1. Process Deliverable: RewardBot Prototype

This is the prototype for the RewardBot system. It was implemented using Miro. It goes through the system and its integration with Canvas and how the system changes based on completion of assignments.

RewardBot Login

RewardBot Download

Canvas RewardBot Integration, assignments not completed

Assignment not finished in Canvas

Canvas assignment completed

Canvas RewardBot after all assignments completed

2. High Level Design

For our project, we will be using the layered architectural pattern, specifically the MVC (Model-View-Controller) model. To implement this, we have chosen the MERN (MongoDB, Express.js, React.js, Node.js) technology stack. According to the official MongoDB website, MERN is a 3-tiered architecture consisting of a front-end built with React.js to create the user interface, a back-end using Express.js and Node.js to handle HTTP requests and communicate with the front-end, and a database tier, where MongoDB will be used to store and manage data.

We decided to use the layered 3-tier architecture because of team contribution and modularity. First, since the purpose of our project is to build an application that stores, processes, and visually displays data to users, a web application was the most suitable choice. Additionally, one of our team members has experience building web applications with the MERN stack, and React is relatively straightforward to learn and implement, allowing all team members to effectively contribute. Second, the MVC architecture offers significant flexibility and maintainability. By separating the Model, View, and Controller layers, we can independently modify or replace components without overhauling the entire system. For example, while we initially chose MongoDB for the database, it is possible to switch to MySQL or another database system with minimal changes to the rest of the application. This flexibility also extends to supporting multiple views for a single dataset, which can be useful if we expand to mobile or other platforms in the future.

3. Low Level Design

Since we are using React for our front-end we will mainly focus on the Behavior Design Pattern Family, specifically the State Pattern. React component's are objects that will be created and reused throughout the program. Due to the React's declarative and state-driven architecture it will mostly use this pattern.

In each step in the component we would use the useState hook to represent different states of the component, and the component will dynamically switch between these steps and render a different UI element accordingly.

Example code:

The useAuth custom hook will load the user from the database and save it in the state. However if the information of the user changes, the UI will render again and reload it with new information.

useAuth.jsx:

```
import { apiGetUser } from "../../api/user";
import { useEffect, useState } from "react";
import { validateToken, getCanvasUser } from "../../api/canvas";
import { useNavigate } from "react-router-dom";

export const useAuth = () => {
   const [user, setUser] = useState(null);
   const [loading, setLoading] = useState(true);
```

```
useEffect(() => {
            const data = await apiGetUser();
            console.error(error);
          setLoading(false);
    fetchUser();
const navigate = useNavigate();
        getCanvasUser,
           setLoading(false);
```

```
);
    // eslint-disable-next-line react-hooks/exhaustive-deps
}, []);

return {
    canvasUser: {
        image: user?.avatar_url,
            firstname: user?.first_name,
            id: user?.id,
                lastname: user?.last_name,
        },
        loadingCanvas: loading,
};
```

Profile.jsx

```
alt="User Avatar"
export default ProfilePage;
```

Informal class diagram:

4. Design Sketch

This is the sketch of our robot. It will be integrated into Canvas. As seen above, we have coded a login page, and integrated the robot into the canvas home page and the canvas assignment submission page.

← → <u>N</u>	ovember 2024				Week Mon	h Agenda +	November 2024
N	MON	TUE	WED	THU	FRI	SAT	3 4 5 6 7 1
27	28 2711:25a Attendonee		30 \$\mathbb{G}\$ 3:20p a1030	27 in 31	1 	2	17 18 19 20 21 2 24 25 26 27 28 2
	∰ 3:20p a1028 10/28 (CS_3704_8	g2 ic30	11p Project 3 Milest 10/30 (CS_3704_8	gg Quis2	陸 11/1 (CS_3704_83 図 P842		▼ CALENDARS
	Project 2B - Dream		E 10/10/10/10/10/		G 112		Lakshitha Gattu
3	4 ≤§11:25a Attendonee	5 \$\frac{1}{2} \text{ in 24}	6 ∰-3:20p a1106	7 12 in 25	8 	9	Cryptography_87244 CS 3714 Fall 24 Android Mobile Development Data Structures and Algorithms Hamouda Honors Credit Tracker 2023/2024 Cohort Intermed Software Des
	∰ 3:20p a1104		₩ 11/6-(C5_3704_83	gg Quick	11p Project 3		
	11p Project 3 Milest				∰ 11/8 (CS_3704_83		
10			13	14		16	
	gg 9a Exam2A gg 11:25a Attendance		☐ 3:20p Exam2B ☐ 11/13 (CS_3704_8		∰-3:20p a1115 ∰-11/16-(CS_3704_8_		OpenDSA Textbook for 3114/5040 Full 2024
	∰ 3:20p a1111				Homework-4 Project 4 Milestone 1		Softw Des & Data
	Project 2C - Dream						
17		g3 ic40 □	20	21	22	23	
	gg 11:25a Attendance		3:20p a1120 11/20-(CS_3704_8	\$7 ic41	(E) 3:20p a1122 (E) 11/22 (CS_3704_8		
	3:20p a1118		29 Quict		PM3 Project 4 Milestone 2		
24	25	26	27	28	29	30	
							4 assignment due today

Above is the wireframing for the calender page. The wireframe was designed with usability principles such as affordance and visibility in mind. The calendar grid is the primary focal point, ensuring users can intuitively locate dates and events at a glance. By placing the robot prominently in the sidebar, it is both noticeable and accessible, adhering to the principle of information prioritization. The clean, minimalistic design aligns with the aesthetic usability effect, making the interface feel approachable while still being functional.

Above, you can see that the robot is positioned in the bottom-right corner across several key pages: the course homepage, the calendar page, the assignment details page, and the assignment submission page. This consistent placement ensures that the robot is always accessible, providing users with real-time assistance and updates no matter where they are in the interface. Its visibility across these pages reinforces its role as a helpful companion, streamlining navigation and enhancing the overall user experience.