

Circuitos Digitais I - 6878

Nardênio Almeida Martins

Universidade Estadual de Maringá Departamento de Informática

Bacharelado em Ciência da Computação

Aula de Hoje

Roteiro

- o Revisão
 - o Somador
- Aritmética Computacional
 - o Subtrator
 - o Detector de Validade de BCD
 - o Detector de Igualdade

Revisão

Circuitos Aritméticos

Aritmética Computacional

Aritmética Computacional

<u>Circuitos Aritméticos</u>: circuitos utilizados para construir a ULA (Unidade Lógica e Aritmética)

Adição

Exemplo de adição em decimal (dígitos de 0 a 9):

Cada posição só pode representar um dígito, por isso, gera um carry (vai um)

Aritmética Computacional

Adição em Binário:

Exemplo

Cada posição só pode representar um dígito, por isso, gera um carry

E	ntrada	Saídas			
A	В	C _{in}	5	$C_{ m out}$	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

Somador Completo

E	ntrada	IS	Saíg	das										
A	В	C _{in}	5	Cout										
0	0	0	0	0										
0	0	1	1	0	ABCin									
0	1	0	1	0	A B C _{in}									
0	1	1	0	1										
1	0	0	1	0	A B C _{in}	$S = \overline{A}$	B C _{in} +	A B	A B C _{in} +	$\overline{A} B \overline{C_{in}} + A \overline{B}$	$\overline{A} \ B \ \overline{C_{in}} + A \ \overline{B} \ \overline{C_{in}}$	$\overline{A} \ \overline{B} \ \overline{C_{in}} + A \ \overline{B} \ \overline{C_{in}} + A$	$\overline{A} B \overline{C_{in}} + A \overline{B} \overline{C_{in}} + A B$	$\overline{A} \ \overline{B} \ \overline{C_{in}} + A \ \overline{B} \ \overline{C_{in}} + A \ \overline{B} \ C_{in}$
1	0	1	0	1										
1	1	0	0	1										
1	1	1	1	1	A B C _{in}									

Entradas Saídas		das			
Α	В	C _{in}	5	Cout	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	A B C _{in}
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	A B C _{in}
1	1	1	1	1	A B C _{in}

Exercício

- 1. Simplifique as expressões de S e $C_{\rm out}$
- 2. Desenhe o circuito para $S \in C_{\text{out}}$

$$S = \overline{A} \overline{B} C_{in} + \overline{A} B \overline{C_{in}} + A \overline{B} \overline{C_{in}} + A B C_{in}$$

$$C_{\text{out}} = \overline{A} B C_{\text{in}} + A \overline{B} C_{\text{in}} + A B \overline{C_{\text{in}}} + A B C_{\text{in}}$$

Solução

Simplificando as expressões

$$S = \overline{A} \overline{B} C_{in} + \overline{A} \overline{B} \overline{C_{in}} + \overline{A} \overline{B} \overline{C_{in}} + \overline{A} \overline{B} \overline{C_{in}}$$

$$S = \overline{A} (\overline{B} C_{in} + \overline{B} C_{in}) + A (\overline{B} C_{in} + \overline{B} C_{in})$$
 \longrightarrow $A \in \overline{A} \text{ em evidência}$

Como B
$$+$$
 $C_{in} = \overline{B} C_{in} + \overline{B} C_{in}$ e B $\bullet C_{in} = \overline{B} C_{in} + \overline{B} C_{in}$

$$S = \overline{A} (B \oplus C_{in}) + A (B \odot C_{in})$$

Fazendo
$$X = B \oplus C_{in} e \overline{X} = B \odot C_{in}$$

$$S = \overline{A} X + A \overline{X}$$

$$S = A \oplus B \oplus C_{in}$$

Simplificando as expressões

Somador de 4 bits

Somador Bit Slice

Somador de 4 bits

Somador Ripple-Carry

- · Ripple-Carry: Ondulação ou Propagação do Carry. <u>Carry-Out</u> de um estágio se transforma no <u>Carry-In</u> do estágio seguinte.
- · A_i e B_i "alimentam" os somadores em paralelo, mas o circuito deve esperar a propagação dos <u>Carries</u> para concluir a operação.

Exercícios

1. Verifique se o circuito abaixo executa a função de um somador completo

1.

$$C_{\text{out}} = \overline{ABC_{\text{in}}} + AB\overline{C_{\text{in}}} + A\overline{BC_{\text{in}}} + ABC_{\text{in}}$$

$$S = P4+P5+P6+P7$$

$$S = ABC_{in} + \overline{ABC}_{in} + \overline{ABC}_{in} + \overline{ABC}_{in}$$

1.

$$S = ABC_{in} + \overline{ABC_{in}} + \overline{ABC_{in}} + \overline{ABC_{in}}$$

Tabela Verdade S

rabela veradae o						
A	В	C _{in}	5)			
0	0	0				
0	0	1	1			
0	1	0	1			
0	1	1				
1	0	0	1			
1	0	1				
1	1	0				
1	1	1	1			

Tabela para S é igual à Tabela do S do slide 7, que é a TV do Somador

1.

$$C_{\text{out}} = \overline{ABC_{\text{in}}} + AB\overline{C_{\text{in}}} + AB\overline{C_{\text{in}}} + ABC_{\text{in}}$$

Tabela Verdade Cout

			oui
A	В	C _{in}	Cout
0	0	0	
0	0	1	
0	1	0	
0	1	1	1
1	0	0	
1	0	1	1
1	1	0	1
1	1	1	1

Tabela para $C_{\rm out}$ é igual à Tabela do $C_{\rm out}$ do slide 7, que é a TV do Somador

Exercícios

2. Considere um somador ripple-carry de 4 bits, cujos estágios de portas lógicas têm um atraso de 1ns. Qual é o atraso causado pelo somador ripple-carry para propagar o carry por todos os somadores?

Somador Ripple-Carry

2.

Para gerar:

 C_1 consome-se 2ns

 C_2 consome-se 4ns

 C_3 consome-se 6ns

 C_4 consome-se 8ns

Quanto maior o número de bits do somador, maior o atraso para gerar o carry final

Aula de Hoje

Aritmética Computacional:

- Subtrator
- o Detector de Validade de BCD
- o Detector de Igualdade

Aritmética Computacional

<u>Subtração</u>

Exemplo de subtração em decimal (dígitos de 0 a 9):

Empresta-1 da coluna da esquerda para formar a dezena

Aritmética Computacional

Subtração em Binário

Gera um "empresta-1" (carry out) da coluna seguinte: a 1°. coluna passa a valer 2_{10} = 10_2

O carry out será subtraído da coluna seguinte na continuação da operação

Exemplo

$$\frac{-0}{0}$$
 $\frac{-1}{1}$

Exercícios

- 1. Obtenha a Tabela Verdade para o circuito meio subtrator de 1 bit (considere como entradas: A e B; e como saídas: S e C_{out}).
- 2. Obtenha as expressões para a subtração S e para o $C_{\rm out}$ a partir da Tabela Verdade.
- 3. Simplifique as expressões $S \in C_{out}$.
- 4. Desenhe o diagrama de portas lógicas do circuito meio subtrator.

Aritmética Computacional

Subtração em Binário:

Exemplo

Gera um "empresta-1" (carry out) da coluna seguinte: a 1°. coluna passa a valer 10₂=2₁₀

```
1010
         1010
-0011
        -0011
```

```
Subtração
```


Exercícios

- 1. Obtenha a Tabela Verdade para o circuito subtrator completo de 1 bit (considere como entradas: A, B e C_{in} ; e como saídas: S e C_{out}).
- 2. Obtenha as expressões para a subtração S e para o $C_{\rm out}$ a partir da Tabela Verdade.
- 3. Simplifique as expressões $S \in C_{out}$.
- 4. Desenhe o diagrama de portas lógicas do circuito subtrator completo.

1) Entradas Saídas

Tabela Verdade para o Subtrator Completo

A	В	C _{in}	5	Cout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$S = \overline{A} \overline{B} C_{in} + \overline{A} \overline{B} \overline{C}_{in} + A \overline{B} \overline{C}_{in} + A \overline{B} C_{in}$$

$$C_{out} = \overline{A} \overline{B} C_{in} + \overline{A} \overline{B} \overline{C}_{in} + \overline{A} \overline{B} C_{in}$$

3)

Simplificando as expressões

$$S = \overline{A} \overline{B} C_{in} + \overline{A} \overline{B} \overline{C_{in}} + \overline{A} \overline{B} \overline{C_{in}} + \overline{A} \overline{B} \overline{C_{in}}$$

$$S = \overline{A} (\overline{B} C_{in} + \overline{B} C_{in}) + A (\overline{B} C_{in} + \overline{B} C_{in})$$
 \longrightarrow $A \in \overline{A} \text{ em evidência}$

Como B
$$\oplus$$
 $C_{in} = \overline{B} C_{in} + B \overline{C_{in}}$ e B \oplus $C_{in} = \overline{B} \overline{C_{in}} + B C_{in}$

$$S = \overline{A} (B \oplus C_{in}) + A (B \odot C_{in})$$

Fazendo
$$X = B \oplus C_{in} e \overline{X} = B \odot C_{in}$$

$$S = \overline{A} X + A \overline{X}$$

$$S = A \oplus B \oplus C_{in}$$

3)

Simplificando as expressões

$$C_{\text{out}} = \overline{A} \overline{B} C_{\text{in}} + \overline{A} \overline{B} C_{\text{in}} + \overline{A} \overline{B} C_{\text{in}} + \overline{A} \overline{B} C_{\text{in}}$$

$$C_{\text{out}} = \overline{AB} + BC_{\text{in}} + \overline{AC}_{\text{in}}$$

4)

 $S = A \oplus B \oplus C_{in}$ $C_{out} = \overline{AB} + BC_{in} + \overline{AC}_{in}$

Circuito Subtrator Completo

Resumo da Aula de Hoje

Tópicos mais importantes:

- O Circuitos Aritméticos:
 - o Subtrator
 - o Detector de Validade de BCD
 - o Detector de Igualdade

