Marcelo Barro de Azevedo Vieira

Trabalho da Disciplina de Algoritmos de Inteligência Artificial para classificação

Link no Github: https://github.com/marcelobazevedo/algoritmo_classificacao

1. Faça o módulo do Kaggle Intro to Machine Learning.

kaggle

CERTIFICATE OF COMPLETION

Marcelo de Azevedo

HAS SUCCESSFULLY COMPLETED THE COURSE

Intro to Machine Learning

ON FEBRUARY 13, 2025

DAN RECKER KAGGLE INSTRUCTOR

ALEXIS COOK, HEAD OF KAGGLE LEARN

In [72]: import pandas as pd

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import StratifiedKFold, cross_val_score

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_

import numpy as np

from IPython.display import display

from sklearn.metrics import roc_curve, auc

from sklearn.model_selection import cross_val_predict

from sklearn.impute import SimpleImputer

In [81]: ## bibliotecas necessárias para a execução do código

!conda list > requirements.txt

In [19]: path = "dataset/winequalityN.csv"

df = pd.read_csv(path)

df.head()

Out[19]:

:		type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sul
	0	white	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	
	1	white	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	
	2	white	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	
	3	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	
	4	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	

In [20]: df.describe().T

Out[20]:		count	mean	std	min	25%	50%	75%	
	fixed acidity	6487.0	7.216579	1.296750	3.80000	6.40000	7.00000	7.70000	15.
	volatile acidity	6489.0	0.339691	0.164649	0.08000	0.23000	0.29000	0.40000	1.
	citric acid	6494.0	0.318722	0.145265	0.00000	0.25000	0.31000	0.39000	1.
	residual sugar	6495.0	5.444326	4.758125	0.60000	1.80000	3.00000	8.10000	65.
	chlorides	6495.0	0.056042	0.035036	0.00900	0.03800	0.04700	0.06500	0
	free sulfur dioxide	6497.0	30.525319	17.749400	1.00000	17.00000	29.00000	41.00000	289.
	total sulfur dioxide	6497.0	115.744574	56.521855	6.00000	77.00000	118.00000	156.00000	440.
	density	6497.0	0.994697	0.002999	0.98711	0.99234	0.99489	0.99699	1.
	рН	6488.0	3.218395	0.160748	2.72000	3.11000	3.21000	3.32000	4
	sulphates	6493.0	0.531215	0.148814	0.22000	0.43000	0.51000	0.60000	2.
	alcohol	6497.0	10.491801	1.192712	8.00000	9.50000	10.30000	11.30000	14.
	quality	6497.0	5.818378	0.873255	3.00000	5.00000	6.00000	6.00000	9.
In [21]:			dos ausente df.isnull(

```
In [21]: # Verificando dados ausentes
missing_values = df.isnull().sum()

# Criando o gráfico de barras para visualizar os dados ausentes
plt.figure(figsize=(5, 3))
plt.bar(missing_values.index, missing_values.values, color='green')
plt.xlabel("Variáveis")
plt.ylabel("Quantidade de Valores Ausentes")
plt.title("Quantidade de Valores Ausentes por Variável")
plt.xticks(rotation=90)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```



```
In [22]: # Tratando os valores ausentes com os valores anteriores da coluna
df.ffill(inplace=True)

In [23]: # Criando o gráfico de barras para visualizar os dados ausentes
missing = df.isnull().sum()
plt.figure(figsize=(5, 3))
plt.bar(missing.index, missing.values, color='red')
plt.xlabel("Variáveis")
plt.ylabel("Quantidade de Valores Ausentes")
plt.title("Quantidade de Valores Ausentes por Variável")
plt.xticks(rotation=90)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```


In [24]: # Gerando os histogramas para todas as variáveis numéricas de forma a entender
df.hist(figsize=(12, 8), bins=30, color='red', edgecolor='black', alpha=0.7)
plt.suptitle("Histogramas das Variáveis Numéricas", fontsize=14)
plt.show()

Histogramas das Variáveis Numéricas

2. Resposta para a questão 2

2.1 Crie uma nova variável, chamada "opinion" que será uma variável categórica igual à 0, quando quality for menor e igual à 5, caso contrário o valor será 1.

```
In [25]: # Criando um dataframe independente já filtrando os vinhos brancos
         df ww = df[df['type'] == 'white'].copy()
         # Criando a variável categórica e definindo os valores 0 ou 1
         df_ww['opinion'] = df_ww['quality'].apply(lambda x: 0 if x <= 5 else 1)</pre>
         # Fazendo drop da variável quality
         df_ww.drop(columns=['quality'], inplace=True)
         # Exibindoo as primeira linhas do novo dataset
         print(df ww.head())
            type fixed acidity volatile acidity citric acid residual sugar \
        0 white
                             7.0
                                              0.27
                                                           0.36
                                                                            20.7
        1
                             6.3
                                              0.30
                                                           0.34
           white
                                                                             1.6
        2
           white
                             8.1
                                              0.28
                                                           0.40
                                                                             6.9
        3 white
                             7.2
                                              0.23
                                                           0.32
                                                                             8.5
        4 white
                             7.2
                                              0.23
                                                           0.32
                                                                             8.5
           chlorides free sulfur dioxide total sulfur dioxide
                                                                             pH \
                                                                  density
        0
               0.045
                                      45.0
                                                                            3.00
                                                           170.0
                                                                   1.0010
        1
               0.049
                                      14.0
                                                           132.0
                                                                   0.9940
                                                                            3.30
        2
               0.050
                                      30.0
                                                            97.0
                                                                   0.9951 3.26
        3
               0.058
                                      47.0
                                                           186.0
                                                                   0.9956 3.19
        4
               0.058
                                      47.0
                                                           186.0
                                                                   0.9956 3.19
           sulphates
                      alcohol opinion
        0
                0.45
                          8.8
                                      1
                0.49
                          9.5
                                      1
        1
        2
                0.44
                          10.1
                                      1
        3
                0.40
                          9.9
                                      1
                          9.9
        4
                0.40
                                      1
```

In [26]: df_ww.hist(figsize=(12, 8), bins=30, color='blue', edgecolor='black', alpha=0.
plt.suptitle("Histogramas das Variáveis Numéricas após a exclusão da variáve q
plt.show()

3. Resposta da Questão 3.

3.1 Quais são as variáveis? Quais são os tipos de variáveis (discreta, categórica, contínua)?

Variáveis do Dataset

Variável	Tipo	Descrição
type	Categórica	Tipo do vinho ("white" para vinho branco ou "red" para vinho tinto).
fixed acidity	Contínua	Acidez fixa do vinho, medida em g/dm³. Representa os ácidos não voláteis, como o ácido tartárico.
volatile acidity	Contínua	Acidez volátil, medida em g/dm³. Refere-se aos ácidos que evaporam facilmente, como o ácido acético. Altos valores podem indicar sabor avinagrado.
citric acid	Contínua	Quantidade de ácido cítrico no vinho, medida em g/dm³. Ajuda a dar frescor ao vinho.
residual sugar	Contínua	Açúcar residual do vinho, medido em g/dm³. Refere-se ao açúcar que sobra após a fermentação. Vinhos secos geralmente têm menos de 4 g/dm³.
chlorides	Contínua	Teor de cloretos (sal), medido em g/dm³. Influencia o sabor salgado do vinho.
free sulfur dioxide	Contínua	Dióxido de enxofre livre, medido em mg/dm³. Ajuda a prevenir a oxidação e crescimento de microrganismos.
total sulfur dioxide	Contínua	Dióxido de enxofre total, medido em mg/dm³. Inclui o SO2 livre e o SO2 ligado. Regulado por normas para evitar excesso.

Variável	Tipo	Descrição
density	Contínua	Densidade do vinho, em g/cm³. Relacionada ao teor alcoólico e teor de açúcar.
рН	Contínua	Medida da acidez geral do vinho. Um pH baixo indica maior acidez, enquanto um pH alto indica menor acidez. A maioria dos vinhos varia entre 3 e 4 .
sulphates	Contínua	Sulfatos, medidos em g/dm³. Influenciam a estabilidade microbiológica do vinho.
alcohol	Contínua	Teor alcoólico do vinho, expresso em % (porcentagem de álcool por volume).
opinion	Categórica	Nova variável criada a partir da quality . Assume: 0 se qualidade \leq 5 e 1 se qualidade $>$ 5.

3.2 Quais são as médias e desvios padrões?

```
In [27]: # Calculando as médias e os desvios padrões para cada variável
         values = df_ww.describe().loc[['mean', 'std']]
         print(values)
              fixed acidity volatile acidity citric acid residual sugar chlorides
                                     0.278312
                   6.855033
                                                  0.334204
                                                                  6.391343
                                                                             0.045773
        mean
                   0.843450
                                     0.100841
                                                  0.121020
                                                                  5.072120
                                                                             0.021847
        std
              free sulfur dioxide total sulfur dioxide
                                                          density
                                                                         pH \
        mean
                        35.308085
                                             138.360657
                                                         0.994027
                                                                   3.188269
                        17.007137
        std
                                              42.498065 0.002991 0.150937
              sulphates
                           alcohol
                                     opinion
               0.489835
                         10.514267
                                    0.665169
        mean
               0.114141
                                    0.471979
        std
                          1.230621
```

4. Respostas para a questão 4.

4.a Descreva as estapas necessárias para criar um modelo de classificação eficiente.

Etapas para Criar um Modelo de Classificação

Etapa	Definição Explorar os dados para entender suas características, variáveis, tipos e distribuições. Identificar possíveis problemas, como dados ausentes e outliers.			
1. Coleta e Entendimento dos Dados				
2. Pré-processamento dos Dados	Limpeza dos dados, tratamento de valores ausentes, remoção ou substituição de outliers e normalização/ padronização das variáveis.			
3. Criação da Variável- Alvo	No nosso caso, a variável "opinion" foi criada a partir de "quality", transformando o problema em classificação binária.			
4. Análise Exploratória dos Dados (EDA)	Criar histogramas, gráficos de dispersão, boxplots e matrizes de correlação para entender relações entre as variáveis e a variávelalvo.			
5. Divisão dos Dados em Treino e Teste	Separar os dados em conjunto de treino (80%) e conjunto de teste (20%) para avaliar o desempenho do modelo.			

Etapa Definição

Escolher um modelo adequado para classificação, como Regressão 6. Escolha do Logística, Random Forest, SVM, KNN ou Redes Neurais. Testar Algoritmo diferentes algoritmos para encontrar o melhor. 7. Treinamento do Ajustar o modelo aos dados de treino e testar diferentes hiperparâmetros para otimização. Modelo Avaliar a performance do modelo nos dados de teste usando métricas como Acurácia, Precisão, Recall, F1-Score e Matriz de 8. Avaliação do Modelo Confusão. Ajustar hiperparâmetros, balancear classes (caso necessário) e 9. Otimização do aplicar técnicas como **feature selection** para melhorar a precisão Modelo do modelo. Se o modelo atingir um bom desempenho, ele pode ser 10. Implementação e implementado para prever novas amostras. O monitoramento Monitoramento contínuo é necessário para garantir sua eficácia ao longo do tempo.

4.b Treine um modelo de regressão logística usando um modelo de validação cruzada estratificada com k-folds (k=10) para realizar a classificação. Calcule para a base de teste:

```
In [59]: # Tratando valores ausentes preenchendo com a média das colunas numéricas
         df_ww.fillna(df.mean(numeric_only=True), inplace=True)
         # Selecionando as features e a variável alvo
         X = df_ww.drop(columns=['opinion', 'type'])
         y = df_ww['opinion']
In [60]: # Normalizando as variáveis para melhorar a convergência do modelo
         scaler = StandardScaler()
         X scaled = scaler.fit transform(X)
In [61]: # Configurando a validação cruzada estratificada com k=10
         kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
In [62]: # Definindo função para calcular métricas de validação cruzada
         def avaliar_modelo(modelo, X, y):
             scores = {
                 'accuracy': cross_val_score(modelo, X, y, cv=kfold, scoring='accuracy'
                 'precision': cross_val_score(modelo, X, y, cv=kfold, scoring='precision')
                 'recall': cross_val_score(modelo, X, y, cv=kfold, scoring='recall', n_
                 'f1_score': cross_val_score(modelo, X, y, cv=kfold, scoring='f1', n_jo
             }
             resultados = {
                 'Média Acurácia': np.mean(scores['accuracy']),
                 'Desvio Acurácia': np.std(scores['accuracy']),
                 'Média Precisão': np.mean(scores['precision']),
                 'Desvio Precisão': np.std(scores['precision']),
                 'Média Recall': np.mean(scores['recall']),
```

```
In [63]: # Treinando e avaliando Regressão Logística
modelo_rl = LogisticRegression(max_iter=5000, solver='saga')
```

'Desvio Recall': np.std(scores['recall']),
'Média F1-Score': np.mean(scores['f1_score']),
'Desvio F1-Score': np.std(scores['f1_score'])

return pd.DataFrame([resultados])

}

```
# Treinando e avaliando Árvore de Decisão
         modelo_dt = DecisionTreeClassifier(random_state=42)
         resultados_dt = avaliar_modelo(modelo_dt, X, y)
         # Treinando e avaliando SVM
         modelo_svm = SVC(kernel='linear', random_state=42)
         resultados_svm = avaliar_modelo(modelo_svm, X_scaled, y)
In [64]: print("Questão 4.b - Resultados da Regressão Logística:")
         display(resultados rl)
         print("Questão 4.c - Resultados da Árvore de Decisão:")
         display(resultados_dt)
         print("Questão 4.d - Resultados da SVM:")
         display(resultados_svm)
        Questão 4.b - Resultados da Regressão Logística:
              Média
                       Desvio
                                  Média
                                           Desvio
                                                     Média
                                                               Desvio
                                                                         Média
                                                                                   Desvio
            Acurácia
                     Acurácia
                               Precisão
                                         Precisão
                                                     Recall
                                                               Recall F1-Score
                                                                                F1-Score
           0.748874
                     0.015734
                               0.774561
                                         0.015213  0.878753  0.018209
                                                                       0.823174
                                                                                 0.010585
        Questão 4.c - Resultados da Árvore de Decisão:
              Média
                       Desvio
                                  Média
                                           Desvio
                                                     Média
                                                              Desvio
                                                                         Média
                                                                                  Desvio
            Acurácia
                     Acurácia
                               Precisão
                                         Precisão
                                                     Recall
                                                               Recall
                                                                      F1-Score
                                                                                F1-Score
           0.795021
                     0.014994
                               0.846172
                                         0.011828 0.845914
                                                            0.025754
                                                                      0.845762
                                                                                0.013035
        Questão 4.d - Resultados da SVM:
              Média
                       Desvio
                                  Média
                                           Desvio
                                                     Média
                                                              Desvio
                                                                         Média
                                                                                  Desvio
                    Acurácia Precisão
            Acurácia
                                         Precisão
                                                     Recall
                                                               Recall
                                                                      F1-Score
                                                                                F1-Score
```

resultados_rl = avaliar_modelo(modelo_rl, X_scaled, y)

5. Em relação à questão anterior, qual o modelo deveria ser escolhido para uma eventual operação. Responda essa questão mostrando a comparação de todos os modelos, usando um gráfico mostrando a curva ROC média para cada um dos gráficos e justifique.

0.011673 0.890108 0.021559

0.827082

0.010598

0.752548

0.014146

0.772727

```
In [65]: # Criando dicionário para armazenar as curvas ROC
modelos = {
    "Regressão Logística": modelo_rl,
    "Árvore de Decisão": modelo_dt,
    "SVM": modelo_svm
}

plt.figure(figsize=(10, 7))

# Gerando a curva ROC para cada modelo
for nome, modelo in modelos.items():
    if nome == "SVM":
        y_scores = cross_val_predict(modelo, X_scaled, y, cv=kfold, method="de else:
        y_scores = cross_val_predict(modelo, X_scaled, y, cv=kfold, method="pr

# Calculando FPR, TPR e AUC
fpr, tpr, _ = roc_curve(y, y_scores)
```

```
roc_auc = auc(fpr, tpr)
# Plotando a curva ROC
plt.plot(fpr, tpr, label=f'{nome} (AUC = {roc_auc:.2f})')

# Adicionando linha diagonal de referência
plt.plot([0, 1], [0, 1], 'k--', lw=2)

# Configurações do gráfico
plt.xlabel('Taxa de Falsos Positivos (FPR)')
plt.ylabel('Taxa de Verdadeiros Positivos (TPR)')
plt.title('Curva ROC - Comparação de Modelos')
plt.legend(loc="lower right")
plt.grid()

plt.show()
```


Justificativa da Questão 5.

A curva ROC mede o desempenho do modelo em termos da taxa de verdadeiros positivos (TPR) contra a taxa de falsos positivos (FPR) para diferentes limiares de decisão. O AUC (Área Sob a Curva) quantifica a capacidade do modelo de distinguir entre classes.

Escolha do Melhor Modelo

O modelo com **a maior área sob a curva (AUC)** é o que apresenta **melhor desempenho** para a tarefa de classificação.

- Se um modelo tem um AUC maior, significa que ele é melhor em separar as classes.
- Se as curvas de dois modelos forem próximas, a escolha pode depender de outros fatores como interpretabilidade e tempo de treinamento.

Conclusão

- Se a Regressão Logística ou SVM tiverem AUC maior, um deles deve ser escolhido, pois são mais estáveis para classificação.
- Se a Árvore de Decisão apresentar desempenho similar, pode ser escolhida se houver necessidade de interpretabilidade.

```
In [82]: # Filtrando apenas os dados de vinho tinto da base original
         df wr = pd.read csv(path)
         df_wr = df_wr[df_wr['type'] == 'red'].copy()
         # Removendo a coluna 'type' e garantindo que apenas colunas numéricas sejam us
         df_wr = df_wr.drop(columns=['type'], errors='ignore')
         # Criando a variável 'opinion' com base na coluna 'quality'
         df_wr['opinion'] = df_wr['quality'].apply(lambda x: 0 if x <= 5 else 1)</pre>
         # Tratando valores ausentes preenchendo com a média das colunas numéricas
         imputer = SimpleImputer(strategy='mean')
         X_wr_imputed = imputer.fit_transform(df_wr.drop(columns=['opinion', 'quality']
         # Separando os atributos de entrada (X) e a variável alvo (y)
         X_wr = pd.DataFrame(X_wr_imputed, columns=df_wr.drop(columns=['opinion', 'qual
         y_wr = df_wr['opinion']
         # Normalizando os dados do vinho tinto com o mesmo scaler usado para os branco
         scaler = StandardScaler()
         X_wr_scaled = scaler.fit_transform(X_wr)
         # Escolhendo o melhor modelo (com base no gráfico ROC)
         melhor_modelo = LogisticRegression(random_state=42)
         # Garantindo que o modelo foi treinado apenas nos vinhos brancos antes da infe
         X_scaled = scaler.fit_transform(imputer.fit_transform(df[df['type'] == 'white'
         y = df[df['type'] == 'white']['quality'].apply(lambda x: 0 if x <= 5 else 1)</pre>
         melhor modelo.fit(X scaled, y) # Treinado *somente* com os vinhos brancos
         # Realizando inferência nos vinhos tintos (sem re—treinamento)
         y_pred_wr = melhor_modelo.predict(X_wr_scaled)
         # Contando quantos vinhos tintos foram classificados como bons (1) ou ruins (0\mid
         resultados_wr = pd.DataFrame({
             'Total de Vinhos': [len(y_pred_wr)],
             'Vinhos Bons (quality > 5)': [np.sum(y_pred_wr)],
             'Vinhos Ruins (quality <= 5)': [len(y_pred_wr) - np.sum(y_pred_wr)]
         })
         # Exibindo resultados
         print("Inferência nos Vinhos Tintos:")
         display(resultados_wr)
         # Criando gráfico de barras para visualizar os resultados
         plt.figure(figsize=(7, 5))
         ax = plt.bar(['Ruins (<=5)', 'Bons (>5)'], [resultados_wr['Vinhos Ruins (quali
         # Adicionando os valores nas barras
         for p in ax:
             plt.annotate(f"{p.get_height()}", (p.get_x() + p.get_width() / 2., p.get_h
                          ha='center', va='bottom', fontsize=10, fontweight='bold', col
```

```
# Configurando o gráfico
plt.xlabel('Classificação')
plt.ylabel('Número de Vinhos Tintos')
plt.title('Distribuição de Vinhos Tintos Preditos')
plt.grid(axis="y", linestyle="--", alpha=0.7)
# Exibindo o gráfico
plt.show()
```

Inferência nos Vinhos Tintos:

0

Total de Vinhos Vinhos Bons (quality > 5) Vinhos Ruins (quality <= 5)

1599 1010 589

6. Resposta da questão 6.

Ele funciona da mesma forma para essa nova base?

Não.

Justifique.

O modelo pode não generalizar bem, porque foi treinado **apenas com vinhos brancos** e pode não capturar corretamente as características dos vinhos tintos.

Motivos para não usar o mesmo modelo diretamente

- 1. Diferenças nas características dos vinhos:
 - Vinhos tintos e brancos têm composições químicas diferentes (pH, acidez, açúcar, álcool, etc.).
 - O modelo treinado só com vinhos brancos pode ter aprendido padrões

específicos desses vinhos, que não se aplicam aos tintos.

2. Risco de viés e baixa acurácia:

- Como os dados de vinho tinto não foram usados no treinamento, o modelo pode errar mais na previsão dos vinhos tintos.
- Se a distribuição dos atributos for muito diferente, o modelo pode estar "fora da sua zona de conforto".

3. O modelo pode não generalizar bem:

- Modelos de machine learning funcionam melhor quando o treinamento reflete bem os dados de inferência.
- O ideal seria treinar um modelo com dados de ambos os vinhos para melhorar a generalização.

O que fazer então? Treinar um novo modelo combinando vinhos brancos e tintos no treinamento. Desta forma, o modelo aprende características de ambos os tipos de vinho. A previsão será mais precisa e confiável para os vinhos tintos.

7. Disponibilize os códigos usados para responder da questão 2-6 em uma conta github e indique o link para o repositório.

https://github.com/marcelobazevedo/algoritmo_classificacao