Caractérisation des singularités de type ${\mathfrak J}$

Félix Larose-Gervais Mai 2023

1 Introduction

Propositions $\mathbf{2}$

Soit $n \in \mathbb{N}, \sigma \in S_n$, notons

$$\pi: \mathbb{N}^{n+1} \to \mathbb{N}^{n+1}$$
$$(a_0, a_1, \dots, a_n) \mapsto (a_0, a_{\sigma(1)}, \dots, a_{\sigma(n)})$$

Proposition 1. Soit $a = (a_0, a_1, \dots, a_n) \in \mathbb{N}^{n+1}$, alors

$$\mathfrak{J}(a) \iff \mathfrak{J}(\pi(a))$$

Proof. Notons $b = \pi(a)$

On a
$$E_a = \{a^i \mid i = 1..n, \ a_i > 1\}, \ a^i = (a_i, a_1^i, \dots, a_n^i)$$

On a
$$E_a = \{a^i \mid i = 1..n, \ a_i > 1\}, \ a^i = (a_i, a_1^i, \dots, a_n^i)$$

$$Avec \ \forall j = 1..n, \ a_j^i = \begin{cases} -a_0 \mod a_i & \text{si } i = j \\ a_j \mod a_i & \text{sinon} \end{cases}$$

Considérons $E_b = \{b^i \mid i = 1..n, b_i > 1\}, b^i = (b_i, b_1^i, \dots, b_n^i)$

Avec
$$\forall j = 1..n$$

$$b_j^i = \begin{cases} -b_0 \mod b_i & \text{si } i = j \\ b_j \mod b_i & \text{sinon} \end{cases} = \begin{cases} -a_0 \mod a_{\sigma(i)} & \text{si } \sigma(i) = \sigma(j) \\ a_{\sigma(j)} \mod a_{\sigma(i)} & \text{sinon} \end{cases}$$

Donc
$$b_j^i = a_{\sigma(j)}^{\sigma(i)}$$

Donc
$$b^{i} = (a_{\sigma(i)}, a_{\sigma(1)}^{\sigma(i)}, \dots, a_{\sigma(n)}^{\sigma(i)}) = \pi(a^{\sigma(i)})$$

Ainsi $E_{b} = \{\pi(a^{\sigma(i)}) \mid i = 1..n, a_{\sigma(i)} > 1\}$

Ainsi
$$E_b = \{\pi(a^{\sigma(i)}) \mid i = 1..n, \ a_{\sigma(i)} > 1\}$$

C'est-à-dire
$$E_b = \{\pi(a^i) \mid i = 1...n, \ a_{\sigma(i)} > 1\}$$

Donc π est une bijection entre E_a et E_b

Et elle préserve le caractère lisse

S'il existe une suite d'éclatements montrant $\mathfrak{J}(a)$

L'application de π à ces éléments est une suite montrant $\mathfrak{J}(b)$

La réciproque est vraie car $a = \pi^{-1}(\pi(a))$

Proposition 2. Soit $a = (a_0, a_1, a_2)$, alors

$$\mathfrak{J}(a) \implies a_0 \ge a_1 + a_2$$

Proof. Supposons $a_0 < a_1 + a_2$

Si $a_1 = a_2$, alors $\neg \mathfrak{J}(a)$

Sinon, $a_1 \neq a_2$, supposons sans perdre de généralité que $a_1 > a_2$ Considérons l'éclatement $a^1 = (a_1, -a_0 \mod a_1, a_2 \mod a_1) \in E_a$

$$a_1 > a_2 \implies 2a_1 > a_1 + a_2$$

$$\implies (-a_0 \mod a_1) = 2a_1 - a_0$$

$$a_1 > a_2 \implies (a_2 \mod a_1) = a_2$$

On a donc $a^1 = (a_1, 2a_1 - a_0, a_2)$

Puisque $a_0 < a_1 + a_2$, on a $a_1 < 2a_1 - a_0 + a_2$

Donc a^1 vérifie la condition initiale, on répète le raisonnement avec a^1

3 Conjectures

Conjecture 1. Soit $a = (a_0, a_1, a_2)$ un éclatement d'une singularité [a]

Posons $s = a_1 + a_2 + \gcd(a_0 - a_1, a_0 - a_2)$

Supposons $a_0 < s$

Alors [a] est de type $\mathfrak{J} \implies s = a_0 + 1$

On constate que la réciproque n'est pas vraie, par exemple prenons (13,7,4), on a s=14, vérifiant donc $a_0<14$ et $a_0+1=14$, or elle n'est pas de type \mathfrak{J} .

Conjecture 2. Soit $a=(a_0,a_1,a_2)$ un éclatement d'une singularité [a]

Alors [a] est de type $\mathfrak{J} \implies \exists p,q: a_0 = p*a_1 + q*a_2$