

 Chama-se tautologia toda proposição composta, cuja última coluna de sua tabela-verdade encerra somente com o simbolo T (verdade)

Definição (tautologia):

H é uma tautologia, se, e somente se, para toda interpretação I,
 I[H] = T

■ Exemplo 1:

P	¬P	P ∧ ¬P	¬(P /\ ¬P)
T	F	F	Т
F	T	F	Т

 "Dizer que uma proposição não pode ser simultâneamente verdadeira e falsa é sempre verdadeiro"

■ Exemplo 2:

P	¬P	P V ¬P
T	F	Т
F	Τ	Т

 "Dizer que uma proposição é verdadeira ou é falsa é sempre verdadeiro"

■ Exemplo 3:

■ $(P \lor (Q \land \neg Q)) \leftrightarrow P$

P	Q	¬Q	Q A ¬Q	P V (Q ∧ ¬Q)	$(P \ V \ (Q \ \Lambda \ \neg Q)) \longleftrightarrow P$
T	T	F	F	T	Т
T	F	T	F	T	Т
F	T	F	F	F	Т
F	F	T	F	F	Т

Contingência

Chama-se contingência toda proposição composta em cuja última coluna de sua tabela-verdade figuram os simbolos T e F cada um pelo menos uma vez.

■ Definição (contingência):

■ H é uma contingência, se, e somente se, existem duas interpretações I_1 e I_2 , tais que $I_1[H] = T$ e $I_2[H] = F$

Contingência

■ Exemplo 1:

$$\blacksquare P \rightarrow \neg P$$

P	¬P	$P \rightarrow \neg P$
T	F	F
F	Т	Т

Contingência

■ Exemplo 3:

$$\blacksquare (P \lor Q) \to P$$

P	Q	PVQ	$(P \ V \ Q) \rightarrow P$
T	T	Т	Т
T	F	T	Т
F	T	T	F
F	F	F	Т

 Chama-se contradição toda a proposição composta cuja última coluna de sua tabela-verdade encerra somente com o simbolo F

- Definição (contradição):
- H é contraditória, se, e somente se, para toda interpretação I, I[H] = F

Exemplo 1:

$$\blacksquare P \land \neg P$$

Р	¬P	P∧¬P
T	F	F
F	Т	F

 "Dizer que uma proposição pode ser simultâneamente verdadeira e falsa é sempre falso"

■ Exemplo 2:

$$\blacksquare P \leftrightarrow \neg P$$

P	¬P	$P \leftrightarrow \neg P$
T	F	F
F	Τ	F

■ Exemplo 3:

$$\blacksquare (P \land Q) \land \neg (P \lor Q)$$

P	Q	PAQ	PVQ	¬(P V Q)	(PΛQ)Λ¬(PVQ)
T	T	T	T	F	F
T	F	F	T	F	F
F	T	F	T	F	F
F	F	F	F	T	F

Implicação Semântica

Definição (implicação semântica):

■ H implica semanticamente G, ou G é uma consequência lógica semântica de H, se, e somente se, para toda interpretação I, se I[H]=T, então I[G]=T

Implicação Semântica

 Diz-se que uma fórmula H implica logicamente em outra fórmula G, se G é verdadeira todas as vezes que H é verdadeira.

$$H \Rightarrow G$$

■ Em outros termos, uma fórmula H implica logicamente G, todas as vezes que nas respectivas tabelas-verdade dessas duas fórmulas não aparece T na última coluna de H e F na última coluna de G.

Implicação Semântica

■ Em particular, toda proposição implica uma tautologia e somente uma contradição implica uma contradição.

■ Uma fórmula H implica semanticamente outra G $(H \Rightarrow G)$, se e somente se a condicional $(H \to G)$ é tautológica

Nota!!!

 Os simbolos → e ⇒ são diferentes, o primeiro é de operação lógica e o segundo de relação lógica

- Reflexiva
 - $\blacksquare H \Rightarrow H$

- Transitiva
 - Se $H \Rightarrow G$ e
 - $G \Rightarrow E$, então
 - $\blacksquare H \Rightarrow E$

■ Dadas as tabelas-verdade das fórmulas $P \land Q, P \lor Q, P \leftrightarrow Q$

P	Q	PAQ	PVQ	$P \longleftrightarrow Q$	$(P \land Q) \Rightarrow (P \lor Q)$	$(P \land Q) \Rightarrow (P \leftrightarrow Q)$
Т	Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	F	Т	F	Т	Т
F	F	F	F	Т	Т	Т

Temos que:

$$(P \land Q) \Rightarrow (P \lor Q)$$

 $(P \land Q) \Rightarrow (P \leftrightarrow Q)$

As tabelas-verdade também demonstram as regras de inferência:

$$P \Rightarrow (P \lor Q) \ e \ Q \Rightarrow (P \lor Q) \ (Adição)$$

 $(P \land Q) \Rightarrow P \ e \ (P \land Q) \Rightarrow Q \ (Simplificação)$

■ Dadas as tabelas-verdade das fórmulas $P \leftrightarrow Q$, $P \rightarrow Q$, $Q \rightarrow P$

P	Q	$P \leftrightarrow Q$	$P \rightarrow Q$	$Q \rightarrow P$	$(P \leftrightarrow Q) \Rightarrow (P \rightarrow Q)$	$(P \leftrightarrow Q) \Rightarrow (Q \rightarrow P)$
Т	Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т
F	Т	F	Т	F	Т	Т
F	F	Т	Т	Т	Т	Т

Temos que:

$$(P \leftrightarrow Q) \Rightarrow (P \rightarrow Q)$$

 $(P \leftrightarrow Q) \Rightarrow (Q \rightarrow P)$

■ Dadas as tabelas-verdade das fórmulas $(P \lor Q) \land \neg P$

P	Q	$P \lor Q$	$\neg P$	$(P \lor Q) \land \neg P$	$((P \lor Q) \land \neg P) \Rightarrow Q$
Т	Т	Т	F	F	Т
Т	F	Т	F	F	Т
F	Т	Т	Т	Т	Т
F	F	F	Т	F	Т

Temos que:

 $((P \lor Q) \land \neg P) \Rightarrow Q$ (Regra do silogismo disjuntivo)

Analogamente temos:

$$((P \lor Q) \land \neg Q) \Rightarrow P$$

Outras regras

$$((P \rightarrow Q) \land P) \Rightarrow Q$$
 (Regra Modus ponens)

$$((P \rightarrow Q) \land \neg Q) \Rightarrow \neg P$$
 (Regra Modus tollens)

Prove se as regras são verdadeiras

Regra Modus ponens

P	Q	$m{P} ightarrow m{Q}$	$(P \rightarrow Q) \wedge P$	$((P \to Q) \land P) \to Q$
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	T

Regra Modus tollens

P	Q	$\neg P$	$\neg Q$	P o Q	$(P \rightarrow Q) \land \neg Q$	$((P \to Q) \land \neg Q) \to \neg P$
Т	Т	F	F	Т	F	Т
Т	F	F	Т	F	F	Т
F	Т	Т	F	Т	F	Т
F	F	Т	Т	Т	Т	Т

■ A fórmula $((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$ é tautológica, logo, subsiste a **implicação lógica**:

$$((P \to Q) \land (Q \to R)) \Rightarrow (P \to R)$$

Transitividade

Equivalência Semântica

■ Definição (equivalência semântica):

Diz-se que uma fórmula H é semanticamente equivalente à outra G, se as tabelas-verdade destas são idênticas.

$$H \Leftrightarrow G$$

Em particular, se H e G são ambas tautologias ou ambas contradições, então são equivalentes.

Reflexiva

- $\blacksquare H \Leftrightarrow H$
- Transitiva
 - Se $H \Leftrightarrow G$ e
 - $G \Leftrightarrow E$, então
 - $\blacksquare H \Leftrightarrow E$
- Simétrica
 - Se $H \Leftrightarrow G$ então
 - $\blacksquare G \Leftrightarrow H$

■ As fórmulas $\neg \neg P \ e \ P$ são equivalentes.

É chamada regra da dupla negação

Portanto, a dupla negação equivale à afirmação

■ As fórmulas $\neg P \rightarrow P \ e \ P$ são equivalentes.

É chamada regra de CLAVIUS

Dizer "Se não chove então chove" é o mesmo que dizer "chove"

■ As fórmulas $P \to (P \land Q) \ e \ P \to Q$ são equivalentes.

	P	Q	PΛQ	$P \rightarrow (P \land Q)$	$P \rightarrow Q$
	Т	Т	Т	Т	Т
	Т	F	F	F	F
	F	Т	F	Т	Т
	F	F	F	Т	Т
É chamada	<u></u>				

Dizer "Se chove então chove e a rua está molhada" é o mesmo que dizer "Se chove então a rua está molhada"

■ As fórmulas $P \rightarrow Q$ $e \neg P \lor Q$ são equivalentes.

P	Q	$P \rightarrow Q$	¬P	¬P v Q
Т	Т	Т	F	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	T	Т
		<u> </u>		

É chamada regra da eliminação da condicional

Dizer "Se você não almoçar então não come sobremesa" é o mesmo que dizer "Você almoça ou não come sobremesa".

Outros exemplos:

$$(P \leftrightarrow Q) \Leftrightarrow ((P \rightarrow Q) \land (Q \rightarrow P))$$

$$(P \leftrightarrow Q) \Leftrightarrow ((P \land Q) \lor (\neg P \land \neg Q))$$

■ Prove se os exemplos estão corretos.

■ Uma fórmula H é equivalente semanticamente à outra G $(H \Leftrightarrow G)$, se e somente se a bicondicional $H \leftrightarrow G$ é tautológica.

Nota!!!

Os simbolos
 ← e ⇔ são diferentes, o primeiro é de operação lógica e o segundo de relação lógica

■ A fórmula $((P \land Q) \rightarrow R) \leftrightarrow (P \rightarrow (Q \rightarrow R))$ é tautológica, logo, são equivalentes:

$$((P \land Q) \to R) \Leftrightarrow (P \to (Q \to R))$$

Dizer "Se José estuda e tem boa memória então vai bem na prova" é o mesmo que dizer "Se José estuda então, se Jose tem boa memória então irá bem na prova".

$$((P \land Q) \rightarrow R) \Leftrightarrow (P \rightarrow (Q \rightarrow R))$$

P	Q	R	PAQ	$(P \land Q) \rightarrow R$	$(Q \rightarrow R)$	$P \rightarrow (Q \rightarrow R)$
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F
Т	F	Т	F	Т	Т	Т
Т	F	F	F	Т	Т	Т
F	Т	Т	F	Т	Т	Т
F	Т	F	F	Т	F	Т
F	F	Т	F	Т	Т	Т
F	F	F	F	Т	Т	Т
				†		

- Dada a condicional $P \to Q$, chamam-se proposições associadas a $P \to Q$ as seguintes proposições que contém $P \in Q$.
 - Proposição recíproca de P o Q: Q o P
 - lacktriangle Proposição contrária de $P o Q\colon
 eg P o
 eg Q$
 - lacktriangle Proposição contrapositiva de $P o Q{:}
 eg Q o
 eg P$

P	Q	$P \rightarrow Q$	$Q \rightarrow P$	$\neg P \Rightarrow \neg Q$	$\neg Q \rightarrow \neg P$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	Т	F
F	Т	Т	F	F	Т
F	F	Т	Т	Т	Т
		1			