In [1]:	<pre># for manipulations import numpy as np import pandas as pd # for data visualizations import matplotlib.pyplot as plt import seaborn as sns plt.style.use('fivethirtyeight') # for interactivity import ipywidgets from ipywidgets import interact # lets read the dataset data = released exactledate when!)</pre>
<pre>In [3]: In [4]: Out[4]:</pre>	<pre>data = pd.read_excel('data.xlsx') # lets check teh shape of the dataset print("Shape of the Dataset :", data.shape) Shape of the Dataset : (2200, 8) # lets check the head of the dataset data.head()</pre>
In [5]: Out[5]:	3 74 35 40 26.491096 80.158363 6.980401 242.864034 rice 4 78 42 42 20.130175 81.604873 7.628473 262.717340 rice data.isnull().sum()
In [6]: Out[6]:	data['label'].value_counts() coffee
In [7]:	rice 100 apple 100 watermelon 100 cotton 100 pomegranate 100 banana 100 mothbeans 100 chickpea 100 lentil 100 Name: label, dtype: int64 print("Average Ratio of Nitrogen in the Soil : {0:.2f}".format(data['N'].mean())) print("Average Ratio of Potassium in the Soil : {0:.2f}".format(data['P'].mean())) print("Average Ratio of Potassium in the Soil : {0:.2f}".format(data['Y'].mean())) print("Average Ratio of Potassium in the Soil : {0:.2f}".format(data['Y'].mean())) print("Average Relative Humidity in % : {0:.2f}".format(data['temperature'].mean())) print("Average Relative Humidity in % : {0:.2f}".format(data['thmidity'].mean())) print("Average Relative Humidity in % : {0:.2f}".format(data['thmidity'].mean()))
In [8]:	<pre>print("Average PH Value of the soil : {0:.2f}".format(data['ph'].mean())) print("Average Rainfall in mm : {0:.2f}".format(data['rainfall'].mean())) Average Ratio of Nitrogen in the Soil : 50.55 Average Ratio of Phosphorous in the Soil : 53.36 Average Ratio of Potassium in the Soil : 48.15 Average Tempature in Celsius : 25.62 Average Relative Humidity in % : 71.48 Average PH Value of the soil : 6.47 Average Rainfall in mm : 103.46 @interact def summary(crops = list(data['label'].value_counts().index)):</pre>
	<pre>print("Minimum Nitrigen required :", x['N'].man()) print("Average Nitrogen required :", x['N'].mean()) print("</pre>
	<pre>print("Average Temperature required : {0:.2f}".format(x['temperature'].mean())) print("Maximum Temperature required : {0:.2f}".format(x['temperature'].max())) print("Statistics for Humidity") print("Minimum Humidity required : {0:.2f}".format(x['humidity'].min())) print("Average Humidity required : {0:.2f}".format(x['humidity'].mean())) print("Maximum Humidity required : {0:.2f}".format(x['humidity'].max())) print("Statistics for PH") print("Minimum PH required : {0:.2f}".format(x['ph'].min())) print("Maximum PH required : {0:.2f}".format(x['ph'].mean())) print("Maximum PH required : {0:.2f}".format(x['ph'].max())) print("Statistics for Rainfall") print("Statistics for Rainfall required : {0:.2f}".format(x['rainfall'].min())) print("Moximum Rainfall required : {0:.2f}".format(x['rainfall'].min())) print("Maximum Rainfall required : {0:.2f}".format(x['rainfall'].min()))</pre>
In [9]:	<pre>@interact def compare(conditions = ['N','P','K','temperature','ph','humidity','rainfall']): print("Average Value for", conditions, "is {0:.2f}".format(data[conditions].mean())) print("</pre>
	<pre>print("Grapes : {0:.2f}".format(data['label'] == 'grapes')][conditions].mean())) print("Watermelon : {0:.2f}".format(data['label'] == 'watermelon'][conditions].mean())) print("Kidney Beans: {0:.2f}".format(data['label'] == 'kidneybeans')][conditions].mean())) print("Mung Beans : {0:.2f}".format(data[data['label'] == 'mungbean'][conditions].mean())) print("Oranges : {0:.2f}".format(data[(data['label'] == 'orange')][conditions].mean())) print("Chick Peas : {0:.2f}".format(data[(data['label'] == 'chickpea'][conditions].mean())) print("Lentils : {0:.2f}".format(data[(data['label'] == 'lentil')][conditions].mean())) print("Maize : {0:.2f}".format(data[(data['label'] == 'maize')][conditions].mean())) print("Maize : {0:.2f}".format(data[(data['label'] == 'mothbeans'][conditions].mean())) print("Pigeon Peas : {0:.2f}".format(data[(data['label'] == 'pigeonpeas')][conditions].mean())) print("Mango : {0:.2f}".format(data[data['label'] == 'mango'][conditions].mean())) print("Pomegranate : {0:.2f}".format(data[(data['label'] == 'pomegranate')][conditions].mean())) print("Coffee : {0:.2f}".format(data[data['label'] == 'coffee'][conditions].mean()))</pre>
In [10]:	<pre>@interact def compare(conditions = ['N','P','K','temperature','ph','humidity','rainfall']): print("Crops which require greater than average", conditions,'\n') print(data[data[conditions] > data[conditions].mean()]['label'].unique()) print("Crops which require less than average", conditions,'\n') print(data[data[conditions] <= data[conditions].mean()]['label'].unique()) plt.rcParams['figure.figsize'] = (15, 7) plt.subplot(2, 4, 1) sns.distplot(data['N'], color = 'lightgrey') plt.xlabel('Ratio of Nitrogen', fontsize = 12) plt.grid()</pre>
	<pre>plt.subplot(2, 4, 2) sns.distplot(data['P'], color = 'skyblue') plt.xlabel('Ratio of Phosphorous', fontsize = 12) plt.grid() plt.subplot(2, 4, 3) sns.distplot(data['K'], color = 'darkblue') plt.xlabel('Ratio of Potassium', fontsize = 12) plt.grid() plt.subplot(2, 4, 4) sns.distplot(data['temperature'], color = 'black') plt.xlabel('Temperature', fontsize = 12) plt.grid() plt.subplot(2, 4, 5)</pre>
	<pre>sns.distplot(data['rainfall'], color = 'grey') plt.xlabel('Rainfall', fontsize = 12) plt.grid() plt.subplot(2, 4, 6) sns.distplot(data['humidity'], color = 'lightgreen') plt.xlabel('Humidity', fontsize = 12) plt.grid() plt.subplot(2, 4, 7) sns.distplot(data['ph'], color = 'darkgreen') plt.xlabel('ph Level', fontsize = 12) plt.grid() plt.suptitle('Distribution for Agricultural Conditions', fontsize = 20) plt.show()</pre>
	C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s). warnings.warn(msg, FutureWarning) C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s). warnings.warn(msg, FutureWarning) C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s). warnings.warn(msg, FutureWarning) C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s). warnings.warn(msg, FutureWarning)
	C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s). warnings.warn(msg, FutureWarning) C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s). warnings.warn(msg, FutureWarning) C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s). warnings.warn(msg, FutureWarning) Distribution for Agricultural Conditions 0.10
	0.015 0.010 0.005 0.000 0.000 0.001 0.001 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.003
In [12]:	print("Some Interesting Patterns") print("Some Interesting Patterns") print("Crops which requires very High Ratio of Phosphorous Content in Soil:", data[data['N'] > 120]['label'].unique()) print("Crops which requires very High Ratio of Phosphorous Content in Soil:", data[data['N'] > 100]['label'].unique()) print("Crops which requires very High Ratio of Phosphorous Content in Soil:", data[data['N'] > 200]['label'].unique()) print("Crops which requires very High Ratio of Phosphorous Content in Soil:", data[data['N'] > 200]['label'].unique())
	print("Crops which requires very High Rainfall:", data[data['rainfall'] > 200]['label'].unique()) print("Crops which requires very High Rainfall:", data[data['temperature'] < 10]['label'].unique()) print("Crops which requires very High Temperature :", data[data['temperature'] > 40]['label'].unique()) print("Crops which requires very Low Humidity:", data[data['humidity'] < 20]['label'].unique()) print("Crops which requires very Low pH:", data[data['ph'] > 4]['label'].unique()) print("Crops which requires very High pH:", data[data['ph'] > 9]['label'].unique()) Some Interesting Patterns Crops which requires very High Ratio of Nitrogen Content in Soil: ['cotton'] Crops which requires very High Ratio of Phosphorous Content in Soil: ['grapes' 'apple'] Crops which requires very High Ratio of Potassium Content in Soil: ['grapes' 'apple'] Crops which requires very High Rainfall: ['rice' 'papaya' 'coconut'] Crops which requires very Low Temperature : ['grapes' 'papaya'] Crops which requires very Low Humidity: ['chickpea' 'kidneybeans'] Crops which requires very Low Humidity: ['chickpea' 'kidneybeans'] Crops which requires very Low PH: ['mothbeans']
In [13]:	<pre>crops which requires very High pH: ['mothbeans'] print("Summer Crops") print(data[(data['temperature'] > 30) & (data['humidity'] > 50)]['label'].unique()) print("</pre>
<pre>In [14]: Out[14]:</pre>	
In [15]:	<pre>0 90.0 42.0 43.0 20.879744 6.502985 82.002744 202.935536 1 85.0 58.0 41.0 21.770462 7.038096 80.319644 226.655537 2 60.0 55.0 44.0 23.004459 7.840207 82.320763 263.964248 3 74.0 35.0 40.0 26.491096 6.980401 80.158363 242.864034 4 78.0 42.0 42.0 20.130175 7.628473 81.604873 262.717340 from sklearn.cluster import KMeans plt.rcParams['figure.figsize'] = (10, 4) wcss = [] for i in range(1, 11): km = KMeans(n_clusters = i, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0) km.fit(x)</pre>
	<pre>plt.plot(range(1, 11), wcss) plt.title('The Elbow Method', fontsize = 20) plt.xlabel('No. of Clusters') plt.ylabel('wcss') plt.show()</pre> The Elbow Method 1.75 1.50 1.25
In [16]:	1.00 0.75 0.50 0.25 km = KMeans(n_clusters = 4, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0) y_means = km.fit_predict(x)
	<pre>a = data['label'] y_means = pd.DataFrame(y_means) z = pd.concat([y_means, a], axis = 1) z = z.rename(columns = {0: 'cluster'}) print("Lets check the Results After Applying the K Means Clustering Analysis \n") print("Crops in First Cluster:", z[z['cluster'] == 0]['label'].unique()) print("</pre>
In [17]:	Crops in Second Cluster: ['maize' 'chickpea' 'kidneybeans' 'pigeonpeas' 'mothbeans' 'mungbean' 'blackgram' 'lentil' 'pomegranate' 'mango' 'orange' 'papaya' 'coconut'] Crops in Third Cluster: ['grapes' 'apple'] Crops in Forth Cluster: ['maize' 'banana' 'watermelon' 'muskmelon' 'papaya' 'cotton' 'coffee'] print("Results for Hard Clustering\n") counts = z[z['cluster'] == 0]['label'].value_counts() d = z.loc[z['label'].isin(counts.index[counts >= 50])] d = d['label'].value_counts() print("Crops in Cluster 1:", list(d.index)) print("
	<pre>print("Crops in Cluster 2:", list(d.index)) print(""""""""""""""""""""""""""""""""""""</pre>
In [18]:	Crops in Cluster 3: ['grapes', 'apple'] Dlt.rcParams['figure.figsize'] = (15, 8) plt.subplot(2, 4, 1) sns.barplot(data['N'], data['label']) plt.xlabel('Ratio of Nitrogen', fontsize = 10) plt.yticks(fontsize = 10) plt.subplot(2, 4, 2) sns.barplot(data['P'], data['label']) plt.ytlabel('Ratio of Nitrogen', fontsize = 10) plt.subplot(2, 4, 2) sns.barplot(data['P'], data['label']) plt.ylabel('Ratio of Phosphorous', fontsize = 10)
	<pre>plt.yticks(fontsize = 10) plt.subplot(2, 4, 3) sns.barplot(data['K'], data['label']) plt.ylabel(' ') plt.xlabel('Ratio of Potassium', fontsize = 10) plt.yticks(fontsize = 10) plt.subplot(2, 4, 4) sns.barplot(data['temperature'], data['label']) plt.ylabel(' ') plt.xlabel('Temperature', fontsize = 10) plt.yticks(fontsize = 10) plt.subplot(2, 4, 5) sns.barplot(data['humidity'], data['label'])</pre>
	<pre>plt.ylabel('') plt.xlabel('Humidity', fontsize = 10) plt.subplot(2, 4, 6) sns.barplot(data['ph'], data['label']) plt.ylabel('') plt.xlabel('pH of Soil', fontsize = 10) plt.yticks(fontsize = 10) plt.subplot(2, 4, 7) sns.barplot(data['rainfall'], data['label']) plt.ylabel('') plt.ylabel('Rainfall', fontsize = 10) plt.yticks(fontsize = 10) plt.yticks(fontsize = 10)</pre>
	Visualizing the Impact of Different Conditions on Crops Tice
	rainge papaya corainge papaya coconut cocton
In [19]: In [20]:	y = data['label'] x = data.drop(['label'], axis = 1) print("Shape of x:", x.shape) print("Shape of y:", y.shape) Shape of x: (2200, 7) Shape of y: (2200,) from sklearn.model_selection import train_test_split
In [21]:	<pre>x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 0) print("The Shape of x train:", x_train.shape) print("The Shape of x test:", x_test.shape) print("The Shape of y train:", y_train.shape) print("The Shape of y test:", y_test.shape) The Shape of x train: (1760, 7) The Shape of x test: (440, 7) The Shape of y train: (1760,) The Shape of y test: (440,) from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(x_train, y_train)</pre>
In [22]:	<pre>from sklearn.metrics import classification_report, confusion_matrix plt.rcParams['figure.figsize'] = (10, 10) cm = confusion_matrix(y_test, y_pred) sns.heatmap(cm, annot = True, cmap = 'Wistia') plt.title('Confusion Matrix for Logistic Regression', fontsize = 15) plt.show() cr = classification_report(y_test, y_pred) print(cr) Confusion Matrix for Logistic Regression 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>
	20 No. 0. 0. 18
	10 110 110 110 110 110 110 110 110 110
	O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 precision recall f1-score support apple 1.00 1.00 1.00 18 banana 1.00 1.00 1.00 18 blackgram 0.86 0.82 0.84 22 chickpea 1.00 1.00 1.00 23 coconut 1.00 1.00 1.00 15 coffee 1.00 1.00 1.00 17 cotton 0.89 1.00 0.94 16 grapes 1.00 1.00 1.00 18 jute 0.84 1.00 0.91 21 kidneybeans 1.00 1.00 1.00 20 lentil 0.94 0.94 0.94 17 maize 0.94 0.89 0.91 18 mango 1.00 1.00 1.00 21
In [23]:	mothbeans 0.88 0.92 0.90 25 mungbean 1.00 1.00 1.00 1.00 17 muskmelon 1.00 1.00 1.00 23 orange 1.00 1.00 1.00 23 papaya 1.00 0.95 0.98 21 pigeonpeas 1.00 1.00 1.00 22 pomegranate 1.00 1.00 1.00 23 rice 1.00 0.84 0.91 25 watermelon 1.00 1.00 1.00 17 accuracy 0.97 440 macro avg 0.97 0.97 0.97 440 weighted avg 0.97 0.97 0.97 440
Out[23]:	N P K temperature humidity ph rainfall label 0 90 42 43 20.879744 82.002744 6.502985 202.935536 rice 1 85 58 41 21.770462 80.319644 7.038096 226.655537 rice 2 60 55 44 23.004459 82.320763 7.840207 263.964248 rice 3 74 35 40 26.491096 80.158363 6.980401 242.864034 rice 4 78 42 42 20.130175 81.604873 7.628473 262.717340 rice prediction = model.predict((np.array([[90, 40, 20, 80], 80])))
<pre>In [25]: Out[25]:</pre>	1600 22 30 12 15.781442 92.510777 6.354007 119.035002 orange 1601 37 6 13 26.030973 91.508193 7.511755 101.284774 orange 1602 27 13 6 13.360506 91.356082 7.335158 111.226688 orange 1603 7 16 9 18.879577 92.043045 7.813917 114.665951 orange
In [26]:	<pre>prediction = model.predict((np.array([[20,</pre>
	Plt.show() Correlation Heatmap N 1 -0.23 -0.14 0.027 0.19 0.097 0.059 P -0.23 1 0.74 -0.13 -0.12 -0.14 -0.064
	K -0.14 0.74 1 -0.16 0.19 -0.17 -0.053 0.6 temperature 0.027 -0.13 -0.16 1 0.21 -0.018 -0.03 0.4 humidity 0.19 -0.12 0.19 0.21 1 -0.0085 0.094 0.2
In [28]:	ph 0.097 -0.14 -0.17 -0.018 -0.0085 1 -0.11 0.0 rainfall 0.059 -0.064 -0.053 -0.03 0.094 -0.11 1 -0.2 Z a Y gy ky de
<pre>In [28]: Out[28]: In [29]: Out[29]: In []:</pre>	<pre>array(['papaya'], dtype=object) data[(data['N'] < 10) & (data['P'] < 10) & (data['K'] < 10)]['label'].unique()</pre>