Permit Number 7715

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emission	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
1	Low Purity Storage (4) Stock Pile	PM PM ₁₀		1.09 0.54
2	Secondary Crusher Baghouse Stack	PM/PM ₁₀	0.69	3.00
3	No. 1 Raymond Mill Baghouse Stack	PM/PM ₁₀ SO ₂ NO _x CO VOC Formaldehyde (5)	0.73 <0.01 0.25 0.21 0.01 <0.01	3.19 0.01 1.10 0.92 0.06 <0.01
4	No. 2 Raymond Mill Baghouse Stack	PM/PM_{10} SO_2 NO_x CO VOC Formaldehyde (5)	0.73 <0.01 0.20 0.17 0.01 <0.01	3.19 0.01 0.88 0.74 0.05 <0.01
5	No. 3 Raymond Mill Baghouse Stack	PM/PM_{10} SO_2 NO_x CO VOC Formaldehyde (5)	1.03 <0.01 0.20 0.17 0.01 <0.01	4.51 0.01 0.88 0.74 0.05 <0.01
6	No. 4 Raymond Mill Baghouse Stack	PM/PM_{10} SO_2 NO_x CO VOC Formaldehyde (5)	0.86 <0.01 0.50 0.42 0.03 <0.01	3.75 0.01 2.19 1.84 0.12 <0.01

Source

Emission

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Air Contaminant

Emission Rates

6A No. 5 Raymond Mill Baghouse Stack SO ₂ <0.01 0.01	Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
Baghouse Stack SO2 <0.01 0.01 NOx 0.50 2.19 CO 0.42 1.84 VOC 0.03 0.12 Formaldehyde (5) <0.01 <0.01 Baghouse Stack SO2 <0.01 0.03 NOx 1.20 5.26 CO 1.01 4.42 VOC 0.07 0.29 Formaldehyde (5) <0.01 <0.01 Table	1 OIIIC 140. (±)	Name (2)	rvaine (o)	18/111	 -
Baghouse Stack SO2 <0.01 0.01 NOx 0.50 2.19 CO 0.42 1.84 VOC 0.03 0.12 Formaldehyde (5) <0.01 <0.01 Baghouse Stack SO2 <0.01 0.03 NOx 1.20 5.26 CO 1.01 4.42 VOC 0.07 0.29 Formaldehyde (5) <0.01 <0.01 Table					
Baghouse Stack SO2					
Baghouse Stack SO2 <0.01 0.01 NOx 0.50 2.19 CO 0.42 1.84 VOC 0.03 0.12 Formaldehyde (5) <0.01 <0.01 Baghouse Stack SO2 <0.01 0.03 NOx 1.20 5.26 CO 1.01 4.42 VOC 0.07 0.29 Formaldehyde (5) <0.01 <0.01 Table					
Baghouse Stack SO2 <0.01 0.01 NOx 0.50 2.19 CO 0.42 1.84 VOC 0.03 0.12 Formaldehyde (5) <0.01 <0.01 Baghouse Stack SO2 <0.01 0.03 NOx 1.20 5.26 CO 1.01 4.42 VOC 0.07 0.29 Formaldehyde (5) <0.01 <0.01 Table					
Baghouse Stack SO2 <0.01 0.01 NOx 0.50 2.19 CO 0.42 1.84 VOC 0.03 0.12 Formaldehyde (5) <0.01 <0.01 Baghouse Stack SO2 <0.01 0.03 NOx 1.20 5.26 CO 1.01 4.42 VOC 0.07 0.29 Formaldehyde (5) <0.01 <0.01 Table					
Baghouse Stack SO2 <0.01 0.01 NOx 0.50 2.19 CO 0.42 1.84 VOC 0.03 0.12 Formaldehyde (5) <0.01 <0.01 Baghouse Stack SO2 <0.01 0.03 NOx 1.20 5.26 CO 1.01 4.42 VOC 0.07 0.29 Formaldehyde (5) <0.01 <0.01 Table					
Baghouse Stack SO2 <0.01 0.01 NOx 0.50 2.19 CO 0.42 1.84 VOC 0.03 0.12 Formaldehyde (5) <0.01 <0.01 Baghouse Stack SO2 <0.01 0.03 NOx 1.20 5.26 CO 1.01 4.42 VOC 0.07 0.29 Formaldehyde (5) <0.01 <0.01 Table	C A	No. 5 Daymand Mill	DM/DM	0.77	2.20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	бА				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Bayriouse Stack			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Formaldehyde (5) <0.01 <0.01 Formaldehyde (5) <0.01 <0.01 Formaldehyde (5) <0.01 <0.01 Formaldehyde (5) <0.01 <0.03 Formaldehyde (5) <0.01 <0.03 Formaldehyde (5) <0.01 <0.03 Formaldehyde (5) <0.01 <0.01 Formaldehyde (5) <0.01 <0.03 Formaldehyde (5) <0.01 <0.03 Formaldehyde (5) <0.01 <0.01 Formaldehyde (5) <0.01 <0.03 Formaldehyde (5) <0.01 <0.01 Formaldehyde (5) <0.01 <0.01					
6B Williams Mill PM/PM₁0 1.05 4.59 Baghouse Stack SO₂ <0.01 0.03 NO₂ 1.20 5.26 CO 1.01 4.42 VOC 0.07 0.29 Formaldehyde (5) <0.01 <0.01 7 No. 1 Calcining Kettle Baghouse Stack SO₂ <0.01 0.03 NO₂ 1.02 4.47 CO 0.86 3.75 VOC 0.06 0.25 Formaldehyde (5) <0.01 <0.01 7A No. 2 Calcining Kettle Baghouse Stack SO₂ <0.01 0.03 NO₂ 1.02 4.47 CO 0.86 3.75 VOC 0.06 0.25 Formaldehyde (5) <0.01 <0.01 7A No. 2 Calcining Kettle Baghouse Stack SO₂ <0.01 0.03 NO₂ 1.20 5.26 CO 1.01 4.42 VOC 0.07 0.29 Formaldehyde (5) <0.01 <0.01 8 No. 3 Calcining Kettle Baghouse Stack SO₂ <0.01 0.03 NO₂ 1.20 5.26 CO 1.01 4.42 VOC 0.07 0.29 Formaldehyde (5) <0.01 0.03 NO₂ 1.20 5.26 CO 1.01 4.42 VOC 0.07 0.29 Formaldehyde (5) <0.01 0.03					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			i offilalderlyde (3)	\0.01	\0.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6B	Williams Mill	PM/PM ₁₀	1.05	4.59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Baghouse Stack			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ŭ		1.20	5.26
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			СО	1.01	4.42
7 No. 1 Calcining Kettle			VOC	0.07	0.29
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			Formaldehyde (5)	<0.01	< 0.01
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	7	No. 1 Calcining Kettle	PM/PM ₁₀	0.60	2.63
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	•				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_ag.reaee etae.r			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			VOC	0.06	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Formaldehyde (5)	<0.01	<0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7Δ	No. 2 Calcining Kettle	PM/PM ₁₀	0.60	2 63
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	173				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Bagnouse Staok			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	No. 3 Calcining Kettle	PM/PM.	0.60	2 63
NO _x 1.20 5.26 CO 1.01 4.42 VOC 0.07 0.29	J				
CO 1.01 4.42 VOC 0.07 0.29		Bagilloade Glack			
VOC 0.07 0.29					
Formaldehyde (5) < 0.01 < 0.01			Formaldehyde (5)	< 0.01	< 0.01

Emission	Source	Air Contaminant	Emission	<u>Rates</u>
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
9	No. 4 Calcining Kettle	PM/PM ₁₀	0.60	2.63
	Baghouse Stack	SO_2	< 0.01	0.03
	ŭ	NO_x	1.20	5.26
		CO	1.01	4.42
		VOC	0.07	0.29
		Formaldehyde (5)	< 0.01	< 0.01
		(-)		***
10	MBR Kettle	PM/PM ₁₀	0.99	4.32
	Baghouse Stack	SO_2	< 0.01	0.04
	G	NO_x	1.50	6.57
		CO	1.26	5.52
		VOC	0.08	0.36
		Formaldehyde (5)	<0.01	<0.01
11	No. 6 Calcining Kettle	PM/PM ₁₀	0.60	2.63
	Baghouse Stack	SO_2	<0.01	0.03
		NO_x	1.20	5.26
		CO	1.01	4.42
		VOC	0.07	0.29
		Formaldehyde (5)	<0.01	<0.01
12	No. 7 Calcining Kettle	PM/PM ₁₀	0.60	2.63
	Baghouse Stack	SO_2	< 0.01	0.03
	-	NO_x	1.02	4.47
		CO	0.86	3.75
		VOC	0.06	0.25
		Formaldehyde (5)	<0.01	<0.01
21	No. 2 Drying Kiln	PM/PM ₁₀	12.23	21.86
		SO_2	0.03	0.12
		NO _x	4.20	18.40
		CO	3.53	15.45
		VOC	34.26	35.51
		Formaldehyde (5)	3.41	4.37
27	No. 2 Silo Baghouse Stack	PM/PM ₁₀	0.26	1.13

Emission	Source	Air Contaminant	Emission Rates	
Point No. (1)	Name (2)	Name (3)	lb/hr	<u>TPY</u>
28	No. 2 End Sawing Equipment Baghouse Stack	PM/PM ₁₀	0.43	1.88
31	Primary Crushing/Screening/ Unloading (4)	PM PM ₁₀	0.11 0.05	0.47 0.22
40	Rock Loading (4) Stock Pile	PM PM ₁₀		0.06 0.03
43	TY-SA-MAN Saw Baghouse Stack	PM/PM ₁₀	0.26	1.13
47	Sluter Machine Baghouse Stack	PM/PM ₁₀	0.51	2.25
59	Primary Storage Pile (4) Stock Pile	PM PM ₁₀		0.30 0.15
60	High Purity Storage Pile (4) Stock Pile	PM PM ₁₀	0.07 0.03	0.29 0.15
62	Calcined Gypsum Storage Baghouse Stack	PM/PM ₁₀	0.44	1.93
63	HRA Ball Mill Baghouse Stack	PM/PM ₁₀	0.03	0.12
63A	HRA System Fugitives (4)	PM/PM ₁₀	0.02	0.09
63B	USG 95 Starch Silo	PM/PM ₁₀	0.10	0.45
65	No. 3 End Sawing Equipment Baghouse Stack	PM/PM ₁₀	0.86	3.75
66	No. 3 Drying Kiln	PM/PM ₁₀ SO ₂ NO _x CO	34.41 0.10 14.60 12.26	31.68 0.42 63.95 53.72

Emission	Source	Air Contaminant	Emission Rates	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
74	Plant Gasoline Tank (1,000 Gallon Capacity)	VOC	0.04	0.18
		VOC Formaldehyde (5)	48.25 4.67	43.26 4.33
67	Stucco System Baghouse Stack	PM/PM ₁₀	0.43	1.88
69	Plant LPG Tank (1,000 Gallon Capacity)	VOC	<0.01	<0.01
70	Plant Diesel Tank (1,000 Gallon Capacity)	VOC	<0.01	<0.01
71	Quarry Gasoline Tank (1,000 Gallon Capacity)	VOC	0.05	0.22
72	Quarry Small Diesel Tank	VOC	<0.01	<0.01

- (1) Emission point identification either specific equipment designation or emission point number from a plot plan.
- (2) Specific point source names. For fugitive sources, use an area name or fugitive source name.
- (3) PM particulate matter, suspended in the atmosphere, including PM₁₀.
 - PM_{10} particulate matter equal to or less than 10 microns in diameter. Where PM is not listed, it shall be assumed that no particulate matter greater than 10 microns is emitted.
 - SO₂ sulfur dioxide
 - NO_x total oxides of nitrogen
 - CO carbon monoxide
 - VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
- (4) Fugitive emissions are an estimate only.
- (5) The combination of all Hazardous Air Pollutants (HAPs) shall not exceed 25 tons per year (tpy) and the

facility shall emit less than 10 tpy of a single HAP.