Appendix

Charlotte Abrams, Laura Cosgrove, Alyssa Vanderbeek 7 April 2019

Data prep

```
## Data import
predictors <- read_csv("./data/Training_values.csv")</pre>
response <- read_csv("./data/Training_labels.csv")</pre>
## Manipulation
data <- response %>%
  full_join(predictors, by = "row_id") %>%
  separate(col = area__rucc, into = c('metro', 'population'), sep = ' - ') %>%
  rename(urban_influence = area__urban_influence,
         economic_typology = econ__economic_typology) %>%
  mutate(pure_population = fct_collapse(as.factor(population),
                                        "more_than_1mil" = "Counties in metro areas of 1 million popula
                                        "250k_to_1mil" = "Counties in metro areas of 250,000 to 1 milli
                                        "less_than_250k" = "Counties in metro areas of fewer than 250,0
                                        "more_than_20k" = c("Urban population of 20,000 or more, adjace
                                                               "Urban population of 20,000 or more, not
                                        "2500_to_20k" = c("Urban population of 2,500 to 19,999, adjacen
                                                              "Urban population of 2,500 to 19,999, not
                                        "less_than_2500" = c("Completely rural or less than 2,500 urban
                                                         "Completely rural or less than 2,500 urban popu
         economic_typology = as.factor(recode(economic_typology,
                                              "Nonspecialized" = "Nonspecialized",
                                              "Manufacturing-dependent" = "Manufacturing",
                                              "Farm-dependent" = "Farming",
                                              "Federal/State government-dependent" = "Government",
                                              "Mining-dependent" = "Mining",
                                              "Recreation" = "Recreation")),
        metro = factor(metro,
                       levels = c("Metro", "Nonmetro")),
        urban_influence = str_replace_all(urban_influence, " |/|-", "_"), # replace problematic charact
        urban_influence = str_replace_all(urban_influence, ",", ""), # replace problematic characters
        demo_pct_nonwhite = demo_pct_hispanic + demo_pct_asian + demo_pct_american_indian_or_alaska
        urban_influence = fct_rev(urban_influence),
        metro_adjacency = fct_collapse(population,
                                       metro = c("Counties in metro areas of 1 million population or mo
                                                 "Counties in metro areas of 250,000 to 1 million popul
                                                 "Counties in metro areas of fewer than 250,000 populat
                                       adjacent = c("Urban population of 20,000 or more, adjacent to a
                                                    "Urban population of 2,500 to 19,999, adjacent to a
                                                    "Completely rural or less than 2,500 urban populati
                                       nonadjacent = c("Urban population of 20,000 or more, not adjacen
                                                        "Urban population of 2,500 to 19,999, not adjace
                                                       "Completely rural or less than 2,500 urban popul
```

Training and testing data split. Imputation on missing data.

```
## training/test data
set.seed(1)
train_ind <- sample(seq_len(nrow(data)), size = 2/3*nrow(data)) # select rows in 2:1 ratio
train <- data[train ind, ] # training dataset</pre>
test <- data[-train_ind, ] # testing dataset</pre>
# Imputation for missing values with caret, based on training data
training_preproc = caret::preProcess(train[,-1],
                                      method = "knnImpute", # automatically centers and scales data
                                      pcaComp = 10,
                                     na.remove = TRUE,
                                     k = 5.
                                      knnSummary = mean,
                                      outcome = NULL,
                                     fudge = .2,
                                     numUnique = 3,
                                      verbose = TRUE)
# Impute training imputation on both training and testing datasets
train_imputed = predict(training_preproc, train)
test_imputed = predict(training_preproc, test)
#save files to Rdata: was not saving the factor structure in read from csv
saveRDS(train_imputed, file = './data/train_imputed.Rdata')
saveRDS(train_imputed, file = './data/test_imputed.Rdata')
```

 $Linear\ Models$

Set up caret training control. We will use this for all models.

```
set.seed(100)
ctrl <- trainControl(method = "repeatedcv", number = 10, repeats = 5)</pre>
```

Stepwise regression:

```
Lasso:
```

Ridge:

PCR:

Non-linear models

GAM:

MARS: