<u>Using excess notation to represent numbers</u>

When using two's complement notation to represent a number, an N bit binary number can represent 2^N numbers ranging from $-(2^N/2)$ to $+(2^N/2-1)$. Zero is located at the middle of the range and for an 8 bit number, is represented by 00000000_2 . The MSB of the number is used to represent the sign of the number, indicating a positive number when cleared and a negative number when set.

Generalising the concept, zero may not be located at the middle of the range and a bias number is used to represent it. Under this representation:

- Any binary number greater than the bias number is considered to be positive
- Any binary number smaller than the bias number, is considered to be negative
- Zero is represented by the bias number
- For 8 bits numbers, the negative of the bias number is represented by 000000002

This approach is known as excess notation representation of numbers.

Example:

3 bits excess notation (excess 4 notation)	111 ₂ 110 ₂ 101 ₂ 100 ₂ 011 ₂ 010 ₂ 001 ₂ 000 ₂	3 2 1 0 -1 -2 -3 -4
4 bits excess notation (excess 8 notation)	1111 ₂ 1110 ₂ 1101 ₂ 1100 ₂ 1011 ₂ 1010 ₂ 1000 ₂ 1000 ₂ 0111 ₂ 0110 ₂ 0100 ₂ 0101 ₂ 0010 ₂ 0011 ₂ 0010 ₂ 0010 ₂ 0001 ₂ 0000 ₂	7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8

Under this notation:

- inverting all bits of 0 yields -1
- positive numbers have their MSB set
- to calculate the binary representation of a positive number, add the number to the bias number (representing zero) and then convert the result to a binary number
- to calculate the binary representation of a negative number, subtract the absolute value of the number from the bias number and then convert the result to a binary number
- the binary addition and subtraction procedures mentioned before, cannot be applied in this representation

Examples:

- 1. Calculate 3 using excess 4 notation:
 - Excess 4 notation means that the bias number is equal to 8
 - Calculate 3 + 8 = 11
 - Convert 11 to binary: $11_{10} = 1011_2$
- 2. Calculate -2 using excess 3 notation:
 - Excess 3 notation means that the bias number is equal to 4
 - \circ Calculate 4 2 = 2
 - Convert 2 to binary: $2_{10} = 10_2$

Use:

Excess notation is used to represent the exponent part of floating-point numbers. 8-bits excess-127 is used in single-precision (32-bit) numbers and 11-bits excess-1023 is used in double precision (64-bit) numbers.