Analysis & Understanding

Optimisation & Decisions

ElectraNet

Total demand in SA for 2017/18 was 12,203 GWh

ElectraNet wanted to build another interconnector

First, to understand what ElectraNet was currently doing.

Optimisation (Linear programming)

By building generators and transmission lines

minimise Cost

subject to Supply > Demand Stability constraints

In each state,

- ightharpoonup on average, generation =50 MW per
- demand = 100 MW in each state
- ▶ 1 generator 🛍
- No interconnector ♠

 $\begin{array}{l} {\sf Demand} = 100 \; {\sf MW} \\ {\sf Generation} = 50 \; {\sf MW} \end{array}$

 $\begin{array}{l} {\sf Demand} = 100 \; {\sf MW} \\ {\sf Generation} = 50 \; {\sf MW} \end{array}$

Costs

- ▶ \$50 to build
- ▶ \$50 to build 🎘
- ▶ Running cost 🚻 : \$1

Constraints

- capacity: 60 MW
- ▶ Supply > Demand

minimise built
$$\times$$
 \$50 + \longrightarrow operated \times \$1 + \bigstar \times \$50

subject to Supply > Demand \$\pm\$Load < 60 MW

Solution

$$Cost = 2 \times \$50 + 4 \times \$1 = \$104$$

Great, in the 1970's...

Wind Generation, Cathedral Rocks, 31-Jan-19

Including uncertainty

		Windy in SA
Generation per	SA = 20 MW	SA = 80 MW
	Vic = 80 MW	Vic = 20 MW

Average generation per $\uparrow \uparrow \uparrow = 50MW$

Including uncertainty

If short fall cost is \$1 per MW, this solution costs

$$104 + 60 \times 1 = 164$$

ElectraNet

"How can we include the uncertain nature of renewables in the capital decision making?"

Accounting for uncertainty

Calm: generation in SA = 20 MW per
$$\bigcirc$$

$$\text{Shortfall} = 100 \text{ MW} - \bigcirc \times 20 \text{ MW} - \text{Imports}$$

Accounting for uncertainty

Solution

- No shortfall
- \triangleright Cost is \$50 + \$50 + \$50 + \$4 = \$154
- Compare to the previous solution: costs \$164
- ► Realise interconnector value

Life-size problems

- More decisions to make
 - e.g. type of generator
- More constraints
 - e.g. financial constraints
- More detailed model of generation/demand
- More detailed network
 - e.g. include NSW, QLD
 - generator-level network

ElectraNet

- "SA could see bills reduce by about \$66 per year"
- "NSW could see bills reduce by about \$30 per year"
- "The new interconnector could also, improve network and energy security, and support transformation towards a lower carbon emissions future"

wind/solar/ demand forecasts

Analysis & Understanding

generator dispatch

Optimisation & Decisions

storage management

ARC Centre of Excellence in Mathematical and Statistical Frontiers (ACEMS)

https://acems.org.au/

Dennis Liu dennis.liu01@adelaide.edu.au Angus Lewis angus.lewis@adelaide.edu.au

