Politechnika Wrocławska Wydział Informatyki i Telekomunikacji

Kierunek: Informatyka algorytmiczna (INA)

PRACA DYPLOMOWA MAGISTERSKA

Zastosowanie szkiców danych w analizie dużych grafów

Application of data sketches in the analysis of large graphs

Paweł Polerowicz

Opiekun pracy **dr inż. Jakub Lemiesz**

Słowa kluczowe: TODO, TODO, TODO

Streszczenie

Polski

Słowa kluczowe: TODO, TODO, TODO

Abstract

English

Keywords: TODO, TODO, TODO

Spis treści

1.		t ęp				
		1 7				
2.	_	s problemu				
	2.1.	c				
	2.2.	Główne sposoby modelowania problemu				
		2.2.1. Model klasyczny				
		2.2.2. Strumień grafowy				
		2.2.3. Model półstrumieniowy TODO: Potwierdzić nazwę				
		2.2.4. Model rozproszony				
3.	Przegląd literatury					
	3.1.	J				
	3.2.	MDL – minimalna długość opisu				
	3.3.	Metody oparte na modyfikacji macierzy sąsiedztwa				
	3.4.	Graph Spanners				
	3.5.	Zagnieżdżenia/Osadzenia/zanurzenia TODO: potwierdzić nazewnictwo 18				
		3.5.1. Próbkowanie				
		3.5.2. Faktoryzacja				
		3.5.3. Metody oparte na sieciach neuronowych				
		3.5.4. Szkice				
	3.6.	Porównanie wspieranych operacji i ich złożoności				
4.		ice danych				
	4.1.	Definicja				
5.	Głó	wny przedmiot pracy				
		Motywacja				
	5.2.					
		5.2.1. Przykład				
	5.3.	Implementacja				
	5.4.	-				
		5.4.1. Złożoność czasowa				
		5.4.2. Złożoność pamięciowa				
		5.4.3. Analiza dokładności - jeśli metoda stratna				
6.	Ana	oliza wyników				
		Architektura eksperymentów				
	6.2.	· · · · · · · · · · · · · · · · · · ·				
	•	6.2.1. Wyniki				
		6.2.2. Wnioski				
	6.3.					
		6.3.1. Wyniki				
		6.3.2. Wnioski				

6.4. Eksperyment 3 - TODO	27
6.4.1. Wyniki	27
6.4.2. Wnioski	27
Literatura	28

Spis rysunków

Spis tabel

3.1.	Klasyfikacja metod	24
3.2.	Złożoność czasowa zapytań	24

Spis listingów

Skróty

TODO (ang. Uzupełnić lub usunąć ten wykaz, zależnie od potrzeb)

Wstęp

TODO: Tutaj będzie bardzo ogólne wprowadzenie do pracy.

- Motywacja
- Krótki i "wysokopoziomowy"opis problemu
- Podsumowanie osiągnięć pracy

1.1. Struktura pracy

TODO: Kilka(dziesiąt) słów o strukturze i zawartości pracy. Omówienie po kolei rozdziałów i ewentualnych dodatków. Bardzo skrótowo, bo wszystko będziemy potem i tak rozwijać. Coś w jak niżej (do dopracowania).

Pierwszy rozdział stanowi niniejszy wstęp, przedstawiający ogólny zarys problematyki pracy i skrótowo podsumowujący jej wkład badawczy. W drugim rozdziale znajduje się opis problemu wraz z formalną definicją i przedstawieniem różnych jego wariantów. Przedmiotem trzeciego rozdziału jest przegląd literatury związanej z analizą wielkich grafów, z podziałem na zastosowane metodyki oraz tabelą ilustrującą porównanie znanych struktur i algorytmów. W czwartym rozdziale szczegółowo omówione zostały szkice danych, od ich formalnej definicji do bardziej praktycznych przykładów ich wykorzystania, także w kontekście niniejszej pracy. Piąty rozdział zawiera właściwy opis tego, co zostało zrobione [TODO: przepisać nieco bardziej szczegółowo]. W rozdziale szóstym opisane zostały przeprowadzone eksperymenty, wraz z prezentacją wyników oraz wnioskami z nich płynącymi. Ostatni, siódmy rozdział, stanowi podsumowanie pracy. Zawarte zostały w nim ogólne konkluzje na temat pracy oraz możliwe kierunki dalszych badań. Pracy towarzyszy wykaz literatury oraz dodatek, zawierający opis dołączonej płyty CD [TODO: Na dalszym etapie sprawdzić, czy aktualne] i instrukcję użytkowania części implementacyjnej.

Opis problemu

2.1. Analiza grafów

Analiza danych jest dynamicznie rozwijającą się dziedziną informatyki, znajdującą zastosowania w wielu gałęziach przemysłu i badaniach naukowych. Wielka różnorodność rozważanych zbiorów danych, pochodzących z odmiennych źródeł, indukuje potrzebę znajdowania wszechstronnych i efektywnych struktur danych i algorytmów, które mogą służyć do ich reprezentacji i przetwarzania. Grafy doskonale nadają się jako narzędzie do tego typu zadań ze względu na ich wrodzoną zdolność do modelowania złożonych relacji i struktur, od sieci społecznościowych i topologii Internetu po systemy biologiczne i sieci transportowe. Dzięki tej wszechstronności algorytmy grafowe znajdują dziś zastosowania w praktyce, napędzając innowacje i wspomagając przetwarzanie coraz bardziej obszernych zestawów informacji. Pomimo że grafy towarzyszą informatyce niemal od samych jej początków, to jednak rozwój tej dziedziny nie ustaje, zwłaszcza że ilość i złożoność danych stale rośnie. W dzisiejszej erze, w której rozmiary danych często osiągają ogromne rozmiary, istnieje potrzeba dostosowania metodologii opartych na grafach do bardziej efektywnego przetwarzania informacji.

W niniejszej pracy będziemy posługiwać się głównie pojęciem grafu prostego, określanego po prostu jako graf. Będziemy go oznaczać przez G=(V,E) - graf, gdzie V - zbiór wierzchołków i $E\subseteq V\times V$ - zbiór krawędzi. W domyśle będziemy skupiać się na grafach ważonych.

2.2. Główne sposoby modelowania problemu

W niniejszej pracy pochylamy się nad kwestią analizy wielkich zbiorów danych, przedstawionych w postaci grafów. Jednak przed przystąpieniem do omawiania istniejących lub konstrukcji nowych rozwiązań, należy zastanowić się nad istotą problemu, z którym się mierzymy oraz wymaganiami i ograniczeniami, które proponowane algorytmy powinny spełniać. Kluczową kwestią jest więc wybór sposobu modelowania problemu. W kontekście analizy grafów możemy wyróżnić kilka ważnych i użytecznych modeli.

2.2.1. Model klasyczny

W tradycyjnej analizie grafów przyjmuje się dość prosty model, gdzie cały graf reprezentujący zbiór danych jest nam dany na wejściu do algorytmu. W praktycznych zastosowaniach jest on zazwyczaj reprezentowany przez macierz sąsiedztwa lub listę sąsiedztwa, choć istnieją również alternatywne reprezentacje, jak macierz incydencji [34]. Charakterystyczną cechą tego modelu, odróżniającą go od omawianych dalej, jest fakt, że dostępna wiedza o grafie jest pełna i dostępna w dowolnym momencie działania algorytmu. Zazwyczaj zakładamy również, że jest on

niezmienny w czasie. Jest on niewątpliwie najprostszym i jednocześnie potężnym modelem, stąd też przez dekady to na nim opierały się badania w zakresie analizy grafów. Jednak zapamiętanie całego grafu wiąże się ze sporym narzutem pamięciowym, dla macierzy i listy sąsiedztwa odpowiednio rzędu $O(|V|^2)$ i O(|E|). W świecie ogromnych grafów, gdzie rozmiary analizowanych zbiorów krawędzi mogą sięgać rzędu miliardów, taka złożoność może być nieakceptowalna.

2.2.2. Strumień grafowy

W odpowiedzi na charakterystykę problemu przetwarzania ogromnych zbiorów danych powstał model strumieniowy. Graf jest w nim reprezentowany przez strumień krawędzi, napływających stopniowo. Zakładamy, że zapisanie tego grafu w klasyczny sposób jest niepraktyczne lub niemożliwe ze względu na ograniczoną pamięć. Algorytmy oparte na tym modelu powinny więc działać on-line, na bieżąco aktualizując swój stan i będąc gotowe na obsługę zapytań w dowolnym momencie. Z uwagi na rozmiar, dynamikę i często nieznaną charakterystykę danych, takie metody muszą często pomijać niektóre, mniej istotne w danym kontekście informacje o grafie, ograniczając się do tych kluczowych. W związku z tym często dopuszcza się przybliżone odpowiedzi na zapytania, jednak najlepiej z rozsądnym ograniczeniem na możliwy błąd.

Dodatkowo możemy wyróżnić kilka podkategorii w strumieniach grafu. Jeden z najważniejszych podziałów dotyczy, tego, jakiego typu zmiany mogą zachodzić w strukturze grafu. Z uwagi na tę kwestię będziemy wyróżniać dwa typy grafów. Graf nazwiemy statycznym, jeśli do grafu krawędzie są jedynie dodawane i raz ustanowione, nigdy nie znikną. W uproszczeniu możemy założyć, że graf, który badamy, jest stały i niezmienny, ale o kolejnych krawędziach dowiadujemy się stopniowo, gdy pojawiają się one w strumieniu. Z kolei grafy dynamiczne to takie, które dopuszczają szerszą gamę operacji, przede wszystkim usuwanie wcześniej istniejących krawędzi. Może to być przydatne przy reprezentowaniu szybko zmieniających się zbiorów danych, takich jak np. informacje o ruchu samochodowym czy podejrzanych aktywnościach na kontach bankowych. Strumienie grafowe będą głównym modelem rozważanym w ramach niniejszej pracy.

Definicja formalna

Niech G=(V,E) - graf. Strumieniem grafowym nazywamy ciągłą sekwencję elementów, z których każdy ma postać trójki $e_i=(< s_i, d_i>; w_i, t_i)$, gdzie s_i, d_i wierzchołki grafu G i przez parę $< s_i, d_i>$ oznaczamy krawędź pomiędzy nimi. Z kolei w_i i t_i to odpowiednio waga tej krawędzi i moment jej wystąpienia. Określona krawędź może powtarzać się w różnych momentach czasowych z różnymi wagami. Zazwyczaj przyjmujemy, że wagi kolejnych wystąpień krawędzi są akumulowane. W literaturze można również spotkać nieco inne definicje, głównie różniące się dokładną postacią strumieniowanej krotki np. dla grafów dynamicznych może przybrać postać czwórki $e_i=(< s_i, d_i>; w_i, t_i, op)$, gdzie $op\in\{+,-\}$ indykuje typ operacji, a więc czy dana krawędź jest dodawana, czy usuwana z grafu[24].

2.2.3. Model półstrumieniowy TODO: Potwierdzić nazwę

Model półstrumieniowy[9] (ang. semi- $streaming\ model$) różni się modelu strumieniowego w dwóch głównych kwestiach. Po pierwsze, narzuca on konkretne ograniczenia na pamięć wykorzystywaną przez algorytm, najczęściej O(|V|polylog(|V|)), a więc dla gęstych grafów znacznie mniejszą niż rozmiar grafu. Po drugie, wejście może być skanowane wielokrotnie, zwykle stałą lub logarytmiczną liczbę razy. Model ten można uznać więc za rodzaj pomostu między klasyczną analizą grafów, w których dane znane są od początku i nie istnieją ograniczenia na dostęp do nich, a modelem strumieniowym, który nie pozwala na wielokrotne przeglądanie wcześniejszych krawędzi. Model ten jest często wybierany przez badaczy analizujących konkretne, złożone pro-

blemy grafowe takie, jak np. wyznaczanie najkrótszych ścieżek [8] lub minimalnego drzewa rozpinającego [1] przy rygorystycznych ograniczeniach pamięciowych. Podobnie jak w przypadku strumieni grafowych, możemy w tym modelu rozważać grafy statyczne i dynamiczne.

2.2.4. Model rozproszony

W wielu praktycznych zastosowaniach takich, jak analiza sieci społecznościowych, dane napływają z różnych źródeł – np. serwerów rozsianych po świecie i obsługujących różne obszary. Kolejne paczki danych są często relatywnie niezależne od siebie i mogą być rozpatrywane oddzielnie. W takich przypadkach wygodnie jest rozważać model rozproszony analizy grafów. W tym modelu dane są dzielone pomiędzy wiele węzłów obliczeniowych. Takie podejście umożliwia przetwarzanie równoległe, skracając czas obliczeń i ograniczając wielkość przesyłanych danych. Większość obliczeń jest wykonywana lokalnie, bez konieczności angażowania jednej centralnej jednostki. Komunikacja między węzłami ogranicza się do niezbędnych w danym przypadku aktualizacji, zamiast obejmować wszystkie dane. Należy pamiętać o wyzwaniach wynikających z często niepełnej wiedzy węzłów, która może utrudniać rozwiązywanie bardziej złożonych problemów. Obszar rozproszonej analizy grafów znalazł szerokie zastosowania w praktyce, czego dobrym przykładem są zaawansowane platformy ułatwiające pracę w tym modelu, takie jak Google Pregel[21], czy Apache Spark GraphX[37].

Przegląd literatury

Analiza wielkich grafów, zwłaszcza w ostatnich latach, przeżywa ogromny rozwój, budząc zainteresowanie grup badaczy z całego świata. Postępy w tej dziedzinie są naturalną odpowiedzią na potrzebę przetwarzania coraz większych zbiorów danych. Badanie interakcji w sieciach społecznościowych, zarządzanie ruchem internetowym, czy monitorowanie ruchu samochodowego to tylko niektóre z kluczowych w dzisiejszej rzeczywistości zastosowań. Grafy dobrze sprawdzają się jako modele do reprezentowania złożonych relacji między encjami, dzięki czemu odgrywają kluczową rolę w przetwarzaniu i wydobywaniu skondensowanych informacji ze strumieniowanych danych. Wybrane do tych celów algorytmy i metodologie w znacznym stopniu zależą od struktury badanych grafów, a także charakteru zapytań, które chcemy rozpatrywać. W zależności od wymagań dotyczących złożoności czasowej i pamięciowej, dokładności odpowiedzi, a także konkretnych informacji, na których zachowaniu nam zależy, inne metody mogą okazać się najlepszym wyborem. Przykładowo, odpowiedź na pytania o najkrótsze ścieżki między wierzchołkami może wymagać zapamiętania dodatkowych informacji o strukturze grafu, a więc potencjalnie użycia bardziej wyrafinowanego podejścia niż w przypadku zapytań wyłącznie o istnienie danej krawędzi.

W niniejszym przeglądzie literatury zagłębiamy się w sferę analizy dużych grafów ze szczególnym uwzględnieniem metod opartych na szkicach danych. Badamy ewoluujący krajobraz technik, algorytmów i aplikacji w tej dziedzinie, rzucając światło na metodologie stosowane w celu sprostania nieodłącznym wyzwaniom stawianym przez strumieniowe przesyłanie danych grafowych. Poprzez analizę najnowszych osiągnięć, staramy się zapewnić wgląd w znaczenie i potencjał analizy strumieni grafów w rozwiązywaniu złożonych zadań analitycznych w różnych dziedzinach, a także sformułować ogólne wnioski i wskazówki co do wyboru odpowiedniej metody do danego zastosowania. Dla lepszego ustrukturyzowania wiedzy omawiane algorytmy i struktury podzielone zostały na kilka kategorii, odpisanych dokładnie w dalszej części niniejszego rozdziału. Należy jednak pamiętać, że w niektórych przypadkach podział ten jest nieco umowny, gdyż różne podejścia i pomysły nierzadko przenikają się i inspirują wzajemnie, prowadząc do syntetycznych rozwiązań.

3.1. Streszczenia danych/Sketch synopses TODO: Potwierdzić nazewnictwo

Analiza strumieni danych jest szeroką dziedziną, nieograniczającą się oczywiście wyłącznie do danych grafowych. Istnieje wiele bardziej ogólnych, uniwersalnych metod, na których podstawie można budować rozwiązania bardziej wyspecjalizowane do konkretnych zadań. Doskonałym przykładem są streszczenia danych (*ang. Sketch synopses*). Są to kompaktowe struktury

zaprojektowane z myślą o wykorzystaniu ograniczonej ilości pamięci, umożliwiając jednocześnie aproksymację różnych statystyk i zapytań dotyczących strumienia danych, takich jak zliczanie elementów, wyznaczanie mediany, czy wykrywanie wartości odstających. Utrzymując mały szkic o stałym rozmiarze, struktury te umożliwiają analizę strumieni danych w czasie rzeczywistym bez konieczności przechowywania wszystkich elementów strumienia, co zapewnia wysoką wydajność nawet przy analizowaniu ogromnych strumieni.

Istotną w kontekście budowy dalszych rozwiązań strukturą danych jest szkic Count-Min[7]. W przeciwieństwie do wielu proponowanych wcześniej streszczeń zaprojekotwanych do badania konkretnej statystyki stanowi on dość uniwersalną strukturę, oferując wsparcie dla zapytań o częstość występowania elementu, zakresu elementów oraz iloczyn skalarny dwóch strumieni. Z kolei na ich podstawie można budować bardziej skomplikowane zapytania. Co ważne, Count-Min, choć zwraca przybliżone wyniki, to gwarantuje spełnienie pewnych założeń odnośnie dokładności. Konkretnie, wyraża się ją zazwyczaj w kontekście definiowanych przez użytkownika parametrów ϵ , δ , a więc wymagamy, aby błąd względny w odpowiedzi na zapytanie mieścił się w zakresie współczynnika ϵ z prawdopodobieństwem δ . Count-Min opiera się na zastosowaniu dwuwymiarowej tablicy o wymiarach $w \times d$, gdzie $w = \lceil \frac{e}{\epsilon} \rceil$ oraz $d = \lceil \ln \frac{1}{\delta} \rceil$. Nietrudno zauważyć, że zależą one od wymaganej dokładności. Struktura dalej wykorzystuje d niezależnych funkcji haszujących, mapujących elementy ze strumienia na kolumny tablicy. Każdy z napływających elementów wiąże się więc z aktualizacją jednej komórki w każdym wierszu tablicy. Wtedy, przykładowo częstotliwość elementu możemy aproksymować jako minimum z wartości odpowiadających mu komórek.

Do innych wartych wzmianki metod możemy zaliczyć np. Lossy Counting[22], ukierunkowany na wskazywanie szczególnie często występujących elementów, czy AMS[2], aproksymujący momenty częstotliwości (ang. frequency moments).

gSketch[42] stanowi jedną z pierwszych prób przeniesienia idei tych ogólnych metod do świata grafów. Obsługuje on proste zapytania dotyczących grafu, takie jak częstość występowania danej krawędzi w strumieniu lub gęstość wybranego podgrafu. Autorzy wychodzą od metody Count-Min, wykorzystując jej dwuwymiarową tablicę do składowania częstotliwości krawędzi. Dodatkowo, algorytm wykorzystuje próbkę testową do podziału zbioru krawędzi na podzbiory, bazując na ich częstotliwości w taki sposób, aby efektywnie wykorzystać dostępną pamięć, a następnie przetwarza właściwy strumień danych. To przetwarzanie wstępne daje cenny wgląd w charakterystykę grafu, ale należy pamiętać, że wyznaczanie reprezentacyjnej dla danego zbioru próbki nie zawsze jest trywialne. gSketch, podobnie jak Count-Min jest metodą stratną, a praktycznym wyzwaniem jest odpowiednie wyważenie parametrów tak, aby zachować balans między zużytą pamięcią a dokładnością wyników.

Choć metody takie jak gSketch mogą efektywnie zapamiętywać informacje dotyczące częstotliwości występowania krawędzi, to tracą przy tym wiedzę o strukturze grafu. Przykładowo, trudno za ich pomocą odpowiedzieć, czy istnieje ścieżka między danymi dwoma wierzchołkami. Jedną z prób rozwiązania tego problemu jest struktura gMatrix[15]. Wykorzystuje ona, podobnie jak gSketch, zasadę działania Min-Count. Jednak w tym wypadku tablica zliczająca elementy wzbogaciła się o trzeci wymiar. Konkretnie, długość i szerokość tablicy odpowiadają haszom wierzchołków, a jej głębokość związana jest ponownie z liczbą funkcji haszujących. Struktura może więc wspierać zapytania związane zarówno z krawędziami, jak i wierzchołkami. gMatrix wspiera również wykrywanie szczególnie często występujących krawędzi i wierzchołków, a więc tych, których częstotliwość przekracza dany parametr F. Wymaga to jednak, aby wybrane funkcje haszujące były odwracalne. Wtedy wystarczy wybrać komórki o odpowiednio dużych wartościach i obliczyć odwrotności haszy, aby odzyskać informacje o wierzchołkach. Podobnie, można rozważać osiągalność między wierzchołkami, wybierając krawędzie o częstotliwości występowania przekraczającej pewne F i przetwarzając je używając tradycyjnych algorytmów. Zwłaszcza w przypadku grafów o nierównej gęstości, możemy w ten sposób znacznie

ograniczyć liczbę badanych krawędzi, zachowując wciąż odpowiednie ograniczenia na prawdopodobieństwo błędu.

3.2. MDL – minimalna długość opisu

Kluczowym problemem w analizie wielkich grafów jest rozmiar danych. Zasadne wydaje się więc pytanie, czy sposób zapisu analizowanych grafów jest efektywny. W wielu przypadkach może się okazać, że sama próba zmiany modelu opisującego dane przynosi znaczne oszczędności w kwestii wykorzystanej pamięci. Metoda minimalnej długości opisu (MDL - ang. Minimum Description Length) koncentruje się na znalezieniu najprostszego modelu, który najlepiej opisuje strukturę grafu. Techniki oparte na MDL identyfikują wzorce i kompresują graf, wybierając model, który minimalizuje całkowitą długość opisu modelu i danych przy danym modelu, ułatwiając w ten sposób wydajne przechowywanie, przesyłanie i analizę dużych grafów. Bardziej formalnie, dla danych D i rodziny dostępnych modeli MF szukamy takiego modelu $M \in MF$, który minimalizuje L(M) + L(D|M), gdzie L(M) i L(D|M) oznaczają odpowiednio długość opisu modelu M oraz zakodowanych w nim danych D. Wiele metod opartych na MDL kompresuje dane w sposób bezstratny, co jest niewątpliwą zaletą tego modelu.

Istnieje wiele bezstratnych metod kompresujących grafy do reprezentacji o mniejszym narzucie pamięciowym. Jednak większość z nich zakładała działanie na tradycyjnej postaci grafu, gdzie dane są skończone i znane na wejściu. Rzeczywistość analizy strumieni grafowych wymaga jednak bardziej elastycznego podejścia. Jedną z pierwszych inkrementacyjnych metod kompresji grafu jest MoSSo[17]. Reprezentacja wyjściowa tej metody składa się ze zbioru superwęzłów, a więc zbiorów wierzchołków oraz superkrawędzi. Każda taka superkrawędź oznacza połączenie wszystkich wierzchołków z danego superwęzła z wierzchołkami drugiego superwęzła. Dodatkowo, częścią zapisu jest także zbiór korekt krawędzi. Mają one postać pary zbiorów $C=(C^+,C^-)$, oznaczających krawędzie, które należy dodać i usunąć, aby otrzymać prawdziwe dane. W ogólności aktualizowanie struktury dla nowych krawędzi sprowadza się do przemieszczania wierzchołków między superwęzłami w taki sposób, aby zminimalizować długość zapisu. Oczywiście sprawdzenie wszystkich możliwości byłoby kosztowne, dlatego autorzy zakładają sprawdzanie za każdym razem pewnego losowego zbioru potencjalnych wierzchołków do przemieszczania, co pozwala na znaczną oszczędność czasu, przy zachowaniu zadowalającego zużycia pamięci.

W opisanym wyżej MoSSo losowy wybór potencjalnych zmian jest sterowany parametrami takimi jak prawdopodobieństwo utworzenia nowego superwęzła i liczba wierzchołków, których przesunięcie należy rozważyć w każdej rundzie. Jeśli wybrane wartości parametrów są zbyt małe lub zbyt wielkie, może to negatywnie wpływać na czas działania lub skuteczność kompresji. Jednak optymalne ich dobranie dla nieznanych wcześniej danych może być niemożliwe. Problem ten zauważają autorzy SGS[20]. Jest to metoda bezparametryczna, w każdym kroku rozważająca przemieszczenie jedynie wierzchołków indukujących obecnie rozważaną krawędź (u,v). Dodatkowo SGS opiera się na obserwacji, że w takim wypadku wystarczy rozważyć superwęzły bazując na wierzchołkach znajdujących się w odległości co najwyżej dwóch kroków od u lub v. Następnie najlepsza zmiana jest wyznaczana zachłannie, bazując na funkcji podobieństwa sąsiedztwa wierzchołka oraz superwęzła.

Przykładem nieco odmiennego podejścia może być z kolei metoda GS4[3]. O ile ona również wykorzystuje koncept grupowania wierzchołków w superwęzły, o tyle robi to, bazując zarówno na strukturze grafu, jak i pewnym zbiorze atrybutów wierzchołków. Jest to przydatne w przypadku, gdy wierzchołki grafu reprezentują bardziej złożone informacje. Przykładowo, w przypadku analizy danych pochodzącyche z portali społecznościowych, wierzchołkiem może być użytkownik, a atrybutami jego imię, wiek, ulubione zwierzę z gromady stułbiopławów itd.

Niektóre z tych danych mogą być ważniejsze niż inne. GS4 pozwala na ustalenie wag dla atrybutów, dzięki czemu jest rozwiązaniem bardziej elastycznym, pozwalającym na sterowanie tym, jakie cechy grafu będą zachowywane priorytetowo. W przeciwieństwie do omawianych wcześniej algorytmów GS4 jest jednak metodą stratną. Dla oszczędności czasu przechowywany graf nie jest aktualizowany dla każdej nowej krawędzi, a raczej w wypadku istotnych różnic.

3.3. Metody oparte na modyfikacji macierzy sąsiedztwa

Jednym z najbardziej popularnych i być może najprostszym koncepcyjnie sposobem reprezentacji grafu jest macierz sąsiedztwa. Jej wiersze i kolumny odpowiadają poszczególnym wierzchołkom, a w komórkach przechowywane są wagi krawędzi pomiędzy nimi, o ile takowe krawędzie istnieją. W przypadku grafów nieważonych może to być np. wartość logiczna indykująca istnienie krawędzi lub ustalona stała. Ten sposób reprezentacji ma niewątpliwe zalety takie jak prostota implementacji i, przede wszystkim, stały czas dostępu do wag krawędzi. Z tego powodu niezaskakujący jest pomysł zachowania ogólnej zasady działania macierzy sąsiedztwa, przy jednoczesnej próbie zmniejszenia jej rozmiaru.

Jedną z pierwszych realizacji tej idei jest struktura TCM[29]. Ma ona postać macierzy o boku długości m, gdzie m jest pewną stałą. Podobnie jak w klasycznej macierzy sąsiedztwa, w jej komórkach składowane są wagi krawędzi. Zasadniczą różnicą jest natomiast sposób wyznaczania rzędu i kolumny odpowiadających danej parze wierzchołków. Są one bowiem wyznaczane przez wynik funkcji haszującej $H:V\to [1..m]$. Czas obliczania hasza jest stały, a co za tym idzie, złożoność czasowa zapytań i dodawania nowych krawędzi również. Teoretyczna złożoność pamięciowa także jest stała i wynosi $O(m^2)$. W praktycznych zastosowaniach wybór m zależy jednak często od liczby krawędzi i przejmuje się najczęściej m rzędu $O(\sqrt{|V|})$. Dokładność rezultatów zależy od rozmiaru macierzy i może być niska ze względu na kolizje haszy. Łatwo zauważyć, że jeśli m jest istotnie mniejsze od |V| to może do nich dochodzić często, co powoduje traktowanie różnych krawędzi jako kolejnych instancji tego samego połączenia. Autorzy, świadomi tego ograniczenia, proponują zastosowanie kilku parami niezależnych funkcji haszujących i stworzenie na ich podstawie wielu szkiców grafu. Przykładowo, jeśli badaną zmienną jest suma wag kolejnych instancji krawędzi między danymi dwoma wierzchołkami, to algorytm może sprawdzić odpowiednie komórki dla wszystkich szkiców, a następnie zwrócić minimalną wartość. Podejście to pozwala na analizę większych grafów niż w przypadku pojedynczego szkicu, ale ostatecznie nie rozwiązuje całkowicie problemu. Użyteczność struktury TCM w bazowej formie jest dyskusyjna, stanowi ona jednak punkt wyjściowy dla bardziej zaawansowanych rozwiązań.

Strukturą opartą na koncepcie podobnym do TCM jest $Graph\ Stream\ Sketch\ (GSS)[10]$. Celem autorów było stworzenie metody oferującej lepszą skalowalność dla wielkich grafów. Podobnie jak w TCM, funkcja haszująca mapuje zbiór wierzchołków na pewien mniejszy zbiór M-elementowy. Rozmiar macierzy jest natomiast równy m, m < M. Główną zmianą jest wprowadzenie dodatkowych cech opisujących wierzchołki. Na podstawie hasza H(v) wyznaczany jest podpis wierzchołka $f(v)(0 \le f(v) < F)$, gdzie $M = m \times F$ i f(v) = H(v)%F, a także adres $h(v) = \lfloor \frac{H(v)}{F} \rfloor$. Adresy służą do wyznaczania rzędu i kolumny komórek. Komórki te mają postać krotki lub, bardziej obrazowo, kubełka, w którym przechowywana jest para podpisów wierzchołków tworzących krawędź oraz kumulatywna waga krawędzi. Przechowywanie podpisów w komórkach pozwala zredukować ryzyko kolizji haszy. Łatwo bowiem zauważyć, że nawet jeśli dwa różne wierzchołki mają taki sam adres, to istnieje duża szansa, że ich podpisy są różne. Z tego względu nowa krawędź jest dodawana do kubełka tylko w wypadku, gdy jest on pusty lub gdy istniejące w nim podpisy są zgodne z podpisami wierzchołków krawędź tą tworzących. W przeciwnym przypadku jest ona zapisywana w dodatkowym buforze, mającym postać listy są-

siedztwa pełnych haszy. Pozwala on na dodawanie nowych krawędzi z niskim ryzykiem kolizji, nawet jeśli sama macierz jest już zapełniona. Należy natomiast zauważyć, że część macierzowa struktury jest bardziej efektywna czasowo, oferując stały czas odpowiedzi na zapytanie, podczas gdy dla bufora jest on liniowy względem liczby wierzchołków. Dokładność odpowiedzi w części macierzowej zależy od długości podpisów. Potencjalnym problemem GSS jest niskie wykorzystanie pamięci w macierzy. Przy kolizji adresów nowe krawędzie mogą trafiać do bufora, mimo, że w samej macierzy pozostaje wiele pustych komórek. Aby temu zaradzić, autorzy proponują haszowanie krzyżowe (ang. square-hashing). Zakłada ono obliczanie dla każdego wierzchołka sekwencji niezależnych adresów. Podczas wstawiania nowych krawędzi algorytm sprawdza nie jedną komórkę macierzy, a kilka, zgodnie z sekwencją adresów i wybiera pierwszą spełniającą wymagania co do zgodności podpisów. Istnieje probabilistyczne ograniczenie na błąd względny zapytań postaci $Pr(\tilde{f}(s,d)-f(s,d)/\bar{w}>\delta) \leq \frac{|E|}{\delta m^2 4^f}$, gdzie $\tilde{f}(s,d)$ jest zwróconą sumą wag krawędzi (s,d), f(s,d) jej rzeczywistą wartością, \bar{w} średnią wagą krawędzi, a f długością podpisu.

Większość struktur służących podsumowujących strumieniowane grafy nie przechowuje informacji o czasie wystąpienia krawędzi. Nie wspierają one więc zapytań z zakresem czasowym, a więc np., czy dana krawędź wystąpiła w zakresie [t, t + L). Tego typu zapytania mogą być kluczowe np. w przypadku analizy danych dotyczących rozprzestrzeniania się wirusów (TODO: Citation needed). Problem ten podejmuje praca proponująca strukturę Horae[6]. W jej wypadku krawędź $e_i = (< s_i, d_i >, w_i, t_i)$ jest wstawiana do komórki o adresie $(h(s_i|\gamma(t_i)),h(d_i|\gamma(t_i)))$, gdzie $\gamma(t_i)=\lfloor \frac{t_i}{ql} \rfloor$ i gl jest długością przedziałów czasowych. Intuicyjnie, zapytanie o pojawienie się krawędzi w zakresie czasowym $[T_b, T_e]$ moze być transformowane w sekwencję zapytań o pojedyncze zakresy, których wyniki są sumowane, a więc $Q([T_b, T_e]) = Q([T_b]), Q([T_{b+1}]), \dots Q([T_e])$. Jednak dla takiego algorytmu złożoność czasowa jest liniowa względem liczby zakresów. Autorzy starają sie poprawić ten aspekt, zauważajac, iż przedział długości L może zostać zdekomponowany do co najwyżej $2 \log L$ podprzedziałów podsiadających dwie szczególne cechy. Po pierwsze, wszystkie zakresy czasowe w danym podprzedziałe mają wspólny prefiks binarny. Po drugie, prefiksy różnych podprzedziałów mają różne długości. Z tego względu Horae zapamiętuje $O(\log(T))$ identycznych skompresowanych macierzy, gdzie T jest liczbą rozróżnialnych zakresów czasowych. Każda z nich jest utożsamiana z jedną warstwą struktury. Warstwy odpowiadają z kolei różnym długościom prefiksów. Dzięki temu zamiast wykonywać liniową względem długości przedziału czasowego liczbę zapytań, wystarczy zdekomponować przedział na podprzedziały i na ich podstawie wykonać co najwyżej jedno zapytanie na warstwę.

Metody oparte na macierzach w większości przypadków nie czynią założeń co do struktury grafu. Takie ogólne podejście oczywiście zapewnia wysoką uniwersalność, jednak w niektórych przypadkach może być nieefektywne. Przykładowo, jeśli wierzchołki w grafie są mocno zróżnicowane pod względem stopnia, a więc bardziej obrazowo, da się wyróżnić obszary gęste i rzadkie w grafie, to kolizje haszy mogą zdarzać się często. Struktura Scube[5] używa probabilistycznego zliczania do identyfikacji wierzchołków wysokiego stopnia. Przeznaczane jest dla nich więcej kubełków w macierzy niż dla wierzchołków o niskich stopniach, co pozwala bardziej efektywnie zarządzać zapełnieniem macierzy.

Metody takie jak GSS czy Horae, choć często dają przyzwoite wyniki przy odpowiednim dobraniu parametrów do badanego grafu, to ostatecznie cierpią z uwagi na ograniczoną skalowalność. Jedną z prób odpowiedzi na ten problem jest struktura AUXO[13]. Korzysta ona z macierzy przechowujących podpisy wierzchołków, podobnie jak GSS. Jednak, zamiast wstawiać nadmiarowe krawędzie do bufora o liniowym czasie dostępu, AUXO wykorzystuje wiele macierzy ustawionych w strukturę drzewa. Konkretnie, jest to binarne lub czwórkowe drzewo prefiksowe, w którego strukturę zaszyte zostały prefiksy podpisów wierzchołków. W ten sposób na każdym kolejnym poziomie drzewa podpisy przechowywane w komórkach mogą być coraz

krótsze, gdyż informacja ta jest wbudowana w kształt struktury. Pozwala to osiągnąć logarytmiczny względem liczby krawędzi czas odpowiedzi na zapytania. Warto zauważyć, że złożoność pamięciowa jest ograniczona przez długość podpisów, która wyznacza maksymalną głębokość drzewa. Niemniej jednak liczba możliwych do przetworzenia krawędzi jest eksponencjalna w stosunku do liczby bitów podpisu, więc stosunkowo łatwo można dobrać wystarczające wartości. W praktycznych zastosowaniach autorzy wskazują, nieco niefortunnie, na złożoność pamięciową zbliżoną asymptotycznie do $O(|E|(1-\log(E)))$. Jak widać, AUXO osiąga efektywność pamięciową i skalowalność kosztem zwiększenia złożoności czasowej, co może być potencjalną wadą tego rozwiązania.

3.4. Graph Spanners

TODO: np. [8], QbS [33]

3.5. Zagnieżdżenia/Osadzenia/zanurzenia TODO: potwierdzić nazewnictwo

Kolejną, dość rozległą i rozwijającą się metodologią w dziedzinie analizy grafów są zagnieżdżenia grafów (ang. graph embeddings). Nazwa odnosi się do reprezentowania wierzchołków przez wektory cech, a więc bardziej obrazowo, zanurzania grafu w niskowymiarowych przestrzeniach wektorowych. Wektory te mogą zachowywać między innymi kluczowe informacje topologiczne związane z połączeniami danego wierzchołka z jego sąsiadami. Przyjmują one najczęściej wartości rzeczywiste, a podobieństwo między wektorami może być mierzone na różne sposoby, np. za pomocą podobieństwa cosinusów (ang. cosine similarity) lub odległości Hamminga[19]. Co istotne, tego typu reprezentacja pozwala na łatwe zastosowanie uczenia maszynowego do analizy danych. W ogólności zagnieżdżenia są stosowane szczególnie często w takich zadaniach jak klasyfikacja węzłów, przewidywanie połączeń między nimi oraz rekonstrukcja grafu. Wśród algorytmów opartych na tej metodologii możemy wyróżnić kilka unikalnych podkategorii, cechujących się odmiennymi podejściami do tego, jak cechy są wybierane i przetwarzane. Praca [38] stanowi stosunkowo aktualny i rozbudowany przegląd tego typu metod, ukazując przy okazji wpływ hiperparametrów na uzyskiwane wyniki, zwłaszcza dla metod opartych na faktoryzacji i próbkowaniu. Autorzy proponują też uogólnione techniki wykorzystujące te metodologie i dzielą się pewnymi wskazówkami co do wyboru hiperparametrów dla konkretnych scenariuszy.

3.5.1. Próbkowanie

Techniki oparte na próbkowaniu koncentrują się na wyborze reprezentatywnego zbioru par węzłów z grafu wejściowego, w celu uchwycenia jego podstawowych właściwości strukturalnych. Na ich podstawie określony model uczy się reprezentowania wierzchołków poprzez optymalizację stochastyczną. Zapewnienie zadowalającej jakości reprezentacji wyjściowej wymaga często próbkowania znacznej liczby par węzłów, a zatem wymaga dużych zasobów obliczeniowych, w szczególności czasu procesora.

Znanym przykładem tego typu techniki jest DeepWalk[25], wywodzący się, jak sama nazwa wskazuje, z uczenia głębokiego (ang. deep learning). Wykorzystuje on sekwencję krótkich, losowych spacerów po wierzchołkach grafu do zapamiętywania tzw. reprezentacji społecznej wierzchołków grafu, zawierającej informacje o podobieństwie sąsiedztwa wierzchołków i przynależności do pewnych grup. DeepWalk wykorzystuje algorytm SkipGram do efektywnego wyznaczania wektorów cech. Co ciekawe, można na ten schemat działanie patrzeć jak na uogólnienie

metod przetwarzania języka naturalnego do przetwarzania języka losowych spacerów, traktowanych jako zdania.

Node2Vec[11] rozwija ideę DeepWalk, wprowadzając dodatkowe parametry sterujące spacerem. Pozwala to na wybranie, jak szybko spacer może oddalać się od startowego wierzchołka, efektywnie regulując, jak bardzo spacer zbliżony jest do przeszukiwania wszerz lub przeszukiwania wgłąb. Odpowiednie regulowanie tych parametrów sprzyja lepszemu poznaniu struktury grafu, która mogłaby być trudna do uchwycenia przy zwykłym spacerze losowym.

Kolejną wartą uwagi metodą tego typu jest LINE[28]. Opiera się on na badaniu bliskości zarówno pierwszego, jak i drugiego rzędu między wierzchołkami. Bliskość pierwszego rzędu zależy od wagi połączeń między wierzchołkami. Z kolei bliskość drugiego rzędu mierzy podobieństwo struktury sąsiedztwa dwóch wierzchołków. Wiąże się to z założeniem, że wierzchołki o podobnym sąsiedztwie z dużym proawdopodobieństwem są podobne do siebie. LINE próbkuje bezpośrednio pary węzłów z grafu, ucząc się zagnieżdżeń oddzielnie dla bliskości pierwszego i drugiego rzędu, a następnie łącząc je razem.

VERSE[30] jest uniwersalną metodą, zdolną dostosować się do dowolnej miary podobieństwa węzłów, co pozwala na lepsze jej dostosowanie do konkretnych przypadków. Trenuje ona sieć neuronową złożoną z jednej warstwy, próbkując pary węzłów i starając się zachować wybraną miarę podobieństwa.

3.5.2. Faktoryzacja

Metody opierające się na faktoryzacji zakładają dekompozycję reprezentacji macierzowej grafu w taki sposób, aby uchwycić ukryte relacje między węzłami w przestrzeni o niższym wymiarze. Ma to na celu zachowanie właściwości strukturalnych grafu, takich jak bliskość węzłów i struktura sąsiedztwa. Jednak koszt obliczeniowych faktoryzacji macierzy może być bardzo wysoki w przypadku dużych grafów, zarówno w kontekście wykorzystania pamięci, jak i czasu obliczeń.

Jedną z istotniejszych metod opartych na faktoryzacji jest GraRep[4]. Wyróżnia się ona uwzględnieniem zarówno lokalnych, jak i globalnych informacji strukturalnych w zagnieżdżeniach, mając na celu uchwycenie kompleksowej reprezentacji struktury grafu. Wykorzystywany model przechwytuje różne k-krokowe relacje między wierzchołkami grafu. Czyni to poprzez manipulowanie globalnymi macierzami przejścia zdefiniowanymi na grafie, bez angażowania procesów próbkowania. Autorzy proponują wykorzystanie różnych wartości k, a także definiują unikalne funkcje straty dla tychże wartości. Ostateczna reprezentacja dla każdego wierzchołka ma charakter globalny i powstaje z połączenia wielu wyuczonych modeli. Wykorzystanym sposobem dekompozycji jest rozkład według wartości osobliwych, szerzej znany jako SVD (Singular Value Decomposition). Sprowadza się on do przedstawienia macierzy A w postaci

$$A = U\Sigma V^T$$

gdzie U i V - macierze ortogonalne i Σ - macierz diagonalna.

HOPE[23] działa na podobnej zasadzie, faktoryzując macierze odpowiadające sąsiadom w odległości co najwyżej k od danego wierzchołka z wykorzystaniem SVD. Autorzy biorą sobie jednak za cel zachowanie asymmetrycznej przechodniości. Przedstawia ona korelacje między skierowanymi krawędziami, a więc, istnienie skierowanej ścieżki z u do v może sugerować istnienie skierowanej krawędź z u do v. Prawdopodobieństwo ich istnienia jest wyliczane na podstawie indeksu Katza[14].

NetMF[26] jest rozwiązaniem syntetycznym, generalizującym metody próbkujące takie, jak DeepWalk, Node2Vec i LINE. Autorzy zauważają, że przy odrobinie wyobraźni sposób działania tych metod można przedstawić jako niejawne faktoryzacje macierzy. Na podstawie tej obserwacji wyznaczają oni jawne postaci tych macierzy. Dodatkowo, bazując na relacji między

metodą DeepWalk i macierzy Laplace'a dla grafu (*ang. Laplacian matrix*), autorzy proponują algorytm efektywnie aproksymujący jawną postać tej macierzy.

Z kolei ProNE[41] wykorzystuje techniki faktoryzacji rzadkich macierzy do początkowego przedstawienia zagnieżdżeń. Następnie są one poprawiane z wykorzystaniem Cheegera wyższego rzędu w celu wygładzania wyników i globalnego grupowania informacji. Jak twierdzą autorzy, taki sposób przeprowadzania obliczeń może istotnie zwiększyć wydajność w praktycznych zastosowaniach.

3.5.3. Metody oparte na sieciach neuronowych

TODO: np. SDNE[31], DVNE[43], GCN[16], and GraphSAGE[12]

3.5.4. Szkice

Szczególnie istotne z perspektywy niniejszej pracy są techniki zagnieżdżania oparte na szkicach danych. Ich głównym założeniem jest tworzenie kompaktowych szkiców dla oryginalnych wielowymiarowych danych, przy jednoczesnym zachowaniu pewnej miary podobieństwa między wierzchołkami. Wyjściowe zagnieżdzenia są najczęściej generowane w przestrzeni Hamminga. Metody te opierają się one zastosowaniu zachowujących podobieństwo technik haszowania w celu generowania zagnieżdzeń węzłów. Wykorzystywane przez nie haszowanie może być zależne albo niezależne od danych. W literaturze te warianty bywają również opisywane jako odpowiednio *learning-to-hash* i *locality sensitive hashing*[32].

INH-MF[19] to pierwsza tego typu technika zaproponowana dla problemu zagnieżdzeń grafu. Wykorzystuje ona haszowanie zależne od danych i uczy się reprezentowania szkicu grafu poprzez faktoryzację macierzy, zachowując jednocześnie wysokopoziomowe informacje o bliskości węzłów w grafie. W celu poprawy wydajności procesu uczenia autorzy proponują także zastosowanie uczenia w podprzestrzeni Hamminga, który przy przetwarzaniu nowych krawędzi aktualizuje tylko niektóre części wyjściowej reprezentacji.

Większość opisywanych w tym podrozdziale metod skupia się na zachowaniu informacji strukturalnych dotyczących badanego grafu. O ile w wielu scenariuszach jest to wystarczające, o tyle istnieją przypadki, gdy przydatne może się okazać bardziej elastyczne podejście do definiowania cech wierzchołków, które algorytm powinien brać pod uwagę przy wyznaczaniu zagnieżdzeń. Naprzeciw tym wymaganiom wychodzi algorytm NetHash[35]. Korzysta on ze zrandomizowanej techniki haszowania MinHash. Za jej pomocą koduje płytkie drzewa, z których każde jest zakorzenione w wierzchołku grafu. Właściwe szkice powstają poprzez rekurencyjne szkicowanie drzewa od dołu do góry, a więc od predefiniowanych sąsiednich węzłów najwyższego rzędu do węzła głównego. W ten sposób kodowane są zarówno atrybuty, jak i informacje o strukturze każdego węzła. NetHash zachowuje w szczególności informacje zawarte bliżej węzła głównego.

GNN[27] (*Graph Neural Network*) jest popularną metodą w zadaniach związanych z użyciem uczenia maszynowego dla danych grafowych. Zakłada ona zastosowanie konwolucyjnej sieci neuronowej do pół-nadzorowanych zadań klasyfikacji węzłów, a więc takich wykorzystujących zarówno etykietowane, jak i nieetykietowane dane. Jednak jej efektywne wykorzystanie zazwyczaj wymaga znacznych zasobów obliczeniowych ze względu na konieczność uczenia się dużej liczby parametrów. Sprawia to, że algorytmy oparte na GNN mogą być niepraktyczne dla problemu przetwarzania ogromnych grafów. #GNN[36] modyfikuje GNN w celu znalezienia kompromisu między dokładnością a wydajnością. Autorzy proponują wprowadzenie zrandomizowanego haszowania do implementacji przekazywania wiadomości i przechwytywania informacji o sąsiedztwie wysokiego rzędu w sieci GNN.

NodeSketch

Ważnym i interesującym, także w kontekście niniejszej pracy, krokiem w rozwoju analizy wielkich grafów z wykorzystaniem szkiców jest algorytm NodeSketch[40]. Autorzy wykorzystują rekursywne szkicowanie niezależne od danych, aby tworzyć szkice, które dla każdego wierzchołka zachowują informacje o jego sąsiedztwie wysokiego rzędu. Bardziej konkretnie, zaczynają oni od przedstawienia idei spójnego ważonego próbkowania.

Niech $V^a, V^b \in \mathbb{R}^D_+$ - nieujemne wektory rozmiaru D. Wtedy ich podobieństwo min-max, zwane też ważonym indeksem Jaccarda możemy zdefiniować jako

$$Sim_{MM}(V^a, V^b) = \frac{\sum\limits_{i=1}^{D} min(V_i^a, V_i^b)}{\sum\limits_{i=1}^{D} max(V_i^a, V_i^b)}$$

Możemy wobec tej wartości zastosować normalizację sum-to-one $\sum\limits_{i=1}^D V_i^a = \sum\limits_{i=1}^D V_i^b = 1$ i oznaczyć takie znormalizowane podobieństwo przez Sim_{NMM} . Jest to efektywny sposób mierzenia podobieństwa nieujemnych danych[18]. Zasadniczo spójne ważone próbkowanie sprowadza się do generowania próbek danych w taki sposób, aby prawdopodobieństwo wylosowania identycznych wartości dla obu wektorów było równe ich podobieństwu min-max. Próbki te są następnie traktowane jako szkic wektora wejściowego. Proponowany proces generowania próbek jest dość prosty. Zaczyna się on od wyboru funckji haszującej h_j , takiej, że $h_j(i) \sim Uniform(0,1)$. Za jej pomocą próbka S_j wyznaczana jest jako:

$$S_j = \underset{i \in \{1, 2, \dots, D\}}{\operatorname{argmin}} \frac{-\log h_j(i)}{V_i}$$
(3.1)

Wybierając L ($L \ll D$) niezależnych funkcji haszujących i generując na ich podstawie próbki otrzymujemy szkic S o rozmiarze L wektora V. Ponadto, wynikowe szkice zachowują własność:

$$Pr[S_j^a = S_j^b] = Sim_{NMM}(V^a, V^b), j = 1, 2, \dots, L$$
 (3.2)

Na podstawie tego schematu, autorzy budują właściwy algorytm NodeSketch. Jego działanie rozpoczyna się od wygenerowania zagnieżdżeń dla wierzchołków na podstawie sąsiedztwa pierwszego i drugiego stopnia. Wykorzystuje do tego macierz sąsiedztwa SLA (*Self-Loop-Augmented*) grafu. Różni się ona od zwykłej macierzy tym, że zawiera połączenia z każdego wierzchołka do niego samego, co pozwala prawidłowo zachowywać sąsiedztwo pierwszego rzędu. Innymi słowy, jeśli *A* jest oryginalną macierzą sąsiedztwa, to macierz SLA ma postać:

$$\tilde{A} = I + A$$

gdzie I jest macierzą jednostkową. Zagnieżdżenia k-tego rzędu są generowane rekurencyjnie na podstawie macierzy SLA i zagnieżdżeń (k-1)-wszego rzędu. Ważną cechą spójnego ważonego próbkowania jest jednostajność generowanych próbek, co oznacza, że prawdopodobieństwo wybrania wartości i jest proporcjonalne do V_i , a więc $Pr(S_j=i)=\frac{V_i}{\sum_i V_i}$ (TODO: Nie jestem pewien, czy w mianowniku powinno być sumowanie po i, ale tak jest w pracy). Z tej własności można wywnioskować, że rozkład elementów szkicu aproksymuje wektor V w sposób nieobciążony.

Bazując na powyższych obserwacjach, autorzy przechodzą do właściwego sformułowania algorytmu. Dla każdego węzła r, obliczany jest przybliżony wektor SLA k-tego rzędu. Odbywa

się to poprzez połączenie oryginalnego wektora SLA z wektorem (k-1)-wszego rzędu z odpowiednią wagą:

$$\tilde{V}_{i}^{r}(k) = \tilde{V}_{i}^{r} + \sum_{n \in \Gamma(r)} \frac{\alpha}{L} \sum_{j=1}^{L} \mathbb{1}_{[S_{j}^{n}(k-1)=i]}$$
(3.3)

gdzie $\Gamma(r)$ to zbiór sąsiadów wierzchołka r, a $S^n(k-1)$ jest szkicem (k-1)-wszego rzędu dla wierzchołka n. Dodatkowo parametr α pozwala na przypisanie mniejszego priorytetu relacjom wyższego rzędu między wierzchołkami. Następnie, szkic wierzchołka r oznaczany jako $S^r(k)$ jest wyznaczany z równania 3.1. Ostateczny szkic S(k) jest po prostu wektorem szkiców elementów. Działanie algorytmu ukazuje pseudokod 1.

Algorithm 1: NodeSketch(\tilde{A}, k, α)

```
\begin{array}{l} X \leftarrow x; \\ N \leftarrow n; \\ \textbf{if } k > 2 \textbf{ then} \\ & S(k-1) \leftarrow NodeSketch(\tilde{A},k-1,\alpha); \\ \textbf{foreach } rzqd \ r \ w \ \tilde{A} \ \textbf{do} \\ & & \tilde{V}^r(k) \leftarrow Eq.3.3; \\ & & S_r(k) \leftarrow Eq.3.1(\tilde{V}^r(k)); \\ \textbf{end} \\ \textbf{else if } k = 2 \textbf{ then} \\ & & \textbf{foreach } rzqd \ r \ w \ \tilde{A} \ \textbf{do} \\ & & & S_r(2) \leftarrow Eq.3.1(\tilde{V}^r); \\ & \textbf{end} \\ \textbf{end} \\ \textbf{end} \\ \textbf{end} \\ \textbf{return } S(k) \end{array}
```

SGSketch

Choć NodeSketch okazuje się efektywny w wielu scenariuszach testowych, to nie da się ukryć, że jego możliwości, podobnie jak wielu omawianych wcześniej metod generowania zagnieżdżeń wierzchołków, są ograniczone. Po pierwsze, nie bierze on pod uwagę wag krawędzi, a tylko ich istnienie. Tymczasem waga połączenia może nieść ze sobą cenne informacje. Po drugie, konieczność znajomości macierzy sąsiedztwa SLA sprawia, że NodeSketch nie jest przystosowany do działania w formie On-Line, a więc reagowania na zmiany w grafie, jak np. ustanawianie nowych krawędzi. Ta obserwacja, choć z pozoru nieco rozczarowująca, może stać się iskrą rozpalającą dalsze rozważania i stanowiącą inspirację do budowy kolejnych, bardziej elastycznych rozwiązań.

Jedną z prób stworzenia metody mogącej radzić sobie z ewoluującym strumieniem krawędzi jest, oparty na NodeSketch, algorytm SGSketch[39]. Jego główna idea polega na stopniowym zapominaniu dawnych krawędzi i wykorzystaniu efektywnego, inkrementacyjnego mechanizmu aktualizacji wygenerowanych zagnieżdzeń.

Niech SG będzie strumieniowanym grafem. Typowa implementacja stopniowego zapominania krawędzi wywodzi się z prawa rozpadu naturalnego i polega na obliczaniu jej wagi, bazując na momencie wystąpienia w strumieniu. Możemy więc przyjąć wagę krawędzi, która pojawiła się w chwili t jako $w_t=e^{\lambda(t_n-t)}$, gdzie t_n jest momentem wystąpienia najnowszej krawędzi, a λ jest parametrem sterującym szybkością zapominania. Stąd elementy macierzy sąsiedztwa

wyznaczane są ze wzoru:

$$A_{i,j} = A_{j,i} = \max_{t \le t_n} e^{-\lambda(t_n - t)} \mathbb{1}_{[(r_i, r_j)^t \in SG]}$$
(3.4)

Taka forma zapominania ma charakter globalny, co oznacza, że waga wszystkich istniejących krawędzi zmniejsza się w wyniku przetwarzania każdej nowej krawędzi. Może to prowadzić do kosztownych i niepotrzebnych zmian dla wierzchołków znajdujących się daleko od nowych krawędzi. Dlatego autorzy proponują zastosowanie lokalnej techniki zmniejszania wag. Formalnie, aby obliczyć wagę krawędzi (r_i, r_j) zaobserwowanej w chwili t dla wierzchołka r_i , wyznaczamy najpierw liczbę krawędzi wchodzących i wychodzących z r_i w przedziale czasowym $(t, t_n]$:

$$\phi_{(t,t_n]}(r_i) = |\{(r_p, r_q)^{t'} | r_i \in (r_p, r_q), t' \in (t, t_n]\}|$$
(3.5)

Ostatecznie, elementy macierzy mają postać:

$$A_{i,j} = \max_{t \le t_n} e^{-\lambda \phi_{(t,t_n]}(r_i)} \mathbb{1}_{[(r_i,r_j)^t \in SG]}$$
(3.6)

Działanie właściwego algorytmu SGSketch rozpoczyna się od wygenerowania początkowego szkicu. Odbywa się to sposób w zasadzie identyczny jak w algorytmie NodeSketch, z tą różnicą, że wykorzystywana jest macierz SLA z lokalnym zapominaniem krawędzi. Zasada działania procedury aktualizacji szkicu ukazana jest w pseudokodzie 2. Argumentami wejściowymi jest macierz sąsiedztwa SLA A, aktualny szkic S, zbiór wierzchołków indykujących nową krawędź lub krawędzie Ω , rząd k oraz współczynnik α . Zasadniczo, mechanizm jest podobny do generowania początkowego szkicu, ale przeliczane są zagnieżdżenia tylko tych elementów, które znajdują się w sąsiedztwie nowych krawędzi. Pozwala to na znaczną oszczędność w kwestii czasu obliczeń.

Algorithm 2: SGSketchUpdate(\tilde{A} , S, Ω , k, α)

```
\begin{array}{l} \textbf{if } k > 2 \textbf{ then} \\ & \textbf{ zaktualizuj } S(k-1) \textbf{ i zbiór } \Omega \textbf{: } SGSketchUpdate(\tilde{A},S,\Omega,k-1,\alpha) \textbf{;} \\ \textbf{ foreach } r \in \Omega \textbf{ do} \\ & | \tilde{V}^r(k) \leftarrow Eq.3.3 \textbf{;} \\ & | S_r(k) \leftarrow Eq.3.1(\tilde{V}^r(k)) \textbf{;} \\ \textbf{ end} \\ \textbf{ else if } k = 2 \textbf{ then} \\ & | \textbf{ foreach } r \in \Omega \textbf{ do} \\ & | S_r(2) \leftarrow Eq.3.1(\tilde{V}^r) \textbf{;} \\ & \textbf{ end} \\ \textbf{ end} \\ \textbf{ foreach } r \in \Omega \textbf{ do} \\ & | \Omega \leftarrow \Omega \cup \Gamma(r) \textbf{;} \\ \textbf{ end} \\ \end{array}
```

3.6. Porównanie wspieranych operacji i ich złożoności

TODO: Tabela będzie uzupełniona i rozbudowana

Tab. 3.1: Klasyfikacja metod

Metoda	Bezstratność	Złożoność pamięciowa	Grafy ważone	Etc.
		Matrix-based		
TCM	Yes/No	O(V)	Yes/No	
GSS	Yes/No	O(V)	Yes/No	
Scube	Yes/No	O(V)	Yes/No	
Horae	Yes/No	O(V)	Yes/No	
		Embeddings		
Method 3	Yes/No	O(V)	Yes/No	
Method 4	Yes/No	O(V)	Yes/No	
		MDL		
Method 5	Yes/No	O(V)	Yes/No	
Method 6	Yes/No	O(V)	Yes/No	

Tab. 3.2: Złożoność czasowa zapytań

Method	Lossless	Node query	Edge query	Etc.		
Matrix-based						
Method 1	Yes/No	O(V)	O(V)			
Method 2	Yes/No	O(V)	O(V)			
Embeddings						
Method 3	Yes/No	X	O(V)			
Method 4	Yes/No	X	X			
MDL						
Method 5	Yes/No	O(V)	O(V)			
Method 6	Yes/No	O(V)	O(V)			

Szkice danych

4.1. Definicja

Główny przedmiot pracy

5.1. Motywacja

TODO

5.2. Idea

TODO

5.2.1. Przykład

TODO

5.3. Implementacja

TODO

Pseudokod

5.4. Analiza złożoności

5.4.1. Złożoność czasowa

TODO

5.4.2. Złożoność pamięciowa

TODO

5.4.3. Analiza dokładności - jeśli metoda stratna

TODO

Analiza wyników

- 6.1. Architektura eksperymentów
- **6.2.** Eksperyment 1 TODO
- **6.2.1.** Wyniki
- 6.2.2. Wnioski
- 6.3. Eksperyment 2 TODO
- **6.3.1.** Wyniki
- 6.3.2. Wnioski
- **6.4.** Eksperyment 3 TODO
- **6.4.1.** Wyniki
- 6.4.2. Wnioski

Literatura

- [1] K. J. Ahn, S. Guha, A. McGregor. Analyzing graph structure via linear measurements. *Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms*, Jan 2012.
- [2] N. Alon, Y. Matias, M. Szegedy. The space complexity of approximating the frequency moments. *Proceedings of the twenty-eighth annual ACM symposium on Theory of computing STOC '96*, 1996.
- [3] N. Ashrafi-Payaman, M. R. Kangavari, S. Hosseini, A. M. Fander. Gs4: Graph stream summarization based on both the structure and semantics. *The Journal of Supercomputing*, 77(3):2713–2733, 2020.
- [4] S. Cao, W. Lu, Q. Xu. Grarep. *Proceedings of the 24th ACM International on Conference on Information and Knowledge Management*, Oct 2015.
- [5] M. Chen, R. Zhou, H. Chen, H. Jin. Scube: Efficient summarization for skewed graph streams. 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS), 2022.
- [6] M. Chen, R. Zhou, H. Chen, J. Xiao, H. Jin, B. Li. Horae: A graph stream summarization structure for efficient temporal range query. 2022 IEEE 38th International Conference on Data Engineering (ICDE), 2022.
- [7] G. Cormode, S. Muthukrishnan. An improved data stream summary: The count-min sketch and its applications. *Journal of Algorithms*, 55(1):58–75, Apr 2005.
- [8] M. Elkin, C. Trehan. Brief announcement: $(1+\epsilon)$ -approximate shortest paths in dynamic streams. *Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing*, 2022.
- [9] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, J. Zhang. On graph problems in a semi-streaming model. *Theoretical Computer Science*, 348(2–3):207–216, 2005.
- [10] X. Gou, L. Zou, C. Zhao, T. Yang. Fast and accurate graph stream summarization. 2019 IEEE 35th International Conference on Data Engineering (ICDE), 2019.
- [11] A. Grover, J. Leskovec. Node2vec. *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, Aug 2016.
- [12] W. L. Hamilton, R. Ying, J. Leskovec. Inductive representation learning on large graphs. *CoRR*, abs/1706.02216, 2017.
- [13] Z. Jiang, H. Chen, H. Jin. Auxo: A scalable and efficient graph stream summarization structure. *Proceedings of the VLDB Endowment*, 16(6):1386–1398, 2023.
- [14] L. Katz. A new status index derived from sociometric analysis. *Psychometrika*, 18(1):39–43, Mar 1953.

- [15] A. Khan, C. Aggarwal. Query-friendly compression of graph streams. 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2016.
- [16] T. N. Kipf, M. Welling. Semi-supervised classification with graph convolutional networks. *CoRR*, abs/1609.02907, 2016.
- [17] J. Ko, Y. Kook, K. Shin. Incremental lossless graph summarization. *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, Aug 2020.
- [18] P. Li. 0-bit consistent weighted sampling. *Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '15, strona 665–674, New York, NY, USA, 2015. Association for Computing Machinery.
- [19] D. Lian, K. Zheng, V. W. Zheng, Y. Ge, L. Cao, I. W. Tsang, X. Xie. High-order proximity preserving information network hashing. *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, Jul 2018.
- [20] Z. Ma, Y. Liu, Z. Yang, J. Yang, K. Li. A parameter-free approach to lossless summarization of fully dynamic graphs. *Information Sciences*, 589:376–394, Apr 2022.
- [21] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, G. Czajkowski. Pregel. *Proceedings of the 2010 ACM SIGMOD International Conference on Management of data*, Jun 2010.
- [22] G. S. Manku, R. Motwani. Approximate frequency counts over data streams. *Proceedings of the VLDB Endowment*, 5(12):1699–1699, Aug 2012.
- [23] M. Ou, P. Cui, J. Pei, Z. Zhang, W. Zhu. Asymmetric transitivity preserving graph embedding. *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, Aug 2016.
- [24] A. Pacaci, A. Bonifati, M. T. Özsu. Regular path query evaluation on streaming graphs. *Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data*, May 2020.
- [25] B. Perozzi, R. Al-Rfou, S. Skiena. Deepwalk. *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*, Aug 2014.
- [26] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, J. Tang. Network embedding as matrix factorization. *Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining*, Feb 2018.
- [27] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini. The graph neural network model. *IEEE Transactions on Neural Networks*, 20(1):61–80, 2009.
- [28] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei. Line. *Proceedings of the 24th International Conference on World Wide Web*, May 2015.
- [29] N. Tang, Q. Chen, P. Mitra. Graph stream summarization. *Proceedings of the 2016 International Conference on Management of Data*, 2016.
- [30] A. Tsitsulin, D. Mottin, P. Karras, E. Müller. Verse. *Proceedings of the 2018 World Wide Web Conference on World Wide Web WWW '18*, 2018.
- [31] D. Wang, P. Cui, W. Zhu. Structural deep network embedding. *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, Aug 2016.

- [32] J. Wang, T. Zhang, J. Song, N. Sebe, H. T. Shen. A survey on learning to hash, 2017.
- [33] Y. Wang, Q. Wang, H. Koehler, Y. Lin. Query-by-sketch: Scaling shortest path graph queries on very large networks. *Proceedings of the 2021 International Conference on Management of Data*, 2021.
- [34] R. J. Wilson. *Introduction to graph theory*. Prentice Hall, 2015.
- [35] W. Wu, B. Li, L. Chen, C. Zhang. Efficient attributed network embedding via recursive randomized hashing. *Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence*, Jul 2018.
- [36] W. Wu, B. Li, C. Luo, W. Nejdl. Hashing-accelerated graph neural networks for link prediction. *Proceedings of the Web Conference 2021*, Apr 2021.
- [37] R. S. Xin, J. E. Gonzalez, M. J. Franklin, I. Stoica. Graphx. *First International Workshop on Graph Data Management Experiences and Systems*, Jun 2013.
- [38] D. Yang, B. Qu, R. Hussein, P. Rosso, P. Cudré-Mauroux, J. Liu. Revisiting embedding based graph analyses: Hyperparameters matter! *IEEE Transactions on Knowledge and Data Engineering*, 35(11):11830–11845, Nov 2023.
- [39] D. Yang, B. Qu, J. Yang, L. Wang, P. Cudre-Mauroux. Streaming graph embeddings via incremental neighborhood sketching. *IEEE Transactions on Knowledge and Data Engineering*, strona 1–1, 2022.
- [40] D. Yang, P. Rosso, B. Li, P. Cudre-Mauroux. Nodesketch. *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, Jul 2019.
- [41] J. Zhang, Y. Dong, Y. Wang, J. Tang, M. Ding. Prone: Fast and scalable network representation learning. *Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence*, Aug 2019.
- [42] P. Zhao, C. C. Aggarwal, M. Wang. gsketch: On query estimation in graph streams. *Proceedings of the VLDB Endowment*, 5(3):193–204, 2011.
- [43] D. Zhu, P. Cui, D. Wang, W. Zhu. Deep variational network embedding in wasserstein space. *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, Jul 2018.