Tugas Mata Kuliah Analisa R Final Exam

Disusun oleh: Amila Hanifan Muslimah

Prodi Magister Epidemiologi Fakultas Kedokteran Universitas Padjadjaran 2023

Tugas

1. Menganalisis perbedaan dari Functional Ability pada pekan pertama (Bart1) berdasarkan grup intervensi (Group) dengan visualisasi boxplot. Membuat grafik boxplot dan menginterpretasi dan menyimpulkan hasilnya.

boxplot(stroke\$Bart1~stroke\$Group,xlab="Grup",ylab="Bart 1",col=c("red","blue","yellow"),main="Functional Ability pada Pekan Pertama (Bart 1)")

Functional Ability pada Pekan Pertama (Bart 1)

Grup F memiliki nilai Bart 1 yang lebih bervariasi, dengan range yang lebih lebar antara nilai minimum dan maksimum, dibandingkan grup E dan F.

2. Mencek normalitas data dari Functional Ability pekan pertama (Bart1) dengan uji statistik yang sesuai dan menginterpretasikannya.

#grafik normalitas qqnorm(stroke\$Bart1)

qqline(stroke\$Bart1)

#normality test :
shapiro.test(stroke\$Bart1)

Shapiro-Wilk normality test

data: stroke\$Bart1

W = 0.82449, p-value = 0.0007617

Berdasarkan uji normalitas Shapiro-Wilk hasil p value : 0.0007617 (< 0.05) sehingga data tidak berdistribusi normal

3. Menghitung perubahan Functional Ability dari pekan pertama (Bart1)sampai pekan terakhir (Bart8) dan membuatnya menjadi variable baru (Bart diff)

stroke\$Bart_diff<-stroke\$Bart8-stroke\$Bart1

4. Mencek normalitas data dari perubahan Functional Ability (Bart_diff) dari pekan pertama (Bart1)sampai pekan terakhir (Bart8) dengan uji statistik yang sesuai dan menginterpretasikannya.

#normality test

shapiro.test(stroke\$Bart_diff)

Shapiro-Wilk normality test

data: stroke\$Bart diff

W = 0.92817, p-value = 0.08875

Berdasarkan uji normalitas Shapiro-Wilk hasil p value : 0.08875 (> 0.05) sehingga data berdistribusi normal

5. Mencek kesamaan variance dari perubahan Functional Ability (Bart_diff) antara grup intervensi (Group) dengan uji statistic yang sesuai dan menginterpretasikannya

bartlett.test(stroke\$Bart diff, stroke\$Group)

Bartlett test of homogeneity of variances data: stroke\$Bart_diff and stroke\$Group
Bartlett's K-squared = 0.39433, df = 2, p-value = 0.8211

Data perubahan dari Functional Ability antara grup intervensi menunjukan kesamaan variance yang homogen

6. Memplot mean dan 95% Confidence Interval dari nilai perubahan Functional Ability (Bart_diff) berdasarkan grup intervensi (Group) dalam 1 grafik.

plotmeans(Bart_diff ~ Group, data = stroke, frame = FALSE, mean.labels = TRUE, connect = FALSE)

7. Melakukan uji anova untuk membandingkan rata-rata(mean) nilai perubahan Functional Ability (Bart_diff) antara 3 grup intervensi (Group) dan menginterpretasikannya.

summary(aov(Bart_diff~Group, data = stroke))

Df Sum Sq Mean Sq F value Pr(>F) Group 2 1252 626.0 1.461 0.255 Residuals 21 8997 428.4

Pada uji anova didaptkan hasil yang tidak signifikan untuk data mean nilai perubahan Functional Ablity antara 3 grup intervensi

8. Melakukan analisis model linear regresi dengan Functional Ability (Bartlet) sebagai outcome(y) dan explanatory variables meliputi: waktu(time/week), grup intervensi (group), dan interaksi waktu dan grup intervensi.

model1 <- lm(ability ~ as.numeric(time) + Group + as.numeric(time)*Group, data = stroke long)

9. Melakukan ulang Langkah no 8 tanpa variable interaksi di dalam model.

model2 <- lm(ability ~ as.numeric(time) + Group, data = stroke long)

10. Menghitung AIC model no 8 dan 9, serta menginterpretasikan perbandingan nilai AIC nya.

```
glance(model1): AIC 1721

# A tibble: 1 × 12

r.squ...¹ adj.r...² sigma stati...³ p.value df logLik AIC BIC devia...⁴ df.re...⁵ nobs

<dbl> <1721. 1744. 81709. 186 192

# ... with abbreviated variable names ¹r.squared, ²adj.r.squared, ³statistic, ⁴deviance,

# ⁵df.residual
```

```
glance(model2): AIC 1720
# A tibble: 1 × 12
r.squ...¹ adj.r...² sigma stati...³ p.value df logLik AIC BIC devia...⁴ df.re...⁵ nobs
<dbl> <int> <int>
1 0.249 0.237 21.0 20.8 1.08e-11 3 -855. 1720. 1736. 83016. 188 192
# ... with abbreviated variable names ¹r.squared, ²adj.r.squared, ³statistic, ⁴deviance,
# ⁵df.residual
```

AIC model 2 lebih kecil dari AIC model 1

11. Model no 8 dan 9, manakah yang terbaik? Pilih salah satu kemudian interpretasikan hasil dari analisisnya dari model yang dipilih(hubungan antara variable explanatory dengan outcome)

Memilih model no 9 karena lebih sesuai (fitted)

12. Melakukan analisis mixed model (random intercept) menggunakan package nlme. Functional Ability (Bartlet) sebagai outcome(y) dan explanatory variables meliputi: waktu(time/week), grup intervensi (group), dan Random intercept.

- 13. Melakukan ulang analisis dengan Functional Ability (Bartlet) sebagai outcome(y) dan explanatory variables meliputi: waktu(time/week), grup intervensi (group) dengan General Estimating Equation (GEE) dengan correlation structure:
 - 1. Exchangeable

```
gee exch <-
```

geeglm(ability~as.factor(Group)+as.numeric(time)+as.factor(Group)*as.numeric(time),family=gaussian,

data=stroke_long,id=as.factor(Subject),wave=as.numeric(time),corst="exchangea ble")

```
exch<-corCompSymm(form = ~ 1 | Subject)
gls.exch<-gls(ability~as.factor(Group)+as.numeric(time)+
as.factor(Group)*as.numeric(time), data=stroke_long,
correlation=exch)
```

Generalized least squares fit by REML

Model: ability ~ as.factor(Group) + as.numeric(time) + as.factor(Group) * as.numeric(time)

Data: stroke_long

summary(gls.exch)

AIC BIC logLik 1452.715 1478.521 -718.3573

Correlation Structure: Compound symmetry

Formula: ~1 | Subject Parameter estimate(s):

Rho 0.84671

Coefficients:

Value Std.Error t-value p-value

(Intercept) 29.821429 7.497378 3.977581 0.0001 as.factor(Group)F 3.348214 10.602894 0.315783 0.7525 as.factor(Group)G -0.022321 10.602894 -0.002105 0.9983 as.numeric(time) 6.324405 0.467228 13.536016 0.0000

as.factor(Group)F:as.numeric(time) -1.994048 0.660760 -3.017809 0.0029 as.factor(Group)G:as.numeric(time) -2.686012 0.660760 -4.065033 0.0001

Correlation:

(Intr) as.(G)F as.(G)G as.n() a.(G)F:

as.factor(Group)F -0.707

as.factor(Group)G -0.707 0.500

as.numeric(time) -0.280 0.198 0.198

as.factor(Group)F:as.numeric(time) 0.198 -0.280 -0.140 -0.707

as.factor(Group)G:as.numeric(time) 0.198 -0.140 -0.280 -0.707 0.500

```
Standardized residuals:
                       Med
       Min
                01
                                  Q3
                                         Max
   -2.1857469 -0.6199072 -0.2425206 0.6097030 2.9190912
   Residual standard error: 21.87467
   Degrees of freedom: 192 total; 186 residual
2. Auto regressive
   gee ar1 <-
   geeglm(ability~as.factor(Group)+as.numeric(time)+as.factor(Group)*as.numeric(
   time), family=gaussian,
   data=stroke long,id=as.factor(Subject),wave=as.numeric(time),corst="ar1")
   ar1 < -corAR1(form = \sim 1 \mid Subject)
   gls.ar1<-gls(ability~as.factor(Group)+as.numeric(time)+
            as.factor(Group)*as.numeric(time), data=stroke long,
           correlation=ar1)
   summary(gls.ar1)
   Generalized least squares fit by REML
    Model: ability ~ as.factor(Group) + as.numeric(time) + as.factor(Group) *
   as.numeric(time)
    Data: stroke long
               BIC logLik
       AIC
    1320.321 1346.127 -652.1607
   Correlation Structure: AR(1)
    Formula: ~1 | Subject
    Parameter estimate(s):
      Phi
   0.9495754
   Coefficients:
                         Value Std.Error t-value p-value
                           33.39312 7.937178 4.207178 0.0000
   (Intercept)
   as.factor(Group)F
                               -0.11518 11.224865 -0.010262 0.9918
   as.factor(Group)G
                               -6.22568 11.224865 -0.554632 0.5798
   as.numeric(time)
                               6.07484 0.843600 7.201091 0.0000
   as.factor(Group)F:as.numeric(time) -2.14085 1.193030 -1.794467 0.0744
   as.factor(Group)G:as.numeric(time) -2.23826 1.193030 -1.876112 0.0622
    Correlation:
                        (Intr) as.(G)F as.(G)G as.n() a.(G)F:
                               -0.707
   as.factor(Group)F
   as.factor(Group)G
                               -0.707 0.500
   as.numeric(time)
                              -0.478 0.338 0.338
```

```
as.factor(Group)F:as.numeric(time) 0.338 -0.478 -0.239 -0.707
   as.factor(Group)G:as.numeric(time) 0.338 -0.239 -0.478 -0.707 0.500
   Standardized residuals:
       Min
                01
                       Med
                                 Q3
                                         Max
   -2.1430431 -0.5861291 -0.2259572 0.6532219 2.8251592
   Residual standard error: 21.42606
   Degrees of freedom: 192 total; 186 residual
3. Unstructure
   gee un <-
   geeglm(ability~as.factor(Group)+as.numeric(time)+as.factor(Group)*as.numeric(
   time), family=gaussian,
   data=stroke long,id=as.factor(Subject),wave=as.numeric(time),corst="unstructur
   ed")
   un<-corSymm(form = \sim 1 | Subject)
   gls.un<-gls(ability~as.factor(Group)+as.numeric(time)+
           as.factor(Group)*as.numeric(time), data=stroke long,
          correlation=un)
   summary(gls.un)
   Generalized least squares fit by REML
    Model: ability ~ as.factor(Group) + as.numeric(time) + as.factor(Group) *
   as.numeric(time)
    Data: stroke long
       AIC
             BIC logLik
    1338.118 1451.019 -634.0591
   Correlation Structure: General
    Formula: ~1 | Subject
    Parameter estimate(s):
    Correlation:
    1 2 3 4 5 6 7
   2 0.931
   3 0.868 0.931
   4 0.789 0.875 0.952
   5 0.708 0.819 0.892 0.913
   6 0.576 0.731 0.815 0.855 0.965
   7 0.426 0.606 0.693 0.782 0.886 0.945
   8 0.319 0.522 0.609 0.707 0.840 0.908 0.975
   Coefficients:
                          Value Std.Error t-value p-value
   (Intercept)
                            35.71491 7.944761 4.495404 0.0000
```

```
as.factor(Group)F -5.51048 11.235588 -0.490449 0.6244
as.factor(Group)G -11.30440 11.235588 -1.006125 0.3157
as.numeric(time) 6.69319 1.166119 5.739712 0.0000
as.factor(Group)F:as.numeric(time) -3.23684 1.649141 -1.962742 0.0512
as.factor(Group)G:as.numeric(time) -3.85733 1.649141 -2.338991 0.0204
```

Correlation:

(Intr) as.(G)F as.(G)G as.n() a.(G)F:

as.factor(Group)F -0.707

as.factor(Group)G -0.707 0.500

as.numeric(time) -0.760 0.537 0.537

as.factor(Group)F:as.numeric(time) 0.537 -0.760 -0.380 -0.707

as.factor(Group)G:as.numeric(time) 0.537 -0.380 -0.760 -0.707 0.500

Standardized residuals:

Min Q1 Med Q3 Max -2.47104067 -0.50835339 -0.03544122 0.82609510 2.70723745

Residual standard error: 21.27331

Degrees of freedom: 192 total; 186 residual

14. Mengingat GEE tidak dapat mengeluarkan AIC, dengan menggunakan statement *gls*, menghitung AIC dari model GLS dengan ketiga struktur korelasi di atas (Exchangeable, Auto regressive, dan Unstructure)

aic = AIC(gls.exch,gls.ar1,gls.un)

^	df [‡]	AIC ‡
gls.exch	8	1452.715
gls.ar1	8	1320.321
gls.un	35	1338.118

15. Membuat tabel untuk Membandingkan AIC dari model dengan korelasi struktur Exchangeable, Auto regressive, dan Unstructure, dengan AIC linear regresi model (Model dari instruksi no 9). Interpretasikan dan simpulkan.

Model	AIC
Exchangeable	1452
Auto regressive	1320
Unstructure	1338

AIC untuk model auto regressive memiliki nilai yang paling kecil