Modes de convergence

Compléments à la fiche nº 5

Cette petite fiche récapitule le vocabulaire associé aux différentes façon de converger pour une suite ou une série. On peut à chaque fois se ramener à la convergence d'une suite **positive** vers 0, ce qu'on notera $a_n \to 0$.

Suite / série numérique

 $(u_n)_n$ est une suite de \mathbb{K} , avec $\mathbb{K} = \mathbb{R}$ ou de $\mathbb{K} = \mathbb{C}$.

 $\sum u_n$ est une série numérique de terme général u_n . En notant $S_n = \sum_{k=0}^n u_k$, $(S_n)_n$ est la suite numérique des sommes partielles de $\sum u_n$.

- La suite $(u_n)_n$ converge : il existe $\ell \in \mathbb{K}$ tel que $[|u_n \ell| \to 0]$. On dit que $(u_n)_n$ converge vers $\ell = \lim u_n$.
- La série $\sum u_n$ converge : il existe $S \in \mathbb{K}$ tel que $S = \mathbb{K}$ tel que $S = \sum_{n=0}^{+\infty} u_n$. On dit que $S = \sum_{n=0}^{+\infty} u_n$.
- La série $\sum u_n$ converge absolument : la série positive $\sum |u_n|$ converge.

Théorème : La convergence absolue implique la convergence.

Suite / série vectorielle en dimension finie

E est un \mathbb{K} -espace vectoriel **de dimension finie** (exemple : $E = \mathcal{M}_n(\mathbb{K})$). $\|\cdot\|$ est une norme quelconque sur E (elles sont toutes équivalentes).

 $(u_n)_n$ est une suite de E.

 $\sum u_n$ est une série vectorielle de terme général u_n . En notant $S_n = \sum_{k=0}^n u_n$, $(S_n)_n$ est la suite vectorielle des sommes partielles de $\sum u_n$.

- La suite $(u_n)_n$ converge : il existe $\ell \in E$ tel que $[||u_n \ell|| \to 0]$. On dit que $(u_n)_n$ converge vers $\ell = \lim u_n$ cela ne dépend pas de la norme utilisée.
- La série $\sum u_n$ converge : il existe $S \in E$ tel que $||S_n S|| \to 0$. On dit que $\sum u_n$ converge et a pour somme $S = \sum_{n=0}^{+\infty} u_n$.
- La série $\sum u_n$ converge absolument : la série positive $\sum ||u_n||$ converge cela ne dépend pas de la norme utilisée.

Théorème : La convergence absolue implique la convergence.

Suite / série de fonctions réelles ou complexes

I est un intervalle de \mathbb{R} . Si $g:I\to\mathbb{K}$ est une fonction bornée, on notera $\|g\|_{\infty}=\sup_{x\in I}|g(x)|$. Pour $a,b\in I$, avec a< b, on notera, lorsque c'est possible :

$$\|g\|_{\infty}^{[a,b]} = \sup_{x \in [a,b]} |g(x)| \qquad \|g\|_{1}^{[a,b]} = \int_{a}^{b} |f(t)| \mathrm{d}t \qquad \|g\|_{2}^{[a,b]} = \sqrt{\int_{a}^{b} |f(t)|^{2} \mathrm{d}t}$$

.

 $(f_n)_n$ est une suite de fonctions définies sur I et à valeurs numériques : $f_n: I \to \mathbb{K}$.

 $\sum f_n$ est une série de fonctions de terme général f_n . En notant $S_n = \sum_{k=0}^n f_n$, $(S_n)_n$ est la suite de fonctions des sommes partielles de $\sum f_n$.

- La suite $(f_n)_n$ converge simplement sur I: il existe une fonction $f: I \to \mathbb{K}$ telle que pour tout $x \in I$, $|f_n(x) f(x)| \to 0$. On dit que $(f_n)_n$ converge simplement vers f sur I, f est appelée limite (simple) de la suite $(f_n)_n$.
- La série $\sum f_n$ converge simplement sur I: il existe une fonction $S: I \to \mathbb{K}$ telle que pour tout $x \in I$, $|S_n(x) S(x)| \to 0$. S est appelée somme (simple) de la série $\sum f_n$.
- La suite $(f_n)_n$ converge uniformément sur I: il existe une fonction $f: I \to \mathbb{K}$ telle que $||f_n f||_{\infty} \to 0$. On dit que $(f_n)_n$ converge uniformément vers f sur I, f est appelée limite (uniforme) de la suite $(f_n)_n$.
- La série $\sum f_n$ converge uniformément sur I: il existe une fonction $S:I\to\mathbb{K}$ telle que $\|S_n-S\|_{\infty}\to 0$. S est appelée somme (uniforme) de la série $\sum f_n$.
- La série $\sum f_n$ converge normalement sur I: La série numérique positive $\sum ||f_n||_{\infty}$ est convergente.

Remarque : On a la convergence normale ou uniforme **sur tout segment** en remplaçant $\|\cdot\|_{\infty}$ ci-dessus par $\|\cdot|_{\infty}^{[a,b]}$ pour tout $a,b\in I$ tels que a< b.

Théorèmes

- De façon générale la convergence normale ou uniforme sur I implique la convergence normale ou uniforme sur tout segment.
- $(f_n)_n$ converge uniformément sur tout segment de I vers $f \Rightarrow (f_n)_n$ converge simplement sur I vers f.
- $\sum f_n$ converge normalement sur tout segment de $I \Rightarrow \sum f_n(x)$ converge absolument pour tout $x \in I \Rightarrow \sum f_n$ converge simplement sur I.
- $\sum f_n$ converge normalement sur I (resp. sur tout segment de I) $\Rightarrow \sum f_n$ converge uniformément sur I (resp. sur tout segment de I). (la preuve consiste à introduire d'abord la somme $S: I \to \mathbb{K}$ grâce la convergence simple, ce qui permet ensuite de considérer les restes $R_n = S S_n$ pour montrer la convergence uniforme de la suite $(R_n)_n$ vers la fonction nulle)

D'autres modes de convergences (encore!) : si les f_n sont continues sur [a,b] :

- La suite $(f_n)_n$ converge en moyenne sur [a, b]: il existe $f: [a, b] \to \mathbb{K}$ telle que $[\|f_n f\|_1 \to 0]$. Autrement dit $\int_a^b |f_n(t) - f(t)| dt \to 0$.
- La suite $(f_n)_n$ converge en moyenne quadratique sur [a,b]: il existe $f:[a,b] \to \mathbb{K}$ telle que $\|f_n f\|_2 \to 0$. Autrement dit $\int_a^b |f_n(t) f(t)|^2 dt \to 0$.

Remarque : la convergence uniforme sur [a,b] implique la convergence en moyenne quadratique, qui implique à son tour la convergence en moyenne. Les réciproques sont fausses. Cela résulte de la comparaison des normes :

$$\forall f \in \mathcal{C}([a, b], \mathbb{K}), \qquad \|f\|_1^{[a, b]} \leqslant \sqrt{b - a} \|f\|_2^{[a, b]} \leqslant (b - a) \|f\|_{\infty}^{[a, b]}$$

On n'a pas cependant des inégalités dans l'autre sens : aucune de ces normes ne sont équivalentes entre elles. Préciser le mode de convergence our la norme utilisée pour une suite ou série de fonctions est essentiel!