subs	Derive the equation of the trajectory of <i>P</i> in the form	
a)		
	$y = x \tan \alpha - \frac{gx^2}{2u^2} \sec^2 \alpha.$	[3]
uri	ing its flight, P must clear an obstacle of height h m that is at a horizontal dis	tance of 32 m from
ne p chie	ing its flight, P must clear an obstacle of height h m that is at a horizontal dispoint of projection. When $u = 40\sqrt{2}\mathrm{ms^{-1}}$, P just clears the obstacle. When u eves 80% of the height required to clear the obstacle. Find the two possible values of h .	$= 40 \mathrm{ms}^{-1}, P \text{ only}$
ne p chie	point of projection. When $u = 40\sqrt{2}\mathrm{ms}^{-1}$, P just clears the obstacle. When u eves 80% of the height required to clear the obstacle.	
ne p chie	point of projection. When $u = 40\sqrt{2}\mathrm{ms}^{-1}$, P just clears the obstacle. When u eves 80% of the height required to clear the obstacle.	$= 40 \mathrm{ms}^{-1}, P \text{ only}$
ne p chie	point of projection. When $u = 40\sqrt{2}\mathrm{ms}^{-1}$, P just clears the obstacle. When u eves 80% of the height required to clear the obstacle.	$= 40 \mathrm{ms}^{-1}, P \text{ only}$
ne p chie	point of projection. When $u = 40\sqrt{2}\mathrm{ms}^{-1}$, P just clears the obstacle. When u eves 80% of the height required to clear the obstacle.	$= 40 \mathrm{ms}^{-1}, P \text{ only}$
e p	point of projection. When $u = 40\sqrt{2}\mathrm{ms}^{-1}$, P just clears the obstacle. When u eves 80% of the height required to clear the obstacle.	$= 40 \mathrm{ms}^{-1}, P \text{ only}$
ne p chie	point of projection. When $u = 40\sqrt{2}\mathrm{ms}^{-1}$, P just clears the obstacle. When u eves 80% of the height required to clear the obstacle.	$= 40 \mathrm{ms}^{-1}, P \text{ only}$
he p	point of projection. When $u = 40\sqrt{2}\mathrm{ms}^{-1}$, P just clears the obstacle. When u eves 80% of the height required to clear the obstacle.	$= 40 \mathrm{ms}^{-1}, P \text{ only}$
he pachie	point of projection. When $u = 40\sqrt{2}\mathrm{ms}^{-1}$, P just clears the obstacle. When u eves 80% of the height required to clear the obstacle.	$= 40 \mathrm{ms}^{-1}, P \text{ only}$

© UCLES 2023 9231/32/O/N/23