Indian Institute of Space Science and Technology AE 111 - Introduction to Aerospace Engineering (I Semester)

Test 1

Duration: 60 minutes	Total Marks:39
Name:	
SC No:	
Batch	
. The fluid is subdivided into fluid particles and every fluid particle i through space and time. Which kind of formulation is this?	is followed as it moves
A. Eulerian B. Lagrangian C. Euclidian D. Cartesian	
2. Which of these will best define positions of the parcel in increasing a A. Boundary line B. Pathline C. Streakline D. Streamline	time?
3. Which of the following gives the equation of a streamline? (V is the the streamline and ds is a directed element along the streamline) (A. $\mathbf{V} \times \mathbf{ds} = 0$ B. $\nabla(\mathbf{V} \cdot \mathbf{ds}) = 0$ C. $\nabla \cdot \mathbf{V} = \mathbf{ds}$ D. $\mathbf{V} \cdot \mathbf{ds} = 0$	velocity at a point on
A. diverge B. converge or diverge depending on pressure C. rem	nain parallel (D.)con-
A. pathline B. streakline C. streamline D. streamtube	ic circles) represents a
The Bernoulli's equation is valid for A. viscous flow B. unsteady flow C. adiabatic flow D. friction	nless flow
A. there be no viscous fiction in the system B. temperature of system equal C. heat transfer occurs from surroundings to system only transfer	stem and surroundings D. there be no heat

[1]

[1]

[2]

[2]

[1]

[2]

8. An isentropic process is

A. reversible and adiabatic B. reversible and isothermal C. adiabatic D. isothermal

9. The relation between an airplane's true airspeed V_{TAS} and equivalent airspeed V_{EAS} in terms of density ratio, $\sigma = \frac{\rho}{\rho_{SSL}}$, where ρ_{SSL} is the air density at sea-level and ρ is the air density at the height at which the airplane is flying is

A. $\frac{V_{EAS}}{V_{TAS}} = \sigma^2$ B. $\frac{V_{EAS}}{V_{TAS}} = \sigma$ C. $\frac{V_{EAS}}{V_{TAS}} = 1/\sigma$ D. $\frac{V_{EAS}}{V_{TAS}} = \sqrt{\sigma}$

10. Two pipes of diameters d_1 and d_2 converge to form a pipe of diameter d. If the liquid flows with a velocity of v_1 and v_2 in the two pipes (with diameters d_1 and d_2 respectively), what will be the flow velocity in the pipe with diameter d?

 $\frac{d_1^2 \theta_1 + d_2^L \theta_2}{d^2}$

11. The Euler equation along a streamline is given as

dp=-pvdv

12. The expression for dynamic pressure is _________.

13. In incompressible flow, the value of coefficient of pressure at stagnation point equals [1]

14. For an inviscid incompressible flow past a circular cylinder, the velocity at the maximum [1] thickness would be ________.

15. How many Π parameters are needed to express the function $F(a, V, t, \nu, L) = 0$? (a is speed of sound, ν is kinematic viscosity)

- 16. A sharp nose is kept in a supersonic stream. What kind of shock would be formed? [2]
- 17. The expression for equivalent airspeed for incompressible flow is

VEAS = VIAS. PROPERTY PROPERTY

Introduction to Aerospace Engineering

Page 2 of 3

18.	The one-dimensional isentropic energy equation is given by	[:
	GPT+ 1 V= Constant.	
19.	Across a shock the pressures increase	[]
20.	Across a shock the pressuresincrease. Across a shock the velocity decrease.	[1
21.	Across an expansion fan the velocity	[1
22.	Mach numbers after a normal shock would be	[1
23.	Across an expansion fan the density	[1
24.	Across an shock the total pressure decreases and the total temperature and the total temperature	[2
25.	In supersonic flow, an area increase would result in the velocity.	[1
26.	The condition of Mach number=1 at the throat of a convergent-divergent nozzle is called	[1
27.	The wall shear stress is in a laminar boundary layer compared to that of a turbulent boundary layer.	[1
28.	For similar conditions, the turbulent boundary layer separates <u>later</u> (downstream) than a laminar boundary layer.	[1
29.	Define a streamlined body	[2
	Dpc Dq.	
30.	Write the expression for lift coefficient	[2
	G- L Zevie (Arra)	