CS 315 Lecture 1 Graph Intro

Introduction to the course

Late Policy:

- <= 12 hours after deadline
 - 10% reduction
- 12 <= 24 hours after deadline
 - 20% reduction
- 24 <= 48 hours after deadline
 - 30% reduction
- 48 hours after deadline
 - Won't be graded

Course Topics:

- Programming and problem solving, with applications
- Algorithms: step-by-step procedure for solving a problem
- Topics:
 - Graphs:
 - BFS
 - DFS
 - Prim
 - Kruskal
 - Dijkstra
 - etc
 - Dynamic Programming:
 - Fibonacci
 - Matrix chain multiplication
 - Common sequence
 - Knapsack
 - etc

- Divide and Conquer:
 - Maximum-sub array
 - Strassen
 - Multiplying polynomials
- Greedy:
 - Activity Selection
 - Job scheduling
 - Huffman coding
- Advanced Topics:
 - Network flow string matching
- Algorithm Complexity:
 - Np Hardness

Why Study Algorithms?

- Their impact is broad and far reaching
 - Tons of fields from internet to biology
- Become a proficient programmer:
 - "Difference between a good and bad programmer, bad programmers worry about the code, good ones worry about the data structures and their relationships" (Linus Torvalds(Creator of linux))
 - Algorithms + Data Structures = Programs
- Used by almost every company:
 - Apple
 - Amazon
 - Morgan Stanley
 - IBM
 - Netflix
 - Microsoft
 - Etc

Graph Introduction

Graphs

- Graph: Set of vertices connected pairwise by edges
- Why study graph algorithms?
 - Thousands of practical applications
 - Hundreds of graph algorithms known

• Examples:

Transportation networks:

Vertex: subway stopEdge: direct route

Protein Interaction Network:

Vertex: proteinEdge: interaction

Facebook Friends:

Vertex: person

Edge: social relationships

Twitter:

Vertex: accountEdge: follower

Directed Graphs

Terminology:

Graph: Set of vertices connected pairwise by edges

Directed: has an in and out degree because the edges have a direction

Path: Sequence of vertices connected by directed edges, with no repeated edges

• Connected: Two vertices are connected if there is a directed path between them

• Directed Cycle: Directed path whose first and last vertices are the same

Out Degree: number of edges pointing out from a vertex

• In Degree: number of edges pointing into a vertex

Example:

Road Map:

Vertices: Intersections

Edges: Roads

Undirected Graphs

• Terminology:

• Graph: Set of vertices connected pairwise by edges

Path: Sequence of vertices connected by directed edges, with no repeated edges

• Connected: Two vertices are connected if there is a directed path between them

• Cycle: path whose first and last vertices are the same

Degree: number of edges connected to a vertex

Example:

Facebook Friends:

Vertices: profile

Edges: friendships

Some Graph-processing Problems

• S-t path: Find a path between s and t

• Shortest s-t path: Find the shortest path between s and t

• Cycle: Find a cycle

• Euler Cycle: Find a cycle that uses each edge exactly once

Hamilton Cycle: Find a cycle that uses each vertex exactly once

• Bioconnectivity: Find a vertex whose removal disconnects the graph

• Planarity: Draw in the plane with no crossing edges

• **Graph Isomorphism:** Find an isomorphism between two graphs

Vertex Representation

- Use integers between 0 and V 1 (or between 1 and V)
- Applications: convert between names and integers with symbol table

Graph Representation:

• Adjacency Matrix: V by V boolean array for each edge v->w in graph: adj[v][w]=true

Comp	lete	grap	h
------	------	------	---

	Α	В	С	D
Α	0	1	1	1
В	1	0	1	1
С	1	1	0	1
D	1	1	1	0

- 1 for a connection
- 0 for no connection
- Problem: hard to resize and show for large amounts of data

• Adjacency Lists: maintain vertex-indexed array of lists

- Question: How long to iterate over vertices adjacent to v?
 - ullet Complexity will be O(outdegree) of v

In Practice

- Most real world graphs are sparse
- Sparse: huge number of vertices and small average vertex degree

Representation	Space	Insert edge from v to w	Edge from \boldsymbol{v} to \boldsymbol{w}	Iterate over vertices pointing from \boldsymbol{v}
Adjacency matrix	V^2	1 t ($t=$ dissal	1	V
Adjacency lists	E+V	1	outdegree(v)	outdegree(v)