------ CEN 4072/6070 Software Testing & Verification ------

- 1. a. would not (t could = -5 and z could = 1 initially)
 - b. would not (the value of z could also be 17 when S terminates)
 - c. would not (weak correctness does not require that P => termination)
 - d. would $(y < z => y \neq z+1)$
 - e. would not (The fact that t=z on termination of S when |t|>2 initially does not imply that y cannot equal z+1 on termination of S when z<0 initially. Can you identify a program S for which this would be the case?)
 - f. would (This implies that for z=-4, -3, -2, and -1 initially, S WILL terminate in a state that is inconsistent with the given post-condition.)
 - g. would not (Here it may be the case that S does not terminate when z=-4, -3, -2, and -1 initially.)
 - h. would not (This does not imply that y cannot equal z+1 on termination of S when z<0 initially. See notes for part e.)
- 2. a. false $(x>0 \ne x=5)$
 - b. true (IF the program terminates, it will terminate in state Q.)
 - c. true
 - d. true (initialization and preservation hold)
 - e. true (initialization, preservation, and finalization hold)
 - f. true
 - g. false (See problem set 5.)
 - h. true
 - i. false (This would only be true if P => k.)
 - j. true

3. a.
$$P \Rightarrow wp(S,Q)$$

{P} S {Q} strongly

b. H_0 : (x=0 Λ y=17)

 H_1 : (x=1 \land y=14)

 H_2 : (x=2 Λ y=11)

 H_k : (x=k Λ y=17-3k)

Closed form expression of wp: $(x \ge 0 \land y = 17-3x)$

- c. Clearly, the instantiated antecedent of the ROI, $(x=5 \land y=2) \Rightarrow (x \ge 0 \land y=17-3x)$, holds, and we therefore conclude that the assertion holds.
- 4. g
- 5.

$$P1 P2$$
 $f1 S N$
 $f2 N C$
 $p1 = (x>2 -> x,z := 2,z(x-1)! | true -> x,z := x-1,z(x-1)))$
 $p2 = (x>1 -> x,z := 1,z(x-1)!)$

- 6. a. valid
 - b. invalid (true $\neq > Q$ for every Q)
 - c. invalid (the antecedent does not imply termination if P holds)
 - d. valid
 - e. invalid (antecedents do not guarantee that either I or P will hold if S executes more than once)
 - f. valid
 - q. valid
 - h. valid
 - i. valid
 - j. invalid (the antecedent implies that S, if executed, will terminate, but it does NOT imply that while b do S will terminate)

7. INITIALIZATION: Does {P} s {I}?

P:
$$\{n \ge -17 \land t = 1 \land k = 0\}$$

 $t := 2*t$
 $\{n \ge -17 \land t = 2 \land k = 0\}$
 $k := k+1$
 $\{n \ge -17 \land t = 2 \land k = 1\} \Rightarrow t = 2^k = I$
Therefore $\{P\}$ s $\{I\}$. \checkmark

PRESERVATION: Does $\{I \land \neg b\}$ s $\{I\}$?

I
$$\land \neg b$$
: $\{ t=2^{\mathbf{k}} \land k \neq n \}$
 $t := 2*t$
 $\{ t=2^{\mathbf{k+1}} \land k \neq n \}$
 $k := k+1$
 $\{ t=2^{(\mathbf{k-1})+1} \land k-1 \neq 0 \}$
 \Leftrightarrow
 $\{ t=2^{\mathbf{k}} \land k-1 \neq 0 \} \Rightarrow I \checkmark$

FINALIZATION: Does (I \land b) \Rightarrow Q?

(I
$$\wedge$$
 b): $(t=2^k \wedge k=n) \Rightarrow t=2^n = Q \checkmark$

8. **Does term(f, H)?**

We use the Method of Well Founded Sets with measure k to prove H will terminate for any initial (integer) values of k and k such that k < n.

- i. the value of k increases by 1 with each execution of the loop body (via k := k+1).
- ii. the value of k is bounded from above when k is initially less than n since when k becomes equal to n (which is constant), the loop must terminate **because** "k=n" (i.e., the loop predicate) becomes true.

iii. the value of k may assume only a finite number of values $[(k_0 < n, k_0 + 1, k_0 + 2, ..., n)]$ since it increases by an integral amount (1) with each iteration of the loop body.

Therefore, H terminates for any initial value of k < n and we conclude that term(f, H) holds.

Does $(p \circ g) \Rightarrow (f = g)$?

[(k=n)
$$o$$
 (t,k := 2t,k+1)] \Rightarrow (k₀=n-1)
(k=n-1) \Rightarrow (f = (t,k := t2ⁿ⁻⁽ⁿ⁻¹⁾,k+1)
= (t,k := 2t,k+1))
(k=n-1) \Rightarrow (g = (t,k := 2t,k+1)).

Therefore, $(p \circ g) \Rightarrow (f = g)$.

Does
$$\neg (p \circ g) \Rightarrow (f = f \circ g)$$
?

$$\neg$$
 [(k=n) o (t,k := 2t,k+1)] \Rightarrow (k₀ \neq n-1)

Thus, there are 2 cases to consider: $k_0 < n-1$ and $k_0 > n-1$.

case a:

$$(k < n-1) \Rightarrow (f = (t,k := t2^{n-k},n))$$

 $(k < n-1) \Rightarrow (f \circ g = (t,k := t2^{n-k},n) \circ (t,k := 2t,k+1)$
since $((k < n) \circ g(k < n-1)) = true$
 $= (t,k := (2t)2^{n-(k+1)},n)$
 $= (t,k := t2^{n-k-1+1},n)$
 $= (t,k := t2^{n-k},n)$

case b:

$$(k>n-1) \Rightarrow (f = undefined)$$

 $(k>n-1) \Rightarrow (f \circ g = undefined \circ g)$
 $(kn-1) = false)$
 $= undefined)$

Therefore, $\neg(p \ o \ g) \Rightarrow (f = f \ o \ g)$.

- 9. a. i. $y_n = 0$, $z_n = z_0-3y_0$ ii. $t(X_n) = X_n = (0, z_0-3y_0)$ iii. q(X): $z-3y = z_0-3y_0$ or $z = z_0+3(y-y_0)$
 - b. One cannot deduce unique values of y_0 and z_0 from this information, but one CAN deduce that z_0 -3 y_0 = -1
 - c. iii
 - d. No, any program of the form while b do S computing t that produces intermediate state (5,-7) would necessarily terminate with y=0 and z=-22, while any such program that produces intermediate state (3,8) would necessarily terminate with y=0 and z=-1. (In short, $t(5,-7) \neq t(3,8)$, and therefore q(5,-7) and q(3,8) are inconsistent.) Therefore, there is no input X_0 for which the program could produce both intermediate states.

- 10. false, false, true, true, true
- 11. false, true, false, false, false
- 12. $(x>1 \rightarrow x,y := 3,x-1 \mid x \le 1 \rightarrow x,y := 3, 1-x)$

Histogram of Raw Scores

* - CEN 6070 students

\$ - CEN 4072 students