Number representation: binary arithmetic; overflow

COSC 208, Introduction to Computer Systems, 2022-02-10

Α	n	n	\sim		n		ام	m	Δ	n	to	2
\vdash	H	ıı	U	u	H	U			ㄷ	ıı	L	>

Announcements
Project 1 Part A due Thursday at 11pm
Warm-up
Express these decimal numbers using 8-bit two's complement:
Q1: -49
Q2: -11
STOP HERE after completing the warm-up; if you have extra time please skip ahead to the extra practice.
Binary arithmetic
Use 8-bit signed integers
Q3: 10 + 5
Q4:7 + 15
Q5: -10 + 5

Q6: 10 - 5
Q7: 64 + 64
STOP HERE after completing the above questions; if you have extra time please skip ahead to the extra practice.
Overflow
For each of the following computations, determine whether the computation overflows, underflows, or neither. Assume we are using 8-bit signed integers.
Q8: 0b10000000 + 0b01111111
Q9: 0b10000001 + 0b01111111
Q10: 0b10000000 + 0b10000001
Q11: 0b11000000 + 0b11000000
Q11: 8D11888888 + 8D11888888

Q12: 0b01111111 + 0b00000001
Extra practice
QA: Convert 512 to unsigned binary.
QB: Convert –42 to 8-bit signed binary.
QC: Convert 0xFAB to unsigned binary.
QD: Write a function called $valid_hex$ that takes a string and returns 1 if it is a valid hexadecimal number; otherwise return 0. A valid hexadecimal number must start with $0x$ and only contain the digits $0-9$ and letters $A-F$ (in upper or lower case).
OF: Write a function called hits required that takes an unstigned long decimal (i.e. hase 10) number and returns the

QE: Write a function called bits_required that takes an unsigned long decimal (i.e., base 10) number and returns the minimum number of bits required to represent the number.