Exercise 3 Solutions

- 1. a. 4
 - b. No
- 2. a.

	Allocation				Max				Available			
	R1	R2	R3	R4	R1	R2	R3	R4	R1	R2	R3	R4
P0	0	0	1	2	0	0	1	2	0	0	0	0
P1	2	0	0	0	2	7	5	0	0	7	5	0
P2	0	0	3	4	6	6	5	6	6	6	2	2
Р3	2	3	5	4	4	3	5	6	2	0	0	2
P4	0	3	3	2	0	6	5	2	0	3	2	0

- (b) The system is in a safe state as the processes can be finished in the sequence <P0,P3,P4,P1,P2>
- (c) No, it can't. Process P2 requires two R2, while there is only one free R2.
- 3. a. Draw the resource allocation graph.

b. P1 R1 P3 R2 P1

c. No. There is a cycle, but no deadlock. P2 and P4 have all resources for completing. P2 P4, P1, P3

4. The need matrix is as follows:

R1 R2 R3 R4 R5

A 0 1 0 0 2

B 0 2 1 0 0

 $C \quad 1 \quad 0 \quad 3 \quad 0 \quad 0$

D 0 0 1 1 1

Suppose that we are in a safe state. Process D must run first, because we have no other choice. To make process D run, the number X of R4 should be no less than 1. Since process A, B, and C do not need any more instance of resource R4, the constraint of X is $X \ge 1$.

So if and only if $X \ge 1$, the state is safe. Then the smallest value of X is 1.