

CHI SQUARE TEST OF INDEPENDENCE/ASSOCIATION

RESEARCH PROBLEM

Sometimes we want to know about whether or not categories (attributes/groupings) of one variable "line up with" categories (attributes/groupings) of another.

- How the categories "overlap"
- How <u>categories</u> of one variable <u>vary by/are distributed along</u> <u>categories</u> of another.

RESEARCH PROBLEM

Are black individuals more likely to be Democrats?

Relationship between race (2 or more groups) and political party affiliation (2 or more groups)

Do cities (compared to suburbs or rural areas) experience more robberies?

Relationship between type of location (3 groups) and type of crimes (8 categories)

Are liberals or conservative more permissive in their childrearing?

Relationship between party affiliation (2 groups) and permissiveness (2 categories)

RESEARCH PROBLEM

Categories (Attributes/Groups):

THE ANSWER IS CHI (NOT CHAI)

Chi Square

• Examines relationship between (categories of) two nominal/ordinal variables

Examines <u>differences</u> between cell frequencies in two crosstabulations of the relationship between the two variables:

- one crosstabulation with actual <u>observed</u> frequencies
- one crosstabulation with frequencies <u>expected</u> if the variables are unrelated/independent of one another

Crosstabulation (Crosstab)/Contingency Table:

 Matrix/table that depicts distribution or frequencies in categories of one variable across categories of another variable

Observed frequencies (f_o)

• Cell frequencies actually observed from real data in a bivariate table (crosstab)

Expected frequencies (f_e)

• Cell frequencies that are <u>expected</u> to occur, if the two variables were statistically independent (e.g. no association/relationship b/w variables or the null hypothesis were true)

Observed frequencies (f_0)

Actual data

First Gen Status	Public Affairs	Sociology	Total
Firsts	691	1245	1936
Nonfirsts	1259	1425	2684
Total	1950	2670	4620

- What are the data if H_0 were true?
 - No association between categories of the variables

First Gen Status	Public Affairs	Sociology	Total
Firsts	ś	Ś	1936
Nonfirsts	ś	Ś	2684
Total	1950	2670	4620

- We calculate expected frequencies for each empty cell.
- Consider the overlapping categories (row and column) to which a given cell belongs
- For a cell, calculate the proportion of all cases that come from the total of just <u>one of those</u> <u>categories</u> (either row or column totals/marginals)
- Then, you adjust/weight the total number of cases that come from the other category by multiplying it by your calculated proportion. This would be expected value for that cell.
 - This uses multiplicative law for joint probabilities of independent events, b/c we're taking into account that H0 assumes that the variables are independent.

- Top left cell is for Public Affairs students who are firstgeneration.
- 1936 of all 4620 students are first-gen. 1936/4620 =
 .419 students were first-gen.
- If there was no relationship between the variables (independent), we would <u>expect</u> .419 of all Public Affairs students to be first-gen, and .419 of all Sociology students to be first-gen.
- For all Public Affairs students, we adjust PA total by the proportion, or, 1950 * .419 = 817.14. This would be expected value for that cell.

First Gen Status	Public Affairs	Sociology	Total
Firsts	ś	Ś	1936
Nonfirsts	ś	Ś	2684
Total	1950	2670	4620

$$f_e = \frac{\left(Column\ marginal\right)\left(Row\ marginal\right)}{N}$$

Expected frequencies (f_e)

• (1936/4620) * 1950 = 817.14

Row Marginal

First Gen Status	Public Affairs	Sociology	Total
Firsts	817.14		1936
Nonfirsts			2684
Total	1950	2670	4620
Column Marginal	$f_e = \frac{\left(Column \ margina ight)}{c}$	il)(Row marginal) N	N

- What are the data if H_0 were true?
 - No association between categories of the variables

First Gen Status	Men	Women	Total
Firsts	817.14	1118.86	1936
Nonfirsts	1132.86	1551.14	2684
Total	1950	2670	4620

$$f_e = \frac{\left(Column\ marginal\right)\left(Row\ marginal\right)}{N}$$

Actual data: Observed frequencies (f_0)

First Gen Status	Public Affairs	Sociology	Total
Firsts	691	1245	1936
Nonfirsts	1259	1425	2684
Total	1950	2670	4620

 H_0 true data: Expected frequencies (f_e)

First Gen Status	Public Affairs	Sociology	Total
Firsts	817.14	1118.86	1936
Nonfirsts	1132.86	1551.14	2684
Total	1950	2670	4620

CHI-SQUARE

Chi Square Test of Independence (X^2)

- Examines relationship between two nominal/ordinal variables
 - Tests the independence of (absence of association between categories of) two variables

CHI-SQUARE (RESEARCH QUESTION)

Is variation in X related to variation in Y?

• How is variation in the categories of X associated with variation in the categories of Y?

CHI SQUARE (VARIABLE TYPES)

IV: nominal, ordinal (e.g. categorical/discrete)

Grouping variable

DV: nominal, ordinal (e.g. categorical/discrete)

Grouping variable

CHI SQUARE (ASSUMPTIONS)

- 1. Independence of Observations
- Groups are not related or dependent upon each other. Case can't be in more than one group.
 No ties between observations
- 2. Normality of Distribution
 - Distribution must be relatively normal
 - If 20% or more expected cell frequencies (f_e) are below n=5, you violate the assumption

CHI SQUARE (HYPOTHESES)

Null hypothesis (H₀)

- There is no relationship/no association between the two cross-tabulated variables, in the population, therefore the variables are statistically independent.
- There is no difference between the observed and expected frequencies for categories of the variables. Frequencies of dependent variable are expected to be the same across groups of the independent variable
 - H_0 : $f_e = f_0$

Research hypothesis (H₁)

- There is a relationship/an association between the two variables, in the population
- There is a difference between the observed and expected frequencies for categories of the variables.
 - H_1 : $f_e \neq f_o$

CALCULATING CHI SQUARE (X²)

Measures *size of difference* between observed and the expected frequencies

By calculating the difference for <u>each</u> cell

CALCULATING CHI SQUARE (X²)

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$

Where

 f_o = observed frequencies

 f_e = expected frequencies

$$f_e = \frac{\left(Column\ marginal\right)\left(Row\ marginal\right)}{N}$$

CALCULATING CHI SQUARE (X²): MAJOR AND FIRST-GEN STATUS

	Public Affairs		Socio		
First Gen Status	f _o	f _e	f _o	f _e	Total
Firsts	691	817.14	1245	1118.86	1936
Nonfirsts	1259	1132.86	1425	1551.14	2684
Total	1950		2670		4620

CALCULATING CHI SQUARE (X²): MAJOR AND FIRST-GEN STATUS

Cell	f ₀	f e	f_0 - f_e	$(f_0 - f_e)^2$	$(f_0-f_\mathrm{e})^2\ /\ f_\mathrm{e}$
PA/Firsts	691	817.14	-126.14	15911.2996	19.47
PA/Non-Firsts	1259	1132.86	126.14	15911.2996	14.04
Soc/Firsts	1245	1118.86	126.14	15911.2996	14.22
Soc/Non-Firsts	1425	1551.14	-126.14	15911.2996	10.26
Σ					$X^2 = 57.99$

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$

HYPOTHESIS TESTING WITH CHI SQUARE

Is the difference between observed expected frequencies "extremely" different from what is expected by chance/the null hypothesis?

X² TEST AND THE X² DISTRIBUTION

The X²-distribution has multiple curves

• Each curve based on <u>sample size</u> or <u>degrees of freedom</u>

$$df = (r - 1)(c - 1)$$

• Where \underline{r} is the number of rows in the crosstab and \underline{c} is the number of columns in the crosstab.

Distribution is one-sided (squaring gets us positive numbers), ranging from 0 to +∞

If the overall <u>difference</u> between the expected and observed frequencies <u>is</u> <u>extreme enough</u>

But what counts as extreme enough?

Similar to the *t*-Test:

- If $|t_{\text{obtained}}| \geq |t_{\text{critical}}|$, then...
 - Difference between mean of group 1 and mean of group 2 is so extreme that we can't blame it on sampling error, therefore... H₀ is probably not true, so...
 - $t_{\rm obtained}$ is in rejection region
 - Reject H₀
 - $\rho \leq \alpha$
 - Statistically significant difference

...And similar to the ANOVA F-test

- If $F_{\text{obtained}} \geq F_{\text{critical}}$, then...
 - Overall differences between group means is so extreme that we can't blame it on sampling error, therefore... H₀ is probably not true, so...
 - F_{obtained} is in rejection region
 - Reject H₀
 - $\rho \leq \alpha$
 - Statistically significant difference between group means

For the X^2 test:

- If X^2 _{obtained} $\geq X^2$ _{critical}, then...
 - Differences between observed and expected frequencies are so extreme that we can't blame it on sampling error, therefore... H₀ is probably not true, so...
 - X^2_{obtained} is in rejection region
 - Reject H₀
 - $\rho \leq \alpha$
 - Statistically significant relationship between the two variables

X^2 has multiple distributions, based df and α :

- Because of squaring differences, F will always be positive
 - Thus, distribution only has one-tail
- We must refer to a table (X^2 Table) to figure out what X^2 _{critical} is.
 - Your <u>α</u>
 - Usually $\alpha = .05$
 - Your <u>df</u>
 - df = (r-1)(c-1)
- Then, evaluate to see if $X^2_{\text{obtained}} \geq X^2_{\text{critical}}$

Hypothesis Testing:

- If $X^2_{\text{obtained}} \ge X^2_{\text{critical}}$, reject the null hypothesis
- If $X^2_{\text{obtained}} < X^2_{\text{critical}}$, fail to reject the null hypothesis

REPORTING CHI SQUARE

Report

- The test used
- If you reject or fail to reject the null hypothesis
- The variables used in the analysis
- The degrees of freedom, calculated value of the test, and p-value
 - $X^2(\underline{df}) = \underline{Chi\text{-square}_{obtained}}, \underline{p\text{-value}}$
- "Using the Chi Square test of independence, I reject/fail to reject the null hypothesis that there is no relationship between one variable and the other variable, in the population, $X^2(?) = ?$, p? .05"

CALCULATING CHI-SQUARE

In the example between major and firstgen status

•
$$X^2_{\text{obtained}} = 57.99$$

•
$$oten df = (2-1)(2-1) = 1$$

In our X^2 Table, we follow the df=1 row and the $\alpha=.050$ column, to see where they intersect.

•
$$X^2_{\text{critical}} = 3.84$$

• Because $X^2_{\text{obtained}} \ge X^2_{\text{critical}}$ we reject the null

First Gen Status	Public Affairs	Sociology	Total
Firsts	691	1245	1936
Nonfirsts	1259	1425	2684
Total	1950	2670	4620

Cell	f ₀	f _e	f ₀ - f _e	$(f_0 - f_e)^2$	$(f_0 - f_e)^2 / f_e$
PA/Firsts	691	817.14	-126.14	15911.2996	19.47
PA/Non-Firsts	1259	1132.86	126.14	15911.2996	14.04
Soc/Firsts	1245	1118.86	126.14	15911.2996	14.22
Soc/Non-Firsts	1425	1551.14	-126.14	15911.2996	10.26
Σ					$X^2 = 57.99$

REPORTING CHI SQUARE

Report

- The test used
- If you reject or fail to reject the null hypothesis
- The variables used in the analysis
- The degrees of freedom, calculated value of the test, and p-value
 - $X^2(\underline{df}) = \underline{Chi\text{-square}_{obtained}}, \underline{p\text{-value}}$
- "Using the Chi Square test of independence, <u>I reject</u> the null hypothesis that there is no relationship between <u>gender</u> and <u>first-gen status</u>, in the population, $X^2(\underline{1}) = 57.99$, p < .05"

EXAMPLE: POLITICAL ORIENTATION AND VIEWS OF BLM

Using the following cross-tab, hand calculate:

- X2
- degrees of freedom
- determine it's significance level
- Fully and completely report your findings (and whether you reject/fail to reject the null hypothesis

Views of BLM	Politica	Total	
	Liberals Conservatives		
Positive	47	5	52
Negative	3	35	38
Total	50	40	90