WHAT IS CLAIMED IS:

1. A compound of the formula (Ia), (Ib) or (Ic)

$$Q = X_1 \qquad Q_1 = X_2 = Q_1 \qquad Q_1 = X_2 = Q$$
(Ia) (Ib) (Ic)

in which

 Q_1 is a benzofuran-2-one of the formula (IIa), and Q_2 is a benzofuran-2-one of the formula (IIb)

$$R_3$$
 R_4
 R_{300}
 R_{300}
 R_{100}
 R_{100}
 R_{100}
 R_{100}
 R_{100}
 R_{100}
 R_{100}
 R_{100}

R₁, R₂, R₃, R₄, R₁₀₀, R₂₀₀, R₃₀₀ or R₄₀₀ independently of one another are hydrogen, halogen, hydroxyl, cyano, ether, nitro, an amine, amide, imine, urethane, sulfonamide, ester, carboxylic acid or sulfonic acid radical or carboxylic salt, sulfonic salt or substituted or unsubstituted C₁-C₂₄alkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkylthio, C₂-C₂₄alkenyl, C₆-C₂₄aryl, C₇-C₂₅aralkyl, C₆-C₂₄aryloxy, C₆-C₂₄arylthio, A₅-A₁₈heteroaryl, A₅-A₁₈heteroaryloxy or

A₅-A₁₈hetergaryIthio, or

R₁ and R₂, R₂/and R₃, R₃ and R₄ or R₁₀₀ and R₂₀₀, or R₂₀₀ and R₃₀₀, R₃₀₀ and R₄₀₀, independently of one another in each case together are divalent, substituted or unsubstituted radicals, such as polycyclic radicals or 1,3-butadien-1,4-ylene or -CH=CH/NH-, the two last radicals forming an additional fused-on 5- or 6-membered ring, and

X₁ is a hydrazone or imine radical, with the proviso that, if R₁, R₂, R₃ and R₄ are hydrogen,

or one R_1 , R_2 , R_3 or R_4 is methyl, the hydrazone radical is excluded, or, if R_1 , R_2 , R_3 or R_4 is hydrogen, X_1 is not phenylimine- or 4-dimethylamine-phenylimine, or X_1 is a methylene radical,

$$= c \sum_{Q_4}^{Q_3}$$

in which

 Q_3 and Q_4 independently of one another are hydrogen or substituted or unsubstituted C_1 - C_{24} alkyl, -CO- $(C_1$ - C_{24} alkyl), -CO- $(C_1$ - C_{24} alkyl), C_1 - C_{24} alkoxy, C_1 - C_{24} alkylthio, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkylthio, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, -CO- $(C_6$ - C_{24} aryl), -CO- $(C_6$ - C_{24} aryl), C_6 - C_{24} aryloxy, a primary or secondary amine radical, C_6 - C_{12} arylthio, C_7 - C_{25} aralkyl, C_6 - C_{18} heteroarylthio,

 Q_3 and Q_4 together are a lactam, quinomethylene, hydantoin, acenaphthenequinone, azlactone, pyrazolonyl, barbityric acid, isoindolinone or isoindoline radical, with the proviso that Q_3 and Q_4 are not phenyl or

 Q_3 is not hydrogen and Q_4 is not methyl, 4-aminophenyl, 4-dimethylaminophenyl or -OCO-4-(1-chlorophenylene) if R_1 , R_2 , R_3 and R_4 are hydrogen, or Q_3 is not hydrogen and Q_4 is not 4-aminophenyl if R_1 and R_3 are tert- C_5H_{11} alkyl, or Q_3 is not hydrogen and Q_4 is not 2-hydroxyphenyl if R_1 and R_3 are tert-butyl, or

 Q_3 is not hydrogen and Q_4 is not a primary or secondary amine radical if R_3 is hydrogen, methoxy or hydroxyl and R_1 , R_2 and R_4 are hydrogen, or Q_3 is not hydrogen and Q_4 is not a secondary amine radical if R_1 , R_2 , R_3 and R_4 are hydrogen, and

 X_2 is a tetravalent 5^{L} or 6-membered heterocyclic ring, or is

$$\begin{array}{c|c}
 & Q_5 & Q_6 \\
\hline
 & C - X_3 - C
\end{array}$$

in which

 X_3 is a single bond, unsubstituted or substituted C_6 - C_{24} arylene, A_5 - A_{18} heteroarylene, 1,2-phenylene, 1,3-phenylene, 1,4-phenylene or naphthylene, or a tetravalent

polyether, polyimine, polyamine radical, or bi(C_6 - C_{24})arylene, bi(A_5 - A_{18})heteroarylene, C_2 - C_{24} alkenylene, in which bi(C_6 - C_{24})arylene, bi(A_5 - A_{18})heteroarylene or C_2 - C_{24} alkenylene can be interrupted by one or more intermediate units such as -CH=CH-, -CH=N-, -N=N-, -CR $_{44}$ R $_{42}$ -, -CO-, -COO-, -OCO-, -NR $_{42}$ CO-, -CONR $_{42}$ -, -O-, -S-, -SO-, -SO₂- or -NR $_{42}$ -, in which

 R_{42} and R_{44} independently of one another are hydrogen, substituted or unsubstituted C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, C_7 - C_{25} aralkyl or A_5 - A_{18} heteroaryl, and

 $Q_5 \text{ and } Q_6 \text{ independently of one another/are hydrogen, } C_6\text{-}C_{24}\text{aryl}, C_6\text{-}C_{24}\text{aryloxy}, \\ C_1\text{-}C_{24}\text{alkyl}, C_1\text{-}C_{24}\text{alkoxy}, C_1\text{-}C_{24}\text{alkylthio}, C_5\text{-}C_{12}\text{cycloalkyl}, C_5\text{-}C_{12}\text{cycloalkoxy}, \\ C_5\text{-}C_{12}\text{cycloalkylthio}, C_2\text{-}C_{24}\text{alkenyl}, C_6\text{-}C_{24}\text{aryl}, C_6\text{-}C_{24}\text{aryloxy}, C_6\text{-}C_{24}\text{arylthio} \text{ or } \\ A_5\text{-}A_{18}\text{heteroaryl}, A_5\text{-}A_{18}\text{heteroaryloxy}, A_5\text{-}A_{18}\text{heteroaryloxy}, A_5\text{-}A_{18}\text{heteroaryloxy}, A_5\text{-}A_{18}\text{heteroaryloxy}, A_5\text{-}A_{18}\text{heteroaryloxy}, A_5\text{-}A_{18}\text{heteroaryloxy}, A_5\text{-}A_{18}\text{heteroaryloxy}, A_5\text{-}A_{18}$

in which

or

 Q_7 and Q_8 independently ϕ f one another are Q_5 or Q_6 , and

 X_4 is C_6 - C_{24} arylene, A_5 - A_{18} heteroarylene,a polymethylidene or divalent polyether, polyimine, polyamine radical, or bi(C_6 - C_{24})arylene, bi(A_5 - A_{18})heteroarylene, C_2 - C_{24} alkenylene, in which bi(C_6 - C_{24})arylene, bi(A_5 - A_{18})heteroarylene or C_2 - C_{24} alkenylene can be interrupted by one or more intermediate units such as -CH=CH-, -CH=N-, -N=N-, -CR₄₄R₄₂-, -CO-, -COO-, -OCO-, -NR₄₂CO-, -CONR₄₂-, -O-, -S-, -SO-, -SO₂- or -NR₄₂-,

or

$$X_2$$
 is $N-NH-X_4-HN-N$ or $N-N$

2. A compound according to claim 1 of the formula (XVI)

$$\begin{bmatrix} R_{13} & R_{113} & X \\ R_{112} & R_{12} & 0 \end{bmatrix}$$
 (XVI)

in which

n is 1 or 2, and

if n is 1

X is X₁ as defined in alaim 1, and

if n is 2

X is X_2 as defined in claim 1, and

 R_{12} , R_{13} and R_{113} independently of one another are hydrogen, halogen, OH, NO₂, R_{14} , OR₁₄, OC₉-C₁₈alkyl or SC₉-C₁₈alkyl, in which

 R_{14} is C_1 - C_{24} alkyl which is unsubstituted or substituted one or more times by oxo or by $COO^-X_5^+$ and which can be uninterrupted or interrupted one or more times by O, N and/or S, or is C_7 - C_{18} aralkyl or C_6 - C_{12} aryl unsubstituted or substituted one or more times by halogen, OR_{16} , $NR_{16}R_{17}$, $COOR_{16}$, $CONR_{16}R_{17}$, $NR_{18}COR_{16}$ or $NR_{18}COOR_{16}$,

 X_5^+ is a cation H^+ , Na^+ , K^+ , $Mg^{++}_{1/2}$, $Ca^{++}_{1/2}$, $Zn^{++}_{1/2}$, $Al^{+++}_{1/2}$, or $[NR_{16}R_{17}R_{18}R_{19}]^+$, and

R₁₆ and R₁₇ independently of one another are hydrogen, C₆-C₁₂aryl, C₇-C₁₀aralkyl, or C₁-C₈alkyl which is unsubstituted or substituted one or more times by halogen, hydroxyl or C₁-C₄alkoxy, or

R₁₆ and R₁₇ in NR₁₆R₁₇ or CONR₁₆R₁₇, together with the nitrogen atom connecting them, are pyrrolidine, piperidine, piperazine or morpholine each of which is unsubstituted or substituted from one to four times by C₁-C₄alkyl,

and R_{18} and R_{19} independently of one another are hydrogen, C_1 - C_8 alkyl, C_6 - C_{10} aryl or C_6 - C_{12} aralkyl,

 R_{12} and R_{112} , R_{112} and R_{13} , R_{13} and R_{113} can also independently of one another each

SUB

together be divalent substituted or uns

together be divalent substituted or unsubstituted radicals, such as polycyclic radicals.

3. A compound according to any one of claims 1-and 2, of the formula (XVII)

$$R_{113}$$
 R_{113}
 R_{113}
 R_{63}
 R_{112}
 R_{12}
 R_{12}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}
 R_{15}
 R_{15}
 R_{15}
 R_{15}
 R_{15}
 R_{15}
 R_{15}
 R_{15}

in which,

if n is 1

R₆₄ independently of R₆₃ is a radiqal as defined under R₆₃ or is hydrogen, and

R₆₃ is substituted or unsubstituted C₁-C₁₂alkyl, C₅-C₁₂cycloalkyl, C₂-C₆alkenyl,

 C_6 - C_{12} aryl, C_7 - C_{13} aralkyl, or A_5/A_{12} heteroaryl, and

if n is 2

 R_{63} is unsubstituted or substituted C_6 - C_{18} arylene, A_5 - A_{18} heteroarylene, C_5 - C_6 cycloalkyl or a divalent polymethylidene, polyether, polyimine, polyamine radical, or bi(C_6 - C_{24})arylene, bi(A_5 - A_{18})heteroarylene, C_2 - C_{24} alkenylene, in which

bi(C_6 - C_{24})arylene, bi(A_5 - A_{18}) beteroarylene or C_2 - C_{24} alkenylene can be interrupted and/or connected to one another by a direct bond or by one or more intermediate units such as -CH=CH-, -CH=N-, -N=N-, -CR $_{44}$ R $_{42}$ -, -CO-, -COO-, -OCO-, -NR $_{42}$ CO-, -CONR $_{42}$ -, -O-, -SO-, -SO₂- or -NR $_{42}$ -, -O-,

with the proviso that if R_1 , R_2 , R_3 and R_4 are hydrogen or an R_1 , R_2 , R_3 or R_4 is methyl, the hydrazone radical is expluded,

or

a compound of the formula (XXIV)

$$\begin{bmatrix} R_{113} & R_{77} \\ R_{112} & R_{12} \end{bmatrix}$$
 (XXIV)

in which, if n is 1,

or

 R_{77} is substituted or unsubstituted C_1 - C_{12} alkyl, C_5 - C_6 cycloalkyl, C_2 - C_6 alkenyl, C_6 - C_{12} aryl, C_7 - C_{13} aralkyl or A_5 - A_{12} heteroaryl, with the proviso that in formula (XXIV), if R_{12} , R_{112} , R_{13} or R_{113} are hydrogen, R_{77} is not unsubstituted phenylimine or 4-dimethylaminephenylimine,

a compound of the formula (XXV)

54B G27

$$R_{78}R_{79}N$$
 R_{113}
 R_{113}
 R_{79}
 R_{79}
 R_{79}
 R_{12}
 R_{12}
 R_{12}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}
 R_{15}
 R_{15}
 R_{15}

in which

if n is 1

 R_{78} , R_{78} ' and R_{79} independently of one another are hydrogen or substituted or unsubstituted C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, C_1 - C_{12} alkylthio, C_5 - C_6 cycloalkoxy, C_6 - C_6 cycloalkylthio, C_6 - C_2 4aryloxy, C_6 - C_2 4arylthio or A_5 - A_{12} heteroarylthio, C_5 - C_6 cycloalkyl, C_2 - C_{12} alkenyl, C_6 - C_{12} aryl, C_7 - C_{13} aralkyl, or A_5 - A_{12} heteroaryl, or dependently of one another are hydrogen, and

if n is 2

 R_{78} and R_{79} are as defined above when n is 1, and R_{78} is a direct bond or substituted or unsubstituted C_6 - C_{24} arylene, A_5 - A_{18} heteroarylene, C_5 - C_{12} cycloalkyl or bi(C_6 - C_{24})arylene, bi(A_5 - A_{18})heteroarylene, C_2 - C_{24} alkenylene, in which bi(C_6 - C_{24})arylene, bi(A_5 - A_{18})heteroarylene, C_2 - C_{24} alkenylene can be interrupted

by a direct bond or by one or more intermediate units such as -CH=CH-, -CH=N-, -N=N-, -CR $_{44}$ R $_{42}$ -, -CO-, -COO-, -OCO-, -NR $_{42}$ CO-, -CONR $_{42}$ -, -O-, -S-, -SO-, -SO₂- or -NR $_{42}$ -,

in which

 R_{42} and R_{44} independently of one another are/hydrogen, substituted or unsubstituted C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, C_7 - C_{25} aralkyl, or

A₅-A₁₈heteroaryl, or

a compound of the formula (XXVI)

 R_{113} R_{81} R_{82} R_{112} R_{12} R_{12}

su*is* LY

in which

if n is 1

 R_{81} and R_{82} are C_6 - C_{12} ary, if R_{12} , R_{112} , R_{13} or R_{113} are not hydrogen, or

R₈₁ and R₈₂ independently of one another are hydrogen or unsubstituted or substituted C₁-C₁₂alkyl, -CO-(C₁-C₂₄alkyl), -CO-O-(C₁-C₂₄alkyl), C₆-C₁₂aryloxy, C₁-C₁₂alkoxy, C₁-C₁₂alkylthio, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkoxy, C₂-C₁₂alkenyl, a primary or secondary amine radical, C₆-C₁₈aryl, -CO-O-(C₆-C₂₄aryl), -CO-(C₆-C₂₄aryl),

 C_6 - C_{18} aryloxy, C_{67} C_{18} arylthio or A_5 - A_{12} heteroaryl, A_5 - A_{12} heteroaryloxy,

A₅-A₁₂heteroarylthio, or R₈₁ and R₈₂ together are a lactam, quinomethylene, hydantoin, acenaphthenequinone, azlactone, pyrazolonyl, barbituric acid, isoindolinone or isoindoline radical,

with the proviso that R₈₁ and R₈₂ are not phenyl or

 R_{81} is not hydrogen and R_{82} is not methyl, 4-aminophenyl, 4-dimethylaminophenyl or -OCO-4-(1-chlorophenylene) if R_1 , R_2 , R_3 and R_4 are hydrogen, or R_{81} is not hydrogen and R_{82} is not 4-aminophenyl if R_1 and R_3 are tert- C_5H_{11} alkyl, or R_{81} is not hydrogen and R_{82} is not 2-hydroxyphenyl if R_1 and R_3 are tert-butyl, or

 R_{81} is not hydrogen and R_{82} is not a primary or secondary amine radical if R_3 is hydrogen, methoxy or hydroxyl and R_1 , R_2 and R_4 are hydrogen, or R_{81} is not hydrogen and R_{82} is not a secondary amine radical if R_1 , R_2 , R_3 and R_4 are hydrogen, and

if n is 2

R₈₂ is a single bond, an unsubstituted or substituted C₆-C₁₈arylene, especially 1,2-phenylene, 1,3-phenylene, 1,4-phenylene or naphthylene or (A₅-A₁₈)heteroarylene or bi(C₆-C₂₄)arylene, especially biphenylene, bi(A₅-A₁₈)heteroarylene, C₂-C₂₄alkenylene, in which bi(C₆-C₂₄)arylene, bi(A₅-A₁₈)heteroarylene or C₂-C₂₄alkenylene, can be interrupted by one or more intermediate units such as -CH=CH-, -CH=N-, -N=N-, -CR₄₄R₄₂-, -CO-, -COO-, -OCO-, -NR₄₂CO-, -CONR₄₂-, -O-, -S-, -SO-, -SO₂- or -NR₄₂-, in which

 R_{42} and R_{44} independently of one another are hydrogen, substituted or unsubstituted C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, C_7 - C_{25} aralkyl, or A_5 - A_{18} heteroaryl.

4. A compound of the formula (XXVI) according to any one of claims 1, 2 and 3 having the formula (XCa) or (XCb)

5. A process for preparing a benzofuran-2-one (Ia) according to claim 1, which comprises reacting benzofuran-2-one (XXXa)

$$R_3$$
 R_4
 R_3
 R_2
 R_1
 R_3
 R_4
 R_5
 R_7
 R_7

with a compound of the formula (XXXIa), (XXXIIa), (XXXIIIa), (XXXIVa) or (XXXVa)

$$X_1 = 0$$
 $X_1 = 0$ $X_2 = 0$ $X_1 = 0$ $X_1 = 0$ $X_2 = 0$ $X_1 = 0$ $X_1 = 0$ $X_2 = 0$ $X_1 = 0$ $X_1 = 0$ $X_1 = 0$ $X_2 = 0$ $X_1 = 0$ X_1

in which

Hal is halogen, and

R₉₄ is substituted or unsubstituted C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₂-C₂₄alkenyl,

C₆-C₂₄aryl, C₇-C₂₅aralkyl or A₅-A₁₈heteroaryl, and

R₉₅ is hydrogen or hydroxyl,

R $_{96}$ and R $_{97}$ independently of one another are C $_6$ -C $_{12}$ aryl, C $_1$ -C $_5$ acyl, C $_6$ -C $_{12}$ aralkyl, or C $_1$ -C $_4$ alkyl, and

 X_1 is X_7 and corresponds to the definition in claim 1 for X_1 , with the proviso that X_7 is not a hydrazone or imine radical.

6. A process for preparing a benzofuran-2-one (Ib) or (Ic) according to claim 1, which comprises reacting benzofuran-2-one (XXXa), or (XXXa) and a compound of the formula (XXXb)

with a compound of the formulae (XXXIb), (XXXIIb), (XXXIVb) or (XXXVb)

$$X_{2} = 0$$
 $X_{2} = 0$ $X_{3} = 0$ $X_{4} = 0$ $X_{5} = 0$ X_{5

 X_2 is X_8 and corresponds to the definition in claim for X_2 , with the proviso that X_8 is not

$$\boxed{ N-NH-X_4-HN-N } \text{ or } \boxed{ N-N }$$

7. A process for preparing a benzofuran-2-one (Ia) according to claim 1, which comprises reacting 3-oxobenzofuran-2-one (XXXVIa)

with a compound of the formula (XXXVIIa)

$$X_{i} <_{H}^{H}$$
 (XXXVIIa)

in which,

 Y_2 is O, NR₉₅ or N⁺(R₉₆R₉₇), NO or two chlorine atoms, the chlorine atoms each forming a single bond with the benzofuran-2-one (Ia).

8. A process for preparing a benzofuran-2-one (lb) or (lc) according to claim 1, which comprises reacting 3-oxobenzofuran-2-one (XXXVIa) or (XXXVIa) and a compound of the formula (XXXVIb)

with a compound of the formula (XXXVIIb)

$$X_2 = H$$
 (XXXVIIb).

9. An aminohydroxy compound of the formula (XLIa) or (XLIb)

$$R_3$$
 R_4
 R_99
 R_1
 R_99
 R_1
 R_1
 R_1
 R_2
 R_1
 R_2
 R_3
 R_4
 R_5
 R_99
 R_99
 R_99
 R_1
 R_2
 R_1
 R_2
 R_3
 R_4
 R_5
 R_5
 R_5
 R_5
 R_5
 R_5
 R_5
 R_5
 R_7
 R_7

$$R_{3}$$
 R_{2}
 R_{1}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{2}
 R_{1}
 R_{2}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{2}
 R_{3}
 R_{2}
 R_{3}
 R_{3

in which

n is 1 or 2, and

if n is 1

 R_{99} is hydrogen or substituted or unsubstituted $C_1\text{-}C_{24}$ alkyl, $C_5\text{-}C_{12}$ cycloalkyl, $C_2\text{-}C_{24}$ alkenyl, $C_6\text{-}C_{24}$ aryl, $C_7\text{-}C_{25}$ aralkyl or $A_5\text{-}A_{18}$ heteroaryl, and

if n is 2

 R_{99} is a direct bond, C_6 - C_{24} arylene, A_5 - A_{18} heteroarylene, C_5 - C_{12} cycloalkyl or bi(C_6 -

 C_{24})arylene, bi(A_5 - A_{18})heteroarylene, C_2 - C_{24} alkenylene, in which bi(C_6 - C_{24})arylene, bi(A_5 - A_{18})heteroarylene, C_2 - C_{24} alkenylene can be interrupted by a direct bond or by one or more intermediate units such as -CH=CH-, -CH=N-, -N=N-, -CR $_{44}$ R $_{42}$ -, -CO-, -COO-, -OCO-, -NR $_{42}$ CO-, -CONR $_{42}$ -, -O-, -S-, -SO-, -SO $_2$ - or -NR $_{42}$ -, and in which

 R_{42} and R_{44} independently of one another are hydrogen, substituted or unsubstituted C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, C_7 - C_{25} aralkyl, or A_5 - A_{18} heteroaryl.

10. A process for preparing an amine hydroxy compound of the formula (XLIa) or (XLIb) according to claim 9, which comprises reacting 3-oxobenzofuran-2-one (XXXVIa) according to claim 7 with a compound of the formula (XXXVIIa)

or

reacting 3-oxobenzofuran-2-one (XXXVIa) or (XXXVIa) and (XXXVIb) of claim 8 with a compound of the formula (XXXVIIb)

11. A process for preparing a benzofuran-2-one (Ia), (Ib) or (Ic) according to claim 1 in which X₁ is a compound of the formula (IV)

in which

 R_{28} and R_{29} independently of one another are substituted or unsubstituted C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, C_7 - C_{25} aralkyl, A_5 - A_{18} heteroaryl or dependently of one another are hydrogen,

and X_2 is a compound of the formula (X)

R₄₂ and R₄₄ independently of one another are substituted or unsubstituted C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₂-C₂₄ alkenyl, C₆-C₂₄aryl, C₇-C₂₅aralkyl, A₅-A₁₈heteroaryl or dependently of one another are hydrogen, and

 R_{43} is a direct bond, C_6 - C_{24} arylene, A_5 - A_{18} heteroarylene, C_5 - C_{12} cycloalkyl or $bi(C_6$ - $C_{24})$ arylene, $bi(A_5$ - $A_{18})$ heteroarylene, C_2 - C_{24} alkenylene, in which $bi(C_6$ - $C_{24})$ arylene, $bi(A_5$ - $A_{18})$ heteroarylene, C_2 - C_{24} alkenylene can be connected to one another and/or interrupted by a direct bond or by one or more intermediate units such as -CH=CH-, -CH=N-, -N=N-, -CR $_{44}$ R $_{42}$ -, -CO-, -COO-, -OCO-, -NR $_{42}$ CO-, -CONR $_{42}$ -, -O-, -S-, -SO-, -SO₂- or -NR $_{42}$ -,

in which

 R_{42} and R_{44} independently of one another are hydrogen, substituted or unsubstituted C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, C_7 - C_{25} aralkyl, or A_5 - A_{18} heteroaryl,

by coupling diazotized amines with coupling components in an aqueous medium, which comprises reacting benzofuran-2-one (XXXa) of claim 4 with a diazonium salt of the formula (XXXVIIIa)

or

reacting benzofuran-2-one (XXXa), or (XXXa) and (XXXb) of claim 5 with a diazonium salt of the formula (XXXVIIIb)

$$X_2 = \begin{bmatrix} N_2^+ \\ 2 \end{bmatrix}_2$$
 (XXXVIIIb).

12. A composition consisting of from 2 to 10, preferably 2 or 3, compounds of the formulae (Ia), (Ib) and/or (Ic) according to claim 1, and/or (XLIa) and/or (XLIb) according to claim 9, and/or dimeric benzofuran-2-ones of the formulae (XLIIa) and/or (XLIIb)

$$\begin{array}{c} SUB \\ R_3 \\ R_2 \\ R_1 \\ \end{array}$$

 X_2 is (C_6-C_{24}) arylene, (A_5-A_{18}) heteroarylene or a divalent polymethylidene, polyether, polyimine, polyamine radical, or bi (C_6-C_{24}) arylene or bi (A_5-A_{18}) heteroarylene, the bi (C_6-C_{24}) arylene or bi (A_5-A_{18}) heteroarylene radical being attached directly or via a substituted or unsubstituted carbon, nitrogen, oxygen or (-N=N-)-diradical.

13. A composition of matter comprising a high molecular weight organic material and at least one compound of the formulae (Ia), (Ib), (Ic) according to claim 1 in which

 X_1 is X_{10} , where X_{10} is a substituted or unsubstituted hydrazone or imine radical, or

$$=c$$

in which

Q₃ and Q₄ are Q₆ and Q₇ and independently of one another are hydrogen or substituted or unsubstituted C₁-C₂₄alkyl, -CO-(C₁-C₂₄alkyl), -CO-O-(C₁-C₂₄alkyl), C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkylthio, C₂-C₂₄alkenyl, a primary or secondary amine radical, C₆-C₂₄aryl, -CO-O-(C₆-C₂₄aryl), -CO-(C₆-C₂₄aryl), C₆-C₂₄aryloxy, C₆-C₁₂arylthio, C₇-C₂₅aralkyl or A₅-A₁₈heteroaryl, or Q₃ and Q₄ together are a lactam, quinomethylene, hydantoin, acenaphthenequinone, azlactone, pyrazolonyl, barbituric acid, isoindolinone or isoindoline radical,

or

a composition according to claim 12, (XLIa) or (XLIb) according to claim 9, in a colouringly effective amount.

14. A process for preparing a benzofuran-2-one (Ia), (Ib) or (Ic) in which X_1 is X_{10} according to claim 13, and X_1 is a compound of the formula (V)

in which

R₃₁ is hydrogen or -NR₈₉R₉₀, in which

 R_{30} , R_{32} , R_{89} and R_{90} independently of one another are hydrogen, C_1 - C_{24} alkoxy, C_1 - C_{24} alkylthio, C_5 - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkylthio, C_5 - C_{24} aryloxy, -thio or A_5 - A_{18} heteroaryloxy, -thio, or are C_6 - C_{24} aryl-substituted secondary or tertiary amine or C_6 - C_{24} aryl, and

where X2 is of the formula (XI)

 R_{46} and R_{47} independently of one another are substituted or unsubstituted C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, C_7 - C_{25} aralkyl, or A_5 - A_{18} heteroaryl, and

R₄₅ and R₄₈ independently of one another are hydrogen, C₁-C₂₄alkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkylthio, C₂-C₂₄alkenyl, C₅-C₂₄aryl, C₇-C₂₅aralkyl, C₅-C₂₄aryloxy, -thio or A₅-A₁₈heteroaryl, A₅-A₁₈heteroaryloxy, -thio, and

 R_{49} is a direct bond, $C_6\text{-}C_{24}$ arylene, $A_5\text{-}A_{18}$ heteroarylene, $C_5\text{-}C_{12}$ cycloalkyl or $bi(C_6\text{-}C_{24})$ arylene, $bi(A_5\text{-}A_{18})$ heteroarylene, $C_2\text{-}C_{24}$ alkenylene, in which $bi(C_6\text{-}C_{24})$ arylene, $bi(A_5\text{-}A_{18})$ heteroarylene, $C_2\text{-}C_{24}$ alkenylene can be connected to one another and/or interrupted by a direct bond or by one or more intermediate units such as $-CH=CH-, -CH=N-, -N=N-, -CR_{44}R_{42}-, -CO-, -COO-, -OCO-, -NR_{42}CO-, -CONR_{42}-, -O-, -S-, -SO-, -SO_2- \text{ or }-NR_{42}-,$

in which

 R_{42} and R_{44} independently of one another are hydrogen, substituted or unsubstituted C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, C_7 - C_{25} aralkyl, or A_5 - A_{18} heteroaryl,

by formylation and subsequent reaction with an amine, which comprises reacting benzofuran-2-one (XXXa) of claim 4 with a formylating reagent of the formula (XXXVIII)

$$R_{35}C(OR_{36})_3$$
 (XXXVIII)

in which

 R_{35} and R_{36} independently of one another are substituted or unsubstituted C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, C_7 - C_{25} aralkyl, or A_5 - A_{18} heteoaryl

and a compound of the formula (IXLa)

R₃₇ and R₃₈ independently of one another are hydrogen or substituted or unsubstituted C₁-C₂₄alkyl, C₁-C₂₄alkoxy, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkylthio, C₅-C₆cycloalkyl, C₂-C₂₄alkenyl, C₆-C₂₄aryl, C₅-C₂₄aryloxy, C₅-C₂₄arylthio, C₇-C₂₅aralkyl, a primary or secondary amine radical, A₅-A₁₈heteroaryl, A₅-A₁₈heteroaryloxy or A₅-A₁₈heteroarylthio,

benzofuran-2-one (XXXa) or (XXXa) and (XXXb) of claim 5 with a formylating reagent of the formula (XXXVIII)

and a compound of the formula (IXLb)

in which

 R_{46} and R_{47} independently of one another are hydrogen or substituted or unsubstituted C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, C_7 - C_{25} aralkyl, or A_5 - A_{18} heteroaryl, divalent polyether, polyimine, polyamine radical, bi(C_6 - C_{24})arylene, bi(A_5 - A_{18})heteroarylene, C_2 - C_{24} alkenylene, in which bi(C_6 - C_{24})arylene, bi(A_5 - A_{18})heteroarylene or C_2 - C_{24} alkenylene can be interrupted by one or more intermediate units such as -CH=CH-, -CH=N-, -N=N-, -CR $_{44}$ R $_{42}$ -, -CO-, -COO-, -NR $_{42}$ CO-, -CONR $_{42}$ -, -O-, -S-, -SO-, -SO $_2$ - or -NR $_{42}$ -, in which

 R_{42} and R_{44} independently of one another are hydrogen, substituted or unsubstituted C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_{24} alkenyl, C_6 - C_{24} aryl, C_7 - C_{25} aralkyl or A_5 - A_{18} heteroaryl, and

 R_{49} is a direct bond or substituted or unsubstituted C_6 - C_{24} arylene, A_5 - A_{18} heteroarylene, C_5 - C_{12} cycloalkylene or bi(C_6 - C_{24})arylene, bi(A_5 - A_{18})heteroarylene, C_2 - C_{24} alkenylene, in which bi(C_6 - C_{24})arylene, bi(A_5 - A_{18})heteroarylene or C_2 - C_{24} alkenylene can be interrupted by one or more intermediate units such as -CH=CH-, -CH=N-, -N=N-, -CR $_{44}$ R $_{42}$ -, -CO-, -COO-, -OCO-, -NR $_{42}$ CO-, -CONR $_{42}$ -, -O-, -S-, -SO-, -SO₂- or -NR $_{42}$ -.

15. A method of preparing inks or for coating materials, printing inks, mineral oils, lubricating greases, waxes or dyed or pigmented plastics, non-impact printing material or toners which comprises incorporating a colouring effective amount of compound according to claim 1 or composition according to claim 12 or composition of matter according to claim 13 therein.