# Binomial Heaps

Ch. 9.3

# Leftist vs. Binomial heaps

Time complexity for different operations

|                     | Leftist trees | Binomial heaps |           |
|---------------------|---------------|----------------|-----------|
|                     |               | Actual         | Amortized |
| Insert              | O(log n)      | O(1)           | O(1)      |
| Delete min (or max) | O(log n)      | O(n)           | O(log n)  |
| Meld                | O(log n)      | O(1)           | O(1)      |

## Toy example of amortization

• Performing a sequence of insert and delete-min operations:

11, 12, D1, 13, 14, 15, 16, D2, 17

Actual cost of each insertion: 1

Actual cost of D1: 8

Actual cost of D2: 10

Total cost: 25

Cost transferring (amortization) scheme:

Transfer one unit of cost of a delete-min to the prior insertions.

|           | l1  | 12  | D1          | <b>I3</b> | 14  | 15  | 16  | D2    | <b>I7</b> |
|-----------|-----|-----|-------------|-----------|-----|-----|-----|-------|-----------|
| Actual    | 1   | 1   | 8           | 1         | 1   | 1   | 1   | 10    | 1         |
| Amortized | 1+1 | 1+1 | 8 <b>-2</b> | 1+1       | 1+1 | 1+1 | 1+1 | 10 -4 | 1         |

### **Amortization**

- Sometimes, we care more about the overall time to perform a sequence of operations.
  - The time to perform a single operation is less important.
  - For example: sorting.

# Binomial heaps (B-heap)

- Max binomial heap
  - A collection of max trees
- Min binomial heap
  - A collection of min trees
     (In this lecture, we will consider min binomial heaps only.)

Example: A B-heap with 3 min trees.



## Binomial heap representation

- All roots of min trees form a circular linked list.
- All the children of a node form a circular linked list.
   {10}, {6}, {5,4}, {20}, {15,30}, {9}, {12,7,16}, {8,3,1}
- min: pointer to the B-heap.



### Node structure

- Child
  - Pointer to one of the node's children.
  - Null iff node has no child.
- Link

Used for <u>singly</u> circular linked list of siblings.

- Degree
  - Number of children.
- Data



## Operation: Insertion

- Add a new single-node min tree to the collection.
- Update min-element pointer if necessary.

Example: Insert 10



## Operation: Meld

- Meld the top circular lists of two B-heaps into one circular list
- Keep only the min pointer having the smaller key



## Operation: Meld

- Meld the top circular lists of two B-heaps into one circular list
- Keep only the min pointer having the smaller key



- If min is 0, the B-heap is empty.  $\rightarrow$  Cannot perform deletion.
- If min points to a node, the B-heap is not empty.
  - 1) Remove the node pointed by min.
  - 2) Reinsert subtrees of the removed node.
  - 3) Update the pointer min.



- 1) Remove the node pointed by *min*.
  - New B-heap consists of the remaining min trees and the sub-min tree of the deleted node.



## Remove min node from B-heap

- Delete the min node from its circular list.
- Same as removing a node from a circular list.



If no next node 
 The list is empty after remove min node.

- 2) Min-tree joining.
- Pairs of min trees having the same degree must be joined.

The degree of a min tree is the degree of its root.



- 2) Min-tree joining.
- Pairs of min trees having the same degree must be joined.
- The min tree(root has a larger key) becomes a subtree of the min tree(root has a smaller key). To maintain property of min tree.



Joining a pair of degree-one min trees

- 2) Min-tree joining.
- Pairs of min trees having the same degree must be joined.
- The min tree(root has a larger key) becomes a subtree of the min tree(root has a smaller key).



See programs 9.3 and 9.4 in textbook for more details.

- 3) Form min-tree root list and update min pointer.
- Link roots of the remaining min-trees together using linked circular list.
- Set min to point to the root with minimum key.



## Importance of circular lists in B-heaps

- Reinsert sub-trees due to removal of min
  - Deleting min node results in several sub-min trees.
  - With the circular list, those sub-min trees can be visited.

- Find *min* node
  - Searching the top-level circular list.

- Meld two binomial heaps
  - Melding the top-level circular lists of the two B-heaps.

## Complexity of Delete-min

- 1) Remove the node pointed by *min*.
  - O(1)
- 2) Min-tree joining.
  - O(s), where s is the number of min trees.
  - s = O(n), since there may be several one-node subtrees.
- 3) Form min-tree root list and update min pointer.
  - The final number of min trees ≤ s.

Overall complexity of delete-min is O(n).

• Can be implemented using an array *tree* to keep track of trees by degree.

tree

 $T_8$ 

#### Example:



Visiting the min trees following the top-level circular list. Recording the degree of visited min trees.

#### Example:



Visiting the next min tree.
Recording the degree of visited min trees.

#### tree

| 4 |                       |
|---|-----------------------|
| 3 |                       |
| 2 | <b>T</b> <sub>3</sub> |
| 1 | T <sub>8</sub>        |
| 0 |                       |

#### Example:



Visiting the next min tree.

Recording the degree of visited min trees.

Finding another min tree  $T_3$  having same degree.  $\rightarrow$  Meld them.

| + | r | 0 | 0 |
|---|---|---|---|
| L |   |   | C |

| 4 |                       |
|---|-----------------------|
| 3 |                       |
| 2 | <b>T</b> <sub>3</sub> |
| 1 | T <sub>8</sub>        |
| 0 |                       |

#### Example:



Recording the degree of new min-tree.

#### tree

16

| 4 |                       |
|---|-----------------------|
| 3 | <b>T</b> <sub>3</sub> |
| 2 |                       |
| 1 | T <sub>8</sub>        |
| 0 |                       |

#### Example:



Visiting the next min tree.

Recording the degree of visited min trees.

Finding another min tree  $T_8$  having same degree.  $\rightarrow$  Meld them.

| 7 | H | r | P   | P   |
|---|---|---|-----|-----|
| 4 |   | , | L . | L . |

| T <sub>3</sub> |
|----------------|
|                |
| T <sub>8</sub> |
|                |
|                |

#### Example:



tree

16

| 4 |                |
|---|----------------|
| 3 | T <sub>3</sub> |
| 2 | T <sub>7</sub> |
| 1 |                |
| 0 |                |

Recording the degree of new min-tree.

#### Example:



Visiting the next min tree.

Recording the degree of visited min trees.



#### tree

| 4 |                       |
|---|-----------------------|
| 3 | T <sub>12</sub>       |
| 2 | <b>T</b> <sub>7</sub> |
| 1 |                       |
| 0 | T <sub>16</sub>       |

#### Example:



Create circular list of remaining trees in the *tree* table.

#### \_\_\_\_

1 16

#### tree

| 4 |                       |
|---|-----------------------|
| 3 | T <sub>12</sub>       |
| 2 | <b>T</b> <sub>7</sub> |
| 1 |                       |
| 0 | T <sub>16</sub>       |

## Complexity of Delete-min

- 2) Min-tree joining.
- Create and initialize tree table.
  - O(MaxDegree).
  - Done once only.
- Examine s min trees and pairwise combine.
  - O(s), where s is the number of min trees.

Number of joins is <u>at most</u> **s-1** as each join reduces number of min-trees by 1.

- 3) Form min-tree root list and update min pointer.
- Collect remaining trees from tree table, reset table entries to null, and set *min* pointer.
  - O(MaxDegree).

Overall complexity of delete-min is O(MaxDegree + s).

### Exercise

• Q7: Into an empty B-heap, insert elements with priorities 20, 10, 5, 18, 6, 12, 14, 4, and 22 (in this order). Each insertion operation includes min-tree joining (pairwise combine). Please write the roots and degrees of min trees in the final B-heap.

 Q8: Delete the min element from the final B-heap of Q7. Please write the roots and degrees of min trees in the resulting B-heap.



### Binomial trees

• If performing inserts, melds, and delete-mins only, the min trees in B-heap are binomial trees.

- $B_k$  is degree-k binomial tree.
  - k=0, the tree has one node.



• k>0, root with degree k and subtrees are  $B_0$ ,  $B_1$ ,...,  $B_{k-1}$ .



# Example of binomial trees



# Equivalent definition of binomial trees

- $B_k$  is degree-k binomial tree.
  - K>0,  $B_k$  is two  $B_{k-1}$ .



## Number of nodes in binomial trees

•  $N_k$  is number of nodes in degree-k binomial tree.

• 
$$N_0 = 1$$

•  $N_k = 2N_{k-1} = 2^k$ 



In B-heap, all trees are binomial trees.
Thus MaxDegree of a min tree is O(log n).



# Performance analysis

See Theorem 9.1 in textbook for more details.

|                     | Leftist trees | Binomial heaps |           |  |
|---------------------|---------------|----------------|-----------|--|
|                     |               | Actual         | Amortized |  |
| Insert              | O(log n)      | O(1)           | O(1)      |  |
| Delete min (or max) | O(log n)      | O(n)           | O(log n)  |  |
| Meld                | O(log n)      | O(1)           | O(1)      |  |

- Actual cost of a delete-min: O(MaxDegree + s) = O(log n + s).
- If a <u>sequence</u> of insert, meld, and delete-min operations is performed on empty B-heaps, we can transfer the cost of delete-min s to prior insertions.
- Amortized cost of insertion becomes O(1+1) = O(1) and that of delete-min becomes O(MaxDegree) = O(log n).

## Summary

- Binomial heaps
  - Operations: Insert, Meld, Delete-min, Delete-min using tree table.
- Binomial trees
  - Definition
  - Number of nodes
- Performance analysis
- Amortized cost