

A right Choice for the Real Aspirant

ICON Central Office - Madhapur - Hyderabad

SEC: Sr.Super60_NUCLEUS&STERLING_BT JEE-MAIN Date: 16-09-2023 Time: 09.00Am to 12.00Pm **RPTM-067** Max. Marks: 300

KEY SHEET

PHYSICS

1)	4	2)	1	3)	2	4)	2	5)	2
6)	4	7)	4	8)	3	9)	3	10)	2
11)	4	12)	4	13)	1	14)	4	15)	2
16)	1	17)	3	18)	2	19)	1	20)	1
21)	18	22)	48	23)	4	24)	28	25)	30
26)	4	27)	6	28)	4	29)	8	30)	3

CHEMISTRY

31)	2	32)	2	33)	4	34)	2	35)	2
36)	2	37)	2	38)	3	39)	1	40)	1
41)	3	42)	2	43)	2	44)	3	45)	4
46)	1	47)	4	48)	2	49)	2	50)	3
51)	2	52)	6	53)	9	54)	0	55)	9
56)	18	57)	21	58)	6	59)	3	60)	6

MATHEMATICS

61)	2	62)	1	63)	1	64)	191	65)	1
66)	2	67)	3	68)	1	69)	4	70)	4
71)	3	72)	1	73)		74)	2	75)	2
76)	3	77)	4	78)	4	79)	1	80)	2
81)	8	82)	4	83)	8	84)	16	85)	4
86)	45	87)	4	88)	2	89)	9	90)	5

1.
$$Q \alpha A \Rightarrow \frac{Q_1}{Q} = \frac{2(2\pi R^2 + \pi R^2)}{4\pi R^2} = 1.5$$

2.
$$\vec{r}f = \vec{r}i + \Delta \vec{S_1} + \vec{S_2} + \dots$$

$$\vec{r}f = (2\hat{i} + 3\hat{j}) + 5\hat{i} + 8\hat{j} + (-2\hat{i} + 4\hat{j}) + (-6\hat{j})$$

$$\vec{r}f = 5\hat{i} + 9\hat{i}$$

$$\mathbf{3.} \qquad N - mg = 0, \quad f = \mu N$$

$$f = ma$$

$$\Rightarrow a = \mu g = 4m / s^{2}$$

$$u = 0, \theta = 2$$

$$\theta^{2} - u^{2} = 2as \Rightarrow s = \frac{2^{2} - 0^{2}}{2 \times 4} = 0.5m$$

- Momentum can be zero 4.
- The angular momentum of disc about point A is $\vec{L}_A = I_{cm}\vec{\omega} + m\vec{r} \times \vec{v}_{cm}$ 5.

$$\vec{v}_{cm}$$
 = Velocity of centre of mass f disc = 0.

$$\therefore L = I_{cm}\omega = \frac{1}{2}MR^2\omega$$

- Conceptual 6.
- 7. Conceptual
- Initially friction is upwards when the cylinder is to the left of the equilibrium position and 8. downwards when it to the right of equilibrium position.
- 9. Since angular velocity is constant, acceleration of Com of the disc is zero. Hence the magnitude of acceleration of point S is centripetal acceleration which is constant in magnitude.
- 10. The cylinder and block will interchange their linear velocity immediately after collision. tional Institution
- The force per unit area P is 11.

$$P = \frac{F}{\pi R^2}$$

Torque due to frictional force is

$$\tau = \mu \int (dN)x = \frac{\mu F}{\pi R^2} \int_0^R 2\pi x^2 dx$$

$$\Rightarrow \tau = \frac{\mu F \times 2\pi R^3}{3\pi R^2} = \frac{2}{3} \mu FR$$

Hence, the correct answer is (D)

- Gravity exerts a force mg download on the block, which means that the wedge must exert **12.** a force mg upward on the block. Thus, the block exerts a force mg downwards on the wedge, and gravity also exerts a force mg downward on the wedge. Since these forces have no horizontal components, no friction with the ground is necessary to keep the wedge static.
- Centre of mass of arc is $\frac{2R\sin\alpha}{2\alpha}$ **13.**

 $m_1 = 2m, m_2 = m$

Centre of mass =
$$\frac{2m\left(2R\sin\left(\frac{\pi}{3}\right)\right)}{\left(3\frac{\pi}{3}\right)} + m\frac{\left(-2R\sin\left(\frac{\pi}{6}\right)\right)}{3\left(\frac{\pi}{3}\right)} = \frac{2R\left(\sqrt{3}-1\right)}{3\pi}$$

- 14. Power is additive. If image is now at longer distance, power is reduced. Hence, must be concave lens but with larger focal distance, so as to form real image.
- A (p, q) B (s) C (p, q) D (r)**15.** Conceptual
- $Fx = \frac{1}{3}ML^2 \left(\frac{a_{cm}}{L/2}\right)$ **16.**
- The point P will have a velocity v_0 and a tangential velocity v_r and a tangential velocity **17**)

 $v_r \left(\frac{r}{2}\right) \omega = \frac{v_0}{2}$ inclined to each other at 60°

So
$$v_P^2 = v_0^2 + \frac{v_0^2}{4} + 2\left(\frac{v_0}{2}\right)\cos 60^\circ \Rightarrow v_P = \frac{v_0\sqrt{7}}{2}$$

- 18. $v_0 = \sqrt{\frac{2gh}{1 + \frac{k^2}{R^2}}}$ and $\frac{5v_0}{4} = \sqrt{2gh}$
- 19. Conceptual
- Both the Statements are true, and Statement-2 is the correct explanation to Statement-1 20.
- 21.

$$F = 12t - 3t^{2}; \tau = 1.5(12t - 3t^{2})$$

$$\alpha = \frac{1.5(12t - 3t^{2})}{4.5} = 4t - t^{2}$$

$$\frac{d\omega}{dt} = (4t - t^{2}) \Rightarrow \omega = 2t^{2} - \frac{t^{2}}{3}$$

To change the direction of motion, pulley need to come to rest momentarily,

$$2t^{2} - \frac{t^{2}}{3} = 0 \Rightarrow t = 6 \sec$$

$$\frac{d\theta}{dt} = 2t^{2} - \frac{t^{3}}{3} \Rightarrow \theta = \frac{2t^{3}}{3} - \frac{t^{4}}{12}$$

$$\therefore (\theta)_{t=6 \sec} = 36 rad = \frac{18}{\pi} rev$$

Let the initial velocity given to the mass at A be u. 22.

Then the velocity of mass at b is u/2

As the system moves from initial the final position increase in potential energy is =4mgl+2mgl

Decrease in kinetic energy $=\frac{1}{2}mu^2 + \frac{1}{2}m\left(\frac{u}{2}\right)^2 = \frac{5}{8}mu^2$

From conservation of energy $\frac{5}{8}mu^2 = 6mgl$ or $u = \sqrt{\frac{48}{5}gl}$

$$a_A(n) = \omega^2 R \cos 45^0 + \alpha R \cos 45^0 - a \cos 45^0,$$
 $a_{A(n)} = \frac{\omega^2 R}{\sqrt{2}} = \frac{V^2}{\sqrt{2}R}$

$$a_{A(n)} = \frac{\omega^2 R}{\sqrt{2}} = \frac{V^2}{\sqrt{2}R}$$

:. Radius of curvature of trajectory of point 'A' relative to the ground is

$$r = \frac{(V_A)^2}{{}^a A(n)} = \frac{(V\sqrt{2})^2}{\frac{V^2}{\sqrt{2}R}} = 2\sqrt{2}R$$

24.
$$\pi_0 = I_0 \alpha \Rightarrow \frac{2}{5} mR\alpha + f = 2mg$$
 & $f = ma = maR$

25.

&
$$f = ma = maR$$

$$\pi_{0} = I_{0}\alpha \Rightarrow \frac{2}{5}mR\alpha + f = 2mg \qquad \& f = ma = maR$$

$$\Rightarrow f = \frac{10}{7}mg \Rightarrow \frac{10}{7}mg \leq \mu N \Rightarrow \frac{10}{7}mg \leq \mu(5mg), \mu \geq \left(\frac{2}{7}\right)$$

of momentum,

$$P_f = P_i \Rightarrow (6)u + (3)u = 6(2) + 3(-1)$$
 $u = 1ms^{-1}$

This energy is also conserved

$$E_f = E_i \Rightarrow \frac{1}{2}(6)(1)^2 + \frac{1}{2}(3)(1)^2 + \frac{1}{2}Kx_m^2 = \frac{1}{2}(6)(2)^2 + \frac{1}{2}(3)(1)^2$$

$$3 + 1.5 + \frac{1}{2}(200)x_m^2 = 12 + 1.5$$

$$100x_m^2 = 9 \Rightarrow x_m^2 = 0.09 \Rightarrow x_m = 0.3m = 30m$$

26)

a) $4mg \sin \theta - f = 4ma$

b)
$$fR = \left(\frac{8}{3}mR^2\right) \propto$$

- c) $a = R \propto$
- $d) f = 4 \mu mg \cos \theta$

on solving
$$\mu = \frac{2}{5} = \frac{4}{10}$$

27. $dM = \sigma_0 \left(1 - \frac{x}{a} \right) dx$

$$M = \frac{\sigma_0 a^2}{2}$$

$$\Rightarrow d(MOI) = dmx^2$$

$$MOI = \int dMx^2 = \frac{Ma^2}{6}$$

Speed of the wall does not change after collision. Hence 2+1 = v - 1 or V = 4m/s28.

29.
$$P = \beta v^2 \quad ; \quad \frac{mdv}{dt} . v = \beta v^2 \quad ; \qquad \int_{v_0}^{2v_0} \frac{dv}{v} = \frac{\beta}{m} \int_0^t dt$$

$$2 = \frac{\beta}{m}.t \qquad t = \frac{m \ln 2}{\beta}$$

$$t = \frac{4 \times 2}{0.693} \times 0.693$$

cational Institutions Work done equals area under the graph **30.**

CHEMISTRY

- 31) a) Localised and getting Θ Ve change due to +M
 - b) SIR
 - c) Delocalised on oxygen
 - d) Delocalised
- 32) Conceptual
- 33) Conceptual

$$\begin{array}{c} CH_3 \\ C \leftarrow CH_2 \leftarrow C \leftarrow CH_2 \leftarrow C$$

34)

- 35)
- a → Hoffmann.
- \rightarrow No E₂
- 36) c → Saytz eff
- 37) Conceptual

→ stability

38)

$$\begin{array}{c|c} CH_2-NC & CH_2-NH-CH_3 & CH_2-N \\ \hline O & \underline{CH_3-I} & O \\ \hline & AgOH & O \\ \end{array}$$

39) Victor meyer test

$$R-CH_{2}-OH \xrightarrow{P+} R-CH_{2}-I \xrightarrow{AgNO_{2}} R-CH_{2}-NO_{2} \xrightarrow{NaOH} Red.$$

$$R-CH_{2}-NO_{2} \xrightarrow{NaOH} Red.$$

$$O$$

$$_{40}$$
) $_{\rm H-C-O}$

- 41) Conceptual
- 42) Conceptual
- 43) Conceptual

SRI CHAITANYA IIT ACADEMY, INDIA

- Conceptual 44)
- Conceptual 45)
- Conceptual 46)
- 47) Conceptual
- 48) Conceptual
- 49) Y has hemiacetal
- 50) Conceptual
- 1,3,4,7,10,12,13 51)
- 1,4,7,8,9,10 52)
- Explanation 53)

Those isomers which can't show G.I.

Those isomers which can show G.I.

Conceptual 54)

$$x = 2$$

$$55) y = 3 \\
 z = 4$$

Electrophilic substitution (Intra) 56)

57)
$$E = \frac{123}{6}$$

1 mole of RCOOH will take $\frac{3}{4}$ mole of LAH. 58)

$$CH_3 - CH - CH - CH_3$$
 $OH OH$
 OH

59) 1,2,5,6,7,8 60)

Institutions

MATHEMATICS

62.
$$\frac{1+2e^{v}}{V+2e^{v}}dv + \frac{dy}{y} = 0$$

$$\left(\frac{x}{v} + 2e^{\frac{x}{y}}\right)y = c$$

$$x = vy$$

$$x = vy$$

- **63.** F is decreasing function
- $64. \div y^2 \cos x$
- 65. Given curves are $y^2 2y + 4x + 5 = 0$ and $x^2 + 2x y + 2 = 0$ or $(y-1)^2 = -4(x+1)$ and $(x+1)^2 = y-1$. Shifting origin to (-1, 1), equation of given curves changes to $y^2 = -4x$ and $X^2 = Y$. Hence, statement -1 is true and statement-2 is correct explanation of statement -1.
- **66.** STATEMENT-I In $\left(1 + \sqrt{\sin x}\right) < \sqrt{\sin x} < \sqrt{x}$

$$\Rightarrow \int_{0}^{1} \left(in \left(1 + \sqrt{\sin x} \right) \right)^{2} . dx < \int_{0}^{1} x . dx = \frac{1}{2}$$

STATEMENT-II

$$f(x) = \sin\left(\frac{2x}{1+x^2}\right) \left(\tan^{-1}x\right)^2 \forall x \in \left[1, \sqrt{3}\right]$$
$$= \left(\pi - 2\tan^{-1}x\right) \left(\tan^{-1}x\right)^2$$

$$\frac{\pi - 2\tan^{-1}x + \frac{\tan^{-1}x}{2} + \frac{\tan^{-1}x}{2}}{3} \ge \sqrt[3]{(\pi - 2\tan^{-1}x) \cdot (\tan^{-1}x)^2}$$

$$\Rightarrow \left(\pi - 2\tan^{-1}x\right)\left(\tan^{-1}(x)\right)^2 \le \frac{\pi^3}{27}$$

$$\int_{1}^{\sqrt{3}} f(x).dx \le \int_{1}^{\sqrt{3}} \frac{\pi^{3}}{27} = \frac{\pi^{3}}{27} \left(\sqrt{3} - 1\right)$$

67.
$$\int \frac{2\left(\cos x + \frac{1}{\cos x}\right)}{\cos^6 x + 6\cos^2 x + 4} dx, \cos x = t$$

68. Conceptual

69.
$$\int_{0}^{\frac{\pi}{2}} \frac{x^{2} I_{n-1}}{I_{n-2}} = n(n-1)$$

70.
$$\left[(x+2)^2 + y(x+2) \right] \frac{dy}{dx} = y^2$$

$$\Rightarrow y^2 \frac{dx}{dy} - (x+2)y = (x+2)^2$$

Let
$$\frac{1}{(x+2)^2} \frac{dx}{dy} - \frac{1}{(x+2)y} = \frac{1}{y^2}$$

$$I.F. = e^{\log y} = y$$

$$G.S = \frac{-y}{x+2} = \log y + c$$

As it passes through $(1,3) \Rightarrow C = -1 - \log 3$

$$\therefore \frac{-y}{x+2} = \log y - 1 - \log 3$$

$$\Rightarrow \log \frac{y}{3} = 1 - \frac{y}{x+2}$$
....(1)

Intersection of (1) and y = x + 2

$$\log \frac{y}{3} = 0 \Rightarrow y = 3 \Rightarrow x = 1$$

 \therefore (1,3) is the only intersection point

Intersection of (1) and $y = (x+2)^2$

$$\log \frac{(x+2)^2}{3} = 1 - (x+2) \text{ or } \log \frac{(x+2)^2}{3} + (x+2) = 1 : \frac{(x+2)^2}{3} > \frac{4}{3} > 1, \forall x > 0$$

 $\therefore LHS > 2, \forall x > 0 \Rightarrow \text{ no solution.}$

71.
$$\frac{f^{1}(x)(1+x^{2})-f(x)2x}{(1+x^{2})^{2}} = \frac{2f(x)}{1+x^{2}}$$

$$\frac{f^{1}(x)}{f(x)} = 2 + \frac{2x}{1+x^{2}}$$

$$(1+x^2)^2 \qquad 1+x^2$$

$$\frac{f^1(x)}{f(x)} = 2 + \frac{2x}{1+x^2}$$

$$\log(f(x)) = 2x + \log(1+x^2) + C$$

$$f(0) = 2, C = \log_2$$
When $\alpha = 1$

$$(-x+3, x < 1)$$

72. When
$$\alpha = 1$$

$$y = \begin{cases} -x+3, & x < 1 \\ x+1, & 1 \le x < 2 \\ 3x-3, & x \ge 2 \end{cases}$$

$$\Rightarrow A(1) = \int_{0}^{1} (-x + 3 - 2\sqrt{x}) dx + \int_{1}^{2} (x + 1 - 2\sqrt{x}) dx = 5 - \frac{8\sqrt{2}}{3}$$

73.
$$\frac{dx}{x} - \frac{dy}{y} + \frac{\frac{dy}{y^2} - \frac{dx}{x^2}}{\left(\frac{1}{y} - \frac{1}{x}\right)^2} = 0$$

$$\log x - \log y - \frac{1}{\frac{1}{y} - \frac{1}{y}} = c$$

$$\log \left| \frac{x}{y} \right| + \frac{xy}{x - y} = c$$

- 74. Conceptual
- **75.** x = a h

$$f\left(a^{-}\right) = \lim_{h \to 0} \frac{\left[\cos\frac{\pi}{2a}(a-h)\right]}{h} = \lim_{h \to 0} \frac{\left[\sin\frac{\pi h}{2a}\right]}{h} = 0;$$

$$x = a+h \qquad f\left(a^{+}\right) = \lim_{h \to 0} -\frac{\sinh}{2} \tan\left[\frac{\pi}{2} + \frac{\pi h}{2}\right] = 0;$$
Hence,
$$f\left(a^{+}\right) = f\left(a^{-}\right)$$

76. We have,
$$f(x) = \frac{|x-1|}{x} = \begin{cases} -\frac{(x-1)}{x}, & \text{if } 0 < x \le 1 \\ \frac{x-1}{x}, & \text{if } x > 1 \end{cases} = \begin{cases} \frac{1}{x} - 1, & \text{if } 0 < x \le 1 \\ 1 - \frac{1}{x}, & \text{if } x > 1 \end{cases}$$

Now, let us draw the graph of y = f(x)

Note that when $x \to 0$, then $f(x) \to \infty$, when x = 1, then f(x) = 0, and when $x \to \infty$, then $f(x) \to 1$

Clearly, f(x) is not injective because if f(x) < 1, then f is many one, as shown in figure. Also, f(x) is not surjective because range of f(x) is $[0,\infty]$ and but in problem co-domain is $(0,\infty)$, which is wrong. f(x) is neither injective nor surjective

77.
$$\frac{dy}{dx} + \frac{2^{x-y}(2^{y}-1)}{2^{x}-1} = 0 \qquad \Rightarrow \frac{dy}{dx} + \frac{2^{x}}{2^{x}-1} \times \frac{2^{y}-1}{2^{y}} = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{-2^{x}(2^{y}-1)}{2^{y}(2^{x}-1)} \qquad \Rightarrow \int \frac{2^{y}}{2^{y}-1} dy = -\int \frac{2^{x}}{2^{x}-1} dx$$

$$\Rightarrow \frac{1}{1n2} \int \frac{2^{y}1n}{2^{y}-1} dy = \frac{-1}{1n2} \int \frac{2^{x}1n}{2^{x}-1} dx \qquad \Rightarrow 1n|2^{y}-1| = -1n|2^{x}-1| + c$$

$$\text{At } x = 1, \ y = 1, \text{(given)} \qquad 1n1 = -1n1 + c$$

$$0 = -0 + c \Rightarrow c = 0 \qquad \Rightarrow \qquad 1n|2^{y}-1| = -1n|2^{x}-1|$$

$$\Rightarrow 1n((2^{x}-1)(2^{y}-1)) = 0 \Rightarrow (2^{x}-1)(2^{y}-1) = 1$$

$$\text{At } x = 2, \ y = ? \qquad (2^{y}-1)(4-1) = 1$$

$$2^{y} = 1 + \frac{1}{3} = \frac{4}{3}$$
 $y = \log_2 4 / 3 = \log_2 4 - \log_2 3 = 2 - \log_2 3$

78.
$$\frac{dy}{dx} + \frac{y}{x \log x} = \frac{2}{x}$$
 IF = \log x

79. Use L-H rule
$$f(x) = \frac{1}{3x} + cx^2$$

80.
$$\int \frac{1 + (x+1)\ln x + x(\ln x)^2}{1 + (x\ln x)(2 + x\ln x)} dx = \int \frac{1 + \ln x}{1 + x\ln x} dx$$
$$= \ln(1 + x\ln x) + c \quad \therefore e^{f(x)} = 1 + x\ln x \quad e^{f(x)} - 1 = \ln 4$$

81.
$$x^3 = t$$
 $I_2 = \frac{1}{3} \int_0^1 \frac{dt}{e^t (2-t)}$ as $x \to a+b-x$

$$= \frac{1}{3} \int_0^1 \frac{dt}{e^{1-t} (1+t)} = \frac{1}{3} \int_0^1 \frac{et \, dt}{e(1+t)} \qquad I_2 = \frac{1}{3e}. I_1$$

82.
$$f(x) = \begin{cases} \frac{x^2}{2} + 2x + 4 & x > 3\\ ax^2 + bx & x \le 3 \end{cases}$$

$$f'(x) = f'(3^+) \Rightarrow 6a + b = 5$$

$$a = \frac{1}{18}, b = \frac{84}{18}$$

83.
$$f^{1}(x) = 3x^{2} - 6x + c$$
 $f^{1}(2) = c = 3 \Rightarrow f^{1}(x) = 3(x-1)^{2}$
 $f(x) = c(x-1)^{3} + D = (2,1) \text{ lies on it } \Delta = D$ $f(x) = (x-1)^{3}$

84.

$$A = \int_{-1}^{0} (1 - x^{2}) - (x - \sqrt{1 - (x + 1)^{2}}) dx = \int_{-1}^{0} -x^{2} + \sqrt{1 - (x + 1)^{2}} dx$$

$$= \left(-\frac{x^{3}}{3} + \frac{x + 1}{2} \right) = \sqrt{1 - (x + 1)^{2}} + \frac{1}{2} \sin^{-1} \left(\frac{x + 1}{1} \right) = 1$$

$$A = \frac{\pi}{4} - \left(\frac{1}{3} \right) \qquad \therefore 12(\pi - 4A) = 12 \left(\pi - 4\left(\frac{\pi}{4} - \frac{1}{3} \right) \right) = 16$$

85. Replace x with
$$-x$$
 and use $f(1)$, $f(2)$ get

$$K = 4, \quad f(0) = 0$$
$$\therefore f(x) = 2x^2$$

86. 87.

$$F(x) = \int_{0}^{x} f(t)dt$$

$$F'(x) = f(x)$$

$$I = \int_{0}^{\pi} f'(x) \cos x \, dx + \int_{0}^{\pi} F(x) \cos x \, dx = 2$$

$$I_1 = \int_0^{\pi} f'(x) \cos x \, dx \, (Let)$$

$$I_1 = \cos x \, f(x)]_0^{\pi} = \int_0^{-\pi} \sin x \, f(x) \, dx$$

$$= (-1)(-6) - f(0) + \int_{0}^{\pi} + \sin x \, F'(x) \, dx$$

$$= 6 - f(0) + I_2 \qquad(2)$$

$$I_2 = \int_0^{\pi} \sin x F'(x) dx \qquad by the parts we get$$

$$= \sin x F(x)]_0^{\pi} - \int_0^{\pi} \cos x F'(x) dx$$

$$I_2 = -\int_{0}^{\pi} \cos F(x) \, dx$$

$$I_1 = 6 - f(0) - \int_{0}^{\pi} \cos F(x) dx$$

$$I = 6 - f(0) - \int_{0}^{\pi} \cos x \, F(x) \, dn + \int_{0}^{\pi} F(x) \, dx = 2$$

$$6-2=f(0)$$

$$4 = f(0)$$

88.
$$\frac{z}{1} = \frac{3x-4}{3x+4}$$
, $\frac{z+1}{z-1} = \frac{-3}{4}x$

$$f(z) = \frac{8}{3(1-z)} + \frac{2}{3} \qquad I = \left\{ \frac{8}{3(1-x)} + \frac{2}{3} = \frac{-2}{3} \log|1-x| + \frac{2}{3} x EC. \right\}$$
Conceptual
$$\lambda = 2\int_0^2 2\sqrt{\frac{2-x}{x}} = 4\pi$$

89.

90.
$$\lambda = 2 \int_0^2 2 \sqrt{\frac{2-x}{x}} = 4\pi$$