

Микросборка приемопередатчика по стандарту CAN с гальванической развязкой 2011ВВ034, К2011ВВ034К

ГГ – год выпуска НН – неделя выпуска

Основные характеристики микросборки:

- Напряжение источника питания, U_{CC} , $5.0 \pm 10 \%$ B;
- Выходное напряжение дифференциальное рецессивного состояния, U_{O_DIFF_REC}, на выводах CANH и CANL (без нагрузки) от минус 500 до 50 мВ;
- Входное напряжение дифференциальное высокого уровня, U_{IDH}, на выводах CANH, CANL при CANH>CANL от 0,9 до 5 В;
- Входное напряжение дифференциальное низкого уровня, U_{IDL}, на выводах CANH, CANL при CANH>CANL от 0 до 0,5 В;
- Динамический ток потребления, I_{OCC}, не более 170 мА;
- Ток потребления в состоянии «Выключено», I_{CCZ} не более 560 мкА;
- Скорость передачи битов данных, V_{DR}, не более 10 Мбит/с;
- Температурный диапазон:

Обозначение	Диапазон
2011BB034	минус 60 – 85 °C
K2011BB034	минус 60 – 85 °C
K2011BB034K	0 – 70 °C

Тип корпуса:

- 20-выводной металлокерамический корпус 4140.20-1.

Области применения микросборки

Микросборка 2011BB034 (далее – МСБ) предназначена для использования в аппаратуре специального назначения, в качестве приемопередатчика сигналов цифрового интерфейса CAN. МСБ может использоваться для создания устройств высоковольтной гальванической развязки.

1 Структурная блок-схема

Приемопередатчик по стандарту CAN с гальванической развязкой

Рисунок 1 – Структурная блок-схема МСБ

2 Условное графическое обозначение

Рисунок 2 – Условное графическое обозначение

3 Описание выводов

Таблица 1 – Описание выводов

№ вывода корпуса	Обозначение вывода	Функциональное назначение выводов
1	NC	Не используется
2, 3	Ucc1	Питание логического интерфейса
4	In	Вход логического информационного сигнала передатчика
5	Out	Выход логического информационного сигнала приемника
6	EN	Вход разрешения работы логического интерфейса приемника
7, 8	GND1	Общий
9	NC	Не используется
10	NC	Не используется
11	NC	Не используется
12, 13	GND2	Общий
14	nSHDM	Вход выбора режима «Выключено». Отключает выходы передатчика САN. (Активный низкий уровень сигнала)
15	RS	Вход (аналоговый) выбора режима работы
16	CANL	Вход приемника CAN/выход передатчика CAN. Инверсный
17	CANH	Вход приемника CAN /выход передатчика CAN. Прямой
18, 19	Ucc2	Питание интерфейса CAN
20	NC	Не используется

4 Описание функционирования

МСБ 2011ВВ034 представляет собой преобразователь интерфейса CAN в цифровой сигнал и обратно.

МСБ предназначена для преобразования передаваемого сигнала интерфейса CAN в дифференциальный импульсный сигнал, подаваемый на первичную обмотку развязывающего трансформатора, а также преобразования принимаемого импульсного сигнала со вторичной обмотки трансформатора в выходной сигнал CAN. Используется для создания устройств высоковольтной гальванической развязки передаваемых сигналов с использованием импульсного трансформатора.

МСБ содержит приемопередатчик интерфейса CAN и кодер/декодер трансформаторного интерфейса. При использовании МСБ можно получить гальванически развязанную дуплексную линию связи CAN.

Блок-схема вариантов приемопередатчика с гальванической развязкой представлена на рисунке ниже (Рисунок 3).

Рисунок 3 – Блок-схема преобразователя логического интерфейса в интерфейс CAN

Таблица истинности МСБ 2011ВВ034 приведена в таблице ниже (Таблица 2).

	Приемник - передатчик CAN					
Входы				Выходы		
ln	EN	RS	nSHDN	CANH	CANL	Out
1	1	0	1	recessive	recessive	1
0	1	0	1	dominant	dominant	0
1	1	1	1	recessive	recessive	1
0	1	1	1	recessive	recessive	1
1	1	1	0	recessive	recessive	1
0	1	1	0	recessive	recessive	1
1	0	1	1	recessive	recessive	0
n	0	1	1	recessive	recessive	0

Таблица 2 – Таблица истинности работы МСБ 2011ВВ034

Передатчик CAN - приемник					
Входы			Выходы		
CANH, CANL	RS	nSHDN	Out		
dominant->recessive	1	1	1		
recessive->dominant	1	1	0		
dominant->recessive	0	1	1		
recessive->dominant	0	1	0		
Х	Х	0]		

Для выбора режима «Контроль скорости» необходимо подключить резистор между входом RS и выводом «Общий». В этом режиме номинал резистора определяет величину скорости нарастания/спада выходного сигнала, что необходимо для уменьшения уровня электромагнитных помех, а также отражений при неидеально согласованной шине. Таким образом, обеспечивается стабильная передача информации со скоростью от 40 до 500 Кбит/с.

Величину подключаемого резистора R_{RS} можно рассчитать по формуле:

 R_{RS} [кОм] = 12 000 / Скорость передачи [Кбит/с].

Зависимость скорости передачи данных от сопротивления на выводе RS приведена в таблице ниже (Таблица 4).

Режим «Ожидание» это режим пониженного энергопотребления. МСБ переходит в этот режим при отсутствии на управляющем входе RS подключенного резистора.

Таблица 3 – Зависимость скорости передачи данных от сопротивления, подключенного к выводу RS

R _{RS} , кОм	Скорость передачи, Кбит/с
24	500
47	250
100	125
180	62,5

5 Типовые схемы включения

Типовая схема включения МСБ 2011BB034 приведена на рисунке ниже (Рисунок 4).

МК – микроконтроллер/блок/устройство;

D – МСБ

Рисунок 4 – Типовая схема включения МСБ 2011BB034 с интерфейсом CAN

6 Предельно-допустимые характеристики

Таблица 4 – Предельно-допустимые режимы эксплуатации и предельные электрические режимы

	6 E	Норма параметра				
Наименование параметра, единица измерения	Буквенное обозначение параметра	Предельно- допустимый режим		Предельный режим		
	Бу 06с па		не более	не менее	не более	
Напряжение источника питания, В	Ucc	4,5	5,5	_	6	
Входное напряжение высокого уровня, В, на входах nSHDN, In, EN	U _{IH}	2,0	Ucc	_	Ucc+0,3	
Входное напряжение низкого уровня, В, на входах nSHDN, In, EN		0	0,8	-0,3	_	
Входное напряжение синфазное, В, на выводах CANH, CANL		- 10	10	- 15	15	
Входное напряжение, В, на входе RS	Uı	0	Ucc	-	_	
Входное напряжение дифференциальное высокого уровня, В на выводах CANH, CANL при: CANH>CANL	U _{IDH}	0,9	5	_	15	
Входное напряжение дифференциальное низкого уровня, В на выводах CANH, CANL при: CANH>CANL	U _{IDL}	0	0,5	- 15	-	
Выходной ток низкого уровня, мА на выходе Out	I _{OL}	_	1	_	_	
Выходной ток высокого уровня, мА на выходе Out	I _{OH}	- 1	-	_	_	
Скорость передачи битов данных, Мбит/с	V_{DR}	-	10	_	-	
Сопротивление нагрузки, Ом, на выводах CANH, CANL	R _L	45	_	_	_	
Емкость нагрузки, пФ, на выходах CANH, CANL	C _L	_	50	_	200	

7 Электрические параметры

Таблица 5 – Электрические параметры МСБ при приемке и поставке

Наименование параметра,	нное чение летра	Нор парам	ратура ы, °С	
единица измерения, режим измерения	Буквенное обозначение параметра	не менее	не более	Температура среды, °С
Выходное напряжение доминантного состояния, В, на выводе CANH	U _{O_CANH_DOM}	0,5•U _{CC}	U _{cc}	
Выходное напряжение доминантного состояния, В, на выводе CANL	U _{O_CANL_DOM}	0,5	0,5•U _{CC}	
Выходное напряжение дифференциальное доминантного состояния на выводах CANH и CANL, B	$U_{O_DIFF_DOM}$	0,25•U _{CC}	ı	
Выходное напряжение дифференциальное рецессивного состояния на выводах CANH и CANL, мВ, (без нагрузки)	U _{O_DIFF_REC}	- 500	50	
Выходное напряжение высокого уровня, B, на выходе Out	U _{OH}	0,7∙U _{CC}	_	
Выходное напряжение низкого уровня, В, на выходе Out	U _{OL}	_	0,4	
Входной ток низкого, высокого уровней, мкА, на входах In, EN, nSHDN	I _{IH} , I _{IL}	- 10	10	
Входной ток в режиме «Максимальная скорость», мкА, на входе RS при U_{RS} = 0 B	I_{i_RS}	- 500	- 100	
Ток короткого замыкания в доминантном состоянии, мА, на выводах CANH и CANL при U _{CANH} = -10 B, U _{CANL} = 10 B	l _{os}	-	250	25, 85, - 60
Минимальный ток короткого замыкания в доминантном состоянии, мА, на выводах CANH и CANL при U _{CANH} = 0 B, U _{CANL} = 5 B	I _{OSmin}	50	-	
Ток потребления в состоянии пониженного энергопотребления, мкА, при U _{nSHDN} =0 В	I _{CCZ}	_	560	
Динамический ток потребления, мА, при U _{RS} =0 В	l _{occ}	_	170	
Время задержки включения, мкс, по сигналу nSHDN	t _{DHL}	_	6	
Время задержки выключения, мкс, по сигналу nSHDN	t _{DLH}	_	6	
Время нарастания, спада сигнала, нс, на выводах CANH, CANL	t _{r1} , t _{f1}	15	80	
Время задержки распространения при включении, выключении, нс, от входа IN до выходов CANH, CANL	t _{PHL1} , t _{PLH1}	_	200	

Наименование параметра,	енное ачение метра	Норма параметра		эатура ы, °С
единица измерения, режим измерения	Букве обозна парам	не менее	не более	Температура среды, °С
Время задержки распространения при включении, выключении, нс, от входов CANH, CANL до выхода Out	t _{PHL2} , t _{PLH2}	-	200	25, 85,
Время нарастания, спада сигнала, нс, на выходах Out	t _{r2} , t _{f2}	_	10	- 60

8 Справочные данные

- Рабочее напряжение изоляции 2 кВ при температуре 85 °C;
- Температура срабатывания тепловой защиты 160 °C;
- Тепловое сопротивление кристалл-окружающая среда не более 22,6 °C/Вт.

9 Типовые зависимости

Рисунок 5 – Зависимость тока потребления в состоянии пониженного энергопотребления от температуры

Рисунок 6 – Зависимость динамического тока потребления (I_{OCC}) от температуры при R_L = 45 Ом на выходах CANH, CANL, напряжении питания 5,5 В

Рисунок 7 – Зависимость времени задержки распространения при включении, выключении от входа In до выходов CANH, CANL от температуры при напряжении питания 4,5 В

Рисунок 8 – Зависимость времени задержки распространения при включении, выключении, от входов CANH, CANL до выхода Out от температуры при напряжении питания 4,5 В

Рисунок 9 – Зависимость выходного напряжения дифференциального доминантного состояния на выводах CANH и CANL от температуры

Рисунок 10 – Зависимость динамического тока потребления (I_{OCC}) от скорости передачи данных при температуре 25 °C, R_L = 45 Oм, питании 5 В

Рисунок 11 – Зависимость тока потребления в состоянии «Выключено» от значения характеристик 7.И₇(7.С₄)

10 Габаритный чертеж

Рисунок 12 - МСБ в корпусе 4140.20-1

11 Информация для заказа

Обозначение МСБ	Маркировка	Тип корпуса	Температурный диапазон
2011BB034	2011BB034	4140.20-1	минус 60 – 85 °C
K2011BB034	K2011BB034	4140.20-1	минус 60 – 85 °C
K2011BB034K	K2011BB034•	4140.20-1	0 – 70 °C

Лист регистрации изменений

№ п/п	Дата	Версия	Краткое содержание изменения	№№ изменяемых листов
1	17.12.2014	0.1.0	Ведена впервые	
2	04.06.2015	2.0.0	Приведение в соответствие с ТУ и КД	По тексту
3	09.06.2015	2.1.0	Введены типономиналы К2011ВВ034, К2011ВВ034К	По тексту
4	17.08.2015	2.2.0	Исправления на рисунке 4	6
5	14.09.2015	2.3.0	Исправлен рисунок 2. Добавлены справочные данные	3 10