Beyond Backpropagation: Uncertainty Propagation

NEIL LAWRENCE UNIVERSITY OF SHEFFIELD

@lawrennd

$$f(\mathbf{x}) = \sum_{j=1}^k u_j \phi(a_j)$$

$$a_j = \sum_{i=1}^p v_{i,j} x_i$$

$$\operatorname{Exp}(\mathbf{W}_{\mathbf{x}}) = \underbrace{\left\{ \sum_{i=1}^{n} \left(f_i(\mathbf{x}_i; \mathbf{V}_{i}) \right)^{2} - \frac{n}{2} \log 2\pi\sigma^2 \right\}}_{i=1}$$

$$\log p(\mathbf{y}|\mathbf{x},\mathbf{u},\mathbf{V}) = \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - f(\mathbf{x}_i;\mathbf{u},\mathbf{V}))^2 - \frac{1}{2\alpha_u} u_i^2 - \frac{1}{2\alpha_v} v_{i,j}^2$$

+ const.

GLOBAL INFORMATION STORAGE CAPACITY IN OPTIMALLY COMPRESSED BYTES

Source: Hilbert, M., & López, P. (2011). The World's Technological Capacity to Store, Communicate, and Compute Information. Science, 332 (6025), 60-65. martinhilbert.net/worldinfocapacity.html

ANALOG

19 EXABYTES

- Paper, film, audiotape and vinyl: 6%
- Analog videotapes (VHS, etc): 94%

ANALOG A

- Portable media, flash drives: 2%

- Portable hard disks: 2.4%
- CDs & Minidisks: 6.8%
- Computer Servers and Mainframes: 8.9%
- Digital Tape: 11.8%

- DVD/Blu-Ray: 22.8%

- PC Hard Disks: 44.5% 123 Billion Gigabytes

- Others: < 1% (incl. Chip Cards, Memory Cards, Floppy Disks, Mobile Phones, PDAs, Cameras/Camcorders, Video Games)

DIGITAL 280 EXABYTES

Zero Mean Gaussian Bamples Sample

sample pronfrom Cals last process

covariance in c(t,t')

Gaussian Processes

Bayesian Optimization

Open Data Science and Africa

Challenge

- "Whole pipeline challenge"
- Make software available
- Teach summer schools
- Support local meetings
 - Publicity in the Guardian
- Opportunities to deploy pipeline solutions

Disease Incidence for Malaria

Uganda

Spatial models of disease

Deployed with UN Global Pulse Lab

http://pulselabkampala.ug/hmis/

Results

$$\frac{\mathrm{d}p_{TF}(t)}{\mathrm{d}t} = s_f m_{TF}(t) - d_f p_{TF}(t)$$

$$\frac{\mathrm{d}m_i(t)}{\mathrm{d}t} = s_i p_{TF}(t) - d_i m_i(t)$$

David: Have we thrown out the baby with the bathwater?

$$\mathbf{f}_1(x)$$
 $\mathbf{f}_2(\cdot)$ $\mathbf{f}_3(\cdot)$ $\mathbf{f}_4(\cdot)$ $\mathbf{f}_5(\cdot)$ $\mathbf{f}_6(\cdot)\mathbf{f}_7(\cdot)\mathbf{f}_8(\cdot)\mathbf{f}_9(\cdot)$

$$\mathbf{g}(x) = \mathbf{f}_9 \left(\mathbf{f}_8 \left(\mathbf{f}_7 (\mathbf{f}_6 (\cdots)) \right) \right)$$

$$p(\mathbf{y}, \mathbf{w}|\mathbf{x}) = p(\mathbf{y}|\mathbf{w}, \mathbf{x})p(\mathbf{w})$$

$$p(\mathbf{y}|\mathbf{x}) = \int p(\mathbf{y}|\mathbf{w}, \mathbf{x})p(\mathbf{w})d\mathbf{w}$$

$$\log p(\mathbf{y}|\mathbf{x}) \ge \int q(\mathbf{w}) \log \frac{p(\mathbf{y}|\mathbf{w},\mathbf{x})p(\mathbf{w})}{q(\mathbf{w})} d\mathbf{w}$$

dissimilarity between $q(\mathbf{w})$ expected log likelihood and $p(\mathbf{w})$ $\sum_{i=1}^{n} \frac{1}{y_i^{i} \log p(\mathbf{x}_i^{i}, \mathbf{w}_i)} q(\mathbf{w}) - \frac{1}{KL(q(\mathbf{w}_i^{i}, \mathbf{w}_i^{i}))} q(\mathbf{w}_i^{i}) - \frac{1}{KL(q(\mathbf{w}_i^{i}, \mathbf{w}_i^{i})} q(\mathbf{w}_i^{i}) - \frac{1}{KL(q(\mathbf{w}_i^{i}, \mathbf{w}_i^{i})} q(\mathbf{w}_i^{i}) - \frac{1}{KL(q($

$$\mathbf{f}|\mathbf{x} \sim N(0, \mathbf{K}_{ff})$$

$$k_{ff}(x_i, x_i') = \alpha \exp\left(-\frac{\|x_i - x_i'\|^2}{2\ell^2}\right)$$

$$y_i|f_i\sim N(0,\sigma^2)$$

$$p(y, f|x) = p(y|f)p(f|x)$$

$$p(\mathbf{y}|\mathbf{x}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{x})d\mathbf{f}$$

$$p(\mathbf{y}|\mathbf{u},\mathbf{x})p(\mathbf{u}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{u},\mathbf{x})\mathrm{d}\mathbf{f}p(\mathbf{u})$$

$$p(\mathbf{y}, \mathbf{u}|\mathbf{x}) = p(\mathbf{y}|\mathbf{u}, \mathbf{x})p(\mathbf{u})$$

u looks like a parameter $p(y|x) = \int p(y|u,x)p(u)du$ but we can change the dimensionality of u

two Gaussian processes: apply bound recursively

$$\int p(y|f_5)p(f_5|f_4)p(f_4|f_3)p(f_3|f_2)p(f_1|x)df$$

$$\mathbf{g}(x) = \mathbf{f}_5 \left(\mathbf{f}_4 \left(\mathbf{f}_3 \left(\mathbf{f}_2 (\mathbf{f}_1 (x)) \right) \right) \right)$$

Render Gaussian Non Gaussian

Stochastic Process Composition

- A new approach to forming stochastic processes
- Mathematical composition:

$$g(x) = f_1 \left(f_2 (f_3(x)) \right)$$

- Properties of resulting process highly non-Gaussian
- Allows for hierarchical structured form of model.

model	MSE (train)	MSE (test)
mlp (200 iters)	108.5	1185.1
mlp (converged)	24.0	1338.2
gp	59.2	1095.4
deep gp (2)	146.2	833.7
deep gp (3)	182.5	843.6

Regression

data set	n	p	GP	Sparse GP	Deep GP
housing	506	13	2.78±0.54	2.77±0.60	2.69±0.49
redwine	588	11	0.72±0.06	0.62±0.04	0.62±0.04
energy1	768	8	0.48±0.07	0.50±0.07	0.49±0.07
energy2	768	8	0.59±0.08	1.66±0.21	1.39±0.49
concrete	1030	8	5.26±0.67	5.81±0.62	5.66±0.62

Classical Latent Variables

Classical Treatment

• Assume a priori that

$$\mathbf{x} \sim N(0, \mathbf{I})$$

Relate linearly to y

$$y = Wx + \epsilon$$

 Framework covers many classical models PCA, Factor Analysis, ICA

Classical Treatment

Assume a priori that

$$\mathbf{x} \sim N(0, \mathbf{I})$$

Relate to y using neural net

$$\mathbf{y} = f(\mathbf{x}; \mathbf{u}, \mathbf{V}) + \epsilon$$

Optimise over u, V

David applied importance sampling

New Treatment

Assume a priori that

$$f(\mathbf{x}) \sim N(0, \mathbf{K})$$

Relate to y using neural net

$$\mathbf{y} = f(\mathbf{x}) + \epsilon$$

Optimise over x

Originally inspired by density nets

model remains linear in u

$$\hat{p}(\mathbf{y}|\mathbf{u},\mathbf{x}) \ge N(\mathbf{y}|\mathbf{m},\sigma^2\mathbf{I}) \exp\left(\frac{c_{ii}}{2\sigma^2}\right)$$

$$c_{ii} = k_{ii}(x_i, x_i) - \mathbf{k}_{iu}(x_i) \mathbf{K}_{uu}^{-1} \mathbf{k}_{ui} (x_i)$$

$$\mathbf{m}(\mathbf{x}) = \mathbf{K}_{fu}(\mathbf{x})\mathbf{K}_{uu}^{-1}\mathbf{u}$$

model is not linear in x

$$\langle k_{ii}(x_i, x_i) \rangle_{q(x_i)}$$

$$\langle \mathbf{K}_{fu}(\mathbf{x}) \rangle_{q(\mathbf{x})}$$

$$\langle \mathbf{K}_{uf}(\mathbf{x})\mathbf{K}_{fu}(\mathbf{x})\rangle_{q(\mathbf{x})}$$

Use Abstraction for Complex Systems

High Level Ideas

Stratification of Concepts

Low Level Mechanisms

Example: Motion Capture Modelling

Modelling Digits

Inferentia

Numerical Issues

Health

- Complex system
- Scarce data
- Different modalities
- Poor understanding of mechanism
- Large scale

To Find Out More

- Gaussian Process Summer School
 - 12th-15th September 2016 in Sheffield http://gpss.cc/
- Posters at ICLR:
 - Recurrent Gaussian Processes
 - Variationally Auto-Encoded Deep Gaussian Processes
- Python software for GPs (GPy)
 - https://github.com/SheffieldML/GPy/

David's "Gaussian Process Basics" talk

Thank you

Neil Lawrence
http://inverseprobability.com
@lawrennd