Nonlinear Response

Mike Reppert

October 5, 2020

1/22

Material response can be expanded in a perturbative series

$$P_{\alpha}(t) = \sum_{n=0}^{\infty} P_{\alpha}^{(n)}(t).$$

2/22

Material response can be expanded in a perturbative series

$$P_{\alpha}(t) = \sum_{n=0}^{\infty} P_{\alpha}^{(n)}(t).$$

Linear response is the first-order term, characterized by the susceptibility

$$\chi^{(1)}(\omega) = \int d\tau R^{(1)}(\tau) e^{\mathrm{i}\omega\tau}.$$

Material response can be expanded in a perturbative series

$$P_{\alpha}(t) = \sum_{n=0}^{\infty} P_{\alpha}^{(n)}(t).$$

Linear response is the first-order term, characterized by the susceptibility

$$\chi^{(1)}(\omega) = \int d\tau R^{(1)}(\tau) e^{\mathrm{i}\omega\tau}.$$

Absorption spectroscopy probes the imaginary part:

$$A(\omega) = \frac{4\pi\omega\ell}{cn(\omega)\ln 10} \mathrm{Im}\chi(\omega).$$

2/22

Material response can be expanded in a perturbative series

$$P_{\alpha}(t) = \sum_{n=0}^{\infty} P_{\alpha}^{(n)}(t).$$

Linear response is the first-order term, characterized by the susceptibility

$$\chi^{(1)}(\omega) = \int d\tau R^{(1)}(\tau) e^{i\omega\tau}.$$

Absorption spectroscopy probes the imaginary part:

$$A(\omega) = \frac{4\pi\omega\ell}{cn(\omega)\ln 10} \mathrm{Im}\chi(\omega).$$

Today: Nonlinear response

Outline for Today:

1 The Nonlinear Polarization

2 The Longitudinal and Transverse Fields

3 The Rare Medium Approximation

4/22

In **nonlinear materials**, Maxwell's equations are *complicated*:

$$\nabla \cdot \mathbf{E} = -4\pi \nabla \cdot \mathbf{P}[\mathbf{E}]$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0$$

$$\nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \frac{\partial \mathbf{P}[\mathbf{E}]}{\partial t}$$

In **nonlinear materials**, Maxwell's equations are *complicated*:

$$\nabla \cdot \boldsymbol{E} = -4\pi \nabla \cdot \boldsymbol{P}[\boldsymbol{E}]$$

$$\nabla \cdot \boldsymbol{B} = 0$$

$$\nabla \times \boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} = 0$$

$$\nabla \times \boldsymbol{B} - \frac{1}{c} \frac{\partial \boldsymbol{E}}{\partial t} = \frac{4\pi}{c} \frac{\partial \boldsymbol{P}[\boldsymbol{E}]}{\partial t}$$

We need perturbative methods!

Roughly speaking:

Probability of *n*-th order processes $\propto \frac{1}{n!} \left(\frac{\mathsf{Rate} \ \mathsf{of} \ \mathsf{excitation}}{\mathsf{Rate} \ \mathsf{of} \ \mathsf{de-excitation}} \right)^n$

Roughly speaking:

Probability of
$$n$$
-th order processes $\propto \frac{1}{n!} \left(\frac{\mathsf{Rate of excitation}}{\mathsf{Rate of de-excitation}} \right)^n$

In direct sunlight:

- Chlorophyll a gets excited 10 times/second
- Chlorophyll excited states live for 1 ns.

Q: What's the probability of a nonlinear event?

Roughly speaking:

Probability of
$$n$$
-th order processes $\propto \frac{1}{n!} \left(\frac{\mathsf{Rate of excitation}}{\mathsf{Rate of de-excitation}} \right)^n$

In direct sunlight:

- Chlorophyll a gets excited 10 times/second
- Chlorophyll excited states live for 1 ns.

Q: What's the probability of a nonlinear event?

A: Roughly $10^{-16}(!)$

6/22

Roughly speaking:

Probability of
$$n$$
-th order processes $\propto \frac{1}{n!} \left(\frac{\mathsf{Rate of excitation}}{\mathsf{Rate of de-excitation}} \right)^n$

In direct sunlight:

- Chlorophyll a gets excited 10 times/second
- Chlorophyll excited states live for 1 ns.

Q: What's the probability of a nonlinear event?

A: Roughly $10^{-16}(!)$

For most materials, nonlinear processes happen only at very high intensities!

To build a perturbation theory, define the *nonlinear* polarization

$$\boldsymbol{P}^{(\mathsf{NL})}(\boldsymbol{x},t) = \boldsymbol{P}(\boldsymbol{x},t) - \boldsymbol{P}^{(1)}(\boldsymbol{x},t).$$

To build a perturbation theory, define the *nonlinear* polarization

$$\boldsymbol{P}^{(\mathsf{NL})}(\boldsymbol{x},t) = \boldsymbol{P}(\boldsymbol{x},t) - \boldsymbol{P}^{(1)}(\boldsymbol{x},t).$$

Key Point: We can solve the *linear* equations exactly. Exact knowledge of ${\bf P}^{(1)}({\bf x},t)$ lets us study ${\bf P}^{(\rm NL)}({\bf x},t)$ perturbatively.

Maxwell's Equations now become:

$$\nabla \cdot \left(\mathbf{E} + 4\pi \mathbf{P}^{(1)} \right) = -4\pi \mathbf{P}^{(\text{NL})}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0$$

$$\nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial}{\partial t} \left(\mathbf{E} + 4\pi \mathbf{P}^{(1)} \right) = \frac{4\pi}{c} \frac{\partial \mathbf{P}^{(\text{NL})}}{\partial t}$$

Maxwell's Equations now become:

$$\nabla \cdot \left(\boldsymbol{E} + 4\pi \boldsymbol{P}^{(1)} \right) = -4\pi \boldsymbol{P}^{(\mathsf{NL})}$$

$$\nabla \cdot \boldsymbol{B} = 0$$

$$\nabla \times \boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} = 0$$

$$\nabla \times \boldsymbol{B} - \frac{1}{c} \frac{\partial}{\partial t} \left(\boldsymbol{E} + 4\pi \boldsymbol{P}^{(1)} \right) = \frac{4\pi}{c} \frac{\partial \boldsymbol{P}^{(\mathsf{NL})}}{\partial t}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\nabla \left(\nabla \cdot \boldsymbol{E} \right) - \nabla^2 \boldsymbol{E} + \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \left(\boldsymbol{E} + 4\pi \boldsymbol{P}^{(1)} \right) = -\frac{4\pi}{c^2} \frac{\partial^2}{\partial t^2} \boldsymbol{P}^{(\mathsf{NL})}$$

8 / 22

Maxwell's Equations now become:

$$\nabla \cdot \left(\boldsymbol{E} + 4\pi \boldsymbol{P}^{(1)} \right) = -4\pi \boldsymbol{P}^{(\mathsf{NL})}$$

$$\nabla \cdot \boldsymbol{B} = 0$$

$$\nabla \times \boldsymbol{E} + \frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} = 0$$

$$\nabla \times \boldsymbol{B} - \frac{1}{c} \frac{\partial}{\partial t} \left(\boldsymbol{E} + 4\pi \boldsymbol{P}^{(1)} \right) = \frac{4\pi}{c} \frac{\partial \boldsymbol{P}^{(\mathsf{NL})}}{\partial t}$$

$$\downarrow \downarrow$$

$$\nabla \left(\nabla \cdot \boldsymbol{E} \right) - \nabla^2 \boldsymbol{E} + \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \left(\boldsymbol{E} + 4\pi \boldsymbol{P}^{(1)} \right) = -\frac{4\pi}{c^2} \frac{\partial^2}{\partial t^2} \boldsymbol{P}^{(\mathsf{NL})}$$

It looks (sort of) like the wave equation – but it's not!

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

In **nonlinear media** We can't solve Maxwell's equations exactly – so we use a perturbation expansion!

The **nonlinear polarization** $P^{(NL)}$ is the part of the total polarization *not* captured by $P^{(1)}$.

The equation governing **nonlinear processes** looks something like the wave equation, but with a nonlinear source on the right-hand side.

The Longitudinal and Transverse Fields

The Helmholtz Decomposition

As usual, solutions are easier in k-space:

$$\boldsymbol{k}\left(\boldsymbol{k}\cdot\tilde{\boldsymbol{E}}\right)+k^{2}\tilde{\boldsymbol{E}}-\frac{\omega^{2}}{c^{2}}\left(\tilde{\boldsymbol{E}}+4\pi\tilde{\boldsymbol{P}}^{(1)}\right)=\frac{4\pi\omega^{2}}{c^{2}}\tilde{\boldsymbol{P}}^{(NL)}.$$

The Helmholtz Decomposition

As usual, solutions are easier in k-space:

$$\boldsymbol{k}\left(\boldsymbol{k}\cdot\tilde{\boldsymbol{E}}\right)+k^{2}\tilde{\boldsymbol{E}}-\frac{\omega^{2}}{c^{2}}\left(\tilde{\boldsymbol{E}}+4\pi\tilde{\boldsymbol{P}}^{(1)}\right)=\frac{4\pi\omega^{2}}{c^{2}}\tilde{\boldsymbol{P}}^{(\mathrm{NL})}.$$

Now decompose the field as the sum $ilde{m E} = ilde{m E}_{\parallel} + ilde{m E}_{\perp}$ of two components

$$ilde{m{E}}_{\parallel}(m{k},\omega) = m{k} rac{m{k} \cdot ilde{m{E}}(m{k},\omega)}{k^2} \leftarrow ext{Longitudinal Field}$$
 $ilde{m{E}}_{\perp}(m{k},\omega) = -rac{m{k} imes \left(m{k} imes ilde{m{E}}(m{k},\omega)
ight)}{k^2} \leftarrow ext{Transverse Field}.$

At any point in ${m k}$ -space, $ilde{m E}_{\parallel}$ is parallel to ${m k}$, and $ilde{m E}_{\perp}$ is perpendicular!

Longitudinal vs. Transverse fields

Loosely speaking:

- Longitudinal fields are polarized along their propagation axis
- Transverse fields are polarized perpendicular to propagation axis

Transverse Wave

Longitudinal vs. Transverse fields

Loosely speaking:

- Longitudinal fields are polarized along their propagation axis
- Transverse fields are polarized perpendicular to propagation axis

Transverse Wave

In vacuum MEs support only

fields.

13 / 22

In vacuum MEs support only **transverse** fields.

In vacuum MEs support only **transverse** fields.

$$abla \cdot \mathbf{E} = 0 \qquad \Leftrightarrow \qquad \mathbf{k} \cdot \tilde{\mathbf{E}} = 0$$
 $abla \cdot \mathbf{B} = 0 \qquad \Leftrightarrow \qquad \mathbf{k} \cdot \tilde{\mathbf{B}} = 0$

In vacuum MEs support only **transverse** fields.

$$\nabla \cdot \mathbf{E} = 0 \qquad \Leftrightarrow \qquad \mathbf{k} \cdot \tilde{\mathbf{E}} = 0$$
$$\nabla \cdot \mathbf{B} = 0 \qquad \Leftrightarrow \qquad \mathbf{k} \cdot \tilde{\mathbf{B}} = 0$$

Longitudinal fields can exist only in matter! ⇒ not usually relevant to spectroscopy.

The Longitudinal and Transverse Fields

The HD splits one equation into two:

$$\begin{split} \boldsymbol{k} \left(\boldsymbol{k} \cdot \tilde{\boldsymbol{E}} \right) + k^2 \tilde{\boldsymbol{E}} - \frac{\omega^2}{c^2} \left(\tilde{\boldsymbol{E}} + 4\pi \tilde{\boldsymbol{P}}^{(1)} \right) &= \frac{4\pi\omega^2}{c^2} \tilde{\boldsymbol{P}}^{(\text{NL})} \\ & \qquad \qquad \qquad \qquad \downarrow \\ -\tilde{\boldsymbol{E}}_{\parallel} + 4\pi \tilde{\boldsymbol{P}}_{\parallel}^{(1)} &= -4\pi \tilde{\boldsymbol{P}}_{\parallel}^{(\text{NL})} \\ \left(k^2 - \frac{\omega^2}{c^2} \right) \tilde{\boldsymbol{E}}_{\perp} + \frac{\omega^2}{c^2} 4\pi \tilde{\boldsymbol{P}}_{\perp}^{(1)} &= \frac{4\pi\omega^2}{c^2} \tilde{\boldsymbol{P}}_{\perp}^{(\text{NL})}. \end{split}$$

Looks like we could *almost* solve this. **But:** $ilde{m{P}}_{\parallel}^{(\mathsf{NL})}$ and $ilde{m{P}}_{\perp}^{(\mathsf{NL})}$ depend on the *total field*!

- Both equations are nonlinear.
- The equations are coupled.

◆□▶◆□▶◆壹▶◆壹▶ 壹 少Qで

The **Helmholz Decomposition** splits the EM field into *longitudinal* and *transverse* components.

The **longitudinal field** E_{\parallel} is polarized *along* its propagation axis.

The transverse field E_{\perp} is polarized *perpendicular* to its propagation axis.

In vacuum MEs support only transverse fields.

In matter ME + HD gives a pair of coupled nonlinear equations that we cannot solve directly...

In **isotropic materials**, the problem is solved definitively by the *rare medium approximation*.

In **isotropic materials**, the problem is solved definitively by the *rare medium approximation*. Let

$$oldsymbol{E} = oldsymbol{E}_{\mathsf{ext}} + oldsymbol{E}^{(1)} + oldsymbol{E}^{(\mathsf{NL})},$$

where

- $oldsymbol{e}$ is the total field
- ullet E_{ext} is the field without the material
- $m{E}_{\mathsf{ext}} + m{E}^{(1)}$ is the solution to Maxwell's equations under linear response .

Key Point: The linear field $E_{\text{ext}} + E^{(1)}$ is *exactly* solvable and, for most systems, dominates the response.

Key Point: The linear field $E_{\text{ext}} + E^{(1)}$ is *exactly solvable* and, for most systems, dominates the response.

This suggests an approximation:

$$m{P}^{(\mathsf{NL})}[m{E}] pprox m{P}^{(\mathsf{NL})} \left[m{E}_{\mathsf{ext}} + m{E}^{(1)}
ight],$$

Key Point: The linear field $E_{\text{ext}} + E^{(1)}$ is *exactly solvable* and, for most systems, dominates the response.

This suggests an approximation:

$$m{P}^{(\mathsf{NL})}[m{E}] pprox m{P}^{(\mathsf{NL})} \left[m{E}_{\mathsf{ext}} + m{E}^{(1)}
ight],$$

Now the nonlinear response is simply a *knowable* functional of a *known* quantity – this can be solved exactly!

19 / 22

The Longitudinal Field

This makes life much better.

Under the RMA, the equation for $ilde{E}_{\parallel}$ is algebraic:

$$\hat{m{E}}_{\parallel}^{(\mathsf{NL})} = -4\pi \hat{m{P}}_{\parallel}^{(\mathsf{NL})} \left[\hat{m{E}}_{\mathsf{ext}} + \hat{m{E}}^{(1)}
ight].$$

The field is non-zero only where the polarization is non-zero.

The Longitudinal Field

This makes life much better.

Under the RMA, the equation for $ilde{E}_{\parallel}$ is algebraic:

$$\hat{m{E}}_{\parallel}^{(\mathsf{NL})} = -4\pi \hat{m{P}}_{\parallel}^{(\mathsf{NL})} \left[\hat{m{E}}_{\mathsf{ext}} + \hat{m{E}}^{(1)}
ight].$$

The field is non-zero only where the polarization is non-zero.

 \Rightarrow The longitudinal field vanishes outside the sample.

The Longitudinal Field

This makes life much better.

Under the RMA, the equation for $ilde{E}_{\parallel}$ is algebraic:

$$\tilde{m{E}}_{\parallel}^{(\mathsf{NL})} = -4\pi \tilde{m{P}}_{\parallel}^{(\mathsf{NL})} \left[\tilde{m{E}}_{\mathsf{ext}} + \tilde{m{E}}^{(1)}
ight].$$

The field is non-zero only where the polarization is non-zero.

- ⇒ The longitudinal field vanishes outside the sample.
- ⇒ The longitudinal polarization does not radiate!

The Transverse Field

The **transverse field** follows the inhomogeneous wave equation, with the nonlinear polarization as a source:

$$\left(k^2 - \frac{\omega^2}{c^2} \varepsilon(\omega)\right) \tilde{\boldsymbol{E}}_{\perp}^{(\mathrm{NL})} = \frac{4\pi\omega^2}{c^2} \tilde{\boldsymbol{P}}_{\perp}^{(\mathrm{NL})} \left[\tilde{\boldsymbol{E}}_{\mathrm{ext}} + \tilde{\boldsymbol{E}}^{(1)}\right].$$

The Transverse Field

The **transverse field** follows the inhomogeneous wave equation, with the nonlinear polarization as a source:

$$\left(k^2 - \frac{\omega^2}{c^2}\varepsilon(\omega)\right)\tilde{\boldsymbol{E}}_{\perp}^{(\mathrm{NL})} = \frac{4\pi\omega^2}{c^2}\tilde{\boldsymbol{P}}_{\perp}^{(\mathrm{NL})}\left[\tilde{\boldsymbol{E}}_{\mathrm{ext}} + \tilde{\boldsymbol{E}}^{(1)}\right].$$

The transverse field radiates! In isotropic media, the transverse field drives all nonlinear processes!

In most materials, the **nonlinear response** is much weaker than the *linear response*.

Under the **rare medium approximation**:

• The linear equations are solved exactly

In most materials, the **nonlinear response** is much weaker than the *linear response*.

Under the **rare medium approximation**:

- The linear equations are solved exactly
- The *linear* field induces a *nonlinear* polarization

In most materials, the **nonlinear response** is much weaker than the *linear response*.

Under the **rare medium approximation**:

- The linear equations are solved exactly
- The *linear* field induces a *nonlinear* polarization
- The transverse nonlinear polarization acts as a source for the radiated transverse nonlinear field