EXPERIMENTO 5

INTRODUÇÃO À CORRENTE ALTERNADA

TURMA: <u>D</u> DATA: <u>23/04/2014</u>

NOME	RA
Karina Drews Bernardi Ferreira	556068
Marcelo Aparecido do Lago	559903
Marcos Vinicius Torsani Pires	387673

RESUMO:Corrente alternada é a corrente cujo valor varia senoidalmente com o tempo, trocando desentido. O osciloscópio é utilizado para mostrar e estudar as formas das ondas de tensão como a decorrente alternada, sendo útil também na medição do ângulo de fase entre os sinais senoidais, aplicando-se um dos sinais às placas verticais e o outro às horizontais.

A figura resultante pode ser uma linha reta, uma elipse ou um círculo, e o ângulo de fase pode ser determinado diretamente através das figuras na tela, que são chamadas figuras de Lissajous.

O experimento consistiu na análise das tensões contínuas e alternadas utilizando multímetro e osciloscópio. Além de medir a defasagem utilizando o circuito defasador e o osciloscópio.

Através dos dados obtidos, foram calculadas as potências dissipadas em cada resistor.

RESULTADOS

A) MEDIDAS DE TENSÃO

A.1) TENSÃO CONTÍNUA

i) Multimetro:

 $V_F \pm u(V_F)$: (10,05±0,08) V_L $V_{R1} \pm u(V_{R1})$: (1,47±0,04) V_L $V_{R2} \pm u(V_{R2})$: (8,57±0,07) V_L

i) Osciloscópio:

 $V_F \pm u(V_F)$: __(5,2±0,1).2V___ $V_{R1} \pm u(V_{R1})$: __(0,8±0,1).2V___ $V_{R2} \pm u(V_{R2})$: __(4,4±0,1).2V___

ii) Comparação: Os valores medidos pelo multímetro são mais precisos, visto que o seu erro experimental é menor do que o do osciloscópio devido à sua escala ser mais próxima da grandeza medida. No osciloscópio, fazendo-se a leitura visual das curvas acaba causando um maior erro experimental.

A.2) TENSÃO ALTERNADA

i) Multímetro:

 $V_F \pm u(V_F)$: $(11,7\pm0,1)V_V_{R1} \pm u(V_{R1})$: $(1,71\pm0,06)V_V_{R2} \pm u(V_{R2})$: $(10,0\pm0,1)V_V_{R1}$

i) Osciloscópio:

 $V_F \pm u(V_F)$: $(6,7\pm0,1).5V_V_{R1} \pm u(V_{R1})$: $(5\pm0,1).1V_V_{R2} \pm u(V_{R2})$: $(5,7\pm0,1).5V_V_{R2}$

ii) Período: T± u(T): _(3,3±0,1).5 ms_Frequência: f± u(f): _(60,61±0,02).5V_____

iii) Comparação: Com o osciloscópio obteve-se o resultado da tensão de pico da fonte e a que estavam submetidos os componentes, agora com o multímetro obteve-se a tensão eficaz da fonte e sobre os componentes, onde $V_{ef} = \frac{Vpp}{2\sqrt{2}}$.

B) DIFERENÇA DE FASE

B.1) Método das duas ondas

Posição 1: $\phi_1 \pm u(\phi_1)$: $(10.9\pm0.8)^{\circ}$ Posição 2: $\phi_2 \pm u(\phi_2)$: $(120\pm5)^{\circ}$ Posição 3: $\phi_3 \pm u(\phi_3)$: $(49.1\pm2.4)^{\circ}$

B.2) Método da figura de Lissajous

Posição 1: $\phi_1 \pm u(\phi_1)$: $(8,6\pm0,7)^\circ$ Posição 2: $\phi_2 \pm u(\phi_2)$: $(121\pm7)^\circ$ Posição 3: $\phi_3 \pm u(\phi_3)$: $(49,1\pm3,6)^\circ$

ESBOÇOS DE B.1 e B.2 Chave para a esquerda

Chave para a direita

Experimento 5 – Física Experimental B

B.3) Comparação: Ambos os métodos apresantam-se sendo bem eficazes, uma vez que apresentaram valores bem próximos. Porém, o método das duas ondas mostrou-se mais eficaz, uma vez que suas incertezas são menores.

C) POTÊNCIA DISSIPADA

C1) Tensão Contínua

Multimetro $P_1 \pm u(P_1)$: (3,9±0,3) mW $P_2 \pm u(P_2)$: (22,3±1,1) mW

Osciloscópio $P_1 \pm u(P_1)$: $(4,6\pm1,2)$ mW $P_2 \pm u(P_2)$: $(23,5\pm1,6)$ mW

Tensão Alternada

Multimetro $P_1 \pm u(P_1)$: $(5,2\pm 0,5)$ mW $P_2 \pm u(P_2)$: $(30,30\pm 1,6)$ mW

Osciloscópio $P_1 \pm u(P_1)$: (44,6±2,8)mW $P_2 \pm u(P_2)$: (246±15)mW_

C.2) Comparação: Em corrente contínua não é grande a discrepância, visto que existem os erros experimentais, agora em corrente alternada a discrepância é grande visto que foi usada a tensão pico-a-pico para o cálculo no osciloscópio.

C.3) Correção: Devemos utilizar no cálculo da potência a tensão eficaz V_{RMS} , e não a tensão exibida diretamente pelo osciloscópio. A tensão eficaz seria obtida da seguinte maneira: $V_{ef} = \frac{v_{pp}}{2\sqrt{2}}$

Conclusões

O experimento permitiu a descoberta do funcionamento de um osciloscópio, além de elucidar os procedimentos necessários para melhor interpretar as informações fornecidas pelo osciloscópio.

Observou-se a tensão contínua ao osciloscópio como uma linha contínua, enquanto que, na corrente alternada, notou-se uma onda senoidal, exatamente devido à alternância de sentidos da corrente.

Nas várias medições e leituras de tensão, percebeu-se maior precisão no multímetro em detrimento ao osciloscópio, devido às escalas utilizadas principalmente, sendo o primeiro analógico e, o segundo, digital.

O osciloscópio possibilita a medição do ângulo de fase entre as ondas senoidais de tensão alternada através de dois métodos: medida direta na tela do mesmo e por figuras de Lissajous.