Q-2

State whether the following statement is true or false. Justify your answer.

Q-2. If S is a nonempty subset of \mathbb{R} such that S is bounded above and if $c := \sup S$, then there exists a sequence (x_n) of elements of S such that (x_n) is convergent and $x_n \to c$.

Meaning of the Question.

For True:

We need to show that "for all" sets S such that $S \subset \mathbb{R}$, $S \neq \phi$, There exists "at least one" such sequence (x_n) .

For False:

We'll have to find a counterexample, i.e. we'll have to find a set S such that $S \subset \mathbb{R}$, $S \neq \phi$, for which, we'll have to show that there exists no such sequence (x_n) .

- 1. Every term x_i of the sequence must be in S, i.e. $\forall i \in \mathbb{N}, x_i \in S$
- 2. (x_n) must converge to $c = \sup S$.

[&]quot;Such" sequence means, the sequence (x_n) must have the following properties :

Solution to Q-2

Claim. Given Statement is true.

Proof.

Since $c := \sup S$, by definition, for every $\epsilon > 0$, there exists an element $a \in S$, such that $c - \epsilon < a \le c$

Using this fact, we define the sequence $\{x_n\}$ as follows:

We can use $\epsilon=1/n$, and thus we know that for every $n\in\mathbb{N}$ there exists an element $a\in S$, such that $c-1/n< a\leq c$

We define the n^{th} term of the sequence to be this a.

Thus for every $n \in \mathbb{N}$, we have, $c-1/n < x_n \le c$ As we let $n \to \infty$, using sandwich theorem, we get $x_n \to c$. Since, for every such set S, we have explicitly constructed a sequence (x_n) of elements of S such that (x_n) is convergent and $x_n \to c$, hence the statement is true.

Same idea is used to prove that there exists a "rational" sequence convergent to any given real number.