LECTURE 16

WINTER 2021
APPLIED MACHINE LEARNING
CIHANG XIE

HWS & QUIZZES

- 4 HWs in total (50%)
 - > You can earn extra credits by completing the bonus questions
- 5 Quizzes in total (30%)
 - ➤ Quiz I 5 pts
 - ➤ Quiz 2 7 pts
 - ➤ Quiz 3 6 pts
 - ➤ Quiz 4 8 pts
 - ➤ Quiz 5 10 pts

Total quiz credit will be capped at 30 pts

RECIPE FOR DEEP LEARNING

YES

Choosing proper loss

Mini-batch

New activation function

Adaptive Learning Rate

Momentum

Good Results on Testing Data?

YES

Good Results on Training Data?

RELU

Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- I. Fast to compute
- 2. Biological reason
- 3. Vanishing gradient problem

RELU - VARIANT

Leaky ReLU

Parametric ReLU

α also learned by gradient descent

RELU - "SMOOTH" VARIANT

RECIPE FOR DEEP LEARNING

YES

Choosing proper loss

Mini-batch

New activation function

Adaptive Learning Rate

Momentum

Good Results on Testing Data?

YES

Good Results on Training Data?

ADAGRAD

Original:
$$\theta \leftarrow \theta - \alpha \partial L / \partial \theta$$

Adagrad:
$$\theta \leftarrow \theta - \alpha_{\theta} \partial L / \partial \theta$$

Parameter-dependent learning rate

$$\alpha_{\theta} = \frac{\alpha}{\sqrt{\sum_{i=0}^{t} (g^{i})^{2}}}$$
 constant
$$g^{i} \text{ is } \partial L / \partial \theta \text{ obtained at the } i^{th} \text{ update}$$

Summation of the square of the previous derivatives

TODAY

- Today: More deep learning topics
 - Momentum
 - Avoiding overfitting
 - Data augmentation
 - Early stopping
 - Regularization
 - Dropout technique

RECIPE FOR DEEP LEARNING

YES

Choosing proper loss

Mini-batch

New activation function

Adaptive Learning Rate

Momentum

Good Results on Testing Data?

YES

Good Results on Training Data?

HARD TO FIND OPTIMAL NETWORK PARAMETERS

IN PHYSICAL WORLD

Applied Machine Learning

MOMENTUM

Still not guarantee reaching global minima, but give some hope

MOMENTUM

• Momentum update (t is the iteration number)

$$v^{t} = \mu \times v^{t-1} - \alpha \times \frac{\partial L}{\partial \theta} \text{ (integrate velocity)}$$
$$\theta^{t} += v^{t}$$

- v is initialized at 0 (from the top of the hill).
- μ is called "coefficient of momentum". Think about it as coefficient of friction of the surface. This variable damps the energy of the system, allowing v to stop.
- Pros: can be used to handle noisy gradients + can handle extremely small gradients
- Cons: introduces further complexity to the model

DATA AUGMENTATION

Enlarge your Dataset

- Have more training data
- Create more training data

POPULAR DATA AUGMENTATION

flip rotation crop

POPULAR DATA AUGMENTATION

EARLY STOP

OVERFITTING REVISED: REGULARIZATION

- A regularizer is an additional criteria to the loss function to make sure that we don't overfit
- It's called a regularizer since it tries to keep the parameters more normal/regular
- It is a bias on the model forces the learning to prefer certain types of weights over others

$$\begin{aligned} TrainLoss(\theta) &= \frac{1}{|D_{train}|} \sum_{(x,y) \in D_{train}} Loss(x,y,\theta) \\ & \min_{\theta \in \mathbb{R}^d} TrainLoss(\theta) + \lambda \, regularizer(\theta) \end{aligned}$$

COMMON REGULARIZERS

Sum of the weights

$$r(\theta) = \sum_{\theta_i} |\theta_i|$$

• Sum of the squared weights

$$r(\theta) = \sqrt{\sum_{\theta_j} \left| \theta_j \right|^2}$$

Squared weights penalizes large values more.

DROPOUT

Training:

- > Each time before updating the parameters
 - Each neuron has p% to dropout

DROPOUT

Training:

- > Each time before updating the parameters
 - Each neuron has p% to dropout
 - The structure of the network is changed.
 - Using the new network for training

For each mini-batch, we resample the dropout neurons

DROPOUT

Testing:

➤ No dropout

- \circ If the dropout rate at training is p%, all the weights times 1-p%
- Assume that the dropout rate is 50%. If a weight $\theta = 1$ by training, set $\theta = 0.5$ for testing.

DROPOUT - INTUITIVE REASON

• Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

No dropout

Train a bunch of networks with different structures

Ensemble

- >Using one mini-batch to train one network
- >Some parameters in the network are shared

DEMO

VARIANTS OF NEURAL NETWORKS

Convolutional Neural Network (CNN)

Transformer

Graph Neural Network (GNN)

Recurrent Neural Network (RNN)

QUESTIONSP