Energy-Efficient Timely Transportation of Long-Haul Heavy-Duty Trucks

Minghua Chen¹

Lei Deng¹ Mohammad H. Hajiesmaili¹ Haibo Zeng²

¹Department of Information Engineering The Chinese University of Hong Kong, Hong Kong

²Department of Electrical and Computer Engineering Virginia Tech, Blacksburg, VA, USA

June 23, 2016

Heavy-Duty Trucks Are Energy Hungry

Transportation energy use (US 2013, source: US DOE)

Operational costs of trucking (US 2014, source: ATRI)

Truck Operation Centers around Timely Delivery

Perishable goods

Amazon SLA

(source: Internet)

Logistic role in a supply chain

Truck Operation Centers around Timely Delivery

Perishable goods

Amazon SLA

Logistic role in a supply chain

(source: Internet)

As estimated by US FHWA, unexpected delay can increase freight cost by 50% to 250%

How to Reduce Fuel Consumption in Timely Transportation?

How to Reduce Fuel Consumption in Timely Transportation?

- Use more fuel-efficient heavy-duty trucks
 - Designs better engines, drivetrains, aerodynamics and tires, etc.

How to Reduce Fuel Consumption in Timely Transportation?

- Use more fuel-efficient heavy-duty trucks
 - Designs better engines, drivetrains, aerodynamics and tires, etc.
- Operate heavy-duty trucks more economically
 - Reduce idling energy consumption
 - Platoon more than one trucks
 - Route planning
 - Speed planning
 - etc.

Route Planning

Different routes from Dallas to New York (source: Google Map)

Fuel-related factors:

- mileages
- congestions
- road grades
- surface types
- etc.

Speed Planning

Fuel economy v.s. speed for a 36-ton truck (source: ADVISOR)

Our Problem and Contributions

Our Problem

- Objective: minimize the energy consumption of a heavy-duty truck
- Constraint: a hard delay constraint
- Design Space: both route planning and speed planning

Our Problem and Contributions

Our Problem

- Objective: minimize the energy consumption of a heavy-duty truck
- Constraint: a hard delay constraint
- Design Space: both route planning and speed planning

This study generalizes previous works by considering both route planning and speed planning.

Our Problem and Contributions

Our Problem

- Objective: minimize the energy consumption of a heavy-duty truck
- Constraint: a hard delay constraint
- Design Space: both route planning and speed planning

This study generalizes previous works by considering both route planning and speed planning.

Our Contributions

- Formulate the problem and prove that it is NP-Complete
- Propose an FPTAS with complexity $O(\frac{mn^2}{\epsilon^2})$
- Propose a heuristic algorithm with complexity $O(m + n \log n)$
- Use extensive simulations over real-world US highway networks to show our solutions achieve up to 17% fuel consumption reduction than the fastest/shortest path algorithm

• Highway Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $n = |\mathcal{V}|, m = |\mathcal{E}|$

- Highway Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $n = |\mathcal{V}|, m = |\mathcal{E}|$
- Road/Edge Distance: D_e (miles)

- Highway Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $n = |\mathcal{V}|, m = |\mathcal{E}|$
- ullet Road/Edge Distance: D_e (miles)
- $\bullet \ \, \mathrm{Min}/\mathrm{Max} \ \mathrm{Speed} \colon \, R_e^{\mathrm{lb}}/R_e^{\mathrm{ub}} \ (\mathrm{mph}) \\$

- Highway Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $n = |\mathcal{V}|, m = |\mathcal{E}|$
- Road/Edge Distance: D_e (miles)
- $\bullet \ \, \mathrm{Min}/\mathrm{Max} \ \mathrm{Speed} \colon \, R_e^{\mathrm{lb}}/R_e^{\mathrm{ub}} \ (\mathrm{mph}) \\$
- ullet Fuel-Rate-Speed Function: f_e
 - $f_e(x)$ is the (instantaneous) fuel consumption rate (gallons per hour, gph) when the truck runs x mph on e
 - Road-dependent
 - Assume $f_e(\cdot)$ is polynomial and strictly convex over $[R_e^{\rm lb}, R_e^{\rm ub}]$

- Highway Network: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $n = |\mathcal{V}|, m = |\mathcal{E}|$
- Road/Edge Distance: D_e (miles)
- $\bullet \ \, \mathrm{Min}/\mathrm{Max} \ \mathrm{Speed} \colon \, R_e^{\mathrm{lb}}/R_e^{\mathrm{ub}} \ (\mathrm{mph}) \\$
- ullet Fuel-Rate-Speed Function: f_e
 - $f_e(x)$ is the (instantaneous) fuel consumption rate (gallons per hour, gph) when the truck runs x mph on e
 - Road-dependent
 - Assume $f_e(\cdot)$ is polynomial and strictly convex over $[R_e^{\text{lb}}, R_e^{\text{ub}}]$
- (Source, Dest, Hard Delay): (s, d, T)

Path Selection (Route Planning)

```
x_e = \left\{ \begin{array}{l} 1, & \text{Edge } e \text{ is on the selected path;} \\ 0, & \text{otherwise.} \end{array} \right. \mathcal{X} \triangleq \left\{ \boldsymbol{x} \in \{0,1\}^m : \text{ One } s-d \text{ path is selected} \right\}
```

Path Selection (Route Planning)

$$x_e = \left\{ \begin{array}{l} 1, & \text{Edge e is on the selected path;} \\ 0, & \text{otherwise.} \end{array} \right.$$

$$\mathcal{X} \triangleq \left\{ \boldsymbol{x} \in \{0,1\}^m : \text{ One } s-d \text{ path is selected} \right\}$$

Speed Optimization (Speed Planning)

 $t_e>0$: Edge-e travel time

$$\mathcal{T} \triangleq \left\{ oldsymbol{t}: t_e^{\mathsf{lb}} \leq t_e \leq t_e^{\mathsf{ub}}, orall e
ight\}: ext{ speed limits}$$

Path Selection (Route Planning)

$$x_e = \left\{ \begin{array}{l} 1, & \text{Edge e is on the selected path;} \\ 0, & \text{otherwise.} \end{array} \right.$$

$$\mathcal{X} \triangleq \left\{ \boldsymbol{x} \in \{0,1\}^m : \text{ One } s-d \text{ path is selected} \right\}$$

Speed Optimization (Speed Planning)

$$t_e > 0$$
: Edge- e travel time

$$\mathcal{T} \triangleq \left\{ oldsymbol{t} : t_e^{\mathsf{lb}} \leq t_e \leq t_e^{\mathsf{ub}}, \forall e
ight\} : \mathsf{speed} \mathsf{\ limits}$$

Fuel Consumption

Travel Time: t_e

Path Selection (Route Planning)

$$x_e = \left\{ \begin{array}{l} 1, & \text{Edge e is on the selected path;} \\ 0, & \text{otherwise.} \end{array} \right.$$

$$\mathcal{X} \triangleq \left\{ \boldsymbol{x} \in \{0,1\}^m : \text{ One } s-d \text{ path is selected} \right\}$$

Speed Optimization (Speed Planning)

$$t_e > 0 : \mathsf{Edge}\text{-}e \mathsf{\ travel\ time}$$

$$\mathcal{T} \triangleq \left\{ \boldsymbol{t} : t_e^{\mathsf{lb}} \leq t_e \leq t_e^{\mathsf{ub}}, \forall e \right\} : \mathsf{\ speed\ limits}$$

Fuel Consumption

Travel Time: $t_e \Rightarrow$ Travel Speed: $\frac{D_e}{t_e}$

Path Selection (Route Planning)

$$x_e = \left\{ \begin{array}{l} 1, & \text{Edge e is on the selected path;} \\ 0, & \text{otherwise.} \end{array} \right.$$

$$\mathcal{X} \triangleq \left\{ \boldsymbol{x} \in \{0,1\}^m : \text{ One } s-d \text{ path is selected} \right\}$$

Speed Optimization (Speed Planning)

$$t_e>0: \mathsf{Edge}\text{-}e \mathsf{\ travel\ time}$$

$$\mathcal{T}\triangleq\left\{\boldsymbol{t}:t_e^{\mathsf{lb}}\leq t_e\leq t_e^{\mathsf{ub}}, \forall e\right\}: \mathsf{\ speed\ limits}$$

Fuel Consumption

Travel Time: $t_e \Rightarrow$ Travel Speed: $\frac{D_e}{t_e} \Rightarrow$ Fuel Consumption Rate: $f_e(\frac{D_e}{t_e})$

Path Selection (Route Planning)

$$x_e = \left\{ \begin{array}{l} 1, & \text{Edge e is on the selected path;} \\ 0, & \text{otherwise.} \end{array} \right.$$

$$\mathcal{X} \triangleq \left\{ \boldsymbol{x} \in \{0,1\}^m : \text{ One } s-d \text{ path is selected} \right\}$$

Speed Optimization (Speed Planning)

$$t_e > 0 : \mathsf{Edge}\text{-}e \mathsf{\ travel\ time}$$

$$\mathcal{T} \triangleq \left\{ \boldsymbol{t} : t_e^\mathsf{lb} \leq t_e \leq t_e^\mathsf{ub}, \forall e \right\} : \mathsf{\ speed\ limits}$$

Fuel Consumption

Travel Time: $t_e \Rightarrow$ Travel Speed: $\frac{D_e}{t_e} \Rightarrow$ Fuel Consumption Rate: $f_e(\frac{D_e}{t_e})$ \Rightarrow Total Fuel Consumption: $t_e \cdot f_e(\frac{D_e}{t_e}) \triangleq c_e(t_e)$

PAth selection and Speed Optimization (PASO)

$$\min_{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{t} \in \mathcal{T}} \qquad \sum_{e \in \mathcal{E}} x_e \cdot c_e(t_e)$$
 s.t.
$$\sum_{e \in \mathcal{E}} x_e t_e \le T$$

PAth selection and Speed Optimization (PASO)

$$\min_{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{t} \in \mathcal{T}} \qquad \sum_{e \in \mathcal{E}} x_e \cdot c_e(t_e)$$
 s.t.
$$\sum_{e \in \mathcal{E}} x_e t_e \le T$$

Challenges

- \bullet Mixed discrete-continuous optimization: $x_e \in \{0,1\}$, $t_e > 0$
- Non-linear non-convex: $\sum_{e \in \mathcal{E}} x_e t_e \leq T$

Complexity-Hardness-related Theoretical Results

Theorem

PASO is NP-Complete.

Complexity-Hardness-related Theoretical Results

Theorem

PASO is NP-Complete.

Definition (Fully Polynomial Time Approximation Scheme (FPTAS))

An algorithm is an FPTAS for PASO if for any given $\epsilon \in (0,1)$, it can find a $(1+\epsilon)$ -approximate solution in the sense that the solution is feasible and the corresponding fuel consumption is at most $(1+\epsilon)\mathsf{OPT}$, and the time complexity is polynomial in both the problem size and $\frac{1}{\epsilon}$.

Complexity-Hardness-related Theoretical Results

Theorem

PASO is NP-Complete.

Definition (Fully Polynomial Time Approximation Scheme (FPTAS))

An algorithm is an FPTAS for PASO if for any given $\epsilon \in (0,1)$, it can find a $(1+\epsilon)$ -approximate solution in the sense that the solution is feasible and the corresponding fuel consumption is at most $(1+\epsilon)\mathsf{OPT}$, and the time complexity is polynomial in both the problem size and $\frac{1}{\epsilon}$.

Theorem

PASO has an FPTAS with network-induced time complexity $O(\frac{mn^2}{\epsilon^2})$.

FPTAS still Incurs High Complexity in Practice

- \bullet The network-induced complexity of the FPTAS is $O(\frac{mn^2}{\epsilon^2})$
- Still large if we consider practical highway networks with $m,n\sim 10^4$

FPTAS still Incurs High Complexity in Practice

- \bullet The network-induced complexity of the FPTAS is $O(\frac{mn^2}{\epsilon^2})$
- ullet Still large if we consider practical highway networks with $m,n\sim 10^4$

Consider the regions 17&18

n	m	ϵ	Run Time	Memory
3274	7465	0.1	3511s	14.76GB

FPTAS still Incurs High Complexity in Practice

- \bullet The network-induced complexity of the FPTAS is $O(\frac{mn^2}{\epsilon^2})$
- ullet Still large if we consider practical highway networks with $m,n\sim 10^4$

Consider the regions 17&18

n	m	ϵ	Run Time	Memory
3274	7465	0.1	3511s	14.76GB

• We will introduce a fast dual-based heuristic algorithm with network-induced time complexity $O(m + n \log n)$

Relax the Hard Delay for PASO

PASO

$$\begin{aligned} \min_{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{t} \in \mathcal{T}} & & \sum_{e \in \mathcal{E}} x_e \cdot c_e(t_e) \\ \text{s.t.} & & \sum_{e \in \mathcal{E}} x_e t_e \leq T, \quad & [\lambda] \end{aligned}$$

Relax the Hard Delay for PASO

PASO

$$\begin{aligned} \min_{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{t} \in \mathcal{T}} & & \sum_{e \in \mathcal{E}} x_e \cdot c_e(t_e) \\ \text{s.t.} & & \sum_{e \in \mathcal{E}} x_e t_e \leq T, \qquad [\lambda] \end{aligned}$$

PASO-Relaxed(λ)

$$\min_{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{t} \in \mathcal{T}} \sum_{e \in \mathcal{E}} x_e \cdot (c_e(t_e) + \lambda t_e)$$

- ullet λ is the *delay* price
- PASO-Relaxed(λ) can be solved efficiently by a shortest-path like algorithm

Key Observations and Result

PASO-Relaxed(λ)

$$\min_{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{t} \in \mathcal{T}} \sum_{e \in \mathcal{E}} x_e \cdot (c_e(t_e) + \lambda t_e)$$

Key Observations and Result

PASO-Relaxed(λ)

$$\min_{\boldsymbol{x}\in\mathcal{X},\boldsymbol{t}\in\mathcal{T}}\sum_{e\in\mathcal{E}}x_e\cdot(c_e(t_e)+\lambda t_e)$$

• For properly selected λ , solving PASO-Relaxed(λ) gives either an optimal solution or a feasible solution with a small optimality-gap to PASO

Key Observations and Result

PASO-Relaxed(λ)

$$\min_{\boldsymbol{x}\in\mathcal{X},\boldsymbol{t}\in\mathcal{T}}\sum_{e\in\mathcal{E}}x_e\cdot(c_e(t_e)+\lambda t_e)$$

- For properly selected λ , solving PASO-Relaxed(λ) gives either an optimal solution or a feasible solution with a small optimality-gap to PASO
- We propose a heuristic to find the proper λ in $O((m+n\log n))$, much faster than the FPTAS $\left(O(\frac{mn^2}{\epsilon^2})\right)$

Key Observations and Result

PASO-Relaxed(λ)

$$\min_{\boldsymbol{x} \in \mathcal{X}, \boldsymbol{t} \in \mathcal{T}} \sum_{e \in \mathcal{E}} x_e \cdot (c_e(t_e) + \lambda t_e)$$

- For properly selected λ , solving PASO-Relaxed(λ) gives either an optimal solution or a feasible solution with a small optimality-gap to PASO
- We propose a heuristic to find the proper λ in $O((m+n\log n))$, much faster than the FPTAS $(O(\frac{mn^2}{\epsilon^2})$
- We characterize a condition under which an optimal solution to PASO is obtained, and the condition is satisfied in most instances in our case study based on real-world settings

Our Dual-Based Heuristic Runs fast

- The FPTAS has a network-induced complexity of $O(\frac{mn^2}{\epsilon^2})$
- The dual-based heuristic has a network-induced complexity of $O((m + n \log n))$

Consider the regions 17&18

Alg	n	m	ϵ	Run Time	Memory
FPTAS	3274	7465	0.1	3511s	14.76GB
Heuristic	3274	7465	-	2s	0.29GB

Simulation: Dataset

- Highway Network: US National Highway Systems (CHM Project)
- Elevation: USGS Elevation Point Query Service
- Speed Limits: HERE Map
- Heavy-duty Truck and Fuel Consumption Data: ADVISOR Simulator

Kenworth	TRAN
renworth	LOUU

Drag Coefficient c_d	0.7		
Frontal area A_f	8.5502 m^2		
Glider Mass	2,552kg		
Cargo Mass	33,234kg		

Simulation: Network Statistics

n	m	avg D_e (mile)	avg $R_e^{ m lb}$ (mph)	avg $R_e^{ m ub}$ (mph)	avg $ heta $ (%)
38213	82781	3.26	36.43	54.19	0.82

Evaluate/Compare FPTAS and Heuristic

Instance: (s, d, T)

No.		Network	Input		
	Reg.	n	m	Instance	ϵ
S1	1&2	1185	2568	(1,2,8)	0.1
S2	17&18	3274	7465	(18,17,10)	0.1
S3	1-22	38213	82781	(4,22,40)	0.1
S4	1&2	1185	2568	(1,2,8)	0.05

Evaluate/Compare FPTAS and Heuristic

Instance: (s, d, T)

No.	Network			Input		
	Reg.	n	m	Instance	ϵ	
S1	1&2	1185	2568	(1,2,8)	0.1	
S2	17&18	3274	7465	(18,17,10)	0.1	
S3	1-22	38213	82781	(4,22,40)	0.1	
S4	1&2	1185	2568	(1,2,8)	0.05	

No.	Performance (gallon)		Time (second)		Memory (GB)	
INO.	Heuri. LB/UB	FPTAS	Heuri.	FPTAS	Heuri.	FPTAS
S1	74.811/74.811	74.812	1	50	0.29	2.73
S2	60.2795/60.2795	60.2798	2	3511	0.29	14.76
S3	290.744/290.744	-	365	-	0.29	-
S4	74.811/74.811	74.812	1	126	0.29	6.84

Compare Performance with Baselines (One Instance)

Shortest/Fastest/Optimal paths of (s, d, T) = (9, 22, 40)

Performance of instance (s, d) = (9, 22)

Compare Performance with Baselines (All Instances)

Average performance of all instances (s,d,T)

Sol.	Avg Time Incre.(%)	Avg Dist. Incre.(%)	Avg Fuel Incre.(%)	Avg Fuel Econ.(mpg)
Fastest path	-	1.71	20.14	5.05
Shortest path	2.82	-	16.40	5.13
Heuristic	32.89	0.18	0.02	5.96
OPT-LB	32.95	0.17	-	5.96

Conclusion

- Propose the problem of energy efficient timely transportation
- Prove that the problem is NP-Complete but has an FPTAS
 - The FPTAS has time complexity $O(\frac{mn^2}{\epsilon^2})$
- Propose a fast dual-based heuristic algorithm
 - It has time complexity $O(m + n \log n)$
 - It has extremely good performance in practice
- Extensive simulation over real-world US highway systems
 - 17% fuel consumption reduction than the fastest path algorithm
 - 14% fuel consumption reduction than the shortest path algorithm

Thank You!

Backup Slides

Fuel-Rate-Speed Function

 $f_e(\cdot)$ for a 36-ton truck for grades 0%, $\pm 1\%$ Polynomial fit: $f_e(x)=a_ex^3+b_ex^2+c_ex+d_e$ (source: ADVISOR)

Preprocessing

Define fuel-time function $c_e(t_e) = t_e \cdot f_e\left(\frac{D_e}{t_e}\right)$. Without loss of optimality, we assume that $c_e(\cdot)$ is strictly convex and strictly decreasing over $[t_e^{\rm lb}, t_e^{\rm ub}]$.

 $f_e(\cdot)$ for a 36-ton truck (source: ADVISOR)

 $c_e(\cdot)$ for the truck over a 100-mile road (source: ADVISOR)