

Electricité I TD 3

1. Calcul de résistances équivalentes

Sur les portions de circuits représentées ci-dessous, calculer la résistance équivalente R_{eq} du dipôle AB.

Figure 1

2. Calcul d'une capacité équivalente

Calculer la capacité équivalente au dipôle AB représenté ci-dessous.

3. Calcul d'un courant.

Dans le schéma suivant, calculer la valeur de l'intensité du courant I.

4. Détermination de tensions

Sur chacun des deux schémas, déterminer les tensions U.

Electricité I TD 3

5. Diviseur de tension

- 1. Déterminer le potentiel au point A.
- 2. En déduire les courants dans les différentes branches du circuit.
- 3. Vérifier alors la loi des nœuds au point A

6. Etude de l'équilibre d'un pont de résistance

On considère le montage représenté sur la figure suivante. On cherche à déterminer la condition sur les quatre résistances R₁, R₂, R₃, et R₄, pour que le courant dans R₅ soit nul.

- 1. En considérant que I est nul, déterminer l'expression de V_A.
- 2. Déterminer de même l'expression de V_B.
- 3. En déduire la condition recherchée.

7. Exercice n°7

Déterminer les intensité I₁, I₂, I₃.

E1 = 8 V

E2 = 6,4 V

 $R1 = 6 \text{ k}\Omega$

 $R2 = 4 k\Omega$

 $R3 = 3 k\Omega$

 $R4 = 1 k\Omega$