1 公式

1.1 微分方程的基本概念

微分方程

表示未知函数,未知函数的导数与自变量之间的关系的方程

微分方程的阶

未知函数最高阶导数的阶数

微分方程的解

找到一个函数代入微分方程能使该方程成为恒等式,找到的这个函数就是微分方程的解

微分方程的通解

找到的微分方程中含有任意常数,即我们经常用 C 表示常数,这一类函数能使微分方程成为恒等式,统称为微分方程的通解

微分方程的特解

在微分方程的基础上给出了初始条件(通常给出 x 和 y 的值关系) 来确定出那个常数 C, 从而确定出一个函数, 这个函数即为该微分方程的特解

1.2 一阶微分方程

可分离变量的微分方程

定义: 形如 g(y)dy = f(x)dx 的方程

解法: 方程两端直接积分, 得出 G(y) = F(x) + C

齐次方程

定义: 形如 $\frac{dy}{dx} = \phi(\frac{y}{x})$ 的方程

解法: $\Rightarrow u = \frac{y}{x}$ 做换元, 化成可分离变量的微分方程

一阶线性微分方程

定义: 形如 $\frac{dy}{dx} + P(x)y = Q(x)$ 的方程

当 Q(x) = 0 时, 称为一阶线性齐次微分方程

当 $Q(x) \neq 0$ 时, 称为一阶线性非齐次微分方程

解法: $y = e^{-\int P(x)dx} (\int Q(x)e^{\int P(x)dx}dx + C)$

伯努利方程

定义: 形如 $\frac{dy}{dx} + P(x)y = Q(x)y^n$ 的方程

解法: 方程两端同乘 y^{-n} , 再令 $z = y^{1-n}$ 做换元, 化成一阶线性微

分方程

1.3 高阶微分方程求解

高阶可降价微分方程

$$1, y^{(n)} = f(x)$$
 型

解法: 方程两端直接做 n 次积分

2, y'' = f(x y') 型

解法: 令 $y^{'}=p$,则 $y^{''}=p^{'}$,带入原方程,化为一阶方程

3、y'' = f(y y') 型

解法: 令 y' = p, 则 $y'' = p \frac{dp}{dy}$, 带入原方程, 化为一阶方程

高阶线性微分方程

- 1、设 y_1 和 y_2 是 y'' + P(x)y' + Q(x)y = 0 的两个无关解 (不成比例的解),则 $Y = C_1y_1 + C_2y_2$ 是该齐次方程的通解,其中 C_1 和 C_2 是任意常数
- 2、设 y^* 是 $y^{''} + P(x)y^{'} + Q(x)y = f(x)$ 的一个特解, Y 是对应的齐次方程的通解,则 $y = Y + y^*$ 是该非齐次方程的通解
- 3、设 $y'' + P(x)y' + Q(x)y = f_1(x) + f_2(x)$, 其中 y_1^* 是对应 $f_1(x)$ 的特解, y_2^* 是对应 $f_2(x)$ 的特解,则 $y_1^* + y_2^*$ 是该非齐次方程的特解 4、设 y_1^* 和 y_2^* 都是 y'' + P(x)y' + Q(x)y = f(x) 的特解,则 $y_1^* y_2^*$ 是对应的齐次方程的解

二阶常系数齐次线性微分方程

定义: 形如 y'' + py' + qy = 0 的方程

解法: 写出特征方程 $r_p^2 r + q = 0$

1、若特征方程有两个不相等实根 $r_1 \neq r_2$,

则通解为 $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$

公式

- 2、若特征方程有两个相等实根 $r_1 = r_2$,
- 则通解为 $y = (C_1 + C_2 x)e^{r_1 x}$
- 3、若特征方程有两个虚根 $r_{1,2} = \alpha \pm \beta_i$,
- 则通解为 $y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

二阶常系数非齐次线性微分方程

定义: 形如 y'' + py' + qy = f(x) 的方程

1、若 $f(x) = e^{\lambda x} P_m(x)$,则特解为 $y^* = e^{\lambda x} R_m(x) x^k$

其中 $R_m(x)$ 是 m 次一般多项式

$$k = \begin{cases} 0, & \lambda$$
不是特征方程的根 $1, & \lambda$ 是特征方程的单根 $2, & \lambda$ 是特征方程的重根

2、若 $f(x) = e^{\lambda x}[P_m(x)cos\omega x + Q_n(x)sin\omega x]$,则特解为 $y^* = e^{\lambda x}[R_l(x)cos\omega x + S_l(x)sin\omega x]x^k$

其中 $R_l(x)$ 和 $S_l(x)$ 是两个不同的 m 次一般多项式,且

l = max(m, n)

$$k = \begin{cases} 0, & \lambda \pm \omega i$$
不是特征根
1, & $\lambda \pm \omega i$ 是特征根

二阶欧拉方程

定义: 形如 $x^{2}y^{''} + axy^{'} + by = f(x)$ 的方程

解法: 令 $x = e^t(x > 0)$ 或 $x = -e^t(x < 0)$ 换元,化成二阶常系数线

性微分方程