Adı, Soyadı:

No: Final Sınavı – Süre 90 Dak.

İmza: (Kopya almadım ve vermedim)

(Sadece cevap kâğıdındaki çözümler puanlanacaktır)

- 1-(ÖÇ 3, 4, 7, 8) Yukarıdaki düzenek ve şartlara göre
- <10p> a) Motor milindeki toplam atalet momentini,
- <10p> **b**) Motor milindeki yük momentini
- <10p> c) Motorun sisteme verdiği mekanik gücü
- <10p> d) Kataloga bakarak uygun asenkron motoru belirleyiniz (standart motor tipini ve gücünü yazmanız bekleniyor)
- <10p> e) (d' yi yapanlar için) Bu motora ülkemiz şebekesinde yıldız/üçgen mi yoksa yumuşak yolverici ile mi yolvermek daha uygundur (bir sebebi olmalı)?

Katalog arka sayfadadır.

- **2-(ÖÇ 5)**<10p> Bir motor, iş makinesi olarak sabit mıknatıs kutuplu bir doğru akım jeneratörünü tahrik etmekte olup, jeneratör sabit bir omik yük ile yüklüdür. İş makinesinin moment ihtiyacının açısal hızla değişimi hangi sınıfa uymaktadır (k kaçtır)?
- **3-(ÖÇ 8)**<2x10p> Asenkron motora yolvermede kullanılan a) Klasik yöntemleri, b) Modern yöntemleri sıralayınız.
- **4-(ÖÇ 3,5,6)**<20p> Fan tipi bir yük ile yüklenmiş, seri uyartımlı bir DA motorunun devir sayısı (n) zaman (t) ilişkisini inceleme amaçlı simulasyonunu yapmak için gerekli Laplace blok diyagramını elde ediniz. Bağlantı şemasını çizip, gerekli büyüklükleri (istediğiniz gibi) parametrik olarak kullanınız. (Zaman domenindeki denklemlerden hareketle Laplace domeni denklemlerini vererek işlemleri tamamlamayanların blok diyagramları kabul edilmeyecektir).

Tablo 1: 1. Soru (d) şıkkında kullanılacak, asenkron motor kataloğu(TİP ve kW olarak Anma Gücünü seçiniz).

1500 1/dak			4 KUTUP					380 VOLT 50 Hz				
TİP		ma	Anma	Anma	Güç	Verim	Anma	Kalkış	Kalkış	Devrilme	Atalet	Ağırlık
- ""	Gi	icü	Akımı	Hızı	Faktörü	Veriiii	Momenti	Akımı	Momenti	Momenti	Momenti	Agiilik
Yapı	kW	PS	I _N	n	Cos o	η	M _N	I _K /I _N	M _K /M _N	M_D/M_N	J _{MOT}	kg
Büyüklüğü			Α	1/dak		%	Nm				kgm ²	
NM 90S-4	1,1	1,5	2,5 h	1393	0,85	78	7,5	4,5	2,4	2,5	0,0022	18
NM 90L-4	1,5	2	3,5 k	1421	0,83	78	10,1	5,0	2,5	2,7	0,0028	22
NM 100L-4	2,2	3	5,2 A	1420	0,81	80	14,8	5,5	2,3	2,6	0,0043	29
NM 100L-4	3	4	7,2 k	1422	0,79	80	20,1	5,9	2,4	2,9	0,0055	32
NM 112M-4	4	5,5	8,6 Δ	1423	0,85	83	26,8	7,5	2,5	2,8	0,0103	45
NM 132S-4	5,5	7,5	11,6 Δ	1442	0,85	85	36,4	7,2	2,5	2,8	0,0221	65
NM 132M-4	7,5	10	15,8 Δ	1430	0,85	85	50,1	6,2	2,5	2,8	0,0291	77
NM 160M-4	11	15	21,8 Δ	1464	0,87	88	71,8	6,0	2,5	2,9	0,0553	116
NM 160L-4	15	20	31,9 ∆	1464	0,83	86	97,8	6,9	2,7	3,1	0,0730	136
NM 180M-4	18,5	25	37,1 ∆	1459	0,86	88	121,1	6,2	2,7	2,9	0,1074	173
NM 180Lb-4	22	30	42,7 ∆	1463	0,87	90	143,6	6,6	2,9	3,0	0,1285	193
NM 200L-4	30	40	57,6 ∆	1471	0,87	91	194,8	6,9	2,7	3,0	0,2069	256
NM 200L-4	37	50	70,2 ∆	1472	0,88	91	240,0	7,1	3,1	2,7	0,2682	280
NM 225S-4	37	50	70,2 ∆	1468	0,89	90	240,7	6,6	3,1	2,7	0,3526	300
NM 225M-4	45	60	83,5 Δ	1464	0,91	90	293,5	6,6	2,9	2,5	0,4195	370
NM 225M-4	55	75	100,9 Δ	1463	0,91	91	359,0	6,3	2,9	2,8	0,4735	390
NM 250M-4	55	75	102,1 ∆	1478	0,89	92	355,4	6,7	2,5	2,8	0,6045	440
NM 250M-4	75	100	140,7 ∆	1475	0,88	92	485,6	5,8	2,4	2,2	0,7316	500
NM 280S-4	75	100	139,2 Δ	1480	0,89	92	484,0	7,0	1,8	2,2	0,9400	600
NM 280Ma-4	90	125	165,1 ∆	1480	0,90	92	580,7	7,8	3,2	2,8	1,1499	670
NM 280Mc-4	110	150	201,9 Δ	1478	0,89	93	710,8	5,7	1,8	2,3	1,3689	770
NM 315S-4	110	150	201,9 Δ	1488	0,89	93	706,0	5,8	1,7	2,5	1,8827	830
NM 315Ma-4	132	180	242,2 Δ	1490	0,90	92	846,0	7,0	2,0	2,4	2,2195	930
NM 315Ma-4	160	220	290,6 Δ	1490	0,89	94	1025,5	6,3	2,0	2,1	2,6236	1030
NM 315Lb-4	185	250	332,4 Δ	1490	0,89	95	1185,7	6,8	2,2	2,1	3,0349	1100
NM 315Lb-4	200	270	355,4 ∆	1488	0,90	95	1283,6	6,5	2,1	2,2	3,3044	1150
NM 315L-4	250	340	444,3 ∆	1488	0,90	95	1604,5	6,8	2,2	2,0	4,0594	1200
NM 355S-4	250	340	439,2 Δ	1486	0,92	94	1606,7	6,5	1,9	2,3	4,6266	1420
NM 355S-4	315	430	553,6 Δ	1490	0,91	95	2019,0	7,0	1,9	2,7	6,4202	1765
NM 355L-4	355	485	623,9 A	1487	0,91	95	2279,9	7,3	2,0	2,7	7,1662	1900
NM 355L-4	400	544	703,0 Δ	1490	0,91	95	2563,8	7,0	1,9	2,7	8,2423	2060

$$\eta := 0.7$$
 $r := 2.022$ m $v := 5$ $\frac{m}{s}$ $\alpha := \frac{\pi}{6}$ rad $g := 9.81$ $\frac{m}{s^2}$ $a := 62$

$$Maraba := 2000 \quad kg \qquad \qquad Myuk := 1250 \quad kg \qquad \qquad Jm_ve_Jdişli_makara_ussu := 20 \quad kgm^2$$

$$wt := \frac{v}{r} \qquad wt = 2.473 \qquad \frac{rad}{s} \qquad wm := a \cdot wt \qquad wm = 153.314 \qquad \frac{rad}{s}$$

$$n := \frac{wm \cdot 60}{2 \cdot \pi} \qquad n = 1464.037 \quad rpm$$

a)

$$Mtoplam := 2 \cdot Maraba + Myuk \qquad Mtoplam = 5.25 \times 10^{3} kg$$

$$Joteleme_ustu := \frac{Mtoplam}{\eta} \left(\frac{v}{wm}\right)^2 \quad Joteleme_ustu = 7.977 \quad kgm^2$$

Motor milindeki toplam atalet momenti

b)

dengelenmemis kütle

eğik düzlem üzerinde gereken kuwet

Fyuk := Mdengesiz·g·
$$sin(\alpha)$$
 Fyuk = 6.131×10^3

$$\eta$$
-wm.Tyuk_ustu = v·Fyuk Tyuk_ustu := $\frac{1}{n} \cdot \frac{v}{wm}$ ·Fyuk

Tmotor := Tyuk ustu

Tablodan/katalogdan uygun olan motor 45kW olarak seçilir.

1500 1/dak						4 KUTUP				380 VO	LT 50	0 Hz
TİP		ma icü	Anma Akımı	Anma Hızı	Güç Faktörü	Verim	Anma Momenti	Kalkış Akımı	Kalkış Momenti	Devrilme Momenti	Atalet Momenti	Ağırlık
Yapı Büyüklüğü	kW	PS	I _N A	n 1/dak	Cos φ	η %	M _N Nm	I _K /I _N	M _K /M _N	M _D /M _N	J _{MOT} kgm ²	kg
NM 200L-4	37	50	70,2 ∆	1472	0,88	91	240,0	7,1	3,1	2,7	0,2682	280
NM 225S-4	37	50	70,2 ∆	1468	0,89	90	240,7	6,6	3,1	2,7	0,3526	300
NM 225M-4	45	60	83,5 ∆	1464	0,91	90	293,5	6,6	2,9	2,5	0,4195	370
NM 225M-4	55	75	100,9 Δ	1463	0,91	91	359,0	6,3	2,9	2,8	0,4735	390

(ihtiyaten bir büyük motor da seçilebilir, bu mühendisin yorumudur. Genelde bu yönde karar veren mühendis olası gerilim düşümlerinden etkilenmemek için bunu tercih edebilir (Zira, asenkron motorun momenti gerilim değişimlerinden karesel olarak etkilenir). Bu tercihe göre e seçeneği tekrar değerlendirilir)

e) 45kW'lık motorun seçildiği kabulü ile,

Yıldız bağlamada, üçgene göre kalkış momenti 3 kat azalır. Yıldız bağlantı durumunda kalkışın temin edilip edilemeyeceğini test edelim. Tabloda kalkış momenti değerlendirilir:

Motor katalog değerlerine bakıldığında sürekli halde üçgen bağlı çalıştırılmalıdır.

$$Tyv_\ddot{u}cgen := 2.9 \cdot 293.5 \qquad Tyv_\ddot{u}cgen = 851.15 \qquad Nm \qquad \qquad Tyv_ylduz := \frac{Tyv_\ddot{u}cgen}{2} \qquad \qquad Tyv_ylduz = 283.717 \quad Nm$$

Yanıt 2) DA Jeneratörde $E_a = K_e \cdot \Phi \cdot \omega_m$ 'dir. Sabit mıknatıs kutuplu makinede Φ sabit kabul edilir. Dolayısı ile $\beta = K_e \cdot \Phi = \text{Sabit yazılabilir. Böylece } E_a = \beta \cdot \omega_m$ yapar.

Bu gerilim endüvi iç direnci ve yük direnci üzerinde aktif güç tüketimine neden olur. $R = R_a + R_{yük}$ olmak üzere,

$$P_a = \frac{E_a^2}{R}$$

Olur. Jeneratör iş makinesi olarak düşünüldüğünde, jeneratör bu gücü üretirken, girişte (milden);

$$P_m = \frac{P_a}{\eta_i}$$

Çekecektir. Jeneratör veriminin (η_i) az değiştiği kabulü ile;

$$T_m = \frac{P_m}{\omega_m}$$

olacaktır.

$$T_m = \frac{E_a^2}{\eta_j \cdot \mathbf{R} \cdot \omega_m} = \frac{\beta^2 \cdot \omega_m^2}{\eta_j \cdot \mathbf{R} \cdot \omega_m}$$

Burada

 $\gamma = \frac{\beta^2}{\eta_{j} \cdot \mathbf{R}} \cong Sabit$ yaklaşımıyla; $T_m = \gamma \cdot \omega_m^1$ olacağından k=1 sınıfında bir iş makinesi olacaktır.

Ya

t 3)	<10p>	Klasik yolverme yöntemleri	<10p>Modern yolverme yöntemleri						
	•	Direkt yolverme	Yumuşak yolverme (Soft starting)						
	•	Ototransformatör ile yolverme	Alternatif akım kıyıcılarla yolverme						
	•	Rotorda çift kafes kullanarak yolverme	• PWM anahtarlama yöntemi ile rotor						
	•	Rotora kademeli direnç ekleyerek	direncini değiştirerek yolverme						
		yolverme	 Frekans konvertörü ile yolverme 						

Yanıt 4) http://www.youtube.com/watch?v=t7sB5ocIX1k

