1.

Hyperparameters setting

	lr	epoch	accuracy
1	1.00E-03	100	71%
2	5.00E-03	100	68%
3	1.00E-04	100	65%
4	1.00E-03	500	71%
5	5.00E-03	500	74%
6	1.00E-04	500	77%

====Experiment 1:(Ir:1.00E-03,epoch:100,accuracy:71%)====

cla report:				
	precision	recall	f1-score	support
class 0	0.77	0.62	0.69	16
class 1	0.67	0.80	0.73	15
accuracy			0.71	31
macro avg	0.72	0.71	0.71	31
weighted avg	0.72	0.71	0.71	31
Test accuracy is 70.96774193548387%				

====Experiment 2:(Ir:5.00E-03,epoch:100,accuracy:68%)====

cla_report:				
	precision	recall	f1-score	support
class 0	0.71	0.62	0.67	16
class 1	0.65	0.73	0.69	15
accuracy			0.68	31
macro avg	0.68	0.68	0.68	31
weighted avg	0.68	0.68	0.68	31
Test accuracy is 67.74193548387096%				

====Experiment 3:(Ir:1.00E-04,epoch:100,accuracy:65%)====

cla_report:				
	precision	recall	f1-score	support
class 0	0.67	0.62	0.65	16
class 1	0.62	0.67	0.65	15
accuracy			0.65	31
macro avg	0.65	0.65	0.65	31
weighted avg	0.65	0.65	0.65	31
Test accuracy is 64.51612903225806%				

====Experiment 4:(Ir:1.00E-03,epoch:500,accuracy:71%)====

cla_report:				
	precision	recall	f1-score	support
class 0	0.73	0.69	0.71	16
class 1	0.69	0.73	0.71	15
accuracy			0.71	31
macro avg	0.71	0.71	0.71	31
weighted avg	0.71	0.71	0.71	31
Test accuracy is 70.96774193548387%				

====Experiment 5:(Ir:5.00E-03,epoch:500,accuracy:74%)====

cla report:				
	precision	recall	f1-score	support
class 0	0.83	0.62	0.71	16
class 1	0.68	0.87	0.76	15
accuracy			0.74	31
macro avg	0.76	0.75	0.74	31
weighted avg	0.76	0.74	0.74	31
Test accuracy is 74.19354838709677%				

====Experiment 6:(Ir:1.00E-04,epoch:500,accuracy:77%)====

0.77

0.76

31

0.85

Test accuracy is 77.41935483870968%

weighted avg

可以看到當 epoch 數從 100 增加到 500 時,在同樣的 learning rate 下準確率都有上升,也可發現在 epoch 為 100 時,validation 和 train data fit 蠻好的,但可由 epoch 為 500 的 model loss 觀察到,當 epoch 數在超過 200 左右後,validation loss 開始上升,表示 epoch 為 200 時,應可達最好準確率。

3.

造成準確率的差異,可能原因:

- 因為 model overfit 在 train data 上,而導致 test data 的 loss 較大
- 可以看出這是一個比較小的資料集(train:189,valid:81,test:31),要用 189 筆 train data 去訓練資料,很顯然會導致模型泛化能力不夠
- 在 train data 和 test data 中,得知 2 種 class 的比例均接近一半,因此推測可能會跟特徵分布不平均有關

4.

Ensemble learning(bagging):

在訓練資料中隨機抽取(取後放回)樣本並通過 classifier,最終選出一組 opt 的樣本

優:隨機性高,泛化性高,有較高機率避免抽取到噪音資料可讓模型更穩健

缺:opt 不一定最好

Filter(相關性):

計算每個特徵相對於其他特徵的相關係數。在特徵選擇過程中,每個高度相關的變數(大於 0.8)中的一個被刪除。

https://domino.ai/data-science-dictionary/feature-selection

5.

RLN(Regularization Learning Networks)是一種專為處理表格數據學習任務而設計的深度神經網絡模型。它通過為每個權重應用不同的正則化係數,使模型能夠更有效地利用相關的輸入特徵,從而提高性能。為了解決超參數數量過多的問題,RLN 引入了一種有效的超參數調整方案,並採用了新的損失函數。

Structed data 特徵多數由數值或類別組成,且每筆 data 都具有相同的特徵,針對每個特徵都能得知其對應的統計量,來對資料進行分析。

https://aws.amazon.com/tw/what-is/structured-data/

https://proceedings.neurips.cc/paper_files/paper/2018/file/500e75a036dc2d7d2fec_5da1b71d36cc-Paper.pdf