Quiz 1	Graded
Student	
Boning Li	
Total Points	
25 / 30 pts	
Question 1	
Question 1	6 / 6 pts
✓ - 0 pts Correct	
Question 2	
Question 2	4 / 6 pts
 ✓ - 2 pts Answer is correct (NO) but not firmly demonstrated by justification/counterexample 	
Question 3	
Question 3	10 / 10 pts
✓ - 0 pts Correct	
Question 4	
Question 4	5 / 8 pts
 ✓ - 3 pts One answer not computed (algebra shown) 	

Distributed Systems and Algorithms — CSCI 4510/6510 Quiz 1 September 12, 2024

RCS ID: <u>lib/9</u> @rpi.edu	Name: By	ning Li	744
-------------------------------	----------	---------	-----

Instructions:

- \bullet You will have 45 minutes to complete this quiz. Please do not start until told.
- Write your RCS ID and name in the blanks at the top of this cover sheet.
- Put away notes, laptops, and other electronic devices. Cheating on a quiz will result in an **immediate F** and a report will be filed with the Dean of Students.
- Read each question carefully several times before beginning to work and especially before asking questions.
- Write your answers clearly and completely inside the box.

Question 1 (6 points). Recall that in Lamport's Logical Clock algorithm, each process p_i has an integer c that is initialized to 0. Suppose instead, each process's clock is initialized to a random number between 0 where N is the number of processes in the system. The algorithm remains otherwise unchanged.

Does this modified algorithm always satisfy the weak clock condition, i.e., if $e \to f$ then C(e) < C(f)? Answer or NO and justify your answer.

C, initialized as \$2 ton (Ca)=3 abt-9 e and foccur on the same process Pi, then C(e) 4 C(f) that to increment If e occurs at P_2 and f occurs at P_3 , then $C(f) = \max(C(e)+1, C_j(f))$, as a result, C(e) < C(f). Therefore, this modified algorithm always satisfies the weak clock condition.

Question 2 (6 points). Recall that in Vector Clock algorithm, each process p_i has a vector clock VT_i that is initialized to the 0 vector. Suppose instead, each process's clock is initialized to be a vector of random numbers between 0 and N, where N is the number of processes in the system. The algorithm remains otherwise unchanged.

Does this modified algorithm always satisfy the strong clock condition, i.e., $e \to f$ if and only if $C(\rightleftharpoons) < C(f)$? Answer YES or NO and justify your answer.

In case where e and focus on the same pi, et gives & exclusions since e.VIII) < f.VIII) due to increment, and for all other to the end on pi, e.VIIII & f.VIIII due to inheritance. When e occurs on Pi and for pi, longider the following lase.

Property of interesting $V_1 = (2, 2)$ Property interesting $V_2 = (0, 0)$ On event u, $V_2 = (0, 0)$ Upon receiving v on event v, v and v sent v and v sent v and v are v but v and v are v but v and v are v are v and v are v and v are v are v are v and v are v and v are v are v are v and v are v are v are v and v are v and v are v and v are v are

Question 3 (10 points). All of the space-time diagrams I have drawn in class illustrate reliable communities, every message that is sent is eventually received. Consider a distributed system in which campunities, some messages may be sent but never received (messages may be lost). Does Lamport's I given algorithm always satisfy the weak clock condition in this system: if $e \to f$ then C(e) < C(f)? Justify Our

If e and f occur on the same then c(e) < lift duty to the increment, since local events don't regulire communication d e oconoccurs on Pi and f oconoccurs on Pj. then ecausally affects f. When e is a send of m, and t is the receive of m. In the case where of combes at Pi, we have (ce) <(1) based on the dialgorithm. However, if m get lost, there work be a receive event for Pj, since Pj has no idea that Pi sends it a may In this case, there's no event f and no such relation e-f exists.

As a result, as long as we have relation e-f, (ce) 4 cit) will hald. Lamport's Loyical clock algorithm still satisfies the weak condition.

Question 4 (8 points). Suppose the push algorithm is used to set the time at process p_i 's physical clock. The communication link between the time server S and process p_i is synchronous, with a minimum latency of 10 and a maximum latency of 30. The time server S sends its message to p_i at time t = 100. Answer the following questions and show your work.

- 1. When p_i receives the message, what does it set its clock to?
- 2. What is the resulting accuracy of p_i 's clock?
- The paintenant time required by the message to arrive at Pi is 110.

 The latest time of arrival is 100+30=130, or $1K_1-1min=1K_1-10$ A reasonable stasetup could be $\frac{150+110}{2}=120$ If $1K_1-10<30$, the interval becomes $[timin, tt]_{K_1}-min]=[110, Tk_1+160]$ The latest time of caronable setup should be $t+\frac{11}{2}=100$ The hold case, its reasonable setup should be $t+\frac{11}{2}=100$ The latest time interval becomes $[timin, tt]_{K_1}-min]=[110, Tk_1+160]$ The latest time interval becomes $[timin, tt]_{K_1}-min=[110, Tk_1+160]$ The latest time $[timin, tt]_{K_1}-min=[110, Tk]_{K_1}-min=[110, Tk]_{K_1}-$

