#### REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

| 1. REPORT DATE (DD-MM-YYYY)            | 2. REPORT TYPE          | 3. DATES COVERED (From - To) |
|----------------------------------------|-------------------------|------------------------------|
| 27-02-2012                             | Briefing Charts         |                              |
| 4. TITLE AND SUBTITLE                  | -                       | 5a. CONTRACT NUMBER          |
|                                        |                         |                              |
| Research and Development of Energe     | etic Ionic Liquids      | 5b. GRANT NUMBER             |
|                                        |                         | 5c. PROGRAM ELEMENT NUMBER   |
|                                        |                         |                              |
| 6. AUTHOR(S)                           |                         | 5d. PROJECT NUMBER           |
| T.W. Hawkins; A.J. Brand; M. McKay;    | and M. Tinnirello       |                              |
| -                                      |                         |                              |
|                                        |                         |                              |
|                                        |                         | 5f. WORK UNIT NUMBER         |
|                                        |                         | 50260541                     |
| 7. PERFORMING ORGANIZATION NAME(S      | S) AND ADDRESS(ES)      | 8. PERFORMING ORGANIZATION   |
| •                                      |                         | REPORT NUMBER                |
| Air Force Research Laboratory (AFMC    | )                       |                              |
| AFRL/RZSP                              |                         |                              |
| 10 E. Saturn Blvd.                     |                         |                              |
| Edwards AFB CA 93524-7680              |                         |                              |
|                                        |                         |                              |
| 9. SPONSORING / MONITORING AGENCY      | NAME(S) AND ADDRESS(ES) | 10. SPONSOR/MONITOR'S        |
|                                        |                         | ACRONYM(S)                   |
|                                        |                         |                              |
| Air Force Research Laboratory (AFMC    | )                       |                              |
| AFRL/RZS                               |                         | 11. SPONSOR/MONITOR'S        |
| 5 Pollux Drive                         |                         | NUMBER(S)                    |
| Edwards AFB CA 93524-7048              |                         | AFRL-RZ-ED-VG-2012-046       |
| 12 DISTRIBUTION / AVAIL ARII ITV STATE | MENT                    |                              |

Approved for public release; distribution unlimited (PA #12176).

#### 13. SUPPLEMENTARY NOTES

For presentation at the 243<sup>rd</sup> American Chemical Society (ACS) National Meeting, San Diego, CA, 25-31 March 2012)

#### 14. ABSTRACT

This presentation covered an overview of AFRL's rocket propulsion laboratory and discussed advanced chemical propulsion for spacecraft. It discussed hydrazine, state-of-the-art rocket fuel, hydrazines and flammability, energetic ionic liquids, chemical propellant development, hydrazine replacement monopropellant objectives, relevant monopropellant properties, AF-M1028A monopropellant composition and physical properties, thruster tests of AF-M1028A, ionic liquids as explosives, predictive toxicology, predictive methods expected payoff. AFRL continues efforts in energetic ionic liquids (IL) research, because ILbased propellants can convey unique capabilities, and energetic ILs have intriguing explosive properties. IL material properties promise significantly improved performance and reduced toxicity compared to hydrazine fuels.

#### 15. SUBJECT TERMS

| 16. SECURITY CLASSIFICATION OF: |              | 17. LIMITATION<br>OF ABSTRACT | 18. NUMBER<br>OF PAGES | 19a. NAME OF RESPONSIBLE PERSON Dr. Tom W. Hawkins |                                           |
|---------------------------------|--------------|-------------------------------|------------------------|----------------------------------------------------|-------------------------------------------|
| a. REPORT                       | b. ABSTRACT  | c. THIS PAGE                  | CAR                    | 27                                                 | 19b. TELEPHONE NUMBER (include area code) |
| Unclassified                    | Unclassified | Unclassified                  | SAR                    | 27                                                 | N/A                                       |



# **R&D** of Energetic Ionic Liquids

**Symposium in Honor of Robin D. Rogers: Industrial and Engineering Chemistry Fellow** 

243<sup>rd</sup> ACS National Meeting San Diego CA March 2012







# Where is AFRL's Rocket **Propulsion Laboratory?**







# Propellant Laboratory Complex Area 1-30





Distribution Statement A: Approved for Public Release; Distribution Unlimited.



# Advanced Chemical Propulsion For Spacecraft & Hydrazines





Communication (Iridium)

Spacecraft /Satellite propulsion employ hydrazines in both monopropellants and bipropellants

Global Positioning& Navigation(NAVSTAR GPS)

Weather (NASA TRMM)

#### Reduced toxicity can give:

- lower handling cost
- lower transport cost
- more rapid response

### **Higher performance gives:**

- longer lifetime
- faster response time
- larger payloads



# **Hydrazine – State of the Art Rocket Fuel**





#### **Hydrazine**

#### Monomethylhydrazine





- Hydrazine fuel vapor toxicity can increase testing/operations costs:
  - System Handling/Fueling by certified crews in high level PPE
    - \$0.5M in equipment & scheduled PPE QA
    - 3 weeks of Level A training
- Monitoring system requirement in the field
   Vapor toxicity can limit transportation options
- Hydrazines also bring additional hazards to operations





# **Hydrazines & Flammability**



# Hydrazines Spill and Fire Summary\*

#### Fuel Incidents:

- 24 Total.
- 8 Led to a Fire
- 2 Led to an Explosion
- 7 Led to Injuries (minor to death)
- 12 Led to Hardware Damage

\*NASA/TP 2009-214769

- Hydrazine, MMH and UDMH pose flammability hazards at temperatures easily achieved at storage and operation conditions
- Take advantage of ultra-low vapor pressure of ILs



# **Energetic Ionic Liquids**

# Avenues to Lower Toxicity & Higher Performance



### History

- An ionic compound that has a melting point at or below 100°C
- Seminal work at USAFA (Wilkes et.al.)
- Industrial solvents, green chemistry
  - Low vapor pressure, low vapor toxicity
  - Wide solubility ranges



EMIM cation (1-ethyl-3-methylimidazolium)

## • ILs as *Energetic* Materials

- First energetic ILs: chemical oddities
- AFRL realizes chemical structure manipulation leads to new classes of highly, energy dense materials (HEDM) for advanced propulsion



Liquid propellants:
Spacecraft thrusters
DACS/ACS
Booster engines



Take advantage of ultra-low vapor pressure of ILs to produce new classes of Green Propellant Fuels



# Chemical Propellant Development



## There is more to it than performance & toxicity

**Density** Isp **Toxicity** Oxygen **Functional** balance groups Decomposition C/H/N mechanisms ratios Strain Ionic/covalent **Molecular Unsaturation** bonds Hydrogen shape bonding





# Hydrazine Replacement Monopropellant Objectives



## Challenging first level property requirements

| Characteristic         | Objective                                       |
|------------------------|-------------------------------------------------|
| Isp                    | 242 lbf-sec/lbm                                 |
| Density                | ≥ 1.00 g/cc                                     |
| Vapor toxicity         | No SCBA required in handling                    |
| Exhaust carbon content | No soot in exhaust                              |
| Melting point          | <1°C                                            |
| Detonability           | No propagation in lines of < 0.75 inch diameter |
| Impact sensitivity     | > 20 kg-cm minimum (E <sub>50</sub> )           |
| Sliding Friction       | >300 N (Julius Peters –BAM)                     |
| Adiabatic compression  | No explosive decomposition                      |
| Thermal stability      | < 2% by wt. decomposition (DOT)                 |



# **Relevant Monopropellant Properties**



| Properties                        | HEHN         | Hydrazine       |
|-----------------------------------|--------------|-----------------|
| Viscosity (cps, 20C)              | 94           | 0.94 (a)        |
| Surface Tension (dyn/cm, 20C)     | 81           | 68 (a)          |
| Melt point, °C                    | <-45 (glass) | 1 (a)           |
| Catalyst ignition                 | Yes          | Yes             |
| Clean Combustion or Decomposition | No,<br>Soot  | Yes,<br>No Soot |

(a) <u>Hydrazine and Its Derivatives</u>, E.W. Schmidt, ed., J.W. Wiley & Sons, 2001

$$\begin{bmatrix} HOCH_2CH_2N_2H_4 \end{bmatrix}^+ NO_3$$

HEHN; ρ= 1.42 g/cc; MP <-25C Reactivity of HEHN on catalyst



R. Rogers et.al., *Chem. Commun.*, 2010, 46, 8965–8967

### With this in mind, AFRL chose to:

- Balance O/F by incorporating hydrazinium nitrate/ammonium nitrate eutectic
- Take advantage of catalytic reactivity of hydrazinium nitrate (IL) oxidizer
- Use diluent (water) as effective means to lower hazards, combustion temperature and viscosity
- Achieve Hydrazine monopropellant performance



# AF-M1028A Monopropellant Composition & Physical Properties



| Property                                                  | AF-M1028A                   | <b>Desired Objective</b> |
|-----------------------------------------------------------|-----------------------------|--------------------------|
| Composition                                               | HEHN/HN/AN/H <sub>2</sub> 0 |                          |
| Specific Impulse <sub>vacuum</sub> (Pc =300psi; exp=50:1) | 242.5 sec                   | 242 sec                  |
| Density                                                   | 1.38 g/cc                   | ≥ 1.00 g/cc              |
| T <sub>melt</sub>                                         | -7 C                        | <1C                      |
| Vapor Concentration<br>Hydrazines ; 8-hr, TWA             | < 10 ppb                    | < 10 ppb                 |

Overall: AF-M1028A meets initial physical and toxicity property objectives



# AF-M1028A Small-Scale Hazards



| Test                           | AF-M1028A                       | Desired Objective             |
|--------------------------------|---------------------------------|-------------------------------|
| Detonability                   | Negative                        | Negative                      |
|                                | (deformed plate)                | (deformed plate)              |
| <b>Impact Sensitivity</b>      | > 86 Kg-cm                      | >20 (E <sub>50</sub> ) Kg-cm  |
| (Olin-Mathiesen)               |                                 |                               |
| <b>Sliding Friction</b>        | 352 N                           | >300N                         |
| (Julius Peters –BAM)           |                                 |                               |
| Thermal                        | No reaction                     | No reaction                   |
| (50 ml beaker @75°C/48 hours)  | Wt. Loss < Wt. Volatiles        | Wt. Loss< Wt. Volatiles       |
| TGA (75°C/48 hours)            | 0.86 Wt % , Excluding Volatiles | <2.0 Wt%, Excluding Volatiles |
| <b>Electrostatic Discharge</b> | >1J                             | >1J                           |

Overall: AF-M1028A has acceptable small-scale hazard properties



# **Thruster Tests of AF-M1028A**



## **Proof of Principle**

#### **Propellant**

- AF-M1028AObjective
- Specific Impulse equals Hydrazine

#### **Thruster Materials**

- •S-405 (Ir/Al2O3)
- Catalyst/Substrate to Support Firing for short pulses



### **Potential Transition Opportunities**

- Satellites
- •F16 EPUs
- Gas Generators



## **Thruster Test Pulse Characterization**



#### AF-1028A 0.2 Second Pulses PI12267



Good, repeatable propellant injection & flow through catalyst bed



## **Thruster Test Pulse Characterization**





Good pulse ignition and repeatable shape



## **Thruster Test Pulse Characterization**



# Ignition Delay for 0.2 Second Duration Pulses of AF-M1028A on Shell 405



## Good, repeatable ignition delay for pulse train



### **Thruster Combustion**





- Catalyst bed temperature > 1400K
- Exhaust gas temperature ≈ 1000K



# Ionic Liquids as Explosives





IL-Based Explosive DetonabilityTest (2-kg)



- Initial USAF work on energetic RTILs over 15-years ago
- Recognized potential for advanced explosives
- Navy encouraged R&D on melt cast explosives



## **HEAT-DNT**



- Azolium Azolates incorporating 3,5-dinitro-1,2,4-triazolates known
  - Katritzki, Rogers, Holbrey et.al. ,Chem. Commun., 2005, 2-5
    - BMIM-DNT found to be an IL with  $T_m = 35C \& T_{decomp} = 239$ °C
  - Shreeve & Xue, Adv. Materials. 2005, 17, 2142-2146
    - 1-(2-azidoethyl)-1,2,4-triazolium 3,5-dinitro-1,2,4-triazolate;  $T_m = 85C \& T_{decomp} = 140^{\circ}C$

AFRL effort aimed at high T<sub>m</sub> & high T<sub>decomp</sub> ILs using triazolium cations
1-(2-hydroxyethyl)-4-amino-1,2,4-triazolium 3,5-dinitro-1,2,4-triazolate
(HEAT-DNT) was prepared by metathesis of corresponding salts





### **HEAT-DNT**



| Safety & Performance Properties |                       |  |  |
|---------------------------------|-----------------------|--|--|
| Impact sensitivity              | 5 no go @ 70 kg*cm    |  |  |
| Friction                        | 5 no go @ 117 newtons |  |  |
| Melting point                   | 107 C *               |  |  |
| Decomposition onset             | >200 C                |  |  |
| Heat of formation               | 0 kcal/mol (est.)     |  |  |
| Density                         | 1.61 g/cc (measured)  |  |  |
| Shock velocity                  | 7160 m/s (calcd.)     |  |  |
| P c-j                           | 20.46 GPa (calcd.)    |  |  |
| E detonation                    | 5.985 KJ/cc (calcd.)  |  |  |

- Higher T<sub>m</sub> & T<sub>decomp</sub> certainly achieved
- Performance near TNT
- Synthesis undertaken seeking IL with higher energy cation, AMT (1-amino-3-methyl-1,2,3 triazolium)



# **AMT-DNT Properties**



## **Properties of AMT-DNT improvement over HEAT-DNT**

| 1-amino-3-methyl-1,2,3-      | <b>M.P.</b> | Decomp. | Density   | Heat of      |
|------------------------------|-------------|---------|-----------|--------------|
| triazolium                   |             | Temp.   | (g/cc)    | Form. (est)  |
| 3,5-dinitro-1,2,4-triazolate | 84° C       | 235°C   | 1.6037(m) | +76 kcal/mol |

#### X-ray crystal structure of AMT-DNT

- Note association of anions & near perpendicular arrangement of cation rings to anion rings

| 多一个  |   |
|------|---|
| 南大大大 | 7 |
|      |   |

| Ingredients | Total Detonation | Shock Velocity | C-J Pressure |
|-------------|------------------|----------------|--------------|
|             | Energy (KJ/cc)   | (mm/μs)        | (GPa)        |
| TNT         | 6.94             | 7.06           | 19.7         |
| AMT-DNT     | 6.96             | 7.39           | 22.3         |
| HEAT-DNT    | 5.99             | 7.16           | 20.5         |
| 1-AMTN      | 7.92             | 8.12           | 23.6         |

<sup>\*</sup> CHEETAH 4.0 product library exp6.2



# **Another Challenge: Predictive Toxicology**



### Background

- Next generation propellants & explosives are emerging with many programs championed by US Army, Navy and USAF involvement
- Environmentally benign impact initiated devices (DOE)
- Lead-free electrical & percussion primers (Navy/Army)
- Chlorine-free pyrotechnics (Navy)
- Chlorine-free (AP-free) solid propellant (Army/Navy/AF)
- USAF AF-M315E
- Propellant uses ionic liquids to yield low vapor toxicity
- Sweden/ECAPS LMP-103S
- Propellant uses ADN-based formulation

New PEP materials are likely to employ advanced energetic molecules

<u>Issue</u>: Currently available, predictive toxicology models (e.g. TopKat, EPI Suite, ADMET) do not comprehensively handle EMs, particularly salts



# Comparison of prediction methods for general toxicity of 30 drugs in <u>external test set</u>





(Golbraikh, A. & Tropsha A., J. Mol. Graphics Mod. 2002, 20, 269-276.)





- Well-functioning, predictive toxicological methods for EM development can significantly affect life cycle costs for new systems
- DoD will be able to make more informed program decisions
- ESOH risks will be mitigated early in Acquisition/RDT&E process
- DoD will save \$\$\$ in clean-up, compliance and restoration costs



# **Summary**



- AFRL continues efforts in energetic ionic liquids research
  - IL-based propellants can convey unique capabilities
  - Energetic ILs have intriguing explosive properties
- IL material properties promise significantly improved performance & reduced toxicity compared to hydrazine fuels
  - Moving to lower testing/operations costs, improved operational responsiveness (as propellant candidates emerge, cost analysis will determine overall system benefits)
  - Leading to next generation systems with increased payload, range, and lifetime





# **Acknowledgments**



#### **AFRL/Propulsion Directorate, Edwards AFB, CA**

Adam Brand Stefan Schneider Yonis Ahmed

Milton McKay Gregory Warmoth G. Vaghjiani

Leslie Hudgens Michael Tinnirello Steve Chambreau

**US Army/Redstone Arsenal** 

**Gregory Drake** 

\$\$\$

- Michael Huggins, AFRL/RZS, Space & Missile Propulsion
- Michael Berman, AFOSR, Ionic Liquid Propellant Research Program
- Cliff Bedford, ONR, Energetic ILs for Melt Castable Explosives