

Correlation

Hypothesis testing+ Graphic Methods

Session 9 **Programación Estadística con Python**

Alberto Sanz, Ph.D

albertosanz@bigwaveanalytics.es

MASTER EN DATA ANALYTICS PARA LA EMPRESA

Goals

- Hypothesis testing over the relatioship of two quantitative variables by the means of regression.
 - Graphic approach (Scatterplot)
 - Numeric approach (r coefficient & p.values)
- Beyond the numbers and plots:
 - Reflections on correlation and non linearity
 - The False Discovery Rate experiment

Correlation

- Always DESCRIBE the two variables involved in the correlation.
 - Check and validate the integrity of the data prior to any analysis.

- □ EXPLORE of bivariate relation:
 - Graphically: Scatterplot
 - Numerically: Pearson's r & p.value

Research Question

Why some days are rent more bikes?

Temperature ?

- □ HO.: There is no linear association (r=0) between the number of rentals and the temperature.
- \square H1.: There is a linear association (r \neq 0) between the number of rentals and the temperature.

Describing quantitative variables


```
x=wbr['cnt']
plt.hist(x, bins=10,
edgecolor='black')
plt.xticks(np.arange(0, 10000,
step=1000))
plt.title('Figure 4. Daily Bicycle
rentals in Washington DC'
           '\n'
           'by Capital bikeshare.
2011 - 2012')
plt.ylabel('Frecuency')
plt.xlabel('Number of rented
bicycles')
props = dict(boxstyle='round',
facecolor='white', lw=0.5)
textstr = \ \mathrm{n}=\%.0f\$'\%(n)
plt.text (-50,128, \text{ textstr})
bbox=props)
```


Describing quantitative variables


```
____
```

```
##histogram ver4
x=wbr['temp celsius']
plt.hist(x, bins=10,
edgecolor='black')
#plt.xticks(np.arange(0, 10000,
step=1000))
plt.title('Figure 5. Temperature in
Celsius'
          '\n')
plt.ylabel('Frecuency')
plt.xlabel('Temperature in Co')
props = dict(boxstyle='round',
facecolor='white', lw=0.5)
textstr = \ \mathrm{n}=\%.0f\$'\%(n)
plt.text (2,100, textstr,
bbox=props)
```

Figure 5. Temperature in Celsius

Describing quantitative variables

Figure 5. Temperature in Celsius

alberto.sanz@bigwaveanalytics.es

Regression

1. Describe the two variables involved in hypothesis

Temperature

Rentals

Correlation

1. Describe the two variables involved in hypothesis

Windspeed

Rentals

Regression

2. Scatterplot

x=wbr.temp_Celsius
y=wbr.cnt
plt.scatter (x,y)

Figure 9. Daily bicycle rentals, by temperature.

Regression

3. Pearson's r

```
from scipy.stats.stats import pearsonr
res = pearsonr(x, y)
print (res)
[1] (0.62749400903349195, 2.8106223975901415e-81)
```

This is Perason's r

This is The P.Value

Scatterplot + Pearson's r + test

Figure 9. Daily bicycle rentals, by temperature.

alberto.sanz@bigwaveanalytics.es

Conclussion

Conclussion:

As P. Value < 0.000

We can reject H0 with a confidence higer tan 99.9

- X HO.: There is no linear association between the *number* of *rentals* and the *temperature*.
- ✓ H1.:There is a linear association between the number of rentals and the temperature.

Statistical Programming with Python

Questions?

Statistical Programming with Python

Thank you!

Alberto Sanz