Example 120 : As shown in Figure 3, \triangle side BC of ABC extends to D, and the bisector of \angle BAC intersects BC at K. Prove that \angle ABD + \angle ACD =2 \angle AKD.

$$\frac{\frac{B-A}{B-D}\frac{C-A}{C-D}}{\left(\frac{K-A}{K-D}\right)^2} = \frac{\frac{A-C}{A-K}}{\frac{A-K}{A-B}} \frac{\left(D-K\right)^2}{\left(B-D\right)\left(C-D\right)},$$