Stat 134: Conditional Probabilities, Distributions, & Expectations Review

Adam Lucas

December 11th, 2019

Problem 1

Let $X_1 \sim \text{Geom } (p_1)$, $X_2 \sim \text{Geom } (p_2)$, $X_1 \perp X_2$, both on $\{1, 2, \ldots\}$. Find:

- a. $P(X_1 \le X_2)$;
- b. $P(X_1 = x \mid X_1 \leq X_2)$. Recognize $X_1 \mid X_1 \leq X_2$ as a named distribution, and state the parameter(s).

Problem 2

Let $Y \sim \text{Beta } (r,s)$. Conditioned on Y = y, let $X \sim \text{Geometric } (y)$ on $\{0,1,2,\ldots\}$ For simplicity, assume r,s>1.

- a. Find $\mathbb{E}(X)$.
- b. $P(X = x, Y \in dy)$
- c. Find P(X = x), for $x \in \{0, 1, 2, ...\}$.

Problem 3

Suppose a proportion p of a population has a gene m that makes them predisposed to migraines. Of these people, the number of migraines they experience in a year follows a Poisson process with rate μ per year, whereas the rest of the population experiences migraines according to a Poisson process with rate λ .

- a. What is the probability that a randomly selected individual experiences no migraines in a given year?
- b. Let N_t denote the number of migraines a randomly selected individual experiences in t years. Find $\mathbb{E}(N_t)$.

Hint: Condition on whether the individual has gene *m*.

Problem 4

Let *X*, *Y* have joint density $f_{X,Y}(x,y) = 2\lambda^2 e^{-\lambda(x+y)}$, 0 < x < y. It can be shown that $f_X(x) = 2\lambda e^{-2\lambda x}$, x > 0. Find:

- a. The conditional density of Y, given X = x;
- b. $\mathbb{E}(Y|X=x)$.