Sabbir Ahmed

DATE: March 11, 2018

MATH 407: HW 06

2.3 1 Consider the following permutations in S_7

Compute the following products:

b $\tau\sigma$

Ans

$$\tau \sigma = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 2 & 5 & 4 & 6 & 1 & 7
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 1 & 5 & 7 & 4 & 6 & 3
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 3 & 6 & 7 & 4 & 1 & 5
\end{pmatrix}$$

f $\tau^{-1}\sigma\tau$

Ans

$$\tau^{-1} = \begin{pmatrix} 2 & 1 & 5 & 7 & 4 & 6 & 3 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 3 & 6 & 7 & 4 & 1 & 5 \\ 1 & 7 & 6 & 4 & 5 & 2 & 3 \end{pmatrix}$$

$$\tau^{-1}\sigma = \begin{pmatrix} 2 & 3 & 6 & 7 & 4 & 1 & 5 \\ 1 & 7 & 6 & 4 & 5 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 3 & 6 & 7 & 4 & 1 & 5 \\ 3 & 7 & 1 & 4 & 6 & 2 & 5 \end{pmatrix}$$

$$\tau^{-1}\sigma\tau = \begin{pmatrix} 2 & 3 & 6 & 7 & 4 & 1 & 5 \\ 3 & 7 & 1 & 4 & 6 & 2 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 3 & 6 & 7 & 4 & 1 & 5 \\ 3 & 7 & 1 & 4 & 6 & 2 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 4 & 6 & 1 & 7 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 3 & 6 & 7 & 4 & 1 & 5 \\ 5 & 7 & 3 & 4 & 1 & 2 & 6 \end{pmatrix}$$

Ans The product of disjoint cycles:

$$\{(1,3,10)(2,4,5,7)(6,8)\}$$

The product of transpositions:

$$\{(1,3,10)(2,4,5,7)(6,8)\} = \{(1,3)(3,10)(2,4)(4,5)(5,7)(6,8)\}$$

Reconstructing the permutation based on the product of transpositions:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 10 & 5 & 7 & 8 & 2 & 6 & 9 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 3 & 10 & 2 & 4 & 5 & 7 & 6 & 8 & 9 \\ 3 & 10 & 1 & 4 & 5 & 7 & 2 & 8 & 6 & 9 \end{pmatrix}$$

Constructing the associated diagrams

The inverse of the permutation:

$$\sigma^{-1} = \begin{pmatrix} 3 & 4 & 10 & 5 & 7 & 8 & 2 & 6 & 9 & 1 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 10 & 7 & 1 & 2 & 4 & 8 & 5 & 6 & 9 & 3 \end{pmatrix}$$

Since

$$\begin{split} o(\sigma) &= lcm(\text{length(cycles)}) \\ &= lcm(\{2,4,3\}) \\ &= 12 \end{split} \endaligned \square$$

5	Let $3 \le m \le n$. Calculate $\sigma \tau^{-1}$ for the cycles $\sigma = (1, 2, \dots, m-1)$ and $\tau = (1, 2, \dots, m-1)$ in S_n .	ı –
Ans		
11	Prove that in S_n , with $n \geq 3$, any even permutation is a product of cycles of lengthree.	gth
Ans	$\textit{Hint} \colon (a,b)(b,c) = (a,b,c) \text{ and } (a,b)(c,d) = (a,b,c)(b,c,d).$	
15	For $\alpha, \beta \in S_n$, let $\alpha \sim \beta$ if there exists $\sigma \in S_n$ such that $\sigma \alpha \sigma^{-1} = \beta$. Show that \sim is equivalence relation on S_n .	an
Ans		
	View S_3 as a subset of S_5 , in the obvious way. For $\sigma, \tau \in S_5$, define $\sigma \sim \tau$ if $\sigma \tau^{-1} \in S_3$ a Show that \sim is an equivalence relation on S_5 .	
	b Find the equivalence class of (4, 5). Ans	
ı	c Find the equivalence class of (1, 2, 3, 4, 5). Ans	
	d Determine the total number of equivalence classes. Ans	