1 Rozgrzewka

Zadanie 1. Czy szachownica 8 × 8 bez naprzeciwległych rogów może zostać pokryta z użyciem domino?

Zadanie 2. Czy istnieje ścieżka po polach planszy 8×8 , która zaczyna się w jednym rogu planszy, kończy w rogu naprzeciwległym i przechododzi przez każde pole dokładnie raz?

Zadanie 3. Czy istnieje cykl ruchów skoczka na szachownicy 5×5 , w którym każde pole jest odwiedzone dokładnie jeden raz?

Zadanie 4. Czy siatkę 6×6 można pokryć kafelkami 1×4 ?

Zadanie 5. Jakie plansze $m \times n$ można pokryć kafelkami $1 \times k$ dla określonego k?

Zadanie 6. Czy można pokryć planszę 10×10 kafelkami w kształcie T [patrz: tablica]?

2 Zadania kolejne

Zadanie 7. Mamy typy figur S i Z [patrz: tablica]. Udowodnij, że jeśli jest możliwe pokrycie figury jedynie figurami typu S, to dla dowolnego jej pokrycia z użyciem figur S i figur Z, zostanie użytych parzyście wiele figur Z.

Zadanie 8. Czy siatkę 6×6 można pokryć poniższymi figurami? Można je przesuwać, ale nie można ich obracać.

Zadanie 9. Prostokąt można podzielić na mniejsze prostokąty w taki sposób, że każdy mały prostokąt ma przynajmniej jedną parę boków o długości całkowitej. Udowodnij, że oryginalny prostokąt ma przynajmniej jedną parę boków o długości całkowitej.

Zadanie 10. Dany jest kwadrat o boku 2m+1 ($m \in \mathbb{Z}_{\geq 0}$). Pokolorujmy pola w szachownicę w taki sposób, aby wszystkie rogi miały kolor czarny. Chcemy przykryć wszystkie czarne nienachodzącymi na siebie kafelkami [kształt na tablicy]. Dla jakich m jest to możliwe? Jeśli jest to możliwe, ile wynosi najmniejsza liczba kafelków niezbędnych do przykrycia czarnych pól?