S6 MINI PROJECT PRESENTATION 0

2D TO 3D RECONSTRUCTION AND RENDERING

Guided by:	CSE S6 B2			
Prof. Dr. Saritha R	TEAM 1	Roll no	KTU ID	
	Goureesh Chandra	31	TVE22CS069	
	Ivin Mathew	33	TVE22CS075	
	Muhammed Farhan	39	TVE22CS094	
	Rethin Francis	72	LTVE22CS149	

Contents

- 1. Introduction
- 2. Motivation
- 3. Problem Statement
- 4. Methodology
- 5. Literature Review
- 6. Objectives
- 7. Software and Hardware Requirements
- 8. Future scope and applications
- 9. Advantages
- 10. Timeline
- 11. Conclusion
- 12. References

Introduction

 The integration of computer vision and real-time rendering techniques offers a practical solution for creating viewable 3D content from standard photographs.

Motivation

This project addresses the increasing need for efficient 3D content creation in gaming, VR, and digital preservation. It simplifies 3D modeling, making it accessible to non-experts through advanced vision and rendering techniques.

Problem Statement

 Develop an application to accurately transform 2D images into realistic 3D models using advanced computer vision and graphics rendering techniques.

Instant Neural Graphics

Vision Transformers for

Dense Prediction

Multiresolution Hash

Primitives with a

Encoding

SI. no.

Literature Review					
Name of Publication	Journal / Conference				

Author(s)

Keller

Thomas Müller, Alex

Evans, Christoph

Schied, Alexander

René Ranftl, Alexey

Bochkovskiy,

Vladlen Koltun

ACM Trans. Graph., Vol.

41, No. 4, Article 102

2021 IEEE/CVF

(ICCV)

International Conference

on Computer Vision

Date of

publication

July 2022

10 October

2021

Remarks

in seconds.

Description: This paper introduces a

graphics primitives, enabling tasks like

representation with high-quality results

Advantage: Significantly accelerates training times while preserving high

Disadvantage: Hash collisions can cause minor artifacts in high-frequency

Description: Introduces **Dense**

which utilize vision transformers

Prediction Transformers (DPT),

instead of convolutional networks for dense prediction tasks like monocular

Advantages: Improved Accuracy and

multiresolution hash table for neural

NeRF and gigapixel image

reconstruction quality

detail reconstructions.

depth estimation

Scalability

3	Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer	IEEE Transactions on Pattern Analysis and Machine Intelligence (Volume: 44, Issue: 3, 01 March 2022)	Rene Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun	27 August 2020	Description: The paper proposes techniques to improve monocular depth estimation by mixing datasets for better generalization. Advantage: Enhances robustness across diverse real-world scenarios. Disadvantage: Requires significant computational resources for training.
4	PCRNet: Point Cloud Registration Network using PointNet Encoding	Conference on Computer Vision and Pattern Recognition (CVPR), 2018.	Vinit Sarode, Xueqian Li, Hunter Goforth, Yasuhiro Aoki, Rangaprasad Arun Srivatsan, Simon Lucey, Howie Choset	August 2019	Description: PCRNet leverages PointNet for efficient 3D point cloud registration, aligning source and template clouds for tasks like pose estimation. Advantage: Fast and robust to noise, suitable for real-time applications. Disadvantage: Struggles with unseen shapes or partial point clouds.

5	A Review of Deep Learning Techniques for 3D Reconstruction of 2D Images	12th International Conference on Information & Communication Technology and System (ICTS) 2019	Anny Yuniarti, Nanik Suciati	18 July 2019	Description: discussing methods, representations, applications, and research opportunities. Advantage: Provides a comprehensive overview Disadvantage: Excludes RGB-D-based reconstruction methods.
6	Occupancy Networks: Learning 3D Reconstruction in Function Space	2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)	Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowoziny, Andreas Geiger	15 June 2019	Description: The paper proposes methods for combining diverse datasets to improve monocular depth estimation models, enabling zero-shot cross-dataset generalization through novel loss functions and multi-dataset training strategies. Advantages: Achieves results in monocular depth estimation across diverse datasets. Enables robust generalization to unseen datasets using zero-shot cross-dataset transfer. Disadvantages: High computational cost, requiring extensive training resources. Complexity in dataset preparation and alignment due to variations in scale, depth, and quality across sources

7	Pix2Vox: Context-aware 3D Reconstruction from Single and Multi-view Images	International Conference on Computer Vision (ICCV), 2019.	Haozhe Xie, Hongxun Yao, Xiaoshuai Sun, Shangchen Zhou, Shengping Zhang, Wenxiu Sun	2019	Description: Pix2Vox is a framework for single-view and multi-view 3D reconstruction, using a context-aware fusion module to combine high-quality parts from multiple 3D volumes and refine them into accurate final outputs. Advantage: Outperforms state-of-the-art methods in accuracy and efficiency, with strong generalization to unseen 3D objects. Disadvantage: Reconstruction is limited to low resolution and computational complexity increases with higher precision models.
8	An Improved Method for Building A 3D Model from 2D DICOM	2018 International Conference on Advanced Computing and Applications (ACOMP)	Van Sinh NGUYEN, Manh Ha TRAN, Hoang Minh Quang VU	27 November 2018	Description: An improved method for faster and accurate 3D reconstruction from 2D DICOM images, aiding medical diagnostics and visualization. Advantage:Efficient, accurate, practical for medical use, and cost-effective. Disadvantage:Limited comparisons, hardware-dependent, restricted scope, and preprocessing reliance.

	OD DONO A Haifa d	5 Out.	Objects also a D. Object	0.4 - 31.0040	Description:
9	3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction	European Conference on Computer Vision (ECCV), 2016.	Christopher B Choy, Danfei Xu, JunYoung Gwak,Kevin Chen, Silvio Savarese	2 April 2016	The paper introduces a deep learning framework for reconstructing 3D objects from single or multiple 2D images using a recurrent neural network
					Advantage: Efficiently handles single and multi-view reconstruction without needing dense annotations. Disadvantage: Faces difficulty with thin structures and objects with high shape variability.
10	WeatherGS: 3D Scene Reconstruction In Adverse Weather Conditions via		Chenghao Qian and Yuhu Guo and Wenjing Li	30 December 2024	Description: WeatherGS leverages 3D Gaussian Splatting for reconstructing clear 3D scenes in adverse weather, using a dense-to-sparse strategy to remove weather artifacts like snow, rain, and lens occlusions.
	Gaussian Splatting		and Gustav Markkula		Advantage: Produces high-quality, artifact-free reconstructions with efficient computation suitable for real-time applications. Disadvantage: Relies on pretrained models and may slightly distort fine structural details during preprocessing.

Objective

Accurate Depth Estimation: Leverage MiDaS to generate high-quality depth maps from 2D images.

Efficient 3D Reconstruction: Use Open3D to create refined point clouds and smooth meshes.

Texture and Visual Fidelity: Employ custom shaders to preserve and enhance the image's original textures.

Software and Hardware Requirements

Programing Language:

Python

Major Libraries:

- OpenCv:For image processing,depth estimation and features
- Numpy:For numerical computations and handling multi-dimensional arrays
- Open3D:For working data, such as point clouds and meshes

Model Used:

 Midas model is a pytorch-based depth estimation model for converting 2D images int spatial depth maps

Future scope and Applications

Virtual Reality (VR) Content Creation:

Generate realistic 3D assets from photographs for immersive VR experiences.

Satellite Image Rendering:

Create 3D representations of terrains or urban areas from satellite imagery.

Gaming and Entertainment:

Quickly generate 3D assets from reference images for games or animations.

Education and Training:

Produce interactive 3D models for educational tools and training simulations.

Advantages

Cost-Effectiveness: Eliminates the need for expensive 3D scanning hardware.

Time Efficiency: Significantly reduces the time required for 3D asset creation.

Scalability: Can be applied across multiple domains and industries.

High Visual Quality: Ensures realistic textures and details using advanced shaders.

Accessibility: User-friendly interface makes the tool usable by non-experts.

Flexibility: Adaptable to various image types and resolutions.

Real-Time Applications: Optimized for efficient processing suitable for dynamic use cases.

TIMELINE

Week 1 MiDaS Exploration and Initial Setup

Week 3
Refining Depth-to-Point
Cloud Conversion

 $\begin{array}{c} \textbf{Week 5} \\ \textbf{Integrating Depth and} \\ \textbf{RGB Information} \end{array}$

Week 6

Point Clouds

Mesh Generation from

Week 8 Testing and Optimization

Week 10 Adding User Interface and Documentation

Week 12

Testing and Deployment

Conclusion

At this stage of our project, we have successfully completed the exploration of MiDaS for depth estimation and the initial setup, along with gaining foundational knowledge of Open3D and its integration into our workflow. Additionally, we have progressed to researching custom shading techniques, which will play a critical role in enhancing the visual quality of our 3D reconstructions.

References

- 1. Park, J., Zhou, Q.-Y., & Koltun, V. (2017). Colored point cloud registration revisited. *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*.
- 2. Song, S., Lichtenberg, S., & Xiao, J. (2015). SUN RGB-D: A RGB-D scene understanding benchmark suite. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- 3. Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., & Koltun, V. (2020). Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. *IEEE Transactions on Pattern Analysis and Machine Intelligence*.
- 4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. *International Conference on Learning Representations (ICLR)*.
- 5. https://pytorch.org/hub/intelisl_midas_v2/
- 6. https://www.open3d.org/