

5-22. Apply the waveforms of Figure 5-81 to a D flip-flop that triggers on NGTs and has active-LOW asynchronous inputs. Assume that D is kept LOW and that Q is initially HIGH. Draw the resulting Q waveform.

- 1,206
- 5-23. Use Table 5-2 in Section 5-11 to determine the following.
 - (a) How long can it take for the Q output of a 74C74 to switch from 0 to 1 in response to an active CLK transition?
 - (b) Which FF in Table 5-2 requires its control inputs to remain stable for the longest time <u>after</u> the active *CLK* transition? Before the transition? $\Rightarrow t_H$
 - (c) What is the narrowest pulse that can be applied to the PRE of a 7474 FF?

		TTL CMOS			
		7474	74LS112	74074	74HC112
is (Setup time)		20	20	60	25
t _H ()	Hold time)	5	0	0	0
t _{PHL}	from CLK to Q	40	24	200	31
₽LH	from CLK to Q	25	16	200	31
<i>t</i> _{PHL}	from CLR to Q	40	24	225	41
t _{PLH}	from PRE to Q	25	16	225	41
$t_N(L)$	CLK LOW time	37	15	100	25
$t_W(H)$	CLK HIGH time	30	20	100	25
$t_{tr}(L)$	at PRE or CLR	30	15	60	25
f_{MAX}	in MHz	15	30	5	20

5-35. A photodetector circuit is being used to generate a pulse each time a customer walks into a certain establishment. The pulses are fed to an eight-bit counter. The counter is used to count these pulses as a means for determining how many customers have entered the store. After closing the store, the proprietor checks the counter and finds that it shows a count of 00001001₂ = 9₁₀. He knows that this is incorrect because there were many more than nine people in his store. Assuming that the counter circuit is working properly, what could be the reason for the discrepancy?

Q4	$f = 1 \text{ ms} \Rightarrow f = \frac{1}{1 \text{ ms}} = 1 \text{ kHz}$ of the OS
	For f = 50 KHZ -> tp = 1 50 KHZ
	= 0.02 m5
	t, = 20ms

