

CBCS Scheme

USN				15CS/IS:	5

Fifth Semester B.E. Degree Examination, Dec.2017/Jan.2018 Automata Theory & Compatibility

Time: 3 hrs. Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

- 1 a. Define the following terms with examples: (i) Alphabet (iii) Concatenation (iv) Languages
- (ii) Power of an alphabet (04 Marks)
- b. Draw a DFA to accept strings of a's and b's ending with 'bab'.

(03 Marks)

c. Convert the following NDFSM Fig. Q1 (c) to its equivalent DFSM.

(09 Marks)

Fig. Q1 (c)

2 a. Draw a DFSM to accept the language,

 $L = \{ \omega \in \{a, b\}^* : \forall x, y \in \{a, b\}^* ((\omega = x \text{ abbaay}) \lor (\omega = x \text{ babay})) \}$

(03 Marks)

b. Define distinguishable and indistinguishable states. Minimize the following DFSM,

S	0	.1
∂ A	В	Α
В	Ä	C
C	D	В
*D	D	A,
Е	D	F
F	G	Е
G	F	G
Н	G	D

- (i) Draw the table of distinguishable and indistinguishable state for the automata.
- (ii) Construct minimum state equivalent of automata.

(09 Marks)

c. Write differences between DFA, NFA and ε-NFA.

(04 Marks)

Module-2

3 a. Consider the DFA shown below:

States	0	1
→q1	q_2	q ₁
q_2	q_3	q_1
*q ₃	q ₃	q_2

Obtain the regular expressions $R_{ij}^{(0)}$, $R_{ij}^{(1)}$ and simplify the regular expressions as much as possible. (09 Marks)

- b. Give Regular expressions for the following languages on $\sum = \{a, b, c\}$
 - (i) all strings containing exactly one a
 - (ii) all strings containing no more than 3 a's.
 - (iii) all strings that contain at least one occurance of each symbol in \sum . (03 Marks)

3 c. Let L be the language accepted by the following finite state machine.

(04 Marks)

Fig. Q3 (c)

Indicate for each of the following regular expressions, whether it correctly describes L:

- (i) (a ba)bb*a
- (ii) (e b)a(bb*a)*
- (iii) ba ∪ab *a
- (iv) $(a \cup ba)(bb*a)*$

OR

- 4 a. Prove that the following language in not regular: $L = \{0^n 1^n \mid n > 0\}$. (05 Marks)
 - b. If L_1 and L_2 are regular languages then prove that $L_1 \cup L_2$, $L_1 L_2$ and L_1^* are regular languages. (05 Marks)
 - c. Is the following grammar is ambiguous?

 $S \rightarrow iC + S | iC + SeS | a$

 $C \rightarrow b$

Module-3

- 5 a. Define Grammar, Derivation, Sentential forms and give one example for each. (03 Marks)
 - b. What is CNF? Obtain the following grammar in CNF

S→ASB|ε

 $A \rightarrow aAS \mid a$

 $B \rightarrow SbS|A|bb$

(09 Marks)

(06 Marks)

c. Let G be the grammar,

 $S \rightarrow aB \mid bA$

 $A \rightarrow a \mid aS \mid bAA$

 $B \rightarrow b | bS | aBB$

For the string aaabbabba find a

- (i) Left most derivation.
- (ii) Right most derivation.
- (iii) Parse tree.

(04 Marks)

OR

- 6 a. Explain the following terms:
 - (i) Pushdown automata (PDA).
 - (ii) Languages of a PDA.
 - (iii) Instantaneous description of a PDA.

(03 Marks)

b. Construct a PDA to accept the language $L = \{\omega \omega^R \mid \omega \in \{a, b\}^*\}$. Draw the graphical representation of this PDA. Show the moves made by this PDA for the string aabbaa.

(10 Marks)

c. Convert the following CFG to PDA

 $S \rightarrow aABB \mid aAA$

 $A \rightarrow aBB \mid a$

 $B \rightarrow bBB \mid A$

 $C \rightarrow a$

(03 Marks)

2 of 3

Module-4

- 7 a If L_1 and L_2 are context free languages then prove that $L_1 \cup L_2$, $L_1 \cdot L_2$ and L_1 are context free languages. (04 Marks)
 - b. Give a decision procedure to answer each of the following questions:
 - (i) Given a regular expression α and a PDA M, the language accepted by M a subset of the language generated by α ?
 - (ii) Given a context-free Grammar G and two strings S₁ and S₂, does G generate S₁S₂?
 - (iii) Given a context free Grammar G, does G generate any even length strings.
 - (iv) Given a Regular Grammar G, is L(G) context-free?

(12 Marks)

OR

- 8 a. Explain with neat diagram, the working of a Turing Machine model. (05 Marks)
 - b. Design a Turing machine to accept the language $L = \{a^n b^n c^n | n >= 1\}$. Draw the transition diagram. Show the moves made by this turing machine for the string aabbcc. (11 Marks)

Module-5

- 9 Write short notes on:
 - a. Multi-tape turing machine.
 - b. Non-deterministic turing machine.
 - c. Linear Bounded automata.

(16 Marks)

OF

- Write short notes on:
 - a. Undecidable languages.
 - b. Halting problem of turing machine.
 - c. The post correspondence problem,

(16 Marks)