

Solution of Simultaneous Linear Equations Ex 8.1 Q2(i)

The given system can be written in matrix form as:

$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & 1 \\ 3 & -1 & -7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 10 \\ 1 \end{bmatrix}$$

or AX = B

Where,

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & 1 \\ 3 & -1 & -7 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 3 \\ 10 \\ 1 \end{bmatrix}$$

Now,
$$|A| = 1 \begin{bmatrix} 3 & 1 \\ -1 & -7 \end{bmatrix} - 1 \begin{bmatrix} 2 & 1 \\ 3 & -7 \end{bmatrix} - 1 \begin{bmatrix} 2 & 3 \\ 3 & -1 \end{bmatrix}$$

= $(-20) - 1(-17) - 1(-11)$
= $-20 + 17 + 11 = 8 \neq 0$

So, the above system has a unique solution, given by

$$X = A^{-1}B$$

Let C_{ij} be the co-factor of a_{ij} in A

$$C_{11} = -20$$
 $C_{21} = 8$ $C_{31} = 4$ $C_{12} = -(-17) = 17$ $C_{22} = -4$ $C_{32} = -3$ $C_{13} = -11$ $C_{23} = -(-4) = 4$ $C_{33} = 1$

$$adj A = \begin{bmatrix} -20 & 17 & -11 \\ 8 & -4 & 4 \\ 4 & -3 & 1 \end{bmatrix}^{T} = \begin{bmatrix} -20 & 8 & 4 \\ 17 & -4 & -3 \\ -11 & 4 & 1 \end{bmatrix}$$

Now,
$$X = A^{-1}B = \frac{1}{8} \begin{bmatrix} -20 & 8 & 4 \\ 17 & -4 & -3 \\ -11 & 4 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 10 \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 24 \\ 8 \\ 8 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$$

Hence, x = 3

$$y = 1$$

$$z = 1$$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(ii)

The above system can be written in matrix form as:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 1 \\ 2 & 1 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ -9 \end{bmatrix}$$

or AX = B

Where,

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 1 \\ 2 & 1 & -3 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 3 \\ -1 \\ -9 \end{bmatrix}$$

Since, $|A| = 14 \neq 0$, the above system has a unique solution, given by $X = A^{-1}B$

Let C_{ij} be the co-factor of \mathbf{a}_{ij} in A

$$C_{11} = 2$$
 $C_{21} = 4$ $C_{31} = 2$ $C_{12} = 8$ $C_{22} = -5$ $C_{32} = 1$ $C_{13} = 4$ $C_{23} = 1$ $C_{33} = -3$

$$Adj A = \begin{bmatrix} 2 & 8 & 4 \\ 4 & -5 & 1 \\ 2 & 1 & -3 \end{bmatrix}^{T} = \begin{bmatrix} 2 & 4 & 2 \\ 8 & -5 & 1 \\ 4 & 1 & -3 \end{bmatrix}$$

Now,
$$X = A^{-1}B = \frac{1}{|A|} \times \text{Adj } A \times B$$

$$= \frac{1}{14} \begin{bmatrix} 2 & 4 & 2 \\ 8 & -5 & 1 \\ 4 & 1 & -3 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \\ -9 \end{bmatrix}$$

$$= \frac{1}{14} \begin{bmatrix} -16 \\ 20 \\ 38 \end{bmatrix}$$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} \frac{-8}{7} \\ \frac{10}{7} \\ \frac{19}{7} \end{bmatrix}$$

Hence,
$$x = \frac{-8}{7}$$
, $y = \frac{10}{7}$, $z = \frac{19}{7}$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(iii)

The above system can be written in matrix form as:

$$\begin{bmatrix} 6 & -12 & 25 \\ 4 & 15 & -20 \\ 2 & 18 & 15 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 10 \end{bmatrix}$$

or AX = B

Where,

$$A = \begin{bmatrix} 6 & -12 & 25 \\ 4 & 15 & -20 \\ 2 & 18 & 15 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 4 \\ 3 \\ 10 \end{bmatrix}$$

Now,

$$|A| = 6(225 + 360) + 12(60 + 40) + 25(72 - 30)$$

$$= 6(585) + 1200 + 25(42)$$

$$= 3510 + 1200 + 1050$$

$$= 5760 \neq 0$$

So, the above system will have a unique solution, given by

$$X = A^{-1}B$$

$$C_{11} = 585$$
 $C_{21} = -(-180 - 450) = 630$ $C_{31} = -135$
 $C_{12} = -100$ $C_{22} = 40$ $C_{32} = 220$
 $C_{13} = 42$ $C_{23} = -132$ $C_{33} = 138$

$$X = A^{-1}B = \frac{1}{|A|} (AdjA) \times B = \frac{1}{5760} \begin{bmatrix} 585 & 630 & -135 \\ -100 & 40 & 220 \\ 42 & -132 & 138 \end{bmatrix} \begin{bmatrix} 2880 \\ 1920 \\ 1152 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{5760} \begin{bmatrix} 2880 \\ 1920 \\ 1152 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{5} \end{bmatrix}$$

Hence,
$$x = \frac{1}{2}$$

 $y = \frac{1}{3}$
 $z = \frac{1}{5}$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(iv)

$$\begin{bmatrix} 3 & 4 & 7 \\ 2 & -1 & 3 \\ 1 & 2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 14 \\ 4 \\ 0 \end{bmatrix}$$

or
$$AX = B$$

$$|A| = 3(-3) - 4(-9) + 7(5)$$

= -9 + 36 + 35
= 62 \neq 0

So, the above system will have a unique solution, given by

Now,
$$C_{11} = -3$$
 $C_{21} = 26$ $C_{31} = 19$ $C_{12} = 9$ $C_{22} = -16$ $C_{32} = 5$ $C_{13} = 5$ $C_{23} = -2$ $C_{33} = -11$

$$adj A = \begin{bmatrix} -3 & 26 & 19 \\ 9 & -16 & 5 \\ 5 & -2 & -11 \end{bmatrix}$$

$$X = A^{-1}B = \frac{1}{|A|} (Adj A)B$$

$$= \frac{1}{62} \begin{bmatrix} -3 & 26 & 19 \\ 9 & -16 & 5 \\ 5 & -2 & -11 \end{bmatrix} \begin{bmatrix} 14 \\ 4 \\ 0 \end{bmatrix}$$

$$= \frac{1}{62} \begin{bmatrix} -42 + 104 + 0 \\ 126 - 64 + 0 \\ 70 - 8 + 0 \end{bmatrix} = \frac{1}{62} \begin{bmatrix} 62 \\ 62 \\ 62 \end{bmatrix}$$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Hence,
$$x = 1, y = 1, z = 1$$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(v)

$$\begin{bmatrix} 2 & 6 & 0 \\ 3 & 0 & -1 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -8 \\ -3 \end{bmatrix}$$

Or
$$AX = B$$

$$|A| = 2(-1) - 6(5) + 0(-3) = -32 \neq 0$$

So, the above system has a unique solution, given by

$$X = A^{-1}B$$

Let C_{ij} be the co-factor of a_{ij} in A

$$C_{11} = -1$$
 $C_{21} = -6$ $C_{31} = -6$
 $C_{12} = -5$ $C_{22} = 2$ $C_{32} = 2$
 $C_{13} = -3$ $C_{23} = 14$ $C_{33} = -18$

$$adjA = \begin{bmatrix} -1 & -5 & -3 \\ -6 & 2 & 14 \\ -6 & 2 & -18 \end{bmatrix}^{T} = \begin{bmatrix} -1 & -6 & -6 \\ -5 & 2 & 2 \\ -3 & 14 & -18 \end{bmatrix}$$

Now,

$$X = A^{-1}B = \frac{1}{|A|} (AdjA) \times B$$

$$= \frac{1}{-32} \begin{bmatrix} -1 & -6 & -6 \\ -5 & 2 & 2 \\ -3 & 14 & -18 \end{bmatrix} \begin{bmatrix} 2 \\ -8 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{-32} \begin{bmatrix} 64 \\ -32 \\ -64 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$$

Hence,
$$x = -2$$
, $y = 1$, $z = 2$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(v)

Let
$$\frac{1}{x} = u, \frac{1}{y} = v, \frac{1}{z} = w$$

$$2u - 3v + 3w = 10$$

$$u + v + w = 10$$

Which can be written as

3u - v + 2w = 13

$$\begin{bmatrix} 2 & -3 & 3 \\ 1 & 1 & 1 \\ 3 & -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ 10 \\ 13 \end{bmatrix}$$

$$|A| = 2(3) + 3(-1) + 3(-4)$$

= 6 - 3 - 12 = -9 \neq 0

Hence, the system has a unique solution, given by $X = A^{-1} \times B$

$$C_{11} = 3$$
 $C_{21} = 3$ $C_{31} = 3$

$$C_{13} = -4$$
 $C_{23} = -7$

$$C_{11} = 3$$
 $C_{21} = 3$ $C_{31} = -6$
 $C_{12} = 1$ $C_{22} = -5$ $C_{32} = 1$
 $C_{13} = -4$ $C_{23} = -7$ $C_{33} = 5$

$$X = \frac{1}{|A|} (A \operatorname{dj} A) \times (B)$$

$$= \frac{1}{-9} \begin{bmatrix} 3 & 3 & -6 \\ 1 & -5 & 1 \\ -4 & -7 & 5 \end{bmatrix} \begin{bmatrix} 10 \\ 10 \\ 13 \end{bmatrix}$$

$$= \frac{-1}{9} \begin{bmatrix} 30 + 30 - 78 \\ 10 - 50 + 13 \\ -40 - 70 + 65 \end{bmatrix}$$

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \frac{-1}{9} \begin{bmatrix} -18 \\ -27 \\ -45 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$$

Hence,
$$x = \frac{1}{2}$$
, $y = \frac{1}{3}$, $z = \frac{1}{5}$

Solution of Simultaneous Linear Equations Ex 8.1 O2(vi)

$$\begin{bmatrix} 5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 16 \\ 19 \\ 25 \end{bmatrix}$$

or AX = B

$$|A| = \begin{bmatrix} 5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix}$$
$$= 5(-2) - 3(5) + 1(3)$$
$$= -10 - 15 + 3 = -22 \neq 0$$

Hence, it has a unique solution, given by

$$X = A^{-1} \times B$$

$$C_{11} = -2$$
 $C_{21} = -10$ $C_{31} = 8$ $C_{12} = -5$ $C_{22} = 19$ $C_{32} = -13$ $C_{13} = 3$ $C_{23} = -7$ $C_{33} = -1$

$$X = A^{-1} \times B = \frac{1}{|A|} (A \operatorname{dj} A) \times B$$

$$= \frac{1}{-22} \begin{bmatrix} -2 & -10 & 8 \\ -5 & 19 & -13 \\ 3 & -7 & -1 \end{bmatrix} \begin{bmatrix} 16 \\ 19 \\ 25 \end{bmatrix}$$

$$= \frac{-1}{22} \begin{bmatrix} -32 - 190 + 200 \\ -80 + 361 - 325 \\ 48 - 133 - 25 \end{bmatrix}$$

$$= \frac{-1}{22} \begin{bmatrix} -22 \\ -44 \\ -110 \end{bmatrix}$$

$$\begin{bmatrix} X \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$$

Hence, x = 1, y = 2, z = 5

Solution of Simultaneous Linear Equations Ex 8.1 Q2(vii)

$$\begin{bmatrix} 3 & 4 & 2 \\ 0 & 2 & -3 \\ 1 & -2 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 3 \\ -2 \end{bmatrix}$$

or
$$AX = B$$

$$|A| = 3(6) - 4(3) + 2(-2)$$

= 18 - 12 - 4
= 2 \neq 0

Hence, the system has a unique solution, given by $X = A^{-1}B$

$$C_{11} = 6$$
 $C_{21} = -28$ $C_{31} = -16$
 $C_{12} = -3$ $C_{22} = 16$ $C_{32} = 9$
 $C_{13} = -2$ $C_{23} = 10$ $C_{33} = 6$

Next,
$$X = A^{-1}B = \frac{1}{|A|} (Adj A) \times B$$

$$= \frac{1}{2} \begin{bmatrix} 6 & -28 & -16 \\ -3 & 16 & 9 \\ 2 & 10 & 6 \end{bmatrix} \begin{bmatrix} 8 \\ 3 \\ -2 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 48 - 84 + 32 \\ -24 + 48 - 18 \\ -16 + 30 - 12 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} -4 \\ 6 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} X \\ Z \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$$

Hence,
$$x = -2, y = 3, z = 1$$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(viii)

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & -1 \\ 3 & 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$$

$$|A| = 2(-5) - 1(1) + 1(-8)$$

= -10 - 1 - 8 = -19 \neq 0

Hence, the unique solution, given by

$$X = A^{-1} \times B$$

$$C_{11} = -5$$
 $C_{21} = 3$ $C_{31} = -4$ $C_{12} = -1$ $C_{22} = -7$ $C_{32} = 3$ $C_{13} = -8$ $C_{23} = 1$ $C_{33} = 5$

Next,
$$X = A^{-1} \times B$$
 = $\frac{1}{|A|} \begin{bmatrix} -5 & 3 & -4 \\ -1 & -7 & 3 \\ -8 & 1 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$
= $\frac{1}{-19} \begin{bmatrix} -10 + 15 - 24 \\ -2 - 35 + 18 \\ -16 + 5 + 30 \end{bmatrix}$
= $\frac{-1}{19} \begin{bmatrix} -19 \\ -19 \\ 19 \end{bmatrix}$
 $\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$

Hence, x = 1, y = 1, z = -1

Solution of Simultaneous Linear Equations Ex 8.1 Q2(x)

The above system of equations can be written as

$$\begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

or AX =

$$|A| = 1(1) + 1(-2) + 1(4) = 1 - 2 + 4 = 3 \neq 0$$

So, the above system has a unique solution, given by $X = A^{-1}B$

Let C_{ij} be the co-factor of a_{ij} in A

$$C_{11} = 1$$
 $C_{21} = 1$ $C_{31} = +1$ $C_{12} = 2$ $C_{22} = -1$ $C_{32} = 2$ $C_{13} = 4$ $C_{23} = -2$ $C_{33} = 1$

$$adj A = \begin{bmatrix} 1 & 2 & 4 \\ 1 & -1 & -2 \\ +1 & 2 & 1 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 1 & +1 \\ 2 & -1 & 2 \\ 4 & -2 & 1 \end{bmatrix}$$

$$X = A^{-1}B = \frac{1}{|A|} (Adj A) \times B$$

$$= \frac{1}{3} \begin{bmatrix} 1 & 1 & +1 \\ 2 & -1 & 2 \\ 4 & -2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Hence, x = 1, y = 2, z = 3

Solution of Simultaneous Linear Equations Ex 8.1 Q2(xi)

$$\begin{bmatrix} 8 & 4 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 18 \\ 5 \\ 5 \end{bmatrix}$$

or AX = B

$$|A| = 8(-1) - 4(1) + 3(3) = -8 - 4 + 9 = -3 \neq 0$$

So, the above system has a unique solution, given by $X = A^{-1}B$

Let C_{ij} be the co-factor of \mathbf{a}_{ij} in A

$$C_{11} = -1$$
 $C_{21} = 2$ $C_{31} = 1$ $C_{12} = -1$ $C_{22} = 5$ $C_{32} = -2$ $C_{13} = 3$ $C_{23} = -12$ $C_{33} = 0$

$$adj A = \begin{bmatrix} -1 & -1 & 3 \\ 2 & 5 & -12 \\ 1 & -2 & 0 \end{bmatrix}^{T} = \begin{bmatrix} -1 & 2 & 1 \\ -1 & 5 & -2 \\ 3 & -12 & 0 \end{bmatrix}$$

Now,
$$X = A^{-1}B = \frac{1}{|A|} (Adj A) \times B$$

$$= \frac{-1}{3} \begin{bmatrix} -1 & 2 & 1 \\ -1 & 5 & -2 \\ 3 & -12 & 0 \end{bmatrix} \begin{bmatrix} 18 \\ 5 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{-1}{3} \begin{bmatrix} -3 \\ -3 \\ -6 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

Hence, x = 1, y = 1, z = 2

Solution of Simultaneous Linear Equations Ex 8.1 Q2(xii)

This system can be written as

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 7 \\ 12 \end{bmatrix}$$

or AX = B

$$|A| = 1(-2) - 1(-5) + 1(1) = -2 + 5 + 1 = 4 \neq 0$$

So, AX = B has a unique solution, given by $X = A^{-1}B$

Let C_{ij} be the co-factor of a_{ij} in A

$$C_{11} = -2$$
 $C_{21} = 0$ $C_{31} = 2$ $C_{12} = +5$ $C_{22} = -2$ $C_{32} = -1$ $C_{13} = 1$ $C_{23} = 2$ $C_{33} = -1$

$$adj A = \begin{bmatrix} -2 & 5 & 1 \\ 0 & -2 & 2 \\ 2 & -1 & -1 \end{bmatrix}^{T} = \begin{bmatrix} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{bmatrix}$$

$$X = A^{-1} \times B = \frac{1}{|A|} (Adj A) \times B$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{4} \begin{bmatrix} -2 & 0 & 2 \\ 5 & -2 & -1 \\ 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 7 \\ 12 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{4} \begin{bmatrix} -12 \\ 4 \\ 9 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$

Hence,
$$x = -3, y = 1, z = 2$$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(xiii)

Let

$$\frac{1}{x} = u, \frac{1}{y} = v, \frac{1}{z} = w$$

The above system can be written as

$$\begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

Or
$$AX = B$$

$$|A| = 2(75) - 3(-110) + 10(72) = 1200 \neq 0$$

So, the above system has a unique solution, given by

$$X = A^{-1}B$$

Let C_{ij} be the co-factor of a_{ij} in A

$$C_{11} = 75$$
 $C_{21} = 150$ $C_{31} = 75$
 $C_{12} = 110$ $C_{22} = -100$ $C_{32} = 30$
 $C_{13} = 72$ $C_{23} = 0$ $C_{33} = -24$

$$adjA = \begin{bmatrix} 75 & 110 & 72 \\ 150 & -100 & 0 \\ 75 & 30 & -24 \end{bmatrix}^{T} = \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix}$$

Now.

$$X = A^{-1}B = \frac{1}{|A|} (AdjA) \times B$$

$$= \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \frac{1}{1200} \begin{bmatrix} 600 \\ 400 \\ 240 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{5} \end{bmatrix}$$

Hence,
$$x = 2, y = 3, z = 5$$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(xiv)

$$\begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix}$$

Or
$$AX = B$$

$$|A| = 1(7) + 1(19) + 2(-11) = 4 \neq 0$$

So, the above system has a unique solution, given by

$$X = A^{-1}B$$

Let C_{ij} be the co-factor of a_{ij} in A

$$C_{11} = 7$$
 $C_{21} = 1$ $C_{31} = -3$
 $C_{12} = -19$ $C_{22} = -1$ $C_{32} = 11$
 $C_{13} = -11$ $C_{23} = -1$ $C_{33} = 7$

$$adjA = \begin{bmatrix} 7 & -19 & -11 \\ 1 & -1 & -1 \\ -3 & 11 & 7 \end{bmatrix}^{T} = \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix}$$

Now.

$$X = A^{-1}B = \frac{1}{|A|} (AdjA) \times B$$

$$= \frac{1}{4} \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix} \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 8 \\ 4 \\ 12 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

Hence, x = 2, y = 1, z = 3

****** END ******