DM 4 : Thermodynamique des systèmes ouverts Éléments de correction

N°	Elts de rép.	Pts	Note
1	recherches de tous les exercices	1	
2.	propreté de la copie	0.5	
3.	rendu pour le jour demandé	0.5	
Bonus	exercice supplémentaire	0.5	

N°	Elts de rép.	
00-00	titre	
0		
01-02	Etude du diagramme des frigoristes	
1	Isothermes et isobares sont confondus dans la zone d'équilibre entre liquide et	
	vapeur. Ce sont des segments de droite horizontaux.	
2	Pour un gaz parfait H ne dépend que de T donc h aussi donc les isothermes	
	sont des segments de droite verticales. Ce n'est pas le cas sur le diagramme	
	fourni mais on s'en rapproche pour les faibles pressions.	
03-05	Etude du cycle haute pression	
3	Pour le tracé on part de 1 - sur la courbe d'ébullition (liquide saturant) et	
	à la pression $p_1 = 15$ bar. De 1 à 2 suivre isenthalpe (sans partie mobile,	
	adiabatique) jusqu'à $p_2=4,0$ bar. De 2 à 3 suivre isobare (séparateur mé-	
	langeur isobare) jusqu'à la courbe de rosée (sortie vapeur saturante). De 3 à	
	4 suivre isentropes (compression adiabatique réversible) jusqu'à $p_4 = p_1 = 15$	
	bar (condenseur isobare). De 4 à 1 suivre isobare jusqu'à état 1.	
4	état 1 : $h_1 = 245 \text{ kJ.kg}^{-1}$, $p_1 = 15 \text{ bar}$, $T_1 = 36 \text{ °C}$, $x_1 = 0$	
	état 2: $h_2 = 245 \text{ kJ.kg}^{-1}$, $p_2 = 4 \text{ bar}$, $T_2 = -11 \text{ °C}$, $x_2 = 0.36$	
	état 3: $h_3 = 343 \text{ kJ.kg}^{-1}$, $p_3 = 4 \text{ bar}$, $T_3 = -11 \text{ °C}$, $x_3 = 1$	
	état $4: h_4 = 366 \text{ kJ.kg}^{-1}, p_4 = 15 \text{ bar}, T_4 = 44 \text{ °C}, x_4 = ? \text{ vapeur sèche}$	
5	théorème des moments $(1-x)(h_2-h_L)=x(h_G-h_2)$ donc $x=\frac{h_2-h_L}{h_G-h_L}=0,37$	
06-07	Etude du cycle basse pression	
6	état 5 sur la courbe d'ébullition (sortie liquide saturant du séparateur mé-	
	langeur) à $p_5=4,0$ bar. De 5 à 6, suivre isenthalpique (sans partie mobile,	
	adiabatique) jusqu'à $p_6=1,5$ bar. De 6 à 7 suivre isobare jusqu'à la courbe de	
	rosée. De 7 à 8 suivre isentropes (adiabatique, réversible) jusqu'à $p_8=4,0$ bar	

7	On effectue une lecture sur le diagramme	
	état 5 : $h_5 = 188 \text{ kJ.kg}^{-1}$, $p_5 = 4 \text{ bar}$, $T_5 = -11 \text{ °C}$, $x_5 = 0$	
	état 6: $h_6 = 188 \text{ kJ.kg}^{-1}$, $p_6 = 1, 5 \text{ bar}$, $T_6 = -37 \text{ °C}$, $x_6 = 0, 16$	
	état 7: $h_7 = 328 \text{ kJ.kg}^{-1}, p_7 = 1, 5 \text{ bar}, T_7 = -37 \text{ °C}, x_7 = 1$	
	état 8 : $h_8 = 347 \text{ kJ.kg}^{-1}$, $p_8 = 4 \text{ bar}$, $T_8 = 3 \text{ °C}$, $x_8 = \text{vapeur sèche}$	
08-11	Bilan énergétique	
8	$P_{CPHP} = D_{HP}(h_4 - h_3) = 55,9 \text{ kW et } P_{CPBP} = D_{BP}(h_8 - h_7) = 28,5 \text{ kW}$	
9	$\Phi_{evap} = D_{BP}(h_7 - h_6) = 210 \text{ kW et } \Phi_{cond} = D_{HP}(h_1 - h_4) = -294 \text{ kW}$	
10	$COP = \frac{\Phi_{evap}}{P_{CPHP} + P_{CPBP}} = 2,49$	
11	$COP_{Carnot} = \frac{1}{\frac{T_c}{T_c}-1} = 3,23.$ donc $r = \frac{COP}{COP_{Carnot}} = 0,77,$ rendement inférieur	
	à 1 ou efficacité toujours inférieure à l'efficacité de Carnot. Pour une machine	
	réelle on veut de la puissance de froid donc transformation dans condenseur	
1	forcément irréversible sinon elle prendrait un temps infinie.	