro	E	2000	Considero una media
Lavoro	-	2000	
			di 8 lavori per stadio
	•	4.400	di avanzamento
LavoroMuro	R	1400	Considero il 70 % dei
	_		lavori totali
LavoroVano	R	600	Considero il 30 % dei lavori totali
Direzione	R	4000	Considerando la possibile media di 2
			capocantieri per
ConcContions	E	80	lavoro
CapoCantiere			Ipotesi (1.1) and
Suddivisione	R	16000	Cardinalità (1,1) con Turno
Turno	E	16000	Considero 8 turni per
			completare un lavoro
Manodopera	R	32000	Considero una media
			di 2 operai per turno
Operaio	E	220	lpotesi
Acquisto	R	8000	Considero l'utilizzo di
-			almeno 4 acquisti per
			singolo lavoro
Materiale	E	150	Ipotesi
DescMattone	R	20	Cardinalità (1,1) con
			Mattone
Mattone	E	20	Ipotesi

DescPiastrella	R	30	Cardinalità (1,1) con
			Piastrella
Piastrella	E	30	Ipotesi
DescIntonaco	R	50	Cardinalità (1,1) con
			Intonaco
Intonaco	E	50	Ipotesi
DescPietra	R	40	Cardinalità (1,1) con
			Pietra
Pietra	E	40	Ipotesi
DescMaterialeNR	R	10	Cardinalità (1,1) con
			Materiale NR
MaterialeNR	E	10	Ipotesi

4) OPERAZIONI E RIDONDANZE

Con l'obbiettivo di facilitare, in termini di accessi necessari, l'accesso ad alcune informazioni ho individuato un inserimento di 2 ridondanze **CostoProgetto** e **Criticità**

4.1) CostoProgetto

4.1.1) CostoProgetto Op.

L'obbiettivo ti tale operazione è permettere di acquisire quelli che sono i costi di un singolo progetto a partire dall'espressione del CodProgetto come dato d'ingresso

Nome	Accessi	Tipo	Motivo
Fase	5	L	Considero media di 5 stadi per lavoro
InsiemeLavori	40	L	Considero una media di 8 lavori per stadio
Acquisto	160	L	Ho una media di 4 acquisti per lavoro
Materiale	80	L	Considero una materiale diverso ogni 2 acquisti
Suddivisione	320	L	Ho una media di 8 turni per lavoro
Turno	320	L	Ricavo CodFiscale e ore di lavoro
Operaio	40	L	Ricavo la paga oraria degli operai considerando 2 operai diversi ogni 8 turni
Direzione	80	L	Considero una media di 2 capi per lavoro
Capocantiere	20	L	Considero un capo diverso ogni 4 lavori

Mediante la tabella dei volumi è ricavabile che di base operiamo con :

Nome	e Ti	ipo \	Vol	ume

Progetto	E	50
GestioneProgetto	R	50
Responsabile	E	10
Fase	R	250
StadioAvanzamento	E	250
InsiemeLavori	R	2000
Lavoro	E	2000
LavoroMuro	R	1400
LavoroVano	R	600
Direzione	R	4800
CapoCantiere	E	80
Suddivisione	R	16000
Turno	E	16000
Manodopera	R	32000
Operaio	E	220
Acquisto	R	8000
Materiale	E	150

4.1.2) CostoProgetto Ridondanza

Considero una frequenza di calcolo di 500 volte l'anno con un inserimento medio annuo di 320 nuovi lavori.

Nome	Accessi	Tipo	Motivo
Progetto	500	L	Le volte che effettuo l'accesso al costo del progetto
Progetto	320	L	Le volte che devo leggere prima di sovrascrivere l'attributo
Progetto	320	R	Le volte che sevo scrivere per aggiornare l'attributo
InsiemeLavori	320	L	Per ogni lavoro devo ricavare lo stadio di appartenenza
Fase	320	L	Per ogni lavoro devo ricavare il progetto a cui è associato

Acquisto	1280	L	Considero una media di 4 acquistì per
			lavoro
Materiale	640	L	Considero una
			materiale diverso ogni
			2 acquisti
Suddivisione	2560	L	Ho una media di 8
			turni per lavoro
Turno	2560	L	Ricavo CodFiscale e
			ore di lavoro
Operaio	320	L	Ricavo la paga oraria
			degli operai
			considerando 2 operai
			diversi ogni 8 turni
Direzione	640	L	Considero una media
			di 2 capi per lavoro
Capocantiere	160	L	Considero un capo
			diverso ogni 4 lavori

In tal modo l'operazione si semplifica in un'unica operazione di lettura su Progetto, e risulta una ridondanza utile in termini di costo poiché :

Senza ridondanza	Con Ridondanza
532500	10260

4.2) Criticità

4.2.1) Criticità Op.

L'operazione ha come obbiettivo quello di Considerare una valutazione generale dell'edificio mediante il calcolo delle situazioni di alert che sono state registrate sotto forma di misurazioni

Nome	Accessi	Tipo	Motivo
Alert	6048	L	Leggo tutte le tuple e ricavo il Timestamp e
			il CodSensore
Collocazione	3028	L	Individuo una media di
			4 Alert per sensore,
			quindi 1512 sensori
Composto	756	L	Considero che
			ognuno come media

che per un preciso
vano ci sono 2 dei
sensori che hanno
generato Alert risalgo
all'edificio di
appartenenza

Nome	Tipo	Volume
Edificio	E	25
Topologia	R	150
Piano	E	150
Composto	R	1500
Vano	E	1500
Collocazione	R	6000
Sensore	E	6000
LetturaDati	R	604800
Misura	E	604800
Superamento	R	6048
Alert	E	6048

Considero una frequenza annua pari a 100 volte alla settimana e un'aggiunta settimanale di 604800 misurazioni, considerando lo 0.01 delle misurazioni generano alert, di 6048 alert.

Nome	Accessi	Tipo	Motivo
Edificio	100	L	Frequenza di calcolo
Edificio	6048	L	Bisogna leggere prima di sovrascrivere
Edificio	6048	R	Bisogna aggiornare l'attributo
Alert	6048	L	Ricavo il Timestamp e il CodSensore
Collocazione	6048	L	Ricavo il CodVano di riferimento
Composto	6048	L	Ottengo l'edificio di cui bisogna aggiornare l'attributo ridondante

In tal modo l'operazione si semplifica in un'unica operazione di lettura su Edificio, e risulta una ridondanza utile in termini di costo poiché:

Senza ridondanza	Con Ridondanza
443200	36388

4.3) Manodopera

Alle volte in un'azienda risulta sapere la mole di risorse in termini si manodopera impiegate in attività rispetto ad una precisa data con una frequenza annua di 730

Nome	Accessi	Tipo	Motivo
Turno	16	L	Considero una media di 16 possibili turni in una data
Operaio	32	L	Considerando una media di 2 operai per turno e considerandoli sempre diversi
Suddivisione	16	L	Per ottenere il CodLavoro
Direzione	32	L	Considero una media di 2 capocantieri per singolo lavoro e che ogni turno faccia riferimento ad un lavoro diverso
Capocantiere	32	L	Considerando il caso in cui ogni capocantiere in direzione sia differente

Nome	Tipo	Volume
Direzione	R	4000
CapoCantiere	E	80

Suddivisione	R	16000
Turno	E	16000
Manodopera	R	32000
Operaio	E	220

Accessi Totali	
71540	

4.4) MPUEdificio è basato sulla necessità di comprendere quelli che sono i materiali più utilizzati negli edifici valutandone anche l'aspetto economico dunque restituisco il materiale più acquistato e il relativo costo con frequenza annua di 320

Nome	Accessi	Tipo	Motivo
Progettazione	2	L	Considero 2 progetti
			per edificio
Fase	10	L	Considero una media
			di 5 stadi per progetto
InsiemeLavori	80	L	Considero una media
			di 8 lavori per stadio
Acquisto	320	L	Considero una media
			di 4 acquisti per
			lavoro

Nome	Tipo	Volume
Edificio	E	25
Progettazione	R	50
Progetto	E	50
Fase	R	250
StadioAvanzamento	E	250
InsiemeLavori	R	2000
Lavoro	E	2000
Acquisto	R	8000
Materiale	E	150

Accessi Totali	
131840	

4.5) DataCalamità risulta essere un'operazione vitale quando viene a verificarsi una calamità. Risulta in questi casi indispensabile capire chi potrebbe risultare coinvolto dall'evento per poi adoperarsi di conseguenza. Considero una frequenza annua di 500

Nome	Accessi	Tipo	Motivo
Registro	3	L	Considero che una calamità possa influenzare al più 3 aree
Apparteneza	9	L	Considero una media di 3 edifici per area
Progettazione	16	L	Considero 2 progetti per edificio
Fase	32	L	Considero una media di 5 stadi per progetto
InsiemeLavori	16	L	Considero una media di 8 lavori per stadio
Suddivisione	4	L	Considero una media di 4 lavori in esecuzione in una certa data
Direzione	8	L	Considero una media di 2 capocantieri per singolo lavoro

Nome	Tipo	Volume
Edificio	E	25
Topologia	R	150
Piano	E	150
Composto	R	1500
Vano	E	1500
Collocazione	R	6000
Sensore	E	6000
LetturaDati	R	604800
Misura	E	604800
Superamento	R	6048
Alert	E	6048

Accessi Totali		
	36000	

4.6) InfoEdificio risulta rispondere ad una domanda basilare nel mondo dell'edilizia. Parliamo di un'operazione necessaria per l'acquisizione immediata di informazioni su un dato edificio ed effettuata con una frequenza annua di 630

Nome	Accessi	Tipo	Motivo
Piano	6	L	Considero una media di 6 piani per edificio
Composto	60	L	Considero una media di 10 vani per piano
Vano	60	L	Devo accedere per calcolare l'area del vano

Nome	Tipo	Volume
Edificio	E	25
Topologia	R	150
Piano	E	150
Composto	R	1500
Vano	E	1500

Accessi Totali	
	79380

4.7) Inserimento Misurazione è un'operazione che mi da la possibilità all'inserimento di una misurazione di smistamento, ossia di valutazione rispetto alla soglia del sensore se sia necessario l'inserimento anche nella tabella alert, questo avverrà con frequenza settimanale pari a 6048

Nome	Accessi	Tipo	Motivo
Misura	1	R	Inserimento nuova Misurazione
LetturaDati	1	R	Inserimento di una nuova tupla che metta in relazione la nuova misura e il sensore di riferimento
Sensore	1	L	Valutazione della soglia sensore rispetto alla nuova misurazione
Superamento	1	R	Inserimento di una nuova tupla che metta in relazione la nuova misura e lo stato di alert
Alert	1	R	Registrazione della nuova misurazione catalogata come alert

Nome	Tipo	Volume
Sensore	Е	6000
LetturaDati	R	604800
Misura	E	604800
Superamento	R	6048
Alert	E	6048

Accessi Totali	
	30240

4.8) Inserimento Turno è un'operazione che al momento dell'inserimento mi permette fin da subito di valutare aspetti come il numero massimo di operai che possono lavorare contemporaneamente o casi in cui l'operaio sia già occupato per tutte le ore che costituiscono un turno, questo avverrà generalmente con base annua di frequenza pari a 1000

Nome	Accessi	Tipo	Motivo
Turno	16	L	Leggo tutti i turni
			dell'operaio ed
			eventuali altri operai
			che operano rispetto
			allo stesso lavoro
			nello stesso giorno
			(media 16)
Suddivisione	16	L	Ricavo II CodLavoro
			di Riferimento
Direzione	2	L	Individuo i
			capocantieri di
			riferimento
CapoCantiere	2	L	Confronto il numero
			di operai attualmente
			a lavoro con
			MaxOperai del/dei
			Capocantieri
Turno	1	R	Scrivo la nuova Tupla

Nome	Tipo	Volume
Lavoro	E	2000
Direzione	R	4800
CapoCantiere	E	80
Suddivisione	R	16000
Turno	E	16000

Accessi Totali		
	37000	

5) PROGETTAZIONE LOGICA

Si raggiunge la prossima fase di progetto mediante traduzione in schema logico, il risultato che otteniamo corrisponde a :

Nome	Caratteristiche
Area	<u>CodArea</u>
Rischio	CodArea, Data ,Tipo, CoeffRischio
Calamita	Data, Tipo, Latitudine, Longitudine,
	Intensita,CodArea

Nome	Caratteristiche
Edificio	CodEdificio, Latitudine, Longitudine, CodArea,
	Criticita
Piano	Numero, CodEdificio
Vano	CodVano, Numero, CodEdificio, Lunghezza,
	Larghezza, Hmax, Impiego
Muro	CodMuro, xi, yi, xf, yf, CodVano1, CodVano2
PuntoAperto	CodMuro, Px, Py, Lunghezza, Altezza, Tipo,
	Orientazione

Caratteristiche

Sensore	CodSensore, CodVano, Tipo, Soglia, x, y, z
Misura	Timestamp, CodSensore, x, y, z
Alert	Timestamp, CodSensore

Nome	Caratteristiche
Responsabile	CodiceFiscale, Nome, Cognome, Compenso
Progetto	<u>CodProgetto</u> , CostoProgetto, CodEdificio , CodFiscale
StadioAvanzamento	<u>CodStadio</u> , CodProgetto, DataInizio, DataFineStimata
Lavoro	<u>CodLavoro</u> , CodStadio, DataInizio, DataFine, OggettoLavoro, CodMuro, CodVano

Nome	Caratteristiche
CapoCantiere	CodiceFiscale, Nome, Cognome, MaxOperai, PagaH
Turno	<u>Data</u> , <u>OraTot</u> , <u>CodFiscale</u> , CodLavoro, Mansione
Operaio	CodiceFiscale, Nome, Cognome, PagaH

Nome	Caratteristiche
Acquisto	CodLotto, CodLavoro, Fornitore,
	DataAcquisto, Quantita
Materiale	CodLotto, CostoUnita
MaterialeGenerico	CodLotto, Info, x, y, z
Intonaco	CodLotto, Tipo
Mattone	CodLotto, Alveolatura, Composizione, x, y, z
Pietra	CodLotto, Tipo, x, y, z
Piastrella	CodLotto, Tipo, Disegno, x,y,z, Lati

5.1) VINCOLI

5.1.1) Vincoli di Tupla

Nome	Caratteristiche
Area	<u>CodArea</u> : NOT NULL
Rischio	CodArea, Data ,Tipo : NOT NULL
	CoeffRischio : >= 0
Calamita	Data, Tipo, Latitudine, Longitudine, CodArea:
	NOT NULL
	Intensita: > 0

Nome	Caratteristiche
Edificio	CodEdificio, , Latitudine, Longitudine, CodArea
	: NOT NULL
	Criticita >= 0
Piano	Numero, CodEdificio: NOT NULL
Vano	CodVano, Impiego, Numero, CodEdificio: NOT
	NULL
	Lunghezza > 0
	Larghezza > 0
	Hmax > 0
Muro	CodMuro, xi, yi, xf, yf, CodVano1: NOT NULL
	CodVano2 > 0
PuntoAperto	CodMuro, Px, Py, Tipo, Orientazione : NOT
	NULL
	Lunghezza > 0
	Altezza > 0

Nome	Caratteristiche
Sensore	<u>CodSensore</u> , CodVano, Tipo, x, y, z : NOT NULL
	Soglia >= 0;
Misura	Timestamp, CodSensore, x : NOT NULL

Alert Timestamp, CodSensore: NOT NULL	
---------------------------------------	--

Nome	Caratteristiche
Responsabile	CodiceFiscale, Nome, Cognome : NOT NULL
	Compenso > 0
Progetto	<u>CodProgetto</u> , CodEdificio , CodFiscale : NOT NULL
	CostoProgetto >= 0
StadioAvanzamento	CodStadio, CodProgetto, DataInizio, DataFineStimata : NOT NULL
Lavoro	<u>CodLavoro</u> , CodStadio, DataInizio, OggettoLavoro, CodVano : NOT NULL

Nome	Caratteristiche
CapoCantiere	CodiceFiscale, Nome, Cognome : NOT NULL MaxOperai > 0
	PagaH > 0
Turno	<u>Data</u> , <u>CodFiscale</u> , CodLavoro, Mansione : NOT NULL
	OraTot > 0
	CodLavoro > 0
Operaio	CodiceFiscale, Nome, Cognome : NOT NULL
	PagaH > 0

Nome	Caratteristiche
Acquisto	<u>CodLotto</u> , <u>CodLavoro</u> , Fornitore, DataAcquisto : NOT NULL
	Quantita > 0
Materiale	CodLotto: NOT NULL
	CostoUnita > 0

MaterialeGenerico	CodLotto, Info : NOT NULL
Intonaco	CodLotto, Tipo : NOT NULL
Mattone	<u>CodLotto</u> , Alveolatura, Composizione : NOT NULL
	x > 0
	y > 0
	z > 0
Pietra	CodLotto, Tipo: NOT NULL
	x > 0
	y > 0
	z > 0
Piastrella	CodLotto, Tipo, Disegno: NOT NULL
	x > 0
	y > 0
	z > 0
	Lati > 3

5.1.2) Vincoli di integrità referenziale

Nome	Caratteristiche
Rischio	CodArea = Area(CodArea)
Calamita	CodArea = Area(CodArea)

Nome	Caratteristiche
Edificio	CodArea = Area(CodArea
Piano	CodEdificio = Edificio(CodEdificio)
Vano	Numero = Piano(Numero)
	CodEdificio = Edificio(CodEdificio)
Muro	CodVano1 = Vano(CodVano1)
	CodVano2 = Vano(CodVano2)
PuntoAperto	CodMuro = Muro(CodMuro)
<u> </u>	

Nome Caratteristiche

Sensore	CodVano = Vano(CodVano)
Misura	CodSensore = Sensore(CodSensore)
Alert	Timestamp = Misura(Timestamp)
	CodSensore = Sensore(CodSensore)

Nome	Caratteristiche	
Progetto	CodEdificio = Edificio(CodEdificio)	
	CodFiscale = Responsabile(CodFiscale)	
StadioAvanzamento	CodProgetto = Progetto(CodProgetto)	
Lavoro	CodStadio = StadioAvanzamento(CodStadio)	
	CodMuro = Muro(CodMuro)	
	CodVano = Vano(CodVano)	

Nome	Caratteristicne		
Turno	CodFiscale = Operaio(CodFiscale)		
	CodLavoro = Lavoro(CodLavoro)		

Nome	Caratteristiche	
Acquisto	CodLotto = Materiale(CodLotto)	
	CodLavoro = Lavoro(CodLavoro)	
MaterialeGenerico	CodLotto = Materiale(CodLotto)	
Intonaco	CodLotto = Materiale(CodLotto)	
Mattone	CodLotto = Materiale(CodLotto)	
Pietra	CodLotto = Materiale(CodLotto)	
Piastrella	CodLotto = Materiale(CodLotto)	

5.1.3) Vincoli di integrità generici

- 1) Un muro deve avere una lunghezza e altezza > 0.
- 2) Gli attributi Px e Py di PuntoApero, che rappresentano un punto medio non possono rappresentare un punto esterno alla superficie del muro considerato.
- 3) Un punto aperto non può avere dimensioni tali da fuoriuscire dalla superficie del muro ad esso associato.
- 4) Il numero totale di operai che lavorano contemporaneamente rispetto alla stessa data e stesso CodLavoro non possono superare l'attributo Maxoperaio dell'entità capocantiere
- 5) Gli operai non possono prendere parte a più lavori contemporaneamente o superare la durata totale del turno di 6 ore.
- 6) Se un lavoro è diretto da più capocantieri il massimo numero di operai che possono lavorare contemporaneamente risulta essere la somma degli attributi di MaxOperaio dei due capocantieri, non si considera una precisa distribuzione degli operai rispetto il singolo capocantiere.
- 7) Ogni sensore non può assumere un valore di posizione z nell'entità sensore maggiore al muro ad esso correlato.
- 8) Non è possibile rappresentare l'idea dello stesso lavoro su più vani ma solo specificare il vano soggetto al lavoro ed eventualmente il muro interessato se il lavoro non interessa soffitto o pavimento.

6) Dipendenza Funzionali e Normalizzazione

Per la costruzione del database è possibile individuare alcune dipendenze funzionali su cui soffermarsi:

Nel caso di Edificio ho che:

CodEdificio implica l'intera tupla, esso è chiave primaria

CodEdifico → La tupla

Latitudine e Longitudine risultano essere un'altra chiave di edificio esse infatti possono individuare la posizione in tale coordinate di un unico edificio

Latitudine, Longitudine → CodEdificio, Area

Risultando gli implicanti superchiavi l'edificio è in BCNF

Nel caso di Muro ho che:

CodMuro implica l'intera tupla, esso è chiave primaria

CodMuro → La tupla

E che

xi,yi,xf,yf Codvano1 \rightarrow CodMuro, CodVano2

Difatti xi,yi,xf,yf Codvano1 risultano essere chiave di Muro, poiché per definizione valutando un vano ad esso confinante vi può essere un unico muro in quella specifica posizione

Risultando per tali valutazioni gli implicanti come chiavi, muro è in BCNF

Nel caso di Sensore ho che:

CodSensore implica l'intera tupla, esso è chiave primaria

CodSensore → La tupla

E che

CodVano, Tipo, x, y, $z \rightarrow$ CodSensore, Soglia

Questo avviene perché in un certo vano, se considero una posizione specifica, lì può essere collocato uno e un solo sensore, in tal caso l'implicante è superchiave di sensore

Risultando in tali dipendenze gli impplicanti sono cuperchiavi, Sensore risulta essere in BCNF.

7) Data Analytics

Ogni edificio è continuamente soggetto a logoramento più o meno rapido ed eventuali eventi naturali possono far variare in maniera non prevedibile tale andamento. In realtà un evento naturale non ha solo un effetto diretto nell'immediato in considerazione della struttura stessa dell'edificio, ma anche uno passivo modificando anche sostanzialmente l'area di appartenenza dell'edificio stesso come dopo più o meno tempo. Considero la resistenza dell'edificio rispetto ad un logoramento esclusivamente soggetto al tempo. Tale parametro risulterebbe basato per la maggior parte su fattori correlati ai materiali utilizzati. Non potendo però adattare una stima identica della resistenza del materiale per ogni area risultano necessarie le misurazioni dei sensori.

Dati in Ingresso

- 1) Resistenza al Logoramento Temporale → RTE
- 2) I codice dei materiali di importanza strutturale come :

LI972351 → Mattone in cemento

LI237309 → Cemento Portland

LO234789→ Cemento Pozzolaico

XD547130→ Acciaio

Il fattore di logoramento temporale dipenderà dal materiale più utilizzato per la costruzione di un edificio. Considero solo dei materiali principali perché elementi come vetro, legno o intonaco sono si materiali impiegati nella costruzione di un edificio ma nella vita di tutti i giorni non prendono parte alla sua intera funzione strutturale. Nel caso in cui il materiale più utilizzato non corrisponda ad uno di questi 4 codici l'RTE corrisponderà ad un valore di 6.03. L'impatto dell'RTE sull'edificio incrementerà all'aumentare della differenza tra la data odierna e la data di inserimento nell'edificio dei materiali in considerazione su base annua. Ad ogni edificio sarà associato un Punteggio che diminuisce sia in base all'RTE che al numero di criticità rilevate. Il punteggio sarà rilevante ai fini della valutazione sia di quello che è lo stato dell'edificio sia della produzione di un consiglio di intervento. Di seguito:

Considero 4 fasce dei materiali

Acciaio	Mattone in cemento	Cemento Portland	Cemento Pozzolanico
0.8	5.08	3.43	3.56

Ogni edificio Parte da un punteggio di 100 e quando tale punteggio arriva <50 esso è ritenuto pericolante o non più abitabile. Sarà possibile fare nel tempo degli interventi per tentare la messa in sicurezza dell'edificio. Una volta che un edificio arriva a < 50 come valore punteggio allora è impossibile ristabilire la sicurezza dell'edificio. Nel caso in cui si arriverà ad un valore <50 ne verrà consigliata la demolizione.

Nonostante la formulazione di un consiglio di intervento risulterebbe necessario indirizzare la scelta di un cliente sul lavoro da effettuare accedendo ad un catalogo di lavori già correlati alla tipologia di stato dell'edificio. Ciò ha un duplice obbiettivo, quello di permettere al cliente di avere già un'idea del costo dei lavori usando o stime di prezzo generali o di lavori già presenti nel database sia di non scegliere erroneamente lavori non adatti al tipo di stato dell'edificio