# 东南大学电工电子实验中心 实验报告

| 课程名称: | 电路实验     |  |
|-------|----------|--|
| 术性石物: | <b>电</b> |  |

## 第2次实验

| 实验          | 硷名称: | 应用 Multisim | <u>软件工</u> | 具设计         | - 电路验i | 正网络             | 定理       |
|-------------|------|-------------|------------|-------------|--------|-----------------|----------|
| 院           | (系): | 自动化学院       | 专          | 业:          | É      | 动化              |          |
| 姓           | 名:   | <u> </u>    | 学          | 号:          | 080    | ) <b>2231</b> 1 | <u>L</u> |
| 实           | 验 室: |             | 实验         | 组别:         |        |                 |          |
| 同组          | 且人员: |             | 实验         | 时间:         | 2023年  | 10月             | 31日      |
| <b>☆巫 ←</b> | 2 出售 |             | 中区         | <b>数</b> 师。 |        |                 |          |

#### 一、实验目的

- 1. 通过实验加深对参考方向、基尔霍夫定理、叠加定理、戴维南定理的理解;
- 2. Multisim 软件入门: 元器件配置、电路连接、电路参数测试:
- 3. 通过学习对实验结果的分析对比,了解虚拟仿真与实物实验的差异。

## 二、实验原理(预习报告内容,如无,则简述相关的理论知识点。)

- 1. 基尔霍夫定理:
- a. 基尔霍夫电流定理(KCL):任意时刻,流进和流出电路中节点的电流的代数和等于 0。
  - b. 基尔霍夫电压定理 (KVL):任意闭合回路, 所有电压之和等于 0。
- 2. 叠加定理:

在线性电路中,任意支路的电流或电压等于电路中每一个独立源单独作用 (令其他独立源为 0) 时,在该支路所产生的电流或电压的代数和。

3. 戴维南定理:

对外电路来讲,任何复杂的线性有源一端口网络都可以用一个电压源和一个 等效电阻的串联来等效。此电压源的电压等于一端口的开路电压 Uoc,而电阻等于一端口全部独立电源置 0 后的输入电阻 Ro。

$$R_{O} = \frac{U_{OC}}{I_{sc}}$$

#### 4. 实验电路:



## 三、实验内容

1.基尔霍夫定理、叠加定理的验证

#### Multisim模拟结果:

电阻100欧:





| 112 <del>-1.</del> | 测量电路  |        |       |        |         |        |  |
|--------------------|-------|--------|-------|--------|---------|--------|--|
| 状态                 | U1    | U2     | U3    | I1     | 12      | 13     |  |
| E1E2 同时作用          | 6. 82 | -8. 82 | 3. 18 | 0. 015 | 0. 017  | 0. 032 |  |
| E1 单独作用            | 8. 49 | 1. 51  | 1. 51 | 0. 018 | -0. 003 | 0. 015 |  |
| E2 单独作用            | -1.67 | -10.33 | 1.67  | -0.004 | 0. 020  | 0. 017 |  |
| 叠加结果               | 6. 82 | -8. 82 | 3. 18 | 0.014  | 0.017   | 0.032  |  |

结论:可以看到叠加结果大致与E1E2同时作用效果相同,叠加定理验证成功,说明线性电路叠加定理成立。

## 二极管:







| 4D- <del>4-</del> | 测量电路   |          |        |            |        |        |  |
|-------------------|--------|----------|--------|------------|--------|--------|--|
| 状态                | U1     | U2       | U3     | <b>I</b> 1 | 12     | 13     |  |
| E1E2 同时作用         | 9. 143 | -11. 143 | 0. 857 | 0. 019     | 0.022  | 0. 041 |  |
| E1 单独作用           | 9. 256 | 0. 744   | 0. 744 | 0.02       | -0.001 | 0. 018 |  |
| E2 单独作用           | -0.755 | -11. 245 | 0. 755 | -0.002     | 0.022  | 0. 02  |  |
| 叠加结果              | 8. 501 | -10. 501 | 1. 499 | 0.018      | 0.021  | 0.038  |  |

结论:可以看到叠加结果与E1E2同时作用效果不同,叠加定理验证失败,二极管是非线性器件,所以说明非线性电路中叠加定理不成立。

#### 2. 设计电路,验证戴维南定理

先R3断路,测出断路电压Uoc=10.959V:



再R3短路,测出短路电流Isc=0.045A:



所以等效电阻等于Uoc/Isc=243.533 $\Omega$ (欧姆) 所以戴维南等效电路为10.959理想电压源与243.533欧姆的电阻串联



所测得的R3两端的电流和电压均与表一中的U3=3.18V和I3=0.032A接近,证明此戴维南电路确实等效于原R3两端的电路。

四、实验使用仪器设备(名称、型号、规格、编号、使用状况) Multisim软件

### 五、实验总结

#### (实验出现的问题及解决方法、思考题(如有)、收获体会等)

总结:

二极管非线性器件, 非线性电路不符合叠加定理。

需要改变仪器或多种情况可在**Multisim**中增加单刀双置开关,这样一来仅需改变开关闭合即可进行多种仿真,不必重复连接电路。

#### 思考题:

(1) 电流表的内阻参数默认值为  $\ln \Omega$ , 电压表的内阻参数默认值为  $10M\Omega$ , 本实验中他们是否需要重新设置? 应如何考虑他们对电路测试结果的影响。

电流表内阻和电压表内阻的数量级相差已经足够大,对数据结果的影响可忽略不计,从 线性电路验证叠加定理的数据上看也确实如此,故不用重新设置。

- (2) 分析实验过程中测量值出现负值的原因
- 一,电压表U2在本实验中与电流并非关联方向,所以它的示数由于关联方向相反的原因多次出现了负数值,但仅仅是由于方向导致的,并不影响叠加定理、计算等处理工作。
- 二,在E1、E2单独工作时,因为电流表电压表自身具有内阻,所以在本该视为断路的对方 回路中出现了分流分压现象,又由于源和这些电表不在同一个回路,所以产生的示数也因 为非关联方向而成了负数。

## 六、参考资料 (预习、实验中参考阅读的资料)

[1]俞丙威,王宇霄,王飞等.基于LabVIEW和Multisim联合仿真的虚拟电路实验系统的设计[J].机电工程技术,2023,52(04):245-248.

[2]张学文,司佑全.戴维南定理实验研究[J].湖北师范大学学报(自然科学版),2020,40(04):97-102.

[3]李垦,曹兆楼.基于Multisim仿真的电路定理实验教学设计[J].科技风,2020(36):113-114.DOI:10.19392/j.cnki.1671-7341.202036055.