Points extrémaux de la boule unité de $\mathcal{L}(E)$

Leçons: 160, 161, 181

Définition 1

Un point extrémal de X est un point qui n'appartient à aucun segment [AB], où A et B sont des points de X.

Théorème 2

Soit E espace euclidien. Les points extrémaux de la boule unité de $\mathcal{L}(E)$ sont les éléments de O(E)

Lemme 3

Si X est convexe, un point extrémal de X est un point qui ne peut s'écrire comme milieu de deux points distincts de X.

Démonstration. Supposons que z vérifie une telle propriété et que $tx_1 + (1-t)x_2 = z$ où $x_i \in X \setminus \{z\}$. Quitte à échanger x_1 et x_2 , on peut supposer $t \le \frac{1}{2}$ et alors $z = \frac{x_2}{2} + \frac{2tx_1 + (1-2t)x_2}{2}$ ce qui est absurde.

Démonstration (du théorème). **Étape 1 : tout** $u \in O(E)$ **est extrémal :** Comme u est une isométrie, ||u|| = 1. Supposons que $u = \frac{v + w}{2}$ où $v, w \in B$. Soit $x \in E$ de norme 1. Alors

$$1 = ||u(x)|| = ||x|| \le \frac{1}{2}(||v(x)|| + ||w(x)||) \le \frac{1}{2}(||v|| + ||w||) \le 1,$$

donc toutes les inégalités sont des égalités. En particulier, on a un cas d'égalité dans l'inégalité triangulaire pour une norme euclidienne donc il existe $\lambda \ge 0$ tel que $v(x) = \lambda w(x)$. Or, comme $v, w \in B$, on a $||v(x)|| \le ||x|| = 1$ et $||w(x)|| \le 1$. De plus, $\frac{1}{2}(||v(x)|| + ||w(x)||) = 1$ donc ||v(x)|| = ||w(x)|| = 1. Ainsi, $\lambda = 1$ et v(x) = w(x).

Étape 2 : les éléments de $B \setminus O(E)$ **ne sont pas extrémaux** : soit u un tel élément, soit \mathcal{B} une base orthonormée de E et A la matrice de u dans cette base. Par décomposition polaire, on peut trouver $O \in O_n(\mathbb{R})$, $S \in \mathcal{S}_n^{++}(\mathbb{R})$ tels que A = OS.

En outre, par le théorème spectral, il existe $P \in O_n(\mathbb{R})$ tel que $S = {}^tPDP$ où $D = \text{Diag}(d_1, \ldots, d_n)$ avec $0 < d_1 \le \cdots \le d_n$. Comme A et O^{-1} sont éléments de B, S l'est aussi, donc $\forall k \in [1, n], d_k \le 1$. En effet, si $\mathscr{B}' = (e'_1, \ldots, e'_n)$ est une base de diagonalisation de de S et $X = \sum a_i e'_i$, alors

$$||S(x)||^2 = \sum_i d_i^2 |a_i|^2 \le (\max_i (d_i))^2 ||x||.$$

A n'est pas orthogonale donc il existe $k \in [\![1,n]\!]$ tel que $d_k < 1$. Pour simplifier, on prend k=1. Il existe alors $\alpha,\beta \in [-1,1]$ tels que $d_1=\frac{\alpha+\beta}{2}$. Introduisons $D'=\mathrm{Diag}(\alpha,d_2,\ldots,d_n)$ et $D''=\mathrm{Diag}(\beta,d_2,\ldots,d_n)$. On a alors $A=\frac{O^tPD'P+O^tPD''P}{2}$. Enfin, si ||X||=1,

$$||O^{t}PD'PX||^{2} \stackrel{P,O \in O_{n}}{=} {}^{t}X^{t}PD'P^{t}OO^{t}PD'PX = {}^{t}X^{t}P(D')^{2}PX = {}^{t}(PX)(D')^{2}PX \le 1$$

car ||PX|| = ||X|| = 1 et $(D')^2$ a des coefficients diagonaux entre 0 et 1. Donc $O^tPD'P$ et $O^tPD''P$ sont deux éléments distincts de B, de sorte que u n'est pas extrémal.

Remarque. Selon le théorème de Krein-Milman (ou Minkowski), la boule unité de $\mathcal{L}(E)$ est donc l'enveloppe convexe de O(E).

Référence : Serge Francinou, Hervé Gianella et Serge Nicolas (2008). *Exercices de mathématiques – Oraux X-ENS : Algèbre 3*. Cassini, p. 130.