Trabalho Final Tópicos Especiais III

Rian Turibio Leonardo Rocha Inácio Victor Camargo de Lima

Dataset Vgsales.csv

Este conjunto de dados contém uma lista de videogames com vendas superiores a 100.000 cópias.

Incluindo:

- Rank Ranking de vendas gerais
- Nome O nome dos jogos
- Plataforma Plataforma do lançamento dos jogos (ou seja, PC, PS4, etc.)
- Ano Ano de lançamento do jogo
- Gênero Gênero do jogo
- Editora Editora do jogo
- NA_Sales Vendas na América do Norte (em milhões)
- EU_Sales Vendas na Europa (em milhões)
- JP_Sales Vendas no Japão (em milhões)
- Other_Sales Vendas no resto do mundo (em milhões)
- Global_Sales Total de vendas mundiais.

Carga de dados

```
#leitura dos dados
vg = pd.read_csv('vgsales.csv');
vg.head()
```

Rank		Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82
3	4	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.75	11.01	3.28	2.96	33.00
4	5	Pokemon Red/Pokemon Blue	GB	1996.0	Role-Playing	Nintendo	11.27	8.89	10.22	1.00	31.37


```
#Observa-se que Ano, Publicadora possuem elementos nulos.
   print("######### TIPOS DE DADOS #########"")
   vg.info()
########### TIPOS DE DADOS ############
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16598 entries, 0 to 16597
Data columns (total 11 columns):
    Column
                 Non-Null Count Dtype
    Rank
                 16598 non-null int64
    Name
                 16598 non-null object
    Platform
                 16598 non-null object
                 16327 non-null float64
    Year
                 16598 non-null object
    Genre
                16540 non-null object
    Publisher
               16598 non-null float64
    NA Sales
    EU Sales 16598 non-null float64
    JP Sales
               16598 non-null float64
    Other Sales 16598 non-null float64
 10 Global Sales 16598 non-null float64
dtypes: float64(6), int64(1), object(4)
memory usage: 1.4+ MB
```



```
#O número de campos nulos por coluna é:
   print("######### NULOS POR COLUNA #########"")
   vg.isnull().sum()
########### NULOS POR COLUNA ############
Rank
Name
Platform
       271
Year
Genre
Publisher
NA Sales
               0
EU Sales
JP Sales
Other Sales
Global Sales
dtype: int64
```



```
#Remoção de duplicatas caso haja.

predropado = len(vg)

aposdropado = len(vg.drop_duplicates())

#O numero de linhas se manteve, não há duplicatas.

print("%i == %i - nao houveram duplicatas" % (predropado, aposdropado))

16598 == 16598 - nao houveram duplicatas
```


#Remocao de colunas nao usadas
vg.drop(columns=['Rank'])

	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
1	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82
3	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.75	11.01	3.28	2.96	33.00
4	Pokemon Red/Pokemon Blue	GB	1996.0	Role-Playing	Nintendo	11.27	8.89	10.22	1.00	31.37
16593	Woody Woodpecker in Crazy Castle 5	GBA	2002.0	Platform	Kemco	0.01	0.00	0.00	0.00	0.01
16594	Men in Black II: Alien Escape	GC	2003.0	Shooter	Infogrames	0.01	0.00	0.00	0.00	0.01
16595	SCORE International Baja 1000: The Official Game	PS2	2008.0	Racing	Activision	0.00	0.00	0.00	0.00	0.01
16596	Know How 2	DS	2010.0	Puzzle	7G//AMES	0.00	0.01	0.00	0.00	0.01
16597	Spirits & Spells	GBA	2003.0	Platform	Wanadoo	0.01	0.00	0.00	0.00	0.01

16598 rows × 10 columns


```
#remove todos as linhas que possuem campos nulos e atribiu ao mesmo dataframe.
vg.dropna(inplace=True)
print("Total de removidos: ", aposdropado - len(vg))
```

Total de removidos: 307


```
#Por questão de consistência, o ano é setado para inteiro.
   vg['Year']=vg['Year'].astype(int)
   vg.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16291 entries, 0 to 16597
Data columns (total 11 columns):
    Column
                 Non-Null Count Dtype
    Rank
                 16291 non-null int64
    Name
                16291 non-null object
    Platform 16291 non-null object
                 16291 non-null int32
    Year
                 16291 non-null object
    Genre
    Publisher
                 16291 non-null object
   NA Sales
                16291 non-null float64
    EU Sales 16291 non-null float64
    JP Sales 16291 non-null float64
    Other Sales 16291 non-null float64
10 Global Sales 16291 non-null float64
dtypes: float64(5), int32(1), int64(1), object(4)
memory usage: 1.4+ MB
```



```
#Podemos checar a densidade de dados em relação a um ano específico para posteriormente comparar com as vendas globais daquele ano.
#Isso trará a noção se ouveram muitos títulos em um certo ano
year_group = vg.pivot_table(columns=['Year'], aggfunc='size')
year_group.plot(kind = 'bar', figsize=(15,6))
plt.xlabel('Ano')
plt.ylabel('Títulos publicados')
plt.show()
```



```
#Utiliza-se pivot table para criar uma tabela da relação única de plataformas e a soma de venda global de cada jogo daquela plataforma
  vg use = vg.pivot table ('Global Sales',index = 'Platform', aggfunc='sum')
  #ordena por ordem crescente de global sales
  vg use sorted = vg use.sort values('Global Sales', ascending=False)
  vg use sorted.plot(kind = 'bar', figsize=(15,6))
  plt.xlabel('Plataformas')
  plt.ylabel('Vendas globais em milhão')
  plt.show()
                                                                                                                              Global Sales
   1200
Vendas globais em milhão
   1000
     800
     600
     400
    200
                                                                                      2600
                                                                                                  SAT
                                                                                                      GEN
                                                                                                                            TG16
                                                                 305
                                                                     N64
                                                                                              PSV
                                                                                                                    NG
                                                                                                                        WS
                                                                   Plataformas
```



```
#Utiliza-se pivot_table para criar uma tabela da relação única de plataformas e a soma de venda global de cada jogo daquela plataforma
  vg use = vg.pivot table ('NA Sales',index = 'Platform', aggfunc='sum')
  #ordena por ordem crescente de global sales
  vg use sorted = vg use.sort values('NA Sales', ascending=False)
  vg use sorted.plot(kind = 'bar', figsize=(15,6))
  plt.xlabel('Plataformas')
  plt.ylabel('Vendas North America em milhão')
  plt.show()
   600
                                                                                                                                NA_Sales
Vendas North America em milhão
                                                                                                      20
                                                                            2600
                                                                                 305
                                                                                                          SCD
                                                                        Xone
                                                                  Plataformas
```



```
#Utiliza-se pivot table para criar uma tabela da relação única de plataformas e a soma de venda global de cada jogo daquela plataforma
  vg_use = vg.pivot_table ('EU_Sales',index = 'Platform', aggfunc='sum')
  #ordena por ordem crescente de global sales
  vg_use_sorted = vg_use.sort_values('EU_Sales', ascending=False)
  vg_use_sorted.plot(kind = 'bar', figsize=(15,6))
  plt.xlabel('Plataformas')
  plt.ylabel('Vendas Europa em milhão')
  plt.show()
   350
                                                                                                                                EU Sales
   300
Vendas Europa em milhão
   250
   200
   150
   100
    50
                                                                                                  2600
                                                                                              GEN
            PS2
                     M
                                          GBA
                                               PSP
                                                                             WiiU
                                                                                 NES
                                                                                                       DC
                                                                                                           SAT
                                                                                                                SCD
                                                                                                                        FG16
                                                                                                                            300
                                                        305
                                                            GB
                                                                     N64
                                                                                                                                 99
                                                                   Plataformas
```



```
#Utiliza-se pivot table para criar uma tabela da relação única de plataformas e a soma de venda global de cada jogo daquela plataforma
  vg use = vg.pivot table ('JP Sales',index = 'Platform', aggfunc='sum')
  #ordena por ordem crescente de global sales
  vg_use_sorted = vg_use.sort_values('JP_Sales', ascending=False)
  vg use sorted.plot(kind = 'bar', figsize=(15,6))
  plt.xlabel('Plataformas')
  plt.ylabel('Vendas Japão em milhão')
  plt.show()
   175
                                                                                                                             JP_Sales
   150
Vendas Japão em milhão
   125
   100
    75
    50
    25
                                                                               360
                                                          SAT
                                                      N64
                                                                   PSV
                                                                           WilU
                                                                                                         SCD
                                                                                                             (One
                                                                  Plataformas
```



```
plt.figure(1, figsize = (15, 6))
  #recupera as 6 primeiras plataformas mais vendidas
  plat_mais_vendidas = vg_use_sorted[:6].index
  for gender in plat mais vendidas:
      plt.scatter(x = 'Genre', y = 'Global Sales', data = vg[vg['Platform'] == gender], alpha = 0.7, label = gender)
  plt.xlabel('Genre'), plt.ylabel('Global Sales')
  plt.title('Sales Game Consoles')
  plt.legend()
  plt.show()
                                                   Sales Game Consoles
   40
                                                                                                                      DS
                                                                                                                      PS
   35
                                                                                                                      PS2
                                                                                                                       SNES
   30
                                                                                                                      NES
                                                                                                                      3DS
Sales
  120
  15
   10
    5
    0
       Platform Simulation Racing
                                             Role-Playing Puzzle
                                                                   Action
                                                                                   Adventure Strategy Shooter
                                                              Genre
```



```
X2 = vg[['NA Sales' , 'Global Sales' ]].iloc[: , :].values
inertia = []
for n in range(1, 11):
    algorithm = (KMeans(n clusters = n))
    algorithm.fit(X2)
    inertia.append(algorithm.inertia )
    plt.figure(1 , figsize = (15 ,6))
plt.plot(np.arange(1 , 11) , inertia , 'o')
plt.plot(np.arange(1 , 11) , inertia , '-' , alpha = 0.5)
plt.xlabel('Número de Clusters') , plt.ylabel('Soma das Distâncias Q intra Clusters')
plt.show()
algorithm = (KMeans(n clusters = 4))
algorithm.fit(X2)
KMeans(algorithm='auto', copy x=True, init='k-means++', max iter=300,
       n clusters=4, n init=10, tol=0.0001, verbose=0)
labels2 = algorithm.labels
centroids2 = algorithm.cluster centers
h = 0.02
x_{min}, x_{max} = X2[:, 0].min() - 1, <math>X2[:, 0].max() + 1
y_{min}, y_{max} = X2[:, 1].min() - 1, <math>X2[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y max, h))
Z = algorithm.predict(np.c [xx.ravel(), yy.ravel()])
plt.figure(1 , figsize = (15 , 7) )
plt.clf()
Z2 = Z.reshape(xx.shape)
plt.imshow(Z2 , interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap = plt.cm.Pastel2, aspect = 'auto', origin='lower'
plt.scatter( x = 'NA Sales' ,y = 'Global Sales' , data = vg , c = labels2 , s = 200 )
plt.scatter(x = centroids2[: , 0] , y = centroids2[: , 1] , s = 300 , c = 'red' , alpha = 0.5)
plt.ylabel('Global Sales') , plt.xlabel('Vendas North America')
plt.show()
```


Obrigado!

