Fine-tuning GPT-2 for Short Query Intent Classification

Jin Young Lee

June 11, 2025

Understanding Search Intent

Figure: Different types of Search Intent

Motivation and Problem Statement

Problem & Importance

- Users input short, ambiguous queries
- Predicting intent is key to user experience
- Applicable to voice assistants, chatbots, search engines
- Challenge: minimal context increases ambiguity

Example Queries

- "Weather?" → weather_query
- "Pizza nearby" → find restaurant

Proposed Approach and Methodology

Category	Detail	
Model	GPT-2 base model (768d hidden)	
Classification Head	Custom linear layer	
Fine-tuning Modes	Last-linear-layer, Full-model	
Regularization	Dropout (0.3)	
Optimizer	AdamW	
Learning Rate	1e-3	
Batch Size	8	
Loss Function	Cross-entropy	
Early Stopping	Based on dev accuracy	

Amazon MASSIVE Dataset (EN-US Subset)

[View on Hugging Face]

Feature	Description	
Total Languages	51 (Multilingual)	
Subset Used	en-US only	
Utterance Count	\sim 60,000 utterances (EN-US)	
Intent Classes	60 distinct intent types	
Domains	Music, Weather, Alarms, Smart Home, etc.	
Utterance Length	Mix of short and long queries	
Label Quality	Human-annotated, high quality	
Source	Amazon Alexa / MASSIVE Dataset	

MASSIVE Dataset: EN-US Subset Examples

ID	Utterance	Intent Label
1	wake me up at nine am on friday	alarm_set
2	set an alarm for two hours from now	alarm_set
5	stop	audio_volume_mute
9	make the lighting bit more warm here	iot_hue_lightchange
15	turn off the light in the bathroom	iot_hue_lightoff
22	dim the lights in the kitchen	iot_hue_lightdim
25	olly clean the flat	iot_cleaning
33	check when the show starts	calendar_query
34	i want to listen arijit singh song once again	play_music

Intent types include alarms, smart lighting, music playback, and calendar access.

Data Preprocessing Pipeline - Input Example

Preprocessing Steps for GPT-2:

- Tokenize input using GPT-2 tokenizer (BPE-based)
- Apply dynamic padding within batch
- Truncate to max model input length (e.g., 128)
- Use <|endoftext|> as padding token
- Track unique utterance ID for evaluation alignment

Example Utterance:

- Text: "play some jazz music"
- Intent: music.play_song

Tokenization Flow: From Text to Embeddings

Training Progress

Loss and Metrics Tracking

- Training loss decreases steadily
- Validation metrics show convergence
- No significant overfitting observed
- Full-model fine-tuning shows better convergence

Figure: Example: Accuracy over Epochs

Training and Development Loss

Figure: Training and Development Loss over Epochs

Accuracy over Epochs

Figure: Accuracy Performance over Epochs (Last-Linear-Layer)

Accuracy Comparison: Last-Linear-Layer vs. Full-Model

Figure: Last-Linear-Layer Accuracy

Figure: Full-Model Accuracy

F1 Scores over Epochs

Figure: F1 Score Performance over Epochs

Challenges and Learnings

Technical Challenges

- Model architecture:
 - Balancing model capacity vs. overfitting
 - Optimal dropout rates (0.3 for GPT, 0.1 for head)
- Training dynamics:
 - Learning rate sensitivity
 - Batch size limitations (GPU memory)
- Data processing:
 - Tokenization edge cases
 - Padding strategy impact

Future Work

Technical Improvements

- Model efficiency:
 - Implement LoRA for efficient fine-tuning
 - Explore model quantization
- Architecture enhancements:
 - Add attention visualization
 - Implement confidence scoring
- Training improvements:
 - Learning rate scheduling
 - Gradient accumulation