

IN THE CLAIMS

1. (currently amended) Glass-ceramics having an average linear thermal expansion coefficient within a range of $0.0 \pm 0.2 \times 10^{-7}/^{\circ}\text{C}$ within a temperature range from 0°C to 50°C , having difference between the maximum value and the minimum value of $\Delta L/L$ of 10×10^{-7} or below, and comprising SiO_2 , Al_2O_3 and P_2O_5 with the total amount thereof in mass % being within a range from 86.0% 86.7% to 89.0% and further comprising CaO in an amount of 0.5 mass % or more, wherein the ratio of P_2O_5 to Al_2O_3 in mass % is within a range from 0.270 to 0.33.

2. (previously presented) Glass-ceramics as defined in claim 1 wherein the ratio of P_2O_5 to SiO_2 in mass % and the ratio of P_2O_5 to Al_2O_3 are

$$\begin{array}{ll} \text{P}_2\text{O}_5/\text{SiO}_2 & 0.1230 - 0.1450 \text{ and} \\ \text{P}_2\text{O}_5/\text{Al}_2\text{O}_3 & 0.270 - 0.330. \end{array}$$

3. (currently amended) Glass-ceramics having an average linear thermal expansion coefficient within a range of $0.0 \pm 0.1 \times 10^{-7}/^{\circ}\text{C}$ within a temperature range from 0°C to 50°C , having difference between the maximum value and the minimum value of $\Delta L/L$ of 8×10^{-7} or below, and comprising SiO_2 , Al_2O_3 and P_2O_5 with the total amount thereof in mass % being within a range from 86.0% 86.7% to 89.0% and further comprising CaO in an amount of 0.5 mass % or more, wherein the ratio of P_2O_5 to Al_2O_3 in mass % is within a range from 0.270 to 0.33.

4. (previously submitted) Glass-ceramics as defined in claim 3 wherein the ratio of P_2O_5 to SiO_2 in mass % and the ratio of P_2O_5 to Al_2O_3 are

$$\begin{array}{ll} \text{P}_2\text{O}_5/\text{SiO}_2 & 0.1230 - 0.1450 \text{ and} \\ \text{P}_2\text{O}_5/\text{Al}_2\text{O}_3 & 0.270 - 0.330. \end{array}$$

5. (original) Glass-ceramics as defined in claim 1 wherein surface roughness (Ra)

(arithmetic mean roughness) is 3 Å or below.

6. (original) Glass-ceramics as defined in claim 1 wherein an average crystal grain diameter of precipitating crystal phase or phases is within a range from 50nm to 90nm.

7. (original) Glass-ceramics as defined in claim 1 which comprise β -quartz (β -SiO₂) and/or β -quartz solid solution (β -SiO₂ solid solution) as a predominant crystal phase.

8. (original) Glass-ceramics as defined in claim 1 which are free of PbO, Na₂O, K₂O and B₂O₃.

9. (original) Glass-ceramics as defined in claim 1 obtained by heat treating, for crystallization, a base glass which comprises, in mass %,

SiO ₂	53 – 57%
P ₂ O ₅	7.0 – 8.5% and
Al ₂ O ₃	23 – 26%

and is substantially free of PbO, Na₂O, K₂O and B₂O₃, said glass-ceramics comprising β -quartz (β -SiO₂) and/or β -quartz solid solution (β -SiO₂ solid solution) as a predominant crystal phase.

10. (original) Glass-ceramics as defined in claim 9 comprising, in mass %, Li₂O within a range of 3.5 – 4.5%.

11. (currently amended) Glass-ceramics as defined in claim 10 comprising, in mass %,

<u>CaO</u>	0.5 – 1.5% and
MgO	0.5 – 1.5% and/or
ZnO	0.1 – 1.5% and/or
GeO	0.5 – 1.5% and/or
BaO	0.5 – 1.5% and/or
TiO ₂	1.5 – 3.0% and/or

ZrO_2 1.0 – 3.0% and/or
 As_2O_3 0.5 – 1.0%.

12. (original) Glass-ceramics as defined in claim 1 wherein the maximum temperature of the heat treatment for crystallization is within a range from 750°C to 800°C.

13. (previously submitted) A mask for lithography comprising glass-ceramics as defined in claim 1.

14. (previously submitted) An optical system reflecting mirror for lithography comprising glass-ceramics as defined in claim 1.

15. (previously submitted) A wafer stage or a reticle stage for lithography comprising glass-ceramics as defined in claim 1.

16. (previously submitted) A component part of a precision instrument comprising glass-ceramics as defined in claim 1.

17. (original) Glass-ceramics as defined in claim 3 wherein surface roughness (Ra) (arithmetic mean roughness) is 3 Å or below.

18. (original) Glass-ceramics as defined in claim 3 wherein an average crystal grain diameter of precipitating crystal phase or phases is within a range from 50nm to 90nm.

19. (original) Glass-ceramics as defined in claim 3 which comprise β -quartz (β - SiO_2) and/or β -quartz solid solution (β - SiO_2 solid solution) as a predominant crystal phase.

20. (original) Glass-ceramics as defined in claim 3 which are free of PbO , Na_2O , K_2O and B_2O_3 .

21. (original) Glass-ceramics as defined in claim 3 obtained by heat treating, for

crystallization, a base glass which comprises, in mass %,

SiO ₂	53 – 57%
P ₂ O ₅	7.0 -- 8.5% and
Al ₂ O ₃	23 – 26%

and is substantially free of PbO, Na₂O, K₂O and B₂O₃, said glass-ceramics comprising β -quartz (β -SiO₂) and/or β -quartz solid solution (β -SiO₂ solid solution) as a predominant crystal phase.

22. (original) Glass-ceramics as defined in claim 21 comprising, in mass %, Li₂O within a range of 3.5 – 4.5%.

23. (currently amended) Glass-ceramics as defined in claim 22 comprising, in mass %,

<u>CaO</u>	<u>0.5 – 1.5% and</u>
MgO	0.5 – 1.5% and/or
ZnO	0.1 – 1.5% and/or
CaO	0.5 – 1.5% and/or
BaO	0.5 – 1.5% and/or
TiO ₂	1.5 – 3.0% and/or
ZrO ₂	1.0 – 3.0% and/or
As ₂ O ₃	0.5 – 1.0%.

24. (original) Glass-ceramics as defined in claim 3 wherein the maximum temperature of the heat treatment for crystallization is within a range from 750°C to 800°C.

25. (previously submitted) A mask for lithography comprising glass-ceramics as defined in claim 3 .

26. (previously submitted) An optical system reflecting mirror for lithography comprising glass-ceramics as defined in claim 3.

27. (previously submitted) A wafer stage or a reticle stage for lithography comprising glass-ceramics as defined in claim 3.

28. (previously submitted) A component part of a precision instrument comprising glass-ceramics as defined in claim 3.

29. (original) Glass-ceramics as defined in claim 2 obtained by heat treating, for crystallization, a base glass which comprises, in mass %,

SiO ₂	53 – 57%
P ₂ O ₅	7.0 – 8.5% and
Al ₂ O ₃	23 – 26%

and is substantially free of PbO, Na₂O, K₂O and B₂O₃, said glass-ceramics comprising β -quartz (β -SiO₂) and/or β -quartz solid solution (β -SiO₂ solid solution) as a predominant crystal phase.

30. (original) Glass-ceramics as defined in claim 29 comprising, in mass %, Li₂O within a range of 3.5 – 4.5%.

31. (currently amended) Glass-ceramics as defined in claim 30 comprising, in mass %,

CaO	0.5 – 1.5% and
MgO	0.5 – 1.5% and/or
ZnO	0.1 – 1.5% and/or
CaO	0.5 – 1.5% and/or
BaO	0.5 – 1.5% and/or
TiO ₂	1.5 – 3.0% and/or
ZrO ₂	1.0 – 3.0% and/or
As ₂ O ₃	0.5 – 1.0%.

32. (original) Glass-ceramics as defined in claim 4 obtained by heat treating, for crystallization, a base glass which comprises, in mass %,

SiO ₂	53 – 57%
------------------	----------

P₂O₅ 7.0 – 8.5% and
Al₂O₃ 23 – 26%

and is substantially free of PbO, Na₂O, K₂O and B₂O₃, said glass-ceramics comprising β -quartz (β -SiO₂) and/or β -quartz solid solution (β -SiO₂ solid solution) as a predominant crystal phase.

33. (original) Glass-ceramics as defined in claim 32 comprising, in mass %, Li₂O within a range of 3.5 – 4.5%.

34. (original) Glass-ceramics as defined in claim 33 comprising, in mass %,

MgO 0.5 – 1.5% and/or
ZnO 0.1 – 1.5% and/or
CaO 0.5 – 1.5% and/or
BaO 0.5 – 1.5% and/or
TiO₂ 1.5 – 3.0% and/or
ZrO₂ 1.0 – 3.0% and/or
As₂O₃ 0.5 – 1.0%.