Mathematics

Robin Adams

September 14, 2023

Contents

1	Sets	and F	Fu	ınc	tio	ns																5
	1.1	1 Primitive Terms													5							
	1.2	Axiom	ns																			5
		1.2.1	I	$\Lambda_{\rm SS}$	oci	ativ	ity															5
		1.2.2	Ι	der	ntit	y F	un	cti	ons	3												5
		1.2.3	7	$\Gamma h \epsilon$	· Te	erm	ina	1 S	Set													6
		1.2.4		Γ he	E	mpt	y	Set														7
		1.2.5	I	Pro	du	cts																7
		1.2.6	Ε	Tun	cti	on S	Set	s .														8
		1.2.7	Ι	nve	erse	e Im	ag	es														8
		1.2.8	7	Γ he	Sı	ıbse	et (Cla	ssi	fiε	er											8
		1.2.9	7	Γ he	N	atuı	ral	Νı	ım	be	ers											9
		1.2.10	7	Γ he	• A:	xior	n c	of (Ch	oio	сe											10
	1.3	Section	ns	an	d I	Reti	ac	tio	ns													10
	1.4	Isomor	$^{\mathrm{rp}}$	his	$_{ m ms}$																	10
	1.5	Subset	$^{-}$																			10
	1.6	Interse	ect	tior	ns.																	10
	1.7	Pullba	acl	ΚS																		11
	1.8	Function																				11
	1.9	The In	$\mathrm{nt}\epsilon$	erna	al I	Logi	\mathbf{c}															11
	1.10	Function				_																12
		Equali																				13
		The E																				14
		Univer																				14
		Interse																				15
		Union																				15

4 CONTENTS

Chapter 1

Sets and Functions

1.1 Primitive Terms

Let there be sets.

Given sets A and B, let there be functions from A to B. We write $f: A \to B$ iff f is a function from A to B, and call A the domain of f and B the codomain.

Given functions $f:A\to B$ and $g:B\to C$, let there be a function $gf=g\circ f:A\to C$, the *composite* of f and g.

1.2 Axioms

1.2.1 Associativity

Axiom 1.1 (Associativity). For any functions $f:A\to B,\ g:B\to C$ and $h:C\to D$ we have

$$h(gf) = (hg)f$$
.

Thanks to this axiom, we shall often omit parentheses when writing the composite of a sequence of functions.

1.2.2 Identity Functions

Definition 1.2 (Identity Function). For any set A, an *identity function* on A is a function $i: A \to A$ such that:

- for every set B and function $f: A \to B$ we have fi = f;
- for every set B and function $f: B \to A$ we have if = f.

Axiom 1.3 (Identity Functions). Every set has an identity function.

Proposition 1.4. Every set has a unique identity function.

Proof:

- $\langle 1 \rangle 1$. Let: A be a set.
- $\langle 1 \rangle 2$. A has an identity function.

PROOF: Axiom of Identity Functions

- $\langle 1 \rangle 3$. For any identity functions i and j on A we have i = j.
 - $\langle 2 \rangle 1$. Let: i and j be identity functions on A.
 - $\langle 2 \rangle 2$. i = j

Proof: i = ij = j

Definition 1.5 (Identity Function). For any set A, let id_A be the identity function on A.

Definition 1.6 (Retraction, Section). Let $r: A \to B$ and $s: B \to A$. Then r is a retraction of s, and s is a section of r, iff $rs = \mathrm{id}_B$.

Proposition 1.7. Let $f: A \to B$ and $g, h: B \to A$. If g is a retraction of f and h is a section of f then g = h.

Proof:

$$g = gid_B$$

$$= gfh$$

$$= id_A h$$

$$= h$$

Definition 1.8 (Bijection). Let $f: A \to B$ be a function. We say f is a bijection, and write $f: A \approx B$, iff there exists a function $f^{-1}: B \to A$, an inverse to f, such that $f^{-1}f = \mathrm{id}_A$ and $ff^{-1} = \mathrm{id}_B$.

Sets A and B are equinumerous, $A \approx B$, iff there exists a bijection between them.

Proposition 1.9. The inverse to a bijection is unique.

Proof: From Proposition 1.7. \sqcup

1.2.3 The Terminal Set

Definition 1.10 (Terminal Set). A set T is *terminal* iff, for every set X, there exists exactly one function $X \to T$.

Axiom 1.11 (Terminal Set). There exists a terminal set.

Proposition 1.12. If T and T' are terminal sets then there exists a unique bijection $T \approx T'$.

Proof:

- $\langle 1 \rangle 1$. Let: i be the unique function $T \to T'$
- $\langle 1 \rangle 2$. Let: i^{-1} be the unique function $T' \to T$
- $\langle 1 \rangle 3$. $ii^{-1} = id_{T'}$

PROOF: Since there is only one function $T' \to T'$.

1.2. AXIOMS 7

 $\langle 1 \rangle 4. \ i^{-1}i = id_T$

PROOF: Since there is only one function $T \to T$.

Definition 1.13. Let 1 be the terminal set. For any set A, let $!_A$ be the function $A \to 1$.

Definition 1.14 (Element). For any set A, an *element* of A is a function $1 \to a$. We write $a \in A$ for $a : 1 \to A$.

Given $f: A \to B$ and $a \in A$, we write f(a) for $fa: 1 \to B$.

Axiom 1.15 (Extensionality). Let A and B be sets and $f, g : A \to B$. If $\forall a \in A. f(a) = g(a)$ then f = g.

1.2.4 The Empty Set

Axiom 1.16 (Empty Set). There exists a set that has no elements.

1.2.5 Products

Definition 1.17 (Product). Let A and B be sets. A product of A and B consists of a set $A \times B$ and functions $\pi_1 : A \times B \to A$, $\pi_2 : A \times B \to B$, the projections, such that, for any set X and functions $f : X \to A$, $g : X \to B$, there exists a unique function $\langle f, g \rangle : X \to A \times B$ such that

$$\pi_1 \circ \langle f, g \rangle = f, \qquad \pi_2 \circ \langle f, g \rangle = g.$$

Axiom 1.18 (Products). Any two sets have a product.

Proposition 1.19. If P and Q are products of A and B with projections $p_1: P \to A$, $p_2: P \to B$, $q_1: Q \to A$ and $q_2: Q \to B$, then there exists a unique isomorphism $i: P \approx Q$ such that $q_1i = p_1$ and $q_2i = p_2$.

Proof.

 $\langle 1 \rangle 1$. Let: $i: P \to Q$ be the unique function such that $p_1 i = q_1$ and $p_2 i = q_2$.

 $\langle 1 \rangle 2$. Let: $i^{-1}: Q \to P$ be the unique function such that $q_1 i^{-1} = p_1$ and $q_2 i^{-1} = p_2$.

 $\langle 1 \rangle 3. \ i^{-1}i = \mathrm{id}_P$

PROOF: Each is the unique x such that $p_1x = p_1$ and $p_2x = p_2$.

 $\langle 1 \rangle 4$. $ii^{-1} = id_Q$

PROOF: Each is the unique x such that $q_1x = q_1$ and $q_2x = q_2$.

Definition 1.20. For any sets A and B, we write $A \times B$ for the product of A and B, and $\pi_1: A \times B \to A$, $\pi_2: A \times B \to B$ for the projections. Given $f: X \to A$ and $g: X \to B$, we write $\langle f, g \rangle$ for the unique function $X \to A \times B$ such that

$$\pi_1 \langle f, g \rangle = f, \qquad \pi_2 \langle f, g \rangle = g.$$

Definition 1.21. Given functions $f:A\to B$ and $g:C\to D$, let $f\times g=\langle f\circ\pi_1,g\circ\pi_2\rangle:A\times C\to B\times D$.

1.2.6 Function Sets

Definition 1.22 (Function Set). Let A and B be sets. A function set from A to B consists of a set B^A and function $\epsilon: B^A \times A \to B$, the evaluation map, such that, for any set I and function $q: I \times A \to B$, there exists a unique function $\lambda q: I \to B^A$ such that $\epsilon \circ (\lambda q \times \mathrm{id}_A) = q$.

Axiom 1.23 (Function Sets). Any two sets have a function set.

Proposition 1.24. If F and G are function sets of A and B with evaluation maps $e: F \times A \to B$ and $e': G \times A \to B$, then there exists a unique isomorphism $i: F \cong G$ such that $e'(i \times id_A) = e$.

Proof:

 $\langle 1 \rangle 1$. Let: $i: F \to G$ be the unique function such that $e'(i \times id_A) = e$.

 $\langle 1 \rangle 2$. Let: $i^{-1}: G \to F$ be the unique function such that $e(i^{-1} \times id_A) = e'$

 $\langle 1 \rangle 3$. $ii^{-1} = id_G$

PROOF: Each is the unique x such that $e'(x \times id_A) = e'$.

 $\langle 1 \rangle 4$. $i^{-1}i = \mathrm{id}_F$

PROOF: Each is the unique x such that $e(x \times id_B) = e$.

П

1.2.7 Inverse Images

Definition 1.25 (Pullback). Let $p:A\to B,\ q:A\to C,\ f:B\to D$ and $g:C\to D$. Then we say that $A,\ p$ and q form the *pullback* of f and g if and only if:

- fp = gq
- For any set X and functions $x: X \to B$, $y: X \to C$ such that fx = gy, there exists a unique function $(x,y): X \to A$ such that p(x,y) = x and q(x,y) = y.

We also say p is the pullback of g along f, or g is the pullback of f along g.

$$A \xrightarrow{p} B$$

$$\downarrow f$$

$$C \xrightarrow{g} D$$

Axiom 1.26 (Inverse Images). Given any function $f: X \to Y$ and element $y \in Y$, then there exists a pullback of f and y.

1.2.8 The Subset Classifier

Definition 1.27 (Injective). A function $f: A \to B$ is *injective* iff, for every set X and functions $x, y: X \to A$, if fx = fy then x = y.

1.2. AXIOMS 9

Definition 1.28 (Subset Classifier). A subset classifier consists of a set 2 and an element $T \in 2$ such that, for any sets A and X and injective function $j: A \rightarrowtail X$, there exists a unique function $\chi: X \to 2$, the classifying function of j, such that j and $!_A: A \to 1$ form the pullback of T and χ .

$$\begin{array}{ccc}
A & \xrightarrow{!_A} & 1 \\
\downarrow \downarrow & & \downarrow \uparrow \\
X & \xrightarrow{\chi} & 2
\end{array}$$

Axiom 1.29 (Subset Classifier). There exists a subset classifier.

Proposition 1.30. If $T \in 2$ and $T' \in 2'$ are subset classifiers, then there exists a unique isomorphism $i : 2 \approx 2'$ such that i(T) = T'.

Proof:

⟨1⟩1. Let: $i:2\to 2'$ be the unique function such that \top and id₁ form the pullback of \top' and i

 $\langle 1 \rangle 2$. Let: $i^{-1}: 2' \to 2$ be the unique function such that \top' and id_1 form the pullback of \top and i^{-1}

 $\langle 1 \rangle 3$. $ii^{-1} = id_{2'}$

PROOF: Each is the unique x such that \top' and id_1 form the pullback of \top' and x.

 $\langle 1 \rangle 4$. $i^{-1}i = id_2$

PROOF: Each is the unique x such that \top and id_1 form the pullback of \top and x.

Definition 1.31. Let 2 and $T \in 2$ be the subset classifier.

1.2.9 The Natural Numbers

Definition 1.32 (Natural Numbers Set). A natural numbers set consists of a set \mathbb{N} , an element $0 \in \mathbb{N}$ and a function $s : \mathbb{N} \to \mathbb{N}$ such that, for any set A, element $a \in A$ and function $f : A \to A$, there exists a unique function $r : \mathbb{N} \to A$ such that r(0) = a and $f \circ r = r \circ s$.

Axiom 1.33 (Infinity). There exists a natural numbers set.

Proposition 1.34. If N, $0 \in N$, $s: N \to N$ and N', $0' \in N'$, $s': N' \to N'$ are two natural numbers sets, then there exists a unique isomorphism $i: N \approx N'$ such that i(0) = 0' and s'i = is.

Proof:

 $\langle 1 \rangle 1$. Let: $i: N \to N'$ be the unique function such that i(0) = 0' and s'i = is. $\langle 1 \rangle 2$. Let: $i^{-1}: N' \to N$ be the unique function such that $i^{-1}(0') = 0$ and $si^{-1} = i^{-1}s'$.

 $\langle 1 \rangle 3.$ $ii^{-1} = \mathrm{id}_{N'}$ PROOF: Each is the unique x such that x(0') = 0' and s'x = xs'. $\langle 1 \rangle 4.$ $i^{-1}i = \mathrm{id}_N$ PROOF: Each is the unique x such that x(0) = 0 and sx = xs.

1.2.10 The Axiom of Choice

Definition 1.35 (Surjective). A function $f: A \to B$ is *surjective* iff, for every element $b \in B$, there exists $a \in A$ such that f(a) = b.

Axiom 1.36 (Choice). Every surjective function has a section.

1.3 Sections and Retractions

Proposition 1.37. Let $r: A \to B$, $r': B \to C$, $s: B \to A$ and $s': C \to B$. If s is a section of r and s' is a section of r', then ss' is a section of r'r.

PROOF: Since $r'rss' = r'id_Bs' = r's' = id_C$.

1.4 Isomorphisms

Proposition 1.38. For any set A we have $id_A : A \approx A$ and $id_A^{-1} = id_A$.

PROOF: Immediate from the fact that $id_A id_A = id_A$. \square

Proposition 1.39. If $f : A \approx B$ then $f^{-1} : B \approx A$ and $(f^{-1})^{-1} = f$.

PROOF: Since $ff^{-1} = id_B$ and $f^{-1}f = id_A$. \square

Proposition 1.40. If $f: A \approx B$ and $g: B \approx C$ then $gf: A \approx C$ and $(gf)^{-1} = f^{-1}g^{-1}$.

Proof: From Proposition 1.37. \square

1.5 Subsets

Definition 1.41 (Subset). Let $i: U \to A$. Then we say that (U, i) is a *subset* of A iff i is injective.

Definition 1.42. Let (U,i) and (V,j) be subsets of A. Then we say (U,i) and (V,j) are equal, and write (U,i)=(V,j), iff there exists an isomorphism $\phi:U\cong V$ such that $j\phi=i$.

1.6 Intersections

Definition 1.43 (Intersection). Let (U, i) and (V, j) be subsets of a set A. Let $p: W \to U$ and $q: W \to V$ form the pullback of i under j. Then the *intersection* of (U, i) and (V, j) is defined to be (W, ip) = (W, jq).

1.7. PULLBACKS

1.7 Pullbacks

1.8 Functions

```
Proposition 1.44. Let f: A \to B. Then f is injective if and only if, for all x, y \in A, if f(x) = f(y) then x = y.
```

```
Proof:
\langle 1 \rangle 1. If f is injective then, for all x, y \in A, if f(x) = f(y) then x = y.
   Proof: Immediate from the definition of injective.
\langle 1 \rangle 2. If \forall x, y \in A. f(x) = f(y) \Rightarrow x = y then f is injective.
   \langle 2 \rangle 1. Assume: \forall x, y \in A. f(x) = f(y) \Rightarrow x = y
   \langle 2 \rangle 2. Let: X be a set and s, t: X \to A
   \langle 2 \rangle 3. Assume: fs = ft
   \langle 2 \rangle 4. \ \forall x \in X. s(x) = t(x)
      \langle 3 \rangle 1. Let: x \in X
      \langle 3 \rangle 2. f(s(x)) = f(t(x))
          Proof: \langle 2 \rangle 3
      \langle 3 \rangle 3. \ s(x) = t(x)
          Proof: \langle 2 \rangle 1
   \langle 2 \rangle 5. s=t
      PROOF: Axiom of Extensionality
```

1.9 The Internal Logic

Proposition 1.45. Let $i: U \rightarrow A$ be injective. Let $\chi: A \rightarrow 2$ be its characteristic function. Then, for all $a \in A$, we have $\chi(a) = T$ if and only if there exists $u \in U$ such that i(u) = a.

Proof:

```
 \begin{array}{l} \langle 1 \rangle 1. \text{ If } \chi(a) = \top \text{ then there exists } u \in U \text{ such that } i(u) = a. \\ \text{PROOF: If } \chi \circ a = \top = \top \circ !_1 \text{ then there exists a unique } u: 1 \to U \text{ such that } i \circ u = a \text{ and } !_U \circ u = !_1. \\ \langle 1 \rangle 2. \text{ For all } u \in U \text{ we have } \chi(i(u)) = \top. \\ \text{PROOF: Since } \chi \circ i = \top \circ !_U. \\ \square \end{array}
```

Proposition 1.46. Subsets of a set A are equal if and only if they have the same characteristic function.

PROOF: Follows from the fact that pullbacks are unique up to isomorphism and the uniqueness of the characteristic function. \Box

Proposition 1.47. There are exactly two subsets of 1.

Proof:

```
\langle 1 \rangle 1. PICK a set E with no elements.
\langle 1 \rangle 2. !_E : E \to 1 is injective.
   PROOF: Vacuously, \forall x, y \in E.!_E(x) = !_E(y) \Rightarrow x = y.
\langle 1 \rangle 3. \ (E,!_E) \neq (1, \mathrm{id}_1)
   PROOF: Since there cannot be an isomorphism 1 \cong E.
\langle 1 \rangle 4. For any subsets (U,i) and (V,j) of 1, if (U,i) \neq (U,i) \cap (V,j) then (U,i) =
   \langle 2 \rangle 1. Let: (U, i) and (V, j) be subsets of 1.
   \langle 2 \rangle 2. Let: p: W \to U and q: W \to V form the intersection of (U,i) and
                    (V,j)
   \langle 2 \rangle 3. Assume: (U, i) \neq (W, k)
   \langle 2 \rangle 4. Let: (U, \mathrm{id}_U) \neq (W, p) as subsets of U.
   \langle 2 \rangle5. Let: \chi_U, \chi_W : U \to 2 be the characteristic functions of (U, \mathrm{id}_U) and
                    (W, p) respectively.
   \langle 2 \rangle 6. \ \chi_U \neq \chi_W
   \langle 2 \rangle 7. Pick x \in U
      PROOF: By the Axiom of Extensionality, there exists x \in U such that
      \chi_U(x) \neq \chi_W(x).
   \langle 2 \rangle 8. \ ix = id_1
   \langle 2 \rangle 9. \ x:1 \cong U
   \langle 2 \rangle 10. \ (U,i) = (1, id_1)
\langle 1 \rangle 5. For any subset (U,i) of 1, either (U,i)=(E,!_E) or (U,i)=(1,\mathrm{id}_1).
   \langle 2 \rangle 1. Let: (U, i) be a subset of 1.
   \langle 2 \rangle 2. Assume: (U, i) \neq (E, !_E)
   \langle 2 \rangle 3. \ (U,i) \neq (U,i) \cap (E,!_E) \text{ or } (E,!_E) \neq (U,i) \cap (E,!_E)
   \langle 2 \rangle 4. (U, i) = (1, id_1) or (E, !_E) = (1, id_1)
      Proof: \langle 1 \rangle 4
   \langle 2 \rangle 5. \ (U,i) = (1, id_1)
      Proof: \langle 1 \rangle 3
```

Corollary 1.47.1. There are exactly two elements of 2.

Definition 1.48 (Falsehood). Let *falsehood* \bot be the element of 2 that is not \top .

Corollary 1.48.1. 2 is the coproduct of 1 and 1 with injections \top and \bot .

1.10 Functions

Proposition 1.49. Let $f: A \to B$, $g: B \to C$ and $a \in A$. Then

$$(g \circ f)(a) = g(f(a))$$
.

PROOF: Immediate from the Axiom of Associativity.

Proposition 1.50. For any set A, any function $1 \to A$ is injective.

1. f is surjective.

PROOF: Since there is only one function $X \to 1$ for any set X. \Box

Proposition 1.51. Let $f: A \to B$. Then the following are equivalent:

```
2. f is a retraction (i.e. f has a section).
    3. For any set X and functions x, y : B \to X, if xf = yf then x = y.
Proof:
\langle 1 \rangle 1. \ 1 \Rightarrow 2
   PROOF: Immediate from the Axiom of Choice.
\langle 1 \rangle 2. 2 \Rightarrow 3
   \langle 2 \rangle 1. Let: s: B \to A be a section of f.
   \langle 2 \rangle 2. Let: X be a set and x, y : B \to X satisfy xf = yf.
   \langle 2 \rangle 3. \ x = y
       PROOF: x = xfs = yfs = y
\langle 1 \rangle 3. \ 3 \Rightarrow 1
   \langle 2 \rangle 1. Assume: 3
   \langle 2 \rangle 2. Let: b \in B
   \langle 2 \rangle 3. Assume: for a contradiction \forall a \in A. f(a) \neq b
   \langle 2 \rangle 4. Let: \psi_1 : B \to 2 be the characteristic function of b.
   \langle 2 \rangle 5. Let: \psi_2 = \bot \circ !_B : B \to 2
   \langle 2 \rangle 6. \ \forall x \in A. \psi_1(f(x)) = \psi_2(f(x))
       \langle 3 \rangle 1. Let: x \in A
       \langle 3 \rangle 2. \ \psi_1(f(x)) \neq \top
          PROOF: Proposition 1.45, \langle 2 \rangle 3, \langle 2 \rangle 4.
       \langle 3 \rangle 3. \ \psi_1(f(x)) = \bot
       \langle 3 \rangle 4. \ \psi_1(f(x)) = \psi_2(f(x))
   \langle 2 \rangle 7. \ \psi_1 \circ f = \psi_2 \circ f
       PROOF: Axiom of Extensionality
    \langle 2 \rangle 8. \ \psi_1 = \psi_2
```

Corollary 1.51.1. A function is bijective iff it is injective and surjective.

1.11 Equalizers

PROOF: $\langle 2 \rangle 1$ $\langle 2 \rangle 9$. $\psi_1(b) \neq \psi_2(b)$

 $\langle 2 \rangle 10$. Q.E.D.

Theorem 1.52. Any two functions $f, g: A \to B$ have an equalizer.

PROOF: Since $\psi_1(b) = \top$ and $\psi_2(b) = \bot$.

Proof: This is a contradiction

```
PROOF: Take the inverse image of \delta_B = \langle \mathrm{id}_B, \mathrm{id}_B \rangle : B \rightarrowtail B^2 and \langle f, g \rangle : A \to B^2. \square
```

1.12 The Empty Set

Theorem 1.53. If E is a set with no elements, then E has no proper subsets.

PROOF: A proper subset of E would give a proper subset of 1 that is different from $(E,!_E)$. \square

Theorem 1.54. If E is a set with no elements, then for any set X there exists exactly one function $E \to X$.

```
Proof:
\langle 1 \rangle 1. Let: E be a set with no elements.
\langle 1 \rangle 2. Let: X be a set.
\langle 1 \rangle 3. There exists a function E \to X.
   \langle 2 \rangle 1. Let: t: 1 \to 2^X be the name of the characteristic function of id<sub>X</sub>:
                    X \to X.
   \langle 2 \rangle 2. Let: \sigma: X \to 2^X be the lambda of the characteristic function of
                    \delta = \langle \mathrm{id}_X, \mathrm{id}_X \rangle : X \to X \times X.
   \langle 2 \rangle 3. Let: p: P \to E and q: P \to X be the pullback of t \circ !_E and \sigma.
      PROOF: t \circ !_E is vacuously injective.
   \langle 2 \rangle 4. p is injective.
      PROOF: It is the pullback of the injective function \sigma.
   \langle 2 \rangle 5. p is bijective.
   \langle 2 \rangle 6. \ q \circ p^{-1} : E \to X
\langle 1 \rangle 4. For any functions f, g : E \to X we have f = g.
   \langle 2 \rangle 1. Let: f, g : E \to X
   \langle 2 \rangle 2. Let: m: M \to E be the pullback of f and g.
   \langle 2 \rangle 3. (M,m) = (E, \mathrm{id}_E)
      Proof: Since E has no proper subsets.
   \langle 2 \rangle 4. \ m: M \cong E
   \langle 2 \rangle 5. f = g
```

Corollary 1.54.1. If E and E' are sets with no elements then there exists a unique isomorphism $E \cong E'$.

Definition 1.55 (Empty Set). Let the *empty set* \varnothing be the set with no elements.

Theorem 1.56. For any set A, if there exists a function $A \to \emptyset$ then $A \cong \emptyset$.

PROOF: If $f:A\to\varnothing$ then A has no elements, because for any $a\in A$ we have $f(a)\in\varnothing$. \square

1.13 Universal Quantification

Definition 1.57. For any set A, let $t_A: 1 \to 2^A$ be the name of the characteristic function of $T \circ !_A: A \to 2$. Define universal quantification $\forall_A: 2^A \to 2$ to be the characteristic function of t_A .

1.14Intersection

Theorem 1.58. Let X be a set. There exists a function $\bigcap : 2^{2^X} \to 2^X$ such that, for all $S \in 2^{2^X}$ and $a \in X$, we have

$$\epsilon(\bigcap S,a) = \top \Leftrightarrow \forall A \in 2^X. (\epsilon(S,A) = \top \Rightarrow \epsilon(A,a) = \top)$$

Proof:

 $\langle 1 \rangle 1$. Let: X be a set.

 $\langle 1 \rangle$ 2. Let: $\phi_2: X \to 2^{2^X}$ be the lambda of $\epsilon: 2^X \times X \to 2$

 $\langle 1 \rangle 3$. Let: F be the function

$$2^{2^X} \times X \xrightarrow{\langle \operatorname{id}_{2^{2^X}}, \phi_2 \rangle} 2^{2^X} \times 2^{2^X} \xrightarrow{\cong} (2 \times 2)^{2^X} \xrightarrow{\Rightarrow} 2^{2^X} \xrightarrow{\forall} 2$$

 $\langle 1 \rangle 4$. Let: \bigcap be the lambda

1.15Union

Theorem 1.59. Any two subsets of a set have a union.

Proof:

 $\langle 1 \rangle 1$. Let: A and B be subsets of X

 $\langle 1 \rangle$ 2. Let: $\chi_A \in 2^X$ be the name of the characteristic function of A.

 $\langle 1 \rangle 3$. Let: $t_X \in 2^X$ be the name of $\top \circ !_X : X \to 2$

 $\langle 1 \rangle$ 4. Let: C be the pullback of t_X and $\chi_A \Rightarrow -: 2^X \to 2^X$

 $\langle 1 \rangle$ 5. Let: D be the pullback of t_X and $\chi_B \Rightarrow -$

 $\langle 1 \rangle 6$. $\bigcap (C \cap D)$ is the union of A and B.

Theorem 1.60. Any two sets have a coproduct.

Proof:

 $\langle 1 \rangle 1$. Let: X and Y be sets.

 $\langle 1 \rangle 2$. Let: $\sigma_X : X \to 2^X$ be the lambda of the characteristic function of $\langle \mathrm{id}_X, \mathrm{id}_X \rangle : X \to X \times X$

 $\langle 1 \rangle 3$. Let: $\chi_0 : 1 \to Y$ be the characteristic function of the unique function

 $\langle 1 \rangle 4$. Let: $i_X = \langle \sigma_X, \chi_0 \circ !_X \rangle : X \to 2^X \times 2^Y$ $\langle 1 \rangle 5$. Let: $i_Y : Y \to 2^X \times 2^Y$ be defined similarly.

 $\langle 1 \rangle 6$. i_X and i_Y are monic.

 $\langle 1 \rangle 7$. \varnothing is the pullback of i_X and i_Y (i.e. $(X, i_X) \cap (Y, i_Y) = \varnothing$). $\langle 1 \rangle 8$. Let: $j: Z \to 2^X \times 2^Y$ be the union of i_X and i_Y

 $\langle 1 \rangle 9$. Z is the coproduct of X and Y.