Mineração de Dados 2018.2

Avaliação de Classificadores

Thiago Ferreira Covões

(slides baseados no material do Prof. Carlos Santos e Prof. Eduardo Hruschka [erh@icmc.usp.br])

Seleção de modelos

- Vimos como aprender diversos modelos a partir dos dados
 - Discriminantes Lineares e Quadráticos
 - Naïve Bayes
 - Árvores de Decisão
 - **–** ...
- Como escolher os parâmetros dos algoritmos?
- Como escolher entre os modelos obtidos?

Avaliação de modelos

- Queremos o modelo que forneça predições corretas para novos dados
 - Temos apenas uma amostra dos dados
 - Após aprender o modelo, podemos verificar o quanto ele está "errando" nos dados usados para o treinamento
 - Erro de resubstituição

Avaliação de modelos

Underfitting and Overfitting

Avaliação de modelos

- Erro de resubstituição não é uma boa opção
- Precisamos simular a situação de dados novos
 - Estratégias de amostragem
 - Não utilizar um subconjunto dos dados no treinamento e usá-lo para teste
 - Quanto maior a base de treinamento → Melhor generalização
 - Quanto maior a base de teste → Melhor estimativa do erro

- Hold-out
 - Separa aleatoriamente os dados em dois subconjuntos
 - Por exemplo, 75% para treinamento e 25% para teste
- Random subsampling
 - Múltiplos hold-outs
 - Estimativa final igual a média
 - Sobreposição entre bases de testes

- Validação cruzada de k-pastas
 - Separa os dados em *k*-subconjuntos e treina *k* modelos, em cada um utiliza um dos subconjuntos como base de teste
 - Estimativas baseadas na média dos erros

obtidos

- Validação cruzada estratificada de 10-pastas
 - Padrão atual
 - A distribuição de classes (proporção de exemplos em cada uma das classes) é mantida durante a amostragem
 - Ex: se o conjunto original de exemplos possui duas classes com distribuição de 20% e 80%, então cada *fold* também terá esta proporção de classes

- Leave-One-Out (LOOCV)
 - − Caso especial de validação cruzada (k=N)
 - Para uma amostra de tamanho *N*, é obtido um modelo utilizando *N*-1 objetos; o objeto remanescente é utilizado para teste
 - − Este processo é repetido *N* vezes
 - O erro é a soma dos erros em cada teste dividido por N

Aplicações reais

- Separar um subconjunto dos dados para avaliar o erro do processo completo
 - Não utilizá-lo para definir parâmetros etc
 - Pode ser necessário ter validações cruzadas aninhadas (nested cross-validation)

Mensurando acerto/erro

• É intuitivo considerar a taxa de acerto de classificação (ou erro correspondente)

$$\frac{TN + TP}{N}$$

• Matriz de confusão (2 classes)

Classe	Predita positiva	Predita negativa	
Real Positiva	Verdadeiro Positivo (TP)	Falso Negativo (FN)	
Real Negativa	Falso Positivo (FP)	Verdadeiro Negativo (TN)	

Mensurando o acerto/erro

Taxa de acerto pode n\u00e3o ser o ideal

 Os dois classificadores abaixo têm a mesma taxa de acerto. No entanto, um deles parece melhor, qual?

Classe	PPos	PNeg	
Pos	0	10	
Neg	0	9.990	

Classe	PPos	PPeg
Pos	10	0
Neg	10	9.980

Classe menos frequente

- A classe menos frequente (normalmente chamada de positiva) é geralmente a de maior interesse:
 - Doença rara
 - Transação fraudulenta
- Um classificador que erra muito a classe positiva é de pouca utilidade

Custos

- Uma outra maneira é atribuir um custo diferente para cada tipo de erro
- Para calcular o custo total, os erros são multiplicados pelo seu custo
- Em vez de minimizar o erro, o objetivo do classificador é minimizar o custo total.

Custos

- Nem todo classificador consegue incorporar custos na indução de modelos
- É muito difícil fazer uma atribuição de custos
- Custos podem variar com o tempo
- Existe uma relação direta entre custos e alterar artificialmente a proporção de exemplos entre as classes

Custos

- É possível incorporar custos:
 - Pesos diferentes para instâncias
 - Reamostragem do conjunto de treinamento, proporção de exemplos positivos/negativos de acordo com custo.

Mensurando erro

- Taxa de Falsos Positivos (Erro Tipo I):
 - De todos os exemplos negativos, quantos foram erroneamente preditos como positivos?
 - FP/(FP+TN)
- Taxa de Falsos Negativos (Erro Tipo II):
 - De todos os exemplos positivos, quantos foram erroneamente preditos como negativos?
 - FN/(FN+TP)

Mensurando o erro

- Taxa de Verdadeiros Positivos
 - De todos os objetos positivos, quantos eu acertei?
 - -VP/(VP+FN)
 - Também conhecido como recall, revocação, sensibilidade

Mensurando o erro

- Precisão
 - Dos objetos preditos como positivos, quantos eram de fato positivos
 - TP/(TP+FP)

- F-Measure
 - Media harmônia entre Precisão e Revocação
 - $-2 \cdot \frac{\text{precisão} \cdot \text{revocação}}{\text{precisão} + \text{revocação}}$

Mensurando o erro

- Estatística Kappa
 - Corrigi a taxa de acerto pelo número esperado de acertos do classificador

$$\kappa = \frac{\text{TxAcerto} - P_e}{1 - P_e}$$

$$P_e = \frac{(FN + TP) \cdot (FP + TP)}{N} + \frac{(TN + FP) \cdot (TN + FN)}{N}$$

Exemplo

 Computar taxa de acerto, precisão, revocação, F-measure, taxa de falso positivo e taxa de falso negativo da matriz de confusão abaixo

Classe	Predita positiva	Predita negativa
Real Positiva	70	30
Real Negativa	40	60

Exemplo

- Taxa de acerto=(TP+TN)/N=
- Precisão=TP/(TP+FP)=
- Revocação=TP/(TP+FN)=
- TFP=FP/(FP+TN)=
- TFN=FN/(FN+TP)=

Classe	Predita positiva	Predita negativa	
Real Positiva	70	30	
Real Negativa	40	60	

Exemplo

- Taxa de acerto=(TP+TN)/N=130/200=0,65
- Precisão=TP/(TP+FP)=70/110=0,63
- Revocação=TP/(TP+FN)=70/100=0,7
- TFP=FP/(FP+TN)=40/100=0,4
- TFN=FN/(FN+TP)=30/100=0,3

Classe	Predita positiva	Predita negativa	
Real Positiva	70	30	
Real Negativa	40	60	

Classificação versus Ranking

- Alguns classificadores indicam apenas a classe predita
- Outros fornecem um indicativo de confiança (chamados de *score*)
 - Pode ser uma probabilidade
 - Normalmente obtidos/transformados entre [0,1] ou [0,100]

Classificação versus Ranking

- Como obter score para:
 - Discriminante Linear/Naïve Bayes
 - -KNN
 - Árvore de Decisão

Classificação versus Ranking

- A partir destes scores podemos obter diferentes classificadores considerando os valores possíveis para o limiar de decisão
 - Conservador → limiar alto
 - Liberal → limiar baixo

Curvas ROC

- Receiver Operating Characteristic curve
- Origem:
 - detecção de sinais
 - compromisso entre alarme falso/acerto
- TFP x TVP [FPR x TPR]
- TFP = FP/(FP+TN)
- TVP = VP/(VP+FN)

Curvas ROC

fonte: http://upload.wikimedia.org/wikipedia/commons/3/36/ROC_space-2.png

Gerando a curva ROC

- (1) Ordene as tuplas da base de testes por ordem crescente de seus valores de output (prob. de estar na classe positiva)
- (2) Selecione a primeira tupla X1 e
 - (i) Classifique X1 como **POSITIVA**
 - (ii) Classifique todas as tuplas com outputs maiores do X1 como **POSITIVAS**Neste caso, todas as tuplas foram classificadas como positivas.
 - Logo: todas as positivas corretamente classificadas TPR = 1 todas as negativas incorretamente classificadas FPR = 1
- (3) Selecione a segunda tupla X2
 - (i) Classifique X2 como **POSITIVA**
 - (ii) Classifique todas as tuplas com outputs maiores do X2 como **POSITIVAS** e as com outputs menores como **NEGATIVAS**
 - (iii) Calcule os novos valores de TP e FP
 - (1) Se a classe de X1 é positiva então TP é decrementado de 1 e FP continua o mesmo
 - (2) Se a classe de X1 é negativa então TP continua o mesmo e FP é decrementado.
- (4) Repita o processo para a terceira tupla até varrer todo o banco de testes
- (5) Faça o gráfico dos valores de TPR (eixo y) por FPR (eixo x)

Gerando a curva ROC

$\mathbf{Inst} \#$	Class	\mathbf{Score}	Inst#	Class	\mathbf{Score}
1	p	.9	11	p	.4
2	\mathbf{p}	.8	12	\mathbf{n}	.39
3	\mathbf{n}	.7	13	\mathbf{p}	.38
4	\mathbf{p}	.6	14	\mathbf{n}	.37
5	\mathbf{p}	.55	15	\mathbf{n}	.36
6	\mathbf{p}	.54	16	\mathbf{n}	.35
7	\mathbf{n}	.53	17	\mathbf{p}	.34
8	\mathbf{n}	.52	18	\mathbf{n}	.33
9	\mathbf{p}	.51	19	\mathbf{p}	.30
10	\mathbf{n}	.505	20	\mathbf{n}	.1

Gerando a curva ROC

AUC

- Probabilidade que um exemplo positivo vai estar ranqueado acima de um exemplo negativo.
- Pode ser calculado pela regra do trapézio.
- Quanto maior a área, melhor é o desempenho médio do classificador.

AUC

Outras formas de avaliação

- Curvas precisão x revocação
- Curvas de custo
- Curvas lift
- •