Advanced Methods on Computational Physics

Dr. Movahed

Exercise Set 14

Pooria Dabbaghi

98416029

You can build and run the program by running 'main14.sh' script. gcc, 'armadillo' and 'openblas' are required.

A. Equation:

$$-\frac{d^2\phi(x)}{dx^2} + \phi(x) = f(x), 0 \le x \le 1, \phi(0) = \phi(1) = 0$$

In 1d space $\frac{d^2}{dx^2} = \nabla^2 \Rightarrow$

$$-\nabla^2 \phi(x) + \phi(x) = f(x)$$

Let's multiply both sides by $\psi(x)$ and integrate them over the whole space (0 \leq $x \leq 1$

$$-\int_{0}^{1} \nabla^{2} \phi(x) \psi(x) dx + \int_{0}^{1} \phi(x) \psi(x) dx = \int_{0}^{1} f(x) \psi(x) dx \quad (*)$$

Green's first identity:

$$\int \psi(x) \nabla^2 \phi(x) d\tau = -\int \nabla \phi \cdot \nabla \psi d\tau + \oint_S \phi \frac{\partial \psi}{\partial n} d\mathbf{a}$$
$$\phi(x=0) = \phi(x=1) = 0 \xrightarrow{Dirichlet} \oint \phi \frac{\partial \psi}{\partial n} d\mathbf{a} = 0$$

Since In 1d space
$$\nabla = \frac{d}{dx} \& d\tau = dx$$
 and from (*) and above relations we have
$$(*) \Rightarrow \int \frac{d\phi}{dx} \frac{d\psi}{dx} dx + \int_0^1 \phi(x)\psi(x)dx = \int_0^1 f(x)\psi(x)dx$$

В.

Analytical solution

$$-\frac{d^2\phi(x)}{dx^2} + \phi(x) = 1$$

Homogeneous equation

$$\frac{d^2\phi(x)}{dx^2} - \phi(x) = 0$$

Therefor this is an ODE with constant coefficients

$$\lambda^{2} - 1 = 0 \rightarrow \lambda = \pm 1$$
$$\phi_{h} = Ae^{-x} + Be^{x}$$

Private solution $\phi_p = 1$

$$\Rightarrow \phi(x) = Ae^{-x} + Be^{x} + 1$$

From boundary conditions

$$\phi(0) = A + B + 1 = 0 \to B = -1 - A$$

$$\phi(1) = Ae^{-1} - (1 + A)e + 1 = 0$$

$$\to (e^{2} - 1)A = e - e^{2} \to A = \frac{e(1 - e)}{(e - 1)(e + 1)} = -\frac{e}{e + 1}, B = \frac{e}{e + 1} - 1 = -\frac{1}{e + 1}$$

$$\Rightarrow \phi(x) = -\frac{1}{e + 1}[e^{-x + 1} + e^{x}] + 1$$

• FEM

$$\phi(x) = \sum_{i} \alpha_{i} u_{i}(x)$$

$$\rightarrow \frac{d\phi(x)}{dx} = \sum_{i} \alpha_{i} \frac{du_{i}(x)}{dx}$$

In relation (*) from part A if we consider $\psi(x) = \sum_i u_i(x)$ we have

$$(*) \to \sum_{i,j} \left\{ \int \frac{du_i}{dx} \frac{du_j}{dx} dx + \int_0^1 u_i(x) u_j(x) dx \right\} \alpha_i = \sum_i \int_0^1 f(x) u_i(x) dx$$

we need to solve this equation $A\alpha = F$

Where

$$A_{ij} = \int_0^1 \frac{du_i}{dx} \frac{du_j}{dx} dx + \int_0^1 u_i(x) u_j(x) dx$$
$$F_i = \int_0^1 u_i(x) dx$$

We consider $u_i(x)$ as this function

$$u_{i}(x) = \begin{cases} \frac{x_{i+1} - x}{h} &, x_{i} \le x \le x_{i+1} \\ \frac{x - x_{i-1}}{h} &, x_{i-1} \le x \le x_{i} \end{cases}$$

$$\rightarrow u_{i}(x) = \frac{a(x)(x - b(x))}{h} & \begin{cases} a(x) = -1, b(x) = x_{i+1} &, x_{i} \le x \le x_{i+1} \\ a(x) = 1, b(x) = x_{i-1} &, x_{i-1} \le x \le x_{i} \end{cases}$$

$$\rightarrow \frac{du_{i}}{dx} = \frac{a(x)}{h}$$

$$\Rightarrow (1) \int_0^1 \frac{du_i}{dx} \frac{du_j}{dx} dx = \frac{1}{h^2} \int_0^1 a_i(x) a_j(x) dx = \frac{1}{h^2} \sum_n \int_{x_n}^{x_n + h} a_i(x) a_j(x) dx$$

$$= \frac{1}{h} \sum_n a_i(x_n, x_n + h) a_j(x_n, x_n + h)$$

$$\Rightarrow (2) \int_0^1 u_i(x) u_j(x) dx = \int_0^1 \frac{a_i(x) a_j(x)}{h^2} \left[x^2 - (b_i(x) + b_j(x)) x + b_i(x) b_j(x) \right] dx$$

$$= \frac{1}{h^2} \sum_n \int_{x_n}^{x_n + h} a_i(x) a_j(x) \left[x^2 - (b_i(x) + b_j(x)) x + b_i(x) b_j(x) \right] dx$$

$$= \frac{1}{h^2} \sum_{n} a_i(x_n, x_n + h) a_j(x_n, x_n + h) \left[\frac{x_n^3}{3} - \frac{x_n^2}{2} (b_i(x_n, x_n + h) + b_j(x_n, x_n + h)) + x_n b_i(x_n, x_n + h) b_j(x_n, x_n + h) \right]_{x_n}^{x_n + h}$$

$$\rightarrow A_{ij} = (1) + (2)$$

$$F_{i} = \int_{0}^{1} u_{i}(x) dx = \frac{1}{h} \int_{0}^{1} a_{i}(x) (x - b_{i}(x)) dx = \frac{1}{h} \sum_{n} \int_{x_{n}}^{x_{n}+h} a_{i}(x) (x - b_{i}(x)) dx$$

$$= \frac{1}{h} \sum_{n} a_{i}(x_{n}, x_{n} + h) \left(\frac{x_{n}^{2}}{2} - b_{i}(x_{n}, x_{n} + h) x_{n} \right)_{x_{n}}^{x_{n}+h}$$

where by $a_i(x_n, x_n + h)$ and $b_i(x_n, x_n + h)$ I mean

$$a_{i}(x_{n}, x_{n} + h) = \begin{cases} -1 & x_{n} \ge x_{i} \text{ and } x_{n} + h \le x_{i+1} \\ 1 & x_{n} \ge x_{i} \text{ and } x_{n} + h \le x_{i+1} \end{cases}$$

$$b(x_{n}, x_{n} + h) = \begin{cases} x_{i+1} & x_{n} \ge x_{i} \text{ and } x_{n} + h \le x_{i+1} \\ x_{i-1} & x_{n} \ge x_{i} \text{ and } x_{n} + h \le x_{i+1} \end{cases}$$

C

• Analytical solution

$$-\frac{d^2\phi(x)}{dx^2} + \phi(x) = \sin x$$

Homogeneous equation

$$\frac{d^2\phi(x)}{dx^2} - \phi(x) = 0$$
$$\lambda^2 - 1 = 0 \to \lambda = \pm 1$$
$$\phi_h = Ae^{-x} + Be^x$$

Private solution $\phi_p = \frac{1}{2} \sin x$

$$\Rightarrow \phi(x) = Ae^{-x} + Be^{x} + \frac{1}{2}\sin x$$

From boundary conditions

$$\phi(0) = A + B = 0 \to B = -A$$

$$\phi(1) = Ae^{-1} - Ae + \frac{1}{2}\sin 1 = 0$$

$$\to A(e^{-1} - e^{1}) = -\frac{1}{2}\sin 1 \xrightarrow{e^{-1} - e^{1} = -2\sinh 1} A = \frac{1}{4}\frac{\sin 1}{\sinh 1}$$

$$\Rightarrow \phi(x) = \frac{1}{4}\frac{\sin 1}{\sinh 1}(e^{-x} - e^{x}) + \frac{1}{2}\sin x = -\frac{1}{2}\frac{\sin 1}{\sinh 1}\sinh x + \frac{1}{2}\sin x$$

• FEM

The only difference between this part and part B is f(x) so matrix A is the same as part B and we just need to calculate vector F

$$F_{i} = \int_{0}^{1} \sin(x) u_{i}(x) dx = \frac{1}{h} \int_{0}^{1} \sin(x) a_{i}(x) (x - b_{i}(x)) dx \to$$

$$F_{i} = \frac{1}{h} \sum_{n} \int_{x_{n}}^{x_{n} + h} \sin(x) a_{i}(x) (x - b_{i}(x)) dx$$

$$= \frac{1}{h} \sum_{n} a_{i}(x_{n}, x_{n} + h) \left\{ \int_{x_{n}}^{x_{n}+h} x \sin(x) dx + b_{i}(x_{n}, x_{n} + h) \cos x \, \Big|_{x_{n}}^{x_{n}+h} \right\}$$

$$= \frac{1}{h} \sum_{n} a_{i}(x_{n}, x_{n} + h) \left[-x \cos(x) + \sin x + b_{i}(x_{n}, x_{n} + h) \cos x \right]_{x_{n}}^{x_{n}+h}$$