

AW-GM320

IEEE 802.11 b/g Wireless LAN Module

Datasheet

Version 0.3

Document release	Date	Modification	Initials	Approved
Version 0.1	2008/03/26	Initial Version	Max Huang	CE Huang
Version 0.2	2008/05/23	 Modify function block Pin35 description change Revise Mechanical Dimension 	Max Huang	CE Huang
Version 0.3	2008/05/28	 Modify the description of pin 12, ping19, pin48, pin50 and pin52. Modify description of antenna. 	Max Huang	CE Huang

Inspired by wireless

Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and
is a knowledge property to Azurewaye.

Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

1. General Description

1-1. Product Overview and Functional Description

AzureWave Technologies, Inc. introduces the first IEEE 802.11b/g WLAN module, ---AW-GM320. The module is targeted to mobile devices including, Digital Still Cameras (DSCs), Portable Media Players (PMPs), and Gaming Devices, Notebook which need small footprint package, low power consumption, multiple interfaces and OS support. By using AW-GM320, the customers can easily enable the Wi-Fi embedded applications with the benefits of high design flexibility, short development cycle, and quick time-to-market.

Compliance with the IEEE 802.11b/g standard, the AW-GM320 uses Direct Sequence Spread Spectrum (DSSS), Orthogonal Frequency Division Multiplexing (OFDM), DBPSK, DQPSK, CCK and QAM baseband modulation technologies. A high level of integration and full implementation of the power management functions specified in the IEEE 802.11 standard minimize the system power requirements by using AW-GM320. In addition to the support of WPA/WPA2 and WEP 64-bit and 128-bit encryption, the AW-GM320 also supports the IEEE 802.11i security standard through the implementation of Advanced Encryption Standard (AES)/Counter Mode CBC-MAC Protocol (CCMP), and WEP with TKIP security mechanisms. The AW-GM320also supports IPSec with DES/3DES/ASE encryption and MD5/SHA-1 authentication. For the video, voice and multimedia applications, the AW-GM320 supports 802.11e Quality of Service (QoS). The AW-GM320 supports SDIO and G-SPI for WLAN to the host processor.

1-2. Key Features

- SDIO, G-SPI interfaces support for WLAN
- Multiple power saving modes for low power consumption
- IEEE 802.11i for advanced security
- Quality of Service (QoS) support for multimedia applications
- WLAN drivers for Vista, WinXP, WinCE, Linux 2.6, WinMobile 5.0/6.0
- Lead-free design

Inspired by wireless

Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any
loss suffered or expenditure due to the misuse of any information form this document.

1-3. Block Diagram

A simplified block diagram of the AW-GM320 module is depicted in the figure below.

AW-GM320 function block

Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

1-4. Specifications Table

Model Name	AW-GM320
Product Description	Wireless LAN Module IC
WLAN Standard	IEEE 802.11b/g, Wi-Fi compliant
Host Interface	SDIO/G-SPI
Operating Conditions	
Voltage	3.3V
Temperature	Operating: 0 ~ 80°C
Humidity	15% ~ 95%
Dimension	30mm*30mm*4mm
Package	Irregular Half Mini card
Electrical Specifications	
Frequency Range	2.4 GHz ISM radio band
	802.11b: USA, Canada and Taiwan – 11
	Most European Countries – 13
Number of Channels	France – 4, Japan – 14
	802.11g: USA and Canada – 11
	Most European Countries – 13
Modulation	DSSS, OFDM, DBPSK, DQPSK, CCK, 16-QAM, 64-QAM
Output Power	802.11b: typical 17dBm +/- 2dBm
Output Fower	802.11g: typical 15dBm +/- 2dBm
Antenna	Dual IPEX antenna port
Receive Sensitivity	802.11b: typical -86 +/- 3dBm at 11Mbps
Receive Sensitivity	802.11g: typical -71 +/- 3dBm at 54Mbps
Medium Access Protocol	CSMA/CA with ACK
Data Rates	802.11b: 1, 2, 5.5, 11Mbps
Data Nates	802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps
	TX g mode 54MHz: TBD mA(CW mode)
	b mode 11MHz: TBDmA(CW mode)
Power Consumption	RX g mode: TBD mA
	b mode: TBD mA
	Deep Sleep Mode: TBDmA
Security	◆WEP 64-bit and 128-bit encryption with H/W TKIP processing
	♦WPA/WPA2 (Wi-Fi Protected Access)

Inspired by wireless

<sup>Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.</sup>

	◆ AES-CCMP hardware implementation as part of 802.11i security standard
Operating System Compatibility	Win CE 4.2/.NET, Win CE 5.0, Linux, Pocket PC 2004/2005
Co-Existence	Cell phone(GSM/DCS/WCDMA/UMTS/3G) co-existence

2. Electrical Characteristics

2-1. Absolute Maximum Ratings

Symbol	Parameter	Condition	Min	Тур	Max	Units
3.3V	Module power supply		3.1	3.3	4.6	V

2-2. Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Units
3.3V	Module power supply		3	3.3	3.6	V

Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any
loss suffered or expenditure due to the misuse of any information form this document.

3. Interface Protocol Timing

3-1. G-SPI Host Interface Protocol Timing

Referred from Marvell hardware specifications

Symbol	Parameter	Condition	Min	Тур	Max	Units
T1	Clock Period		20			
T2	Clock high		5			
T3	Clock Low		9			
T4	Clock Rise Time				1	
T5	Clock Fall Time				1	
T6	SDI Hold Time		2.5			ns
T7	SDI Setup Time		2.5			
Т8	SDO Hold Time		5			
Т9	SDO Setup Time		1			
T10	SCSn Fall to Clock		5			
T11	Clock to SCSn Rise		0			
T12	SCSn Rise to SCSn Fall		400			

Inspired by wireless

[•] Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

[•] Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

3-2. SDIO Host Interface Protocol Timing

Referred from Marvell hardware specifications

Over full range of values specified in the recommended operating conditions unless otherwise specified.

Symbol	Parameter	Condition	Min	Тур	Max	Units
f_{pp}	CLK Frequency		0		45	MHz
T _{WH}	CLK High Time		11.1			
T _{WL}	CLK Low Time		11.1			
T _{ISU}	Input Setup Time		5			ns
T _{IH}	Input Hold Time		5			
T _{ODLY}	Output Delay Time		0		15	

Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

4. Pin Definition

4-1. **Pin Assignment**

4 -1.	r III Assigiiii	icit		
Pin No	Definition	Basic Description	Туре	
1	SD_CLK/ SPI_CLK	SDIO 4-bit Mode: Clock Input SDIO 1-bit Mode: Clock Input SDIO SPI Mode: Clock Input G-SPI Mode:G-SPI Clock Input	I/O	
2	3.3V	3.3V Power supply	I	
3	SD_CMD/ SPI_SDI	SDIO 4-bit Mode: Command/Response SDIO 1-bit Mode: Command Line SDIO SPI Mode: Data Input G-SPI Mode: G-SPI Data Input	I/O	
4	GND			
5	SD_DAT[0]/ SPI_SCSn	SDIO 4-bit Mode: Data line bit[0] SDIO 1-bit Mode:Data line SDIO SPI Mode: Data output G-SPI Mode: G-SPI Chip Select Input(active low)	I	
6	RESETn	RESETn: Internal pull-up Reset(active low at least 10ns) (1)When the customer uses the RESETn mode, the SDIO/SPI interface must reboot.	ı	
7	SD_DAT[1]/ SPI_SDOn	SDIO 4-bit Mode: Data line bit[1] SDIO 1-bit Mode: Interrupt SDIO SPI Mode: Reserved G-SPI Mode: G-SPI Data Output(active low)	I/O	
8	SLEEP_CLK	Clock input for external sleep clock Note: SLEEP_CLK is used by the WLAN MAC. The input clock frequency is typically 32kHz/32.768kHz/3.2kHz.The Bluetooth radio chip supply is 3.2kH.The WLAN requires 32kHz.	ı	
9	SD_DAT[2]/ SPI_SINTn	SDIO4-bit Mode: Data line bit[2]or Read Wait(optional) SDIO 1-bit Mode: Read Wait(optional) SDIO SPI Mode: Reserved G-SPI Mode: Active G-SPI Interrupt Output(active low)	I/O	
10	PDn	PDn: Internal pull-up Full Power Down(active low as long as system need) 0=full power down mode 1=normal mode Connect to power down pin of host	ı	
11	SDIO Card Detect	Tie to ground.		
12	WIFI Wake Up Host	Host Wake up WIFI, reserved for future use, left test point or NC.	I/O	
13	SD_DAT[3]	SDIO 4-bit Mode: Data line bit[3] SDIO 1-bit Mode: Reserved SDIO SPI Mode: Card Select(active low)	I/O	
14	3.3V	3.3V Power supply	1	
15	LED	Transmit power or receive ready LED.		
16	3.3V	3.3V Power supply	1	
17	GND			
18	GND			
19	Host Wake UP WIFI	WLAN MAC wake-up in /Interrupt in Software uses this pin or though SDIO as a method of getting the device out of deep sleep, note (1)	I/O	
20	NC			

Inspired by wireless

<sup>Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.</sup>

Pin No	Definition	Basic Description	Туре	
21	Host interface select(1)	Host Interface select: SDIO: floating (default in pad) SPI: Tie 100k to ground	0	
22	NC			
23	GND			
24	NC			
25	NC			
26	NC			
27	NC			
28	NC			
29	GND			
30	3.3V	3.3V Power supply	I	
31~33	NC			
34	GND			
35	ECSN	SDIO: Tie to GND GSPI: Floating	0	
36~39	NC			
40	GND			
41	NC			
42	Host interface select(2)	Host Interface select: SDIO: floating (default in pad) SPI: Tie 100k to ground	0	
43~47	NC			
48,50,52	Test pins	Please left test points	I/O	
49,51	NC			

Note: Pin 19 is used to wake up the device that is in deep sleep. The driver triggers Pin 19 when the user requests it exit Deep Sleep Mode. After the device is awakened by the GPIO signal, the firmware sends a signal to the driver. The pin 19 signal is level triggered for at least 30us.

Inspired by wireless

[•] Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

5. Mechanical Dimension

Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any
loss suffered or expenditure due to the misuse of any information form this document.