

Как разрабатывают аппаратуру?

Микроархитектуру разрабатывают на языке описания аппаратуры (HDL – Hardware Description Language)

Описание микроархитектуры так же часто называют RTL (Register-Transfer Level)

Из **RTL** синтезируют цифровую схему

Пример RTL модуля на SystemVerilog

```
module mux (
    input logic a, b, sel,
    output logic f
    logic n sel, f1, f2;
    assign sel = ~n sel;
    assign f1 = a & n sel;
    assign f2 = b & sel;
     assign f = f1 \mid f2;
endmodule
```


RTL готов — отправляем на tapeout

- 1. Синтезирование из RTL цифровой схемы (на уровне транзисторов) с использованием стандартной библиотеки
- 2. Проектирование физического расположения проводов и базовых элементов
- 3. Изготовление фотомаски (tapeout)

Стандартная библиотека — набор базовых элементов, оптимизированных на физическом уровне

RTL

STD Lib

Chip

Первый инженерный образец

Ура, отгружаем заказчикам!

Или не все так радужно?...

А что вообще у нас получилось?

Обсуждение: а как тестировать?

Какие виды тестирования вы знаете?

Тестирование

- Функциональное
 - Компонентов (unit)
 - Интеграционное
 - Системное (end-to-end)
- Поэтапное
 - Sanity
 - Дымовое (smoke)
 - Регрессионное
 - Приемное

Достаточно ли этого?

Тестирование

- Функциональное
 - Компонентов (unit)
 - Интеграционное
 - Системное (end-to-end)
- Поэтапное
 - Sanity
 - Дымовое (smoke)
 - Регрессионное
 - Приемное

- Производительности
- Стабильности
- Стресс-тестирование

Объект тестирования	Вид тестирования
Результат выполнения инструкций	
Работа с периферией	
Потребляемая мощность	
Время работы без зависаний	
Работа при максимальной нагрузке	
Время выполнения инструкций	

Объект тестирования	Вид тестирования
Результат выполнения инструкций	Функциональное
Работа с периферией	
Потребляемая мощность	
Время работы без зависаний	
Работа при максимальной нагрузке	
Время выполнения инструкций	

Объект тестирования	Вид тестирования
Результат выполнения инструкций	Функциональное
Работа с периферией	Функциональное
Потребляемая мощность	
Время работы без зависаний	
Работа при максимальной нагрузке	
Время выполнения инструкций	

Объект тестирования	Вид тестирования
Результат выполнения инструкций	Функциональное
Работа с периферией	Функциональное
Потребляемая мощность	Функциональное
Время работы без зависаний	
Работа при максимальной нагрузке	
Время выполнения инструкций	

Объект тестирования	Вид тестирования
Результат выполнения инструкций	Функциональное
Работа с периферией	Функциональное
Потребляемая мощность	Функциональное
Время работы без зависаний	Стабильность
Работа при максимальной нагрузке	
Время выполнения инструкций	

Объект тестирования	Вид тестирования
Результат выполнения инструкций	Функциональное
Работа с периферией	Функциональное
Потребляемая мощность	Функциональное
Время работы без зависаний	Стабильность
Работа при максимальной нагрузке	Стресс
Время выполнения инструкций	

Объект тестирования	Вид тестирования
Результат выполнения инструкций	Функциональное
Работа с периферией	Функциональное
Потребляемая мощность	Функциональное
Время работы без зависаний	Стабильность
Работа при максимальной нагрузке	Стресс
Время выполнения инструкций	Производительность

Инструменты для тестирования

Вид тестирования	Инструменты
Unit, интеграционное	Testbench
Системное	VCS, FPGA
Потребляемая мощность	Power модель
Время выполнения инструкции	gperf, perf, llvm-exegesis

Модель или симулятор?

Модель:

- Моделирует конкретные аспекты системы
- Надо настраивать и конфигурировать вручную

Симулятор:

- Имитирует работу вычислительной системы
- Обеспечивает окружение для выполнения

Задание: пишем модель

Реализуйте модель rv32i процессора

Как вы предусмотрите

- Добавление расширений?
- Конфигурацию 32 vs 64 bit?

To be continued ...

На следующем занятии узнаем

- В каких сценариях применяются разные симуляторы
- Как отличается производительность разных симуляторов
- Как увеличить производительность функционального симулятора
- Как проверить что вы написали корректный симулятор
- Как сделать printf, когда нет ОС