

Analyse et Modélisation des Émissions de CO2 et de la Consommation d'Énergie

Sommaire

Rappel de la problématique

Présentation du jeu de données

Feature Engineering

Approche de modélisation

Résultats

Conclusion

Anticiper les Besoins Énergétiques

Mission :

 Prédiction des émissions de CO2 et de la consommation totale d'énergie des bâtiments non résidentiels à Seattle.

Contexte:

 Les relevés d'émissions et de consommation sont coûteux et chronophages.

Données Structurelles des Bâtiments :

- Exploitation des relevés existants pour développer des modèles prédictifs basés sur les caractéristiques structurelles des bâtiments.
- Pour tout nouveau bâtiment, un premier relevé de référence sera effectué la première année.

Objectif à Long Terme :

• Contribuer à l'objectif de neutralité carbone de Seattle d'ici 2050.

Description du jeu de données

- Nombre de Bâtiments :
 - Total de bâtiments analysés : 3 376.
- Types de Bâtiments :

- Variables cibles : Émissions de CO2 et consommation d'énergie.
- Variables structurelles: Catégorielles (p. ex., BuildingType) et Numériques (p. ex., superficie, année de construction).

Pourcentage de Valeurs Manquantes par Variable

Pourcentage de Valeurs Manquantes

Qualité des Données :

Valeurs manquantes :

Bien renseignée.

ENERGYSTARSscore.

Outliers:

High: Data center.

Low: Office.

ComplianceStatus : 1 548 bâtiments.

Variables cibles

Consommation d'électricité vs. Energie sur site: Corrélation très forte (Pearson: 0,95).

Consommation d'énergie vs. Émissions CO2: Corrélation forte, plus marquée sans normalisation.

Choix pour l'analyse:

"SiteEUIWN(kBtu/sf)" et "GHGEmissionsIntensity".

Comparaisons sur une base équitable.

ENERGYSTARScore:

Note de performance de 1 à 100.

Calculé à partir de la consommation, l'utilisation du type d'immeuble, l'occupation, la superficie...

Corrélation modeste avec variables cibles : -0,30

KNNImputer pour les valeurs manquantes. MAE=15,5

Variables structurelles Catégorielles

Type de construction. Usage du bâtiment. Quartiers.

Simplification pour les variables avec un grand nombre de catégories en 3 niveaux d'émissions : Haute / Moyenne/Faible

Réduire la complexité du modèle et potentiellement à améliorer sa généralisation et performance.

Variables structurelles catégorielles

LPUT et SLPUT: Division en 3 groupes de catégorie pour réduire le nombre de variables au moment de l'encodage: Low, Medium, High

Variables structurelles

Date de Construction Superficie Nombre d'Étages

Gestion des Superficies :

Superficie du Bâtiment / Superficie du Parking : Considérée séparément pour refléter l'espace non chauffé.

Autres variables à tester : Identifiant Taxe. ZipCode.

Création de variables

Types d'Énergie : Identifier l'impact des différentes sources d'énergie.

Méthode de Création: Calcul de la proportion de chaque type d'énergie par rapport à la consommation totale.

Encodage des variables catégorielles

- Séparation avant encodage pour éviter le data leakage.
- Processus d'Encodage OneHot :
- Étape 1 : Préparer l'encodeur
 - OneHotEncoder pour les variables catégorielles.
 - drop='first' pour éviter les variables redondantes.
- Étape 2 : Appliquer l'encodage
 - fit_transform sur (X_train) pour apprendre les catégories et les transformer.
 - transform sur (X_test) pour appliquer les mêmes transformations sans apprendre de nouvelles informations.
- Étape 3 : Intégration avec les données originales
 - Alignement des indexes.

Transformation des variables

Objectif:

Améliorer la linéarité et la normalité des variables. Réduire l'impact des valeurs extrêmes ou des échelles disparates sur le modèle.

- Normalisation de 'ENERGYSTARScore'
- Transformation np.log1p pour ajuster la distribution et gérer les valeurs de o.
- Retransformation des prédictions des variables cibles (np.expm1) pour les ramener à l'échelle originale pour interpréter les résultats dans un contexte métier significatif.

Méthodologie de l'Optimisation des Hyperparamètres

- Utilisation de GridSearchCV pour une exploration systématique de l'espace des hyperparamètres.
- Validation Croisée à 4 Folds : Division des données d'entraînement en 4 sous-ensembles pour évaluer la stabilité et la fiabilité des performances.
 - Robustesse: minimise le risque de surajustement.
 - Représentativité: Chaque observation est utilisée à la fois comme donnée d'entraînement et de validation.
- R2, mesure de performance choisie :
 - quantifie la quantité de variance de la variable cible que le modèle est capable d'expliquer.
 - Permet de comparer l'efficacité des différents modèles sur une base comparable et interprétable.
- MAE: l'erreur absolu moyen pour évaluer la différence entre valeur réelle et prédite dans l'unité de la variable cible.

Comparaison des résultats:

- ElasticNet a bien progressé après optimisation.
- SVM et Random Forest ont montré des performances robustes.
- Gradient Boosting se démarque par sa consistance et sa précision.

Modèle	R ² (Test)	MAE (Test)	R² par Fold	Hyperparamètres
ElasticNet	0.63	23.75	o.768, o.649, o.673, o.533	Alpha: 0.00259, L1_ratio: 0.0707
SVM (SVR)	0.684	21.61	o.796, o.627, o.718, o.551 (avec kernel)	C: 10 (sans kernel trick), Degree: 2, Epsilon: 0.01, Gamma: 'scale', Kernel: 'rbf' (avec kernel)
Random Forest	0.693	21.40	0.782, 0.567, 0.703, 0.519	Max Depth: 8, Min Samples Leaf: 6, Min Samples Split: 3, N Estimators: 100
Gradient Boosting	0.684	21.61	0.778 , 0.668 , 0.712 , 0.665	Learning Rate: 0.08, Max Depth: 4, Max Features: 'sqrt', Min Samples Leaf: 1, Min Samples Split: 4, N Estimators: 165

Valeurs réelles vs valeurs prédites

Dispersion plus importante pour les valeurs supérieures à 200

Importances des variables

Forte similarité entre les modèles pour la hiérarchie des variables

Interprétation des prédictions avec Shap Value

Embedding Plot des variables les plus importante:

CP1: ENERGYSTARScore

CP2: Type de bâtiment à

consommation basse à élevée

Comparaison de l'importance des variables en fonction des valeurs de la variable cible pour Gradient Boosting

Changement important pour les bâtiments à forte consommation

Interprétation des prédiction du Gradient Boosting pour des instances remarquable

Index 1139: prédiction largement supérieure à la valeur réelle

Index 103: prédiction largement inférieure à la valeur réelle

Index 349: prédiction proche de la valeur réelle pour un bâtiment à consommation élevée

Résultats des prédictions de CO2

Performance post-optimisation pour le Gradient Boosting

- R² pour chaque fold : 0.7501, 0.8118, 0.6583, 0.7519
- R² sur l'ensemble de test : 0.727
- MAE sur l'ensemble de test : 0.501

Importance de la variable ENERGYSTARScore pour la prédiction d'émission de CO2

	Critère	Gradient Boosting avec ENERGYSTARScore	Gradient Boosting sans ENERGYSTARScore
	Meilleurs Paramètres	learning_rate: 0.05, max_depth: None, max_features: 'log2', min_samples_leaf: 2, min_samples_split: 5, n_estimators: 120	learning_rate: 0.09, max_depth: 5, max_features: 'sqrt', min_samples_leaf: 2, min_samples_split: 6, n_estimators: 120
	Score R ² pour chaque Fold	0.7659, 0.6660, 0.7492	0.6897, 0.5694, 0.7034
	Score R ² (optimisé)	0.6881	0.6812
	MAE (optimisé)	0.5345	0.5496

Importance de la variable ENERGYSTARScore pour la prédiction d'émission de CO2

Conclusion

- Modèles Testés : Gradient Boosting se démarque pour sa précision en consommation et émissions de CO2.
- Variable Clé : La catégorie d'énergie est essentielle pour prédire les émissions de CO2.
- Variabilité des Prédictions: Importance des variables varie entre bâtiments à forte et faible consommation.
- ENERGYSTARScore : Sa non-utilisation est envisageable, avec un léger compromis sur le R².