Formelsamling i matematisk statistik

1 Kombinatorik

 $\binom{n}{k}=\frac{n!}{k!\,(n-k)!}.$ Tolkning: $\binom{n}{k}=$ antalet delmängder av storlek kur en mängd med n element.

2 Stokastiska variabler

$$\begin{split} &V\left(X\right) = E\left(X^{2}\right) - \left(E\left(X\right)\right)^{2} \\ &C\left(X,Y\right) = E\left(\left(X - E\left(X\right)\right)\left(Y - E\left(Y\right)\right)\right) = E\left(XY\right) - E\left(X\right)E\left(Y\right) \\ &\rho\left(X,Y\right) = \frac{C\left(X,Y\right)}{D\left(X\right)D\left(Y\right)} \end{split}$$

3 Diskreta fördelningar

Binomialfördelningen

$$X$$
 är $\operatorname{Bin}(n,p)$ om $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$, $k=0,1,...,n$, där $0 . $E(X) = np$, $V(X) = np (1-p)$$

"För-första-gången"-fördelningen

$$X$$
är ffg (p) om $p_{X}\left(k\right)=p\left(1-p\right)^{k-1},\,k=1,2,3,...,$ där $0< p<1.$ $E\left(X\right)=\frac{1}{p},\ \ V\left(X\right)=\frac{1-p}{p^{2}}$

Hypergeometriska fördelningen

$$X \text{ \"{a}r Hyp}(N,n,p) \text{ om } p_X\left(k\right) = \frac{\binom{Np}{k}\binom{N\left(1-p\right)}{n-k}}{\binom{N}{n}}, \ 0 \leq k \leq Np,$$

$$0 \leq n-k \leq N\left(1-p\right), \text{ \'{d}\"{a}r } N, \ Np \text{ och } n \text{ \"{a}\'{a}r positiva heltal samt } N \geq 2, \ n < N,$$

$$0$$

Poissonfördelningen

$$X$$
är Po $(\mu),$ där $\mu>0,$ om $p_{X}\left(k\right)=\frac{\mu^{k}}{k!}e^{-\mu},$ $k=0,1,2,...$ $E\left(X\right)=\mu,\quad V\left(X\right)=\mu$

4 Kontinuerliga fördelningar

Likformig fördelning

$$X \text{ \"{ar }} U\left(a,b\right), \text{ \'{d\"{ar}}} \ a < b, \text{ om } f_X\left(x\right) = \left\{ \begin{array}{ll} \frac{1}{b-a} & \text{ \'{f\"{or}}} \ a < x < b \\ 0 & \text{ annars} \end{array} \right.$$

$$E\left(X\right) = \frac{a+b}{2}, \quad V\left(X\right) = \frac{\left(b-a\right)^2}{12}$$

Exponentialfördelningen

$$X$$
 är $\operatorname{Exp}(\lambda)$, där $\lambda > 0$, om $f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{för } x > 0 \\ 0 & \text{annars} \end{cases}$ $E(X) = \frac{1}{\lambda}, \quad V(X) = \frac{1}{\lambda^2}$

Normalfördelningen

$$X \text{ \"{ar} } N\left(\mu,\sigma\right) \text{ om } f_X\left(x\right) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\left(x-\mu\right)^2}{2\sigma^2}}, \ -\infty < x < \infty, \ \sigma > 0$$

$$E\left(X\right) = \mu, \quad V\left(X\right) = \sigma^2$$

$$X = \mu, \quad X = \mu, \quad X = \mu, \quad X = \mu, \quad X = \mu$$

X är $N(\mu,\sigma)$ om och endast om $\frac{X-\mu}{\sigma}$ är N(0,1) Om Z är N(0,1) så har Z fördelningsfunktionen $\Phi(x)$ enligt Tabell 1 och täthetsfunktionen $\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}, -\infty < x < \infty.$

En linjärkombination $\sum a_i X_i + b$ av oberoende, normalfördelade stokastiska variabler är normalfördelad

Gammafördelningen

$$\begin{split} X &\text{ \"{a}r } \operatorname{Gamma}(c,\lambda) \text{ om} \\ f_X(x) &= \left\{ \begin{array}{l} \frac{\lambda^c}{\Gamma(c)} \cdot x^{c-1} e^{-\lambda x}, & x > 0 \\ 0, & x \leq 0, \end{array} \right. \\ \text{d\"{a}r } &\Gamma(c) &= \int_0^{+\infty} x^{c-1} e^{-x} dx. \text{ Om } c \text{ positivt heltal har vi } \Gamma(c) = (c-1)!. \\ E(X) &= \frac{c}{\lambda}, \quad V(X) = \frac{c}{\lambda^2} \end{split}$$

Betafördelningen

$$\begin{split} X & \text{ \"{a}r Beta}(\alpha,\beta) \text{ om} \\ f_X(x) &= \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, & 0 \leq x \leq 1, \\ 0, & \text{annars.} \end{cases} \\ E(X) &= \frac{\alpha}{\alpha+\beta}, \quad V(X) &= \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} \end{split}$$

Centrala gränsvärdessatsen 5

 $\operatorname{Om} X_1, X_2, ..., X_n$ är oberoende, likafördelade stokastiska variabler med väntevärde μ och standardavvikelse $\sigma > 0$, så är $Y_n = X_1 + ... + X_n$ approximativt $N(\mu n, \sigma \sqrt{n})$ om n är stort.

6 Approximation

$$\operatorname{Hyp}(N,n,p)$$
 approximeras av $\operatorname{Bin}(n,p)$ om $\frac{n}{N} \leq 0.1$ $\operatorname{Bin}(n,p)$ approximeras av $\operatorname{Po}(np)$ om $p \leq 0.1$ $\operatorname{Bin}(n,p)$ approximeras av $N\left(np,\sqrt{np\left(1-p\right)}\right)$ om $np\left(1-p\right) \geq 10$ $\operatorname{Po}(\mu)$ approximeras av $N\left(\mu,\sqrt{\mu}\right)$ om $\mu \geq 15$

7 Tjebysjovs olikhet

Om
$$E\left(X\right)=\mu$$
 och $D\left(X\right)=\sigma>0$ så gäller för varje $k>0$ att $P\left(|X-\mu|>k\sigma\right)\leq \frac{1}{k^2}$

8 Statistiskt material

$$\overline{x} = \frac{1}{n} \sum_{j=1}^{n} x_j$$

$$s^2 = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \overline{x})^2 = \frac{1}{n-1} \left[\sum_{j=1}^{n} x_j^2 - \frac{1}{n} \left(\sum_{j=1}^{n} x_j \right)^2 \right]$$

9 Punktskattningar

9.1 Maximum-likelihoodmetoden

Låt x_i vara en observation av X_i , i=1,2,...,n, där fördelningen för X_i beror på en okänd parameter θ . Det värde θ_{obs}^* som maximerar likelihoodfunktionen $L(\theta) = \begin{cases} p_{X_1,...,X_n}\left(x_1,...,x_n;\theta\right) = (\text{om oberoende}) = p_{X_1}\left(x_1;\theta\right) \cdots p_{X_n}\left(x_n;\theta\right) \\ f_{X_1,...,X_n}\left(x_1,...,x_n;\theta\right) = (\text{om oberoende}) = f_{X_1}\left(x_1;\theta\right) \cdots f_{X_n}\left(x_n;\theta\right) \\ \text{kallas } maximum-likelihoodskattningen } (ML-skattningen) \text{ av } \theta.$

9.2 Minsta-kvadratmetoden

Låt x_i vara en observation av $X_i, i = 1, 2, ..., n$, och antag att $E\left(X_i\right) = \mu_i\left(\theta_1, \theta_2, ..., \theta_k\right)$ och $V\left(X_i\right) = \sigma^2$, där $\theta_1, \theta_2, ..., \theta_k$ är okända parametrar och $X_1, X_2, ..., X_k$ är oberoende. Minsta-kvadratskattningarna~(MK-skattningarna) av $\theta_1, \theta_2, ..., \theta_k$ är de värden $\left(\theta_1\right)_{\text{obs}}^*, \left(\theta_2\right)_{\text{obs}}^*, ..., \left(\theta_k\right)_{\text{obs}}^*$ som minimerar kvadratsumman $Q = Q\left(\theta_1, \theta_2, ..., \theta_k\right) = \sum_{i=1}^n \left(x_i - \mu_i\left(\theta_1, \theta_2, ..., \theta_k\right)\right)^2$.

9.3 Medelfel

En skattning av $D(\theta^*)$ kallas medelfelet för θ^* och betecknas $d(\theta^*)$.

9.4 Felfortplantning

a) $E(g(\theta^*)) \approx g(\theta^*_{obs})$

Med beteckningar och förutsättningar enligt läroboken gäller

$$\begin{split} D\left(g\left(\theta^{*}\right)\right) &\approx |g'(\theta_{\mathrm{obs}}^{*})| \, D\left(\theta^{*}\right) \\ \mathrm{b}) \ E\left(g\left(\theta_{1}^{*},...,\theta_{n}^{*}\right)\right) &\approx g(\left(\theta_{1}\right)_{\mathrm{obs}}^{*},...,\left(\theta_{n}\right)_{\mathrm{obs}}^{*}) \\ V\left(g\left(\theta_{1}^{*},...,\theta_{n}^{*}\right)\right) &\approx \sum_{i=1}^{n} \sum_{j=1}^{n} C\left(\theta_{i}^{*},\theta_{j}^{*}\right) \left[\frac{\partial g}{\partial x_{i}} \frac{\partial g}{\partial x_{j}}\right]_{x_{k} = \left(\theta_{k}\right)_{\mathrm{obs}}^{*}, k = 1,...,n} \end{split}$$

10 Några vanliga fördelningar i statistiken

χ^2 -fördelningen

Om $X_{1},X_{2},...,X_{f}$ är oberoende $N\left(0,1\right) ,$ så gäller det att

$$\sum_{k=1}^{f} X_k^2 \text{ är } \chi^2(f)\text{-f\"{o}rdelad}.$$

t-fördelningen

Om X är N (0,1) och Y är χ^2 (f) samt om X och Y är oberoende, så gäller det att $\frac{X}{\sqrt{Y/f}}$ är t (f)-fördelad.

11 Stickprovsvariablernas fördelningar vid normalfördelade stickprov

11.1 Ett normalfördelat stickprov

Låt $X_1,...,X_n$ vara oberoende stokastiska variabler som alla är $N(\mu,\sigma)$. Då gäller:

a)
$$\overline{X}$$
 är $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$

b)
$$\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma^2} = \frac{(n-1) S^2}{\sigma^2} \text{ är } \chi^2 (n-1)$$

c) \overline{X} och S^2 är oberoende

d)
$$\frac{\overline{X} - \mu}{S/\sqrt{n}}$$
 är $t(n-1)$

11.2 Två normalfördelade stickprov med samma varians

Låt $X_1,...,X_{n_1}$ vara $N(\mu_1,\sigma)$ och $Y_1,...,Y_{n_2}$ vara $N(\mu_2,\sigma)$ och samtliga dessa stokastiska variabler antas vara oberoende. Då gäller:

a)
$$\overline{X} - \overline{Y} \text{ är } N\left(\mu_1 - \mu_2, \sigma\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)$$

b)
$$\frac{(n_1 + n_2 - 2) S^2}{\sigma^2} \ddot{a} r \chi^2 (n_1 + n_2 - 2) d\ddot{a} r S^2 = \frac{(n_1 - 1) S_1^2 + (n_2 - 1) S_2^2}{n_1 + n_2 - 2},$$
$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \overline{X})^2 \text{ och } S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2$$

c) $\overline{X} - \overline{Y}$ och S^2 är oberoende

d)
$$\frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
 är $t(n_1 + n_2 - 2)$

Två normalfördelade stickprov med olika varians 11.3

Låt $X_1,...,X_{n_1}$ vara $N(\mu_1,\sigma_1)$ och $Y_1,...,Y_{n_2}$ vara $N(\mu_2,\sigma_2)$ och samtliga dessa stokastiska variabler antas vara oberoende. Då gäller:

$$\overline{X} - \overline{Y} \text{ är } N\left(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$$

12 Konfidensintervall

12.1 λ -metoden

Låt θ^* vara $N(\theta, D)$, där D är känd och θ okänd. Då är $\theta^*_{\rm obs} \pm D \cdot \lambda_{\alpha/2}$ ett konfidensintervall för θ med konfidensgraden $1 - \alpha$.

t-metoden

Låt θ^* vara $N\left(\theta,D\right),$ där D och θ är okända och D inte beror på $\theta.$ Låt D_{obs}^* vara en punktskattning av D sådan att $\frac{\theta^* - \theta}{D^*}$ är t(f). Då är $\theta_{\text{obs}}^* \pm D_{\text{obs}}^* \cdot t_{\alpha/2}(f)$ ett konfidensintervall för θ med konfidensgraden $1-\alpha$.

Approximativa metoden 12.3

Låt θ^* vara approximativt $N(\theta, D)$. Antag att $D^*_{\rm obs}$ är en lämplig punktskattning av D. Då är $\theta_{\rm obs}^* \pm D_{\rm obs}^* \cdot \lambda_{\alpha/2}$ ett konfidensintervall för θ med den approximativa konfidensgraden $1-\alpha$.

Metod baserad på χ^2 -fördelning 12.4

Låt $\theta_{\mathrm{obs}}^{*}$ vara en punktskattning av en parameter θ sådan att $f \cdot \left(\frac{\theta^*}{\theta}\right)^2$ är $\chi^2(f)$. Då är

$$\left(\theta_{\text{obs}}^* \sqrt{\frac{f}{\chi_{\alpha/2}^2(f)}}, \theta_{\text{obs}}^* \sqrt{\frac{f}{\chi_{1-\alpha/2}^2(f)}}\right)$$

ett konfidensintervall för θ med konfidensgraden $1 - \alpha$.

13 Linjär regression

13.1 Fördelningar

Låt Y_i vara $N(\alpha + \beta x_i, \sigma)$, i = 1, 2, ..., n, och oberoende. Då gäller:

a)
$$\beta^* = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (Y_i - \overline{Y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$
 är $N\left(\beta, \frac{\sigma}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2}}\right)$

b)
$$\alpha^* = \overline{Y} - \beta^* \overline{x} \text{ är } N\left(\alpha, \sigma \sqrt{\frac{1}{n} + \frac{(\overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}\right)$$

c)
$$\alpha^* + \beta^* x_0 \text{ är } N\left(\alpha + \beta x_0, \sigma \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}\right)$$

d)
$$\frac{(n-2)S^2}{\sigma^2}$$
 är $\chi^2(n-2)$ där $S^2 = \frac{1}{n-2}\sum_{i=1}^n (Y_i - \alpha^* - \beta^* x_i)^2$

e) S^2 är oberoende av α^* och β^*

13.2 Konfidensintervall

$$I_{\alpha} : \alpha_{\text{obs}}^{*} \pm t_{p/2} (n-2) s \sqrt{\frac{1}{n} + \frac{(\overline{x})^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}}$$

$$I_{\beta} : \beta_{\text{obs}}^{*} \pm t_{p/2} (n-2) \frac{1}{\sqrt{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}}$$

$$I_{\alpha+\beta x_{0}} : \alpha_{\text{obs}}^{*} + \beta_{\text{obs}}^{*} x_{0} \pm t_{p/2} (n-2) s \sqrt{\frac{1}{n} + \frac{(x_{0} - \overline{x})^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}}$$

13.3 Beräkningsaspekter

$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y}) = \sum_{i=1}^{n} (x_i - \overline{x}) y_i = \sum_{i=1}^{n} x_i (y_i - \overline{y}) = \sum_{i=1}^{n} x_i y_i - n \overline{x} \overline{y}$$

$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n (\overline{x})^2$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

$$(n-2) s^2 = S_{yy} - S_{xy}^2 / S_{xx} = S_{yy} - 2\beta_{\text{obs}}^* S_{xy} + (\beta_{\text{obs}}^*)^2 S_{xx} = \min_{\alpha, \beta} \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$

14 Hypotesprövning

14.1 Definitioner

Signifikansnivån (felrisken) α är (det maximala värdet av) $P(\text{förkasta } H_0)$ då hypotesen H_0 är sann.

Styrkefunktionen $h(\theta) = P(\text{förkasta } H_0) \text{ då } \theta \text{ är rätt parametervärde.}$

14.2 Konfidensmetoden

Förkasta $H_0: \theta = \theta_0$ på nivån α om θ_0 ej faller inom ett lämpligt valt konfidensintervall med konfidensgraden $1 - \alpha$.

14.3 χ^2 -test

Antag att n oberoende upprepningar av ett försök med de möjliga utfallen $A_1, A_2, ..., A_r$ med respektive sannolikheter $P(A_1), P(A_2), ..., P(A_r)$. Låt, för j = 1, 2, ..., r, den stokastiska variableln X_j beteckna antalet försök som ger resultatet A_j .

Test av given fördelning

Vi vill testa $H_0: P(A_1) = p_1, P(A_2) = p_2, ..., P(A_r) = p_r$ för givna sannolikheter $p_1, p_2, ..., p_r$. Då blir

likheter
$$p_1,p_2,...,p_r$$
. Då blir
$$Q=\sum_{j=1}^r\frac{\left(x_j-np_j\right)^2}{np_j}$$
 ett utfall av en approximativt $\chi^2\left(r-1\right)$ -fördelad stokastisk

variabel om H_0 är sann och $np_j \geq 5, j = 1, 2, ..., r$.

Om vi skattar k parametrar ur data, $\theta = (\theta_1, ..., \theta_k)$ för att skatta $p_1, p_2, ..., p_r$ med $p_1(\theta_{\text{obs}}^*), p_2(\theta_{\text{obs}}^*), ..., p_r(\theta_{\text{obs}}^*)$, så är

med
$$p_1(\theta_{\text{obs}}^*), p_2(\theta_{\text{obs}}^*), ..., p_r(\theta_{\text{obs}}^*)$$
, så ar
$$Q' = \sum_{j=1}^r \frac{\left(x_j - np_j(\theta_{\text{obs}}^*)\right)^2}{np_j(\theta_{\text{obs}}^*)} \text{ ett utfall av en approximativt } \chi^2(r-k-1)\text{-fördelad stokastisk variabel.}$$

${\bf Homogenitet stest}$

Vi vill testa om sannolikheterna för utfallen $A_1,A_2,...,A_r$ är desamma i s försöksserier. Inför beteckningar enligt nedanstående tabell:

Serie	Aı	ntal ob	Antal försök			
	A_1	A_2	A_3		A_r	
1	x_{11}	x_{12}	x_{13}		x_{1r}	n_1
2	x_{21}	x_{22}	x_{23}		x_{2r}	n_2
<u>:</u>	:	:	÷	٠.	:	i :
s	x_{s1}	x_{s2}	x_{s3}		x_{sr}	n_s
Kolonnsumma	m_1	m_2	m_3		m_r	N

Bilda
$$Q = \sum_{i=1}^{s} \sum_{j=1}^{r} \frac{\left(x_{ij} - \frac{n_i m_j}{N}\right)^2}{\frac{n_i m_j}{N}}.$$

Q är ett utfall av en approximativt $\chi^2\left((r-1)\left(s-1\right)\right)$ -fördelad stokastisk variabel om $n_i m_j/N \geq 5$, för alla i=1,2,...,s och j=1,2,...,r.

Oberoendetest

Antag att värdemängden för den stokastiska variabeln X kan delas in i kategorierna $A_1, A_2, ..., A_r$ och att värdemängden för den stokastiska variabeln Y kan delas in i kategorierna $B_1, B_2, ..., B_s$. Vi vill testa om de stokastiska variablerna X och Y är oberoende.

Antal observationer	A_1	A_2	A_3		A_r	Radsumma
B_1	x_{11}	x_{12}	x_{13}		x_{1r}	n_1
B_2	x_{21}	x_{22}	x_{23}		x_{2r}	n_2
<u>:</u>	:	:	:	٠.	÷	:
B_s	x_{s1}	x_{s2}	x_{s3}		x_{sr}	n_s
Kolonnsumma	m_1	m_2	m_3		m_r	N

Samma teststorhet och fördelning kan användas som vid homogenitetstest.

15 Bayesiansk inferens

15.1 Apriori- och aposteriorifördelning

Givet en parameter Θ i parameterrummet Ω_{θ} med apriorifördelning $f_{\Theta}(\theta)$ och en datapunkt X med datafördelning $f_{X|\Theta}(x\mid\theta)$ har vi aposteriorifördelningen

$$f_{\Theta|X}(\theta \mid x) = \frac{f_{X|\Theta}(x \mid \theta)f_{\Theta}(\theta)}{f_{X}(x)}$$

där $f_X(x)=\int_{\Omega_\theta}f_{X\mid\Theta}(x\mid\theta)f_\Theta(\theta)d\theta$ är den aprioriprediktiva fördelningen för X.

15.2 Konjugatfamiljer och uppdateringsregler

Om $\Theta \sim \text{Beta}(\alpha, \beta)$ och X_1, X_2, \dots, X_k är betingat oberoende givet Θ med $X_i \mid \Theta = \theta \sim \text{Bin}(n_i, \theta)$ för $i = 1, 2, \dots, k$ så har vi

$$\Theta \mid X_1 = x_1, X_2 = x_2, \dots, X_k = x_k \sim \text{Beta}\left(\alpha + \sum_{i=1}^k x_i, \beta + \sum_{i=1}^k n_i - x_i\right).$$

Om $\Theta \sim N(\mu_0, \tau_0)$ och X_1, X_2, \dots, X_k är betingat oberoende givet Θ med $X_i \mid \Theta = \theta \sim N(\theta, \sigma)$ för $i = 1, 2, \dots, k$ så har vi

$$\Theta \mid X_1 = x_1, X_2 = x_2, \dots, X_k = x_k \sim N \left(\frac{\frac{\mu_0}{\tau_0^2} + \frac{\sum_{i=1}^k x_i}{\sigma^2}}{\frac{1}{\tau_0^2} + \frac{k}{\sigma^2}}, \frac{1}{\sqrt{\frac{1}{\tau_0^2} + \frac{k}{\sigma^2}}} \right).$$

Om $\Theta \sim \text{Gamma}(c, \lambda)$ och X_1, X_2, \dots, X_k är betingat oberoende givet Θ med $X_i \mid \Theta = \theta \sim \text{Po}(\theta)$ för $i = 1, 2, \dots, k$ så har vi

$$\Theta \mid X_1 = x_1, X_2 = x_2, \dots, X_k = x_k \sim \text{Gamma}\left(c + \sum_{i=1}^k x_i, \lambda + k\right).$$

Om $\Theta \sim \text{Gamma}(c, \lambda)$ och X_1, X_2, \dots, X_k är betingat oberoende givet Θ med $X_i \mid \Theta = \theta \sim \text{Exp}(\theta)$ för $i = 1, 2, \dots, k$ så har vi

$$\Theta \mid X_1 = x_1, X_2 = x_2, \dots, X_k = x_k \sim \text{Gamma}\left(c + k, \lambda + \sum_{i=1}^k x_i\right).$$