

Micropower Precision CMOS Operational Amplifier

AD8500

FEATURES

Supply current: 1 µA maximum Offset voltage: 1 mV maximum

Single-supply or dual-supply operation

Rail-to-rail input and output

No phase reversal Unity gain stable

APPLICATIONS

Portable equipment Remote sensors Low power filters Threshold detectors Current sensing

GENERAL DESCRIPTION

The AD8500 is a low power, precision CMOS op amp featuring a maximum supply current of 1 μ A. The AD8500 has a maximum offset voltage of 1 mV and a typical input bias current of 1 pA; it operates rail-to-rail on both the input and output. The AD8500 can operate from a single-supply voltage of +1.8 V to +5.5 V or a dual-supply voltage of ± 0.9 V to ± 2.75 V.

With its low power consumption, low input bias current, and rail-to-rail input and output, the AD8500 is ideally suited for a variety of battery-powered portable applications. Potential applications include ECGs, pulse monitors, glucose meters, smoke and fire detectors, vibration monitors, and backup battery sensors.

PIN CONFIGURATION

Figure 1. 5-Lead SC70

The ability to swing rail-to-rail at both the input and output helps maximize dynamic range and signal-to-noise ratio in systems that operate at very low voltages. The low offset voltage allows the AD8500 to be used in systems with high gain without having excessively large output offset errors, and it provides high accuracy without the need for system calibration.

The AD8500 is fully specified over the industrial temperature range (-40° C to $+85^{\circ}$ C) and is operational over the extended industrial temperature range (-40° C to $+125^{\circ}$ C). It is available in a 5-lead, SC70 surface-mount package.

Table 1. Low Supply Current Op Amps

	Supply Current	1 μΑ	10 μΑ	20 μΑ	
	Single	AD8500			
	Dual	AD8502	ADA4505-2	AD8506	
	Quad	AD8504	ADA4505-4	AD8508	

TABLE OF CONTENTS

4/06—Revision 0: Initial Version

Absolute Maximum Ratings	5
Thermal Resistance	5
ESD Caution	5
Typical Performance Characteristics	6
Outline Dimensions	12
Ordering Guide	12

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

@ V_S = 5 V, V_{CM} = $V_S/2$, T_A = 25°C, unless otherwise noted.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$0 \text{ V} < \text{V}_{\text{CM}} < 5 \text{ V}$		0.235	1	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$		3	10	μV/°C
Input Voltage Range			-0.3		+5.3	V
Input Bias Current	I _B			1	10	pА
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			100	pА
		−40°C < T _A < +125°C			600	pА
Input Offset Current	los			0.5	5	рА
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			50	pА
		-40°C < T _A < +125°C			100	pА
Common-Mode Rejection Ratio	CMRR	$0 \text{ V} < \text{V}_{\text{CM}} < 5 \text{ V}$	75	90		dB
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$	70	90		dB
Large Signal Voltage Gain	Avo	$0.1 \text{ V} < \text{V}_{\text{OUT}} < 4.9 \text{ V}$	98	120		dB
		$0.1 \text{ V} < \text{V}_{\text{OUT}} < 4.9 \text{ V}; -40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$	80			dB
Input Capacitance	C _{DIFF}			2		рF
	C _{CM}			4.5		рF
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_{LOAD} = 100 \text{ k}\Omega \text{ to GND}$	4.970	4.995		V
		$R_{LOAD} = 10 \text{ k}\Omega \text{ to GND}$	4.900	4.960		V
Output Voltage Low	V _{OL}	$R_{LOAD} = 100 \text{ k}\Omega \text{ to V}_S$		0.85	5	mV
		$R_{LOAD} = 10 \text{ k}\Omega \text{ to V}_S$		6.5	15	mV
Short-Circuit Current	Isc	$V_{OUT} = GND$		±5		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$1.8 \text{V} < \text{V}_{\text{S}} < 5 \text{V}$	90	110		dB
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$	80			dB
Supply Current/Amplifier	Isy	$V_O = V_S/2$		0.75	1	μΑ
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			1.5	μΑ
		-40°C < T _A < +125°C			2	μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR			0.004		V/µs
Gain Bandwidth Product	GBP			7		kHz
Phase Margin	Øo			60		Degrees
NOISE PERFORMANCE						
Peak-to-Peak Noise		0.1 Hz to 10 Hz		6		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		190		nV/√Hz
Current Noise Density	in	f = 1 kHz		0.1		pA/√Hz

@ $V_S = 1.8$ V, $V_{CM} = V_S/2$, $T_A = 25$ °C, unless otherwise noted.

Table 3.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$0 \text{ V} < \text{V}_{\text{CM}} < 1.8 \text{ V}$		0.235	1	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40 °C < T_A < $+85$ °C		3.5	12	μV/°C
Input Voltage Range			-0.3		+2.1	V
Input Bias Current	I _B			1	10	рА
		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$			100	рА
		-40°C < T _A < +125°C			600	pА
Input Offset Current	los			0.5	5	рА
		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$			50	pА
		-40°C < T _A < +125°C			100	рА
Common-Mode Rejection Ratio	CMRR	$0 \text{ V} < \text{V}_{\text{CM}} < 1.8 \text{ V}$	65	85		dB
		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$	60	83		dB
Large Signal Voltage Gain	Avo	$0.1 \text{ V} < \text{V}_{\text{OUT}} < 1.7 \text{ V}$	88	115		dB
		$0.1 \text{ V} < \text{V}_{\text{OUT}} < 1.7 \text{ V}; -40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$	70			dB
Input Capacitance	C _{DIFF}			2		pF
	C _{CM}			4.5		pF
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_{LOAD} = 100 \text{ k}\Omega \text{ to GND}$	1.790	1.798		V
		$R_{LOAD} = 10 \text{ k}\Omega \text{ to GND}$	1.760	1.783		٧
Output Voltage Low	Vol	$R_{IOAD} = 100 \text{ k}\Omega \text{ to Vs}$		0.70	5	mV
-	102	$R_{IOAD} = 10 \text{ k}\Omega \text{ to Vs}$		5	15	mV
Short-Circuit Current	I _{sc}			±2		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	1.8 V < V ₅ < 5 V	90	110		dB
	1 2	-40°C < T _A < +85°C	80			dB
Supply Current/Amplifier	I _{SY}	$V_0 = V_s/2$		0.65	1	μΑ
	13.	$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$			1.5	μΑ
		-40°C < T _A < +125°C			2	μA
DYNAMIC PERFORMANCE						1 1/2 -
Slew Rate	SR			0.004		V/µs
Gain Bandwidth Product	GBP			7		kHz
Phase Margin	Ø ₀			60		Degrees
NOISE PERFORMANCE	~~					3 - 3 3
Peak-to-Peak Noise		0.1 Hz to 10 Hz		6		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		190		nV/√Hz
Current Noise Density	i _n	f = 1 kHz		0.1		pA/√Hz

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 4.

Parameter	Rating
Supply Voltage	6 V
Input Voltage	$V_{SS} - 0.4 \text{ V to } V_{DD} + 0.4 \text{ V}$
Differential Input Voltage	±6 V
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	−65°C to +150°C
Operating Temperature Range	−40°C to +125°C
Junction Temperature Range	−65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Absolute maximum ratings apply at 25°C, unless otherwise noted.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 5. Thermal Characteristics

Package Type	θ _{ЈА}	Ө₁с	Unit
5-Lead SC70 (KS-5)	376	126	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

 $T_A = 25$ °C, unless otherwise noted.

Figure 2. Input Offset Voltage Distribution

Figure 3. Input Offset Voltage Drift Distribution

Figure 4. Input Offset Voltage vs. Common-Mode Voltage

Figure 5. Input Bias Current vs. Temperature

Figure 6. Input Bias Current vs. Common-Mode Voltage

Figure 7. Supply Current Distribution

Figure 8. Supply Current vs. Supply Voltage

Figure 9. Supply Current vs. Temperature

Figure 10. Supply Current vs. Input Common-Mode Voltage

Figure 11. Output Saturation Voltage vs. Load Current

Figure 12. Output Saturation Voltage vs. Temperature

Figure 13. Open-Loop Gain and Phase vs. Frequency

Figure 14. CMRR vs. Frequency

Figure 15. PSRR vs. Frequency

Figure 16. Small Signal Overshoot vs. Load Capacitance

Figure 17. Small Signal Transient Response

Figure 18. Small Signal Transient Response

Figure 19. Large Signal Transient Response

Figure 20. Turn-On Transient Response

Figure 21. No Phase Reversal

Figure 22. 0.1 Hz to 10 Hz Input Voltage Noise

Figure 23. Voltage Noise Density

Figure 24. Input Offset Voltage Distribution

Figure 25. Input Offset Voltage Drift Distribution

Figure 26. Input Offset Voltage vs. Input Common-Mode Voltage

Figure 27. Input Bias Current vs. Input Common-Mode Voltage

Figure 28. Supply Current Distribution

Figure 29. Supply Current vs. Input Common-Mode Voltage

Figure 30. Output Saturation Voltage vs. Load Current

Figure 31. Output Saturation Voltage vs. Temperature

Figure 32. Open-Loop Gain and Phase vs. Frequency

Figure 33. CMRR vs. Frequency

Figure 34. Small Signal Overshoot vs. Load Capacitance

Figure 35. Small Signal Transient Response

Figure 36. Small Signal Transient Response

Figure 37. Large Signal Transient Response

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-203-AA

Figure 38. 5-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-5) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
AD8500AKSZ-R2 ¹	−40°C to +125°C	5-Lead SC70	KS-5	A0F
AD8500AKSZ-REEL ¹	-40°C to +125°C	5-Lead SC70	KS-5	A0F
AD8500AKSZ-REEL7 ¹	-40°C to +125°C	5-Lead SC70	KS-5	A0F

¹ Z = RoHS Compliant Part.