

THE EISENHOWER LIBRARY

3 1151 02696 9497

54 343

Library

Johns Hopkins University

Some Halogen Substitution Products
of Benzene Sulphide.

Dissertation

presented for the degree of Doctor of
Philosophy to the Board of University
Studies of the Johns Hopkins University

by.
Rudolf de Rode.

1890.

54-343.

Note of Acknowledgement

This investigation was undertaken at the suggestion of Prof. Ira Remsen, and I desire to thank him for his excellent instruction both in the laboratory and in the Lecture-room. I also desire to express my thanks to Dr. H. N. Morse for his instruction in the earlier part of my course.

Rudolf de Rooder.

Part II. Experiments.

Introduction

Para-dichlor-toluene-ortho-sulphonic acid	5
Para-chlor-toluene-ortho-sulphonic acid	-
Para-chlor-toluene-ortho-sulphonic acid	-
Para-bromo-toluene-ortho-sulphonic acid	7
Para-iodo-toluene-ortho-sulphonic acid	5
Para-chlor-toluene-ortho-sulphon-amide	20
Para-chlor-toluene-ortho-sulphon-amide	25
Para-bromo-toluene-ortho-sulphon-amide	20
Para-iodo-toluene-ortho-sulphon-amide	30
Para-chlor-sulphuride	38
Para-chlor-sulphuride	-3
Para-bromo-sulphuride	-2
Para-iodo-sulphuride	-2
Acid ammonium salt of para-chlor-ortho-sulpho-benzoic acid	-5
Conclusion	-10
Biographical sketch	-17

Introduction.

In a paper published in the American Chemical Journal No. 9, 822 Remond and Barley describe a method of preparation and the properties of para-brom-nitro-benzoic acid. Its most characteristic property was that it possessed two opposite and distinct tastes, a sweet and a bitter. The substance was made the subject of an investigation by Drs. Howell and Castle of the Johns Hopkins University, and in a paper entitled "On the Nerves of Taste" it was shown by them that the nerves in the tip of the tongue are of a different character from those in the back part of the

2

longue, and that on the tip of the tongue the substance is only sweet while on the back part of the tongue it is only bitter.

Mc Castle of the John Hopkins University also prepared para-chlor-nitro-quinuclidine, in order to ascertain if it had a similar effect upon the nerves of taste. It was found to possess both tastes in a more marked degree than did para-nitro-quinuclidine.

The object of this research was to investigate the other para-halogens-quinuclidines, and the substances from which they were made and to observe their effect upon the nerves of taste. It was thought that some definite relation might be found to exist between the intensity of the taste and the chemical nature of the substances contained in the sulph.

imile. Since para-fluor-sulphide was both sweet and bitter, and para-chlor-sulphide was more sweet and more bitter it seemed probable that para-fluor-sulphide would be still more sweet & still more bitter while para-iodo-sulphide would not be either as sweet or as bitter as the para-sulphide we would thus have a series running thus.

Para-fluor-sulphide	=	Sweet.	Bitter
.. chlor	..	Sweet.	Bitter
.. brom	..	Sweet.	Bitter
.. iodo	..	Sweet.	Bitter

As regards this point, however, it may be at once stated that no such ~~as~~ delicate relation was found to exist; for para-fluor-sulphide was almost purely sweet with as sweet as sucrose sulphide, with only a very slight bitter after-taste; and para-iodo-sulph-

imide had very little taste at all and that was purely bitter; so that the series would run thus:

Para- -thio- -sulphoxide	SWEET	bitter
" chlor	Sweet	Bitter
" brom	Sweet	Bitter
" iodo	—	bitter

It appears obvious that no definite relation exists between the structure, or chemical activity, of the substituted halides and the taste of the corresponding sulphides.

The diazo compound which formed the starting point in these investigations, was made by starting with para-nitro-benzoic acid, converting this into the ortho-sulphonic acid which by reduction with tin and hydrochloric acid passed over into para-benzoic-sulphonic acid from which the diazo compound was made.

Paraffin to urea with sulphuric acid

The character point in the preparation of the various compounds described in this paper was para-urea-sulphuric acid" of the formula

This was made in the following manner: 50 grams of finely powdered para-bromine-sulphuric acid⁽²⁾ were made into a thin paste with 75 c.c. of water in a 500 c.c. flask. The flask was placed in a bath of ice-water, and a rapid current of the gas from nitric acid and arsenic trioxide passed into it. The flask being constantly agitated in from 3 to 5 minutes the contents of the flask had a

(1). Ascher. Ann. Chem. 161, 8.

(2). Brackett and Hayes. Am. Chem. Soc. Trans. 9, 400

fully saturated and granular
 crystals of the diazo compound had
 separated out. The current of gas was
 then stopped and the diazo compound
 almost completely precipitated as a
 heavy, granular mass, by the addition
 of about 30ccs of alcohol. After stand-
 ing for a few minutes, the contents
 of the flask were thrown on a filter
 covered with a funnel washed with
 alcohol then with ether, and dried.
 In this manner, from 50 grams of para-
 toluidine-sulphonic acid, 42 grams of pure
 white diazo-toluene-sulphonic acid were
 obtained.

I. .3973 gr gave .0555 gr nitrogen

II. 3336 0468 ..

Calculated for

$C_7H_6O_2N_2S$

Nitrogen = 14.14%

Found

I II

13.97% 14.03%

Para-Fluorobenzoic- α -nitro-sulfuric acid.

This acid was prepared by decomposing para-nitro-nitro-sulfuric acid with hydrofluoric acid in the following manner:

About 500 c.c. of concentrated hydrofluoric acid were slowly warmed in a large platinum dish and 20 grams of the dry compound dissolved in it. The dry compounds dissolved very readily. The solution was heated until decomposition, accompanied by evolution of nitrogen, began. The decomposition was allowed to take place slowly, and when complete the contents of the dish were evaporated to a mucous consistency, diluted with about two liters of water in a large porcelain

3

dish heated, neutralized with pre-
cipitated chalk, boiled with animal
charcoal and filtered. The filtered
solution gave a blue color with ferric
chloride owing to the fact that some
of the diazo-compound had been con-
verted into para-phenol-sulfuric acid
by the action of the water of the hy-
drochloric acid solution. The calcium
salt of the para-fluor-benzen-sulfuric
acid was not obtained well crystallized,
and sufficiently pure for analysis. The
barium salt, however, (obtained by
neutralizing with barium carbonate
instead of precipitated chalk) was ob-
tained in a very pure condition in
small glistening scales. It was recrys-
tallized until its solution no longer
gave a color with ferric chloride and
was clear.

	600 or heated till constant weight lost .0235 gr.		
I { .5925 ..	dry salt gave .2704 gr. Ba SO ₄		
.592 ..	heated till constant weight lost .0037 gr.		
I { 1053 ..	dry salt gave .0477 gr. Ba SO ₄		
	Calculated for	Found	
	(C ₆ H ₅ O ₃ ST) ₂ Ba + H ₂ O	I	II
H ₂ O =	3.38 %	3.81 %	3.40 %
Ba =	26.60 ..	26.83 ..	26.63 ..

As a qualitative test for fluorine, a small quantity of the salt was mixed with lime, & ignited in a platinum crucible, or fused with caustic potash in a silver crucible, dissolved in hydrochloric acid, (treated with a little calcium chloride if caustic potash has been used) & neutralized with ammonia. A precipitate of calcium fluoride was thus obtained, which when heated with sulphuric acid browned

an etching on a watch-glass. One of these tests was employed in all of the cases where fluorine compounds were made and fluorine was found to be present in all.

Potassium Fluor-Silicate-Sulphonate was made from the barium or calcium salt by heating with potassium carbonate. It crystallized from concentrated aqueous solution in large glistening scales. It is very soluble in water. It may be precipitated as a granular powder by adding alcohol to the concentrated aqueous solution. The salt contains two molecules of water of crystallization.

5.5 gm. heated till constant weight 6.8575 gms.

$\frac{6.8575}{5.5} \times 1000 = 125.55 \times 1000 = 125.55$

$125.55 \times 1000 = 125550 \times 1000 = 125.55$

$\frac{125.55}{5.5} \times 1000 = 227.36 \times 1000 = 227.36$

Calculated for $C_7H_6O_3SFR + 2H_2O$	Σ	Found Σ
$\pi_1 O = 13.62\%$	13.71%	13.57%
$R = 17.14\ldots$	17.05	17.19

It is evident that chlorine is present in excess.

Para-chlor-benzen-sulphuric acid

This acid was made by decomposing chloro-benzen-sulphuric acid by hydro-chloric acid in the same manner in which the chlor-benzen-sulphuric acid was made. Concentrated hydro-chloric acid was used, and the product of decomposition was evaporated on the water bath until very little smell of hydrochloric acid remained.

The benzen acid was made in almost the same manner with the only difference that the water of hydrochloric acid was replaced with ammonia in order to decompose the chloro-benzen-sulphuric acid.

and praseoal titteries, and evapora-
tion to dryness. The solution was
as in the case of the decomposition
with nitro-ferric acid and then
evaporated until a white and
precious salt. The solution gave a
resol-sulfuric acid. The barium
salt was washed with sulfuric acid
separated out in wart-like, a-
morphous, granular aggregates. It
was recrystallized until its solution no
longer gave a color with ferric chloride.
The salt is very little more soluble in
hot than in cold water. It contains
one molecule of water of crystallization.

$\frac{1}{2} 2190$ gr. heated till constant wt. lost .007002.

$\frac{1}{2} 220$.. dry salt wt. .0528 gr. BaS₂.

$\frac{1}{2} 227$ - heated till constant wt. lost .007002.

$\frac{1}{2} 23500$.. moist salt .0905 gr. BaS₂

Calculated	Found	
$(C_7H_6O_3S\text{Cl})_2\text{Ba} \cdot n\text{H}_2\text{O}$	\equiv	\equiv
$\text{Ba} = 5.15\%$	3.20%	3.09%
$3\text{H}_2\text{O} = 25.0\%$	2.2%	2.5%

There was a decrease over that obtained by Gmelin and, however, and Picard⁽²⁾

Potassium-chlor-oleum-sulphonate was made from the barium salt by treatment with barium carbonate in concentrated aqueous solution in light-yellow masses without water of crystallization.

$\equiv .3191\text{ gr}$ gave $.1139\text{ gr K}_2\text{SO}_4$

$\equiv .2220\text{} .1725\text{ ..}$

Calculated for	Found	
$C_7H_6O_3S\text{ClK}$	\equiv	\equiv
$\text{K} = 5.25\%$	6.00	16.11

Pearl-milk-toluene-sulphuric acid

This acid was made by adding gradually 100 grains of diazo-toluene-sulphuric acid to 200 grains of hot concentrated hydrobromic acid, and continuing the heating until decomposition was complete.

The Barium Salt was prepared in exact-
in the same manner as that of the
corresponding chlor-acid. It corresponds
to the barium salt prepared by Gossel,
and Hieber and Post⁽²⁾. The solution gave
the color reaction with ferric chloride show-
ing that here also some cresol-sulphuric
acid had been formed.

The Platinum Salt was made from
the barium salt by treatment with

potassium carbonate. The salt was not deliquescent in nature and had been crystallized from concentrated aqueous solution in thin luminous scales.

210.5 gr. heated till constant weight lost 0.22 gr.

99.6 .. dry salt gave .0598 gr K_2SO_4

Calculated for

		Found
$C_7H_6O_3S \cdot 3rK^+ \cdot H_2O$		
H_2O =	5.86%	5.79%

K = 13.50 .. 13.50 ..

Di-*iso*-toluene-*ortho*-sulphonic acid.

This acid was made by decomposing diazo-toluene-sulphonic acid with hydriodic acid in the following manner: 50 grams of the diazo-compound were placed in a flask with 250 c.c. of absolute alcohol and 57.0 grams of concentrated hydriodic acid (57%) added.

in small pieces the zinc being
first powdered and heated until the
evolution of nitrogen was over, the
contents of the vessel are gradually
warmed in order to complete the de-
composition and the zinc is then
left. The residue was diluted with 5 or
6 litres of water, heated, neutralized
with lead oxide, and filtered while
boiling hot.

The Lead Salt was very difficultly
soluble and could not be easily
separated from the excess of lead
oxide, by repeated boiling with water.
After boiling out the zinc with
water, the residue was treated with a
solution of potassium carbonate, which
converted any undissolved lead salt
into the potassium salt which is
easily soluble. The hot solution of

The lead salt upon cooling, becomes covered with an iridescent scum of a gummy consistency. If, however the solution be evaporated to a small bulk this scum gradually becomes as the boiling is continued breaks up and falls to the bottom in heavy flakes which can easily be separated. The mother liquor upon further evaporation yielded another lead salt which was very soluble. These lead salts were not themselves further investigated, but were at once converted into potassium salts by treatment with Potassium carbonate. The Potassium Salt obtained from the precipitate soluble lead salt by treatment with potassium carbonate, crystallized from carbonated ammonium aqueous solution in transparent,

whitish-shaped crystals, corresponding to the potassium salt of the 3-iodo-toluene-sulphuric acid described by Flammar. The salt contained iodine as was proved by a qualitative test, and crystallized with one molecule of water of crystallization.

I. $\left\{ \begin{array}{l} \text{320.0} \text{ heated till constant weight lost .005 gr.} \\ \text{309.1} \text{ dry salt gave .07 gr K. Iod.} \end{array} \right.$

II. $\left\{ \begin{array}{l} \text{309.0} \text{ heated till constant weight lost .0150 gr.} \\ \text{293.} \text{ dry salt gave .0721 gr K. Iod.} \end{array} \right.$

	Calculated for $(C_7H_6O_3SIK) \cdot H_2O$	Found	
		I.	II.
$H_2O =$	5.08%	5.18%	5.14%
K =	11.61 ..	11.11 ..	11.03 ..

The other potassium salt was much more soluble, and crystallized from concentrated aqueous solution in thin flakes. The salt did not contain iodine. On analysis it

gave fineness corresponded to the potassium salt of formic-citric acid
 285 .. heated till constant weight lost .032 gr.
 = 1.555 .. dry salt gave .0631 gr. K_2SO_4
 286 .. heated till constant weight lost .0221 gr
 = 1.20 .. dry salt gave .1090 gr. K_2SO_4
 Calculated for K_2SO_4 Found

$$\begin{array}{ccc}
 c_1 \pi_1 \theta_3 s K + \pi_2 \theta & \equiv & \equiv \\
 \pi_2 \theta = & 7.89^{\circ} & 7.82^{\circ} \quad 7.7^{\circ} \\
 K = & 8.57^{\circ} & 8.19^{\circ} \quad 8.75^{\circ}
 \end{array}$$

The para-iodo-benzoic acid from which this salt was formed, was undoubtedly formed by the action of iodo-benzoic acid upon the para-iodo-benzenesulphonic acid. Thus:

Two hours time 69.20

23

oxy acids increases as we pass from hydrochloric to hydroiodic acid.

The dry potassium salts of fluor-, chloro-, and iodo-benzen-sulphonic acids just obtained were heated in tube with phosphorus pentachloride and then with ammonia, thereby giving the sulphur-chlorides and -anides. The details were as follows:

Para-fluor-benzen-ortho-sulphon-amide.

This was obtained by heating together in a dish 50 grams of anhydrous potassium fluor-benzen-sulphonate, and 100 grams of phosphorus pentachloride; action taking place spontaneously, the mixture becoming hot & fuming in a dense white smoke. A greater part of the phosphorus anhydride

and washing with cold water, the re-
sulting residue was washed and
stained as a slightly yellow viscous
liquid was allowed to drop slowly in-
to a dish containing about a litre of
strong aqueous ammonia. At first a bright
yellow color was shown but after being
boiled up with a bubble & then went
into solution. The solution was evaporated
to dryness on a water-bath, the residue
baked with about 200 c.c. of alcohol and a
little animal charcoal, filtered and
evaporated to crystallization. The mude
crystallized from the moderately concentra-
ted alcoholic solution in large transpar-
ent, apparently orthorhombic, prisms
terminated in stone-faces. It was
soluble in alcohol and not soluble in
ether with difficulty in cold water. From
a aqueous solution it crystallized in

was 55° uncorrected.

The combustion analyses made of this nitride, as well as of the various other compounds described hereafter were made as follows:

A mixture of about 4 parts by weight of finely divided lead chromate, and 1 part by weight of red lead, after being thoroughly washed was sucked into a compact mass on a funnel with a pump. While still moist the mixture was divided into lumps about the size of a pea, which were then heated to redness in a porcelain crucible, in small portions.

During the heating, stirring, etc. some of the lumps are broken up. When hot the mixture has a dark-brown or black color which changes to a bright red on cooling in the air. The nitride after

and fine are broken up in a mortar and
mixed about the size of sand which are
separated by a sieve from the finer
portions. The finer portions are powdered
and used to mix with the substance
to be analyzed. The tube is filled as
follows:

A piece of reduced copper gauze is necessary
whether the substance to be analyzed
contains nitrogen or not. This is placed
in front of an asbestos plug A. Behind
this plug is placed the coarsely granular
mixture to about two thirds the length
of the tube. This is held in place by
an asbestos plug B and may be left
unchanged so long as the tube is
fit for use. Having the tube thus filled

from A to B, the remainder is filled as follows.

About two inches of the finely powdered preparation is introduced behind the plug B up to C. The weighed substance is then introduced, and about two inches more of the fine powder placed behind it. The substance is then intimately mixed with the fine powder by shaking & turning the tube. The remainder of the tube is then filled with the coarse grains up to F, and a passage made along the whole length of the tube by tapping it on a flat surface. The tube is placed in the furnace, connected in front with the calcium chloride tube and behind with an apparatus containing pure, dry air (or oxygen). The clamp at C is closed tight, the tube heated red-hot from the front up nearly to B.

25

The tube is then heated from behind towards until it is all red-hot. When the mixture containing the substance is reached the gas jets are turned on gradually. When the bubbles of gas begin to pass too slowly through the potash bulbs, another jet is turned on &c. When the tube has remained red-hot throughout its entire length for some time, and the gas has ceased to bubble through the potash bulbs, the apparatus is connected with an aspirator which is set in operation and, hence, air is drawn through the apparatus in streams at α , by which the rapidity of the current of air can be regulated. The tube is allowed to cool slowly while about one litre of air is drawn through it. The weighed tubes & bulb are then disconnected, and the tube closed in front

and in connection with the mixture
absorbed behind such solid.

The tube may be used a second time
by removing everything up to the plug
3 from behind putting in a fresh
piece of copper: care is necessary and
proceeds as before. The tube may be
used so long as it is fit for use, with-
out disturbing the portion between 4 and
3. The advantage of the mixture of
lead bromate and red lead in the
granulated form, is this, that it does
not fuse down in the tube and pre-
sents a larger surface of action. It
can be heated to a red heat, and pre-
sents all of the advantages of the
oxide where copper oxide can not be
used. The method has been used with
good results in other substances in
the form of granules.

In this method of analysis the hydrochloric-sulfuric acid gives the following results:

I.	3137	g.	gave	5.003	gr.	CO_2	and	1242	gr.	H_2S
II.	2525	"	"	2.87	"	"	"	998	"	"
III.	152	"	"	1.87	"	nitrogen	(nitrate)	"	"	"
IV.	225	"	"	1.682	"	BaSO_4	(barium)	"	"	"
V.	3155	"	"	1.123	"	"	"	"	"	"
VI.	225	"	"	0.16	"	"	(barium)	31	"	"
VII.	152	"	"	2.355	"	"	"	"	"	"

A similar analysis was made on the following sample:

	Calculated for	Found						
		I	II	III	IV	V	VI	VII
$\text{C} =$	47.47%	44.28%	44.32%	—	—	—	—	—
$\text{H} =$	4.23 "	4.40 "	4.38 "	—	—	—	—	—
$\text{N} =$	7.41 "	—	—	7.33%	—	—	—	—
$\text{S} =$	16.93 "	—	—	—	16.44%	17.23%	17.03%	17.35%
$\text{F} =$	1.26 "	—	—	—	—	—	—	—
$\text{O} =$	16.93 "	—	—	—	—	—	—	—
		<u>00.00</u>						

(1) This analysis was made by Mr. T. B. Strohfeld of the C. & I.

Picr-chlor-tetra-methoxy-anilide

This was ^{made} in exactly the same manner as the Fluor-toluene-sulphure-anide. It was easily soluble in alcohol and hot water soluble with difficulty in cold water. It did not crystallize well from alcohol. From hot aqueous solution it crystallized on cooling, in long white needles.

The melting point was 45° uncorrected. This amide corresponded to that of Keller. On analysis the following results were obtained:

I. 2819 gr. gave 4210 gr. CO_2 and 1021 gr. H_2O

II. 3021 4518 1077

III. 5161 0356 .. nitrogen (Kjeldahl)

IV. 4901 0337 (..)

V. 4420 4530 .. BaSO_4 (Fenton)

22

I	27.8	wt.	gave	30.5	wt.	BaSO ₄	(Pearson)			
VII.	34.56	23.92	..	AgCl	(Burning with lime)			
VIII.	73.87	30.31	(..)			
Calculated for										Found
<chem>C6H8O2NSCl</chem>										I II III IV V VI VII VIII
C =	40.88	%		40.73%	40.79%	—%	—%	—%	—%	—%
H =	3.89	..		4.02	3.96	—	—	—	—	—
O =	15.57	..		—	—	—	—	—	—	—
N =	6.81	..		—	—	6.89	6.88	—	—	—
S =	5.57	..		—	—	—	—	5.45	5.3	—
Cl =	7.28	..		—	—	—	—	—	—	—
	111.00	..								

Barium-thiure-molibdate-anneal.

This was made from potassium-thiure-molibdate-molybdate in the same manner as the corresponding fluor- and chlor- anides. The anide agreed with that prepared by Gussen⁽¹⁾ & Kübler & Post⁽²⁾

Ann Chem 72 235

(1) 1169, 15

Potassium-iodo-toluene-sulphonamide.

This was made by rubbing together in a dish, 50 grains of anhydrous potassium iodo-toluene-sulphonate, and 100 grains of phosphorous pentachloride. Action took place spontaneously, the mixture becoming hot & viscous. The resulting sulphur-chloride, after driving off most of the phosphorus oxychloride and washing with cold water was obtained as a white solid. When this was added to about a litre of strong aqueous ammonia it did not all go into solution on boiling as did the corresponding hydrogen compounds, but it was all converted into the amide nevertheless. This amide is, therefore, not so solu-

the in ammonia at the corresponding
amides of the chlor- & chlor- & bromo-
acetic acids.

The contents of the flask were evaporated
to dryness on the water bath,
boiled with about 200 cc. of alcohol +
a little animal charcoal, filtered,
and evaporated to crystallization.
From the concentrated alcoholic solution,
the amide crystallized in fine white
needles. It is ~~insoluble~~^{insoluble} in water,
only sparingly soluble in hot water,
from which on cooling it crystallizes
in white needles finer than those in
alcoholic solution. The melting point was
185° to 187° (uncorrected). The amide agreed
with the amide of β -iodo-bromo-
butyric acid prepared by Glascock.
In many of the willow leaves
were obtained.

I. 19.0 gr. gave 20.11 gr. CO_2 and .0566 gr. H_2O

II. 12.00 12.430658

III. 15.02 12.300 .. nitroso (nitro) (1)

IV. 20.80 16.71 " AgI and .670 gr. BaSO_4 (Carus)

V. 25.39 20.06 20.03 (..)

Calculated for

Found

C: 28.28% 28.71% 27.80% —% —% —%

H: 2.69 .. 3.29 .. 3.32 .. — .. — .. — ..

O: 11.78 .. — .. — .. — .. — .. — ..

N: 7.31 .. — .. — .. 4.67 .. — .. — ..

S: 11.78 .. — .. — .. — .. 0.82 .. 0.83 ..

I: —2.70 .. — .. — .. — .. —2.04 .. —2.70 ..

100.00

These mixtures, under other conditions
by means of an alkaline solution
of potassium permanganate, yielded
respectively fluor- chlor- brom-
and iodo- sulphide. The per-

(1) This analysis was made by Mr. C. E. Sannen

centage of sulphonide obtained was in all cases, considerably less than the theoretical yield, although the oxidation was conducted under a variety of conditions. The best conditions which were found for obtaining the greatest yield in the sulphonide were in the case of an ox. thus as follows.

First of all, the anide must be free from foreign substances, as a small amount of the impurities which are liable to occur in the preparation of the anide, greatly affects the result.

2.5 mm. of the anide and 8 mm. of caustic potash are dissolved in 2 litres of water, in a 3 litre flask. The flask is placed in a bath of brine water, and a concentrated con-

tion of 35 grams of potassium berman-
ganate added a little at a time.
The flask is kept in the bath of
boiling water until all of the mer-
ganate is used up, or only a
slight pink color remains. This requires
as a rule from 2 to 3 hours. A little
alcohol is then added, and the contents
of the flask filtered, the residue wash-
ed with hot water, & the filtrate evapo-
rated to about 75 c.c. while still warm.
The sulphide, however, with some am-
monium sulphide, is precipitated by the
addition of strong hydrochloric acid. When
cold, the contents of the dish are thrown
on a filter sucking with a pump, &
washed with a little cold water. In
order to separate the ammonium sulphide
from the sulphide, the mixture
is boiled with water, neutralized

with precipitated chalk, filtered and allowed to cool, when the amide crystallizes out of the solution in long white needles, and is separated. The solution on further evaporation yields the calcium salt of the sulphonamide. The calcium salts of para-fluor-, para-chlor-, para-bromo-, and para-iodo-sulphonamide all crystallize from concentrated aqueous solution in radial groups of white needles. These salts have the same tastes as the sulphonamides themselves. In analysis the following results were obtained.

Calcium salt of para-Fluor-sulphonamide

I { .1876 gr heated till constant weight lost .0439 gr.
{ .1437 .. dry salt gave .0446 gr CaSO_4

2037 gr. heated till constant weight lost 0.0560 gr.
 II { 0.56 .. dry salt gave .0488 gr. CaSO_4

	Calculated for	Found	
	$(\text{C}_7\text{H}_3\text{O}_3\text{NSF})_2\text{Ca} \cdot 7\frac{1}{2}\text{H}_2\text{O}$	I	II
$\text{H}_2\text{O} =$	23.48 %	23.40 %	23.37.5
Ca =	9.09 ..	9.13 ..	9.19 ..

Barium salt of baro-ther-sulphamide

2514 gr. heated till constant weight lost. 0560 gr.
 I { 0.95 .. dry salt gave .0553 gr. CaSO_4
 25.5 .. heated till constant weight lost. 056 .. gr.
 II { 1.1954 .. dry salt gave .0565 gr. CaSO_4

	Calculated for	Found	
	$(\text{C}_7\text{H}_3\text{O}_3\text{NSC})_2\text{Ca} \cdot 7\frac{1}{2}\text{H}_2\text{O}$	I	II
$\text{H}_2\text{O} =$	22.20 %	22.27 %	22.31 %
Ca =	8.0 ..	8.32 ..	8.50 ..

Lithium salt of guanidino-sulphuric acid

This salt was prepared by Remsen and Barker. It gave twice the reaction to the ammonium $(C_2H_3O_3NSI)_2Ca + 7/2H_2O$

Lithium salt of guanidino-sulphuric acid

I { .2575 gr. heated till constant weight lost .0439 gr.

{ .2136 .. dry salt gave .0440 gr $CaSO_4$

{ .2482 .. heated till constant weight lost .0422 gr.

II { .2060 .. dry salt gave .0421 gr $CaSO_4$

Calculated for $(C_2H_3O_3NSI)_2Ca + 7/2H_2O$ Found

	I	II
H_2O :	17.07%	17.05% 17.00%
Ca:	6.10 ..	6.06 .. 6.0 ..

The sulphurides themselves were obtained as precipitates, by adding hydrochloric acid to

The following colors of these various calcium salts. They are all difficultly soluble in cold water, & still more so in hydrochloric acid.

Para-Fluor-sulfurine

This was made from its calcium salt by precipitation with hydrochloric acid. It is moderately soluble in hot water, from which on cooling it recrystallizes in long white needles which break up on drying into granules. When crystallized slowly however it remains in small compact cubes. Its taste was almost purely sweet, but after remaining in the mouth for a few minutes, a slight after-taste was perceptible. However as could be judged, no sweetness was fully so sweet as that of Kusnic anchi-

was collected and was 222.250 gms.
It was on white gypsum sand;

I. 5086 gm. gave 77.2 gm. CO_2 and .007 gm. H_2S

II. 3080 61.53 0.6

III. 7873 133.70 .. nitroben (Pearson)

IV. 5008 132.7 (..)

I. 3400 30.53 .. BaSO_4 (Pearson)

IV. 1856 20.6 (..)

— insoluble and insoluble in water of dilute
hydrochloric acid

6.24 g. 15 F. = = = I I I

C = - - - - - 0.5 - - 0.0 - - - - - - - - - - -

— = - - - - - 2.2 - - 2.28 - - - - - - - - - - -

I = 23.51 .. - - - - - - - - - - - - - - - - - - -

1 = 5.0 - - - - - 0.87 .. 0.03 - - - - - - - - - - -

S = 5.2 -

F = 6.25 -

50.20

Para-chlor-sulfonide.

This was made from its calcium salt by precipitation with hydrochloric acid. It was not quite so soluble as para-chlor-sulfonide. It crystallized from hot aqueous solution, on cooling, in thin flat plates. The melting point was 218° (uncorrected). It had both a sweet and a bitter taste. Both tastes were very marked, but the bitter seemed to be the more intense of the two. This substance was prepared in small quantity by the faculty of the Johns Hopkins University, in order to ascertain its effect upon the nerves of taste. It was not further studied. I have obtained an analysis in the following manner.

I.	4416	at 0 ave	237 gr. CO_2	and 0.7900 at 72.0	
I.	507	"	832	"	0.72 "
I.	3,25	"	477	"	0.56 "
II.	1,000	"	610.8	nitrogen at 25° & 735 mm. (Dumas)	
I.	1,000	"	62	"	" 730 " (")
I.	1,000	"	61.5	"	" 73 " (")
I.	7.0	"	1.77500	"	(Carious)
I.	7.0	"	1.7748	"	" "
I.	5.0	"	0.5707	32.82	(Carious)
I.	3897	"	0.192	"	(")
II	1,0,2,0	"	6732	as 22 (Burning with lime)	
I.	1,000	"	6603	" (" " ")	
I.	2.0	"	2.4	"	(Carious) (5)

Mineralization

Found

	C. H. O ₃ N S Cl	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV
C =	38.62	38.50	38.57	38.52	-	-	-	-	-	-	-	-	-	-	
H =	1.84	1.81	1.90	1.99	-	-	-	-	-	-	-	-	-	-	
O =	22.07	-	-	-	-	-	-	-	-	-	-	-	-	-	
N =	6.44	-	-	-	6.60	6.7	6.52	6.35	6.40	-	-	-	-	-	
S =	-	-	-	-	-	-	-	-	-	77	79	-	-	-	
Cl =	6.32	-	-	-	-	-	-	-	-	-	-	16.25	0.33	0.37	

These analyses were made by Dr. A. M. Peter of the U. S. Geol. Surv.

Mr. C. H. Holmes of the S. C. U.

(5) This analysis was made by Mr. B. C. since

Para-nitro-sulphuride

This was made from its calcium salt by precipitation with hydrochloric acid. It was slightly less soluble than para-chlor-sulphuride. It agreed in all respects with that prepared by Remsen and Bayley¹¹. It possessed both a sweet and a bitter taste, but in a less marked degree than para-chlor-sulphuride. The yield obtained by conducting the oxidation in the sulphur-annular under the benzene mentioned conditions, was larger than was obtained by Remsen and Bayley. The yield was 0 to 12 percent of the theoretical.

Para-nitro-sulphuride

This was obtained from its calcium salt

is precipitated with hydrochloric acid. It was the least soluble of the barium salts. It crystallized from hot aqua regia solution, or when the fine white needles. Its melting point was 230° - 232° (uncorrected). Its taste was not ~~no marked~~ ~~any~~ sweet nor foul either with no sweet taste whatever. On analysis the following figures were obtained:

I. .3440 gr. gave .3441 gr. CO₂ and .0414 gr. H₂O

II. .2627 .. 26320324

III. .2577 .. 28530361

I. .32 .. .0273 .. nitrogen (Kieldahl)

II. .33 .. .0309 (Kieldahl)

III. .31 .. .32 .. AgI and .38 gr BaSO₄ (Carus)

IV. .2327 .. .17761769 (..)

Calc'd. --- Found

..... 185 .. I = = = I I I =

C = 27.15% 27.28% 27.35% 27.38% -% -% -% -%

H = 2.05% 1.84% 1.37% 1.0%

$\text{C} =$	555	
$\text{N} =$	555	250-260
$\text{S} =$	555	140-170
$\text{Z} =$	555	20-25

It is well known that by boiling with dilute hydrochloric acid benzoic sulphide is converted into the acid ammonium salt of ortho-phenylbenzoic acid. It was thought reasonable that by similar treatment the para-halogen-sulphides would behave in the same manner. This was found to be the case with para-chlor-sulphide. The other para-sulphides were not investigated in regard to this point. They would probably act in the same way. 5 grams of para-chlor-sulphide were

45

boiled with twice hydrochloric acid
for about an hour. The flask being
connected with a reflux condenser, the
boiling of the acid was then ab-
sorbed to dryness, & heated on the water-
bath until all smell of hydrochloric
acid had disappeared. The residue
was dissolved in water, in which it
was easily soluble. The solution had
no taste and on titration
gave 20.5 ml. ammonia in accordance
to the acid ammonium salt of ortho-
sulpho-benzoic acid. It was shown
by analysis to be the acid ammonium
salt of para-chlor-ortho-sulpho-benzoic
acid.

2.5372 gr. gave .0359 gr. NH_3

2.532 .. .032

Calculated for $\text{C}_7\text{H}_5\text{NO}_3\text{S} \text{--} \frac{1000\text{H}_2\text{O}}{902\text{NH}_3}$

$$\text{NH}_3 = 6.7\%$$

$$\begin{array}{c} \text{= 6.65\%} \\ \text{= 6.5\%} \end{array}$$

Conclusion

The relative degrees of sweetness and bitterness and of sourness can only be roughly measured. It is also impossible to make accurate comparison between a sweet and a bitter taste as regards the relative intensity of the two. There is also a difference of opinion amongst those who have tasted these substances. The majority, however, were of the opinion that the substances have the tastes described in the preceding pages. These may be summarized thus:

Para-Fluor-sulphuric acid	= Sweet	>	Sour
"	= Sweet	<	Bitter
"	= Sweet	<	Bitter
"	= —		Bitter

Biographical Sketch

The author of this paper, David John Lewis de Rose, was born on August 2^d 1857 in Madison County, Kentucky. He graduated as Bachelor of Science at the State College of Kentucky in June 1885 and obtained the degree of Master of Science at the same institution two years later. He was elected as President Chemist at the Kentucky Agricultural Experiment Station from December 1885 till September 1886, at which time he entered the Johns Hopkins University as a candidate for the degree of Doctor of Philosophy, with Chemistry and Mineralogy as the subject of study. He was appointed Lecturer

Assistant to Prof. Dewey in 1888,
and Fellow in Chemistry in 1889.

Johns Hopkins University, March 30, 1901

