Northeastern University - Seattle

Khoury College of Computer Sciences

Lecture 2: Search Engine Architecture Sep 9, 2019 CS6200
Information
Retrieval
Fall 2019

Overview

USER'S VIEW OF A SEARCH ENGINE

SEARCH ENGINE: BEHIND THE SCENES

OVERVIEW OF SEARCH ENGINE COMPONENTS

Search Engine "Architecture"

An abstracted view

Various software components

Their interfaces

Relationships between them

Two key requirements:

Effectiveness: Quality of the results

obtained from the engine

Efficiency: Related to response time, query

throughput etc.

Search Engine: User's View (simplified)

Some users may be aware of these

Search Engine: Behind the Scenes (simplified)

Search Engine: Key Steps

Coming up: a simplified overview of each component More details in later lectures!

WEB CRAWLING

Web Crawling: Acquiring Data ..1

- Data can come from crawlers looking for data, or feeds supplying data to the engine
- Crawlers:
 - Desktop or intranet crawlers: look inside a computer or machines within a company; may look at file folders, databases, SharePoint etc.

Web Crawling: Acquiring Data ..2

Crawlers:

- Web crawlers:
 - follow web links across the Web to get new documents,
 - ensure enough documents crawled to get good 'coverage',
 - and these are crawled again with sufficient frequency to keep the index 'fresh'
- Focused (topic-specific) crawlers
 - Look only for documents of certain content or types (e.g. academic search, images)

Web Crawling: Acquiring Data ..3

Feeds

- Collections or streams of documents 'fed' to search engine
- Often done in collaboration with a search engine to support a feature, say product search
- Real-time feeds useful for news, blogs etc.

Web Crawling Acquiring Data ..4

Feeds

- Good for both data owner and search engine:
 - Data owner gets data to the search engine as and when it is updated, and sends out all the data it wants to be seen (for freshness and coverage)
 - Search engine does not have to crawl repeatedly;
 avoids missing data or crawling data long after update

DATA NORMALIZATION & DATA TRANSFORMATION

Data normalization ..1

- Data acquired from crawls or feeds normalized:
 - Text converted into standard form with meta-data (e.g. HTML, Word docs, PDFs all go to XML or JSON)
 - Unicode standardization
 - Images re-sized, audio/video transcoded

Data normalization ...2

- Data normalized:
 - Metadata such as size, creation date, crawled date, feed info etc. stored
 - Links, anchor text, entities etc. extracted and stored
 - Duplicates/spam etc. identified and rejected

 Data + metadata stored for fast access and processing by other components

[For text:]

- Dealing with 'stop words' or 'function' words:
 e.g. a, an, the, and, or, from, into, to, be ...
 [in English]
 - Huge part of all text input (>~ 40%)
 - Not always good to remove them,
 e.g. "To be or not to be"

[For text:]

- Dealing with punctuation
 - AT&T , .NET, C# , #hashtags, @twitterhandles, ...
- Stemming/morphological analysis
 Getting root word from word variants
 - E.g. smile, smiled, smiles, smiling ...
 - Not always easy or helpful, depends on language

Internet search engines themselves predate the debut of the Web in December 1990. The Who is user search dates back to 1982 [1] and the Knowbot Information Service multi-network user search was first implemented in 1989. [2] The first well documented search engine that searched content files, namely FTP files was Archie, which debuted on 10 September 1990. [citation needed]

From https://en.wikipedia.org/wiki/Web_search_engine

- Anchor text (e.g. "Who is", "FTP" above) extracted and used as metadata for the site pointed to
- Links extracted to form web graph and in ranking algorithms such as PageRank (popularity/hub info)

 Entities (people, places, company names, SSNs, email addresses, phone numbers, tweet handles etc.)
 extracted for specific applications.

The parrots of Southeastern Peru crave an earthy delicacy: dirt. At the Colorado clay lick, a cliff face rising above the Tambopata River in the western Amazon Basin, parrots — often hundreds at a time from up to 18 species — gather each day to feast on sun-hardened clay.

"It's a real spectacle of both sight and sound," says biologist Donald Brightsmith of Texas A&M University.

From http://www.npr.org/sections/thesalt/2017/09/07/547981850/why-do-parrots-and-people-eat-clay

INDEXING

Indexing Data ..1

- Main portion: Processes terms in documents to create term-document relationships
 - e.g. Document 1: "The cat sat on the mat"
 Document 2: "The rat sat on the cat"
 - Simple version \rightarrow

- Since data is fast-changing, must handle updates well
- Sparse matrices? Compression useful.

Indexing Data ..2

- Data collected for ranking, special queries (e.g. proximity*) too:
 - Term statistics
 - Word positions
 - 'idf' values (more about this soon!)
- Think:
 What would we index for images/audio/video?

^{*} Proximity search lets you search for two or more terms within a specified distance, e.g. within 4 words of each other

Indexing Data ..3

- Distributed indexes used for huge collections,
 e.g. Bing/Google
 - Index size and performance limitations
 - Need multiple computers, and/or multiple sites, ...
 - Documents split by language or just randomly

RANKING & RETRIEVAL

Ranked Retrieval

- Ranking algorithm: Computes how closely documents match query, and ranks results accordingly
- Many retrieval models, ranking algorithms
- Ranking could be distributed
 e.g. if based on distributed indexes
 - Farm out queries and collate results
- More soon!

USER INTERACTION

User Interaction ..1

- Input queries
- Transform queries
- Output results

User Interaction ...2

- Input queries may be:
 - Simple free text
 - Boolean queries: ["Roger Federer" AND Wimbledon],
 ["Bianca Andreescu" AND "US Open Women's singles"]
 - Include query operators, such as phrase quotes, + to indicate required term, - to indicate term should not occur etc.
- Query parsing required

User Interaction ..3

- Queries may be transformed:
 - Spelling correction
 - Query suggestion
 - Expanded with new terms
 - Clarified ([Rodeo Dr.] -> [Rodeo Drive])
 - But when is Dr = Doctor?

From https://www.bing.com/search?q=Rodeo+dr.

User Interaction ..4

- Results displayed for each query:
 - In ranked order
 - With snippets/hit-highlights to show context of query match
 - With spell suggestions, query suggestions, related documents, grouped/clustered results, advertisements...
 - Right-pane info
 - Instant answers

EVALUATION

Search Engine Evaluation

- Metrics computed to ensure that any new features or code changes only improves the engine
 - Better effectiveness
 - More performant system
- Queries, results and clicks logged
 - To get data for query and spelling suggestions, ranking, advertising relevance, spam detection...

Caveats

- This overview omitted a lot of detail, simplified to get a high-level picture
 - E.g. language identification, duplicate detection, sentiment analysis in product search etc.
- More details in the following lectures
 - Covering main approaches
 - With pointers to other approaches

Summary

- Got a closer look at Search Engines,
 with an overview of main components
- Next: Acquiring Data

Readings

1. Chapter 2 CMS

2. "The" Google paper:

The Anatomy of a Large-Scale Hypertextual Web Search Engine, Sergey Brin and Lawrence Page, Computer Networks and ISDN Systems 30 (1998) pp. 107-117.

http://snap.stanford.edu/class/cs224w-readings/Brin98Anatomy.pdf

An earlier version is available at: http://infolab.stanford.edu/pub/papers/google.pdf

Questions?