

Deep Learning

Introductory Lecture

Tuesday 23rd April

Dr. Nicholas Cummins

Welcome

Images Sourced: https://pixabay.com

Contacts

- Prof. Björn Schuller
 - bjoern.schuller@informatik.uni-augsburg.de

- nicholas.cummins@informatik.uni-augsburg.de
- Shahin Amiriparian
 - <u>shahin.amiriparian@informatik.uni-augsburg.de</u>

History of Deep Learning

- 1943 McCulloch+Pitts: 1st formal neuron model
 → Computation of arbitrary arithmetic / logic functions
- 1949 Hebb: synaptic connection between 2 neurons is enhanced by frequent activation (Hebb rule)
- 1958 Rosenblatt: 1st Neurocomputer-Perceptron (mechanical)
- 1960 Widrow+Hoff: Least mean square Algorithm
 + description of adaptive linear neuron (Adaline)
- 1965 Vakhnenko+Lapa: 1st "deep Net"
- 1969 Minsky+Papert: Limits of multilayer perceptrons → stagnation
- 1979 Fukushima: convolutional nets (CNNs)
- 1986 Rumelhart+Hinton+Williams: Backpropagation in n-layer models, Dechter: "Deep Learning" (Hinton: uses it 2006)
- 1997 Hochreiter+Schmidhuber: LSTM Net
- 2010 Hinton / Ruslan: Stacking, hierarchical feature learning
- ~2012 GPUs, Big Data, Rectified Linear Units, Dropout, ...

Prof. Schuller's Deep Leaning History

- "A Combined LSTM-RNN-HMM Approach to Meeting Event Segmentation and Recognition", ICASSP, 2006.
- "Abandoning Emotion Classes Towards Continuous Emotion Recognition with Modelling of Long-Range Dependencies", Interspeech, 2008.

- "Deep neural networks for acoustic emotion recognition: Raising the benchmarks", ICASSP, 2011.
- "Introducing CURRENNT: the Munich Open-Source CUDA RecurREnt Neural Network Toolkit", JMLR, **2015**.
- "Adieu features? End-to-end speech emotion recognition using a deep convolutional recurrent network", ICASSP, **2016**.
- "End-to-end learning for dimensional emotion recognition from physiological signals",
 ICME, 2017.
- "End-to-End Multimodal Emotion Recognition using Deep Neural Networks", JSTSP, 2017.
- "End2You The Imperial Toolkit for Multimodal Profiling by End-to-End Learning," 2018.

What is Deep Learning?

Artificial Intelligence:

 A broad concept where machines think and act more like humans

Machine Learning:

 An application of AI where machines use date to automatically improve at performing tasks

Deep Learning:

 A machine learning technique that processes data through a multi-layered neural network much like the human brain

AI/ML Universe

Targets: Classification Regression Trees Uncertain Missing Drifting Multiple	Features: Time Series Generation Reduction Selection "Algorith	Optimisation: Bayesian Genetic Ant Colony Annealing hms that can learn for	Algorithms: Neural Networks Kernel Machines Trees Graphical Models Ensembles rom data"	Learning: Supervised Transfer Active Reinforced Semi-Superv. Unsupervised Deep
		chieve brain-like intelligence Embedding: Efficiency Confidences General Statistical Context Context	Hierachical Relational Distributed Parallel Hybrid Signal-based Discriminative Inference	

Involvement of Computational Intelligence

- Feature Extraction
 - Extracts useful information from raw data
- Machine learning algorithm
 - Learn rules to predict labels to features

What are features?

- The representation of the data presented to the machine learning algorithm
- Each feature can be thought of as a single piece of information the algorithm can use when making a decision
- Typically hundreds or thousands of such pieces of information are concatenated together to form a feature vector
- The role of the machine learning algorithm is to identify patterns from a collection of feature vectors

What is machine learning?

- Creation of (robust) models to predict/classify a particular output (y) from a selected independent variables (X – features) from a dataset
 - Primarily concerned with the identification of patterns within (large amounts of) data
 - Machine learning algorithms are used to perform the process of pattern identification via an iterative process
 - Learning phase: the algorithm optimises its parameters with the goal of improving (recognition) performance on a particular task

Typical processing chain

- Feature extractor
 - Extracts useful pieces of information from raw data
- Machine learning algorithm
 - Learn rules to predict labels to features

Machine Learning

Goal

- Learn a *robust* predictive function $f(\cdot)$
- ullet A mapping from the feature space ${\mathcal X}$ to the label space ${\mathcal Y}$

$$\chi \xrightarrow{f(\cdot)} y$$

• Given a test sample (unknown label), the learnt function maps the test feature vector $m{x}_*$ into a specific label $m{y}_*$

$$\boldsymbol{y}_* = f(\boldsymbol{x}_*)$$

Machine Learning

Machine learning algorithms

- Used to perform the process of pattern identification
 - Iterative techniques to find a set of optimal model parameters via the minimisation of a cost function
 - A **cost function** is a measure of how incorrect a model is in terms of its ability to estimate the relationship between \mathcal{X} and \mathcal{Y}

Why use Deep Learning?

Performs well on large datasets

- Conventional algorithms do not scale well to huge amounts of data
 - Especially true in relation to complex problems in image classification, natural language processing, and speech processing

Universality

 A network with a single sufficiently large hidden layer (in theory) is adequate for the approximation of most functions

Why use Deep Learning?

End to End Processing

 Conventional Machine learning relies of features to reduce data complexity & make patterns more visible

- Deep Learning algorithms learn high-level features from data in an incremental manner.
 - Eliminates the need of domain expertise and feature extraction.

Images Sourced: https://pixabay.com

Neural Network Basics

Artificial Neurons

- Building block of neural networks
- Combines different inputs to make a single output

Neural Network Basics

Artificial Neurons

Nonlinearities

Neural Network Basics

Activation Functions

- Uses the weighted input value to determine the level of output activation
 - Introduces nonlinearities into network
- Typical activation functions include
 - Identity $\rightarrow f(x) = x$
 - $-\operatorname{Logistic} \to f(x) = 1/(1 + \exp(-x))$
 - $\operatorname{Tanh} \to f(x) = \tanh x$
 - Rectified Linear unit $\rightarrow f(x) = \max(0, x)$
 - $-\operatorname{Sigmoid} \to f(x) = 1/(1 + \exp^x)$

Artificial Neural Networks

Multiple layers of (non-linear) processing

Definition

- Minimum ca. 4 layers
- AlexNet (2012): 8 (learning) layers
 - 60 million parameters
- Inception-v3 (2015): 47 (learning) layers
 - 25 million parameters

Expectations

- Learning of highly complex functions enabled
- Applicable on 'hard' tasks
- Reuse of parts of the net for other tasks
 - Transfer-Learning

Deep Neural Network

- DNN = MLP...
- Training makes the difference:
 - Build them layer-wise
 - Less uninitialized parameters
- Use "raw" features as input
 - Net learns own higher-level features
- Use more training data
- On-line learning (gradient descent)
- Use ReLUs, drop-out learning, ...

$$\mathbf{y} = f_{DNN}(\mathbf{x}) = o\left(\mathbf{W}^K \sigma \left(\mathbf{W}^{K-1} \sigma \left(\dots \mathbf{W}^1 \mathbf{x} \right) \right)\right)$$

$$E_{Tr}(\mathbf{y}, \mathbf{y}^*) = \sum_{\mathbf{x} \in Tr} D(f_{DNN}(\mathbf{x}), \mathbf{y}^*)$$

$$w^{(i+1)} = w^{(i)} - \eta \frac{\partial E_B}{\partial w}(w^{(i)}), B \subset Tr$$

Training via Backpropagation

Information flow

Propagation (data stream)

Regularistion

- Nets may become very deep
- Increased risk of overfitting
- Regularisation avoids this

Example: Dropout

- During Training. units are removed randomly
- Aim: higher robustness of learnt parameters
- Disadvantage: slightly slows down training
- Units cannot "rely" on each other's presence
- Units learn features which are useful by themselves

Convolutional Neural Networks

- Inspired by structure of visual processing in the brain
- Use same neurons for repetitive tasks → less parameters
- 'Kernels' recognise features in image

Convolutional Neural Networks

- Learning features directly from data
 - Extraction of task specific features

Convolutional layers

- Sets of filters used to identify patterns within the signal
- Network learns weights associated with each filter

Max Pooling layers

- Keep maximum output within a small neighbourhood of filter output
- Down sampling operation to reduce information
- Learnt features invariant to small translations (shifts) in the input

29

Recurrent Neural Networks

- Neural Network with feedback
- Advantages of doing this
 - Network capable of analysing streams of data
 - Capture temporal / contextual information
 - Good when training samples have interdependencies

Deep Recurrent Neural Networks (Deep RNNs)

$$\mathbf{y}_{t} = f_{RNN}(\mathbf{x}_{0}, \dots, \mathbf{x}_{t})$$

$$= o\left(\mathbf{W}^{o}\sigma(\mathbf{W}\mathbf{x}_{t} + \mathbf{R}\sigma(\dots \mathbf{W}\mathbf{x}_{0} + \mathbf{R}\mathbf{h}_{0})\right)$$

Backprop through time

Long Short-Term Memory.

Recurrent Neural Networks (RNN):

• 80s: Gradients by unfolding (BPTT, etc.)

Vanishing Gradient:

- RNN "forget" time lags > 10
- 90s: History compression, etc.

Long Short Term Memory (LSTM):

- Late 90s: Hochreiter and Schmidhuber
- Later: Graves and Schmidhuber
- ... And others...

Input, Output, Forget

Long Short-Term Memory.

Current Cell (Input, Output, Forget)

End-to-End Learning

End-to-End Systems

- The whole processing chain is learnt simultaneously.
- Basic system architecture:
 - 1. CNN used extract features from the raw time representation
 - 2. A subsequent RNN to learn temporal dependancies
 - 3. Fully Connected Layer

End-2-End Learning

End-to-End – a black box?

 CNN activations correlate with standard speech features

energy range (.77) loudness (.73)

F0 mean (.71)

Deep Learning

Deep Learning

Knowledge

 The lecture content includes an overview of Neural Network developments, covering all aspects from basic concepts to complex models. The course will cover Neural Network architectures that are suitable for a variety of data types and signals from different domains, such as audio, speech, vision, and text

Skills

 In the Tutorials, students will be familiarised with the latest Deep Learning toolkits such as Tensorflow and Keras and learn how to train and evaluate Deep Neural Networks for different applications.

Rest of the course

Lectures: Tuesdays 12:15 - 13:45 in 2045 N

- Topics Covered:
 - Feed Forward, Convolutional & Recurrent Networks
 - Attention Modelling and Connectionist Temporal Classification
 - Machine Learning
 - Natural language processing

Tutorials: Wednesdays 12:15 - 13:45 in 1005 N

- Skills gained in using
 - Python, Tensorflow, Keras

Deep Learning

What do we expect?

Basic knowledge

 In signal processing and additional knowledge in the fields of Machine Learning, Data Mining, or more generally Pattern Recognition is of advantage.

Target groups

 Include post-graduate students of Electronics and Telecommunications Engineering, Information Technology, Computer Sciences and related studies.

The teaching language is English.

Interest & Interaction!

Image Source: https://pixabay.cor

Lecture Timetable

Date	Topic	Lecturer
23.04.2019	Introduction	Prof. Schuller
30.04.2019	Applied Maths / Machine learning concepts	Dr. Cummins
07.05.2019	Feed Forward Networks	Dr. Cummins
14.05.2019	Regularisation in Neural Networks	Dr. Cummins
21.05.2019	Convolutional Neural Networks	Dr. Cummins
28.05.2019	Recurrent Neural Networks	Dr. Cummins
04.06.2019	Introduction to NLP	Dr. Cummins
11.06.2019	No Lecture (Dienstag nach Pfingsten)	-
18.06.2019	Attention and Connectionist Temporal Classification	Ass. Prof Zhao
25.06.2019	Data Representation Learning	Dr. Cummins
02.07.2019	Current Challenges and where to next	Dr. Cummins
09.07.2019	Deep Learning Master Class	Prof. Schuller
16.07.2019	Deep Learning Master Class	Prof. Schuller
23.07.2019	Wrap-Up Lecture	Dr. Cummins

Summer Semester 2019 Deep Learning 41

Tutorial Timetable

Date	Topic	Main Tutor	
24.04.2019	Python Introduction	S. Amiriparian	
01.05.2019	No Tutorial: Tag der Arbeit	-	
08.05.2019	Feed Forward Networks	C Amirinarian	
15.05.2019	reed rolward Networks	S. Amiriparian	
22.05.2019	Convolutional Neural Networks	C Amirinarian	
29.05.2019	Convolutional Neural Networks	S. Amiriparian	
05.06.2019	Document Noural Nativeries	C Amirinarian	
12.06.2019	Recurrent Neural Networks	S. Amiriparian	
19.06.2019	Encoder Deceder Naturalis	S. Amiriparian	
26.06.2019	Encoder Decoder Networks		
03.07.2019		S. Amiriparian	
10.07.2019	Crown Challenge		
17.07.2019	Group Challenge		
24.07.2019			

Deep Learning

Growing Interest

- Google trends graph on the term 'Deep Learning'
 - Clear trend in increasing world-wide interest

Growing Job Market

- Germany seeking to become a global AI powerhouse
 - 3 Billion Euro to be invested by 2025
 - Mobility, Health, Energy, Industry 4.0
 - 100 new AI chairs to be created
 - 12 new centres for research
 - Attractive working conditions & salaries

Video source: https://www.ki-strategie-deutschland.de

Money!

- Al experts can command huge salaries
 - Al specialist can make between \$300,000
 and \$500,000 a year in salary and stock
- Tech Giants Are Paying Huge Salaries for Scarce A.I. Talent
- E.g. Average wage at Google Deep Mind ~ \$345,000
- E.g. OpenAI employed 52 people in 2016 and spent more than \$7 million on salaries
 - Source: New York Times

The New York Times

A.I. Researchers Are Making More

Than \$1 Million, Even at a Nonprofit

Plenty of Research Still needed

- Prominent Al failures
 - UBER, 2018: An experimental autonomous Uber vehicle struck and killed a pedestrian in Tempe, Arizona
 - Goldman Sachs, 2018: Al predictions the 2018 World Cup were almost all wrong
 - Amazon 2017: Al-enabled recruiting software is found to be gender biased
 - IBM, 2016: Watson for Oncology cancel after spending \$62 million on the project after system was found to give unsafe advice
 - Microsoft, 2016: Twitter chatbot began stating 9/11 conspiracy theories and Nazi sentiments
 - Google 2015: Image recognition algorithms in Google Photos was found to be labelling black people as gorillas

Plenty of Research Still needed

Data Requirements

Robust deep learning solutions require massive amounts of training data

Privacy Concerns

Large deep neural networks are difficult to implement in edge computing scenarios

Explainable Al

- Deep learning systems are considered 'black-boxes'
- Further, they contain millions of data connections
- Very difficult to determine exactly how a decision was reached

Butterfly effects / Adversarial attacks

- Small variations in the input data can lead to drastically different results.
- By adding small amounts of noise it is possible to fool deep learning networks

Plenty of Research Still needed

- Next Generation of AI examples
 - Spiking Neural Networks
 - Data driven event based computation
 - Encode information as events in time

Differentiable Neural Computer

- Neural network with a memory matrix from which it can read and write data
- Allows network to have long-term memory

Meta-Learning

 Networks trained to be able to learn the learn processes

Source: https://towardsdatascience.com/

Source: https://becominghuman.ai