Universidade do Minho Escola de Ciências

Departamento de Matemática e Aplicações

Análise Matemática EE

Teste 1 :: 18 março 2019

duração: 2 horas

Justifique, convenientemente, todas as suas respostas.

- 1. Indique, justificando, se as proposições seguintes são verdadeiras ou falsas:
 - a) Se $f(x,y) = \frac{x^2y^2}{x^4 + (x-y)^4}$, então $\lim_{(x,y) \to (0,0)} f(x,y) = 0$;
 - **b)** O plano tangente ao gráfico da função $f(x,y)=x^2+(x-1)y+y^3$, no ponto (0,1,0), é paralelo ao plano x+y-z=2;
 - c) Não existe uma função $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f_x(x,y) = x^2y + y^2$ e $f_y(x,y) = \frac{x^3}{3} + 2y$;
 - **d)** Se $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ são funções de classe \mathscr{C}^2 e h(x,y)=f(x+g(y)), então $\frac{\partial h}{\partial x}\frac{\partial^2 h}{\partial x\partial y}=\frac{\partial h}{\partial y}\frac{\partial^2 h}{\partial x^2}$.
- $\textbf{2.} \quad \text{Considere a função } \boldsymbol{f}: \mathcal{D} \subset \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \text{ tal que } \boldsymbol{f}(x,y) = \Big(\frac{1}{\ln(1-x^2-(y+1)^2)}, \frac{x+y}{|2x|-1}\Big).$
 - a) Determine o domínio $\mathcal D$ da função f e represente-o graficamente.
 - **b)** Indique a aderência e a fronteira de \mathcal{D} .
 - c) Indique, justificando, se \mathcal{D} é um conjunto aberto.
- 3. Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ tal que $f(x,y) = \left\{ \begin{array}{ll} \frac{xy^3}{x^2+y^2} + 2y, & \text{se} \quad (x,y) \neq (0,0) \\ 0, & \text{se} \quad (x,y) = (0,0) \end{array} \right.$
 - a) Mostre que a função f é contínua em (0,0).
 - **b)** Determine $\nabla f(0,0)$ e $\nabla f(0,1)$.
 - c) Calcule Df((0,0);(1,1)).
 - **d)** Verifique se f é derivável em (0,0).
- **4.** Considere as funções $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ e $\mathbf{q}: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tais que

$$f(x,y) = 1 - e^{x^2 + 2y^2 - 4}$$
 e $g(x,y,z) = (x + yz, x\cos(y^2 + 4z)).$

- a) Descreva as curvas de nível da função f e represente graficamente a curva de nível que passa em (0,2).
- **b)** Calcule $\lim_{(x,y,z)\to(1,2,-1)} g(x,y,z)$.
- **c)** Determine Dq(1, 2, -1).
- **d)** Determine o vetor gradiente de $f \circ g$ no ponto (1, 2, -1).