

ALGEBRA Chapter 15

Números Complejos

MOTIVATING STRATEGY

Benoit Mandelbrot publicó en 1975 su primer ensayo sobre fractales.

Su construcción se basa en la iteración de un número complejo, es decir se hace una operación y ésta se repite con el resultado....

 $z \square z^2 + C$ (conjunto de Mandelbrot).

NÚMEROS COMPLEJOS

UNIDAD IMAGINARIA (i):

$$i = \sqrt{-1}$$
 ; se llama unidad imaginaria $|i| = 1$

$$i^2 = -1$$

Ejemplos:
$$\rightarrow \sqrt{-9} = \sqrt{9}$$
. $\sqrt{-1} = 3i$

$$\sqrt{-25} = \sqrt{25} \cdot \sqrt{-1} = 5i$$

$$> \sqrt{-3} = \sqrt{3} \cdot \sqrt{-1} = \sqrt{3}i$$

POTENCIAS DE (i):

$$i^1 = i$$

$$i^5 = i$$

$$i^2 = -1$$

$$i^6 = -1$$

$$i^3 = -i$$

$$i^7 = -i$$

$$i^4=1$$

$$i^8 = 1$$

$$i^{4k} = 1$$

$$i^{4k+2} = -1$$

$$i^{4k+1}=i$$

$$i^{4k+3} = -i$$

$$i^{254} = (i^4)^{63}$$
. $i^2 = 1(-1) = -1$

$$i + i^2 + i^3 + i^4 + \dots + i^{4k} = 0$$

NÚMEROS COMPLEJOS

Un número complejo z es un par ordenado de números reales a y b, escrito como:

$$z=(a,b)$$

El conjunto de números complejos se denota por C:

$$C := \{(a,b): a,b \in \mathbb{R}\}$$

a es la parte real de z: Re(z): a

b es la parte imaginaria de z: Im(z): b

FORMA BINOMIAL DE Z:

Un número complejo z = (a, b) se escribe comúnmente como:

$$z = a + bi / i = \sqrt{-1}$$

$$i = \sqrt{-1}$$
; se llama unidad imaginaria

a es la parte real de z: Re(z): a

b es la parte imaginaria de z: Im(z): b

$$i=(0,1)$$

PROPIEDADES

$$z = a + bi / i = \sqrt{-1}$$

- \checkmark Si a=0, b=0 , se dice que Z es un \Rightarrow z=(0,0)=0COMPLEJO NULO

$$z=(0,0)=0$$

✓ Si a = 0, se dice que Z es un IMAGINARIO \Rightarrow z = (0, b) = bi**PURO**

$$z = (0, b) = bi$$

✓ Si b = 0, Z se comporta como un NÚMERO \Rightarrow z = (a, 0) = aREAL

$$z=(a,0)=a$$

IGUALDAD DE COMPLEJOS:

Si:
$$(x_1, y_1) = (x_2, y_2) \implies x_1 = x_2 \land y_1 = y_2$$

$$x_1 = x_2$$

$$y_1 = y_2$$

EL PLANO COMPLEJO (PLANO Z, DE ARGAND O DE GAUSS):

$$z=(a,b)=a+bi/i=\sqrt{-1}$$

Módulo:

$$r = |\mathbf{z}| = \sqrt{a^2 + b^2}$$

Argumento:

$$\theta = Arg(z) = arctan\left(\frac{b}{a}\right)$$

PROPIEDADES

$$z = a + bi / i = \sqrt{-1}$$

Conjugado de Z:

$$\overline{z} = a - bi$$

Opuesto de Z:

$$op(z) = z^* = -a - bi$$

OPERACIONES BÁSICAS:

Sean:
$$z_1 = a + bi$$
$$z_2 = c + di$$

Adición:
$$z_1 + z_2 = (a+c) + (b+d)i$$

Multiplicación:

$$z_1 z_2 = (a + bi)(c + di)$$

$$z_1 z_2 = (ac - bd) + (ad + bc)i$$

• División:
$$\frac{z_1}{z_2} = \frac{a+bi}{c+di} \times \frac{c-di}{c-di}$$

$$\frac{z_1}{z_2} = \left(\frac{ac + bd}{c^2 + d^2}\right) + \left(\frac{bc - ad}{c^2 + d^2}\right)i$$

HELICO PRACTICE

CHAPTHER 15

Siendo
$$i = \sqrt{-1}$$

Calcule

$$P = i^{79} + i^{99} - i^{51} + i^{82} + i^{41}$$

Recordemos:

POTENCIAS DE i:

$$i^{4k}=1$$

$$i^{4k} = 1$$
 $i^{4k+2} = -1$

$$i^{4k+1} = i$$

$$i^{4k+1} = i \qquad i^{4k+3} = -i$$

Resolución:

$$P = i^{79} + i^{99} - i^{51} + i^{82} + i^{41}$$

$$i^{79} = i^{76+3} = i^{4k+3} = -i$$

$$i^{99} = i^{96+3} = i^{4k+3} = -i$$

$$i^{51} = i^{48+3} = i^{4k+3} = -i$$

$$i^{82} = i^{80+2} = i^{4k+2} = -1$$

$$i^{41} = i^{40+1} = i^{4k+1} = i$$

$$P = (-i) + (-i) - (-i) + (-1) + (i)$$

$$P = -i - i + i - 1 + i$$

$$P = -1$$

Reduzca

$$F = \frac{3i^{259} + 5i^{3593}}{20i^{4775} + 4i^{8749}}; \quad (i = \sqrt{-1})$$

Recordemos:

POTENCIAS DE i:

$$i^{4k}=1$$

$$i^{4k+2} = -1$$

$$i^{4k+1}=i$$

$$i^{4k+3} = -i$$

Resolución:

$$F = \frac{3i^{259} + 5i^{3593}}{20i^{4775} + 4i^{8749}}$$

$$i^{59} = i^{56+3} = i^{4k+3} = -i$$

$$i^{93} = i^{92+1} = i^{4k+1} = i$$

$$i^{75} = i^{72+3} = i^{4k+3} = -i$$

$$i^{49} = i^{48+1} = i^{4k+1} = i$$

$$F = \frac{3(-i) + 5(i)}{20(-i) + 4(i)} = \frac{2i}{-16i}$$

$$\therefore F = -\frac{1}{8}$$

Si
$$z_1 = 4 + 7i$$

 $z_2 = -2 + 3i$
 $z_3 = 2 - 5i$

Efectúe

$$z = z_1 + \overline{z}_2 + z_3^*$$

Resolución:

Recordemos:

Sea:
$$z = a + bi$$

Conjugado de z:

$$\bar{z} = a - bi$$

Opuesto de z:

$$z^* = -a - bi$$

$$z = z_1 + \overline{z}_2 + z_3^*$$

$$z = (4+7i) + (-2-3i) + (-2+5i)$$

$$z = 4 + 7i - 2 - 3i - 2 + 5i$$

$$z = 9i$$

$$\mathbf{Si} \qquad \mathbf{z}_1 = 5 - 2i \\
\mathbf{z}_2 = -3 + 2i$$

al efectuar

$$T = \bar{z}_1.z_2^* + 1 + 4i$$

cuyo valor de T en soles es el precio de un galón de pintura para pintar 2 pizarras; ¿cuánto costará pintar pizarras?

Recordemos: Sea: z = a + bi

Conjugado de z:

$$\overline{z} = a - bi$$

Opuesto de z: $z^* = -a - bi$

$$z^* = -a - bi$$

Resolución:

$$T = \bar{z}_1 \cdot z_2^* + 1 + 4i$$

$$T = (5 + 2i)(3 - 2i) + 1 + 4i$$

$$T = 15 - 10i + 6i - 4i^{2} + 1 + 4i$$
(-1)

$$T = 15 - 10i + 6i + 4 + 1 + 4i$$

T = 20

(Precio de 1 galón de pintura en soles).

 \therefore Pintar 40 pizarras costará $20 \times 20 = \frac{S}{.400}$

01

Problema 5

Efectúe

$$P = \frac{1+i}{1-i} - \frac{1-i}{1+i}$$
; $(i = \sqrt{-1})$

Recordemos:

TRINOMIO CUADRADO PERFECTO (Binomio al cuadrado):

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

DIFERENCIA DE CUADRADOS:

$$(a+b)(a-b) = a^2 - b^2$$

Resolución:

$$P = \frac{1+i}{1-i} - \frac{1-i}{1+i}$$

$$P = \frac{(1+i)^2 - (1-i)^2}{(1-i)(1+i)}$$

$$P = \frac{\left(1 + 2i + i^2\right) - \left(1 - 2i + i^2\right)}{1 - i^2}$$

$$P = \frac{1 + 2i + i^{2} - 1 + 2i - i^{2}}{1 - i^{2}} \qquad P = \frac{4i}{2}$$

$$P=\frac{4i}{2}$$

Siendo
$$z_1 = 2 + i$$

$$z_2 = 3 - 2i$$

Calcule

$$T=z_1^2+z_2^2$$

luego señale Im(T)

Recordemos:

TRINOMIO CUADRADO PERFECTO (Binomio al cuadrado):

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

Resolución:

$$z_1^2 = (2+i)^2$$

$$z_1^2 = 4 + 4i + i^2$$

$$z_1^2 = 4 + 4i - 1$$

$$z_1^2 = 3 + 4i$$

Cálculo de z2:

$$z_2^2 = (3-2i)^2$$

$$z_2^2 = 9 - 12i + 4i^2$$

$$z_2^2 = 9 - 12i - 4$$

$$z_2^2 = 5 - 12i$$

$$T = z_1^2 + z_2^2$$
 \Rightarrow $T = 3 + 4i + 5 - 12i$
 $T = 8 - 8i$

Im(T)=-8

ত ব

Un docente de la facultad de sistemas hace una encuesta a sus estudiantes acerca de que país tiene la velocidad más rápida de internet si las l alternativas fueron

N°	Países
1	Rusia
2	EE.UU
3	Corea del sur

Al finalizar la clase el docente menciona que la respuesta se obtienen al calcular |z| -2, sabiendo que $Z = \frac{5(1+i)}{2-i} + 2 + i$, ¿Cuál es el país con la velocidad más rápida de $z = \frac{5(1+3i)}{5} + 2 + i$ internet?

Resolución:

$$z = \frac{5(1+i)}{2-i} + 2+i$$

$$z = \frac{5(1+i)}{(2-i)} \cdot \frac{(2+i)}{(2+i)} + 2+i$$

$$z = \frac{5(2+i+2i+i^2)}{4-i^2} + 2 + i$$

$$z = \frac{5(2+i+2i-1)}{4+1} + 2 + i$$

$$z = \frac{5(1+3i)}{5} + 2 + i$$

$$z = 1 + 3i + 2 + i$$
$$z = 3 + 4i$$

Recordemos: MÓDULO DE Z:

$$|z| = \sqrt{a^2 + b^2}$$

Nos piden: $\mathbf{Z} - \mathbf{2}$

$$|z| = \sqrt{a^2 + b^2} - 2$$

$$|z| = \sqrt{3^2 + 4^2} - 2$$

$$|z| = \sqrt{25} - 2$$

Rpta: Corea del Sur