ALGEBRAIC GEOMETRY - LOTHAR GÖTTSCHE LECTURE 12

WANG YUNLEI

Lemma 1. Let X, Y be varieties and Y be affine, let $\varphi : X \to Y$ is a morphism. Then $\varphi(X)$ is dense in Y if and only if φ^* is injective.

Proof. If φ is not dense, then there exists a closed subset $W \subsetneq Y$ and $\varphi(X) \subset W$. We can write $W = Z(f_1, \ldots, f_r)$ for $f_1, \ldots, f_r \in A(X) \subset K(X)$. By possibly taking a bigger W we can write W = Z(f) for some none zero element $f \in A(X)$. Now we find $\varphi^* f = f \circ \varphi = 0$, so φ^* is not injective. Conversely, if some $f \neq 0 \in K(X)$ satisfies $\varphi^* f = 0$, then $\varphi(X) \subset Z(f) \subsetneq Y$ is not dense.

Theorem 1. Let X, Y be varieties, there is a bijection

$$\left\{ \begin{array}{c} dominant \ rational \ maps \\ \varphi: X \to Y \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} k-algebra \ homomorphisms \\ \varphi^*: K(Y) \to K(X) \end{array} \right\}.$$

In particular, X and Y are birational if and only if $K(Y) \simeq K(X)$.

Proof. We only need to construct the inverse map to $\varphi \to \varphi^*$. Let $\phi: K(Y) \to K(X)$ be a k-algebra homomorphism, we want to construct a rational map $\varphi: X \to Y$ such that $\varphi^* = \phi$. Replacing Y by an open affine subset, we can now assume $Y \subset \mathbb{A}^n$ is closed. Let $y_1, \ldots, y_n \in A(Y)$ be coordinate functions, then $\phi(y_1), \ldots, \phi(y_n) \in K(X)$. We can find a nonempty open subset $U \subset X$ such that $\phi(y_i) \in \mathcal{O}_X(U)$ for all $i = 1, \ldots, n$. Then the map $x \to (\phi(y_1)(x), \ldots, \phi(y_n)(x))$ is a morphism from U to Y. In fact, we restrict ϕ to A(Y), then ϕ defines an injective homomorphism from A(Y) to $\mathcal{O}_X(U)$. Then by theorem 2, we get a morphism $\varphi: U \to Y$ and by lemma its image is dense in Y. Thus we find $\varphi: X \dashrightarrow Y$ which is dominant and $\varphi^* = \phi$.

Corollary 1. Let X, Y be varieties, the following statements are equivalent

- (1) X, Y are birational;
- (2) X, Y contain open subsets isomorphic to each other;
- (3) $K(X) \simeq K(Y)$ as k-algebras.

Proof. (1) \Rightarrow (2): Let $\varphi: X \dashrightarrow Y$ be a birational map with inverse $\psi: Y \dashrightarrow X$. We can check that $\psi \circ \varphi$ is the identity on $U = \text{dom} \varphi \cap \varphi^{-1}(\text{dom} \psi)$ and $\varphi \circ \psi$ is the identity on $V = \text{dom} \psi \cap \psi^{-1}(\text{dom} \varphi)$. Thus U is isomorphic to V by restrict φ on U.

 $(2) \Rightarrow (3)$: $K(X) \simeq K(U)$, $K(Y) \simeq K(V)$, and we know $K(U) \simeq K(V)$, thus $K(X) \simeq K(Y)$.

 $(3) \Rightarrow (1)$: Just the conclusion of theorem 1.

 $Date \hbox{: June 19, 2017.}$

1. Conclusions We Need From Previous Lectures

Theorem 2. Let X, Y be varieties, assume $Y \subset \mathbb{A}^m$ be a closed affine variety. Then there is a bijection between morphisms $X \to Y$ and k-algebra homomorphisms $A(Y) \to \mathcal{O}_X(X)$:

Definition 1. Take coordinates x_1, x_2 on \mathbb{A}^2 and coordinates y_0, y_1 on \mathbb{P}^1 , the blowup $\hat{\mathbb{A}}^2$ of \mathbb{A}^2 at 0 is $\hat{\mathbb{A}}^2 = Z(x_1y_1 - x_2y_0) \subset \mathbb{A}^2 \times \mathbb{P}^1$.

Remark. $\hat{\mathbb{A}}^2$ is closed in $\mathbb{A}^2 \times \mathbb{P}^1$. Closed subsets of $\mathbb{A}^n \times \mathbb{P}^m$ are zero sets $Z(F_1, \ldots, F_r)$ where $F_i \in k[x_1, \ldots, x_n, y_0, \ldots, y_m]$ are homogeneous in y_i .

Definition 2. Let $\Pi = p_1 : \hat{\mathbb{A}}^2 \to \mathbb{A}^2$, $E := \Pi^{-1}(0)$ is called the exceptional divisor.

We can see that Π is a birational morphism because $\Pi|_{\hat{\mathbb{A}^2}\backslash E}: \mathbb{A}^2\backslash E \to \mathbb{A}^2\backslash \{0\}$ is an isomorphism. In fact $E = \{0\} \times \mathbb{P}^1$.

Remark. (1) Let $((x_1, x_2), [y_0, y_1]) \in \hat{\mathbb{A}}^2 \backslash E$, assume $x_1 \neq 0$, then we get $x_2 = \frac{y_1}{y_0} x_1$. It is equivalent to $(x_1, x_2) \in [y_0, y_1]$. So $\hat{\mathbb{A}}^2$ is the graph of the canonical morphism

$$\begin{array}{ccc} \mathbb{A}^2 \backslash \{0\} & \to & \mathbb{P}^1 \\ (x_1, x_2) & \to & [x_1, x_2]. \end{array}$$

(2) $U_{y_0} := \hat{\mathbb{A}}^2 \backslash Z(y_0) = \{((x_1, x_2), [1, u]) \in \mathbb{A}^2 \times \mathbb{P}^1 | x_2 = ux_1\}$ is isomorphic to \mathbb{A}^2 by the morphism $((x_1, x_2), [1, u]) \to (x_1, u)$ with inverse $(x_1, u) \to ((x_1, ux_1), [1, u])$. In the same way $U_{y_1} := \hat{\mathbb{A}}^2 \backslash Z(y_1) = \{((x_1, x_2), [t, 1]) \in \mathbb{A}^2 \times \mathbb{P}^1 | x_1 = tx_2\}$ is isomorphic to \mathbb{A}^2 . Then we get $\hat{\mathbb{A}}^2 = U_{y_0} \cup U_{y_1}$, the union of irreducible open cover, so $\hat{\mathbb{A}}^2$ itself is also irreducible.

In U_{y_0} the exceptional divisor E is $Z(x_1)$, and in U_{y_1} the exceptional divisor E is $Z(x_2)$.

Example 1. What does the blowup do to a curve $C \subset \mathbb{A}^2$ through 0? Let $C \subset \mathbb{A}^2$ be a curve, the strict transform of C is

$$\hat{C} = \text{closure of } \Pi^{-1}(C \setminus \{0\})$$

in \mathbb{A}^2 . For example, let C = Z(F), where $F = x_2^2 - x_1^2(x_1 + 1)$. In the chart $y_1 \neq 0$, i.e. U_{y_0} , we have

$$\Pi^{-1}(C) = Z(x_1^2(u^2 - (x_1 + 1))) = Z(x_1^2) \cup Z(u^2 - (x + 1))$$

(Note that we talk about this in U_{y_0} , so the exact equation is $\Pi^{-1}(C) = Z(x_1^2(u^2 - (x_1 + 1))) \cap U_{y_0}$. But we ignore it for simplicity). Since $Z(x_1^2)$ is exactly the exceptional divisor E, we get $\hat{C} = Z(u^2 - (x + 1))$, and it is isomorphic to \mathbb{A}^1 by mapping $((x_1, x_2), [1, u]) \to u$. The inverse of the map is $u \to ((u^2 - 1, u^3 - u), [1, u])$. We can see C and \hat{C} in the real axes condition Now we can find that there is no singular point after blowing up.

E-mail address: wcghdpwyl@126.com

FIGURE 1. \hat{C} in real space