Probability Question - Discontinuities of a Distribution Function

David Veitch

January 2020

1 Question

Show that a distribution function has at most countably many discontinuities.

2 Answer

Let F be an arbitrary distribution function and $\mathcal{D} = \{x \mid \exists \text{ a discontinuity at } F(x)\}.$

Since F is a distribution function it is non-decreasing. For an arbitrary $x_1 \in \mathcal{D}$, since a discontinuity exists at $F(x_1)$, we know that $F(x_1-) < F(x_1+)$. Let $A_1 = (F(x-), F(x+))$. Notice that A_1 is an open interval in [0,1] therefore it must contain a rational number q_1 (see Section 3 for a proof of this).

Therefore for any discontinuity x_i there \exists an open interval A_i , which is disjoint from all A_j , $j \neq i$, which contains a rational number q_i . Therefore we can create a one-to-one function $f: \mathcal{D} \to \mathbb{Q} \Rightarrow |\mathcal{D}| \leq |\mathbb{Q}| \Rightarrow \mathcal{D}$ is countable \Rightarrow a distribution function has at most countably many discontinuities.

3 Proof - In Any Interval (a, b) where a < b There Exists a Rational Number in (a, b)

This is true because if $a_0.a_1a_2a_3...$ is the infinite decimal expansion of a, and $b_0.b_1b_2b_3...$ is the infinite decimal expansion of b there will exist some smallest index $i \in \mathbb{Z}^+$ such that $10^{-(i)} \ge b - a \ge 10^{-(i+1)} > 0$.

$$\Rightarrow a_0.a_1...a_ia_{i+1}a_{i+2} + 10^{-(i+2)} \in \mathbb{Q} \text{ and } a_0.a_1...a_ia_{i+1}a_{i+2} + 10^{-(i+2)} \in (a,b).$$

4 Supplemental Material

This question is Exercise 1.2.3. in the book Probability: Theory and Examples by Rick Durrett.

I like this problem for its simplicity, but also because the result is very useful. Over the Graduate Probability course I took in the Fall of 2019 it came up again and again.