MA 4710 Homework 6

Benjamin Hendrick
March 1, 2016

Problem 4.5

Load the data into R and rename the variables.

```
filePath <- "~/GitHub/MA-4710/Homework 6/CH01PR22.txt"
CH01PR22 <- read.table(filePath, quote="\"", comment.char="")
names(CH01PR22)[1] <- "hardness"
names(CH01PR22)[2] <- "time"</pre>
```

Part A

Create the linear model using the 1m function and find the coefficients with the summary function.

```
plastic.lm <- lm(hardness ~ time, data = CH01PR22)
plastic.coef <- summary(plastic.lm)$coefficients
alpha <- 0.1</pre>
```

Compute the Bonferroni join confidence intervals for β_0 and β_1 , using a 90 percent family confidence coefficient.

The confidence interval for the intercept β_0 is (162.9012502, 174.2987498). We conclude that the intercept β_0 has a 90 percent chance of being between 162.9012502 and 174.2987498.

The confidence interval for the slope β_1 is (1.8404996, 2.2282504). We conclude that the slope β_1 has a 90 percent chance of being between 1.8404996 and 2.2282504.

Problem 4.9

Part A

Using the data from Problem 4.5, create the 90 percent confidence interval Bonferroni bands at 20, 30, and 40 hours.

```
CI <- predict(plastic.lm,newdata=data.frame(time=c(20,30,40)),se.fit=TRUE)
g <- 3
B <- qt(1-alpha/(2*g),plastic.lm$df.residual)
BBand <- cbind( CI$fit - B * CI$se.fit, CI$fit + B * CI$se.fit )
BBand</pre>
```

```
## [,1] [,2]
## 1 206.7277 211.8473
## 2 227.6762 231.5863
## 3 246.7824 253.1676
```

The confidence interval at 20 hours is (206.7277428, 211.8472572). We conclude that at 20 hours, the estimate has a 90 chance of being between 206.7277428 and 211.8472572.

The confidence interval at 30 hours is (227.6762032, 231.5862968). We conclude that at 30 hours, the estimate has a 90 chance of being between 227.6762032 and 231.5862968.

The confidence interval at 40 hours is (246.7824219, 253.1675781). We conclude that at 40 hours, the estimate has a 90 chance of being between 246.7824219 and 253.1675781.

Part C

Create the the 90 percent confidence interval Working-Hotelling bands at 30 and 40.

```
CI <- predict(plastic.lm,newdata=data.frame(time=c(30,40)),se.fit=TRUE)

W <- sqrt(2*qf(0.90,length(plastic.lm$coefficients),plastic.lm$df.residual))

WHBand <- cbind( CI$fit - W * CI$se.fit, CI$fit + W * CI$se.fit )
```

The confidence interval at 30 hours is (227.6966397, 231.5658603). We conclude that at 30 hours, the estimate has a 90 chance of being between 227.6966397 and 231.5658603.

The confidence interval at 40 hours is (246.8157946, 253.1342054). We conclude that at 40 hours, the estimate has a 90 chance of being between 246.8157946 and 253.1342054.

Create the the 90 percent confidence interval Bonferroni bands at 30 and 40.

```
g <- 2
B <- qt(1-alpha/(2*g),plastic.lm$df.residual)
BBand <- cbind( CI$fit - B * CI$se.fit, CI$fit + B * CI$se.fit )
BBand</pre>
```

```
## [,1] [,2]
## 1 227.8544 231.4081
## 2 247.0733 252.8767
```

The confidence interval at 30 hours is (227.8543526, 231.4081474). We conclude that at 30 hours, the estimate has a 90 chance of being between 227.8543526 and 231.4081474.

The confidence interval at 40 hours is (247.0733386, 252.8766614). We conclude that at 40 hours, the estimate has a 90 chance of being between 247.0733386 and 252.8766614.

Based on the above confidence intervals, the Bonferroni model is the most efficient because it has the smallest confinence bands.

Problem 5.1

Define the matrices A, B, and C in \mathbb{R} .

```
A <- matrix(c(1,2,3,4,6,8),3,2)

B <- matrix(c(1,1,2,3,4,5),3,2)

C <- matrix(c(3,5,8,4,1,0),2,3)
```

Perform the matrix arithmetic in R to compute A + B, A - B, AC, AB', and B'A.

Note that the function t(A) in R is equivalent to A^T and A %*% B is equivalent to AB.

```
A+B #A+B
##
        [,1] [,2]
## [1,]
## [2,]
            3
                10
## [3,]
            5
                13
A-B #A-B
        [,1] [,2]
##
## [1,]
            0
## [2,]
            1
                 2
## [3,]
            1
A %*% C #AC
##
        [,1] [,2] [,3]
## [1,]
          23
                24
                      1
## [2,]
          36
                40
                      2
## [3,]
          49
                56
                      3
A %*% t(B) #AB'
        [,1] [,2] [,3]
##
## [1,]
          13
                17
                     22
## [2,]
          20
                26
                     34
## [3,]
          27
                35
                     46
t(B) %*% A #B'A
##
        [,1] [,2]
## [1,]
           9
                26
## [2,]
          26
                76
```

Problem 5.5

Load the data into R and rename the variables.

```
filePath <- "~/GitHub/MA-4710/Homework 6/CH05PR05.txt"
CH05PR05 <- read.table(filePath, quote="\"", comment.char="")
names(CH05PR05)[1] <- "city"
names(CH05PR05)[2] <- "loans"</pre>
```

Put the X and Y values into their respective matrices. Y is a 6×1 matrix. X is a 6×2 matrix. The first column of X is all 1's and the second column is the values of X.

```
Y <- matrix(CH05PR05$loans, 6,1)
X \leftarrow matrix(c(1,1,1,1,1,1,CHO5PRO5\$city), 6, 2)
```

Perform the matrix arithmetic in R to compute Y'Y, XX', and X'Y.

```
t(Y) %*% Y #Y'Y
##
        [,1]
## [1,]
          55
X \% * \% t(X) #XX'
##
        [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]
        257
               81
                   161
                         241
                              209
                                   353
## [2,]
          81
               26
                     51
                          76
                               66
                                   111
## [3,]
         161
               51
                    101
                         151
                              131
                                    221
## [4,]
         241
               76
                    151
                         226
                              196
                                    331
## [5,]
         209
               66
                    131
                         196
                              170
                                    287
## [6,]
        353 111 221 331
                              287
                                    485
t(X) %*% Y #X'Y
##
        [,1]
```

Problem 5.13

17

[1,]

[2,] 261

Use the same data from Problem 5.5: CHO5PRO5.

Perform the matrix arithmetic in R to compute $(X'X)^{-1}$.

```
(t(X) %*% X)^{(-1)} #(X'X)^{-1}
##
               [,1]
                             [,2]
## [1,] 0.16666667 0.0123456790
## [2,] 0.01234568 0.0007942812
```