

Sign up

Anybody can ask a **question**

Anybody can answer

The best answers are voted up and rise to the top

Low rank SVD, orthogonal projection onto range of A

Say rank(A) = r < n. Then $A = U_r S_r V_r^T$. I know the orthogonal projection onto Ran(A) should be $P = U_r U_r^T$ but I'm not sure how to show this.

$$P = A(A^T A)^{-1} A^T$$

If A had full column rank, then this would be easy since both V and S are invertible. But in this reduced rank case, S_r is nonsingular but V_r is rectangular and thus, not invertible. So I'm unsure how to simplify the $(A^TA)^{-1}$ term...

Also, any hint on how to show that the projection onto $N(A^T)$ is $P_N = \tilde{U}_r \tilde{U}_r^T$? (with $U = [U_r \tilde{U}_r]$). I thought it would just be $P_N = I - U_r U_r^T$ (linear-algebra) (matrices) (svd)

edited Oct 25 '13 at 7:55

asked Oct 25 '13 at 7:14 asdfghjkl **286** ■ 3 ▲ 12

1 Answer

In this economic version of the SVD of $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$, the $U_r \in \mathbb{R}^{m \times r}$ has orthonormal columns, S_r is square diagonal (and nonsingular) and $V_r \in \mathbb{R}^{r \times r}$ is square orthogonal matrix.

It is easy to show, that if A = WT, where $W \in \mathbb{R}^{m \times r}$ and $T \in \mathbb{R}^{r \times r}$ is nonsingular, then Range(A) = Range(W). To see this, simply consider $x \in \text{Range}(A)$, that is, x = Ay for some $y \in \mathbb{R}^r$. Then x = Ay = WTy = Wz and thus $x \in \text{Range}(W)$. Also, if $x \in \text{Range}(W)$, that is x = Wz for some z, then $x = WT(T^{-1}z) = WTx = Ax$, and hence $x \in \text{Range}(A)$. Since $\text{Range}(A) \subset \text{Range}(W)$ and $Range(W) \subset Range(A)$, we have Range(A) = Range(W).

Now simply set $W = U_r$ and $T = S_r V_r^T$ to get that Range(A) = Range(U). Note that S_r is nonsingular and V_r is orthogonal, so indeed, $S_r V_r^T$ is nonsingular as well.

The range of U_r is the range of A and similarly you can show that the range of $P = U_r U_r^T$ is the range of *A*. To see that it is the orthogonal projector, verify that $P^T = P$ and $P^2 = P$.

The projector *P* can be expressed as $P = A(A^TA)^{-1}A^T$ provided that the rank of *A* is *n*. As above, you can show this by verifying that the range of *P* defined in this way is the range of *A* and *P* is orthogonal projection: $P^T = P$ and $P^2 = P$. You can also use your SVD with r = n to see that

$$P = A(A^{T}A)^{-1}A^{T} = U_{n}S_{n}V_{n}^{T}(V_{n}S_{n}U_{n}^{T}U_{n}S_{n}V_{n}^{T})^{-1}V_{n}S_{n}U_{n}^{T} = U_{n}S_{n}V_{n}^{T}(V_{n}S_{n}^{2}V_{n}^{T})^{-1}V_{n}S_{n}U_{n}^{T} = U_{n}S_{n}V_{n}^{T}V_{n}S_{n}^{-2}V_{n}^{T}V_{n}S_{n}U_{n}^{T} = U_{n}S_{n}S_{n}^{-2}S_{n}U_{n}^{T} = U_{n}U_{n}^{T}.$$

For the rank deficient case (r < n), P is given using the Moore-Pseudo pseudo-inverse A^{\dagger} by $P = AA^{\dagger}$. (When r = n, $A^{\dagger} = (A^T A)^{-1} A^T$.) There are several (maybe many) ways how to characterize it: it can be, e.g., expressed using the SVD as $A^{\dagger} = V_n S_n^{-1} U_n^T$. Again, you can verify that $P = AA^{\dagger} = U_r S_r V_r^T V_r S_r^{-1} U_r^T = U_r U_r^T.$

For the last question, note that the nullspace of A^T is the orthogonal complement of the range of A. If Pis the orthogonal projector to the range of A, then Q = I - P is the orthogonal projector onto its orthogonal complement, the nullspace of A^T . So as you correctly think, $Q = I - U_r U_r^T$. However, the columns of \tilde{U}_r form an orthonormal basis of Null(A^T). Hence Q can also be expressed as $Q = \tilde{U}_r \tilde{U}_r^T$.

It is quite straightforward to verify that if the columns of the matrix $X \in \mathbb{R}^{m \times r}$ form a basis of some subspace of \mathbb{R}^m , the orthogonal projector onto this subspace (that is, Range(X)) is given by $X(X^TX)^{-1}X^T$. If X has orthonormal columns, (that is, $X^TX = I$), the projector is simply XX^T . Since \tilde{U}_r is the orthonormal basis of the orthogonal complement of the range of $A, Q = \tilde{U}_r \tilde{U}_r^I$.

edited Oct 25 '13 at 12:34

answered Oct 25 '13 at 12:28

