

Data Structure and Algorithm

Training Assignments

Document Code	25e-BM/HR/HDCV/FSOFT	
Version	1.1	
Effective Date	20/02/2021	

RECORD OF CHANGES

No	Effective Date	Change Description	Reason	Reviewer	Approver
1.	20/02/2021	Create a new Assignment 1	Create new	DieuNT1	VinhNV
				•	
				•	

Contents

Ass	signment 2: Linked List	.4
0	Dbjectives:	.4
Λ	esignment Descriptions:	1

CODE: DSA_Assignment2_Opt01

Issue/Revision: x/1

TYPE: N/A

LOC: N/A

DURATION: 180 MINUTES

Assignment 2: Linked List

Objectives:

- » Understand the basics of LinkedList?
- » Distinguish characteristics of LinkedList types (Singly LinkedList, Doubly Linked List, Circular Linked List)
- » Able to use Singly LinkedList to solve basic algorithms.

Assignment Descriptions:

Problem 2: Suppose that a linked list is made up of nodes of type

```
class List{
   static Node head;
static class Node {
   int key;
   Node next;
};
```

that you are given a pointer "list" of type link, which points to the first node of the list; and that the last node has NULL as its link.

- a) Write a code fragment to delete the second node of the list.

 Assume that there are at least two nodes on the list.
- b) Write a code fragment to add a new node with key 17 just after the second node of the list. Assume that there are at least two nodes on the list.
- c) Write an iterative function count() that takes a link as input, and prints out the number of elements in the linked list.
- d) Write an iterative function max() that takes a link as input, and returns the value of the maximum key in the linked list.

Assume all keys are positive, and return -1 if the list is empty.

Problem 3: What does the following program print out?

```
class LinkedList {
    static Node head;
    static class Node {
        int data;
        Node next;
        Node(int d)
        {
            data = d;
            next = null;
        }
    }
   Node function(Node node)
    {
        Node prev = null;
        Node current = node;
        Node next = null;
        while (current != null) {
            next = current.next;
            current.next = prev;
            prev = current;
            current = next;
            System.out.println(current + " ");
        }
        node = prev;
        return node;
    }
```

-- THE END --