1.

a.
$$r(\alpha) = t_{\alpha/2,df} \times \sqrt{MSE} \times (1/2^{p-q}) \times \sqrt{\text{sum of the reciprocal } s \text{ of all sample sizes}}$$

Note: $MSE = 42.72, df = 2, \alpha = 0.05, t_{\alpha/2,df} = t_{0.025,2} = 4.303$

b.
$$r(\alpha) = r(0.05) = 4.303 \times \sqrt{42.72} \times (1/2^2) \times \sqrt{\frac{1}{3} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1}} = 12.84$$

c. Defining relation: I = ABC**Note:** A = BC and B = AC

Fitted Effect	Sum of Effects Estimated	Significant? Enter YES or NO below.
8.125	$\alpha_2 + \gamma_{22}^{BC}$	No
-10.375	$eta_2 + \gamma_{22}^{AC}$	No
17.175	$\delta_2 + \gamma_{22}^{AB}$	Yes

If all interactions are negligible, then factor C is the most important because $17.175 > r(\alpha)$. Factors A and B are not important because their estimates $< r(\alpha)$.

2.

- a. Avoid the design for generators that alias main effects with other main effects: confounding
- b. Want that alias main effects with interactions (where higher order interactions are better).

Thus, design 2 is better.

3.

- a. temperature (°C): independent variable removal efficiency (%): dependent variable
- b. Yes.

On average, y increases certain amount associated with +1 $^{\circ}$ C change in temperature..