此次實作以GA+SSE的方式來解決花的種類問題

正解的SSE計算出的結果為89.2974

可見SSE與正解的關係不為完全正相關。(SSE過大的情形可能導致求出解的正確率下降)

此次實作發現與之前01問題最大的不同是,01問題進行Evaluation時只需考慮1是否更多,問題較為 簡單

而這次需考慮到各個種類、各項資料的SSE總和,問題較為複雜

一開始實作在crossover時是以單一點交換的方式來進行(與之前解01問題時一樣的方式),來解決此次問題,發現在很前面的Evaluation下就會收斂,收斂約在500-600之間。後來思考後發現若是把diversity設高,也就是更為隨機的方式進行crossover(此次實作利用兩點交換方式再加上4點隨機點交換的方式進行crossover),效果顯著。

接著利用Evaluation的總數不變,但POP和Iteration的數量改變來進行實驗,詳見下表

Evaluation的總數為POP和iteration相乘 實驗表格以Evaluation總數為100000的情況下進行實驗及討論

以下數據皆為RUN:30 Evaluation總數:100000來進行 前四組資料測試電腦為MacBookPro 後三組資料測試電腦為Windows桌機 因此時間有差異

POP	Iteration	Time	AVG_SSE
100	1000	507.123(s)	114
200	500	513.557(s)	90
400	250	512.855(s)	89
500	200	358.877	89
1000	100	359.778(s)	89
2000	50		89
5000	20	377.802	117

由上表可得在同樣Evaluation下不要將pop設的過高或過低,即可得到不錯的SSE解, POP過低時解不好的推測原因為多樣性不足,即使讓iteration增加也毫無幫助,因為已經收斂。 POP過高時,因為將Evaluation限制住,所以會使得Iteration數量減少,所以使得在當前Iteration下 還未收斂,增加Iteration的情況下應該會使得解更好,不過花費的時間成本也就會更大了