## **Homework #2 Justin Garcia**

#### **Table of Contents**

| Problem #2                                                  | . 1 |
|-------------------------------------------------------------|-----|
| Problem 3, Setting Ki = 0, and bringing overshoot within 5% | . 2 |
| Problem 4, Tracking Error                                   |     |
| Problem 5                                                   |     |
| Problem 6 (optional)                                        | . 5 |
| Appendix                                                    |     |

Due Sept 22, 2016

#### Problem #2

The setup for this (Problem 1) can be found in the appendix.

```
m = .2;
Kp = 100;
Ki = 5;
Kd = 10;

t = 0:.01:10;
sim('ME190_HW2_Justin_Garcia_StepInput')
figure(1)
plot(T,R)
hold on
plot(T,Y)
title('Input and Output over time')
xlabel('time')
ylabel('amplitude')
```



#### Problem 3, Setting Ki = 0, and bringing overshoot within 5%

```
m = .2;
Kp = 100;
Ki = 0;
Kd = 7;

t = 0:.01:10;
sim('ME190_HW2_Justin_Garcia_StepInput')
figure(2)
plot(T,R)
hold on
plot(T,Y)
title('Damping Constant of 7,Responsive,Minimal Overshoot')
xlabel('time')
ylabel('amplitude')
```



### **Problem 4, Tracking Error**

```
m = .2;
Kp = 100;
Ki = 0;
Kd = 7;

t = 0:.01:10;
sim('ME190_HW2_Justin_Garcia_SineInput')
figure(3)
plot(T,R)
hold on
plot(T,Y)
plot(T,R-Y)
title('Plotting Input, Response, and Tracking Error')
xlabel('time')
ylabel('amplitude')
```



#### **Problem 5**

```
m = .2;
Kp = 1000;
Ki = 0;
Kd = 20;
t = 0:.01:10;
sim('ME190_HW2_Justin_Garcia_StepInput')
subplot(2,1,1)
plot(T,R)
hold on
plot(T,Y)
title('Kp = 1000, finding best damping constant')
xlabel('time')
ylabel('amplitude')
hold off
sim('ME190_HW2_Justin_Garcia_SineInput')
subplot(2,1,2)
plot(T,R)
hold on
plot(T,Y)
plot(T,R-Y)
```





### **Problem 6 (optional)**

```
Kp = 1000;
Kd = 20;
sim('ME190_HW2_Justin_Garcia_StepInput')
figure(6)
subplot(2,2,1)
plot(T,R)
hold on
plot(T,Y)
title('Kp = 1000')
xlabel('time')
ylabel('amplitude')
sim('ME190_HW2_Justin_Garcia_SineInput')
subplot(2,2,2)
plot(T,R)
hold on
plot(T,Y)
plot(T,R-Y)
title('Plotting Input, Response, and Tracking Error')
xlabel('time')
```

```
ylabel('amplitude')
subplot(2,2,3)
plot(T,Ydd)
title('U(t)')
Kp = 100;
Kd = 7;
sim('ME190_HW2_Justin_Garcia_StepInput')
figure(7)
subplot(2,2,1)
plot(T,R)
hold on
plot(T,Y)
title('Kp = 100')
xlabel('time')
ylabel('amplitude')
sim('ME190_HW2_Justin_Garcia_SineInput')
subplot(2,2,2)
plot(T,R)
hold on
plot(T,Y)
plot(T,R-Y)
title('Plotting Input, Response, and Tracking Error')
xlabel('time')
ylabel('amplitude')
subplot(2,2,3)
plot(T,Ydd)
title('U(t)')
```













# **Appendix**

open\_system('ME190\_HW2\_Justin\_Garcia\_StepInput') open\_system('ME190\_HW2\_Justin\_Garcia\_SineInput') Sine Wave

Published with MATLAB® R2016b