УНИВЕРСИТЕТ ИТМО

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>R3137</u>	_К работе допущен
Студент Ракин Илья Николаевич	_Работа выполнена
Преподаватель Смирнов А. В.	_Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.04

1. Цель работы:

Исследование равноускоренного вращательного движения (маятник Обербека)

- 2. Задачи, решаемые при выполнении работы:
 - 1) Проверка основного закона динамики вращения
 - 2) Проверка зависимости момента инерции от положения масс относительно оси вращения.
- 3. Объект исследования:

Маятник Обербека.

4. Метод экспериментального исследования.

Экспериментальный.

5. Рабочие формулы и исходные данные.

Ускорение: $a=\frac{2h}{t_{cm}^2}$, Угловое ускорение: $\varepsilon=\frac{2a}{d}$, Момент силы натяжения нити: $M=\frac{md}{2}(g-a)$

Момент силы натяжения нити: $M = M_{\text{тр}} + I\mathcal{E}$

Момент инерции крестовины: $I = I_0 + 4m_{\rm rn}R^2$

Момент инерции: $I=rac{\sum(arepsilon_i-arepsilon_{
m cp})(M_i-M_{
m cp})}{\sum(arepsilon_i-arepsilon_{
m cp})^2}$

Момент силы трения: $M_{\rm rp} = M_{\rm cp} - I \varepsilon_{\rm cp}$

Расстояние между осью вращения и центром груза на крестовине: $R = l_1 + (n-1) \cdot l_0 + \frac{1}{2} h_{\rm rp}$

Масса груза: $m_{\rm гp} = \frac{\sum (I_i - I_{\rm cp})(R_i^2 - R_{\rm cp}^2)}{4 \cdot \sum (R_i^2 - R_{\rm cp}^2)^2}$

Момент инерции I_0 : $I_0 = I_{cp} - 4 \cdot m_{rp} R_{cp}^2$

Параметр D: $D = \sum (R_i^2 - R_{cp}^2)^2$

Параметр d_i : $d_i = I_i - (I_0 + 4m_{rp}R_i^2)$

СКО массы груза $m_{\rm rp}$: $\sigma_{m_{\rm rp}} = \sqrt{\frac{1}{16D} \cdot \frac{\sum d_i^2}{n-2}}$ СКО момента инерции I_0 : $\sigma_{I_0} = \sqrt{\left(\frac{1}{n} + \frac{(R_{\rm cp}^2)^2}{D}\right) \cdot \frac{\sum d_i^2}{n-2}}$

6. Измерительные приборы:

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Цифровой секундомер	Цифровой	60 c	0,01 c
2	Штангенциркуль	Мера	170 мм	0,0005 м

7. Схема установки:

Рис. 2. Стенд лаборатории механики (общий вид): I — основание; 2 — рукоятка сцепления крестовин; 3 — устройство принудительного трения; 4 — поперечина; 5 — груз крестовины; 6 — трубчатая направляющая; 7 — передняя крестовина; 8 — задняя крестовина; 9 — шайбы каретки; 10 — каретка; 11 — система передних стоек.

Результаты прямых измерений и их обработки:

Таблица 1: результаты прямых измерений

т, г	t,c	Положение утяжелителей							
110, 1	ι, τ	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска		
	t_1	3,82	4,07	4,84	5,57	7,84	9,76		
007	t_2	3,75	4,22	4,68	5,59	7,85	9,16		
267	t_3	3,69	4,21	4,85	5,41	8,31	9,79		
	$t_{ m cp}$	3,75	4,17	4,79	5,52	8,00	9,57		
	t_1	2,75	2,65	3,46	4,28	5,53	6,82		
	t_2	2,78	2,88	3,50	4,00	5,65	6,91		
487	t_3	2,78	2,93	3,35	4,16	5,50	6,68		
	$t_{ m cp}$	2,77	2,82	3,44	4,15	5,56	6,80		
	t_1	2,07	2,44	2,82	3,47	4,43	5,78		
	t_2	2,25	2,44	2,93	3,38	4,44	5,78		
707	t_3	2,28	2,41	2,71	3,62	4,56	5,43		
	$t_{ m cp}$	2,20	2,43	2,82	3,49	4,48	5,66		
	t_1	1,97	2,00	2,53	2,91	3,88	5,00		
927	t_2	1,78	2,09	2,50	3,03	3,91	4,97		
	t_3	1,88	2,16	2,50	2,88	3,84	5,03		
	$t_{ m cp}$	1,88	2,08	2,51	2,94	3,88	5,00		

Среднее время:

$$t_{\rm cp} = \frac{t_1 + t_2 + t_3}{3} = \frac{3,82 + 3,75 + 3,69}{3} = 3,75 \text{ c}$$

Расчет результатов косвенных измерений:

Таблица 2: результаты расчётов

N _{риски}	т, кг	$t_{ m cp}$, c	<i>a</i> , 1	M/c^2	€, pa₄	ц/c ²	M , Н \cdot м	
	0,267	3,75	0,0995556	0,0996 ± 0,0086	4,32850242	4,3285 ± 0,3769	0,05969325	0,0597 ± 0,0007
1	0,487	2,77	0,18246035	0,1825 ± 0,0057	7,93305859	7,9331 ± 0,2638	0,10795008	0,1080 ± 0,0012
	0,707	2,20	0,2892562	0,2893 ± 0,0742	12,5763564	12,576 ± 3,2276	0,15497942	0,1550 ± 0,0021
	0,927	1,88	0,39610684	0,3961 ± 0,0996	17,2220363	17,222 ± 4,3328	0,20092683	0,2009± 0,003
	0,267	4,17	0,08051113	0,0805	3,50048394	3,5005	0,0598102	0,0598
2	0,487	2,82	0,17604748	0,1760	7,65423837	7,6542	0,10802191	0,1080
	0,707	2,43	0,23709123	0,2371	10,3083143	10,3080	0,15582768	0,1558
	0,927	2,08	0,32359467	0,3236	14,0693337	14,0690	0,20247286	0,2025
	0,267	4,79	0,06101787	0,0610	2,65295066	2,6530	0,05992991	0,0599
0	0,487	3,44	0,11830719	0,1183	5,143791	5,1438	0,10866866	0,1087
3	0,707	2,82	0,17604748	0,1760	7,65423837	7,6542	0,15682031	0,1568
	0,927	2,51	0,22221869	0,2222	9,66168239	9,6617	0,2046343	0,2046
	0,267	5,52	0,04594623	0,0459	1,99766216	1,9977	0,06002246	0,0600
4	0,487	4,15	0,08128901	0,0813	3,53430485	3,5343	0,1090833	0,1091
4	0,707	3,49	0,11494159	0,1149	4,99746022	4,9975	0,15781395	0,1578
	0,927	2,94	0,16196955	0,1620	7,04215434	7,0422	0,20591887	0,2059
	0,267	8,00	0,021875	0,0219	0,95108696	0,9511	0,06017029	0,0602
_	0,487	5,56	0,04528751	0,0453	1,96902222	1,9690	0,10948655	0,1095
5	0,707	4,48	0,06975446	0,0698	3,0328028	3,0328	0,15854874	0,1585
	0,927	3,88	0,09299607	0,0930	4,04330729	4,0433	0,20738945	0,2074
	0,267	9,57	0,01528636	0,0153	0,66462447	0,6646	0,06021075	0,0602
6	0,487	6,80	0,03027682	0,0303	1,31638333	1,3164	0,10965469	0,1097
6	0,707	5,66	0,04370138	0,0437	1,9000601	1,9001	0,15897239	0,1590
	0,927	5,00	0,056	0,0560	2,43478261	2,4348	0,20817824	0,2082

Масса каретки и масса шайбы: $m_k=0.047~{
m kr}$, $m_{
m III}=0.220~{
m kr}$, $\Delta m_k=\Delta m_{
m III}=0.0005~{
m kr}$, $m=m_k+n\cdot m_{
m III}$

Высота опускания груза: $h=h_1-h_2=700~{\rm MM}=0.7~{\rm M},~\Delta h=0.0005~{\rm M}$

Диаметр ступицы: d = 46 мм = 0.046 м, $\Delta d = 0.0005$ м

Расстояние от оси вращения до 1 риски: $l_1=0{,}057~{\rm M},~\Delta l_1=0{,}0005~{\rm M}$

Расстояние между рисками: $l_0 = 0.025 \,\mathrm{M}, \ \Delta l_0 = 0.0002 \,\mathrm{M}$

Диаметр груза, высота груза: $d_{\rm rp}=0.0400$ м, $h_{\rm rp}=0.0400$ м, $\Delta d_{\rm rp}=\Delta h_{\rm rp}=0.0005$ м

Расчёт ускорения a:

$$a = \frac{2h}{t_{\rm cp}^2} = \frac{2 \cdot 0.7}{3.75^2} = 0.099555556 \,\mathrm{m/c^2} = 0.0996 \,\mathrm{m/c^2}$$

Расчёт углового ускорения ε :

$$\varepsilon = \frac{2a}{d} = \frac{2 \cdot 0,099555556}{0,046} = 4,328502415 \,\mathrm{pag/c^2} = 4,3285 \,\mathrm{pag/c^2}$$

Расчёт момента силы натяжения нити M:

$$M = \frac{md}{2}(g - a) = \frac{0,267 \cdot 0,046}{2} \cdot (9,82 - 0,099555556) = 0,059693249 \text{ H} \cdot \text{M} = 0,0597 \text{ H} \cdot \text{M}$$

Расчёт коэффициентов зависимости $M = M_{\rm rp} + I\varepsilon$ (момента инерции I и момента силы трения $M_{\rm rp}$) с помощью МНК (далее расчёты для положения утяжелителей на 1 риске):

• Средние значения \mathcal{E}_{cp} и M_{cp} :

$$\varepsilon_{\mathrm{cp}} = \frac{1}{n} \sum \varepsilon_i = \frac{4,328502415 \, + \, 7,933058585 \, + \, 12,57635645 \, + \, 17,22203633}{4} = 6,189579 \, \mathrm{pag/c^2}$$

$$M_{\mathrm{cp}} = \frac{1}{n} \sum_i M_i = \frac{0,059983 + 0,108676 + 0,156919 + 0,204480}{4} = 0,132515 \, \mathrm{H} \cdot \mathrm{M}$$

• Расчёт момента инерции I:

$$I = \frac{\sum (\varepsilon_i - \varepsilon_{\rm cp})(M_i - M_{\rm cp})}{\sum (\varepsilon_i - \varepsilon_{\rm cp})^2} = \frac{1,019084492}{94,17269989} = 0,010821443 \text{ K} \cdot \text{M}^2 = 0,011 \text{ K} \cdot \text{M}^2$$

• Расчёт момента силы трения $M_{\rm TD}$:

$$M_{\rm Tp} = M_{\rm cp} - I \varepsilon_{\rm cp} = 0.1308874 - 0.0108 \cdot 10.5149884 = 0.01710005 \; {\rm H\cdot M} = 0.0171 \; {\rm H\cdot M}$$

Таблица 3: результаты расчётов для графика зависимости $M=M_{ ext{ iny Tp}}+Iarepsilon$

$N_{ m pucku}$	\mathcal{E} , рад $/c^2$	<i>М</i> , Н·м	$\mathcal{E}_{\mathrm{cp}}$, рад $/\mathrm{c}^2$	$M_{ m cp}$, Н \cdot м	<i>I,</i> кг ·	м ²	M_{Tp} , H	• м
	4,328502415	0,05969324 9						
4	7,933058585	0,10795008 2	40.5440004	0.4200074	0.010921442	0.0400	0.04740005	0.0474
I	12,57635645	0,15497942 5	10,5149884	0,1308874	0,010821443	0,0108	0,01710005	0,0171
	17,22203633	0,20092682 6						
	3,500483942	0,05981020 1						
2	7,65423837	0,10802191 2		0.40450040	0.012750020	0.0400		
	10,30831432	0,15582768	8,88309258	0,13153316	0,013759829	0,0138	0,00930333	0,0093
	14,06933368	0,20247285 8						

	2,652950659	0,05992990						
	2,00200000	9						0,0042
	5,143791003	0,10866866		0,1325133				
	,	1	0.07040504			0.0004		
3	7,65423837	0,15682031	6,27816561		0,02044057	0,0204	0,00418401	
		2						
	9,661682389	0,20463429						
		5						
	1,997662165	0,06002246 4	- 4,39289539					
	3,534304846	0,10908330		0,13320965				0,0053
	3,334304040	0,10900330			0,029117051	0,0291	0,00530149	
4	4,997460219	0,15781395						
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5						
	7,042154336	0,20591886						
		7						
	0,951086957	0,06017028	2,49905482	5482 0,13389876	0,047452008	0,0475	0,01531359	0,0153
		6						
	1,969022217	0,10948655						
5	3,032802795	5						
	3,032002795	0,15854874 3						
	4,043307287	0,20738945						
	1,010001201	1						
	0,664624466	0,06021074						
		6						
	1,316383331	0,10965468						
6		9	1,57896263	0,13425402	0,083518086	0,0835	0,00238208	0,0024
	1,900060096	0,15897239	1,01000200	5,10-20-02	3,303310000	3,0000	3,00200200	0,0024
	0.404700000	2						
	2,434782609	0,20817824 4						,
		4						

Расчёт расстояния между осью вращения и центром груза на крестовине (n – номер риски):

$$R = l_1 + (n-1) \cdot l_0 + \frac{1}{2}h_{\rm rp} = 0.057 + \frac{1}{2} \cdot 0.0400 \,\mathrm{m} = 0.077 \,\mathrm{m}$$

Расчёт коэффициентов зависимости $I=I_0+4m_{\rm rp}R^2$ (суммы моментов инерции стержней крестовины, момента инерции ступицы и собственных центральных моментов инерции утяжелителей I_0 и массы груза $m_{\rm rp}$) с помощью МНК:

• Средние значения $R_{\rm cp}^2$ и $I_{\rm cp}$:

$$R_{\rm cp}^2 = \frac{1}{n} \sum R_i^2 = \frac{0,005929 + 0,010404 + 0,016129 + 0,023104 + 0,031329 + 0,040804}{6} = 0,01946025 \,\mathrm{m}^2$$

$$I_{\rm cp} = \frac{1}{n} \sum I_i = \frac{0,010821443 + 0,013759829 + 0,02044057 + 0,029117051 + 0,047452008 + 0,083518086}{6} = 0.034184831 \,\mathrm{kg} \cdot \mathrm{m}^2$$

ullet Расчёт массы груза $m_{ ext{ iny P}}$:

$$m_{
m rp} = rac{\sum (I_i - I_{
m cp})(R_i^2 - R_{
m cp}^2)}{4 \cdot \sum (R_i^2 - R_{
m cp}^2)^2} = rac{0.001928306}{4 * 0.003463877} = 0.556690198 \, {
m Kr} = 0.56 \, {
m Kr}$$

• Расчёт момента инерции I_0 :

$$I_0 = I_{\rm cp} - 4 \cdot m_{\rm rp} R_{\rm cp}^2 =$$
 0,034184831 $-$ 4 * 0,556690198 * 0,01946025 = $-$ 0,01320769 кг · м² = $-$ 0,013 кг · м²

Таблица 4: результаты расчётов для графика зависимости $I=I_0+4m_{\rm rp}R^2$

N _{риски}	<i>R</i> , м	R^2 , M^2		<i>I</i> , кг · м ²	
1	0,077	0,005929	0,0059	0,010821443	0,0108
2	0,102	0,010404	0,0104	0,013759829	0,0138
3	0,127	0,016129	0,0161	0,02044057	0,0204
4	0,152	0,023104	0,0231	0,029117051	0,0291
5	0,177	0,031329	0,0313	0,047452008	0,0475
6	0,202	0,040804	0,0408	0,083518086	0,0835

Расчет погрешностей измерений:

Расчёт СКО t_{cp} :

$$\sigma_{t_{cp}} = \sqrt{\frac{\sum_{i=1}^{N} (t_i - t_{cp})^2}{N \cdot (N-1)}} = \sqrt{\frac{(3.82 - 3.75)^2 + (3.75 - 3.75)^2 + (3.69 - 3.75)^2}{3 \cdot 2}} = 0.037638633 c = 0.038 c$$

Расчёт случайной погрешности $\Delta_{\overline{t_{\mathrm{cp}}}}$

(при доверительной вероятности $\alpha = 0.95$,

количестве измерений N=3 и коэффициенте Стьюдента $t_{\alpha,N}=4,3$):

$$\Delta_{\overline{t_{\rm cp}}} = t_{\alpha,N} \cdot \sigma_{t_{\rm cp}} = 4.3 \cdot 0.0731437 = 0.16184612 \, {
m c} = 0.162 \, {
m c}$$

Расчёт абсолютной погрешности $\Delta t_{\rm cn}$:

$$\Delta t_{\rm cp} = \sqrt{\Delta_{\overline{t_{\rm cp}}}^2 + \left(\frac{2}{3} \cdot \Delta_{\rm H} t\right)^2} = \sqrt{0.16184612^2 + \left(\frac{2}{3} \cdot 0.01\right)^2} = 0.161983367 \, c = 0.162 \, c$$

Расчёт абсолютной погрешности ускорения Δa :

$$a = \frac{2h}{t_{\rm cp}^2}, \qquad \Delta a = \sqrt{\left(\frac{\partial a}{\partial h} \cdot \Delta h\right)^2 + \left(\frac{\partial a}{\partial t_{\rm cp}} \cdot \Delta t_{\rm cp}\right)^2} = \sqrt{\left(\frac{2}{t_{\rm cp}^2} \cdot \Delta h\right)^2 + \left(-\frac{4h}{t_{\rm cp}^3} \cdot \Delta t_{\rm cp}\right)^2} =$$

$$= \sqrt{\left(\frac{2}{3,75^2} \cdot 0,0005\right)^2 + \left(-\frac{4 \cdot 0,7}{3,75^3} \cdot 0,161983367\right)^2} = 0,008601011 \,\mathrm{m/c^2} = 0,0086 \,\mathrm{m/c^2}$$

Расчёт относительной погрешности ускорения \mathcal{E}_a :

$$\varepsilon_a = \frac{\Delta a}{a} \cdot 100\% = \frac{0,0086}{0,09955556} \cdot 100\% = 8,63941\% = 9\%$$

Расчёт абсолютной погрешности углового ускорения $\Delta \varepsilon$:

$$\varepsilon = \frac{2a}{d}, \qquad \Delta \varepsilon = \sqrt{\left(\frac{\partial \varepsilon}{\partial a} \cdot \Delta a\right)^2 + \left(\frac{\partial \varepsilon}{\partial d} \cdot \Delta d\right)^2} = \sqrt{\left(\frac{2}{d} \cdot \Delta a\right)^2 + \left(-\frac{2a}{d^2} \cdot \Delta d\right)^2} =$$

$$= \sqrt{\left(\frac{2}{0,046} \cdot 0,008601011\right)^2 + \left(-\frac{2 \cdot 0,099555556}{0,046^2} \cdot 0,0005\right)^2} = 0,376905073 \text{ рад/c}^2$$

Расчёт относительной погрешности углового ускорения $\mathcal{E}_{\varepsilon}$:

$$\varepsilon_{\varepsilon} = \frac{\Delta \varepsilon}{\varepsilon} \cdot 100\% = \frac{0,376905073}{4,328502415} \cdot 100\% = 8,70752\% = 9\%$$

Расчёт абсолютной погрешности момента силы натяжения нити ΔM :

$$M = \frac{md}{2}(g - a), \qquad \Delta M = \sqrt{\left(\frac{\partial M}{\partial m} \cdot \Delta m\right)^2 + \left(\frac{\partial M}{\partial d} \cdot \Delta d\right)^2 + \left(\frac{\partial M}{\partial a} \cdot \Delta a\right)^2} =$$

$$= \sqrt{\left(\frac{d \cdot (g - a)}{2} \cdot \Delta m\right)^2 + \left(\frac{m \cdot (g - a)}{2} \cdot \Delta d\right)^2 + \left(-\frac{md}{2} \cdot \Delta a\right)^2} =$$

$$= \sqrt{\left(\frac{0,046 \cdot (9,82 - 0,09955556)}{2} \cdot 0,0005\right)^2 + \left(\frac{0,267 \cdot (9,82 - 0,09955556)}{2} \cdot 0,0005\right)^2 + \left(-\frac{0,267 \cdot 0,046}{2} \cdot 0,008601011\right)^2} =$$

$$= 0,000660514 \text{H} \cdot \text{M} = 0,0007 \text{ H} \cdot \text{M}$$

Расчёт относительной погрешности момента силы натяжения нити \mathcal{E}_M :

$$\varepsilon_M = \frac{\Delta M}{M} \cdot 100\% = \frac{0,000660514}{0,059693249} \cdot 100\% = 1,106513612\% = 1,1\%$$

Расчёт параметров D и d_i :

$$D = \sum (R_i^2 - R_{\rm cp}^2)^2 = 0,000865969 \,\mathrm{m}^2 = 0,0009 \,\mathrm{m}^2$$

$$d_i = I_i - \left(I_0 + 4m_{\rm rp}R_i^2\right) = 0,010821443 - \left(-0,01320769 + 4 \cdot 0,556690198 \cdot 0,005929\right) = 0,010826668$$

$$d_i^2 = 0,000117217$$

Расчёт СКО массы груза $m_{\rm rp}$:

$$\sigma_{m_{\mathrm{rp}}} = \sqrt{\frac{1}{16D} \cdot \frac{\sum d_i^2}{n-2}} = \sqrt{\frac{0,00033727}{16 \cdot 0,000865969 \cdot (6-2)}} = 0,07800953 \; \mathrm{Kr} = 0,0780 \; \mathrm{Kg}$$

Расчёт СКО момента инерции I_0 :

$$\sigma_{I_0} = \sqrt{\left(\frac{1}{n} + \frac{(R_{\rm cp}^2)^2}{D}\right) \cdot \frac{\sum d_i^2}{n-2}} = \sqrt{\left(\frac{1}{6} + \frac{0,021283167^2}{0,000865969}\right) \cdot \frac{0,00033727}{6-2}} = 0,007626134 \; \text{kg} \cdot \text{m}^2 = 0,007626134 \; \text$$

Расчёт абсолютной погрешности массы груза $\Delta m_{
m rp}$:

$$\Delta m_{\rm rp} = 2\sigma_{m_{\rm rp}} = 2\cdot 0,07800953 = 0,156019061$$
кг = 0,1560 кг

Расчёт относительной погрешности массы груза $arepsilon_{m_{\mathrm{rp}}}$:

$$\varepsilon_{m_{\rm rp}} = \frac{\Delta m_{\rm rp}}{m_{\rm rp}} \cdot 100\% = \frac{0,156019061}{0,556690198} \cdot 100\% = 28,02619147\% = 28\%$$

Расчёт абсолютной погрешности момента инерции ΔI_0 :

$$\Delta I_0 = 2\sigma_{I_0} = 2 \cdot 0,\!007626134 = 0,\!015252268$$
кг · м² = 0,0153 кг · м²

Расчёт относительной погрешности момента инерции \mathcal{E}_{I_0} :

$$\varepsilon_{I_0} = \frac{\Delta I_0}{I_0} \cdot 100\% = \frac{0,015252268}{-0,01320769} \cdot 100\% = -115,4802045\% = -115\%$$

Графики:

График зависимости $M=M_{\mathrm{Tp}}+I \varepsilon$:

График зависимости $I=I_0+4m_{\rm rp}R^2$:

Окончательные результаты:

- 1. Построены графики зависимостей $M=M_{\scriptscriptstyle {
 m TD}}+I{\cal E}$ и $I=I_0+4m_{\scriptscriptstyle {
 m TD}}R^2$
- 2. Рассчитаны момент инерции крестовины с утяжелителями I и момент силы трения $M_{\scriptscriptstyle {
 m TD}}$ для каждого положения утяжелителей.
- 3. $m_{\rm rp} = (0.5567 \pm 0.1560) \, {\rm Kr}, \quad \varepsilon_{m_{\rm rp}} = 28\%$
- 4. $I_0 = (-0.0132 \, \pm 0.0153 \,) \, {\rm kr} \cdot {\rm m}^2, \quad \varepsilon_{I_0} = -115\%$

Выводы и анализ результатов работы:

В данной работе мы проверили действие основного закона динамики с помощью маятника Обербека. Исследовали зависимость момента инерции от положения масс относительно оси вращения: момент инерции прямо пропорционален увеличению массы утяжелителя (зависимость линейная). Также мы доказали на примере расчётов линейную зависимость момента силы от углового ускорения и линейную зависимость момента инерции утяжелителей от квадрата расстояния между центром утяжелителя и центром ступицы.