Heller Ehrman White & McAuliffe, LLP
Sheet 1 of 33
Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications
Applicants: Ramnarayan et al.

Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

Bil

PIEUEIVED MAR 1 0 2003

TECH CENTER 1600/2900

ATOMPTEM 8 TO	.54	ć						
ATOMETER TO	2949	N	PRO	Α	1	-3.433	7.956	34.152
ATOM	2	CA	PRO	Α	1	-2.653	6.918	34.784
ATOM	3	С	PRO	Α	1	-1.242	7.005	34.259
ATOM	4	0	PRO	Α	1	-0.950	7.638	33.216
ATOM	5	СВ	PRO	Α	1	-3.281	5.601	34.262
ATOM	6	ĊĠ	PRO	A	1	-4.191	5.995	33.118
ATOM	7	CD	PRO	A	1	-4.547	7.461	33.339
ATOM	8	1H	PRO	Α	1	-2.845	8.493	33.547
ATOM	9	2H	PRO	A	1	-3.824	8.552	34.853
ATOM	10	N	GLN		2	-0.259	6.464	35.001
MOTA	11	Н		A	2	-0.475	6.057	35.889
ATOM	12	CA	GLN		2	1.115	6.443	34.568
ATOM	13	C	GLN		2	1.452	4.993	34.301
ATOM	14	Ö		Α	2	1.379	4.106	35.173
ATOM	15	CB	GLN	Α	2	2.070	6.966	35.653
ATOM	16	CG	GLN	Α	2	3.549	6.859	35.240
ATOM	17	CD	GLN	Α	2	4.490	7.744	36.054
ATOM	18	OE1	GLN	Α	2	4.771	8.888	35.719
ATOM	19	NE2		A	2	4.980	7.190	37.144
ATOM	20	1HE2		A	2	5.605	7.702	37.734
ATOM	21	2HE2	GLN		2	4.731	6.253	37.390
ATOM	22	N	ILE	A	3	1.784	4.644	33.037
ATOM	23	Н	ILE	A	3	1.876	5.351	32.336
ATOM	24	CA	ILE	Α	3	2.013	3.257	32.665
ATOM	25	C	ILE	A	3	3.505	3.028	32.473
ATOM	26	Ö		A	3	4.242	3.777	31.787
ATOM	27	CB	ILE	A	3	1.226	2.944	31.370
ATOM	28	CG1	ILE	A	3	-0.274	3.239	31.603
ATOM	29	CG2	ILE	A	3	1.427	1.480	30.901
ATOM	30	CD1		A	3	-1.089	3.219	30.322
ATOM	31	N	THR		4	4.071	2.032	33.177
ATOM	32	H	THR		4	3.525	1.525	33.844
ATOM	33	CA	THR		4	5.451	1.661	33.007
ATOM	34	C	THR	A	4	5.515	0.637	31.901
ATOM	35	Ö		Α	4	4.490	0.143	31.397
ATOM	36	CB		Α	4	6.051	1.125	34.324
ATOM	37	OG1		Α	4	5.224	0.069	34.791
ATOM	38	HG1	THR		4	5.589	-0.299	35.646
MOTA	39	CG2	THR		4	6.085	2.212	35.431
ATOM	40	N	LEU		5	6.677	0.281	31.405
ATOM	41	H	LEU		5	7.518	0.530	31.885
ATOM	42	CA	LEU		5	6.754	-0.464	30.177
ATOM	43	C	LEU		5	7.432	-1.813	30.356
MOTA	44	Ō		Α	5	7.940	-2.464	29.426
ATOM	45	CB		Α	5	7.459	0.394	29.128
ATOM	46	CG		Α	5	6.668	1.671	28.775
MOTA	47	CD1		Α	5	7.493	2.649	27.939
ATOM	48	CD2		A	5	5.345	1.307	28.099
ATOM	49	N		Α	6	7.420	-2.351	31.594
ATOM	50	H		A	6	7.030	-1.833	32.356
ATOM	51	CA	TRP	Α	6	7.958	-3.669	31.865
ATOM	52	C		A	6	7.071	-4.697	31.204
ATOM	53	Ö		Α	6	7.520	-5.798	30.828
ATOM	54	CB		Α	6	8.099	-3.913	33.367
ATOM	55	CG		Α	6	9.041	-2.974	34.070

FIG. 11

MAR 1 0 2003 TECH CENTER 1600/2900

Heller Ehrman White & McAuliffe, LLP

Heller Ehrman White & McAuliffe, LLP
Sheet 2 of 33
Title: Use of Computationally Derived Protein Structures of Genetic
Polymorphisms in Pharmacogenomics for Drug Design
and Clinical Applications
Applicants: Ramnarayan et al.

WYK O	3				nts: Ramna	rayan <i>et al</i> .		
ATOM ATOM ATOM	.3 "	Date of F				y Docket No. 24737-19		
ATOM TOTAL	w 56	CD1		Α	6	8.745	-1.769	34.646
ATOMIA	57	CD2	TRP	Α	6	10.449	-3.171	34.273
MOTA	58	NE1	TRP	Α	6	9.875	-1.209	35.190
ATOM	59	HE1	TRP	Α	6	9.930	-0.332	35.668
ATOM	60	CE2	TRP	Α	6	10.932	-2.048	34.974
ATOM	61	CE3	TRP	Α	6	11.334	-4.190	33.924
MOTA	62	CZ2	TRP	Α	6	12.257	-1.917	35.333
ATOM	63	CZ3	TRP	Α	6	12.650	-4.065	34.278
ATOM	64	CH2	TRP	A	6	13.106	-2.942	34.974
MOTA	65	N		A	7	5.773	-4.448	30.973
MOTA	66	Н		A	7	5.354	-3.619	31.343
MOTA	67	CA		A	7	4.952	-5.339	30.205
ATOM	68	C	GLN		7	4.438	-4.569	29.033
ATOM	69	Ö	GLN		7	4.433	-3.321	29.000
ATOM	70	CB		Α	7	3.712	-5.693	30.969
ATOM	71	CG		A	7	4.015	-6.467	32.210
ATOM	72	CD	GLN	A	7	2.734	-6.678	32.917
ATOM	73	OE1		A	7	2.053	-7.681	32.712
ATOM	74	NE2	GLN	A	7	2.356	-5.682	33.736
MOTA	75	1HE2	GLN	A	7	1.501	-5.748	34.251
	76	2HE2		A	7	2.926	-4.867	33.837
ATOM	77	N		A	8	3.777	-5.239	28.078
ATOM	78	H	ARG		8	3.688	-6.233	28.142
ATOM		н СА		A	8	3.183	-4.568	26.142
ATOM	79	CA		A	8	2.117	-3.648	27.461
MOTA	80				8	1.333	-3.965	28.387
MOTA	81	0	ARG			2.574	-5.555	25.975
MOTA	82	CB		A	8		-6.593	25.437
ATOM	83	CG		A	8	3.532		24.579
MOTA	84	CD		A	8	2.842	-7.610	23.900
ATOM	85	NE	ARG		8	3.787	-8.487 -8.279	23.900
ATOM	86	HE		A	8	4.762	-0.279 -9.541	23.185
ATOM	87	CZ		A	8	3.405		
ATOM	88	NH1	ARG	A	8	2.125	-9.871	23.052 23.496
ATOM	89	2HH1	ARG		8	1.418	-9.321	
MOTA	90	1HH1		Α	8	1.869	-10.670	22.508
ATOM	91	NH2		A	8	4.332	-10.286	22.589
MOTA	92	1HH2	ARG	A	8	4.062	-11.082	22.048
MOTA	93	2HH2	ARG		8	5.299	-10.050	22.682
ATOM	94	N	PRO		9	1.990	-2.428	26.938
MOTA	95	CA	PRO		9	1.001	-1.462	27.440
ATOM	96	C	PRO		9	-0.365	-1.697	26.821
MOTA	97	0	PRO		9	-0.918	-0.935	26.008
MOTA	98	CB	PRO		9	1.572	-0.112	27.041
MOTA	99	CG	PRO		9	2.553	-0.404	25.931
MOTA	100	CD	PRO		9	3.024	-1.820	26.084
ATOM	101	N	LEU		10	-1.028	-2.803	27.227
ATOM	102	Н	LEU		10	-0.616	-3.404	27.912
MOTA	103	CA	LEU		10	-2.319	-3.143	26.698
ATOM	104	C	LEU		10	-3.390	-2.565	27.591
MOTA	105	0	LEU		10	-3.336	-2.632	28.831
MOTA	106	CB	LEU		10	-2.451	-4.651	26.709
MOTA	107	CG	LEU		10	-1.483	-5.316	25.756
ATOM	108	CD1	LEU		10	-1.159	-6.740	26.212
ATOM	109	CD2	LEU		10	-2.083	-5.262	24.322
MOTA	110	N	VAL		11	-4.447	-1.952	27.033
MOTA	111	Н	VAL	A	11	-4.507	-1.875	26.038

Heller Ehrman White & McAuliffe, LLP

Sheet 3 of 35

Sheet 3 of 35 and Clinical Applications

MAR 0 3 2003

Applicants: Ramnarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

RECEIVED MAR 1 0 2003 TECH CENTER: 1000/2900

ATOMEM & TEL 2 CA VAL A 11 -5.506 -1.398 27.835 MOTA 113 C VAL A 11 -6.827 -1.857 27.268 MOTA 114 0 VAL A 11 -6.924 -2.490 26.198 ATOM 115 CB VAL A 11 -5.420 0.143 27.897 MOTA 116 CG1 VAL A 11 -4.117 0.595 28.551 MOTA 117 CG2 VAL A 11 -5.549 0.787 26.497 MOTA 118 Ν THR A 12 -7.954 -1.592 27.978 ATOM 119 Η THR A 12 -7.884 -1.141 28.868 MOTA 120 CA THR A 12 -9.301 -1.942 27.496 MOTA 121 C THR A 12 -9.889 -0.726 26.795 MOTA 122 0 THR A -9.856 27.247 12 0.436 MOTA 123 CB THR A 12 -10.225 -2.385 28.659 MOTA 124 OG1 THR A -9.596 -3.458 29.338 12 HG1 THR A -10.170 MOTA 125 12 -3.766 30.096 ATOM 126 CG2 THR A 12 -11.579 -2.89528.156 ATOM 127 Ν ILE A 13 -10.449-0.93225.594 MOTA 128 ILE A -10.409 -1.841 Η 13 25.178 MOTA 129 CA ILE A 13 -11.112 0.133 24.882 MOTA 130 C ILE A 13 -12.553 -0.292 24.693 -12.935 0 ILE A 13 -1.469 ATOM 131 24.821 CB -10.432 MOTA 132 ILE A 13 0.364 23.511 ILE A -10.466 MOTA 133 CG1 13 -0.896 22.628 -8.986 MOTA 134 CG2 ILE 13 0.806 Α 23.747 ILE-9.755 -0.745 MOTA135 CD1 Α 13 21.294 MOTA 136 LYS Α -13.470 0.658 N 14 24.438 MOTA 137 Η LYS A 14 -13.209 1.622 24.481 LYS A 14 ATOM CA -14.838 0.330 138 24.100 ATOM 139 C LYS Α 14 -15.088 0.877 22.719 MOTA 22.375 140 0 LYS Α 14 -14.859 2.059 MOTA 141 CB LYS -15.855 0.916 Α 14 25.099 -17.325MOTA142 CG LYS Α 14 0.518 24.864 LYS 0.146 MOTA 143 CD Α 14 -18.078 26.166 -18.826 1.342 ATOM 144 CE LYS A 14 26.810 14 ATOM 145 NZLYS A -19.316 0.929 28.173 MOTA 146 1HZ LYS Α 14 -19.801 1.693 28.599 MOTA 147 3HZ LYS Α 14 -18.536 0.670 28.743 MOTA 148 2HZ LYS -19.936 0.150 Α 14 28.082 0.005 149 -15.535 21.798 MOTA N ILE Α 15 **ATOM** 150 Η ILE Α 15 -15.806 -0.916 22.078 MOTA 151 CA ILE A 15 -15.642 0.347 20.400 ILE A MOTA 152 C 15 -16.894 -0.328 19.887 MOTA 153 О ILE A 15 -17.115 -1.54220.041 MOTA 154 CB ILE A 15 -14.382-0.132 19.639 MOTA 155 CG1 ILE A 15 -14.478 0.148 18.125 MOTA 156 CG2 ILE 15 -14.082-1.623 19.880 MOTA 157 CD1 ILE A 15 -14.237 1.603 17.796 MOTA GLY A -17.843 0.435 158 Ν 16 19.308 ATOM159 Η GLY A 16 -17.720 1.426 19.260 GLY A ATOM 160 CA 16 -19.053 -0.143 18.745 C GLY A -19.897 ATOM161 16 -0.817 19.789 0 GLY A -20.774 19.516 MOTA 162 16 -1.668 **ATOM** 163 Ν GLYΑ 17 -19.712 -0.493 21.088 MOTA 164 Η GLY A 17 -19.038 0.204 21.334 MOTA 165 CA GLY A 17 -20.464 -1.126 22.160 ATOM C GLY A 17 -19.718 166 -2.335 22.653 MOTA 167 0 GLY A 17 -20.147 -3.098 23.540

HECEIVED

MAR 1 0 2003

TECH CENTER 1600/2900

Heller Ehrman White & McAuliffe, LLP Sheet 4 of 33 itle: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design

and Clinical Applications Applicants: Ramnaravan et al.

MAR 0 3 2003 Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C ATOM BTRATES N GLN A -2.591 18 -18.50722.121 MOTA 169 Η GLN A 18 -18.059 -1.90021.554 MOTA 170 CA GLN A 18 -17.806 -3.830 22.326 MOTA C 171 GLN A 18 -16.552 -3.549 23.123 MOTA 172 0 GLN A 18 -15.887-2.508 22.945 MOTA 173 CB GLN A 18 -17.393 -4.294 20.928 ATOM 174 CG GLN A 18 -16.911 -5.734 20.788 ATOM 175 CD GLN A 18 -18.018 -6.728 20.613 **ATOM** 176 OE1 GLN A 18 -19.131 -6.574 21.152 MOTA 177 NE2 GLN A 18 -17.722 -7.773 19.857 MOTA 178 1HE2 GLN A 18 -18.404-8.484 19.689 **ATOM** 179 2HE2 GLN A 18 -16.814 19.448 -7.860 MOTA 180 N LEU A 19 -16.133 -4.39724.087 **ATOM** 181 Н LEU A 19 -16.682 -5.202 24.312 **ATOM** 182 CA LEU A 19 -14.909 -4.178 24.808 ATOM 183 C LEU A 19 -13.799-4.912 24.090 MOTA 184 0 LEU A 19 -13.989 -6.018 23.558 **ATOM** CB 185 LEU A 19 -14.982-4.714 26.254 ATOM 186 CG LEU A 19 -15.490 -3.778 27.374 MOTA 187 CD1 LEU A 19 -16.392 -2.639 26.856 MOTA 188 CD2 LEU A 19 -16.208-4.516 28.465 MOTA 189 N LYS A 20 -12.603 -4.372 23.978 **ATOM** 190 Η LYS Α 20 -12.442 -3.448 24.324 ATOM 191 CA LYS Α 20 -11.507 -5.082 23.365 MOTA 192 LYS С Α 20 -10.266 -4.618 24.062 MOTA 193 0 LYS Α 20 -10.228 -3.611 24.816 MOTA 194 CB LYS Α 20 -11.397 -4.798 21.875 MOTA 195 CG LYS Α 20 -12.558-5.356 21.100 **ATOM** 196 CD LYS A 20 -12.537 19.615 -4.988 MOTA 197 LYS A CE 20 -13.414-5.958 18.827 **ATOM** 198 NZ LYS A 20 -7.208 -12.681 18.639 **ATOM** 199 1HZ LYS Α 20 -13.247 -7.852 18.123 MOTA 200 3HZ LYS Α 20 -12.458 -7.601 19.531 **MOTA** 201 2HZ LYS A 20 -11.837 -7.027 18.134 ATOM 202 N GLU A 21 -9.150 -5.357 23.893 -6.188 MOTA 203 Η GLU A 21 -9.185 23.338 **ATOM** 204 CA GLU A 21 -7.890 -4.997 24.486 **ATOM** 205 GLU A C 21 -7.001 -4.462 23.390 MOTA 206 0 GLU A 21 -6.970 -4.992 22.258 **ATOM** 207 CB GLU A 21 -7.268 -6.260 25.051 **ATOM** 208 GLU A CG 21 -5.835 -6.14025.480 **ATOM** 209 GLU A -7.352 CD 21 -5.405 26.275 MOTA 210 OE1 GLU A 21 -5.624 -7.343 27.508 MOTA 211 OE2 GLU A -8.309 21 -4.852 25.684 MOTA 212 ALA A Ν 22 -6.239 -3.369 23.595 213 ATOM Η ALA A 22 -6.223 -2.938 24.497 MOTA 214 CA ALA A 22 -5.419 -2.781 22.520 ATOM 215 C ALA A 22 -4.138 -2.25523.114 **ATOM** 216 0 ALA A 22 -3.985 -1.91424.314 ATOM 217 CB ALA A 22 -6.134 -1.657 21.821 ATOM 218 N LEU A 23 -3.121 -2.091 22.240 **ATOM** 219 Η LEU A 23 -3.279 -2.236 21.263 220 MOTA CA LEU A 23 -1.797 -1.712 22.640 ATOM 221 C LEU A 23 -1.660 -0.230 22.443 MOTA 222 0 LEU A 23 -2.020 0.349 21.402 MOTA 223 CB LEU A 23 -0.814 -2.486 21.732

FIG. 11 A-3

RECEIVED

MAR 1 0 2003

TECH CENTER 1600/2900

Heller Ehrman White & McAuliffe, LLP
Sheet 5 of 33

Title: Use of Computationally Derived Protein Structures of Genetic
Polymorphisms in Pharmacogenomics for Drug Design
and Clinical Applications
Applicants: Ramnarayan et al.

Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

MAROS	, c	Date of Fil	ling: 11/1	0/00	Attorney	Docket No. 24737-1906C		_
MOTA	724	CG	LEU	Α	23	0.705	-2.448	21.991
A POWHT B TO	225	CD1	LEU		23	1.088	-3.400	23.124
MOTA	226	CD2	LEU		23	1.462	-2.878	20.708
ATOM	227	N	LEU		24	-1.192	0.530	23.463
ATOM	228	H	LEU		24	-1.015	0.110	24.353
MOTA	229	CA	LEU		24	-0.935	1.952	23.305
ATOM	230	C	LEU		24	0.403	2.089	22.609
ATOM	231	0	LEU		24	1.471	1.717	23.130
ATOM	232	CB	LEU		24	-0.921	2.609	24.681
ATOM	233	CG	LEU		24	-2.220	2.492	25.477
ATOM	234	CD1	LEU		24	-2.063	3.291	26.772
ATOM	235	CD2	LEU		24	-3.419	3.000	24.691
ATOM	236	N N	ASP		25	0.454	2.590	21.397
ATOM	237	H	ASP		25 25	-0.334	3.085	21.337
			ASP		25 25	1.642	2.423	20.605
ATOM	238	CA						20.059
MOTA	239	C	ASP		25	2.130	3.750	
ATOM	240	O	ASP		25	1.568	4.320 1.435	19.110
ATOM	241	CB	ASP		25	1.263		19.486
ATOM	242	CG	ASP		25	2.428	1.051	18.561
ATOM	243	OD1	ASP		25	3.546	1.540	18.729
ATOM	244	OD2	ASP		25	2.164	0.241	17.658
MOTA	245	N	THR		26	3.203	4.337	20.605
ATOM	246	H	THR		26	3.694	3.880	21.346
ATOM	247	CA	THR		26	3.691	5.652	20.144
ATOM	248	C	THR		26	4.397	5.583	18.778
ATOM	249	0	THR		26	4.642	6.587	18.079
ATOM	250	CB	THR		26	4.596	6.219	21.217
ATOM	251	OG1	THR		26	5.716	5.324	21.386
MOTA	252	HG1	THR		26	6.332	5.676	22.091
ATOM	253	CG2	THR		26	3.878	6.320	22.577
ATOM	254	N	GLY		27	4.757	4.377	18.298
MOTA	255	H	GLY		27	4.526	3.550	18.811
ATOM	256	CA	GLY		27	5.481	4.233	17.040
ATOM	257	C	GLY		27	4.520	4.190	15.886
MOTA	258	0	GLY		27	4.908	4.242	14.696
MOTA	259	N	ALA		28	3.197	4.084	16.117
ATOM	260	Н	ALA		28	2.856	4.091	17.057
MOTA	261	CA	ALA		28	2.213	3.955	15.018
ATOM	262	С	ALA		28	1.598	5.299	14.750
ATOM	263	0	ALA		28	1.062	5.982	15.650
MOTA	264	CB	ALA		28	1.117	2.980	15.390
MOTA	265	N	ASP		29	1.503	5.744	13.490
MOTA	266	H	ASP		29	1.912	5.216	12.746
MOTA	267	CA	ASP		29	0.810	6.984	13.213
MOTA	268	С	ASP		29	-0.666	6.724	13.327
MOTA	269	0	ASP		29	-1.488	7.637	13.568
ATOM	270	CB	ASP		29	1.009	7.433	11.775
MOTA	271	CG	ASP		29	2.439	7.882	11.412
MOTA	272	OD1	ASP		29	3.360	7.856	12.269
MOTA	273	OD2	ASP		29	2.606	8.253	10.252
MOTA	274	N	ASP		30	-1.143	5.517	12.990
MOTA	275	H	ASP		30	-0.508	4.769	12.800
MOTA	276	CA	ASP		30	-2.579	5.245	12.887
MOTA	277	С	ASP		30	-3.057	4.208	13.867
ATOM	278	0	ASP		30	-2.284	3.483	14.546
MOTA	279	CB	ASP	Α	30	-2.896	4.758	11.456

FIG. 11 A-4

MAR 1 0 2003 TECH CENTER 1600/2900

Heller Ehrman White & McAuliffe, LLP Sheet 6 of 33 Vitle: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

/		(280 281	ite oi Finn	ig: 11/10/	UU	Attorney	DOCKET NO. 24/3/-1900C		
	POM. TOP	జ్డో80	CG	ASP	Α	30	-2.495	5.768	10.425
	TOM	281	OD1	ASP	Α	30	-3.067	6.871	10.423
A	TOM	282	OD2	ASP	Α	30	-1.596	5.494	9.618
Α	TOM	283	N	THR	Α	31	-4.393	4.076	14.002
Α	TOM	284	Н	THR	Α	31	-5.004	4.700	13.515
A	TOM	285	CA	THR	Α	31	-5.059	3.062	14.829
Α	TOM	286	С	THR	Α	31	-5.565	1.967	13.913
A	MOT	287	0	THR	Α	31	-6.223	2.169	12.870
Α	TOM	288	CB	THR	Α	31	-6.212	3.725	15.5 6 6
Α	MOT	289	OG1	THR		31	-5.668	4.667	16.474
Α	MOT	290	HG1	THR		31	-6.403	5.122	16.976
Α	TOM	291	CG2	THR		31	-7.044	2.702	_16.389
Α	TOM	292	N	VAL		32	-5.187	0.713	14.235
	TOM	293	H	VAL		32	-4.649	0.555	15.063
	TOM	294	CA	VAL		32	-5.517	-0.462	13.437
	MOT	295	С	VAL		32	-6.092	-1.506	14.365
	TOM	296	0	VAL		32	-5.502	-1.957	15.365
	TOM	297	CB	VAL		32	-4.260	-1.064	12.757
	TOM	298	CG1	VAL		32	-4.667	-2.136	11.735
	TOM	299	CG2	VAL		32	-3.422	0.017	12.032
	TOM	300	N	LEU		33	-7.352	-1.923	14.119
	TOM	301	H	LEU		33	-7.867	-1.523	13.361
	TOM	302	CA	LEU		33	-7.982	-2.940	14.929
	TOM	303	C	LEU		33	-8.174	-4.203	14.107
	TOM	304	0	LEU		33	-8.268	-4.247	12.853
	TOM	305	CB	LEU		33	-9.336	-2.477	15.408
	TOM	306	CG	LEU		33	-9.292	-1.149 -0.747	16.127 16.485
	TOM	307	CD1	LEU		33 33	-10.710 -8.348	-0.747	17.347
	TOM	308	CD2	LEU GLU		3 <i>3</i>	-8.296	-5.319	14.782
	TOM	309	N H	GLU		34	-8.244	-5.302	15.780
	TOM	310 311	CA	GLU		34	-8.503	-6.551	14.086
	TOM TOM	312	CA	GLU		34	-9.909	-6.549	13.510
	TOM	313	0	GLU		34	-10.808	-5.717	13.795
	TOM	314	СВ	GLU		34	-8.265	-7.750	15.010
	TOM	315	CG	GLU		34	-9.259	-7.791	16.165
	TOM	316	CD	GLU		34	-8.763	-8.552	17.404
	TOM	317	OE1	GLU		34	-7.670	-9.193	17.368
	TOM	318		GLU		34	-9.482	-8.497	18.407
	TOM	319	N	GLU		35	-10.152	-7.480	12.568
	TOM	320	Н	GLU		35	-9.485	-8.208	12.407
	TOM	321	CA	GLU		35	-11.352	-7.466	11.773
	TOM	322	С	GLU		35	-12.631	-7.520	12.571
	TOM	323	0	GLU		35	-12.814	-8.294	13.528
	TOM	324	CB	GLU		35	-11.237	-8.536	10.707
	TOM	325	CG	GLU		35	-9.945	-8.280	9.907
	TOM	326	CD	GLU	Α	35	-9.872	-8.872	8.486
	TOM	327	OE1	GLU	Α	35	-10.612	-8.401	7.603
Α	MOT	328	OE2	GLU		35	-9.024	-9.776	8.261
	MOT	329	N	MET		36	-13.580	-6.598	12.278
A	MOT	330	H	MET		36	-13.439	-5.967	11.515
	TOM	331	CA	MET		36	-14.819	-6.495	13.052
	TOM	332	C	MET		36	-15.826	-5.635	12.271
	MOT	333	0			36	-15.514	-4.828	11.371
	TOM	334	CB	MET		36	-14.593	-5.845	14.428
A	TOM	335	CG	MET	Α	36	-14.279	-4.353	14.417

RECEIVED MAR 1 0 2003 TECH CENTER 1600/2900

Heller Ehrman White & McAuliffe, LLP
Sheet 7 of 33

Gitte: Use of Computationally Derived Protein Structures of Genetic
Polymorphisms in Pharmacogenomics for Drug Design
and Clinical Applications
Applicants: Ramnarayan et al.
Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

ATOM	3016	SD	MET	7	36	_ 1 .	4.251	-3.718	16.099
ATOM	337	CE		A	36		2.487	-3.846	16.409
ATOM	338	N	SER		37		7.130	-5.776	12.590
					37		7.399	-6.431	
MOTA	339	H	SER						13.296
ATOM	340	CA	SER		37		3.155	-5.005	11.940
MOTA	341	C		A	37		3.286	-3.693	12.657
MOTA	342	0	SER		37		3.593	-3.624	13.865
MOTA	343	CB	SER		37		9.506	-5.688	12.032
MOTA	344	OG	SER		37		9.455	-7.054	11.716
MOTA	345	HG	SER		37		0.367	-7.457	11.791
MOTA	346	N	LEU		38		3.185	-2.569	11.933
MOTA	347	H	LEU		38		7.956	-2.625	10.952
MOTA	348	CA	LEU		38		3.557	-1.247	12.465
MOTA	349	С	LEU		38		9.630	-0.605	11.572
MOTA	35:0	0	LEU		38		9.706	-0.939	10.391
MOTA	351	CB	LEU	Α	38		7.315	-0.346	12.588
MOTA	352	CG		Α	38		5.246	-0.818	13.596
MOTA	353	CD1	LEU		38		1.998	0.073	13.489
MOTA	354	CD2	LEU	Α	38	-10	5.756	-0.787	15.046
MOTA	355	N	PRO	Α	39		0.455	0.321	12.108
MOTA	356	CA	PRO	Α	39	-2	1.460	1.053	11.339
MOTA	357	С	PRO	Α	39	-20	0.824	2.176	10.502
MOTA	358	0	PRO	Α	39	-19	9.654	2.519	10.685
MOTA	359	CB	PRO	Α	39	-22	2.430	1.607	12.389
MOTA	360	CG	PRO	Α	39	-2	1.531	1.845	13.600
MOTA	361	CD	PRO	Α	39	-20	0.539	0.686	13.517
MOTA	362	N	GLY	Α	40	-2	1.620	2.749	9.586
ATOM	363	H	GLY	Α	40	-23	2.569	2.417	9.493
ATOM	364	CA	GLY	Α	40	-2	1.203	3.811	8.678
ATOM	3,65	С	GLY	Α	40	-20	0.836	3.262	7.298
MOTA	366	0		Α	40	-2	1.405	2.268	6.845
ATOM	367	N		Α	41	-19	9.895	3.945	6.631
ATOM	368	Н		Α	41	-19	9.496	4.761	7.071
ATOM	369	CA		Α	41	-19	9.323	3.558	5.343
ATOM	370	С		Α	41	-1	7.798	3.757	5.371
ATOM	371	0		Α	41	-1	7.263	4.462	6.229
ATOM	372	CB	LYS	Α	41	-2	0.025	4.352	4.224
MOTA	373	CG		Α	41	-1:	9.703	3.839	2.810
ATOM	374	CD		Α	41		0.610	4.486	1.757
ATOM	375	CE	LYS	Α	41	-2	0.240	3.964	0.366
ATOM	376	NZ	LYS		41		1.097	4.552	-0.678
ATOM	377	1HZ	LYS		41		0.824	4.189	-1.580
ATOM	378	3HZ	LYS		41	-2	0.993	5.556	-0.673
ATOM	379	2HZ		Α	41	-2	2.061	4.311	-0.498
MOTA	380	N	TRP	Α	42		7.104	3.091	4.439
MOTA	381	Н	TRP	Α	42		7.620	2.548	3.762
ATOM	382	CA	TRP	Α	42	-1!	5.654	2.932	4.423
MOTA	383	C	TRP		42		5.105	2.852	2.994
ATOM	384	Ō	TRP	Α	42		5.845	2.702	2.021
ATOM	385	CB		Α	42		5.279	1.675	5.236
MOTA	386	CG		Α	42		6.214	0.514	5.094
MOTA	387	CD1		A	42		6.230	-0.402	4.101
ATOM	388	CD2	TRP		42		7.355	0.203	5.942
ATOM	389	NE1		Α	42		7.297	-1.260	4.281
MOTA	390	HE1	TRP		42		7.504	-2.015	3.644
MOTA	391	CE2	TRP		42		8.045	-0.914	5.389

Heller Ehrman White & McAuliffe, LLP
Sheet 8 of 33
Title: Use of Computationally Derived Protein Structures of Genetic
Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

Applicants: Ramnarayan et al.

•				
D	ate of Filing: 11	/10/00 At	torney Docket	No. 24737-1906C

MECEIVED

MAR 1 0 2003

TECH CENTER 1600/2900

A	ام.	Jate of Fill	iig: 11/10/00	Attorney	Docket No. 24/3/-1900C		
ATOMATO	392	CE3	TRP A	42	-17.896	0.792	7.103
ATOM	393	CZ2	TRP A	42	-19.224	-1.421	5.959
MOTA	394	CZ3	TRP A	42	-19.077	0.298	7.675
ATOM	395	CH2	TRP A	42	-19.741	-0.806	7.112
ATOM	396	N	LYS A	43	-13.771	2.932	
ATOM	397	Н					2.911
			LYS A	43	-13.260	3.058	3.773
ATOM	398	CA	LYS A	43	-12.951	2.802	1.713
ATOM	399	C	LYS A	43	-11.773	1.859	2.012
MOTA	400	0	LYS A	43	-11.359	1.760	3.166
MOTA	401	CB	LYS A	43	-12.451	4.193	1.270
MOTA	402	CG	LYS A	43	-11.724	4.979	2.383
MOTA	403	CD	LYS A	43	-11.060	6.267	1.873
MOTA	404	CE	LYS A	43	-9.784	6.001	1.065
ATOM	405	NZ	LYS A	43	-8.700	5.458	1.903
ATOM	40,6	1HZ	LYS A	43	-7.876	5.315	1.338
MOTA	407	3HZ	LYS A	43	-8.993	4.576	2.300
ATOM	408	2HZ	LYS A	43	-8.493	6.108	2.647
ATOM	409	N	PRO A	44	-11.177	1.197	1.004
ATOM	410	CA	PRO A	44	-9.947	0.435	1.187
ATOM	411	C	PRO A	44	-8.760	1.392	1.379
ATOM	412	Ö	PRO A	44	-8.711	2.434	0.720
ATOM	413	CB	PRO A	44	-9.808		
ATOM	414	CG				-0.393	-0.095
				44	-10.501	0.458	-1.159
ATOM	415	CD	PRO A	44	-11.630	1.132	-0.380
ATOM	416	N	LYS A	45	-7.790	1.030	2.240
ATOM	417	H	LYS A	45	-7.912	0.227	2.824
ATOM	418	CA	LYS A	45	-6.547	1.747	2.314
ATOM	419	C	LYS A	45	-5.493	0.683	2.507
ATOM	420	0	LYS A	45	-5.780	-0.470	2.869
ATOM	421	CB	LYS A	45	-6.594	2.699	3.524
ATOM	422	CG	LYS A	45	-5.463	3.744	3.609
ATOM	423	CD	LYS A	45	-5.340	4.289	5.052
ATOM	424	CE	LYS A	45	-4.262	5.383	5.204
ATOM	425	NZ	LYS A	45	-2.907	4.911	4.916
ATOM	426	1HZ	LYS A	45	-2.260	5.664	5.032
ATOM	427	3HZ	LYS A	45	-2.864	4.577	3.975
ATOM	428	2HZ	LYS A	45	-2.672	4.169	5.544
ATOM	429	N	MET A	46	-4.224	0.949	2.193
ATOM	430	H	MET A	46	-3.998	1.805	1.728
ATOM	431	CA	MET A	46	-3.157	0.027	2.509
ATOM	432	С	MET A	46	-2.417	0.701	3.627
ATOM	433	0	MET A	46	-2.259	1.937	3.634
MOTA	434	CB	MET A	46	-2.166	-0.088	1.379
ATOM	435	CG	MET A	46	-2.782	-0.366	0.053
ATOM	436	SD	MET A	46	-3.076	-2.108	-0.118
ATOM	437	CE	MET A	46	-1.417	-2.652	-0.186
ATOM	438	N	ILE A	47	-1.827	-0.016	4.586
ATOM	439	H	ILE A	47	-2.010	-0.997	4.655
ATOM	440	CA	ILE A	47	-0.922	0.586	5.539
ATOM	441	C	ILE A	47	0.233	-0.372	5.654
ATOM	442	0	ILE A	47	0.135	-1.584	5.356
ATOM	443	CB	ILE A	47	-1.550	0.836	6.923
ATOM	444	CG1	ILE A	47	-2.459	-0.301	7.354
ATOM	445	CG2	ILE A	47	-2.248	2.164	6.995
MOTA	446	CD1	ILE A	47	-1.724	-1.336	8.111
ATOM	447	N	GLY A	48	1.420	0.089	6.043

Heller Ehrman White & McAuliffe, LLP

							Ý	×-
/8	Evo		Heller Ehr		e & McAuliffe, LLP		M	ECEIVEL 18 1 0 2003 159 1600/2900
(188),	£	itle: Use of	f Computatio	Sheet 9 nally Deri	ived Protein Structures of Ge	netic	TEC	AJ VEN
MAR	0 3 2003	بي. Polyr	norphisms in	Pharmac	ogenomics for Drug Design Applications		CACEAU	2000
E Pierr		į. ≷Data of l		ants: Rar	nnarayan <i>et al.</i> orney Docket No. 24737-19060	~	-1//	Sp. 303
	. • 7	- Date of I	riing: 11/10/	o Allo	They Docket No. 24/3/-19000	-		1600/2
ATOM		Н	GLY A		1.509	1.040	6.339	⁹ 2900
ATOM	449	CA	GLY A	_	2.584	-0.753	6.048	
ATOM	450	C	GLY A		3.280	-0.657	7.570	
MOTA MOTA	451 452	N O	GLY A		3.050	0.190	8.265	
ATOM	453	Н	GLY A		4.197 4.375	-1.617 -2.308	7.603 6.902	
ATOM	454	CA	GLY A	49	4.936	-1.684	8.828	
MOTA	455	С	GLY A	49	6.105	-2.589	8.533	
ATOM	456	0	GLY A		6.482	-2.807	7.370	
ATOM	457	N	ILE A		6.761	-3.173	9.552	
ATOM ATOM	458	H	ILE A		6.552	-2.908	10.493	
ATOM	459 460	CA C	ILE A	50 50	7.772 7.148	-4.184 -5.317	9.344 8.566	
ATOM	461	0	ILE A	50	7.148 5.981	-5.317 -5.734	8.772	
ATOM	462	CB	ILE A	50	8.258	-4.686	10.722	
MOTA	463	CG1	ILE A	50	9.257	-3.714	11.382	
ATOM	464	CG2	ILE A	50	8.813	-6.134	10.693	
ATOM	465	CD1	ILE A	50	10.580	-3.498	10.628	
ATOM ATOM	466 467	N H	GLY A	51 51	7.847	-5.891 -5.569	7.596	
ATOM	468	CA	GLY A	51	8.772 7.265	-6.966	7.395 6.850	
ATOM	469	C	GLY A	51	6.519	-6.559	5.591	
ATOM	470	0	GLY A	51	6.430	-7.318	4.634	
ATOM	471	N	GLY A	52	5.886	-5.375	5.517	
ATOM	472	H	GLY A	52	5.990	-4.710	6.257	
ATOM ATOM	473 474	CA C	GLY A	52 52	5.108 3.832	-5.227	4.320	
ATOM	475	0	GLY A	52	3.654	-4.415 -3.624	4.516 5.467	
ATOM	476	N	PHE A	53	2.886	-4.518	3.559	
MOTA	477	H	PHE A	53	3.013	-5.161	2.804	
ATOM	478	CA	PHE A	53	1.653	-3.720	3.566	
ATOM	479	C	PHE A	53	0.494	-4.651	3.783	
ATOM ATOM	480 481	O	PHE A	53	0.448	-5.816	3.336	
ATOM	482	CB CG	PHE A	53 53	1.424 2.363	-3.022 -1.896	2.221 2.008	
ATOM	483		PHE A	53	3.615	-2.135	1.447	
MOTA	484		PHE A	53	2.011	-0.608	2.414	
MOTA	485		PHE A	53	4.514	-1.087	1.275	
ATOM	486		PHE A	53	2.925	0.446	2.237	
ATOM	487	CZ	PHE A	53	4.172	0.202	1.668	
ATOM ATOM	488 489	N H	ILE A	54 54	-0.554 -0.491	-4.173 -3.285	4.439 4.895	
ATOM	490	CA	ILE A	54	-1.789	-4.911	4.509	
ATOM	491	C	ILE A	54	-2.903	-3.995	4.033	
MOTA	492	0	ILE A	54	-2.751	-2.770	3.855	
ATOM	493	CB	ILE A	54	-2.034	-5.535	5.904	
ATOM ATOM	494	CG1 CG2	ILE A	54 54	-2.343	-4.481	6.988	
ATOM	495 496	CG2	ILE A	54 54	-0.799 -3.010	-6.318 -5.089	6.314 8.246	
ATOM	497	N	LYS A	55	-4.029	-4.577	3.560	
MOTA	498	H	LYS A	55	-4.084	-5.574	3.501	
MOTA	499	CA	LYS A	55	-5.177	-3.798	3.129	
MOTA	500	C	LYS A	55	-6.115	-3.726	4.300	
ATOM ATOM	501 502	O CB	LYS A LYS A	55 55	-6.422 -5.928	-4.707 -4.461	5.023	
ATOM	503	CG	LYS A	55	-6.853	-3.547	1.938 1.106	
					0.000		1.100	

TECH CENTER 1600/2900 LED Polymorphisms in Pharmacogenomics for Drug Design Use of Computationally Derived Protein Structures of Genetic ۴, MAR 0 3 2003 Applicants: Ramnarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C MOTA 504 -8.267 -3.332 CD LYS Α 55 EMT & 505 MOTA CE LYS Α 55 -9.303 -4.392 MOTA 506 NZ LYS Α 55 -10.521 -4.453 2.192 MOTA 507 1HZ LYS Α 55 -11.142-5.162 1.859 ATOM 508 3HZ LYS Α 55 -10.987 -3.569 2.180 MOTA 509 2HZ LYS A 55 -10.240 -4.669 3.127 ATOM 510 N VAL A 56 -6.599 -2.509 4.619 MOTA 511 Η VAL A 56 -6.337 -1.713 4.073 MOTA 512 CA VAL A 56 -7.494 -2.311 5.735 MOTA 513 C VAL A 56 -8.711 -1.584 5.236 MOTA 514 -8.767 0 VAL A 56 -1.029 4.114 MOTA 515 CB VAL A -6.759 56 -1.475 6.812 516 -5.569 MOTA VAL A -2.209 CG1 56 7.385 MOTA 517 CG2 VAL A 56 -6.287 -0.108 6.268 ATOM 518 ARG A 57 -9.784 Ν -1.539 6.005 MOTA 519 57 Η ARG A -9.835 -2.117 6.819 MOTA 520 CA ARG A 57 -10.855 -0.648 5.638 MOTA 521 C ARG A 57 -10.738 0.534 6.554 MOTA 522 0 ARG A 57 -10.558 0.449 7.789 MOTA 523 CB ARG 57 -12.219 -1.2715.835 MOTA 524 CG ARG A 57 -12.480 -2.452 4.952 MOTA 525 CD ARG A 57 -13.834 -3.051 5.195 MOTA 526 NE ARG 57 -14.122-4.137 4.270 **ATOM** 527 HE ARG 57 -13.442 -4.347 3.568 ATOM 528 CZARG 57 -15.243 -4.851 4.324 ATOM 529 NH1 ARG -16.175 57 -4.624 5.243 ATOM 530 2HH1 ARG 57 -16.044 5.920 -3.899 ATOM 531 1HH1 ARG 57 -17.008 Α -5.178 5.258 MOTA 532 -15.433 NH2 ARG 57 -5.822 3.434 ATOM 533 1HH2 ARG 57 -16.270 -6.368 3.461 **ATOM** -6.006 534 2HH2 ARG A 57 -14.7382.738 ATOM 535 GLN A 1.741 N 58 -10.881 6.036 ATOM 536 Η GLN A 58 -11.030 1.844 5.053 MOTA 537 CA GLN A 58 -10.8302.922 6.839 **ATOM** 538 C GLN A 58 -12.231 3.342 7.205 ATOM 539 О GLN A 58 -13.106 3.608 6.359 MOTA 540 CB GLN58 -10.2084.038 6.030 **ATOM** 541 GLN CG Α 58 -10.055 5.293 6.817 MOTA 542 CD GLN Α 58 -9.632 6.411 5.927 MOTA 543 OE1 GLNΑ 58 -10.379 7.334 5.662 **ATOM** 544 NE2 GLN A 58 -8.412 6.303 5.437 MOTA 545 1HE2 -8.047 GLN A 58 7.009 4.830 MOTA 546 2HE2 58 -7.843 GĽN A 5.514 5.668 8.509 MOTA 547 TYR A 59 -12.527 N 3.516 MOTA 548 Η TYR A 59 3.219 9.209 -11.877 ATOM 549 CA TYR A 59 -13.769 4.125 8.933 550 C MOTA TYR A 59 -13.411 5.452 9.565 551 0 ATOM TYR A 59 -12.416 5.592 10.310 ATOM 552 CB TYR A 59 -14.517 3.252 9.957 553 ATOM CG TYR A 59 -14.287 1.770 9.723 ATOM 554 CD1 TYR A 59 -13.007 1.269 9.457 555 TYR MOTA CD2 Α 59 -15.346 0.865 9.766 **ATOM** 556 TYR A CE1 59 -12.797 -0.092 9.240 557 ATOM CE₂ TYR A -0.494 9.551 59 -15.148 ATOM 558 CZTYR A 59 -13.873 9.287 -0.972ATOM 559 OH TYR A 59 -13.721 -2.3119.079

Heller Ehrman White & McAuliffe, LLP Sheet 10 of 33

FIG. 11 A-9

		Date of Filing: 11/10/00	Attorney Docket No. 24737-1906C
A STATE OF THE STA	\	رم د	

									175	(EIVED) 1600/2900
ED				Heller El			McAuliffe, LLP		MAN	Elva
	PE	JCN	tle: Use of (Computat	tionall	heet 11 o y Derived	l Protein Structures of Ger	netic	ECHO "	(0, (0)
10	0 0	ര്	Folymo	orpnisms a	nd Cli	nical App	nomics for Drug Design plications		CENTED	<003
' ('	MAR 0 3	2003	Bate of Fi	App ling: 11/1	0/00		arayan <i>et al.</i> Ey Docket No. 24737-1906C		~77	1600/02
A TOP	7	5,6°0	HH	TYR	λ	59	-14.606	-2.771	9 154	9/2900
ATON	VEMT & T	561	N	ASP		60	-14.151	6.542	9.300	
ATON		562	H	ASP		60	-14.954	6.464	8.709	
MOTA		563 564	CA C	ASP ASP		60 60	-13.822 -14.782	7.836 8.226	9.846 10.947	
ATON		565	Ö	ASP		60	-15.941	7.765	11.053	
ATON		566	CB	ASP		60	-13.861	8.942	8.769	
NOTA		567 568	CG OD1	ASP ASP		60 60	-12.735 -11.545	8.830 8.874	7.725 8.0 <i>7</i> 5	
ATON		569	OD1	ASP		60 60	-11.545	8.874	6.544	
NOTA	4	570	N	GLN	Α	61	-14.339	9.154	11.833	
ATON		571	H	GLN		61 61	-13.385	9.451	11.804	
MOTA		572573	CA C	GLN GLN		61 61	-15.151 -15.839	9.804 8.803	12.885 13.802	
ATON		574	Õ	GLN		61	-17.008	8.893	14.229	
ATON		575	CB	GLN		61	-16.097	10.908	12.338	
NOTA		576 577	CG CD	GLN GLN		61 61	-16.239 -16.910	12.133 13.366	13.262 12.629	
MOTA		578	OE1	GLN		61	-16.509	13.854	11.586	
MOTA		579	NE2	GLN		61	-17.937	13.887	13.292	
ATON		580	1HE2	GLN		61	-18.416	14.689	12.934	
MOTA		581 582	2HE2 N	GLN ILE		61 62	-18.239 -15.060	13.482 7.760	14.155 14.175	
ATON		583	H	ILE	Α	62	-14.111	7.714	13.862	
ATON		584	CA	ILE		62	-15.557	6.705	15.015	
MOTA MOTA		585 586	C O	ILE ILE		62 62	-15.251 -14.198	7.057 7.613	16.447 16.837	
ATOM	1	587	CB	ILE	Α	62	-14.829	5.397	14.653	
ATON		588	CG1	ILE		62	-15.253	4.966	13.258	
NOTA		589 590	CG2	ILE ILE		62 62	-15.106 -16.779	4.271 4.788	15.675 13.116	
ATON		591	N	LEU		63	-16.242	6.807	17.320	
MOTA		592	H	LEU		63	-17.089	6.383	17.000	
NOTA		593 594	CA C	LEU LEU		63 63	-16.127 -15.518	7.131 5.942	18.719 19.425	
MOTA		595	0	LEU		63	-15.869	4.753	19.269	
MOTA	1	596	CB	LEU	Α	63	-17.512	7.428	19.282	
NOTA		597 598	CG CD1	LEU		63 63	-17.660 -16.711	7.598 8.632	20.813 21.404	
ATOM		598	CD1	LEU		63	-16.711	7.963	21.404	
MOTA	1	600	N	ILE	Α	64	-14.511	6.211	20.219	
ATON		601	H	ILE		64	-14.185	7.153	20.305	
NOTA NOTA		602 603	CA C	ILE		64 64	-13.862 -13.529	5.178 5.744	20.972 22.325	
ATON		604	Ö	ILE		64	-13.396	6.959	22.602	
ATON		605	CB	ILE		64	-12.618	4.716	20.231	
1OTA		606 607	CG1 CG2	ILE ILE		64 64	-11.925 -11.690	3.573 5.865	20.949 19.950	
MOTA	1	608	CD1	ILE	Α	64	-10.905	2.888	20.062	
ATON		609	N	GLU		65	-13.396	4.815	23.294	
NOTA		610 611	H CA	GLU GLU		65 65	-13.443 -13.186	3.844 5.174	23.059 24.670	
MOTA		612	C	GLU		65	-12.024	4.360	25.165	
ATON		613	0	GLU		65	-11.943	3.112	25.056	
1OTA		614 615	CB CG	GLU GLU		65 65	-14.459 -14.739	4.823 5.610	25.405 26.646	
	-									

								.10	CEIVED 102003 1600/2900
LED	<u> </u>		Heller Eh			McAuliffe, LLP			
	b F not	e: Use of C	Computat	ionally	heet 12 of y Derived	Protein Structures of General	tic	Tra MAR	, VEN
\		Polymo	aı	ıd Cli	nical Ap _l	nomics for Drug Design plications		CHCE	02000
MA)	R 0 3 20C3	Date of Fil	App ing: 11/10	licant: 0/00		arayan <i>et al.</i> Ey Docket No. 24737-1906C		ENTER	
A THOSE	C 303,0	3				16 101	5 252	~/	1600/2000
ATOM	M181616	CD OE1	GLU GLU		65 65	-16.131 -17.090	5.353 5.785	27.115	~500
MOTA	618	OE2	GLU		65	-16.269	4.708	28.163	
ATOM	619	N	ILE		66	-10.971	5.008	25.610	
MOTA MOTA	620 621	H CA	ILE		66 66	-11.009 -9.762	6.002 4.317	25.717 25.947	
ATOM	622	C	ILE	A	66	-9.571	4.586	27.413	
MOTA	623	0	ILE	A	66	-9.422	5.732	27.880	
MOTA	624	CB	ILE		66	-8.600	4.907	25.126	
ATOM ATOM	625 626	CG1 CG2		A A	66 66	-8.838 -7.231	4.669 4.326	23.633 25.554	
ATOM	627	CD1		A	66	-8.951	5.982	22.856	
ATOM	628	N		A	67	-9.776	3.567	28.261	
MOTA MOTA	629 63.0	H CA	CYS CYS	A A	67 67	-9.989 -9.698	2.659 3.740	27.902 29.687	
ATOM	631	CA	CYS	A	67	-10.673	4.871	30.088	
MOTA	632	0	CYS	Α	67	-10.393	5.716	30.958	
MOTA	633	CB		A	67	-8.251	4.003	30.156	
MOTA MOTA	634 635	SG N	CYS GLY	A A	67 68	-7.170 -11.877	2.529 4.947	30.217 29.499	
MOTA	636	Н	GLY		68	-12.125	4.286	28.791	
MOTA	637	CA	GLY		68	-12.788	5.984	29.903	
MOTA	638 639	C	GLY GLY		68 68	-12.581	7.322 8.253	29.241	
ATOM ATOM	640	O N		A	69	-13.404 -11.504	7.545	29.376 28.471	
ATOM	641	Н	HIS	A	69	-10.817	6.827	28.360	
ATOM	642	CA	HIS	Α	69	-11.305	8.800	27.793	
MOTA MOTA	643 644	C O		A A	69 69	-11.838 -11.516	8.679 7.742	26.399 25.630	
MOTA	645	CB	HIS		69	-9.831	9.128	27.724	
MOTA	646	CG	HIS	Α	69	-9.276	9.286	29.081	
MOTA	647		HIS		69	-9.317	10.484	29.778	
ATOM ATOM	648 649		HIS HIS		69 69	-9.688 -8.723	11.347 8.352	29.436 29.912	
ATOM	650		HIS		69	-8.783	10.254	30.947	
ATOM	651		HIS		69	-8.405	8.990	31.091	
MOTA MOTA	652 653	N H	LYS LYS		70 70	-12.768 -13.084	9.561 10.284	25.973 26.588	
ATOM	654	CA	LYS		70	-13.325	9.492	24.646	
ATOM	655	C	LYS		70	-12.346	10.074	23.653	
ATOM	656	O	LYS		70 70	-11.587 -14.645	11.055 10.285	23.864 24.536	
MOTA MOTA	657 658	CB CG	LYS LYS		70	-15.837	9.703	25.330	
ATOM	659	CD	LYS		70	-17.105	10.593	25.286	
ATOM	660	CE	LYS		70	-18.293	10.011	26.092	
ATOM ATOM	661 662	NZ 1HZ	LYS LYS		70 70	-18.802 -19.563	8.702 8.406	25.608 26.185	
ATOM	663	3HZ	LYS		70	-18.069	8.023	25.650	
MOTA	664	2HZ	LYS	Α	70	-19.116	8.795	24.663	
ATOM ATOM	665 666	N H	ALA ALA		71 71	-12.323 -12.813	9.485 8.625	22.446 22.305	
ATOM	667	CA	ALA		71	-11.616	10.044	21.333	
MOTA	668	C	ALA	Α	71	-12.529	9.795	20.171	
ATOM	669	O	ALA		71	-13.351	8.850	20.146	
ATOM ATOM	670 671	CB N	ALA ILE		71 72	-10.292 -12.559	9.358 10.685	21.143 19.149	

Heller Ehrman White & McAuliffe, LLP

					RECEIVED WIER 1600/2900
100	Heller Ehrm	an White & McAuliffe, LLP			(C)
E JOS		Sheet 13 of 33	Constin	•	Ma SII
2 NO	Polymorphisms in 1	ally Derived Protein Structures of (Pharmacogenomics for Drug Design		ECL	"AP VA
MAR 0 3 2003		Clinical Applications Ints: Ramnarayan <i>et al</i> .		CA	() 20 \ C
to.	Date of Filing: 11/10/0		06C	~/ ₁	TEP 1003
ATOM 672	H ILE A	72 -12.006	11.517	19.200	1600/0
AIOM 075	CA ILE A	72 -13.376	10.474	17.963	2900
ATOM 674	C ILE A	72 -12.480	10.662 11.720	16.771 16.550	v
ATOM 675 ATOM 676	O ILE A	72 -11.858 72 -14.541	11.720	17.882	
ATOM 677	CG1 ILE A	72 -15.306	11.455	19.196	
ATOM 678	CG2 ILE A	72 -15.429	11.203	16.651	
ATOM 679	CD1 ILE A	72 -16.446	12.415	19.176	
ATOM 680	N GLY A	73 -12.252	9.633	15.958	
ATOM 681	H GLY A	73 -12.778	8.789 9.755	16.067 14.938	
ATOM 682 ATOM 683	CA GLY A C GLY A	73 -11.253 73 -11.283	9.755 8.554	14.936	
ATOM 684	O GLY A	73 -12.211	7.706	14.006	
ATOM 685	N THR A	74 -10.247	8.428	13.182	
ATOM 68.6	H THR A	74 -9.471	9.055	13.250	
ATOM 687	CA THR A	74 -10.201	7.416	12.158	
ATOM 688 ATOM 689	C THR A O THR A	74 -9.674 74 -8.670	6.134 6.034	12.760 13.497	
ATOM 689 ATOM 690	CB THR A	74 -9.298	7.895	11.048	
ATOM 691	OG1 THR A	74 -9.910	9.019	10.441	
ATOM 692	HG1 THR A	74 -9.335	9.362	9.698	
ATOM 693	CG2 THR A	74 -9.088	6.823	9.946	
ATOM 694	N VAL A	75 -10.318	5.027 5.114	12.327 11.669	
ATOM 695 ATOM 696	H VAL A CA VAL A	75 -11.066 75 -9.968	3.717	12.778	
ATOM 697	C VAL A	75 -9.906	2.843	11.551	
ATOM 698	O VAL A	75 -10.803	2.807	10.681	
ATOM 699	CB VAL A	75 -11.044	3.250	13.737	
ATOM 700	CG1 VAL A	75 -11.021	1.721	13.943	
ATOM 701 ATOM 702	CG2 VAL A N LEU A	75 -10.915 76 -8.768	4.019 2.139	15.034 11.366	
ATOM 702 ATOM 703	N LEU A H LEU A	76 -8.002	2.260	11.998	•
ATOM 704	CA LEU A	76 -8.566	1.183	10.276	
ATOM 705	C LEU A	76 -8.848	-0.211	10.808	
ATOM 706	O LEU A	76 -8.514	-0.582	11.958	
ATOM 707	CB LEU A	76 -7.103 76 -6.608	1.270 2.684	9.798 9.443	
ATOM 708 ATOM 709	CG LEU A CD1 LEU A	76 -5.151	2.645	9.087	
ATOM 710	CD2 LEU A	76 -7.396	3.302	8.296	
ATOM 711	N VAL A	77 -9.569	-1.062	10.042	
ATOM 712	H VAL A	77 -9.894	-0.766	9.144	
ATOM 713	CA VAL A	77 -9.899	-2.428 -3.412	10.485 9.482	
ATOM 714 ATOM 715	C VAL A O VAL A	77 -9.298 77 -9.450	-3.412	8.253	
ATOM 716	CB VAL A	77 -11.436	-2.592	10.506	
ATOM 717	CG1 VAL A	77 -11.830	-4.021	10.682	
ATOM 718	CG2 VAL A	77 -12.072	-1.765	11.634	
ATOM 719	N GLY A	78 -8.560	-4.402 -4.530	9.928	
ATOM 720 ATOM 721	H GLY A CA GLY A	78 -8.445 78 -7.930	-4.530 -5.285	10.913 8.987	į
ATOM 721 ATOM 722	CA GLY A	78 -7.228	-6.380	9.732	
ATOM 723	O GLY A	78 -7.292	-6.524	10.970	
ATOM 724	N PRO A	79 -6.512	-7.271	9.003	
ATOM 725	CA PRO A	79 -5.880	-8.467	9.602	
ATOM 726 ATOM 727	C PRO A O PRO A	79 -4.599 79 -3.449	-8.107 -8.489	10.340 10.032	

RECEIVED

MAR 1 0 2003

TECH CENTER 1600/2900 Heller Ehrman White & McAuliffe, LLP Sheet 14 of 33 : Use of Computationally Derived Protein Structures of Genetic Date of Filing: 11/10/00 Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications MAR 0 3 2003 Applicants: Ramnarayan et al. Attorney Docket No. 24737-1906C 79 -5.613 -9.379 EMT 8 1929 -8.416 7.210 -5.529 MOTA CG PRO A 79 -7.225 7.537 79 -6.415 **ATOM** 730 CD PRO A -7.304 11.408 -4.759 THR A 80 MOTA 731 Ν -5.664 -6.935 11.619 **ATOM** 732 Η THR A 80 -6.957 12.263 MOTA 80 -3.658 733 CA THR Α -8.075 13.308 -3.490 734 C THR Α 80 MOTA -8.642 13.857 -4.447 MOTA 735 0 THR Α 80 12.927 -5.572 MOTA 736 CB THR Α 80 -3.868 -5.303 -2.770 13.787 737 OG1 THR Α 80 MOTA 14.225 -2.889 -4.412 MOTA 738 HG1 THR Α 80 -5.464 13.678 MOTA 739 CG2 THR Α 80 -5.210 740 N PRO Α 81 -2.243 -8.496 13.589 MOTA -1.986 -9.476 14.660 **ATOM** 741 CA PRO Α 81 -8.952 16.001 PRO -2.499 MOTA 742 C Α 81 -9.720 PRO A 81 -2.944 16.866 743 O MOTA -9.549 -0.444 14.732 PRO Α 81 MOTA 744 CB0.069 -8.951 13.429 745 PRO 81 ATOM CG Α -1.029 -8.105 12.842 746 CD PRO A 81 MOTA -2.474 -7.621 16.276 747 VAL A 82 MOTA Ν -6.975 15.571 -2.180 748 VAL A 82 ATOM Η -7.091 17.591 -2.869 749 CA VAL A 82 ATOM -5.761 17.379 VAL A -3.605 82 MOTA 750 С -5.004 16.429 -3.349 MOTA 751 0 VAL A 82 18.443 -1.595 -6.858 MOTA 752 CB VAL A 82 -0.650 -5.824 17.803 753 CG1 VAL A 82 MOTA 19.890 -1.907 -6.418754 CG2 VAL 82 **ATOM** Α -5.371 18.260 -4.548 755 ASN Α 83 MOTA Ν -5.981 -4.810 19.007 Η ASN Α 83 MOTA 756 -4.067 18.123 -5.181 Α 83 757 CA ASN MOTA -3.019 18.565 -4.195 MOTA 758 C ASN 83 19.665 -3.064 83 -3.605 MOTA 759 0 ASN Α -6.436 -3.942 18.982 ASN 760 CB Α 83 MOTA -4.930 18.631 -7.502 ASN MOTA 761 CG Α 83 -5.049 17.488 -7.899 OD1 ASN 83 ATOM 762 Α 19.628 -7.980 -5.662 ND2 ASN 83 MOTA 763 Α -6.341 19.459 -8.695 MOTA 764 2HD2 ASN 83 20.557 -7.630 -5.541 MOTA 765 1HD2 ASN Α 83 17.770 -4.007 -1.951 MOTA 766 Ν ILE Α 84 -1.82716.962 -4.583ATOM 767 Η ILE Α 84 -0.954 18.032 -2.993 MOTA 768 CA ILE Α 84 0.387 18.114 769 C ILE Α 84 -3.679 MOTA -4.460 0.797 17.240 О ILE Α 84 MOTA 770 -2.021 -0.922 16.833 MOTA 771 CBILE Α 84 -2.15016.859 MOTA 772 CG1 ILE 84 -1.162 16.747 773 -1.2190.387 CG2 ILE Α 84 MOTA -2.360 15.579 -0.375 774 ILE 84 MOTA CD1 Α 1.155 19.203 -3.471 MOTA 775 ILEΑ 85 Ν 0.781 19.985 776 ILE Α 85 -2.972 MOTA Η 2.518 -3.951 19.281 ILE Α 85 777 CA MOTA -2.784 3.425 18.949 ILE Α 85 MOTA 778 C 19.663 3.515 ILE Α 85 -1.767 MOTA 779 0 2.825 20.676 CB ILE Α 85 -4.522780 ATOM -5.673 1.865 21.050 Α 85 CG1 ILEATOM 781 -5.000

FIG. 11 A-13

-6.828

85

85

782

783

ATOM

MOTA

CG2

ILE

CD1 ILE A

Α

4.274

1.808

20.716

20.059

Heller Ehrman White & McAuliffe, LLP

Heller Ehrman White & McAuliffe, LLP Sheet I Sof 33										PA-
ATOM 787 C GLY A 86 -1.831 6.393 17.704 ATOM 788 O GLY A 86 -2.760 6.864 18.390 ATOM 789 N ARG A 87 -0.881 7.229 17.230 ATOM 790 H ARG A 87 -0.204 6.890 16.577 ATOM 791 CA ARG A 87 -0.204 6.890 16.577 ATOM 792 C ARG A 87 -2.027 9.445 17.277 ATOM 793 O ARG A 87 -2.365 10.430 17.963 ATOM 794 CB ARG A 87 -2.365 10.430 17.963 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 796 CD ARG A 87 1.735 8.496 17.205 ATOM 797 NE ARG A 87 3.875 7.961 16.117 ATOM 798 HE ARG A 87 4.035 7.353 16.895 ATOM 799 CZ ARG A 87 4.660 7.893 15.035 ATOM 800 NH1 ARG A 87 4.660 7.893 15.035 ATOM 801 2HH1 ARG A 87 5.666 8.602 13.181 ATOM 802 1HH1 ARG A 87 5.666 8.602 13.181 ATOM 803 1HH2 ARG A 87 5.656 7.019 15.023 ATOM 804 1HH2 ARG A 87 5.266 8.602 13.181 ATOM 805 2HB2 ARG A 87 5.656 7.019 15.023 ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.780 9.120 16.214 ATOM 808 CA ASN A 88 -4.963 9.921 17.069 ATOM 809 C ASN A 88 -4.963 9.921 17.069 ATOM 810 C ASN A 88 -4.963 9.921 17.069 ATOM 810 C ASN A 88 -4.963 9.921 17.669 ATOM 811 CB ASN A 88 -4.963 9.921 17.669 ATOM 812 CG ASN A 88 -4.963 9.921 17.669 ATOM 815 2HD2 ASN A 88 -7.190 8.824 14.145 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -5.834 8.675 19.013 ATOM 819 CA LEU A 89 -5.834 9.632 12.283 ATOM 810 C LEU A 89 -5.834 9.632 12.283 ATOM 811 N LEU A 89 -5.834 9.632 12.283 ATOM 823 CG LEU A 89 -5.834 9.632 12.283 ATOM 824 CD LEU A 89 -5.834 9.632 12.283 ATOM 825 CD LEU A 89 -5.834 9.632 12.283 ATOM 826 N LEU A 89 -5.834 9.632 12.283 ATOM 827 H LEU A 90 -3.2842 9.057 21.664		_		Heller						CE
ATOM 787 C GLY A 86 -1.831 6.393 17.704 ATOM 788 O GLY A 86 -2.760 6.864 18.390 ATOM 789 N ARG A 87 -0.881 7.229 17.230 ATOM 790 H ARG A 87 -0.204 6.890 16.577 ATOM 791 CA ARG A 87 -0.204 6.890 16.577 ATOM 792 C ARG A 87 -2.027 9.445 17.277 ATOM 793 O ARG A 87 -2.365 10.430 17.963 ATOM 794 CB ARG A 87 -2.365 10.430 17.963 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 796 CD ARG A 87 1.735 8.496 17.205 ATOM 797 NE ARG A 87 3.875 7.961 16.117 ATOM 798 HE ARG A 87 4.035 7.353 16.895 ATOM 799 CZ ARG A 87 4.660 7.893 15.035 ATOM 800 NH1 ARG A 87 4.660 7.893 15.035 ATOM 801 2HH1 ARG A 87 5.666 8.602 13.181 ATOM 802 1HH1 ARG A 87 5.666 8.602 13.181 ATOM 803 1HH2 ARG A 87 5.656 7.019 15.023 ATOM 804 1HH2 ARG A 87 5.266 8.602 13.181 ATOM 805 2HB2 ARG A 87 5.656 7.019 15.023 ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.780 9.120 16.214 ATOM 808 CA ASN A 88 -4.963 9.921 17.069 ATOM 809 C ASN A 88 -4.963 9.921 17.069 ATOM 810 C ASN A 88 -4.963 9.921 17.069 ATOM 810 C ASN A 88 -4.963 9.921 17.669 ATOM 811 CB ASN A 88 -4.963 9.921 17.669 ATOM 812 CG ASN A 88 -4.963 9.921 17.669 ATOM 815 2HD2 ASN A 88 -7.190 8.824 14.145 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -5.834 8.675 19.013 ATOM 819 CA LEU A 89 -5.834 9.632 12.283 ATOM 810 C LEU A 89 -5.834 9.632 12.283 ATOM 811 N LEU A 89 -5.834 9.632 12.283 ATOM 823 CG LEU A 89 -5.834 9.632 12.283 ATOM 824 CD LEU A 89 -5.834 9.632 12.283 ATOM 825 CD LEU A 89 -5.834 9.632 12.283 ATOM 826 N LEU A 89 -5.834 9.632 12.283 ATOM 827 H LEU A 90 -3.2842 9.057 21.664	Lalle	PE	~ · ·		tationa	lly Deriv	ed Protein Structures of		750	MAR, VEN
ATOM 788 C GLY A 86 -1.831 6.393 17.704 ATOM 788 N ARG A 87 -0.881 7.229 17.230 ATOM 789 N ARG A 87 -0.881 7.229 17.230 ATOM 790 H ARG A 87 -0.204 6.890 16.577 ATOM 791 CA ARG A 87 -0.204 6.890 16.577 ATOM 792 C ARG A 87 -2.027 9.445 17.277 ATOM 793 O ARG A 87 -2.365 10.430 17.963 ATOM 794 CB ARG A 87 -2.365 10.430 17.963 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 796 CD ARG A 87 2.762 8.916 16.207 ATOM 797 NE ARG A 87 4.035 7.353 16.895 ATOM 798 HE ARG A 87 4.035 7.353 16.895 ATOM 799 CZ ARG A 87 4.660 7.893 15.035 ATOM 800 NH1 ARG A 87 4.660 7.893 15.035 ATOM 801 2HH1 ARG A 87 5.066 8.602 13.181 ATOM 802 1HH1 ARG A 87 5.066 8.602 13.181 ATOM 803 HH2 ARG A 87 5.656 7.019 15.023 ATOM 804 1HH2 ARG A 87 5.266 8.602 13.181 ATOM 805 2HB2 ARG A 87 5.656 7.019 15.023 ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.780 9.120 16.214 ATOM 808 CA ASN A 88 -4.015 9.860 15.890 ATOM 809 C ASN A 88 -4.963 9.921 17.069 ATOM 810 C ASN A 88 -4.963 9.921 17.069 ATOM 811 CB ASN A 88 -4.963 9.921 17.069 ATOM 812 CG ASN A 88 -4.963 9.921 17.069 ATOM 814 ND2 ASN A 88 -4.975 8.001 14.827 ATOM 815 2HD2 ASN A 88 -7.190 8.824 14.145 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -6.024 8.865 19.013 ATOM 818 N LEU A 89 -5.834 8.77 ATOM 823 CG LEU A 89 -5.834 8.77 ATOM 824 CD LEU A 89 -5.834 8.77 ATOM 825 CD LEU A 89 -5.834 8.77 ATOM 826 N LEU A 89 -6.840 7.959 19.100 18.088 ATOM 827 H LEU A 89 -6.840 7.599 19.100 18.088 ATOM 828 CA LEU A 89 -6.840 7.599 19.100 18.088 ATOM 826 N LEU A 89 -6.840 7.599 19.100 18.088 ATOM 826 N LEU A 89 -6.840 7.599 19.100 18.088 ATOM 826 N LEU A 89 -6.840 7.599 19.100 18.088 ATOM 826 N LEU A 89 -6.840 7.599 19.100 18.088 ATOM 826 N LEU A 89 -6.840 7.599 19.100 18.088 ATOM 826 N LEU A 89 -6.840 7.599 19.100 18.088 ATOM 827 H LEU A 90 -3.242 9.057 21.664	GEL		Polyi	•	and C	linical A	pplications	n	"ECHC	20200
ATOM 788 C GLY A 86 -1.831 6.393 17.704 ATOM 788 N ARG A 87 -0.881 7.229 17.230 ATOM 789 N ARG A 87 -0.881 7.229 17.230 ATOM 790 H ARG A 87 -0.204 6.890 16.577 ATOM 791 CA ARG A 87 -0.204 6.890 16.577 ATOM 792 C ARG A 87 -2.027 9.445 17.277 ATOM 793 O ARG A 87 -2.365 10.430 17.963 ATOM 794 CB ARG A 87 -2.365 10.430 17.963 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 796 CD ARG A 87 2.762 8.916 16.207 ATOM 797 NE ARG A 87 4.035 7.353 16.895 ATOM 798 HE ARG A 87 4.035 7.353 16.895 ATOM 799 CZ ARG A 87 4.660 7.893 15.035 ATOM 800 NH1 ARG A 87 4.660 7.893 15.035 ATOM 801 2HH1 ARG A 87 5.066 8.602 13.181 ATOM 802 1HH1 ARG A 87 5.066 8.602 13.181 ATOM 803 HH2 ARG A 87 5.656 7.019 15.023 ATOM 804 1HH2 ARG A 87 5.266 8.602 13.181 ATOM 805 2HB2 ARG A 87 5.656 7.019 15.023 ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.780 9.120 16.214 ATOM 808 CA ASN A 88 -4.015 9.860 15.890 ATOM 809 C ASN A 88 -4.963 9.921 17.069 ATOM 810 C ASN A 88 -4.963 9.921 17.069 ATOM 811 CB ASN A 88 -4.963 9.921 17.069 ATOM 812 CG ASN A 88 -4.963 9.921 17.069 ATOM 814 ND2 ASN A 88 -4.975 8.001 14.827 ATOM 815 2HD2 ASN A 88 -7.190 8.824 14.145 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -6.024 8.865 19.013 ATOM 818 N LEU A 89 -5.834 8.77 ATOM 823 CG LEU A 89 -5.834 8.77 ATOM 824 CD LEU A 89 -5.834 8.77 ATOM 825 CD LEU A 89 -5.834 8.77 ATOM 826 N LEU A 89 -6.840 7.959 19.100 18.088 ATOM 827 H LEU A 89 -6.840 7.599 19.100 18.088 ATOM 828 CA LEU A 89 -6.840 7.599 19.100 18.088 ATOM 826 N LEU A 89 -6.840 7.599 19.100 18.088 ATOM 826 N LEU A 89 -6.840 7.599 19.100 18.088 ATOM 826 N LEU A 89 -6.840 7.599 19.100 18.088 ATOM 826 N LEU A 89 -6.840 7.599 19.100 18.088 ATOM 826 N LEU A 89 -6.840 7.599 19.100 18.088 ATOM 826 N LEU A 89 -6.840 7.599 19.100 18.088 ATOM 827 H LEU A 90 -3.242 9.057 21.664	ilde /	MAR 0 3 201	Dage of	A Filing: 11	/10/00	its: Ram Attor		06C		WIER .
ATOM 787 C GLY A 86 -1.831 6.393 17.704 ATOM 788 O GLY A 86 -2.760 6.864 18.390 ATOM 789 N ARG A 87 -0.881 7.229 17.230 ATOM 790 H ARG A 87 -0.204 6.890 16.577 ATOM 791 CA ARG A 87 -0.204 6.890 16.577 ATOM 792 C ARG A 87 -2.027 9.445 17.277 ATOM 793 O ARG A 87 -2.365 10.430 17.963 ATOM 794 CB ARG A 87 -2.365 10.430 17.963 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 796 CD ARG A 87 1.735 8.496 17.205 ATOM 797 NE ARG A 87 3.875 7.961 16.117 ATOM 798 HE ARG A 87 4.035 7.353 16.895 ATOM 799 CZ ARG A 87 4.660 7.893 15.035 ATOM 800 NH1 ARG A 87 4.660 7.893 15.035 ATOM 801 2HH1 ARG A 87 5.666 8.602 13.181 ATOM 802 1HH1 ARG A 87 5.666 8.602 13.181 ATOM 803 1HH2 ARG A 87 5.656 7.019 15.023 ATOM 804 1HH2 ARG A 87 5.266 8.602 13.181 ATOM 805 2HB2 ARG A 87 5.656 7.019 15.023 ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.780 9.120 16.214 ATOM 808 CA ASN A 88 -4.963 9.921 17.069 ATOM 809 C ASN A 88 -4.963 9.921 17.069 ATOM 810 C ASN A 88 -4.963 9.921 17.069 ATOM 810 C ASN A 88 -4.963 9.921 17.669 ATOM 811 CB ASN A 88 -4.963 9.921 17.669 ATOM 812 CG ASN A 88 -4.963 9.921 17.669 ATOM 815 2HD2 ASN A 88 -7.190 8.824 14.145 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -5.834 8.675 19.013 ATOM 819 CA LEU A 89 -5.834 9.632 12.283 ATOM 810 C LEU A 89 -5.834 9.632 12.283 ATOM 811 N LEU A 89 -5.834 9.632 12.283 ATOM 823 CG LEU A 89 -5.834 9.632 12.283 ATOM 824 CD LEU A 89 -5.834 9.632 12.283 ATOM 825 CD LEU A 89 -5.834 9.632 12.283 ATOM 826 N LEU A 89 -5.834 9.632 12.283 ATOM 827 H LEU A 90 -3.2842 9.057 21.664	34°		م د	GT 11	_		0.000	4 100	17 700	1600/202
ATOM 787 C GLY A 86 -1.831 6.393 17.704 ATOM 788 O GLY A 86 -2.760 6.864 18.390 ATOM 789 N ARG A 87 -0.881 7.229 17.230 ATOM 790 H ARG A 87 -0.204 6.890 16.577 ATOM 791 CA ARG A 87 -0.204 6.890 16.577 ATOM 792 C ARG A 87 -2.027 9.445 17.277 ATOM 793 O ARG A 87 -2.365 10.430 17.963 ATOM 794 CB ARG A 87 -2.365 10.430 17.963 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 796 CD ARG A 87 1.735 8.496 17.205 ATOM 797 NE ARG A 87 3.875 7.961 16.117 ATOM 798 HE ARG A 87 4.035 7.353 16.895 ATOM 799 CZ ARG A 87 4.660 7.893 15.035 ATOM 800 NH1 ARG A 87 4.660 7.893 15.035 ATOM 801 2HH1 ARG A 87 5.666 8.602 13.181 ATOM 802 1HH1 ARG A 87 5.666 8.602 13.181 ATOM 803 1HH2 ARG A 87 5.656 7.019 15.023 ATOM 804 1HH2 ARG A 87 5.266 8.602 13.181 ATOM 805 2HB2 ARG A 87 5.656 7.019 15.023 ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.780 9.120 16.214 ATOM 808 CA ASN A 88 -4.963 9.921 17.069 ATOM 809 C ASN A 88 -4.963 9.921 17.069 ATOM 810 C ASN A 88 -4.963 9.921 17.069 ATOM 810 C ASN A 88 -4.963 9.921 17.669 ATOM 811 CB ASN A 88 -4.963 9.921 17.669 ATOM 812 CG ASN A 88 -4.963 9.921 17.669 ATOM 815 2HD2 ASN A 88 -7.190 8.824 14.145 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -5.834 8.675 19.013 ATOM 819 CA LEU A 89 -5.834 9.632 12.283 ATOM 810 C LEU A 89 -5.834 9.632 12.283 ATOM 811 N LEU A 89 -5.834 9.632 12.283 ATOM 823 CG LEU A 89 -5.834 9.632 12.283 ATOM 824 CD LEU A 89 -5.834 9.632 12.283 ATOM 825 CD LEU A 89 -5.834 9.632 12.283 ATOM 826 N LEU A 89 -5.834 9.632 12.283 ATOM 827 H LEU A 90 -3.2842 9.057 21.664		784 2754709EX	ું.N						17.792	" 29 00
ATOM 787 C GLY A 86 -1.831 6.393 17.704 ATOM 788 O GLY A 86 -2.760 6.864 18.390 ATOM 789 N ARG A 87 -0.881 7.229 17.230 ATOM 790 H ARG A 87 -0.204 6.890 16.577 ATOM 791 CA ARG A 87 -0.204 6.890 16.577 ATOM 792 C ARG A 87 -2.027 9.445 17.277 ATOM 793 O ARG A 87 -2.365 10.430 17.963 ATOM 794 CB ARG A 87 -2.365 10.430 17.963 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 796 CD ARG A 87 1.735 8.496 17.205 ATOM 797 NE ARG A 87 3.875 7.961 16.117 ATOM 798 HE ARG A 87 4.035 7.353 16.895 ATOM 799 CZ ARG A 87 4.660 7.893 15.035 ATOM 800 NH1 ARG A 87 4.660 7.893 15.035 ATOM 801 2HH1 ARG A 87 5.666 8.602 13.181 ATOM 802 1HH1 ARG A 87 5.666 8.602 13.181 ATOM 803 1HH2 ARG A 87 5.656 7.019 15.023 ATOM 804 1HH2 ARG A 87 5.266 8.602 13.181 ATOM 805 2HB2 ARG A 87 5.656 7.019 15.023 ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.780 9.120 16.214 ATOM 808 CA ASN A 88 -4.963 9.921 17.069 ATOM 809 C ASN A 88 -4.963 9.921 17.069 ATOM 810 C ASN A 88 -4.963 9.921 17.069 ATOM 810 C ASN A 88 -4.963 9.921 17.669 ATOM 811 CB ASN A 88 -4.963 9.921 17.669 ATOM 812 CG ASN A 88 -4.963 9.921 17.669 ATOM 815 2HD2 ASN A 88 -7.190 8.824 14.145 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -5.834 8.675 19.013 ATOM 819 CA LEU A 89 -5.834 9.632 12.283 ATOM 810 C LEU A 89 -5.834 9.632 12.283 ATOM 811 N LEU A 89 -5.834 9.632 12.283 ATOM 823 CG LEU A 89 -5.834 9.632 12.283 ATOM 824 CD LEU A 89 -5.834 9.632 12.283 ATOM 825 CD LEU A 89 -5.834 9.632 12.283 ATOM 826 N LEU A 89 -5.834 9.632 12.283 ATOM 827 H LEU A 90 -3.2842 9.057 21.664		786	CA						17.351	
ATOM 789 N ARG A 87 -0.881 7.229 17.230 ATOM 790 H ARG A 87 -0.204 6.890 16.577 ATOM 791 CA ARG A 87 -0.207 9.445 17.277 ATOM 792 C ARG A 87 -2.365 10.430 17.263 ATOM 793 O ARG A 87 -2.365 10.430 17.963 ATOM 794 CB ARG A 87 -2.365 10.430 17.963 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 796 CD ARG A 87 2.762 8.916 16.207 ATOM 797 NE ARG A 87 3.875 7.961 16.117 ATOM 798 HE ARG A 87 4.035 7.353 16.895 ATOM 799 CZ ARG A 87 4.660 7.893 15.035 ATOM 800 NH1 ARG A 87 4.463 8.675 13.975 ATOM 801 2HH1 ARG A 87 4.463 8.675 13.975 ATOM 802 1HH1 ARG A 87 5.656 7.019 15.023 ATOM 804 1H42 ARG A 87 5.656 7.019 15.023 ATOM 804 1H42 ARG A 87 6.254 6.953 14.224 ATOM 805 PHA ASN A 88 -2.780 9.120 16.214 ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.780 9.120 16.214 ATOM 808 CA ASN A 88 -4.963 9.921 17.069 ATOM 810 CG ASN A 88 -4.963 9.921 17.069 ATOM 811 CB ASN A 88 -4.963 9.921 17.069 ATOM 812 CG ASN A 88 -4.963 9.921 17.069 ATOM 815 2HD2 ASN A 88 -7.190 8.824 14.145 ATOM 816 HD2 ASN A 88 -7.190 8.824 14.155 ATOM 817 N LEU A 89 -5.130 8.824 14.155 ATOM 818 C A LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -5.834 9.632 21.283 ATOM 823 CG LEU A 89 -6.840 7.355 17.957 ATOM 826 N LEU A 89 -6.840 7.759 17.957 ATOM 826 N LEU A 89 -6.840 7.759 17.957 ATOM 826 N LEU A 89 -6.840 7.759 7.355 17.957 ATOM 827 H LEU A 89 -8.369 5.980 18.088 ATOM 822 CB LEU A 89 -6.840 7.759 19.140 ATOM 824 CD1 LEU A 89 -6.840 7.759 17.355 17.957 ATOM 825 CD LEU A 89 -6.840 7.759 19.140 ATOM 826 N LEU A 89 -6.840 7.759 19.140 ATOM 827 H LEU A 90 -3.525 8.274 19.674							-1.831	6.393	17.704	
ATOM 790 H ARG A 87 -0.204 6.890 16.577 ATOM 791 CA ARG A 87 -0.810 8.623 17.643 ATOM 792 C ARG A 87 -2.027 9.445 17.277 ATOM 793 O ARG A 87 -2.365 10.430 17.963 ATOM 794 CB ARG A 87 -2.365 10.430 17.963 ATOM 795 CG ARG A 87 -2.365 10.430 17.963 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 796 CD ARG A 87 2.762 8.916 16.207 ATOM 797 NE ARG A 87 3.875 7.961 16.117 ATOM 798 HE ARG A 87 4.660 7.893 15.035 ATOM 799 CZ ARG A 87 4.660 7.893 15.035 ATOM 800 NH1 ARG A 87 4.463 8.675 13.975 ATOM 801 2HH1 ARG A 87 3.712 9.335 13.974 ATOM 802 1HH1 ARG A 87 5.666 8.602 13.181 ATOM 803 NH2 ARG A 87 5.666 7.019 15.023 ATOM 804 1HH2 ARG A 87 5.656 7.019 15.023 ATOM 805 2HH2 ARG A 87 5.810 6.426 15.813 ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.504 8.361 15.625 ATOM 808 CA ASN A 88 -4.963 9.921 17.069 ATOM 808 CA ASN A 88 -4.963 9.921 17.069 ATOM 810 CA ASN A 88 -4.963 9.921 17.069 ATOM 811 CB ASN A 88 -4.963 9.921 17.069 ATOM 812 CG ASN A 88 -4.963 9.921 17.069 ATOM 810 CA ASN A 88 -5.613 10.954 17.345 ATOM 811 CB ASN A 88 -5.613 10.954 17.345 ATOM 812 CG ASN A 88 -7.190 8.824 14.145 ATOM 816 1HD2 ASN A 88 -7.306 7.169 14.622 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -6.624 8.865 19.013 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 820 C LEU A 89 -6.024 8.865 19.013 ATOM 821 C LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.840 7.559 19.100 ATOM 823 CG LEU A 89 -6.840 7.559 19.100 ATOM 824 CD1 LEU A 89 -6.840 7.559 19.100 ATOM 825 CD LEU A 89 -6.840 7.559 19.100 ATOM 826 N LEU A 89 -6.840 7.559 19.140 ATOM 826 N LEU A 89 -6.840 7.559 19.140 ATOM 826 N LEU A 89 -6.840 7.559 19.140 ATOM 826 N LEU A 89 -6.840 7.559 19.140 ATOM 826 N LEU A 89 -6.840 7.559 19.140 ATOM 826 N LEU A 89 -6.840 7.559 19.140 ATOM 826 N LEU A 89 -6.824 29.057 21.664										
ATOM 791 CA ARG A 87 -0.810 8.623 17.643 ATOM 792 C ARG A 87 -2.027 9.445 17.277 ATOM 793 O ARG A 87 -2.027 9.445 17.277 ATOM 794 CB ARG A 87 -2.365 10.430 17.963 ATOM 794 CB ARG A 87 0.450 9.275 17.057 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 796 CD ARG A 87 1.735 8.496 17.205 ATOM 797 NE ARG A 87 2.762 8.916 16.207 ATOM 797 NE ARG A 87 3.875 7.961 16.117 ATOM 798 HE ARG A 87 4.035 7.353 16.895 ATOM 799 CZ ARG A 87 4.660 7.893 15.035 ATOM 800 NH1 ARG A 87 4.463 8.675 13.975 ATOM 801 2HH1 ARG A 87 3.712 9.335 13.974 ATOM 802 1HH1 ARG A 87 5.066 8.602 13.181 ATOM 803 NH2 ARG A 87 5.656 7.019 15.023 ATOM 804 1HH2 ARG A 87 5.656 7.019 15.023 ATOM 805 2HH2 ARG A 87 5.856 7.019 15.023 ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.504 8.361 15.625 ATOM 808 CA ASN A 88 -4.963 9.921 17.069 ATOM 800 C ASN A 88 -4.963 9.921 17.069 ATOM 810 O ASN A 88 -4.963 9.921 17.069 ATOM 811 CB ASN A 88 -4.963 9.921 17.069 ATOM 812 CG ASN A 88 -4.963 9.921 17.069 ATOM 813 OD1 ASN A 88 -5.475 8.001 14.827 ATOM 810 C ASN A 88 -5.475 8.001 14.827 ATOM 811 CB ASN A 88 -5.475 8.001 14.827 ATOM 812 CG ASN A 88 -7.306 7.169 14.602 ATOM 813 OD1 ASN A 88 -7.306 7.169 14.602 ATOM 816 1D2 ASN A 88 -7.306 7.169 14.602 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -6.024 8.865 19.013 ATOM 819 CA LEU A 89 -5.275 9.091 20.309 ATOM 820 C LEU A 89 -5.834 9.632 21.283 ATOM 821 O LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.024 8.865 19.013 ATOM 824 CD1 LEU A 89 -6.024 8.865 19.013 ATOM 825 CD2 LEU A 89 -6.040 7.592 19.140 ATOM 826 N LEU A 89 -6.024 8.865 19.013 ATOM 826 N LEU A 89 -7.759 7.355 17.957 ATOM 826 N LEU A 89 -7.759 7.355 17.957 ATOM 826 N LEU A 89 -8.817 8.457 17.801 ATOM 826 N LEU A 89 -8.817 8.457 17.801 ATOM 826 N LEU A 90 -3.525 8.274 19.674 ATOM 827 H LEU A 90 -3.525 8.274 19.674										
ATOM 792 C ARG A 87 -2.027 9.445 17.277 ATOM 793 O ARG A 87 -2.365 10.430 17.963 ATOM 794 CB ARG A 87 0.450 9.275 17.057 ATOM 795 CG ARG A 87 1.735 8.496 17.205 ATOM 796 CD ARG A 87 2.762 8.916 16.207 ATOM 797 NE ARG A 87 3.875 7.961 16.117 ATOM 798 HE ARG A 87 3.875 7.961 16.117 ATOM 799 CZ ARG A 87 4.660 7.893 15.035 ATOM 800 NH1 ARG A 87 4.660 7.893 15.035 ATOM 801 2HH1 ARG A 87 3.712 9.335 13.975 ATOM 802 1HH1 ARG A 87 5.666 8.602 13.181 ATOM 803 NH2 ARG A 87 5.666 7.019 15.023 ATOM 804 1HH2 ARG A 87 5.666 7.019 15.023 ATOM 805 2HH2 ARG A 87 6.254 6.953 14.224 ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.780 9.120 16.214 ATOM 808 CA ASN A 88 -4.015 9.860 15.890 ATOM 809 C ASN A 88 -4.015 9.860 15.890 ATOM 811 CB ASN A 88 -4.712 9.315 14.617 ATOM 812 CG ASN A 88 -4.712 9.315 14.617 ATOM 813 OD1 ASN A 88 -4.712 9.315 14.617 ATOM 814 ND2 ASN A 88 -4.712 9.315 14.617 ATOM 815 2HD2 ASN A 88 -7.306 7.169 14.506 ATOM 816 1HD2 ASN A 88 -7.306 7.169 14.506 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -5.275 9.091 20.309 ATOM 819 C LEU A 89 -6.024 8.865 17.957 ATOM 822 C LEU A 89 -6.024 8.865 17.957 ATOM 823 CG LEU A 89 -6.836 5.935 17.957 ATOM 824 CD1 LEU A 89 -6.836 5.935 17.957 ATOM 825 CD2 LEU A 89 -6.3283 8.745 20.428 ATOM 825 CD2 LEU A 89 -6.3398 8.745 20.428 ATOM 827 H LEU A 90 -3.525 8.274 19.6674 ATOM 828 CA LEU A 90 -3.525 8.274 19.6674										
ATOM 794 CB ARG A 87										
ATOM 795 CG ARC A 87 1.735 8.496 17.205 ATOM 796 CD ARC A 87 2.762 8.916 16.207 ATOM 797 NE ARG A 87 3.875 7.961 16.117 ATOM 798 HE ARG A 87 4.035 7.353 16.895 ATOM 799 CZ ARC A 87 4.660 7.893 15.035 ATOM 800 NH1 ARG A 87 4.463 8.675 13.975 ATOM 801 2HH1 ARG A 87 3.712 9.335 13.974 ATOM 802 1HH1 ARG A 87 5.066 8.602 13.181 ATOM 803 NH2 ARG A 87 5.666 7.019 15.023 ATOM 804 1HH2 ARG A 87 5.666 7.019 15.023 ATOM 805 2HH2 ARG A 87 5.810 6.426 15.813 ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.780 9.120 16.214 ATOM 808 CA ASN A 88 -4.015 9.860 15.890 ATOM 810 O ASN A 88 -4.015 9.860 15.890 ATOM 810 C ASN A 88 -4.712 9.315 14.617 ATOM 811 CB ASN A 88 -4.712 9.315 14.617 ATOM 812 CG ASN A 88 -4.722 6.996 15.245 ATOM 813 OD1 ASN A 88 -4.722 6.996 15.245 ATOM 814 ND2 ASN A 88 -7.306 7.169 14.622 ATOM 815 2HD2 ASN A 88 -7.306 7.169 14.622 ATOM 816 1HD2 ASN A 88 -7.306 7.169 14.622 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 819 CA LEU A 89 -6.024 8.865 19.013 ATOM 819 CA LEU A 89 -6.840 7.592 19.140 ATOM 820 C LEU A 89 -5.275 9.091 20.309 ATOM 821 CG LEU A 89 -6.840 7.592 19.140 ATOM 822 CB LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -7.759 7.355 17.957 ATOM 825 CD2 LEU A 89 -8.817 8.457 17.801 ATOM 826 N LEU A 90 -3.525 8.274 19.674 ATOM 827 H LEU A 90 -3.524 9.057 21.664										
ATOM 796 CD ARG A 87 2.762 8.916 16.207 ATOM 797 NE ARG A 87 3.875 7.961 16.117 ATOM 798 HE ARG A 87 4.035 7.353 16.895 ATOM 799 CZ ARG A 87 4.660 7.893 15.035 ATOM 800 NH1 ARG A 87 4.463 8.675 13.975 ATOM 801 2HH1 ARG A 87 3.712 9.335 13.974 ATOM 802 1HH1 ARG A 87 5.066 8.602 13.181 ATOM 803 NH2 ARG A 87 5.066 8.602 13.181 ATOM 804 1HH2 ARG A 87 5.656 7.019 15.023 ATOM 805 2HH2 ARG A 87 5.810 6.426 15.813 ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.504 8.361 15.625 ATOM 808 CA ASN A 88 -4.963 9.921 17.069 ATOM 809 C ASN A 88 -4.963 9.921 17.069 ATOM 810 C ASN A 88 -4.963 9.921 17.069 ATOM 811 CB ASN A 88 -4.963 9.921 17.069 ATOM 812 CG ASN A 88 -4.922 6.996 15.245 ATOM 813 OD1 ASN A 88 -4.922 6.996 15.245 ATOM 814 ND2 ASN A 88 -6.758 7.998 14.506 ATOM 815 2HD2 ASN A 88 -7.306 7.169 14.622 ATOM 816 1HD2 ASN A 88 -7.306 7.169 14.622 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -6.024 8.865 19.013 ATOM 820 C LEU A 89 -5.834 9.632 21.283 ATOM 820 C LEU A 89 -5.834 9.632 21.283 ATOM 821 CG LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.867 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.817 8.457 17.801 ATOM 826 N LEU A 90 -3.983 8.745 20.428 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.524 9.057 21.664										
ATOM 797 NE ARG A 87										
ATOM 800 NH1 ARG A 87										
ATOM 800 NH1 ARG A 87 4.463 8.675 13.975 ATOM 801 2HH1 ARG A 87 3.712 9.335 13.974 ATOM 802 1HH1 ARG A 87 5.066 8.602 13.181 ATOM 803 NH2 ARG A 87 5.065 7.019 15.023 ATOM 804 1HH2 ARG A 87 6.254 6.953 14.224 ATOM 805 2HH2 ARG A 87 5.810 6.426 15.813 ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.780 9.120 16.214 ATOM 808 CA ASN A 88 -4.015 9.860 15.890 ATOM 809 C ASN A 88 -4.963 9.921 17.069 ATOM 810 O ASN A 88 -4.963 9.921 17.069 ATOM 811 CB ASN A 88 -4.712 9.315 14.617 ATOM 812 CG ASN A 88 -4.712 9.315 14.617 ATOM 813 OD1 ASN A 88 -4.922 6.996 15.245 ATOM 814 ND2 ASN A 88 -4.922 6.996 15.245 ATOM 815 2HD2 ASN A 88 -7.306 7.169 14.506 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -5.633 8.002 17.640 ATOM 819 CA LEU A 89 -5.834 9.632 21.283 ATOM 820 C LEU A 89 -5.834 9.632 21.283 ATOM 821 CG LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.824 9.632 21.283 ATOM 823 CG LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.369 5.980 18.088 ATOM 827 H LEU A 90 -3.242 9.057 21.664										
ATOM 801 2HH1 ARG A 87										
ATOM 802 1HH1 ARG A 87 5.066 8.602 13.181 ATOM 803 NH2 ARG A 87 5.656 7.019 15.023 ATOM 804 1HH2 ARG A 87 6.254 6.953 14.224 ATOM 805 2HH2 ARG A 87 6.254 6.953 14.224 ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.504 8.361 15.625 ATOM 808 CA ASN A 88 -4.015 9.860 15.890 ATOM 809 C ASN A 88 -4.963 9.921 17.069 ATOM 810 O ASN A 88 -5.613 10.954 17.345 ATOM 811 CB ASN A 88 -4.712 9.315 14.617 ATOM 812 CG ASN A 88 -5.475 8.001 14.827 ATOM 813 OD1 ASN A 88 -4.922 6.996 15.245 ATOM 814 ND2 ASN A 88 -6.758 7.998 14.506 ATOM 815 2HD2 ASN A 88 -7.306 7.169 14.622 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -6.024 8.865 19.013 ATOM 820 C LEU A 89 -5.834 9.632 21.283 ATOM 821 O LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.840 7.599 19.140 ATOM 823 CG LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.369 5.980 18.088 ATOM 826 N LEU A 90 -3.983 8.745 20.428 ATOM 827 H LEU A 90 -3.242 9.057 21.664										
ATOM 803 NH2 ARG A 87 5.656 7.019 15.023 ATOM 804 1HH2 ARG A 87 6.254 6.953 14.224 ATOM 805 2HH2 ARG A 87 5.810 6.426 15.813 ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.504 8.361 15.625 ATOM 808 CA ASN A 88 -4.015 9.860 15.890 ATOM 809 C ASN A 88 -4.963 9.921 17.069 ATOM 810 O ASN A 88 -5.613 10.954 17.345 ATOM 811 CB ASN A 88 -4.712 9.315 14.617 ATOM 812 CG ASN A 88 -4.712 9.315 14.617 ATOM 813 OD1 ASN A 88 -4.922 6.996 15.245 ATOM 814 ND2 ASN A 88 -6.758 7.998 14.506 ATOM 815 2HD2 ASN A 88 -7.306 7.169 14.622 ATOM 816 1HD2 ASN A 88 -7.306 7.169 14.622 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -4.637 8.002 17.640 ATOM 819 CA LEU A 89 -6.024 8.865 19.013 ATOM 820 C LEU A 89 -5.834 9.632 21.283 ATOM 821 O LEU A 89 -6.840 7.592 19.140 ATOM 822 CB LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD LEU A 89 -8.817 8.457 17.801 ATOM 826 N LEU A 90 -3.525 8.274 19.674 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.525 8.274 19.664										
ATOM 805 2HH2 ARG A 87 5.810 6.426 15.813 ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.504 8.361 15.625 ATOM 808 CA ASN A 88 -4.015 9.860 15.890 ATOM 809 C ASN A 88 -4.963 9.921 17.069 ATOM 810 O ASN A 88 -5.613 10.954 17.345 ATOM 811 CB ASN A 88 -4.712 9.315 14.617 ATOM 812 CG ASN A 88 -5.475 8.001 14.827 ATOM 813 OD1 ASN A 88 -4.922 6.996 15.245 ATOM 814 ND2 ASN A 88 -6.758 7.998 14.506 ATOM 815 2HD2 ASN A 88 -7.306 7.169 14.622 ATOM 816 1HD2 ASN A 88 -7.306 7.169 14.622 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -4.637 8.002 17.640 ATOM 819 CA LEU A 89 -6.024 8.865 19.013 ATOM 820 C LEU A 89 -5.834 9.632 21.283 ATOM 821 O LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.840 7.592 19.140 ATOM 823 CG LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.369 5.980 18.088 ATOM 826 N LEU A 90 -3.525 8.274 19.674 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.525 8.274 19.674	MOTA	803	NH2							
ATOM 806 N ASN A 88 -2.780 9.120 16.214 ATOM 807 H ASN A 88 -2.504 8.361 15.625 ATOM 808 CA ASN A 88 -4.015 9.860 15.890 ATOM 809 C ASN A 88 -4.963 9.921 17.069 ATOM 810 O ASN A 88 -5.613 10.954 17.345 ATOM 811 CB ASN A 88 -5.613 10.954 17.345 ATOM 812 CG ASN A 88 -5.475 8.001 14.827 ATOM 813 OD1 ASN A 88 -5.475 8.001 14.827 ATOM 814 ND2 ASN A 88 -6.758 7.998 14.506 ATOM 815 2HD2 ASN A 88 -7.306 7.169 14.622 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -4.637 8.002 17.640 ATOM 818 H LEU A 89 -5.275 9.091 20.309 ATOM 820 C LEU A 89 -5.275 9.091 20.309 ATOM 821 O LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.840 7.592 19.140 ATOM 823 CG LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.817 8.457 17.801 ATOM 826 N LEU A 90 -3.525 8.274 19.674 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.525 8.274 19.674										
ATOM 807 H ASN A 88 -2.504 8.361 15.625 ATOM 808 CA ASN A 88 -4.015 9.860 15.890 ATOM 809 C ASN A 88 -4.963 9.921 17.069 ATOM 810 O ASN A 88 -5.613 10.954 17.345 ATOM 811 CB ASN A 88 -4.712 9.315 14.617 ATOM 812 CG ASN A 88 -5.475 8.001 14.827 ATOM 813 OD1 ASN A 88 -5.475 8.001 14.827 ATOM 814 ND2 ASN A 88 -6.758 7.998 14.506 ATOM 815 2HD2 ASN A 88 -6.758 7.998 14.506 ATOM 816 1HD2 ASN A 88 -7.306 7.169 14.622 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 818 H LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -4.637 8.002 17.640 ATOM 819 CA LEU A 89 -6.024 8.865 19.013 ATOM 820 C LEU A 89 -5.275 9.091 20.309 ATOM 821 O LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.840 7.592 19.140 ATOM 823 CG LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.369 5.980 18.088 ATOM 826 N LEU A 90 -3.525 8.274 19.674 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 827 H LEU A 90 -3.524 9.057 21.664										
ATOM 808 CA ASN A 88 -4.015 9.860 15.890 ATOM 809 C ASN A 88 -4.963 9.921 17.069 ATOM 810 O ASN A 88 -5.613 10.954 17.345 ATOM 811 CB ASN A 88 -4.712 9.315 14.617 ATOM 812 CG ASN A 88 -5.475 8.001 14.827 ATOM 813 OD1 ASN A 88 -5.475 8.001 14.827 ATOM 814 ND2 ASN A 88 -6.758 7.998 14.506 ATOM 815 2HD2 ASN A 88 -7.306 7.169 14.622 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -4.637 8.002 17.640 ATOM 819 CA LEU A 89 -6.024 8.865 19.013 ATOM 820 C LEU A 89 -5.275 9.091 20.309 ATOM 821 O LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.840 7.592 19.140 ATOM 823 CG LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.817 8.457 17.801 ATOM 826 N LEU A 90 -3.525 8.274 19.674 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.525 8.274 19.674										•
ATOM 810 O ASN A 88 -5.613 10.954 17.345 ATOM 811 CB ASN A 88 -4.712 9.315 14.617 ATOM 812 CG ASN A 88 -5.475 8.001 14.827 ATOM 813 OD1 ASN A 88 -4.922 6.996 15.245 ATOM 814 ND2 ASN A 88 -6.758 7.998 14.506 ATOM 815 2HD2 ASN A 88 -7.306 7.169 14.622 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -4.637 8.002 17.640 ATOM 819 CA LEU A 89 -6.024 8.865 19.013 ATOM 820 C LEU A 89 -5.275 9.091 20.309 ATOM 821 O LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.840 7.592 19.140 ATOM 823 CG LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.369 5.980 18.088 ATOM 826 N LEU A 90 -3.983 8.745 20.428 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.242 9.057 21.664										
ATOM 811 CB ASN A 88 -4.712 9.315 14.617 ATOM 812 CG ASN A 88 -5.475 8.001 14.827 ATOM 813 OD1 ASN A 88 -4.922 6.996 15.245 ATOM 814 ND2 ASN A 88 -6.758 7.998 14.506 ATOM 815 2HD2 ASN A 88 -7.306 7.169 14.622 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -4.637 8.002 17.640 ATOM 819 CA LEU A 89 -6.024 8.865 19.013 ATOM 820 C LEU A 89 -5.275 9.091 20.309 ATOM 821 O LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.840 7.592 19.140 ATOM 823 CG LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.369 5.980 18.088 ATOM 826 N LEU A 90 -3.983 8.745 20.428 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.5242 9.057 21.664			C							
ATOM 812 CG ASN A 88 -5.475 8.001 14.827 ATOM 813 OD1 ASN A 88 -4.922 6.996 15.245 ATOM 814 ND2 ASN A 88 -6.758 7.998 14.506 ATOM 815 2HD2 ASN A 88 -7.306 7.169 14.622 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -4.637 8.002 17.640 ATOM 819 CA LEU A 89 -6.024 8.865 19.013 ATOM 820 C LEU A 89 -5.275 9.091 20.309 ATOM 821 O LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.840 7.592 19.140 ATOM 823 CG LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.369 5.980 18.088 ATOM 826 N LEU A 90 -3.983 8.745 20.428 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.242 9.057 21.664										
ATOM 813 OD1 ASN A 88 -4.922 6.996 15.245 ATOM 814 ND2 ASN A 88 -6.758 7.998 14.506 ATOM 815 2HD2 ASN A 88 -7.306 7.169 14.622 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -4.637 8.002 17.640 ATOM 819 CA LEU A 89 -6.024 8.865 19.013 ATOM 820 C LEU A 89 -5.275 9.091 20.309 ATOM 821 O LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.840 7.592 19.140 ATOM 823 CG LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.369 5.980 18.088 ATOM 826 N LEU A 90 -3.983 8.745 20.428 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.242 9.057 21.664										
ATOM 815 2HD2 ASN A 88 -7.306 7.169 14.622 ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -4.637 8.002 17.640 ATOM 819 CA LEU A 89 -6.024 8.865 19.013 ATOM 820 C LEU A 89 -5.275 9.091 20.309 ATOM 821 O LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.840 7.592 19.140 ATOM 823 CG LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.817 8.457 17.801 ATOM 826 N LEU A 90 -3.983 8.745 20.428 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.242 9.057 21.664										
ATOM 816 1HD2 ASN A 88 -7.190 8.824 14.145 ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -4.637 8.002 17.640 ATOM 819 CA LEU A 89 -6.024 8.865 19.013 ATOM 820 C LEU A 89 -5.275 9.091 20.309 ATOM 821 O LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.840 7.592 19.140 ATOM 823 CG LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.817 8.457 17.801 ATOM 826 N LEU A 90 -3.983 8.745 20.428 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.242 9.057 21.664										
ATOM 817 N LEU A 89 -5.130 8.847 17.848 ATOM 818 H LEU A 89 -4.637 8.002 17.640 ATOM 819 CA LEU A 89 -6.024 8.865 19.013 ATOM 820 C LEU A 89 -5.275 9.091 20.309 ATOM 821 O LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.840 7.592 19.140 ATOM 823 CG LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.369 5.980 18.088 ATOM 826 N LEU A 90 -3.983 8.745 20.428 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.242 9.057 21.664										
ATOM 818 H LEU A 89 -4.637 8.002 17.640 ATOM 819 CA LEU A 89 -6.024 8.865 19.013 ATOM 820 C LEU A 89 -5.275 9.091 20.309 ATOM 821 O LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.840 7.592 19.140 ATOM 823 CG LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.817 8.457 17.801 ATOM 826 N LEU A 90 -3.983 8.745 20.428 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.242 9.057 21.664										
ATOM 819 CA LEU A 89 -6.024 8.865 19.013 ATOM 820 C LEU A 89 -5.275 9.091 20.309 ATOM 821 O LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.840 7.592 19.140 ATOM 823 CG LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.817 8.457 17.801 ATOM 826 N LEU A 90 -3.983 8.745 20.428 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.242 9.057 21.664										
ATOM 821 O LEU A 89 -5.834 9.632 21.283 ATOM 822 CB LEU A 89 -6.840 7.592 19.140 ATOM 823 CG LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.817 8.457 17.801 ATOM 826 N LEU A 90 -3.983 8.745 20.428 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.242 9.057 21.664	MOTA	819		LEU	Α					
ATOM 822 CB LEU A 89 -6.840 7.592 19.140 ATOM 823 CG LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.817 8.457 17.801 ATOM 826 N LEU A 90 -3.983 8.745 20.428 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.242 9.057 21.664										
ATOM 823 CG LEU A 89 -7.759 7.355 17.957 ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.817 8.457 17.801 ATOM 826 N LEU A 90 -3.983 8.745 20.428 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.242 9.057 21.664										
ATOM 824 CD1 LEU A 89 -8.369 5.980 18.088 ATOM 825 CD2 LEU A 89 -8.817 8.457 17.801 ATOM 826 N LEU A 90 -3.983 8.745 20.428 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.242 9.057 21.664										
ATOM 826 N LEU A 90 -3.983 8.745 20.428 ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.242 9.057 21.664								5.980		
ATOM 827 H LEU A 90 -3.525 8.274 19.674 ATOM 828 CA LEU A 90 -3.242 9.057 21.664										
ATOM 828 CA LEU A 90 -3.242 9.057 21.664										
ATOM 829 C LEU A 90 -3.155 10.555 21.932	MOTA	829	C			90	-3.155	10.555	21.932	
ATOM 830 O LEU A 90 -3.202 11.020 23.092										
ATOM 831 CB LEU A 90 -1.817 8.453 21.661										
ATOM 832 CG LEU A 90 -1.766 6.914 21.587 ATOM 833 CD1 LEU A 90 -0.343 6.494 21.396										
ATOM 834 CD2 LEU A 90 -2.339 6.230 22.812										
ATOM 835 N THR A 91 -3.031 11.407 20.926	MOTA	835	N	THR	Α	91		11.407		
ATOM 836 H THR A 91 -2.982 11.063 19.988										
ATOM 837 CA THR A 91 -2.964 12.834 21.155 ATOM 838 C THR A 91 -4.309 13.331 21.635										
ATOM 839 O THR A 91 -4.422 14.315 22.398										

Heller Ehrman White & McAuliffe, LLP

11			~	
Date of Filing:	11/10/00	Attornov	Docket No.	24737-1906C
Spare of Fining.	11/10/00	Attorney	DUCKEL NO.	24/3/-1700C

									, `C^
-0			Heller l	Ehrmai	n White	e & McAuliffe, LLP		RC,	MAR JOSON SON SERVICE SON
LLEY	BE 30			ational	ly Deri	6 of 33 ived Protein Structures of		1	En. 10, 5
/0	- 2003	Polyn	norphism	s in Ph and Cl	armac	ogenomics for Drug Desigi Applications	n		(A, 500)
(M	AR 0 3 20C3	Polyn Date of I	A _l Filing: 11	pplican /10/00	ts: Ran Atto	nnarayan <i>et al.</i> orney Docket No. 24737-19	06C		600
MOTA	84,0	'n CB	THR	Α	91	-2.555	13.543	19.848	1500
	LEMI 8 BA 1	OG1	THR	Α	91	-3.459	13.214		
MOTA	842		THR		91	-3.188	13.677	17.958	
MOTA MOTA	843 844		THR GLN		91 92	-1.153 -5.435	13.122 12.704	19.395 21.258	
MOTA	845		GLN		92	-5.379	11.892	20.677	
MOTA	846	CA	GLN	Α	92	-6.763	13.186	21.682	
MOTA	847		GLN		92	-6.942	12.975	23.153	
MOTA MOTA	848 849		GLN GLN		92 92	-7.554 -7.890	13.797 12.479	23.871 20.964	
ATOM	850		GLN		92	-7.830	12.479	19.517	
MOTA	851		GLN		92	-9.251	12.515	18.886	
MOTA	852		GLN		92	-10.270	12.424	19.546	
MOTA	853		GLN		92	-9.202	12.323	17.588	
ATOM ATOM	854 855		GLN GLN		92 92	-10.031 -8.336	12.087 12.411	17.080 17.097	
MOTA	856		ILE		93	-6.472	11.846	23.721	
MOTA	857	Н	ILE	Α	93	-6.014	11.160	23.155	
MOTA	858		ILE		93	-6.608	11.578	25.165	
MOTA MOTA	859 860			A A	93 93	-5.472 -5.342	12.189 12.031	25.948 27.171	
ATOM	860			A	93	-6.820	10.073	25.484	
MOTA	862		ILE		93	-5.536	9.221	25.286	
MOTA	863	CG2	ILE	Α	93	-8.022	9.486	24.735	
MOTA	864		ILE		93	-5.754	7.740	25.693	
MOTA MOTA	865 866		GLY GLY		94 94	-4.594 -4.617	12.993 13.079	25.330 24.334	
ATOM	867		GLY		94	-3.613	13.742	26.063	
MOTA	868		GLY		94	-2.448	12.895	26.512	
MOTA	869		GLY		94	-1.764	13.158	27.519	
ATOM	870		CYS		95	-2.117	11.849	25.797 24.957	
ATOM ATOM	871 872		CYS CYS		95 95	-2.619 -1.036	11.644 10.994	24.957	
MOTA	873		CYS		95	0.362	11.566	25.925	
MOTA	874	0	CYS	Α	95	0.588	12.254	24.907	
MOTA	875		CYS		95	-1.260	9.655	25.550	
MOTA MOTA	876 877		CYS THR		95 96	-0.254 1.346	8.307 11.297	26.125 26.803	
ATOM	878		THR		96 96	1.135	10.738	27.618	
MOTA	879		THR		96	2.728	11.779	26.664	
MOTA	880	C	THR	Α	96	3.729	10.784	27.264	
MOTA	881		THR		96	3.498	10.249	28.345	
MOTA MOTA	882 883		THR THR		96 96	2.925 2.594	13.154 13.109	27.346 28.721	
MOTA	884		THR		96	2.784	13.966	29.109	
MOTA	885	CG2	THR	Α	96	2.139	14.300	26.698	
MOTA	886		LEU		97	4.882	10.603	26.599	
MOTA MOTA	887 888	H CA	LEU LEU		97 97	5.016 6.040	11.071 9.910	25.714 27.166	
ATOM	889		LEU		97	6.751	10.824	28.175	
MOTA	890	Ö	LEU		97	6.705	12.046	28.044	
MOTA	891		LEU		97	7.013	9.497	26.049	
MOTA	892		LEU		97	6.452	8.449	25.065	
MOTA MOTA	893 894		LEU LEU		97 97	7.360 6.345	8.355 7.065	23.828 25.724	
ATOM	895		ASN		98	7.412	10.221	29.175	

TECH CENTER 10 2000 CO **Sheet 17 of 33** Toge: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design MAR 0 3 2003 and Clinical Applications Applicants: Ramnarayan et al. Attorney Docket No. 24737-1906C Date of Filing: 11/10/00 896 H ASN A 98 7.413 9.212 CENTS 997 MOTA CA 30.292 ASN A 98 10.897 8.065 MOTA 898 C ASN Α 98 9.220 10.029 30.800 MOTA 899 0 ASN A 98 8.995 9.079 31.550 MOTA 900 CB ASN A 98 7.057 31.423 11.177 MOTA 901 CG ASN A 98 6.084 12.305 31.083 **ATOM** 902 OD1 ASN A 4.983 12.062 98 30.594 ATOM 903 ND2 ASN A 6.493 98 13.549 31.342 ATOM 904 2HD2 ASN 5.888 98 14.331 31.136 MOTA 905 1HD2 ASN 98 7.406 13.707 31.742 Α LEU A MOTA 906 N 99 10.451 10.369 30.389 MOTA 907 Η LEU A 99 10.547 11.177 29.792 MOTA 908 CA LEU 99 11.679 9.620 30.666 MOTA 909 C LEU A 99 12.711 10.437 31.454 MOTA 910 0 LEU Α 99 12.487 11.652 31.651 MOTA 911 CB LEU 99 12.233 8.989 29.369 12.833 MOTA 912 CG LEU A 99 9.873 28.248 MOTA 913 CD1 LEU Α 99 11.876 10.947 27.705 MOTA 914 CD2 LEU 99 14.183 10.505 28.623 MOTA 915 TXO LEU A 99 13.716 9.819 31.869 TER MOTA 916 Ν PRO В 1 12.600 14.237 30.106 MOTA 917 PRO CA В 1 11.842 15.268 29.363 MOTA 918 C PRO В 1 10.430 14.773 29.138 MOTA 919 O В PRO 1 10.054 13.695 29.618 ATOM 920 CB PRO В 15.412 1 12.622 28.035 ATOM 921 CG PRO В 1 13.817 14.470 28.131 ATOM 922 CD PRO 13.966 14.227 В 1 29.603 29.964 MOTA923 1H PRO В 1 12.175 13.343 MOTA 924 2H PRO В 1 12.594 14.457 31.081 MOTA 925 2 N GLN В 9.513 15.542 28.523 ATOM 2 926 GLN Η В 9.751 16.474 28.251 2 ATOM 927 CA GLN В 15.058 8.186 28.242 MOTA 928 C GLN 2 8.066 15.151 В 26.749 MOTA 929 0 2 GLN 8.523 16.140 26.133 В 2 MOTA 930 CB GLN В 7.155 15.976 28.856 MOTA 2 931 CG GLN В 5.739 15.732 28.373 ATOM 2 932 CD GLN В 4.744 29.284 16.365 2 MOTA 933 OE1 GLN4.628 15.962 30.431 ATOM 934 NE2 GLN 2 4.024 17.367 28.784 В **ATOM** 935 1HE2 2 17.830 29.349 GLN \mathbf{B} 3.341 ATOM 2 936 2HE2 GLN В 4.160 17.66527.839 ATOM 937 N ILE В 3 7.499 14.176 26.036 ATOM 938 Η ILE В 3 7.102 26.504 13.386 ATOM 939 CA 3 ILE В 7.435 14.216 24.601 5.956 ATOM 940 C ILE 3 В 14.097 24.184 ATOM 941 0 ILE 13.290 В 3 5.150 24.710 ATOM 942 CB ILE В 3 8.299 13.058 24.029 MOTA 3 943 CG1 ILE В 9.743 13.232 24.534 **ATOM** 944 3 CG2 ILE В 8.269 12.985 22.496 ATOM 945 CD1 3 ILE В 10.621 12.068 24.143 MOTA 946 N THR В 4 5.462 15.108 23.453 MOTA 947 Η THR В 4 6.046 15.887 23.226 **ATOM** 15.115 948 CA THR В 4 4.107 22.976 ATOM C 949 THR B 4 4.039 14.193 21.765

Heller Ehrman White & McAuliffe, LLP

FIG. 11 A-16

5.066

13.755

21.203

4

MOTA

950

0

THR В

TECH CENTER 1800/2000 Sheet 18 of 33 MAR 0 3 2003 tile: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al. ENT 8 TRAUC Attorney Docket No. 24737-1906C Date of Filing: 11/10/00 ATOM 951 CB THR B 4 3.616 16.548 22.647 MOTA 952 OG1 THR B 4 4.450 17.157 21.645 MOTA 953 HG1 THR В 4 4.123 18.080 21.442 MOTA 954 CG2 THR В 4 3.644 17.454 23.876 MOTA 955 N LEU В 5 2.872 13.781 21.324 MOTA 956 Η LEU 5 В 2.033 14.151 21.723 MOTA 957 CA 5 LEU B 2.837 12.795 20.265 958 MOTA C LEU B 5 2.183 13.415 19.047 MOTA 959 0 LEU B 5 1.677 12.720 18.142 MOTA 960 CB LEU B 5 2.093 11.577 20.762 ATOM 961 CG LEU В 5 2.819 10.856 21.892 MOTA 962 CD1 LEU B 5 1.889 9.885 22.602 **ATOM** 963 CD2 LEU B 5 4.108 10.159 21.416 ATOM 964 N TRP В 6 2.209 14.742 18.880 MOTA 965 Η TRP В 6 2.601 15.323 19.593 MOTA 966 CA TRP В 6 1.683 15.364 17.690 MOTA 967 C TRP В 6 2.581 14.978 16.509 MOTA 968 0 TRP В 6 2.159 14.851 15.349 MOTA 969 CB TRP В 6 1.587 16.879 17.833 MOTA 970 CG TRP В 6 0.652 17.339 18.921 ATOM 971 CD1 TRP В 0.955 6 17.584 20.232 MOTA 972 CD2 TRP -0.750 В 6 17.612 18.783 973 ATOM NE1 TRP В 6 -0.167 17.989 20.913 974 ATOM HE1 TRP В 6 -0.217 18.230 21.882 MOTA 975 CE₂ TRP В 6 -1.22418.013 20.048 MOTA 976 CE3 TRP В 6 -1.637 17.550 17.709 ATOM 977 CZ2 TRP В 6 -2.544 18.352 20.266 MOTA 978 CZ3 TRP В -2.947 17.885 6 17.921 **ATOM** 979 CH2 TRP -3.394 В 6 18.281 19.185 **ATOM** 980 Ν GLN В 7 3.896 14.809 16.738 MOTA 981 Η GLN B 7 4.267 14.985 17.650 MOTA 982 CA GLN B 7 4.794 14.376 15.689 **ATOM** 983 C 7 GLN B 5.361 13.043 16.096 ATOM 984 0 GLN 7 5.221 12.586 В 17.243 **ATOM** 985 CB GLN 7 15.430 В 5.880 15.505 MOTA 986 7 16.704 CG GLN 5.353 В 14.804 987 7 ATOM CD GLN В 6.197 17.912 15.137 MOTA 988 7 OE1 GLN B 7.400 17.802 15.404 ATOM 989 7 NE2 GLN B 5.553 19.083 15.121 MOTA 7 990 1HE2 GLN B 6.040 19.931 15.330 ATOM 991 2HE2 7 GLN B 4.579 19.121 14.900 ATOM 992 ARG B N 5.979 12.274 15.189 8 MOTA 993 Η ARG В 8 6.073 12.597 14.247 ATOM 994 CA ARG 6.505 10.985 В 8 15.573 ATOM 995 C 7.577 ARG В 8 11.198 16.610 ATOM 996 8 0 ARG В 8.395 12.130 16.515 ATOM 997 CB ARG В 8 7.092 10.238 14.384 ATOM 998 CG ARG 6.132 В 8 10.018 13.237 MOTA 999 CD ARG В 8 6.802 9.402 12.046 ATOM 1000 NE ARG В 8 5.846 9.005 11.023 ATOM 1001 HE ARG B 8 4.872 9.080 11.237 MOTA 1002 CZARG B 8 6.217 8.552 9.828 MOTA 1003 NH1 ARG 8 7.496 8.442 9.486 ATOM 1004 2HH1 ARG 8.211 8 8.703 10.134 ATOM 1005 1HH1 ARG 7.744 8 8.098 8.580 **ATOM** 1006 NH2 ARG B 8 5.279 8.202 8.952

Heller Ehrman White & McAuliffe, LLP

FIG. 11 A-17

MAR 0 3 2003 Heller Ehrman White & McAuliffe, LLP Sheet 19 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications TENT BIYE Applicants: Ramnarayan et al. Attorney Docket No. 24737-1906C Date of Filing: 11/10/00 1007 1HH2 ARG B 8 5.540

THE MAP TO SOS T MOTA 8.050 7.860 MOTA 1008 2HH2 ARG 8.281 9.196 В 8 4.312 MOTA 10.381 1009 PRO 9 N В 7.663 17.682 MOTA 1010 CA PRO 9 В 8.666 10.587 18.746 MOTA C 9 1011 PRO B 10.065 18.315 10.196 9 ATOM 0 1012 PRO B 10.678 9.215 18.778 ATOM 1013 CB PRO B 9 8.148 9.682 19.878 CG ATQM 1014 9 PRO B 7.315 8.607 19.206 **AND** M 9 1015 9.323 CD PRO В 6.708 18.004 **ATOM** 1016 LEU B 10 N 10.685 10.969 17.400 ATOM 1017 Η LEU B 10 10.201 11.746 16.998 MOTA 1018 CA LEU В 10 12.040 10.706 16.978 MOTA 1019 C LEU B 10 12.976 11.498 17.850 MOTA 1020 0 LEU 12.733 В 10 12.880 18.018 1021 MOTA CB LEU В 10 12.250 11.170 15.554 11.427 MOTA 1022 CG LEU В 10 10.386 14.551 MOTA 1023 CD1 LEU В 10 11.385 11.175 13.276 MOTA 1024 CD2 LEU B 10 11.956 8.947 14.355 MOTA 1025 VAL B 11 14.030 10.843 Ν 18.384 MOTA 1026 Η VAL B 14.148 9.866 11 18.206 MOTA 1027 CA VAL B 15.018 11.517 11 19.223 1028 MOTA C VAL B 11 16.400 11.111 18.740 MOTA 1029 0 VAL B 11 16.581 10.201 17.911 MOTA 1030 CB VAL B 14.857 11 11.100 20.699 ATOM 1031 CG1 VAL B 11 13.514 11.586 21.293 MOTA 1032 CG2 VAL B 15.038 9.573 11 20.903 THR MOTA 1033 N В 12 17.485 11.739 19.232 MOTA 1034 THR 12 17.370 12.507 Η В 19.862 MOTA 1035 CA THR В 12 18.843 11.325 18.868 MOTA 1036 C THR В 12 19.377 10.284 19.837 MOTA 1037 O 19.237 THR В 12 10.352 21.082 ATOM 1038 CB THR В 12 19.830 12.520 18.820 MOTA 1039 12 OG1 THR В 19.389 13.483 17.876 MOTA 1040 THR HG1 В 12 20.028 14.252 17.848 18.399 MOTA 1041 CG2 THR В 12 21.234 12.075 MOTA 1042 19.338 ILE В 13 20.044 9.234 N ATOM 1043 ILE В 20.135 9.130 Η 13 18.348 ATOM 1044 CA ILEВ 13 20.641 8.239 20.176 ATOM 1045 C ILE В 13 8.226 22.119 19.855 **ATOM** 1046 0 ILE 22.579 8.817 В 13 18.865 1047 MOTA CB ILE В 13 19.993 6.870 19.879 MOTA 1048 CG1 ILE В 13 20.192 6.464 18.415 ATOM 1049 CG2 ILE В 13 18.482 6.893 20.206 ATOM 1050 5.035 CD1 ILE В 13 19.829 18.106 20.661 MOTA 1051 Ν LYS В 14 22.973 7.618 MOTA 1052 LYS 7.243 Η В 14 22.652 21.531 MOTA LYS 7.480 1053 CA В 14 24.364 20.317 MOTA 1054 С LYS В 14 24.680 6.029 20.477 **ATOM** 1055 0 LYS В 14 24.353 5.353 21.484 ATOM 1056 CB LYS В 14 25.266 8.263 21.242 MOTA 1057 CG LYS B 14 24.947 9.729 21.236 ATOM 1058 CD LYS В 14 25.664 10.498 22.339 MOTA 1059 CE LYS B 14 26.758 11.441 21.807 MOTA 1060 NZ LYS В 14 28.026 10.781 21.440 1HZ LYS В MOTA 1061 14 28.674 11.466 21.107 MOTA 1062 3HZ LYS В 14 27.855 10.107 20.722

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

1112

1113

1117

1118

1114 1HZ

1115 3HZ

1116 2HZ

CE

NZ

N

Η

LYS B

LYS B

LYS B

LYS B

LYS B

GLU B

GLU B

20

20

20

20

20

21

21

Heller Ehrman White & McAuliffe, LLP Sheet 20 of 33

	_								``	CELK O TOO TOO
RE	JC60			•				E.	1/40	%
6	-0°	<u>.</u>	Heller	Ehrma	an White & McA	uliffe, LLP		47	2 T	1/2
MAR 0	3 5000	다. Fitle: Use o	of Compu	tationa	Sheet 20 of 33 ally Derived Prot	ein Structures of (Genetic		W/2	20.
I Man	, s ^z	Poly	morphisn	ns in P	harmacogenomic Clinical Applicati	es for Drug Design	1		100	
PATTER	IT 8 TRAUCE	5	A	pplica	nts: Ramnarayaı	n <i>et al</i> .	V.C		100	2/2
	-		Filing: 11			ket No. 24737-190			7	7000
MOTA MOTA	1063 1064	2HZ N	LYS ILE		14 15	28.408 25.214	10.323 5.390	22.243 19.425		U
ATOM	1064	H	ILE		15 15	25.214	5.901	18.594		
ATOM	1066	CA	ILE		15	25.489	3.989	19.434		
ATOM	1067	C	ILE		15	26.832	3.981	18.750		
ATOM	1068	0	ILE	В	15	27.104	4.869	17.933		
ATOM	1069	CB	ILE		15	24.435	3.220	18.606		
ATOM	1070	CG1	ILE		15	24.893	1.824	18.347		
ATOM ATOM	1071	CG2 CD1	ILE		15	24.048	3.977	17.309		
ATOM	1072 1073	N	ILE GLY		15 16	23.830 27.812	0.996 3.212	17.645 19.202		
ATOM	1073	H	GLY		16	27.623	2.535	19.202		
ATOM	1075	CA	GLY		16	29.175	3.336	18.677		
ATOM	1076	С	GLY	В	16	29.771	4.754	18.619		
MOTA	1077	0	GLY		16	30.737	4.970	17.902		
ATOM	1078	N	GLY		17	29.273	5.791	19.335		
ATOM ATOM	1079 1080	H CA	GLY		17	28.453	5.660	19.892		
ATOM	1080	CA	GLY GLY		17 17	29.924 29.468	7.105 8.043	19.302 18.176		
ATOM	1082	0	GLY		17	29.984	9.155	17.933		
ATOM	1083	N	GLN		18	28.433	7.621	17.411		
MOTA	1084	Н	GLN		18	28.046	6.711	17.560		
MOTA	1085	CA	GLN		18	27.834	8.449	16.348		
ATOM	1086	C	GLN		18	26.407	8.755	16.736		
ATOM ATOM	1087	O	GLN GLN		18	25.678	7.953	17.353		
ATOM	1088 1089	CB CG	GLN		18 18	27.810 27.247	7.645 6.204	15.045 15.146		
ATOM	1090	CD	GLN		18	27.572	5.333	13.140		
ATOM	1091	OE1			18	26.771	4.501	13.464		
MOTA	1092	NE2	GLN	В	18	28.766	5.531	13.393		
ATOM	1093	1HE2			18	29.057	5.005	12.594		
MOTA	1094	2HE2			18	29.388	6.209	13.786		
MOTA MOTA	1095 1096	N H	LEU LEU		19 19	25.873 26.446	9.933 10.602	16.337 15.863		
ATOM	1090	CA	LEU		19	24.467	10.002	16.578		
ATOM	1098	C	LEU		19	23.633	9.622	15.490		
MOTA	1099	0	LEU		19	23.912	9.707	14.284		
MOTA	1100	CB	LEU		19	24.207	11.777	16.457		
MOTA	1101	CG	LEU		19	24.857	12.756	17.454		
ATOM	1102		LEU		19	24.739	12.335	18.880		
MOTA MOTA	1103 1104	N N	LEU LYS		19 20	26.299 22.450	13.072 9.085	17.130 15.850		
ATOM	1104	H	LYS		20	22.450	8.948	16.819		
ATOM	1106	CA	LYS		20	21.472	8.702	14.867		
ATOM	1107	C	LYS		20	20.121	9.105	15.417		
MOTA	1108	0	LYS		20	19.957	9.572	16.569		
MOTA	1109	CB	LYS		20	21.496	7.200	14.560		
MOTA	1110	CG	LYS		20	22.904	6.653	14.507		
ATOM	1111	CD	LYS		20	23.052	5.366	13.677		

FIG. 11 A-19

23.069

23.893

23.847

24.843

23.544

19.068

19.200

5.603

6.758

6.836

6.617

7.597

9.022

8.712

12.145

11.699

10.703

11.978

12.116

14.591

13.650

TECH CANTA TO TOO SOO MAR 0 3 200 Heller Ehrman White & McAuliffe, LLP Sheet 21 of 33 Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Title: Se of Computationally Derived Protein Structures of Genetic Applicants: Ramnarayan et al. Attorney Docket No. 24737-1906C Date of Filing: 11/10/00 MOTA 15.008 1119 CA GLU B 21 17.735 9.366 MOTA C 15.119 1120 GLU B 16.937 8.095 21 17.117 7.103 14.376 MOTA 1121 0 GLU В 21 MOTA 1122 CB GLU В 21 17.143 10.314 13.983 10.706 MOTA CG GLU В 21 15.714 14.162 1123 MOTA 1124 CD GLU В 21 15.304 11.607 13.036 14.971 ATOM 1125 OE1 GLU 21 11.051 11.957 В MOTA OE2 GLU 15.338 12.854 13.174 1126 В 21 7.999 MOTA 1127 Ν ALA В 22 16.025 16.072 MOTA 8.792 1128 Η ALA В 22 15.825 16.648 MOTA 1129 CA ALAВ 22 15.300 6.783 16.315 13.981 16.952 MOTA 1130 C ALA В 22 7.132 MOTA 1131 0 ALA В 22 13.756 8.153 17.632 MOTA 1132 22 5.865 17.235 CB ALA В 16.095 6.230 16.743 MOTA 1133 Ν LEU В 23 12.994 MOTA 1134 Η LEU В 23 13.195 5.379 16.257 MOTA 1135 CA LEU В 23 11.639 6.408 17.180 MOTA 1136 C LEU В 23 11.476 5.740 18.534 MOTA 1137 O LEU В 23 11.814 4.564 18.746 MOTA 1138 CB LEU В 23 10.775 5.665 16.192 MOTA 1139 CG LEU 23 9.267 5.810 16.237 В 1140 LEU 8.807 7.142 MOTA CD1 В 23 15.664 MOTA 1141 CD2 LEU 8.648 4.625 В 23 15.482 MOTA LEU 10.948 6.455 19.553 1142 В 24 Ν ATOM 24 10.775 7.433 1143 Η LEU В 19.435 MOTA 1144 LEU В 24 10.613 5.838 20.849 CA LEU MOTA 1145 C В 24 9.271 5.160 20.687 ATOM 1146 O LEU 24 8.208 5.764 20.418 В MOTA 1147 CB LEU В 24 10.564 6.878 21.971 7.750 MOTA 1148 CG LEU В 24 11.828 22.075 MOTA CD1 LEU 11.580 8.859 23.077 1149 В 24 MOTA 6.955 1150 CD2 LEU 24 13.099 22.388 MOTA 1151 ASP 9.246 3.822 20.809 N В 25 MOTA 1152 ASP 10.025 3.347 21.218 В 25 Η 3.030 20.366 MOTA 1153 CA ASP 25 8.122 В ATOM 1154 C ASP В 25 7.637 2.136 21.484 21.759 MOTA 1155 0 ASP В 25 8.189 1.048 ASP 2.196 MOTA 1156 CB В 8.613 19.189 25

FIG. 11 A-20

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

ATOM

MOTA

MOTA

MOTA

MOTA

ATOM

ATOM

MOTA

ATOM

ATOM

MOTA

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

CG

Ν

Η

C

O

CB

OG1

HG1

CG2

Ν

Η

C

0

N

CA

CA

ASP

THR

THR

THR B

THR B

THR

THR

THR

THR

THR

GLY B

GLY B

GLY

GLY B

GLY B

ALA B

OD1 ASP

OD2 ASP

В

В

В

В

В

В

В

В

В

В

25

25

25

26

26

26

26

26

26

26

26

26

27

27

27

27

27

28

7.528

6.422

7.800

6.547

6.067

6.025

5.347

4.976

5.027

3.927

3.277

5.703

5.090

5.341

4.457

5.475

5.121

6.792

1.421

1.339

0.897

2.465

3.314

1.621

0.369

2.389

2.853

3.359

3.603

0.245

0.983

-0.938

-1.992

-3.108

-1.717

-0.550

18.511

19.058

17.426

22.157

21.938

23.212

22.694

23.451

24.046

23.239

23.806

24.650

21.382

20.756

20.867

20.458

20.055

20.495

TOP CHIEF TO TOO TOO TO THE TOO TO THE TOO TO THE TOO TO TO THE TOO TO TO THE TOO TO TO THE TOO TO THE TO MAR 0 3 Heller Ehrman White & McAuliffe, LLP Sheet 22 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al. Attorney Docket No. 24737-1906C Date of Filing: 11/10/00 MOTA 20.841 1175 Η ALA B 28 7.104 -0.832 MOTA -2.690 20.037 1176 CA ALA B 28 7.800 -3.444 MOTA 1177 C ALA B 28 8.371 21.259 MOTA 1178 О ALA B 28 8.840 -2.807 22.213 MOTA 1179 CB ALA B 28 8.924 -1.936 19.358 MOTA ASP 8.459 -4.787 21.289 1180 N В 29 8.082 -5.325 20.535 MOTA 1181 Η ASP В 29 MOTA 1182 CA ASP В 29 9.121 -5.441 22.452 ASP В 10.608 -5.219 22.404 MOTA 1183 C 29 29 -5.264 23.412 MOTA 1184 0 ASP В 11.345 MOTA 8.965 -6.975 22.447 1185 CB ASP В 29 MOTA ASP 7.551 -7.477 22.774 1186 CG В 29 ASP 6.683 -6.693 23.169 MOTA 1187 OD1 В 29 **ATOM** ASP 29 7.350 -8.686 22.616 1188 OD2 В MOTA -5.157 1189 N ASP В 30 11.164 21.171 1190 MOTA Η ASP 10.577 -5.063 В 30 20.367 **ATOM** 1191 CA ASP В 30 12.609 -5.217 20.880 **ATOM** 1192 C ASP B 13.048 -3.886 20.335 30 12.269 -3.055 MOTA 1193 0 ASP 19.817 В 30 -6.226 19.735 ATOM 1194 CB ASP В 30 12.833 -7.675 MOTA 1195 CG ASP В 30 12.477 20.099 MOTA 1196 OD1 ASP В 30 13.197 -8.272 20.908 MOTA 1197 OD2 ASP В 30 11.494 -8.237 19.569 MOTA 1198 14.387 -3.692 20.227 N THR B 31 MOTA 1199 15.018 -4.380 20.586 Η THR B 31 14.981 -2.530 MOTA 1200 CA 19.614 THR B 31 18.260 15.578 -2.979 MOTA 1201 C THR B 31 -4.020 MOTA 1202 0 THR B 31 16.246 18.123 MOTA 1203 CB 16.036 -2.004 20.557 THR B 31 -1.376 MOTA 1204 OG1 THR B 31 15.378 21.645 MOTA -1.016 22.290 1205 HG1 THR В 31 16.052 MOTA 16.944 -0.960 19.904 1206 CG2 THR B 31 -2.283 17.150 MOTA 1207 N VAL B 32 15.237 ATOM 1208 Η VAL B 32 14.703 -1.442 17.237 **ATOM** 1209 CA VAL B 32 15.626 -2.722 15.806 ATOM 16.303 -1.566 15.132 1210 C VAL B 32 MOTA 1211 O VAL B 32 15.779 -0.428 14.995 MOTA 1212 CB VAL B 32 14.407 -3.126 14.964 MOTA 1213 CG1 VAL B 32 14.820 -3.703 13.596 MOTA 1214 CG2 VAL B 32 13.556 -4.102 15.703 MOTA 1215 LEU B 33 17.563 -1.756 14.720 N 17.984 -2.658 14.814 MOTA 1216 Η LEU B 33 -0.697 14.138 MOTA 1217 CA LEU В 33 18.347 MOTA 18.610 -1.009 12.685 1218 C LEU В 33 MOTA 1219 18.685 -2.162 12.205 0 LEU В 33 -0.628 14.856 ATOM 1220 CB LEU 19.679 В 33 0.363 MOTA 1221 LEU В 33 19.698 16.031 CG MOTA 1222 CD1 LEU В 18.425 0.321 16.891 33 CD2 MOTA 1223 LEU B 20.929 0.179 16.889 33 18.786 0.078 11.899 MOTA 1224 N GLU В 34 MOTA 1225 GLU B 18.619 0.991 12.271 Η 34 MOTA 1226 CA 19.218 0.041 10.488 GLU B 34 -0.774 10.399 MOTA 1227 C GLU B 34 20.478 -0.835 ATOM 1228 О GLU В 34 21.374 11.272 GLU MOTA 1229 CB В 34 19.536 1.460 9.996 MOTA 1230 GLU B 34 20.722 2.088 10.761 CG

合

FIG. 11 A-21

ECHCENTER 10 30,300 Sheet 23 of 33 Title: Use of Computationally Derived Protein Structures of Genetic ENT & TRAPolymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al. Attorney Docket No. 24737-1906C Date of Filing: 11/10/00 1231 3.512 CD GLU B 34 21.085 4.466 1232 34 20.285 MOTA OE1 GLU B 3.703 MOTA 1233 OE2 GLU В 34 22.211 20.673 -1.367 9.205 MOTA 1234 N GLU B 35 20.011 -1.227 8.468 GLU B 35 MOTA 1235 Η 8.930 21.802 -2.205 ATOM 1236 CA GLU B 35 1237 GLU B 35 23.096 -1.520 9.321 MOTA C -0.379 1238 GLU B 35 23.391 8.916 MOTA 0 -2.479 7.439 1239 21.741 CB GLU B 35 MOTA 22.795 -3.380 6.883 MOTA 1240 CG GLU В 35 GLU B -4.587 22.987 7.744 ATOM 1241 CD 35 -5.258 GLU B 21.980 8.118 1242 35 MOTA OE1 24.149 -4.860 8.048 GLU B 35 MOTA 1243 OE2 MOTA 1244 N MET В 36 23.926 -2.106 10.157 36 -2.953 MOTA 1245 MET В 23.654 10.613 Η -1.559 10.441 1246 CA MET В 36 25.232 MOTA 26.146 -2.687 10.815 MOTA 1247 C MET В 36 25.731 -3.78311.257 MOTA 1248 0 MET В 36 В 25.251 -0.424 11.497 1249 CB MET 36 MOTA -0.724 12.881 1250 В 24.626 MOTA CG MET 36 **ATOM** 1251 SD MET В 36 24.722 0.719 13.988 23.132 1.586 13.692 MOTA 1252 CE MET 36 В 27.441 -2.551 10.593 1253 37 MOTA Ν SER В 27.783 -1.726 1254 10.144 ATOM Η SER В 37 28.321 -3.608 MOTA 1255 SER 37 11.011 CA В 28.721 -3.352 1256 SER B 37 12.442 ATOM C 29.402 -2.369 12.788 1257 SER B 37 MOTA О 29.567 -3.622 10.109 MOTA 1258 CB SER B 37 ATOM 1259 SER В 37 29.231 -3.908 8.750 OG 1260 30.057 -3.911 8.187 MOTA SER 37 HG В 28.469 -4.295 13.366 1261 ATOM N LEU В 38 -5.123 27.948 13.117 MOTA 1262 Η LEU В 38 -4.232 14.714 38 29.073 MOTA 1263 CA LEU В 30.132 -5.342 14.895 В 38 MOTA 1264 С LEU 30.070 -6.357 14.197 MOTA 1265 О LEU В 38 MOTA 1266 CB LEU В 38 27.986 -4.23715.802 MOTA 1267 CG LEU B 38 27.005 -3.039 15.750 -3.214 MOTA 1268 CD1 LEU B 38 25.885 16.788 27.707 -1.696 16.017 1269 MOTA CD2 LEU B 38 -5.160 31.119 15.804 1270 PRO В 39 MOTA Ν 32.199 -6.116 16.052 1271 CA PRO B 39 MOTA 31.767 -7.223 17.028 PRO B 39 MOTA 1272 C 18.185 -6.942 31.448 MOTA 1273 0 PRO B 39 MOTA 1274 PRO B 39 33.347 -5.276 16.625 CB -4.148 17.370 MOTA 1275 CG PRO B 39 32.634 -3.916 16.523 MOTA 1276 PRO B 39 31.385 CD 31.770 -8.481 16.559 MOTA 1277 N GLY В 40 -8.641 1278 GLY 40 32.036 15.598 MOTA Η В -9.658 17.353 1279 CA GLY B 40 31.420 MOTA -10.723 30.679 16.539 GLY B 40 MOTA 1280 C 30.647 -10.67115.308 ATOM 1281 0 GLY B 40 1282 N LYS B 41 30.098 -11.699 17.255 MOTA LYS B -11.656 MOTA 1283 Η 41 30.164 18.261 1284 LYS 29.399 -12.86116.702 CA В 41 ATOM27.971 -12.9231285 C LYS В 41 17.245 MOTA 27.743 -12.700MOTA 1286 0 LYS В 41 18.436

Heller Ehrman White & McAuliffe, LLP

~6'₆

MAR 0 3

FIG. 11 A-22

Heller Ehrman White & McAuliffe, LLP

Sheet 24 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design

	100	- Jn\							
3 20C3 FE									PRICE LANGER OF SON
- 60°			Heller F	Chrmai	n White & McAu	iliffe LLP			(X)
3 5003 1	_			5	Sheet 24 of 33			<i>>></i>	4
ع د م	Т				ly Derived Prote armacogenomics			*Cx	3/2
Scrae					inical Applicatio ts: Ramnarayan			· Q	200
8 TRADER		Date of I	Filing: 11/			ket No. 24737-19	06C	*	100 300
MOTA	1287		LYS		41	30.154		17.048	17/80
ATOM	1288	CG	LYS		41	31.537		16.384	0/20
ATOM ATOM	1289 1290	CD CE			41	32.192		16.651	
ATOM	1290	NZ		B B	41 41		-15.642 -16.956	15.983 16.183	•
ATOM	1292	1HZ	LYS	В	41	35.102		15.732	
MOTA	1293	3HZ		В	41	33.612		15.782	
ATOM	1294	2HZ	LYS		41	34.312		17.172	
ATOM	1295	N	TRP		42	27.018		16.351	
MOTA MOTA	1296 1297	H CA	TRP TRP	B B	42 42	27.307 25.597		15.411	
MOTA	1298	C		В	42	24.723		16.521 16.405	
MOTA	1299	Ö		В	42	25.210		16.131	
ATOM	1300	CB		В	42	25.192	-11.856	15.491	
MOTA	1301	CG	TRP		42	26.127		15.390	
ATOM ATOM	1302 1303	CD1 CD2		B B	42 42	26.651 26.739	-10.197 -9.913	14.244	
ATOM	1303	NE1	TRP	В	42	27.548	-9.913 -9.191	16.467 14.533	
ATOM	1305	HE1	TRP		42	28.067	-8.702	13.818	
MOTA	1306	CE2	TRP	В	42	27.664	-8.995	15.893	
MOTA	1307	CE3		В	42	26.640	-9.923	17.875	
MOTA MOTA	1308 1309	CZ2 CZ3	TRP TRP	В	42 42	28.443	-8.136	16.680	
ATOM	1310	CH2	TRP		42	27.426 28.318	-9.075 -8.171	18.673 18.077	
MOTA	1311	N		B	43	23.416	-13.980	16.617	
MOTA	1312	Н	LYS		43	23.105	-13.044	16.840	
ATOM	1313	CA	LYS		43	22.378	-14.995	16.526	
ATOM ATOM	1314 1315	C O	LYS LYS	B	43 43	21.368	-14.507 -13.472	15.478 15.706	
ATOM	1316	CB		В	43	20.743 21.694	-15.196	17.893	
MOTA	1317	CG		В	43	22.641	-15.623	19.034	
ATOM	1318	CD	LYS		43		-14.814	20.323	
ATOM	1319	CE	LYS		43		-13.327	20.182	
ATOM ATOM	1320 1321	NZ 1HZ	LYS LYS		43 43		-13.113 -12.125	20.015 19.924	
ATOM	1322	3HZ	LYS		43		-13.593	19.185	
MOTA	1323	2HZ	LYS	В	43		-13.476	20.821	
ATOM	1324	N	PRO		44		-15.204	14.341	
MOTA MOTA	1325 1326	CA C	PRO PRO		44		-14.835	13.382	
ATOM	1325	0	PRO		44 44		-14.997 -15.902	14.044 14.860	
ATOM	1328	CB	PRO		44		-15.761	12.180	
MOTA	1329	CG	PRO	В	44	20.999	-16.999	12.787	
ATOM	1330	CD	PRO		44		-16.434	13.933	
ATOM ATOM	1331 1332	N H	LYS LYS		45 45		-14.101 -13.483	13.712 12.944	
MOTA	1333	CA	LYS		45		-13.463	14.339	
ATOM	1334	C	LYS		45		-13.590	13.329	
MOTA	1335	0	LYS	В	45	15.829	-12.838	12.379	
ATOM	1336	CB	LYS		45		-13.149	15.560	
ATOM ATOM	1337 1338	CG CD	LYS LYS		45 45		-13.442 -12.254	16.579	
ATOM	1339	CE	LYS		45 45		-12.254 -12.461	17.501 18.469	
ATOM	1340	NZ	LYS		45		-13.442	19.474	
ATOM	1341		LYS	В	45	13.805	-13.588	20.126	
ATOM	1342	3HZ	LYS	В	45	15.355	-13.101	19.958	

Heller Ehrman White & McAuliffe, LLP **Sheet 25 of 33**

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

						19.023 13.416 14.085
JCG			Haller Fhrman	. White &	& McAuliffe, LLP	W. C.
3 20C3	Ti	tie: Lise of	S	heet 25 o		ECH MAY VE
3 50m F		Polym	orphisms in Ph	armacog	enomics for Drug Design plications	CENTA
incu ^r e		Data of F		ts: Ramn	arayan <i>et al.</i> ey Docket No. 24737-1906C	EAIRO
MI SAFFOM	1343	2HZ	LYS B	45	14.772 -14.306	19.023
MOTA	1344	N	MET B	46	14.240 -14.005	13.416
MOTA	1345	H	MET B	46	13.991 -14.705	14.085
ATOM	1346	CA	MET B	46	13.203 -13.472	12.570
ATOM ATOM	1347 1348	C O	MET B MET B	46 46	12.291 -12.623 11.782 -13.063	13.425 14.471
MOTA	1349	CB	MET B	46	12.383 -14.616	12.016
ATOM	1350	CG	MET B	46	13.153 -15.586	11.187
MOTA	1351	SD	MET B	46	12.977 -15.188	
MOTA	1352	CE	MET B	46	13.566 -16.690	
ATOM	1353	N	ILE B ILE B	47 47	11.933 -11.379 12.327 -10.991	13.030 12.196
MOTA MOTA	1354 1355	H CA	ILE B ILE B	47	10.971 -10.568	13.797
ATOM	1356	C	ILE B	47	9.761 -10.233	12.962
ATOM	1357	0	ILE B	47	9.819 -10.048	11.731
MOTA	1358	CB	ILE B	47	11.608 -9.294	14.385
MOTA	1359	CG1	ILE B	47	12.345 -8.459	13.318 15.494
ATOM ATOM	1360 1361	CG2 CD1	ILE B ILE B	47 47	12.542 -9.638 12.789 -7.123	13.851
ATOM	1362	N	GLY B	48	8.557 -10.136	13.558
MOTA	1363	H	GLY B	48	8.484 -10.249	14.549
MOTA	1364	CA	GLY B	48	7.365 -9.872	12.800
MOTA	1365	C	GLY B	48	6.826 -8.512	13.141
ATOM ATOM	1366 1367	N O	GLY B GLY B	48 49	7.136 -7.832 5.940 -8.027	14.149 12.306
ATOM	1368	H	GLY B	49	5.668 -8.562	11.506
MOTA	1369	CA	GLY B	49	5.336 -6.745	
ATOM	1370	C	GLY B	49	4.082 -6.786	11.674
ATOM	1371	0	GLY B	49	3.561 -7.847	
ATOM	1372	N H	ILE B ILE B	50 50	3.531 -5.634 4.015 -4.777	11.315 11.492
MOTA MOTA	1373 1374	CA	ILE B	50	2.247 -5.573	10.673
ATOM	1375	C	ILE B	50	2.118 -6.456	9.420
MOTA	1376	0	ILE B	50	1.175 -7.253	
MOTA	1377	CB	ILE B	50	1.982 -4.071	
MOTA	1378	CG1		50 50	1.005 -3.539 1.610 -3.739	
ATOM ATOM	1379 1380	CG2 CD1	ILE B ILE B	50 50	-0.391 -4.077	
ATOM	1381	N	GLY B	51	3.113 -6.410	
MOTA	1382	Н	GLY B	51	3.957 -5.920	
ATOM	1383	CA	GLY B	51	2.926 -7.075	
MOTA	1384	C	GLY B GLY B	51 51	3.671 -8.391 3.716 -8.945	
ATOM ATOM	1385 1386	O N	GLY B	52	4.296 -8.982	
MOTA	1387	H	GLY B	52	4.227 -8.580	
MOTA	1388	CA	GLY B	52	5.053 -10.190	
MOTA	1389	C	GLY B	52	6.334 -10.178	
ATOM	1390	O N	GLY B PHE B	52 53	6.519 -9.421 7.325 -11.015	
MOTA MOTA	1391 1392	N H	PHE B	53 53	7.325 -11.013	
ATOM	1393	CA	PHE B	53	8.542 -11.096	
ATOM	1394	С	PHE B	53	9.727 -10.584	8.315
ATOM	1395	O	PHE B	53	9.780 -10.618	
MOTA MOTA	1396 1397	CB CG	PHE B PHE B	53 53	8.804 -12.555 7.850 -13.023	
ATOM	1397		PHE B	53	6.513 -13.277	
			·- -	-		

Heller Ehrman White & McAuliffe, LLP **Sheet 26 of 33**

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

									'
									MAR TO TOO TOO TOO TOO TOO TOO TOO TOO TOO
				S	Sheet 26 of			EC.	MAR. VIL
,	Т					d Protein Structures of Gene enomics for Drug Design	etic	77	20 6
		•	-	and Cl	linical App				Wies 100, *
			Filing: 11/	/10/00		ey Docket No. 24737-1906C			17/600
MOTA	1399		PHE		53	8.279 -3		11.918	20/202
MOTA	1400	CE1			53		13.697	11.253	
ATOM ATOM	1401	CE2	PHE PHE	В	53 53	7.382 -1 6.052 -1	13.615	12.903 12.574	
ATOM	1402 1403	CZ N	ILE		53 54	10.758 -3		8.985	
ATOM	1403	H		В	54		-9.922	9.960	
ATOM	1405	CA	ILE		54		-9.910	8.338	
MOTA	1406	С	ILE		54	13.089 -1	10.648	9.134	
MOTA	1407	0		В	54		11.006	10.325	
ATOM	1408	CB	ILE	В	54		-8.444	8.236	
MOTA	1409	CG1		В	54 54		-7.775 -7.770	9.611	
ATOM ATOM	$1410 \\ 1411$	CG2 CD1		B B	54 54		-7.770 -6.438	7.218 9.590	
ATOM	1412	N	LYS		55		10.852	8.523	
ATOM	1413	H		В	55		10.599	7.562	
ATOM	1414	CA		В	55	15.403 -1	11.431	9.216	
MOTA	1415	C		В	55		10.324	9.732	
ATOM	1416	0		В	55		-9.328	9.047	
ATOM	1417	CB	LYS	В	55 55		12.237	8.245	
ATOM ATOM	1418 1419	CG CD	LYS LYS	B B	55 55		13.596 14.348	8.063 6.953	
ATOM	1419	CE		В	55		14.520	5.813	
ATOM	1421	NZ		В	55		15.577	4.897	
MOTA	1422	1HZ		В	55	15.095 -1	15.676	4.154	
MOTA	1423	3HZ		В	55		16.441	5.395	
ATOM	1424	2HZ		В	55		15.334	4.518	
ATOM ATOM	1425 1426	N H	VAL VAL		56 56		10.547 11.418	10.910 11.382	
ATOM	1425	н СА	VAL		56		-9.578	11.534	
ATOM	1428	C	VAL		56		10.304	12.184	
ATOM	1429	Ö	VAL		56		11.539	12.367	
MOTA	1430	CB	VAL	В	56		-8.819	12.609	
MOTA	1431		VAL		56		-7.943	11.921	
ATOM	1432		VAL		56		-9.788	13.599	
ATOM	1433	Ŋ	ARG		57 57		-9.593 -8.624	12.591 12.353	
ATOM ATOM	1434 1435	H CA	ARG ARG		5 <i>7</i> 57		10.193	13.386	
ATOM	1436	C	ARG		57		-9.608	14.804	
ATOM	1437	Ö	ARG		57	20.814 -	-8.395	15.053	
ATOM	1438	CB	ARG		57		-9.873	12.817	
ATOM	1439	CG	ARG		57	22.664 -1		11.439	
ATOM	1440	CD	ARG		57	24.012 -1		10.899	
ATOM ATOM	$\frac{1441}{1442}$	NE HE	ARG ARG		57 57	24.280 -1 23.592 -1		9.617 9.250	
ATOM	1442	CZ	ARG		57	25.392 -1		8.921	
ATOM	1444		ARG		57		-9.650	9.353	
ATOM		2HH1			57	26.223 -	-9.171	10.224	
ATOM	1446	1HH1			57		-9.505	8.808	
ATOM	1447		ARG		57	25.561 -1		7.760	
ATOM	1448	1HH2			57	26.392 -1 24.857 -1		7.225 7.422	
ATOM ATOM	1449 1450	2HH2 N	GLN		57 58	20.997 -1		15.832	
ATOM	1450	H	GLN		58	21.176 -1		15.650	
ATOM	1452	CA	GLN		58	20.780 -1		17.206	
MOTA	1453	C	GLN		58	22.108 -	-9.886	17.882	
MOTA	1454	0	GLN	В	58	22.918 -1	10.815	18.038	

Heller Ehrman White & McAuliffe, LLP Sheet 27 of 33

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

			Heller I		n White & McAi	uliffe, LLP			PECEIVE 10 2003 ENTER 1600/2000
	Т			ational		in Structures of s for Drug Desig			C
		101,11	-	and C	linical Applications: ts: Ramnarayan	ons	•	TEC.	MAR, VA
			Filing: 11	10/00		ket No. 24737-19	06C	CACA	Su 1020 56
MOTÁ ATOM	1455 1456	CB CG	GLN GLN		58		-11.190	17.932	WER . VO3
ATOM	1457	CD	GLN		58 58	19.765 19.179		19.366 20.112	600/2
MOTA	1458	OE1	GLN		58	19.712		21.101	4.50 ₀
ATOM	1459	NE2			58	18.055	-12.476		•
ATOM ATOM	1460 1461	1HE2 2HE2			58 58	17.598	-13.249	20.063	
ATOM	1461	Znez N	TYR		58 59	17.647 22.416	-12.066 -8.692	18.807 18.422	
ATOM	1463	H	TYR		59	21.788	-7.921	18.311	
ATOM	1464	CA	TYR		59	23.631	-8.486	19.161	
ATOM ATOM	1465 1466	C O	TYR TYR		59 59	23.244 22.178	-8.290 -7.728	20.607	
ATOM	1467	CB	TYR		59	24.387	-7.726	20.927 18.653	
MOTA	1468	CG	TYR	В	59	24.271	-7.075	17.149	
MOTA	1469	CD1	TYR		59	23.045	-7.242	16.494	
MOTA MOTA	1470 1471	CD2 CE1	TYR TYR		59 59	25.385 22.939	-6.753 -7.093	16.374 15.112	
ATOM	1472	CE2	TYR		59	25.291	-6.603	14.995	
MOTA	1473	CZ	TYR		59	24.068	-6.774	14.365	
ATOM ATOM	1474	OH	TYR		59	24.018	-6.620	13.010	
ATOM	1475 1476	HH N	TYR ASP		59 60	24.926 24.010	-6.394 -8.785	12.658 21.596	
ATOM	1477	H		В	60	24.852	-9.276	21.372	
MOTA	1478	CA	ASP		60	23.644	-8.624	22.992	
MOTA MOTA	1479 1480	C 0	ASP ASP	В	60 60	24.556	-7.595	23.615	
ATOM	1481	CB		В	60	25.654 23.789	-7.261 -9.920	23.125 23.777	
MOTA	1482	CG	ASP		60	22.803	-10.960	23.332	
MOTA	1483			В	60	21.619	-10.634	23.032	
ATOM ATOM	1484 1485	N N	ASP GLN		60 61	23.208	-12.126 -7.022	23.273 24.774	
ATOM	1486	H	GLN		61	23.252	-7.022	25.146	
MOTA	1487	CA	GLN	В	61	25.011	-6.086	25.519	
ATOM	1488	C	GLN		61	25.411	-4.866	24.746	
ATOM ATOM	1489 1490	O CB	GLN GLN		61 61	26.560 26.269	-4.382 -6.763	24.832 26.028	
ATOM	1491	CG	GLN		61	26.020	-8.038	26.753	
ATOM	1492	CD	GLN		61	25.714	-7.766	28.185	
ATOM ATOM	1493 1494		GLN GLN		61	24.572	-7.455	28.548	
ATOM			GLN		61 61	26.744 26.620	-7.844 -7.675	29.014 29.992	
MOTA		2HE2	GLN		61	27.654	-8.073	28.669	
ATOM	1497	N	ILE		62	24.539	-4.257	23.933	
ATOM ATOM	1498 1499	H CA	ILE		62 62	23.628 24.878	-4.648 -3.047	23.801 23.238	
ATOM	1500	C	ILE		62	24.571	-1.885	24.144	
MOTA	1501	0	ILE	В	62	23.515	-1.819	24.819	
ATOM	1502	CB	ILE		62	24.097	-2.922	21.912	
MOTA MOTA	1503 1504		ILE		62 62	24.310 24.568	-4.170 -1.709	21.094 21.067	
MOTA	1505		ILE		62	25.794	-4.479	20.878	
ATOM	1506	N	LEU		63	25.485	-0.912	24.304	
MOTA MOTA	1507 1508	H CA	LEU		63 63	26.403 25.192	-1.028	23.926	
ATOM	1509		LEU		63	24.630	0.322 1.296	25.015 24.030	
MOTA	1510	0	LEU		63	25.239	1.658	22.995	

Heller Ehrman White & McAuliffe, LLP Sheet 28 of 33

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

Applicants: Ramnarayan et al.

Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

RECEIVED

MAR 1 0 2003

0.970 25.590
2.358 26.226
2.261 27.576
3.162 26.382
1.946 24.358

MOTA	1511	CB	LEU B	63	26.436	0.970	25.590
ATOM	1512	ĊĠ	LEU B	63	26.186	2.358	26.226
ATOM	1513	CD1	LEU B	63	25.486	2.261	27.576
ATOM	1514	CD2	LEU B	63	27.468	3.162	26.382
ATOM		N N			23.492		
	1515		ILE B	64		1.946	24.358
ATOM	1516	H	ILE B	64	22.958	1.643	25.148
MOTA	1517	CA	ILE B	64	23.003	3.068	23.617
MOTA	1518	С	ILE B	64	22.872	4.194	24.612
ATOM	1519	0	ILE B	64	22.915	4.007	25.846
MOTA	1520	CB	ILE B	64	21.634	2.701	22.989
MOTA	1521	CG1	ILE B	64	21.825	1.521	22.029
MOTA	1522	CG2	ILE B	64	20.982	3.894	22.246
MOTA	1523	CD1	ILE B	64	20.593	1.096	21.260
MOTA	1524	N	GLU B	65	22.803	5.460	24.172
ATOM	1525	Н	GLU B	65	23.013	5.664	23.216
ATOM	1526	CA	GLU B	65	22.432	6.551	25.037
ATOM	1527	C	GLU B	65	21.242	7.194	24.373
MOTA	1528	0	GLU B	65	21.312	7.729	23.257
ATOM	1529	CB	GLU B	65	23.497	7.615	25.237
ATOM	1530	CG	GLU B	65			
					24.787	7.196	25.761
MOTA	1531	CD	GLU B	65	25.694	8.385	26.076
ATOM	1532	OE1	GLU B	65	25.170	9.510	26.311
MOTA	1533	OE2	GLU B	65	26.938	8.200	26.092
MOTA	1534	N	ILE B	66	20.078	7.240	25.035
MOTA	1535	Н	ILE B	66	20.010	6.835	25.947
MOTA	1536	CA	ILE B	66	18.907	7.865	24.462
MOTA	1537	С	ILE B	66	18.777	9.195	25.145
MOTA	1538	0	ILE B	66	18.591	9.303	26.379
MOTA	1539	CB	ILE B	66	17.713	6.995	24.790
MOTA	1540	CG1	ILE B	66	17.916	5.583	24.335
MOTA	1541	CG2	ILE B	66	16.405	7.544	24.177
MOTA	1542	CD1	ILE B	66	16.888	4.677	24.884
MOTA	1543	N	CYS B	67	18.965	10.325	24.437
MOTA	1544	H	CYS B	67	19.201	10.268	23.467
MOTA	1545	CA	CYS B	67	18.833	11.663	25.049
MOTA	1546	C	CYS B	67	19.637	11.781	26.319
MOTA	1547	0	CYS B	67	19.235	12.400	27.328
ATOM	1548	CB	CYS B	67	17.387	12.023	25.319
ATOM	1549	SG	CYS B	67	16.407	12.259	23.821
ATOM	1550	N	GLY B	68	20.830	11.180	26.383
ATOM	1551	H	GLY B	68	21.158	10.646	25.604
ATOM	1552	CA	GLY B	68	21.654	11.288	27.558
ATOM	1553	C	GLY B	68	21.464	10.185	28.584
ATOM	1554	0	GLY B	68	22.174	10.128	29.606
ATOM	1555			69	20.513	9.255	28.425
		N	HIS B			9.282	
ATOM	1556	H	HIS B	69	19.924 20.304		27.618
MOTA	1557	CA	HIS B	69		8.199	29.391
MOTA	1558	C	HIS B	69	20.861	6.936	28.811
MOTA	1559	0	HIS B	69	20.589	6.560	27.647
ATOM	1560	CB	HIS B	69	18.832	7.992	29.654
ATOM	1561	CG	HIS B	69	18.175	9.203	30.223
ATOM	1562	ND1	HIS B	69	17.504	9.195	31.435
MOTA	1563	HD1	HIS B	69	17.383	8.402	32.032
MOTA	1564		HIS B	69	18.122	10.470	29.729
MOTA	1565		HIS B	69	17.070	10.429	31.626
MOTA	1566	NE2	HIS B	69	17.410	11.240	30.635

Heller Ehrman White & McAuliffe, LLP Sheet 29 of 33

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

										RECEIVES MAR I O 2003 CENTER 1600/2900
<u>)</u>			Heller I			McAuliffe, LLP				
10 to	7	Γitle: Use o	f Comput		neet 29 of 3 y Derived I	3 Protein Structure:	s of Ge	netic	>_	MAD V
ř		Polyi			rmacogeno nical Appli	omics for Drug De ications	esign		ECH	
Š			Ap	plicant	s: Ramnar	ayan <i>et al</i> .	- 4004	•		CENT 2002
		Date of 1	Filing: 11/	/10/00	Attorney	Docket No. 2473	7-19060	C		ERIO
MOTA	1567	N	LYS	в	70	21.75		6.217	29.499	1000/2000
MOTA	1568	H	LYS		70	22.02		6.512	30.414	300
ATOM	1569	CA			70	22.32 21.38		5.020 3.854	28.945 29.145	
MOTA MOTA	1570 1571	C O			70 70	20.62		3.725	30.120	
ATOM	1572	CB			, 0 70	23.61		4.678	29.663	
MOTA	1573	CG			70	24.69	4	5.655	29.379	
MOTA	1574	CD			70	25.73		5.524	30.444	
MOTA	1575	CE			70	27.04		6.090	30.011	
MOTA	1576	NZ			70 70	26.94 27.82		7.548 7.940	30.000 29.711	
ATOM ATOM	1577 1578	1HZ 3HZ			70 70	26.72		7.874	30.919	
MOTA	1579	2HZ	LYS		, 0 70	26.23		7.828	29.363	
MOTA	1580	N	ALA	В	71	21.51	2	2.849	28.284	
MOTA	1581	H	ALA		71	22.14		2.934	27.512	
MOTA	1582	CA	ALA		71	20.76		1.630 0.576	28.432 27.805	
MOTA	1583 1584	C O	ALA ALA		71 71	21.62 22.46		0.830	26.912	
ATOM ATOM	1585	CB	ALA		71	19.45		1.726	27.737	
MOTA	1586	N	ILE		72	21.54		-0.681	28.237	
ATOM	1587	Н	ILE		72	20.86		-0.925	28.926	
MOTA	1588	CA	ILE		72	22.42		-1.698	27.730	
ATOM	1589	C	ILE		72	21.61 20.90		-2.938 -3.490	27.462 28.330	
ATOM ATOM	1590 1591	O CB			72 72	23.52		-3.490	28.737	
ATOM	1592	CG1			72 72	24.32		-0.735	29.090	
ATOM	1593	CG2			72	24.44	2	-3.037	28.153	
MOTA	1594	CD1	ILE		72	25.37		-1.012	30.163	
MOTA	1595	N	GLY		73	21.60		-3.446	26.235 25.534	
MOTA MOTA	1596 1597	H CA	GLY		73 73	22.20 20.70		-3.054 -4.545	26.062	
ATOM	1598	CA	GLY		73	20.82		-5.084	24.663	
ATOM	1599	Ö	GLY		73	21.75		-4.831	23.863	
MOTA	1600	N	THR		74	19.85		-5.905	24.271	
MOTA	1601	H	THR		74	19.08		-6.088	24.882	
ATOM	1602	CA	THR		74 74	19.86 19.36		-6.548 -5.590	22.988 21.931	
ATOM ATOM	1603 1604	C O	THR THR		74 74	18.33		-4.870	22.053	
ATOM	1605	CB	THR		74	19.01		-7.801	23.074	
ATOM	1606	OG1			74	19.61		-8.683	24.013	
MOTA	1607	HG1			74	19.06		-9.519	24.092	
MOTA	1608	CG2			74	18.81		-8.496	21.705 20.762	
ATOM	1609 1610	N H	VAL VAL		75 75	20.02 20.83		-5.620 -6.203	20.762	
ATOM ATOM	1611	CA	VAL		75 75	19.63		-4.837	19.611	
MOTA	1612	C	VAL		75	19.60		-5.771	18.426	
ATOM	1613	0	VAL	В	75	20.44		-6.673	18.230	
ATOM	1614	CB	VAL		75 75	20.66		-3.712	19.395	
ATOM	1615	CG1			75 75	20.47 20.67		-3.002 -2.708	18.046 20.567	
ATOM ATOM	1616 1617	CG2 N	VAL LEU		75 76	18.55		-5.647	17.565	
ATOM	1618	H	LEU		76 76	17.82		-5.000	17.767	
ATOM	1619	CA	LEU	В	76	18.44	14	-6.427	16.324	
MOTA	1620		LEU		76	18.73		-5.487	15.144	
MOTA	1621		LEU LEU		76 76	18.23 17.02		-4.343 -7.021	15.040 16.158	
MOTA	1622	CB	TEA	D	76	11.02		,. 021	10.100	

Heller Ehrman White & McAuliffe, LLP Sheet 30 of 33

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

								٠ ٧٧	<u> </u>
			Heller J		White & McAu	ıliffe, LLP		~ MA	18 10 2003 TO 1600/2900
	Т			ationally		in Structures of C	Genetic	CHCC.	10,50
5		Fulyi	-	and Clini	rmacogenomics iical Applicatio : Ramnarayan			CNIE	6. (003 -
		Date of	Filing: 11/			ket No. 24737-190	16C	• 1	1600/200
ATOM	1623	CG	LEU		'6 '6	16.427 14.992	-7.612 -8.075	17.449 17.263	1500
ATOM ATOM	1624 1625		LEU		6	14.992	-8.758	18.019	!
ATOM	1626	N	VAL		7	19.607	-5.900	14.222	ļ
MOTA	1627	H	VAL		7	19.985	-6.824	14.276	1
MOTA	1628	CA	VAL		'7 '7	20.027 19.570	-5.042 -5.662	13.133 11.842	ļ
ATOM ATOM	1629 1630	C O	VAL VAL			19.570	-5.662 -6.883	11.542	J
ATOM	1631	CB	VAL			21.563	-4.905	13.191	J
MOTA	1632	CG1	VAL	в 7	7	22.129	-4.202	11.944	J
MOTA	1633	CG2				22.030	-4.166	14.470	J
MOTA	1634	N H	GLY GLY		'8 '8	18.978 18.841	-4.915 -3.941	10.943 11.121	J
MOTA MOTA	1635 1636	n CA	GLY			18.523	-5.475	9.705	ļ
MOTA	1637	C	GLY			18.019	-4.338	8.874	J
MOTA	1638	0	GLY	B 7		18.130	-3.142	9.223	1
ATOM	1639	N	PRO			17.408	-4.596	7.722 6.834	J
ATOM ATOM	1640 1641	CA C	PRO PRO			16.954 15.635	-3.535 -2.872	6.834 7.280	J
ATOM ATOM	1641	0	PRO :		'9	14.609	-2.877	6.565	ĺ
MOTA	1643	CB	PRO			16.804	-4.274	5.492	J
MOTA	1644	CG	PRO			16.463	-5.712	5.881	1
MOTA	1645	CD	PRO			17.159	-5.959	7.189	1
MOTA MOTA	1646 1647	N H	THR THR			15.574 16.374	-2.247 -2.242	8.458 9.058	J
ATOM	1647	л СА	THR			14.364	-1.583	8.865	J
ATOM	1649	C	THR			14.312	-0.189	8.228	1
MOTA	1650	0	THR			15.349	0.471	8.001	1
ATOM	1651	CB	THR			14.250	-1.512	10.410	1
ATOM ATOM	1652 1653	OG1 HG1				13.079 13.022	-0.802 -0.766	10.806 11.804	ļ
ATOM	1653	CG2				15.519	-0.700	11.062	J
MOTA	1655	N	PRO			13.137	0.354	7.885	1
MOTA	1656	CA	PRO	B 8	1	13.036	1.747	7.379	1
ATOM	1657	C	PRO			13.363	2.732	8.484	1
ATOM	1658	O	PRO			13.791 11.548	3.880 1.912	8.250 6.982	1
ATOM ATOM	1659 1660	CB CG	PRO PRO			10.819	0.674	7.488	1
MOTA	1661	CD	PRO		31	11.854	-0.387	7.797	ļ
ATOM	1662	N	VAL	B 8	12	13.197	2.368	9.772	J
ATOM	1663	H	VAL		32	12.940	1.427	9.992	1
MOTA	1664	CA	VAL		32	13.380 14.160	3.306 2.668	10.885 12.010	1
MOTA MOTA	1665 1666	C O	VAL VÁL		32 32	14.160	1.465	12.293	1
ATOM	1667	CB	VAL		32	11.996	3.695	11.431	1
MOTA	1668	CG1	VAL	B 8	32	12.055	4.961	12.269	1
ATOM	1669		VAL		32	10.958	3.857	10.318	1
ATOM	1670	N	ASN		13 13	14.963 15.147	3.422 4.370	12.775 12.516	
ATOM ATOM	1671 1672	H CA	ASN ASN		33	15.147	2.846	13.967	
ATOM	1673	C	ASN		33	14.481	2.874	15.022	1
MOTA	1674	Ō	ASN	B 8	3	13.814	3.903	15.294	1
MOTA	1675	CB	ASN		33	16.743	3.639	14.472	1
ATOM	1676	CG OD1	ASN ASN		33 33	17.935 18.409	3.574 2.511	13.570 13.167	1
ATOM ATOM	1677 1678		ASN		33	18.439	4.735	13.238	J
				-					

Heller Ehrman White & McAuliffe, LLP Sheet 31 of 33

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

								/	RECEIVED WIER 1600/2900
.\			Heller E		n White & McA	Auliffe, LLP			, Cx.
5	т	itle: Use of	Computa		Sheet 31 of 33 ly Derived Prot	tein Structures of G	enetic	>	MAD YVA
.		Polyn			armacogenomi inical Applicati	cs for Drug Design		ECH -	"In Co
		_	Ap	plican	ts: Ramnaraya	n <i>et al</i> .		CEN	1/2 2000
			Filing: 11/		Attorney Do	cket No. 24737-1906		• •	(E) 10.
MOTA	1679	2HD2			83	19.237	4.786	12.638	1000/200
MOTA	1680	1HD2			83	18.030 14.225	5.580 1.749	13.582 15.711	1500
MOTA MOTA	1681 1682	N H	ILE		84 84	14.791	0.938	15.711	
ATOM	1683	CA	ILE		84	13.154	1.658	16.667	
ATOM	1684	C	ILE		84	13.740	1.317	18.020	
MOTA	1685	0	ILE		84	14.428	0.300	18.223	
MOTA	1686	CB	ILE		84	12.214	0.517	16.260	
ATOM	1687	CG1	ILE		84	11.656 11.128	0.759 0.247	14.849 17.315	
ATOM ATOM	1688 1689	CG2 CD1	ILE ILE		84 84	10.770	-0.359	14.291	
ATOM	1690	N	ILE		85	13.483	2.157	19.051	
MOTA	1691	H	ILE		85	13.028	3.030	18.877	
MOTA	1692	CA	ILE	В	85	13.846	1.834	20.408	
MOTA	1693	C	ILE		85	12.596	1.254	21.085	
ATOM	1694	O	ILE		85	11.536	1.903	21.267	
ATOM ATOM	1695 1696	CB CG1	ILE		85 85	14.308 15.447	3.115 3.826	21.137 20.395	
ATOM	1697	CG2	ILE		85	14.673	2.840	22.589	
MOTA	1698	CD1	ILE		85	16.730	3.053	20.263	
MOTA	1699	N	GLY	В	86	12.617	-0.052	21.422	
MOTA	1700	H	GLY		86	13.439	-0.595	21.251	
MOTA	1701	CA	GLY		86	11.481 11.557	-0.702 -0.748	22.028 23.538	
ATOM ATOM	1702 1703	C O	GLY GLY		86 86	12.412	-0.746	24.238	
MOTA	1703	N	ARG		87	10.614	-1.489	24.149	
MOTA	1705	H	ARG		87	10.012	-2.072	23.604	
MOTA	1706	CA	ARG		87	10.442	-1.468	25.584	
MOTA	1707	C	ARG		87	11.627	-2.021	26.326	
ATOM	1708	O CB	ARG ARG		87 87	11.911 9.200	-1.666 -2.271	27.495 25.949	
ATOM ATOM	1709 1710	CG	ARG		87	7.951	-1.960	25.161	
MOTA	1711	CD	ARG		87	6.956	-3.074	25.219	
MOTA	1712	NE	ARG	В	87	5.906	-2.933	24.205	
MOTA	1713	HE	ARG		87	5.790	-2.039	23.772	
MOTA	1714	CZ	ARG		87 87	5.119 5.252	-3.953 -5.161	23.856 24.396	
ATOM ATOM	1715	2HH1	ARG		87	5.958	-5.326	25.085	
ATOM		1HH1			87	4.646	-5.905	24.113	
MOTA	1718		ARG		87	4.180	-3.751	22.939	
MOTA		1HH2			87	3.580	-4.502	22.664	
ATOM		2HH2			87	4.073	-2.848	22.524	
MOTA MOTA	1721 1722	N H	ASN ASN		88 88	12.413 12.206	-2.937 -3.237	25.731 24.800	
ATOM	1723	CA	ASN		88	13.582	-3.519	26.415	
ATOM	1724	C	ASN		88	14.532	-2.429	26.821	
MOTA	1725	0	ASN	В	88	15.214	-2.516	27.863	
ATOM	1726	CB	ASN		88	14.285	-4.605	25.559	
ATOM	1727	CG	ASN		88	15.063 14.515	-4.031 -3.245	24.358 23.612	
MOTA MOTA	1728 1729		ASN ASN		88 88	16.333	-3.245 -4.445	24.180	
MOTA		2HD2			88	16.875	-4.099	23.414	
MOTA	1731	1HD2	ASN	В	88	16.744	-5.102	24.812	
MOTA	1732	N	LEU		89	14.695	-1.328	26.061	
MOTA	1733	H	LEU		89	14.192 15.597	-1.240	25.201	
MOTA	1734	CA	LEU	B	89	15.531	-0.234	26.452	

Heller Ehrman White & McAuliffe, LLP Sheet 32 of 33

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

							». <i>1</i>						
		:	Heller Ehrman	White &	à McAuliffe, LLP		ECH ?	AP LA					
<u>.</u>	Tit	le: Use of C		heet 32 o y Derived	f 33 d Protein Structures of Gen	ietic	EN	200					
= *	Heller Ehrman White & McAuliffe, LLP Sheet 32 of 33 Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications Applicants: Ramnarayan et al. Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C ATOM 1735 C LEU B 89 14.797 0.937 27.053 ATOM 1736 O LEU B 89 15.293 1.734 27.879												
		Date of Fil		s: Ramn	arayan <i>et al.</i> ey Docket No. 24737-1906C			.00/202					
MOTA	1735		LEU B	89	14.797	0.937	27.053	100					
MOTA	1736		LEU B	89	15.293	1.734							
ATOM ATOM	1737 1738		LEU B	89	16.421	0.232	25.236						
ATOM	1739	CG CD1	LEU B	89 89	17.400 18.215	-0.754 0.002	24.567 23.573						
ATOM	1740	CD2		89	18.352	-1.458	25.570						
MOTA	1741	N	LEU B	90	13.511	1.114	26.705						
MOTA	1742	H	LEU B	90	13.082	0.486	26.056						
ATOM ATOM	1743 1744	CA C	LEU B LEU B	90 90	12.698 12.537	2.221	27.257						
ATOM	1745	0	LEU B	90	12.575	2.060 3.033	28.751 29.533						
MOTA	1746	CB	LEU B	90	11.311	2.258	26.628						
MOTA	1747	CG	LEU B	90	11.232	2.730	25.168						
ATOM	1748	CD1		90	9.808	2.744	24.642						
ATOM ATOM	1749 1750	CD2 N	LEU B THR B	90 91	11.831 12.315	4.105 0.843	24.982 29.271						
ATOM	1751	Н	THR B	91	12.218	0.055	28.663						
MOTA	1752	CA	THR B	91	12.210	0.634	30.699						
ATOM	1753	C	THR B	91	13.537	1.028	31.375						
ATOM ATOM	1754 1755	O CB	THR B	91	13.575	1.525	32.518						
ATOM	1756	OG1	THR B	91 91	11.893 12.919	-0.843 -1.676	31.028 30.504						
ATOM	1757	HG1		91	12.722	-2.634	30.713						
ATOM	1758	CG2		91	10.599	-1.285	30.418						
ATOM ATOM	1759 1760	N	GLN B	92	14.705	0.852	30.732						
ATOM	1761	H CA	GLN B GLN B	92 92	14.707 15.920	0.497 1.190	29.797 31.433						
ATOM	1762	C	GLN B	92	16.088	2.660	31.633						
MOTA	1763	0	GLN B	92	16.807	3.137	32.527						
MOTA	1764	CB	GLN B	92	17.127	0.680	30.682						
MOTA MOTA	1765 1766	CG CD	GLN B GLN B	92 92	17.076 18.336	-0.805 -1.314	30.517 29.900						
MOTA	1767	OE1		92	19.394	-0.720	30.059						
MOTA	1768		GLN B	92	18.221	-2.411	29.195						
MOTA	1769		GLN B	92	19.022	-2.813	28.751						
MOTA MOTA	1770 1771	2HE2 N	GLN B ILE B	92 93	17.331 15.538	-2.856 3.512	29.095						
ATOM	1772	H	ILE B	93	15.016	3.153	30.746 29.972						
MOTA	1773	CA	ILE B	93	15.693	4.937	30.899						
ATOM	1774	C	ILE B	93	14.522	5.549	31.698						
ATOM ATOM	1775 1776	O CB	ILE B ILE B	93 93	14.438 15.981	6.773 5.657	31.940 29.548						
ATOM	1777	CG1	ILE B	93 93	14.746	5.718	29.548						
MOTA	1778	CG2	ILE B	93	17.223	5.060	28.874						
ATOM	1779	CD1	ILE B	93	14.946	6.734	27.488						
ATOM	1780	N	GLY B	94	13.617	4.731	32.263						
ATOM ATOM	1781 1782	H CA	GLY B GLY B	94 94	13.639 12.594	3.752 5.224	32.060 33.170						
ATOM	1783	C	GLY B	94	11.443	5.846	32.432						
ATOM	1784	0	GLY B	94	10.766	6.803	32.878						
ATOM	1785	N	CYS B	95 05	11.134	5.354	31.225						
ATOM ATOM	1786 1787	H CA	CYS B	95 95	11.603 10.134	4.538 5.969	30.888 30.381						
ATOM	1788	C	CYS B	95 95	8.750	5.512	30.361						
ATOM	1789	0	CYS B	95	8.478	4.309	31.006						
ATOM	1790	CB	CYS B	95	10.456	5.643	28.922						

FIG. 11 A-31

WAR 0 3 2003 PER COOK

Heller Ehrman White & McAuliffe, LLP Sheet 33 of 33

Title: Use of Computationally Derived Protein Structures of Genetic Polymorphisms in Pharmacogenomics for Drug Design and Clinical Applications

Applicants: Ramnarayan et al.
Date of Filing: 11/10/00 Attorney Docket No. 24737-1906C

MOTA	1791	SG	CYS B	95	9.426	6.512	27.764
MOTA	1792	N	THR B	96	7.778	6.444	30.764
MOTA	1793	H	THR B		8.014	7.401	30.539
MOTA	1794	CA	THR B	96	6.379	6.163	31.108
MOTA	1795	C	THR B		5.390	6.970	30.254
MOTA	1796	0	THR B		5.567	8.171	30.066
MOTA	1797	CB	THR B		6.111	6.439	32.604
MOTA	1798	OG1	THR B		6.341	7.794	32.938
MOTA	1799	HG1	THR B		6.111	7.924	33.861
MOTA	1800	CG2	THR B		6.938	5.566	33.554
MOTA	1801	N	LEU B		4.302	6.321	29.809
ATOM	1802	Н	LEU B		4.216	5.332	29.997
MOTA	1803	CA	LEU B		3.127	6.986	29.238
MOTA	1804	C	LEU B		2.336	7.681	30.358
MOTA	1805	0	LEU B		2.350	7.221	31.499
MOTA	1806	CB	LEU B		2.226	5.958	28.532
MOTA	1807	CG	LEU B		2.860	5.279	27.300
MOTA	1808	CD1	LEU B		2.101	3.986	26.957
MOTA	1809	CD2	LEU B		2.842	6.216	26.085
MOTA	1810	N	ASN B		1.637	8.777	30.024
MOTA	1811	H	ASN B		1.662	9.086	29.063
MOTA	1812	CA	ASN B		0.906	9.631	30.960
MOTA	1813	C	ASN B		-0.251	10.321	30.231
MOTA	1814	0	ASN B		-0.032	11.303	29.522
MOTA	1815	CB	ASN B		1.845	10.678	31.587
MOTA	1816	CG	ASN E		2.783	10.077	32.634
MOTA	1817	OD1	ASN E		3.926	9.739	32.335
MOTA	1818	ND2	ASN E		2.297	9.942	33.870
MOTA	1819	2HD2	ASN E		2.877	9.551	34.599
MOTA	1820	1HD2	ASN E		1.351	10.229	34.074
MOTA	1821	N	LEU E		-1.476	9.808	30.426
MOTA	1822	H	LEU B		-1.568	9.010	31.037
MOTA	1823	CA	LEU E		-2.709	10.288	29.797
MOTA	1824	С	LEU E		-3.816	10.589	30.815
MOTA	1825	0	LEU E		-3.630	10.272	32.011
MOTA	1826	CB	LEU E		-3.146	9.340	28.657
MOTA	1827	CG	LEU E		-3.714	7.932	28.941
MOTA	1828	CD1	LEU E		-2.767	7.057	29.774
MOTA	1829	CD2	LEU E		-5.134	7.943	29.528
MOTA	1830	TXO	LEU E	99	-4.842	11.156	30.376
TER							

FIG. 11 A-32