

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C12N 15/52, 15/54, 15/62, 9/10, C12P 17/18, 19/32, C07D 498/18 // (C07D 498/18, 311:00, 273:00, 211:00)

A2

(11) International Publication Number:

WO 00/20601

(43) International Publication Date:

13 April 2000 (13.04.00)

(21) International Application Number:

PCT/US99/22886

(22) International Filing Date:

1 October 1999 (01.10.99)

1 October 1777

(30) Priority Data:

60/102,748 2 October 1998 (02.10.98) US 60/123,810 11 March 1999 (11.03.99) US 60/139,650 17 June 1999 (17.06.99) US

(71) Applicant (for all designated States except US): KOSAN BIOSCIENCES, INC. [US/US]; 3832 Bay Center Drive, Hayward, CA 94545 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only); REEVES, Christopher [US/US]; 4 East Altarinda Drive, Orinda, CA 94563 (US). CHU, Daniel [US/US]; 3767 Benton Street, Santa Clara, CA 95051 (US). KHOSLA, Chaitan [IN/US]; 740 Para Avenue, Palo Alto, CA 94306 (US). SANTI, Daniel [US/US]; 211 Belgrave Avenue, San Francisco, CA 94117 (US). WU, Kai [CN/US]; 900 Constitution Drive, Foster City, CA 94404 (US).

(74) Agents: FAVORITO, Carolyn et al.; Morrison & Foerster LLP, 2000 Pennsylvania Avenue, N.W., Washington, DC 20006-1888 (US).

(81) Designated States: AL, AM, AU, BA, BB, BG, BR, CA, CN, CR, CU, CZ, DM, EE, GD, GE, HR, HU, IL, IS, JP, KG, KP, KR, I.C, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ, VN, ZA, ARIPO patent (GH, GM, KE, LS, MW, SD, SI, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: POLYKETIDE SYNTHASE ENZYMES AND RECOMBINANT DNA CONSTRUCTS THEREFOR

(57) Abstract

Host cells comprising recombinant vectors encoding the FK-520 polyketide synthase and FK-520 modification enzymes can be used to produce the FK-520 polyketide. Recombinant DNA constructs comprising one or more FK-520 polyketide synthase domains, modules, open reading frames, and variants thereof can be used to produce recombinant polyketide synthases and a variety of different polyketides with application as pharmaceutical and veterinary products.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑТ	Austria	FR	France	I.U	Luxembourg	SN	Senegal
AU	Austraha	GA	Gabon	LV	l.atvia	SZ.	Swaziland
AZ	Azerbaijan	GВ	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF ·	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	าา	Trinidad and Tobago
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukrainc
BR	Brazil ·	11.	[srac]	MR	Mauritania	UG	Uganda
BY	Belarus	IS	leeland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy ·	MX	Mexico	UZ	Uzbekistan
CF	*Central African Republic	JР	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
·CU	Cuba .	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	I.C	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	l.K	Sri Lanka	SE	Sweden		
ÆE	Estonia	LR	Liberia	SG	Singapore	•	
		•			•	•	

POLYKETIDE SYNTHASE ENZYMES AND RECOMBINANT DNA CONSTRUCTS THEREFOR

5

7

Field of the Invention

The present invention relates to polyketides and the polyketide synthase (PKS) enzymes that produce them. The invention also relates generally to genes encoding PKS enzymes and to recombinant host cells containing such genes and in which expression of such genes leads to the production of polyketides. The present invention also relates to compounds useful as medicaments having immunosuppressive and/or neurotrophic activity. Thus, the invention relates to the fields of chemistry, molecular biology, and agricultural, medical, and veterinary technology.

Background of the Invention

15

20

10

Polyketides are a class of compounds synthesized from 2-carbon units through a series of condensations and subsequent modifications. Polyketides occur in many types of organisms, including fungi and mycelial bacteria, in particular, the actinomycetes. Polyketides are biologically active molecules with a wide variety of structures, and the class encompasses numerous compounds with diverse activities. Tetracycline, erythromycin, epothilone, FK-506, FK-520, narbomycin, picromycin, rapamycin, spinocyn, and tylosin are examples of polyketides. Given the difficulty in producing polyketide compounds by traditional chemical methodology, and the typically low production of polyketides in wild-type cells, there has been considerable interest in finding improved or alternate means to produce polyketide compounds.

25

30

35

This interest has resulted in the cloning, analysis, and manipulation by recombinant DNA technology of genes that encode PKS enzymes. The resulting technology allows one to manipulate a known PKS gene cluster either to produce the polyketide synthesized by that PKS at higher levels than occur in nature or in hosts that otherwise do not produce the polyketide. The technology also allows one to produce molecules that are structurally related to, but distinct from, the polyketides produced from known PKS gene clusters. See, e.g., PCT publication Nos. WO 93/13663; 95/08548; 96/40968; 97/02358; 98/27203; and 98/49315; United States Patent Nos. 4,874,748; 5,063,155; 5,098,837; 5,149,639; 5,672,491; 5,712,146; 5,830,750; and 5,843,718; and Fu et al., 1994, Biochemistry 33: 9321-9326; McDaniel et al., 1993, Science 262: 1546-1550; and Rohr, 1995, Angew. Chem. Int. Ed. Engl. 34(8): 881-888, each of which is incorporated herein by reference.

Polyketides are synthesized in nature by PKS enzymes. These enzymes, which are complexes of multiple large proteins, are similar to the synthases that catalyze condensation of 2-carbon units in the biosynthesis of fatty acids. PKSs catalyze the biosynthesis of polyketides through repeated, decarboxylative Claisen condensations between acylthioester building blocks. The building blocks used to form complex polyketides are typically acylthioesters, such as acetyl, butyryl, propionyl, malonyl, hydroxymalonyl, methylmalonyl, and ethylmalonyl CoA. Other building blocks include amino acid like acylthioesters. PKS enzymes that incorporate such building blocks include an activity that functions as an amino acid ligase (an AMP ligase) or as a non-ribosomal peptide synthetase (NRPS). Two major types of PKS enzymes are known; these differ in their composition and mode of synthesis of the polyketide synthesized. These two major types of PKS enzymes are commonly referred to as Type I or "modular" and Type II "iterative" PKS enzymes.

In the Type I or modular PKS enzyme group, a set of separate catalytic active sites (each active site is termed a "domain", and a set thereof is termed a "module") exists for each cycle of carbon chain elongation and modification in the polyketide synthesis pathway. The typical modular PKS is composed of several large polypeptides, which can be segregated from amino to carboxy termini into a loading module, multiple extender modules, and a releasing (or thioesterase) domain. The PKS enzyme known as 6-deoxyerythronolide B synthase (DEBS) is a Type I PKS. In DEBS, there is a loading module, six extender modules, and a thioesterase (TE) domain. The loading module, six extender modules, and TE of DEBS are present on three separate proteins (designated DEBS-1, DEBS-2, and DEBS-3, with two extender modules per protein). Each of the DEBS polypeptides is encoded by a separate open reading frame (ORF) or gene; these genes are known as *eryAI*, *eryAII*, and *eryAIII*. See Caffrey *et al.*, 1992, *FEBS Letters* 304: 205, and U.S. Patent No. 5,824,513, each of which is incorporated herein by reference.

Generally, the loading module is responsible for binding the first building block used to synthesize the polyketide and transferring it to the first extender module. The loading module of DEBS consists of an acyltransferase (AT) domain and an acyl carrier protein (ACP) domain. Another type of loading module utilizes an inactivated ketosynthase (KS) domain and AT and ACP domains. This inactivated KS is in some instances called KS^Q, where the superscript letter is the abbreviation for the amino acid, glutanine, that is present instead of the active site cysteine required for ketosynthase activity. In other PKS enzymes, including the FK-506 PKS, the loading module

incorporates an unusual starter unit and is composed of a CoA ligase like activity domain. In any event, the loading module recognizes a particular acyl-CoA (usually acetyl or propionyl but sometimes butyryl or other acyl-CoA) and transfers it as a thiol ester to the ACP of the loading module.

The AT on each of the extender modules recognizes a particular extender-CoA (malonyl or alpha-substituted malonyl, i.e., methylmalonyl, ethylmalonyl, and 2-hydroxymalonyl) and transfers it to the ACP of that extender module to form a thioester. Each extender module is responsible for accepting a compound from a prior module, binding a building block, attaching the building block to the compound from the prior module, optionally performing one or more additional functions, and transferring the resulting compound to the next module.

Each extender module of a modular PKS contains a KS, AT, ACP, and zero, one, two, or three domains that modify the beta-carbon of the growing polyketide chain. A typical (non-loading) minimal Type I PKS extender module is exemplified by extender module three of DEBS, which contains a KS domain, an AT domain, and an ACP domain. These three domains are sufficient to activate a 2-carbon extender unit and attach it to the growing polyketide molecule. The next extender module, in turn, is responsible for attaching the next building block and transferring the growing compound to the next extender module until synthesis is complete.

Once the PKS is primed with acyl- and malonyl-ACPs, the acyl group of the loading module is transferred to form a thiol ester (trans-esterification) at the KS of the first extender module; at this stage, extender module one possesses an acyl-KS and a malonyl (or substituted malonyl) ACP. The acyl group derived from the loading module is then covalently attached to the alpha-carbon of the malonyl group to form a carbon-carbon bond, driven by concomitant decarboxylation, and generating a new acyl-ACP that has a backbone two carbons longer than the loading building block (elongation or extension).

The polyketide chain, growing by two carbons each extender module, is sequentially passed as covalently bound thiol esters from extender module to extender module, in an assembly line-like process. The carbon chain produced by this process alone would possess a ketone at every other carbon atom, producing a polyketone, from which the name polyketide arises. Most commonly, however, additional enzymatic activities modify the beta keto group of each two carbon unit just after it has been added to the growing polyketide chain but before it is transferred to the next module.

5

10

15

20

25

Thus, in addition to the minimal module containing KS, AT, and ACP domains necessary to form the carbon-carbon bond, and as noted above, other domains that modify the beta-carbonyl moiety can be present. Thus, modules may contain a ketoreductase (KR) domain that reduces the keto group to an alcohol. Modules may also contain a KR domain plus a dehydratase (DH) domain that dehydrates the alcohol to a double bond. Modules may also contain a KR domain, a DH domain, and an enoylreductase (ER) domain that converts the double bond product to a saturated single bond using the beta carbon as a methylene function. An extender module can also contain other enzymatic activities, such as, for example, a methylase or dimethylase activity.

After traversing the final extender module, the polyketide encounters a releasing domain that cleaves the polyketide from the PKS and typically cyclizes the polyketide. For example, final synthesis of 6-dEB is regulated by a TE domain located at the end of extender module six. In the synthesis of 6-dEB, the TE domain catalyzes cyclization of the macrolide ring by formation of an ester linkage. In FK-506, FK-520, rapamycin, and similar polyketides, the TE activity is replaced by a RapP (for rapamycin) or RapP like activity that makes a linkage incorporating a pipecolate acid residue. The enzymatic activity that catalyzes this incorporation for the rapamycin enzyme is known as RapP, encoded by the *rapP* gene. The polyketide can be modified further by tailoring enzymes; these enzymes add carbohydrate groups or methyl groups, or make other modifications, i.e., oxidation or reduction, on the polyketide core molecule. For example, 6-dEB is hydroxylated at C-6 and C-12 and glycosylated at C-3 and C-5 in the synthesis of erythromycin A.

In Type I PKS polypeptides, the order of catalytic domains is conserved. When all beta-keto processing domains are present in a module, the order of domains in that module from N-to-C-terminus is always KS, AT, DH, ER, KR, and ACP. Some or all of the beta-keto processing domains may be missing in particular modules, but the order of the domains present in a module remains the same. The order of domains within modules is believed to be important for proper folding of the PKS polypetides into an active complex. Importantly, there is considerable flexibility in PKS enzymes, which allows for the genetic engineering of novel catalytic complexes. The engineering of these enzymes is achieved by modifying, adding, or deleting domains, or replacing them with those taken from other Type I PKS enzymes. It is also achieved by deleting, replacing, or adding entire modules with those taken from other sources. A genetically engineered

5

10

15

20

25

PKS complex should of course have the ability to catalyze the synthesis of the product predicted from the genetic alterations made.

Alignments of the many available amino acid sequences for Type I PKS enzymes has approximately defined the boundaries of the various catalytic domains. Sequence alignments also have revealed linker regions between the catalytic domains and at the Nand C-termini of individual polypeptides. The sequences of these linker regions are less well conserved than are those for the catalytic domains, which is in part how linker regions are identified. Linker regions can be important for proper association between domains and between the individual polypeptides that comprise the PKS complex. One can thus view the linkers and domains together as creating a scaffold on which the domains and modules are positioned in the correct orientation to be active. This organization and positioning, if retained, permits PKS domains of different or identical substrate specificities to be substituted (usually at the DNA level) between PKS enzymes by various available methodologies. In selecting the boundaries of, for example, an AT replacement, one can thus make the replacement so as to retain the linkers of the recipient PKS or to replace them with the linkers of the donor PKS AT domain, or, " preferably, make both constructs to ensure that the correct linker regions between the KS and AT domains have been included in at least one of the engineered enzymes. Thus, there is considerable flexibility in the design of new PKS enzymes with the result that known polyketides can be produced more effectively, and novel polyketides useful as pharmaceuticals or for other purposes can be made.

By appropriate application of recombinant DNA technology, a wide variety of polyketides can be prepared in a variety of different host cells provided one has access to nucleic acid compounds that encode PKS proteins and polyketide modification enzymes. The present invention helps meet the need for such nucleic acid compounds by providing recombinant vectors that encode the FK-520 PKS enzyme and various FK-520 modification enzymes. Moreover, while the FK-506 and FK-520 polyketides have many useful activities, there remains a need for compounds with similar useful activities but with better pharmacokinetic profile and metabolism and fewer side-effects. The present invention helps meet the need for such compounds as well.

Summary of the Invention

In one embodiment, the present invention provides recombinant DNA vectors that encode all or part of the FK-520 PKS enzyme. Illustrative vectors of the invention include cosmid pKOS034-120, pKOS034-124, pKOS065-C31, pKOS065-C3,

5

10

15

20

25

30

pKOS065-M27, and pKOS065-M21. The invention also provides nucleic acid compounds that encode the various domains of the FK-520 PKS, i.e., the KS, AT, ACP, KR, DH, and ER domains. These compounds can be readily used, alone or in combination with nucleic acids encoding other FK-520 or non-FK-520 PKS domains, as intermediates in the construction of recombinant vectors that encode all or part of PKS enzymes that make novel polyketides.

The invention also provides isolated nucleic acids that encode all or part of one or more modules of the FK-520 PKS, each module comprising a ketosynthase activity, an acyl transferase activity, and an acyl carrier protein activity. The invention provides an isolated nucleic acid that encodes one or more open reading frames of FK-520 PKS genes, said open reading frames comprising coding sequences for a CoA ligase activity, an NRPS activity, or two or more extender modules. The invention also provides recombinant expression vectors containing these nucleic acids.

In another embodiment, the invention provides isolated nucleic acids that encode all or a part of a PKS that contains at least one module in which at least one of the domains in the module is a domain from a non-FK-520 PKS and at least one domain is from the FK-520 PKS. The non-FK-520 PKS domain or module originates from the rapamycin PKS, the FK-506 PKS, DEBS, or another PKS. The invention also provides recombinant expression vectors containing these nucleic acids.

In another embodiment, the invention provides a method of preparing a polyketide, said method comprising transforming a host cell with a recombinant DNA vector that encodes at least one module of a PKS, said module comprising at least one FK-520 PKS domain, and culturing said host cell under conditions such that said PKS is produced and catalyzes synthesis of said polyketide. In one aspect, the method is practiced with a *Streptomyces* host cell. In another aspect, the polyketide produced is FK-520. In another aspect, the polyketide produced is a polyketide related in structure to FK-506 or rapamycin.

In another embodiment, the invention provides a set of genes in recombinant form sufficient for the synthesis of ethylmalonyl CoA in a heterologous host cell. These genes and the methods of the invention enable one to create recombinant host cells with the ability to produce polyketides or other compounds that require ethylmalonyl CoA for biosynthesis. The invention also provides recombinant nucleic acids that encode AT domains specific for ethylmalonyl CoA. Thus, the compounds of the invention can be

5

10

15

20

25

used to produce polyketides requiring ethylmalonyl CoA in host cells that otherwise are unable to produce such polyketides.

In another embodiment, the invention provides a set of genes in recombinant form sufficient for the synthesis of 2-hydroxymalonyl CoA and 2-methoxymalonyl CoA in a heterologous host cell. These genes and the methods of the invention enable one to create recombinant host cells with the ability to produce polyketides or other compounds that require 2-hydroxymalonyl CoA for biosynthesis. The invention also provides recombinant nucleic acids that encode AT domains specific for 2-hydroxymalonyl CoA and 2-methoxymalonyl CoA. Thus, the compounds of the invention can be used to produce polyketides requiring 2-hydroxymalonyl CoA or 2-methoxymalonyl CoA in host cells that are otherwise unable to produce such polyketides.

In another embodiment, the invention provides a compound related in structure to FK-520 or FK-506 that is useful in the treatment of a medical condition. These compounds include compounds in which the C-13 methoxy group is replaced by a moiety selected from the group consisting of hydrogen, methyl, and ethyl moieties. Such compounds are less susceptible to the main *in vivo* pathway of degradation for FK-520 and FK-506 and related compounds and thus exhibit an improved pharmacokinetic profile. The compounds of the invention also include compounds in which the C-15 methoxy group is replaced by a moiety selected from the group consisting of hydrogen, methyl, and ethyl moieties. The compounds of the invention also include the above compounds further modified by chemical methodology to produce derivatives such as, but not limited to, the C-18 hydroxyl derivatives, which have potent neurotrophin but not immunosuppression activities.

Thus, the invention provides polyketides having the structure:

wherein, R_1 is hydrogen, methyl, ethyl, or allyl; R_2 is hydrogen or hydroxyl, provided that when R_2 is hydrogen, there is a double bond between C-20 and C-19; R_3 is hydrogen

5

10

15

20

or hydroxyl; R₄ is methoxyl, hydrogen, methyl, or ethyl; and R₅ is methoxyl, hydrogen, methyl, or ethyl; but not including FK-506, FK-520, 18-hydroxy-FK-520, and 18-hydroxy-FK-506. The invention provides these compounds in purified form and in pharmaceutical compositions.

In another embodiment, the invention provides a method for treating a medical condition by administering a pharmaceutically efficacious dose of a compound of the invention. The compounds of the invention may be administered to achieve immunosuppression or to stimulate nerve growth and regeneration.

These and other embodiments and aspects of the invention will be more fully understood after consideration of the attached Drawings and their brief description below, together with the detailed description, examples, and claims that follow.

Brief Description of the Drawings

Figure 1 shows a diagram of the FK-520 biosynthetic gene cluster. The top line provides a scale in kilobase pairs (kb). The second line shows a restriction map with selected restriction enzyme recognition sequences indicated. K is *Kpn*I; X is *Xho*I, S is *Sac*I; P is *Pst*I; and E is *Eco*RI. The third line indicates the position of FK-520 PKS and related genes. Genes are abbreviated with a one letter designation, i.e., C is *fkbC*. Immediately under the third line are numbered segments showing where the loading module (L) and ten different extender modules (numbered 1 - 10) are encoded on the various genes shown. At the bottom of the Figure, the DNA inserts of various cosmids of the invention (i.e., 34-124 is cosmid pKOS034-124) are shown in alignment with the FK-520 biosynthetic gene cluster.

Figure 2 shows the loading module (load), the ten extender modules, and the peptide synthetase domain of the FK-520 PKS, together with, on the top line, the genes that encode the various domains and modules. Also shown are the various intermediates in FK-520 biosynthesis, as well as the structure of FK-520, with carbons 13, 15, 21, and 31 numbered. The various domains of each module and subdomains of the loading module are also shown. The darkened circles showing the DH domains in modules 2, 3, and 4 indicate that the dehydratase domain is not functional as a dehydratase; this domain may affect the stereochemistry at the corresponding position in the polyketide. The substituents on the FK-520 structure that result from the action of non-PKS enzymes are also indicated by arrows, together with the types of enzymes or the genes that code for the enzymes that mediate the action. Although the methyltransferase is shown acting at the C-13 and C-15 hydroxyl groups after release of the polyketide from the PKS, the

5

10

15

20

25

30

methyltransferase may act on the 2-hydroxymalonyl substrate prior to or contemporaneously with its incorporation during polyketide synthesis.

Figure 3 shows a close-up view of the left end of the FK-520 gene cluster, which contains at least ten additional genes. The ethyl side chain on carbon 21 of FK-520 (Figure 2) is derived from an ethylmalonyl CoA extender unit that is incorporated by an ethylmalonyl specific AT domain in extender module 4 of the PKS. At least four of the genes in this region code for enzymes involved in ethylmalonyl biosynthesis. The polyhydroxybutyrate depolymerase is involved in maintaining hydroxybutyryl-CoA pools during FK-520 production. Polyhydroxybutyrate accumulates during vegetative growth and disappears during stationary phase in other *Streptomyces* (Ranade and Vining, 1993, *Can. J. Microbiol.* 39:377). Open reading frames with unknown function are indicated with a question mark.

Figure 4 shows a biosynthetic pathway for the biosynthesis of ethylmalonyl CoA from acetoacetyl CoA consistent with the function assigned to four of the genes in the FK-520 gene cluster shown in Figure 3.

Figure 5 shows a close-up view of the right-end of the FK-520 PKS gene cluster (and of the sequences on cosmid pKOS065-C31). The genes shown include fkbD, fkbM (a methyl transferase that methylates the hydroxyl group on C-31 of FK-520), fkbN (a homolog of a gene described as a regulator of cholesterol oxidase and that is believed to be a transcriptional activator), fkbQ (a type II thioesterase, which can increase polyketide production levels), and fkbS (a crotonyl-CoA reductase involved in the biosynthesis of ethylmalonyl CoA).

Figure 6 shows the proposed degradative pathway for tacrolimus (FK-506) metabolism.

Figure 7 shows a schematic process for the construction of recombinant PKS genes of the invention that encode PKS enzymes that produce 13-desmethoxy FK-506 and FK-520 polyketides of the invention, as described in Example 4, below.

Figure 8, in Parts A and B, shows certain compounds of the invention preferred for dermal application in Part A and a synthetic route for making those compounds in Part B.

Detailed Description of the Invention

Given the valuable pharmaceutical properties of polyketides, there is a need for methods and reagents for producing large quantities of polyketides, as well as for producing related compounds not found in nature. The present invention provides such

5

10

15

20

25

30

methods and reagents, with particular application to methods and reagents for producing the polyketides known as FK-520, also known as ascomycin or L-683,590 (see Holt et al., 1993, JACS 115:9925), and FK-506, also known as tacrolimus. Tacrolimus is a macrolide immunosuppressant used to prevent or treat rejection of transplanted heart, kidney, liver, lung, pancreas, and small bowel allografts. The drug is also useful for the prevention and treatment of graft-versus-host disease in patients receiving bone marrow transplants, and for the treatment of severe, refractory uveitis. There have been additional reports of the unapproved use of tacrolimus for other conditions, including alopecia universalis, autoimmune chronic active hepatitis, inflammatory bowel disease, multiple sclerosis, primary biliary cirrhosis, and scleroderma. The invention provides methods and reagents for making novel polyketides related in structure to FK-520 and FK-506, and structurally related polyketides such as rapamycin.

The FK-506 and rapamycin polyketides are potent immunosuppressants, with chemical structures shown below.

15

20

5

10

FK-520 differs from FK-506 in that it lacks the allyl group at C-21 of FK-506, having instead an ethyl group at that position, and has similar activity to FK-506, albeit reduced immunosuppressive activity.

These compounds act through initial formation of an intermediate complex with protein "immunophilins" known as FKBPs (FK-506 binding proteins), including FKBP-12. Immunophilins are a class of cytosolic proteins that form complexes with molecules such as FK-506, FK-520, and rapamycin that in turn serve as ligands for other cellular targets involved in signal transduction. Binding of FK-506, FK-520, and rapamycin to FKBP occurs through the structurally similar segments of the polyketide molecules,

25 known as the "FKBP-binding domain" (as generally but not precisely indicated by the

stippled regions in the structures above). The FK-506-FKBP complex then binds calcineurin, while the rapamycin-FKBP complex binds to a protein known as RAFT-1. Binding of the FKBP-polyketide complex to these second proteins occurs through the dissimilar regions of the drugs known as the "effector" domains.

5

10

15

20

The three component FKBP-polyketide-effector complex is required for signal transduction and subsequent immunosuppressive activity of FK-506, FK-520, and rapamycin. Modifications in the effector domains of FK-506, FK-520, and rapamycin that destroy binding to the effector proteins (calcineurin or RAFT) lead to loss of immunosuppressive activity, even though FKBP binding is unaffected. Further, such analogs antagonize the immunosuppressive effects of the parent polyketides, because they compete for FKBP. Such non-immunosuppressive analogs also show reduced toxicity (see Dumont et al., 1992, Journal of Experimental Medicine 176, 751-760), indicating that much of the toxicity of these drugs is not linked to FKBP binding.

In addition to immunosuppressive activity, FK-520, FK-506, and rapamycin have neurotrophic activity. In the central nervous system and in peripheral nerves, immunophilins are referred to as "neuroimmunophilins". The neuroimmunophilin FKBP is markedly enriched in the central nervous system and in peripheral nerves. Molecules that bind to the neuroimmunophilin FKBP, such as FK-506 and FK-520, have the remarkable effect of stimulating nerve growth. *In vitro*, they act as neurotrophins, i.e., they promote neurite outgrowth in NGF-treated PC12 cells and in sensory neuronal cultures, and in intact animals, they promote regrowth of damaged facial and sciatic nerves, and repair lesioned serotonin and dopamine neurons in the brain. See Gold *et al.*, Jun. 1999, *J. Pharm. Exp. Ther.* 289(3): 1202-1210; Lyons *et al.*, 1994, *Proc. National Academy of Science* 91: 3191-3195; Gold *et al.*, 1995, *Journal of Neuroscience* 15:

7509-7516; and Steiner et al., 1997, Proc. National Academy of Science 94: 2019-2024. Further, the restored central and peripheral neurons appear to be functional.

Compared to protein neurotrophic molecules (BNDF, NGF, etc.), the small-molecule neurotrophins such as FK-506, FK-520, and rapamycin have different, and often advantageous, properties. First, whereas protein neurotrophins are difficult to deliver to their intended site of action and may require intra-cranial injection, the small-molecule neurotrophins display excellent bioavailability; they are active when administered subcutaneously and orally. Second, whereas protein neurotrophins show quite specific effects, the small-molecule neurotrophins show rather broad effects. Finally, whereas protein neurotrophins often show effects on normal sensory nerves, the small-molecule neurotrophins do not induce aberrant sprouting of normal neuronal processes and seem to affect damaged nerves specifically. Neuroimmunophilin ligands have potential therapeutic utility in a variety of disorders involving nerve degeneration (e.g. multiple sclerosis, Parkinson's disease, Alzheimer's disease, stroke, traumatic spinal cord and brain injury, peripheral neuropathies).

Recent studies have shown that the immunosuppressive and neurite outgrowth activity of FK-506, FK-520, and rapamycin can be separated; the neuroregenerative activity in the absence of immunosuppressive activity is retained by agents which bind to FKBP but not to the effector proteins calcineurin or RAFT. See Steiner et al., 1997, Nature Medicine 3: 421-428.

Available structure-activity data show that the important features for neurotrophic activity of rapamycin, FK-520, and FK-506 lie within the common, contiguous segments of the macrolide ring that bind to FKBP. This portion of the molecule is termed the "FKBP binding domain" (see VanDuyne et al., 1993, Journal of Molecular Biology 229: 105-124.). Nevertheless, the effector domains of the parent macrolides contribute to conformational rigidity of the binding domain and thus indirectly contribute to FKBP binding.

5

10

15

20.

"FKBP binding domain"

There are a number of other reported analogs of FK-506, FK-520, and rapamycin that bind to FKBP but not the effector protein calcineurin or RAFT. These analogs show effects on nerve regeneration without immunosuppressive effects.

Naturally occurring FK-520 and FK-506 analogs include the antascomycins, which are FK-506-like macrolides that lack the functional groups of FK-506 that bind to calcineurin (see Fehr et al., 1996, The Journal of Antibiotics 49: 230-233). These molecules bind FKBP as effectively as does FK-506; they antagonize the effects of both FK-506 and rapamycin, yet lack immunosuppressive activity.

Antascomycin A

10

15

5

Other analogs can be produced by chemically modifying FK-506, FK-520, or rapamycin. One approach to obtaining neuroimmunophilin ligands is to destroy the effector binding region of FK-506, FK-520, or rapamycin by chemical modification. While the chemical modifications permitted on the parent compounds are quite limited, some useful chemically modified analogs exist. The FK-520 analog L-685,818 (ED₅₀ = 0.7 nM for FKBP binding; see Dumont *et al.*, 1992), and the rapamycin analog WAY-124,466 (IC₅₀ = 12.5 nM; see Ocain *et al.*, 1993, *Biochemistry Biophysical Research Communications 192*: 1340-134693) are about as effective as FK-506, FK-520, and rapamycin at promoting neurite outgrowth in sensory neurons (see Steiner *et al.*, 1997).

One of the few positions of rapamycin that is readily amenable to chemical modification is the allylic 16-methoxy group; this reactive group is readily exchanged by acid-catalyzed nucleophilic substitution. Replacement of the 16-methoxy group of rapamycin with a variety of bulky groups has produced analogs showing selective loss of immunosuppressive activity while retaining FKBP-binding (see Luengo et al., 1995, Chemistry & Biology 2: 471-481). One of the best compounds, 1, below, shows complete loss of activity in the splenocyte proliferation assay with only a 10-fold reduction in binding to FKBP.

10

15

5

There are also synthetic analogs of FKBP binding domains. These compounds reflect an approach to obtaining neuroimmunophilin ligands based on "rationally designed" molecules that retain the FKBP-binding region in an appropriate conformation for binding to FKBP, but do not possess the effector binding regions. In one example, the ends of the FKBP binding domain were tethered by hydrocarbon chains (see Holt et al., 1993, Journal of the American Chemical Society 115: 9925-9938); the best analog, 2, below, binds to FKBP about as well as FK-506. In a similar approach, the ends of the FKBP binding domain were tethered by a tripeptide to give analog 3, below, which binds

to FKBP about 20-fold poorer than FK-506. These compounds are anticipated to have neuroimmunophilin binding activity.

In a primate MPTP model of Parkinson's disease, administration of FKBP ligand GPI-1046 caused brain cells to regenerate and behavioral measures to improve. MPTP is a neurotoxin, which, when administered to animals, selectively damages nigral-striatal dopamine neurons in the brain, mimicking the damage caused by Parkinson's disease. Whereas, before treatment, animals were unable to use affected limbs, the FKBP ligand restored the ability of animals to feed themselves and gave improvements in measures of locomotor activity, neurological outcome, and fine motor control. There were also corresponding increases in regrowth of damaged nerve terminals. These results demonstrate the utility of FKBP ligands for treatment of diseases of the CNS.

From the above description, two general approaches towards the design of non-immunosuppressant, neuroimmunophilin ligands can be seen. The first involves the construction of constrained cyclic analogs of FK-506 in which the FKBP binding domain is fixed in a conformation optimal for binding to FKBP. The advantages of this approach are that the conformation of the analogs can be accurately modeled and predicted by computational methods, and the analogs closely resemble parent molecules that have proven pharmacological properties. A disadvantage is that the difficult chemistry limits the numbers and types of compounds that can be prepared. The second approach involves the trial and error construction of acyclic analogs of the FKBP binding domain by conventional medicinal chemistry. The advantages to this approach are that the chemistry is suitable for production of the numerous compounds needed for such interactive chemistry-bioassay approaches. The disadvantages are that the molecular types of compounds that have emerged have no known history of appropriate pharmacological properties, have rather labile ester functional groups, and are too conformationally mobile to allow accurate prediction of conformational properties.

The present invention provides useful methods and reagents related to the first approach, but with significant advantages. The invention provides recombinant PKS

5

10

15

20

25

genes that produce a wide variety of polyketides that cannot otherwise be readily synthesized by chemical methodology alone. Moreover, the present invention provides polyketides that have either or both of the desired immunosuppressive and neurotrophic activities, some of which are produced only by fermentation and others of which are produced by fermentation and chemical modification. Thus, in one aspect, the invention provides compounds that optimally bind to FKBP but do not bind to the effector proteins. The methods and reagents of the invention can be used to prepare numerous constrained cyclic analogs of FK-520 in which the FKBP binding domain is fixed in a conformation optimal for binding to FKBP. Such compounds will show neuroimmunophilin binding (neurotrophic) but not immunosuppressive effects. The invention also allows direct manipulation of FK-520 and related chemical structures via genetic engineering of the enzymes involved in the biosynthesis of FK-520 (as well as related compounds, such as FK-506 and rapamycin); similar chemical modifications are simply not possible because of the complexity of the structures. The invention can also be used to introduce "chemical handles" into normally inert positions that permit subsequent chemical modifications.

Several general approaches to achieve the development of novel neuroimmunophilin ligands are facilitated by the methods and reagents of the present invention. One approach is to make "point mutations" of the functional groups of the parent FK-520 structure that bind to the effector molecules to eliminate their binding potential. These types of structural modifications are difficult to perform by chemical modification, but can be readily accomplished with the methods and reagents of the invention.

A second, more extensive approach facilitated by the present invention is to utilize molecular modeling to predict optimal structures *ab initio* that bind to FKBP but not effector molecules. Using the available X-ray crystal structure of FK-520 (or FK-506) bound to FKBP, molecular modeling can be used to predict polyketides that should optimally bind to FKBP but not calcineurin. Various macrolide structures can be generated by linking the ends of the FKBP-binding domain with "all possible" polyketide chains of variable length and substitution patterns that can be prepared by genetic manipulation of the FK-520 or FK-506 PKS gene cluster in accordance with the methods of the invention. The ground state conformations of the virtual library can be determined, and compounds that possess binding domains most likely to bind well to FKBP can be prepared and tested.

5

10

15

20

25

Once a compound is identified in accordance with the above approaches, the invention can be used to generate a focused library of analogs around the lead candidate, to "fine tune" the compound for optimal properties. Finally, the genetic engineering methods of the invention can be directed towards producing "chemical handles" that enable medicinal chemists to modify positions of the molecule previously inert to chemical modification. This opens the path to previously prohibited chemical optimization of lead compounds by time-proven approaches.

Moreover, the present invention provides polyketide compounds and the recombinant genes for the PKS enzymes that produce the compounds that have significant advantages over FK-506 and FK-520 and their analogs. The metabolism and pharmacokinetics of tacrolimus has been exstensively studied, and FK-520 is believed to be similar in these respects. Absorption of tacrolimus is rapid, variable, and incomplete from the gastrointestinal tract (Harrison's Principles of Internal Medicine, 14th edition, 1998, McGraw Hill, 14, 20, 21, 64-67). The mean bioavailability of the oral dosage form is 27%, (range 5 to 65%). The volume of distribution (VolD) based on plasma is 5 to 65 L per kg of body weight (L/kg), and is much higher than the VolD based on whole blood concentrations, the difference reflecting the binding of tacrolimus to red blood cells. Whole blood concentrations may be 12 to 67 times the plasma concentrations. Protein binding is high (75 to 99%), primarily to albumin and alpha1-acid glycoprotein. The half-life for distribution is 0.9 hour; elimination is biphasic and variable: terminal-11.3 hr (range, 3.5 to 40.5 hours). The time to peak concentration is 0.5 to 4 hours after oral administration.

Tacrolimus is metabolized primarily by cytochrome P450 3A enzymes in the liver and small intestine. The drug is extensively metabolized with less than 1% excreted unchanged in urine. Because hepatic dysfunction decreases clearance of tacrolimus, doses have to be reduced substantially in primary graft non-function, especially in children. In addition, drugs that induce the cytochrome P450 3A enzymes reduce tacrolimus levels, while drugs that inhibit these P450s increase tacrolimus levels. Tacrolimus bioavailability doubles with co-administration of ketoconazole, a drug that inhibits P450 3A. See, Vincent et al., 1992, In vitro metabolism of FK-506 in rat, rabbit, and human liver microsomes: Identification of a major metabolite and of cytochrome P450 3A as the major enzymes responsible for its metabolism, Arch. Biochem. Biophys. 294: 454-460; Iwasaki et al., 1993, Isolation, identification, and biological activities of oxidative metabolites of FK-506, a potent immunosuppressive macrolide lactone, Drug Metabolism & Disposition 21: 971-977; Shiraga et al., 1994, Metabolism of FK-506, a

potent immunosuppressive agent, by cytochrome P450 3A enzymes in rat, dog, and human liver microsomes, *Biochem. Pharmacol.* 47: 727-735; and Iwasaki *et al.*, 1995, Further metabolism of FK-506 (Tacrolimus); Identification and biological activities of the metabolites oxidized at multiple sites of FK-506, *Drug Metabolism & Disposition 23*: 28-34. The cytochrome P450 3A subfamily of isozymes has been implicated as important in this degradative process.

Structures of the eight isolated metabolites formed by liver microsomes are shown in Figure 6. Four metabolites of FK-506 involve demethylation of the oxygens on carbons 13, 15, and 31, and hydroxylation of carbon 12. The 13-demethylated (hydroxy) compounds undergo cyclizations of the 13-hydroxy at C-10 to give MI, MVI and MVII, and the 12-hydroxy metabolite at C-10 to give I. Another four metabolites formed by oxidation of the four metabolites mentioned above were isolated by liver microsomes from dexamethasone treated rats. Three of these are metabolites doubly demethylated at the methoxy groups on carbons 15 and 31 (M-V), 13 and 31 (M-VI), and 13 and 15 (M-VII). The fourth, M-VIII, was the metabolite produced after demethylation of the 31-methoxy group, followed by formation of a fused ring system by further oxidation. Among the eight metabolites, M-II has immunosuppressive activity comparable to that of FK-506, whereas the other metabolites exhibit weak or negligible activities. Importantly, the major metabolite of human, dog, and rat liver microsomes is the 13-demethylated and cyclized FK-506 (M-I).

Thus, the major metabolism of FK-506 proceeds via 13-demethylation followed by cyclization to the inactive M-I, this representing about 90% of the metabolic products after a 10 minute incubation with liver microsomes. Analogs of tacrolimus that do not possess a C-13 methoxy group would not be susceptible to the first and most important biotransformation in the destructive metabolism of tacrolimus (i.e. cyclization of 13-hydroxy to C-10). Thus, a 13-desmethoxy analog of FK-506 should have a longer half-life in the body than does FK-506. The C-13 methoxy group is believed not to be required for binding to FKBP or calcineurin. The C-13 methoxy is not present on the identical position of rapamycin, which binds to FKBP with equipotent affinity as tacrolimus. Also, analysis of the 3-dimensional structure of the FKBP-tacrolimus-calcineurin complex shows that the C-13 methoxy has no interaction with FKBP and only a minor interaction with calcineurin. The present invention provides C-13-desmethoxy analogs of FK-506 and FK-520, as well as the recombinant genes that encode the PKS enzymes that catalyze their synthesis and host cells that produce the compounds.

These compounds exhibit, relative to their naturally occurring counterparts, prolonged immunosuppressive action *in vivo*, thereby allowing a lower dosage and/or reduced frequency of administration. Dosing is more predictable, because the variability in FK-506 dosage is largely due to variation of metabolism rate. FK-506 levels in blood can vary widely depending on interactions with drugs that induce or inhibit cytochrome P450 3A (summarized in USP Drug Information for the Health Care Professional). Of particular importance are the numerous drugs that inhibit or compete for CYP 3A, because they increase FK-506 blood levels and lead to toxicity (Prograf package insert, Fujisawa US, Rev 4/97, Rec 6/97). Also important are the drugs that induce P450 3A (e.g. Dexamethasone), because they decrease FK-506 blood levels and reduce efficacy. Because the major site of CYP 3A action on FK-506 is removed in the analogs provided by the present invention, those analogs are not as susceptible to drug interactions as the naturally occurring compounds.

Hyperglycemia, nephrotoxicity, and neurotoxicity are the most significant
adverse effects resulting from the use of FK-506 and are believed to be similar for FK520. Because these effects appear to occur primarily by the same mechanism as the
immunosuppressive action (i.e. FKBP-calcineurin interaction), the intrinsic toxicity of
the desmethoxy analogs may be similar to FK-506. However, toxicity of FK-506 is dose
related and correlates with high blood levels of the drug (Prograf package insert,
FujisawaGUS, Rev 4/97, Rec 6/97). Because the levels of the compounds provided by
the present invention should be more controllable, the incidence of toxicity should be
significantly decreased with the 13-desmethoxy analogs. Some reports show that certain
FK-506 metabolites are more toxic than FK-506 itself, and this provides an additional
reason to expect that a CYP 3A resistant analog can have lower toxicity and a higher
therapeutic index.

Thus, the present invention provides novel compounds related in structure to FK-506 and FK-520 but with improved properties. The invention also provides methods for making these compounds by fermentation of recombinant host cells, as well as the recombinant host cells, the recombinant vectors in those host cells, and the recombinant proteins encoded by those vectors. The present invention also provides other valuable materials useful in the construction of these recombinant vectors that have many other important applications as well. In particular, the present invention provides the FK-520 PKS genes, as well as certain genes involved in the biosynthesis of FK-520 in recombinant form.

30

5

FK-520 is produced at relatively low levels in the naturally occurring cells, Streptomyces hygroscopicus var. ascomyceticus, in which it was first identified. Thus, another benefit provided by the recombinant FK-520 PKS and related genes of the present invention is the ability to produce FK-520 in greater quantities in the recombinant host cells provided by the invention. The invention also provides methods for making novel FK-520 analogs, in addition to the desmethoxy analogs described above, and derivatives in recombinant host cells of any origin.

The biosynthesis of FK-520 involves the action of several enzymes. The FK-520 PKS enzyme, which is composed of the fkbA, fkbB, fkbC, and fkbP gene products, synthesizes the core structure of the molecule. There is also a hydroxylation at C-9 mediated by the P450 hydroxylase that is the fkbD gene product and that is oxidized by the fkbO gene product to result in the formation of a keto group at C-9. There is also a methylation at C-31 that is mediated by an O-methyltransferase that is the fkbM gene product. There are also methylations at the C-13 and C-15 positions by a methyltransferase believed to be encoded by the fkbG gene; this methyltransferase may act on the hydroxymalonyl CoA substrates prior to binding of the substrate to the AT domains of the PKS during polyketide synthesis. The present invention provides the genes encoding these enzymes in recombinant form. The invention also provides the genes encoding the enzymes involved in ethylmalonyl CoA and 2-hydroxymalonyl CoA biosynthesis in recombinant form. Moreover, the invention provides Streptomyces hygroscopicus var. ascomyceticus recombinant host cells lacking one or more of these genes that are useful in the production of useful compounds.

The cells are useful in production in a variety of ways. First, certain cells make a useful FK-520-related compound merely as a result of inactivation of one or more of the FK-520 biosynthesis genes. Thus, by inactivating the C-31 O-methyltransferase gene in *Streptomyces hygroscopicus* var. *ascomyceticus*, one creates a host cell that makes a desmethyl (at C-31) derivative of FK-520. Second, other cells of the invention are unable to make FK-520 or FK-520 related compounds due to an inactivation of one or more of the PKS genes. These cells are useful in the production of other polyketides produced by PKS enzymes that are encoded on recombinant expression vectors and introduced into the host cell.

Moreover, if only one PKS gene is inactivated, the ability to produce FK-520 or an FK-520 derivative compound is restored by introduction of a recombinant expression vector that contains the functional gene in a modified or unmodified form. The introduced gene produces a gene product that, together with the other endogenous and

5

10

15

20

25

30

functional gene products, produces the desired compound. This methodology enables one to produce FK-520 derivative compounds without requiring that all of the genes for the PKS enzyme be present on one or more expression vectors. Additional applications and benefits of such cells and methodology will be readily apparent to those of skill in the art after consideration of how the recombinant genes were isolated and employed in the construction of the compounds of the invention.

The FK-520 biosynthetic genes were isolated by the following procedure. Genomic DNA was isolated from *Streptomyces hygroscopicus* var. *ascomyceticus* (ATCC 14891) using the lysozyme/proteinase K protocol described in Genetic Manipulation of *Streptomyces* - A Laboratory Manual (Hopwood *et al.*, 1986). The average size of the DNA was estimated to be between 80 - 120 kb by electrophoresis on 0.3% agarose gels. A library was constructed in the SuperCosTM vector according to the manufacturer's instructions and with the reagents provided in the commercially available kit (Stratagene). Briefly, 100 μg of genomic DNA was partially digested with 4 units of *Sau*3A I for 20 min. in a reaction volume of 1 mL, and the fragments were dephosphorylated and ligated to SuperCos vector arms. The ligated DNA was packaged and used to infect log-stage XL1-BlueMR cells. A library of about 10,000 independent cosmid clones was obtained.

Based on recently published sequence from the FK-506 cluster (Motamedi and Shafiee, 1998, Eur. J. Biochem. 256: 528), a probe for the fkbO gene was isolated from ATCC 14891 using PCR with degenerate primers. With this probe, a cosmid designated pKOS034-124 was isolated from the library. With probes made from the ends of cosmid pKOS034-124, an additional cosmid designated pKOS034-120 was isolated. These cosmids (pKOS034-124 and pKOS034-120) were shown to contain DNA inserts that overlap with one another. Initial sequence data from these two cosmids generated sequences similar to sequences from the FK-506 and rapamycin clusters, indicating that the inserts were from the FK-520 PKS gene cluster. Two EcoRI fragments were subcloned from cosmids pKOS034-124 and pKOS034-120. These subclones were used to prepare shotgun libraries by partial digestion with Sau3AI, gel purification of fragments between 1.5 kb and 3 kb in size, and ligation into the pLitmus28 vector (New England Biolabs). These libraries were sequenced using dye terminators on a Beckmann CEQ2000 capillary electrophoresis sequencer, according to the manufacturer's protocols.

To obtain cosmids containing sequence on the left and right sides of the sequenced region described above, a new cosmid library of ATCC 14891 DNA was prepared essentially as described above. This new library was screened with a new fkbM

5

10

15

20

25

30

probe isolated using DNA from ATCC 14891. A probe representing the fkbP gene at the end of cosmid pKOS034-124 was also used. Several additional cosmids to the right of the previously sequenced region were identified. Cosmids pKOS065-C31 and pKOS065-C3 were identified and then mapped with restriction enzymes. Initial sequences from these cosmids were consistent with the expected organization of the cluster in this region. More extensive sequencing showed that both cosmids contained in addition to the desired sequences, other sequences not contiguous to the desired sequences on the host cell chromosomal DNA. Probing of additional cosmid libraries identified two additional cosmids, pKOS065-M27 and pKOS065-M21, that contained the desired sequences in a contiguous segment of chromosomal DNA. Cosmids pKOS034-124, pKOS034-120, pKOS065-M27, and pKOS065-M21 have been deposited with the American Type Culture Collection, Manassas, VA, USA. The complete nucleotide sequence of the coding sequences of the genes that encode the proteins of the FK-520 PKS are shown below but can also be determined from the cosmids of the invention deposited with the ATCC using standard methodology.

Referring to Figures 1 and 3, the FK-520 PKS gene cluster is composed of four open reading frames designated fkbB, fkbC, fkbA, and fkbP. The fkbB open reading frame encodes the loading module and the first four extender modules of the PKS. The fkbC open reading frame encodes extender modules five and six of the PKS. The fkbA open reading frame encodes extender modules seven, eight, nine, and ten of the PKS. The fkbP open reading frame encodes the NRPS of the PKS. Each of these genes can be isolated from the cosmids of the invention described above. The DNA sequences of these genes are provided below preceded by the following table identifying the start and stop codons of the open reading frames of each gene and the modules and domains contained therein.

	Nucleotides	Gene or Domain
	complement (412 - 1836)	fkbW
	complement (2020 - 3579)	fkbV
30	complement (3969 - 4496)	fkbR2
	complement (4595 - 5488)	fkbR1
	5601 - 6818	fkbE
	6808 - 8052	ſkbF
	8156 - 8824	fkbG
35	complement (9122 - 9883)	fkbH
	complement (9894 - 10994)	fkbI
	complement (10987 - 11247)	fkbJ
	complement (11244 - 12092)	fkbK
	complement (12113 - 13150)	fkbL
40	complement (13212 - 23988)	fkbC

5

10

15

20

```
complement (23992 - 46573)
                                       fkbB
      46754 - 47788
                                       fkbO
      47785 - 52272
                                       fkbP
      52275 - 71465
                                       fkbA
 5
      71462 - 72628
                                       fkbD
      72625 - 73407
                                       fkbM
      complement (73460 - 76202)
                                       fkbN
      complement (76336 - 77080)
                                       fkbQ
     complement (77076 - 77535)
                                       fkbS
10
     complement (44974 - 46573)
                                       CoA ligase of loading domain
     complement (43777 - 44629)
                                       ER of loading domain
                                       ACP of loading domain
     complement (43144 - 43660)
                                       KS of extender module 1 (KS1)
     complement (41842 - 43093)
     complement(40609 - 41842)
                                       AT1
15
     complement (39442 - 40609)
                                       DH1
     complement (38677 - 39307)
                                       KR1
     complement (38371 - 38581)
                                       ACP1
     complement (37145 - 38296)
                                       KS2
     complement (35749 - 37144)
                                       AT2
20
     complement (34606 - 35749)
                                       DH2 (inactive)
     complement (33823 - 34480)
                                       KR2
     complement (33505 - 33715)
                                       ACP2
     complement (32185 - 33439)
                                       KS3
     complement (31018 - 32185)
                                       AT3
25
     complement (29869 - 31018)
                                       DH3 (inactive)
     complement (29092 - 29740)
                                       KR3
                                       ACP3
     complement (28750 - 28960)
     complement (27430 - 28684)
                                       KS4
     complement (26146 - 27430)
                                       AT4
30
     complement (24997 - 26146)
                                       DH4 (inactive)
     complement (24163 - 24373)
                                       ACP4
     complement (22653 - 23892)
                                       KS5
     complement (21420 - 22653)
                                       AT5
     complement (20241 - 21420)
                                       DH5
35
     complement (19464 - 20097)
                                       KR5
     complement (19116 - 19326)
                                       ACP5
     complement (17820 - 19053)
                                       KS6
     complement (16587 - 17820)
                                       AT6
     complement (15438 - 16587)
                                       DH<sub>6</sub>
40
     complement (14517 - 15294)
                                       ER6
     complement (13761 - 14394)
                                       KR6
     complement (13452 - 13662)
                                       ACP6
     5236? - 53576
                                       KS7
     53577 - 54716
                                       AT7
45
     54717 - 55871
                                       DH7
     56019 - 56819
                                       ER7
     56943 - 57575
                                       KR7
     57710 - 57920
                                       ACP7
     57990 - 59243
                                       KS8
50
     59244 - 60398
                                       AT8
     60399 - 61412
                                       DH8 (inactive)
     61548 - 62180
                                       KR8
```

```
62328 - 62537
                                      ACP8
      62598 - 63854
                                      KS9
      63855 - 65084
                                      AT9
     65085 - 66254
                                      DH9
 5
     66399 - 67175
                                      ER9
     67299 - 67931
                                      KR9
     68094 - 68303
                                      ACP9
     68397 - 69653
                                      KS10
     69654 - 70985
                                      AT10
10
     71064 - 71273
                                      ACP10
          1 GATCTCAGGC ATGAAGTCCT CCAGGCGAGG CGCCGAGGTG GTGAACACCT CGCCGCTGCT
         61 TGTACGGACC ACTTCAGTCA GCGGCGATTG CGGAACCAAG TCATCCGGAA TAAAGGGCGG
       121 TTACAAGATC CTCACATTGC GCGACCGCCA GCATACGCTG AGTTGCCTCA GAGGCAAACC
15
       181 GAAAGGGCGC GGGCGGTCCG CACCAGGGCG GAGTACGCGA CGAGAGTGGC GCACCCGCGC
       241 ACCGTCACCT CTCTCCCCCG CCGGCGGAT GCCCGGCGTG ACACGGTTGG GCTCTCCTCG 301 ACGCTGAACA CCCGCGGGT GTGGCGTCGG GGACACCGCC TGGCATCGGC CGGGTGACGG
       361 TACGGGGAGG GCGTACGGCG GCCGTGGCTC GTGCTCACGG CCGCCGGGCG GTCATCCGTC
       421 GAGACGGCAC TCGGCGAGCA GGGACGCCTG GTCGGCACCT GCGGGCCGGA CGACCGTGTG
20
       481 GTTCGCGGGC GGGCGGTGGC CGGTGGTGAG CCAGCTCTCC AGGGCGGTGA AGGCTGAGCG
       541 GTGACACGGC AGCAAAGGCC GGAGTCGGTC GGGGAAGGTG TCGACGAGGG CGTCGGTGTG
       601 CGTGCCGTCC TCGATGCGGT AGTAGCGGTA CCGGCCGCCA GGCCGCTGCC GGACATACGC
       661 GCGTACACGT CGGAGCCCGG GCGGCAGGCA GCAGCACGTC GAGAGTGCCT GGATGGTGAT
       721 CAGCGGCTTG CCGATACGAC CGGTCAACGC GATGCGTTCC ACGGCCGCGT GGACGCUGGA
25
       781 GGAGCGGGTG GCGTAGTCGT AGTCGGCATC GCAGCCCGGG ACCGTCCCCG GGGCGCAATA
       841 CGGTGIGCCG GCTTCCTTCT CCCCATCGAA GCCGGGGTCG AACTCCTCGC GGTAGACGCG
       901 CTGCGTCAGA TCCCAGTAGA CCTCGTGGTG GTACGGCCAC AAGAACTCGG AGTCGGCCGG
       961 GAACCCGGCG CGGAGCAGCG CCTCGCGCGC CTGGCCGGCT GCGGGGCCGC CTGCCGCGTA
      1021 GGTGGGGTAG TCGCGCAGGG CGGCCGGCAG GAAGGTGAAG AGGTTGGGAC CCTCCGCGCG
30
      1081 CCACAGGGTG CCTTCCCAGT CGACTCCTCC GTCGTACAGC TCGGGATGGT TCTCCAGCTG
      1141 CCAGCGCACG AGGTAGCCGC CGTTGGACAT CCCGGTGACC AGGGTGCGCT CGAGCGGCCG
      1201 GTGGTAGCGC TGGGCGACCG ACGCGCGGGC GGCCCGGGTC AGCTGGGTGA GGCGGGTGTT
      1261 CCACTCGGCG ACGGCGTCGC CCGGCCGGGA GCCATCACGG TAGAACGCGG GGCCGGTGTT
      1321 GCCCTTGTCG GTGGCGGCGT AGGCGTAACC GCGGGCGAGC ACCCAGTCGG CGATGGCCCG
35
      1381 GTCGTTGGCG TACTGCTCGC GGTTACCGGG GGTGCCGGCC ACGACCAGGC CACCGTTCCA
      1441 GCGGTCGGC AGCCGGATGA CGAACTGGGC GTCGTGGTTC CACCCGTGGT TGGTGTTGGT
      1501 GGTGGAGGTG TCGGGGAAGT AGCCGTCGAT CTGGATCCCG GGCACTCCGG TGGGAGTGGC
      1561 CAGGTTCTTG GGCGTCAGCC CTGCCCAGTC CGCCGGGTCG GTGTGGCCGG TGGCCGCCGT
      1621 TCCCGCCGTG GTCAGCTCGT CCAGGCAGTC GGCCTGCTGA CGTGCCGCCG CCGGGACACG
40
      1681 CAGCTGGGAC AGACGGGCGC AGTGACCGTC CGGGGCATCG GGAGCAGGCC GGGCCGTGGC
      1741 CGGTGAGGGG AGCAGGACGG CGACTGCGGC CAGGGTGAGA GCGCCGAGGC CGGTGCGTCT
      1801 TCTCGGGGCC CGTCCGACAC CGAGGGGCAG AACCATGGAG AGCCTCCAGA CGTGCGGATG
1861 GATGACGGAC TGGAGGCTAG GTCGCGCACG GTGGAGACGA ACATGGGTGC GCCCGCCATG
1921 ACTGAGGCCC CTCAGAGGTG GGCCGCCGC ATGACGGCCG CGGGACCGCG GGCGCTCCGG
45
      1981 GGCGGIGCCC GCGGCCGCCA CCGGTTCCGG GTCCCCGGGT CAGGGACAGG TGTCGTTCGC
      2041 GACGGTGAAG TAGCCGGTCG GCGACTCTTT CAAGGTGGTC GTGACGAAGG TGTTGTACAG
```

2881 CCCGGGGTTC ATGCACAGGT ACGCGCTGCT GACGTCGGTG GCACAGCCGA AGGGCAGGCC 2941 GGCGACGACC GCGCCGCCT GGAAGACGTC CGGATAGGTG GCGAGCATCA CCGACGTCAT

2101 GCCCATGTTC TGGCCGGAGC CCTTGGCGTA GGTGTAACCG GCGCTCGTCG TGGCGCGGCC 2161 CGCCTGGACG TGAGCGTAGT TGCCGGCGGT CCAGCAGACG GCCGTGGCAC CGGTCGTCTG 2221 CGCGGTGACC GCGCCCGAGA GCGGTCCGGC CTTGCCGTCC GCGTCCCGGG CGGCGACCGC

2281 GTAGGTGTG GATGTGCCG CCCTCAGGCC GGTGTCCGTG TACGACGTCG TGGCGGACGT
2341 GGTGATCTGG GCACCGTCGC GGTGGACGGC GTAGTCGGTG GCGCCGTCGA CGGGTTTCCA
2401 GGTCAGGCTG ATGGTGGTGT CGGTGGCGCC GGTGGCGGCC AGGCCGGACG GAGCGGGCAG
2461 CGAACCGGGG TCGGAGGCGG ATCCGCTCAG GCCGAAGAAC TGCGTGATCC AGTAGCTGGA
2521 ACAGATCGAG TCCAGGAAGT AGGCGGCGCC GGTGCTGCCG CACTGCTGTG CTCCGGTGCC

2581 GGGATCGACC GGGGTGCCGT GCCCGATGCC CGGCACCGG TTCACCTCCA CGGCCACCGA
2641 TCCGTCCGC GCCAGGTACT CCTCGTGCCG GGTGGAGTTC GGGCCGATCA CCGAGGTACG
2701 GTCCGGCGTC TGGGACACGC CGTGCACAGC GGTCCACTGG TCGCGCAACT CGTCGGCGTT
2761 GCGCGGCGC ACGGTGGTGT CCTTGTCGCC GTGCCAGATG GCCACGCGCG GCCACGGGCC
2821 CGACCACGAG GGGTAGCCGT CACGGACCCG CCGCGCCCAC TGGTCCGCGG TCAGGTCGGT

50

55

	3001	GGCACCGCCG	CCCCACACCC	CCCTCATCTA	CCTCCCCTCC	CCCECCCCC	CCENCCCC
		GACGGTGTGA					
		GCTGCTCTGG					
		CACGAGCAGG					
5		CTGGGCGTCC					
,		CGCGGGCCGG					
		GGTCAGGTCC					
		CGCCGGGCCG					
10		CACCCCCGC					
10		CAGCGGGGTG					
		GGGGGGACAC					
		TAGGGGTGGT					
		TGCGCCCGGA					
		ACCCGACACG					
15		ACGGACCGGG					
		CCAGCCGCGT					
		CGGACCGGTC					
		GCGGCGAACC					
		ACGATGACAC					
20		CGGCTGGCGG					
		AAGACCGGGT					
		ATGTCGGTGA					
	4321	TTGCCCCAGG	TGGTGCCCGC	CGAGTAGTGG	CGGTCGAAGT	GCAGCGGCGC	GGTGTTCTGC
	4381	GTCAGGAGCG	TGAGCCAGGA	GTTGTCGGTC	TCCAGGACCG	TGCGGCCCAG	GGGGTGGCGG
25	4441	TACACGTCGC	CGGTGGTGAA	GTCCTCGAAG	TAGCGGCCCT	GCCAGCCCTC	GACCACAGCG
	4501	GTGCGGGTGG	CGTCCTGGTC	CGGGTTCTCA	GTCGTCATGG	CGCTCATTCT	GGGAAGTCCC
	4561	CGGTCCGCTG	TGAAATGCCG	AACCTTCACC	GGGCTCATAC	GTGCGGCGCA	TGAGCCCTGG
	4621	ACCGTACGTA	GTCGTAGAAC	CTCGCCACCA	CTGGCGCGCG	TGGTCCTCCG	GCGAGTGTGA
	4681	CCACGCCGAC	CGTGCGCCGC	GCCTGCGGGT	CGTCGAGCGG	CACGGCGACG	GCGTGGTCAC
30	4741	CGGGCCCGGA	CGGGCTGCCG	GTGAGGGGG	CGACGGCCAC	ACCGAGGCCG	GCGGCGACCA
	4801	GGGCCCGCAG	CGTGCTCAGC	TCGGTGCTCT	CCAGGACGAC	CCGCGGCACG	AATCCGGCCG
	4861	CGGCGCACAG	CCGGTCGGTG	ATCTGGCGCA	GTCCGAAGAC	CGGCTCCAGT	GCCACGAACG
	4921	CCTCATCGGC	CAGCTCCGCG	GTCCGCACCC	GGCGGCGTCT	GGCCAGCCGG	TGTCCGGGTG
	4981	GGACGAGCAG	GCACAGTGCC	TCGTCCCGCA	GTGGTGTCCA	CTCCACATCG	TCCCCGGCGG
35	5041	GTCGTGGGCT	GGTCAGCCCC	AGGTCCAGCC	TGCTGTTGCG	GACGTCGTCG	ACCACGGCGT
	5101	CGGCGGCGTC	GCCGCGCAGT	TCGAAGGTGG	TGCCGGGAGC	CAGCCGGCGG	TACCCGGCGA
		GGAGGTCGGG					
	5221	TGTCGGGGTC	GATCAGGGCG	GTGATGCGCT	GCTCGGCGCC	GGAGACCTCA	CTGATCGCGC
	5281	GCAGGGCGTG	GGCGCGGAAG	ACCTCGCCGT	ACTTGTTGAG	CCGGAGCCGG	TTCTGGTGCC
40		GGTCGAACAG					
		GCTGGGAGAT					
	5461	TGAACCACTG	CAACTCCCGT	ATCTCCATGC	AGGGACTATA	CGTACCGGGC	AŢGGTCCTGG
		CGAGGTTTCG					
		GACCCCATGG					
45	5641	CCGGGCCCCT	GTCCGGTCTG	CTCGTGGTTT	CTTTGGAGCA	GGCCGTCGCC	GCTCCGTTCG
	5701	CCACCCGCCA	CCTGGCGGAC	CTGGGCGCCC	GTGTCATCAA	GATCGAACGC	CCCGGCAGUG
	5761	GCGACCTCGC	CCGCGGCTAC	GACCGCACGG	TGCGTGGCAT	GTCCAGCCAC	TTCGTCTGGC
	5821	TGAACCGGGG	GAAGGAGAGC	GTCCAGCTCG	ATGTGCGCTC	GCCGGAGGGC	AACCGGCACC
		TGCACGCCTT					
50	5941	GCCGCCTGGC	ATCGGCCACC	AGGTCCTCGC	GCGGAGCCAC	CGAGGCTGAT	CACCTGCGGA
	6001	CATATCCGGC	TACGGCAGTA	CCGGCTGCTA	CCGCGGACCG	CAAGGCGTAC	GACCTCCTGG
	6061	TCCAGTGCGA	AGCGGGGCTG	GTCTCCATCA	CCGGCACCCC	CGAGACCCCG	TCCAAGGTGG
	6121	GCCTGTCCAT	CGCGGACATC	TGTGCGGGGA	TGTACGCGTA	CTCCGGCATC	CTCACGGCCC
	6181	TGCTGAAGCG	GGCCCGCACC	GGCCGGGGCT	CGCAGTTGGA	GGTCTCGATG	CTCGAAGCCC
55	6241	TCGGTGAATG	GATGGGATAC	GCCGAGTACT	ACACGCGCTA	CGGCGGCACC	GCTCCGGCCC
	6301	GCGCCGGCGC	CAGCCACGCG	ACGATCGCCC	CCTACGGCCC	GTTCACCACG	CGCGACGGC
	6361	AGACGATCAA	TCTCGGGCTC	CAGAACGAGC	GGGAGTGGGC	TTCCTTCTGC	GGTGTCGTGC
	6421	TACAACGCCC	CGGTCTCTCC	CACCACCCCC	GCTTTTCCGG	CAACGCCGAC	CGGGTGGCGC
	6491	ACCGCACCGA	CCTCCACCCC	CTGGTGAGCG	AGGTGACGGG	CACGCTCACC	GGCGAGGAAC
60	65/1	TGGTGGCGCG	GCTGGAGGAC	GCGTCGATCG	CCTACGCACG	CCAGCGCACC	GTGCGGGAGT
00	6601	TCAGCGAACA	CCCCCAACTC	CGTCACCGTC	GACGCTGGGC	TCCGTTCGAC	AGCCCGGTCG
	6651	GTGCGCTGGA	GGGCCTGATC	CCCCCCCTCA	CCTTCCACGG	CGAGCACCCG	CECCECTEE
	6721	GCCGGGTCCC	GGAGCTGATC	CACCATACCG	AGTCCGTCCT	GGCGTGGCTG	GCCGCGCCCC
	6701	ACAGCGCCGA	CCCCCVVCVC	CCCCCCCATC	CCCAATCAAC	TCACCGGAGT	CCTGATCCTG
	0/01	ACAGCGCCGA	CCGCGAAGAG	GCCGGCCAIG	CCGUALIGNAC	1 CACCOGAGI	COLUMNICON

	6841	GCCGCCGTGT	TCCTGCTCGC	CGGCGTACGG	GGGCTGAACA	TGGGCCTGCT	CGCGCTGGTC
	6901	GCCACCTTTC	TGCTCGGGGT	GGTCGCACTC	GACCGAACGC	CGGACGAGGT	CCTCCCCCCT
	6961	TTCCCCGCGA	GCATGTTCCT	GGTGCTGGTC	GCCGTCACCT	TCCTCTTCCC	CATCCCCCCC
	7021	GTCAACGGCA	CGGTGGACTC	CCTCCTACCT	CTCCCCCTCC	CCCCCTCTCGG	GATCGCCCGC
5	7081	GGAGCCCTCC	CCTCCCTCCT	CERCOCACGI	GICGCGGIGC	GGGCGGTGGG	GGCCCGGGTG
-	7141	GGAGCCGTCC	CCIGGGIGCI	CITCGGCCTG	GCGGCACTGC	TCTGCGCGAC	AGGCGCGGCC
	7141	TCGCCCGCGG	CGGTGGCGAT	CGTGGCGCCG	ATCAGCGTCG	CGTTCGCCGT	CAGGCACCGC
	/201	ATCGATCCGC	TGTACGCCGG	ACTGATGGCG	GTGAACGGGG	CCGCAGCCGG	CAGTTTCGCC
	7261	CCCTCCGGGA	TCCTGGGCGG	CATCGTCCAC	TCGGCGCTGG	AGAAGAACCA	TCTGCCCGTC
	7321	AGCGGCGGGC	TGCTCTTCGC	AGGCACCTTC	GCCTTCAACC	TGGCGGTCGC	CCCGCT :TCA
10	7381	TGGCTCGTCC	TCGGGCGCAG	GCGCCTCGAA	CCACATGACC	TEGACGAGGA	CACCGATCCC
	7441	ACGGAAGGGG	ACCCGGCTTC	CCGCCCCGGC	GCGGAACACG	TGATGACGCT	CACCCCCATC
	7501	GCCGCGCTGG	TECTEGEAAC	CACGGTCCTC	TCCCTCCACA	CCCCCTTCCCT	CACCGCGAIG
	7561	TTCCCCCCCT	TCCTCCCCC	CACGGICCIC	CCCTCCTCC	CCGGCTTCCT	GGCCCTCACC
	7621	TTGGCGGCGT	TGCTGGCGCT	GCTCTTCCCG	CGCACCTCCC	AGCAGGCCAC	CAAGGAGATC
15	7021	GCCTGGCCCG	TGGTGCTGCT	GGTATGCGGG	ATCGTGACCT	ACGTCGCCCT	GCTCCAGGAG
13	7681	CTGGGCATCG	TGGACTCCCT	GGGGAAGATG	ATCGCGGCGA	TCGGCACCCC	GCTGCTGGCC
	7741	GCCCTGGTGA	TCTGCTACGT	GGGCGGTGTC	GTCTCGGCCT	TCGCCTCGAC	CACCGGGATC
	7801	CTCGGTGCCC	TGATGCCGCT	GTCCGAGCCG	TTCCTGAAGT	CCGGTGCCAT	CGGGACGACC
	7861	GGCATGGTGA	TGGCCCTGGC	GGCCGCGGCG	ACCGTGGTGG	ACGCGAGTCC	CTTCTCCACC
	7921	AATGGTGCTC	TGGTGGTGGC	CAACGCTCCC	GAGCGGCTGC	GGCCCGGCGT	CTACCACCCC
20	7981	TTGCTGTGGT	GGGGCGCGG	GGTGTGCGCA	CTGGCTCCCG	CCCCCCCCTC	CCCCCCCCCCC
		GTGGTGGCGT	GAGCÉCAGCO	CACCCCCAAT	CCCCTCCACC	COCCCCCCC	GGCGGCCTTC
	8101	CTCACCTACC	CTCAACTCCA	CAGCGGGAAI	CCCCIGGAGC	CCGTTTCCCG	TGCTGTGTCG
	0101	CTGACGTAGC	GICAAGICCA	CGTGCCGGGC	GGGCAGTACG	CCTAGCATGT	CGGGCATGGC
	8191	TAATCAGATA	ACCCTGTCCG	ACACGCTGCT	CGCTTACGTA	CGGAAGGTGT	CCCTGCGCGA
2.5		TGACGAGGTG	CTGAGCCGGC	TGCGCGCGCA	GACGGCCGAG	CTGCCGGGCG	GTGGCGTACT
25	8281	GCCGGTGCAG	GCCGAGGAGG	GACAGTTCCT	CGAGTTCCTG	GTGCGGTTGA	CCGGCGCGCG
	8341	TCAGGTGCTG	GAGATCGGGA	CGTACACCGG	CTACAGCACG	CTCTGCCTGG	CCCGCGGATT
	8401	GGCGCCCGGG	GGCCGTGTGG	TGACGTGCGA	TGTCATGCCG	AAGTGGCCCG	AGGTGGGCGA
	8461	GCGGTACTGG	GAGGAGGCCG	GGGTTGCCGA	CCGGATCGAC	GTCCGGATCG	GCGACGCCCG
	8521	GACCGTCCTC	ACCGGGCTGC	TCGACGAGGC	GGGCGCGGG	CCGGAGTCGT	TOCACATOOT
30	8581	GTTCACCGAC	GCCGACAAGG	CCGGCTACCC	CCCCTACTAC	CACCCCCCC	TCCCCCTCCT
	8641	ACGCCGCGC	GGGCTGATCG	TCCTCCACAA	CACCCTCTTC	TTCCCCCCCC	TGCCGC1GG1
	8701	AGCGGTGCAG	CACCCCCACA	CCCTCCCCCT	ACCCCAACTC	A A C C C C C C C C C C C C C C C C C C	TGGCCGACGA
	0761	CCACCCCCCC	CACCCGGACA	CGGTCGCGGT	ACGCGAACTC	AACGCGGCAC	TGCGCGACGA
	0,01	CGACCGGGTG	GACCIGGCGA	TGCTGACGAC	GGCCGACGGC	GTCACCCTGC	TGCGGAAACG
35		GTGACCGGGG	CGATGTCGGC	GGCGGTCAGC	GTCAGCGTCG	TCGGCGCGGG	CCTCGCGGAG
33	8881	GGCTCCAGAT	GCAGGCGTTC	GACGCCGGCG	GCGGAAGCGC	CCGCCACCTC	GGACACGCAG
	8941	GGGCAGTCGG	AGTCCGCGAA	GCCCGCGAAC	CGGTAGGCGA	TCTCCATCAT	GCGGTTGCGG
	9001	TCCGTACGCC	GGAAGTCCGC	CACCAGGTGC	GCCCCCGCGC	GGGCGCCCTG	GTCCGTGAGC
	9061	CAGTTCAGGA	TCGTCGCACC	GGCACCGAAC	GACACGACCC	GGCAGGACGT	GGCGAGCAGT
	9121	TTCAGGTGCC	ACGTCGACGG	CTTCTTCTCC	AGCAGGATGA	TGCCGACGGC	GCCGTGCGGG
40	9181	CCGAAGCGGT	CGCCCATGGT	GACGACGAGG	ACCTCATGGG	CGGGATCGGT	GAGCACGCGC
	9241	GCAGGTCGGC	GTCGGAGTAG	TGCACGCCGG	TCGCGTTCAT	CTGGCTGGTC	CGCAGCGTCA
	9301	GTTCCTCGAC	GCGGCTGAGT	TCCTCCTCCC	CCCCCCCCTCC	CATCCTCATC	CDCACCTCCA
	9361	GCGAGCGCAG	CANCICCTCC	TCCCCACCCC	ACTACCCCTC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GAGAGGICGA MAGAGGICGA
	9421	AACCCCCCCC	CTACATCACC	CCCCCCCC	AGTACGCCTC	CCGGGCCTGG	TCGCGCGCGA
45	0401	AACCCGCCTG	GIACAICAGG	CGGCGCCGAC	GCGAGTCGAC	CGTGGACACC	GGCGGGCTGA
73	9461	ACTCCGGCAG	CGACAGGAGC	GTGGCCGCCT	GCTCGGCCGG	GTAGCACCGC	ACCTCGGGCA
		GGTGGAACGC					
		GTGCGAAGTT					
	9661	TGCGGGCCAG	CACGAAGTAC	TCCGCCACAC	CGAGGCGTTC	CAGACGCTCC	CACGCGAGGT
	9721	CGTGGICGTT	CTTGCTCGCC	ACCGCCTGGA	GGATGCCGCG	GTCGTCGAGC	GTGGTGATCA
50	9781	CCTCGCGGAT	CTCGTCGGTG	AGGACCACCT	CGTCGTCCTC	CAGCACGGTG	CCCCGCCACA
	9841	AGGTGTTGTC	CAGGTCCCAG	ACCAGACACT	TGACAATGGT	CATGGCTGTC	CTCTCAAGCC
		GGGAGCGCCA					
		ATCTCCATGA					
		GCCGACGCGA					
55							
55		TGCTTGGCCA					
		GCGTACTCGC					
		GCGACGAGTT					
	10261	ACCGCGGCGG	TGCGGCAGGC	CCGCAGGATC	CCGACGCAGC	CCCAGGCGAC	CGACTTGCGC
		CCGTAGGCGA					
60		GCGCCGGCCG					
	10441	CCGGACGGCT	TCGGGACGCG	CTCGACGCGT	ACGCCGGGGG	TGTCGGCGGG	CACGACCACC
		ACCGCACCGG					
		GCAGTCGTCC					
		GTCCGCATCG					
	10021	J.CCGCA1CG	CCGUCAGAIC	30100000	1 GCCGC TCAC	LONNOCCONC	GGCCGCGAGT

	10681	TTCCCGCTGG	TCAGCTCCTT	CAGGAAGGTC	GCCCGCTGAC	CGGCGTCGCC	GAGCCGCTGC
	10741	ACGGTCCACG	CGGCCATGCC	CTGCGACGTC	ATGACACTGC	GCAGCGAACT	GCAGAGGCTG
		CCGACGTGTG					
	10861	GCCGCCACTT	CCGCGCAGAG	CAGGCCGTCG	GCGCCGAGCC	GGACGAGCAG	GTCGCGCGGC
5	10921	AGTTCGCCGG	ACGTGTCCCA	CTCGGCGGCC	CGGTCACCGA	CAAGGTCGGT	CAGCAGCGCG
		TCACGCTCAG					
	11041	ACGGAAGTTC	GCGAGCTGGA	GGTCCGGGCC	GGCGATCGTG	ACGTCGAACG	TCTTCTCCAG
	11101	GTACACGACC	AGTTCCATCG	CGAACAGCGA	CGTGAGGCCG	CCCTCCGCGA	ACAGGTCGCG
		GTCCACGGGC					
10							
10		GGGGTCGTCC					
	11281	CCGGTCTTCC	GGCCGTGGTG	TCCCTCGCGG	ACCTTGCCCA	GCAGCAGGTC	ACAGGGGCGG
	11341	CTGCGCTCGT	CGCCGGTGCG	TTTGTGCAGC	ACCCACAGCG	CGTCGACGAG	GTTGTCGATG
		CCGATCAGGT					
		GCGTCGACGT					
15	11521	ATCGGGTGGA	GCAGCCGGCT	CGTGACGAAG	CCGGGCGCGT	CCCGGACGAC	GATCGGCTTG
	11581	CGCCGCAGCG	CCGCGAGCAG	GTCCCCGGCG	GCGGCCATGG	CCTTCTCACC	GGTCCGGGGT
		CCGCGGATCA					
	11701	AGGTCCTCGG	GCCGGGCCAC	GGAGTCGGCC	AGTTCGTCAA	CCGGGATCGA	CGACGTGTTC
	11761	GTGA:TGACCG	GGATACCGGG	CGCCGCTGCC	GAGACCGTGG	CGAGTACCTC	CGCCTTGACC
20	11821	TCGGCGTCCT	CGACGACGGC	CTCGATCACC	GCGGTGGCCG	TACCGATOGO	GGGCAGCGCG
		GACGTGGCCG					
	11941	GTCCGCAGTT	CGGTGGCGAT	CCGCGCCCGC	GCCGCCGTAA	GGATCTCCTC	GGACGTGTCG
	12001	ACGAGTGTCA	CCGGGACGCC	GTGGCGCAGC	GCGAGCGTGG	TGATGCCGGT	GCCCATCACT
		CCCGCGCCGA					
25							
25		GCAGCGAGTA					
	12181	GGCCGAGTTC	GTCGGCGAAG	CCGAGCAGCA	CGTCGAACGC	GATGTGGTCG	GCGAACGCGC
	12241	TGCCCCTCGA	GTCGAGGACG	CTCAGGCTGT	CCCGGTGGTC	CGCCGCGGTG	TCCGGTGCCG
		CGCACAGGGC					
		CGGCGCGGC					
30	12421	GCAGTTCGGT	CTTGCCCGGC	TCGTCGGCGC	CGATGGCGTT	CACATGCAGG	TGCGGCAGCC
	12481	GCGGCTCGGC	GGGCAGCACC	GGCCCTTTGC	CCGAGGGCAC	CGAGGTGACG	GTGGACAGGA
		CATCCGCGGC					
		CGATGCGGTC					
	12661	CGATGGGCAG	GACCCTGCTG	AGCGCGTGCG	CCTGGGTCAC	CGCCTGTGCG	CCCGCGCCGA
35	12721	TCAGCGTGAG	CGTGGCGCTG	TCGGACCGGG	CCAGCAGCCG	GCTCGCGACG	GCGGCGACCG
		CGCCGGTCCG					
		CGTCGTCGAG					
	12901	GCGGACTGTA	CGAAACCGTC	TTCATGGTCA	CGCCGACACC	GGGGACCCGG	TACGGCATGA
	12961	7 CTCC 7 TC 7 C	CCCCCCAATC	TOGOCGCOGC	CCACCAATCC	CCTACCCCCC	
40		ALLIGATOR.				GGIACGCGC	GGCGCCTCGG
→ ∪	12021						GGCGCCTCGG
		CGAACTCGCC	GCGGCCGAGC	GCGGCGAACC	CGTCGTGCAG	CTCGCTGATC	AGCCGGTCCA
	13081	CGAACTCGCC TCATCACGTC	GCGGCCGAGC GCGGCCGATC	GCGGCGAACC ACGGAGAGAA	CGTCGTGCAG TCCGCTTGAT	CTCGCTGATC GTCACGTTGG	AGCCGGTCCA CGCAGGACCC
	13081	CGAACTCGCC TCATCACGTC	GCGGCCGAGC GCGGCCGATC	GCGGCGAACC ACGGAGAGAA	CGTCGTGCAG TCCGCTTGAT	CTCGCTGATC GTCACGTTGG	AGCCGGTCCA CGCAGGACCC
	13081 13141	CGAACTCGCC TCATCACGTC TGGTCTGCAT	GCGGCCGAGC GCGGCCGATC GTGTCACCTC	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT	CTCGCTGATC GTCACGTTGG CTTGGTGGTG	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG
	13081 13141 13201	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC
45	13081 13141 13201 13261	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCCGG	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGGCGGGTC	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG
45	13081 13141 13201 13261 13321	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCCGG AGCCGGGTTC	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCCGGGTC CGCCTGCCG	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG CGACACCGGC
45	13081 13141 13201 13261 13321	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCCGG AGCCGGGTTC	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCCGGGTC CGCCTGCCG	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG CGACACCGGC
45	13081 13141 13201 13261 13321 13381	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCCGG AGCCGGGTTC TCCAGCCGGT	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGTC CGCCTGGCGG GAGCACCACG	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG CGACACCGGC CGTCCGGGGA
45	13081 13141 13201 13261 13321 13381 13441	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCCGG AGCCGGGTTC TCCAGCCGGT CCGATGCCGT	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC CGGCGAGTGC	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT
45	13081 13141 13201 13261 13321 13381 13441 13501	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCCGG AGCCGGGTTC TCCAGCCGGT CCGATGCCGT CGCAGACCGG	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC CGGCGAGTGC TCGCCTCGTT	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG
	13081 13141 13201 13261 13321 13381 13441 13501 13561	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCCGG AGCCGGGTTC TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC CGGCGAGTGC TCGCCTCGTT GGAACGCCGC	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA ATGTCCTCCG	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG
	13081 13141 13201 13261 13321 13381 13441 13501 13561	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCCGG AGCCGGGTTC TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC CGGCGAGTGC TCGCCTCGTT GGAACGCCGC	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA ATGTCCTCCG	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG
45	13081 13141 13201 13261 13321 13381 13441 13501 13561 13621	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA GCCCAGGACG	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCCGG AGCCGGGTTC TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC GCCGCTGCCT	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC CGGCGAGTGC TCGCCTCGTT GGAACGCCGC TCTGCCGGAC	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG GAGGGCGAGC	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA ATGTCCTCCG AGGTCGGTGG	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG GGCGTTCCTG
	13081 13141 13201 13261 13321 13381 13441 13501 13561 13621 13681	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA GCCCAGGACG CTCGTTGCGG	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCCGG AGCCGGGTTC TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC GCCGCTGCCT GCGCTCCGGC	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC TCGCCTCGTT GGAACGCCGC TCTGCCGGAC GGGCCGACGG	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG GAGGGCGAGC CTTGGGCCGG	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA ATGTCCTCCG AGGTCGGTGG CCACGCAGCA	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG GGCGTTCCTG GCGGGAGGTC
	13081 13141 13201 13261 13321 13381 13441 13501 13561 13621 13681 13741	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA GCCCA3GACG CTCGTTGCGG CGGCGGCAGG	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCGGTTC TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC GCCGCTGCCT GCGCTCCGGC TCGCCCGCCA	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGGCGAGTGC TCGCCTCGTT GGAACGCCGC TCTGCCGGAC GGGCCGACGG CGGCGACGG CGGCGACGAC	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG GAGGCCGAGC CTTGGGCCGG ACTGCCCGTT	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA ATGTCCTCCG AGGTCGGTGG CCACGCAGCA CCGGTGTGGA	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG GGCGTTCCTG GCGGGAGGTC CGGGGAGGTC CGGGGAGGTC
	13081 13141 13201 13261 13321 13381 13441 13501 13561 13621 13681 13741 13801	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA GCCCAGGACG CTCGTTGCGG CGGCGGCAGG GTACATGCGC	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCGGT TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC GCCGCTGCCT GCGCTCCGGC ATGCCCGCA ATGCCCTGTT	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC TCGCCTCGTT GGAACGCCGC TCTGCCGGAC GGGCCGACGG CGGCGACGG CGGCGACGAC CGGCGACGAC CGGCGGACGAC CGGCGGACGAC	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG GAGGCCGAGC CTTGGGCCGG ACTGCCCGTT CGCGCTCGCC	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA ATGTCCTCCG AGGTCGGTGG CCACGCAGCA CCGCTGTGGA CCACCCTTGC	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG GGCGTTCCTG GCGGGAGGTC CGGGGAGGTC CGGCGGCGTC CGGCGGCGTC
	13081 13141 13201 13261 13321 13381 13441 13501 13561 13621 13681 13741 13801	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA GCCCAGGACG CTCGTTGCGG CGGCGGCAGG GTACATGCGC	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCGGT TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC GCCGCTGCCT GCGCTCCGGC ATGCCCGCA ATGCCCTGTT	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC TCGCCTCGTT GGAACGCCGC TCTGCCGGAC GGGCCGACGG CGGCGACGG CGGCGACGAC CGGCGACGAC CGGCGGACGAC CGGCGGACGAC	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG GAGGCCGAGC CTTGGGCCGG ACTGCCCGTT CGCGCTCGCC	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA ATGTCCTCCG AGGTCGGTGG CCACGCAGCA CCGCTGTGGA CCACCCTTGC	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG GGCGTTCCTG GCGGGAGGTC CGGGGAGGTC CGGCGGCGTC CGGCGGCGTC
50	13081 13141 13201 13261 13321 13381 13441 13501 13561 13621 13681 13741 13801 13861	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA GCCCA3GACG CTCGTTGCGG CGGCGGCAGG GTACATGCGC CCGGTCGCCG	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCGGT TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC GCCGCTGCCT GCGCTCCGCC ATGCCCGCCA ATGCCCTGTT TCGGTCAGGT	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC TCGCCTCGTT GGAACGCCGC TCTGCCGGAC GGGCCGACGG CGGCGACGAC CGGCGACGAC CGGCGGTGAG CCGCGGTGAG CCGCGGTCAG	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG GAGGCCGAGC CTTGGGCCGG ACTGCCCGTT CGCGCTCGCC GCCACTCGCC	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA ATGTCCTCCG AGGTCGGTGG CCACGCAGCA CCGCTGTGGA CCACCCTTGC TGGTCCCACA	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG GGCGTTCCTG GCGGGAGGTC CGGCGGCGTC CGGCGGCGTC CGCCGCGCGCGCG
	13081 13141 13201 13261 13321 13381 13441 13501 13561 13621 13681 13741 13801 13861 13921	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA GCCCA3GACG CTCGTTGCGG CGGCGGCAGG GTACATGCGC CCGGTCGCCG GATCGACAGC	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCGGT TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC GCCGCTGCCT GCGCTCCGGC TCGCCCGCCA ATGCCCTGTT TCGGTCAGGT CCTGGCAGCCC	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC TCGCCTCGTT GGAACGCCGC TCTGCCGGAC GGGCGACGG CGGCGACGAC CGGCGGTGAG CGGCGGTCAG CCGCGGTCAG CCGCGGTCAG CTTGTGCACG	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG GAGGCCGAGC CTTGGGCCGG ACTGCCCGTT CGCGCTCGCC GCCACTCGCC CCGGTGTTCG	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA ATGTCCTCCG AGGTCGGTGG CCACGCAGCA CCGCTGTGGA CCACCCTTGC TGGTCCCACA GCGAGCGCT	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG GGCGTTCCTG GCGGGAGGTC CGGCGGCGTC CGGCGGCGTC CGCGGCGCGCC CGCATACGGCG CCCCCACGC CGAGGAACGC
50	13081 13141 13201 13261 13321 13381 13441 13501 13561 13621 13681 13741 13801 13861 13921 13981	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA GCCCA3GACG CTCGTTGCGG CGGCGGCAGG GTACATGCGC CCGGTCGCCG GATCGACAGC GTTCGCCCC	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCGGT TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC GCCGCTGCCT GCGCTCCGGC TCGCCCGCCA ATGCCCTGTT TCGGTCAGGT CCTGGCAGCC GCTTAGTTGC	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC TCGCCTCGTT GGAACGCCGC TCTGCCGGAC GGGCGACGAC GGGCGACGAC CGGCGGTGAG CCGCGGTCAG CCGCGGTCAG CCTGTCACGG	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG GAGGCCGAGC CTTGGGCCGG ACTGCCCGTT CGCGCTCGCC GCCACTCGCC CCGGTGTTCG GGTGCCCAGC	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA ATGTCCTCCG AGGTCGGTGG CCACGCAGCA CCGCTGTGGA CCACCCTTGC TGGTCCCACA GCGAGCGCGT ACACCGCCG	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG GGCGTTCCTG GCGGGAGGTC CGGCGGCGTC CGCGGCGCGCC CGATACGGCG CCCCACGC CCGACGACGTA
50	13081 13141 13201 13261 13321 13381 13441 13501 13561 13621 13681 13741 13801 13861 13921 13981 14041	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA GCCCAGGACG CTCGTTGCGG CGGCGGCAGG GTACATGCGC CCGGTCGCCG GATCGACAGC GTTCGCCCC GACGACGAAT	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCGGT TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC GCCGCTGCCT GCGCTCCGGC ATGCCTGTT TCGGTCAGGT CCTGGCAGCC GCGTAGTTGC GCGCGAGTTCC	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC TCGCCTCGTT GGAACGCCGC TCTGCCGGAC GGGCGACGAC GGGCGACGAC CGGCGGTCAG CCGCGGTCAG CCGCGGTCAG CCTGACCGG CCTGACCGG CCTGACCGG CGGTGTCGC	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG GAGGCCGAC CTTGGGCCGG ACTGCCCGTT CGCGCTCGCC GCCACTCGCC CCGGTGTTCG GGTGCCCAGC GGTGAGCCGG	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA ATGTCCTCCG AGGTCGGTGG CCACGCAGCA CCGCTGTGGA CCACCCTTGC TGGTCCCACA GCGAGCGCGT ACACCGCCGC TGCAGGCCG	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG GGCGTTCCTG GCGGGAGGTC CGGCGGCGTC CGCGATCCGCG CCGACGAGTA AGGCGGCGTC
50	13081 13141 13201 13261 13321 13381 13441 13501 13561 13621 13681 13741 13801 13861 13921 13981 14041	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA GCCCAGGACG CTCGTTGCGG CGGCGGCAGG GTACATGCGC CCGGTCGCCG GATCGACAGC GTTCGCCCC GACGACGAAT	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCGGT TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC GCCGCTGCCT GCGCTCCGGC ATGCCTGCT TCGGCCGCCA ATGCCCTGTT TCGGTCAGGT CCTGGCAGCC GCGTAGTTGC GCGCGAGGT GCGCGAGGT	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC TCGCCTCGTT GGAACGCCGC TCTGCCGGAC GGGCGACGAC GGGCGACGAC CGGCGGTCAG CCGCGGTCAG CCGCGGTCAG CCTGACCGG CCTGACCGG CCTGACCGG CGGTGTCGC	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG GAGGCCGAC CTTGGGCCGG ACTGCCCGTT CGCGCTCGCC GCCACTCGCC CCGGTGTTCG GGTGCCCAGC GGTGAGCCGG	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA ATGTCCTCCG AGGTCGGTGG CCACGCAGCA CCGCTGTGGA CCACCCTTGC TGGTCCCACA GCGAGCGCGT ACACCGCCGC TGCAGGCCG	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG GGCGTTCCTG GCGGGAGGTC CGGCGGCGTC CGCGATCCGCG CCGACGAGTA AGGCGGCGTC
50	13081 13141 13201 13261 13321 13381 13441 13501 13661 13681 13741 13801 13861 13921 13981 14041 14101	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA GCCCAGGACG CTCGTTGCGG CGGCGGCAGG GTACATGCGC CCGGTCGCCG GATCGACAGC GTTCGCCCC GACGACGAAT GGCCTTGGGT	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCGGT TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC GCCGCTGCCT GCGCTCCGCCA ATGCCCTGTT TCGGTCAGGT CCTGGCAGCC GCGTAGTTGC GCGCGAGGT TTGAGGACCG	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC TCGCCTCGTT GGAACGCCGC TCTGCCGGAC GGGCGACGAC GGGCGACGAC CGGCGGTCAG CCGCGGTCAG CCGCGGTCAG CTTGTGCACG CCTGACCGGG CGGTGTCACG CTGACCGGG TGTCGATGCG	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG GAGGCCGAC CTTGGGCCGG ACTGCCCGTT CGCGCTCGCC CCGCTGTTCG GCTCGCC CCGGTGTTCG GGTGCCAGC GGTGAGCCGG GTCGGGGGTG	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA ATGTCCTCCG AGGTCGGTGG CCACGCAGCA CCGCTGTGGA CCACCCTTGC TGGTCCCACA GCGAGCGCGT ACACCGCCG TGCAGGTGCC AGGTTGTCCA AGGTTGTCCACA GCGAGCGCCG TGCAGGTGCC AGGTTGTCGA	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG GGCGTTCCTG GCGGGAGGTC CGGCGGCGTC CGCGAGGAGGTC CCGAGGAACGC CCGACGAGTA AGGCGGCGTC GCAGGGAGTC
50	13081 13141 13201 13261 13321 13381 13441 13501 13661 13681 13741 13801 13861 13921 13981 14041 14101 14161	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA GCCCAGGACG CTCGTTGCGG CGGCGGCAGG GTACATGCGC GATCGACAGC GATCGACAGC GATCGACAGC GATCGACAGC GACGACGAAT GGCCTTGGGT GTCGAGGGTT	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCGGT TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC GCCGCTGCCT GCGCTCCGCCA ATGCCCTGTT TCGGTCAGGT CCTGGCAGCC GCGTAGTTGC GCGCGAGGT TTGAGGACCG CCGCGGTGCT	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC TCGCCTCGTT GGAACGCCGC TCTGCCGGAC GGGCGACGAC GGGCGACGAC CGGCGGTCAG CCGCGGTCAG CCTGACCGGG CTTGTCACG CCTGACCGGG CGTGTCGCG TGTCGATGCG GGAAGACGCC	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG GAGGCCGAC CTTGGGCCGG ACTGCCCGTT CGCGCTCGCC GCCACTCGCC CCGGTGTTCG GGTGCCCAGC GGTGAGCCGG GTCGGGGTG GGTGAGGGGTG GGTGAGGGGT	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA ATGTCCTCCG AGGTCGGTGG CCACGCAGCA CCGCTGTGGA CCACCCTTGC TGGTCCCACA GCGAGCGCGT ACACCGGCCG TGCAGGTGCC AGGTTGTCGA TGAGGGATGT	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG GGCGTTCCTG GCGGGAGGTC CGGCGGCGTC CGACGAGGC CCGACGAGTA AGGCGGCGTC GCAGGAGTA AGGCGGCGTC GCAGGGGGTC CCGACGAGTA AGGCGGCGTC GCAGGGGGTC GCAGGGGGTC GCAGGGGGGTC GCAGGGGGGTC GCAGGGGGTC
50	13081 13141 13201 13261 13321 13381 13441 13501 13621 13681 13741 13801 13861 13921 14941 14101 14161 14221	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA GCCCAGGACG CTCGTTGCGG CGGCGGCAGG GTACATGCGC GATCGACAGC GATCGACAGC GATCGACAGC GATCGACAGC GACGACGAAT GGCCTTGGGT GTCGAGGGTT GGTGGCGAGT	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCGGT TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC GCCGCTGCCT GCGCTCCGCCA ATGCCCTGTT TCGGTCAGGT CCTGGCAGCC GCGTAGTTGC GCGCGAGGT TTGAGGACCG CCGCGGTGT TTGAGGACGG CCGCGGGTGT TGGTGGGGGT	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC TCGCCTCGTT GGAACGCCGC TCTGCCGGAC GGCCGACGG CGGCGACGAC CGGCGGTCAG CCGCGGTCAG CTTGTGCACG CTTGTCACG CTTGTCACG CTTGTCGCGG TGTCGATGCC TGTCGATGCC GGAAGACGGC CGCCGACGTC	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG GAGGCCGACC CTTGGGCCGG ACTGCCCGTT CGCGCTCGCC CCGCTGTTCG GGTGCCCAGC GGTGAGCCGG GTCGGGGGTG GCTCGGGGGTG GCAGGGGGTG GCAGGGGGTG GCAGGGGGTG GCAGGGGGGTG GCAGGGGAGG	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA ATGTCCTCCG AGGTCGTGGA CCACGCAGCA CCGCTGTGGA CCACCCTTGC TGGTCCCACA GCGAGCGCGT ACACCGCCG TGCAGGTGCC AGGTTGTCGA TGAGGGATGT TGGGTGCCGG	AGCCGGTCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG GGCGTTCCTG GCGGGAGGTC CGGCGGCGTC CGACGAGCGT CCGACGAGTA AGGCGGCGTC CGACGAGTA AGGCGGCGTC GCAGGGGGTC GCAGGGGGTC GCAGGGGGTC GCAGGGGGTC GCAGGGGGTC GCGAGGGGTC GCAGGGGGTC GCGGCGAGGTT
50	13081 13141 13201 13261 13321 13381 13441 13501 13621 13681 13741 13801 13861 13921 14941 14101 14161 14221	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA GCCCAGGACG CTCGTTGCGG CGGCGGCAGG GTACATGCGC GATCGACAGC GATCGACAGC GATCGACAGC GATCGACAGC GACGACGAAT GGCCTTGGGT GTCGAGGGTT	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCGGT TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC GCCGCTGCCT GCGCTCCGCCA ATGCCCTGTT TCGGTCAGGT CCTGGCAGCC GCGTAGTTGC GCGCGAGGT TTGAGGACCG CCGCGGTGT TTGAGGACGG CCGCGGGTGT TGGTGGGGGT	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC TCGCCTCGTT GGAACGCCGC TCTGCCGGAC GGCCGACGG CGGCGACGAC CGGCGGTCAG CCGCGGTCAG CTTGTGCACG CTTGTCACG CTTGTCACG CTTGTCGCGG TGTCGATGCC TGTCGATGCC GGAAGACGGC CGCCGACGTC	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG GAGGCCGACC CTTGGGCCGG ACTGCCCGTT CGCGCTCGCC CCGCTGTTCG GGTGCCCAGC GGTGAGCCGG GTCGGGGGTG GCTCGGGGGTG GCAGGGGGTG GCAGGGGGTG GCAGGGGGTG GCAGGGGGGTG GCAGGGGAGG	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA ATGTCCTCCG AGGTCGTGGA CCACGCAGCA CCGCTGTGGA CCACCCTTGC TGGTCCCACA GCGAGCGCGT ACACCGCCG TGCAGGTGCC AGGTTGTCGA TGAGGGATGT TGGGTGCCGG	AGCCGGTCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG GGCGTTCCTG GCGGGAGGTC CGGCGGCGTC CGACGAGCGT CCGACGAGTA AGGCGGCGTC CGACGAGTA AGGCGGCGTC GCAGGGGGTC GCAGGGGGTC GCAGGGGGTC GCAGGGGGTC GCAGGGGGTC GCGAGGGGTC GCAGGGGGTC GCGGCGAGGTT
50	13081 13141 13201 13261 13321 13381 13441 13501 13621 13681 13741 13801 13861 13921 14041 14101 14161 14221 14281	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA GCCCAGGACG CTCGTTGCGG CGGCGGCAGG GTACATGCGC GATCGACAGC GATCGACAGC GATCGACAGC GATCGACAGC GACGACGAAT GGCCTTGGGT GGCGGGGGGTT GGTGGCGAGT GGTGGCGAGT GGTGGCGAGT GGGGGGTGGG	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCGGTC TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC GCCGCTGCCT GCGCTCCGCCA ATGCCCTGTT TCGGTCAGGT CCTGGCAGCC GCGTAGTTGC GCGCGAGGT TTGAGGACCG CCGCGGTGT TTGAGGACGG CCGCGGGTGT TGGTGGGGGT TGGTGGGGGT TGGTGGGGGGTGT	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC TCGCCTCGTT GGAACGCCGC TCTGCCGGAC GGGCGACGAC CGGCGGTCAG CCGCGGTCAG CCTGACCGGG CTTGTCACG CCTGACCGGG CGTTGACCGGG CGGTGTCGCG TGTCGATGCG TGTCGATGCG GGAAGACGGC CGCCGACGTC GGAGGTAGGT GGAGGTAGGT	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG ACTGCCCGTT CGCGCTCGCC GCCACTCGCC CCGGTGTTCG GGTGCCCAGC GGTGAGCCGG GTCGGGGGTG GCAGGGGGTG GCAGGGGGTG GCAGGGGGTG GCAGGGGAGG GTGAGGGGTG GCAGGGGAGG GTGGGGGAGG GTGGGGGTGG	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA CGCAGCTGCA ATGTCCTCCG AGGTCGCAGCA CCACGCAGCA CCACCCTTGC TGGTCCCACA GCGAGCGCGT ACACCGGCCG TGCAGGTGCC AGGTTGTCGA TGAGGGTGCC AGGTTGTCGA TGAGGGATGT TGGGTGCCGG TTCAGGTGCC	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG GGCGTTCCTG GCGGGAGGTC CGGCGGCGTC CGACGAGGACGC CCGACGAGTA AGGCGGCGTC GCAGGAGTA AGGCGGCGTC GCAGGGGGTC CGAGGAGTC CGAGGGGGTC GCAGGGGGTC GCAGGGGGTC GCAGGGGGTC GCGCGAGGGTC GGGCGAGGGT
50	13081 13141 13201 13261 13321 13381 13441 13501 13621 13681 13741 13801 13861 13921 14041 14101 14161 14221 14281 14341	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA GCCCAGGACG CTCGTTGCGG CGGCGGCAGG GTACATGCGC GATCGACAGC GATCGACAGC GATCGACAGC GATCGACAGC GATCGACGACT GGCGTTGGGT GGCGAGGTT GGCGCGAGG GCGGGGAGGT GGCGGGGGGGGGG	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCGGTC TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC GCCGCTGCCT GCGCTCCGCCA ATGCCCTGTT TCGGTCAGGT CCTGGCAGCC GCGTAGTTGC GCGCGAGGT TTGAGGACCG CCGCGGTGT TTGAGGACGG CCGCGGGTGT TGGTGGGGGT TGGTGGGGGT TGGTGGGGGAGA GTGCCGGAGC	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC TCGCCTCGTT GGAACGCCGC TCTGCCGGAC GGGCGACGAC GGGCGACGAC CGGCGGTCAG CCTGACCGGG CTTGTCACG CCTGACCGGG CGTTGACCGGG CGGTTCACG CCTGACCGGG CGGTGTCGCG TGTCGATGCC GGAAGACGGC CGCCGACGTC GGAGGTAGGT CGCCGGTGAT CGCCGGTGAT	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG ACTGCCCGTT CGCGCTCGCC GCCACTCGCC CCGGTGTTCG GGTGCCCAGC GGTGAGCCGG GTCGGGGGTG GCAGGGGGTG GCAGGGGGTG GCAGGGGGTG GCAGGGGGGGGGG	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA ATGTCCTCCG AGGTCGCAGCA CCACGCAGCA CCACGCAGCA CCACCCTTGC TGGTCCCACA GCGAGCGCGT ACACCGGCCG TGCAGGTGCC AGGTTGTCGA TGAGGGTGCC AGGTTGTCGA TGAGGGTGCC CCCTCGGGGT CCCTCGGGGT	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG GGCGTCCTG GCGGGAGGTC CGGCGGCGTC CGAGGAACGC CCGACGAGTA AGGCGGCGTC GCAGGAGTA AGGCGGCGTC GCAGGGGGTC GCAGGGGGTC GCAGGGGGTC CGAGGGAGGT AGGCGGCGTC GGCGAGGGTC CGAGGGGGTC CGAGGGGGTC CGAGGGGGTC CGAGGGGGTC CGAGGGGGTC CGAGGGGGTC CGACGAGGTA AGGCGCGCGC
50	13081 13141 13201 13261 13321 13381 13441 13501 13621 13681 13741 13801 13921 14041 14101 14161 14221 14281 14341 14401	CGAACTCGCC TCATCACGTC TGGTCTGCAT CGGCTTCCGT GTCCGCGGAC CAGGGCGTCC AACGAGTGCT CAGCAGTTCA GGCGGACAGT CGAGTCCACA GCCCAGGACG CTCGTTGCGG CGGCGGCAGG GTACATGCGC GATCGACAGC GATCGACAGC GATCGACAGC GATCGACAGC GACGACGAAT GGCCTTGGGT GGCGGGGGGTT GGTGGCGAGT GGTGGCGAGT GGTGGCGAGT GGGGGGTGGG	GCGGCCGAGC GCGGCCGATC GTGTCACCTC TCTCATCGCA AGCACGCGGT TCCAGCCGGT CCGATGCCGT CGCAGACCGG CCGAGTTCCC GCCGCTGCCT GCGCTCCGCCA ATGCCCTGTT TCGGTCAGGT CCTGGCAGCC GCGTAGTTGC GCGCGAGGT TTGAGGACGG TTGAGGACGG CCGCGGGTGT TGGTGGGGGT TGGTGGGGGT TGGTGGGGGT TGGTGG	GCGGCGAACC ACGGAGAGAA CCTTTCGTGG GCTCCCTGTC CCGGCGTGGT CGATCGCGTC CGAGCTGCGC TCGCCTCGTT GGAACGCCGC TCTGCCGGAC GGGCGACGAC GGGCGACGAC CGGCGGTCAG CCTGACCGGG CTTGTCACG CCTGACCGGG CGGTGTCGCG TGTCGATGCG TGTCGATGCG GGAAGACGGC CGCCGACGTC GGAGGTAGGT CGCCGGTGAT TGCCGGTGAT TGCCGGTGAT	CGTCGTGCAG TCCGCTTGAT CCGGAGCTGT GATGAGGTCG CGGCGGGGTC CGCCTGGCGG GAGCACCACG GCGCGGCGAC GAGGCCGTTG GTCCTCCGGG ACTGCCCGTT CGCGCTCGCC GCCACTCGCC GCTGAGCCGC GTGAGCCGG GTCGGGGGTG GCAGGGGGTG GCAGGGGGGGG GTGAGGGGT GCAGGGGGGG GTGAGGGGT GCAGGGGGGG GTGAGGGGT GCAGGGGGGG GTGGGGGGGG GTGGGGGGGG GTGGGGGGGG	CTCGCTGATC GTCACGTTGG CTTGGTGGTG AAAATCTCGT TCCCGCCGCC GCGCCCGGGT GTCACCGGGT GGGTAGTCGA ATGTCCTCCG AGGTCGCAGCA CCACGCAGCA CCACGCTGCA CCACCCTTGC TGGTCCCACA GCGAGCGCG TGCAGGTGCC AGGTTGTCGA TGAGGGTGCC AGGTTGTCGA TGAGGGTGCC TGCAGGTGCC TCAGGTGCC TCAGGTGCC TCAGGTGCC TCAGGTGCC CCCTCGGGGT CTCATGGTCC	AGCCGGTCCA CGCAGGACCC CCGCTCGGGG CCGCGGTCGC AGCGGTTGAG CGACACCGGC CGTCCGGGGA AGACGAGCGT CCGCGATGAG GGTCGGCGTG GGCGTTCCTG GCGGGAGGTC CGACGAGGTC CGACGAGGTC CGACGAGTA AGGCGGCGTC GCAGGAGTA AGGCGGCGTC GCAGGGGGTC GCAGGGGGTC GCAGGGGGTC CCAGGGCGTC CCAGGGCGTC CCAGGGCGTC CCAGGGCGTC CCAGGGCGTC CCAGGGCGTC CCAGGGCGTC CCAGCGCGCCTC

	14521	CAGGCCGAGC	AGCTCCGCGA	TGATCTCCTT	GAGCCGGTCG	GGCCCCGCGT	CCATCAGGTC
	14581	GAACGGTCGC	TGGACGGCGT	GCCGGATGTC	CGTCTTCCCC	ATCTCGATGA	ACCGGCCACC
	14641	CGGCGCGAGC	AGGCCGACGG	ACGCGTCGAG	GAGTTCACCG	GTGAGCGAGT	TGAGCACGAC
	14701	GTCGACCGGC	GGGAACGCGT	CGGCGAACGC	GGTGCTGCGG	GAATCGCCCA	GATGCGCTCC
5	14761	GTCCAGGTCC	ACCAGATGGC	GCTTCGCGGC	GCTGGTGGTC	GCGTACACCT	CCGCGCCCAC
	14821	GTGCCGCGCG	ATCTGCCGGG	CGGCGGAACC	GACACCGCCG	GTGGCCGCGT	GGATCAGGAC
	14881	CTTCTCGCCG	GGGCGCAGCC	CGGCGAGGTC	GACCAGGCCG	TACCACGCGG	TCCCCAACCC
	14941	GGTCATCACG	GACGCCGCCT	GCGGGAACGT	CCAGCCGTCC	GCATCCCC	CCACCATCCC
	15001	GTGGTCGGCG	ATGACCGTGG	GGCCGAAGCC	GGTGCCGACG	AGGCCGAAGA	CGAGCATCCG
10	15061	CGGTGCCAGA	CCGGAGACGT	CGGCGCCGGT	CTCCAGGACG	ATGCCCGCGG	CCTCCCCCC
	15121	GAGCACGCCC	TGACCGGGGT	AGGTGCCGAG	CCCCATCACC	ACATCGCGGA	AGTTCACCCC
	15181	CGCCGCACGC	ACACCGATCC	GGACCTCGGC	CGGGGGGGAGG	GGGCGCGGG	GCTCCCCCA
	15241	GTCGGCCGCG	GTGAGGCCGT	CGAGGGTGCC	CGTCCGCGCC	GCCCGATCA	GCTCCGCCGA
	15301	GCTGTCCGGC	ACGGTGAGCG	GCTCCGGCAC	CCGGGTGAGG	CGGGCCGCCT	CGANCCCCCC
15	15361	GCCGCGCAGC	CGCAGACGCG	GCTCGCCGAG	TGCGACGGCG	ATGCGCTGCT	GCTCCCCCC
	15421	GAGCGTGACG	CCGGACTCGG	TCTCGACGTG	GACGAACCGG	CCCCCCCCCC	CCCCTCCC
	15481	GGCGCGCAGC	AGTCCGCCG	CCGCGCCGGT	GCCGAGGCCC	CCGGGGCTGCT	COUCCIGGGC
	15541	ATCCCCGCCG	GAGCCGGTCA	GGGCGGTCAG	CACCCGGGTG	GEGGIGGIGI	CCCTCTCCCC
	1560.	CACCGGGTCG	TCCCCATCAC	CGGCAGGCAA	CCTCATCACC	TCCACCTCCC	TCCCCCCCAC
20	15661	ATCCCTGGGT	CCGCCGACCT	CGATCCAGGT	GAGACGCATC	ACCCCCCTCC	CCACCCCTCC
	15721	GGACAGCGGG	CGGGTGCGGA	CCGTCCGGAT	CTCGGCGACG	AGGCCGGTGC	CCCACTCCCC
	15781	GACGCGCAGA	CTCACCTCGT	CGCCGTCACG	AGTGATCACG	CCTCCCACCA	TCCCCCACC
	15841	CGTGGCGACG	AACCGGGCCC	CCTTCCAGGC	GAACGCAGA	CCCCCACCC	TCTCCTCCC
	15901	CGTGGTGAGG	GCGACGCCT	GCAGGGCGG	GTCGAGCAGC	CCCCCATCCA	CACCCAAACC
25	15961	GTCCGCCTCG	GCGGCCTGCT	CGTCGGGCAG	CGCCACCTCG	GCCGGAIGCA	TCTCACCATC
	16021	ACGCCAGGCA	GCCCGCAACC	CCTGGAACGC	CGACCCGTAC	TCATAACCCC	CATCCCCCAC
		TTCGTCATAG					
		CGGCTCCACA					
		GTGCCGGGTC					
30		GGCCTCATCA					
		AAGGGGGGAT					
		GATGACCÁGC					
		AGCCAGCCAG					
		GGCGGGCAGC					
35		CGACAGATCG					
		GGGCAGATCC		•			
		GCCCAGGGTC					
		CCGCAACGAC					
		GCACTCCACG					
40		ACGCAGATTC					
		GGTCGACCAC					
		TTCATCCTCG					
		CACCCGCACG					
		CGCCACCACC					
45		GACCTCACCG					
		GATGACCTGA					
		CACGCACGCC					
		ATGCGCCTGC					
		CTCCACCCGC					
50		CGGCAGCAAC					
		GAGTTCCACG					
		CGCCTGGTCC					
		GAAGACAGCA					
		GCGCAGATAC					
55		CACCGGCAAC					
		CTCAAGGATC					
		TGCCCGATCC					
		CCAGTCCACA					
		CATCGCCATG					
60		GTTCGACTTC					
		AATGGCCTGC					
		GTCCACATCG					
		GGACGGGCCG					
		GCGGACGACC					

	18361	AAGAACGCCG	GCGCCCTCCG	CCCAGCCGGT	GCCGTTGGCG	GCGTCCGCGA	ACGCGCGGCA
		GCGGCCGTCG					
		CATGACGGTG					
	18541	GGCCTGGTGC	AGCGCGACCA	GCGACGACGA	GCACGCCGTG	TCCACCGTGA	ACGCCGGTCC
5		CTGGAGCCCA					
,							
		GCCGAACCCG					
	18721	GCCGGTGTCG	CTGCCGCGCA	GTGTGCCCGG	CACGATGCCC	GCGCTCTCGA	ACCCCTCCCA
		TGTCGTTTCC					
	18841	GCCGAAGAAC	GCGGCATCGA	AGCCGGCGGC	GTCGGAGAGG	AAGCCGCCGC	GGTCCGTGTC
10	18901	CGATCCGCCG	GTGAGGCCGG	ACGGGTCCCA	GCCACGGTCG	GCCGGGAAGC	CGGTGACCGC
		GTCGCCGCCA					
		TCGGCAGGCC					
	19081	AGCGACCGGT	GCGGCACCAC	CGACCAGAGC	CTCGTCCAAC	CGCGACGCGA	TGGCCCGCGG
		CGTCGGGTAG					
15							
15	19201	GTTCCGCAGT	TCGACGGCGG	TCAGCGAGTC	GATACCCAGT	TCCTTGAAGG	CCGCGTCCGC
	19261	GGACACGTCC	GCGGCGTCCG	CGTGGCCGAG	CACCGCCGCC	GCGTTGTCGC	GGACCAGTGC
		CAGCAGCGCG					
	19381	GGCGGTGGCC	GCCGCCGGGC	GCGATACGGC	GCGGCGCAGA	TCGGCGAAAA	GCGGCGATGT
	19441	GTGCGCGGTG	AGGTCCATCG	TGGCCGCCAC	GGCGAACGCG	GTGCCGGTTC	CGGCCGCGC
20		TTCCAGCAGG					
20							
	19561	GGTGCGGTTG	GTGCCGCTCA	TGCTGCCGGT	GAGTCCGCTG	TCATCGGCCC	AGAGGCCCCA
	19621	GGCCAGCGAC	AGCGCGGGCA	GTCCTTCGGC	ATGGCGCAGC	GTCGCGAGTC	CGTCGAGGAA
		CCCGTTCGCC					
	19/41	GTAGAGGACG	AACGAGCGCA	GGTCCGCGTC	CCGGGTCAGC	TCGTGCAGGT	GCCAGGCGCC
25	19801	GTCGGCTTTG	GGGCGCAGTG	TGGTGGCGAG	CCGCTCCGGG	GTGAGTGCCG	TGGTCACGCC
	19861	GTCGTCGAGC	ACCCCTCCCC	TOTOGRAGAC	CGCCGTGAGC	GCCTGCCGG	CGGCGGCGAG
		CGCGGCGGCG					
	19981	CGCCGGCGGT	TCGCTGCGCG	ACAGCAACAG	GAGGTGGCGG	GCGCCATGCT	CGGCGACGAG
	20041	ATGCCGGGCG	AGGAGACCTG	CCAGCACACC	CGAGCCGCCG	GTGATGACCA	CCGTGCCGTC
30							
50		CGGGTCGAGC					
		GTACCGGCCG					
	20221	CTCGATGGGG	GTGTCGGTGC	CGGTCTCCAC	CAGCACGAAC	CGGCCCGGGT	GCTCGGCCTG
		GGCGGACCGG		•			
		GAGGGTGGTC					
35	20401	CTCGGTGAGC	CGGTACGTCT	CGTCGAGGAC	ATCCGCGCCC	GGTTCCGGGA	GCGCGGAGAC
	20461	GATGTGGACC	GCGTCCGCAG	GACCGGGCCC	GGGAGTGGGC	AGCTCGGTCC	AGGAGAGGCC
		GTACAAGGAG					
	20581	CGCGGCGACG	GTCACCACCG	GTTGGCCGAC	CGGGTCCGTC	GCATGCACGG	CAGCGCCGTC
	20641	CGGGCCCTGA	GTGATCGTGA	CGCGCAGCGT	GGTGGCCCCG	GTCGTGTGGA	ACCGCACGCC
40		GCTCCACGAG					
40							
		GACGTGCAAG					
	20821	CTGTTCCCCG	GCGATCTCCA	CCTCGGCGTA	CAGGGTTTCG	CCGTCGCGCC	AGGCGGTGCG
-		CAGTCCCTGG					
	20941	GCTCACGTCG	ACGCGTCGCG	CGCCCGGCGG	CGGCCACGCG	GGCGGCGGGA	CCGCCGCGAC
45	21001	GCTTCCGGCC	CGGCCGAGGG	TGCCGCTGGC	GTGCCGGGTC	CAGCTGTCCG	TGCCCTCGGT
	21061	ACGCGCGTGG	ACGGTCACTC	GCCGCCGTCC	GGCCTCATCG	GCCCCTTCGA	CGGTCACCGA
		CACATCCACC					
	21181	CACCCGCAA	CCGGTCTCGT	CACCGGCCCG	GATGACCAGC	TCCACAAACG	CCGTACCCGG
	21241	CAGCAGAACC	GTGCCCCGCA	CCGCGTGATC	AGCCAGCCAG	GGATGCGTAC	GCAACGAGAT
50		CCGGCCAGTG					
50	21301	CCGGCCAGIG	AGAACAACAC	CACCACCGIC	010000000	ROTOCTOTOR	000000000000000000000000000000000000000
		CATCGGATGC					
	21421	CAGCCAGTAC	CGCCTGTGCT	CGAACGCGTA	GGTGGGCAGA	TCGAGCAGCC	GTCCCGGCAC
	21401	CGGTTCGACC	ACCCTCTCCC	A CTCCA CTCC	CCTCCCCAGG	GTCCACGCCT	GCGCCAACGC
	21401	COGITCOMCC	ACCOLOTOCO	AGICCACIGC	COLOCCONGG	CACCACGCCI	memer cees
	21541	CGTCAGCCAC	CGCTCCCAGC	CGCCGTCACC	GGTCCGCAAC	GACGCCACCG	TGTGAGCCTG
55	21601	TTCCATCGCC	GGCAGCAGCA	CCGGATGGGC	GCTGCACTCC	ACGAACACGG	ACCCGTCCAG
	21661	CTCCGCCACC	GCCGCGTCCA	GCGCGACGGG	GCGACGCAGG	TTCCGGTACC	AGTAGCCCTC
	21001	CICCOCCACC	TOCCOCCI CCA	P C C C C C C C C C C C C C C C C C C C	CACCACCAC	CACCACCAC	CCCACCCCC
	21721	ATCCACCGGC	TCGGTCACCC	AGGCGCTGTC	CACCGTGGAC	CACCAGGCCA	CCGACCCGGT
	21781	CCCGCCGGAA	ATCCCCTCCA	GTACCTCGGC	CAACTCGTCC	TCGATGGCTT	CCACGTGGGG
	21841	CGTGTGGGAG	GCGTAGTCGA	CCGCGATACG	GCGCACTCGC	ACGCCTTCGG	CCTCGTACCG
60	21071	COTOTOGOUG	mcmmccrccc	CCCACCCCCC	00000000000	ACACTCCAAC	NCCCCCCCTT
60	21901	CGTCACCACT	TCTTCCACCG	CGGACGGGTC	CCCCGCCACC	ACAGICGAAG	ACGGGCCGII
	21961	ACGCGCCGCG	ATCCACACGC	CCTCGACCAG	GTCCACCTCA	CCGGCCGGCA	ACGCCACCGA
	22021	AGCCATCGCC	CCCCGCCCGG	CCAGCCGCCC	GGCGATCACC	TGGCTGCGCA	AGGCCACCAC
	22001	GCGGGCGGCG	TCCTCAACCC	TCACCCCTCC	GGCCACACAC	GCCGCCGA	TOTOGOCOTO
	22081		TCCTCAAGGC	I GAGGGCICC	GGCCACACAC	TOCGCCGCGA	1010000010
	22141	GGAGTGTCCG	ACCACCGCGT	CCGGCACGAC	CCCATGCGCC	TGCCACAGCG	CGGCCAGGCT

	22201	CACCGCGACC	GCCCAGCTGG	CCGGCTGGAC	CACCTCCACC	CGCTCCGCCA	CATCCGGCCG
	22261	CGCCAACATC	TCCCGCACAT	CCCAGCCCGT	GTGCGGCAAC	AACGCCCGCG	CACACTCCTC
	22321	CATACGAGCC	GCGAACACCG	CAGAACACGC	CATCAACTCC	ACACCCATGC	CCACCCACTC
	22381	AGCACCCTGC	CCGGGAAAGA	CGAACACCGT	ACGCGGCTCA	TCCACCCCCA	CACCCAMCAC
5	22441	CCGGGCATCG	CCCAACAACA	CCCCACCCTC	ACCCAACACA	CCACCCTCAC	CACCCATCAC
_	22501	CTCCCCCACC	CCCCCCCCC	CCGCACGGIG	ACCGAAGACA	GCACGCTCAC	GCACCAACCC
	22301	CTGCGCGACC	GCGGCCACAT	CCACACCACC	CCCGCGCAGA	TACCCCTCCA	GCCGCTCCAC
	22561	CTGCCCCCGC	AGACTCACCT	CACTCCGAGC	CGACACCGGC	AACGGCACCA	ACCCATCGAC
	22621	AGCCGACTCC	CCACGCGACG	GCCCGGGAAC	ACCCTCAAGG	'ATCACGTGCG	CGTTCGTACC
	22681	GCTCACCCCG	AAAGCGGAGA	CACCGGCCCG	GCGCGGACGT	CCCGCGTCGG	GCCACGCCCG
10	22741	CGCCTCGGTG	AGCAGTTCCA	CCGCGCCCTC	GGTCCAGTCC	ACATGCGACG	ACGGCTCGTC
	22801	CACATGCAGC	GTCTTCGGCG	CGATGCCATA	CCGCATCGCC	ATGACCATCT	TGATGACACC
	22861	GGCGACACCC	GCAGCCGCCT	GCGCATGACC	GATGTTCGAC	TTCAACCAAC	CCACCACCAC
	22921	CGGAACCTCA	CCCTCCTCCC	CCTACCTCCC	CACAATCCCC	TECCECCTECE	CCAGCAGCAG
	22021	CACCECCEC	CCCCTCCTGCC	CGIACGICGC	CAGAAICGCG	TGCGCCTCGA	TGGGATCGCC
15	22301	CAGCGTCGTC	CCCGTCCCGT	GCGCCTCCAC	CACGTCCACG	TCGGCGGGGG	CGAGCCJCGC
13	23041	CTTGTGGAGG	GCCTGGCGGA	TGACGCGCTG	CTGGGAGGG	CCGTTGGGTG	CGGAGATGCC
	23101	GTTCGAGGCG	CCGTCCTGGT	TGACGGCGGA	GGAGCGGACG	ACCGCGAGGA	CGGTGTGTCC
	23161	GTTGCGCTCG	GCGTCGGAGA	GCTTTTCGAC	GACGAGGACG	CCGGCCCCT	CGGCGAAACC
	23221	GGTGCCGTCC	GCCGCGTCAG	CGAACGCCTT	GCACCGTCCG	TCCGGCGCGA	CGCCGCCCTG
	23281	CCGGGAGAAC	TCCACGAAGG	TCTGTGGTGA	TGCCATCACT	GTGACACCAC	CGACCAGCGC
20		CAGCGAGCAC					
	23401					CCGAAGAAGT	
		TCCGGCGAGC					
		GCCGTAGCCG					
35		CGGCACGATG					
25		CGGGTCGAGT					
		GGCGCCCGCG					
	23761	CACGTCCCAG	CCGCGGTCGG	TGGGGAAGTC	GCCGATCGCG	TCGCGGCCGT	CCGCGACGAG
	23821	CTGCCACAGC	TCTTCCGGTG	AGGTGACGCC	GCCCGGCAGT	CGGCAGGCCA	TGCCGACGAC
		GGCGAGCGGC					
30	23941					TCGGCCATCG	
	24001					GAACAGTTCG	
		CCGCGGTCGT					
•		TGTCGTCCGG					
		CGCCGGCGGC					
35							
33		AGACCCGGTT					
		TGGTGGCCGT					
		CGACGCCGAG					
	24421	GGGAGCCGCC	GTCGGTCGCG	GAGCGCCGGG	TGGGGCGCTG	GATCGGTCGC	CACAGCGGTG
	24481	ACGGGTCGCC	GGGCCCGGGT	GGGGCGGTCG	CCACGACCAC	GGCTTCCCCG	GTGGCGCACG
40	24541	CGGCGTCGAG	GAGGTCGGTC	AGCCGGTCCG	CCGCGGCGGT	GAACGCCACG	GCCGGCAGGC
	24601	CTTGTGCCCG	GCGCAGGTCG	GCCAGGGCCT	GGAGCGGTCC	GGCCGCCTCG	CCGGACGGAA
	24661	CGGCGAGAAC	GAACGCGGTC	AGGTCGAGGT	CGCGGGTCAG	GCGGTGCAGT	TCCCAGGCCG
		ACTCGGCGGT					
		GCTCGTACCG					
45		CGCCCGCGAG					
		CGAGGCGGGG					
		AGAGGGCGGC					
		CCGGTTCCGC					
50		ACACCACCAG					
. 50		GACCGGATAC					
	25201	GGCGGGCCGT	GGTGCCGGGT	GCCGCCGGGG	CCCGGACGCC	GGTCCAGGTG	CGCCGGAACA
	25261	GCCGCACGTC	CCCGTCCGGG	CCCGTCGTGG	CGGGGGGCCG	GGTGATGAGC	GAGCCGTCT
	25321	GAGCCACCGG	CCGTCCCAGT	TCGTCGGCGA	GGTGCACGCG	GGCGCCGCCC	TCGCCCTCGC
		CGTGGACGAA					
55		ACGCGAACGG	•				
		GCGCGGTGAC					
		CGTCGAGGGC					•
		GGAACTCGGG					
60		CGACCGGTTC					
60		CGATGCCGGC					
		GGACGCGCAC					
	25861	CGGCGCCGGT	GGCGGGCAGG	ACCAGCGGTG	TCTCGACGAC	CAGTTCGTCG	AGCAGGTCGC
	25921	AGCCTGCCTC	GTCGGCGCCG	CGTCCGGCCA	ATTCCAGGAA	GGCGGGTCCG	GGCAGCAGTA
	25981	CGGCGCCGTC	GACGGAGTGA	CCGGCCAGCC	ATGGGTGGGT	GGCCAGCGAG	AACCGGCCGG

	36041						
	26041	TGAGCAGCAC	CTCGTCGGAG	TCGGGGAGCG	CCACCGACGC	GGCGAGCAGC	GGGTGGTCGA
	26101	CGGCGTCGAG	TCCGAGGCCG	GAAGCGTCCG	TGCCGGCCGC	GGTCTCGATC	CAGTAGCGCT
	26161	CATGGTGGAA	GGCGTATGTG	GGCAGGTCGT	GTGCCGTCGC	CGTCGCGGGG	ACGACCGCCG
	26221	CCCAGTCGAC	GGGCACGCCG	GTTGTGTGCG	CCTCGGCCAG	CGCGGTGAGC	AGCCGGTGGA
5	26281	CTCCCCCGCC	GCGGCGGAGC	GTGGCGACGG	TOGOGOGOTO	GATCGCCCCC	ACCACCACCA
	26341	GGTGCGCGCT	GACCTCGACG	AACACGGTGT	CACCCCCCCTC	CCCCCCACCC	AGCAGCACGG
	26401	TECCENACCE	TACCCCCTCC	CCCAMCMMCC	CACCCCCCCCCC	GCGGGCAGCG	GTCACGGCCG
	26461	TGGCGAAGCC	TACGGGGIGG	CGCATGTTGC	GGAACCAGTA	CTCGTCGTCG	AGCGGCGCGT
	20401	CGATCCAGCG	TTCGTCGGCG	GTGGAGAACC	ACGGGATCTC	GGGCGTGCGC	GAGGTGGTGT
10	26521	CCGCGACGAT	CCGCTGGAGT	TCGTCGTACA	GCGGGTCGAC	GAACGGGGTG	TGGGTCGGGC
10	26581	AGTCGACGGC	GATGCGGCGC	ACCCAGACGC	CGCGGGCCTC	GTAGTCGGCG	ATCAGCGTTT
	26641	CGACGGCGTC	CGGGCGCCCG	GCGACGGTCG	TGGTGGTGGC	GCCGTTGCGG	CCCGCGACCC
	26701	AGACGCCGTC	GATCCGGGCG	GCATCCGCCT	CGACGTCGGC	GGCCGGGAGC	GCGACCGAGC
	26761	CCATCGCGCC	GCGTCCGGCG	AGTTCGCGCA	GGAGCAGGAG	AACGCTGCGC	AGCGCGACGA
	26821	GGCGGGCACC	GTCCTCCAGG	GTGAGCGCTC	CGGCGACACA	GGCCGCGGCG	ATCTCG. 'CCT
15	26881	GGGAGTGTCC	GATGACGGCG	TCCGGGCGTA	CGCCCGCGGC	CTCCCACACG	GCGGCCACCC
	26941	ACACCATGAC	GGCCCAGCAG	ACGGGGTGCA	CGACGTCGAC	CCCCCCCCCC	ACCTCCCCCT
	27001	CGTCGAGCAT	CCCCATCCCC	TCCCACCCC	TCTCCCCCAT	CACCCCCCCCCC	ACCICCGGGI
	27061	COTTOCATOCA	CCCCATGGGG	CCCAGCCCG	1G1GCGGGA1	CAGCGCGTCG	GCGCATTGGC
	27001	GCATCCTGGC	GGCGAACACC	GGGGAGGCCG	CCATCAGTTC	GACGCCCATG	CCGCGCCACT
20	2/121	GCGGTCCTTG	TCCGGGGAAG	ACGAAGACGG	TGCGCGGCTC	GGTGAGCGCC	GTGCCGGTGA
20	27181	CGACGTCGTC	GTCGAGCAGC	ACGGCGCGGT	GCGGGAACGT	CGTACGCCTG	GCGAGCAGGC
	27241	CCGCGGCGAT	GGCGCGCGGG	TCGTGGCCGG	GACGGGCGGC	GAGGTGCTCG	CGGAGTCGGC
	27301	GGACCTGGCC	GTCGAGGGCC	GTGGCGGTCC	GCGCCGAGAC	GGGCAGTGGT	GTGAGCGGCG
	27361	TGGCGATCAG	CGGCTCACCG	GGCTTCGAGG	CCGACGGCTC	CTCGGCCGGC	GGCTCCCCGG
	27421	CCGGGTGGGC	TTCCAGCAGG	ACGTGGGCGT	TGGTGCCGCT	GACGCCGAAG	GAGGACACAC
25	27481	CGGCGCGCCG	CGGGCGGTCG	GTCTCGGGCC	AGGGCCGGGC	ATCGGTGAGG	AGTTCGACGG
	27541	CGCCGGCCGT	CCAGTCGACG	TGCGAGGACG	GCGTGTCCAC	GTGCAGGGTC	CCCCCCACCC
	27601	TGCCGTGCCG	CATGGCGAGG	ACCATCTTCA	TCACACCCCC	GACACCCCC	CCCCCCTCAC
	27661	TGTGGCCGAT	CTTCCACTTC	ACCAICTIGA	CCACCACCC	GACACCCGCG	GCGGCCTGAG
	27721	ACCTCCCA1	CICCCCCTCT	AGCGAGCCCA	CARCACCAC	GGTGTCGCGC	CCCTGCCCGT
30	27721	AGGTGGCCAG	CACCGCCTGT	GCCTCGATGG	GATCGCCCAG	CCTGGTGCCG	GTGCCGTGCG
30	27781	CCTCCACGGC	GTCCACGTCC	GCCGGGGTGA	GCCCGGCGTT	GGCCAGGGCC	TGCCGGATCA
	2/841	CCCGCTCCTG	CGAGGGCCCG	TTCGGCGCCG	ACAACCCGTT	GGAAGCACCG	TCCTGGTTGA
	27901	CCGCCGAACC	CCGGACAACC	GCCAGCACAC	GGTGGCCGTT	GCGCTCGGCA	TCGGAGAGCC
		TCTCGACGAT					
	28021	ACGCCTTGCA	GCGCGCGTCG	GGCGCGAGAC	CCCGCTGCTG	GGAGAACTCG	ACGAAGCCGG
35	28081	ACGCCGAGGC	CATCACCGTG	ACGCCGCCGA	CCAGGGCGAG	CGAGCATTCG	CCGGAGCGCA
	28141	GTGACTGCCC	GGCCTGGTGC	AGCGCCACCA	GCGACGACGA	ACACGCCGTG	TCGACCGTGA
		CCGCCGGACC					
		TGCCGGTCGC					
		CCATGAACAC					
40		GCGCCTCCCA					
40							
		GCGGACTGAT					
		GACGCACGGT					
		AACCACGGTC					
	28621	AGTCCTCCGG	CGACGCGACC	CCACCGGCA	GCCGGCAGGC	CATCCCCACG	ATCGCCAACG
45	28681	GCTCGTCCTG	CCGGACGCC	GCGGTCGTGG	TGCGGGTCGG	CGATGCCGTC	CGGCCGGACA
	28741	GCGCCGCGGT	GAGCTTCGCC	GCGACGGCGC	GCGGCGTCGG	GAAGTCGAAG	ACCGCGGTGG
	28801	CGGGCAGCCG	TACGCCCGTC	GCCTCGGTGA	AGGCGTTGCG	CAGCCGGATC	GCCATGAGCG
	28861	AGTCGACGCC	GAGTTCCTTG	AACGTGGCGG	TCGCCTCGAC	CCGTGCGGCA	CCGTCGTGGC
		CGAGTACGGC					
50		CGGAGAGCCG					
		CCCGGCGCGG					
•		GCGCCGGGTC					
		GCGCCGTCAC					
5.5		GTTCCCACAG					
55		CCAGCGCGTC					
		CACCGGCGGC					
		GCAGGTGCCA					
	29461	GCGCGGTGAG	GACGCCGTCG	TCGAGGACGG	CCGCGGTGTG	CACGACGGCC	GTGAGCGGGT
		GCGCCGGGTC					
60		CGATCGCCGT					
		GCAGCCGGCG					
		CGGAGCCACC					
		GGACCGCCGG					
	29021	CATCGAGCGC	GGTGGCCGCT	GCGAGCAGCG	GUTUGUUGT	GICCGGGGGG	GCGTCGACGA

	20001	CCACCAMOOC					
	29001	GGACGATCCG	GCCGGGGTGT	TCGGCCTGCG	CGGTCCGCAC	CAGTCCGGCG	GCCGCGGCCG
	29941	ACGCGAGACC	GGGCCCGGTG	TGGACGGCCA	GGACCGCGTC	GGCGTACCGG	TCGTCGGTGA
	30007	GGAAGCGCTG	CACGGCGGTC	AGGACGCCGG	CGCCCAGTTC	GCGGGTGTCG	TOGAGOGGG
_	30001	CACCECCGCC	GCCGTGCGCG	GGGAGGATCA	CCACGTCCGG	GACCGTCGGG	TOGTOGAGGO
5	30121	GGCCGGTCGT	CGCGGTCGTG	GGCGGCAGCT	CCGGGAGCTC	GGCCAGCACC	GGGCGCACCA
	30181	GGCCCGGAAC	GGCTCCCGTG	ATCGTCAGGG	GGCGCCTGCG	CACGGGGGGGG	ATCCTCCCCA
	30241	CGGGCCCGCC	GGTCTCGTCC	CCCACCTCTA	CCCCCTCACC	CACGGCGCCG	AIGGIGGCGA
	30301	COGTGGGGG	CCTCCCCTCC	ACCCCCA CCT	CGCCGTCAGC	GGIGACGGCG	ACGCGTACCG
	30361	CCGTGGCGCC	CCCCACTCG	ACGCGGACGI	CGTCGAACGC	GTACGGAAGG	TGGTCCCCTT
10	30301	CCGCGGCGAG	GCGGAGTGCG	GCGCCGAGCA	GCGCCGGGTG	CAGGCCGTAC	CGTCCGGCGT
10	30421	CGGCGAGCTG	TCCGTCGGCG	AGGGCCACTT	CCGCCCAGAC	GGCGTCGTCG	TCGGCCCAGA
	30481	CGGCGCGCGG	GCGGGGCAGC	GCGGGCCCGT	CCGTGTACCC	GGCTCGGGCC	AGACGGTCGG
	30541	CGATGTCGTC	GGGGTCCACC	GGCCGGGCCG	TGGCGGGCGG	CCACGTCGAC	GGCATCTCCC
	30601	GCACGGCCGG	GGCCGTCCGC	GGGTCGGGGG	CGAGGATTCC	GTGCGCGTGC	TOGGTOCACT
	30661	CCCCCGCCGC	GTGCCGCGTG	TGCACGGTGA	CCGCGCGGCG	GCCGTCCGCC	CCGGGCGCCC
15	30721	TCACCGTGAC	GGAGAGCGCG	AGCGCACCGG	ACCGCGGCAG	CGTGAGGGG	GTGTCC"CCC
	30781	TGAACGTGTC	GAGGGGGGCG	CAGCCGGCTT	CGTCCCCCCC	CCCCATCCCC	B C B T C C A C C C
	30841	GGGCGGGGC	GGGCAGCACC	CCCACCCCC	CCACCCACTC	CCGGATCGCC	AGATCCAGGA
	30901	CCACCCCCC	COMCACCACO	CCGMGGCCG1	GCAGGGAGIG	CGCCAGCGGA	TCGGCGGCGT
	30901	CGACCCGGCC	GGTGAGCACC	AGGTCGCCGG	TGCCGGGCAG	GGTGACCGCC	GCGGTCAGCG
20	30961	CCGGGTGCGC	GACCGGCGTC	TGTCCGGCCG	GGGCCGCGTC	GCCCGCGGTC	TGGGTGCCGA
20	31021	GCCAGTAGCG	GACCCGCTCG	AACGGGTACG	TCGGCGGGTG	CGAGGCGCGT	GCCGGCGCGG
	31081	GGTCGATGAC	CTTCGGCCAG	TCGACCGTGA	CGCCGTCGGT	GTGCAGCCGG	GCGAGCGCGG
	31141	TCAGGGCGGA	TCGCGGTTCG	TCGTCGGCGT	GCAGCATCGG	GATGCCGTCG	ACGAGTOGGG
	31201	TCAGGCTCCG	GTCCGGGCCG	ATCTCCAGGA	GCACCGCCCC	GTCGTGCGCG	GCGACCTGTT
	31261	CCCCGAACCG	GACGGTGTCG	CGGACCTGTC	GTACCCAGTA	CTCCGGCGTG	GTGCAGCCCC
25	31321	CGCCGCGGC	CATCGGGATC	CTCGGCTCGT	GGTACGTCAG	COTOTOCCCC	ACCERCCCCA
	31381	ACTCCTCGAG	CATCGGCTCC	ATCCCCCCCC	ACTCCAACCC	CTCCCCCCC	ACCITGCGGA
	31441	TENACCECCE	CATCGGCTCC	CCCACCTCCA	AGIGGAACGC	GIGGCIGGIC	CGCAGGCGGG
	31501	TGAAGCGGCC	COCCERTANCE	GCGACGTCGA	GCACCGCCTC	CTCGTCACCG	GAGAGCACGA
	31501	TCGACGCGGG	CCCGTTGACC	GCGGCGATCT	CCACGCCGTC	CCGCAGCAGC	GGCAGCGCGT
30	31201	CCCGTTCCGA	CGCGATCACG	GCGGCCATCG	CCCCGCCGGA	CGGCAGCGCC	TGCATCAGGC
30	31621	GGGCCCGTGC	GGACACCAGC	CTGCACGCGT	CCTCCAGGGA	CCAGACGCCG	GCGACGTACG
	31681	CGGCGGCCAG	CTCGCCGATC	GAATGGCCCA	CGAAGGCGTC	CGGGCGTACG	CCCCACGCCT
	31741	CGAGCTGTGC	GCCGAGTGCG	ACCTGGAGCG	CGAACACCGC	GGGCTGGGCG	TACCCGGTGT
	31801	CGTGGAGGTC	GAGCCCGGCG	GGCACGTCGA	GGGCGTCCAG	CACCTCGCGG	CGAGTGCGCG
	31861	CGAAGACGTC	GTAGGCGGCG	GCCAGTCCGT	CGCCCATGCC	GGGACGTTGT	GAGCCC
35	31921	CGGAGAAGAG	CCACACGAGG	CGGCGGTCCG	GTTCTGCGGC	GCCGGTGACC	GTGTCGGTGC
•	31981	CGATCAGCGC	GGCCCGGTGC	GGGAAGGCCG	TECEGECEAG	CAGGGCCGCG	CCCACCCCC
	32041	GCTCGTCCTC	CTCGCCGGTG	GCGAGGTGGG	CCCCCACCC	CTCTACCTCT	CCCTCCACCC
	32101	CCTGCGGGGT	CCCTCCCCAC	ACCACCACCC	CCACCCCTCC	CONCRECE	GCGICGAGIG
	32161	CTTCCCCCCC	CCCTCCCGAG	MGCAGCAGGG	GCAGCGGTCC	GGTGTCGGGT	GCCGGGGCGG
40	22101	GTTCGGGGGC	CGGTCGGGG	TGGCTTTCGA	GGATGATGTG	AGCGTTGGTG	CCGCTAACGC
40	32221	CGAAGGAGGA	CACCCCGGCG	CGCCGTGGGC	GGTCGGTTTC	GGGCCAGGGG	CGGGCGTCGG
	32281	TGAGGAGTTC	GACGGCGCCG	GCCGTCCAGT	CGACGTGCGA	GGACGGCGTG	TCCACGTGCA
	32341	GGGTGCGCGG	CAGGGTGCCG	TGCCGCATGG	CGAGGACCAT	CTTGATGACA	CCGGCGACGC
	32401	CCGCGGCGGC	CTGAGTGTGG	CCGATGTTGG	ACTTCAGCGA	GCCCAGCAGC	ACCGGGGTGT
	32461	CGCGATGCTG	CCCGTAGGTG	GCCAGTACCG	CCTGCGCCTC	GATGGGGTCG	CCCAGCCTGG
45	32521	TCCCGGTGCC	ATGCGCCTCG	ACAGCGTCCA	CATCCGCCGG	GGTGAGCCCG	GCGTTGGCCA
	32581	GCGCCTGCCG	GATCACCCCC	TCCTGCGACG	GCCCGTTCGG	CGCCGACAAC	CCGTTGGAAG
	32641	CACCGTCCTG	GTTGACCGCC	GAACCACGCA	CGACCGCCAG	GACATTGTGG	CCCTCCCCT
	32701	CGGCGTCGGA	GAGCCTCTCG	ACCATCACCA	CACCCCATCC	CTCCCCAAA	CCGTGCCGCT
		CAGCCGCATC					
50	32701	ACTCCACCAL	CGCGAACGCC	CLECAGCGGC	CGTCCGGGGA	GAGGCCCCGC	TGCTGGGAGA
50	25051	AGTCCACGAA	GCCGGACGGC	GAGGCCATCA	CCGTGACGCC	GCCGACCACG	GCGAGCGAGC
	32881	ACTCCCCGA	GCGCAGCGAC	TGCCCGGCCT	GGTGCAGCGC	CACCAGCGAC	GACGAACACG
	32941	CCGTGTCCAC	CGTGACCGCC	GGACCCTCCA	AACCGTAGAA	GTACGACAGC	CGACCGGACA
		GCACACTGGT					
	33061	CGTAGAAGTA	GCCGCCCATG	AACACGCCGG	TGTCGCTTCC	GCGCAGCGAC	TCCGGGAGGA
55		TCCCGGCGTG					
	33181	TCGCCAGCGC	CTCACGCGGA	CTGATCCCGA	AGAACGCCGC	GTCGAAGTCC	GCCACCCCGG
		CGAGGAAGCC					
		GCCCGTCCAC					
60		CCAGCAGCCG					
00		CCACGATCGC					
		TGGCCCGCGC					
		CGAAGACGAG					
		CGACGCCGGT					
		GGGCGTCGCG					
						•	

		GCGCGGCCGG					
	33781	GGACCCGGTC	GGACGCGGCG	ACGGCGGCGA	GGTCGAGCCG	GATCGGCACG	AGCGCGGGCC
		GGTCGGTGTG					
		TGCCGTTGCG					
5		CCGCGTCCCA					
•		GGGCGAGCGC					
		ACGTGGCGGA					
		CGTGCAGGTG					
		GCATGGTCGT					
10	34261	GCTGGGCGAC	GTCGGCGACG	ACTGCGGCCA	GCTCGTCGCG	GTCGACGACG	TCGGCGGCCA
	34321	CGTACCGCAC	GCGGTCGTCC	TCCGGCGTGT	CGCCGGGCCG	GCCGTTGCGG	GACACCACGA
		CGACCTCGGC					
		CGGTGCCGCC					
		CGACACGGCG					
15							
13		CGCCGGCGGC					-
		CGACGCGGCC					
		CGGGATCGCC					
		GCCAGGTCTG					
		AGGTGCCCGG					
20	34861	GCACGTCGGC	GAGGTACGTC	CAGTCGGGGA	CGGGTGACGC	GGGCACGGGC	ACCCAGGCGA
	34921	TCTCGAACAG	CGCCTCGGCA	TCGGGGTCGG	CGGCCCGCAC	GGTCAGGCTG	TCGACGTCAA
		GGACCGGTGA					
		CCAGCAGCAC					
		ACGCCAGCCG					
25		CGAGCAGCAC					
43							
		ACGCGTAGGC					
		ACGAGAGCGG					
		GCCAGTCCAC					
		GCGCCCAGGG					
30	35461	CGGTTCCGAC	GGTGGCCTGG	ATCTCCGTGT	CGCCGTCGCC	GTCGACCACC	ACCGGCGCGA
	35521	CGATGGTCAG	CTCCGCGATC	TCCGGCGTGC	CGAGCCGGGC	TCCCGCTTCG	GCGAGCAGTT
	35581	CCACGAGCGC	CGAGCCGGGC	ACGATGACCC	GGCCGTCCAC	CTCGTGGTCG	GCGAGCCAGG
	35641	GCTGACGGCG	TACCGAGACA	CCGCGGTGGC	CAGCGCGCCC	TCGCCGTCGG	GCGAGGTCGA
	35701	CCCACGAGCC	GAGCAGCGGG	TGGCCGGACG	TTCCCGCCGG	TTCCGCGTCG	ATCCAGTACC
35		GGTCACGGCG					
		TGACGGGCAC			•		
		CCTCGCCTCG					
		CCAGTGCGGT					
40		CCGCCAGGTG					
40		AGGCGGCGTC					
		CCGGCGTGCG					
		CATGCGCGGT					
		GCAGCTCCTC					
	36301	CGGCGACCTC	CAGGCGCCCG	GCCCACACGG	CGGCGTCGAA	GTCGGCGGGC	GGCACCGAGA
45		CCATGCCGCC					
	36421	TCGCGGCGTC	GTCCAGGGTG	AGCACCCGG	CGACGCAGGC	CGCGGCGACT	TCGCCCTGGG
		AGTGGCCGAC					
		CCATCACCGC					
		GCCGCTGGGC					
50		ACTCGCGGAG					
50							
		CCCACTGGGA					
		TTCCCGTCAC					
		GCACGACCGC					
		CCGCGGCGCC					
55		GGGCCGACAT					
		GTGCGGGCGC					
	37081	CGAACGACGA	GACACCCGCA	CGCCGGGCGC	GCCCGGTGAC	CGGCCACGGC	TCACTGCGGT
		GCAGCAGCCG					
		TGCGCGGCAG					
60		CCGCGGCCTG					
50	37301	GTTCGCGCCC	CTACCCCACT	TECACECCET	GGGCCTCGAC	GGGGTCGCCG	AGACGGGTGC
	27201	CGGTGCCGTG	TCCCTCCXC1	CCCTCCACCT	CACCCCCCC	CAGGCCCCCC	TCGGCCAGCC
	27441	CACCOMCGIG	CACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TOCCOT COCC	CACCCGGCGC	CCACACCCCC	TTCCACCCC
	7441 د	CACGCTGGAT	GACGCGCTGC	I GCGCAGGCC	099993333	GGACAGCCCG	TOGACGCGC
	37501	CGTCGGAGTT	GACCGCGGAG	CCGCGCACCA	GUGCCAGCAC	GGGGTGGCCG	TGGCGGTGG

	37561	CGTCGGAGAG	CCGCTCCAGC	ACCAGGACAC	CGGCGCCCTC	GGCGAAGCTC	CTCCCCTCCC
	37621	CGGTGTCCGC	GAAGGCCTTG	GCACGGCCGT	CGGGGGGGAG	CCCCCCCTCC	GIGCCGICCG
	37681	CGACGAACCC	GGTCGTCCTC	GCCATCACCC	TCACACCCCC	CCCGCGCTGC	CGGGAGAACT
	37741	CCCCCGACCC	CACCCACCC	CCCATCACCG	IGACACCGCC	GACCAGGGCG	AGCGAGCACT
5	37801	CCCCCGAGCG	CAGCGACCGC	GCGGCCTGGT	GCAGCGCCAC	CAGCGACGAC	GAACACGCCG
	37861	TGTCGACGGT	GACCGACGGG	CCCTCCAGAC	CGAAGTAGTA	CGAGAGCCGC	CCGGAGAGAA
	37001	CGCTGGTCGG	CGTGCCGGTC	GCCCCGAAAC	CGCCCAGGTC	CACGCCCGCG	CCGTAGCCCT
	3/921	GGGTGAACGC	GCCCATGAAT	ACGCCGGTGT	CGCTGCCGCG	GACGCTTTCG	GGCAGGATGC
	3/981	CCGCTCGTTC	GAACGCCTCC	CACGACGCTT	CGAGGACCAG	ACGCTGCTGC	GGGTCCATCG
	38041	CCAGCGCCTC	ACGCGGGCTG	ATCCCGAAGA	ACGCGGCGTC	GAAGTCGGCG	GCGCCGGTGA
10	38101	GGAAGCCGCC	GTGACGCACG	GAAACCTTGC	CGACCGCGTC	GGGGTTCGGG	TCGTAGAGCG
	38161	CGGCGAGGTC	CCAGCCGCGG	TCGGCGGGGA	ACTCGGTGAT	CGCGTCCCCG	CCGGAGTCGA
	38221	CCAGCCGCCA	CAGGTCCTCC	GGTGACCGCA	CGCCACCGGG	CATCCGGCAC	GCCATGGCCA
	38281	CGATCGCCAG	CGGCTCGTTC	CCCGCCACCG	TEGGTGEGGG	CACTGTCGCC	GCCGGAGCCC
	38341	CAGGGGCCGG	CTCACCCCCC	CGTTCCTCAT	CCAGGCGGGC	GCCGAGCGCG	GCCCCTCTCC
15	38401	GGTGGTCGAA	GACGGCCGTC	GCGGAGAGCC	GTACCCCCCT	CCTCTCCCCC	ACCCGG I G I C G
	38461	GCAACCGGAC	ACCECTENCE	CACTCCATCC	CCACCECCE	CARCECCE	AGGCIGTIGC
	38521	TCTCGGAGGC	GTCCCCCTCC	CCCACCACCC	CCACCTCCT	GAACGCCGTC	GTGGGCGTGA
	38581	CCTCACCATC	CCCCTCCCC	TOCOCCACOG	CGGCCGTGGC	CGCACACACG	ATGGCCAGCA
	30541	GGTCACGATC	GCGGTCGCGG	TCGCGGTCGC	GGTTGTCCTC	CGCACGGGCG	GCGATGCGGC
20	30041	GCTCGGTCCG	CTGCCGGACG	GGCTCGGTGG	GAATCGCCGC	GACCATGAAC	GGCACGTCCG
20	38701	CGGCGAGGCT	CGCGTCGATG	AAGTGGGTGC	CCTCGGCCTC	GGTGAGCGGC	CGGAACCCGT
	38/61	CGCGCACCCG	CTGCCGGTCG	GCGTCGTCAA	GTTGTCCGGT	GAGGGTGCTG	GTGGTGTGCC
	38821	ACATGCCCCA	GGCGATGGAG	GTGGCGGGTT	GGCCGAGGGT	GTGGCGGTGG	GTGGCGAGGG
	38881	CGTCGAGGAA	GGCGTTGGCG	GCGGCGTAGT	TTCCTTGTCC	GGGGCTGCCG	AGGACGGCGG
	38941	CGGCGCTGGA	GTAGAGGACG	AAGTGGGTGA	GGGGTTGGTT	TTGGGTGAGG	TGGTGCAGGT
25	39001	GCCAGGCGGC	GTTGGCTTTG	GGGTGGAGGA	CGGTGGTGAG	GCGGTCGGGG	GTGAGGGCGT
	39061	CGAGGATGCC	GTCGTCGAGG	GTGGCGGCGG	TGTGGAAGAC	GGCGGTGAGG	GGTTGGGGGA
	39121	TGTGGGCGAG	GGTGGTGGCG	AGTTGGTGGG	GGTCGCCGAC	GTCGCAGGGG	AGGTGGGTGC
	39181	CGGGGGTGGT	GTCGGGGGGT	GGGGTGCGGG	AGAGGAGGTA	GGTGTGGGGG	TEGTTCAGET
	39241	GGCGGGCGAG	GATGCCGGCG	AGGGTGCCGG	AGCCGCCGGT	GATGATGATG	CCTCTTCCC
30	39301	GGTTGAGGGG	GGTGGTGGTG	GGTGGGGTGG	TEGTETEGAG	GGGGGTGAGG	TCCCCTCCCT
	39361	GGAGGGTGTG	GTGGGTGAGG	CGGAGGTGG	GGTGTGCAC	CCTCCCCACT	TCCCCCACCC
	39421	GGAGGGGAGT	GTGGGGGGTGAGG	TCCCTTTCCA	TCACCCCCAT	GGIGGCGAGI	TGGGCCAGGG
	39481	GGGCGGTGCG	CCTCACCCCC	CTCACCCTCC	CCCCCCCCCC	GCGG1GGGGG	TGTTCGTTCT
	305/1	TCACCCTCTC	CECCE	GIGACGGIGG	CGCCGGCGGG	GTCGGTGGTG	GTGTGGACGA
35	39601	TGAGGGTGTG	GICGGIGGIG	GTGAGGTGGT	GTTGCAGGGC	GGTCAGGACG	CGGGTGGCGC
55	30661	GGGTGTGGGC	GCGGGTGGGT	ATGTCCTCGG	GGTCGTCGGG	GTGGGCGGCG	GTGATCAGGA
	10060	CGTGTCCCTC	GGGCAGGTCA	CCGTCGTAGA	CCGCCTCGGC	GACCGCGAGC	CACTCCAACC
	39721	GGAGCGGGTT	CGGCCCCGAC	GGGGTGTCGG	CCCGCTCCCT	CAGCACCAGC	GAGTCCACCG
	39/81	ACACGACAGG	ACGGCCATCC	GGGTCGGCCA	CGCGCACGGC	GACGCCGGCC	TCCCCCCGGG
40	39841	TGAGGGCGAC	GCGCACCGCG	GCGGCCCCGG	TGGCGTTCAG	GCGCACGCCC	GTCCAGGAGA
40	39901	ACGGCAGCTC	GATCCCGCCG	CCCGCGTCGA	GGCGCCCGGC	GTGCAGGGCC	GCGTCGAGCA
	39961	GTGCCGGATG	CACACCGAAA	CCGTCCGCCT	CGGCGGCCTG	CTCGTCGGGC	AGCGCCACCT
	40021	CGGCATACAC	GGTGTCACCA	TCACGCCAGG	CAGCCCGCAA	CCCCTGGAAC	GCCGACCCGT
	40081	ACTCATAACC	GGCATCCCGC	AGTTCGTCAT	AGAACCCCGA	GACGTCGACG	GCCGCGGCCG
	40141	TGGCCGGCGG	CCACTGCGAG	AACGGCTCAC	CGGAAGCGTT	GGAGGTATCC	GGGGTGTCGG
45	40201	CGGTCAGGGT	GCCGCTGGCG	TGCCGGGTCC	AGCTGCCCGT	GCCCTCGGTA	CGCGCGTGGA
	40261	CGGTCACCGG	CCGCCGTCCG	GCCTCATCGG	CCCCTTCCAC	GGTCACCGAC	ACATCCACCG
	40321	CTGCGGTCAC	CGGCACCACG	AGCGGGGATT	CGATGACCAG	TTCATCCACC	ACCCCGCAAC
		CGGTCTCGTC					
	40441	TGCCCGCAC	CGCGTGATCA	GCCAGCCAGG	GATGCGTACG	CAATGAGATC	CCCCCCCCCC
50	40501	GAACAACACC	ACCACCETCE	TCGGCGGGCA	GTGCTGTGAC	GGCGCCCACC	ATCCCATCCC
	40561	CCGCCCCGGT	CACCCCCCC	CCCACACCT	CCCTCCACC	CCCCCCCTCC	ATCGGATGCG
	40621	GCCTGTGCTC	CARCCCCTAC	CTCCCCACAT	CCACCACCC	CCCCCCTCC	AGCCAGTACC
	40681	CCCTCCCCA	CTCCACCCC	CONCOCNON	TCAGCAGCCG	CCCCGGCACC	GGTTCGACCA
		CCGTGCCCCA					
55		GCTCCCAGCC					
55	40801	GCAGCAGCAC	CGGATGGGCA	CTGCACTCCA	CGAACACCGA	CCCGTCCAGC	TCCGCCACCG
	40861	CCGCATCCAG	CGCGACAGGG	CGACGCAGGT	TCCGGTACCA	GTACCCCTCA	TCCACCGGCT
		CGGTCACCCA					
		TTCCCTTCAG					
		CGTAGTCGAC					
60	41101	CCTCCACCGC	CGACGGGTCC	CCCGCCACCA	CCGTCGAAGC	CGGACCATTA	CGCGCCGCGA '
		TCCACACACC					
							CGGGCGGCGT .
		CCTCCAGGCT					
		CCACAGCGTC					
							JJJJJJACCJ

	41401						
	41401	CCCAGCTGGC	CGGCTGGACC	ACCTCCACCC	GCTCCGCCAC	ATCCGACCGC	GACAACATCT
	41461	CCCGCACATC	CCAGCCCGTG	TGCGGCAACA	ACGCCCGCGC	ACACTCCTCC	ATACGAGCCG
	41521	CGAACACCGC	GGAACGGTCC	ATGAGTTCCA	CGCCCATGCC	CACCCACTGG	GCACCCTGCC
	41581	CGGGGAAGAC	GAACACCGTA	CGCGGCTGAT	CCACCGCCAC	ACCCATCACC	CGGGCATCAC
5	41641	CCAGCAGCAC	CGCACGGTGA	CCGAAGACAG	CACGCTCACG	CACCAACCCC	TGCGCCACCC
-	4170:	CGGCCACATC	CACCCCACCC	CCCCCCACAT	ACCCCTCCAC	CCCCMCCACC	TOCOCOACCO
	41761	CACTCACCTC	PCCPCCPCC	CLGCGCAGAI	ACCCCTCCAG	CCGCTCCACC	IGCCCCCCGCA
	41/61	GACTCACCTC	ACCACGAGCC	GACACCGGCA	ACGGCACCAA	CCCATCACCA	CCCGACTCCA
	41821	CACGCGACGG	CCCAGGAACA	CCCTCCAGGA	TCACGTGCGC	GTTCGTACCG	CTCACCCCGA
	41881	ACGACGACAC	ACCCGCATGC	GGTGCCCGAT	CCGACTCGGG	CCACGGCCTC	GCCTCGGTGA
10	41941	GCAGCTCCAC	CGCACCGGCC	GACCAGTCCA	CATGCGACGA	CGGCTCGTCC	ACGTGCAGCG
	42001	TCTTCGGCGC	GATCCCATGC	CGCATCGCCA	TGACCATCTT	GATGACACCG	GCGACACCCG
	42061	CAGCCGCCTG	CGCATGACCG	ATGTTCGACT	TGACCGAACC	CACCTACACC	CCCCTCTCCC
		GGTCCTGCCC					
1.5		CGGTGCCGTG					
15		CCTGCCGGAT					
		CGTCCTGGTT					
	42361	CGTCGGAGAG	CCGCTCCAGC	ACGAGAACGC	CGACGCCCTC	GGCGAAGCCG	GTCCCGTCCG
		CCGCGTCGGC					
		CCACGAGCTC					
20		CCCCGGCCCG					
20							
		TGTCGACCGT					
		CGCTCGTCTG					
	42721	GGTTGAACGC	GCCCATGAAC	ACGCCGGTGT	CGCTCTCCCG	GAGCCTGTCC	GGCACGATGC
	42781	CGGCGTTCTC	GAACGCCTCC	CAGGAGGTCT	CCAGGATCAG	GCGCTGCTGG	GGGTCCATCG
25	42841	CCAGCGCCTC	GTTCGGACTG	ATGCCGAAGA	ACGCGGCGTC	GAACCCGGCG	CCGGCCAGGA
		ATCCGCCGTG					
		CGACGTCCCA					
		GCCGCCACAG					
		TCGCGACGG					
20							
30		CGGCGAGGTG					
		CCCGCAGACC					
	43261	GGCCGTTCTC	GCGGAACGTG	CGGTCCGGGG	AGCAGTGTCC	GGCGCCCGGC	AGGCCCAGGA
	43321	CGGTGGCGAC	GCTGTCGCGG	ACCAGGTCGA	GCAGTACGTC	CTCCCGGCCC	GCACGGGCCG
	43381	CGGCGAGGCG	GTTCGCCCAC	TCCTGTTCCG	TGGCGTCGGG	CTCGGCCGGT	CCGGTCAGTG
35		CGGTGAGGAT					
		TCCGGGCCAC					
		GCGCCGGCCG		•			
		CCCGTGGCCG					
40		CGCCGGGGTT					
40		GGAGCAGGCC					
	43801	CGATCGGAGG	CGGCACGGTG	AGGACCATCT	TGCCGGTGTG	CCGGGCGTGG	CTCATCCACG
	43861	CGAACGCGTC	CCGCGCACGG	CGGATGTCCC	ACGGCTGCAC	CGGCAGCGGG	CACAGCTCAC
	43921	CGCGGTCGAA	CAGGTCGAGG	AGCAGTTCGA	GGATCTCCCG	CAGGCGCGCG	GGATCCACGT
	43981	CGGCCAGGTC	GAACGGCTGC	TGGGCGGCGT	GGCGGATGTC	GGTCTTGCCC	ATCTCGACGA
45		ACCGCCCGCC					
••		TGAGCACGAC					
		CATGGTCGGT					
		CGTACACCTC					
		TCGCGGCGTG					
50		ACCAGGCGGT					
	44401	GGATCCGTGC	GACCAGCCGC	CGGTCCGCGA	CCACGCTGCG	CCGGAACGCG	TCCTGCACGA
		GACCGAACAC					
	44521	TGCCCGCGGC	CTCCCCGCCC	ATCTCGCCCT	CGCCCGGGTA	GGTGCCGAGC	GCGATCAGCA
		CGTCGCGGAA					
55							
55		GCGCGGCGGG					
		GCGCAGCGCC					
		CGTAGGCCAC					
		CGACGTCGTC					
		GGCGCAGCGC					
60		CGCCCACCGC					
		GCCGCTCCCA					
		CCGGCAGCCC					
	42001	CCGGCAGCCC	COCCAGCCGC	CCCACCETGGA	DCT IGCCCGA	CGCGG1GCGG	CACACCCCCA
		TGACGTGCCA					
	45181	GGATCGCCTC	GGCGGGGACG	CGGGGGCCGT	CGGAAACGAC	GTAGAGCACG	GGTATGTCGC

		•					
	45241	CGAGGACGGG	GTGCGGGCGG	CCCGCCGCGG	CGGCGTCCCG	GACACCGGCC	ACCTCCTGGG
	45301	CGACGGTCTC	GATCTCCCGG	GGGTGGATGT	TCTCCCCGCC	GCGGATGATC	AGCTCCTTGA
	45361	CCCGGCCGGT	GATCGTCACG	TGTCCGGTCT	CGGCCTGACG	TGCGAGGTCC	CCGGTGCGGT
	45421	ACCAGCCGTC	CACGAGCACC	TGGGCGGTCG	CCTCCGGCTG	GGCGTGGTAG	CCGAGCATGA
5	45481	GGCTCGGCCC	GCTCGCCCAC	AGCTCGCCCT	CCTCGCCGGG	TGCCACGTCG	GCGCCGGACA
	45541	CCGGGTCGAC	GAACCGCAGC	GACAGGCCCG	GCACGGGCAG	CCCGCACGAG	CCCCCAACCC
	4560	GCGCATCCTC	CACCCTCTTC	CCCCTCACCC	ACCCCCCCCC	CTCCCTCCAC	CCGGGAACCC
	45661	CCACCACCCC	CAGGGIGIIG	CECCETCAGCG	AGCCGGTCGT	CICGGIGCAG	CCGTACGTGT
	45701	CGAGCAGGGG	CACGCCGAAC	GTCGCCTCGA	AATCCCTGGT	GAGCGACGCC	GGCGAGGTGG
10	45721	ATCCGGCGAC	CAGCGCCACG	CGCAGCGCGC	GAGCCCGCGG	CTCGCCGGAC	ACGGCGCCGA
10	45/81	GGAGGTAGCG	GTACATCGTC	GGCACGCCGA	CGAGCACGGT	GCTGGAGTGT	TCGGCCAGGG
	45841	CGTCGAGGAC	GTCACGCGCG	ACGAAGCCGC	CCAGGATACG	GGCGGACGCG	CCGACCGTGA
	45901	GGACGGCGAG	CAGGCAGAGG	TGGTGGCCGA	GGCTGTGGAA	CAGCGGGGCG	GGCCAGAGCA
		GTTCGTCGTC					
	46021	CGCTGCGCTG	TGCGGAAACC	ACGCCCTTGG	GACGGCCGGT	GGTGCCGGAG	GTGTAGAGCA
15		TCCAGGCGGG					
		CGAGGTCCTC					
		CGGTGCCGGT					
		CGGAGTCCGT					
		CGACGGCGGC					
20	16321	CCACGGCGGC	CACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GCGGCGAGGI	AGACCICGAI	GGTCTCGATC	CGGTTGCCGA
20		GCAGCATCGC					
		GGCCGGCCCG					
	46501	TCCGGTCGCC	GCGTCGCTCG	GCATGGATGC	GGAGCAATTC	GTGCAACGGC	CGGATTGGTT
		CCACACGCGC					
		ACGAGTAGAC					
25	46681	CTACCGTGGC	CGGCCTCCCC	GGACGCTCAT	CTAGGGGGTT	GCACGCATAC	CGCCGTGCGT
		AATTGCCTTC					
	46801		CCGTATTGCC				
	46861	GACGGTGCTC					
		TGCTCCCCGG					
30		GCACGCACAG					
••		CGCGTACCTG					
		GGCCCTCTAC					
		GACCTGGAAC					
25		GGACTTCTGC					
35		GCCGCGGCC					
		CCGGGGCGGA					
	47401	GACGACGTAC	GGTCCGCGGC	CCCCGGTCTT	CGCACGGGCC	ACCTGGCTGG	GCCCGCCGCA
		GGGGGGCCGG					
	47521	CGGTGATGTG	ACCGGCCAGT	GCGAGGTCGC	CCTCGACAAC	ATGGCCCGGG	TCATCGGCGC
40	47581	GGAGAACCTG	CGGCGCCACG	GCGTCCAGCG	GGGGCACGTC	CTCGCCGACG	TGGACCACCT
		CAAGGTCTAC					
		CCTGTCGAGC					
		CGTCGAAATC					
		CTCGGCGGAT					
45		TCGTCCTTCG					
		TATAATCTCC					
		GCGCTGGCGC					
		GGCGAGCCCC					
50		GGCAGCGAGG					
50		GCCACCGGGC					
		GCGGTGACCG					
		CTCGCAGCCC					
		CCGGTGCAGT					
	48421	GACAGGCGTC	TGGCCTACTG	GCGCGAGCAA	CTCCGGGGCG	CCCCGGCGCG	GCTCGCCCTC
55	48481	CCCACCGACC	CTCCCCGCCC	GCCGGTCGCC	GACGCGGACG	CGGGCATGGC	CGAGTGGCGG
		CCGCCGGCCG					
		TTCATGACCC					
		GTGCTGGTCG					
60		ATGTTCGTCA					
60		CTCCTCGACC					
		GAGAACGTCA					
		GTGCTGTTGC					
		GAACCGTTCC					
	49021	GAGCCGGGTG	GCGCGCTGAC	CGGCGAACTG	CTCTACAGCC	GTGCGCTGTT	CGACGAGCCA

		CGGATCACGG					
	49141	GACGTACGGC	TGTCGCGGCT	GCCGGCCGGC	GACGCGACGG	CGGCAGCGCC	CGTGGTGCCC
	49201	TCGAACGACA	CGGCGCGGGA	CCTGCCCGTC	GACACGCTGC	CGGGCCTGCT	GGCCCGGTAC
	49261	GCCGCACGCA	CCCCCGGCGC	CGTGGCCGTC	ACCGACCCGC	ACATCTCCCT	CACCTACGCG
5	49321	CAGCTGGACC	GGCGGGCGAA	CCGCCTCGCG	CACCTGCTCC	GCGCGCGCGG	CACCGCCACC
		GGCGACCTGG					
		ATCCTCAAGG					
		GCGTTCGTGC					
		CGGTTCCCCG					
10		GACGACACGG					
		TCCGGGTCGA					
		CTGCTCTGGC					
		ACGCCCACGT					
		GTCATCCCGC					
15							
13		CAGGCGATTA					
		GATCCGCACA					
		ATCCTCGACG					
		CACTACGGTC					
20		GCGTGGCCCG					
20		GACGAGGCGA					
		GGCCTCGCCC					
		GATCCGGTCG					
		GGCGACCTGG					
25		GAACCGGGTG					
25		TCCGTGCGCG					
		GGCCGGCACG					
		GCCGCGCTCG					
		AAGGTGGACC					
• •		ACGCCCCGCA					
30		CCGCGGGTCG					
		CGGGTCGTCT					
		GACGGGCGGA					
		CCCCCGATCG					
		ATGCTGCACT					
35		TTCCGGCTGC					
		GCGCGCCACG					
		GCTCCGGTGC					
		GTCGCCCACC					
	51361	GTGCTGCTGC	CGCTGGGCGC	CGAGGATCAC	GTGCTGCTGC	TGATGCTGCA	CCACCTCGCC
40	51421	GGTGACGGAT	GGTCCTTCGA	CCTCCTGGTC	CGGGAGTTGT	CGGGGACGCA	ACCGGACCTT
	51481	CCGGTGTCCT	ACACGGACGT	GGCCCGGTGG	GAACGGAGTC	CGGCCGTGAT	CGCGGCCAGG
	51541	GAGAACGACC	GGGCCTACTG	GCGCCGGCGG	CTGGGGGGCG	CCACCGCGCC	GGAGCTGCCC
	51601	GCGGTCCGGC	CCGGCGGGGC	ACCGACCGGG	CGGGCGTTCC	TGTGGACGCT	CAAGGACACC
	51661	GCCGTCCTGG	CGGCACGCCG	GGTCGCGGAC	GCCCACGACG	CGACGTTGCA	CGAAACCGTG
45	51721	CTCGGCGCCT	TCGCCCTGGT	CGTGGCGGAG	ACCGCCGACA	CCGACGACGT	GCTCGTCGCG
		ACGCCGTTCG					
		GTCCTCGCGC					
		GTGCACACCG					
		GCCGAGGACC					
50		GCGGAACTGC					
		GACGAGATGA					
		GCGGTGGTCC					
		GTGGAGGCGA					
		GAAAGCGAGT					
55		CGGAACTCCA					
•	52381	GGATGGCCTG	CCGGCTGCCC	GGCGGGGTCG	CGTCGCCGGA	GGACCTGTGG	CAGTTGCTGG
		AGTCCGGTGG					
	52501	ACGGTCGCGG	CGGCTTCCTC	ACCGGGGCGG	CCGGCTTCGA	CGCGGCGTTC	TTCGGCATCA
		GCCCGCGCGA					
60		AGGCGTTCGA					
	52681	TCCTCGGCGC	GTTCTTCCAG	GGGTACGGCA	TCGGCGCCGA	CTTCGACGGT	TACGGCACCA
		CGAGCATTCA					
		CGGCGGTCAC					
	52861	AGTCGCTGCG	CTCCGGCGAA	TGCTCGCTCG	CCCTGGTCGG	CGGCGTCACG	GTGATGGCCT
		-					

					•		
	52921	CGCCGGCGGG	GTTCGCGGAC	TTCTCCGAGC	AGGGCGGCCT	GGCCCCCGAC	GCGCGCTGCA
	52981	AGGCCTTCGC	GGAAGCGGCT	GACGGCACCG	GTTTCGCCGA	GGGGTCCGGC	CTCCTCATCC
	53041	TCGAGAAGCT	CTCCGACGCC	GACCGCAACG	GCCACCCCCT	CCTCCCCCTC	CTCCTGATCG
	53101	CCCCCCTCNN	COLOCACOCO	COCCACO	GCCACCGCGI	GCTGGCGGTC	GICCGGGGTT
5	53101	CCGCCGTCAA	CCAGGACGGT	GCCTCCAACG	GGCTGTCCGC	GCCGAACGGG	CCGTCGCAGG
3	23101	AGCGGGTGAT	CCGGCAGGCC	CTGGCCAACG	CCGGACTCAC	CCCGGCGGAC	GTGGACGCCG
	53221	TCGAGGCCCA	CGGCACCGGC	ACCAGGCTGG	GCGACCCCAT	CGAGGCACAG	GCCGTGCTGG
	53281	CCACCTACGG	GCAGGGGCGC	GACACCCCTG	TGCTGCTGGG	CTCGCTGAAG	TCCAACATCG
	53341	GCCACACCCA	GGCCGCCGCG	GGCGTCGCCG	GTGTCATCAA	CATCCTCCTC	CCCAMCCCCC
	53401	ACCCCACCCT	CCCCCCACC	CECCICECC	ACACCACCAC	GAIGGICCIC	GCCAIGCGGC
10	53401	ACGGCACCCT	GCCCCGCACC	CIGCACGIGG	ACACGCCGTC	CTCGCACGTC	GACTGGACGG
10	53461	CCGGCGCCGT	CGAACTCCTC	ACCGACGCCC	GGCCCTGGCC	CGAAACCGAC	CGCCCACGGC
	53521	GCGCCGGTGT	CTCCTCCTTC	GGCGTCAGCG	GCACCAACGC	CCACATCATC	CTCGAAAGCC
	53581	ACCCCGACC	GGCCCCCGAA	CCCGCCCCGG	CACCCGACAC	CGGACCGCTG	CCGCTGCTGC
	53641	TCTCGGCCCG	CACCCCGCAG	GCACTCGACG	CACAGGTACA	CCGCCTGCGC	GCGTTCCTCG
	53701	ACGACAACCC	CGGCGCGGAC	CCCCTCCCCC	TCCCCCACAC	ACTCCCCCCC	CCCRCCCRC
15	53761	TCGAGCACCG	CCCCCTCCTC	CECCCCACA	CCCTCNTCNC	ACTCGCCCGG	CGCACCCAGI
13	22/01	COAGCACCG	CGCCGIGCIG	CICGGCGACA	CGCTCATCAC	CGTGAGCCCG	AACGCCGGCC
	53821	GCGGACCGGT	GGTCTTCGTC	TACTCGGGGC	AAAGCACGCT	GCACCCGCAC	ACCGGGCGGC
	53881	AACTCGCGTC	CACCTACCCC	GTGTTCGCCG	AAGCGTGGCG	CGAGGCCCTC	GACCACCTCG
	53941	ACCCCACCCA	GGGCCCGGCC	ACGCACTTCG	CCCACCAGAC	CGCGCTCACC	GCGCTCCTGC
	54001	GGTCCTGGGG	CATCACCCCG	CACGCGGTCA	TOGGCCACTO	CCTCGGTGAG	ATCACCGCCG
20	54061	CGCACGCCGC	CGGTGTCCTG	TCCCTGAGGG	ACGCGGGGGG	CCTCCTCACC	ACCCCCACCC
	54121	CCCTCATCCA	COOLGICCIG	TCCCTGAGGG	ACGCGGGGGG	GCTCCTCACC	ACCCGCACCC
	54121	GCCTGATGGA	CCAACIGCCG	1000000000	CGATGGTCAC	CGTCCTGACC	AGCGAGGAAA
	54181	AGGCACGCCA	GGTGCTGCGG	CCGGGCGTGG	AGATCGCCGC	CGTCAACGGC	CCCCACTCCC
	54241	TCGTGCTGTC	CGGGGACGAG	GAAGCCGTAC	TCGAAGCCGC	CCGGCAGCTC	GGCATCCACC
	54301	ACCGCCTGCC	GACCCGCCAC	GCCGGCCACT	CCGAGCGCAT	GCAGCCACTC	GTCGCCCCCC
25	54361	TCCTCGACGT	CGCCCGGACC	CTGACGTACC	ACCAGCCCCA	CACCGCCATC	CCCGGCGACC
	54421	CCACCACCGC	CGAATACTCG	GCGCACCAGG	TCCGCGACCA	ACTACCTTC	CACCCCCACA
	54401	CCCACCACCA	CORRIACIOG	A COMMOCAGO	1 CCGCGACCA	AGIACGITIC.	CAGGCGCACA
	54461	CCGAGCAGTA		ACGTTCCTCG	AGATCGGCCC	CAACCAGGAC	CTCTCGCCGC
		TCGTCGACGG					
		CGCTCGCGCA					
30	54661	ACCGCGCGCC	CGTCACGCTG	CCCACGTATC	CGTTCCAGCA	CAAGGACTAC	TGGCTGCGGC
	54721	CCACCTCCCG	GGCCGATGTG	ACCGGCGCGG	GGCAGGAGCA	GGTGGCGCAC	CCGCTGCTCG
		GCGCCGCGGT					
		CCTCCCATCC					
25		CCTTCCTCGA					
35	54961	TCGTCATCGA	GACGCCGCTC	GTGCTGCCCG	CGACCGGCGG	TGTGGCGGTC	TCCGTCGAGA
	55021	TCGCCGAACC	CGACGACACG	GGGCGGCGGG	CGGTCACCGT	CCACGCGCGG	GCCGACGGCT
	55081	CGGGCCTGTG	GACCCGACAC	GCCGGCGGAT	TCCTCGGCAC	GGCACCGGCA	CCGGCCACGG
		CCACGGACCC					
		ACGACCGGTT					
40		CCTGGCGCGC					
40							
		ACGCCGCCCG					
		TGGCCGCGCT					
	55441	GCATCCACGC	GGCCGGGGCG	ACGCGGCTGC	GGGTCACGGT	CGGCCGCGAC	GGCGAGCGCA
	55501	GCACCGTCCG	CATGACCGGC	CCGGACGGC	AGCTGGTGGC	CGTGGTCGGT	GCCGTGCTGT
45		CGCGCCCGTA					
		CGATGCCCGT					
		•					
		ACGGCGACGT					
		GCCACCTGTC					
	55801	CTGCCGCCGC	CGCGGGTCTG	GTCCGCTCGG	CGCAGGCGGA	GAACCCCGGC	CGCGTCGTGC
50	55861	TCGTCGAGGC	GTCCCCGGAC	ACCTCGGTGG	AGCTGCTCGC	CGCGTGCGCC	GCGCTGGACG
	55921	AACCGCAGCT	GGCCGTCCGG	GACGGCGTGC	TCTTCGCGCC	GCGGCTGGTC	CGGATGTCCG
		ACCCCGCGCA					
		CCGGCACGTT					
<i></i>		CCGGCGAGGT					
55	56161	CGCTCGGGAC	GTACACCGGG	GCCACGGCCA	TGGGCGGCGA	GGCCGCGGGC	GTCGTGGTGG
	56221	AGACCGGGCC	CGGCGTGGAC	GACCTGTCCC	CCGGCGACCG	GGTGTTCGGC	CTGACCCGGG
		GCGGCATCGG					
		GGAGCTTCAC					
60		TCGACCTCGG					
60		TCGGCATGGC					
	56521	GTACCGGCAA	GCAGCACGTC	CTGCGCGCCG	CCGGGCTGCC	CGACACGCAC	ATCGCCGACT
		CTCGGACGAC					
		CCGGCGAGTT					
		TGGGCCGCAC					
	20,01	1 GGGCCGCAC	COMOCIOCOC	GACCCGGCCG	COMICCICC	COCCIMCCIO	CCGITCGWCC

	56/61	TGCTGGACGC	GGGCGCCGAC	CGCATCGGCG	AGATCCTGGG	CGAACTGCTC	CGGCTGTTCG
	56821	ACGCGGGCGC	GCTGGAGCCG	CTGCCGGTCC	GTGCCTGGGA	CGTCCGGCAG	GCACGCGACG
	56881	CGCTCGGCTG	GATGAGCCGC	GCCCGCCACA	TCGGCAAGAA	CGTCCTGACG	CTGCCCCGGC
	56941	CGCTCGACCC	GGAGGGCGCC	GTCGTCCTCA	CCGGCGGCTC	CGGCACGCTC	GCCGCCATCC
5	57001	TCGCCCGCCA	CCTGCGCGAA	CGGCATGTCT	ACCTGCTGTC	CCCCACCCCA	CCCCCCACC
-	57061	GGACGCCCGG	CCTCCACCTC	CCCCCCCCC	TCCCTC1CC	CCGGACGGCA	CCGCCCGAGG
	57001	TO T	CGICCACCIG	CCCIGCGACG	TCGGTGACCG	GGACCAGCTG	GCGGCGGCCC
	5/121	TGGAGCGGGT	GGACCGGCCG	ATCACCGCCG	TGGTGCACCT	CGCCGGTGCG	CTGGACGACG
	57181	GCACCGTCGC	GTCGCTCACC	CCCGAGCGTT	TCGACACGGT	GCTGCGCCCG	AAGGCCGACG
	57241	GCGCCTGGTA	CCTGCACGAG	CTGACGAAGG	AGCAGGACCT	CGCCGCGTTC	GTGCTCTACT
10	57301	CGTCGGCCGC	CGGCGTGCTC	GGCAACGCCG	GCCAGGGCAA	CTACGTCGCC	GCGAACGCGT
	57361	TCCTCGACGC	GCTCGCCGAG	CTGCGCCACG	GTTCCGGGCT	GCCGGCCCTC	TCCATCGCCT
		GGGGGCTCTG					
		GGATGCGGCG					
1.5	57541	CGGCCGGCCG	CACCGGAAGT	CCCGTGGTGG	TOGOGGGGG	GCTCGACGAC	GCGCCGGACG
15		TGCCGCTGCT					
	57661	CGTCCGCCGA	CCGGCTCGCC	GCGCTGACCG	GCGACGAGCT	CGCCGAAGCG	CTGCTGACGC
	57721	TCGTCCGGGA	GAGCACCGCC	GCCGTGCTCG	GCCACGTGGG	TGGCGAGGAC	ATCCCCGCGA
	57781	CGGCGGCGTT	CAAGGACCTC	GGCATCGACT	CGCTCACCGC	GGTCCAGCTG	CGCAACGCCC
	57841	TCACCGAGGC	GACCGGTGTG	CGGCTGAACG	CCACGGCGGT	CTTCGACTTC	CCGACCCCCC
20		ACGTGCTCGC					
		GGACCGCGGC					
		GGCTGCCCGG					
		ACGCC.ATCAC					
		ACCCCGACGC					
25	58201	GCTTCGACGC	GGCGTTCTTC	GGCATCAGCC	CGCGCGAGGC	CCTCGCGATG	GACCCGCAGC
	58261	AGCGGGTGCT	CCTGGAGACG	TCGTGGGAGG	CGTTCGAAAG	CGCCGGCATC	ACCCCGGACT
		CGACCCGCGG					
		GTGCGGACAC					
		TGTCGTACTT					
30		CGCTGGTGGC					
50							
		TGGTCGGCGG					
		GCGGCCTCGC					
		TCGCCGAGGG					
		ACACCGTCCT					
35	58801	TGTCGGCGCC	GAACGGGCCG	TCGCAGGAGC	GGGTGATCCG	GCAGGCCCTG	GCCAACGCCG
	58861	GGCTCACCCC	GGCGGACGTG	GACGCCGTCG	AGGCCCACGG	CACCGGCACC	AGGCTGGGCG
	58921	ACCCCATCGA	GGCACAGGCG	GTACTGGCCA	CCTACGGACA	GGAGCGCGCC	ACCCCCCTGC
		TGCTGGGCTC					
		TCATCAAGAT					
40		AGCCGTCGCC					
40							
		CGTGGCCCGA					
		CCAACGCCCA					
		CCGGTGACCT					
	59341	GCCGACTGCG	CGCCTACCTG	GACACCACCC	CGGACGTCGA	CCGGGTGGCC	GTGGCACAGA
45	59401	CGCTGGCCCG	GCGCACACAC	TTCGCCCACC	GCGCCGTGCT	GCTCGGTGAC	ACCGTCATCA
	59461	CCACACCCCC	CGCGGACCGG	CCCGACGAAC	TCGTCTTCGT	CTACTCCGGC	CAGGGCACCC
		AGCATCCCGC					
		ATGAAGCGCT					
		TGCTCTTCGC					
50		ACGCGGTCAT					
50							
		CGCTGGACGA					
		CACCCGGTGC					
		CGGGCGTGGA					
	59941	ACGCCGTGCT	CACCGTCGCC	GGGCAGCTCG	GCATCCACCA	CCGCCTGCCC	GCCCCGCACG
55	60001	CCGGGCACTC	CGCGCACATG	GAGCCCGTGG	CCGCCGAGCT	GCTCGCCACC	ACCCGCGGGC
	60061	TCCGCTACCA	CCCTCCCCAC	ACCTCCATTC	CGAACGACCC	CACCACCGCT	GAGTACTGGG
		CCGAGCAGGT					
		TGTTCGTGGA					
		AGAACGGCAC					
60							
00		GCGGTGCCAC					
		TGCCCGCGTA					
		CCGACGCGGG					
		TGTTCACGGG					
	60541	TGGCCGCCGC	GGACGCGGTC	GACTGCGCCA	CGGTCGAGCG	GCTCGACATC	GCCTCCGTGC

	60601	CCGGCCGGCC	GGGCCATGGC	CGGACGACCG	TACAGACCTG	GGTCGACGAG	cccccccacc
	60661	ACGGCCGGCG	CCGGTTCACC	GTGCACACCC	GCACCGGCGA	CECCCCCTCC	ACCCTCCACC
	60721	CCGAGGGGGT	GCTGCGCCCC	CATCCCACCC	CCCTCCCCCA	TCCCCCCG1GG	ACGCIGCACG
	60791	CCCCACCCC	GCTGCGCCCC	CAIGGCACGG	CCCTGCCGA	TGCGGCCGAC	GCCGAG I'GGC
5	60761	CCCCACCGGG	CGCGGTGCCC	GCGGACGGGC	TGCCGGGTGT	GTGGCGCCGG	GGGGACCAGG
3	60841	TCTTCGCCGA	GGCCGAGGTG	GACGGACCGG	ACGGTTTCGT	GGTGCACCCC	GACCTGCTCG
	60901	ACGCGGTCTT	CTCCGCGGTC	GGCGACGGAA	GCCGCCAGCC	GGCCGGATGG	CGCGACCTGA
	60961	CGGTGCACGC	GTCGGACGCC	ACCGTACTCC	GCGCCTGCCT	CACCCGCCGC	DCCCDCCCDC
	61021	CCATGGGATT	CCCCCCTTC	CACGCCCCCC	CCCTCCCCCT	7000000000	CROCCORCO
	61091	CCCTCCCCC	CCCCCCTTC	CACGGCGCCG	GCCIGCCGGI	ACTCACCGCG	GAGGCGGTGA
10	61001	CGCTGCGGGA	GGTGGCGTCA	CCGTCCGGCT	CCGAGGAGTC	GGACGGCCTG	CACCGGTTGG
10	6114:	AGTGGCTCGC	GGTCGCCGAG	GCGGTCTACG	ACGGTGACCT	GCCCGAGGGA	CATGTCCTGA
	61201	TCACCGCCGC	CCACCCGAC	GACCCCGAGG	ACATACCCAC	CCGCGCCCAC	ACCCGCGCCA
	61261	CCCGCGTCCT	GACCGCCCTG	CAACACCACC	TCACCACCAC	CGACCACACC	CTCATCGTCC
	61321	ACACCACCAC	CGACCCCGCC	GGCGCCACCG	TCACCGGCCT	CACCCGCACC	GCCCACAACC
	61381	AACACCCCCA	CCGCATCCCC	CTCDTCCDDD	CCCACCACCC	CCACACCCCC	GCCCAGAACG
15	61441	CCCAACECCC	CACCATCCAC	CICAICGAAA	CCGACCACCC	CCACACCCCC	CICCCCTGG
1.5	61561	CCCAACTCGC	CACCCTCGAC	CACCCCCACC	TCCGCCTCAC	CCACCACACC	CTCCACCACC
	61201	CCCACCTCAC	CCCCCTCCAC	ACCACCACCC	CACCCACCAC	CACCCCCTC	AACCCCGAAC
	61561	ACGCCATCAT	CATCACCGGC	GGCTCCGGCA	CCCTCGCCGG	CATCCTCGCC	CGCCACCTGA
	61621	ACCACCCCA	CACCTACCTC	CTCTCCCGCA	CCCCACCCC	CGACGCCACC	CCCGGCACCC
	61681	ACCTCCCCTG	CGACGTCGGC	GACCCCCACC	AACTCGCCAC	CACCCTCACC	CACATCCCCC
20	61741	AACCCCTCAC	CCCCATCTTC	CACACCCCCC	CCACCCTCCA	CCACCCAMC	CHCHICCCCC
	61801	TCRCCCCCA	CCCCATCIIC	TACACCOCCO	CCACCCTCGA	CGACGGCATC	CTCCACGCCC
		TCACCCCCGA	CCGCCTCACC	ACCGTCCTCC	ACCCCAAAGC	CAACGCCGCC	TGGCACCTGC
	61861	ACCACCTCAC	CCAAAACCAA	CCCCTCACCC	ACTTCGTCCT	CTACTCCAGC	GCCGCCGCCG
	61921	TCCTCGGCAG	CCCCGGACAA	GGAAACTACG	CCGCCGCCAA	CGCCTTCCTC	GACGCCCTCG
	61981	CCACCCACCG	CCACACCCTC	GGCCAACCCG	CCACCTCCAT	CGCCTGGGGC	ATGTGGCACA
25	62041	CCACCAGCAC	CCTCACCGGA	CAACTCGACG	ACGCCGACCG	GGACCGCATC	CCCCCCCCCC
	62101	GTTTCCTCCC	GATCACGGAC	GACGAGGCCA	TCCCCCTCTA	CCACCCCCCC	COCCOCOCOCO
	62161	CCCACCACEE	CCTCATCCCC	CACCACCA	IGCGCCTCTA	CGAGGCGGCC	GTCGGCTCCG
	62101	GCGAGGACTT	CGICAIGGCC	GCCGCGATGG	ACCCGGCACA	GCCGATGACC	GGCTCCGTAC
	62221	CGCCCATCCT	GAGCGGCCTG	CGCAGGAGCG	CGCGGCGCGT	CGCCCGTGCC	GGGCAGACGT
	62281	TCGCCCAGCG	GCTCGCCGAG	CTGCCCGACG	CCGACCGCGG	CGCGGCGCTG	ACCACCCTCG
30	62341	TCTCGGACGC	CACGGCCGCC	GTGCTCGGCC	ACGCCGACGC	CTCCGAGATC	GCGCCGACCA
	62401	CGACGTTCAA	GGACCTCGGC	ATCGACTCGC	TCACCGCGAT	CGAGCTGCGC	AACCGCCTCC
	62461	CGGAGGCGAC	CGGGCTGCGG	CTGAGTGCCA	CCCTCCTCTT	CCACCACCCC	ACACCTCCC
	62521	TCCTCGCCGC	CAACCTCCCC	ACCCATCTCT	TCCCCACCCC	CORCORCE	ACACCICGGG
	62521	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CAAGCICCGC	ACCGATCIGI	TCGGCACGGC	CGTGCCCACG	CCCGCGCGGA
25	62381	CGGCACGGAC	CCACCACGAC	GAGCCACTCG	CGATCGTCGG	CATGGCGTGC	CGACTGCCCG
35	62641	GCGGGGTCGC	CTCGCCGGAG	GACCTGTGGC	AGCTCGTGGC	GTCCGGCACC	GACGCGATCA
	62701	CCGAGTTCCC	CACCGACCGC	GGCTGGGACA	TCGACCGGCT	GTTCGACCCG	GACCCGGACG
	62761	CCCCCGGCAA	GACCTACGTC	CGGCACGGCG	GCTTCCTCGC	CGAGGCCGCC	GGCTTCGATG
	62821	CCGCGTTCTT	CGGCATCAGC	CCGCGCGAGG	CACGGGCCAT	GGACCCGCAG	CAGCGCGTCA
	62881	TCCTCGAAAC	CTCCTGCCAC	CCCTTCCACA	ACCCCCCAT	CCTCCCCCAC	ROCCTCCCCC
40	62001	CCACCCACAC	CICCIGGGAG	AMCCCCCCC	MCGCGGGCA1	CGIGCCGGAC	ACGCIGCGCG
70	62341	GCAGCGACAC	CGGCGTGTTC	ATGGGCGCGT	TCTCCCATGG	GTACGGCGCC	GGCGTCGACC
	63001	TGGGCGGGTT	CGGCGCCACC	GCCACGCAGA	ACAGCGTGCT	CTCCGGCCGG	TTGTCGTACT
	63061	TCTTCGGCAT	GGAGGGCCCG	GCCGTCACCG	TCGACACCGC	CTGCTCGTCG	TCGCTGGTCG
	63121	CCCTGCACCA	GGCGGCACAG	GCGCTGCGGA	CTGGAGAATG	CTCGCTGGCG	CTCGCCGGCG
	63181	GTGTCACGGT	GATGCCCACC	CCGCTGGGCT	ACGTCGAGTT	CTGCCGCCAG	CGGGGACTCG
45	63241	CCCCGACGG	CCGTTGCCAG	CCCTTCCCG	AAGGCGCCGA	CGGCACGAGC	TTCTCCCACC
	63301	GCGCCGGCGT	TCTTCTCCTC	CACCCCCTCT	CCCACCCCA	CCCCAACCCA	Character
	63361	TCCCCCCCCT	CCCCCCCCC	GAGCGGCICI	CCGACGCCGA	GCGCAACGGA	CACACCGICC
	03301	TCGCGGTCGT	CCGCTCCTCC	GCCGTCAACC	AGGACGGCGC	CTCCAACGGC	ATCTCCGCAC
		CCAACGCCC					
	63481	CCGCCGACGT	GGACGTGGTG	GAGGCCCACG	GCACCGGAAC	CCCGCTGGGC	GACCCGATCG
50	63541	AGGCACAGGC	CATCATCGCG	ACCTACGGCC	AGGACCGCGA	CACACCGCTC	TACCTCGGTT
		CGGTCAAGTC					
		TGGTCATGGC					
		CGCATGTGGA					
6.5		ACGCGGGACG					
55		ACGTGATCCT					
	63901	TGCCGTTGCC	GGTGTCGGCT	CGGAGTGAGG	CGAGTCTGCG	GGGGCAGGTG	GAGCGGCTGG
		AGGGGTATCT					
		GTGCTGTCTT					
60	64747	TGGATCAGCC	CARCOLIG	TICGICITIC	CCGGGCAGGG	TGCTCAGTGG	GIGGGCATGG
60		GTGTGGAGTT					
		CGTTGTTGCC					
	64261	AGCGGGTGGA	GGTGGTCCAG	CCGGCCAGCT	GGGCGGTCGC	GGTCAGCCTG	GCCGCACTGT
	64321	GGCAGGCCCA	CGGGGTCGTA	CCCGACGCGG	TGATCGGACA	CTCCCAGGGC	GAGATCGCGG
	64381	CGGCGTGCGT	GGCCGGGGCC	CTCAGCCTTC	AGGACGCCGC	CCGCGTGGTG	GCCTTGCGCA
				516/1666116		2200010010	GCC11GCGCH

	64441	GCCAGGTCAT	CGCGGCGCGA	CTGGCCGGGC	GGGGAGCGAT	GGCTTCGGTG	GCATTGCCGG
	64501	CCGGTGAGGT	CGGTCTGGTC	GAGGGCGTGT	GGATCGCGGC	GCGTAACGGC	CCCGCCTCGA
	64561	CAGTCGTGGC	CGGCGAGCCG	TOGGOGGTGG	AGGACGTGGT	GACGCGGTAT	CACACCCAAC
	64621	CCCTCCCTCC	COCCACCA	6666666666	ACCOCACO	GACGCGGTAT	GAGACCGAAG
_	64621	GCGTGCGAGT	GCGICGIAIC	GCCGTCGACT	ACGCCICCCA	CACGCCCCAC	GTGGAAGCCA
5	64681	TCGAGGACGA	ACTCGCTGAG	GTACTGAAGG	GAGTTGCAGG	GAAGGCCGCG	TCGGTGGCGT
	64741	GGTGGTCGAC	CGTGGACAGC	GCCTGGGTGA	CCGAGCCGGT	GGATGAGAGT	TACTGGTACC
	64801	GGAACCTGCG	TOGOCOCCTO	GCGCTGGACG	CGGCGGTGGC	GGAGCTGGAC	GGGTCCGTGT
	64861	TCGTGGAGTG	CACCCCCCAT	CCCCTCCTCC	TGCCGGCGAT	CCAACACCCC	CACACCCTCC
10		CGTCGTTGCG					
10		GGACCCTGGG					
	65041	TCGATCTGCC	CACCTACGCG	TTCGAGCGCC	GGCGCTACTG	GCTGGAAGCG	GCCGGTGCCA
		CCGACCTGTC					
		CACTACCCGC					
		CCTGGCTGGC					
15							
IJ		AGCTGGTCAT					
		AATCCCCCCT					
	65401	CTGACGAGGC	CGGACGGCGG	CGAGTGACCG	TCCACGCCCG	CACCGAAGGC	ACCGGCAGCT
	65461	GGACCCGGCA	CGCCAGCGGC	ACCCTGACCC	CCGACACCCC	CGACACCCCC	AACGCTTCCG
		GTGTTGTCGG					
20		CCTCGGAGTT					
20							
		GAATGCGGGC					
		ACCGTGCCGC					
	65761	AGAGCGGCAG	CCTGCTCATG	CTGGAATCGG	ACGGCGAGCA	GAGCGTGCAA	CTGCCGTTCT
	65821	CCTGGCACGG	CGTCCGGTTC	CACGCGACGG	GCGCGACCAT	GCTGCGGGTG	GCGGTCGTAC
25		CGGGCCCGGA					
		TCGACGCGCT					
		GGGTCGGGTG					
		TGACGCTGCG					
	66121	TTCTCGACGC	GCTGCTCCGG	GCCGACCGGC	CGGTGATCTT	CCAGGTGACC	GGTGGCCTCG
30	66181	CCGCCAAGGC	GGCCGCAGGC	CTGGTCCGCA	CCGCTCAGAA	CGAGCAGCCC	GGCCGCTTCT
	66241	TCCTCGTCGA	AACGGACCCG	GGAGAGGTCC	TGGACGGCGC	GAAGCGCGAC	GCGATCGCGG
		CACTCGGCGA					
		GGGCCACGCC					
25		CCGGTTCCCT					
35		CCGGCGAGGT					
	66541	CGCTCGGTGT	GGTCGCCGAT	GCGCGTCCGC	TCGGCAGCGA	GGCCGCGGGT	GTCGTCCTGG
	66601	AGACCGGCCC	CGGTGTGCAC	GACCTGGCGC	CCGGCGACCG	GGTCCTGGGG	ATGCTCGCGG
	66661	GCGCCTTCGG	ACCGGTCGCG	ATCACCGACC	GGCGGCTGCT	CGGCCGGATG	CCGGACGGCT
		GGACGTTCCC					
40		TCGACCTGGC					
70							
		TCGGCGCGGC					
		GCGCCGCGAA					
	66961	CCGCGTTCGC	CGACGCGTTC	CCGCCGGTCG	ATGTCGTGCT	CAACTCGCTC	ACCGGTGAAT
	67021	TCCTCGACGC	GTCCGTCGGC	CTGCTCGCGG	CGGGTGGCCG	GTTCATCGAG	ATGGGGAAGA
45	67081	CGGACATCCG	GCACGCCGTC	CAGCAGCCGT	TCGACCTGAT	GGACGCCGGC	CCCGACCGGA
		TGCAGCGGAT					
		CGGTCCACGC					
		GTCACACCGG					
60		TCATCACCGG					
50		ACACCTACCT					
	67441	GCGACGTCGG	CGACCCCCAC	CAACTCGCCA	CCACCCTCGC	CCGCATCCCC	CAACCCCTCA
	67501	CCGCCGTCTT	CCACACCGCC	GGAACCCTCG	ACGACGCCCT	GCTCGACAAC	CTCACCCCCG
		ACCGCGTCGA					
		CCCGCGACAC					
55	67621	CCCGCGACAC	COACCICOCC	CECTICGICG	NOCCCETTOCCT	CCACCCCCTC	CICAIGGCA
,,		GCCCGGGGCA					
		GCCGTGCGCA					
		CGCTCACCGC					
	67861	CGTTGAGCGC	CGCGGACGGC	ATGCGGCTGT	TCGACGCGGC	GACGCGTACC	CCGGAACCGG
	67921	TCGTCGTCGC	GACGACCGTC	GACCTCACCC	AGCTCGACGG	CGCCGTCGCG	CCGTTGCTCC
60	67981	GCGGTCTGGC	CCCCCACCCC	CCCCCCCCC	CGCGCACGGT	CGCCCGCAAC	GCCGGCGAAG
00	60041	ACCCCCTCCCC	CCTCCCTCTT	CCCCCCCC	CCCCCCCC	GCAGCGCCCC	ATCATCCALC
	00041	AGCCCCTGGC	CGIGCGICTI	GCCGGGCGTA	TOGGCCGCCGA	COMPOSITION	ATCATO AGG
	68101	AGGTCGTGCT	CCGCCACGCG	GCCGCGGTCC	TUGUGTACGG	GUTGGGCGAC	CGCGTGGCGG
	68161	CGGACCGTCC	GTTCCGCGAG	CTCGGTTTCG	ATTCGCTGAC	CGCGGTCGAC	CTGCGCAATC
	68221	GGCTCGCGGC	CGAGACGGGG	CTGCGGCTGC	CGACGACGCT	GGTGTTCAGC	CACCCGACGG

	68281	CGGAGGCGCT	CACCGCCCAC	CTGCTCGACC	TGATCGACGC	TCCCACCGCC	CGGATCGCCG
	68341	GGGAGTCCCT	GCCCGCGGTG	ACGGCCGCTC	CCGTGGCGGC	CGCGCGGAC	CAGGACGAGG
	68401	CGATCGCCAT	CGTGGCGATG	GCGTGCCGCC	TOCCOCCTOC	TCTCACCTCC	CACCACCACC
	69461	TCTCCCCCCT	COTOGCOATO	666166666	100000100	TGTGACGTCG	CCCGAGGACC
5	60531	TGTGGCGGCT	CGTCGAGTCC	GGCACCGACG	CGATCACCAC	GCCTCCTGAC	GACCGCGGCT
,	68521	GGGACGTCGA	CGCGCTGTAC	GACGCGGACC	CGGACGCGGC	CGGCAAGGCG	TACAACCTGC
	68581	GGGGCGGTTA	CCTGGCCGGG	GCGGCGGAGT	TCGACGCGGC	GTTCTTCGAC	ATCAGTCCGC
	68641	GCGAAGCGCT	CGGCATGGAC	CCGCAGCAAC	GCCTGCTGCT	CGAAACGGCG	TGGGAGGCGA
	68701	TCGAGCGCGG	CCGGATCAGT	CCGGCGTCGC	TCCGCGGCCG	GGAGGTCGGC	CTCTATCTCC
	68761	GTGCGGCCGC	GCAGGGCTAC	GGGCTGGCCC	CCCACCACAC	CCACCCCAC	CCCAMCACC
10	69921	CTCCTTCCAC	CACCOCCTAC	TOGGC 1 GGGCG	CCGAGGACAC	CGAGGGCCAC	GCGATCACCG
10	60021	GTGGTTCCAC	GAGCCTGCTG	TCCGGACGGC	TGGCGTACGT	GCTCGGGCTG	GAGGGCCCGG
	68881	CGGTCACCGT	GGACACGGCG	TGCTCGTCGT	CTCTGGTCGC	GCTGCATCTG	GCGTGCCAGG
	68941	GGCTGCGCCT	GGGCGAGTGC	GAACTCGCTC	TGGCCGGAGG	GGTCTCCGTA	CTGAGTTCGC
	69001	CGGCCGCGTT	CGTGGAGTTC	TCCCGCCAGC	GCGGGCTCGC	GGCCGACGGG	CGCTGCAAGT
	69061	CGTTCGGCGC	GGGCGCGGAC	GGCACGACGT	GGTCCGAGGG	CGTGGGCGTG	CTCGTACTGG
15	69121	AACGGCTCTC	CGACGCCGAG	CGGCTCGGGC	ACACCGTGCT	CCCCCTCCTC	CCCCCACCC
	69191	CCGTCACGTC	CCACCCCCC	TCCNACCCC	MCACCGIGCI	CGCCGTCGTC	CGCGGCAGCG
	60241	CCGTCACGTC	COACGGCGCC	TCCAACGGCC	TCACCGCGCC	GAACGGGCTC	TCGCAGCAGC
	69241	GGGTCATCCG	GAAGGCGCTC	GCCGCGGCCG	GGCTGACCGG	CGCCGACGTG	GACGTCGTCG
	69301	AGGGGCACGG	CACCGGCACC	CGGCTCGGCG	ACCCGGTCGA	GGCGGACGCG	CTGCTCGCGA
	69361	CGTACGGGCA	GGACCGTCCG	GCACCGGTCT	GGCTGGGCTC	GCTGAAGTCG	AACATCGGAC
20	69421	ATGCCACGGC	CGCGGCCGGT	GTCGCGGGCG	TCATCAAGAT	GGTGCAGGCG	ATCGGCGCGG
	69481	GCACGATGCC	GCGGACGCTG	CATGTGGAGG	AGCCCTCGCC	CGCCGTCGAC	TOGACCACCG
	69541	GACAGGTGTC	CCTGCTCGGC	TCCAACCGGC	CCTGGCCCGA	CCACCACCCT	CCCCCCCCC
	69601	CCCCCCTCTC	CCTGCTCGGC	CECACCCCC	CCTGGCCGGA	CGACGAGCGI	CCGCGCGGG
	69661	CGGCCGTCTC	CGCGTTCGGG	CICAGCGGGA	CGAACGCGCA	CGTCATCCTG	GAACAGCACC
25	09001	GTCCGGCGCC	CGTGGCGTCC	CAGCCGCCCC	GGCCGCCCCG	TGAGGAGTCC	CAGCCGCTGC
25	69721	CGTGGGTGCT	CTCCGCGCGG	ACTCCGGCCG	CGCTGCGGGC	CCAGGCGGCC	CGGCTGCGCG
	69781	ACCACCTCGC	GGCGGCACCG	GACGCGGATC	CGTTGGACAT	CGGGTACGCG	CTGGCCACCA
	69841	GCCGCGCCCA	GTTCGCCCAC	CGTGCCGCGG	TCGTCGCCAC	CACCCCGGAC	GGATTCCGTG
	69901	CCGCGCTCGA	CGGCCTCGCG	GACGGGGGGG	AGGCGCCCGG	AGTCGTCACC	GGGACCGCTC
	69961	AGGAGCGGCG	CCTCCCCTTC	CTCTTCGACG	GCCAGGGGG	CCACCCCCC	CCAATCCCCC
30	70021	GCGAGCTCCA	CCCCCCCTTC	CCCCTCTTCC	CCCCCCCCC	CCACCACCE	TOGGE COOR
50	70021	TCCCCC A CCA	CCGCCGGTTC	CCCGTCTTCG	CCGCCGCGIG	GGACGAGGTC	TCCGACGCGT
	70081	TCGGCAAGCA	CCTCAAGCAC	TCCCCCACGG	ACGTCTACCA	CGGCGAACAC	GGCGCTCTCG
	/0141	CCCATGACAC	CCTGTACGCC	CAGGCCGGCC	TGTTCACGCT	CGAAGTGGCG	CTGCTGCGGC
	70201	TGCTGGAGCA	CTGGGGGGTG	CGGCCGGACG	TGCTCGTCGG	GCACTCCGTC	GGCGAGGTGA
	70261	CCGCGGCGTA	CGCGGCGGGG	GTGCTCACCC	TGGCGGACGC	GACGGAGTTG	ATCGTGGCCC
35	70321	GGGGGCGGC	GCTGCGGGCG	CTGCCGCCCG	GGGCGATGCT	CGCCGTCGAC	GGAAGCCCGG
	70381	CGGAGGTCGG	CGCCGCACG	GATCTGGACA	TOGOCGOGGT	CAACGGCCCG	TCCCCCCTCC
		TGCTCGCCGG					
		GGCGCACGAA					
40		TCGACGGCTT					
40		TGTCCACGAC					
		GCCATGCGCG					
	70741	TCACCACGTT	CGTGGCCGTC	GGCCCCTCCG	GCTCCCTGGC	GTCGGCCGCG	GCGGAGAGCG
	70801	CCGGGGAGGA	CGCCGGGACC	TACCACGCGG	TGCTGCGCGC	CCGGACCGGT	GAGGAGACCG
		CGGCGCTGAC					
45		TACIGGCCGG					
• •							
		GGCTGGCCCC					
		AGTCCGAGCC					
	71101	TCGGCGTCAC	GGACCCCGCC	GACGTCGATG	CGGAAGCGAC	GTTCTTCGCG	CTCGGTTTCG
	71161	ACTCACTGGC	GGTGCAGCGG	CTGCGCAACC	AGCTCGCCTC	GGCAACCGGG	CTGGACCTGC
50	71221	CGGCGGCCGT	CCTGTTCGAC	CACGACACCC	CGGCCGCGCT	CACCGCGTTC	CTCCAGGACC
		GGATCGAGGC					
		TCTCGCTCCT					
		CGGAGCGTGC					
c		GATGAGCACC					
55	71521	GGACGGTCAC	CGCGCCATCC	TGGAGAGCGG	CACGGTGGGT	TCGTTCGACC	TGTTCGGCGT
	71581	CAAGCACTGG	CTGGTCGCCG	CCGCCGAGGA	CGTCAAGCTG	GTCACCAACG	ATCCGCGGTT
	71641	CAGCTCGGCC	GCGCCGTCCG	AGATGCTGCC	CGACCGGCGG	CCCGGCTGGT	TCTCCGGGAT
		GGACTCACCG					
	•	GGCGCGCAAG					
60							
VV		GGCCGCGGGA					
		CATCAACGCG					
		CGACATCACC					
	72001	GCACGCGCTG	CGGCTGGTCC	GCGCGAAGCG	TGACGAGCGG	GGCGAGGACC	TGCTGCACCG
		GCTGGCCTCG					
							,

		CGCGACGCTG					
	72181	CGCACTGCTC	AGCCACCCCG	AGCAGCAGGC	GGCGCTGCGC	GCGCGCCCGG	AGCTGGTCGA
	72241	CAACGCGGTC	GAGGAGATGC	TCCGTTTCCT	GCCCGTCAAC	CAGATGGGCG	TACCGCGCGT
		CTGTGTCGAG					
5		GCTCTACTCG					
•	72421	GACGCGCCCG	CTCCACCCCA	ACTTCCCCTT	CCCCCACCCC	ATTCACAACT	CTCCCATGI
	72421	CCRCRMCCCC	CIGGREEN	ACTICGCGTT	COGCCACGGC	ATTCACAAGT	GICCCGGCCA
		GCACATCGCC					
		CGTCCGGCTG					
		GCTGCGGGTC					
10		GGGACGACGG					
	72721	ACCCAGCGCT	GCTACCTGCG	CCACGGTGTC	GACCTGCGCC	CGGGGGACGT	GGTGTTCGAC
	72781	GTCGGCGCGA	ACATCGGCAT	GTTCACGCTT	TTCGCGCATC	TGGAGTGTCC	TGGTGTGACC
		GTGCACGCCT					
		CACGGCATCC					
15		ATGACCTTCT					
		ACGGAGCTGT					
		ATGCTCGCGC					
		GACGTCATCG					
20		AGCGAACGGC					
20		GTCGCGGAGG					
		CATGGCTTCA					
		GTCGCCGCGC					
	73441	GCCGCGGTGC	GGACGGCGGC	TCAGCCGGCG	TCGGACAGTT	CCTTGGGCAG	TTGCTGACGG
	73501	CCCTTCACCC	CCAGCTTGCG	GAACACGTTG	GTGAGGTGCT	GTTCCACCGT	GCTGGAGGTG
25		ACGAACAGCT					
		CGCCGCTCCG					
		TCCGCGTCCG					
		GCGAGGTGCC					_
		CACGCTTCGC					
30		AGCAGATCGG					
50							
		TGCACCCGCA					
		ATGAGCCTCA					
		ACCCGCCACA					
		TCCCGGAACG					
35		GCCCAGACCA					
	74221	AGCCACCGCT	CCGCCCGGTC	CAGGTCGCCC	AGTCGGATCG	CGGCGGCCAC	GGTGCTGCTC
	74281	AGCGGCAATG	CGGCGGCCAT	CCCCCAGGAG	GGCACGACCC	GGGGGGCGAG	CGCGGCCTCG
	74341	CCGCATTCGA	CGGCGGCGGT	CAGGTCGCCG	CGGCGCAGCG	CGGCCTCGGC	GCGGAACCCC
	74401	GCGTGGACCG	CCTCGTCGGC	CGGGGTCCGC	ATGTTGTCGT	CACCGGCCAG	CTTGTCGACC
40		CAGGACTGGA					
		GTGGTCCGGT					
		TGTTCGGACC					
		ACGGCTCCGG					
		TCGGCCGCGC					
45		CCCTGCTCGC					
73							
		CGCCCGTCCA					
		TCCCGCGACG					
		CGCTCGATGG					
		CGGTAGGCGA					
50		CGCGCGCGT					
		TGGTGGCGGG					
	75181	TCGTGCAGGC	CACGCCGCTC	GGCGGCGGAG	AGGTCGTCGA	GTACGACGGA	GCGGGCCGCG
	75241	GGGTGCGGGA	ACCGCCCTTC	CCGCAGCAGC	CGCCCCTCGA	CCAGCTGTTC	GTGGGCCTGC
		TCGACCGCCT					
55		CCGAGCACGG					
		CCGAGGTAGG					
		GTCCGTGCCT					
		GCCCGGAACG					
60		AGTTCGGTGG					
60		CTCAGCAGTG					
		ACGATGGCGA					
		GGCGCGTCGG					
		GTCAGCACCG					
	75901	TCGCACGATG	CCGTCAGCCG	GACCAGCTCC	GGTGTCCGGG	CGGCCAGCTC	GGGCTGGTCG

	75961	AGGAGCTGGC	CGAGCATGCC	GTACGGCAGG	GCCCGCTCCT	CCATGGAGCA	CACCGCGCGA
	76021		AGCCGGCCTT				GCCGCAGGCG
	76081	ATCGGCCCGG	TGACGGCGGC	GACGACGCCC	CGCCGCCCC	CCGCTCGGGT	GAGCGCCCGG
	76141	TGGAGGGAAC	CGAACTCGTC	ATCGCGGGCG	ATCAGGTCTG	GGGGAGATAA	GCGCGCTATC
5	76201	ACGAATGGAA	CTACCTCGCG	ACCGTCGTGG	AAACCCATAG	GCATCACATG	GCTTGTTGAT
	76261	CTGTACGGCT	GTGATTCAGC	CTGGCGGGAT	GCTGTGCTAC	AGATGGGAAG	ATGTGATCTA
	76321	GGGCCGTGCC	GTTCCCTCAG	GAGCCGACCG	CCCCGGCGC	CACCCGCCGT	ACCCCCTGGG
	76381	CCACCAGCTC	GGCGACCCGC	TCCTGGTGGT	CGACGAGGTA	GAAGTGCCCG	CCGGGGAAGA
	76441	CCTCCACCGT	GGTCGGCGCG	GTCGTGTGCC	CGGCCCAGGC	GTGGGCCTGC	TCCACCGTCG
10	76501	TCTTCGGATC	GTCGTCACCG	ATGCACACCG	TGATCGGCGT	CTCCAGCGGC	GGCGCGGGCT
	76561	CCCACCGGTA	CGTCTCCGCC	GCGTAGTAGT	CCGCCCGCAA	CGGCGCCAGG	ATCAGCGCGC
	76621	GCATTTCGTC	GTCCGCCATC	ACATCGGCGC	TCGTCCCGCC	GAGGCCGATG	ACCGCCGCCA
	76681	GCAGCTCGTC	GTCGGACGCG	AGGTGGTCCT	GGTCGGCGCG	CGGCTGCGAC	GGCGCCCGCC
	76741	GGCCCGAGAC	GATCAGGTGC	GCCACCGGGA	GCCGCTGGGC	CAGCTCGAAC	GCGAGTGTCG
15	76801	CGCCCATGCT	GTGGCCGAAC	AGCACCAGCG	GACGGTCCAG	CCCCGGCTTC	AACGCCTCGG
	76861	CCACGAGGCC	GGCGAGAACA	CGCAGGTCGC	GCACCGCCTC	CTCGTCGCGG	CGGTCCTGGC
	76921	GGCCGGGGTA	CTGCACGGCG	TACACGTCCG	CCACCGGGGC	GAGCGCACGG	GCCAGCGGAA
	76981	GGTAGAACGT	CGCCGATCCG	CCGGCGTGGG	GCAGCAGCAC	CACCCGTACC	GGGGCCTCGG
	77041	GCGTGGGGAA	GAACTGCCGC	AGCCAGAGTT	CCGAGCTCAC	CGCACCCCCT	CGGCCGCGAC
20	77101	CTGGGGAGCC	CGGAACCGGG	TGATCTCGGC	CAAGTGCTTC	TCCCGCATCT	CCGGGTCGGT
	77161	CACGCCCCAT	CCCTCCTCCG	GCGCCAGACA	GAGGACGCCG	ACTTTGCCGT	TGTGCACATT
	77221	GCGATGCACA	TCGCGCACCG	CCGACCCGAC	GTCGTCGAGC	GGGTAGGTCA	CCGACAGCGT
	77281	CGGGTGCACC	ATCCCCTTGC	AGATCAGGCG	GTTCGCCTCC	CACGCCTCAC	GATAGTTCGC
	77341	GAAGTGGGTA	CCGATGATCC	GCTTCACGGA	CATCCACAGG	TACCGATTGT	CAAAGGCGTG
25	77401		GAGGTTGACG				TCACGTAGAC
	77461	ACTCGCGCCG	AACGTCGCGC	GCCCCGGGTG	CTCGAACACG	ATGTCGGGAT	CGTCACCGCC
	77521	GGTCAGCTCC	CGGATC				

Those of skill in the art will recognize that, due to the degenerate nature of the genetic code, a variety of DNA compounds differing in their nucleotide sequences can be used to encode a given amino acid sequence of the invention. The native DNA sequence encoding the FK-520 PKS of *Streptomyces hygroscopicus* is shown herein merely to illustrate a preferred embodiment of the invention, and the present invention includes DNA compounds of any sequence that encode the amino acid sequences of the polypeptides and proteins of the invention. In similar fashion, a polypeptide can typically tolerate one or more amino acid substitutions, deletions, and insertions in its amino acid sequence without loss or significant loss of a desired activity. The present invention includes such polypeptides with alternate amino acid sequences, and the amino acid sequences shown merely illustrate preferred embodiments of the invention.

The recombinant nucleic acids, proteins, and peptides of the invention are many and diverse. To facilitate an understanding of the invention and the diverse compounds and methods provided thereby, the following general description of the FK-520 PKS genes and modules of the PKS proteins encoded thereby is provided. This general description is followed by a more detailed description of the various domains and modules of the FK-520 PKS contained in and encoded by the compounds of the invention. In this description, reference to a heterologous PKS refers to any PKS other than the FK-520 PKS. Unless otherwise indicated, reference to a PKS includes reference

30

35

40

to a portion of a PKS. Moreover, reference to a domain, module, or PKS includes reference to the nucleic acids encoding the same and vice-versa, because the methods and reagents of the invention provide or enable one to prepare proteins and the nucleic acids that encode them.

The FK-520 PKS is composed of three proteins encoded by three genes designated fkbA, fkbB, and fkbC. The fkbA ORF encodes extender modules 7 - 10 of the PKS. The fkbB ORF encodes the loading module (the CoA ligase) and extender modules 1 - 4 of the PKS. The fkbC ORF encodes extender modules 5 - 6 of the PKS. The fkbP ORF encodes the NRPS that attaches the pipecolic acid and cyclizes the FK-520 polyketide.

The loading module of the FK-520 PKS includes a CoA ligase, an ER domain, and an ACP domain. The starter building block or unit for FK-520 is believed to be a dihydroxycyclohexene carboxylic acid, which is derived from shikimate. The recombinant DNA compounds of the invention that encode the loading module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of methods and in a variety of compounds. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 loading module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for the loading module of the heterologous PKS is replaced by the coding sequence for the FK-520 loading module, provides a novel PKS coding sequence. Examples of heterologous PKS coding sequences include the rapamycin, FK-506, rifamycin, and avermectin PKS coding sequences. In another embodiment, a DNA compound comprising a sequence that encodes the FK-520 loading module is inserted into a DNA compound that comprises the coding sequence for the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the loading module coding sequence is utilized in conjunction with a heterologous coding sequence. In this embodiment, the invention provides, for example, either replacing the CoA ligase with a different CoA ligase, deleting the ER, or replacing the ER with a different ER. In addition, or alternatively, the ACP can be replaced by another ACP. In similar fashion, the corresponding domains in another loading or extender module can be replaced by one or more domains of the FK-520 PKS. The resulting heterologous loading module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide.

5

10

15

20

25

30

The first extender module of the FK-520 PKS includes a KS domain, an AT domain specific for methylmalonyl CoA, a DH domain, a KR domain, and an ACP domain. The recombinant DNA compounds of the invention that enc de the first extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 first extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the first extender module of the FK-520 PKS or the latter is merely added to coding sequences for modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the first extender module of the FK-520 PKS is inserted into a DNA compound that comprises the remainder of the coding sequence for the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, all or only a portion of the first extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2hydroxymalonyl CoA specific AT; deleting either the DH or KR or both; replacing the DH or KR or both with another DH or KR; and/or inserting an ER. In replacing or inserting KR, DH, and ER domains, it is often beneficial to replace the existing KR, DH, and ER domains with the complete set of domains desired from another module. Thus, if one desires to insert an ER domain, one may simply replace the existing KR and DH domains with a KR, DH, and ER set of domains from a module containing such domains. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a gene for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous first extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the first extender module of the FK-520 PKS.

In an illustrative embodiment of this aspect of the invention, the invention provides recombinant PKSs and recombinant DNA compounds and vectors that encode

10

15

20

25

30

such PKSs in which the KS domain of the first extender module has been inactivated. Such constructs are especially useful when placed in translational reading frame with the remaining modules and domains of an FK-520 or FK-520 derivative PKS. The utility of these constructs is that host cells expressing, or cell free extracts containing, the PKS encoded thereby can be fed or supplied with N-acylcysteamine thioesters of novel precursor molecules to prepare FK-520 derivatives. See U.S. patent application Serial No. 60/117,384, filed 27 Jan. 1999, and PCT patent publication Nos. US97/02358 and US99/03986, each of which is incorporated herein by reference.

The second extender module of the FK-520 PKS includes a KS, an AT specific for methylmalonyl CoA, a KR, an inactive DH, and an ACP. The recombinant DNA compounds of the invention that encode the second extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 second extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the second extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the second extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, all or a portion of the second extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting the KR and/or the inactive DH; replacing the KR with another KR; and/or inserting an active DH or an active DH and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous second extender module coding sequence can be utilized in conjunction with a coding sequence from a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding

domains in a module of a heterologous PKS can be replaced by one or more domains of the second extender module of the FK-520 PKS.

The third extender module of the FK-520 PKS includes a KS, an AT specific for malonyl CoA, a KR, an inactive DH, and an ACP. The recombinant DNA compounds of the invention that encode the third extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 third extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the third extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the third extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, all or a portion of the third extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the malonyl CoA specific AT with a methylmalonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting the KR and/or the inactive DH; replacing the KR with another KR; and/or inserting an active DH or an active DH and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous third extender module coding sequence can be utilized in conjunction with a coding sequence from a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the third extender module of the FK-520 PKS.

The fourth extender module of the FK-520 PKS includes a KS, an AT that binds ethylmalonyl CoA, an inactive DH, and an ACP. The recombinant DNA compounds of the invention that encode the fourth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In

5

10

15

20

25

30

one embodiment, a DNA compound comprising a sequence that encodes the FK-520 fourth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the fourth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the fourth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the remainder of the coding sequence for the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the fourth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the ethylmalonyl CoA specific AT with a malonyl CoA, methylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; and/or deleting the inactive DH, inserting a KR, a KR and an active DH, or a KR, an active DH, and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, a PKS for a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous fourth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the fourth extender module of the FK-520 PKS.

As illustrative examples, the present invention provides recombinant genes, vectors, and host cells that result from the conversion of the FK-506 PKS to an FK-520 PKS and vice-versa. In one embodiment, the invention provides a recombinant set of FK-506 PKS genes but in which the coding sequences for the fourth extender module or at least those for the AT domain in the fourth extender module have been replaced by those for the AT domain of the fourth extender module of the FK-520 PKS. This recombinant PKS can be used to produce FK-520 in recombinant host cells. In another embodiment, the invention provides a recombinant set of FK-520 PKS genes but in which the coding sequences for the fourth extender module or at least those for the AT domain in the fourth extender module have been replaced by those for the AT domain of

5

10

15

20

25

the fourth extender module of the FK-506 PKS. This recombinant PKS can be used to produce FK-506 in recombinant host cells.

Other examples of hybrid PKS enzymes of the invention include those in which the AT domain of module 4 has been replaced with a malonyl specific AT domain to provide a PKS that produces 21-desethyl-FK520 or with a methylmalonyl specific AT domain to provide a PKS that produces 21-desethyl-21-methyl-FK520. Another hybrid PKS of the invention is prepared by replacing the AT and inactive KR domain of FK-520 extender module 4 with a methylmalonyl specific AT and an active KR domain, such as, for example, from module 2 of the DEBS or oleandolide PKS enzymes, to produce 21-desethyl-21-methyl-22-desoxo-22-hydroxy-FK520. The compounds produced by these hybrid PKS enzymes are neurotrophins.

The fifth extender module of the FK-520 PKS includes a KS, an AT that binds methylmalonyl CoA, a DH, a KR, and an ACP. The recombinant DNA compounds of the invention that encode the fifth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 fifth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the fifth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS. In another embodiment, a DNA compound comprising a sequence that encodes the fifth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the fifth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting any one or both of the DH and KR; replacing any one or both of the DH and KR with either a KR and/or DH; and/or inserting an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous fifth extender module coding sequence

10

15

20

25

30

can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the fifth extender module of the FK-520 PKS.

In an illustrative embodiment, the present invention provides a set of recombinant FK-520 PKS genes in which the coding sequences for the DH domain of the fifth extender module have been deleted or mutated to render the DH non-functional. In one such mutated gene, the KR and DH coding sequences are replaced with those encoding only a KR domain from another PKS gene. The resulting PKS genes code for the expression of an FK-520 PKS that produces an FK-520 analog that lacks the C-19 to C-20 double bond of FK-520 and has a C-20 hydroxyl group. Such analogs are preferred neurotrophins, because they have little or no immunosuppressant activity. This recombinant fifth extender module coding sequence can be combined with other coding sequences to make additional compounds of the invention. In an illustrative embodiment. the present invention provides a recombinant FK-520 PKS that contains both this fifth extender module and the recombinant fourth extender module described above that comprises the coding sequence for the fourth extender module AT domain of the FK-506 PKS. The invention also provides recombinant host cells derived from FK-506 producing host cells that have been mutated to prevent production of FK-506 but that express this recombinant PKS and so synthesize the corresponding (lacking the C-19 to C-20 double bond of FK-506 and having a C-20 hydroxyl group) FK-506 derivative. In another embodiment, the present invention provides a recombinant FK-506 PKS in which the DH domain of module 5 has been deleted or otherwise rendered inactive and thus produces this novel polyketide.

The sixth extender module of the FK-520 PKS includes a KS, an AT specific for methylmalonyl CoA, a KR, a DH, an ER, and an ACP. The recombinant DNA compounds of the invention that encode the sixth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 sixth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the sixth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the sixth

5

10

15

20

25

30

extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the sixth extender module coding sequence 5 is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2hydroxymalonyl CoA specific AT; deleting any one, two, or all three of the KR, DH, and ER; and/or replacing any one, two, or all three of the KR, DH, and ER with another KR. 10 DH, and ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous sixth extender module coding 15 sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the sixth extender module of the FK-520 PKS.

In an illustrative embodiment, the present invention provides a set of recombinant . 20 FK-520 PKS genes in which the coding sequences for the DH and ER domains of the sixth extender module have been deleted or mutated to render them non-functional. In one such mutated gene, the KR, ER, and DH coding sequences are replaced with those encoding only a KR domain from another PKS gene. This can also be accomplished by simply replacing the coding sequences for extender module six with those for an 25 extender module having a methylmalonyl specific AT and only a KR domain from a heterologous PKS gene, such as, for example, the coding sequences for extender module two encoded by the eryAl gene. The resulting PKS genes code for the expression of an FK-520 PKS that produces an FK-520 analog that has a C-18 hydroxyl group. Such analogs are preferred neurotrophins, because they have little or no immunosuppressant 30 activity. This recombinant sixth extender module coding sequence can be combined with other coding sequences to make additional compounds of the invention. In an illustrative embodiment, the present invention provides a recombinant FK-520 PKS that contains both this sixth extender module and the recombinant fourth extender module described above that comprises the coding sequence for the fourth extender module AT domain of 35 the FK-506 PKS. The invention also provides recombinant host cells derived from FK-

506 producing host cells that have been mutated to prevent production of FK-506 but that express this recombinant PKS and so synthesize the corresponding (having a C-18 hydroxyl group) FK-506 derivative. In another embodiment, the present invention provides a recombinant FK-506 PKS in which the DH and ER domains of module 6 have been deleted or otherwise rendered inactive and thus produces this novel polyketide.

The seventh extender module of the FK-520 PKS includes a KS, an AT specific for 2-hydroxymalonyl CoA, a KR, a DH, an ER, and an ACP. The recombinant DNA compounds of the invention that encode the seventh extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 seventh extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the seventh extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the seventh extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion or all of the seventh extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the 2-hydroxymalonyl CoA specific AT with a methylmalonyl CoA, ethylmalonyl CoA, or malonyl CoA specific AT; deleting the KR, the DH, and/or the ER; and/or replacing the KR, DH, and/or ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous seventh extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the seventh extender module of the FK-520 PKS.

5

10

15

20

In an illustrative embodiment, the present invention provides a set of recombinant FK-520 PKS genes in which the coding sequences for the AT domain of the seventh extender module has been replaced with those encoding an AT domain for malonyl, methylmalonyl, or ethylmalonyl CoA from another PKS gene. The resulting PKS genes code for the expression of an FK-520 PKS that produces an FK-520 analog that lacks the C-15 methoxy group, having instead a hydrogen, methyl, or ethyl group at that position, respectively. Such analogs are preferred, because they are more slowly metabolized than FK-520. This recombinant seventh extender module coding sequence can be combined with other coding sequences to make additional compounds of the invention. In an illustrative embodiment, the present invention provides a recombinant FK-520 PKS that contains both this seventh extender module and the recombinant fourth extender module described above that comprises the coding sequence for the fourth extender module AT domain of the FK-506 PKS. The invention also provides recombinant host cells derived from FK-506 producing host cells that have been mutated to prevent production of FK-506 but that express this recombinant PKS and so synthesize the corresponding (C-15desmethoxy) FK-506 derivative. In another embodiment, the present invention provides a recombinant FK-506 PKS in which the AT domain of module 7 has been replaced and thus produces this novel polyketide.

In another illustrative embodiment, the present invention provides a hybrid FKS in which the AT and KR domains of module 7 of the FK-520 PKS are replaced by a methylmalonyl specific AT domain and an inactive KR domain, such as, for example, the AT and KR domains of extender module 6 of the rapamycin PKS. The resulting hybrid PKS produces 15-desmethoxy-15-methyl-16-oxo-FK-520, a neurotrophin compound.

The eighth extender module of the FK-520 PKS includes a KS, an AT specific for 2-hydroxymalonyl CoA, a KR, and an ACP. The recombinant DNA compounds of the invention that encode the eighth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 eighth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the eighth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the eighth extender

10

15

20

25

30

module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the eighth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the 2-hydroxymalonyl CoA specific AT with a methylmalonyl CoA, ethylmalonyl CoA, or malonyl CoA specific AT; deleting or replacing the KR; and/or inserting a DH or a DH and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous eighth extender module coding sequence can be utilized in conjunction with a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the eighth extender module of the FK-520 PKS.

In an illustrative embodiment, the present invention provides a set of recombinant FK-520 PKS genes in which the coding sequences for the AT domain of the eighth extender module has been replaced with those encoding an AT domain for malonyl, methylmalonyl, or ethylmalonyl CoA from another PKS gene. The resulting PKS genes code for the expression of an FK-520 PKS that produces an FK-520 analog that lacks the C-13 methoxy group, having instead a hydrogen, methyl, or ethyl group at that position, respectively. Such analogs are preferred, because they are more slowly metabolized than FK-520. This recombinant eighth extender module coding sequence can be combined with other coding sequences to make additional compounds of the invention. In an illustrative embodiment, the present invention provides a recombinant FK-520 PKS that contains both this eighth extender module and the recombinant fourth extender module described above that comprises the coding sequence for the fourth extender module AT domain of the FK-506 PKS. The invention also provides recombinant host cells derived from FK-506 producing host cells that have been mutated to prevent production of FK-506 but that express this recombinant PKS and so synthesize the corresponding (C-13desmethoxy) FK-506 derivative. In another embodiment, the present invention provides a recombinant FK-506 PKS in which the AT domain of module 8 has been replaced and thus produces this novel polyketide.

5

10

15

20

25

30

The ninth extender module of the FK-520 PKS includes a KS, an AT specific for methylmalonyl CoA, a KR, a DH, an ER, and an ACP. The recombinant DNA compounds of the invention that encode the ninth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 ninth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the ninth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the ninth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the ninth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting any one, two, or all three of the KR, DH, and ER; and/or replacing any one, two, or all three of the KR, DH, and ER with another KR, DH, and/or ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous ninth extender module coding sequence can be utilized in conjunction with a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the ninth extender module of the FK-520 PKS.

The tenth extender module of the FK-520 PKS includes a KS, an AT specific for malonyl CoA, and an ACP. The recombinant DNA compounds of the invention that encode the tenth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 tenth extender module is inserted into a DNA compound that comprises the coding sequence

10

15

20

25

30

for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the tenth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the tenth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion or all of the tenth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the malonyl CoA specific AT with a methylmalonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; and/or inserting a KR, a KR and DH, or a KR, DH, and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous tenth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the tenth extender module of the FK-520 PKS.

The FK-520 polyketide precursor produced by the action of the tenth extender module of the PKS is then attached to pipecolic acid and cyclized to form FK-520. The enzyme FkbP is the NRPS like enzyme that catalyzes these reactions. FkbP also includes a thioesterase activity that cleaves the nascent FK-520 polyketide from the NRPS. The present invention provides recombinant DNA compounds that encode the fkbP gene and so provides recombinant methods for expressing the fkbP gene product in recombinant host cells. The recombinant fkbP genes of the invention include those in which the coding sequence for the adenylation domain has been mutated or replaced with coding sequences from other NRPS like enzymes so that the resulting recombinant FkbP incorporates a moiety other than pipecolic acid. For the construction of host cells that do not naturally produce pipecolic acid, the present invention provides recombinant DNA compounds that express the enzymes that catalyze at least some of the biosynthesis of pipecolic acid (see Nielsen et al., 1991, Biochem. 30: 5789-96). The fkbL gene encodes a

homolog of RapL, a lysine cyclodeaminase responsible in part for producing the pipecolate unit added to the end of the polyketide chain. The *fkbB* and *fkbL* recombinant genes of the invention can be used in heterologous hosts to produce compounds such as FK-520 or, in conjunction with other PKS or NRPS genes, to produce known or novel polyketides and non-ribosmal peptides.

The present invention also provides recombinant DNA compounds that encode the P450 oxidase and methyltransferase genes involved in the biosynthesis of FK-520. Figure 2 shows the various sites on the FK-520 polyketide core structure at which these enzymes act. By providing these genes in recombinant form, the present invention provides recombinant host cells that can produce FK-520. This is accomplished by introducing the recombinant PKS, P450 oxidase, and methyltransferase genes into a heterologous host cell. In a preferred embodiment, the heterologous host cell is *Streptomyces coelicolor* CH999 or *Streptomyces lividans* K4-114, as described in U.S. Patent No. 5,830,750 and U.S. patent application Serial Nos. 08/828,898, filed 31 Mar. 1997, and 09/181,833, filed 28 Oct. 1998, each of which is incorporated herein by reference. In addition, by providing recombinant host cells that express only a subset of these genes, the present invention provides methods for making FK-520 precursor compounds not readily obtainable by other means.

In a related aspect, the present invention provides recombinant DNA compounds and vectors that are useful in generating, by homologous recombination, recombinant host cells that produce FK-520 precursor compounds. In this aspect of the invention, a native host cell that produces FK-520 is transformed with a vector (such as an SCP2* derived vector for *Streptomyces* host cells) that encodes one or more disrupted genes (i.e., a hydroxylase, a methyltransferase, or both) or merely flanking regions from those genes. When the vector integrates by homologous recombination, the native, functional gene is deleted or replaced by the non-functional recombinant gene, and the resulting host cell thus produces an FK-520 precursor. Such host cells can also be complemented by introduction of a modified form of the deleted or mutated non-functional gene to produce a novel compound.

In one important embodiment, the present invention provides a hybrid PKS and the corresponding recombinant DNA compounds that encode those hybrid PKS enzymes. For purposes of the present invention a hybrid PKS is a recombinant PKS that comprises all or part of one or more modules and thioesterase/cyclase domain of a first PKS and all or part of one or more modules, loading module, and thioesterase/cyclase

5

10

15

20

25

domain of a second PKS. In one preferred embodiment, the first PKS is all or part of the FK-520 PKS, and the second PKS is only a portion or all of a non-FK-520 PKS.

One example of the preferred embodiment is an FK-520 PKS in which the AT domain of module 8, which specifies a hydroxymalonyl CoA and from which the C-13 methoxy group of FK-520 is derived, is replaced by an AT domain that specifies a malonyl, methylmalonyl, or ethylmalonyl CoA. Examples of such replacement AT domains include the AT domains from modules 3, 12, and 13 of the rapaymycin PKS and from modules 1 and 2 of the erythromycin PKS. Such replacements, conducted at the level of the gene for the PKS, are illustrated in the examples below. Another illustrative example of such a hybrid PKS includes an FK-520 PKS in which the natural loading module has been replaced with a loading module of another PKS. Another example of such a hybrid PKS is an FK-520 PKS in which the AT domain of module three is replaced with an AT domain that binds methylmalonyl CoA.

In another preferred embodiment, the first PKS is most but not all of a non-FK-520 PKS, and the second PKS is only a portion or all of the FK-520 PKS. An illustrative example of such a hybrid PKS includes an erythromycin PKS in which an AT specific for methylmalonyl CoA is replaced with an AT from the FK-520 PKS specfic for malonyl CoA.

Those of skill in the art will recognize that all or part of either the first or second PKS in a hybrid PKS of the invention need not be isolated from a naturally occurring source. For example, only a small portion of an AT domain determines its specificity. See U.S. provisional patent application Serial No. 60/091,526, incorporated herein by reference. The state of the art in DNA synthesis allows the artisan to construct de novo DNA compounds of size sufficient to construct a useful portion of a PKS module or domain. For purposes of the present invention, such synthetic DNA compounds are deemed to be a portion of a PKS.

Thus, the hybrid modules of the invention are incorporated into a PKS to provide a hybrid PKS of the invention. A hybrid PKS of the invention can result not only:

- (i) from fusions of heterologous domain (where heterologous means the domains in that module are from at least two different naturally occurring modules) coding sequences to produce a hybrid module coding sequence contained in a PKS gene whose product is incorporated into a PKS, but also:
- (ii) from fusions of heterologous module (where heterologous module means two modules are adjacent to one another that are not adjacent to one another in naturally

5

10

15

20

25

occurring PKS enzymes) coding sequences to produce a hybrid coding sequence contained in a PKS gene whose product is incorporated into a PKS,

(iii) from expression of one or more FK-520 PKS genes with one or more non-FK-520 PKS genes, including both naturally occurring and recombinant non-FK-520 PKS genes, and

(iv) from combinations of the foregoing.

Various hybrid PKSs of the invention illustrating these various alternatives are described herein.

Examples of the production of a hybrid PKS by co-expression of PKS genes from the FK-520 PKS and another non-FK-520 PKS include hybrid PKS enzymes produced by coexpression of FK-520 and rapamycin PKS genes. Preferably, such hybrid PKS enzymes are produced in recombinant *Streptomyces* host cells that produce FK-520 or FK-506 but have been mutated to inactivate the gene whose function is to be replaced by the rapamycin PKS gene introduced to produce the hybrid PKS. Particular examples include (i) replacement of the *fkbC* gene with the *rapB* gene; and (ii) replacement of the *fkbA* gene with the *rapC* gene. The latter hybrid PKS produces 13,15-didesmethoxy-FK-520, if the host cell is an FK-520 producing host cell, and 13,15-didesmethoxy-FK-506, if the host cell is an FK-506 producing host cell. The compounds produced by these hybrid PKS enzymes are immunosuppressants and neurotrophins but can be readily modified to act only as neurotrophins, as described in Example 6, below.

Other illustrative hybrid PKS enzymes of the invention are prepared by replacing the fkbA gene of an FK-520 or FK-506 producing host cell with a hybrid fkbA gene in which: (a) the extender module 8 through 10, inclusive, coding sequences have been replaced by the coding sequences for extender modules 12 to 14, inclusive, of the rapamycin PKS; and (b) the module 8 coding sequences have been replaced by the module 8 coding sequence of the rifamycin PKS. When expressed with the other, naturally occurring FK-520 or FK-506 PKS genes and the genes of the modification enzymes, the resulting hybrid PKS enzymes produce, respectively, (a) 13-desmethoxy-FK-520 or 13-desmethoxy-FK-506; and (b) 13-desmethoxy-13-methyl-FK-520 or 13-desmethoxy-13-methyl-FK-506. In a preferred embodiment, these recombinant PKS genes of the invention are introduced into the producing host cell by a vector such as pHU204, which is a plamsid pRM5 derivative that has the well-characterized SCP2* replicon, the colE1 replicon, the tsr and bla resistance genes, and a cos site. This vector can be used to introduce the recombinant fkbA replacement gene in an FK-520 or FK-506 producing host cell (or a host cell derived therefrom in which the endogenous fkbA

5

10

15

20

25

30

gene has either been rendered inactive by mutation, deletion or homologous recombination with the gene that replaces it) to produce the desired hybrid PKS.

In constructing hybrid PKSs of the invention, certain general methods may be helpful. For example, it is often beneficial to retain the framework of the module to be altered to make the hybrid PKS. Thus, if one desires to add DH and ER functionalities to a module, it is often preferred to replace the KR domain of the original module with a KR, DH, and ER domain-containing segment from another module, instead of merely inserting DH and ER domains. One can alter the stereochemical specificity of a module by replacement of the KS domain with a KS domain from a module that specifies a different stereochemistry. See Lau et al., 1999, "Dissecting the role of acyltransferase domains of modular polyketide synthases in the choice and stereochemical fate of extender units," Biochemistry 38(5):1643-1651, incorporated herein by reference. Stereochemistry can also be changed by changing the KR domain. Also, one can alter the specificity of an AT domain by changing only a small segment of the domain. See Lau et al., supra. One can also take advantage of known linker regions in PKS proteins to link modules from two different PKSs to create a hybrid PKS. See Gokhale et al., 16 Apr. 1999, "Dissecting and Exploiting Intermodular Communication in Polyketide Synthases," Science 284: 482-485, incorporated herein by reference.

The following Table lists references describing illustrative PKS genes and corresponding enzymes that can be utilized in the construction of the recombinant PKSs and the corresponding DNA compounds that encode them of the invention. Also presented are various references describing tailoring enzymes and corresponding genes that can be employed in accordance with the methods of the present invention.*

T.

U.S. Pat. No. 5,252,474 to Merck.

MacNeil et al., 1993, Industrial Microorganisms: Basic and Applied Molecular Genetics, Baltz, Hegeman, & Skatrud, eds. (ASM), pp. 245-256, A Comparison of the Genes Encoding the Polyketide Synthases for Avermectin, Erythromycin, and Nemadectin.

MacNeil et al., 1992, Gene 115: 119-125, Complex Organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase.

Ikeda et al., Aug. 1999, Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis, Proc. Natl. Acad. Sci. USA 96: 9509-9514.

35 Candicidin (FR008)

Avermectin

10

15

20

25

Hu et al., 1994, Mol. Microbiol. 14: 163-172.

Epothilone

U.S. Pat. App. Serial No. 60/130,560, filed 22 April 1999.

Erythromycin

5 PCT Pub. No. 93/13663 to Abbott.

US Pat. No. 5,824,513 to Abbott.

Donadio et al., 1991, Science 252:675-9.

Cortes et al., 8 Nov. 1990, Nature 348:176-8, An unusually large multifunctional polypeptide in the erythromycin producing polyketide synthase of Saccharopolyspora erythraea.

Glycosylation Enzymes

PCT Pat. App. Pub. No. 97/23630 to Abbott.

FK-506

10

15

20

Motamedi et al., 1998, The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK-506, Eur. J. biochem. 256: 528-534.

Motamedi et al., 1997, Structural organization of a multifunctional polyketide synthase involved in the biosynthesis of the macrolide immunosuppressant FK-506, Eur. J. Biochem. 244: 74-80.

Methyltransferase

US 5,264,355, issued 23 Nov. 1993, Methylating enzyme from Streptomyces MA6858. 31-O-desmethyl-FK-506 methyltransferase.

Motamedi et al., 1996, Characterization of methyltransferase and hydroxylase genes involved in the biosynthesis of the immunosuppressants FK-506 and FK-520, J. Bacteriol. 178: 5243-5248.

25 Streptomyces hygroscopicus

U.S. patent application Serial No. 09/154,083, filed 16 Sep. 1998.

Lovastatin

U.S. Pat. No. 5,744,350 to Merck.

Narbomycin

30 U.S. patent application Serial No. 60/107,093, filed 5 Nov. 1998, and Serial No. 60/120,254, filed 16 Feb. 1999.

Nemadectin

MacNeil et al., 1993, supra.

Niddamycin

Kakavas et al., 1997, Identification and characterization of the niddamycin polyketide synthase genes from Streptomyces caelestis, J. Bacteriol. 179: 7515-7522.

Oleandomycin

5

10

Swan et al., 1994, Characterisation of a Streptomyces antibioticus gene encoding a type I polyketide synthase which has an unusual coding sequence, Mol. Gen. Genet. 242: 358-362.

U.S. patent application Serial No. 60/120,254, filed 16 Feb. 1999.

Olano et al., 1998, Analysis of a Streptomyces antibioticus chromosomal region involved in oleandomycin biosynthesis, which encodes two glycosyltransferases responsible for glycosylation of the macrolactone ring, Mol. Gen. Genet. 259(3): 299-308.

Picromycin

PCT patent application US99/15047, filed 2 Jul. 1999.

Xue et al., 1998, Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae, Chemistry & Biology 5(11): 661-667.

Xue et al., Oct. 1998, A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: Architecture of metabolic diversity, Proc. Natl. Acad. Sci. USA 95: 12111 12116.

20 Platenolide

25

30

EP Pat. App. Pub. No. 791,656 to Lilly.

Rapamycin

Schwecke et al., Aug. 1995, The biosynthetic gene cluster for the polyketide rapamycin, Proc. Natl. Acad. Sci. USA 92:7839-7843.

Aparicio et al., 1996, Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of the enzymatic domains in the modular polyketide synthase, Gene 169: 9-16.

Rifamycin

August et al., 13 Feb. 1998, Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S669, Chemistry & Biology, 5(2): 69-79.

Sorangium PKS

U.S. patent application Serial No. 09/144,085, filed 31 Aug. 1998.

Soraphen

35 U.S. Pat. No. 5,716,849 to Novartis.

Schupp et al., 1995, J. Bacteriology 177: 3673-3679. A Sorangium cellulosum (Myxobacterium) Gene Cluster for the Biosynthesis of the Macrolide Antibiotic Soraphen A: Cloning, Characterization, and Homology to Polyketide Synthase Genes from Actinomycetes.

5 Spiramycin

U.S. Pat. No. 5,098,837 to Lilly.

Activator Gene

U.S. Pat. No. 5,514,544 to Lilly.

Tylosin

10

15

20

25

30

35

EP Pub. No. 791,655 to Lilly.

U.S. Pat. No. 5,876,991 to Lilly.

Kuhstoss et al., 1996, Gene 183:231-6., Production of a novel polyketide through the construction of a hybrid polyketide synthase.

Tailoring enzymes

Merson-Davies and Cundliffe, 1994, *Mol. Microbiol. 13*: 349-355. Analysis of five tylosin biosynthetic genes from the *tylBA* region of the *Streptomyces fradiae* genome.

As the above Table illustrates, there are a wide variety of polyketide synthase genes that serve as readily available sources of DNA and sequence information for use in constructing the hybrid PKS-encoding DNA compounds of the invention. Methods for constructing hybrid PKS-encoding DNA compounds are described without reference to the FK-520 PKS in PCT patent publication No. 98/51695; U.S. Patent Nos. 5,672,491 and 5,712,146 and U.S. patent application Serial Nos. 09/073,538, filed 6 May 1998, and 09/141,908, filed 28 Aug 1998, each of which is incorporated herein by reference.

The hybrid PKS-encoding DNA compounds of the invention can be and often are hybrids of more than two PKS genes. Moreover, there are often two or more modules in the hybrid PKS in which all or part of the module is derived from a second (or third) PKS. Thus, as one illustrative example, the present invention provides a hybrid FK-520 PKS that contains the naturally occurring loading module and FkbP as well as modules one, two, four, six, seven, and eight, nine, and ten of the FK-520 PKS and further contains hybrid or heterologous modules three and five. Hybrid or heterologous module three contains an AT domain that is specific of methylmalonyl CoA and can be derived for example, from the erythromycin or rapamycin PKS genes. Hybrid or heterologous module five contains an AT domain that is specific for malonyl CoA and can be derived for example, from the picromycin or rapamycin PKS genes.

While an important embodiment of the present invention relates to hybrid PKS enzymes and corresponding genes, the present invention also provides recombinant FK-520 PKS genes in which there is no second PKS gene sequence present but which differ from the FK-520 PKS gene by one or more deletions. The deletions can encompass one or more modules and/or can be limited to a partial deletion within one or more modules. When a deletion encompasses an entire module, the resulting FK-520 derivative is at least two carbons shorter than the gene from which it was derived. When a deletion is within a module, the deletion typically encompasses a KR, DH, or ER domain, or both DH and ER domains, or both KR and DH domains, or all three KR, DH, and ER domains.

To construct a hybrid PKS or FK-520 derivative PKS gene of the invention, one can employ a technique, described in PCT Pub. No. 98/27203 and U.S. patent application Serial No. 08/989,332, filed 11 Dec. 1997, each of which is incorporated herein by reference, in which the large PKS gene is divided into two or more, typically three, segments, and each segment is placed on a separate expression vector. In this manner, each of the segments of the gene can be altered, and various altered segments can be combined in a single host cell to provide a recombinant PKS gene of the invention. This technique makes more efficient the construction of large libraries of recombinant PKS genes, vectors for expressing those genes, and host cells comprising those vectors.

Thus, in one important embodiment, the recombinant DNA compounds of the invention are expression vectors. As used herein, the term expression vector refers to any nucleic acid that can be introduced into a host cell or cell-free transcription and translation medium. An expression vector can be maintained stably or transiently in a cell, whether as part of the chromosomal or other DNA in the cell or in any cellular compartment, such as a replicating vector in the cytoplasm. An expression vector also comprises a gene that serves to produce RNA that is translated into a polypeptide in the cell or cell extract. Furthermore, expression vectors typically contain additional functional elements, such as resistance-conferring genes to act as selectable markers.

The various components of an expression vector can vary widely, depending on the intended use of the vector. In particular, the components depend on the host cell(s) in which the vector will be used or is intended to function. Vector components for expression and maintenance of vectors in *E. coli* are widely known and commercially available, as are vector components for other commonly used organisms, such as yeast cells and *Streptomyces* cells.

5

10

15

20

25

30

In a preferred embodiment, the expression vectors of the invention are used to construct recombinant *Streptomyces* host cells that express a recombinant PKS of the invention. Preferred *Streptomyces* host cell/vector combinations of the invention include *S. coelicolor* CH999 and *S. lividans* K4-114 host cells, which do not produce actinorhodin, and expression vectors derived from the pRM1 and pRM5 vectors, as described in U.S. Patent No. 5,830,750 and U.S. patent application Serial Nos. 08/828,898, filed 31 Mar. 1997, and 09/181,833, filed 28 Oct. 1998, each of which is incorporated herein by reference.

The present invention provides a wide variety of expression vectors for use in 10 Streptomyces. For replicating vectors, the origin of replication can be, for example and without limitation, a low copy number vector, such as SCP2* (see Hopwood et al., Genetic Manipulation of Streptomyces: A Laboratory manual (The John Innes Foundation, Norwich, U.K., 1985); Lydiate et al., 1985, Gene 35: 223-235; and Kieser and Melton, 1988, Gene 65: 83-91, each of which is incorporated herein by reference), 15 SLP1.2 (Thompson et al., 1982, Gene 20: 51-62, incorporated herein by reference), and SG5(ts) (Muth et al., 1989, Mol. Gen. Genet. 219: 341-348, and Bierman et al., 1992, Gene 116: 43-49, each of which is incorporated herein by reference), or a high copy number vector, such as pIJ101 and pJV1 (see Katz et al., 1983, J. Gen. Microbiol. 129: 2703-2714; Vara et al., 1989, J. Bacteriol. 171: 5782-5781; and Servin-Gonzalez, 1993. 20 Plasmid 30: 131-140, each of which is incorporated herein by reference). Generally, however, high copy number vectors are not preferred for expression of genes contained on large segments of DNA. For non-replicating and integrating vectors, it is useful to include at least an E. coli origin of replication, such as from pUC, p1P, p1I, and pBR. For phage based vectors, the phages phiC31 and KC515 can be employed (see Hopwood 25 et al., supra).

Typically, the expression vector will comprise one or more marker genes by which host cells containing the vector can be identified and/or selected. Useful antibiotic resistance conferring genes for use in *Streptomyces* host cells include the *ermE* (confers resistance to erythromycin and other macrolides and lincomycin), *tsr* (confers resistance to thiostrepton), *aadA* (confers resistance to spectinomycin and streptomycin), *aacC4* (confers resistance to apramycin, kanamycin, gentamicin, geneticin (G418), and neomycin), *hyg* (confers resistance to hygromycin), and *vph* (confers resistance to viomycin) resistance conferring genes.

The recombinant PKS gene on the vector will be under the control of a promoter, typically with an attendant ribosome binding site sequence. The present invention

30

provides the endogenous promoters of the FK-520 PKS and related biosynthetic genes in recombinant form, and these promoters are preferred for use in the native hosts and in heterologous hosts in which the promoters function. A preferred promoter of the invention is the fkbO gene promoter, comprised in a sequence of about 270 bp between the start of the open reading frames of the fkbO and fkbB genes. The fkbO promoter is believed to be bi-directional in that it promotes transcription of the genes fkbO, fkbP, and fkbA in one direction and fkbB, fkbC, and fkbL in the other. Thus, in one aspect, the present invention provides a recombinant expression vector comprising the promoter of the fkbO gene of an FK-520 producing organism positioned to transcribe a gene other than fkbO. In a preferred embodiment the transcribed gene is an FK-520 PKS gene. In another preferred embodiment, the transcribed gene is a gene that encodes a protein comprised in a hybrid PKS.

Heterologous promoters can also be employed and are preferred for use in host cells in which the endogenous FK-520 PKS gene promoters do not function or function poorly. A preferred heterologous promoter is the actI promoter and its attendant activator gene actII-ORF4, which is provided in the pRM1 and pRM5 expression vectors, supra. This promoter is activated in the stationary phase of growth when secondary metabolites are normally synthesized. Other useful Streptomyces promoters include without limitation those from the ermE gene and the melCl gene, which act constitutively, and the tipA gene and the merA gene, which can be induced at any growth stage. In addition, the T7 RNA polymerase system has been transferred to Streptomyces and can be employed in the vectors and host cells of the invention. In this system, the coding sequence for the T7 RNA polymerase is inserted into a neutral site of the chromosome or in a vector under the control of the inducible merA promoter, and the gene of interest is placed under the control of the T7 promoter. As noted above, one or more activator genes can also be employed to enhance the activity of a promoter. Activator genes in addition to the actII-ORF4 gene discussed above include dnrI, redD, and ptpA genes (see U.S. patent application Serial No. 09/181,833, supra) to activate promoters under their control.

In addition to providing recombinant DNA compounds that encode the FK-520 PKS, the present invention also provides DNA compounds that encode the ethylmalonyl CoA and 2-hydroxymalonyl CoA utilized in the synthesis of FK-520. Thus, the present invention also provides recombinant host cells that express the genes required for the biosynthesis of ethylmalonyl CoA and 2-hydroxymalonyl CoA. Figures 3 and 4 show the

5

10

15

20

25

location of these genes on the cosmids of the invention and the biosynthetic pathway that produces ethylmalonyl CoA.

For 2-hydroxymalonyl CoA biosynthesis, the fkbH, fkbI, fkbI, and fkbK genes are sufficient to confer this ability on Streptomcyces host cells. For conversion of 2-

hydroxymalonyl to 2-methoxymalonyl, the fkbG gene is also employed. While the complete coding sequence for fkbH is provided on the cosmids of the invention, the sequence for this gene provided herein may be missing a T residue, based on a comparison made with a similar gene cloned from the ansamitocin gene cluster by Dr. H. Floss. Where the sequence herein shows one T, there may be two, resulting in an extension of the fkbH reading frame to encode the amino acid sequence:

MTIVKCLVWDLDNTLWRGTVLEDDEVVLTDEIREVITTLDDRGILQAVASKNDH DLAWERLERLGVAEYFVLARIGWGPKSQSVREIATELNFAPTTIAFIDDQPAERA EVAFHLPEVRCYPAEQAATLLSLPEFSPPVSTVDSRRRRLMYQAGFARDQAREA YSGPDEDFLRSLDLSMTIAPAGEEELSRVEELTLRTSQMNATGVHYSDADLRAL LTDPAHEVLVVTMGDRFGPHGAVGIILLEKKPSTWHLKLLATSCRVVSFGAGAT ILNWLTDQGARAGAHLVADFRRTDRNRMMEIAYRFAGFADSDCPCVSEVAGAS

AAGVERLHLEPSARPAPTTLTLTAADIAPVTVSAAG.

For ethylmalonyl CoA biosynthesis, one requires only a crotonyl CoA reductase, which can be supplied by the host cell but can also be supplied by recombinant expression of the fkbS gene of the present invention. To increase yield of ethylmalonyl CoA, one can also express the fkbE and fkbU genes as well. While such production can be achieved using only the recombinant genes above, one can also achieve such production by placing into the recombinant host cell a large segment of the DNA provided by the cosmids of the invention. Thus, for 2-hydroxymalonyl and 2-methoxymalonyl CoA biosynthesis, one can simply provide the cells with the segment of DNA located on the left side of the FK-520 PKS genes shown in Figure 1. For ethylmalonyl CoA biosynthesis, one can simply provide the cells with the segment of DNA located on the right side of the FK-520 PKS genes shown in Figure 1 or, alternatively, both the right and left segments of DNA.

The recombinant DNA expression vectors that encode these genes can be used to construct recombinant host cells that can make these important polyketide building blocks from cells that otherwise are unable to produce them. For example, *Streptomyces coelicolor* and *Streptomyces lividans* do not synthesisze ethylmalonyl CoA or 2-hydroxymalonyl CoA. The invention provides methods and vectors for constructing recombinant *Streptomyces coelicolor* and *Streptomyces lividans* that are able to

15

20

25

30

synthesize either or both ethylmalonyl CoA and 2-hydroxymalonyl CoA. These host cells are thus able to make polyketides, those requiring these substrates, that cannot otherwise be made in such cells.

In a preferred embodiment, the present invention provides recombinant Streptomyces host cells, such as S. coelicolor and S. lividans, that have been transformed with a recombinant vector of the invention that codes for the expression of the ethylmalonyl CoA biosynthetic genes. The resulting host cells produce ethylmalonyl CoA and so are preferred host cells for the production of polyketides produced by PKS enzymes that comprise one or more AT domains specific for ethylmalonyl CoA.

Illustrative PKS enzymes of this type include the FK-520 PKS and a recombinant PKS in which one or more AT domains is specific for ethylmalonyl CoA.

In a related embodiment, the present invention provides *Streptomyces* host cells in which one or more of the ethylmalonyl or 2-hydroxymalonyl biosynthetic genes have been deleted by homologous recombination or rendered inactive by mutation. For example, deletion or inactivation of the *fkbG* gene can prevent formation of the methoxyl groups at C-13 and C-15 of FK-520 (or, in the corresponding FK-506 producing cell, FK-506), leading to the production of 13,15-didesmethoxy-13,15-dihydroxy-FK-520 (or, in the corresponding FK-506 producing cell, 13,15-didesmethoxy-13,15-dihydroxy-FK-506). If the *fkbG* gene product acts on 2-hydroxymalonyl and the resulting 2-methoxymalonyl substrate is required for incorporation by the PKS, the AT domains of modules 7 and 8 may bind malonyl CoA and methylmalonyl CoA. Such incorporation results in the production of a mixture of polyketides in which the methoxy groups at C-13 and C-15 of FK-520 (or FK-506) are replaced by either hydrogen or methyl.

This possibility of non-specific binding results from the construction of a hybrid PKS of the invention in which the AT domain of module 8 of the FK-520 PKS replaced the AT domain of module 6 of DEBS. The resulting PKS produced, in *Streptomyces lividans*, 6-dEB and 2-desmethyl-6-dEB, indicating that the AT domain of module 8 of the FK-520 PKS could bind malonyl CoA and methylmalonyl CoA substrates. Thus, one could possibly also prepare the 13,15-didesmethoxy-FK-520 and corresponding FK-506 compounds of the invention by deleting or otherwise inactivating one or more or all of the genes required for 2-hydroxymalonyl CoA biosynthesis, i.e., the *fkbH*, *fkbI*, *fkbJ*, and *fkbK* genes. In any event, the deletion or inactivation of one or more biosynthetic genes required for ethylmalonyl and/or 2-hydroxymalonyl production prevents the formation of polyketides requiring ethylmalonyl and/or 2-hydroxymalonyl for biosynthesis, and the

5

10

15

20

25

resulting host cells are thus preferred for production of polyketides that do not require the same.

The host cells of the invention can be grown and fermented under conditions known in the art for other purposes to produce the compounds of the invention. See, e.g., U.S. Patent Nos. 5,194,378; 5,116,756; and 5,494,820, incorporated herein by reference, for suitable fermentation processes. The compounds of the invention can be isolated from the fermentation broths of these cultured cells and purified by standard procedures. Preferred compounds of the invention include the following compounds: 13-desmethoxy-FK-506; 13-desmethoxy-FK-520; 13,15-didesmethoxy-FK-506; 13-desmethoxy-FK-506; 13-desmethoxy-18-hydroxy-FK-506; 13-desmethoxy-18-hydroxy-FK-506; and 13,15-didesmethoxy-18-hydroxy-FK-520. These compounds can be further modified as described for tacrolimus and FK-520 in U.S. Patent Nos. 5,225,403; 5,189,042; 5,164,495; 5,068,323; 4,980,466; and 4,920,218, incorporated herein by reference.

Other compounds of the invention are shown in Figure 8, Parts A and B. In Figure 8, Part A, illustrative C-32-substituted compounds of the invention are shown in two columns under the heading R. The substituted compounds are preferred for topical administration and are applied to the dermis for treatment of conditions such as psoriasis. In Figure 8, Part B, illustrative reaction schemes for making the compounds shown in Figure 8, Part A, are provided. In the upper scheme in Figure 8, Part B, the C-32 substitution is a tetrazole moiety, illustrative of the groups shown in the left column under R in Figure 8, Part A. In the lower scheme in Figure 8, Part B, the C-32 substitution is a disubstituted amino group, where R₃ and R₄ can be any group similar to the illustrative groups shown attached to the amine in the right column under R in Figure 8, Part A. While Figure 8 shows the C-32-substituted compounds in which the C-15-methoxy is present, the invention includes these C-32-substituted compounds in which C-15 is ethyl, methyl, or hydrogen. Also, while C-21 is shown as substituted with ethyl or allyl, the compounds of the invention includes the C-32-substituted compounds in which C-21 is substituted with hydrogen or methyl.

To make these C-32-substituted compounds, Figure 8, Part B, provides illustrative reaction schemes. Thus, a selective reaction of the starting compound (see Figure 8, Part B, for an illustrative starting compound) with trifluoromethanesulfonic anhydride in the presence of a base yields the C-32 O-triflate derivative, as shown in the upper scheme of Figure 8, Part B. Displacement of the triflate with 1H-tetrazole or triazole derivatives provides the C-32 tetrazole or teiazole derivative. As shown in the

5

10

15

20

25

30

lower scheme of Figure 8, Part B, reacting the starting compound with pnitrophenylchloroformate yields the corresponding carbonate, which, upon displacement with an amino compound, provides the corresponding carbamate derivative.

The compounds can be readily formulated to provide the pharmaceutical compositions of the invention. The pharmaceutical compositions of the invention can be used in the form of a pharmaceutical preparation, for example, in solid, semisolid, or liquid form. This preparation contains one or more of the compounds of the invention as an active ingredient in admixture with an organic or inorganic carrier or excipient suitable for external, enteral, or parenteral application. The active ingredient may be compounded, for example, with the usual non-toxic, pharmaceutically acceptable carriers for tablets, pellets, capsules, suppositories, solutions, emulsions, suspensions, and any other form suitable for use. Suitable formulation processes and compositions for the compounds of the present invention are described with respect to tacrolimus in U.S. Patent Nos. 5,939,427; 5,922,729; 5,385,907; 5,338,684; and 5,260,301, incorporated herein by reference. Many of the compounds of the invention contain one or more chiral centers, and all of the stereoisomers are included within the scope of the invention, as pure compounds as well as mixtures of stereoisomers. Thus the compounds of the invention may be supplied as a mixture of stereoisomers in any proportion.

The carriers which can be used include water, glucose, lactose, gum acacia, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, colloidal silica, potato starch, urea, and other carriers suitable for use in manufacturing preparations, in solid, semi-solid, or liquified form. In addition, auxiliary stabilizing, thickening, and coloring agents and perfumes may be used. For example, the compounds of the invention may be utilized with hydroxypropyl methylcellulose essentially as described in U.S. Patent No. 4,916,138, incorporated herein by reference, or with a surfactant essentially as described in EPO patent publication No. 428,169, incorporated herein by reference.

Oral dosage forms may be prepared essentially as described by Hondo et al., 1987, Transplantation Proceedings XIX, Supp. 6: 17-22, incorporated herein by reference. Dosage forms for external application may be prepared essentially as described in EPO patent publication No. 423,714, incorporated herein by reference. The active compound is included in the pharmaceutical composition in an amount sufficient to produce the desired effect upon the disease process or condition.

For the treatment of conditions and diseases relating to immunosuppression or neuronal damage, a compound of the invention may be administered orally, topically,

5

10

15

20

25

30

parenterally, by inhalation spray, or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvant, and vehicles. The term parenteral, as used herein, includes subcutaneous injections, and intravenous, intramuscular, and intrasternal injection or infusion techniques.

Dosage levels of the compounds of the present invention are of the order from about 0.01 mg to about 50 mg per kilogram of body weight per day, preferably from about 0.1 mg to about 10 mg per kilogram of body weight per day. The dosage levels are useful in the treatment of the above-indicated conditions (from about 0.7 mg to about 3.5 mg per patient per day, assuming a 70 kg patient). In addition, the compounds of the present invention may be administered on an intermittent basis, i.e., at semi-weekly, weekly, semi-monthly, or monthly intervals.

The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. For example, a formulation intended for oral administration to humans may contain from 0.5 mg to 5 g of active agent compounded with an appropriate and convenient amount of carrier material, which may vary from about 5 percent to about 95 percent of the total composition. Dosage unit forms will generally contain from about 0.5 mg to about 500 mg of active ingredient. For external administration, the compounds of the invention can be formulated within the range of, for example, 0.00001% to 60% by weight, preferably from 0.001% to 10% by weight, and most preferably from about 0.005% to 0.8% by weight. The compounds and compositions of the invention are useful in treating disease conditions using doses and administration schedules as described for tacrolimus in U.S. Patent Nos. 5,542,436; 5,365,948; 5,348,966; and 5,196,437, incorporated herein by reference. The compounds of the invention can be used as single therapeutic agents or in combination with other therapeutic agents. Drugs that can be usefully combined with compounds of the invention include one or more immunosuppressant agents such as rapamycin, cyclosporin A, FK-506, or one or more neurotrophic agents.

It will be understood, however, that the specific dosage level for any particular patient will depend on a variety of factors. These factors include the activity of the specific compound employed; the age, body weight, general health, sex, and diet of the subject; the time and route of administration and the rate of excretion of the drug; whether a drug combination is employed in the treatment; and the severity of the particular disease or condition for which therapy is sought.

5

10

15

20

25

A detailed description of the invention having been provided above, the following examples are given for the purpose of illustrating the present invention and shall not be construed as being a limitation on the scope of the invention or claims.

5

10

15

Example 1

Replacement of Methoxyl with Hydrogen or Methyl at C-13 of FK-520

The C-13 methoxyl group is introduced into FK-520 via an AT domain in extender module 8 of the PKS that is specific for hydroxymalonyl and by methylation of the hydroxyl group by an S-adenosyl methionine (SAM) dependent methyltransferase. Metabolism of FK-506 and FK-520 primarily involves oxidation at the C-13 position into an inactive derivative that is further degraded by host P450 and other enzymes. The present invention provides compounds related in structure to FK-506 and FK-520 that do not contain the C-13 methoxy group and exhibit greater stability and a longer half-life in vivo. These compounds are useful medicaments due to their immunosuppressive and neurotrophic activities, and the invention provides the compounds in purified form and as pharmaceutical compositions.

The present invention also provides the novel PKS enzymes that produce these novel compounds as well as the expression vectors and host cells that produce the novel PKS enzymes. The novel PKS enzymes include, among others, those that contain an AT domain specific for either malonyl CoA or methylmalonyl CoA in module 8 of the FK-506 and FK-520 PKS. This example describes the construction of recombinant DNA compounds that encode the novel FK-520 PKS enzymes and the transformation of host cells with those recombinant DNA compounds to produce the novel PKS enzymes and the polyketides produced thereby.

25

30

35

20

To construct an expression cassette for performing module 8 AT domain replacements in the FK-520 PKS, a 4.6 kb SphI fragment from the FK-520 gene cluster was cloned into plasmid pLitmus 38 (a cloning vector available from New England Biolabs). The 4.6 kb SphI fragment, which encodes the ACP domain of module 7 followed by module 8 through the KR domain, was isolated from an agarose gel after digesting the cosmid pKOS65-C31 with Sph I. The clone having the insert oriented so the single SacI site was nearest to the SpeI end of the polylinker was identified and designated as plasmid pKOS60-21-67. To generate appropriate cloning sites, two linkers were ligated sequentially as follows. First, a linker was ligated between the SpeI and SacI sites to introduce a BglII site at the 5' end of the cassette, to eliminate interfering polylinker sites, and to reduce the total insert size to 4.5 kb (the limit of the phage

KC515). The ligation reactions contained 5 picomolar unphosphorylated linker DNA and 0.1 picomolar vector DNA, i.e., a 50-fold molar excess of linker to vector. The linker had the following sequence:

5'-CTAGTGGGCAGATCTGGCAGCT-3' 3'-ACCCGTCTAGACCG-5'

The resulting plasmid was designated pKOS60-27-1.

Next, a linker of the following sequence was ligated between the unique Sphī and AfIII sites of plasmid pKOS60-27-1 to introduce an NsiI site at the 3' end of the module 8 cassette. The linker employed was:

5'-GGGATGCATGGC-3'
3'-GTACCCCTACGTACCGAATT-5'

The resulting plasmid was designated pKOS60-29-55.

To allow in-frame insertions of alternative AT domains, sites were engineered at the 5' end (Avr II or Nhe I) and 3' end (Xho I) of the AT domain using the polymerase chain reaction (PCR) as follows. Plasmid pKOS60-29-55 was used as a template for the PCR and sequence 5' to the AT domain was amplified with the primers SpeBgl-fwd and either Avr-rev or Nhe-rev:

SpeBgl-fwd 5'-CGACTCACTAGTGGGCAGATCTGG-3'

Avr-rev 5'-CACGCCTAGGCCGGTCGGTCTCGGGCCAC-3'

Nhe-rev 5'-GCGGCTAGCTGCTCGCCCATCGCGGGATGC-3'

The PCR included, in a 50 µl reaction, 5 µl of 10x Pfu polymerase buffer (Stratagene), 5 µl 10x z-dNTP mixture (2 mM dATP, 2 mM dCTP, 2 mM dTTP, 1 mM dGTP, 1 mM 7-deaza-GTP), 5 µl DMSO, 2 µl of each primer (10 µM), 1 µl of template DNA (0.1 µg/µl), and 1 µl of cloned Pfu polymerase (Stratagene). The PCR conditions were 95°C for 2 min., 25 cycles at 95°C for 30 sec., 60°C for 30 sec., and 72°C for 4 min., followed by 4 min. at 72°C and a hold at 0°C. The amplified DNA products and the Litmus vectors were cut with the appropriate restriction enzymes (Bg/II and AvrII or Spel and NheI), and cloned into either pLitmus 28 or pLitmus38 (New England Biolabs), respectively, to generate the constructs designated pKOS60-37-4 and pKOS60-37-2, respectively.

Plasmid pKOS60-29-55 was again used as a template for PCR to amplify sequence 3' to the AT domain using the primers BsrXho-fwd and NsiAfl-rev:

BsrXho-fwd 5'-GATGTACAGCTCGAGTCGGCACGCCCGGCCGCATC-3'
NsiAfl-rev 5'-CGACTCACTTAAGCCATGCATCC-3'

PCR conditions were as described above. The PCR fragment was cut with BsrGI and AfTII, gel isolated, and ligated into pKOS60-37-4 cut with Asp718 and AfTII and

5

10

15

20

25

30

inserted into pKOS60-37-2 cut with *BsrGI* and *AfIII*, to give the plasmids pKOS60-39-1 and pKOS60-39-13, respectively. These two plasmids can be digested with *AvrII* and *XhoI* or *NheI* and *XhoI*, respectively, to insert heterologous AT domains specific for malonyl, methylmalonyl, ethylmalonyl, or other extender units.

Malonyl and methylmalonyl-specific AT domains were cloned from the rapamycin cluster using PCR amplification with a pair of primers that introduce an AvrII or NheI site at the 5' end and an XhoI site at the 3' end. The PCR conditions were as given above and the primer sequences were as follows:

10 RATN1 5'-ATCCTAGGCGGGCRGGYGTGTCGTCCTTCGG-3'
(3' end of Rap KS sequence and universal for malonyl and methylmalonyl CoA),
RATMN2 5'-ATGCTAGCCGCCGCGTTCCCCGTCTTCGCGCG-3'
(Rap AT shorter version 5'- sequence and specific for malonyl CoA),
RATMMN2 5'-ATGCTAGCGGATTCGTCGGTGGTGTTCGCCGA-3'
(Rap AT shorter version 5'- sequence and specific for methylmalonyl CoA), and

(Rap AT shorter version 5'- sequence and specific for methylmatohyl CoA), and RATC 5'-ATCTCGAGCCAGTASCGCTGGTGYTGGAAGG-3' (Rap DH 5'- sequence and universal for malonyl and methylmalonyl CoA).

ء ويتب

Because of the high sequence similarity in each module of the rapamycin cluster, each primer was expected to prime any of the AT domains. PCR products representing ATs specific for malonyl or methylmalonyl extenders were identified by sequencing individual cloned PCR products. Sequencing also confirmed that the chosen clones contained no cloning artifacts. Examples of hybrid modules with the rapamycin AT12 and AT13 domains are shown in a separate figure.

The AvrII-XhoI restriction fragment that encodes module 8 of the FK-520 PKS with the endogenous AT domain replaced by the AT domain of module 12 of the rapamycin PKS has the DNA sequence and encodes the amino acid sequence shown below. The AT of rap module 12 is specific for incorporation of malonyl units.

```
AGATCTGGCAGCTCGCCGAAGCGCTGCTGACGCTCGTCCGGGAGAGCACC 50
20
      IWQLAEALLTLVREST
   GCCGCCGTGCTCGGCCACGTGGGTGGCGAGGACATCCCCGCGACGGCGGC 100
    AAVLGHVGGEDIPATAA
   GTTCAAGGACCTCGGCATCGACTCGCTCACCGCGGTCCAGCTGCGCAACG 150
     F K D L G I D S L T A V Q L R N
25
   CCCTCACCGAGGCGACCGGTGTGCGGCTGAACGCCACGGCGGTCTTCGAC 200
    ALTEATGVRLNATAVFD
   TTCCCGACCCCGCACGTGCTCGCCGGGAAGCTCGGCGACGAACTGACCGG 250
    F P T P H V L A G K L G D E L T G
    CACCCGCGCGCCCGTCGTGCCCCGGACCGCGGCCACGGCCGGTGCGCACG 300
30
     TRAPVVPRTAATAGAH
    ACGAGCCGCTGGCGATCGTGGGAATGGCCTGCCGGCTGCCCGGCGGGGTC 350
    D E P L A I V G M A C R L P G G V
    GCGTCACCCGAGGAGCTGTGGCACCTCGTGGCATCCGGCACCGACGCCAT 400
     ASPEELWHLVASGTDAI
35
    CACGGAGTTCCCGACGGACCGCGGCTGGGACGTCGACGCGATCTACGACC 450
     TEFPTDRGWDVDAI
    CGGACCCCGACGCGATCGGCAAGACCTTCGTCCGGCACGGTGGCTTCCTC 500
    P D P D A I G K T F V R H G .G F L
    ACCGGCGCGACAGGCTTCGACGCGCGCGTTCTTCGGCATCAGCCCGCGCGA 550
40
     TGATGFDAAFFGISPRE
    GGCCCTCGCGATGGACCCGCAGCAGCGGGTGCTCCTGGAGACGTCGTGGG 600
      ALAMDPQQRVLLET
    AGGCGTTCGAAAGCGCCGGCATCACCCCGGACTCGACCCGCGGCAGCGAC 650
                            ST
    EAFESAGITPD
45
    ACCGGCGTGTTCGTCGGCGCCTTCTCCTACGGTTACGGCACCGGTGCGGA 700
                                GTGAD
                G A F S Y G Y
    CACCGACGGCTTCGGCGCGCCGGCTCGCAGACCAGTGTGCTCTCCGGCC 750
      TDGFGATGSQTSVLSG
    GGCTGTCGTACTTCTACGGTCTGGAGGGTCCGGCGGTCACGGTCGACACG 800
50
    RLSYFYGLEGPAVTVDT
    GCGTGTTCGTCGCTGGTGGCGCTGCACCAGGCCGGGCAGTCGCTGCG 850
     ACSSSLVALHQAGQSLR
```

10

PCT/US99/22886

±', +≥ 9

	CTCCCCCCTATICCTCCCTCCCTCCTCCTCCTCCTCCTCCTCCTCCTCCT	900
	S G E C S L A L V G G V T V M A	050
	CTCCCGGCGGCTTCGTGGAGTTCTCCCGGCAGCGCGGCCTCGCGCCGGAC S P G G F V E F S R O R G L A P D	950
e	S P G G F V E F S R Q R G L A P D GGCCGGGCGAAGGCTTCGCCGA	1000
5		1000
	G R A K A F G A G A D G T S F A E GGGTGCCGGTGTGCTGATCGTCGAGAGGCTCTCCGACGCCGAACGCAACG	1050
		1000
		1100
10	G H T V L A V V R G S A V N Q D G	
	GCCTCCAACGGCTGTCGGCGCCGAACGGGCCGTCGCAGGAGCGGGTGAT	1150
	A S N G L S A P N G P S Q E R V I	
	CCGGCAGGCCCTGGCCAACGCCGGGGTCACCCCGGCGGACGTGGACGCCG	1200
	ROALANAGLTPADVDA	
15	TCGAGGCCCACGGCACCAGGCTGGGCGACCCCATCGAGGCACAG	1250
	V E A H G T G T R L G D P I E A Q	1200
	GCGGTACTGGCCACCTACGGACAGGAGCGCGCCACCCCCTGCTGCTGGG A V L A T Y G Q E R A T P L L L G	1300
	A V L A T Y G Q E R A T P L L L G CTCGCTGAAGTCCAACATCGGCCACGCCCAGGCCGCGTCCGGCGTCGCCG	1350
20		
20	GCATCATCAAGATGGTGCAGGCCCTCCGGCACGGGGAGCTGCCGCCGACG	1400
	G I I K M V Q A L R H G E L P P T	
	CTGCACGCCGACGACCGTCGCCGCACGTCGACTGGACGGCCGGC	1450
	T H A D E P S P H V D W T A G A V	
25	CGAACTGCTGACGTCGGCCCGGCCGTGGCCCGAGACCGACC	1500
	E L L T S A R P W P E T D R P R	1550
	GGGCAGGCGTGTCGTCCTTCGGGATCAGTGGCACCAACGCCCACGTCATC	1550
	R A G V S S F G I S G T N A H V I CTGGAAAGCGCACCCCCACTCAGCCTGCGGACAACGCGGTGATCGAGCG	1600
30	L E S A P P T Q P A D N A V I E R	
30	GGCACCGGAGTGGGTGCCGTTGGTGATTTCGGCCAGGACCCAGTCGGCTT	1650
	A P E W V P L V I S A R T Q S A	
	TGACTGAGCACGAGGGCCGGTTGCGTGCGTATCTGGCGGCGTCGCCCGGG	1700
	L T E H E G R L R A Y L A A S P G	1750
35	GTGGATATGCGGGCTGTGGCATCGACGCTGGCGATGACACGGTCGGT	1750
	V D M K A V M	1800
	TGTCTGACCCTCGGGCGTGTTCGTCTTCCCGGGACAGGGGTCGCAGCGT	1850
40	ven pravrv FPG QG SQR	
	GCTGGCATGGGTGAGGAACTGGCCGCCGCGTTCCCCGTCTTCGCGCGGAT	1900
	A C M G E E L A A A F P V F A R I	
	CCATCAGCAGGTGTGGGACCTGCTCGATGTGCCCGATCTGGAGGTGAACG	1950
	H Q Q V W D L L D V P D L E V N	2000
45	AGACCGGTTACGCCAGCCGGCCCTGTTCGCAATGCAGGTGGCTCTGTTC	2000
	E T G Y A Q P A L F A M Q V A L F GGGCTGCTGGAATCGTGGGGTGTACGACCGGACGCGGTGATCGGCCATTC	2050
	G L L E S W G V R P D A V I G H S	
	GCTGGGTGAGCTTGCGGCTGCGTATGTGTCCGGGGGTGTGGTCGTTGGAGG	2100
50	V C F T A A A Y V S G V W S L E	
	ATGCCTGCACTTTGGTGTCGGCGCGGGCTCGTCTGATGCAGGCTCTGCCC	2150
	DACTIVSARARLM QALP	
	GCGGGTGGGGTGATGGTCGCTGTCCCGGTCTCGGAGGATGAGGCCCGGGC	2200
	A G G V M V A V P V S E D E A R A CGTGCTGGGTGAGGGTGTGGAGATCGCCGCGGTCAACGGCCCGTCGTCGG	2250
55	V L G E G V E I A A V N G P S S	
	TGGTTCTCCCGGTGATGAGGCCGCCGTGCTGCAGGCCGCGGAGGGGCTG	2300
	V V T. S G D E A A V L Q A A E G L	
	GGGAAGTGGACGCGGCTGGCGACCAGCCACGCGTTCCATTCCGCCCGTAT	2350
60	C K W T R T. A T S H A F H S A K M	3
	GGAACCCATGCTGGAGGAGTTCCGGGCGGTCGCCGAAGGCCTGACCTACC	2400
	GGACGCGCAGGTCTCCATGGCCGTTGGTGATCAGGTGACCACCGCTGAC	2430
	R T P O V S M A V G D Q V T T A E	

	TACTGGGTGCGGCAGGTCCGGGACACGGTCCGGTTCGGCGAGCAGGTGGC	2500
	Y W V R Q V R D T V R F G E Q V A CTCGTACGAGGACGCCGTGTTCGTCGAGCTGGTGCCGACCGGTCACTGG S Y E D A V F V E L G A D R S L	2550
5	S Y E D A V F V E L G A D R S L CCCGCCTGGTCGACGGTGTCGCGATGCTGCACGGCGACCACGAAATCCAG A R L V D G V A M L H G D H E I Q	2600
	GCCGCGATCGGCCCCTGGCCCACCTGTATGTCAACGGCGTCACGGTCGA A A I G A L A H L Y V N G V T V D	2650
10	CTGGCCGCGCTCCTGGGCGATGCTCCGGCAACACGGGTGCTGGACCTTC W P A L L G D A P A T R V L D L	2700
. 0	CGACATACGCCTTCCAGCACCAGCGCTACTGGCTCGAGTCGGCACGCCCG P T Y A F Q H Q R Y W L E S A R P	2750
	GCCGCATCCGACGCGGGCCACCCCGTGCTGGGCTCCGGTATCGCCCTCGC A A S D A G H P V L G S G I A L A	
15	CGGGTCGCCGGCCGGGTGTTCACGGGTTCCGTGCCGACCGGTGCGGACC G S P G R V F T G S V P T G A D	
	GCGCGGTGTTCGTCGCCGAGCTGGCCGCCGCCGGACGCGGTCGAC R A V F V A E L A L A A A D A V D	
20	TGCGCCACGGTCGAGCGGCTCGACATCGCCTCCGTGCCCGGCCGG	
	CCATGGCCGGACGACCGTACAGACCTGGGTCGACGAGCCGGCGGACGACG H G R T T V Q T W V D E P A D D	
	GCCGGCGCGGTTCACCGTGCACACCCGCACCGGCGACGCCCCGTGGACG	
25	CTGCACGCCGAGGGGTGCTGCCCCCATGGCACGGCCCTGCCCGATGC L H A E G V L R P H G T A L P D A	
	GGCCGACGCCGAGTGGCCCCCACCGGGCGGCGGTGCCCGCGGACGGGCTGC A D A E W P P P G A V P A D G L	
30	CGGGTGTGTGGCGCGGGGGGGGACCAGGTCTTCGCCGAGGCCGAGGTGGAC P G V W R R G D Q V F A E A E V D	
	GGACCGGACGGTTTCGTGGTGCACCCCGACCTGCTCGACGCGGTCTTCTC G P D G F V V H P D L L D A V F S	
	CGCGGTCGGCGACGGAAGCCGCCAGCCGGCCGGATGGCGCGACCTGACGG A V G D G S R Q P A G W R D L T	
35	TGCACGCGTCGGACGCCACCGTACTGCGCGCCTCCCTCACCCGGCGCACC V H A S D A T V L R A C L T R R T	
	GACGGAGCCATGGGATTCGCCGCCTTCGACGGCCCGGCC	
40	CACCGCGGAGGCGTGACGCTGCGGGAGGTGGCGTCACCGTCCGGCTCCG T A E A V T L R E V A S P S G S	
	AGGAGTCGGACGGCTGCACCGGTTGGAGTGGCTCGCGGTCGCCGAGGCG E E S D G L H R L E W L A V A E A GTCTACGACGGTGACCTGCCCGAGGGGACATGTCCTGATCACCGCCGCCCCA	
	V Y D G D L P E G H V L I T A A H	
45	CCCCGACGACCCCGAGGACATACCCACCCGCGCCACCC PDDPEDIPTRA HTRAT	
	GCGTCCTGACCGCCCTGCAACACCACCACCACCACCACCACCACCACCACCACCAC	
50	ATCGTCCACACCACCACCGACCCGCCGCCGCCCACCGTCACCGGCCTCAC	='
	CCGCACCGCCCAGAACGAACACCCCCACCGCATCCGCCTCATCGAAACCCC R T A Q N E H P H R I R L I E T	
	ACCACCCCACACCCCCTCCCCTGGCCCAACTCGCCACCCTCGACCAC	
55	CCCCACCTCCGCCTCACCCACCACCACCCCCACCTCACCCC PHLRLTHHTLHHPHLTE	•
	CCTCCACACCACCACCACCACCACCACCACCCCCTCAACCCCGAACACC	
60	CCATCATCATCACCGGCGGCTCCGGCACCCTCGCCGGCATCCTCGCCCGCA I I I T G G S G T L A G I L A R	
	CACCTGAACCACCCCACACCTACCTCCTCTCCCGCACCCCCCCG	
	CGCCACCCCGGCACCCCACCCACCACCACCACCACCACCA	C 4050

	TCGCCACCACCCCCACATCCCCCAACCCCTCACCGCCATCTTCCAC	4100
	ACCGCCGCCACCCTCGACGACGGCATCCTCCACGCCCTCACCCCCGACCG	4150
_	T A A T L D D G I L H A L T P D R CCTCACCACCGTCCTCCACCCCAAAGCCAACGCCGCCTGGCACCTGCACC	4200
3	LTTVLHPKANAAWHLH	
	ACCTCACCCAAAACCAACCCCTCACCCACTTCGTCCTCTACTCCAGCGCC	4250
	H L T Q N Q P L T H F V L Y S S A GCCGCCGTCCTCGGCAGCCCCGGACAAGGAAACTACGCCGCCGCCAACGC	4300
10	A A V L G S P G Q G N Y A A A N A	
	CTTCCTCGACGCCTCGCCACCCACCGCCACCCCTCGGCCAACCCGCCA	4350
	CCTCCATCGCCTGGGGCATGTGGCACACCACCACCACCACCACCACCACCACCACCACCAC	4400
	T S I A W G M W H T T S T L T G Q CTCGACGACGCGGACCGGACCGCATCCGCGCGGGGGTTTCCTCCCGAT	4450
15	I. D D A D R D R I R R G G F L P I	
	CACGGACGAGGGCATGGGGATGCAT	
	TDDEG	

The AvrII-XhoI restriction fragment that encodes module 8 of the FK-520 PKS with the endogenous AT domain replaced by the AT domain of module 13 (specific for methylmalonyl CoA) of the rapamycin PKS has the DNA sequence and encodes the amino acid sequence shown below.

∵.

```
AGATCTGGCAGCTCGCCGAAGCGCTGCTGACGCTCGTCCGGGAGAGCACC 50
    QLAEALLTLVREST
25
   GCCGCCGTGCTCGGCCACGTGGGTGGCGAGGACATCCCCGCGACGGCGGC 100
    A A V L G H V G G E D I P A T A A
   GTTCAAGGACCTCGGCATCGACTCGCTCACCGCGGTCCAGCTGCGCAACG 150
     F K D L G I D S L T A V Q L R N
    CCCTCACCGAGGCGACCGGTGTGCGGCTGAACGCCACGGCGGTCTTCGAC 200
30
    ALTEATGVRLNATAVFD
    TTCCCGACCCCGCACGTGCTCGCCGGGAAGCTCGGCGACGAACTGACCGG 250
    F P T P H V L A G K L G D E L T G
    CACCGCGCGCCCGTCGTGCCCCGGACCGCGGCCACGGCCGGTGCGCACG 300
     TRAPVVPRTAATAGAH
35
    ACGAGCCGCTGGCGATCGTGGGAATGGCCTGCCGGCTGCCCGGCGGGGTC 350
    D E P L A I V G M A C R L P G G V
    GCGTCACCCGAGGAGCTGTGGCACCTCGTGGCATCCGGCACCGACGCCAT 400
     ASPEEL WHLVASGTDAI
    CACGGAGTTCCCGACGGACCGCGGCTGGGACGTCGACGCGATCTACGACC 450
40
     TEFPTDRGWDVDAIYD
    CGGACCCCGACGCGATCGGCAAGACCTTCGTCCGGCACGGTGGCTTCCTC 500
    P D P D A I G K T F V R H G G F L
    ACCGGCGCGACAGGCTTCGACGCGGCGTTCTTCGGCATCAGCCCGCGCGA 550
     TGATGFDAAFFGISPRE
45.
    GGCCCTCGCGATGGACCCGCAGCAGCGGGTGCTCCTGGAGACGTCGTGGG 600
      A L A M D P Q Q R V L L E T S W
    AGGCGTTCGAAAGCGCCGGCATCACCCCGGACTCGACCCGCGGCAGCGAC 650
    E A F E S A G I T P D S T R G S D
    ACCGGCGTGTTCGTCGGCGCCTTCTCCTACGGTTACGGCACCGGTGCGGA 700
50
     TGVFVGAFSYGYGTGAD
    CACCGACGGCTTCGGCGCGACCGGCTCGCAGACCAGTGTGCTCTCCGGCC 750
      T D G F G A T G S Q T S V L S G
    GGCTGTCGTACTTCTACGGTCTGGAGGGTCCGGCGGTCACGGTCGACACG 800
    RLSYFYGLEGPAVTVDT
- 55
    GCGTGTTCGTCGTCGCTGGCGCCGCCCACCAGGCCGGGCAGTCGCTGCG 850
     A C S S S L V A L H Q A G Q S L R
    CTCCGGCGAATGCTCGCCCTGGTCGGCGGCGTCACGGTGATGGCGT 900
      SGECSLALVGGVTVMA
    CTCCCGGCGGCTTCGTGGAGTTCTCCCGGCAGCGCGGCCTCGCGCCGGAC 950
60
```

	S P G G F V E F S R Q R G L A P D	
	GGCCGGGCGAAGGCGTTCGCCGA	1000
	GRAKAFGAGADGTSFAE	
5	GGGTGCCGGTGTGCTGATCGTCGAGAGGCTCTCCGACGCCGAACGCAACG	1050
)	G A G V L I V E R L S D A E R N	
		1100
	G H T V L A V V R G S A V N Q D G	
		1150
10	CCCCCC	1200
	R Q A L A N A G L T P A D V D A	1200
	TCGAGGCCCACGGCACCGGCACCAGGCTGGGCGACCCCATCGAGGCACAG	1250
	V E A H G T G T R L G D P I E A O	
		1300
15	AVLATYGQERATPLLLG	
	CTCGCTGAAGTCCAACATCGGCCACGCCCAGGCCGCGTCCGGCGTCGCCG	1350
	S L K S N I G H A Q A A S G V A GCATCATCAAGATGGTGCAGGCCCTCCGGCACGGGGAGCTGCCGCCGACG	
	~ T T V W **	1400
20	CMCC1 CCCCC CC1 CC1 CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCC	1450
	L H A D E P S P H V D W T A G A V	1430
	CC11Cmccmc1ccmc1ccmc1ccmc1ccmc1ccmc1ccm	1500
	ELLTSARPWPETDRPR	
25	GGGCGGGCGTGTCGTCCTTCGGAGTCAGCGGCACCAACGCCCACGTCATC	1550
23	R A G V S S F G V S G T N A H V I	
	CTGGAGAGCGCACCCCCGCTCAGCCCGGGAGGAGGGGGGAGCCTGTTGA L E S A P P A Q P A E E A Q P V E	1600
	L E S A P P A Q P A E E A Q P V E GACGCCGGTGGTGGTGCCCAAGA	1650
	TPVVASDVLPLVISAK	
30	CCCAGCCGCCCTGACCGAACACGAAGACCGGCTGCGCGCCTACCTGGCG	1700
	TQPALTEHEDRLRAYLA	
	GCGTCGCCGGGGCGGATATACGGGCTGTGGCATCGACGCTGGCGGTGAC	1750
	A S P G A D I R A V A S T L A V T	
35	ACGGTCGGTGTTCGAGCACCGCGCGCGTACTCCTTGGAGATGACACCGTCA R S V F E H R A V L L G D D T V	1800
	CCGGCACCGCGGTGACCGCACGCACGGTTTTTTTTTTTT	1850
	TGTAVTDPRIVFVFPGQ	
	GGGTGGCAGTGGCTGGGGATTGGGCAGTGCACTGCGCGATTCGTCGGTGGT	1900
40	G W Q W L G M G S A L R D S S V V	
40	GTTCGCCGAGCGGATGCCGAGTTCGTGG	1950
	F A E R M A E C A A A L R E F V ACTGGGATCTGTTCACGGTTCTGGATGATCCGGCGGTGGTGGACCGGGTT	2000
	D W D L F T V L D D P A V V D R V	2000
	GATGTGGTCCAGCCCGCTTCCTGGGCGATGATGGTTTCCCTGGCCGCGGT	2050
45	DVVQPASWAMMVSLAAV	
	GTGGCAGGCCGGTGTGCGGCCGGATGCGGTGATCGGCCATTCGCAGG	2100
	W Q A A G V R P D A V I G H S Q	
	G E I A A A C V A G A V S L R D A	2150
50	GCCCGGATCGTGACCTTGCGCAGCCAGGCGATCGCCGGGGCCTGGCGGG	2200
	A R I V T L R S Q A I A R G L A G	2200
	CCGGGGCGCGATGGCATCCGTCGCCCTGCCCGCGCAGGATGTCGAGCTGG	2250
	RGAMASVALPAQDVEL	
55	TCGACGGGGCCTGGATCGCCGCCCACAACGGGCCCGCCTCCACCGTGATC	2300
33	V D G A W I A A H N G P A S T V I	
	GCGGGCACCCGGAAGCGGTCGACCATGTCCTCACCGCTCATGAGGCACA A G T P E A V D H V L T A H E A Q	2350
	AGGGGTGCGGCGGATCACCGTCGACTATGCCTCGCACACCCCGC	2400
	G V R V R R I T V D Y A S H T P	-400
60	ACGTCGAGCTGATCCGCGACGAACTACTCGACATCACTAGCGACAGCAGC	2450
	HVELIRDELLDITSDSS	
	TCGCAGACCCCGCTCGTGCCGTGGCTGCGACCGTGGACGGCACCTGGGT	2500
	S Q T P L V P W L S T V D G T W V CGACAGCCCGCTGACCGGACCTGCGTGACCGG	2555
	- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Z > > 0

DSPLDGEYWYRNLREP TCGGTTTCCACCCGCCGTCAGCCAGTTGCAGGCCCAGGGCGACACCGTG 2600 V G F H P A V S Q L Q A Q G D T V TTCGTCGAGGTCAGCGCCAGCCCGGTGTTGTTGCAGGCGATGGACGACGA 2650 F V E V S A S P V L L Q A M D D D TGTCGTCACGGTTGCCACGCTGCGTCGTGACGACGCCGACGCCACCCGGA 2700 V V T V A T L R R D D G D A T R TGCTCACCGCCCTGGCACAGGCCTATGTCCACGGCGTCACCGTCGACTGG 2750 MLTALAQAYVHGVTVDW 10 CCCGCCATCCTCGGCACCACCACACCCGGGTACTGGACCTTCCGACCTA 2800 PAILGTTTRVLDLPTY CGCCTTCCAACACCAGCGGTACTGGCTCGAGTCGGCACGCCCGGCCGCAT 2850 A F Q H Q R Y W L E S A R P A A CCGACGCGGGCCACCCCGTGCTGGGCTCCGGTATCGCCCTCGCCGGGTCG 2900 15 SDAGHPVLGSGIALAGS CCGGGCCGGGTGTTCACGGGTTCCGTGCCGACCGGTGCGGACCGCGCGT 2950 PGRVFTGSVPTGADRAV GTTCGTCGCCGAGCTGGCCGCTGGCCGCGGACGCGGTCGACTGCGCCA 3000 F V A E L A L A A D A V D C A 20 TVERLDIASVPGRPGHG RTTVQTWVDEPADDGRR CCGGTTCACCGTGCACACCCGCACCGGCGACGCCCCGTGGACGCTGCACG 3150 25 RFTVHTRTGDAPWTLH CCGAGGGGTGCTGCCCCCATGGCACGCCCTGCCCGATGCGGCCGAC 3200 A É G V L R P H G T A L P D A A D A E W P P P G A V P A D G L P G V 30 W R R G D Q V F A E A E V D G P ACGGTTTCGTGGTGCACCCCGACCTGCTCGACGCGGTCTTCTCCGCGGTC 3350 DGFVVHPDLLDAVFSAV GGCGACGGAAGCCGCCAGCCGGCCGGATGGCGCGACCTGACGGTGCACGC 3400 35 G D G S R Q P A G W R D L T V H A GTCGGACGCCACCGTACTGCGCGCCTGCCTCACCCGGCGCACCGACGGAG 3450 S D A T V L R A C L T R R T D G CCATGGGATTCGCCGCCTTCGACGGCGCCGGCCTGCCGGTACTCACCGCG 3500 AMGFAAFDGAGLPVLTA 40 GAGGCGTGACGCTGCGGGAGGTGGCGTCACCGTCCGGCTCCGAGGAGTC 3550 EAVTLREVASPSGSEES GGACGGCCTGCACCGGTTGGAGTGGCTCGCGGTCGCCGAGGCGGTCTACG 3600 DGLHRLEWLAVAEAVY ACGGTGACCTGCCCGAGGGACATGTCCTGATCACCGCCGCCCACCCCGAC 3650 45 DGDLPEGHVLITAAHPD GACCCGAGGACATACCCACCGCGCCCACACCCGCGCCACCCGCGTCCT 3700 D P E D I P T R A H T R A T R V L GACCGCCTGCAACACCACCTCACCACCACCACCACCACCCTCATCGTCC 3750 TALQHHLTTTDHTLIV 50 ACACCACCACCGACCCGCCGGCGCCACCGTCACCGGCCTCACCCGCACC 3800 H T T T D P A G A T V T G L T R T GCCCAGAACGACCCCCACCGCATCGCCTCATCGAAACCGACCACCC 3850 A Q N. E H P H R I R L I E T D H P CCACACCCCCTCCCCTGGCCCAACTCGCCACCCTCGACCACCCCCACC 3900 55 HTPLPLAQLATLDHPH LRLTHHTLHHPHLTPLH ACCACCACCCACCACCACCACCCCCTCAACCCCGAACACGCCATCAT 4000 TTTPPTTTPLNPEHAII 60 CATCACCGGCGGCTCCGGCACCCTCGCCGGCATCCTCGCCGCCACCTGA 4050 ITGGSGTLAGILARHL ACCACCCCACACCTACCTCCTCCCGCACCCCACCCCCGACGCCACC 4100 NHPHTYLLSRTPPPDAT CCCGGCACCCACCTCCCCTGCGACGTCGGCGACCCCCACCAACTCGCCAC 4150

PGTHLPCDVGDPHQLAT CACCCTCACCCACATCCCCCAACCCCTCACCGCCATCTTCCACACCGCCG 4200 TLTHIPQPLTAIFHTA CCACCCTCGACGACGGCATCCTCCACGCCCTCACCCCGACCGCCTCACC 4250 ATLDDGILHALTPDRLT ACCGTCCTCCACCCCAAAGCCAACGCCGCCTGGCACCTGCACCACCTCAC 4300 TVLHPKANAAWHLHHLT CCAAAACCAACCCTCACCCACTTCGTCCTCTACTCCAGCGCCGCCGCCG 4350 QNQPLTHFVLYSSAAA 10 TCCTCGGCAGCCCCGGACAAGGAAACTACGCCGCCGAACGCCTTCCTC 4400 V L G S P G Q G N Y A A A N A F L GACGCCCTCGCCACCCACCCCACCCTCGGCCAACCCGCCACCTCCAT 4450 DALATHRHTLGQPATSI CGCCTGGGGCATGTGGCACACCACCAGCACCCTCACCGGACAACTCGACG 4500 · 15 AWGMWHTTSTLTGQLD ACGCCGACCGGGACCGCATCCGCCGCGGGGGGTTTCCTCCCGATCACGGAC 4550 DADRDRIRRGGFLPITD GACGAGGGCATGGGATGCAT DEG 20

The NheII-XhoI restriction fragment that encodes module 8 of the FK-520 PKS with the endogenous AT domain replaced by the AT domain of module 12 (specific for malonyl CoA) of the rapamycin PKS has the DNA sequence and encodes the amino acid sequence shown below.

25 AGATCTGGCAGCTCGCCGAAGCGCTGCTGACGCTCCGCGGAGAGCACC 50 QLAEALLTLVREST GCCGCCGTGCTCGGCCACGTGGGTGGCGAGGACATCCCCGCGACGGCGGC 100 AAVLGHVGGEDIPATAA GTTCAAGGACCTCGGCATCGACTCGCTCACCGCGGTCCAGCTGCGCAACG 150 30 F K D L G I D S L T A V Q L R N CCCTCACCGAGGCGACCGGTGTGCGGCTGAACGCCACGGCGGTCTTCGAC 200 ALTEATGVRLNATAVFD TTCCCGACCCCGCACGTGCTCGCCGGGAAGCTCGGCGACGAACTGACCGG 250 F P T P H V L A G K L G D E L T G 35 CACCCGCGCGCCGTCGTGCCCCGGACCGCGGCCACGGCCGGTGCGCACG 300 TRAPVVPRTAATAGAH ACGAGCCGCTGGCGATCGTGGGAATGGCCTGCCGGCTGCCCGGCGGGGTC 350 DEPLAIVGMACRLPGGV GCGTCACCCGAGGAGCTGTGGCACCTCGTGGCATCCGGCACCGACGCCAT 400 40 ASPEELWHLVASGTDAI CACGGAGTTCCCGACGGACCGCGGCTGGGACGTCGACGCGATCTACGACC 450 TEFPTDRGWDVDAIYD CGGACCCCGACGCGATCGGCAAGACCTTCGTCCGGCACGGTGGCTTCCTC 500 PDPDAIGKTFVRHGGFL 45 ACCGGCGCGACAGGCTTCGACGCGGCGTTCTTCGGCATCAGCCCGCGCGA 550 TGATGFDAAFFGISPRE GGCCCTCGCGATGGACCCGCAGCAGCGGGTGCTCCTGGAGACGTCGTGGG 600 ALAMDPQQRVLLETSW AGGCGTTCGAAAGCGCCGGCATCACCCCGGACTCGACCCGCGGCAGCGAC 650 50 EAFESAGITPDSTRGSD ACCGGCGTGTTCGTCGGCGCCTTCTCCTACGGTTACGGCACCGGTGCGGA 700 TGVFVGAFSYGYGTGAD CACCGACGGCTTCGGCGCGACCGGCTCGCAGACCAGTGTGCTCTCCGGCC 750 TDGFGATGSQTSV 55 GGCTGTCGTACTTCTACGGTCTGGAGGGTCCGGCGGTCACGGTCGACACG 800 RLSYFYGLEGPAVTV GCGTGTTCGTCGCTGGTGGCGCTGCACCAGGCCGGGCAGTCGCTGCG 850 A C S S S L V A L H Q A G Q S L R CTCCGGCGAATGCTCGCCCTGGTCGGCGCGTCACGGTGATGGCGT 900 60 SGECSLALVGGVTVMA

	CTCCCGGCGGCTTCGTGGAGTTCTCCCGGCAGCGCGGCCTCGCGCCGGAC S P G G F V E F S R Q R G L A P D	
	GGCCGGGCGAGGCTTCGCCGA G R A K A F G A G A D G T S F A E	1000
5	G R A K A F G A G A D G T S F A E GGGTGCCGGTGTGCTGATCGTCGAGGCTCTCCGACGCCGAACGCAACG G A G V L I V E R L S D A E R N	1050
	G H T V L A V V R G S A V N Q D G	1100
10		1150
	CCGGCAGGCCCTGGCCAACGCCGGGCTCACCCCGGCGGACGTGGACGCCG R Q A L A N A G L T P A D V D A	
	TCGAGGCCCACGGCACCGGCACCCCATCGAGGCACAG V E A H G T G T R L G D P I E A Q	
15	GCGGTACTGGCCACCTACGGACAGGAGCGCGCCACCCCCTGCTGCTGGG A V L A T Y G Q E R A T P L L L G	1300
	CTCGCTGAAGTCCAACATCGGCCACGCCCAGGCCGCGTCCGCCG S L K S N I G H A Q A A S G V A	
20	GCATCATCAAGATGGTGCAGGCCCTCCGGCACGGGGAGCTGCCGCCGACGGGIIK MVQALRHGELPPT	1400
	CTGCACGCCGACGTCGCCGCACGTCGACTGGACGGCCGCCGCT L H A D E P S P H V D W T A G A V	
	CGAACTGCTGACGTCGGCCCGGCCGTGGCCCGAGACCGACC	1500
25	GTGCCGCCGTCTCCTCGTTCGGGGTGAGCGGCACCAACGCCCACGTCATC R A A V S S F G V S G T N A H V I	
	CTGGAGGCCGGACCGGTAACGGAGACGCCCGCGGCATCGCCTTCCGGTGA L E A C P V T E T P A A S P S G D	1600
30	CCTTCCCCTGCTGGTGTCGGCACGCTCACCGGAAGCGCTCGACGAGCAGA L P L L V S A R S P E A L D E Q	1650
50	TCCGCCGACTGCGCCCTACCTGGACACCACCCCGGACGTCGACCGGGTG	1700
	I R R L R A Y L D T T P D V D R V GCCGTGGCACAGACGCTGGCCGGGGCACACACTTCGCCCACCGCGCGCT A V A Q T L A R R T H F A H R A V	1750
35	GCTGCTCGGTGACACCGTCATCACCACACCCCCGGGGACCGGCCGACG L L G D T V I T T P P A D R P D	1800
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1850
40	GAGCAGCTAGCCGCGCGTTCCCCGTCTTCGCGCGGATCCATCAGCAGGT E Q L A A A F P V F A R I H Q Q V	1900
	GTGGGACCTGCTCGATGTGCCCGATCTGGAGGTGAACGAGACCGGTTACG W D L L D V P D L E V N E T G Y	
	CCCAGCCGGCCCTGTTCGCAATGCAGGTGGCTCTGTTCGGGCTGCTGGAA A Q P A L F A M O V A L F G L L E	2000
45	TCGTGGGGTGTACGACCGGACGCGGTGATCGGCCATTCGGTGGGTG	
	TGCGGCTGCGTATGTGTCCGGGGTGTGGTCGTTGGAGGATGCCTGCACTT A A A Y V S G V W S L E D A C T	
50	TGGTGTCGGCGGGGCTCGTCTGATGCAGGCTCTGCCCGCGGGTGGGGTGGGT	2150
	ATGGTCGCTGTCCCGGTCTCGGAGGATGAGGCCCGGGCCGTGCTGGGTGA M V A V P V S E D E A R A V L G E	2200
	GGGTGTGAGATCGCCGCGGTCAACGGCCCGTCGTCGGTGGTTCTCTCCG G V E I A A V N G P S S V V L S	2250
55	GTGATGAGGCCGCGTGCTGCAGGCCGCGGAGGGGCTGGGGAAGTGGACG G D E A A V L Q A A E G L G K W T	2300
	CGGCTGGCGACCACGCGTTCCATTCCGCCCGTATGGAACCCATGCT	2350
60	R L A T S H A F H S A R M E P M L GGAGGAGTTCCGGGCGCGCAGG E E F R A V A E G L T Y R T P Q	2400
30	TCTCCATGGCCGTTGGTGATCAGGTGACCACCGCTGAGTACTGGGTGCGGVSMAVGDQVTTAEYWVR	2450
	CAGGTCCGGGACACGGTCCGGTTCGGCGAGCAGGTGGCCTCGTACGAGGA Q V R D T V R F G E Q V A S Y E D	2500

	CGCCGTGTTCGTCGAGCTGGGTGCCGACCGGTCACTGGCCCGCCTGGTCG	2550
	AVFVELGADRSLARLV	
	ACGGTGTCGCGATGCTGCACGGCGACACGAAATCCAGGCCGCGATCGGC	2600
5	D G V A M L H G D H E I Q A A I G	
,	GCCCTGGCCCACCTGTATGTCAACGGCGTCACGGTCGACTGGCCCGCGCT A L A H L Y V N G V T V D W P A I	2650
	CCTGGGCGATGCTCCGGCAACACGGGTGCTGGACCTTCCGACATACGCCT L G D A P A T R V L D L P T Y A	2700
10	TCCAGCACCAGCGCTACTGGCTCGAGTCGGCACCCGCCCG	2750
	F Q H Q R Y W L E S A R P A A S D GCGGGCCACCCCGTGCTGGGCTCGGTATCGCCCTCGCCGGGTCGCCGGG	
		2800
	A G H P V L G S G I A L A G S P G CCGGGTGTTCACGGGTTCCGTGCCGACCGGTGCGGACCGCGGTGTTCG	2050
		2850
15	TCGCCGAGCTGGCCGCGGCGGGCGGGTCGACTGCGCCACGGTC	2000
	V A E L A L A A A D A V D C A T V	2900
		2950
	E R L D I A S V P G R P G H G R T	2950
	GACCGTACAGACCTGGGTCGACGACGGCGGCGGCGGCGGCGGT	3000
20	T V Q T W V D E P A D D G R R R	3000
	TCACCGTGCACACCGCACCGGCGACGCCCGTGGACGCTGCACGCCGAG	3050
	F T V H T R T G D A P W T L H A E	2030
	GGGGTGCTGCCCCATGGCACGCCCTGCCCGATGCGGCCGACGCCGA	3100
	GVLRPHGTALPDAADAE	
25		3150
	W P P P G A V P A D G L P G V W	
	GCCGGGGGACCAGGTCTTCGCCGAGGCCGAGGTGGACGGAC	3200
	RRGDQVFAEAEVDGPDG	
	TTCGTGGTGCACCCCGACCTGCTCGACGCGGTCTTCTCCGCGGTCGGCGA	3250
30	F V V H P D L L D A V F S A V G D	
	CGGAAGCCGCCAGCCGGCCGGATGGCGCGACCTGACGGTGCACGCGTCGG	3300
	G S R Q P A G W R D L T V H A S	
	ACGCCACCGTACTGCGCGCCTCACCCGGCGCACCGACGGAGCCATG	3350
35	DATVLRACLTRRTDGAM	
23		3400
	G F A A F D G A G L P V L T A E A	
		3450
		3500
40	GCCTGCACCGGTTGGAGTGGCTCGCCGAGGCGGTCTACGACGGT G L H R L E W L A V A E A V Y D G	3500
••	G L H R L E W L A V A E A V Y D G GACCTGCCCGAGGGACATGTCCTGATCACGCCGCCCCCCCC	3550
	D L P E G H V L I T A A H P D D P	3550
	CGAGGACATACCCACCGGGGCCACACCCGGGCCACCCGGGTCCTGACCG	3600
	E D I P T R A H T R A T R V L T	3000
45	CCCTGCAACACCACCACCACCACCACCACCACCACCCTCATCGTCCACACC	3650
	ALQHHLTTTDHTLIVHT	
	ACCACCGACCCGCCGGCGCCACCGTCACCGGCCTCACCGCCACCGCCCA	3700
	TTDPAGATVTGLTRTAQ	
	GAACGAACACCCCACCGCATCCGCCTCATCGAAACCGACCACCCCACA	3750
50	NEHPHRIRLIETDHPH	
	CCCCCTCCCCTGGCCCAACTCGCCACCTCGACCACCCCCACCTCCGC	3800
	T P L P L A Q L A T L D H P H L R	
	CTCACCCACCACCCCCCCCCCCCCCCCCCCCCCCCCCCC	3850
<i>-</i> -	LTHHTLHHPHLTPLHTT	•
55	CACCCCACCCACCACCCCCCTCAACCCCGAACACGCCATCATCATCA	3900
	TPPTTTPLNPEHAIII	
	CCGGCGGCTCCGGCACCTCGCCGGCATCCTCGCCCGCCACCTGAACCAC	3950
	TGGSGTLAGILARHLNH	
۲۸	CCCCACACCTACCTCCTCCCGCACCCCCACCCCCGACGCCACCCCCGG	4000
60	P H T Y L L S R T P P P D A T P G	
	CACCCACCTCCCCTGCGACGTCGGCGACCCCCCCCACCACCTCGCCACCACCC	4050
	T H L P C D V G D P H Q L A T T	
	TCACCCACATCCCCCAACCCCTCACCGCCATCTTCCACACCGCCGCCACC	4100
	LTHIPOPLTAIFHTAAT	

CTCGACGACGCCATCCTCCACGCCTCACCCCGACCGCCTCACCACCGT 4150 LDDGILHALTPDRLTTV CCTCCACCCAAAGCCAACGCCGCCTGGCACCTGCACCACACCCAAA 4200 LHPKANAAWHLHHLTO ACCAACCCCTCACCCACTTCGTCCTCTACTCCAGCGCCGCCGCCGTCCTC 4250 NQPLTHFVLYSSAAAVL GGCAGCCCGGACAAGGAAACTACGCCGCCGACGCCTTCCTCGACGC 4300 G S P G Q G N Y A A A N A F L D A CCTCGCCACCCACCCCCACCCTCGGCCAACCCGCCACCTCCATCGCCT 4350 10 LATHRHTLGQPATSIA GGGGCATGTGGCACACCACCAGCACCCTCACCGGACAACTCGACGACGCC 4400 WGNWHTTSTLTGQLDDA GACCGGGACCGCATCCGCCGCGGCGGTTTCCTCCCGATCACGGACGACGA 4450 DRDRIRRGGFLPITDDE 15 GGGCATGGGGATGCAT

The NheII-XhoI restriction fragment that encodes module 8 of the FK-520 PKS with the endogenous AT domain replaced by the AT domain of module 13 (specific for methylmalonyl CoA) of the rapamycin PKS has the DNA sequence and encodes the amino acid sequence shown below.

AGATCTGGCAGCTCGCCGAAGCGCTGCTGACGCTCCGGGAGAGCACC 50 O L A · E A L L T L V R E S T GCCGCCGTGCTCGCCACGTGGGTGGCGAGGACATCCCCGCGACGGCGGC 100 25 AAVLGHVGGEDIPATAA GTTCAAGGACCTCGGCATCGACTCGCTCACCGCGGTCCAGCTGCGCAACG 150 F K D L G I D S L T A V Q L R N CCCTCACCGAGGCGACCGGTGTGCGGCTGAACGCCACGGCGGTCTTCGAC 200 ALTEATGVRLNATAVFD 30 TTCCCGACCCCGCACGTGCTCGCCGGGAAGCTCGGCGACGAACTGACCGG 250 F P T P H V L A G K L G D E L T G CACCCGCGCGCCCGTCGTGCCCCGGACCGCGGCCACGGCCGGTGCGCACG 300 TRAPVVPRTAATAGAH ACGAGCCGCTGGCGATCGTGGGAATGGCCTGCCGGCTGCCCGGCGGGGTC 350 35 DEPLAIVGMACRLPGGV GCGTCACCCGAGGAGCTGTGGCACCTCGTGGCATCCGGCACCGACGCCAT 400 ASPEELWHLVASGTDAI CACGGAGTTCCCGACGGACCGCGGCTGGGACGTCGACGCGATCTACGACC 450 TEFPTDRGWDVDAIYD 40 CGGACCCCGACGCGATCGGCAAGACCTTCGTCCGGCACGGTGGCTTCCTC 500 PDPDAIGKTFVRHGGFL ACCGGCGCGACAGGCTTCGACGCGGCGTTCTTCGGCATCAGCCCGCGCGA 550 TGATGFDAAFFGISPRE GGCCTCGCGATGGACCCGCAGCAGCGGGTGCTCCTGGAGACGTCGTGGG 600 45 ALAMDPQQRVLLETSW AGGCGTTCGAAAGCGCCGGCATCACCCCGGACTCGACCCGCGGCAGCGAC 650 EAFESAGITPDSTRGSD ACCGGCGTGTTCGTCGGCGCCTTCTCCTACGGTTACGGCACCGGTGCGGA 700 TGVFVGAFSYGYGTGAD 50 CACCGACGGCTTCGGCGCGACCGGCTCGCAGACCAGTGTGCTCTCCGGCC 750 T D G F G A T G S O T S V L S GGCTGTCGTACTTCTACGGTCTGGAGGGTCCGGCGGTCACGGTCGACACG 800 RLSYFYGLEGPAVTV GCGTGTTCGTCGCTGGTGGCGCTGCACCAGGCCGGGCAGTCGCTGCG 850 55 A C S S S L V A L H Q A G Q S L R CTCCGGCGAATGCTCGCTCGCCCTGGTCGGCGGCGTCACGGTGATGGCGT 900 SGECSLALVGGVTVMA CTCCCGGCGGCTTCGTGGAGTTCTCCCGGCAGCGCGGCCTCGCGCCGGAC 950 S P G G F V E F S R Q R G L A P D 60 GGCCGGCCGAAGGCGTTCGGCGCGGGTGCGGACGGCACGAGCTTCGCCGA 1000

	G R A K A F G A G A D G T S F A E	
	GGGTGCCGGTGTGCTGATCGTCGAGGGCTCTCCGACGCCGAACGCAACG	1050
	GAGVLIVERLSDAERN	
5	GTCACACCGTCCTGGCGGTCGTCCGTGGTTCGGCGGTCAACCAGGATGGT G H T V L A V V R G S A V N Q D G	1100
	GCCTCCAACGGGCTGTCGGCGCCGAACGGGCCGTCGCAGGAGCGGGTGAT	1150
	A S N G L S A P N G P S O E R V T	
	CCGGCAGGCCCTGGCCAACGCCGGGCTCACCCCGGCGGACGTGGACGCCG	1200
10	R Q A L A N A G L T P A D V D A TCGAGGCCACGGCACCAGGCACGGCACCCATCGAGGCACAG	1250
	V E A H G T G T R L G D P I E A O	
	GCGGTACTGGCCACCTACGGACAGGAGCGCGCCACCCCCTGCTGCTGGG	1300
	A V L A T Y G Q E R A T P L L L G CTCGCTGAAGTCCAACATCGGCCACGCCCAGGCCGCGTCCGGCGTCGCCG	
15	S L K S N I G H A Q A A S G V A	1350
	GCATCATCAAGATGGTGCAGGCCCTCCGGCACGGGGAGCTGCCGCCGACG	1400
	G I I K M V Q A L R H G E L P P T	
		1450
20	CGAACTGCTGACGTCGGCCCGGCCGTGGCCCGACCGACCG	1500
	ELLTSARPWPETDRPR	
	GTGCCGCCGTCTCCGTTCGGGGTGAGCGGCACCACGCCCACGTCATC R A A V S S F G V S G T N A H V T	1550
	R A A V S S F G V S G T N A H V I CTGGAGGCCGGACCGGTAACGGAGACGCCCGCGGCATCGCCTTCCGGTGA	1600
25	LEAGPVTETPAASPSGD	
	CCTTCCCCTGCTGGTGTCGGCACGCTCACCGGAAGCGCTCGACGAGCAGA	1650
	L P L L V S A R S P E A L D E Q TCCGCCGACTGCGCGCCCTACCTGGACACCCCGGACGTCGACCGGGTG	1700
	I R R L R A Y L D T T P D V D R V	1/00
30	GCCGTGGCACAGACGCTGGCCCGGCGCACACACTTCGCCCACCGCGCCGT	1750
	A V A Q T · L A R R T H F A H R A V	
	GCTGCTCGGTGACACCGTCATCACCACACCCCCGGGGACCGGCCCGACG L L G D T V I T T P P A D R P D	1800
	AACTCGTCTTCGTCTACTCCGGCCAGGGCACCCAGCATCCCGCGATGGGC	1850
35	ELVFVYSGQGTOHPAMG	
	GAGCAGCTAGCCGATTCGTCGGTGTGTTCGCCGAGCGGATGGCCGAGTG E Q L A D S S V V F A E R M A E C	1900
	TGCGGCGGCGTTGCGCGAGTTCGTGGACTGGGATCTGTTCACGGTTCTGG	1950
40	AAALREFVDWDLFTVL	
40	ATGATCCGGCGGTGGACCGGGTTGATGTGGTCCAGCCCGCTTCCTGG D D P A V V D R V D V V O P A S W	2000
	D D P A V V D R V D V V Q P A S W GCGATGATGGTTTCCCTGGCCGCGGTGTGGCAGGCGGCCGGTGTGCGCC	2050
	AMMVSLAAVWQAAGVRP	
15	GGATGCGGTGATCGCCAGGGTGAGATCGCCGCAGCTTGTGTGG	2100
+5	D A V I G H S Q G E I A A A C V CGGGTGCGGTGCACCTGCGCAGC	2150
	A G A V S L R D A A R I V T L R S	2130
	CAGGCGATCGCCCGGGGCCTGGCGGGCCGGGGCGCGATGGCATCCGTCGC	2200
50	Q A I A R G L A G R G A M A S V A	
,,	CCTGCCCGCGCAGGATGTCGAGCTGGTCGACGGGGCCTGGATCGCCGCCC L P A Q D V E L V D G A W I A A	2250
	ACAACGGGCCCGCCTCCACCGTGATCGCGGGCACCCCGGAAGCGGTCGAC	2300
	HNGPASTVIAGTPEAVD	
55	CATGTCCTCACCGCTCATGAGGCACAAGGGGTGCGGGTGCGGGGTCAC H V L T A H E A Q G V R V R R I T	2350
	H V L T A H E A Q G V R V R R I T CGTCGACTATGCCTCGCACACCCCGCACGTCGAGCTGATCCGCGACGAAC	2400
	V D Y A S H T P H V E L I R D E	
	TACTCGACATCACTAGCGACAGCAGCCCGCTCGTGCCGTGG	2450
50	L L D I T S D S S S Q T P L V P W CTGTCGACCGTGGACGGCACCTGGGTCGACAGCCCGCTGGACGGGAGTA	2500
-	L S T V D G T W V D S P L D G E Y	2500
	CTGGTACCGGAACCTGCGTGAACCGGTCGGTTTCCACCCCGCCGTCAGCC	2550
	W Y R N L R E P V G F H P A V S	
	AGTTGCAGGCCCAGGGCGACACCGTGTTCGTCGAGGTCAGCGCCAGCCCG	2600

	GTGTTGTTGCAGGCGATGACGACGCTGCG V L L Q A M D D D V V T V A T I. R	2650
5	TCGTGACGACGCCACCCGGATGCTCACCGCCCTGGCACAGGCCT	2700
J	ATGTCCACGGCGTCACCGTCGACTGGCCCCCATCCTCGGCACCACA	2750
	ACCCGGGTACTGGACCTTCCGACCTTCCAACACCAGCGGTACTG T R V L D L P T Y A F Q H Q R Y W	2800
10	GCTCGAGTCGGCACGCCGGCCGCCGTGCTGG L E S A R P A A S D A G H P V L	2850
	GCTCCGGTATCGCCCTCGCCGGGTCGCCGGGTGTTCACGGGTTCC G S G I A L A G S P G R V F T G S	2900
15	GTGCCGACCGGTGCGGACCGCGGCGCGCGCGCGCGCCGGCCCGAGCTGGCCGCGCGCG	
	CGCCGCGGACGCGTCGACTCGCCT A A D A V D C A T V E R L D I A	
20	CCGTGCCCGGCCGGCCATGGCCGGACGACCGTACAGACCTGGGTC S V P G R P G H G R T T V Q T W V	
20	GACGAGCCGGCGGACGACGGCCGGCGCGGTTCACCGTGCACACCCGCAC D E P A D D G R R R F T V H T R T CGGCGACGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG	
	CGGCGACGCCCGTGGACGCTGCACGCCGAGGGGGTGCTGCGCCCCATG G D A P W T L H A E G V L R P H GCACGGCCCTGCCCGATGCGGCCGACGCCGAGTGGCCCCACCGGGCGCG	
25	G T A L P D A A D A E W P P P G A GTGCCCGCGGACGGCTGTGTGGCGCCGGGGGACCAGGTCTT	
	V P A D G L P G V W R R G D Q V F CGCCGAGGCCGAGGGGGGGGGGGGGGGGACGGACGGTTCGTGGTGCACCCCGACC	
30	A E A E V D G P D G F V V H P D TGCTUGACGCGTCTCTCCCGCGGTCGGCGACGGAAGCCGCCAGCCGGCC	
	L L D A V F S A V G D G S R Q P A GGATGGCGCGACCTGACGGTGCACGCGTCGGACGCCACCGTACTGCGCGC	3400
35	G W R D L T V H A S D A T V L R A CTGCCTCACCGGGGGCACCGACGGAGCCATGGGATTCGCCGCCTTCGACG	3450
3 3	C L T R R T D G A M G F A A F D GCGCCGGCCTGCCGGTACTCACCGCGGAGGCGTGACGCTGCGGGAGGTG G A G L P V L T A E A V T L R E V	3500
	G A G L P V L T A E A V T L R E V GCGTCACCGTCCGGCTCCGAGGAGTCGGACGGCTGCACCGGTTGGAGTG A S P S G S E E S D G L H R L E W	3550
40		3600
	TCCTGATCACCGCCCCCCCCCGACGACCCCCGAGGACATACCCACCC	3650
45	GCCCACACCCGCGCCCCGCGTCCTGACCGCCCTGCAACACCACCTCAC A H T R A T R V L T A L Q H H L T	3700
	CACCACCGACCACACCACCACCACCGACCCGCCGGCG T T D H T L I V H T T D P A G	
50	CCACCGTCACCGGCCTCACCGCCCAGAACGAACACCCCCACCGC A T V T G L T R T A Q N E H P H R	
50	ATCCGCCTCATCGAAACCGACCACCCCCACACCCCCTCCCCCTGGCCCA I R L I E T D H P H T P L P L A Q	
	ACTCGCCACCTCGACCACCTCCGCCTCACCCACCACCACCCTCC L A T L D H P H L R L T H H T L	
55	ACCACCCCACCTCACCCCCCTCCACACCACCACCACCACC	
•	P L N P E H A I I I T G G S G T L CGCCGGCATCCTCGCCCCCCACCCTCCTCT	
60	A G I L A R H L N H P H T Y L L CCCGCACCCCCGACGCCACCCCCGGCACCCACCTCCCTGCGAC	
	S R T P P P D A T P G T H L P C D GTCGGCGACCCCACCAACC	
	V G D P H Q L A T T L T H I P Q P CCTCACCGCCATCTTCCACACCGCCGCCACCTCGACGACGGCATCCTCC	

LTAIFHTAATLDDGIL ACGCCCTCACCCCGACCGCCTCACCACCGTCCTCCACCCCAAAGCCAAC 4250 H A L T P D R L T T V L H P K A N GCCGCCTGGCACCTCACCCAAAACCAACCCTCACCCACTT 4300 5 AAWHLHHLTQNQPLTHF CGTCCTCTACTCCAGCGCCGCCGCCGTCCTCGGCAGCCCCGGACAAGGAA 4350 V L Y S S A A A V L G S P G Q G NYAAANAFLDALATHRH ACCCTCGGCCAACCCGCCACCTCCATCGCCTGGGGCATGTGGCACACCAC 4450 T , G Q P A T S I A W G M W H T T CAGCACCCTCACCGGACAACTCGACGACGCCGACCGGGACCGCATCCGCC 4500 STLTGQLDDADRDRIR GCGGCGGTTTCCTCCCGATCACGGACGACGAGGGCATGGGGATGCAT RGGFLPITDDEG

Phage KC515 DNA was prepared using the procedure described in Genetic Manipulation of Streptomyces, A Laboratory Manual, edited by D. Hopwood et al. A phage suspension prepared from 10 plates (100 mm) of confluent plaques of KC515 on S. lividans TK24 generally gave about 3 µg of phage DNA. The DNA was ligated to circularize at the cos site, subsequently digested with restriction enzymes BamHI and PstI, and dephosphorylated with SAP.

Each module 8 cassette described above was excised with restriction enzymes Bg/II and NsiI and ligated into the compatible BamHI and PstI sites of KC515 phage DNA prepared as described above. The ligation mixture containing KC515 and various cassettes was transfected into protoplasts of Streptomyces lividans TK24 using the procedure described in Genetic Manipulation of Streptomyces, A Laboratory Manual edited by D. Hopwood et al. and overlaid with TK24 spores. After 16-24 hr, the plaques were restreaked on plates overlaid with TK24 spores. Single plaques were picked and resuspended in 200 µL of nutrient broth. Phage DNA was prepared by the boiling method (Hopwood et al., supra). The PCR with primers spanning the left and right boundaries of the recombinant phage was used to verify the correct phage had been isolated. In most cases, at least 80% of the plaques contained the expected insert. To confirm the presence of the resistance marker (thiostrepton), a spot test is used, as described in Lomovskaya et al. (1997), in which a plate with spots of phage is overlaid with mixture of spores of TK24 and phiC31 TK24 lysogen. After overnight incubation, the plate is overlaid with antibiotic in soft agar. A working stock is made of all phage containing desired constructs.

Streptomyces hygroscopicus ATCC 14891 (see US Patent No. 3,244,592, issued 5 Apr 1966, incorporated herein by reference) mycelia were infected with the 40 recombinant phage by mixing the spores and phage (1 x 10⁸ of each), and incubating on R2YE agar (Genetic Manipulation of Streptomyces, A Laboratory Manual, edited by D.

10

15

20-

25

30

Hopwood et al.) at 30°C for 10 days. Recombinant clones were selected and plated on minimal medium containing thiostrepton (50 µg/ml) to select for the thiostrepton resistance-conferring gene. Primary thiostrepton resistant clones were isolated and purified through a second round of single colony isolation, as necessary. To obtain thiostrepton-sensitive revertants that underwent a second recombination event to evict the phage genome, primary recombinants were propagated in liquid media for two to three days in the absence of thiostrepton and then spread on agar medium without thiostrepton to obtain spores. Spores were plated to obtain about 50 colonies per plate. and thiostrepton sensitive colonies were identified by replica plating onto thiostrepton containing agar medium. The PCR was used to determine which of the thiostrepton sensitive colonies reverted to the wild type (reversal of the initial integration event), and which contain the desired AT swap at module 8 in the ATCC 14891-derived cells. The PCR primers used amplified either the KS/AT junction or the AT/DH junction of the wild-type and the desired recombinant strains. Fermentation of the recombinant strains. followed by isolation of the metabolites and analysis by LCMS, and NMR is used to characterize the novel polyketide compounds.

Example 2

Replacement of Methoxyl with Hydrogen or Methyl at C-13 of FK-506

The present invention also provides the 13-desmethoxy derivatives of FK-506 and the novel PKS enzymes that produce them. A variety of *Streptomyces* strains that produce FK-506 are known in the art, including *S. tsukubaensis* No. 9993 (FERM BP-927), described in U.S. Patent No. 5,624,852, incorporated herein by reference; *S. hygroscopicus* subsp. *yakushimaensis* No. 7238, described in U.S. patent No. 4,894,366, incorporated herein by reference; *S.* sp. MA6858 (ATCC 55098), described in U.S. Patent Nos. 5,116,756, incorporated herein by reference; and *S.* sp. MA 6548, described in Motamedi *et al.*, 1998, "The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK-506," *Eur. J. Biochem. 256*: 528-534, and Motamedi *et al.*, 1997, "Structural organization of a multifunctional polyketide synthase involved in the biosynthesis of the macrolide immunosuppressant FK-506," *Eur. J. Biochem. 244*: 74-80, each of which is incorporated herein by reference.

The complete sequence of the FK-506 gene cluster from *Streptomyces* sp. MA6548 is known, and the sequences of the corresponding gene clusters from other FK-506-producing organisms is highly homologous thereto. The novel FK-506 recombinant gene clusters of the present invention differ from the naturally occurring gene clusters in

35

5

10

15

20

that the AT domain of module 8 of the naturally occurring PKSs is replaced by an AT domain specific for malonyl CoA or methylmalonyl CoA. These AT domain replacements are made at the DNA level, following the methodology described in Example 1.

The naturally occurring module 8 sequence for the MA6548 strain is shown below, followed by the illustrative hybrid module 8 sequences for the MA6548 strains.

GCATGCGGCTGTACGAGGCGGCACGGCACCGGAAGTCCCGTGGTGGTG 50 MRLYEAARRTGSPVVV GCGGCCGCCCCGACGACGCGCGGACGTGCCGCTGCTGCGCGGGCTGCG 100 10 AAALDDAPDVPLLRGLR GCGTACGACCGTCCGGCGTGCCGCCGTCCGGGAACGCTCTCTCGCCGACC 150 RTTVRRAAVRERSLAD RSPCCPTTSAPTPPSRS 15 TCCTGGAACAGCACCGCCACCGTGCTCGGCCACCTGGGCGCCGAAGACAT 250 SWNSTATVLGHLGAEDI CCCGGCGACGACGACGTTCAAGGAACTCGGCATCGACTCGCTCACCGCGG 300 PATTTFKELGIDSLTA TCCAGCTGCGCAACGCGTGACCACGGCGACCGGCGTACGCCTCAACGCC 350 20 V Q L R N A L T T A T G V R L N A TAVFDFPTPRALAARL CGACGAGCTGGCCGGTACCCGCGCGCCCGTCGCGGCCCGGACCGCGCCA 450 DELAGTRAPVAARTAA 25 CCGCGGCCGCGCACGACGACCGCTGGCGATCGTGGGCATGGCCTGCCGT 500 TAAAHDEPLAIVGMACR CTGCCGGGCGGGTCGCCTCGCCACAGGAGCTGTGGCGTCTCGTCGCGTC 550 LPGGVASPQELWRLVA CGGCACCGACGCCATCACGGAGTTCCCCGCGGACCGCGGCTGGGACGTGG 600 30 G T D A I T E F P A D R G W D V ACGCGCTCTACGACCCGGACCCCGACGCGATCGGCAAGACCTTCGTCCGG 650 DALYDPDPDAIGKTFVR CACGGCGGCTTCCTCGACGGTGCGACCGGCTTCTTCGG 700 H G G F L D G A T G F D A A F F G 35 GATCAGCCCGCGCGAGGCCCTGGCCATGGACCCGCAGCAACGGGTGCTCC 750 I S P R E A L A M D P Q Q R V L TGGAGACGTCCTGGGAGGCGTTCGAAAGCGCGGGCATCACCCCGGACGCG 800 LETSWEAFESAGITPDA GCGCGGGCACCGGCGTGTTCATCGGCGCGTTCTCCTACGGGTA 850 40 ARGSDTGVFIGAFSYGY CGGCACGCGTGCGGATACCAACGGCTTCGGCGCGACAGGGTCGCAGACCA 900 G T G A D T N G F G A T G S Q T GCGTGCTCTCCGGCCGCCTCTCGTACTTCTACGGTCTGGAGGGCCCTTCG 950 V L S G R L S Y F Y G L E G P S 45 GTCACGGTCGACACCGCCTGCTCGTCGTCACTGGTCGCCCTGCACCAGGC 1000 V T V D T A C S S S L V A L H Q A AGGGCAGTCCCTGCGCTCGGCGAATGCTCGCCCTGGTCGGCGGTG 1050 G Q S L R S G E C S L A L V G G TCACGGTGATGGCGTCGCCCGGCGGATTCGTCGAGTTCTCCCGGCAGCGC 1100 50 VTVMASPGGFVEFS G L A P D G R A K A F G A G A D TACGAGCTTCGCCGAGGGCGCCGGTGCCCTGGTGGTCGAGCGGCTCTCCG 1200 TSFAEGAGALVVERLS 55 ACGCGGAGCGCCACGCCCACGCCCTCGCCCTCGTACGCGGCTCCGCG 1250 DAERHGHTVLALVRGSA GCTAACTCCGACGGCGCGTCGAACGGTCTGTCGGCGCCGAACGGCCCCTC 1300 ANSDGASNGLSAPNGP CCAGGAACGCGTCATCCACCAGGCCCTCGCGAACGCGAAACTCACCCCCG 1350

	QERVIHQALANAKLTP	
	CCGATGTCGACGCGCTCGAGGCGCACGGCACCCGCCTCGGCGAC	1400
	ADVDAVEAHGTGTRLGD	
	CCCATCGAGGCGCAGGCGCTGCTCGCGACGTACGGACAGGACCGGGCGAC	1450
5	PIEAQALLATYGQDRAT	
	GCCCCTGCTGGCTCGCTGAAGTCGAACATCGGGCACGCCCAGGCCG	1500
	PLLLGSLKSNIGHAQA	
		1550
	A S G V A G I I K M V Q A I R H G	1330
10	GAACTGCCGCCGACACTGCACGCGGACGACGTCGCCGCACGTCGACTG	1600
		1600
	GACGCCGGTGCCGTCGAGCTCCTGACGTCGGCCCGGCCGTGGCCGGGGA	1.050
		1620
15	CCGGTCGCCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC	1700
13	T G R P R R A A V S S F G V S G T	
	AACGCCCACATCATCCTTGAGGCAGGACCGGTCAAAACGGGACCGGTCGA	1750
	N A H I I L E A G P V K T G P V E	
	GGCAGGAGCGATCGAGGCAGGACCGGTCGAAGTAGGACCGGTCGAGGCTG	1800
20	AGAIEAGPVEVGPVEA	
20	GACCGCTCCCCGCGGCGCGCCGTCAGCACCGGGCGAAGACCTTCCGCTG	1850
	G P L P A A P P S A P G E D L P L	
	CTCGTGTCGGCGCGTTCCCCGGAGGCACTCGACGAGCAGATCGGGCGCCT	1900
	LVSARSPEALDEQIGRL	
	GCGCGCCTATCTCGACACCGGCCCGGGCGTCGACCGGGCGGCCGTGGCGC	1950
25	RAYLDTGPGVDRAAVA	
	AGACACTGGCCCGGCGTACGCACTTCACCCACCGGGCCGTACTGCTCGGG	2000
	Q T L'A R R T H F T H R A V L L G	
	GACACCGTCATCGGCGCTCCCCCCGCGGACCAGGCCGACGAACTCGTCTT	2050
	D T V I G A P P A D Q A D E L V F	2030
30 -	CGTCTACTCCGGTCAGGGCACCCAGCATCCCGCGATGGGCGAGCAACTCG	23.00
	V Y S G Q G T Q H P A M G E Q L	2100
	CGGCCGCGTTCCCCGTGTTCGCCGATGCCTGGCACGACGCGCTCCGACGG	2150
		2150
	A A A F P V F A D A W H D A L R R CTCGACGACCCGCACGACCCCACACGGAGCCACACGCTCTT	2222
35		2200
55		2252
	CGCCCACCAGGCGGCGTTCACCGCCCTCCTGAGGTCCTGGGACATCACGC	2250
	A H Q A A F T A L L R S W D I T	
	CGCACGCCGTCATCGGCCACTCGCTCGGCGAGATCACCGCCGCGTACGCC	2300
40	P H A V I G H S L G E I T A A Y A	
40	GCCGGGATCCTGTCGCTCGACGACGCCTGCACCCTGATCACCACGCGTGC	2350
	AGILSLDDACTLITTRA	-
	CCGCCTCATGCACACGCTTCCGCCGCCCGGCGCCATGGTCACCGTGCTGA	2400
	RLMHTLPPPGAMVTVL	
	CCAGCGAGGAGGAGGCCCGTCAGGCGCTGCGGCCGGGCGTGGAGATCGCC	2450
45	T S E E E A R Q A L R P G V E I A	
	GCGGTCTTCGGCCCGCACTCCGTCGTGCTCTCGGGCGACGAGGACGCCGT	2500
	AVFGPHSVVLSGDEDAV	
	GCTCGACGTCGCACAGCGGCTCGGCATCCACCACCGTCTGCCCGCGCCGC	2550
	LDVAQRLGIHHRLPAP	
50	ACGCGGGCCACTCCGCGCACATGGAACCCGTGGCCGCCGAGCTGCTCGCC	2600
	HAGHSAHMEPVAAELLA	
	ACCACTCGCGAGCTCCGTTACGACCGGCCCCACACCGCCATCCCGAACGA	2650
	TTRELRYDRPHTAIPND	
	CCCCACCACCGCCGAGTACTGGGCCGAGCAGGTCCGCAACCCCGTGCTGT	2700
55	PTTAEYWAEQVRNPVL	_,
	TCCACGCCCACACCCAGCGGTACCCCGACGCCGTGTTCGTCGAGATCGGC	2750
	F H A H T Q R Y P D A V F V E I G	2,50
		2000
	CCCGGCCAGGACCTCTCACCGCTGGTCGACGGCATCGCCCTGCAGAACGG	2000
60	P G Q D L S P L V D G I A L Q N G	2052
UU	CACGGCGGACGAGGTGCACGCGCTCACACCGCGCTCGCCCGCC	2850
	TADEVHALHTALARLF	
	CACGCGGCGCCACGCTCGACTGGTCCCGCATCCTCGGCGGTGCTTCGCGG	2900
	TRGATLDWSRILGGASR	
	CACGACCCTGACGTCCCCTCGTACGCGTTCCAGCGGCGTCCCTACTGGAT	2050

	" D F D V P S Y A F Q R R P Y W I	
	CGAGTCGGCTCCCCGGCCACGGCCGACTCGGGCCACCCCGTCCTCGGCA	3000
	E SAPPATADSGHPV 1. G	
_	CCGGAGTCGCCGTCGCCGGGTCGCCGGGTGTTCACGGGTCCCGTG	3050
5	I G V A V A G S P G R V F T G P V	
	CCCGCCGGTGCGGACCGCGCGGTGTTCATCGCCGAACTGGCGCTCGCCGC	3100
	P A G A D R A V F I A E L A L A A	3100
	CGCCGACGCCACCGACTGCGCCACGGTCGACGTCACCTCCG	2150
		3130
10	TGCCCGGCGGATCCGCCGCGCGCAGGCCAGGCCTGGGTCGAT	2200
	V P C C C X D C =	3200
	GAACCCGCCGACGGGCGCGCGCTTCACCGTCCACACCCGCGTCGG	3050
	E P A A D G R R R F T V H T R V G	3250
	CGACGCCCGTGGACCCTCCACCGGGGGGGGGGGGGGGGG	
15	CGACGCCCGTGGACGCTGCACGCCGGGGGGGTTCTCCGCCCGGCCGCG	3300
	TGCCCCACCCGAAGCCGTCGACACCGCCTGGCCCCGCCGGCGGCGGTG V P Q P E A V D T A W P P P G A V	3350
	CCCGCGGACGGGCTGCCCGGGGCGTGGCGACGGGACCAGGTCTTCGT	3400
20	PADGLPGAWRRADQVFV	
20	CGAAGCCGAAGTCGACAGCCCTGACGGCTTCGTGGCACACCCCGACCTGC	3450
	EAEVDSPDGFVAHPDL	
	TCGACGCGGTCTTCTCCGCGGTCGGCGACGGGAGCCGCCAGCCGACCGGA	3500
	L D A V F S A V G D G S R Q P T G	
25	TGGCGCGACCTCGCGGTGCACGCGTCGGACGCCACCGTGCTGCGCGCCTG	3550
25	WRDLAVHASDATVLRAC	
	CCTCACCCGCCGCGACAGTGGTGTCGTGGAGCTCGCCGCCTTCGACGGTG	3600
	LTRRDSGVVELAAFDG	
	CCGGAATGCCGGTGCTCACCGCGGAGTCGGTGACGCTGGGCGAGGTCGCG	3650
20	AGMPVLTAESVTLGEVA	
30	TCGGCAGGCGGATCCGACGAGTCGGACGGTCTGCTTCGGCTTGAGTGGTT	3700
	SAGGSDESDGLLRLEWL	
	GCCGGTGGCGGAGGCCCACTACGACGGTGCCGAGGGCTGCCCGAGGGCT	3750
	PVAEAHYDGADELPEG	
	ACACCCTCATCACCGCCACACCCCGACGACCCCGACGACCCCACCAAC	3800
35	YTLITATHPDDPDDPTN	
	· CCCC1 CN N CN CN COCC CN COCC CN COCC CN C	3850
	PHNTPTRTHTOTTRVLT	
	CGCCCTCCAACACCACCTCATCACCACCACCACCACCCTCATCGTCCACA	3900
	ALQHHLITTNHTLIVH	
40	CCACCACCGACCCCCAGGCGCCGCCGTCACCGGCCTCACCGCACCGCA	3950
	TTTDPPGAAVTGLTRTA	
	CAAAACGAACACCCCGGCCGCATCCACCTCATCGAAACCCACCACCCCCA	4000
	QNEHPGRIHLIETHHPH	
	CACCCCACTCCCCTCACCCAACTCACCACCCTCCACCAACCCCACCTAC	4050
45	T P L P L T Q L T T L H Q P H L	4030
	GCCTCACCAACAACACCCCCCACCCCCACCTCACCCCCATCACCAC	4100
	R L T N N T L H T P H L T P I T T	1200
	CACCACACACCACACACCCCCAACACCCCCACCCCTCAACCCCAA	415N
	H H N T T T T P N T P P L N P N	4130
50	CCACGCCATCCTCATCACCGGCGGCTCCGGCACCCTCGCCGGCATCCTCG	4200
	H A I L I T G G S G T L A G I L	1200
	CCCGCCACCTCAACCACCCCCACACCTACCTCCCCCCACACCAC	4250
	A R H L N H P H T Y L L S R T P P	4230
•	CCCCCACACACCCGGCACCCACATCCCCTGCGACCTCACCGACCCCAC	4300
55	P P T T P G T H I P C D L T D P T	4300
_	CCAAATCACCCAAGCCCTCACCCACATACCACAACCCCTCACCGGCATCT	4350
	Q I T Q A L T H I P Q P L T G I	4350
	TCCACACCCCCCCACCCACCCACCCACCCACCCACCCAC	
	TCCACACCGCCGCCACCCTCGACGACGCCACCCTCACCAACCTCACCCCC	4400
60	F H T A A T L D D A T L T N L T P	
	CAACACCTCACCACCACCCTCCAACCCAAAGCCGACGCCGCCTGGCACCT	4450
	Q H L T T T L Q P K A D A A W H L	. = =
	CCACCACCACACCCAAAACCAACCCCTCACCCACTTCGTCCTCTACTCCA	4500
	H H H T Q N Q P L T H F V L Y S	
	GCGCCGCCACCCTCGGCAGCCCGGCCAAGCCAACTACGCCGCCGCC	4550

10

5

The AvrII-XhoI hybrid FK-506 PKS module 8 containing the AT domain of module 12 of rapamycin is shown below.

1

GCATGCGGCTGTACGAGGCGGCACGGCACCGGAAGTCCCGTGGTGGTG 50 MRLYEAARRTGSPVVV 15 GCGGCCGCGCTCGACGCGCCGGACGTGCCGCTGCTGCGCGGGCTGCG 100 AAALDDAPDVPLLRGLR GCGTACGACCGTCCGGCGTGCCGCCGTCCGGGAACGCTCTCTCGCCGACC 150 RTTVRRAAVRERSLAD 20 RSPCCPTTSAPTPPSRS TCCTGGAACAGCACCGCCACCGTGCTCGGCCACCTGGGCGCCGAAGACAT 250 SWNSTATVLGHLGAEDI CCCGGCGACGACGTTCAAGGAACTCGGCATCGACTCGCTCACCGCGG 300 PATTFKELGIDSLTA 25 TCCAGCTGCGCAACGCGCTGACCACGGCGACCGGCGTACGCCTCAACGCC 350 V Q L R N A L T T A T G V R L N A TAVFDFPTPRALAARLG CGACGAGCTGGCCGGTACCCGCGCGCCCGTCGCGGCCCGGACCGCGCCA 450 30 DELAGTRAPVAARTAA CCGCGGCCGCACGACGACCGCTGGCGATCGTGGGCATGGCCTGCCGT 500 TAAAHDEPLAIVGMACR CTGCCGGGGGGGCGCCCCCCACAGGAGCTGTGGCGTCTCGTCGCGTC 550 LPGGVASPQELWRLVAS 35 CGGCACCGACGCCATCACGGAGTTCCCCGCGGACCGCGGCTGGGACGTGG 600 GTDAITEFPADRGWDV ACGCGCTCTACGACCCGGACCCCGACGCGATCGGCAAGACCTTCGTCCGG 650 DALYDPDPDAIGKTFVR CACGGCGGCTTCCTCGACGGTGCGACCGGCTTCTTCGG 700 40 H G G F L D G A T G F D A A F F G GATCAGCCCGCGGGGGCCCTGGCCATGGACCCGCAGCAACGGGTGCTCC 750 I S P R E A L A M D P O O R V L TGGAGACGTCCTGGGAGGCGTTCGAAAGCGCGGGCATCACCCCGGACGCG 800 LETSWEAFESAGITPDA 45 GCGCGGGCAGCACCCGCGTGTTCATCGGCGCGTTCTCCTACGGGTA 850 ARGSDTGVFIGAFSYGY CGGCACGGGTGCGGATACCAACGGCTTCGGCGCGACAGGGTCGCAGACCA 900 G T G A D T N G F G A T G S Q T GCGTGCTCTCGGCCGCCTCTCGTACTTCTACGGTCTGGAGGGCCCTTCG 950 50 SVLSGRLSYFYGLEGPS GTCACGGTCGACACCGCCTGCTCGTCGTCACTGGTCGCCCTGCACCAGGC 1000 V. T. V. D. T. A. C. S. S. S. L. V. A. L. H. Q. A. AGGGCAGTCCCTGCGCTCGGGCGAATGCTCGCTCGCCCTGGTCGGCGGTG 1050 GQSLRSGECSLALVGG TCACGGTGATGGCGTCGCCGGCGGATTCGTCGAGTTCTCCCGGCAGCGC 1100 V T V M A S P G G F V E F S R Q R GGGCTCGCGCCGGACGGCGGGCGGACGGCGCGGGCGCGGGCGCGGACGG 1150 G L A P D G R A K A F G A G A D G TACGAGCTTCGCCGAGGGCGCCGGTGCCCTGGTGGTCGAGCGGCTCTCCG 1200 60 TSFAEGAGALVVERLS ACGCGGAGCGCCACGCCACACCGTCCTCGCCCTCGTACGCGGCTCCGCG 1250 DAERHGHTVLALVRGSA

	GCTAACTCCGACGGCGCGTCGAACGGTCTGTCGGCGCCCGAACGGCCCCTC	1300
	ANSDGASNGLSAPNGPS	
	CCAGGAACGCGTCATCCACCAGGCCCTCGCGAACGCGAAACTCACCCCCG	1350
_	Q E R V I H Q A L A N A K L T P	
5	CCGATGTCGACGCGCTCGAGGCGCACCGGCACCCGCCTCGGCGAC	1400
	ADVDAVEAHGTGTRLGD	
	CCCATCGAGGCGCAGGCGTGCTCGCGACGTACGGACAGGACCGGGCGAC	1450
	PIEAQALLATYGQDRAT	
	COCCOMPONE	1500
10	PLLLGSLKSNIGHAQA	
	CGTCAGGGGTCGCCGGGATCATCAAGATGGTGCAGGCCATCCGGCACGGG	1550
	ASGVAGIIKMVQAIRHG	
	GAACTGCCGCCGACACTGCACGCGGACGACCGTCGCCGCACGTCGACTG	1600
	E L P P T L H A D E P S P H V D W	1000
15	GACGGCCGGTGCCGTCGAGCTCCTGACGTCGGCCGGGCGTGGCCGGGGA	1650
	T A G A V E L L T S A R P W P G	1030
	CCGGTCGCCTAGGCGGCAGGCGTGTCGTCCTTCGGGATCAGTGGCACC	1700
		1700
	T G R P R R A G V S S F G I S G T AACGCCCACGCATCAGCCTGGAAAGCGCACCCCCACTCAGCCTGCGGACAA	1750
20		1/50
	N A H V I L E S A P P T Q P A D . N CGCGGTGATCGAGCGGCACCGGAGTGGGTGCCGTTGGTGATTTCGGCCA	1000
	• •• • · · · · · · · · · · · · · · · ·	1800
		1050
	GGACCCAGTCGGCTTTGACTGAGCACGAGGGCCGGTTGCGTGCG	1820
25		
2,7	GCGGCGTCGCCCGGGGTGGATATGCGGGCTGTGGCATCGACGCTGGCGAT	1900
	A A S P G V D M R A V A S T L A M	
	GACACGGTCGGTGTTCGAGCACCGTGCCGTGCTGCTGGGAGATGACACCG	1950
	T R S V F E H R A V L L G D D T	
30	TCACCGGCACCGCTGTCTCTGACCCTCGGGCGGTGTTCGTCTTCCCGGGA	2000
30	V T G T A V S D P R A V F V F P G	
	CAGGGGTCGCAGCGTGCTGGCATGGGTGAGGAACTGGCCGCCGCGTTCCC	2050
	Q G S Q R A G M G E E L A A A F P	
	CGTCTTCGCGCGGATCCATCAGCAGGTGTGGGGACCTGCTCGATGTGCCCG	2100
2.5	V F A R I H Q Q V W D L L D V P	
33	ATCTGGAGGTGAACGAGACCGGTTACGCCCAGCCGGCCCTGTTCGCAATG	2150
	D L E V N E T G Y A Q P A L F A M	
	CAGGTGGCTCTGTTCGGGCTGCTGGAATCGTGGGGTGTACGACCGGACGC	2200
	Q V A L F G L L E S W G V R P D A	
40	GGTGATCGGCCATTCGGTGGGTGAGCTTGCGGCTGCGTATGTGTCCGGGG	2250
40	V I G H S V G E L A A A Y V S G	
	TGTGGTCGTTGGAGGATGCCTGCACTTTGGTGTCGGCGCGGGCTCGTCTG	2300
	V W S L E D A C T L V S A R A R L	
	ATGCAGGCTCTGCCCGCGGGTGGGGTGATGGTCGCTGTCCCGGTCTCGGA	2350
45	M Q A L P A G G V M V A V P V S E	
45	GGATGAGGCCCGGGCCGTGCTGGGTGAGGGTGTGGAGATCGCCGCGGTCA	2400
	D E A R A V L G E G V E I A A V	
	ACGGCCCGTCGTCGGTGGTTCTCTCCGGTGATGAGGCCGCCGTGCTGCAG	2450
	N G P S S V V L S G D E A A V L Q	
50	GCCGCGGAGGGCTGGGGAAGTGGACGCGCTGGCGACCAGCCACGCGTT	2500
50	AAEGLGKWTRLATSHAF	
	CCATTCCGCCCGTATGGAACCCATGCTGGAGGAGTTCCGGGCGGTCGCCG	2550
	H S A R M E P M L E E F R A V A	
	AAGGCCTGACCTACCGGACGCCGCAGGTCTCCATGGCCGTTGGTGATCAG	2600
	EGLTYRTPQVSMAVGDQ	
55	GTGACCACCGCTGAGTACTGGGTGCGGCAGGTCCGGGACACGGTCCGGTT	2650
	V T T A E Y W V R Q V R D T V R F	
	CGGCGAGCAGGTGGCCTCGTACGAGGACGCCGTGTTCGTCGAGCTGGGTG	2700
	G E Q V A S Y E D A V F V E L G	
	CCGACCGGTCACTGGCCCGCCTGGTCGACGGTGTCGCGATGCTGCACGGC	2750
60	ADRSLARLVDGVAMLHG	
	GACCACGAAATCCAGGCCGCGATCGGCGCCCTGGCCCACCTGTATGTCAA	2800
	DHEIQAAIGALAHLYVN	
	CGGCGTCACGGTCGACTGGCCCGCGCTCCTGGGCGATGCTCCGGCAACAC	2850
	GVTVDWPALLGDAPAT	

	GGGTGCTGGACCTTCCGACATACGCCTTCCAGCACCAGCGCTACTGGCTC	2900
	RVLDLPTYAFQHQRYWL	
	CA CERCOCOMOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	2950
_	ESAPPATADSGHPVLGT	
5	CGGAGTCGCCGGGTCGCCGGGCCGGGTGTTCACGGGTCCCGTGC	3000
	GVAVAGSPGRVFTGPV	
	CCGCCGGTGCGGACCGCGCGGTGTTCATCGCCGAACTGGCGCTCGCCGCC	3050
	P A G A D R A V F I A E L A L A A	
		3100
10	ADATDCATVEQLDVTSV	
	GCCCGGCGGATCCGCCGCGCGCAGGCCACCGCGCAGACCTGGGTCGATG	3150
	PGCSARGRATAQTWVD	
	AACCCGCCGCCGACGGGCGCGCCGCTTCACCGTCCACACCCGCGTCGGC	3200
	EPAADGRRRFTVHTRVG	
15	GACGCCCGTGGACGCTGCACGCCGAGGGGGTTCTCCGCCCCGGCCGCGT	3250
	DAPWTLHAEGVLRPGRV	
	GCCCUAGCCCGAAGCCGTCGACACCGCCTGGCCCCGCCGGGCGCGGTGC	3300
	PQPEAVDTAWPPPGAV	
	CCGCGGACGGGCTGCCCGGGGCGTGGCGACCGGGCGGACCAGGTCTTCGTC	3350
20	P A D G L P G A W R R A D Q V F V	
	GAAGCCGAAGTCGACAGCCCTGACGGCTTCGTGGCACACCCCGACCTGCT	3400
	EAEVDSPDGFVAHPDLL	
	CGACGCGGTCTCCCGCGGTCGGCGACGGGAGCCGCCAGCCGACCGGAT	3450
	D A V F S A V G D G S R Q P T G	
25	GGCGCGACCTCGCGGTGCACGCGTCGGACGCCACCGTGCTGCGCGCCTGC	3500
	WRDLAVHASDATVLRAC	
	CTCACCCGCCGCGACAGTGGTGTCGTGGAGCTCGCCGCCTTCGACGGTGC	3550
	LTRRDSGVVELAAFDGA	
	CGGAATGCCGGTGCTCACCGCGGAGTCGGTGACGCTGGGCGAGGTCGCGT	3600
30	GMPVLTAESVTLGEVA	
	CGGCAGGCCGATCCGACGAGTCGGACGGTCTGCTTCGGCTTGAGTGGTTG	3650
	COOCACCCATCCCACCACCACCACCACCACCACCACCACCACC	
	S A G G S D E S D G L L R L E W L	
	S A G G S D E S D G L L R L E W L CCGGTGGCGGAGGCCCACTACGACGGTGCCGACGAGGCTGCCCGAGGGCTA	
26	S A G G S D E S D G L L R L E W L CCGGTGGCGGAGGCCCACTACGACGGTGCCGACGAGGCTGCCGAGGGCTA P V A E A H Y D G A D E L P E G Y	
35	S A G G S D E S D G L L R L E W L CCGGTGGCGGAGGCCCACTACGACGGTGCCGACGAGCTGCCCGAGGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCGACGACCCCACCCA	
35	S A G G S D E S D G L L R L E W L CCGGTGGCGAGGCCCACTACGACGGTGCCGACGAGGCTGCCGAGGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCGACGACCCCCACCCA	3700 3750
35	S A G G S D E S D G L L R L E W L CCGGTGGCGGAGGCCCACTACGACGGTGCCGACGAGCTGCCGAGGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCGACGACCCCAACC T L I T A T H P D D P D D P T N CCCACAACACCCCACCCACCCACCCACCCCACCCACC	3700
35	S A G G S D E S D G L L R L E W L CCGGTGGCGGAGGCCCACTACGACGGTGCCGACGAGCTGCCCGAGGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACACCCCGACGACCCCCACCCA	3700 3750 3800
	S A G G S D E S D G L L R L E W L CCGGTGGCGAGGCCCACTACGACGGTGCCGACGAGGCTGCCGAGGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCGACGACCCCCACCCA	3700 3750
35 40	S A G G S D E S D G L L R L E W L CCGGTGGCGAGGCCCACTACGACGGTGCCGACGAGGCTGCCGAGGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCGACGACCCCACCCA	3700 3750 3800 3850
	S A G G S D E S D G L L R L E W L CCGGTGGCGGAGGCCCACTACGACGGTGCCGACGAGGCTGCCGAGGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCGACGACCCCCACCCA	3700 3750 3800
	S A G G S D E S D G L L R L E W L CCGGTGGCGGAGGCCCACTACGACGGTGCCGACGAGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCCGACGACCCCCACCCAC	3700 3750 3800 3850 3900
	S A G G S D E S D G L L R L E W L CCGGTGGCGAGGCCCACTACGACGGTGCCGACGAGGCTGCCGAGGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCCACCCAACC T L I T A T H P D D P D D P T N CCCACAACACCCCACCCCACCCACCCACCCACACCCCACA	3700 3750 3800 3850 3900
40	S A G G S D E S D G L L R L E W L CCGGTGGCGGAGGCCCACTACGACGGTGCCGACGAGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCCACCCACC	3700 3750 3800 3850 3900 3950
	S A G G S D E S D G L L R L E W L CCGGTGGCGAGGCCCACTACGACGGTGCCGACGAGGCCTACACGACGGTGCCGAGGGCTAPU A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCCGACGACCCCCACCCA	3700 3750 3800 3850 3900 3950
40	S A G G S D E S D G L L R L E W L CCGGTGGCGAGGCCCACTACGACGGTGCCGACGAGGCCTACACCCCGACGAGGCCTACACCCCGACGAGGCCCACCAACCCTCATCACCGCCACCACCCCGACGACCCCCACCCA	3700 3750 3800 3850 3900 3950 4000
40	S A G G S D E S D G L L R L E W L CCGGTGGCGAGGCCCACTACGACGGTGCCGACGAGGCCTACACCCGAGGGCTACACCCGAGGGCTACACCCGACGAGGCCCACCACCCGACGACGACCCCGACGA	3700 3750 3800 3850 3900 3950 4000
40	S A G G S D E S D G L L R L E W L CCGGTGGCGAGGCCCACTACGACGGTGCCGACGAGGCCTACACCCCGAGGGCTAPVA E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACCACCCCGACGACCCCCACCCCACCCA	3700 3750 3800 3850 3900 3950 4000 4050
40 45	S A G G S D E S D G L L R L E W L CCGGTGGCGAGGCCCACTACGACGGTGCCGACGAGGCCTACACCCGAGGGCTAPVA E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCCACCCCA	3700 3750 3800 3850 3900 3950 4000 4050
40	S A G G S D E S D G L L R L E W L CCGGTGGCGAGGCCCACTACGACGGTGCCGACGAGGCCTACACCCGAGGGCTAPVA E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCCACCCCCCCC	3700 3750 3800 3850 3900 3950 4000 4050 4100
40 45	S A G G S D E S D G L L R L E W L CCGGTGGCGAGGCCCACTACGACGGTGCCGACGAGGCCTACACCCGAGGGCTAPVA E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCCACCCCA	3700 3750 3800 3850 3900 3950 4000 4050 4100
40 45	S A G G S D E S D G L L R L E W L CCGGTGGCGGAGGCCCACTACGACGGTGCCGACGAGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCCACCCACC	3700 3750 3800 3850 3900 3950 4000 4050 4100 4150
40 45	S A G G S D E S D G L L R L E W L CCGGTGGCGGAGGCCCACTACGACGGTGCCGACGAGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCCACCCACC	3700 3750 3800 3850 3900 3950 4000 4050 4100 4150
40 45 50	S A G G S D E S D G L L R L E W L CCGGTGGCGAGGCCCACTACGACGGTGCCGACGAGGCCTACACGCGTGCCGAGGGCTAPU A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCGACGACCCCCACCCA	3700 3750 3800 3850 3900 3950 4000 4050 4150 4200
40 45	S A G G S D E S D G L L R L E W L CCGGTGGCGGAGGCCCACTACGACGGTGCCGAGGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCGACGACCCCACCACC T L I T A T H P D D P D D P T N CCCACAACACACCCCACACCCCACACCACCCCACACC P H N T P T R T H T Q T T R V L T GCCCTCCAACACCCCCACACCACCACCACCACCCTCATCGTCCACC A L Q H H L I T T N H T L I V H T CACCACGACCCCCAGGCGCCCCCCACCACCACCCCCCCC	3700 3750 3800 3850 3900 3950 4000 4050 4150 4200
40 45 50	S A G G S D E S D G L L R L E W L CCGGTGGCGAGGGCCCACTACGACGGTGCCGAGGGCCTACACGACGGTGCCGAGGGCCTAP V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACACCCCGACGACCCCGACGACCCCACCACC	3700 3750 3800 3850 3900 3950 4000 4150 4200 4250
40 45 50	S A G G S D E S D G L L R L E W L CCGGTGGCGAGGCCCACTACGACGGTGCCGAGGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACCACCCCGACGACCCCCACCAACC T L I T A T H P D D P D D P T N CCCACAACACCCCCACCACCCCACCACCCCACCACCCACCCACCCC	3700 3750 3800 3850 3900 3950 4000 4150 4200 4250
40 45 50	S A G G S D E S D G L L R L E W L CCGGTGGCGAGGCCCACTACGACGGTGCCGAGGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACACCCCGACGACCCCGACGACCCCACCACC	3700 3750 3800 3850 3900 3950 4000 4150 4250 4250 4300
40 45 50	S A G G S D E S D G L L R L E W L CCGGTGGCGGAGGCCCACTACGACGTGCCGACGAGCTGCCCGAGGGCTA P V A E A H Y D G A D E L P E G Y CACCTCATCACCGCCACACCCCGACGACCCCGACGACCCCCACCACCC T L I T A T H P D D P D D P T N CCCACAACACCCCACACCACCACACACCACACCAC	3700 3750 3800 3850 3900 3950 4000 4150 4250 4250 4300
40 45 50	S A G G S D E S D G L L R L E W L CCGGTGGCGGAGGCCCACTACGACGGTGCCGACGAGCTGCCCGAGGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCGACGACCCCACCACC T L I T A T H P D D P D D P T N CCCACAACACCCCACACCCCCACACACACACACACAC	3700 3750 3800 3850 3900 3950 4000 4150 4150 4200 4250 4300 4350
40 45 50	S A G G S D E S D G L L R L E W L CCGGTGGCGGAGGCCCACTACGACGGTGCCCGAGGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCCACCACCCCCGACGACCCCCACCACC T L I T A T H P D D P D D P T N CCCACAACACCCCACCACCCCCACCACCACCCCACC	3700 3750 3800 3850 3900 3950 4000 4150 4150 4200 4250 4300 4350
40 45 50	S A G G S D E S D G L L R L E W L CCGGTGGCGGAGGCCCACTACGACGGTGCCGACGAGCTGCCCGAGGGCTA P V A E A H Y D G A D E L P E G Y CACCCTCATCACCGCCACACCCCGACGACCCCGACGACCCCACCACC T L I T A T H P D D P D D P T N CCCACAACACCCCACACCCCCACACACACACACACAC	3700 3750 3800 3850 3900 3950 4000 4150 4250 4250 4350 4400

CGCCGCCGCCACCCTCGGCAGCCCGGCCAAGCCAACTACGCCGCCGCA 4500

A A A T L G S P G Q A N Y A A A

ACGCCTTCCTCGACGCCTCGCCACCCACCGCCACACCCAAGGACAACCC 4550

N A F L D A L A T H R H T Q G Q P

GCCACCACCATCGCCTGGGGCATGTGGCACACCACCACCACCTCACCAG 4600

A T T I A W G M W H T T T T L T S

CCAACTCACCGACAGCGACCGCACCGCGCGCGGCGGCTTCCTGC 4650

Q L T D S D R D R I R R G G F L CGATCTCGGACGACGACGACGCATGC

CGATCTCGGACGACGAGGGCATGC

10 P I S D D E G M

GCATGCGGCTGTACGAGGCGCACGGCGCACCGGAAGTCCCGTGGTGGTG 50

The AvrII-XhoI hybrid FK-506 PKS module 8 containing the AT domain of module 13 of rapamycin is shown below.

15 MRLYEAARRTGSPVVV GCGGCCGCCCGACGACGCCCGGACGTGCCGCTGCTGCGCGGGCTGCG 100 A A A L D D A P D V P L L R G L R GCGTACGACCGTCCGGCGTGCCGCCGTCCGGGAACGCTCTCTCGCCGACC 150 RTTVRRAAVRERSLAD 20 RSPCCPTTSAPTPPSRS TCCTGGAACAGCACCGCCACCGTGCTCGGCCACCTGGGCGCCGAAGACAT 250 SWNSTATVLGHLGAEDI CCCGGCGACGACGTTCAAGGAACTCGGCATCGACTCGCTCACCGCGG 300 25 PATTFKELGIDSLTA TCCAGCTGCGCAACGCGCTGACCACGGCGACCGGCGTACGCCTCAACGCC 350 Q L R N A L T T A T G V R L N A TAVFDFPTPRALAARLG 30 CGACGAGCTGCCGGTACCCGCGCGCCCGTCGCGGCCCGGACCGCGGCCA 450 DELAGTRAPVAARTAA CCGCGGCCGCGCACGACCGCTGGCGATCGTGGGCATGGCCTGCCGT 500 TAAAHDEPLAIVGMACR CTGCCGGGCGGGTCGCCTCGCCACAGGAGCTGTGGCGTCTCGTCGCGTC 550 35 L P G G V A S P Q E L W R L V A S CGGCACCGACGCCATCACGGAGTTCCCCGCGGACCGCGGCTGGGACGTGG 600 GTDAITEFPADRGWDV ACGCGCTCTACGACCCGGACCCCGACGCGATCGGCAAGACCTTCGTCCGG 650 DALYDPDPDAIGKTFVR 40 CACGGCGGCTTCCTCGACGGTGCGACCGGCTTCTCGG 700 H G G F L D'G A T G F D A A F F G GATCAGCCCGCGGGGGCCCTGGCCATGGACCCGCAGCAACGGGTGCTCC 750 ISPREALAMDPQQRVL TGGAGACGTCCTGGGAGGCGTTCGAAAGCGCGGGCATCACCCCGGACGCG 800 45 LETSWEAFESAGITPDA GCGCGGGGCAGCGACACCGGCGTGTTCATCGGCGCGTTCTCCTACGGGTA 850 ARGSDTGVFIGAFSYGY CGGCACGGGTGCGGATACCAACGGCTTCGGCGCGACAGGGTCGCAGACCA 900 G T G A D T N G F G A T G S Q T 50 GCGTGCTCTCCGGCCGCCTCTCGTACTTCTACGGTCTGGAGGGCCCTTCG 950 S. V L S G R L S Y F Y G L E G P S GTCACGGTCGACACCGCCTGCTCGTCGTCACTGGTCGCCCTGCACCAGGC 1000 V T V D T A C S S S L V A L H Q A AGGGCAGTCCCTGCGCTCGGCCGAATGCTCGCTCGCCCTGGTCGGCGGTG 1050 55 GQSLRSGECSLALVGG TCACGGTGATGGCGTCGCCCGGCGGATTCGTCGAGTTCTCCCGGCAGCGC 1100 V T V M A S P G G F V E F S R Q R GGGCTCGCGCGGACGGGCGGGCGAAGGCGTTCGGCGCGGGCGCGGACGG 1150 G L A P D G R A K A F G A G A D G 60 TACGAGCTTCGCCGAGGGCGCCGGTGCCCTGGTGGTCGAGCGGCTCTCCG 1200 TSFAEGAGALVVERLS ACGCGGAGCGCCACGCCACACCGTCCTCGCCCTCGTACGCGGCTCCGCG 1250

	DAERHGHTVLALVRGSA	
	GCTAACTCCGACGCGCGTCGAACGGTCTGTCGGCGCCGAACGGCCCCTC	1300
5	CCAGGAACGCGTCATCCACCAGGCCCTCGCGAACGCGAAACTCACCCCCG	1350
,	Q E R V I H Q A L A N A K L T P CCGATGTCGACGCGCTCGGCGAC	1400
	A D V D A V E A H G T G T R L G D CCCATCGAGGGCGCGGCGCGCGCGCGCGACGGACGGACGG	1450
	PIEAQALLATYGQDRAT	
10	GCCCCTGCTGCTCGGCTCGAAGTCGAACATCGGGCACGCCCAGGCCG P L L L G S L K S N I G H A Q A	1500
	CGTCAGGGGTCGCCGGGATCATCAAGATGGTGCAGGCCATCCGGCACGGG A S G V A G I I K M V Q A I R H G	1550
15	GAACTGCCGCCGACACTGCACGCGGACGACGTCGACTG E L P P T L H A D E P S P H V D W	1600
	GACGGCCGGTGCCGGAGCTCCTGACGTCGGCCGGCCGTGGCCGGGGA T A G A V E L L T S A R P W P G	1650
	CCGGTCGCCCTAGGCGGCGGCGCGTGTCGTCCTTCGGAGTCAGCGGCACC T G R P R R A G V S S F G V S G T	1700
20	AACGCCCACGICATCCTGGAGAGCGCACCCCCGCTCAGCCCGCGGAGGA N A H V I L E S A P P A Q P A E E	1750
	GGCGCAGCCTGTTGAGACGCCGGTGGTGGCCTCGGATGTGCTGCCGCTGG A Q P V E T P V V A S D V L P L	1800
25	TGATATCGGCCAAGACCCAGCCCGCCTGACCGAACACGAAGACCGGCTG V I S A K T Q P A L T E H E D R L	1850
	CGCGCCTACCTGGCGGCGTCGCCCGGGGCGGATATACGGGCTGTGGCATC R A Y L A A S P G A D I R A V A S	1900
	_	1950
30	GAGATGACACCGTCACCGGCACCGCGGTGACCGACCCCAGGATCGTGTTT G D D T V T G T A V T D P R I V F	2000
	GTCTTTCCCGGGCAGGGGTGGCAGTGGCAGTGCACTGCG V F P G Q G W Q W L G M G S A L R	2050
35		2100
	TGCGCGAGTTCGTGGACTGGATCTGGATGATCCGGCG L R E F V D W D L F T V L D D P A	2150
		2200
40	TTCCCTGGCCGCGGTGTGGCAGGCGGCCGGTGTGCGGTGA S L A A V W Q A A G V R P D A V	
	TCGGCCATTCGCAGGTGAGATCGCCGCAGCTTGTGTGGCGGGTGCGGTG I G H S Q G E I A A A C V A G A V	2300
45	TCACTACGCGATGCCGGGATCGTGACCTTGCGCAGCCAGGCGATCGC S L R D A A R I V T L R S Q A I A	2350
	CCGGGGCCTGCCGGGCGCGCGATGCCATCCGTCGCCCTGCCCGCGC R G L A G R G A M A S V A L P A	2400
	AGGATGTCGAGCTGGTCGACGGGGCCCGCCACAACGGGCCCQDVELVDGGGCCCQDVELVDGAWIAAHNGP	2450
50	GCCTCCACCGTGATCGCGGGCACCCCGGAAGCGGTCGACCATGTCCTCAC A S T V I A G T P E A V D H V L T	2500
	CGCTCATGACGCACAAGGGGTGCGGGTGCGGCGGATCACCGTCGACTATG A H E A Q G V R V R R I T V D Y	2550
55	CCTCGCACACCCCGCACGTCGAGCTGATCCGCGACGAACTACTCGACATC A S H T P H V E L I R D E L L D I	2600
	ACTAGCGACAGCTCGCAGACCCCGCTCGTGCCGTGGCTGTCGACCGT T S D S S S Q T P L V P W L S T V	2650
	GGACGCCACCTGGGTCGACAGCCCGCTGGACGGGAGTACTGGTACCGGA D G T W V D S P L D G E Y W Y R	2700
60	ACCTGCGTGAACCGGTCGGTTTCCACCCCGCCGTCAGCCAGTTGCAGGCC	2750
	CAGGGCGACACCGTGTTCGTCGAGGTCAGCGCCAGCCCGGTGTTGTTGCA	2800
	Q G D T V F V E V S A S P V L L Q	2850

	AMDDDVVTVATLRRDD	
	GCGACGCCACCGGATGCTCACCGCCCTGGCACAGGCCTATGTCCACGGC	2900
_		2950
5	V T V D W P A I L G T T T T R V L GGACCTTCCGACCTACGCCTTCCAACACCAGCGGTACTGGCTCGAGTCGG	3000
	D L P T Y A F Q H Q R Y W L E S CTCCCCGGCCACGGCACCGGGCCCCGTCCTCGGCACCGGAGTC	
10	A P P A T A D S G H P V L G T G V	
•	AVAGSPGRVFTGPVPAG	3100
	ADRAVFIAELALAAD	3150
15	CCACCGACTGCGCCACGGTCGAACAGCTCGACGTCACCTCCGTGCCCGGC A T D C A T V E Q L D V T S V P G	
	GGATCCGCCGCGCAGGCCACGCCGCAGACCTGGGTCGATGAACCCGC G S A R G R A T A Q T W V D E P A	3250
	CGCCGACGGGGGGCGCCGCTTCACCGTCCACACCCGCGTCGGCGACGCCC A D G R R R F T V H T R V G D A	3300
20	CGTGGACGCTGCACGCCGAGGGGGTTCTCCGCCCGGCCGCGCGCG	3350
	CCCGAAGCCGTCGACACCGCCTGGCCCCGCCGGGCGCGGTGCCCGCGGA	3400
26	P E A V D T A W P P P G A V P A D CGGGCTGCCCGGGGCGTGGCGACGCGGGACCAGGTCTTCGTCGAAGCCG	3450
25	G L P G A W R R A D Q V F V E A AAGTCGACAGCCCTGACGGCTTCGTGGCACGCG	3500
	E V D S P D G F V A H P D L L D A GTCTTCTCCGCGGTCGGCGACGGAGCCGCCGACCGGATGGCGCGA	
30	V F S A V G D G S R Q P T G W R D CCTCGCGGTGCACGCGTCGGACGCCACCGTGCTGCGCGCCTGCCT	
	L A V H A S D A T V L R A C L T GCCGCGACAGTGGTGCTGGAGGTCCGGAATG	
	RRDSGVVELAAFDGAGM	
35	CCGGTGCTCACCGCGGAGTCGGTGACGCTGGGCAGG P V L T A E S V T L G E V A S A G	
	CGGATCCGACGACGGTCGGTCTGCTTCGGCTTGAGTGGTTGCCGGTGG G S D E S D G L L R L E W L P V	
	CGGAGGCCCACTACGACGGTGCCGACGAGGGCTACACCCTC A E A H Y D G A D E L P E G Y T L	
40	ATCACCGCCACACCCCGACGACCCCACCACCCCACAACCCCCACAA I T A T H P D D P D D P T N P H N	3850
	CACACCCACACGCACCACACACACACACGCGTCCTCACCGCCCTCC T P T R T H T Q T T R V L T A L	3900
45	AACACCACCTCATCACCACCACCACCACCACCACCACCAC	3950
	GACCCCCAGGCGCCGCCGTCACCGGCCTCACCCGCACCGCACAAAACGA	4000
	D P P G A A V T G L T R T A Q N E ACACCCCGGCCGCATCCACCTCATCGAAACCCACCCCCACACCCCAC	4050
50	H P G R I H L I E T H H P H T P TCCCCCTCACCCAACTCACCACCCTCACC	4100
	L P L T Q L T T L H Q P H L R L T AACAACACCCTCACACCACCACCACACACAA	4150
	N N T L H T P H L T P I T T H H N CACCACCACACCACCACCACCACCACCACCACCACCACC	4200
55	T T T T P N T P P L N P N H A TCCTCATCACCGGCGGCTCCGGCACCCTCGCCGGCATCCTCGCCGCCAC	
	ILITGGSGTLAGILARH	
60	CTCAACCACCCCACACCTACCTCTCTCCCGCACACCACCACCCCCCAC L N H P H T Y L L S R T P P P P T	
60	CACACCCGGCACCCACATCCCCTGCGACCTCACCGACCCCACCCA	
	CCCAAGCCCTCACCCACATACCACACCCTCACCGGCATCTTCCACACC T Q A L T H I P Q P L T G I F H T	4400
	GCCGCCACCCTCGACGACGCCACCCTCACCAACCTCACCCCCCAACACCT	4450

A A T L D D A T L T N L T P Q H L CACCACCACCTCCAACCCAAAGCCGACGCCGCCTGGCACCTCCACCACC 4500 TTTLQPKADAAWHLHH ACACCCAAAACCAACCCCTCACCCACTTCGTCCTCTACTCCAGCGCCGCC 4550 H T Q N Q P L T H F V L Y S S A A GCCACCCTCGGCAGCCCGGCCAAGCCAACTACGCCGCCGCCAACGCCTT 4600 ATLGSPGQANYAAANAF CCTCGACGCCTCGCCACCGCCACACCCAAGGACAACCCGCCACCA 4600 LDALATHRHTQGQPAT 10 CCATCGCCTGGGGCATGTGGCACACCACCACCACACTCACCAGCCAACTC 4700 TIAWGMWHTTTTLTSOL ACCGACAGCGACCGCATCCGCCGCGGGGGTTCCTGCCGATCTC 4750 TDSDRDRIRRGGFLPIS GGACGACGAGGCATGC 15 DDEGM

The *NheI-XhoI* hybrid FK-506 PKS module 8 containing the AT domain of module 12 of rapamycin is shown below.

GCATGCGGCTGTACGAGGCGCACGGCGCACCGGAAGTCCCGTGGTGGTG 50 20 M R L Y E A A R R T G S P V V V GCGGCCGCGCTCGACGACGCCCGGACGTGCCGCTGCTGCGCGGGCTGCG 100 A A A L D D A P D V P L L R G L R GCGTACGACCGTCCGGCGTGCCGCCGTCCGGGAACGCTCTCTCGCCGACC 150 RTTVRRAAVRERSLAD 25 RSPCCPTTSAPTPPSRS TCCTGGAACAGCACCGCCACCGTGCTCGGCCACCTGGGCGCCGAAGACAT 250 SWNSTATVLGHLGAEDI CCCGGCGACGACGTTCAAGGAACTCGGCATCGACTCGCTCACCGCGG 300 30 PATTFKELGIDSLTA TCCAGCTGCGCAACGCGCTGACCACGGCGACCGGCGTACGCCTCAACGCC 350 V Q L P. N A L T T A T G V R L N A ACAGCGGTCTTCGACTTTCCGACGCCGCGCGCGCTCGCCGCGAGACTCGG 400 TAVFDFPTPRALAARLG 35 CGACGAGCTGGCCGGTACCCGCGCGCCCGTCGCGGCCCGGACCGCGCCA 450 D E L A G T R A P V A A R T A A CCGCGCCGCGCACGACCGCTGGCGATCGTGGGCATGGCCTGCCGT 500 TAAAHDEPLAIVGMACR CTGCCGGGCGGGGTCGCCTCGCCACAGGAGCTGTGGCGTCTCGTCGCGTC 550 40 L P G G V A S P Q E L W R L V A S CGGCACCGACGCCATCACGGAGTTCCCCGCGGACCGCGGCTGGGACGTGG 600 G T D A I T E F P A D R G W D V ACGCGCTCTACGACCCGGACCCCGACGCGATCGGCAAGACCTTCGTCCGG 650 DALYDPDPDAIGKTFVR 45 CACGGCGGCTTCCTCGACGGTGCGACCGGCTTCGACGCGGCGTTCTTCGG 700 H G G F L D G A T G F D A A F F G GATCAGCCCGCGGGGGCCCTGGCCATGGACCCGCAGCAACGGGTGCTCC 750 I S P R E A L A M D P Q Q R V L TGGAGACGTCCTGGGAGGCGTTCGAAAGCGCGGGCATCACCCCGGACGCG 800 50 LETSWEAFESAGITPDA GCGCGGGGCAGCGACACCGGCGTGTTCATCGGCGCGTTCTCCTACGGGTA 850 ARGSDTGVFIGAFSYG CGGCACGGGTGCGGATACCAACGGCTTCGGCGCGACAGGGTCGCAGACCA 900 G T G A D T N G F G A T G S Q T 55 GCGTGCTCTCCGGCCGCCTCTCGTACTTCTACGGTCTGGAGGGCCCTTCG 950 SVLSGRLSYFYGLEGPS GTCACGGTCGACACCGCCTGCTCGTCGTCACTGGTCGCCCTGCACCAGGC 1000 V T V D T A C S S S L V A L H Q A AGGGCAGTCCCTGCGCTCGGCCGAATGCTCGCCCTGGTCGGCGGTG 1050 60 G Q S L R S G E C S L A L V G G TCACGGTGATGGCGTCGCCCGGCGGATTCGTCGAGTTCTCCCGGCAGCGC 1100 V T V M A S P G G F V E F S R Q R

	GGGC CGCGGCGGGCGGGCGGGCGGGCGGGCGCGGGCGCGGGCGC	1150
	G L A P D G R A K A F G A G A D G TACGAGCTTCGCCGAGGGCGCCGGTGCCCTGGTGGTCGAGCGGCTCTCCG T S F A E G A G A L V V E R L S	1200
5	ACGCGGAGCGCCACGGCCACACCGTCCTCGCCCTCGTACGCGGCTCCGCG	1250
	GCTAACTCCGACGGCGCTCGAACGGTCTGTCGGCGCCCGAACGGCCCCTC A N S D G A S N G L S A P N G P S	
10	CCAGGAACGCGTCATCCACCAGGCCCTCGCGAACGCGAAACTCACCCCG Q E R V I H Q A L A N A K L T P	1350
	CCGATGTCGACGCGGTCGAGGCGCACCGGCACCGGCTCGGCGAC A D V D A V E A H G T G T R L G D	1400
	CCCATCGAGGCGCAGGCGTCGCGACGTACGGACAGGACCGGGCGAC P I E A Q A L L A T Y G Q D R A T	1450
15	GCCCCTGCTCCTCGGCTCGAAGTCGAACATCGGGCACGCCCAGGCCG P L L G S L K S N I G H A Q A	1500
	ASGVAGIIKMVQAIRHG	1550
20	GAACTGCCGCCGACACTGCACGGGGGGGGGGGGGCGGCGGCGGCGGCGGCGGCGGCG	1600
	** ** * * * * * * * * * * * * * * * * *	1650
	CCGGTCGCCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC	1700
25	AACGCCCACATCATCCTTGAGGCAGGACCGGTCAAAACGGGACCGGTCGA N A H I I L E A G P V K T G P V E	1750
		1800
30	GACCGCTCCCCGCGGCGCCGCCGTCAGCACCGGGCGAAGACCTTCCGCTG	1850
50		1900
	GCGCGCCTATCTCGACACCGGCCCGGGCGTCGACCGGGCGCCGTGGCGC R A Y L D T G P G V D R A A V A	1950
35	AGACACTGGCCCGGCGTACGCACTTCACCCACCGGGCCGTACTGCTCGGG Q T L A R R T H F T H R A V L L G	2000
	GACACCGTCATCGGCGCTCCCCCGCGGACCAGGCCGACGAACTCGTCTT D T V I G A P P A D Q A D E L V F	2050
40	CGTCTACTCCGGTCAGGGCACCCAGCATCCCGCGATGGGCGAGCAGCTAG V Y S G Q G T Q H P A M G E Q L	
	CCGCCGCGTTCCCCGTCTTCGCGCGGATCCATCAGCAGGTGTGGGACCTG A A A F P V F A R I H Q Q V W D L	
	CTCGATGTGCCCGATCTGGAGGTGAACGAGACCGGTTACGCCCAGCCGGC L D V P D L E V N E T G Y A Q P A	2200
45	CCTGTTCGCAATGCAGGTGGCTCTGTTCGGGCTGCTGGAATCGTGGGGTG L F A M Q V A L F G L L E S W G	2250
	TACGACCGGACGCGGTGATCGGCCATTCGGTGGGTGAGCTTGCGCCTGCG V R P D A V I G H S V G E L A A A	2300
50	TATGTGTCCGGGGTGTGGTCGTTGGAGGATGCCTGCACTTTGGTGTCGGC Y V S G V W S L E D A C T L V S A	2350
	GCGGGCTCGTCTGATGCAGGCTCTGCCCGCGGGTGGGGTGATGGTCGCTG R A R L M Q A L P A G G V M V A	2400
	TCCCGGTCTCGGAGGATGAGGCCCGGGCCGTGCTGGGTGAGGGTGTGGAG	2450
55	ATCGCCGCGGTCAACGGCCCGTCGTCGGTGGTTCTCTCCGGTGATGAGGC I A A V N G P S S V V L S G D E A	2500
	CGCCGTGCTGCAGGCCGCGGAGGGCCTGGCGAAGTGGACGCGGCTGGCGAAA V L Q A A E G L G K W T R L A	2550
50	CCAGCCACGCGTTCCATTCCGCCCGTATGGAACCCATGCTGGAGGAGTTC	2600
J U	T S H A F H S A R M E P M L E E F CGGGCGGTCGCCGAAGGCCTGACCTACCGGACGCCGCAGGTCTCCATGGC	2650
	R A V A E G L T Y R T P Q V S M A CGTTGGTGATCAGGTGACCACCGCTGAGTACTGGGTGCGGCAGGTCCGGG	2700
	V G D Q V T T A E Y W V R Q V R	

		2750
	GTCGAGCTGGGTGCCGACCGGTCACTGGCCCGCCTGGTCGACGGTGTCGC	2800
5	GATGCTGCACGGCGACCACGAAATCCAGGCCGCGATCGGCCCCTGGCCC	2850
	M L H G D H E I Q A A I G A L A ACCTGTATGTCAACGGCGTCACGGTCGACTGGCCGCTCCTGGGCGAT H L Y V N G V T V D W P A L L G D	2900
10	GCTCCGGCAACACGGGTGCTGGACCTTCCGACATACGCCTTCCAGCACCA	2950
10		3000
	CCGTCCTCGGCACCGGAGTCGCCGTCGCCGGGCCGGGTGTTC P V L G T G V A V A G S P G R V F	3050
15		3100
	GGCGCTCGCCGCCGACGCCACCGACTGCGCCACGGTCGAACAGCTCG A L A A A D A T D C A T V E Q L	3150
20	ACGTCACCTCCGTGCCCGGCGGGATCCGCCGCGCGCGCGC	
	ACCTGGGTCGATGAACCCGCCGCCGACGGGCGCGCGCTTCACCGTCCA T W V D E P A A D G R R R F T V H	3250
	CACCCGCGTCGGCGACGCCCCGTGGACGCTGCACGCCGAGGGGGTTCTCC T R V G D A P W T L H A E G V L	3300
25	GCCCCGGCCGCGTGCCCCAGCCCGAAGCCGTCGACACCGCCTGGCCCCCG R P G R V P Q P E A V D T A W P P	3350
	CCGGGCGGGTGCCCGGGACGCGCGGA PGAVPADGLPGAWRRAD	3400
30		3450
	ACCCCGACCTGCTCGACGCGGTCTTCTCCGCGGTCGGCGACGGGAGCCGC H P D L L D A V F S A V G D G S R	3500
	CAGCCGACCGGATGGCGCGACCGTCGGACGCCACCGT Q P T G W R D L A V H A S D A T V	3550
35		3600
	CCTTCGACGGTGCCGGAATGCCGGTGCTCACCGCGGAGTCGGTGACGCTG A F D G A G M P V L T A E S V T L	3650
40	GGCGAGGTCGCGCGGCGGCGGATCCGACGAGTCGGACGGTCTGCTTCG G E V A S A G G S D E S D G L L R	3700
	GCTTGAGTGGTTGCCGGTGGCGGAGGCCCACTACGACGGTGCCGACGAGC L E W L P V A E A H Y D G A D E	3750
	TGCCCGAGGGCTACACCCTCATCACCGCCACACCCCGACGACCCCGAC L P E G Y T L I T A T H P D D P D	3800
45	GACCCCACCACCCCACACACCCCACACCACACACACACA	3850
	ACGCGTCCTCACCGCCCTCCAACACCACCTCATCACCACCAACCA	3900
50	TCATCGTCCACACCACCGACCCCCCAGGCGCCGCCGTCACCGGCCTC	3950
50	L I V H T T T D P P G A A V T G L ACCCGCACCGCACAAAACGAACACCCCGGCCGCATCCACCTCATCGAAAC T R T A Q N E H P G R I H L I E T	4000
	CCACCACCCCACACCCCACTCCCCCTCACCCAACTCACCAC	4050
55	H H P H T P L P L T Q L T T L H AACCCCACCTACGCCTCACCAACAACACCCCCCACCTCACC Q P H L R L T N N T L H T P H L T	4100
	CCCATCACCACCACCACACACCACCACCACCACCCCCAACACCCC	4150
60	P I T T H H N T T T T T P N T P P CCTCAACCCCAACCACGCCATCCTCATCACCGGGGGCTCCGGCACCCTCG L N P N H A I L I T G G S G T L	4200
	CCGGCATCCTCGCCCGCCACCTCAACCACCCCCACACCTACCT	4250
	A G I L A R H L N H P H T Y L L S CGCACACCACCACCACCACCACCACCACCACCACCACCAC	4300
	RTPPPTTPGTHIPCDL	

```
CACCGACCCCAAATCACCCAAGCCCTCACCCACATACCACAACCCC 4350
    TDPTQITQALTHIPQP
   TCACUGGCATCTTCCACACCGCCGCCACCCTCGACGACGCCACCCTCACC 4400
   LTGIFHTAATLDDATLT
   AACCTCACCCCCAACACCTCACCACCCTCCAACCCAAAGCCGACGC 4450
    N L T P Q H L T T T L Q P K A D A
   CGCCTGGCACCTCCACCACACCCAAAACCAACCCCTCACCCACTTCG 4500
    AWHLHHHTQNQPLTHF
   TCCTCTACTCCAGCGCCGCCGCCACCCTCGGCAGCCCGGCCAAGCCAAC 4550
10
   V L Y S S A A A T L G S P G Q A N
   YAAANAFLDALATHRHT
   CCAAGGACAACCCGCCACCACCATCGCCTGGGGCATGTGGCACACCACCA 4650
    QGQPATTIAWGMWHTT
15
   CCACACTCACCAGCCAACTCACCGACAGCGACCGCGACCGCATCCGCCGC 4700
   TTLTSQLTDSDRDRIRR
   GGCGGCTTCCTGCCGATCTCGGACGACGAGGGCATGC
    GGFLPISDDEGM
```

The *NheI-XhoI* hybrid FK-506 PKS module 8 containing the AT domain of module 13 of rapamycin is shown below.

GCATGCGGCTGTACGAGGCGGCACGGCACCGGAAGTCCCGTGGTGGTG 50 MRLYEAARRTGSPVVV GCGGCCGCGCTCGACGACGCCGCGGACGTGCCGCTGCTGCGCGGGCTGCG 100 25 A A A L D D A P D V P L L R G L R GCGTACGACCGTCCGGCGTGCCGCCGTCCGGGAACGCTCTCTCGCCGACC 150 RTTVRRAAVRERSLAD RSPCCPTTSAPTPPSRS 30 TCCTGGAACAGCACCGCCACCGTGCTCGGCCACCTGGGCGCCGAAGACAT 250 SWNSTATVLGHLGAEDI CCCGGCGACGACGTTCAAGGAACTCGGCATCGACTCGCTCACCGCGG 300 PATTFKELGIDSLTA TCCAGCTGCGCAACGCGCTGACCACGGCGACCGGCGTACGCCTCAACGCC 350 35 V Q L R N A L T T A T G V R L N A TAVFDFPTPRALAARLG CGACGAGCTGGCCGGTACCCGCGCGCCCGTCGCGGCCCGGACCGCGGCCA 450 DELAGTRAPVAARTAA 40 CCGCGGCCGCGCACGACCGCTGGCGATCGTGGGCATGGCCTGCCGT 500 TAAAHDEPLAIVGMACR CTGCCGGGCGGGTCGCCACAGGAGCTGTGGCGTCTCGTCGCGTC 550 L P G G V A S P Q E L W R L V A S CGGCACCGACGCCATCACGGAGTTCCCCGCGGACCGCGGCTGGGACGTGG 600 45 GTDAITEFPADRGWDV ACGCGCTCTACGACCCGGACCCCGACGCGATCGGCAAGACCTTCGTCCGG 650 DALYDPDPDAIGKTFV CACGGCGGCTTCCTCGACGGTGCGACCGGCTTCGACGCGGCGTTCTTCGG 700 H G G F L D G A T G F D A A F. F G 50 GATCAGCCCGCGAGGCCCTGGCCATGGACCCGCAGCAACGGGTGCTCC 750 ISPREALAMDPOORVL TGGAGACGTCCTGGGAGGCGTTCGAAAGCGCGGGCATCACCCCGGACGCG 800 LETSWEAFESAGITPDA GCGCGGGCAGCGCGTGTTCATCGGCGCGTTCTCCTACGGGTA 850 55 ARGSDTGVFIGAFSYGY CGGCACGGGTGCGGATACCAACGGCTTCGGCGCGACAGGGTCGCAGACCA 900 G T G A D T N G F G A T G S Q T GCGTGCTCTCCGGCCGCCTCTCGTACTTCTACGGTCTGGAGGGCCCTTCG 950 SVLSGRLSYFYGLEGPS 60 GTCACGGTCGACACCGCCTGCTCGTCGTCACTGGTCGCCCTGCACCAGGC 1000 V T V D T A C S S S L V A L H Q A AGGGCAGTCCCTGCGCTCGGGCGAATGCTCGCTCGCCCTGGTCGGCGGTG 1050

	GQSLRSGECSLALVGG	
	TCACGGTGATGGCGTCGCCCGGCGGGTTCGTCGAGTTCTCCCGGCAGCGC V T V M A S P G G F V E F S R O R	1100
5	GGGCTCGCGCGGACGGCGGAGGCGTTCGGCGCGGGCGCGGACGG	1150
5	G L A F D G R A K A F G A G A D G TACGAGCTTCGCCGAGGGCGCCCGGTGCCCTGGTGGTCGAGCGGCTCTCCG	1200
	TSFAEGAGALVVERLS	
	ACGCGGAGCGCCACGCCACACCGTCCTCGCCCTCGTACGCGGCTCCGCG D A E R H G H T V L A L V R G S A	1250
10	GCTAACTCCGACGGCGCGTCGAACGGTCTGTCGGCGCCCGAACGGCCCCTC	1300
	A N.S D G A S N G L S A P N G P S CCAGGAACGCGTCATCCACCAGGCCCTCGCGAACGCGAAACTCACCCCG Q E R V I H Q A L A N A K L T P	1350
	Q E R V I H Q A L A N A K L T P CCGATGTCGACGCGCTCGGCGAC CCGATGTCGACGCGCTCGGCGAC	1400
15	A D V D A V E A H G T G T R L G D CCCATCGAGGCGCAGGCGCTGCTCGCGACGTACGGACAGGACCGGGCGAC	1450
	PIEAQALLATYGQDRAT	1450
	GCCCCTGCTGGCTCGCTGAAGTCGAACATCGGGCACGCCCAGGCCG P L L L G S L K S N I G H A Q A	1500
20	CGTCAGGGGTCGCCGGGATCATCAAGATGGTGCAGGCCATCCGGCACGGG A S G V A G I I K M V Q A I R H G	1550
	GAACTGCCGCCGACACTGCACGCGGACGACGTCGACTG E L P P T L H A D E P S P H V D W	1600
25	GACGGCCGGTGCCGTCGACGTCGGCCGGCGGGGA T A G A V E L L T S A R P W P G	1650
	CCGGTCGCCGCGCGCGCGCTGCCGTCTCGTCGTTCGGCGTGAGCGGCACG	1700
	AACGCCCACATCATCCTTGAGGCAGGACCGGTCAAAACGGGACCGGTCGA	1750
30	N A H I I L E A G P V K T G P V E GGCAGGAGCGATCGAGGCAGGACCGGTCGAAGTAGGACCGGTCGAGGCTG	1800
	A G A I E A G P V E V G P V E A GACCGCTCCCCGCGGCCGCCGCCGTCAGCACCGGGCGAAGACCTTCCGCTG	1850
	G P L P A A P P S A P G E D L P L CTCGTGTCGGCGCGTTCCCCGGAGGCACTCGACGAGCAGATCGGCGCCCT	1900
35	L V S A R S P E A L D E Q I G R L GCGCGCCTATCTCGACACCGGCCCGGGCGTCGACCGGGCGGCCGTGGCGC	
	R.AYLDTGPGVDRAAVA	
	AGACACTGGCCCGGCGTACGCACTTCACCCACCGGGCCGTACTGCTCGGG Q T L A R R T H F T H R A V L L G	
40	GACACCGTCATCGGCGCTCCCCCCGCGGACCAGGCCGACGAACTCGTCTT D T V I G A P P A D Q A D E L V F	2050
	CGTCTACTCCGGTCAGGGCACCCAGCATCCCGCGATGGGCGAGCAGCTAG V Y S G Q G T Q H P A M G E Q L	2100
45	CCGATTCGTCGGTGGTGTTCGCCGAGCGGATGGCCGAGTGTGCGGCGGCGAAAAAAAA	2150
_	TTGCGCGAGTTCGTGGACTGGGATCTGTTCACGGTTCTGGATGATCCGGC	2200
	L R E F V D W D L F T V L D D P A GGTGGTGGACCGGGTTGATGTGGTCCAGCCCGCTTCCTGGGCGATGATGG	2250
50	V V D R V D V V Q P A S W A M M TTTCCCTGGCCGGGTGTGGCAGGCGGTGTGCGGCCGGATGCGGTG	2300
	V S L A A V W Q A A G V R P D A V	
	ATCGGCCATTCGCAGGGTGAGATCGCCGCAGCTTGTGTGGCGGGTGCGGT I G H S Q G E I A A A C V A G A V	
55	GTCACTACGCGATGCCGCCGGATCGTGACCTTGCGCAGCCAGGCGATCG S L R D A A R I V T L R S Q A I	2400
	CCCGGGGCCTGGCGGGGCGGGGGGGGGCGATGGCATCCGTCGCCCTGCCCGCGAAAAAAAA	2450
	CAGGATGTCGAGGGGCCTGGATCGCCGCCCACAACGGGCC Q D V E L V D G A W I A A H N G P	2500
60	CGCCTCCACCGTGATCGCGGGCACCCCGGAAGCGGTCGACCATGTCCTCA A S T V I A G T P E A V D H V L	2550
	CCGCTCATGAGGCACAAGGGGTGCGGGTGCGGCGGATCACCGTCGACTAT	2600
	T A H E A Q G V R V R R I T V D Y GCCTCGCACACCCCGCACGTCGAGCTGATCCGCGACGAACTACTCGACAT	2650

	ASHTPHVELIRDELLDI	
	CACTAGCGACAGCTCGCAGACCCCGCTCGTGCCGTGGCTGTCGACCG	2700
5	TGGACGCACCTGGGTCGACAGCCCGCTGGACGGGGAGTACTGGTACCGG	2750
	AACCTGCGTCAACCGGTCGGTTTCCACCCCGCCGTCAGCCAGTTGCAGGC	2800
	N L R E P V G F H P A V S Q L Q A CCAGGGCGACACCGTGTTCGTCGAGGTCAGCGCCAGCCCGGTGTTGTTGC Q G D T V F V E V S A S P V L L	2850
10	AGGCGATGGACGATGTCGTCACGGTTGCCACGCTGCGTCGTGACGAC Q A M D D D V V T V A T L R R D D	2900
	GGCGACGCCACCCGGATGCTCACCGCCCTGGCACAGGCCTATGTCCACGG G D A T R M L T A L A Q A Y V H G	2950
15	CGTCACCGTCGACTGGCCCGCCATCCTCGGCACCACCACAACCCGGGTAC V T V D W P A I L G T T T T R V	3000
	TGGACCTTCCGACCTTCCAACACCAGCGGTACTGGCTCGAGTCG L D L P T Y A F Q H Q R Y W L E S	3050
	GCTCCCCGGCCACGGCCACCCGGCCCCGGCACCGGAGT A P P A T A D S G H P V L G T G V	3100
20	CGCCGTCGCCGGGTCGCCGGGGTCCCGTGCCCGCCG A V A G S P G R V F T G P V P A	
 .	GTGCGGACCGCGGGGTGTTCATCGCCGAACTGGCGCTCGCCGCCGAC G A D R A V F I A E L A L A A A D	3200
25	GCCACCGACTGCGCCACGGTCGACGTCACCTCCGTGCCCGG A T D C A T V E Q L D V T S V P G	3250
	CGGATCCGCCGCGCAGGGCCACCGCGCAGACCTGGGTCGATGAACCCG G S A R G R A T A Q T W V D E P	3300
	CCGCCGACGGCGCGCCGCTTCACCGTCCACACCCGCGTCGGCGACGCC A A D G R R R F T V H T R V G D A	3350
30	CCGTGGACGCTGCACGCCGAGGGGGTTCTCCGCCCCGGCCGCGCGCCCCA	3400
	GCCCGAAGCCGTCGACACCGCCTGGCCCCGCCGGGCGCGGTGCCCGCGG PEAVDTAWPPPGAVPA	3450
35	ACGGGCTGCCCGGGGCGTGGCGACGCGGACCAGGTCTTCGTCGAAGCC D G L P G A W R R A D Q V F V E A	3500
	GAAGTCGACAGCCCTGACGGCTTCGTGGCACACCCCGACCTGCTCGACGC E V D S P D G F V A H P D L L D A	3550
	V F S A V G D G S R Q P T G W R	3600
40	ACCTCGCGGTGCACGCGTCGCACCGTGCTGCGCGCCTGCCT	
	R R D S G V V E L A A F D G A G M	3700
4 5	GCCGGTGCTCACCGCGGAGTCGGTGACGCTGGGCAGGTCGCCGTCGGCAG P V L T A E S V T L G E V A S A	3750
	GCGGATCCGACGACTCGGCTTCGGCTTGAGTGGTTGCCGGTG G G S D E S D G L L R L E W L P V	3800
	GCGGAGGCCCACTACGACGGTGCCGACGAGTGCCCGAGGGCTACACCCT A E A H Y D G A D E L P E G Y T L	3850
50	CATCACCGCCACACCCCGACGACCCCGACGACCCCCACA I T A T H P D D P D D P T N P H	3900
	ACACACCCACACGCACCACACACACACACGCGTCCTCACCGCCCTC N T P T R T H T Q T T R V L T A L	3950
55	CAACACCACCTCATCACCACCACCACCACCACCACCACCA	4000
	CGACCCCCAGGCCGCCGCCGCACCGCACAAAACG D P P G A A V T G L T R T A Q N	
	AACACCCCGGCCGCATCCACCTCATCGAAACCCACCCCCACCCCCACCCCCACCCCCACCCCCACCCC	4100
50	CTCCCCTCACCCAACTCACCACCCTCCACCAACCCCACCTACGCCTCAC L P L T Q L T T L H Q P H L R L T	
	CAACAACACCCTCCACACCCCCACCTCACCCCCATCACCAC	4200
	ACACCACCACACCCCCAACACCCCCACCCCTCAACCCCAACCACC	4250

NTTTTPNTPPLNPNHA ATCCTCATCACCGGCGGCTCCGGCACCCTCGCCGGCATCCTCGCCGCCA 4300 ILITGGSGTLAGILARH CCTCAACCACCCCACACCTACCTCCTCTCCCGCACACCACCACCCCCCA 4350 5 LNHPHTYLLSRTPPPP CCACACCCGGCACCCACATCCCCTGCGACCTCACCGACCCCACACCCAAATC 4400 TTPGTHIPCDLTDPTOI ACCCAAGCCCTCACCCACATACCACAACCCCTCACCGGCATCTTCCACAC 4450 TQALTHIPQPLTGIFHT 10 CGCCGCCACCCTCGACGACGCCACCCTCACCAACCTCACCCCCCAACACC 4500 A A T L D D A T L T N L T P Q H TCACCACCACCTCCAACCCAAAGCCGACGCCGCCTGGCACCTCCACCAC 4550 LTTTLQPKADAAWHLHH CACACCCAAAACCAACCCTCACCCACTTCGTCCTCTACTCCAGCGCCGC 4600 15 H T O N O P L T H F V L Y S S A A CGCCACCTCGGCAGCCCGGCCAAGCCAACTACGCCGCCGCCAACGCCT 4650 ATLGSPGQANYAAANA TCCTCGACGCCTCGCCACCCACCGCCACACCCAAGGACAACCCGCCACC 4700 F L D A L A T H R H T Q G Q P A T 20 TIAWGMWHTTTTLTSQL CACCGACAGCGACCGCACCGCATCCGCCGCGGCGCTTCCTGCCGATCT 4800 TDSDRDRIRRGGFLPI CGGACGACGAGGCATGC 25 SDDEGM

Example 3

Recombinant PKS Genes for 13-desmethoxy FK-506 and FK-520

्र

The present invention provides a variety of recombinant PKS genes in addition to those described in Examples 1 and 2 for producing 13-desmethoxy FK-506 and FK-520 compounds. This Example provides the construction protocols for recombinant FK-520 and FK-506 (from Streptomyces sp. MA6858 (ATCC 55098), described in U.S. Patcnt Nos. 5,116,756, incorporated herein by reference) PKS genes in which the module 8 AT coding sequences have been replaced by either the rapAT3 (the AT domain from module 3 of the rapamycin PKS), rapAT12, ervAT1 (the AT domain from module 1 of the eryth.omycin (DEBS) PKS), or ervAT2 coding sequences. Each of these constructs provides a PKS that produces the 13-desmethoxy-13-methyl derivative, except for the rapAT12 replacement, which provides the 13-desmethoxy derivative, i.e., it has a hydrogen where the other derivatives have methyl.

Figure 7 shows the process used to generate the AT replacement constructs. First, a fragment of ~4.5 kb containing module 8 coding sequences from the FK-520 cluster of ATCC 14891 was cloned using the convenient restriction sites SacI and SphI (Step A in Figure 7). The choice of restriction sites used to clone a 4.0 - 4.5 kb fragment comprising module 8 coding sequences from other FK-520 or FK-506 clusters can be different depending on the DNA sequence, but the overall scheme is identical. The unique SacI and SphI restriction sites at the ends of the FK-520 module 8 fragment were then changed to unique Bgl II and NsiI sites by ligation to synthetic linkers (described in

30

35

40

the preceding Examples, see Step B of Figure 7). Fragments containing sequences 5' and 3' of the AT8 sequences were then amplified using primers, described above, that introduced either an AvrII site or an NheI site at two different KS/AT boundaries and an XhoI site at the AT/DH boundary (Step C of Figure 7). Heterologous AT domains from the rapamycin and erythromycin gene clusters were amplified using primers, as described above, that introduced the same sites as just described (Step D of Figure 7). The fragments were ligated to give hybrid modules with in-frame fusions at the KS/AT and AT/DH boundaries (Step E of Figure 7). Finally, these hybrid modules were ligated into the BamHI and PstI sites of the KC515 vector. The resulting recombinant phage were used to transform the FK-506 and FK-520 producer strains to yield the desired recombinant cells, as described in the preceding Examples.

The following table shows the location and sequences surrounding the engineered site of each of the heterologous AT domains employed. The FK-506 hybrid construct was used as a control for the FK-520 recombinant cells produced, and a similar FK-520 hybrid construct was used as a control for the FK-506 recombinant cells.

Heterologous AT	Enzyme	Location of Engineered Site
FK-506 AT8	AvrII	GGCCGTccgcgCGTGCGGCGGTCTCGTCGTTC
(hydroxymalonyl)	1	GRPRRAAVSSF
	Nheĺ	ACCCAGCATCCCGCGATGGGTGAGCGgctcgcC
•	1	TQHPAMGERLA
	V71	TACGCCTTCCAGCGGCGCCCTACTGGatcgag
	Xhol	YAFQRRPYWIE
rapamycin AT3	AvrII	GACCGGcccgtCGGGCGGGCGTGTCCTTC
(methylmalonyl)		DRPRRAGVSSF
	Nhel	TGGCAGTGGCTGGGGATGGGCAGTGCcctgcqG
		WQWLGMGSALR
	XhoI	TACGCCTTCCAACACCAGCGGTACTGGgtcgag
1710		YAFQHQRYWVE
rapamycin AT12	AvrII	GGCCGAgcgcacCGGGCAGGCGTGTCGTCCTTC
(malonyl)		GRARRAGVSSF
	NheI	TCGCAGCGTGCTGGCATGGGTGAGGAactggcC
		S Q R A G M G E E L A
	Xhol	TACGCCTTCCAGCACCAGCGCTACTGGctegag
DEBS AT1	AvrII	Y A F Q H Q R Y W L E
	AVFII	GCGCGA <u>ccgcgc</u> CGGGCGGGGGTCTCGTCGTTC
(methylmalonyl)		
	Nhel	TGGCAGTGGCGGCATGGCCGTCGAcctgctC
		W Q W A G M A V D L L TACCCGTTCCAGCGCGAGCGCGTCTGGctcgaa
	XhoI	Y P F Q R E R V W L E
DEBS AT2	AvrII	
	AVII	GACGGGgtqcgcCGGGCAGGTGTGTCGGCGTTC D G V R R A G V S A F
(methylmalonyl)		GCCCAGTGGGAAGGCATGGCGCGGGAGttgttG
<u> </u>	<u> </u>	GCCCAGIGGGAAGGCAIGGCGCGGGAGCLGCCG

5

10

N	TheI	А	Q	W	E	G	М	A	R	Ε	L	L
	TATCCTTTCCAGGGCAAGCGGTTCTGG <u>ctgctg</u>											
X	ThoI	Y	P	F	Q	G	K	R	F	W	L	L

The sequences shown below provide the location of the KS/AT boundaries chosen in the FK-520 module 8 coding sequences. Regions where AvrII and NheI sites were engineered are indicated by lower case and underlining.

AGAVELLTSARPWPETDRPR $\tt GTGCCGCCGTCTCCTCGTTCGGGGTGAGCCGCACCACGTCATCCTGGAGGCCG$ RAAVSSFGVSGTNAHVILEA GACCGGTAACGGAGACGCCCGCGGCATCGCCTTCCGGTGACCTTCCCCTGCTGGTGTCGG G P V T E T P A A S P S G D L P L L V S 10 CACGCTCACCGGAAGCGCTCGACGAGCAGCTCCGCCGACTGCGCGCCTACCTGGACACCA A R S P E A L D E Q I R R L R A Y L D T $\verb|CCCCGGACGTCGACCGGGTGGCCGTGGCACACACTTCGCCC| \\$ TPDVDRVAVAQTLARRTHFA ACCGCGCCGTGCTCGGTGACACCGTCATCACCACACCCCCGCGGACCGGCCCGACG 15 H R A V L L G D T V I T T P P A D R P D AACTCGTCTTCGTCTACTCCGGCCAGGGCACCCAGCATCCCGCGATGGGCGAGCAGCLcq ELVFVYSGQGTQHPAMGEQL <u>c</u>CGCCGCCCATCCCGTGTTCGCCGACGCCTGGCATGAAGCGCTCCGCCGCCTTGACAACC A A A P V F A D A W H E A L R R L D N 20

The sequences shown below provide the location of the AT/DH boundary chosen in the FK-520 module 8 coding sequences. The region where an XhoI site was engineered is indicated by lower case and underlining.

TCCTCGGGGCTGGGTCACGGCACGCGGGTGTGCCCGCGTACGCGTTCCAACGGCGGC 25 I L G A G S R H D A D V P A Y A F Q R R ${\tt ACTACTGGategaq}{\tt TCGGCACGCCCGGCCGCCATCCGACGCGGGCCACCCCGTGCTGGGCT}$ H Y W I E S A R P A A S D A G H P V L G

The sequences shown below provide the location of the KS/AT boundaries chosen in the FK-506 module 8 coding sequences. Regions where AvrII and NheI sites were engineered are indicated by lower case and underlining.

 ${\tt TCGGCCAGGCCGTGGCCGGGCCGT\underline{ccgcgc}CGTGCGGCGGTCTCGTCGTTCGGG}$ S A R P W P R T G R P R A A V S S F G GTGAGCGGCACCAACGCCCACATCATCCTGGAGGCCGGACCCGACCAGGAGGAGCCGTCG V S G T N A H I I L E A G P D Q E E P S GCAGAACCGGCCGGTGACCTCCCGCTGCTCGTGTCGGCACGGTCCCCGGAGGCACTGGAC A E P A G D L P L L V S A R S P E A L D GAGCAGATCGGGCGCCTGCGCGACTATCTCGACGCCCCCCGGCGTGGACCTGGCGGCC EQIGRLRDYLDAAPGVDLAA 40 GTGGCGCGGACACTGGCCACGCGTACGCACTTCTCCCACCGCGCCGTACTGCTCGGTGAC V A R T L A T R T H F S H R A V L L G D ACCGTCATCACCGCTCCCCCGTGGAACAGCCGGGCGAGCTCGTCTTCGTCTACTCGGGA TVITAPPVEQPGELVFVYSG CAGGGCACCCAGCATCCCGCGATGGGTGAGCGgctcgcCGCAGCCTTCCCCGTGTTCGCC Q G T Q H P A M G E R L A A F P V F A GACCCGGACGTACCCGCCTACGCCTTCCAGCGGCGCCCTACTGGATCGAGTCCGCGCCG D P D V P A Y A F Q R R P Y W I E S A P

The sequences shown below provide the location of the AT/DH boundary chosen 50 in the FK-506 module 8 coding sequences. The region where an XhoI site was engineered is indicated by lower case and underlining.

GACCCGGACGTACCCGCCTACGCCTTCCAGCGGCGCCCTACTGGatcgagTCCGCGCCG D P D V P A Y A F Q R R P Y W I E S A P

30

35

Example 4

Replacement of Methoxyl with Hydrogen or Methyl at C-15 of FK-506 and FK-520

The methods and reagents of the present invention also provide novel FK-506 and FK-520 derivatives in which the methoxy group at C-15 is replaced by a hydrogen or methyl. These derivatives are produced in recombinant host cells of the invention that express recombinant PKS enzymes the produce the derivatives. These recombinant PKS enzymes are prepared in accordance with the methodology of Examples 1 and 2, with the exception that AT domain of module 7, instead of module 8, is replaced. Moreover, the present invention provides recombinant PKS enzymes in which the AT domains of both modules 7 and 8 have been changed. The table below summarizes the various compounds provided by the present invention.

	Compound	C-13	C-15	Derivative Provided
15	FK-506	hydrogen	hydrogen	13, 15-didesmethoxy-FK-506
	FK-506	hydrogen	methoxy	13-desmethoxy-FK-506
	FK-506	hydrogen	methyl	13,15-didesmethoxy-15-methyl-FK-506
	FK-506	methoxy	hydrogen	15-desmethoxy-FK-506
	FK-506	methoxy	methoxy	Original Compound FK-506
20	FK-506	methoxy	methyl	15-desmethoxy-15-methyl-FK-506
	FK-506	methyl	hydrogen	13,15-didesmethoxy-13-methyl-FK-506
	FK-506	methyl	methoxy	13-desmethoxy-13-methyl-FK-506
	FK-506	methyl	methyl	13,15-didesmethoxy-13,15-dimethyl-FK-506
	FK-520	hydrogen	hydrogen	13, 15-didesmethoxy FK-520
25	FK-520	hydrogen	methoxy	13-desmethoxy FK-520
	FK-520	hydrogen	methyl	13,15-didesmethoxy-15-methyl-FK-520
	FK-520	methoxy	hydrogen	15-desmethoxy-FK-520
	FK-520	methoxy	methoxy	Original Compound FK-520
	FK-520	methoxy	methyl	15-desmethoxy-15-methyl-FK-520
30	FK-520	methyl	hydrogen	13,15-didesmethoxy-13-methyl-FK-520
	FK-520	methyl	methoxy	13-desmethoxy-13-methyl-FK-520
	FK-520	methyl	methyl	13,15-didesmethoxy-13,15-dimethyl-FK-520

Example 5

Replacement of Methoxyl with Ethyl at C-13 and/or C-15 of FK-506 and FK-520

5

The present invention also provides novel FK-506 and FK-520 derivative compounds in which the methoxy groups at either or both the C-13 and C-15 positions are instead ethyl groups. These compounds are produced by novel PKS enzymes of the invention in which the AT domains of modules 8 and/or 7 are converted to ethylmalonyl specific AT domains by modification of the PKS gene that encodes the module. Ethylmalonyl specific AT domain coding sequences can be obtained from, for example, the FK-520 PKS genes, the niddamycin PKS genes, and the tylosin PKS genes. The novel PKS genes of the invention include not only those in which either or both of the AT domains of modules 7 and 8 have been converted to ethylmalonyl specific AT domain and the other is converted to a malonyl specific or a methylmalonyl specific AT domain.

Example 6

Neurotrophic Compounds

The compounds described in Examples 1 - 4, inclusive have immunosuppressant activity and can be employed as immunosuppressants in a manner and in formulations similar to those employed for FK-506. The compounds of the invention are generally effective for the prevention of organ rejection in patients receiving organ transplants and in particular can be used for immunosuppression following orthotopic liver transplantation. These compounds also have pharmacokinetic properties and metabolism that are more advantageous for certain applications relative to those of FK-506 or FK-520. These compounds are also neurotrophic; however, for use as neurotrophins, it is desirable to modify the compounds to diminish or abolish their immunosuppressant activity. This can be readily accomplished by hydroxylating the compounds at the C-18 position using established chemical methodology or novel FK-520 PKS genes provided by the present invention.

Thus, in one aspect, the present invention provides a method for stimulating nerve growth that comprises administering a therapeutically effective dose of 18-hydroxy-FK-520. In another embodiment, the compound administered is a C-18,20-dihydroxy-FK-520 derivative. In another embodiment, the compound administered is a C-13-desmethoxy and/or C-15-desmethoxy 18-hydroxy-FK-520 derivative. In another embodiment, the compound administered is a C-13-desmethoxy and/or C-15-desmethoxy 18,20-dihydroxy-FK-520 derivative. In other embodiments, the compounds are the corresponding analogs of FK-506. The 18-hydroxy compounds of the invention

5

10

15

20

25

30

can be prepared chemically, as described in U.S. Patent No. 5,189,042, incorporated herein by reference, or by fermentation of a recombinant host cell provided by the present invention that expresses a recombinant PKS in which the module 5 DH domain has been deleted or rendered non-functional.

The chemical methodology is as follows. A compound of the invention (~200 mg) is dissolved in 3 mL of dry methylene chloride and added to 45 µL of 2,6-lutidine, and the mixture stirred at room temperature. After 10 minutes, tert-butyldimethylsilyl trifluoromethanesulfonate (64 µL) is added by syringe. After 15 minutes, the reaction mixture is diluted with ethyl acetate, washed with saturated bicarbonate, washed with brine, and the organic phase dried over magnesium sulfate. Removal of solvent in vacuo and flash chromatography on silica gel (ethyl acetate: hexane (1:2) plus 1% methanol) gives the protected compound, which is dissolved in 95% ethanol (2.2 mL) and to which is added 53 µL of pyridine, followed by selenium dioxide (58 mg). The flask is fitted with a water condenser and heated to 70°C on a mantle. After 20 hours, the mixture is cooled to room temperature, filtered through diatomaceous earth, and the filtrate poured into a saturated sodium bicarbonate solution. This is extracted with ethyl acetate, and the organic phase is washed with brine and dried over magnesium sulfate. The solution is concentrated and purified by flash chromatography on silica gel (ethyl acetate: hexane (1:2) plus 1% methanol) to give the protected 18-hydroxy compound. This compound is dissolved in acetonitrile and treated with aqueous HF to remove the protecting groups. After dilution with ethyl acetate, the mixture is washed with saturated bicarbonate and brine, dried over magnesium sulfate, filtered, and evaporated to yield the 18-hydroxy compound. Thus, the present invention provides the C-18-hydroxyl derivatives of the compounds described in Examples 1 - 4.

Those of skill in the art will recognize that other suitable chemical procedures can be used to prepare the novel 18-hydroxy compounds of the invention. See, e.g., Kawai et al., Jan. 1993, Structure-activity profiles of macrolactam immunosuppressant FK-506 analogues, FEBS Letters 316(2): 107-113, incorporated herein by reference. These methods can be used to prepare both the C18-[S]-OH and C18-[R]-OH enantiomers, with the R enantiomer showing a somewhat lower IC50, which may be preferred in some applications. See Kawai et al., supra. Another preferred protocol is described in Umbreit and Sharpless, 1977, JACS 99(16): 1526-28, although it may be preferable to use 30 equivalents each of SeO2 and t-BuOOH rather than the 0.02 and 3-4 equivalents, respectively, described in that reference.

5

10

15

20

25

All scientific and patent publications referenced herein are hereby incorporated by reference. The invention having now been described by way of written description and example, those of skill in the art will recognize that the invention can be practiced in a variety of embodiments, that the foregoing description and example is for purposes of illustration and not limitation of the following claims.

Claims

1. An isolated nucleic acid that encodes a CoA ligase, a non-ribosomal peptide synthetase, or a domain of an extender module of a polyketide synthase enzyme that synthesizes FK-520.

5

2. The isolated nucleic acid of claim 1 that encodes an extender module, said module comprising a ketosynthase domain, an acyl transferase domain, and an acyl carrier protein domain.

10

3. The isolated nucleic acid of claim 1 that encodes an open reading frame, said open reading frame comprising coding sequences for two or more extender modules. each extender module comprising a ketosynthase domain, an acyl transferase domain, and an acyl carrier protein domain.

15

4. The isolated nucleic acid of claim 1 that encodes a gene cluster, said gene cluster comprising two or more open reading frames, each of said open reading frames comprising coding sequences for two or more extender modules, each of said extender modules comprising a ketosynthase domain, an acyl transferase domain, and an acyl carrier protein domain.

20

5. The isolated nucleic acid of claim 2, wherein at least one of said domains is a domain of a module of a non-FK-520 polyketide synthase.

25

6. The isolated nucleic acid of claim 1, wherein said nucleic acid is a recombinant vector capable of replication in or integration into the chromosome of a host cell.

30

- 7. The isolated nucleic acid of claim 6 that is selected from the group consisting of cosmid pKOS034-120, cosmid pKOS034-124, cosmid pKOS065-M27, and cosmid pKOS065-M21.
- 8. The isolated nucleic acid of claim 5, wherein said non-FK-520 polyketide synthase is rapamycin polyketide synthase, FK-506 polyketide synthase, or erythromcyin polyketide synthase.

9. A method of preparing a polyketide, said method comprising transforming a host cell with a recombinant DNA vector of claim 6, and culturing said host cell under conditions such that said polyketide synthase is produced and catalyzes synthesis of said polyketide.

5

- 10. The method of claim 9, wherein said host cell is a Streptomyces host cell.
- 11. The method of claim 9, wherein said polyketide is selected from the group consisting of FK-520, 13-desmethoxy-FK-520, and 13-desmethoxy-FK-506.

10

15

20

25

- 12. A recombinant host cell that expresses a recombinant polyketide synthase selected from the group consisting of: (i) an FK-520 polyketide synthase in which at least one AT domain is replaced by an AT domain of a non-FK-520 polyketide synthase; (ii) an FK-506 polyketide synthase in which at least one AT domain is replaced by an AT domain of a non-FK-506 polyketide synthase; (iii) an FK-520 polyketide synthase in which at least one DH domain has been deleted; (iv) an FK-506 polyketide synthase in which at least one DH domain has been deleted.
- 13. The recombinant host cell of claim 12 that expresses an FK-520 polyketide synthase in which an AT domain of module 8 has been replaced by an AT domain that binds malonyl CoA, methylmalonyl CoA, or ethylmalonyl CoA.
 - 14. The recombinant host cell of claim 12 that expresses an FK-506 polyketide synthase in which an AT domain of module 8 has been replaced by an AT domain that binds malonyl CoA, methylmalonyl CoA, or ethylmalonyl CoA.
 - 15. The recombinant host cell of claim 13, wherein a DH domain of module 5 or module 6 has been deleted.
- 30 16. The recombinant host cell of claim 14, wherein a DH domain of module 5 or module 6 has been deleted.
 - 17. A recombinant host cell that comprises recombinant genes coding for enzymes sufficient for synthesis of ethylmalonyl CoA or 2-hydroxymalonyl CoA.

18. A polyketide having the structure

- wherein, R₁ is hydrogen, methyl, ethyl, or allyl; R₂ is hydrogen or hydroxyl, provided that when R₂ is hydrogen, there is a double bond between C-20 and C-19; R₃ is hydrogen or hydroxyl; R₄ is methoxyl, hydrogen, methyl, or ethyl; and R₅ is methoxyl, hydrogen, methyl, or ethyl; but not including FK-506, FK-520, 18-hydroxy-FK-520, and 18-hydroxy-FK-506.
 - 19. The polyketide of claim 18 that is 13-desmethoxy-FK-506.
 - 20. The polyketide of claim 18 that is 13-desmethoxy-18-hydroxy-FK-520.

-igure 1

Figure 2

Figure 3

Figure 4

Figure 6

Figure 7

Figure 8 Part A

BNSDOCID: <WO 0020601A2 1 >

PC7

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Burcau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C12N 15/52, 15/54, 15/62, 9/10, C12P 17/18, 19/32, C07D 498/18 // (C07D 498/18, 311:00, 273:00, 211:00)

A2

(11) International Publication Number:

WO 00/20601

(43) International Publication Date:

13 April 2000 (13.04.00)

(21) International Application Number:

PCT/US99/22886

(22) International Filing Date:

1 October 1999 (01.10.99)

(30) Priority Data:

60/102,748 2 October 1998 (02.10.98) US 60/123,810 11 March 1999 (11.03.99) US 60/139,650 17 June 1999 (17.06.99) US

(71) Applicant (for all designated States except US): KOSAN BIOSCIENCES. INC. [US/US]; 3832 Bay Center Drive, Hayward, CA 94545 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): REEVES, Christopher [US/US]; 4 East Altarinda Drive, Orinda, CA 94563 (US). CHU, Daniel [US/US]; 3767 Benton Street, Santa Clara, CA 95051 (US). KHOSLA, Chaitan [IN/US]; 740 Para Avenue, Palo Alto, CA 94306 (US). SANTI, Daniel [US/US]; 211 Belgrave Avenue, San Francisco, CA 94117 (US). WU, Kai [CN/US]; 900 Constitution Drive, Foster City, CA 94404 (US).

(74) Agents: FAVORITO, Carolyn et al.; Morrison & Foerster LLP, 2000 Pennsylvania Avenue, N.W., Washington. DC 20006–1888 (US).

(81) Designated States: AL, AM, AU, BA, BB, BG, BR, CA, CN, CR, CU, CZ, DM, EE, GD, GE, HR, HU, IL, IS, JP, KG, KP, KR, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ, VN, ZA, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

With an indication in relation to deposited biological material furnished under Rule 13bis separately from the description.

(54) Title: POLYKETIDE SYNTHASE ENZYMES AND RECOMBINANT DNA CONSTRUCTS THEREFOR

(57) Abstract

Host cells comprising recombinant vectors encoding the FK-520 polyketide synthase and FK-520 modification enzymes can be used to produce the FK-520 polyketide. Recombinant DNA constructs comprising one or more FK-520 polyketide synthase domains, modules, open reading frames, and variants thereof can be used to produce recombinant polyketide synthases and a variety of different polyketides with application as pharmaceutical and veterinary products.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AΤ	Austria	FR	France	LU	Luxembourg	SN	Scnegal
ΑU	Australia	GA	Gabon	1.V	Latvia	SZ	Swaziland
AZ.	Azerhaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinca	MK	The former Yugoslav	TM	Turkmenistan
BF '	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Rulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
B.J	Benin	IF.	Ireland	MN	Mongolia	UA	Ukraine
UR	Brazil	II.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	iT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CC	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
Ci	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL.	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
·CU	Cuba	KZ	Kazaksian	RO	Romania		
ĊZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	1.1	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Fistonia	LR	Liberia	SG	Singapore		

POLYKETIDE SYNTHASE ENZYMES AND RECOMBINANT DNA CONSTRUCTS THEREFOR

5

10

15

20

25

30

Field of the Invention

The present invention relates to polyketides and the polyketide synthase (PKS) enzymes that produce them. The invention also relates generally to genes encoding PKS enzymes and to recombinant host cells containing such genes and in which expression of such genes leads to the production of polyketides. The present invention also relates to compounds useful as medicaments having immunosuppressive and/or neurotrophic activity. Thus, the invention relates to the fields of chemistry, molecular biology, and agricultural, medical, and veterinary technology.

Background of the Invention

Polyketides are a class of compounds synthesized from 2-carbon units through a series of condensations and subsequent modifications. Polyketides occur in many types of organisms, including fungi and mycelial bacteria, in particular, the actinomycetes. Polyketides are biologically active molecules with a wide variety of structures, and the class encompasses numerous compounds with diverse activities. Tetracycline, erythromycin, epothilone, FK-506, FK-520, narbomycin, picromycin, rapamycin, spinocyn, and tylosin are examples of polyketides. Given the difficulty in producing polyketide compounds by traditional chemical methodology, and the typically low production of polyketides in wild-type cells, there has been considerable interest in finding improved or alternate means to produce polyketide compounds.

This interest has resulted in the cloning, analysis, and manipulation by recombinant DNA technology of genes that encode PKS enzymes. The resulting technology allows one to manipulate a known PKS gene cluster either to produce the polyketide synthesized by that PKS at higher levels than occur in nature or in hosts that otherwise do not produce the polyketide. The technology also allows one to produce molecules that are structurally related to, but distinct from, the polyketides produced from known PKS gene clusters. See. e.g., PCT publication Nos. WO 93/13663; 95/08548; 96/40968; 97/02358; 98/27203; and 98/49315; United States Patent Nos. 4,874,748; 5,063,155; 5,098.837; 5,149,639; 5,672,491; 5,712,146; 5,830,750; and 5,843,718; and Fu et al., 1994, Biochemistry 33:

2

9321-9326; McDaniel et al., 1993, Science 262: 1546-1550; and Rohr, 1995, Angew. Chem. Int. Ed. Engl. 34(8): 881-888, each of which is incorporated herein by reference.

Polyketides are synthesized in nature by PKS enzymes. These enzymes, which are complexes of multiple large proteins, are similar to the synthases that catalyze condensation of 2-carbon units in the biosynthesis of fatty acids. PKSs catalyze the biosynthesis of polyketides through repeated, decarboxylative Claisen condensations between acylthioester building blocks. The building blocks used to form complex polyketides are typically acylthioesters, such as acetyl, butyryl, propionyl, malonyl, hydroxymalonyl, methylmalonyl, and ethylmalonyl CoA. Other building blocks include amino acid like acylthioesters. PKS enzymes that incorporate such building blocks include an activity that functions as an amino acid ligase (an AMP ligase) or as a non-ribosomal peptide synthetase (NRPS). Two major types of PKS enzymes are known; these differ in their composition and mode of synthesis of the polyketide synthesized. These two major types of PKS enzymes are commonly referred to as Type I or "modular" and Type II "iterative" PKS enzymes.

In the Type I or modular PKS enzyme group, a set of separate catalytic active sites (each active site is termed a "domain", and a set thereof is termed a "module") exists for each cycle of carbon chain elongation and modification in the polyketide synthesis pathway. The typical modular PKS is composed of several large polypeptides, which can be segregated from amino to carboxy termini into a loading module, multiple extender modules, and a releasing (or thioesterase) domain. The PKS enzyme known as 6-deoxyerythronolide B synthase (DEBS) is a Type I PKS. In DEBS, there is a loading module, six extender modules, and a thioesterase (TE) domain. The loading module, six extender modules, and TE of DEBS are present on three separate proteins (designated DEBS-1, DEBS-2, and DEBS-3, with two extender modules per protein). Each of the DEBS polypeptides is encoded by a separate open reading frame (ORF) or gene; these genes are known as *ervAI*, *ervAII*, and *ervAIII*. See Caffrey *et al.*, 1992, *FEBS Letters 304*: 205, and U.S. Patent No. 5,824,513, each of which is incorporated herein by reference.

Generally, the loading module is responsible for binding the first building block used to synthesize the polyketide and transferring it to the first extender module. The loading module of DEBS consists of an acyltransferase (AT) domain and an acyl carrier protein (ACP) domain. Another type of loading module utilizes an inactivated ketosynthase (KS) domain and AT and ACP domains. This inactivated KS is in some instances called KS^Q, where the superscript letter is the abbreviation for the amino acid, glutamine, that is

5

10

15

20

25

10

15

20

25

30

present instead of the active site cysteine required for ketosynthase activity. In other PKS enzymes, including the FK-506 PKS, the loading module incorporates an unusual starter unit and is composed of a CoA ligase like activity domain. In any event, the loading module recognizes a particular acyl-CoA (usually acetyl or propionyl but sometimes butyryl or other acyl-CoA) and transfers it as a thiol ester to the ACP of the loading module.

The AT on each of the extender modules recognizes a particular extender-CoA (malonyl or alpha-substituted malonyl, i.e., methylmalonyl, ethylmalonyl, and 2-hydroxymalonyl) and transfers it to the ACP of that extender module to form a thioester. Each extender module is responsible for accepting a compound from a prior module, binding a building block, attaching the building block to the compound from the prior module, optionally performing one or more additional functions, and transferring the resulting compound to the next module.

Each extender module of a modular PKS contains a KS, AT, ACP, and zero, one, two, or three domains that modify the beta-carbon of the growing polyketide chain. A typical (non-loading) minimal Type I PKS extender module is exemplified by extender module three of DEBS, which contains a KS domain, an AT domain, and an ACP domain. These three domains are sufficient to activate a 2-carbon extender unit and attach it to the growing polyketide molecule. The next extender module, in turn, is responsible for attaching the next building block and transferring the growing compound to the next extender module until synthesis is complete.

Once the PKS is primed with acyl- and malonyl-ACPs, the acyl group of the loading module is transferred to form a thiol ester (trans-esterification) at the KS of the first extender module; at this stage, extender module one possesses an acyl-KS and a malonyl (or substituted malonyl) ACP. The acyl group derived from the loading module is then covalently attached to the alpha-carbon of the malonyl group to form a carbon-carbon bond, driven by concomitant decarboxylation, and generating a new acyl-ACP that has a backbone two carbons longer than the loading building block (elongation or extension).

The polyketide chain, growing by two carbons each extender module, is sequentially passed as covalently bound thiol esters from extender module to extender module, in an assembly line-like process. The carbon chain produced by this process alone would possess a ketone at every other carbon atom, producing a polyketone, from which the name polyketide arises. Most commonly, however, additional enzymatic activities modify the beta

4

keto group of each two carbon unit just after it has been added to the growing polyketide chain but before it is transferred to the next module.

Thus, in addition to the minimal module containing KS, AT, and ACP domains necessary to form the carbon-carbon bond, and as noted above, other domains that modify the beta-carbonyl moiety can be present. Thus, modules may contain a ketoreductase (KR) domain that reduces the keto group to an alcohol. Modules may also contain a KR domain plus a dehydratase (DH) domain that dehydrates the alcohol to a double bond. Modules may also contain a KR domain, a DH domain, and an enoylreductase (ER) domain that converts the double bond product to a saturated single bond using the beta carbon as a methylene function. An extender module can also contain other enzymatic activities, such as, for example, a methylase or dimethylase activity.

After traversing the final extender module, the polyketide encounters a releasing domain that cleaves the polyketide from the PKS and typically cyclizes the polyketide. For example, final synthesis of 6-dEB is regulated by a TE domain located at the end of extender module six. In the synthesis of 6-dEB, the TE domain catalyzes cyclization of the macrolide ring by formation of an ester linkage. In FK-506, FK-520, rapamycin, and similar polyketides, the TE activity is replaced by a RapP (for rapamycin) or RapP like activity that makes a linkage incorporating a pipecolate acid residue. The enzymatic activity that catalyzes this incorporation for the rapamycin enzyme is known as RapP, encoded by the rapP gene. The polyketide can be modified further by tailoring enzymes; these enzymes add carbohydrate groups or methyl groups, or make other modifications, i.e., oxidation or reduction, on the polyketide core molecule. For example, 6-dEB is hydroxylated at C-6 and C-12 and glycosylated at C-3 and C-5 in the synthesis of erythromycin A.

In Type I PKS polypeptides, the order of catalytic domains is conserved. When all beta-keto processing domains are present in a module, the order of domains in that module from N-to-C-terminus is always KS, AT, DH, ER, KR, and ACP. Some or all of the beta-keto processing domains may be missing in particular modules, but the order of the domains present in a module remains the same. The order of domains within modules is believed to be important for proper folding of the PKS polypetides into an active complex. Importantly, there is considerable flexibility in PKS enzymes, which allows for the genetic engineering of novel catalytic complexes. The engineering of these enzymes is achieved by modifying, adding, or deleting domains, or replacing them with those taken from other Type I PKS enzymes. It is also achieved by deleting, replacing, or adding entire modules with those

5

10

15

20

25

10

15

20

25

30

taken from other sources. A genetically engineered PKS complex should of course have the ability to catalyze the synthesis of the product predicted from the genetic alterations made.

Alignments of the many available amino acid sequences for Type I PKS enzymes has approximately defined the boundaries of the various catalytic domains. Sequence alignments also have revealed linker regions between the catalytic domains and at the Nand C-termini of individual polypeptides. The sequences of these linker regions are less well conserved than are those for the catalytic domains, which is in part how linker regions are identified. Linker regions can be important for proper association between domains and between the individual polypeptides that comprise the PKS complex. One can thus view the linkers and domains together as creating a scaffold on which the domains and modules are positioned in the correct orientation to be active. This organization and positioning, if retained, permits PKS domains of different or identical substrate specificities to be substituted (usually at the DNA level) between PKS enzymes by various available methodologies. In selecting the boundaries of, for example, an AT replacement, one can thus make the replacement so as to retain the linkers of the recipient PKS or to replace them with the linkers of the donor PKS AT domain, or, preferably, make both constructs to ensure that the correct linker regions between the KS and AT domains have been included in at least one of the engineered enzymes. Thus, there is considerable flexibility in the design of new PKS enzymes with the result that known polyketides can be produced more effectively, and novel polyketides useful as pharmaceuticals or for other purposes can be made.

By appropriate application of recombinant DNA technology, a wide variety of polyketides can be prepared in a variety of different host cells provided one has access to nucleic acid compounds that encode PKS proteins and polyketide modification enzymes. The present invention helps meet the need for such nucleic acid compounds by providing recombinant vectors that encode the FK-520 PKS enzyme and various FK-520 modification enzymes. Moreover, while the FK-506 and FK-520 polyketides have many useful activities, there remains a need for compounds with similar useful activities but with better pharmacokinetic profile and metabolism and fewer side-effects. The present invention helps meet the need for such compounds as well.

Summary of the Invention

10

15

20

25

30

In one embodiment, the present invention provides recombinant DNA vectors that encode all or part of the FK-520 PKS enzyme. Illustrative vectors of the invention include cosmid pKOS034-120, pKOS034-124, pKOS065-C31, pKOS065-C3, pKOS065-M27, and pKOS065-M21. The invention also provides nucleic acid compounds that encode the various domains of the FK-520 PKS, i.e., the KS, AT. ACP, KR, DH, and ER domains. These compounds can be readily used, alone or in combination with nucleic acids encoding other FK-520 or non-FK-520 PKS domains, as intermediates in the construction of recombinant vectors that encode all or part of PKS enzymes that make novel polyketides.

The invention also provides isolated nucleic acids that encode all or part of one or more modules of the FK-520 PKS, each module comprising a ketosynthase activity, an acyl transferase activity, and an acyl carrier protein activity. The invention provides an isolated nucleic acid that encodes one or more open reading frames of FK-520 PKS genes, said open reading frames comprising coding sequences for a CoA ligase activity, an NRPS activity, or two or more extender modules. The invention also provides recombinant expression vectors containing these nucleic acids.

In another embodiment, the invention provides isolated nucleic acids that encode all or a part of a PKS that contains at least one module in which at least one of the domains in the module is a domain from a non-FK-520 PKS and at least one domain is from the FK-520 PKS. The non-FK-520 PKS domain or module originates from the rapamycin PKS, the FK-506 PKS, DEBS, or another PKS. The invention also provides recombinant expression vectors containing these nucleic acids.

In another embodiment, the invention provides a method of preparing a polyketide. said method comprising transforming a host cell with a recombinant DNA vector that encodes at least one module of a PKS, said module comprising at least one FK-520 PKS domain, and culturing said host cell under conditions such that said PKS is produced and catalyzes synthesis of said polyketide. In one aspect, the method is practiced with a *Streptomyces* host cell. In another aspect, the polyketide produced is FK-520. In another aspect, the polyketide produced is a polyketide related in structure to FK-520. In another aspect, the polyketide produced is a polyketide related in structure to FK-506 or rapamycin.

In another embodiment, the invention provides a set of genes in recombinant form sufficient for the synthesis of ethylmalonyl CoA in a heterologous host cell. These genes and the methods of the invention enable one to create recombinant host cells with the ability to produce polyketides or other compounds that require ethylmalonyl CoA for biosynthesis.

10

15

20

25

The invention also provides recombinant nucleic acids that encode AT domains specific for ethylmalonyl CoA. Thus, the compounds of the invention can be used to produce polyketides requiring ethylmalonyl CoA in host cells that otherwise are unable to produce such polyketides.

In another embodiment, the invention provides a set of genes in recombinant form sufficient for the synthesis of 2-hydroxymalonyl CoA and 2-methoxymalonyl CoA in a heterologous host cell. These genes and the methods of the invention enable one to create recombinant host cells with the ability to produce polyketides or other compounds that require 2-hydroxymalonyl CoA for biosynthesis. The invention also provides recombinant nucleic acids that encode AT domains specific for 2-hydroxymalonyl CoA and 2-methoxymalonyl CoA. Thus, the compounds of the invention can be used to produce polyketides requiring 2-hydroxymalonyl CoA or 2-methoxymalonyl CoA in host cells that are otherwise unable to produce such polyketides.

In another embodiment, the invention provides a compound related in structure to FK-520 or FK-506 that is useful in the treatment of a medical condition. These compounds include compounds in which the C-13 methoxy group is replaced by a moiety selected from the group consisting of hydrogen, methyl, and ethyl moieties. Such compounds are less susceptible to the main *in vivo* pathway of degradation for FK-520 and FK-506 and related compounds and thus exhibit an improved pharmacokinetic profile. The compounds of the invention also include compounds in which the C-15 methoxy group is replaced by a moiety selected from the group consisting of hydrogen, methyl, and ethyl moieties. The compounds of the invention also include the above compounds further modified by chemical methodology to produce derivatives such as, but not limited to, the C-18 hydroxyl derivatives, which have potent neurotrophin but not immunosuppression activities.

Thus, the invention provides polyketides having the structure:

wherein, R₁ is hydrogen, methyl, ethyl, or allyl; R₂ is hydrogen or hydroxyl, provided that when R₂ is hydrogen, there is a double bond between C-20 and C-19; R₃ is hydrogen or hydroxyl; R₄ is methoxyl, hydrogen, methyl, or ethyl; and R₅ is methoxyl, hydrogen, methyl, or ethyl; but not including FK-506, FK-520, 18-hydroxy-FK-520, and 18-hydroxy-FK-506. The invention provides these compounds in purified form and in pharmaceutical compositions.

In another embodiment, the invention provides a method for treating a medical condition by administering a pharmaceutically efficacious dose of a compound of the invention. The compounds of the invention may be administered to achieve immunosuppression or to stimulate nerve growth and regeneration.

These and other embodiments and aspects of the invention will be more fully understood after consideration of the attached Drawings and their brief description below, together with the detailed description, examples, and claims that follow.

15

20

25

30

10

Brief Description of the Drawings

Figure 1 shows a diagram of the FK-520 biosynthetic gene cluster. The top line provides a scale in kilobase pairs (kb). The second line shows a restriction map with selected restriction enzyme recognition sequences indicated. K is KpnI; X is XhoI, S is SacI; P is PstI; and E is EcoRI. The third line indicates the position of FK-520 PKS and related genes. Genes are abbreviated with a one letter designation, i.e., C is fkbC. Immediately under the third line are numbered segments showing where the loading module (L) and ten different extender modules (numbered 1 - 10) are encoded on the various genes shown. At the bottom of the Figure, the DNA inserts of various cosmids of the invention (i.e., 34-124 is cosmid pKOS034-124) are shown in alignment with the FK-520 biosynthetic gene cluster.

Figure 2 shows the loading module (load), the ten extender modules, and the peptide synthetase domain of the FK-520 PKS, together with, on the top line, the genes that encode the various domains and modules. Also shown are the various intermediates in FK-520 biosynthesis, as well as the structure of FK-520, with carbons 13, 15, 21, and 31 numbered. The various domains of each module and subdomains of the loading module are also shown. The darkened circles showing the DH domains in modules 2, 3, and 4 indicate that the dehydratase domain is not functional as a dehydratase; this domain may affect the

10

15

20

25

stereochemistry at the corresponding position in the polyketide. The substituents on the FK-520 structure that result from the action of non-PKS enzymes are also indicated by arrows. together with the types of enzymes or the genes that code for the enzymes that mediate the action. Although the methyltransferase is shown acting at the C-13 and C-15 hydroxyl groups after release of the polyketide from the PKS, the methyltransferase may act on the 2-hydroxymalonyl substrate prior to or contemporaneously with its incorporation during polyketide synthesis.

Figure 3 shows a close-up view of the left end of the FK-520 gene cluster, which contains at least ten additional genes. The ethyl side chain on carbon 21 of FK-520 (Figure 2) is derived from an ethylmalonyl CoA extender unit that is incorporated by an ethylmalonyl specific AT domain in extender module 4 of the PKS. At least four of the genes in this region code for enzymes involved in ethylmalonyl biosynthesis. The polyhydroxybutyrate depolymerase is involved in maintaining hydroxybutyryl-CoA pools during FK-520 production. Polyhydroxybutyrate accumulates during vegetative growth and disappears during stationary phase in other *Streptomyces* (Ranade and Vining, 1993, *Can. J. Microbiol.* 39:377). Open reading frames with unknown function are indicated with a question mark.

Figure 4 shows a biosynthetic pathway for the biosynthesis of ethylmalonyl CoA from acetoacetyl CoA consistent with the function assigned to four of the genes in the FK-520 gene cluster shown in Figure 3.

Figure 5 shows a close-up view of the right-end of the FK-520 PKS gene cluster (and of the sequences on cosmid pKOS065-C31). The genes shown include fkbD, fkbM (a methyl transferase that methylates the hydroxyl group on C-31 of FK-520), fkbN (a homolog of a gene described as a regulator of cholesterol oxidase and that is believed to be a transcriptional activator), fkbQ (a type II thioesterase, which can increase polyketide production levels), and fkbS (a crotonyl-CoA reductase involved in the biosynthesis of ethylmalonyl CoA).

Figure 6 shows the proposed degradative pathway for tacrolimus (FK-506) metabolism.

Figure 7 shows a schematic process for the construction of recombinant PKS genes of the invention that encode PKS enzymes that produce 13-desmethoxy FK-506 and FK-520 polyketides of the invention, as described in Example 4, below.

10

15

20

Figure 8, in Parts A and B, shows certain compounds of the invention preferred for dermal application in Part A and a synthetic route for making those compounds in Part B.

Detailed Description of the Invention

Given the valuable pharmaceutical properties of polyketides, there is a need for methods and reagents for producing large quantities of polyketides, as well as for producing related compounds not found in nature. The present invention provides such methods and reagents, with particular application to methods and reagents for producing the polyketides known as FK-520, also known as ascomycin or L-683,590 (see Holt et al., 1993, JACS 115:9925), and FK-506, also known as tacrolimus. Tacrolimus is a macrolide immunosuppressant used to prevent or treat rejection of transplanted heart, kidney, liver, lung, pancreas, and small bowel allografts. The drug is also useful for the prevention and treatment of graft-versus-host disease in patients receiving bone marrow transplants, and for the treatment of severe, refractory uveitis. There have been additional reports of the unapproved use of tacrolimus for other conditions, including alopecia universalis, autoimmune chronic active hepatitis, inflammatory bowel disease, multiple sclerosis, primary biliary cirrhosis, and scleroderma. The invention provides methods and reagents for making novel polyketides related in structure to FK-520 and FK-506, and structurally related polyketides such as rapamycin.

The FK-506 and rapamycin polyketides are potent immunosuppressants, with chemical structures shown below.

10

FK-520 differs from FK-506 in that it lacks the allyl group at C-21 of FK-506, having instead an ethyl group at that position, and has similar activity to FK-506, albeit reduced immunosuppressive activity.

These compounds act through initial formation of an intermediate complex with protein "immunophilins" known as FKBPs (FK-506 binding proteins), including FKBP-12. Immunophilins are a class of cytosolic proteins that form complexes with molecules such as FK-506, FK-520, and rapamycin that in turn serve as ligands for other cellular targets involved in signal transduction. Binding of FK-506, FK-520, and rapamycin to FKBP occurs through the structurally similar segments of the polyketide molecules, known as the "FKBP-binding domain" (as generally but not precisely indicated by the stippled regions in the structures above). The FK-506-FKBP complex then binds calcineurin, while the rapamycin-FKBP complex binds to a protein known as RAFT-1. Binding of the FKBP-polyketide complex to these second proteins occurs through the dissimilar regions of the drugs known as the "effector" domains.

15

20

The three component FKBP-polyketide-effector complex is required for signal transduction and subsequent immunosuppressive activity of FK-506, FK-520, and rapamycin. Modifications in the effector domains of FK-506, FK-520, and rapamycin that destroy binding to the effector proteins (calcineurin or RAFT) lead to loss of immunosuppressive activity, even though FKBP binding is unaffected. Further, such analogs antagonize the immunosuppressive effects of the parent polyketides, because they compete for FKBP. Such non-immunosuppressive analogs also show reduced toxicity (see Dumont et al., 1992, Journal of Experimental Medicine 176, 751-760), indicating that much of the toxicity of these drugs is not linked to FKBP binding.

12

In addition to immunosuppressive activity, FK-520, FK-506, and rapamycin have neurotrophic activity. In the central nervous system and in peripheral nerves, immunophilins are referred to as "neuroimmunophilins". The neuroimmunophilin FKBP is markedly enriched in the central nervous system and in peripheral nerves. Molecules that bind to the neuroimmunophilin FKBP, such as FK-506 and FK-520, have the remarkable effect of stimulating nerve growth. *In vitro*, they act as neurotrophins, i.e., they promote neurite outgrowth in NGF-treated PC12 cells and in sensory neuronal cultures, and in intact animals, they promote regrowth of damaged facial and sciatic nerves, and repair lesioned serotonin and dopamine neurons in the brain. See Gold *et al.*, Jun. 1999, *J. Pharm. Exp. Ther. 289*(3): 1202-1210; Lyons *et al.*, 1994, *Proc. National Academy of Science 91*: 3191-3195; Gold *et al.*, 1995, *Journal of Neuroscience 15*: 7509-7516; and Steiner *et al.*, 1997, *Proc. National Academy of Science 94*: 2019-2024. Further, the restored central and peripheral neurons appear to be functional.

Compared to protein neurotrophic molecules (BNDF, NGF, etc.), the small-molecule neurotrophins such as FK-506, FK-520, and rapamycin have different, and often advantageous, properties. First, whereas protein neurotrophins are difficult to deliver to their intended site of action and may require intra-cranial injection, the small-molecule neurotrophins display excellent bioavailability; they are active when administered subcutaneously and orally. Second, whereas protein neurotrophins show quite specific effects, the small-molecule neurotrophins show rather broad effects. Finally, whereas protein neurotrophins often show effects on normal sensory nerves, the small-molecule neurotrophins do not induce aberrant sprouting of normal neuronal processes and seem to affect damaged nerves specifically. Neuroimmunophilin ligands have potential therapeutic utility in a variety of disorders involving nerve degeneration (e.g. multiple sclerosis, Parkinson's disease, Alzheimer's disease, stroke, traumatic spinal cord and brain injury, peripheral neuropathies).

Recent studies have shown that the immunosuppressive and neurite outgrowth activity of FK-506, FK-520, and rapamycin can be separated; the neuroregenerative activity in the absence of immunosuppressive activity is retained by agents which bind to FKBP but not to the effector proteins calcineurin or RAFT. See Steiner et al., 1997, Nature Medicine 3: 421-428.

5

10

15

20

25

Available structure-activity data show that the important features for neurotrophic activity of rapamycin, FK-520, and FK-506 lie within the common, contiguous segments of the macrolide ring that bind to FKBP. This portion of the molecule is termed the "FKBP binding domain" (see VanDuyne et al., 1993, Journal of Molecular Biology 229: 105-124.). Nevertheless, the effector domains of the parent macrolides contribute to conformational rigidity of the binding domain and thus indirectly contribute to FKBP binding.

"FKBP binding domain"

There are a number of other reported analogs of FK-506, FK-520, and rapamycin that bind to FKBP but not the effector protein calcineurin or RAFT. These analogs show effects on nerve regeneration without immunosuppressive effects.

Naturally occurring FK-520 and FK-506 analogs include the antascomycins, which are FK-506-like macrolides that lack the functional groups of FK-506 that bind to calcineurin (see Fehr et al., 1996, The Journal of Antibiotics 49: 230-233). These molecules bind FKBP as effectively as does FK-506; they antagonize the effects of both FK-506 and rapamycin, yet lack immunosuppressive activity.

10

10

Antascomycin A

Other analogs can be produced by chemically modifying FK-506, FK-520, or rapamycin. One approach to obtaining neuroimmunophilin ligands is to destroy the effector binding region of FK-506, FK-520, or rapamycin by chemical modification. While the chemical modifications permitted on the parent compounds are quite limited, some useful chemically modified analogs exist. The FK-520 analog L-685,818 (ED₅₀ = 0.7 nM for FKBP binding; see Dumont et al., 1992), and the rapamycin analog WAY-124,466 (IC₅₀ = 12.5 nM; see Ocain et al., 1993, Biochemistry Biophysical Research Communications 192: 1340-134693) are about as effective as FK-506, FK-520, and rapamycin at promoting neurite outgrowth in sensory neurons (see Steiner et al., 1997).

One of the few positions of rapamycin that is readily amenable to chemical modification is the allylic 16-methoxy group; this reactive group is readily exchanged by acid-catalyzed nucleophilic substitution. Replacement of the 16-methoxy group of rapamycin with a variety of bulky groups has produced analogs showing selective loss of immunosuppressive activity while retaining FKBP-binding (see Luengo et al., 1995, Chemistry & Biology 2: 471-481). One of the best compounds. 1, below, shows complete

loss of activity in the splenocyte proliferation assay with only a 10-fold reduction in binding to FKBP.

There are also synthetic analogs of FKBP binding domains. These compounds reflect an approach to obtaining neuroimmunophilin ligands based on "rationally designed" molecules that retain the FKBP-binding region in an appropriate conformation for binding to FKBP, but do not possess the effector binding regions. In one example, the ends of the FKBP binding domain were tethered by hydrocarbon chains (see Holt et al., 1993, Journal of the American Chemical Society 115: 9925-9938); the best analog, 2, below, binds to FKBP about as well as FK-506. In a similar approach, the ends of the FKBP binding domain were tethered by a tripeptide to give analog 3, below, which binds to FKBP about 20-fold poorer than FK-506. These compounds are anticipated to have neuroimmunophilin binding activity.

15

20

5

10

In a primate MPTP model of Parkinson's disease, administration of FKBP ligand GPI-1046 caused brain cells to regenerate and behavioral measures to improve. MPTP is a neurotoxin, which, when administered to animals, selectively damages nigral-striatal dopamine neurons in the brain, mimicking the damage caused by Parkinson's disease. Whereas, before treatment, animals were unable to use affected limbs, the FKBP ligand

16

restored the ability of animals to feed themselves and gave improvements in measures of locomotor activity, neurological outcome, and fine motor control. There were also corresponding increases in regrowth of damaged nerve terminals. These results demonstrate the utility of FKBP ligands for treatment of diseases of the CNS.

From the above description, two general approaches towards the design of non-immunosuppressant, neuroimmunophilin ligands can be seen. The first involves the construction of constrained cyclic analogs of FK-506 in which the FKBP binding domain is fixed in a conformation optimal for binding to FKBP. The advantages of this approach are that the conformation of the analogs can be accurately modeled and predicted by computational methods, and the analogs closely resemble parent molecules that have proven pharmacological properties. A disadvantage is that the difficult chemistry limits the numbers and types of compounds that can be prepared. The second approach involves the trial and error construction of acyclic analogs of the FKBP binding domain by conventional medicinal chemistry. The advantages to this approach are that the chemistry is suitable for production of the numerous compounds needed for such interactive chemistry-bioassay approaches. The disadvantages are that the molecular types of compounds that have emerged have no known history of appropriate pharmacological properties, have rather labile ester functional groups, and are too conformationally mobile to allow accurate prediction of conformational properties.

The present invention provides useful methods and reagents related to the first approach, but with significant advantages. The invention provides recombinant PKS genes that produce a wide variety of polyketides that cannot otherwise be readily synthesized by chemical methodology alone. Moreover, the present invention provides polyketides that have either or both of the desired immunosuppressive and neurotrophic activities, some of which are produced only by fermentation and others of which are produced by fermentation and chemical modification. Thus, in one aspect, the invention provides compounds that optimally bind to FKBP but do not bind to the effector proteins. The methods and reagents of the invention can be used to prepare numerous constrained cyclic analogs of FK-520 in which the FKBP binding domain is fixed in a conformation optimal for binding to FKBP. Such compounds will show neuroimmunophilin binding (neurotrophic) but not immunosuppressive effects. The invention also allows direct manipulation of FK-520 and related chemical structures via genetic engineering of the enzymes involved in the biosynthesis of FK-520 (as well as related compounds, such as FK-506 and rapamycin);

5

10

15

20

25

10

15

20

25

30

similar chemical modifications are simply not possible because of the complexity of the structures. The invention can also be used to introduce "chemical handles" into normally inert positions that permit subsequent chemical modifications.

Several general approaches to achieve the development of novel neuroimmunophilin ligands are facilitated by the methods and reagents of the present invention. One approach is to make "point mutations" of the functional groups of the parent FK-520 structure that bind to the effector molecules to eliminate their binding potential. These types of structural modifications are difficult to perform by chemical modification, but can be readily accomplished with the methods and reagents of the invention.

A second, more extensive approach facilitated by the present invention is to utilize molecular modeling to predict optimal structures *ab initio* that bind to FKBP but not effector molecules. Using the available X-ray crystal structure of FK-520 (or FK-506) bound to FKBP, molecular modeling can be used to predict polyketides that should optimally bind to FKBP but not calcineurin. Various macrolide structures can be generated by linking the ends of the FKBP-binding domain with "all possible" polyketide chains of variable length and substitution patterns that can be prepared by genetic manipulation of the FK-520 or FK-506 PKS gene cluster in accordance with the methods of the invention. The ground state conformations of the virtual library can be determined, and compounds that possess binding domains most likely to bind well to FKBP can be prepared and tested.

Once a compound is identified in accordance with the above approaches, the invention can be used to generate a focused library of analogs around the lead candidate, to "fine tune" the compound for optimal properties. Finally, the genetic engineering methods of the invention can be directed towards producing "chemical handles" that enable medicinal chemists to modify positions of the molecule previously inert to chemical modification. This opens the path to previously prohibited chemical optimization of lead compounds by time-proven approaches.

Moreover, the present invention provides polyketide compounds and the recombinant genes for the PKS enzymes that produce the compounds that have significant advantages over FK-506 and FK-520 and their analogs. The metabolism and pharmacokinetics of tacrolimus has been exstensively studied, and FK-520 is believed to be similar in these respects. Absorption of tacrolimus is rapid, variable, and incomplete from the gastrointestinal tract (Harrison's Principles of Internal Medicine, 14th edition, 1998, McGraw Hill, 14, 20, 21, 64-67). The mean bioavailability of the oral dosage form is 27%.

18

(range 5 to 65%). The volume of distribution (VolD) based on plasma is 5 to 65 L per kg of body weight (L/kg), and is much higher than the VolD based on whole blood concentrations, the difference reflecting the binding of tacrolimus to red blood cells. Whole blood concentrations may be 12 to 67 times the plasma concentrations. Protein binding is high (75 to 99%), primarily to albumin and alpha1-acid glycoprotein. The half-life for distribution is 0.9 hour; elimination is biphasic and variable: terminal-11.3 hr (range, 3.5 to 40.5 hours). The time to peak concentration is 0.5 to 4 hours after oral administration.

Tacrolimus is metabolized primarily by cytochrome P450 3A enzymes in the liver and small intestine. The drug is extensively metabolized with less than 1% excreted unchanged in urine. Because hepatic dysfunction decreases clearance of tacrolimus, doses have to be reduced substantially in primary graft non-function, especially in children. In addition, drugs that induce the cytochrome P450 3A enzymes reduce tacrolimus levels, while drugs that inhibit these P450s increase tacrolimus levels. Tacrolimus bioavailability doubles with co-administration of ketoconazole, a drug that inhibits P450 3A. See, Vincent et al., 1992, In vitro metabolism of FK-506 in rat, rabbit, and human liver microsomes: Identification of a major metabolite and of cytochrome P450 3A as the major enzymes responsible for its metabolism, Arch. Biochem. Biophys. 294: 454-460; Iwasaki et al., 1993. Isolation, identification, and biological activities of oxidative metabolites of FK-506, a potent immunosuppressive macrolide lactone, Drug Metabolism & Disposition 21: 971-977; Shiraga et al., 1994, Metabolism of FK-506, a potent immunosuppressive agent, by cytochrome P450 3A enzymes in rat, dog, and human liver microsomes, Biochem. Pharmacol. 47: 727-735; and Iwasaki et al., 1995, Further metabolism of FK-506 (Tacrolimus); Identification and biological activities of the metabolites oxidized at multiple sites of FK-506, Drug Metabolism & Disposition 23: 28-34. The cytochrome P450 3A subfamily of isozymes has been implicated as important in this degradative process.

Structures of the eight isolated metabolites formed by liver microsomes are shown in Figure 6. Four metabolites of FK-506 involve demethylation of the oxygens on carbons 13, 15, and 31, and hydroxylation of carbon 12. The 13-demethylated (hydroxy) compounds undergo cyclizations of the 13-hydroxy at C-10 to give MI, MVI and MVII, and the 12-hydroxy metabolite at C-10 to give I. Another four metabolites formed by oxidation of the four metabolites mentioned above were isolated by liver microsomes from dexamethasone treated rats. Three of these are metabolites doubly demethylated at the methoxy groups on carbons 15 and 31 (M-V), 13 and 31 (M-VI), and 13 and 15 (M-VII). The fourth, M-VIII,

5

10

15

20

25

was the metabolite produced after demethylation of the 31-methoxy group, followed by formation of a fused ring system by further oxidation. Among the eight metabolites, M-II has immunosuppressive activity comparable to that of FK-506, whereas the other metabolites exhibit weak or negligible activities. Importantly, the major metabolite of human, dog, and rat liver microsomes is the 13-demethylated and cyclized FK-506 (M-I).

5

10

15

20

25

30

Thus, the major metabolism of FK-506 proceeds via 13-demethylation followed by cyclization to the inactive M-I, this representing about 90% of the metabolic products after a 10 minute incubation with liver microsomes. Analogs of tacrolimus that do not possess a C-13 methoxy group would not be susceptible to the first and most important biotransformation in the destructive metabolism of tacrolimus (i.e. cyclization of 13-hydroxy to C-10). Thus, a 13-desmethoxy analog of FK-506 should have a longer half-life in the body than does FK-506. The C-13 methoxy group is believed not to be required for binding to FKBP or calcineurin. The C-13 methoxy is not present on the identical position of rapamycin, which binds to FKBP with equipotent affinity as tacrolimus. Also, analysis of the 3-dimensional structure of the FKBP-tacrolimus-calcineurin complex shows that the C-13 methoxy has no interaction with FKBP and only a minor interaction with calcineurin. The present invention provides C-13-desmethoxy analogs of FK-506 and FK-520, as well as the recombinant genes that encode the PKS enzymes that catalyze their synthesis and host cells that produce the compounds.

These compounds exhibit, relative to their naturally occurring counterparts, prolonged immunosuppressive action *in vivo*, thereby allowing a lower dosage and/or reduced frequency of administration. Dosing is more predictable, because the variability in FK-506 dosage is largely due to variation of metabolism rate. FK-506 levels in blood can vary widely depending on interactions with drugs that induce or inhibit cytochrome P450 3A (summarized in USP Drug Information for the Health Care Professional). Of particular importance are the numerous drugs that inhibit or compete for CYP 3A, because they increase FK-506 blood levels and lead to toxicity (Prograf package insert, Fujisawa US, Rev 4/97, Rec 6/97). Also important are the drugs that induce P450 3A (e.g. Dexamethasone), because they decrease FK-506 blood levels and reduce efficacy. Because the major site of CYP 3A action on FK-506 is removed in the analogs provided by the present invention, those analogs are not as susceptible to drug interactions as the naturally occurring compounds.

. ...

20

Hyperglycemia, nephrotoxicity, and neurotoxicity are the most significant adverse effects resulting from the use of FK-506 and are believed to be similar for FK-520. Because these effects appear to occur primarily by the same mechanism as the immunosuppressive action (i.e. FKBP-calcineurin interaction), the intrinsic toxicity of the desmethoxy analogs may be similar to FK-506. However, toxicity of FK-506 is dose related and correlates with high blood levels of the drug (Prograf package insert, Fujisawa_US, Rev 4/97, Rec 6/97). Because the levels of the compounds provided by the present invention should be more controllable, the incidence of toxicity should be significantly decreased with the 13-desmethoxy analogs. Some reports show that certain FK-506 metabolites are more toxic than FK-506 itself, and this provides an additional reason to expect that a CYP 3A resistant analog can have lower toxicity and a higher therapeutic index.

Thus, the present invention provides novel compounds related in structure to FK-506 and FK-520 but with improved properties. The invention also provides methods for making these compounds by fermentation of recombinant host cells, as well as the recombinant host cells, the recombinant vectors in those host cells, and the recombinant proteins encoded by those vectors. The present invention also provides other valuable materials useful in the construction of these recombinant vectors that have many other important applications as well. In particular, the present invention provides the FK-520 PKS genes, as well as certain genes involved in the biosynthesis of FK-520 in recombinant form.

FK-520 is produced at relatively low levels in the naturally occurring cells. Streptomyces hygroscopicus var. ascomyceticus, in which it was first identified. Thus, another benefit provided by the recombinant FK-520 PKS and related genes of the present invention is the ability to produce FK-520 in greater quantities in the recombinant host cells provided by the invention. The invention also provides methods for making novel FK-520 analogs, in addition to the desmethoxy analogs described above, and derivatives in recombinant host cells of any origin.

The biosynthesis of FK-520 involves the action of several enzymes. The FK-520 PKS enzyme, which is composed of the fkbA, fkbB, fkbC, and fkbP gene products, synthesizes the core structure of the molecule. There is also a hydroxylation at C-9 mediated by the P450 hydroxylase that is the fkbD gene product and that is oxidized by the fkbO gene product to result in the formation of a keto group at C-9. There is also a methylation at C-31 that is mediated by an O-methyltransferase that is the fkbM gene product. There are also methylations at the C-13 and C-15 positions by a methyltransferase believed to be encoded

5

10

15

20

25

30 °

21

by the fkbG gene; this methyltransferase may act on the hydroxymalonyl CoA substrates prior to binding of the substrate to the AT domains of the PKS during polyketide synthesis. The present invention provides the genes encoding these enzymes in recombinant form. The invention also provides the genes encoding the enzymes involved in ethylmalonyl CoA and 2-hydroxymalonyl CoA biosynthesis in recombinant form. Moreover, the invention provides Streptomyces hygroscopicus var. ascomyceticus recombinant host cells lacking one or more of these genes that are useful in the production of useful compounds.

The cells are useful in production in a variety of ways. First, certain cells make a useful FK-520-related compound merely as a result of inactivation of one or more of the FK-520 biosynthesis genes. Thus, by inactivating the C-31 O-methyltransferase gene in Streptomyces hygroscopicus var. ascomyceticus, one creates a host cell that makes a desmethyl (at C-31) derivative of FK-520. Second, other cells of the invention are unable to make FK-520 or FK-520 related compounds due to an inactivation of one or more of the PKS genes. These cells are useful in the production of other polyketides produced by PKS enzymes that are encoded on recombinant expression vectors and introduced into the host cell.

Moreover, if only one PKS gene is inactivated, the ability to produce FK-520 or an FK-520 derivative compound is restored by introduction of a recombinant expression vector that contains the functional gene in a modified or unmodified form. The introduced gene produces a gene product that, together with the other endogenous and functional gene products, produces the desired compound. This methodology enables one to produce FK-520 derivative compounds without requiring that all of the genes for the PKS enzyme be present on one or more expression vectors. Additional applications and benefits of such cells and methodology will be readily apparent to those of skill in the art after consideration of how the recombinant genes were isolated and employed in the construction of the compounds of the invention.

The FK-520 biosynthetic genes were isolated by the following procedure. Genomic DNA was isolated from *Streptomyces hygroscopicus* var. *ascomyceticus* (ATCC 14891) using the lysozyme/proteinase K protocol described in Genetic Manipulation of *Streptomyces* - A Laboratory Manual (Hopwood *et al.*, 1986). The average size of the DNA was estimated to be between 80 - 120 kb by electrophoresis on 0.3% agarose gels. A library was constructed in the SuperCosTM vector according to the manufacturer's instructions and with the reagents provided in the commercially available kit (Stratagene). Briefly, 100 µg of

5

10

15

20

25

22

genomic DNA was partially digested with 4 units of Sau3A I for 20 min. in a reaction volume of 1 mL, and the fragments were dephosphorylated and ligated to SuperCos vector arms. The ligated DNA was packaged and used to infect log-stage XL1-BlueMR cells. A library of about 10,000 independent cosmid clones was obtained.

Based on recently published sequence from the FK-506 cluster (Motamedi and Shafiee, 1998, Eur. J. Biochem. 256: 528), a probe for the fkbO gene was isolated from ATCC 14891 using PCR with degenerate primers. With this probe, a cosmid designated pKOS034-124 was isolated from the library. With probes made from the ends of cosmid pKOS034-124, an additional cosmid designated pKOS034-120 was isolated. These cosmids (pKOS034-124 and pKOS034-120) were shown to contain DNA inserts that overlap with one another. Initial sequence data from these two cosmids generated sequences similar to sequences from the FK-506 and rapamycin clusters, indicating that the inserts were from the FK-520 PKS gene cluster. Two EcoRI fragments were subcloned from cosmids pKOS034-124 and pKOS034-120. These subclones were used to prepare shotgun libraries by partial digestion with Sau3AI, gel purification of fragments between 1.5 kb and 3 kb in size, and ligation into the pLitmus28 vector (New England Biolabs). These libraries were sequenced using dye terminators on a Beckmann CEQ2000 capillary electrophoresis sequencer, according to the manufacturer's protocols.

To obtain cosmids containing sequence on the left and right sides of the sequenced region described above, a new cosmid library of ATCC 14891 DNA was prepared essentially as described above. This new library was screened with a new fkbM probe isolated using DNA from ATCC 14891. A probe representing the fkbP gene at the end of cosmid pKOS034-124 was also used. Several additional cosmids to the right of the previously sequenced region were identified. Cosmids pKOS065-C31 and pKOS065-C3 were identified and then mapped with restriction enzymes. Initial sequences from these cosmids were consistent with the expected organization of the cluster in this region. More extensive sequencing showed that both cosmids contained in addition to the desired sequences, other sequences not contiguous to the desired sequences on the host cell chromosomal DNA. Probing of additional cosmid libraries identified two additional cosmids, pKOS065-M27 and pKOS065-M21, that contained the desired sequences in a contiguous segment of chromosomal DNA. Cosmids pKOS034-124, pKOS034-120, pKOS065-M27, and pKOS065-M21 have been deposited with the American Type Culture Collection, Manassas. VA, USA. The complete nucleotide sequence of the coding

5

10

15

20

25

10

sequences of the genes that encode the proteins of the FK-520 PKS are shown below but can also be determined from the cosmids of the invention deposited with the ATCC using standard methodology.

Referring to Figures 1 and 3, the FK-520 PKS gene cluster is composed of four open reading frames designated fkbB, fkbC, fkbA, and fkbP. The fkbB open reading frame encodes the loading module and the first four extender modules of the PKS. The fkbC open reading frame encodes extender modules five and six of the PKS. The fkbA open reading frame encodes extender modules seven, eight, nine, and ten of the PKS. The fkbP open reading frame encodes the NRPS of the PKS. Each of these genes can be isolated from the cosmids of the invention described above. The DNA sequences of these genes are provided below preceded by the following table identifying the start and stop codons of the open reading frames of each gene and the modules and domains contained therein.

	Nucleotides	Gene or Domain
15	complement (412 - 1836)	ſkbW
	complement (2020 - 3579)	ſkbV
	complement (3969 - 4496)	fkbR2
	complement (4595 - 5488)	fkbR1
	5601 - 6818	fkbE
20	6808 - 8052	fkbF
	8156 - 8824	ſkbG
	complement (9122 - 9883)	ſkbH
	complement (9894 - 10994)	fkbI
	complement (10987 - 11247)	fkbJ ·
25	complement (11244 - 12092)	fkbK
	complement (12113 - 13150)	fkbL
	complement (13212 - 23988)	ſkbC
	complement (23992 - 46573)	fkbB
	46754 - 47788	fkbO
30	47785 - 52272	ſkbP
	52275 - 71465	fkbA
	71462 - 72628	fkbD
	72625 - 73407	fkbM
	complement (73460 - 76202)	fkbN
35	complement (76336 - 77080)	fkbQ
	complement (77076 - 77535)	fkbS
	complement (44974 - 46573)	CoA ligase of loading domain
	complement (43777 - 44629)	ER of loading domain
445	complement (43144 - 43660)	ACP of loading domain
40	complement (41842 - 43093)	KS of extender module 1 (KS1)
	complement(40609 - 41842)	ATI
	complement (39442 - 40609)	DH1
	complement (38677 - 39307)	KR1
	complement (38371 - 38581)	ACP1

```
complement (37145 - 38296)
                                         KS2
       complement (35749 - 37144)
                                         AT2
       complement (34606 - 35749)
                                         DH2 (inactive)
       complement (33823 - 34480)
                                         KR<sub>2</sub>
   5
       complement (33505 - 33715)
                                         ACP2
       complement (32185 - 33439)
                                        KS3
       complement (31018 - 32185)
                                        AT3
       complement (29869 - 31018)
                                        DH3 (inactive)
       complement (29092 - 29740)
                                        KR3
  10
       complement (28750 - 28960)
                                        ACP3
       complement (27430 - 28684)
                                        KS4
       complement (26146 - 27430)
                                        AT4
       complement (24997 - 26146)
                                        DH4 (inactive)
       complement (24163 - 24373)
                                        ACP4
 15
       complement (22653 - 23892)
                                        KS5
       complement (21420 - 22653)
                                        AT5
       complement (20241 - 21420)
                                        DH5
       complement (19464 - 20097)
                                        KR5
       complement (19116 - 19326)
                                        ACP5
 20
       complement (17820 - 19053)
                                        KS6
       complement (16587 - 17820)
                                        AT6
       complement (15438 - 16587)
                                        DH<sub>6</sub>
       complement (14517 - 15294)
                                        ER6
       complement (13761 - 14394)
                                        KR6
 25
       complement (13452 - 13662)
                                        ACP6
       52362 - 53576
                                        KS7
       53577 - 54716
                                        AT7
       54717 - 55871
                                        DH7
      56019 - 56819
                                        ER7
. 30
      56943 - 57575
                                        KR7
      57710 - 57920
                                        ACP7
      57990 - 59243
                                       KS8
      59244 - 60398
                                       AT8
      60399 - 61412
                                       DH8 (inactive)
 35
      61548 - 62180
                                       KR8
      62328 - 62537
                                       ACP8
      62598 - 63854
                                       KS9
      63855 - 65084
                                       AT9
      65085 - 66254
                                       DH9
40
      66399 - 67175
                                       ER9
      67299 - 67931
                                       KR9
      68094 - 68303
                                       ACP9
      68397 - 69653
                                       KS10
      69654 - 70985
                                       AT10
45
      71064 - 71273
                                       ACP10
           1 GATOTCAGGO ATGAAGTOOT COAGGOBASG SGCCGAGGTS GTGAACACCT CGCCCCCC
         31 TGTACGGACC NOTTCAGTCA GCGGGGATTS CGGAACCAAG TCATCCGGAA TAAAGGGGGG
        121 TTACAAGATO CTCACATTGC GCGACCGCCA GCATACGCTG AGTTGCCTCA GAGGCAAACC
50
        131 GAAAGGGCGC GGGCGGTCCG CACCAGGGCG GAGTACGCGA CGAGAGTGGC GCACCCGCGC
```

	2.1	1 200070700	T CTCTCCCCC				
	30	1 ACCGTCACC		S CEGGEGGGA	T GOODGEGGGT(ACACGGTTGC	GOTOTOCTOG
	36	1 AUGCTGAACA		: GIGGCGICG	G GGACACTEC	TGGCATCGGC	CGGGTGACGC
	2.3	1 TACGGGGAGG	CCGIACGG	GCCGTGGCT	C GTSSTCACG	ccecceece	GTCATCCGTC
5	1 U	1 GAGACGGCAC	. COGCOAC.	- GGGACGCCT	G GTCGGCACC	: GCGGGCCGGA	CGACCGTGTG
,	5.4	1 GTTCGCGGGG	20000001001	CGGTGGTGA	G CCABITITE	AGGGCGGTGA	AGGCTGAGCG
	J4.	1 GTGACACGG	AGCAAAGGUC	GGAGTCGGT	C GGGGAAGGT(TCGACGAGGG	CGTCGGTGTG
	00.		. : COATOCCC	. AGTAGCGGTA	i casaanana	\ GGCCGCTTCC	222222222
	00.	L GUSANALGI	CGGAGCCCGG	GCGGCAGGC	A GCAGCACGTC	GAGAGTGCCT	CCITCCTIA
10	·		CCGATACGAI	CGGTCAACG	= GATGIITTCC	ACGGCCGCCT	202000000
10			GCGTAGTCGT	: AGTCGGCATC	T GCAGCCCGG	ACCGTCCCC	3336667377
	041	L CGGTGTGCCG	GCTTCCTTCT	` CCCCATCGAA	A GCCGGGGTCG	AACTCCTCGC	COTACACCCC
	901	. CluckTCAGA	TCCCAGTAGA	CCTCGTGGTC	G GTACGGCCAC	AAGAACTCGG	AGTOGGGGGG
	961	. GAACCCGGCG	CGGAGCAGCG	CCTCGCGCGC	CTGGCCGGCT	GCGGGGCCGC	CTGCCGCCTA
16	1021	GGTGGGGTAG	TCGCGCAGGG	CGGCCGGCAG	G GAAGGTGAAG	AGGTTGGGAC	CCTCCCCCC
15	1081	CCACAGGGTG	CCTTCCCAGT	CGACTCCTCC	GTCGTACAGO	TCGGGATGGT	TOTOCACOTO
	1141	CCAGCGCACG	AGGTAGCCGC	CGTTGGACAT	CCCGGTGACC	AGGGTGCGCT	CGAGCGGCCC
	1201	GTGGTAGCGC	TGGGCGACCG	- ACGCGCGGGC	GGCCCGGGTC	AGCTGGGTGA	GGCGGGTGTT
	1261	CCACTCGGCG	ACGGCGTCGC	CCGGCCGGGA	GCCATCACGG	TAGAACGCGG	GGCCGGTCTT
	1321	GCCCTTGTCG	GTGGCGGCGT	AGGCGTAACC	GCGGGCGAGC	ACCCAGTOGG	CGATCCCCCC
20	1381	GTCGTTGGCG	TACTGCTCGC	GGTTACCGGG	GGTGCCGGCC	ACGACCAGGC	CACCGTTCCA
	1441	GCGGTCGGGC	AGCCGGATGA	CGAACTGGGC	GTCGTGGTTC	CACCCGTGGT	TGGTGTTGGT
	1501	GGTGGAGGTG	TCGGGGAAGT	AGCCGTCGAT	' CTGGATCCCG	GGCACTCCGG	TOGGAGTOS
	1561	CAGGTTCTTG	GGCGTCAGCC	CTGCCCAGTC	CGCCGGGTCG	GTGTGGCCGG	TEGCCGCCGT
	1621	TCCCGCCGTG	GTCAGCTCGT	CCAGGCAGTC	GGCCTGCTGA	CGTGCCGCCG	CCGGGACACG
25	1681	CAGCTGGGAC	AGACGGGCGC	AGTGACCGTC	CGGGGCATCG	GGAGCAGGCC	GGGCCGTGGC
	1741	CGGTGAGGGG	AGCAGGACGG	CGACTGCGGC	CAGGGTGAGA	GCGCCGAGGC	CGGTGCGTCT
	1801	TCTCGGGGCC	CGTCCGACAC	CGAGGGGCAG	AACCATGGAG	AGCCTCCAGA	CGTGCGGATG
	1861	GATGACGGAC	TGGAGGCTAG	GTCGCGCACG	GTGGAGACGA	ACATGGGTGC	GCCCGCCATG
	1921	ACTGAGGCCC	CTCAGAGGTG	GGCCGCCGCC	ATGACGGGCG	CGGGACCGCG	GGCGCTCCGG
30	1981	GGCGGTGCCC	GCGGCCGCCA	CCGGTTCCGG	GTCCCCGGGT	CAGGGACAGG	TOTCOTTOGO
	2041	GACGGTGAAG	TAGCCGGTCG	GCGACTCTTT	CAAGGTGGTC	GTGACGAAGG	TGTTGTACAG
	2101	GCCCATGTTC	TGGCCGGAGC	CCTTGGCGTA	GGTGTAACCG	GCGCTCGTCG	TEECECECC
	2161	CGCCTGGACG	TGAGCGTAGT	TGCCGGCGGT	CCAGCAGACG	GCCGTGGCAC	CGGTCGTCTG
	2221	CGCGGTGACC	GCGCCCGAGA	GCGGTCCGGC	CTTGCCGTCC	GCGTCCCGG	CGGCGACCGC
35	2281	GTAGGTGTGC	GATGTGCCCG	CCCTCAGGCC	GGTGTCCGTG	TACGACGTCG	TGGCGGACGT
	2341	GGTGATCTGG	GCACCGTCGC	GGTGGACGGC	GTAGTCGGTG	GCGCCGTCGA	CGCGTTTCCA
	2401	GGTCAGGCTG	ATGGTGGTGT	CGGTGGCGCC	GGTGGCGGCC	AGGCCGGACG	GAGCGGGCAG
	2461	CGAACCGGGG	TCGGAGGCGG	ATCCGCTCAG	GCCGAAGAAC	TGCGTGATCC	AGTAGCTGGA
	2521	ACAGATCGAG	TCCAGGAAGT	AGGCGGCGCC	GGTGCTGCCG	CACTGCTGTG	CTCCGGTGCC
40	2581	GGGATCGACC	GGGGTGCCGT	GCCCGATGCC	CGGCACCCGG	TTCACCTCCA	CGGCCACCGA
	2641	TCCGTCCGCG	GCCAGGTACT	CCTCGTGCCG	GGTGGAGTTC	GGGCCGATCA	CCGAGGTACG
	2701	GTCCGGCGTC	TGGGACACGC	CGTGCACAGC	GGTCCACTGG	TCGCGCDACT	CGTCGGCGTT
	2761	GCGCGCGCG	ACGGTGGTGT	COTTGTCGCC	GTGCCAGATG	GCCACGCGCG	CCACGGCC
	2821	CGACCACGAG	GGGTAGCCGT	CACGGACCCG	CCGCGCCCAC	TEGTCCGCGG	TCAGGTCGGT
45	2881	CCCGGGGTTC	ATGCACAGGT	ACGCGCTGCT	GACGTCGGTG	GCACAGCCCA	ACCCCACCCC
_		GGCGACGACC					
	3001	GGCACCGCCG	GCGGACAGCC	CGGTGATGTA	GGTGCGCTGG	GEGRECOCCC	CCUACGICAI
	3061	GACGGTGTGA	GCGGCCATCT	GCCGGATCGA	Cacaaattica	CCCTCCCCCC	TCCCCTTCTC
	3121	GCTGCTCTGG	AACCACTTCA	ACCACCTCTT	COCCOTTOTTC	CACCACCTCC	TCTCCCCCA
50		CACGAGCAGG					
		CTGGGCGTCC					
		CGCGGGCCGG					
	3361	CGCGGGCCGG	CCCTTCCTC	CACCCCCCCCC	CCCCGGGIIC	GIGCCGAAGT	CCGCGACCIC
	3421	GGTCAGGTCC	ACCA CCCCC	CECCCA CEAC	CACCCCCCCC	GCCGCGCGT	6666666
55		CGCCGGGCCG					
J J	35/1	CACCCCCCCC	ACCAMMOCCC	GCGACAACGA	CCCGACCGGC	GGCGAGGAGG .	AGAGGGGGAA
	3201	CAGCGGGGTG	AGGAT TCCCC	GGAACGGCGG	COGC.GCATG	GCGGCTCCCT (CGATGTCGTG
		GGGGGGACAC					
		TAGGGGTGGT					
60		TGCGCCCGGA					
00	3/61	ACCCGACACG	GGTAGGGCGT	CATGGTGTCC	GACTUGGCCG	GTCGGCCTTG (CCTGCCCTGG

	3840	l ACGGACCGG	S CGTCGGCGG	A CCGGGCGTC	G GOGGSCTSG	- CRATATOCC	GCCGAGGACG
		L CCMGCCGC	i GGGGGGGCC	G CGCCCAAGT	S CAGTACGCC	3 CCCTCCCCC	
	3961	L CGGACCGGT	C AGTGCAGTC	C CGCGGCCCT	G CGGGACCGC	CCTCCCACAC	GGGGGGGGC GGGTTCCACC
	4021	GCGGCGAAC	COGGGTCCGT	G TEEGCGGCG	TAGACCACA	CTCTCCCAGAC	. GGGTTCCACC . GAAGGTGATC
5				T CTACCCCATO	CTCCCCACCA	G.GICCGCTC	C GAAGGTGATC C TACGTCAGGT
	4141	CGGCTGGCG	S ACTOCOGCO	T CTTCACCAC	S TOCOLOGIC	SATGATGCC	TACGTCAGGT STCGCCCTCG
	4201	AAGACCGGG	TCCCCTCCC	T CACCCCCCC	I COGGACTGCG	AGTAGATGGT) STCGCCCTCG
	3261	ATGTCCCTC	COSCAGCO	GACCCGGTCC	CAGCCGAGGT	TEGCCATCAC	ATGCTGGGAG
	3321	TTCCCCC		GGTGACCAGO	GCGAGGGTGA	AGGTGGAGTC	CACCAGCGGC
10	1321	CTCACCAGG	3 TGGTGCCCG(CGAGTAGTG	G CGGTCGAAGT	' GCAGCGGCGC	GGTGTTCTGC
	4141	TACACCACC	: TGAGCCAGGA	A GTTGTCGGT	TCCAGGACCG	TGCGGCCCAG	GGGGTGGCGG
	1501	CECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CGGTGGTGA	A GTCCTCGAAC	TAGCGGCCCT	GCCAGCCCTC	GACCACAGCG
	4501	GIGCGGGTGC	CGTCCTGGT	C CGGGTTCTC#	GTCGTCATGG	CGCTCATTCT	GGGAAGTCCC
	4001	CGGTCCGCTG	TGAAATGCCC	3 AACCTTCACC	GGGCTCATAC	GTGCGGCGCA	TCACCCCTCC
1.5	4 0 Z I	ACCGTACGTA	A GTCGTAGAAC	CTCGCCACCA	. CTGGCGCGCG	TGGTCCTCCG	GCGAGTCTCA
15	4081	CCACGCCGAC	CGTGCGCCGC	CGCCTGCGGGI	' CGTCGAGCGG	CACGGCGACG	GCGTGCTCAC
	4/41	CGGGCCCGGA	CGGGCTGCCG	GTGAGGGGG	CGACGGCCAC	ACCGAGGCCG	GCGGCGACCA
	4801	GGGCCCGCAG	G CGTGCTCAGC	CICGGTGCTCT	' CCAGGACGAC	CCGCGGCACG	AATCCCCCCC
	4861	CGGCGCACAG	CCGGTCGGTG	ATCTGGCGCA	. GTCCGAAGAC	CGGCTCCAGT	GCCACGAACC
	4921	CCTCATCGGC	CAGCTCCGCG	GTCCGCACCC	GGCGGCGTCT	GGCCAGCCGG	TOTOCCCCCTC
20	4981	GGACGAGCAG	GCACAGTGCC	TCGTCCCGCA	GTGGTGTCCA	CTCCACATCC	TCCCCCCCC
	5041	GTCGTGGGCT	GGTCAGCCCC	AGGTCCAGCC	TGCTGTTGCG	GACGTCGTCC	ACCACCCCC
	5101	CGGCGGCGTC	GCCGCGCAGT	TCGAAGGTGG	TGCCGGGAGC	CARCOTOGICG	TACCACGGCG1
	5161	GGAGGTCGGG	CACCAGCCAG	GTGCCGTAGG	AGTGCAGGAA	ACCCACTCCC	1 ACCCGGCGA
	5221	TGTCGGGGTC	GATCAGGGCG	GTGATGCGCT	GCTCGGCGCC	CCACACTGCC	ACGGTGCCGG
25	5281	GCAGGGCGTG	GGCGCGGAAG	ACCTCCCCCT	ACTTGTTGAG	CCCCACCCCA	CTGATCGCGC
	5341	GGTCGAACAG	COCCRECECE	ACCICGCCGI	CCAGCCGCCG	CCGGAGCCGG	TTCTGGTGCC
	5401	GCTGGGAGAT	CTTCTCCCC	TCCCCCCTCN	TCGTCACGTG	GATGGCCCTG	GACAGGGTCG
	5461	TGAACCACTC	CAACTCCCCT	ATCTCCATCC	AGGGACTATA	CICGIGCICG	GCCAAGGCCG
	5521	CGACCTTTCC	TCATTTCACA	ATCTCCATGC	AGGGACIAIA	CGTACCGGGC	ATGGTCCTGG
30	= 581	CACCCATCO	CACCACACA	A TICTICO A CO	GGCGGCCCAC	AGTGAGTCCT	CACCAACCAG
20	5641	CCCCCCCCC	CHCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ATGTCCGAGC	CGCATCCTCG	CCCTGAACAG	GAACGCCCCG
	5701	CCBCGCCCT	GTCCGGTCTG	CTCGTGGTTT	CTTTGGAGCA	GGCCGTCGCC	GCTCCGTTCG
	5761	CCACCCCCA	CCTGGCGGAC	CTGGGCGCCC	GTGTCATCAA	GATCGAACGC	CCCGGCAGCG
	5001	TC 3 3 CC CC CC	CCGCGGCTAC	GACCGCACGG	TGCGTGGCAT	GTCCAGCCAC	TTCGTCTGGC
35	5021	TGAACCGGGG	GAAGGAGAGC	GTCCAGCTCG	ATGTGCGCTC	GCCGGAGGGC	AACCGGCACC
23	5041	TGCACGCCTT	GGTGGACCGG	GCCGATGTCC	TGGTGCAGAA	TCTGGCACCC	GGCGCCGCGG
	5941	GCCGCCTGGC	ATCGGCCACC	AGGTCCTCGC	GCGGAGCCAC	CGAGGCTGAT	CACCTGCGGA
	9001	CATATCCGGC	TACGGCAGTA	CCGGCTGCTA	CCGCGGACCG	CAAGGCGTAC	GACCTCCTGG
	6061.	TCCAGTGCGA	AGCGGGGCTG	GTCTCCATCA	CCGGCACCCC	CGAGACCCCG	TCCAAGGTGG
40	6121	GCCTGTCCAT	CGCGGACATC	TGTGCGGGGA	TGTACGCGTA	CTCCGGCATC	CTCACGGCCC
40	6181	TGCTGAAGCG	GGCCCGCACC	GGCCGGGGCT	CGCAGTTGGA	GGTCTCGATG	CTCGAAGCCC
	6241	TCGGTGAATG	GATGGGATAC	GCCGAGTACT	ACACGCGCTA	CGGCGGCACC	GCTCCGGCCC
	6301	GCGCCGGCGC	CAGCCACGCG	ACGATCGCCC	CCTACGGCCC	GTTCACCACG	CGCGACGGGC
	6361	AGACGATCAA	TCTCGGGCTC	CAGAACGAGC	GGGAGTGGGC	TTCCTTCTGC	GGTGTCGTGC
	6421	TACAACGCCC	CGGTCTCTGC	GACGACCCGC	GCTTTTCCGG	CAACGCCGAC	CGGGTGGCGC
45	6481	ACCGCACCGA	GCTCGACGCC	CTGGTGAGCG	AGGTGACGGG	CACGCTCACC	GGCGAGGAAC
	6541	TGGTGGCGCG	GCTGGAGGAG	GCGTCGATCG	CCTACGCACG	CCAGCGCACC	GTGCGGGAGT
	6601	TCAGCGAACA	CCCCCAACTG	CGTGACCGTG	GACGCTGGGC	TCCGTTCGAC	AGCCCGGTCG
	6661	GTGCGCTGGA	GGGCCTGATC	CCCCCGGTCA	CCTTCCACGG	CGAGCACCCG	CGGCGGCTGG
	6721	GCCGGGTCCC	GGAGCTGGGC	GAGCATACCG	AGTCCGTCCT	GGCGTGGCTG	accececce
50	6781	ACAGCGCCGA	CCGCGAAGAG	GCCGGCCATG	CCGAATGAAC	TCACCGGACT	CCTCATCCTC
	6841	GCCGCCGTGT	TCCTGCTCGC	CGGCGTACGG	GGGCTGAACA	TGGGCCTCCT	CCCCCTCCTC
•	6901	GCCACCTTTC	TOCTCOGGGT	GGTCGCACTC	GACCGAACGC	CCCACCACCT	COCGCIGGIC
	6961	TTCCCCCCC	CATCETCET	COTCCTCCTC	GCCGTCACGT	TCCTCTTCCC	GC IGGCGGG:
	7021	GTCAACCCCA	CCCTCCACTC	CCTCCTACCT	GTCGCGGTGC	CCCCCCTCCC	GATCGCCCGC
55	7021	CCACCCTCC	CGGTGGACTG	CCIGGIACGI	GICGCGGIGC	GGGCGGTGGG	GGCCCGGGTG
	7141	TCCCCCCCC	CCTGGGTGCT	CITCGGCCTG	GCGGCACTGC	CTGCGCGAC .	AGGCGCGGCC
	7201	1 CGCCCGCGG	mcma ccccar	COLUGUECCO	ATCAGCGTCG	CGLICGCCGT	CAGGCACCGC
	7.4UI (AICGATCCGC	TGTACGCCGG	ACTGATGGCG	GTGAACGGGG	UUGCAGCCGG	CAGTTTCGCC
	722-	CCCTCCGGGA	TCCTGGGCGG	CATCGTCCAC	TCGGCGCTGG .	h JAAGAACCA	TCTGCCCGTC
60	7321 7	AGCGGCGGC	TGCTCTTCGC	AGGCACCTTC	GCCTTCAACC '	TGGCGGTCGC	CGCGGTGTCA
60	/381 /	rggctcgtcc	TCGGGCGCAG	GCGCCTCGAA	CCACATGACC	TGGACGAGGA	CACCGATCCC

WO 00/20601

	744	1 : 66613666					
	750	L CCCCCCCCCC	G ACCCGGCTT	c ccgccccg	C GCGGAACAC	G TGATGACGC	T GACCGCGATG
	756	l Google	J TGCTGGGAA	C CACGGTCCT	C TCCCTGGAC	CCGGCTTCC	T GGCCCTCACC
	750.	1.10000000	TGCTGGCGC	r GCTCTTCCC	G CGCACCTCC	AGCAGGCCA	C CAAGGAGATO
5	766	:	:GGIGCTGC	r GGTATGCGG	G ATCGTGACCT	ACGTCGCCC	I GOTOCAGGAG
_'			TGGACTCCC	r ggggaagat	G ATCGCGGCG	TCGGCACCC	GCTGCTGGCC
	7.79.3		TCTGCTACG	r GGGCGGTGT	C GTCTCGGCCT	TCGCCTCGA(CACCGGGATC
	7861		rGATGCCGCT	F GTCCGAGCC	3 TTCCTGAAGT	· CCGGTGCCAT	CGGGACGACC
		. JUCALUU.Jr	TGGCCCTGGC	. GGCCGCGGC	3 ACCGTGGTGG	ACGCGAGTCC	CTTCTCCACC
10	7691		COCCOCCOCC	CAACGCTCC	GAGCGGCTGC	GGCCCGGCGT	GTACCAGGG
. •	8041	TECTTO		GOTGTGCGCA	A CTGGCTCCCG	CGGCCGCCTC	GGCGGCCTTC
	8101	CTGACGTACC	JJOHJOJJOHO CHCARACHOR	CAGCGGGAA	CCCCTGGAGC	CCGTTTCCCC	TGCTGTGTCG
	8161	DIGACGIAGO	ACCCTCTCC	COTOCCOCC	GGGCAGTACG	CCTAGCATGT	CGGGCATGGC
		TGACGAGGTG	CTGACCCCC	TCCCCCCCC	CRECECCE	CGGAAGGTGT	CCCTGCGCGA
15	8281	GCCGGTGCAG	CIGAGCCGGC	CACACTTCCT	GACGGCCGAG	CTGCCGGGCG	GTGGCGTACT
	8341	TCAGGTGCTG	GOCGAGGAGG	COTACACTOC	CGAGTTCCTG CTACAGCACG	GTGCGGTTGA	CCGGCGCGCG
	8401	GGCGCCCGG	GCCCCTCTCC	TENCETCE	TGTCATGCCG	PACTOCOTOG	CCCGCGGATT
	8461	GCGGTACTGG	GACCACCCC	GGGTTGCCGA	CCGGATCGAC	AAGTGGCCCG	AGGTGGGCGA
	8521	GACCGTCCTC	ACCGGGCTGC	TCGACGAGGC	GGGCGCGGG	CCCCACTCC	GCGACGCCCG
20	8581	GTTCATCGAC	GCCGACAAGG	CCGGCTACCC	CGCCTACTAC	CACCCCCCC	TCGACATGGT
	8641	ACGCCGCGGC	GGGCTGATCG	TCGTCGACAA	CACGCTGTTC	TTCGGCCCC	TCCCCCTGGT
	8701	AGCGGTGCAG	GACCCGGACA	CGGTCGCGGT	ACGCGAACTC	AACGCGGCAC	TOCCCCACCA
	8761	CGACCGGGTG	GACCTGGCGA	TGCTGACGAC	GGCCGACGGC	GTCACCCTGC	TGCGCGACGA
	8821	GTGACCGGGG	CGATGTCGGC	GGCGGTCAGC	GTCAGCGTCG	TOGGOGGGG	CCTCGCGGAG
25	8881	GGCTCCAGAT	GCAGGCGTTC	GACGCCGGCG	GCGGAAGCGC	CCGCCACCTC	GGACACGCAG
	8941	GGGCAGTCGG	AGTCCGCGAA	GCCCGCGAAC	CGGTAGGCGA	TCTCCATCAT	GCGGTTGCGG
	9001	TCCGTACGCC	GGAAGTCCGC	CACCAGGTGC	GCCCCCGCGC	GGGCGCCCTG	GTCCGTGAGC
	9061	CAGTTCAGGA	TCGTCGCACC	GGCACCGAAC	GACACGACCC	GGCAGGACGT	GGCGAGCAGT
	9121	TTCAGGTGCC	ACGTCGACGG	CTTCTTCTCC	AGCAGGATGA	TGCCGACGGC	GCCGTGCGGG
30	9181	CCGAAGCGGT	CGCCCATGGT	GACGACGAGG	ACCTCATGGG	CGGGATCGGT	GAGCACGCGC
	9241	GCAGGTCGGC	GTCGGAGTAG	TGCACGCCGG	TCGCGTTCAT	CTGGCTGGTC	CGCAGCGTCA
	9301	GTTCCTCGAC	GCGGCTGAGT	TCCTCCTCCC	CCGCGGGTGC	GATCGTCATG	GAGAGGTCGA
	9361	GCGAGCGCAG	GAAGTCCTCG	TCGGGACCGG	AGTACGCCTC	CCGGGCCTGG	TCGCGCGCGA
25	9421	AACCCGCCTG	GTACATCAGG	CGGCGCCGAC	GCGAGTCGAC	CGTGGACACC	GGCGGGCTGA
35	9481	ACTCCGGCAG	CGACAGGAGC	GTGGCCGCCT	GCTCGGCCGG	GTAGCACCGC	ACCTCGGGCA
	9541	GGTGGAACGC	CACCTCGGCA	CGCTCGGCGG	GCTGGTCGTC	GATGAACGCG	ATCGTGGTCG
	9601	GIGCGAAGTT	CAGCTCCGTG	GCGATCTCGC	GGACGGACTG	CGACTTCGGC	CCCCATCCGA
	9001	CCTCCTCCTC	CACGAAGTAC	TCCGCCACAC	CGAGGCGTTC	CAGACGCTCC	CACGCGAGGT
40	9721	COTCCCCA	CTTGCTCGCC	ACCECCTEGA	GGATGCCGCG CGTCGTCCTC	GTCGTCGAGC	GTGGTGATCA
70	9841	AGGTGTTCTC	CACCACCAC	ACCACCACCI	TGACAATGGT	CAUCACGGTG	CCCCGCCACA
	9901	GGGAGCGCCA	CAGGICCCAG	GCCAGCATC	ACCCGGCACA	TCTCCCTCCT	COCCTCCARGCC
	9961	ATCTCCATGA	SCTTGGCGTC	GCGGTACGCC	CGTTCGACGA	CGTGTCCCCCC	TCTCCCCCC
	10021	GCCGACGCGA	GCACCTGTGC	GCCGTCGCG	GCCCGGCGG	CGCTCGTTC	GCCGCCCACC
45	10081	TGCTTGGCCA	GGATCGTCGC	GGGCACCATC	TCGGGCGAGC	CCTCGTCCCA	GTGGTCGCTG
					TCCGCGGTCC		
					CCGAACTGCT		
	10261	ACCGCGGCGG	TGCGGCAGGC	CCGCAGGATC	CCGACGCAGC	CCCAGGCGAC	CGACTTGCGC
					GGCAGTGACG		
50	10381	GCGCCGGCCG	GCACACGCAC	CTGGTCCAGG	TGCAGATCGG	CGTGGCCGGC	GGCGCGGCAG
	10441	CCGGACGGCT	TCGGGACGCG	CTCGACGCGT	ACGCCGGGGG	TGTCGGCGGG	CACGACCACC
					AAGACGACCA		
	10561	GCAGTCGTCC	AGACCTTGTG	GCCGTCGACG	ACAGCGGTGT	CCCCGTCGAG	CCGAACCCGC
·	10621	GTCCGCATCG	CCGACAGATC	GCTGCCCGCC	TGCCGCTCAC	TGAAGCCGAC	GGCCGCGAGT
55	10681	TTCCCGCTGG	TCAGCTCCTT	CAGGAAGGTC	GCCCGCTGAC	CGGCGTCGCC	GAGCCGCTGC
	10741	ACGGTCCACG	CGGCCATGCC	CTGCGACGTC	ATGACACTGC	GCAGCGAACT	GCAGAGGCTG
	10801	CCGACGTGTG	CGGTGAACTC	GCCGTTCTCC	CGGCTGCCGA	STCCCAGACC	GCCGTGCTCC
	10861	JCCGCCACTT	CCGCGCAGAG	CAGGCCGTCG	GCGCCGAGCC	GGACGAGCAG	GTCGCGCGGC
60	10921	AGTTCGCCGG	ACGTGTCCCA	CTCGGCGGCC	CGGTCACCGA	CAAGGTCGGT	CAGCAGCGCG
60	10981	TCACGCTCAG	GCATCGACGG	CCCGCAGCCG	GTGGACGAGT	GCGACCATGG	ACTCGACGGT

	. 1 0 4 1	1.000000					
	11041	ACGGAAGTT	GCGAGCTGG	A GGTCCGGGC	GGCGATCGT	ACGTCGAACG	TOTTOTOCAG
		. O.A.CACGACG	- AGIILLAILL	a CGAACAGG	CGTGAGGCCC		303000000
	11101	- G. LUACIGG	CAGTCCGACC	TGGTCTTCG:	CTTGAGGAAC	GCGACCAACC	CCTCCCCCC
			1 1 1 2 2 1 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3	: ccc		· ~~~~~~~~~	
5		. Colour CTTC(: GGCCGTGGTG	TCCCTCGCG	: გიიუუციიი	GCAGCACCTC	3010000000
					. ACCURACAGO	CGTCGACCAC	
	11401	CCEATCAGGI	CCGCGGTGCG	CAGCGGCCC	GTCGGATGGC	CGAGGCACCC	CCTCTCTCTCC
	- + 4 0 +	GC 5 FCGACGT	- CCTCGACGGA	. CGCGGTGCC	TECTGCACGA	TOUGGGGGGGG	CTCCTTCTTC
	11221	ATUGGGTGGA	GCAGCCGGCT	' CGTGLOGLLO	COGGGGGGGGT	CCCCCACCAC	
10	281	CGUCCCAGCG	CCGCGAGCAG	GTCCCCGGCG	GCGGCCATGG	CCTTCTCACC	SCACCCCCC
	~ - C4 1	CCCCGGATCA	CCTCGACCGT	' CGGGATCAGG	TACGACGGGT	TCATCAACTC	CCTCCCCCCC
	/01	AGGTCCTCGG	GCCGGGCCAC	GGAGTCGGCC	AGTTCGTCAA	CCGGGATCGA	CCACCTCTTC
	11761	GTGATGACCG	GGATACCGGG	CGCCGCTGCC	GAGACCGTGG	CGAGTACCTC	CONCOTOTO
	11821	TEGGEGTEET	CGACGACGGC	CTCGATCACC	GCGGTGGCCG	TACCGATCGC	CCCCICCCC
15	11881	GACGTGGCCG	TCCGCAGCAC	ACCGGGGTCG	GCCTCGGCGG	GCCCGCCCAC	CACTTCTCC
	11941	GTCCGCAGTT	CGGTGGCGAT	CCGCGCCCGC	GCCGCCGTAA	GGATCTCCTC	CAGT TO TOCK
	12001	ACGAGTGTCA	CCGGGACGCC	GTGGCGCAGC	GCGAGCGTGG	TCATCCCCCT	GGACGTGTCG
	12061	CCCGCGCCCGA	CCACGATCAG	CTGGTGGTCC	ACCCTCTTTC	CTCCCTCCCC	GCCCATCACT
	12121	GCAGCGAGTA	CGGGTCGAGG	ACGTCTTCCG	CCCTCCACCC	CICCUTCUGG	GGTCACCATG
20	12181	GGCCGAGTTC	GTCGCCAAG	CCGAGCAGCA	CCTCCAACCC	GATCGCGTCC	TTGCGGCCGA
	12241	TECCCETCEN	CTCCACCACC	CTCAGGCTGT	CGTCGAACGC	GATGTGGTCG	GCGAACGCGC
•	12241	CGCCCGTCGA	CCCCACCCAC	CICAGGCIGI	CCCGGTGGTC	CGCCGCGGTG	TCCGGTGCCG
	10361	CCCCCCCCCC	CTCCCCCC	GGGCCGAGCT		CAGTTGCTGG	TACTCGCCCT
	12301	CCTCTTCCCT	CIGCCCCGGA	TGGTCGACGC	AGATGAACGC	GTCGTCGAGC	AGGGTCTTCG
25	12421	CCAG 1-1 CGG 1	CITGCCCGGC	TCGTCGGCGC	CGATGGCGTT	CACATGCAGG	TGCGGCAGCC
-3	10541	CLGGC I CGGC	GGGCAGCACC	GGCCCTTTGC	CCGAGGGCAC	CGAGGTGACG	GTGGACAGGA
	12541	CATCCGCGGC	GGCGGCGGCC	TCCGCCGGAT	CGGTCACCTT	GACCGGCAGT	CCGAGGAACG
	12601	CGATGCGGTC	CGCGAACGAC	GCCGCGTGGC	CGGGGTCGGT	GTCGCTGACC	AGGATCCGCT
	12661	CGATGGGCAG	GACCCTGCTG	AGCGCGTGCG	CCTGGGTCAC	CGCCTGTGCG	CCCGCGCCGA
20	12/21	TCAGCGTGAG	CGTGGCGCTG	TCGGACCGGG	CCAGCAGCCG	GCTCGCGACG	GCGGCGACCG
30	-2/81	CGCCGGTCCG	CATCGCGGTG	ATCACGCCTG	CGTCGGCGAG	GGCGGTCAGA	CTGCCGCTGT
	12841	CGTCGTCGAG	GCGCGACATC	GTGCCGACGA	TCGTCGGCAG	CCGGAAGCGC	GGATAGTTGT
	12901	GCGGACTGTA	CGAAACCGTC	TTCATGGTCA	CGCCGACACC	GGGGACCCGG	TACGGCATGA
	12961	ACTCGATGAC	GCCGGGAATG	TCGCCGCCGC	GGACGAATCC	GGTACGCGGC	GGCGCCTCGG
2.5	13021	CGAACTCGCC	GCGGCCGAGC	GCGGCGAACC	CGTCGTGCAG	CTCGCTGATC	AGCCGGTCCA
35	13081	TCATCACGTC	GCGGCCGATC	ACGGAGAGAA	TCCGCTTGAT	GTCACGTTGG	CGCAGGACCC
	13141	TGGTCTGCAT	GTGTCACCTC	CCTTTCGTGG	CCGGAGCTGT	CTTGGTGGTG	CCGCTCGGGG
	13201	CGGCTTCCGT	TCTCATCGCA	GCTCCCTGTC	GATGAGGTCG	AAAATCTCGT	CCGCGGTCGC
	13261	GTCCGCGGAC	AGCACGCCGG	CCGGCGTGGT	CGGGCGGGTC	TCCCGCCGCC	AGCGGTTGAG
	13321	CAGGGCGTCC	AGCCGGGTTC	CGATCGCGTC	CGCCTGGCGG	GCGCCCGGGT	CGACACCGGC
40	13381	AACGAGTGCT	TCCAGCCGGT	CGAGCTGCGC	GAGCACCACG	GTCACCGGGT	CGTCCGGGGA
	13441	CAGCAGTTCA	CCGATGCGGT	CGGCGAGTGC	GCGCGGCGAC	GGGTAGTCGA	AGACGAGCGT
	13501	GGCGGACAGT	CGCAGACCGG	TCGCCTCGTT	GAGGCCGTTG	CGCAGCTGCA	CCGCGATGAG
	13561	CGAGTCCACA	CCGAGTTCCC	GGAACGCCGC	GTCCTCCGGG	ATGTCCTCCG	GGTCGGCGTG
	13621	GCCCAGGACG	GCCGCTGCCT	TCTGCCGGAC	GAGGGCGAGC	AGGTCGGTGG	GGCGTTCCTG
45	13681	CTCGTTGCGG	GCGCTCCGGC	GGGCCGACGG	CTTGGGCCGG	CCACGCAGCA	GCGGGAGGTC
	13741	CGGCGGCAGG	TCGCCCGCCA	CGGCGACGAC	ACTGCCCGTT	CCGGTGTGGA	CGGCGGCGTC
	13801	GTACATGCGC	ATGCCCTGTT	CGGCGGTGAG	CGCGCTCGCC	CCACCCTTGC	GCATACGGCG
	13861	CCGGTCGGCG	TCGGTCAGGT	CCGCGGTCAS	GCCACTCGCC	TGGTCCCACA	GCCCCCACGC
	13921	GATCGACAGC	CCTGGCAGCC	CTTGTGCACG	COGGTGTTCG	GCGAGCGCGT	CGACGAACCC
50	13981	GTTCGCCGCC	CCCTACTTCC	CCTGACCGGG	GGTGCCCAGC	ACACCGGCCG	CCCACCACCC
	14041	GACGACGAAT	CCGCCGAGGT	CGGTGTCGCG	COTCACCCG	TOCACCTCCC	ACCCCCCCCC
	14101	GGCCTTGGGT	TTGAGGACGG	TGTCGATGCG	CTCCCCCCTC	A COMMOTOCO	CCACCCCCTC
	14161	GTCCACCCTT	CCCCCCCCCC	GGAAGACGGC	CCTCACCCCT	AGGIIGICGA TCACCCARCE	GCAGGGCGIC
				CGCCGACGTC			
55							
J J				GGAGGTAGGT			
				CGCCGGTGAT			
	14401	CGGGACCGTG	AGGACGATCT	TGCCGGTGTG	CTCGCCGCGG	CTCATGGTCG	CCAGCGCCTC
	14401	GUGGACCTGC	CGCATGTCGT	GCACCGTCAC	CGGCAGCGGG	TGCAGCACAC	CGCGCGCGAA
60				TGATCTCCTT			
60	14531	GAACGGTCGC	TGGACGGCGT	GCCGGATGTC	CGTCTTCCCC	ATCTCGATGA .	ACCGGCCACC

	1464	1 00000000	2 100000000				
	1470	1 CGGCGCGAG	C AGGCCGACG(G ACGCGTCGA	G GAGTTCACC	G GTGAGCGAGT	: TGAGCACGAC
	1470	1 GTCGACCGG	C GGGAACGCG	r cggcgaacg	C GGTGCTGCG	GAATCGGCCA	SATGCGCTCC
	14/0	I GICCAGGIC	J ACCAGATGG	C GCTTCGCGG	C GCTGGTGGT0	GCGTACACCT	COGCOCCOCA
	:452.	1 6.50000000	G ATCTGCCGG	G CGGCGGAACC	D GACACCECC	GTGGCCGCGT	COLTOLOGO
5	1488.	i Cittleded	G GGGCGCAGC	CGGCGAGGTC	C GACCAGGCCC	TACCACGCGG	TORCOTTOCO
	1494.	I GGTCATCAC	GACGCCGCC1	r gcgggaacg1	CCAGCCGTCC	GGCATCCGGC	CGAGCITTCC
	1500.	r Greerceco	J ATGACCGTGC	G GGCCGAAGCC	GGTGCCGACG	AGGCCGAAGA	COCCOTOCO
	15061	L CGGTGCCAGA	CCGGAGACGT	CGGCGCCGGT	CTCCAGGACG	ATGCCCGCGG	COTCCCCCC
	15121	GAGCACGCCC	TGACCGGGGT	AGGTGCCGAG	CGCGATCAGC	ACATOGOGO	ACTTC1CCC
10	15181	CECCGCACGC	ACACCGATCC	GGACCTCGGC	CGGGGCGAGG	GGGCGCCGG	COTTORGUE
	15241	GTCGGCGCG	GTGAGGCCGT	CGAGGGTGCC	COTCOCCCC	GGCCCCATCA	CCCCCCCCA
	15301	GCTGTCCGGC	ACGGTGAGCG	GCTCCGGCAC	CORRECTOR	CCCCCCCCCC	GCCACGIGIC
	15361	GCCGCGCAGC	CCCACACCC	CCTCCCCGAC	TCCCACCCC	ATCCCCTCCT	CGAACCGGGG
	15421	GAGCGTGACG	COCAGACTCCC	TOTOGOCOAG	CACCAACGGCG	AIGCGCIGCI	GCTCGGGGGC
15	: 5481	CASCOLORCO	CCGGACICGG	CCCCCCCCC	CACGAACCGG	CCGGGCTGCT	CGGCCTGGGC
	15541	GGCGCGCAGC	CACCCCCTCA	CCGCGCCGGI	COCCACCO	GCGGTGGTGT	GCACGAGCAG
	15601	ATCCCCGCCG	GAGCCGGICA	GGGCGGTCAG	CAGCCGGGTG	GTGAGCGCAC	GCGTCTCGGC
	15601	CACCGGGTCG	TCGCCATCAG	CGGCAGGCAA	CGTGATGACG	TCCACGTCGG	TCGCGGGGAC
	12001	ATCCGTGGGT	GCGGCGACCT	CGATCCAGGT	GAGACGCATC	AGGCCGGTGC	CGACGGGTGG
20	15/21	GGACAGCGGG	CGGGTGCGGA	CCGTCCGGAT	CTCGGCGACG	AGTTGGCCGG	CGGAGTCGGC
20	15781	GACGCGCAGA	CTCAGCTCGT	CGCCGTCACG	AGTGATCACG	GCTCGGAGCA	TGGCCGAGCC
	15841	CGTGGCGACG	AACCGGGCCC	CCTTCCAGGC	GAACGGCAGA	CCCGCAGCGC	TGTCGTCCGG
	15901	CGTGGTGAGG	GCGACGGCGT	GCAGGGCCGC	GTCGAGCAGC	GCCGGATGCA	CACCGAAACC
	15961	GTCCGCCTCG	GCGGCCTGCT	CGTCGGGCAG	CGCCACCTCG	GCATACACGG	TGTCACCATC .
	16021	ACGCCAGGCA	GCCCGCAACC	CCTGGAACGC	CGACCCGTAC	TCATAACCGG	CATCCCGCAG
25	16081	TTCGTCATAG	AACCCCGAGA	CGTCGACGGC	CACGGCCGTG	ACCGGCGGCC	ACTGCGAGAA
	16141	CGGCTCCACA	CCGACAACAC	CGGGGGTGTC	GGGGGTGTCG	GGGGTCAGGG	TGCCGCTGGC
	16201	GTGCCGGGTC	CAGCTGCCCG	TGCCCTCGGT	ACGCGCGTGG	ACGGTCACCG	GCCGCCGTCC
	16261	GGCCTCATCA	GCCCCTTCCA	CGGTCACCGA	CACATCCACC	GCTGCGGTCA	CCGGCACCAC
	16321	AAGGGGGGAT	TCGATGACCA	GCTCGTCCAC	TATCCCGCAA	CCGGTCTCGT	CACCGGCCCG
30	16381	GATGACCAGC	TCCACAAACG	CCGTACCCGG	CAGCAGGACC	GTGCCCCGCA	CCGCGTGATC
	16441	AGCCAGCCAG	GGGTGAGTGC	GCAATGAGAT	CCGGCCAGTG	AGAACAACAC	CACCATOSTO
	16501	GGCGGGCAGC	GCTGTGACAG	CGGCCAGCAT	CGGATGCGCC	GCACCCGTCA	ACCCCGCCGC
	16561	CGACAGATCG	GTGGCACCGG	CCGCCTCCAG	CCAGTACCGC	CTGTGCTCGA	ACGCGTACGT
	16621	GGGCAGATCC	AGCAGCCGTC	CCGGCACCGG	TTCGACCACC	GTGTCCCAGT	CCACTGCCGT
35	16681	GCCCAGGGTC	CACGCCTGCG	CCAACGCCGT	CAGCCACCGC	TCCCAGCCGC	CGTCACCGGT
•	16741	CCGCAACGAC	GCCACCGTGT	GAGCCTGCTC	CATCGCCGGC	AGCAGCACCG	CATCCCCACT
		GCACTCCACG					
		ACGCAGATTC					
		GGTCGACCAC					
40	16981	TTCATCCTCG	ATGGCTTCCA	CGTGGGGCGT	GTGGGAGGGG	TACTCCACCC	CCTTGGCCAG
		CACCCGCACG					
		CGCCACCACC					
		GACCTCACCG					
45	17221	GATGACCTGA	CIGCGCAAIG	CCACCACGCG	GGCGGCGICC	TCGAGGCTGA	GGGCTCCGGC
73	17741	CACGCACGCC	GCCGCGATCT	CGCCCTGGGA	GIGICCGAIC	ACCGCGTCCG	GCACGACCCC
		ATGCGCCTGC					
		CTCCACCGC					
	1/461	CGGCAGCAAC	GCCTGAGCGC	ACTCCTCCAT	ACGCGCGGCG	AACACCGCGG	AGTGGGCCAT
50	1/521	GAGTTCCACG	CCCATGCCGA	CCCACTGGGC	GCCCTGGCCG	GGGAAGACGA	ACACCGTACG
50	17581	CGGCTGGTCC	ΛCCGCCACAC	CCGTCACCCG	GGCATCGCCC	AGCAGCACCG	CACGGTGACC
	17641	GAAGACAGCA	CGCTCCCGCA	CCAACCCCTG	CGCGACCGCG	GCCACATCCA	CACCACCCCC
	17701	GCGCAGATAC	CCCTCCAGCC	GCTCCACCTG	CCCCCGCAGA	CTCACCTCAC	CACGAGCCGA
	17761	CACCGGCAAC	GGCACCAACC	CGTCAACAAC	CGACTCCCCA	CGCGACGGCC	CAGGAACACC
	17821	CTCAAGGATC	ACGTGCGCGT	TCGTACCGCT	CACCCGAAC	GACGACACAC	CCGCATGCGG
55 .	1381	TGCCCGATCC	GACTCGGGCC	ACGGCCTCGC	CTCGGTGAGC	AGCTCCACCG	CACCGGCCGA
	17941	CCAGTCCACA	TGCGACGACG	GCTCGTCCAC	ATGCAGCGTC	TTCGGCGCGA	TCCCGTACCG
		CATCGCCATG					
	13061	GTTCGACTTC	AACGAACCCA	GCAGCAGCGG	AACCTCACGC	TCCTGCCCGT	ACCTOCOGAG
	18121	AATGGCCTGC	GCCTCGATGG	GATCGCCCAG	CGTCGTCCCC	GTCCCGTGCG 4	CCTCCACCAC
60	18181	GTCCACATCG	GCGGCGCGC	GTCCGGCGTT	CACCAACGCC	TGCTGGATGA	CACCCACCAC
			JUGGGGG	0.0000011			0.10010010

	18241	GGACGGGCCC	TTGGGGGCG	ACAGCCCGT	r ggaggcacce	TCCTCCTTCA	CCCCCCACCC
	18301	GCGGACGACC	GCGAGAACGC	TGTGTCCGT	r GCGCTCGGCG	TCCTGGTTCA	CCGCCGACCC
	18361	AAGAACGCCC	GCGCCCTCCC	CCCAGCCGG	r GCCGTTGGCG	CCCTCCCC	DESCRIPTION
	18421	GCGGCCGTCC	GGGGAGAGTC	CGCCCTGCTC	G CTGGAATTCC	CCD CCCCA	ACGCGCGCA
5	18481	CATGACGGTG	ACACCGCCGA	CCAGCGCCAG	G CGAGCACTCC	CCCTCCCC	TCGGGGTCGC
	18541	GGCCTGGTGC	AGCGCGACCA	GCGACGACGA	GCACGCCGTG	TCCACCCTCA	GTGCGTGCCC
	13601	CTGGAGCCC	TAGAAGTACG	AGATOCGOC	GGTGAGCACG	CTCCCCCCTGA	ACGCCGGTCC
	18661	GCCGAACCCG	TOCAGGTOCG	CGCCCACCCC	GTACCCGTAC	CIGGGCTGCA	TGCCGATCGA
	18721	GCCGGTGTTG	CTSCCSCSCA	COCCORCOCO	CACGATGCCC	GAGAAGGCGC	CCATGAACAC
10	15781	TGTCGTTTCC	AGCAGGATCC	GOTGOTGO	GTCCATGGCC	GCGCTCTCGA	ACGCCTCCCA
	18841	GCCGAAGLLC	GCGGCATCGA	ACCCCCCCCC	GTCGGAGAGG	PASSESSES	GGGGGCTGAT
	18901	CGATCCGCCG	GTGAGGCCGG	ACCCCTCCCA	GCCACGGTCG	AAGCCGCCGC	GGTCCGTGTC
	13961	GTCGCCGCCA	CTCTCCACCA	TCCCCCACAC	GTCGTCGGGC	GCCGGGAAGC	CGGTGACCGC
	19021	TOGGCACGCA	TECCEACEA	TCCCCACAG	TOCOTOGGG	GAGGTGACGC	CGCCCGGCAG
15		ACCCACCCC	CCCCCACCAC	CCACCACACA	TTCGTCACGG	GTCGCGGGGG	CTGTGGGAAC
	19141	COTCOCCTIO	TCCAACACAA	CCACCAGAGC	CTCGTCCAAC	CGCGACGCGA	TGGCCCGCGG
	19201	CTTCCCCTCT	TCCACCCCC	TCACCCACTC	CAGTCGGACA	CCGGTCGCCG	CGGCGAGTCG
	19201	CCACACCACA	CCCCCCTCCC	CORCOGAGTO	GATACCCAGT	TCCTTGAAGG	CCGCGTCCGC
	19321	CACCACGICE	CTCTCCCCT	CGTGGCCGAG	CACCGCCGCC	GCGTTGTCGC	GGACCAGTGC
20	19321	CAGCAGCGCG	GIGICCCGCI	CAGCGCCGGA	CATGGTGCCG	AGCCGGTCGG	CGAGCGGAAC
20	19301	CTCCCCCCTC	A COMPOST TOO	GCGATACGGC	GCGGCGCAGA	TCGGCGAAAA	GCGGCGATGT
	10501	TTCCTCCTC	AGGICCATCG	TGGCCGCCAC	GGCGAACGCG	GTGCCGGTTC	CGGCCGCGGC
	19501	COMOCOCOMO	CGCATGCCCA	CACCGGCCGA	CATGGGGCGG	AAACCGCCGC	GGCGGACACG
	10001	GGTGCGGTTG	GTGCCGCTCA	TGCTGCCGGT	GAGTCCGCTG	TCATCGGCCC	AGAGGCCCCA
25	19021	GGCCAGCGAC	AGCGCGGGCA	GTCCTTCGGC	ATGGCGCAGC	GTCGCGAGTC	CGTCGAGGAA
<i>-</i> 5	19001	CCCGTTCGCC	GCCGAGTAGT	TGCCCTGGCC	GCGGCCGCCC	ATGATGCCCG	CGACGGACGA
	19/41	GTAGAGGACG	AACGAGCGCA	GGTCCGCGTC	CCGGGTCAGC	TCGTGCAGGT	GCCAGGCGCC
	19801	GICGGCTTTG	GGGCGCAGTG	TGGTGGCGAG	CCGCTCCGGG	GTGAGTGCCG	TGGTCACGCC
	19861	GTCGTCGAGC	ACGGCTGCCG	TGTGGAAGAC	CGCCGTGAGC	GGCCTGCCGG	CGGCGGCGAG
30	19921		AGCTGGTCCC	GGTCGGCGAC	GTCACAGCGG	ATGTGGACAC	CGGGAGTGTC
50					GAGGTGGCGG		
					CGAGCCGCCG		
	20101	CGGGTCGAGC	AGCGGTTCGG	GCGTTTCCGC	GGCGGCCGTG	CGGGTGAACC	GCGGCGCTTC
	20161	GTACCGGCCG	TCGGTGACGC	GGACGTACGG	CTCGGCCAGT	GTCGTGGCGG	CGGCCAGCGC
35	20221	CTCGATGGGG	GTGTCGGTGC	CGGTCTCCAC	CAGCACGAAC	CGGCCCGGGT	GCTCGGCCTG
33					TCCGACCGGT		
					GATCACCCGG		
					ATCCGCGCCC		
					GGGAGTGGGC		
40					GCCGTCGACG		
40					CGGGTCCGTC		
					GGTGGCCCCG		
					TTCCTGTTCC		
					GTGGACGCCA		
45					CAGGGTTTCG		
40					GCCGGTCTCG		
					CGGCCACGCG		
					GTGCCGGGTC		
					GGCCTCATCG		
50	21121	CACATCCACC	GCGCCGGTCA	CCGGCACCAC	GAGCGGGGTC	TCGATGACCA	GTTCATCCAC
50	21241	CACCCCGCAA	CCGGTCTCGT	CACCGGCCCG	GATGACCAGC	TCCACAAACG	CCGTACCCGG
					AGCCAGCCAG		
					GTCGGCGGGC		
					CGCGGACAGA		
= =	21421	CAGCCAGTAC	CGCCTGTGCT	CGAACGCGTA	GGTGGGCAGA	TCGAGCAGCC	GTCCCGGCAC
55					CGTGCCCAGG		
					GGTCCGCAAC		
	21601	TTCCATCGGG	GGCAGCAGCA	CCGGATGGGC	GCTGCACTCC	ACGARCACGG :	ACCCCTCCAG
	2 - 6 6g)	CTCCGCCACC	GCCGCGTCCA	GCGCGACGGG	GCGACGCAGG	TTCCGGTACC .	AGTAGCCCTC
.	21721	ATCCACCGGC	TCGGTCACCC	AGGCGCTGTC	CACCGTGGAC	CACCAGGCCA (CCGACCCGGT
60	21781	CCCGCCGGAA	ATCCCCTCCA	GTACCTCGGC	CAACTCGTCC	TCGATGGCTT	CCACGTGGGG

	2184	1 CGTGTGGGA	G GCGTAGTCGA	CCGCGATAC	G GCGCACTCG	ACCCCTTCGG	CCTCGTACCG
	2190	1 CGTCACCAC	TCTTCCACCO	CGGACGGGT	CCCCGCCAC	ACAGTCGAAG	ACGGGCCGTT
	2196	1 ACGCGCCGCC	ATCCACACGC	CCTCGACCAC	GTCCACCTC	CCCCCCCCC	ACGCCACCGA
	2202	AGCCATCGC			0.000000000	TOCCTOCCA	ACGCCACCGA
5	22081	GCGGGCGGC	TCCTCAAGGC	TENEGGETE	COCCACACAC	AJDJUIJUULA	AGGCCACCAC
	22141	GGAGTGTCC	ACCACCCCT		GGCCACACAC	. GCCGCCGCGA	TCTCGCCCTG
	22201	GGAGTGTCC	CCCACCACCAC	ADDRODDO :	CCCATGCGCC	TGCCACAGCG	CGGCCAGGCT
	22261	CACCGCGACG	TOCCCAGCIGG	CCGGCTGGAC	CACCTCCACC	CGCTCCGCCA	CATCCGGCCG
	22201	CGCCAACATO	CCCCGCACAT	CCCAGCCCG	GTGCGGCAAC	AACGCCCGCG	CACACTCCTC
10	22321	CATACGAGCO	GCGAACACCG	CAGAACACGC	CATCAACTCC	ACACCCATGC	CCACCCACTG
10	22381	AGCACCCTGC	: CCGGGAAAGA	. CGAACACCGT	` ACGCGGCTGA	. TCCACCGCCA	CACCCATCAC
	22441	CCGGGCATC	CCCAACAACA	CCGCACGGTG	ACCGAAGACA	GCACGCTCAC	GCACCAACCC
	22501	CTGCGCGACC	: GCGGCCACAT	CCACACCACC	CCCGCGCAGA	TACCCCTCCA	GCCGCTCCAC
	22561	. CTGCCCCCGC	AGACTCACCT	CACTCCGAGC	CGACACCGGC	AACGGCACCA	ACCCATCGAC
	22621	AGCCGACTCC	CCACGCGACG	GCCCGGGAAC	ACCCTCAAGG	ATCACGTGCG	CGTTCGTACC
15	22681	GCTCACCCCG	AAAGCGGAGA	CACCGGCCCG	GCGCGGACGT	CCCGCGTCGG	GCCACCCCCC
	22741	CSCCTCGGTG	AGCAGTTCCA	CCGCGCCCTC	GGTCCAGTCC	ACATGCGACG	ACCCCTCCTC
	22801	CACATGCAGC	GTCTTCGGCG	CGATGCCATA	COGCATOGO	ATGACCATCT	TCD TCD CD CC
	22861	GGCGACACCC	GCAGCCGCCT	GCGCATGACC	CATCTTCCAC	TTCAACCAAC	IGATGACACC
	22921	CGGAACCTCA	CCCTCCTCCC	CCTACCTCCC	CACAATCCCC	TECCARCUARC	CCAGCAGCAG
20	22981	CACCECCEC	CCCCCCCCC	CCCCCCCCC	CAGAAICGCG	TGCGCCTCGA	TGGGATCGCC
	22301	CAGCGTCGTC	CCCGICCCGI	GCGCC1CCAC	CACGTCCACG	TCGGCGGGG	CGAGCCCCGC
	23041	CTTGTGGAGG	GCCTGGCGGA	TGACGCGCTG	CTGGGAGGG	CCGTTGGGTG	CGGAGATGCC
	23101	GTTGGAGGCG	CCGTCCTGGT	TGACGGCGGA	GGAGCGGACG	ACCGCGAGGA	CGGTGTGTCC
	23161	GTTGCGCTCG	GCGTCGGAGA	GCTTTTCGAC	GACGAGGACG	CCGGCCCCCT	CGGCGAAACC
26	23221	GGTGCCGTCC	GCCGCGTCAG	CGAACGCCTT	GCACCGTCCG	TCCGGCGCGA	CGCCGCCCTG
25	23281	CCGGGAGAAC	TCCACGAAGG	TCTGTGGTGA	TGCCATCACT	GTGACACCAC	CGACCAGCGC
	23341	CAGCGAGCAC	TCCCCGGTCC	GCAGCGCCTG	CCCGGCCTGG	TGCAGCGCGA	CCAGCGACGA
	23401	CGAACACGCC	GTGTCGACCG	TGACCGCCGG	ACCCTCCATG	CCGAAGAAGT	ACGACAGCCG
	23461	TCCGGCGAGC	ACCGCGGGCT	GTGTGCTGTA	GGCGCCGAAT	CCGCCCAGGT	CCGCGCCCGT
	23521	GCCGTAGCCG	TAGTAGAAGC	CGCCGACGAA	GACGCCGGTG	TCGCTGCCGC	GCAGGGTGTC
30	23581	CGGCACGATG	CCGGCGTGTT	CGAGCGCCTC	CCAGGCGATT	TCGAGGAGGA	TCCGCTGCTG
	23641	CGGGTCGAGT	GCGGTGGCCT	CGCGCGGACT	GATGCCGAAG	AACGCGGCAT	CGAAGTCGGC
	23701	GGCGCCGCG	AGTGCGCCGG	CCCGCCCGGT	GGCGGACTCG	GCGGCGGCGT	GCAGCGCGGC
	23761	CACGTCCCAG	CCGCGGTCGG	TGGGGAAGTC	GCCGATCGCG	TOGOGGGGGGT	CCGCGACGAG
	23821	CTGCCACAGC	TOTTOGGTG	AGGTGACGCC	GCCCGCAGT	CGGCAGGCCA	TCCCCACCAC
35	23881					TCCCGGCGGA	
- •		GTCCTTGACC	CACCTCCCCA	CCCCCCCCC	CACCTCCTTC	TCCCCCCATCC	CCTCTTCCTT
	24001	TCAGCACGTG	CCCCATCACC	CCCTCTCCC	CAGGICGIIC	CARCACREC	TO TO A TOUCH
		CCGCGGTCGT					
40	24121	TGTCGTCCGG	GGTCCCGTTG	ACGTCCGGG	CCAGGAGGGT	CAGCAGATGA	CGGGTGAGCG
70	24151	CGCCGGCGGC	GGGATAGTCG	AAGACGAGCG	TGGCCGGCAG	CGGAATGCCG	AGGGCCTCGG
		AGAGCCGGTT					
		TGGTGGCCGT					
		CGACGCCGAG					
خ ۾		GGGAGCCGCC					
45		ACGGGTCGCC					
		CGGCGTCGAG					
		CTTGTGCCCG					
	24661	CGGCGAGAAC	GAACGCGGTC	AGGTCGAGGT	CGCGGGTCAG	GCGGTGCAGT	TCCCAGGCCG
	24721	ACTCGGCGGT	GCCGTCCGCG	TGGACGACCG	CGGTCACCGG	GGTTTCCGGC .	ACTGTGCCCG
50	24781	GCTCGTACCG	GATCACTTCG	GCGCCGTGTC	CGCCGAGGTG	TCCGGCGAGT '	TCCTCCGAAC
		CGCCCGCGAG					
		CGAGGCGGGG					
		AGAGGGCGGC					
		CCGGTTCCGC					
55		ACACCACCAG					
	25141	GECCCCATAC	COLOGUCACO	NTCNCCTCC	CCCTCCCCCC	CTCCCCCTCC	ACCICGICGG
	22201	GACCGGATAC	COGGACGACG	AIGACGICGG	OCCIOCCIO	GICGCCGAGG '	ICGGTGTACC
	20201	SGCGGGGCCGT	GGTGCCGGGT	600000000	COUGGACGCC	GGTCCAGGTG (UGCCGGAACA
	25261	GCCGCACGTC	CCCGTCCGGG	CCCGTCGTGG	CGGGGGGCCG	GGTGATGAGC (GAGCCGATCT
ċ0		GAGCCACCGG					
60	25381	CGTGGACGAA	GGTGACGCGC .	AGTTTCGTGG	CGCCGCTGGT	GTGGACACGG /	ACGCCGGTGA

	52111	- 20001100					
	02447	SUUCGAACGO	G CAACCGTAC	CCCGCGTTC	CGGCGGCCGC	GCCGATGCTG	CCCGCTTGCA
		TO JUNG LUAC	, GAGCAGCGCC	J GGGTGCAGT0	I TGTAGCGGGC	GGCGTCCCTC	
		JULIUNUU LUU	, GACIICGGC	• CAGACGGTGT	: CTCCGTGGCT	CCACGCCCCC	
	20021	さいきんし どしじゅんぐ	F GCCGAACTCC	F TATCCCGCGT	CGTCGAGTCG	CTGGTAGAAG	3000000000
5	23001	- SACCEGITE	CGCGTGCTCC	GGCGGCCAGG	GCCCCGGCGT	GGTGGCCGGT	TOCOTOCTOC
	20/41	SMIGCCGCC	GAAGCCGGAG	GCGTGGCGG	TCCATGTCCG	GTCGCCGTCC	CTCCCCCCC
	25801	GGACGCGCAC	GGCACGGCGT	CCGGTGTCGT		GACGGTCACG	GICCOGGGGGG
	25861	CGGCGCCGGT	GGCGGGCAGG	ACCAGCGGTG	TCTCGACGAC	CAGTTCGTCG	CGCACCIGGA
	25921	AGCCTGCCTC	GTCGGCGCCG	CGTCCGGCC	ATTCCAGGAA	GGCGGGTCCG	COCAGGICGC
10	25981	CGGCGCCGTC	GACGGAGTGA	CCGGCCAGCC	ATGGGTGGGA	GGCCAGCGAG	CAGCAGTA
	26041	TEAGCAGCAC	CTCGTCGGAG	TOGGGGAGCG	CONCOCNOCC	GGCGAGCAGC	ANCUGUCCGG
	26101	COGCOTCGAG	TCCGAGGCCG	: GAAGCGTCCC	TECCECCACGC	GGTCTCGATC	GGGTGGTCGA
	26161	CETGGTGGAA	GGCGTATGTG	GARGUGICCS	CECCCCCCCC	CGTCGCGGG	CAGTAGCGCT
	26221	COLCECTOR	CCCCACCCC	CTTCTCTCTCC	GIGCCGICGC	CGTCGCGGG	ACGACCGCCG
15	26221	CECCCCCCCC	CCCCCCCACC	CTCCCCACCC	TOTOGGCCAG	CGCGGTGAGC	AGCCGGTGGA
	26341	COCCCCCCC	CACCECCACC	010GCGACGG	TEGEGEGEGTE	GATCGCGGGC	AGCAGCACGG
	26401	TOCCOLGCI	GACCICGACG	AACACGGTGT	CACCCGGCTC	GCGGGCAGCG	GTCACGGCCG
	26401	- GGCGAAGCC	TACGGGGTGG	CGCATGTTGC	GGAACCAGTA	CTCGTCGTCG	AGCGGCGCGT
	25461	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	TTCGTCGGCG	GTGGAGAACC	ACGGGATCTC	GGGCGTGCGC	GAGGTGGTGT
20	26521	CUGCGACGAT	CCGCTGGAGT	TCGTCGTACA	GCGGGTCGAC	GAACGGGGTG	TGGGTCGGGC
20	20581	AG TCGACGGC	GATGCGGCGC	ACCCAGACGC	CGCGGGCCTC	GTAGTCGGCG	ATCAGCGTTT
	20041	UGACGCCGTC	CGGGCGCCCG	GCGACGGTCG	TGGTGGTGGC	GCCGTTGCGG	CCCGCGACCC
	26/01	AGACGCCGTC	GATCCGGGCG	GCATCCGCCT	CGACGTCGGC	GGCCGGGAGC	GCGACCGAGC
	26761	CCATCGCGCC	GCGTCCGGCG	AGTTCGCGCA	GGAGCAGGAG	AACGCTGCGC	AGCGCGACGA
26	26821	GGCGGGCACC	GTCCTCCAGG	GTGAGCGCTC	CGGCGACACA	GGCCGCGGCG	ATCTCGCCCT
25	26881	GGGAGTGTCC	GATGACGGCG	TCCGGGCGTA	CGCCCGCGGC	CTCCCACACG	GCGGCCAGCG
	26941	ACACCATGAC	GGCCCAGCAG	ACGGGGTGCA	CGACGTCGAC	GCGGCGGGTC	ACCTCCGGGT
	27001	CGTCGAGCAT	GGCGATGGGG	TCCCAGCCCG	TGTGCGGGAT	CAGCGCGTCG	GCGCATTGGC
	27061	GCATCCTGGC	GGCGAACACC	GGGGAGGCCG	CCATCAGTTC	GACGCCCATG	CCGCGCCACT
• •	27121	GCGGTCCTTG	TCCGGGGAAG	ACGAAGACGG	TGCGCGGCTC	GGTGAGCGCC	GTGCCGGTGA
30	27181	CGACGTCGTC	GTCGAGCAGC	ACGGCGCGGT	GCGGGAACGT	CGTACGCCTG	GCGAGCAGGC
	27241	CCGCGGCGAT	GGCGCGCGG	TCGTGGCCGG	GACGGGCGGC	GAGGTGCTCG	CGGAGTCGGC
	27301	GGACCTGGCC	GTCGAGGGCC	GTGGCGGTCC	GCGCCGAGAC	GGGCAGTGGT	GTGAGCGGCG
	27361	TGGCGATCAG	CGGCTCACCG	GGCTTCGAGG	CCGACGGCTC	CTCGGCCGGC	GGCTCCCCGG
	27421	CCGGGTGGGC	TTCCAGCAGG	ACGTGGGCGT	TGGTGCCGCT	GACGCCGAAG	GAGGACACAC
35	27481	CGGCGCGCG	CGGGCGGTCG	GTCTCGGGCC	AGGGCCGGGC	ATCGGTGAGG	AGTTCGACGG
	27541	CGCCGGCCGT	CCAGTCGACG	TGCGAGGACG	GCGTGTCCAC	GTGCAGGGTG	CGCGGCAGGG
	27601	TGCCCTGCCG	CATGGCGAGG	ACCATCTTGA	TGACACCGGC	GACACCCGCG	GCGGCCTGAG
	27661	TGTGGCCGAT	GTTGGACTTC	AGCGAGCCCA	GCAGCACCGG	GGTGTCGCGC	CCCTGCCCGT
	27721	AGGTGGCCAG	CACCGCCTGT	GCCTCGATGG	GATCGCCCAG	CCTGGTGCCG	GTGCCGTGCG
40	27781	COTOCACGGC	GTCCACGTCC	GCCGGGGTGA	GCCCGGCGTT	GGCCAGGGCC	TGCCGGATCA
	27841	CCCGCTCCTG	CGAGGGCCCG	TTCGGCGCCG	ACAACCCGTT	GGAAGCACCG	TCCTGGTTGA
	27901	CCGCCGAACC	CCGGACAACC	GCCAGCACAC	GGTGGCCGTT	GCGCTCGGCA	TCGGAGAGCC
	27961	TCTCGACGAT	CAGCACACCG	GACCCCTCGG	CGAAACCGGT	GCCGTCAGCC	GCATCCGCGA
	28021	ACGCCTTGCA	GCGCGCGTCG	GGCGCGAGAC	CCCGCTGCTG	GGAGAACTCG	ACGAAGCCGG
45	28081	ACGGCGAGGC	CATCACCGTG	ACGCCGCCGA	CCAGGGCGAG	CGAGCATTCG	CCGGAGCGCA
	28141	GTGACTGCCC	GGCCTGGTGC	AGCGCCACCA	GCGACGACGA	ACACGCCGTG	TOGACOGTGA
	28201	CCGCCGGACC	CTCCAGACCG	TAGAAGTACG	ACAGCCGACC	GGACAGCACA	CTGGTCTGGG
	28261	TGCCGGTCGC	GCCGAAACCG	CCCAGGTCGG	TGCCGAGTCC	GTACCCGTCG	GAGAAGGCGC
	28321	CCATGAACAC	GCCGGTGTCG	CTTCCGCGCA	GCGACTCCGG	GAGGATCCCG	GCGTGTTCCA
50	29381	GCGCCTCCCA	CGAGGTCTCC	AGGACCAGAC	GCTGCTGCGG	GTCCATCGCC	AGCGCCTCAC
	23441	GCGGACTGAT	CCCGAAGAAC	SCCGCGTCGA	AGTCCGCCAC	CCCGGCGAGG	PROCESS COM
	28501	GECGCACGGT	CGACGTGCCC	GGATGATCCC	CATCGGGATC	GTACAGCCCG	TOCACCA:
	24561	SACCACGGTC	CGTCGGAAAC	GCCGTGATCC	COTCACCACC	CGACTCCAGC	1 CCCCCCCACC
	28621	LGTCCTCCGG	CGACGCGACC	CCACCGGCA	GGTGGGCAGGG	CATCCCCACG	1000000ACA
55	26681 (7.77.67.666	CCGCACGCCC	CCACCCGGCA	TECHERTOR	CGATGCCGTC	ATCGCCAACG
	20741	3030000000	SACCTTCCCC	SCGACGGGG	SCAGGGTCCC	GAAGTCGAAG	TOCCOCCEC
						CAGCCGGATC	
						CCGTGCGGCA	
						GTCCTTTTCG	
60						GGCCGCCCGG .	
		CCAGAGCCG	200071000	LOGCONGGG	.00100000		.000000000

	2904	1 CCCGGCGCG	G TGCGCGCAG	T AGGGGGGAG	C TGCCCCCCC		GCGGCGACCA
	2910	1 GCGCCGGGT	CGAGGACCG	AACGCCGCG	T CGARCICC	C GGCCGGGTCC	GUGGGGACCA TOGGCGGTCA
	2916	1 GCGCCGTCAG	GCCGTCGCG	COCATOCOG	COCCCCTCC	CAGTCCGCCT	TOGGOGGTCA COGGTCTCCG
	2922	1 GTTCCCACA	GCCCCAGGC	ACCCACAAA		GACCGTCAGC	COGCTCTCCG
5	2928	1 CCAGCGCGT	GAGGAACGC	TTCCCCCCCC		J GGCTGCCCG	GGCTGTTGGG
	2934	1 CACCGGCGG	CGACGACTA	TICGCGGCC	CCCCCTCTCC	CTGTCCGGG	CTGCCGAGCA
	2940		CGACGAGTAC	AGGACGAAC	GCGCCAGTTC	CGTGTCCTGG	GTGAGTTCGT
	2946	L GCGCGGTCL	COCCOCCTCC	TOCACCAGG	GCAGCACCG	CTCGAGCCGG	TCGGGGGTGA
	2952	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GACGCCGTCG	ACTROCALGO	G CCGCGGTGTC	CACGACGGCC	GTGAGCGGGT
10	20521	L CCATCCCC	GATCCCCGCC	AGTACGGAGG	G CGAGTTCGTC	CCGGTCGGCG	ACGTCGCAGG
. 0	2000	CONTROCTO	GACCTCGGCG	CCGGGCACG	r decreased	GCCGCTGCGC	GACAGCATCA
	20701	CCAGCCGC	CACGCCGTGG	CGTTCGACGA	A GGTGGCGGC1	GATGATGCCG	GCCAGCGTCC
	20761	CGGAGCCACC	GGTGACGAGC	ACGGTGCCGT	CCGGGTCGAG	CGCCGGAGCG	TCACCCGCCG
	25/03	CARCOLOGIC	GGCCAGACGG	CGGGCGTACA	L CCTGGCCGTC	ACGCAGCACC	ACCTGGGGCT
15	29821	CATCGAGCGC	GGTGGCCGCT	GCGAGCAGCC	GCTCGGCGGT	. CICCGGGGCG	GCGTCGACGA
13	29881	. GGACGATCCG	GCCGGGGTGT	TCGGCCTGCG	G CGGTCCGCAC	CAGTCCGGCG	GCCGCGGCCG
	29941	ACGCGAGACC	GGGCCCGGTG	TGGACGGCCA	GGACCGCGTC	GGCGTACCGG	TCGTCGGTGA
	30001	GGAAGCGCTG	CACGGCGGTC	AGGACGCCGG	GCCCAGTTC	GCGGGTGTCG	TCGAGCGGGG
	30061	CACCGCCGCC	GCCGTGCGCG	GGGAGGATCA	. CCACGTCCGG	GACCGTCGGG	TCGTCGAGGC
20	30121	GGCCGGTCGT	CGCGGTCGTG	GGCGGCAGCT	' CCGGGAGCTC	GGCCAGCACC	GGGCGCAGCA
20	30181	GGCCCGGAAC	GGCTCCCGTG	ATCGTCAGGG	GGCGCCTGCG	CACGGCGCCG	ATGGTGGCGA
	30241	CGGGCCCGCC	GGTCTCGTCC	GCGAGGTGTA	CGCCGTCAGC	GGTGACGGCG	ACGCGTACCG
	30301	CCGTGGCGCC	GGTGGCGTGG	ACGCGGACGT	CGTCGAACGC	GTACGGAAGG	TEGTCCCCTT
	30361	CCGCGGCGAG	GCGGAGTGCG	GCGCCGAGCA	GCGCCGGGTG	CAGGCCGTAC	CGTCCGGCGT
	30421	CGGCGAGCTG	TCCGTCGGCG	AGGGCCACTT	CCGCCCAGAC	GGCGTCGTCG	TCGGCCCAGA
25	30481	CGGCGCGCGG	GCGGGGCAGC	GCGGGCCCGT	CCGTGTACCC	GGCTCGGGCC	AGACGGTCGG
	30541	CGATGTCGTC	GGGGTCCACC	GGCCGGGCCG	TGGCGGGCGG	CCACGTCGAC	GGCATCTCCC
	30601	GCACGGCCGG	GGCCGTCCGC	GGGTCGGGGG	CGAGGATTCC	GTGCGCGTGC	TEGGTECACT
	30661	CCCCCGCCGC	GTGCCGCGTG	TGCACGGTGA	CCGCGCGGCG	GCCGTCCGCC	CCGGGCGCGC
	30721	TCACCGTGAC	GGAGAGCGCG	AGCGCACCGG	ACCGCGGCAG	CGTGAGGGG	GTGTCCACGG
30	30781	TGAACGTGTC	GAGGGCGCCG	CAGCCGGCTT	CGTCGCCCGC	CCGGATCGCC	AGATCCAGGA
	30841	GGGCCGCGGC	GGGCAGCACC	GCGAGGCCGT	GCAGGGAGTG	CGCCAGCGGA	TOGGOGGOGT
	30901	CGACCCGGCC	GGTGAGCACC	AGGTCGCCGG	TGCCGGGCAG	GGTGACCGCC	GCGCTCAGCG
	30961	CCGGGTGCGC	GACCGGCGTC	TGTCCGGCCG	GGGCCGCGTC	GCCCGCGGTC	TEGETECCEA
	31021	GCCAGTAGCG	GACCCGCTCG	AACGGGTACG	TCGGCGGGTG	CGAGGCGCGT	GCCGGCGCGG
35	31081	GGTCGATGAC	CTTCGGCCAG	TCGACCGTGA	CGCCGTCGGT	GTGCAGCCGG	GCGAGCGCGG
	31141	TCAGGGCGGA	TCGCGGTTCG	TCGTCGGCGT	GCAGCATCGG	GATGCCGTCG	ACGAGTCGGG
	31201	TCAGGCTCCG	GTCCGGGCCG	ATCTCCAGGA	GCACCGCCCC	GTCGTGCGCG	GCGACCTGTT
	31261	CCCCGAACCG	GACGGTGTCG	CGGACCTGTC	GTACCCAGTA	CTCCGGCGTG	GTGCAGGGGG
	31321	CCCCCGCGGC	CATCGGGATC	CTCGGCTCGT	GGTACGTCAG	GCTCTCCGCG	ACCTTGGGGA
40	31381	ACTCCTCGAG	CATCGGCTCC	ATCCGCGCCG	AGTGGAACGC	GTGGCTGGTC	CCCACCCCC
	31441	TGAAGCGGCC	GAGCCGGGCC	GCGACGTCGA	GCACCGCCTC	CTCGTCACCG	GAGAGCACCA
	31501	TCGACGCGGG	CCCGTTGACC	GCGGCGATCT	CCACGCCGTC	CCGCAGCAGC	GAGAGCACGA
			CGCGATCACG				
	31621	GGGCCCGTGC	GGACACCAGC	CTGCACGCGT	CCTCCAGGGA	CCAGACGCC	CCCACCTACC
45	31681	CGGCGGCCAG	CTCGCCGATC	GAATGGCCCA	CGAAGGCTTC	CGGGCGTACC	CCCCACCCCC
			GCCGAGTGCG				
			GAGCCCGGCG				
			GTAGGCGGCG				
	31921	CGGAGAAGAG	CCACACGAGG	COCCOCTCCC	CTTCTCCCC	CCCCCCCCCCCC	CTCTCCCTCC
50	31981	CGATCAGGGG	GGCCCGGTGC	CCCAACCCCC	Teceses	CACCCCCCCCC	CCC CCCCCC
•	32041	GCTCGTCCTC	CTCGCCGGTG	CCCACCTCCC	CCCCCTCCC	CAGGGGCCGCG	CCCACCGCGC
	32101	CCTCCCCCC	GCGTGCCGAG	ACCACCACCA	CGCGCAGGCG	COTCTCCCCT	CCCTCCAGTG
	32161	CTTCCCCCCC	CGGTCGGGGG	AGCAGCAGGG	CCAMCIACAC	COLULTOGGE!	
55	37721	TCACCACTA	CACCCCGGCG	CGCCGTGGGC	GGTCGG:.TC	6666666666	CGGGCGTCGG
J J	30341	CCCTCCCCCC	GACGGCGCCG	GCCGTCCAGT	CGACGI GCGA	GUACGGCGTG	TCCACGTGCA
			CAGGGTGCCG				
			CTGAGTGTGG				
			CCCGTAGGTG				
60			ATGCGCCTCG				
oo	37281	GCGCCTGCCG	GATCACCCGC	TCCTGCGACG	GCCCGTTCGG	CGCCGACAAC	CCGTTGGAAG

	32640	L CACCGTOOTS	GTTGACCGC	GAACCACGC	A CGACCGCCAC	GACATTGTGG	
	3270:	L CGGCGTCGGA	GAGCCTCTCC	ACGATCAGO	A CACCGGATC	CTCCCCCAAA	CCG TGCCGCT
	32761	CAGCCGCATC	CGCGAACGCC	TTGCAGCGG	- COTCOGGGG	AVECCCCCCC	CCGGTGCCAT
	32821	AGTCCACGAA	GCCGGACGGC	GAGGCCETC		: GAGGCCCCGC	. IGCTGGGAGA
5	32861	ACTOCCCCA	GCGCAGCGAC	TOCCCOCCC	r cedidadde	CACCACCACG	GUGAGUGAGU
	32941	CCGTGTCCAC	CGTGACCGCC	GENCECTEC	A NOCCETTON	CACCAGCGAC	GACGAACACS
	33001	GCACACTGGT	CTGGGTGCTG	GTGGCACCC	AACCG:AGAA	GIACGACAGC	CGACCGGACA
	33061	CGTAGAAGTA	GCCGCCCATC	A A CACCCCC	TOTOCOURGE	GICGGCTCCA	GTGCCGTACC
	33121	TCCCGGCGTG	TTCCASCCC	TANCACGCCGG	TOTOSCIOCA	GCGCAGCGAC	TCCGGGAGGA
10	33161	TOGOCCASOSO	CTCACGCGCA	CTCATCCAC	AGAACGCCGC	CAGACGCTGC	TGCGGGTCCA
			ACCATGACGC	ACCCTCCTCC	TCCCCCC	GICGAAGTCC	GCCACCCGG
	33301	CGAGGAAGCC	GTCCCTACCA	CCCTCCCTCC	CARROCCOGGATG	ATCCGGATCG	GGATCGTACA
	33361	GCCCGTCCAC	CCACAACCA	TOGICCO:CC	GAAACGCCCT	GATCCCGTCA	CCACCCGACT
	33421	CCAGCAGCCG	CACAGICC	TOCHGOGACG	CGACCCCACC	CGGCAGCCGG	CAGGCCATCC
15	33481	CCACGATCGC	CMACGGCICG	TCCTGCCGGA	CGGCCGCGGT	CGGGGTACGC	CGCCGGGTGG
	33541	TGGCCCGCGC	GCCGGCCAGT	TCGTCCAGGT	GGGCGGCGAG	CGCCTGCGCC	GTGGGGTGGT
	33601	CGAAGACGAG	CGTAGCGGGC	AGCGTCAGGC	CCGTCGCGTC	GGCCAGCCGG	TTGCGCAGTT
	33661	CGACGCCGGT	CAGCGAGTCG	AAGCCCACTT	CCCTGAACGC	GCGCGCGGGT	GCGATGGCGT
	22721	GGGCGTCGCG	GTGGCCGAGC	ACCGCGGCAG	CGCTGGTACG	GACGAGGTCG	AGCATGTCGC
20	33721	GCGCGGCCGG	AGGTGCGGAC	GTGCGCCGGA	CGGCCGGCAC	GAGGGTGCGT	AGGACCGGCG
20	33/81	GGACCCGGTC	GGACGCGGCG	ACGGCGGCGA	GGTCGAGCCG	GATCGGCACG	AGCGCGGGCC
	33841	GGTCGGTGTG	CAGGGCCGCG	TCGAACAGGG	CGAGCCCCTG	TGCGGCCGTC	ATCGGGGTCA
	33901	TGCCGTTGCG	GGCGATGCGG	GCCAGGTCGG	TGGCGGTCAG	CCGCCCGCCC	ATCCCGTCCG
	33961	CCGCGTCCCA	CAGTCCCCAG	GCGAGCGAGA	CGGCGGGCAG	CCCCTGGTGG	TGCCGGTGGC
25	34021	GGGCGAGCGC	GTCGAGGAAC	GCGTTGCCGG	TCGCGTAGTT	GGCCTGACCC	GCGCCGCCGA
23	34081	ACGTGGCGGA	TATGGACGAG	TACAGGACGA	ACGCGGCCAG	GTCGAGATCG	CGCGTCAGCT
	34141	CGTGCAGGTG	CCAGGCGACG	TCCGCCTTGA	CCCGCAGCAC	GGCGTCCCAC	TGCTCCGGCC
	34201	GCATGGTCGT	CACGGCCGCG	TCGTCGACGA	TCCCGGCCAT	GTGCACGACG	GCGCGCAGCC
	34261	GCTGGGCGAC	GTCGGCGACG	ACTGCGGCCA	GCTCGTCGCG	GTCGACGACG	TCGGCGGCCA
30	34321	CGTACCGCAC	GCGGTCGTCC	TCCGGCGTGT	CGCCGGGCCG	GCCGTTGCGG	GACACCACGA
30	34381	CGACCTCGGC	GGCCTCGTGC	ACGGTGAGCA	GGTGGTCCAC	GAGGAGGCGG	CCGAGCCCGC
	34441	CGGTGCCGCC	GGTGACGAGG	ACGGTCCCGC	CGGTCAGCGG	GGAGGTTCCG	GTGGCCGCGG
	34501	CGACACGGCG	CAGACGGGCC	GCACGCGCTG	TGCCGTCGGC	GACCCGGACG	TGCGGCTCGT
	34561	CGCCGGCGGC	GAGCCCGGCC	GCTATGGCGG	CGGGCGTGAT	CTCGTCCGCT	TCGATCAGGG
3.5	34621	CGACGCGGCC	GGGATGCTCC	GTCTCCGCCG	TCCGGACCAG	GCCGCCGAGC	GCTTCCTGCG
35	34681	CGGGATCGCC	GGTACGGGTG	GCCACGATGA	GCCGGGATCG	CGCCCAGCGC	GGCTCGGCGA
	34741	GCCAGGTCTG	CACGGTGGTG	AGCAGGTCGC	GGCCCAGCTC	CCGGGTCCGG	GCGCCGGGCG
•	34801	AGGTGCCCGG	GTCGCCGGGT	TCCACGGCCA	GGACCACGAC	CGGGGGGTGC	TCGCCGTCGG
	34861	GCACGTCGGC	GAGGTACGTC	CAGTCGGGGA	CGGGTGACGC	GGGCACGGGC	ACCCAGGCGA
40	34921	TCTCGAACAG	CGCCTCGGCA	TCGGGGTCGG	CGGCCCGCAC	GGTCAGGCTG	TCGACGTCAA
40	34981	GGACCGGTGA	GCCGTGCTCG	TCCGTGGCGA	CGATGCGGAC	CATGTCGGGG	CCGACGCGTT
	35041	CCAGCAGCAC	GCGCAGCGCG	GTCGCGGCGC	GCGCGTGGAT	CCTCACGCCG	GACCAGGAGA
	35101	ACGCCAGCCG	GCGCCGCTCC	GGGTCCGTGA	AGACCGTCCC	GAGGGCGTGC	AGGGCCGCGT
	35161	CGAGCAGCAC	GGGGTGCAGC	CCGTACCGGG	CGTCGGTGAG	CTGTTCGGCG	AGGCGGACCG
4.5	35221	ACGCGTAGGC	GCGGCCCTCC	CCCGTCCACA	TCGCGGTCAT	GGCCCGGAAC	GCGGGCCCGT
45	35281	ACGAGAGCGG	CAGCGCGTCG	TAGAAGCCGG	TCAGGTCGGC	CGGGTCGGCG	TCGGCGGGCG
		GCCAGTCCAC					
		GCGCCCAGGG					
		CGGTTCCGAC					
	35521	CGATGGTCAG	CTCCGCGATC	TCCGGCGTGC	CGAGCCGGGC	TCCCGCTTCG	GCGAGCAGTT
50	35581	CCACGAGGGC	CGAGCCGGGC	ACGATGACCC	GGCCGTCCAC	CTCGTGGTCG	GCGAGCCAGG
	35641	GCTGACGGCG	TACCGAGACA	CCGCGGTGGC	CAGCGCGCCC	TCGCCGTCGG	GCGAGGTCGA
	35701	CCCACGAGCC	GAGCAGCGGG	TGGCCGGACG	TTCCCGCGG	TTCCGCGTCG	ATCCAGTAGC
		GGTCACGGCG					
	35821	TGACGGGCAC	GCCCCGGACC	CAGAGCGCGG	CGAGCGACCG	AGTGAAGCGG	TCCAGGCCGC
55		CCTCGCCTCG					
		CCAGTGCGGT					
		CCGCCAGGTG					
		AGGCGGCGTC					
•		CCGGCGTGCG					
60		CATGCGCGGT					

	2.534						
	3024.	L GUAGCTCCT	CACGGCGTCC	GCCGCACCG	G CGACAACGA1	CGACGCGGGT	CCGTTGACCG
	3630.	1 CGGCGACCTC	CAGGCGCCCC	GCCCACACG	G CGGCGTCGA:	GTCGGCGGGC	GGCACCGAGA
	J056.	1 CUATGCCGC	CTGCCCGGCC	AGTTCGGTG	G CGACGAGTCC	GCTGCGCACC	GCGBCGACCO
	3642.	: TIGIGGCGTC	C GTCCAGGGTG	F AGCACCCCG	CGACGCAGGC	COCCCCCACT	*********
5	36483	1 AGTGGCCGAC	GACCGCGGCC	GGGGGGACCC	CGTGCGCACG	CCACAGCTCC	GCCAGCGCCA
	3654	l TTATCACCGC	C GAACGACGCG	GGCTGCACGA	CATCGACCC	GTCGAACGCG	GGCGCTCCGC
	36601	COCCTGGGG	GATGACGTCC	AGCAGGTCCC	ATCCGGTGTG	CGGGGCGAGC	GCCGTGGCGC
	36661	LACTOGOGGAC	CCGCCGGGCG	AACACGGGCT	CGGTGGCGAG	CAGTTCGGCA	CCCEMECCCC
	3€72]	CCCACTGGGA	GCCCTGCCCG	GGGAACGCGA	ACACGACACG	TGTGTCGGTG	ACCECCOG
10	36781	TTCCCGTCAC	GGCCCCCGGC	ACTTCGGCAC	CACGGGGGA	COCCTCCCC	TOTOSSOCIO
	36841	SEACGACCGC	CCGGTGGCGC	ATGGCCGTCC	GGGTGGTGGC	GAGCGAGTGG	00000000
		CCGCGCGCC	AGTGAGCGGG	GCCAGCTGTC	CCCCCACCTC	CCCCACTCC	TCCCCCCTCC
	36961	GEGCCGACAT	COSCCAGACC	ACCROCISIO	CCACCCCCCC	CCGCAGICCC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
	37021	GTGCGGGCGC	COGCCAGACC	CCCCCCCCC	CCACCACACA	SCCCTTCGGG	GCGGACACGG
15	37021	02.30000000		CCGGCCTCTA	GGACGACAIG	GGCGTTGGTG	CCGCTGATGC
13	37141	CGAACGACGA	GACACCCGCA		GCCCGGTGAC	CGGCCACGGC	TCACTGCGGT
	3/141	GCAGCAGCCG	GATGTCGCCG	TCCCAGTCGA	CGTGCCGGGA	CGGCTCGTCG	ACGTGCAGCG
	3/201	TGCGCGGCAG	GACGCCGTGC	CGCATCGCCA	TGACCATCTT	GATGACGCCG	GCGACGCCGG
	3/261	COGCGGCCTG	GGTGTGGCCG	ATGTTCGACT	TGAGCGAGCC	GATCAGCAGC	GGATGCACGC
20	3/321	GTTCGCGCCC	GTAGGCCACT	TGCAGGGCCT	GGGCCTCGAC	GGGGTCGCCG	AGACGGGTGC
20	37381	CGGTGCCGTG	TGCCTCCACG	GCGTCGACGT	CACCCGGCGC	CAGGCCGGCG	TCGGCGAGCG
	37441	CACGCTGGAT	GACGCGCTGC	TGCGCAGGCC	CGTTCGGGGC	GGACAGCCCG	TTCGACGCGC
	37501	CGTCGGAGTT	GACCGCGGAG	CCGCGCACCA	GCGCCAGCAC	GGGGTGGCCG	TGGCGGGTGG
	37561	CSTCGGAGAG	CCGCTCCAGC	ACCAGGACAC	CGGCGCCCTC	GGCGAAGCTC	GTGCCGTCCG
	37621	CSSTGTCCGC	GAAGGCCTTG	GCACGGCCGT	CGGGGGCGAG	CCCGCGCTGC	CGGGAGAACT
25	37681	CGACGAACCC	GGTCGTCGTC	GCCATCACCG	TGACACCGCC	GACCAGGGCG	AGCGAGCACT
	37741	CCCCCGAGCG	CAGCGACCGC	GCGGCCTGGT	GCAGCGCCAC	CAGCGACGAC	GAACACGCCG
	37801	TGTCGACGGT	GACCGACGGG	CCCTCCAGAC	CGAAGTAGTA	CGAGAGCCGC	CCGGAGAGAA
		CGCTGGTCGG					
		GGGTGAACGC					
30		CEGETEGTTE					
		CCAGCGCCTC					
		GGAAGCCGCC					
		CGGCGAGGTC					
		CCAGCCGCCA					
35		CEATCGCCAG					
55		CAGGGGCCGG					
		GGTGGTCGAA					
		GCAACCGGAC					
40	38521					CGCACACACG	
40	33581					CGCACGGGCG	
	38641					GACCATGAAC	
		CGGCGAGGCT					
		CGCGCACCCG					
		ACATGCCCCA					
45	38881	CGTCGAGGAA	GGCGTTGGCG	GCGGCGTAGT	TTCCTTGTCC	GGGGCTGCCG	AGGACGGCGG
	38941	CGGCGCTGGA	GTAGAGGACG	AAGTGGGTGA	GGGGTTGGTT	TTGGGTGAGG	TGGTGCAGGT
	39001	GCCAGGCGGC	GTTGGCTTTG	GGGTGGAGGA	CGGTGGTGAG	GCGGTCGGGG	GTGAGGGCGT
	39061	CGAGGATGCC	GTCGTCGAGG	GTGGCGGCGG	TGTGGAAGAC	GGCGGTGAGG	GGTTGGGGGA
	39121	TITGGGCGAG	GGTGGTGGCG	AGTTGGTGGG	GGTCGCCGAC	GTCGCAGGGG	AGGTGGGTGC
50		CGGGGGTGGT					
		GGCGGCGAG					
		GGTTGAGGGG					
		GGAGGGTGTG					
		GGAGGGGAGT					
55		GGGCGGTGCG					
		TGAGGGTGTG					
		333TGTGGGC					
		CETGTCCCTC					
60		GGAGCGGGTT					
60	39/81	ACACGACAGG	ACGGCCATCC	GGGTCGGCCA	CGCGCACGGC	GAUGUUGGCC	TUCCCCCCGG

	39841	7326666632	a coccaroca				
	39901	ACGCAGCT	CATCCCCCC		- TGGCGTTCAC	GCGCACGCCC	GTCCAGGAGA
	39961	GESCOCCATO	CACACCCAA		A GGCGCCCGGC	GTGCAGGGCC	GCGTCGAGCA
	:0001	CCCCATACA	CACACCGAAA	A CCGTCCGCCT	CGGCGGCCTC	CTCGTCGGGC	AGCGCCACCT
5	10001	DOGGERTALNO	GGTGTCACCA	. TCACGCCAGC	CAGCCGCAA	CCCCTGGAAC	GOOGACCCCT
,	40001	AC. CATAACC	GGCATCCCGC	AGTTCGTCAT	AGAACCCCGA	GACGTCGACC	
	40141		CCACTGCGAG	AACGGCTCAC	CGGAAGCGTT	GGAGGTATCC	CCCCTCTCCC
	40201	GGG TCAGGGT	GCCGCTGGCG	TGCCGGGTCC	AGCTGCCCGT	GCCCTCGGTA	CCCCCCCCCC
	40201	CoorCACCGC	CCGCCGTCCG	GCCTCATCGG	CCCCTTCCAC	GGTCACCGAC	A CAMCCA CCC
10	40221	CLGCGGTCAC	CGGCACCACG	- AGCGGGGATT	' CGATGACCAG	TTCATCCACC	1000000000
10	40291	CGGTCTCGTC	ACCGGCCCGG	ATGACCAGCT	' CCACAAACGC	CGTACCCGGC	2502022000
	40441	Laucececae	CGCGTGATCA	GCCAGCCAGG	GATGCGTACG	CAATGAGATC	CAGCCCCCCC
	40201	GEACAACACC	ACCACCGTCG	TCGGCGGGCA	GTGCTGTGAC	GGCGGCCAGC	ATCGCATCCC
	40361	UUUGCCCCGGT	CAGCCCGGCC	GCGGACAGGT	CGGTGGCACC	GGCCGCCTCC	ESCONCENCO
	40051	GUUTGTGCTC	GAACGCGTAG	GTGGGCAGAT	CCAGCAGCCG	CCCCGGCACC	SCHECCACCA
15	40981	CCGTGCCCCA	GTCCACCCC	GCACCCAGAG	TCCACGCCTG	CGCCAACGCC	CCCACCCACC
	40741	GCTCCCAGCC	ACCGTCACCA	GTCCGCAACG	ACGCCACCGT	GCGGGCCTGT	TCCNTCCCCC
	40801	GCAGCAGCAC	CGGATGGGCA	CTGCACTCCA	CGAACACCGA	CCCGTCCAGC	TOCATOGOGG
	40861	CCGCATCCAG	CGCGACAGGG	CGACGCAGGT	TEEGGTACCA	GTACCCCTCS	TOCACCCCC
	40921	CGGTCACCCA	GGCGCTGTCC	ACGGTCGACC	ACCACGCCAC	CGACCCGCTC	CCCCCCC 2 2 2
20	40981	TTCCCTTCAG	TACCTCAGCG	AGTTCGTCCT	CGATGGCCTC	CACGTGACCC	CTCTCCCAAA
	41041	CGTAGTCGAC	CGCGATACGA	CGCACCCGCA	CCCCATCAGC	CTCATACCCC	CCCACCACCA
	41101	CCTCCACCGC	CGACGGGTCC	CCCGCCACCA	CCGTCGAAGC	CECACCATTA	CCCACCACCI
	41161	TCCACACACC	CTCGACCAGA	CCCACCTCAC	CGGCCGGCAA	CGCCACCCAA	CGCGCCGCGA
	41221	CCCGGCCGGC	CAGCCGCGCC	GCGATCACCC	GACTGCGCAA	CGCCACCACA	CCCATCGCCC
25	41281	CCTCCAGGCT	GAGGGCTCCG	GCCACACACG	CCGCCGCGAT	CTCCCCCTCC	CAGGCGGGGT
	41341	CCACAGCGTC	CGGCACGACC	CCATGCGCCT	GCCACAGCGC	GGCCACCCTC	ACCCCCACCC
	41401	CCCAGCTGGC	CGGCTGGACC	ACCTCCACCC	GCTCCGCCAC	ATCCCACCCC	CACAACCA
	41461	CCCGCACATC	CCAGCCCGTG	TGCGGCAACA	ACGCCCGCGC	ACACTCCTCC	GACAACATCT
	41521	CGAACACCGC	GGAACGGTCC	ATGAGTTCCA	CGCCCATGCC	CACCCACTCC	CACCAGCCG
30	41581	CGGGGAAGAC	GAACACCGTA	CGCGGCTGAT	CCACCGCCAC	ACCCATCACC	CCCCCATCAC
	41641	CCAGCAGCAC	CGCACGGTGA	CCGAAGACAG	CACGCTCACG	CACCAACCC	TOCCOCATCAC
	41701	CGGCCACATC	CACCCCACCC	CCGCGCAGAT	ACCCCTCCAG	CCGCTCCACC	TOCCOCCACCO
	41761	GACTCACCTC	ACCACGAGCC	GACACCGGCA	ACGGCACCAA	CCCATCACCA	CCCCACTCCA
	41821	CACGCGACGG	CCCAGGAACA	CCCTCCAGGA	TCACGTGCGC	GTTCGTACCC	CTCACCCCA
35	41881	ACGACGACAC	ACCCGCATGC	GGTGCCCGAT	CCGACTCGGG	CCACCCCCCC	CICACCCCGA
	41941	GCAGCTCCAC	CGCACCGGCC	GACCAGTCCA	CATGCGACGA	CCACGGCCTC	ACCTCGGTGA
	42001	TETTOGGOGG	GATCCCATGC	CGCATCGCCA	TGACCATCTT	COGCICGICC	CCCACACCC
	42061	CAGCCGCCTG	CGCATGACCG	ATGTTCGACT	TGACCGAACC	GAGGTACACC	CCCCCCCCC
	12121	GETOCTGOCO	GTAGGCCGCG	AGGECGGCCT	GCGCCTCGAT	CCCCTCCCC	ACCOCCCECE
40	42181	COSTGCCGTG	COCCTCCACC	ACGTCCACAT	CGGCGGCGCG	CACTCCCCC	MMCACCA ACC
	42241	CCTGCCGGAT	CACGCGCTGC	TEGECGACEC	CGTTGGGGGC	GCACACTCCC	TTCCACCAACG
	42301	CGTCCTGGTT	CACCGCCGAG	CCCCCGACGA	CCGCGAGAAC	CETETECCCC	TTCCCCTCCC
	42361	CSTCGGAGAG	CCCCTCCACC	ACGAGAACGC	CGACGCCCTC	CCCCAACCCC	CTCCCCTCGG
	42421	CCGCGTCGGC	GAACGCCTTG	CACCGTCCGT	CCGGGGAGAG	TCCCCCCTCC	CCCCACAACA
45	12481	CCACGAGCTC	TECESTETTS	GCCATGACGG	TGACACCGCC	CACCACCCCC	ACCCA CCA CT
	42541		CAGTGCCTGT	GCCGCCTGGT	GCAGGGCGAC	CACCCACCAC	CACCACCACI
	42601	TGTCGACCGT	GACCGCCGGG	CCCTGAAGTC	CGTACACGTA	CAGCGACGAC	CCCCACACCA
	42661	CGCTCGTCTG	CCTCCCCCTC	ACACCGAGCC	CGCCCAGGTC	CCCCCCCACC	CCGGACAGGA
	42721	GGTTGAACGC	GCCCATGAAC	ACCCCCCCCCC	CGCTCTCCCG	CACCCTCTCC	CCGIAGCCCI
50	42781	CGGCGTTCTC	GAACGCCTCC	CAGGAGGTCT	CCAGGATCAG	CCCCTCCTCC	CCCCCCATGC
	42841	2121100000	GETCGGACTG	DISCOGRAGE	ACGCGGCGTC	CAACCCCCCC	CCCCCATCG
	42901	TOCCCCCTC	CCCTCTCCCTC	CICCCCCCCC	CCGCGTCCGG	CTCCCCCTCC	CCGGCCAGGA
	42961	75300700070	GCGTGTCGTG	GAGCGGCCGG	CGGTGATCGC	CTCCCGGGICG	COCCOCACCA
	43021 7	SERCOTOCOCA	CTCCTCCCC	CACCCCACCC	CGCCGGGCAG	TOCCOLACCO	BEGGCGACGA
55	13081	CCCCACAG	CTCCCCCCAC	CAGGGGACCC	COCCCCCCC	CCCTCCCCC	ATGCCGACGA
	43141 4	CGCGACGGG	GICGCCGGAG	CCACCCCCAC	GGGCGGTCGC	GGG1GCCGCT	GICGCGGAGE
	43201 0	222C0AG016	COCCOCCAAC	COCTOCORG	TOGGGTGGTC	GAACGCGGTT :	GACGCGGGCA
	2001	TERROREACT		CCCALGGTGT	TESTGAACTC	CACGGTGGTG .	AGCGAGTCGA
	43331 6	COTCOCCA	CCEGAACGIG	20010000	AGCAGTGTCC	GGCGCCCGGC .	AGGCCCAGGA
60	43301 (COCCROCO	CTTCCCCCTC	ACCAGGTCGA	GCAGTACGTC	CICCCGGCCC	GUACGGGCCG
00	43301	DODDADOCC	GITCGCCCAC	TCCTGTTCCG	TGGCGTCGGG	CICGGCCGGT	CCGGTCAGTG

WO 00/20601

43441 CGGTGAGGAT CGGCGGCGTG GCGCCCGCCA TCGTCGCGGC CCGCGCCCCG GCGGAACCGG 43501 TOOGGGCCAC GATGTACGAG CCGCCGCCCG CGATGGCCTT CTCGATCAGG TCGCCGGTGA 43561 GCGCCGGCCG TTCGATGCCG GGCAGCGCGC GGACGGTGAC GGTGGGGAGT CCCTCCGCGG 43621 CCCGTGGCCG GGTGTGGGCG TCGGCGCCGG CCGGGCCGTC GAGCAGGACG TGCACGAGCG 43681 CGCCGGGGTT CGCGGCTTCC TCGGCTGCGG TGGTCACGTG GGTGAGGCCG GTCTCGTCGC 43741 GGAGCAGGCC GGCGACGGTG TCGGCGTCCT CCCCGGTGAC CAGGACCGGC GCGTCCGGGC 43801 CGATCGGAGG CGGCACGGTG AGGACCATCT TGCCGGTGTG CCGGGCGTGG CTCATCCACG 43861 CGAACGCGTC CCGCGCACGG CGGATGTCCC ACGGCTGCAC CGGCAGCGGG CACAGCTCAC 43921 CGCGGTCGAA CAGGTCGAGG AGCAGTTCGA GGATCTCCCG CAGGCGCGCG GGATCCACGT 10 43981 CGGCCAGGTC GAACGGCTGC TGGGCGGCGT GGCGGATGTC GGTCTTGCCC ATCTCGACGA 44041 ACCGGCCGCC CGGTGCGAGC AGGCCGATGG ACGCGTCGAG GAGTTCACCG GTGAGCGAGT 44101 TGAGCACGAC GTCGACCGGC GGGAAGGTGT CGGCGAACGC GGCGCTGCGG GAGTTCGCCA 44161 CATGGTCGGT GTCGAAGCCG TCGGCGTGCA GCAGGTGTTG TTTGGCGGGA CTGGCGGTGG 44221 CGTACACCTC GGCGCCGAGG TGGCGGGCGA TCCGGGTCGC CGCCATGCCG ACACCGCCG 44281 TCGCGGCGTG GACCAGGACC TTCTGGCCGG GTCGCAGCTC GCCCGCGTCG ACGAGGCCGT 44341 ACCAGGCGGT GGCGAACACG ATGGGCACGG ACGCGGCGAT GGGGAACGAC CATCCCCGTG 15 44401 GGATCCGTGC GACCAGCCGC CGGTCCGCGA CCACGCTGCG CCGGAACGCG TCCTGCACGA 44461 GACCGAACAC GCGGTCGCCG GGGGCCAGGT CGTCGACGCC GGGTCCGACT TCGGTCACGA 44521 TGCCCGCGGC CTCCCCGCCC ATCTCGCCCT CGCCCGGGTA GGTGCCGAGC GCGATCAGCA 20 44581 CGTCGCGGAA GTTCAGCCCC GCGGCGCGGA CGTCGATGCG GACCTCGCCG GCGGCCAGGG 44641 GCGCGGCGGG ACGTCGAGCG GGGCGACGAC GAGGTCGCGG AGGCGTCCGG AGGCGGGCGG 44701 GCGCAGCGCC CACTGGCGCG GTCGGCAGGG GGGTGGTGTC CGCGCGTACC AGCCGGGGCA 44761 CGTAGGCCAC GCCGGCCGC AGCGCGATCT GGGGTTCGCC GAGCGAGGCC GCGGCGGGGA 44821 CGAGGTCGTC ATCGCCGTCC GTGTCCACCA GCACGAACGA TCCGGGTTCG GCGGCCTGGC 25 44881 GGCGCAGCGC CTCGTCCCAG AGCCGGGCCT GGTCCGCGTC CGGGATCTCG GCCGGGCCGA 44941 CGCCCACCGC GCGGCGGTG ACGACCGTCC GGCGGGGTGA CGGGGTGCCG GGCAGGTCGC 45001 GCCGCTCCCA GACCAGTTCG CACAGCGTGG CCTCGCCACT GCCGGTGGCG ACCAGATGG 45061 CCGGCAGCCC CGCGAGCCGC GCGCGCTGGA CCTTGCCCGA CGCGGTGCGG GGGATCGTGG 45121 TGACGTGCCA GATCTCGTCG GGCACCTTGA AGTAGGCGAG CCGGCGGCGG CACTCGGCGA 30 45181 GGATCGCCTC GGCGGGGACG CGGGGGCCGT CGGAAACGAC GTAGAGCACG GGTATGTCGC 45241 CGAGGACGGG GTGCGGGCGG CCCGCCGCGG CGGCGTCCCG GACACCGGCC ACCTCCTGGG 45301 CGACGGTCTC GATCTCCCGG GGGTGGATGT TCTCCCCGCC GCGGATGATC AGCTCCTTGA 45361 CCCGGCCGGT GATCGTCACG TGTCCGGTCT CGGCCTGACG TGCGAGGTCC CCGGTGCGGT 45421 ACCAGCCGTC CACGAGCACC TGGGCGGTCG CCTCCGGCTG GGCGTGGTAG CCGAGCATGA 35 45481 GGCTCGGCCC GCTCGCCCAC AGCTCGCCCT CCTCGCCGGG TGCCACGTCG GCGCCGGACA 45541 CCGGGTCGAC GAACCGCAGC GACAGGCCCG GCACGGGCAG CCCGCACGAG CCGGGAACCC 45601 GCGCATCCTC CAGGGTGTTG GCGGTGAGCG AGCCGGTCGT CTCGGTGCAG CCGTACGTGT 45661 CGAGCAGGGG CACGCCGAAC GTCGCCTCGA AATCCCTGGT GAGCGACGCC GGCGAGGTGG 45721 ATCCGGCGAC CAGCGCCACG CGCAGCGCGC GAGCCCGCGG CTCGCCGGAC ACGGCGCCGA 40 15781 GGAGGTAGCS GTACATCGTC GGCACGCCGA CGAGCACGGT GCTGGAGTGT TCGGCCAGGG 45841 CGTCGAGGAC GTCACGCGCG ACGAAGCCGC CCAGGATACG GGCGGACGCG CCGACCGTGA 45901 GGACGGCGAG CAGGCAGAGG TGGTGGCCGA GGCTGTGGAA CAGCGGGGCG GGCCAGAGCA 45961 GTTCGTCGTC CTCGGTCAGC CGCCAGGACG GCACGTCGCA GTGCATCGCG GACCACAGGC 46021 CGCTGCGCTG TGCGGAAACC ACGCCCTTGG GACGGCCGGT GGTGCCGGAG GTGTAGAGCA 46081 TCCAGGCGGG TTCGTCCAGG CCGAGGTCGT CGCGGGGCGG GCACGGCGGC TCGGTCCCGG 46141 CGAGGTCCTC GTAGGAGACG CAGTCCGGTG CCCGGCGCCC GACGAGCACG ACGGTGGCGT 45 46201 CGGTGCCGGT GCGGCGCACC TGGTCGAGGT GGGTTTCGTC GGTGACCAGC ACGGTCGCGC 46261 CGGAGTCCGT CAGGAAGTGG GCGAGTTCGG CGTCGGCGGC GTCCGGGTTG AGCGGGACGG 46321 CGACGGCGGC GGCGCGGGC GCGGCGAGGT AGACCTCGAT GGTCTCGATC CGGTTGCCGA 50 46381 GCAGCATCGC GACCCGGTCG CCGCGGTCGA CGCCGGACGC GGCGAGGTGT CCGGCGAGCC 46441 GGCCGGCCCG GAGCCGGAGT TGCGTGTACG TCACGGCGCG TTGGGAATCC GTGTAGGCGA 46501 TCCGGTCGCC GCGTCGCTCG GCATGGATGC GGAGCAATTC GTGCAACGGC CGGATTGGTT 46561 CCACACGOGO CATGGAAACA CCTTTCTCTC GACCAACGGC ACAACAGCAC GGAACGGGCC 46621 ACGAGTAGAC GCCGGCGACG CTAGCAGCGT TTTCCGGACC GCCACCCCT GAAGATCCCC 55 46681 CTACCGTGCC CGGCCTCCCC GGACGCTCAT CTAGGGGGTT GCACGCATAC CGCCGTGCGT 46741 AATTGCCTTC CTGATGACCG ATGCCGGACG CCAGGGAAGG GTGGAGGCGT TGTCCATATC 46801 TGTCACGGCG CCGTATTGCC GCTTCGAGAA GACCGGATCA CCGGACCTCG AGGGTGACGA 46861 GACGGTGCTC GGCCTGATCG AGCACGGCAC CGGCCACACC GACGTGTCGC TGGTGGACGC 46921 TGCTCCCCGG ACCGCCGTGC ACACCACGAC CCGTGACGAC GAGGCGTTCA CCGAGGTCTG 60 46981 GCACGCACAG CGCCCTGTCG AGTCCGGCAT GGACAACGGC ATCGCCTGGG CCCGCACCGA

	4704	1 00000000					
	4710	1 CGCGIACUT	G TTCGGTGTC	F TGCGCACCG	G CGAGAGCGG	C AGGTACGCCC	ATGCCACCGC
	1/10		- AUGAACGTC:	F TCCAGCTCAC	I COGGTCGCT:	3 GGGTATCCCC	TECTTOCOCC
	7.10	T ONCC : SOMM		3 GTATCAACAC	: GACGAACGCC	: GACGGGGGTCC	ACCTCMACCC
_	- /	- 6646	- GIGGGCCGCC	G CCCAGGCGC1	CGACGAGGG	GGGATCGACC	CCCCCACCT
5	4/23	1 00000000000	. ACCGGTATCC	GCGCCCACGC	GGGCGGCATC	ACCTGCGTGT	TOCTOCOCO
	4/24	1	A GTGCGGATCA	A ACATCGAGAA	A CCCCGCCGTC	CTCACGGCCC	ACCACERCCC
	4740	GACGACGTA	GGTCCGCGG	CCCCGGTCTT	CGCACGGGCC	ACCTGGCTGG	CCCCCCCCC
	4746	GGGGGGCCG	G CTGTTCATCT	CCGCGACGGC	CGGCATCCTC	GGACACCGAA	CCCTCCTCCT
	4752	CGGTGATGT	ACCGGCCAGT	GCGAGGTCGC	CCTCGACAAC	ATECCCCCC	TOTAL
10	47583	GGAGAACCT	CGGCGCCACG	GCGTCCAGCG	GGGGCACGTC	CTCCCCCACC	TCATCGGCGC
	4764	CAAGGTCTAC	GTCCGCCGCC	CCGAGGATCT	CGATACCCTC	CICCCCCACG	TGGACCACCT
	47701	CCTGTCGAGO	ACCGCGGCCG	TCCCCCTTTT	CCACACCCAC	. CGCCGGGTCT	GCGCCGCACG
	47761	CGTCGAAATC	GAAGGCATGG	TGGCCCTCTC	ATACCCCTA	ATAGCCCGCG	AGGATCTGCT
	47821	CTCGGCGGAT	CCCCCVVCVC	TOGCOLGACA	CTCACCCGGIA	AAAGGCCCGC	GACGCTGCGC
15	47881	TOGTOGTA	CACACCCCC	CARCACCARO	GICACCGCAC	AGCGCGGCAG	CCCGGTCCTT
	47001	TOGTCCTTCG	CACAGCGGCG	ACCCCRESCO	CTCCAGCAAT	TGGACCCGGA	GAGCAACGCC
	48001	TATAATCTCC	TOCTOGIGUA	ACGCCTGCGC	GGTCTATTGG	ACGCGCCGGC	CCTGGAGCGT
	40001	GCGCTGGCGC	TCGTCGTCGC	GCGCCACGAG	GCGTTGCGGA	CGGTGTTCGA	CACCGCCGAC
	40101	GGCGAGCCCC	TCCAGCGGGT	GCTTCCCGCC	CCGGAACACC	TCCTGCGCCA	CGCGCGGGCG
20	40121	GGCAGCGAGG	AGGACGCCGC	CCGGCTCGTC	CGCGACGAGA	TCGCCGCGCC	GTTCGACCTC
20	40101	GCCACCGGGC	CGTTGATCAG	GGCCCTGCTG	ATCCGCCTCG	GTGACGACGA	CCACGTTCTC
	48241	GCGGTGACCG	TGCACCATGT	CGCCGGCGAC	GGCTGGTCĢT	TCGGGCTCCT	CCAACATGAA
	48301	CTCGCAGCCC	ACTACACGGC	GCTGCGCGAC	ACTGCCCGCC	CTGCCGAACT	GCCGCCGTTG
	48361	CCGGTGCAGT	ACGCCGACTT	CGCCGCCTGG	GAGCGGCGCG	AACTCACCGG	CGCCGGACTG
35	48421	GACAGGCGTC	TGGCCTACTG	GCGCGAGCAA	CTCCGGGGCG	CCCCGGCGCG	GCTCGCCCTC
25	48481	CCCACCGACC	GTCCCCGCCC	GCCGGTCGCC	GACGCGGACG	CGGGCATGGC	CGAGTGGCGG
	48541	CCGCCGGCCG	CGCTGGCCAC	CGCGGTCCTC	ACGCTCGCGC	GCGACTCCGG	TGCGTCCGTG
	48601	TTCATGACCC	TGCTGGCGGC	CTTCCAAGCG	GTCCTCGCCC	GGCAGGCGGG	CACGCGGGAC
	48661	GTGCTGGTCG	GCACGCCCGT	GGCGAACCGT	ACGCGGGCGG	CGTACGAGGG	CCTGATCGGC
	48721	ATGTTCGTCA	ACACGCTCGC	GCTGCGCGGC	GACCTCTCGG	GCGATCCGTC	GTTCCGGGAA
30	48781	CTCCTCGACC	GCTGCCGGGC	CACGACCACG	GACGCGTTCG	CCCACGCCGA	CCTGCCGTTC
	48841	GAGAACGTCA	TCGAACTCGT	CGCACCGGAA	CGCGACCTGT	CGGTCAACCC	GGTCGTCCAG
	48901	GTGCTGTTGC	AGGTGCTGCG	GCGCGACGCG	GCGACGGCCG	CGCTGCCCGG	CATCGCGGCC
	48961	GAACCGTTCC	GCACCGGACG	CTGGTTCACC	CGCTTCGACC	TCGAATTCCA	TGTGTACGAG
	49021	GAGCCGGGTG	GCGCGCTGAC	CGGCGAACTG	CTCTACAGCC	GTGCGCTGTT	CGACGAGCCA
35	49081	CGGATCACGG	GGTTGCTGGA	GGAGTTCACG	GCGGTGCTTC	AGGCGGTCAC	CGCCGACCCG
	49141	GACGTACGGC	TGTCGCGGCT	GCCGGCCGGC	GACGCGACGG	CGGCAGCGCC	CGTGGTGCCC
	49201	TCGAACGACA	CGGCGCGGGA	CCTGCCCGTC	GACACGCTGC	CGGGCCTGCT	GGCCCGGTAC
	49261	GCCGCACGCA	CCCCCGGCGC	CGTGGCCGTC	ACCGACCCGC	ACATCTCCCT	CACCTACGCG
	49321	CAGCTGGACC	GGCGGGCGAA	CCGCCTCGCG	CACCTGCTCC	GCGCGCGCGG	CACCGCCACC
40	49381	GGCGACCTGG	TCGGGATCTG	CGCCGATCGC	GGCGCCGACC	TGATCGTCGG	CATCGTGGGG
	49441	ATCCTCAAGG	CGGGCGCCGC	TTATGTGCCG	CTGGACCCCG	AACATCCTCC	GGAGCGCACG
	49501	GCGTTCGTGC	TGGCCGACGC	GCAGCTGACC	ACGGTGGTGG	CGCACGAGGT	CTACCGTTCC
	49561	CGGTTCCCCG	ATGTGCCGCA	CGTGGTGGCG	TTGGACGACC	CGGAGCTGGA	CCGGCAGCCG
	49621	GACGACACGG	CGCCGGACGT	CGAGCTGGAC	CGGGACAGCC	TCGCCTACGC	GATCTACACG
45	49681	TCCGGGTCGA	CCGGCAGGCC	GAAGGCCGTG	CTCATGCCGG	GTGTCAGCGC	CGTCAACCTG
	49741	CTGCTCTGGC	AGGAGCGCAC	GATGGGCCGC	GAGCCGGCCA	GCCGCACCGT	CCAGTTCGTG
	49801	ACGCCCACGT	TCGACTACTC	GGTGCAGGAG	ATCTTTTCCG	CGCTGCTGGG	CGGCACGCTC
	49861	GTCATCCCGC	CGGACGAGGT	GCGGTTCGAC	CCGCCGGGAC	TOCCOCCETE	CATGGACGA
	49921	CAGGCGATTA	CCCGGATCTA	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GCCGTACTGC	GCGCGCTCAT	CCACCACCAC
50	19981	GATCCGCACA	GCGACCAGCT	CCCCCCCTC	CGGCACCTGT	GCCAGGGGGAI	CONGCACGIC
	50041	ATCCTCGACG	COCCETTOCE	CGAGCTGTGC	CGGCACCGGC	CCCACCTCCC	CCTCCACAA
	50101	CACTACGGTC	CGGCCGAAAG	CCAGCTGTGC	ACCECETACA	CCCACCIGCG	CGIGCACAAI
	50161	GCGTGGCCCG	CCACCCCACC	CARCCCCCC	CCCATCCACA	ACACCCCCC	CGACCCCGAC
	50221	GACGAGGCGA	TCCCCCCCCT	TCCCCACCCT	ATCCCCCCC	ACACCCGCAI	CCATCIGCTC
55	50221	GGCCTCCCC	- 1000000001	CCCCCCTCCC	C1000000	AGC:CTGCGT	CULLGGUGTC
55	50341	GGCCTCGCCC	COCACCACCC	CARCEAGGE	ACCCCCCACC	CCGAGCGCTG	GGTGCCGGGA
	50341	GATGCGGTCG	E D TERCOTOCO	CAIGIACCIC	ACCOGCGACC	PORTCOCCO	CGCGCCCGAC
	30401	GGCGACCTGG	AATTUUTUG	CCGGATCGAC	CACCAGGTCA	AGATUUGCGG :	CATCCGCGTC
	20201 70401	GAACCGGGTG	AGATCGAGAG	CCTGCTCGTC	UAGGACGCCC	GCUTTACGCA	GGCGGCGGTG
60	20221	TCCGTGCGCG	AGGACCGGCG	GGGCGAGAAG	TICCIGGCCG	CGTACGTCGT .	ACCGGTGGCC
00	20261	GGCCGGCACG	GCGACGACTT	CGCCGCGTCG	CTGCGCGCGG	GACTEGCCGC	CCGGCTGCCC

	5064	1 GOOGCGCTC	S TSCCCTCCS		T STOCKCOCK		CACGAGCGGC
	5070	1 AAGGTGGAC		CGICGIDDI	GACCCCCC	COCCGAGGAC	CACGAGCGGC CGGGGGCGGTT
	5076	1 ACGCCCCGC	A CCGATGCCG	CCCCARCET	TOCCCONTC	CGGCGTCGAC	CGGGGCGGTT CCTCGACGTC
	5082	1 000000000000000000000000000000000000	. GEGERGGERE	CCICATOTIC	I I COCTOCCO	I ICCAGGAGGT	GCTCGACGTC GCTCGCCACC
5	50881	l DESCRECTES	T COCCOMMOCA	COMOLLIL.	- ACCICCOCA	S GGCACICCCI	GCTCGCCACC TACGCTCTTC
	5094	1 3ACGGGCGG	COCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	COCCOMUSE.	CCCCCCCAT	a recedence	GGCCGCCCTG
	5100	COCCCGATC		CONCRECCO	CCCCCCCCCC	AGGCCGGCCC	GGCCGCCCTG ACAGGAACAG
	5106	1 TOCCOMICACI	COCCCICCOC	COMORROSCO		. rCACCGCGGC	ACAGGAACAG
	51123	TTCCGGCTGC	CCCCCCCACT	CONCOCCENT	. GCGCCCTCCT	ACACGGTCGC	CCCGTACGGG
10	51181	3000000000	ACCCCCTCCC	CACCCCCTTC	COCCIOGACO	CGGCACTGAC	CCGGATCGCC
	51241	GCTCCGGTGC	CCCCCCACCT	COTTOCCCT	CGCGATCGGG	AACAGGTCGT	CCGGCCGCCC
	51301	GTCCCCGIGC	CCCACCACGI	GGIICCOORD	CCGGTCGGCG	ACGTCGACGC	CGCGGTCCGG
	51361	GTGCTCCTCC	COCTOCOCO	CCGGCCGTTC	GACCTCGTGA	ACGGGTCGTT	GCTGCGTGCC
	51/01	. GIGCIGCIGC		CGAGGATCAC	GTGCTGCTGC	TGATGCTGCA	CCACCTCGCC
15	51421	. GGIGACGGAI	GGTCCTTCGA	CCTCCTGGTC	CGGGAGTTGT	CGGGGACGCA	ACCGGACCTT
	51541	CREARCERCE	ACACGGACGT	GGCCCGGTGG	GAACGGAGTC	CGGCCGTGAT	CGCGGCCAGG
	51601	SAGAACGACC	GGGCCTACTG	GCGCCGGCGG	CTGGGGGGCG	CCACCGCGCC	GGAGCTGCCC
	51661	SCCGTCCGGC	CCGGCGGGGC	ACCGACCGGG	CGGGCGTTCC	TGTGGACGCT	CAAGGACACC
	51701	GCCGTCCTGG	CGGCACGCCG	GGTCGCGGAC	GCCCACGACG	CGACGTTGCA	CGAAACCGTG
20	51701	CICGGCGCCT	TCGCCCTGGT	CGTGGCGGAG	ACCGCCGACA	CCGACGACGT	GCTCGTCGCG
20	51/81	ACGCCGTTCG	CGGACCGGGG	GTACGCCGGG	ACCGACCACC	TCATCGGCTT	CTTCGCGAAG
	51841	STUCTUGUGU	TGCGCCTCGA	CCTCGGCGGC	ACGCCGTCGT	TCCCCGAGGT	GCTGCGCCGG
	51901	GIGCACACCG	CGATGGTGGG	CGCGCACGCC	CACCAGGCGG	TGCCCTACTC	CGCGCTGCGC
	21301	GOCGAGGACC	CCGCGCTGCC	GCCGGCCCCC	GTGTCGTTCC	AGCTCATCAG	CGCGCTCAGC
25	52021	GCGGAACTGC	GGCTGCCCGG	CATGCACACC	GAGCCGTTCC	CCGTCGTCGC	CGAGACCGTC
23	52081	GACGAGATGA	CCGGCGAACT	GTCGATCAAC	CTCTTCGACG	ACGGTCGCAC	CGTCTCCGGC
	52141	GUGGTGGTCC	ACGATGCCGC	GCTGCTCGAC	CGTGCCACCG	TCGACGATTT	GCTCACCCGG
	52201	GTGGAGGCGA	CGCTGCGTGC	CGCCGCGGGC	GACCTCACCG	TACGCGTCAC	CGGTTACGTG
	52261	GAAAGCGAGT	AGCCATGCCC	GAGCAGGACA	AGACAGTCGA	GTACCTTCGC	TGGGCGACCG
30	52321	CGGAACTCCA	GAAGACCCGT	GCGGAACTCG	CCGCGCACAG	CGAGCCGTTG	GCGATCGTGG
30	52381	GGATGGCCTG	CCGGCTGCCC	GGCGGGGTCG	CGTCGCCGGA	GGACCTGTGG	CAGTTGCTGG
	52441	AGTCCGGTGG	CGACGGCATC	ACCGCGTTCC	CCACGGACCG	GGGCTGGGAG	ACCACCGCCG
	52501	ACGGTCGCGG	CGGCTTCCTC	ACCGGGGGGG	CCGGCTTCGA	CGCGGCGTTC	TTCGGCATCA
	52561	GCCCGCGCGA	GGCGCTGGCG	ATGGACCCGC	AGCAGCGCCT	GGCCCTGGAG	ACCTCGTGGG
25		AGGCGTTCGA	GCACGCGGGC	ATCGATCCGC	AGACGCTGCG	GGGCAGTGAC	ACGGGGGTGT
. 35	52681	TCCTCGGCGC	GTTCTTCCAG	GGGTACGGCA	TCGGCGCCGA	CTTCGACGGT	TACGGCACCA
	52/41			CTCTCCGGCC			
	52801	CGGCGGTCAC	GGTCGACACG	GCGTGTTCGT	CGTCGCTGGT	GGCGCTGCAC	CAGGCCGGGC
		AGTCGCTGCG	CTCCGGCGAA	TGCTCGCTCG	CCCTGGTCGG	CGGCGTCACG	GTGATGGCCT
10	52921	TGCCGGCGGG	GTTCGCGGAC	TTCTCCGAGC	AGGGCGGCCT	GGCCCCCGAC	GCGCGCTGCA
40	52981	AGGCCTTCGC	GGAAGCGGCT	GACGGCACCG	GTTTCGCCGA	GGGGTCCGGC	GTCCTGATCG
	53041			GAGCGCAACG			
	53101	CCGCCGTCAA	CCAGGACGGT	GCCTCCAACG	GGCTGTCCGC	GCCGAACGGG	CCGTCGCAGG
	23101	AGCGGGTGAT	CCGGCAGGCC	CTGGCCAACG	CCGGACTCAC	CCCGGCGGAC	GTGGACGCCG
45	33221	CGAGGCCCA	CGGCACCGGC	ACCAGGCTGG	GCGACCCCAT	CGAGGCACAG	GCCGTGCTGG
43	53281	CUACCTACGG	GCAGGGGCGC	GACACCCCTG	TGCTGCTGGG	CTCGCTGAAG	TCCAACATCG
				GGCGTCGCCG			
				CTGCACGTGG			
	53461	CCGGCGCCGT	CGAACTCCTC	ACCGACGCCC	GGCCCTGGCC	CGAAACCGAC	CGCCCACGGC
50	53521	GCGCCGGTGT	CTCCTCCTTC	GGCGTCAGCG	GCACCAACGC	CCACATCATC	CTCGAAAGCC
30				ccccccccc			
	53641	TCTCGGCCCG	CACCCCGCAG	GCACTCGACG	CACAGGTACA	CCGCCTGCGC	GCGTTCCTCG
	22/01	ACGACAACCC	CGGCGCGGAC	CGGGTCGCCG	TCGCGCAGAC	ACTCGCCCGG	CGCACCCAGT
	53/61	TCGAGCACCG	CGCCGTGCTG	CTCGGCGACA	CGCTCATCAC	CGTGAGCCCG	AACGCCGGCC
55	53821	GCGGACCGGT	GGTCTTCGTC	TACTCGGGGC	AAAGCACGCT	GCACCCGCAC .	ACCGGGCGGC
55	53881	AACTCGCGTC	CACCTACCCC	GTGTTCGCCG	AAGCGTGGCG	CGAGGCCCTC	GACCACCTCG
				ACGCACTTCG			
				CACGCESTCA			
				TOCOTGAGGG			
60				TCGGGCGGCG			
60	54181	AGGCACGCCA	GGTGCTGCGG	cceecatee	AGATCGCCGC	CGTCAACGGC (CCCCACTCCC

	54241	LITOGTGCTGT	CGGGGACGAC	GAAGCCGTA	C TOGARGOOG	CCGGCAGCTC	CONTOCACO
	54301	LACCOCCTOC	GACCCGCCAC	GCCGGCCAC	T COGAGOGOAT	GCAGCCACTC	COCKICCACC
	34361	TOOTOGACG	CGCCCGGACC	CTGACGTAC	- ACCAGCCCC	CACCGCCATC	3:0600000
	54421	COACCACCC	T CGAATICTOS	COCCACCAC	TOCAGOGGG	AGTACGTTTS	
5	5 4 4 3 1	COSAGCAGES		ACCTTCCTC	- Normoccocc	CAACCAGGAC	
	34541	TOTMOGETA	COTTOCOCO	CACACCCCC	. AGAICGGUCC	CARCCAGGAC	STSTEGESS
			COTTOCACCO	CAGACCGGI	A COUCUGAUGA	GGTGCGGGCG	
	54661	1.33700000.7	COTCEACGIC	CGCGGCGTCC	GCGATCGACTG	GACGCTCGTC	STESGEGGG
	5,1701		CGTCACGCTG	CCCACGTATO	CGTTCCAGCA	CAAGGACTAC	TGGCTGCGGC
10	24721	CORCUICUU	GGCCGATGTG	ACCGGCGCGC	GGCAGGAGCA	GGTGGCGCAC	COGCTGCTCG
10	54041	GCGCGCGGT	CGCGCTGCCC	GGCACGGGC	GAGTCGTCCT	GACCGGCCGC	CTGTCGCTGG
	54841	CUTCCCATCC	GTGGCTCGGC	GAGCACGCGG	TCGACGGCAC	CGTGCTCCTG	CCCGGCGCGG
	54901	CUITCCTCGA	ACTCGCGGCG	CGCGCCGGCG	ACGAGGTCGG	CTGCGACCTG	CTGCACCAAC
	54961	TUGTCATCGA	GACGCCGCTC	GTGCTGCCC	CGACCGGCGG	TGTGGCGGTC	TOCATOGAGA
	22071	TUGUCGAACO	CGACGACACG	GGGCGGCGG	GCGGTCACCGT	CCACGCGCGG	SCCGACGCCT
15	22081	CGGGCCTGTG	GACCCGACAC	GCCGGCGGAT	` TCCTCGGCAC	GGCACCGGCA	CCGGCCACCC
	22141	CCACGGACCC	GGCACCCTGG	CCGCCCGCGG	AAGCCGGACC	GGTCGACGTC	GCCGACGTCT
	55201	ACGACCGGTT	CGAGGACATC	GGGTACTCCT	ACGGACCGGG	CTTCCGGGGG	CTGCGCCCCC
	55261	CCTGGCGCGC	CGGCGACACC	GTGTACGCCG	AGGTCGCGCT	CCCCGACGAG	CACACCCCC
	55321	ACGCCGCCCG	TTTCACGCTG	CACCCCGCGC	TGCTCGACGC	CGCGTTCCAG	CAGAGCGCCG
20	55381	TGGCCGCGCT	CGACGCACCC	GGCGGGGGGG	CCCCACTCCC	GTTCTCGTTC	
	35441	GCATCCACGC	cerceseece	ACGCGGCTGC	CCCTCTCCC	CGGCCGAC	CAGGACGTCC
	55501	GCACCGTCCG	CATGACCGGC	CCCCACCCC	COTCOTCO	CGGCCGCGAC	
	55561	CGCGCCCGTE	COCCONNOCC	TCCCCTCACC	CCCTCCTCC	CGTGGTCGGT	SCCGTGCTGT
	55621	CSETCCCCST	CCCCTCCCC	CACCATCCC	CCC1GC1GCG	CCCGGTCTGG	ACCGAGCTGC
25	55681	SCCCCCCCC	TCCCG: CCGCG	PCCCCCC CO	GCGTGGAGGT	CCTCGGCGCC	GACCCGGGCG
	55741	CCCACCACGA	CCCCCCCCC	ACCCCGGAGC	TGACCGCCCG	CGTCCTCGGC	GCGCTCCAGC
	55001	CESSCOOR	CGCCGCCGAG	GACACCACCT	TGGTGGTACG	GACCGGCACC	GGCCCGGCCG
	33001	TOSTOS	CGCGGGTCTG	GTCCGCTCGG	CGCAGGCGGA	GAACCCCGGC	CGCGTCGTGC
	22001	1 CG 1 CGAGGC	GTCCCCGGAC	ACCTCGGTGG	AGCTGCTCGC	CGCGTGCGCC	GCGCTGGACG
30	22371	AACCGCAGCT	GGCCGTCCGG	GACGGCGTGC	TCTTCGCGCC	GCGGCTGGTC	CGGATGTCCG
30	55981	ACCCCGCGCA	CGGCCCGCTG	TCCCTGCCGG	ACGGCGACTG	GCTGCTCACC	CGGTCCGCCT
	56041	CCGGCACGTT	GCACGACGTC	GCGCTCATAG	CCGACGACAC	GCCCGGCGG	GCGCTCGAAG
•	56101	CCGGCGAGGT	CCGCATCGAC	GTCCGCGCGG	CCGGACTGAA	CTTCCGCGAT	GTGCTGATCG
	56161	CGCTCGGGAC	GTACACCGGG	GCCACGGCCA	TGGGCGGCGA	GGCCGCGGC	GTCGTGGTGG
2.5	56221	AGACCGGGCC	CGGCGTGGAC	GACCTGTCCC	CCGGCGACCG	GGTGTTCGGC	CTGACCCGGG
35	56281	GCGGCATCGG	CCCGACGGCC	GTCACCGACC	GGCGCTGGCT	GGCCCGGATC	CCCGACGGCT
	56341	GGAGCTTCAC	CACGGCGGCG	TCCGTCCCGA	TCGTGTTCGC	GACCGCGTGG	TACGGCCTGG
	56401	TCGACCTCGG	CACACTGCGC	GCCGGCGAGA	AGGTCCTCGT	CCACGCGGCC	ACCGGCGGTG
	56461	TCGGCATGGC	CGCCGCACAG	ATCGCCCGCC	ACCTGGGCGC	CGAGCTCTAC	GCCACCGCCA
	56521	GTACCGGCAA	GCAGCACGTC	CTGCGCGCCG	CCGGGCTGCC	CGACACGCAC	ATCGCCGACT
40	56581	CTCGGACGAC	CGCGTTCCGG	ACCGCTTTCC	CGCGCATGGA	CGTCGTCCTG	AACGCGCTGA
	56641	CCGGCGAGTT	CATCGACGCG	TCGCTCGACC	TGCTGGACGC	CGACGGCCGG	TTCGTCGAGA
	56701	TGGGCCGCAC	CGAGCTGCGC	GACCCGGCCG	CGATCGTCCC	CGCCTACCTG	CCGTTCGACC
	56761	TGCTGGACGC	GGGCGCCGAC	CGCATCGGCG	AGATCCTGGG	CGAACTGCTC	CGGCTGTTCG
	56821	ACGCGGGCGC	GCTGGAGCCG	CTGCCGGTCC	GTGCCTGGGA	CGTCCGGCAG	SCACGCGACG
45	56881	CGCTCGGCTG	GATGAGCCGC	GCCGCCACA	TCGGCAAGAA	CGTCCTGACG	CTGCCCCGGC
	56941	CGCTCGACCC	GGAGGGGGCC	GTCGTCCTCA	CCGGCGGCTC	CGGÇACGCTC	CCCCCCATCC
	57001	TOSCOCROCA	CCTGCGCGAA	CGCCATGTCT	ACCTGCTGTC	CCGGACGGCA	CCCCCCCATCC
	57061	GSACGCCCGG	CCTCCACCTG	CCCTGCGACG	TOGGTONOCO	GGACCAGCTG	CCGCCCGAGG
	57121	TGGAGCGGGT	CONCEGEE	ATCACCCCCC	TCCTCCTCCT	CGCCGGTGCG	
50	57181	CCLCCCTCCC	CTCCCTCACC	CCCCACCCCC	TCCACACCCT	GCTGCGCCCG	LIGGACGACG
.	57241	CCCCCCCCC	COTCOLICACO	CCCGAGCGII	1 CGACACGGI	CCCCCCCCCC .	AAGGCCGACG
	57301	CCTCCCCCC	CCTGCACGAG	CIGACGAAGG	AGCAGGACCI	CGCCGCGTTC	GIGCTCTACT
	57301	TCCTCCLCCC	CGGCGIGCIC	GGCAACGCCG	GCCAGGGCAA	CTACGTCGCC	GCGAACGCGT
	57301	CCCCCGACGC	GCTCGCCGAG	CTGCGCCACG	GTTCCGGGCT	GCCGGCCCTC	TCCATCCCCT
55	3/42i	GGGGGGTTTG	GGAGGACGTG	AGCGGGCTCA	CCGCGGCGCT	CGGCGAAGCC	GACCGGGACC
55	5/481	GGATGCGGCG	CAGCGGTTTC	CGGGCCATCA	CCGCGCAACA	GGGCATGCAC	CTGTACGAGG
	57541	CGGCCGGCCG	CACCGGAAGT	CCCGTGGTGG	TCGCGGCGGC	GCTCGACGAC	GCGCCGGACG
	57601	TGCCGCTGCT	GCGCGGCCTG	CGGCGGACGA	CCGTCCGGCG	GGCCGCCGTC :	CGGGAGTGTT
						CGCCGAAGCG .	
	57721	TOGTOOGGGA	GAGCACCGCC	GCCGTGCTCG	GCCACGTGGG	TGGCGAGGAC	ATCCCCGCGA
60	57781	CGGCGGCGTT	CAAGGACCTC	GGCATCGACT	CGCTCACCGC	GGTCCAGCTG	CGCAACGCCC

	57841	TCACCGAGG	GACCGGTGTG	CGGCTGAACC	G CCACGGCGGT	CTTCGACTTC	COGACCOSS
	57901	. ACGTGCTCGC	CGGGAAGCTC	GGCGACGAAC	TGACCGGCAC	cogogogoco	GTCGTGCCCC
	57961	. GGACCGCGG	CACGGCCGGT	GCGCACGACC	AGCCGCTSGC	GATOGTGGGA	ATEGCCTOC
	56021	GGCTGCCCG	CGGGGTCGCG	TCACCCGAGG	AGCTGTGGG	COTOSTOCA	TOSSECTIONS
5	58081	ACGCCATCA	GGAGTTCCCG	ACGGACCGCG	GOTGGGACCT	CGACGCGATC	TACCACCACC
	58141	ACCCCGACGC	GATCGGCAAG	ACCTTCGTCC	COLOGEOTOS	CONCOUNT	CCCCCCCCC
	58201	GCTTCGACGC	GGCGTTCTTC	GGCATCACCC	CCCCCCACCC	CITCLICACC	GGCGCGACAG
	58261	AGCGGGTGCT	CCTGGAGACC	TOTTOTAGE	COCOCORSS	CCICGCGAIG	GACCCGCAGC
	58321	CCACCCCCC	CAGCGACACC	CCCCTCTTCC	TOTICGAAAG	CGCCGGCATC	ACCCCGGACT
10	58381	CTCCCCTCT	CAGCGACACC	CCCCCCACCC	CCMCCCCCCT	CICC.ACGGT	TACGGCACCG
	58441	TOTOCOGACAC	CGACGGCTTC	CACCOCCACCO	GCICGCAGAC	CAGTGTGCTC	TCCGGCCGGC
		CCCTCCTACT	CTACGGTCTG	GAGGGTCCGG	CGGTCACGGT	CGACACGGCG	TGTTCGTCGT
	20201	CGCTGGTGGC	GCTGCACCAG	GCCGGGCAGT	CGCTGCGCTC	CGGCGAATGC	TCGCTCGCCC
	20201	TGGTCGGCGG	CGTCACGGTG	ATGGCGTCTC	CCGGCGGCTT	CGTGGAGTTC	TCCCGGCAGC
15	28621	GCGGCCTCGC	GCCGGACGGC	CGGGCGAAGG	CGTTCGGCGC	GGGTGCGGAC	GGCACGAGCT
15	58681	TCGCCGAGGG	TGCCGGTGTG	CTGATCGTCG	AGAGGCTCTC	CGACGCCGAA	CGCAACGGTC
	58/41	ACACCGTCCT	GGCGGTCGTC	CGTGGTTCGG	CGGTCAACCA	GGATGGTGCC	TCCAACGGGC
	58801	TGTCGGCGCC	GAACGGGCCG	TCGCAGGAGC	GGGTGATCCG	GCAGGCCCTG	GCCAACGCCG
	58861	GGCTCACCCC	GGCGGACGTG	GACGCCGTCG	AGGCCCACGG	CACCGGCACC	AGGCTGGGCG
• •	58921	ACCCCATCGA	GGCACAGGCG	GTACTGGCCA	CCTACGGACA	GGAGCGCGCC	ACCCCCCTGC
20	58981	TGCTGGGCTC	GCTGAAGTCC	AACATCGGCC	ACGCCCAGGC	CGCGTCCGGC	GTCGCCGGCA
	59041	TCATCAAGAT	GGTGCAGGCC	CTCCGGCACG	GGGAGCTGCC	GCCGACGCTG	CACGCCGACG
	59101	AGCCGTCGCC	GCACGTCGAC	TGGACGGCCG	GCGCCGTCGA	ACTGCTGACG	TCGGCCCGGC
		CGTGGCCCGA					
	59221	CCAACGCCCA	CGTCATCCTG	GAGGCCGGAC	CGGTAACGGA	GACGCCCGCG	GCATCGCCTT
25	59281	CCGGTGACCT	TCCCCTGCTG	GTGTCGGCAC	GCTCACCGGA	AGCGCTCGAC	GAGCAGATCC
		GCCGACTGCG					
		CGCTGGCCCG					
	59461	CCACACCCC	CGCGGACCGG	CCCGACGAAC	TCGTCTTCGT	CTACTCCGGC	CAGGGCACCC
		AGCATCCCGC					
30		ATGAAGCGCT					
		TGCTCTTCGC					
		ACGCGGTCAT					
		CGCTGGACGA					
		CACCCGGTGC					
35		CGGGCGTGGA					
J J		ACGCCGTGCT					
		CCGGGCACTC					
40		CCGAGCAGGT					
40		TCTTCGTGGA					
		AGAACGGCAC					
		GCGGTGCCAC					
		TGCCCGCGTA					
4.5		CCGACGCGGG					
45		TGTTCACGGG					
		TGGCCGCCGC					
		CCGGCCGGCC					
	60661	ACGGCCGGCG	CCGGTTCACC	GTGCACACCC	GCACCGGCGA	CGCCCCGTGG	ACGCTGCACG
		CCGAGGGGGT					
50	60781	CCCCACCGGG	CGCGGTGCCC	GCGGACGGGC	TGCCGGGTGT	GTGGCGCCGG	GGGGACCAGG
	60841	TCTTCGCCGA	GGCCGAGGTG	GACGGACCGG	ACGGTTTCGT	GGTGCACCCC	GACCTGCTCG
	60901	ACGCGGTCTT	CTCCGCGGTC	GGCGACGGAA	GCCGCCAGCC	GGCCGGATGG	CGCGACCTGA
		CGGTGCACGC					
		CCATGGGATT					
55		CGCTGCGGGA					
		AGTGGCTCGC					
		TCACCGCCGC					
		CCCGCGTCCT					
		ACACCACCAC					
60		AACACCCCCA					
00	01301	AMUMUCUUA		CICAICGAAA	CCGACCACCC	CUMUNCULL	C100000100

	6144	1 CCCAACTCGC	CACCCTCGAC	CACCCCCAC	TCCGCCTCAC	CCACCACACO	CTCCACCACC
	0150.	I CCCACCTCAC	CCCCCTCCAC	ACCACCACC	CACCCACCAC	CACCCCCCTC	ANCCCCCARC
	0156.	I ACGCCATCAT	CATCACCGGC	: GGCTCCGGC <i>I</i>	A COOTEGEEG	CATCCTCCCC	CCCCACCACA
_	01071	L AUUAUUUU	CACCTACCTC	CTCTCCCGC	3 COCCACCCC	CGACGCCACC	CCCCCCACCC
5	07001	LACCICCCCTG	CGACGTCGGC	GACCCCCAC	I AACTCGCCAC	CACCCTCACC	CACATCCCC
	C± /43	E AACCCCTCAC	CGCCATCTTC	CACACCGCC	CCACCCTCG	CGACGGCATC	CTCCACCCC
	61801	TCACCCCGA	CCGCCTCACC	ACCGTCCTCC	ACCCCAAAGC	CAACGCCCCC	TOSCHOOLE
	61861	ACCACCTCAC	CCAAAACCAA	CCCCTCACCC	ACTTCCTCCT	CAACGCCGCC	GGCACCTGC
	61921	. TCCTCGGCAG	CCCCGGACAA	GGAAACTAC	COCCOCCAA	CIACICCAGC	50000000000000000000000000000000000000
10	61981	CCACCCACCG	CCACACCCTC	GGCCAACCC	CCACCTCCAT	CCCCTCCCC	GACGCCCTCG
	62041	CCACCAGCAC	CCTCACCGGA	CAACTCGACG	ACCCCCACC	CCACCCATC	ATGTGGCACA
	62101	GTTTCCTCCC	GATCACGGAC	GACGAGGGCA	TECECCTCTA	CCACCCCCCC	CGCCGCGCGCG
	62161	GCGAGGACTT	CGTCATGGCC	GCCGCGATGG	ACCCCCCACA	CCCCATCACC	GTCGGCTCCG
	62221	CGCCCATCCT	GAGCGGCCTG	CGCAGGAGCG	CGCGGCGCCC	CCCCCCTCCC	GGCTCCGTAC
15	62281	TCGCCCAGCG	GCTCGCCGAG	CTGCCCGACG	COCOCCCCC	CGCCCGTGCC	GGGCAGACGT
	62341	TCTCGGACGC	CACGGCCGCC	GTGCTCGGCC	ACCCCCACCG	CECCGCCCTG	ACCACCCTCG
	62401	CGACGTTCAA	GGACCTCGGC	ATCGACTCCC	TCACCCCCAT	CICCGAGATC	GCGCCGACCA
	62461	CGGAGGCGAC	COCCTCCCC	CTCACTCCCA	CCCCCCCCAT	CGAGCTGCGC	AACCGGCTCG
	62521	TCCTCGCCGC	CAACCTCCCC	ACCCATCTCT	TCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CGACCACCCG	ACACCTCGGG
20	62521	CCCCACCCAC	CAAGCICCGC	CACCCACTCT	TCGGCACGGC	CGTGCCCACG	CCCGCGCGGA
-0	62501	CGGCACGGAC	CTCCCCCCAC	CAGCCACTCG	CGATCGTCGG	CATGGCGTGC	CGACTGCCCG
	62701	GCGGGGTCGC	CICGCCGGAG	GACCIGIGG	AGCTCGTGGC	GTCCGGCACC	GACGCGATCA
	62761	CCGAGTTCCC	CACCGACCGC	GGCTGGGACA	TCGACCGGCT	GTTCGACCCG	GACCCGGACG
	62021	CCCCCGGCAA	GACCIACGIC	CGGCACGGCG	GCTTCCTCGC	CGAGGCCGCC	GGCTTCGATG
25	63001	CCGCGTTCTT	COGCATCAGC	CCGCGCGAGG	CACGGGCCAT	GGACCCGCAG	CAGCGCGTCA
	62001	TCCTCGAAAC	CICCIGGGAG	GCGTTCGAGA	ACGCGGGCAT	CGTGCCGGAC	ACGCTGCGCG
	62001	GCAGCGACAC	CGGCGTGTTC	ATGGGCGCGT	TCTCCCATGG	GTACGGCGCC	GGCGTCGACC
	63001	TGGGCGGGTT	CGGCGCCACC	GCCACGCAGA	ACAGCGTGCT	CTCCGGCCGG	TTGTCGTACT
	62121	TCTTCGGCAT	GGAGGGCCCG	GCCGTCACCG	TCGACACCGC	CTGCTCGTCG	TCGCTGGTCG
30	63101	CCCTGCACCA	GGCGGCACAG	GCGCTGCGGA	CTGGAGAATG	CTCGCTGGCG	CTCGCCGGCG
50	63341	GTGTCACGGT	GATGCCCACC	CCGCTGGGCT	ACGTCGAGTT	CTGCCGCCAG	CGGGGACTCG
	63201	CCCCGACGG	CCGTTGCCAG	GCCTTCGCGG	AAGGCGCCGA	CGGCACGAGC	TTCTCGGAGG
	62361	GCGCCGGCGT	TCTTGTGCTG	GAGCGGCTCT	CCGACGCCGA	GCGCAACGGA	CACACCGTCC
•	63361	TCGCGGTCGT	CCGCTCCTCC	GCCGTCAACC	AGGACGGCGC	CTCCAACGGC	ATCTCCGCAC
35	63421	CCAACGGCCC	CTCCCAGCAG	CGCGTCATCC	GCCAGGCCCT	CGACAAGGCC	GGGCTCGCCC
33	03481	CCGCCGACGT	GGACGTGGTG	GAGGCCCACG	GCACCGGAAC	CCCGCTGGGC	GACCCGATCG
	03541	AGGCACAGGC	CATCATCGCG	ACCTACGGCC	AGGACCGCGA	CACACCGCTC	TACCTCGGTT
	63661	CGGTCAAGTC	GAACATCGGA	CACACCCAGA	CCACCGCCGG	TGTCGCCGGC	GTCATCAAGA
	19969	TGGTCATGGC	GATGCGCCAC	GGCATCGCGC	CGAAGACACT	GCACGTGGAC	GAGCCGTCGT
40	63/21	CGCATGTGGA	CTGGACCGAG	GGTGCGGTGG	AACTGCTCAC	CGAGGCGAGG	CCGTGGCCCG
40	63.481	ACGCGGGACG	CCCGCGCCGC	GCGGGCGTGT	CGTCGCTCGG	TATCAGCGGT	ACGAACGCCC
	63841	ACGTGATCCT	TGAGGGTGTT	CCCGGGCCGT	CGCGTGTGGA	GCCGTCTGTT	GACGGGTTGG
	63901	TGCCGTTGCC	GGTGTCGGCT	CGGAGTGAGG	CGAGTCTGCG	GGGGCAGGTG	GAGCGGCTGG
	63961	AGGGGTATCT	GCGCGGGAGT	GTGGATGTGG	CCGCGGTCGC	GCAGGGGTTG	GTGCGTGAGC
45	64021	GTGCTGTCTT	CGGTCACCGT	GCGGTACTGC	TGGGTGATGC	CCGGGTGATG	GGTGTGGCGG
43	64081	TGGATCAGCC	GCGTACGGTG	TTCGTCTTTC	CCGGGCAGGG	TGCTCAGTGG	GTGGGCATGG
	64141	GTGTGGAGTT	GATGGACCGT	TCTGCGGTGT	TCGCGGCTCG	TATGGAGGAG	TGTGCGCGGG
	64201	CGTTGTTGCC	GCACACGGGC	TGGGATGTGC	GGGAGATGTT	GCCCCCCC	GATGTGGCGG
	64261	AGCGGGTGGA	GGTGGTCCAG	CCGGCCAGCT	GGGCGGTCGC	GGTCAGCCTG	GCCGCACTGT
60	64321	GGCAGGCCCA	CGGGGTCGTA	CCCGACGCGG	TGATCGGACA	CTCCCAGGGC	GAGATCGCGG
50	64381	CGGCGTGCGT	GGCCGGGGCC	CTCAGCCTTG	AGGACGCCGC	CCGCGTGGTG	GCCTTGCGCA
	64441	GCCAGGTCAT	CGCGGCGCGA	CTGGCCGGGC	GGGGAGCGAT	GGCTTCGGTG	GCATTGCCGG
		CCGGTGAGGT					
		CAGTCGTGGC					
	64621	GCGTGCGAGT	GCGTCGTATC	GCCGTCGACT	ACGCCTCCCA	CACGCCCCAC	GTGGAAGCCA
55		TCGAGGACGA					
		GGTGGTCGAC					
	64801	GGAACCTGCG	TCGCCCCGTC	GCGCTGGACG	CGGCGGTGGC	GGAGCTGGAC	GGGTCCGTGT
	64861	TCGTGGAGTG	CAGCGCCCAT	CCGGTGCTGC	TGCCGGCGAT	GGAACAGGCC	CACACGGTGG
	64921	CGTCGTTGCG	CACCGGTGAC	GGCGGCTGGG	AGCGATGGCT	GACGGCGTTG	GCGCAGGCGT
60	64981	GGACCCTGGG	CGCGGCAGTG	GACTGGGACA	CGGTGGTCGA	ACCGGTGCCA	GGGCGGCTGC
				•			

WO 00/20601

65041 TOGATOTGCC CACCTACGCG TTCGAGCGCC GGCGCTACTG GCTGGAAGCG GCCGGTGCCA 65101 CCGACCTGTC CGCGGCCGGG CTGACAGGGG CAGCACATCC CATGCTGGCC GCCATCACGG 65161 CACTACCCGC CGACGACGGT GGTGTTGTTC TCACCGGCCG GATCTCGTTG CGCACGCATC 65021 TOTGGCTGGC TGATCACGCG GTGCGGGGGCA CGGTCCTGCT GCCGGGCACG GCCTTTGTGG 63281 AGCTGGTCAT CCGGGCCGGT GACGAGACCG GTTGCGGGAT AGTGGATGAA CTGGTCATCG 65341 AATCCCCCCT CGTGGTGCCG GCGACCGCAG CCGTGGATCT GTCGGTGACC GTGGAAGGAG 65401 CTGACGAGGC CGGACGGCGG CGAGTGACCG TCCACGCCCG CACCGAAGGC ACCGGCAGCT 65461 GGACCCGGCA CGCCAGCGGC ACCCTGACCC CCGACACCCC CGACACCCCC AACGCTTCCG 65521 GTGTTGTCGG TGCGGAGCCG TTCTCGCAGT GGCCACCTGC CACTGCCGCG GCCGTCGACA 10 65581 CCTCGGAGTT CTACTTGCGC CTGGACGCGC TGGGCTACCG GTTCGGACCC ATGTTCCGCG 65641 GAATGCGGGC TGCCTGGCGT GATGGTGACA CCGTGTACGC CGAGGTCGCG CTCCCCGAGG 65701 ACCGTGCCGC CGACGCGGAC GGTTTCGGCA TGCACCCGGC GCTGCTCGAC GCGGCCTTGC 63761 AGAGCGCAG CCTGCTCATG CTGGAATCGG ACGGCGAGCA GAGCGTGCAA CTGCCGTTCT 65821 CCTGGCACGG CGTCCGGTTC CACGCGACGG GCGCGACCAT GCTGCGGGTG GCGGTCGTAC 65881 CGGGCCCGGA CGGCCTCCGG CTGCATGCCG CGGACAGCGG GAACCGTCCC GTCGCGACGA 65941 TCGACGCGCT CGTGACCCGG TCCCCGGAGCCTCGC GCCCGCCGAT CCGATGCTGC 66001 GGGTCGGGTG GGCCCCGGTG CCCGTACCTG CCGGGCCGG TCCGTCCGAC GCGGACGTGC 66061 TGACGCTGCG CGGCGACGAC GCCGACCGGC TCGGGGAGAC CCGGGGACCTG ACCACCCGTG 66121 TTCTCGACGC GCTGCTCCGG GCCGACCGGC CGGTGATCTT CCAGGTGACC GGTGGCCTCG 20 66181 CCGCCAAGGC GGCCGCAGGC CTGGTCCGCA CCGCTCAGAA CGAGCAGCCC GGCCGCTTCT 66241 TCCTCGTCGA AACGGACCCG GGAGAGGTCC TGGACGGCGC GAAGCGCGAC GCGATCGCGG 66301 CACTCGGCGA GCCCCATGTG CGGCTGCGCG ACGGCCTCTT CGAGGCAGCC CGGCTGATGC 66361 GGGCCACGCC GTCCCTGACG CTCCCGGACA CCGGGTCGTG GCAGCTGCGG CCGTCCGCCA 66421 COGGTTCCCT CGACGACCTT GCCGTCGTCC CCACCGACGC CCCGGACCGG CCGCTCGCGG 25 66481 CCGGCGAGGT GCGGATCGCG GTACGCGCGG CGGGCCTGAA CTTCCGGGAT GTCACGGTCG 66541 CGCTCGGTGT GGTCGCCGAT GCGCGTCCGC TCGGCAGCGA GGCCGCGGGT GTCGTCCTGG 66601 AGACCGGCCC CGGTGTGCAC GACCTGGCGC CCGGCGACCG GGTCCTGGGG ATGCTCGCGG 66661 GCGCCTTCGG ACCGGTCGCG ATCACCGACC GGCGGCTGCT CGGCCGGATG CCGGACGGCT 66721 GGACGTTCCC GCAGGCGGCG TCCGTGATGA CCGCGTTCGC GACCGCGTGG TACGGCCTGG 30 66781 TCGACCTGGC CGGGCTGCGC CCCGGCGAGA AGGTCCTGAT CCACGCGGCG GCGACCGGTG 66841 TCGGCGCGGC GGCCGTCCAG ATCGCGCGGC ATCTGGGCGC GGAGGTGTAC GCGACCACCA 66901 GCGCCGCGAA GCGCCATCTG GTGGACCTGG ACGGAGCGCA TCTGGCCGAT TCCCGCAGCA 66961 CCGCGTTCGC CGACGCGTTC CCGCCGGTCG ATGTCGTGCT CAACTCGCTC ACCGGTGAAT 67021 TCCTCGACGC GTCCGTCGGC CTGCTCGCGG CGGGTGGCCG GTTCATCGAG ATGGGGAAGA 35 67081 CGGACATCCG GCACGCCGTC CAGCAGCCGT TCGACCTGAT GGACGCCGGC CCCGACCGGA 67141 TGCAGCGGAT CATCGTCGAG CTGCTCGGCC TGTTCGCGCG CGACGTGCTG CACCCGCTGC 67201 CGGTCCACGC CTGGGACGTG CGGCAGGCGC GGGAGGCGTT CGGCTGGATG AGCAGCGGGC 67261 GTCACACCGG CAAGCTGGTG CTGACGGTCC CGCGGCCGCT GGATCCCGAG GGGGCCGTCG 67321 TCATCACCGG CGGCTCCGGC ACCCTCGCCG GCATCCTCGC CCGCCACCTG GGCCACCCCC 40 67381 ACACCTACCT GCTCTCCCGC ACCCCACCCC CCGACACCAC CCCCGGCACC CACCTCCCCT 67441 GCGACGTCGG CGACCCCCAC CAACTCGCCA CCACCCTCGC CCGCATCCCC CAACCCCTCA 67501 CCGCCGTCTT CCACACCGCC GGAACCCTCG ACGACGCCCT GCTCGACAAC CTCACCCCG 67561 ACCGCGTCGA CACCGTCCTC AAACCCAAGG CCGACGCCGC CTGGCACCTG CACCGGCTCA 67621 CCCGCGACAC CGACCTCGCC GCGTTCGTCG TCTACTCCGC GGTCGCCGGC CTCATGGGCA 67681 GCCCGGGGCA GGGCAACTAC GTCGCGGCGA ACGCGTTCCT CGACGCGGC CTCATGGGCA 67741 GCCGTGCGA AGGGCTGCCC GCGCAGTCCC TCGCATGGGG CATGTGGGCG GACGTCAGCG 67801 CGCTCACCGC GAAACTCACC GACGCGGACC GCCAGCGCAT CCGGCGCAGC GGATTCCCGC 67861 CGTTGAGCGC CGCGGACGGC ATGCGGCTGT TCGACGCGGC GACGCGTACC CCGGAACCGG 67921 TCGTCGTCGC GACGACCGTC GACCTCACCC AGCTCGACGG CGCCGTCGCG CCGTTGCTCC 45 50 67981 GCGGTCTGGC CGCGCACCGG GCCGGGCCGG CGCGCACGGT CGCCCGCAAC GCCGCGAAG 68041 AGCCCCTGGC CGTGCGTCTT GCCGGGCGTA CCGCCGCCGA GCAGCGGCGC ATCATGCAGG 68101 AGGTCGTGCT CCGCCACGCG GCCGCGGTCC TCGCGTACGG GCTGGGCGAC CGCGTGGCGG 68161 CGGACCGTCC GTTCCGCGAG CTCGGTTTCG ATTCGCTGAC CGCGGTCGAC CTGCGCAATC 69221 GGCTCGCGGC CGAGACGGGG CTGCGGCTGC CGACGACGCT GGTGTTCAGC CACCCGACGG 55 68281 CGGAGGCGCT CACCGCCCAC CTGCTCGACC TGATCGACGC TCCCACCGCC CGGATCGCCG 68341 GGGAGTCCCT GCCCGCGGTG ACGGCCGCTC CCGTGGCGGC CGCGCGGGAC CAGGACGAGC 68401 CGATCGCCAT CGTGGCGATG GCGTGCCGGC TGCCCGGTGG TGTGACGTCG CCCGAGGACC 66461 TGTGGCGGCT CGTCGAGTCC GGCACCGACG CGATCACCAC GCCTCCTGAC GACCGCGGCT 68521 GGGACGTCGA CGCGCTGTAC GACGCGGACC CGGACGCGGC CGGCAAGGCG TACAACCTGC 60 68581 GGGGCGGTTA CCTGGCCGGG GCGGCGGAGT TCGACGCGGC GTTCTTCGAC ATCAGTCCGC

	6864	1 GCGAAGCGC	T CGGCATGGA	CCGCAGCAA	C GCCTGCTGC	r cgaaacggco	TGGGAGGGA
	0070.	LICGAGCGCGC	• CCGGATCAG	r ccggcgtcg	O TOOGOGGAAA	GGAGGTCCCC	CTCTATCTC
	00/0.		J GCAGGGCTA	C GGGCTGGGC	G CCGAGGACA	CGAGGGCCAC	CCCATCACAC
_	000	r electrock;	J GAGCCTGCT(F TCCGGACGG	C TGGCGT≥CG1	GOTOGGGGT	220000000
5	0000.	L CGGTCACCG	r GGACACGGC	F TGCTCGTCG	I CICIGGICGO	COTGOATOTO	SCCTCCCTCC
	68941	GGCTGCGCCT	GGGCGAGTG	GAACTCGCT	TGGCCGG2GC	GGTCTCCGTA	CTCLCTTCC
	69001	CGGCCGCGTT	CGTGGAGTTC	TCCCGCCAG	COCCECTOS	GGCCGACGGG	COCCONTRO
	69061	CGTTCGGCGC	GGGCGCGGAC	GGCACGACG	DOCTODDEDD C	GGTGGGCGTG	COCTOCAAGT
	69121	AACGGCTCTC	CGACGCCGAC	CGGCTCGGG	ACACCGTGCT	CGCCGTCGTC	CICGIACIGG
10	69181	CCGTCACGTC	CGACGGCGCC	TCCAACGGC	TCACCGCGCC	GAACGGGCTC	TOCCACAGO
	69241	GGGTCATCCG	GAAGGCGCTC		GGCTGACCGC	CGCCGACGTG	CACCACCACC
	69301	AGGGGCACGG	CACCGGCACC	CGGCTCGGCG	ACCCGGTCSA	GGCGGACGTG	CTCCTCCCC
	69361	CGTACGGGCA	GGACCGTCCG	GCACCGGTCT	GGCTGGGCTC	GCTGAAGTCG	CIGCICGCGA
	69421	ATGCCACGGC	CGCGGCCGGT	GTCGCGGGCG	TCATCAACAT	GGTGCAGGCG	AACATCGGAC
15	69481	GCACGATGCC	GCGGACGCTG	CATGTGGAGG	AGCCCTCGCC	CGCCGTCGAC	##CGGCGCGG
	69541	GACAGGTGTC	CCTGCTCGGC	TCCAACCGGC	COTECCES	CGACGAGCGT	TGGAGCACCG
	69601	CGGCCGTCTC	CGCGTTCGGG	CTCAGCGGGA	CCIGGCCCGA	CGTCATCCTG	CCGCGCCGGG
	69661	GTCCGGCGCC	CGTGGCGTCC	CAGCCGCCCC	GECCCCCCC	TGAGGAGTCC	GAACAGCACC
	69721	CGTGGGTGCT	CTCCGCGCGG	ACTCCGCCC		CCAGGCGGCC	CAGCCGCTGC
20	69781	ACCACCTCGC	GCCGCACCG	GACGCGGATC		CGGGTACGCG	CGGCTGCGCG
	69841	GCCGCGCCCA	GTTCGCCCAC	CCTCCCCCCC	TCCTCCCCAC	CACCCGGAC	CTGGCCACCA
	69901	CCGCGCTCGA	CECCETCECE	CACCCCCCC	ACCCCCCAC	AGTCGTCACC	GGATTCCGTG
	69961	ACCACCACC	CGGCCTCGCG	CTCTTCCACC	CCCACCCCGG	CCAGCGCGCC	GGGACCGCTC
	70021	CCGACCTCCA	CCCCCCCTTC	CCCCTCTTCC	CCCCCCCCCC	GGACGAGGTC	GGAATGGGGC
25	70081	TCGGCAAGCA	CCTCAAGCAC	TCCCCCACCC	ACCTCTACCA	CGGCGAACAC	TCCGACGCGT
	70141	CCCATGACAC	CCTCAAGCAC	CACCCCCCCC	TOTTO	CGAAGTGGCG	GGCGCTCTCG
	70201	TGCTGGAGCA	CTGGGGGGTG	CECCCCACC	TCCTCCTCCC	GCACTCCGTC	CTGCTGCGGC
	70261	CCGCGCGCTA	CECCCCCCCC	CTCCTCACCC	TCCCCCACCC	GACGGAGTTG	GGCGAGGTGA
	70321	GGGGGGGGG	CGCGGCGGGG	CTCCCCCCC	CCCCCATCCT	CGCCGTCGAC	ATCGTGGCCC
30	70321	CGGAGGTCGC	CCCCCCACC	CATCTCCACA	TCCCCCCCC	CAACGGCCCG	GGAAGCCCGG
-	70441	TGCTCGCCGG	TTCGCCGGAC	CATCTCCCCC	CCTTCCTACC	GGAGTGGTCG	TCCGCCGTGG
	70501	GGCGCACGAA	ACCCCTCGAC	CTCCCCCACC	CCTTCCACTC	CCGGCACGTC	GCGGCCGGGC
	70561	TCGACGCCCC	CCCTACCCTC	CTCCACTCCC	TCCCCTTCCC	CGCGGCGCGG	GACGGTGCGC
	70621	TGTCCACCAC	CACCCCCCC	CACCCCCCC	1CGCGIICGG	AACGCCCGCG	CTGCCGGTGG
35	70681	GCCATGCGCG	TOGGOGGGGGG	CTCTTCTCC	ACGACCICAT	GGAGCTGGCC	CACTGGCTGC
-	70741	TCACCACGTT	CCTCCCCCTC	CECECETECE	CCTCCCTCCC	GTCGGCCGCG	GACCGCGGCG
	70801	CCGGGGAGGA	CCCCCCCACC	TACCACCCC	TCCTCCCCCC	CCGGACCGCT	GCGGAGAGCG
	70861	CCGGGGGAGGA	CCCCCCCCCC	CACCACGCGG	CCCACCCCC	CCCGGTCGAC	GAGGAGACCG
	70921	TACTOCCCC	TCCCCCCCC	CTCCACCTTC	CCCACGGCGI	GTTCCAGCAC	CTGGCCGCGG
40	7098:	GECTECCEC	GCCCGGCCA	GEGGGGCCTTC	CCACCCTCCC	GGACACCGGG	CGTTCCTACT
. •	71041	ACTOCCACCO	GGCCGIGGCG	ACCCTCCCCC	ACATCCTCCC	TCGGCGCACC	GGTCCGGCGG
	71101	TOGGOGTONO	CCACCCCCC	CACCTCCATC	CCCAACCCAC	GTTCTTCGCG	GCGGCGCTGC
	71161	ACTCACTGGC	GGTGCAGCGG	CTCCCCAACC	ACCTCCCCTC	GGCAACCGGG	CTCGGTTTCG
	71221	CGGCGGCCGT	CCTGTTCGAC	CACCACACCC	COCCCCCC	CACCGCGTTC	CIGGACCIGC
45	71281	GGATCGAGGC	CCCCCACCAC	CCCATCACC	CCCCCCACCA	CGACGACGCG	CTCCAGGACC
	71341	TOTOGOTOOT	CGACCEGATC	CAGTCCCTCC	ACCCCCCCA	CATCGCGGCG	CCCACCGTGC
	71401	CGGACCCTCC	CCCCATCCCC	CATCTCCTCC	ACGCCGCGGA	CCATACCTGG	ACGCCGGCCC
	71461	CATCACCACC	CATACCAACC	ACCCAACCCC	CCCCCCCCCC	CGCTGCCCAT	AAGGACTACC
	71521	GENCECTENC	CCCCCCTTCC	TCCACACCCC	CACCORCCO	TCGTTCGACC	TCGCGATCCA
50	71581	CAAGCACTCC	CTCCTCCCC	CCCCCCACCA	CACGGIGGGI	GTCACCAACG	TGTTCGGCGT
-	71641	CARGUACIGG	CCCCCCCCCC	ACATCCTCCC	CGICAAGCIG	CCCGGCTGGT	ATCCGCGGTT
	71701	CCACTCACCC		CCTACCCCC	CARCUGGGGG	GGGGACTTCA	TCTCCGGGAT
	7:701	CCCCCCCT	CCCCCCCCCCC	TCCTCCCCCA	GAAGAICGCG	GGGGACTTCA	CACTGCGCGC
	71921	CCCCCCCC	CCCCCCACCC	A COME A TECCO	CCCCRACCCC	GCCTGCCTGG	ACGACATCGA
55	71021	CATCAACCCC	CCCGGCACCG	TCACCATCC	CGGGTACGCC	AAGCGGCTGC	CCTCCCTCGT
55	71001	CUTCHACGCG	CIGIACGGGC	ATCTCCCCCCGA	COTONNO	GTGCTGGAGG	CACGGATGCG
	72001	CCACATCACC	CCCCTCCTCC	CCCCCTTCCC	CG TCAAGACG	CTGACCGACG	ACTTCTTCGG
	72001	CCTCCCCTCC	COGCIGGICC	CCCCCGAAGCG	COMORGOGG	GGCGAGGACC	TGCTGCACCG
						GACGAGGCGA	
60	72121	CCCLCACGCTG	ACCONCACA	GCCACGACTC	GGTGCAGCAG	ATGGTCGGCT	ACTGCCTCTA
50	15121	CGCACTGCTC	AGCCACCCCG	AGCAGCAGGC	GGCGCTGCGC	GCGCGCCCGG	AGCTGGTCGA

	7224	1 CAACCCCC	C				
	7224	1 CMACGCGG:	GAGGAGATG	TCCGTTTCC	T GCCCGTCAA	CAGATGGGCG	TACCGCGCGT
	7236	1 CIGIGICGA	G GACGTCGAT	TGCGGGGCG	T GCGCATCCG	r gcgggcgaca	ACGTGATCCC
	7230	1 GUICTACTO	ACGGCCAAC	C GCGACCCCG	A GGTGTTCCC	CAGCCCGACA	CCTTCGATGT
5	7242	I GACGCGCCCC	G CTGGAGGGCA	A ACTTCGCGT	T CGGCCACGG	ATTCACAAGT	GTCCCGGCCA
,	7248	GCACATCGC	CGGGTGCTCA	A TCAAGGTCG	C CTGCCTGCGG	TTGTTCGAGC	GTTTCCCGGA
	/254.	1 CGTCCGGCTC	GCCGGCGACG	TGCCGATGA	A CGAGGGGCTC	: GGGCTGTTCA	GCCCCCCCA
	/260.	L GUTGCGGGT	C ACCTGGGGGG	G CGGCATGAG	T CACCCGGTGG	AGACGTTGCG	GTTGCCCTTC
	1266.	i GGGACGACGC	3 TCGCGCACAT	CAACGCGGG	C GAGGCGCAG1	TCCTCTACCG	GGAGATCTTC
10	1212.	L ACCCAGCGC1	GCTACCTGCG	CCACGGTGT(C GACCTGCGCC	CGGGGGACGT	GGTGTTCGAC
10	/2/8.	l GTCGGCGCG#	ACATCGGCAT	GTTCACGCTT	I TTCGCGCATC	TGGAGTGTCC	TEGTETERCE
	/284]	L GTGCACGCC1	TCGAGCCCGC	GCCCGTGCCC	3 TTCGCGGCGC	TGCGGGCGAA	CGTGACGCGG
	/2901	L CACGGCATCC	CGGGCCAGGC	GGACCAGTG	C GCGGTCTCCG	ACAGCTCCGG	CACCCGGAAG
	/2961	ATGACCTTCT	` ATCCCGACGC	CACGCTGATO	G TCCGGTTTCC	ACGCGGATGC	CGCGGCCCGG
	73021	. ACGGAGCTGT	TGCGCACGCT	CGGCCTCAAC	GGCGGCTACA	CCGCCGAGGA	CGTCGACACC
15	73081	ATGCTCGCGC	AACTGCCCGA	CGTCAGCGAG	GAGATCGAAA	CCCCTGTGGT	CCGGCTCTCC
	73141	GACGTCATCG	CGGAGCGCGG	TATCGAGGCC	ATCGGCCTGC	TGAAGGTCGA	CGTCCACAAC
	73201	AGCGAACGGC	AGGTCTTCGC	CGGCCTCGAG	GACACCGACT	GGCCCCGTAT	CCCCCACCAC
	73261	GTCGCGGAGG	TCCACGACAT	CGACGGCGCG	CTCGAGGAGG	TCGTCACGCT	CCTCCCCCCC
	73321	CATGGCTTCA	CCGTGGTCGC	CGAGCAGGAA	CCCCTCTTCC	CCGGCACGG	GCTCCGCGGC
20	73381	GTCGCCGCGC	GGCGGGTGGC	CGGCTGAGCG	CCGCIGIICG	CGCGGCCGTC	CATCCACCAG
	73441	GCCGCGGTGC	CCACCCCCC	TCACCCCCCC	TCCCACACAC	CCTTGGGCAG	CGCACCGGCG
	73501	CCCTTCACCC	CCACCTTCCC	CARCCCCCC	CTCGGACAGII	GTTCCACCGT	TTGCTGACGG
	73561	ACCARCCE	CCAGCIIGCG	CTCCTTCTTC	GIGAGGIGCI	GTTCCACCGT	GCTGGAGGTG
	73501	CCCCCCTCCC	CCTCCCTCA	CICCIIGIIG	GTGCGCCCGA	CCGCGGCGTG	CGACGCCACC
25	73601	TOCCOCTOCG	CCICGGTCAG	CGATGTGATC	CGCTGCGCCG	GCGTCACGTC	CTGGGTGCCG
23	73001	CCGCGTCCG	AGGACTCCCC	ACCGAGCCGC	CGGAGGAGCG	GCACGGCTCC	GCACTGGGTC
	73741	GCGAGGTGCC	GTGCGCGGCG	GAACAGTCCC	CGCGCACGGC	TGTGCCGCCG	GAGCATGCCG
	73801	CACGCTTCGC	CCATGTCGGC	GAGGACGCGG	GCCAGCTCGT	ACTGGTCGCG	GCACATGATG
	7.3861	AGCAGATCGG	CGGCCTCGTC	GAGCAGTTCG	ATCCGCTTGG	CCGGCGGACT	GTAGGCCGCC
20	/3921	TGCACCCGCA	GCGTCATCAC	CCGCGCCCGG	GACCCCATCG	GCCGGGACAG	CTGCTCGGAG
30	/3981	ATGAGCCTCA	GCCCCTCGTC	ACGGCCGCGG	CCGAGCAGCA	GAAGCGCTTC	GGCGGCGTCG
	74041	ACCCGCCACA	GGGCCAGGCC	CGGCACGTCG	ACGGACCAGC	GTCGCATCCG	CTCCCCGCAG
	74101	TCCCGGAACG	CGTTGTACGC	CGCCCGGTAC	CGCCCGGCCG	CGAGATGGTG	TTGCCCACGG
	74161	GCCCAGACCA	TGTGCAGTCC	GAAGAGGCTG	TCGGAGGTCT	CCTCCGGCAA	CGGCTCGGCG
	74221	AGCCACCGCT	CCGCCCGGTC	CAGGTCGCCC	AGTCGGATCG	CGGCGGCCAC	GGTGCTGCTC
35						GGGGGGCGAG	
						CGGCCTCGGC	
						CACCGGCCAG	
	74461	CAGGACTGGA	CGGCATCGGT	GTCCTCGGCG	TAGAGCAGGG	CCAGCAACGC	CATCATGGTC
	74521	GTGGTCCGGT	CCGTCGTGAC	CCGGGAGTGC	TGGAGCACGT	ACTCGGCTTT	GGCCTCGGCC
40	74581	TGTTCGGACC	AGCCGCGCAG	CGCGTTGCTC	AGGGCCTTGT	CGGCGACGGC	GCGGTGCCGG
	74641	ACGGCTCCGG	AAAACGAGGC	GACCTCGTCC	TCGGCCGGCG	GATCGGCCGG	ACGCGGCGGA
	74701	TCGGCCGCGC	CGGGATAGAT	CAGCGCGAGG	GACAGGTCCG	CGACGCGCAG	GTGCGCCCGG
	74761	CCCTGCTCGC	TCGGGGCGGC	GGAGCGCTGG	GCCGCCAGGA	CCTCGGCGGC	CTCGCCCGGC
						GCTCGCTGGA	
45	74881	TCCCGCGACG	CGGTGAGCAG	CTCGGGCACA	TGCCGGCCGG	ATCTGGCGGG	ATCGCAGAGC
						CGGCGGGGTC	
						CGCCGCGCAG	
						GCACCCGGCC	
						GCAGCAGTTC	
50						GTACGACGGA	
						CCAGCTGTTC	
	75301	TCCACCCCCT	CCCTCTCC	CCGCAGCAGC	CCCTCCTCCA	GGGTGAGTTC	GIGGGCCIGC
	75361	CCCACCACCC	CGGIGICGAG	CCCGGTCATC	ACCCCCCCCCC	GGGTGAGTTC	GACACTCTCG
						GGCCGCAACG .	
55	75441	CTCCAGGTAGG	CGAGCCGGTA	CGCCCCCCC	GCGACCACTT	CCAGGCACCC	TGAGGTCCGT
,,	75481	GICCGTGCCT	CCCGGATGTC	GTCGATCAGG	CCGTGGCCGA	GGAGCAGGTT	GCCGCCGGTC
						GGCCGAGGTG	
						TCTCCTGGTA	
						GCCGGAGCAG	
(()						GGAGCAGGCA	
60	75781	GGCGCGTCGG	CGTGGTGCAC	GTCGTCGATG	CCGATCAGTA	CGGGCCGCTC	CGCGGCGAGC

	75841	CECACCACC					
	75901	TOORNOON	TGCGGGTGAG	TTCGGTCCCC	AGGCGGTTG?	CGACGTCGGC	CGGCAGGTTT
		LOGCACGAIG	J CCGTCAGCCG	GACCAGCTCC	: GGTGTCCGG	COCCONCORO	
	76021	AGGAGCTGGC	- CGAGCATGCC	GTACGGCAGG	GCCCGCTCCT	CCATGGAGCA	CACCGCGCGA
5	7002	. AGGGIGACUA	AGCCGGCCTT	GGCCGCGGCG	GCGTCGAGGA	GTTCGGTCTT	GCCCCACCCC
,		ATCGGCCCGC		GACGACGCCC	CGCCCGCCCC	CCGCTCGGGT	C1.0000000
	76141	. TGGAGGGAAC	. CGAACTCGTC	ATCGCGGGCG	ATCAGGTCTG	GGGGAGATAA	CCCCCCCC
	76201	ACGAATGGAA	CTACCTCGCG	ACCGTCGTGG	AAACCCATAG	GCATCACATC	CCCCCCCCC
	70201	CIGIACGGCI	GIGATTCAGC	CTGGCGGGAT	GCTGTGCTAC	ACATOCCAAC	N.T.C.T.C.N.T.
10	76321	GGGCCGTGCC	GTTCCCTCAG	GAGCCGACCG	CCCCCGGCGC	CACCCGCCGT	ACCCCCCCCC
10	,0301	CCACCAGCTC	GGCGACCCGC	TCCTGGTGGT	CGACGAGGTA	GAAGTGCCCG	CCCCCCDACA
	76441	CC : CCACCGT	GGTCGGCGCG	GTCGTGTGCC	CGGCCCAGGC	GTGGGCCTGC	TCCTCCCTCC
	76501	TCTTCGGATC	GTCGTCACCG	ATGCACACCG	TGATCGGCGT	CTCCAGCGGC	GGCGCGGGCT
	76561	CCCACCGGTA	CGTCTCCGCC	GCGTAGTAGT	CCGCCCGCAA	CGGCGCCAGG	ATCICCCCC
1.5	76621	GCATTTCGTC	GTCCGCCATC	ACATCGGCGC	TCGTCCCGCC	GAGGCCGATG	ACCCCCCCC
13	76681	GCAGCTCGTC	GTCGGACGCG	AGGTGGTCCT	GGTCGGCGCG	CGGCTGCGAC	CCCCCCCCC
	76741	GGCCCGAGAC	GATCAGGTGC	GCCACCGGGA	GCCGCTGGGC	CAGCTCGAAC	CCCACTCTCC
	76801	CGCCCATGCT	GTGGCCGAAC	AGCACCAGCG	GACGGTCCAG	CCCCGGCTTC	AACCCCTCCC
	76861	CCACGAGGCC	GGCGAGAACA	CGCAGGTCGC	GCACCGCCTC	CTCGTCGCGG	CCCCCCCCC
20	76921	GGCCGGGGTA	CTGCACGGCG	TACACGTCCG	CCACCGGGGC	GAGCGCACGC	CCCTCCCCT
20	/6981	GGTAGAACGT	CGCCGATCCG	CCGGCGTGGG	GCAGCAGCAC	CACCCGTACC	GGGGCCTCGG
	77041	GCGTGGGGAA	GAACTGCCGC	AGCCAGAGTT	CCGAGCTCAC	CGCACCCCCT	CCCCCCCC
	77101	CTGGGGAGCC	CGGAACCGGG	TGATCTCGGC	CAAGTGCTTC	TCCCGCATCT	CCGGGTCGGT
	11701	CACGCCCCAT	CCCTCCTCCG	GCGCCAGACA	GAGGACGCCG	ACTTTGCCGT	TOTOTOTO
26	77221	GCGATGCACA	TCGCGCACCG	CCGACCCGAC	GTCGTCGAGC	GGGTAGGTCA	CCGACAGCGT
25	//281	CGGGTGCACC	ATCCCCTTGC	AGATCAGGCG	GTTCGCCTCC	CACGCCTCAC	GATAGTTCGC
	1/341	GAAGTGGGTA	CCGATGATCC	GCTTCACGGA	CATCCACAGG	TACCGATTGT	CAAAGGCGTG
	77401	CTCGTATCCC	GAGGTTGACG	CGCAGGTGAC	GATCGTGCCA	CCCCGACGTG	TCACGTAGAC
	77461	ACTCGCGCCG	AACGTCGCGC	GCCCCGGGTG	CTCGAACACG	ATGTCGGGAT	CGTCACCGCC
3.0	77521	GGTCAGCTCC	CGGATC				,
30							

Those of skill in the art will recognize that, due to the degenerate nature of the genetic code, a variety of DNA compounds differing in their nucleotide sequences can be used to encode a given amino acid sequence of the invention. The native DNA sequence encoding the FK-520 PKS of *Streptomyces hygroscopicus* is shown herein merely to illustrate a preferred embodiment of the invention, and the present invention includes DNA compounds of any sequence that encode the amino acid sequences of the polypeptides and proteins of the invention. In similar fashion, a polypeptide can typically tolerate one or more amino acid substitutions, deletions, and insertions in its amino acid sequence without loss or significant loss of a desired activity. The present invention includes such polypeptides with alternate amino acid sequences, and the amino acid sequences shown merely illustrate preferred embodiments of the invention.

The recombinant nucleic acids, proteins, and peptides of the invention are many and diverse. To facilitate an understanding of the invention and the diverse compounds and methods provided thereby, the following general description of the FK-520 PKS genes and modules of the PKS proteins encoded thereby is provided. This general description is followed by a more detailed description of the various domains and modules of the FK-520

35

40

PKS contained in and encoded by the compounds of the invention. In this description, reference to a heterologous PKS refers to any PKS other than the FK-520 PKS. Unless otherwise indicated, reference to a PKS includes reference to a portion of a PKS. Moreover, reference to a domain, module, or PKS includes reference to the nucleic acids encoding the same and vice-versa, because the methods and reagents of the invention provide or enable one to prepare proteins and the nucleic acids that encode them.

The FK-520 PKS is composed of three proteins encoded by three genes designated fkbA, fkbB, and fkbC. The fkbA ORF encodes extender modules 7 - 10 of the PKS. The fkbB ORF encodes the loading module (the CoA ligase) and extender modules 1 - 4 of the PKS. The fkbC ORF encodes extender modules 5 - 6 of the PKS. The fkbP ORF encodes the NRPS that attaches the pipecolic acid and cyclizes the FK-520 polyketide.

The loading module of the FK-520 PKS includes a CoA ligase, an ER domain, and an ACP domain. The starter building block or unit for FK-520 is believed to be a dihydroxycyclohexene carboxylic acid, which is derived from shikimate. The recombinant DNA compounds of the invention that encode the loading module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of methods and in a variety of compounds. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 loading module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for the loading module of the heterologous PKS is replaced by the coding sequence for the FK-520 loading module, provides a novel PKS coding sequence. Examples of heterologous PKS coding sequences include the rapamycin, FK-506, rifamycin, and avermectin PKS coding sequences. In another embodiment, a DNA compound comprising a sequence that encodes the FK-520 loading module is inserted into a DNA compound that comprises the coding sequence for the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the loading module coding sequence is utilized in conjunction with a heterologous coding sequence. In this embodiment, the invention provides, for example, either replacing the CoA ligase with a different CoA ligase, deleting the ER, or replacing the ER with a different ER. In addition, or alternatively, the ACP can be replaced by another ACP. In similar fashion, the corresponding domains in another loading or extender module can be replaced by one or more domains of the FK-520 PKS. The resulting heterologous loading module coding sequence can be utilized in conjunction

5

10

15

20

25

48

with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide.

The first extender module of the FK-520 PKS includes a KS domain, an AT domain specific for methylmalonyl CoA, a DH domain, a KR domain, and an ACP domain. The recombinant DNA compounds of the invention that encode the first extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 first extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the first extender module of the FK-520 PKS or the latter is merely added to coding sequences for modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the first extender module of the FK-520 PKS is inserted into a DNA compound that comprises the remainder of the coding sequence for the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, all or only a portion of the first extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2hydroxymalonyl CoA specific AT; deleting either the DH or KR or both; replacing the DH or KR or both with another DH or KR; and/or inserting an ER. In replacing or inserting KR, DH, and ER domains, it is often beneficial to replace the existing KR, DH, and ER domains with the complete set of domains desired from another module. Thus, if one desires to insert an ER domain, one may simply replace the existing KR and DH domains with a KR, DH, and ER set of domains from a module containing such domains. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR. ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a gene for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous first extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous

5

10

15

20

25

PKS can be replaced by one or more domains of the first extender module of the FK-520 PKS.

In an illustrative embodiment of this aspect of the invention, the invention provides recombinant PKSs and recombinant DNA compounds and vectors that encode such PKSs in which the KS domain of the first extender module has been inactivated. Such constructs are especially useful when placed in translational reading frame with the remaining modules and domains of an FK-520 or FK-520 derivative PKS. The utility of these constructs is that host cells expressing, or cell free extracts containing, the PKS encoded thereby can be fed or supplied with N-acylcysteamine thioesters of novel precursor molecules to prepare FK-520 derivatives. See U.S. patent application Serial No. 60/117,384, filed 27 Jan. 1999, and PCT patent publication Nos. US97/02358 and US99/03986, each of which is incorporated herein by reference.

The second extender module of the FK-520 PKS includes a KS, an AT specific for methylmalonyl CoA, a KR, an inactive DH, and an ACP. The recombinant DNA compounds of the invention that encode the second extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 second extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the second extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the second extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, all or a portion of the second extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting the KR and/or the inactive DH; replacing the KR with another KR; and/or inserting an active DH or an active DH and an ER. In addition. the KS and/or ACP can be replaced with another KS and/or ACP. In each of these

5

10

15

20

25

50

replacements or insertions, the heterologous KS. AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous second extender module coding sequence can be utilized in conjunction with a coding sequence from a PKS that synthesizes FK-520.

an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the second

extender module of the FK-520 PKS.

5

The third extender module of the FK-520 PKS includes a KS, an AT specific for malonyl CoA, a KR, an inactive DH, and an ACP. The recombinant DNA compounds of the 10 invention that encode the third extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 third extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS 15 is either replaced by that for the third extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the third extender module of the FK-520 PKS is inserted into a DNA 20 compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, all or a portion of the third extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the malonyl CoA specific AT with a methylmalonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting the KR and/or the inactive DH; replacing the KR with another KR; and/or inserting an active DH or an active DH and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous third extender module coding sequence can be utilized in conjunction with a coding sequence from a PKS that synthesizes FK-520, an

25

30.

FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the third extender module of the FK-520 PKS.

The fourth extender module of the FK-520 PKS includes a KS, an AT that binds ethylmalonyl CoA, an inactive DH, and an ACP. The recombinant DNA compounds of the invention that encode the fourth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 fourth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the fourth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the fourth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the remainder of the coding sequence for the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

Ł

In another embodiment, a portion of the fourth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the ethylmalonyl CoA specific AT with a malonyl CoA, methylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; and/or deleting the inactive DH, inserting a KR, a KR and an active DH, or a KR, an active DH, and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, a PKS for a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous fourth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the fourth extender module of the FK-520 PKS.

As illustrative examples, the present invention provides recombinant genes, vectors, and host cells that result from the conversion of the FK-506 PKS to an FK-520 PKS and vice-versa. In one embodiment, the invention provides a recombinant set of FK-506 PKS

5

10

15

20

25

52

genes but in which the coding sequences for the fourth extender module or at least those for the AT domain in the fourth extender module have been replaced by those for the AT domain of the fourth extender module of the FK-520 PKS. This recombinant PKS can be used to produce FK-520 in recombinant host cells. In another embodiment, the invention provides a recombinant set of FK-520 PKS genes but in which the coding sequences for the fourth extender module or at least those for the AT domain in the fourth extender module have been replaced by those for the AT domain of the fourth extender module of the FK-506 PKS. This recombinant PKS can be used to produce FK-506 in recombinant host cells.

Other examples of hybrid PKS enzymes of the invention include those in which the AT domain of module 4 has been replaced with a malonyl specific AT domain to provide a PKS that produces 21-desethyl-FK520 or with a methylmalonyl specific AT domain to provide a PKS that produces 21-desethyl-21-methyl-FK520. Another hybrid PKS of the invention is prepared by replacing the AT and inactive KR domain of FK-520 extender module 4 with a methylmalonyl specific AT and an active KR domain, such as, for example, from module 2 of the DEBS or oleandolide PKS enzymes, to produce 21-desethyl-21-methyl-22-desoxo-22-hydroxy-FK520. The compounds produced by these hybrid PKS enzymes are neurotrophins.

The fifth extender module of the FK-520 PKS includes a KS, an AT that binds methylmalonyl CoA, a DH, a KR, and an ACP. The recombinant DNA compounds of the invention that encode the fifth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 fifth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the fifth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS. In another embodiment, a DNA compound comprising a sequence that encodes the fifth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the fifth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA

5

10

1.5

20

25

10

15

20

25

30

specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting any one or both of the DH and KR; replacing any one or both of the DH and KR with either a KR and/or DH; and/or inserting an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous fifth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the fifth extender module of the FK-520 PKS.

In an illustrative embodiment, the present invention provides a set of recombinant FK-520 PKS genes in which the coding sequences for the DH domain of the fifth extender module have been deleted or mutated to render the DH non-functional. In one such mutated gene, the KR and DH coding sequences are replaced with those encoding only a KR domain from another PKS gene. The resulting PKS genes code for the expression of an FK-520 PKS that produces an FK-520 analog that lacks the C-19 to C-20 double bond of FK-520 and has a C-20 hydroxyl group. Such analogs are preferred neurotrophins, because they have little or no immunosuppressant activity. This recombinant fifth extender module coding sequence can be combined with other coding sequences to make additional compounds of the invention. In an illustrative embodiment, the present invention provides a recombinant FK-520 PKS that contains both this fifth extender module and the recombinant fourth extender module described above that comprises the coding sequence for the fourth extender module AT domain of the FK-506 PKS. The invention also provides recombinant host cells derived from FK-506 producing host cells that have been mutated to prevent production of FK-506 but that express this recombinant PKS and so synthesize the corresponding (lacking the C-19 to C-20 double bond of FK-506 and having a C-20 hydroxyl group) FK-506 derivative. In another embodiment, the present invention provides a recombinant FK-506 PKS in which the DH domain of module 5 has been deleted or otherwise rendered inactive and thus produces this novel polyketide.

The sixth extender module of the FK-520 PKS includes a KS, an AT specific for methylmalonyl CoA, a KR, a DH, an ER, and an ACP. The recombinant DNA compounds

of the invention that encode the sixth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 sixth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the sixth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the sixth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the sixth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting any one, two, or all three of the KR, DH, and ER; and/or replacing any one, two, or all three of the KR, DH, and ER with another KR, DH, and ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous sixth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the sixth extender module of the FK-520 PKS.

In an illustrative embodiment, the present invention provides a set of recombinant FK-520 PKS genes in which the coding sequences for the DH and ER domains of the sixth extender module have been deleted or mutated to render them non-functional. In one such mutated gene, the KR, ER, and DH coding sequences are replaced with those encoding only a KR domain from another PKS gene. This can also be accomplished by simply replacing the coding sequences for extender module six with those for an extender module having a methylmalonyl specific AT and only a KR domain from a heterologous PKS gene. such as.

10

15

20

25

10

15

20

25

30 -

for example, the coding sequences for extender module two encoded by the *ervAI* gene. The resulting PKS genes code for the expression of an FK-520 PKS that produces an FK-520 analog that has a C-18 hydroxyl group. Such analogs are preferred neurotrophins, because they have little or no immunosuppressant activity. This recombinant sixth extender module coding sequence can be combined with other coding sequences to make additional compounds of the invention. In an illustrative embodiment, the present invention provides a recombinant FK-520 PKS that contains both this sixth extender module and the recombinant fourth extender module described above that comprises the coding sequence for the fourth extender module AT domain of the FK-506 PKS. The invention also provides recombinant host cells derived from FK-506 producing host cells that have been mutated to prevent production of FK-506 but that express this recombinant PKS and so synthesize the corresponding (having a C-18 hydroxyl group) FK-506 derivative. In another embodiment, the present invention provides a recombinant FK-506 PKS in which the DH and ER domains of module 6 have been deleted or otherwise rendered inactive and thus produces this novel polyketide.

The seventh extender module of the FK-520 PKS includes a KS, an AT specific for 2-hydroxymalonyl CoA, a KR, a DH, an ER, and an ACP. The recombinant DNA compounds of the invention that encode the seventh extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 seventh extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the seventh extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the seventh extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion or all of the seventh extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the 2-hydroxymalonyl CoA specific AT with a methylmalonyl CoA, ethylmalonyl CoA, or

15

20

25

30

malonyl CoA specific AT; deleting the KR, the DH, and/or the ER; and/or replacing the KR, DH, and/or ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR. ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous seventh extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the seventh extender module of the FK-520 PKS.

In an illustrative embodiment, the present invention provides a set of recombinant FK-520 PKS genes in which the coding sequences for the AT domain of the seventh extender module has been replaced with those encoding an AT domain for malonyl. methylmalonyl, or ethylmalonyl CoA from another PKS gene. The resulting PKS genes code for the expression of an FK-520 PKS that produces an FK-520 analog that lacks the C-15 methoxy group, having instead a hydrogen, methyl, or ethyl group at that position, respectively. Such analogs are preferred, because they are more slowly metabolized than FK-520. This recombinant seventh extender module coding sequence can be combined with other coding sequences to make additional compounds of the invention. In an illustrative embodiment, the present invention provides a recombinant FK-520 PKS that contains both this seventh extender module and the recombinant fourth extender module described above that comprises the coding sequence for the fourth extender module AT domain of the FK-506 PKS. The invention also provides recombinant host cells derived from FK-506 producing host cells that have been mutated to prevent production of FK-506 but that express this recombinant PKS and so synthesize the corresponding (C-15-desmethoxy) FK-506 derivative. In another embodiment, the present invention provides a recombinant FK-506 PKS in which the AT domain of module 7 has been replaced and thus produces this novel polyketide.

In another illustrative embodiment, the present invention provides a hybrid PKS in which the AT and KR domains of module 7 of the FK-520 PKS are replaced by a methylmalonyl specific AT domain and an inactive KR domain, such as, for example, the AT and KR domains of extender module 6 of the rapamycin PKS. The resulting hybrid PKS produces 15-desmethoxy-15-methyl-16-oxo-FK-520, a neurotrophin compound.

10

15

20

25

30

The eighth extender module of the FK-520 PKS includes a KS, an AT specific for 2-hydroxymalonyl CoA, a KR, and an ACP. The recombinant DNA compounds of the invention that encode the eighth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 eighth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the eighth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the eighth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the eighth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the 2-hydroxymalonyl CoA specific AT with a methylmalonyl CoA, ethylmalonyl CoA, or malonyl CoA specific AT; deleting or replacing the KR; and/or inserting a DH or a DH and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous eighth extender module coding sequence can be utilized in conjunction with a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the eighth extender module of the FK-520 PKS.

In an illustrative embodiment, the present invention provides a set of recombinant FK-520 PKS genes in which the coding sequences for the AT domain of the eighth extender module has been replaced with those encoding an AT domain for malonyl, methylmalonyl, or ethylmalonyl CoA from another PKS gene. The resulting PKS genes code for the expression of an FK-520 PKS that produces an FK-520 analog that lacks the C-13 methoxy group, having instead a hydrogen, methyl, or ethyl group at that position, respectively. Such

WO 00/20601 PCT/US99/22886

58

analogs are preferred, because they are more slowly metabolized than FK-520. This recombinant eighth extender module coding sequence can be combined with other coding sequences to make additional compounds of the invention. In an illustrative embodiment, the present invention provides a recombinant FK-520 PKS that contains both this eighth extender module and the recombinant fourth extender module described above that comprises the coding sequence for the fourth extender module AT domain of the FK-506 PKS. The invention also provides recombinant host cells derived from FK-506 producing host cells that have been mutated to prevent production of FK-506 but that express this recombinant PKS and so synthesize the corresponding (C-13-desmethoxy) FK-506 derivative. In another embodiment, the present invention provides a recombinant FK-506 PKS in which the AT domain of module 8 has been replaced and thus produces this novel polyketide.

The ninth extender module of the FK-520 PKS includes a KS, an AT specific for methylmalonyl CoA, a KR, a DH. an ER, and an ACP. The recombinant DNA compounds of the invention that encode the ninth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 ninth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the ninth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the ninth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion of the ninth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; deleting any one, two, or all three of the KR, DH, and ER; and/or replacing any one, two, or all three of the KR, DH, and ER with another KR, DH, and/or ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can

5

10

15

20

. 25

15

20

25

30.

originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous ninth extender module coding sequence can be utilized in conjunction with a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a module of a heterologous PKS can be replaced by one or more domains of the ninth extender module of the FK-520 PKS.

The tenth extender module of the FK-520 PKS includes a KS, an AT specific for malonyl CoA, and an ACP. The recombinant DNA compounds of the invention that encode the tenth extender module of the FK-520 PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the FK-520 tenth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the tenth extender module of the FK-520 PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that encodes the tenth extender module of the FK-520 PKS is inserted into a DNA compound that comprises the coding sequence for the remainder of the FK-520 PKS or a recombinant FK-520 PKS that produces an FK-520 derivative.

In another embodiment, a portion or all of the tenth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, either replacing the malonyl CoA specific AT with a methylmalonyl CoA, ethylmalonyl CoA, or 2-hydroxymalonyl CoA specific AT; and/or inserting a KR, a KR and DH, or a KR, DH, and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the FK-520 PKS, from a coding sequence for a PKS that produces a polyketide other than FK-520, or from chemical synthesis. The resulting heterologous tenth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes FK-520, an FK-520 derivative, or another polyketide. In similar fashion, the corresponding domains in a

WO 00/20601 PCT/US99/22886

60

module of a heterologous PKS can be replaced by one or more domains of the tenth extender module of the FK-520 PKS.

The FK-520 polyketide precursor produced by the action of the tenth extender module of the PKS is then attached to pipecolic acid and cyclized to form FK-520. The enzyme FkbP is the NRPS like enzyme that catalyzes these reactions. FkbP also includes a thioesterase activity that cleaves the nascent FK-520 polyketide from the NRPS. The present invention provides recombinant DNA compounds that encode the fkbP gene and so provides recombinant methods for expressing the fkbP gene product in recombinant host cells. The recombinant fkbP genes of the invention include those in which the coding sequence for the adenylation domain has been mutated or replaced with coding sequences from other NRPS like enzymes so that the resulting recombinant FkbP incorporates a moiety other than pipecolic acid. For the construction of host cells that do not naturally produce pipecolic acid, the present invention provides recombinant DNA compounds that express the enzymes that catalyze at least some of the biosynthesis of pipecolic acid (see Nielsen et al., 1991, Biochem. 30: 5789-96). The fkbL gene encodes a homolog of RapL, a lysine cyclodeaminase responsible in part for producing the pipecolate unit added to the end of the polyketide chain. The fkbB and fkbL recombinant genes of the invention can be used in heterologous hosts to produce compounds such as FK-520 or, in conjunction with other PKS or NRPS genes, to produce known or novel polyketides and non-ribosmal peptides.

The present invention also provides recombinant DNA compounds that encode the P450 oxidase and methyltransferase genes involved in the biosynthesis of FK-520. Figure 2 shows the various sites on the FK-520 polyketide core structure at which these enzymes act. By providing these genes in recombinant form, the present invention provides recombinant host cells that can produce FK-520. This is accomplished by introducing the recombinant PKS, P450 oxidase, and methyltransferase genes into a heterologous host cell. In a preferred embodiment, the heterologous host cell is Streptomyces coelicolor CH999 or Streptomyces lividans K4-114, as described in U.S. Patent No. 5,830,750 and U.S. patent application Serial Nos. 08/828,898, filed 31 Mar. 1997, and 09/181,833, filed 28 Oct. 1998, each of which is incorporated herein by reference. In addition, by providing recombinant host cells that express only a subset of these genes, the present invention provides methods for making FK-520 precursor compounds not readily obtainable by other means.

In a related aspect, the present invention provides recombinant DNA compounds and vectors that are useful in generating, by homologous recombination, recombinant host

5

10

15

20

25

WO 00/20601

5

10

15

20

25

30

cells that produce FK-520 precursor compounds. In this aspect of the invention, a native host cell that produces FK-520 is transformed with a vector (such as an SCP2* derived vector for *Streptomyces* host cells) that encodes one or more disrupted genes (i.e., a hydroxylase, a methyltransferase, or both) or merely flanking regions from those genes. When the vector integrates by homologous recombination, the native, functional gene is deleted or replaced by the non-functional recombinant gene, and the resulting host cell thus produces an FK-520 precursor. Such host cells can also be complemented by introduction of a modified form of the deleted or mutated non-functional gene to produce a novel compound.

In one important embodiment, the present invention provides a hybrid PKS and the corresponding recombinant DNA compounds that encode those hybrid PKS enzymes. For purposes of the present invention a hybrid PKS is a recombinant PKS that comprises all or part of one or more modules and thioesterase/cyclase domain of a first PKS and all or part of one or more modules, loading module, and thioesterase/cyclase domain of a second PKS. In one preferred embodiment, the first PKS is all or part of the FK-520 PKS, and the second PKS is only a portion or all of a non-FK-520 PKS.

One example of the preferred embodiment is an FK-520 PKS in which the AT domain of module 8, which specifies a hydroxymalonyl CoA and from which the C-13 methoxy group of FK-520 is derived, is replaced by an AT domain that specifies a malonyl, methylmalonyl, or ethylmalonyl CoA. Examples of such replacement AT domains include the AT domains from modules 3, 12, and 13 of the rapaymycin PKS and from modules 1 and 2 of the erythromycin PKS. Such replacements, conducted at the level of the gene for the PKS, are illustrated in the examples below. Another illustrative example of such a hybrid PKS includes an FK-520 PKS in which the natural loading module has been replaced with a loading module of another PKS. Another example of such a hybrid PKS is an FK-520 PKS in which the AT domain of module three is replaced with an AT domain that binds methylmalonyl CoA.

In another preferred embodiment, the first PKS is most but not all of a non-FK-520 PKS, and the second PKS is only a portion or all of the FK-520 PKS. An illustrative example of such a hybrid PKS includes an erythromycin PKS in which an AT specific for methylmalonyl CoA is replaced with an AT from the FK-520 PKS specfic for malonyl CoA.

Those of skill in the art will recognize that all or part of either the first or second PKS in a hybrid PKS of the invention need not be isolated from a naturally occurring source. For example, only a small portion of an AT domain determines its specificity. See U.S. provisional patent application Serial No. 60/091,526, incorporated herein by reference.

The state of the art in DNA synthesis allows the artisan to construct de novo DNA compounds of size sufficient to construct a useful portion of a PKS module or domain. For purposes of the present invention, such synthetic DNA compounds are deemed to be a portion of a PKS.

Thus, the hybrid modules of the invention are incorporated into a PKS to provide a hybrid PKS of the invention. A hybrid PKS of the invention can result not only:

- (i) from fusions of heterologous domain (where heterologous means the domains in that module are from at least two different naturally occurring modules) coding sequences to produce a hybrid module coding sequence contained in a PKS gene whose product is incorporated into a PKS,
- 15 but also:

3

10

- (ii) from fusions of heterologous module (where heterologous module means two modules are adjacent to one another that are not adjacent to one another in naturally occurring PKS enzymes) coding sequences to produce a hybrid coding sequence contained in a PKS gene whose product is incorporated into a PKS,
- 20 (iii) from expression of one or more FK-520 PKS genes with one or more non-FK-520 PKS genes, including both naturally occurring and recombinant non-FK-520 PKS genes, and
- (iv) from combinations of the foregoing.

 Various hybrid PKSs of the invention illustrating these various alternatives are described herein.

Examples of the production of a hybrid PKS by co-expression of PKS genes from the FK-520 PKS and another non-FK-520 PKS include hybrid PKS enzymes produced by coexpression of FK-520 and rapamycin PKS genes. Preferably, such hybrid PKS enzymes are produced in recombinant *Streptomyces* host cells that produce FK-520 or FK-506 but have been mutated to inactivate the gene whose function is to be replaced by the rapamycin PKS gene introduced to produce the hybrid PKS. Particular examples include (i) replacement of the fkbC gene with the rapB gene; and (ii) replacement of the fkbA gene with the rapC gene. The latter hybrid PKS produces 13,15-didesmethoxy-FK-520, if the host cell

10

15

20

25

30

is an FK-520 producing host cell, and 13,15-didesmethoxy-FK-506, if the host cell is an FK-506 producing host cell. The compounds produced by these hybrid PKS enzymes are immunosuppressants and neurotrophins but can be readily modified to act only as neurotrophins, as described in Example 6, below.

Other illustrative hybrid PKS enzymes of the invention are prepared by replacing the fkbA gene of an FK-520 or FK-506 producing host cell with a hybrid fkbA gene in which: (a) the extender module 8 through 10, inclusive, coding sequences have been replaced by the coding sequnces for extender modules 12 to 14, inclusive, of the rapamycin PKS; and (b) the module 8 coding sequences have been replaced by the module 8 coding sequence of the rifamycin PKS. When expressed with the other, naturally occurring FK-520 or FK-506 PKS genes and the genes of the modification enzymes, the resulting hybrid PKS enzymes produce, respectively, (a) 13-desmethoxy-FK-520 or 13-desmethoxy-FK-506; and (b) 13desmethoxy-13-methyl-FK-520 or 13-desmethoxy-13-methyl-FK-506. In a preferred embodiment, these recombinant PKS genes of the invention are introduced into the producing host cell by a vector such as pHU204, which is a plamsid pRM5 derivative that has the well-characterized SCP2* replicon, the colE1 replicon, the tsr and bla resistance genes, and a cos site. This vector can be used to introduce the recombinant fkbA replacement gene in an FK-520 or FK-506 producing host cell (or a host cell derived therefrom in which the endogenous fkbA gene has either been rendered inactive by mutation, deletion or homologous recombination with the gene that replaces it) to produce the desired hybrid PKS.

In constructing hybrid PKSs of the invention, certain general methods may be helpful. For example, it is often beneficial to retain the framework of the module to be altered to make the hybrid PKS. Thus, if one desires to add DH and ER functionalities to a module, it is often preferred to replace the KR domain of the original module with a KR, DH, and ER domain-containing segment from another module, instead of merely inserting DH and ER domains. One can alter the stereochemical specificity of a module by replacement of the KS domain with a KS domain from a module that specifies a different stereochemistry. See Lau et al., 1999, "Dissecting the role of acyltransferase domains of modular polyketide synthases in the choice and stereochemical fate of extender units," Biochemistry 38(5):1643-1651, incorporated herein by reference. Stereochemistry can also be changed by changing the KR domain. Also, one can alter the specificity of an AT domain by changing only a small segment of the domain. See Lau et al., supra. One can

also take advantage of known linker regions in PKS proteins to link modules from two different PKSs to create a hybrid PKS. See Gokhale *et al.*, 16 Apr. 1999, "Dissecting and Exploiting Intermodular Communication in Polyketide Synthases," *Science 284*: 482-485, incorporated herein by reference.

The following Table lists references describing illustrative PKS genes and corresponding enzymes that can be utilized in the construction of the recombinant PKSs and the corresponding DNA compounds that encode them of the invention. Also presented are various references describing tailoring enzymes and corresponding genes that can be employed in accordance with the methods of the present invention.

10 Avermectin

5

15

25

30

U.S. Pat. No. 5,252,474 to Merck.

MacNeil et al., 1993, Industrial Microorganisms: Basic and Applied Molecular

Genetics, Baltz, Hegeman, & Skatrud, eds. (ASM), pp. 245-256, A Comparison of the

Genes Encoding the Polyketide Synthases for Avermectin, Erythromycin, and Nemadectin.

MacNeil et al., 1992, Gene 115: 119-125, Complex Organization of the Streptomyces avermittilis genes encoding the avermectin polyketide synthase.

Ikeda et al., Aug. 1999, Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis, Proc. Natl. Acad. Sci. USA 96: 9509-9514.

20 Candicidin (FR008)

Hu et al., 1994, Mol. Microbiol. 14: 163-172.

Epothilone

U.S. Pat. App. Serial No. 60/130,560, filed 22 April 1999.

Erythromycin

PCT Pub. No. 93/13663 to Abbott.

US Pat. No. 5,824,513 to Abbott.

Donadio et al., 1991, Science 252:675-9.

Cortes et al., 8 Nov. 1990, Nature 348:176-8, An unusually large multifunctional polypeptide in the erythromycin producing polyketide synthase of Saccharopolyspora erythraea.

Glycosylation Enzymes

PCT Pat. App. Pub. No. 97/23630 to Abbott.

FK-506

Motamedi et al., 1998, The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK-506, Eur. J. biochem. 256: 528-534.

Motamedi et al., 1997, Structural organization of a multifunctional polyketide synthase involved in the biosynthesis of the macrolide immunosuppressant FK-506, Eur. J. Biochem. 244: 74-80.

Methyltransferase

US 5,264,355, issued 23 Nov. 1993, Methylating enzyme from

Streptomyces MA6858. 31-O-desmethyl-FK-506 methyltransferase.

Motamedi et al.. 1996, Characterization of methyltransferase and

hydroxylase genes involved in the biosynthesis of the immunosuppressants FK-506 and FK-520, J. Bacteriol. 178: 5243-5248.

Streptomyces hygroscopicus

U.S. patent application Serial No. 09/154,083, filed 16 Sep. 1998.

Lovastatin

U.S. Pat. No. 5,744,350 to Merck.

Narbomycin

U.S. patent application Serial No. 60/107,093, filed 5 Nov. 1998, and Serial No. 60/120,254, filed 16 Feb. 1999.

Nemadectin

20 MacNeil et al., 1993, supra.

Niddamvcin

Kakavas et al., 1997. Identification and characterization of the niddamycin polyketide synthase genes from *Streptomyces caelestis*, *J. Bacteriol.* 179: 7515-7522.

Oleandomycin

Swan et al., 1994, Characterisation of a Streptomyces antibioticus gene encoding a type I polyketide synthase which has an unusual coding sequence, Mol. Gen. Genet. 242: 358-362.

U.S. patent application Serial No. 60/120,254, filed 16 Feb. 1999.

Olano et al., 1998, Analysis of a Streptomyces antibioticus chromosomal region involved in oleandomycin biosynthesis, which encodes two glycosyltransferases responsible for glycosylation of the macrolactone ring, Mol. Gen. Genet. 259(3): 299-308.

Picromycin

PCT patent application US99/15047, filed 2 Jul. 1999.

Xue et al., 1998. Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae, Chemistry & Biology 5(11): 661-667.

Xue et al., Oct. 1998, A gene cluster for macrolide antibiotic biosynthesis in

Streptomyces venezuelae: Architecture of metabolic diversity, Proc. Natl. Acad. Sci. USA

95: 12111 12116.

Platenolide

EP Pat. App. Pub. No. 791,656 to Lilly.

Rapamycin

Schwecke *et al.*, Aug. 1995, The biosynthetic gene cluster for the polyketide rapamycin, *Proc. Natl. Acad. Sci. USA 92*:7839-7843.

Aparicio et al., 1996, Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of the enzymatic domains in the modular polyketide synthase, Gene 169: 9-16.

15 Rifamycin

August et al., 13 Feb. 1998, Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S669, Chemistry & Biology. 5(2): 69-79.

Sorangium PKS

U.S. patent application Serial No. 09/144,085, filed 31 Aug. 1998.

Soraphen

U.S. Pat. No. 5,716,849 to Novartis.

Schupp et al., 1995, J. Bacteriology 177: 3673-3679. A Sorangium cellulosum (Myxobacterium) Gene Cluster for the Biosynthesis of the Macrolide Antibiotic Soraphen

A: Cloning, Characterization, and Homology to Polyketide Synthase Genes from Actinomycetes.

Spiramycin

U.S. Pat. No. 5,098,837 to Lilly.

Activator Gene

30 U.S. Pat. No. 5,514,544 to Lilly.

Tylosin

EP Pub. No. 791,655 to Lilly.

U.S. Pat. No. 5,876,991 to Lilly.

Kuhstoss et al., 1996. Gene 183:231-6.. Production of a novel polyketide through the construction of a hybrid polyketide synthase.

Tailoring enzymes

5

10

15

20

25

30

Merson-Davies and Cundliffe, 1994, *Mol. Microbiol. 13*: 349-355. Analysis of five tylosin biosynthetic genes from the *tylBA* region of the *Streptomyces fradiae* genome.

As the above Table illustrates, there are a wide variety of polyketide synthase genes that serve as readily available sources of DNA and sequence information for use in constructing the hybrid PKS-encoding DNA compounds of the invention. Methods for constructing hybrid PKS-encoding DNA compounds are described without reference to the FK-520 PKS in PCT patent publication No. 98/51695; U.S. Patent Nos. 5,672,491 and 5,712,146 and U.S. patent application Serial Nos. 09/073,538, filed 6 May 1998, and 09/141,908, filed 28 Aug 1998, each of which is incorporated herein by reference.

The hybrid PKS-encoding DNA compounds of the invention can be and often are hybrids of more than two PKS genes. Moreover, there are often two or more modules in the hybrid PKS in which all or part of the module is derived from a second (or third) PKS. Thus, as one illustrative example, the present invention provides a hybrid FK-520 PKS that contains the naturally occurring loading module and FkbP as well as modules one, two, four, six, seven, and eight, nine, and ten of the FK-520 PKS and further contains hybrid or heterologous modules three and five. Hybrid or heterologous module three contains an AT domain that is specific of methylmalonyl CoA and can be derived for example, from the erythromycin or rapamycin PKS genes. Hybrid or heterologous module five contains an AT domain that is specific for malonyl CoA and can be derived for example, from the picromycin or rapamycin PKS genes.

While an important embodiment of the present invention relates to hybrid PKS enzymes and corresponding genes, the present invention also provides recombinant FK-520 PKS genes in which there is no second PKS gene sequence present but which differ from the FK-520 PKS gene by one or more deletions. The deletions can encompass one or more modules and/or can be limited to a partial deletion within one or more modules. When a deletion encompasses an entire module, the resulting FK-520 derivative is at least two carbons shorter than the gene from which it was derived. When a deletion is within a module, the deletion typically encompasses a KR, DH, or ER domain, or both DH and ER domains, or both KR and DH domains, or all three KR, DH, and ER domains.

10

15

20

25

30

To construct a hybrid PKS or FK-520 derivative PKS gene of the invention, one can employ a technique, described in PCT Pub. No. 98/27203 and U.S. patent application Serial No. 08/989,332, filed 11 Dec. 1997, each of which is incorporated herein by reference, in which the large PKS gene is divided into two or more, typically three, segments, and each segment is placed on a separate expression vector. In this manner, each of the segments of the gene can be altered, and various altered segments can be combined in a single host cell to provide a recombinant PKS gene of the invention. This technique makes more efficient the construction of large libraries of recombinant PKS genes, vectors for expressing those genes, and host cells comprising those vectors.

Thus, in one important embodiment, the recombinant DNA compounds of the invention are expression vectors. As used herein, the term expression vector refers to any nucleic acid that can be introduced into a host cell or cell-free transcription and translation medium. An expression vector can be maintained stably or transiently in a cell, whether as part of the chromosomal or other DNA in the cell or in any cellular compartment, such as a replicating vector in the cytoplasm. An expression vector also comprises a gene that serves to produce RNA that is translated into a polypeptide in the cell or cell extract. Furthermore, expression vectors typically contain additional functional elements, such as resistance-conferring genes to act as selectable markers.

The various components of an expression vector can vary widely, depending on the intended use of the vector. In particular, the components depend on the host cell(s) in which the vector will be used or is intended to function. Vector components for expression and maintenance of vectors in *E. coli* are widely known and commercially available, as are vector components for other commonly used organisms, such as yeast cells and *Streptomyces* cells.

In a preferred embodiment, the expression vectors of the invention are used to construct recombinant *Streptomyces* host cells that express a recombinant PKS of the invention. Preferred *Streptomyces* host cell/vector combinations of the invention include *S. coelicolor* CH999 and *S. lividans* K4-114 host cells, which do not produce actinorhodin, and expression vectors derived from the pRM1 and pRM5 vectors, as described in U.S. Patent No. 5,830,750 and U.S. patent application Serial Nos. 08/828,898, filed 31 Mar. 1997, and 09/181,833, filed 28 Oct. 1998, each of which is incorporated herein by reference.

tiers ...

. .

10

15

20

25

30-

The present invention provides a wide variety of expression vectors for use in Streptomyces. For replicating vectors, the origin of replication can be, for example and without limitation, a low copy number vector, such as SCP2* (see Hopwood et al., Genetic Manipulation of Streptomyces: A Laboratory manual (The John Innes Foundation. Norwich, U.K., 1985); Lydiate et al., 1985, Gene 35: 223-235; and Kieser and Melton, 1988, Gene 65: 83-91, each of which is incorporated herein by reference), SLP1.2 (Thompson et al., 1982, Gene 20: 51-62, incorporated herein by reference), and SG5(ts) (Muth et al., 1989, Mol. Gen. Genet. 219: 341-348, and Bierman et al., 1992, Gene 116: 43-49, each of which is incorporated herein by reference), or a high copy number vector, such as pIJ101 and pJV1 (see Katz et al., 1983, J. Gen. Microbiol. 129: 2703-2714; Vara et al., 1989, J. Bacteriol. 171: 5782-5781; and Servin-Gonzalez, 1993, Plasmid 30: 131-140, each of which is incorporated herein by reference). Generally, however, high copy number vectors are not preferred for expression of genes contained on large segments of DNA. For non-replicating and integrating vectors, it is useful to include at least an E. coli origin of replication, such as from pUC, p1P, p1I, and pBR. For phage based vectors, the phages phiC31 and KC515 can be employed (see Hopwood et al., supra).

Typically, the expression vector will comprise one or more marker genes by which host cells containing the vector can be identified and/or selected. Useful antibiotic resistance conferring genes for use in *Streptomyces* host cells include the *ermE* (confers resistance to erythromycin and other macrolides and lincomycin), *tsr* (confers resistance to thiostrepton). aadA (confers resistance to spectinomycin and streptomycin), aacC4 (confers resistance to apramycin, kanamycin, gentamicin, geneticin (G418), and neomycin), hyg (confers resistance to hygromycin), and vph (confers resistance to viomycin) resistance conferring genes.

The recombinant PKS gene on the vector will be under the control of a promoter, typically with an attendant ribosome binding site sequence. The present invention provides the endogenous promoters of the FK-520 PKS and related biosynthetic genes in recombinant form, and these promoters are preferred for use in the native hosts and in heterologous hosts in which the promoters function. A preferred promoter of the invention is the fkbO gene promoter, comprised in a sequence of about 270 bp between the start of the open reading frames of the fkbO and fkbB genes. The fkbO promoter is believed to be bidirectional in that it promotes transcription of the genes fkbO, fkbP, and fkbA in one direction and fkbB, fkbC, and fkbL in the other. Thus, in one aspect, the present invention

WO 00/20601 PCT/US99/22886

70

provides a recombinant expression vector comprising the promoter of the fkbO gene of an FK-520 producing organism positioned to transcribe a gene other than fkbO. In a preferred embodiment the transcribed gene is an FK-520 PKS gene. In another preferred embodiment, the transcribed gene is a gene that encodes a protein comprised in a hybrid PKS.

Heterologous promoters can also be employed and are preferred for use in host cells in which the endogenous FK-520 PKS gene promoters do not function or function poorly. A preferred heterologous promoter is the actI promoter and its attendant activator gene actII-ORF4, which is provided in the pRM1 and pRM5 expression vectors, supra. This promoter is activated in the stationary phase of growth when secondary metabolites are normally synthesized. Other useful Streptomyces promoters include without limitation those from the ermE gene and the melCl gene, which act constitutively, and the tipA gene and the merA gene, which can be induced at any growth stage. In addition, the T7 RNA polymerase system has been transferred to Streptomyces and can be employed in the vectors and host cells of the invention. In this system, the coding sequence for the T7 RNA polymerase is inserted into a neutral site of the chromosome or in a vector under the control of the inducible merA promoter, and the gene of interest is placed under the control of the T7 promoter. As noted above, one or more activator genes can also be employed to enhance the activity of a promoter. Activator genes in addition to the actII-ORF4 gene discussed above include dnrl, redD, and ptpA genes (see U.S. patent application Serial No. 09/181,833, supra) to activate promoters under their control.

In addition to providing recombinant DNA compounds that encode the FK-520 PKS, the present invention also provides DNA compounds that encode the ethylmalonyl CoA and 2-hydroxymalonyl CoA utilized in the synthesis of FK-520. Thus, the present invention also provides recombinant host cells that express the genes required for the biosynthesis of ethylmalonyl CoA and 2-hydroxymalonyl CoA. Figures 3 and 4 show the location of these genes on the cosmids of the invention and the biosynthetic pathway that produces ethylmalonyl CoA.

For 2-hydroxymalonyl CoA biosynthesis, the fkbH, fkbI, fkbJ, and fkbK genes are sufficient to confer this ability on Streptomcyces host cells. For conversion of 2-hydroxymalonyl to 2-methoxymalonyl, the fkbG gene is also employed. While the complete coding sequence for fkbH is provided on the cosmids of the invention, the sequence for this gene provided herein may be missing a T residue, based on a comparison made with a similar gene cloned from the ansamitocin gene cluster by Dr. H. Floss. Where the sequence

5

10

15

20

25

herein shows one T, there may be two, resulting in an extension of the fkbH reading frame to encode the amino acid sequence:

MTIVKCLVWDLDNTLWRGTVLEDDEVVLTDEIREVITTLDDRGILQAVASKNDHD LAWERLERLGVAEYFVLARIGWGPKSQSVREIATELNFAPTTIAFIDDQPAERAEVA FHLPEVRCYPAEQAATLLSLPEFSPPVSTVDSRRRRLMYQAGFARDQAREAYSGPD EDFLRSLDLSMTIAPAGEEELSRVEELTLRTSQMNATGVHYSDADLRALLTDPAHE VLVVTMGDRFGPHGAVGIILLEKKPSTWHLKLLATSCRVVSFGAGATILNWLTDQG ARAGAHLVADFRRTDRNRMMEIAYRFAGFADSDCPCVSEVAGASAAGVERLHLEP SARPAPTTLTLTAADIAPVTVSAAG.

For ethylmalonyl CoA biosynthesis, one requires only a crotonyl CoA reductase, which can be supplied by the host cell but can also be supplied by recombinant expression of the fkbS gene of the present invention. To increase yield of ethylmalonyl CoA, one can also express the fkbE and fkbU genes as well. While such production can be achieved using only the recombinant genes above, one can also achieve such production by placing into the recombinant host cell a large segment of the DNA provided by the cosmids of the invention. Thus, for 2-hydroxymalonyl and 2-methoxymalonyl CoA biosynthesis, one can simply provide the cells with the segment of DNA located on the left side of the FK-520 PKS genes shown in Figure 1. For ethylmalonyl CoA biosynthesis, one can simply provide the cells with the segment of DNA located on the right side of the FK-520 PKS genes shown in Figure 1 or, alternatively, both the right and left segments of DNA.

45

*

.

The recombinant DNA expression vectors that encode these genes can be used to construct recombinant host cells that can make these important polyketide building blocks from cells that otherwise are unable to produce them. For example, Streptomyces coelicolor and Streptomyces lividans do not synthesisze ethylmalonyl CoA or 2-hydroxymalonyl CoA. The invention provides methods and vectors for constructing recombinant Streptomyces coelicolor and Streptomyces lividans that are able to synthesize either or both ethylmalonyl CoA and 2-hydroxymalonyl CoA. These host cells are thus able to make polyketides, those requiring these substrates, that cannot otherwise be made in such cells.

In a preferred embodiment, the present invention provides recombinant

Streptomyces host cells, such as S. coelicolor and S. lividans, that have been transformed with a recombinant vector of the invention that codes for the expression of the ethylmalonyl CoA biosynthetic genes. The resulting host cells produce ethylmalonyl CoA and so are preferred host cells for the production of polyketides produced by PKS enzymes that

5

10

15

20

25

WO 00/20601 PCT/US99/22886

72

comprise one or more AT domains specific for ethylmalonyl CoA. Illustrative PKS enzymes of this type include the FK-520 PKS and a recombinant PKS in which one or more AT domains is specific for ethylmalonyl CoA.

In a related embodiment, the present invention provides *Streptomyces* host cells in which one or more of the ethylmalonyl or 2-hydroxymalonyl biosynthetic genes have been deleted by homologous recombination or rendered inactive by mutation. For example, deletion or inactivation of the *fkbG* gene can prevent formation of the methoxyl groups at C-13 and C-15 of FK-520 (or, in the corresponding FK-506 producing cell, FK-506), leading to the production of 13,15-didesmethoxy-13,15-dihydroxy-FK-520 (or, in the corresponding FK-506 producing cell, 13,15-didesmethoxy-13,15-dihydroxy-FK-506). If the *fkbG* gene product acts on 2-hydroxymalonyl and the resulting 2-methoxymalonyl substrate is required for incorporation by the PKS, the AT domains of modules 7 and 8 may bind malonyl CoA and methylmalonyl CoA. Such incorporation results in the production of a mixture of polyketides in which the methoxy groups at C-13 and C-15 of FK-520 (or FK-506) are replaced by either hydrogen or methyl.

This possibility of non-specific binding results from the construction of a hybrid PKS of the invention in which the AT domain of module 8 of the FK-520 PKS replaced the AT domain of module 6 of DEBS. The resulting PKS produced, in *Streptomyces lividans*, 6-dEB and 2-desmethyl-6-dEB, indicating that the AT domain of module 8 of the FK-520 PKS could bind malonyl CoA and methylmalonyl CoA substrates. Thus, one could possibly also prepare the 13,15-didesmethoxy-FK-520 and corresponding FK-506 compounds of the invention by deleting or otherwise inactivating one or more or all of the genes required for 2-hydroxymalonyl CoA biosynthesis, i.e., the *fkbH*, *fkbI*, *fkbJ*, and *fkbK* genes. In any event, the deletion or inactivation of one or more biosynthetic genes required for ethylmalonyl and/or 2-hydroxymalonyl production prevents the formation of polyketides requiring ethylmalonyl and/or 2-hydroxymalonyl for biosynthesis, and the resulting host cells are thus preferred for production of polyketides that do not require the same.

The host cells of the invention can be grown and fermented under conditions known in the art for other purposes to produce the compounds of the invention. See, e.g., U.S. Patent Nos. 5,194,378; 5,116,756; and 5,494,820, incorporated herein by reference, for suitable fermentation processes. The compounds of the invention can be isolated from the fermentation broths of these cultured cells and purified by standard procedures. Preferred compounds of the invention include the following compounds: 13-desmethoxy-FK-506; 13-

5

10

15

20

25

去て』

¥.

. ‡

5

10

15

20

25

30

desmethoxy-FK-520; 13,15-didesmethoxy-FK-506; 13,15-didesmethoxy-FK-520; 13-desmethoxy-18-hydroxy-FK-506; 13-desmethoxy-18-hydroxy-FK-520; 13,15-didesmethoxy-18-hydroxy-FK-506; and 13,15-didesmethoxy-18-hydroxy-FK-520. These compounds can be further modified as described for tacrolimus and FK-520 in U.S. Patent Nos. 5,225,403; 5,189,042; 5,164,495; 5,068,323; 4,980,466; and 4,920.218, incorporated herein by reference.

Other compounds of the invention are shown in Figure 8, Parts A and B. In Figure 8, Part A, illustrative C-32-substituted compounds of the invention are shown in two columns under the heading R. The substituted compounds are preferred for topical administration and are applied to the dermis for treatment of conditions such as psoriasis. In Figure 8, Part B, illustrative reaction schemes for making the compounds shown in Figure 8, Part A, are provided. In the upper scheme in Figure 8. Part B, the C-32 substitution is a tetrazole moiety, illustrative of the groups shown in the left column under R in Figure 8, Part A. In the lower scheme in Figure 8, Part B, the C-32 substitution is a disubstituted amino group, where R₃ and R₄ can be any group similar to the illustrative groups shown attached to the amine in the right column under R in Figure 8, Part A. While Figure 8 shows the C-32-substituted compounds in which the C-15-methoxy is present, the invention includes these C-32-substituted compounds in which C-15 is ethyl, methyl, or hydrogen. Also, while C-21 is shown as substituted with ethyl or allyl, the compounds of the invention includes the C-32-substituted compounds in which C-21 is substituted with hydrogen or methyl.

To make these C-32-substituted compounds, Figure 8, Part B, provides illustrative reaction schemes. Thus, a selective reaction of the starting compound (see Figure 8, Part B, for an illustrative starting compound) with trifluoromethanesulfonic anhydride in the presence of a base yields the C-32 O-triflate derivative, as shown in the upper scheme of Figure 8, Part B. Displacement of the triflate with 1H-tetrazole or triazole derivatives provides the C-32 tetrazole or teiazole derivative. As shown in the lower scheme of Figure 8, Part B, reacting the starting compound with p-nitrophenylchloroformate yields the corresponding carbonate, which, upon displacement with an amino compound, provides the corresponding carbamate derivative.

The compounds can be readily formulated to provide the pharmaceutical compositions of the invention. The pharmaceutical compositions of the invention can be used in the form of a pharmaceutical preparation, for example, in solid, semisolid, or liquid form. This preparation contains one or more of the compounds of the invention as an active

WO 00/20601 PCT/US99/22886

74

ingredient in admixture with an organic or inorganic carrier or excipient suitable for external, enteral, or parenteral application. The active ingredient may be compounded, for example, with the usual non-toxic, pharmaceutically acceptable carriers for tablets, pellets, capsules, suppositories, solutions, emulsions, suspensions, and any other form suitable for use. Suitable formulation processes and compositions for the compounds of the present invention are described with respect to tacrolimus in U.S. Patent Nos. 5,939,427; 5,922,729; 5,385,907; 5,338,684; and 5,260,301, incorporated herein by reference. Many of the compounds of the invention contain one or more chiral centers, and all of the stereoisomers are included within the scope of the invention, as pure compounds as well as mixtures of stereoisomers. Thus the compounds of the invention may be supplied as a mixture of stereoisomers in any proportion.

The carriers which can be used include water, glucose, lactose, gum acacia, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, colloidal silica, potato starch, urea, and other carriers suitable for use in manufacturing preparations, in solid, semi-solid, or liquified form. In addition, auxiliary stabilizing, thickening, and coloring agents and perfumes may be used. For example, the compounds of the invention may be utilized with hydroxypropyl methylcellulose essentially as described in U.S. Patent No. 4,916,138, incorporated herein by reference, or with a surfactant essentially as described in EPO patent publication No. 428,169, incorporated herein by reference.

Oral dosage forms may be prepared essentially as described by Hondo et al., 1987, Transplantation Proceedings XIX, Supp. 6: 17-22, incorporated herein by reference. Dosage forms for external application may be prepared essentially as described in EPO patent publication No. 423,714, incorporated herein by reference. The active compound is included in the pharmaceutical composition in an amount sufficient to produce the desired effect upon the disease process or condition.

For the treatment of conditions and diseases relating to immunosuppression or neuronal damage, a compound of the invention may be administered orally, topically, parenterally, by inhalation spray, or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvant, and vehicles. The term parenteral, as used herein, includes subcutaneous injections, and intravenous, intramuscular, and intrasternal injection or infusion techniques.

Dosage levels of the compounds of the present invention are of the order from about 0.01 mg to about 50 mg per kilogram of body weight per day, preferably from about 0.1 mg

5

10

15

20

25

10

15

20

25

30

to about 10 mg per kilogram of body weight per day. The dosage levels are useful in the treatment of the above-indicated conditions (from about 0.7 mg to about 3.5 mg per patient per day, assuming a 70 kg patient). In addition, the compounds of the present invention may be administered on an intermittent basis, i.e., at semi-weekly, weekly, semi-monthly, or monthly intervals.

The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. For example, a formulation intended for oral administration to humans may contain from 0.5 mg to 5 g of active agent compounded with an appropriate and convenient amount of carrier material, which may vary from about 5 percent to about 95 percent of the total composition. Dosage unit forms will generally contain from about 0.5 mg to about 500 mg of active ingredient. For external administration, the compounds of the invention can be formulated within the range of, for example, 0.00001% to 60% by weight, preferably from 0.001% to 10% by weight, and most preferably from about 0.005% to 0.8% by weight. The compounds and compositions of the invention are useful in treating disease conditions using doses and administration schedules as described for tacrolimus in U.S. Patent Nos. 5,542,436; 5,365,948; 5,348,966; and 5,196,437, incorporated herein by reference. The compounds of the invention can be used as single therapeutic agents or in combination with other therapeutic agents. Drugs that can be usefully combined with compounds of the invention include one or more immunosuppressant agents such as rapamycin, cyclosporin A, FK-506, or one or more neurotrophic agents.

It will be understood, however, that the specific dosage level for any particular patient will depend on a variety of factors. These factors include the activity of the specific compound employed; the age, body weight, general health, sex, and diet of the subject; the time and route of administration and the rate of excretion of the drug; whether a drug combination is employed in the treatment; and the severity of the particular disease or condition for which therapy is sought.

A detailed description of the invention having been provided above, the following examples are given for the purpose of illustrating the present invention and shall not be construed as being a limitation on the scope of the invention or claims.

Example 1

Replacement of Methoxyl with Hydrogen or Methyl at C-13 of FK-520

The C-13 methoxyl group is introduced into FK-520 via an AT domain in extender module 8 of the PKS that is specific for hydroxymalonyl and by methylation of the hydroxyl group by an S-adenosyl methionine (SAM) dependent methyltransferase. Metabolism of FK-506 and FK-520 primarily involves oxidation at the C-13 position into an inactive derivative that is further degraded by host P450 and other enzymes. The present invention provides compounds related in structure to FK-506 and FK-520 that do not contain the C-13 methoxy group and exhibit greater stability and a longer half-life *in vivo*. These compounds are useful medicaments due to their immunosuppressive and neurotrophic activities, and the invention provides the compounds in purified form and as pharmaceutical compositions.

The present invention also provides the novel PKS enzymes that produce these novel compounds as well as the expression vectors and host cells that produce the novel PKS enzymes. The novel PKS enzymes include, among others, those that contain an AT domain specific for either malonyl CoA or methylmalonyl CoA in module 8 of the FK-506 and FK-520 PKS. This example describes the construction of recombinant DNA compounds that encode the novel FK-520 PKS enzymes and the transformation of host cells with those recombinant DNA compounds to produce the novel PKS enzymes and the polyketides produced thereby.

To construct an expression cassette for performing module 8 AT domain replacements in the FK-520 PKS, a 4.6 kb SphI fragment from the FK-520 gene cluster was cloned into plasmid pLitmus 38 (a cloning vector available from New England Biolabs). The 4.6 kb SphI fragment, which encodes the ACP domain of module 7 followed by module 8 through the KR domain, was isolated from an agarose gel after digesting the cosmid pKOS65-C31 with Sph I. The clone having the insert oriented so the single SacI site was nearest to the SpeI end of the polylinker was identified and designated as plasmid pKOS60-21-67. To generate appropriate cloning sites, two linkers were ligated sequentially as follows. First, a linker was ligated between the SpeI and SacI sites to introduce a Bg/II site at the 5' end of the cassette, to eliminate interfering polylinker sites, and to reduce the total insert size to 4.5 kb (the limit of the phage KC515). The ligation reactions contained 5 picomolar unphosphorylated linker DNA and 0.1 picomolar vector DNA, i.e., a 50-fold molar excess of linker to vector. The linker had the following sequence:

5'-CTAGTGGCAGATCTGGCAGCT-3'
3'-ACCCGTCTAGACCG-5'

The resulting plasmid was designated pKOS60-27-1.

5

10

15

20

25

30.

WO 00/20601 PCT/US99/22886

Next, a linker of the following sequence was ligated between the unique SphI and AfIII sites of plasmid pKOS60-27-1 to introduce an NsiI site at the 3' end of the module 8 cassette. The linker employed was:

5'-GGGATGCATGGC-3'
3'-GTACCCCTACGTACCGAATT-5'

The resulting plasmid was designated pKOS60-29-55.

To allow in-frame insertions of alternative AT domains, sites were engineered at the 5' end (Avr II or Nhe I) and 3' end (Xho I) of the AT domain using the polymerase chain reaction (PCR) as follows. Plasmid pKOS60-29-55 was used as a template for the PCR and sequence 5' to the AT domain was amplified with the primers SpeBgl-fwd and either Avr-rev or Nhe-rev:

SpeBgl-fwd 5'-CGACTCACTAGTGGGCAGATCTGG-3'

Avr-rev 5'-CACGCCTAGGCCGGTCGGTCTCGGGCCAC-3'

Nhe-rev 5'-GCGGCTAGCTGCTCGCCCATCGCGGGATGC-3'

The PCR included, in a 50 μl reaction, 5 μl of 10x Pfu polymerase buffer (Stratagene), 5 μl 10x z-dNTP mixture (2 mM dATP, 2 mM dCTP, 2 mM dTTP, 1 mM dGTP, 1 mM 7-deaza-GTP), 5 μl DMSO, 2 μl of each primer (10 μM), 1 μl of template DNA (0.1 μg/μl), and 1 μl of cloned Pfu polymerase (Stratagene). The PCR conditions were 95°C for 2 min., 25 cycles at 95°C for 30 sec., 60°C for 30 sec., and 72°C for 4 min., followed by 4 min. at 72°C and a hold at 0°C. The amplified DNA products and the Litmus vectors were cut with the appropriate restriction enzymes (BglII and AvrII or SpeI and NheI), and cloned into either pLitmus 28 or pLitmus38 (New England Biolabs), respectively, to generate the constructs designated pKOS60-37-4 and pKOS60-37-2, respectively.

Plasmid pKOS60-29-55 was again used as a template for PCR to amplify sequence 3' to the AT domain using the primers BsrXho-fwd and NsiAfl-rev:

BsrXho-fwd 5'-GATGTACAGCTCGAGTCGGCACGCCCGGCCGCATC-3' NsiAfl-rev 5'-CGACTCACTTAAGCCATGCATCC-3'

PCR conditions were as described above. The PCR fragment was cut with BsrGI and AfIII, gel isolated, and ligated into pKOS60-37-4 cut with Asp718 and AfIII and inserted into pKOS60-37-2 cut with BsrGI and AfIII, to give the plasmids pKOS60-39-1 and pKOS60-39-13, respectively. These two plasmids can be digested with AvrII and XhoI or NheI and XhoI, respectively, to insert heterologous AT domains specific for malonyl, methylmalonyl, ethylmalonyl, or other extender units.

30

5

Malonyl and methylmalonyl-specific AT domains were cloned from the rapamycin cluster using PCR amplification with a pair of primers that introduce an AvrII or NheI site at the 5' end and an XhoI site at the 3' end. The PCR conditions were as given above and the primer sequences were as follows:

5

10

RATN1 5'-ATCCTAGGCGGCRGGYGTGTCGTCCTTCGG-3'
(3' end of Rap KS sequence and universal for malonyl and methylmalonyl CoA),
RATMN2 5'-ATGCTAGCCGCGCGTTCCCCGTCTTCGCGCG-3'
(Rap AT shorter version 5'- sequence and specific for malonyl CoA),
RATMMN2 5'-ATGCTAGCGGATTCGTCGGTGGTGTTCGCCGA-3'
(Rap AT shorter version 5'- sequence and specific for methylmalonyl CoA), and
RATC 5'-ATCTCGAGCCAGTASCGCTGGTGYTGGAAGG-3'

(Rap DH 5'- sequence and universal for malonyl and methylmalonyl CoA).

15

Because of the high sequence similarity in each module of the rapamycin cluster. each primer was expected to prime any of the AT domains. PCR products representing ATs specific for malonyl or methylmalonyl extenders were identified by sequencing individual cloned PCR products. Sequencing also confirmed that the chosen clones contained no cloning artifacts. Examples of hybrid modules with the rapamycin AT12 and AT13 domains are shown in a separate figure.

The AvrII-Xhol restriction fragment that encodes module 8 of the FK-520 PKS with the endogenous AT domain replaced by the AT domain of module 12 of the rapamycin PKS has the DNA sequence and encodes the amino acid sequence shown below. The AT of rap module 12 is specific for incorporation of malonyl units.

20 AGATCTGGCAGCTCGCCGAAGCGCTGCTGACGCTCGTCCGGGAGAGCACC 50 IWQLAEALLTLVREST GCCGCCGTGCTCGGCCACGTGGGTGGCGAGGACATCCCCGCGACGGCGGC 100 AAVLGHVGGEDIPATAA GTTCAAGGACCTCGGCATCGACTCGCTCACCGCGGTCCAGCTGCGCAACG 150 25 F K D L G I D S L T A V Q L R N CCCTCACCGAGGCGACCGGTGTGCGGCTGAACGCCACGGCGGTCTTCGAC 200 A L T E A T G V R L N A T A V F D TTCCCGACCCGCACGTGCTCGCCGGGAAGCTCGGCGACGAACTGACCGG 250 F P T P H V L A G K L G D E L T G 30 CACCGCGCGCCCGTCGTGCCCGGGACGGCGGCCACGGCCGGTGCGCACG 300 TRAPVVPRTAATAGAH ACGAGCCGCTGGCGATCGTGGGAATGGCCTGCCGGCTGCCCGGCGGGGGTC 350 DEPLAIVGMACRLPGGV GCGTCACCCGAGGAGCTGTGGCACCTCGTGGCATCCGGCACCGACGCCAT 400 35 A S P E E L W H L V A S G T D A I CACGGAGTTCCCGACGGACCGCGGCTGGGACGTCGACGCGATCTACGACC 450 TEFPTDRGWDV D A CGGACCCGGACGCGATCGCCAAGACCTTCGTCCGGCACGGTGGCTTCCTC 500 D A IGKTF R H G 40 ACCGGCGCGACAGGCTTCGACGCGCGCTTCTTCGGCATCAGCCCGCGCGA 550 Α Α F GGCCCTCGCGATGGACCCGCAGCAGCGGGTGCTCCTGGAGACGTCGTGGG 600 ALAMDPQQ R V AGGCGTTCGAAAGCGCCGGCATCACCCCGGACTCGACCCGCGCAGCGAC 650 45 EAFESAG I T D S т ACCGGCGTGTTCGTCGGCGCCTTCTCCTACGGTTACGGCACCGGTGCGGA 700 TGVFTSA F S Y G Υ G CACCGACGGCTTCGGCGCGACCGGCTCGCAGACCAGTGTGCTGTCCGGCC 750 T D G · F G A T G · S $T \cdot S V$ 0 50 GGCTGTCGTACTTCTACGGTCTGGAGGGTCCGGCGGTCACGGTCGACACG 800

RLSYFYGLEGPAVTVDT SCGTGTTTSTTSGTTGGTTGGTGGCGCTGCACCAGGCTGGGGCAGTTCGCTGCG 850 ACSSSLVALHQAGQSLR OTDDGGGGAATGTTCGCTCGCCCTGGTCGGCGGCGTCACGGTGATGGCGT 900 SGESSLALVGGVTVMA OTCOOGGOGGCTTOGTGGAGTTCTCCCGGCAGCGCGGCCTCGCGCCGGAC 950 S P G G F V E F S R Q R G L A P D GGCCGGGCGAAGGCGTTCGGCGCGGGGTGCGGACGGCACGAGCTTCGCCGA 1000 G R A K A F G A G A D G T S F A E .10 GGGTGCCGGTGTGCTGATCGTCGAGGGCTCTCCGACGCCGAACGCAACG 1050 G A G V L I V E R L S D A E R N GTCACACCGTCCTGGCGGTCGTCCGTGGTTCGGCGGTCAACCAGGATGGT 1100 G H T V L A V V R G S A V N Q D G GCCTCCAACGGGCTGTCGGCGCCGAACGGGCCGTCGCAGGAGCGGGTGAT 1150 15 ASNGLSAPNGPSQERVI CCGGCAGGCCTGGCCAACGCCGGGGCTCACCCCGGCGGACGTGGACGCCG 1200 RQALANAGLTPADVDA TCGAGGCCCACGGCACCGGCACCAGGCTGGGCGACCCCATCGAGGCACAG 1250 V E A H G T G T R L G D P I E A Q 20 GCGGTACTGGCCACCTACGGACAGGAGCGCGCCACCCCCTGCTGCTGGG 1300 AVLATYGQERATPLLLG CTCGCTGAAGTCCAACATCGGCCACGCCCAGGCCGCGTCCGGCGTCGCCG 1350 S L K S N I G H A Q A A S G V A SCATCATCAAGATGGTGCAGGCCCTCCGGCACGGGGGGGGCTGCCGCCGACG 1400 25 G I I K M V Q A L R H G E L P P T LHADEPSPHVDWTAGAV ELLTSARPWPETDRPR 30 GGGCAGGCGTGTCGTCCTTCGGGATCAGTGGCACCAACGCCCACGTCATC 1550 RAGVSSFGISGTNAHVI CTGGAAAGCGCACCCCCACTCAGCCTGCGGACAACGCGGTGATCGAGCG 1600 LESAPPTQPADNAVIER GGCACCGGAGTGGGTGCCGTTGGTGATTTCGGCCAGGACCCAGTCGGCTT 1650 35 A P E W V P L V I S A R T Q S A LTEHEGRLRAYLAASPG V D M R A V A S T L A M T R S V F 40 CGAGCACCGTGCCGTGCTGGGAGATGACACCGTCACCGGCACCGCTG 1800 TGTCTGACCCTCGGGCGGTGTTCGTCTTCCCGGGACAGGGGTCGCAGCGT 1850 Y S D P R A V F V F P G Q G S Q R GCTGGCATGGGTGAGGAACTGGCCGCCGCGTTCCCCGTCTTCGCGCGGAT 1900 45 AGMGEELAAAFPVFARI CCATCAGCAGGTGTGGGACCTGCTCGATGTGCCCGATCTGGAGGTGAACG 1950 H Q Q V W D. L L D V P D L E V N AGACCGGTTACGCCCAGCCGGCCCTGTTCGCAATGCAGGTGGCTCTGTTC 2000 ETGYAQPALFAMQVALF 50 GGGCTGCTGGAATCGTGGGGTGTACGACCGGACGCGGTGATCGGCCATTC 2050 G L L · E S W G V R P D A V I G H S GCTGGGTGAGCTTGCGGCTGCGTATGTGTCCGGGGTGTGGTCGTTGGAGG 2100 V G E L A A A Y V S G V W S L E ATGCCTGCACTTTGGTGTCGGCGCGGGCTCGTCTGATGCAGGCTCTGCCC 2150 55 D A C T L V S A R A'R L M Q A L P GCGGGTGGGGTGATGGTCGCTGTCCCGGTCTCGGAGGATGAGGCCCGGGC 2200 A G G 7 M V A V P V S E D E A R A CGTGCTGGGTGAGGGTGTGGAGATCGCCGCGGTCAACGGCCCGTCGTCGG 2250 V L G E G V E I A A V N G P S S 60 TOGTTCTCTCCGGTGATGAGGCCGCCGTGCTGCAGGCCGCGGAGGGGCTG 2300

V V L S G D E A A V L Q A A E G L GGGAAGTGGACGCGCTGGCGACCAGCCACGCGTTCCATTCCGCCCGTAT 2350 G K W T R L A T S H A F H S A F M GGAACCCATGCTGGAGGAGTTCCGGGGGGTCGCCGAAGGCCTGACCTACC 2400 EPMLEEFRAVAEGLTY GGACGCCGCAGGTCTCCATGGCCGTTGGTGATCAGGTGACCACCGCTGAG 2450 R T P Q V S M A V G D Q V T T A E TACTGGGTGCGGCAGGTCCGGACACGGTCCGGTTCGGCGAGCAGGTGGC 2500 Y W V R Q V R D T V R F G E Q V A 10 CTCGTACGAGGACGCCGTGTTCGTCGAGCTGGGTGCCGACCGGTCACTGG 2550 SYEDAVFVELGADRSL CCCGCCTGGTCGACGGTGTCGCGATGCTGCACGGCGACCACGAAATCCAG 2600 ARLVDGVAMLHGDHEIO GCCGCGATCGGCCCCTGGCCCACCTGTATGTCAACGGCGTCACGGTCGA 2650 15 AAIGALAHLYVNGVTVD CTGGCCCGCGCTCCTGGGCGATGCTCCGGCAACACGGGTGCTGGACCTTC 2700 W P A L L G D A P A T R V L D L CGACATACGCCTTCCAGCACCAGCGCTACTGGCTCGAGTCGGCACGCCCG 2750 PTYAFOHORYWLESARP 20 GCCGCATCCGACGCGGGCCACCCCGTGCTGGGCTCCGGTATCGCCCTCGC 2800 A A S D A G H P V L G S G I A L A CGGGTCGCCGGGCCGGGTGTCACGGGTTCCGTGCCGACCGGTGCGGACC 2850 G S P G R V F T G S V P T G A 5 GCGCGGTGTTCGTCGCCGAGCTGGCGGCTGGCCGCGGGACGCGGTCGAC 2900 25 R A V F V A E L A L A A D A V D CATVERLDIASVPGRPG CCATGGCCGGACGACCGTACAGACCTGGGTCGACGAGCCGGCGGACGACG 3000 H G R T T V Q T W V D E P A D D 30 GCCGGCCGGTTCACCGTGCACCCGCACCGGCGACGCCCCGTGGACG 3050 GRRFTVHTRTGDAPWT CTGCACGCCGAGGGGTGCTGCGCCCCCATGGCACGGCCCTGCCCGATGC 3100 LHAEGVLRPHGTALPDA GGCCGACGCCGACTGCCCCACCGGCGCGCGCGGACGGCCTGC 3150 . 35 ADAEWPPPGAVPADGL CGGGTGTGTGGCGCGGGGGGCCAGGTCTTCGCCGAGGCCGAGGTGGAC 3200 PGVWRRGDQVFAEAEVD GGACCGGACGGTTTCGTGGTGCACCCCGACCTGCTCGACGCGGTCTTCTC 3250 G P D G F V V H P D L L D A V F S 40 CGCGGTCGGCGACGGAAGCCGCCAGCCGGCCGGATGGCGCGACCTGACGG 3300 A V G D G S R Q P A G W R D L T TGCACGCGTCGGACGCCACCGTACTGCGCGCCTCACCCGGCGCACC 3350 H A S D A T V L R A C L T R R T 45 DGAMGFAAFDGAGLPVL CACCGCGGAGGCGTGACGCTGCGGGAGGTGGCGTCACCGTCCGGCTCCG 3450 TAEAVTLREVASPSGS AGGAGTCGGACGGCCTGCACCGGTTGGAGTGGCTCGCGGTCGCCGAGGCG 3500 EESDGLHRLEWLAVAEA 50 GTCTACGACGGTGACCTGCCCGAGGGACATGTCCTGATCACCGCCGCCCA 3550 VYDGDLPEGHVLITAAH CCCCGACGACCCCGAGGACATACCCACCCGCGCCCACACCCGCGCCCACCC 3600 PDDPEDIPTRAHTRAT GCGTCCTGACCGCCTGCAACACCACCTCACCACCACCGACCACACCCTC 3650 55 RVLTALQHHLTTTDHTL ATCGTCCACACCACCGACCCGCCGCCGCCGCCCACCGTCACCGGCCTCAC 3700 I,VHTTTDPAGATVTGLT RTAQNEHPHRIRLIET 60 ACCACCCCACACCCCCCTCCCCCTGGCCCAACTCGCCACCCTCGACCAC 3800

DHPHTPLPLAQLATLDH PHLRLTHHTLHHPHLTP TOCACACCACCACCCACCCACCACCCCCCCCAACCCCGAACACG 3900 5 LHTTPPTTPLNPEH CCATCATCATCACCGGCGGCTCCGGCACCCTCGCCGGCATCCTCGCCCGC 3950 ATTITGGSGTLAGILAR CACCTGAACCACCCCACACCTACCTCCTCTCCCGCACCCCCCGA 4000 H L N H P H T Y L L S R T P P P D 10 CGCCACCCCGGCACCCACCTCCCTGCGACGTCGGCGACCCCCACCAAC 4050 ATPGTHLPCDVGDPHQ TCGCCACCACCCTCACCCCACCCCCAACCCCTCACCGCCATCTTCCAC 4100 LATTLTHIPQPLTAIFH ACCGCCGCCACCCTCGACGACGGCATCCTCCACGCCCTCACCCCCGACCG 4150 15 TAATLDDGILHALTPDR CCTCACCACCGTCCTCCACCCCAAAGCCAACGCCGCCTGGCACCTGCACC 4200 LTTVLHPKANAAWHLH ACCTCACCCAAAACCAACCCCTCACCCACTTCGTCCTCTACTCCAGCGCC 4250 HLTQNQPLTHFVLYSSA 20 GCCGCCGTCCTCGGCAGCCCCGGACAAGGAAACTACGCCGCCGCCAACGC 4300 A A V L G S P G Q G N Y A A A N A CTTCCTCGACGCCTCGCCACCCACCGCCACACCCTCGGCCAACCCGCCA 4350 F L D A L A T H R H T L G Q P A CCTCCATCGCCTGGGGCATGTGGCACACCACCAGCACCCTCACCGGACAA 4400 25 SIAWGMWHTTSTLTGQ CTCGACGACGCCGACCGGGACCGCATCCGCCGGGGGGTTTCCTCCCGAT 4450 LDDADRDRIRRGGFLPI CACGGACGACGAGGCATGGGGATGCAT DDEG 30

The AvrII-XhoI restriction fragment that encodes module 8 of the FK-520 PKS with the endogenous AT domain replaced by the AT domain of module 13 (specific for methylmalonyl CoA) of the rapamycin PKS has the DNA sequence and encodes the amino acid sequence shown below.

35 AGATCTGGCAGCTCGCCGAAGCGCTGCTGACGCTCCGGGAGAGCACC 50 Q L A E A L L T L V R E S T GCCGCCGTGCTCGGCCACGTGGGTGGCGAGGACATCCCCGCGACGGCGGC 100 A A V L G H V G G E D.I P A T A A GTTCAAGGACCTCGGCATCGACTCGCTCACCGCGGTCCAGCTGCGCAACG 150 40 F K D L G I D S L T A V Q L R N CCCTCACCGAGGCGACCGGTGTGCGGGCTGAACGCCACGGCGGTCTTCGAC 200 ALTEATGVRLNATAVFD TTCCCGACCCCGCACGTGCTCGCCGGGGAAGCTCGGCGACGAACTGACCGG 250 F P T F H V L A G K L G D E L T G 45 CACCCGCGCGCCGTCGTGCCCCGGACCGCGGCCACGGCCGGTGCGCACG 300 TRAPVVPRTAATAGAH ACGAGCCGCTGGCGATCGTGGGAATGGCCTGCCGGCTGCCCGGCGGGGTC 350 DEPLAIVGMACRLPGGV GCGTCACCCGAGGAGCTGTGGCACCTCGTGGCATCCGGCACCGACGCCAT 400 50 ASPEELWHLVASGTDAI CACGGAGTTCCCGACGGACCGCGGCTGGGACGTCGACGCGATCTACGACC 450 TEFPTDRGWDVDAIYD CGGACCCCGACGCGATCGGCAAGACCTTCGTCCGGCACGGTGGCTTCCTC 500 POPDAIGETEVREGE 55 TGATGFDAAFFGISPRE GGCCCTCGCGATGGACCCCCAGCAGCGGGTGCTCCTGGAGACGTCGTGGG 600

AMOPQQRVLLETSW AGGCGTTCGAAAGCGCCGGCATCACCCCGGACTCGACCCGCGGCAGCGAC 650 EAFESAGITPDSTRGSD ACCESCETETTOSTOGGECOTTOTOCTACESTTACSSCACCESTECEGA 700 5 TGVFUGAFSYGYGTGAD CACCGACGGCTTCGGCGACCGGCTCGCAGACCAGTGTGCTCTCCGGCC 750 T D G F B A T G S Q T S V L S G GGCTGTCGTACTTCTACGGTCTGGAGGGTCCGGCGGTCACGGTCGACACG 800 RLSYFYGLEGPAVTVDT 10 CCGTGTTCGTCGTCGCTGGTGGCGCTGCACCAGGCCGGGCAGTCGCTGCG 850 ACSSSLVALHQAGQSLR CTCCGGCGAATGCTCGCCCTGGTCGGCGGCGTCACGGTGATGGCGT 900 SGECSLALVGGVTVMA CTCCCGGCGGCTTCGTGGAGTTCTCCCGGCAGCGCGGGCCTCGCGCCGGAC 950 15 SPGGFVEFSRQRGLAPD GGCCGGCGAAGGCGTTCGGCGCGGGTGCGGACGCACGAGCTTCGCCGA 1000 G R A K A F G A G A D G T S F A E GGGTGCCGGTGTGCTGATCGTCGAGAGGCTCTCCGACGCCGAACGCAACG 1050 GAGVLIVERLSDAERN 20 GTCACACCGTCCTGGCGGTCGTCCGTGGTTCGGCGGTCAACCAGGATGGT 1100 G H T V L A V V R G S A V N Q D G GCCTCCAACGGGCTGTCGGCGCCGAACGGGCCGTCGCAGGAGCGGGTGAT 1150 ASNGISAPNGPSQERVI CCGGCAGGCCTGGCCAACGCCGGGGTCACCCCGGCGGACGTGGACGCCG 1200 25 R-Q A L A N A G L T P A D V D A TCGAGGCCCACGGCACCGGCACCAGGCTGGGCGACCCCATCGAGGCACAG 1250 V E A H G T G T R L G D P I E A O GCGGTACTGGCCACCTACGGACAGGAGCGCGCCACCCCCCTGCTGCTGGG 1300 AVLATYGQERATPLLLG 30 CTCGCTGAAGTCCAACATCGGCCACGCCCAGGCCGCGTCCGGCGTCGCCG 1350 SLKSNIGHAQAASGVA GCATCATCAAGATGGTGCAGGCCCTCCGGCACGGGGAGCTGCCGCCGACG 1400 GIIKMVQALRHGELPPT 35 LHADEPSPHVDWTAGAV ELLTSARPWPETDRPR GGGCGGGCGTGTCGTCCTTCGGAGTCAGCGGCACCAACGCCCACGTCATC 1550 R A G V S S F G V S G T N A H V I 40 CTGGAGAGCGCACCCCCCCTCAGCCCGGGGGGGGGGGGCGCAGCCTGTTGA 1600 L E S A P P A Q P A E E A Q P V E GACGCCGGTGGTCGCCTCGGATGTGCTGCCGCTGGTGATATCGGCCAAGA 1650 T P V V A S D V L P L V I S A K CCCAGCCCCCCTGACCGAACACGAAGACCGGCTGCGCGCCTACCTGGCG 1700 45 Q P A L T E H E D R L R A Y L A GCGTCGCCCGGGCCGGATATACGGGCTGTGGCATCGACGCTGGCGGTGAC 1750 A S P G A D I R A V A S T L A V T ACGCTCGGTGTTCGAGCACCGCGCCGTACTCCTTGGAGATGACACCGTCA 1800 RSVFEHRAVLLGDDTV 50 CCGGCACCGCGGTGACCGACCCCAGGATCGTGTTTGTCTTTCCCGGGCAG 1850 T G T A V T D P R I V F V F P G Q GGGTGGCAGTGGCTGGGGATGCGCAGTGCACTGCGCGATTCGTCGGTGGT 1900 G W Q W L G M G S A L R D S S V V GTTCGCCGAGCGGATGGCCGAGTGTGCGCGGCGTTGCGCGAGTTCGTGG 1950 55 F A E R M A E C A A A L R E F V ACTGGGATCTGTTCACGGTTCTGGATGATCCGGCGGTTGGTGGACCGGGTT 2000 D W D L F T V L D D P A V V D R V SATGTGGTCCAGCCCCCTTCCTGGGCGATGATGGTTTCCCTGGCCGGGT 2050 D V V Q P A S W A M M V S L A A V 60 STGGCAGGCGGCCGGTGTGCGGCCGGATGCGGTGATCGGCCATTCGCAGG 2100

	WQAAGVRPDAVIGHEQ	
	GTGAGATCGCCGCAGCTTGTGTGGCGGGTGCGGTGTCACTACGCGATGCC	2150
	G E I A A A C V A G A V S L R D A	
5	GCCCGGATCGTGACCTTGCGCAGCCAGGCGATCGCCCGGGGCCTGGCGGG	
	CCGGGGCGCGATGGCATCCGTCGCCCTGCCCGCGCAGGATGTCGAGCTGG	: 2250
	RGAMASVALPACDVII	
	TCGACGGGCCTGGATCGCCGCCCACAACGGGCCCGCCTCCACGTGATC	2300
10	V D G A W I A A H N G P A S T V I GCGGGCACCCCGGAAGCGGTCGACCATGTCCTCACCGCTCATGAGGCACA	
	A G T P E A V D H V L T A H E A O	
	AGGGGTGCGGGGGGGATCACCGTCGACTATGCCTCGCACACCCCGC	2400
	GVRVRRITVDYASHTP	
15	ACGTCGAGCTGATCCGCGACGACTACTCGACATCACTAGCGACAGCC H V E L I R D E L L D I T S D S S	2450
	TCGCAGACCCCGCTCGTGCCGTGGCTGTCGACCGTGGACGCACCTGGGT	2500
	SQTPLVPWLSTVDGTWV	
	CGACAGCCCGCTGGACGGGGAGTACTGGTACCGGAACCTGCGTGAACCGG	2550
20	D S P L D G E Y W Y R N L R E P	
	TCGGTTTCCACCCCGCCGTCAGCCAGTTGCAGGCCCAGGGCGACACCGTG V G F H P A V S Q L Q A Q G D T V	2600
	TTCGTCGAGGTCAGCGCAGCCCGGTGTTGTTGCAGGCGATGGACGA	2650
	F V E V S A S P V L L Q A M D D D	
25	TGTCGTCACGGTTGCCACGCTGCGTGACGACGGCGACGCCACCCGGA V V T V A T L R R D D G D A T P	2700
	V V T V A T L R R D D G D A T R TGCTCACCGCCTGGCACAGGCCTATGTCCACGGCGTCACCGTCGACTGG	2750
	MLTALAQAYVHGVTVDW	
	CCCGCCATCCTCGGCACCACACCCGGGTACTGGACCTTCCGACCTA	2800
30	PAILGTTTTRVLDLFTY CGCCTTCCAACACCAGCGGTACTGGCTCGAGTCGGCACGCCGGCCG	2252
	A F Q H Q R Y W L E S A R P A A	2850
	CCGACGCGGGCCACCCCGTGCTGGGCTCCGGTATCGCCCTCGCCGGGTCG	2900
	S D A G H P V L G S G I A L A G S	
35	CCGGGCCGGGTGTCACGGGTTCCGTGCCGACCGCGCGGT PGRVFTGSVPTGADRAV	2950
	GTTCGTCGCCGAGCTGGCGGTCGGCCGCGGACGCGGTCGACTGCGCCA	3000
	F V A E L A L A A A D A V D C A	
	CGGTCGAGCGGCTCGACATCGCCTCCGTGCCCGGCCGGCC	3050
40	T V E R L D I A S V P G R P G H G CGGACGACGGCGGGCGGCGGCGGCGGCGGCGGCGGCGGCG	3100
	R T T V Q T W V D E P A D D G R R	3100
	CCGGTTCACCGTGCACACCCGCACCGGCGACGCCCCGTGGACGCTGCACG	3150
•	R F T V H T R T G D A P W T L H CCGAGGGGGTGCTGCCCCATGGCACGGCCCTGCCGATGCGGCCGAC	2200
45	A E G V L R P H G T A L P D A A D	3200
	GCCGAGTGGCCCCACCGGGCGGGCGGTGCCCGCGGACGGGCTGCCGGGTGT	3250
	A E W P P P G A V P A D G L P G V	
	GTGGCGCGGGGGACCAGGTCTTCGCCGAGGCCGAGGTGGACGGAC	3300
50	ACGGTTTCGTGGTGCACCCCGACCTGCTCGACGCGGTCTTCTCCGCGGTC	3350
	DGFVVHPDLLDAVFSAV	
	GGCGACGGAAGCCGCCAGCCGGCCGGATGGCGCGACCTGACGGTGCACGC	3400
	G D G S R Q P A G W R D L T V H A GTCGGACGCACCGTACTGCGCGCCTCACCGGCGCCCACCGACGGAG	3450
55	S D A T V L R A C L T R R T D G	3450
	CCATGGGATTCGCCGCCTTCGACGGCGCCGGCCTGCCGGTACTCACCGCG	3500
	A M G F A A F D G A G L P V L T A	
	GAGGCGGTGACGCTGCGGGAGGAGTC E A V T L R E V A S P S G S E E S	3550
60	GGACGCCTGCACCGGTTGGAGTGGCTCGCGGTCGCCGAGGCGGTCTACG	3600

DGLHRLEWLAVAEAVY ACGGTGACCTGCCCGAGGGACATGTCCTGATCACCGCCGCCCCCCCGAC 3650 D G D L P E G H V L I T A A H P D GACCCCGAGGACATACCCACCCGCGCCCACACCCGCGCCACCCGCGTCCT 3700 D P E D I P T R A H T R A T R V L GACCGCCCTGCAACACCACCTCACCACCGACCACCCCTCATCGTCC 3750 TALQHHLTTTDHTLIV ACACCACCACCGACCCCGCGGGGGCCACCGTCACCGGGCCTCACCCGCACC 3800 H T T T D P A G A T V T G L T R T 10 GCCCAGAACGAACACCCCCACCGCATCCGCCTCATCGAAACCGACCACCC 3850 AQNEHPHRIRLIETOHP CCACACCCCCTCCCCTGGCCCAACTCGCCACCCTCGACCACCCCCACC 3900 HTPLPLAQLATLDHPH TCCGCCTCACCACCACCCTCCACCACCCCCACCTCCAC 3950 15 LRLTHHTLHHPHLTPLH ACCACCACCCACCACCACCACCCCCTCAACCCCGAACACGCCATCAT 4000 TTTPPTTTPLNPEHAII ITGGSGTLAGILARHL 20 NHPHTYLLSRTPPPDAT CCCGGCACCCACCTCCCTGCGACGTCGGCGACCCCACCAACTCGCCAC 4150 PGTHLPCDVGDPHQLAT CACCCTCACCCACATCCCCCAACCCCTCACCGCCATCTTCCACACCGCCG 4200 25 TLTHIPQPLTAIFHTA CCACCCTCGACGCGTCCTCCACGCCCTCACCCCGGCCGCCTCACC 4250 ATLDDGILHALTPDRLT ACCGTCCTCCACCCCAAAGCCAACGCCGCCTGGCACCTCCAC 4300 TVLHPKANAAWHLHHLT CCAAAACCAACCCTCACCCACTTCGTCCTCTACTCCAGCGCCGCCGCCG 4350 QNQPLTHFVLYSSAAA TCCTCGGCAGCCCCGGACAAGGAAACTACGCCGCCGCCAACGCCTTCCTC 4400 V L G S P G Q G N Y A A A N A F L GACGCCCTCGCCACCCACCGCCACCCTCGGCCAACCCGCCACCTCCAT 4450 35 DALATHRHTLGQPATSI CGCCTGGGGCATGTGGCACACCACCAGCACCTCACCGGACAACTCGACG 4500 AWGMWHTTSTLTGQLD ACGCCGACCGGGACCGCATCCGCCGCGGCGGTTTCCTCCCGATCACGGAC 4550 DADRDRIRRGGFLPITD 40 GACGAGGGCATGGGATGCAT

The NheII-XhoI restriction fragment that encodes module 8 of the FK-520 PKS with the endogenous AT domain replaced by the AT domain of module 12 (specific for malonyl CoA) of the rapamycin PKS has the DNA sequence and encodes the amino acid sequence shown below.

AGATCTGGCAGCTCGCCGAAGCGCTGGTGACGCTCGTCGGGAAGCACC 50
Q L A E A L L T L V R E S T
GCCGCCGTGCTCGGCCACGTGGGTGGCGAGGACATCCCCGCGACGGCGGC 100
50 A A V L G H V G G E D I P A T A A
GTTCAAGGACCTCGGCATCGACTCGCTCACCGCGGTCCAGCTGCGCAACG 150
F K D L G I D S L T A V Q L R N
CCCTCACCGAGGCGACCGGTGTGCGGCTGAACGCCACGGCGGTCTTCGAC 200
A L T E A T G W P L N A T A V F D
TTCCCGACCCGGCACGTGCTCGCCGGGGAAGCTCGGCGACACTGACCGG 250
F P T P H V L A G K L G D E L T G
CACCCGCGCGCCCGTGTGCCCCGGACCGCCGGCGGTGCGCACG 300

	TRAPVVPRTAATAGAH	
	ACGAGCCGCTGGCGATCGTGGGAATGGCCTGCCGGCTGCCGGGGGGTC	350
	D E P L A I V G M A C R L P G G V	, ,,(
	GOGTCACCCGAGGAGCTGTGGCACCTCGTGGCATCCGGCACCGACGCCAT	400
5	ASPEELWHLVASGTDAI	. 400
	CACGGAGTTCCCGACGGACCGCGGCTGGGACGTCGACGCGATCTACGACG	. 450
	TEFFTDRGWDVDAIYD'	, 450
	CGGACCCCGACGCGATCGGCAAGACCTTCGTCCGGCACGGTGGCTTCCTC	500
	- FPPPAIGKTEVRHGGET	
10	ACCGGCGCGACAGGCTTCGACGCGCGTTCTTCGGCATCAGCCCGCGCGA	550
	TGATGFDAAFFGISPRE	
	GGCCCTCGCGATGGACCCGCAGCAGCGGGTGCTCCTGGAGACGTCGTGGG	600
	A L A M D P Q Q R V L L E T S W	
	AGGCGTTCGAAAGCGCCGGCATCACCCCGGACTCGACCCGCGGCAGCGAC	650
15		
	ACCGGCGTGTTCGTCGGCGCCTTCTCCTACGGTTACGGCACCGGTGCGGA	700
	TGVFVGAFSYGYGTGAD	
	CACCGACGGCTTCGGCGCGACCGGCTCGCAGACCAGTGTGCTCTCCGGCC	750
30	TDGFGATGSQTSVLSG	
20	GGCTGTCGTACTTCTACGGTCTGGAGGGTCCGGCGGTCACGGTCGACACG	800
	RLSYFYGLEGPAVTVDT	
	GCGTGTTCGTCGCTGGTGGCGCTGCACCAGGCCGGGCAGTCGCTGCG	850
	A C S S S L V A L H Q A G Q S L R	
25	CTCCGGCGAATGCTCGCCCCTGGTCGGCGGCGTCACGGTGATGGCGT	900
	S G E C S L A L V G G V T V M A	
	CTCCCGGCGGCTTCGTGGAGTTCTCCCGGCAGCGCGCGGCCTCGCGCCGGAC	950
	S P G G F V E F S R Q R G L A P D	
	GGCCGGGCGAAGGCGTTCGCCGA	1000
30	G R A K A F G A G A D G T S F A E	
,,		1050
	G A G V L I V E R L S D A E R N	
	GTCACACCGTCCTGGCGGTCGTCGTGGTTCGGCGGTCAACCAGGATGGT G H T V L A V V R G S A V N O D G	1100
35	GCCTCCAACGGGCTGTCGGCGCGCGGAGCGGGTGAT A S N G L S A P N G P S Q E R V I	1150
	CCGGCAGGCCCTGGCCAACGCCGGGCTCACCCCGGCGGACGTGGACGCCG	1200
	R Q A L A N A G L T P A D V D A	1200
	TOGAGGCCACGGCACCGGCACCAGGCTGGGCGACCCCATCGAGGCACAG	1250
	V E A H G T G T R L G D P I E A Q	1250
10	GCGGTACTGGCCACCTACGGACAGGAGCGCGCCACCCCCTGCTGCTGGG	1300
	AVLATYGQERATPLLLG	1500
	CTCGCTGAAGTCCAACATCGGCCACGCCCAGGCCGCGTCCGGCGTCGCCG	1350
	SLKSNIGHAQAASGVA	
	GCATCATCAAGATGGTGCAGGCCCTCCGGCACGGGGAGCTGCCGCCGACG	1400
5	3 I I K M V Q A L R H G E L P P T	
	CTGCACGCCGACGACGTCGCCGCACGTCGACTGGACGGCCGGC	1450
	I H A D E P S P H V D W T A G A V	
	CGAACTGCTGACGTCGGCCCGGCCGTGGCCCGAGACCGACC	1500
_	ELLTSARPWPETDRPR	
0	GTGCCGCCGTCTCCTCGTCGGGGTGAGCGCCACCAACGCCCACGTCATC	1550
	R,AAVSSFGVSGTNAHVI	
	CTGGAGGCCGGACCGGTAACGGAGACGCCCGCGGCATCGCCTTCCGGTGA	1600
	E E A G P V T E T P A A S P S G D	
	CCTTCCCCTGCTGGTGTCGGCACGCTCACCGGAAGCGCTCGACGAGCAGA	1650
5	L P L L V S A R S P E A L D E Q	
	TCTGCCGACTGCGCCCTACCTGGACACCCCCGGACGTCGACCGGGTG	1700
	TRRLRAYLDTTPDVDRV	_
	GCCGTGGCACAGACGCTGGCCCGGCGCACACACTTCGCCCACCGCGCGCG	1750
0	A V A Q T L A R R T H F A H R A V	
•	GCTGCTCGGTGACACCGTCATCACCACACCCCCGCGGACCGGCCCGACG	18.00

LLGITVITTPPADRPD AACTCGTCTTCGTCTACTCCGGCCAGGGCACCCAGCATCCCGCGATGGGC 1850 E L V F V Y S G Q G T Q H P A M G GAGCAGCTAGCCGCGTTCCCCGTCTTCGCGCGGGATCCATCAGCAGGT 1900 EQLAAAFPVFARIHQQV GTGGGACCTGCTCGATGTGCCCGATCTGGAGGTGAACGAGACCGGTTACG 1950 W D L L D V P D L E V % E T G Y CCCAGCCGGCCCTGTTCGCAATGCAGGTGGCTCTGTTCGGGCTGCTGGAA 2000 AQPALFAMQVALFGILE 10 S W G V R P D A V I G H S V G E L TGCGGCTGCGTATGTCCGGGGTGTGGTCGTTGGAGGATGCCTGCACTT 2100 A A A Y V S G V W S L E D A TGGTGTCGGCGGGGCTCCTCTGATGCAGGCTCTGCCCGGGGTGGGGTG LVSARARLMQALPAGGV ATGGTCGCTGTCCCGGTCTCGGAGGATGAGGCCCGGGCCGTGCTGGGTGA 2200 M V A V P V S E D E A R A V L G E GGGTGTGGAGATCGCCGCGGTCAACGGCCCGTCGTCGGTGGTTCTCTCCG 2250 G V E I A A V N G P S S V V L S. 20 GTGATGAGGCCGCCGTGCTGCAGGCCGCGGAGGGGCTGGGGAAGTGGACG 2300 G D E A A V L Q A A E G L G K W T CGGCTGGCGACCAGCGCGTTCCATTCCGCCCGTATGGAACCCATGGT 2350 RLATSHAFHSARMEPML GGAGGAGTTCCGGGGGGTCGCCGAAGGCCTGACCTACCGGACGCCGCAGG 2400 25 EEFRAVAEGLT?RTPO TCTCCATGGCCGTTGGTGATCAGGTGACCACCGCTGAGTACTGGGTGCGG 2450 V S M A V G D O V T T A E Y W V R CAGGTCCGGGACACGGTCCGGTTCGGCGAGCAGGTGGCCTCGTACGAGGA 2500 Q V R D T V R F G E Q V A S Y E D 30 CGCCGTGTTCGTCGAGCTGGGTGCCGACCGGTCACTGGCCCGCCTGGTCG 2550 A V F V E L G A D R S L A R L V ACGGTGTCGCGATGCTGCACGGCGACCACGAAATCCAGGCCGCGATCGGC 2600 D G V A M L H G D H E I Q A A I G GCCCTGGCCCACCTGTATGTCAACGGCGTCACGGTCGACTGGCCCGCGCT 2650 35 A L A H L Y V N G V T 7 D W F A L CCTGGGCGATGCTCCGGCAACACGGGTGCTGGACCTTCCGACATACGCCT 2700 LGDAPATRVLDLPTYA TCCAGCACCAGCGCTACTGGCTCGAGTCGGCACGCCCGGCCGCATCCGAC 2750 F Q H Q R Y W L E S A R P A A S D 40 GCGGGCCACCGCGTGCTGGGCTCCGGTATCGCCCTCGCCGGGTCGCCGGG 2800 A G H P V L G S G I A L A G S P G CCGGGTGTTCACGGGTTCCGTGCCGACCGGTGCGGACCGCGCGGTGTTCG 2850 RVFTGSVPTGACRAVF TCGCCGAGCTGGCGCCGCCGCGGACGCGGTCGACTGCGCCACGGTC 2900 45 V A E L A L A A A D A V D C A T V GAGCGGCTCGACATCGCCTCCGTGCCCGGCCGGCCGGCCATGGCCGGAC 2950 ERLDIASVPGRPGHGRT T V Q T W V D E P A D D G R R R 50 TCACCGTGCACCCGCACCGGCGACGCCCCGTGGACGCTGCACGCCGAG 3050 FTVHTRTGDAPWILHAE GGGGTGCTGCGCCCCATGGCACGGCCCTGCCCGATGCGGCCGACGCCGA 3100 S V L R P H G T A L P D A A D A E GTGGCCCCACCGGGCGGGTGCCCGCGGACGGGCTGCGGGTGTGTGGC 3150 55 $\hbox{W} \quad \hbox{P} \quad \hbox{P} \quad \hbox{P} \quad \hbox{G} \quad \hbox{A} \quad \hbox{V} \quad \hbox{P} \quad \hbox{A} \quad \hbox{D} \quad \hbox{G} \quad \hbox{L} \quad \hbox{P} \quad \hbox{G} \quad \hbox{7} \quad \hbox{W}$ TTOGTOGTGCACCCCGACCTCCTCGACGCGGTCTTCTCCGCGGTCGGCGA 3250 F V V H P D L L D A V F S A 7 G D 60 CGGAAGCCGCCAGCCGGCCGGATGGCGCGACCTGACGGTGCACGCGTCGG 3300

J S R Q P A G W R D L T V H A S AGGCCACCGTACTGCGCGCCTGCCTCACCCGGCGCACCGACGGAGCCATG 3350 DATVLRACLTRRTDGAM 39ATTGBCGGCCTTCGACGGCGGCCGGCCTGCCGGTACTCACCGCGGAGGC 3400 5 G F A A F D G A G L P V L T A E A GGTGACGCTGCGGGAGGTGGCGTCACCGTCCGGGCTCCGAGGAGTCGGACG 3450 Y T L R E V A S P S G S E E S D GCCTGCACCGGTTGGAGTGGCTCGCGGTCGCCGAGGCGGTCTACGACGGT 3500 G L H R L E W L A V A E A V Y D G 10 D L P E G H V L I T A A H P D D P CGAGGACATACCCACCGCGCCCACACCCGCGCGCCCCGCGTCCTGACCG 3600 EDIPTRAHTRATRVLT COCTGCAACACCACCTCACCACCACCGACCACCCTCATCGTCCACACC 3650 15 ALQHHLTTTDHTLIVHT ACCACCGACCCGCCGGCGCCACCGTCACCGGCCTCACCCGCACCGCCCA 3700 TTDPAGATVTGLTRTAQ GAACGAACACCCCCACCGCATCCGCCTCATCGAAACCGACCACCCCCACA 3750 NEHPHRIRLIETOHPH 20 STESSETESSECTGGCCAACTCGCCACCTCGACCACCCCCACCTCCGC 3800 LPLAQLATLDHPHLR LTHHTLHHPHLTPLHTT CACCCCACCACCACCCCCCCCCAACCCCGAACACGCCATCATCA 3900 25 TPPTTTPLNPEHAIII CCGGCGGCTCCGGCACCTCGCCGGCATCCTCGCCCGCCACCTGAACCAC 3950 TGGSGTLAGILARHLNH CCCCACACCTACCTCCTCCCGCACCCCCACCCCCGACGCCACCCCCGG 4000 PHTYLLSRTPPPDAT 30 THLPCDVGDPHQLATT TCACCCACATCCCCCAACCCCTCACCGCCATCTTCCACACCGCCGCCACC 4100 LTHIPQPLTAIFHTAAT CTCGACGACGCATCCTCCACGCCCTCACCCCGACCGCCTCACCACCGT 4150 35 LDDGILHALTPDRLTTV CCTCCACCCCAAAGCCAACGCCGCCTGGCACCTGCACCACCTCACCCAAA 4200 LHPKANAAWHLHHLT ACCAACCCCTCACCCACTTCGTCCTCTACTCCAGCGCCGCCGCCGTCCTC 4250 NQPLTHFVLYSSAAAVL 40 GGCAGCCCCGGACAAGGAAACTACGCCGCCGAACGCCTTCCTCGACGC 4300 G S P G Q G N Y A A A N A F L D A CCTCGCCACCCACCCCACACCCTCGGCCAACCCGCCACCTCCATCGCCT 4350 LATHRHTLGQPATSIA GGGGCATGTGGCACCACCAGCACCCTCACCGGACAACTCGACGACGCC 4400 45 WGMWHTTSTLTGQLDDA GACCGGGACCGCATCCGCCGCGGCGGTTTCCTCCCGATCACGGACGACGA 4450 DRDRIRRGGFLPITDDE GGGCATGGGGATGCAT 50

The NheII-XhoI restriction fragment that encodes module 8 of the FK-520 PKS with the endogenous AT domain replaced by the AT domain of module 13 (specific for methylmalonyl CoA) of the rapamycin PKS has the DNA sequence and encodes the amino acid sequence shown below.

AGATOTGGCAGOTGGCGAAGCGCTGGTGACGCTCCGGGAGAGCACC 50
Q L A E A L L T L V R E S T
GCCGCCGTGCTCGGCCACGTGGGTGGCGAGGACATCCCCGCGACGGCGGC 100

A A V L G H V G G E D I P A T A A GTTCAAGGACCTCGGCATCGACTCGCTCACCGCGGTCCAGCTGCGCAACG F K D L G I D S L T A V Q L R N DOCTOROGGOGGOGROGGTSTGCSGCTGRACGCCACGGCGGTCTTCGAC (20) ALTEATGVRLNATAVFD TTCCCGACCCCGCACGTGCTCGCCGGGGAAGCTCGGCGACGAACTGACCGG 250 F P T P H V L A G K L G D E L T G CACCCGCGCGCCGTCGTGCCCCGGACCGCGGCCACGGCCGGTGCGCACG 300 RAPVVPRTAATAGAH 10 ACGAGCCGCTGGCGATCGTGGGGAATGGCCTGCCGGCTGCCCGGCGGGGGTC 250 DEPLAIVGMACRLPGGV GCGTCACCCGAGGAGCTGTGGCACCTCGTGGCATCCGCACCGACGCCAT 400 ASPEELWHLVASGTDAI CACGGAGTTCCCGACGGACCGCGGGCTGGGACGTCGACGCGATCTACGACC 450 15 TEFPTDRGWDVDAIYD CGGACCCCGACGCGATCGGCAAGACCTTCGTCCGGCACGGTGGCTTCCTC PDPDAIGKTFVRHGGFL ACCGGCGCGACAGGCTTCGACGCGGGGGTTCTTCGGCATCAGCCCGCGCGA 550 TGATGFDAAFFGISPRE 20 GGCCCTCGCGATGGACCCGCAGCAGCGGGTGCTCCTGGAGACGTCGTGGG 600 ALAMDPQQRVLLETSW AGGCGTTCGAAAGCCCCGGCATCACCCCGGGACTCGACCCGCGGCAGCGAC 650 EAFESAGITPDSTRGSD ACCGGCGTGTTCGTCGGCGCCTTCTCCTACGGTTACGGCACCGGTGCGGA 700 25 TGVFVGAFSYGYGTGAD CACCGACGGCTTCGGCGCGACCGGCTCGCAGACCAGTGTGCTCTCCGGCC 750 T D G F G A T G S Q T S V L S G GGCTGTCGTACTTCTACGGTCTGGAGGGTCCGGCGGTCACGGTCGACACG 800 RLSYFYGLEGPAVTVDT 30 GCGTGTTCGTCGCTGGTGGCGCTGCACCAGGCCGGGCAGTCGCTGCG 850 A C S S S L V A L H Q A G Q S L R CTCCGGCGAATGCTCGCCCTGGTCGGCGGCGTCACGGTGATGGCGT 900 SGECSLALVGGVTVMA CTCCCGGCGCTTCGTGGAGTTCTCCCGGCAGCGCGCGCCCGGAC 950 35 S P.G G F V E F S R Q R G L A P D GGCCGGCGAAGGCGTTCGGCGGGGGGGGGGGCGCGGGGCTTCGCCGA 1000 GRAKAFGAGADGTSFAE GGGTGCCGGTGTGCTGATCGTCGAGGGCTCTCCGACGCCGAACGCAACG 1050 SAGVLIVERLSDAERN 40 GTCACACCGTCCTGGCGGTCGTCCGTGGTTCGGCGGTCAACCAGGATGGT 1100 H T V L A V V R G S A V N O D G GCCTCCAACGGCCTGTCGGCGCCGAACGGGCCGTCGCAGGAGCGGGTGAT 1150 A S N G L S A P N G P S Q E R V I CCGGCAGGCCCTGGCCAACGCCGGGGTCACCCCGGCGGACGTGGACGCCG 1200 45 RQALANAGLTPADVDA TCGAGGCCCACGGCACCGGCACCAGGCTGGGCGACCCCATCGAGGCACAG 1250 V E A H G T G T R L G D P I E A Q GCGGTACTGGCCACCTACGGACAGGAGCGCGCCACCCCCTGCTGCTGGG 1300 AVLATYGOERATPLLLG 50 CTCGCTGAAGTCCAACATCGGCCACGCCCAGGCCGCGTCCGGCGTCGCCG 1350 SLKSNIGHAQAASGVA GCATCATCAAGATGGTGCAGGCCCTCCGGCACGGGGGGGCCTGCCGCCGACG 1400 G I I K M V Q A L R H G E L P P T 55 LHADEPSPHVDWTAGAV GGAACTGCTGACGTCGGCCGGCGGTGGCCGAGGGACCGGCCACGGC 1510 E L L T S A P P W P E T D P P R 90000CGTCTCCTCGTTCGGGGTGAGCGCAACGCCCACGTCATC R A A W S S F G V S G T N A H V I 60 CTSSAGGCCSSACCGGTAACGGAGÁCGCCCGCGGCATCGCCTTCCGGTGA 1600

LEAGPVTETPAASPSGD CCTTCCCCTGCTGGTGTCGGCACGCTCACCGGAAGCGCTCGACGAGCAGA 1650 -L P L L V S A R S P E A L D E Q TOOSCOGACTSDSSSCTACCTGGACACCACCCSGACGTCGACCGGGTG 1700 5 I R R L R A Y L D T T P D V D R V GCCGTGGCACAGACGCTGGCCCGGCGCACACACTTCGCCCACCGCGCCGT 1750 AVAQTLARRTHFAHRAV LLGDTVITTPPADRPD 10 AACTCGTCTTCGTCTACTCCGGCCAGGGCACCCAGCATCCCGCGATGGGC 1850 ELVFVYSGQGTQHPAMG GAGCAGCTAGCCGATTCGTCGGTGTTTCGCCGAGCGGATGGCCGAGTG 1900 EQLADSSVVFAERMAEC TGCGGCGGCGTTGCGCGAGTTCGTGGACTGGGATCTGTTCACGGTTCTGG 1950 15 AAALREFVDWDLFTVL ATGATCCGGCGGTGGTGGACCGGGTTGATGTGGTCCAGCCCGCTTCCTGG 2000 D D P A V V D R V D V V Q P A S W GCGATGATGGTTTCCCTGGCCGCGGTGTGGCAGGCGGCCGGTGTGCGGCC 2050 AMMVSLAAVWQAAGVRP 20 GGATGCGGTGATCGGCCATTCGCAGGGTGAGATCGCCGCAGCTTGTGTGG 2100 DAVIGHSQGEIAAACV CGGGTGCGGTGTCACTACGCGATGCCGCCCGGATCGTGACCTTGCGCAGC 2150 AGAVSLRDAARIVTLRS CAGGCGATCGCCGGGGCCTGGCGGGGCGGGGGGGGGGATGGCATCCGTCGC 2200 25 Q A I A R G · L A G R G A M A S V A CCTGCCGCGCAGGATGTCGAGCTGGTCGACGGGGCCTGGATCGCCGCCC 2250 LPAQDVELVDGAWIAA ACAACGGGCCCGCCTCCACCGTGATCGCGGGCACCCCGGAAGCGGTCGAC 2300 H N G P A S T V I A G T P E A V D 30 CATGTCCTCACCGCTCATGAGGCACAAGGGGTGCGGGTGCGGCGGATCAC 2350 H V L T A H E A Q G V R V R R I T CGTCGACTATGCCTCGCACACCCCGCACGTCGAGCTGATCCGCGACGAAC 2400 V D Y A S H T P H V E L I R D E TACTCGACATCACTAGCGACAGCAGCTCGCAGACCCCGCTCGTGCCGTGG 2450 35 L L D I T S D S S S Q T P L V P W CTGTCGACCGTGGACGGCACCTGGGTCGACAGCCCGCTGGACGGGGAGTA 2500 LSTVDGTWVDSPLDGEY CTGGTACCGGAACCTGCGTGAACCGGTCGGTTTCCACCCCGCCGTCAGCC 2550 W Y R N L R E P V G F H P A V S 40 AGTTGCAGGCCCAGGGCGACACCGTGTTCGTCGAGGTCAGCGCCAGCCCG 2600 Q L Q A Q G D T V F, V E V S A S P GTGTTGTTGCAGGCGATGGACGACGATGTCGTCACGGTTGCCACGCTGCG 2650 V L L Q A M D D D V V T V A T L R TCGTGACGACGCCACCCGGATGCTCACCGCCCTGGCACAGGCCT 2700 45 RDDGDATRMLTALAQA ATGTCCACGGCGTCACCGTCGACTGGCCCGCCATCCTCGGCACCACCACA 2750 YVHGVTVDWPAILGTTT ACCCGGGTACTGGACCTTCCGACCTTCCAACACCAGCGGTACTG 2800 TRVLDLPTYAFQHQRYW 50 GCTCGAGTCGGCACGCCGGCCGCATCCGACGCGGGCCACCCCGTGCTGG 2850 L E S A R P A A S D A G H P V L CCTCCGGTATCGCCCTCGCCGGGTCGCCGGGCCGGGTGTTCACGGGTTCC 2900 G S G I A L A G S P G R V F T G S GTGCCGACCGGTGCGGACCGCGCGGGTGTTCGTCGCCGAGCTGGCGCTGGC 2950 55 U P T G A D R A V F V A E L A L A CCCCGCGGACGCGGTCGACTGCGCCACGGTCGAGCGGCTCGACATCGCCT 3000 A A D A V D C A T V E P L D I A SVPGRPGHGRTIVQTWV 60 GACGASCCGGCGGACGACGGCCGGCGCGGTTCACCGTGCACACCCGCAC 3100

D E F A D D G R R F T V H T R T CGGCGACGCCCCTGGACGCTCCACGCCGAGGGGGTGCTGCGCCCCATG 3150 G D A F W T L H A E G V L F P H 5 G T A L F D A A D A E W P P P G A GTGCCCGGGGACCGGCTGCCGGGTGTGTGGCGCCGGGGGGGACCAGGTCTT 3250 V P A E G L P G V W R R G D O V F CGCCGAGGCCGAGGTGGACGGACGGACGGTTTCGTGGTGCACCCCGACC 3300 AEAEVDGPDGFVVHPD 10 TGCTCGACGCGGTCTTCTCCGCGGTCGGCGACGGAAGCCGCCAGCCGGCC 3350 LLDAVFSAVGDGSRQPA GGATGGCGCGACCTGACGGTGCACGCGTCGGACGCCACCGTACTGCGCGC 3400 G W R D L T V H A S D A T V L R A CTGCCTCACCCGGCGCACCGACGGAGCCATGGGATTCGCCGCCTTCGACG 3450 15 CLTRRTDGAMGFAAFD GCGCCGGCCTGCCGGTACTCACCGCGGAGGCGGTGACGCTGCGGGAGGTG 3500 G A G L P V L T A E A V T L R E V GCGTCACCGTCCGGCTCCGAGGAGTCGGACGGCCTGCACCGGTTGGAGTG 3550 A S P S G S E E S D G L H R L E W 20 GCTCGCGGTCGCCGAGGCGGTCTACGACGGTGACCTGCCCGAGGGACATG 3600 LAVAEAVYDGDLPEGA V L I T A A H P D D P E D I P T R GCCCACACCCGCGCGCCCTGACCGCCCTGCAACACCACCTCAC 3700 25 AHTRATRVLTALQHHLT CACCACCGACCACACCTCATCGTCCACACCACCGACCCGCCGGCGGGG 3750 TTDHTLIVHTTTDPAG CCACCGTCACCGGCCTCACCGCCCCAGAACGAACACCCCCACCGC 3800 ATVTGLTRTAONEHPHR 30 ATCCGCCTCATCGAAACCGACCACCCCCACACCCCCTCCCCTGGCCCA 3850 IRLIET D H P H T P L P L A Q ACTCGCCACCTCGACCACCCCCACCTCGCCTCACCCACCACCCTCC 3900 LATLDHPHLRLTHHTL . 35 H H P H L T P L H T T T P P T T T CCCCTCAACCCCGAACACGCCATCATCACCGGCGGCGCTCCGGCACCCT 4000 PLNPEHAIITGGSGTL AGILARHLNHPHTYLL 40 COORGRACICCACICCCGACGCCACCCCGGCACCCACCTCCCCTGCGAC 4100 S R T P P P D. A T P G T H L P C D V G D P H Q L A T T L T H İ P Q P CCTCACCGCCATCTTCCACACCGCCGCCACCCTCGACGACGGCATCCTCC 4200 45 AIFHTAATLDDGIL ACGCCCTCACCCCGACCGCCTCACCACCGTCCTCCACCCCAAAGCCAAC 4250 H A L T P D R L T T V L H P K A 'N GCCGCCTGGCACCTCACCCAAAACCAACCCCTCACCCACTT 4300 AAWHLHHLTQNQPLTHF 50 CGTCCTCTACTCCAGCGCCGCCGCCGTCCTCGGCAGCCCCGGACAAGGAA 4350 V L Y S S A A A V L G S P G Q G N Y A A A N A F L D A L A T H R H ACCCTCGGCCAACCCGCCACCTCCATCGCCTGGGGCATGTGGCACACCAC 4450 55 T L G Q F A T S I A W G M W H T T CAGCACCCTCACCGGACAACTCGACGACGCCGACCGGGGACCGCATCCGCC 4500 S, T L T G Q L D D A D R D P I R GOGGCGETTTCCTCCCATCACCGACGACGAGGGCATGGGGATECA RGGFLPITDDEG 60

Phage KC515 DNA was prepared using the procedure described in Genetic Manipulation of Streptomyces. A Laboratory Manual, edited by D. Hopwood et al. A phage suspension prepared from 10 plates (100 mm) of confluent plaques of KC515 on S. lividans TK24 generally gave about 3 µg of phage DNA. The DNA was ligated to circularize at the cos site, subsequently digested with restriction enzymes BamHI and PstI, and dephosphorylated with SAP.

Each module 8 cassette described above was excised with restriction enzymes Bg/II and NsiI and ligated into the compatible BamHI and PsiI sites of KC515 phage DNA prepared as described above. The ligation mixture containing KC515 and various cassettes was transfected into protoplasts of Streptomyces lividans TK24 using the procedure described in Genetic Manipulation of Streptomyces, A Laboratory Manual edited by D. Hopwood et al. and overlaid with TK24 spores. After 16-24 hr. the plaques were restreaked on plates overlaid with TK24 spores. Single plaques were picked and resuspended in 200 µL of nutrient broth. Phage DNA was prepared by the boiling method (Hopwood et al., supra). The PCR with primers spanning the left and right boundaries of the recombinant phage was used to verify the correct phage had been isolated. In most cases, at least 80% of the plaques contained the expected insert. To confirm the presence of the resistance marker (thiostrepton), a spot test is used, as described in Lomovskaya et al. (1997), in which a plate with spots of phage is overlaid with mixture of spores of TK24 and phiC31 TK24 lysogen. After overnight incubation, the plate is overlaid with antibiotic in soft agar. A working stock is made of all phage containing desired constructs.

Streptomyces hygroscopicus ATCC 14891 (see US Patent No. 3,244,592, issued 5 Apr 1966, incorporated herein by reference) mycelia were infected with the recombinant phage by mixing the spores and phage (1 x 10⁸ of each), and incubating on R2YE agar (Genetic Manipulation of Streptomyces, A Laboratory Manual, edited by D. Hopwood et al.) at 30°C for 10 days. Recombinant clones were selected and plated on minimal medium containing thiostrepton (50 μg/ml) to select for the thiostrepton resistance-conferring gene. Primary thiostrepton resistant clones were isolated and purified through a second round of single colony isolation, as necessary. To obtain thiostrepton-sensitive revertants that underwent a second recombination event to evict the phage genome, primary recombinants were propagated in liquid media for two to three days in the absence of thiostrepton and then spread on agar medium without thiostrepton to obtain spores. Spores were plated to obtain about 50 colonies per plate, and thiostrepton sensitive colonies were identified by

5

10

15

20

25

425

replica plating onto thiostrepton containing agar medium. The PCR was used to determine which of the thiostrepton sensitive colonies reverted to the wild type (reversal of the initial integration event), and which contain the desired AT swap at module 8 in the ATCC 14891-derived cells. The PCR primers used amplified either the KS/AT junction or the AT/DH junction of the wild-type and the desired recombinant strains. Fermentation of the recombinant strains, followed by isolation of the metabolites and analysis by LCMS, and NMR is used to characterize the novel polyketide compounds.

Example 2

10

15

20

25

30

35

5

Replacement of Methoxyl with Hydrogen or Methyl at C-13 of FK-506

The present invention also provides the 13-desmethoxy derivatives of FK-506 and the novel PKS enzymes that produce them. A variety of *Streptomyces* strains that produce FK-506 are known in the art, including *S. tsukubaensis* No. 9993 (FERM BP-927), described in U.S. Patent No. 5,624,852, incorporated herein by reference; *S. hygroscopicus* subsp. *yakushimaensis* No. 7238, described in U.S. patent No. 4,894,366, incorporated herein by reference; *S.* sp. MA6858 (ATCC 55098), described in U.S. Patent Nos. 5,116,756, incorporated herein by reference; and *S.* sp. MA 6548, described in Motamedi *et al.*, 1998, "The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK-506," *Eur. J. Biochem. 256*: 528-534, and Motamedi *et al.*, 1997, "Structural organization of a multifunctional polyketide synthase involved in the biosynthesis of the macrolide immunosuppressant FK-506," *Eur. J. Biochem. 244*: 74-80, each of which is incorporated herein by reference.

The complete sequence of the FK-506 gene cluster from *Streptomyces* sp. MA6548 is known, and the sequences of the corresponding gene clusters from other FK-506-producing organisms is highly homologous thereto. The novel FK-506 recombinant gene clusters of the present invention differ from the naturally occurring gene clusters in that the AT domain of module 8 of the naturally occurring PKSs is replaced by an AT domain specific for malonyl CoA or methylmalonyl CoA. These AT domain replacements are made at the DNA level, following the methodology described in Example 1.

The naturally occurring module 8 sequence for the MA6548 strain is shown below, followed by the illustrative hybrid module 8 sequences for the MA6548 strains.

GCATGCGGCTGTACGAGGCGGCACGGGAAGTCCCGTGGTGGTG 50

M R L Y E A A R R T G S P V V V

GCGGCCGCGCTCGACGACGCGCCGGCTGCCGCGGGCTGCG 100

A A A L D D A P D V P L L R G L R

	R T T V R R A A V R F R S I A D	150
	R T T V R R A A V R E R S L A D GCTCGCCGTGCTGCCGACGACGACGACGACGCCTCCCTCGCGTTCG	200
5	BSPCCPTTSAPTPPSRS	
ی	TOCTGGAACAGCACCGCCACCGTGCTCGGCCCACCTGGGCGCCGAAGACAT S W N S T A T V L G H L G A E D I	250
	CCCGGCGACGACGTTCAAGGAACTCGGCATCGACTCGCTCACCGCGG	300
	PATTFKELGIDSLTA TCCAGCTGCGCAACGCCTGACCGCGCGCGCGTACGCCTCAACGCC	360
10	7 Q L R N A L T T A T G V R L N A	350
	ACAGCGGTCTTCGACTTTCCGACGCGCGCGCGCGCGCGCG	400
	TAVEDEPTPRALAARLG	450
15	DELAGTRAPVAARTAA	
13	CCGCGGCCGCACGACGAACCGCTGGCGATCGTGGGCATGGCCTGCCGT T A A A H D E P L A I V G M A C R	500
	CTGCCGGGCGGGGTCGCGTCGCCACAGGAGCTGTGGCGTCTCGTCGCGTC	550
	L P G G V A S P Q E L W R L V A S CGGCACCGACGCATCACGGAGTTCCCCGCGGACCGCGGCTGGGACGTGG	600
20	GTDAITEFPADRGWDV	
	ACGCGCTCTACGACCCGGACCCCGACGCGATCGGCAAGACCTTCGTCCGG D A L Y D P D P D A I G K T F V R	650
	DALYDPDPDAIGKTFVR CACGGCGGCTTCCTCGACGGTGCGTTCTTCGG	700
25	H G G-F L D G A T G F D A A F F G	
-5	GATCAGCCCGCGCGAGGCCCTGGCCATGGACCCGCAGCAACGGGTGCTCC I S P R E A L A M D P Q Q R V L	750
	TGGAGACGTCCTGGGAGGCGTTCGAAAGCGCGGGCATCACCCCGGACGCG	800
	L E T S W E A F E S A G I T P D A GCGCGGGGCACCCGGCGTGTTCATCGGCGCGTTCTCCTACGGGTA	850
30	ARGSDTGVFIGAFSYGY	
	CGGCACGGGTGCGGATACCAACGGCTTCGGCGCGACAGGGTCGCAGACCA G T G A D T N G F G A T G S Q T	900
	GCGTGCTCTCCGGCCGCCTCTCGTACTTCTACGGTCTGGAGGGCCCTTCG	950
35	S V L S G R L S Y F Y G L E G P S GTCACGGTCGACACGCCTGCTCGTCACTGGTCGCCCTGCACCAGGC	1000
	V T V D T A C S S S L V A L H Q A	1000
		1050
	G Q S L R S G E C S L A L V G G TCACGGTGATGGCGTCGCCCGGCAGCGC	1100
40	V T V M A S P G G F V E F S R Q R	
	GCTCGCCGGACGGCGGGCGACGGCGCGCGCGCGACGG G L A P D G R A K A F G A G A D G	1150
	TACGAGCTTCGCCGAGGGCGCCGGTGCCCTGGTGGTCGAGCGGCTCTCCG	1200
45	T S F A E G A G A L V V E R L S ACGCGGAGGGCCACGGCCACGCGTCCTCGCCCTCGTACGCGGCTCCGCG	1250
	D A E R H G H T V L A L V R G S A	
	GCTAACTCCGACGCGCGTCGAACGGTCTGTCGGCGCCGAACGGCCCCTC A N S D G A S N G L S A P N G P S	1300
	CCAGGAACGCGTCATCCACCAGGCCCTCGCGAACGCGAAACTCACCCCCG	1350
50	Q E R V I H Q A L A N A K L T P	
	CCGATGTCGACGCGGTCGAGGCGCACCGGCACCCGCCTCGGCGAC : A D V D A V E A H G T G T R L G D	1400
	CCCATCGAGGCGCAGGCGCTGCTCGCGACGTACGGACAGGACCGGGCGAC	1450
55	PIEAQALLATYGQDRAT	1500
	P L L L G S L K S N I G H A Q A	
	COTCAGGGGTOGOGGGATCATCAAGATGGTGCAGGCCATCOGGCACGGG 1 A S G V A G I I K M V Q A I R H G	1550
	GAACTGCCGCCGACACTCCACGCGGACGACGTCGCCGCACGTCGACTG 1	1600
50	E L P P T L H A D E P S P H V D W	

GACGCCCGGGCCCCCGAGCTCCTGACGTCGGCCCGGGCCGTGGCCGGGGA 1650 TAGAVELLTSARPWPG CCGGTCGCCGCGCGCGCGCTCTCGTCGTTCGGCGTGAGCGGCACG 1700 5 AACGCCCACATCATCCTTGAGGCAGGACCGGTCAAAACGGGACCGGTCGA 1750 NAHIILEAGPVKTGPVE GGCAGGAGCGATCGAGGCAGGACCGGTCGAAGTAGGACCGGTCGAGGCTG 1800 A 3 A I E A G P V E V G P V E A GACCCCTCCCCGCGCGCCCCCTCAGCACCGGCCGAAGACCTTCCGCTG 1850 10 G P L P A A P P S A P G E D L P L CTCGTGTCGGCGCGTTCCCCGGAGGCACTCGACGAGCAGATCGGGCGCCT 1900 LVSARSPEALDEQIGRL GCGCGCTATCTCGACACCGGCCCGGGCGTCGACCGGGCGGCCGTGGCGC 1950 RAYLDTGPGVDRAAVA 15 AGACACTGGCCCGGCGTACGCACTTCACCCACCGGGCCGTACTGCTCGGG 2000 Q T L A R R T H F T H R A V L L G GACACCGTCATCGGCGCTCCCCCGCGGACCAGGCCGACGAACTCGTCTT 2050 D T V I G A P P A .D Q A D E L V F CGTCTACTCCGGTCAGGGCACCCAGCATCCCGCGATGGGCGAGCAACTCG 2100 20 V. Y S G Q G T Q H P A M G E Q L CGGCCGCGTTCCCCGTGTTCGCCGATGCCTGGCACGACGCGCTCCGACGG 2150. A A A F P V F A D A W H D A 1 CTCGACGACCCCGACCCGCACGACCCCACACGGAGCCAGCACACGCTCTT 2200 LDDPDPHDPTRSQHTLF 25 CGCCCACCAGGCGGCGTTCACCGCCCTCCTGAGGTCCTGGGACATCACGC 2250 AHQAAFTALLRSWDIT CGCACGCCGTCATCGGCCACTCGCTCGGCGAGATCACCGCCGCGTACGCC 2300 PHAVIGHSLGEITAAYA GCCGGGATCCTGTCGCTCGACGACGCCTGCACCCTGATCACCACGCGTGC 2350 30 A G I L S L D D A C T L I T T R A CCGCCTCATGCACACGCTTCCGCCGCCCGGCGCCATGGTCACCGTGCTGA 2400 RLMHTLPPPGAMVTVL CCAGCGAGGAGGCCCGTCAGGCGCTGCGGCCGGGCGTGGAGATCGCC 2450 T S E E E A R Q A L R P G V E I A 35 GCGGTCTTCGGCCCGCACTCCGTCGTGCTCTCGGGCGACGAGGACGCCGT 2500 A V F G P H S V V L S G D E D A V GCTCGACGTCGCACAGCGGCTCGGCATCCACCACCGTCTGCCCGCGCCGC 2550 LDVAQRLGIHHRLPAP ACGCGGCCACTCCGCGCACATGGAACCCGTGGCCGCCGAGCTGCTCGCC 2600 40 H A G H S A H M E P V A A E L L A ACCACTCGCGAGCTCCGTTACGACCGGCCCCACACGCCCATCCCGAACGA 2650 T T R E L R Y D R P H T A I P N D CCCACCACCGCCGAGTACTGGGCCGAGCAGGTCCGCAACCCCGTGCTGT 2700 PTTAEYWAEQVRNPVL 45 TCCACGCCCACACCCAGCGGTACCCCGACGCCGTGTTCGTCGAGATCGGC 2750 F H A H T Q R Y P D A V F V E I G CCCGGCCAGGACCTCTCACCGCTGGTCGACGGCATCGCCCTGTAGAACGG 2800 P G Q D L S P L V D G I A L Q N G CACGGCGGACGAGGTGCACGCGCTCGCCCGCCTCTTCA 2850 50 TADEVHALHTALARLF CACGCGGCGCCACGCTCGACTGGTCCCGCATCCTCGGCGGTGCTTCGCGG 2900 T R G A T L D W S R I L G G A S R CACGACCCTGACGTCCCCTCGTACGCGTTCCAGCGGCGTCCCTACTGGAT 2950 H D P D V P S Y A F O P R P Y W I 55 CGAGTCGGCTCCCCGGCCACGGCCGACTCGGGCCACCCCGTCCTCGGCA 3000 E S A P P A T A D S G H P V L G CCGGAGTCGCCGTCGCCGGGTCGCCGGGCCGGGTTTCACGGGTCCCGTG 3050 TGVAVAGSPGRVFTGPV CCCGCCGGTGCGGACCGCCGGTGTTCATCGCCGAACTGGCGCTCGCCGC 3100 60 PAGADRAVFIAELALAA

	CGCCGACGCCACCGACTGCGCCACGGTCGAACAGCTCGACGTCACCTCCG	3150
	A D A T D C A T V E Q L D V T S	
	TGCCCGGCGGATCCGCCGCGCGGGGGCCACCGCGCAGACCTGGGTCGAT P G G S A R G R A T A 2 T W V D	3200
5	GAACCCGCCGACGGGGGGGGCGCTTCACCGTCCACACCCGCGTCGG E P A A D G R R R F T V H T R V G	
	CGACGCCCGTGGACGCTGCACGCGGGGGGTTCTCCGCCCGGCCGCG	
10	TGCCCCAGCCGAAGCCGTCGACACCGCCTGGCCCCGCCGGGCGCGGTG V P Q P E A V D T A W P P P G A V	3350
	CCCGCGGACGGGCTGCCCGGGCGGGCCAGGTCTTCGT PADGLPGAWRRADQVFV	3400
	CGAAGCCGAAGTCGACAGCCCTGACGGCTTCGTGGCACACCCCGACCTGC E A E V D S P D G F V A H P D L	
15	TCGACGCGTCTCTCCGCGGTCGGCGACGGGAGCCGCCAGCCGACCGGA L D A V F S A V G D G S R Q P T G	
	TGGCGCGACCTCGCGGTGCACGCGTCGGACGCCACCGTGCTGCGCGCCTG W R D L A V H A S D A T V L R A C	3550
20	LTRRDSGVVELAAFDG	3600
	CCGGAATGCCGGTGCTCACCGCGGAGTCGCTGACGCTGGGCGAGGTCGCG A G M P V L T A E S V T L G E V A	
25	SAGGSDESDGLLRLEWL	3700
23	PVAEAHYDGADELPEG	3750
	ACACCCTCATCACCGCCACACACCCCGACGACCCCGACGACCCACCAC Y T L I T A T H P D D P D D P T N	
30	CCCCACAACACCCCACACGCACCCCACACACACACGCGTCCTCAC P H N T P T R T H T Q T T R V L T CGCCCTCCAACACCACCTCATCACCACCACCACCACCCTCATCGTCCACA	
	A L Q H H L I T T N H T L I V H CCACCACCGACCCCCAGGCGCGCGCGTCACCGGCCTCACCGCACCGCA	
35	T T T D P P G A A V T G L T R T A CAAAACGAACACCCCGGCCGCATCCACCTCATCGAAACCCACCACCCCCA	
	Q N E H P G R I H L I E T H H P H CACCCCACTCCCCCTCACCCAACTCACCACCTCCACCCACCCACCCACCCACCCCACCCCACCCACCCCACCCC	
	T P L P L T Q L T T L H Q P H L GCCTCACCACACACACCCCCCACCCCACCCCACCCCACC	•
40	R L T N N T L H T P H L T P I T T CACCACACACCACCACCACACCACCACACCACA	4150
	H H N T T T T P N T P P L N P N CCACGCCATCCTCATCACCGGCGCTCCGGCACCCTCGCCGGCATCCTCG	4200
45	H A I L I T G G S G T L A G I L CCCGCCACCTCAACCACCACCACCACCTCCTCTCCCGCACACCACCACA	1250
	A R H L N H P H T Y L L S R T P P CCCCCCACCACACCCGGCACCCCAC 4	300
50	PPTTPGTHIPCDLTDPT CCAAATCACCCAAGCCCTCACCGCATCT 4 QITQALTHIPQPLTGI	1350
	TCCACACCGCCACCCTCGACGACGCCACCCTCACCCACCTCACCCCC 4 F H T A A T L D D A T L T N L T P	1400
•	CAACACCTCACCACCTCCAACCCAAAGCCGACGCCGCCTGGCACCT 4 Q H L T T T L Q P K A D A A W H L	145C
55	CCACCACCACACACCAAAACCAACCCCTCACCCACTTCGTCCTCTACTCCA 4 H H H T Q N Q P L T H F V L Y S	
	GCGCCGCCGCCACCCTCGGCAGCCCGGCCGAACTACGCCGCCGCC 4 S A A A T L G S P G Q A N Y A A A	
50	AACGCCTTCCTCGACGCCTCGCCACCCCACGCCACACGACAACC 4 N A F L D A L A T H R H T Q G Q P	1600

CGCCACCATCGCCTGGGGCATGTGGCACACCACCACCACACTCACCA 4650
A T T I A W G M W H T T T T L T
GCCAACTCACCGACAGCGACCGCACCGCATCCGCCGGGGGGCTTCCTG 4700
S Q L T D S D R D R I R R G G F L
CCGATCTCGGACGACGAGGGCATGC
P I S D D E G M

The AvrII-XhoI hybrid FK-506 PKS module 8 containing the AT domain of module 12 of rapamycin is shown below.

```
10
    GCATGCGGCTGTACGAGGCGGCACGGCACCGGAAGTCCCGTGGTGGTG 50
      MRLYEAARRTGSPVVV
    GCGGCCGCCTCGACGACGCGCCGGACGTGCCGCTGCTGCGCGGGCTGCG 100
    AAALDDAPDVPLLRGLR
   GCGTACGACCGTCCGGCGTGCCGCCGTCCGGGAACGCTCTCTCGCCGACC 150
15
     RTTVRRAAVRERSLAD
   RSPCCPTTSAPTPPSR·S
   TCCTGGAACAGCACCGCCACCGTGCTCGGCCACCTGGGCGCCGAAGACAT 250
    SWNSTATVLGHLGAEDI
20
   CCCGGCGACGACGTTCAAGGAACTCGGCATCGACTCGCTCACCGCGG 300
     PATTTFKELGIDSLTA
   TCCAGCTGCGCAACGCGCTGACCACGGCGACCGGCGTACGCCTCAACGCC 350
   V Q L R' N A L T T A T G V R L N A
   25
    TAVFOFPTPRALAARLG
   EGACGAGCTGGCCGGTACCCGCGCGCCGGTCGCGGCCCGGACCGCGGCCA 450
     DELAGTRAPVAARTAA
   CCGCGGCCGCGCACGACCGCCGCGGCGATCGTGGGCCATGCCCGT 500
   TAAAHDEPLAIVGMACR
30
   CTGCCGGGCGGGTCGCCTCGCCACAGGAGCTGTGGCGTCTCGTCGCGTC 550
    L P G G V A S P Q E L W R L V A S
   CGGCACCGACGCCATCACGGAGTTCCCCGCGGACCGCGGCTGGGACGTGG 600
     G T D A I T E F P A D R G W D V
   ACGCGCTCTACGACCCGGACCCCGACGCGATCGGCAAGACCTTCGTCCGG 650
35
   DALYDPDPDAIGKTFVR
   CACGGCGGCTTCCTCGACGGTGCGACCGGCTTCGACGCGGCGTTCTTCGG 700
    H G G F L D G A T G F D A A F F G
   GATCAGCCCGCGAGGCCCTGGCCATGGACCCGCAGCAACGGGTGCTCC 750
     ISPREALAMDPQQRVL
40
   TGGAGACGTCCTGGGAGGCGTTCGAAAGCGCGGGCATCACCCCGGACGCG 800
   LETSWEAFESAGITPDA
   GCGCGGGCAGCGACACCGGCGTGTTCATCGGCGCGTTCTCCTACGGGTA 850
    ARGSDTGVFIGAFSYGY
   CGGCACGGGTGCGGATACCAACGGCTTCGGCGCGACAGGGTCGCAGACCA 900
45
    G T G A D T N G F G A T G S Q T
   GCGTGCTCTCGGGCCGCCTCTCGTACTTCTACGGTCTGGAGGGCCCTTCG 950
   S V · L S G R L S Y F Y G L E G P S
   GTCACGGTCGACACCGCCTGCTCGTCGTCACTGGTCGCCCTGCACCAGGC 1000
    V T V D T A C S S S L V A L H Q A
50
   AGGGCAGTCCCTGCGCTCGGCGAATGCTCGCTCGCCCTGGTCGGCGGTG 1050
    GQSLRSGECSLALVGG
   TCACGGTGATGGCGTCGCCCGGCGGGATTCGTCGAGTTCTCCCGGCAGCGC 1100
   V T V M A S P G G F V E F S R Q R
   G L A P D G R A K A F G A G A D G
   TACGAGOTTOGCOGAGGGGGGGGGTGGCCTGGTGGTGGAGCGGGTCTCCG 1200
    T S F A E G A G A L V V E R L S
   ACGCGGAGCGCCACGCCACCCTCCTCGCCCTCGTACGCGGCTCCGCG 1250
   D A E R H'G H T V L A L V R G S A
```

GCTAACTCCGACGGCGTCGAACGGTCTGTCGGCGCCGAACGGCCCCTC 1300 ANSDGASNGLSAPNGPS CCAGGAACGCGTCATCCACCAGGCCCTCGCGAACGCGAAACTCACCCCG 1350 Q E R V I H Q A L A N A K I T P CCGATGTCGACGCGGTCGAGGCGCACGGCACCGGCCTCGGCGAC 1400 ADVDAVEAHGTGTRLGD CCCATCGAGGCGCAGGCGCTGCTCGCGACGTACGGACAGGACCGGGCGAC 1450 PIEAQALLATYGQDRAT GCCCCTGCTGGTCGGCTCGCTGAAGTCGAACATCGGGCACGCCCAGGCCG 1500 10 PLLLGSLKSNIGHAQA CGTCAGGGGTCGCCGGGATCATCAAGATGGTGCAGGCCATCCGGCACGGG 1550 ELPPTLHADEPSPHVDW 15 GACGGCCGGTGCCGTCGAGCTCCTGACGTCGGCCGGGCCGTGGCCGGGGA 1650 TAGAVELLTSARPWPG CCGGTCGCCCTAGGCGGGCAGGCGTGTCGTCCTTCGGGATCAGTGGCACC 1700 G R P R R A G V S S F G I S G T AACGCCCACGTCATCCTGGAAAGCGCACCCCCCACTCAGCCTGCGGACAA 1750 20 N A H V I L E S A P P T Q P A D N CGCGGTGATCGAGCGGGCACCGGAGTGGGTGCCGTTGGTGATTTCGGCCA 1800 AVIERAPEWVPLVISA RTQSALTEHEGRLRAYL 25 GCGGCGTCGCCCGGGGTGGATATGCGGGCTGTGGCATCGACGCTGGCGAT 1900 AASPGVDMRAVASTLAM GACACGGTCGGTGTTCGAGCACCGTGCCGTGCTGCTGGGAGATGACACCG 1950 TRSVFEHRAVLLGDD TCACCGGCACCGCTGTGTCTGACCCTCGGGGGGGTGTTCGTCTTCCCGGGA 2000 30 V T G T A V S D P R A V F V F P G CAGGGGTCGCAGCGTGCTGGCATGGGTGAGGAACTGGCCGCGCGTTCCC 2050 QGSQRAGMGEELAAAFP CGTCTTCGCGCGGATCCATCAGCAGGTGTGGGACCTGCTCGATGTGCCCG 2100 V F A R I H Q Q V W D L. L D V P 35 ATCTGGAGGTGAACGAGACCGGTTACGCCCAGCCGGCCCTGTTCGCAATG 2150 DLEVNETGYAQPALFAM CAGGTGGCTCTGTTCGGGCTGCTGGAATCGTGGGGTGTACGACCGGACGC 2200 Q V A L F G L L E S W G V R P D A GGTGATCGGCCATTCGGTGGGTGAGCTTGCGGCTGCGTATGTGTCCGGGG 2250 40 VIGHSVGELAAAYVSG TGTGGTCGTTGGAGGATGCCTGCACTTTGGTGTCGGCGCGGGCTCGTCTG 2300 V W S L E D A C T L V S A R A R L ATGCAGGCTCTGCCCGCGGGTGGGGTGATGGTCGCTGTCCCGGTCTCGGA 2350 M Q A L P A G G V M V A V P V S E 45 GGATGAGGCCCGGGCCGTGCTGGGTGAGGGTGTGGAGATCGCCGCGGTCA 2400 DEARAVLGEGVEIAAV ACGGCCCGTCGTCGGTGGTTCTCTCCGGTGATGAGGCCGCCGTGCTGCAG 2450 NGPSSVVLSGDEAAVLQ GCCGCGGAGGGGCTGGGGAAGTGGACGCGGCTGGCGACCAGCCACGCGTT 2500 50 AAEGLGKWTRLATSHAF CCATTCCGCCCGTATGGAACCCATGCTGGAGGAGTTCCGGGGCGGTCGCCG 2550 H S A R M E P M L E E F R A 7 A AAGGCCTGACCTACCGGACGCCGCAGGTCTCCATGGCCGTTGGTGATCAG 2600 EGLTYRTPQVSMAVGDQ 55 STGACCACCGCTGAGTACTGGGTGCGGCAGGTCCGGGACACGGTCCGGTT 2650 V T T A E Y W V R Q V R D T V R F CGGCGAGCAGGTGGCCTCGTACGAGGACGCCGTGTTCGTCGAGCTGGGTG 2700 G E Q V A S Y E D A V F V E L G CCGACCGGTCACTGGCCCGCCTGGTCGACGGTGTCGCGATGCTGCACGGC 2750 60 A D R S L A R L V D G V A M L H G

GACCACGAAATCCAGGCCGCGATCGGCGCCCTGGCCCACCTGTATGTCAA 2800 DHEIQAAIGALAHLYVN CGGCGTCACGGTCGACTGGCCCGCGCTCCTGGGCGATGCTCCGGCAACAC 2850 3 V T V D W P A L L G D A P A T GGGTGCTGGACCTTCCGACATACGCCTTCCAGCACCAGCGCTACTGGCTC 2900 RVIDLPTYAFQHQRYWL GAGTCGGCTCCCCGGCCACGGCCGACTCGGGCCACCCCGTCCTCGGCAC 2950 ESAPPATADSGHPVLGT CGGAGTCGCCGTCGCCGGGCCGGGCGTGTTCACGGGTCCCGTGC 3000 10 AVAGSPGRVFTGPV CCGCCGGTGCGGACCGCGCGGTGTTCATCGCCGAACTGGCGCTCGCCGCC 3050 PAGADRAVFIAELALAA GCCGACGCCACCGACTGCGCCACGGTCGAACAGCTCGACGTCACCTCCGT 3100 ADATOCATVEQLOVT 15 GCCCGGCGGATCCGCCGCGCGCAGGGCCACCGCGCAGACCTGGGTCGATG 3150 PGGSARGRATAQTWVD AACCCGCCGCCGACGGCGCGCCGCTTCACCGTCCACACCCGCGTCGGC 3200 E P A A D G R R R F T V H T R V G GACGCCCGGTGGACGCTGCACGCCGAGGGGGGTTCTCCGCCCCGGCCGCGT 3250 20 DAPWTLHAEGVLRPGRV PQPEAVDTAWPPGAV CCGCGGACGGGCTGCCCGGGGCGTGGCGACGGGGCCAGGTCTTCGTC 3350 PADGLPGAWRRADQVFV 25 GAAGCCGAAGTCGACAGCCCTGACGGCTTCGTGGCACACCCCGACCTGCT 3400. EAEVDSPDGFVAHPDLL CGACGCGGTCTTCTCCGCGGTCGGCGACGGGAGCCGCCAGCCGACCGGAT 3450 D A V F S A V G D G S R Q P T G GGCGCGACCTCGCGGTGCACGCGTCGGACGCCACCGTGCTGCGCGCCCTGC 3500 WRDLAVHASDATVLRAC CTCACCGCGCGACAGTGGTGTCGTGGAGCTCGCCGCCTTCGACGGTGC 3550 LTRRDSGVVELAAFDGA CGGAATGCCGGTGCTCACCGCGGAGTCGGTGACGCTGGGCGAGGTCGCGT 3600 G M P V L T A E S V T L G E V A 35 CGGCAGGCGGATCCGACGAGTCGGACGGTCTCCTTCGGCTTGAGTGGTTG 3650 SAGGSDESDGLLRLEWL CCGGTGGCGGAGGCCCACTACGACGGTGCCGAGGGCTGCCCGAGGGCTA 3700 PVAEAHYDGADELPEGY CACCCTCATCACCGCCACACACCCCGACGACCCGACGACCCCACCAACC 3750 40 TLITATHPODPDOPTN CCCACAACACCCACACGCACCCACACACACACACGCGTCCTCACC 3800 PHNTPTRTHTQTTRVLT GCCCTCCAACACCACCTCATCACCACCACCACCCCTCATCGTCCACAC 3850 ALQHHLITTNHTLIVHT 45 CACCACCGACCCCCAGGCGCCGCCGTCACCGGCCTCACCGCCACCGCAC 3900 TTDPPGAAVTGLTRTA AAAACGAACACCCCGGCCGCATCCACCTCATCGAAACCCACCACCCCCAC 3950 QNEHPGRIHLIETHHPH 50 TPLPLTOLTTLHQPHLR LTNNTLHTPHLTPITT ACCACAACACCACCACCACCCCCCAACACCCCCACCCCTCAACCCCAAC 4100 HHNTTTTPNTEPLNPN 55 CACGCCATCCTCATCACCGGCGGCTCCGGCACCCTCGCCGGCATCCTCGC 4150 HAILITGGSGTLAGILA RHLHHPHTYLLSRTPP CCCCCACCACCCGGCACCCACATCCCCTGCGACCTCACCGACCCCACC 4250 60 PPTTPGTHIPCOLTOPT

WO 00/20601 PCT/US99/22886

100

```
CAAATCACCCAAGCCCTCACCCACATACCACAACCCCTCACCGGCATCTT 4300
    QITQALTHIPQPLTGIF
    CCACACCGCCGCCACCCTCGACGACGCCACCCTCACCAACCTCACCCCC 4350
     H T A A T L D D A T L T N L T P
    AACACCTCACCACCCTCCAACCCAAAGCCGACGCCGCCTGGCACCTC 4400
    QHLTTTLQPKADAAWHL
    CACCACCACACCCAAAACCAACCCCTCACCCACTTCGTCCTCTACTCCAG 4450
    H H H T Q N Q P L T H F V L Y S S
    CGCCGCCGCCACCTCGGCAGCCCCGGCCAAGCCAACTACGCCGCCGCCA 4500
10
     AAATLGSPGQANYAAA
    ACGCCTTCCTCGACGCCCTCGCCACCCCACCCCACCCAAGGACAACCC 4550
   NAFLDALATHRHTQGQP
    GCCACCACCATCGCCTGGGGCATGTGGCACACCACCACCACCACTCACCAG 4600
    ATTIAWGMWHTTTTLTS
15
   CCAACTCACCGACAGCGACCGCGACCGCATCCGCCGCGGCGGCTTCCTGC 4650
     Q L T D S D R D R I R R G G F L
   CGATCTCGGACGACGAGGGCATGC
   PISDDEGM
```

The AvrII-XhoI hybrid FK-506 PKS module 8 containing the AT domain of module 13 of rapamycin is shown below.

```
GCATGCGGCTGTACGAGGCGCACGGCGCACCGGAAGTCCCGTGGTGGTG 50
      M-RLYEAARRTGSPVVV
    GCGGCCGCGCTCGACGACGCCCGGACGTGCCGCTGCTGCGCGGGCTGCG 100
25
    AAALDDAPDVPLLRGLR
    GCGTACGACCGTCCGGCGTGCCGCCGTCCGGGAACGCTCTCTCGCCGACC 150
     RTTVRRAAVRERSLAD
    RSPCCPTTSAPTPPSRS
30
    TCCTGGAACAGCACCGCCACCGTGCTCGGCCACCTGGGCGCCGAAGACAT 250
    SWNSTATVLGHLGAEDI
    CCCGGCGACGACGTTCAAGGAACTCGGCATCGACTCGCTCACCGCGG 300
     PATTFKELGIDSLTA
    TCCAGCTGCGCAACGCGCTGACCACGGCGACCGGCGTACGCCTCAACGCC 350
. 35
    V Q L R N A L T T A T G V R L N A
   TAVFDFPTPRALAARLG
   CGACGAGCTGCCGGTACCCGCGCGCCGTCGCGGCCCGGACCGCGCCA 450
     DELAGTRAPVAARTAA
40
   CCGCGGCCGCGCACGACCGCTGGCGATCGTGGGCATGGCCTGCCGT 500
   TAAAHDEPLAIVGMACR
   CTGCCGGGCGGGGTCGCGTCGCCACAGGAGCTGTGGCGTCTCGTCGCGTC 550
    LPGGVASPQELWRLVAS
   CGGCACCGACGCCATCACGGAGTTCCCCGCGGACCGCGGCTGGGACGTGG 600
45
     G T D A I T E F P A D R G W D V
   ACGCGCTCTACGACCCGGACCCCGACGCGATCGGCAAGACCTTCGTCCGG 650
   DALYDPDPDAIGKTFVR
   CACGGCGGCTTCCTCGACGGTGCGACCGGCTTCGACGCGGGGTTCTTCGG 700
    H G G F L D G A T G F D A A F F G
50
   GATCAGCCCGCGCGAGGCCCTGGCCATGGACCCGCAGCAACGGGTGCTCC 750
    I S P R E A L A M D P Q Q R V L
   TGGAGACGTCCTGGGAGGCGTTCGAAAGCGCGGGCATCACCCCGGACGCG 800
   LETSWEAFESAGITPDA
   GCGCGGGGCAGCGACACCGCCGTGTTCATCGGCGCGTTCTCCTACGGGTA 850
55
    ARGSDTGVFIGAFSYGY
   DBGCADGGTTGDGGATACDAACGGCTTDGGCGCGACAGGGTTCGCAGACCA 990
     G T G A D T N G F G A T G S Q T
   GCGTGCTCTCCGGCCGCCTCTCGTACTTCTACGGTCTGGAGGGCCCTTCG 950
   S V L S G R L S Y. F Y G L E G P S
```

STEACGGTCGACACCGCCTGCTCGTCGTCACTGGTCGCCCTGCACCAGGC 1800 V T V D T A C S S S L V A L H Q A AGGGCAGTCCCTGCGCTCGGCGAATGCTCGCTCGCCCTGGTCGGCGGTG 1050 3 Q S L R S G E C S L A L V G G TCACGGTGATGGCGTCGCCCGGCGGATTCGTCGAGTTCTCCCGGCAGCGC 1100 V T V M A S P G G F V E F S R Q R G L A P D G R A K A F G A G A D G TACGAGCTTCGCCGAGGGCGCCGGTGCCCTGGTGGTCGAGCGGCTCTCCG 1200 10 T S F A E G A G A L V V E R L S ACGCGGAGCGCCACGGCCACACCGTCCTCGCCCTCGTACGCGGCTCCGCG 1250 D A E R H G H T V L A L V R G S A GCTAACTCCGACGGCGCGTCGAACGGTCTGTCGGCGCCGAACGGCCCCTC 1300 ANS DGAS NGL SAPNGPS 15 CCAGGAACGCGTCATCCACCAGGCCCTCGCGAACGCGAAACTCACCCCCG 1350 QERVIHQALANAKLTP CCGATGTCGACGCGGTCGAGGCGCACGGCACCGGCACCCGCCTCGGCGAC 1400 ADVDAVEAHGTGTRLGD CCCATCGAGGCGCAGGCGCTGCTCGCGACGTACGGACAGGACCGGGCGAC 1450 20 PIEAQALLA-TYGQDRAT GCCCCTGCTGGCTCGCTGAAGTCGAACATCGGGCACGCCCAGGCCG 1500 P L L L G S L K S N I G H A Q A CGTCAGGGGTCGCCGGGATCATCAAGATGGTGCAGGCCATCCGGCACGGG 1550 ASG V A G I I K M V Q A I R H G 25 GAACTGCCGCCGACACTGCACGCGGACGACGTCGCCGCACGTCGACTG 1600 ELPPTLHADEPSPHVDW TAGAVELLTSARPWPG CCGGTCGCCCTAGGCGGGCGGGGGTGTCGTCCTTCGGAGTCAGCGGCACC 1700 30 TGRPRRAGVSSFGVSGT AACGCCCACGTCATCCTGGAGAGCGCACCCCCGCTCAGCCCGCGGAGGA 1750 NAHVILESAPPAQPAEE GGCGCAGCCTGTTGAGACGCCGGTGGTGGCCTCGGATGTGCTGCCGCTGG 1800 AQPVETPVVASDVLPL TGATATCGGCCAAGACCCAGCCCGCCCTGACCGAACACGAAGACCGGCTG 1850 V I S A K T Q P A L T E H E D R L CGCGCCTACCTGGCGGCGTCGCCCGGGGCGGATATACGGGCTGTGGCATC 1900 RAYLAASPGADIRAVAS GACGCTGGCGGTGACACGGTCGGTGTTCGAGCACCGCGCCGTACTCCTTG 1950 40 TLAVTRSVFEHRAVLL GAGATGACACCGTCACCGGCACCGCGGTGACCGACCCCAGGATCGTGTTT 2000 G D D T V T G T A V T D P R I V F GTCTTTCCCGGGCAGGGGTGGCAGTGGCAGTGCACTGCG 2050 V F P G Q G W Q W L G M G S A L R 45 CGATTCGTCGGTGGTGTTCGCCGAGCGGATGGCCGAGTGTGCGGCGGCGT 2100 D S S V V F A E R M A E C A A A TGCGCGAGTTCGTGGACTGGGATCTGTTCACGGTTCTGGATGATCCGGCG 2150 LREFVDWDLFTVLDDPA GTGGTGGACCGGGTTGATGTGGTCCAGCCCGCTTCCTGGGCGATGATGGT 2200 50 '' V D R V D V V Q P A S W A M M V TTCCCTGGCCGCGGTGTGGCAGGCGGCCGGTGTGCGGCCGGATGCGGTGA 2250 S L A A V W Q A A G V R P D A V TCGGCCATTCGCAGGGTGAGATCGCCGCAGCTTGTGTGGCGGGTGCGGTG 2300 G H S Q G E I A A A C V A G A V 55 TCACTACGCGATGCCGCCGGGATCGTGACCTTGCGCAGCCAGGCGATCGC 2350 S L R D A A R I V T L R S Q A I A CCGGGGCCTGGCGGGCGGGGGGGGGGGGGCATCCGTCGCCCTGCCGGGC 2400 E G L A G R G A M A S V A L P A AGGATGTCGAGCTGGTCGACGGGGCCTGGATCGCCGCCCACAACGGGCCC 2450 60 2 D V E L V D G A W I A A H N G P

	GCCTCCACCGTGATCGCGGGCACCCCGGAAGCGGTCGACCATGTCCTCAC	2500
	A S T V I A G T P E A V D H V L T	
	CGCTCATGAGGCACAAGGGGTGCGGGTGCGGCGGATCACCGTCGACTATG	2550
5	A H E A Q G V R V R R I I U D Y	
ر	CCTCGCACACCCCGCGACGTACTACTCGACATC	2600
	A S H T P H V E L I R D E L L D I ACTAGCGACAGCCAGACCCGGTGGCGTGGCTGGACCGT	
	7 C 7 C 7 C 7 D 7 D 7 D 7 D 7 D 7 D 7 D	2650
	GGACGGCACCTGGGTCGACAGCCCGCTGGACGGGAGTACTGGTACCGGA	2700
10	D G T W V D S P L D G E Y W Y R	2700
	ACCTGCGTGAACCGGTCGGTTTCCACCCCGCCGTCAGCCAGTTGCAGGCC	2750
	N L R E P V G F H P A V S Q L Q A	2,30
	CAGGGCGACACCGTGTTCGTCGAGGTCAGCGCCAGCCCGGTGTTGTTGCA	2800
	QGDTVFVEVSASPVLLQ	
15	GGCGATGGACGATGTCGTCACGGTTGCCACGCTGCGTCGTGACGACG	2850
	A M D D D V V T V A T L R R D D	
	GCGACGCTACCCGGATGCTCACCGCCCTGGCACAGGCCTATGTCCACGGC	2900
	G D A T R M L T A L A Q A Y V H G GTCACCGTCGACTGGCCATCCTCGGCACCACACCACGGGTACT	2052
20	V T V D W P A I L G T T T T R V L	2950
	GGACCTTCCGACCTACGCCTTCCAACACCAGCGGTACTGGCTCGAGTCGG	3000
	D L P T Y A F Q H Q R Y W L E S	3000
	CTCCCCGGCCACGGCCGACTCGGGCCACCCGTCCTCGGCACCGGAGTC	3050
	A P P A T A D S G H P V L G T G V	
25		3100
	AVAGSPGRVFTGPVPAG	
		3150
	A D R A V F I A E L A L A A A D CCACCGACTGGGCCACGGTCGAACAGCTCGACGTCACCTCCGTGCCCGGC	2200
30	A T D C A T V E Q L D V T S V P G	3200
	GGATCCGCCGCGGCAGGGCCACCGCGCAGACCTGGGTCGATGAACCCGC	3250
	G S A R G R A T A Q T W V D E P A	
	CGCCGACGGCGCGCCGCTTCACCGTCCACACCCGCGTCGGCGACGCCC	3300
35	A D G R R R F T V H T R V G D A	2250
))	CGTGGACGCTGCACGCGGGGGGGGGTTCTCCGCCCGGCCGCGTGCCCCAG PWTLHAEGVLRPGRVPQ	3350
	CCCGAAGCCGTCGACACCCCTGGCCCCCGGGGCGCGCGGGA	3400
	PEAVDTAWPPPGAVPAD	3.00
	CGGGCTGCCGGGGGGTGGCGACGCGCGGACCAGGTCTTCGTCGAAGCCG	3450
10	G L P G A W R R A D Q V F V E A	
	AAGTCGACAGCCCTGACGGCTTCGTGGCACACCCCGACCTGCTCGACGCG	3500
	E V C S P D G F V A H P D L L D A	2552
	GTCTTCTCCGCGGTCGGCGACGGGAGCCGCCAGCCGATGGCGCGA V F S A V G D G S R O P T G W R D	3550
15	CCTCGCGGTGCACGCGTCGGACGCCACCGTGCTGCGCGCCTCACCC	3600
	L A V H A S D A T V L R A C L T	5000
	GCCGCGACAGTGGTGTCGTGGAGCTCGCCGCCTTCGACGGTGCCGGAATG	3650
	R R D S G V V E L A A F D G A G M	
	CCGGTGCTCACCGCGGAGTCGGTGACGCTGGGCGAGGTCGCGTCGGCAGG	3700
50	PVLTAESVTLGEVASAG	
	CGGATCCGACGACTCGGACGGTCTGCTTCGGCTTGAGTGGTTGCCGGTGG	3750
	G S D E S D G L L R L E W L P V CGGAGGCCCACTACGACGGTGCCGACGAGGTGCCGAGGGCTACACCCTC	3800
	A E A H Y D G A D E L P E G Y T L	3000
55	ATCACCGCCACACCCCGACGACGCCCACAACCCCCACAA	3850
	I T A T H P D D P D D P T N P H N	
	CACACCCACACCCACACACACACACACACACGCGTCCTCACCGCCCTCC	3900
	T P T R T H T Q T T R V L T A L	2052
50	AACACCACCTCATCACCACCACCACCACCACCATCGTCCACCACCACCACC	J950
N)		

GACCCCCAGGCGCCGCCCGCACCGCACCACAAACGA 4000 D P P G A A V T G L T R T A Q N E ACACCCCGGCCGCATCCACCTCATCGAAACCCACCCCCACACCCCCAC 4050 HPORIBLIETHEPHT F TECCCCTCACCCAACTCACCACCCTCCACCAACCCCACCTACGCCTCACC 4100 LPLTQLTTLHQPHLRLT N N T L H T P H L T P I T T H H N 10 TTTTPNTPPLNPNHA TCCTCATCACCGGGGGCTCCGGCACCCTCGCCGGCATCCTCGCCGGCCAC 4250 I L I T G G S G T L A G I L A R H CTCAACCACCCCACACCTACCTCCTCTCCCGCACACCACCACCCCCCAC 4300 LNHPHTYLLSRTPPPT 15 CACACCCGGCACCCACATCCCCTGCGACCTCACCGACCCCAAATCA 4350 T P G T H I P C D L T D P T Q I CCCAAGCCCTCACCCACATACCACAACCCCTCACCGGCATCTTCCACACC 4400 TQALTHIPQPLTGIFHT GCCGCCACCCTCGACGACGCCACCCTCACCAACCCTCACCCCCAACACCT 4450 20 AATLDDATLTNLTPQHL CACCACCACCTCCAACCCAAAGCCGACGCCGCCTGGCACCTCCACCACC 4500 TTTLQPKADAAWHLHH ACACCCAAAACCAACCCCTCACCCACTTCGTCCTCTACTCCAGCGCCGCC 4550 H T Q N Q P L T H F V L Y S S A A 25 GCCACCCTCGGCCAGCCCAAGCCAACTACGCCGCCGCCAACGCCTT 4600 ATLGSPGQANYAAANAF CCTCGACGCCCTCGCCACCCCCACGCCAAGGACAACCCGCCACCA 4600 LDALATHRHTQGQPAT 30 TIAWGMWHTTTTLTSQL ACCGACAGCGACCGCATCCGCCGCGGCGGCTTCCTGCCGATCTC 4750 TDSDRDRIRRGGFLPIS GGACGACGAGGCATGC DDEGM

The *NheI-XhoI* hybrid FK-506 PKS module 8 containing the AT domain of module 12 of rapamycin is shown below.

GCATGCGGCTGTACGAGGCGCACGGCGCACCGGAAGTCCCGTGGTGGTG 50 MRLYEAARRTGSPVVV 40 GCGGCCGCGCTCGACGACGCCCGGACGTGCCGCTGCTGCGCGGGCTGCG 100 AAALDDAPDVPLLRGLR GCGTACGACCGTCCGGCGTGCCGCCGTCCGGGAACGCTCTCTCGCCGACC 150 RTTVRRAAVRERSLAD 45 RSPCCPTTSAPTPPSRS TCCTGGAACAGCACCGCCACCGTGCTCGGCCACCTGGGCGCCGAAGACAT 250 SWNSTATVLGHLGAEDI CCCGGCGACGACGTTCAAGGAACTCGGCATCGACTCGCTCACCGCGG 300 PATTFKELGIDSLTA 50 TCCAGCTGCGCAACGCGCTGACCACGGCGACCGGCGTACGCCTCAACGCC 350 V Q L R N A L T T A T G V R L N A TAVFDFPTPRALAARLG CGACGAGCTGGCCGGTACCCGCGCGCCCGTCGCGGCCCGGACCGCGGCCA 450 55 DELAGTRAPVAARTAA DOGCGGCCGCACGACGAACGCTGGCGATCGTGGGCATGGCCTGCCGT 500 TAAAHDEPLAIVGMACR CTGCCGGGCGGGTCGCGTCGCCACAGGAGCTGTGGCGTCTCGTCGCGTC 550 LPGGVASPQELWRLVAS

CGGCACCGACGCCATCACGGAGTTCCCCGCGGACCGCGGCTGGGACGTGG 600 G T D A I T E F P A D R G W D V ACGCGCTCTACGACCCGGACCCCGACGCGATCGGCAAGACCTTCGTCCGG 650 DALYDPDFDAIGKTFVR CACGGCGGCTTCCTCGACGGTGCGACCGGCTTCTTCGG 700 HGGFLDGATGFDAAFFG GATCAGCCCGCGAGGCCCTGGCCATGGACCCGCAGCAACGGGTGCTCC 750 I S P R E A L A M D P Q Q R V L TGGAGACGTCCTGGGAGGCGTTCGAAAGCGCGGGCATCACCCCGGACGCG 800 10 LETSWEAFESAGITPDA GCGCGGGGCACCACCGGCGTGTTCATCGGCGCGTTCTCCTACGGGTA 850 A R G S D T G V F I G A F S Y G Y CGGCACGGGTGCGGATACCAACGGCTTCGGCGCGACAGGGTCGCAGACCA 900 G T G A D T N G F G A T G S Q T 15 GCGTGCTCTCCGGCCGCCTCTCGTACTTCTACGGTCTGGAGGGCCCTTCG 950 SVLSGRLSYFYGLEGPS GTCACGGTCGACACCGCCTGCTCGTCGTCACTGGTCGCCCTGCACCAGGC 1000 V T V D T A C S S S L V A L H Q A AGGGCAGTCCCTGCGCTCGGGCGAATGCTCGCCCTGGTCGGCGGTG 1050 20 GQSLRSGECSLALVGG TCACGGTGATGGCGTCGCCCGGCGGATTCGTCGAGTTCTCCCGGCAGCGC 1100 V T V M A S P G G F V E F S R Q R G L A F D G R A K A F G A G A D G 25 TACGAGCTTCGCCGAGGGCGCCGGTGCCCTGGTGGTCGAGCGGCTCTCCG 1200 TSFAEGAGALVVERLS ACGCGGAGCGCCACGCCACACCGTCCTCGCCCTCGTACGCGGCTCCGCG 1250 DAERHGHTVLALVRGSA GCTAACTCCGACGCGCGTCGAACGGTCTGTCGGCGCCGAACGGCCCCTC 1300 30 ANSDGASNGLSAPNGPS CCAGGAACGCGTCATCCACCAGGCCCTCGCGAACGCGAAACTCACCCCCG 1350 QERVIHQALANAKLTP ADVDAVEAHGTGTRLGD 35 CCCATCGAGGCGCAGGCGCTGCTCGCGACGTACGGACAGGACCGGGCGAC 1450 PIEAQALLATYGQDRAT GCCCCTGCTGCTCGCTGAAGTCGAACATCGGGCACGCCCAGGCCG 1500 PLLLGSLKSNIGHAQA CGTCAGGGGTCGCCGGGATCATCAAGATGGTGCAGGCCATCCGGCACGGG 1550 40 ASG V AGIIK M·V Q AIR H G GAACTGCCGCCGACACTGCACGCGGACGACGTCGCCGCACGTCGACTG 1600 ELPPTLHADEPSPHVDW GACGGCCGGTGCCGTCGAGCTCCTGACGTCGGCCGGCCGTGGCCGGGGA 1650 TAGAVELLTSARPWPG 45 CCGGTCGCCGCGCGCGCGCTGCCGTCTCGTCGTTCGGCGTGAGCGGCACG 1700 TGRPRRAAVSSFGVSGT AACGCCCACATCATCCTTGAGGCAGGACCGGTCAAAACGGGACCGGTCGA 1750 NAHIILEAGPVKTGPVE GGCAGGAGCGATCGAGGCAGGACCGGTCGAAGTAGGACCGGTCGAGGCTG 1800 50 AGAIEAGPVEVGPVEA GAGCGCTCCCCGCGGCGCCGCCGTCAGCACCGGGCGAAGACCTTCCGCTG 1850 G P L P A A P P S A P G E D L P L CTCGTGTCGCGCGCTTCCCCGGAGGCACTCGACGAGCAGATCGGGCGCCT 1900 · LVSARSPEALDEQIGRL 55 GCGCGCCTATCTCGACACCGGCCCGGGCGTCGACCGGGCGGCCGTGGCGC 1950 RAYLDTGPGVDRAAVA AGACACTGGCCCGGCGTACGCACTTCACCCACCGGGCCGTACTGCTCGGG 2000 Q T L - A R R T H F T H R A V L L G GACACCGTCATCGGCGCTCCCCCGCGGACCAGGCCGACGAACTCGTCTT 2050 60 D T V I G A P P A D Q A D E L V F

T.

	CGTCTACTCCGGTCAGGGCACCCAGCATCCCGCGATGGGCGAGCAGCTAG	G 2100
	CCGCCGCGTTCCCCGTCTTCGCGCGGATCCATCAGCAGGTGTGGGACCTC	2150
5	STOGATGTGCCCGATCTGGAGGTGAACGAGCCGGTTACGCCCAGCCGGC	2200
	COTGTTCGCAATGCAGGTGGCTCTGTTCGGGCTGCTGGAATCGTGGGGTG	2250
10	TACGACCGGACGCGGTGATCGGCCATTCGGTGGGTGAGCTTGCGGCTGCG	2300
	TATGTGTCCGGGGTGTGGTCGTTGGAGGATGCCTGCACTTTGGTGTCGGC	
	GCGGGCTCGTCTGATGCAGGCTCTGCCCGCGGGTGGGGTGATGGTCGCTG R A R L M Q A L P A G G V M V A	2400
15	TOCCGGTCTCGGAGGATGAGGCCCGGGCCGTGCTGGGTGAGGGTGTGGAG	2450
	ATCGCCGCGTCAACGGCCCGTCGTCGTGGTGTCTCTCCGGTGATGAGGC I A A V N G P S S V V L S G D E A	2500
20	CGCCGTGCTGCAGGCCGGCGGAGGGGGAAGTGGACGCGGCTGGCGA A V L Q A A E G L G K W T R L A	2550
	CCAGCCACGCGTTCCATTCCGCCCGTATGGAACCCATGCTGGAGGAGTTC T S H A F H S A R M E P M L E E F	2600
	CGGGCGGTCGCCGAAGGCCTGACCTACCGGACGCCGCAGGTCTCCATGGC R A V A E G L T Y R T P Q V S M A	
25	CGTTGGTGATCAGGTGACCACCGCTGAGTACTGGGTGCGGCAGGTCCGGG V G D Q V T T A E Y W V R Q V R	2700
	ACACGGTCCGGTTCGGCGAGCAGGTGGCCTCGTACGAGGACGCCGTGTTC D T V R F G E Q V A S Y E D A V F	2750
30	GTCGAGCTGGGTGCCGGTCACGGTGTCGC V E L G A D R S L A R L V D G V A	2800
	GATGCTGCACGGCGCCCCGAAATCCAGGCCGCGGTCGGCCCCTGGCCC M L H G D H E I Q A A I G A L A	2850
	ACCTGTATGTCAACGGCGTCACGGTCGACTGGCCGCGCTCCTGGGCGAT H L Y V N G V T V D W P A L L G D	2900
35	GCTCCGGCAACACGGGTGCTGGACCTTCCGACATACGCCTTCCAGCACCA A P A T R V L D L P T Y A F Q H Q	2950
	GCGCTACTGGCTCGAGTCGGCTCCCCGGCCACCGGCCGACTCGGGCCACC R Y W L E S A P P A T A D S G H	
40	CCGTCCTCGGCACCGGAGTCGCCGTCGCCGGGTCGCCGGGTGTTC F V L G T 3 V A V A G S P G R V F	3050
	ACGGGTCCCGTGCCGGTGCGGACT T G P V P A G A D R A V F I A E L	3100
	GGCGCTCGCCGCCGACGCCACCGACTGCGCCACGGTCGAACAGCTCG A L A A A D A T D C A T V E Q L	3150
45	ACGTCACCTCCGTGCCGGCGGGATCCGCCGCGGCAGGGCCACCGCGCAG D V T S V P G G S A R G R A T A Q	3200
	ACCTGGGTCGATGAACCCGCCGCCGACGGGCGCGCCGCTTCACCGTCCA T W V D E P A A D G R R R F T V H	3250
50	TRVGDAGCCCCGTGGACGCTGCACGCCGAGGGGGTTCTCC	3300
	GCCCGGCCGCGTGCCCCAGCCCGAAGCCGTCGACACCGCCTGGCCCCCG	3350
	CCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	3400
55	CCAGGTCTTCGTCGAAGCCGAAGTCGACAGCCCTGACGGCTTCGTGGCAC Q V F V E A E V D S P D G F V A	3450
	ACCCGACCTGCTCGACGCGGTCTTCTCCGCGGTCGGCGACGGGAGCCGC H P D L L D A V F S A V G D G S R	3500
60	CAGCCGACCGGATGCCGCGACCTCGCGGTGCACGCTCGGACGCCACCGT 2 P T G W R D L A V H A S D A T V	3550

```
GCTGCGCGCCTGCCTCACCCGCCGCGACAGTGGTGTCGTGGAGCTCGCCG 3600
     LRACLTRRDSGVVELA
    CCTTCGACGGTGCCGGAATGCCGGTGCTCACCGCGGAGTCGGTGACGCTG 3650
   A F D G A G M P V L T A E S V T L
   GGCGAGGTCGCGTCGGCAGGCGGATCCGACGAGTCGGACGCTCTGCTTCG 3700
    G E V A S A G G S D E S D G L L R.
   GCTTGAGTGGTTGCCGGTGGCGGAGGCCCACTACGACGGTGCCGACGAGC 3750
     LEWLPVAEAHYDGADE
   TGCCCGAGGGCTACACCCTCATCACCGCCACACCCCCGACGACCCCGAC 3800
10
     PEGYTLITATEFOOPD
   D P T N P H N T P T R T H T Q T T
   ACGCGTCCTCACCGCCCTCCAACACCACCTCATCACCACCACCACCACCC 3900
     RVLTALQHHLITTNHT
15
   TCATCGTCCACCACCACCGACCCCCCAGGCGCCGCCGTCACCGGCCTC 3950
   LIVHTTTDPPGAAVTGL
   ACCCGCACCGCACAAAACGAACACCCCGGCCGCATCCACCTCATCGAAAC 4000
    TRTAQNEHPGRIHLIET
   20
    HHPHTPLPLTQLTTLH
   AACCCCACCTACGCCTCACCAACAACACCCTCCACACCCCCCACCTCACC 4100
         LRLTNNTLHTPHLT
   CCCATCACCACCACCACACCACCACCACCACCCCCCACC 4150
         THHNTTTTTPNTPP
25
   CCTCAACCCCAACCACGCCATCCTCATCACCGGCGGCTCCGGCACCCTCG 4200 -
    LNPNHAILITGGSG
   AGILARHLNHPHTYL
   CGCACACCACCCCCCACCACCCCGGCACCCACATCCCCTGCGACCT 4300
30
    RTPPPTTPGTHIPCDL
   CACCGACCCCACACCAAATCACCCCAAGCCCTCACCCACATACCACAACCCC 4350
    T D P T Q I T Q A L T H I P Q P
   TCACCGGCATCTTCCACACCGCCGCCACCCTCGACGACGCCACCCTCACC 4400
   LTGIFHTAATLDDATLT
35
   AACCTCACCCCCAACACCTCACCACCCTCCAACCCAAAGCCGACGC 4450
   N L T P Q H L T T T L Q P K A D A
   CGCCTGGCACCTCCACCACCACACACACCCCTCACCCACTTCG 4500
    AWHLHHHTQNQPLTHF
   TCCTCTACTCCAGCGCCGCCGCCACCCTCGGCAGCCCGGCCAAGCCAAC 4550
   V L Y S S A A T L G S P G Q A N
   YAAANAFLDALATHRHT
   CCAAGGACAACCCGCCACCACCATCGCCTGGGGCATGTGGCACACCACCA 4650
    QGQPATTIAWGMWHTT
45
   CCACACTCACCAACTCACCGACAGCGACCGCGACCGCATCCGCCGC 4700
   TTLTSQLTDSDRDRIRR
   GGCGCCTTCCTGCCGATCTCGGACGACGAGGGCATGC
   GGFLPISDDEGM
```

The Nhel-Xhol hybrid FK-506 PKS module 8 containing the AT domain of module 13 of rapamycin is shown below.

GCATGCGGCTGTACGAGGCGGCACCGGCACCGGAAGTCCCGTGTGGTG 50

M R L Y E A A R R T G S P V V V

GCGGCCGCGCTCCGACGACGCCCGGACGTGCCGCTGCTGCGCGGGCTGCCG 100

55 A A A L D D A P D V P L L R G L R

GCGTACGACCGTCCGGCGTGCCGGGAACGCTCTTTGGCGACC 150

R T T V R R A A V R E R S L A D

GCTCGCCGTGCTGCCGACGACGACGACGCCTCCCTCGCGTTCG 200

R S F C C P T T S A P T F P S R S

TCCTGGAACAGCACCGCCACCGTGCTCGGCCACCTGGGCGCCGAAGACAT 250 S W N S T A T V L G H L G A E D I CCCGGCGACGACGTTCAAGGAACTCGGCATCGACTCGCTCACCGCGG 300 FATTTFKELGIDSLTA TCCAGCTGCGCAACGCGCTGACCACGGCGACCGGCGTACGCCTCAACGCC 350 Q L R N A L T T A T G V R L N A TAVFDFPTPRALAARLG CGACGAGCTGGCCGGTACCCGCGCGCGCCGGGCCCGGACCGCGGCCA 450 10 DELAGTRAPVAARTAA TAAAHDEPLAIVGMACR CTGCCGGGCGGGGTCGCGTCGCCACAGGAGCTGTGGCGTCTCGTCGCGTC 550 L P G G V A S P Q E L W R L V A S 15 CGGCACCGACGCCATCACGGAGTTCCCCGCGGACGCGGGCTGGGACGTGG 600 GTDAITEFPADRGWDV ACGCGCTCTACGACCCGGACCCCGACGCGATCGGCAAGACCTTCGTCCGG 650 DALYDPDPDAIGKTFVR CACGGCGGCTTCCTCGACGGTGCGACCGGCTTCGACGCGGCGTTCTTCGG 700 20 H G G F L D G A T G F D A A F F G GATCAGCCCGCGGGGGCCCTGGCCATGGACCCGCAGCAACGGGTGCTCC 750 I S P R E A L A M D P Q Q R V L TGGAGACGTCCTGGGAGGCGTTCGAAAGCGCGGGCATCACCCCGGACGCG 800 LETSWEAFESAGITPDA 25 GCGCGGGCCACCCGGCGTGTTCATCGGCGCGTTCTCCTACGGGTA 850 ARGSDTGVFIGAFSYGY CGGCACGGGTGCGGATACCAACGGCTTCGGCGCGACAGGGTCGCAGACCA 900 GTGADTNGFGATGSQT GCGTGCTCTCCGGCCGCCTCTCGTACTTCTACGGTCTGGAGGGCCCTTCG 950 30 S 7 L S G R L S Y F Y G L E G P S GTCACGGTCGACACCGCCTGCTCGTCGTCACTGGTCGCCCTGCACCAGGC 1000 V T V D T A C S S S L V A L H O A AGGGCAGTCCCTGCGCTCGGCCAATGCTCGCCCTGGTCGGCGGTG 1050 G Q S L R S G E C S L A L V G G 35 TCACGGTGATGGCGTCGCCCGGCGGATTCGTCGAGTTCTCCCGGCAGCGC 1100 V T V M A S P G G F V E F S R Q R J L A P D G R A K A F G A G A D G TACGAGCTTCGCCGAGGGCGCCGGTGCCCTGGTGGTCGAGCGGCTCTCCG 1200 40 T S F A E G A G A L V V E R L S ACGCGGAGCGCCACGGCCACACCGTCCTCGCCCTCGTACGCGGCTCCGCG 1250 DAERHGHTVLALVRGSA GCTAACTCCGACGCCGTCGAACGGTCTGTCGGCGCCGAACGGCCCCTC 1300 A N S D G A S N G L S A P N G P S 45 CCAGGAACGCGTCATCCACCAGGCCCTCGCGAACGCGAAACTCACCCCCG 1350 Q E R V I H Q A L A N A K L T P CCGATGTCGACGCGGTCGAGGCGCACGGCACCGGCACCCGCCTCGGCGAC 1400 A D V D A V E A H G T G T R L G D CCCATCGAGGCGCAGGCGCTGCTGGGGACGTACGGACAGGACCGGGCGAC 1450 50 PIEAQALLATYGQDRAT GCCCCTGCTCGGCTCGCTGAAGTCGAACATCGGGCACGCCCAGGCCG 1500 F L L L G S L K S N I G H A Q A CGTCAGGGGTCGCCGGGATCATCAAGATGGTGCAGGCCATCCGGCACGGG 1550 A S G V A G I I K M V Q A I R H G 55 GAACTGCCGCCGACACTGCACGCGGACGACGTCGCCGCACGTCGACTG 1600 ELPPTLHADEPSPHVDW AGAVELLTSARPWP3 CCGGTCGCCGCGCCGCGCTCCCGTCTCGTCGTCGCGTGAGCGGCACG 1700 60 TGRPRRAAVSSFGVSGT

	AACGCCCACATCATCCTTGAGGCAGGACCGGTCAAAACGGGACCGGTCGA	1750
	N A H I I L E A G P V K T G P V	7 1/50
	GGCAGGAGCGATCGAGGCAGGACCGGTCGAAGTAGGACCGGTCGAGGCTC	. 1200
		1800
5		
•	GACCGCTCCCGCGGCGCGCGTCAGCACCGGGCGAAGACCTTCCGCTC	1850
	CTCGTGTCGGCGCGTTCCCCGGAGGCACTCGACGAGCAGATCGGGCGCCC	1900
	LVSARSPEALDEOIGRI	
	GCGCGCCTATCTCGACACCGGCCCGGGCGTCGACCGGGCGGCCGTGGCGC	1950
10	RAYLDTGPGVDRAAVA	. 1,50
	AGACACTGGCCCGGCGTACGCACTTCACCCACCGGGCCGTACTGCTCGGG	2000
	OT	2000
	GACACCGTCATCGGGGCTCCCCCGGGGGCCAGGCCGACGACTCGTCTT	
	D T V I G A P P A D O A D F I V F	
15		
13	CGTCTACTCCGGTCAGGGCACCCAGCATCCCGCGATGGGCGAGCAGCTAG	2100
	Y Y S G Q G T Q H P A M G E Q L	
	CCGATTCGTCGGTGGTGTTCGCCGAGCGGATGGCCGAGTGTGCGGCGCG	2150
	ADSSVVFAERMAECAAA	
	TTGCGCGAGTTCGTGGACTGGGATCTGTTCACGGTTCTGGATGATCCGGC	2200
20	LREFVDWDLFTVLDDPA	
	GGTGGTGGACCGGGTTGATGTGGTCCAGCCCGCTTCCTGGGCGATGATGG	2250
	V V D R V D V V Q P A S W A M M	2230
	TTTCCCTGGCCGGGTGTGGCAGGCGGCCGGTGTGCGGCCGGATGCGGTG	2200
	V C 7 3 3 44 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2300
25	V S L A A V W Q A A G V R P D A V	
	ATCGGCCATTCGCAGGGTGAGATCGCCGCAGCTTGTGTGGCGGGTGCGGT	2350
	I G H S Q G E I A A A C V A G A V	
	GTCACTACGCGATGCCGCCCGGATCGTGACCTTGCGCAGCCAGGCGATCG	2400
	SLRDAARIVTLRSQAI	
30	CCCGGGGCCTGGCGGGCCGGGGCGCGATGGCATCCGTCGCCCTGCCCGCG	2450
30	ARGLAGRGAMASVALPA	
	CAGGATGTCGAGCTGGACGGGGCCTGGATCGCCGCCCACAACGGGCC	2500
	Q D V E L V D G A W I A A H N G P	
	CGCCTCCACCGTGATCGCGGGCACCCCGGAAGCGGTCGACCATGTCCTCA	2550
	ASTVIAGTPEAVDHVL	2330
35	CCGCTCATGAGGCACAAGGGGTGCGGGTGCGGCGGATCACCGTCGACTAT	2600
	T A H E A Q G V R V R R I T V D Y	2000
	GCCTCGCACACCCCGCACCTCGAGCTGATCCGCGACGAACTACTCGACAT	2650
		2650
40	CACTAGCGACAGCTCGCAGACCCCGCTCGTGCCGTGGCTGTCGACCG	2700
70	T S D S S S Q T P L V P W L S T	
	TGGACGGCACCTGGGTCGACAGCCCGCTGGACGGGGAGTACTGGTACCGG	2750
	V D G T W V D S P L D G E Y. W Y R	
	AACCTGCGTGAACCGGTCGGTTTCCACCCCGCCGTCAGCCAGTTGCAGGC	2800
	NLREPVGFHPAVSQLQA	
45	CCAGGGCGACACCGTGTTCGTCGAGGTCAGCGCCAGCCCGGTGTTGTTGC	2850
	QGDTVFVEVSASPVLL	
	AGGCGATGGACGACGTCGTCACGGTTGCCACGCTGCGTCGTGACGAC	2900
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	GGCGACGCCACCGGGATGCTCACCGCCCTGGCACAGGCCTATGTCCACGG	2050
50	G D A T R M L T A L A Q A Y V H G	2930
-		
	CCTCACCGTCGACTGGCCCGCCATCCTCGGCACCACCACAACCCGGGTAC	3000
	V T V D W P A I L G T T T T R V	
	TGGACCTTCCGACCTACGCCTTCCAACACCAGCGGTACTGGCTCGAGTCG	3050
22	L D L P T Y A F Q H Q R Y W L E S	
55	GCTCCCCGGCCACGGCCGACTCGGGCCCCCGTCCTCGGCACCGGAGT	3100
	A P P A T A D S G H P V L G T G V	
	CGCCGTCGCCGGGCCGGGTCTCACGGGTCCCGTGCCCGCCG	3150
	A V A G S P G R V F T G P V P A	-
	GTGCGGACCGCGGGTGTTCATCGCCGAACTGGCGCTCGCCGCCGCCGAC	3200
60	G A D R A V F I A E L A L A A A D	

	GCCACCGACTGCGCCACGGTCGACGTCACCTCCGTGCCCGG 3:	250
	GGGATCCGCCGCGCAGGCCACCGCGCAGACCTGGGTCGATGAACCCG 3:	300
5	CCGCCGACGGCGCGCCCTTCACCGTCCACACCCGCGTCGGCGACGCC 31	350
	PWTLHAEGVLRPGRVPQ	100
10	GCCCGAAGCCGTCGACACCGCCTGGCCCCGCCGGGGGGGG	150
	ACGGGCTGCCCGGGGCGTGGCGACGGGGCCAGGTCTTCGTCGAAGCC 35 D G L P G A W R R A D Q V F V E A	00
	Charge and an account of the contract of the c	50
15	GSTCTTCTCCGCGGTCGGCGACGGGAGCGGACCGGATGGCGCG 36 V F S A V G D G S R Q P T G W R	00
	ACCTCGCGGTGCACGCGTCGCACCGTGCTGCGCGCCTGCCT	50
20	CGCCGCGACAGTGGTGTGGGGGGGCTCGCCGCCTTCGACGGTGCCGGAAT 37 R R D S G V V E L A A F D G A G M	00
	GCCGGTGCTCACCGCGGAGTCGGTGACGCTGGGCGAGGTCGCGTCGGCAG 37	50
	GCGGATCCGACGAGTCGGACGGTCTGCTTCGGCTTGAGTGGTTGCCGGTG 38 G G D E S D G L L R L E W L P V	00
25	GCGGAGGCCCACTACGACGGTGCCGACGAGGGCTACACCCT 38 A E A H Y D G A D E L P E G Y T L	50 ·
	CATCACCGCCACACCCCGACGACCCCGACGACCCCACA 39 I T A T H P D D P D D P T N P H	00
30	ACACACCCACACGCACCACACACACACACGCGTCCTCACCGCCCTC 39 N T P T R T H T Q T T R V L T A L	50
	CAACACCACCTCATCACCACCACCACCACCACCACCACCA	
	D P P G A A V T G L T R T A Q N	
35	AACAGCCGGCCGCATCCACCTCATCGAAACCCACCCCCCCC	00
	CTCCCCTCACCAACTCACCACCCTCCACCAACCCCACCTACGCCTCAC 419 L P L T Q L T T L H Q P H L R L T	50
40	SAACAACACCCTCACACCCCCACCTCACCCCATCACCACCA	00
	ACACCACCACACCACCCCAACACCCCCACCCCCAACCACA	50
	ATCCTCATCACCGGCGCTCCGGCACCCTCGCCGGCATCCTCGCCCGCC)0
45	CCTCAACCACCCCACACCTACCTCCTCTCCCGCACACCACCACCACCCCCA 435 L N H P H T Y L L S R T P P P P	
	CCACACCGGCACCCACATCCCCTGCGACCTCACCGACCCCACAATC 440	
50	T Q A L T H I P Q P L T G I F H T	0
	GGGGGCACCCTCGACGACGCCACCCTCACCACACCCCCCAACACC 450	0
	TCACCACCACCCTCCAACCCAAAGCCGACGCCGCCTGGCACCTCCACCAC 455	0
55	FACACCCAAAACCAACCCTCACCCACTTCGTCCTCTACTCCAGCGCCGC 460 HTT Q N Q F L T H F V L Y S S A A	
	A T L G S P G Q A N Y A A A N A	Ü
60	TOCTOGACGCCTCGCCACCCACCGCCACACCCAAGGACAACCCGCCACC 470	0

WO 00/20601 PCT/US99/22886

110

ACCATCGCCTGGGGCATGTGGCACACCACCACACTCACCAGCCAACT 4750
T I A W G M W H T T T T L T S Q L
CACCGACAGCGACCGCGATCCGCCGCGGGGGGTTCCTGCCGATCT 4800
T D S D R D R I R R G G F L P T
CGGACGACGAGGGGATGC
S D D E G M

Example 3

Recombinant PKS Genes for 13-desmethoxy FK-506 and FK-520

The present invention provides a variety of recombinant PKS genes in addition to those described in Examples 1 and 2 for producing 13-desmethoxy FK-506 and FK-520 compounds. This Example provides the construction protocols for recombinant FK-520 and FK-506 (from Streptomyces sp. MA6858 (ATCC 55098), described in U.S. Patent Nos. 5,116,756, incorporated herein by reference) PKS genes in which the module 8 AT coding sequences have been replaced by either the rapAT3 (the AT domain from module 3 of the rapamycin PKS), rapAT12, eryAT1 (the AT domain from module 1 of the erythromycin (DEBS) PKS), or eryAT2 coding sequences. Each of these constructs provides a PKS that produces the 13-desmethoxy-13-methyl derivative, except for the rapAT12 replacement, which provides the 13-desmethoxy derivative, i.e., it has a hydrogen where the other derivatives have methyl.

Figure 7 shows the process used to generate the AT replacement constructs. First, a fragment of ~4.5 kb containing module 8 coding sequences from the FK-520 cluster of ATCC 14891 was cloned using the convenient restriction sites SacI and SphI (Step A in Figure 7). The choice of restriction sites used to clone a 4.0 - 4.5 kb fragment comprising module 8 coding sequences from other FK-520 or FK-506 clusters can be different depending on the DNA sequence, but the overall scheme is identical. The unique SacI and SphI restriction sites at the ends of the FK-520 module 8 fragment were then changed to unique Bgl II and Nsil sites by ligation to synthetic linkers (described in the preceding Examples, see Step B of Figure 7). Fragments containing sequences 5' and 3' of the AT8 sequences were then amplified using primers, described above, that introduced either an AvrII site or an NheI site at two different KS/AT boundaries and an XhoI site at the AT/DH boundary (Step C of Figure 7). Heterologous AT domains from the rapamycin and erythromycin gene clusters were amplified using primers, as described above, that introduced the same sites as just described (Step D of Figure 7). The fragments were ligated to give hybrid modules with in-frame fusions at the KS/AT and AT/DH boundaries (Step E of Figure 7). Finally, these hybrid modules were ligated into the BamHI and PstI sites of the

5

10

15

20

25

30

WO 00/20601

KC515 vector. The resulting recombinant phage were used to transform the FK-506 and FK-520 producer strains to yield the desired recombinant cells, as described in the preceding Examples.

111

The following table shows the location and sequences surrounding the engineered site of each of the heterologous AT domains employed. The FK-506 hybrid construct was used as a control for the FK-520 recombinant cells produced, and a similar FK-520 hybrid construct was used as a control for the FK-506 recombinant cells.

Heterologous AT	Enzyme	Location of Engineered Site
FK-506 AT8	AvrII	GGCCGTccgcgCGTGCGGCGGTCTCGTCGTTC
(hydroxymalonyl)		GRPRRAAVSSF
	NheI	ACCCAGCATCCCGCGATGGGTGAGCGgctcgcC
	1	TQHPAMGERLA
	V71	TACGCCTTCCAGCGGCGGCCCTACTGGatcgag
	Xhol	YAFQRRPYWIE
rapamycin AT3	AvrII	GACCGG <u>cccqt</u> CGGGCGGGCGTGTCGTCCTTC
(methylmalonyl)	İ	D R P R R A G V S S #F
	NheI	TGGCAGTGGCTGGGGATGGCcctgcqG
		WQWLGMGSALR
	Xhol	TACGCCTTCCAACACCAGCGGTACTGGgtcgag
4.T12		YAFQHQRYWVE
rapamycin AT12	AvrII	GGCCGAgegegcCGGGCAGGCGTGTCGTCCTTC
(malonyl)	NheI	G R A R R A G V S S F
		TCGCAGCGTGCTGGCATGGGTGAGGAactggcC
		S Q R A G M G E E L A
	XhoI	TACGCCTTCCAGCACCAGCGCTACTGGctcgag
DEBS AT1	AvrII	Y A F Q H Q R Y W L E GCGCGAccacacCGGGCGGGGGTCTCGTCGTTC
	AWII	
(methylmalonyl)		TGGCAGTGGGCGGCATGGCCGTCGAcctgctC
	NheI	W Q W A G M A V D L L
		TACCCGTTCCAGCGCGAGCGCGTCTGGctcgaa
	Xhol	Y P F Q R E R V W L E
DEBS AT2	AvrII	GACGGGatacgcCGGGCAGGTGTCTCGGCGTTC
(methylmalonyl)	1	DGVRRAGVSAF
(monity material)	NheI	GCCCAGTGGGAAGGCATGGCGCGGGAgttgttG
		AQWEGMARELL
		TATCCTTTCCAGGGCAAGCGGTTCTGGctgctg
[Xhol	Y P F Q G K R F W L L

The sequences shown below provide the location of the KS/AT boundaries chosen in the FK-520 module 8 coding sequences. Regions where AvrII and NheI sites were engineered are indicated by lower case and underlining.

WO 00/20601 PCT/US99/22886

112

A G A V E L L T S A R P W P E T D R P GTGCCGCCGTCTCCTCGTTCGGGGTGAGCGGCACCAACGCCCACGTCATCCTGGAGGCCG PAAVSSFGVSGTNAHVI GACCGGTAACGGAGACGCCCGCGGCATCGCCTTCCGGTGACCTTCCCCTGCTGGTGTCGG G P V T E T P A A S P S G D L P L L V S CACGCTCACCGGAAGCGCTCGACGAGCAGATCCGCCGACTGCGCGCCTACCTGGACACCA ARSPEALDEQIRRLRAYLDT CCCCGGACGTCGACCGGGTGGCCGTGGCACAGACGCTGGCCCGGCGCACACACTTCGCCC T P D V D R V A V A Q T L A R R T H F A ACCGCGCCGTGCTGGTGACACCGTCATCACCACACCCCCGGGGACCGGCCCGACG H R A V L L G D T V I T T P P A D R P D AACTCGTCTTCGTCTACTCCGGCCAGGGCACCCAGCATCCCGCGATGGGCGAGCAgctcg E L V F V Y S G Q G T Q H P A M G E Q L 15 $\underline{\underline{c}}$ CGCCGCCCATCCCGTGTTCGCCGACGCCTGGCATGAAGCGCTCCGCCGCCTTGACAACC AAAHPVFADAWHEALRRLDN

The sequences shown below provide the location of the AT/DH boundary chosen in the FK-520 module 8 coding sequences. The region where an XhoI site was engineered is indicated by lower case and underlining.

TCCTCGGGGCTGGGTCACGGCACGACGCGGATGCCCGCGTACGCGTTCCAACGGCGGCI L G A G S R H D A D V P A Y A F Q R R ACTACTGGatcgadTCGGCACGCCGGCCGCCATCCGACGCGGGCCACCCCGTGCTGGGCT H Y W I E S A R P A A S D A G H P V L G

The sequences shown below provide the location of the KS/AT boundaries chosen in the FK-506 module 8 coding sequences. Regions where AvrII and NheI sites were engineered are indicated by lower case and underlining.

TCGGCCAGGCCGTGGCCGGACCGGCCGTccgcgcCGTGCGGCGGTCTCGTCGTTCGGG 30 S A R P W P R T G R P R R A A V S S F G GTGAGCGGCACCAACGCCCACATCATCCTGGAGGCCGGACCCGACCAGGAGGAGCCGTCG V S G T N A H I I L E A G P D Q E E P S GCAGAACCGGCCGGTGACCTCCCGCTGCTCGTGTCGGCACGGTCCCCGGAGGCACTGGAC A E P A G D L P L L V S A R S P E A L D 35 GAGCAGATCGGGCGCCTGCGCGACTATCTCGACGCCGCCCCCGGCGTGGACCTGGCGGCC EQIGRLRDYLDAAPGVDLAA GTGGCGCGGACACTGGCCACGCGTACGCACTTCTCCCACCGCGCCGTACTGCTCGGTGAC V A R T L A T R T H F S H R A V L L G D ACCGTCATCACCGCTCCCCCGTGGAACAGCCGGGCGAGCTCGTCTTCGTCTACTCGGGA 40 TVITAPPVEQPGELVFVY ${\tt CAGGGCACCCAGCATCCGCGATGGGTGAGCG}{\underline{\tt GCCGCGCGTGTTCGCC}}$ Q G T Q H P A M G E R L A A A F P V F GACCCGGACGTACCCCCTACGCCTTCCAGCGGCGCCCTACTGGATCGAGTCCGCGCCG D P D V P A Y A F Q R R P Y W I E S A P

The sequences shown below provide the location of the AT/DH boundary chosen in the FK-506 module 8 coding sequences. The region where an *XhoI* site was engineered is indicated by lower case and underlining.

GACCCGGACGTACCCGCTACGCCTTCCAGCGGCCCCTACTGG<u>ategac</u>TCCGCGCCG

Example 4

45

20

10

Replacement of Methoxyl with Hydrogen or Methyl at C-15 of FK-506 and FK-520

The methods and reagents of the present invention also provide novel FK-506 and FK-520 derivatives in which the methoxy group at C-15 is replaced by a hydrogen or methyl. These derivatives are produced in recombinant host cells of the invention that express recombinant PKS enzymes the produce the derivatives. These recombinant PKS enzymes are prepared in accordance with the methodology of Examples 1 and 2, with the exception that AT domain of module 7, instead of module 8, is replaced. Moreover, the present invention provides recombinant PKS enzymes in which the AT domains of both modules 7 and 8 have been changed. The table below summarizes the various compounds provided by the present invention.

	Compound	C-13	C-15	Derivative Provided
	FK-506	hydrogen	hydrogen	13, 15-didesmethoxy-FK-506
	FK-506	hydrogen	methoxy	13-desmethoxy-FK-506
15	FK-506	hydrogen	methyl	13,15-didesmethoxy-15-methyl-FK-506
	FK-506	methoxy	hydrogen	15-desmethoxy-FK-506
	FK-506	methoxy	methoxy	Original Compound FK-506
-	FK-506	methoxy	methyl	15-desmethoxy-15-methyl-FK-506
	FK-506	methyl	hydrogen	13,15-didesmethoxy-13-methyl-FK-506
20	FK-506	methyl	methoxy	13-desmethoxy-13-methyl-FK-506
	FK-506	methyl	methyl	13,15-didesmethoxy-13,15-dimethyl-FK-506
	FK-520	hydrogen	hydrogen	13, 15-didesmethoxy FK-520
	FK-520	hydrogen	methoxy	13-desmethoxy FK-520
25	FK-520	hydrogen	methyl	13,15-didesmethoxy-15-methyl-FK-520
	FK-520	methoxy	hydrogen	15-desmethoxy-FK-520
	FK-520	methoxy	methoxy	Original Compound FK-520
	FK-520	methoxy	methyl	15-desmethoxy-15-methyl-FK-520
	FK-520	methyl	hydrogen	13,15-didesmethoxy-13-methyl-FK-520
	FK-520	methyl	methoxy	13-desmethoxy-13-methyl-FK-520
30	FK-520	methyl	methyl	13,15-didesmethoxy-13,15-dimethyl-FK-520

Example 5

Replacement of Methoxyl with Ethyl at C-13 and/or C-15 of FK-506 and FK-520

The present invention also provides novel FK-506 and FK-520 derivative compounds in which the methoxy groups at either or both the C-13 and C-15 positions are instead ethyl groups. These compounds are produced by novel PKS enzymes of the invention in which the AT domains of modules 8 and/or 7 are converted to ethylmalonyl specific AT domains by modification of the PKS gene that encodes the module. Ethylmalonyl specific AT domain coding sequences can be obtained from, for example, the FK-520 PKS genes, the niddamycin PKS genes, and the tylosin PKS genes. The novel PKS genes of the invention include not only those in which either or both of the AT domains of modules 7 and 8 have been converted to ethylmalonyl specific AT domains but also those in which one of the modules is converted to an ethylmalonyl specific AT domain and the other is converted to a malonyl specific or a methylmalonyl specific AT domain.

Example 6 Neurotrophic Compounds

The compounds described in Examples 1 - 4, inclusive have immunosuppressant activity and can be employed as immunosuppressants in a manner and in formulations similar to those employed for FK-506. The compounds of the invention are generally effective for the prevention of organ rejection in patients receiving organ transplants and in particular can be used for immunosuppression following orthotopic liver transplantation.

These compounds also have pharmacokinetic properties and metabolism that are more advantageous for certain applications relative to those of FK-506 or FK-520. These compounds are also neurotrophic; however, for use as neurotrophins, it is desirable to modify the compounds to diminish or abolish their immunosuppressant activity. This can be readily accomplished by hydroxylating the compounds at the C-18 position using established chemical methodology or novel FK-520 PKS genes provided by the present invention.

Thus, in one aspect, the present invention provides a method for stimulating nerve growth that comprises administering a therapeutically effective dose of 18-hydroxy-FK-520. In another embodiment, the compound administered is a C-18,20-dihydroxy-FK-520 derivative. In another embodiment, the compound administered is a C-13-desmethoxy and/or C-15-desmethoxy 18-hydroxy-FK-520 derivative. In another embodiment, the compound administered is a C-13-desmethoxy and/or C-15-desmethoxy 18,20-dihydroxy-FK-520 derivative. In other embodiments, the compounds are the corresponding analogs of

30

5

10

15

20

25

30

FK-506. The 18-hydroxy compounds of the invention can be prepared chemically, as described in U.S. Patent No. 5,189,042, incorporated herein by reference, or by fermentation of a recombinant host cell provided by the present invention that expresses a recombinant PKS in which the module 5 DH domain has been deleted or rendered non-functional.

The chemical methodology is as follows. A compound of the invention (~200 mg) is dissolved in 3 mL of dry methylene chloride and added to 45 µL of 2,6-lutidine, and the mixture stirred at room temperature. After 10 minutes, tert-butyldimethylsilyl trifluoromethanesulfonate (64 µL) is added by syringe. After 15 minutes, the reaction mixture is diluted with ethyl acetate, washed with saturated bicarbonate, washed with brine, and the organic phase dried over magnesium sulfate. Removal of solvent in vacuo and flash chromatography on silica gel (ethyl acetate: hexane (1:2) plus 1% methanol) gives the protected compound, which is dissolved in 95% ethanol (2.2 mL) and to which is added 53 μL of pyridine, followed by selenium dioxide (58 mg). The flask is fitted with a water condenser and heated to 70°C on a mantle. After 20 hours, the mixture is cooled to room temperature, filtered through diatomaceous earth, and the filtrate poured into a saturated sodium bicarbonate solution. This is extracted with ethyl acetate, and the organic phase is washed with brine and dried over magnesium sulfate. The solution is concentrated and purified by flash chromatography on silica gel (ethyl acetate: hexane (1:2) plus 1% methanol) to give the protected 18-hydroxy compound. This compound is dissolved in acetonitrile and treated with aqueous HF to remove the protecting groups. After dilution with ethyl acetate, the mixture is washed with saturated bicarbonate and brine, dried over magnesium sulfate, filtered, and evaporated to yield the 18-hydroxy compound. Thus, the present invention provides the C-18-hydroxyl derivatives of the compounds described in Examples 1 - 4.

Those of skill in the art will recognize that other suitable chemical procedures can be used to prepare the novel 18-hydroxy compounds of the invention. See, e.g., Kawai et al., Jan. 1993, Structure-activity profiles of macrolactam immunosuppressant FK-506 analogues, FEBS Letters 316(2): 107-113, incorporated herein by reference. These methods can be used to prepare both the C18-[S]-OH and C18-[R]-OH enantiomers, with the R enantiomer showing a somewhat lower IC₅₀, which may be preferred in some applications. See Kawai et al., supra. Another preferred protocol is described in Umbreit and Sharpless, 1977, JACS 99(16): 1526-28, although it may be preferable to use 30 equivalents each of

WO 00/20601 PCT/US99/22886

116

SeO₂ and t-BuOOH rather than the 0.02 and 3-4 equivalents, respectively, described in that reference.

All scientific and patent publications referenced herein are hereby incorporated by reference. The invention having now been described by way of written description and example, those of skill in the art will recognize that the invention can be practiced in a variety of embodiments, that the foregoing description and example is for purposes of illustration and not limitation of the following claims.

Claims

1. An isolated nucleic acid that encodes a CoA ligase, a non-ribosomal peptide synthetase, or a domain of an extender module of a polyketide synthase enzyme that synthesizes FK-520.

5

2. The isolated nucleic acid of claim 1 that encodes an extender module, said module comprising a ketosynthase domain, an acyl transferase domain, and an acyl carrier protein domain.

10

3. The isolated nucleic acid of claim 1 that encodes an open reading frame, said open reading frame comprising coding sequences for two or more extender modules, each extender module comprising a ketosynthase domain, an acyl transferase domain, and an acyl carrier protein domain.

15

4. The isolated nucleic acid of claim 1 that encodes a gene cluster, said gene cluster comprising two or more open reading frames, each of said open reading frames comprising coding sequences for two or more extender modules, each of said extender modules comprising a ketosynthase domain, an acyl transferase domain, and an acyl carrier protein domain.

20

5. The isolated nucleic acid of claim 2, wherein at least one of said domains is a domain of a module of a non-FK-520 polyketide synthase.

25

- 6. The isolated nucleic acid of claim 1, wherein said nucleic acid is a recombinant vector capable of replication in or integration into the chromosome of a host cell.
- 7. The isolated nucleic acid of claim 6 that is selected from the group consisting of cosmid pKOS034-120, cosmid pKOS034-124, cosmid pKOS065-M27, and cosmid pKOS065-M21.

30

8. The isolated nucleic acid of claim 5, wherein said non-FK-520 polyketide synthase is rapamycin polyketide synthase. FK-506 polyketide synthase, or erythromcyin polyketide synthase.

15

- 9. A method of preparing a polyketide, said method comprising transforming a host cell with a recombinant DNA vector of claim 6, and culturing said host cell under conditions such that said polyketide synthase is produced and catalyzes synthesis of said polyketide.
 - 10. The method of claim 9, wherein said host cell is a Streptomyces host cell.
- 11. The method of claim 9, wherein said polyketide is selected from the group consisting of FK-520, 13-desmethoxy-FK-520, and 13-desmethoxy-FK-506.
 - 12. A recombinant host cell that expresses a recombinant polyketide synthase selected from the group consisting of: (i) an FK-520 polyketide synthase in which at least one AT domain is replaced by an AT domain of a non-FK-520 polyketide synthase; (ii) an FK-506 polyketide synthase in which at least one AT domain is replaced by an AT domain of a non-FK-506 polyketide synthase; (iii) an FK-520 polyketide synthase in which at least one DH domain has been deleted; (iv) an FK-506 polyketide synthase in which at least one DH domain has been deleted.
- 13. The recombinant host cell of claim 12 that expresses an FK-520 polyketide synthase in which an AT domain of module 8 has been replaced by an AT domain that binds malonyl CoA, methylmalonyl CoA, or ethylmalonyl CoA.
- 14. The recombinant host cell of claim 12 that expresses an FK-506 polyketide synthase in which an AT domain of module 8 has been replaced by an AT domain that binds malonyl CoA, methylmalonyl CoA, or ethylmalonyl CoA.
 - 15. The recombinant host cell of claim 13, wherein a DH domain of module 5 or module 6 has been deleted.
 - 16. The recombinant host cell of claim 14, wherein a DH domain of module 5 or module 6 has been deleted.

17. A recombinant host cell that comprises recombinant genes coding for enzymes sufficient for synthesis of ethylmalonyl CoA or 2-hydroxymalonyl CoA.

18. A polyketide having the structure

5

wherein, R₁ is hydrogen, methyl, ethyl, or allyl; R₂ is hydrogen or hydroxyl, provided that when R₂ is hydrogen, there is a double bond between C-20 and C-19; R₃ is hydrogen or hydroxyl; R₄ is methoxyl, hydrogen, methyl, or ethyl; and R₅ is methoxyl, hydrogen, methyl, or ethyl; but not including FK-506, FK-520, 18-hydroxy-FK-520, and 18-hydroxy-FK-506.

- 19. The polyketide of claim 18 that is 13-desmethoxy-FK-506.
- 15
- 20. The polyketide of claim 18 that is 13-desmethoxy-18-hydroxy-FK-520.

BNSDOCID: <WO__ 0020601A2 IA>

FIG. 3

4/9

FIG. 4

SUBSTITUTE SHEET (RULE 26)

FIG. 6

SUBSTITUTE SHEET (RULE 26)

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type	Culture Collection
Address of depositary institution (including postal code and c	country)
10801 Universit Manassas, VA USA	
Date of deposit	Accession Number
20 September 1999	Accession Number PTA-727, PTA-728 and PTA-729
C. ADDITIONAL INDICATIONS (leave blank if not ap	pplicable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICA	ATIONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS	
The indications listed below will be submitted to the Internati Number of Deposit")	ional Bureau later (specify the general nature of the indications e.g., "Accession
This sheet was received with the international applicate	For International Bureau use only This sheet was received by the International Bureau on: 3 700 00 Authorized officer

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism re on page 22, line 3	eferred to in the description 1-33
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet X
Name of depositary institution American Type Culture	Collection
Address of depositary institution (including postal code and country 10801 University Blvd Manassas, VA 22110-220 USA	
Date of deposit	Accession Number
20 September 1999	PTA-726
C. ADDITIONAL INDICATIONS (leave blank if not applicable	le) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIO All designated States	NS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	
Number of Deposit")	
This sheet was received with the international application Authorized officer orm PCT/RO/134 (July 1992)	For International Bureau use only This sheet was received by the International Bureau on: 13 JUN 00 Authorized officer

BNSDOCID: <WO 0020601A2 IA>

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C12N 15/52, 15/54, 15/62, 9/10, C12P 17/18, 19/32, C07D 498/18 // (C07D 498/18, 311:00, 273:00, 211:00)

A3

(11) International Publication Number:

WO 00/20601

. j

(43) International Publication Date:

13 April 2000 (13.04.00)

(21) International Application Number:

PCT/US99/22886

(22) International Filing Date:

1 October 1999 (01.10.99)

(30) Priority Data:

60/102,748 2 October 1998 (02.10.98) US 60/123,810 11 March 1999 (11.03.99) US 60/139,650 17 June 1999 (17.06.99) US

(71) Applicant (for all designated States except US): KOSAN BIOSCIENCES, INC. [US/US]: 3832 Bay Center Drive, Hayward, CA 94545 (US).

(72) Inventors; and

(75) Inventors, Applicants (for US only): REEVES, Christopher [US/US]; 4 East Altarinda Drive, Orinda, CA 94563 (US). CHU, Daniel [US/US]; 3767 Benton Street, Santa Clara, CA 95051 (US). KHOSLA, Chaitan [IN/US]; 740 Para Avenue, Palo Alto, CA 94306 (US). SANTI, Daniel [US/US]; 211 Belgrave Avenue, San Francisco, CA 94117 (US). WU, Kai [CN/US]; 900 Constitution Drive, Foster City, CA 94404 (US).

(74) Agents: FAVORITO, Carolyn et al.; Morrison & Foerster LLP, 2000 Pennsylvania Avenue, N.W., Washington, DC 20006-1888 (US).

(81) Designated States: AL, AM, AU, BA, BB, BG, BR, CA, CN, CR, CU, CZ, DM, EE, GD, GE, HR, HU, IL, IS, JP, KG, KP, KR, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ, VN, ZA, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(88) Date of publication of the international search report: 26 October 2000 (26.10.00)

(54) Title: POLYKETIDE SYNTHASE ENZYMES AND RECOMBINANT DNA CONSTRUCTS THEREFOR

(57) Abstract

Host cells comprising recombinant vectors encoding the FK-520 polyketide synthase and FK-520 modification enzymes can be used to produce the FK-520 polyketide. Recombinant DNA constructs comprising one or more FK-520 polyketide synthase domains, modules, open reading frames, and variants thereof can be used to produce recombinant polyketide synthases and a variety of different polyketides with application as pharmaceutical and veterinary products.

*(Referred to in PCT Gazette No. 35/2000, Section II)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fl	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ.	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	LT	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Turkey
BJ	Benin	Œ	Ireland	MN	Mongolia	UA	Trinidad and Tobago
BR,	Brazil	IL	Israel	MR	Mauritania	UG	Ukraine
BY	Belarus	IS	Iceland	MW	Malawi		Uganda
CA	Canada	IT	Italy	MX	Mexico	US	United States of America
CF	Central African Republic	JP	Japan	NE NE	Niger	UZ	Uzbekistan
CG	Congo	KE	Kenya	NL NL	Netherlands	VN	Viet Nam
CII	Switzerland	KG	Kyrgyzsian	NO		YU	Yugoslavia
CI	Côte d'Ivoire	KP	Democratic People's		Norway	zw	Zimbabwe
CM	Cameroon		Republic of Korea	NZ	New Zcaland		
CN	China	KR	Republic of Korea	PL	Poland		•
CU	Cuba	KZ	Kazakstan	PT	Portugal		
CZ	Czech Republic	LC	Saint Lucia	RO	Romania		
DE	Germany	LL		RU	Russian Federation		
DK	Denmark	LK	Liechtenstein	SD	Sudan		
EE	Estonia	LR	Sri Lanka	SE	Sweden		
		LK	Liberia	SG	Singapore		

BNSDCCID: <WO _0020601A3 I >

INTERNATIONAL SEARCH REPORT International Application No. PCT/US 99/22886 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/52 C12N C12N15/54 C12N15/62 C12N9/10 C12P17/18 C12P19/32 C07D498/18 //(C07D498/18,311:00,273:00,211:00) According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N C12P C07D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) WPI Data, PAJ, MEDLINE, STRAND, BIOSIS, EMBASE, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X MOTAMEDI H ET AL.: "The biosynthetic gene 12 cluster for the macrolactone ring of the immunosuppressant FK506" EUR. J. BIOCHEM., vol. 256, no. 3, 15 September 1998 (1998-09-15), pages 528-534, XP000906738

528-534, XP000906738 abstract figures 1,2 page 532, right-hand column, line 51 -page 533, left-hand column, line 18

-/--

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.		
"A" document defining the general state of the art which is not considered to be of particular relevance. "E" earlier document but published on or after the international filing date. "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another creation or other special reason (as specified). "O" document referring to an oral disclosure, use, exhibition or other means. "P" document published prior to the international filing date but later than the priority date claimed.	T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family		
Date of the actual completion of the international search	Date of mailing of the international search report		
27 July 2000	10/08/2000		
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Authorized officer van de Kamp, M		

11

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 99/22886

99/22886	
Relevant to cia	um No.
17	
18	
18	
18	
18	
18	
18	

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 99/22886

C (Continu	Micas COCIMENTO CO.	PCT/US 99/22886
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Calegory	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	MOTAMEDI H ET AL.: "Characterization of methyltransferase and hydroxylase genes involved in the biosynthesis of the immunosupressants FK506 and FK520" J. BACTERIOLOGY, vol. 178, no. 17, July 1996 (1996-07), pages 5243-5248, XP002137077 abstract page 5245, left-hand column, line 1-3 figure 4	1-11
Y	MOTAMEDI H ET AL.: "Structural organization of a multifunctional polyketide synthase involved in the biosynthesis of the macrolide immunosuppressant FK506" EUR. J. BIOCHEM., vol. 244, no. 1, 15 February 1997 (1997-02-15), pages 74-80, XP000906743 abstract page 79, left-hand column, line 26-35 page 75, left-hand column, line 31 -page 76, left-hand column, line 1	1-11
	CHEN T S ET AL.: "Microbial transformation of immunosuppressive compounds. II. Specific desmethylation of 13-methoxy group of FK 506 and FR 9500520 by Actinomycete sp. ATCC 53828" J. ANTIBIOT., vol. 45, no. 4, April 1992 (1992-04), pages 577-580, XP002143634 figure 1	18-20
	SHAFIEE A ET AL.: "Enzymatic synthesis and immunosuppressive activity of novel desmethylated immunomycins (ascomycins)" J. ANTIBIOT., vol. 46, no. 9, September 1993 (1993-09), pages 1397-1405, XP002143635 abstract	18,20
	KHOSLA C: "Harnessing the biosynthetic potential of modular polyketide synthases." CHEMICAL REVIEWS, vol. 97, no. 7, 1997, pages 2577-2590, XP002130646 ISSN: 0009-2665	

11

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

later mission on petent family members

Intermetional Application No
PCT/US-99/22886

Patent document cited in search report			Publication date		Patent family member(s)	Publication date	
El	P 0323042	A	05-07-1989	AT	120466 T	15-04-1995	
				ΑU	630866 B	12-11-1992	
				AU	2822889 A	05-07-1989	
				CA	1339128 A	29-07-1997	
			•	CN	1033458 A	21-06-1989	
				DE	3853477 D	04-05-1995	
	•			DE	3853477 T	09-11-1995	
. •				DK	387889 A	08-08-1989	
				EP	0346427 A	20-12-1989	
0				ES	2071681 T	01-07-1995	
				FI	90550 B	15-11-1993	
				FI	930597 A	11-02-1993	
				WO.	8905304 A	15-06-1989	
				ΙE	66163 B	13-12-1995	
				ΙL	88629 A	12-04-1994	
				JP	2502463 T	09-08-1990	
	•			JP ·	2799208 B	17-09-1998	
4				NO	893166 A	04-08-1989	
				NZ	227251 A	26-02-1990	
				PT	89203 A,B	29-12-1989	
				US	5376663 A	27-12-1994	
				ZA	8809136 A	30-08-1989	
EP	0356399	Α	28-02-1990	AU	629563 B	08-10-1992	
				AU	4024689 A	01-03-1990	
				DK	418789 A	27-02-1990	
				JP	2167287 A	27-06-1990	
				NZ	230418 A	25-10-1991	
				US	5011844 A	30-04-1991	
				ZA	8906524 A	24 - 04-1991	
EP	0463690	Α	02-01-1992	CA	2044846 A	26-12-1991	
			•	DE	69117221 D	28-03-1996	
				DE	69117221 T	12-09-1996	
			•	JP	4230288 A	19-08-1992	
				US	5190950 A	02-03-1993	
			*	US	5342935 A	30-08-1994	

OIDENTOMO
HYL 13 SOOS
BECEINED