evaluate_scores

July 23, 2017

```
In [1]: import pandas as pd
        import numpy as np
        import warnings
        from scipy import stats
        from IPython.display import display, HTML
        from sklearn import metrics as me
        warnings.filterwarnings('ignore')
        pd.set_option("display.max_rows",20)
        pd.set_option('precision', 4)
        import pylab as pl
        pl.figure(figsize=(10, 10))
        %matplotlib inline
In [2]: import numpy as np
        import matplotlib.pyplot as plt
        import itertools
        def plot_confusion_matrix(cm, classes,
                                  normalize=False,
                                  append = "",
                                  cmap=plt.cm.Blues):
            This function prints and plots the confusion matrix.
            Normalization can be applied by setting `normalize=True`.
            title='Confusion matrix {}'.format(append)
            np.set_printoptions(precision=4)
            plt.imshow(cm, interpolation='nearest', cmap=cmap)
            plt.title(title)
            plt.colorbar()
            tick_marks = np.arange(len(classes))
            plt.xticks(tick_marks, classes, rotation=45)
            plt.yticks(tick_marks, classes)
            if normalize:
```

```
#print("Normalized confusion matrix")
            else:
                #print('Confusion matrix, without normalization')
            #print(cm)
            label = [["\n True Negative", "\n False Positive "],
                     ["\n False Negative ", "\n True Positive"]
                    ٦
            thresh = cm.max() / 2.
            for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
                plt.text(j, i, "{} {}".format(cm[i, j].round(4), label[i][j]),
                         horizontalalignment="center",
                         color="white" if cm[i, j] > thresh else "black")
           plt.tight_layout()
           plt.ylabel('True label')
           plt.xlabel('Predicted label')
        def plot(actual_value, pred_value, scenario):
            from sklearn.metrics import confusion_matrix
            append = '{}; \n Total Normal traffic:{}, \n Total Attack Traffic: {}'.format(scen
                                                                                     actual_val
                                                                                    actual_valu
            cm_2labels = confusion_matrix(y_pred = pred_value, y_true = actual_value)
            plt.figure(figsize=[6,6])
           plot_confusion_matrix(cm_2labels, ['Normal', 'Attack'], normalize = False, append
In [9]: def evaluate_lstm(model, past_scores, predictions):
            return evaluate(model, past_scores, predictions, 'LSTM')
        lstm_result = []
        def evaluate(model, past_scores, predictions, model_type='AE'):
            all_scenarios = pd.DataFrame(columns=['Model', 'Scenarios', 'Number of Features', '.
            def get_best_df(past_scores):
                psg = past_scores.sort_values(by='quality_score', ascending=False).groupby(by=
                df = psg.first().sort_values(by='quality_score', ascending=False)
                return df
            def get_median_df(past_scores):
                psg = past_scores.sort_values(by='quality_score', ascending=False).groupby(by=
```

cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

```
df = psg.nth(int(psg.size()[0]/2)).sort_values(by='quality_score', ascending=Fe
    return df
def get_worst_df(past_scores):
    psg = past_scores.sort_values(by='quality_score', ascending=False).groupby(by=
    df = psg.last().sort_values(by='quality_score', ascending=False)
    return df
def get_result(past_scores, which='best'):
    if which == 'best':
        df = get_best_df(past_scores)
    elif which == 'median':
        df = get_median_df(past_scores)
    elif which == 'worst':
        df = get_worst_df(past_scores)
    #epoch_nof_hidden
    key = int(df.iloc[0]['key'])
    nof = df.iloc[0].name[0]
   hidden = df.iloc[0].name[1]
    return "{}_{}_{}.format(key, nof, hidden), nof, df
def view_data(name, past_scores, which):
    _, _, df = get_result(past_scores, which)
    #display(name)
    #display(df)
    group_by = 'no_of_features'
    if(model_type == 'LSTM'):
        group_by = 'hidden_layers'
    df1 = df.reset_index().sort_values(by='quality_score', ascending=False).groupb
    df1 = df1.first().loc[:,['quality_score', 'time_taken']]
    df1 = df1.rename(index={1:"One", 4:"10%", 8:"20%", 16:"40%", 42:"All"})
    df1.plot(secondary_y = 'time_taken', title=name)
#display("Individual Results for each Scenario:-")
view_data("
            Results for {}: Best case".format(model),past_scores, 'best')
view_data(" Results for {}: General case".format(model),past_scores,'median')
view_data(" Results for {}: Worst case".format(model),past_scores,'worst')
def get_score(y_true, y_pred):
    f1 = me.matthews_corrcoef(y_true, y_pred)
    pre = me.precision_score(y_true, y_pred)
    rec = me.recall_score(y_true, y_pred)
    acc = me.accuracy_score(y_true, y_pred)
    return {"Quality Score":f1, "Precision":pre, "Recall":rec, "Accuracy":acc}
```

```
def accumulate_scenarios(predictions, past_scores, which='best'):
                key, nof, df = get_result(past_scores, which)
                y_true = predictions[key]["Actual"]
                y_pred = predictions[key]["Prediction"]
                y_true = y_true.dropna()
                y_pred = y_pred.dropna()
                scores = get_score(y_true, y_pred)
                scores.update({"Scenarios":scenario,"Number of Features":nof,"Model":model})
                plot(y_true, y_pred, scenario)
                return pd.DataFrame(scores, index=[1])
            scenario = "Best Result"
            all_scenarios = all_scenarios.append(accumulate_scenarios(predictions, past_scores
            scenario = "General Result"
            all_scenarios = all_scenarios.append(accumulate_scenarios(predictions, past_scores
            scenario = "Worst Result"
            all_scenarios = all_scenarios.append(accumulate_scenarios(predictions, past_scores
            display(all_scenarios.set_index(['Model','Scenarios','Number of Features']))
            return all_scenarios
In [7]: past_scores = pd.read_pickle("dataset/scores/tf_dense_only_nsl_kdd_scores_all.pkl")
        predictions = pd.read_pickle("dataset/tf_dense_only_nsl_kdd_predictions.pkl")
In [10]: all_scenarios_fcn = evaluate("Fully Connected", past_scores, predictions)
'Combined Results from all Scenarios for Fully Connected'
                                                   Accuracy Precision \
                               Number of Features
Model
                Scenarios
Fully Connected Best Result
                                                                 0.9973
                                                     0.8424
                                                     0.7098
                General Result 1
                                                                 0.9899
                Worst Result
                                                     0.6815
                                                                0.9922
                                                   Quality Score Recall
                               Number of Features
Model
                Scenarios
```

display("Combined Results from all Scenarios for {}".format(model))

Fully Connected Best Result	1	0.5448	0.8284
General Result	1	0.1945	0.7069
Worst Result	1	0.0246	0.6838

psg = past_scores.sort_values(by='f1_score', ascending=False).groupby(by=['no_of_features', 'hidden_layers']) df = psg.first().sort_values(by='f1_score', ascending=False).head(5) df1 = df.reset_index().sort_values(by='f1_score', ascending=False).groupby(by=['no_of_features']) df1 = df1.first().loc[:,['f1_score', 'time_taken']] df1 = df1.rename(index={1:"One", 4:"10%", 8:"20%", 16:"40%", 42:"All"}) df1.plot(secondary_y = 'time_taken', table=True)

In [11]: past_scores = pd.read_pickle("dataset/scores/tf_vae_dense_trained_together_nsl_kdd_scores/tf_vae_dense_trained_together_nsl_kdd_scores/tf_vae_dense_trained_together_nsl_kdd_predictions."

In [12]: all_scenarios_vae_sm = evaluate("VAE-Softmax", past_scores, predictions)

^{&#}x27;Combined Results from all Scenarios for VAE-Softmax'

	General Result	4	0.8853	0.9891
	Worst Result	42	0.9723	0.9867
			Quality Score	Recall
Model	Scenarios	Number of Features		
${\tt VAE-Softmax}$	Best Result	4	0.3779	0.9468
	General Result	4	0.0904	0.8934
	Worst Result	42	0.0020	0.9851

In [13]: past_scores = pd.read_pickle("dataset/scores/tf_vae_only_vae_loss_nsl_kdd_scores_all.google.g

In [14]: all_scenarios_vae = evaluate("VAE-LabelGeneration", past_scores, predictions)

^{&#}x27;Combined Results from all Scenarios for VAE-LabelGeneration'

			Accuracy	Precision \	
Model	Scenarios	Number of Features			
VAE-LabelGeneration	Best Result	1	0.7419	0.9752	
	General Result	8	0.5578	0.9835	
	Worst Result	1	0.9834	0.9834	
			Quality So	core Recall	
Model	Scenarios	Number of Features			

VAE-LabelGeneration	Best Result	1	0.0564	0.7530
	General Result	8	0.0057	0.5595
	Worst Result	1	0.0000	1.0000

^{&#}x27;Combined Results from all Scenarios for LSTM Seq2Seq'

					Accuracy	Precision	\
Model	Scenarios	Number	of	Features			
LSTM Seq2Seq	Best Result	1			1.0	1.0	
	General Result	1			1.0	1.0	
	Worst Result	1			1.0	1.0	
					Quality So	core Recal	L1
Model	Scenarios	Number	of	Features			

LSTM Seq2Seq Best Result	1	1.0	1.0
General Result	1	1.0	1.0
Worst Result	1	1.0	1.0


```
In [17]: all_scenarios = pd.concat([all_scenarios_fcn, all_scenarios_vae_sm, all_scenarios_vae
In [18]: all_scenarios_display = all_scenarios.set_index(['Model', 'Scenarios', 'Number of Feat
         #all_scenarios_display
In [19]: all_scenarios_best = all_scenarios.set_index(['Scenarios', 'Model']) #, 'Number of Fe
         all_scenarios_best.loc['Best Result']
Out[19]:
                              Accuracy Number of Features Precision Quality Score \
         Model
         Fully Connected
                                0.8424
                                                        1
                                                              0.9973
                                                                              0.5448
         VAE-Softmax
                                0.7574
                                                        4
                                                              0.7600
                                                                              0.3779
         VAE-LabelGeneration
                                0.7419
                                                        1
                                                              0.9752
                                                                              0.0564
```

1

1.0000

1.0000

Recall

1.0000

LSTM Seq2Seq

Model
Fully Connected 0.8284
VAE-Softmax 0.9468
VAE-LabelGeneration 0.7530
LSTM Seq2Seq 1.0000

In [20]: all_scenarios_best.loc['Best Result'].drop('Number of Features', axis = 1).plot()

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x7f35173a7780>

In [21]: all_scenarios_best.loc['General Result']

Out[21]:		Accuracy	Number	of Features	Precision	Quality Score	\
	Model						
	Fully Connected	0.7098		1	0.9899	0.1945	
	VAE-Softmax	0.8853		4	0.9891	0.0904	
	VAE-LabelGeneration	0.5578		8	0.9835	0.0057	
	LSTM Seq2Seq	1.0000		1	1.0000	1.0000	
		Recall					
	Model						
	Fully Connected	0.7069					
	VAE-Softmax	0.8934					
	VAE-LabelGeneration	0.5595					
	LSTM Seq2Seq	1.0000					

In [22]: all_scenarios_best.loc['General Result'].drop('Number of Features', axis = 1).plot()

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x7f35171e1b38>

In [23]: all_scenarios_best.loc['Worst Result']

Out[23]:	Accuracy Number	of Features	Precision	Quality Score	\
Model					
Fully Connected	0.6815	1	0.9922	0.0246	
VAE-Softmax	0.9723	42	0.9867	0.0020	
VAE-LabelGeneration	0.9834	1	0.9834	0.0000	
LSTM Seq2Seq	1.0000	1	1.0000	1.0000	
	Recall				
Model					
Fully Connected	0.6838				
VAE-Softmax	0.9851				
VAE-LabelGeneration	1.0000				
LSTM Seq2Seq	1.0000				

In [24]: all_scenarios_best.loc['Worst Result'].drop('Number of Features', axis = 1).plot()

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x7f3517325c18>

In []: