Praktikum iz vođenja procesa | Laboratorijska vježba 9 – seminarski rad razine B Seminarski rad – toplinski sustav

Na slici je prikazan toplinski sustav s jednim spremnikom tekućine. U spremnik se dovodi ulazni fluid temperature T_1 , a izlazni fluid iste vrste (različite temperature T) izlazi slobodnim padom, tako da vrijedi $\mathbf{q}_{izl} = \mathbf{q}_{ul}$. Toplina se izmjenjuje i s okolišem temperature T_0 preko stijene posude dok na fluid u posudi djeluje grijač temperature T_0 koji je grije.

Ulazni protok $q_{ul}=$ ______[m³/s] (0.05-0.08), površina izlazne cijevi $A_{01}=$ _____[m²] (0.03-0.05) površina dna spremnika je A1=______[m²] (0.5-1.0). Proces izmjene topline s okolišem odvija se preko stjenke posude površine A=______[m²] (1.0-2.0), pri čemu je koeficijent prijenosa topline $U_s=1.6$ $\left[J/m^2Ks\right]$. Temperatura ulaznog fluida je $T_1=$ 30 [°C], temperatura okoliša je $T_0=$ 20 [°C] temperatura grijača $T_g=$ ______[°C] (150-250), površina preko koje grijač djeluje na fluid je $A_g=$ 1.5 [m²] pri čemu je koeficijent prijenosa topline $U_g=$ 3200 + $12(T_g-T)$ $\left[J/m^2Ks\right]$. Fluid u posudi ima gustoću $\rho=$ _____[kg/m^3](800-1100) i toplinsku kapacitivnost $C_p=$ _____[J/kgK] (3000-4500)

Zadatak seminarskog rada razine B

Zadatak 1: Simulirajte fluidički dio sustava. Izračunati i simulirati ravnotežnu točku fluida kada se fluidički sustav stabilizira (razina h). Odredite masu fluida u posudi.

Zadatak 2: Matematički modelirati zadani toplinski sustav primjenom nelinearnih fizikalnih veza. Početno T postaviti na temperaturu $T_1=30$ °C.

Zadatak 3: Simulirati ravnotežnu točku toplinskog sustava te odrediti kod koje se temperatura fluida stabilizira. Provjeriti simuliranu ravnotežnu točku iz matematičkom modela (diferencijalnih jednadžbi).

Zadatak 4: Linearizirati matematički (toplinski) model oko ravnotežne točke.

Zadatak 5: Simulirati oba izvedena matematička modela (nelinerani i linearizirani) pomoću Simulink-a i analizirati značajne veličine toplinskog sustava. Precrtati odzive. Usporediti ih na istom grafu i komentirati nelinearnost sustava.

Zadatak 6: Skicirati statičku karakteristiku; odnos temperature fluida u spremniku i temperature grijača, T = f(Tg).

Zadatak 7: Realizirati realniji grijač sustava koji se ponaša koji sustav 1. reda sa vremenom porasta od 10 s. Realizirati paljenje i gašenje sustava u periodama od 40s (20 s upaljeno prema Tg, 20 s ugašeno gdje temperatura pada prema na T₀). Skicirati odziv.

Zadatak 8: Dizajnirate logičke zakone vođenja koji će održavati temperaturu fluida oko 60°C. Logički zakon kasni 5s (realizirati sa pulse train funkcijom).

Zadatak 9: Umjesto konstantne temperature T1, na ulaz dovesti signal iz workspace-a umjetno generirane temperature T1 oblika T1=20+10*sin(wt) + šum; frevencija je 0.1 rad/s a razina/amplituda random šuma 10 (ostali parametri random signala po izboru)

Zadatak 10: Precrtajte upravljački signal T_g iz zadatka 9. Komentirajte.

Ova vježba nema tablicu za upis rezultata, rezultati se upisuju u izvještaj koji studenti moraju predati.