EECE423-01: 현대제어이론

Modern Control Theory

Chapter 3: State-Space Representation

Kim, Jung Hoon

- ◆ The main topics of this chapter are
- 1. State-Space Equations

2. Relations with Transfer Functions

3. Block Diagrams

1. State-Space Equations

State-space equations

A continuous-time state-space linear system is defined as follows:

$$\begin{cases} \frac{dx(t)}{dt} &= A(t)x(t) + B(t)u(t) \text{ : state equation} \\ y(t) &= C(t)x(t) + D(t)u(t) \text{ : output equation} \end{cases}$$

 $x(t) \in \mathbb{R}^n$: n-dimensional state vector

 $u(t) \in \mathbb{R}^k$: k-dimensional input vector

 $y(t) \in \mathbb{R}^m$: m-dimensional output vector

The above 2 equations describe an input-output relation between the input signal $u(\cdot)$ and the output signal $y(\cdot)$

◆ Terminology and notation

- When the input signal u takes scalar values (k = 1), \rightarrow the system is called single input (SI).
- When the input signal u takes vector values $(k \ge 2)$, \rightarrow the system is called multi input (MI).

• When the output signal y takes scalar values (m = 1), \rightarrow the system is called single output (SO).

• When the output signal y takes vector values $(m \ge 2)$, \rightarrow the system is called multi output (MO).

	$y(t) \in \mathbb{R}^m$ $(m=1)$	$y(t) \in \mathbb{R}^m$ $(m \ge 2)$
$u(t) \in \mathbb{R}^k$ $(k=1)$	single input single output (SISO)	single input multi output (SIMO)
$u(t) \in \mathbb{R}^k$ $(k \ge 2)$	multi input single output (MISO)	multi input multi output (MIMO)

Classification of state-space linear systems

$$\begin{cases} \frac{dx(t)}{dt} &= A(t)x(t) + B(t)u(t) \text{ : state equation} \\ y(t) &= C(t)x(t) + D(t)u(t) \text{ : output equation} \end{cases}$$

- When there is no state equation (n = 0), i.e., y(t) = D(t)u(t), the system is called memoryless.
- When the matrices A(t), B(t), C(t), D(t) are time-variant, the system is called a linear time-varying (LTV) system.

• When the matrices A(t), B(t), C(t), D(t) are constant $\forall t \geq 0$, the system is called a linear time-invariant (LTI) system.

◆ LTV system

$$\begin{cases} \frac{dx(t)}{dt} &= A(t)x(t) + B(t)u(t) \\ y(t) &= C(t)x(t) + D(t)u(t) \end{cases}$$

♦ LTI system

$$\begin{cases} \frac{dx(t)}{dt} &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t) \end{cases}$$

The main contents of this course are confined to LTI systems

◆ Interpretations of state-space equations

$$\begin{cases} \frac{dx(t)}{dt} = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

- (a) state vector x describes enough about the system to determine its future behavior
- (b) the output signal y(t) at $t \ge t_1$ is uniformly determined according to the value of x(t) at $t = t_1$ together with the input signal u(t) at $t \ge t_1$
- (c) even if the input signals u(t) prior to $t = t_1$ are different, the output signals y(t) at $t \ge t_1$ coincide each other, when the states x(t) at $t = t_1$ have a common value with the same inputs u(t) at $t \ge t_1$

2. Relations with Transfer Functions

- Review of transfer function
- Laplace transform of signals

$$\mathcal{L}{f(t)} = F(s) = \int_0^\infty e^{-st} f(t) dt$$

Transfer function: input/output relation in the frequency-domain

$$\begin{array}{c|c} U(s) & System \\ \hline G(s) & Y(s) \\ \hline \end{array} \qquad G(s) = \frac{Y(s)}{U(s)}$$

Transform of transfer function to state-space system

When a transfer function

$$G(s) = \frac{b_{n-1}s^{n-1} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0} + d$$

is given, we consider deriving its equivalent state-space equation

$$\begin{cases} \frac{dx(t)}{dt} = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

This procedure is called *realization*.

Method 1: Controllable canonical form

Let
$$G(s) = \frac{b_{n-1}s^{n-1} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0} + d$$

If we define the state variable as

$$X(s) = \frac{1}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}U(s)$$

Then, we obtain

$$Y(s) = (b_{n-1}s^{n-1} + \dots + b_1s + b_0)X(s) + dU(s)$$

This means

$$y = b_0 x + b_1 \frac{dx}{dt} + \dots + b_{n-1} \frac{d^{n-1}x}{dt^{n-1}} + du$$

$$\frac{d^n x}{dt^n} = -a_0 x - a_1 \frac{dx}{dt} - \dots - a_{n-1} \frac{d^{n-1}x}{dt^{n-1}} + u$$

If we further define

$$x_1 := x, \ x_2 := \frac{dx}{dt}, \ \cdots, \ x_n := \frac{d^{n-1}x}{dt^{n-1}}$$

it readily follows that

$$y = b_0 x_1 + b_1 x_2 + \dots + b_{n-1} x_n + du$$

$$\begin{cases} \frac{dx_i}{dt} &= x_{i+1} \quad (i = 1, \dots, n-1) \\ \frac{dx_n}{dt} &= -a_0 x_1 - a_1 x_2 - \dots - a_{n-1} x_n + u \end{cases}$$

To put it another way, we have the following state-space equation:

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -a_0 & \cdots & \cdots & -a_{n-2} & -a_{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} b_0 & \cdots & b_{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + du$$

We call it controllable canonical form.

Brief introduction to controllability

Controllability describes the ability of an external input to move the internal state of a system from any initial state to any other final state in a finite time interval.

$$\begin{cases} \frac{dx(t)}{dt} = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

The details will be discussed in Chapter 6.

◆ Method 2: Observable canonical form

Let
$$G(s) = \frac{b_{n-1}s^{n-1} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0} + d$$

We first decompose G(s) as $G(s) = G_0(s) + d$ and consider $G_0(s)$

At the end of this section, we will return to the general case G(s)

Note that $Y(s) = G_0(s)U(s)$, i.e.,

$$s^{n}Y(s) + \dots + a_{0}Y(s) = b_{n-1}s^{n-1}U(s) + \dots + b_{0}U(s)$$

This means

$$a_0y + a_1\frac{dy}{dt} + \dots + a_{n-1}\frac{d^{n-1}y}{dt^{n-1}} + \frac{d^ny}{dt^n} = b_0u + b_1\frac{du}{dt} + \dots + b_{n-1}\frac{d^{n-1}u}{dt^{n-1}}$$

$$a_0y - b_0u + \frac{d}{dt}(a_1y - b_1u + \frac{d}{dt}(\dots + \frac{d}{dt}(a_{n-1}y - b_{n-1}u + \frac{dy}{dt})) = 0$$

Here, we define $x_n := y$ and

$$x_{n-1} := a_{n-1}y - b_{n-1}u + \frac{dx_n}{dt}$$

$$\vdots$$

$$x_1 := a_1y - b_1u + \frac{dx_2}{dt}$$

$$0 = a_0y - b_0u + \frac{dx_1}{dt}$$

Then, it readily follows that

$$\begin{cases}
\frac{dx_i}{dt} = x_{i-1} - a_{i-1}x_n + b_{i-1}u & (i = 2, ..., n) \\
\frac{dx_1}{dt} = -a_0x_n + b_0u
\end{cases}$$

Here, if we return the general case $G(s) = G_0(s) + d$, we obtain

$$y = x_n + du$$

$$\begin{cases} \frac{dx_i}{dt} = x_{i-1} - a_{i-1}x_n + b_{i-1}u & (i = 2, ..., n) \\ \frac{dx_1}{dt} = -a_0x_n + b_0u \end{cases}$$

To put it another way, we have the following state-space equation:

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{n-2} \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} b_0 \\ \vdots \\ b_{n-1} \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix} \begin{vmatrix} x_1 \\ \vdots \\ x_n \end{vmatrix} + du$$

We call it observable canonical form.

Brief introduction to observability

Observability implies that the state at any instance can be determined by observing the output over a finite interval of time.

$$\begin{cases} \frac{dx(t)}{dt} = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

The details will be discussed in Chapter 7.

◆ Relation between controllable and observable canonical forms

Controllable canonical form

$$\begin{cases} \frac{dx(t)}{dt} = A_{c}x(t) + B_{c}u(t) \\ y(t) = C_{c}x(t) + D_{c}u(t) \end{cases}$$

Observable canonical form

$$\begin{cases} \frac{dx(t)}{dt} = A_{o}x(t) + B_{o}u(t) \\ y(t) = C_{o}x(t) + D_{o}u(t) \end{cases}$$

•
$$A_{c}^{T} = A_{o}, B_{c}^{T} = C_{o}, C_{c}^{T} = B_{o}, D_{c}^{T} = D_{o}$$

• They have the same transfer function

◆ Transform of state-space equation to transfer function

Let us assume that x(0) = 0.

Then, applying Laplace transform to G leads to

$$sX(s) = AX(s) + BU(s)$$
$$Y(s) = CX(s) + DU(s)$$

Thus, the transfer function is described by

$$G(s) = \frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + D$$

Relation between state-space equation and transfer function

$$G: \begin{cases} \frac{dt}{dx} &= Ax + Bu \\ y &= Cx + Du \end{cases}$$

Not uniformly determined (e.g., controllable canonical form, (e.g., $C(sI-A)^{-1}B+D$) observable canonical form)

(e.g.,
$$C(sI - A)^{-1}B + D$$
)

$$G(s) = \frac{b_{n-1}s^{n-1} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0} + d$$

• Poles of G(s) = Eigenvalues of A

◆ Zero-state equivalence

Two state-space systems are said to be zero-state equivalent if they realize the same transfer function. This means that they exhibit the same forced response to every input.

(ex. controllable canonical form and observable canonical form)

Example of mass-spring-damper system

$$m\ddot{l} = d - c\dot{l} - kl$$

Let
$$m = 1, c = 3, k = 2$$

Transfer function

$$\frac{L(s)}{D(s)} = \frac{1}{ms^2 + cs + k} = \frac{1}{s^2 + 3s + 2}$$

Poles:
$$s = -1, -2$$

State-space equation

$$\frac{d}{dt} \begin{bmatrix} l \\ i \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix} \begin{bmatrix} l \\ i \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} d = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$l = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} l \\ i \end{bmatrix}$$

Eigenvalues:
$$\lambda = -1, -2$$

3. Block Diagrams

◆ Block diagram representations

(a) Cascade

(b) Parallel

(c) Negative feedback

◆ Cascade: transfer function

$$U(s) = U_1(s)$$
 $G_1(s)$ $Y_1(s) = U_2(s)$ $G_2(s)$ $Y_2(s) = Y(s)$

• Transfer function: $\frac{Y(s)}{U(s)} = G_1(s)G_2(s)$

• How can we describe in the time-domain?

◆ Cascade: state-space equation

$$u = u_1$$

$$G_1$$

$$y_1 = u_2$$

$$G_2$$

Let us assume that state-space equations are given by

$$G_1: \begin{cases} \frac{dx_1}{dt} &= A_1x_1 + B_1u_1 \\ y_1 &= C_1x_1 + D_1u_1 \end{cases}, \qquad G_2: \begin{cases} \frac{dx_2}{dt} &= A_2x_2 + B_2u_2 \\ y_2 &= C_2x_2 + D_2u_2 \end{cases}$$

Substituing
$$u_2 = y_1$$
 into G_2 leads to
$$\begin{cases} \frac{dx_2}{dt} &= A_2x_2 + B_1y_1 \\ y_2 &= C_2x_2 + D_1y_1 \end{cases}$$

From $y_1 = C_1 x_1 + D_1 u_1$, we obtain

$$\begin{cases} \frac{dx_2}{dt} = A_2x_2 + B_2(C_1x_1 + D_1u_1) \\ y_2 = C_2x_2 + D_2(C_1x_1 + D_1u_1) \end{cases}$$

This together with
$$\begin{cases} \frac{dx_1}{dt} &= A_1x_1 + B_1u_1 \\ y_1 &= C_1x_1 + D_1u_1 \end{cases}$$
 derives the following:

$$\begin{cases} \frac{dx_1}{dt} = A_1x_1 + B_1u_1 \\ \frac{dx_2}{dt} = B_2C_1x_1 + A_2x_2 + B_2D_1u_1 \\ y_2 = D_2C_1x_1 + C_2x_2 + D_2D_1u_1 \end{cases}$$

If we let
$$x := \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, $u := u_1$ together with $y := y_2$, we have

$$\begin{cases} \frac{dx}{dt} &= \begin{bmatrix} A_1 & 0 \\ B_2C_1 & A_2 \end{bmatrix} x + \begin{bmatrix} B_1 \\ B_2D_1 \end{bmatrix} u \\ y &= \begin{bmatrix} D_2C_1 & C_2 \end{bmatrix} x + D_2D_1u \end{cases}$$

◆ Example

$$G_1(s) = \frac{1}{s^2 + 3s + 2}, \qquad G_2(s) = \frac{s^2 + 7s + 10}{s^2 + 7s + 12}$$

Compute the state-space equation of the above system

◆ Solution 1

For
$$G_1(s) = \frac{1}{s^2 + 3s + 2}$$
,

$$G_1: \begin{cases} \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \\ y &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{cases}$$

$$\rightarrow A_1 = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, B_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}, D_1 = 0$$

For
$$G_2(s) = \frac{s^2 + 7s + 10}{s^2 + 7s + 12}$$
,

$$G_2: \begin{cases} \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -12 & -7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \\ y &= \begin{bmatrix} -2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + u \end{cases}$$

$$A_2 = \begin{bmatrix} 0 & 1 \\ -12 & -7 \end{bmatrix}, B_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C_1 = \begin{bmatrix} -2 & 0 \end{bmatrix}, D_1 = 1$$

From
$$\begin{cases} \frac{dx}{dt} = \begin{bmatrix} A_1 & 0 \\ B_2C_1 & A_2 \end{bmatrix} x + \begin{bmatrix} B_1 \\ B_2D_1 \end{bmatrix} u, \\ y = \begin{bmatrix} D_2C_1 & C_2 \end{bmatrix} x + D_2D_1u \end{cases}$$

we have the following matrices for the state-space equation:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -2 & -3 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -12 & -7 \end{bmatrix}, \ B = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \ C = \begin{bmatrix} 1 & 0 & -2 & 0 \end{bmatrix}, \ D = 0$$

• Controllable but not observable

♦ Solution 2

From
$$G(s) = G_1(s)G_2(s) = \frac{s+5}{s^3 + 8s^2 + 19s + 12}$$
,

we have the following matrices for the state-space equation:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & -19 & -8 \end{bmatrix}, \ B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \ C = \begin{bmatrix} 5 & 1 & 0 \end{bmatrix}, \ D = 0$$

• Controllable and observable

◆ Parallel: transfer function

• Transfer function:
$$\frac{Y(s)}{U(s)} = G_1(s) + G_2(s)$$

• How can we describe in the time-domain?

◆ Parallel: state-space equation

Let us assume that state-space equations are given by

$$G_1: \begin{cases} \frac{dx_1}{dt} &= A_1x_1 + B_1u_1 \\ y_1 &= C_1x_1 + D_1u_1 \end{cases}, \qquad G_2: \begin{cases} \frac{dx_2}{dt} &= A_2x_2 + B_2u_2 \\ y_2 &= C_2x_2 + D_2u_2 \end{cases}$$

It immediately follows from $u = u_1 = u_2$ that

$$\begin{cases} \frac{dx_1}{dt} = A_1x_1 + B_1u \\ y_1 = C_1x_1 + D_1u \end{cases}, \qquad \begin{cases} \frac{dx_2}{dt} = A_2x_2 + B_2u \\ y_2 = C_2x_2 + D_2u \end{cases}$$

If we note $y = y_1 + y_2$, we readily see that

$$\begin{cases} \frac{dx_1}{dt} = A_1x_1 + B_1u \\ \frac{dx_2}{dt} = A_2x_2 + B_2u \\ y = C_1x_1 + C_2x_2 + (D_1 + D_2)u \end{cases}$$

By defining $x := \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, we obtain the following:

$$\begin{cases} \frac{dx}{dt} &= \begin{bmatrix} A_1 & 0\\ 0 & A_2 \end{bmatrix} x + \begin{bmatrix} B_1\\ B_2 \end{bmatrix} u \\ y &= \begin{bmatrix} C_1 & C_2 \end{bmatrix} x + (D_1 + D_2) u \end{cases}$$

◆ Negative feedback: transfer function

• Transfer function:
$$\frac{Y(s)}{U(s)} = \frac{G_1(s)}{1 + G_2(s)G_1(s)}$$

• How can we describe in the time-domain?

◆ Negative feedback: state-space equation

Let us assume that state-space equations are given by

$$G_1: \begin{cases} \frac{dx_1}{dt} &= A_1x_1 + B_1u_1 \\ y_1 &= C_1x_1 + D_1u_1 \end{cases}, \qquad G_2: \begin{cases} \frac{dx_2}{dt} &= A_2x_2 + B_2u_2 \\ y_2 &= C_2x_2 + D_2u_2 \end{cases}$$

Substituting
$$y_1 = u_2$$
 into G_1 leads to
$$\begin{cases} \frac{dx_1}{dt} &= A_1x_1 + B_1u_1 \\ u_2 &= C_1x_1 + D_1u_1 \end{cases}$$

By substituting this into G_2 , we obtain

$$\begin{cases} \frac{dx_2}{dt} &= A_2x_2 + B_2u_2 = A_2x_2 + B_2C_1x_1 + B_2D_1u_1 \\ y_2 &= C_2x_2 + D_2u_2 = C_2x_2 + D_2C_1x_1 + D_2D_1u_1 \end{cases}$$

On the other hand,

$$u_1 = u - y_2 = u - C_2 x_2 - D_2 C_1 x_1 - D_2 D_1 u_1$$

$$\to (I + D_2 D_1) u_1 = u - C_2 x_2 - D_2 C_1 x_1$$

Here, we should assume that $|(I + D_2D_1)| \neq 0$.

By defining
$$E := (I + D_2D_1)^{-1}$$
, we obtain
$$u_1 = -ED_2C_1x_1 - EC_2x_2 + Eu$$

Substituting this into
$$\frac{dx_1}{dt} = Ax_1 + B_1u_1$$
 and

$$\frac{dx_2}{dt} = A_2x_2 + B_2C_1x_1 + B_2D_1u_1 \text{ with } y = y_1 = C_1x_1 + D_1u_1$$

leads to the following:

$$\begin{cases} \frac{dx_1}{dt} &= (A_1 - B_1 E D_2 C_1) x_1 - B_1 E C_2 x_2 + B_1 E u \\ \frac{dx_2}{dt} &= B_2 (I - D_1 E D_2) C_1 x_1 + (A_2 - B_2 D_1 E C_2) x_2 + B_2 D_1 E u \\ y &= (I - D_1 E D_2) C_1 x_1 - D_1 E C_2 x_2 + D_1 E u \end{cases}$$

By defining $x := \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, we obtain the following:

$$\begin{cases} \frac{dx}{dt} = \begin{bmatrix} A_1 - B_1 E D_2 C_1 & -B_1 E C_2 \\ B_2 (I - D_1 E D_2) C_1 & A_2 - B_2 D_1 E C_2 \end{bmatrix} x + \begin{bmatrix} B_1 E \\ B_2 D_1 E \end{bmatrix} u \\ y = \begin{bmatrix} (I - D_1 E D_2) C_1 & -D_1 E C_2 \end{bmatrix} x + D_1 E u \end{cases}$$