Algorithmische Geometrie

Vorlesung vom 29.6.2005 – Stephan Scheerer, Peter Ertel

Letzte Vorlesung:

In der vorangegangenen Vorlesung wurde mit dem Gift-Wrapping-Algorithmus ein Verfahren zur Berechnung konvexer Hüllen im \mathbb{R}^3 vorgestellt. Die Berechnung ist mit einem Aufwand von $O(n \cdot \log(n))$ Zeit ebenso "aufwendig" wie im \mathbb{R}^2 .

Anmerkung: Der Gift-Wrapping-Algorithmus benötigt in höheren Dimensionen als \mathbb{R}^3 eine andere Laufzeit. Siehe dazu Vorlesung vom Freitag, 24.6.2005.

Heutige Vorlesung:

Die bereits bekannten Verfahren zur Berechnung von konvexen Hüllen/Schnitten von Halbräumen im \mathbb{R}^3 lassen sich nutzen, um Voronoi-Diagramme im \mathbb{R}^2 zu berechnen.

Dualisierung (in höheren Dimensionen)

Allgemein:

Dualisierung d-dimensionale affine Unterräume \leftrightarrow d-1-dimensionale affine Unterräume

Beispiel: Dualisierung einer 1-dimenionalen Hyperebenen \leftrightarrow 0-dimensionalem Punkt

DEFINITION HYPEREBENE

$$x_d = x_1 p_1 + ... + x_{d-1} p_{d-1} + p_d$$

Mit dieser Definition lassen sich alle Hyperebenen darstellen, außer solche, die parallel zur Achse x_d liegen. Im \mathbb{R}^2 entspräche dies der y-Achse. Um diese Spezialfälle zu lösen, kann die Hyperebene um ein kleines Δ gekippt werden. Siehe dazu ^[Shear].

Es wurde nicht angesprochen, wie sich die Allgemeine Gleichung der Gerade in dieses Problem einfügt.

Dual zu einer Hyperebene h ist ein Punkt $p = (p_1 \dots p_d) =: D(h)$. Der Punkt $p = (p_1 \dots p_d)$ wird in der Hyperebene D(p) beschrieben durch: $x_d = -x_1 p_1 - ... - x_{d-1} p_{d-1} + p_d$

ANMERKUNG: man beachte das '+ pd'

Nachteil hierbei ist, dass das Duale des Dualen ist nicht wieder die Identität ergibt: $D(D(p)) \neq p$.

Eigenschaften der Dualisierung

DEFINITION VERTIKALER ABSTAND

Sei h eine Hyperebene

$$x_d = x_1 p_1 + \dots + x_{d-1} p_{d-1} + p_d$$
 und p ein Punkt

$$p = (p_1 \dots p_d)$$

dann ist der vertikale Abstand

$$va(h, p) = p_d - (q_1p_1 + ... + q_d)$$

[[]Shear] Computational Geometry: "Dealing with Degenerated Cases"; Berg, van Kreveld, Overmars, Schwarzkopf; Seite 137; Springer Verlag, 2000

DEFINITION OBERHALB/UNTERHALB

$$p \text{ liegt } \underline{\text{oberhalb}} \text{ von } h : \Leftrightarrow va(h,p) > 0$$
 $p \text{ liegt } \underline{\text{unterhalb}} \text{ von } h : \Leftrightarrow va(h,p) < 0$
 $p \text{ liegt } \underline{\text{auf }} h : \Leftrightarrow va(h,p) = 0$

LEMMA A

Seien p und h wie zuvor gegeben.

a)

va(h, p) = -va(D(p), D(h)), D(p) ist jetzt eine Hyperebene und D(h) ist ein Punkt.

Insbesonders gilt: liegt p auf h \Leftrightarrow liegt D(h) auf D(p)

b)

$$p_1, p_2 \in \mathbb{R}^3$$
 h_1, h_2 Ebenen im \mathbb{R}^3
 $| \text{mit } g(p_1, p_2) = h_1 \cap h_2$
Dann gilt: $D(p_1) \cap D(p_2) = g(D(h_1), D(h_2))$.

ANMERKUNG: Man beachte, dass das Vorzeichenproblem der Dualisierung hier keine Rolle spielt, da alle Parameter einer Dualisierung unterzogen werden.

Der Beweis zur Übung. Er beschränkt sich auf "einfaches" Nachrechnen.

BETRACHTUNG KONVEXE HÜLLE

Sei $S \subset R^2$ endlich, betrachten wir die obere konvexe Hülle OCH(S).

Es gilt:

p ist eine Ecke von OCH(S),
$$p \in S$$

 \Leftrightarrow

Es gibt eine Gerade l mit $p \in l$ wobei alle anderen Punkte von S unterhalb der Geraden liegen.

Dualisiere S , D(S) =: S* \rightarrow jeder Punkt wird zu einer Geraden.

p ist eine Ecke von OCH(S) $\Leftrightarrow \exists$ Punkt l^* mit $l^* \in p^*$ und alle anderen Geraden von S^* liegen <u>oberhalb</u> von l^* (siehe Lemma A).

Der Schnitt von Halbräumen entspricht der oberen konvexen Hülle des Primalen, d.h. beim Arrangement $A(S^*)$ trägt p^* eine Kante zur untersten Zelle bei, genau dann, wenn p eine Ecke der OCH(S) ist. $L(S^*)$ ist der durch $A(S^*)$ begrenzte Bereich und ist konvex.

ENTSPRECHUNG

obere konvexe Hülle von $S \leftrightarrow$ untere Zelle $L(S^*)$ des Arrangements $A(S^*)$. Analog dazu gilt: die <u>untere</u> konvexe Hülle von $S \leftrightarrow$ <u>obere</u> Zelle $L(S^*)$ des Arrangements $A(S^*)$.

Liegt ein Punkt in $L(S^*)$, schneidet die primale Gerade <u>nicht</u> die OCH(S).

Damit kann der Schnitt von unteren/oberen Halbebenen durch Konvexe-Hülle-Konstruktion für die dualen Punkte berechnet werden. Bei beliebigem Schnitt von Halbebenen der Menge H wird diese aufgeteilt:

Obere Halbebenen: H⁺

Untere Halbebenen: H

Die Berechnung $\cap H^+$ und $\cap H^-$ erfolgt durch Reduktion auf die konvexe Hülle im Dualen.

 $\cap H$ kann durch Mischen von $\cap H^+$ und $\cap H^-$ in linearer Zeit berechnet werden.

SATZ

Der Schnitt von n Halbebenen in R^2 oder in n Halbräumen im R^3 lässt sich in $O(n \cdot \log n)$ Zeit berechnen.

Die obige Reduktion ist auch in höheren Dimensionen möglich.

ANMERKUNG

Bei einer konvexe Hülle einer Punktmenge im R^3 haben die Punkte einen Grad ≥ 3 und die Facetten haben genau 3 Kanten, sind also Dreiecke.

Bei einem Schnitt von Halbräumen im R³ haben die Schnittpunkte den Grad 3 und die Facetten haben eine beliebige Kantenanzahl.

Die Delaunay Triangulierung

...kann im \mathbb{R}^2 durch Berechnung der konvexen Hülle im \mathbb{R}^3 berechnet werden

dazu: betrachte den Einheitsparaboloid P

$$P = \{(x, y, z) | x^2 + y^2 = z\}$$

und die Projektion

$$p \in \mathbb{R}^2 \mapsto p' \in P$$

 $p = (x, y) \mapsto p' = (x, y, x^2 + y^2)$

einer

LEMMA B:

Sei $K \subset \mathbb{R}^2$ ein Kreis, dann liegt

$$K' = \left\{ \left(x, y, x^2 + y^2 \right) | \left(x, y \right) \in K \right\} \text{ in}$$

Ebene

Beweis:

Sei K:
$$(x-c)^2 + (y-d)^2 = r^2$$
 (Kreisgleichung mit Konstanten c,d,r)

dann ist K' =
$$\{(x, y, z) | (x - c)^2 + (y - d)^2 = r^2 \land z = x^2 + y^2 \}$$

$$\Rightarrow$$
 $x^2 + y^2 - 2xc - 2yd + c^2 + d^2 = r^2$

$$\Rightarrow z - 2xc - 2yd + c^2 + d^2 - r^2 = 0$$

$$\Rightarrow$$
 $z + a_1 x + a_2 y + a_3 = 0$ (Ebenengleichung im \mathbb{R}^3)

ALGORITHMUS

zur Berechnung der Delaunay Triangulierung einer endlichen Menge $S \subset \mathbb{R}^2$

- 1. bilde S' = Projektion von S auf P
- 2. konstruiere die konvexe Hülle von S' im \mathbb{R}^3
- 3. projiziere die Kanten der konvexen Hülle (ohne Facetten, die die konvexe Hülle nach oben begrenzen) zurück nach \mathbb{R}^2

Korrektheit

betrachte drei Punkte p,q,r aus S deren Umkreis K keinen anderen Punkt aus S enthält und ihre Projektion p',q',r' - d.h. die Kanten des Dreiecks pqr sind Kanten der Delaunay Triangulierung, dann folgt aus Lemma B: $K' = P \cap E$ für eine Ebene E

Punkte innerhalb von K werden abgebildet auf Punkte in P unterhalb von E und es gilt: kein Punkt aus S liegt innerhalb von K \Leftrightarrow kein Punkt aus S' liegt unterhalb von E

Da nach Konstruktion K keine weiteren Punkte aus S enthält, liegen also alle Punkte aus S' oberhalb von E, anders ausgedrückt: das Dreieck p'q'r' ist Facette der konvexen Hülle von S'

⇒ jedes Dreieck der Delaunay Triangulierung entspricht einer Facette der konvexen Hülle von S'

[Umkehrung: jede Facette entspricht einem Dreieck der DT – ist noch zu zeigen]