Logistic Model

 $dX/dt = \rho(1-X(t)/K)\cdot X(t)$ - logistic model of growth. $X(t) = K\cdot X_0 \cdot \exp(\rho \cdot t)/(K+X_0 \cdot \exp(\rho \cdot t)-X_0)$ analytical solution.

Modification of Logistic Model

 $dX/dt = \rho(t)(1-X(t)/K(t))\cdot X(t)$ - logistic model with time dependent parameters.

 $dX/dt = \rho(1-X(t)/K)\cdot X(t) - C\cdot X(t)$ - logistic model with harvesting

 $dX/dt = \rho(1-X(t-\tau)/K)\cdot X(t)$ - logistic model with delay

Symbol	Importance	Value	Units	
X - population size	main variable	$X_0 = 135000$	ind	Var.
C - harvest coefficient	percentage of population that is consumed per year	10	%	P
K - carrying capacity	Max. number of individuals that could be supplied by environment	540000	ind	Parameters
ρ - growth factor	rate of population growth	0.71	ind·years-1	
τ - time delay	time delay	1/6	years	

 $X_1 = K \cdot X_0 \cdot \exp(\rho \cdot t) / (K + X_0 \cdot \exp(\rho \cdot t) - X_0) =$ = 540000 \cdot 135000 \cdot \exp(0.71) / (540000 + 135000 \cdot \exp(0.71) - 135000) = 218190

 $X_{0.5K} = K \cdot X_0 \cdot \exp(\rho \cdot t) / (K + X_0 \cdot \exp(\rho \cdot t) - X_0) =$ = 540000 \cdot 135000 \cdot \exp(0.71 \cdot t) / (540000 + 135000 \cdot \exp(0.71 \cdot t) - 135000) = 270000 t = 1.5473

