Grundlagen der Programmierung 1

Prof. Dr. Detlef Krömker Alexander Wolodkin

Ubungsblatt Nr. 3

Ausgabe: 01.11.2017 Abgabe: 10.11.2017 9.30 Uhr

Datentypen und Kontrollstrukturen

Hinweis: Es sind grundsätzlich Rechenwege anzugeben, es sei denn es findet sich ein expliziter Hinweis, dass dies nicht nötig ist. Es dürfen keine Lösungen aus dem Skript, dem Internet oder anderen Quellen abgeschrieben werden. Diese Quellen dürfen nur mit Quellenangaben verwendet werden und es muss ein hinreichend großer Eigenanteil in den Lösungen deutlich zu erkennen sein. Digitale Abgaben, die nicht im Format .pdf für Texte oder .py für Code erfolgen, werden nicht bewertet. Bei Abgaben mehrer Dateien müssen diese als .zip zusammengefasst werden. Abgaben, die nicht diesen Regeln entsprechen, werden nicht bewertet! Achten Sie darauf die Variable _author_ in allen Quellcode Dateien korrekt zu setzen. Abgaben, die nicht dieser Vorgabe entsprechen, werden nicht bewertet. Außerdem muss Ihr Name in jeder abgegebenen .pdf Datei zu finden sein. Ababen, die vollständig per Hand geschrieben und eingescannt werden, sind nur in zuvor abgesprochenen Ausnahmefällen erlaubt.

	۷ / 10
Aufgabe 3.1: Numerische Datentypen	Punkte: / 4

- (a) (2 Punkte) Wandeln Sie die folgenden Zahlen Z_b zur Basis b jeweils in die Zahlensystem zur Basis b=2, b=10 und b=16 um. Geben Sie den Rechenweg an.
 - 1234₁₀
 - \bullet CAFE₁₆
- (b) (1 Punkt) Uberführen Sie die Zahlen −128, −1 und 127 als Integerzahl in das Einerkomplement mit einer Wortlänge von 8 Bit. Geben Sie den Rechenweg an.
- (c) (1 Punkt) Addieren Sie 1 zu 127 im Zweierkomplement. Arbeiten Sie mit einer Wortlänge von 8 Bit. Was passiert? Begründen Sie Ihre Antwort.

Aufgabe 3.2: Zahlendarstellung

Punkte: ____ / 3

Vervollständigen Sie die folgende Tabelle so, dass in den Zeilen jeweils die gleichen Werte stehen.

Binär im Zweierkomplement (16Bit)	Oktal	Dezimal
0110011010100110		
10111111100000000		
	100703	
	4007	
		- 42
		500

Aufgabe 3.3: Datentypen

- Punkte: ____ / 3
- (a) (1 Punkt) Was bezeichnet der Begriff *Casting* in der Informatik? Was bezeichnet der Begriff Coercion?
- (b) (1 Punkt) Welche Probleme können bei Casting und Coercion auftreten?
- (c) (1 Punkt) Markieren Sie basierend auf der Aufgabe 3.3.a, welche Begriffe Sie einer Ausführung der genannten Zeilen in der Python-Shell zuordnen würden

Python 3.6.3 Shell	Casting	Coercion	Nichts davon
>>> 3 * 3.14			
>>> int(float(str(ord(chr(123)))))			
>>> int (1 1)			
>>> 4 << 1			