Schema Refinement Tutorial (part I)

Announcement

Course assessment on AEFIS (10 minutes)

https://assess.stevens.edu/

Final Exam Logistics

- The final exam will be held in class next Tuesday (75 minutes)
- The exams will be held online in Canvas.
- The students still need to come to the class to take exams.
 - The seating chart will be signed during the exam

Cheat Sheet

- A one-sided, A4-size cheat sheet is allowed.
- The cheat sheet can be either handwritten or typed.
- The cheat sheet is NOT required to be submitted after the exam.

Type of Questions in Final Exam

- Mainly cover Functional Dependencies (FD)
 - True/false statement (cover the concepts in FD chapter)
 - Validation of correctness of SQL queries
 - Keys and normal forms (use FDs to find candidate keys, and check if the scheme satisfies 3NF and BCNF)
 - Lossless decomposition
 - 3NF decomposition

Make-up and Accommodations

Make-up exams

- The students who cannot attend the exams should inform the instructor at least one day BEFORE the exam.
- The make-up exam request will be approved upon the validity of reasons.
- The request will NOT be approved if the instructor is informed on the day of or after the exam.

Accommodations

 Student with accommodations send an email to the instructor for the arrangement.

Functional Dependencies (FDs)

A <u>functional dependency</u> X → Y means
 Given any two tuples in *r*, if the X values are the same, then the Y values must also be the same. (but not vice versa)

Can read "→" as "determines"

FD Inference Rules

- FD Inference: new FDs can be implied by old FDS
- Armstrong's Axioms (X, Y, Z are <u>sets</u> of attributes):
 - Reflexivity: If $X \supseteq Y$, then $X \to Y$
 - <u>Augmentation</u>: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- Some additional rules (that follow from AA):
 - Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - Decomposition: If $X \to YZ$, then $X \to Y$ and $X \to Z$

FD Closure

- F⁺ = <u>closure of F</u> is the set of all FDs that are implied by F.
- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- Instead, we compute attribute closure
 - given FD F: $X \rightarrow Y$, X^+ = Set of all attributes A such that $X \rightarrow A$ is in F⁺

Attribute Closure

- Compute <u>attribute closure</u> of X (denoted X⁺) wrt F.
 - $X^{+} := X$
 - Repeat until no change: if there is an FD U → V in F such that U is in X⁺, then add V to X⁺
- Approach can also be used to find the keys of a relation.
 - If X⁺ ={all attributes of the relation}, then X is a superkey for R.

Exercise 1

- Given FD={AB \rightarrow CD, B \rightarrow DE, C \rightarrow F, E \rightarrow G, A \rightarrow B}.
- Prove that {A→FG} is logically implied by FD, by using
 - (1) Armstrong's axiom
 - (2) Attribute closure

Solution 1: Armstrong's axiom

1	$A \rightarrow B$	Given
2	$A \rightarrow A B$	1, Augmentation
-3	$AB \rightarrow CD$	Given
4	$A \rightarrow CD$	2, 3, Transitivity
-5	$B \rightarrow D E$	Given
6	$A \rightarrow D E$	1, 5, Transitivity
7	$A \rightarrow A C D$	4, Augmentation
-8	$ACD \rightarrow CDE$	6, Augmentation twice
:9	$A \rightarrow CDE$	7, 8, Transitivity
10	$A \rightarrow C E$	9, Trivial dependency
11	$C \rightarrow F$	Given
12	$CE \rightarrow FE$	11, Augmentation
13	$E \rightarrow G$	Given
14	$FE \rightarrow FG$	13, Augmentation
15	$CE \rightarrow FG$	12, 14, Transitivity
16	$A \rightarrow FG$	10, 15, Transitivity

Solution 2: Attribute Closure

- Given FD={AB \rightarrow CD, B \rightarrow DE, C \rightarrow F, E \rightarrow G, A \rightarrow B}.
- Prove that {A→FG} is logically implied by FD (by using attribute closure)
- Way of thinking
 - Prove that A⁺ contains FG!
 - Initialize A⁺ = A
 - Keep adding attributes into A⁺ by following the algorithm of computing attribute closure.
 - A⁺ = ABCDEFG

Using FDs to Find Keys

- A superkey K of a schema R is a set of attributes in R s.t. K-> R holds
- A (candidate) key is a minimal superkey.

Exercise 2

Consider the relation schema R(A, B, C, D)
 with FDs: A→C and B→D. Is {A,B} a candidate key for R?

Solution

- Step 1: check whether {A,B} is a superkey:
 - Check whether (AB)⁺ ={ABCD};
- Step 2: check whether {A, B} is minimal (i.e., Is any subset of {A, B} is a superkey?):
 - Check whether (A)⁺ ={ABCD};
 - Check whether (A)⁺ ={ABCD};

Lossless and Dependency-preserving Decomposition

- Given a table R and a set of FDs F of R, the decomposition
 of R into X and Y is lossless with respect to F if and only if
 X ∩ Y -> X or X ∩ Y -> Y
 - i.e., the common attributes of X and Y is a superkey of either X or Y.
- Decomposition of R into X and Y is <u>dependency preserving</u>
 if (F_X ∪ F_Y) + = F +
 - i.e., consider only dependencies in the closure F⁺ that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in F⁺.

Exercise 3

Consider a relation R(A,B,C). It has FDs: A -> B, B->C, and C -> A. Assume R is decomposed into X={A,B} and Y={B,C}. Answer the following questions:

- (1) Is this decomposition lossless?
- (2) Is this decomposition dependency preserving?

Exercise 3 – Lossless Solution

- Step 1: find common attributes of X and Y.
 - $X={A,B} \text{ and } Y={B,C}.$
 - Common attribute: B
- Step 2: Check if B is the superkey of X or Y
 - FDs hold on X: A->B
 - FDs hold on Y: B->C
 - For X: B+= AB: B is a superkey of X
 - For Y: B+= BC: B is a superkey of Y
 - So the decomposition (X, Y) is lossless.

Exercise 3 – Dependency Preserving Solution

- F⁺= {A->B, B->C, C->A, A->C, B->A, C->B}
- $F_x = \{A -> B, B -> A\}$
- $F_y = \{B -> C, C -> B\}$
- $(Fx \cup Fy)^+ = \{A->B, B \rightarrow C, B->A, C->B, A->C, C->A\}$
- (Fx \cup Fy)+= F+, so it is dependency preserving.