Teoria GAL

angeloperotti7

January 26, 2025

1 Definizioni

1.0.1 Segmento Orientato

Dati A,B punti nello spazio, un segmento orientato e' un segmento con estremo iniziale A ed estremo finale B

1.0.2 Vettori equivalenti

due vettori si dicono equivalenti se hanno stesso verso, direzione e modulo

1.0.3 vettore geometrico

per vettore geometrico si intende la classe di equivalenza di segmenti orientati

1.0.4 vettore nullo

il vettore nullo e' la classe di equivalenza del segmento orientato \vec{AA} . Ha modulo nullo mentre verso e direzione sono indeterminati

1.0.5 Somma di vettori geometrici

dati due vettori geometrici \vec{v} e \vec{w} ($\vec{v}=\vec{AB}, \vec{w}=\vec{BC}$) come la classe di equivalenza del segmento orientato \vec{AC} proprieta'

- commutativa
- associativa

1.0.6 opposto di un vettore

dato $\vec{v} \neq 0$ l'opposto di \vec{v} e' $-\vec{v}$, un vettore con stessa direzione e stesso modulo ma con verso opposto

1.0.7 prodotto per uno scalare

dati $\vec{v} \neq 0$ e un numero reale qualunque (scalare) $\lambda \neq 0$, $(\lambda \in \mathbb{R})$ il vettore geometrico $\lambda \vec{v}$ e' un vettore con la stessa direzione, moldulo $|\lambda \vec{v}| = |\lambda| |\vec{v}|$ e verso:

- concorde a \vec{v} se $\lambda \neq 0$
- opposto a \vec{v} se $\lambda \mid 0$

inoltre se $\lambda = 0$ allora anche $\lambda \vec{v} = 0$

1.0.8 versore

un vettore geometrico con modulo 1 e' detto versore. Se $\vec{v} \neq \emptyset$ la normalizazione di \vec{v} e' definita come

$$\left(\frac{1}{|v|}\right)\vec{v} = \frac{\vec{v}}{|v|}$$

tale vettore e' detto versore

1.0.9 prodotto scalare di vettori geometrici

dati \vec{v} e \vec{w} vettori geometrici, il prodotto scalare

$$\vec{v} \cdot \vec{w} = |\vec{v}| |\vec{w}| cos\theta$$

dove θ e' l'angolo compreso tra due rappresentanti di \vec{v} e \vec{w} con lo stesso estremo iniziale

1.0.10 Fasci di Piani

data una retta r nello spazio, l'insieme dei piani che contengono r e' detto fascio di piani di sostegno r

$$f.p.r = \lambda(ax + by + cz + d) + \mu(a^{I}x + b^{I}y + c^{I}z + d^{I})$$

1.0.11 posizione reciproca di rette nello spazio

• PARALLELE

re r^I sono parallele se i vettori \vec{v} e \vec{w} hanno la stessa direzione

• INCIDENTI

r e r^I sono incidenti se toccano un punto in comune

• SGHEMBE

 $r \in r^I$ sono sghembe se non sono ne' parallele ne incidenti

1.0.12 Posizione reciproca di due piani

• PARALLELI

 π e π^I sono paralleli se $n=n^I$ sono proporzionali

• INCIDENTI

 π e π^I sono detti incidenti se non sono paralleli e la loro intersezione e' una retta

• ORTOGONALI

 π e π^I sono detti ortogonali se le loro direzioni normali sono ortogonali

1.0.13 posizione reciproca di una retta e un piano

• PARALLELI

 π e r sono paralleli se \vec{n} e \vec{v} sono ortogonali $(\vec{n} \cdot \vec{v} = 0)$

• INCIDENTI

 π e rsono incidenti se hanno un punto in comune $(\vec{n} \bullet \vec{v} \neq 0)$

ORTOGONALI

 π e rsono ortogonali se \vec{n} e \vec{v} sono proporzionali

1.0.14 **MATRICI**

dati m,n≥1 numeri naturali, una matrice di ordine m×n a coeff. reali e' una tabella

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & & & & \\ \vdots & & & & \\ a_{m1} & \dots & \dots & a_{mn} \end{bmatrix} = [a_{ij}]$$

con \boldsymbol{a}_{ij} elemento sulla j-esima colonna e i-esima riga

1.0.15 Matrice Quadrata

una matrice A si dice quadrata quando m=n

1.0.16 insieme di matrici

 M_{mn} (\mathbb{R}) e' l'insieme di matrici di ordine m \times n a coeff. reali

1.0.17 matrice Trasposta

la matrice A^T e' detta trasposta di A perche' e' ottenuta scambiando le righe con le colonne

1.0.18 matrice Simmetrica

Se A e' una matrice quadrata e se $\mathbf{A} = A^T$ allora A e' detta matrice simmetrica

1.0.19 Matrice opposta

La matrice opposta di $A=[a_{ij}]$ e' $-A=[-a_{ij}]$

1.0.20 Operazioni di Matrici

• SOMMA

Siano A,B $\in M_{mn}(\mathbf{R} \text{ ove A}=[a_{ij}] \text{ e B}=[b_{ij}]$. La somma A+B e' data da C= $[c_{ij}]=[a_{ij}+b_{ij}]$ proprieta':

- commutativa
- associativa
- elemento nulla e' matrice nulla
- esistono gli opposti

• PRODOTTO PER UNO SCALARE

 $\forall A \in M_{mn}$ (\mathbb{R}), $\forall \lambda \in \mathbb{R}$ il prodotto di A per λ e' la matrice $\lambda A = [\lambda a_{ij}]$ proprieta':

$$- \lambda(\mu A) = (\lambda \mu) A$$

$$-\ 1 \bullet A = A$$

$$-(\lambda + \mu)A = \lambda A + \mu A$$

$$-\lambda(A+B) = \lambda A + \lambda B$$

• PRODOTTO DI MATRICI

una matrice A e' detta conformabile a **sinistra**/destra ad ogni matrice B se il numero di **colonne**/righe di A e' uguale al numero di **righe**/colonne di B

→ PRODOTTO RIGHE PER COLONNE

Definiamo il prodotto righe per cononne AB come la matrice $C = [c_{ik}] \in M_{\lceil} mf](\mathbb{R}$ ove

$$C_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}$$

1.0.21 Matrice identica o identita'

la matrice identica I_m di ordine m
 e' la matrice quadrata m×m che ha coeff. 1 sulla diagonale principale, 0 altrimenti

1.0.22 sistema di equazioni lineari

un sistema di equi lineari, o sistema lineare, di m equi in n incognite e':

$$m \ eqni \ lineari, \ n \ incognite \qquad \begin{cases} a_{11}x_1 + \dots a_{1n}x_n &= b_1 \\ \vdots \\ a_{m1}x_1 + \dots a_{mn}x_n &= b_m \end{cases}$$

1.0.23 Algoritmo Gauss-Jordan

una matrice A e' detta a scalini se $\forall R_i, R_{i+1}$ (coppia di righe consecutive) abbiamo una delle seguenti possibilita':

- R_i e R_{i+1} sono non nulle e il numero di 0 che precedono il primo numero non nullo di R_i e' inferiore rispetto al numero di 0 che precedono il primo numero non nullo di R_{i+1}
- R_{i+1} e' nulla

1.0.24 Rango

il rango di una matrice A e' il numero di pivot di una sua forma a scalini

1.0.25 Matrice ridotta per righe

una matrice e' detta ridotta per righe se e' a scalini e se ogni pivot e' pari ad 1 ed e' l'unico elemento non nullo della propria colonna

1.0.26 teorema Rouche-Capelli

Dato un sistema lineare in n
 incognite, sia $(A|\vec{b})$ la matrice completa. Tale sistema e' compatibile se e solo se rg(A)=rg $(A|\vec{b})$

- se rg(A)=rg(A| \vec{b})=n colonne \longrightarrow 1 sola risposta
- se rg(A)=rg(A $|\vec{b}$);n colonne \longrightarrow infinite soluzioni

1.0.27 nucleo di una matrice

Data $A \in M_{mn}(\mathbb{R})$ il nucleo di A e' l'insieme delle soluzione del sistema omogeneo $A\vec{x}=0$

1.0.28 Nullita'

numero di colonne di rref(A) che non contengono pivot

1.0.29 Matrice invertibile

 $A \in M_n$ (\mathbb{R} matrice quadrata, A e' inversibile se $\exists B \in M_n(\mathbb{R})$ t.c. $AB=BA=I_n$ $\longrightarrow B$ e' detta inversa di A e si scrive A^{-1}

1.0.30 matrici diagonali

matrici quadrate tali che tutti gli elementi che non stanno sulla diagonale principale sono nulli

1.0.31 spazi vettoriali

Uno spazio vettoriale reale e' un insieme V sul quale sono definite due operazioni:

- somma tra vettori
- prodotto di un vettore per uno scalare

che soddisfano le seguenti proprieta':

1.
$$\forall \vec{v}, \vec{w} \in V \quad \vec{v} + \vec{w} = \vec{w} + \vec{v}$$

2.
$$\forall \vec{v}, \vec{w}, \vec{u} \in V$$
 $(\vec{v} + \vec{w}) + \vec{u} = \vec{v} + (\vec{w} + \vec{u})$

3.
$$\exists$$
 vettore nullo t.c. $\vec{v} + \vec{0} = \vec{v}$

4.
$$\forall \vec{v} \in V \exists \vec{-v} \text{ t.c. } \vec{v} + (\vec{-v}) = \vec{0}$$

5.
$$\forall \lambda \mu \in \mathbb{R}, \forall \vec{v} \in V \quad \lambda(\mu \vec{v}) = (\lambda \mu) \vec{v}$$

6.
$$\forall \vec{v} \in V \quad 1 \cdot \vec{v} = \vec{v}$$

7.
$$\forall \lambda, \mu \in \mathbb{R} \ \forall \vec{v} \in V \quad (\lambda + \mu)\vec{v} = \lambda \vec{v} + \mu \vec{v}$$

8.
$$\forall \lambda \in \mathbb{R} \ \forall \vec{v}, \vec{w} \in V \quad \lambda(\vec{v}\vec{w}) = \lambda \vec{v} + \lambda \vec{w}$$

1.0.32 Combinazioni Lineari

Sia V spazio vettoriale real. Siano $\vec{v_1}, \dots, \vec{v_k} \in V$ vettori. il vettore

$$\vec{v} = \sum_{i=1}^{k} \lambda_i \vec{v_i} = \lambda_1 \vec{v_1} + \dots + \lambda_k \vec{v_k} \in V$$

e' detto combinazione lineare dei vettori $\vec{v_1} \dots \vec{v_k}$ con coeff. $\lambda_1, \dots, \lambda_k \in \mathbb{R}$

1.0.33 sottospazio vettoriale

Sia V uno spazio vettoriale reale. Un sottoinsieme non vuoto di V, $U \subset V$ si dice sottospazio vettoriale se e' chiuso rispetto alle operazioni di V, ossia:

1.
$$\forall \vec{u_1}, \vec{u_2} \in U$$
, abbiamo $\vec{u_1} + \vec{u_2} \in U$

- 2. $\forall \vec{u} \in U \text{ e } \forall \lambda \in \mathbb{R} \text{ abbiamo } \lambda \vec{u} \in \mathbb{R}$ equivalentemente
- 3. $\forall \vec{u_1}, \vec{u_2} \in U, \forall \lambda_1, \lambda_2 \in \mathbb{R}$ abbiamo $\lambda_1 \vec{u_1} + \lambda_2 \vec{u_2} \in U$

1.0.34 Generatori

Sia V uno spazio vettoriale reale.

- Dati $\vec{v_1} \dots \vec{v_k} \in V$ l'insieme di tutte le combinazioni lineari di $\vec{v_1} \dots \vec{v_k}$ e' detto sottospazio generato da $\vec{v_1} \dots \vec{v_k}$
- Se V e' spazio vettoriale reale t.c. V=span $(\vec{v_1} \dots \vec{v_k})$ allora V e' detto finitamente generato e { $\vec{v_1} \dots \vec{v_k}$ } e' detto insieme di generatori di V

1.0.35 dipendenza ed indipendenza lineare

V spazio vettoriale $\{\vec{v_1} \dots \vec{v_k}\} \subseteq V$ e' linearmente dipendente se $\exists \lambda_1, \dots, \lambda_k \in \mathbb{R}$ non tutti nulli tali che

$$\sum_{i=0}^{k} \lambda_i \vec{v_i} = \vec{0}$$

in caso contrario l'insieme e' detto linearmente indipendente

1.0.36 basi di uno spazio vettoriale

Un insieme di vettori B= $\{\vec{v_1} \dots \vec{v_k}\}$ e' detto base di V se e' un insisme di generatori di V linearmente indipendente

1.0.37 Determinante

Il determinante e' una funzione $det: M_n(\mathbb{R}) \longrightarrow (\mathbb{R})$ che ad $A \in M_n(\Re)$ associa un numero reale, $det(A) \in \mathbb{R}$ come segue:

- 1. Se n=1 $(A = [a_{1,1}])$, $det(A) = a_{1,1}$
- 2. Se $n \ge 2 \det(A) = \sum_{i=1}^{n} (-1)^{i+1} a_{i,1} \det(A_{i,1})$

1.0.38 Teorema di Laplace

se una matrice ha riga o colonna nulla allora il determinante sara' nullo

1.0.39 Teorema di Binet

Se $A, B \in M_n(\mathbb{R})$ allora $\det(AB) = \det(A)\det(B)$ in particulare se A e' invertibile

$$det(A^{-1}) = \frac{1}{det(A)}$$

1.0.40 ennuple sono base

un insieme di ennuple $\{\underline{v}_1,\dots,\underline{v}_n\}\subseteq\mathbb{R}^n$ e' una base di $\mathbb{R}^n<=>$ det($[\underline{v}_1-\dots-\underline{v}_n]$) $\neq 0$

1.0.41 teorema di Cramer

Sia $A\underline{x} = \underline{b}$ un sistema lineare quadrato di ordine n (ossia di n equazioni in n incognite, ovvero $A \in M_n(\mathbb{R})$). Se $\det(A) \neq 0$ allora $A\underline{x} = \underline{b}$ ammette un'unica soluzione

1.0.42 Cofattore

Data $A \in M_n(\mathbb{R}), A = [a_{i,j}]$ il cofattore dell'elemento $a_{i,j}$ e' lo scalare ==non ho voglia atm== la matrice dei cofattori di A e' $A^I = [a_{i,j}^I] \in M_n(\Re)$

1.0.43 Calcolo di matrici inverse

Se $A \in M_n(\mathbb{R})$ e' invertibile, allora

$$A^{-1} = \frac{1}{\det(A)} (A^I)^T$$

1.0.44 Coordinate

Sia V spazio vettoriale finitamente generato, $V \neq \emptyset$. Sia $B = \{\vec{b_1}, \dots, \vec{b_n}\}$ una base di V (in particolare dim(V)=n). Sia $\vec{v} \in V$, abbiamo

$$\vec{v} = \sum_{i=1}^{n} v_i \vec{b_i}$$

Gli scalari $v_1, \ldots, v_n \in \mathbb{R}$ sono detti coordinate di \vec{v} rispetto alla base B

1.0.45 Funzioni lineari

 V, V^I spazi vettoriali reali

- una funzione lineare $f:V\longrightarrow V^I$ e' una funzione tale che:
 - 1. $f(\vec{v} + \vec{w} = f(\vec{v}) + f(\vec{w}), \forall \vec{v}, \vec{w} \in V$
 - 2. $f(\lambda \vec{v} = \lambda f(\vec{v}), \forall \vec{v} \in V, \forall \lambda \in \mathbb{R}$
- $\bullet\,$ V e' detto dominio di f
, V^I e' detto codominio di f
- se $f:V\longrightarrow V^I$ funzione lineare e' biunivoca, allora f e' detto isomorfismo di spazi vettoriali
- se $V = V^I$, $f: V \longrightarrow V^I$ lineare e' detta endomorfismo

1.0.46 Nucleo

 $f: V \longrightarrow V^I$ funzione lineare il *nucleo* di f, $\mathbf{Ker}(\mathbf{f})$, e' l'insieme dei vettori di V t.c.

$$Ker(f) = {\vec{v} \in V | f(\vec{v} = \emptyset_{V^I}) \subseteq V}$$

1.0.47 Immagine di una funzione lineare

L'immagine di una funzione lineare $f:V\longrightarrow V^I$, $\mathrm{Im}(f)$, e' l'insieme dei vetori di V^I che sono immagini di vettori di V

$$Im(f) = \{\vec{v^I} \in V^I | \exists \vec{v} \in V \ con \ f(\vec{v} = \vec{v^I}\} \subseteq V^I$$

1.0.48 Teorema nullita' piu' rango

V spazio vettoriale finitamente generato, sia $f:V\longrightarrow V^I$ funzione lineare tra spazi vettoriali. Allora

$$dim(V) = dim(Ker(f)) + dim(Im(f))$$

1.0.49 matrici rappresentative

V sp. verr. reale, dim V=n, $A = \{\vec{a_1}, \dots, \vec{a_n}\}$ base di V. Dati $\vec{c_1}, \dots, \vec{c_n} \in V^I = \$ $\vec{b_i} \exists ! f : V \longrightarrow V^I$ t.c. $f(\vec{a_i}) = \vec{c_i}, \forall i = 1, \dots, n$

1.0.50 Cambiamenti di Base

Supponiamo che $V=V^I,\ A,B$ basi di $V.\ f=Id_V:V\longrightarrow V\quad \vec v\longrightarrow \vec v$ $M_A^B(f)=M_A^B(Id_V)$ e' detta matrice di transizione della base A alla base B

1.0.51 Spazio vettoriale euclideo

V spazio vettoriale. Un prodotto scalare su V e' una funzione che $\forall \vec{v}, \vec{w} \in V$ associa un numero reale $\vec{v} \cdot \vec{w}$ t.c.

- 1. $\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}, \quad \vec{v}, \vec{w} \in V$
- 2. $(\lambda \vec{v}) \cdot \vec{w} = \lambda(\vec{v} \cdot \vec{w}), \quad \forall \vec{v}, \vec{w} \in V, \ \forall \lambda \in \mathbb{R}$
- 3. $\vec{v} \cdot (\vec{w} + \vec{u}) = \vec{v} \cdot \vec{w} + \vec{v} \cdot \vec{u}, \quad \forall \vec{v}, \vec{w}, \vec{u} \in V$
- 4. $\vec{v} \cdot \vec{v} \ge 0 \quad \forall \vec{v} \in V \quad e \quad \vec{v} \cdot \vec{v} = 0 <=> \vec{v} = 0$

uno spazio vettoriale reale dotato di prodotto scalare e' detto spazio vettoriale euclideo

1.0.52 Disuguaglianza di Cauchy-Schwartz

V sp. vett. euclideo, se $\vec{v}, \vec{w} \in V$ allora

$$(\vec{v} \cdot \vec{w})^2 < (\vec{v} \cdot \vec{w})(\vec{w} \cdot \vec{v})$$

1.0.53 Norma

V sp. vett. euclideo. La norma di un vettore e'

$$||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}} \qquad \mathbb{R} \ge 0$$

la normalizzazione di $\vec{v} \neq \vec{0}$ e'

$$\frac{\vec{v}}{||\vec{v}||}$$

osservazioni:

- $||\vec{v}|| \ge 0$, inoltre $||\vec{v}|| = 0 <=> \vec{v} = \vec{0}$
- $\frac{\vec{v}}{||\vec{v}||}$ ha norma 1, $\forall \vec{v} \in V, \vec{v} \neq \vec{0}$

1.0.54 Distanza

La distanza tra due vettori $\vec{v}, \vec{w} \in V$ e'

$$d(\vec{v}, \vec{w}) = ||\vec{v - w}||$$

Proprieta':

- 1. $d(\vec{v}, \vec{w}) \ge 0 \quad \forall \vec{v}, \vec{w} \in V$. inoltre $d(\vec{v}, \vec{w}) = 0 \iff \vec{v} = \vec{w}$
- 2. $d(\vec{v}, \vec{w}) = d(\vec{w}, \vec{v}), \quad \forall \vec{v}, \vec{w} \in V$
- 3. $d(\vec{v}, \vec{w}) \leq d(\vec{v}, \vec{u}) + d(\vec{u}, \vec{w}) \quad \forall \vec{v}, \vec{w}, \vec{u} \in V$

1.0.55 Ortogonalita'

V sp. vett. euclideo. Diciamo che $\vec{v}, \vec{w} \in V$ sono ortogonali se $\vec{v} \cdot \vec{w} = 0$

1.0.56 Base ortonormale

V sp. vett. euclideo.

•
$$\{\vec{v_1}, \dots, \vec{v_m}\} \subseteq V$$
 e' ortonormale se $\vec{v_i} \cdot \vec{v_j} = \delta_{ij} = \begin{cases} 1 & i = j - > ||\vec{v_i}|| = 1 \\ 0 & i \neq j - > ortogonali \ a \ coppie \end{cases}$

 $\bullet \ \text{se} \ \{\vec{v_1}, \dots, \vec{v_m}\}$ e' anche una base detta base ortonormale

1.0.57 complemento ortogonale

V sp. vett. euclideo. $S\subseteq V$ sottoinsieme. Chiamiamo S^\perp il complemento ortogonale di S:

$$S^{\perp} = \{ \vec{v} \in V | \vec{v} \cdot \vec{s} = 0 \quad \forall \vec{s} \in S \} \subseteq V$$

osservazioni:

- $\bullet~S^\perp$ e' sottospazio di V
- $S^{\perp} = \langle S \rangle^{\perp}$