Customer:

GiS - Gesellschaft für Informatik und Steuerungstechnik mbH

> Höllochstrasse 1 73252 Lenningen Tel.: +49 7026 606-22 Fax: +49 7026 606-66

RF test report

GiS mbH 125kHz Read / Write System TS-RW38 / TS-R38

The test result refers exclusively to the model tested.

This report must not be copied without the written authorization by the lab. Revision: 1.0

DGA-PL-224/95-03 / BNetzA-CAB-02/21-02/2

EMV TESTHAUS GmbH

Gustav-Hertz-Straße 35 94315 Straubing Tel.: +49 9421 56868-0

Fax: +49 9421 56868-100 Email: company@emv-testhaus.com

Accreditation:

Registration number: DGA-PL-224/95-03
CAB (EMC) registration number: BNetzA-CAB-02/21-02/3
FCC facility registration number: 221458
MRA US-EU, FCC designation number: DE0010

Test Laboratory:

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

The technical accuracy is guaranteed through the quality management of the EMV **TESTHAUS** GmbH

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 1.0

Table of contents

1	Test regulations	5
2	Equipment under Test (EUT)	6
3	AC power line conducted emissions	8
4	Radiated emission measurement (<1 GHz)	14
5	Equipment calibration status	21
6	Measurement uncertainty	22
7	Summary	23

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 1.0

List of pictures

Picture 1: Outline of conducted emission test setup9
Picture 2: Conducted emission on mains, phase 1 (Chart)
Picture 3: Conducted emission on mains, neutral (Chart)11
Picture 4: Conducted emission on mains, Phase (Chart)12
Picture 4: Conducted emission on mains, Neutral (Chart)
Picture 4: Test setup for radiated emission measurement (< 30 MHz)16
Picture 5: Test setup for radiated emission measurement (< 1 GHz)16
Picture 6: Radiated emission 9 kHz – 30 MHz read mode (@ 3m distance)
Picture 6: Radiated emission 9 kHz – 30 MHz write mode (@ 3m distance)
Picture 7: Radiated emission 30 MHz – 1000MHz read mode (Vertical/ Horizontal)20
Picture 8: Radiated emission 30 MHz – 1000MHz write mode (Vertical/ Horizontal)20
List of tables
Table 1: Equipment Calibration status
Table 2: Measurement uncertainty

1 Test regulations

CFR 47 Part 2: 10-2011 Code of Federal Regulations Part 2 (Frequency allocation and

radio treaty matters; General rules and regulations) of the Federal

Communication Commission (FCC)

CFR 47 Part 15: 10-2011 Code of Federal Regulations Part 15 (Radio Frequency Devices)

of the Federal Communication Commission (FCC)

ANSI C63.4: American National Standard for Methods of Measurement of September 2009

Radio-Noise Emissions from Low-Voltage Electrical and Electronic

Equipment in the Range of 9 kHz to 40 GHz

1.1 Summary of test results

Standard Test result FCC CFR 47 Part 15 Passed

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 1.0

2 Equipment under Test (EUT)

Product type: 125kHz Read / Write System

Model Name: TS-RW38
Identical model: TS-R38*
Manufacturer: GiS mbH

Serial number: 1650-242V1.17 #0407

FCC ID: WR5TSRW38

Application freq. band: N/A
Frequency range: 125kHz
Operating frequency: 125kHz

Number of RF-channels: 1

Modulation: AM (write operation) AM/PM (read operation)

Antenna type: PCB antenna

 \square detachable \boxtimes not detachable

Power supply: 5V USB

Temperature range: -10°C to +55°C

*Note: The TS-R38 is electrical identical to TS-RW38. The only difference is a software lock for the write operation. Therefore the complete tests were made with TS-RW38 in both operation modes (read, write).

2.1 Photo documentation

For photos of the EUT, see annex B. For photos taken during testing, see annex A.

2.2 Short description of the EUT

125kHz Read / Write system for RFID tags

2.3 Operation mode

The EUT was tested in the following operation modes:

- -Continuous reading data from RF ID tag
- -Continuous writing data on RF ID tag

2.4 Configuration

The following peripheral devices and interface cables were connected during the tests:

Device	Model:	S/N
125kHz Read / Write System	TS-RW38	1650-242V1.17 #0407
Notebook	Fujitsu Lifebook	N/A

Used cables

Numbers:	Description: (type / lengths / remarks)	Serial No	
1	Data & power cable / 2,0/ shielded	N/A	
1	AC cable, unshielded, 1.5m	N/A	

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 1.0

3 AC power line conducted emissions

according to CFR 47 Part 15, section 15.207

3.1 Test location

Description	Manufacturer	Inventory No.
Shielded chamber	Siemens - Matsushita	E00107

3.2 Test instruments

	Description	Manufacturer	Inventory No.
	ESCS 30	Rohde & Schwarz	E00003
$\overline{\checkmark}$	ESU 26	Rohde & Schwarz	W00002
	ESCI	Rohde & Schwarz	E00001
	ESH3 Z2	Rohde & Schwarz	E00028
	ESH 2-Z5	Rohde & Schwarz	E00004
$\overline{\checkmark}$	ESH 2-Z5	Rohde & Schwarz	E00005

3.3 Limits

Frequency [MHz]	Quasi-peak [dBµV]	Avarage [dBµV]
0.15 – 0.5	66 - 56	56 – 46
0.5 - 5.0	56	46
5 – 30	60	50

The test of conducted emission at AC line was performed with 120V AC / 60Hz.

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 1.0

3.4 Test procedure

- 1. The tests of conducted emission were carried out in a shielded room using a line impedance stabilization network (LISN) 50 μH/50 Ohms and an EMI test receiver.
- 2. The EMI test receiver was connected to the LISN and set to a measurement bandwidth of 9 kHz in the frequency range form 0.15 MHz to 30 MHz.
- 3. The EUT was placed on a wooden table and connected to the LISN.
- 4. To accelerate the measurement the detector of the EMI test receiver was set to peak and the whole frequency range form 0.15 MHz to 30 MHz were scanned.
- 5. After that all peaks values with fewer margins than 10 dB to quasi-peak limit or exceeding the limit were marked and re-measured with quasi-peak detector.
- 6. If after that all values are under the average limit no addition measurement is necessary. In case there are still values between quasi-peak and average limit than these values were re-measured again with an average detector.
- 7. These measurements were done on all current carrying conductors.

According to ANSI C63.4, section 13.1.3.1 testing of intentional radiators with detachable antennas shall be done with a dummy load otherwise the tests should be done with connected antenna and if adjustable fully extended.

3.5 Test setup

Picture 1: Outline of conducted emission test setup

Comments: All peripheral devices were additionally decoupled by means of a line stabilization network.

3.6 Test results

Temperature:	22°C	Humidity:	44%
Tested by:	Ch.Kiermeier	Test date:	2010-11-17

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 1.0

Picture 2: Conducted emission on mains, phase, read mode (Chart)

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 1.0

Picture 3: Conducted emission on mains, neutral, read mode (Chart)

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 1.0

Picture 4: Conducted emission on mains, phase, write mode (Chart)

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 1.0

Picture 5: Conducted emission on mains, neutral, write mode (Chart)

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 1.0

4 Radiated emission measurement (<1 GHz)

according to CFR 47 Part 15, section 15.205(a), 15.209(a), 15.247(d)

4.1 Test Location

- ☑ Scan with peak detector in 3 m CDC.
- ☑ Final CISPR measurement with quasi peak detector on 3 m open area test site.

Description	Manufacturer	Inventory No.
CDC	Albatross Projects	E00026
Open site area	EMV TESTHAUS GmbH	E00354

4.2 Test instruments

	Description	Manufacturer	Inventory No.
$\overline{\mathbf{V}}$	ESCS 30 (FF)	Rohde & Schwarz	E00003
	ESU 26	Rohde & Schwarz	W00002
$\overline{\mathbf{Q}}$	ESCI (CDC)	Rohde & Schwarz	E00001
$\overline{\mathbf{V}}$	VULB 9163 (FF)	Schwarzbeck	E00013
$\overline{\mathbf{Q}}$	VULB 9160 (CDC)	Schwarzbeck	E00011
	HFH2-Z2	Rohde & Schwarz	E00060
V	Feedline OATS	Huber & Suhner	200024

4.3 Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency [MHz]	Field strength Fs [μV/m]	Field strength [dBµV/m]	Measurement distance d [m]
0.009 - 0.490	266.6 – 4.9	48.5 – 13.8	300
0.490 - 1.705	48.98 – 14.08	33.8 – 22.97	30
1.705 – 30.0	30	29.54	30
30 – 88	100	40	3
88 – 216	150	43.5	3
216 - 960	200	46	3
Above 960	500	54	3

4.4 Test procedure

- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The receiving antenna was placed 3 meters from the turntable. The test setup was placed inside a compact diagnostic chamber.
- 2. Power on the EUT and all peripherals.
- 3. The broadband antenna was set to vertical polarization.
- 4. The EMI receiver performed a scan from 30MHz to 1000MHz with the detector set to peak and the measurement bandwidth to 120 kHz.
- 5. The turn table was rotated to 6 different positions (360° / 6) and the antenna polarization was changed to horizontal.
- 6. Repeat the test procedure at step 4 and 5.
- 7. The test setup was then placed in an OATS at 3 m distance and all peak values over or with less distance to limit then 6dB were marked and re-measured with a quasi-peak detector.
- 8. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 9. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization. The highest value was recorded.
- 10. For emissions below 30MHz, measurement were done with a loop antenna. The recorded data were measured in QP mode oft he receiver. Antenna height was not changed during this test.

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 1.0

4.5 Test setup

Picture 6: Test setup for radiated emission measurement (< 30 MHz)

Ground plane

Picture 7: Test setup for radiated emission measurement (< 1 GHz)

4.6 Test deviation

There is no deviation with the original standard.

4.7 EUT operation during test

The EUT was programmed to be in continuously transmitting mode.

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 1.0

4.8 Test results

Transmit mode

Temperature:	22°C	Humidity:	44%
Tested by:	Ch.Kiermeier	Test date:	2012-14-03

Radiated Emission Measurement 9 kHz - 30 MHz

Frequency (MHz)	Reading (dBµV/m)	Detector	Recalculation factor (dB/decade)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin	Result
0.125	23,35	QP	80	-56,65	25,66	-82,31	PASS
0.125	23,11	AV	80	-56,89	25,66	-82,55	PASS
0.125	26,64	QP	80	-53,36	25,66	-79,02	PASS
0.125	25,35	AV	80	-54,65	25,66	-80,31	PASS

Note:

Measured value = $23,35 \text{ dB}\mu\text{V/m} @ 3 \text{ m}$

Recalculation factor = 80 dB / decade

Recalculated value = $23,35 \text{ dB}\mu\text{V/m} @ 3 \text{ m} - 80 \text{ dB} = -56,65 \text{ dB}\mu\text{V/m} @ 300 \text{ m}$

Picture 8: Radiated emission 9 kHz – 30 MHz read mode (@ 3m distance)

Picture 9: Radiated emission 9 kHz – 30 MHz write mode (@ 3m distance)

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 1.0

Radiated Emission Measurement 30 MHz - 1000 MHz

Frequency (MHz)	Detector	Average field strength (dBµV/m)	Limit (dBµV/m)	Margin	Polarization	Result
135.96	QPK	15,93	43.5	-27,57	V	PASS
135,96	AV	9,06	43.5		V	PASS
348,52	QPK	30,79	46.0	-15,21	Н	PASS
348,52	AV	7,50	46.0		Н	PASS
696,96	QPK	33,52	46.0	-12,48	V	PASS
696,96	AV	22,33	46.0		V	PASS

Picture 10: Radiated emission 30 MHz – 1000MHz read mode (Vertical/ Horizontal)

Picture 11: Radiated emission 30 MHz – 1000MHz write mode (Vertical/ Horizontal)

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 1.0

5 Equipment calibration status

Inventory Number	Model Number	Manufacturer	Last calibration	Next calibration	Cycle of calibration
W00002	ESU26	Rohde & Schwarz	Dec 11	Dec 12	2 Years
E00001	ESCI	Rohde & Schwarz	Jul 11	Jul 12	2 Years
E00003	ESCS 30	Rohde & Schwarz	Dec 11	Dec 12	1 Year
E00004	ESH 2-Z5	Rohde & Schwarz	Jan. 11	Oct. 13	2 Years
E00005	ESH 2-Z5	Rohde & Schwarz	Dec 11	Dec 13	2 Years
E00060	HFH2-Z2	Rohde & Schwarz	Dec 11	Dec 13	2 Years
E00012	VULB 9163	Schwarzbeck	Mar. 11	Apr. 12	1 Years

Table 1: Equipment Calibration status

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 1.0

6 Measurement uncertainty

Description	Max. deviation	k=
Conducted emission AMN (9kHz to 30 MHz)	± 4,0 dB	2
Radiated emission open field (30 MHz to 1 GHz)	± 4,5 dB	2
Radiated emission absorber chamber (> 1000 MHz)	± 5,4 dB	2

Table 2: Measurement uncertainty

Comment: The uncertainty stated is the expanded uncertainty obtained by multiplying the standard uncertainty by the coverage factor k. If k=2 the value of the measurements lies within the assigned range of values with a probability of 95 %.

EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany Revision: 1.0

7 Summary

The EMC Regulations according to the marked specifications are

KEPT

The EUT does fulfill the general approval requirements mentioned.

NOT KEPT

The EUT does not fulfill the general approval requirements mentioned.

Straubing, March 30, 2012 Place, Date:

Christian Kiermeier

EMI / EMC Test Engineer

Markus Biberger

Technical Executive / EMV TESTHAUS

GmbH

