Universidad de la República - Facultad de Ingeniería - IMERL Matemática Discreta 2, semipresencial

SOLUCIÓN PRIMER PRUEBA 9 DE SETIEMBRE DE 2016

Ejercicio 1.

a. Resolver la ecuación diofántica:

$$738x + 621y = 45$$

b. ¿Existen enteros positivos x, y tales que 738x + 621y = 49563? Justifique la respuesta.

Solución:

a. La ecuación diofántica 738x + 621y = 45 es equivalente, dividiendo todos los coeficientes por 9, a la ecuación 82x + 69y = 5. Como el $\operatorname{mcd}(82,69) = 1$ entonces esta ecuación tiene solución en los enteros. Buscaremos primeros los valores $x_0,\ y_0 \in \mathbb{Z}$ tales que:

(*)
$$82x_0 + 69y_0 = 1$$
 (Lema de Bézout).

Tenemos:

- $82 = 69 \times 1 + 13$;
- $69 = 13 \times 5 + 4$;
- $13 = 4 \times 3 + 1.$

Entonces $1 = 13 - 4 \times 3 = 13 - (69 - 13 \times 5) \times 3 = 13 \times 16 - 69 \times 3 = (82 - 69) \times 16 - 69 \times 3 = 82 \times 16 - 69 \times 19$. O sea $1 = 82 \times 16 - 69 \times 19 = 82 \times 16 + 69 \times (-19)$. Por lo tanto $x_0 = 16$ e $y_0 = -19$, son una solución de la ecuación (*).

Luego, tomando $x_1 = 5 \times 16 = 80$ e $y_1 = 5 \times (-19) = -95$ obtenemos una solución de la ecuación 82x + 69y = 5 pues $82 \times 80 - 69 \times 95 = 5$. Ahora, multiplicando por 9 volvemos a la ecuación original: 738x + 621y = 45 y tenemos: $738 \times 80 - 621 \times 95 = 45$.

Entonces todas las soluciones de la ecuación 738x + 621y = 45 están dadas por:

$$\{(x_t, y_t) \mid x_t = 80 + 69t, \ y_t = -95 - 82t, \ \text{con } t \in \mathbb{Z}\},\$$

pues $69 = \frac{621}{9}$ y $82 = \frac{738}{9}$, siendo mcd(738, 621) = 9.

b. La respuesta es NO. La sección 1.6 "Problema de los Sellos" es la clave.

La Proposición 1.6.1 dice: Sean a > 1, b > 1 enteros, primos entre sí. Entonces no hay enteros x, y, no negativos tal que $ax + by = a \times b - a - b$.

A la vez, la Proposición 1.6.2 dice: Sean a y b enteros positivos primos entre sí. Si $n \ge a \times b - a - b + 1$, entonces existen enteros no negativos x, y tales que: ax + by = n.

Como mcd(738,621) = 9 divide a 49563 entonces la ecuación 738x + 621y = 49563 es equivalente a 82x + 69y = 5507. Pero es clave, según las proposiciones citadas, calcular $82 \times 69 - 82 - 69 = 5507$.

Entonces la Proposición 1.6.1 nos asegura que la ecuación NO tiene solución con coeficientes enteros positivos.

Ejercicio 2. Sea $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ con p_i primos distintos y $\alpha_i \in \mathbb{Z}^+$. Demostrar que n es un cuadrado perfecto si y solo si el número de divisores positivos de n es impar.

Solución:

Directo:

Si n es cuadrado perfecto entonces $n=m^2$, con $m=p_1^{\beta_1}p_2^{\beta_2}\cdots p_k^{\beta_k}$, por lo tanto $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}=m^2=(p_1^{\beta_1})^2(p_2^{\beta_2})^2\cdots(p_k^{\beta_k})^2=p_1^{2\beta_1}p_2^{2\beta_2}\cdots p_k^{2\beta_k}$. Entonces $\alpha_i=2\beta_i$, para todo i=1,2,...,k. Luego

el $\mathrm{Div}_{+}(n) = (\alpha_{1} + 1) \times (\alpha_{2} + 1) \times ... \times (\alpha_{k} + 1) = (2\beta_{1} + 1) \times (2\beta_{2} + 1) \times ... \times (2\beta_{k} + 1)$. O sea que $\mathrm{Div}_{+}(n)$ es impar.

Recíproco:

Si $\operatorname{Div}_+(n)$ es impar, como $\operatorname{Div}_+(n) = (\alpha_1 + 1) \times (\alpha_2 + 1) \times ... \times (\alpha_k + 1)$, entonces $\alpha_i + 1$ es impar para todo i = 1, 2, ..., k. O sea que α_i es par para todo i = 1, 2, ..., k. Por lo tanto $\alpha_i = 2 \times \beta_i$, para todo i = 1, 2, ..., k. O sea que: $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k} = (p_1^{\beta_1})^2 (p_2^{\beta_2})^2 \cdots (p_k^{\beta_k})^2$. Luego, tomando $m = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k}$, se tiene que $n = m^2$, es un cuadrado perfecto.

0