Solutions for Homework 3

Tong Zhou

PROBLEMS: 3.12, 3.13, 3.24, 3.26 4.7.

PROBLEM 3.12

PROOF. No. Equation (3.52) is suffering from perfect multicollinearity. To remedy this, one has to drop one variable from D_1 , D_2 or the intercept. Equation (3.53) drops the intercept term, while equation (3.54) drops the dummy variable D_2 .

(a) Equations (3.53) and (3.54) are equivalent. Notice that $D_1 + D_2 = \mathbb{1}_n$. Plugging

$$D_2 = \mathbb{1}_n - D_1$$

into (3.53) yields

$$(1) Y = \alpha_2 + D_1(\alpha_1 - \alpha_2) + e.$$

Compare Eq. (1) and equation (3.54), it is not hard to see

$$\mu = \alpha_2$$

$$\phi = \alpha_1 - \alpha_2$$

(b) Observe that

$$1'_n D_1 = n_1$$
$$1'_n D_2 = n_2$$

PROBLEM 3.13

Proof. (a) Let the annihilator matrix

$$M_2 = I_n - D_2 (D_2' D_2)^{-1} D_2'$$
$$= I_n - \frac{1}{n_2} D_2 D_2'$$

where I_n is the identity matrix. Apply M_2 to the regression function, then

$$M_2 \gamma = M_2 D_1 \widehat{\gamma}_1 + M_2 \widehat{u}.$$

Thus

$$\widehat{\gamma}_1 = (D_1' M_2 D_1)^{-1} (D_1' M_2 y)$$

$$= (D_1' D_1)^{-1} D_1' y$$

$$= \overline{Y}_1.$$

Similarly, it can be shown that $\widehat{\gamma}_2 = \overline{Y}_2$.

REMARK 1. An alternative solution is via the fact that D_1 and D_2 are orthogonal, i.e. $D_1'D_2 = D_2'D_1 = 0$. Then there is no need to invoke the annihilator matrix, justified by the Frisch-Waugh-Lovell theorem.

- (b) The two equations can be seen as two residuals from the regressions of Y on (D_1, D_2) and X on (D_1, D_2) respectively.
- (c) By the Frisch-Waugh-Lovell theorem, $\widetilde{\beta}$ and $\widehat{\beta}$ should be algebraically identically.

R codes for problem 3.24 and 3.26 are provided below.

PROBLEM 3.24

- (a) $R^2 = 0.389$ and SSE = 82.5.
- (b) $R^2 = 0.369$ and SSE = 82.5. Slope estimates are equal: 0.144.
- (c) SSE is the same, but R^2 's differ.

PROBLEM 3.26

Characteristic	Beta	95% CI ¹	p- value
(Intercept)	1.208	1.108, 1.307	<0.001
education	0.087	0.082, 0.092	<0.001
exper	0.028	0.022, 0.033	<0.001
exper2	-0.036	-0.046, -0.026	<0.001
d_NE	0.063	-0.011, 0.138	0.10
d_S	-0.066	-0.127, -0.006	0.032
d_W	0.018	-0.042, 0.078	0.6
d_married	0.191	0.147, 0.235	<0.001
d_widow	0.091	0.009, 0.172	0.029
d_sep	0.020	-0.094, 0.133	0.7
¹ CI = Confidence Interval			

Figure 1. $Regression\ result$

PROBLEM 4.7

Proof. (a)

$$\mathbb{E}\left(\widetilde{\boldsymbol{\beta}}_{\mathsf{gls}}\middle|\boldsymbol{X}\right) = \left(\boldsymbol{X}'\boldsymbol{\Sigma}^{-1}\boldsymbol{X}\right)^{-1}\boldsymbol{X}'\boldsymbol{\Sigma}^{-1}\mathbb{E}(\boldsymbol{y}|\boldsymbol{X})$$
$$= \left(\boldsymbol{X}'\boldsymbol{\Sigma}^{-1}\boldsymbol{X}\right)^{-1}\boldsymbol{X}'\boldsymbol{\Sigma}^{-1}\boldsymbol{X}\boldsymbol{\beta}$$
$$= \boldsymbol{\beta}.$$

(b) The variance of the GLS estimator $\widetilde{\beta}_{\mathrm{gls}}$ is:

$$\begin{aligned} \operatorname{Var}\left(\widetilde{\boldsymbol{\beta}}_{\operatorname{gls}}\middle|\boldsymbol{X}\right) &= \left(\boldsymbol{X}'\boldsymbol{\Sigma}^{-1}\boldsymbol{X}\right)^{-1}\boldsymbol{X}'\boldsymbol{\Sigma}^{-1}\operatorname{Var}\left(\boldsymbol{y}\middle|\boldsymbol{X}\right)\boldsymbol{\Sigma}^{-1}\boldsymbol{X}\left(\boldsymbol{X}\boldsymbol{\Sigma}^{-1}\boldsymbol{X}\right)^{-1} \\ &= \left(\boldsymbol{X}'\boldsymbol{\Sigma}^{-1}\boldsymbol{X}\right)^{-1}\boldsymbol{X}'\boldsymbol{\Sigma}^{-1}\boldsymbol{\Omega}\boldsymbol{\Sigma}^{-1}\boldsymbol{X}\left(\boldsymbol{X}\boldsymbol{\Sigma}^{-1}\boldsymbol{X}\right)^{-1} \\ &= c^2\left(\boldsymbol{X}\boldsymbol{\Sigma}^{-1}\boldsymbol{X}\right)^{-1} \\ &= \left(\boldsymbol{X}\boldsymbol{\Omega}^{-1}\boldsymbol{X}\right)^{-1} \end{aligned}$$

(c) Since

$$\mathbf{M}_1 \mathbf{y} = \mathbf{M}_1 \mathbf{X}_1 \boldsymbol{\beta} + \mathbf{M}_1 \mathbf{e} = \mathbf{M}_1 \mathbf{e},$$

and

$$M_{1}y = (I - X (X'\Sigma^{-1}X)^{-1} X'\Sigma^{-1})y$$

$$= y - X (X'\Sigma^{-1}X)^{-1} X'\Sigma^{-1}y$$

$$= \widetilde{\beta}$$

$$= \widetilde{\theta},$$

then $\mathbf{M}_1 \mathbf{e} = \widetilde{\mathbf{e}}$.

(d) Plugging \mathbf{M}_1 of (c) into $\mathbf{M}'_1 \mathbf{\Sigma}^{-1} \mathbf{M}_1$.

(e)

$$\mathbb{E}\left(\tilde{c}^{2}|X\right) = \frac{1}{(n-k)} \mathbb{E}\left(\tilde{e}'\Sigma^{-1}\tilde{e}|X\right)$$

$$= \frac{1}{(n-k)} \mathbb{E}\left(\operatorname{tr}(\tilde{e}'\Sigma^{-1}\tilde{e})|X\right) \quad (\tilde{e}'\Sigma^{-1}\tilde{e} \text{ is a scalar})$$

$$= \frac{1}{(n-k)} \mathbb{E}\left(\operatorname{tr}(\Sigma^{-1}\tilde{e}\tilde{e}')|X\right)$$

$$= \frac{1}{(n-k)} \operatorname{tr}\left(\Sigma^{-1}\mathbb{E}\left(M_{1}ee'M'_{1}|X\right)\right)$$

$$= \frac{1}{(n-k)} \operatorname{tr}\left(\Sigma^{-1}M_{1}\mathbb{E}\left(ee'|X\right)M'_{1}\right)$$

$$= \frac{1}{(n-k)} \operatorname{tr}\left(\Sigma^{-1}M_{1}\Omega M'_{1}\right)$$

$$= \frac{1}{(n-k)} \operatorname{tr}\left(\Sigma M'_{1}\Sigma^{-1}M_{1}\right)$$

$$= \frac{c^{2}}{(n-k)} \operatorname{tr}\left(\Sigma \left(\Sigma^{-1}-\Sigma^{-1}X\left(X'\Sigma^{-1}X\right)^{-1}X'\Sigma^{-1}\right)\right)$$

$$= \frac{c^{2}}{(n-k)} \left[\operatorname{tr}\left(I_{n}\right) - \operatorname{tr}\left(X\left(X'\Sigma^{-1}X\right)^{-1}X'\Sigma^{-1}\right)\right]$$

$$= \frac{c^{2}}{(n-k)} \left(n-\operatorname{tr}\left(\left(X'\Sigma^{-1}X\right)^{-1}\left(X'\Sigma^{-1}X\right)\right)\right)$$

$$= \frac{c^{2}}{(n-k)} (n-k)$$

$$= \frac{c^{2}}{(n-k)} (n-k)$$

Remark 2. We repeatedly use the property

$$tr(AB) = tr(BA)$$

for any matrices A and B if both AB and BA are meaningful.

(f) In terms of unbiasedness, it is a reasonable estimator.

R CODES FOR 3.24 AND 3.26

```
rm(list=ls())
library(tidyverse)
library(knitr)
library(gtsummary) ## Summarize regression results
library(moderndive) ## Summarize regression results
library(haven)
                ## Use function read_stata to load dataset.
### load data
df <- read_stata("~/Dropbox/2021_Spring/Econometrics/hw3/cps09mar.dta")</pre>
# Exercise 3.24 #
###### (a) ########
#### create new variables: log_wage, experience, experience2
df <- df %>% mutate(log_wage = log(earnings/(hours*week)),
                  exper = age - education - 6,
                  exper2 = exper^2/100)
#### subsample
df_subsample <- df %>% filter(race == 4, marital == 7, female == 0, exper < 45)</pre>
#### linear regression
model <- lm(log_wage~education+exper+exper2,data=df_subsample)</pre>
#### obtain R2 and SSE
get_regression_summaries(model) %>%
 mutate(SSE = mse*nobs) %>%
       select(r_squared,SSE) %>%
       kable()
####### (b) #########
### two regressions
model_1 <- lm(log_wage~exper+exper2,data=df_subsample)</pre>
model_2 <- lm(education~exper+exper2,data=df_subsample)</pre>
### obtain residuals
error_1 <- get_regression_points(model_1) %>% select(residual)
error_2 <- get_regression_points(model_2) %>% select(residual)
df_error <- bind_cols(error_1,error_2) %>% setNames(c("error1","error2"))
### regression residual_1 to residual_2
model <- lm(error1~error2,data=df_error)</pre>
### obtain slope estimates
```

```
model %>% tbl_regression(.,intercept=T,
                     estimate_fun = function(x) style_ratio(x,digit=3)
### obtain R2 and SSE
get_regression_summaries(model)%>%
 mutate(SSE = mse*nobs) %>%
 select(r_squared,SSE) %>%
 kable()
# Exercise 3.26 #
#### create new dummy variables
df <- df %>%
    mutate(d_NE = ifelse(region==1,1,0),
          d_S = ifelse(region==3,1,0),
          d_W = ifelse(region==4,1,0),
          d_married = ifelse(marital==1 | marital==2,1,0),
          d_widow= ifelse(marital==4 | marital==5,1,0),
          d_sep = ifelse(marital == 6,1,0)) %>%
          select(-age)
#### do regression and obtain table
df %>% filter(race==1,female==0,hisp==1) %>%
 lm(log_wage~education+exper+exper2+d_NE+d_S+
      d_W+d_married+d_widow+d_sep, data=.) %>%
 tbl_regression(.,intercept=T,
               estimate_fun = function(x) style_ratio(x,digits=3),
              label=list(exper~"exper",exper2~"exper2"))
```