Theorem 1. The VC dimension of the class of homogeneous halfspaces in \mathbb{R}^d , i.e.,

$$\mathcal{H} = \{x \mapsto \operatorname{sign}(\langle w, x \rangle) : w \in \mathbb{R}^d \}$$

is $VCdim(\mathcal{H}) = d$.

Proof. The proof is done in two parts, first we show $VCdim(\mathcal{H}) \ge d$, second we show $VCdim(\mathcal{H}) < d + 1$.

 $\underline{\mathrm{VCdim}(\mathcal{H})} \geq \underline{d}$: We need to show that there exists a set C of size d that is shattered by $\overline{\mathcal{H}}$. Choose $\mathbf{e}_1, \dots, \mathbf{e}_d$, where \mathbf{e}_i is the i-th unit vector in \mathbb{R}^d , i.e., all zeros except at position i. For any labeling y_1, \dots, y_d , we can choose $\mathbf{w} = [y_1, \dots, y_d]$ and obtain

$$\forall i \in [d] : \langle \mathbf{e}_i, \mathbf{w} \rangle = \gamma_i$$

which establishes our lower bound.

<u>VCdim(\mathcal{H}) < d + 1: We need to show that no set of size d + 1 is shattered by \mathcal{H} . We show this by *contradiction*. Assume that a set $\mathbf{x}_1, \dots, \mathbf{x}_{d+1}$ of size d + 1 is shattered by \mathcal{H} , hence, all 2^{d+1} labelings can be obtained. In other words, for every possible labeling, there is a \mathbf{w} such that this labeling can be obtained. Lets denote these weight vectors as $\mathbf{w}_1, \dots, \mathbf{w}_{2^{d+1}}$ and write down the full matrix of all classifier outputs (before the sign), denoted by \mathbf{H} :</u>

$$\mathbf{H} = \begin{pmatrix} \langle \mathbf{x}_1, \mathbf{w}_1 \rangle & \cdots & \langle \mathbf{x}_1, \mathbf{w}_{2^{d+1}} \rangle \\ \vdots & \ddots & \vdots \\ \langle \mathbf{x}_{d+1}, \mathbf{w}_1 \rangle & \cdots & \langle \mathbf{x}_{d+1}, \mathbf{w}_{2^{d+1}} \rangle \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_{d+1} \end{pmatrix} (\mathbf{w}_1 \cdots \mathbf{w}_{2^{d+1}})$$

H is a $(d + 1) \times (2^{d+1})$ matrix, and each column of sign(H) identifies one labeling of $\mathbf{x}_1, \dots, \mathbf{x}_{d+1}$. Importantly, the rows are *linearly independent*, i.e., there is no non-trivial \mathbf{a} , such that

$$\mathbf{a}^{\mathsf{T}}\mathbf{H} = \mathbf{0}^{\mathsf{T}}$$
.

Just consider the *k*-th entry, u_k , in $\mathbf{u} = \mathbf{a}^T \mathbf{H}$ which is given by

$$\mathbf{a}^{\mathsf{T}}\mathbf{X}\mathbf{w}_{k} = u_{k}$$

Due to our shattering assumption, we know that there is some *k* for which

$$sign(Xw_k) = sign(a)$$

implying that $u_k > 0$ (as we sum over non-negative numbers). Hence, no non-trivial a exists and the linear independency claim holds.

Finally, all d + 1 rows being linearly independent then implies that

$$rank(\mathbf{H}) = d + 1$$

However, as H = XW, we also have that

$$d + 1 = \operatorname{rank}(\mathbf{H}) \le \min \{ \operatorname{rank}(\mathbf{X}), \operatorname{rank}(\mathbf{W}) \}$$

$$\le d$$
(1)

which is a contradiction. The last inequality holds as the rank of **X** is bounded by the smallest dimension, i.e., d (same for **W**). Hence, no set of size d + 1 can be shattered by \mathcal{H} , i.e., $VCdim(\mathcal{H}) < d + 1$ and we conclude $VCdim(\mathcal{H}) = d$.

Intervals in R. Let

$$\mathcal{H} = \{x \mapsto h_{a,b}(x) = 1_{x \in (a,b)} : a < b\}$$

be the class of intervals in \mathbb{R} . For the lower bound, $VCdim(\mathcal{H}) \ge 1$ is obvious, for $VCdim(\mathcal{H}) \ge 2$, see the illustration below with interval boundaries (a, b) in red. For sets of size 3, assume w.l.o.g., $x_1 \le x_2 \le x_3$. In fact, using \mathcal{H} , the labeling (1, 0, 1) cannot be achieved and we have $VCdim(\mathcal{H}) < 3$; consequently $VCdim(\mathcal{H}) = 2$.

