LectureNote2: CS229 (SPRING2022, Stanford)

Supervised Learning

Set Up

• Prediction:

$$egin{array}{ccccc} x &
ightarrow & y \ \circ & h: & images & cat \ text & hate speech? \ & housedata & price \ \end{array}$$

- · Given: training set
 - $\circ \ \{ \, (x^{(1)},y^{(1)}),...,(x^{(n)},y^{(n)}) \, \}$
 - \circ y = supervision
- ullet Do: find $oldsymbol{good}\ h(hypothesis): x
 ightarrow y$
 - \circ we care about $\mathbf{new}\ x$'s that are not in our training set
 - $\circ \hspace{0.1in}$ if y is $\emph{discrete} o ext{Classification}$
 - $\circ \hspace{0.1in}$ if y is $continuous
 ightarrow \mathsf{Regression}$
- How do we represent h?
 - $h(x) = \theta_0 + \theta_1 x_1$

Generalization

Training Set

	$size(x_1)$	$bedroom(x_2)$	$lot \ size(x_3)$	•••	$feature(x_d)$	price(y)
$x^{(1)}$	2104	4	45k	•••	$x_d^{(1)}$	400
$x^{(2)}$	2500	3	30k	•••	$x_d^{(2)}$	900
•	:	:	:	•	:	:
$x^{(n)}$	$x_1^{(n)}$	$x_2^{(n)}$	$x_3^{(n)}$	•••	$x_d^{(n)}$	$y^{(n)}$

 $\circ \ \left(x^{(i)}, y^{(i)}\right) \leftarrow \text{i-th training example}$

$$egin{align*} \circ & heta_{parameters} = egin{bmatrix} heta_0 \ heta_1 \ dots \ heta_d \end{bmatrix} & x_{features}^{(i)} = egin{bmatrix} x_1^{(i)} \ x_1^{(i)} \ dots \ x_d^{(i)} \end{bmatrix} \ & heta_1 \ dots \ x_d^{(i)} \end{bmatrix} & heta_2 \ & heta_3 \ & heta_4 \end{bmatrix} \in \mathbb{R}^{n(d+1)} & ec{y} = egin{bmatrix} y^{(1)} \ y^{(2)} \ dots \ y^{(n)} \end{bmatrix} & heta_3 \ & heta_4 \ & heta_2 \ & heta_3 \ & heta_4 \ & h$$

 $lacksquare X_{train\; data}$ does not contain y's

• +1 is the extra dimension x_0 , the intercept term, whose value is set to be 1

$$\circ~h_ heta(x)= heta_0x_0+ heta_1x_1+...+ heta_dx_d~=\sum_{j=0}^d heta_jx_j~(x_0=1),$$
 I want $h_ heta(x)\simeq y$

$$\circ J(heta)_{cost\ function} = rac{1}{2} \sum_{i=1}^n \left(h_{ heta}(x^{(i)}) - y^{(i)}
ight)^2_{\ least\ squares} = rac{1}{2} (X heta - ec{y})^T (X heta - ec{y})$$

- $\frac{1}{2}$ is for convenience purpose (It cancels out with 2 when we take the derivative)
- we only care about the minimizer, which is the θ that minimizes $J(\theta)$. The "actual value" of $J(\theta)$ is not important.
- This process is called "Optimization"
- Gradient Descent with Matrix Operations

$$\begin{aligned} \bullet & \nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - \vec{y})^T (X\theta - \vec{y}) \\ &= \frac{1}{2} \nabla_{\theta} \left((X\theta)^T X \theta - (X\theta)^T \vec{y} - \vec{y}^T (X\theta) + \vec{y}^T \vec{y} \right) \\ &= \frac{1}{2} \nabla_{\theta} \left(\theta^T (X^T X) \theta - \vec{y}^T (X\theta) - \vec{y}^T (X\theta) \right) \\ &= \frac{1}{2} \nabla_{\theta} \left(\theta^T (X^T X) \theta - 2 (X^T \vec{y})^T \theta \right) \\ &= \frac{1}{2} (2X^T X \theta - 2X^T \vec{y}) \\ &= X^T X \theta - X^T \vec{y} \end{aligned}$$

- lacksquare we want $X^TX heta X^Tec{y} = 0 \ o \ X^TX heta = X^Tec{y}$
- $\bullet :: \theta = (X^T X)^{-1} X^T \vec{y}$
- if X is non-invertible, it means that there are redundant features, which can result in multicollinearity, or linearly dependent examples.
- Batch vs Stochastic Minibatch
 - Batch: the whole training set
 - Minibatch: randomly select a small subset B of the training data (B << n)</p>
 - ullet calculate a noisy estimation $heta^{(t+1)} = heta^{(t)} lpha_B \sum_{i \in B} (h_ heta(x^{(i)}) y^{(i)}) x^{(i)}$