MDP and RL

CS221: Section 4

Policy Iteration vs Value Iteration

SARSA vs Q-Learning

Function Approximation and Q-Learning

Policy Iteration vs Value Iteration

SARSA vs Q-Learning

Function Approximation and Q-Learning

Markov Decision Process (MDP)

 $s \in States$

Actions(s): actions from state s

T(s, a, s'): probability next state is s', given action a in state sNote that $\sum_{s'} T(s, a, s') = 1$ for all $s \in S$ tates, $a \in A$ ctions(s)

R(s, a, s'): reward for transition (s, a, s')

IsEnd(s): whether state marks end of game Alternatively, T(s, a, s) = 1 and R(s, a, s) = 0

 $0 \le \gamma \le 1$: discount factor

Markov Decision Process (MDP)

Given MDP

 π : policy take action $\pi(s)$ in state s

 V_{π} : value function for policy π $V_{\pi}(s)$ is expected utility of following π starting in s

 Q_{π} : Q – value of policy π $Q_{\pi}(s,a)$ is expected utility of taking action a in s, then following π

Want to find optimal policy (that maximizes expected sum of discounted rewards)

Running Example

$$States = \{TL, TR, NL, BR\}$$

 $EndState = BR$

$$Actions(s) = \{H, V\}, \forall s$$

$$T(s, a, s') = \begin{cases} s'(s, a), & w. p. 3/4 \\ s'(s, a^c), & w. p. 1/4 \end{cases}$$
except $T(BR, a, BR) = 1$

$$Reward(s, a, s') = 4 if s' = BR else - 1$$

Simple policy
$$\pi(s) = H, \forall s$$

Start with any π

1. Policy evaluation: given π , compute V_{π}

2. Policy improvement: given V_{π} , compute improved policy π' V_{π}

$$V_{\pi}$$
 π'

3. Repeat until policy converges/does not change

$$\pi \longrightarrow V_{\pi} \longrightarrow \pi' \longrightarrow V_{\pi'} \longrightarrow \pi''$$

Start with any π

- **1. Policy evaluation**: given π , compute V_{π}
 - a) Choose any V

Start with any π

- **1. Policy evaluation**: given π , compute V_{π}
 - a) Choose any V
 - b) Update

$$V(s) \coloneqq \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V(s') \right], \quad \forall s$$

Start with any π

- **1. Policy evaluation**: given π , compute V_{π}
 - a) Choose any V
 - b) Update

or,

$$V(s) \coloneqq \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V(s')], \quad \forall s$$
$$V \coloneqq F_{\pi} V \quad (compact)$$

Start with any π

- **1. Policy evaluation**: given π , compute V_{π}
 - a) Choose any V
 - b) Update $V \coloneqq F_{\pi}V$

Start with any π

- **1. Policy evaluation**: given π , compute V_{π}
 - a) Choose any *V*
 - b) Update $V \coloneqq F_{\pi}V$
 - c) Repeat b) until convergence to obtain V_π We know $V_\pi = F_\pi F_\pi \dots F_\pi V = F_\pi^\infty V$ Practically, update t_{PE} times to get reasonable approximation

V_0						
TL			TR			
	0	0				
BL	0	0	BR			

Simple policy
$$\pi(s) = H, \forall s$$

Evaluate V_{π}
 $V_0(s) = 0, \forall s$

Simple policy
$$\pi(s) = H, \forall s$$

Evaluate V_{π}
 $V_0(s) = 0, \forall s$

$$V_1(TL) = \frac{3}{4} \times [-1 + V_0(TR)] + \frac{1}{4} \times [-1 + V_1(BL)]$$

$$= \frac{3}{4} \times [-1 + 0] + \frac{1}{4} \times [-1 + 0]$$

$$= -1$$

Simple policy
$$\pi(s) = H, \forall s$$

Evaluate V_{π}
 $V_0(s) = 0, \forall s$

$$V_1(TR) = \frac{3}{4} \times [-1 + V_0(TL)] + \frac{1}{4} \times [4 + V_0(BR)]$$

$$= \frac{3}{4} \times [-1 + 0] + \frac{1}{4} \times [4 + 0]$$

$$= \frac{1}{4}$$

	V	0		V_1			1
TL			TR		TL		TR
	0	0				-1	1/4
BL	0	0	BR		BL	1/4	O BR

 V_{π} obtained

Start with any π

1. Policy evaluation: given π , compute $V_{\pi} = F_{\pi}^{\infty} V$

Start with any π

1. Policy evaluation: given π , compute $V_{\pi} = F_{\pi}^{\infty} V$

2. Policy improvement: given V_{π} , compute improved policy π'

$$V_{\pi} \longrightarrow \pi'$$

Start with any π

1. Policy evaluation: given π , compute $V_{\pi} = F_{\pi}^{\infty} V$

- **2. Policy improvement**: given V_{π} , compute improved policy π'
 - a) Compute

$$Q_{\pi}(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V_{\pi}(s')],$$

$$V_{\pi} \longrightarrow \pi'$$
 $\forall s, a$

Start with any π

1. Policy evaluation: given π , compute $V_{\pi} = F_{\pi}^{\infty} V$

- **Policy improvement**: given V_{π} , compute improved policy π'
 - a) Compute

$$Q_{\pi}(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V_{\pi}(s')],$$
 b) Compute $\pi'(s) = \arg\max_{a \in Actions(s)} Q_{\pi}(s,a), \forall s$

$$V_{\pi} \longrightarrow \pi'$$
 $\forall s, a$

Start with any π

1. Policy evaluation: given π , compute $V_{\pi} = F_{\pi}^{\infty} V$

$$\pi$$
 V_{π}

2. Policy improvement: given V_{π} , compute improved policy π'

$$V_{\pi} \longrightarrow \pi'$$

$$\pi'(s) = \arg\max_{a \in Actions(s)} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_{\pi}(s')], \quad \forall s$$

TR

Given V_{π} , evaluate π' (improved policy)

Find $Q_{\pi}(s,a)$ for all states, choose best action

$$Q_{\pi}(TL, H) = \frac{3}{4} \times \left[-1 + \frac{-1}{2}\right] + \frac{1}{4} \times \left[-1 + \frac{5}{2}\right] = \frac{-3}{4}$$

Given V_{π} , evaluate π' (improved policy)

Find $Q_{\pi}(s,a)$ for all states, choose best action

$$Q_{\pi}(TL, V) = \frac{1}{4} \times \left[-1 + \frac{-1}{2} \right] + \frac{3}{4} \times \left[-1 + \frac{5}{2} \right] = 0$$

Start with any π

1. Policy evaluation: given π , compute $V_{\pi} = F_{\pi}^{\infty} V$

$$\pi$$
 V_{π}

2. Policy improvement: given V_{π} , compute improved policy π'

$$V_{\pi}$$
 π' $(s')], \forall s$

$$\pi'(s) = \arg\max_{a \in Actions(s)} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_{\pi}(s')], \quad \forall s$$

3. Repeat until policy converges/does not change

$$\pi \longrightarrow V_{\pi} \longrightarrow \pi' \longrightarrow V_{\pi'} \longrightarrow \pi''$$

Policy Iteration Example

V_0					
TL			TR		
	0	0			
BL	0	0	BR		

v ₁				
TL		TR		
	-1	1/4		
BL	1/4	O BR		

v 2					
TL	TR				
-1/8	-1/2				
5/2 BL	0 BR				

V_0				
TL		TR		
0	0			
O BL	0	BR		

...

Policy Iteration Example

V_0					
TL			TR		
	0	0			
BL	0	0	BR		

V_1					
TL		TR			
	-1	1/4			
BL	1/4	O BR			

V_2				
TL			TR	
-1	1/8	-1/	2	
5 BL	5/2	0	BR	•••

V_0					
TL			TR		
-1	./8	-1,	/2		
5 BL	/2	0	BR		

...

Warm start!

Start with any π

1. Policy evaluation: given π , compute $V_{\pi} = F_{\pi}^{\infty} V$

$$\pi$$
 V_{π}

2. Policy improvement: given V_{π} , compute improved policy π'

$$V_{\pi} \qquad \qquad \pi'$$

$$\pi'(s) = \arg \max_{a \in Actions(s)} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_{\pi}(s')], \quad \forall s$$

3. Repeat until policy converges/does not change

$$\pi \longrightarrow V_{\pi} = F_{\pi}^{\infty} V \longrightarrow \pi' \longrightarrow V_{\pi'} = F_{\pi}^{\infty} V \longrightarrow \pi''$$

Start with any π

1. Policy evaluation: given π , compute $V_{\pi} = F_{\pi}^{\infty} V$

$$\pi$$
 V_{π}

2. Policy improvement: given V_{π} , compute improved policy π'

$$V_{\pi} \qquad \qquad \pi'$$

$$\pi'(s) = \arg \max_{a \in Actions(s)} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_{\pi}(s')], \quad \forall s$$

3. Repeat until policy converges/does not change

$$\pi \longrightarrow V_{\pi} = F_{\pi}^{\infty} V \longrightarrow \pi' \longrightarrow V_{\pi'} = F_{\pi}^{\infty} V_{\pi} \longrightarrow \pi''$$

Warm start!

Start with any V

1. Compute Q-values: given V, compute Q

$$Q(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V(s')], \qquad \forall s,a$$

Start with any V

1. Compute Q-values: given V, compute Q

$$Q(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V(s')], \quad \forall s,a$$

2. Compute V': given Q, compute V'

$$V'(s) = \max_{a \in Actions(s)} Q(s, a), \quad \forall s$$

Start with any V

1. Compute Q-values: given V, compute Q

$$Q(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V(s')], \quad \forall s,a$$

2. Compute V': given Q, compute V'

$$V'(s) = \max_{a \in Actions(s)} Q(s, a), \quad \forall s$$

3. Repeat until value function converges

Start with any V

1. Compute V': given V, compute V'

$$V'(s) = \max_{a \in Actions(s)} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V(s')], \quad \forall s$$

2. Repeat until value function converges

Value Iteration

Start with any V

- **1.** Compute V': given V, compute π' , then compute V'
 - a) Compute $\pi'(s) = \underset{a \in Actions(s)}{\operatorname{arg max}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V(s')], \ \forall s$
 - b) Compute $V' = F_{\pi}, V$
- **2. Repeat** until value function converges

Value Iteration

Start with any V

- **1.** Compute V': given V, compute π' , then compute V'
 - a) Compute $\pi'(s) = \underset{a \in Actions(s)}{\text{arg max}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V(s')], \ \forall s$
 - b) Compute $V' = F_{\pi}, V$
- 2. Repeat until value function converges

$$V \longrightarrow \pi' \longrightarrow V' = F_{\pi'}V \longrightarrow \pi'' \longrightarrow V'' = F_{\pi''}V'$$

Policy Iteration

 π_0

 π_1

 Ψ

 \downarrow

Value Iteration

Crude estimate of the value of policies!

Crude estimate of the value of policies!

 V_1 V_2 π_1 TL TR TL TR \downarrow 1/4 -1 1/4 0 BL BR BL BR

Exact numbers on slide may not be correct

Policy Iteration

$$\pi \longrightarrow V_{\pi} = F_{\pi}^{\infty} V \longrightarrow \pi' \longrightarrow V_{\pi'} = F_{\pi}^{\infty} V$$

$$V \longrightarrow \pi \longrightarrow V' = F_{\pi}V \longrightarrow \pi' \longrightarrow V'' = F_{\pi}V'$$

Value Iteration

Policy Iteration

Precise Policy Evaluation + Policy Improvement

$$\pi \longrightarrow V_{\pi} = F_{\pi}^{\infty} V \longrightarrow \pi' \longrightarrow V_{\pi'} = F_{\pi}^{\infty} V$$

$$V \longrightarrow \pi \longrightarrow V' = F_{\pi}V \longrightarrow \pi' \longrightarrow V'' = F_{\pi'}V'$$

Crude Policy Evaluation + Policy Improvement

Value Iteration

SARSA vs Q-Learning

Function Approximation and Q-Learning

 $s \in States$

Actions(s): actions from state s

T(s, a, s'): probability next state is s', given action a in state sNote that $\sum_{s'} T$ **SNKNOWN** \in States, $a \in$ Actions(s) R(s, a, s'): reward for transition (s, a, s')

IsEnd(s): whether state marks end of game Alternatively, T(s, a, s) = 1 and R(s, a, s) = 0

 $0 \le \gamma \le 1$: discount factor

Algorithm	Estimate	Comments
Model-based Monte Carlo	T(s,a,s'),R(s,a,s')	Find Q_{opt} , π_{opt} afterward
Model-free Monte Carlo	Q_π using utility u	No optimal policy (on-policy)
SARSA	Q_π using utility ${ m r}$, Q_π	No optimal policy (on-policy)
Q-Learning	Q_{opt} using utility ${ m r}, Q_{opt}$	Optimal policy (off-policy)

Algorithm	Estimate	Comments
Model-based Monte Carlo	T(s, a, s'), R(s, a, s')	Find Q_{opt} , π_{opt} afterward
Model-free Monte Carlo	Q_π using utility u	No optimal policy (on-policy)
SARSA	Q_π using utility ${ m r}$, Q_π	No optimal policy (on-policy)
Q-Learning	Q_{opt} using utility ${ m r}, Q_{opt}$	Optimal policy (off-policy)

Starting in state s_0 , apply policy π s_0

 S_0 ;

Algorithm	Estimate	Comments
Model-based Monte Carlo	T(s, a, s'), R(s, a, s')	Find Q_{opt} , π_{opt} afterward
Model-free Monte Carlo	Q_π using utility u	No optimal policy (on-policy)
SARSA	Q_π using utility ${ m r}, Q_\pi$	No optimal policy (on-policy)
Q-Learning	Q_{opt} using utility ${ m r}, Q_{opt}$	Optimal policy (off-policy)

Starting in state s_0 , apply policy π s_0 $a_1 \sim \pi(s_0)$

 $s_0; a_1$

Algorithm	Estimate	Comments
Model-based Monte Carlo	T(s,a,s'),R(s,a,s')	Find Q_{opt} , π_{opt} afterward
Model-free Monte Carlo	Q_π using utility u	No optimal policy (on-policy)
SARSA	Q_π using utility ${ m r}$, Q_π	No optimal policy (on-policy)
Q-Learning	Q_{opt} using utility ${ m r}, Q_{opt}$	Optimal policy (off-policy)

Starting in state s_0 , apply policy π s_0 $a_1 \sim \pi(s_0)$ $s_1 \sim T(s_0, a_1, ...)$ $r_1 \sim P_R(s_0, a_1, s_1)$

$$s_0; a_1, r_1, s_1$$

Algorithm	Estimate	Comments
Model-based Monte Carlo	T(s, a, s'), R(s, a, s')	Find Q_{opt} , π_{opt} afterward
Model-free Monte Carlo	Q_π using utility u	No optimal policy (on-policy)
SARSA	Q_π using utility ${ m r}$, Q_π	No optimal policy (on-policy)
Q-Learning	Q_{opt} using utility ${ m r}, Q_{opt}$	Optimal policy (off-policy)

```
Starting in state s_0, apply policy \pi s_0 a_1 \sim \pi(s_0) s_1 \sim T(s_0, a_1, .) r_1 \sim P_R(s_0, a_1, s_1) a_2 \sim \pi(s_1) s_2 \sim T(s_1, a_2, .) r_2 \sim P_R(s_1, a_2, s_2) \vdots
```

$$S_0$$
; a_1 , r_1 , S_1 ; a_2 , r_2 , S_2 ; a_3 , r_3 , S_3

SARSA: Update $\hat{Q}_{\pi}(s, a)$ based on (s, a, r, s', a')

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta \left[r + \gamma \hat{Q}_{\pi}(s',a')\right]$$

Helps evaluate policy π by sampling transitions and rewards from policy π \Rightarrow **On-policy** algorithm

SARSA evaluates policy π . Policy Improvement comes next. Iterate.

SARSA: Update $\hat{Q}_{\pi}(s, a)$ based on (s, a, r, s', a')

$$\hat{Q}_{\pi}(s,a) \leftarrow \hat{Q}_{\pi}(s,a) - \eta \left[\hat{Q}_{\pi}(s,a) - (r + \gamma \hat{Q}_{\pi}(s',a')) \right]$$

Helps evaluate policy π by sampling transitions and rewards from policy π \Rightarrow **On-policy** algorithm

SARSA evaluates policy π . Policy Improvement comes next. Iterate.

Fixed policy $\pi(s) = H, \forall s$ Generate sample paths 1.TL; H, -1, TR; H, 4, BR


```
Fixed policy \pi(s) = H, \forall s

Generate sample paths

1. TL; H, -1, TR; H, 4, BR

2. TL; H, -1, TR; H, -1, TL; H, -1, BL; H, 4, BR
```


Fixed policy $\pi(s) = H, \forall s$ Generate sample paths 1. **TL**; **H**, -1, **TR**; **H**, 4, BR 2. TL; H, -1, TR; H, -1, TL; H, -1, BL; H, 4, BR

SARSA Set $Q_{\pi}(s, a) = 0$

Consider TL, H, -1, TR, Hs a r s' a'

$$Q_{\pi}(TL, H) := \frac{4}{5} \times Q_{\pi}(TL, H) + \frac{1}{5} \times [-1 + Q_{\pi}(TR, H)]$$
$$= \frac{4}{5} \times 0 + \frac{1}{5} \times [-1 + 0] = \frac{-1}{5}$$

Fixed policy $\pi(s) = H, \forall s$ Generate sample paths 1. TL; H, -1, TR; H, 4, BR2. TL; H, -1, TR; H, -1, TL; H, -1, BL; H, 4, BR

SARSA Set $Q_{\pi}(s, a) = 0$

Consider TR, H, 4, BR, $s \ a \ r \ s' \ a'$

$$Q_{\pi}(TR, H) := \frac{4}{5} \times Q_{\pi}(TR, H) + \frac{1}{5} \times [4 + Q_{\pi}(BR, -)]$$
$$= \frac{4}{5} \times 0 + \frac{1}{5} \times [4 + Q_{\pi}(BR, -)] = \frac{4}{5}$$

Like Policy Evaluation – given enough iterations, get precise estimates

SARSA: Update $\hat{Q}_{\pi}(s, a)$ based on (s, a, r, s', a')

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta \left[r + \gamma \hat{Q}_{\pi}(s',a')\right]$$

Helps evaluate policy π by sampling transitions and rewards from policy π \Rightarrow **On-policy** algorithm

SARSA evaluates policy π . Policy Improvement comes next. Iterate.

Q-Learning: Update $\hat{Q}_{opt}(s, a)$ based on (s, a, r, s')

$$\hat{Q}_{opt}(s, a) \leftarrow (1 - \eta) \hat{Q}_{opt}(s, a) + \eta \left[r + \gamma \hat{V}_{opt}(s') \right]$$

Helps evaluate optimal policy by sampling transitions and rewards from policy π \Rightarrow **Off-policy** algorithm

SARSA: Update $\hat{Q}_{\pi}(s, a)$ based on (s, a, r, s', a')

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta \left[r + \gamma \hat{Q}_{\pi}(s',a')\right]$$

Helps evaluate policy π by sampling transitions and rewards from policy π \Rightarrow **On-policy** algorithm

SARSA evaluates policy π . Policy Improvement comes next. Iterate.

Q-Learning: Update $\hat{Q}_{opt}(s, a)$ based on (s, a, r, s')

$$\hat{Q}_{opt}(s, a) \leftarrow \hat{Q}_{opt}(s, a) - \eta \left[\hat{Q}_{opt}(s, a) - (r + \gamma \hat{V}_{opt}(s')) \right]$$

Helps evaluate optimal policy by sampling transitions and rewards from policy π \Rightarrow **Off-policy** algorithm

SARSA: Update $\hat{Q}_{\pi}(s, a)$ based on (s, a, r, s', a')

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta \left[r + \gamma \hat{Q}_{\pi}(s',a')\right]$$

Helps evaluate policy π by sampling transitions and rewards from policy π \Rightarrow **On-policy** algorithm

SARSA evaluates policy π . Policy Improvement comes next. Iterate.

Q-Learning: Update $\hat{Q}_{opt}(s, a)$ based on (s, a, r, s')

$$\widehat{Q}_{opt}(s,a) \leftarrow (1-\eta)\widehat{Q}_{opt}(s,a) + \eta \left[r + \gamma \max_{a' \in A(s')} \widehat{Q}_{opt}(s',a') \right]$$

Helps evaluate optimal policy by sampling transitions and rewards from policy π \Rightarrow **Off-policy** algorithm

SARSA: Update $\hat{Q}_{\pi}(s, a)$ based on (s, a, r, s', a')

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta \left[r + \gamma \hat{Q}_{\pi}(s',a') \right]$$

Helps evaluate policy π by sampling transitions and rewards from policy π \Rightarrow On-policy algorithm

SARSA evaluates policy π . Policy Improvement comes next. Iterate.

Q-Learning: Update $\hat{Q}_{opt}(s, a)$ based on (s, a, r, s')

$$\widehat{Q}_{opt}(s,a) \leftarrow (1-\eta)\widehat{Q}_{opt}(s,a) + \eta \left[r + \gamma \max_{a' \in A(s')} \widehat{Q}_{opt}(s',a') \right]$$

Helps evaluate optimal policy by sampling transitions and rewards from policy π \Rightarrow Off-policy algorithm

SARSA: Update $\hat{Q}_{\pi}(s, a)$ based on (s, a, r, s', a')

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta \left[r + \gamma \hat{Q}_{\pi}(s',a') \right]$$

Helps evaluate policy π by sampling transitions and rewards from policy π \Rightarrow On-policy algorithm

SARSA evaluates policy π . Policy Improvement comes next. Iterate.

Q-Learning: Update $\hat{Q}_{opt}(s, a)$ based on (s, a, r, s')

$$\widehat{Q}_{opt}(s,a) \leftarrow (1-\eta)\widehat{Q}_{opt}(s,a) + \eta \left[r + \gamma \max_{a' \in A(s')} \widehat{Q}_{opt}(s',a') \right]$$

Helps evaluate optimal policy by sampling transitions and rewards from policy π \Rightarrow Off-policy algorithm

Example from notes: a to explore a to explore all (s,a), find greedy policy! http://web.stanford.edu/class/cs221/lectures/index.html#include=mdp2.js&slideIndex=46

SARSA vs Q-Learning

Function Approximation and Q-Learning

For optimal policy, compute $Q_{opt}(s, a)$ for all states $s \in S$, $a \in A(s)$

Our current setup does not generalize to unseen states!

What if

- Number of states |S| is huge?
 - Extreme: what if continuous state? Infinitely many of them...
- Number of actions |A(s)| is huge?
- Majority of neighboring states should have similar Q-values

IDEA:

Express $Q_{opt}(s, a)$ as a weighted combination of its features

$$Q_{opt}(s,a) \approx w$$
 . $\Phi(s,a) = w_1\phi_1(s,a) + w_2\phi_2(s,a) + ... + w_n\phi_n(s,a)$
$$\Phi(s,a) = \text{Feature vector}$$

$$w = \text{Weights}$$

IDEA:

Express $Q_{opt}(s, a)$ as a weighted combination of its features

$$Q_{opt}(s, a) \approx w \cdot \Phi(s, a) = Q_{opt}(s, a; w)$$

Q-Learning with function approximation: Update $\hat{Q}_{opt}(s, a; w)$ based on (s, a, r, s')

$$w \leftarrow w - \eta \left[\widehat{Q}_{opt}(s, a; w) - \left(r + \gamma \widehat{V}_{opt}(s'; w) \right) \right] \Phi(s, a)$$

Amounts to SGD on:

$$\min_{w} \sum_{(s,a,r,s')} \left(\widehat{Q}_{opt}(s,a;w) - \left(r + \gamma \widehat{V}_{opt}(s';w) \right) \right)^{2}$$

IDEA:

Express $Q_{opt}(s, a)$ as a weighted combination of its features

$$Q_{opt}(s, a) \approx w \cdot \Phi(s, a) = Q_{opt}(s, a; w)$$

Q-Learning with function approximation: Update $\hat{Q}_{opt}(s, a; w)$ based on (s, a, r, s')

$$w \leftarrow w - \eta \left[\widehat{Q}_{opt}(s, a; w) - \left(r + \gamma \max_{a' \in A(s')} \widehat{Q}_{opt}(s', a'; w) \right) \right] \Phi(s, a)$$

Q-Learning with Function Approximation Example

Fixed policy $\pi(s) = H, \forall s$ Generate sample paths 1. TL; H, -1, TR; H, 4, BR2. TL; H, -1, TR; H, -1, TL; H, -1, BL; H, 4, BR

${\it Q-learning\ with\ function\ approximation}$

$$\Phi(s,a) = [1, \mathbf{1} = \{s = *L\}, \mathbf{1} = \{a = H\},\$$

 $\mathbf{1} = \{s = *L\}\mathbf{1} = \{a = H\}]^T$

$$w = [w_1, w_2, w_3, w_4]^T$$

 $Set \ w = 0 \Rightarrow Q_{opt}(s, a; w) = 0$

Q-Learning with Function Approximation Example

Fixed policy $\pi(s) = H, \forall s$ Generate sample paths 1. **TL**; **H**, -**1**, **TR**; H, 4, BR 2. TL; H, -1, TR; H, -1, TL; H, -1, BL; H, 4, BR

$Q-learning\ with\ function\ approximation$

$$\Phi(s,a) = [1, \mathbf{1} = \{s = *L\}, \mathbf{1} = \{a = H\}, \mathbf{1} = \{s = *L\}, \mathbf{1} = \{a = H\}\}^T$$

$$w = [w_1, w_2, w_3, w_4]^T$$

 $Set \ w = 0 \Rightarrow Q_{opt}(s, a; w) = 0$

Consider TL, H, -1, TRs a r s'

$$w \coloneqq [0 \ 0 \ 0 \ 0]^T - \frac{1}{5} \left[Q_{opt}(TL, H; w) - \left(-1 + \max_{a' \in A(TR)} Q_{opt}(TR, a'; w) \right) \right] \Phi(TL, H)$$
$$= [0 \ 0 \ 0 \ 0]^T - \frac{1}{5} \left[0 - \left(-1 + \max_{a' \in A(TR)} 0 \right) \right] [1 \ 1 \ 1]^T$$

Q-Learning with Function Approximation Example

Fixed policy $\pi(s) = H, \forall s$ Generate sample paths 1. TL; H, -1, TR; H, 4, BR2.TL; H, -1, TR; H, -1, TL; H, -1, BL; H, 4, BR

$oxed{Q-learning}$ with function approximation

$$\Phi(s,a) = [1, \mathbf{1} = \{s = *L\}, \mathbf{1} = \{a = H\},$$

$$\mathbf{1} = \{s = *L\}\mathbf{1} = \{a = H\}\}^T$$

$$w = [w_1, w_2, w_3, w_4]^T$$

 $Set \ w = 0 \Rightarrow Q_{opt}(s, a; w) = 0$

Consider
$$TL$$
, H , -1 , TR

$$w \coloneqq [0 \ 0 \ 0]^{T} - \frac{1}{5} \left[Q_{opt}(TL, H; w) - \left(-1 + \max_{a' \in A(TR)} Q_{opt}(TR, a'; w) \right) \right] \Phi(TL, H)$$
$$= \left[\frac{-1}{5} \frac{-1}{5} \frac{-1}{5} \frac{-1}{5} \right]^{T}$$