Službeni podsjetnik iz Tehnika upravljanja u mehatronici

Ziegler-Nicholsovi postupci

Postupak ruba stabilnosti:

1 ostapan rasa stasimosti.						
Tip	Vrijednosti parametara regulatora					
regulatora	K_R	T_I	T_D			
P	$0.5K_{Rkr}$	-	-			
PI	$0.4K_{Rkr}$	$0.8T_{kr}$	-			
PID	$0.6K_{Rkr}$	$0.5T_{kr}$	$0.125T_{kr}$			

Postupak prijelazne funkcije:

Tip	Vrijednosti parametara regulatora					
regulatora	K_R	T_{I}	T_D			
P	1/a	-	-			
PI	$0.9/a \ 1.2/a$	$3T_T$	-			
PID	1.2/a	$2T_T$	$0.5T_T$			

Osnovni izrazi za amplitudno-frekvencijsku karakteristiku

Prijenosna funkcija:

$$G(s) = \frac{K}{1 + sT}$$

Amplitudna karakteristika:

$$|G(j\omega)| = \frac{K}{\sqrt{1+(\omega T)^2}}$$

Fazna karakteristika:

$$\phi(\omega) = -\tan(\omega T)$$

Pomoćni izrazi

$$\operatorname{atan}(x) - \operatorname{atan}(y) = \operatorname{atan} \frac{x - y}{1 + xy}.$$
$$\frac{d}{dx}(\operatorname{atan}(x)) = \frac{1}{1 + x^2}$$

Kompenzacijski regulator

Fazno prethođenje: $G_R(s) = \sqrt{\alpha} \frac{1+Ts}{1+\alpha Ts}, \quad 0 < \alpha < 1$ Fazno kašnjenje: $G_R(s) = \alpha \frac{1+Ts}{1+\alpha Ts}, \quad \alpha > 1$ Maksimum faze: $\varphi_m = \arcsin \frac{1-\alpha}{1+\alpha}$ Frekvencija maksimuma: $\omega_m = \frac{1}{T\sqrt{\alpha}}$

Regulator po varijablama stanja

Ackermannova formula:

$$K = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix} P^{-1}\alpha(A)$$

$$P = \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}$$

$$\alpha(A) = A^n + \alpha_{n-1}A^{n-1} + \cdots + \alpha_2A^2 + \alpha_1A + \alpha_0I$$

Standardni oblici modelske prijenosne funkcije

Za modelsku prijenosnu funkciju $G_M = \frac{B_M(s)}{A_M(s)}$, standardni polinomi $A_M(s)$ za različite redove n_M glase:

Binomni oblik	$s + \omega_n$				
	$s^2 + 2\omega_n s + \omega_n^2$				
	$s^3 + 3\omega_n s^2 + 3\omega_n^2 s^2 + \omega_n^3$				
	$s^4 + 4\omega_n s^3 + 6\omega_n^2 s^2 + 4\omega_n^3 s + \omega_n^4$				
	$s^5 + 5\omega_n s^4 + 10\omega_n^2 s^3 + 10\omega_n^3 s^2 + 5\omega_n^4 s + \omega_n^5$				
Butterworthov oblik	$s + \omega_n$				
	$s^2 + 1.414\omega_n s + \omega_n^2$				
	$s^3 + 2\omega_n s^2 + 2\omega_n^2 s + \omega_n^3$				
	$s^4 + 2.613\omega_n s^3 + 3.414\omega_n^2 s^2 + 2.613\omega_n^3 s + \omega_n^4$				
	$s^5 + 3.236\omega_n s^4 + 5.236\omega_n^2 s^3 + 5.236\omega_n^3 s^2 + 3.236\omega_n^4 s + \omega_n^5$				

Veza karakterističnih veličina u vremenskom i frekvencijskom području

$$t_m = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}, \quad \sigma_m[\%] = 100e^{-\frac{\zeta\pi}{\sqrt{1 - \zeta^2}}}$$
$$M_r = \frac{1}{2\zeta\sqrt{1 - \zeta^2}}, \quad \omega_r = \omega_n \sqrt{1 - 2\zeta^2}$$
$$\omega_c \approx \frac{3}{t_m}, \quad \text{za } 0.3 < \zeta < 0.8$$
$$\gamma[\circ] \approx 70 - \sigma_m[\%], \quad \text{za } 0.3 < \zeta < 0.8$$

Upravljanje s unutarnjim modelom

$$G_R(s) = \frac{G_{IMC}(s)}{1 - G_{IMC}(s)\hat{G}_p(s)}$$

Preporuke za odabir perioda uzorkovanja

$$T = (0.16 \div 1.05) \frac{1}{\omega_b}, \quad T = (0.17 \div 0.34) \frac{1}{\omega_c}, \quad T = (0.08 \div 0.5) t_r, \quad T = \frac{t_u}{4 \div 12}$$

Postupci diskretizacije

$\begin{array}{c|c} \text{Postupak diskretizacije} & G(s) \to G(z) \\ \hline ZOH & G(z) = \left(1-z^{-1}\right) \mathcal{Z}\left\{\frac{G(s)}{s}\right\} \\ \hline \text{Tustin} & s = \frac{2}{T} \frac{z-1}{z+1} \\ \hline \text{Unazadni Euler} & s = \frac{z-1}{Tz} \\ \hline \text{Unaprijedni Euler} & s = \frac{z-1}{T} \\ \hline \end{array}$

Tablica \mathcal{L} - i \mathcal{Z} -transformacija

f(t)	F(s)	f(kT)	F(z)
$\delta(t)$	1	$ \begin{aligned} 1, k &= 0 \\ 0, k &\neq 0 \end{aligned} $	1
1	$\frac{1}{s}$	1	$\frac{z}{z-1}$
t	$\frac{1}{s^2}$	kT	$\frac{Tz}{(z-1)^2}$
e^{-at}	$\frac{1}{s+a}$	e^{-akT}	$\frac{z}{z-e^{-aT}}$

Juryjev kriterij

Karakteristični polinom:

$$f(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n = 0$$

Juryjeva tablica:

Redak	z^0	z^1	z^2		z^{n-k}		z^{n-2}	z^{n-1}	z^n
1	a_0	a_1	a_2		a_{n-k}		a_{n-2}	a_{n-1}	a_n
2	a_n	a_{n-1}	a_{n-2}		a_k		a_2	a_1	a_0
3	b_0	b_1	b_2		b_{n-k}		b_{n-2}	b_{n-1}	
4	b_{n-1}	b_{n-2}	b_{n-3}		b_{k-1}		b_1	b_0	
5	c_0	c_1	c_2		c_{n-k}		c_{n-2}		
6	c_{n-2}	c_{n-3}	c_{n-4}		c_{k-2}	•••	c_0		
:				:		:			
2n-5	p_0	p_1	p_2	p_3					
2n-4	p_3	p_2	p_1	p_0					
2n-3	q_0	q_1	q_2						

$$b_k = \begin{vmatrix} a_0 & a_{n-k} \\ a_n & a_k \end{vmatrix}$$
$$c_k = \begin{vmatrix} b_0 & b_{n-k-1} \\ b_{n-1} & b_k \end{vmatrix}$$

Uvjeti:

$$f(1) > 0, \quad (-1)^n f(-1) > 0,$$

 $|a_0| < |a_n|, \quad |b_0| > |b_{n-1}|,$
 $|c_0| > |c_{n-2}|, \dots,$
 $|q_0| > |q_2|$

RST

$$G_{z\omega R} = \frac{B(z)T(z)}{A(z)R(z) + B(z)S(z)} = \frac{B_M(z)A_o(z)}{A_M(z)A_o(z)} = \frac{B_z(z)}{A_z(z)}$$

Uvjeti minimalne izvedivosti bez integratora:

$$\deg A_o = \deg R = \deg S = \deg T = n-1$$

Implementacija

$$\frac{\partial p_i}{\partial a_k} = -\frac{p_i^{n-k}}{\prod_{i=1, i \neq i}^n (p_i - p_j)}$$

Pretvorba realnog broja u broj u aritmetici s nepomičnim zarezom:

$$X := \text{round}(x \cdot 2^n)$$

Pretvorba broja zapisanog u aritmetici s nepomičnim zarezom u realni broj:

$$x := X \cdot 2^{-n}$$