

Welcome

to Advanced Topics in Algorithms

Results ATA - Exercises 1

###: Jonas Janzen, Lisa Gebauer

■NICE: Niklas Büscher, Sean Nagel

###: Sai Srujana Kadambari

###: Mohamed Kassabji

###: Maryam Fayyaz, Sai Srujana Kadambari, Muhammad Hassan Shamsi

###: Baboucarr Jarbo

Next deadline: 10/21/2022

Subject: ATA E2 [TEAMNAME]

Only one PDF

TH VOWL

Overview: Advanced Topics in Algorithms

THVOWL

Overview: Practical Part

Background: Cyber-physical Systems (CPS)

Cyber-physical Systems (CPS) are networks of software and hardware components controlling physical processes, i.e. time-dependent and concurrent processes.

Production Systems

Self-driving car

Robotics

Smartphone

Use Case: Production Systems

6

Conveyor

Motor

Time

Time	Motor		
09:59	0		
10:00	1	.	
		:	
10:05	1		
10:06	0		

Scope of today

Time	Energy		
09:59	0		
10:00	21.16		
		:	
10:05	126.97		
10:06	0		

2022 | digital

Energy

Use Case: Smartphone

Smartphone

- **■**What sensors have a smartphone?
- ■What information can we extract?

Synthetic Data 1/2

Sphere

$$f_{\scriptscriptstyle S}(x) = \sum_{i=1}^n x_i^2$$

Griewank

$$f_g(x) = 1 - \prod_{i=1}^n \cos\left(\frac{x_i}{\sqrt{(i)}}\right) + \sum_{i=1}^n \frac{x_i^2}{4000}$$

Synthetic Data 2/2

9

Ackley

$$f_{\rm a}(x) = 20 - 20 * \exp\left[-0.2\sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n}}\right] + \exp(1) - \exp\left[\frac{\sum_{i=1}^{n} \cos(2\pi x_i)}{n}\right]$$

Rastrigin

$$f_{\Gamma}(x) = 10 \cdot \left[n - \sum_{i=1}^{n} \cos(2\pi x_i) \right] + \sum_{i=1}^{n} x_i^2$$

Latin Hypercube Sampling

It is among the most popular sampling techniques in computer experiments thanks to its simplicity and projection properties with high-dimensional problems.

Jin, R. and Chen, W. and Sudjianto, A. (2005), "An efficient algorithm for constructing optimal design of computer experiments." Journal of Statistical Planning and Inference, 134:268-287.

https://smt.readthedocs.io/en/latest/_src_docs/sampling_methods/lhs.html

• • •

Symbolic Regression 1/3

Symbolic Regression 2/3

Crossover

Mutation

Selected Individual

Evaluate

e.g. mean squared error

Symbolic Regression 3/3

Regression with Polynomial Features: Step 1

TH TOWL

Regression with Polynomial Features: Step 2

 $0.00609567x_0^2 + 0.8595$

TH VOWL

Regression with Polynomial Features: Step 14

$$2.0 \cdot 10^{-7} x_0^{10} - 2.167 \cdot 10^{-5} x_0^8$$

$$+ 0.00131727 x_0^6 - 4.0 \cdot 10^{-8} x_0^5$$

$$- 0.04085166 x_0^4 + 1.78 \cdot 10^{-6} x_0^3$$

$$+ 0.49669338 x_0^2 - 3.354 \cdot 10^{-5} x_0 + 0.0025$$

TH VOWL

Regression with Polynomial Features: Step 18

$$\begin{array}{l} -1.4\cdot 10^{-7}x_0^{12} + 6.5\cdot 10^{-6}x_0^{10} + 2.0\cdot 10^{-8}x_0^9 \\ -0.0001587x_0^8 - 4.2\cdot 10^{-7}x_0^7 + 0.00150314x_0^6 \\ +3.51\cdot 10^{-6}x_0^5 + 0.00022478x_0^4 + 6.6\cdot 10^{-7}x_0^3 \\ +1.824\cdot 10^{-5}x_0^2 + 1.589\cdot 10^{-5}x_0 + 0.9302 \end{array}$$

Thank you!