DATA MINING PRESENTATION

Hawk Hotel Consultants

O1 BACKGROUND INFORMATION

O2. OUR GOALS

O3. SOLUTION & RECOMMENDATIONS

04. LIMITATIONS

AGENDA

01.

BACKGROUND INFORMATION

PROBLEM DESCRIPTION

- Industry average was 12.8% in 2018
- Find strategies to keep hotel fully booked
- Target high cancellations & build customer loyalty

02.

OUR GOALS

BUSINESS GOAL

- Keep hotel rooms fully booked to maximize profits
- Maintain customer satisfaction

GOAL

BUSINESS GOAL

- Keep hotel rooms fully booked to maximize profits
- Maintain customer satisfaction

DATA MINING GOAL

 Determine most important factors that lead to cancellations

Build model that predicts cancellations

GOAL

03.

SOLUTIONS & RECOMMENDATIONS

Training

Model	AUC	CA	F1	Precision	Recall	MCC
Neural Network	0.885	0.825	0.821	0.822	0.825	0.593
Decision Tree	0.943	0.877	0.876	0.875	0.877	0.718
Random Forest	0.911	0.857	0.853	0.856	0.857	0.668
Gradient Boosting	0.893	0.836	0.826	0.840	0.836	0.616

Testing

Model	AUC	CA	F1	Precision	Recall	MCC
Neural Network	0.878	0.819	0.815	0.815	0.819	0.573
Decision Tree	0.916	0.851	0.850	0.850	0.851	0.655
Random Forest	0.903	0.855	0.851	0.853	0.855	0.658
Gradient Boosting	0.888	0.833	0.823	0.835	0.833	0.602

Cross Validation (10 Fold)

Model	AUC	CA	F1	Precision	Recall	MCC
Neural Network	0.883	0.822	0.819	0.819	0.822	0.587
Decision Tree	0.920	0.858	0.857	0.856	0.858	0.675
Random Forest	0.906	0.852	0.847	0.852	0.852	0.656
Gradient Boosting	0.890	0.834	0.824	0.838	0.834	0.612

- Predictive model classifies as "cancel" or "not cancel"
- Decision tree provides the highest AUC and does not overfit

OUR

GOAL

Decision Tree Model Factors

Number of adults

Number of children

Number of weekend nights

Number of week nights

Meal plan

Parking space

Room type reserved

Lead time

Arrival month

Market segment type

Repeat guest

of previous cancellations

of bookings not canceled

Average price per room

Special requests

Decision Tree Model Factors

Result

Number of adults

Number of children

Number of weekend nights

Number of week nights

Meal plan

Parking space

Room type reserved

Lead time

Arrival month

Market segment type

Repeat guest

of previous cancellations

of bookings not canceled

Average price per room

Special requests

Likely to cancel

Unlikely to cancel

GOAL

RECOMMENDATION #1

Implement this predictive model onto reservation website to determine the probability of reservation cancellation.

Cancellations have come mostly from corporate groups.

RECOMMENDATION #2

Target corporate groups by offering incentives and personalized services, or raise cancellation fees to decrease chances of cancellation.

Repeat guests are less likely to cancel their hotel

Repeat guests are less likely to cancel their hotel

Lead time has the greatest impact on guest cancellations.

RECOMMENDATION #3

Create a loyalty program that prioritizes repeat guests in the booking process, allowing them to reserve rooms earlier.

Room Type 1 has the most bookings and the most

room_type_reserved

Room Types 1 and 4 are moderately priced, relative to other rooms.

RECOMMENDATION #4

Restructure what Room Type 1 and Room Type 4 offer guests and how the value proposition is communicated to customers.

04.

LIMITATIONS

LIMITATIONS

Number of beds,
bathroom
configurations, and
other amenities not
provided in dataset

Pre-COVID Data (2017-2018)

Cancellations are circumstantial

05. CONCLUSION

CONCLUSION

Implement predictive model on website to determine probability of reservation cancellation.

Target corporate groups by offering incentives and raise cancellation fees to decrease chances of cancellation.

Create a loyalty program that prioritizes repeat guests, allowing them to reserve rooms earlier.

Restructure what
Room Type 1 and
Type 4 offer and
how the value
proposition is
communicated to
guests.

06. QUESTIONS? 07. WORKS CITED

CITATIONS

Raza, A. (2023, January 4). Hotel Reservations Dataset. Kaggle.

https://www.kaggle.com/datasets/ahsan81/hotel-reservations-classification-dataset

Revenue Hub. (2020). Cancellations Rates: Where do They Stand and How to Overcome Them?

https://revenue-hub.com/cancellations-rates-where-do-they-stand-and-how-to-overcome-them/

08. APPENDIX Lead time, price, and arrival month have the largest impact on whether a guest will cancel their room.

Hotel reservations booked closer to a guest's arrival date are less likely to be canceled.

Box plot for attribute 'lead_time' grouped by 'booking_status'

Decision Tree - Confusion Matrix Predicted

Σ	Not_Canceled	Canceled		
8380	1782	6598	Canceled	_
17013	15662	1351	Not_Canceled	Actual
25393	17444	7949	Σ	

Parameters for Models

