ADA06 - 10am Mon 26 Sep 2022

Recap: χ^2 fitting

Sample Variance S² bias correction

"Robust" Statistics: Median and MAD sigma clipping

Recap: Fitting models by minimizing χ^2

Fit *M* parameters to *N* data points.

$$\chi^{2}(X,\sigma,\alpha) \equiv \sum_{i=1}^{N} \left(\frac{X_{i} - \mu_{i}(\alpha)}{\sigma_{i}}\right)^{2}$$

Best - fit parameters $\hat{\alpha}$ minimise χ^2 .

Caveat: Assumes orthogonal parameters. Generalise to correlated parameters later.

$$\left\langle \chi_N^2 \right\rangle = N \; , \quad \operatorname{Var} \left[\chi_N^2 \right] = 2 \, N$$

 $\Delta \chi^2 \equiv \chi^2 (\alpha_{\text{true}}) - \chi_{\text{min}}^2 \sim \chi_M^2$

Data points with no error bars 🐵

N data points:
$$\langle X_i \rangle = \langle X \rangle$$
 Cov $(X_i X_j) = \sigma^2 \delta_{ij}$

Sample mean:
$$\overline{X} = \frac{1}{N} \sum_{i} X_{i}$$
 unbiased: $\langle \overline{X} \rangle = \langle X \rangle$. $\operatorname{Var}(\overline{X}) = \frac{\sigma^{2}}{N}$

But σ_i^2 are unknown. How can we estimate σ^2 ?

Variance:
$$\sigma^2(X) = \langle (X - \langle X \rangle)^2 \rangle$$

Try:
$$s^2 = \frac{1}{N} \sum_{i} (X_i - \overline{X})^2$$

Is
$$\langle s^2 \rangle = \sigma^2$$
?

No. $\langle s^2 \rangle < \sigma^2$ We can evaluate and then correct for this bias.

Sample Variance S^2 : Unbiased for σ^2

$$\langle X \rangle$$
 – \overline{X}

$$S^{2} = A \sum_{i=1}^{N} (X_{i} - \overline{X})^{2} \qquad \text{Pick } A \text{ so that } \left\langle S^{2} \right\rangle = A \sum_{i=1}^{N} \left\langle (X_{i} - \overline{X})^{2} \right\rangle = \sigma^{2}$$

$$\left\langle (X_i - \overline{X})^2 \right\rangle = \left\langle \left[(X_i - \left\langle X \right\rangle) - (\overline{X} - \left\langle X \right\rangle) \right]^2 \right\rangle$$

$$= \left\langle (X_i - \left\langle X \right\rangle)^2 + (\overline{X} - \left\langle X \right\rangle)^2 - 2 \left(X_i - \left\langle X \right\rangle \right) (\overline{X} - \left\langle X \right\rangle) \right\rangle$$

$$= \sigma^2 (X_i) + \sigma^2 (\overline{X}) - 2 \operatorname{Cov}(X_i, \overline{X})$$

$$= \sigma^2 + \frac{\sigma^2}{N} - 2 \frac{\sigma^2}{N}$$
Note: $\operatorname{Cov}(X_i, \overline{X}) = \frac{\sigma^2}{N}$

$$= \left(1 - \frac{1}{N}\right)\sigma^2 = \left(\frac{N - 1}{N}\right)\sigma^2$$

$$\therefore \langle S^2 \rangle = A \sum_{i=1}^{N} \left(\frac{N-1}{N} \right) \sigma^2 \quad \text{Pick} \quad A = \frac{1}{N-1} \qquad S^2 = \frac{1}{N-1} \sum_{i=1}^{N} \left(X_i - \overline{X} \right)^2$$

$$S^2 = \frac{1}{N-1} \sum_{i=1}^{N} \left(X_i - \overline{X} \right)^2$$

Evaluation of $Cov(X_i, X)$

$$Cov(X_i, \overline{X}) \equiv \left\langle (X_i - \left\langle X_i \right\rangle) \left(\overline{X} - \left\langle \overline{X} \right\rangle \right) \right\rangle$$

Note:
$$\langle X_i \rangle = \langle \overline{X} \rangle = \langle X \rangle$$

Shift coords to put $\langle X \rangle = 0$:

$$\operatorname{Cov}(X_i, \overline{X}) = \left\langle (X_i - 0) (\overline{X} - 0) \right\rangle$$

$$= \left\langle X_i \frac{1}{N} \sum_k X_k \right\rangle$$

$$= \frac{1}{N} \sum_{k} \langle X_i X_k \rangle$$

$$=\frac{1}{N}\sum_{k}\sigma^{2}\delta_{ik}=\frac{\sigma^{2}}{N}$$

$$Cov(X_i, X_j) \equiv \sigma^2 \delta_{ij}$$

Sample Variance S^2 : Unbiased for σ^2

$$S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (X_{i} - \overline{X})^{2}$$

$$S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (X_{i} - \overline{X})^{2} \qquad \langle X \rangle - \overline{Z} = \overline{X}$$

Why
$$\frac{1}{N-1}$$
, not $\frac{1}{N}$?

Because \bar{X} "chases" the dancing data points, removing 1 "degree-of-freedom" from the dance.

$$S^{2} \sim \frac{\sigma^{2}}{N-1} \chi_{N-1}^{2}$$

$$\left\langle S^{2} \right\rangle = \frac{\sigma^{2}}{N-1} \left\langle \chi_{N-1}^{2} \right\rangle$$

$$= \frac{\sigma^{2}}{N-1} \left(N-1 \right) = \sigma^{2}$$

$$S^{2} \sim \frac{\sigma^{2}}{N-1} \chi_{N-1}^{2}$$

$$\langle S^{2} \rangle = \frac{\sigma^{2}}{N-1} \langle \chi_{N-1}^{2} \rangle$$

$$= \frac{\sigma^{2}}{N-1} (N-1) = \sigma^{2}$$

$$Var[S^{2}] = \left(\frac{\sigma^{2}}{N-1}\right)^{2} Var[\chi_{N-1}^{2}]$$

$$= \left(\frac{\sigma^{2}}{N-1}\right)^{2} 2(N-1) = \frac{2\sigma^{4}}{N-1}$$

$$\frac{\sigma(S^{2})}{\langle S^{2} \rangle} = \left(\frac{2}{N-1}\right)^{1/2} = \text{fractional accuracy}$$

Is (S^2)^{1/2} unbiased for σ ?

- The sample variance S^2 is unbiased for σ^2 .
- i.e. $< S^2 > = \sigma^2$
- Is $(S^2)^{1/2}$ unbiased for σ ?

- $S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (X_{i} \overline{X})^{2}$
- No. The square root introduces a bias:

Homework:

Work out the bias correction, as a function of N, to construct an unbiased estimate for σ^p .

$$\langle \sqrt{S^2} \rangle < \sigma$$
, even though $\sqrt{\sigma^2} = \sigma$.

"Robust" estimation methods

Robust Statistics:

less sensitive to "bad" data

Example: use the **median** rather than the **mean**.

Sample Mean \overline{X} minimizes the **Sample Variance**:

$$S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (X_{i} - \mu)^{2}$$

$$\frac{\partial}{\partial \mu} \left[\sum_{i=1}^{N} (X_i - \mu)^2 \right] = 0$$

for
$$\mu = \overline{X}$$

Median X_M minimizes the

"Mean Absolute Deviation":

$$MAD = \frac{1}{N} \sum_{i=1}^{N} |X_i - \mu|$$

$$\frac{\partial}{\partial \mu} \left[\sum_{i=1}^{N} |X_i - \mu| \right] = 0$$

for
$$\mu = X_M \equiv \text{Median}(X_i)$$

Mean vs Median

Comparison of Mean and Median

• The median is less sensitive to outliers than the mean.

- The median is unbiased, but not a minimum-variance estimator.
- Note how the standard deviations of the median and of the mean vary with sample size.

$$\sigma(\bar{X}) = \frac{\sigma}{\sqrt{N}} \le \sigma(X_{\text{Med}})$$

"Proof" that the Median minimises the MAD

$$H(x) = \begin{cases} +1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases} \frac{dH}{dx} = 2\delta(x)$$

$$\begin{split} MAD &\equiv \frac{1}{N} \sum_{i=1}^{N} \left| X_{i} - \mu \right| &= \frac{1}{N} \sum_{i=1}^{N} \left(X_{i} - \mu \right) H \left(X_{i} - \mu \right) \\ \frac{d \, MAD}{d \, \mu} &= \frac{1}{N} \sum_{i=1}^{N} \left[(-1) H \left(X_{i} - \mu \right) + \left(X_{i} - \mu \right) (-1) H' \left(X_{i} - \mu \right) \right] \\ &= 0 \\ &= \frac{-1}{N} \sum_{i=1}^{N} H \left(X_{i} - \mu \right) = \frac{-1}{N} \left(\sum_{X_{i} > \mu} (+1) + \sum_{X_{i} < \mu} (-1) \right) & \text{ whenever } x \neq 0 \\ &= 0 \quad \text{if} \quad \mu = \text{median}(X_{i}) \end{split}$$

Median Filter and Sigma-Clip

Median filter:

- Window encloses N points centred at time t
- Medfilt(t) is the median of the N points.

Sigma-clip:

- Fit all points by minimising χ^2
- Set threshold K and check for outliers at $\pm K \sigma$ or more
- Repeat fit omitting largest outlier
- Iterate until set of rejected points converges.

Reject

Reject

Various "Badness-of-Fit" Statistics

Sample Variance

mean

Badness functions:

$$S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (X_{i} - \mu_{i})^{2} \longrightarrow \overline{X}$$

$$\rightarrow \bar{X}$$

Chi-squared

optimal average

$$\chi^2 \equiv \sum_{i=1}^N \left(\frac{X_i - \mu_i}{\sigma_i} \right)^2$$

$$\rightarrow$$
 \hat{X}

Mean Absolute Deviation

median

$$MAD = \frac{1}{N} \sum_{i=1}^{N} |X_i - \mu_i| \longrightarrow X_M$$

$$X_{M}$$

Sum Absolute Normalised Errors:

$$SANE = \sum_{i=1}^{N} \left| \frac{X_i - \mu_i}{\sigma_i} \right|$$

Fini -- ADA 06