Quick Overview of VDM Operators

The Boolean type

Operator	Name	Signature
not b	Negation	$\mathtt{bool} \to \mathtt{bool}$
a and b	Conjunction	$\verb bool*bool \rightarrow \verb bool $
a or b	Disjunction	$\verb bool*bool \rightarrow \verb bool $
a => b	Implication	$\verb bool *bool \rightarrow \verb bool $
a <=> b	Biimplication	$\verb bool*bool \rightarrow \verb bool $
a = b	Equality	$\verb bool *bool \rightarrow \verb bool $
a <> b	Inequality	$\verb bool *bool \rightarrow \verb bool $

The numeric types

Operator	Name	Signature
-x	Unary minus	$\mathtt{real} o \mathtt{real}$
abs x	Absolute value	$ exttt{real} o exttt{real}$
floor x	Floor	$\mathtt{real} o \mathtt{int}$
x + y	Sum	$\mathtt{real} * \mathtt{real} o \mathtt{real}$
х - у	Difference	$\mathtt{real} * \mathtt{real} o \mathtt{real}$
х * у	Product	$\mathtt{real} * \mathtt{real} o \mathtt{real}$
х / у	Division	$\mathtt{real} * \mathtt{real} o \mathtt{real}$
x div y	Integer division	$ exttt{int} * exttt{int} ightarrow exttt{int}$
x rem y	Remainder	$\mathtt{int} * \mathtt{int} o \mathtt{int}$
x mod y	Modulus	$\mathtt{int} * \mathtt{int} o \mathtt{int}$
x * * y	Power	$ exttt{real} * exttt{real} ightarrow exttt{real}$
х < у	Less than	$\mathtt{real} * \mathtt{real} o \mathtt{bool}$
х > у	Greater than	$\mathtt{real} * \mathtt{real} o \mathtt{bool}$
х <= у	Less or equal	$\mathtt{real} * \mathtt{real} o \mathtt{bool}$
x >= y	Greater or equal	$\mathtt{real} * \mathtt{real} o \mathtt{bool}$
х = у	Equal	$ exttt{real} * exttt{real} o exttt{bool}$
х <> у	Not equal	$ exttt{real} * exttt{real} o exttt{bool}$

The character, quote and token types

Operator	Name	Signature
c1 = c2	Equal	$\mathtt{char} * \mathtt{char} o \mathtt{bool}$
c1 <> c2	Not equal	$\mathtt{char} * \mathtt{char} o \mathtt{bool}$

Tuple types

Operator	Name	Signature
t1 = t2	Equality	$T * T \rightarrow \mathtt{bool}$
t1 <> t2	Inequality	$T * T \rightarrow \mathtt{bool}$

Record types

Operator	Name	Signature
r.i	Field select	$A * Id \rightarrow Ai$
r1 = r2	Equality	$A * A \rightarrow bool$
r1 <> r2	Inequality	$A * A \rightarrow bool$
is_ A(r1)	Is	$\operatorname{Id} * \operatorname{MasterA} \to \operatorname{bool}$

Union and optional types

Operator	Name	Signature
t1 = t2	Equality	$A * A \rightarrow bool$
t1 <> t2	Inequality	$A * A \rightarrow \texttt{bool}$

Set types

Operator	Name	Signature
e in set s1	Membership	A* set of $A o$ bool
e not in set s1	Not membership	A* set of $A o $ bool
s1 union s2	Union	set of $A * set$ of $A \rightarrow set$ of A
s1 inter s2	Intersection	set of $A * set$ of $A \rightarrow set$ of A
s1 \ s2	Difference	set of $A * set$ of $A \rightarrow set$ of A
s1 subset s2	Subset	set of $A * set$ of $A \rightarrow bool$
s1 psubset s2	Proper subset	set of $A * set$ of $A \rightarrow bool$
s1 = s2	Equality	set of $A * set$ of $A \rightarrow bool$
s1 <> s2	Inequality	set of $A * set$ of $A \rightarrow bool$
card s1	Cardinality	set of $A o$ nat
dunion ss	Distributed union	set of set of $A o$ set of A
dinter ss	Distributed intersection	set of set of $A o$ set of A
power ss	Finite power set	set of $A \rightarrow$ set of set of A

Sequence types

Operator	Name	Signature
hd 1	Head	seq1 of $A \rightarrow A$
tl 1	Tail	seq1 of $A o $ seq of A
len l	Length	$\mathtt{seq} \hspace{0.1cm} \mathtt{of} \hspace{0.1cm} A o \mathtt{nat}$
elems 1	Elements	$\mathtt{seq} \ \mathtt{of} \ \mathrm{A} o \mathtt{set} \ \mathtt{of} \ \mathrm{A}$
inds 1	Indices	$\texttt{seq of } A \to \texttt{set of nat1}$
11 ^ 12	Concatenation	$(\mathtt{seq}\ \mathtt{of}\ A) * (\mathtt{seq}\ \mathtt{of}\ A) \to \mathtt{seq}\ \mathtt{of}\ A$
reverse 1	Reverse	$\mathtt{seq} \ \mathtt{of} \ \mathrm{A} o \mathtt{seq} \ \mathtt{of} \ \mathrm{A}$
conc 11	Distributed concatenation	seq of seq of $A o$ seq of A
l ++ m	Sequence modification	$\operatorname{\mathtt{seq}}$ of $\operatorname{A}^*\operatorname{\mathtt{map}}$ nat to $\operatorname{A} \to \operatorname{\mathtt{seq}}$ of A
l(i)	Sequence index	$\texttt{seq of } A * \texttt{nat1} \rightarrow A$
11 = 12	Equality	$(\mathtt{seq}\ \mathtt{of}\ A)*(\mathtt{seq}\ \mathtt{of}\ A) \to \mathtt{bool}$
11 <> 12	Inequality	$(\mathtt{seq}\ \mathtt{of}\ A)*(\mathtt{seq}\ \mathtt{of}\ A) \to \mathtt{bool}$

Mapping types

- T		
Operator	Name	Signature
dom m	Domain	$(\mathtt{map}\ A\ \mathtt{to}\ B) o \mathtt{set}\ \mathtt{of}\ A$
rng m	Range	$(\mathtt{map}\ A\ \mathtt{to}\ B) o \mathtt{set}\ \mathtt{of}\ B$
m1 munion m2	Map union	$(\operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B) * (\operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B) \to \operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B$
m1 ++ m2	Override	$(\operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B) * (\operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B) \to \operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B$
merge ms	Distributed merge	set of $(\text{map } A \text{ to } B) \rightarrow \text{map } A \text{ to } B$
s <: m	Domain restrict to	$(\textbf{set of }A) * (\textbf{map }A \textbf{ to }B) \rightarrow \textbf{map }A \textbf{ to }B$
s <-: m	Domain restrict by	$(\texttt{set of }A) * (\texttt{map }A \texttt{ to }B) \rightarrow \texttt{map }A \texttt{ to }B$
m :> s	Range restrict to	$(\operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B) * (\operatorname{\mathtt{set}}\ \operatorname{\mathtt{of}}\ B) \to \operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B$
m :-> s	Range restrict by	$(\mathtt{map}\ A\ \mathtt{to}\ B)*(\mathtt{set}\ \mathtt{of}\ B)\to\mathtt{map}\ A\ \mathtt{to}\ B$
m(d)	Mapping apply	$(\mathtt{map}\ A\ \mathtt{to}\ B)*A o B$
inverse m	Map inverse	inmap A to $B o$ inmap B to A
m1 comp m2	Map composition	$(\operatorname{\mathtt{map}}\ B\ \operatorname{\mathtt{to}}\ C)*(\operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B)\to\operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ C$
m ** n	Map iteration	$(\mathtt{map}\ A\ \mathtt{to}\ A) * \mathtt{nat} \to \mathtt{map}\ A\ \mathtt{to}\ A$
m1 = m2	Equality	$(\texttt{map}\ A\ \texttt{to}\ B) * (\texttt{map}\ A\ \texttt{to}\ B) \to \texttt{bool}$
m1 <> m2	Inequality	$(\texttt{map}\ A\ \texttt{to}\ B) * (\texttt{map}\ A\ \texttt{to}\ B) \to \texttt{bool}$

Examples

General

```
if predicate then Expression else Expression
```

```
cases expression:
(pattern list 1)-> Expression 1,
(pattern list 2),
(pattern list 3)-> Expression 2
```

(pattern list 2), (pattern list 3)-> Expression 2, others -> Expression 3 end;

for all value in set setOfValues do Expression

dcl variable : type := Variable creation ;

let variable : *type* = Variable creation **in** Expression

let variable in set setOfValues be st pred(variable) in Expression

Comprehensions (Structure to Structure)

```
{element(var) | var in set setexpr & pred(var)}

[element(i) | i in set numsetexpr & pred(i)]

Typically:

[element(list(i)) | i in set inds list & pred(list(i))]

{dexpr(var) |-> rexpr(var) | var in set setexpr & pred(var)}
```

From Structure to Arbitrary Value

```
Select: set of nat -> nat
Select(s) ==
let e in set s
in
   e
pre s <> {}
```

From Structure to Single Value

```
SumSet: set of nat -> nat
SumSet(s) ==
   if s = {}
   then 0
   else let e in set s
        in
        e + SumSet(s\{e})
measure Card
```

From Structure to single Boolean

```
forall p in set setOfP & pred(p)
exists p in set setOfP & pred(p)
exists1 p in set setOfP & pred(p)
```

```
class Person
types
public String = seq of char;
values
protected Name : seq of char = "Peter";
instance variables
public nationality : seq of char:="Danish";
                : String;
vearOfBirth
             : int;
sex
               : Male | Female;
friends
               : map String to Person;
operations
public Person: int * (Male | Female) ==> Person
Person(pYear, pSex) ==
 (yearOfBirth := pYear;
  sex := pSex);
public GetAge : int ==> int
GetAge(year) == CalculateAge(year, yearOfBirth)
pre pre_CalculateYear(year, yearOfBirth);
functions
public CalculateAge : int * int -> int
CalculateAge (year,bornInYear) == year-bornInYear
pre year >= bornInYear
post RESULT + bornInYear = year;
Card: set of nat -> nat
Card(s) == card s;
thread
while true do
 skip;
traces
 Mytrace: --regular expression with operation calls
end Person
class Male is subclass of Person
end Male
class Female is subclass of Person
end Female
```

Listing 1: Class Example