On dispose de deux « grands » échantillons, un échantillon A de taille n_A où la proportion est p_A qu'on suppose extrait d'une population P où la proportion est p et un échantillon B

de taille n_B où la proportion est p_B qu'on suppose extrait d'une population P' où la proportion est p'. La proportion du caractère dans la population notée p est connue ou inconnue, si elle est

inconnue on l'estime par $\hat{\rho} = \frac{n_A p_A + n_B p_B}{n_A + n_B}$.

La variable aléatoire F_A qui à chaque échantillon de taille n associe la proportion du caractère dans cet échantillon suit approximativement la loi normale $\mathcal{N}\left(p\;;\;\frac{p(1-p)}{n_A}\right)$.

La variable aléatoire F_B qui à chaque échantillon de taille n associe la proportion du caractère dans cet échantillon suit approximativement la loi normale $\mathcal{N}\left(p'; \frac{p'(1-p')}{n_B}\right)$.

Les variables F_A et F_B étant indépendantes la variable F_A – F_B suit la loi normale :

$$\mathcal{N}\left(\rho-\rho'; \frac{\rho(1-\rho)}{n_A} + \frac{\rho'(1-\rho')}{n_B}\right).$$

b) Test de comparaison de proportions

On construit le test. L'hypothèse nulle est H_0 : alors p et p' ne sont pas significativement différentes, l'hypothèse alternative est H_1 : alors p et p' sont significativement différentes.

Sous l'hypothèse H_0 , $F_A - F_B$ suit la loi normale $\mathcal{N}\left(0; \frac{p(1-p)}{n_A} + \frac{p(1-p)}{n_B}\right)$.

On utilisera cette loi pour déterminer la région critique.