Tuta absoluta: the tomato leafminer

R. Muniappan

Director, Feed the Future Innovation Lab:
Collaborative Research on Integrated Pest Management (IPM IL)
Office of International Research, Education, and Development, Virginia Tech

Tuta absoluta (Meyrick, 1917

Family: Gelichiidae

Order: Lepidoptera

Class: Insecta

Phylum: Arthropoda

Tuta absoluta

- Described in 1917 by Meyrick as *Phthorimaea absoluta* from specimens collected in Peru
- Gnorimoschema absoluta by Clarke 1962
- Scorbipalpula absoluta by Povolny 1974
- Tuta absoluta by Povolny in 1994

Tuta absoluta (Gelichiidae) Related Pest Species

Tomato pinworm — Keiferia lycopersicella

Guatemalan potato tuber moth —

Tecia solanivora

Potato tuber moth — Phthorimaea operculella

Groundnut leafminer- Aproaerema modecella

Pink bollworm - Pectinophora gossypiella

EggDuration: 7 days

Eggs are oval-Cylindrical, usually are laid on under side of Leaves, Buds, stems and calyx of unripe fruits

Tuta absoluta - Eggs

Oviposition:

Leaves -73%

-Veins and stems - 21%

-Sepals - 5%

-Fruits - 1%

Larva

Duration: 8 days

There are 4 instars.

Early instars are white or Cream with a black head, later they turn pink or green. Fully grown larvae Drop to the ground in a silken thread and pupate in soil

Pupa

Duration: 10 days

Pupae are brown, 6 mm long. Pupation takes place in soil or on plant parts such as dried Leaves and stem.

Adult

Female lives 10-15 days Male lives 6-7 days

Adult moths are small Body length 7mm.
They are brown or Silver color with Black spots on the wings

The Life Cycle of Tuta absoluta

Larvae

Adult

Pupa

Tuta absoluta - Life Cycle

Duration of life cycle:

-At 14°C

-76 days

-AT 20°C

- 24 days

-At 27°C

- 24 day

Tuta absoluta - Life Cycle

- Life cycle: Multivoltine
- Twelve generations in a year
- Average 260 eggs laid by a female
- Larvae mine in the mesophyll of the leaf
- Four larval instars
- Pupates in the soil and sometimes in the leaves
- Prefers tomato but can complete in other solanaceous plants

Tuta absoluta - Host plants

- Solanum lycopersicum (tomato)
- Solanum tuberosum (potato)
- Solanum melongena (eggplant)
- Capsium annuum (pepper)
- Nicotiana tabacum (tobacco)
- Solanum nigrum
- Datura stramonium
- Solanum eleagnifolium
- Physalis peruviana

Tuta absoluta - Host plants

- Solanum bonariease
- Solanum sisymbriifolium
- Solanum sapponaceum
- Lycopersicum puberulum
- Datura ferox
- Lycium sp.
- Malva sp.

Tuta absoluta Distribution

Tuta absoluta - Estabishment

• Spain 2006

Morocco 2007

Tunisia 2008

• France 2008

• Italy 2008

Canary Islands 2008

Algeria 2008

Tuta absoluta - Estabishment

• Albania 2009

• Bulgaria 2009

Netherlands 2009

Portugal 2009

United Kingdom 2009

Bulgaria 2010

• Israel 2010

Hungary 2010

Turkey 2010

• Serbia 2010

Tuta absoluta - Estabishment

• Sudan 2012

• Ethiopia 2012

• Niger 2012

• Senegal 2012

Predicted Spread of *Tuta absoluta* in West and Central Africa

Predicted Spread of *Tuta absoluta* in East and Central Africa

Tomato

World production in 2009

- 152 M tons

Production area

- 4.4 M ha

Top 10 tomato producing countries –
 China, U.S.A., India, Turkey, Egypt, Italy, Iran,
 Spain, Brazil, and Mexico.

In 2011, *T. absoluta* infested 1.0 M ha of tomato cultivated area (22% of cultivated surface)

Now it is a threat to Asia and Africa (South of Sahara)

Nigeria has 5% of tomato cultivated in the world

Tuta absoluta – Leaf damage

Tuta absoluta - Fruit Damage

Tuta absoluta in the Calyx

Economics of *T. absoluta* **Establishment**

- In Spain, in the first year of introduction, pesticides were applied 15 times per season.
- The cost went up by 450 Euros per hectare.
- When *T. absoluta* invades rest of the World, the tomato pest management cost will go up by \$500 M per year.

Economics of *T. absoluta* **Establishment**

- Invasion is irreversible.
- Management requires coordinated efforts of research scientists, extension agents, and growers in invaded countries and those at risk.

Detection
Cultural control

- Pheromone traps

- removal of crop residues, alternate hosts, etc.

Chemical control -

Biological control -

Resistant varieties -

Biopesticides -

Pheromone traps:

Russell IPM is a leading producer 0.5 mg and 0.8 mg lures are produced

0.8 mg is more effective

45 males/trap – action needed – Brazil 100 males/trap – action needed- Chile

South America:

- Chemical control
 - In 1970s Pyrethroids used
 - In 1980s Cartap used
 - In 1990s Cartap alternated with Pyrethroids
 - In early 2000 Ten new molecules of Pyrethroids used

Biological control:

Classical biological control
Augmentative biological control
Conservation biological control

Classical biological control

High success rate with invasive species

Papaya mealybug control

Cassava mealybug control

Spiraling whitefly control

Mango mealybug

Not yet found a silver bullet for *T. absoluta*

Augmentative biological control

Used against native and invasive pests

Trichogramma spp.

Bracon habetor

Pediobius foveolatus

Natural enemies of T. absoluta

(Mediterranean)

Parasitoids

Necremnus artynes Eulophidae Hym.

Hemiptarsenus sp. Eulophidae Hym.

Braconidae sp. braconidae Hym.

Trichogramma achaeae Trichogrammatidae Hym.

Trichogramma sp. Trichogrammatidae Hym.

Augmentative biological control

Trichogramma acheae is used in Spain at the rate of 750,000 adults/hectare – every 3-4 days.

(Mediterranean)

Nematodess

Heterorhabditis bacteriophora Steinernema feltiae

(Mediterranean)

Predators

Nesidiocoris tenuis Miridae Hem.

Macrolophuspygmaeus Miridae Hem.

Dicyphys marrocannus Miridae Hem.

Vespidae sp Vespidae Hym.

Amblyseius swirskii Phytoseiidae Acari

Amblyseius cucumeris Phytoseiidae Acari

(South America)

Egg Parasitoids

Trichogramma spp.

Anastatus sp

Arrhenophagus sp.

Copidosoma sp.

Copidosoma desantisi

Copidosoma hoehleri

Trichogrammatidae Hym.

Eupelmidae Hym.

Encyrtidae Hym.

Encyrtidae Hym.

Encyrtidae

Encyrtidae

Hym.

Hym.

(South America)

Larval Parasitoids

	• •		
(-ANIAZIIZ NI	aritomiir	ROTHVIIASO	HVM
Goniozuz ni	uiiiciiiui	Bethylidae	Hym.
	g,		, , , , , , ,

<i>Apanteles</i> spp.	Braconidae	Hym.

Dineulophus	phthorimaea	Eulophidae	Hym.

Diadegma sp. Ichneumonidae Hym.

Archytas sp. Tachinidae Dip.

(South America)

Pupal Parasitoids

	<i>Apanteles</i> sp.	Braconidae	Hym.
--	----------------------	------------	------

Conura	sp.	Chalcididae	Hym.

Horismenus sp.	Eulophidae	Hym.
----------------	------------	------

	Elasmus sp.	Eulophidae	Hym.
--	-------------	------------	------

(South America)

Predators

Only casual observations on generalist predators such as spiders, carabids, earwigs, hemipterans, wasps, ants, lace wings have been reported.

(South America)

Predators collected by Europeans: van Lanteran

Campyloneuropsis infumatus Miridae Hem.

Engytatus vaians Miridae Hem.

Maccroplophus basicornis Miridae Hem.

Orius incidiosus Geocoris punctipes Anthocoridae

Geocoridae

Hem.

Hem.

Conservation biological control

- Avoiding use of chemical pesticides
- Use of biopesticides that have less or no adverse impact on natural enemies
- Adoption of biological control

Biopesticides:

- Bacillus thuringiensis formulations
- Beauveria bassiana applications
- Nucleopolyhedrosis virus
- Nucleogranulosis virus
- Neem formulations

Combinations:

- Bt and neem
- B. bassiana and neem
- Nucleopolyhedrosis (NPV) and neem
- Granulosis viurs and neem
- Bt and Nesidiocoris

IPM for tomato

Components

- Seed or seedling treatment with Trichoderma, Pseudomonas, and Bacillus subtilus
- Solarization of seed beds and in greenhouses
- Use of VAM, neem cake, and other organics
- Use of virus disease-resistant varieties
- Grafting on resistant rootstock for bacterial wilt, cork root disease, and others
- Staking and mulching
- Yellow sticky traps for thrips, leafminers, etc.
- Pheromone traps and use of NPVs for Tuta, Heliothis and Spodoptera
- Host free period and roguing for control of virus diseases

What need to be done in this region?

- Establish a Tuta monitoring program
- Establish international quarantine regulations
- Establish national quarantine regulations
- When *Tuta* established: conduct survey of local natural enemies recruited by it; identify effective ones; publish results.

What need to be done in this region?

- Take up Classical, Augmentative and/or Conservation Biological Control.
- Develop an IPM.
- Integrate it with IPM package for Tomato.

