We claim:

5

20

25

30

35

- 1. A monocyclopentadienyl complex which comprises the structural feature of the formula $(Cp)(-Z-A)_mM$ (I), where the variables have the following meanings:
 - Cp is a cyclopentadienyl system,
 - Z is a bridge between A and Cp of the formula,

10 R^{1B}
----L^{1B}
-----R^{2B}

15 where

L^{1B} are each, independently of one another, carbon or silicon,

R¹⁸ is C₂-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{3B}₃, where the organic radical R^{1B} may also be substituted by halogens and R^{1B} and A may also be joined to form a five- or six-membered ring,

 R^{2B} is hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{3B}_{3} , where the organic radical R^{2B} may also be substituted by halogens and R^{2B} and A may also be joined to form a five- or six-membered ring,

 R^{3B} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{3B} may also be joined to form a five- or six-membered ring,

- A is an unsubstituted, substituted or fused, heteroaromatic ring system,
- M is a metal selected from the group consisting of titanium in the oxidation state 3, vanadium, chromium, molybdenum and tungsten and
- 40 m is 1, 2 or 3.

10

15

20

25

30

40

- 2. A monocyclopentadienyl complex as claimed in claim 1 having the formula (Cp)(-Z-A)_mMX_k (VI), where the variables have the following meanings:
 - Cp is a cyclopentadienyl system,

Z is a bridge between A and Cp of the formula,

where

L¹⁸ are each, independently of one another, carbon or silicon,

R^{1B} is C₂-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{3B}₃, where the organic radical R^{1B} may also be substituted by halogens and R^{1B} and A may also be joined to form a five- or six-membered ring,

is hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR³⁸₃, where the organic radical R²⁸ may also be substituted by halogens and R²⁸ and A may also be joined to form a five- or six-membered ring,

 R^{3B} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{3B} may also be joined to form a five- or six-membered ring,

- A is an unsubstituted, substituted or fused, heteroaromatic ring system,
- M is a metal selected from the group consisting of titanium in the oxidation state 3, vanadium, chromium, molybdenum and tungsten,
 - m is 1, 2 or 3,

10

15

25

- X are each, independently of one another, fluorine, chlorine, bromine, iodine, hydrogen, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR¹R², OR¹, SR¹, SO₃R¹, OC(O)R¹, CN, SCN, β-diketonate, CO, BF₄, PF₆ or a bulky noncoordinating anion,
- R¹-R² are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR³₃, where the organic radicals R¹-R² may also be substituted by halogens and two radicals R¹-R² may also be joined to form a five- or six-membered ring.
- R³ are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₅-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R³ may also be joined to form a five- or six-membered ring and
- k is 1, 2, or 3.
- 20 3. A monocyclopentadienyl complex as claimed in claim 1 or 2, wherein the cyclopentadienyl system Cp has the formula (II):

$$R^{1A} \xrightarrow{E^{1A}} E^{2A}$$

$$R^{5A} \xrightarrow{E^{5A}} E^{5A} \xrightarrow{E^{4A}} R^{3A}$$

$$R^{4A}$$

where the variables have the following meanings:

 $E^{1A}-E^{5A}$ are each carbon or not more than one E^{1A} to E^{5A} is phosphorus,

are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}₂, N(SiR^{6A}₃)₂, OR^{6A}, OSiR^{6A}₃, SiR^{6A}₃, BR^{6A}₂, where the organic radicals R^{1A}-R^{5A} may also be substituted by halogens and two vicinal radicals R^{1A}-R^{5A} may also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A}-R^{5A} are joined to form a heterocycle which contains at least one atom

from the group consisting of N, P, O and S, with 1, 2 or 3 substituents $R^{1A}-R^{5A}$ each being a -Z-A group and

R^{6A}

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or six-membered ring.

4. A monocyclopentadienyl complex as claimed in any of claims 1 to 3, wherein the cyclopentadienyl system Cp together with -Z-A has the formula (IV):

$$A \longrightarrow Z \longrightarrow E^{5A} \longrightarrow E^{2A} \longrightarrow E^{3A} \longrightarrow E^$$

where the variables have the following meanings:

20

15

5

_1A _5A

are each carbon or not more than one E^{1A} to E^{5A} is phosphorus,

•

are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}₂, N(SiR^{6A}₃)₂, OR^{6A}, OSiR^{6A}₃, SiR^{6A}₃, where the organic radicals R^{1A}-R^{4A} may also be substituted by halogens and two vicinal radicals R^{1A}-R^{4A} may also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A}-R^{4A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S,

30

25

R^{6A}

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or six-membered ring,

35

A is an unsubstituted, substituted or fused, heteroaromatic ring system,

Z

is a bridge between A and Cp of the formula,

.where

R^{1B}

L^{1B} are each, independently of one another, carbon or silicon,

10

is C_2 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{3B}_{3} , where the organic radical R^{1B} may also be substituted by halogens and R^{1B} and A may also be joined to form a five- or six-membered ring,

15

is hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{3B}_{3} , where the organic radical R^{2B} may also be substituted by halogens and R^{2B} and A may also be joined to form a five- or six-membered ring,

20

 R^{3B} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{3B} may also be joined to form a five- or six-membered ring.

25

5. A monocyclopentadienyl complex as claimed in any of claims 1 to 4, wherein A has the formula (III):

30

$$\begin{array}{c|c}
R_{p}^{2C} \\
R_{p}^{1c} & E^{2c} \\
E & E^{3c} \\
N & E^{4c}
\end{array}$$
(III)

35

where E^{1C}-E^{4C} are each carbon or nitrogen,

R^{1C}-R^{4C}

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}₃, where the

organic radicals R^{1C} - R^{4C} may also be substituted by halogens or nitrogen or further C_1 - C_{20} -alkyl groups, C_2 - C_{20} -alkenyl groups, C_6 - C_{20} -aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}_3 and two vicinal radicals R^{1C} - R^{4C} or R^{1C} and Z may also be joined to form a five- or six-membered ring,

R^{5C}

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{5C} may also be joined to form a five- or six-membered ring and

10

p is 0 when E^{1C} - E^{4C} is nitrogen and is 1 when E^{1C} - E^{4C} is carbon.

- 15 6. A monocyclopentadienyl complex as claimed in any of claims 1 to 5, wherein L^{1B} is carbon.
 - 7. A monocyclopentadienyl complex as claimed in any of claims 1 to 6, wherein Z is $-CH(C_6H_6)$.

20

- 8. A catalyst system for olefin polymerization comprising
 - A) at least one monocyclopentadienyl complex as claimed in any of claims 1 to 7,
- 25 B) optionally an organic or inorganic support,
 - · C) optionally one or more activating compounds,
 - D) optionally one or more catalysts suitable for olefin polymerization and

30

- e) optionally one or more metal compounds containing a metal of group 1, 2 or 13 of the Periodic Table.
- A prepolymerized catalyst system comprising a catalyst system as claimed in claim 8 and one or more linear C₂-C₁₀-1-alkenes polymerized onto it in a mass ratio of from 1:0.1 to 1:1 000, based on the catalyst system.
 - 10. The use of a catalyst system as claimed in claim 8 or 9 for the polymerization or copolymerization of olefins.

- 11. A process for preparing polyolefins by polymerization or copolymerization of olefins in the presence of a catalyst system as claimed in claim 8 or 9.
- 12. A process for preparing cyclopentadienyl system anions of the formula (VII),

$$A \xrightarrow{R^{4B}} R^{1A}$$

$$R^{4B}$$

$$R^{3A}$$

$$R^{3A}$$

$$R^{3A}$$

10

where the variables have the following meanings:

15

R^{1A}-R^{4A} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}₂, N(SiR^{6A}₃)₂, OR^{6A}, OSiR^{6A}₃, SiR^{6A}₃ where the organic radicals R^{1A}-R^{4A} may also be substituted by halogens and two vicinal radicals R^{1A}-R^{4A} may also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A}-R^{4A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S,

20

are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{SA} may also be joined to form a five- or six-membered ring,

25

A is an unsubstituted, substituted or fused, heteroaromatic ring system,

30

are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR³⁸₃, where the organic radicals R⁴⁸ may also be substituted by halogens and two geminal or vicinal radicals R⁴⁸ may also be joined to form a five- or six-membered ring and

35

R^{3B} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₅-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{3B} may also be joined to form a five- or six-membered ring,

which comprises the step a) or a'), where,

in step a), an A anion is reacted with a fulvene of the formula (VIIIa)

$$R^{4B}$$
 R^{4A}
 R^{3A}
 R^{4A}
 R^{4A}
 R^{4A}
 R^{4B}

or,

in step a'), an organometallic compound R⁴⁸M⁸X⁸_b where

10 M^B is a metal of group 1 or 2 of the Periodic Table of the Elements,

X^B is halogen, C₁—C₁₀—alkyl, alkoxy having from 1 to 20 carbon atoms in the alkyl radical and/or from 6 to 20 carbon atoms in the aryl radical, or R^{2B} and

15 b is 0 when M^B is a metal of group 1 of the Periodic Table of the Elements and is 1 when M^B is a metal of group 2 of the Periodic Table of the Elements,

is reacted with a fulvene of the formula (VIIIb):

13. A process for preparing cyclopentadiene systems of the formula (VIIa)

where the variables have the following meanings:

E^{5A}-E^{10A} are each carbon, where in each case four adjacent E^{6A}-E^{10A} form a conjugated diene system and the remaining E^{6A}-E^{10A} additionally bears a hydrogen atom,

10

15

20

25

30

35

40

R^{1A}-R^{4A} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}₂, N(SiR^{6A}₃)₂, OR^{6A}, OSiR^{6A}₃, SiR^{6A}₃, where the organic radicals R^{1A}-R^{4A} may also be substituted by halogens and two vicinal radicals R^{1A}-R^{4A} may also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A}-R^{4A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S,

 R^{6A} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or six-membered ring,

A is an unsubstituted, substituted or fused, heteroaromatic ring system,

 R^{2B} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{3B}_{3} , where the organic radicals R^{2B} may also be substituted by halogens and R^{2B} and A may also be joined to form a five-or six-membered ring,

R^{3B} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{3B} may also be joined to form a five- or six-membered ring,

which comprises the following step:

a") reaction of an A-CR^{2B}R^{2B}- anion with a cyclopentenone system of the formula (IX)