Deep Learning vs.
Traditional Machine
Learning for Sentiment
Analysis:
A Performance Comparison

Shlomit Finegold

Motivation

11

"The most successful entrepreneurs are those who can seamlessly blend the old with the new, finding value in both."

Reid Hoffman (LinkedIn co-founder)

Research aim

Can harnessing NLP and ML developments into low dimensionality matrix input of NLP based extracted features, be compatible with the most advanced DL techniques?

Literature review

Method

Data

- IMDb reviews database
- 50K records
- Perfectly balanced •

Traditional ML

- preprocessing
- Text cleaning (URLS, HTML tag) •
- Extracting numeric NLP based features •
- Scaling and standardization
- Feature selection •

SOTA DL

- Text cleaning (URLS, HTML tags, punctuations)
- Lower case
- Lemmatization
- **Tokenization**

Baseline models

- **SVM**
- NB

Pre-trained DistilBERT

Compared

- **XGBoost**
 - Grid search parameters optimization
 - Thresholding score optimization

- Fine tuned pre-trained DistilBERT
 - Hyperparams tuning on validation set
 - Retraining on training+validation set

Features extraction:

- Count of words
- Percent of name entities (count of name entities / count of words)
- Percent of punctuation (count of punctuation / count of words)
- Percent of uppercase words (count of uppercase words / count of words)
- Percent of stop words (count of stop words / count of words)
- Percent of spelling mistakes (count of spelling mistakes / count of words)
- Percent of nouns (count of nouns / count of words)
- Percent of verbs (count of verbs / count of words)
- Percent of adjectives (count of adjectives / count of words)
- Ratio between common positive and negative words

Features selection:

XGBoost prediction with thresholding optimization:

Method-SOTA DL

DistilBERT for classification architecture:

Method-SOTA DL

DistilBERT for classification architecture:

Method-SOTA DL

Hyperparameters optimization:

Learning rate set to 5e^-4 for 5 epochs, e^-4 for one epoch, Adam optimizer

Results

Method	Model	Accuracy (improve)	Recall (improve)	Precision (improve)
Traditional ML	SVM	0.649	0.697	0.639
	Naive Bayes	0.504	0.99	0.504
	XGBoost (ths=0.6 optimizing accuracy)	0.666	0.769	0.64
	XGBoost (ths=0.4 optimizing recall with min accuracy > 0.6)	0.622	0.892 (14%)	0.581
SOTA DL	Pre-trained DistilBERT	0.786	0.633	0.909(27%)
	Fine Tuned DistilBERT	0.818(15%)	0.748	0.868

Conclusions

- The traditional ML approach managed to achieve learning,
 though far from being compatible with the DL approach
- 2. Precision-Recall trade off:
 - Recall → traditional ML, Precision → DL
- 3. Training convergence issues along the way

Discussion

In a world full of chatbots, can Bots developer actually rely on sentiment analysis?

Thanks for listening!