Multivariate Statistics & Methodology Using R

Block on Linear Mixed Models

Lecture 1

Antje Nuthmann

Structure of the LMM Module

• Lecture 1:

- Classic procedures for repeated measures, ANOVA
- Extended linear models: multiple groups and unbalanced data

• Lecture 2:

- Random coefficient models
- Linear mixed-effects models (theory and how to run in R)

• Lecture 3:

- Model estimation
- Model evaluation and selection

• Lecture 4:

- Random-effects structure
- Why use linear mixed-effects models?

• Lecture 5:

- Example: factorial design analysed with repeated-measures ANOVA vs. LMM
- Example: analysis of response accuracies with GLMM

Outline for Lecture 1

- 1. Characteristics of repeated measures data
- 2. Classical procedures for repeated measures
 - 2.1 Analysis of summary statistics
 - 2.2 Univariate repeated measures ANOVA
- 3. Flexible linear models for longitudinal data
 - 3.1 The ANOVA linear model
 - 3.2 A general regression structure
- 4. Extended linear models: multiple groups and unbalanced data
 - 4.1 Comparing two or more groups
 - 4.2 Imbalance: missing data
 - 4.3 Imbalance: individual measurement designs

1. Characteristics of Repeated Measures Data

- Narrow definition: multiple measures over time to investigate change over time
 - Data collected at several occasions over time for a given subject
- Repeated Measures Study vs. Longitudinal Study
- How does the mean performance of a group of subjects, and of individual responses of a particular subject, change over the course of the investigation?

Characteristics of Repeated Measures Data

- Alternative setup: Individuals (more generally, experimental units) are studied under a series of related conditions
- Example from (modern) psycholinguistics: repeated measurement data with subjects and items as crossed random effects (analyzed with mixed-effects models)

Repeated Measure as opposed to Single Measure Studies

- Basic idea: serial measurements of an individual
- Key issue: measurements from a subject are correlated because they come from one individual

Objectives of Repeated Measure Studies

- Description
 - What occurs to subjects over time? Etc.
- Inference
 - Is a treatment effective? Does substantial change occur over time? Etc.
- Prediction

2. Classical Procedures for Repeated Measures2.1 Analysis of Summary Statistics

- Good way to begin the study of repeated measures is to graph the data
 - When a graphical summary suggest "no effect"
 there generally is no effect

Response to two treatments for backpain

Analysis of Summary Statistics

- Good way to begin the study of repeated measures is to graph the data
- Statistical summary
 - Quantification of the figure
 - Numerical description for effects or null effects

Regression Slope as Summary Measure

- Regression slope describes rate of change during course of the study; Q: Does the rate of change differ between groups?
- Example:
 - 40 men underwent treatment of a psychiatric disorder
 - Between-subject factor: treatment type (2)
 - Within-subject factor: time measurements over eight weeks

Repeated measures over eight weeks on a score from the BPRS

Group 1

Group 2

Boxplot of individual slopes

2.2 Univariate Repeated Measures ANOVA

- One *between-subjects* factor with $q \ge 1$ levels (treatment groups)
- within-subjects factor: Each subject is measured
 - with the same variable on *n* occasions, or
 - on each of *n* different variables

Model Decomposition

• For *i*-th individual, *g*-th group, *j*-th occasion

$$y_{igj} = \mu + \tau_g + \gamma_j + (\tau\gamma)_{jg} + b_{ig} + e_{igj} \qquad 1 \leq j \leq n; 1 \leq g \leq q; 1 \leq i \leq N_g$$

$$\begin{matrix} \mu & \text{the overall mean} \\ \tau_g & \text{the effect associated with group } g \ (1 \leq g \leq q) \\ \gamma_j & \text{the effect associated with the } j\text{-th repeated measure } (1 \leq j \leq n) \\ (\tau\gamma)_{jg} & \text{interaction effect for group } g \text{ at occasion } j \\ b_{ig} & \text{the random effect for subject } i \text{ in the } g\text{-th group} \\ e_{ijg} & \text{random error for the } i\text{-th individual in group } g \text{ on occasion } j \end{matrix}$$

• The two random terms are independent with distributions

$$b_{ig} \sim N(0, \varphi)$$
 $e_{ijg} \sim N(0, \sigma_{eigj}^2)$

Example

• Example: q = 3 groups, n = 4 repeated measures, and $N_g = 10$ subjects in each condition

$$\mu = 10 \quad \tau = \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \quad \gamma = \begin{pmatrix} 0 \\ 2 \\ 4 \\ 6 \end{pmatrix} \quad (\tau \gamma) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & -4 \\ 0 & -4 & -8 \\ 0 & -6 & -12 \end{pmatrix} \quad \sigma_e^2 = 1 \quad \varphi = 2$$

Reduced Model: Group Effect

$$y_{igj} = \mu + \tau_g, \quad j = 1, ..., 4$$
 μ
the overall mean
 τ_g the effect associated with group g $(1 \le g \le q)$

• There is no change over time for any group, no differences between subjects, and no variability from random errors.

Add Repeated Measures Effect

```
y_{igj} = \mu + \tau_g + \gamma_j, \quad j = 1, ..., 4
 \begin{array}{ccc} \mu & \text{the overall mean} \\ \tau_g & \text{the effect associated with group } g \ (1 \leq g \leq q) \\ \gamma_j & \text{the effect associated with the } j\text{-th repeated measure } (1 \leq j \leq n) \end{array}
```

Produces an increasing trend that applies to all subjects in each group

Add Interaction Effect

$$y_{igj} = \mu + \tau_g + \gamma_j + (\tau \gamma)_{jg}, \quad j = 1, \dots, 4$$
 μ the overall mean

 τ_g the effect associated with group $g \ (1 \le g \le q)$
 γ_j the effect associated with the j -th repeated measure $(1 \le j \le n)$
 $(\tau \gamma)_{jg}$ interaction effect for group g at occasion j

• The trend differs according to group.

Add Subject Effects

```
y_{igj} = \mu + \tau_g + \gamma_j + (\tau \gamma)_{jg} + b_{ig}, \quad j = 1, \dots, 4

\mu the overall mean
\tau_g the effect associated with group g (1 \le g \le q)
\gamma_j the effect associated with the j-th repeated measure (1 \le j \le n)
(\tau \gamma)_{jg} interaction effect for group g at occasion j
b_{ig} the random effect for subject i in the g-th group
```

Produces a series of parallel lines within each group.

Add Random Error for Subjects

• Full model

```
y_{igj} = \mu + \tau_g + \gamma_j + (\tau\gamma)_{jg} + b_{ig} + e_{igj}, \quad j = 1, \dots, 4
\begin{matrix} \mu & \text{the overall mean} \\ \tau_g & \text{the effect associated with group } g \ (1 \leq g \leq q) \\ \gamma_j & \text{the effect associated with the } j\text{-th repeated measure } (1 \leq j \leq n) \\ (\tau\gamma)_{jg} & \text{interaction effect for group } g \ \text{at occasion } j \\ b_{ig} & \text{the random effect for subject } i \ \text{in the } g\text{-th group} \\ e_{ijg} & \text{random error for the } i\text{-th individual in group } g \ \text{on occasion } j \end{matrix}
```


Forms of Statistical Models

- Univariate repeated measures ANOVA describes the change process for scores of an individual
- A related model can be derived that pertains to the <u>mean vector</u> for the collection of *n* scores from individual *i*
- Another derivation gives the <u>covariance matrix</u> between all pairs of scores for an individual

Forms of Statistical Models

Model for an individual

$$y_{igj} = \mu + \tau_g + \gamma_j + (\tau \gamma)_{jg} + b_{ig} + e_{igj}, \quad j = 1, ..., 4$$

- Model for the mean vector
 - assume n = 4 repeated measures

$$\begin{pmatrix} y_{ig1} \\ y_{ig2} \\ y_{ig3} \\ y_{ig4} \end{pmatrix} = \begin{pmatrix} \mu + \tau_g + \gamma_1 + (\tau\gamma)_{1g} \\ \mu + \tau_g + \gamma_2 + (\tau\gamma)_{2g} \\ \mu + \tau_g + \gamma_3 + (\tau\gamma)_{3g} \\ \mu + \tau_g + \gamma_4 + (\tau\gamma)_{4g} \end{pmatrix} + \begin{pmatrix} b_{ig} \\ b_{ig} \\ b_{ig} \\ b_{ig} \end{pmatrix} + \begin{pmatrix} e_{ig1} \\ e_{ig2} \\ e_{ig3} \\ e_{ig4} \end{pmatrix}$$

$$\mathbf{y}_{ig} = \boldsymbol{\mu}_g + \boldsymbol{\mu}_g$$

Model for the Mean Vector

• The expected pattern of change for the *g*-th group, ignoring individual differences, is

$$\mu_{g} = E(\mathbf{y}_{ig}) = \begin{pmatrix} \mu + \tau_{g} + \gamma_{1} + (\tau \gamma)_{1g} \\ \mu + \tau_{g} + \gamma_{2} + (\tau \gamma)_{2g} \\ \mu + \tau_{g} + \gamma_{3} + (\tau \gamma)_{3g} \\ \mu + \tau_{g} + \gamma_{4} + (\tau \gamma)_{4g} \end{pmatrix}$$

Model for the Covariance Matrix

- Covariance matrix of repeated measurements describes
 - (i) the variability of scores for individuals within each group
 - (ii) the covariance between pairs of scores
- In ANOVA, covariance pattern is assumed to be the same for all subjects in each group across the collection of scores.

where Σ is of order $n \times n$. This pattern is called *compound symmetry*.

Summary: Repeated Measures ANOVA

The repeated measures ANOVA model for the scores is

$$y_{igj} = \mu + \tau_g + \gamma_j + (\tau \gamma)_{jg} + b_{ig} + e_{igj}$$
 $1 \le j \le n; 1 \le g \le q; 1 \le i \le N_g$

• The individual terms and within-subject variability have distributions

$$b_{ig} \sim N(0, \varphi)$$
 $e_{ijg} \sim N(0, \sigma_{e_{iqj}}^2)$

The expected pattern of change for the g-th group is

$$\mu_{g} = E(\mathbf{y}_{ig}) = \begin{pmatrix} \mu + \tau_{g} + \gamma_{1} + (\tau \gamma)_{1g} \\ \mu + \tau_{g} + \gamma_{2} + (\tau \gamma)_{2g} \\ \mu + \tau_{g} + \gamma_{3} + (\tau \gamma)_{3g} \\ \mu + \tau_{g} + \gamma_{4} + (\tau \gamma)_{4g} \end{pmatrix}$$

and the covariance matrix is

$$oldsymbol{\Sigma} = cov(\mathbf{y}_{ig}) = \left(egin{array}{cccc} arphi + \sigma_e^2 & & & & & \\ arphi & arphi + \sigma_e^2 & & & & \\ arphi & arphi & arphi + \sigma_e^2 & & & \\ arphi & arphi & arphi & arphi + \sigma_e^2 & & & \\ arphi & arphi & arphi & arphi + \sigma_e^2 & & & \\ arphi & arphi & arphi & arphi + \sigma_e^2 & & & \\ arphi & arphi & arphi & arphi + \sigma_e^2 & & & \\ arphi & arphi & arphi & arphi & arphi + \sigma_e^2 & & & \\ arphi & arphi & arphi & arphi & arphi + \sigma_e^2 & & & \\ arphi & arphi & arphi & arphi & arphi & arphi + \sigma_e^2 & & \\ arphi & arphi & arphi & arphi & arphi & arphi + \sigma_e^2 & & \\ arphi & arphi$$

• Consequently, the distribution of scores for an individual is also normal

$$\mathbf{y}_{ig} \sim N(\boldsymbol{\mu}_g, \boldsymbol{\Sigma})$$

ANOVA Hypothesis Tests

• No group difference

$$-H_0: \tau_g = 0$$

No change over time

$$-H_0$$
: $\gamma_j = 0$

No group-by-occasion interaction

$$-H_0: (\tau \gamma)_{gj} = 0$$

Shortcomings of Repeated Measures ANOVA

- Time variable not included directly
- Requires balanced data (measurements on each individual occur at the same occasions) without missing values
- Model imposes a uniform structure on the mean vector
- Restrictive assumptions about the variances and covariances of the variables

3. Flexible Linear Models for Longitudinal Data

- The beauty of ANOVA is that one size fits all.
- The flipside is the approach cannot be customized.
- How can we extend this basic linear model to make it more flexible?

3.1 The ANOVA Linear Model

• The individual terms and within-subject variability have distributions

$$b_{ig} \sim N(0, \varphi)$$
 $e_{ijg} \sim N(0, \sigma_e^2)$

• Means of b_{ig} and e_{ijg} are zero; model is additive \rightarrow mean over individuals of the scores on occasion j for group g is the sum of the first four terms

$$\mu_{jg} = E_i(y_{igj})$$

= $\mu + \tau_g + \gamma_j + (\tau \gamma)_{gj}$

- This is the *model of the mean*, or equivalently, the *mean structure*.
- How can we set up the mean structure as we need it?

Linear Models for the Mean Vector

- Let the $n \ge 1$ vector $\mu_g = (\mu_{1g}, ..., \mu_{ng})$ denote the collection of cell means for the g-th group, $1 \le g \le q$, of a particular design.
- A linear model for the means is an expression in which the means for each of the q groups are a linear function of a fixed design matrix, X_g ($n \times p$), and more fundamental parameters, $\theta = (\theta_1, ..., \theta_p)'$.
- In general, a linear model for the means of g groups has the form

$$\begin{pmatrix} \mu_{1g} \\ \mu_{2g} \\ \vdots \\ \mu_{ng} \end{pmatrix} = \begin{pmatrix} x_{11} & \dots & x_{1p} \\ x_{21} & & x_{2p} \\ \vdots & & \vdots \\ x_{n1} & \dots & x_{np} \end{pmatrix} \quad \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_p \end{pmatrix}$$
$$\boldsymbol{\mu}_g = \mathbf{X}_g \boldsymbol{\theta}$$

Example

q = 2 groups and n = 3 repeated measures layout of the cell means:

Measures Groups μ_{11} μ_{12} μ_{13}

simple model with group effect only:

$$\mu_{jg} = \mu + \tau_g$$
 $g = 1, 2; j = 1, 2, 3$

There are only three fundamental parameters that make up the parameter vector $\boldsymbol{\theta} = (\mu, \tau_1, \tau_2)'$

The linear model is written as

$$\begin{pmatrix} \mu_{11} \\ \mu_{21} \\ \mu_{31} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} \mu \\ \tau_1 \\ \tau_2 \end{pmatrix}$$

$$\mu_1 = \mathbf{X}_1 \boldsymbol{\theta}$$

Group 2 Model

$$\begin{pmatrix} \mu_{11} \\ \mu_{21} \\ \mu_{31} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} \mu \\ \tau_1 \\ \tau_2 \end{pmatrix} \quad \begin{pmatrix} \mu_{12} \\ \mu_{22} \\ \mu_{32} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} \mu \\ \overline{\tau}_1 \\ \overline{\tau}_2 \end{pmatrix}$$

$$oldsymbol{\mu}_2 = \mathbf{X}_2 oldsymbol{ heta}$$

Mean Structure for ANOVA

In the mean structure for ANOVA, there appears to be a total of (q+1)(n+1) parameters used to describe only qn cell means (e.g., 12 p. for 6 means).

μ	$ au_g$	γ_j	$(au\gamma)_{gj}$
1	q	n	qn
1	2	3	2*3 =6

Not all of these parameters can be estimated; the restrictions on the system are: q n q n

$$\sum_{g=1}^{q} \tau_g = 0 \qquad \sum_{j=1}^{n} \gamma_j = 0 \qquad \sum_{g=1}^{q} (\tau \gamma)_{gj} = 0 \qquad \sum_{j=1}^{n} (\tau \gamma)_{gj} = 0$$

Consequently, there are exactly *qn* parameters in the model related to the *qn* cell means (e.g., 6 parameters for 6 means).

μ	$ au_g$	γ_j	$(au\gamma)_{gj}$
1	q-1	n-1	(q-1)(n-1)
1	2-1=1	3-1=2	1*2=2 34

Example

example: q = 2 groups and n = 4 repeated measures qn = 2*4 = 8 parameters design matrix X_{ϱ} ($n \times p$)

$$\begin{pmatrix} \mu \\ \tau_1 \\ \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ (\tau\gamma)_{11} \\ (\tau\gamma)_{12} \\ (\tau\gamma)_{13} \end{pmatrix}$$

Unattractive Features of ANOVA Model

- The mean structure for ANOVA is saturated
 - number of cell means and number of parameters are the same; model has same complexity as data
 - → no parsimony
- Design matrixes for μ_1 and μ_2 always have the described form
 - no possibility for informed model-building

3.2 A General Regression Structure

The collection of repeated measures for individual *i* is treated as a unit.

Let y_i denote the n observations for the i-th subject.

Suppose that all subjects are measured at the same time points, with x_j being the number of days that have elapsed since the beginning of the experiment to the *j*-th occasion.

Define the $n \times 2$ matrix X as

$$\mathbf{X} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$$

A simple linear model in which y_i is tied directly to time measurement is

$$\mathbf{y}_i = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}_i$$

where $e_i = (e_{i1}, ..., e_{in})'$ are regression residuals.

Classical Regression

Matrix form of classical, simple regression

$$\begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix} = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_N \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} + \begin{pmatrix} e_1 \\ \vdots \\ e_N \end{pmatrix}$$
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

Sample consists of randomly selected individuals.

A score from one subject is statistically independent of scores from all other subjects.

Independence assumption implies that the distribution of the collection of residuals is $e \sim N(0, \Sigma)$, where

$$oldsymbol{\Sigma} = \left(egin{array}{ccc} \sigma^2 & & & & \\ & \ddots & & \\ & & \sigma^2 \end{array}
ight)$$

$$= \sigma^2 \mathbf{I}_N$$

Regression for Repeated Measures

• In a repeated measures study, the information in y_i comes from <u>one</u> subject.

$$\mathbf{y}_i = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}_i$$

- Elements of e_i are <u>not independent</u>; as they all come from the same individual, residuals are usually correlated to some degree
- Covariance structure for residuals

$$\mathbf{\Sigma} = cov(\mathbf{e}_i) = \left(egin{array}{ccc} \sigma_1^2 & & & & \\ \sigma_{21} & \sigma_2^2 & & & \\ drain & drain & \ddots & & \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_n^2 \end{array}
ight)$$

Four Discussion Points

- The repeated measures have particular means in the population; these are directly related to the time of the *j*-th measurement
- With the new approach, the means can be summarized by only a few parameters (ANOVA: *n* parameters for *n* means)
- Prediction is easy and follows immediately
- In contrast, predictions for unmeasured time points not possible in ANOVA; time does not appear in ANOVA model

Example

- Does growth of vocabulary slow in adolescence?
 - 64 high school students were assessed in grades 8, 9, 10, and 11
 - results: decelerating pattern of growth across the years

Example

- Does growth of vocabulary slow in adolescence?
 - 64 high school students were assessed in grades 8, 9, 10, and 11
 - results: decelerating pattern of growth across the years
- How to quantify average performance over time?
 - discrete variable grade level used as continuous indicator of age
 - quadratic model: $y_{ij} = \beta_0 + \beta_1 g_j + \beta_2 g_j^2 + e_{ij}$

$$\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} 1 & 8 & 8^2 \\ 1 & 9 & 9^2 \\ 1 & 10 & 10^2 \\ 1 & 11 & 11^2 \end{pmatrix}$$

- equivalent: $[\mathbf{X}]_{j\bullet} = (1, g_j, g_j^2)$

Model Parameters

- Focus shift from evaluating means or variances (as in ANOVA) to evaluating parameters.
- Parameter estimates for the example

$$\hat{\beta}_0: -24.4(4.4)$$
 $\hat{\beta}_1: 4.98(.97)$ $\hat{\beta}_2: -.222(.05)$

- Test of $H_0: \beta_2 = 0$
 - Does vocabulary have a nonlinear mean pattern across grade levels?

Predictions from the Model

- Parameters of the model allow us to estimate the mean vocabulary score at <u>any</u> grade level <u>within</u> the range covered in the study (grade 8 to 11).
 - point estimate of μ_8 is $y_8 = 1.14$ (sample mean of vocabulary scores in grade 8)
 - model estimate: $\hat{\mu}_{g=8} = -24.4 + (4.98 \cdot 8) (.222 \cdot 64) = 1.23$ $\hat{\beta}_0 : -24.4(4.4)$ $\hat{\beta}_1 : 4.98(.97)$ $\hat{\beta}_2 : -.222(.05)$
 - Which of the two values would be preferable?

4. Extended Linear Models: Multiple Groups and Unbalanced Data

• so far: one design matrix, X, is appropriate for all subjects

$$\mathbf{y}_i = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}_i \text{ with } \mathbf{e}_i \sim N(\mathbf{0}, \boldsymbol{\Sigma})$$

$$\mathbf{y}_i \sim N(\mathbf{X}\boldsymbol{\beta}, \boldsymbol{\Sigma})$$

$$E(\mathbf{y}_i) = \boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$$

• next step: generalization of the model by allowing different design matrices for individuals according to group (index *g*)

$$\mathbf{y}_i = \mathbf{X}_g \boldsymbol{\beta} + \mathbf{e}_i \text{ with } \mathbf{e}_i \sim N(\mathbf{0}, \boldsymbol{\Sigma})$$

$$E(\mathbf{y}_i) = \boldsymbol{\mu}_g = \mathbf{X}_g \boldsymbol{\beta}$$

$$\mathbf{y}_i \sim N(\mathbf{X}_g \boldsymbol{\beta}, \boldsymbol{\Sigma})$$

4.1 Comparing Two or More Groups- Parallel Mean Profiles -

- Parallel means model as preliminary model to explore similarities between two groups
- Group 1 = control group: each occasion j has its own mean
- Group 2 = experimental group: same, but <u>constant</u>, κ , added

$$y_{ij} = \begin{cases} \mu_j + e_{ij} & \text{Subject } i \text{ in group } 1\\ \mu_j + \kappa + e_{ij} & \text{Subject } i \text{ in group } 2 \end{cases}$$

• Regression coefficients in case of n = 4 measurements:

$$\boldsymbol{\beta} = (\mu_1, \mu_2, \mu_3, \mu_4, \boldsymbol{\kappa})'$$

• Two design matrices, one for each group

$$\mathbf{X}_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \qquad \mathbf{X}_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$
Group 1
Group 2

Example: Learning in a Visual Search Task

- Phase 1: geometrical object presented on *large* or *small* computer display
- Phase 2: presentation of many other objects
- Did original object appear in second group of objects?

Example: Learning in Visual Search Task

• Parameter estimates for parallel means model:

$$\hat{\mu}_1$$
 $\hat{\mu}_2$ $\hat{\mu}_3$ $\hat{\mu}_4$ $\hat{\mu}_5$ $\hat{\mu}_6$ $\hat{\kappa}$ $21.6(.73)$ $20.0(.72)$ $19.2(.64)$ $18.6(.54)$ $17.8(.64)$ $17.7(.70)$ $-4.21(7.1)$

• K is offset coefficient for the mean profile difference of the *Small* Visual Field compared to the *Large*

4.1 Comparing Two or More Groups

- Parameterizing Group Differences Directly -

- mean initial status of the groups is the same at t = 0 but
- rates of improvement differ between the groups (conditions)
- model specification: $\mu_{ij} = \begin{cases} \beta_0 + 0t_j & \text{Subject } i \text{ in group 1} \\ \beta_0 + 0t_j & \text{Subject } i \text{ in group 2} \end{cases}$
 - t_j is elapsed time between beginning of experiment and j-th occasion
- Group 1 = control group: $y_{ij} = \beta_0 + \alpha t_j + e_{ij}$
- Group 2 = experimental group, slope defined as $\gamma = \alpha + \delta$
 - δ represents increment for the experimental group over and above the slope of the control group (α)

$$y_{ij} = \beta_0 + (\alpha + \delta)t_j + e_{ij}$$

- Linear model with 3 parameters: $\beta = (\beta_0, \alpha, \delta)'$
 - parameter δ has direct relationship to the question of differential rate of change between groups

Example: Alzheimer's Treatment

• Can lecithin, a food supplement, improve shortterm memory in patients?

Example: Alzheimer's Treatment

• Can lecithin, a food supplement, improve shortterm memory in patients?

Sample Means

- 48 patients, randomly assigned to either lecithin or placebo groups
- memory test at 5 occasions

Extension: Differences in Intercept and Slope

Model with distinct slopes and intercepts for the two groups:

$$y_{ij} = f_{ij} + e_{ij}$$
where
$$f_{ij} = \begin{cases} (\beta_0 + \delta_0) + (\beta_1 + \delta_1)t_j & \text{lethicin} \\ \beta_0 + \beta_1 t_j & \text{placebo} \end{cases}$$

- Vector of regression coefficients: $\beta = (\beta_0, \beta_1, \delta_0, \delta_1)'$
- Parameter estimates: $\hat{\beta}_0$ $\hat{\beta}_1$ $\hat{\delta}_0$ $\hat{\delta}_1$ 8.47(.96) -.044(.13) 1.34(1.3) -.0361(.17)
- Hypotheses/ interpretations:
 - β_1 ≠ 0 indicates change over time in *control* group
 - δ_0 ≠ 0 indicates *group* difference in *intercept*
 - δ_1 ≠ 0 indicates *group* difference in *slope* (due to treatment)
 - example: all parameter estimates small with respect to their standard errors → no effects

4.2 Imbalance: Missing Data

Now we let the genie out of the bottle...

- Previously: two design matrices to handle two experimental conditions
- Next step: design matrices specified on completely individualized basis
 - $-X_i$ as design matrix for *i*-th subject
- We can now drop any requirement of balance in the data!
 - Example 1 (blood pressure): unequal number of observations for each subject
 - Example 2 (heart rate): different values of the independent variable used as predictors

Example: Treatment for High Blood Pressure

- Medication to reduce high blood pressure tested against placebo
- Blood pressure was recorded at baseline and at every 30 seconds for eight minutes → 17 planned measurements (Nevens et al., 1996)

Example: Treatment for High Blood Pressure

- Only two subjects completed the full protocol
- Most subjects have five or more missing values

Incomplete Data

• Complete data:

- n measurements taken from subject i
- x_i is the <u>same</u> for all N subjects (drop i)

$$y_i = (y_{i1}, ..., y_{in})$$
' for all i

 $x = (x_1, ..., x_n)$ ' for all i

• Incomplete data

- $-n_i$, measurements for subject *i*:
- $-1 \leq n_i \leq n$
- separate x_i for each of the N subjects
- $-x_i$ is a subset of x

$$y_i = (y_{i1}, \ldots, y_{in})$$

$$\mathbf{x}_i = (\mathbf{x}_{i1}, \dots, \mathbf{x}_{in_i})$$

- Example: measurement protocol is $\mathbf{x} = (0, 5, 9, 14, 21)'$
 - 3 subjects with incomplete data were assed on days

$$\mathbf{x}_1 = (0,9)' \text{ or } \mathbf{x}_2 = (5,14,21)' \text{ or } \mathbf{x}_3 = (9)', \text{ but not } \mathbf{x}_i = (2,8)'$$

Incomplete Data cont' d

example: subject 2

Design matrices allowed to differ for each subject

$$\mathbf{X}_{i} = \begin{pmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & & \vdots \\ x_{n_{i}1} & \cdots & x_{n_{i}p} \end{pmatrix} \quad \mathbf{X}_{2} = \begin{pmatrix} 1 & 5 & 5^{2} \\ 1 & 14 & 14^{2} \\ 1 & 21 & 21^{2} \end{pmatrix}$$

$$\mathbf{X}_{2} = \begin{pmatrix} 1 & 5 & 5^{2} \\ 1 & 14 & 14^{2} \\ 1 & 21 & 21^{2} \end{pmatrix}$$

$$\mathbf{X}_{2} = (5,14,21)'$$

$$\mathbf{X}_{3} \text{ measurements}$$

$$\mathbf{X}_{4} = (5,14,21)'$$

$$\mathbf{X}_{5} = (5,14,21)'$$

$$\mathbf{X}_{6} = (5,14,21)'$$

$$\mathbf{X}_{7} = (5,14,21)'$$

- 3 rows for
- quadratic)
- Covariance matrix has subscript *i* to distinguish the various possibilities individuals may have with observed and missing data; Σ_i is $n_i \times n_i$
 - subject with complete data:

subject 2 (incomplete data):

$$m{\Sigma}_2 = \left(egin{array}{ccc} \sigma_2^2 & & & \ \sigma_{42} & \sigma_{42}^2 & \ \sigma_{52} & \sigma_{54} & \sigma_5^2 \end{array}
ight)$$

Interim Summary

• for the *i*-th case with $n_i \le n$ repeated measures, $y_i = (y_{i1}, ..., y_{in_i})$, the extended model uses the $n_i \ge p$ design X_i made up from the independent variable values x_i in the model

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{e}_i \text{ with } \mathbf{e}_i \sim N(\mathbf{0}, \boldsymbol{\Sigma}_i)$$

• Implications:

- Enables completely open-ended designs where subjects do not need to have same number of data points
- Everyone contributes, no one is excluded (even if they only contribute 1 measurement)
- Planned missingness possible to alleviate costs and keep subjects motivated

Segmented Mean Structure (Blood Pressure Example)

• Control condition: no change over time

$$y_{ij} = \beta_0 + e_{ij} \quad j = 1, \dots, n_i$$

- Treatment condition: two-phase response to drug
 - Phase 1: no change ("flat response") for first 1.5 min
 - Phase 2: linear decrease in blood pressure
 - Two-part model: $y_{ij} = f_{ij} + e_{ij}$ where the systematic part is composed of

$$f_{ij} = \begin{cases} \beta_0 & x_j \le 1.5 \\ \gamma_0 + \gamma_1 x_j & x_j > 1.5 \end{cases}$$

Segmented Mean Structure (Blood Pressure Example)

Segmented Mean Structure (Blood Pressure Example)

• the two segments joint at x = 1.5 min

$$\beta_0 = \gamma_0 + 1.5\gamma_1$$
$$\gamma_0 = \beta_0 - 1.5\gamma_1$$

rewrite equation for phase 2 as:

$$\gamma_0 + \gamma_1 x_j = \gamma_0 + \gamma_1 x_j
= (\beta_0 - 1.5\gamma_1) + \gamma_1 x_j
= \beta_0 + \gamma_1 (x_j - 1.5)$$

$$f_{ij} = \begin{cases} \beta_0 & x_j \le 1.5\\ \beta_0 + \gamma_1(x_j - 1.5) & x_j > 1.5 \end{cases}$$

- (only) two model parameters with meaningful interpretation
 - β_0 mean response during first 1.5 min
 - γ_0 slope in the second phase 61

Covariance Matrix of Residuals (Blood Pressure Example)

- Recall: 17 planned measurements
 - Subjects with complete data require Σ_i to be of order 17 x 17 \rightarrow large number of parameters
- For now: lets assume *compound symmetry* (equal variances, equal covariances)

$$\mathbf{\Sigma}_i = \mathbf{J}_{n_i} c + \mathbf{I}_{n_i} (\sigma^2 - c)$$

4.3 Imbalance: Individual Measurement Designs

- Often difficult to assess each individual on exactly the same schedule as all others
- Heart rate example: different values of the independent variable used as predictors
 - y (DV, response): heart rate, measured during three exercises
 - x (IV, predictor): energy needed to complete the task
 - participants: 10 students
 - heart rate (H) linearly increases with energy use (E)

$$H_{ij} = \beta_0 + \beta_1 E_{ij} + e_{ij}$$

Imbalance: Individual Measurement Designs

3 Physical Tasks per Subject

• design matrix for the first two subjects (x is energy use, rather than time)

$$\mathbf{X}_1 = \begin{pmatrix} 1 & 2.765 \\ 1 & 3.970 \\ 1 & 5.814 \end{pmatrix} \qquad \mathbf{X}_2 = \begin{pmatrix} 1 & 3.570 \\ 1 & 5.110 \\ 1 & 7.420 \end{pmatrix}$$

Imbalance: Individual Measurement Designs

3 Physical Tasks per Subject

$$H_{ij} = \beta_0 + \beta_1 E_{ij} + e_{ij}$$

$$\hat{\beta} = \begin{pmatrix} 54.6 \\ 17.8 \end{pmatrix}$$

• mean function based on these parameters shown as dashed line in figure

Imbalance: Individual Measurement Designs

- Fixed measurement schedule: values of x common to all subjects
 - conditional mean: mean *y*-value for the scores over selected set of *x*-values
- Individual measurement designs: every individual has unique values on x
 - yet we still evaluate a *linear function* of x computed at any x-value
 - covariance matrix: each subject has n residuals (as many as nr. of measurements)

Summary

- ANOVA: one size fits all, assumptions oftentimes not met
- Regression models: contemporary approaches to the analysis of repeated measures data
 - Classical, simple regression: single design matrix applies to all subjects; common distribution of the residuals
 - Extensions for multiple groups and unbalanced data
 - Unique design matrix for each subject possible!
 - To be continued...

Literature

- Singer, J. D., & Willett, J. B. (2003). *Applied longitudinal data analysis*. New York: Oxford University Press.
- Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. New York: Cambridge University Press.