# Enhanced Processor Defence Against Physical and Software Threats by Securing DIFT Against Fault Injection Attacks

PhD Dissertation Defense

#### William PENSEC

Université Bretagne Sud, UMR 6285, Lab-STICC, Lorient, France

December 19, 2024







William PENSEC (Lab-STICC)
PhD Defense - Lorient - December 19, 2024

#### Context: IoT and Embedded Systems

- Rapid expansion of connected objects.
- Objects with physical proximity.
- Several fault injection attack vulnerabilities revealed



#### Context: IoT and Embedded Systems

- Rapid expansion of connected objects.
- Objects with physical proximity.
- Several fault injection attack vulnerabilities revealed



## Motivations

# Objectives

- D-RI5CY Vulnerability Assessment
- Proposed protections against FIAs
- Experimental results
- Conclusion and Perspectives
  - Conclusion
  - Perspectives

- D-RI5CY Vulnerability Assessment
- Proposed protections against FIAs

- 3 Experimental results
- 4 Conclusion and Perspectives

## D-RI5CY



- D-RI5CY Vulnerability Assessment
- Proposed protections against FIAs

- 3 Experimental results
- 4 Conclusion and Perspectives

## Introduction

William PENSEC (Lab-STICC)

## Parity codes

## Simple Parity

## Hamming Code

## **SECDED**

- D-RI5CY Vulnerability Assessment
- Proposed protections against FIAs

- 3 Experimental results
- 4 Conclusion and Perspectives

- 1 D-RI5CY Vulnerability Assessment
- Proposed protections against FIAs

- 3 Experimental results
- 4 Conclusion and Perspectives
  - Conclusion
  - Perspectives

## Conclusion

## **Publications**

## **Publications**

William PENSEC (Lab-STICC)

# Enhanced Processor Defence Against Physical and Software Threats by Securing DIFT Against Fault Injection Attacks

PhD Dissertation Defense

#### William PENSEC

Thank you for your attention.







William PENSEC (Lab-STICC) PhD Defense - Lorient - December 19, 2024 1



#### References

- [1] Transforma Insights; Exploding Topics. Number of Internet of Things (IoT) connections worldwide from 2022 to 2023, with forecasts from 2024 to 2033. Online. Accessed 13th August 2024. 2024. URL: https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/.
- [2] Muhammad Zia Ur Rahman et al. "Real-time artificial intelligence based health monitoring, diagnosing and environmental control system for COVID-19 patients". In: Mathematical Biosciences and Engineering (2022). DOI: 10.3934/mbe.2022357.

William PENSEC (Lab-STICC)

PhD Defense - Lorient - December 19, 2024 18 / 18