RLHF를 이용한 협동 로봇 제어 프로그램 개발

Reinforcement Learning with Human Feedback (RLHF)

Reinforcement Learning with Human Feedback (RLHF)

⇒ 원래 RLHF는 LLM 모델을 Fine-tuning 하기 위해 사용하는 방법이지만, 기존의 보상 함수를 설계하는 대신 RLHF를 사용한다면 환경이 복잡하고 어려워질 수록 보상 함수를 설계하기 어렵다는 강화 학습의 한계를 극복해줄 수 있지 않을까?

기존의 RL과 RLHF의 차이

Reinforcement Learning (RL)

Reinforcement Learning with Human Feedback (RLHF)

협동 로봇 사고 사례

ଡି 연합뉴스

테슬라 공장 로봇, 근로자 공격…"벽으로 밀고 집게발로 찔러"

'사람을 상자로' 오인한 작업 로봇...노동자 또 사망

인간과 밀접하게 연결되어 작동하는 협동 로봇은 다양한 상황에 대처할 수 있어야 한다. → 그러나 현재 자율 동작 지능이 부재한 수동적인 로봇이 대부분

최종 목표 및 결과물 (CoRLHF)

CoRLHF (Collaborative Reinforcement Learning with Human Feedback) 가상환경 내 로봇 팔을 RLHF 알고리즘을 이용하여 제어할 수 있다. Push 또는 Pick and Place와 같은 다양한 작업을 인간과 유사한 방식으로 제어할 수 있다.

1학기

2학기

프로젝트 기간별 목표

1학기 목표

시뮬레이터 환경(단일 에이전트 환경)에 RLHF 알고리즘을 적용, 다양한 과제를 수행할 수 있는지 확인하고 평가

2학기 목표

협동 로봇(멀티 에이전트 환경)에서 RLHF 알고리즘을 적용, 다양한 과제를 수행할 수 있는지 확인하고 평가

월	활동 내용
3월	기초 연구 및 기술 검토: 문헌 검토, 기술 분석, 요구사항 정의
4월	가상환경 비교 및 선택, 시스템 구조 설계, RLHF 알고리즘 분석
5월	가상환경 내 RLHF 알고리즘 적용 1
6월	가상환경 내 RLHF 알고리즘 적용 2, 작업 수행 평가
9월	협동로봇 환경에서 RLHF 알고리즘 적용 1
10월	협동로봇 환경에서 RLHF 알고리즘 적용 2, 작업 수행 평가 1
11월	작업 수행 평가 2
12월	PoC (최종 테스트 및 평가)

필요한 요구 사항

강화 학습을 위한 시뮬레이터를 사용하기 위해선 Ubuntu 운영체제 기반의 GPU desktop이 필요하다.

- 학교 실습실의 서버를 사용할 예정
- GUI가 필요한 작업은 연구실의 서버를 사용해 진행할 예정

Role & Responsibility (R&R)

RLHF 알고리즘을 각 시뮬레이터에 적용하기 위해선 RLHF 알고리즘에 환경에 맞춰서 MDP를 정의하는 작업을 진행해야한다. 전체 팀원이 모든 전체 작업을 다 함께 진행할 예정이며, MDP를 지정하는 작업에서 코드를 수정하는 작업은 파트를 나눠서 진행할 예정이다.