EE 330

Homework Assignment 6

Spring 2018 (Due Wed Feb 14 at 9:00 a.m. – no late assignments accepted)

Each problem is worth 10 points except Problem 17 which is worth 20 points. Solve Problems 15,16, and 17 and any remaining problems that total 60 points. Unless specified to the contrary, assume all n-channel MOS transistors have model parameters  $\mu_n C_{OX} = 100 \mu A/V^2$  and  $V_{Tn} = 1V$ , all p-channel transistors have model parameters  $\mu_p C_{OX} = 33 \mu A/V^2$  and  $V_{Tp} = -1V$ . If parameters are needed for process characterization beyond what is given, use the measured parameters from the ON 0.5 $\mu$  process given below as model parameters.

**Problem 1** Size an n-channel transistor in the ON  $0.5\mu$  CMOS process so that the impedance in the switch-level model is  $3500\Omega$  when operating with a 3.5V power supply. Repeat for an n-channel transistor in the IBM  $0.13\mu$  CMOS process when operating with a 1.5V supply.

**Problem 2** If a minimum-sized inverter designed in the ON  $0.5\mu$  CMOS process could directly drive a minimum-sized inverter designed in the IBM  $0.13\mu$  CMOS process, what would be  $t_{HL}$  and  $t_{LH}$  for the ON  $0.5\mu$  inverter? Assume a supply voltage of 1.5V. Neglect any interconnect parasitics.

Problem 3 Assume the junction area of  $D_1$  is  $50\mu^2$  and that of  $D_2$  is 5 times as large. Determine the current  $I_{D1}$  if  $V_X$ =1.6V. Assume  $J_S$  for the process where the diodes are fabricated is  $5fA/\mu^2$ .



Problem 4 Determine the current  $I_D$  (within  $\pm 5\%$ ) if  $V_X=15V$  for the following circuit. Assume the area of the diode is  $100\mu^2$  and  $J_S=10^{-15}A/u^2$ .



Problem 5 Repeat Problem 4 if V<sub>X</sub>=580mV.

Problem 6 If the voltage of a forward-biased pn junction is varied between 0.55V and 0.65V, what is the range in the diode current. Assume the junction area of the diode is  $100\mu^2$  and  $J_S=10^{-15}A/\mu^2$ .

Problem 7 Analytically determine the variable indicated by a ? in the following circuits. Assume the devices are in a process with  $V_{TN}=1V$ ,  $V_{TP}=-1V$ ,  $\mu_n C_{OX}=100 \mu AV^{-2}$  and  $\mu_p C_{OX}=33 \mu AV^{-2}$ .



Problem 8 Determine W so that  $V_{OUT} = 3V$ 



**Problem 9** Analytically determine the variable indicated by a ? in the following circuits. Assume the devices are in a process with  $V_{TN}=1V$ ,  $V_{TP}=-1V$ ,  $\mu_n C_{OX}=100\mu AV^{-2}$  and  $\mu_p C_{OX}=33\mu AV^{-2}$ 



## Problem 10 Consider the following circuit.

- a) If  $V_{IN}$ =2V, determine the dimensions of  $M_1$  that will result in an output voltage of 3.5V. Assume that the dimensions of  $M_2$  are  $W_2$ =8 $\mu$  and  $L_2$ =2 $\mu$ . The relevant model parameters of the devices are  $V_{TN}$ =1V,  $V_{TP}$ =-1V,  $\mu_n C_{OX}$ =100 $\mu$ AV<sup>-2</sup> and  $\mu_p C_{OX}$ =33 $\mu$ AV<sup>-2</sup>.
- b) Repeat part a) if the goal is to have an output voltage of 0.8V.



Problem 11 Assume the op amp is ideal and biased with VDD=20Vand VSS=20V and the diode is characterized by model parameters:  $J_{SX}=0.5A/\mu^2$ ,  $V_{G0}=1.17V$ , m=2.3. Assume the area of the junction is  $100\mu^2$ .

- a) Determine  $V_{OUT}$  if  $T = -20^{\circ}$ C
- b) Repeat part a) if  $T = 40^{\circ}$ C.
- c) Repeat part a) if T=120°C



Problem 12 Determine  $V_{OUT}$  for the following circuit. Assume the devices  $M_1$  and  $M_2$  are identically sizes with W=L=5u. The relevant model parameters of the devices are  $V_{TN}$ =1V,  $V_{TP}$ =-1V,  $\mu_n C_{OX}$ =100 $\mu$ AV<sup>-2</sup> and  $\mu_p C_{OX}$ =33 $\mu$ AV<sup>-2</sup>.



Problem 13 Assume a junction capacitor has a capacitance of 200fF with zero volts bias. What will be the value of this capacitor with a reverse bias of 3V? With a forward bias of 250mV?

Problem 14 Gate protection circuits are used to protect the sensitive gate oxide of devices connected to the input of an integrated circuit from modest short-duration over voltages. Although no input protection circuit can protect from all unknown overvoltages, the Human Body Model (HBM) is often used to model the type of overvoltages that are commonly experienced when humans might become statically charged during normal activities. Such a model is shown below with a connection to one pad on the integrated circuit. In this model,  $R_B$  is the body resistance,  $C_B$  is the body capacitance, and  $V_B$  is the charge on the body capacitance. Touching of the circuit while the person is "charged" is modeled by closing the switch in this model. At a time designated as t=0 it is assumed that the switch is closed and this inserts a voltage into the input pad of the integrated circuit. In the absence of the gate protection circuit, the pad voltage will appear directly on the voltage  $V_{INT}$  of the internal integrated circuit if the input impedance to the Internal Circuit is high.



Assume the Internal Circuit has an input that is four parallel-connected minimum sized inverters that are designed in the ON 0.5 $\mu$  CMOS process. Assume that the diodes  $D_1$  and  $D_2$  can be modeled as an ideal diode with  $J_S=10^{-20}A/\mu^2$  and that the area of each of the two diode junctions is  $1000\mu^2$ .

Consider two HBMs. One is termed a low voltage model and the other a high voltage model. These are characterized respectively by

HBM<sub>1</sub>: V<sub>B</sub> =250V, C<sub>B</sub>=150pF, R<sub>B</sub>=1.5K HBM<sub>2</sub>: V<sub>B</sub> =2KV, C<sub>B</sub>=150pF, R<sub>B</sub>=1.5K

- a) What will be the peak value of the voltage  $V_{\rm INT}$  when the switch is closed if the gate protection circuit is absent (i.e. the Pad is directly connected to the Internal Circuit) with each of the models?
- b) What will be the peak value of the voltage  $V_{INT}$  when the switch is closed if the gate protection circuit is present with each of the models? Assume  $R_{PROT}$ =10K.
- c) What will be the peak current in  $D_2$  with each of the models? Assume  $R_{PROT}=10K$ .
- d) What is the purpose of including the resistor  $R_{PROT}$  and what are the disadvantages of including this resistor in the gate protection circuit?

Problem 15 Design a voltage programmable capacitor that varies between 2pF at 0V bias and 2.5pf at a bias of 3.8V.

Problem 16 Design a circuit using only MOS transistors that has an output voltage of 2.0V. In addition to the transistors, you have a single dc power supply of 6V available. You may use as many MOS transistors as you want and can specify any size for the devices.

Problem 17 (weighted as two problems) Use Modelsim to create a positive edge triggered JK Flip-flop. Include screenshots of your Verilog code, and simulation waveforms.

## MOSIS WAFER ACCEPTANCE TESTS

RUN: T86S VENDOR: AMIS
TECHNOLOGY: SCNO5 FEATURE SIZE: 0.5 microns

Run type: SKD

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: American Microsystems, Inc. C5

| TRANSISTOR | PARAMETERS | W/L      | N-CHANNEL | P-CHANNEL | UNITS    |
|------------|------------|----------|-----------|-----------|----------|
| MINIMUM    |            | 3.0/0.6  |           |           |          |
| Vth        |            |          | 0.79      | -0.92     | volts    |
| SHORT      |            | 20.0/0.6 |           |           |          |
| Idss       |            |          | 463       | -248      | uA/um    |
| Vth        |            |          | 0.67      | -0.91     | volts    |
| Vpt        |            |          | 10.0      | -10.0     | volts    |
| WIDE       |            | 20.0/0.6 |           |           |          |
| Ids0       |            |          | < 2.5     | < 2.5     | pA/um    |
| LARGE      |            | 50/50    |           |           |          |
| Vth        |            |          | 0.68      | -0.95     | volts    |
| Vjbkd      |            |          | 10.8      | -11.7     | volts    |
| Ijlk       |            |          | <50.0     | <50.0     | pA       |
| Gamma      |            |          | 0.49      | 0.57      | V^0.5    |
| K' (Uo*Cox | (/2)       |          | 57.8      | -19.1     | uA/V^2   |
| Low-field  | Mobility   |          | 475.38    | 157.09    | cm^2/V*s |
|            |            |          |           |           |          |

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameter XL in your SPICE model card.

| Design Technology        | XL | (um) | XW | (um) |
|--------------------------|----|------|----|------|
|                          |    |      |    |      |
| SCMOS_SUBM (lambda=0.30) | Ο. | .10  | Ο. | 00   |
| SCMOS (lambda=0.35)      | Ο. | .00  | Ο. | 20   |
|                          |    |      |    |      |

## AMI 0.5u Process Description Continued

| PROCESS PARAMETERS   | N+   | P+    | POLY | PLY2_HR | POLY2 | M1   | <b>M</b> 2 | UNITS    |
|----------------------|------|-------|------|---------|-------|------|------------|----------|
| Sheet Resistance     | 84.4 | 109.2 | 22.9 | 1102    | 41.9  | 0.09 | 0.09       | ohms/sq  |
| Contact Resistance   | 60.9 | 150.6 | 15.8 |         | 26.8  |      | 0.81       | ohms     |
| Gate Oxide Thickness | 142  |       |      |         |       |      |            | angstrom |
|                      |      |       |      |         |       |      |            |          |

PROCESS PARAMETERS M3 N\PLY N\_W UNITS
Sheet Resistance 0.05 818 808 ohms/sq
Contact Resistance 0.81 ohms

COMMENTS:  $N\POLY$  is N-well under polysilicon.

| CAPACITANCE PARAMETERS | N+  | P+  | POLY | POLY2 | M1 | <b>M</b> 2 | М3 | $N_{W}$ | UNITS   |
|------------------------|-----|-----|------|-------|----|------------|----|---------|---------|
| Area (substrate)       | 426 | 724 | 85   |       | 30 | 15         | 9  | 37      | aF/um^2 |
| Area (N+active)        |     |     | 2434 |       | 34 | 17         | 12 |         | aF/um^2 |
| Area (P+active)        |     |     | 2351 |       |    |            |    |         | aF/um^2 |
| Area (poly)            |     |     |      | 899   | 56 | 16         | 9  |         | aF/um^2 |
| Area (poly2)           |     |     |      |       | 46 |            |    |         | aF/um^2 |
| Area (metal1)          |     |     |      |       |    | 33         | 13 |         | aF/um^2 |
| Area (metal2)          |     |     |      |       |    |            | 32 |         | aF/um^2 |
| Fringe (substrate)     | 361 | 241 |      |       | 71 | 49         | 33 |         | aF/um   |
| Fringe (poly)          |     |     |      |       | 59 | 38         | 28 |         | aF/um   |
| Fringe (metal1)        |     |     |      |       |    | 46         | 34 |         | aF/um   |
| Fringe (metal2)        |     |     |      |       |    |            | 54 |         | aF/um   |
| Overlap (N+active)     |     |     | 292  |       |    |            |    |         | aF/um   |
| Overlap (P+active)     |     |     | 387  |       |    |            |    |         | aF/um   |

| CIRCUIT PARAMETERS      |     |        | UNITS       |
|-------------------------|-----|--------|-------------|
| Inverters               | K   |        |             |
| Vinv                    | 1.0 | 2.04   | volts       |
| Vinv                    | 1.5 | 2.29   | volts       |
| Vol (100 uA)            | 2.0 | 0.12   | volts       |
| Voh (100 uA)            | 2.0 | 4.86   | volts       |
| Vinv                    | 2.0 | 2.47   | volts       |
| Gain                    | 2.0 | -18.26 |             |
| Ring Oscillator Freq.   |     |        |             |
| DIV256 (31-stg,5.0V)    |     | 98.75  | MHz         |
| D256_WIDE (31-stg,5.OV) |     | 153.47 | MHz         |
| Ring Oscillator Power   |     |        |             |
| DIV256 (31-stg,5.0V)    |     | 0.49   | uW/MHz/gate |
| D256_WIDE (31-stg,5.0V) |     | 1.00   | uW/MHz/gate |
|                         |     |        |             |

COMMENTS: SUBMICRON

## MOSIS WAFER ACCEPTANCE TESTS

RUN: T85% (8WL\_8LM\_OL) VENDOR: IBM-BURLINGTON
TECHNOLOGY: SIGEO13 FEATURE SIZE: 0.13 microns

Run type: SKD

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: SIGESWL\_IBM-BU

| TRANSISTOR PARAMETERS | W/L       | N-CHANNEL | P-CHANNEL | UNITS    |
|-----------------------|-----------|-----------|-----------|----------|
| MINIMUM               | 0.16/0.12 |           |           |          |
| Vth                   |           | 0.41      | -0.42     | volts    |
| SHORT                 | 20.0/0.12 |           |           |          |
| Idss                  |           | 406       | -178      | uA/um    |
| Vth                   |           | 0.43      | -0.42     | volts    |
| Vpt                   |           | 3.6       | -3.6      | volts    |
| WIDE                  | 20.0/0.12 |           |           |          |
| Ids0                  |           | 155.2     | -127.9    | pA/um    |
| LARGE                 | 20.0/20.0 |           |           |          |
| Vth                   |           | 0.12      | -0.23     | volts    |
| Vjbkd                 |           | 2.7       | -3.2      | volts    |
| Ijlk                  |           | <50.0     | <50.0     | рA       |
| Gamma                 |           | 0.28      | 0.23      | V^0.5    |
| K' (Uo*Cox/2)         |           | 308.0     | -48.8     | uA/V^2   |
| Low-field Mobility    |           | 553.02    | 87.62     | cm^2/V*s |

IIBM 0.13u Process Description Continued

| N+  | P+  | POLY               | M1                         | <b>M</b> 2                       | <b>M</b> 3                               | M4                                               | UNITS                                                    |
|-----|-----|--------------------|----------------------------|----------------------------------|------------------------------------------|--------------------------------------------------|----------------------------------------------------------|
| 6.7 | 6.3 | 6.6                |                            |                                  |                                          |                                                  | ohms/sq                                                  |
|     |     |                    | 78                         | 51                               | 50                                       | 50                                               | mohms/sq                                                 |
| 9.4 | 9.2 | 8.3                |                            | 0.68                             | 1.37                                     | 2.00                                             | ohms                                                     |
| 31  |     |                    |                            |                                  |                                          |                                                  | angstrom                                                 |
|     | 6.7 | 6.7 6.3<br>9.4 9.2 | 6.7 6.3 6.6<br>9.4 9.2 8.3 | 6.7 6.3 6.6<br>78<br>9.4 9.2 8.3 | 6.7 6.3 6.6<br>78 51<br>9.4 9.2 8.3 0.68 | 6.7 6.3 6.6<br>78 51 50<br>9.4 9.2 8.3 0.68 1.37 | 6.7 6.3 6.6<br>78 51 50 50<br>9.4 9.2 8.3 0.68 1.37 2.00 |

 PROCESS PARAMETERS
 M5
 M6
 M7
 M8
 N\_W PPLY+BLK N+BLK POLY\_NON POLY\_NON TAN UNITS

 Sheet Resistance
 41
 44
 7
 7.4
 mohms/sq

 Sheet Resistance
 327
 321.2
 73.4
 231.6
 1547.4
 58.9
 ohms/sq

 Contact Resistance
 2.19
 2.51
 2.51
 2.53
 ohms

COMMENTS: BLK is silicide block.

| CAPACITANCE PARAMETERS | N+  | P+   | POLY | M1  | <b>M</b> 2 | МЗ  | M4 | M5 | <b>M</b> 6 | М7 | M8 | TaN | ${\tt MiM}$ | UNITS   |
|------------------------|-----|------|------|-----|------------|-----|----|----|------------|----|----|-----|-------------|---------|
| Area (substrate)       | 973 | 1203 | 109  | 57  | 41         | 32  | 27 | 23 | 20         | 17 | 14 | 24  |             | aF/um^2 |
| Area (N+active)        |     | 1:   | 1176 |     |            |     |    |    |            |    |    |     |             | aF/um^2 |
| Area (P+active)        |     | 10   | 0496 |     |            |     |    |    |            |    |    |     |             | aF/um^2 |
| Area (r well)          | 605 |      |      |     |            |     |    |    |            |    |    |     |             | aF/um^2 |
| Area (N+ HA varactor)  |     | 2390 |      |     |            |     |    |    |            |    |    |     |             | aF/um^2 |
| Area (M1)              |     |      | 128  |     |            |     |    |    |            |    |    |     |             | aF/um^2 |
| Area (M2)              |     |      |      | 171 |            |     |    |    |            |    |    |     |             | aF/um^2 |
| Area (M3)              |     |      |      |     | 182        |     |    |    |            |    |    |     |             | aF/um^2 |
| Area (M4)              |     |      |      |     |            | 176 |    |    |            |    |    |     |             | aF/um^2 |
| Area (M5)              |     |      |      |     |            |     | 82 |    |            |    |    |     |             | aF/um^2 |
| Area (M6)              |     |      |      |     |            |     |    | 81 |            |    |    |     |             | aF/um^2 |
| Area (M7)              |     |      |      |     |            |     |    |    | 45         |    |    |     |             | aF/um^2 |
| Area (M8)              |     |      |      |     |            |     |    |    |            | 85 |    |     |             | aF/um^2 |
| Area (MiM)             |     |      |      |     |            |     |    |    |            |    |    | 4   | 1100        | aF/um^2 |
| Fringe (substrate)     | 60  | 68   |      |     |            |     |    |    |            |    |    |     |             | aF/um   |
|                        |     |      |      |     |            |     |    |    |            |    |    |     |             |         |

| CIRCUIT PARAMETERS      |     |        | UNITS       |
|-------------------------|-----|--------|-------------|
| Inverters               | K   |        |             |
| Vinv                    | 1.0 | 0.50   | volts       |
| Vinv                    | 1.5 | 0.52   | volts       |
| Vol (100 uA)            | 2.0 | 0.01   | volts       |
| Voh (100 uA)            | 2.0 | 1.18   | volts       |
| Vinv                    | 2.0 | 0.53   | volts       |
| Gain                    | 2.0 | -18.48 |             |
| Ring Oscillator Freq.   |     |        |             |
| DIV1024 (31-stg,1.2V)   |     | 376.81 | MHz         |
| D1024_THK (31-stg,2.5V) |     | 279.93 | MHz         |
| Ring Oscillator Power   |     |        |             |
| DIV1024 (31-stg,1.2V)   |     | 5.13   | nW/MHz/gate |
| D1024_THK (31-stg,2.5V) |     | 26.50  | nW/MHz/gate |
| Operational Amplifier   |     |        |             |
| Gain                    |     | 10     |             |

COMMENTS: DEEP\_SUBMICRON