m
u
Products and Technology Groups Partners Topics Events What's New Get Started
ni

SAP Community > Products and Technology > Technology > Technology Blogs by Members

> Linear & Polynomial Trend Lines in Webi

Technology Blogs by Members

Explore a vibrant mix of technical expertise, industry insights, and tech buzz in member blogs covering SAP products, technology, and events. Get in the mix!

Blog

~

What are you looking for today?

12.8

Linear & Polynomial Trend Lines in Webi

Former Member

2014 Feb 14 9:27 PM

18 Kudos

30,506

SAP Managed Tags: SAP BusinessObjects Business Intelligence platform, SAP BusinessObjects - Web Intelligence (WebI)

Currently, there is no option to draw a linear or polynomial trend line in a webi chart. However, we can use mathematical calculations to overcome the challenge.

In this post, I utilize eFashion Universe for demonstration purposes. I am assuming that you are somewhat familiar with regression analysis and Webi 4.0 – Rich Internet Application Viewing Mode.

Warm-up reminders:

A linear trend line is defined by this equation: Y= a0 + b*X1 , in which we are assuming that

- variable X is a timing factor (day, month, year etc..) and can be used to explain the fluctuation of the output Y;
- a0 & b are the best estimators of the model and can be calculated using the ordinary least squares (OLS) method.

We define: x1=X1-Average[X1] and y=Y-Average[Y] then

- b = Sum[x1*y]/Sum[x1*x1]
- a0 = Average[Y] b*Average[X1]

Similarly, a polynomial trend line can be defined by this equation: Y=a + b1*X1 + b2*X2, in which:

- variable X1, X2 are timing factors (day, month, year etc..) and can be used to explain the fluctuation of the output Y;
- X2 = X1 * X1
- a, b1 & b2 are the best estimators of the model and can be calculated using the ordinary least squares (OLS) method.

We also define x2=X2-Average[X2] then

- b1 = {Sum[x2*x2] * Sum[x1*y] Sum[x1*x2] * Sum[x2*y]}/ {Sum[x1*x1] * Sum[x2*x2] Sum[x1*x2] * Sum[x1*x2]}
- b2 = {Sum[x1*x1] * Sum[x2*y] Sum[x1*x2] * Sum[x1*y]}/ {Sum[x1*x1] * Sum[x2*x2] Sum[x1*x2] * Sum[x1*x2]}
- a = Average[Y] b1*Average[X1] b2*Average[X2]

Create a linear trend line in Webi 4.0

Step 1: Build a Webi report using eFashion Universe.

Step 2: Create new variables for those in the warm-up reminders Section. Note that we don't have to create a new variable for each of them.

Create X1 (assuming we are showing trend lines by month)

Similarly, create x1y

=([X1]-(Average([X1]) In Block))*([Sales revenue]-(Average([Sales revenue]) In Block))

Create x1x1

=([X1]-(Average([X1]) In Block))*([X1]-(Average([X1]) In Block))

Create b

=(Sum([x1y]) In Block)/(Sum([x1x1]) In Block)

Create a0

=Average([Sales revenue]) In Block - [b]*(Average([X1]) In Block)

Create Linear Trend

=[a0]+[b]*[X1]

Step 3: Insert a webi chart with the linear trend line we have created:

Go to Report Element \ Chart \ Line

Assign data to the new chart

Enjoy the result. The image below shows linear trend line and Sales revenue in DC only

Below is the Sales revenue Report for California

Create a polynomial trend line in Webi 4.0

Assuming we continue to use some of the work we have done in the Linear Trend Line section.

Step 4: Create additional variables for the polynomial trend line

Create X2

=[X1]*[X1]

Create x2x2

=([X2]-(Average([X2]) In Block))*([X2]-(Average([X2]) In Block))

Create x2y

=([X2]-(Average([X2]) In Block))*([Sales revenue]-(Average([Sales revenue]) In Block))

Create x1x2

=([X1]-(Average([X1]) In Block))*([X2]-(Average([X2]) In Block))

Create b1

=((Sum([x2x2]) In Block)*(Sum([x1y]) In Block)-(Sum([x1x2]) In Block)*(Sum([x2y]) In B

Block))/((Sum([x2x2]) In Block)*(Sum([x1x1]) In Block)-(Sum([x1x2]) In Block)*(Sum([x1x2]) In Block))

Create b2

 $= ((Sum([x1x1]) \text{ In Block})^*(Sum([x2y]) \text{ In Block}) - (Sum([x1x2]) \text{ In Block})^*(Sum([x1y]) \text{ In Block}))$ $= ((Sum([x1x1]) \text{ In Block})^*(Sum([x1x1]) \text{ In Block}) - (Sum([x1x2]) \text{ In Block})^*(Sum([x1x2]) \text{ In Block}))$

Create a

=(Average([Sales revenue]) In Block)-[b1]*(Average([X1]) In Block)-[b2]*(Average([X2]) In Block)

Create Poly Trend

=[a]+[b1]*[X1]+[b2]*[X2]

Step 5: Add the polynomial trend line in the current chart

Right-click on the chart then choose Assign Data...

Click on the plus + sign in the Value Axis 1 Section, then choose Poly Trend.

Enjoy the result.

If you have any questions, please leave a comment below and I will try to answer them as soon as I can.

Happy Valentine!

BONUS: R-squared calculations

As josh.crawford's suggested, I have included here a bonus section for R-squared calculation. If you need to refresh your mind about what it is, here is the link <u>Coefficient of determination - Wikipedia, the free encyclopedia</u>

Create SStotal

=([Sales revenue]-(Average([Sales revenue]) In Block))*([Sales revenue]-(Average([Sales revenue]) In Block))

Create SSres.Linear

=([Linear Trend]-[Sales revenue])*([Linear Trend]-[Sales revenue])

Create SSres.Poly

=([Poly Trend]-[Sales revenue])*([Poly Trend]-[Sales revenue])

Create R-squared.Linear

=1-(Sum([SSres.Linear]) In Block)/(Sum([SStotal]) In Block)

Create R-squared.Poly

=1-(Sum([SSres.Poly]) In Block)/(Sum([SStotal]) In Block)

If you place R-squared.Linear and R-squared.Poly next to each other in the table, you will see the values as shown here

Here is the chart with both Linear and Polynomial Trend Lines using Excel:

Thanks, Huu Nguyen

Tags:

18 Comments

Former Member

 \odot

2014 Apr 12 12:11 AM

0 Kudos

Beautiful... works like a charm. How about for calculating R-squared values? :wink:

Prabhith

Active Contributor

 \odot

2014 Apr 12 4:58 AM

0 Kudos

Great Document,

Surely this is going to save a lot of time for our SDN colleagues who have similar requirement.

Former Member

 \odot

2014 Apr 15 6:08 PM

Thanks for your feedback. I will update this thread with R-squared calcultion soon.

2014 Apr 15 6:09 PM

Thanks Prabhith! It would be nice if this becomes a new feature in BO.

2014 May 12 2:03 PM

Great Webi trick!

You've been added to Webi 4.x tricks: summary for a better visibility. Keep posting!

William

⊙ 2014 Jul 10 3:24 PM

great work. thanks

2014 Aug 19 5:31 PM

Excellent work Huu! Now if only there was an easy way to do this in Design Studio...

2015 Feb 11 6:57 PM

Not working for me. Please could you attach your webi report to this article?

[Edit]

Wait! Now It works, however since I only have real data up to 2005, how do I make it generate the possible values for 2006, 2007. Would it be more like a forecasting? Is it possible to achieve that on Webintelligence?

2015 Apr 23 5:29 PM

We have a requirement to chart forecasted trend line based on the Linear Trend line.

- 1) How to add n # of months to the report date range and
- 2) Include in chart the projected value i.e. in this example that would be the forecasted sales revenue for say the next 3 months.

Has anyone been able to do this or can someone provide steps for doing this?

2015 Apr 24 2:57 PM

I was able to generate trending values for periods I didn't have values. What I did was that I included in my Excel sheet those periods. In Webi it looks like this:

	26	147.54
	27	150.48
	28	151.46
	29	152.8
	30	
	31	
	32	
	33	
	34	
	35	
	36	_
Davind		/
Period		Value

Then I applied linear trend formula

 \odot

2015 Apr 24 3:43 PM

Thank you Erika! Can you show me what your calculation for the forecast column looks like? And the calculation for the 1.97 as well?

Former Member

 \odot

2015 Apr 24 5:21 PM

Trend

where m (slope 1.97) is:

=(Sum([g2]-[g1]))/(Sum([p2]-[p1]))

x is:

=[Period]

g2, g1 are my measures g2 is: =([measure] Where ([Period]=[p2])) In Block g1 is =([measure] Where ([Period]=1)) In Break p2, p1 are my periods p2 is: =Max([Period] Where (Not(IsNull([measure])))) In Block p1 is: =Min([Period]) In Break b is =[g1]-([m]*[p1])

2015 Jun 30 6:16 PM

Excellent post! Thank you for sharing.

2015 Aug 11 9:26 AM

Interpolation can also be used where there are null values in the measure.

My method is somewhat different to yours Huu but works in a similar way. But I use interpolation to resolve the issue with null value.

That is a post in istself though! :smile:

2015 Oct 02 5:05 PM

How do you get the period to extend beyond line 29? Mine ends with the last month I have data for. So there are no rows for the forecast values

2015 Oct 17 5:42 PM

You should have additional rows for additional periods in your query. It doesn't matter if they don't have data. It doesn't matter if you add them with a view or a union.

For example, in my test, I added manually those rows (in table or excel) for additional periods with empty measures, since those measures will be calculated later.

28	151.46
29	152.8
30	
31	
32	
33	
34	
35	
36	

2015 Dec 01 4:55 PM

Hi experts,

I wanna draw a linear trend line in Webi , and i want the resule like excel(as attachment) .

2020 Oct 27 5:31 PM

Hi everyone!

First of all, awesome tutorial! I've been able to build a lineal and a polynomial (2 degree).

However, I'm stacked with building interpolation like Excel does (x steps ahead).

Yes, I expand the date vector to get more dates than available with data.

So, my question is: assuming I have a polynomial trend line, how can I interpolate it 14 days ahead (for example) without affecting the coefficients?

Any ideas???

Many thanks!

You must be a registered user to add a comment. If you've already registered, sign in. Otherwise, register and sign in.

Comment

Labels In This Area

```
"Aging List of Receivables" 1 ("as written by Marian Zeis" 1
"automatische backups" 1 \ ("Data Source Migration" 1
                                                 "Integration Challenges" 1
"regelmäßige sicherung" 1 ) ( "SAP BW 7.4" 1 )
                                         "SAP BW" 5
"SAP VARIANT CONFIGURATION 2
                                "SAP BUILD APPS" 1 ("SAPDatasphere" 2
"TypeScript" "Development" "FeedBack" 1
                                     *SAP" 1
-147 Get CurrentUserInfo failed 1
                                       3-TIER Extensibility 3
                                                           30 examples 1
                              2YM 1
505 Technology Updates 53 1
                           @expertsap 1
                                          @hanasizing 1
@SAPSupport 1
                @SCPI 2
A Comprehensive Guide to Using OLE Objects in SAP ABAP 1 (aATP 1)
                                                              ABAP 41
ABAP 7.4 2
            ABAP API 1
                         ABAP BAPI BAPI_FIXEDASSET_CREATE1 1
             ABAP CDS VIEW 2 ABAP CDS Views 12
ABAP BTP 1
ABAP CDS Views - BW Extraction 3 (ABAP CDS Views - CDC (Change Data Capture) 3
ABAP Class 3
              ABAP Cloud 8 ABAP Cloud Developer Trial 1
ABAP DDIC CDS view 1 (ABAP development 13)
                                            ABAP Editor 1
ABAP Environment & RAP 2
                          ABAP Extensibility 4
                                              ABAP for EWM 1
ABAP in Eclipse 3
                 ABAP Interface 1
                                   ABAP New Syntax 1
                                                       ABAP ODATA 2
ABAP on HANA 1
                 ABAP OOABAP 1
                                   ABAP PLATFORM 1 ABAP Platform Trial 2
ABAP Programming 8
                     ABAP Push Channels 1 ABAP Query 1
                                                          ABAP RAP 3
ABAP RAP custom action 2
                         ABAP RAP(RESTful Application Programming) 5
                    ABAP RESTful Application Programming Model 2
ABAP RESTFul API 1
ABAP String functions 1
                      abap technical 1
                                       ABAP test cokpit 1
                                                          abap to xml 1
                   Access data from datasphere to ADF Azure Data Factory 5
abapGit 1
           absl 2
access data from SAP Datasphere directly from Snowflake 1
```

Access data from SAP datasphere to Qliksense 2 Accessibility 1 Accessibility in SAPUI5 1 Accrual 1 Acquire SAC Knowledge 3 acquired 1 action 1 actions 1 Activity 1 Adaptation Project 1 adapter 2 adapter modules 2 ADDING LEAN SERVICES 2 Addon 2 Adobe Document Services 1 Adobe forms 1 ADS 1 ADS Config 1 ADS with ABAP 1 ADS with Java 1 ADT 4 Advance Shipping and Receiving 1 Advanced ABAP 1 Advanced Event Mesh 4 Advanced formula 1 Advanced Formulas 2 Advanced Metric 1 Advanced SAP Techniques 1 Advanced Scripting in SAC 3 Advanced Workflow 2 AEM 1 AEM Event Portal 1

Related Content

New Machine Learning features in SAP HANA 2.0 SPS 08 in Technology Blogs by SAP 2024 Nov 22

Al 101 - A High Level Overview and Common Terminology in Technology Blogs by SAP 2024 Nov 04

Unlocking OptML potential via user-defined functions for Business Uplift in Technology Blogs by SAP 2024 Oct 24

Integrated Financial Planning - Mathematical Foundation in Technology Blogs by SAP 2024 Oct 14

SAP AI Core is All You Need | 5. Fine Tuning with Low-Rank Adaptation (LoRA) in Technology Blogs by SAP 2024 Jun 22

Popular Blog Posts

SAP PI for Beginners

former_member200339
Participant

③ 726429

国 155

公 388

ABAP 7.40 Quick Reference

jeffrey_towell2
Participant

1213396

国 75

心 344

Difference between SAP S/4HANA: Public Vs Private edition: RISE with SAP

rajarajeswari_kaliyaperum Active Participant

185780

国 47

心 309

Top	Kudoed	Authors
-----	---------------	----------------

IngoH

11

santoshdwivedi

6 8

Siva_Prakash_S

6 7

dallas_marks

6 7

LucasMagriniRigo

6 5

Kamlesh_Rampal

6 5

Privacy Terms of Use

Copyright Legal Disclosure

Trademark Support

Cookie Preferences

Follow