

ADA 0 79226

Army Project Number 0J95-60-001 Future Combat c-00

Research Management 63-7

A LINEAR PROGRAM FOR TRANSPORTATION COST
MINIMIZATION OF ECT-AIT SHIPPING

10 Eugene P. Stichman

Robert F. Boldt, Task Leader

4 APRO-RM-63-7)

72 21

Submitted by

Philip J. Bersh Chief, Combat Systems Research Laboratory

DISTRIBUTION STATEMENT A

Approved for public releases

Distribution Unlimited

This document is intended for use only within the U. S. Army Personnel Research Office, OCRD and is not available for distribution.

040 650

WINDSTAIN FOR TRANSPORTATION OF TAS BUTTER AND AND TAS GREEN AND TAS GREEN AND AND TAS GREEN AND AND TAS GREEN AND AND TAS GREEN AND TAS GREEN

The Combat Allocation Task was initiated by USAFRO in 1957 in response to USCOMARC's concern that an insufficient supply of able personnel was reaching combat units. The objective was to provide a system of assigning enlisted men to advanced training resulting in an adequate and equitable distribution of available aptitudes among combat units, combat support units, and other branches of the Army. The system chosen must provide optimal allocation of personnel to MOS based on Army manpower requirements and personnel qualifications. In anticipation of Army needs, USAFRO personnel recognized that an optimal system for allocating personnel would require the use of stored-program computing equipment. During FY 1961 and FY 1962, the Combat Allocation Task began the development, elaboration, and testing of a computer-based assignment method for allocation of uncommitted enlisted personnel to MOS training.

In September, 1962, the Adjutant General's Office formulated plans for an Automatic Data Processing System (ADP) for handling the flow of trainees through the training base. Under this system, processing is divided into four phases, or ACT's (Automated Control of Trainees). ACT I is concerned with initial input and control of a master file. ACT II treats the distribution of basic combat training (BCT) personnel to advanced individual training (AIT) and/or directly to unit assignment, while ACT III handles the assignment from AIT to the unit. ACT IV is the statistical analysis program for the total ADP system package. Under this proposed ADP system, Army personnel processing activities were unified under TAG control.

As an outgrowth of this unification, a joint TAG-USAFRO effort was initiated and directed primarily toward the development of automated procedures for providing trainees in BCF with their next assignment (ACF II). USAFRO expanded its earlier effort to include the development and testing of a computer program (Transportation Program) for the minimization of costs related to transportation of allocated personnel from BCF to AIT for their respective NOS training. This new effort was in addition to the continued testing of the previously developed computer program for the optimal allocation of uncommitted trainees. The Transportation Program for shipping cost minimization includes as input both the assignments to MOS of uncommitted enlisted personnel as allocated by the optimal allocation program and the assignments of committed, earmarked, and special category enlisted personnel as determined by TAG-designed methods. The present Research Memorandum describes the development of the Transportation Program.

THE TRANSPORTATION PROBLEM

The problem of transportation costs arises when BCT trainees at more than one center are assigned to advanced training in an MOS which is offered at more than one location. The cost of travel from BCT to AIT is determined by the mileage between the two locations. Clearly, certain routes are preferable to certain others on a sheer dollar/mile basis. However, the number of trainees who can make a preferred trip is limited by the number of trainees at a given BCT center and the capacity of the advanced training location. The optimum solution to this problem is to ship all trainees from BCT to AIT in such a way that the total cost of the transportation is at a minimum.

Problems of the kind mentioned above are formally stated as follows:

be the unit cost of shipping a commodity from location i to destination j.

xij be the number of units of the commodity to be shipped from location i to destination j.

z = E E x_{ij} c_{ij} be the total cost of shipping incurred for a given set of x_{ij}.

P_i be the amount to be shipped from location i.

Q_j be the amount needed at destination j.

(The problem has the restraint for solution that $\sum_{i} P_{i} = \sum_{j} Q_{j}$.)

minimize the value of z subject to the linear restraints:

$$\sum_{j} x_{ij} = P_{i}$$
$$\sum_{i} x_{ij} = Q_{j}$$

Then,

Various solutions to the problem stated above, known as the Transportation Problem, have been available. Although the arithmetic required is long and tedious, only a mechanical repetition of a sequence of

precisely defined steps is involved. The time required can be reduced to minutes by the use of high speed computers where each operation is performed in micro-seconds and the complete sequence is automatic.

The first step in the solution of the transportation problem is to develop a feasible solution, one which satisfies the movement requirements. The traditional technique involves a routine of iterations through a succession of feasible solutions of gradually diminishing cost to a feasible solution of minimal cost (the optimal solution). This procedure is lengthy and inefficient for computer operation. Therefore, a newer method--the Hungarian Method--was adopted.

In using the Hungarian Method for solution of the transportation problem, one begins with an initial optimal, albeit infeasible, solution to the problem (in contrast to the traditional technique mentioned above) and iterates through other optimal solutions until some feasible solution is reached. A feasible solution means a set of individual allocations such that all restraints are satisfied, that is, existing surpluses are removed and existing deficiencies are filled.

GENERALIZED COMPUTER PROGRAM

The program, while developed to minimize transportation costs for BCT-AIT shipping, is adaptable to related problems. The general format of the program will accommodate four (4) character cell entries with the initial COST2/matrix (c_{ij} matrix), the final transportation matrix (x_{ij} matrix)--called SEND--and the ROW (P_i) and COL (column) (Q_j) restraints. The row and column entries, therefore, may not exceed a value of 9,999. An additional restriction is placed on the maximum entries for the cost matrix. Due to the arithmetic operations of the computer and the numerical aids required for programming facilitation, no entry in the cost matrix may exceed a value of 3,499. As an alternate restriction, the sum of the two largest entries combined may not exceed a total value of 6,999. Either of these two parameter limitations must be observed unless special conditions pertain to the specific problem.

mnemonic symbols used in the program.

^{1/} The basic steps of this solution were obtained during attendance by USAPRO personnel at the University of Michigan's Summer Conferences on System Engineering, 1961. This method is presented in Appendix A. 2/ The use of capital letters here refers to actual abbreviations and

VARIABLES REQUIRING DEFINITION

To operate within the framework of the program, certain variables require specific definition for each individual problem:

Variables	Size
SEND	Number of cell entries x 4
COST	Number of cell entries x 4
COL	Number of columns x 4
ROW	Number of rows x 4
м	Number of rows
N	Number of columns
FOURM	Number of rows x 4
MI	Number of rows x number of columns

The term SEND refers to the computer area set aside for compilation of the final transportation matrix, which contains the solution to the problem. Each cell entry yields the number of units to be shipped to the destination specified by the column from the origin specified by the row. COST refers to the area set aside for the initial input to the cost matrix (the cell entries). Each entry is the cost, or scaled cost, of shipping one unit from a given origin to a given destination. COL is the area set aside for input of the capacity quotas at each destination. This value determines the number to be shipped to this destination. ROW is the area set aside for input of the units available for transport at each origin. The other terms must be specified for each specific problem.

COMPUTER PROGRAM FOR BCT-AIT TRANSPORTATION

Given appropriate ROW, COL, and COST inputs, the program results in a solution such that the distribution of numbers of trainees from multiple BCT centers to multiple AIT locations is accomplished with the total cost of the necessary differential transportation at a minimum. In minimizing the cost, both the manpower available at the BCT centers and the quotas for training at the AIT locations are taken into account. Because only 13 percent of the AIT courses have multiple locations, this program operates efficiently, treating each multiple destination MOS separately.

The major restriction is that the total available personnel, the sum of the row values, must equal the total assignment quotas at the destinations, that is, the sum of the column values $\begin{pmatrix} \Sigma & P_i & = \Sigma & Q_j \end{pmatrix}$. Any dis-

crepancy between these two sums will result in an invalid solution if any solution is obtained.

PROGRAM SYMBOLOGY

The first step in the design of the actual program was to chart the flow of the Hungarian Method in computer language. This crucial initial effort was accomplished by Dr. Marjorie O. Chandler of the USAPRO research staff, who utilized FORTRAN symbology for this chart. When FORTRAN was found to be inefficient for use with the IBM 1401 system, the logical FORTRAN operations were translated into AUTOCODER (a symbology more compatible with 1401 systems), and the program was written in this symbolic language. AUTOCODER, one of two basic symbolic programing aids for the 1401 Data Processing Systems, consists of a set of language specifications used to write the source program. A processor program translates the symbolic language program into the actual machine language program. AUTOCODER permits the user to define areas and write instructions by writing symbolic statements. These statements are written using mnemonic operation codes and the symbolic names with which the user defines his fields.

REQUIRED DATA

The data necessary for the operation of this program are the initial cost matrix, the column values, and the row values. These are punched on standard IBM punch cards, using four columns for each entry. All 80 columns may be used if necessary. The first card is for the cost matrix. If the matrix is larger than can be accommodated on one card, additional cards may be used as needed. The second card, or group of cards, specifies the column values. The third specifies the row values. These data cards should always be introduced following the object program (actual machine language program) in the order in which they have been described.

SAMPLE SOLUTION

The example used for program presentation comprises a 7 x 8 cost matrix. Computer running time for this sample problem using actual cost data was approximately 30 seconds from the time the first card of the object program was read until the solution was output on the printer. This same problem, when solved manually, required approximately two hours to reach the same solution.

The complete program is presented as Appendix B.

^{3/} Data must be entered onto cards by elements within columns, starting with column 1 of the matrix. The first entry comprises card columns 1-4.

REFERENCES

Churchman, C. W., Ackoff, R. L., and Arnoff, E. L. <u>Introduction to operations research</u>. New York: John Wiley and Sons, Inc. 1957.

IBM Reference Manual, IBM 1401 data processing system. Endicott, N. Y. 1962.

Sasieni, M., Yaspan, A., and Friedman, L. Operations research -- methods and problems. New York: John Wiley and Sons, Inc. 1959.

APPENDIX A

TRANSPORTATION PROBLEM BY THE HUNGARIAN METHOD

APPENDIX A

TRANSPORTATION PROBLEM BY THE HUNGARIAN METHOD

- 1. Subtract from each row its smallest element. Then subtract from each column of the resulting matrix its smallest element.
- 2. Pick a trial set of quotas by assigning them to zeros, subtracting appropriately from the discrepancies.
- 3. Cover each column whose discrepancy is zero.
- 4. Find an uncovered zero (if there is none, go to step 7). Prime it. Check the discrepancy of the row; if it is not zero, go to step 6. If it is zero, go to step 5.
- 5. Cover the row, and for each twice covered essential zero, star the zero and uncover its column. Go to step 4.
- 6. There now exists a unique chain, starting at the primed zero, going vertically to a starred zero, horizontally to a primed zero, etc., and ending on a primed zero (with no starred zero in the column).

Find the smallest of the following numbers; the discrepancy of the row of the first primed zero in the chain; the discrepancy of the column of the last primed zero in the chain; the quota of each starred zero in the chain. This number is to be subtracted from each of these two discrepancies, and from the quota of every starred zero in the chain, and to be added to the quota of every primed zero in the chain. Now erase all primes and stars, uncover all rows, and, if the solution is not complete, go to step 3.

7. Find the smallest uncovered element in the matrix. Add this element to the covered rows and subtract it from the uncovered columns (or add it to the covered columns and subtract it from the uncovered rows) (or add it to the twice-covered elements and subtract if from the uncovered elements). Do not change any stars, primes, or coverings. Go to step 4.

NOTE: "Discrepancies" are amounts to be shipped which have not yet been assigned. "Quotas" are amounts which have already been assigned to particular elements of the matrix (i.e., particular routes). An essential zero is one whose quota is greater than zero.

APPENDIX B

AUTOCODER PROGRAM FOR BCT-AIT TRANSPORTATION

		CENE	CTL	551	
		SEND	DA	56X4•X3	
	2	COST	DA	56X4•X3	
	3	COL	DA	8X4,X2	
	4	ROW	DA	7X4•X1	
	5	X1	EQU	89	
	6	X2	EQU	94	
	7	X3	EQU	99	
	8	SET	DCW	0	
	9	M	DCW	60007	
	10	N	DCW	80008	
	11	FOURM	DCW	028	
	12	ONE	DCW	60001	
	13	FOUR	DCW	004	
	14	ZERO3	DCW	000	
	15	ZERO4	DCW	60000	
	16	K	DCW	69999	
	17	INDEX	DCW	60000	
-	18	MIN	DCW	60000	
	19	W	DCW	003	
	20	MONE	DCW	-0001	
	21	MI	DCW	60000	
	22	LN	DCW	00000	
	23	TS1	DCW	000	
	24	TSZ	DCW	000	
	25	TS3	DCW	000	
	26	TS4	DCW	00000	
	27	TS5	DCW	60000	
	28	NINT	DCW	69000	
	29	NINTO	DCW	69001	
	30	AYTT	DCW	68000	
	31	AYTTO	DCW	58001	
	32	MN	DCW	60056	
	33	OBJECT	MLC	LN•NM	
	34	OBJECT		99	
	35		CS	97	
	36		SW	92	
	37		SW	87	
	38		SW	1	
	39		R	00 (000)	
	40		MLCWA	80,COST&79	
	41		R		
	42		MLCWA	80.COST&159	
	43		R		
	44		MLCWA	64,COST6223	
	45		R		
A	46		MLCWA	32,COL631	
	47		R		
	48		MLCWA	28, ROW&27	
	49		MLC	ZERO3+X3	
***************************************	50	FIRST	SW	COST&X3	
	51		MA	FOUR • X3	
	52		S	ONE , NJ	

luke.

			W. 15004
53 54		C BL	NJ,ZERO4 FIRST
55		MLC	ZERO3.X2
56		MLC	N•NJ
57	SECOND	SW	COLEXS
58		MA	FOUR • X2
59		5	ONE , NJ
60		C	NJ,ZERO4
61		BL	SECOND
62		MLC	ZERO3,X1
63		MLC	IMeM
64	THIRD	SW	ROW&X1
65		MA	FOUR • X1
66		S	ONE • MI
67		C	MI,ZERO4
68		BL	THIRD
69		H	W-Y1
70		MLC MLC	W • X 1 W • X 2
72		MLC	W • X 3
73		MLC	LN•NJ
74	AA	MLC	IMeM
75	AB	C	ZERO4, COST&X3
76	~0	MLC	ZERO4, SEND&X3
77		BU	AD
78		č	ROWEX1, COLEX2
79		BL	AC
80		MLC	ROWEX1, SENDEX3
81		5	ROWEX1,COLEX2
82		MLC	ZERO4.ROW6X1
83		В	AD
84	AC	MLC	COL&X2.SEND&X3
85		5	COL6X2.ROW6X1
86		MLC	ZERO4.COL&X2
87	AD	MA	FOUR • X1
88		MA	FOUR • X3
89		S	ONE , MI
90		C	MI .ZERO4
91		BL	AB
92		MA	FOUR • X2
93		MLC	W•X1
94		5	ONE • NJ
95		C	NJ,ZERO4
96		BL	AA
97	AE	MLC	W•X2
98		MLC	N•NJ
99	AF	C	ZERO4,COL6X2
100		BU	AG
101		MLC	MONE + COL & X 2
102	AG	MA	FOUR • X2
103		5	ONE NJ
104		C	NJ+ZERO4
105		BL	AF

106 AH	MLC	W+X1	
107	MLC	W+X2	
108	MLC	W•X3	
 109	MLC	N-NJ	
110	MLC	M•MI	
 111 AJ	BWZ	AM, COLEX2, K	
112 AK	C	ZERO4,COST&X3	
113	BU	AL DOWGYS Y	
114	BWZ	AL, ROWEXI, K	
115	<u>B</u>	AP	
116 AL	MA	FOUR • X1	
 117	MA	FOUR • X3	
118	5	ONE . MI	
 119	C	MI , ZERO4	
120	BL	AK	
121	MLC	W+X1	
122	MLC	M.MI	
123	MA	FOUR • X2	
124	В	AN	
125 AM	MA	FOUR • X2	
126	MA	FOURM X3	
127 AN	S	ONE NJ	
128	C	NJ.ZERO4	
129	BL	AJ	
 130	C	ZERO4.INDEX	
131	BE	CA	
132	MLC	ZERO4 . INDEX	
133	В	AH	
 134 AP	A	NINT . COST&X3	
135	MLC	X1.TS1	
 136	MLC	X2,T52	
137	MLC	X3,TS3	
 138	MLC	MI,TS4	
139	MLC	NJ.TS5	
 140	BWZ	APP.ROWEX1.K	
141	C	ZERO4,ROW6X1	
 142	ВН	BA	
143 AP		MONE . ROWEX1	
 144	MLC	X1.X3	
145	MLC	W+X2	
 146	MLC	LN·N	
147 AQ		ZERO4.SEND&X3	
 148	BE	AR	
149	BWZ	AQQ+COL&X2+K	
 150	В	AR	
151 AQ		AYTT+COST&X3	
 152	MLC	ZERO4,COL6X2	
153	MLC	ONE , INDEX	
 154 AR		FOUR • X2	
155	MA	FOURM.X3	
156	5	ONEINJ	
157	č	NJ.ZERO4	
	BL	AQ	
158	BL.		

159		MLC	T51.X1
160		MLC	TS2.X2
161		MLC	TS3.X3
162		MLC	TS4.MI
163		MLC	TS5.NJ
164		В	AL
165	BA	MLC	ROW&X1.MIN
166	88	BWZ	BBB . COLEXZ . K
167		C	ZERO4.COL&X2
168		Вн	BG
169	ввв	S	W.X1
170		MN	X1.SET
171	•	MLC	SET.X1
172		S	X1.X3
173		MN	X3.SET
174		MLC	SET.X3
175		MLC	W•X1
176		MLC	M.MI
177	ВС	S	AYTT + COST&X3
178	ВС	Č	ZERO4, COST&X3
179		A	AYTTO.COSTEX3
180		S	ONE . COST&X3
181		BE	BD
182		MA	FOUR • X1
183		MA	FOUR • X3
184		S	ONE . MI
185	0.0	В	BC
186	80	C	SENDEX3,MIN
187		BL	BE
188		MLC	SEND&X3.MIN
189	BE	MLC	X1,X3
190		MLC	W+X2
191		MLC	LN•N
192	BF	S	NINT . COST&X3
193		C	ZERO4, COST&X3
194		A	NINTO.COST&X3
195		S	ONE . COSTEX3
196		BE	88
197		MA	FOUR + X2
198		MA	FOURM • X3
199		S	ONE , NJ
200		В	BF
201	BG	C	COLEX2 MIN
202		9L	ВН
203		MLC	COL6X2.MIN
204	ВН	MLC	T51.X1
205		MLC	T52.X2
206		MLC	T53.X3
207		MLC	TS4.MI
208		MLC	TS5.NJ
209		S	MIN, ROWEX1
210	BJ	A	MIN, SEND&X3
211		BWZ	BJJ.COLEX2.K

10 9

212		C	ZERO4, COL&X2
213		ВН	BN
214	BJJ	S	W•X1
215		MN	X1.SET
216		MLC	SET.X1
217		S	X1.X3
218		MN	X3.SET
219		MLC	SET.X3
220		MLC	W+X1
221		MLC	MeMI
222	BK	S	AYTT COSTGX3
223		C	ZERO4, COST6X3
224		A	AYTTO, COST&X3
225		S	ONE . COST6X3
226		BE	BL
227		MA	FOUR • X1
228		MA	FOUR • X3
229		5	ONE • MI
230		В	BK
231	BL	5	MIN.SEND&X3
232		MLC	X1.X3
233		MLC	W•X2
234		MLC	LN•N
235	BM	S	NINT + COST&X3
236		C	ZERO4,COST&X3
237		A	NINTO.COST&X3
238		S	ONE COSTEX3
239		BE	BJ
240		MA	FOUR • X2
241		MA	FOURM X3
242		S	ONE , NJ
243		В	BM
244	BN	S	MIN.COLEX2
245		MLC	W+X1
246		MLC	W•X2
247		MLC	W+X3
248		MLC	MoMI
249		MLC	LN•N
250	ВО	BWZ	BOO+COL6X2+K
251		C	ZERO4+COL6X2
252		ВН	8P
253	B00	MA	FOUR • X2
254		MA	FOURM, X3
255		S	ONE , NJ
256		c	NJ.ZERO4
257		BL	80
258		BE	ENDINS
259	BP	MLC	X1.X3
260	<u> </u>	MLC	W•X2
261		MLC	LN·N
262	BQ	BWZ	BQQ.ROW&X1.K
263		8	BT
264	EQQ	MLC	ZERO4.ROW6X1
204			

265 BR	S	AYTT • COST&X3 ZERO4 • COST&X3	
 266		BS BS	
267	BE	AYTTO, COSTEX3	
 268	A S	ONE COSTEX3	
269		FOUR • X2	
 270 BS	MA	FOURM X3	
271	MA S	ONE • NJ	
 272	C	NJ,ZERO4	
273 274	BL	BR BR	
 275	MA	FOUR • X1	
276	MLC	X1,X3	
 277	MLC	W•X2	
278	MLC	LNeN	
 279	В	BV	
280 BT		FOUR • X1	
 281	MA	FOUR • X3	
282 BV		ONE MI	
 283		MI,ZERO4	
284	BL	BQ	
 285	MLC	W•X1	
286	MLC	W•X2	
 287	MLC	W•X3	
288	MLC	M·MI	
 289 BV		BZ.COL6X2.K	
290 B)		NINT . COST&X3	
 291	C	ZERO4.COST&X3	
292	BE	5Y	
 293	A	NINTO, COSTEX3	
294	S	ONE + COSTEX3	
 295 8		FOUR +X1	
296	MA	FOUR+X3	
 297	\$	ONE . MI	
298	c	MI .ZERO4	
299	BL	BX	
300	MLC	W.X1	
301	MLC	M·MI	
302	MA	FOUR • X2	
303	В	BZZ	
304 6		FOUR • X2	
 305	MA	FOURM • X3	
	22 5	ONE , NJ	
307	C	NJ,ZERO4	
308	BL	BW	
309	В	AE	
310 C		KOMIN	
311	MLC	W•X1	
312	MLC	W•X2	
313	MLC	W+X3	
314	MLC	M·MI	
315	MLC	N•NJ	
316 C		CE.COLGXZ.K	
317 C	C BWZ	CD.ROW&X1.K	

318		C	MIN, COSTEX3
319		ВН	CO
320 321	CO	MLC MA	COSTGX3.MIN FOUR.X1
322		MA	FOUR • X3
323		S	ONE, MI
324		C	MI , ZERO4
325		BL	CC
326		MLC	W•X1
327		MLC	M•MI
328		MA	FOUR+X2
329		В	CF
330	CE	MA	FOUR +X2
331		MA	FOURM, X3
332	CF	5	ONE, NJ
333		<u> </u>	NJ.ZERO4
334		BL MLC	C8 ₩•X1
335		MLC	W+X2
337		MLC	W•X3
338		MLC	MeMI
339		MLC	LN•N
340	CG	BWZ	CH.ROWEX1.K
341		В	CJ
342	СН	A	MIN, COST&X3
343		MA	FOUR+X2
344		MA	FOURM X3
345		S	ONE • NJ
346		C	NJ.ZERO4
347		BL	СН
348		MLC	W+X2
349		MLC	N•NJ
350		MA	FOUR • X1
351		MLC	X1.X3
352		В	CK
353	CJ	MA	FOUR X1
354		MA	FOUR X3
355	CK	5	ONE,MI
356		C	MI • ZERO4
357		8L	CG W•X1
358		MLC MLC	W•X2
359		MLC	W•X2
		MLC	MoMI
2/3		MLC	N•NJ
919	DA	BWZ	DC.COL6X2.K
571		5	MIN, COST6X3
365		MA	FOUR • X1
366		MA	FOUR • X3
367		5	ONE . MI
368		C	MI,ZERO4
9 369		BL	DB
370		MLC	W+X1
7			
5 &			
4			

371	MLC	MoMI	
372	MA	FOUR • X2	
373	8	DD	
374 DC	MA	FOUR • X2	
375	MA	FOURM, X3	
376 DD	5	ONE, NJ	
377	C	NJ.ZERO4	
378	BL	DA	
379	BE	AH	
380 ENDINS	CS	332	
381	CS	299	
382	cc	1	
383	MLC	eCOSTe,264	
384	W		
385	CC	J	
386	CS	299	
 387	MLC	M•MI	
388	MLC	W+X1	
 389	MLC	W+X3	
390 PCT	MLC	COST6X3.229	
 391	MA	FOURM . X3	
392	MLC	COST6X3,239	
 393	MA	FOURM.X3	
394	MLC	COST6X3.249	
 395	MA	FOURM, X3	
396	MLC	COST6X3,259	
 397	MA	FOURM.X3	
398	MLC	COST6X3.269	
 399	MA	FOURM . X3	
400	MLC	COST&X3.279	
 401	MA	FOURM, X3	
402	MLC	COST&X3.289	
 403	MA	FOURM, X3	
404	MLC	COST&X3.299	
 405	W	COSTONATION	
406	BCV	OFL1	
 407	В	PD	
408 OFL1	cc	1	
	MA	FOUR • X1	
 410	MLC	X1 • X3	
411	S	ONE • MI	
 412	<u> </u>	MI • ZERO4	
413	BL	PCT	
414	cc	L	
415	CS	332	
416	CS	299	
417	MLC	eSENDe,264	
418	W		
419	CC	J	
420	BCV	OFL2	
421	8	PSD	
422 OFL2	cc	1	
423 PSD	CS	299	

424		MLC	M.MI	
425		MLC	W•X1	
426		MLC	W.X3	
427	PG	MLC	SEND6X3,229	
428		MA	FOURM , X3	
429		MLC	SEND6X3.239	
430		MA	FOURM • X3	
431		MLC	SEND6X3.249	
432		MA	FOURM • X3	
433		MLC	SEND&X3.259	
434		MA	FOURM • X3	
435		MLC	SEND&X3.269	
436		MA	FOURM • X3	
437		MLC	SEND6X3.279	
438		MA	FOURM • X3	
439		MLC	SEND&X3.289	
440		MA	FOURM • X3	
441		MLC	SEND&X3.299	
442		W		
443		BCV	OFL3	
444		В	PH	-
445	OFL3	cc	i	
446	PH	MA	FOUR • X1	
447		MLC	X1.X3	
448		5	ONE . MI	
449		č	MI .ZERO4	
		BL	PG	
450				
451		cc	L	
452		CS	332	
453		CS	299	
454		MLC	@ROW@ • 268	
455		W		
456		cc	J	
457		BCV	OFL4	
458		В	PK	
459		cc	1	
460	PK	CS	299	
461		MLC	M•X]	
462		MLC	ROW&X1,234	
463		MA	FOUR • X1	
464		MLC	ROW&X1,244	
465		MA	FOUR • X1	
466		MLC	ROW&X1,254	
467		MA	FOUR • X1	
468		MLC	ROWEX1,264	
469		MA	FOUR + X1	
470		MLC	ROW&X1,274	
471		MA	FOUR • X1	
472		MLC	ROW&X1,284	
473		MA	FOUR + X1	
474		MLC	ROW&X1,294	
475		W		
4()				
476		сc	L	

477		BCV	OFL5	
478		В	PL	
479	OFL5	cc	1	
480	PL	CS	332	
481		CS	299	
		MLC	eCOLUMNe, 265	
		W		
		cc	J	
		BCV	OFL6	
			PCL	
	OFL6		1	
	PCL	CS	299	
			W+X2	
		MLC	COL6X2,229	
The second secon		MA	FOUR • X2	
		MLC	COL&X2,239	
		MA	FOUR • X2	
		MLC	COL6X2.249	
		MA	FOUR • X2	
			COL&X2.259	
		MA	FOUR • X2	
			COL6X2.269	
		MA	FOUR • X2	
			COL&X2,279	
			STOP	
	STOP		000201	
	310	END	OBJECT	
	478 479	478 479 OFL5 480 PL 481 482 483 484 485 486 487 OFL6 488 PCL 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 STOP	478 B 479 OFL5 CC 480 PL CS 481 CS 482 MLC 483 W 484 CC 485 BCV 486 B 487 OFL6 CC 488 PCL CS 489 MLC 491 MA 492 MLC 491 MA 492 MLC 493 MA 494 MLC 495 MA 496 MLC 497 MA 498 MLC 497 MA 498 MLC 500 MLC 501 MA	# 478

7 6