Segmenter les clients d'un site e-commerce

•••

14 avril 2023 Yoann Poupart Problématique: comprendre et décrire les différents types d'utilisateurs et faire une proposition de contrat de maintenance.

- Feature engineering
- Exploration des données
- Modélisation
- Interprétation
- Maintenance
- Conclusion

Feature engineering

Présentation des données

Données commandes

Agrégation des données

- Articles
 - → Nombre d'articles
- Payement
 - **→** Montant total
- Commentaires
 - → Plus mauvais avis (satisfaction)

Données clients

Agrégation des données

- Date
 - → Récence de l'achat
- Livraison
 - → Retard de la livraison
- Commandes
 - → Nombre de commandes

Exploration des données

Analyse univariée

Corrélations

Corrélations structurelles

Insatisfaction de la livraison

• Insatisfaction d'un produit

• Dégradation de la livraison?

Réduction de dimension - PCA

Réduction de dimension - t-SNE

Modélisation

Contraintes

Entraînement d'un modèle

- Stabilité
 - → Modélisation stable
- Quantité des données
 - → Temps d'entraînement
 - **→** Segmentation pertinente

Segmentation actionnable

- Feature engineering
 - **⇒** Explicabilité des relations
- Forme des clusters
 - → Clusters identifiables (nombre)
 - ➡ Clusters représentatifs (taille)

Comparaison initiale

RFM - Filtrage

Aglomerative Clustering

- Taille des données
 - → Trop lent à entraîner

Birch

- Taille des clusters
 - → Clusters trop éparses

DBSCAN

- Taille des données
 - → Trop lent à entraîner
- Taille des clusters
 - → Clusters trop éparses
- Nombre de clusters
 - → Trop de mini-clusters

RFM - KMeans

RFM - Bisecting KMeans

RFM

KMeans k=4

Biscecting KMeans k=4

RFM

KMeans k=3

Biscecting KMeans k=3

Interprétation

RFM

Nouveaux clients

Anciens clients

• Clients récurrents

• Montant pas utilisé ici

Satisfaction

• Partition satisfaction

Anciens clients

• Clients dépensiers

Clients récurrents

Satisfaction - délai

• Reste des clients

Clients dépensiers

- Clients insatisfaits / délais plus longs
- Ancients clients

MSDQ

• Reste des clients

- Clients insatisfaits / délais plus longs
- Clients dépensiers

• Clients multi-achats

RFM - Localisation

MSDQ - Localisation

Maintenance

Modèle final

Clusters identifiables

Différenciation marketing

Robuste au data drift

MSDQ - KMeans k=4

Data drift

Drift "naturel"

• Impact des tendances

Impact des crises

Drift du montant

Recommandation

Scores ARI et AMI

• Plage de maintenance possible

• Robustesse face au drift

• Instabilité notable

Courbe de maintenance

Conclusion

Conclusion générale

Analyse rétrospective

- Segmentation
 - → Actionnable mais déterminée par les variables retenues
- Maintenance
 - → Fortement dépendante des variables retenues
- Algorithmes
 - → Pousser les comparaisons

Axes d'amélioration

- Feature engineering
 - → Ajouter un encoding numérique des vendeurs/villes
 - → Segmenter selon les habitudes d'achats (différents produits)
- Maintenance
 - → Analyser la segmentation dans le temps

Merci de votre attention.

•••

Des questions?