Algoritmia e Estruturas de Dados Ficha 01

ESTRUTURAS DE CONTROLO SEQUENCIAIS

1. Elabore um algoritmo que, dada uma medida em polegadas apresente o resultado em mm e em cm.

Nota: 25,4 mm = 1 polegada

Exemplo: Nº de Polegadas: 10 mm = 254 mm, cm = 25,4 cm

2. Escreva um algoritmo que calcule a taxa de inflação de um produto, dado o seu custo actual e o custo no ano anterior.

Exemplo: custo atual = 1150 Custo anterior = 1000 Taxa inflação = 15%

3. Escreva um algoritmo que leia uma temperatura em º Celsius e imprima o equivalente em º Fahrenheit

Fórmula de conversão: ºF = 9/5 * ºC + 32

4. Escreva um algoritmo que a partir de um determinado número de segundos calcula o número de horas, minutos e segundos correspondentes. Conforme o seguinte exemplo:

$$8053s = 2h + 14m + 13s$$

5. O índice de massa corporal (IMC) de um indivíduo é obtido dividindo-se o seu peso (em Kg) pela sua altura (em m) ao quadrado. Assim, por exemplo, uma pessoa de 1,67m e pesando 55kg tem IMC igual a 20,14.

$$IMC = \frac{peso}{altura^2} = \frac{55kg}{1,67m*1,67m} = 20,14$$

Escreva um algoritmo que solicite ao utilizador a indicação do seu peso em kg e da sua altura em metros, e calcule o respetivo índice de massa corporal.

Algoritmia e Estruturas de Dados Ficha 01

ESTRUTURAS DE CONTROLO CONDICIONAIS

- 6. Escreva um algoritmo que determine se um dado número é par ou ímpar.
- 7. Escreva um algoritmo que permita classificar um triângulo lendo a medida dos 3 lados

(equilátero: todos iguais; isósceles: dois iguais; escaleno: todos diferentes)

8. Escreva um algoritmo que simule um pequeno computador de bordo automóvel, que calcule o consumo médio de um automóvel a partir do número de quilómetros efectuados e da quantidade de combustível gasto.

Se o consumo médio for superior a 5 l/100 Km, deve imprimir a mensagem "consumo elevado";

Se o consumo médio for inferior a 4,5 l/100Km deve imprimir a mensagem "consumo baixo";

Noutras situações imprimir "consumo normal".

9. Escreva um algoritmo que implemente um simulador do peso ideal (meramente indicativo!). O algoritmo deve pedir ao utilizador o género (masculino ou feminino)

e a altura (em cm). A simulação do peso ideal é dada pela seguinte formula:

Peso ideal = (h-100) - (h-150)/k

Sendo k = 2 para o género feminino e k=4 para o género masculino;

h é a altura em cm

10. Escreva um algoritmo que implemente um simulador de índice de massa corporal (IMC).

O algoritmo deve solicitar ao utilizador a introdução do peso (em kg) e da altura (em m).

O cálculo do IMC é dado pela seguinte fórmula:

IMC = peso / altura²

De acordo com o IMC obtido, o algoritmo deve indicar o grau de obesidade do indivíduo, de acordo com a seguinte tabela:

Algoritmia e Estruturas de Dados Ficha 01

IMC	Classificação	
< 18,5	Abaixo do Peso	
18,6 – 24,9	Saudável	
25 – 29,9	<u>Sobrepeso</u>	
30,0 – 34,9	Obesidade Grau I	
35,0 – 39,9	Obesidade Grau II (severa)	
≥ 40,0	Obesidade Grau III (mórbida)	

http://pt.wikipedia.org/wiki/%C3%8Dndice_de_massa_corporal_ou http://www.19bimtz.eb.mil.br/imc.htm

- 11. Escrever um algoritmo que escreva o dia da semana correspondente a um dado valor, (1-Domingo,...,7-Sábado). Deve considerar a situação de "Valor não válido".
- 12. Desenvolva um algoritmo que simule o seu peso noutro Planeta. O algoritmo deverá ler o seu peso na Terra, assim como o código identificador de outro planeta e calcular o peso respetivo nesse planeta, de acordo com a seguinte tabela:

Código Planeta	Planeta	Gravidade Relativa
1	Mercúrio	0,37
2	Vénus	0,88
3	Marte	0,38
4	Júpiter	2,64
5	Saturno	1,15
6	Urano	1 17

Fonte: http://www.eiclicaqui.com/superdiver/calculadoras/default.htm

A fórmula para cálculo do peso noutro planeta, considerando a gravidade relativa de cada um deles, é a seguinte:

Peso no Planeta = Peso na Terra * Gravidade