

Background Overview

Audience rating scores

- Audience ratings affect sales
- Audience ratings serve as important source of information for consumers and movie-goers
- May be particularly important given the massive amount of movies released today

Overall Project Goal

- Predict audience's movie rating scores
 - What variables are associated with audience's moving rating scores?
- Results may prove useful across different industries, including film (directors, writers, producers, investors), advertising, and marketing

Method

- Sources:
 - IMDB
 - Rotten Tomatoes
 - Box Office Mojo
- Web-scraping with **BeautifulSoup** in Python
- $\bullet \quad \mathbf{n} = \mathbf{7.117}$

Full Model (Initial Model)

Predictors/Features:

- Movie length time
- Movie release year
- Budget (in USD)
- Gross revenue (in USD)
- IMDB User Ratings
- Rotten Tomatoes Critics rating scores
- Genres (Animation, Action, Comedy, Drama, Crime,
 Fantasy, Horror, Musical, Biography, Western, Family)
 - Average genre per movie: 3

 All non-normally distributed variables were transformed (log, square root) to account for skewness

Target/Dependent Outcome: Audience Rating Scores

- Score values, not %
- May be more reliable than IMDB
- Rotten Tomatoes users may be more relevant and ideal for industries and companies targeting today's audience
 Trust the Wang:)

Distribution of RT Audience Rating Scores

Models

- Linear Regression
- Ridge
- ElasticNet
- Lasso
- RandomForest

• Feature engineering:

- Retained variables with significant coefficients
- Large sample size (minimized overfitting)

- Linear Regression as the best-fitting model ($R^2 = .59$)
- Predictors/features in final model (all p < .05)

+ Associated with Audience Ratings	- Associated with Audience Ratings
IMDB audience ratings	Critics rating scores
Gross revenue	Budget
Year of release	
Length of movie	
Animation, Drama, Musical	Action, Comedy, Crime, Fantasy, Horror

NOT cheating!:)

Great differences between IMDB users vs. RT users

Model without IMDB audience ratings:

$$\circ R^2 = .39$$

 \circ Coefficients remained significant (p < .05)

- Examine characteristics and behaviors of IMDB users
- Longer movies may be better rated
- Highlight certain genres (Animation, Drama, Musical)
 and downplay others (Action, Comedy, Crime, Fantasy,
 Horror)
- Understand discrepancy between critics and audience
- Budget might not be everything!

I'm Just Saying...

Future Directions

- Directors
- Actors/actresses
- Production companies/studios
- Awards (e.g., Oscar's)
- Individual characteristics of audience reviewers
- Texts/keywords in reviews! (e.g., sentiment analysis)
- Looking at interacting and moderating variables

Thank you!:)

Email me with any questions: jennifermadisonwang@gmail.com