

Intro

• Why Python?

Running Python locally

```
Anaconda Prompt - python
Python 3.6.10 |Anaconda, Inc.| (default, Mar 23 2020, 17:58:33) [MSC v.
Type "help", "copyright", "credits" or "license" for more information.
>>> print("hello world")
hello world
```

scripts.py

vs. notebooks.ipynb Jupyter

Running Jupyter notebooks in the cloud, e.g. collaboratory COCO

GitHub

Schedule

#	date	epic	notebook	resouces, key learnings
1		colab	10_Colab_intro.ipynb	
2	Tu. 19.05.	Colub	12_Logfile_challenge.ipynb	
3	13:00			
4				
5			15_Logfiles_w_NumPy.ipynb	15_NumPy.ipynb
6	We. 20.05.			16_Matplotlib.ipynb
7	13:00		17_Logfiles_w_Pandas.ipynb	17_Pandas.ipynb
8				(18_object_oriented_programming.ipynb)
9	Fr. 22.05.		21_machine_learning_intro.ipynb	generalization, overfitting
10	14:00	learn		splitting test data, correlation
11	Fr. 29.05.	cewii	22_end2end_ml_project.ipynb	
12	14:00			
13	Tu. 02.06.			
14	14:00			
15	Fr. 05.06.			
16	14:00			

Tools and Notebooks

- Jupyter notebooks and datasets are available on GitHub: https://github.com/munich-ml/MLPy2020
- Naming conventions:
 - 12_Logfile_challenge_blank.ipynb
 - 12_Logfile_challenge_dirty.ipynb
 - 12_Logfile_challenge.ipynb

empty version to start with dirty version from life session clean version published later

Colab notebook environment

- https://colab.research.google.com/
- Open notebook templates from GitHub:
 - File >> open notebook >> GitHub >> munich-ml/MLPy2020
- Save your own work on your Google Drive:
 - File >> Save a copy to Drive

Machine learning

Choosing the right estimator

Source: https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

learn

Neural networks Computer vision with TensorFlow

Classification with neural networks

Training a neural network

- Training: Learning a function/model that best maps the training dataset
- Neural net training: Finding weights & biases that minmize the cost function
 Training algorithm: Back propagation in 3 steps:
 - (1) Feed forward a batch of example images through the model
 - (2) Compute error from labels and predictions
 - \circ cost function E= $(y_{PRED} y_{TRUE})^2$
 - Effects of weights on the error dE/dWeight
 - (3) Propagate error through the model
 - modify weights by their effect on the error

Learning rate lr

Epoch is the training over the full dataset, executed in batches

Backpropagation animation

Source: https://towardsdatascience.com/lets-code-convolutional-neural-network-in-plain-numpy-ce48e732f5d5

Convolutional neural networks (CNN)

- Disadvantages of (fully connected) neural nets (NN) for image processing
 - Don't scale well (many features; prone to overfitting)
 - Disregard pixel distance (neighborhood have semantic meaning)
 - Objects of interest are detected at certain positions, only
- Convolutional neural networks (CNN) consist of 3 basic layer types:
 - Convolutional layers
 - Trainable filters measure the presence certain patterns / objects
 - The object may occur anywhere
 - Pooling layers
 - Downsize resolution
 - focus (on the maximum)
 - Fully connected layers
 - Aggregate information as higher represention

Source: https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac

Convolutional neural networks (CNN)

low conv layers

learn basic shapes like edges, corners, circles, textures,...

middle conv layers

learn parts of object like eyes, fingers, wheels, leafs,...

higher dense layers

learn to recognize full objects, in different shapes and positions

Interactive 3D CNN on MNIST: https://www.cs.ryerson.ca/~aharley/vis/conv/

Source: https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac