Quantitative Economics with Python

Zhen Huo, Matthew McKay, and Thomas Sargent January 2016

1 Course description

This course aims to teach quantitative economics and the computer language python. We use python to teach economics and economics to teach python. For our purposes, python has many advantages.

- 1. It is free.
- 2. It is well documented and has many scientific and numerical packages that are very useful for economic and financial calculations.
- 3. Its object oriented structure conforms naturally with the way in which we like to teach economics, namely, in terms of classes of objects with common mathematical structures having affiliated 'methods' that we can easily access.
- 4. It is fun.
- 5. It is widely used in science, finance, and industry. A working knowledge of it gives students a big advantage in terms of landing summer jobs, internships, and research assistant jobs.

The course will use an online text being written by John Stachurski and Thomas Sargent, as well as additional materials that we will supply in class. Every economic topic will have a python counterpart. This will discipline our economics and our computer programming.

Among the economic topics that we shall cover are:

- 1. Data analysis and manipulation using python.
- 2. Networks.
- 3. The classical growth model.
- 4. Fiscal policy in the growth model.
- 5. Milton Friedman's model of permanent income.

- 6. Robert Barro's model of tax smoothing (virtually the same as Milton Friedman's model).
- 7. The celebrated McCall search model for prices and wages.
- 8. A "lake model" of unemployment and employment stocks and flows.
- 9. Introduction to linear time series models.
- 10. Markov processes and the powerful properties of ergodicity and stationarity.
- 11. Hidden Markov models and filtering.

You may go to QuantEcon and look at the following lectures to preview the course content:

- Getting Started with Python
- Linear Algebra
- Linear State Space Models
- Lake Model
- Permanent Income

2 Course Schedule

This course will start with the foundations of Python programming making use of some simple economic examples, and then move into the exploration of more advanced economic topics.

2.1 Topic Breakdown

Weeks 1 to 3 Python: Programming Fundamentals

Weeks 4 to 8 Python: Linear Algebra, Linear State Space Models, Discrete Markov Chain, and the Lake Model

Week 9 Python: Object Oriented Programming

Week 10 McCall Search Model

Week 11 Python: Data Analysis and Manipulation

Week 12 Permanent Income Model

Week 13 to 14 Extension Topic (Asset Pricing, Kalman Filters)

2.2 Weekly Breakdown

Week	Content
	 Introduction to Python Programming. Installing Python, Setting up a programming environment, and Jupyter. Reading:
Week 1 26th Jan 28th Jan	1. About Python,
	2. Getting started,
	3. Python by example
	• Assignments:
	1. Installing the Anaconda Python Distribution
	2. Programming Assignment #1
	• Instructor: Matthew McKay
Week 2	 Python Essentials: Data Structures and Conditional Logic Python Functions Reading:
00 J E-1-	1. Python essentials
02nd Feb 04th Feb	2. Python foundations
	 Programming Assignment #2 Instructor: Matthew McKay
	 Python Packages Linear Algebra with Python Reading:
Week 3	1. Numpy
09th Feb 11th Feb	2. Scipy
	3. Matplotlib
	4. Linear Algebra
	 Programming Assignment #3 Instructor: Matthew McKay
Week 4	• Linear State Space Models
16th Feb	• Reading: Linear State Space Models
18th Feb	 Assignment #4 Instructor: Zhen Huo

Week 5 23rd Feb 25th Feb	 Linear State Space Models Reading: Linear State Space Models Assignment #5 Instructor: Zhen Huo
Week 6 01st Mar 03rd Mar	 Discrete Markov Chains - Theory Discrete Markov Chains - Applications Reading: Discrete Markov Chains Assignment #6 Instructor: Zhen Huo
Week 7 08th Mar 10th Mar	 Lake Model of Employment and Unemployment Reading: Lake Model Assignment #7 Instructor: Zhen Huo

${\bf Spring\ Break}$ 14th March to 20th March

Week	Content
Week 8	Midterm ExamObject Oriented Python: Classes
22nd Mar 24th Mar	 Reading: Object Oriented Python Programming Assignment #8 Instructor: Matthew McKay
Week 9	 Object Oriented Python Lake Model of Employment and Unemployment
29th Mar 31st Mar	 Reading: Lake Model Assignment #9 Instructor: Matthew McKay and Zhen Huo
Week 10 05th Apr	 McCall Search Model (Extension to Lake Model) Reading: McCall Search Model Assignment #10
07th Apr	• Assignment #10 • Instructor: Zhen Huo

Week 11 12th Apr 14th Apr	 Data analysis and manipulation using python (Pandas, NetworkX, Statsmodels) Reading: Pandas NetworkX Statsmdodels Programming Assignment #11 Instructor: Matthew McKay
Week 12 19th Apr 21st Apr	 Permanent Income Model Reading: Permanent Income Model Assignment: TBD Instructor: Zhen Huo / Tom Sargent
Week 13 26th Apr 28th Apr	 Extension Topic #1 (Asset Pricing in the Markov Model) Reading: TBD Assignment: TBD Instructor: Zhen Huo / Tom Sargent
Week 14 03rd May 05th May	 Review Reading: TBD Instructor: Zhen Huo, Matthew McKay, and Tom Sargent