Network Measures and Metrics

Network Analysis - Lecture 3

Nikola Balic, Faculty of Natural Science, University of Split

Data Science and Engineering Master Program

Overview

- Centrality measures
- Path-based metrics
- Structural metrics
- Connectivity measures
- Subgraph metrics
- Practical applications

Centrality Measures

Centrality measures identify the most important vertices within a graph.

- **Degree Centrality**: Number of connections a node has
- **Eigenvector Centrality**: Node importance based on connection to other important nodes
- Betweenness Centrality: Frequency of a node appearing on shortest paths
- Closeness Centrality: Average shortest path length to all other nodes

Degree Calculation

- The **degree** of a node is the number of edges connected to it
- In network analysis, it represents the number of direct connections a node has
- For an undirected graph:

$$|\cdot| deg(v) = |\{u \in V: (u,v) \in E\}|$$

- For a directed graph:
 - In-degree: Number of incoming edges
 - Out-degree: Number of outgoing edges

Default Graph with Node Degrees

Degree Centrality

- Simplest centrality measure
- Defined as the number of links incident upon a node
- For directed networks:
 - In-degree: Number of incoming edges
 - Out-degree: Number of outgoing edges
- ullet Normalized degree: $C_D(v)=rac{deg(v)}{n-1}$ where n is the number of nodes

Example: Normalized Degree Centrality

Degree Centrality

Eigenvector Centrality

- Measures influence of a node in a network
- A node is important if it's connected to other important nodes
- Used in Google's PageRank algorithm
- ullet Mathematically: $x_v = rac{1}{\lambda} \sum_{t \in N(v)} x_t$
 - \circ Where λ is a constant and N(v) is the set of neighbors of v

Example: Eigenvector Centrality

Eigenvector Centrality

PageRank Centrality

- Extension of eigenvector centrality designed for directed networks
- Forms the foundation of Google's original web search algorithm
- Simulates a "random surfer" following links with occasional random jumps
- ullet Mathematically: $PR(u) = rac{1-d}{N} + d\sum_{v \in M(u)} rac{PR(v)}{L(v)}$
 - Where d is damping factor (typically 0.85)
 - N is total number of nodes
 - M(u) is the set of nodes that link to u
 - L(v) is the number of outbound links from node v

Example: PageRank Centrality

PageRank Centrality

Betweenness Centrality

- Measures the extent to which a node lies on paths between other nodes
- Nodes with high betweenness control information flow in the network
- ullet Formula: $C_B(v) = \sum_{s
 eq v
 eq t} rac{\sigma_{st}(v)}{\sigma_{st}}$
 - \circ Where σ _st is the total number of shortest paths from node s to node t
 - σ_st(v) is the number of those paths that pass through v

Example: Betweenness Centrality

In our default graph:

- Node 'h' has the highest betweenness centrality (0.58) as it bridges the two main clusters
- Node 'i' also has high betweenness (0.53) as it's a gateway to the bottom cluster
- Node 'j' has significant betweenness (0.42) despite being in a single cluster

Betweenness Centrality

Closeness Centrality

- Measures how close a node is to all other nodes in the network
- Calculated as the reciprocal of the sum of the shortest path distances
- ullet Formula: $C_C(v)=rac{n-1}{\sum_{u
 eq v}d(u,v)}$
 - Where d(u,v) is the shortest path distance between u and v
 - n is the number of nodes in the graph

Example: Closeness Centrality

In our default graph:

- Nodes 'i' and 'h' have the highest closeness centrality (0.43 and 0.42)
- Node 'j' also has high closeness (0.40) due to its central position in the bottom cluster
- Peripheral nodes like 's' and 'q' have the lowest closeness (0.18 and 0.22)

Centrality Measures Comparison

Deg	Val	Eigen	Val	PR	Val	Betw	Val	Close	Val
j	0.3	f	0.4	j	0.1	h	0.6	i	0.4
f	0.3	g	0.4	h	0.1	i	0.5	h	0.4
h	0.3	d	0.3	f	0.1	j	0.4	j	0.4
b	0.2	h	0.3	i	0.1	I	0.3	n	0.4
d	0.2	b	0.3	g	0.1	m	0.2	р	0.4

- Node h ranks highly in most measures (effective bridge node)
- Degree and PageRank favor j (well-connected)
- Eigenvector centrality highlights **f** (connected to important nodes)

Path-Based Metrics

- Average Path Length: Average number of steps along the shortest paths for all possible pairs of nodes
- Diameter: Maximum shortest path length between any pair of nodes
- Eccentricity: Maximum distance from a node to any other node
- Radius: Minimum eccentricity in the graph

Example: Graph Diameter

- **Diameter** is the maximum shortest path length between any pair of nodes
- Corresponds to the "worst-case scenario" for information propagation
- Calculated by finding the longest shortest path between any two nodes
- ullet Formula: $diam(G) = \max_{u,v \in V} d(u,v)$ where d(u,v) is the shortest path distance

In our default graph:

- The diameter is 8 (shortest path length between nodes 'a' and 's')
- Long diameter indicates elongated network structure with sequential information flow
- Important for understanding worst-case communication delays in the network

Example: Diameter Path Visualization

Graph Diameter = 8 Longest shortest path: $a \rightarrow f \rightarrow h \rightarrow i \rightarrow j \rightarrow l \rightarrow m \rightarrow q \rightarrow s$

Example: Node Eccentricity

- **Eccentricity** of a node is the greatest distance between that node and any other node in the network.
- The **radius** is the minimum eccentricity, representing the most central nodes, while the **diameter** is the maximum eccentricity of the graph.
- In this visualization:
 - Nodes are color-coded by their eccentricity (from low to high using a yellow-tored gradient).
 - Central nodes (with eccentricity equal to the radius) are highlighted with a green border.
 - Peripheral nodes (with eccentricity equal to the diameter) are highlighted with a blue border.

Node Eccentricity Radius = 4, Diameter = 8

Structural Metrics

• **Density**: Ratio of actual connections to potential connections

$$\circ \ D = rac{2|E|}{|V|(|V|-1)}$$
 for undirected graphs

$$\circ \; D = rac{|E|}{|V|(|V|-1)}$$
 for directed graphs

- Transitivity: Probability that adjacent vertices of a vertex are connected
- Reciprocity: Proportion of mutual connections in directed networks

Example: Network Density

- Density measures how close a network is to a complete graph (where all nodes are connected)
- Values range from 0 (no edges) to 1 (all possible connections exist)
- For undirected graphs: $D=\frac{2|E|}{|V|(|V|-1)}$ For directed graphs: $D=\frac{|E|}{|V|(|V|-1)}$

In our default graph:

- 19 nodes and 30 edges
- Maximum possible edges = 171
- Density = 0.1754 (approximately 17.5% of possible connections exist)
- Low density indicates a sparse network with selective connections

Clustering Coefficient

- Measures the degree to which nodes tend to cluster together
- Local clustering coefficient: For a node v, the proportion of links between its neighbors divided by the number of links that could possibly exist
- Global clustering coefficient: Average of local clustering coefficients of all nodes
- Transitivity: Ratio of triangles to connected triples in the network

Connectivity Measures

- Node Connectivity: Minimum number of nodes that must be removed to disconnect the graph
- Edge Connectivity: Minimum number of edges that must be removed to disconnect the graph
- K-Core: Maximal subgraph where each vertex has at least degree k
- Articulation Points: Nodes that, when removed, increase the number of connected components

Subgraph Metrics

- Cliques: Complete subgraphs where every node is connected to every other node
- Motifs: Small patterns of interconnections occurring significantly more often than in random networks
- **Graphlets**: Small, connected, non-isomorphic induced subgraphs
- **Community Structure**: Groups of nodes with dense connections internally and sparser connections between groups

Calculating Metrics with NetworkX

```
G = nx.karate_club_graph()
# Calculate centrality measures
degree_centrality = nx.degree_centrality(G)
betweenness_centrality = nx.betweenness_centrality(G)
closeness_centrality = nx.closeness_centrality(G)
eigenvector_centrality = nx.eigenvector_centrality(G)
# Calculate structural metrics
avg_clustering = nx.average_clustering(G)
transitivity = nx.transitivity(G)
density = nx.density(G)
# Calculate path-based metrics
avg_path_length = nx.average_shortest_path_length(G)
diameter = nx.diameter(G)
```

Visualizing Network Metrics

```
G = nx.karate_club_graph()
pos = nx.spring_layout(G)
# Node size based on degree centrality
centrality = nx.degree_centrality(G)
node_sizes = [centrality[n] * 1000 for n in G]
nx.draw(G, pos, with_labels=True,
        node size=node sizes,
        node_color='lightblue',
        edge color='gray')
plt.title("Karate Club Graph - Node Size by Degree Centrality")
plt.show()
```

Interpreting Network Metrics

- **High Centrality**: Key players, influencers, bottlenecks
- **High Clustering**: Tight-knit communities, redundant connections
- Low Average Path Length: Efficient information spread
- **High Density**: Robust, well-connected network
- Community Structure: Functional modules, interest groups

Practical Applications

- Social Networks: Identifying influencers (high centrality)
- Transportation Networks: Finding critical junctions (high betweenness)
- Biological Networks: Identifying essential proteins (high degree/betweenness)
- Communication Networks: Optimizing information flow (path length analysis)
- Recommendation Systems: Finding similar users/items (clustering)

Key Takeaways

- Network metrics quantify structural properties of networks
- Different centrality measures capture different aspects of node importance
- Path-based metrics help understand network efficiency
- Structural metrics characterize overall network organization
- Metrics guide interventions in real-world networks

Next Lecture

Network Visualization: Techniques for effectively visualizing complex networks

Case Study: Zachary's Karate Club

- Classic social network dataset from 1977 by Wayne Zachary
- Documents social interactions between 34 members of a karate club at a US university
- The club split into two groups following a conflict between:
 - The instructor (node 0)
 - The club president/administrator (node 33)
- The network accurately predicts the actual split that occurred
- Widely used as a benchmark for community detection algorithms

Zachary's Karate Club Graph

Centrality Analysis in Karate Club

Community Structure in Karate Club

Karate Club: Applied Learning Points

- Centrality: Leaders (nodes 0 and 33) have highest centrality scores
- Path Length: Average path length is 2.4 steps information spreads quickly
- Clustering: Higher clustering within each community than between them
- Betweenness: Nodes that connect the communities have high betweenness (2, 8, 14)
- Practical Application: Network metrics successfully predict the group split