Math 535a Homework 5

Due Friday, March 9, 2018 by 5 pm

Please remember to write down your name on your assignment.

- 1. Let $M = f^{-1}(y)$ be the preimage of a regular value $y \in \mathbb{R}^{N-m}$ of a smooth function $f: \mathbb{R}^N \to \mathbb{R}^{N-m}$. (for instance, $M = S^2 = \{x^2 + y^2 + z^2 = 1\} \subset \mathbb{R}^3 = f^{-1}(1)$, where $f: (x, y, z) \mapsto x^2 + y^2 + z^2$).
 - (a) Let $\widetilde{TM} = \{(x,v) \in \mathbb{R}^N \times \mathbb{R}^N | x \in M, v \in \ker df_x\}$. Show that as defined, \widetilde{TM} is a smooth submanifold of $\mathbb{R}^N \times \mathbb{R}^N$ of dimension 2m (where M is an m-dimensional manifold).
 - (b) Prove that there is a diffeomorphism between \widetilde{TM} and the tangent bundle of M as defined in class:

$$\widetilde{TM} \cong TM$$

in a manner compatible with projection to M; meaning that, if $\widetilde{\pi}: \widetilde{TM} \to M$ is the map sending $(x, v) \mapsto v$, then there is a commutative diagram

$$\widetilde{TM} \xrightarrow{\cong} TM \\
\downarrow_{\widetilde{\pi}} \qquad \qquad \downarrow_{\pi} \\
M \xrightarrow{=} M$$

(It follows that, for instance, $TS^2 \cong \{(x, v) \in \mathbb{R}^3 \times \mathbb{R}^3 | x \in S^2 | v \cdot x = 0\}$.

- 2. Let M^m be a manifold of dimension m and $p \in M$ a point. Recall that $\mathcal{F}_p \subset C^{\infty}(p)$ is the ideal of germs of functions on M which vanish at $p \in M$. Let \mathcal{F}_p^k be the ideal of $C^{\infty}(p)$ generated by $f_1 \cdots f_k$, where $f_i \in \mathcal{F}_p$. (This means that every element of \mathcal{F}_p^k is a sum $\sum_i g_i f_{1i} \cdots f_{ki}$, where $g^i \in C^{\infty}(p)$, and $f_{ij} \in \mathcal{F}_p$).
 - (a) Prove that, in every set of local coordinates (x_1, \ldots, x_k) around the point p, an element $f \in \mathcal{F}_p^k$ has a Taylor expansion which vanishes to order k. You may assume a version of Taylor's approximation theorem stated in class.
 - (b) Compute the dimension of $\mathcal{F}_p^k/\mathcal{F}_p^{k+1}$.
 - (c) Construct a smooth manifold along with a map to $M, E \xrightarrow{\pi} M$ whose "fiber" $E_p = \pi^{-1}(p)$ at the point $p \in M$ is $\mathcal{F}_p^1/\mathcal{F}_p^3$.

1

3. Let $f:M\to N$ be a smooth map between manifolds. Prove that the following diagram commutes:

$$\Omega^{0}(N) \xrightarrow{f^{*}} \Omega^{0}(M)$$

$$\downarrow^{d} \qquad \qquad \downarrow^{d}$$

$$\Omega^{1}(N) \xrightarrow{f^{*}} \Omega^{1}(M)$$

- 4. Give a detailed proof that the cotangent bundle T^*M is a smooth manifold and that the projection map $\pi: T^*M \to M$ is a smooth map.
- 5. Let f and g be smooth real-valued functions on a manifold M. Prove that d(fg) = fdg + gdf.
- 6. Let $i: S^1 = [0, 2\pi]/(0 \sim 2\pi) \to \mathbb{R}^2$ be the map $\theta \mapsto (\cos(\theta), \sin(\theta))$. Compute $i^*((x^2 + y)dx + (3 + xy^2)dy)$.

The As discussed in class, the notation $f_1 dx + f_2 dy$, where f_1 and f_2 are smooth functions on \mathbb{R}^2 , is a common shorthand for the 1-form $\mathbb{R}^2 \to T\mathbb{R}^2 = \mathbb{R}^2 \times \mathbb{R}^2$ sending \vec{x} to $(\vec{x}, (f_1(\vec{x})dx + f_2(\vec{x})dy))$.