

IIC2433 Minería de Datos

Reglas de asociación: Apriori

Profesor: Mauricio Arriagada

REGLAS DE ASOCIACIÓN

OBJETIVO

- Analizar datos de las compras de clientes
- Buscar asociaciones entre los diferentes productos

Algunas aplicaciones

- Ordenamiento de productos
- Patrones de navegación
- Promoción de pares de productos
- Segmentación
 - Descuentos específicos por cliente

Método aplicado en reglas de asociación

- Algoritmo A priori (Agrawal, 1994)
- Este algoritmo permite encontrar reglas de asociación de manera automática desde los datos.

Definiciones

Itemset

- Colección de uno o más ítems
- Ejemplo: {Leche, Pañales, Cerveza}

Soporte

- Frecuencia relativa que un itemset aparece en la base de datos
- Esto se calcula como el número itemset que aparece en la base de datos de compras dividido por el número total de compras(transacciones)
- ▶ Ejemplo:

Si tenemos que Leche aparece en 3 compras entre un total de 10 compras, entonces el soporte es 3/10

Itemset frecuente

- Un itemset que aparece en una frecuencia mayor a un umbral
- El umbral está determinado por uno o bien viene dado.

Regla de asociación

Es una expresión de la forma X -> Y

Donde X e Y don itemsets

Ejemplo:

{Leche, Pañales} -> {Cerveza}

Análisis: se podría decir que si se compra leche y pañales es posible que se compre cerveza también.

(esto se obtiene desde datos de compras y depende de valores de confianza y soporte empírico)

Regla de asociación

Otra defición para la regla X -> Y

Antecedente Consecuente

Ejemplo de transacciones

T	ítems
1	Pan, leche
2	Pan, pañales, cerveza, huevos
3	Leche, pañales, cerveza, diario
4	Pan, leche, pañales, cerveza
5	Pan, leche, pañales, diario

Т	ítems
1	Pan
1	Leche
2	Pan
2	Pañales
2	Cerveza
2	Huevos
3	Leche
3	Pañales
3	Cerveza
3	Diario

Ejemplo de reglas de asociación

- {leche, pañales} -> {cerveza}
- {leche, cerveza} -> {pañales}
- {pañales, cerveza} -> {leche}
- {cerveza} -> {leche, pañales}
- * {pañales} -> {leche, cerveza}
- {cerveza} -> {pañales, cerveza}

Indicadores de rendimiento

Ejemplo de soporte

{Leche, pañales} -> {cerveza}

T	ítems
1	Pan, leche
2	Pan, pañales, cerveza, huevos
	Leche, pañales, cerveza,
3	diario
4	Pan, leche, pañales, cerveza
5	Pan, leche, pañales, diario

$$X = \{ \text{Leche, pañales, cerveza} \}$$

$$s = \frac{\sigma(X)}{|T|}$$

$$s = \frac{\sigma(\{ \text{Leche, pañales, cerveza} \})}{|T|}$$

Ejemplo de soporte

{Leche, pañales} -> {cerveza}

Т	ítems
1	Pan, leche
2	Pan, pañales, cerveza, huevos
	Leche, pañales, cerveza,
3	diario
4	Pan, leche, pañales, cerveza
5	Pan, leche, pañales, diario

X = {Leche, pañales, cerveza}
$$s = \frac{\sigma(X)}{|T|}$$

$$s = \frac{2}{5} = 0.4$$

El 40% de las transacciones muetran que Leche, Pañales y Cerveza se compraron en juntos

Ejemplo de confianza

Т	ítems
1	Pan, leche
2	Pan, pañales, cerveza, huevos
	Leche, pañales, cerveza,
3	diario
4	Pan, leche, pañales, cerveza
5	Pan, leche, pañales, diario

$$c(X \to Y) = \frac{\sigma(X U Y)}{\sigma(X)}$$

$$c = \frac{\sigma(\{\text{Leche, pa\~nales, cerveza}\})}{\sigma(\{\text{Leche, pa\~nales}\})}$$

$$c = \frac{2}{3} = 0.67$$

{Leche, pañales} -> {cerveza}

Confianza (interpretación en probabilidad)

T	ítems
1	Pan, leche
2	Pan, pañales, cerveza, huevos
	Leche, pañales, cerveza,
3	diario
4	Pan, leche, pañales, cerveza
5	Pan, leche, pañales, diario

$$P(Y \mid X) = \frac{P(Y, X)}{P(X)}$$

$$c = \frac{2}{3} = 0.67$$

Por lo tanto, si una regla tiene una confianza de 0,67 podemos decir que de los consumindores que compraron leche y cerveza en en cojunto, también compraron cerveza

Problema

Supongamos que la confianza es 0,7 para la siguiente regla Leche -> Cerveza

$$c(Leche, Cerveza) = \frac{\sigma(Leche, Cerveza)}{\sigma(Leche)} = 0.7$$

70% probabilidad empírica que el cliente compre cerveza si compra leche

¿Pero si la probabilidad apriori de comprar solamente cerveza ya es de 70%?

$$\sigma(Cerveza) = 0.7$$

Lift

- Permite medir el incremento del lado derecho de la regla (consecuente) dada la compra del lado izquierdo (antecedente)
- Confianza de la regla dividido por el soporte del consecuente

$$Lift = \frac{c(X \to Y)}{s(Y)}$$

Ejemplo cálculo de lift

T	ítems
1	Pan, leche
2	Pan, pañales, cerveza, huevos
	Leche, pañales, cerveza,
3	diario
4	Pan, leche, pañales, cerveza
5	Pan, leche, pañales, diario

{Leche, pañales} -> {Cerveza}

$$Lift = \frac{c(\{Leche, pa\~nales\} \rightarrow \{Cerveza\})}{s(\{Cerveza\})}$$

Ejemplo cálculo de lift

T	ítems
1	Pan, leche
2	Pan, pañales, cerveza, huevos
	Leche, pañales, cerveza,
3	diario
4	Pan, leche, pañales, cerveza
5	Pan, leche, pañales, diario

{Leche, pañales} -> {Cerveza}

$$c(\{Leche, pa\~nales\} \rightarrow \{Cerveza\}) = 0,67$$

$$s(\{Cerveza\}) = \frac{3}{5} = 0.6$$

$$Lift = \frac{0.67}{0.6} \approx 1.117$$

La probabilidad aumenta de 0,6 a 0,67 cuando el cliente compra leche y pañales

Lift

La probabilidad del consecuente de la regla aumentó dado que el consumidor compró los ítems del antecedente

= 1

La probabilidad no se vio afectada, es decir, el consecuente no se ve influenciado por el antecedente

< 1

El antecedente tuvo un efecto negativo en la ocurrencia del consecuente, lo que baja su probabilidad

Algoritmo Apriori

Método aplicado en reglas de asociación

- Algoritmo A priori (Agrawal, 1994)
- Este algoritmo permite encontrar reglas de asociación de manera automática desde los datos.
- Algoritmo capaz de encontrar reglas de asociación que cumplan con un mínimo valor de soporte y confianza

Algoritmo

- Se calcula el soporte de cada ítem individual, y se determinan los 1itemsets frecuentes.
- 2. En cada paso subsecuente, los itemsets frecuentes generados en los pasos anteriores se utilizan para generar los nuevos itemsets (itemsets candidatos).
- 3. Se calcula el soporte de cada itemset candidato y se determinan los itemsets frecuentes.
- El proceso continúa hasta que no pueden ser encontrados nuevos itemsets frecuentes

Encontrando Itemsets

Una idea es obtener todos los itemsets posibles encontrando junto a su frecuencia

Ejemplo: Si se quieren combinar 5 items A,B,C,D y E, esto se podría representar vizualizándolo en un lattice de itemsets

Encontrando Itemsets

Total de combinaciones 25 menos el item vacío = 32

Encontrando Itemsets

Ejemplo:

Combinación de 3 productos.

En general 2ⁿ-1

$$2^{3}-1=7$$

Encontrando Itemsets PROBLEMA

¿Qué pasa cuando n es grande? 2ⁿ se convierte en un valor muuuuy grande

Ejemplo:

1000 productos de un supermercado

Solución: principio de Monotonicidad

Ayuda a reducir la cantidad de itemsets posibles a considerar dentro de nuestro set de datos

Si un itemset es frecuente, entonces todos los subgrupos de este itemset también son frecuentes.

Ejemplo: si el itemset frecuente es {pescado, mayonesa, bebida} entonces el itemset mayonesa, bebida también será frecuente

Solución: principio de Monotonicidad (análogamente)

Ejemplo:

Si el itemset (queso, galleta) no es frecuente, entonces si agregamos el item mayonesa a este itemset, quedando (queso, galleta, mayonesa), la frecuencia empezará a bajar

Ejemplo principio de Monotonicidad

Т	ítems
1	leche, manzana, naranja, pera
2	leche, naranja, pera
3	manzana, naranja, pera
4	naranja, pera, limon, plátano

$$s(\{Pera, Manzana\}) = \frac{2}{4}$$

Si el umbral estuviese dado por:

$$umbral\ minimo = \frac{3}{4}$$

Ejemplo principio de Monotonicidad

Т	ítems
1	leche, manzana, naranja, pera
2	leche, naranja, pera
3	manzana, naranja, pera
4	naranja, pera, limon, plátano

$$s(\{Pera, Manzana, leche\}) = \frac{1}{4}$$

Si el umbral estuviese dado por:

$$umbral\ minimo = \frac{3}{4}$$

Pera, Manzana no superaba el umbral, por lo que si se agrega leche, tampoco lo superará

principio de Monotonicidad

Generación de itemset candidatos

Inicio del algoritmo

El algoritmo primero obtiene los itemsets frecuentes y después calcula las reglas de asociación a partir de ellos.

Ejemplo:

Usemos el mismo set de datos que hemos estado viendo

T	ítems
1	leche, manzana, naranja, pera
2	naranja, pera
3	manzana, naranja, pera
4	naranja, pera, limon, plátano

Asumir que todos los productos son candidatos a ser item frecuente de manera individual

Limón Manzana Naranja Plátano Leche Pera

Eliminar los itemsets que no superen un umbral determinado

$$umbral\ minimo = \frac{2}{4}$$

Limón Manzana Naranja Plátano Leche Pera

Eliminar los itemsets que no superen un umbral determinado

$$umbral\ m\'inimo = \frac{2}{4}$$

T	ítems
1	leche, manzana, naranja, pera
2	naranja, pera
3	manzana, naranja, pera
4	naranja, pera, limon, plátano

1/4 Limón

2/4 Manzana 🔽

4/4 Naranja **V** 1/4

Plátano

1/4 Leche

4/4 Pera 🔽

Ahora se deben generar los itemset que tengan 2 items tomando sólo en consideración los items seleccionados anteriormente

Т	ítems
1	leche, manzana, naranja, pera
2	naranja, pera
3	manzana, naranja, pera
4	naranja, pera, limon, plátano

2/4 Manzana 4/4 4/4 Naranja 4/4 Pera 4/4

Manzana

Naranja

Pera

Manzana Naranja

Manzana Pera

Naranja Pera

Candidatos a pasar a la siguiente ronda

Eliminar los itemsets que no superen un umbral determinado

$$umbral\ m\'inimo = \frac{2}{4}$$

Т	ítems
1	leche, manzana, naranja, pera
2	naranja, pera
3	manzana, naranja, pera
4	naranja, pera, limon, plátano

Manzana Naranja

Manzana Pera

Naranja Pera

Eliminar los itemsets que no superen un umbral determinado

$$umbral\ m\'inimo = \frac{2}{4}$$

Т	ítems
1	leche, manzana, naranja, pera
2	naranja, pera
3	manzana, naranja, pera
4	naranja, pera, limon, plátano

Manzana

Naranja

Manzana Pera

Naranja
Pera

Manzana Naranja

Manzana Pera

Manzana Naranja Pera

Naranja Pera

Candidatos a pasar a la siguiente ronda

Eliminar los itemsets que no superen un umbral determinado

$$umbral\ m\'inimo = \frac{2}{4}$$

T	ítems
1	leche, manzana, naranja, pera
2	naranja, pera
3	manzana, naranja, pera
4	naranja, pera, limon, plátano

Manzana Naranja Pera

Eliminar los itemsets que no superen un umbral determinado

$$umbral\ m\'inimo = \frac{2}{4}$$

Т	ítems
1	leche, manzana, naranja, pera
2	naranja, pera
3	manzana, naranja, pera
4	naranja, pera, limon, plátano

Manzana
^{2/4} Naranja
Pera

Manzana Naranja Pera

No hay más elementos qué combinar por lo que el algoritmo se detiene en la búsqueda de itemset candidatos

En general

Itemsets de tamaño 1

Itemsets de tamaño 2

Itemsets de tamaño 3

Manzana Naranja

Manzana

Naranja

Pera

Manzana Pera

Manzana Naranja Pera

Itemsets de tamaño K

Itemsets de tamaño K+1

Naranja Pera

Regla

Definir un orden lexicográfico (arbitrario) entre todos los productos que estén en el set de datos de transacciones.

Ejemplo:

r	naranja	pera	platano	limón	pan	manzana	guinda	leche
---	---------	------	---------	-------	-----	---------	--------	-------

leche	limón	manzana	pera	pan	naranja	plátano	guinda
1	2	3	4	5	6	7	8

Primero se deben ordenar usando el criterio arbitrario inicial Itemset A

manzana naranja pera	manzana	pera	naranja
----------------------	---------	------	---------

Itemset B

plátano	manzana	pera		mazana	pera	plátano
---------	---------	------	--	--------	------	---------

Se debe comparar item por item, de izquieda a derecha que los elementos sean iguales, menos en la última posición

Itemset A manzana pera naranja mazana pera plátano T

El la última posición se debe tener en consideración el orden arbitrario inicial

Resumen de itemsets combinables

- Dos itemsets son combinables si es que todos sus productos son iguales menos el último y, además,
- El último producto del itemset A debe ser menor que el último producto del itemset B, según el orden lexicográfico.

Combinación de 2 itemsets

- La combinación de 2 itemsets se realiza a través de la operación join (M)
- Ejemplo

¿Cómo combinar M itemsets?

- Se debe realizar el Join del conjunto de itemsets consigo mismo.
- Se chequean todos los pares posibles y se combinan aquellos que cumplen con la condición de combinación.

Revisemos (I₁) con si mismo

$$\{\{|l_1\}, \{|l_2\}, \{|l_3\}, \dots, \{|l_M\}\}\}$$

$$\{\{|l_1\}, \{|l_2\}, \{|l_3\}, \dots, \{|l_M\}\}\}$$

$$\{\{|l_1\}, \{|l_2\}, \{|l_3\}, \dots, \{|l_M\}\}\}$$

$$\mathbf{?}$$

 {I₁} con es combinable consigo mismo porque no cumple con la condición que el último elemento sea diferente

$$\{\{|_1\}, \{|_2\}, \{|_3\}, \dots, \{|_M\}\}$$

$$\{\{|_1\}, \{|_2\}, \{|_3\}, \dots, \{|_M\}\}$$

$$\{\{|_1\}, \{|_2\}, \{|_3\}, \dots, \{|_M\}\}$$

El siguiente paso es comparar el segundo par posible $\{l_1\}$ con $\{l_2\}$ y evaluar si son combinables o no.

$$\{\{|l_1\}, \{|l_2\}, \{|l_3\}, \dots, \{|l_M\}\}\}$$

$$\{\{|l_1\}, \{|l_2\}, \{|l_3\}, \dots, \{|l_M\}\}\}$$

 $\{\{|1_1\}, \{|2_1\}, \{|3_2\}, \dots, \{|M_M\}\}\}$

 Proceso largo e iterativo que prueba todos los posibles pares de itemets que cumplan con la condición

$$\{\{l_1\}, \{l_2\}, \{l_3\}, \dots, \{l_M\}\}\$$
 $\{\{l_1\}, \{l_2\}, \{l_3\}, \dots, \{l_M\}\}\}$

Ejemplo algoritmo Apriori

Conisderemos el siguiente set de datos de transacciones

T	ítems
1	11 , 12 , 14
2	12 , 14 , 15
3	I1 , I3
4	11 , 12 , 14
5	11 , 12 , 13
6	12 , 14
7	I1 , I3
8	11,12,14,15
9	11 , 12 , 13

Un umbral mínimo de 2/9

1) Generar el conjunto de itemsets candidatos de 1 item

$$C_1 = \{11, 12, 13, 14, 15\}$$

2) Evaluar el soporte de cada candidato

En este paso, se eliminarán los que no cumplen con el mínimo requerido

Т	ítems
1	11 , 12 , 14
2	12 , 14 , 15
3	11,13
4	11,12,14
5	11,12,13
6	12,14
7	I1 , I3
8	11,12,14,15
9	11 , 12 , 13

$$s(\{I1\}) = \frac{7}{9}$$

$$s(\{I2\}) = \frac{7}{9} \checkmark$$

$$s(\{I3\}) = \frac{4}{9} \checkmark$$

$$s(\{I4\}) = \frac{5}{9} \checkmark$$

$$s(\{I5\}) = \frac{2}{9} \checkmark$$

Un umbral mínimo de 2/9

3) Se forma así el conjunto de itemset frecuentes de tamaño 1

$$L_1 = \{11, 12, 13, 14, 15\}$$

4) Se generan los nuevos itemsets de tamaño 2 a partir de L₁

 $L_1 = \{11, 12, 13, 14, 15\}$ $L_1 = \{11, 12, 13, 14, 15\}$

$$C_2 = \{\{11, 12\}, \{11, 13\}, \{11, 14\}, \{11, 15\}, \{12, 13\}, \{12, 14\}, \{12, 15\}, \{13, 14\}, \{13, 15\}, \{14, 15\}\}$$

Т	ítems
1	11 , 12 , 14
2	12 , 14 , 15
3	I1 , I3
4	11 , 12 , 14
5	11 , 12 , 13
6	12 , 14
7	I1 , I3
8	11,12,14,15
9	11 , 12 , 13

/(I 1 I 2))	5	
$s(\{I1,I2\}) =$	9	

$$s(\{I2,I4\}) = \frac{5}{9}$$

$$s(\{I1,I3\}) = \frac{4}{9}$$

$$s(\{I2,I5\}) = \frac{2}{9}$$

$$s(\{I1,I4\}) = \frac{3}{9}$$

$$s(\{I3,I4\}) = \frac{0}{9} \mathbf{X}$$

$$s(\{I1,I5\}) = \frac{1}{9} \times$$

$$s(\{I3,I5\}) = \frac{0}{9X}$$

$$s(\{I2,I3\}) = \frac{2}{9}$$

$$s(\{I4,I5\}) = \frac{2}{9}$$

5) Se forma así el conjunto de itemset frecuentes de tamaño 2 en la segunda iteración

$$L_2 = \{\{11, 12\}, \{11, 13\}, \{11, 14\}, \{12, 13\}, \{12, 14\}, \{12, 15\}, \{14, 15\}\}\}$$

6) Se generan los nuevos itemsets de tamaño 3 a partir de L_2

 $L_2 = \{\{11, 12\}, \{11, 13\}, \{11, 14\}, \}$ $\{12, 13\}, \{12, 14\}, \{12, 15\}, \{14, 15\}\}$ $\{12, 13\}, \{12, 14\}, \{12, 15\}, \{14, 15\}\}$

 $C_3 = \{\{11, 12, 13\}, \{11, 12, 14\}, \{11, 13, 14\}, \{12, 13, 14\}, \{12, 13, 15\}, \{12, 14, 15\}\}$

T	ítems
1	11,12,14
2	12 , 14 , 15
3	I1 , I3
4	11,12,14
5	11 , 12 , 13
6	12 , 14
7	I1 , I3
8	11,12,14,15
9	11 , 12 , 13

$$s(\{I1,I2,I3\}) = \frac{2}{9}$$
 $s(\{I2,I3,I4\}) = \frac{0}{9}$ X

$$s(\{I2,I3,I4\}) = \frac{0}{9}$$

$$s(\{I1,I2,I4\}) = \frac{3}{9}$$
 $s(\{I2,I3,I5\}) = \frac{0}{9}$

$$s(\{I2,I3,I5\}) = \frac{0}{9}$$

$$s(\{I1,I3,I4\}) = \frac{0}{9} \times s(\{I2,I4,I5\}) = \frac{2}{6}$$

$$s(\{I2,I4,I5\}) = \frac{2}{6\sqrt{2}}$$

7) Se forma así el conjunto de itemset frecuentes de tamaño 3 en la tercera iteración

$$L_3 = \{\{11, 12, 13\}, \{11, 12, 14\}, \{12, 14, 15\}\}$$

8) Se generan los nuevos itemsets de tamaño 4 a partir de L_3

$$L_3 = \{\{11, 12, 13\}, \{11, 12, 14\}, \quad \bowtie \quad L_3 = \{\{11, 12, 13\}, \{11, 12, 14\}, \{12, 14, 15\}\}$$

$$C_4 = \{ \{11, 12, 13, 14\} \}$$

Т	ítems
1	11,12,14
2	12 , 14 , 15
3	I1 , I3
4	11,12,14
5	11 , 12 , 13
6	12 , 14
7	I1 , I3
8	11,12,14,15
9	11 , 12 , 13

$$s(\{I1,I2,I3,I4\}) = \frac{0}{9}$$
 X

9) No se cumple con el criterio de soporte por lo que tenemos el conjunto vacío

$$L_4 = \{ \}$$

10) Al no haber candidatos, se detienen las iteraciones

Finalmente los itemsets frecuentes que quedan, y que tienen soporte mayor al umbral 2/9 son:

$$L_{1} = \{11, 12, 13, 14, 15\}$$

$$L_{2} = \{\{11, 12\}, \{11, 13\}, \{11, 14\}, \{12, 13\}, \{12, 14\}, \{12, 15\}, \{14, 15\}\}\}$$

$$L_{3} = \{\{11, 12, 13\}, \{11, 12, 14\}, \{12, 14, 15\}\}$$

REFERENCIAS

- ▶ Han, J., Pei, J., & Kamber, M. (2011). *Data mining: concepts and techniques*. Elsevier.
- Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). *Data Mining: Practical machine learning tools and techniques*. Morgan Kaufmann.
- Material del curso Minería de Datos IIC25433 profesor Karim Pichara
- ▶ Hand, D. J. (2006). Data Mining. *Encyclopedia of Environmetrics*, 2.