Offline Handritting Word Recognition

Thijs Kooi, Davide Modolo

January 27, 2011

Table of contents

- Overview
 - General
 - Dataset
- 2 Implementation Details
 - Pipeline
 - Pre-Processing
 - Feature Extraction
 - Hidden-Markov Model
- 3 Experiments and Results
- Experiments and Results
- Conclusions
- 6 Conclusions

General Dataset

Overview of the Project

Off-line handwriting recognition

- It involves the automatic conversion of text in an image into letter codes which are usable within computer and text-processing applications
- Off-line handwriting recognition is comparatively difficult, as different people have different handwriting styles

Figure: 'Students' written by different authors

Our Al Project

A lot of research has been done over the past years.

We explored the topic and implemented a full pipeline for the task. The research touched different fields:

- Data Collection
- Image Processing
- Features extraction
- Machine Learning

Dataset

The IAM Handwriting Database 3.0¹

- Unconstrained handwritten text (scanned at a resolution of 300dpi and saved as PNG images with 256 gray levels)
- 1'539 pages of scanned text of 657 writers
- 13'353 isolated and labeled text lines
- 115'320 isolated and labeled words

 $^{^{1}}$ http://www.iam.unibe.ch/fki/databases/iam-handwriting-database 1 1 2 2

Example of a page of scanned text

Sentence Database

N01-009

"Good luck, Air Marshal," she said gently. "Til be waiting for you at the Hotel Roma at ix this evening—and I shall look forward to meeting you both at midnight." They might have been arranging a supper party. Then she rang off. Alastair admitted that mever in a not allogether uneventful life had he come across a girl who sounded so charming and appeared to be so efficient.

Good buck, the Marshal, " Sue said gently. "I'll he waiting he you at the tolk rowa at the time. wering - and I shall look forward to untime you both at und night." They arighed have been assauring a supple part. Then the song of. Martair admitted that were in a not attracted unwentful life had be come according to the so efficient.

Pipeline Pre-Processing Feature Extraction Hidden-Markov Model

Implementation Details

Pipeline Hidden-Markov Model

Pipeline

Pipeline
Pre-Processing
Feature Extraction
Hidden-Markov Model

Implementation Details

Pre-Processing

Pre-processing

Line Segmentation

Original image segmented in lines

Vertical histograms and significant minima

Skew and Slope Correction

Figure: Skew detection and correction pipeline

Slant Correction

Figure: Slant detection and correction pipeline

Word segmentation

Baseline Estimation

Lower Baseline

Vertical Scaling

Words with baselines

Normalization to fixed height and fixed baselines

Figure: Examples of vertical scaling process

Skeletonization

Figure: Skeletonization process

Remembering the entire pipeline....

Why repeating skew and slant correction twice?

The normalizations are necessary for:

First

Words segmentation

is to be made of a neeting of labour

Second

Not all the words have the same slope, slant and lower baseline

is to be made at a neeting of labour.

Pipeline Pre-Processing Feature Extraction Hidden-Markov Model

Implementation Details

Feature Extraction

Features

Extracted from the skeleton of the words.

Mainly 2 types:

- Statistical
- Morphological

Statistical Features

Percentage of white pixels in the 3 zones of the word:

Upper Zone: 0.0124 %

Middle Zone: 0.0338 %

Lower Zone: 0.0033 %

Figure: Example

Morphological Features

Obtained by **connected component analysis**.

 A connected component it is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices.

Figure: Example of words divided in different components (colors)

Morphological Features

We extract:

Loops

Junctions

Dots

Endpoints

HMM

- A set of N states $S = (s_1, s_2, \dots, s_N)$, where the state of the system at time t is denoted q_t
- A set of priors $\pi = (\pi_1, \pi_2, \dots, \pi_N)$, providing the probability $P(q_1 = s_i)$.
- A transition function **A**, where $a_{ij} = P(q_{t+1} = s_j | q_t = s_i)$.
- An observation function **B**, mapping each observation at every state to a probability $b_i(\mathbf{o}_t) = P(\mathbf{o}_t|q_t = s_i, \lambda)$, where λ denotes the model parameters.

The model is trained to estimate the posterior probability $P(\mathbf{O}|\lambda)$ of an observation sequence \mathbf{O} , with D-dimensional observation vectors $\mathbf{o}_t = (o_1, o_2, \dots, o_D)$.

HMM

Figure: Left-to-right HMM with N states

Main problems in an HMM

- The probability of an observation sequence, given the model, $P(\mathbf{O}|\lambda)$.
- ② The most likely parameters of the model $\lambda^* = \max P(X|\lambda)$, given a training set of M observation sequences $X = (\mathbf{O}_1, \mathbf{O}_2, \dots, \mathbf{O}_M)$.
- **3** The most likely state sequence, underlying a given observation sequence and the model, $Q^* = \max P(Q|\mathbf{0}, \lambda)$.

Main problems in an HMM

• The probability of an observation sequence, given the model, $P(\mathbf{O}|\lambda)$.

Sum-product algorithm: forward-backward algorithm

② The most likely parameters of the model $\lambda^* = \max P(X|\lambda)$, given a training set of M observation sequences $X = (\mathbf{O}_1, \mathbf{O}_2, \dots, \mathbf{O}_M)$.

EM-algorithm: Baum-Welch reestimation

3 The most likely state sequence, underlying a given observation sequence and the model, $Q^* = \max P(Q|\mathbf{0}, \lambda)$.

Dynamic programming: Viterbi algorithm

Updating the parameters

Comparison with GMM:

Model:	GMM	HMM	
Model parameters:	$\lambda = \pi, \mu, \Sigma$	$\lambda = \pi, \mathbf{A}, \mathbf{B}$	
Hyper parameters:	Number of compo-	Topology (states,	
	nents	transitions), observa-	
		tion function	
Observed variables:	Data points Observations		
Latent variables:	Priors of a component	State sequence	

Updating parameters

Model:	GMM	НММ	
E-step:	Estimate the probabil-	l- Estimate the probabil-	
	ity of a component,	ity of being in a state	
	given the data and	at a timestep and the	
	current parameters.	probability of trans-	
		fering from a state to	
		another state.	
M-step:	Maximise π , μ and Σ .	Maximise π , A and B	

Problems we ran into

Consider the following observation:

$$\mathbf{O} = \begin{pmatrix} -1 & 0 \\ 2 & 0 \\ 1 & 0 \\ -2 & 0 \end{pmatrix}$$

Problems we ran into

Singularities. Consider the following observation:

$$\mathbf{O} = \begin{pmatrix} -1 & 0 \\ 2 & 0 \\ 1 & 0 \\ -2 & 0 \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} 3\frac{1}{3} & 0 \\ 0 & 0 \end{pmatrix}$$

Problems we ran into

Singularities

$$\mathbf{O} = \begin{pmatrix} -1 & 0 \\ 2 & 0 \\ 1 & 0 \\ -2 & 0 \end{pmatrix}$$
$$\mathbf{\Sigma} = \begin{pmatrix} 3\frac{1}{3} & 0 \\ 0 & 0 \end{pmatrix}$$
$$|\mathbf{\Sigma}| = \mathbf{0}$$

Possible solution: Add some random noise.

Experiments and Results

Experiments

We run 2 type of experiments:

- 1 vs 1 word recognition
 - We build models for 2 words and we test both models for new instances of the 2 words from novel authors
 - GOAL: Test how much the likelihoods of the 2 words differ
- all vs all words recognition
 - We build models for every word and for every word in the test set we rank all the models by loglikelihood
 - GOAL: Compute general accuracy for a small dataset

For both experiments the model of a word is built using 30 samples from 30 authors of the word.

Experiment 1 - Typewritten words

- Done to check the correctness of the pipeline.
- Only used intensity features.
- Used words 'Letter' and 'Number' (same length)

Table: Results for simple typewritten words, avg over 40 runs

Word	Letter	Number	Differe
LL Intensity N=6 K=1 10EM	121.68	106.36	15
LL All features N=6 K=1 10EM	795.45	14.08	781
LL All features N=1 K=1 10EM	602.22	-90.02	692
LL All features N=6 K=3 10EM	-186.45	-330.14	143
LL All features N=6 K=3 30EM	226.96	-820.30	1.0
LL ALL, N=6, K=1, 10EM, diagonal cov	871.16	531.27	487
		12142	E *) Q (*

Experiment 1 - Handwritten Words (same length)

• Used words 'Before' and 'People' (same length)

Table: Results for simple handwritten words, avg over 40 runs

Word	Before	People	Difference
LL All features N=6 K=1	1.17e + 03	1.19e + 03	480.16
LL All features N=1 K=1	699.56	1.0124e + 03	422.78
LL All features N=6 K=3	226.96	-820.30	1.04e3

Experiment 1 - Handwritten Words (short vs long)

Experiments 2

- Used a small dataset of 100 words
- Tested on 200 words of novel authors

Num. States	Num. Gaussian Comp.	Accuracy 1 ²	Accuracy 2 ³
lengthWord	1	0.2400	0.3400
1	1	0.2000	0.3600
1	5	0.0800	0.1800
lengthWord	5	0.1200	0.3000

²Correct if in 1st position of the ranked list

³Correct if in 1st or 2nd position of the ranked list □ > ◆ ♠ > ◆ ≥ > ◆ ≥ > ◆ ≥ ◆ ◇ ◇

Evaluation

- short vs long
- More GMM components seems to decrease the accuracy because of

Conclusions

Conclusions about the AI project

- The full pipeline is working, however a lot of improvements are possible:
 - Extract more features
 - Eventually apply PCA to the feature vector
 - Optimize the parameters of the HMM (i.e. using a validation set).
- Built models for letters instead of models for words (it requires letters segmentation)
- Use a language model

Personal Evaluation

- We built a full working pipeline
- We read and learnt a lot about a new topic
- We had the chance to apply a lot of techniques that we had only been studied in theory
- We improved our skills in programming

Questions?