2017 级高等代数-2 测验-05

- 1. (2015) 设 $f(x) \in \mathbb{F}[x]$ 为首一多项式且次数大于 1.
 - (1) 证明: 存在矩阵 $A \in M_n(\mathbb{F})$ 使得 A 的特征多项式为 f(x);
 - (2) 证明: 若 f(x) 为不可约多项式,则任意以 f(x) 为特征多项式的两个矩阵 都相似:
 - (3) 问 f(x) 为不可约多项式是否是上述命题 (2) 成立的充要条件? 若不是, 请问 f(x) 应满足什么条件, 请说明理由.

提示:考察有理标准形及矩阵相似的等价刻画.

解答. (1) 若 $f(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$, 则矩阵

$$A = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & -a_2 \\ & \cdots & & \cdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}$$

的特征多项式为 $f(\lambda)$.

- (2) 设 A,B 的特征多项式都是 $f(\lambda)$. 由矩阵的初等因子的乘积为特征多项式 知 A,B 的初等因子都是 $f(\lambda)$, 从而 A 与 B 相似.
- (3) 不是. 上述命题成立的充要条件为 $f(\lambda)$ 没有重因式.

设 $f(\lambda) = p_1(\lambda) \cdots p_r(\lambda)$, 其中 $p_i(\lambda)$ 为数域 \mathbb{F} 上的首一不可约多项式 且 $p_i(\lambda)$ 与 $p_j(\lambda)$ 互素. 设 $A, B \in M_n(\mathbb{F})$ 使得 A, B 的特征多项式为 $f(\lambda)$. 设 $d_1(A), \cdots, d_n(A)$ 为矩阵 A 的不变因子, $d_1(B), \cdots, \cdots, d_b(B)$ 为矩阵 B 的不变因子, 则 $d_i(A)|d_{i+1}(A), d_i(B)|d_{i+1}(B), \forall 1 \leq i \leq n-1$ 且 $f(\lambda) = d_1(A) \cdots d_n(A) = d_1(B) \cdots d_n(B)$. 由此可知 $d_1(A) = \cdots d_{n-1}(A) = d_1(B) = \cdots = d_{n-1}(B) = 1, d_n(A) = d_n(B) = f(\lambda)$. 从而 A, B 有相同的不变因子,因此相似.

反之,假设任意以 $f(\lambda)$ 为特征多项式的矩阵都相似. 假设 $f(\lambda)$ 有重因式,不妨设 $f(\lambda) = p^2(\lambda)q(\lambda)$,其中 $p(\lambda)$ 为不可约首一多项式. 设 $\deg p(\lambda) = t$,由 (1) 知存在矩阵 $A_1 \in M_t(\mathbb{F})$ 使得 A_1 的不变因子为 $1,1,\cdots,1,p(\lambda)$. 同理存在矩阵 $A_2 \in M_{2t}(\mathbb{F})$ 使得 A_2 的不变因子为 $1,\cdots,1,p^2(\lambda)$,存在 $A_3 \in M_{n-2t}(\mathbb{F})$ 使得矩阵 A_3 的不变因子为 $1,\cdots,1,q(\lambda)$.

令
$$A = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & A_1 & 0 \\ 0 & 0 & A_3 \end{pmatrix}, B = \begin{pmatrix} A_2 & 0 \\ 0 & A_3 \end{pmatrix} \in M_n(\mathbb{F}).$$
 由准对角矩阵的初

等因子为每个对角子矩阵的初等因子的并知 A 与 B 具有不同的初等因子.

从而不相似但 A,B 具有相同的特征多项式 $f(\lambda)$, 矛盾. 所有 $f(\lambda)$ 没有重因式.

2. (2015) 设 $V = M_2(\mathbb{R}), (-, -)$ 为 V 的内积, 其中 $(A, B) = tr(AB^T), A, B \in V$. 记 $U = \{ \begin{bmatrix} a & b \\ b & 0 \end{bmatrix} \mid \forall a, b \in \mathbb{R} \}$ 为 V 的子空间. 求 U 的正交补 U^\perp 的一个标准正 交基及向量 $\begin{bmatrix} 2016 & 0 \\ 6 & 26 \end{bmatrix}$ 在 U 上的正交投影.

提示:考察 Schmidt 正交化、标准正交基及正交投影.

解答. 设
$$B_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $B_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in U$, 易知 B_1, B_2 为 U 的一个基. 设
$$A = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \in U^{\perp}$$
, 则 $(A, B_1) = 0 = (A, B_2)$. 求解线性方程组可得

$$U^{\perp} = \{ \begin{pmatrix} 0 & c \\ -c & d \end{pmatrix} \mid , c, d \in \mathbb{R} \}.$$

记 $A_1=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, A_2=\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$ 则 A_1,A_2 为 U^\perp 的一个基. 直接验证可知 $A_1\perp A_2$,从而 A_1,A_2 为 U^\perp 的正交基. 另一方面, $(A_1,A_1)=2,(A_2,A_2)=1.$ 令

$$C_1 = \frac{A_1}{|A_1|} = \begin{pmatrix} 0 & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 0 \end{pmatrix}, C_2 = \frac{A_2}{|A_2|} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$
则 C_1, C_2 为 U^\perp 的一个标准正交基. (7分

分别记 A_U,A_{U^\perp} 表示矩阵 $A=\left(egin{array}{cc}2016&0\\6&26\end{array}
ight)$ 在 U 及 U^\perp 上的正交投影. 我们有

$$A_{U^{\perp}} = (A, C_1)C_1 + (A, C_2)C_2 = \begin{pmatrix} 0 & -3 \\ 3 & 26 \end{pmatrix}.$$

由此可得
$$A_U = A - A_{U^{\perp}} = \begin{pmatrix} 2016 & 3 \\ 3 & 0 \end{pmatrix}$$
.

- 3. 设 V 为欧氏空间. 记 $U=\{\mathbb{B}\in \operatorname{End} V\mid \forall \alpha\in V, (\mathbb{B}(\alpha),\alpha)=0\}$. 易知 U 为 $\operatorname{End} V$ 的子空间.
 - (1) 证明: U 不是零子空间;
 - (2) 求子空间 U 的维数.

提示:考察反对称变换.

解答. (1) 设 $\epsilon_1, \dots, \epsilon_n$ 是 V 的一个标准正交基. 设 $\mathbb{A} \in \operatorname{End} V$ 且

$$\mathbb{A}(\epsilon_1,\cdots,\epsilon_n)=(\epsilon_1,\cdots,\epsilon_n)A,$$

其中 $A \in M_n(\mathbb{R})$. 对任意的 $\alpha = (\epsilon_1, \dots, \epsilon_n) X_\alpha \in V$, $\mathbb{A}(\alpha) = (\epsilon_1, \dots, \epsilon_n) (AX_\alpha)$. 因此 $(\mathbb{A}(\alpha), \alpha) = 0$ 等价于 $X_\alpha^T A^T X_\alpha = (AX_\alpha)^T E_n X_\alpha = 0$. 由 α 的任意性可得 $\mathbb{A} \in U$ 当且仅当 $A^T = -A$. 显然存在非零的反对称矩阵 A, 因此存在非零的线性变换 $A \in U$.

(2) 由 (1) 的证明可知, 在固定 V 的一个标准正交基下, U 与 $\mathbb R$ 上的 n 阶反 对称矩阵构成的空间同构. 由此可得 $\dim_{\mathbb R} U = \frac{n(n-1)}{2}$.