PAX3's Role in Nonsense-Mediated Decay: Implications for Melanoma

Lulu Jiang

Background

PAX3 gene

- The PAX3 gene is a member of the paired box (PAX) family of transcription factors, which are essential in regulating cell growth and differentiation.
- Normal Conditions:
 - PAX3 regulate cell growth and differentiation genes and can act as <u>both an activator</u> and repressor of transcription, depending on the target gene and cellular context.
- PAX3 in Cancer:
 - PAX is often found to be overexpressed → downregulate genes that induce apoptosis

Nonsense mediated decay (NMD)

- NMD is an RNA quality control pathway that degrades improperly spliced transcripts containing premature termination codons (PTCs)
- It plays a crucial role in maintaining the quality of gene expression and protecting cells from the deleterious effects of mutated mRNAs.
- In cancers, NMD suppresses expression of tumor-suppressors and neoantigens
 - Increased NMD activity associated with reduced survival in some cancers

PTC = Premature Termination Codon EJC = Exon Junction Complex

Source: Noah

Unmet Needs

Unclear Role of PAX3 in NMD:

- Current cancer therapies don't target NMD mechanisms
- PAX3's influence on NMD could be a novel therapeutic avenue
- Research Gaps: Need to understand if PAX3 affects NMD directly or indirectly
- Understanding how PAX3 modulates NMD could reveal new aspects of its function in cancer biology.

Hypothesis and Research questions

General Hypothesis: PAX3 is having an effect on nonsense-mediated decay (NMD).

Research Questions:

How is PAX3 affecting NMD?

Two main hypotheses:

- By altering splicing of transcripts to increase the proportion of transcripts that will then be targeted by NMD
- Due to NMD activity being increased

Is it possible that both mechanisms are occurring simultaneously?

Methods / Plan

PAX3 and NMD-targeted transcripts

- Method for separating transcriptional and NMD-based RNA regulation: Cycloheximide (CHX) treatment
- CHX inhibits ribosome function, inhibiting PTC NMD and increasing abundance of NMD-targeted transcripts
- Transcripts <u>downregulated via NMD</u> will <u>increase</u> after CHX, transcripts <u>downregulated via transcriptional regulation</u> will NOT.

Study Design

- Using cell culture models with PAX3 manipulation
- Analyzing RNA sequencing data to study gene expression and splicing
- Employing cycloheximide treatment to isolate direct effects

Cycloheximide (CHX) Treatment

Comparison groups: GFP vs PAX3 overexpression, with/without cycloheximide

Data Processing Workflow:

Paired end reads data preprocessing→ PCA plots

 \rightarrow DESeq2

Visualization:

Volcano plots, Venn Diagram Spearman Correlation Analysis

Downregulated Genes in H2O GFP vs H2O P3-HA but not in CHX GFP vs CHX P3-HA

Challenges and Approaches in RNA-seq Analysis

PAX3 Function

- Traditional view: Transcriptional activator
- New perspective: Can also act as repressor
- Approach: Include all differentially expressed genes
 - Upregulated and downregulated
 - Captures full range of PAX3 effects

Analysis Strategy

- 1. Plot all significantly changed genes
- Group genes based on:
 - Up/downregulation
 - Significance of change
- 3. Identify patterns across conditions
- Confirm normalization of background noise

Challenges and Approaches in RNA-seq Analysis

Normalization

- Crucial for accurate analysis
- Accounts for:
 - Sequencing depth differences
 - RNA composition variations
 - Technical factors
- Improper normalization may lead to misleading results

Broader Context

- The project aims to elucidate the mechanism by which PAX3 influences NMD
- It explores both transcriptional and post-transcriptional effects of PAX3
- The research could reveal novel insights into gene regulation in the context of diseases like melanoma