Министерство образования и науки Российской Федерации (МИНОБРНАУКИ РОССИИ) ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ТГУ) Институт прикладной математики и компьютерных наук Кафедра защиты информации и криптографии

КУРСОВАЯ РАБОТА

БИБЛИОТЕКА ДЛЯ РАБОТЫ С БУЛЕВЫМИ ФУНКЦИЯМИ ДЛЯ ЯЗЫКА ПРОГРАММИРОВАНИЯ LYAPAS

Муругов Михаил Алексеевич

Рук	соводител	Ь	
кан	ід. физм	ат. наук, дог	ент
]	И.А.Панкрат	гова
«	>>>	201	_г.
Сту	дент груп	шы № 1155	
		M.A.Mypy	/ГОВ

ОГЛАВЛЕНИЕ

Введение			
1 Описание алгоритмов на математическом языке			
$1.1~\Pi$ ринадлежность булевой функции к классу T^0			
$1.2~\Pi$ ринадлежность булевой функции к классу T^1			
1.3 Преобразование Мёбиуса булевой функции			
1.4 Принадлежность булевой функции к классу линейных булевых функций			
1.5 Принадлежность булевой функции к классу самодвойственных булевых функций			
1.6 ///Определение и алгоритм "реверса" булевого вектора?//			
2 Программные реализации			
$2.1~ $ Принадлежность булевой функции к классу T^1			
$2.2~\Pi$ ринадлежность булевой функции к классу T^0			
2.3 Преобразование Мёбиуса булевой функции			
2.4 Принадлежность булевой функции к классу линейных булевых функций			
2.5 Принадлежность булевой функции к классу самодвойственных булевых функций			
2.6 ///Алгоритм "реверса" булевого вектора?///			
2.7 ///Нужно ли включать реализации, не описанные в 1.х?///			
3 Экспериментальные данные			
4 Заключение			

Список использованных источников и литературы

Приложения

введение

Целью этой курсовой работы было написание библиотеки для работы с булевыми функциями для языка программирования LYaPAS. В дальнейшем планируется, что эта библиотека будет использоваться для реализации криптографических алгоритмов и прочих нужд.

///Нужно ли как-то переделать введение?///

ОПИСАНИЕ АЛГОРИТМОВ НА МАТЕМАТИЧЕСКОМ ЯЗЫКЕ

Принадлежность булевой функции к классу T^0

Определение. Булева функция *сохраняет константу* 0 (*принадлежит классу* T^0), если на наборе из всех нулей функция принимает значение нуль.

Алгоритм:

Вход: $f(x_1,...,x_n)$ – булева функция

Выход: " f принадлежит классу T^0 ?"

Шаг 1) Если f(0,0,...,0) = 0, то ответ "Да"

Иначе ответ "Нет"

Принадлежность булевой функции к классу T^1

Определение. Булева функция *сохраняет константу* I (*принадлежит классу* T^1), если на наборе из всех единиц функция принимает значение единица.

Алгоритм:

Вход: $f(x_1,...,x_n)$ – булева функция

Выход: "f принадлежит классу T^1 ?"

Шаг 1) Если f(1,1,...,1) = 1, то ответ "Да"

Иначе ответ "Нет"

Преобразование Мёбиуса булевой функции

Определение. *Положительной конъюнкцией* называется элементарная конъюнкция, не содержащая инверсий переменных. Договоримся обозначать положительную конъюнкцию через K^+ .

///ОПРЕДЕЛЕНИЕ АНФ ВЗЯТЬ ИЗ "БУЛЕВЫ ФУНКЦИИ В КРИПТОГРАФИИ"!///

Определение. Полиномом Жегалкина, или алгебраической нормальной формой $(AH\Phi)$, булевой функции $f(x_1,...,x_n)$ называется дизьюнкция с исключением различных положительных конъюнкций переменных из множества $X = \{x_1,...,x_n\}$, то есть формула вида $P = K_1^+ \oplus ... \oplus K_p^+$, задающая функцию $f(x_1,...,x_n)$.

Определение. Преобразованием Мёбиуса называется функция $\mu: P_2(n) \to P_2(n)$, где $P_2(n)$ — множество всех булевых функций от n переменных. С помощью преобразования Мёбиуса решается задача построения АНФ булевой функции, и вычислить его значения для функции f(x) можно по формуле $\mu(f(a)) = \bigoplus_{x \leqslant a} f(x)$. Рассмотрим возможный способ выполнения этого вычисления.

///Убрать способ? Написать сразу рекурсивный алгоритм? Как должна выглядеть в тексте ссылка на литературу? Надо ли приводить подытоживание(краткую суть способа)?///

Построим матрицу отношения предшествования булевых векторов $M_{2^n} = \|m_{ax}\|$, строкам и столбцам которой сопоставлены булевы векторы длины n и $m_{ax} = \begin{cases} 1, \text{если } x \leq a \\ 0, \text{иначе} \end{cases}$

$$\mbox{Например, M_2} M_2 = \begin{pmatrix} a \backslash x & 0 & 1 \\ 0 & 1 & 0; \\ 1 & 1 & 1 \end{pmatrix} \qquad \begin{array}{c} a \backslash x & 00 & 01 & 10 & 11 \\ 00 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 11 & 1 & 1 & 1 & 1 & 1 \end{array}$$

Нетрудно убедиться, что $M_{2^n} = \left\| \begin{smallmatrix} M_{2^{n-1}} & 0 \\ M_{2^{n-1}} & M_{2^{n-1}} \end{smallmatrix} \right\|^{(*)}$ и $\mu(f) = M_{2^n} \cdot f$, где f — векторстолбец значений функции f. Если f_0 и f_1 — соответственно младшая и старшая половины вектора значений f, то по формуле (*) получим следующую рекурсивную формулу:

$$M_{2^n} \cdot f = \left\| \begin{matrix} M_{2^{n-1}} & 0 \\ M_{2^{n-1}} & M_{2^{n-1}} \end{matrix} \right\| \cdot \left\| \begin{matrix} f_0 \\ f_1 \end{matrix} \right\| = \left\| \begin{matrix} M_{2^{n-1}} \cdot f_0 \\ M_{2^{n-1}} \cdot (f_0 \oplus f_1) \end{matrix} \right\|.$$

На «дне» рекурсии для функции от одной переменной

$$\mu(f) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} f(0) \\ f(1) \end{bmatrix} = \begin{bmatrix} f(0) \\ f(1) \oplus f(1) \end{bmatrix}$$

На основании этого способа преобразование Мёбиуса реализовано программно.

Принадлежность булевой функции к классу линейных булевых функций

Определение. *Длиной* булева вектора назовем количество его компонент, а *весом* вектора – количество компонент, равных единице

Длину булева вектора a в дальнейшем будем обозначать l(a). Запись l(f), где f – булева функция, будет обозначать длину вектора её значений.

Вес булева вектора a в дальнейшем будем обозначать w(a). Запись w(f), где f – булева функция, будет обозначать вес вектора её значений.

Определение. Длиной полинома Жегалкина назовем количество конъюнкций в полиноме, а его *степенью* – наибольший из рангов конъюнкций, входящих в полином.

Определение. Полином Жегалкина называется *линейным*, если его степень не превышает единицы.

Определение. Булева функция называется *линейной* (*принадлежит классу* L), если ее полином Жегалкина линеен.

Алгоритм:

Вход:
$$f(x_1,...,x_n)$$
 – булева функция

Выход: "
$$f$$
 — линейна?"

Шаг 1)
$$g := \mu(f)$$

Шаг 2)
$$g(0,0,...,0) := 0$$

Шаг 3) Для всех векторов a таких, что l(a) = n и w(a) = 1:

Шаг 3.1)
$$g(a) := 0$$

Шаг 4) Если
$$w(g) = 0$$
, то ответ "Да"

Иначе ответ "Нет"

Принадлежность булевой функции к классу самодвойственных булевых функций

Определение. Булева функция $f(x_1,...,x_n)$ называется двойственной булевой функции $g(x_1,...,x_n)$, если она получена из $g(x_1,...,x_n)$ инверсией всех аргументов и самой функции, то есть $f(x_1,...,x_n)=\overline{g(x_1,...,x_n)}$.

Определение. Булева функция $f(x_1,...,x_n)$ самодвойственна (принадлежит классу S), если она равна двойственной себе функции, то есть $f(x_1,...,x_n)=\overline{f(x_1,...,x_n)}$.

Алгоритм:

Вход: $f(x_1,...,x_n)$ – булева функция

Выход: "f — самодвойственна?"

Шаг 1) Для всех векторов a таких, что l(a) = n:

Шаг 1.1) Если $f(a) \neq \overline{f}(\overline{a})$, то ответ "Her"

Шаг 2) Ответ "Да"

ПРОГРАММНЫЕ РЕАЛИЗАЦИИ

Перед изложением дальнейшего материала необходимо кое-что обозначить:

Bo-первых, булевы функции в языке LYaPAS представляются векторами их значений.

Во-вторых, вектора значений булевых функций хранятся в логических комплексах L, каждый элемент которого занимает в памяти 4 байта(32 бита). Таким образом, т.к. $l(f(x_1,...,x_n))=2^n$, то функция до 5 аргументов включительно помещается в один элемент комплекса. От 6 в 2 элемента, от 7 в 4 и т.д. Количество элементов комплекса, необходимых

для хранения функции от n аргументов можно вычислить по формуле $Q = \left[\frac{2^n + 31}{32}\right]$.

Принадлежность к классу T^0

Проверка булевой функции на принадлежность к классу T^0 тривиальна. Необходимо просто посмотреть на самый первый бит вектора её значений. Если этот бит равен нулю, то функция сохраняет константу 0.

Принадлежность к классу T^1

Проверка булевой функции на принадлежность к классу T^1 немного сложнее, чем к классу T^0 , т.к. у функций, зависящих от $n \le 5$ аргументов старший бит вектора значений находится в нулевом элементе комплекса и его сначала необходимо найти. В общем же случае найти старший бит вектора значений функции можно по следующим правилам:

$$i = \left[\frac{2^n + 31}{32}\right] - 1$$
, $j = 2^n \pmod{32}$, где i — индекс элемента комплекса, а j — номер бита в элементе с индексом i .

Преобразование Мёбиуса булевой функции

///**TODO**///

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

- 1. Быкова С.В. Учебно-методический комплекс «Булевы функции». Томск 2006.
- 2. Панкратова И.А. Учебное пособие «Булевы функции в криптографии». Томск 2014.