Vision & Perception 2019/20

Project Presentation

Francesco Starna

Sapienza University of Rome

Human Face Translation with GAN

Project

Project Goal

Image Translation using Generative Adversarial Networks

CycleGAN

(Jun-Yan Zhu et al.)
Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks

Generative Adversarial Networks

 Learns to generate new data with the same statistic distribution of the training set

Supervised and Unsupervised learning methods

Sapienza

this bird is red with white and has a very short beak

- Large domains application:
 - -Image Generation
 - -Image Translation
 - -Super Resolution
 - -Style Transfer
 - -Text to Image
 - ... and many more

GAN Architecture

- Generator
- Discriminator
- Loss Function
- Model

CycleGAN

Unsupervised Learning of mappings
 G: X → Y and inverse F: Y → X

- Cycle consistency loss

- Architecture
 - 2 Generator
 - 2 Discriminator

Generator

ENCODER

- Convolutional Layer
- Highlights Extraction
- Downsample

TRANSFORMER

- Residual Connection
- Join Features
- Same dimension

DECODER

- Transposed Convolutional Layer
- Image Construction from low-level
- Upsample

Discriminator

- PatchGAN

(Isola et al.)
Image to-image translation
with conditional adversarial
networks.

- Layers

- Convolutional Layer
- Instance Normalization
- Leaky ReLU (0.01x if x < 0)

- Mapping

- 256x256 to NxN array
- Average to classify Real or Fake

Objective

- 2 Generators **G** and **F**
- 2 Discriminator **Dx** and **Dy**
- 1st Adversarial Loss

$$Loss_{advers}(G, D_y, X, Y) = \frac{1}{m} \sum (1 - D_y(G(x)))^2$$

- 2nd Adversarial Loss

$$Loss_{advers}(F, D_x, Y, X) = \frac{1}{m} \sum (1 - D_x(F(y)))^2$$

- Cycle Consistency Loss

$$Loss_{cyc}(G, F, X, Y) = \frac{1}{m} [(F(G(x_i)) - x_i) + (G(F(y_i)) - y_i)]$$

Training

Optimizer: Adam (Kingma and Ba, 2017)

Epochs: 200 (100 fixed lr + 100 decay)

Sapienza

generator loss = total cycle loss + identity loss
discriminator loss = disc real loss + disc fake loss

Dataset

Domain X
 FLICKR FACE

- Domain Y
SIMPSON FACE
ANIMAL FACE
BITMOJI FACE

1000 Images Train100 Images TestEach

SAPIENZA

Preprocessing

- Normalization
 [0,255] to [-1,1]
- Data Augmentation
 Random Jittering (resize, crop, flip)

SAPIENZA

Results (Human & Simpson)

Results (Human & Animal)

SAPIENZA

Results (Human & Bitmoji)

Results

Comments

- <u>Data Augmentation</u> > more training samples

- Large Geometric Shifts are not Successful
- <u>Visual Inspection</u> is better than more epochs

Simpson ~ 100 epochs Animal ~ 150 epochs Bitmoji ~ 120 epochs

- CycleGAN can be <u>improved</u>

Reduce oscillation by feeding the discriminator with a history of n generated images rather than last ones

Generator G result after 200 epochs training

Thanks

