Shubh Gupta

Education

Stanford University

Sep 2019-Present

PhD Candidate, Electrical Engineering

Thesis: High-Integrity Urban Localization: Bringing Safety in Aviation to Autonomous Driving

Advisor: Grace X. Gao

Stanford University

Sep 2019–Jan 2021

Master of Science, Electrical Engineering

University of Illinois at Urbana-Champaign

Aug 2018-Sep 2019

Graduate Student, Electrical and Computer Engineering

Advisor: Grace X. Gao

Indian Institute of Technology, Kanpur

May 2014-June 2018

GPA: 9.3/10.0

Bachelor of Technology, Electrical Engineering, Minor Computer Architecture

Academic Excellence Award (Top 10 EE Students)

Journal Publications

S. Gupta, A. Mohanty, G. Gao, Urban Localization using Robust Filtering at Multiple Linearization Points. EURASIP Journal on Advances in Signal Processing 2023 (submitted).

- S. Gupta*, A. Kanhere*, A. Shetty, G. Gao, Improving GNSS Positioning using Neural Network-based Corrections. *NAVIGATION: Journal of the Institute of Navigation*, December 2022. https://doi.org/10.33012/navi.548.
- A. Mohanty, S. Gupta, G. Gao, A Particle-filtering Framework for Integrity Risk of GNSS-Camera Sensor Fusion.

 NAVIGATION: Journal of the Institute of Navigation, December 2021. https://doi.org/10.1002/navi.455.
- S. Gupta, G. Gao, Data-Driven Protection Levels for Camera and 3D Map-based Safe Urban Localization. NAVIGATION: Journal of the Institute of Navigation, September 2021. https://doi.org/10.1002/navi.445.
- R. Moss, S. Gupta, R. Dyro, K. Leung, M. Kochenderfer, G. Gao, M. Pavone, E. Schmerling, A. Corso, R. Madigan, M. Stroila, T. Gibson, Autonomous Vehicle Risk Assessment. *Department of Aeronautics and Astronautics, Stanford University*, June 2021. Technical Report.

Patents

- S. Gupta, N. Jaipuria, P. Narayanan, V. Murali, "Dynamically routed patch discriminator", U.S. Patent Application No. 16/800,950.
- P. Gupta, S. Gupta, R. Sinha, S. Pal, A. Jayagopal, "Saliency prediction for informational documents", U.S. Patent No. 11,263,470. 1 Mar. 2022.
- N. Jaipuria, R. Bhasin, **S. Gupta**, G. Sholingar "Training deep neural networks with synthetic images", U.S. Patent No. 11,100,372. 24 Aug. 2021.
- P. Gupta, S. Gupta, R. Sinha, S. Pal, A. Jayagopal, "Saliency prediction for a mobile user interface", U.S. Patent No. 10,664,999. 26 May 2020.

Research

Stanford University, Navigation and Autonomous Vehicles Lab with Grace Gao

Aug 2019–Present

• Improved Global Navigation Satellite System (GNSS) Positioning through Deep Neural Network (DNN) Approaches

- Developed DNN models to overcome multipath and non-line-of-sight errors in GNSS positioning in urban environments.
- Addressed numerical conditioning, variable GNSS code phase measurements, and overfitting issues through set-based deep learning methods and data augmentation strategies.
- Hybridized traditional and data-driven approaches to reduce data, memory, and computational overhead for GNSS positioning over time.
- Validated the models using real-world smartphone data.
- Uncertainty Quantification in Multi-Sensor Fusion
 - Designed algorithm for state and uncertainty estimation in urban environments using multi-sensor fusion of GNSS code/carrier phase, camera, and IMU measurements.
 - Enhanced tracking efficiency and quantified uncertainty through Rao-Blackwellized design and stochastic bank of Kalman filters.
 - Validated algorithm on real-world data collected in urban environments.
- Safe localization using camera images
 - Developed approach to compute safety bounds by matching camera images to 3D point cloud map of a city
 - Specified a Gaussian mixture model for position error with data-driven models and outlier weighting techniques
 - Validated method through experimentation on real-world data in urban environments.
- Risk Assessment in Autonomous Systems
 - Developed end-to-end risk assessment framework combining driving scenarios, sensor observation models, autonomous driving policies, and rare event simulation techniques
 - Designed a surrogate modeling and adaptive stress testing technique for efficient identification of failures under various sensing errors
 - Derived adaptive importance sampling algorithms for risk estimation in sequential decision making systems
 - Implemented efficient tree-based algorithms for importance sampling and risk estimation in diverse autonomous systems with discrete actions.
- Urban Localization with Neural Radiance Fields (NeRF)
 - Developed an algorithmic approach to generate high-quality 3D maps of cities using NeRFs
 - Implementing novel algorithms for vehicle localization by matching camera images with NeRF maps of city structures
 - Enhancing GNSS positioning accuracy by incorporating NeRF occupancy estimates along signal paths to assess quality

University of Illinois at Urbana-Champaign, GPS Lab with Grace Gao

Aug 2018–May 2019

- Safe Localization under GPS Faults in Urban Environments
 - Developed a modified particle filter-based state estimation framework that jointly optimizes for state and error-free measurements
 - Used a Gaussian Mixture Model to accurately measure the accuracy and risk associated with localization, determining system availability at each time instant
 - Improved performance in challenging simulated and real urban driving scenarios compared to existing techniques

Industry Experience

Ford Motor Company

May-Aug 2019

Research Intern at Greenfield Labs

Palo Alto, California

- Developed GAN algorithms to convert simulations to realistic data for training DNNs in autonomous driving
- Devised methods for leveraging unpaired datasets to increase the variety and size of training data and improving the robustness of DNNs.
- Designed techniques for incorporating out-of-domain real-image datasets to further improve scalability.

Software Intern London, UK

- Built and deployed conversational chatbots for businesses using Dialogflow
- Developed strategies to connect natural language user queries with MongoDB database queries
- Streamlined chatbot integration with social media platforms

Adobe May–July 2017

Research Intern at Big Data Experience Lab

Bangalore, India

- Created neural network-based predictors for identifying salient elements in smartphone interfaces
- Conducted large scale user A/B testing and data collection using Amazon MTurk

Teaching

Stanford University, AA Department Teaching Assistant

Sep 2021-Dec 2021

• Sole TA for second offering of AA 275: Navigation of Autonomous Systems

Stanford University, AA Department Teaching Assistant

Sep 2020–Dec 2020

- Sole TA for first offering of AA 275: Navigation of Autonomous Systems
- Created homework assignments and lectures

Stanford University, AA Department Teaching Assistant

Jan 2020-March 2020

- Sole TA for AA 272C: Global Positioning Systems
- Redesigned homework assignments and lectures

Preprints

- A. Corso, K. Kim, S. Gupta, G. Gao, M. Kochenderfer, A Deep Reinforcement Learning Approach to Rare Event Estimation. arXiv:2211.12470 [cs.LG].
- S. Gupta, G. Gao, Reliable GNSS Localization Against Multiple Faults Using a Particle Filter Framework. arXiv:2101.06380 [cs.RO].

Conference Publications

- D. Neamati, S. Gupta, M. Partha, and G. Gao, Neural City Maps for GNSS NLOS Prediction, *Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+)*, September 2023. (accepted)
- M. Partha, **S. Gupta**, and G. Gao, Neural City Maps: A Case for 3D Urban Environment Representations Based on Radiance Fields. *Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+)*, September 2023. (accepted)
- A. Dai, **S. Gupta**, and G. Gao, Neural Radiance Maps for Extraterrestrial Navigation and Path Planning. Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+), September 2023. (accepted)
- S. Gupta, A. Mohanty, G. Gao, Getting The Best of Particle and Kalman Filters: GNSS Sensor Fusion using Rao-Blackwellized Particle Filter. *Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+)*, September 2022, pp. 1610-1623. https://doi.org/10.33012/2022.18470.
- S. Gupta, A. Kanhere, A. Shetty, G. Gao, Designing Deep Neural Networks for Sequential GNSS Positioning. Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+), September 2022, pp. 1209-1219. (Best Presentation Award). https://doi.org/10.33012/2022.18494.
- S. Gupta*, A. Kanhere*, A. Shetty, G. Gao, Improving GNSS Positioning using Neural Network-based Corrections. Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+), September 2021, pp. 3068-3080. https://doi.org/10.33012/2021.17999.
- A. Mohanty, S. Gupta, G. Gao, A Particle Filtering Framework for Integrity Risk of GNSS-Camera Sensor Fusion. Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+), September 2020, pp. 2440-2452. https://doi.org/10.33012/2020.17660.

- S. Gupta, G. Gao, Data-Driven Protection Levels for Camera and 3D Map-based Safe Urban Localization. Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+), September 2020, pp. 2483 2499. https://doi.org/10.33012/2020.17698.
- N. Jaipuria, S. Gupta, P. Narayanan, V. Murali, On the Role of Receptive Field in Unsupervised Sim-to-Real Image Translation. *Machine Learning for Autonomous Driving Workshop at the 33rd Conference on Neural Information Processing Systems (NeurIPS)*, December 2019. arXiv:2001.09257 [cs.CV].
- S. Gupta, G. Gao, Particle RAIM for Integrity Monitoring. Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+), September 2019, pp. 811-826. https://doi.org/10.33012/2019.16939.
- P. Gupta, S. Gupta, A. Jayagopal, S. Pal, R. Sinha, Saliency Prediction for Mobile User Interfaces. *IEEE Winter Conference on Applications of Computer Vision (WACV)*, March 2018, pp. 1529-1538. https://doi.org/10.1109/WACV.2018.00171.

Invited Talks and Posters

- S. Gupta, "Data-Driven Protection Levels for Camera and 3D Map-based Safe Urban Localization", Institute of Navigation Webinar, November 2022. https://www.ion.org/publications/webinar-gupta.cfm
- S. Gupta, "Incorporating Observation Noise in Adaptive Stress Testing of Autonomous Vehicles", Bay Area Robotics Symposium, October 2021.
- S. Gupta, "Particle RAIM", Stanford Position, Navigation and Time Symposium, October 2019.