Прочетете внимателно указанията, преди да започнете решаването на теста!

УКАЗАНИЯ

Формат на теста

Тестът съдържа 28 задачи по математика.

25 тестови задачи от два вида:

- 20 задачи със структуриран отговор с четири възможни отговора, от които само един е верен;
- 5 задачи със свободен отговор;

3 задачи, решенията на които се представят в писмен вид с необходимите обосновки.

Прочетете внимателно условията на задачите и ги решете. Не отделяйте прекалено много време на задача, която ви се струва трудна. Върнете се на нея по-късно, ако ви остане време.

Отбелязване на отговорите

Отбелязвайте отговорите в тестовата книжка със син цвят на химикалката.

За задачите със структуриран отговор отбележете буквата с верния отговор, като я зачертаете с \mathbf{X} .

Например, ако искате да отбележите отговор б), направете го по указания начин:

Ако искате да се откажете от отговора, който вече сте отбелязали, например от отговор б), и да отбележите отговор в), това може да направите така:

За задачите със свободен отговор е оставено празно място след всяка задача. Използвайте това място, за да запишете отговорите си.

Верните отговори на задачите със структуриран отговор, със свободен отговор и в писмен вид се оценяват съответно с по 2 точки, с по 3 точки и с по 15 точки. За грешен отговор, за посочване на повече от един отговор на една задача или за непосочване на отговор точки не се присъждат и не се отнемат.

Максималният брой точки за целия тест е 100.

Време за работа – 4 астрономически часа.

ПОЖЕЛАВАМЕ ВИ УСПЕШНА РАБОТА!

Първа част

1. Ако x_1 и x_2 са корени на уравнението $x^2 - 30x + 11 = 0$, то $x_1(1 + x_2) + x_2$ е равно на:

a)
$$-19$$
;

r)
$$\sqrt{181}$$
 .

2. Корените на кое квадратно уравнение са с различни знаци:

a)
$$3x^2 - 5x - 1 = 0$$
:

6)
$$2x^2 - 3x + 5 = 0$$
:

a)
$$3x^2 - 5x - 1 = 0$$
; **b)** $-4x^2 + 7x - 1 = 0$; **r)** $2x^2 - 3x + 1 = 0$.

$$\Gamma) 2x^2 - 3x + 1 = 0.$$

3. Кои от посочените числа са корени на уравнението $\sqrt{x^2 - 4x + 4} = 2x - 1$:

a)
$$-1$$
;

4. Числото 1 не е корен на уравнението:

a)
$$x^3 - 1 = 0$$
;

6)
$$\frac{x^2-1}{x-1}=0$$

6)
$$\frac{x^2-1}{x-1}=0$$
; **B)** $\frac{2x^2-x-1}{x-2}=0$; **r)** $x^4+x^2-2=0$.

$$\mathbf{r)} \ x^4 + x^2 - 2 = 0$$

5. Кое от посочените числа е най-малко?

a)
$$3^{-\frac{3}{2}}$$
;

6)
$$4^{-\frac{3}{2}}$$
;

B)
$$5^{-\frac{3}{2}}$$
:

6)
$$4^{-\frac{3}{2}}$$
; **B)** $5^{-\frac{3}{2}}$; **r)** $\pi^{-\frac{3}{2}}$.

6. За кои стойности на x съществува изразът $\log_{\frac{1}{2}}(1-x)$?

a)
$$x > 0, x \ne 1;$$

6)
$$x < 1, x \ne 0$$
; **B)** $0 < x < 1$; $|x| < 1$.

B)
$$0 < x < 1$$
;

$$\Gamma$$
) $|x| < 1$

7. Коя от редиците е аритметична прогресия?

a)
$$-1$$
, 2 , -3 , 4 , ...;

r)
$$1+\sqrt{2}$$
, $2+2\sqrt{2}$, $3+3\sqrt{2}$, $4+4\sqrt{2}$, ...

8. Частното на растяща геометрична прогресия, за която $a_3 = \sqrt{3}$ и $a_5 = \sqrt{6}$, е:

a)
$$\sqrt{2}$$
;

6)
$$\sqrt{3}$$
;

B)
$$\sqrt[4]{2}$$
; Γ) $\sqrt[4]{3}$.

$$\Gamma$$
) $\sqrt[4]{3}$

9. Произведението $(\cos 75^{\circ} - \sin 75^{\circ})(\cos 75^{\circ} + \sin 75^{\circ})$ е равно на:

a)
$$-\frac{1}{2}$$
;

6)
$$-\frac{\sqrt{3}}{2}$$
; **B)** $\frac{\sqrt{3}}{2}$;

B)
$$\frac{\sqrt{3}}{2}$$
;

$$\Gamma$$
) $-\frac{1}{8}$.

10. Ако tg $\alpha = 3$, то стойността на израза $\frac{2\sin(180^{\circ} - \alpha) + 3\cos(180^{\circ} - \alpha)}{\cos(90^{\circ} - \alpha) + \sin(90^{\circ} + \alpha)}$ e:

a)
$$\frac{2}{5}\sqrt{5}$$
;

6)
$$\frac{3}{4}$$
;

B)
$$\frac{2}{3}$$
;

$$\Gamma$$
) $-3\sqrt{2}$.

11. Вероятност на случайно събитие може да бъде числото:

a)
$$\log_3 \frac{1}{3}$$
;

B)
$$\sqrt{2}$$
 ;

$$\Gamma$$
) 3^{-2}

12. Решенията на неравенството $5x^2 - 3 \ge 4x^2 + 5x - 9$ са:

a)
$$x \in [3; +\infty);$$

6)
$$x \in [2;3];$$

a)
$$x \in [3; +\infty);$$
 b) $x \in [-\infty; 2] \cup [3; +\infty);$ **r)** $x \in (-\infty; 2].$

$$\Gamma$$
) $x \in (-\infty; 2]$

13. Модата, медианата и средно аритметичната на извадката 5; 3; 3; 8; 8; 7; 8; 9; 12; 11; 12 са:

a) 8; 8;
$$\frac{86}{11}$$
;

a) 8; 8;
$$\frac{86}{11}$$
; **b)** 12; 7; $\frac{86}{11}$; **b)** 3; 8; $\frac{85}{11}$; **c)** 7;12; $\frac{91}{11}$.

B) 3; 8;
$$\frac{85}{11}$$

$$\Gamma$$
) 7;12; $\frac{91}{11}$

14. На фигурата ABCD е квадрат със страна 2, а M е средата на CD. Ако P е пресечната точка на AM и BD, то лицето на ΔABP е равно на:

6)
$$\frac{4}{3}$$

$$\Gamma$$
) $\frac{2}{3}$.

16. В равнобедрения трапец $ABCD$ с основи $AB = 8$ и $CD = 2$ е вписана окръжност			
Радиусът r на тази окръжност е равен на:			
a) 3;	6) $2\sqrt{3}$;	в) 2;	r) 1,5.
17. Ако в ромба $ABCD$ са дадени диагоналът $BD = d$ и $\angle BAD = 2\alpha$, то лицето на ромба $ABCD$ е:			
$\mathbf{a)} \; \frac{d^2 \mathrm{tg} \alpha}{2} ;$	$\mathbf{6)} \; \frac{d^2 \cot \mathbf{g} \alpha}{2} \; ;$	$\mathbf{B)} \; \frac{d^2 \sin \alpha}{2};$	Γ) $\frac{d^2\cot \alpha}{4}$.
18. В триъгълника ABC е вписан квадрат $KLMN$ така, че страната му KL лежи на AB , а M и			
N лежат съответно на страните BC и CA . Ако $AB = 6$ cm, а лицето на триъгълника ABC			
е 36 cm², то лицето на квадрата е:			
a) 4 cm ² ;	б) 16 cm ² ;	в) 18 cm ² ;	г) 20 cm ² .
19. Правоъгълните триъгълници ABC и ABD имат обща хипотенуза AB , а точките C и D са			
в различни полуравнини относно AB . Ако ъгъл DAC е равен на 45° и $AB=6\sqrt{2}$, дължината на отсечката CD е равна на:			
	-		_
a) $3\sqrt{2}$;	6) $3\sqrt{3}$;	B) 6;	Γ) $6\sqrt{2}$.
20. В тъпоъгълния триъгълник ABC $AC = 3$ cm, $BC = \sqrt{7}$ cm и $\angle A = 60^\circ$. Дължината на страната AB е:			
a) 1 cm;	6) 2 cm;	B) $\sqrt{2}$ cm;	г) 6 cm.

15. Ако в правоъгълния триъгълник ABC проекциите AH и BH на катетите AC и BC върху

хипотенузата са AH = 8 и BH = 2, то катетът BC е равен на:

б) 3;

a) $2\sqrt{3}$;

Втора част

- **21.** Решенията на уравнението $x^4 8x^2 20 = 0$ са
- **22.** Най-малката и най-голямата стойност на функцията $y = x^2 5x + 6$, $x \in [1; 5]$, са
- **23.** Точките M, N, P и Q са среди съответно на страните AB, BC, CD и DA на четириъгълника ABCD, AC = 4 cm, BD = 6 cm и $NQ = \sqrt{10}$ cm. Дължината на MP, е
- **24.** Ако синусите на двата остри ъгъла в триъгълник са $\frac{3}{5}$ и $\frac{12}{13}$, то косинусът на третия ъгъл е
- **25.** В партида от 100 детайла 5 са дефектни. Вероятността от три случайно взети детайла от партидата и трите да са дефектни е

Трета част

Представете решенията на следващите три задачи с необходимите обосновки в писмен вид.

26. Решете системата
$$\begin{vmatrix} y^2 + 2xy - 3x + 4 = 0 \\ 6xy - 9x - y + 14 = 0. \end{vmatrix}$$

- **27.** Лицето на триъгълник ABC е 8 cm², а медианите AA_1 , BB_1 , CC_1 се пресичат в точка M, като $AA_1 = 5$ cm, $BB_1 = 4$ cm и $\angle AMB > 90^\circ$. Намерете дължината на медианата CC_1 .
- **28.** От 10 ученика и 6 ученички трябва да се сформират 4 смесени двойки за участие в турнир по тенис (смесената двойка се състои от едно момче и едно момиче). Намерете по колко начина може да стане това.