

Fahrerassistenzsysteme im Kraftfahrzeug

Prof. Dr.-Ing. Markus Lienkamp

Vorlesungsübersicht

01 Einführung	01 Einführung	01 Übung Einführung
28.04.2022 – Prof. Lienkamp	28.04.2022 – Prof. Lienkamp	28.04.2022 – Hoffmann
02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I
05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp
03 Sensorik / Wahrnehmung II	03 Sensorik / Wahrnehmung II	03 Übung Sensorik / Wahrnehmung II
12.05.2022 – DrIng. Diermeyer	12.05.2022 – DrIng. Diermeyer	12.05.2022 – Schimpe
04 Sensorik / Wahrnehmung III	04 Sensorik / Wahrnehmung III	04 Übung Sensorik / Wahrnehmung III
19.05.2022 – Schimpe	19.05.2022 – Schimpe	19.05.2022 – Schimpe
05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler	05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler	05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler
06 Übung Funktionslogik / Regelung 09.06.2022 – DrIng. Winkler	06 Funktionale Systemarchitektur 09.06.2022 – Prof. Lienkamp	06 Aktorik 09.06.2022 – Prof. Lienkamp
07 Deep Learning	07 Deep Learning	07 Übung Deep Learning
23.06.2022 – Majstorovic	23.06.2022 – Majstorovic	23.06.2022 – Majstorovic
08 MMI 30.06.2022 – Prof. Bengler	08 MMI 30.06.2022 – Prof. Bengler	08 MMI Übung 30.06.2022 – Prof. Bengler
09 Controllability	09 Controllability	09 Übung Controllability
07.07.2022 – Prof. Bengler	07.07.2022 – Prof. Bengler	07.07.2022 – Winkle
10 Entwicklungsprozess	10 Entwicklungsprozess	10 Übung Entwicklungsprozess
14.07.2022 – DrIng. Diermeyer	14.07.2022 – DrIng. Diermeyer	14.07.2022 – Hoffmann
11 Analyse und Bewertung FAS	11 Analyse und Bewertung FAS	11 Übung Analyse und Bewertung FAS
21.07.2022 – DrIng. Feig	21.07.2022 – DrIng. Feig	21.07.2022 – DrIng. Feig
12 Aktuelle und künftige Systeme	12 Aktuelle und künftige Systeme	12 Aktuelle und künftige Systeme
28.07.2022 – Prof. Lienkamp	28.07.2022 – Prof. Lienkamp	28.07.2022 – Prof. Lienkamp

Übung Funktionslogik und Regelung Dr.-Ing. Franz Winkler

Agenda

- 1. ACC Folgereglung
- 2. Auslegung Störgrößenbeobachter Querführung

Übung Funktionslogik und Regelung Dr.-Ing. Franz Winkler

Agenda

- 1. ACC Folgereglung
- 2. Auslegung Störgrößenbeobachter Querführung

ACC – Folgeregelung

职位描述

ACC 序列控制的主要组成部分是目标对象选择和级联控制。下文将详细分析这些要素。

Aufgabenbeschreibung:

Wesentliche Bestandteile einer ACC-Folgeregelung ist die Zielobjektauswahl und die Kaskadenregelung. Für ein nachfolgendes Szenario werden diese Elemente näher betrachtet.

1. Gegeben ist das in Abb. 1 dargestellte Szenario. Objekte, die in einem Korridor von 3 m Breite liegen, werden als relevante Zielobjekte betrachtet. Bewerten Sie, ob das Vorderfahrzeug in Abb. 1 ein für die ACC-Folgefahrt relevantes Zielobjekt darstellt. Das eigene Fahrzeug hat eine Geschwindigkeit von $v_{\rm X}=70~{\rm km/h}$ und weist die aktuelle Gierrate $\dot{\psi} = 2$ °/sec auf. Der Radarsensor lokalisiert das Objekt mit einem lateralen Abstand $y_{Sensor} = 5$ m und einem relativen Abstand $d = 70 \, \text{m}$.

Abbildung 1: Folgefahrt

ACC – Folgeregelung

- 2. Geben Sie das Blockschaltbild einer ACC-Kaskadenregelung an und zeigen Sie, wie die Eingangsgrößen der Kaskadenregelung aus den Größen des Radarsensors gebildet werden. Der Verstärkungsfaktor der inneren Kaskade ist dabei mit $k_1 = 1/\tau_v$ und der der äußeren Kaskade mit $k_2 = 1/\tau_d$ definiert.
- 3. Regelungsauslegung: Die Längsdynamik des Fahrzeugs $G(s) = \frac{a_{ist}}{a_{soll}}$ wird im Folgenden durch ein PT₁ mit der Zeitkonstanten $\tau_{str} = 0.1$ sec approximiert.
 - a. Zur Bestimmung des Produkts der Zeitkonstanten $\tau_v \cdot \tau_d$ soll folgendes Szenario betrachtet werden: Der Abstandsdifferenz von -20 m zum Sollabstand (entspricht einem einscherenden Fahrzeug mit gleicher Geschwindigkeit wie das eigene Fahrzeug) soll nur zu einer leichten Verzögerung von -1 m/s² führen.
 - b. Auslegung der inneren Kaskade:
 - Zeigen Sie, für welche Werte von $\tau_{\rm v}$ der Regelkreis nur reelle Pole aufweist. Die Übertragungsfunktion des Regelkreises lautet:

$$G_{v}(s) = \frac{v_{ist}}{v_{soll}} = \frac{1}{s^{2}\tau_{v}\tau_{str} + s\tau_{v} + 1}$$

- Bestimmen Sie die Zeitkonstante τ_v unter der Bedingung, dass die langsamste Polstelle bei s=-0.72 liegt.
- c. Bestimmen Sie damit die Zeitkonstante $\tau_{\rm d}$
- (d. Zeigen Sie, ob damit die gesamte Kaskadenregelung stabil ist)
- 4. Geben Sie die Bedingung für Kolonnenstabilität an.

1. Die geschätzte Krümmung des eigenen Fahrzeugs lautet:

$$k_{\psi} = \frac{\dot{\psi}}{V_{K}} = \frac{27}{180} \cdot \frac{1}{7/3.6} = 0.0018 \text{ /m}$$

$$\frac{1}{2} \text{kuvve} = \frac{k \dot{\mu}}{2} d^2 = 4.4 \text{ m}$$

1. Gegeben ist das in Abb. 1 dargestellte Szenario. Objekte, die in einem Korridor von 3 m Breite liegen, werden als relevante Zielobjekte betrachtet. Bewerten Sie, ob das Vorderfahrzeug in Abb. 1 ein für die ACC-Folgefahrt relevantes Zielobjekt darstellt. Das eigene Fahrzeug hat eine Geschwindigkeit von $v_{\rm X}=70~{\rm km/h}$ und weist die aktuelle Gierrate $\dot{\psi}=2~{\rm °/sec}$ auf. Der Radarsensor lokalisiert das Objekt mit einem lateralen Abstand $y_{\rm Sensor}=5~{\rm m}$ und einem relativen Abstand $d=70~{\rm m}$.

5 Funktionslogik und Regelung → Übung

- 2. Blockschaltbild:
- 2. Geben Sie das Blockschaltbild einer ACC-Kaskadenregelung an und zeigen Sie, wie die Eingangsgrößen der Kaskadenregelung aus den Größen des Radarsensors gebildet werden. Der Verstärkungsfaktor der inneren Kaskade ist dabei mit $k_1 = 1/\tau_v$ und der der äußeren Kaskade mit $k_2 = 1/\tau_d$ definiert.

3. Regelungsentwurf:

- a. Zur Bestimmung des Produkts der Zeitkonstanten $\tau_{\rm v} \cdot \tau_{\rm d}$ soll folgendes Szenario betrachtet werden: Der Abstandsdifferenz von -20 m zum Sollabstand (entspricht einem einscherenden Fahrzeug mit gleicher Geschwindigkeit wie das eigene Fahrzeug) soll nur zu einer leichten Verzögerung von -1 m/s² führen.
- b. Auslegung der inneren Kaskade:
 - Zeigen Sie, für welche Werte von τ_ν der Regelkreis nur reelle Pole aufweist. Die Übertragungsfunktion des Regelkreises lautet:

$$G_{\mathbf{v}}(s) = \frac{v_{\text{ist}}}{v_{\text{soll}}} = \frac{1}{s^2 \tau_{\mathbf{v}} \tau_{\text{str}} + s \tau_{\nu} + 1}$$

- Bestimmen Sie die Zeitkonstante τ_v unter der Bedingung, dass die langsamste Polstelle bei s=-0.72 liegt.
- c. Bestimmen Sie damit die Zeitkonstante $\tau_{\rm d}$
- (d. Zeigen Sie, ob damit die gesamte Kaskadenregelung stabil ist)

$$Vrel = \dot{\chi}_{i+1} - \dot{\chi}_{i} = 0$$

$$\dot{\chi}_{i+1} = \frac{1}{20} \left(\frac{d - d \cdot 01}{20} \right)$$

$$\dot{\chi}_{i+1} = \frac{1}{20} \left(\frac{d - d \cdot 01}{20} \right)$$

$$-1 \frac{1}{20} = 0 + \frac{-20}{20} \frac{1}{20}$$

$$-1 \frac{1}{20} = 0 + \frac{-20}{20} = 0$$

$$C \qquad 7d = \frac{205^2}{7V} = 35$$

4. Bedingung für Kolonnenstabilität:

Übung Funktionslogik und Regelung Dr.-Ing. Franz Winkler

Agenda

- 1. ACC Folgereglung
- 2. Auslegung Störgrößenbeobachter Querführung

Aufgabenbeschreibung:

Zur Sicherstellung der stationären Genauigkeit einer Querführungsregelung soll ein Störgrößenbeobachter zum Einsatz kommen. Die Strecke wird vereinfacht als PT_1 mit der Zeitkonstante $\tau_{\rm str}=0.1~{\rm sec}$ angenommen.

- 1. Nennen Sie Vorteile eines Störgrößenbeobachters im Vergleich zu einem Integralanteil im Regler.
- 2. Geben Sie das Blockschaltbild eines Störgrößenbeobachters zur Kompensation von Störungen z am Eingang der Strecke an. Die gemessene Ausganggröße soll dabei durch ein Messrauschen überlagert sein.
- (3. Bestimmen Sie die Störübertragungsfunktion.)
- 4. Welche Kriterien muss die Ersatzübertragungsfunktion im Störgrößenbeobachter erfüllen? Geben Sie eine geeignete Ersatzübertragungsfunktion an.

5. Das Messrauschen n(t) weißt das in Abb. 2 dargestellte Frequenzspektrum auf. Geben Sie eine geeignete Übertragungsfunktion für das Filter Q(s) an.

1. Vorteile eines Störgrößenbeobachters:

2. Blockschaltbild Störgrößenbeobachter:

3. Störübertragungsfunktion:

4. Ersatzübertragungsfunktion:

Bedingunge für 6(s)
Relativer Grad von G(c) und G(s) muss gleich

(7(5) = 1+5-75gr

5. Auslegung des Filters Q(s):

Adaptive Cruise Control System Using Model Predictive Control

https://www.mathworks.com/help/mpc/ug/adaptive-cruise-control-using-model-predictive-controller.html

Lane Keeping Assist System Using Model Predictive Control

+ https://www.mathworks.com/help/mpc/ug/lane-keeping-assist-system-using-model-predictive-control.html