LCN: Lichen interaction network study

MK Lau

```
### Loading data objects
### Data notes:
## Trees were removed from the analysis genotype RL6 and N1.31
## No physciods
## Lecanoras merged
# Loading data
xgal.size <- read.csv(".../data/lcn/ONC_Xgal_SizeData_May2011.csv")</pre>
garden.data <- read.csv("../data/lcn/LCO_data_ONC_PIT.csv")</pre>
# rm genotype RL6 and N1.31
garden.data <- garden.data[garden.data$Geno != "RL6", ]</pre>
garden.data <- garden.data[garden.data$Tree != "N1.31", ]</pre>
# separate onc
garden.data[, 1] <- as.character(garden.data[, 1])</pre>
g1 <- substr(garden.data[, 1], 2, 2)
g1[g1 != "P"] <- "onc"
onc <- garden.data[g1 == "onc", ]</pre>
colnames(onc)[which(colnames(onc) == "Ls")] <- "Lh"</pre>
pit <- garden.data[g1 == "P", ]</pre>
# tree overlap between years
unique(onc$Tree[onc$Year == "2010"]) %in%
 unique(onc$Tree[onc$Year == "2011"])
## [15] TRUE TRUE TRUE TRUE
unique(onc$Tree[onc$Year == "2011"]) %in%
 unique(onc$Tree[onc$Year == "2010"])
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [34] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
## [56] TRUE TRUE
# Checking the data
if (!(all(table(onc[, 1]) == 100))) {
 for (i in 1:1000) {
   print("Warning: check input data!!!")
}
# Separate trees
colnames(onc)[7:ncol(onc)] <- substr(colnames(onc)[7:ncol(onc)], 1, 2)</pre>
onc.q <- split(onc, paste(onc[, 1], onc[, 2]))</pre>
onc.q <- lapply(onc.q, function(x) x[, 7:ncol(x)])</pre>
# pit
colnames(pit)[7:ncol(pit)] <- substr(colnames(pit)[7:ncol(pit)], 1, 2)</pre>
pit.q <- split(pit, paste(pit[, 1], pit[, 2]))</pre>
pit.q <- lapply(pit.q, function(x) x[, 7:ncol(x)])</pre>
```

```
# Get genotype
onc.geno <- unlist(sapply(</pre>
  names(onc.q),
  function(x) strsplit(x, split = " ")[[1]][2]
pit.geno <- unlist(sapply(</pre>
  names(pit.q),
  function(x) strsplit(x, split = " ")[[1]][2]
))
# Xqal size data
xgs <- xgal.size[-1:-7, -(ncol(xgal.size) - 1):-ncol(xgal.size)]</pre>
xgs.cols <- xgal.size[7, -(ncol(xgal.size) - 1):-ncol(xgal.size)]</pre>
colnames(xgs) <- gsub("\\#", "", as.character(unlist(xgs.cols)))</pre>
xgs <- xgs[, 1:13]
xgs <- apply(xgs, 2, gsub, pattern = "\\,", replacement = "")</pre>
xgs.dim <- xgs[, "Measurement"]</pre>
xgs.geno <- xgs[, "Genotype"]</pre>
xgs.tree <- xgs[, "Tree"]</pre>
xgs <- xgs[, grep("Thallus", colnames(xgs))]</pre>
# fix genotypes
# t6
xgs.geno[grep("T6", xgs.geno)] <- "T6"
xgs.geno[grep("H10", xgs.geno)] <- "H-10"
# Coercing to numeric
xgs <- apply(xgs, 2, as.numeric)</pre>
# Dealing with NA values
xgs.geno <- xgs.geno[grep("Dimension", xgs.dim)]</pre>
xgs.tree <- xgs.tree[grep("Dimension", xgs.dim)]</pre>
xgs <- xgs[grep("Dimension", xgs.dim), ]</pre>
xgs.dim <- xgs.dim[grep("Dimension", xgs.dim)]</pre>
# Convert to cm
xgs <- xgs * 0.1
xgs.ellipse <- pi * xgs[xgs.dim == "Dimension 1", ] *</pre>
  xgs[xgs.dim == "Dimension 2", ]
xgs.geno <- xgs.geno[xgs.dim == "Dimension 1"]</pre>
xgs.tree <- xgs.tree[xgs.dim == "Dimension 1"]</pre>
# package all xgs related data
xgs.data <- data.frame(</pre>
  tree = xgs.tree, geno = xgs.geno,
  mean.thallus = apply(xgs.ellipse, 1,
    mean.
   na.rm = TRUE
  ),
  median.thallus = apply(xgs.ellipse, 1,
    median.
    na.rm = TRUE
  ),
  xgs.ellipse
# remove trees not done (i.e. all NA)
xgs.data <- xgs.data[apply(</pre>
  xgs.data[, grep(
    "Thallus",
```

```
colnames(xgs.data)
  )], 1,
  function(x) !(all(is.na(x)))
),]
# Roughness in the Garden
rough <- read.csv("../data/lcn/ONC_raw_roughness.csv")</pre>
# Isolate roughness
rough <- rough[, 1:5]</pre>
# Isolate north quadrats
rough <- rough[grepl("North", rough[, 3]), ]</pre>
# Average roughness
avg.rough <- tapply(rough[, 5], rough[, 1], mean)</pre>
r.tree <- names(avg.rough)</pre>
r.tree <- sub("-", "\\.", r.tree)</pre>
r.tree <- sub("\\.0", "\\.", r.tree)
names(avg.rough) <- r.tree</pre>
# match roughness to to ses values
load("../data/lcn/lcn_onc_ses.rda")
onc.ses <- unlist(os[, 1])</pre>
onc.ses[is.na(onc.ses)] <- 0
names(onc.ses) <- rownames(os)</pre>
if (!(all(names(onc.ses) == names(onc.q)))) {
  print("Holy crap!")
ses.tree <- as.character(sapply(</pre>
  names(onc.ses),
  function(x) unlist(strsplit(x, split = " "))[1]
))
onc.rough <- avg.rough[match(ses.tree, r.tree)]</pre>
if (!(all(ses.tree == names(onc.rough)))) {
  print("Holy Crap!")
# Lichen Network Models
# onc
cn.onc <- lapply(split(onc[, -1:-6], onc[, "Tree"]), coNet,</pre>
  ci.p = 95
cn.sign.onc <- lapply(split(onc[, -1:-6], onc[, "Tree"]), coNet,</pre>
  ci.p = 95
)
cn.d.onc <- distNet(cn.onc, method = "euclidean")</pre>
# pit
cn.pit <- lapply(</pre>
  split(pit[, -1:-6], pit[, "Tree"]),
  coNet, ci.p = 95
cn.sign.pit <- lapply(</pre>
  split(pit[, -1:-6], pit[, "Tree"]),
  coNet, ci.p = 95
cn.d.pit <- distNet(cn.pit, method = "bc")</pre>
# genotype means and mean distances
```

```
onc.tree <- do.call(rbind, strsplit(names(onc.geno), " "))[, 1]</pre>
cn.mu.onc <- list()</pre>
for (i in 1:length(unique(onc.geno))) {
  cn.mu.onc[[i]] <- meanNet(cn.onc[onc.geno == unique(onc.geno)[i]])</pre>
}
names(cn.mu.onc) <- unique(onc.geno)</pre>
cn.mu.d.onc <- distNet(cn.mu.onc, method = "bc")</pre>
# mean bark roughness calculations
prb.mu.onc <- tapply(onc.rough, onc.geno, mean)</pre>
prb.mu.d.onc <- dist(prb.mu.onc)</pre>
# network statistics
ns.onc <- lapply(lapply(cn.onc, function(x) {</pre>
  abs(sign(x))
}), enaR:::structure.statistics)
ns.onc <- do.call(rbind, ns.onc)
# Ratio P / N
ns.rpn <- unlist(lapply(cn.onc, function(x) {</pre>
  mean(x[x > 0]) / mean(x[x < 0])
}))
# modularity
cn.mod.onc <- matrix(nrow = length(cn.onc), ncol = 2)</pre>
for (i in 1:length(cn.onc)) {
  if (sum(sign(cn.onc[[i]])) >= 3) {
    mod.tmp <- computeModules(cn.onc[[i]])</pre>
    cn.mod.onc[i, 1] <- slot(mod.tmp, "likelihood")</pre>
    cn.mod.onc[i, 2] <- nrow(slot(mod.tmp, "modules")) - 1</pre>
  } else {
    cn.mod.onc[i] <- NA</pre>
  }
cn.mod.onc[is.na(cn.mod.onc)] <- 0</pre>
names(cn.mod.onc) <- c("mod.lik", "mod.n")</pre>
# graph level centralization
dcen.onc <- unlist(lapply(cn.onc, function(x) {</pre>
  sna::centralization(x, FUN = sna::degree, normalize = FALSE)
}))
onc.ns <- cbind(
  ns.onc,
  Cen = dcen.onc,
  mod.lik = cn.mod.onc[, 1], mod.n = cn.mod.onc[, 2]
if (!(all(onc.tree == names(cn.onc)))) {
  print("Danger Will Robinson!")
# species centralities
cen.spp <- lapply(cn.onc[names(cn.onc) %in% na.omit(onc.dat)$tree.id],</pre>
  sna::degree,
  rescale = FALSE
cen.spp <- do.call(rbind, cen.spp)</pre>
colnames(cen.spp) <- colnames(cn.onc[[1]])</pre>
# Community data
```

```
onc.com <- do.call(rbind, lapply(onc.q, function(x) apply(x, 2, sum)))</pre>
onc.R <- apply(sign(onc.com), 1, sum)</pre>
onc.H <- vegan::diversity(onc.com)</pre>
onc.com.gm <- apply(onc.com, 2,
  function(x, g) tapply(x, g, mean),
  g = onc.geno
onc.com.gm.rel <- apply(onc.com.gm, 2, function(x) x / max(x))</pre>
onc.com.rel <- apply(onc.com, 2, function(x) x / max(x))</pre>
onc.com.rel <- cbind(onc.com.rel,</pre>
  ds = rep(
    min(onc.com.rel[onc.com.rel != 0]) / 1000,
    nrow(onc.com.rel)
)
onc.com <- cbind(onc.com,</pre>
  ds = rep(
    min(onc.com[onc.com != 0]) / 1000,
    nrow(onc.com)
  )
# pit genotype mean community
pit.com <- do.call(rbind, lapply(pit.q, function(x) apply(x, 2, sum)))</pre>
pit.com.gm <- apply(pit.com, 2,</pre>
  function(x, g) tapply(x, g, mean),
  g = pit.geno
pit.com.gm.rel <- apply(pit.com.gm, 2, function(x) x / max(x))</pre>
pit.com.gm.rel[is.na(pit.com.gm.rel)] <- 0</pre>
# Lichen community metrics
# Percent Total Cover
ptc.onc <- unlist(lapply(</pre>
  onc.q,
  function(x) {
    sum(apply(
      x, 1,
      function(x) sign(sum(x))
    ))
  }
))
# Species richness
spr.onc <- apply(</pre>
  onc.com[, colnames(onc.com) != "ds"], 1,
  function(x) sum(sign(x))
)
# Diversity
spd.onc <- diversity(onc.com[, colnames(onc.com) != "ds"])</pre>
# Evenness
spe.onc <- spd.onc / log(specnumber(onc.com[, colnames(onc.com) != "ds"]))</pre>
spe.onc[is.na(spe.onc)] <- 0</pre>
## "mean" distance matrices
cn.mu.d <- as.matrix(cn.mu.d.onc)</pre>
```

```
prb.mu.d <- as.matrix(prb.mu.d.onc)</pre>
prb.mu.d <- prb.mu.d[</pre>
  match(rownames(cn.mu.d), rownames(prb.mu.d)),
  match(rownames(cn.mu.d), rownames(prb.mu.d))
prb.mu.d <- as.dist(prb.mu.d)</pre>
onc.com.mu <- apply(onc.com[, -ncol(onc.com)], 2,</pre>
  function(x, g) tapply(x, g, mean),
  g = onc.geno
onc.com.mu <- onc.com.mu[match(rownames(cn.mu.d),</pre>
                                 rownames(onc.com.mu)), ]
onc.com.mu.d <- vegdist(onc.com.mu)</pre>
if (!(all(rownames(as.matrix(prb.mu.d)) ==
          rownames(as.matrix(cn.mu.d.onc))))) {
  warning("Warning: distance matrices are not aligned!")
}
# Bipartite analysis
nperm <- 20
if (!(file.exists("../data/lcn/nest_rel_onc.rda"))) {
  nest.onc <- nestedness(onc.com.rel[, colnames(onc.com.rel) != "ds"],</pre>
    n.nulls = 999
  dput(nest.onc, "../data/lcn/nest_rel_onc.rda")
} else {
  nest.onc <- dget("../data/lcn/nest_rel_onc.rda")</pre>
if (!(file.exists("../data/lcn/null_mod_onc.csv"))) {
  obs.mod.onc <- bipartite::computeModules(</pre>
    onc.com.rel[, colnames(onc.com.rel) != "ds"]
  mods.onc <- tail(</pre>
    apply(
      slot(obs.mod.onc, "modules"), 2,
      function(x) {
        sum(sign(x[2:length(x)]) *
           (1:(length(x) - 1)))
      }
    ),
    sum(dim(onc.com[, colnames(onc.com) != "ds"]))
  mods.onc <- list(</pre>
    sp = tail(
      ncol(onc.com[, colnames(onc.com) != "ds"])
    ),
    tree = head(mods.onc, nrow(onc.com))
  sim.onc <- lapply(1:nperm, sim.com, x = onc.q)</pre>
  sim.onc <- lapply(sim.onc, function(x) x / max(x))</pre>
  nul.mod.onc <- lapply(sim.onc, function(x) bipartite::computeModules(x))</pre>
  nul.mod.onc <- unlist(lapply(nul.mod.onc, slot, "likelihood"))</pre>
```

```
dput(mods.onc, "../data/lcn/mod_list_onc.rda")
  write.csv(slot(obs.mod.onc, "likelihood"),
    "../data/lcn/obs_mod_onc.csv",
    row.names = FALSE
  )
  write.csv(nul.mod.onc,
    "../data/lcn/null_mod_onc.csv",
    row.names = FALSE
  )
} else {
  obs.mod.onc <- read.csv("../data/lcn/obs_mod_onc.csv")[1]</pre>
 nul.mod.onc <- read.csv("../data/lcn/null_mod_onc.csv")[, 1]</pre>
  z.mod.onc <- (obs.mod.onc - mean(nul.mod.onc)) / sd(nul.mod.onc)</pre>
 mods.onc <- dget("../data/lcn/mod_list_onc.rda")</pre>
pval.mod.onc <- length(nul.mod.onc[nul.mod.onc >= obs.mod.onc]) /
  length(nul.mod.onc)
if (pval.mod.onc == 0) {
  pval.mod.onc <- 1 / nperm</pre>
z.mod.onc <- (obs.mod.onc - mean(nul.mod.onc)) / sd(nul.mod.onc)
bp.mod.onc <- round(unlist(c(</pre>
 nperm = nperm, obs = obs.mod.onc,
 mu.sim = mean(nul.mod.onc), sd.sim = sd(nul.mod.onc),
 z = z.mod.onc, p.value = pval.mod.onc
)), 5)
## NMDS ordinations
# community ordination
if (!file.exists("../data/lcn/onc_nmds.csv")) {
  nms.info.onc <- capture.output(nms.onc <- nmds.min(nmds(
    vegdist(onc.com.rel), 2, 2
  )))
  write.csv(nms.onc, "../data/lcn/onc_nmds.csv",
    row.names = FALSE
  write.table(nms.info.onc,
    "../data/lcn/onc_nmds_info.txt",
    col.names = FALSE, row.names = FALSE
  )
} else {
  nms.onc <- read.csv("../data/lcn/onc_nmds.csv")</pre>
# Network ordination
if (!(file.exists("../data/lcn/conet_nmds.csv"))) {
  cn.nmds.stats.onc <- capture.output(</pre>
    cn.nms.onc <- nmds.min(nmds(cn.d.onc, 2, 2))</pre>
  write.csv(cn.nms.onc, "../data/lcn/conet_nmds.csv",
    row.names = FALSE
  )
  write.table(cn.nmds.stats.onc,
    "../data/lcn/conet_nmds_info.txt",
```

```
col.names = FALSE, row.names = FALSE
 )
} else {
  cn.nms.onc <- read.csv("../data/lcn/conet nmds.csv")</pre>
# Vector fitting
nv.onc <- envfit(cn.nms.onc, data.frame(onc.com[, colnames(onc.com) != "ds"],</pre>
 R = onc.rough,
 C = onc.ns[, c("C")],
 A = ptc.onc
))
cv.onc <- envfit(nms.onc, data.frame(onc.com[, colnames(onc.com) != "ds"],</pre>
  R = onc.rough,
 C = onc.ns[, c("C")],
 A = ptc.onc
))
# get araujo coordinates
coord <- read.csv("../data/lcn/lcn_coord_onc.csv")</pre>
rownames(coord) <- coord[, 1]</pre>
coord <- coord[, -1]</pre>
# packing into a dataframe
tree <- onc.geno
for (i in 1:length(unique(onc.geno))) {
  tree[onc.geno == unique(onc.geno)[i]] <-</pre>
    1:length(tree[onc.geno == unique(onc.geno)[i]])
}
tree <- factor(tree)</pre>
tree.id <- do.call(rbind, strsplit(names(ptc.onc), split = " "))[, 1]</pre>
# add chemistry data
onc.nc <- read.csv("../data/lcn/ONC_phytochem_NC.csv")</pre>
onc.tan <- read.csv("../data/lcn/ONC_phytochem_tannin.csv")</pre>
onc.nc[, 1] <- as.character(paste0("N", gsub("-", "\\.", onc.nc[, 1])))
onc.tan[, 1] <- as.character(paste0("N", gsub("-", "\\.", onc.tan[, 1])))
# rename headers
# mass is in mg
colnames(onc.nc)[1:4] <- c("tree.id", "sample.mass", "N", "C")</pre>
colnames(onc.tan)[1] <- "tree.id"</pre>
colnames(onc.tan)[grep("X.CT", colnames(onc.tan))] <- "CT"</pre>
# add C:N ratio
onc.nc$rCN <- onc.nc$N / onc.nc$C
# pH data
onc.ph <- read.csv("../data/lcn/ONC_Bark_lichen_pH_data.csv")</pre>
onc.ph[, "tree.id"] <- gsub("-", ".", onc.ph[, "tree.id"])
onc.ph[, "tree.id"] <- gsub("\\.0", "\\.", onc.ph[, "tree.id"])
# N7.16 is possibly N7.10
onc.ph[onc.ph[, "tree.id"] == "N7.16", "tree.id"] <- "N7.10"
# updated pH from Lamit
onc.ph[!is.na(onc.ph[, "pH2"]), "pH"] <-
  apply(onc.ph[!is.na(onc.ph[, "pH2"]), c("pH", "pH2")], 1, mean)
# collect into a single df
onc.dat <- data.frame(tree.id,</pre>
  PC = ptc.onc, SR = spr.onc,
```

```
SD = spd.onc, SE = spe.onc,
  geno = factor(onc.geno), tree = tree,
  BR = onc.rough, onc.ns[, c("L", "Cen")]
# Get to match onc.dat
onc.ph <- onc.ph[onc.ph[, "tree.id"] %in% onc.dat[, "tree.id"], ]</pre>
onc.ph <- onc.ph[match(onc.dat[, "tree.id"], onc.ph[, "tree.id"]), ]</pre>
# append chemistry to onc.dat
onc.dat <- data.frame(onc.dat,</pre>
  C = onc.nc[match(
    onc.dat[, "tree.id"],
    onc.nc[, "tree.id"]
  ), "C"],
  N = onc.nc[match(
   onc.dat[, "tree.id"],
    onc.nc[, "tree.id"]
  ), "N"],
  CN = onc.nc[match(
    onc.dat[, "tree.id"],
    onc.nc[, "tree.id"]
  ), "rCN"],
  CT = onc.tan[match(
    onc.dat[, "tree.id"],
   onc.tan[, "tree.id"]
  ), "CT"],
  pH = onc.ph[, "pH"]
# Plot calculations
pw.onc <- onc.com.rel[, colnames(onc.com.rel) != "ds"]</pre>
pw.onc <- pw.onc[</pre>
  order(apply(pw.onc, 1, sum), decreasing = TRUE),
  order(apply(pw.onc, 2, sum), decreasing = TRUE)
rownames(pw.onc) <- onc.geno</pre>
col.pal <- RColorBrewer::brewer.pal((max(unlist(mods.onc))), "Paired")</pre>
# Network list NA removed
cn.d.onc.na <- distNet(cn.onc[names(cn.onc) %in% na.omit(onc.dat)$tree.id],</pre>
 method = "euclidean"
# Figure ordinations
# Communities
if (file.exists("../data/lcn/nms_com_onc.rda")) {
 nms.com <- dget(file = "../data/lcn/nms_com_onc.rda")</pre>
} else {
  set.seed(12345)
  nms.com <- nmds(vegdist(onc.com.rel), 2, 3)</pre>
  dput(nms.com, file = "../data/lcn/nms_com_onc.rda")
# Networks
if (file.exists("../data/lcn/nms_cn_onc.rda")) {
 nms.cn <- dget(file = "../data/lcn/nms_cn_onc.rda")</pre>
} else {
  set.seed(12345)
```

```
nms.cn <- nmds(cn.d.onc.na, 1, 2)
  dput(nms.cn, file = "../data/lcn/nms_cn_onc.rda")
ord.com <- nmds.min(nms.com, 3)
## Minimum stress for given dimensionality: 0.1008923
## r^2 for minimum stress configuration: 0.9357192
ord.cn <- nmds.min(nms.cn, 2)
## Minimum stress for given dimensionality: 0.008516247
## r^2 for minimum stress configuration: 0.999471
# Vectors for plotting
# Composition
vec.com <- envfit(ord.com,</pre>
  env = onc.dat[, c("CT", "SR", "SE", "Cen"), ],
  perm = 10000,
  choices = c(1, 2), na.rm = TRUE
# Network similarity
vec.cn <- envfit(ord.cn,</pre>
  env = na.omit(onc.dat)[, c("CT", "SR", "SE", "Cen")],
  perm = 10000,
  choices = c(1, 2)
)
# onc
if (!("mod_obsval_onc.csv" %in% dir("../data/lcn"))) {
  mod.onc <- slot(</pre>
    bipartite::computeModules(rel(onc.com[, -ncol(onc.com)]),
      deep = FALSE
    ),
    "likelihood"
  write.csv(mod.onc, file = "../data/lcn/mod_obsval_onc.csv", row.names = FALSE)
  mod.onc <- read.csv(file = "../data/lcn/mod_obsval_onc.csv")[, 1]</pre>
if (!("mod_simvals_onc.csv" %in% dir("../data/lcn"))) {
  onc.sweb <- simulate(vegan::nullmodel(onc.com[, -ncol(onc.com)],</pre>
   method = "swsh samp c"
  ), 99)
  for (i in 1:dim(onc.sweb)[3]) {
    onc.sweb[, , i] <- rel(onc.sweb[, , i])</pre>
  onc.smod <- apply(onc.sweb, 3, bipartite::computeModules)</pre>
  mods.onc.sweb <- unlist(lapply(onc.smod, slot, name = "likelihood"))</pre>
  write.csv(mods.onc.sweb,
   file = "../data/lcn/mod_simvals_onc.csv",
    row.names = FALSE
  # nest.onc <- bipartite::nestedness(onc.com.rel)</pre>
} else {
  mods.onc.sweb <- read.csv(</pre>
  file = "../data/lcn/mod_simvals_onc.csv"
```

```
)[, 1]
# pit
if (!("mod_obsval_pit.csv" %in% dir("../data/lcn"))) {
  mod.pit <- slot(</pre>
    bipartite::computeModules(rel(pit.com), deep = FALSE),
    "likelihood"
  write.csv(mod.pit,
   file = "../data/lcn/mod_obsval_pit.csv",
    row.names = FALSE
  )
} else {
  mod.pit <- read.csv(</pre>
    file = "../data/lcn/mod_obsval_pit.csv"
  )[, 1]
}
if (!("mod_simvals_pit.csv" %in% dir("../data/lcn"))) {
  pit.sweb <- simulate(vegan::nullmodel(pit.com, method = "swsh_samp_c"), 99)</pre>
  for (i in 1:dim(pit.sweb)[3]) {
    pit.sweb[, , i] <- rel(pit.sweb[, , i])</pre>
  pit.smod <- apply(pit.sweb, 3, bipartite::computeModules)</pre>
  mods.pit.sweb <- unlist(lapply(pit.smod, slot, name = "likelihood"))</pre>
  write.csv(mods.pit.sweb,
    file = "../data/lcn/mod_simvals_pit.csv",
    row.names = FALSE
  # nest.pit <- bipartite::nestedness(pit.com.rel)</pre>
} else {
  mods.pit.sweb <- read.csv(</pre>
    file = "../data/lcn/mod_simvals_pit.csv"
}
### Wild data
###
###
x <- read.csv("../data/lcn/lco_Apr2012.csv")</pre>
# remove notes
x <- x[, colnames(x) != "NOTES."]</pre>
x \leftarrow x[, colnames(x) != "dead"]
x <- na.omit(x)
# remove gnu.44 = FREMONT
x <- x[x$tree != "gnu.44", ]
# rm ll.6, tree with super smooth bark
x <- x[x$tree != "11.6", ]
x$tree <- factor(as.character(x$tree))</pre>
# condense species
# lecanora, there can be only one!
lec.sp <- apply(x[, c(6, 8, 10, 18)], 1, function(x) sign(any(x != 0)))
```

```
# no physcioids!
# phy.spp \leftarrow apply(x[,c(13,14,15,16)],
# 1, function(x) sign(any(x!=0)))
x \leftarrow cbind(x, lec = lec.sp)
x \leftarrow x[, -c(6, 8, 10, 18)]
x <- x[, colnames(x) != "physcioid"]
\# break into quadrat list (x.q)
quads <- paste(x$tree, x$quadrat)</pre>
colnames(x)[5:ncol(x)] <- c(</pre>
  "Xg", "Cs", "Xm", "fgb", "Rs",
  "Pm", "Pa", "Pu", "Ch", "Ls"
)
x \leftarrow x[colnames(x) != "fgb"]
x.q <- split(x, quads)
wild.com <- split(x, x$tree)</pre>
wild.com <- do.call(rbind, lapply(wild.com, function(x) apply(x[, -1:-4], 2, sum)))
wild.com.rel <- apply(wild.com, 2, function(x) x / max(x))</pre>
wild.com.rel[is.na(wild.com.rel)] <- 0</pre>
wild.q <- lapply(split(x, x$tree), function(x) x[, -1:-4])</pre>
# data from lamit
env <- read.csv("../data/lcn/Uinta2012_all_data_from_Lamit.csv")</pre>
env <- env[is.na(env$Pct.Roughness) == FALSE, ]</pre>
env[, 1] <- sub(
  "\\?", "",
  sub(
    "\\.0", "\\.",
      "\\ ", "\\."
      sub("\\-", "\\.", tolower(as.character(env[, 1])))
  )
)
env[env[, 1] == "11.6_(znu.29)", 1] <- "11.6"
env[env[, 1] == "gnu.85.1ftaway", 1] <- "gnu.85"
env$Quad.Loc <- as.character(sapply(</pre>
  as.character(env$Quad.Loc),
  function(x) {
    unlist(strsplit(x, split = "_"))[2]
  }
))
env$Quad.Loc <- sub("\\-", "\\.", env$Quad.Loc)</pre>
env$Quad.Loc <- paste("n", env$Quad.Loc, sep = "")</pre>
# remove southern aspect
env <- env[env$Aspect != "South", ]</pre>
env.tid <- paste(env$Tree.ID, env$Quad.Loc)</pre>
# check that the datasets are compatible
all(names(x.q) %in% env.tid)
## [1] TRUE
# match observations
all(env.tid[match(names(x.q), env.tid)] == names(x.q))
## [1] TRUE
```

12

```
# delimit co-occurrence and match
env <- env[match(names(x.q), env.tid), ]</pre>
x.split <- paste(x$tree, x$quadrat, sep = "_")</pre>
env.split <- paste(env$Tree.ID, env$Quad.Loc)</pre>
x.split <- as.character(x$tree)</pre>
env.split <- as.character(env$Tree.ID)</pre>
# percent rough bark
prb.wild <- tapply(env$Pct.Roughness, env.split, mean)</pre>
# age
age <- read.csv("../data/lcn/UintaMaster_LichenHeritNL_FallSpring_2012_ForLau.csv")
dbh <- age$DBH.cm_01
age.final <- age$AgeFinal.U
age <- data.frame(tree.id = age[, 1], age.final = age$AgeFinal.U)</pre>
age[, 1] <- tolower(age[, 1])
age[, 1] <- sub("_", "\\.", age[, 1])
age[, 1] <- sub("-", "\\.", age[, 1])
age[, 1] <- sub("\\?", "", age[, 1])
age[, 1] <- sub("\\.0", "\\.", age[, 1])
age[age[, 1] == "gnu.85.1ftaway", 1] <- "gnu.85"
# predict age
gnu19.dbh <- dbh[age$tree.id == "gnu.19"]</pre>
new <- data.frame(dbh = seq(min(dbh), max(dbh), by = 0.1))</pre>
age.final <- na.omit(age.final)</pre>
pred.age <- predict(lm(age.final ~ dbh, data = age), new)</pre>
gnu19.age <- as.numeric(pred.age[new[, 1] == gnu19.dbh])</pre>
tree.age <- age[match(names(prb.wild), age[, 1]), 2]</pre>
tree.age[is.na(tree.age)] <- gnu19.age</pre>
names(tree.age) <- age[match(names(prb.wild), age[, 1]), 1]</pre>
age <- tree.age
# percent cover
pc.wild <- unlist(lapply(</pre>
  wild.q,
  function(x) {
    sum(apply(
      x, 1,
      function(x) sign(sum(x))
    ))
  }
))
# richness
sr.wild <- unlist(lapply(</pre>
  wild.q, function(x) sum(sign(apply(x, 2, sum))))
  )
# networks
cn.wild <- lapply(wild.q, coNet)</pre>
cn.mu.wild <- meanNet(cn.wild)</pre>
cn.d.wild <- distNet(cn.wild, method = "bc")</pre>
# network stats
ns.wild <- do.call(rbind, lapply(lapply(cn.wild, function(x) {</pre>
  abs(sign(x))
}), enaR:::structure.statistics))
# centralization
```

```
dcen.wild <- unlist(lapply(cn.wild, function(x) {
    sna::centralization(x, FUN = sna::degree, normalize = FALSE)
}))
# wild data frame
wild.dat <- data.frame(
    tree = names(tree.age),
    age = tree.age, BR = prb.wild,
    PC = pc.wild, SR = sr.wild,
    L = ns.wild[, "L"], Cen = dcen.wild
)</pre>
```

Results

```
### REML
## Create a list to generate a results table
h2.tab <- matrix("", 1, 4)
colnames(h2.tab) <- c("Response", "H2", "R2", "p-value")</pre>
## Total cover ~ genotype
ptc.reml <- lme4::lmer(I(PC^(1 / 2)) ~ (1 | geno),
 data = na.omit(onc.dat), REML = TRUE
ptc.reml.pval <- RLRsim::exactRLRT(ptc.reml)</pre>
fligner.test(onc.dat$PC^(1 / 2), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
##
## data: onc.dat$PC^(1/2) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 13.751, df = 12, p-value =
## 0.3169
shapiro.test(residuals(ptc.reml))
## Shapiro-Wilk normality test
## data: residuals(ptc.reml)
## W = 0.93193, p-value = 0.004822
ptc.reml.result <- c(</pre>
 "Percent Lichen Cover",
  H2(ptc.reml, g = onc.dat$geno),
  R2(ptc.reml),
  ptc.reml.pval$"p.value"
h2.tab <- rbind(h2.tab, ptc.reml.result)</pre>
## Species richness ~ genotype
spr.reml <- lme4::lmer(I(SR^(1 / 2)) ~ (1 | geno),
  data = na.omit(onc.dat), REML = TRUE
spr.reml.pval <- RLRsim::exactRLRT(spr.reml)</pre>
```

```
spr.reml.pval
##
##
   simulated finite sample distribution of RLRT.
##
   (p-value based on 10000 simulated values)
##
##
## data:
## RLRT = 0.080424, p-value = 0.3517
shapiro.test(residuals(spr.reml))
##
##
    Shapiro-Wilk normality test
##
## data: residuals(spr.reml)
## W = 0.95213, p-value = 0.03324
fligner.test(onc.dat$SR^(1 / 2), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: onc.dat$SR^(1/2) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 13.276, df = 12, p-value =
## 0.3493
spr.reml.result <- c(</pre>
  "Lichen Species Richness",
  H2(spr.reml, g = onc.dat$geno),
  R2(spr.reml),
  spr.reml.pval$"p.value"
h2.tab <- rbind(h2.tab, spr.reml.result)</pre>
## Bark roughness REML
prb.reml <- lme4::lmer(I(BR^(1 / 2)) ~ (1 | geno),</pre>
  data = na.omit(onc.dat), REML = TRUE
prb.reml.pval <- RLRsim::exactRLRT(prb.reml)</pre>
fligner.test(onc.dat$BR^(1 / 2), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: onc.dat$BR^(1/2) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 6.1915, df = 12, p-value =
## 0.9061
shapiro.test(residuals(prb.reml))
##
##
  Shapiro-Wilk normality test
##
## data: residuals(prb.reml)
## W = 0.98395, p-value = 0.6926
```

```
prb.reml.result <- c(</pre>
  "Percent Rough Bark",
  H2(prb.reml, g = onc.dat$geno),
  R2(prb.reml),
  prb.reml.pval$"p.value"
h2.tab <- rbind(h2.tab, prb.reml.result)</pre>
## pH ~ genotype
ph.reml <- lme4::lmer(I(pH^(1 / 2)) ~ (1 | geno),
  data = na.omit(onc.dat), REML = TRUE
ph.reml.pval <- RLRsim::exactRLRT(ph.reml)</pre>
fligner.test(log(onc.dat$pH), onc.dat$geno)
##
##
  Fligner-Killeen test of homogeneity of variances
## data: log(onc.dat$pH) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 22.971, df = 12, p-value =
## 0.02797
shapiro.test(residuals(ph.reml))
##
   Shapiro-Wilk normality test
##
## data: residuals(ph.reml)
## W = 0.76737, p-value = 9.03e-08
ph.reml.result <- c(</pre>
  "pH",
  H2(ph.reml, g = onc.dat$geno),
  R2(ph.reml),
 ph.reml.pval$"p.value"
h2.tab <- rbind(h2.tab, ph.reml.result)
## condensed tannins REML
ct.reml <- lme4::lmer(I(CT^(1 / 4)) ~ (1 | geno),
  data = na.omit(onc.dat), REML = TRUE
ct.reml.pval <- RLRsim::exactRLRT(ct.reml)</pre>
fligner.test(onc.dat$CT^(1 / 4), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: onc.dat$CT^(1/4) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 7.8941, df = 12, p-value =
## 0.7933
shapiro.test(residuals(ct.reml))
##
## Shapiro-Wilk normality test
```

```
##
## data: residuals(ct.reml)
## W = 0.75061, p-value = 4.002e-08
ct.reml.result <- c(
  "Condensed Tannins (CT)",
  H2(ct.reml, g = onc.dat$geno),
 R2(ct.reml),
  ct.reml.pval$"p.value"
h2.tab <- rbind(h2.tab, ct.reml.result)
## CN ratio REML
cnr.reml <- lme4::lmer(I(CN^(1)) ~ (1 | geno),</pre>
  data = na.omit(onc.dat), REML = TRUE
## boundary (singular) fit: see ?isSingular
cnr.reml.pval <- RLRsim::exactRLRT(cnr.reml)</pre>
fligner.test(onc.dat$CN^(1 / 1), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: onc.dat$CN^(1/1) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 8.1116, df = 12, p-value =
## 0.7763
shapiro.test(residuals(cnr.reml))
##
## Shapiro-Wilk normality test
##
## data: residuals(cnr.reml)
## W = 0.92434, p-value = 0.002442
cnr.reml.result <- c(</pre>
  "Carbon-Nitrogen (CN) Ratio",
  H2(cnr.reml, g = onc.dat$geno),
  R2(cnr.reml),
  cnr.reml.pval$"p.value"
h2.tab <- rbind(h2.tab, cnr.reml.result)</pre>
## Correlations among metrics
cor.test(onc.dat[, "SR"], onc.dat[, "PC"], data = onc.dat)
##
## Pearson's product-moment correlation
##
## data: onc.dat[, "SR"] and onc.dat[, "PC"]
## t = 8.3456, df = 55, p-value = 2.393e-11
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6047186 0.8437321
## sample estimates:
```

```
##
         cor
## 0.7475023
## Were these correlated with bark roughness?
ptc.prb.lm <- lm(I(PC^(1 / 2)) \sim I(BR^(1 / 2)), data = onc.dat)
summary(ptc.prb.lm)
##
## Call:
## lm(formula = I(PC^(1/2)) \sim I(BR^(1/2)), data = onc.dat)
## Residuals:
##
       Min
                1Q Median
                                ЗQ
                                       Max
## -5.9770 -1.6378 0.6333 1.9603 3.4658
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                 4.4142
                            1.0901
                                     4.049 0.000162 ***
## I(BR^(1/2))
                 0.4942
                            0.1896
                                     2.607 0.011730 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.485 on 55 degrees of freedom
## Multiple R-squared: 0.11, Adjusted R-squared: 0.09381
## F-statistic: 6.797 on 1 and 55 DF, p-value: 0.01173
fligner.test(onc.dat$PC, onc.dat$BR)
##
## Fligner-Killeen test of homogeneity of variances
##
## data: onc.dat$PC and onc.dat$BR
## Fligner-Killeen:med chi-squared = 27.401, df = 24, p-value =
## 0.2861
shapiro.test(residuals(ptc.prb.lm))
##
##
   Shapiro-Wilk normality test
## data: residuals(ptc.prb.lm)
## W = 0.95045, p-value = 0.02061
spr.prb.lm \leftarrow lm(I(SR^{(1)}) \sim I(BR^{(1/2)}), data = onc.dat)
summary(spr.prb.lm)
##
## Call:
## lm(formula = I(SR^(1)) \sim I(BR^(1/2)), data = onc.dat)
## Residuals:
                1Q Median
                                30
                                       Max
## -3.0420 -1.3123 -0.1178 1.2308 4.3519
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                          0.8002
                                    3.126 0.00283 **
## (Intercept) 2.5015
```

```
## I(BR^(1/2)) 0.1709
                            0.1392 1.228 0.22456
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.824 on 55 degrees of freedom
## Multiple R-squared: 0.0267, Adjusted R-squared: 0.009003
## F-statistic: 1.509 on 1 and 55 DF, p-value: 0.2246
fligner.test(onc.dat$SR^(1), onc.dat$BR)
##
## Fligner-Killeen test of homogeneity of variances
## data: onc.dat$SR^(1) and onc.dat$BR
## Fligner-Killeen:med chi-squared = 26.046, df = 24, p-value =
## 0.3508
shapiro.test(residuals(spr.prb.lm))
## Shapiro-Wilk normality test
##
## data: residuals(spr.prb.lm)
## W = 0.97168, p-value = 0.2008
## COM ~ genotype + Bark roughness + PTC + SPR
set.seed(2)
rcom.ng.perm <- vegan::adonis2(onc.com.rel^(1 / 1) ~ BR + PC + SR,
  data = onc.dat, perm = 10000, mrank = TRUE
set.seed(2)
rcom.perm <- vegan::adonis2(onc.com.rel^(1 / 1) ~ geno + BR + PC + SR,</pre>
  data = onc.dat, perm = 10000, mrank = TRUE
)
set.seed(2)
com.ng.perm <- vegan::adonis2(onc.com^(1 / 1) ~ BR + PC + SR,</pre>
  data = onc.dat, perm = 10000, mrank = TRUE
set.seed(2)
com.perm <- vegan::adonis2(onc.com^(1 / 1) ~ geno + BR + PC + SR,
  data = onc.dat, perm = 10000, mrank = TRUE
h2.tab[4, "p-value"] <- unlist(rcom.perm)["Pr(>F)1"]
h2.tab[4, "H2"] <- H2(rcom.perm, g = onc.dat$geno)
h2.tab[4, "R2"] <- R2(rcom.perm)
h2.tab[4, "Response"] <- "Lichen Community Composition"
## Is network similarity correlated with community composition?
ecodist::mantel(cn.d.onc ~ vegdist(onc.com.rel), mrank = TRUE)
                              pval2
                                         pval3 llim.2.5% ulim.97.5%
                   pval1
## 0.09198784 0.07200000 0.92900000 0.12000000 0.05120132 0.13656424
spr.d <- dist(onc.dat$SR)</pre>
ptc.d <- dist(onc.dat$PC)</pre>
prb.d <- dist(onc.dat$BR)</pre>
### rough -> cover -> rich -> net
```

```
ecodist::mantel(cn.d.onc ~ vegdist(onc.com.rel) + spr.d + ptc.d + prb.d, mrank = TRUE)
                             pval2
                                         pval3 llim.2.5% ulim.97.5%
      mantelr
                   pval1
## 0.06853395 0.15400000 0.84700000 0.31300000 0.02256902 0.13046001
## Mantels
ecodist::mantel(cn.mu.d.onc ~ onc.com.mu.d)
       mantelr
                    pval1
                                 pval2
                                            pval3 llim.2.5% ulim.97.5%
   0.29000439 0.07700000 0.92400000 0.07700000 -0.03054894 0.45045206
##
## Was lichen network similarity determined by genotype?
set.seed(1234)
cn.perm <- vegan::adonis2(cn.d.onc.na ~ geno +</pre>
 BR + pH + CN + CT +
 PC + SR + SE,
by = "term",
data = na.omit(onc.dat),
permutations = 10000, mrank = FALSE
cn.perm.ng <- vegan::adonis2(cn.d.onc ~ BR + PC + SR,</pre>
 data = onc.dat, permutations = 10000, mrank = TRUE
cn.perm.ng
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
## vegan::adonis2(formula = cn.d.onc ~ BR + PC + SR, data = onc.dat, permutations = 10000, mrank = TRUE
##
           Df SumOfSqs
                            R2
                                     F
                                           Pr(>F)
                                          0.04020 *
## BR
            1
                 61.42 0.03968 4.1680
                 49.47 0.03197 3.3573
## PC
            1
                                          0.06839 .
## SR
                655.76 0.42373 44.5034 9.999e-05 ***
            1
## Residual 53
               780.96 0.50462
## Total
           56 1547.61 1.00000
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
cn.perm
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
## vegan::adonis2(formula = cn.d.onc.na ~ geno + BR + pH + CN + CT + PC + SR + SE, data = na.omit(onc.d
##
           Df SumOfSqs
                            R2
                                           Pr(>F)
## geno
            12
                367.65 0.26937 2.3065
                                          0.02860 *
## BR
            1
                 23.63 0.01732 1.7792
                                          0.18828
                 8.96 0.00656 0.6745
                                          0.41866
## pH
            1
## CN
            1
                 37.70 0.02762 2.8379
                                          0.08849
## CT
                 76.22 0.05585 5.7383
                                         0.03310 *
            1
## PC
            1
                 28.50 0.02088 2.1458
                                         0.14349
```

```
1 332.23 0.24342 25.0117 9.999e-05 ***
           1 51.59 0.03780 3.8843 0.04470 *
## Residual 33 438.33 0.32117
## Total 52 1364.81 1.00000
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
h2.tab[5, "p-value"] <- as.matrix(cn.perm)[1, "Pr(>F)"]
h2.tab[5, "H2"] <- H2(cn.perm, g = onc.dat[, "geno"], perm = 10000)
h2.tab[5, "R2"] <- R2(cn.perm)
h2.tab[5, "Response"] <- "Lichen Network"
# db rda for network similarity
dbr.cn.geno <- vegan::dbrda(cn.d.onc ~ geno, data = onc.dat, distance = "bray")
anova(dbr.cn.geno, permutations = 5000)
## Permutation test for dbrda under reduced model
## Permutation: free
## Number of permutations: 5000
## Model: vegan::dbrda(formula = cn.d.onc ~ geno, data = onc.dat, distance = "bray")
                           F Pr(>F)
           Df Variance
           12
                 8.045 1.5057 0.146
## Model
## Residual 44
                19.591
H2(dbr.cn.geno)
## [1] 0.2911089
## What aspects of networks explained the similiarity?
## L = number of edges, LD = link density, C = connectivity,
## dcen = degree centrality
link.reml <- lme4::lmer(I(log(L + 0.00000001)) ~ (1 | geno),
  data = onc.dat, REML = TRUE
)
link.reml.pval <- RLRsim::exactRLRT(link.reml, nsim = 50000)</pre>
fligner.test(log(onc.dat$L + 0.0000001), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: log(onc.dat$L + 1e-07) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 11.991, df = 12, p-value =
## 0.4464
shapiro.test(residuals(link.reml))
##
## Shapiro-Wilk normality test
##
## data: residuals(link.reml)
## W = 0.83643, p-value = 2.036e-06
link.reml.result <- c(</pre>
"Number of Network Links",
H2(link.reml, g = onc.dat$geno),
R2(link.reml),
 link.reml.pval$"p.value"
```

```
h2.tab <- rbind(h2.tab, link.reml.result)
# network centrality
cen.reml <- lme4::lmer(I(Cen^(1 / 2)) ~ (1 | geno),</pre>
 data = onc.dat, REML = TRUE
cen.reml.pval <- RLRsim::exactRLRT(cen.reml, nsim = 50000)</pre>
fligner.test(onc.dat$L^(1 / 1), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: onc.dat$L^(1/1) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 14.241, df = 12, p-value =
## 0.2856
shapiro.test(residuals(cen.reml))
##
## Shapiro-Wilk normality test
##
## data: residuals(cen.reml)
## W = 0.90072, p-value = 0.0002041
cen.reml.result <- c(</pre>
"Network Centrality",
H2(cen.reml, g = onc.dat$geno),
R2(cen.reml),
cen.reml.pval$"p.value"
h2.tab <- rbind(h2.tab, cen.reml.result)
# network modularity
mod.reml <- lme4::lmer(I(onc.ns[, "mod.lik"]^(1 / 4)) ~ (1 | geno),
 data = onc.dat, REML = TRUE
mod.reml.pval <- RLRsim::exactRLRT(mod.reml)</pre>
fligner.test(onc.ns[, "mod.lik"]^(1 / 4), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: onc.ns[, "mod.lik"]^(1/4) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 13.439, df = 12, p-value =
## 0.3379
shapiro.test(residuals(mod.reml))
##
## Shapiro-Wilk normality test
## data: residuals(mod.reml)
## W = 0.54001, p-value = 4.252e-12
```

```
mod.reml.result <- c(</pre>
 "Network Modularity",
H2(mod.reml, g = onc.dat$geno),
R2(mod.reml),
mod.reml.pval$"p.value"
h2.tab <- rbind(h2.tab, mod.reml.result)
## Added diversity and evenness
## Species diversity ~ genotype
spd.reml <- lme4::lmer(I(SD^(1 / 2)) ~ (1 | geno),
 data = na.omit(onc.dat), REML = TRUE
spd.reml.pval <- RLRsim::exactRLRT(spd.reml)</pre>
shapiro.test(residuals(spd.reml))
##
   Shapiro-Wilk normality test
## data: residuals(spd.reml)
## W = 0.89237, p-value = 0.0001793
fligner.test(onc.dat$SD^(1 / 2), onc.dat$geno)
## Fligner-Killeen test of homogeneity of variances
## data: onc.dat$SD^(1/2) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 17.299, df = 12, p-value =
## 0.1387
spd.reml.result <- c(</pre>
"Lichen Species Diversity",
H2(spd.reml, g = onc.dat$geno),
R2(spd.reml),
spd.reml.pval$"p.value"
h2.tab <- rbind(h2.tab, spd.reml.result)
## Species diversity ~ genotype
spe.reml <- lme4::lmer(I(SE^(1 / 4)) ~ (1 | geno),</pre>
 data = na.omit(onc.dat), REML = TRUE
spe.reml.pval <- RLRsim::exactRLRT(spe.reml)</pre>
shapiro.test(residuals(spe.reml))
##
  Shapiro-Wilk normality test
## data: residuals(spe.reml)
## W = 0.67851, p-value = 1.705e-09
fligner.test(onc.dat$SD^(1 / 2), onc.dat$geno)
```

##

```
## Fligner-Killeen test of homogeneity of variances
##
## data: onc.dat$SD^(1/2) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 17.299, df = 12, p-value =
## 0.1387
spe.reml.result <- c(</pre>
"Lichen Species Evenness",
H2(spe.reml, g = onc.dat$geno),
R2(spe.reml),
spe.reml.pval$"p.value"
)
h2.tab <- rbind(h2.tab, spe.reml.result)
# network stats in relation to other variables
L.aov \leftarrow aov(I(log(L + 0.000001)) ~ BR + PC + SR, data = onc.dat)
summary(L.aov)
              Df Sum Sq Mean Sq F value
                                           Pr(>F)
## BR
               1 102.3 102.3 2.776
                                           0.1016
## PC
                           239.6 6.504
               1 239.6
                                           0.0137 *
## SR
                          957.0 25.980 4.71e-06 ***
                1 957.0
## Residuals
              53 1952.2
                            36.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
shapiro.test(residuals(L.aov))
## Shapiro-Wilk normality test
## data: residuals(L.aov)
## W = 0.9629, p-value = 0.07794
cen.aov <- aov(I(Cen^(1 / 2)) ~ BR + PC + SR, data = onc.dat)</pre>
summary(cen.aov)
              Df Sum Sq Mean Sq F value
                                           Pr(>F)
                           3.77 2.174
## BR
                1 3.77
                                            0.146
                            6.46
## PC
                   6.46
                                 3.724
                                            0.059 .
                1
## SR.
                1 56.48 56.48 32.552 5.31e-07 ***
              53 91.95
## Residuals
                           1.73
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
shapiro.test(residuals(cen.aov))
## Shapiro-Wilk normality test
##
## data: residuals(cen.aov)
## W = 0.97222, p-value = 0.2126
# are these metrics correlated with network similarity
L.d <- dist(onc.dat$L)
cen.d <- dist(onc.dat$Cen)</pre>
mod.d <- dist(cn.mod.onc)</pre>
```

```
cn.L.cen.perm <- adonis2(cn.d.onc ~ L + Cen, data = onc.dat, mrank = TRUE)</pre>
## So, are there patterns in the centrality of individual lichen species?
sppcen.test <- apply(cen.spp[, apply(cen.spp, 2, sum) >= 2], 2, function(x) {
  lme4::lmer(I(x^(1 / 2)) \sim (1 | geno), data = na.omit(onc.dat), REML = TRUE)
## boundary (singular) fit: see ?isSingular
sppcen.pval <- lapply(sppcen.test, RLRsim::exactRLRT)</pre>
sppcen.tab <- do.call(rbind, lapply(sppcen.pval, function(x) {</pre>
 c(x[["statistic"]], x[["p.value"]])
}))
sppcen.h2 <- round(unlist(lapply(sppcen.test, H2)), 3)</pre>
sppcen.h2
      Χg
                        Ch
                              Χm
                                    Pm
            Cs
                  Ls
                                          R.s
## 0.000 0.076 0.000 0.152 0.190 0.000 0.000
## Mean centrality of species
sort(apply(cen.spp, 2, mean), decreasing = TRUE)
##
           Cs
                      Ch
                                             Rs
                                                                   Pm
                                 Ls
                                                        Χg
## 0.73023360 0.51060368 0.41242791 0.19765745 0.15651469 0.08511420
##
           Xm
                      Pu
## 0.06858041 0.02264151 0.00000000
summary(aov(value ~ X2, data = melt(cen.spp)))
                Df Sum Sq Mean Sq F value Pr(>F)
## X2
                 8 27.04
                            3.380
                                    8.086 3e-10 ***
               468 195.63
## Residuals
                            0.418
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov(value ~ X2, data = melt(cen.spp)))
     Tukey multiple comparisons of means
##
##
       95% family-wise confidence level
## Fit: aov(formula = value ~ X2, data = melt(cen.spp))
##
## $X2
##
                diff
                            lwr
                                          upr
                                                  p adj
## Cs-Ch 0.21962992 -0.1717750 0.611034785 0.7158140
## Ls-Ch -0.09817577 -0.4895806 0.293229097 0.9973174
## Pa-Ch -0.51060368 -0.9020086 -0.119198814 0.0018322
## Pm-Ch -0.42548948 -0.8168944 -0.034084614 0.0215980
## Pu-Ch -0.48796217 -0.8793670 -0.096557305 0.0037079
## Rs-Ch -0.31294623 -0.7043511 0.078458638 0.2386358
## Xg-Ch -0.35408900 -0.7454939 0.037315874 0.1124897
## Xm-Ch -0.44202327 -0.8334281 -0.050618401 0.0139219
## Ls-Cs -0.31780569 -0.7092106 0.073599181 0.2201386
## Pa-Cs -0.73023360 -1.1216385 -0.338828730 0.0000004
```

```
## Pm-Cs -0.64511940 -1.0365243 -0.253714530 0.0000145
## Pu-Cs -0.70759209 -1.0989970 -0.316187221 0.0000011
## Rs-Cs -0.53257615 -0.9239810 -0.141171278 0.0008956
## Xg-Cs -0.57371891 -0.9651238 -0.182314042 0.0002163
## Xm-Cs -0.66165319 -1.0530581 -0.270248317 0.0000075
## Pa-Ls -0.41242791 -0.8038328 -0.021023042 0.0301134
## Pm-Ls -0.32731371 -0.7187186 0.064091158 0.1867880
## Pu-Ls -0.38978640 -0.7811913 0.001618467 0.0519144
## Rs-Ls -0.21477046 -0.6061753 0.176634410 0.7402505
## Xg-Ls -0.25591322 -0.6473181 0.135491646 0.5178196
## Xm-Ls -0.34384750 -0.7352524 0.047557371 0.1376135
## Pm-Pa 0.08511420 -0.3062907
                                 0.476519070 0.9990336
## Pu-Pa 0.02264151 -0.3687634 0.414046379 1.0000000
## Rs-Pa 0.19765745 -0.1937474 0.589062322 0.8187315
## Xg-Pa 0.15651469 -0.2348902 0.547919558 0.9456749
## Xm-Pa 0.06858041 -0.3228245
                                0.459985283 0.9998045
## Pu-Pm -0.06247269 -0.4538776 0.328932178 0.9999034
## Rs-Pm 0.11254325 -0.2788616 0.503948121 0.9931235
## Xg-Pm 0.07140049 -0.3200044 0.462805357 0.9997355
## Xm-Pm -0.01653379 -0.4079387
                                0.374871082 1.0000000
## Rs-Pu 0.17501594 -0.2163889 0.566420812 0.9000620
## Xg-Pu 0.13387318 -0.2575317 0.525278048 0.9786988
## Xm-Pu 0.04593890 -0.3454660 0.437343773 0.9999909
## Xg-Rs -0.04114276 -0.4325476 0.350262105 0.9999962
## Xm-Rs -0.12907704 -0.5204819 0.262327830 0.9830852
## Xm-Xg -0.08793428 -0.4793391 0.303470594 0.9987764
apply(cen.spp, 2, sd) / sqrt(nrow(cen.spp))
                                                       Xm
                      Cs
                                 Ls
                                            Ch
           Χg
## 0.05925513 0.14349031 0.13434259 0.12920446 0.04002923 0.04918653
                      Pu
## 0.00000000 0.02264151 0.08722534
## Lichen size distribution
## X. qallericulata thalli are about 0.22 +/- 0.003 cm^2 on average
## with an average median size of 0.12 +/- 0.001 cm^2
## and, size does not vary significantly with genotype.
xgs.reml <- lme4::lmer(I(mean.thallus) ~ (1 | geno),</pre>
  data = xgs.data[xgs.data$geno %in%
    names(which(table(xgs.data$geno) > 2)), ],
  REML = TRUE
xgs.median.reml <- lme4::lmer(median.thallus ~ (1 | geno),
  data = xgs.data[xgs.data$geno %in%
    names(which(table(xgs.data$geno) > 2)), ],
  REML = TRUE
RLRsim::exactRLRT(xgs.reml)
##
##
    simulated finite sample distribution of RLRT.
##
##
    (p-value based on 10000 simulated values)
##
```

```
## data:
## RLRT = 2.4792, p-value = 0.0473
RLRsim::exactRLRT(xgs.median.reml)
##
##
   simulated finite sample distribution of RLRT.
##
   (p-value based on 10000 simulated values)
##
##
## data:
## RLRT = 0.092023, p-value = 0.3389
fligner.test(xgs.data$mean.thallus, xgs.data$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: xgs.data$mean.thallus and xgs.data$geno
## Fligner-Killeen:med chi-squared = 13.244, df = 17, p-value =
## 0.7197
fligner.test(xgs.data$median.thallus, xgs.data$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: xgs.data$median.thallus and xgs.data$geno
## Fligner-Killeen:med chi-squared = 19.374, df = 17, p-value =
## 0.3075
mean(xgs.data$mean.thallus)
## [1] 0.1808442
sd(xgs.data$mean.thallus) / (length(xgs.data$mean.thallus) - 1)
## [1] 0.001845945
mean(xgs.data$median.thallus)
## [1] 0.1170852
sd(xgs.data$median.thallus) / (length(xgs.data$median.thallus) - 1)
## [1] 0.001223999
# ONC and Wild Stand (Uintah)
all.dat <- rbind(</pre>
  wild.dat[, c("BR", "PC", "SR", "L", "Cen")],
  onc.dat[, c("BR", "PC", "SR", "L", "Cen")]
# Network distances
cn.all <- cn.wild
for (i in 1:length(cn.wild)) {
  cn.all[[i]] <- cn.wild[[i]][</pre>
   match(rownames(cn.onc[[1]]), rownames(cn.wild[[i]])),
   match(colnames(cn.onc[[1]]), colnames(cn.wild[[i]]))
 ]
```

Minimum stress for given dimensionality: 0.04194367
r^2 for minimum stress configuration: 0.9915263

Tables

Response	H2	R2	p-value
Condensed Tannins (CT)	0.25556	0.25556	0.0193
Network Centrality	0.20166	0.20166	0.03958
Number of Network Links	0.17016	0.17016	0.06674
Lichen Community Composition	0.16093	0.24287	0.0032
Percent Lichen Cover	0.1368	0.1368	0.0841
Lichen Network	0.06385	0.26937	0.0286
Lichen Species Evenness	0.05732	0.05732	0.2461
Network Modularity	0.05731	0.05731	0.267
Lichen Species Diversity	0.02908	0.02908	0.3532
Lichen Species Richness	0.02807	0.02807	0.3517
Carbon-Nitrogen (CN) Ratio	0	0	0.4608

Table 1: Genotypic effects of cottonwood trees on the associated lichen community.

% latex table generated in R 3.6.1 by x table 1.8-4 package % Tue Oct 15 16:43:16 2019

	Df	SumOfSqs	R2	F	Pr(>F)
BR	1	0.44	0.04	3.74	0.0088
PC	1	3.86	0.34	32.85	0.0001
SR	1	0.78	0.07	6.60	0.0001
Residual	53	6.23	0.55		
Total	56	11.31	1.00		

Table 2: PerMANOVA Pseudo-F Table showing the predictors of community similarity.

```
rcom.perm.xtab <- xtable::xtable(rcom.perm,
    caption =
        "PerMANOVA Pseudo-F Table showing the predictors of community similarity.",
    label = "tab:rcom_perm"
)
print(rcom.perm.xtab,
    type = "latex",
    include.rownames = TRUE,
    include.colnames = TRUE
)</pre>
```

	Df	SumOfSqs	R2	F	Pr(>F)
geno	12	2.75	0.24	1.82	0.0032
BR	1	0.12	0.01	0.99	0.3901
PC	1	2.67	0.24	21.27	0.0001
SR	1	0.62	0.05	4.90	0.0010
Residual	41	5.15	0.46		
Total	56	11.31	1.00		

Table 3: PerMANOVA Pseudo-F Table showing the predictors of community similarity.

```
# network permanova
cn.perm.ng.xtab <- xtable::xtable(cn.perm.ng,
    caption =
        "PerMANOVA Pseudo-F Table showing the predictors of network similarity.",
    label = "tab:cn_perm_ng"
)
print(cn.perm.ng.xtab,
    type = "latex",
    include.rownames = TRUE,</pre>
```

```
include.colnames = TRUE
)
```

% latex table generated in R 3.6.1 by x table 1.8-4 package % Tue Oct 15 16:43:16 2019

	Df	SumOfSqs	R2	F	Pr(>F)
BR	1	61.42	0.04	4.17	0.0402
PC	1	49.47	0.03	3.36	0.0684
SR	1	655.76	0.42	44.50	0.0001
Residual	53	780.96	0.50		
Total	56	1547.61	1.00		

Table 4: PerMANOVA Pseudo-F Table showing the predictors of network similarity.

```
cn.perm.xtab <- xtable::xtable(cn.perm,
    caption =
        "PerMANOVA Pseudo-F Table showing the predictors of network similarity.",
    label = "tab:cn_perm"
)
print(cn.perm.xtab,
    type = "latex",
    include.rownames = TRUE,
    include.colnames = TRUE
)</pre>
```

% latex table generated in R 3.6.1 by x table 1.8-4 package % Tue Oct 15 16:43:16 2019

	Df	SumOfSqs	R2	F	Pr(>F)
geno	12	367.65	0.27	2.31	0.0286
BR	1	23.63	0.02	1.78	0.1883
рН	1	8.96	0.01	0.67	0.4187
$^{\mathrm{CN}}$	1	37.70	0.03	2.84	0.0885
CT	1	76.22	0.06	5.74	0.0331
PC	1	28.50	0.02	2.15	0.1435
SR	1	332.23	0.24	25.01	0.0001
SE	1	51.59	0.04	3.88	0.0447
Residual	33	438.33	0.32		
Total	52	1364.81	1.00		

Table 5: PerMANOVA Pseudo-F Table showing the predictors of network similarity.

```
# network metrics anova
L.aov.xtab <- xtable::xtable(L.aov,
    caption =
        "ANOVA F Table showing the predictors of the number of network links.",
    label = "tab:L_aov"
)
print(L.aov.xtab,
    type = "latex",
    include.rownames = TRUE,
    include.colnames = TRUE
)</pre>
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
BR	1	102.25	102.25	2.78	0.1016
PC	1	239.57	239.57	6.50	0.0137
SR	1	956.96	956.96	25.98	0.0000
Residuals	53	1952.23	36.83		

Table 6: ANOVA F Table showing the predictors of the number of network links.

```
cen.aov.xtab <- xtable::xtable(cen.aov,
    caption =
     "ANOVA F Table showing the predictors of network centralization.",
    label = "tab:cen_aov"
)
print(cen.aov.xtab,
    type = "latex",
    include.rownames = TRUE,
    include.colnames = TRUE
)</pre>
```

% latex table generated in R 3.6.1 by x table 1.8-4 package % Tue Oct 15 16:43:16 2019

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
BR	1	3.77	3.77	2.17	0.1463
PC	1	6.46	6.46	3.72	0.0590
SR	1	56.48	56.48	32.55	0.0000
Residuals	53	91.95	1.73		

Table 7: ANOVA F Table showing the predictors of network centralization.

	Df	SumOfSqs	R2	F	Pr(>F)
L	1	1330.80	0.86	734.67	0.0010
Cen	1	118.99	0.08	65.69	0.0010
Residual	54	97.82	0.06		
Total	56	1547.61	1.00		

Table 8: PerMANOVA Pseudo-F Table showing the predictors of network similarity.

Plots

Figure: Genotype barplots Community composition NMDS with vectors

```
par(mfrow = c(1, 1), mar = c(5.1, 4.1, 4.1, 2.1) / 1)
chp.coord <- ch.plot(ord.com[, 1:2], onc.geno,
    cex = 2, mu.pch = 19,
    pt.col = "white",
    bar.col = "darkgrey"
)
text(chp.coord, labels = rownames(chp.coord))
plot(vec.com, col = "black", lwd = 7)</pre>
```


Figure: Lichen networks

```
par(mfrow = c(2, 2), mar = c(0, 0.1, 1.0, 0.1))
set.seed(123)
net.col <- sign(meanNet(cn.mu.onc))
net.col[net.col == -1] <- 2
net.col[net.col == 1] <- 1
net.elwd <- (abs(meanNet(cn.mu.onc)) * 10)^2
coord <- gplot(abs(meanNet(cn.mu.onc)),
    gmode = "digraph",
    displaylabels = TRUE,
    edge.lwd = net.elwd,
    edge.col = net.col,
    vertex.col = "black",
    vertex.cex = 0.5,
    arrowhead.cex = 0.5,
    label.cex = 1,</pre>
```

```
main = "All Genotypes"
)
cn.mu.plot <- cn.mu.onc[names(cn.mu.onc) %in%</pre>
  c("996", "WC5", "1008")]
cn.mu.plot <- cn.mu.plot[</pre>
  order(unlist(lapply(
    cn.mu.plot,
    function(x) sum(abs(sign(x)))
  )))
]
for (i in 1:length(cn.mu.plot)) {
  net.col <- sign(cn.mu.plot[[i]])</pre>
  net.col[net.col == -1] <- 2
  net.col[net.col == 1] <- 1</pre>
  net.elwd <- (abs(cn.mu.plot[[i]]) * 10)^2</pre>
  set.seed(123)
  gplot(abs(cn.mu.plot[[i]]),
    gmode = "digraph",
    displaylabels = TRUE,
    coord = coord,
    edge.lwd = net.elwd,
    edge.col = net.col,
    vertex.col = "black",
    vertex.cex = 0.5,
    arrowhead.cex = 0.5,
    label.cex = 1,
    main = names(cn.mu.plot)[i]
  )
}
```


Figure: Genotype network similarity by genotype

```
par(mfrow = c(1, 1), mar = c(5.1, 4.1, 4.1, 2.1))
chp.coord <- ch.plot(cn.nms.onc, onc.geno,
    cex = 2.65, lwd = 2.5, mu.pch = 15,
    pt.col = "white",
    bar.col = "darkgrey"
)
text(chp.coord, labels = rownames(chp.coord), cex = 0.65)
plot(vec.cn, col = "black", lwd = 5)</pre>
```


Figure: A) Lichen networks

Figure: (A) Linkage and centrality by genotype and (B) Total cover and species richness predict L and Cen

```
mdc.plot(onc.dat[, "geno"], onc.dat[, "L"],
    ylim = c(-1, 1.75),
    xlab = "Tree Genotype", ylab = "Standardized Metric",
    ord = order(tapply(onc.dat[, "L"], onc.dat[, "geno"], mean), decreasing = TRUE)
)
mdc.plot(onc.dat[, "geno"], onc.dat[, "Cen"],
    add = TRUE, pch = 1,
    ord = order(tapply(onc.dat[, "L"], onc.dat[, "geno"], mean), decreasing = TRUE)
)
legend("topright", legend = c("Links", "Centralization"), pch = c(19, 1), bty = "none")
```


Supplementary Figure: Lichen size distribution

```
plot(density(xgs.data$median.thallus),
    xlab = "Median Lichen Thallus Area (cm^2)",
    main = ""
)
abline(v = median(xgs.data$median.thallus, na.rm = TRUE), lty = 2)
```


Median Lichen Thallus Area (cm^2)

Figure 2

```
par(mfrow = c(1, 2), mar = c(5.1, 4.1, 4.1, 2.1) / 2)
gplot(meanNet(cn.mu.onc),
    gmode = "graph",
    displaylabels = TRUE,
    edge.lwd = meanNet(cn.mu.onc) * 20,
    vertex.col = "darkgrey"
)
legend("topleft", legend = "A", bty = "n", cex = 1.5)
chp.coord <- ch.plot(cn.nms.onc, onc.geno, cex = 1.5)
plot(nv.onc, col = "darkgrey")
legend("topleft", legend = "B", bty = "n", cex = 1.5)</pre>
```



```
par(mfrow = c(1, 1), mar = c(5.1, 4.1, 4.1, 2.1))
bipartite::plotweb(pw.onc,
  method = "normal",
  text.rot = 45,
  col.low = col.pal[mods.onc$tree],
  col.high = col.pal[mods.onc$sp],
  bor.col.low = col.pal[mods.onc$tree],
  bor.col.high = col.pal[mods.onc$tree],
  bor.col.high = col.pal[mods.onc$sp],
  col.interaction = "grey70",
  bor.col.interaction = "grey70",
  labsize = 1.5
)
```


ch.plot(nms.onc, onc.geno)


```
Х2
##
                 Х1
## 10
        -0.091479884 -0.104244255
## 1005 -0.124540472 0.074171596
## 1007 0.175012652 -0.154102531
## 1008 0.061349598
                     0.060637950
## 1012 -0.056201035 0.097682862
## 1017 -0.040197275 0.050863036
## 1023 0.053916695 0.005735269
## 11
        -0.032978298 -0.028980365
## 996
        0.076271011 -0.099167595
## 999
        0.105185439 -0.062733516
```

```
## H10 -0.011830997 0.122603983
## T6
          0.002941633 0.064173827
        -0.128224482 0.016507373
## WC5
## plot(cv.onc, col = "qrey30")
## legend("topleft", legend = "A")
g.order <- tapply(ns.onc[, "C"], onc.geno, mean)</pre>
g.order <- names(g.order)[order(g.order, decreasing = TRUE)]</pre>
onc.g <- factor(onc.geno, levels = g.order)</pre>
plot(ns.onc[, "C"] ~ onc.g, xlab = "Tree Genotype", ylab = "Lichen Network Connectance (C)")
Lichen Network Connectance (C)
      0.15
                                   0
       0.10
                                                          0
       0.05
       0.00
                                                                    1007
                 11
                       10
                                 1008
                                            1012
                                                         996
                                                                                999
                                             Tree Genotype
```

Which wild uintah trees are similar to garden trees?

```
coords <- ch.plot(cn.nms.all, cn.nms.geno, mu.pch = "", cex = 2)
points(coords, pch = 19, col = "white", cex = 2)
text(coords[!grepl("wild", rownames(coords)), ],
    labels = rownames(coords)[!grepl("wild", rownames(coords))],
    col = "black"
)
text(coords[grep("wild", rownames(coords)), 1],
    coords[grep("wild", rownames(coords)), 2],
    labels = "Wild", col = "red"
)
plot(vec.all, col = "black", cex = 1.23)</pre>
```


Send results to manuscript

```
manuscript.dir <- "../../lcn_manuscript"</pre>
### Send tables and figures to manuscript directory
if (exists("manuscript.dir")) {
  tabs.figs <- dir(manuscript.dir)</pre>
  tab.fig.update <- dir("../results/lcn_notebook_files/figure-latex/",</pre>
    full.names = TRUE
    dir("../results/lcn_notebook_files/figure-latex/") %in% tabs.figs
  tab.fig.update <- c(</pre>
    tab.fig.update,
    dir("../docs", full.names = TRUE)[dir("../docs") %in% tabs.figs]
  sapply(tab.fig.update, file.copy, to = manuscript.dir, overwrite = TRUE)
  # supplementary figures
  si.dir <- paste0(manuscript.dir, "/supplement")</pre>
  si <- dir(si.dir)</pre>
  si.update <- dir("../results/lcn_notebook_files/figure-latex/",</pre>
    full.names = TRUE
  )[
    dir("../results/lcn_notebook_files/figure-latex/") %in% si
  si.update <- c(si.update, dir("../docs", full.names = TRUE)[dir("../docs") %in% si])</pre>
  sapply(si.update, file.copy,
    to = si.dir,
    overwrite = TRUE
  )
}
```

named list()