

Parte Prática na página seguinte

12 fevereiro 2021 Lic. Engenharia Informática

EXAME FSIAP

Duração: 2h00		
Nome:	Turma: N°	
Parte teórica - Assinale a resposta corr	reta, assinalando a <u>letra</u> correspondente.	
QUESTÕES de ESCOLHA MULTIPLA	L	

Parte Prática – Responda às questões seguintes, apresentando os cálculos correspondentes.

P.1 – Considere duas cargas pontuais, $Q_1 = 3.8 \,\mu\text{C}$ e $Q_2 = 3.8 \,\mu\text{C}$, colocadas nas coordenadas x1=0, y1=2.9 m e x2=0, y2=-2.9 m, respetivamente. Duas outras cargas Q_3 e Q_4 , com a carga Q, estão localizadas nas coordenadas, x3=4.6 m, y3=2.9 m e x4=4.6 m, y4=-2.9 m, respetivamente.

Sabe-se que o campo elétrico em x=0 e y=0, devido à presença das quatro cargas é de $8,4x10^3$ (N/C) $\hat{\imath}$.

- a) (50%) Determine o valor de Q.
- **b**) (50%) Qual o módulo da força que Q_3 exerce sobre a carga Q_2 ? E respetivo sentido?

P.2 – Tendo em consideração o esquema apresentado na figura ao lado, em que E = 33 V e C = 49 mF e que inicialmente o condensador está completamente descarregado. $R_1 = 438 \Omega$ e $R_2 = 72 \Omega$.

- **a)** (30%) Liga-se o interruptor K, qual a intensidade máxima de corrente que a fonte fornece ao circuito.
- **b**) (30%) Uma vez carregado, qual a tensão aos terminais do condensador nesse momento.
- c) (40%) Calcule a carga no condensador passado 17s.

P.3 – Pretende-se que uma partícula de massa 3.9×10^{-12} kg e com carga positiva de 2.7×10^{-6} C, atinja um alvo pré-definido depois de descrever ¼ de círculo. O alvo encontra-se a uma distância, d = 8,4 mm, do ponto de entrada da partícula carregada, tal como representado na figura.

Despreze o efeito da gravidade.

- a) (35%) Determine a modulo do campo magnético para que o alvo seja atingido, assumindo que a velocidade da partícula é $7,4\times10^6$ m/s
- **b**) (40%) Depois de atingir o alvo, a partícula entra numa zona do espaço onde existe também um campo elétrico constante. Qual o modulo da força aplicada à partícula no momento em que entra nesta zona do espaço.
- c) (25%) Determine o modulo da aceleração a que a partícula está sujeita nesse mesmo momento.

- **P.4** Uma onda eletromagnética propaga-se à velocidade de 1,34x10⁸ ms⁻¹ no meio 1 quando transita para o meio 2 onde a velocidade da onda é 1,8x10⁸ ms⁻¹ com é representado na figura com θ =74°.
- **a)** (35%) Determine a razão entre os índices de refração do meio 2 e o meio 1, e o ângulo refratado?
- **b**) (35%) Sabendo que a constante de onda k no meio 1 é 1,6 π m⁻¹, e que a intensidade máxima do campo elétrico E_1 vale 14,7 Vm⁻¹, qual a frequência angular e o comprimento de onda para a componente magnética da onda nesse meio.
- c) (30%) Qual intensidade da onda incidente.

Cu

A1

Ph

P.5 – Três cubos metálicos, com 3 cm de aresta, são feitos de chumbo (Pb), de cobre (Cu) e de alumínio (Al) e dispostos conforma o esquema da figura. As condutividades térmicas são 35 W/m °C, 380 W/m °C e 230 W/m °C para Pb, Cu e Al, respetivamente.

A extremidade exterior do chumbo está a 100 °C e a extremidade exterior do alumínio está a 20 °C.

Depois de se estabelecer o estado permanente, calcular:

- a) (35%) A resistência de cada material
- **b**) (35%) As temperaturas T1 na interface Pb e Cu e T2 na interface Cu e Al.
- c) (30%) As temperaturas T1 e T2 se os cubos de chumbo e de cobre forem permutados.