Insper

Visual Basic for Applications

Aula 03

Raul Ikeda

2º semestre de 2017

Case GPS

Inspirar para Transformar

 Um certo aluno coletou alguns dados de satélites de GPS com o seu Arduino. Ao contrário do que ele imaginava, os dados não contém a posição do receptor e sim as posições dos satélites e distância do receptor:

A	Α	В	С	D	Е	F
1	SV	ρ	X	Y	Z	correções
2	15	22524470,244	23222065,313	-9681191,487	8129695,157	40214,327
3	27	21091056,788	13005776,681	-9770616,616	-20933199,136	130757,949
4	31	23065100,145	12224816,971	-20345626,458	11954980,988	76165,133
5	7	20527251,401	19947181,626	-17284410,000	-2497145,426	29484,137
6	22	21100716,979	3864672,141	-24176481,642	-9040154,945	-89263,839
7	14	23444227,142	-7252191,778	-24263801,661	-7338822,589	94311,998
8						

- SV é o número do satélite.
- ρ é a pseudodistância entre os satélite e o receptor em metros.
- X, Y e Z é a posição do satélite no plano cartesiano em relação ao centro da terra.
- As correções são estimativas de modelos que devem corrigir erros associados à transmissão, como a influência da troposfera, da ionosfera e o viés de relógio.

Coordenadas

Inspirar para Transformar

- O Aluno então lembrou-se de uma atividade complementar que ensinava a triangular sinais¹. Isso era útil para:
 - 1. Navegação de Drones, mísseis, foguetes, etc.
 - 2. Determinar uma posição de um dispositivo dentro de uma sala.
 - 3. Etc.

¹ Ver documento em anexo no Blackboard.

O Problema

Inspirar para Transformar

Calculada a triangulação:

		ΔΡ
xr	4012798,72	0
yr	-4254797,07	0
zr	-2537926,49	0
dt	4,513850079	0

- Note que os dados acima estão em coordenadas ECEF (Earthcentered, Earth-fixed), que medem a distância em metros em relação ao centro da Terra.
- Para efeitos práticos, ele gostaria de calcular as coordenadas LLA (Latitude, Longitude e Altitude).

Solução

Inspirar para Transformar

- Fazer uma função em VBA que calcula a Longitude.
- Fazer uma função em VBA que calcula a Latitude.
- Fazer uma função em VBA que calcula a Altitude.
- Fazer um Userform para exibir os dados.
- Seguir o formulário entregue em aula.
- Onde estava o aluno?
 - Use a latitude e a longitude no Google Maps.