CHAPTER 10, 11

Efficient Binary/Multiway Search Trees

All the programs in this file are selected from

Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed "Fundamentals of Data Structures in C /2nd Edition", Silicon Press, 2008.

Outline

- Optimal Binary Search Trees
- AVL Trees
- **2-3** Trees

Optimal Binary Search Trees

Adelson-Velskii & Landis Tree (AVL Tree)

Adelson-Velskii & Landis Tree (AVL Tree)

- 1.Apr
- 2.Aug
- 3.Dec
- 4.Feb
- 5.Jan
- 6.July
- 7.June
- 8.Mar
- 9.May
- 10.Nov
- 11.Oct
- 12.Sept

Adelson-Velskii & Landis Tree (AVL Tree)

AVL Tree

- binary tree
- for every node x, define its balance factor
 balance factor of x = height of left subtree of x
 height of right subtree of x
- balance factor of every node x is -1, 0, or 1

Balance Factors 0

This is an AVL tree.

Height Of An AVL Tree

- The height of an AVL tree that has n nodes is at most 1.44 log₂ (n+2).
- The height of every n node binary tree is at least $log_2(n+1)$.
- $\log_2(n+1) \le \text{height} \le 1.44 \log_2(n+2)$

AVL Trees (1/9)

AVL Trees (2/9) 1.Apr 2.Aug MAY 3.Dec 4.Feb MAR NOV 0 5.Jan **AUG** 6.July (d) Insert AUGUST +2 +17.June MAY (MAY) 0 8.Mar LL MAR AUG NOV NOV 9.May AUG MAR 10.Nov APR 0 11.Oct APR 12.Sept (e) Insert APRIL

AVL Trees (3/9)

(f) Insert JANUARY

(g) Insert DECMBER

(h) Insert JULY

1.Apr

2.Aug

3.Dec

4.Feb

5.Jan

6.July

7.June

8.Mar

9.May

10.Nov

11.Oct

12.Sept

AVL Trees (4/9)

AVL Trees (5/9)

(k) Insert OCTOBER

(l) Insert SEPTEMBER

2.Aug

AVL Trees (6/9)

AVL Trees (7/9)

AVL Trees (8/9)

AVL Trees (9/9)

Operation	Sequential list	Linked list	AVL tree
Search for x	$O(\log n)$	O(n)	$O(\log n)$
Search for kth item	O(1)	O(k)	$O(\log n)$
Delete <i>x</i>	O(n)	$O(1)^1$	$O(\log n)$
Delete kth item	O(n-k)	O(k)	$O(\log n)$
Insert x	O(n)	$O(1)^2$	$O(\log n)$
Output in order	O(<i>n</i>)	O(n)	O(n)

- 1. Doubly linked list and position of x known.
- 2. If position for insertion is known.

Figure 10.14: Comparison of various structures

m-way Search Trees

- Each node has up to m 1 pairs and m children.
- $\mathbf{m} = 2 \Rightarrow \text{binary search tree.}$

4-Way Search Tree

Definition Of B-Tree

- Definition assumes external nodes (extended m-way search tree).
- B-tree of order m.
 - m-way search tree.
 - Not empty => root has at least 2 children.
 - Remaining internal nodes (if any) have at least ceil(m/2) children.
 - External (or failure) nodes on same level.

2-3 Tree and 2-3-4 Tree

- 2-3 tree is B-tree of order 3.
- 2-3-4 tree is B-tree of order 4.

2-3 Trees(1/7)

Figure 11.2 Example of a 2-3 tree

Figure 11.3 Example of a 2-3-4 tree

2-3 Trees(2/7)-Split

Figure 11.4 Insertion into the 2-3 tree of Figure 11.2

2-3 Trees(3/7)-Split

Figure 11.5 Insertion of 60 into the 2-3 tree of Figure 11.4(b)

2-3 Trees (4/7)

(a) Initial 2-3 tree

Figure 11.9 Deletion from a 2-3 tree

2-3 Trees (5/7)-Rotation&Combine

Figure 11.9 Deletion from a 2-3 tree

2-3 Trees (6/7) -Rotation

Figure 11.7 The three cases for rotation in a 2-3 tree

2-3 Trees (7/7)-Combine

Figure 11.8 Combining in a 2-3 tree when p is the left child of r