Design for Compute

Design Compute Infrastructure (20-25%)

From https://www.microsoft.com/en-us/learning/exam-70-535.aspx

- Design solutions using virtual machines
 - Design VM deployments by leveraging availability sets, fault domains, and update domains in Azure; use web app for containers; design VM Scale Sets; design for compute-intensive tasks using Azure Batch; define a migration strategy from cloud services; recommend use of Azure Backup and Azure Site Recovery
- Design solutions for serverless computing
 - Use Azure Functions to implement event-driven actions; design for serverless computing using Azure Container Instances; design application solutions by using Azure Logic Apps, Azure Functions, or both; determine when to use API management service
- Design microservices-based solutions
 - Determine when a container-based solution is appropriate; determine when container-orchestration is appropriate; determine when Azure Service Fabric (ASF) is appropriate; determine when Azure Functions is appropriate; determine when to use API management service; determine when Web API is appropriate; determine which platform is appropriate for container orchestration; consider migrating existing assets versus cloud native deployment; design lifecycle management strategies
- Design web applications
 - Design Azure App Service Web Apps; design custom web API; secure Web API; design Web Apps for scalability and performance; design for high availability using Azure Web Apps in multiple regions; determine which App service plan to use; design Web Apps for business continuity; determine when to use Azure App Service Environment (ASE); design for API apps; determine when to use API management service; determine when to use Web Apps on Linux; determine when to use a CDN; determine when to use a cache, including Azure Redis cache
- Create compute-intensive application
 - Design high-performance computing (HPC) and other compute-intensive applications using Azure Services; determine when to use Azure Batch; design stateless components to accommodate scale; design lifecycle strategy for Azure Batch

Azure: The Power Of Choice

Compute

Virtual Machines

Container Service

Service Fabric

App Service

Functions

More Control

Focus on the App

Customer-managed (laaS)

Platform-managed (PaaS)

Code-only (serverless)

Azure Resource Manager (ARM)

All services offered as ARM resources

- Consistent model for creating/managing Azure resources
- Relies on Resource Providers, services that can manage a set of resources
- Supports declarative templates

Resources are managed in resource groups

- Deployed together
- Managed together
- Provides RBAC support

ARM Templates

- A declarative JSON template for describing resources
- Community offered or build your own

Documentation

https://azure.microsoft.com/en-us/resources/templates/

Samples

https://github.com/azure/azure-quickstart-templates
https://azure.microsoft.com/en-us/resources/templates/

```
Ruby
.NET
      "$schema":
 "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
     "contentVersion": "1.0.0.0",
     "parameters": {
         "servers dabudevopsdemo name": {
              "defaultValue": "dabudevopsdemo",
              "type": "String"
         "sites MercuryHealthDemo name": {
              "defaultValue": "MercuryHealthDemo",
              "type": "String"
          "labs mercuryhealth name": {
              "defaultValue": "mercuryhealth",
              "type": "String"
          "vaults MercuryHealth8266 name": {
              "defaultValue": "MercuryHealth8266",
              "type": "String"
          "virtualMachines DaBuDemoVM01 name": {
              "dofaultValuo" . "DaPuDomo\/MQ1"
```


Virtual Machines

Ubuntu, Red Hat, Windows, SUSE, CoreOS

DevOps Extensions with Chef and Puppet

Multiple sizes

Hundreds of items in marketplace

Azure VM Sizes

Lowest Price

Compute Intensive

SSD Storage Fast CPUs

NVIDIA GPUs K80 Compute

New generation of D family VMs

NVIDIA GPUs M60 Visualization

High memory and Large SSDs

Fastest CPU

Large SSDs

Av2

New A-Series

SAP Large Instances

New gen of NC Deep Learning New generation of D **NVIDIA P100s NVIDIA P40s** family

Ev3

VM Sizes

Туре	Sizes	Description
General purpose	B Dsv3, Dv3, DSv2, Dv2, DS, D, Av2, A0-7	Balanced CPU-to-memory ratio. Ideal for testing and development, small to medium databases, and low to medium traffic web servers.
Compute optimized	Fs, F	High CPU-to-memory ratio. Good for medium traffic web servers, network appliances, batch processes, and application servers.
Memory optimized	Esv3, Ev3, M, GS, G, DSv2, DS, Dv2, D	High memory-to-CPU ratio. Great for relational database servers, medium to large caches, and in-memory analytics.
Storage optimized	Ls	High disk throughput and IO. Ideal for Big Data, SQL, and NoSQL databases.
<u>GPU</u>	NV, NC	Specialized virtual machines targeted for heavy graphic rendering and video editing. Available with single or multiple GPUs.
High performance compute	H, A8-11	Our fastest and most powerful CPU virtual machines with optional high-throughput network interfaces (RDMA).

VM Azure Compute Unit (ACU)

 Provide a way of comparing compute (CPU) performance across Azure SKUs

- Not all Azure Cores are created equal!
 - A1 Core != F1 Core

• Compare compute (CPU) performance across SKUs.

SKU Family	ACU \ vCPU
<u>A0</u>	50
<u>A1-A4</u>	100
<u>A5-A7</u>	100
A1 v2-A8 v2	100
A2m_v2-A8m_v2	100
<u>A8-A11</u>	225*
<u>D1-D14</u>	160
D1 v2-D15 v2	210 - 250*
<u>DS1-DS14</u>	160
DS1 v2-DS15 v2	210-250*
<u>D_v3</u>	160-190* **
Ds v3	160-190* **
<u>E_v3</u>	160-190* **
Es v3	160-190* **
<u>F1-F16</u>	210-250*
<u>F1s-F16s</u>	210-250*
<u>G1-G5</u>	180 - 240*
<u>GS1-GS5</u>	180 - 240*
Н	290 - 300*
<u>L4s-L32s</u>	180 - 240*
<u>M</u>	160-180**

VM Disks

- OS Disk (attached via SATA)
 - VHD based
 - Persists
 - Separate storage cost
- Temporary Disk
 - Doesn't persist SSD
 - No Separate storage cost
- Data Disk (SCSI)
 - VHD based
 - Persists
 - Separate storage cost
 - Current Max Data Disk Size: 4,095 GB

	Azure Premium Disk	Azure Standard Disk
Disk Type	Solid State Drives (SSD)	Hard Disk Drives (HDD)
Overview	SSD-based high-performance, low- latency disk support for VMs running IO-intensive workloads	HDD-based cost effective disk support for Dev/Test VM scenarios
Scenario	Production and performance sensitive workloads	Dev/Test, non-critical, Infrequent access
Disk Size	P4: 32 GB (Managed Disks only) P6: 64 GB (Managed Disks only) P10: 128 GB P20: 512 GB P30: 1024 GB P40: 2048 GB P50: 4095 GB	Unmanaged Disks: 1 GB – 4 TB (4095 GB) Managed Disks: S4: 32 GB S6: 64 GB S10: 128 GB S20: 512 GB S30: 1024 GB S40: 2048 GB S50: 4095 GB
Max Throughput per Disk	250 MB/s	60 MB/s
Max IOPS per Disk	7500 IOPS	500 IOPS

VM Recommendations

- Premium Storage for Production Workloads (Storage SLAs)
- Choose a VM Size that works with premium storage for production
- Use Managed Disks over Unmanaged Disks
- Scaling Up/Down is just resizing the VM
- Scaling In/Out the VMs should be in an availability set
- Use VM reboot logs to determine if VM was rebooted by planned maintenance
- Use snapshots to prevent accidental data loss
- Enable VM diagnostics for production (includes boot diagnostics)
- Stopped VMs are still charged for use. VMs need to be deallocated to stop charges. Stopping through OS does not deallocate! Stop with portal or CLI.

High Availability & Disaster Recovery in Azure

- High Availability
 - Availability within a single Azure region or datacenter*
 - Expectation is little or no downtime (99.x % uptime)
- Disaster Recovery
 - Recover into a secondary datacenter if outage in primary datacenter
 - Acceptable downtime has a greater range
 - Quantified by Recovery Time Objective (RTO) & Recovery Point Objective (RPO)

Understanding Azure VM Availability Single VM

Azure SLA guarantees no data loss, 99.9% uptime SLA*

- Subject to un-planned maintenance events due to physical failures
 - If VM becomes unavailable, Azure migrates VM and restarts in another host
 - ~10-15 minutes to complete this process
- Subject to planned maintenance events due to host OS servicing
 - All VMs on host are shut down.
 - Host OS is serviced and rebooted
 - All VMs on host are restarted
 - ~10-15 minutes to complete this process
- Subject to in-memory planned maintenance events
 - All VMs on host are paused, Host patched, VMs un-paused. 30 seconds downtime

Defining High Availability 2 or more Azure VMs

- Multiple VMs can be configured to reduce downtime
- Workload is load balanced across the VMs

Azure SLA: 2 (or more) VMs in Availability Set:

- 99.95% (<22 min downtime p/month)
- Includes
 - Planned downtime due to host OS servicing
 - Unplanned downtime due to physical failures
- Doesn't include servicing of guest OS or software inside (e.g. SQL)

Availability Sets

- Availability Sets are for Unplanned
 & Planned Maintenance
 - Fault Domains 2 default (some regions 3)
 - Upgrade Domains (5 default, 1-20 allowed)
- Front with Load Balancer, App Gateway

VM Scale Sets

High performance provisioning of 1000+ VMs

Auto-configuration at scale

Auto-scale based on schedule and resource metrics

Easy updates at scale

Simple Portal Integration

Why VM Scale Sets?

- Manually scale with 'capacity' property
- Autoscale with host metrics or diagnostic extensions
- Small buy-in: Deploy/manage sets identically configured VMs
- Guest OS patching: Patching primitives allow manually triggered rolling upgrades
- High-availability implicit availability set with 5 FDs/5 UDs

```
"type": "Microsoft.Compute/virtualMachineScaleSets"
'name": "[parameters('vmssName')]",
"location": "[parameters('resourceLocation')]",
"apiVersion": "[variables('computeApiVersion')]",
"dependsOn": [
 "storageLoop",
 "[concat('Microsoft.Network/loadBalancers/', variables('loadBalancerName'))]",
 "[concat('Microsoft.Network/virtualNetworks/', variables('virtualNetworkName'))]"
"sku": {
 "name": "[parameters('vmSku')]",
 "tier": "Standard",
  'capacity": "[parameters('instanceCount')]
"properties": {
 "overprovision": "true",
 "upgradePolicy": {
    "mode": "Manual"
 "virtualMachineProfile": {
```

Autoscale with VM Scale Sets

- Define Max Min VMs
- Define trigger and action rules
- Standard audit / email notifications
- Define webhooks for custom notifications and actions (e.g. runbooks)

VM scale set app deployment models

Model	When to use
Marketplace	Off the shelf solutions.
VM Extensions	Full control over app lifecycle management.
Custom data/unattend	Install custom app independently of external network.
Configuration manager	Centrally managed app installation, credentials & maintenance.
Containerized	Abstract app management from infrastructure. Cloud/DC agnostic.
Custom image	Small self-contained apps. Fast deploy. Immutable build, test, deploy pipelines.

VMSS vs AS

Availability Set

- Multiple different VMs (image, size, etc)
- Machines managed separately

VMSS

- Same VMs
- Managed together
- Reliable rapid provisioning and scale utilizing similarity of the VMs

Azure Batch

Compute pools for job processing

Automatic scaling and regional coverage

Linux and Windows

Automatically recover failed tasks

Input/Output handling

Low-Priority (discounted) option

WHAT IS HIGH PERFORMANCE COMPUTING?

Azure Batch Concepts

HPC cluster deployed in the cloud

Solution architecture

High performance computing (HPC) applications can scale to thousands of compute cores that run as a 100% cloud native solution. This HPC solution including the head node, compute nodes, and storage nodes, runs in Azure with no hardware infrastructure to maintain.

This solution is built on the Azure managed services: <u>Virtual Machine Scale Sets</u>, <u>Virtual Network</u> and <u>Storage</u>. These services run in a high-availability environment, patched and supported, allowing you to focus on your solution instead of the environment they run in.

On-premises HPC implementation bursting to Azure

Solution architecture

High performance computing (HPC) applications can extend on-premises big compute. This HPC solution can extend its computational capacity by leveraging the compute-intensive instances of Virtual Machines running in Azure and accessed via Express Route or VPN.

This solution is built on the Azure managed services: <u>Virtual Machines</u>, <u>Virtual Network</u>, <u>VPN Gateway</u>, <u>ExpressRoute</u> and <u>Storage</u>. These services run in a high-availability environment, patched and supported, allowing you to focus on your solution instead of the environment they run in.

Microservices

Azure: The Power Of Choice

Application Hosting (today)

Virtual Machines

Customer-managed (laaS)

Platform-managed (mlaaS/PaaS)

Containers

Lightweight

Portable

Scalable

What is a Container?

What is a Container Orchestrator?

Azure Container Service

Making containers in Azure easy!

- Standard Docker tooling & API Support
- Streamlined provisioning of K8S, DCOS, and Docker Swarm
- Linux & Windows Server Containers
- Azure & Azure Stack

ACS --> AKS

- Focus on Kubernetes
- Managed Orchestrator

Azure Container Instances

Simplest and easiest way to run individual containers in the cloud

No VM management

Per-second billing with customized resource requests

Linux and Windows Server containers

Azure: The Power Of Choice

Application Hosting (today)

Virtual Machines

Containers

Service Fabric

Customer-managed (laaS)

Platform-managed (mlaaS/PaaS)

Microsoft Azure Service Fabric

A platform for reliable, hyperscale, microservice-based applications

Azure: The Power Of Choice

Compute

Virtual Machines

Container Service

Service Fabric

App Service

More Control

Focus on the App

Customer-managed (laaS)

Platform-managed (PaaS)

Azure App Service

Enterprise-grade apps

Global data center footprint

Hybrid support

AAD integrated

Secure + compliant

Fully managed platform

Built-in auto scale and load balancing

High availability with auto-patching

Reduced operations costs

Backup and recovery

High productivity development

.NET, Java, PHP, Node, and Python

Staging and deployment

integration

App gallery marketplace

Basic

Improved Scalability

Multi-region

Azure API Management

Azure: The Power Of Choice

Compute

Virtual Machines

Container Service

Service Fabric

App Service

Functions

More Control

Focus on the App

Customer-managed (laaS)

Platform-managed (PaaS)

Code-only (serverless)

What is "serverless" and proposed Benefits

Abstraction of servers

Event-driven scale

Sub-second billing

Azure Functions

Serverless

AVAILABILIT

Event-driven scale

Reduced Dev Ops Accelerate development

nodeJS

Develop your way

Local development

Bind into services

Azure

Event Hub

Azure Storage

Dropbox

Sendgrid

AzureDocDb

OneDrive

Box

Twilio

Example: Timer based processing

Example: Azure service event processing

Example: SaaS event processing

Example: Serverless Web Applications architectures

Async background processing

Example: Serverless Mobile back ends

Example: Real-time stream processing

Example: Real-time bot messaging

Azure: The Power Of Choice

Compute

Virtual Machines

Container Service

Service Fabric

App Service

Functions

More Control

Focus on the App

Customer-managed (laaS)

Platform-managed (PaaS)

Code-only (serverless)

Azure Logic Apps

Summarizing the options

Service	Best used for
VMs	Lift-and-shift for a set of "pets"
VM Scale Sets	Scaling and managing a set of identical VMs
Batch	Highly parallelized computation
Container Service	Deploying and managing a set of arbitrary Linux containers
Container Instances	Running individual containers with low overhead and no VM management
Service Fabric	Building microservice-based applications on Windows using .NET
App Service	Building standard web and mobile apps with limited management responsibilities
Functions	Building small, event-driven software with granular auto-scale

Design for Compute