Section 1.7 – Inequalities

Notation

Type of Interval	Set	Interval Notation	Graph
Open interval {	$\{x \mid x > a\}$	(a,∞)	
	$\{x \mid a < x < b\}$ $\{x \mid x < b\}$	(a, b)	a b
l		$(-\infty,b)$	<i>b</i>
Other intervals	$\{x \mid x \ge a\}$ $\{x \mid a < x \le b\}$	[a,∞)	a
		(a, b]	a b
	$\{x \mid a \le x < b\}$	[<i>a</i> , <i>b</i>)	a b
	$\{x x \le b\}$	$(-\infty, b]$	
Closed interval	$\{x \mid a \le x \le b\}$	[a,b]	a b
Disjoint interval	$\{x x < a \text{ or } x > b\}$	$(-\infty, a) \cup (b, \infty)$	↔ <i>a b</i>
All real numbers	$\{x \mid x \text{ is a real number}\}$	$(-\infty,\infty)$	

Properties of inequality

- 1. If a < b, then a + c < b + c
- 2. If a < b and if c > 0, then ac < bc
- 3. If a < b and if c < 0, then ac > bc

Example

Solve
$$3x + 1 > 7x - 15$$

Solution

$$3x - 7x \ge -1 - 15$$

$$-4x \ge -16$$
Divide by -4 both sides

$$\underline{x < 4}$$
 or $(-\infty, 4)$ or $\{x \mid x < 4\}$

Example

$$\frac{x-4}{2} \ge \frac{x-2}{3} + \frac{5}{6}$$

LCD: 2, 3, 6

Solution

$$(6)\frac{x-4}{2} \ge (6)\frac{x-2}{3} + (6)\frac{5}{6}$$

$$3(x-4) \ge 2(x-2) + 5$$

$$3x - 12 \ge 2x - 4 + 5$$

$$3x - 12 \ge 2x + 1$$

$$3x - 2x \ge 12 + 1$$

$$x \ge 13$$

Example

a)
$$3(x+1) > 3x+2$$

$$3x + 3 > 3x + 2$$

$$3x - 3x > -3 + 1$$

$$0 > -1$$
 (*True statement*)

Sol.: \mathbb{R} or $\{x | All \ Real \ numbers \}$ or $(-\infty, \infty)$

b)
$$x + 1 \le x - 1$$

$$x - x \le -1 - 1$$

$$0 \le -2$$

Sol.: Ø

Example

Solve -2 < 5 + 3x < 20 Give the solution set in interval notation and graph it.

Solution

$$-2-5 < 5+3x-5 < 20-5$$

$$-7 < 3x < 15$$

$$-\frac{7}{3} < \frac{3}{3}x < \frac{15}{3}$$

$$-\frac{7}{3} < x < 5$$

Solution: $\left(-\frac{7}{3}, 5\right)$

Intersections of Interval \bigcap

To find the intersection, take the portion of the number line that the two graphs have in *common*

Example

$$[1,3] \cap (2,6) = (2,3]$$

Unions of Interval \bigcup

To find the union, take the portion of the number line representing the total *collection* of numbers in the two graphs.

Example

$$[1, 3] \cup (2, 6) = [1, 6)$$

Solving an Absolute Value Inequality:

If X is an algebraic expression and c is a positive number,

- 1. The solutions of $|X| \le c$ are the numbers that satisfy $-c \le X \le c$.
- 2. The solutions of |X| > c are the numbers that satisfy X < -c or X > c.

Example

Solve: $-3|5x-2|+20 \ge -19$

Solution

$$-3|5x-2| \ge -39$$

$$-|5x-2| \ge -13$$

$$|5x - 2| \le 13$$

$$-13 \le 5x - 2 \le 13$$

$$-11 \le 5x \le 15$$

$$-\frac{11}{5} \le x \le 3 \qquad \text{or} \qquad \left[-\frac{11}{5}, \ 3 \right]$$

$$\left[-\frac{11}{5},\ 3\right]$$

Example

Solve: 18 < |6 - 3x|

Solution

$$|6-3x| > 18$$

$$6-3x < -18$$

$$-3x < -18-6$$

$$-3x > 18-6$$

$$-3x > 18$$

$$-3x > 18$$

$$-3x > 12$$

$$\frac{-3}{-3}x > -\frac{24}{-3}$$

$$\frac{-3}{-3}x < \frac{12}{-3}$$

$$x < -4$$

Solution: $(-\infty, -4) \cup (8, \infty)$

Special Cases

Example

Solve the inequality $|2-5x| \ge -4$

Solution

$$|2-5x| \ge -4$$

It is always true

 \div The solution set is: $\mathbb{R}~~ All~ real numbers~ \left(-\infty,\,\infty\right)$

Example

Solve the inequality |4x-7| < -3

Solution

$$|4x - 7| < -3$$

Any absolute value can't be less than any negative number.

 \therefore No solution or \emptyset

Example

Solve the inequality |5x + 15| = 0

Solution

$$\left|5x + 15\right| = 0$$

$$5x + 15 = 0$$

$$5x = -15$$

∴ Solution: $\underline{x = -3}$

Definition of a Polynomial Inequality

A polynomial inequality is any inequality that can be put into one of the forms

$$f(x) \le 0$$

$$f(x) \ge 0$$

Where f is a polynomial function.

Procedure for Solving Polynomial Inequalities

Example

1. Express the inequality in the form $f(x)$? 0	$x^2 - x < 12$	
	$x^2 - x - 12 < 0$	
2. Solve $f(x) = 0$	$x^2 - x - 12 = 0$	
	$\underline{x} = -3, 4$	
3. Locate the boundary	-3 0 4	
4. Choose one test value	+ - +	
5. Write the solution set	(-3, 4)	

Example

Solve $2x^2 + 5x - 12 \ge 0$

Solution

$$2x^2 + 5x - 12 = 0$$
$$(2x - 3)(x + 4) = 0$$

$$x = -4, \frac{3}{2}$$

Solution:
$$x \le -4$$
 $x \ge \frac{3}{2}$

Example

Solve: $x^3 + 3x^2 \le x + 3$

Solution

$$x^3 + 3x^2 - x - 3 = 0$$

$$x^{2}(x+3)-(x+3)=0$$

$$(x+3)(x^2-1) = 0$$

$$x + 3 = 0$$
 $x^2 - 1 = 0$

$$x = -3 \qquad \qquad x^2 = 1$$

$$x = -3 \qquad \qquad x = \pm 1$$

Solution: $\underline{x \le -3} \quad -1 \le x \le 1$

$$(-\infty, -3] \cup [-1, 1]$$

Rational Inequality

Example

 $\frac{2x}{x+1} \ge 1$ Solve:

Solution

$$\frac{2x}{x+1} = 1 \longrightarrow Cond.: x+1 \neq 0 \Rightarrow \underline{x \neq -1}$$

$$(x+1)\frac{2x}{x+1} - 1(x+1) = 0$$

$$2x - x - 1 = 0$$

$$x - 1 = 0$$

$$x = 1$$

Solution:
$$\underline{x \le -1} \quad \underline{x \ge 1}$$
 $(-\infty, -1) \cup [1, \infty)$

$$(-\infty, -1) \cup [1, \infty)$$

Example

Solve
$$\frac{5}{r+4} \ge 1$$

Solution

$$\frac{5}{x+4} - 1 = 0$$
 Exception: $x + 4 \neq 0 \implies x \neq -4$

$$(x+4)\frac{5}{x+4} - 1(x+4) = 0$$

$$5 - x - 4 = 0$$

$$x = 1$$

Solution:
$$\underline{-4 < x \le 1}$$
 $\left(-4, 1\right]$

Example

Solve
$$\frac{2x-1}{3x+4} < 5$$

Solution

$$\frac{2x-1}{3x+4} - 5 = 0$$
 Restriction: $3x + 4 \neq 0 \implies x \neq -\frac{4}{3}$

$$\left(3x+4\right)\frac{2x-1}{3x+4}-5\left(3x+4\right)=0$$

$$2x - 1 - 15x - 20 = 0$$

$$-13x - 21 = 0$$

$$x = -\frac{21}{13}$$

Solution:
$$x < -\frac{21}{13}$$
 $x > -\frac{4}{3}$ $\left(-\infty, -\frac{21}{13}\right) \cup \left(-\frac{4}{3}, \infty\right)$

$$\left(-\infty, -\frac{21}{13}\right) \cup \left(-\frac{4}{3}, \infty\right)$$

Exercises Section 1.7 – Inequalities

(1 - 6)Find:

1.
$$(-3,0) \cap [-1,2]$$
 3. $(-4,0) \cap [-2,1]$ 5. $(-\infty,5) \cap [1,8)$

3.
$$(-4,0) \cap [-2,1]$$

5.
$$(-\infty,5)\cap \lceil 1,8 \rangle$$

2.
$$(-3,0) \cup [-1,2]$$

$$(-3,0) \cup [-1,2]$$
 4. $(-4,0) \cup [-2,1]$ 6. $(-\infty,5) \cup [1,8)$

6.
$$(-\infty,5) \cup [1,8]$$

(7-45) Solve the inequality equation

7.
$$-3x + 5 > -7$$

8.
$$2-3x \le 5$$

9.
$$4-3x \le 7+2x$$

10.
$$5x + 11 < 26$$

11.
$$3x - 8 \ge 13$$

12.
$$-9x \ge 36$$

13.
$$-4x \le 64$$

14.
$$8x - 11 \le 3x - 13$$

15.
$$18x + 45 \le 12x - 8$$

16.
$$4(x+1)+2 \ge 3x+6$$

17.
$$8x + 3 > 3(2x + 1) + x + 5$$

18.
$$2x-11 < -3(x+2)$$

19.
$$-4(x+2) > 3x+20$$

20.
$$1-(x+3) \ge 4-2x$$

21.
$$5(3-x) \le 3x-1$$

22.
$$\frac{x}{4} - \frac{1}{2} \le \frac{x}{2} + 1$$

23.
$$\frac{3x}{10} + 1 \ge \frac{1}{5} - \frac{x}{10}$$

24.
$$6x - (2x + 3) \ge 4x - 5$$

25.
$$\frac{2x-5}{-8} \le 1-x$$

26.
$$1-\frac{x}{2} > 4$$

27.
$$7 - \frac{4}{5}x < \frac{3}{5}$$

28.
$$\frac{x-4}{6} \ge \frac{x-2}{9} + \frac{5}{18}$$

29.
$$\frac{4x-3}{6} + 2 \ge \frac{2x-1}{12}$$

30.
$$4(3x-2)-3x < 3(1+3x)-7$$

31.
$$3(x-8)-2(10-x)<5(x-1)$$

32.
$$8(x+1) \le 7(x+5) + x$$

33.
$$4(x-1) \ge 3(x-2) + x$$

34.
$$7(x+4)-13>12+13(3+x)$$

35.
$$-2 \lceil 7x - (2x - 3) \rceil < -2(x + 1)$$

36.
$$6 - \frac{2}{3}(3x - 12) \le \frac{2}{5}(10x + 50)$$

37.
$$\frac{2}{7}(7-21x)-4<10-\frac{3}{11}(11x-11)$$

38.
$$3\lceil 3(x+5) + 8x + 7 \rceil + 5\lceil 3(x-6) - 2(3x-5) \rceil < 2(4x+3)$$

39.
$$5\lceil 3(2-3x)-2(5-x)\rceil - 6\lceil 5(x-2)-2(4x-3)\rceil < 3x+19$$

40.
$$0 \le 3x - 1 \le 10$$

41.
$$0 \le 1 - 3x \le 10$$

42.
$$0 \le 2x + 6 \le 54$$

43.
$$-3 \le \frac{2}{3}x - 5 \le -1$$

44.
$$-6 \le 6x + 3 \le 21$$

45.
$$1 \le 2x + 3 \le 11$$

(46-85) Solve the inequality equation

46.
$$|x| < 2$$

47.
$$|x| \ge 2$$

48.
$$|x-2| < 1$$

49.
$$|x-1| < 4$$

50.
$$|x+2| \ge 1$$

51.
$$|x+1| \ge 4$$

52.
$$|3x + 5| < 17$$

53.
$$|5x-2| < 13$$

54.
$$|5x-2| \ge 13$$

55.
$$|2(x-1)+4| \le 8$$

56.
$$|3(x-1)+2| \le 20$$

57.
$$\left| \frac{2x+6}{3} \right| > 2$$

58.
$$\left| \frac{3x-3}{4} \right| < 6$$

59.
$$\left| \frac{2x+2}{4} \right| \ge 2$$

60.
$$\left| \frac{3x-3}{9} \right| \le 1$$

61.
$$\left| 3 - \frac{2x}{3} \right| > 5$$

62.
$$\left| 3 - \frac{3x}{4} \right| < 9$$

63.
$$|x-2| < -1$$

64.
$$|x+2| < -3$$

65.
$$|x+6| > -10$$

66.
$$|x+2| > -8$$

67.
$$|x+2|+9 \le 16$$

68.
$$|x-2|+4 \ge 5$$

69.
$$2|2x-3|+10>12$$

70.
$$3|2x-1|+2<8$$

71.
$$-4|1-x|<-16$$

72.
$$-2|5-x|<-6$$

73.
$$3 \le |2x - 1|$$

74.
$$9 \le |4x + 7|$$

75.
$$12 < \left| -2x + \frac{6}{7} \right| + \frac{3}{7}$$

76.
$$4 + \left| 3 - \frac{x}{3} \right| \ge 9$$

77.
$$|x-2| < 5$$

78.
$$|2x+1| < 7$$

79.
$$|5x+2|-2<3$$

80.
$$|2-7x|-1>4$$

81.
$$|3x-4| < 2$$

82.
$$|2x+5| \ge 3$$

83.
$$|12-9x| \ge -12$$

84.
$$|6-3x|<-11$$

85.
$$|7 + 2x| < 0$$

(86-107) Solve the inequality equation

86.
$$x^2 - 7x + 10 > 0$$

87.
$$2x^2 - 9x \le 18$$

88.
$$x^2 - 5x + 4 > 0$$

89.
$$x^2 + x - 2 > 0$$

90.
$$x^2 - 4x + 12 < 0$$

91.
$$x^2 + 7x > 0$$

92.
$$x^2 - 49 < 0$$

93.
$$x^2 - 5x > 0$$

94.
$$x^2 - 16 \le 0$$

95.
$$x^2 + 7x + 10 < 0$$

96.
$$x^2 - 3x \ge 28$$

97.
$$x^2 + 5x + 6 < 0$$

98.
$$x^2 < -x + 30$$

99.
$$x^3 - 3x^2 - 9x + 27 < 0$$

100.
$$x^3 - x > 0$$

101.
$$x^3 + 3x^2 \le x + 3$$

102.
$$x^3 + x^2 \ge 48x$$

103.
$$x^3 - x^2 - 16x + 16 < 0$$

104.
$$x^3 + x^2 - 9x - 9 > 0$$

105.
$$x^3 + 3x^2 - 4x - 12 \ge 0$$

106.
$$x^4 - 20x^2 + 64 \le 0$$

107.
$$x^4 - 10x^2 + 9 > 0$$

(108 - 130) Solve the inequality equation

108.
$$\frac{x+4}{x-1} < 0$$

116.
$$\frac{x}{x-3} > 0$$

109.
$$\frac{x-2}{x+3} > 0$$

117.
$$\frac{x-3}{x+2} \ge 0$$

110.
$$\frac{x-5}{x+8} \ge 3$$

118.
$$\frac{x-2}{x+2} \le 2$$

111.
$$\frac{x-4}{x+6} \le 1$$

119.
$$\frac{x+2}{x-2} \ge 2$$

112.
$$\frac{x}{2x+7} \ge 4$$

120.
$$\frac{x+2}{3+2x} \le 5$$

113.
$$\frac{x}{3x-5} \le -5$$

121.
$$\frac{x+6}{x-14} \ge 1$$

114.
$$\frac{x+2}{x-5} \le 2$$

122.
$$\frac{x-3}{x+4} \ge \frac{x+2}{x-5}$$

115.
$$\frac{3x+1}{x-2} \ge 4$$

123.
$$\frac{x-4}{x+3} - \frac{x+2}{x-1} \le 0$$

124.
$$\frac{2x-1}{x+3} \ge \frac{x+1}{3x+1}$$

125.
$$\frac{(x+1)(x-4)}{x-2} < 0$$

126.
$$\frac{x(x-4)}{x+5} > 0$$

$$127. \ \frac{6x^2 - 11x - 10}{x} > 0$$

$$128. \ \frac{3x^2 - 2x - 8}{x - 1} \ge 0$$

$$129. \ \frac{x^2 - 6x + 9}{x - 5} \le 0$$

130.
$$\frac{x^2 + 10x + 25}{x + 1} \le 0$$