## Introductory Econometrics I

## Multiple Regression: Further Issues

Yingjie Feng

School of Economics and Management

Tsinghua University

April 19, 2024

## Outline

- Units of Measurement
- 2 More on Functional Form
  - More on Logarithms
  - Models with Quadratics
  - Models with Interaction Terms
- 3 More on Goodness-of-Fit and Selection of Regressors
  - Adjusted R-Squared
  - Controlling for Too Many Factors in Regression

- Changing the units of measurement of y or some of  $x_j$  cannot change the interpretation of the OLS regression line.
  - Multiply the dependent variable y by a constant  $c \neq 0$ :

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

$$\to cy = c\beta_0 + c\beta_1 x_1 + \dots + c\beta_k x_k + cu$$

- $\star$  All coefficients (intercept and slopes) get multiplied by c
- \* Standard errors of OLS estimates get multiplied by c
- \* Fitted values  $\hat{y}_i$  and residuals  $\hat{u}_i$  get multiplied by c
- \*  $R^2$ , t statistics (except they change sign if c < 0) and F statistics do not change

- Changing the units of measurement of y or some of  $x_j$  cannot change the interpretation of the OLS regression line.
  - 2 Multiply an independent variable  $x_j$  by a constant  $c \neq 0$

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_j x_j + \dots + \beta_k x_k + u$$

$$\rightarrow y = \beta_0 + \beta_1 x_1 + \dots + c^{-1} \beta_j (cx_j) + \dots + \beta_k x_k + u$$

- \* The slope on  $x_j$  gets divided by c (others do not change)
- ★ The standard error of  $\hat{\beta}_j$  gets divided by c (others do not change)
- \* Fitted values  $\hat{y}_i$  and residuals  $\hat{u}_i$  do not change
- \*  $R^2$ , t statistics (except t stat. on the new  $x_j$  changes sign if c < 0) and F statistics do not change

- Changing the units of measurement of y or some of  $x_j$  cannot change the interpretation of the OLS regression line.
  - **3** For dependent variable y > 0, we transform  $\log(y)$  into  $\log(cy)$  for c > 0

$$\log(y) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

$$\to \log(cy) = \beta_0 + \log(c) + \beta_1 x_1 + \dots + \beta_k x_k + u$$

- \* The intercept in the regression increases by  $\log(c)$
- \* Slopes (and their standard errors) and residuals do not change
- ★ Each fitted values  $\hat{y}_i$  increases by  $\log(c)$
- \* R-squared, t and F statistics (except the intercept) do not change

- Changing the units of measurement of y or some of  $x_j$  cannot change the interpretation of the OLS regression line.
  - **①** For an independent variable  $x_j > 0$ , we transform  $\log(x_j)$  into  $\log(cx_j)$

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_j \log(x_j) + \dots + \beta_k x_k + u$$

$$\to y = \beta_0 - \beta_j \log(c) + \beta_1 x_1 + \dots + \beta_j \log(cx_j) + \dots + \beta_k x_k + u$$

- \* The intercept (and its s.e.) changes but the slopes (and their s.e.) do not
- ★ Fitted values and residuals do not change
- $\star$   $R^2$  and test statistics (except for those relating to the intercept) do not change

- All previous claims can be shown algebraically
  - ▶ Check them with data: BWGHT.DTA
    - $\star$  y: infant birth weight
    - $\star$  x: number of cigarettes smoked by mother; family income
  - ▶ bwghtlbs = bwght/16, packs = cigs/20, and  $famindol = 1,000 \cdot faminc$ .
    - ★ reg bwght cigs faminc
    - \* reg bwghtlbs cigs faminc
    - reg bwght packs faminc
    - ★ gen famincdol = 1000\*faminc
    - ★ gen lfamincdol = log(famincdol)
    - \* reg lbwght cigs lfaminc
    - ★ reg lbwght cigs lfamincdol

- All previous claims can be shown algebraically
- The bottom line: nothing unexpected happens
  - We cannot change the importance of an effect, goodness of fit, or statistical inference by changing units of measurement of variables.
- Changing units and then taking logs only changes the intercept.
  - Recall: a change in logs approximates the relative change (free of units of measurement)
  - ▶ In particular, elasticities are free of units of measurement (units of measurement of x and y when regressing log y on log x are irrelevant)

#### Beta Coefficients

- A beta coefficient can be useful (only for interpreting results) when some of the  $x_j$  or y have units that are not easily understood
  - ► Example: how important is a one-point increase in a test score?
- Useful to ask:
  - "How many standard deviations will y change when  $x_j$  increases by one standard deviation?"
  - ► This allows us to see how important an effect is **relative to** the population
- We call such estimates the beta coefficients
  - ▶ This is done by standardizing y and each  $x_j$ :

$$y'_{i} = \frac{y_{i} - \bar{y}}{sd(y)}, \quad x'_{ij} = \frac{x_{ij} - \bar{x}_{j}}{sd(x_{j})}$$

▶ Do it by hand or have Stata compute the **beta coefficients**.

## Beta Coefficients: Example

#### • Use ATTEND.DTA:

- $\hat{\beta}_{priGPA} \approx 5\hat{\beta}_{ACT}$ . Does it mean priGPA has a more important effect?
- ▶ 1 sd increase in priGPA increases  $\widehat{final}$  by about .222 sds
- ▶ 1 sd increase in ACT increases  $\widehat{finat}$  by about .297 sds (a larger movement in the distribution of final exam score)
- Nothing changes in terms of fit or testing

cons

| eg final s | kipped priGPA | ACT, beta |           |                                   |   |          |
|------------|---------------|-----------|-----------|-----------------------------------|---|----------|
| Source     | ss            | df        | MS        | Number of obs                     | = | 686      |
|            |               |           |           | F(3, 676)                         | = | 56.79    |
| Model      | 3032.09408    | 3         | 1010.6980 | 3 Prob > F                        | = | 0.0006   |
| Residual   | 12029.853     | 676       | 17.795640 | 5 R-squared                       | = | 0.2013   |
|            |               |           |           | <ul> <li>Adj R-squared</li> </ul> | = | 0.1978   |
| Total      | 15061.9471    | 679       | 22.182543 | 5 Root MSE                        | = | 4.2185   |
| final      | Coefficient   | Std. err. | t         | P> t                              |   | Beta     |
| skipped    | 0793386       | .0352349  | -2.25     | 0.025                             |   | .0918918 |
| nriGPA     | 1.915294      | .372614   | 5.14      | 0.000                             |   | .2215126 |

## Beta Coefficients: Example

- Note: no "beta coefficient" for the intercept (the intercept is zero when all variables have zero sample averages)
- We could also do the calculation by hand.

#### sum final skipped priGPA ACT

| Variable | 0bs | Mean     | Std. dev. | Min  | Max  |
|----------|-----|----------|-----------|------|------|
| final    | 680 | 25.89118 | 4.709835  | 10   | 39   |
| skipped  | 680 | 5.852941 | 5.455037  | 0    | 30   |
| priGPA   | 680 | 2.586775 | .5447141  | .857 | 3.93 |
| ACT      | 680 | 22.51029 | 3.490768  | 13   | 32   |

• For example, holding other factors fixed, if  $\Delta priGPA = .545$  (one sd),

$$\widehat{\Delta final} = 1.915(.545) = 1.0437$$

• This is equivalent  $1.0437/4.7098 \approx .222$  sd of final.

### Outline

- Units of Measurement
- 2 More on Functional Form
  - More on Logarithms
  - Models with Quadratics
  - Models with Interaction Terms
- 3 More on Goodness-of-Fit and Selection of Regressors
  - Adjusted R-Squared
  - Controlling for Too Many Factors in Regression

### Outline

- 2 More on Functional Form
  - More on Logarithms
  - Models with Quadratics
  - Models with Interaction Terms

- 3 More on Goodness-of-Fit and Selection of Regressors
  - Adjusted R-Squared
  - Controlling for Too Many Factors in Regression

$$\log(y) = \beta_0 + \beta_1 \log(x_1) + \beta_2 x_2 + u$$

- Recall
  - $\triangleright$   $\beta_1$ : the elasticity of y with respect to  $x_1$
  - ▶  $100\beta_2$ : approximate percentage change in y when  $\Delta x_2 = 1$
- But the approximation may be bad, especially for larger changes.

$$\widehat{\log(y)} = \hat{\beta}_0 + \hat{\beta}_1 \log(x_1) + \hat{\beta}_2 x_2,$$

• The more precise calculation is

$$\widehat{\Delta \log(y)} = \widehat{\beta}_2 \Delta x_2 \quad \Rightarrow \quad \log \frac{\widehat{y} + \Delta \widehat{y}}{\widehat{y}} = \widehat{\beta}_2 \Delta x_2$$

$$\% \Delta \widehat{y} = 100 \cdot [\exp(\widehat{\beta}_2 \Delta x_2) - 1]$$

$$\% \Delta \widehat{y} = 100 \cdot [\exp(\widehat{\beta}_2) - 1] \quad \text{if } \Delta x_2 = 1$$

• If  $\hat{\beta}_2$  is not "too large",  $100[\exp(\hat{\beta}_2) - 1] \approx 100 \cdot \hat{\beta}_2$ .

#### • HPRICE2.DTA:

(log) median house price, pollution and median number of rooms

| . reg lprice lnox r | rooms |
|---------------------|-------|
|---------------------|-------|

|   | Source   | ss         | df  | MS         | Number of obs | = | 506    |
|---|----------|------------|-----|------------|---------------|---|--------|
| _ |          |            |     |            | F(2, 503)     | = | 265.69 |
|   | Model    | 43.4513652 | 2   | 21.7256826 | Prob > F      | = | 0.0000 |
|   | Residual | 41.1308598 | 503 | .081771093 | R-squared     | = | 0.5137 |
| _ |          |            |     |            | Adj R-squared | = | 0.5118 |
|   | Total    | 84.582225  | 505 | .167489554 | Root MSE      | = | .28596 |

| lprice | Coefficient | Std. err. | t      | P> t  | [95% conf. | interval] |
|--------|-------------|-----------|--------|-------|------------|-----------|
| lnox   | 7176736     | .0663397  | -10.82 | 0.000 | 8480106    | 5873366   |
| rooms  | .3059183    | .0190174  | 16.09  | 0.000 | .268555    | .3432816  |
| _cons  | 9.233738    | .1877406  | 49.18  | 0.000 | 8.864885   | 9.60259   |

- . \* increase . di 100\*(exp(.306)-1) 35.798231
- . \* The same as
  . di 100\*(exp(\_b[rooms])-1)
  35.787137
- . \* decrease . di 100\*(exp(-.306)-1) -26.361338

#### • HPRICE2.DTA:

(log) median house price, pollution and median number of rooms

- ▶ More precise percentage change of median house price due to adding one more room is 35.8%
- ▶  $100\hat{\beta}_2\% = 30.6\%$ : imprecise approximate, but it is between the two estimates (for increase and decrease)

#### • Reasons for Using the Natural Log

- The coefficients have percentage change interpretations (units of measurement of these variables are irrelevant)
- ② When y > 0, models with  $\log(y)$  as the dependent variable often more closely satisfy the classical linear model assumptions such as normality
- In most cases, taking the log greatly reduces the variability of a variable, making OLS estimates less sensitive to outlier (or extreme) values

#### • Limitations of Using the Natural Log

- If  $y \ge 0$  but y = 0 is possible, we cannot use  $\log(y)$ . Sometimes  $\log(1+y)$  is used, but interpreting the coefficients is difficult, and  $\log(1+y) \ge 0$  if  $y \ge 0$ .
- ② It is harder to predict y when we have estimated a model for  $\log(y)$ .
- **1** In cases where y is a fraction and close to zero for many observations, log(y) can have *more* variability than y.

#### • Some (Not-so-Hard) Rules on Using Logarithms

- Logs are often used for dollar amounts that are always positive, as well as for variables such as population, especially when there is a lot of variation.
- 2 Logs are used less often for variables measured in years, such as schooling, age, and experience.
- Logs are used less infrequently for variables that are already percents or proportions (e.g., unemployment rate)
  - \* Careful: percentage point change (use y) and percentage change (use  $\log y$ )
  - \* An increase from 8 to 9 is 1 percentage point change, but 12.5% percentage change (log 9 log 8  $\approx$  .118)
- **1** Do not compare  $R^2$  from regressing y and regressing  $\log y$

### Outline

- 2 More on Functional Form
  - More on Logarithms
  - Models with Quadratics
  - Models with Interaction Terms

- 3 More on Goodness-of-Fit and Selection of Regressors
  - Adjusted R-Squared
  - Controlling for Too Many Factors in Regression

- Reg y on  $\log x$ : x has a diminishing effect (log function is concave).
- But sometimes it is not flexible enough.
- Models with quadratics
  - deliver increasing or decreasing effects
  - contain the constant effect as a special case, which can be easily tested
  - allow for a turning point, which may be of interest.
    - \* For example, what is the optimal number of students at a high school for high school performance?

• Consider the model

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + u$$

- ightharpoonup One single explanatory variable x
- ▶ But two **regressors**,  $x_1 = x$  and  $x_2 = x^2$
- The slope of y with respect to x depends on  $\beta_1$  and  $\beta_2$ , and the value of x:

$$\frac{dy}{dx} = \beta_1 + 2\beta_2 x \qquad \text{(holding } u \text{ fixed)}$$

• Estimation is straightforward: just define a new variable  $x^2$ , and include it along with x as a regressor.

• Given the estimated coefficients,

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\beta}_2 x^2$$
$$\frac{\Delta \hat{y}}{\Delta x} \approx \hat{\beta}_1 + 2\hat{\beta}_2 x$$

- $\hat{\beta}_2 < 0$ : the slope is initially positive but decreases as x increases. The function has a hump shape
- ②  $\hat{\beta}_2 > 0$ : the slope is initially negative but increases as x increases. The function has U-shaped
- The turning point is

$$x^* = -\frac{\hat{\beta}_1}{2\hat{\beta}_2}$$

• OLS calculation doesn't change; just be careful about the interpretation

• **EXAMPLE:** A  $\log(wage)$  equation with  $exper^2$  (WAGE1.DTA)

$$\widehat{lwage} = 0.128 + .090 \, educ + .041 \, exper - .0007 \, exper^2$$

$$n = 526, \, R^2 = .300$$

- ▶ Estimated return to education  $\approx 9.0\%$  (the model **assumes** this is the same for all years of experience and education)
- ► Each year of experience is worth less than the preceding year Partial effect of *exper* (taking derivatives):

$$\frac{\Delta \widehat{lwage}}{\Delta exper} \approx .041 - 2(.0007)exper = .041 - .0014 \ exper$$

▶ 4.1% is approximately the return to the 1st year of experience; The return from 10 to 11 is about

$$.041 - .0014 \times (10) = .027 \Leftrightarrow 2.7\%.$$

• **EXAMPLE:** A log(wage) equation with exper<sup>2</sup> (WAGE1.DTA)

$$\widehat{lwage} = 0.128 + .090 \, educ + .041 \, exper - .0007 \, exper^2$$

$$n = 526, \, R^2 = .300$$

▶ Partial effect of *exper*: to be more precise, not use a calculus approximation Return from 10 to 11

$$[.041(11) - .0007(11)^{2}] - [.041(10) - .0007(10)^{2}] \approx .026 \Leftrightarrow 2.6\%$$

▶ Do the exact calculation for larger changes in *exper*.

- . gen exper2=exper^2
- . reg lwage educ exper exper2

|   | Source   | SS             | df  | MS         | Number of obs              | = | 526<br>74.67     |
|---|----------|----------------|-----|------------|----------------------------|---|------------------|
| Ī | Model    | l 44.5393713 3 |     | 14.8464571 | Prob > F                   | = | 0.0000           |
| _ | Residual | 103.79038      | 522 | .198832146 | R-squared<br>Adi R-squared | = | 0.3003<br>0.2963 |
|   | Total    | 148.329751     | 525 | .28253286  | Root MSE                   | = | .44591           |

| lwage  | Coefficient | Std. err. | t     | P> t  | [95% conf. | interval] |
|--------|-------------|-----------|-------|-------|------------|-----------|
| educ   | .0903658    | .007468   | 12.10 | 0.000 | .0756948   | .1050368  |
| exper  | .0410089    | .0051965  | 7.89  | 0.000 | .0308002   | .0512175  |
| exper2 | 0007136     | .0001158  | -6.16 | 0.000 | 000941     | 0004861   |
| _cons  | .1279975    | .1059323  | 1.21  | 0.227 | 0801085    | .3361035  |

- . di \_b[exper]+2\*\_b[exper2]\*10
  .02673771
- . di (\_b[exper]\*11+\_b[exper2]\*11^2)-(\_b[exper]\*10+\_b[exper2]\*10^2)
  .02602415



- The curve turns at about  $exper^* = .041/[2 \cdot (.000714)] \approx 28.7$ .
  - ▶ About 23% of the observations have exper > 29
- Quadratic model is more complicated to interpret
  - We need good statistical evidence for keeping  $x^2$  (e.g.,  $exper^2$ )
  - ▶ Use a *t*-test

$$H_0: \beta_{exper^2} = 0$$
 vs.  $H_1: \beta_{exper^2} \neq 0$ 

▶ t-ratio = -6.16: reject  $H_0$ 

- The curve turns at about  $exper^* = .041/[2 \cdot (.000714)] \approx 28.7$ .
  - ▶ About 23% of the observations have exper > 29
- We already know *exper* affects *lwage*. But if we did want to test

 $H_0$ : exper has no effect on lwage

 $H_1$ : exper does have an effect on lwage

▶ This would be

$$H_0$$
:  $\beta_{exper} = 0$ ,  $\beta_{exper^2} = 0$ .

▶ Use an F test. But usually, if the quadratic term is insignificant, we go back to a linear model.

### Outline

- 2 More on Functional Form
  - More on Logarithms
  - Models with Quadratics
  - Models with Interaction Terms

- 3 More on Goodness-of-Fit and Selection of Regressors
  - Adjusted R-Squared
  - Controlling for Too Many Factors in Regression

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

- $\beta_1$ : partial effect of  $x_1$  on y;  $\beta_2$ : partial effect of  $x_2$  on y
- Important restriction: effect of  $x_1$  never depends on  $x_2$  (vice versa)
- Sometimes we expect the partial effect of one variable (e.g., education) depends on another variable (e.g., intelligence)
- Solution: add an interaction term

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + u$$

$$\frac{\Delta y}{\Delta x_1} = \beta_1 + \beta_3 x_2, \quad \frac{\Delta y}{\Delta x_2} = \beta_2 + \beta_3 x_1$$

•  $H_0: \beta_3 = 0$  means the partial effects are constant. It should be tested.

$$\frac{\Delta y}{\Delta x_1} = \beta_1 + \beta_3 x_2$$

- $\beta_1$ : the partial effect (PE) of  $x_1$  on y when  $x_2 = 0$ .
  - ▶ But  $x_2 = 0$  may be far from a legitimate, or interesting part of population
- Two interesting parameters: PEs evaluated at mean of the other variable

$$\delta_1 = \beta_1 + \beta_3 \mu_2 \qquad (\mu_2 = \mathbb{E}[x_2])$$
 $\delta_2 = \beta_2 + \beta_3 \mu_1 \qquad (\mu_1 = \mathbb{E}[x_1])$ 

- Estimates:  $\hat{\delta}_1 = \hat{\beta}_1 + \hat{\beta}_3 \bar{x}_2, \ \hat{\delta}_2 = \hat{\beta}_2 + \hat{\beta}_3 \bar{x}_1$
- ▶ Alternative implementation: rewriting the model

$$y = \alpha_0 + \delta_1 x_1 + \delta_2 x_2 + \beta_3 (x_1 - \mu_1)(x_2 - \mu_2) + u$$

\* Reg  $y_i$  on 1,  $x_{i1}$ ,  $x_{i2}$ ,  $(x_{i1} - \bar{x}_1)(x_{i2} - \bar{x}_2)$ , and s.e. are obtained as well

• **EXAMPLE:** Does the effect of attending classes depend on priGPA?

$$stndfnl = \beta_0 + \beta_1 atndrte + \beta_2 priGPA + \beta_3 ACT + u$$

► stndfnl: standardized final score; atndrte: percentage of classes attended

| reg stndfnl | atndrte priGP | A ACT     |            |        |           |     |           |
|-------------|---------------|-----------|------------|--------|-----------|-----|-----------|
| Source      | SS            | df        | MS         | Numb   | er of obs | =   | 680       |
|             |               |           |            | - F(3, | 676)      | =   | 56.79     |
| Model       | 133.822385    | 3         | 44.6074616 | Prob   | > F       | =   | 0.0000    |
| Residual    | 530.941183    | 676       | .785415951 | . R-sq | uared     | =   | 0.2013    |
|             |               |           |            | - Adj  | R-squared | =   | 0.1978    |
| Total       | 664.763568    | 679       | .979033237 | Root   | MSE       | =   | .88624    |
| stndfnl     | Coefficient   | Std. err. | t          | P> t   | [95% co   | nf. | interval] |
| atndrte     | .0053337      | .0023687  | 2.25       | 0.025  | .000682   | ,   | .0099846  |
| priGPA      | .4023727      | .0782803  | 5.14       | 0.000  | .24867    | 1   | .5560744  |
| ACT         | .0842571      | .0111821  | 7.54       | 0.000  | .062301   | 3   | .1062129  |
| _cons       | -3.343655     | .2990985  | -11.18     | 0.000  | -3.93092  | 9   | -2.756381 |

• **EXAMPLE:** Does the effect of attending classes depend on priGPA?

$$stndfnl = \beta_0 + \beta_1 atndrte + \beta_2 priGPA + \beta_3 ACT + \beta_4 priGPA \cdot atndrte + u$$

▶ stndfnl: standardized final score; atndrte: percentage of classes attended

#### gen atnpriGPA=atndrte\*priGPA

#### . reg stndfnl atndrte priGPA ACT atnpriGPA

|   | Source   | SS         | df  | MS         | Number of obs | = | 680    |
|---|----------|------------|-----|------------|---------------|---|--------|
| - |          |            |     |            | F(4, 675)     | = | 45.35  |
|   | Model    | 140.819497 | 4   | 35.2048742 | Prob > F      | = | 0.0000 |
|   | Residual | 523.944071 | 675 | .776213439 | R-squared     | = | 0.2118 |
| - |          |            |     |            | Adj R-squared | = | 0.2072 |
|   | Total    | 664.763568 | 679 | .979033237 | Root MSE      | = | .88103 |

| stndfnl                                        | Coefficient                                             | Std. err.                                   | t                                       | P> t                                      | [95% conf.                                               | interval]                                              |
|------------------------------------------------|---------------------------------------------------------|---------------------------------------------|-----------------------------------------|-------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|
| atndrte<br>priGPA<br>ACT<br>atnpriGPA<br>_cons | 0208926<br>5544979<br>.0816979<br>.0114617<br>-1.135889 | .0090469<br>.3280652<br>.011149<br>.0038175 | -2.31<br>-1.69<br>7.33<br>3.00<br>-1.43 | 0.021<br>0.091<br>0.000<br>0.003<br>0.153 | 0386561<br>-1.198649<br>.059807<br>.0039661<br>-2.693276 | 0031291<br>.0896531<br>.1035889<br>.0189573<br>.421498 |

• **EXAMPLE:** Does the effect of attending classes depend on priGPA?

$$stndfnl = \beta_0 + \beta_1 atndrte + \beta_2 priGPA + \beta_3 ACT + \beta_4 atnpriGPA0 + u$$

► stndfnl: standardized final score; atndrte: percentage of classes attended

reg stndfnl atndrte priGPA ACT atnpriGPA0

|   | Source   | SS         | df  | MS         | Number of obs | = | 680    |
|---|----------|------------|-----|------------|---------------|---|--------|
| _ |          |            |     |            | F(4, 675)     | = | 45.35  |
|   | Model    | 140.819498 | 4   | 35.2048744 | Prob > F      | = | 0.0000 |
|   | Residual | 523.94407  | 675 | .776213437 | R-squared     | = | 0.2118 |
| _ |          |            |     |            | Adj R-squared | = | 0.2072 |
|   | Total    | 664.763568 | 679 | .979033237 | Root MSE      | = | .88103 |

| stndfnl                                         | Coefficient                                  | Std. err.                                   | t                                      | P> t                                      | [95% conf.                                               | interval]                                                 |
|-------------------------------------------------|----------------------------------------------|---------------------------------------------|----------------------------------------|-------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|
| atndrte<br>priGPA<br>ACT<br>atnpriGPA0<br>_cons | .0087588<br>.3819215<br>.0816979<br>.0114617 | .0026166<br>.0781179<br>.011149<br>.0038175 | 3.35<br>4.89<br>7.33<br>3.00<br>-11.64 | 0.001<br>0.000<br>0.000<br>0.003<br>0.000 | .0036212<br>.2285382<br>.059807<br>.0039661<br>-4.158885 | .0138964<br>.5353047<br>.1035889<br>.0189573<br>-2.957927 |
| _                                               |                                              |                                             |                                        |                                           |                                                          |                                                           |

atnpriGPA0 = (atndrte - 81.7)(priGPA - 2.587)

- The interaction term is statistically significant (p-value = .003).
  - $\beta_1$  is hard to interpret: "1 percentage point increase in attendance for someone with priGPA = 0 decreases the score by 0.02 sd."
- But if we use  $(priGPA \overline{priGPA})(atndrte \overline{atndrte})$ 
  - $\triangleright$   $\beta_1$  is the partial effect of attendance for those with an **average** priGPA
  - ▶ 10 percentage points increase in attendance increases final score by 0.088 sd
- Positive coefficient on the interaction: return to attending classes is higher for people with higher prior GPA.

$$\frac{\Delta \widehat{stndfnl}}{\Delta \widehat{atndrte}} \approx .0088 + .011 (priGPA - 2.587)$$

► If priGPA is 1.0 above its mean value, the return to attendance is .0088 + .011 = .0198

## Outline

- Units of Measurement
- 2 More on Functional Form
  - More on Logarithms
  - Models with Quadratics
  - Models with Interaction Terms
- 3 More on Goodness-of-Fit and Selection of Regressors
  - Adjusted R-Squared
  - Controlling for Too Many Factors in Regression

### Outline

- 2 More on Functional Form
  - More on Logarithms
  - Models with Quadratics
  - Models with Interaction Terms

- 3 More on Goodness-of-Fit and Selection of Regressors
  - Adjusted R-Squared
  - Controlling for Too Many Factors in Regression

## Adjusted R-Squared

#### • Nested model:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$
  
$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \beta_{k+1} x_{k+1} + \dots + u$$

- One is a special case of the other
- Recall: the usual  $R^2$  never decreases (usually increases), when one or more variables are added to a regression (if no observations are lost)
- ightharpoonup Use t test to decide if we want to include a single new variable
- $\triangleright$  Use F test to decide if we want to add a group of new variables
- But sometimes we want to compare **nonnested** models (neither is a special case of the other). For example,

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_{k-1} x_{k-1} + \beta_{k+1} x_{k+1} + u$$

# Adjusted R-Squared

- Goal: have a goodness-of-fit measure that penalizes adding additional explanatory variables. (The usual  $\mathbb{R}^2$  has no penalty!)
- Recall:

$$R^2 = 1 - \frac{SSR}{SST} = 1 - \frac{(SSR/n)}{(SST/n)},$$

- ► SSR/n: estimate  $\sigma_u^2 = \mathbb{V}[u]$ ; SST/n: estimate  $\sigma_y^2 = \mathbb{V}[y]$  (consistent but not unbiased estimators)
- ▶ **Population R-squared**: the amount of population variation in y explained by  $x_1, ..., x_k$ .

$$\rho^2 = 1 - \frac{\sigma_u^2}{\sigma_y^2}$$

- Adjusted R-squared (also called "R-bar-squared"):
  - ▶ use SSR/(n-k-1) and SST/(n-1) as the unbiased estimators

# Adjusted R-Squared

$$\bar{R}^2 = 1 - \frac{[SSR/(n-k-1)]}{[SST/(n-1)]} = 1 - \frac{\hat{\sigma}^2}{[SST/(n-1)]}.$$

- With more regressors: SSR falls, but so does df = n k 1.
  - $ightharpoonup \bar{R}^2$  can increase or decrease
  - For  $k \ge 1$ ,  $\bar{R}^2 < R^2$  unless SSR = 0
  - For small n and large k,  $\bar{R}^2$  can be much smaller than  $R^2$
  - ▶ It is possible that  $\bar{R}^2 < 0$ , especially if df is small. (But  $R^2 \ge 0$  always)
  - ▶ Important: the R-squared form of the F statistic uses the usual R-squared, not the adjusted R-squared

## Adjusted R-Squared: Final Remarks

- We do not emphasize goodness of fit because focusing on making  $R^2$  or  $\bar{R}^2$  as large as possible can lead to silly mistakes
- In most economic applications we care more about the causal interpretation
- Better to ask
  - Does adding a particular variable reduce the bias, or in other words, does omitting it cause bias?

### Outline

- 2 More on Functional Form
  - More on Logarithms
  - Models with Quadratics
  - Models with Interaction Terms

- 3 More on Goodness-of-Fit and Selection of Regressors
  - Adjusted R-Squared
  - Controlling for Too Many Factors in Regression

# Controlling for Too Many Factors in Regression

- Remember the ceteris paribus interpretation of regression.
  - ► Sometimes it **does not** make sense to hold other factors fixed when studying the effect of a particular variable.
- Example: effect of spending per student on math pass rate (MEAP93.DTA)

$$\Delta \widehat{math10} = (6.23/100)\% \Delta spend \approx .06(\% \Delta spend)$$

- ▶ If spending increases by 10%, pass rate increases by 0.6 percentage point
- $\blacktriangleright$  Now add the teacher-student ratio, staff, and log of the average teacher salary, lsalary
- ► The coefficient on *lspend* is negative (but not very statistically different from zero). Does spending no longer matter?

## Controlling for Too Many Factors in Regression

#### reg math10 lexpend lnchprg

|   | Source                     | SS         | df  | MS         | Number of obs | = | 408              |
|---|----------------------------|------------|-----|------------|---------------|---|------------------|
| _ |                            |            |     |            | F(2, 405)     | = | 44.43            |
|   | Model<br>Residual<br>Total | 8063.82429 | 2   | 4031.91215 | Prob > F      | = | 0.0000<br>0.1799 |
|   |                            | 36753.3562 | 405 | 90.7490276 | R-squared     | = |                  |
| _ |                            |            |     |            | Adj R-squared | = | 0.1759           |
|   |                            | 44817.1805 | 407 | 110.115923 | Root MSE      | = | 9.5262           |

| math10                      | Coefficient | Std. err. | t                      | P> t | [95% conf. | . interval]                     |
|-----------------------------|-------------|-----------|------------------------|------|------------|---------------------------------|
| lexpend<br>lnchprg<br>_cons | 3045853     | .0353574  | 2.10<br>-8.61<br>-0.81 |      | 3740923    | 12.07341<br>2350783<br>28.92848 |

#### reg math10 lexpend lnchprg lsalary staff

| Source   | SS         | df  | MS         | Number of obs | = | 408                  |
|----------|------------|-----|------------|---------------|---|----------------------|
|          |            |     |            | F(4, 403)     | = | 23.78                |
| Model    | 8559.25797 | 4   | 2139.81449 | Prob > F      | = | = 0.0000<br>= 0.1910 |
| Residual | 36257.9225 | 403 | 89.9700311 | R-squared     | = |                      |
|          |            |     |            | Adj R-squared | = | 0.1830               |
| Total    | 44817.1805 | 407 | 110.115923 | Root MSE      | = | 9.4853               |

|   | math10  | Coefficient | Std. err. | t     | P> t  | [95% conf. | interval] |
|---|---------|-------------|-----------|-------|-------|------------|-----------|
| - | lexpend | -20.05237   | 11.69585  | -1.71 | 0.087 | -43.04487  | 2.940139  |
| 1 | lnchprg | 2801704     | .0384148  | -7.29 | 0.000 | 3556888    | 204652    |
| 1 | lsalary | 26.32343    | 11.22514  | 2.35  | 0.020 | 4.25628    | 48.39058  |
|   | staff   | .2510484    | .1140019  | 2.20  | 0.028 | .0269357   | .475161   |
|   | _cons   | -98.81947   | 44.03569  | -2.24 | 0.025 | -185.3878  | -12.25113 |

# Controlling for Too Many Factors in Regression

- It is tempting to **over control** because often  $R^2$  or  $\bar{R}^2$  increases.
- In the previous example,
  - ▶ Why should we control for the teacher-student ratio and teacher's salary?
  - We want to allow spending to increase these variables
  - Once we hold those fixed, the role of spending is limited
    - \* Spending other than to affect these two variables has no effect on performance.

      But this does *not* mean total spending has no effect.
  - ▶ Do not include these factors unless we want to recover some effect of spending that works not through teacher-student ratio and salary
- Different models for different purposes: focus on the ceteris paribus interpretation! (more on this when we discuss program evaluation)