APPLICATION

for

UNITED STATES LETTERS PATENT

on

Human N-Methyl-D-Aspartate Receptor Subunits, Nucleic Acids Encoding Same and Uses Therefor

by

Lorrie P. Daggett,
Steven B. Ellis,
Chen Wang Liaw, and
Chin-Chun Lu

Number of Drawings: Six

~·...

Docket No.: P41 9424

Attorneys

Pretty, Schroeder, Brueggemann & Clark 444 South Flower Street, Suite 2000 Los Angeles, California 90071

Human N-Methyl-D-Aspartate Receptor Subunits, Nucleic Acids Encoding Same and Uses Therefor

This application is a continuation-in-part of United States Serial No. 08/052,449, filed April 20, 1993, now pending.

The present invention relates to nucleic acids and receptor proteins encoded thereby. Invention nucleic acids encode novel human N-methyl-D-aspartate (NMDA) receptor subunits. The invention also relates to methods for making such receptor subunits and for using the receptor proteins in assays designed to identify and characterize compounds which affect the function of such receptors, e.g., agonists and antagonists of NMDA receptors.

BACKGROUND OF THE INVENTION

The amino acid L-glutamate is a major excitatory 15 neurotransmitter in the mammalian central nervous system. Anatomical, biochemical and electrophysiological analyses suggest that glutamatergic systems are involved in a broad array of neuronal processes, including fast excitatory synaptic transmission, regulation of neurotransmitter 20 releases, long-term potentiation, learning and memory, developmental synaptic plasticity, hypoxic-ischemic damage and neuronal cell death, epileptiform seizures, as well as the pathogenesis of several neurodegenerative disorders. See generally, Monaghan et al., Ann. Rev. Pharmacol. 25 Toxicol. <u>29</u>:365-402 (1980). This extensive repertoire of to learning, those related functions, especially neurotoxicity and neuropathology, has stimulated recent attempts to describe and define the mechanisms through which glutamate exerts its effects.

30 Currently, glutamate receptor classification schemes are based on pharmacological criteria. Glutamate

has been observed to mediate its effects through receptors groups: been categorized into two main have glutamate Ionotropic and metabotropic. ionotropic receptors contain integral cation-specific, ligand-gated 5 ion channels, whereas metabotropic glutamate receptors are G-protein-coupled receptors that transduce extracellular signals via activation of intracellular second messenger systems. Ionotropic receptors are further divided into at least two categories based on the pharmacological and functional properties of the receptors. The two main types 10 of ionotropic receptors are N-methyl-D-aspartic acid (NMDA) and kainic acid (KA)/ α -amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA), formerly called the quisqualic acid, or QUIS, receptor. While the metabotropic receptors bind to some of the same ligands that bind to ionotropic glutamate receptors, the metabotropic receptors alter synaptic physiology via GTP-binding proteins and second messengers such as cyclic AMP, cyclic GMP, diacylglycerol, inositol 1,4,5-triphosphate and calcium [Gundersen et al., Proc. R. Soc. London Ser. 221:127 (1984); Sladeczek et al., 20 Nature 317:717 (1985); Nicoletti et al., J. Neurosci. 6:1905 (1986); Sugiyama et al., Nature 325:531 (1987)].

electrophysiological and pharmacological properties of the glutamate receptors have been studied as well lines, and cell tissues animal 25 recombinantly produced non-human receptors, as the source The value of such studies such receptors. application to the development of human therapeutics has been limited by the availability of only non-human receptor it is only recently that the Moreover, subunits. 30 characteristics and structure of glutamate receptors have been investigated at the molecular level. The majority of such investigation has, however, been carried out in nonhuman species. Because of the potential physiological and pathological significance of glutamate receptors, it would 35 be desirable (for example, for drug screening assays) to have available human sequences (i.e., DNA, RNA, proteins) which encode representative members of the various glutamate receptor subtypes. The availability of such human sequences will also enable the investigation of receptor distribution in humans, the correlation of specific receptor modification with the occurrence of various disease states, etc.

3

BRIEF DESCRIPTION OF THE INVENTION

The present invention discloses novel nucleic acids encoding NMDA receptor protein subunits and the 10 proteins encoded thereby. In a particular embodiment the novel nucleic acids encode NMDAR1 and NMDAR2 subunits of More specifically, the invention human NMDA receptors. nucleic acids encode NMDAR1, NMDAR2A, NMDAR2B, NMDAR2C and 15 NMDAR2D subunits that contribute to the formation of NMDA-In addition to activated cation-selective ion channels. being useful for the production of NMDA receptor subunit proteins, these nucleic acids are also useful as probes, thus enabling those skilled in the art, without undue 20 experimentation, to identify and isolate nucleic acids encoding related receptor subunits.

Functional glutamate receptors can be assembled, in accordance with the present invention, from a plurality of NMDA receptor subunit proteins of one type (homomeric) or from combinations of subunit proteins of different types (heteromeric).

25

In addition to disclosing novel NMDA receptor protein subunits, the present invention also comprises methods for using such receptor subunits to identify and characterize compounds which affect the function of such receptors, e.g., agonists, antagonists, and modulators of glutamate receptor function. The invention also comprises

methods for determining whether unknown protein(s) are functional as NMDA receptor subunits.

BRIEF DESCRIPTION OF THE FIGURES

human NMDAR1 clones of the invention, with partial restriction maps of each clone. The clones are aligned and the differences in the DNAs (i.e., deletions and insertions), relative to clone NMDA10, are indicated. Translation initiation and termination sites are represented by a "V" and a "*", respectively. Insertions are marked as inverted triangles, deletions are indicated by spaces in the boxes. The numbers above the insertions and deletions refer to the number of nucleotides inserted or deleted relative to NMDA10.

15 Figure 2 is a schematic representation of cDNAs encoding full-length human NMDAR1 subunit subtypes of the invention, with partial restriction maps of each DNA. The full-length cDNAs are constructed by ligation of appropriate portions of the clones shown in Figure 1.

20 Regions of each full-length cDNA composed of nucleotide sequences corresponding to a particular clone are distinguished as solid, striped, cross-hatched or open boxes.

of construct NMDARIA (see Sequence ID No. 1) with the following information added for ease of comparison of the splice variations of the NMDARI subunit transcript: lowercase letters indicate 5' untranslated sequence and the 3' untranslated sequence of the NMDARI splice variant shown in Sequence ID No. 1 (in some of the other splice variants, this 3' untranslated sequence is actually coding sequence); uppercase letters indicate coding sequence; the translation initiation codon is identified by the word "START" whereas

10

15

the three different translation termination codons (TGA) used in the different splice variants are identified by small boxes; significant restriction enzyme sites used in preparing full-length variant constructs are identified by 5 name above the sites; the location of a 63-bp insertion (see Sequence ID No. 3) that exists in some of the variants is marked as "63 bp INSERT"; the nucleotide sequences that are deleted from some of the variants are boxed and labeled as "204 bp DELETION," "363 bp DELETION," and "1087 bp DELETION."

Figure 4 is a schematic representation of various NMDAR2C clones of the invention, with partial human restriction maps of each clone. The clones are aligned and the differences in the DNAs relative to clone NMDA26 are indicated in the same manner as done in Figure 1.

Figure 5 is a schematic representation of fulllength human NMDAR2C subunit subtypes of the invention, with partial restriction maps of each DNA. The full-length cDNAs are constructed by ligation of appropriate portions 20 of the clones shown in Figure 4. Regions of each fulllength cDNA composed of nucleotide sequences corresponding to a particular clone are distinguished as solid, striped, cross-hatched or open boxes.

Figure 6 presents restriction maps of CMV promoter-based vectors pCMV-T7-2 and pCMV-T7-3.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, there isolated nucleic acids encoding human provided N-methyl-D-aspartate (NMDA) receptor subunit(s). In one 30 aspect of the present invention, nucleic acids encoding NMDA receptor subunit(s) of the NMDAR1 subtype provided. In another aspect, nucleic acids encoding NMDA

receptor subunit(s) of the NMDAR2 subtype are provided. In a further aspect, eukaryotic cells containing such nucleic acids, and eukaryotic cells expressing such nucleic acids are provided.

6

Also provided are protein(s) encoded by the above-described nucleic acids, as well as antibodies generated against the protein(s). In other aspects of the present invention, there are provided nucleic acid probes comprising at least NMDA receptor subunit-selective portions of the above-described nucleic acids.

As employed herein, the phrase "human N-methylsubunit(s)" receptor (NMDA) D-aspartate recombinantly produced (i.e., isolated or substantially pure) proteins which participate in the formation of a voltage-sensitive cation-selective channel activated by 15 exposure to NMDA, and having at least one transmembrane domain, a large N-terminal extracellular domain, and the like, including variants thereof encoded by mRNA generated by alternative splicing of a primary transcript, and further including fragments thereof which retain one or 20 more of the above properties.

"isolated" or "substantially pure" in the present specification and claims as a modifier of DNA, RNA, polypeptides or proteins means that the DNA, RNA, polypeptides or proteins so designated have been produced in such form by the hand of man, and thus are separated from their native in vivo cellular environment. As a result of this human intervention, the recombinant DNAs, RNAs, polypeptides and proteins of the invention are useful in ways that the DNAs, RNAs, polypeptides or proteins as they naturally occur are not, such as identification of selective drugs or compounds.

The term "functional", when used herein as a modifier of receptor protein(s) of the present invention, means that binding of NMDA (or NMDA-like) ligand to receptors comprising the protein(s) causes the receptor "ion channels" to open. This allows cations, particularly ca²⁺, as well as Na⁺ and K⁺, to move across the membrane. Stated another way, "functional" means that a signal is generated as a consequence of agonist activation of receptor protein(s).

As used herein, a splice variant refers to 10 variant NMDA receptor subunit-encoding nucleic acid(s) processing of differential bу transcript(s) of genomic DNA, resulting in the production of more than one type of mRNA. cDNA derived from differentially processed primary transcript will encode 15 NMDA receptor subunits that have regions of complete amino acid identity and regions having different amino acid sequences. Thus, the same genomic sequence can lead to the production of multiple, related mRNAs and proteins. the resulting mRNAs and proteins are referred to herein as 20 "splice variants".

Accordingly, also contemplated within the scope of the present invention are DNAs that encode NMDA receptor subunits as defined above, but that by virtue of degeneracy of the genetic code do not necessarily hybridize to the 25 disclosed DNA under specified hybridization conditions. also contribute to the formation of subunits functional receptor, as assessed by methods described herein or known to those of skill in the art, with one or more additional NMDA receptor subunits of the same or 30 different type (the presence of additional subunits of a different type is optional when said subunit is an NMDAR1 Typically, unless an NMDA receptor subunit is encoded by RNA that arises from alternative splicing (i.e., a splice variant), NMDA receptor subunit-encoding DNA and 35

•

the NMDA receptor subunit encoded thereby share substantial sequence homology with at least one of the NMDA receptor subunit DNAs (and proteins encoded thereby) described herein. It is understood that DNA or RNA encoding a splice variant may share less than 90% overall sequence homology with the DNA or RNA provided herein, but include regions of nearly 100% homology to a DNA fragment described herein, and encode an open reading frame that includes start and stop codons and encodes a functional NMDA receptor subunit.

8

10

35

As employed herein, the phrase "NMDA receptor subunit(s) of the NMDAR1 subtype" refers to proteins which, by hydrophobicity analysis of deduced amino acid sequences, are believed to contain four or more putative transmembrane domains, preceded by a large extracellular N-terminal 15 The amino acid sequence typically contains possible phosphorylation sites for Ca2+/calmodulin-dependent protein kinase type II and protein kinase C [see, for example, Kemp et al. (1990) Trends in Biological Science Vol. <u>15</u>:342-346; Kishimoto et al. (1985) J. Biol. Chem. 20 Vol. 260:12492-12499; Whittemore et al. (1993) Nature (These protein kinases reportedly play a <u>364</u>:70-73]. crucial role in induction and maintenance of long term potentiation.)

25 The putative TMII segment (i.e., second transmembrane domain) is typically flanked by a glutamic acid residue at the extracellular side and a stretch of glutamic acid residues at the cytoplasmic side. This segment contains an asparagine residue believed to be responsible for high Ca²⁺ permeability of the NMDAR channel. For a summary of NMDAR properties, see Ben-Ari et al., in TINS 15:333-339 (1992), especially at p. 334.

Exemplary DNA sequences encoding human NMDAR1 subunits are represented by nucleotides which encode substantially the same amino acid sequence as set forth in

Sequence ID Nos. 2, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, or 2P. Presently preferred sequences encode substantially the same amino acid sequence as set forth in Sequence ID Nos. 2, 2E, 2F, 2G, 2H, 2I or 2P.

Exemplary DNA can alternatively be characterized as those nucleotide sequences which encode a human NMDAR1 subunit and hybridize under high stringency conditions to substantially the entire sequence of any one of Sequence ID Nos. 1, 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, 1L, 1M, 1N, or 1P, or substantial portions thereof (i.e., typically at least 25-30 nucleotides thereof); preferably exemplary DNA will hybridize under high stringency conditions to substantially the entire sequence of any one of Sequence ID Nos. 1, 1E, 1F, 1G, 1H, 1I or 1P, or substantial portions thereof.

Stringency of hybridization is used herein to refer to conditions under which polynucleic acid hybrids are stable. As known to those of skill in the art, the stability of hybrids is reflected in the melting temperature (T_m) of the hybrids. T_m can be approximated by the formula:

 $81.5^{\circ}C - 16.6(\log_{10}[Na^{\dagger}]) + 0.41(%G+C) - 600/1,$

where l is the length of the hybrids in nucleotides. decreases approximately 1-1.5°C with every 1% decrease in sequence homology. In general, the stability of a hybrid is a function of sodium ion concentration and temperature. Typically, the hybridization reaction is performed under conditions of lower stringency, followed by washes of to Reference higher, stringency. but varying, washing to such stringency relates hybridization conditions. Thus, as used herein:

25

HIGH STRINGENCY conditions, with respect to (1)fragment hybridization, refers to conditions that permit hybridization of only those nucleic acid sequences that form stable hybrids in 0.018M NaCl at 65°C (i.e., if a hybrid is not stable in 0.018M NaCl at 65°C, it will not be stable under high stringency conditions, as contemplated herein). stringency conditions can be provided, for example, by hybridization in 50% formamide, 10 5X Denhart's solution, 5X SSPE, 0.2% SDS at 42°C, followed by washing in 0.1X SSPE, and 0.1% SDS at 65°C;

> MODERATE STRINGENCY conditions, with respect (2) hybridization, fragment conditions equivalent to hybridization in 50% formamide, 5X Denhart's solution, SSPE, 0.2% SDS at 42°C, followed by washing in 0.2X SSPE, 0.2% SDS, at 65°C;

LOW STRINGENCY conditions, with respect to (3) fragment hybridization, refers to conditions hybridization 10% equivalent to formamide, 5X Denhart's solution, 6X SSPE, 0.2% SDS at 42°C, followed by washing in 1X SSPE, 0.2% SDS, at 50°C; and

HIGH STRINGENCY conditions, with respect to (4)oligonucleotide (i.e., synthetic DNA ≤ about 30 nucleotides in length) hybridization, equivalent to conditions refers hybridization in 10% formamide, 5X Denhart's SDS at 6X SSPE, 0.2% solution, followed by washing in 1X SSPE, and 0.2% SDS at 50°C.

30

5

15

20

It is understood that these conditions may be duplicated using a variety of buffers and temperatures and that they are not necessarily precise.

Denhart's solution and SSPE (see, e.g., Sambrook, Fritsch, and Maniatis, in: Molecular Cloning, A Laboratory

Manual, Cold Spring Harbor Laboratory Press, 1989) are well known to those of skill in the art as are other suitable For example, SSPE is pH 7.4 hybridization buffers. phosphate-buffered 0.18M NaCl. SSPE can be prepared, for example, as a 20% stock solution by dissolving 175.3 g of 10 NaCl, 27.6_g of NaH_2PO_4 and 7.4 g EDTA in 800 ml of water, adjusting the pH to 7.4, and then adding water to 1 liter. Denhart's solution (see, Denhart (1966) Biochem. Biophys. Res. Commun. 23:641) can be prepared, for example, as a 50X stock solution by mixing 5 g Ficoll (Type 400, Pharmacia 15 Biotechnology, INC., Piscataway, , (LN polyvinylpyrrolidone, 5 g bovine serum albumin (Fraction V; Sigma, St. Louis, MO) water to 500 ml and filtering to remove particulate matter.

Especially preferred sequences are those which have substantially the same nucleotide sequence as the coding sequences in any one of Sequence ID Nos. 1, 1E, 1F, 1G, 1H, 1I, 1J, 1K, 1L, 1M, 1N, or 1P; with those having substantially the same sequence as the coding sequence in Sequence ID Nos. 1, 1E, 1F, 1G, 1H, 1I or 1P being most preferred.

As used herein, the phrase "substantial sequence homology" refers to nucleotide sequences which share at least about 90% identity, and amino acid sequences which typically share more than 95% amino acid identity (>99% amino acid identity when dealing with NMDAR1 subunits). It is recognized, however, that proteins (and DNA or mRNA encoding such proteins) containing less than the above-described level of homology arising as splice variants or

that are modified by conservative amino acid substitutions (or substitution of degenerate codons) are contemplated to be within the scope of the present invention.

As used herein, the phrase "substantially the same" refers to the nucleotide sequences of DNA, ribonucleotide sequences of RNA, or the amino acid have slight that protein, of sequences consequential sequence variations from the actual sequences Species that are "substantially the disclosed herein. same" are considered to be equivalent to the disclosed 10 sequences, and as such are within the scope of the appended In this regard, "slight and non-consequential claims. sequences sequence variations" mean that substantially the same as the DNA, RNA, or proteins disclosed and claimed herein, are functionally equivalent 15 to the human-derived sequences disclosed and claimed herein. Functionally equivalent sequences will function in substantially the same manner to produce substantially the same compositions as the human-derived nucleic acid and amino acid compositions disclosed and claimed herein. 20 particular, functionally equivalent DNAs encode humanderived proteins that are the same as those disclosed herein or that have conservative amino acid variations, such as substitution of a non-polar residue for another non-polar residue or a charged residue for a similarly charged residue. These changes include those recognized by those that do skill in the art as of those substantially alter the tertiary structure of the protein.

As employed herein, the phrase "NMDA receptor subunit(s) of the NMDAR2 subtype" refers to proteins which have a large putative extracellular domain at the aminoterminal region. Otherwise, the deduced structure of NMDAR2 subunits displays the same general characteristics as the NMDAR1 subunit structure. A notable typical exception is that the negatively charged glutamic acid

residues that are generally present in the putative TMII segment of NMDAR1 subunits are generally absent from the TMII segment of NMDAR2. Instead, NMDAR2 subunits may contain a positively charged lysine residue in TMII.

5 Unlike NMDAR1 subunits, NMDAR2 subunits generally do not form homomeric NMDA receptors. Moreover, the amino acid sequences of NMDAR1 and NMDAR2 subunits are generally less than 50% identical, with identities of less than 30% typically observed.

10 NMDAR2 subunits contemplated by the present invention include NMDAR2A, NMDAR2B, NMDAR2C and NMDAR2D types of subunits. Exemplary DNA sequences encoding human NMDAR2A subunits, or portions thereof, are represented by nucleotides which encode substantially the same amino acid sequence as set forth in Sequence ID No. 11, or substantially the same amino acid sequence as that encoded by the NMDAR2A-encoding portion of clone NMDA57, deposited with the ATCC under accession number 75442.

The deposited clone has been deposited at the American Type Culture Collection (ATCC), 12301 Parklawn 20 Drive, Rockville, Maryland, U.S.A. 20852, under the terms of the Budapest Treaty on the International Recognition of Deposits of Microorganisms for Purposes of Patent Procedure and the Regulations promulgated under this Treaty. Samples of the deposited material are and will be available to 25 industrial property offices and other persons legally entitled to receive them under the terms of the Treaty and Regulations and otherwise in compliance with the patent laws and regulations of the United States of America and all other nations or international organizations in which 30 this application, or an application claiming priority of this application, is filed or in which any patent granted In particular, upon on any such application is granted. issuance of a U.S. patent based on this or any application claiming priority to or incorporating this application by 35

deposited material will be irrevocably removed.

Exemplary human NMDAR2A subunit-encoding DNAs can nucleotide those characterized as be alternatively sequences which hybridize under high stringency conditions to substantially the entire sequence of Sequence ID No. 10, or substantial portions thereof (i.e., typically at least 25-30 nucleotides thereof), or the NMDAR2A-encoding portion of clone NMDA57 (ATCC accession No. 75442). preferred sequences encoding human NMDAR2A subunits are 10 those which have substantially the same nucleotide sequence as the coding sequence of Sequence ID No. 10, or those which contain substantially the same nucleotide sequence as the coding sequence in the NMDAR2A-encoding portion of clone NMDA57. 15

Exemplary DNA sequences encoding human NMDAR2B subunits are represented by nucleotides which encode substantially the same amino acid sequence as set forth in Sequence ID No. 14. Exemplary DNAs can alternatively be 20 characterized as those nucleotide sequences which encode a human NMDAR2B subunit and hybridize under high stringency conditions to substantially the entire sequence of Sequence ID No. 13, or substantial portions thereof (i.e., typically at least 25-30 nucleotides thereof). Especially preferred those sequences are NMDAR2B-encoding substantially the same nucleotide sequence as the coding sequence in Sequence ID No. 13.

25

Exemplary DNA sequences encoding human NMDAR2C subunits are represented by nucleotides which encode substantially the same amino acid sequence as set forth in 30 Sequence ID Nos. 6, 6E, 6F, 6G, 6H or 6I.

Exemplary DNAs can alternatively be characterized as those nucleotide sequences which encode a human NMDAR2C subunit and hybridize under high stringency conditions to substantially the entire sequence of any one of Sequence ID Nos. 5, 5A, 5B, 5C, 5D, 5E, 5F, 5G, 5H, or 5I, or substantial portions thereof (i.e., typically at least 25-30 nucleotides thereof); preferably exemplary DNA will hybridize under high stringency conditions to substantially the entire sequence of any one of Sequence ID Nos. 5, 5E, 5F, or 5G, or substantial portions thereof.

15

Especially preferred NMDAR2C-encoding sequences are those which have substantially the same nucleotide sequence as the coding sequences in any one of Sequence ID Nos. 5, 5E, 5F, 5G, 5H or 5I; with those having substantially the same sequence as the coding sequences in Sequence ID Nos. 5, 5E, 5F, or 5G being most preferred.

Exemplary DNA sequences encoding human NMDAR2D 15 subunits are represented by nucleotides which encode substantially the same amino acid sequence as set forth in Sequence ID No. 16. Exemplary DNAs can alternatively be characterized as those nucleotide sequences which encode a human NMDAR2D subunit and hybridize under high stringency conditions to substantially the entire sequence of Sequence ID No. 15, or substantial portions thereof (i.e., typically Especially preferred at least 25-30 nucleotides thereof). those which sequences are NMDAR2D-encoding substantially the same nucleotide sequence as the coding 25 sequence in Sequence ID No. 15.

DNA encoding human NMDA receptor subunits may be isolated by screening suitable human cDNA or human genomic libraries under suitable hybridization conditions with DNA disclosed herein (including nucleotides derived from any of SEQ ID Nos. 1, 1A-1P, 5, 5A-5I, 10, 13 or 15). Suitable libraries can be prepared from neuronal tissue samples, e.g., hippocampus and cerebellum tissue, cell lines, and the like. For example, the library can be screened with a

portion of DNA including substantially the entire subunitencoding sequence thereof, or the library may be screened with a suitable probe.

As used herein, a probe is single-stranded DNA or RNA that has a sequence of nucleotides that includes at least 14 contiguous bases that are the same as (or the complement of) any 14 or more contiguous bases set forth in any of SEQ ID Nos. 1, 1A-1P, 5, 5A-5I, 10, 13 or 15. Preferred regions from which to construct probes include 5' and/or 3' coding sequences, sequences predicted to encode transmembrane domains, sequences predicted to encode cytoplasmic loops, signal sequences, NMDA binding sites, and the like.

thereof can be used as probes, preferably labeled with suitable label means for ready detection. When fragments are used as probes, preferably the DNA sequences will be from the carboxyl end-encoding portion of the DNA, and most preferably will include predicted transmembrane domain-encoding portions of the DNA sequence (the domains can be predicted based on hydropathy analysis of the deduced amino acid sequence using, for example, the method of Kyte and Doolittle (1982), J. Mol. Biol. Vol. 157:105). These probes can be used, for example, for the identification and isolation of additional members of the glutamate receptor family.

As a particular application of the invention sequences, genetic screening can be carried out using the nucleotide sequences of the invention as probes. Thus, nucleic acid samples from patients having neuropathological conditions suspected of involving alteration/modification of any one or more of the glutamate receptors can be screened with appropriate probes to determine if any abnormalities exist with respect to any of the endogenous

glutamate receptors. Similarly, patients having a family history of disease states related to glutamate receptor dysfunction can be screened to determine if they are also predisposed to such disease states.

In accordance with another embodiment of the present invention, there is provided a method for identifying DNA encoding human N-methyl-D-aspartate (NMDA) receptor protein subunit(s), said method comprising:

contacting human DNA with a nucleic acid probe as

10 described above, wherein said contacting is carried out

under high stringency hybridization conditions, and

identifying DNA(s) which hybridize to said probe.

After screening the library, positive clones are identified by detecting a hybridization signal; identified clones are characterized by restriction enzyme 15 mapping and/or DNA sequence analysis, and then examined, by comparison with the sequences set forth herein to ascertain whether they include DNA encoding a complete NMDA receptor subunit (i.e., if they include translation initiation and the selected clones Ιf termination codons). 20 incomplete, they may be used to rescreen the same or a different library to obtain overlapping clones. library is genomic, then the overlapping clones may include exons and introns. If the library is a cDNA library, then the overlapping clones will include an open reading frame. 25 In both instances, complete clones may be identified by comparison with the DNA and encoded proteins provided herein.

Complementary DNA clones encoding various human NMDA receptor subunits (e.g., NMDAR1, NMDAR2A, NMDAR2B, NMDAR2C, NMDAR2D) have been isolated. Each type of subunit appears to be encoded by a different gene. The DNA clones provided herein may be used to isolate genomic clones encoding each type of subunit and to isolate any splice

variants by screening libraries prepared from different neural tissues. Nucleic acid amplification techniques, which are well known in the art, can be used to locate DNA encoding splice variants of human NMDA receptor subunits.

5 This is accomplished by employing oligonucleotides based on DNA sequences surrounding divergent sequence(s) as primers for amplifying human RNA or genomic DNA. Size and sequence determinations of the amplification products can reveal the existence of splice variants. Furthermore, isolation of human genomic DNA sequences by hybridization can yield DNA containing multiple exons, separated by introns, that correspond to different splice variants of transcripts encoding human NMDA receptor subunits.

It has been found that not all subunits (and variants thereof) are expressed in all neural tissues or in all portions of the brain. Thus, in order to isolate cDNA encoding a particular subunit or splice variants thereof, it is preferable to screen libraries prepared from different neuronal or neural tissues. Preferred tissues to use as sources of nucleic acids for preparing libraries to obtain DNA encoding each subunit include: hippocampus to isolate human NMDAR1-encoding DNAs; hippocampus, cerebellum and fetal brain to isolate NMDAR2-encoding DNAs; and the like.

25 Once DNA encoding a subunit has been isolated, ribonuclease (RNase) protection assays can be employed to determine which tissues express mRNA encoding a particular NMDAR subunit subtype or variant. These assays provide a sensitive means for detecting and quantitating an RNA species in a complex mixture of total cellular RNA. The subunit DNA is labeled and hybridized with cellular RNA. If complementary mRNA is present in the cellular RNA, a DNA-RNA hybrid results. The RNA sample is then treated with RNase, which degrades single-stranded RNA. Any RNA-DNA hybrids are protected from RNase degradation and can be

visualed by gel electrophorsis and autoradiography. In situ hybridization techniques can also be used to determine which tissues express mRNA encoding a particular NMDAR subunit. The labeled subunit DNAs are hybridized to different brain region slices to visualize subunit mRNA expression.

The distribution of expression of some human NMDA receptor subunits may differ from the distribution of such receptors in rat. For example, RNA encoding the rat NMDAR2C subunit is abundant in rat cerebellum, but is not abundant in rat hippocampus [see, e.g., Monyer et al., Science 256:1217-1221 (1992)]. Numerous human NMDAR2C clones were ultimately obtained, however, from a human hippocampus library. Thus, the distribution of some NMDA receptor subunits in humans and rats appears to be different.

The above-described nucleotide sequences can be incorporated into vectors for further manipulation. As used herein, vector (or plasmid) refers to discrete elements that are used to introduce heterologous DNA into cells for either expression or replication thereof. Selection and use of such vehicles are well within the skill of the artisan.

An expression vector includes vectors capable of expressing DNAs that are operatively linked with regulatory sequences, such as promoter regions, that are capable of effecting expression of such DNA fragments. Thus, an expression vector refers to a recombinant DNA or RNA construct, such as a plasmid, a phage, recombinant virus or other vector that, upon introduction into an appropriate host cell, results in expression of the cloned DNA. Appropriate expression vectors are well known to those of skill in the art and include those that are replicable in eukaryotic cells and/or prokaryotic cells and those that

remain episomal or those which integrate into the host cell genome. Presently preferred plasmids for expression of invention NMDA receptor subunits in eukaryotic host cells, particularly mammalian cells, include cytomegalovirus (CMV) promoter-containing vectors such as pCMV-T7-2 or pCMV-T7-3 (see Figure 6), pMMTVT7(+) or pMMTVT7(-) (modified versions of pMAMneo (Clontech, Palo Alto, CA), prepared as described herein), pcDNA1, and the like.

As used herein, a promoter region refers to a segment of DNA that controls transcription of DNA to which 10 it is operatively linked. The promoter region includes specific sequences that are sufficient for RNA polymerase recognition, binding and transcription initiation. portion of the promoter region is referred to as the In addition, the promoter region includes promoter. 15 sequences that modulate this recognition, binding and transcription initiation activity of RNA polymerase. These sequences may be cis acting or may be responsive to trans acting factors. Promoters, depending upon the nature of be constitutive or regulation, may 20 Exemplary promoters contemplated for use in the practice of the present invention include the SV40 early promoter, the cytomegalovirus (CMV) promoter, the mouse mammary tumor virus (MMTV) steroid-inducible promoter, Moloney murine leukemia virus (MMLV) promoter, and the like. 25

As used herein, the term "operatively linked" refers to the functional relationship of DNA with regulatory and effector sequences of nucleotides, such as promoters, enhancers, transcriptional and translational stop sites, and other signal sequences. For example, operative linkage of DNA to a promoter refers to the physical and functional relationship between the DNA and the promoter such that the transcription of such DNA is initiated from the promoter by an RNA polymerase that specifically recognizes and binds to the promoter, and

30

In order to optimize expression transcribes the DNA. and/or in vitro transcription, it may be necessary to remove, add or alter 5' and/or 3' untranslated portions of the clones to eliminate extra, potential inappropriate alternative translation initiation (i.e., start) codons or interfere with or may that sequences the level of transcription or expression, either at Alternatively, consensus ribosome binding translation. sites (see, for example, Kozak (1991) J. Biol. Chem. 266:19867-19870) can be inserted immediately 5' of the codon and may enhance expression. alternative codons, encoding the same amino acid, can be substituted for coding sequences of the NMDAR subunits in order to enhance transcription (e.g., the codon preference of the host cells can be adopted, the presence of G-C rich domains can be reduced, and the like). Furthermore, for potentially enhanced expression of NMDA receptor subunits in amphibian oocytes, the subunit coding sequence can optionally be incorporated into an expression construct wherein the 5'- and 3'-ends of the coding sequence are 20 β-globin gene contiguous with Xenopus For example, NMDA untranslated sequences, respectively. receptor subunit coding sequences can be incorporated into vector pSP64T (see Krieg and Melton (1984) in Nucleic Acids Research 12:7057-7070), a modified form of pSP64 (available 25 The coding sequence from Promega, Madison, WI). inserted between the 5' end of the eta-globin gene and the 3' untranslated sequences located downstream of the SP6 promoter. In vitro transcripts can then be generated from 30 teh resulting vector. The desirability of (or need for) such modification may be empirically determined.

As used herein, expression refers to the process by which polynucleic acids are transcribed into mRNA and translated into peptides, polypeptides, or proteins. If the polynucleic acid is derived from genomic DNA,

expression may, if an appropriate eukaryotic host cell or organism is selected, include splicing of the mRNA.

particularly preferred vectors for transfection of mammalian cells are the pSV2dhfr expression vectors, which contain the SV40 early promoter, mouse dhfr gene, SV40 polyadenylation and splice sites and sequences necessary for maintaining the vector in bacteria, cytomegalovirus (CMV) promoter-based vectors such as pCMV-T7-2 and pCMV-T7-3 (described herein) or pCDNA1 (Invitrogen, San Diego, CA), and MMTV promoter-based vectors such as pMMTVT7(+) or pMMTVT7(-), described herein.

10

Full-length DNAs encoding human NMDA receptor vectors into inserted been have subunits pMMTVT7(+), pCMV-T7-2 and pCMV-T7-3. pCMV-T7-2 is a pUC19based mammalian cell expression vector containing the CMV 15 splice/donor sites promoter/enhancer, SV40 immediately downstream of the promoter, a T7 bacteriophage RNA polymerase promoter positioned downstream of the splice sites, followed by an SV40 polyadenylation signal and a polylinker between the T7 promoter and the polyadenylation 20 signal. Placement of NMDA receptor subunit DNA between the CMV promoter and SV40 polyadenylation signal should provide for constitutive expression of the foreign DNA in a mammalian host cell transfected with the construct. Plasmid pCMV-T7-3 is identical to pCMV-T7-2 except that the 25 order of restriction enzyme sites in the polylinker is reversed.

Vectors pMMTVT7(+) and pMMTVT7(-) were prepared by modifying vector pMAMneo (Clontech, Palo Alto, CA).

pMAMneo is a mammalian expression vector that contains the Rous Sarcoma Virus (RSV) long terminal repeat (LTR) enhancer, linked to the dexamethasone-inducible mouse mammary tumor virus (MMTV)-LTR promoter, followed by SV40 splicing and polyadenylation sites. pMAMneo also contains

the *E. coli neo* gene for selection of transformants, as well as the β -lactamase gene (encoding a protein which imparts ampicillin-resistance) for propagation in *E. coli*.

Vector pMMTVT7(+)can be generated 5 modification of pMAMneo to remove the neo gene and insert the multiple cloning site and T7 and T3 promoters from pBluescript (Stratagene, La Jolla, CA). Thus, pMMTVT7(+) contains the RSV-LTR enhancer linked to the MMTV-LTR promoter, a bacteriophage RNA polymerase **T**7 promoter MMTV-LTR 10 positioned downstream of the promoter, polylinker positioned downstream of the T7 promoter, a T3 bacteriophage RNA polymerase promoter positioned downstream of the T7 promoter, and SV40 splicing and polyadenylation sites positioned downstream of the T3 promoter. 15 gene (encoding protein which imparts β -lactamase a is ampicillin-resistance) from pMAMneo retained pMMTVT7(+), although it is incorporated in the reverse orientation relative to the orientation in pMAMneo.

Vector pMMTVT7(-) is identical to pMMTVT7(+) 20 except that the positions of the T7 and T3 promoters are switched, i.e., the T3 promoter in pMMTVT7(-) is located where the T7 promoter is located in pMMTVT7(+), and the T7 promoter in pMMTVT7(-) is located where the T3 promoter is located in pMMTVT7(+). Therefore, vectors pMMTVT7(+) and pMMTVT7(-) contain all of the regulatory elements required 25 for expression of heterologous DNA in a mammalian host cell, wherein the heterologous DNA has been incorporated into the vectors at the polylinker. In addition, because the T7 and T3 promoters are located on either side of the 30 polylinker, these plasmids can be used for synthesis of in vitro transcripts of heterologous DNA that has been subcloned into the vectors at the polylinker.

For inducible expression of human NMDA receptor subunit-encoding DNA in a mammalian cell, the DNA can be

inserted into a plasmid such as pMMTVT7(+) or pMMTVT7(-). These plasmids contain the mouse mammary tumor virus (MMTV) promoter for steroid-inducible expression of operatively associated foreign DNA. If the host cell does not express 5 endogenous glucocorticoid receptors required for uptake of glucocorticoids (i.e., inducers of the MMTV promoter) into the cell, it is necessary to additionally transfect the cell with DNA encoding the glucocorticoid receptor (ATCC synthesis For accession no. 67200). transcripts, full-length human DNA clones encoding human 10 NMDAR1, NMDAR2A, NMDAR2B, NMDAR2C and NMDAR2D can also be subcloned into pIBI24 (International Biotechnologies, Inc., pCMV-T7-2, pCMV-T7-3, pMMTVT7(+), CT), Haven, pMMTVT7(-), pBluescript (Stratagene, La Jolla, CA) or pGEM7Z (Promega, Madison, WI). 15

In accordance with another embodiment of the present invention, there are provided cells containing the above-described polynucleic acids (i.e., DNA or mRNA). Such host cells as bacterial, yeast and mammalian cells can be used for replicating DNA and producing NMDA receptor subunit(s). Methods for assessing receptor expression and Application PCT described in function are PCT/US91/05625 and PCT/US92/11090, and in co-pending U.S. Application Serial Nos. 07/563,751 and 07/812,254. subject matter of these documents is hereby incorporated by 25 reference herein in their entirety.

20

30

35

Incorporation of cloned DNA into a suitable expression vector, transfection of eukaryotic cells with a plasmid vector or a combination of plasmid vectors, each encoding one or more distinct genes or with linear DNA, and selection of transfected cells are well known in the art (see, e.g., Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press). Heterologous DNA may be introduced into host cells by any method known to those of skill in the

art, such as transfection with a vector encoding the heterologous DNA by CaPO, precipitation (see, e.g., Wigler et al. (1979) Proc. Natl. Acad. Sci. <u>76</u>:1373-1376) or lipofectamine (GIBCO BRL #18324-012). Recombinant cells whereby the conditions under cultured then encoded DNA is (are) the by subunit(s) Preferred cells include mammalian cells (e.g., HEK293, CHO, BHKBI and Ltk cells, mouse monocyte macrophage P388D1 and J774A-1 cells (available from ATCC, Rockville, MD), and the like), yeast cells (e.g., methylotrophic yeast cells, such 10 as Pichia pastoris), bacterial cells (e.g., Escherichia coli), and the like.

While the DNA provided herein may be expressed in any eukaryotic cell, including yeast cells (such as, for example, P. pastoris (see U.S. Patent Nos. 4,882,279, 15 Saccharomyces and 4,929,555 4,855,231), 4,837,148, cerevisiae, Candida tropicalis, Hansenula polymorpha, and like), mammalian expression systems, including commercially available systems and other such systems known to those of skill in the art, for expression of DNA 20 encoding the human NMDA receptor subunits provided herein are presently preferred. Xenopus oocytes are preferred for expression of in vitro RNA transcripts of the DNA.

In preferred embodiments, human NMDAR subunitencoding DNA is ligated into a vector, and introduced into 25 suitable host cells to produce transformed cell lines that express a specific human NMDA receptor subtype, or specific The resulting cell lines can combinations of subunits. then be produced in quantity for reproducible quantitative analysis of the effects of known or potential drugs on 30 In other embodiments, mRNA may be receptor function. produced by in vitro, transcription of DNA encoding each This mRNA, either from a single subunit clone or subunit. from a combination of clones, can then be injected into Xenopus oocytes where the mRNA directs the synthesis of the 35

human receptor subunits, which then form functional receptors. Alternatively, the subunit-encoding DNA can be directly injected into occytes for expression of functional receptors. The transfected mammalian cells or injected occytes may then be used in the methods of drug screening provided herein.

Eukaryotic cells in which DNA or RNA may be introduced include any cells that are transfectable by such DNA or RNA or into which such DNA or RNA may be injected.

10 Preferred cells are those that can be transiently or stably transfected and also express the DNA and RNA. Presently most preferred cells are those that can form recombinant or heterologous human NMDA receptors comprising one or more subunits encoded by the heterologous DNA. Such cells may be identified empirically or selected from among those known to be readily transfected or injected.

Exemplary cells for introducing DNA include cells of mammalian origin (e.g., COS cells, mouse L cells, Chinese hamster ovary (CHO) cells, human embryonic kidney (HEK) cells (particularly HEK293 cells that can be frozen 20 in liquid nitrogen and then thawed and regrown; for example, those described in U.S. Patent No. 5,024,939 to Gorman (see, also, Stillman et al. (1985) Mol. Cell. Biol. 5:2051-2060)), African green monkey cells and other such cells known to those of skill in the art), amphibian cells 25 (e.g., Xenopus laevis oöcytes), yeast cells Saccharomyces cerevisiae, Pichia pastoris), and the like. Exemplary cells for expressing injected RNA transcripts include Xenopus laevis oöcytes. Cells that are preferred for transfection of DNA are known to those of skill in the 30 art or may be empirically identified, and include HEK293 (which are available from ATCC under accession #CRL 1573); Ltk cells (which are available from ATCC under accession #CCL1.3); COS-7 cells (which are available from ATCC under accession #CRL 1651); and DG44 cells (dhfr CHO cells; see, 35

e.g., Urlaub et al. (1986) Cell. Molec. Genet. <u>12</u>: 555). Presently preferred cells include Ltk cells and DG44 cells.

DNA may be stably incorporated into cells or may be transiently expressed using methods known in the art. Stably transfected mammalian cells may be prepared by transfecting cells with an expression vector having a selectable marker gene (such as, for example, the gene for thymidine kinase, dihydrofolate reductase, resistance, and the like), and growing the transfected 10 cells under conditions selective for cells expressing the marker gene. To prepare transient transfectants, mammalian cells are transfected with a reporter gene (such as the E. monitor transfection B-galactosidase gene) to Selectable marker genes are not included in efficiency. 15 the transient transfections because the transfectants are typically not grown under selective conditions, and are usually analyzed within a few days after transfection.

To produce such stably or transiently transfected cells, the cells should be transfected with a sufficient concentration of subunit-encoding nucleic acids to form human NMDA receptors that contain the human subunits encoded by heterologous DNA. The precise amounts and ratios of DNA encoding the subunits may be empirically determined and optimized for a particular combination of subunits, cells and assay conditions. Recombinant cells that express NMDA receptors containing subunits encoded only by the heterologous DNA or RNA are especially preferred.

20

Heterologous DNA may be maintained in the cell as an episomal element or may be integrated into chromosomal DNA of the cell. The resulting recombinant cells may then be cultured or subcultured (or passaged, in the case of mammalian cells) from such a culture or a subculture thereof. Methods for transfection, injection and culturing

recombinant cells are known to the skilled artisan. Similarly, the human NMDA receptor subunits may be purified using protein purification methods known to those of skill in the art. For example, antibodies or other ligands that specifically bind to one or more of the subunits may be used for affinity purification and immunoprecipitation of the subunit or human NMDA receptors containing the subunits.

As used herein, heterologous or foreign DNA and RNA are used interchangeably and refer to DNA or RNA that does not occur naturally as part of the genome of the cell in which it is present or to DNA or RNA which is found in a location or locations in the genome that differ from that in which it occurs in nature. Typically, heterologous or 15 foreign DNA and RNA refers to DNA or RNA that is not endogenous to the host cell and has been artificially introduced into the cell. Examples of heterologous DNA include DNA that encodes a human NMDA receptor subunit, DNA that encodes RNA or proteins that mediate or 20 expression of endogenous DNA by affecting transcription, translation, or other regulatable biochemical processes, and the like. The cell that expresses heterologous DNA may contain DNA encoding the same or different expression products. Heterologous DNA need not be expressed and may be integrated into the host cell genome or maintained 25 episomally.

Recombinant receptors on recombinant eukaryotic cell surfaces may contain one or more subunits encoded by the DNA or mRNA encoding human NMDA receptor subunits, or may contain a mixture of subunits encoded by the host cell and subunits encoded by heterologous DNA or mRNA. Recombinant receptors may be homomeric or may be a heteromeric combination of multiple subunits. Mixtures of DNA or mRNA encoding receptors from various species, such as rats and humans, may also be introduced into the cells.

10

25

30

35

Thus, a cell can be prepared that expresses recombinant receptors containing only NMDAR1 subunits, or a combination of any one or more NMDAR1 and any one or more NMDAR2 subunits provided herein. For example, NMDAR1 subunits of the present invention can be co-expressed with NMDAR2A, NMDAR2D receptor NMDAR2C and/or NMDAR2B, heteromeric combinations examples of Specific recombinant human NMDAR subunits that have been expressed in Xenopus oocytes include NMDAR1 + NMDAR2A, NMDAR1 + NMDAR2B, and NMDAR1 + NMDAR2A + NMDAR2C (see Example 9).

29

vectors, receptor subunits, mRNA, DNA, The receptor subunit combinations and cells provided herein permit production of selected NMDA receptor subunits and specific combinations thereof, as well as antibodies to said receptor subunits. This provides a means to prepare 15 synthetic or recombinant receptors and receptor subunits that are substantially free of contamination from many other receptor proteins whose presence can interfere with single NMDA receptor subtype. analysis of a availability of desired receptor subtypes makes it possible 20 to observe the effect of a drug substance on a particular receptor subtype or combination of NMDA receptor subunits, and to thereby perform initial in vitro screening of the drug substance in a test system that is specific for humans specific for a human NMDA receptor combination of NMDA receptor subunits. The availability of specific antibodies makes it possible to identify the subunit combinations expressed in vivo. Such specific combinations can then be employed as preferred targets in drug screening.

The ability to screen drug substances in vitro to determine the effect of the drug on specific receptor compositions should permit the development and screening of receptor subtype-specific or disease-specific drugs. Also, single receptor subunits of testing

10

15

20

combinations of various types of receptor subunits with a variety of potential agonists or antagonists provides additional information with respect to the function and activity of the individual subunits and should lead to the 5 identification and design of compounds that are capable of very specific interaction with one or more types of receptor subunits or receptor subtypes. The resulting drugs should exhibit fewer unwanted side effects than drugs identified by screening with cells that express a variety of receptor subtypes.

Further in relation to drug development and therapeutic treatment of various disease states, availability of DNAs encoding human NMDA receptor subunits enables identification of any alterations in such genes (e.g., mutations) which may correlate with the occurrence of certain disease states. In addition, the creation of animal models of such disease states becomes possible, by specifically introducing such mutations into synthetic DNA sequences which can then be introduced into laboratory animals or in vitro assay systems to determine the effects thereof.

aspect, the invention comprises another functional peptide fragments, and functional combinations thereof, encoded by the DNAs of the invention. functional peptide fragments can be produced by those 25 skilled in the art, without undue experimentation, by eliminating some or all of the amino acids in the sequence not essential for the peptide to function as a glutamate A determination of the amino acids that are receptor. 30 essential for glutamate receptor function is made, example, by systematic digestion of the DNAs encoding the peptides and/or by the introduction of deletions into the The modified (e.g., deleted or digested) DNAs are expressed, for example, by transcribing the DNA and then introducing the resulting mRNA into Xenopus oocytes, where

translation of the mRNAs will occur. Functional analysis of the proteins thus expressed in the oocytes is accomplished by exposing the oocytes to ligands known to bind to and functionally activate glutamate receptors, and then monitoring the oocytes to see if the expressed fragments form ion channel(s). If ion channel(s) are detected, the fragments are functional as glutamate receptors.

The above-described method can be carried out in the presence of NMDAR1-like receptor subunits alone, or in the presence of combinations of NMDAR1-like and NMDAR2-like receptor subunits. Thus, for example, when the protein being tested is an NMDAR2-like receptor subunit, the additional subunit is preferably an NMDAR1-like subunit.

In accordance with still another embodiment of 15 the present invention, there is provided a method for identifying compounds which bind to human N-methyl-D-aspartate (NMDA) receptor subunit(s), said comprising employing receptor proteins of the invention in a competitive binding assay. Such an assay can accomodate 20 the rapid screening of a large number of compounds to determine which compounds, if any, are capable of binding to NMDA receptors. Subsequently, more detailed assays can be carried out with those compounds found to bind, to further determine whether such compounds act as modulators, 25 agonists or antagonists of invention receptors.

Another application of the binding assay of the invention is the assay of test samples (e.g., biological fluids) for the presence or absence of receptors of the present invention. Thus, for example, serum from a patient displaying symptoms related to glutamatergic pathway dysfunction can be assayed to determine if the observed symptoms are perhaps caused by over- or under-production of such receptor(s).

32 The binding assays contemplated by the present invention can be carried out in a variety of ways, as can readily be identified by those of skill in the art. example, competitive binding assays can be employed, such as radioreceptor assays, and the like. In accordance with a further embodiment of the invention, there is provided a bioassay identifying compounds which modulate the activity of human NMDA receptors of the invention, said bioassay comprising: exposing cells containing DNA encoding human 10 NMDA receptor subunit(s), wherein said cells express functional NMDA receptors, to at least one compound whose ability to modulate the ion channel activity of said receptors is sought to be determined; and thereafter 15 monitoring said cells for changes in ion (b) channel activity. the above-described bioassay enables The identification of agonists and antagonists for human NMDA According to this method, recombinant NMDA receptors. 20 receptors are contacted with an "unknown" or test substance (in the further presence of a known NMDA agonist, when antagonist activity is being tested), the ion channel activity of the known glutamate receptor is monitored 25 subsequent to the contact with the "unknown" or test substance, and those substances which increase or decrease the ion channel response of the known glutamate receptor(s) are identified as functional ligands (i.e., modulators, agonists or antagonists) for human NMDA receptors. In accordance with a particular embodiment of the 30 recombinant NMDA human invention, present receptor-expressing mammalian cells or oocytes can be test compound, and the modulating contacted with a effect(s) thereof can then be evaluated by comparing the NMDA receptor-mediated response in the presence and absence of test compound, or by comparing the response of test cells, or control cells (i.e., cells that do not express NMDA receptors), to the presence of the compound.

used herein, a compound or signal that 5 "modulates the activity of an NMDA receptor" refers to a compound or signal that alters the activity of NMDA the NMDA receptor receptors so that activity of different in the presence of the compound or signal than in the absence of the compound or signal. In particular, such 10 compounds or signals include agonists and antagonists. term agonist refers to a substance or signal, such as NMDA, that activates receptor function; and the term antagonist refers to a substance that interferes with receptor Typically, the effect of an antagonist is function. 15 observed as a blocking of activation by an agonist. non-competitive competitive and include Antagonists antagonists. A competitive antagonist (or competitive blocker) interacts with or near the site specific for the ligand or neurotransmitter). agonist (e.g., 20 inactivates blocker the antagonist or competitive functioning of the receptor by interacting with a site other than the site that interacts with the agonist.

As understood by those of skill in the art, assay methods for identifying compounds that modulate human NMDA 25 antagonists) agonists and (e.g., activity receptor generally require comparison to a control. One type of a "control" cell or "control" culture is a cell or culture that is treated substantially the same as the cell or culture exposed to the test compound, except the control 30 culture is not exposed to test compound. For example, in use voltage clamp electrophysiological that methods procedures, the same cell can be tested in the presence and absence of test compound, by merely changing the external solution bathing the cell. Another type of "control" cell 35

or "control" culture may be a cell or a culture of cells which is identical to the transfected cells, except the cells employed for the control culture do not express functional human NMDA receptor subunits. In this situation, the response of test cell to test compound is compared to the response (or lack of response) of receptornegative (control) cell to test compound, when cells or cultures of each type of cell are exposed to substantially the same reaction conditions in the presence of compound being assayed.

10

In accordance with yet another embodiment of the present invention, the ion channel activity of human N-methyl-D-aspartate (NMDA) receptors can be modulated by contacting such receptors with an effective amount of at least one compound identified by the above-described bioassay.

In accordance with yet another embodiment of the present invention, there are provided antibodies generated against the above-described receptor proteins. Such 20 antibodies can be employed for studying receptor tissue localization, subunit composition, structure of functional domains, as well as in diagnostic applications, therapeutic applications, and the like. Preferably, for therapeutic applications, the antibodies employed will be monoclonal antibodies.

The above-described antibodies can be prepared employing standard techniques, as are well known to those of skill in the art, using the invention receptor proteins or portions thereof as antigens for antibody production.

30 Both anti-peptide and anti-fusion protein antibodies can be used [see, for example, Bahouth et al. (1991) Trends Pharmacol Sci. vol. 12:338-343; Current Protocols in Molecular Biology (Ausubel et al., eds.) John Wiley and Sons, New York (1989)]. Factors to consider in selecting

portions of the NMDAR subunits for use as immunogen (as either a synthetic peptide or a recombinantly produced bacterial fusion protein) include antigenicity, accessibility (i.e., extracellular and cytoplasmic domains), uniqueness to the particular subunit, etc.

The availability of subunit-specific antibodies makes possible the application of the technique of immunohistochemistry to monitor the distribution and expression density of various subunits (e.g., in normal vs diseased brain tissue). Such antibodies could also be employed for diagnostic and therapeutic applications.

10

15

In accordance with still another embodiment of the present invention, there are provided methods for modulating the ion channel activity of receptor(s) of the invention by contacting said receptor(s) with an effective amount of the above-described antibodies.

invention be antibodies of the The administered to a subject employing standard methods, such for example, by intraperitoneal, intramuscular, injection, implant or subcutaneous intravenous, 20 transdermal modes of administration, and the like. in the art can readily determine dose skill treatment regiments, etc, depending on the mode administration employed.

The invention will now be described in greater detail by reference to the following non-limiting examples.

Example 1 Isolation of DNA encoding human NMDA receptor NMDAR1 subunits

36

cDNA Library Screening Α.

RNA isolated from human hippocampus tissue was 5 used as a template for the synthesis of oligo dT-primed and randomly primed, single-stranded cDNA according to standard procedures [see, for example, Maniatis et al. (1982) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY]. The single-10 stranded cDNA was converted to double-stranded cDNA, and EcoRI/SnaBI/XhoI adaptors were added to the ends thereof. The cDNAs were separated by size using agarose gel electrophoresis, and those that were >2.0 kb were ligated into EcoRI-digested Agt10 bacteriophage vectors. 15 resulting cDNA library was amplified by replication of each clone through limited infection of a bacterial host, and stored at -70°C.

The amplified hippocampus oligo dT-primed cDNA library was later retrieved from storage and 1 \times 10 6 20 hybridization for screened were recombinants oligonucleotides corresponding to nucleotides 96-128 (SE7) and nucleotides 2576-2609 (SE8) of the rat NMDAR1A receptor Nature (see Moriyoshi et al. (1991) Hybridization was performed at 42°C in 6X SSPE, 25 Denhart's solution, 10% formamide, 0.2% SDS and 200 μ g/ml herring sperm DNA. Washes were performed in 1X SSPE and 0.2% SDS at 50°C. Hybridizing clones (e.g. NMDA1-3) were identified. These clones hybridized to SE8 but not to SE7.

A randomly primed primary human hippocampus cDNA 30 library (-2 x 10^5 recombinants prepared by selecting only cDNAs >2.0 kb for inclusion in the library) was screened same conditions for hybridization the under

oligonucleotide SE8 and an oligonucleotide corresponding to nucleotides 129-141 of the rat NMDAR1A receptor cDNA (SE11). Five hybridizing clones, which hybridized to SE8 and not to SE11, were identified: NMDA5-7 and NMDA10-11.

5 B. <u>Characterization of Clones</u>

The clones were plaque purified and characterized by restriction enzyme mapping and DNA sequence analysis of the inserts. One of the clones, NMDA11 (see Sequence ID No. 1B for a description of a portion of NMDA11), is a full-length cDNA (i.e., it contains translation initiation and termination codons) encoding a complete NMDAR1 subunit. The remaining clones are partial cDNAs. Clones NMDA2, NMDA3 (see Sequence ID No. 1D), NMDA5, NMDA6, NMDA7 (see Sequence ID No. 1C), and NMDA10 (see Sequence ID No. 1A for a description of a portion of NMDA10) contain a translation termination codon but lack nucleotides at the 5' end of the coding sequence.

Characterization of the clones revealed that the isolated cDNAs correspond to alternatively different spliced forms of the human NMDAR1 subunit transcript. 20 four types of alternate splicing represented by the clones are depicted schematically in Figure 1. Clone NMDA10 (which lacks 5' untranslated sequences as well as 60 nucleotides of the 5' end of the coding sequence) is used 25 as a reference to which the other variants are compared. Clone NMDA11 lacks 363 nucleotides (in the 3' portion of the clone) that are present in NMDA10. This 363-nucleotide deletion does not disrupt the reading frame of transcript; however, it results in a different termination 30 The last 69 nucleotides of the coding sequence of NMDA11 correspond to 3' untranslated sequence of clone NMDA10 (i.e., nucleotides 3325-3393 of Sequence ID No. 1). Clone NMDA7 lacks the same 363-nucleotide sequence that is deleted from NMDA11; however, NMDA7 further lacks 204

38

nucleotides at the 5' end that are present in NMDA10 and NMDA11. This 204-nucleotide deletion also does not disrupt the reading frame of the transcript. Additionally, NMDA7 contains a 63-nucleotide in-frame insertion at the 5' end relative to NMDA10 and NMDA11. The last 69 base pairs of the coding sequence of NMDA7 correspond to 3' untranslated sequence of NMDA10 i.e., nucleotides 3325-3393 of Sequence ID No. 1). Clone NMDA3 lacks 1087 base pairs at the 3' end that are present in NMDA10. This 1087-base pair deletion does not disrupt the reading frame of the transcript; however it results in a different termination codon. The last 231 base pairs of the coding sequence of NMDA3 correspond to 3' untranslated sequence of clone NMDA10 (i.e., nucleotides 4049-4279 in Sequence ID No. 1).

Example 2 Preparation of full-length NMDAR1 subunit cDNA constructs

Portions of clones NMDA10, NMDA11, NMDA7 and NMDA3 were ligated together to construct full-length cDNAs encoding variants of the NMDA receptor NMDAR1 subunit. The full-length NMDAR1 subunit cDNAs were incorporated into vector pcDNA1 (Invitrogen, San Diego, CA) for use in expressing the receptor subunits in mammalian host cells and for use in generating in vitro transcripts of the DNAs to be expressed in Xenopus oocytes.

Vector pcDNA1 is a pUC19-based plasmid that 25 contains the following elements in the 5'-to-3' order: the early immediate cytomegalovirus (CMV) promoter/enhancer, the bacteriophage T7 RNA polymerase the bacteriophage SP6 polylinker, promoter, a polymerase promoter, SV40 RNA processing (i.e., splice 30 donor/acceptor) signals, SV40 polyadenylation signal, and the ColE1 origin and supF suppressor tRNA to permit maintenance of the vector in Escherichia coli strains with the P3 episome. This vector thus contains all the

15

regulatory elements required for expression of heterologous DNA in a mammalian host cell, wherein the heterologous DNA has been incorporated into the vector at the polylinker. In addition, because the T7 and SP6 promoters are located on either side of the polylinker, this plasmid can be used for synthesis of *in vitro* transcripts of heterologous DNA that has been sublconed into the vector at the polylinker.

39

A. NMDAR1A

20

25

30

Full-length construct NMDARIA was prepared by ligation of a 5' portion of NMDAII (beginning 5' of the translation initiation codon and extending to the HindIII site in the middle of the clone) and a 3' portion of NMDAIO (beginning at the HindIII site in the middle of the clone and extending 3' of the translation termination codon) as depicted in Figure 2. The two DNA fragments were joined in mammalian expression vector pcDNAI.

Initially, the strategy for generating the NMDAR1 construct involved a first step of separately subcloning the entire 4.0 kb EcoRI insert fragment of NMDA10 and the entire 4.0 kb SnaBI insert fragment of NMDA11 into pcDNA1; however, two attempts employing this cloning strategy were appeared that there may have been It unsuccessful. selection against E. coli hosts retaining the complete insert fragments since the surviving recombinant E. coli that were analyzed contained incomplete insert cDNAs from Therefore, it was which nucleotides had been deleted. necessary to prepare the full-length NMDAR1A construct in several steps by subcloning and combining various fragments of NMDA10 and NMDA11 in pcDNA1 as follows (see Figure 3 for locations of restriction enzyme sites).

Clone NMDA10 was digested with BglII and EcoRI and the ~3.3 kb fragment containing nucleotides 1020-4298 of Sequence ID No. 1 was isolated and subcloned into

BamHI/EcoRI-digested pcDNA1. The resulting plasmid was digested with HindIII and NheI and the fragment containing nucleotides 2137-4298 of Sequence ID No. 1 plus a portion of pcDNA1 was isolated.

Clone NMDA11 was digested with EcoRI and HindIII 5 and the ~2.1 kb fragment containing nucleotides 1-2136 of subcloned and isolated was No. 1 Sequence ID (modified modified pcDNA1 EcoRI/HindIII-digested deletion of the HindIII site located 5' of the EcoRI site in the polylinker and addition of a HindIII site into the 10 polylinker at a position 3' of the EcoRI site). resulting plasmid was digested with NheI and HindIII and the fragment containing nucleotides 1-2136 of Sequence ID No. 1 plus a portion of modified pcDNA1 was isolated. 15 Nhel/HindIII fragment was then ligated to the HindIII/NheI fragment containing nucleotides 2137-4298 of Sequence ID No. 1 to generate the full-length construct NMDAR1A (see Figure 2). The ligation mix was used to transform E. coli strain MC1061/P3. Because the NheI site in pcDNA1 occurs within the supF selection gene, only E. coli containing the 20 correctly ligated, complete NMDAR1A plasmid (which has the complete, functional selection gene) were able to survive the selection process. This fragment subcloning strategy enabled selection of the desired correct NMDAR1A-containing E. coli host cells, even though the total number of such 25 recombinant host cells was small.

In summary, construct NMDAR1A contains 261 base pairs of 5' untranslated sequence from NMDAR11 (nucleotides 1-261 of Sequence ID No. 1) and a complete coding sequence (nucleotides 262-3078 of Sequence ID No.1) for the NMDAR1A variant of the NMDAR1 subunit as well as 1220 base pairs of 3' untranslated sequence (nucleotides 3079-4298 of Sequence ID No. 1). The NMDAR1A-encoding sequence is operatively

linked to the regulatory elements in pcDNA1 for expression in mammalian cells.

B. $\underline{NMDAR1} - \underline{\Delta363}$

30

Full-length construct NMDAR1- Δ 363 was prepared by 5 ligation of a 5' portion of NMDA11 (beginning 5' of the translation initiation codon and extending to the HindIII site in the middle of the clone, i.e., nucleotides 1-2136 in Sequence ID No. 1) and a 3' portion of NMDA11 (beginning at the HindIII site in the middle of the clone and extending 3! of the translation termination codon, i.e., 10 nucleotides 2137-2961 and 3325-4298 of Sequence ID No. 1). As described above, due to the difficulty in directly subcloning the entire 4.0 kb SnaBI NMDA11 insert into pcDNA1, it was necessary to generate the construct by ligating two fragments of the NMDA11 insert into pcDNA1 as 15 follows (see Figure 3 for locations of restriction enzyme sites).

To obtain the 5' NMDA11 fragment, clone NMDA11 was digested with EcoRI and HindIII and the ~2.2 kb fragment containing nucleotides 1-2136 of Sequence ID No. 1 was isolated and subcloned into EcoRI/HindIII-digested modified pcDNA1 (modified as described above). The resulting plasmid was digested with NheI and HindIII and the fragment containing nucleotides 1-2136 of Sequence ID No. 1 plus a portion of modified pcDNA1 was isolated.

To obtain the 3' NMDA11 fragment, clone NMDA11 was digested with BglII and EcoRI and the 3.0 kb fragment containing nucleotides 1020-2961 and 3325-4298 of Sequence ID No. 1 was isolated and subcloned into BamHI/EcoRI-digested pcDNA1. The resulting plasmid was digested with HindIII and NheI and the fragment containing nucleotides 2137-2961 and 3325-4298 of Sequence ID No. 1 plus a portion of pcDNA1 was isolated. This HindIII/NheI fragment was

then ligated to the NheI/HindIII fragment containing nucleotides 1-2136 of Sequence ID No. 1 to generate NMDAR1- $\Delta 363$.

In summary, construct NMDAR1- Δ 363 contains 261 base pairs of 5' untranslated sequence (nucleotides 1-261 of Sequence ID No. 1) and a complete coding sequence for the NMDAR1- Δ 363 variant NMDAR1 subunit (nucleotides 262-2961 and 3325-3393 of Sequence ID No. 1) as well as 905 base pairs of 3' untranslated sequence (nucleotides 3394-4298 of Sequence ID No. 1). Thus, NMDAR1- Δ 363 differs from 10 NMDAR1 in that it lacks 363 nucleotides (nucleotides 2962-3324 of Sequence ID No. 1) that comprise the last 117 nucleotides of the coding sequence and the first 246 nucleotides of the 3' untranslated sequence of NMDAR1. The variant-encoding subunit $NMDAR1-\Delta363$ operatively linked to the regulatory elements in pcDNA1 for expression in mammalian cells.

C. NMDAR1- Δ 1087

Full-length construct NMDAR1-Δ1087 was prepared by replacing the 3' end of the NMDAR1 variant-encoding insert of NMDAR1-Δ363 with a fragment from the 3' end of clone NMDA3 (see Figure 2). Plasmid NMDAR1-Δ363 was partially digested with PstI and completely digested with XbaI. There is a PstI site ~112 nucleotides upstream of the location of the 363-nucleotide deletion in NMDAR1-Δ363 and an XbaI site in the polylinker located downstream of the 3' untranslated sequence of NMDAR1-Δ363 (see Figure 3). Thus, PstI/XbaI digestion of NMDAR1-Δ363 results in removal of a fragment containing nucleotides 2850-2961 and 3325-30 4298 of Sequence ID No. 1 from the vector. The larger fragment was isolated from the digest.

The insert of clone NMDA3 was cloned into the EcoRI restriction site(s) of pGEM (Promega, Madison, WI);

and the resulting plasmid was digested with PstI and XbaI. The smaller fragment containing nucleotides 2850-2961 and 4049-4298 of Sequence ID No. 1 was isolated and ligated to the larger fragment from the PstI/XbaI digest of NMDAR1- Δ 363. The resulting construct was designated NMDAR1- Δ 1087.

In summary, NMDAR1- Δ 1087 contains 261 base pairs of 5' untranslated sequence (nucleotides 1-261 in Sequence ID No. 1), the complete coding sequence for the NMDAR1-Δ1087 variant NMDAR1 subunit (nucleotides 262-2961 and 4049-4279 of Sequence ID No. 1) and 19 base pairs of 3' 10 untranslated sequence (nucleotides 4280-4298 of Sequence ID No. 1). Thus, NMDAR1- Δ 1087 differs from NMDAR1 in that it lacks 1087 nucleotides (nucleotides 2962-4048 of Sequence ID No. 1) that comprise the last 117 nucleotides of the coding sequence and the first 970 nucleotides of the 3' 15 untranslated sequence of NMDAR1. The NMDAR1- Δ 1087 subunit variant-encoding sequence is operatively linked to the regulatory elements in pcDNA1 for expression in mammalian cells.

20 D. <u>NMDAR1-I63- Δ 204</u>

NMDAR1-I63- Δ 204 was Full-length construct 1399-nucleotide fragment prepared by replacing a construct NMDAR1A (i.e, nucleotides 738-2136 of Sequence ID No. 1) with the PvuII-HindIII fragment of NMDA7 (i.e., nucleotides 738-831 of sequence ID No. 1, plus nucleotides 25 1-63 of Sequence ID No. 3 and nucleotides 832-984 and 1189-2136 of Sequence ID No. 1), as depicted in Figure 2. Because there are multiple PvuII sites in the NMDAR1 required for several-step process was construct, a 30 construction of NMDAR1-I63- Δ 204 as follows (see Figure 3 for the location of restriction enzyme sites).

The ~2.2-kb EcoRI-HindIII fragment isolated from construct NMDAR1A and containing nucleotides 1-2136 of

ligated with modified pcDNA1 1 was Sequence ID No. (modified as described in Example 2A) that had been digested with EcoRI and HindIII. The resulting plasmid was digested with AvrII and self-ligated to remove two PvuII sites from a portion of the plasmid contributed by pcDNA1. The plasmid was then partially digested with PvuII and completely digested with HindIII. The digest was ligated with a 1258-nucleotide PvuII-HindIII fragment isolated from clone NMDA7. The resulting plasmid, designated NMDAR1-I63- Δ 204-5', was digested with BamHI and HindIII and the ~2-kb 10 fragment containing nucleotides 1-831 of Sequence ID No. 1, plus nucleotides 1-63 of Sequence ID No. 3 and nucleotides 832-984 and 1189-2136 of Sequence ID No. 1 was isolated and ligated to BamHI/HindIII-digested NMDAR1 to generate NMDAR1-I63- Δ 204. 15

NMDAR1-I63- Δ 204 contains 261 base pairs of 5' untranslated sequence (nucleotides 1-261 in Sequence ID No. 1), the complete coding sequence for the NMDAR1-I63-262-831 of (nucleotides subunit variant NMDAR1 Sequence ID No. 1 plus nucleotides 1-63 of Sequence ID No. 20 3 and nucleotides 832-984 and 1189-3078 of Sequence ID No. 1220 base pairs of 3' untranslated sequence (nucleotides 3079-4298 of Sequence ID No. 1). Thus NMDAR1-I63- Δ 204 differs from NMDAR1 in that it contains 63 nucleotides that are not present in NMDAR1 (nucleotides 1-25 63 of Sequence ID No. 3) located between nt 831 and 832 of Further, NMDAR1-I63- Δ 204 lacks 204 Sequence ID No. 1. nucleotides that are present in NMDAR1 (nucleotides 985-1188 of Sequence ID No. 1). The NMDAR1-I63- Δ 204 subunit variant-encoding sequence is operatively linked to the 30 regulatory elements in pcDNA1 for expression in mammalian cells.

E. NMDAR1-I63

Full-length construct NMDAR1-I63 can be described as NMDAR1 in which a 173-bp fragment (nucleotides 738-910 of Sequence ID No. 1) is replaced with the 236-bp PvuII-Smal fragment of NMDA7 (nucleotides 738-831 of Sequence ID No. 1, plus nucleotides 1-63 of Sequence ID No. 3 and nucleotides 832-910 of Sequence ID No. 1). Because there are multiple PvuII sites in the NMDAR1 construct, several-step process was required for construction of Plasmid NMDAR1-I63- Δ 204-5' was NMDAR1-I63 as follows. 10 partially digested with SmaI and completely digested with The larger vector fragment was ligated with the HindIII. NMDA11 isolated SmaI/HindIII fragment 1226-bp (nucleotides 911-2136 of Sequence ID No. 1). The resulting vector was digested with BamHI and HindIII and the ~2.2-kb fragment containing nucleotides 1-831 of Sequence ID No. 1, plus nucleotides 1-63 of Sequence ID No. 3 and nucleotides 832-2136 of Sequence ID No. 1 was isolated and ligated to BamHI/HindIII-digested NMDAR1 to generate NMDAR1-I63.

pairs base 261 NMDAR1-I63 contains 20 untranslated sequence (nucleotides 1-261 in Sequence ID No. 1), the complete coding sequence for the NMDAR1-I63 variant NMDAR1 subunit (nucleotides 262-831 of Sequence ID No. 1, plus nucleotides 1-63 of Sequence ID No. 3 and nucleotides 832-3078 of Sequence ID No. 1) and 1220 nucleotides of 3' 25 untranslated sequence (nucleotides 3079-4298 of Sequence ID Thus, NMDAR1-I63 differs from NMDAR1 in that it contains 63 nucleotides that are not present in NMDAR1 (nucleotides 1-63 of Sequence ID No. 3), located between nucleotides 831 and 832 of Sequence ID No. 30 NMDAR1-I63 subunit variant-encoding sequence is operatively linked to the regulatory elements in pcDNA1 for expression in mammalian cells.

F. $NMDAR1-163-\Delta 204-\Delta 363$

Full-length construct NMDAR1-I63-Δ204-Δ363 was prepared by replacing the 2861 nucleotide fragment from construct NMDAR1-I63-Δ204 (ie, nucleotides 1438-4298
5 Sequence ID. No. 1) with the KpnI-XbaI (polylinker site) fragment of NMDAR1-Δ363 (ie, nucleotides 1438-2961 and 3325-4298 of Sequence ID No. 1) as depicted in Figure 2. The NMDAR1-I63-Δ204 was completely digested with XbaI then partially digested with KpnI due to the presence of two additional KpnI sites in the vector sequence. The resulting 5! NMDAR1-I63-Δ204 fragment, which includes the pcDNAI vector sequences, was ligated with the 3' KpnI-XbaI fragment from NMDAR1-Δ363 to generate NMDAR1-I63-Δ204-Δ363.

 $NMDAR1-I63-\Delta 204-\Delta 363$ In summary, construct 261 base pairs of 5' untranslated sequence 15 (nucleotides 1-261 in Sequence ID No. 1), the complete coding sequence for the NMDAR1-I63- Δ 204- Δ 363 variant NMDAR1A subunit (nucleotides 262-831 of Sequence ID No. 1, plus nucleotides 1-63 of Sequence ID No. 3, nucleotides 832-984, 1189-2961 and 3325-3393 of Sequence ID 20 1) as well as 905 base pairs of 3' untranslated sequence (nucleotides 3394-4298 of Sequence ID. No. 1). Thus, NMDAR1-I63- Δ 204- Δ 363 differs from NMDAR1A in that it contains 63 nucleotides that are not present in NMDAR1A 25 (nucleotides 1-63 of Sequence ID No. 3) located between nucleotides 831 and 832 of Sequence ID No. 1. NMDAR1-I63- Δ 204- Δ 363 lacks 204 nucleotides that are present in NMDAR1A (nucleotides 985-1188 of Sequence ID No. 1) and 363 nucleotides that are present in NMDAR1A (nucleotides 2962-3324 of Sequence ID No. 1) that comprise the last 117 30 nucleotides of the coding sequence and the first nucleotides of the 3' untranslated sequence of NMDAR1A. The NMDAR1-I63- Δ 204- Δ 363 subunit variant encoding sequence is operatively linked to the regulatory elements in pcDNAI for expression in mammalian cells. 35

$NMDAR1 - 163 - \Delta 204 - \Delta 1087$

G.

10

Full-length construct NMDAR1-I63- Δ 204- Δ 1087 was prepared by replacing the 2861 nucleotide fragment from construct NMDAR1-I63- Δ 204 (ie, nucleotides 1438-4298 Sequence ID. N. 1) with the KpnI-XbaI (polylinker site) fragment of NMDAR1- Δ 1087 (ie, nucleotides 1438-2961 and 4049-4298 of Sequence ID No. 1) as depicted in Figure 2. The NMDAR1-I63- Δ 204 was completely digested with XbaI then partially digested with KpnI due to the presence of two additional KpnI sites in the vector sequence. The resulting 5' NMDAR1-I63- Δ 204 fragment, which includes the pcDNAI vector sequences, was ligated with the 3' KpnI-XbaI fragment from NMDAR1- Δ 1087.

summary, construct NMDAR1-I63- Δ 204- Δ 1087 In 15 contains 261 base pairs of 5' untranslated sequence (nucleotides 1-261 in Sequence ID No. 1), the complete coding sequence for the NMDAR1-I63- Δ 204- Δ 363 variant NMDAR1A subunit (nucleotides 262-831 of Sequence ID No. 1, No. 1-63 of Sequence ID nucleotides 20 nucleotides 832-984, 1189-2961 and 4280-4298 of Sequence ID No. 1) as well as 19 base pairs of 3' untranslated sequence (nucleotides 4280-4298 of Sequence ID. No. 1). NMDAR1-I63- Δ 204- Δ 1087 differs from NMDAR1A in that it contains 63 nucleotides that are not present in NMDAR1A 25 (nucleotides 1-63 of Sequence ID No. 3) located between nucleotides 831 and 832 of Sequence ID No. 1. NMDAR1-I63- Δ 204- Δ 1087 lacks 204 nucleotides that present in NMDAR1A (nucleotides 985-1188 of Sequence ID No. and 1087 nucleotides that are present in NMDAR1A 30 (nucleotides 2962-4048 of Sequence ID No. 1) that comprise the last 117 nucleotides of the coding sequence and the first 970 nucleotides of the 3' untranslated sequence of subunit variant The NMDAR1-I63- Δ 204- Δ 1087 NMDAR1A.

encoding sequence is operatively linked to the regulatory elements in pcDNAI for expression in mammalian cells.

48

H. <u>Additional Constructs Containing Full-Length</u> CDNAs Encoding Variants of the NMDAR1 Subunit

Additional full-length cDNAs encoding further possible NMDAR1 variants can be constructed using methods similar to those described in Examples 2A-G above. Specifically, the following constructs can be prepared by ligating portions of clones NMDA11, NMDA10, NMDA7 and NMDA3 as depicted in Figure 2:

	NMDAR1-∆204	(Sequence	ID	No.	1J)
	$NMDAR1-\Delta204-\Delta363$	(Sequence	ID	No.	1K)
	NMDAR1-I63-Δ363	(Sequence	ID	No.	1M)
	NMDAR1-I63-Δ1087	(Sequence	ID	No.	1N)
15	NMDAR1-∆204-∆1087	(Sequence	ID	No.	1L)

The full-length cDNAs can also be incorporated into mammalian expression vectors such as pcDNA1, as described in Examples 2A-G.

Several methods can be employed to determine which NMDAR1 subunit variants are actually expressed in 20 For example, oligonucleotides various human tissues. specific for the nucleotide sequences located 5' and 3' of the insertions and deletions of the NMDAR1 transcripts described herein can be used to prime nucleic acid amplifications of RNA isolated from various tissues and/or 25 cDNA libraries prepared from various tissues. The presence or absence of amplification products and the sizes of the products indicate which variants are expressed in the The products can also be characterized more thoroughly by DNA sequence analysis. 30

49

RNase protection assays can also be used to determine which variant transcripts are expressed in various tissues. These assays are a sensitive method for detecting and quantitating an RNA species in a complex 5 mixture of total cellular RNA. A portion of the NMDAR1 subunit variant DNA is labeled and hybridized with cellular RNA. If complementary mRNA is present in the cellular RNA, a DNA-RNA hybrid results. The RNA sample is then treated with RNase, which degrades single-stranded RNA. 10 DNA hybrids are protected from RNase degradation and can be visualed by gel electrophoresis and autoradiography.

Further information on possible splice variants of the NMDAR1 primary transcript can be obtained by isolation of genomic clones containing NMDAR1 subunitencoding sequences (for example, by hybridization to the human NMDAR1 subunit cDNAs disclosed herein) and subsequent characterization of the resulting clones.

Example 3 Isolation of DNA Encoding Human NMDA Receptor NMDAR2C Subunits

Degenerate oligonucleotides were synthesized based on two conserved regions of rat NMDAR2A, NMDAR2B and NMDAR2C DNAs that encode the putative first and fourth transmembrane domains. In rat NMDAR2A DNA, these regions 25 are encoded by nucleotides 1669-1692 (oligo SE74) and 2437-2465 (olig SE75), respectively. [see Monyer et al. (1992) These oligonucleotides were used Science 256:1217-1221]. to prime nucleic acid amplification of cDNAs prepared from RNA isolated from human hippocampus, cerebellum, orbitofrontal tissue. Two products, a 795-bp and a 640-bp fragment, were detected when the reaction mixture was analyzed by electrophoresis and ethidium gel staining. The 795-bp fragment amplified cerebellum cDNA was subcloned into PCR1000 (Invitrogen, San

20

30

Diego, CA) and characterized by DNA sequence analysis, which revealed that it is ~86% similar to the rat NMDAR2A DNA sequence, ~78% similar to the rat NMDAR2B DNA sequence, and ~74% similar to the rat NMDAR2C DNA sequence. Thus, this plasmid was named pcrNMDAR2A.

The 795-bp insert from pcrNMDAR2A was used to screen 1 x 106 recombinants of a human hippocampus cDNA library (prepared by using random primers to synthesize cDNAs from hippocampus tissue and selecting fragments >2.0 kb for insertion into Agt10 vectors) and a human cerebellum 10 cDNA library (random-primed library size-selected for fragments >2.8 kb in Agt10). Hybridization was performed in 5X SSPE, 5X Denhart's solution, 50% deionized formamide, 0.2% SDS, 200 μ g/ml sonicated, denatured herring sperm DNA Washes were performed in 1X SSPE, 0.2% SDS at at 42°C. 15 The probe hybridized to 11 plaques from the 55°C. hippocampus library and 8 plaques from the cerebellum library.

DNA sequence analysis and/or restriction enzyme
mapping of 15 of the hybridizing plaques that were purified
surprisingly revealed that they were more similar to rat
NMDAR2C DNA than to rat NMDAR2A DNA. All of the clones
were partial cDNAs (i.e., they lacked a translation
initiation and/or termination codon) and were designated as
NMDAR2C cDNAs. Comparison of the clones revealed that the
human NMDAR2C subunit transcript is differentially
processed.

Clones NMDA26, NMDA24, NMDA22 and NMDA21 (see Figure 4) represent four basic clones that were identified, all of which are believed to be splice variants. Clone NMDA26 (Sequence ID No. 5D) is used as a reference to which the other variants can be compared. Clone NMDA24 (Sequence ID No. 5C) contains a 24-bp sequence (see Sequence ID No. 7) that is not present in NMDA26. Clone NMDA22 (Sequence

ID No. 5B) lacks 15 bp that are present in NMDA26, and clone NMDA21 (Sequence ID No. 5A) lacks 51 bp that are present in NMDA26. Clones NMDA22 and NMDA24 both contain an 11-bp sequence (Sequence ID No. 9) that is not present in NMDA26 (between nucleotides 1116-1117 of Sequence ID No. 5). Introduction of this sequence into these clones (between nucleotides 1116-1117 of Sequence ID No. 5) disrupts the reading frame of the transcript and introduces a premature translation termination (i.e., STOP) codon into the transcript.

10

Clones NMDA26 and NMDA27 (see Figure 4) are partial NMDAR2C CDNAs that contain 5' untranslated sequence, a translation initiation codon and some of the coding sequence. Clone NMDA26 contains 188 base pairs of 15 5' untranslated sequence whereas clone NMDA27 contains ~1.1 kb of 5' untranslated sequence. The sequences of the 5' untranslated regions of these two clones are identical for the first 15 nucleotides proceeding 5' of the translation initiation codon. However, beginning with the 16th 20 nucleotide 5' of the translation initiation codon, the sequences of the two clones diverge (compare nucleotides 116-191 of Sequence ID No. 5 to nucleotides 1 - 74 of Sequence ID No. 12).

Example 4

25 Preparation of Full-length NMDAR2C Subunit cDNA Constructs

Portions of the partial NMDAR2C clones can be ligated in a variety of ways to generate constructs encoding full-length NMDAR2C subunit variants. The 5' end of each NMDAR2C cDNA can be contributed by NMDA26, whereas the 3' ends of the constructs are contributed by various combinations of clones NMDA21, NMDA22, and NMDA24. Figure 5 depicts full-length NMDAR2C constructs and indicates the portions of the different clones that contribute to each construct.

example, full-length constructs For prepared using methods such as those described in Example 2 for preparing NMDAR1 constructs. Thus, clone inserts are transferred into a vector (e.g., pcDNA1) for ease of manipulation and then desired portions of the cDNAs are isolated by restriction enzyme digestion of the vectors. This can require several steps and/or partial digests if, for example, there are no unique restriction enzyme sites surrounding the desired portions of the cDNAs. The desired 10 cDNA fragments are then ligated and incorporated into an expression plasmid such as pcDNA1 or pCMV-T7-2.

Plasmid pCMV-T7-2 (see Figure 6) is a pUC19-based cytomegalovirus contains а that vector promoter/enhancer, SV40 splice donor/splice acceptor sites located immediately downstream of the promoter, bacteriophage RNA polymerase promoter positioned downstream of the SV40 splice sites, an SV40 polyadenylation signal downstream of the T7 promoter, and a polylinker between the T7 promoter and the polyadenylation signal. This vector thus contains all the regulatory elements required for expression of heterologous DNA in a mammalian host cell, wherein the heterologous DNA has been incorporated into the In addition, because the T7 vector at the polylinker. promoter is located just upstream of the polylinker, this plasmid can be used for synthesis of in vitro transcripts of heterologous DNA that has been subcloned into the vector Plasmid pCMV-T7-3, also depicted in at the polylinker. Figure 6, is identical to pCMV-T7-2 except that the order of the restriction enzyme sites in the polylinker is This plasmid can also be used for heterologous 30 expression of NMDAR subunit DNA.

15

20

Construct pcDNA1-26-NotI-24-5'UT contains 188 base pairs of 5' untranslated sequence (nucleotides 1-188 of Sequence ID No. 5), the complete coding sequence of the first variant of the human NMDAR2C subunit (nucleotides (nucleotides 140-188 of Sequence ID No. 5), the complete coding sequence of a first variant of the human NMDAR2C subunit (nucleotides 189-3899 of Sequence ID No. 5) and -440 base pairs of 3' untranslated sequence (nuceotides 3900-4340 of Sequence ID No. 5). The NMDAR2C cDNA is contained within the polylinker of expression vector pCMV-T7-2 for expression.

Construct pCMV-26-ScaI-24 (Sequence ID No. 5E) is identical to pCMV-26-NotI-24, except it contains 24-base pairs (Sequence ID No. 7) inserted between nucleotides 2350 and 2351 of Sequence ID No. 5.

Construct pCMV-26-ScaI-22 (Sequence ID No. 5F) is identical to pCMV-26-NotI-24, except that it lacks 15-base pairs (nucleotides 1960-1974 of Sequence ID No. 5).

Construct pCMV-26-ScaI-21-NotI-24 (Sequence ID No. 5G) is identical to pCMV-26-NotI-24, except that it lacks 51-base pairs (nucleotides 2351-2401 of Sequence ID No. 5).

Construct NMDAR2C-Δ15-I24 (Sequence ID No. 5H) is identical to pCMV-26-NotI-24, except that it lacks 15-base pairs (i.e., nucleotides 1960-1974 of Sequence ID No. 5) and includes a 24-base pair sequence (i.e., Sequence ID No. 7; inserted between nucleotides 2350 and 2351 of Sequence 30 ID No. 5).

Construct NMDAR2C- Δ 15- Δ 51 (Sequence ID No. 5I) is identical to pCMV-26-NotI-24, except that it lacks 15-base pairs (i.e., nucleotides 1960-1974 of Sequence ID No. 5) and 51-base pairs (i.e., nucleotides 2351-2401 of Sequence ID No. 5).

5

10

15

20

25

Additional full-length NMDAR2C constructs can readily be prepared as described herein. For example, 5' untranslated sequence obtained from NMDA27 (instead of NMDA26) can be employed, and the 3' ends of the constructs can be contributed by various combinations of clones NMDA21, NMDA22, and NMDA24.

Several methods (e.g., nucleic acid amplification, RNase protection assays, etc.), as described in Example 2, can be employed to determine which NMDAR2C subunit variants are actually expressed in various human tissues.

Human NMDAR2C has 83.5% GC nucleotide content between nucleotides 2957 and 3166. To potentially enhance NMDAR2D subunit expression, the GC content in this region can be reduced while maintaining the native amino acid Synthetic DNAs can be made by oligonucleotide region. this across extension primer ID No. 17), (Sequence oligonucleotides, SE343 (Sequence ID No. 18), SE345 (Sequence ID No. 19), and SE346 (Sequence ID No. 20) were synthesized. These primers maintain the amino acid sequence of the human NMDAR2D receptor and some restriction sites, but lower the overall The criteria for the GC content of this region to 53.4%. modification of bases were: 1) to not have more than 4 guanine nucleotides in a row if at all possible, 2) to NotI cutting sites for restriction maintain the (nucleotides 2962 - 2969 of Sequence ID No. 5), AvaII (nucleotides 3069 - 3073 Sequence ID No.5), and AatII (nucleotides 3156 - 3161 of Sequence ID No. 5), 3) to reduce the secondary structure of the oligonucleotides as much as possible, 4) to not introduce any additional NotI, AvaII or AatII restriction sites into the sequence and 5) to have the basepair overlap between oligonucleotide pairs, {SE343 and SE344} or {SE345 and SE346} have a proposed melting temperature between 62-66°C. The oligonucleotide pair SE343 and SE344 have complementary sequence from nucleotides 51 - 71 of Sequence ID Nos. 17 and 18. The oligonucleotide pair SE345 and SE346 have complementary sequence from nucleotides 42 - 61 of Sequence ID No. 19 and nucleotides 43 - 62 of Sequence ID No. 20, resepectively.

The primer pairs, {SE343 and SE344} and {SE345 and SE346}, are combined in a standard PCR reaction mixture, which contains 50 pmoles of each oligonucleotide, and are amplified according to the following PCR protocol:

15

Annealing temperature of 55°C for 1 min, extension temperature of 72°C for 2 min and melting temperature, 96°C for 30 seconds for 30 cycles.

The resulting 121 bp PCR product from the primer pair SE343-SE344 is digested with NotI and AvaI, and the resulting 103 bp PCR product from the primer pair SE345-SE346 is digested with AvaI and AatII. These fragments are ligated into pCMV-NMDAR2C-26-NotI-24, which has been partially digested with both NotI and AatII due to the presence of additional NotI and/or AatII restriction sites in the vector sequence, to form pCMV-26-NotI-24-GCMOD. This construct, pCMV-26-NotI-24-GCMOD, contains nucleotides 140-2965 of Sequence ID No. 5, followed by the 195 nucleotides set forth in Sequence ID No. 21, and then nucleotides 3161 to 4340 of Sequence ID. No. 5.

Example 5

Isolation of DNA Encoding Human NMDA Receptor NMDAR2A Subunits

Two human cDNA libraries were prepared using different oligonucleotides (random and specific primers) to prime cDNA synthesis from RNA isolated from cerebellum tissue. The specific primer used for first-strand synthesis was SE162, nucleotides 904 to 929 of Sequence ID No. 10. cDNAs synthesized by random priming that ranged in size from 1.0-2.8 kb, and cDNAs synthesized by specific priming that ranged in size from 0.6-1.1 kb, were isolated and inserted into the Agt10 phage vector to generate the two libraries.

The random-primed library (3 x 10⁶ recombinants)

15 was screened for hybridization to the 795-base pair insert from pcrNMDAR2A (see Example 3) in 5X SSPE, 5X Denhart's solution, 50% deionized formamide, 0.2% SDS, 200 µg/ml sonicated, denatured herring sperm DNA at 42°C. Washes were performed in 1X SSPE, 0.2% SDS at 55°C. The probe hybridized to 11 plaques.

The specifically-primed library (6 x 10^5 recombinants) was screened for hybridization to oligonucleotide SE177 (nucleotides 859 to 884 of Sequence ID No. 10) in 6X SSPE, 5X Denhart's solution, 10^8 deionized formamide, 0.2^8 SDS, $200~\mu\text{g/ml}$ sonicated, denatured herring sperm DNA at 42°C . Washes were performed in 1X SSPE, 0.2^8 SDS at 50°C . The probe hybridized to 2 plaques.

25

Nine of the hybridizing plaques were purified and the inserts were characterized by restriction enzyme mapping and DNA sequence analysis. All clones contained partial cDNAs. Two of the clones, NMDA53 and NMDA54, contain the translation initiation codon and 320 base pairs and 88 base pairs, respectively, of 5' untranslated

sequence. The sequences of four other clones, NMDA47, NMDA49, NMDA50 and NMDA51, along with those of NMDA53 and NMDA54, overlap to comprise ~70% of the human NMDAR2A subunit coding sequence (see nucleotides 1 - 3084 of Sequence ID No. 10).

To obtain clones containing the remaining ~1300 base pairs of 3' sequence needed to complete the NMDAR2A coding sequence, 6.6 x 106 recombinants of an additional human cDNA library (an amplified randomly primed cerebellum cDNA library with inserts ranging from 1.0 - 2.8 kb in 10 hybridization to an for screened were oligonucleotide corresponding to the 3' end of clone NMDA51 (oligo SE171; nucleotide 3454 to 3479 of Sequence ID No. 10) using the same conditions as used for screening the specifically primed cerebellum cDNA library as described 15 Four hybridizing plaques were purified and the inserts were characterized by DNA sequence analysis to determine if they contain the 3' end of the coding sequence and a translation termination codon. Two of the clones (NMDA57 and NMDA58, which were determined to be identical), 20 contain a translation termination codon, as determined by Phage lysate containing clone DNA sequence analysis. NMDA57 were deposited under the provisions of the Budapest Treaty with the American Type Culture Collection (ATCC) on April 13, 1993, and assigned Accession No. 75442.

Example 6 Preparation of Full-length NMDAR2A Subunit cDNA Constructs

Two separate constructs encoding a full-length NMDAR2A subunit (pCMV-hNMDAR2A-1(53) and pCMV-hNMDAR2A-2(54) were prepared by ligating portions of the following partial NMDAR2A clones: NMDAR47, NMDAR50, NMDAR58 and either NMDAR53 or NMDAR54 (NMDAR53 and NMDAR54 differ only in the amount of 5' untranslated sequence contained in the clones. The inserts of clones NMDA47,

NMDA50 and NMDA58 were isolated as *EcoRI* fragments and ligated with *EcoRI*-digested pCMV-T7-2 to create pNMDA47, pNMDA50 and pNMDA58, respectively. The inserts of clones NMDA53 and NMDA54 were isolated as *XhoI* fragments and ligated with *SalI*-digested pCMV-T7-2 to create pNMDA53 and pNMDA54, respectively.

pNMDA47 was digested with ScaI and NsiI to liberate an ~3,350-bp fragment containing a 3' portion of the β -lactamase gene, which encodes a protein which imparts ampicillin-resistance, and nucleotides 824-2415 of Sequence ID No. 10. This fragment was ligated with a ~2890-bp NsiI/ScaI fragment of pNMDA50 (containing a 5' portion of the β -lactamase gene and nucleotides 2416-3346 of Sequence ID No. 10) to generate pNMDA47+50.

10

The portion of pNMDA58 that encodes the 3' end of 15 NMDAR2A contains two MscI sites. Because the 3' MscI site is cleaved in preference to the 5' MscI site, partial digestion of pNMDA58 was not an option. Thus, pNMDA58 was digested with Scal/MscI, and the ~2020-bp containing a 5' portion of the β -lactamase gene and a 3' 20 portion of the insert (nucleotides 4751-4808 of Sequence ID This fragment was ligated to a No. 10) was isolated. ~4150-bp ScaI/MscI fragment of pNMDA47+50 (containing a 3' portion of the eta-lactamase gene and nucleotides 824-3212 of Sequence ID No. 10) to generate pNMDA47+50+3'END58. 25 complete eta-lactamase contained a nucleotides 824-3214 and 4751-4808 of Sequence ID No. 10. To add nucleotides 343-4750 of Sequence ID No. 10 to pNMDA47+50+3'END58, pNMDA58 was digested with MscI, and the isolated 1537-bp fragment consisting of nucleotides 3213-30 4750 of Sequence ID No. 10 was ligated to ${\it Msc}$ I-digested pNMDA47+50+3'END58. The resulting plasmid, pNMDA47+50+58, contained nucleotides 824-4808 of Sequence ID No. 10.

To generate two constructs containing identical NMDAR2A coding sequences but differing amounts untranslated sequence, pNMDA53 and pNMDA54 were digested with Scal/EcoRI to liberate fragments containing a 3' 5 portion of the eta-lactamase gene and nucleotides 1-854 and 225-854 of Sequence ID No. 10, respectively. pNMDA47+50+58 was digested with Scal/EcoRI (partial) and the 3954-bp fragment containing a 5' portion of the eta-lactamase gene nucleotides 855-4808 of Sequence ID No. separately ligated with the Scal/EcoRI fragments of pNMDA53 10 and pNMDA54 to generate pCMV-hNMDAR2A-1(53) and pCMVhNMDAR2A-2(54), respectively. These two constructs are identical except for the amount of 5' untranslated sequence Both contain a full-length NMDAR2Acontained in each. encoding sequence (nucleotides 311-4705 of Sequence ID No. 15 and 103 nucleotides of 3' untranslated sequence (nucleotides 4706-4808 of Sequence ID No. 10). hNMDAR2A-1(53) contains 310 nucleotides of 5' untranslated sequence (nucleotides 1-310 of Sequence ID No. 10), whereas pCMV-hNMDAR2A-2(54) contains 87 nt of 5' untranslated 20 sequence (nucleotides 224-310 of Sequence ID No. 10). NMDAR2A cDNA is operatively linked to the regulator elements of pCMV-T7-2 for expression in mammalian host cells.

There is no unique restriction site 3' of the NMDAR2A-specific DNA in pCMV-hNMDAR2A-1(53) that can be used to linearize the plasmid in order to prepare in vitro transcripts for injection into Xenopus oocytes. To make a construct that has a unique 3' restriction site (pCMV-hNMDAR2A-3(53)), essentially the entire NMDAR2A-specific DNA of pCMV-hNMDAR2A-1(53) was transferred into vector pCMV-T7-3 as follows. pCMV-NMDAR2A-1(53) was digested with NotI and the ~4.4-kb fragment was isolated and ligated with NotI-digested pCMV-T7-3 to generate pCMV-hNMDAR2A-3(53).

60

Example 7

Isolation of DNA Encoding Human NMDA Receptor NMDAR2B Subunits

A human fetal brain AZAP cDNA library (1 x 10⁶ recombinants; Stratagene, La Jolla, CA) was screened for hybridization to a DNA fragment containing the entire rat NMDAR2B subunit coding sequence (see Monyer et al. (1992) Science 256:1217-1221). Hybridization was conducted in 50% deionized formamide, 5X Denhart's solution, 5X SSPE, 200 μg/ml sonicated, denatured herring sperm DNA and 0.2% SDS at 42°C. Washes were performed in 0.5X SSPE, 0.2% SDS at 65°C. One of the hybridizing clones excised from the human fetal brain library, NMDA81, containing a 5,435 bp insert and translation initiation and termination codons, encodes a full-length NMDAR2B subunit. This excised plasmid, which is in the pBluescript vector, was called pBS-hNMDAR2B.

NMDA81 was digested with EcoRI/EcoRV and the ~5.5-kbp fragment was isolated and ligated to EcoRI/EcoRV-digested pCMV-T7-3. The resulting construct, pCMVPL3-hNMDAR2B, contains the NMDAR2B coding sequence (nucleotides 210-4664 of Sequence ID No. 13), as well as 209 nucleotides of 5' untranslated sequence (nucleotides 1-209 of Sequence ID No. 13) and 339 nucleotides of 3' untranslated sequence (nucleotides 4665-5003 of Sequence ID No. 13). The NMDAR2B-encoding DNA in this construct is operatively linked to regulatory elements in pCMV-T7-3 for expression in mammalian host cells.

Example 8 Isolation of DNA Encoding Human NMDA Receptor NMDAR2D subunits

A human fetal brain cDNA library (1 x 10^6 recombinants; Stratagene, La Jolla, CA) was screened by subtraction screening methods for DNA encoding a human

30

20

NMDAR2D receptor subunit. In this method, plaques were selected on the basis of weak or no hybridization to DNAs encoding human NMDAR2A, NMDAR2B and NMDAR2C subunits.

for was screened library Initially, the 5 hybridization to pcrNMDAR2A (see Example 3) under lowdeionized formamide, stringency conditions (30% Denhart's solution, 5X SSPE, 200 ng/ml sonicated herring sperm DNA, 0.2% SDS at 42°C). Washes were also performed using low-stringency conditions (2X SSPE, 0.2% SDS, 50°C). The filters were stripped, then screened for hybridization 10 to the pcrNMDAR2A fragment and to an ~1200 bp PstI fragment of DNA encoding a human NMDAR2B subunit (see Example 7) and an ~950 bp AccI fragment of DNA encoding a human NMDAR2C These fragments contain DNA subunit (see Example 3). encoding all of the putative transmembrane domains of the 15 under high-Hybridization was performed subunits. stringency conditions (50% formamide, deionized Denhart's solution, 5X SSPE, 200 ng/ml sonicated herring sperm DNA, 0.2% SDS at 42°C) as were washes (0.1X SSPE, 0.1% SDS, 65°C). 20

Eighteen of the plaques that hybridized weakly to pcrNMDAR2A in the initial low stringency screening of the library hybridized only weakly or not at all to portions of DNA encoding human NMDAR2A, NMDAR2B and NMDAR2C subunits in the high stringency screening. The plaques were purified, and the insert fragments were characterized by DNA sequence analysis. One of the inserts, NMDA96, corresponds to the 3' half of the human NMDAR2D subunit gene coding sequence. The sequence of this clone is provided in Sequence ID No. 15.

25

30

To obtain clones containing the remaining ~2000 bp of 5' sequence needed to complete the NMDAR2D subunit coding sequence, the human fetal brain cDNA library was screened for hybridization to an ~831 bp SmaI fragment of

the clone containing the 3' half of the NMDAR2D coding sequence under high stringency hybridization and washing with 0.5X SSPE, 0.2% SDS at 65°C. Nine hybridizing plaques were purified and analyzed by DNA sequencing, which revealed that none of the plaques contain DNA encoding a translation initiation codon and extending 3' to at least the 5' end of the clone containing the 3' half of the NMDAR2D coding sequence.

A human cDNA library was prepared using a specific oligonucleotide, SE296, to prime cDNA synthesis from RNA isolated from human fetal brain. The specific primer used for first-strand synthesis was SE296 (nucleotides 2920-2949 of Sequence ID No. 15). cDNAs synthesized by specific priming that were greater than 2.2 kb in size were isolated and inserted into the AZAPII phage vector to generate the library.

The specifically primed library (1 x 10^6 recombinants) was screened for hybridization to the 831 bp SmaI fragment from NMDAR2D (nucleotides 2435-3265 of Sequence ID No. 15) in 5X SSPE, 5X Denhart's solution, 50% deionized formamide, 0.2% SDS, 200 μ g/ml sonicated, denatured herring sperm DNA at 42°C. Washes were performed in 0.1X SSPE, 0.2% SDS at 65°C. One probe hybridized to 11 plaques.

25 Eleven of the hybridizing plaques were purified, and the inserts characterized by restriction enzyme mapping and DNA sequence analysis. Six of the clones (NMDA111, NMDA112, NMDA115, NMDA116, NMDA119 and NMDA121) contain the translation initiation codon and varying amounts of 5' untranslated sequence.

The sequences of these clones overlap with NMDA96 to constitute 100% of the human NMDAR2D subunit coding sequence (see nucleotides 485-4495 of Sequence ID No. 15).

,

The full-length hNMDAR2D construct was prepared using NMDA115 and NMDA96 cDNAs. NMDA115 and NMDA96 cDNAs are already in the pBlueScript vector, however the NMDA115 cDNA is in the sense orientation from the T7 promoter, while the NMDA96 cDNA is in the antisense orientation. ease of subcloning the full-length construct, the NMDA96 cDNA was cloned into the sense orientation by digesting NMDA96 with EcoRI and screening the resulting clones for orientation (NMDAR96-T7). Within the complete human NMDAR2D sequence, there is a unique HindIII at nucleotides 10 2804 that was used to clone NMDA115 together with NMDA96. However, there is an additional HindIII site in the pBS polylinker at the 5' end of the NMDA115 cDNA. Therefore NMDA115 was fully digested with SpeI, a 3' polylinker site, and partially digested with HindIII. The resulting ~5.6 kb 15 SpeI-HindIII fragment from pNMDA115 (pBS vector plus nucleotides 397-2804 of Sequence ID No. 15)) was ligated with the 1.7 kb HindIII-SpeI fragment (nucleotides 2805-4651 of Sequence ID No. 15) from NMDA96-T7 to form pBS-In vitro transcripts were prepared for co-20 hNMDAR2D. injection into Xenopus oocytes to test for alteration of NMDAR1A currents.

The complete NMDAR2D insert is then transfered into the pMMTV-T7+ mammalian expression vector as a ~4.7 kb 25 EcoRV/SpeI fragment. The EcoRV and SpeI restriction sites are in the multiple cloning region of the pBluscript vector.

In summary, construct NMDAR2D contains 88 base pairs of 5' untranslated sequence (nucleotides 397-484 in Sequence ID No. 15), the complete coding sequence for the NMDAR2D subunit (nucleotides 484-4495 of Sequence ID No. 15) as well as 200 base pairs of 3' untranslated sequence (nucleotides 4496-4695 of Sequence ID No. 15). The NMDAR2D subunit encoding sequence is operatively linked to the

regulatory elements in pMMTV-T7 for expression in mammalian cells.

64

Example 9 Expression of Recombinant Human NMDA Receptor Subunits on Oocytes

Xenopus oocytes were injected with in vitro transcripts prepared from constructs containing DNA encoding human NMDA receptor NMDAR1 and NMDAR2 subunits. Electrophysiological measurements of the oocyte transmembrane currents were made using the two-electrode voltage clamp technique (see e.g., Stuhmer (1992) Meth. Enzymol. 207:319-339).

A. <u>Preparation of In Vitro Transcripts</u>

Recombinant capped transcripts of NMDA receptor subunit cDNAs contained in constructs NMDAR1A, NMDAR1-I63, NMDAR1-I63- Δ 204, NMDAR1- Δ 1087, NMDAR1- Δ 363, and pCMV-26-NotI-24 were synthesized from linearized plasmids using the mCAP RNA Capping Kit (Cat. #200350, Stratagene, Inc., La Jolla, CA). For experiments in which NMDAR2A or NMDAR2B and NMDAR1 or NMDAR1-I63 transcripts were co-injected into 20 Xenopus oocytes, the transcripts were synthesized from NMDAR1-I63, constructs NMDAR1A, linearized hNMDAR2A-3(53), pCMV-26-NotI-24 and pBS-hNMDAR2B using mMessage mMachine (Ambion, catalog #1344, Austin, TX). The mass of each synthesized transcript was determined by UV 25 absorbance and the integrity of each transcript was determined by electrophoresis through an agarose gel.

B. <u>Electrophysiology</u>

Xenopus oocytes were injected with 12.5-50 ng of one or more NMDA receptor subunit transcripts per oocyte. The preparation and injection of oocytes were carried out

as described by Dascal [(1987) Crit. Rev. Biochem. 22:317-Two-to-six days following mRNA injection, oocytes were examined using the two-electrode voltage clamp technique. The cells were bathed in Ringer's solution (115 mM NaCl, 2.5 mM KCl, 1.8 mM $CaCl_2$, 10 mM HEPES, pH 7.3), and the membrane potential was clamped at -80 to -100 mV. Drugs were applied by pipetting 6.0 μl aliquots of drugcontaining solution directly into the bath, or by using gravity-feed into a Warner Instruments chamber (volume = 110 μ l) at a flow rate of 8 ml/min. The data were sampled 10 at 2-5 Hz with a Labmaster data acquisition board in a PC-386 using AXOTAPE version 1.2 (Axon Instruments, Foster The data were exported to a laser City, CA) software. printer or plotted using Sigmaplot version 5.0.

NMDA agonists, i.e., 10-30 μM glycine (gly) and 10-100 μM glutamate (glu) or 100-1000 μM NMDA, were applied to the bath. If a current response was observed, the agonists were washed from the bath and 0.1-1.0 mM MgCl₂ or 1 μM MK801 (Research Biochemicals, Inc., Natick, MA) (NMDA receptor antagonists) were applied before a second agonist application in order to determine whether the current was blocked by antagonists. Alternatively, MgCl₂ or MK-801 were applied during agonist-induced current flow. The results of multiple recordings are summarized in Table 1.

Table 1

Electrophysiological Analysis of Oocytes Injected with NMDA Receptor Subunit Transcripts

Transcript (ng injected)	No. Oocytes Responding	Agonists	Peak Current Amplitude
NMDARIA (12.5)	6 of 8ª	10 μM gly + 10 μM glu	3-40 nA*
NMDAR1A (12.5)	2 of 2ª	10 μM gly + 100 μM NMDA	3-8 nA
NMDAR1A (12.5)	0 of 9ª	10 μM gly + 10 μM glu	
NMDAR1A (50)	0 of 1°	20 μM gly + 20 μM glu	
NMDAR1A (40)	4 of 10	10 μM gly + 10 μM glu	21.3 ± 20.9 nA*
NMDAR1A (40)	1 of 5	10 μM gly + 100 μM NMDA	24 nA*
NMDAR1A (40)	1 of 1	10 μM gly + 100 μM NMDA	15.4 nA
NMDAR1A (30)	6 Jo 7	10 μM gly + 50 μM glu	10.6 ± 11.7 nA°
NMDAR1A (30)	0 of 8	10-20 μM gly + 10-100 μM glu	
NMDAR1A (30)	l of 4	20 µM gly + 100 µM NMDA	10.5 nA
NMDAR1A (25-50)	3 of 3	30 μM gly + 100 μM glu	3-10 nA
NMDAR1-163 (12.5)	1 of 5ª	10 μM gly + 10 μM glu	~30 nA*
NMDAR1-163 (50)	0 of 4ª	10 μM gly + 10 μM glu	
NMDAR1-163 (40)	4 of 5	10 μM gly + 10 μM glu	13.4 ± 7.1 nA ⁺
NMDAR1-163 (40)	3 of 3	10 μM gly + 20 μM glu	17.4 ± 3.7 nA*
NMDAR1-163 (40)	1 of 1	10 μM gly + 100 μM glu	28 nA
NMDAR1-163 (40)	1 of 1	10 µM gly + 10 µM NMDA	1.4 nA ⁺

Transcript (ng injected)	No. Oocytes Responding	Agonists	Peak Current Amplitude
NMDAR1-163 (25-50)	3 of 3	10 μM gly + 100 μM glu	3-5 nA
NMDAR1-163 (40)	7 of 10	10 µM gly + 100 µM NMDA	8.1 ± 3.0 nA ⁺
NMDAR1-163 (40)	1 of 2	10 μM gly + 1000 μM NMDA	16.4 nA ⁺
NMDAR1-163-Δ204 (12.5)	0 of 8ª	10 μM gly + 10 μM glu	
NMDAR1-163-A204 (50)	1 of 5ª	20 μM gly + 20 μM glu	~50 nA
NMDAR1-Δ1087 (50)	3 of 13	10 µM gly + 10 µM glu	4-11 nA*
NMDARIA (39) + pCMV-26-NotI-24 (39)	l of 5	10 μM gly + 50 μM glu	10 nA
NMDARIA (30) + pCMV-26-NotI-24 (30)	0 of 7	10 μM gly + 20 μM glu	
NMDAR1A (32) + pcDNA1-26-NotI-24-5'UT (50)	4 of 5	10 μM gly + 10 μM glu	15.8 ± 2.6 nA
NMDAR1A (25-50) + pCMV-hNMDAR2A-3(53) (25-50)	16 of 29	30 µM gly + 100 µM glu	40 nA - 3.4 µA
NMDAR1-163 (25-50) + pCMV-hNMDAR2A-3(53) (25-50)	6 of 11	10 µM gly + 100 µM glu	10 - 100 nA
NMDAR1A (25) + pBS-hNMDAR2B (25)	4 of 5	30 µM gly + 30 µM glu	>100 nA
	15 of 22	100 μM NMDA + 30 μM gly -or-	137.7 nA
pCMV-10MDAKZA-3 (30) + pCMV-26-NotI-24 (50)		100 дМ NMDA + 100 дМ gly	1340.1 nA

- Oocytes were unhealthy (i.e., the holding current was large)
- The agonist-induced currents in at least 1 cell were blocked by 100 μM MgCl $_2$.
- The agonist-induced currents in at least 1 cell were blocked by 1.0 μM MK801.

<u>.</u>

Analysis of the results shown in Table 1 indicates that, in general, the NMDA agonist-induced currents were blocked by either $MgCl_2$ or MK801.

Oocytes injected with transcripts (12.5 to 65 ng)
of the NMDAR-1 subunit-encoding inserts of constructs
NMDAR1A, NMDAR1-I63 or NMDAR1-Δ363 were further analyzed to
evaluate human NMDA receptor sensitivity to glutamate and
NMDA. The two-electrode voltage clamp methods described
above were used to measure current in the cells.

To determine glutamate and NMDA sensitivity of 10 receptors, recombinant NMDA human the concentrations of glutamate (0.1 - 100 μ M) or NMDA (3-1000 $\mu \mathrm{M})$ were applied to the bath (in the presence of 10-30 $\mu \mathrm{M}$ glycine) and the current response was recorded. 15 was flushed between agonist applications. Intermediate test applications of 10 μM glycine plus 10 μM glutamate were included in the experiments to monitor the receptors for run-down (i.e., inactivation of receptors that have repeatedly during prolonged activated electrophysiological recording). The data were used to 20 generate dose-response curves from which EC50 values for the Glycine sensitivity was two agonists were calculated. determined in the same manner except concentrations (0.1-100 μM) of glycine were co-applied with 100 μ M NMDA. 25

The EC₅₀ values determined for glutamate stimulation of NMDA receptors expressed in oocytes injected with NMDAR1A, NMDAR1-I63 or NMDAR1- Δ 363 transcripts were 0.4, 0.6 and 0.5 μ M, respectively. The EC₅₀ values determined for NMDA stimulation of NMDA receptors expressed in oocytes injected with NMDAR1A, NMDAR1-I63 or NMDAR1- Δ 363 transcripts were 6.3, 10.9 and 11.9 μ M, respectively.

There was a marked potentiation of the current magnitude in response to glutamate and glycine in oocytes vitro transcripts in with co-injected hNMDAR2A-3(53) and NMDAR1A or NMDAR1-I63 compared to the 5 currents recorded in oocytes injected with transcripts of either NMDAR1A or NMDAR1-I63 alone. Similarly, there was a marked potentiation of the current magnitude in response to glutamate and glycine in oocytes co-injected with in vitro transcripts of NMDAR1A and pBS-hNMDAR2B compared to the currents recorded in oocytes injected with only the NMDAR1A transcript.

10

15

20

To investigate the pharmacological properties of human NMDA receptors generated by coexpression of the human NMDAR1A, NMDAR2A and NMDAR2C subunits, oocytes were coinjected with 50 ng each of in vitro transcripts prepared from the NMDAR1A, pCMV-hNMDAR2A-3, and pCMV-26-NotI-24 The sensitivity of the recombinant (NMDAR2C) constructs. heteromeric receptors to glycine and NMDA was determined as described above. The EC₅₀ for glycine activation of inward currents in these recombinant oocytes was calculated from the dose-response curve to be 0.87 \pm 0.24 μM (mean \pm S.D. of 4 oocytes), which was significantly different than the EC₅₀ calculated for glycine sensitivity of oocytes injected with 50 ng each of in vitro transcripts of NMDAR1A and pCMV-hNMDAR2A-3 alone (1.9 \pm 0.26 μ M, ; p = 0.0002, onetailed t-test). The sensitivity to NMDA also increased when human NMDAR2C was co-expressed with human NMDAR1A and NMDAR2A subunits. The EC $_{50}$ for NMDA was shifted from 30.2 \pm 9.4 μM for oocytes co-injected with 50 ng each of in 30 vitro transcripts of NMDAR1A and pCMV-hNMDAR2A-3 to 11.9 ± 5.2 μM for oocytes co-injected with 50 ng each of in vitro transcripts of NMDAR1A, pCMV-hNMDAR2A-3 and pCMV-26-NotI-24 (mean \pm S.D. of 4 oocytes).

Example 10

Recombinant Expression of Human NMDA Receptor Subunits in Mammalian Cells

Mammalian cells, such as human embryonic kidney

(HEK293) cells can be transiently and/or stably transfected with DNA encoding human NMDA receptor subunits (e.g., DNA encoding an NMDAR1 subunit or DNA encoding an NMDAR1 subunit and DNA encoding an NMDAR2 subunit such as pCMV-26-NotI-24, pCMV-hNMDAR2A-3(53) or pCMVPL3-hNMDAR2B).

Transfectants are analyzed for expression of NMDA receptors using various assays, e.g., northern blot hybridization, electrophysiological recording of cell currents, Ca²⁺ sensitive fluorescent indicator-based assays and [3H]-MK801 binding assays.

15 A. Transient Transfection of HEK Cells

Two transient transfections were performed. cells were transiently 293 transfection, HEK transfected with DNA encoding an NMDAR1 (construct NMDAR1A) subunit. In another transfection, HEK 293 cells were encoding 20 transiently co-transfected with DNA (construct NMDAR1A) and NMDAR2C (pCMV-26-NotI-24) subunits. In both transfections, ~2 x 106 HEK cells were transiently transfected with 19 μ g of the indicated plasmid(s) according to standard CaPO, transfection procedures [Wigler 25 et al. (1979) Proc. Natl. Acad. Sci. USA 76:1373-1376]. In addition, 1 μ g of plasmid pCMV β gal (Clontech Laboratories, Palo Alto, CA), which contains the Escherichia coli eta-galactosidase gene fused to the CMV promoter, co-transfected as a reporter gene for monitoring the The transfectants were 30 efficiency of transfection. analyzed for β -galactosidase expression by direct staining of the product of a reaction involving β -galactosidase and the X-gal substrate [Jones (1986) EMBO 5:3133-3142]. Transfectants can also be analyzed for eta-galactosidase

expression by measurement of β -galactosidase activity [Miller (1972) in Experiments in Molecular Genetics, pp.352-355, Cold Spring Harbor Press].

The efficiency of these transfections of HEK cells was typical of standard efficiencies (i.e., ~50%).

B. Stable Transfection of Mammalian Cells

Mammalian cells, such as HEK 293 cells, can be stably transfected using the calcium phosphate transfection procedure [Current Protocols in Molecular Biology, Vol. 1, Supplement 14, Unit 9.1.1-9.1.9 10 Wiley Inter-Science, (1990)]. Ten-cm plates, each containing $1-2 \times 10^6$ cells, are transfected with 10 ml of DNA/calcium phosphate precipitate in media containing approximately 19 μg of NMDA receptor subunit-encoding DNA and 1 μg of DNA encoding a selectable marker, for example, neomycin-resistance gene (i.e., pSV2neo). After ~14 days of growth in media containing typically 1 $\mu g/ml$ G418, colonies form and are individually isolated using cloning cylinders. isolates are then subjected to limiting dilution screened to identify those that express NMDA receptors 20 using, for example, methods described below.

73

C. Analysis of Transfectants

10

1. Northern Blot Hybridization Analysis

Total RNA was isolated from ~1 x 10^7 HEK cells co-transfected with NMDAR1 and pCMV-26-NotI-24, and 5-10 μg of RNA was used for northern hybridization analysis. Fragments from human neuronal NMDAR subunit-encoding plasmids were randomly primed and labeled with ^{32}P -dCTP Klenow incorporation and used as probes. The northern blot hybridization and wash conditions were as follows:

hybridization in 5x SSPE, 5X Denhart's solution, 50% formamide, at 42°C followed by washing in 0.2x SSPE, 0.1% SDS, at 65°C.

Results of these studies revealed the transfectants expressed detectable levels of NMDAR1 and NMDAR2C mRNA of the appropriate size (based on the size of the cDNAs).

2. Fluorescent indicator-based assays

Activation of ligand-gated NMDA receptors by agonists leads to an influx of cations (both monovalent and 20 divalent), including Ca2+, through the receptor channel. Calcium entry into the cell through the channel can in turn induce release of calcium contained in intracellular stores. Monovalent cation entry into the cell through the 25 channel can also result in an increase in cytoplasmic calcium levels through depolarization of the membrane and voltage-dependent calcium subsequent activation of Therefore, methods of detecting transient channels. increases in intracellular calcium concentration can be 30 applied to the analysis of functional NMDA receptor expression. One method for measuring intracellular calcium

calcium-sensitive fluorescent on levels relies indicators.

Calcium-sensitive indicators, such as fluo-3 (Catalog No. F-1241, Molecular Probes, Inc., Eugene, OR) are available as acetoxymethyl esters which are membrane When the acetoxymethyl ester form of the permeable. indicator enters a cell, the ester group is removed by cytosolic esterases, thereby trapping the free indicator in Interaction of the free indicator with the cytosol. calcium results in increased fluorescence of the indicator; 10 intracellular in the therefore, an increase concentration of cells containing the indicator can be expressed directly as an increase in fluorescence. automated fluorescence detection system for assaying NMDA receptors has been described in commonly assigned pending US Patent Application No. 07/812,254 and corresponding PCT US92/11090, incorporated Application No. Patent reference herein in their entirety.

Mammalian cells that have been transfected with DNA encoding NMDAR1 or NMDAR1 and NMDAR2 subunits can be 20 analyzed for expression of functional recombinant NMDA receptors using the automated fluorescent indicator-based assay. The assay procedure is as follows.

15

Untransfected mammalian host cells (or host cells transiently transfected with pCMV-T7-2) and mammalian cells 25 that have been transfected with NMDAR1 ± NMDAR2 subunit DNA are plated in the wells of a 96-well microtiter dish (Nunc Catalog No. 1-6708, available through Alameda Industries, Escondido, CA) that has been precoated with poly-L-lysine 30 at a density of 2.5 \times 10⁵ cells/well and loaded with fluo-3 by incubation for 2 hours at 20°C in a medium containing 20 μM fluo-3, 0.2% Pluronic F-127 in HBS (125 mM NaCl, 5 mM KCl, 1.8 mM CaCl₂, 0.62 mM MgCl₂, 20 mM glucose, 20 mM HEPES, pH 7.4). The cells are then washed with assay

20

buffer (i.e. HBS). The microtiter dish is then placed into a fluorescence plate reader (e.g., Fluoroskan II, Lab Products International, Ltd., Raleigh, NC) and the basal fluorescence of each well is measured and recorded before addition of 10 μM glycine and 10 μM glutamate to the wells. The fluorescence of the wells is monitored repeatedly (75 readings at 0.63-sec intervals) following addition of agonist.

The fluorescence of the untransfected host cells preferably will not change after addition of glycine and 10 glutamate, i.e., the host cells should not express endogenous excitatory amino acid receptors. The fluorescence of mammalian cells transfected with NMDAR1 ± NMDAR2 subunit DNA will increase after addition of glycine 15 and glutamate if a sufficient number of functional NMDA receptors are expressed at the cell surface, fluorescence readings are taken rapidly.

The resting potential of the membrane of some mammalian host cells may be relatively positive (e.g., -35 Because activation of some NMDA receptors may be significantly reduced at relatively positive potentials, it may be necessary to lower the resting potential of the membrane of cells transfected with human NMDA receptor subunit-encoding DNAs prior to assaying the cells for NMDA 25 receptor activity using the fluorescent indicator-based assay. This may be accomplished by adding valinomycin (~10 μ M) to the transfected cells prior to adding NMDA receptor agonists to initiate the assay.

NMDA Receptor Ligand Binding Assays

Mammalian cells transfected with NMDAR1 ± NMDAR2 30 subunit DNAs can be analyzed for [3H]-MK801 binding. additional ligand-binding assay for NMDA receptors using 76

³H-CGP39653 is also described below. Rat brain membranes are included in the binding assays as a positive control.

a. Preparation of Membranes

i. <u>Buffy coat Homogenate from Rat</u> <u>Cerebral Cortex</u>

Buffy coat membranes are prepared from rat brain cortices as described by Jones et al. [(1989) J. Pharmacol. Meth. 21:161]. Briefly, cortices from ten freshly thawed frozen rat brains are dissected and weighed. The tissue is 10 homogenized in 20 volumes of 0.32 M ice-cold sucrose in a glass homogenizing tube using a Teflon pestle. suspension is centrifuged at 1,000 x g for 10 minutes at The supernatant is decanted and centrifuged at 20,000 x g for 20 minutes at 4°C. The pellet is resuspended in 20 15 volumes of ice-cold distilled water with a Polytron for 30 sec at setting 6. The suspension is centrifuged at 8,000 x g for 20 minutes at 4°C. The buffy coat pellet is rinsed gently with supernatant and then recentrifuged at 48,000 x g for 20 minutes at 4°C. The pellet is resuspended in 20 20 volumes of ice-cold distilled water with a Polytron and centrifuged again at 48,000 x g for 20 minutes. The final suspension is step is repeated once more. divided into aliquots, centrifuged. Each pellet can be stored frozen at -20°C for 12 hrs or more before use.

ii. <u>Membranes from Transfected and Untransfected Mammalian Cells</u>

In order to prepare membranes from transfected and untransfected mammalian cells, the cells are scraped from the tissue culture plates, and the plates are rinsed with 5 ml of PBS (phosphate-buffered saline: 137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 1.7 mM KH₂PO₄). The cells are centrifuged at low speed in a table-top centrifuge, and the cell pellet is rinsed with PBS. The cell pellet is resuspended in 20 ml of 10 mM Hepes buffer, pH 7.4, using

5

25

a Polytron at setting 3-6 for 30 seconds. The cell suspension is centrifuged at 48,000 x g for 20 minutes at 4°C. The supernatant is discarded, and the pellet is kept frozen for 12 hrs or more at -20°C.

5

10

20

30

b. [3H]-MK801 Binding to NMDA Receptors

The binding of [3H]-MK801 to NMDA receptors is carried out as described by Wong et al. [(1986) Proc. Natl. Acad. Sci. USA 83:7104], with a few minor changes. on the day of the assay, the rat brain and mammalian cell (transfected and untransfected) membrane pellets resuspended in 50 volumes of 10 mM Hepes buffer, pH 7.4, using a 10-ml syringe and a 21-gauge needle, and incubated for 20 minutes at 37°C. The supernatant is centrifuged at 48,000 x g for 20 minutes at 4°C. The pellet is 15 resuspended in 2 ml of 10 mM Hepes, pH 7.4 and centrifuged as described above. The wash step is repeated once more, and the pellet is resuspended in 10 ml of 10 mM Hepes, pH The protein concentration is determined using the Biorad Bradford reagent. The pellet is finally resuspended in the assay buffer (10 mM Hepes, pH 7.4) at 1 mg/ml.

For binding studies, the membrane suspension is incubated in duplicate with 2.5 nM [3H]-MK801 (New England Nuclear, Boston, MA) in a total volume of 0.5 ml assay buffer (10 mM Hepes, pH 7.4) in the presence and absence of 10 μM glutamate and 10 μM glycine for 60 or 120 min at Bound radioactivity is separated radioactivity by rapid filtration through Whatman GF/C which are presoaked for 2-3 hrs polyethylenimine. The filters are washed twice with 3 ml filters are dried and ice-cold assay buffer. The transferred to scintillation vials, each containing 10 ml of scintillation fluid. The vials are vortexed, and the radioactivity is measured in a Beckman scintillation counter. The nonspecific binding observed in the presence

of 10 μM MK801 is subtracted from the total binding in order to determine the specific binding.

Rat brain cortical buffy coat membranes displayed specific saturable binding of [3H]-MK801. In the presence of glycine and glutamate, the ratio of total-to-nonspecific binding (S:N ratio) was 28:1, whereas in the absence of glutamate and glycine the S:N ratio was 5:1. Thus, the binding of MK801 to rat NMDA receptors is potentiated by glutamatergic agonists. Scatchard analysis of [3H]-MK801 binding to rat brain membranes indicated that the sensitivity of the assay was 90 fmoles of receptor.

c. [3H]-CGP39653 Binding to NMDA Receptors

binding of [3H]-CGP39653 to rat membranes is carried out as described by Sills et al. The buffy coat [(1991) Eur. J. Pharmacol. 192:19]. 15 membrane pellet is resuspended in 50 volumes of 5 mM Tris-HCl containing 10 mM EDTA, pH 7.7, and incubated for 10 min. at 37°C. The supernatant is centrifuged at 48,000 x g for 10 min. at 4°C. The wash step is repeated once and 20 the pellet is resuspended in 10 ml of 5 mM Tris-HCl containing 10 mM EDTA, pH 7.7. This rat brain membrane suspension is incubated in duplicate or triplicate with 2.0 nM [3H]-CGP39653 (New England Nuclear) in a total volume of 0.5 ml assay buffer (5 mM Tris-HCl, pH 7.7) for 60 min at 25 0°C. Nonspecific binding is determined in the presence of Bound radioactivity is separated from 100 μM glutamate. the free by vacuum filtration through GF/C filters which are presoaked for 2-3 hrs in 0.05% polyethylenimine, using the filtration manifold. Unbound radioactivity is removed 30 with two washes of 3 ml each of ice-cold buffer. filters are dried and transferred to scintillation vials, each containing 10 ml of scintillation fluid. The vials are vortexed, and the radioactivity is measured in a Beckman scintillation counter. The nonspecific binding observed in the presence of 100 $\mu \mathrm{M}$ glutamate is subtracted from the total binding to determine the specific binding.

 $[^3\text{H}]$ -CGP39653 binding was first measured as a function of membrane concentration. Specific binding increased linearly with increasing membrane concentration up to 200 μg of protein in the presence of 2 nM $[^3\text{H}]$ -CGP39653.

Saturation analysis of [3 H]-CGP39653 binding was carried out by incubating 150 μ g of rat buffy coat homogenate with increasing concentrations of [3 H]-CGP39653 for 60 min at 4°C. Scatchard analysis indicated a single class of binding sites with a B_{max} value of 0.69 \pm 0.09 pmoles/mg and a K_d value of 12.3 \pm 0.12 nM.

While the invention has been described in detail with reference to certain preferred embodiments thereof, it will be understood that modifications and variations are within the spirit and scope of that which is described and claimed.

Summary of Sequences

Sequence ID No. 1 is a nucleotide sequence encoding a human N-methyl-D-aspartate (NMDA) receptor subunit, NMDAR1A, and the deduced amino acid sequence thereof.

Sequence ID No. 1A is a 3083 nucleotide sequence encoded by clone NMDA10, comprising nucleotides 320 - 3402 of Sequence ID No. 1. Thus, Sequence ID No. 1A differs from Sequence ID No. 1 in that it does not contain the 319 5' nucleotides, nor the 896 3' nucleotides thereof.

10

15

Sequence ID No. 1B is a 3155 nucleotide sequence encoded by clone NMDA11, comprising nucleotides 1 - 2961, plus nucleotides 3325 - 3518 of Sequence ID No. 1. Thus, Sequence ID No. 1B differs from Sequence ID No. 1 by the deletion of 363 nucleotides from the 3' portion thereof (i.e., by the deletion of nucleotides 2962 - 3324 of Sequence ID No. 1), and further by the lack of the 781 terminal 3' nucleotides of Sequence ID No. 1.

Sequence ID No. 1C is a 2542 nucleotide sequence encoded by clone NMDA7, comprising nucleotides 556 - 831 of 20 Sequence ID No. 1, plus an additional 63 nucleotides (set forth in Sequence ID No. 3) and nucleotides 832 - 984, 1189 - 2961 and 3325 - 3599 of Sequence ID No. 1. Sequence ID No. 1C differs from Sequence ID No. 1 in that it does not contain the 555 5'-most nucleotides thereof, it 25 does not contain the 204 nucleotides set forth nucleotides 985 - 1188 of Sequence ID No. 1, it does not contain the 363 3' nucleotides set forth as nucleotides 2962 - 3324 of Sequence ID No. 1, and it does not contain the 700 3'-most nucleotides of Sequence ID No. 1, while it 30 does contain an additional 63 nucleotides (Sequence ID No. 3) inserted between nucleotides 831 and 832 of Sequence ID No. 1.

Sequence ID No. 1D is a 593 nucleotide sequence encoded by clone NMDA3, comprising nucleotides 2617 - 2961, plus nucleotides 4049 - 4298 of Sequence ID No. 1. Thus, Sequence ID No. 1D differs from Sequence ID No. 1 in that it does not contain the 2616 5' nucleotides thereof, and by the deletion of 1087 nucleotides from the 3' portion thereof (i.e., by the deletion of nucleotides 2962 - 4048 of Sequence ID No. 1).

Sequence ID No. 1E is a nucleotide sequence 10 encoding human NMDA receptor subunit NMDAR1-Δ363, comprising nucleotides 1 - 2961, plus nucleotides 3325 - 4298 of Sequence ID No. 1. Thus, Sequence ID No. 1E differs from Sequence ID No. 1 in that it does not contain the 363 nucleotides set forth as nucleotides 2962 - 3324 of Sequence ID No. 1.

Sequence ID No. 1F is a nucleotide sequence encoding human NMDA receptor subunit NMDAR1-Δ1087, comprising nucleotides 1 - 2961, plus nucleotides 4049 - 4298 of Sequence ID No. 1. Thus, Sequence ID No. 1F differs from Sequence ID No. 1 in that it does not contain the 1087 nucleotides set forth as nucleotides 2962 - 4048 of Sequence ID No. 1.

Sequence ID No. 1G is a nucleotide sequence encoding human NMDA receptor subunit NMDAR1-I63. Sequence ID No. 1G is the same as Sequence ID No. 1, further comprising an additional 63 nucleotides (set forth in Sequence ID No. 3) inserted between nucleotides 831 and 832 of Sequence ID No. 1.

Sequence ID No. 1H is a nucleotide sequence 30 encoding human NMDA receptor subunit NMDAR1-I63- Δ 204. Sequence ID No. 1H is the same as Sequence ID No. 1G, except Sequence ID No. 1H does not contain the 204

82 nucleotides set forth as nucleotides 985 - 1188 of Sequence ID No. 1. Sequence ID No. 1I is a nucleotide sequence encoding human NMDA receptor subunit NMDAR1-I63- Δ 204- Δ 363. Sequence ID No. 1I is the same as Sequence ID No. except Sequence ID No. 1I does not contain the nucleotides set forth as nucleotides 2962 -3324 of Sequence ID No. 1. Sequence ID No. 1J is a nucleotide sequence encoding human NMDA receptor subunit NMDAR1- Δ 204. Sequence 10 ID No. 1J is the same as Sequence ID No. 1, except Sequence ID No. 1J does not contain the 204 nucleotides set forth as nucleotides 985 - 1188 of Sequence ID No. 1. Sequence ID No. 1K is a nucleotide sequence encoding human NMDA receptor subunit NMDAR1- Δ 204- Δ 363. 15 Sequence ID No. 1K differs from Sequence ID No. 1 in that Sequence ID No. 1K does not contain the 204 nucleotides set forth as nucleotides 985 - 1188 of Sequence ID No. 1, nor the 363 nucleotides set forth as nucleotides 2962 - 3324 of 20 Sequence ID No. 1. Sequence ID No. 1L is a nucleotide sequence encoding human NMDA receptor subunit NMDAR1- Δ 204- Δ 1087. Sequence ID No. 1L differs from Sequence ID No. 1 in that Sequence ID No. 1L does not contain the 204 nucleotides set forth as nucleotides 985 - 1188 of Sequence ID No. 1, nor 25 the 1087 nucleotides set forth as nucleotides 2962 - 4048 of Sequence ID No. 1. 1M is a nucleotide sequence Sequence ID No. encoding human NMDA receptor subunit NMDAR1-I63- Δ 363. Sequence ID No. 1M is the same as Sequence ID No. 1G except 30 Sequence ID No. 1M does not contain the 363 nucleotides set forth as nucleotides 2962 - 3324 of Sequence ID No. 1.

Sequence ID No. 1N is a nucleotide sequence encoding human NMDA receptor subunit NMDAR1-I63- Δ 1087. Sequence No. 1N is the same as Sequence ID No. 1G except Sequence ID No. 1N does not contain the 1087 nucleotides set forth as nucleotides 2962 - 4048 of Sequence ID No. 1.

Sequence ID No. 1P is a nucleotide sequence encoding human NMDA receptor subunit NMDAR1-I63- Δ 204- Δ 1087. Sequence ID No. 1P is the same as Sequence ID No. 1H, except Sequence ID No. 1P does not contain the 1087 nucleotides set forth as nucleotides 2962 - 4048 of Sequence ID No. 1.

10

Sequence ID No. 2 is the amino acid sequence of the NMDA receptor subunit set forth in Sequence ID No. 1.

Sequence ID No. 2A is the amino acid sequence of a portion of an NMDA receptor subunit as encoded by the nucleotide sequence of Sequence ID No. 1A.

Sequence ID No. 2B is the amino acid sequence of an NMDA receptor subunit encoded by the nucleotide sequence of Sequence ID No. 1B.

Sequence ID No. 2C is the amino acid sequence of a portion of an NMDA receptor subunit as encoded by the nucleotide sequence of Sequence ID No. 1C.

Sequence ID No. 2D is the amino acid sequence of a portion of an NMDA receptor subunit as encoded by the nucleotide sequence of Sequence ID No. 1D.

Sequence ID No. 2E is the amino acid sequence of an NMDA receptor subunit encoded by the nucleotide sequence of Sequence ID No. 1E.

84 Sequence ID No. 2F is the amino acid sequence of an NMDA receptor subunit encoded by the nucleotide sequence of Sequence ID No. 1F. Sequence ID No. 2G is the amino acid sequence of an NMDA receptor subunit encoded by the nucleotide sequence of Sequence ID No. 1G. Sequence ID No. 2H is the amino acid sequence of an NMDA receptor subunit encoded by the nucleotide sequence of Sequence ID No. 1H. Sequence ID No. 2I is the amino acid sequence of 10 an NMDA receptor subunit encoded by the nucleotide sequence of Sequence ID No. 1I. Sequence ID No. 2J is the amino acid sequence of an NMDA receptor subunit encoded by the nucleotide sequence 15 of Sequence ID No. 1J. Sequence ID No. 2K is the amino acid sequence of an NMDA receptor subunit encoded by the nucleotide sequence of Sequence ID No. 1K. Sequence ID No. 2L is the amino acid sequence of an NMDA receptor subunit encoded by the nucleotide sequence 20 of Sequence ID No. 1L. Sequence ID No. 2M is the amino acid sequence of an NMDA receptor subunit encoded by the nucleotide sequence of Sequence ID No. 1M. 25 Sequence ID No. 2N is the amino acid sequence of an NMDA receptor subunit encoded by the nucleotide sequence of Sequence ID No. 1N.

Sequence ID No. 2P is the amino acid sequence of an NMDA receptor subunit encoded by the nucleotide sequence of Sequence ID No. 1P.

Sequence ID No. 3 is a nucleotide sequence 5 encoding the 63 nucleotide insert present in Sequence ID Nos. 1C, 1G, 1H, 1I, 1M, 1N and 1P.

Sequence ID No. 4 is the 21 amino acid sequence encoded by the insert set forth in Sequence ID No. 3.

Sequence ID No. 5 is a nucleotide sequence of a clone (pCMV-26-NotI-24) encoding a human N-methyl-D-aspartate (NMDA) receptor subunit, NMDAR2C, and the deduced amino acid sequence thereof.

Sequence ID No. 5A is a 2026 nucleotide sequence encoded by clone NMDA21, comprising nucleotides 931 - 2350, and 2402 - 3307 of Sequence ID No. 5. Thus, Sequence ID No. 5A differs from Sequence ID No. 5 in that it does not contain the 930 5' nucleotides thereof, nor the 51 nucleotides located at position 2351 - 2401 of Sequence ID No. 5, nor the 1061 3' nucleotides of Sequence ID No. 5.

Sequence ID No. 5B is a 3698 nucleotide sequence encoded by clone NMDA22, comprising nucleotides 367 - 1300 of Sequence ID No. 5, plus an additional 11 nucleotides (set forth as Sequence ID No. 9), and nucleotides 1301 - 1959 and 1975 - 4068 of Sequence ID No. 5. Thus, Sequence ID No. 5B differs from Sequence ID No. 5 by the lack of the 366 5'-most nucleotides, by the insertion of 11 nucleotides between nucleotides 1300 and 1301 of Sequence ID No. 5, and further by the lack of the 15 nucleotides of Sequence ID No. 5 from residue 1960 to residue 1974.

Sequence ID No. 5E is a nucleotide sequence encoding human NMDA receptor subunit pCMV-26-ScaI-24, which 20 differs from Sequence ID No. 5 only in the insertion of 24 nucleotides (Sequence ID No. 7) between nucleotides 2350 and 2351 of Sequence ID No. 5.

Sequence ID No. 5F is a nucleotide sequence encoding human NMDA receptor subunit pCMV-26-ScaI-22, which 25 differs from Sequence ID No. 5 only in the deletion of nucleotides 1960 - 1974 of Sequence ID No. 5.

Sequence ID No. 5G is a nucleotide sequence encoding human NMDA receptor subunit pCMV-26-ScaI-21-NotI-24, which differs from Sequence ID No. 5 only in the deletion of nucleotides 2351 - 2401 of Sequence ID No. 5.

Sequence ID No. 6A is the amino acid sequence of a portion of an NMDA receptor subunit as encoded by the nucleotide sequence of Sequence ID No. 5A.

Sequence ID No. 6B is the amino acid sequence of a portion of an NMDA receptor subunit as encoded by the nucleotide sequence of Sequence ID No. 5B.

Sequence ID No. 6C is the amino acid sequence of a portion of an NMDA receptor subunit as encoded by the nucleotide sequence of Sequence ID No. 5C.

Sequence ID No. 6D is the amino acid sequence of a portion of an NMDA receptor subunit as encoded by the nucleotide sequence of Sequence ID No. 5D.

Sequence ID No. 6E is the amino acid sequence of an NMDA receptor subunit encoded by the nucleotide sequence 30 of Sequence ID No. 5E.

Sequence ID No. 6F is the amino acid sequence of an NMDA receptor subunit encoded by the nucleotide sequence of Sequence ID No. 5F.

Sequence ID No. 6G is the amino acid sequence of sceptor subunit encoded by the nucleotide sequence ID No. 5G.

by the nucleotide

Sequence ID No. 6H is the amino acid sequence of receptor subunit encoded by the nucleotide sequence uence ID No. 5H.

ide sequence of clone NMDA27, of said

Sequence ID No. 6I is the amino acid sequence of MDA receptor subunit encoded by the nucleotide sequence Sequence ID No. 5I.

Juence of a) receptor

Sequence ID No. 7 is a nucleotide sequence ncoding the 24 nucleotide insert present in Sequence ID Nos. 5C, 5E and 5H.

lence of lo. 13.

Sequence ID No. 8 is the 7 amino acid sequence encoded by nucleotides 2-22 of the insert set forth in Sequence ID No. 7. Because the insert is introduced within a codon, the insert itself only encodes 7 amino acids. The terminal residues of the nucleotide insert participate in forming codons with adjacent sequence at the site of insertion.

otor

Sequence ID No. 9 is a nucleotide sequence encoding the 11 nucleotide insert present in Sequence ID Nos. 5B and 5C.

Sequence ID No. 10 is a nucleotide sequence encoding a human N-methyl-D-aspartate (NMDA) receptor subunit, NMDAR2A.

Sequence ID No. 11 is the amino acid sequence of an NMDA receptor subunit as encoded by the nucleotide sequence set forth in Sequence ID No. 10.

Sequence ID No. 12 is the nucleotide sequence of 71 nucleotides of 5' untranslated sequence of clone NMDA27, plus the initiation codon (nucleotides 72 - 74) of said clone.

Sequence ID No. 13 is a nucleotide sequence of a clone encoding a human N-methyl-D-aspartate (NMDA) receptor subunit, NMDAR2B.

Sequence ID No. 14 is the amino acid sequence of the NMDA receptor subunit set forth in Sequence ID No. 13.

Sequence ID No. 15 is a nucleotide sequence of a clone encoding a human N-methyl-D-aspartate (NMDA) receptor subunit, NMDAR2D.

Sequence ID No. 16 is the amino acid sequence of the NMDA receptor subunit set forth in Sequence ID No. 15.

Sequence ID Nos. 17-20 are four synthetic oligonucleotides used in the preparation of an NMDAR2C clone (pCMV-26-NotI-24-GCMOD) having reduced GC nucleotide content between nucleotides 2957 and 3166.

Sequence ID No. 21 is the nucleotide sequence of the 195 basepair insert of NMDAR2C clone pCMV-26-NotI-24-GCMOD (replacing nucleotides 2966-3160 of Sequence ID No. 5).

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Daggett, Lorrie P. Ellis, Steven B. Liaw, Chen W. Lu, Chin-Chun
- (ii) TITLE OF INVENTION: HUMAN N-METHYL-D-ASPARTATE RECEPTOR SUBUNITS, DNA ENCODING SAME AND USES THEREFOR
- (iii) NUMBER OF SEQUENCES: 21
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Pretty, Schroeder, Brueggemann & Clark
 - (B) STREET: 444 South Flower Street, Suite 2000
 - (C) CITY: Los Angeles
 - (D) STATE: CA
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 90071-2921
 - (v) COMPUTER READABLE FORM:
 (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 20-APR-1994
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/052,449
 - (B) FILING DATE: 20-APR-1993
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Reiter, Stephen E.
 - (B) REGISTRATION NUMBER: 31,192
 - (C) REFERENCE/DOCKET NUMBER: P41 9424
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 619-546-4737
 - (B) TELEFAX: 619-546-9392
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4298 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 262..3078

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CAAGCCGGGC GTTCGGAGCT GTGCCCGGCC CCGCTTCAGC ACCGCGGACA GCGCCGGCCG	60
CGTGGGGCTG AGCGCCGAGC CCCCGCGCAC GCTTCAGCCC CCCTTCCCTC GGCCGACGTC	120
CCGGGACCGC CGCTCCGGGG GAGACGTGGC GTCCGCAGCC CGCGGGGCCG GGCGAGCGCA	180
GGACGGCCCG GAAGCCCCGC GGGGGATGCG CCGAGGGCCC CGCGTTCGCG CCGCGCAGAG	240
CCAGGCCCGC GGCCCGAGCC C ATG AGC ACC ATG CGC CTG ACG CTC GCC	291
Met Ser Thr Met Arg Leu Leu Thr Leu Ala 1 5 10	271
CTG CTG TTC TCC TGC TCC GTC GCC CGT GCC GCG TGC GAC CCC AAG ATC Leu Leu Phe Ser Cys Ser Val Ala Arg Ala Ala Cys Asp Pro Lys Ile 15 20 25	339
GTC AAC ATT GGC GCG GTG CTG AGC ACG CGG AAG CAC GAG CAG ATG TTC Val Asn Ile Gly Ala Val Leu Ser Thr Arg Lys His Glu Gln Met Phe 30 35 40	387
CGC GAG GCC GTG AAC CAG GCC AAC AAG CGG CAC GGC TCC TGG AAG ATT Arg Glu Ala Val Asn Gln Ala Asn Lys Arg His Gly Ser Trp Lys Ile 45 50 55	435
CAG CTC AAT GCC ACC TCC GTC ACG CAC AAG CCC AAC GCC ATC CAG ATG Gln Leu Asn Ala Thr Ser Val Thr His Lys Pro Asn Ala Ile Gln Met 60 65 70	483
GCT CTG TCG GTG TGC GAG GAC CTC ATC TCC AGC CAG GTC TAC GCC ATC Ala Leu Ser Val Cys Glu Asp Leu Ile Ser Ser Gln Val Tyr Ala Ile 75 80 85 90	531
CTA GTT AGC CAT CCA CCT ACC CCC AAC GAC CAC TTC ACT CCC ACC CCT Leu Val Ser His Pro Pro Thr Pro Asn Asp His Phe Thr Pro Thr Pro 95 100 105	579
GTC TCC TAC ACA GCC GGC TTC TAC CGC ATA CCC GTG CTG GGG CTG ACC Val Ser Tyr Thr Ala Gly Phe Tyr Arg Ile Pro Val Leu Gly Leu Thr 110 115 120	627
ACC CGC ATG TCC ATC TAC TCG GAC AAG AGC ATC CAC CTG AGC TTC CTG Thr Arg Met Ser Ile Tyr Ser Asp Lys Ser Ile His Leu Ser Phe Leu 125 130 135	675
CGC ACC GTG CCG CCC TAC TCC CAC CAG TCC AGC GTG TGG TTT GAG ATG Arg Thr Val Pro Pro Tyr Ser His Gln Ser Ser Val Trp Phe Glu Met 140	723
ATG CGT GTC TAC AGC TGG AAC CAC ATC ATC CTG CTG GTC AGC GAC GAC Met Arg Val Tyr Ser Trp Asn His Ile Ile Leu Leu Val Ser Asp Asp 165 170	771
CAC GAG GGC CGG GCT CAG AAA CGC CTG GAG ACG CTG CTG GAG GAG His Glu Gly Arg Ala Ala Gln Lys Arg Leu Glu Thr Leu Leu Glu Glu 175 180 185	819
CGT GAG TCC AAG GCA GAG AAG GTG CTG CAG TTT GAC CCA GGG ACC AAG Arg Glu Ser Lys Ala Glu Lys Val Leu Gln Phe Asp Pro Gly Thr Lys 190 195 200	867
AAC GTG ACG GCC CTG CTG ATG GAG GCG AAA GAG CTG GAG GCC CGG GTC Asn Val Thr Ala Leu Leu Met Glu Ala Lys Glu Leu Glu Ala Arg Val 205 210	915

										72						
ATC Ile	220	e Lei	r TC1 1 Se1	r GCC r Ala	C AGO a Ser	GAG Glu 225	ı Asp	GAT Asp	GCT Ala	r GCC a Ala	2 AC' 2 Th	r Val	A TAC	C CGC	C GCA g Ala	963
GCC Ala 235	Ala	ATO Met	CTC Leu	AAC 1 Asr	ATG Met 240	Thr	GGC Gly	TCC Ser	GGC Gly	G TAC 7 Tyr 245	. Va	G TGO	CTO Lev	G GTO	GGC Gly 250	1011
GAG Glu	CGC Arc	GAC Glu	G ATO	C TCC Ser 255	Gly	AAC Asn	GCC Ala	CTG Leu	CG0 Arg 260	Tyr	C GCC	C CCA	A GAG	G GGG G G L Y 265	C ATC / Ile	1059
CTC Leu	GGG	CTC Leu	G CAC I Glr 270	ı Let	ATC	: AAC : Asn	GGC Gly	AAG Lys 275	Asr	C GAC	TC Se	G GCC r Ala	C CAC His 280	: Ile	C AGC e Ser	1107
GAC Asp	GCC Ala	C GTC Val 285	. Gly	GTC Val	GTG Val	GCC	CAG Gln 290	Ala	GTC Val	CAC His	GAG	G CTC Let 295	Leu	GAC Glu	AAG Lys	1155
GAG Glu	DAA DOC	ılle	ACC Thr	. Agt	CCG Pro	CCG Pro 305	Arg	GGC Gly	TGC Cya	GTC Val	GG(Gl ₃ 31(, Asr	ACC Thr	AAC Asr	ATC lle	1203
TGG Trp 315	Lys	ACC Thr	GGG Gly	CCG Pro	CTC Leu 320	Phe	AAG Lys	AGA Arg	GTC Val	CTC Leu 325	Met	TCI Ser	TCC Ser	AAG Lys	TAT Tyr 330	1251
GCG Ala	GAT	Gly Gly	GTG Val	ACT Thr 335	Gly	CGC Arg	GTG Val	GAG Glu	TTC Phe 340	: Asn	GAC Glu	TAD G	GGG Gly	GAC Asp 345	CGG Arg	1299
AAG Lys	TTC Phe	GCC	AAC Asn 350	Tyr	AGC Ser	ATC Ile	ATG Met	AAC Asn 355	CTG Leu	CAG Gln	AAC Asn	CGC Arg	Lys 360	Leu	GTG Val	1347
CAA Gln	GTG Val	GGC Gly 365	Ile	TAC Tyr	AAT Asn	GGC Gly	ACC Thr 370	CAC His	GTC Val	ATC Ile	CCT Pro	AAT Asn 375	Asp	AGG Arg	AAG Lys	1395
ATC Ile	ATC Ile 380	TGG Trp	CCA Pro	GGC Gly	GGA Gly	GAG Glu 385	ACA Thr	GAG Glu	AAG Lys	CCT Pro	CGA Arg 390	Gly	TAC Tyr	CAG Gln	ATG Met	1443
TCC Ser 395	ACC Thr	AGA Arg	CTG Leu	AAG Lys	ATT Ile 400	GTG Val	ACG Thr	ATC Ile	CAC His	CAG Gln 405	GAG Glu	CCC Pro	TTC Phe	GTG Val	TAC Tyr 410	1491
GTC Val	AAG Lys	CCC Pro	ACG Thr	CTG Leu 415	AGT Ser	GAT Asp	GGG Gly	ACA Thr	TGC Cys 420	AAG Lys	GAG Glu	GAG Glu	TTC Phe	ACA Thr 425	GTC Val	1539
AAC Asn	GGC Gly	GAC Asp	CCA Pro 430	GTC Val	AAG Lys	AAG Lys	GTG Val	ATC Ile 435	TGC Cys	ACC Thr	GGG Gly	CCC Pro	AAC Asn 440	GAC Asp	ACG Thr	1587
TCG Ser	CCG Pro	GGC Gly 445	AGC Ser	CCC Pro	CGC Arg	CAC His	ACG Thr 450	GTG Val	CCT Pro	CAG Gln	TGT Cys	TGC Cys 455	TAC Tyr	GGC Gly	TTT Phe	1635
Cys	ATC Ile 460	GAC Asp	CTG Leu	CTC Leu	ATC Ile	AAG Lys 465	CTG Leu	GCA Ala	CGG Arg	ACC Thr	ATG Met 470	AAC Asn	TTC Phe	ACC Thr	TAC Tyr	1683
GAG Glu 475	GTG Val	CAC His	CTG Leu	GTG Val	GCA Ala 480	GAT Asp	GGC Gly	AAG Lys	TTC Phe	GGC Gly 485	ACA Thr	CAG Gln	GAG Glu	CGG Arg	GTG Val 490	1731

A. A	AC A	/AC	AG(Ser	AA S eA s	C AA n Ly 49	AG AI /s Ly 95	AG G	AG T lu T	GG rp	AAT Asn	GG(G1; 500	у ме	G A	TG let	GGC Gly	GAC Glu	G C: 1 Le 50	e u	CTC Leu		1779
A(Se	GC G er G	GG ly	CAC Glr	G GC. 1 Al. 51		C AT	TG A	TC G le V	aı ı	GCG Ala 515	CCC	G CT D Le	A A u T	CC ;	ATA Ile	AAC Asn 520	ΑE	AC sn	GAG Glu		1827
C(Ar	GC G	CG la	CAG Gln 525	TAC Ty	C AT	C GA e Gl	G T' u Pl	16 3	CC 1 er 1 30	r Ayd	CCC	C TTO	C A. e L	ys :	TAC Tyr 535	CAG Gln	GG G1	C Y	CTG Leu		1875
AC Th	CT A or I 5	TT le:	CTG Leu	GT(Val	C AA L Ly	G AA s Ly	G GA B G]	Lu I	TT (le F	ccc Pro	CGG	G AGO	c Ti	CG (hr I	CTG Leu	GAC Asp	TC Se	G r	TTC Phe		1923
AT Me 55	C C t G 5	AG (CCG Pro	TTC Phe	CAC Gl:	G AG n Se 56	r 11	CA CT	rg I eu I	GG rp	CTG Leu	CTC Leu 565	ı Va	rg c	GG Sly	CTG Leu	TC Se	r '	GTG Val 570		1971
CA Hi	C G'	rg (GTG Val	GCC Ala	GT0	G AT I Me	G CI t Le	G TA	AC C	TG	CTG Leu 580	Asp	C CC	C T	TC he	AGC Ser	CC Pro)	TTC Phe		2019
GG G1	С С(у Аз	GG 1	rrc Phe	AAG Lys 590	• • •	G AA	C AG n Se	C GA r Gl	uG	AG lu 95	GAG Glu	GAG Glu	GA Gl	G G u A	sp.	GCA Ala 600	CTO	3 <i>1</i>	ACC Thr		2067
CT: Le:	G TO		CG Ser 505	GCC Ala	ATC Met	TGC Tr	G TT Ph	C TC e Se 61	F 1.	GG rp	GGC Gly	GTC Val	CT Le	u L	TC 1 eu 1 15	AAC Asn	TC(Ser	C 6	GC ly		2115
ATC Ile	C GG ⊇ G1 62	G G У G О	AA lu	GGC Gly	GCC Ala	Pro	AG Ar 62	, se	C Ti	rc ne :	TCA Ser	GCG Ala	CG Are	g I	rc o	CTG Leu	GGC Gly	: A	TG		2163
GT0 Val 635	TG Tr	G G	CC la	GGC Gly	TTT Phe	GCC Ala 640	1100	ATO	C A1	C (GTG /al	GCC Ala 645	TC(Ser	C TA	AC A	CC hr	GCC Ala	Α	AC sn 50		2211
CTG Leu	GC(G G(CC /	TTC Phe	CTG Leu 655	GTG Val	CTC Leu	GAC Asp	C CG	g F	CCG Pro 560	GAG Glu	GAC Glu	G CG	C A	le 1	ACG Thr 565	G(GC ly		2259
ATC Ile	AA Aai	C GA	-	CCT Pro 570	CGG Arg	CTG Leu	mry	AAC	PE	0 5	CG er	GAC Asp	AAG	TT Ph	e I	TC 1 le 1	rac ryr	-G(CC La	:	2307
ACG Thr	GT(AA Ly 68	AG (78 (85	CAG Sln	AGC Ser	TCC Ser	GTG Val	GAT Asp 690	TT	C T e T	AC '	TTC Phe	CGG Arg	CG Ar	g G	AG G ln V	TG al	GA G1	\G .u	2	2355
CTG Leu	AGC Ser 700	AC Th	C A	TG 1	rac ryr	CGG Arg	CAT His 705	ATG Met	GA0 Glu	G A.	AG (ys F	113	AAC Asn 710	TAC Ty:	C GA	AG A Lu S	GT er	GC Al	G a	2	2403
GCG Ala 715	GAG Glu	GC Al	C A a I	TC (GCC Ala 720	GTG Val	AGA Arg	GAC Asp	A A	sn L			CA1 His	r GC 3 Al	C T	he	Ιl	e	2	451
TGG Trp	Aab GYC	TC	G G		TG (al)	CTG Leu	GAG Glu	TTC Phe	GAG Glu	G G A 1	CC T		CAG	AAG Lya	TG Cy	s A	AC sp	73 CT Le		2	499
GTG Val	ACG Thr	ACT Thr	r G0 r G1 75	GA G ly G 50	AG (CTG (Leu)	rrr Phe	TTC Phe	CGC Arg 755	TC Se		GC T ly P	TC he	GGC Gly	AT. 11:	A G(e G)	45 GC 1 Ly 1	ATC Met	3 5	2	547

														CTC Leu		2595
														GTT Val		2643
														ACT Thr		2691
														GTG Val 825		2739
														AAG Lys		2787
_														GTG Val		2835
														GAC Asp		2883
													_	TCC Ser		2931
														GGA Gly 905		2979
														GCT Ala		3027
														GAG Glu		3075
TGAG	SACTO	cc c	cccc	cccc	T CC	TCTC	cccc	CTC	cccc	GCA	GACA	GAC	GA C	CAGAC	CGGACG	3135
GGAC	CAGCO	GC C	CGGC	CCAC	G CA	GAGC	ccce	GAC	CACC	ACG	GGGT	CGGC	GG F	AGGAC	CACCC	3195
CCAG	CCTC	cc c	CAGG	CTGC	G CC	TGCC	cgcc	c c c c	CGGI	TGG	CCGG	CTG	cc c	GTCC	CACCCC	3255
GTCC	cggc	cc c	GCGC	GTGC	c cc	CAGO	GTGG	GGC	TAAC	GGG	CGCC	TTGI	CT G	TGTA	TTTCT	3315
ATTT	TGCA	GC A	GTAC	CATO	C CA	CTGA	TATO	ACG	GGCC	CGC	TCAA	CCTC	TC A	GATO	CCTCG	3375
GTCA	.GCAC	CG T	GGTG	TGAG	G CC	CCCG	GAGG	CGC	CCAC	CTG	CCCA	GTTA	GC C	cggc	CAAGG	3435
ACAC	TGAT	GG G	TCCT	GCTG	с тс	GGGA	AGGC	CTG	AGGG	AAG	CCCA	cccg	cc c	CAGA	GACTG	3495
CCCA	CCCT	GG G	CCTC	CCGT	c cg	TCCG	cccg	ccc	ACCC	CGC	TGCC	TGGC	GG G	CAGO	CCCTG	3555
CTGG	ACCA	AG G	TGCG	GACC	G GA	GCGG	CTGA	GGA	CGGG	GCA	GAGC	TGAG	TC G	GCTG	GGCAG	3615
GGCC	GCAG	GG C	GCTC	cggc	A GA	GGCA	GGCC	сст	GGGG	TCT	CTGA	GCAG	TG G	GGAG	CGGGG	3675
GCTA	ACTG	cc c	CCAG	GCGG	A GG	GGCT	TGGA	GCA	GAGA	CGG	CAGC	CCCA	тс с	TTCC	CGCAG	3735
CACC	AGCC	TG A	GCCA	CAGT	G GG	GCCC	ATGG	ccc	CAGC	TGG	CTGG	GTCG	cc c	CTCC	TCGGG	3795

CGCCTGCGCT CCTCTGCAGC CTGAGCTCCA CCCTCCCCTC
AAACACCCCG TCTGCCCCTT GACGCCACAC GCCGGGGCTG GCGCTGCCCT CCCCCACGGC
CGTCCCTGAC TTCCCAGCTG GCAGCGCCTC CCGCCGCCTC GGGCCGCCTC CTCCAGAATC
GAGAGGGCTG AGCCCCTCCT CTCCTCGTCC GGCCTGCAGC ACAGAAGGGG GCCTCCCCGG
GGGTCCCCGG ACGCTGGCTC GGGACTGTCT TCAACCCTGC CCTGCACCTT GGGCACGGGA
GAGCGCCACC CGCCCCCC CGCCCTCGCT CCGGGTGCGT GACCGGCCCG CCACCTTGTA
CAGAACCAGC ACTCCCAGGG CCCGAGCGCG TGCCTTCCCC GTGCGCAGCC GCGCTCTGCC
CCTCCGTCCC CAGGGTGCAG GCGCGCACCG CCCAACCCCC ACCTCCCGGT GTATGCAGTG
GTGATGCCTA AAGGAATGTC ACG
(2) INFORMATION FOR SEQ ID NO:2:
(i) SEQUENCE CHARACTERISTICS.
(A) LENGTH: 938 amino acids (B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
Met Ser Thr Met Arg Leu Leu Thr Leu Ala Leu Leu Phe Ser Cys Ser 1 5 10 15
Val Ala Arg Ala Ala Cys Asp Pro Lys Ile Val Asn Ile Gly Ala Val 20 25 30
Leu Ser Thr Arg Lys His Glu Gln Met Phe Arg Glu Ala Val Asn Gln 35 40 45
Ala Asn Lys Arg His Gly Ser Trp Lys Ile Gln Leu Asn Ala Thr Ser 50 55 60
Val Thr His Lys Pro Asn Ala Ile Gln Met Ala Leu Ser Val Cys Glu 65 70 75 80
Asp Leu Ile Ser Ser Gln Val Tyr Ala Ile Leu Val Ser His Pro Pro 85 90 95
Thr Pro Asn Asp His Phe Thr Pro Thr Pro Val Ser Tyr Thr Ala Gly 100 105 110
Phe Tyr Arg Ile Pro Val Leu Gly Leu Thr Thr Arg Met Ser Ile Tyr 115 120 125
Ser Asp Lys Ser Ile His Leu Ser Phe Leu Arg Thr Val Pro Pro Tyr 130 135 140
Ser His Gln Ser Ser Val Trp Phe Glu Met Met Arg Val Tyr Ser Trp 145 150 155 160
Asn His Ile Ile Leu Leu Val Ser Asp Asp His Glu Gly Arg Ala Ala 165 , 170 175

Gln Lys Arg Leu Glu Thr Leu Leu Glu Glu Arg Glu Ser Lys Ala Glu 180 185 190

Lys Val Leu Gln Phe Asp Pro Gly Thr Lys Asn Val Thr Ala Leu Leu Met Glu Ala Lys Glu Leu Glu Ala Arg Val Ile Ile Leu Ser Ala Ser Glu Asp Asp Ala Ala Thr Val Tyr Arg Ala Ala Ala Met Leu Asn Met GlyThr Gly Ser Gly Tyr Val Trp Leu Val Gly Glu Arg Glu Ile Ser Asn Ala Leu Arg Tyr Ala Pro Asp Gly Ile Leu Gly Leu Gln Leu Ile 265 Asn Gly Lys Asn Glu Ser Ala His Ile Ser Asp Ala Val Gly Val Val Ala Gln Ala Val His Glu Leu Leu Glu Lys Glu Asn Ile Thr Asp Pro Pro Arg Gly Cys Val Gly Asn Thr Asn Ile Trp Lys Thr Gly Pro Leu 310 Phe Lys Arg Val Leu Met Ser Ser Lys Tyr Ala Asp Gly Val Thr Gly Arg Val Glu Phe Asn Glu Asp Gly Asp Arg Lys Phe Ala Asn Tyr Ser Ile Met Asn Leu Gln Asn Arg Lys Leu Val Gln Val Gly Ile Tyr Asn 360 Gly Thr His Val Ile Pro Asn Asp Arg Lys Ile Ile Trp Pro Gly Gly Glu Thr Glu Lys Pro Arg Gly Tyr Gln Met Ser Thr Arg Leu Lys Ile Val Thr Ile His Gln Glu Pro Phe Val Tyr Val Lys Pro Thr Leu Ser 410 Asp Gly Thr Cys Lys Glu Glu Phe Thr Val Asn Gly Asp Pro Val Lys Lys Val Ile Cys Thr Gly Pro Asn Asp Thr Ser Pro Gly Ser Pro Arg His Thr Val Pro Gln Cys Cys Tyr Gly Phe Cys Ile Asp Leu Leu Ile Lys Leu Ala Arg Thr Met Asn Phe Thr Tyr Glu Val His Leu Val Ala Asp Gly Lys Phe Gly Thr Gln Glu Arg Val Asn Asn Ser Asn Lys Lys Glu Trp Asn Gly Met Met Gly Glu Leu Leu Ser Gly Gln Ala Asp Met 505 Ile Val Ala Pro Leu Thr Ile Asn Asn Glu Arg Ala Gln Tyr Ile Glu 52Q Phe Ser Lys Pro Phe Lys Tyr Gln Gly Leu Thr Ile Leu Val Lys Lys

Glu Ile Pro Arg Ser Thr Leu Asp Ser Phe Met Gln Pro Phe Gln Ser Thr Leu Trp Leu Leu Val Gly Leu Ser Val His Val Val Ala Val Met 565 Leu Tyr Leu Leu Asp Arg Phe Ser Pro Phe Gly Arg Phe Lys Val Asn Ser Glu Glu Glu Glu Asp Ala Leu Thr Leu Ser Ser Ala Met Trp 600 Phe Ser Trp Gly Val Leu Leu Asn Ser Gly Ile Gly Glu Gly Ala Pro 615 Arg Ser Phe Ser Ala Arg Ile Leu Gly Met Val Trp Ala Gly Phe Ala Met Ile Ile Val Ala Ser Tyr Thr Ala Asn Leu Ala Ala Phe Leu Val Leu Asp Arg Pro Glu Glu Arg Ile Thr Gly Ile Asn Asp Pro Arg Leu 665 Arg Asn Pro Ser Asp Lys Phe Ile Tyr Ala Thr Val Lys Gln Ser Ser Val Asp Ile Tyr Phe Arg Arg Gln Val Glu Leu Ser Thr Met Tyr Arg His Met Glu Lys His Asn Tyr Glu Ser Ala Ala Glu Ala Ile Gln Ala 710 Val Arg Asp Asn Lys Leu His Ala Phe Ile Trp Asp Ser Ala Val Leu 730 Glu Phe Glu Ala Ser Gln Lys Cys Asp Leu Val Thr Thr Gly Glu Leu Phe Phe Arg Ser Gly Phe Gly Ile Gly Met Arg Lys Asp Ser Pro Trp Lys Gln Asn Val Ser Leu Ser Ile Leu Lys Ser His Glu Asn Gly Phe Met Glu Asp Leu Asp Lys Thr Trp Val Arg Tyr Gln Glu Cys Asp Ser Arg Ser Asn Ala Pro Ala Thr Leu Thr Phe Glu Asn Met Ala Gly Val Phe Met Leu Val Ala Gly Gly Ile Val Ala Gly Ile Phe Leu Ile Phe Ile Glu Ile Ala Tyr Lys Arg His Lys Asp Ala Arg Arg Lys Gln Met Gln Leu Ala Phe Ala Ala Val Asn Val Trp Arg Lys Asn Leu Gln Asp 855 Arg Lys Ser Gly Arg Ala Glu Pro Asp Pro Lys Lys Ala Thr Phe 875 Arg Ala Ile Thr Ser Thr Leu Ala Ser Ser Phe Lys Arg Arg Arg Ser 885 890

Se	r Ly	s Asp	900	Ser	Thr	Gly	Gly	Gly 905	Arg	Gly	Ala	Leu	Gln 910	Asn	Gln	
Ly	s Ası	915	Val	Leu	Pro	Arg	Arg 920	Ala	Ile	Glu	Arg	Glu 925	Glu	Gly	Gln	
Le	u Glr 930	n Leu)	Сув	Ser	Arg	His 935	Arg	Glu	Ser							
(2) INE	FORMA	TION	FOR	SEQ	ID 1	10:3:	:								
	i)	()	QUENCA) LEB) TYCO	ENGTH (PE: TRAND	H: 63 nucl EDNE	bas eic SS:	e pa acid	irs								
	(ii) MOI	LECUL	E TY	PE:	CDNA	L									
	(ix) FEA (A	ATURE A) NA B) LC	ME/K	EY: ON:	CDS 16	3								=	
	(xi) SEÇ	QUENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:3:						
AGT Ser 1	~, ~	AAA Lys	AGG Arg	AAC Asn 5	TAT Tyr	GAA Glu	AAC Asn	CTC Leu	GAC Asp 10	CAA Gln	CTG Leu	TCC Ser	TAT Tyr	GAC Asp 15	AAC Asn	48
AAG Lys	CGC Arg	GGA Gly	CCC Pro: 20	AAG Lys												63
(2)	INFO	DRMAT	ION 1	FOR S	SEQ 1	D NO	0:4:									
	((i) S	(A) (B)	CE C LENC TYPE TOPC	TH: E: an	21 a nino	amino acio	aci l	ds							
	(i	.i) M	OLECU	JLE I	YPE:	pro	teir	L .								
	(x	i) S	EQUEN	ICE D	ESCR	IPTI	ON:	SEQ	ID N	0:4:						
Ser 1	Lys	Lys ?	Arg A	sn T 5	yr G	lu A	sn L	eu A	sp G 10	ln L	eu S	er T	yr A	sp A 15	.sn	
Lys	Arg	Gly F	ro L 20	уs												
(2)	INFO	RMATI	ON F	OR S	EQ I	D NO	:5:			. .						
	(i)	(B) (C)	ENCE LENG TYP STR TOPG	GTH: E: nu ANDEI	4340 cle: ONES	D basic ac	se pa	: airs								
	(ii)	MOLE	CULE	TYPE	E: c[NA	•									

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 189..3899

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

The state of the s	
CCCTTAATAA GATTTGCCAC GTACACTCGA GCCATCGCGA GTGTCCTTGA GCCGCGGGTG	60
ACGGTGGCTC TCGCTGCTCG CGCCCCCTCC TCCCGCGGGG GGAGCCTGAT GCCACGTTCC	120
CTATGAATTA TTTATCGCCG GCCTAAAAAT ACCCCGAACT TCACAGCCCG AGTGACCCTC	180
CGGTGGAC ATG GGT GGG GCC CTG GGC CCG GCC CTG TTG CTC ACC TCG CTC Met Gly Gly Ala Leu Gly Pro Ala Leu Leu Thr Ser Leu 1 5 10	230
TTC GGT GCC TGG GCA GGG CTG GGT CCG GGG CAG GGC GAG CAG GGC ATG Phe Gly Ala Trp Ala Gly Leu Gly Pro Gly Gln Gly Glu Gln Gly Met 20 25 30	278
ACG GTG GCC GTG GTO TTT AGC AGC TCA GGG CCG CCC CAG GCC CAG TTC Thr Val Ala Val Val Phe Ser Ser Gly Pro Pro Gln Ala Gln Phe 35 40 45	326
CGT GTC CGC CTC ACC CCC CAG AGC TTC CTG GAC CTA CCC CTG GAG ATC Arg Val Arg Leu Thr Pro Gln Ser Phe Leu Asp Leu Pro Leu Glu Ile 50 55 60	374
CAG CCG CTC ACA GTT GGG GTC AAC ACC ACC AAC CCC AGC AGC CTC CTC Gln Pro Leu Thr Val Gly Val Asn Thr Thr Asn Pro Ser Ser Leu Leu 65 70 75	422
ACC CAG ATC TGC GGC CTC CTG GGT GCT GCC CAC GTC CAC GGC ATT GTC Thr Gln Ile Cys Gly Leu Leu Gly Ala Ala His Val His Gly Ile Val 80 90	470
TTT GAG GAC AAC GTG GAC ACC GAG GCG GTG GCC CAG ATC CTT GAC TTC Phe Glu Asp Asn Val Asp Thr Glu Ala Val Ala Gln Ile Leu Asp Phe 95 100 105 110	518
ATC TCC CAG ACC CAT GTG CCC ATC CTC AGC ATC AGC GGA GGC TCT Ile Ser Ser Gln Thr His Val Pro Ile Leu Ser Ile Ser Gly Gly Ser 115 120 125	566
GCT GTG GTC CTC ACC CCC AAG GAG CCG GGC TCC GCC TTC CTG CAG CTG Ala Val Val Leu Thr Pro Lys Glu Pro Gly Ser Ala Phe Leu Gln Leu 130 135 140	614
GGC GTG TCC CTG GAG CAG CTG CTG CAG GTG CTG TTC AAG GTG CTG GAA Gly Val Ser Leu Glu Gln Gln Leu Gln Val Leu Phe Lys Val Leu Glu 145 150 155	662
GAG TAC GAC TGG AGC GCC TTC GCC GTC ATC ACC AGC CTG CAC CCG GGC Glu Tyr Asp Trp Ser Ala Phe Ala Val Ile Thr Ser Leu His Pro Gly 160	710
CAC GCG CTC TTC CTG GAG GGC GTG CGC GCC GTC GCC GAC GCC AGC CAC His Ala Leu Phe Leu Glu Gly Val Arg Ala Val Ala Asp Ala Ser His 185 190	758
GTG AGT TGG CGG CTG CTG GAC GTG,GTC ACG CTG GAA CTG GAC CCG GGA Val Ser Trp Arg Leu Leu Asp Val Val Thr Leu Glu Leu Asp Pro Gly 195 200 205	806

GGG Gly	CCG Pro	CGC Arg	GCG Ala 210	CGC Arg	ACG Thr	CAG Gln	CGC Arg	CTG Leu 215	CTG Leu	CGC Arg	CAG Gln	CTC Leu	GAC Asp 220	GCG Ala	CCC Pro	854
GTG Val	TTT Phe	GTG Val 225	GCC Ala	TAC Tyr	TGC Cys	TCG Ser	CGC Arg 230	GAG Glu	GAG Glu	GCC Ala	GAG Glu	GTG Val 235	CTC Leu	TTC Phe	GCC Ala	902
GAG Glu	GCG Ala 240	GCG Ala	CAG Gln	GCC Ala	GGT Gly	CTG Leu 245	GTG Val	GGG Gly	CCC Pro	GGC Gly	CAC His 250	GTG Val	TGG Trp	CTG Leu	GTG Val	950
CCC Pro 255	AAC Asn	CTG Leu	GCG Ala	CTG Leu	GGC Gly 260	AGC Ser	ACC Thr	GAT Asp	GCG Ala	CCC Pro 265	CCC Pro	GCC Ala	ACC Thr	TTC Phe	CCC Pro 270	998
GTG Val	GGC Gly	CTC Leu	ATC Ile	AGC Ser 275	GTC Val	GTC Val	ACC Thr	GAG Glu	AGC Ser 280	TGG Trp	CGC Arg	CTC Leu	AGC Ser	CTG Leu 285	CGC Arg	1046
CAG Gln	AAG Lys	GTG Val	CGC Arg 290	GAC Asp	GGC Gly	GTG Val	GCC Ala	ATT Ile 295	CTG Leu	GCC Ala	CTG Leu	GGC Gly	GCC Ala 300	CAC His	AGC Ser	1094
TAC Tyr	TGG Trp	CGC Arg 305	CAG Gln	CAT His	GGA Gly	ACC Thr	CTG Leu 310	CCA Pro	GCC Ala	CCG Pro	GCC Ala	GGG Gly 315	GAC Asp	CAa	CGT Arg	1142
GTT Val	CAC His 320	CCT Pro	GGG Gly	CCC Pro	GTC Val	AGC Ser 325	CCT Pro	GCC Ala	CGG Arg	GAG Glu	GCC Ala 330	TTC Phe	TAC Tyr	AGG Arg	CAC His	1190
CTA Leu 335	CTG Leu	AAT Asn	GTC Val	ACC Thr	TGG Trp 340	GAG Glu	GGC Gly	CGA Arg	GAC Asp	TTC Phe 345	TCC Ser	TTC Phe	AGC Ser	CCT Pro	GGT Gly 350	1238
GGG Gly	TAC Tyr	CTG Leu	GTC Val	CAG Gln 355	CCC Pro	ACC Thr	ATG Met	GTG Val	GTG Val 360	ATC Ile	GCC Ala	CTC Leu	AAC Asn	CGG Arg 365	CAC	1286
CGC Arg	CTC Leu	TGG Trp	GAG Glu 370	ATG Met	GTG Val	GGG Gly	CGC Arg	TGG Trp 375	GAG Glu	CAT	GGC Gly	GTC Val	CTA Leu 380	TAC Tyr	ATG Met	1334
AAG Lys	TAC Tyr	CCC Pro 385	Val	TGG Trp	CCT Pro	CGC Arg	TAC Tyr 390	Ser	GCC Ala	TCT Ser	CTG Leu	CAG Gln 395	CCT Pro	GTG Val	GTG Val	1382
GAC Asp	AGT Ser 400	Arg	CAC His	CTG Leu	ACG Thr	GTG Val 405	GCC Ala	ACG Thr	CTG Leu	GAA Glu	GAG Glu 410	Arg	CCC Pro	TTT Phe	GTC Val	1430
ATC Ile 415	GTG Val	GAG Glu	AGC Ser	CCT Pro	GAC Asp 420	CCT Pro	GGC Gly	ACA Thr	GGA Gly	GGC Gly 425	TGT . Cys	GTC Val	CCC Pro	AAC Asn	ACC Thr 430	1478
GTG Val	CCC Pro	TGC Cys	CGC Arg	AGG Arg 435	Gln	AGC Ser	AAC Asn	CAC	ACC Thr 440	TTC Phe	AGC Ser	AGC Ser	GGG Gly	GAC Asp 445	GTG Val	1526
GCC Ala	CCC Pro	TAC Tyr	ACC Thr 450	Lys	CTC Leu	CÀa ICC	TGT	AAG 'Lys 455	GGA Gly	TTC Phe	TGC Cys	ATC Ile	GAC Asp 460	ATC Ile	CTC Leu	1574
AAG Lys	AAG Lys	CTG Leu 465	Ala	AGA Arg	GTG Val	GTC Val	AAA Lys 470	Phe	TCC Ser	TAC Tyr	GAC Asp	CTG Leu 475	TAC Tyr	CTG Leu	GTG Val	1622

ACC Thr	AAC Asn 480	GGC Gly	AAG Lys	CAT His	GGC Gly	AAG Lys 485	CGG Arg	GTG Val	CGC Arg	GGC Gly	GTA Val 490	TGG Trp	AAC Asn	GGC Gly	ATG Met	1670)
ATT Ile 495	GGG Gly	GAG Glu	GTG Val	TAC Tyr	TAC Tyr 500	AAG Lys	CGG Arg	GCA Ala	GAC Asp	ATG Met 505	GCC Ala	ATC Ile	GGC Gly	TCC Ser	CTC Leu 510	1718	3
ACC Thr	ATC Ile	TAA neA	GAG Glu	GAA Glu 515	CGC Arg	TCC Ser	GAG Glu	ATC Ile	GTA Val 520	GAC Asp	TTC Phe	TCT Ser	GTA Val	CCC Pro 525	TTT Phe	1766	ŝ
GTG Val	GAG Glu	ACG Thr	GGC Gly 530	ATC Ile	AGT Ser	GTG Val	ATG Met	GTG Val 535	GCT Ala	CGC Arg	AGC Ser	TAA neA	GGC Gly 540	ACC Thr	GTC Val	181	4
TCC Ser	CCC Pro	TCG Ser 545	GCC Ala	TTC Phe	TTG Leu	GAG Glu	CCA Pro 550	TAT Tyr	AGC Ser	CCT Pro	GCA Ala	GTG Val 555	TGG Trp	GTG Val	ATG Met	1862	2
ATG Met	TTT Phe 560	GTC Val	ATG Met	TGC Cys	CTC Leu	ACT Thr 565	GTG Val	GTG Val	GCC Ala	ATC Ile	ACC Thr 570	GTC Val	TTC Phe	ATG Met	TTC Phe	1910	3
GAG Glu 575	TAC Tyr	TTC Phe	AGC Ser	CCT Pro	GTC Val 580	AGC Ser	TAC Tyr	AAC Asn	CAG Gln	AAC Asn 585	CTC Leu	ACC Thr	AGA Arg	GGC Gly	AAG Lys 590	195	8
AAG Lys	TCC Ser	GGG Gly	GGC Gly	CCA Pro 595	Ala	TTC Phe	ACT Thr	ATC Ile	GGC Gly 600	ГЛа	TCC Ser	GTG Val	TGG Trp	CTG Leu 605	CTG Leu	200	6
TGG Trp	GCG Ala	CTG Leu	GTC Val 610	Phe	DAA neA	AAC Asn	TCA Ser	GTG Val 615	Pro	ATC Ile	GAG Glu	AAC neA	CCG Pro 620	CGG Arg	GGC Gly	205	4
ACC Thr	ACC Thr	AGC Ser 625	ГЛа	ATC Ile	ATG Met	GTT Val	CTG Leu 630	Val	TGG Trp	GCC Ala	TTC Phe	TTT Phe 635	Ala	GTC Val	ATC Ile	210	2
TTC Phe	CTC Leu 640	Ala	AGA Arg	TAC Tyr	ACG Thr	GCC Ala 645	AAC Asn	CTG Leu	GCC Ala	GCC Ala	TTC Phe 650	Met	ATC Ile	CAA Gln	GAG Glu	215	0
CAA Gln 655	Tyr	ATC	GAC Asp	ACT Thr	GTG Val 660	Ser	GGC Gly	CTC Leu	AGT Ser	GAC Asp 665	Lys	Lys	TTT Phe	CAG Gln	CGG Arg 670	219	8
CCT Pro	CAA Gln	GAT Asp	CAG Gln	TAC Tyr 675	Pro	CCT Pro	TTC Phe	: CGC : Arg	TTC Phe 680	Gly	ACG Thr	GTG Val	CCC	AAC Asn 685	GGC Gly	224	6
AGC Ser	ACG Thr	GAG Glu	CGG Arg 690	Asn	: ATC	CGC Arg	AGT Ser	AAC Asn 695	Tyr	CGT Arg	GAC Asp	ATG Met	CAC His 700	Thr	CAC	229	4
ATG Met	GTC Val	AAG Lys 705	Phe	AAC Asn	CAG Gln	CGC Arg	TCG Ser 710	Val	GAG Glu	gac Asp	GCG Ala	CTC Leu 715	Thr	AGC Ser	CTC Leu	234	2
ГАа	ATG Met 720	Gly	. TAR	CTG Leu	GAT Asp	GCC Ala 725	Phe	: ATC	TAT	Asp	GCT Ala 730	Ala	GTC Val	CTC Leu	AAC Asn	239	0
TAC Tyr 735	Met	GCA Ala	GGC Gly	: AAG Lys	GAC Asp 740	Glu	GGC	Cys	: AAG	CTG Leu 745	Val	ACC Thr	ATT	GGG Gly	Ser 750	243	8

GGC Gly	AAG Lys	GTC Val	TTT Phe	GCT Ala 755	ACC Thr	ACT Thr	GGC Gly	TAC Tyr	GGC Gly 760	ATC Ile	GCC Ala	ATG Met	CAG Gln	AAG Lys 765	GAC Asp	2486
TCC Ser	CAC His	TGG Trp	AAG Lys 770	CGG Arg	GCC Ala	ATA Ile	GAC Asp	CTG Leu 775	GCG Ala	CTC Leu	TTG Leu	CAG Gln	TTC Phe 780	CTG Leu	GGG Gly	2534
GAC Asp	GGA Gly	GAG Glu 785	ACA Thr	CAG Gln	AAA Lys	CTG Leu	GAG Glu 790	ACA Thr	GTG Val	TGG Trp	CTC Leu	TCA Ser 795	GGG Gly	ATC Ile	TGC Cys	2582
CAG Gln	AAT Asn 800	GAG Glu	AAG Lys	AAC Asn	GAG Glu	GTG Val 805	ATG Met	AGC Ser	AGC Ser	AAG Lys	CTG Leu 810	GAC Asp	ATC Ile	GAC Asp	AAC Asn	2630
ATG Met 815	GCA Ala	GGC Gly	GTC Val	TTC Phe	TAC Tyr 820	ATG Met	CTG Leu	CTG Leu	GTG Val	GCC Ala 825	ATG Met	GGG Gly	CTG Leu	GCC Ala	CTG Leu 830	2678
CTG Leu	GTC Val	TTC Phe	GCC Ala	TGG Trp 835	GAG Glu	CAC His	CTG Leu	GTC Val	TAC Tyr 840	TGG Trp	AAG Lys	CTG Leu	CGC Arg	CAC His 845	TCG Ser	2726
GTG Val	CCC Pro	AAC Asn	TCA Ser 850	TCC Ser	CAG Gln	CTG Leu	GAC Asp	TTC Phe 855	CTG Leu	CTG Leu	GCT Ala	TTC Phe	AGC Ser 860	AGG Arg	GGC	2774
ATC Ile	TAC Tyr	AGC Ser 865	Суз	TTC Phe	AGC Ser	GGG Gly	GTG Val 870	Gln	AGC Ser	CTC Leu	GCC Ala	AGC Ser 875	CCA Pro	CCG Pro	CGG Arg	2822
CAG Gln	GCC Ala 880	AGC Ser	CCG Pro	GAC Asp	CTC Leu	ACG Thr 885	GCC Ala	AGC Ser	TCG Ser	GCC Ala	CAG Gln 890	GCC Ala	AGC Ser	GTG Val	CTC Leu	2870
AAG Eys 268	ATG Met	CTG Leu	CAG Gln	GCA Ala	GCC Ala 900	CGC Arg	GAC	ATG Met	GTG Val	ACC Thr 905	ACG Thr	GCG Ala	GGC Gly	GTA Val	AGC Ser 910	2918
AGC Ser	TCC Ser	CTG Leu	Asp Asp	CGC Arg 915	GCC Ala	ACT Thr	CGC Arg	ACC Thr	ATC Ile 920	Glu	AAT Asn	TGG Trp	GGT Gly	GGC Gly 925	GGC Gly	2966
CGC Arg	CGT Arg	Ala	Pro	Pro	CCG Pro	Ser	Pro	Cys	CCG Pro	Thr	Pro	Arg	TCT Ser 940	Gly	CCC	3014
AGC Ser	CCA Pro	TGC Cys 945	Leu	CCC Pro	ACC Thr	CCC Pro	GAC Asp 950	Pro	CCC Pro	CCA Pro	GAG Glu	CCG Pro 955	Ser	CCC Pro	ACG Thr	3062
GGC Gly	TGG Trp 960	Gly	CCG Pro	CCA Pro	GAC Asp	GGG Gly 965	GGT Gly	CGC Arg	GCG Ala	GCG Ala	CTT Leu 970	Val	CGC Arg	AGG Arg	GCT Ala	3110
CCG Pro 975	Gln	CCC Pro	CCG Pro	GGC Gly	CGC Arg 980	Pro	CCG Pro	ACG Thr	CCG Pro	GGG Gly 985	CCG Pro	CCC Pro	CTG Leu	TCC Ser	GAC Asp 990	3158
GTC Val	TCC Ser	CGA Arg	GTG Val	TCG Ser 995	Arg	CGC Arg	CCA Pro	GCC Ala	TGG Trp 100	Glu	GCG Ala	CGG Arg	TGG Trp	CCG Pro 100	GTG Val 5	3206
CGG Arg	ACC Thr	GGG Gly	CAC His	Cys	GGG Gly	AGG Arg	CAC His	CTC Leu 101	Ser	GCC Ala	TCC Ser	GAG Glu	CGG Arg 102	Pro	CTG Leu	3254

TCG CCC GCG C Ser Pro Ala A 1025	CGC TGT Arg Cys	CAC TAC His Tyr	AGC TCC Ser Ser 1030	TTT C	ro Arg	GCC GAC Ala Asp 1035	CGA TCC Arg Ser	3302
GGC CGC CCC TGly Arg Pro F	TTC CTC Phe Leu	CCG CTC Pro Leu 1045	Phe Pro	GAG C Glu P	CC CCG ro Pro 1050	GIU Leu	GAG GAC Glu Asp	3350
CTG CCG CTG (Leu Pro Leu 1 1055	CTC GGT Leu Gly	CCG GAG Pro Glu 1060	CAG CTG Gln Leu	Ala A	cg cgg rg Arg .065	GAG GCC Glu Ala	CTG CTG Leu Leu 1070	3398
CAC GCG GCC His Ala Ala	TGG GCC Trp Ala 1075	Arg Gly	TCG CGC Ser Arg	CCG C Pro A 1080	CGT CAC	GCT TCC Ala Ser	CTG CCC Leu Pro 1085	3446
AGC TCC GTG Ser Ser Val	GCC GAG Ala Glu 1090	GCC TTC Ala Phe	GCT CGG Ala Arg 109	Pro S	GC TCG Ser Ser	CTG CCC Leu Pro 1100	Ala Gly	3494
TGC ACC GGC Cys Thr Gly 1105	Pro Ala	TGC GCC Cys Ala	CGC CCC Arg Pro 1110	GAC G Asp G	GGA CAC Gly His	TCG GCC Ser Ala 1115	TGC AGG Cys Arg	3542
CGC TTG GCG Arg Leu Ala 1120	CAG GCG Gln Ala	CAG TCG Gln Ser 112	Met Cys	TTG (CCG ATC Pro Ile 1130	thr wid	GAG GCC Glu Ala	3590
TGC CAG GAG Cys Gln Glu 1135	GGC GAG Gly Glu	CAG GCA Gln Ala 1140	GGG GCG Gly Ala	A Pro A	GCC TGG Ala Trp 1145	CAG CAC Gln His	AGA CAG Arg Gln 1150	3638
CAC GTC TGC His Val Cys	CTG CAC Leu His 115	Ala His	GCC CAC	C CTG C s Leu l 1160	CCA TTT Pro Phe	TGC TGG Cys Trp	GGG GCT Gly Ala 1165	3686
GTC TGT CCT Val Cys Pro	CAC CTT His Leu 1170	CCA CCC Pro Pro	Cys Ala	a Ser I	CAC GGC His Gly	TCC TGG Ser Trp 118	red ser	3734
GGG GCC TGG Gly Ala Trp 1185	Gly Pro	CTG GGG Leu Gly	CAC AGO His Aro 1190	G GGC A	AGG ACT Arg Thr	CTG GGG Leu Gly 1195	CTG GGC Leu Gly	3782
ACA GGC TAC Thr Gly Tyr 1200	Arg Asp	Ser Gly	, Gly Le	ı Asp	Glu lle	ser Arg	GTA GCC Val Ala	3830
CGT GGG ACG Arg Gly Thr 1215	CAA GGC Gln Gly	TTC CCC Phe Pro 1220	GGA CC	o Cas	ACC TGG Thr Trp 1225	AGA CGG Arg Arg	ATC TCC Ile Ser 1230	3878
AGT CTG GAG Ser Leu Glu	TCA GAA Ser Glu 123	Val	AGTTATCA	GCCAC	TCAGG C	TCCGAGCC	Α	3926
GCTGGATTCT (CTGCCTGC	CA CTGTO	CAGGGT T	AAGCGG	CAG GCA	GGATTGG	GCTTTTCTGG	3986
CTTCTACCAT (GAAATCCT	GG CCATO	GGACC C	CAGTGA	CAG ATG	ATGTCTT	CCATGGTCAT	4046
CAGTGACCTC A	AGTAGCCT	CA AATC	ATGGTG A	GGGCTG	GGC TTT	TGCTGTC	CTCTTCTCAC	4106
GCAGAGTTCT (GCCAGGAG	GG TGTG	CTGTGG G	GGTCAG	ACT CCT	GAGGCTC	TCCCTTCCCT	4166
GGGGCTAGCC	AGTTACTG	GT CATG	CCTGCT G	TGGGCA	TGG AGG	CTGGAAC	TTGTGGTTGA	4226

4286

4340

GGCAGGGCCA TCCCGATCCT TGCTCTACCT GGCTAGAGTT TCTTCTCATC AGAGCACTGG GACATTAAAC CCACCTTTTC CCAGAAAAAA AAAAAAAAA AAAAAAAAA AAAA (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1236 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: Met Gly Gly Ala Leu Gly Pro Ala Leu Leu Thr Ser Leu Phe Gly Ala Trp Ala Gly Leu Gly Pro Gly Gln Gly Glu Gln Gly Met Thr Val Ala Val Val Phe Ser Ser Ser Gly Pro Pro Gln Ala Gln Phe Arg Val Arg Leu Thr Pro Gln Ser Phe Leu Asp Leu Pro Leu Glu Ile Gln Pro Leu Thr Val Gly Val Asn Thr Thr Asn Pro Ser Ser Leu Leu Thr Gln Ile Cys Gly Leu Leu Gly Ala Ala His Val His Gly Ile Val Phe Glu Asp Asn Val Asp Thr Glu Ala Val Ala Gln Ile Leu Asp Phe Ile Ser 105 Ser Gln Thr His Val Pro Ile Leu Ser Ile Ser Gly Gly Ser Ala Val Val Leu Thr Pro Lys Glu Pro Gly Ser Ala Phe Leu Gln Leu Gly Val 130 Ser Leu Glu Gln Gln Leu Gln Val Leu Phe Lys Val Leu Glu Glu Tyr Asp Trp Ser Ala Phe Ala Val Ile Thr Ser Leu His Pro Gly His Ala Leu Phe Leu Glu Gly Val Arg Ala Val Ala Asp Ala Ser His Val Ser 185 Trp Arg Leu Leu Asp Val Val Thr Leu Glu Leu Asp Pro Gly Gly Pro 200 Arg Ala Arg Thr Gln Arg Leu Leu Arg Gln Leu Asp Ala Pro Val Phe Val Ala Tyr Cys Ser Arg Glu Glu Ala Glu Val Leu Phe Ala Glu Ala Ala Gln Ala Gly Leu Val Gly Pro'Gly His Val Trp Leu Val Pro Asn 255 Leu Ala Leu Gly Ser Thr Asp Ala Pro Pro Ala Thr Phe Pro Val Gly

265

260

Leu	Ile	Ser 275	Val	Val	Thr	Glu	Ser 280	Trp	Arg	Leu	Ser	Leu 285	Arg	Gln	Lys
Val	Arg 290	Asp	Gly	Val	Ala	Ile 295	Leu	Ala	Leu	Gly	Ala 300	His	Ser	Tyr	Trp
Arg 305	Gln	His	Gly	Thr	Leu 310	Pro	Ala	Pro	Ala	Gly 315	Aap	Сув	Arg	Val	His 320
Pro	Gly	Pro	Val	Ser 325	Pro	Ala	Arg	Glu	Ala 330	Phe	Tyr	Arg	His	Leu 335	Leu
Asn	Val	Thr	Trp 340	Glu	Gly	Arg	Asp	Phe 345	Ser	Phe	Ser	Pro	Gly 350	Gly	Tyr
Leu	Val	Gln 355	Pro	Thr	Met	Val	Val 360	Ile	Ala	Leu	Asn	Arg 365	His	Arg	Leu
Trp	Glu 370	Met	Val	Gly	Arg	Trp 375	Glu	His	Gly	Val	Leu 380	Tyr	Met	Lys	Tyr
Pro 385	Val	Trp	Pro	Arg	Tyr 390	Ser	Ala	Ser	Leu	Gln 395	Pro	Val	Val	Asp	Ser 400
Arg	His	Leu	Thr	Val 405	Ala	Thr	Leu	Glu	Glu 410	Arg	Pro	Phe	Val	Ile 415	Val
Glu	Ser	Pro	Asp 420		Gly	Thr	Gly	Gly 425	Cys	Val	Pro	Asn	Thr 430	Val	Pro
Cya	Arg	Arg 435		Ser	Asn	His	Thr 440	Phe	Ser	Ser	Gly	Asp 445	Val	Ala	Pro
Tyr	Thr 450		Leu	Сув	САв	Lys 455	Gly	Phe	Сув	Ile	Asp 460	Ile	Leu	Lys	Lys
Leu 465		Arg	Val	Val	Lys 470		Ser	Tyr	Asp	Leu 475	Tyr	Leu	Val	Thr	Asn 480
Gly	Lys	His	Gly	Ļys 485	Arg	Val	Arg	Gly	Val 490	Trp	Asn	Gly	Met	Ile 495	Gly
Glu	Val	Tyr	Tyr 500		Arg	Ala	Asp	Met 505	Ala	Ile	Gly	Ser	Leu 510	Thr	Ile
Asn	Glu	Glu 515		Ser	Glu	Ile	Val 520		Phe	Ser	Val	Pro 525	Phe	Val	Glu
Thr	Gly 530		Ser	Val	Met	Val 535	Ala	Arg	Ser	Asn	Gly 540	Thr	Val	Ser	Pro
Ser 545		Phe	Leu	Glu	Pro 550		Ser	Pro	Ala	Val 555	Trp	Val	Met	Met	Phe 560
Val	Met	Суз	Leu	Thr 565	Val	Val	Ala	Ile	Thr 570	Val	Phe	Met	Phe	Glu 575	Tyr
Phe	Ser	Pro	Val 580		Tyr	Asn	Gln	Asn 585	Leu	Thr	Arg	Gly	590 Lys	Lys	Ser
Gly	Gly	Pro 595		Phe	Thr	Ile	Gly 600	, Lys	Ser	Val	Trp	Leu 605	Leu	Trp	Ala
Leu	Val 610		. Asn	Asn	Ser	Val 615		Ile	Glu	Asn	Pro 620	Arg	Gly	Thr	Thr

Ser Lys Ile Met Val Leu Val Trp Ala Phe Phe Ala Val Ile Phe Leu Ala Arg Tyr Thr Ala Asn Leu Ala Ala Phe Met Ile Gln Glu Gln Tyr 650 Ile Asp Thr Val Ser Gly Leu Ser Asp Lys Lys Phe Gln Arg Pro Gln Asp Gln Tyr Pro Pro Phe Arg Phe Gly Thr Val Pro Asn Gly Ser Thr Glu Arg Asn Ile Arg Ser Asn Tyr Arg Asp Met His Thr His Met Val Lys Phe Asn Gln Arg Ser Val Glu Asp Ala Leu Thr Ser Leu Lys Met Gly Lys Leu Asp Ala Phe Ile Tyr Asp Ala Ala Val Leu Asn Tyr Met Ala Gly Lys Asp Glu Gly Cys Lys Leu Val Thr Ile Gly Ser Gly Lys Val Phe Ala Thr Thr Gly Tyr Gly Ile Ala Met Gln Lys Asp Ser His Trp Lys Arg Ala Ile Asp Leu Ala Leu Leu Gln Phe Leu Gly Asp Gly Glu Thr Gln Lys Leu Glu Thr Val Trp Leu Ser Gly Ile Cys Gln Asn 795 Glu Lys Asn Glu Val Met Ser Ser Lys Leu Asp Ile Asp Asn Met Ala Gly Val Phe Tyr Met Leu Leu Val Ala Met Gly Leu Ala Leu Leu Val Phe Ala Trp Glu His Leu Val Tyr Trp Lys Leu Arg His Ser Val Pro 845 Asn Ser Ser Gln Leu Asp Phe Leu Leu Ala Phe Ser Arg Gly Ile Tyr Ser Cys Phe Ser Gly Val Gln Ser Leu Ala Ser Pro Pro Arg Gln Ala 875 Ser Pro Asp Leu Thr Ala Ser Ser Ala Gln Ala Ser Val Leu Lys Met Leu Gln Ala Ala Arg Asp Met Val Thr Thr Ala Gly Val Ser Ser Ser Leu Asp Arg Ala Thr Arg Thr Ile Glu Asn Trp Gly Gly Gly Arg Arg Ala Pro Pro Pro Ser Pro Cys Pro Thr Pro Arg Ser Gly Pro Ser Pro Cys Leu Pro Thr Pro Asp Pro Pro Pro Glu Pro Ser Pro Thr Gly Trp

955

Gly Pro Pro Asp Gly Gly Arg Ala Ala Leu Val Arg Arg Ala Pro Gln

Pro Pro Gly Arg Pro Pro Thr Pro Gly Pro Pro Leu Ser Asp Val Ser 985

. .

Arg Val Ser Arg Arg Pro Ala Trp Glu Ala Arg Trp Pro Val Arg Thr 1000 1005

Gly His Cys Gly Arg His Leu Ser Ala Ser Glu Arg Pro Leu Ser Pro 1015

Ala Arg Cys His Tyr Ser Ser Phe Pro Arg Ala Asp Arg Ser Gly Arg 1030 1035

Pro Phe Leu Pro Leu Phe Pro Glu Pro Pro Glu Leu Glu Asp Leu Pro 1045 1050

Leu Leu Gly Pro Glu Gln Leu Ala Arg Arg Glu Ala Leu Leu His Ala 1065

Ala Trp Ala Arg Gly Ser Arg Pro Arg His Ala Ser Leu Pro Ser Ser 1080

Val Ala Glu Ala Phe Ala Arg Pro Ser Ser Leu Pro Ala Gly Cys .Thr 1095 1100

Gly Pro Ala Cys Ala Arg Pro Asp Gly His Ser Ala Cys Arg Arg Leu 1110 1115

Ala Gln Ala Gln Ser Met Cys Leu Pro Ile Tyr Arg Glu Ala Cys Gln

Glu Gly Glu Gln Ala Gly Ala Pro Ala Trp Gln His Arg Gln His Val 1140 1145 1150

Cys Leu His Ala His Ala His Leu Pro Phe Cys Trp Gly Ala Val Cys 1160

Pro His Leu Pro Pro Cys Ala Ser His Gly Ser Trp Leu Ser Gly Ala 1175

Trp Gly Pro Leu Gly His Arg Gly Arg Thr Leu Gly Leu Gly Thr Gly 1190 1195

Tyr Arg Asp Ser Gly Gly Leu Asp Glu Ile Ser Arg Val Ala Arg Gly 1210

Thr Gln Gly Phe Pro Gly Pro Cys Thr Trp Arg Arg Ile Ser Ser Leu 1225

Glu Ser Glu Val 1235

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both (D) TOPOLOGY: both
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 2..22

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
C TCT GAG GCT CAG CCT GTC CCC AG Ser Glu Ala Gln Pro Val Pro 1 5	24
(2) INFORMATION FOR SEQ ID NO:8:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 7 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
Ser Glu Ala Gln Pro Val Pro 1 5	
(2) INFORMATION FOR SEQ ID NO:9:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 11 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: unknown(D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
AGAAGGGGT G	11
(2) INFORMATION FOR SEQ ID NO:10:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4808 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both 	
(ii) MOLECULE TYPE: cDNA	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 3114705	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: -	
ATCATGGGAC CGGGTGAGCG CTGAGAATCG CGGCCGCAGC CATCAGCCCT GGAGATGACC	60
AGGAGCGGCC ACTGCTGAGA ACTATGTGGA GAGAGCTGC GAGCCCTGCT GCAGAGCCTC	120
CGGCTGGGAT AGCCGCCCC CGTGGGGGCG ATGCGGACAG CGCGGGACAG CCAGGGGAGC	180
GCGCTGGGGC CGCAGCATGC GGGAACCCGC TAAACCCGGT GGCTGCTGAG GCGGCCGAGA	240
TGCTCGTGCG CGCAGCGCC CCCACTGCAT CCTCGACCTT CTCGGGCTAC AGGGACCGTC	300

AGTGGCGACT ATG GGC AGA GTG GGC TAT TGG ACC CTG CTG GTG CCG Met Gly Arg Val Gly Tyr Trp Thr Leu Leu Val Leu Pro 1 5 10	349
GCC CTT CTG GTC TGG CGC GGT CCG GCG CCG AGC GCG GCG GAG AAG Ala Leu Leu Val Trp Arg Gly Pro Ala Pro Ser Ala Ala Ala Glu Lys 20 25	397
GGT CCC CCC GCG CTA AAT ATT GCG GTG ATG CTG GGT CAC AGC CAC GAC Gly Pro Pro Ala Leu Asn Ile Ala Val Met Leu Gly His Ser His Asp 35 40 45	445
GTG ACA GAG CGC GAA CTT CGA ACA CTG TGG GGC CCC GAG CAG GCG GCG Val Thr Glu Arg Glu Leu Arg Thr Leu Trp Gly Pro Glu Gln Ala Ala 50 55 60	493
GGG CTG CCC CTG GAC GTG AAC GTG GTA GCT CTG CTG ATG AAC CGC ACC Gly Leu Pro Leu Asp Val Asn Val Val Ala Leu Leu Met Asn Arg Thr 65 70 75	541
GAC CCC AAG AGC CTC ATC ACG CAC GTG TGC GAC CTC ATG TCC GGG GCA Asp Pro Lys Ser Leu Ile Thr His Val Cys Asp Leu Met Ser Gly Ala 80 85 90	589
CGC ATC CAC GGC CTC GTG TTT GGG GAC GAC ACG GAC CAG GAG GCC GTA Arg Ile His Gly Leu Val Phe Gly Asp Asp Thr Asp Gln Glu Ala Val 95 100 105	637
GCC CAG ATG CTG GAT TTT ATC TCC TCC CAC ACC TTC GTC CCC ATC TTG Ala Gln Met Leu Asp Phe Ile Ser Ser His Thr Phe Val Pro Ile Leu 115	685
GGC ATT CAT GGG GGC GCA TCT ATG ATC ATG GCT GAC AAG GAT CCG ACG Gly Ile His Gly Gly Ala Ser Met Ile Met Ala Asp Lys Asp Pro Thr 130 135	733
TCT ACC TTC TTC CAG TTT GGA GCG TCC ATC CAG CAG CAA GCC ACG GTC Ser Thr Phe Phe Gln Phe Gly Ala Ser Ile Gln Gln Ala Thr Val 145	781
ATG CTG AAG ATC ATG CAG GAT TAT GAC TGG CAT GTC TTC TCC CTG GTG Met Leu Lys Ile Met Gln Asp Tyr Asp Trp His Val Phe Ser Leu Val 160 165 170	829
ACC ACT ATC TTC CCT GGC TAC AGG GAA TTC ATC AGC TTC GTC AAG ACC Thr Thr Ile Phe Pro Gly Tyr Arg Glu Phe Ile Ser Phe Val Lys Thr 175 180 185	877
ACA GTG GAC AAC AGC TTT GTG GGC TGG GAC ATG CAG AAT GTG ATC ACA Thr Val Asp Asn Ser Phe Val Gly Trp Asp Met Gln Asn Val Ile Thr 195 200 205	925
CTG GAC ACT TCC TTT GAG GAT GCA AAG ACA CAA GTC CAG CTG AAG AAG Leu Asp Thr Ser Phe Glu Asp Ala Lys Thr Gln Val Gln Leu Lys Lys 210 215 220	973
ATC CAC TCT TCT GTC ATC TTG CTC TAC TGT TCC AAA GAC GAG GCT GTT Ile His Ser Ser Val Ile Leu Leu Tyr Cys Ser Lys Asp Glu Ala Val 225 230 235	1021
CTC ATT CTG AGT GAG GCC CGC TCC CTT GGC CTC ACC GGG TAT GAT TTC Leu Ile Leu Ser Glu Ala Arg Ser Leu Gly Leu Thr Gly Tyr Asp Phe 240 245 250	1069
TTC TGG ATT GTC CCC AGC TTG GTC TCT GGG AAC ACG GAG CTC ATC CCA Phe Trp Ile Val Pro Ser Leu Val Ser Gly Asn Thr Glu Leu Ile Pro 265	1117

AAA Lys 270	GAG Glu	TTT Phe	CCA Pro	TCG Ser	GGA Gly 275	CTC Leu	ATT Ile	TCT Ser	GTC Val	TCC Ser 280	TAC Tyr	GAT Asp	GAC Asp	TGG Trp	GAC Asp 285	1165
TAC Tyr	AGC Ser	CTG Leu	GAG Glu	GCG Ala 290	AGA Arg	GTG Val	AGG Arg	GAC Asp	GGC Gly 295	ATT Ile	GGC Gly	ATC Ile	CTA Leu	ACC Thr 300	ACC Thr	1213
GCT Ala	GCA Ala	TCT Ser	TCT Ser 305	ATG Met	CTG Leu	GAG Glu	AAG Lys	TTC Phe 310	TCC Ser	TAC Tyr	ATC Ile	CCC Pro	GAG Glu 315	GCC Ala	AAG Lys	1261
GCC Ala	AGC Ser	TGC Cys 320	TAC Tyr	GGG Gly	CAG Gln	ATG Met	GAG Glu 325	AGG Arg	CCA Pro	GAG Glu	GTC Val	CCG Pro 330	ATG Met	CAC His	ACC Thr	1309
TTG Leu	CAC His 335	CCA Pro	TTT Phe	ATG Met	GTC Val	AAT Asn 340	GTT Val	ACA Thr	TGG Trp	GAT Asp	GGC Gly 345	Lys	GAC Asp	TTA Leu	TCC Ser	1357
TTC Phe 350	ACT Thr	GAG Glu	GAA Glu	GGC Gly	TAC Tyr 355	CAG Gln	GTG Val	CAC His	CCC Pro	AGG Arg 360	CTG Leu	GTG Val	GTG Val	ATT Ile	GTG Va·l 365	1405
CTG Leu	AAC Asn	AAA Lys	GAC Asp	CGG Arg 370	GAA Glu	TGG Trp	GAA Glu	AAG Lys	GTG Val 375	GGC Gly	AAG Lys	TGG Trp	GAG Glu	AAC Asn 380	CAT His	1453
ACG Thr	CTG Leu	AGC Ser	CTG Leu 385	Arg	CAC	GCC Ala	GTG Val	TGG Trp 390	Pro	AGG Arg	TAC Tyr	AAG Lys	TCC Ser 395	TTC Phe	TCC Ser	1501
GAC Asp	TGT Cys	GAG Glu 400	Pro	GAT Asp	GAC Asp	AAC Asn	CAT His 405	Leu	AGC Ser	ATC Ile	GTC Val	ACC Thr 410	Leu	GAG Glu	GAG Glu	1549
GCC Ala	CCA Pro 415	Phe	GTC Val	ATC Ile	GTG Val	GAA Glu 420	Asp	: ATA	GAC Asp	CCC Pro	CTG Leu 425	Thr	GAG Glu	ACG Thr	TGT	1597
GTG Val 430	Arg	AAC Asn	ACC Thr	GTG Val	CCA Pro 435	Cys	CGG Arg	AAG Lys	TTC Phe	GTC Val 440	Lys	ATC Ile	AAC Asn	AAT Asn	TCA Ser 445	1645
ACC Thr	AAT Asn	GAG Glu	GGG Gly	ATC Met	. Asn	GTG Val	AAG Lys	AAA Lys	TGC Cys 455	Cys	AAG Lys	GGG Gly	TTC Phe	TGC Cys 460	Ile	. 1693
GAT Asp	ATT Ile	CTG Lev	AAG Lys 465	Lys	CTT Leu	TCC Ser	AGA Arg	ACT Thr 470	· Val	AAG Lys	TTT Phe	ACT Thr	TAC Tyr 475	Asp	CTC Leu	1741
TAT Tyr	CTG Leu	GT0 Val 480	. Thr	AAT Asr	GGG Gly	Lys AAG	CAT His	s Gly	AAG Lys	AAA Lys	GTT Val	AAC Asn 490	Asn	GTG Val	TGG	1789
AAT Asn	GGA Gly 495	Met	ATC	GGT Gly	GAA Glu	GTG Val	Val	TAT Tyr	CAA Gln	. CGG . Arg	GCA Ala 505	Val	ATG Met	GCA Ala	GTT Val	1837
GGC Gly 510	Ser	CTC Lev	ACC Thr	ATC	C AAT Asn 515	Glu	GAA Glu	A, CGT	TCT Ser	GAA Glu 520	Val	GTG Val	GAC Asp	TTC Phe	Ser 525	1885
GTG Val	CCC Pro	TT1	r GTC = Val	GA# . Glu 530	ı Thr	GGA Gly	ATC	C AGT	GTC Val	. Met	GTI Val	TCA Ser	AGA Arg	AGT Ser 540	TAA ? Asn	1933

GGC Gly	ACC Thr	GTC Val	TCA Ser 545	CCT Pro	TCT Ser	GCT Ala	TTT Phe	CTA Leu 550	GAA Glu	CCA Pro	TTC Phe	AGC Ser	GCC Ala 555	TCT Ser	GTC Val	19	981
TGG Trp	GTG Val	ATG Met 560	ATG Met	TTT Phe	GTG Val	ATG Met	CTG Leu 565	CTC Leu	ATT Ile	GTT Val	TCT Ser	GCC Ala 570	ATA Ile	GCT Ala	GTT Val	20	029
TGG Trp	GTC Val 575	TTG Leu	GAT Aap	TAC Tyr	TCC Ser	AGC Ser 580	CCT Pro	GTT Val	GGA Gly	TAC Tyr	AAC Asn 585	AGA Arg	AAC Asn	TTA Leu	GCC Ala	20	077
AAA Lys 590	GGG Gly	T A a	GCA Ala	CCC Pro	CAT His 595	GGG Gly	CCT Pro	TCT Ser	TTT Phe	ACA Thr 600	ATT Ile	GGA Gly	AAA Lys	GCT Ala	ATA Ile 605	2	125
TGG Trp	CTT Leu	CTT Leu	TGG Trp	GGC Gly 610	CTG Leu	GTG Val	TTC Phe	AAT Asn	AAC Asn 615	TCC Ser	GTG Val	CCT Pro	GTC Val	CAG Gln 620	AAT Asn	2	173
CCT Pro	ДДА	GGG Gly	ACC Thr 625	ACC	AGC Ser	L\a YYG	ATC Ile	ATG Met 630	GTA Val	TCT Ser	GTA Val	TGG Trp	GCC Ala 635	TTC Phe	TTC Phe	2	221
GCT Ala	GTC Val	ATA Ile 640	TTC Phe	CTG Leu	GCT Ala	AGC Ser	TAC Tyr 645	ACA Thr	GCC Ala	AAT Asn	CTG Leu	GCT Ala 650	GCC Ala	TTC Phe	ATG Met	2	269
ATC Ile	CAA Gln 655	Glu	GAA Glu	TTT Phe	GTG Val	GAC Asp 660	CAA Gln	GTG Val	ACC Thr	GGC Gly	CTC Leu 665	AGT Ser	GAC Asp	AAA Lys	AAG Lys	2	317
TTT Phe 670	Gln	AGA Arg	CCT Pro	CAT His	GAC Asp 675	TAT Tyr	TCC Ser	CCA Pro	CCT Pro	TTT Phe 680	CGA Arg	TTT Phe	GGG Gly	ACA Thr	GTG Val 685	2	2365
CCT Pro	AAT Asn	GGA Gly	AGC Ser	ACG Thr 690	Glu	AGA Arg	AAC Asn	ATT Ile	CGG Arg 695	AAT Asn	DAA neA	TAT Tyr	CCC Pro	TAC Tyr 700	ATG Met	2	2413
CAT His	CAG Gln	TAC	ATG Met 705	Thr	AAA Lys	TTT Phe	AAT Asn	CAG Gln 710	Lys	GGA Gly	GTA Val	GAG Glu	GAC Asp 715	GCC Ala	TTG Leu	2	2461
GTC Val	AGC Ser	CTG Leu 720	Lys	ACG Thr	GGG	AAG Lys	CTG Leu 725	Asp	GCT Ala	TTC Phe	ATC	TAC Tyr 730	Asp	GCC Ala	GCA Ala	2	2509
GTC Val	TTG Leu 735	Asn	TAC	. TAa	GCT Ala	GGG Gly 740	Arg	GAT Asp	GAA Glu	GGC Gly	TGC Cys 745	rys	CTG Leu	GTG Val	ACC	2	2557
ATC Ile 750	Gly	AGI Ser	GGG Gly	TAC Tyr	ATC Ile 755	Phe	GCC	ACC Thr	ACC Thr	GGT Gly 760	Tyr	GGA Gly	ATT	GCC	CTT Leu 765	2	2605
CAG Gln	AAA Lys	GGC Gly	TCI Ser	CCT Pro	Trp	AAG Lys	AGG Arg	CAG Glr	ATC Ile 775	Asp	CTG Leu	GCC	TTG Leu	CTT Leu 780	CAG Gln	2	2653
TTT Phe	GTC Val	GGT Gly	GAT Asp 785	Gly	GAG	ATG Met	GAG Glu	, GAC Glu 790	ı Leu	GAG Glu	ACC	: CTG	TGG Trp 795	Leu	ACT Thr	2	2701
GGG Gly	ATC	TGC Cys 800	His	OAA S	GAG Glu	AAG Lys	044 : re4 : 208	ı Glu	GTG Val	ATG Met	AGC Ser	Ser 810	GIn	CTC Leu	GAC Asp	:	2749

		Asn										Ala			GCC Ala	2797
						Ile					Phe	TAC Tyr				2845
					Gly					Arg		GGG Gly				2893
				Gly					Ile			GTG Val		Ile	GAA Glu	2941
			Lys									TCC Ser 890	Gln			2989
ATG Met	TTA Leu 895	Lys	CTC Leu	CTC Leu	CGG Arg	TCA Ser 900	GCC Ala	AAA Lys	AAC Asn	ATT Ile	TCC Ser 905	AGC Ser	ATG Met	TCC Ser	AAC Asn	3037
											Ala	GCT Ala				3085
CAA Gln	AGA Arg	GGT Gly	TCC Ser	CTC Leu 930	ATC Ile	ATG Met	GAC Asp	ATG Met	GTT Val 935	TCA Ser	GAT Asp	L\a	GGG Gly	AAT Asn 940	TTG Leu	3133
												AGC Ser				3181
GAC Asp	AAC Asn	ATG Met 960	AAC	GAA Glu	CTC Leu	CAA Gln	ACA Thr 965	TTT Phe	GTG Val	GCC Ala	DAA neA	CGG Arg 970	CAG Gln	AAG Lys	GAT Asp	3229
AAC Asn	CTC Leu 975	AAT Asn	AAC Asn	TAT Tyr	GTA Val	TTC Phe 980	CAG Gln	GGA Gly	CAA Gln	CAT His	CCT Pro 985	CTT Leu	ACT Thr	CTC Leu	AAT Asn	3277
GAG Glu 990	TCC Ser	AAC Asn	CCT Pro	AAC Asn	ACG Thr 995	GTG Val	GAG Glu	GTG Val	GCC Ala	GTG Val 1000	Ser	ACA Thr	GAA Glu	TCC Ser	AAA Lys 1005	3325
GCG Ala	AAC Asn	TCT Ser	AGA Arg	CCC Pro 1010	Arg	CAG Gln	CTG Leu	TGG Trp	AAG Lys 1019	Lys	TCC Ser	GTG Val	GAT Asp	TCC Ser 1020	Ile	3373
CGC Arg	CAG Gln	GAT Asp	TCA Ser 1025	Leu	TCC Ser	CAG Gln	AAT Asn	CCA Pro 1030	Val	TCC Ser	CAG Gln	AGG Arg	GAT Asp 1035	Glu	GCA Ala	3421
ACA Thr	GCA Ala	GAG Glu 1040	Asn	AGG Arg	ACC Thr	CAC His	TCC Ser 1045	Leu	AAG Lys	AGC Ser	CCT Pro	AGG Arg 1050	Tyr	CTT Leu	CCA Pro	3469
GAA Glu	GAG Glu 1055	Met	GCC Ala	CAC His	TCT Ser	GAC Asp 1060	Ile'	TCA Ser	GAA Glu	ACG Thr	TCA Ser 1065	Asn	CGG Arg	GCC Ala	ACG Thr	3517
TGC Cys 1070	His	AGG Arg	GAA Glu	CCT Pro	GAC Asp 1075	Asn	AGT Ser	AAG Lys	AAC Asn	CAC His 1080	Lys	ACC Thr	AAG Lys	Asp	AAC Asn 1085	3565

TTT AAA AGG TCA GTG GCC TCC AAA TAC CCC AAG GAC TGT AGT GAG GTC Phe Lys Arg Ser Val Ala Ser Lys Tyr Pro Lys Asp Cys Ser Glu Val 1090 1095 1100	3613
GAG CGC ACC TAC CTG AAA ACC AAA TCA AGC TCC CCT AGA GAC AAG ATC Glu Arg Thr Tyr Leu Lys Thr Lys Ser Ser Pro Arg Asp Lys Ile 1105 1115	3661
TAC ACT ATA GAT GGT GAG AAG GAG CCT GGT TTC CAC TTA GAT CCA CCC Tyr Thr Ile Asp Gly Glu Lys Glu Pro Gly Phe His Leu Asp Pro Pro 1120 1125 1130	3709
CAG TTT GTT GAA AAT GTG ACC CTG CCC GAG AAC GTG GAC TTC CCG GAC Gln Phe Val Glu Asn Val Thr Leu Pro Glu Asn Val Asp Phe Pro Asp 1135 1140 1145	3757
CCC TAC CAG GAT CCC AGT GAA AAC TTC CGC AAG GGG GAC TCC ACG CTG Pro Tyr Gln Asp Pro Ser Glu Asn Phe Arg Lys Gly Asp Ser Thr Leu 1150 1165	3805
CCA ATG AAC CGG AAC CCC TTG CAT AAT GAA GAG GGG CTT TCC AAC AAC Pro Met Asn Arg Asn Pro Leu His Asn Glu Glu Gly Leu Ser Asn Asn ~1170 1175 1180	3853
GAC CAG TAT AAA CTC TAC TCC AAG CAC TTC ACC TTG AAA GAC AAG GGT Asp Gln Tyr Lys Leu Tyr Ser Lys His Phe Thr Leu Lys Asp Lys Gly 1185	3901
TCC CCG CAC AGT GAG ACC AGC GAG CGA TAC CGG CAG AAC TCC ACG CAC Ser Pro His Ser Glu Thr Ser Glu Arg Tyr Arg Gln Asn Ser Thr His 1200 1205 1210	3949
TGC AGA AGC TGC CTT TCC AAC ATG CCC ACC TAT TCA GGC CAC TTC ACC Cys Arg Ser Cys Leu Ser Asn Met Pro Thr Tyr Ser Gly His Phe Thr 1215 1220 1225	3997
ATG AGG TCC CCC TTC AAG TGC GAT GCC TGC CTG CGG ATG GGG AAC CTC Met Arg Ser Pro Phe Lys Cys Asp Ala Cys Leu Arg Met Gly Asn Leu 1230 1245	4045
TAT GAC ATC GAT GAA GAC CAG ATG CTT CAG GAG ACA GGT AAC CCA GCC Tyr Asp Ile Asp Glu Asp Gln Met Leu Gln Glu Thr Gly Asn Pro Ala 1250 1255 1260	4093
ACC GGG GAG CAG GTC TAC CAG CAG GAC TGG GCA CAG AAC AAT GCC CTT Thr Gly Glu Gln Val Tyr Gln Gln Asp Trp Ala Gln Asn Asn Ala Leu 1265 1270 1275	4141
CAA TTA CAA AAG AAC AAG CTA AGG ATT AGC CGT CAG CAT TCC TAC GAT Gln Leu Gln Lys Asn Lys Leu Arg Ile Ser Arg Gln His Ser Tyr Asp 1280 1285 1290	4189
AAC ATT GTC GAC AAA CCT AGG GAG CTA GAC CTT AGC AGG CCC TCC CGG Asn Ile Val Asp Lys Pro Arg Glu Leu Asp Leu Ser Arg Pro Ser Arg 1295 1300 1305	4237
AGC ATA AGC CTC AAG GAC AGG GAA CGG CTT CTG GAG GGA AAT TTT TAC Ser Ile Ser Leu Lys Asp Arg Glu Arg Leu Leu Glu Gly Asn Phe Tyr 1310 1325	4285
GGC AGC CTG TTT AGT GTC CCC TCA AGC AAA CTC TCG GGG AAA AAA AGC Gly Ser Leu Phe Ser Val Pro Ser Ser Lys Leu Ser Gly Lys Lys Ser 1330 1335 1340	4333
TCC CTT TTC CCC CAA GGT CTG GAG GAC AGC AAG AGG AGC AAG TCT CTC Ser Leu Phe Pro Gln Gly Leu Glu Asp Ser Lys Arg Ser Lys Ser Leu 1345 1350 1355	4381

TTG Leu	CCA Pro	GAC Asp 1360	His	ACC Thr	TCC Ser	GAT Asp	AAC Asn 1365	Pro	TTC Phe	CTC Leu	CAC His	TCC Ser 1370	His	AGG Arg	GAT Asp	4429
GAC Asp	CAA Gln 1375	CGC Arg	TTG Leu	GTT Val	ATT Ile	GGG Gly 1380	Arg	TGC Cys	CCC Pro	TCG Ser	GAC Asp 1385	Pro	TAC Tyr	Lys	CAC His	4477
TCG Ser 1390	Leu	CCA Pro	TCC Ser	CAG Gln	GCG Ala 1395	Val	TAA neA	GAC Asp	AGC Ser	TAT Tyr 1400	Leu	CGG Arg	TCG Ser	TCC Ser	TTG Leu 1405	4525
AGG Arg	TCA Ser	ACG Thr	GCA Ala	TCG Ser 1410	Tyr	Cya	TCC Ser	AGG Arg	GAC Asp 1415	Ser	CGG Arg	GGC Gly	CAC	AAT Asn 1420	Asp	4573
GTG Val	TAT Tyr	ATT Ile	TCG Ser 1425	Glu	CAT	GTT Val	ATG Met	CCT Pro 1430	Tyr	GCT Ala	GCA Ala	AAT Asn	AAG Lys 143	Asn	TAA Asn	4621
ATG Met	TAC Tyr	TCT Ser 1440	Thr	CCC Pro	AGG Arg	GTT Val	TTA Leu 1445	Asn	TCC Ser	TGC Cys	AGC Ser	AAT Asn 1450	Arg	CGC Arg	GTG Val	4669
TAC Tyr	AAG Lys 145	Glu	ATG Met	CCT Pro	AGT Ser	ATC Ile 1460	Glu	TCT Ser	GAT Asp	GTT Val	TAA/	\AAT(CTT (CCAT	TAATGT	4722
TTT	ATCT	ATA (GGAI	ATA	CA CO	GTAA:	rggco	C AA	rgtto	CTGG	AGG	GTAA	ATG '	TTGG	ATGTCC	4782
AAT	AGTG	ccc :	rgcti	AAGAG	GG A	AGGAG	3									4808
(2)	INF	ORMA:	rion	FOR	SEO	ID I	NO:1	1:								
					_											
		(i) :	SEQUI (A)	ENCE LEI	CHAI NGTH:		ERIS 64 ar	rics mino id	: acio	ds						
			SEQUI (A) (B)	ENCE LEI TYI	CHAI NGTH: PE: 8	RACTI : 140 amino	ERISS 64 ar o acs	rics mino id ar	: acio	ds						
	(-	ii) 1	SEQUI (A) (B) (D)	ENCE TYI TOI CULE	CHAI NGTH: PE: 6 POLOO	RACTI : 140 amino GY: :	ERIST 64 ar b act linea	rics mino id ar	acio		11:					
Met 1	(:		SEQUI (A) (B) (D) MOLEG	ENCE TYI TOI CULE	CHAINGTH: PE: 6 POLOG TYPI	RACTI 140 amino GY: 1 E: pi	ERIST 54 ar 5 ac: linea rote:	rics mino id ar in	acio	NO:		Pro	Ala	Leu 15	Leu	
1	(; Gly	ii) A ×i) S	SEQUI (A) (B) (D) MOLEG SEQUI	ENCE) LET) TOI CULE ENCE Gly 5	CHAI NGTH PE: ? POLOG TYPI DESG	RACTI : 140 amino GY: : E: pi CRIP:	ERIST 64 ar 5 ac: linear rote: TION	rics mino id ar in : SE	acio Q ID Leu 10	NO:	Leu			15		
1 Val	(; Gly Trp	ii) l xi) s Arg	SEQUE (A) (B) (D) MOLEG SEQUE Val Gly 20	ENCE LETY TOTO CULE ENCE Gly Fro	CHAINGTH PE: a POLOG TYPI DESG Tyr	RACTE: 146 amind GY: : CRIP: Trp Pro	ERIST 64 ar 5 act linear rote TION Thr	rics mino id ar in ESE Leu Ala 25	acio Q ID Leu 10 Ala	NO: Val	Leu Glu	Lys	Gly 30	Pro	Pro	
1 Val Ala	(; Gly Trp Leu	ii) Axi) S Arg Arg	SEQUI (B) (D) MOLEG SEQUI Val Gly 20	ENCE LEI TYI TOI CULE ENCE Gly Pro Ala	CHAINGTH PE: 2 POLOG TYPI DESG Tyr Ala Val	RACTI : 140 amino GY: : E: pr CRIPT Trp Pro Met	ERIST 64 ar o act linear rote TION Thr Ser Leu 40	rics mino id ar in ESE Leu Ala 25 Gly	acio Q ID Leu 10 Ala	NO: Val Ala Ser	Leu Glu His	Lys Asp 45	Gly 30 Val	Pro Thr	Pro Glu	
l Val Ala Arg	(; Gly Trp Leu Glu 50	ii) 1 xi) 1 Arg Arg Asn 35	SEQUE (A) (B) (D) MOLEG SEQUE Val Gly 20 Ile	ENCE O TYI O TOI CULE ENCE Gly Pro Ala	CHAINGTH PE: 2 POLOG TYPI DESG Tyr Ala Val	RACTE: 140 amino GY: : CRIPT Trp Pro Met Trp 55	ERIST 64 ar 564 ar 67 ac	rics mino id ar in Eu Ala 25 Gly Pro	acio 2 ID Leu 10 Ala His	NO: Val Ala Ser	Leu Glu His Ala 60	Lys Asp 45 Ala	Gly 30 Val	Pro Thr	Pro Glu Pro	
Val Ala Arg Leu 65	Gly Trp Leu Glu 50 Asp	ii) Axi) S Arg Arg Asn 35	SEQUE (A) (B) (D) MOLEC SEQUE Val Gly 20 Ile Arg	ENCE O TYI O TOI CULE ENCE Gly Fro Ala Thr	CHAINGTH PE: 2 POLOO TYPP DESC Tyr Ala Val Leu Val 70	RACTE: 140 amino GY: : CRIPT Trp Pro Met Trp 55 Ala	ERIS: 64 ar 64 ar 65 ac 65 ac 67 ac	rics mino id ar in Leu Ala 25 Gly Pro Leu	Q ID Leu 10 Ala His Glu Met	NO: Val Ala Ser Gln Asn 75	Leu Glu His Ala 60 Arg	Lys Asp 45 Ala	Gly 30 Val Gly Asp	Pro Thr Leu Pro	Pro Glu Pro Lys 80	
Val Ala Arg Leu 65 Ser	Gly Trp Leu Glu 50 Asp	ii) Axi) S Arg Arg Asn 35 Leu Val	SEQUI (A) (B) (D) MOLEC SEQUI Val Gly 20 Ile Arg Asn	ENCE LETYI TOI CULE ENCE Gly Fro Ala Thr Val His	CHAINGTH: 2 POLOCO TYP! DESCONTYP! Ala Val Leu Val 70 Val	RACTE: 140 amino GY: 1 E: pr CRIPT Trp Pro Met Trp 55 Ala Cys	ERISTON TO THE LEU ASP	rics mino id ar in Leu Ala 25 Gly Pro Leu Leu	Q ID Leu 10 Ala His Glu Met 90	NO: Val Ala Ser Gln Asn 75	Leu Glu His Ala 60 Arg	Lys Asp 45 Ala Thr	Gly 30 Val Gly Asp	Pro Thr Leu Pro Ile 95 Gln	Pro Glu Pro Lys 80 His	

Gly Gly Ala Ser Met Ile Met Ala Asp Lys Asp Pro Thr Ser Thr Phe Phe Gln Phe Gly Ala Ser Ile Gln Gln Gln Ala Thr Val Met Leu Lys 155 Ile Met Gln Asp Tyr Asp Trp His Val Phe Ser Leu Val Thr Thr Ile Phe Pro Gly Tyr Arg Glu Phe Ile Ser Phe Val Lys Thr Thr Val Asp Asn Ser Phe Val Gly Trp Asp Met Gln Asn Val Ile Thr Leu Asp Thr Ser Phe Glu Asp Ala Lys Thr Gln Val Gln Leu Lys Lys Ile His Ser Ser Val Ile Leu Leu Tyr Cys Ser Lys Asp Glu Ala Val Leu Ile Leu Ser Glu Ala Arg Ser Leu Gly Leu Thr Gly Tyr Asp Phe Phe Trp Ile Val Pro Ser Leu Val Ser Gly Asn Thr Glu Leu Ile Pro Lys Glu Phe 265 Pro Ser Gly Leu Ile Ser Val Ser Tyr Asp Asp Trp Asp Tyr Ser Leu Glu Ala Arg Val Arg Asp Gly Ile Gly Ile Leu Thr Thr Ala Ala Ser Ser Met Leu Glu Lys Phe Ser Tyr Ile Pro Glu Ala Lys Ala Ser Cys Tyr Gly Gln Met Glu Arg Pro Glu Val Pro Met His Thr Leu His Pro Phe Met Val Asn Val Thr Trp Asp Gly Lys Asp Leu Ser Phe Thr Glu Glu Gly Tyr Gln Val His Pro Arg Leu Val Val Ile Val Leu Asn Lys Asp Arg Glu Trp Glu Lys Val Gly Lys Trp Glu Asn His Thr Leu Ser Leu Arg His Ala Val Trp Pro Arg Tyr Lys Ser Phe Ser Asp Cys Glu Pro Asp Asp Asn His Leu Ser Ile Val Thr Leu Glu Glu Ala Pro Phe 410 Val Ile Val Glu Asp Ile Asp Pro Leu Thr Glu Thr Cys Val Arg Asn Thr Val Pro Cys Arg Lys Phe Val Lys Ile Asn Asn Ser Thr Asn Glu Gly Met Asn Val Lys Lys Cys Cys Lys Gly Phe Cys Ile Asp Ile Leu Lys Lys Leu Ser Arg Thr Val Lys Phe Thr Tyr Asp Leu Tyr Leu Val

Thr Asn Gly Lys His Gly Lys Lys Val Asn Asn Val Trp Asn Gly Met 490 Ile Gly Glu Val Val Tyr Gln Arg Ala Val Met Ala Val Gly Ser Leu Thr Ile Asn Glu Glu Arg Ser Glu Val Val Asp Phe Ser Val Pro Phe 520 Val Glu Thr Gly Ile Ser Val Met Val Ser Arg Ser Asn Gly Thr Val 535 Ser Pro Ser Ala Phe Leu Glu Pro Phe Ser Ala Ser Val Trp Val Met Met Phe Val Met Leu Leu Ile Val Ser Ala Ile Ala Val Trp Val Leu Asp Tyr Ser Ser Pro Val Gly Tyr Asn Arg Asn Leu Ala Lys Gly Lys 585 Ala Pro His Gly Pro Ser Phe Thr Ile Gly Lys Ala Ile Trp Leu Leu 600 Trp Gly Leu Val Phe Asn Asn Ser Val Pro Val Gln Asn Pro Lys Gly Thr Thr Ser Lys Ile Met Val Ser Val Trp Ala Phe Phe Ala Val Ile 635 Phe Leu Ala Ser Tyr Thr Ala Asn Leu Ala Ala Phe Met Ile Gln Glu Glu Phe Val Asp Gln Val Thr Gly Leu Ser Asp Lys Lys Phe Gln Arg 665 Pro His Asp Tyr Ser Pro Pro Phe Arg Phe Gly Thr Val Pro Asn Gly Ser Thr Glu Arg Asn Ile Arg Asn Asn Tyr Pro Tyr Met His Gln Tyr Met Thr Lys Phe Asn Gln Lys Gly Val Glu Asp Ala Leu Val Ser Leu Lys Thr Gly Lys Leu Asp Ala Phe Ile Tyr Asp Ala Ala Val Leu Asn Tyr Lys Ala Gly Arg Asp Glu Gly Cys Lys Leu Val Thr Ile Gly Ser Gly Tyr Ile Phe Ala Thr Thr Gly Tyr Gly Ile Ala Leu Gln Lys Gly Ser Pro Trp Lys Arg Gln Ile Asp Leu Ala Leu Leu Gln Phe Val Gly Asp Gly Glu Met Glu Glu Leu Glu Thr Leu Trp Leu Thr Gly Ile Cys His Asn Glu Lys Asn Glu Val Met Ser Ser Gln Leu Asp Ile Asp Asn 810 Met Ala Gly Val Phe Tyr Met Leu Ala Ala Ala Met Ala Leu Ser Leu

- Ile Thr Phe Ile Trp Glu His Leu Phe Tyr Trp Lys Leu Arg Phe Cys 845
- Phe Thr Gly Val Cys Ser Asp Arg Pro Gly Leu Leu Phe Ser Ile Ser 850
- Arg Gly Ile Tyr Ser Cys Ile His Gly Val His Ile Glu Glu Lys Lys 865 870 870 880
- Lys Ser Pro Asp Phe Asn Leu Thr Gly Ser Gln Ser Asn Met Leu Lys 890 895
- Leu Leu Arg Ser Ala Lys Asn Ile Ser Ser Met Ser Asn Met Asn Ser 900 905 910
- Ser Arg Met Asp Ser Pro Lys Arg Ala Ala Asp Phe Ile Gln Arg Gly 915 920 925
- Ser Leu Ile Met Asp Met Val Ser Asp Lys Gly Asn Leu Met Tyr Ser 930 935 940
- Asp Asn Arg Ser Phe Gln Gly Lys Glu Ser Ile Phe Gly Asp Asn Met 955 960
- Asn Glu Leu Gln Thr Phe Val Ala Asn Arg Gln Lys Asp Asn Leu Asn 965 970 975
- Asn Tyr Val Phe Gln Gly Gln His Pro Leu Thr Leu Asn Glu Ser Asn 980 985 985
- Pro Asn Thr Val Glu Val Ala Val Ser Thr Glu Ser Lys Ala Asn Ser 995 1000 1005
- Arg Pro Arg Gln Leu Trp Lys Lys Ser Val Asp Ser Ile Arg Gln Asp 1010 1015 1020
- Ser Leu Ser Gln Asn Pro Val Ser Gln Arg Asp Glu Ala Thr Ala Glu 1025 1030 1035 1040
- Asn Arg Thr His Ser Leu Lys Ser Pro Arg Tyr Leu Pro Glu Glu Met 1045 1050 1055
- Ala His Ser Asp Ile Ser Glu Thr Ser Asn Arg Ala Thr Cys His Arg 1060 1065 1070
- Glu Pro Asp Asn Ser Lys Asn His Lys Thr Lys Asp Asn Phe Lys Arg 1075 1080 1085
- Ser Val Ala Ser Lys Tyr Pro Lys Asp Cys Ser Glu Val Glu Arg Thr 1090 1095 1100
- Tyr Leu Lys Thr Lys Ser Ser Ser Pro Arg Asp Lys Ile Tyr Thr Ile 1105 1110 1115
- Asp Gly Glu Lys Glu Pro Gly Phe His Leu Asp Pro Pro Gln Phe Val 1125 1130 1135
- Glu Asn Val Thr Leu Pro Glu Asn Val Asp Phe Pro Asp Pro Tyr Gln
 1140 1145 1150
- Asp Pro Ser Glu Asn Phe Arg Lys Gly Asp Ser Thr Leu Pro Met Asn 1155 1160 1165
- Arg Asn Pro Leu His Asn Glu Glu Gly Leu Ser Asn Asn Asp Gln Tyr
 1170 1180

Lys Leu Tyr Ser Lys His Phe Thr Leu Lys Asp Lys Gly Ser Pro His 1185 1190 1195 1200

Ser Glu Thr Ser Glu Arg Tyr Arg Gln Asn Ser Thr His Cys Arg Ser 1205 1210 1215

Cys Leu Ser Asn Met Pro Thr Tyr Ser Gly His Phe Thr Met Arg Ser 1220 1225 1230

Pro Phe Lys Cys Asp Ala Cys Leu Arg Met Gly Asn Leu Tyr Asp Ile 1235 1240 1245

Asp Glu Asp Gln Met Leu Gln Glu Thr Gly Asn Pro Ala Thr Gly Glu 1250 1260

Gln Val Tyr Gln Gln Asp Trp Ala Gln Asn Asn Ala Leu Gln Leu Gln 1265 1270 1275 1280

Lys Asn Lys Leu Arg Ile Ser Arg Gln His Ser Tyr Asp Asn Ile Val 1285 1290 1295

Asp Lys Pro Arg Glu Leu Asp Leu Ser Arg Pro Ser Arg Ser Ile Ser 1300 1305 1310

Leu Lys Asp Arg Glu Arg Leu Leu Glu Gly Asn Phe Tyr Gly Ser Leu 1315 1320 1325

Phe Ser Val Pro Ser Ser Lys Leu Ser Gly Lys Lys Ser Ser Leu Phe 1330 1335

Pro Gln Gly Leu Glu Asp Ser Lys Arg Ser Lys Ser Leu Leu Pro Asp 1345 1350 1355 1360

His Thr Ser Asp Asn Pro Phe Leu His Ser His Arg Asp Asp Gln Arg 1365 1370 1375

Leu Val Ile Gly Arg Cys Pro Ser Asp Pro Tyr Lys His Ser Leu Pro 1380 1385 1390

Ser Gln Ala Val Asn Asp Ser Tyr Leu Arg Ser Ser Leu Arg Ser Thr 1395 1400 1405

Ala Ser Tyr Cys Ser Arg Asp Ser Arg Gly His Asn Asp Val Tyr Ile 1410 1415 1420

Ser Glu His Val Met Pro Tyr Ala Ala Asn Lys Asn Asn Met Tyr Ser 1425 1430 1435 1440

Thr Pro Arg Val Leu Asn Ser Cys Ser Asn Arg Arg Val Tyr Lys Glu 1445 1450 1455

Met Pro Ser Ile Glu Ser Asp Val 1460

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 74 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both
- (ii) MOLECULE TYPE: cDNA

119	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
CGAGGGAGGC GGCCGGCGC GACTCTCTTC GCGGGCGCAG CGCCCCTTCC CCCTCGGACC	
CTCCGGTGGA CATG	60
(2) INFORMATION FOR SEQ ID NO:13:	74
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5538 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both 	
(ii) MOLECULE TYPE: cDNA	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2104664	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
TTGAATTTGC ATCTCTTCAA GACACAAGAT TAAAACAAAA TTTACGCTAA ATTGCATTAT	60
AAATTATOTT CCGTTCATTT ATCCTTCGTC TTTCTTATGT GGATATGCAA GCCACACAA	120
TOURCHGGAC ATTCCCAACA TGCTCACTCC CTTAATCTGT CCGTCTAGAG CTTTCCCTTC	180
TACAAACCAA GGGAGTCGAC GAGTTGAAG ATG AAG CCC AGA GCG GAG TGC TGT Met Lys Pro Arg Ala Glu Cys Cys 1	233
TCT CCC AAG TTC TGG TTG GTG TTG GCC GTC CTG GCC GTG TCA GGC AGC Ser Pro Lys Phe Trp Leu Val Leu Ala Val Leu Ala Val Ser Gly Ser 10 15 20	281
AGA GCT CGT TCT CAG AAG AGC CCC CCC AGC ATT GGC ATT GCT GTC ATC ATG Ala Arg Ser Gln Lys Ser Pro Pro Ser Ile Gly Ile Ala Val Ile 35	329
CTC GTG GGC ACT TCC GAC GAG GTG GCC ATC AAG GAT GCC CAC GAG AAA Leu Val Gly Thr Ser Asp Glu Val Ala Ile Lys Asp Ala His Glu Lys 50 55	377
GAT GAT TTC CAC CAT CTC TCC GTG GTA CCC CGG GTG GAA CTG GTA GCC Asp Asp Phe His His Leu Ser Val Val Pro Arg Val Glu Leu Val Ala 60 65 70	425
ATG AAT GAG ACC GAC CCA AAG AGC ATC ATC ACC CGC ATC TGT GAT CTC Met Asn Glu Thr Asp Pro Lys Ser Ile Ile Thr Arg Ile Cys Asp Leu 80 85	473
ATG TCT GAC CGG AAG ATC CAG GGG GTG GTG TTT GCT GAT GAC ACA GAC Met Ser Asp Arg Lys Ile Gln Gly Val Val Phe Ala Asp Asp Thr Asp 90 95 100	521
CAG GAA GCC ATC GCC CAG ATC CTC GAT TTC ATT TCA GCA CAG ACT CTC Gln Glu Ala Ile Ala Gln Ile Leu Asp Phe Ile Ser Ala Gln Thr Leu 115	569
The Pro Ile Law Class To CAC GGG GGC TCC TCT ATG ATA ATC CCA CAM	617

AAG Lys	GA' B As	T GA p Gl	A TC u Se 14	r Se	C AT r Me	G TT t Ph	C TT e Ph	C CA e Gl 14	n Ph	T GG e Gl	C CC y Pr	A TC o Se	A AT r Il 15	e Gl	A CAG u Gln	665
CAA Gln	GC: Ala	T TC a Se 15	r va	A AT l Me	G CT	C AA u As:	C ATO	e Mei	G GA E Gli	A GA	А ТА 1 Ту	T GA r As 16	p Tr	G TA p Ty	C ATC	713
TTT Phe	Ser 170	. 11	C GTO	C AC l Th	C AC	C TA' r Ty: 17!	r Phe	C CC e Pro	r GGG	C TAC y Tyi	C CA C Gl 18	n As	C TT	T GT e Va	A AAC l Asn	761
AAG Lys 185	TTE	C CG	C AGO g Sei	C AC	C ATT	e Glu	AA:	r AGO	C TT	r GTO Val	L Gl	C TGG Y Tr	G GA	G CT u Le	A GAG u Glu 200	809
GAG Glu	GT(Val	CTC Lev	C CTA	A CTO Let 20!	ı Ası	C ATO P Met	G TCC	C CTC	G GAC Asp 210	o Asp	GG Gl	A GAT y Asi	r rc	T AA r Ly 21	G ATC s Ile 5	857
CAG Gln	AAT Asn	CAC Glr	G CTC Let 220	ı TA s	G AAA S Lys	A CTI	CAA Glr	A AGC Ser 225	Pro	C ATO	AT:	r CTT	CT: Let 230	ı Ty	C TGT r Cys	905
ACC Thr	AAG Lys	GAF Glu 235	GIU	GCC Ala	C ACC	TAC Tyr	Ile 240	Phe	GAA Glu	GTG Val	GC0 Ala	C AAC A Asr 245	ı Ser	A GT	A GGG l Gly	953
CTG Leu	ACT Thr 250	GTÄ	TAT	Gly GGC	TAC Tyr	ACG Thr 255	Trp	ATC Ile	GTG Val	CCC Pro	AGT Ser 260	: Leu	GTC Val	GCA	A GGG A Gly	1001
GAT Asp 265	ACA Thr	GAC	ACA Thr	GTG Val	CCT Pro 270	Ala	GAG Glu	TTC Phe	CCC Pro	ACT Thr 275	GGG Gly	CTC Leu	ATC	TC1	GTA Val 280	1049
TCA Ser	TAT Tyr	GAT Asp	GAA Glu	TGG Trp 285	GAC Asp	TAT Tyr	GGC Gly	CTC Leu	CCC Pro 290	CCC Pro	AGA Arg	GTG Val	AGA Arg	GAT Asp 295	GGA Gly	1097
ATT Ile	GCC Ala	ATA Ile	ATC Ile 300	ACC	ACT Thr	GCT Ala	GCT Ala	TCT Ser 305	GAC Asp	ATG Met	CTG Leu	TCT Ser	GAG Glu 310	CAC	AGC Ser	1145
TTC Phe	ATC Ile	CCT Pro 315	GAG Glu	CCC Pro	Lys	AGC Ser	AGT Ser 320	TGT Cys	TAC Tyr	AAC Asn	ACC Thr	CAC His 325	GAG Glu	A AG Lys	AGA Arg	1193
ATC (TAC Tyr 330	CAG Gln	TCC Ser	AAT Asn	ATG Met	CTA Leu 335	AAT Asn	AGG Arg	TAT Tyr	CTG Leu	ATC Ile 340	AAT Asn	GTC Val	ACT Thr	TTT Phe	1241
GAG (Glu (345	GGG Gly	AGG Arg	AAT Asn	TTG Leu	TCC Ser 350	TTC Phe	AGT Ser	GAA Glu	GAT Asp	GGC Gly 355	TAC Tyr	CAG Gln	ATG Met	CAC His	CCG Pro 360	1289
AAA (CTG Leu	GTG Val	ATA Ile	ATT Ile 365	CTT Leu	CTG Leu	AAC Asn	AAG Lys	GAG Glu 370	AGG Arg	AAG Lys	TGG Trp	GAA Glu	AGG Arg 375	GTG Val	1337
GGG F	AAG Lys	TGG Trp	AAA Lys 380	GAC Asp	AAG Lys	TCC Ser	Leu	CAG Gln 385	ATG Met	AAG Lys	TAC Tyr	TAT Tyr	GTG Val 390	TGG Trp	CCC Pro	1385
CGA A Arg M	iec '	TGT Cys 395	CCA Pro	GAG Glu	ACT Thr	Glu	GAG Glu 400	CAG (GAG Glu	GAT (GAC Asp	CAT His 405	CTG Leu	AGC Ser	ATT Ile	1433

GTG Val	ACC Thr 410	CTG Leu	GAG Glu	GAG Glu	GCA Ala	CCA Pro 415	TTT Phe	GTC Val	ATT Ile	GTG Val	GAA Glu 420	AGT Ser	GTG Val	GAC Asp	CCT Pro	1481
CTG Leu 425	AGT Ser	GGA Gly	ACC Thr	TGC Cys	ATG Met 430	AGG Arg	AAC Asn	ACA Thr	GTC Val	CCC Pro 435	CAa LGC	CAA Gln	Lys	cgc Arg	ATA Ile 440	1529
GTC Val	ACT Thr	GAG Glu	AAT Asn	AAA Lys 445	ACA Thr	GAC Asp	GAG Glu	GAG Glu	CCG Pro 450	GGT Gly	TAC Tyr	ATC Ile	AAA Lys	AAA Lys 455	TGC Cys	1577
Cya	ГЛа УУС	GGG Gly	TTC Phe 460	TGT Cys	ATT Ile	GAC Asp	ATC Ile	CTT Leu 465	AAG Lys	Lys Lys	ATT Ile	TCT Ser	AAA Lys 470	TCT Ser	GTG Val	1625
AAG Lys	TTC Phe	ACC Thr 475	TAT Tyr	GAC Asp	CTT Leu	TAC Tyr	CTG Leu 480	GTT Val	ACC Thr	AAT Asn	GGC Gly	AAG Lys 485	CAT His	GGG Gly	L\a T\a	1673
Lys AAA	ATC Ile 490	AAT Asn	GGA Gly	ACC Thr	TGG	AAT Asn 495	GGT Gly	ATG Met	ATT Ile	GGA Gly	GAG Glu 500	GTG Val	GTC Val	ATG Met	AAG Lys	1721
AGG Arg 505	GCC Ala	TAC Tyr	ATG Met	GCA Ala	GTG Val 510	GGC Gly	TCA Ser	CTC Leu	ACC Thr	ATC Ile 515	AAT Asn	GAG Glu	GAA Glu	CGA Arg	TCG Ser 520	1769
GAG Glu	GTG Val	GTC Val	GAC Asp	TTC Phe 525	TCT Ser	GTG Val	CCC Pro	TTC Phe	ATA Ile 530	GAG Glu	ACA Thr	GGC Gly	ATC Ile	AGT Ser 535	GTC Val	1817
ATG Met	GTG Val	TCA Ser	CGC Arg 540	AGC Ser	AAT Asn	GGG Gly	ACT Thr	GTC Val 545	TCA Ser	CCT Pro	TCT Ser	GCC Ala	TTC Phe 550	TTA Leu	GAG Glu	1865
CCA Pro	TTC Phe	AGC Ser 555	GCT Ala	GAC Asp	GTA Val	TGG Trp	GTG Val 560	ATG Met	ATG Met	TTT Phe	GTG Val	ATG Met 565	CTG Leu	CTC Leu	ATC Ile	1913
GTC Val	TCA Ser 570	GCC Ala	GTG Val	GCT Ala	GTC Val	TTT Phe 575	GTC Val	TTT Phe	GAG Glu	TAC Tyr	TTC Phe 580	AGC Ser	CCT Pro	GTG Val	GGT Gly	1961
TAT Tyr 585	AAC Asn	AGG Arg	TGC Cys	CTC Leu	GCT Ala 590	GAT Asp	GGC Gly	AGA Arg	GAG Glu	CCT Pro 595	GGT	GGA Gly	CCC Pro	TCT Ser	TTC Phe 600	2009
ACC Thr	ATC Ile	GGC Gly	AAA Lys	GCT Ala 605	ATT Ile	TGG Trp	TTG Leu	CTC Leu	TGG Trp 610	GGT Gly	CTG Leu	GTG Val	TTT Phe	AAC Asn 615	AAC Asn	2057
TCC Ser	GTA Val	CCT Pro	GTG Val 620	Gln	AAC Asn	CCA Pro	AAG Lys	GGG Gly 625	ACC Thr	ACC Thr	TCC Ser	AAG Lys	ATC Ile 630	ATG Met	GTG Val	2105
TCA Ser	GTG Val	TGG Trp 635	Ala	TTC Phe	TTT Phe	GCT Ala	GTC Val 640	Ile	TTC Phe	CTG Leu	GCC Ala	AGC Ser 645	Tyr	ACT Thr	GCC Ala	2153
AAC Asn	TTA Leu 650	Ala	GCC Ala	TTC Phe	ATG Met	ATC Ile 655	CAA Gln	GAG Glu	GAA Glu	TAT Tyr	GTG Val 660	Asb	CAG Gln	GTT Val	TCT Ser	2201
GGC Gly 665	Leu	AGC Ser	GAC Asp	Lys	AAG Lys 670	Phe	CAG Gln	AGA Arg	CCT Pro	AAT Asn 675	Asp	TTC Phe	TCA Ser	CCC Pro	CCT Pro 680	2249

TTC Phe	CGC Arg	TTT Phe	GGG Gly	ACC Thr 685	GTG Val	CCC Pro	AAC Asn	GGC Gly	AGC Ser 690	ACA Thr	GAG Glu	AGA Arg	AAT Asn	ATT Ile 695	CGC Arg	2297
AAT Asn	AAC Asn	TAT Tyr	GCA Ala 700	GAA Glu	ATG Met	CAT His	GCC Ala	TAC Tyr 705	ATG Met	GGA Gly	AAG Lys	TTC Phe	AAC Asn 710	CAG Gln	AGG Arg	2345
GGT Gly	GTA Val	GAT Asp 715	GAT Asp	GCA Ala	TTG Leu	CTC Leu	TCC Ser 720	CTG Leu	AAA Lys	ACA Thr	GGG Gly	AAA Lys 725	CTG Leu	GAT Asp	GCC Ala	2393
TTC Phe	ATC Ile 730	TAT Tyr	GAT Asp	GCA Ala	GCA Ala	GTG Val 735	CTG Leu	AAC Asn	TAT Tyr	ATG Met	GCA Ala 740	GGC Gly	AGA Arg	GAT Asp	GAA Glu	2441
GGC Gly 745	TGC Cys	AAG Lys	CTG Leu	GTG Val	ACC Thr 750	ATT Ile	GGC Gly	AGT Ser	GGG Gly	AAG Lys 755	GTC Val	TTT Phe	GCT Ala	TCC Ser	ACT Thr 760	2489
GGC Gly	TAT Tyr	GGC Gly	ATT Ile	GCC Ala 765	ATC Ile	CAA Gln	AAA Lys	GAT Asp	TCT Ser 770	GGG Gly	TGG Trp	AAG Lys	CGC Arg	CAG Gln 775	GTG Val	2537
GAC Asp	CTT Leu	GCT Ala	ATC Ile 780	CTG Leu	CAG Gln	CTC Leu	TTT Phe	GGA Gly 785	GAT Asp	GGG Gly	GAG Glu	ATG Met	GAA Glu 790	GAA Glu	CTG Leu	2585
GAA Glu	GCT Ala	CTC Leu 795	TGG Trp	CTC Leu	ACT Thr	GGC Gly	ATT Ile 800	TGT Cys	CAC His	AAT Asn	GAG Glu	AAG Lys 805	AAT Asn	GAG Glu	GTC Val	2633
ATG Met	AGC Ser 810	AGC Ser	CAG Gln	CTG Leu	GAC Asp	ATT Ile 815	GAC Asp	AAC Asn	ATG Met	GCA Ala	GGG Gly 820	GTC Val	TTC Phe	TAC Tyr	ATG Met	2681
TTG Leu 825	GGG Gly	GCG Ala	GCC Ala	ATG Met	GCT Ala 830	CTC Leu	AGC Ser	CTC Leu	ATC Ile	ACC Thr 835	TTC Phe	ATC Ile	TGC Cys	GAA Glu	CAC His 840	2729
CTT Leu	TTC Phe	TAT Tyr	TGG Trp	CAG Gln 845	TTC Phe	CGA Arg	CAT His	TGC Cys	TTT Phe 850	ATG Met	GGT Gly	GTC Val	CAa	TCT Ser 855	GGC Gly	2777
AAG Lys	CCT Pro	GGC Gly	ATG Met 860	Val	TTC Phe	TCC Ser	ATC Ile	AGC Ser 865	Arg	GGT Gly	ATC Ile	TAC Tyr	AGC Ser 870	CAa	ATC Ile	2825
CAT His	GGG Gly	GTG Val 875	Ala	ATC Ile	GAG Glu	GAG Glu	CGC Arg 880	Gln	TCT Ser	GTA Val	ATG Met	AAC Asn 885	Ser	CCC Pro	ACC Thr	2873
GCA Ala	ACC Thr 890	Met	AAC Asn	AAC Asn	ACA Thr	CAC His 895	Ser	AAC Asn	ATC Ile	CTG Leu	CGC Arg 900	Leu	CTG Leu	CGC Arg	ACG Thr	2921
GCC Ala 905	Lys	AAC Asn	ATG Met	GCT Ala	AAC Asn 910	Leu	TCT Ser	GGT Gly	GTG Val	AAT Asn 915	Gly	TCA Ser	CCG Pro	CAG Gln	AGC Ser 920	2969
GCC Ala	CTG Leu	GAC Asp	TTC Phe	ATC Ile 925	Arg	CGG Arg	GAG Glu	,TCA Ser	TCC Ser 930	Val	TAT Tyr	GAC Asp	ATC Ile	TCA Ser 935	GAG Glu	3017
CAC His	CGC Arg	CGC Arg	AGC Ser 940	Phe	ACG Thr	CAT His	TCT Ser	GAC Asp 945	Cys	AAA Lys	TCC	TAC Tyr	AAC Asn 950	Asn	CCG Pro	3065

CCC Pro	TGT Cys	GAG Glu 955	GAG Glu	AAC Asn	CTC Leu	TTC Phe	AGT Ser 960	GAC Asp	TAC Tyr	ATC Ile	AGT Ser	GAG Glu 965	GTA Val	GAG Glu	AGA Arg	3113
ACG Thr	TTC Phe 970	GGG Gly	AAC Asn	CTG Leu	CAG Gln	CTG Leu 975	AAG Lys	GAC Asp	AGC Ser	AAC Asn	GTG Val 980	TAC Tyr	CAA Gln	GAT Asp	CAC His	3161
TAC Tyr 985	CAC His	CAT His	CAC His	CAC His	cgg Arg 990	CCC Pro	CAT His	AGT Ser	ATT Ile	GGC Gly 995	AGT Ser	GCC Ala	AGC Ser	TCC Ser	ATC Ile 1000	3209
GAT	GGG Gly	CTC Leu	TAC Tyr	GAC Asp 100	Cys	GAC Asp	AAC Asn	CCA Pro	CCC Pro 1010	Phe	ACC Thr	ACC Thr	CAG Gln	TCC Ser 101	Arg	3257
TCC Ser	ATC Ile	AGC Ser	AAG Lys 1020	Lys	CCC Pro	CTG Leu	GAC Asp	ATC Ile 102	Gly	CTC Leu	CCC Pro	TCC Ser	TCC Ser 1030	Lys	CAC His	3305
AGC Ser	CAG Gln	CTC Leu 103	Ser	GAC Asp	CTG Leu	TAC Tyr	GGC Gly 104	AAA Lys O	TTC Phe	TCC Ser	TTC Phe	AAG Lys 104	Ser	Asp	CGC Arg	3353
TAC Tyr	AGT Ser 105	Gly	CAC His	GAC Asp	GAC Asp	TTG Leu 105	Ile	CGC Arg	TCC Ser	GAT Asp	GTC Val 106	Ser	GAC Asp	ATC Ile	TCA Ser	3401
ACC Thr 106	His	ACC Thr	GTC Val	ACC Thr	TAT Tyr 107	Gly	AAC Asn	ATC Ile	GAG Glu	GGC Gly 107	Asn	GCC Ala	GCC Ala	AAG Lys	AGG Arg 1080	3449
CGT Arg	AAG Lys	CAG Gln	CAA Gln	TAT Tyr 108	Lys	GAC Asp	AGC Ser	CTG Leu	AAG Lys 109	Lys	CGG Arg	CCT Pro	GCC Ala	TCG Ser 109	GCC Ala 5	3497
AAG Lys	TCC Ser	CGC Arg	AGG Arg 110	Glu	TTT Phe	GAC Asp	GAG Glu	ATC Ile 110	Glu	CTG Leu	GCC Ala	TAC Tyr	CGT Arg 111	Arg	CGA Arg	3545
CCG Pro	CCC Pro	CGC Arg 111	Ser	CCT Pro	GAC Asp	CAC His	AAG Lys 112	Arg	TAC Tyr	TTC Phe	AGG Arg	GAC Asp 112	Lys	GAA Glu	GGG Gly	3593
CTA Leu	Arg	Asp	Phe	TAC Tyr	Leu	GAC Asp 113	Gln	TTC Phe	CGA Arg	ACA Thr	AAG Lys 114	Glu	AAC Asn	TCA Ser	CCC Pro	3641
CAC His 114	Trp	GAG Glu	CAC His	GTA Val	GAC Asp 115	Leu	ACC Thr	GAC Asp	ATC Ile	TAC Tyr 115	Lys	GAG Glu	CGG Arg	AGT Ser	GAT Asp 1160	3689
GAC	TTT Phe	AAG Lys	CGC	GAC Asp 116	Ser	ATC Ile	AGC Ser	GGA Gly	GGA Gly 117	Gly	Pro	TGT Cys	ACC Thr	AAC Asn 117	AGG Arg 5	3737
TCT Ser	CAC His	ATC Ile	AAG Lys	His	GGG	ACG Thr	GGC Gly	GAC Asp 118	Lys	CAC His	GGC Gly	GTG Val	GTC Val 119	Ser	GGG	3785
GTA Val	CCT Pro	GCA Ala 119	Pro	TGG Trp	GAG Glu	AAG Lys	AAC Asn 120	Leu	ACC	AAC Asn	GTG Val	GAG Glu 120	Trp	GAG Glu	GAC Asp	3833
CGG Arg	TCC Ser 121	Gly	GGC Gly	AAC Asn	TTC Phe	TGC Cys 121	Arg	AGC Ser	TGT Cys	CCC Pro	TCC Ser 122	. Lys	CTG Leu	CAC His	AAC Asn	3881

TAC TCC Tyr Sei 1225	C ACG r Thr	ACG Thr	GTG Val	ACG Thr 1230	Gly	CAG Gln	AAC Asn	TCG Ser	GGC Gly 1235	Arg	CAG Gln	GCG Ala	TGC Cys	ATC Ile 1240	3929
CGG TG' Arg Cy	r GAG s Glu	GCT Ala	TGC Cys 1245	Lys	AAA Lys	GCA Ala	GGC Gly	AAC Asn 1250	Leu	TAT Tyr	GAC Asp	ATC Ile	AGT Ser 1255	Glu	3977
GAC AA Asp As	C TCC n Ser	CTG Leu 1260	Gln	GAA Glu	CTG Leu	GAC Asp	CAG Gln 1265	Pro	GCT Ala	GCC Ala	CCA Pro	GTG Val 1270	Ala	GTG Val	4025
ACG TC Thr Se	A AAC r Asn 127	Ala	TCC Ser	ACC Thr	ACT Thr	AAG Lys 1280	Tyr	CCT Pro	CAG Gln	AGC Ser	CCG Pro 1285	Thr	TAA Asn	TCC Ser	4073
AAG GC Lys Al 12	a Gln	AAG Lys	AAG Lys	AAC Asn	CGG Arg 1295	Asn	AAA Lys	CTG Leu	CGC Arg	CGG Arg 1300	Gln	CAC His	TCC Ser	TAC Tyr	4121
GAC AC Asp Th 1305	C TTC r Phe	GTG Val	GAC Asp	CTG Leu 1310	Gln	AAG Lys	GAA Glu	GAA Glu	GCC Ala 1319	Ala	CTG Leu	GCC Ala	CCG Pro	CGC Arg 1320	4169
AGC GT Ser Va	A AGC l Ser	CTG Leu	AAA Lys 1325	Asp	AAG Lys	GGC Gly	CGA Arg	TTC Phe 1330	Met	GAT Asp	GGG Gly	AGC Ser	CCC Pro 133	Tyr	4217
GCC CA Ala Hi	C ATG s Met	TTT Phe 134	Glu	ATG Met	TCA Ser	GCT Ala	GGC Gly 134	Glu	AGC Ser	ACC Thr	TTT Phe	GCC Ala 135	Asn	AAC Asn	4265
AAG TC Lys Se	C TCA r Ser 135	Val	CCC Pro	ACT Thr	GCC Ala	GGA Gly 136	His	CAC His	CAC His	CAC His	AAC Asn 136	Asn	CCC Pro	GGC Gly	4313
GGC GG Gly Gl 13	G TAC y Tyr 70	ATG Met	CTC Leu	AGC Ser	AAG Lys 137	Ser	CTC Leu	TAC Tyr	CCT Pro	GAC Asp 138	Arg	GTC Val	ACG Thr	CAA Gln	4361
AAC CC Asn Pr 1385	T TTC o Phe	ATC Ile	CCC Pro	ACT Thr 1390	Phe	GGG Gly	GAC Asp	GAC Asp	CAG Gln 139	Cys	TTG Leu	CTC Leu	CAT His	GGC Gly 1400	4409
AGC AA Ser Ly	s Ser	Tyr	Phe	Phe	Arg	Gln	CCC Pro	Thr	Val	Ala	Gly	Ala	Ser	Lys	4457
GCC AG Ala Ar	G CCG g Pro	GAC Asp 142	Phe	CGG Arg	GCC Ala	CTT Leu	GTC Val 142	Thr	AAC Asn	AAG Lys	CCG Pro	GTG Val 143	Val	TCG Ser	4505
GCC CT Ala Le	T CAT u His 143	Gly	GCC Ala	GTG Val	CCA Pro	GCC Ala 144	Arg	TTC Phe	CAG Gln	. AAG Lys	GAC Asp 144	Ile	TGT Cys	ATA Ile	4553
GGG AA Gly As 14	C CAG n Gln 50	TCC Ser	AAC Asn	CCC Pro	TGT Cys 145	Val	CCT Pro	AAC Asn	AAC Asn	ACA Thr 146	Asn	CCC Pro	AGG Arg	GCT Ala	4601
TTC AA Phe As 1465	T GGC n Gly	TCC Ser	AGC Ser	AAT Asn 147	Gly	CAT His	GTT Val	TAT Tyr	GAG Glu 147	Lys	CTT Leu	TCT Ser	AGT Ser	ATT Ile 1480	4649
GAG TO					GGG .	AACA	GAGA	GG T	TAAG	GTGG	G TA	CGGG.	AGGG		4701

TAAGGCTGTG	GGTCGCGTGA	TGCGCATGTC	ACGGAGGGTG	ACGGGGGTGA	ACTTGGTTCC	4761
CATTTGCTCC	TTTCTTGTTT	TAATTTATTT	ATGGGATCCT	GGAGTTCTGG	TTCCTACTGG	4821
GGGCAACCCT	GGTGACCAGC	ACCATCTCTC	CTCCTTTTCA	CAGTTCTCTC	CTTCTTCCCC	4881
CCGCTGTCAG	CCATTCCTGT	TCCCATGAGA	TGATGCCATG	GGCCCTCTCA	GCAGGGGAGG	4941
GTAGAGCGGA	GAAAGGAAGG	GCTGCATGCG	GGCTTCCTCC	TGGTGTGGAA	GAGCTCCTTG	5001
ATATCCTCTT	TGAGTGAAGC	TGGGAGAACC	AAAAAGAGGC	TATGTGAGCA	CAAAGGTAGC	5061
TTTTCCCAAA	CTGATCTTTT	CATTTAGGTG	AGGAAGCAAA	AGCATCTATG	TGAGACCATT	5121
TAGCACACTG	CTTGTGAAAG	GAAAGAGGCT	CTGGCTAAAT	TCATGCTGCT	TAGATGACAT	5181
CTGTCTAGGA	ATCATGTGCC	AAGCAGAGGT	TGGGAGGCCA	TTTGTGTTTA	TATATAAGCC	5241
CAAAAATGCT	TGCTTCAACC	CCATGAGACT	CGATAGTGGT	GGTGAACAGA	ACCCAAGGTC	5301
ATTGGTGGCA	GAGTGGATTC	TTGAACAAAC	TGGAAAGTAC	GTTATGATAG	TGTCCCCCGG	5361
TGCCTTGGGG	ACAAGAGCAG	GTGGATTGTG	CGTGCATGTG	TGTTCATGCA	CACTTGCACC	5421
CATGTGTAGT	CAGGTGCCTC	AAGAGAAGGC	AACCTTGACT	CTTTCGTTGA	ATTTGCATCT	5481
CTTCAAGACA	CAAGATTAAA	ACAAAATTTA	CGCTAAATTG	GATTTTAAAT	TATCTTC	5538

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1484 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Met Lys Pro Arg Ala Glu Cys Cys Ser Pro Lys Phe Trp Leu Val Leu 10

Ala Val Leu Ala Val Ser Gly Ser Arg Ala Arg Ser Gln Lys Ser Pro

Pro Ser Ile Gly Ile Ala Val Ile Leu Val Gly Thr Ser Asp Glu Val

Ala Ile Lys Asp Ala His Glu Lys Asp Asp Phe His His Leu Ser Val

Val Pro Arg Val Glu Leu Val Ala Met Asn Glu. Thr Asp Pro Lys Ser

Ile Ile Thr Arg Ile Cys Asp Leu Met Ser Asp Arg Lys Ile Gln Gly 85

Val Val Phe Ala Asp Asp Thr Asp Gln Glu Ala Ile Ala Gln Ile Leu 105

Asp Phe Ile Ser Ala Gln Thr Leu Thr Pro Ile Leu Gly Ile His Gly

Gly Ser Ser Met Ile Met Ala Asp Lys Asp Glu Ser Ser Met Phe Phe 140 135

Gln	Phe	Gly	, Pro	Ser			ı Glr	Glr	n Ala	a Ser	. Val	. Met	: Le	ı Ası	n Ile
145		C1			150		- Tl-	D.b	. .	155			,	_	160
mec	GIU	GIU	ı ıyı	165		, lyr	: lle	Pne	170		· vai	. Thr	Thi	175	Phe
Pro	Gly	Tyr	Gln 180	Asp	Phe	Val	. Asn	Lys 185		Arç	ser,	Thr	11e		a Asn
Ser	Phe	Val 195	Gly	Trp	Glu	Leu	Glu 200		Val	. Leu	Leu	Let 205		Met	Ser
Leu	Asp 210	Asp	Gly	Asp	Ser	Lys 215		Gln	Asn	Gln	Leu 220		s Lys	. Leu	Gln
Ser 225	Pro	Ile	Ile	Leu	Leu 230	Туг	Cys	Thr	Lys	Glu 235		Ala	Thr	Туг	Ile 240
Phe	Glu	Val	Ala	Asn 245		Val	Gly	Leu	Thr 250		Tyr	Gly	Туг	Thr 255	Trp
Ile	Val	Pro	Ser 260		Val	Ala	Gly	Asp 265		Asp	Thr	Val	Prc 270		Glū
Phe	Pro	Thr 275	Gly	Leu	Ile	Ser	Val 280		Tyr	Asp	Glu	Trp 285		Tyr	Gly
Leu	Pro 290	Pro	Arg	Val	Arg	Asp 295		Ile	Ala	Ile	Ile 300		Thr	Ala	Ala
Ser 305	Asp	Met	Leu	Ser	Glu 310	His	Ser	Phe	Ile	Pro 315		Pro	Lys	Ser	Ser 320
Сув	Tyr	Asn	Thr	His 325	Glu	Lys	Arg	Ile	Tyr 330		Ser	Asn	Met	Leu 335	
Arg	Tyr	Leu	Ile 340	Asn	Val	Thr	Phe	Glu 345	Gly	Arg	Asn	Leu	Ser 350		Ser
Glu	Asp	Gly 355	Tyr	Gln	Met	His	Pro 360	Lys	Leu	Val	Ile	Ile 365	Leu	Leu	Asn
Lys	Glu 370	Arg	Lys	Trp	Glu	Arg 375	Val	Gly	Lys	Trp	Lys 380	Asp	Lys	Ser	Leu
Gln 385	Met	Lys	Tyr	Tyr	Val 390	Trp	Pro	Arg	Met	Cys 395		Glu	Thr	Glu	Glu 400
Gln	Glu	Asp	Asp	His 405	Leu	Ser	Ile	Val	Thr 410	Leu	Glu	Glu	Ala	Pro 415	Phe
Val	Ile	Val	Glu 420	Ser	Val	Asp	Pro	Leu 425	Ser	Gly	Thr	Cys	Met 430	Arg	Asn
Thr	Val	Pro 435	Cys	Gln	Lys	Arg	Ile 440	Val	Thr	Glu	Asn	Lys 445	Thr	Asp	Glu
Glu	Pro 450	Gly	Tyr	Ile	Lys	Lys 455	Суз	Cys	Lys	Gly	Phe 460	Cys	Ile	Asp	Ile
Leu 465	ГЛа	Lys	Ile	Ser	Lys 470	Ser	Val,	Lys	Phe	Thr 475	Tyr	Asp	Leu	Tyr	Leu 480
Val	Thr	Asn	Gly	Lys 485	His	Gly	Lys	Lys	Ile 490	Asn	Gly	Thr	Trp	Asn 495	Gly

Met Ile Gly Glu Val Val Met Lys Arg Ala Tyr Met Ala Val Gly Ser Leu Thr Ile Asn Glu Glu Arg Ser Glu Val Val Asp Phe Ser Val Pro Phe Ile Glu Thr Gly Ile Ser Val Met Val Ser Arg Ser Asn Gly Thr 535 Val Ser Pro Ser Ala Phe Leu Glu Pro Phe Ser Ala Asp Val Trp Val Met Met Phe Val Met Leu Leu Ile Val Ser Ala Val Ala Val Phe Val Phe Glu Tyr Phe Ser Pro Val Gly Tyr Asn Arg Cys Leu Ala Asp Gly 585 Arg Glu Pro Gly Gly Pro Ser Phe Thr Ile Gly Lys Ala Ile Trp Leu 600 Leu Trp Gly Leu Val Phe Asn Asn Ser Val Pro Val Gln Asn Pro Lys 615 Gly Thr Thr Ser Lys Ile Met Val Ser Val Trp Ala Phe Phe Ala Val 630 635 Ile Phe Leu Ala Ser Tyr Thr Ala Asn Leu Ala Ala Phe Met Ile Gln Glu Glu Tyr Val Asp Gln Val Ser Gly Leu Ser Asp Lys Lys Phe Gln Arg Pro Asn Asp Phe Ser Pro Pro Phe Arg Phe Gly Thr Val Pro Asn 680 Gly Ser Thr Glu Arg Asn Ile Arg Asn Asn Tyr Ala Glu Met His Ala 695 Tyr Met Gly Lys Phe Asn Gln Arg Gly Val Asp Asp Ala Leu Leu Ser Leu Lys Thr Gly Lys Leu Asp Ala Phe Ile Tyr Asp Ala Ala Val Leu Asn Tyr Met Ala Gly Arg Asp Glu Gly Cys Lys Leu Val Thr Ile Gly Ser Gly Lys Val Phe Ala Ser Thr Gly Tyr Gly Ile Ala Ile Gln Lys Asp Ser Gly Trp Lys Arg Gln Val Asp Leu Ala Ile Leu Gln Leu Phe Gly Asp Gly Glu Met Glu Glu Leu Glu Ala Leu Trp Leu Thr Gly Ile 795 Cys His Asn Glu Lys Asn Glu Val Met Ser Ser Gln Leu Asp Ile Asp Asn Met Ala Gly Val Phe Tyr Met'Leu Gly Ala Ala Met Ala Leu Ser 825 Leu Ile Thr Phe Ile Cys Glu His Leu Phe Tyr Trp Gln Phe Arg His 840

Cys Phe Met Gly Val Cys Ser Gly Lys Pro Gly Met Val Phe Ser Ile Ser Arg Gly Ile Tyr Ser Cys Ile His Gly Val Ala Ile Glu Glu Arg 870 Gln Ser Val Met Asn Ser Pro Thr Ala Thr Met Asn Asn Thr His Ser 890 Asn Ile Leu Arg Leu Leu Arg Thr Ala Lys Asn Met Ala Asn Leu Ser Gly Val Asn Gly Ser Pro Gln Ser Ala Leu Asp Phe Ile Arg Arg Glu 920 Ser Ser Val Tyr Asp Ile Ser Glu His Arg Arg Ser Phe Thr His Ser Asp Cys Lys Ser Tyr Asn Asn Pro Pro Cys Glu Glu Asn Leu Phe Ser Asp Tyr Ile Ser Glu Val Glu Arg Thr Phe Gly Asn Leu Gln Leu Lys 965 Asp Ser Asn Val Tyr Gln Asp His Tyr His His His Arg Pro His 985 Ser Ile Gly Ser Ala Ser Ser Ile Asp Gly Leu Tyr Asp Cys Asp Asn 1000 Pro Pro Phe Thr Thr Gln Ser Arg Ser Ile Ser Lys Lys Pro Leu Asp 1015 Ile Gly Leu Pro Ser Ser Lys His Ser Gln Leu Ser Asp Leu Tyr Gly 1035 1025 Lys Phe Ser Phe Lys Ser Asp Arg Tyr Ser Gly His Asp Asp Leu Ile 1050 1045 Arg Ser Asp Val Ser Asp Ile Ser Thr His Thr Val Thr Tyr Gly Asn 1065 1060 Ile Glu Gly Asn Ala Ala Lys Arg Arg Lys Gln Gln Tyr Lys Asp Ser 1080 Leu Lys Lys Arg Pro Ala Ser Ala Lys Ser Arg Arg Glu Phe Asp Glu 1095 Ile Glu Leu Ala Tyr Arg Arg Arg Pro Pro Arg Ser Pro Asp His Lys 1110 1105 Arg Tyr Phe Arg Asp Lys Glu Gly Leu Arg Asp Phe Tyr Leu Asp Gln 1125 1130 Phe Arg Thr Lys Glu Asn Ser Pro His Trp Glu His Val Asp Leu Thr 1145 Asp Ile Tyr Lys Glu Arg Ser Asp Asp Phe Lys Arg Asp Ser Ile Ser 1160 1165 Gly Gly Pro Cys Thr Asn Arg. Ser His Ile Lys His Gly Thr Gly 1175 Asp Lys His Gly Val Val Ser Gly Val Pro Ala Pro Trp Glu Lys Asn 1190 1195

Leu Thr Asn Val Glu Trp Glu Asp Arg Ser Gly Gly Asn Phe Cys Arg 1205 1210 1215

:

- Ser Cys Pro Ser Lys Leu His Asn Tyr Ser Thr Thr Val Thr Gly Gln 1220 1225 1230
- Asn Ser Gly Arg Gln Ala Cys Ile Arg Cys Glu Ala Cys Lys Lys Ala 1235 1240 1245
- Gly Asn Leu Tyr Asp Ile Ser Glu Asp Asn Ser Leu Gln Glu Leu Asp 1250 1260
- Gln Pro Ala Ala Pro Val Ala Val Thr Ser Asn Ala Ser Thr Thr Lys 1265 1270 1275 1280
- Tyr Pro Gln Ser Pro Thr Asn Ser Lys Ala Gln Lys Lys Asn Arg Asn 1285 1290 1295
- Lys Leu Arg Arg Gln His Ser Tyr Asp Thr Phe Val Asp Leu Gln Lys 1300 1305 1310
- Glu Glu Ala Ala Leu Ala Pro Arg Ser Val Ser Leu Lys Asp Lys Gly 1315 1320 1325
- Arg Phe Met Asp Gly Ser Pro Tyr Ala His Met Phe Glu Met Ser Ala 1330 1340
- Gly Glu Ser Thr Phe Ala Asn Asn Lys Ser Ser Val Pro Thr Ala Gly 1345 1350 1355 1360
- His His His Asn Asn Pro Gly Gly Tyr Met Leu Ser Lys Ser 1365 1370 1375
- Leu Tyr Pro Asp Arg Val Thr Gln Asn Pro Phe Ile Pro Thr Phe Gly 1380 1385 1390
- Asp Asp Gln Cys Leu Leu His Gly Ser Lys Ser Tyr Phe Phe Arg Gln 1395 1400 1405
- Pro Thr Val Ala Gly Ala Ser Lys Ala Arg Pro Asp Phe Arg Ala Leu 1410 1415 1420
- Val Thr Asn Lys Pro Val Val Ser Ala Leu His Gly Ala Val Pro Ala 1425 1430 1435 1440
- Arg Phe Gln Lys Asp Ile Cys Ile Gly Asn Gln Ser Asn Pro Cys Val 1445 1450 1455
- Pro Asn Asn Thr Asn Pro Arg Ala Phe Asn Gly Ser Ser Asn Gly His
 1460 1465 1470
- Val Tyr Glu Lys Leu Ser Ser Ile Glu Ser Asp Val 1475 1480
- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4695 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 485..4495

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

•	•	_													
CGAGAA	CACA	GCGA	GTGT	GT G	AGTC	CCTC	C CG	CTCC	AGCT	CCT	CCAA	GCC (GCGG	ccccc	60
CCGCCAG	CCCT	CGCC	CGCA	GC C	rccco	GCAG	CTC	CCCT	CGGC	CAC	CGGT	GTC 7	rggto	GGGGGT	120
GTTGCC	rggg	TAGG	rcgg	cc c	GCC	CCA	G GG	GTCT	CTCG	AGC	GTCT	GCC 1	ATCTO	GCCCGA	180
GAAACA	GTG	TGGC	CACG	rc c	rcgc	CTAG'	r cc	AGGT	GGCC	GCA	ACCT'	rgg (GGGA	GAGACA	240
GGGCAG	GACA	GGAC	CAAG	GT A	AGAG	GTAA	G GA	GGAG	ACGG	CGC	CAGG	GAC A	AGAC	AGGAGG	300
TCCCGG	CTTG	CCGT'	TGTG	CG C	ACCA	CCAC	r GC	CGCC	GCCC	CGG	GGCC'	rgc (cccc	GACATO	360
GGCTCT	CTGA	GCCC'	TCCT	CG G	AATC:	TTGG	G GT	CGCT	GGAC	GCC	GGT'	rcc o	GGTC	CTGGCC	420
cccccc	CCAT	CCCC	CCĀÃ	CA G	AACA	GGT	CATO	GAAA	AGAG	GCC	GCCC	GGC (GGGG	CCČGCA	480
GGCG AT										o Ar				T AAG a Lys 15	529
ATG CTO	G CTG	CTG Leu	CTG Leu 20	GCG Ala	CTG Leu	GCC Ala	TGC Cys	GCC Ala 25	AGC Ser	CCG Pro	TTC Phe	CCG Pro	GAG Glu 30	GAG Glu	577
GCG CCC Ala Pro															625
GCG CGG	CCG Pro 50	Leu	AAC Asn	GTG Val	GCG Ala	CTC Leu 55	GTG Val	TTC Phe	TCG Ser	GGG Gly	CCC Pro 60	GCG Ala	TAC Tyr	GCG Ala	673
GCC GAG Ala Glu 65	Ala														721
CCG GGG Pro Gly 80															769
CCG CGC Pro Arc															817
GTG CAC		Val	Val	Phe	Glu	Asp	Asp	Ser	Arg.	Ala	Pro	Ala			865
CCC ATO															913
GAG CAC Glu His 145	Gly														961
ACC TTO Thr Phe 160															1009

										1,5	_					
TT Ph	T GA e Gl	G GI u Va	G CT	G GA u Gl 18	u Gl	G TA' u Ty:	r GA	C TGO	G AC p Th 18	r Se	C TT r Ph	T GT e Va	A GC	C GT a Va 19	CG ACC	1057
AC' Th	T CG r Ar	T GC g Al	C CC a Pr 19	o Gl	C CAC y His	C CGC B Arg	G GCG g Ala	C TTO a Phe 200	e Le	G TC u Se	C TA r Ty	C AT r Il	T GA e Gl 20	u Va	G CTG	1105
AC: Thi	r GA	C GG p Gl 21	y Se	T CT	G GTO u Val	G GGG	TG0 Tr ₁ 215	p Glu	G CA	C CGG	C GG g Gl	A GC y Al 22	a Le	G AC u Th	G CTG r Leu	1153
GA(As _I	Pro 22	o GI	G GC Y Al	G GG a Gl	C GAO y Glu	G GCC 1 Ala 230	. Val	G CTO	C AG1 1 Se:	r GCG	C CA6 a Gl: 23	n Le	C CG u Ar	C AG g Se	т GTC r Val	1201
AGC Ser 240	: Ala	G CA a Gl	G ATO	C CGG	C CTC g Let 245	ı Leu	TTC Phe	C TGC P Cys	C GCG S Ala	C CGA A Arg 250	g Gl	G GA	G GC	C GA a Gl	G CCC u Pro 255	1249
GTC Val	TTO Phe	C CG P Ar	C GC	A GC: a_Ala 260	a Glu	GAG Glu	GCT Ala	GGC Gly	CTC Let 265	ı Thr	r GG/	A TC' y Se:	r GG	C TA y Ty 27	C GTC r Val	1297
TGG Trp	TTO Phe	C ATO	G GT0 t Val 275	r Gl ⁷	CCC Pro	CAG Gln	CTG Leu	GCT Ala 280	. Gly	A GGC / Gly	GGC Gly	G GGG 7 Gly	C TC: Y Sei 285	c Gl	G GCC y Ala	1345
CCT Pro	GGI Gly	GA0 Glv 290	ı Pro	C CCT	CTT Leu	CTG Leu	CCA Pro 295	Gly	GGC	GCC Ala	CCC Pro	CTC Lev 300	ı Pro	GCC Ala	C GGG a Gly	1393
CTG Leu	TTT Phe 305	: Als	A GTO	CGC Arg	TCG Ser	GCT Ala 310	GGC Gly	TGG Trp	CGG Arg	GAT Asp	GAC Asp 315) Leu	G GCT	CGC Arg	G CGA g Arg	1441
GTG Val 320	Ala	GC1	GGC Gly	GTG Val	GCC Ala 325	GTA Val	GTG Val	GCC Ala	AGA Arg	GGT Gly 330	Ala	CAG Glm	GCC Ala	CTC Leu	CTG Leu 335	1489
CGT Arg	GAT Asp	TAT	GGT Gly	TTC Phe 340	Leu	CCT Pro	GAG Glu	CTC Leu	GGC Gly 345	CAC His	GAC Asp	TGT Cys	CGC Arg	GCC Ala 350	CAG Gln	1537
AAC Asn	CGC Arg	ACC Thr	CAC His 355	CGC Arg	GGG Gly	GAG Glu	AGT Ser	CTG Leu 360	CAT His	AGG Arg	TAC Tyr	TTC Phe	ATG Met 365	AAC Asn	ATC Ile	1585
ACG Thr	TGG Trp	GAT Asp 370	Asn	CGG Arg	TAD	TAC Tyr	TCC Ser 375	TTC Phe	AAT Asn	GAG Glu	GAC Asp	GGC Gly 380	TTC Phe	CTA Leu	GTG Val	1633
AAC Asn	CCC Pro 385	TCC Ser	CTG Leu	GTG Val	GTC Val	ATC Ile 390	TCC Ser	CTC Leu	ACC Thr	AGA Arg	GAC Asp 395	AGG Arg	ACG Thr	TGG Trp	GAG Glu	1681
GTG Val 400	GTG Val	GGC Gly	AGC Ser	TGG Trp	GAG Glu 405	CAG Gln	CAG Gln	ACG Thr	CTC Leu	CGC Arg 410	CTC Leu	T Aa YYG	TAC Tyr	CCG Pro	CTG Leu 415	1729
TGG Trp	TCC Ser	CGC Arg	TAT Tyr	GGT Gly 420	CGC Arg	TTC Phe	CTG Leɗ	Gln	CCA Pro 425	GTG Val	GAC Asp	GAC Asp	ACG Thr	CAG Gln 430	CAC His	1777
CTC Leu	GCG Ala	GTG Val	GCC Ala 435	ACG Thr	CTG Leu	GAG (Glu (Glu .	AGG Arg 440	CCG Pro	TTT Phe	GTC Val	ATC Ile	GTG Val 445	GAG Glu	CCT Pro	1825

GCA Ala	GAC Asp	CCT Pro 450	ATC Ile	AGC Ser	GGC Gly	ACC Thr	TGC Cys 455	ATC Ile	CGA Arg	GAC Asp	TCC Ser	GTC Val 460	CCC Pro	TGC Cys	CGG Arg	1873
AGC Ser	CAG Gln 465	CTC Leu	AAC Asn	CGA Arg	ACC Thr	CAC His 470	AGC Ser	CCT Pro	CCA Pro	CCG Pro	GAT Asp 475	GCC Ala	CCC Pro	CGC Arg	CCG Pro	1921
GAA Glu 480	AAG Lys	CGC Arg	TGC Cys	CAa	AAG Lys 485	GGT Gly	TTC Phe	TGC Cys	ATC Ile	GAC Asp 490	ATT Ile	CTG Leu	AAG Lys	CGG Arg	CTG Leu 495	1969
GCG Ala	CAT His	ACC Thr	ATC Ile	GGC Gly 500	TTC Phe	AGC Ser	TAC Tyr	GAC Asp	CTC Leu 505	TAC Tyr	CTG Leu	GTC Val	ACC Thr	AAT Asn 510	Gly GC	2017
AAG Lys	CAC His	GGA Gly	AAG Lys 515	AAG Lys	ATC Ile	GAT Asp	GGC Gly	GTC Val 520	TGG Trp	AAC Asn	GGC Gly	ATG Met	ATC Ile 525	GGG Gly	GAG Glu	2065
GTG Val	TTC Phe	TAC Tyr 530	CAG Gln	CG <u>C</u> Arg	.GCA Ala	GAC Asp	ATG Met 535	GCC Ala	ATC Ile	GGC Gly	TCC Ser	CTC Leu 540	ACC Thr	ATC Ile	AAÇ Asn	2113
GAG Glu	GAG Glu 545	CGC Arg	TCC Ser	GAG Glu	ATC Ile	GTG Val 550	Aab GYC	TTC Phe	TCC Ser	GTC Val	CCC Pro 555	TTC Phe	GTG Val	GAG Glu	ACC Thr	2161
GGC Gly 560	Ile	AGC Ser	GTC Val	ATG Met	GTG Val 565	GCG Ala	CGC Arg	AGC Ser	AAT Asn	GGC Gly 570	ACG Thr	GTG Val	TCC Ser	CCC Pro	TCG Ser 575	2209
GCC Ala	TTC Phe	CTC Leu	GAG Glu	CCC Pro 580	Tyr	AGC Ser	CCC Pro	GCC Ala	GTG Val 585	Trp	GTG Val	ATG Met	ATG Met	TTC Phe 590	GTC Val	2257
ATG Met	TGC Cys	CTC Leu	ACT Thr 595	Val	GTC Val	GCC Ala	GTC Val	ACT Thr 600	Val	TTC Phe	ATC Ile	TTC Phe	GAG Glu 605	TAC Tyr	CTC Leu	2305
AGT Ser	CCT Pro	GTT Val 610	Gly	TAC Tyr	AAC Asn	CGC Arg	AGC Ser 615	Leu	GCC Ala	ACG Thr	GGC	AAG Lys 620	Arg	CCT Pro	GGC Gly	2353
GGT Gly	TCA Ser 625	Thr	TTC Phe	ACC	ATT Ile	GGG Gly 630	Lys	TCC Ser	ATC	TGG Trp	CTG Leu 635	CTC Leu	TGG Trp	GCC	CTG Leu	2401
GTG Val 640	Phe	TAA : neA :	TAAT Asn	TCG Ser	GTG Val 645	Pro	GTG Val	GAG Glu	AAC Asn	CCC Pro 650	Arc	GGA Gly	ACC Thr	ACC Thr	Ser 655	2449
AAA Lys	ATC	ATG Met	GTG Val	CTG Leu 660	Val	TGG Trp	GCC	TTC Phe	TTC Phe 665	: Ala	GTC Val	ATC Ile	TTC Phe	CTC Leu 670	GCC	2497
AGC Ser	TAC Tyr	ACA Thr	GCC Ala 675	Asn	CTG Leu	GCC	GCC Ala	TTC Phe 680	Met	ATC	CAC Glr	G GAG	GAG Glu 685	Tyr	GTG Val	2545
GAT Asp	ACT Thr	GTC Val	. Ser	GGG Gly	CTC Leu	AGT Ser	GAC Asp 695	Arg	AAG Lys	TTC Phe	CAC Glr	AGG Arg 700	Pro	CAG Glr	GAG Glu	2593
CAC Glr	TAC Tyr 705	Pro	CCC Pro	CTC Lev	AAG Lys	710	: Gly	ACC Thr	GTC Val	CCC Pro	715	ı Gly	TCC Ser	: ACC	GAG Glu	2641

Asn				ATG Met			CGC Arg 735	2689
				CTC Leu 745				2737
				GCA Ala				2785
	Glu			ACC Thr				2833
				CTG Leu			TGG Trp	2881
				CAG Gln			-	2929
				TCT Ser 825				2977
				GAC Asp				3025
				GGC Gly				3073
				CTG Leu				3121
				TTC Phe				3169
				CCC Pro 905				3217
				CCC Pro				3265
				CGC Arg				3313
				GGG				3361
				GAG Glu				3409
				CGG Arg 985				3457

CTG TCC CCG CCG GCC GCT CAG CCC CCG CAG AAG CCG CCG GCC TCC TAT Leu Ser Pro Pro Ala Ala Gln Pro Pro Gln Lys Pro Pro Ala Ser Tyr 995 1000 1005	3505
TTC GCC ATC GTA CGC GAC AAG GAG CCA GCC GAG CCC CCC GCC G	3553
TTC CCC GGC TTC CCG TCC CCG CCC GCC CCC GCC G	3601
GCC GTC GGG CCG CCA CTC TGC CGC TTG GCC TTC GAG GAC GAG AGC CCG Ala Val Gly Pro Pro Leu Cys Arg Leu Ala Phe Glu Asp Glu Ser Pro 1040 1045 1050 1055	3649
CCG GCG CCC GCG CGG TGG CCG CGC TCG GAC CCC GAG AGC CAA CCC CTG Pro Ala Pro Ala Arg Trp Pro Arg Ser Asp Pro Glu Ser Gln Pro Leu 1060 1065 1070	3697
CTG GGG CCA GGC GCG GGC GCG GGG GGC ACG GGC GCA GGC GGA Leu Gly Pro Gly Ala Gly Gly Ala Gly Gly Thr Gly Gly Ala Gly Gly 1075 1080 1085	3745
GGA GCC CCG GCC CCG CCC CCG TGC TTC GCC GCG CCC CCG TGC Gly Ala Pro Ala Ala Pro Pro Pro Cys Phe Ala Ala Pro Pro Pro Cys 1090 1095 1100	3793
TTT TAC CTC GAT GTC GAC CAG TCG CCG TCG GAC TCG GAG GAC TCG GAG Phe Tyr Leu Asp Val Asp Gln Ser Pro Ser Asp Ser Glu Asp Ser Glu 1105 1110 1115	3841
AGC CTG GCC GGC GCG TCC CTG GCC GGC CTG GAT CCC TGG TGG TTC GCC Ser Leu Ala Gly Ala Ser Leu Ala Gly Leu Asp Pro Trp Trp Phe Ala 1120 1135	3889
GAC TTC CCT TAC CCG TAT GCC GAT CGC CTC GGG CSG CCC GCG GCA CGC Asp Phe Pro Tyr Pro Tyr Ala Asp Arg Leu Gly Xaa Pro Ala Ala Arg 1140 1145 1150	3937
TAC GGA TTG GTC GAC AAA CTA GGG GGC TGG CTC GCC GGG AGC TGG GAC Tyr Gly Leu Val Asp Lys Leu Gly Gly Trp Leu Ala Gly Ser Trp Asp 1155 1160 1165	3985
TAC CTG CCT CCS CGC AGC GGT CGG GCC GCC TGG CAC TGT CGG CAC TGC Tyr Leu Pro Xaa Arg Ser Gly Arg Ala Ala Trp His Cys Arg His Cys 1170 1175 1180	4033
GCC AGC CTG GAG CTG CTT CCG CCG CCG CGC CAT CTC AGC TGC TCG CAC Ala Ser Leu Glu Leu Pro Pro Pro Arg His Leu Ser Cys Ser His 1185 1190 1195	4081
GAT GGC CTG GAC GGC GGC TGG TGG GCG CCA CCG CCT CCA CCC TGG GCC Asp Gly Leu Asp Gly Gly Trp Trp Ala Pro Pro Pro Pro Pro Trp Ala 1200 1215	4129
GCC GGG CCC CTG CCC CGA CGC CGG GCC CGC TGC GGG TGC CCG CGG TCG Ala Gly Pro Leu Pro Arg Arg Arg Ala Arg Cys Gly Cys Pro Arg Ser 1220 1225 1230	4177
CAC CCG CAC CGC CCG CGG GCC TCG CAC CGC ACG CCC GCC GCT GCC GCG His Pro His Arg Pro Arg Ala Ser'His Arg Thr Pro Ala Ala Ala Ala 1235 1240 1245	4225
CCC CAC CAC AGG CAC CGG CGC GCC GCT GGG GGC TGG GAC CTC CCG Pro His His Arg His Arg Arg Ala Ala Gly Gly Trp Asp Leu Pro 1250 1255 1260	4273

Pro	CCC Pro 1265	Ala	CCC Pro	ACC Thr	TCG Ser	CGC Arg 1270	Ser	CTC Leu	GAG Glu	GAC Asp	CTC Leu 1275	Ser	TCG Ser	TGC Cys	CCT Pro	4321
CGC Arg 1280	GCC Ala	GCC Ala	CCT Pro	GCG Ala	CGC Arg 1285	Arg	CTT Leu	ACC Thr	GGG Gly	CCC Pro 1290	Ser	CGC Arg	CAC His	GCT Ala	CGC Arg 1295	4369
AGG Arg	TGT Cys	CCG Pro	CAC His	GCC Ala 1300	Ala	CAC His	TGG Trp	GGG Gly	CCG Pro 1305	Pro	CTG Leu	CCT Pro	ACA Thr	GCT Ala 1310	Ser	4417
CAC His	CGG Arg	AGA Arg	CAC His 1315	Arg	GGC Gly	GGG Gly	GAC Asp	CTG Leu 1320	Gly	ACC Thr	CGC Arg	AGG Arg	GGC Gly 1325	Ser	GCG Ala	4465
CAC His	TTC Phe	TCT Ser 1330	Ser	CTC Leu	GAG Glu	TCC Ser	GAG Glu 133	Val	TGAG	GCGC	scc (cccc	GGC	cc		4512
CAC	cgcc	ccc :	rtgg	CVČ	CG C	AGGC	CACG	cc	CGAGO	GGG	CGC	CCGC	AGT (GGAC	AGGĄCC	4572
CGC	GTGG	GTT (GGA	AGGA	AA GO	CAGTO	GAA	TGO	GCCG	GACC	CCG	CCTG	GAG (CAGC	STCCTG	4632
CGC	cccc	rgg :	TCT	GAG	GA AC	CCGC	AAGC	C GG	AGAGO	SATT	TGGT	rccc:	rca 1	ACTA	TCACCC	4692
AGG																4695
(2)	INFO		SEQUI (A) (B)	ENCE LEI	CHAI NGTH:	ID R RACTI : 13: amino GY: :	ERIS: 36 ar	rics: mino id	: acid	ls						
	/ :		AOT E	יווי בי	TVDI	ים יי	ote	in								
	•	•				E: pi) ID	NO:	16:					
Met 1	•	ki) S	SEQUI	ENCE	DESC	CRIPT	NOI	: SE				Pro	Ala	Lys 15	Met	
1	(2	ki) S	SEQUI Ala	ENCE Gly 5	DESC	Pro	rion Arg	: SEG	Pro 10	Arg	Gly			15		
1 Leu	(z Arg	ki) S Gly Leu	SEQUI Ala Leu 20	Gly 5 Ala	DESC Gly Leu	Pro Ala	rion Arg Cys	Gly Ala 25	Pro 10 Ser	Arg Pro	Gly Phe	Pro	Glu 30	15 Glu	Ala	
l Leu Pro	(; Arg Leu	Gly Leu Pro 35	EEQUI Ala Leu 20 Gly	Gly 5 Ala Gly	DESC Gly Leu Ala	Pro Ala Gly	Cys Gly 40	Gly Ala 25	Pro 10 Ser Gly	Arg Pro Gly	Gly Phe Gly	Pro Leu 45	Glu 30 Gly	15 Glu Gly	Ala Ala	
l Leu Pro Arg	(2) Arg Leu Gly Pro	ci) S Gly Leu Pro 35 Leu	Ala Leu 20 Gly Asn	Gly 5 Ala Gly Val	DESC Gly Leu Ala Ala	Pro Ala Gly Leu 55	Cys Gly 40 Val	Gly Ala 25 Pro	Pro 10 Ser Gly Ser	Arg Pro Gly Gly	Gly Phe Gly Pro 60	Pro Leu 45 Ala	Glu 30 Gly Tyr	Glu Gly Ala	Ala Ala	
l Leu Pro Arg Glu 65	Arg Leu Gly Pro	Gly Leu Pro 35 Leu Ala	Ala Leu 20 Gly Asn	Gly 5 Ala Gly Val	Gly Leu Ala Ala Gly 70	Pro Ala Gly Leu 55	Cys Gly 40 Val	Gly Ala 25 Pro Phe Val	Pro 10 Ser Gly Ser	Arg Pro Gly Gly Ala 75	Gly Phe Gly Pro 60	Pro Leu 45 Ala Val	Glu 30 Gly Tyr Arg	Glu Gly Ala Ser	Ala Ala Ala Pro 80	
Leu Pro Arg Glu 65	Arg Leu Gly Pro 50	Gly Leu Pro 35 Leu Ala Asp	EQUI Ala Leu 20 Gly Asn Arg	Gly 5 Ala Gly Val Leu Arg	DESC Gly Leu Ala Ala Gly 70 Pro	Pro Ala Gly Leu 55 Pro Val	Cys Cys Gly 40 Val Ala	Gly Ala 25 Pro Phe Val	Pro 10 Ser Gly Ser Ala Val 90	Arg Pro Gly Gly Ala 75 Leu	Gly Phe Gly Pro 60 Ala Asn	Pro Leu 45 Ala Val	Glu 30 Gly Tyr Arg	Glu Gly Ala Ser Asp 95	Ala Ala Pro 80 Pro	
leu Pro Arg Glu 65 Gly Arg	Cly Pro 50 Ala Leu	Gly Leu Pro 35 Leu Ala Asp	Ala Leu 20 Gly Asn Arg Val	Gly 5 Ala Gly Val Leu Arg 85 Leu	DESC Gly Leu Ala Ala Gly 70 Pro	Pro Ala Gly Leu 55 Pro Val	Cys Gly 40 Val Ala Ala	Gly Ala 25 Pro Phe Val Leu Asp	Pro 10 Ser Gly Ser Ala Val 90 Leu	Arg Pro Gly Gly Ala 75 Leu Leu	Gly Phe Gly Pro 60 Ala Asn	Pro Leu 45 Ala Val Gly	Glu 30 Gly Tyr Arg Ser	Glu Gly Ala Ser Asp 95 Arg	Ala Ala Pro 80 Pro Val	

His Gly Gly Ala Ala Leu Val Leu Thr Pro Lys Glu Lys Gly Ser Thr Phe Leu His Leu Gly Ser Ser Pro Glu Gln Gln Leu Gln Val Ile Phe 170 Glu Val Leu Glu Glu Tyr Asp Trp Thr Ser Phe Val Ala Val Thr Thr 185 Arg Ala Pro Gly His Arg Ala Phe Leu Ser Tyr Ile Glu Val Leu Thr Asp Gly Ser Leu Val Gly Trp Glu His Arg Gly Ala Leu Thr Leu Asp Pro Gly Ala Gly Glu Ala Val Leu Ser Ala Gln Leu Arg Ser Val Ser Ala Gln Ile Arg Leu Leu Phe Cys Ala Arg Glu Glu Ala Glu Pro Val Phe Arg Ala Ala Glu Glu Ala Gly Leu Thr Gly Ser Gly Tyr Val Trp 265 Phe Met Val Gly Pro Gln Leu Ala Gly Gly Gly Ser Gly Ala Pro Gly Glu Pro Pro Leu Leu Pro Gly Gly Ala Pro Leu Pro Ala Gly Leu Phe Ala Val Arg Ser Ala Gly Trp Arg Asp Asp Leu Ala Arg Arg Val 315 310 Ala Ala Gly Val Ala Val Val Ala Arg Gly Ala Gln Ala Leu Leu Arg Asp Tyr Gly Phe Leu Pro Glu Leu Gly His Asp Cys Arg Ala Gln Asn Arg Thr His Arg Gly Glu Ser Leu His Arg Tyr Phe Met Asn Ile Thr Trp Asp Asn Arg Asp Tyr Ser Phe Asn Glu Asp Gly Phe Leu Val Asn Pro Ser Leu Val Val Ile Ser Leu Thr Arg Asp Arg Thr Trp Glu Val Val Gly Ser Trp Glu Gln Gln Thr Leu Arg Leu Lys Tyr Pro Leu Trp 405 Ser Arg Tyr Gly Arg Phe Leu Gln Pro Val Asp Asp Thr Gln His Leu Ala Val Ala Thr Leu Glu Glu Arg Pro Phe Val Ile Val Glu Pro Ala Asp Pro Ile Ser Gly Thr Cys Ile Arg Asp Ser Val Pro Cys Arg Ser 455 Gln Leu Asn Arg Thr His Ser Pro Pro Pro Asp Ala Pro Arg Pro Glu Lys Arg Cys Cys Lys Gly Phe Cys Ile Asp Ile Leu Lys Arg Leu Ala 490

His Thr Ile Gly Phe Ser Tyr Asp Leu Tyr Leu Val Thr Asn Gly Lys 505 His Gly Lys Lys Ile Asp Gly Val Trp Asn Gly Met Ile Gly Glu Val Phe Tyr Gln Arg Ala Asp Met Ala Ile Gly Ser Leu Thr Ile Asn Glu Glu Arg Ser Glu Ile Val Asp Phe Ser Val Pro Phe Val Glu Thr Gly 550 Ile Ser Val Met Val Ala Arg Ser Asn Gly Thr Val Ser Pro Ser Ala Phe Leu Glu Pro Tyr Ser Pro Ala Val Trp Val Met Met Phe Val Met Cys Leu Thr Val Val Ala Val Thr Val Phe Ile Phe Glu Tyr Leu Ser Pro Val Gly Tyr Asn Arg Ser Leu Ala Thr Gly Lys Arg Pro Gly Gly Ser Thr Phe Thr Ile Gly Lys Ser Ile Trp Leu Leu Trp Ala Leu Val 630 Phe Asn Asn Ser Val Pro Val Glu Asn Pro Arg Gly Thr Thr Ser Lys 650 Ile Met Val Leu Val Trp Ala Phe Phe Ala Val Ile Phe Leu Ala Ser 665 Tyr Thr Ala Asn Leu Ala Ala Phe Met Ile Gln Glu Glu Tyr Val Asp 680 Thr Val Ser Gly Leu Ser Asp Arg Lys Phe Gln Arg Pro Gln Glu Gln Tyr Pro Pro Leu Lys Phe Gly Thr Val Pro Asn Gly Ser Thr Glu Lys Asn Ile Arg Ser Asn Tyr Pro Asp Met His Ser Tyr Met Val Arg Tyr 725 730 Asn Gln Pro Arg Val Glu Glu Ala Leu Thr Gln Leu Lys Ala Gly Lys Leu Asp Ala Phe Ile Tyr Asp Ala Ala Val Leu Asn Tyr Met Ala Arg Lys Asp Glu Gly Cys Lys Leu Val Thr Ile Gly Ser Gly Lys Val Phe 775 Ala Thr Thr Gly Tyr Gly Ile Ala Leu His Lys Gly Ser Arg Trp Lys Arg Pro Ile Asp Leu Ala Leu Leu Gln Phe Leu Gly Asp Asp Glu Ile 810 Glu Met Leu Glu Arg Leu Trp Leu Ser Gly Ile Cys His Asn Asp Lys Ile Glu Val Met Ser Ser Lys Leu Asp Ile Asp Asn Met Ala Gly Val

Phe Tyr Met Leu Leu Val Ala Met Gly Leu Ser Leu Leu Val Phe Ala 855 Trp Glu His Leu Val Tyr Trp Arg Leu Arg His Cys Leu Gly Pro Thr His Arg Met Asp Phe Leu Leu Ala Phe Ser Arg Gly Met Tyr Ser Cys 890 Cys Ser Ala Glu Ala Ala Pro Pro Pro Ala Lys Pro Pro Pro Pro 900 Gln Pro Leu Pro Ser Pro Ala Tyr Pro Ala Pro Gly Pro Ala Pro Gly Pro Ala Pro Phe Val Pro Arg Glu Arg Ala Ser Val Ala Arg Trp Arg Arg Pro Lys Gly Ala Gly Pro Pro Gly Gly Ala Gly Leu Ala Asp Gly Phe His Arg Tyr Tyr Gly Pro Ile Glu Pro Gln Gly Leu Gly Leu Gly Leu Gly Glu Ala Arg Ala Ala Pro Arg Gly Ala Ala Gly Arg Pro Leu Ser Pro Pro Ala Ala Gln Pro Pro Gln Lys Pro Pro Ala Ser Tyr Phe 1000 Ala Ile Val Arg Asp Lys Glu Pro Ala Glu Pro Pro Ala Gly Ala Phe 1010 Pro Gly Phe Pro Ser Pro Pro Ala Pro Pro Ala Ala Ala Ala Thr Ala 1035 Val Gly Pro Pro Leu Cys Arg Leu Ala Phe Glu Asp Glu Ser Pro Pro 1045 1050 Ala Pro Ala Arg Trp Pro Arg Ser Asp Pro Glu Ser Gln Pro Leu Leu 1060 Gly Pro Gly Ala Gly Gly Ala Gly Gly Thr Gly Gly Ala Gly Gly 1080 Ala Pro Ala Ala Pro Pro Pro Cys Phe Ala Ala Pro Pro Pro Cys Phe 1095 Tyr Leu Asp Val Asp Gln Ser Pro Ser Asp Ser Glu Asp Ser Glu Ser 1105 1115 Leu Ala Gly Ala Ser Leu Ala Gly Leu Asp Pro Trp Trp Phe Ala Asp 1130 Phe Pro Tyr Pro Tyr Ala Asp Arg Leu Gly Xaa Pro Ala Ala Arg Tyr 1145 Gly Leu Val Asp Lys Leu Gly Gly Trp Leu Ala Gly Ser Trp Asp Tyr 1160 Leu Pro Xaa Arg Ser Gly Arg Ala Ala Trp His Cys Arg His Cys Ala 1175 Ser Leu Glu Leu Leu Pro Pro Pro Arg His Leu Ser Cys Ser His Asp 1195

Gly	Leu	Asp	Gly	Gly 1209		Trp	Ala	Pro	Pro 1210		Pro	Pro	Trp	Ala 121		
Gly	Pro	Leu	Pro 1220		Arg	Arg	Ala	Arg 1225		Gly	CÀa	Pro	Arg 1230		His	
Pro	His	Arg 1235		Arg	Ala	Ser	His 1240		Thr	Pro	Ala	Ala 1245		Ala	Pro	
His	His 1250		Arg	His	Arg	Arg 1255		Ala	Gly	Gly	Trp 1260		Leu	Pro	Pro	
Pro 126	Ala 5	Pro	Thr	Ser	Arg 1270		Leu	Glu	Asp	Leu 1275		Ser	Сув	Pro	Arg 1280	
Ala	Ala	Pro	Ala	Arg 1285		Leu	Thr	Gly	Pro 1290		Arg	His	Ala	Arg 1295		
Cys	Pro	His	Ala 1300		His	Trp	Gly	Pro 1305		Leu	Pro	Thr	Ala 1310		His	
Arg	Arg	His 1315		GIŢ	Gly	Asp	Leu 1320		Thr	Arg	Arg	Gly 1325		Ala	HĪs	
Phe	Ser 1330		Leu	Glu	Ser	Glu 1335										
(2)	(ii)	SEQ (A (B (C (D	UENC) LE) TY) ST) TO	E CHENGTH	IARAC I: 71 nucl DEDNE GY:	TERI bas eic SS: both	STIC e pa acid both	CS: lirs	D. NO	•17•						
GGGT	-							_				CAAG	AT C	TGGC	CCTAG	60
	TGTT															71
(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:18	:								
	(i)	(A (B (C) LE:) TY:) ST:	NGTH PE: RAND	: 71 nucl EDNE	TERI bas eic SS: both	e pa acid	irs								
	(ii)	MOLI	ECUL	E TY	PE:	CDNA										
	(xi)															
rggr	GGTC	CC C	AACC:	rgta(G GA	CTTG	sttć	TGG	AGGA	GGA :	rctgo	STGT	AG G	CAAA	CATGG	60
מתהמ	SCCC	ם מי														~ .

(2) INFORMATION FOR SEQ ID NO:19:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 61 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: both(D) TOPOLOGY: both	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
GTTGGGGACC ACCAGATGGA GGTAGAGCTG CACTTGTACG AAGAGCTCCA CAACCACCTG	60
G	61
(2) INFORMATION FOR SEQ ID NO:20:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 62 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
CGTGAGACGT CAGACAAAGG AGGCCCAGGT GTAGGTGGTC TACCAGGTGG TTGTGGAGCT	60
CT	62
(2) INFORMATION FOR SEQ ID NO:21:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 195 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: both 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
CCGCAGAGCA CCTCCACCAT CTCCTTGTCC TACTCCAAGA TCTGGCCCTA GTCCATGTTT	
	60
GCCTACACCA GATCCTCCTC CAGAACCAAG TCCTACAGGT TGGGGACCAC CAGATGGAGG TAGAGCTGCA CTTGTACCAA CACGTGCACA ACCAGGTGGT ACAGGACCAC CAGATGGAGG	120
TAGAGCTGCA CTTGTACGAA GAGCTCCACA ACCACCTGGT AGACCACCTA CACCTGGGCC TCCTTTGTCT GACGT	180
TOOTITOICI GACGI	195