On incorporating auxiliary information into recommender systems using adversarial training

Dora Jambor • Putra Manggala

Shopify Inc., Montreal, Canada

Key Question

How to incorporate auxiliary information into recommender systems such that ...

- domain expertise from multiple sources and diversity can be induced into the recommendations,
- recommendation accuracy is high,
- recommendation model is interpretable?

Linear Recommenders

Linear methods like SLIM [1] and LRec [2] produce accurate and interpretable recommendations by learning similarity metric from data.

The AdRec Model

Auxiliary information can be encoded as an indicator vector of items:

optimize: G, the linear recommender and D, the discriminator.

Using the adversarial framework from [3], we iteratively

$$\min_{C} \max_{D} \mathbb{E}_{\mathbf{x} \sim p_{aux}(\mathbf{x})}[logD(\mathbf{x})] + \mathbb{E}_{\mathbf{r} \sim p_{data}(\mathbf{r})}[log(1 - D(G(\mathbf{r})))]$$
(1)

$$+\mathbb{E}_{\mathbf{r} \sim p_{data}(\mathbf{r})}[\|\mathbf{r} - G(\mathbf{r})\|_{2} + \Omega(\mathbf{W}_{G})], \tag{2}$$

Data

For our experiments, R training matrix is built using 3000 users' implicit item interactions with 3437 Shopify applications. To reduce sparsity, we omit users with less than 4 interactions. An auxiliary dataset A is composed of three indicator vectors which represent auxiliary information.

Preliminary results

Experiments were conducted to demonstrate a useful trade-off between two metrics, precision (p@k) and auxiliary precision (p_{aux} @k), defined as:

$$p@k = \frac{|\{\textit{relevant items}\} \bigcap \{\textit{recommended items}[:k]\}|}{k}$$

$$p_{aux}@k = \frac{|\{\textit{auxiliary items}\} \bigcap \{\textit{recommended items}[:k]\}|}{k}$$

A few important hyperparameters for the trade-off:

- γ , a learning rate for G's adversarial update (2nd term in (1)),
- $-\alpha$, one-sided label noise,
- number of epochs

Table 1. Trade-off behavior for γ and α given 3 epochs.

0.0	<u>α</u>	p@1 15.5%	p _{aux} @1	p@3 9%	p _{aux} @3	AdRec incorporates auxiliary information in top-k recommendations
		14.3% 12.9%	7.8% 8.0%		11.0% 13.7%	As α increases p@k decreases paux@k increases
-	0.8	10% 9.6%	15.2% 15.1%	6.4%	18.9% 19.4%	

Figure 1. Precision trade-off for linear and adversarial recommender.

Figure 2. Intra auxiliary subset distance for linear and adversarial recommender

Acknowledgements

We thank Ga Wu for his initial ideas on adversarial recommenders, and his continued collaboration and support.

Bibliography

- [1] Ning, Xia, and George Karypis. "Slim: Sparse linear methods for top-n recommender systems." ICDM, 2011.
- [2] Sedhain, Suvash, et al. "On the Effectiveness of Linear Models for One-Class Collaborative Filtering." AAAI. 2016.
- [3] Goodfellow, Ian, et al. "Generative adversarial nets." NIPS. 2014.