Lecture 2 Notes for STT861

Kenyon Cavender

2019-08-30

1 Review

<u>Def</u> A random experiment is an action which will result in one of the many possible outcomes.

Def A **sample space** is the collection of all possible outcomes of a random experiment. We shall denote by **S**.

 $\underline{\mathbf{Def}}$ An **Event** is a subset of sample space \mathbf{S} for which we can define probability.

2 Class Notes

Def Intersection A, B are two events.

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

Def Union A, B are two events.

$$A \cup B = \{x : x \in A \text{ or } x \in B \text{ or } both\}$$

<u>Def</u> A and B are **disjoint** if $A \cap B = \emptyset$

Properties of set theory

Commutative

$$A \cup B = B \cup A \text{ and } A \cap B = B \cap A$$

Associative

$$(A \cup B) \cup C = A \cup (B \cup C) =: A \cup B \cup C$$

$$(A \cap B) \cap C = A \cap (B \cap C) =: A \cap B \cap C$$

Distributive

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

De Morgan's Law

$$(A \cup B)^c = A^c \cap B^c$$

$$(A\cap B)^c = A^c \cup B^c$$

Remark Proving Distributive Property:

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

Proof. Prove left direction:

$$x \in (A \cup B) \cap C \Rightarrow x \in A \cup B \text{ and } x \in C$$

$$\Rightarrow (x \in A \text{ or } x \in B) \text{ and } x \in C$$

$$\Rightarrow$$
 $(x \in A \text{ and } x \in C) \text{ or } (x \in A \text{ and } x \in C) \text{ or both }$

$$\Rightarrow x \in A \cap C$$
 or $x \in B \cap C$ or both

$$\Rightarrow x \in (A \cap C) \cup (B \cap C)$$

Right direction is reverse of above.

Def Set Difference

$$A \setminus B = \{x : x \in A, \text{ but } x \notin B\}$$

Def Symmetric Difference

$$A \triangle B = \{x : x \in A \setminus B, \text{ or } x \in B \setminus A\}$$

 $\underline{\mathbf{Def}}$ A set A is finite if there exists a 1-1 fn $A\mapsto\{1,2,...,n\}$ for some $n\in\mathbb{N}$

<u>Def</u> A set A is **countably infinite** if there exists a one-to-one function from $A \mapsto \mathbb{N}$.

 $\underline{\mathbf{Def}}$ A set is called **coutable** if it is either finite or countably infinite.

Consequences

- a. $A \cap B \subset A$ and $A \cap B \subset B$
- b. $A \cap A = A$
- c. if $A \subset B$ then $A \cap B = A$
- d. $A \subset A \cup B$ and $B \subset A \cup B$
- e. $A \cup A = A$
- f. if $A \subset B$ then $A \cup B = B$
- g. $A \cup A^c = \mathbf{S}$ and $A \cap A^c = \emptyset$
- h. if $A \subset C$ and $B \subset C$ then $A \cap B \subset A \cup B \subset C$
- i. \emptyset is disjoint to all events
- j. if $a \cap B = \emptyset$ then $A \subset B^c$ and $B \subset A^c$
- k. if $A \subset B$, then $B^c \subset A^c$
- l. $A \setminus B = A \cap B^c$ and $B \setminus A = A^c \cap B$
- m. $A \triangle B = (A \cup B) \setminus (A \cap B)$

Remark There is some stuff here about lambda that I don't fully grok