# **Supervised Learning: Linear Regression**

Linear Regression is a machine learning algorithm based on supervised learning. Linear regression performs the task to predict a dependent variable value (y) based on a given independent variable (x).

# Steps to build a Machine learning Model:

- 1. import dataset
- 2. visualizing the dataset
- 3. Data preparation
- 4. Training the algorithm
- 5. Visulaizing the model
- 6. Making Perdiction.

# importing dataset

### In [ ]:

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn import linear\_model

#### In [2]:

df=pd.read\_csv('https://raw.githubusercontent.com/AdiPersonalWorks/Random/master/student\_sc
df

### Out[2]:

|    | Hours | Scores |
|----|-------|--------|
| 0  | 2.5   | 21     |
| 1  | 5.1   | 47     |
| 2  | 3.2   | 27     |
| 3  | 8.5   | 75     |
| 4  | 3.5   | 30     |
| 5  | 1.5   | 20     |
| 6  | 9.2   | 88     |
| 7  | 5.5   | 60     |
| 8  | 8.3   | 81     |
| 9  | 2.7   | 25     |
| 10 | 7.7   | 85     |
| 11 | 5.9   | 62     |
| 12 | 4.5   | 41     |
| 13 | 3.3   | 42     |
| 14 | 1.1   | 17     |
| 15 | 8.9   | 95     |
| 16 | 2.5   | 30     |
| 17 | 1.9   | 24     |
| 18 | 6.1   | 67     |
| 19 | 7.4   | 69     |
| 20 | 2.7   | 30     |
| 21 | 4.8   | 54     |
| 22 | 3.8   | 35     |
| 23 | 6.9   | 76     |
| 24 | 7.8   | 86     |

# Visualizing the dataset

#### In [8]:

```
plt.title("hours studied vs marks obtained")
plt.scatter(df.Hours,df.Scores,color='red',marker='*')
plt.xlabel('Hours studied')
plt.ylabel('Score')
plt.show()
```



# **Data Perparation**

```
In [14]:
```

```
#y=mx+c
''
lr=linear_model.LinearRegression()
lr.fit(df[['Hours']],df.Scores)
```

#### Out[14]:

LinearRegression()

#### In [15]:

```
#y(prediction output)=m(slope)x(Hours)+c(intercept)
m=lr.coef_
m
```

```
Out[15]:
```

```
array([9.77580339])
```

```
In [16]:
c=lr.intercept_
c

Out[16]:
2.48367340537321

In [55]:
predicted_score=m*df['Hours']+c
```

# **Training the Algorithm**

```
In [ ]:

def predicting_score(hours):
    total_hours=hours
    score=m*hours+c
    return total_hours,score
```

# **Visulaizing Model**

```
In [57]:
```

```
plt.title('hours studied vs marks obtained using linear regression')
plt.scatter(df.Hours,df.Scores,color='red',marker='*',label='data distribution')
plt.plot(df.Hours,predicted_score,color='blue')
```

#### Out[57]:

[<matplotlib.lines.Line2D at 0xa963e38>]



# **Making Predictions**

```
In [52]:
```

```
pr=predicting_score(9.25)
print('if student studies for',pr,'will be the score')
```

if student studies for (9.25, array([92.90985477])) will be score

# **Evaluting the model**

#### In [54]:

```
from sklearn.metrics import mean_absolute_error
print('mean absolute error:',mean_absolute_error(df.Scores,predicted_score))
```

mean absolute error: 4.972805319866375