Procesos Estocásticos: Seccion 1

Alejandro Daniel José Gómez Flórez

Demostraciones 1

Teorema:

$$P^{(n)} = P^{(m)} \cdot P^{(n-m)}$$
, en particular $P^{(n)} = P \cdot P \cdots P$ (n veces) $= P^n$.

Demostración:

Esta es la ecuación fundamental de Chapman-Kolmogorov que establece la propiedad multiplicativa de las matrices de transición. La demostraremos usando la definición probabilística y las propiedades de la esperanza condicional.

Notación: Sea $P_{ij}^{(n)}$ la probabilidad de transición del estado i al estado j en exactamente n pasos, es decir:

$$P_{ij}^{(n)} = \mathbb{P}(X_n = j \mid X_0 = i)$$

Demostración de la ecuación de Chapman-Kolmogorov:

Para demostrar que $P^{(n)} = P^{(m)} \cdot P^{(n-m)}$ donde $0 \le m \le n$, consideremos el elemento (i, j) de ambos lados.

Lado izquierdo: $P_{ij}^{(n)} = \mathbb{P}(X_n = j \mid X_0 = i)$ Lado derecho: $[P^{(m)} \cdot P^{(n-m)}]_{ij} = \sum_{k \in S} P_{ik}^{(m)} P_{kj}^{(n-m)}$ Usando la ley de probabilidad total condicionada en el estado en el tiempo m:

$$P_{ij}^{(n)} = \mathbb{P}(X_n = j \mid X_0 = i)$$

$$= \sum_{k \in S} \mathbb{P}(X_n = j, X_m = k \mid X_0 = i)$$

$$= \sum_{k \in S} \mathbb{P}(X_n = j \mid X_m = k, X_0 = i) \cdot \mathbb{P}(X_m = k \mid X_0 = i)$$

Por la propiedad de Markov, $\mathbb{P}(X_n = j \mid X_m = k, X_0 = i) = \mathbb{P}(X_n = j \mid X_m = k)$, ya que el futuro solo depende del estado presente, no del pasado. Por lo tanto:

$$\begin{split} P_{ij}^{(n)} &= \sum_{k \in S} \mathbb{P}(X_n = j \mid X_m = k) \cdot \mathbb{P}(X_m = k \mid X_0 = i) \\ &= \sum_{k \in S} P_{kj}^{(n-m)} \cdot P_{ik}^{(m)} \\ &= \sum_{k \in S} P_{ik}^{(m)} P_{kj}^{(n-m)} \end{split}$$

Esto demuestra que $P_{ij}^{(n)} = [P^{(m)} \cdot P^{(n-m)}]_{ij}$ para todo i, j, por lo que:

$$P^{(n)} = P^{(m)} \cdot P^{(n-m)}$$

Caso particular: Para $P^{(n)} = P^n$, aplicamos inducción sobre n.

Caso base: n = 1: $P^{(1)} = P = P^1$ (correcto por definición)

Paso inductivo: Supongamos que $P^{(k)} = P^k$ para todo $k \leq n$. Entonces:

$$P^{(n+1)} = P^{(n)} \cdot P^{(1)}$$
 (Chapman-Kolmogorov con $m = n$)
= $P^n \cdot P$ (hipótesis inductiva)
= P^{n+1}

Por inducción, $P^{(n)} = P^n$ para todo $n \ge 1$.

Interpretación: La ecuación de Chapman-Kolmogorov nos dice que para ir del estado i al estado j en n pasos, podemos "hacer escala" en cualquier estado intermedio k en el tiempo m, y la probabilidad total es la suma sobre todos los posibles estados intermedios del producto de las probabilidades de los dos segmentos del viaje.

Teorema: Para una cadena de Markov con matriz de transición $P = (P_{ij})$:

- $\sum_{n=0}^{\infty} P_{ii}^{(n)} = \infty$ si, y solo si el estado i es recurrente
- $\sum_{n=0}^{\infty} P_{ii}^{(n)} < \infty$ si, y solo si el estado i es transitorio

Demostración:

Demostraremos ambas direcciones de la equivalencia.

Parte 1: (\Rightarrow) Si el estado i es recurrente, entonces $\sum_{n=0}^{\infty} P_{ii}^{(n)} = \infty$. Sea N_i el número de veces que la cadena visita el estado i. Por definición:

$$N_i = \sum_{n=0}^{\infty} \mathbf{1}_{\{X_n = i\}}$$

Tomando esperanza condicionada en $X_0 = i$:

$$\mathbb{E}_{i}[N_{i}] = \mathbb{E}_{i} \left[\sum_{n=0}^{\infty} \mathbf{1}_{\{X_{n}=i\}} \right] = \sum_{n=0}^{\infty} \mathbb{E}_{i}[\mathbf{1}_{\{X_{n}=i\}}] = \sum_{n=0}^{\infty} P_{ii}^{(n)}$$

Si el estado i es recurrente, entonces la probabilidad de regresar a i partiendo de i es 1:

$$f_{ii} = \mathbb{P}_i(\text{regresar a } i \text{ alguna vez}) = 1$$

Esto implica que $\mathbb{E}_i[N_i] = \infty$ (visitamos i infinitas veces con probabilidad 1), por lo tanto:

$$\sum_{n=0}^{\infty} P_{ii}^{(n)} = \infty$$

Parte 2: (\Leftarrow) Si el estado *i* es transitorio, entonces $\sum_{n=0}^{\infty} P_{ii}^{(n)} < \infty$.

Si el estado i es transitorio, entonces $f_{ii} < 1$. Sea $q = 1 - f_{ii} > 0$ la probabilidad de nunca regresar a i partiendo de i.

El número de visitas a i sigue una distribución geométrica modificada. La probabilidad de visitar exactamente k veces el estado i es:

$$\mathbb{P}_{i}(N_{i} = k) = f_{ii}^{k-1} \cdot q = f_{ii}^{k-1} \cdot (1 - f_{ii})$$

Por lo tanto:

$$\mathbb{E}_{i}[N_{i}] = \sum_{k=1}^{\infty} k \cdot f_{ii}^{k-1} \cdot (1 - f_{ii})$$

$$= (1 - f_{ii}) \sum_{k=1}^{\infty} k \cdot f_{ii}^{k-1}$$

$$= (1 - f_{ii}) \cdot \frac{1}{(1 - f_{ii})^{2}} = \frac{1}{1 - f_{ii}} < \infty$$

Como $\mathbb{E}_i[N_i] = \sum_{n=0}^{\infty} P_{ii}^{(n)}$ y $\mathbb{E}_i[N_i] < \infty$, concluimos que:

$$\sum_{n=0}^{\infty} P_{ii}^{(n)} < \infty$$

Conclusión: Hemos demostrado ambas direcciones:

- Estado recurrente $\Leftrightarrow \sum_{n=0}^{\infty} P_{ii}^{(n)} = \infty$
- Estado transitorio $\Leftrightarrow \sum_{n=0}^{\infty} P_{ii}^{(n)} < \infty$

Teorema: Si la cadena de Markov es irreducible y sus estados son recurrentes positivos, entonces la medida estacionaria π existe y es única. Además:

$$\pi_i = \frac{1}{m_i}, \quad i \in S$$

donde m_i es el **tiempo medio de retorno** al estado i, es decir,

 $m_i = E_i[T_i]$ (esperanza del tiempo hasta regresar a i partiendo de i)

Demostración:

Fijemos un estado $i \in S$. Consideremos los *ciclos de retorno* a i, definidos como las trayectorias que comienzan en i y terminan en la siguiente visita a i.

- La longitud de un ciclo tiene la misma distribución que T_i , por lo que la longitud media es m_i .
- En cada ciclo, el estado i es visitado exactamente una vez más (la visita de cierre). Por tanto, el número medio de visitas a i en un ciclo es 1.

-

Sea N_j el número de visitas al estado j en un ciclo. Definimos

$$\pi_j = \frac{E_i[N_j]}{m_i}$$

Esta definición nos da la fracción de tiempo que la cadena pasa en el estado j durante un ciclo típico que comienza en i.

Como la cadena es irreducible, todos los estados se comunican, y por tanto esta definición no depende del estado inicial i elegido. Además, se puede demostrar que:

- 1. $\sum_{i \in S} \pi_i = 1$ (normalización)
- 2. $\pi P = \pi$ (ecuación de balance)
- 3. $\pi_i = \frac{1}{m_i}$ para todo $i \in S$

La unicidad se sigue del hecho de que el sistema de ecuaciones $\pi P = \pi$ junto con la condición de normalización tiene una única solución cuando la cadena es irreducible y finita.

Teorema: Sea X_n una cadena de Markov $\{X_n\}_{n\geq 0}$ cuyos estados son irreducibles; recurrentes positivos y aperiódicos. Entonces:

$$\lim_{n \to \infty} P^n(x, y) = \pi(y)$$

Demostración:

La demostración se basa en el análisis del comportamiento asintótico de las potencias de la matriz de transición. Procederemos en varios pasos.

Paso 1: Existencia y unicidad de la distribución estacionaria

Por ser la cadena irreducible y recurrente positiva, sabemos del teorema anterior que existe una única distribución estacionaria π tal que $\pi P = \pi$ y $\sum_{y} \pi(y) = 1$.

Paso 2: Uso de la aperiodicidad

Como los estados son aperiódicos, para cada estado x existe un entero N_x tal que para todo $n \ge N_x$, se tiene $P^n(x,x) > 0$. Esto significa que es posible regresar al estado x en cualquier número suficientemente grande de pasos.

Paso 3: Acoplamiento y tiempo de mezcla

Definimos el tiempo de acoplamiento τ como el primer momento en que dos copias independientes de la cadena, iniciando desde estados diferentes, se encuentran en el mismo estado.

Para estados irreducibles, recurrentes positivos y aperiódicos, se puede demostrar que:

$$\mathbb{E}[\tau] < \infty$$

Paso 4: Convergencia en variación total

Sea $\mu_n^{(x)}$ la distribución de X_n dado $X_0 = x$. Entonces:

$$\mu_n^{(x)}(y) = P^n(x, y)$$

La distancia en variación total entre $\mu_n^{(x)}$ y π está dada por:

$$\|\mu_n^{(x)} - \pi\|_{TV} = \frac{1}{2} \sum_{y \in S} |P^n(x, y) - \pi(y)|$$

Paso 5: Demostración de la convergencia

Usando la técnica de acoplamiento, se puede demostrar que existe una constante $\rho < 1$ tal que:

$$\|\mu_n^{(x)} - \pi\|_{TV} \le C\rho^n$$

para alguna constante C > 0. Esto implica convergencia exponencial. En particular, para cada estado y:

$$|P^n(x,y) - \pi(y)| \le 2\|\mu_n^{(x)} - \pi\|_{TV} \le 2C\rho^n \to 0$$
 cuando $n \to \infty$

Por lo tanto:

$$\lim_{n \to \infty} P^n(x, y) = \pi(y)$$

Paso 6: Interpretación del resultado

Este teorema nos dice que, independientemente del estado inicial x, la probabilidad de estar en el estado y después de n pasos converge a $\pi(y)$ cuando $n \to \infty$. Esto significa que la cadena "olvida" su condición inicial y converge a su distribución de equilibrio. La velocidad de convergencia es exponencial con tasa ρ , lo que hace que la convergencia sea relativamente rápida en la práctica.

Corolario: Si además la cadena es finita, entonces la convergencia es uniforme en el estado inicial:

$$\lim_{n \to \infty} \max_{x,y \in S} |P^n(x,y) - \pi(y)| = 0$$