MIPS 大作业

范元棋 2019211380

一. 完成度和代码说明

功能和结构

5级流水线完整结构

数据相关:

Idex/exmem 数据相关检测和处理。 Idex/memwb 数据相关检测和处理。 Writeback/readreg 数据相关检测和处理。

Load-use 数据相关检测和处理,触发后流水线的空拍插入。

分支跳转,寄存器冲刷:

Branch 提前分支预测

Branch 和 j jal jr 指令的跳转,冲刷流水线处理

控制逻辑的布尔逻辑提取 (非 case 语句)

支持的指令

lw sw add sub and xor or slt addi addiu andi ori xori lui sll srl beq bne j jal ir

代码说明

tb.v	Test 文件
mipscore.v	顶层设计
pc_next_mux.v	pc 更新逻辑,多路选择 pc+4/branch 地址/jump 地址/jr 地址
Registers.v	寄存器堆
load_use_detect.v	Load-use 相关检测以及
ctrl.v	控制码和 aluop 的产生逻辑
cache.v	Cache,不参与综合,包含了汇编代码。
branch_detect.v	分支提前预测逻辑,进行 branch 指令是否跳转的判断
ALU_all.v	Alu 各个功能的实现
adder.v	加法器

二. 控制图和控制逻辑

指令/控制码	imm_ho	alu 操作	overflo (Regwrit 1	RegDst 0	Memto 1	Memwri (Memrea 1	AlusrcA 0	AlusrcB(1	PcSrc (IF.Flush (
W	1	加法	0	Г)	1	0	1)	1	0	0
SW	1	加法	0	0	×	×	1	0	0	1	0	0
add	×	加法	1	1	1	0	0	0	0	0	0	0
dus	×	减法	1	1	1	0	0	0	0	0	0	0
and	×	与	0	1	1	0	0	0	0	0	0	0
or	×	或	0	Ъ	1	0	0	0	0	0	0	0

xor	×	xor	0	1	1	0	0	0	0	0	0	0
slt	×	比较	0	Н	1	0	0	0	0	0	0	0
addi	1	加法法	1	Ъ	0	0	0	0	0	1	0	0
addiu	1	加法	0	Ъ	0	0	0	0	0	1	0	0
andi	0	与	0	Ľ	0	0	0	0	0	1	0	0
ori	0	或	0	Ъ	0	0	0	0	0	1	0	0
xori	0	xor	0	Ľ	0	0	0	0	0	1	0	0
lui	1	移位/fix	0	1	0	0	0	0	0	1	0	0
SII	×	移位^^	0	Ъ	1	0	0	0	1	0	0	0
srl	×	移位>>	0	Ъ	1	0	0	0	1	0	0	0
beq	×	×	0	0	×	×	0	0	0	0	1/0	1/0
bne	×	×	0	0	×	×	0	0	0	0	1/0	1/0

	×	×	0	0	×	×	0	0	×	×	2	1
jal	×	×	0	1	2 (31)	2 (pc in	0	0	×	×	2	1
Ϋ́	×	×	0	0	×	×	0	0	×	×	3	1

• 布尔逻辑:

Overflowck	(inst[29] & (~ inst[28]) & (~inst[27]) & (~ inst[26])) (((~inst[29]) &
(是否进行溢	(~inst[28]) &(~inst[27]) &(~inst[26])) & ((inst[5])&(~ inst[3])&(~
出检测)	inst[2])));
regwrite	~((inst[31] & inst[29]) ((~inst[31]) & (~inst[30]) &
	(~inst[29])&inst[28]) ((~inst[28]) & inst[27] & (~inst[26]))
	(((~inst[29]) & (~inst[28]) &(~inst[27]) &(~inst[26])) &
	((~inst[5]) & (inst[3])));
regdst[0]	(~inst[29]) & (~inst[28]) &(~inst[27]) &(~inst[26]);
regdst[1]	(~ inst[31])&(~ inst[29])&(inst[27])&(inst[26]);
memtoreg[0]	(inst[31]) & (~ inst[29]);
memtoreg[1]	(~inst[31])&(~inst[29])&(~inst[28])&(inst[26]);
memwrite	(inst[31])&(~ inst[30])&(inst[29]);
memread	(inst[31])&(~ inst[29]);
alusrcA	((~inst[29]) & (~inst[28]) &(~inst[27]) &(~inst[26])) & ((~inst[5]) &
	(~inst[3]))
alusrcB	((inst[31])) ((~ inst[31])&(~inst[30])&(inst[29]));
pcsrc[0]	((~ inst[29]) & (inst[28]) &(~inst[27])) (((~inst[29]) &
	(~inst[28]) &(~inst[27]) &(~inst[26]))&((~inst[5])&(inst[3])))
pcsrc[1]	((~inst[31])&(~inst[28])&(inst[27])) (((~inst[29]) & (~inst[28])
	&(~inst[27]) &(~inst[26])) & ((~ inst[5])&(inst[3])));
aluop[0]	(((~inst[29]) & (~inst[28]) &(~inst[27]) &(~inst[26])) & ((~
	inst[5])&(~inst[3])&(~ inst[2])&(~inst[1]))) (((~inst[29]) &
	(~inst[28]) &(~inst[27]) &(~inst[26])) & ((inst[2])&(~
	inst[1])&(inst[0]))) (((~inst[29]) & (~inst[28]) &(~inst[27])
	&(~inst[26])) & ((inst[5])&(~inst[3])&(~ inst[2])&(inst[1])))
	(((~inst[29]) & (~inst[28]) &(~inst[27]) &(~inst[26])) &
	((inst[5])&(inst[3]))) ((inst[29])&(inst[28])&(~inst[27])&(inst[26]));
aluop[1]	(((~inst[29]) & (~inst[28]) &(~inst[27]) &(~inst[26])) & ((inst[2])
	& (~ inst[1]))) (((~inst[29]) & (~inst[28]) &(~inst[27])
	&(~inst[26])) & ((~ inst[5])&(~ inst[3])&(~ inst[2])&(~ inst[1])))
	((~inst[31]) & (inst[29]) & (inst[28]) & (~inst[27]))
	((inst[29]) & (inst[28]) & (inst[27]) & (inst[26]));

aluop[2]	(((~inst[29]) & (~inst[28]) &(~inst[27]) &(~inst[26])) &
	((inst[5])&(inst[2])&(inst[1])&(~ inst[0]))) (((~inst[29]) &
	(~inst[28]) &(~inst[27]) &(~inst[26])) &
	((inst[5])&(inst[3])&(inst[1])&(~ inst[0]))) (((~inst[29]) &
	(~inst[28]) &(~inst[27]) &(~inst[26])) & ((~inst[5])&(~ inst[3])&(~
	inst[1]))) ((inst[29])&(inst[28])&(inst[27]));
aluop[3]	((~inst[29]) & (~inst[28]) &(~inst[27]) &(~inst[26])) & ((~ inst[5])&(~
	inst[2])&(inst[1])&(~ inst[0]));
how_imm	~((~(inst[27] & inst[26])) & inst[29] &inst[28]);
(立即数的扩	
展方式: 0 扩	
展或者符号位	
扩展)	

三. AES 汇编

汇编代码实现了密钥扩展和 aes 算法,详细见附件。

Data_cache 中,数据存储如下

0-255 :s 盒空间

258 : 数据初始地址259-274 : 数据空间

275-450 : 密钥空间 其中 275-290 为第一组, 由密钥扩展产生的密钥依次向后存储

451 : 密钥初始地址

452 -462 : Rcon

四. 仿真结果

密钥扩展消耗 450 周期 加密 aes 消耗 5463 周期

五. 综合结果

面积: Total cell area: 242710.779196

延时:

 data required time:
 2.29

 data arrival time
 -2.29

 slack (MET)
 0.00

功耗: Total Dynamic Power = 68.3781 mW

面积延时乘积: 242710.779196*2.29=555807.684

附:

时间报告

Point	Incr Path
clock clk (rise edge)	0.00 0.00
clock network delay (ideal)	0.00 0.00
exmem rt reg[0]/CK (DFFRHQX4)	0.00 # 0.00 r
exmem rt reg[0]/Q (DFFRHQX4)	0.20 0.20 r
U6585/Y (NAND2BX4)	0.11 0.31 r
U6642/Y (NOR3X4)	0.05 0.36 f
U6644/Y (NOR2X4)	0.09 0.45 r
U6662/Y (NAND2X4)	0.04 0.49 f
U6567/Y (INVX3)	0.05 0.54 r
U6615/Y (NAND2X4)	0.04 0.58 f
U6641/Y (NAND2X2)	0.08 0.67 r
U6521/Y (CLKINVX8)	0.06 0.73 f
U6572/Y (INVX8)	0.07 0.80 r
U6594/Y (NOR2X4)	0.04 0.84 f
U6557/Y (NOR3X4)	0.11 0.95 r
U6262/Y (MXI2X4)	0.08 1.02 f
alu_full/data2[8] (ALU_all)	0.00 1.02 f
alu_full/alu_full_inadder/b[8] (ALU_3	32bit_adder) 0.00 1.02 f
alu_full/alu_full_inadder/U49/Y (XO	R2X4) 0.15 1.17 r
alu_full/alu_full_inadder/fst/b[8] (un	signed_adder_32bit_1) 0.00 1.17 r
alu_full/alu_full_inadder/fst/ad2/b[0] (adder4bits_6) 0.00 1.17 r
alu_full/alu_full_inadder/fst/ad2/U8	/Y (NAND2X4) 0.03 1.21 f
alu_full/alu_full_inadder/fst/ad2/U2	4/Y (NAND2BX4) 0.10 1.31 f
alu_full/alu_full_inadder/fst/ad2/U3	5/Y (CLKINVX4) 0.04 1.35 r
alu_full/alu_full_inadder/fst/ad2/U3	6/Y (NOR2X4) 0.03 1.38 f
alu_full/alu_full_inadder/fst/ad2/U3	7/Y (NOR2X4) 0.06 1.44 r
alu_full/alu_full_inadder/fst/ad2/U1	6/Y (NOR2X4) 0.04 1.48 f
alu_full/alu_full_inadder/fst/ad2/U3	8/Y (OAI2BB1X4) 0.05 1.52 r
alu_full/alu_full_inadder/fst/ad2/cio	_
alu_full/alu_full_inadder/fst/ad3/ci (_ '
alu_full/alu_full_inadder/fst/ad3/U3	
alu_full/alu_full_inadder/fst/ad3/cio	_
alu_full/alu_full_inadder/fst/ad4/ci (_ '
alu_full/alu_full_inadder/fst/ad4/U3	
alu_full/alu_full_inadder/fst/ad4/cio	_
alu_full/alu_full_inadder/fst/ad5/ci (
alu_full/alu_full_inadder/fst/ad5/U3	
alu_full/alu_full_inadder/fst/ad5/cio	<u> </u>
alu_full/alu_full_inadder/fst/ad6/ci (_ '
alu_full/alu_full_inadder/fst/ad6/U3	
alu_full/alu_full_inadder/fst/ad6/cio	<u> </u>
alu_full/alu_full_inadder/fst/ad7/ci (_
alu_full/alu_full_inadder/fst/ad7/U1	9/Y (OAI2BB1X4) 0.10 2.03 r

alu_full/alu_full_inadder/fst/ad7/co[3]	s_1)	0.	00	2.0	3 r		
alu_full/alu_full_inadder/fst/co[31] (ur	nsigned_add	der_32bi	t_1)	0.0	00	2.03 r	
alu_full/alu_full_inadder/U23/Y (INVX	1)	0.03	2.06 f				
alu_full/alu_full_inadder/U27/Y (NANI	D2X1)	0.05	2.11	r			
alu_full/alu_full_inadder/U26/Y (NANI	D2X1)	0.04	2.15	f			
alu_full/alu_full_inadder/U3/Y (MXI2X	1)	0.07	2.22 r				
alu_full/alu_full_inadder/overf (ALU_3	2bit_adder)	0.00	2.2	2 r			
alu_full/overflow (ALU_all)	0.00	2.22	r				
U6579/Y (AOI21XL)	0.06	2.29	f				
exmem_regwrite_reg/D (DFFRX4)		0.00	2.29 f				
data arrival time	2.	.29					
clock clk (rise edge)	2.44	2.44					
clock network delay (ideal)	0.00	2.44					
exmem_regwrite_reg/CK (DFFRX4)	0.00 2	2.44 r					
library setup time	-0.15	2.29					
data required time		2.29					
data required time		2.29					
data arrival time	-2	29					
slack (MET)	0.0	00					

功耗报告:

Global Operating Voltage = 1.8

Power-specific unit information:

Voltage Units = 1V

Capacitance Units = 1.000000pf

Time Units = 1ns

Dynamic Power Units = 1mW (derived from V,C,T units)

Leakage Power Units = 1pW

Cell Internal Power = 65.9454 mW (96%)

Net Switching Power = 2.4326 mW (4%)

Total Dynamic Power = 68.3781 mW (100%)

Cell Leakage Power = 647.8627 nW

面积报告

Number of ports: 164
Number of nets: 1952
Number of cells: 1675
Number of references: 100

Combinational area: 137859.323851 Noncombinational area: 104851.455345

Net Interconnect area: undefined (No wire load specified)

Total cell area: 242710.779196
Total area: undefined