Зміст

3	Мінімізація детермінованих скінчених автоматів				
	3.1	Мінімізація детермінованих скінчених автоматів			
		3.1.1	Недосяжні стани		
		3.1.2	Тупикові стани		
		3.1.3	Еквівалентні стани		
		3.1.4	Алгоритм		
	3.2	Контр	оольні запитання	ļ	

3 Мінімізація детермінованих скінчених автоматів

3.1 Мінімізація детермінованих скінчених автоматів

В подальшому при програмуванні скінчених автоматів важливо мати справу з так званими "мінімальними автоматами". *Мінімальним* для даного скінченого автомата називається еквівалентний йому автомат з мінімальною кількістю станів.

Нагадаємо, що два автомати називаються *еквівалентними* якщо вони розпізнають одну мову.

Te, що скінчені автомати можна мінімізувати покажемо на наступному прикладі:

Навіть при поверхневому аналізі діаграми переходів наведеного скінченого автомата видно, що вершини q_3 , q_4 та q_5 є "зайвими", тобто при їх вилученні новий автомат буде еквівалентний початковому. З наведеного вище прикладу видно, що для отриманого детермінованого скінченого автомата можна запропонувати еквівалентний йому автомат з меншою кількістю станів, тобто мінімізувати скінчений автомат. Очевидно що серед зайвих станів цього автомата є недосяжні та тупикові стани.

3.1.1 Недосяжні стани

Стан q скінченого автомата M називається недосяжним, якщо на діаграмі переходів скінченого автомата не існує шляху з q_0 в q.

Алгоритм [пошуку недосяжних станів]. Спочатку спробуємо побудувати множину досяжних станів. Якщо Q_m — множина досяжних станів скінченого автомата M, то $Q \setminus Q_m$ — множина недосяжних станів. Побудуємо послідовність множин Q_0, Q_1, Q_2, \ldots таким чином, що:

- 1. $Q_0 = \{q_0\}.$
- 2. $Q_i = Q_{i-1} \cup \{q \mid \exists a \in \Sigma, q_i \in Q_{i-1} : q \in \delta(q_i, a)\}.$
- 3. $Q_m = Q_{m+1} = \dots$

Справді, очевидно, що кількість кроків скінчена, тому що послідовність Q_i монотонна $(Q_0 \subseteq Q_1 \subseteq Q_2 \subseteq \ldots)$ та обмежена зверху: $Q_m \subseteq Q$.

Тоді Q_m — множина досяжних станів скінченого автомата, а $Q \setminus Q_m$ — множина недосяжних станів.

Вилучимо з діаграми переходів скінченого автомата M недосяжні вершини:

В новому автоматі функція δ визначається лише для досяжних станів. Побудований нами скінчений автомат з меншою кількістю станів буде еквівалентний початковому.

3.1.2 Тупикові стани

Стан q скінченого автомата M називається $mynu\kappa oвим$, якщо на діаграмі переходів скінченого автомата не існує шляху з q в F.

Алгоритм [пошуку тупикових станів]. Спочатку спробуємо знайти нетупикові стани. Якщо S_m — множина нетупикових станів, то $Q \setminus S_m$ — множина тупикових станів. Побудуємо послідовність множин S_0, S_1, S_2, \dots таким чином, що:

- 1. $S_0 = F$.
- 2. $S_i = S_{i-1} \cup \{q \mid \exists a \in \Sigma : \delta(q, a) \cap S_{i-1} \neq \varnothing\}.$
- 3. $S_m = S_{m+1} = \dots$

Очевидно, що кількість кроків скінчена, тому що послідовність S_i монотонна $(S_0 \subseteq S_1 \subseteq S_2 \subseteq \ldots)$ та обмежена зверху — $S_m \subseteq Q$.

Тоді S_m — множина нетупикових станів скінченого автомата, а $Q \setminus S_m$ — множина тупикових станів.

Вилучимо з діаграми переходів скінченого автомата M тупикові вершини:

В новому автоматі функція δ визначається лише для нетупикових станів.

3.1.3 Еквівалентні стани

Автомат, у котрого відсутні недосяжні та тупикові стани, піддається подальшій мінімізації шляхом "склеювання" еквівалентних станів. Продемонструємо це на конкретному прикладі:

Очевидно, що для наведеного вище скінченого автомата можна побудувати еквівалентний йому скінчений автомат з меншою кількістю станів:

Ми досягли бажаного нам результату шляхом "склеювання" двох станів $q_1 \equiv q_3$ та $q_2 \equiv q_4$.

Два стани q_1 та q_2 скінченого автомата M називаються $e\kappa eieaлентни-$ mu (позначається $q_1 \equiv q_2$), якщо множини слів, які розпізнає автомат, починаючи з q_1 та q_2 , співпадають.

Нехай q_1 та q_2 — два різні стани скінченого автомата M, а $x \in \Sigma^*$. Будемо говорити, що ланцюжок x розрізняє стани q_1 та q_2 , якщо $(q_1, x) \models^* (q_3, \varepsilon)$ та $(q_2, x) \models^* (q_4, \varepsilon)$, причому рівно один зі станів q_3 і q_4 (не) належить множині заключних станів.

Стани q_1 та q_2 називаються k-нерозрізнені, якщо не існує ланцюжка x ($|x| \le k$), що розрізняє стани q_1 та q_2 .

Два стани q_1 та q_2 *нерозрізнені*, якщо вони k-нерозрізнені для довільного k.

Теорема. Два стани q_1 та q_2 довільного скінченого автомата M з n станами нерозрізнені, якщо вони (n-2)-нерозрізнені.

Доведення: На першому кроці розіб'ємо множину станів скінченого автомата на дві підмножини: F та $Q \setminus F$. На цій основі побудуємо відношення \equiv^0 : $q_1 \equiv^0 q_2$, якщо обидва стани одночасно належать F або $Q \setminus F$.

Побудуємо відношення \equiv^k : $q_1 \equiv^k q_2$, якщо $q_1 \equiv^{k-1} q_2$ та $\delta(q_1, a) \equiv^{k-1} \delta(q_2, a)$ для всіх $a \in \Sigma$.

Очевидно, кожна побудована множина містить не більше (n-1) елементи.

Таким чином, можна отримати не більше (n-2) уточнення відношення \equiv^0 .

Відношення \equiv^{n-2} визначає класи еквівалентних станів автомата M.

3.1.4 Алгоритм

Алгоритм [побудови мінімального скінченого автомата].

- 1. Побудувати скінчений автомат без тупикових станів.
- 2. Побудувати скінчений автомат без недосяжних станів.
- 3. Знайти множини еквівалентних станів та побудувати найменший (мінімальний) автомат.

3.2 Контрольні запитання

- 1. Які автомати називаються еквівалентними?
- 2. Який стан автомату називається недосяжним?
- 3. Опишіть алгоритм пошуку недосяжних станів і доведіть його збіжність. Бонус: оцініть складність цього алгоритму за часом і пам'яттю.
- 4. Який стан автомату називається тупиковим?
- 5. Опишіть алгоритм пошуку тупикових станів і доведіть його збіжність. Бонус: оцініть складність цього алгоритму за часом і пам'яттю.
- 6. Які стани називаються еквівалентними?
- 7. Опишіть алгоритм пошуку еквівалентних станів і доведіть його збіжність. Бонус: оцініть складність цього алгоритму за часом і пам'яттю.
- 8. Опишіть алгоритм мінімізації детермінованого скінченного автомату. Бонус: виведіть з попередніх оцінок складність цього алгоритму за часом і пам'яттю.