Exercises 7.3.4 — Problem 6

Problem. Give an example of a sequence of continuous functions converging pointwise to a function with a discontinuity of the second kind.

Proof. We begin by defining a function with domain [0,1] and a discontinuity of the second kind at x=0. For x=1/2k, define f(x)=0 and for x=1/(2k+1) define f(x)=1. For values in between an "even" and "odd" pair, linearly interpolate between 0 and 1. Finally define f(0)=0. The left figure depicts the limit (as far as I drew it). Then on the right we have a depiction of an element of the sequence. For a

function f_n in the sequence, we define $f_n(x) = 0$ for x < 1/2n and defined as the limit for $x \ge 1/2n$. Certainly the sequence f_1, f_2, \ldots converges pointwise to f on their common domain [0,1]. Further, each f_n is continuous but the limit has a discontinuity of the second kind.