# Properties of Relations

#### Reflexive Relations

**Definition:** A relation R is **reflexive** if, for all  $x \in A$ ,  $(x, x) \in R$ . In other words, xRx for all  $x \in A$ .

- ► The '=' relation is reflexive, as is the ≤ relation.
- ► The < relation is not reflexive.
- ▶ The "is an ancestor of" relation is not reflexive.
- ▶ The  $\neq$  relation is not reflexive.

### Symmetric Relations

**Definition:** A relation R is **symmetric** if, for all  $x, y \in A$ ,  $xRy \implies yRx$ . In other words, if  $(x, y) \in R$  then  $(y, x) \in R$ .

- The '=' relation is symmetric
- ightharpoonup The  $\leq$  relation is not symmetric
- The "is an ancestor of" relation is not symmetric.
- ▶ The  $\neq$  relation is symmetric.

#### Transitive relations

**Definition:** A relation R is **transitive** if, for all  $x, y, z \in A$ , if xRy and yRz then xRz. In other words, if  $(x,y) \in R$  and (y,z) in R then  $(x,z) \in R$ .

- ► The '=' relation is transitive
- ► The ≤ relation is transitive.
- The "is an ancestor of" relation is transitive.
- The ≠ relation is not transitive.

### Example 11.7

Examine the properties reflexivity, symmetry, and transitivity when  $\mathcal{A}=\{b,c,d,e\}$  and

$$R = \{(b,b), (b,c), (c,b), (c,c), (d,d), (d,b), (b,d), (c,d), (d,c)\}$$

# Example 11.7 continued

## A picture



**Figure 11.1.** The relation R from Example 11.7

## Congruence is reflexive, symmetric, and transitive.

**Proposition:** Let  $n \in \mathbb{N}$ . The relation R on  $\mathbb{Z}$  defined by aRb if and only if  $a \equiv b \pmod{n}$  is reflexive, symmetric, and transitive.