

Department of Informatics

Presenting finite posets (with monotone maps?)

... using string diagrams

Outline

What are string diagrams?

String diagrams algebraically

Presenting finite sets and functions

Refresher on posets

Presenting posets

What are string diagrams?

They are a bit like legos!

What are string diagrams?

We can combine legos/string diagrams in two different ways:

What are string diagrams?

We can combine legos/string diagrams in two different ways:

$$X \otimes - = X$$

$$X \circ X = X$$

$$-\otimes \chi = \chi$$

$$X \circ X = X$$

String diagrams algebraically

We can assign each string a type, given by the number of input ports (on the left) and the number of output ports on the right:

$$\frac{S:k \to l \quad T:m \to n}{S \otimes T:k + m \to l + n} \qquad \frac{S:k \to l \quad T:l \to m}{S \circ T:k \to m}$$

String diagrams algebraically

$$(--- \otimes) \circ () \circ (\otimes ---)$$

$$=$$

$$(id \otimes \gamma) \circ (\gamma \otimes id)$$

$$=$$

So what can we do with id, γ , μ and η ?

Say we have function $f:[5] \rightarrow [5]$ (where $[n] = \{0 \dots n-1\}$):

$$f(0) = 1$$

 $f(1) = 0$
 $f(2) = 4$
 $f(3) = 3$
 $f(4) = 1$

So what can we do with id, γ , μ and η ?

We can express this function as a string diagram:

So what can we do with id, γ , μ and η ?

Or alternatively:

$$(id \otimes id \otimes id \otimes \gamma) \circ (\gamma \otimes \gamma \otimes id) \circ (id \otimes \mu \otimes \eta \otimes \gamma)$$

String diagram equations

More formally, the category of functions on finite sets \mathbf{F} , is presented by the string diagram rewriting system.

Our category **F** has natural numbers $n, m \in \mathbb{N}$ as objects and arrows $f_{\mathbf{F}}: n \to m$, which are functions $f: [n] \to [m]$.

We can turn **F** into a symmetric monoidal category, by defining a bifunctor $\otimes: \mathbf{F} \times \mathbf{F} \to \mathbf{F}$ and pick an identity object **I**.

We can chose 0 as our identity object (remember objects in **F** are natural numbers) and define \otimes to be $n \otimes m = n + m$ on objects and "disjoint union" on functions, namely:

Given arrows $f_{\mathbf{F}}: k \to l$ and $g_{\mathbf{F}}: m \to n$, which are the functions $f: [k] \to [l]$ and $g: [m] \to [n]$, we define the arrow $f_{\mathbf{F}} \otimes g_{\mathbf{F}}: k + m \to l + n$ to be the function:

$$f \otimes g : [k+m] \to [l+n]$$

$$f \otimes g (x) = \begin{cases} f(x) & \text{if } x < k \\ g(x-k) + l & \text{otherwise} \end{cases}$$

Essentially stacking one function disjointly on top of the other.

What do we get, if we remove γ from our theory?

What do we get, if we remove μ ?

What do we get, if we remove η ?

What do we get, if we remove γ from our theory? Linear orders and monotone maps

What do we get, if we remove μ ?

What do we get, if we remove η ?

What do we get, if we remove γ from our theory? Linear orders and monotone maps

What do we get, if we remove μ ? Finite sets and injective functions

What do we get, if we remove η ?

What do we get, if we remove γ from our theory? Linear orders and monotone maps

What do we get, if we remove μ ? Finite sets and injective functions

What do we get, if we remove η ? Finite sets and surjective functions

What do we get, if we remove γ from our theory? Linear orders and monotone maps

What do we get, if we remove μ ? Finite sets and injective functions

What do we get, if we remove η ? Finite sets and surjective functions

What do we get, if we remove μ and η ? Finite sets and bijective functions / Permutations

Refresher on posets

A poset is a set S, together with a partial order relation \leq_S : $S \times S$, which is reflexive, transitive and antisymmetric.

For example, for $S = \{a, b, c, d, e\}$ and $a \leq_S c, a \leq_S d, b \leq_S d, c \leq_S e, d \leq_S e$, we can draw the following diagram, representing the poset:

$$(\delta \otimes id) \circ (id \otimes \mu) \circ (\sigma \otimes \sigma) \circ (id \otimes \delta) \circ (\mu \otimes id)$$

We have some additional combinators in this theory:

String diagram equations

String diagram equations

Who's stuff I stole borrowed

Drawing string diagrams is quite tedious!

I therefore borrowed some excellent ones from Pawel Sobocinski's MGS 2017 lecture notes (also, checkout his blog on Graphical Linear Algebra!)
(p. 3-4)

(p. 3-4)

I also used some string diagrams from S. Mimram's paper Presenting Finite Posets, on which this presentation was based (p. 11,27)

