מסדי נתונים – 89-281 תרגול 6 - אלג' יחסים 2

מבוסס על מצגות של עמיעד רוזנברג

Computers are like air conditioners.
They work fine until you start opening windows

תזכורת

- בתרגול הקודם ראינו 4 פעולות:
- . אפשר לבחור רשומות ספציפיות מתוך היחס. Select
- . אפשר לבחור עמודות ספציפיות מתוך היחס Project
 - . מאחד רשומות בין 2 יחסים תואמים Union ●
- מחזיר רשומות המופיעות ביחס אחד מתוך
 ביחס אחד מתוך
 ביחס אחר. (היחסים צריכים להיות תואמים).

× – Cartesian Product מכפלה קרטזית

- פעולה בינארית המאפשרת לשלב מידע משני יחסים.
 - $R_1 \times R_2$: סימון
- \mathbf{m} אם $\mathbf{R}_{_{1}}$ יחס מדרגה \mathbf{n} (תכונות) ו מדרגה $\mathbf{R}_{_{1}}$ יחס מדרגה $\mathbf{R}_{_{1}} \times \mathbf{R}_{_{2}}$ אזי $\mathbf{R}_{_{1}} \times \mathbf{R}_{_{2}}$ היא יחס מדרגה
 - $R_1 \times R_2 = \{t, s \mid t \in R_1, s \in R_2\}$
 - $=R_1 imes R_2$ מסי השורות ביחס המתקבל מהפעולה R_2 מסי השורות ב-R_1 כפול מסי השורות ב-R_1 מסי השורות ב-
- י אם בשני היחסים יש עמודות עם שם זהה אזי בתוצאת המכפלה הקרטזית relationName.ColumnName
- לדוגמה, הסכימה של היחס המתקבל כתוצאה מ- borrower × loan היא
 customer-name , borrower .loan-number , branch-name ,
 loan.loan-number , ammount

× – Cartesian Product מכפלה קרטזית

: דוגמא

R1			
Name	ID	Phone	
Avi	012	345	
Bar	013	456	
Gal	014	567	

R2		
Course	Number	
DB	281	
Complexity	320	

$$R_1 \times R_2 =$$

Name	ID	Phone	Course	Number
Avi	012	345	DB	281
Avi	012	345	Complexity	320
Bar	013	456	DB	281
Bar	013	456	Complexity	320
Gal	014	567	DB	281
Gal	014	567	Complexity	320

$\rho_{x}(R)$ – Rename כינוי

- \mathbb{R} פעולה אונארית המעניקה את השם X פעולה אונארית המעניקה את פעולה
 - : דוגמא
- $\rho_{\text{no-borrow}}(\pi_{\text{customer-name}}(\text{customer}) \pi_{\text{customer-name}}(\text{borrower}))$

- : Downtown' מציאת שמות כל הלקוחות שלקחו הלוואה בסניף
- ו לכן בשלב ראשון, לכן בשלב ראשון פיחסים loan, לכן בשלב ראשון המידע הדרוש נמצא ביחסים נבצע מכפלה קרטזית בין שני היחסים.

loan				
branch- name	loan- number	amount		
Downtown	L-17	1000		
Redwood	L-23	2000		
Perryridge	L-15	1500		
Downtown	L-14	1500		
Mianus	L-93	500		
Round Hill	L-11	900		
Perryridge	L-16	1300		

borrower				
customer- name	loan- number			
Jones	L-17			
Smith	L-23			
Hayes	L-15			
Jackson	L-14			
Curry	L-93			
Smith	L-11			
Williams	L-17			
Adams	L-16			

- י בסניף יDowntown: מציאת שמות כל הלקוחות שלקחו הלוואה בסניף
 - שלב 2: קיבלנו הרבה שורות לא רלוונטיות. נבחר את השורות
 הרלוונטיות לנו, כלומר אילו שבהן יש התאמה במספר החשבון.
- $\sigma_{borrower.loan-number = loan.loan-number}$ (borrower × loan)

branch-name	loan.loan- number	amount	customer- name	borrower.loan -number
Downtown	L-17	1000	Jones	L-17
Downtown	L-17	1000	Williams	L-17
Redwood	L-23	2000	Smith	L-23
Perryridge	L-15	1500	Hayes	L-15
Downtown	L-14	1500	Jackson	L-14
Mianus	L-93	500	Curry	L-93
Round Hill	L-11	900	Williams	L-17
Perryridge	L-16	1300	Adams	L-16

- י:Downtown מציאת שמות כל הלקוחות שלקחו הלוואה בסניף י
 - נבחר את השורות המדברות על ההלוואה בסניף הרצוי.

 $\sigma_{brunch-name = 'Downtown'}($ $\sigma_{borrower.loan-number = loan.loan-number}(borrower \times loan))$

branch-name	loan.loan- number	amount	customer- name	borrower.loan -number
Downtown	L-17	1000	Jones	L-17
Downtown	L-17	1000	Williams	L-17
Downtown	L-14	1500	Jackson	L-14

- י בסניף יDowntown מציאת שמות כל הלקוחות שלקחו הלוואה בסניף יDowntown:
 - נבחר את המידע הרצוי.

```
\pi_{\text{customer-name}} ( \\ \sigma_{\text{brunch-name} = 'Downtown'} ( \\ \sigma_{\text{borrower.loan-number} = loan.loan-number} (borrower \times loan)))
```


- .'Green' מציאת שמות הלקוחות הגרים באותה עיר כמו
- שלב ראשון נבצע מכפלה קרטזית בין טבלאת לקוחות לעצמה.
 מכיוון שלא נוכל לדעת איזו עמודה שייכת לאיזה יחס ניתן לאחד היחסים שם אחר לפני ביצוע ההכפלה.
- customer $\times \rho_s$ (customer)

- Green שלב שני − נבחר את השורות שבהן מופיע •
- $\sigma_{\text{customer.customer-name='Green'}}$ (customer $\times \rho_{\text{s}}(\text{customer})$)

- .'Green' מציאת שמות הלקוחות הגרים באותה עיר כמו •
- שלב שלישי נבחר את השורות שבהן שם העיר זהה לשם העיר של Green.
- $\sigma_{\text{customer.customer-city}} = s. \text{ customer-city}$ $\sigma_{\text{customer.customer-name}=\text{`Green'}} (\text{customer} \times \rho_s(\text{customer})))$
 - שלב רביעי נציג את השמות המופיעים באותן רשומות •
- $\pi_{\text{s.customer-name}}$ ($\sigma_{\text{customer.customer-city}} = \text{s. customer-city}$ $\sigma_{\text{customer.customer-name}=\text{`Green'}} (\text{customer} \times \rho_s(\text{customer}))))$

חיתוך — Intersection — חיתוך

- פעולה בינארית היוצרת יחס המכיל רק n-יות המופיעות ביחס
 הראשון והשני.
 - $R_1 \cap R_2$: סימון
 - ו -R₂ צריכים להיות תואמים (מבחינת דרגה ותחומים) או R_2 ו R_1
 - ליחס המוחזר אין סכמה עבור עמודות עם שם שונה!

חיתוך ע"י פעולות בסיסיות:

$$R_1 \cap R_2 = R_1 - (R_1 - R_2) = R_2 - (R_2 - R_1)$$

חיתוך — Intersection — חיתוך

: דוגמא

מצא את שמות כל הלקוחות שהפקידו כסף ולקחו הלוואה.

• $\pi_{c-name}(depositor) \cap \pi_{c-name}(borrower)$

$^{\bowtie}_{\theta}$ — Theta Join — צירוף טטה

- פעולה בינארית המשלבת את המכפלה הקרטזית ופעולת הבחירה לפעולה אחת.
 - $R_1 \underset{\theta}{\bowtie} R_2 = \sigma_{\theta}(R_1 \times R_2)$ סימון:
 - : θ הפרדיקט •
 - $, \neg \Lambda, V, <, >, \leq, \geq, =, \neq :$ יכול להכיל יחס שוויון \bullet
 - R_2 משווה בין תכונה ב- R_1 לתכונה ב-•
 - היחס החדש שנוצר יכיל את התכונות של שני היחסים.

$^{\bowtie}_{\theta}$ — Theta Join — צירוף טטה

: דוגמא

מספרי כל הלוואות שנלקחו בעיר Brooklyn.

•
$$R_1 = (branch) \bowtie_{\substack{branch.b-name = \\ loan.b-name}} (loan)$$

- $R_2 = \sigma_{b-city=\prime brooklyn\prime}(R_1)$
- $\pi_{loan-number}(R_2)$

- פעולה בינארית המשלבת:
 - 1. מכפלה קרטזית.
- 2. בחירת tuples בעלי ערכים זהים בעמודות המשותפות.
 - 3. ביצוע הטלה (כך שלא יהיו עמודות כפולות).
 - $R_1 \bowtie R_2 :$ סימון
- $R_1(S_1), R_2(S_2)$ יחסים (2 בהינתן בהינתן $R_1(S_1), R_2(S_2)$
- $R_1 \bowtie R_2 = \pi_{S_1 \cup S_2} (\sigma_{R_1.A_1 = R_2.A_1 \wedge \dots \wedge R_1.A_n = R_2.A_n} (R_1 \times R_2))$
 - . אן חן $A_1 \dots A_n$ העמודות $A_1 \dots A_n$ הן ח $A_1 \dots A_n$ העמודות העמודות ישם \bullet

R_1		
name	Grade	
Avi	89	
Beni	95	
Gadi	97	

R_2				
name	Grade1	Grade2		
Avi	94	91		
Beni	87	98		

: שלב ראשון – מכפלה קרטזית

$R_1 \times R_2$					
name	Grade	name	Grade1	Grade2	
Avi	89	Avi	94	91	
Avi	89	Beni	87	98	
Beni	95	Avi	94	91	
Beni	95	Beni	87	98	
Gadi	97	Avi	94	91	
Gadi	97	Beni	87	98	

: דוגמא

$R_1 \times R_2$					
name	Grade	name	Grade1	Grade2	
Avi	89	Avi	94	91	
Avi	89	Beni	87	98	
Beni	95	Avi	94	91	
Beni	95	Beni	87	98	
Gadi	97	Avi	94	91	
Gadi	97	Beni	87	98	

: בעלי ערכים זהים בעמודות המשותפות tuples שלב שני – בחירת

$\sigma_{R_1.name=R_2.name} R_1 \times R_2$					
name	Grade	name	Grade1	Grade2	
Avi	89	Avi	94	91	
Beni	95	Beni	87	98	

$\sigma_{R_1.name=R_2.name} R_1 \times R_2$				
name	Grade	name	Grade1	Grade2
Avi	89	Avi	94	91
Beni	95	Beni	87	98

: שלב שלישי – ביצוע הטלה (כך שלא יהיו עמודות כפולות)

$\pi_{\text{name,Grade},\text{Grade}1,\text{Grade}2}$ $\sigma_{\text{R}_1,\text{name}=\text{R}_2,\text{name}}$ $R_1 \times R_2$				
name	Grade	Grade1	Grade2	
Avi	89	94	91	
Beni	95	87	98	

(Natural Join) דוגמא נוספת:צירוף טבעי

הסבר נוסף: כל הצירופים של רשומה מ-S ורשומה מ-T המסכימות ביניהן על התכונות המשותפות, כאשר מכל זוג תכונות משותפות מותירים עמודה אחת בלבד.

חיה צבע סוס לבן פיל ורוד חתול שחור צבע גוון כחול בהיר כחול כהה ורוד בהיר ורוד כהה

חיה צבע גוון S ⋈ T= בהיר פיל ורוד כהה פיל ורוד כהה

$\bigcirc ullet - Outer Join - צירוף עם שמירת מידע$

- בצירוף טבעי ראינו שחלק מהרשומות שלנו נעלמות.
 בדוגמא שראינו, גדי לא הופיע בטבלה השניה ולכן הרשומה שלו נעלמה לחלוטין מהתוצאה הסופית.
 - במקרה שבו נרצה לשמור על המידע נשתמש ב-Outer Join
 - : Outer Join ישנם 3 סוגים של
 - שמירת מידע משני הטבלאות. Outer Join •
 - שמירת מידע מהטבלה הימנית. —Right Outer Join •
 - שמירת מידע מהטבלה השמאלית. Left Outer Join ullet

דוגמה

T-ı S צירוף חיצוני של

צבע	חיה
לבן	010
ורוד	פיל
שחור	חתול

S

גוון	צבע
בהיר	כחול
כהה	כחול
בהיר	ורוד
כהה	ורוד

גוון צבע חיה $S \bowtie_{outer} T =$ פיל בהיר ורוד פיל ICIT כהה null לבן 010 null חתול שחור כחול null בהיר כחול null כהה

Τ

קיימים צירוף חיצוני ימני (right outer join) וצירוף חיצוני שמאלי (left outer join) שבהם מרפדים ב-null רק את היחס הימני או השמאלי, בהתאמה

extstyle e

: דוגמא

R_1		
name	Grade	
Avi	89	
Beni	95	
Gadi	97	

	R_2				
name Grade1 Grade2					
Avi	94	91			
Beni	87	98			

$R_1 \supset \bowtie R_2$				
name	Grade	Grade1	Grade2	
Avi	89	94	91	
Beni	95	87	98	
Gadi	97	NULL	NULL	

- פעולת החילוק היא פעולה בינארית הבוחרת מתוך היחס R_1 את הרשומות היימתאימותיי לכל הרשומות ב- R_2 ומחזירה את התכונות הקיימות ב- R_1 ולא ב- R_2 .
 - בצורה פורמאלית:
 - . $S_2 \subset S_1$ הן יחסים כך שמתקיים $R_2(S_2)$ ו $R_1(S_1)$ $R_1 \setminus S_2$ היחס היחס $R_1 \div R_2$ הוא בעל סכמה $R_1 \div R_2$
- $R_1 \div R_2 = \{t[S_1 \setminus S_2] : t \in R_1, \forall t_2 \in R_2 ((t[S_1 \setminus S_2] \cup t_2) \in R_1)\}$

: דוגמא

	R_2	
В	С	D
b	С	d
b	СС	d
b	ссс	d

	R_1			
Α	В	С	D	
1	b	С	d	
1	b	СС	d	
1	b	ссс	d	
3	b	С	d	

תהיה $R_1\div \mathbf{R}_2$ נשים לב שמתקיים $S_2 \subset S_1$ ולכן הסכמה של $\{A,B,C,D\}\setminus \{B,C,D\}=\{A\}$

: דוגמא

	R_2	
В	С	D
b	С	d
b	СС	d
b	ссс	d

	R_1			
	Α	В	C	D
	1	b	C	d
20000000	1	р	СС	d
	1	b	ссс	d
	3	b	С	d

נבדוק מהן הרשומות שנקבל:

$$R_1 \div R_2 = \{t[A]: t \in R_1, \forall t_2 \in R_2((t[A] \cup t_2) \in R_1)\}$$

 R_2 d

CCC

5555555	R_1			
	Α	В	C	D
5555555	1	b	C	d
8888888	1	р	СС	d
	1	b	ссс	d
5555555	3	b	С	d

נסתכל על התנאי הראשון •

: דוגמא

$$R_1 \div R_2 = \{t[A] : t \in R_1, \forall t_2 \in R_2((t[A] \cup t_2) \in R_1)\}$$

3-הערכים העונים עליו הם 1 ו-3

R_2		
В	С	D
b	С	d
h	CC	Ч

R_1				
Α	В	С	D	
1	b	С	d	
1	b	СС	d	
1	b	ССС	d	
3	b	С	d	

נסתכל על התנאי השני

: דוגמא

$$R_1 \div R_2 = \{t[A]: t \in R_1, \forall t_2 \in R_2((t[A] \cup t_2) \in R_1)\}$$

מתוך הערכים 1 ו-3 רק הערך "ו" עונה על התנאי השני.

R_1	÷	R_2
Α		
1		

: דוגמא

R_2		
В		С
b		С
b		СС
b		ссс

	R_1				
	Α	В	C		
	1	р	С		
222222	1	b	СС		
	1	b	ССС		
222222	3	b	С		

- בדייכ משתמשים בחילוק בשאלות ייכליי.
 - : נחייה טיפה את הדוגמא
- .(חלקית) טבלת סוגי הלוואות R_2 ; טבלת סוגי הלוואות R_1
 - ; סוג הלוואה C = B = שם בנק B = סוג הלוואה A
- החילוק ישמש אותנו כדי לתת מענה לשאלה איזה לקוח לקח את כל סוגי
 ההלוואות של בנק b.

(Division) דוגמא נוספת לחילוק

הסבר נוסף:

חיה צבע סוס לבן סוס שחור חתול שחור

צבע T לבן שחור

R=S÷T סוס

Α

דוגמא נוספת לחילוק

נרצה לקבל את רשימת הספקים מ-A המספקים את כל החלקים המופיעים ברשימה B.

<u>sno</u> pno **S1** P1 P2 **S1 P3 S1** P4 **S2 P1 S2** P2 **S**3 P2 **S4** P2 **S4 P4**

31

Α

דוגמא נוספת לחילוק

נרצה לקבל את רשימת הספקים מ-A המספקים את כל החלקים המופיעים ברשימה B.

32

Α

דוגמא נוספת לחילוק

נרצה לקבל את רשימת הספקים מ-A המספקים את כל החלקים המופיעים ברשימה B.

sno pno P1 P2 **S1 P3** S1 P4 **S2** P1 **S2** P2 **S**3 P2 **S4** P2 **S**4

P4

В <u>pno</u> P1 P2 **P4**

33