README

July 4, 2022

This code plots first the eigenvalues of open loop and closed loop system, then the analytical solution of the Ricatti equation P and the numerical solution using EnKF $P^{(N)}$ on the same plot entry wise. The dynamics matrices are randonly generated.

The code is written in Python 3 and there are three files: constants_enkf.py, enkf.py, LQSys.py. The steps for running the code are as follows:

- 1. In constants_enkf.py, set the desired variables as per the modelling and simulation parameters, see Table 1 and Table 2 respectively for location of these variables in the code.
- 2. Run enkf.py

Table 1: Modelling parameters in constants_enkf.py

Modelling parameter	Variable name in code	Line number in code
d	DIMX	12
C	Q	33
R	R	35
P_T	ST	37
Seed for RNG	SEED0	9

Table 2: Simulation parameters in constants_enkf.py

Modelling parameter	Variable name in code	Line number in code
Total simulation time (T)	Т	4
Stepsize (Δt)	STEP	5
Number of particles	N	7