## 1 HMMs

Consider the following Hidden Markov Model.  $O_1$  and  $O_2$  are supposed to be shaded.



| $W_1$ | $P(W_1)$ |
|-------|----------|
| 0     | 0.3      |
| 1     | 0.7      |

| $W_t$ | $W_{t+1}$ | $P(W_{t+1} W_t)$ |
|-------|-----------|------------------|
| 0     | 0         | 0.4              |
| 0     | 1         | 0.6              |
| 1     | 0         | 0.8              |
| 1     | 1         | 0.2              |

| $W_t$ | $O_t$ | $P(O_t W_t)$ |
|-------|-------|--------------|
| 0     | a     | 0.9          |
| 0     | b     | 0.1          |
| 1     | a     | 0.5          |
| 1     | b     | 0.5          |

Suppose that we observe  $O_1 = a$  and  $O_2 = b$ . Using the forward algorithm, compute the probability distribution  $P(W_2|O_1 = a, O_2 = b)$  one step at a time.

(a) Compute  $P(W_1, O_1 = a)$ .

$$P(W_1, O_1 = a) = P(W_1)P(O_1 = a|W_1)$$
  
 $P(W_1 = 0, O_1 = a) = (0.3)(0.9) = 0.27$   
 $P(W_1 = 1, O_1 = a) = (0.7)(0.5) = 0.35$ 

(b) Using the previous calculation, compute  $P(W_2, O_1 = a)$ .

$$\begin{split} &P(W_2, O_1 = a) = \sum_{w_1} P(w_1, O_1 = a) P(W_2|w_1) \\ &P(W_2 = 0, O_1 = a) = (0.27)(0.4) + (0.35)(0.8) = 0.388 \\ &P(W_2 = 1, O_1 = a) = (0.27)(0.6) + (0.35)(0.2) = 0.232 \end{split}$$

(c) Using the previous calculation, compute  $P(W_2, O_1 = a, O_2 = b)$ .

$$P(W_2, O_1 = a, O_2 = b) = P(W_2, O_1 = a)P(O_2 = b|W_2)$$
  
 $P(W_2 = 0, O_1 = a, O_2 = b) = (0.388)(0.1) = 0.0388$   
 $P(W_2 = 1, O_1 = a, O_2 = b) = (0.232)(0.5) = 0.116$ 

(d) Finally, compute  $P(W_2|O_1 = a, O_2 = b)$ .

Renormalizing the distribution above, we have 
$$P(W_2=0|O_1=a,O_2=b)=0.0388/(0.0388+0.116)\approx 0.25$$
  $P(W_2=1|O_1=a,O_2=b)=0.116/(0.0388+0.116)\approx 0.75$ 

3