Pricing Homes in King County

Business Problem and Overview

Property values often fluctuate depending on certain features, which can make pricing a home difficult. The goal is to derive a model that helps the general public determine how a certain property should sell compared to the average home. The model should act as a guide for property sellers in King County so they can pinpoint attributes of a home to emphasize or amend when justifying and setting prices.

The Data

- To create a regression model, public data on homes sold is obtained from King County's government website
- The raw data contains 24 columns, but for the purpose of our regression we will focus on the variables listed to the right

"sqft_living": Square footage of living space in the home

"bathrooms": Number of bathrooms

"grade": Overall grade of the house (construction/design)

"waterfront": Whether the house is on a waterfront

"view": Quality of view from the house

Results: Initial Analysis and Baseline Model

A seaborn heatmap shows that "sqft_living" is the most correlated variable with price

OLS Regression Results

Dep. Variable:	pric	e R-squ	ared:		0.405		
Model:		LS Adj.	R-squared:		0.405 9616. 0.00 -2.1177e+05 4.235e+05		
Method:	Least Square	es F-sta	tistic:				
Date:	Mon, 06 Mar 202		(F-statistic) :			
Time:	21:18:1		ikelihood:				
No. Observations:	1412						
Df Residuals:	1412	24 BIC:		4.236e+05			
Df Model:		1					
Covariance Type:	nonrobus	st					
C	pef std err	t	P> t	[0.025	0.975		
const 1.223e-sqft_living 609.2	5-09-09-0	185.237 98.059	0.000	1.21e+06 597.027	1.24e+06		
Omnibus:	21552.24	14 Durbi	n-Watson:		1.806		
Prob(Omnibus):	0.0		Jarque-Bera (JB):		31151969.336		
Skew:	9.10)1 Prob(JB):		0.00		
Kurtosis:	232.33	38 Cond.	No.		1.06e+03		

The baseline model is statistically significant and accounts for **40.5% of price variance**. With a **unit increase in living area**, we can expect price to **rise by \$609** and a home of **average area to sell for ~\$1.22M**

The baseline model is statistically significant and accounts for **40.5% of price variance**. With a **unit increase in living area**, we can expect price to rise by **\$609**.

Results: Overview of Processes

Model 2

 Adding and standardizing the discrete variable ("bathrooms") to create a multiple regression model

Model 3

 Re-formatting and standardizing "grade" data to transform it from a text into numbers the model can recognize

Model 4

 Incorporating categorical variables ("view" and "waterfront") to assess the impact that amenities have on average properties

Results: Summary of Models Run

	Model	Independent Variables	R-squared
0	Baseline Model	sqft_living	0.408050
1	Second Model	sqft_living, bathrooms	0.412473
2	Third Model	sqft_living, bathrooms, grade	0.470337
3	Fourth Model	sqft_living, bathrooms, grade, waterfront, view	0.510179

Recall that "independent variables" refers to inputs and "R-squared" tells us the percentage of price variance that the model can account for. **As "R-squared" increases, our models can explain a greater proportion of the price data.**

Results: Final Regression Model

OLS Regression Results									
	OLS Least Squares Mon, 13 Mar 2023 07:20:33 14126 14117 8	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC:		0.524 0.524 1942.					
	coef	std err	t	P> t	[0.025	0.975]			
const sqft_living bathrooms grade waterfront_YES view_EXCELLENT view_FAIR view_NONE sqft_living x water	1.162e+06 269.3194 1.301e+05 2.961e+05 4.139e+05 8.172e+05 3.001e+05 -7.401e+04 front_YES 629.9451	2.29e+04 10.008 1.16e+04 7637.279 7.02e+04 5.94e+04 8.98e+04 2.35e+04 31.741			1.12e+06 249.702 1.07e+05 2.81e+05 2.76e+05 7.01e+05 1.24e+05 -1.2e+05 567.728				
Omnibus: Prob(Omnibus): Skew: Kurtosis:		Durbin-Watso Jarque-Bera Prob(JB): Cond. No.							

The final model experiments with the relationship between the inputs in the fourth model, and interpretations of the numbers highlighted above are outlined in the following slide

Results: Final Regression Model (Data Interpretation)

- The model accounts for **52.4% of the variance in sale price** and models against a reference home with:
 - Average living area
 - Average number of bathrooms
 - Average grade
 - Average views
 - No waterfront
- ❖ The model prices the typical home with the aforementioned features at ~\$1.2 Million
- ❖ We expect a unit increase in "sqft_living" to raise the value of an average home by \$269
- ❖ We expect a unit increase in "grade" to raise the value of an average home by ~\$300K
- Adjusting variables within a home with "nice-to-have" amenities, such as a waterfront, has a greater impact on value
 - ➤ A unit increase in "sqft_living" for an average-sized home with a waterfront adds ~\$629 instead of \$269

Takeaway and Recommendation

Homesellers interested in maximizing the value of their properties should aim to include at least one extra "nice-to-have" amenity (e.g. waterfront, excellent views), as additional features can greatly elevate values of the average property

Future Considerations

- Map geographic distribution of homes with "lat" and "long"
- Leverage other public data from King County's website such as population and socioeconomic information

