第二章 热力学第一定律

The First Law of Thermodynamics

上章节内容回顾

准平衡过程

热力学引入准平衡(准静态)过程

系统随时接近于平衡态

可逆过程

系统经历某一过程后,如果能使系统与外界同时恢复到初始状态,而不留下任何痕迹,则此过程为可逆过程。

准平衡过程 + 无耗散效应 = 可逆过程

无不平衡势差

耗散效应

通过摩擦使功变热的效应(摩阻,电阻,非弹性变形,磁阻等)

热量与容积变化功

能量传递方式 容积变化功 传热量

性质 过程量 过程量

推动力 压力p 温度T

标志 dV, dv dS, ds

公式 $\delta w = pdv$ $\delta q = Tds$

条件 准平衡或可逆 可逆

系统对外界作功为正 w > 0 dv > 0 系统吸热时为正 q > 0 ds > 0

第二章 作业

- 2-4
- 2-5
- 2-7
- 2-8
- 2-11

- §2-1 热力学第一定律的本质
- §2-2 热力系统的储存能
- §2-3 闭口系能量方程
- §2-4 开口系能量方程
- §2-5 稳定流动能量方程
- §2-6 稳定流动能量方程应用举例

§2-1 热力学第一定律的本质

本质: 能量转换及守恒定律在热过程中的应用

一.能量转换及守恒定律

自然界的一切物质都具有能量;能量可以从一个区域传递到另一个区域,在一定条件下,不同形式的能量可以相互转换;在转换中,能量的总量保持不变。

二.热力学第一定律的表述

- (1) 当热能与其他形式的能量相互转换时, 其总量保持不变
- (2) 不花费能量就可以产生功的第一类永动机是不可能制成的
 - (3) 热力学第一定律的表述:

进入系统的能量-离开系统的能量=系统存储能量的变化

热力学第一定律的本质:能量转换与守恒定律

焦耳与热功当量

在19世纪40年代, "热质说"风行一时 1840年以后, 焦耳先后介绍了四种测定热功 当量的方法

通电金属丝放在水中加热

叶片和水的摩擦

焦耳: 1卡=4.157J 国际公认精确值 J=4.186 8J/cal

§2-2 热力系统的储存能

热力学第一定律的表述:

进入系统的能量-离开系统的能量=系统存储能量的变化

一.热力学能(内能 6) 的导出:

热力学第一定律的推论 循环的热力学第一定律表达式:

$$\oint \delta Q = \oint \delta W$$

对闭口系循环

$$\oint \delta Q = \oint \delta W$$

$$\oint (\delta Q - \delta W) = 0$$

对于循环1a2c1

$$\int_{1a2} (\delta Q - \delta W) + \int_{2c1} (\delta Q - \delta W) = 0$$

对于循环1b2c1

$$\int_{1b2}^{V} (\delta Q - \delta W) + \int_{2c1} (\delta Q - \delta W) = 0$$

$$\therefore \int_{1a2} (\delta Q - \delta W) = \int_{1b2} (\delta Q - \delta W)$$

$$\int (\delta Q - \delta W)$$
 与路径无关!

- 口 表明它是某个状态积分。
- 口 定义 $dU = \delta Q \delta W$ 则 U是状态函数。将这个状态函数命名为内能(internal energy) 新国标称之为热力学能。
- □ 由此定义可导得闭口系统经历一热力学过程时, 热力学第一定律表达式:

$$\delta Q = dU + \delta W$$
 $Q = \Delta U + W$

特例:

绝功系
$$\delta Q = dU$$
 绝热系 $\delta W = -dU$

二、热力学能U的物理意义

 $dU = \delta Q - \delta W$

d*U* 代表某微元过程中系统通过边界交换的微热量与微功量两者之差值,即系统内部能量的变化。

U 代表储存于系统内部的能量——内储存能(内能)

原则上讲,物体的内能应该包括其中所有微观粒子的<u>动能</u>、势能、化学能、电离能和原子核内部的核能等能量的总和

内能

分子动能 (移动、转动、振动) 分子位能 (相互作用)

核能 (E=mc²) 化学能

内能

分子动能(移动、转动、振动) 分子位能(相互作用)

核能 化学能

Molecular translation

Molecular rotation

微观角度

Electron translation

Molecular vibration

Chemical energy

Nuclear energy

Electron spin

Nuclear spin

- 口内能是状态量
- □ *U*: 广延量 [kJ] *u*: 比参量 [kJ/kg]
- 口 由对任意热力学过程的第一定律表达式
- 可求得: $\Delta U = Q W$
- 口 在热力过程的热力学分析中,内能总以变化量出现,零点可人为约定。

三. 系统总能 (total energy of a system)

外部储存能macroscopic forms of energy

系统总能

$$E = U + E_k + E_p$$
 $e = u + e_k + e_p$

热力学第一定律的一般表达式

进入系统的能量 - 离开系统的能量 = 系统储存能量的变化

$$Q - W = \Delta E$$
$$\delta Q - \delta W = dE$$

适用条件:初、终态均为平衡态。当宏观动能和宏观位能可忽略不计时: $\Delta E = \Delta U$

§2-3 闭口系统能量方程

$$\delta Q - \delta W = dU$$

$$\delta Q = dU + \delta W$$
$$Q = \Delta U + W$$

$$\delta Q \xrightarrow{dU} \Rightarrow \delta W$$

$$\delta q = du + \delta w$$
$$q = \Delta u + w$$

单位工质

适用条件: 1) 任何工质 2) 任何过程

准静态和可逆闭口系能量方程

简单可压缩系准静态过程

$$\delta w = p dv$$

$$\delta q = du + p dv$$

$$\Delta q = \Delta u + \int p dv$$

$$\Delta u + \int p dv$$

简单可压缩系可逆过程

$$\delta q = T ds$$

$$T ds = du + p dv$$

可逆过程热力学恒等式

$$\int T ds = \Delta u + \int p dv$$

讨论:

(1) 功W是广义功—闭口系与外界交换的功量

准静态容积变化功 p dv 拉伸功 $\delta w_{ ext{times}} = \tau dl$ 表面张力功 $\delta w_{ ext{times}} = \sigma dA$

 $\delta w = p dv + \tau dl + \sigma dA + \dots$

(2)当宏观动能与位能不可忽略(如在地球上研究飞行器)时:

$$\delta q = de + \delta w = du + de_{k} + de_{p} + \delta w$$

讨论:

1843年Joule (焦耳)

(1) 绝热膨胀

$$\delta Q = dU + \delta W$$
$$dU = 0$$

$$U = f(T)$$

理想气体的内能只是温度的函数

1843年,焦耳气体真空膨胀实验

空气近似为 理想气体

- A 水温下降
- **水温上升**
- **水温不变**

§2-4 开口系能量方程

能量守恒原则

进入系统的能量

离开系统的能量

系统储存能量的变化

一. 开口系能量方程的推导

推进功(流动功、推动功)的表达式 Flow work

dm质量的工质在外力的推动下克服压力p移动dl, 并通过面积A进入系统,则外界所做的功:

$$\delta W_{\text{H}} = pAdl = pdV = pvdm$$

$$w_{\text{#}} = pv = p/\rho$$

注意:

 w_{\pm} 不是 pdv dV = vdm

对推进功的说明

- 1、与宏观流动有关,流动停止,推进功不存在
- 2、 $w_{\text{th}} = pv$ 与所处状态有关,是状态量
- 3、并非工质本身的能量(动能、位能)变化引起,而由外界(泵与风机)做出

对推进功的说明

- 4. 对于流动工质,推进功可以看做是一种工质携带的
- 一种流动能 (flow energy)

可理解为:由于工质的进出,外界与系统之间所传递的一种机械功,表现为流动工质进出系统所携带和所传递的一种能量

开口系能量方程的推导

$$u_{\text{in}} pv_{\text{in}}$$

$$\frac{1}{2}c_{\text{in}}^{2}$$

$$\delta W_{\text{net}}$$

$$\delta W_{\text{net}}$$

$$\delta W_{\text{out}} u_{\text{out}}$$

$$\delta Q + \delta m_{\text{in}}(u + c^{2}/2 + gz)_{\text{in}}$$

$$- \delta m_{\text{out}}(u + c^{2}/2 + gz)_{\text{out}} - \delta W_{\text{net}} = dE_{\text{cv}_{28}}$$

开口系能量方程微分式

$$\delta Q + \delta m_{\rm in}(u + pv + c^2/2 + gz)_{\rm in} - \delta W_{\rm net}$$

$$-\delta m_{\text{out}}(u + pv + c^2/2 + gz)_{\text{out}} = dE_{\text{cv}}$$

工程上常用流率

$$\dot{Q} = \lim_{\delta \tau \to 0} \left(\frac{\delta Q}{\delta \tau} \right) \qquad \dot{m} = \lim_{\delta \tau \to 0} \left(\frac{\delta m}{\delta \tau} \right) \qquad \dot{W} = \lim_{\delta \tau \to 0} \left(\frac{\delta W}{\delta \tau} \right)$$

$$\dot{Q} = dE_{cv} / \delta\tau + (u + pv + c^2 / 2 + gz)_{out} \dot{m}_{out}$$
$$-(u + pv + c^2 / 2 + gz)_{in} \dot{m}_{in} + \dot{W}_{net}$$

开口系能量方程微分式

当有多条进出口:

$$\dot{Q} = dE_{cv} / \delta\tau + \dot{W}_{net}$$

$$+ \sum \left(u + pv + c^2 / 2 + gz\right)_{out} \dot{m}_{out}$$

$$- \sum \left(u + pv + c^2 / 2 + gz\right)_{in} \dot{m}_{in}$$

流动时,总一起存在

二. 焓Enthalpy

定义: 熔
$$h = u + pv$$

$$h = u + pv$$

$$\dot{Q} = dE_{cv} / \delta\tau + \dot{W}_{net}$$

$$+ \sum \left(\frac{h}{} + c^2 / 2 + gz \right)_{out} \dot{m}_{out}$$

$$- \sum \left(\frac{h}{} + c^2 / 2 + gz \right)_{in} \dot{m}_{in}$$

开口系能量方程

焓Enthalpy的说明

定义:
$$h = u + pv$$
 [kJ/kg]
$$H = U + pV$$
 [kJ]

- 1、焓是状态量 state property
- 2、H为广延参数 H=U+pV=m(u+pv)=mh h为比参数
- 3、对流动工质, 焓代表能量(内能+推进功) 对静止工质, 焓不代表能量
- 4、物理意义:开口系中随工质流动而携带的、取决于热力状态的能量。

§ 2-5 稳定流动能量方程

一.稳定流动条件 $\delta m_{\rm in}$

$$1, \quad \dot{m}_{\rm out} = \dot{m}_{\rm in} = \dot{m}$$

$$Q = const$$

4、 每截面状态不变

$$dE_{cv} / \delta \tau = 0$$

 gz_{out}

二. 稳定流动能量方程的推导

稳定流动条件

$$\dot{m}_{\rm out} = \dot{m}_{\rm in} = \dot{m}$$

$$\dot{Q} = \text{const}$$

$$\dot{W}_{\rm net} = {\rm const} = \dot{W}_{\rm s}$$
 $dE_{\rm cv} / \delta \tau = 0$

$$dE_{\rm cv} / \delta \tau = 0$$

$$\dot{Q} = \mathbf{0} + \mathbf{W}_{s}$$

$$+ \left(h + c^{2} / 2 + gz\right)_{out} \dot{m}$$

$$- \left(h + c^{2} / 2 + gz\right)_{in} \dot{m}$$

$$\dot{Q} = \dot{m} \left[\left(h + c^2 / 2 + gz \right)_{\text{out}} - \left(h + c^2 / 2 + gz \right)_{\text{in}} \right] + \dot{W}_{\text{s}}$$

$$\dot{Q} = \dot{m}q$$

 $W_{\rm s} = \dot{m}W_{\rm s}$

1kg工质

$$q = (h + c^2 / 2 + gz)_{out} - (h + c^2 / 2 + gz)_{in} + w_s$$

$$q = \Delta h + \Delta c^2 / 2 + g \Delta z + w_s$$

稳定流动能量方程

$$q = \Delta h + \Delta c^2 / 2 + g \Delta z + w_s$$

适用条件: 任何流动工质

任何稳定流动过程

三. 技术功 Technical work

$$W_{\rm t}$$

$$Q = m\Delta h + m\Delta c^2 / 2 + mg\Delta z + W_s$$

$$q = \Delta h + \Delta c^2 / 2 + g \Delta z + w_s$$

 $W_{\scriptscriptstyle{+}}$

动能 位能 轴功

机械能

工程技术上可以直接利用

$$Q = \Delta H + W_{t}$$

$$q = \Delta h + W_{\rm t}$$

单位质量工质的开口与闭口

闭口系(1kg)

$$q = \Delta u + w$$

容积变化功

等价

$$q = \Delta h + (w_t)$$

稳流开口系本身热力状态及流动情况不随时间变化,效果相当于一定质量工质从进口穿过设备流到出口。

稳流开口与闭口的能量方程

闭口

$$q = \Delta u + w$$

稳流开口

$$q = \Delta u + w$$

$$q = \Delta h + w_{t}$$

容积变化功w 技术功wt 轴功ws 推进功∆(pv)

几种功的关系?

四. 几种功的关系

$$w_{\rm t} = \Delta c^2 / 2 + g \Delta z + w_{\rm s}$$

$$q = \Delta h + w_{t} = \Delta u + \Delta(pv) + w_{t}$$

$$q = \Delta u + w$$

$$w = \Delta(pv) + w_{t}$$

对功的小结

- 1. 闭口系,系统与外界交换的功为容积变化功业
- 2. 开口系,系统与外界交换的功为轴功 ws
- 3. 一般情况下忽略动、位能的变化

$$W_{s} \approx W_{t}$$

五. 准静态下的技术功

$$w = \Delta(pv) + w_{t}$$
 $\delta w = d(pv) + \delta w_{t}$

准静态 $pdv = d(pv) + \delta w_{+}$

$$pdv = d(pv) + \delta w_t$$

$$\delta w_{t} = p dv - d(pv) = p dv - (p dv + v dp) = -v dp$$

$$\delta w_{t} = -v dp \qquad w_{t} = -\int v dp$$

准静态
$$\begin{cases} \delta q = du + p dv \ \, \mathbf{第一定律解析式之-} \\ \delta q = dh - v dp \ \, \mathbf{第一定律解析式之-} \\ \end{cases}$$

技术功在示功图上的表示

$$w_{\rm t} = w - \Delta(pv)$$

$$w_{\rm t} = w + p_1 v_1 - p_2 v_2$$

$$-\int v \mathrm{d}p = \int \mathrm{p} \mathrm{d}v + p_1 v_1 - p_2 v_2$$

§2-6 稳定流动能量方程应用举例

$$q = \Delta h + \Delta c^2 / 2 + g \Delta z + w_{\rm s}$$

热力学问题经常可忽略动、位能变化

例:
$$c_1 = 1 \text{ m/s}$$
 $c_2 = 30 \text{ m/s}$ $(c_2^2 - c_1^2) / 2 = 0.449 \text{ kJ/kg}$ $z_1 = 0 \text{ m}$ $z_2 = 30 \text{ m}$ $g(z_2 - z_1) = 0.3 \text{ kJ/kg}$

1bar (0.1MPa) 下, 20 °C水的 $h_1 = 84 \text{ kJ/kg}$ 100 °C水蒸气的 $h_2 = 2676 \text{ kJ/kg}$

$$q = \Delta h + w_s$$

例1: 透平(Turbine)机械

大力发电 蒸汽轮机 核电 Steam turbine

飞机发动机 轮船发动机 移动电站

燃气机

火力发电装置Steam Power

透平(Turbine)机械

输出的轴功是靠焓降转变的

$$q = \Delta h + w_{\rm s}$$

保温层

$$q \approx 0$$

$$w_{s} = -\Delta h$$
$$= h_{1} - h_{2} > 0$$

例2: 压缩机械 Compressor

火力发电 核电 飞机发动机 轮船发动机 移动电站 制冷 压缩机

火力发电装置Steam power

压缩机械

$$q = \Delta h + w_{\rm s}$$

保温层

$$q \approx 0$$

$$w_{s} = -\Delta h$$

$$= h_{1} - h_{2} < 0$$

例3: 换热设备Heat Exchangers

火力发电: 锅炉、凝汽器

核电: 热交换器、凝汽器

制冷蒸发器、冷凝器

空调

火力发电装置

换热设备

$$q = \Delta h + w_{\rm s}$$

没有作功部件

$$W_{\rm s} = 0$$

$$q = \Delta h = h_2 - h_1$$

焓变

热流体放热量: $q = \Delta h = h_2 - h_1 < 0$

冷流体吸热量: $q' = \Delta h = h'_2 - h'_1 > 0$

例4: 绝热节流Throttling Valves

管道阀门

制冷空调装置

绝热节流

$$q = \Delta h + w_{\rm s}$$

没有作功部件

$$W_{\rm s} = 0$$

绝执 q=0

$$\Delta h=0$$
 $h_1=h_2$

绝热节流过程,前后h不变,但h不是处处相等

绝热节流

焦尔-汤姆逊 (Joule-Thomson) 实验

$$W_{\pm} = p_1 V_1; \quad W_{\pm} = p_2 V_2$$

$$Q=0$$

$$\Delta U = U_2 - U_1$$

$$W=W_{\pm}-W_{\pm}=p_{2}V_{2}-p_{1}V_{1}$$

$$\Delta U + W = 0$$

$U_2 - U_1 + p_2 V_2 - p_1 V_1 = 0$ $H_2 = H_1$

绝热节流过程,前后h不变

如果p1=p2?

5、喷管和扩压管 Nozzles and Diffusers

火力发电 核电

蒸汽轮机静叶

飞机发动机 轮船发动机 移动电站

压气机静叶

火箭发动机 航空发动机

喷管

喷管与扩压管

喷管的截面积减小 (亚声速流动) /增大 (超声速) 扩压管相反

喷管目的: 压力降低, 速度提高

扩压管目的: 速度降低,压力升高 动能参与转换,不能忽略

$$q = \Delta h + \Delta c^2 / 2 + g \Delta z + w_{\rm s}$$

$$w_{s}=0$$
 $q=0$ $g\Delta z=0$

$$\Delta c^2 / 2 = -\Delta h$$

动能与焓变相互转换

第二章小结

基本概念:

- 热力学第一定律的表述
- 热力学能含义
- 闭口系能量方程
- 开口系能量方程
- 稳定流动能量方程

第二章讨论课

第二章 讨论课 (思考题)

- 工质膨胀是否一定对外作功?
 - 做功定义: 对象和部件 自由膨胀过程
- *定容过程是否一定不作功?

开口系,技术功 $w_t = -\int v dp$

$$w_{t} = -\int v \, \mathrm{d} \, p$$

水轮机 电磁

定温过程是否一定不传热? 相变过程(冰融化,水汽化) 等温膨胀做功

第二章 讨论课 (思考题)

气体体积减小时一定消耗外功

气体被冷却,PV=mRgT

气体被压缩时一定消耗外功

第二章讨论课 (思考题)

对工质加热,其温度反而降低, 这种情况不可能

这种情况不可能
$$Q = \Delta U + W$$

气体边膨胀边放 热是可能的

$$Q = \Delta H + W_t$$

$\int \Delta U = 0$ 二章讨论课(计算 $\int \Delta H$

$$W_{12} < W_{1a2}$$

$$W_{12} < W_{1a2}$$
 $\Delta U_{12} = \Delta U_{1a2}$

$$Q_{12} = \Delta U_{12} + W_{12}$$

$$Q_{12} = \Delta U_{12} + W_{12}$$
 $Q_{1a2} = \Delta U_{1a2} + W_{1a2}$

$$Q_{12} < Q_{1a2}$$

$$W_{t12} < W_{t1a2}$$

$$W_{t12} < W_{t1a2}$$
 $\Delta H_{12} = \Delta H_{1a2}$

$$Q_{12} = \Delta H_{12} + W_{t12}$$
 $Q_{1a2} = \Delta H_{1a2} + W_{t1a2}$

$$Q_{1a2} = \Delta H_{1a2} + W_{t1a2}$$

循环

$$\oint W = \oint W_t$$

$$= \oint Q$$

第二章讨论课(计算题)

例2:

储气罐原有气体 m_0,u_0 输气管状态不变,h经τ时间充气,关阀储气罐中气体m求:储气罐中气体内能 u^*

忽略动、位能变化,管路、储气罐、阀门均绝热

典型问题: 充气问题与取系统

四种可取系统

- 1) 取储气罐为系统 开口系
- 2) 取最终罐中气体为系统 闭口系

- 3) 取将进入储气罐的气体为系统闭口系
- 4) 取储气罐原有气体为系统 闭口系

1)取储气罐为系统(开口系)

$$\delta Q = dU_{cv} + \delta W_{net}$$

$$+ (h + c^2/2 + gz)_{out} \delta m_{out}$$

$$- (h + e^2/2 + gz)_{in} \delta m_{in}$$

忽略动位能变化

绝热

无作功部件 无离开气体

$$dU_{cv} - h\delta m_{in} = 0$$

$$dU_{cv} = h\delta m_{in}$$

1)取储气罐为系统(开口系)

$$dU_{cv} = h\delta m_{in}$$

经τ时间充气, 积分概念

$$\int_{m_0 u_0}^{m u'} dU_{cv} = \int_{m_0}^{m} h \delta m_{in}$$

h是常数 $mu'-m_0u_0=h(m-m_0)$

$$u' = \frac{h(m - m_0) + m_0 u_0}{m}$$

四种可取系统 2)

- 1) 取储气罐为系统 开口系
- 2) 取最终罐中气体为系统 闭口系

- 3) 取将进入储气罐的气体为系统 闭口系
- 4) 取储气罐原有气体为系统 闭口系

2) 取最终罐中气体为系统(闭口系)

$$Q = \Delta U + W$$
 绝热
$$W = -(m - m_0) pv$$

$$\Delta U = mu' - \left[m_0 u_0 + (m - m_0) u \right]$$

$$m - m_0$$

$$m_0$$

$$mu' - [m_0u_0 + (m - m_0)u] - (m - m_0)pv = 0$$

 $mu' - m_0u_0 - (m - m_0)h = 0$

$$u' = \frac{h(m - m_0) + m_0 u_0}{m}$$

四种可取系统 3)

- 1) 取储气罐为系统 开口系
- 2) 取最终罐中气体为系统 闭口系

- 3) 取将进入储气罐的气体为系统闭口系
- 4)取储气罐原有气体为系统 闭口系

3) 取将进入储气罐的气体为系统(闭口系)

$$Q = \Delta U + W$$

 m_0 与 $m-m_0$ 有温差传热 Q_1

$$\Delta U = (m - m_0)u' - (m - m_0)u$$

 $m-m_0$ 对 m_0 作功 W_1

$$W = -(m - m_0) p v + W_1$$

$$Q_1 = (m - m_0)u' - (m - m_0)u - (m - m_0)pv + W_1$$

$$Q_1 = (m - m_0)u' - (m - m_0)h + W_1 > 2$$

四种可取系统 4)

- 1) 取储气罐为系统 开口系
- 2) 取最终罐中气体为系统 闭口系

- 3) 取将进入储气罐的气体为系统 闭口系
- 4) 取储气罐原有气体为系统 闭口系

4) 取储气罐原有气体为系统(闭口系)

$$Q = \Delta U + W$$
 $m_0 = m_0 = m_0$ 有温差传热 Q_1

$$\Delta U = m_0 u' - m_0 u_0$$

 m_0 对 $m-m_0$ 作功 W_1

$$Q_1' \neq m_0 u' - m_0 u_0 + W_1$$

$$Q_1 = -Q_1$$

$$W_1 = -W_1$$

$$Q_1 = (m - m_0)u' - (m - m_0)h + W_1$$

4) 取储气罐原有气体为系统(闭口系)

$$Q_{1}' = m_{0}u' - m_{0}u_{0} + W_{1}'$$

$$Q_{1} = (m - m_{0})u' - (m - m_{0})h + W_{1}$$

$$Q_{1} = -Q_{1}'$$

$$W_{1} = -W_{1}'$$

$$Q_{1} - W_{1} = -(Q_{1}' - W_{1}')$$

$$(m - m_{0})u' - (m - m_{0})h = -(m_{0}u' - m_{0}u_{0})$$

$$mu' = m_0 u_0 + (m - m_0)h$$
 $u' = \frac{h(m - m_0) + m_0 u_0}{m}$

四种可取系统

- 取储气罐为系统 开口系
- 2 取最终罐中气体为系统 闭口系

- 3) 取将进入储气罐的气体为系统闭口系
- 4)取储气罐原有气体为系统 闭口系

利用热一律的文字表达式

取储气罐为系统(开口系)

进 一 出 = 内能变化

进: $(m-m_0)h$

出: =0

内能变化: $(mu'-m_0u_0)$

$$u' = \frac{h(m - m_0) + m_0 u_0}{m}$$

结果说明

1) 取系统不同, 考虑的角度不同

开口系反映为质量携带焓 闭口系反映作功

2) 若 $m_0 = 0$, u' = h

$$u' = \frac{h(m - m_0) + m_0 u_0}{m}$$

第二章讨论课(计算题)

例3: 取系统问题之二

已知:
$$p_1$$
=35bar, t_1 =16°C

$$u = c_v T \quad h = c_p T$$

$$c_v = 718J / kg.K$$

$$R_g = 287J / kg.K$$

要求: 输出4kW,持续30s (kW=kJ/s)

允许: $p_1 \downarrow p_2=3.5$ bar

求:需要的容积V

解1:取储气罐为系统(开口)

$$\delta Q = dU_{cv} + \delta W_{net}$$

$$+ (h + c^{2}/2 + gz)_{out} \delta m_{out}$$

$$- (h + c^{2}/2 + gz)_{in} \delta m_{in}$$

$$dU_{cv} + h\delta m_{out} = 0$$

$$U_{2} - U_{1} = -\int h\delta m_{out}$$

$$U_{1} - U_{2} = \int h\delta m_{out}$$

$$h \approx 0$$

解1:取储气罐为系统(开口)

用总的能量守恒积分式

解2: 取气体为系统(闭口)

$$Q = \Delta U + W$$

$$W = U_1 - U_2$$

$$W = m_1 u_1 - \left[m_2 u_2 + (m_1 - m_2) u_2 \right]$$

$$W = m_1 u_1 - m_2 u_2$$

解3: 取储气罐和汽机为系统(开口)

进一出=内能变化

进: =0

出: W

内能变化: $m_2u_2 - m_1u_1$

$$0 - W = m_2 u_2 - m_1 u_1$$

$$W = m_1 u_1 - m_2 u_2$$

