

São Carlos, 26 de março de 2020

SEL0365 – Linhas de Transmissão de Energia Elétrica

ESTUDO DIRIGIDO – PARÂMETROS LONGITUDINAIS – RESISTÊNCIA E INDUTÂNCIA PRÓPRIA

Questão 1. A Figura 1 apresenta a silhueta de uma linha de distribuição de energia elétrica. As dimensões estão em milímetros e a altura média dos condutores em relação ao solo é de 10 metros. O cabo é do tipo *Merlin* e os dados construtivos desse cabo estão apresentados na Figura 2. Nessas condições, determine a resistência série e a indutância própria dos condutores fase.

Figura 1 - Silhueta de linha de distribuição.

	Cross-Section Area				Diameter			Approx. Current- Carrying Capacity	Resistance (mΩ/km)					60 Hz Reactances (Dm = 1 m)	
Code	Total (mm²)	Aluminum (kcmil) (mm²)		Stranding Al/Steel	Conductor (mm)	Core (mm)	Layers	(Amperes)	DC 25°C	25°C	C (60 Hz)	75°C	GMR (mm)	X_1 (Ω/km)	X_0 (M Ω /km)
Merlin	180	336	170	18/1	16.46	3.48	2	530	173.0	173.1	190.1	207.1	6.74	0.377	0.220

Figura 2 - Dados do cabo Merlin.