Машинное обучение

Лекция 5 Метрики качества. Переобучение. Многоклассовая классификация.

Михаил Гущин

mhushchyn@hse.ru

На прошлой лекции

Модель логистической регрессии:

$$\hat{y} = \sigma(Xw)$$

Функция потерь log-loss:

$$L = -\frac{1}{n} \sum_{i=1}^{n} (y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i))$$

ightharpoonup Мы хотим минимизировать L:

$$L \to \min_{w}$$

Градиентный спуск:

$$w^{(k+1)} = w^{(k)} - \eta \nabla L(w^{(k)})$$

Метрики качества для классификации

Задача

Рассмотрим задачу бинарной классификации для некоторого набора данных.

Цель – **оценить качество классификатора**, определить как
хорошо он разделяет объекты разных
классов.

Матрица ошибок (confusion matrix)

- ► **TP** (True Positive) правильно предсказанные **1**
- ► **FP** (False Positive) предсказанные как **1**, но правильно **0** (ошибка 1го рода)
- ► TN (True Negative) правильно предсказанные **0**
- FN (False Negative) –
 предсказанные как 0, но правильно
 1 (ошибка 2го рода)

PREDICTIVE VALUES

POSITIVE (1) NEGATIVE (0)

POSITIVE (1) TP FN

NEGATIVE (0) FP TN

1 (ошибка 2го рода)

Матрица ошибок (confusion matrix)

- ► **TP** (True Positive) правильно предсказанные **1**
- ► **FP** (False Positive) предсказанные как **1**, но правильно **0** (ошибка 1го рода)
- ► TN (True Negative) правильно предсказанные **0**
- ► FN (False Negative) –
 предсказанные как 0, но правильно
 1 (ошибка 2го рода)

Матрица ошибок (confusion matrix)

Bce **1** (Pos): Pos = TP + FN

Bce
$$\mathbf{0}$$
 (Neg):
 $Neg = TN + FP$

- ightharpoonup Все прогнозы 1 (PosPred): PosPred = TP + FP
- ightharpoonup Все прогнозы $\mathbf{0}$ (NegPred): NegPred = TN + FN

Доля правильных ответов (accuracy)

Accuracy:

Accuracy =
$$\frac{TP + TN}{TP + FN + TN + FP} = \frac{TP + TN}{Pos + Neg}$$

Error rate:

Error rate
$$= 1 - Accuracy$$

▶ Измеряет долю верных прогнозов во всех классах

Точность (precision)

Precison:

$$Precison = \frac{TP}{TP + FP} = \frac{TP}{PosPred}$$

Показывает какая доля прогнозов 1 правильная

Пример: предсказали 100 объектов класса 1, но только 90 прогнозов верны. Тогда точность = 0.9.

Полнота (recall)

Recall:

$$Recall = \frac{TP}{TP + FN} = \frac{TP}{Pos}$$

Показывает какую долю настоящих 1 классификатор предсказал правильно.

Пример: в данных 50 объектов класса 1, классификатор правильно предсказал 40 этих объектов. Тогда полнота = 0.8.

F-мера

 $ightharpoonup F_1$ -score:

$$F_1 = \frac{2 \cdot \text{Precison} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

▶ Показывает среднее геометрическое точности и полноты

Пример

Metric	Value
Accuracy	0.89
Precision	0.89
Recall	0.89
F_1	0.89

- В этом простом симметричном примере все метрики равны
- Далее увидим другие примеры

Метка класса vs вероятность класса

Прогноз **1** если $p \ge 0.5$ Прогноз **0** если p < 0.5

Вероятность клааса 1 p:

ROC кривая

РОС (Receiver operating characteristic) кривая — зависимость $TPR(\mu)$ от $FPR(\mu)$ для разных пороговых значений μ вероятности p

 $ightharpoonup TPR(\mu)$ (True Positive Rate):

$$TPR(\mu) = \frac{1}{Pos} \sum_{i \in Pos} I[p_i \ge \mu] = \frac{TP(\mu)}{Pos}$$

 $ightharpoonup FPR(\mu)$ (False Positive Rate):

$$FPR(\mu) = \frac{1}{Neg} \sum_{i \in Neg} I[p_i \ge \mu] = \frac{FP(\mu)}{Neg}$$

ROC кривая

ROC AUC

 Можно сравнивать классификаторы с помощью площади под ROC кривой (ROC AUC)

- ► ROC AUC ∈ [0, 1]
- ► ROC AUC = 0.5 случайные прогнозы
- ► ROC AUC = 1 идеальный классификатор
- ► ROC AUC = 0 тоже идеальный классификатор, но с противоположными ответами [©]

Img: https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/

Индекс Джини

► Gini:

$$Gini = 2 (ROC AUC) - 1$$

Измеряется в диапазоне от 0 до 1

Precision-Recall кривая

- ► По аналогии с ROC кривой, можно построить Precision-Recall (PR) кривую
- РR зависимость $Precision(\mu)$ от $Recall(\mu)$ для разных пороговых значений μ вероятности p

Демонстрация

Metric	1:1	1:10	10:1
Accuracy	0.89		
Precision	0.89		
Recall	0.89		
F_1	0.89		
ROC AUC	0.97		

- Обучили модель на сбалансированной выборке
- Фиксируем модель и будем менять баланс классов

Демонстрация

Metric	1:1	1:10	10:1
Accuracy	0.89	0.89	
Precision	0.89	0.99	
Recall	0.89	0.89	
F_1	0.89	0.94	
ROC AUC	0.97	0.97	

Значения некоторых метрик меняются при смене баланса классов

Демонстрация

Metric	1:1	1:10	10:1
Accuracy	0.89	0.89	0.89
Precision	0.89	0.99	0.47
Recall	0.89	0.89	0.89
F_1	0.89	0.94	0.61
ROC AUC	0.97	0.97	0.97

- Recall и ROC AUC устойчивы к дисбалансу классов
- Для Accuracy это не выполняется в общем случае

Метрики качества для регрессии

Задача

Пусть даны X, y и линейна модель:

$$\hat{y} = Xw$$

Цель – измерить **качество модели**, определить насколько блзки прогнозы \hat{y} к реальным значениям y.

Популярные метрики качества

Root Mean Squared Error (RMSE):

$$RMSE = \sqrt{\frac{1}{N}} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

Mean Absolute Error (MAE):

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |\hat{y}_i - y_i|$$

Трудно определить хорошую модель: RMSE = 1 выражает разное качество моделей при $\bar{y} = 100$ and $\bar{y} = 1$

Другие метрики качества #1

Mean Absolute Percentage Error (MAPE):

$$MAPE = \frac{100}{N} \sum_{i=1}^{N} \left| \frac{\hat{y}_i - y_i}{y_i} \right|$$

- Измеряем относительную ошибку модели
- Легко интерпретировать
- Чувствительна к масштабу у

Другие метрики качества #2

Relative Squared Error (RSE):

$$RSE = \sqrt{\frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{N} (y_i - \bar{y})^2}}$$

Relative Absolute Error (RAE):

$$RAE = \frac{\sum_{i=1}^{N} |y_i - \hat{y}_i|}{\sum_{i=1}^{N} |y_i - \bar{y}|}$$

Робастны (мене чувствительны) к масштабу у

Other quality metrics #3

Root Mean Squared Logarithmic Error (RMSLE):

$$RMSLE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\log(y_i + 1) - \log(\hat{y}_i + 1))^2}$$

ightharpoonup Отличный выбор, когда y_i меняется на несколько порядков: $y_i \in [0, 10^6]$

Пример

Metric	No outliers
RMSE	0.67
MAE	0.59
MAPE, %	1035
RSE	0.39
RAE	0.40

МАРЕ ведет себя плохо, потому что y и y_i близки к 0

Demonstration

Metric	No outliers	With outlier
RMSE	0.67	1.93
MAE	0.59	0.96
MAPE, %	1035	1040
RSE	0.39	0.92
RAE	0.40	0.58

- Выбросы могут сместить метрики
- ► MAE и RAE более робастны

Обучение и тест

- ► Обучающая выборка (train): для обучения модели
- ► Тестовая (отложенная) выборка (test): для измерения качества модели

Переобучение

Underfitting Overfitting Right Fit Classification Regression

Источник: https://www.mathworks.com/discovery/overfitting.html

Кривая обучения

Источник: https://datahacker.rs/018-pytorch-popular-techniques-to-prevent-the-overfitting-in-a-neural-networks/

Регуляризация

- Линейная и логистическая регрессии
 - L_1 -регуляризация
 - L_2 -регуляризация
- KNN
 - Число соседей

K-Fold кросс-валидация

Mikhail Hushchyn, NRU HSE

Кросс-валидация (cross-validation)

- ▶ Используется для измерения качества моделей в машинном обучении
- Отложенная выборка (train / test):
 - Делим всю выборку на две подвыборки в пропорции 70:30
 - Большая часть данных не используется для обучения (хуже качество модели)
- K-Fold кросс-валидация
 - К берем порядка 10
 - Больше данных участвует в обучении отдельной модели
 - Проверяем качество на всех данных
 - Более точная оценка качества

Mikhail Hushchyn, NRU HSE 38

Многоклассовая классификация

Задача

- Разделить объекты между
 несколькими классами.
- Многие классификаторы
 поддерживают несколько классов.
- ▶ Но не все ⊗
- Как разложить эту задачу на несколько задач бинарной классификации?

Multi-class classification:

Один против всех (one-vs-all)

- Пусть дано К классов
- Для каждого класса обучаем свой бинарный классификатор отделять объекты этого класса от всех остальных
- ▶ Всего обучаем К таких классификаторов

Один против всех (one-vs-all)

- ▶ Пусть есть K обученных классификаторов: $\hat{p}_1(x)$, $\hat{p}_2(x)$, ..., $\hat{p}_K(x)$
- ightharpoonup Пусть дан объект x_i , для которого делаем прогноз:
 - Получаем K прогнозов: $\hat{p}_1(x_i)$, $\hat{p}_2(x_i)$, ..., $\hat{p}_K(x_i)$
 - Находим класс с максимальным прогнозом:

$$\hat{y}(x_i) = \arg\max_{k \in \{1, \dots, K\}} \hat{p}_k(x_i)$$

- Здесь $\hat{p}_k(x_i)$ прогноз "вероятности" положительного (k-го) класса;
- $-\hat{y}(x_i)$ итоговый прогноз метки класса (одного из K)

Один против одного (one-vs-one)

One versus one

Один против одного (one-vs-one)

- lacktriangle Для каждой пары классов i,j обучаем свой бинарный классификатор $\hat{y}_{ij}(x)$
- ightharpoonup Пусть дан объект x_t , для которого делаем прогноз:

$$\hat{y}(x_t) = \arg\max_{k \in \{1, ..., K\}} \sum_{i=1}^{K} \sum_{j \neq i} [\hat{y}_{ij}(x_t) = k]$$

Т.е. выбираем класс, за который наберется больше всего голосов

(Дополнительно) Логистическая регрессия на К классов

Логистическая регрессия на 2 класса

Вероятность класса 1:

$$p(y = \mathbf{1}|x_i) = \sigma(x_i^T w) = \hat{y}_i$$

Вероятность класса 0:

$$p(y = \mathbf{0}|x_i) = 1 - \sigma(x_i^T w)$$

Логистическая регрессия на К классов

- Строим К один против всех моделей:
 - Класс 1 против всех: $z_{i1} = x_i^T w_1$
 - Класс 2 против всех: $z_{i2} = x_i^T w_2$
 - Класс 3 против всех: $z_{i3} = x_i^T w_3$
 - Класс K против всех: $z_{iK} = x_i^T w_K$
- Получаем К векторов весов для обучения

Логистическая регрессия на К классов

SoftMax – многомерный вариант сигмоиды:

$$\hat{y}_{i1} = p(y = 1|x_i) = \frac{e^{z_{i1}}}{\sum_{k=1}^{K} e^{z_{ik}}}$$

$$\hat{y}_{i2} = p(y = 2|x_i) = \frac{e^{z_{i2}}}{\sum_{k=1}^{K} e^{z_{ik}}}$$

$$\hat{y}_{iK} = p(y = K|x_i) = \frac{e^{z_{iK}}}{\sum_{k=1}^{K} e^{z_{ik}}}$$

Логарифм правдоподобия для К классов

Правдоподобие:

Likelihood =
$$-\prod_{i=1}^{n} p(y=1|x_i)^{[y_i=1]} p(y=2|x_i)^{[y_i=2]} \dots p(y=K|x_i)^{[y_i=k]}$$

Логарифм правдоподобия (функция потерь):

$$L = -\sum_{i=1}^{n} \sum_{k=1}^{K} [y_i = k] \log(\hat{y}_{ik}) \to \min_{w_1, \dots, w_K}$$

Задача

Мы знаем как считать метрики для двух классов.

Что делать в случаем К классов?

Multi-class classification:

Микро-усредение

- Пусть дано К классов
- Рассмотрим К один против всех задач
- ightharpoonup Для каждой задачи считаем TP_k , FP_k , FN_k , TN_k
- Усредняем эти характеристики по всем классам:

$$\overline{TP} = \frac{1}{K} \sum_{k=1}^{K} TP_k$$

Используем их для подсчета метрик качества:

$$Precision = \frac{\overline{TP}}{\overline{TP} + \overline{FP}}$$

Макро-усредение

- Пусть дано К классов
- Рассмотрим К один против всех задач
- ightharpoonup Для каждой задачи считаем TP_k , FP_k , FN_k , TN_k
- Используем их для подсчета метрик качества:

$$Precision_k = \frac{TP_k}{TP_k + FP_k}$$

Усредняем эти метрики качества по всем классам:

$$\overline{Precision} = \frac{1}{K} \sum_{k=1}^{K} Precision_k$$

Классификация с пересекающимися классами

Независимая классификация (one-vs-all)

- ▶ Пусть есть K обученных классификаторов: $\hat{p}_1(x)$, $\hat{p}_2(x)$, ..., $\hat{p}_K(x)$
- ightharpoonup Пусть дан объект x_i , для которого делаем прогноз:
 - Получаем К прогнозов: $\hat{p}_1(x_i)$, $\hat{p}_2(x_i)$, ..., $\hat{p}_K(x_i)$
 - Тогда вектор прогнозов:

$$\hat{y}(x_i) = \begin{pmatrix} [\hat{p}_1(x_i) > \tau] \\ [\hat{p}_2(x_i) > \tau] \\ \dots \\ [\hat{p}_K(x_i) > \tau] \end{pmatrix}$$

- Можно взять порог au=0.5
- Здесь $\hat{p}_k(x_i)$ прогноз "вероятности" положительного (k-го) класса;
- $-\hat{y}(x_i)$ итоговый прогноз метки класса (несколько из K)

Независимая классификация

- Самое простое решение задачи multi-label classification
- Не учитывает связи между классами

Заключение

Вопросы

- Что такое точность, полнота и F-мера?
- ▶ Что такое AUC-ROC? Опишите алгоритм построения ROC-кривой.
- ▶ В чем состоят преимущества и недостатки использования метрик Mean squared error (MSE) и Mean absolute error (MAE) в задаче регрессии? Запишите формулу метрики Mean absolute percentage error (MAPE).
- Что такое переобучение и недообучение? Как отличить переобучение от недообучения?
- Что такое кросс-валидация и для чего она используется? Чем применение кроссвалидации лучше, чем разбиение выборки на обучение и контроль?
- ▶ В чём заключается подход с независимой классификацией в задаче классификации с пересекающимися классами (multilabel classification)?
- Что такое микро- и марко-усреднение при оценивании качества многоклассовой классификации?