Question	Answer	Marks	Guidance
4	Substitute for y (or x) in first equation and simplify	*M1	All terms to one side and brackets expanded.
	Obtain $10x^2 + 3kx - 40$ [= 0] (or $10y^2 + 11ky + k^2 - 360$ [=0])	A1	
	Attempt $b^2 - 4ac$ for 3-term quadratic involving k	DM1	Not in quadratic formula unless $b^2 - 4ac$ is isolated.
	Obtain $9k^2 + 1600$ (or $81k^2 + 14400$)	A1	
	$9k^2 + 1600 > 0$	A1 FT	FT for $ak^2 + b > 0$ with $a, b > 0$.
		5	

Question	Answer	Marks	Guidance
8(a)	Use $\tan^2 \beta = \frac{\sin^2 \beta}{\cos^2 \beta}$	В1	E.g. $\tan^2 \beta = \frac{\sin^2 \beta}{\cos^2 \beta}$ and then replaces $\sin^2 \beta$ with a^2 or $\cos^2 \beta$ with $1 - a^2$.
	$\cos \beta = -\sqrt{1 - a^2}$	B1	
	Obtain $\frac{a^2}{1-a^2} + 3a\sqrt{1-a^2}$	В1	
		3	

Question	Answer	Marks	Guidance
8(b)	Use correct identity to obtain 3-term quadratic equation in $\sin \theta$	*M1	
	Obtain $\sin^2\theta + 4\sin\theta + 1[=0]$	A1	
	Attempt to solve quadratic	DM1	At least as far as $\frac{-4\pm\sqrt{12}}{2}$. -15.5° implies attempt at solving quadratic.
	Obtain 195.5	A1	
	Obtain 344.5	A1FT	Following first answer; and no others for $0^{\circ} < \theta < 360^{\circ}$ but must be in 4^{th} quadrant. SC B1 for 3.41° and 6.01° .
		5	

Question	Answer	Marks	Guidance
9(a)	Differentiate to obtain $5+12x-9x^2$	В1	
	Attempt to find two critical values by solving quadratic equation or inequality	М1	
	Obtain values $-\frac{1}{3}$ and $\frac{5}{3}$	A1	SC B1 if no method for solving the quadratic.
	Conclude $x < -\frac{1}{3}, x > \frac{5}{3}$	A1FT	SC B1 if no method for solving the quadratic.
		4	

Question	Answer	Marks	Guidance
9(b)	Equate first derivative to 9 and simplify to 3 term quadratic	*M1	
	Obtain $x = \frac{2}{3}$	A1	SC B1 for solving $5 + 12x - 9x^2 = 9$ without simplifying to a 3-term quadratic.
	Use x-value and corresponding y-value to determine value of k	DM1	
	Obtain $k = \frac{28}{9}$	A1	SC B1 for $k = \frac{28}{9}$ from solving $5 + 12x - 9x^2 = 9$ without simplifying to a 3-term quadratic.
		4	

Question	Answer	Marks	Guidance
11(a)	Obtain $b=2$ and $c=\frac{3}{2}$	В1	
	Obtain $\frac{15}{2} - 2\left(x - \frac{3}{2}\right)^2$	В1	
	State range is $y \leqslant \frac{15}{2}$ or $f(x) \leqslant \frac{15}{2}$ with \leqslant given or clearly implied (not $<$)	B1 FT	Following their value of a.
		3	
11(b)	State that reflection is in <i>x</i> -axis	B1	Accept transformations in any order.
	State or imply that translation is by $\begin{pmatrix} -\frac{3}{2} \\ \frac{15}{2} \end{pmatrix}$ or equivalent	B1 FT	Following <i>their</i> values of <i>a</i> and <i>c</i> in part (a). Accept transformations in any order.
		2	

Question	Answer	Marks	Guidance
11(e)	Sketch the correct graph appearing in second and third quadrants only	В1	
	State that each <i>y</i> -value is associated with a single <i>x</i> -value or equivalent	B1	Accept passes the horizontal line test. Ignore passes the vertical line test.
		2	
11(d)	Sketch the correct graph with suitable labelling to distinguish the two curves	B1	Appearing in third and fourth quadrants only.
	Draw the line $y = x$	В1	See above; no need to label the line.
	Attempt correct process for finding the inverse function	М1	Allowing use of \pm and y so far.
	Obtain $\frac{3}{2} - \sqrt{\frac{15}{4} - \frac{1}{2}x}$ or equivalent	A1	Must involve x at the conclusion.
		4	

PUBLISHED

Question	Answer	Marks	Guidance
1(a)	a=4	B1	Allow $4\sin(2x)+3$ if values of a, b and c are not stated.
	b=2	В1	
	c=3	B1	
		3	
1(b)(i)	5	B1	Ignore attempts at finding solutions.
		1	
1(b)(ii)	1	В1	Ignore attempts at finding solutions.
		1	

LOBEISHED

Question	Answer	Marks	Guidance
5(a)(i)	$\left[f(-1)=\right]\frac{1}{3}$	В1	Condone 0.333.
		1	
5(a)(ii)	ii)	B1	For showing the correct mirror line.
		В1	For correct shape: the curves should intersect in the first square in the third quadrant. To the left of the point of intersection, the reflection is below the original and crosses the <i>x</i> -axis. To the right of the point of intersection, the reflection is to the right the original.
		2	

Question	Answer	Marks	Guidance
5(a)(iii)	$\frac{2x+1}{2x-1} = y \implies 2x+1 = y(2x-1)$	M1*	Equating y to the given function and clearing of fractions. x and y may be interchanged at this stage.
	2xy - 2x = y + 1	DM1	Condone ± errors during simplification.
	$\frac{x+1}{2(x-1)}, \frac{-x-1}{2-2x}$	A1	Allow 'f ⁻¹ ' or 'y =' but NOT 'x =', nor fractions within fractions.
	[Domain of f^{-1} is] $x < 1$	В1	Accept – ∞ < x <1 or (– ∞ , 1), condone [– ∞ , 1).
	Alternative Method for Question 5(a)(iii)		
	$y = 1 + \frac{2}{2x - 1} \Rightarrow y - 1 = \frac{2}{2x - 1}$	M1*	Equating y to the given function after division by $2x-1$. Isolating the term in x. x and y may be interchanged at this stage.
	$2x = \frac{2}{y-1} + 1$	DM1	Condone ± errors during simplification.
	$\frac{1}{x-1} + \frac{1}{2}$	A1	OE Allow 'f ⁻¹ 'or 'y =' but NOT 'x =', nor fractions within fractions.
	[Domain of f^{-1} is] $x < 1$	В1	Accept – ∞ < x <1 or (– ∞ , 1), condone [– ∞ , 1).
		4	

LOPLISHED

Question	Answer	Marks	Guidance
5(b)	$gf\left(\frac{1}{4}\right) = -7$	В1	
	$\frac{2x+1}{2x-1} = -7$	M1	Equating $\frac{2x+1}{2x-1}$ to their $gf\left(\frac{1}{4}\right)$.
	$[x=] \frac{3}{8}$	A1	OE
	Alternative solution for Question 5(b)		
	$gf\left(\frac{1}{4}\right) = -7$	В1	
	$x = f^{-1}\left(-7\right)$	M1	$x = f^{-1}\left(their\ gf\left(\frac{1}{4}\right)\right)$
	$[x=] \frac{3}{8}$	A1	OE
		3	

Question	Answer	Marks	Guidance
7(a)	$-2((x \pm p)^2 \pm q) \text{ or } -2(x \pm p)^2 \pm q$	M1*	$p \neq 0$.
	$-2((x-2)^2 \pm q)$ or $-2(x-2)^2 \pm q$	DM1	
	$-2(x-2)^2+19$ and (2, 19)	A 1	Accept $x = 2, y = 19$ or 2, 19.
		3	

.

Question	Answer	Marks	Guidance				
7(b)	7(b) Method 1						
	$[x=]\pm 1$	B1*	Both x co-ordinates for the points of intersection.				
	Subtract and attempt to integrate	M1*					
	$\left[\int (-2x^2 + 2) dx \right] - \frac{2}{3}x^3 + 2x$	B1*	Both terms correct.				
	$\left(-\frac{2}{3}+2\right)-\left(\frac{2}{3}-2\right)$	М1	Apply <i>their</i> limits, one positive and one negative, obtained from equating the line and the curve to their integrated expression.				
	$=\frac{8}{3} \cdot 2\frac{2}{3}$	DB1	AWRT 2.67 WWW. Condone $\frac{-8}{3} \rightarrow \frac{8}{3}$.				
			SC B1 for mistaking triangle for trapezium leading to $\frac{11}{3}$, i.e.				
			a total of 2/5.				
	Method 2						
	$[x=]\pm 1$	B1*	Both x co-ordinates for the points of intersection.				
	Attempt to integrate and subtract	M1*	The second integral can be replaced with what is clearly their area of a trapezium.				
	$\left\{ \frac{-2x^3}{3} + \frac{8}{2}x^2 + 11x \right\} \left[-\right] \left\{ \frac{8}{2}x^2 + 9x \right\}$	В1*	OE All terms correct. The second integral can be replaced by $\frac{1}{2}(1+17)\times 2$ OE.				

LOPUSHED

	PUBLISHED		
Question	Answer	Marks	Guidance
7(b)	$\left\{ \left(\frac{-2}{3} + 4 + 11 \right) - \left(\frac{2}{3} + 4 - 11 \right) \right\} \left[- \right] \left\{ (4 + 9) - (4 - 9) \right\}$	М1	Apply <i>their</i> limits, one positive and one negative, obtained from equating the line and the curve, to <i>their</i> integrated expressions. If the trapezium has been used, the second integral can be replaced by <i>their</i> 18.
	$=\frac{8}{3}$, $2\frac{2}{3}$	DB1	AWRT 2.67 WWW. Condone $\frac{-8}{3} \rightarrow \frac{8}{3}$.
			SC B1 for mistaking triangle for trapezium leading to $\frac{11}{3}$, i.e.
			a total of 2/5.
	Method 3		
	$[x=]\pm 1$	B1*	Both x co-ordinates for the points of intersection.
	Subtract and attempt to integrate	M1*	
	$-\frac{2}{3}(x-2)^3 - \frac{8}{2}x^2 + 10x$	B1*	All terms correct.
	$\left(\frac{2}{3}-4+10\right)-\left(18-4-10\right)$	M1	Apply <i>their</i> limits, one positive and one negative, obtained from equating the line and the curve, to <i>their</i> integrated expression.
	$=\frac{8}{3}$, $2\frac{2}{3}$	DB1	AWRT 2.67 WWW.

Question	Answer	Marks	Guidance
7(b)	Method 4		
	$[x=]\pm 1$	B1*	Both x co-ordinates for the points of intersection.
	Attempt to integrate and subtract	M1*	The second integral can be replaced with what is clearly <i>their</i> area of a trapezium.
	$\left\{ -\frac{2}{3}(x-2)^3 + 19x \right\} \left[-\right] \left\{ \frac{8}{2}x^2 + 9x \right\}$	B1*	All terms correct.
			The second integral can be replaced with $\frac{1}{2}(1+17)\times 2$ OE.
	$\left\{ \left(\frac{2}{3} + 19\right) - (18 - 19) \right\} \left[-\right] \left\{ (4 + 9) - (4 - 9) \right\}$	М1	Apply <i>their</i> limits, one positive and one negative, obtained from equating the line and the curve, to <i>their</i> integrated expression. If the trapezium has been used the second integral can be replaced with <i>their</i> 18 OE.
	$=\frac{8}{3}$, $2\frac{2}{3}$	DB1	AWRT 2.67 WWW.
	3 3		Condone $\frac{-8}{3} \rightarrow \frac{8}{3}$.
			SC B1 for mistaking triangle for trapezium leading to $\frac{11}{3}$, i.e.
			a total of 2/5.
		5	

	I OBLISHED		
Question	Answer	Marks	Guidance
9(a)	$\begin{bmatrix} \frac{1}{2}k^2 \times \frac{25}{4} - 2k \times \frac{5}{2} + 2 = \frac{1}{2} \\ OR \\ \frac{1}{2}k^2 \times \frac{25}{4} - 2k \times \frac{5}{2} + 2 = k \times \frac{5}{2} + \left(\frac{1}{2} - \frac{5}{2}k\right) \end{bmatrix}$ $25k^2 - 40k + 12 [= 0]$	M1*	Using $\left(\frac{5}{2}, \frac{1}{2}\right)$ in the curve equation or equating the line and the curve and then using $x = \frac{5}{2}$ and $p = \frac{1}{2} - \frac{5}{2}k$. Simplify to get a three-term quadratic in k . Condone errors in simplification.
	$k = \frac{2}{5}$	A1	OE Condone inclusion of $k = \frac{6}{5}$.
	$\frac{1}{2} = \left(their \frac{2}{5} \right) \left(\frac{5}{2} \right) + p \implies p =$	DM1*	Using $\left(\frac{5}{2}, \frac{1}{2}\right)$ and <i>their k</i> in an equation in <i>p</i> . Either the line (as shown) or $4p^2 + 12p + 5 = 0$ are the most likely and solving for <i>p</i> .
	$p = -\frac{1}{2}$	A1	OE Condone inclusion of $p = -\frac{5}{2}$.
	$\frac{2}{25}x^2 - \frac{6}{5}x + \frac{5}{2} = 0 \left[4x^2 - 60x + 125 = 0 \right]$	DM1	Equating the line and curve using <i>their</i> k and p and simplify to get a three-term quadratic $[=0]$.
	$\left(\frac{25}{2}, \frac{9}{2}\right)$	A1 A1	OE Accept $x = \frac{25}{2}$, $y = \frac{9}{2}$.

Question	Answer	Marks	Guidance
9(a)	Alternative Method for Question 9(a)		
	$\left[\frac{1}{2}k^2 \times \frac{25}{4} - 2k \times \frac{5}{2} + 2 = k \times \frac{5}{2} + p\right]$ $4p^2 + 12p + 5 = 0$	M1*	OE Using $\left(\frac{5}{2}, \frac{1}{2}\right)$ in the curve equation or equating the line and the curve and then using $x = \frac{5}{2}$ and $k = \frac{1}{5} - \frac{2}{5}p$. Simplify to get a three-term quadratic in $p = 0$.
	$p = -\frac{1}{2}$ OE	A1	Condone inclusion of $p = -\frac{5}{2}$.
	$\boxed{\frac{1}{2} = \left(\frac{5}{2}k\right) + \left(their - \frac{1}{2}\right) \implies k =}$	DM1*	Using $\left(\frac{5}{2}, \frac{1}{2}\right)$ and <i>their p</i> in the line equation and solving for k .
	$k = \frac{2}{5}$	A1	OE Condone inclusion of $k = \frac{6}{5}$.
	$\frac{2}{25}x^2 - \frac{6}{5}x + \frac{5}{2}[=0] \left[4x^2 - 60x + 125[=0]\right]$	DM1	Equating the line and curve using <i>their k</i> and p and simplify to get a three-term quadratic $[=0]$.
	$\left(\frac{25}{2},\frac{9}{2}\right)$	A1 A1	OE Accept $x = \frac{25}{2}$, $y = \frac{9}{2}$.
		7	

.	•		G . I
Question	Answer	Marks	Guidance
9(b)	$\left[\frac{1}{2}k^2x^2 - 2kx + 2 = kx + p \implies \right] \frac{1}{2}k^2x^2 - 3kx + 2 - p$	M1*	Equate the original equations of the curve and the line and collect like terms; k and p must still be present.
	$9k^2-4\times\frac{1}{2}k^2(2-p)$	DM1	Use of $b^2 - 4ac$ for their quadratic in x to give an expression in k and p. This expression can come from their equation in (a).
	$p < -\frac{5}{2}$	A1	
		3	

rublished

Question	Answer	Marks	Guidance
2	$\cos\left(\frac{\pi}{6}\right) + \tan 2x + \frac{\sqrt{3}}{2} = 0 \implies \tan 2x = -\sqrt{3}$	M1	Making $\tan 2x$ the subject. $\tan 2x = 0$ is M0. Accept decimals and one sign error.
	$\Rightarrow 2x = -\frac{\pi}{3} \Rightarrow x = -\frac{\pi}{6}$	A1	May come from non-exact working. Ignore answers outside the given range.
		2	

Question	Answer	Marks	Guidance
4	Let $x = \sin^2 \theta$ $(2x+7)(2x-1) = 0$ or $(2\sin^2 \theta + 7)(2\sin^2 \theta - 1)$	М1	Or equivalent method.
	$\Rightarrow \sin^2 \theta = \frac{1}{2} \Rightarrow \sin \theta = [\pm] \frac{1}{\sqrt{2}}$	M1	Finding $\sin^2\theta$ and then $\sin\theta$ (may be implied).
	θ = 45°, 135°, 225°, 315°	A1 A1	A1 for any two correct values. A1 for all correct and no others within the range. For answers in radians, A1 only for all 4 angles. If no (correct) working, then SC B1 for all 4 solutions.
		4	

	PUBLISHED)			
estion	Answer	Marks	Guidance		
5(a)	Reflection [in] y-axis	B1 B1	B1 for reflection B1 mention of <i>y</i> -axis, OE. SC B2 for stretch, SF –1, parallel to <i>x</i> -axis.		
	Translation or shift $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$	B1*	B1 for 'translation' and a correct vector/description. Do not accept 'left'/'right'. If two translations then B0 and B0 for the order.		
	Stretch, factor 2, parallel to y-axis	B2,1,0	B2 all correct OE. B1 any 2 parts correct. This can be at any point in the sequence.		
	Correct order and three correctly named transformations only	DB1	If a fourth transformation is given this mark is not awarded and no marks are given for the two transformations of the same type, except where the reflection is described as a stretch. If any transformation is incorrectly named this cannot be given. If translation is not $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$ or $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ then DB0 is given.		
	Alternative Solution for first 3 marks				
	Translation or shift $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	B1*	B1 for 'translation' and correct vector/description.		
	Reflection [in] y-axis	B1 B1	B1 for 'reflection', B1 for 'in y-axis'.		
	Alternative solutions				
	There are alternative solutions which can be marked in the same way e.g. the given stretch, translation $\begin{pmatrix} -4 \\ 0 \end{pmatrix}$, reflect in $x = -2.5$				

Question	Answer	Marks	Guidance	
5(b)	g(x) = 2f(-x-1) or $a = 2$, $b = -1$, $c = -1$	В1	First B1 for $a=2$ and no additional terms added to the function. a=-2 is B0.	
		В1	Second B1 for $b=-1$ and $c=-1$.	
		2		1

rublished

Question	Answer	Marks	Guidance
8(a)	$3(x-2)^2 + 2$ or $a = -2$, $b = 2$	B1 B1	
		2	
8(b)	$2 \text{ or } k = 2 \text{ or } k \ge 2$	B1FT	FT on their a. Do not accept $x = 2$ or $x \ge 2$.
		1	
8(c)	$3(x-2)^2 + 14 - 12 = y \Rightarrow (x-2)^2 = \frac{y-2}{3}$	М1	Using their completed square form.
	$x = [\pm] \sqrt{\frac{y-2}{3}} + 2$	DM1	
	$\mathbf{f}^{-1}(x) = \sqrt{\frac{x-2}{3}} + 2$	A1	OE, e.g. $y = \frac{\sqrt{3x - 6}}{3} + 2$.
		3	

LODEIDITED

Question	Answer	Marks	Guidance
8(d)	Finding $f^{-1}(29) = 5$	М1	Or solving $f(x) = 29$ [using <i>their</i> completed square form, OE].
	Finding f ⁻¹ (their 5)	M1	Or solving $f(x) = their 5$.
	x=3	A1	If using $f(x)$ method, $x = 1$ must be discarded.
	Alternative solution for Question 8(d)		
	$3(3(x-2)^2+2)-2)^2+2=29 \text{ using their completed square form}$	М1	Or $3(3x^2-12x+14)^2-12(3x^2-12x+14)+14=29$. Allow if the '=29' appears later in the working.
	Solving as far as $9(x-2)^4 = 9$ or $x^2 - 4x + 3 = 0$	DM1	OE Or $[27](x^4 - 8x^3 + 24x^2 - 32x + 15) = 0.$
	x=3 only	A1	WWW Only dependent on the first M1.
		3	