Let
$$\Sigma = \{a,b,c\}$$
 and let $L_{mp} = \{wcw^R \mid w \in \{a,b\}^*\}$.

We will prove that the pushdown automaton M defined as follows satisfies $L_{\it e}(M) = L_{\it mp}$.

$$\begin{split} M = & \left(\{q_0, q_1\}, \{a, b, c\}, \{\dashv, A, B\}, \delta, q_0, \dashv, \varnothing \right), \text{ Where} \\ & \delta : Q \times \Sigma \times \Gamma \to 2^{Q \times \Gamma^*}_{\mathit{FIN}} \text{ defined as:} \end{split}$$

δ_{Γ}	\dashv			A			В		
$Q \setminus \Sigma$	а	b	С	а	b	С	а	b	С
q_0	(q_0,A)	(q_0,B)	(q_1, ε)	(q_0,AA)	(q_0,BA)	(q_1,A)	(q_0, AB)	(q_0,BB)	(q_1,B)
q_1	Ø	Ø	Ø	(q_1, ε)	Ø	Ø	Ø	(q_1, ε)	Ø

First let's define a function $\Delta: \{a,b\} \to \{A,B\}$ as follows:

$$\forall x \in \{a,b\}, \Delta(x) = \left\{ \begin{array}{cc} A & x = a \\ B & x = b \end{array} \right\}$$

Now we'll extend Δ to $\left\{a,b\right\}^*$ by defining a new function

$$\widehat{\Delta}: \{a,b\}^* \to \{A,B\}^*$$
 as follows:

$$\hat{\Delta}(\varepsilon) = \varepsilon$$

$$\forall w \in \{a,b\}^*, \sigma \in \{a,b\}, \widehat{\Delta}(w \cdot \sigma) = \widehat{\Delta}(w) \cdot \Delta(\sigma)$$

The following facts can be proved:

$$\forall x, y \in \{a, b\}^*, \widehat{\Delta}(x \cdot y) = \widehat{\Delta}(x) \cdot \widehat{\Delta}(y)$$

$$\forall x \in \{a,b\}^*, \widehat{\Delta}(x^R) = \widehat{\Delta}(x)^R$$

We'll prove by induction on n that (§)

$$\forall w \in \{a,b\}^+, (q_0, w, \dashv) \vdash_M^* (q_0, \varepsilon, \widehat{\Delta}(w)^R) \equiv$$

$$\equiv \forall n \in \mathbb{Z}^+, \forall w \in \{a,b\}^n, (q_0, w, \dashv) \vdash_M^* (q_0, \varepsilon, \widehat{\Delta}(w)^R) :$$

Basis:

For n=1 we must show that $\forall w \in \{a,b\}^1, (q_0,w,\dashv) \vdash_{\scriptscriptstyle M}^* (q_0,\varepsilon,\widehat{\Delta}(w)^R)$:

Let $w \in \{a,b\}$, There are two cases: $w = a \lor w = b$

- (1) If w=a then we get that $(q_0,w,\dashv)=(q_0,a,\dashv)\vdash_M (q_0,\varepsilon,A)$, $\cap \operatorname{Now} \widehat{\Delta}(w)^R=\widehat{\Delta}(a)^R=\widehat{\Delta}(\varepsilon\cdot a)^R=\left(\widehat{\Delta}(\varepsilon)\cdot \Delta(a)\right)^R=\left(\varepsilon\cdot A\right)^R=A^R=A$, And so $(q_0,\varepsilon,A)=(q_0,\varepsilon,\widehat{\Delta}(w)^R)$, Thus we can conclude that $(q_0,w,\dashv)\vdash_M (q_0,\varepsilon,\widehat{\Delta}(w)^R)$, And so $(q_0,w,\dashv)\vdash_M^* (q_0,\varepsilon,\widehat{\Delta}(w)^R)$.
- (2) If w=b then we get that $(q_0,w,\dashv)=(q_0,b,\dashv)\vdash_M (q_0,\varepsilon,B)$, Now $\widehat{\Delta}(w)^R=\widehat{\Delta}(b)^R=\widehat{\Delta}(\varepsilon\cdot b)^R=\left(\widehat{\Delta}(\varepsilon)\cdot\Delta(b)\right)^R=\left(\varepsilon\cdot B\right)^R=B^R=B$, And so $(q_0,\varepsilon,B)=(q_0,\varepsilon,\widehat{\Delta}(w)^R)$, Thus we can conclude that $(q_0,w,\dashv)\vdash_M (q_0,\varepsilon,\widehat{\Delta}(w)^R)$, And so $(q_0,w,\dashv)\vdash_M^* (q_0,\varepsilon,\widehat{\Delta}(w)^R)$.

From **(1)** and **(2)** we can conclude that it is always the case $(q_0, w, \dashv) \vdash_M^* (q_0, \varepsilon, \widehat{\Delta}(w)^R)$ as was to be shown.

Induction Hypothesis:

Suppose that for some $n = k \in \mathbb{Z}^+$ we have $\forall w \in \{a,b\}^k, (q_0,w,\dashv) \vdash_M^* (q_0,\varepsilon,\widehat{\Delta}(w)^R)$

Induction Step:

We must show that for n = k + 1 we have

$$\forall w \in \{a,b\}^{k+1}, (q_0, w, \dashv) \vdash_M^* (q_0, \varepsilon, \widehat{\Delta}(w)^R) :$$

Let $w \in \{a,b\}^{k+1}$, Therefore $\exists \tilde{w} \in \{a,b\}^k, \sigma \in \{a,b\}, w = \tilde{w} \cdot \sigma$,

Since $\tilde{w} \in \{a,b\}^k$, We get by the induction hypothesis that $(q_0,\tilde{w},\dashv)\vdash_M^* (q_0,\varepsilon,\hat{\Delta}(\tilde{w})^R)$, And so $(q_0,w,\dashv)=(q_0,\tilde{w}\sigma,\dashv)\vdash_M^* (q_0,\sigma,\hat{\Delta}(\tilde{w})^R)$, Now there are two cases: $\sigma=a\vee\sigma=b$

(1) If $\sigma = a$ then we get that

$$\begin{split} &(q_0, \sigma, \widehat{\Delta}(\tilde{w})^R) = (q_0, a, \widehat{\Delta}(\tilde{w})^R) \vdash_{\scriptscriptstyle M} (q_0, \varepsilon, A \cdot \widehat{\Delta}(\tilde{w})^R) \,, \\ &\text{Now } \widehat{\Delta}(\sigma^R) = \widehat{\Delta}(\sigma) = \widehat{\Delta}(a) = \widehat{\Delta}(\varepsilon \cdot a) = \widehat{\Delta}(\varepsilon) \cdot \Delta(a) = \varepsilon \cdot A = A \,, \\ &\text{And so:} \end{split}$$

$$A \cdot \widehat{\Delta}(\widetilde{w})^{R} = \widehat{\Delta}(\sigma^{R}) \cdot \widehat{\Delta}(\widetilde{w})^{R} = \widehat{\Delta}(\sigma^{R}) \cdot \widehat{\Delta}(\widetilde{w}^{R}) = \widehat{\Delta}(\sigma^{R} \cdot \widetilde{w}^{R}) = \widehat{\Delta}((\widetilde{w} \cdot \sigma)^{R}) = \widehat{\Delta}$$

Thus we can conclude that $(q_0, \mathcal{E}, A \cdot \widehat{\Delta}(\widetilde{w})^R) = (q_0, \mathcal{E}, \widehat{\Delta}(w)^R)$, And so $(q_0, \sigma, \widehat{\Delta}(\widetilde{w})^R) \vdash_M (q_0, \mathcal{E}, \widehat{\Delta}(w)^R)$.

(2) If $\sigma = b$ then we get that

$$\begin{split} &(q_0,\!\sigma,\!\widehat{\Delta}(\tilde{w})^{\!R}) = (q_0,\!b,\!\widehat{\Delta}(\tilde{w})^{\!R}) \vdash_{\!\! M} (q_0,\!\varepsilon,\!B \cdot \widehat{\Delta}(\tilde{w})^{\!R})\,, \\ &\text{Now } \widehat{\Delta}(\sigma^{\!R}) = \widehat{\Delta}(\sigma) = \widehat{\Delta}(b) = \widehat{\Delta}(\varepsilon \cdot b) = \widehat{\Delta}(\varepsilon) \cdot \Delta(b) = \varepsilon \cdot B = B\,, \\ &\text{And so:} \end{split}$$

$$B \cdot \widehat{\Delta}(\widetilde{w})^{R} = \widehat{\Delta}(\sigma^{R}) \cdot \widehat{\Delta}(\widetilde{w})^{R} = \widehat{\Delta}(\sigma^{R}) \cdot \widehat{\Delta}(\widetilde{w}^{R}) = \widehat{\Delta}(\sigma^{R} \cdot \widetilde{w}^{R}) = \widehat{\Delta}((\widetilde{w} \cdot \sigma)^{R}) = \widehat{\Delta}$$

Thus we can conclude that $(q_0, \varepsilon, B \cdot \widehat{\Delta}(\widetilde{w})^R) = (q_0, \varepsilon, \widehat{\Delta}(w)^R)$ and so $(q_0, \sigma, \widehat{\Delta}(\widetilde{w})^R) \vdash_M (q_0, \varepsilon, \widehat{\Delta}(w)^R)$.

From cases (1) and (2) we see that it is always the case $(q_0, \sigma, \hat{\Delta}(\tilde{w})^R) \vdash_M (q_0, \varepsilon, \hat{\Delta}(w)^R)$.

Now we can conclude that $(q_0,w,\dashv)\vdash_{\scriptscriptstyle M}^* (q_0,\sigma,\widehat{\Delta}(\tilde{w})^{\scriptscriptstyle R})\vdash_{\scriptscriptstyle M} (q_0,\varepsilon,\widehat{\Delta}(w)^{\scriptscriptstyle R})$, and so $(q_0,w,\dashv)\vdash_{\scriptscriptstyle M}^* (q_0,\varepsilon,\widehat{\Delta}(w)^{\scriptscriptstyle R})$ as was to be shown.

Now we'll show that $L_{mp} \subseteq L_e(M)$:

Let $w \in L_{mp}$, Thus $\exists x \in \{a,b\}^*, w = xcx^R$, Now there are two cases: $x = \varepsilon \lor x \neq \varepsilon$

- (1) If $x=\varepsilon$, Then w=c and so $(q_0,w,\dashv)=(q_0,c,\dashv)\vdash_M (q_1,\varepsilon,\varepsilon)$, Thus, we can conclude that $w\in L_e(M)$.
- (2) If $x \neq \varepsilon$, Then $x \in \{a,b\}^+$ and we can conclude by using (§) that $(q_0,x,\dashv)\vdash_M^* (q_0,\varepsilon,\hat{\Delta}(x)^R)$, Thus, $(q_0,w,\dashv)=(q_0,xcx^R,\dashv)\vdash_M^* (q_0,cx^R,\hat{\Delta}(x)^R)\vdash_M (q_1,x^R,\hat{\Delta}(x)^R)$, Now, Since M is in state q_1 , We are currently emptying the stack, And for each a in x^R there is a corresponding A in $\hat{\Delta}(x)^R$, Similarly, for each b in x^R there is a corresponding B in $\hat{\Delta}(x)^R$, Thus $(q_1,x^R,\hat{\Delta}(x)^R)\vdash_M^* (q_1,\varepsilon,\varepsilon)$, And we can conclude that $(q_0,w,\dashv)\vdash_M^* (q_1,\varepsilon,\varepsilon)$, And so $w \in L_e(M)$.

From cases (1) and (2) we see that it is always the case that $w \in L_e(M)$ as was to be shown.

I = I = I

Now we'll show that $L_e(M) \subseteq L_{mp}$:

Let $w\in L_e(M)$, Thus $(q_0,w,\dashv)\vdash_M^*(q_1,\varepsilon,\varepsilon)$. Since M reaches state q_1 , We get that there must be some c in the input string that took M from state q_0 to state q_1 . Now, because the first time M encounters c, M changes its state from q_0 to q_1 we can conclude that

 $\exists x \in \{a,b\}^*, y \in \{a,b,c\}^*, w = xcy$, Now there are two cases: $x = \varepsilon \lor x \neq \varepsilon$

(1) If $x=\varepsilon$ then w=cy and so $(q_0,w,\dashv)=(q_0,cy,\dashv)\vdash_M (q_1,y,\varepsilon)$. Now since $(q_0,w,\dashv)\vdash_M^* (q_1,\varepsilon,\varepsilon)$, We get that it must be the case that $(q_1,y,\varepsilon)\vdash_M^* (q_1,\varepsilon,\varepsilon)$. Now since the stack is empty, M cannot do any move, And so, It must be the case that $(q_1,y,\varepsilon)\vdash_M^0 (q_1,\varepsilon,\varepsilon)$, Therefore $y=\varepsilon$, And we get that w=c. Now since $c\in L_{mp}$, We can conclude that $w\in L_{mp}$.

(2) If $x \neq \varepsilon$ then $x \in \{a,b\}^+$ and by (§) we can conclude that $(q_0,x,\dashv)\vdash_M^* (q_0,\varepsilon,\hat{\Delta}(x)^R)$, Thus, $(q_0,w,\dashv)=(q_0,xcy,\dashv)\vdash_M^* (q_0,cy,\hat{\Delta}(x)^R)$, Now since the first character in x must be one of a or b, We get that the character at the top of the stack must be one of A or B and it cannot be the character \dashv . Therefore, the first character in $\hat{\Delta}(x)^R$ must be one of A or B, And so $(q_0,cy,\hat{\Delta}(x)^R)\vdash_M (q_1,y,\hat{\Delta}(x)^R)$, Thus $(q_0,w,\dashv)\vdash_M^* (q_1,y,\hat{\Delta}(x)^R)$.

Now since $(q_0,w,\dashv)\vdash_M^*(q_1,\varepsilon,\varepsilon)$, We get that it must be the case that $(q_1,y,\hat{\Delta}(x)^R)\vdash_M^*(q_1,\varepsilon,\varepsilon)$. Now, Since M is in the state q_1 we get that M is currently emptying the stack and for each a in y there must be a corresponding A in $\hat{\Delta}(x)^R$, Similarly, for each b in y there is must be a corresponding B in $\hat{\Delta}(x)^R$, Thus we can conclude that $\hat{\Delta}(y)=\hat{\Delta}(x)^R=\hat{\Delta}(x^R)$.

It can be shown that $\widehat{\Delta}$ is a one-to-one function and from this fact we can conclude that $y=x^R$. Thus $w=xcx^R$ where $x\in\{a,b\}^+$. Now by definition of L_{mp} we can conclude that $w\in L_{mp}$.

From cases (1) and (2) we can conclude that it is always the case that $w \in L_{mp}$ as was to be shown.

From the two set inclusions we've just shown, We can conclude that $L_{\it e}(M) = L_{\it mp}$ as was to be shown.

Q.E.D.