影像融合数据源的生成

陈烁龙 2022 年 5 月 14 日

目录

1	处理	过程描述													1
2	结果影像											2			
3	说明														2
插	图														
	1	处理过程													1
	2	处理结果										•	•		2

表格

摘要

鉴于本次编程实习"影像融合"数据源的问题,本文档描述了如何生成用于实验的数据源。本次数据的生成是基于"无人机影像块拼"得到的 DOM 数据。优点是可以任意调整实验区域的大小,不需要为超大内存影像的操作而苦恼。

关键词:影像融合,数据模拟,ArcGIS

1 处理过程描述

遥感图像融合是指在规定的地理坐标系下,按照一定的算法,将多源遥感图像生成新的图像的过程。有:基于像素的融合、基于特征的融合、基于知识的融合三类。我们本次实习的三种融合方法都是基于像素的融合,比较简单。

在上一次我们进行"无人机影像块拼"的实验时,得到的数据文件有 DOM(5CM 分辨率和 100M 分辨率)影像文件。为此,我们可以将5CM 分辨率的 DOM 文件作为全色影像模拟的出发点,而 100CM 分辨率的 DOM 文件则作为多光谱影像模拟的出发点。这是合理的,因为全色影像的分辨率要高于多光谱影像。

同时,考虑数据文件的大小和描述的空间范围¹,我们需要对影像进行裁剪。当然,裁剪的时候,要保证两个分辨率的 DOM 裁剪得到的区域一致²。另外,为了后续处理的方便,我们需要统一得到的 TIFF 图像的像素深度 (统一为 8bit,即 unsigned char 类型)。

于是, 我们的处理流程为:

1. 在 ArcGIS 中读入两个分辨率的 DOM 影像 (5CM 和 100CM)。

2. 对于 100CM 分辨率的 DOM 影像,通过 ArcGIS 的栅格数据裁剪工具,选择感兴趣的矩形区域。在在个步骤中需要填写矩形的上下左右边界坐标值。我们将得到的图像记为"DOM-100CM-ROI"。

(a) 裁剪

輸入網格							镶嵌至新栅格			7
NA 1010				_	-0	^	戦以土初場官			
1				~			将多个栅格数据集	台并到-	一个新的相	8
					+		格数据集中。			
					×					
					1					
					+					
輸出位置_										
具有扩展名的相格数据集名称										
21122 AS HIII ZANDINOS ANDRE HETZ										
標格數據的空间參考 (可迭)										
					*					
像素类型 (可选)						_				
0_HIT_UNGIGNED					~					
像元大小 (可选)										
波段数						~				
1						_				
	确定	取消	环境	e c th	福邦助		工具幇助			

(b) 镶嵌到新图层

图 1: 处理过程

- 3. 对于 5CM 的 DOM 影像,通过 ArcGIS 的 栅格数据裁剪工具,以之前裁剪 100CM 分 辨率 DOM 得到的新 TIFF 影像 "DOM-100CM-ROI" 为掩膜进行裁剪。此处不需要填写矩形的上下左右边界坐标值。我们将得到的图像记为"DOM-5CM-ROI"。
- 4. 查看"DOM-5CM-ROI"的属性可以知道, 其像素深度为 16bit,不便于我们后续处理。 为此我们使用 AreGIS 的栅格数据集中的 "镶嵌到新栅格"功能,选择深度为 8bit,波 段填写为 4 波段。
- 5. 对于"DOM-5CM-ROI", 我们还需要将其 转换为灰度影像,来模拟全色影像。这很容

¹天紫湖区域的无人机影像还是比较大的,至少对于 5CM 的 DOM 影像而言是这样的。为此我们要对其进行 裁减,得到 ROI 区域。

²也就是说要在同一个坐标系下裁剪,好在 ArcGIS 提供了很好的支持。

易通过 OpenCV 的 cv::cvtColor() 函数来实现。

2 结果影像

图 2 为模拟的结果,其中图 2(a) 为全色影像,图 2(b) 为多光谱影像。可以看到,全色影像和光谱影像以完全对齐(配准),满足了融合的前提条件之一。而且全色影像的分辨率明显高于多光谱影像,这是符合常理的。当然由于两幅影像的大小3是不一致的,因此在进行融合时还要进行重采样操作,将多光谱影像的大小调整到和全色影像一致的尺寸,这是容易的。

(a) 全色影像

(b) 多光谱影像

图 2: 处理结果

3 说明

以下列表为具体的图像信息。当然,你也可以自己实操一遍,得到你所感兴趣的区域⁴。

Listing 1: 全色影像信息

1 -- imgName: DOM-5CM-ROI-FPAN.tif

- img.channels(): 1, img.type(): 0

3 -- img.size(): [3340 x 6820], img.rows: 6820, img.cols: 3340

Listing 2: 多光谱影像信息

- $1 \mid --$ imgName: DOM-100CM-ROI.tif
- 2 img.channels(): 4, img.type(): 24
- 3 | -- img.size(): [167 x 341], img.rows: 341, img.cols: 167

³即图片的行列号。

⁴必要且建议这么做。