Ferri, Zheng & Zou (2018)

Uncertainty about managers' reporting objectives and investors' response to earnings reports: Evidence from the 2006 executive compensation disclosures

Gabriel Voelcker and Thobias Zani

April 7th, 2020

Presentation

- The Model
- The Shock
- Research Design
- Results
- Additional Analyses
- Onclusion and Future Research

 Based on Fischer and Verrecchia (2000), manager privately observes the earnings of the firms:

$$\underbrace{\tilde{\mathbf{e}}}_{\text{private earnings}} = \underbrace{\tilde{\mathbf{v}}}_{\text{firm value}} + \underbrace{\tilde{\mathbf{n}}}_{\text{noisy signal}}, \tilde{\mathbf{n}} \sim \mathcal{N}(0, \sigma_n^2) \tag{1}$$

 Based on Fischer and Verrecchia (2000), manager privately observes the earnings of the firms:

$$\underbrace{\tilde{e}}_{\text{private earnings}} = \underbrace{\tilde{v}}_{\text{firm value}} + \underbrace{\tilde{n}}_{\text{noisy signal}}, \, \tilde{n} \sim N(0, \sigma_n^2) \tag{1}$$

• Manager's bias: $b \equiv r - e$, where r is the report.

 Based on Fischer and Verrecchia (2000), manager privately observes the earnings of the firms:

$$\underbrace{\tilde{e}}_{\text{private earnings}} = \underbrace{\tilde{v}}_{\text{firm value}} + \underbrace{\tilde{n}}_{\text{noisy signal}}, \tilde{n} \sim N(0, \sigma_n^2) \tag{1}$$

- Manager's bias: $b \equiv r e$, where r is the report.
- **Investors**: react to the report \rightarrow form market price of the firm: $P(r) = E[\tilde{v}|r]$.

 Based on Fischer and Verrecchia (2000), manager privately observes the earnings of the firms:

$$\underbrace{\tilde{\mathbf{e}}}_{\text{private earnings}} = \underbrace{\tilde{\mathbf{v}}}_{\text{firm value}} + \underbrace{\tilde{\mathbf{n}}}_{\text{noisy signal}}, \tilde{\mathbf{n}} \sim N(0, \sigma_n^2) \tag{1}$$

- Manager's bias: $b \equiv r e$, where r is the report.
- **Investors**: react to the report \rightarrow form market price of the firm: $P(r) = E[\tilde{v}|r]$.
- By biasing the report, the manager tries to maximize his benefit from obtaining a certain market price for the firm, but he bears a cost from doing so: $\sim P(r)$

doing so:
$$\tilde{x}P(r) - \frac{cb^2}{2}$$

 Based on Fischer and Verrecchia (2000), manager privately observes the earnings of the firms:

$$\underbrace{\tilde{e}}_{\text{private earnings}} = \underbrace{\tilde{v}}_{\text{firm value}} + \underbrace{\tilde{n}}_{\text{noisy signal}}, \tilde{n} \sim N(0, \sigma_n^2) \tag{1}$$

- Manager's bias: $b \equiv r e$, where r is the report.
- **Investors**: react to the report \rightarrow form market price of the firm: $P(r) = E[\tilde{v}|r]$.
- By biasing the report, the manager tries to maximize his benefit from obtaining a certain market price for the firm, but he bears a cost from doing so: $\tilde{x}P(r) = \frac{cb^2}{r}$

doing so: $\tilde{x}P(r) - \frac{cb^2}{2}$

• How do the investors interpret the bias?

• Manager knows her compensation plan.

- Manager knows her compensation plan.
- Investors have limited information about the manager's compensation plan.

- Manager knows her compensation plan.
- Investors have limited information about the manager's compensation plan.
- How investors respond to the report depends on their **uncertainty** about the manager's reporting objectives(σ_x^2).

- Manager knows her compensation plan.
- Investors have limited information about the manager's compensation plan.
- How investors respond to the report depends on their **uncertainty** about the manager's reporting objectives(σ_x^2).

$$ERC = \beta = \frac{\sigma_v^2}{(\sigma_v^2 + \sigma_n^2 + \beta^2 \sigma_x^2/c^2)}$$
 (2)

- Manager knows her compensation plan.
- Investors have limited information about the manager's compensation plan.
- How investors respond to the report depends on their **uncertainty** about the manager's reporting objectives(σ_x^2).

•

$$ERC = \beta = \frac{\sigma_v^2}{(\sigma_v^2 + \sigma_n^2 + \beta^2 \sigma_x^2/c^2)}$$
 (2)

• σ_{ν}^2 = prior uncertainty about firm value.

- Manager knows her compensation plan.
- Investors have limited information about the manager's compensation plan.
- How investors respond to the report depends on their **uncertainty** about the manager's reporting objectives(σ_x^2).

$$ERC = \beta = \frac{\sigma_v^2}{(\sigma_v^2 + \sigma_n^2 + \beta^2 \sigma_x^2/c^2)}$$
 (2)

- σ_{ν}^2 = prior uncertainty about firm value.
- σ_n^2 = prior uncertainty about precision of the report.

- Manager knows her compensation plan.
- Investors have limited information about the manager's compensation plan.
- How investors respond to the report depends on their **uncertainty** about the manager's reporting objectives(σ_x^2).

$$ERC = \beta = \frac{\sigma_v^2}{(\sigma_v^2 + \sigma_n^2 + \beta^2 \sigma_x^2/c^2)}$$
 (2)

- σ_{ν}^2 = prior uncertainty about firm value.
- σ_n^2 = prior uncertainty about precision of the report.
- c =marginal cost of adding bias in the report.

- Manager knows her compensation plan.
- Investors have limited information about the manager's compensation plan.
- How investors respond to the report depends on their **uncertainty** about the manager's reporting objectives(σ_x^2).

$$ERC = \beta = \frac{\sigma_v^2}{(\sigma_v^2 + \sigma_n^2 + \beta^2 \sigma_x^2/c^2)}$$
 (2)

- σ_{ν}^2 = prior uncertainty about firm value.
- σ_n^2 = prior uncertainty about precision of the report.
- c = marginal cost of adding bias in the report.
- Ferri et al. (2018) focuses on the **investors' uncertainty regarding** manager's compensation(σ_x^2).

The Shock

• Compensation Discussion and Analysis: SEC implemented new compensation disclosure rules in 2006.

The Shock

- Compensation Discussion and Analysis: SEC implemented new compensation disclosure rules in 2006.
- More info on manager's compensation \rightarrow **reduced uncertainty** about the manager's incentives: $\downarrow \sigma_x^2 \rightarrow \uparrow ERC$.
 - Performance metrics (weight, multiple metrics, exact definition).
 - Performance targets (horizons, payouts triggered).
 - Incentive plans (cash, equity, short-term, long-term).

The Shock

- Compensation Discussion and Analysis: SEC implemented new compensation disclosure rules in 2006.
- More info on manager's compensation \rightarrow reduced uncertainty about the manager's incentives: $\downarrow \sigma_x^2 \rightarrow \uparrow ERC$.
 - Performance metrics (weight, multiple metrics, exact definition).
 - Performance targets (horizons, payouts triggered).
 - Incentive plans (cash, equity, short-term, long-term).
- Strong assumption: uncertainty regarding the manager's objectives was the only parameter from the ERC equation (2) affected by the CD&A shock.

 Identification strategy: December FY-end firms as treatment (first subject to the new rules - 88% of the sample); Sep/Oct/Nov FY-end as control (last to comply with the rules - 12%).

Fig. 3. Timeline

• Source: Ferri et al(2018), Figure 3.

• Main regression - diff-in-diff:

Main regression - diff-in-diff:

$$CAR_{i,t} = \beta_0 + \beta_1 U E_{i,t}^* POST_{i,t}^* TREAT_{i,t} + \beta_2 U E_{i,t} + \beta_3 TREAT_{i,t}$$

$$+ \beta_4 POST_{i,t} + \beta_5 TREAT_{i,t}^* POST_{i,t} + \beta_6 U E_{i,t}^* POST_{i,t}$$

$$+ \beta_7 U E_{i,t}^* TREAT_{i,t} + \beta_m Controls + \beta_n U E_{i,t}^* Controls + \varepsilon_{i,t}$$
(3)

• Main regression - diff-in-diff:

•

$$CAR_{i,t} = \beta_0 + \beta_1 U E_{i,t}^* POST_{i,t}^* TREAT_{i,t} + \beta_2 U E_{i,t} + \beta_3 TREAT_{i,t}$$

$$+ \beta_4 POST_{i,t} + \beta_5 TREAT_{i,t}^* POST_{i,t} + \beta_6 U E_{i,t}^* POST_{i,t}$$

$$+ \beta_7 U E_{i,t}^* TREAT_{i,t} + \beta_m Controls + \beta_n U E_{i,t}^* Controls + \varepsilon_{i,t}$$
(3)

• β_1 - captures the shock impact in ERC. This coefficient expresses the relation with Unexpected Earnings(UE), a dummy for treatment (TREAT) and dummy for FY(POST)(=1 if FY = 2007).

• Main regression - diff-in-diff:

$$CAR_{i,t} = \beta_0 + \beta_1 U E_{i,t}^* POST_{i,t}^* TREAT_{i,t} + \beta_2 U E_{i,t} + \beta_3 TREAT_{i,t}$$

$$+ \beta_4 POST_{i,t} + \beta_5 TREAT_{i,t}^* POST_{i,t} + \beta_6 U E_{i,t}^* POST_{i,t}$$

$$+ \beta_7 U E_{i,t}^* TREAT_{i,t} + \beta_m Controls + \beta_n U E_{i,t}^* Controls + \varepsilon_{i,t}$$
(3)

- β_1 captures the shock impact in ERC. This coefficient expresses the relation with Unexpected Earnings(UE), a dummy for treatment (TREAT) and dummy for FY(POST)(=1 if FY = 2007).
- CAR_{i,t} is the 3-day market adjusted stock return around the date of quarterly earnings announcements.

• Two approaches:

- Two approaches:
 - WLS Robust: place less weights on outliers.

- Two approaches:
 - WLS Robust: place less weights on outliers.
 - Entropy balancing: quasi-matching approach which re-weights each control observation so that post-weighting distributional properties of matched variables of treatment and control observations are virtually identical.

- Two approaches:
 - WLS Robust: place less weights on outliers.
 - Entropy balancing: quasi-matching approach which re-weights each control observation so that post-weighting distributional properties of matched variables of treatment and control observations are virtually identical
- Parallel trends assumption: for diff-in-diff to work, in the absence of the shock, treatment and control observations should experience similar trends. Authors extend the test to ERC trends prior (FY2004-2005) to the shock. ## Research Design

- Two approaches:
 - WLS Robust: place less weights on outliers.
 - Entropy balancing: quasi-matching approach which re-weights each control observation so that post-weighting distributional properties of matched variables of treatment and control observations are virtually identical
- Parallel trends assumption: for diff-in-diff to work, in the absence
 of the shock, treatment and control observations should experience
 similar trends. Authors extend the test to ERC trends prior
 (FY2004-2005) to the shock. ## Research Design
- No indication of a different trend in ERCs prior to the CD&A rules:

 WLSR and Entropy results are similar: a greater relative increase of ERC for treated firms after the introduction of the CD&A rules.

 WLSR and Entropy results are similar: a greater relative increase of ERC for treated firms after the introduction of the CD&A rules.

Panel B Entropy balancing results	(1) OLS	(2) Robust	(3) Robust	(4) Robust	(5) Robust	(6) Robust
VARIABLES						
UE*POST*TREAT			1.356***	0.925**	3.472***	1.969**
			(3.25)	(2.52)	(4.35)	(2.13)
UE	1.324***	1.394***	2.541***	4.808***	7.197***	8.233***
	(15.32)	(24.61)	(7.05)	(9.49)	(9.65)	(9.96)
UE*POST			-1.546***	-0.213	-2.525***	-1.843**
			(-3.92)	(-0.45)	(-3.44)	(-2.09)
UE*TREAT			-1.071***		-3.607***	-3.152***
			(-2.89)	(-3.63)	(-5.18)	(-3.96)
UE*Log(Size)				-0.162**	-0.140**	-0.189***
				(-2.53)	(-2.32)	(-3.24)
UE*Market-to-Book				0.082***	0.088***	0.054***
				(4.77)	(5.05)	(2.70)
UE*Beta				0.346***	0.370***	0.310***
				(2.68)	(3.05)	(2.77)
UE*Leverage				-0.101***	-0.116***	-0.070*
				(-2.93)	(-3.39)	(-1.95)
UE*Persistence				0.086	-0.159	0.470*
				(0.33)	(-0.63)	(1.74)
UE*Loss				-3.414***	-6.242***	-5.966***
				(-16.47)	(-8.23)	(-7.25)
UE*Dispersion				-1.888***	-2.804***	-0.693**
				(-3.62)	(-5.05)	(-2.11)
UE*Loss*POST*TREAT					-3.051***	-4.364***
					(-3.45)	(-4.60)
Nonlinear						-29.263
						(-1.51)
Nonlinear*TREAT						-35.741*
						(-1.70)

 Subsequent tests show that the results are driven by firms with positive earnings, and that extreme unexpected earnings are less persistent and thus are associated with lower ERCs.

- Subsequent tests show that the results are driven by firms with positive earnings, and that extreme unexpected earnings are less persistent and thus are associated with lower ERCs.
- Interpreting the results: the Entropy(WLSR) results suggest a 20%(15%) increase over the ERC level vs the Pre period for treatment firms.

- Subsequent tests show that the results are driven by firms with positive earnings, and that extreme unexpected earnings are less persistent and thus are associated with lower ERCs.
- Interpreting the results: the Entropy(WLSR) results suggest a 20%(15%) increase over the ERC level vs the Pre period for treatment firms.
- Losses are associated with lower ERC (UE*Loss).

- Subsequent tests show that the results are driven by firms with positive earnings, and that extreme unexpected earnings are less persistent and thus are associated with lower ERCs.
- Interpreting the results: the Entropy(WLSR) results suggest a 20%(15%) increase over the ERC level vs the Pre period for treatment firms.
- Losses are associated with lower ERC (UE*Loss).
- Larger firms(*UE*Size*) and higher-leverage(*UE*Leverage*) firms have significantly lower ERC.

- Subsequent tests show that the results are driven by firms with positive earnings, and that extreme unexpected earnings are less persistent and thus are associated with lower ERCs.
- Interpreting the results: the Entropy(WLSR) results suggest a 20%(15%) increase over the ERC level vs the Pre period for treatment firms.
- Losses are associated with lower ERC (UE*Loss).
- Larger firms(*UE*Size*) and higher-leverage(*UE*Leverage*) firms have significantly lower ERC.
- Growth firms have higher $ERC(UE^*Market to Book)$.

- Subsequent tests show that the results are driven by firms with positive earnings, and that extreme unexpected earnings are less persistent and thus are associated with lower ERCs.
- Interpreting the results: the Entropy(WLSR) results suggest a 20%(15%) increase over the ERC level vs the Pre period for treatment firms.
- Losses are associated with lower ERC (UE*Loss).
- Larger firms(*UE*Size*) and higher-leverage(*UE*Leverage*) firms have significantly lower ERC.
- Growth firms have higher $ERC(UE^*Market to Book)$.
- Firms with greater earnings persistence have higher ERC(UE*Persistence).

- Subsequent tests show that the results are driven by firms with positive earnings, and that extreme unexpected earnings are less persistent and thus are associated with lower ERCs.
- Interpreting the results: the Entropy(WLSR) results suggest a 20%(15%) increase over the ERC level vs the Pre period for treatment firms.
- Losses are associated with lower ERC (UE*Loss).
- Larger firms(UE*Size) and higher-leverage(UE*Leverage) firms have significantly lower ERC.
- Growth firms have higher $ERC(UE^*Market to Book)$.
- Firms with greater earnings persistence have higher ERC(*UE* Persistence*).
- Greater analysts' forecast dispersion have lower ERC(UE*Dispersion).

- Subsequent tests show that the results are driven by firms with positive earnings, and that extreme unexpected earnings are less persistent and thus are associated with lower ERCs.
- Interpreting the results: the Entropy(WLSR) results suggest a 20%(15%) increase over the ERC level vs the Pre period for treatment firms.
- Losses are associated with lower ERC (UE*Loss).
- Larger firms(UE*Size) and higher-leverage(UE*Leverage) firms have significantly lower ERC.
- Growth firms have higher $ERC(UE^*Market to Book)$.
- Firms with greater earnings persistence have higher ERC(UE*Persistence).
- Greater analysts' forecast dispersion have lower ERC(UE*Dispersion).
- Robustness tests.

• **Cross-sectional analyses**: how to measure improvements in compensation disclosures?

- Cross-sectional analyses: how to measure improvements in compensation disclosures?
 - Ex post observed improvements: a) 350 firms received comment letters detailing specific inadequacies in the disclosures → they are expected to present a smaller increase in ERC; b) firms that started disclosing CFO compensation. Results presented in **Table 4**: both positive and significant coefficients: 0.812***(a) and 2.819***(b).

- Cross-sectional analyses: how to measure improvements in compensation disclosures?
 - Ex post observed improvements: a) 350 firms received comment letters detailing specific inadequacies in the disclosures → they are expected to present a smaller increase in ERC; b) firms that started disclosing CFO compensation. Results presented in **Table 4**: both positive and significant coefficients: 0.812***(a) and 2.819***(b).
 - Ex ante expected improvements: firms with higher excess CEO pay are subject to greater pressure to improve their disclosures(a).
 Distinguishes firms that received SEC comment letters(b). Results presented in **Table 5**: both positive and significant coefficients 1.486***(a) and 3.595***(b).

$$ERC = \beta = \frac{\sigma_v^2}{(\sigma_v^2 + \sigma_n^2 + \beta^2 \sigma_x^2/c^2)}$$

• CD&A shock may have impacted other parameters:

$$ERC = \beta = \frac{\sigma_v^2}{(\sigma_v^2 + \sigma_n^2 + \beta^2 \sigma_x^2/c^2)}$$

• An increase(decrease) in ERC can result not only from a decrease in the uncertainty of the manager's reporting objectives(σ_x^2) but also from:

$$ERC = \beta = \frac{\sigma_v^2}{(\sigma_v^2 + \sigma_n^2 + \beta^2 \sigma_x^2/c^2)}$$

- An increase(decrease) in ERC can result not only from a decrease in the uncertainty of the manager's reporting objectives(σ_x^2) but also from:
- Increase(decrease) in prior uncertainty of firm value: σ_v^2 .

$$ERC = \beta = \frac{\sigma_v^2}{(\sigma_v^2 + \sigma_n^2 + \beta^2 \sigma_x^2/c^2)}$$

- An increase(decrease) in ERC can result not only from a decrease in the uncertainty of the manager's reporting objectives(σ_x^2) but also from:
- Increase(decrease) in prior uncertainty of firm value: σ_v^2 .
- Decrease(increase) in inherent earnings quality: σ_n^2 .

$$ERC = \beta = \frac{\sigma_v^2}{(\sigma_v^2 + \sigma_n^2 + \beta^2 \sigma_x^2/c^2)}$$

- An increase(decrease) in ERC can result not only from a decrease in the uncertainty of the manager's reporting objectives(σ_x^2) but also from:
- Increase(decrease) in prior uncertainty of firm value: σ_v^2 .
- ullet Decrease(increase) in inherent earnings quality: σ_n^2 .
- Increase(decrease) in marginal cost of adding bias to the earnings report: c.

$$ERC = \beta = \frac{\sigma_v^2}{(\sigma_v^2 + \sigma_n^2 + \beta^2 \sigma_x^2/c^2)}$$

- An increase(decrease) in ERC can result not only from a decrease in the uncertainty of the manager's reporting objectives(σ_x^2) but also from:
- Increase(decrease) in prior uncertainty of firm value: σ_v^2 .
- Decrease(increase) in inherent earnings quality: σ_n^2 .
- Increase(decrease) in marginal cost of adding bias to the earnings report: c.
- **Table 6**: tests diff-in-diff changes for executives compensation(Panel A) and firm characteristics (Panel B). Evidence does not suggest differential changes when CD&A was introduced.

Conclusion and Future Research

 Findings represent the first empirical evidence of a role of compensation disclosures in enhancing the information content of financial reports.

Conclusion and Future Research

- Findings represent the first empirical evidence of a role of compensation disclosures in enhancing the information content of financial reports.
- However, the change in ERC doesn't differ among loss firms, suggesting enhanced compensation disclosures have limited usefulness in reducing investors' uncertainty about the manager's reporting objectives.

Conclusion and Future Research

- Findings represent the first empirical evidence of a role of compensation disclosures in enhancing the information content of financial reports.
- However, the change in ERC doesn't differ among loss firms, suggesting enhanced compensation disclosures have limited usefulness in reducing investors' uncertainty about the manager's reporting objectives.
- Suggestion of future research: re-examine F&V(2000) predictions using new regulatory changes or changes in other jurisdictions (should improve).

Future Research

 Methodology similar to Gipper, Leuz and Maffett(2019): lack of a benchmark of what the change in ERC should be. Alternatives to converting the ERC measure to cost of capital terms. Volatility?

```
# - If you write a paper that you're not the specialist on the
```

- Can you use very old papers and still be creating something

Questions for Joe

Future Research

- Methodology similar to Gipper, Leuz and Maffett(2019): lack of a benchmark of what the the change in ERC should be. Alternatives to converting the ERC measure to cost of capital terms. Volatility?
- How does \triangle ERC impact **debtholders**?

- # If you write a paper that you're not the specialist on th
- # Can you use very old papers and still be creating somethin

Questions for Joe

Future Research

- Methodology similar to Gipper, Leuz and Maffett(2019): lack of a benchmark of what the the change in ERC should be. Alternatives to converting the ERC measure to cost of capital terms. Volatility?
- How does Δ ERC impact debtholders?
- From section 5: how do we measure the informativeness and also informativeness change of disclosure? Textual analysis? Market reaction? Other proxies?

```
# Questions for Joe
```

- # If you write a paper that you're not the specialist on the
- # Can you use very old papers and still be creating something