Bayesian Networks

Today:

- Bayesian Networks
- How do we reason about independence in Bayesian Networks?
- How do we sample from Bayesian Networks?

Bayesian Network: Directed Acyclic Graph (DAG) that represents a **joint probability distribution**

Bayesian Network: Directed Acyclic Graph (DAG) that represents a **joint probability distribution**

Bayesian Network: Directed Acyclic Graph (DAG) that represents a **joint probability distribution**

• Node:

Bayesian Network: Directed Acyclic Graph (DAG) that represents a **joint probability distribution**

• Node: Random Variable

Bayesian Network: Directed Acyclic Graph (DAG) that represents a **joint probability distribution**

- Node: Random Variable
- Edges encode:

$$P(x_{1:n}) = \prod_{i=1}^n P(x_i \mid \mathrm{pa}(x_i))$$

Bayesian Network: Directed Acyclic Graph (DAG) that represents a **joint probability distribution**

- Node: Random Variable
- Edges encode:

$$P(x_{1:n}) = \prod_{i=1}^n P(x_i \mid \mathrm{pa}(x_i))$$

Independence

Bayesian Network: Directed Acyclic Graph (DAG) that represents a **joint probability distribution**

- Node: Random Variable
- Edges encode:

$$P(x_{1:n}) = \prod_{i=1}^n P(x_i \mid \mathrm{pa}(x_i))$$

Independence

$$P(X,Y) = P(X) P(Y)$$

Bayesian Network: Directed Acyclic Graph (DAG) that represents a **joint probability distribution**

- Node: Random Variable
- Edges encode:

$$P(x_{1:n}) = \prod_{i=1}^n P(x_i \mid \mathrm{pa}(x_i))$$

Independence

$$P(X,Y) = P(X) P(Y)$$

Bayesian Network: Directed Acyclic Graph (DAG) that represents a **joint probability distribution**

- Node: Random Variable
- Edges encode:

$$P(x_{1:n}) = \prod_{i=1}^n P(x_i \mid \mathrm{pa}(x_i))$$

Independence

$$P(X,Y) = P(X) P(Y)$$

$$P(X, Y \mid Z) = P(X \mid Z) P(Y \mid Z)$$

Bayesian Network: Directed Acyclic Graph (DAG) that represents a **joint probability distribution**

- Node: Random Variable
- Edges encode:

$$P(x_{1:n}) = \prod_{i=1}^n P(x_i \mid \mathrm{pa}(x_i))$$

Independence

$$P(X,Y) = P(X) P(Y)$$

$$P(X,Y \mid Z) = P(X \mid Z) P(Y \mid Z)$$

$$(X \perp Y \mid Z)$$

Bayesian Network: Directed Acyclic Graph (DAG) that represents a **joint probability distribution**

• Node: Random Variable

• Edges encode:

$$P(x_{1:n}) = \prod_{i=1}^n P(x_i \mid \mathrm{pa}(x_i))$$

Independence

$$P(X,Y) = P(X) P(Y)$$

$$P(X,Y \mid Z) = P(X \mid Z) P(Y \mid Z)$$

$$(X \perp Y \mid Z)$$

$$P(X \mid Z) = P(X \mid Y, Z)$$

$$P(X \mid Z) = P(X \mid Y, Z)$$
2.11

 $X \perp Y \mid Z$

$$X \perp Y \mid Z \Longrightarrow$$

 $X \perp Y \mid Z \implies$ All of X's dependence on Y comes through Z

 $X \perp Y \mid Z \implies$

All of X's dependence on Y comes through Z

 $X \perp Y \mid Z \Longrightarrow$

All of *X*'s dependence on *Y* comes through *Z*

$$A \perp C \mid B$$
 ?

 $X \perp Y \mid Z \implies$ All of X's dependence on Y comes through Z

$$A \perp C \mid B$$
? Yes

 $P(A,B,C) = P(A)P(B|A)P(C|B)$
 $A \perp C \mid B$? Yes

 $P(A,B,C) = P(A)P(B|A)P(C|B)$
 $P(C,A|B) = P(A,B,C)$
 $P(B) = P(A)P(B|A)P(C|B)$
 $P(B) = P(A)P(B)$
 $P(B) = P(A)P(B)$

 $X \perp Y \mid Z \qquad \implies$

All of X's dependence on Y comes through Z

 $A \perp C \mid B$? Yes

 $X \perp Y \mid Z \qquad \implies$

All of X's dependence on Y comes through Z

 $A \perp C \mid B$? Yes

$$B \perp C \mid A$$
 ?

 $X \perp Y \mid Z \qquad \implies$

All of X's dependence on Y comes through Z

 $A \perp C \mid B$? Yes

 $B \perp C \mid A$? Yes

 $X \perp Y \mid Z \Longrightarrow$

All of X's dependence on Y comes through Z

 $A \perp C \mid B$? Yes

 $B \perp C \mid A$? Yes

 $X \perp Y \mid Z$

All of *X*'s dependence on *Y* comes through *Z*

 $A \perp C \mid B$? Yes

 $B \perp C \mid A$? Yes

$$B \perp C \mid A$$
 ?

 $X \perp Y \mid Z$

All of *X*'s dependence on *Y* comes through *Z*

 $A \perp C \mid B$? Yes

 $B \perp C \mid A$?

 $X \perp Y \mid Z$

All of X's dependence on Y comes through Z

 $A \perp C \mid B$? Yes

 $B \perp C \mid A$?

No

Mediator

D: Platform for extremists to connect

- Social Media In Country
- Platform for Fake News
- Rise in Extremism

$$X \perp Y \mid Z$$
 =

All of *X*'s dependence on *Y* comes through *Z*

 $A \perp C \mid B$? Yes

Mediator

 $B \perp C \mid A$? Yes

Confounder

- - Is a Child

Recently Vaccinated

- Recently Diagnosed with Autism

 $X \perp Y \mid Z$

 \Longrightarrow

All of X's dependence on Y comes through Z

 $A \perp C \mid B$? Yes

Mediator

 $B \perp C \mid A$? Yes

Confounder

 $B\perp C\mid A$? No

Collider

A Saw the Dietician

Is Overweight

C Has Acne

 $(B \perp D \mid A)$?

 $(B \perp D \mid A)$? Yes!

$$(B \perp D \mid A)$$
 ? Yes!

$$(B \perp D \mid E)$$
?

$$(B \perp D \mid A)$$
 ? Yes!

$$(B\perp D\mid E)$$
 ?

$$(B \perp D \mid A)$$
 ? Yes!

$$(B\perp D\mid E)$$
 ?

Why is this relevant?

More Complex Example

$$(B\perp D\mid A)$$
 ? Yes!

$$(B\perp D\mid E)$$
 ?

Why is this relevant?

More Complex Example

$$(B\perp D\mid A)$$
 ? Yes!
$$(B\perp D\mid E)$$
?

More Complex Example

$$(B\perp D\mid A)$$
 ? Yes!

$$(B\perp D\mid E)$$
 ?

Why is this relevant?

Today: Systematic way to reason about conditional independence

Let C be a set of random variables.

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated by C if any of the following are true

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated by C if any of the following are true

1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated by C if any of the following are true

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated by C if any of the following are true

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated by C if any of the following are true

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$

We say that A and B are d-separated by C if all paths between A and B are d-separated by C.

Let \mathcal{C} be a set of random variables.

A path between A and B is d-separated by C if any of the following are true

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$

We say that A and B are d-separated by C if all paths between A and B are d-separated by C.

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X o Y \leftarrow Z$ such that $Y \notin \mathcal{C}$

1. Enumerate all paths between nodes in question

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$

- 1. Enumerate all paths between nodes in question
- 2. Check all paths for d-separation

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X o Y \leftarrow Z$ such that $Y \notin \mathcal{C}$

- 1. Enumerate all paths between nodes in question
- 2. Check all paths for d-separation
- 3. If all paths d-separated, then CE

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X o Y \leftarrow Z$ such that $Y \notin \mathcal{C}$

- 1. Enumerate all paths between nodes in question
- 2. Check all paths for d-separation
- 3. If all paths d-separated, then CE

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$

- 1. Enumerate all paths between nodes in question
- 2. Check all paths for d-separation
- 3. If all paths d-separated, then CE

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X \to Y \leftarrow Z$ such that $Y \notin \mathcal{C}$

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X o Y \leftarrow Z$ such that $Y \notin \mathcal{C}$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

C communication loss

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X o Y \leftarrow Z$ such that $Y \notin \mathcal{C}$

 $D \perp C \mid B$?

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

C communication loss

- 1. The path contains a *chain* X o Y o Z such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X o Y \leftarrow Z$ such that $Y \notin \mathcal{C}$

$$D \perp C \mid B$$
 ?

•

$$D \perp C \mid E$$
? True $D \leftarrow E \rightarrow C \lor d$ -separated

- 1. The path contains a *chain* $X \to Y \to Z$ such that $Y \in \mathcal{C}$
- 2. The path contains a *fork* $X \leftarrow Y \rightarrow Z$ such that $Y \in \mathcal{C}$
- 3. The path contains an *inverted fork* (v-structure) $X o Y \leftarrow Z$ such that $Y \notin \mathcal{C}$

Given a Bayesian network, how do we sample from the joint distribution it defines?

Given a Bayesian network, how do we sample from the joint distribution it defines?

Given a Bayesian network, how do we sample from the joint distribution it defines?

1. Topoligical Sort (If there is an edge $A \rightarrow B$, then A comes before B)

Given a Bayesian network, how do we sample from the joint distribution it defines?

- 1. Topoligical Sort (If there is an edge $A \rightarrow B$, then A comes before B)
- 2. Sample from conditional distributions in order of the topological sort

Given a Bayesian network, how do we sample from the joint distribution it defines?

- 1. Topoligical Sort (If there is an edge $A \rightarrow B$, then A comes before B)
- 2. Sample from conditional distributions in order of the topological sort

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Analogous to **Simulating** a (PO)MDP

Recap