## Rede Neural Perceptron

Silvia Moraes



#### Roteiro

- Arquiteturas de Rede
- Redes FeedForward
- Revisitando a estrutura de um neurônio artificial
- Algoritmo de Aprendizado de uma rede perceptron
- Passo a passo de execução
- Limitação da rede



## A arquitetura de uma rede neural define o tipo de tarefa que ela pode executar.







## Redes Feed Forward

### Tarefas Supervisionadas: classificação o e regressão



Perceptron





https://sites.icmc.usp.br/andre/research/neural/

Propagação: fluxo do sinal sempre para frente



## Redes Feed Forward Rede Perceptron

- Perceptron é uma rede muito simples.
- Quando constituída de apenas um neurônio é chamada de perceptron elementar.
- Possui apenas uma camada de neurônios.
- Pode ter várias entradas e várias saídas.
- Trabalha com valores discretos e contínuos tanto para as entradas quanto para as saídas.
- Historicamente quando há valores contínuos, as redes com essas características eram chamadas de Adaline.
- <u>Limitação</u>: só consegue resolver problemas linearmente separáveis.



Como definir a quantidade valores de entrada, de camadas e neurônios da rede?

- Como esta rede tem apenas 1 camada, precisamos apenas definir a os atributos de entrada e quantidade de neurônios desta única camada.
- Normalmente, define-se um neurônio para cada classe esperada.
- Para entender, vamos ver um exemplo...



| cpf | nome   | renda | dívida | classificação do cliente |
|-----|--------|-------|--------|--------------------------|
| 111 | João   | 2000  | 1000   | bom                      |
| 222 | Maria  | 3000  | 2000   | mau                      |
| 333 | Pedro  | 1000  | 500    | mau                      |
| 444 | Carlos | 3000  | 1500   | bom                      |

Entradas: Quais são atributos podem ser usados como entrada para rede?

Saídas: Em quantas classes do algoritmo deve organizar os clientes?



| cpf  | nome         | renda | dívida | classificação do cliente |
|------|--------------|-------|--------|--------------------------|
| 111  | loão         | 2000  | 1000   | bom                      |
| 222, | <b>Varia</b> | 3000  | 2000   | mau                      |
| 333  | Pedro        | 1000  | 500    | mau                      |
| 444  | Carlos       | 3000  | 1500   | bom                      |
|      |              |       |        |                          |

2 atributos de entrada

Entradas: Quais são atributos podem ser usados como entrada para rede?

Saídas: Em quantas classes do algoritmo deve organizar os clientes?



| cpf  | nome         | renda | dívida | classificação do cliente |
|------|--------------|-------|--------|--------------------------|
| 111, | oão          | 2000  | 1000   | bom                      |
| 222, | <b>Maria</b> | 3000  | 2000   | mau                      |
| 333  | Pedro        | 1000  | 500    | mau                      |
| 444  | Carlos       | 3000  | 1500   | bom                      |

2 classes como saida

Entradas: Quais são atributos podem ser usados como entrada para rede?

Saídas: Em quantas classes do algoritmo deve organizar os clientes?

#### Lembrando:

Redes neurais **trabalham somente com números**, por isso e comum realizar transformações nos dados.

E funcionam melhor com dados normalizados.





| renda | dívida | classificação do cliente |
|-------|--------|--------------------------|
| 0,66  | 0,5    | 1                        |
| 1     | 1      | 0                        |
| 0,33  | 0,25   | 0                        |
| 1     | 0,75   | 1                        |



#### Topologia menos usual.

#### Cada neurônio e capaz de decidir entre 2 classes:

- Quando a rede devolve 0, significa que não é um cliente bom.
- Quanto a rede devolve 1, significa que é um cliente bom.



#### Classificação Cliente

| renda | dívida | D1 | D2 | _ |
|-------|--------|----|----|---|
| 0,66  | 0,5    | 1  | 0  |   |
| 1     | 1      | 0  | 1  |   |
| 0,33  | 0,25   | 0  | 1  |   |
| 1     | 0,75   | 1  | 0  |   |



#### Topologia mais usual.

- Haverá uma saída esperada para cada neurônio.
- A saída da rede é dependente dos vários neurônios.
- Pode ser escolhido aquele de maior valor de saída.



0

#### Classificação Cliente

| renda | divida | D1 | D2 |  |
|-------|--------|----|----|--|
| 0,66  | 0,5    | 1  | 0  |  |
| 1     | 1      | 0  | 1  |  |
| 0,33  | 0,25   | 0  | 1  |  |



#### Topologia mais usual.

0,75

طن،نطم

- Haverá uma saída esperada para cada neurônio.
- A saída da rede é dependente dos vários neurônios.
- Pode ser escolhido aquele de maior valor de saída.



0

#### Classificação Cliente

| renda | divida | D1 | D2 |  |
|-------|--------|----|----|--|
| 0,66  | 0,5    | 1  | 0  |  |
| 1     | 1      | 0  | 1  |  |
| 0,33  | 0,25   | 0  | 1  |  |
|       |        |    |    |  |



#### Topologia mais usual.

0,75

حادث ماد

- Haverá uma saída esperada para cada neurônio.
- A saída da rede é dependente dos vários neurônios.
- Pode ser escolhido aquele de maior valor de saída.



#### Classificação Cliente

| renda | dívida | D1 | D2 |  |
|-------|--------|----|----|--|
| 0,66  | 0,5    | 1  | 0  |  |
| 1     | 1      | 0  | 1  |  |
| 0,33  | 0,25   | 0  | 1  |  |
| 1     | 0,75   | 1  | 0  |  |



#### Topologia mais usual.

- Haverá uma saída esperada para cada neurônio.
- A saída da rede é dependente dos vários neurônios.
- Pode ser escolhido aquele de maior valor de saída.



#### Classificação Cliente

| renda | dívida | D1 | D2 |  |
|-------|--------|----|----|--|
| 0,66  | 0,5    | 1  | 0  |  |
| 1     | 1      | 0  | 1  |  |
| 0,33  | 0,25   | 0  | 1  |  |
| 1     | 0,75   | 1  | 0  |  |



#### Topologia mais usual.

- Haverá uma saída esperada para cada neurônio.
- A saída da rede é dependente dos vários neurônios.
- Pode ser escolhido aquele de maior valor de saída.

Mais exemplos de topologia ...



# **Exemplo 1** – Dados estruturados



### Planta Iris



4 atributos de entrada

3 classes: Iris-setosa, Iris-versicolor, Iris-virginica



|   | sepal_length | sepal_width | petal_length | petal_width | species     |
|---|--------------|-------------|--------------|-------------|-------------|
| 0 | 5.1          | 3.5         | 1.4          | 0.2         | Iris-setosa |
| 1 | 4.9          | 3.0         | 1.4          | 0.2         | Iris-setosa |
| 2 | 4.7          | 3.2         | 1.3          | 0.2         | Iris-setosa |
| 3 | 4.6          | 3.1         | 1.5          | 0.2         | Iris-setosa |
| 4 | 5.0          | 3.6         | 1.4          | 0.2         | Iris-setosa |
| 5 | 5.4          | 3.9         | 1.7          | 0.4         | Iris-setosa |
| 6 | 4.6          | 3.4         | 1.4          | 0.3         | Iris-setosa |
| 7 | 5.0          | 3.4         | 1.5          | 0.2         | Iris-setosa |
| 8 | 4.4          | 2.9         | 1.4          | 0.2         | Iris-setosa |
| 9 | 4.9          | 3.1         | 1.5          | 0.1         | Iris-setosa |

### Planta Iris

Corola (conjunto de pétalas)

Pétalas

Sépalas

Cálice (conjunto de sépalas)

4 atributos de entrada

2 classes: Iris-setosa, Nao Iris-setosa



|   | sepal_length | sepal_width | petal_length | petal_width | species     |
|---|--------------|-------------|--------------|-------------|-------------|
| 0 | 5.1          | 3.5         | 1.4          | 0.2         | Iris-setosa |
| 1 | 4.9          | 3.0         | 1.4          | 0.2         | Iris-setosa |
| 2 | 4.7          | 3.2         | 1.3          | 0.2         | Iris-setosa |
| 3 | 4.6          | 3.1         | 1.5          | 0.2         | Iris-setosa |
| 4 | 5.0          | 3.6         | 1.4          | 0.2         | Iris-setosa |
| 5 | 5.4          | 3.9         | 1.7          | 0.4         | Iris-setosa |
| 6 | 4.6          | 3.4         | 1.4          | 0.3         | Iris-setosa |
| 7 | 5.0          | 3.4         | 1.5          | 0.2         | Iris-setosa |
| 8 | 4.4          | 2.9         | 1.4          | 0.2         | Iris-setosa |
| 9 | 4.9          | 3.1         | 1.5          | 0.1         | Iris-setosa |



Atributos dos objetos

Entrada com Dados estruturados

### Corola (conjunto de pétalas) - Pétalas Planta Iris Comprimento da sépala $(x_1)$ (conjunto de sépalas) Largura da sépala (x<sub>2</sub>) Saida Pesos Comprimento da pétala (x<sub>3</sub>) Largura da pétala $(x_4)$ $\xrightarrow{0.2}$ Função de Ativação $W_{4i}$

Atributos dos objetos

Entrada com Dados estruturados

### Planta Iris

## **Topologia para 2 classes**Classificador Binario Neural



Topologia: 4 x 2

Camada de entrada(dados): 4

Camada de saida (neuronios): 2



Tipo de Planta Iris

| <b>x1</b> | <b>x2</b> | х3  | <b>x4</b> | d1 | d2 |
|-----------|-----------|-----|-----------|----|----|
| 5.1       | 3.5       | 1.4 | 0.2       | 1  | 0  |
| 7         | 3.2       | 4.7 | 1.4       | 0  | 1  |
|           |           |     |           |    |    |

Iris-Setosa Nao Iris-Setosa

# Exemplo 2 – Dados desestruturados



• Considere como entrada de uma imagem de caracteres: 5 x 5.



 Objetivo: identificar as imagens correspondentes a vogais:





Atributos dos objetos



Atributos dos objetos









| x1,x2,x3,,x25  | <b>d1</b> | d2 | d3 | d4 | d5 |
|----------------|-----------|----|----|----|----|
| 1,1,1,1,1,0,   | 1         | 0  | 0  | 0  | 0  |
| 1,1,1,1,1,0,   | 0         | 1  | 0  | 0  | 0  |
| 0,0,1,0,0,0,0, | 0         | 0  | 1  | 0  | 0  |
| 1,1,1,1,1,0,   | 0         | 0  | 0  | 1  | 0  |
| 1,0,0,0,1,1,0, | 0         | 0  | 0  | 0  | 1  |
|                |           |    |    |    |    |

# Exemplo 3 – Dados desestruturados



## Classificador de sentenças



## Classificador de sentenças



### Classificador de sentenças



Veremos mais detalhes dessa topologia na aula sobre MultiLayer Perceptron.

Tipicamente esse problema não é linearmente separável. Ele precisa de uma rede várias camadas.

## Etapas Básicas de Construção de uma Rede Neural



### Rede Perceptron

• Como já mencionado, essas redes só conseguem resolver problemas linearmente separáveis.

 O algoritmo de aprendizado desse tipo de rede, procura os coeficientes que traçam a reta que separa linearmente os dados de uma classe de outra.



### Rede Perceptron

Revisitando um neurônio artificial j:



### Rede Perceptron

Revisitando um neurônio artificial j:



$$v_j = \sum_{i=0}^n (x_i \times w_{ij})$$

$$y_j = f(v_j)$$

#### Rede Perceptron

#### Revisitando um neurônio artificial j:

- Existem várias funções de ativação para as redes neurais.
- As clássicas são:
  - Limiar ou degrau
  - Linear
  - Sigmoide: logistica ou tangente hiperbolica
- Geralmente o Perceptron usa a função limiar.









## Rede Perceptron

#### Revisitando um neurônio artificial j:



#### Treinamento de Rede Neurais

#### Dataset com dados históricos, pre-processado e anotado com classes:

- Divida o dataset (harmonicamente, no caso de classes), em conjuntos disjuntos de:
- treino: usado para o treinamento do modelo;
  - validação: usado para validar o modelo durante o treinamento;

- teste: usado para verificar a solução, ou seja, a versão final do modelo, após

o treinamento.



#### Treinamento de Redes Neurais

Como os subconjuntos de treino, validação e teste são usados:



Acurácia = Número de predições corretas

Total de predições

#### Treinamento de Redes Neurais

- Os ciclos de treinamento de uma rede são medidos em épocas.
- Uma época corresponde a passagem de todos os dados do conjunto de treino uma vez pela rede.
- Para treinar uma rede são necessárias várias épocas.

#### Rede Perceptron - Algoritmo de Treinamento

Algoritmo de Treinamento do Perceptron: usa Regra Delta (correção de erro)

- Sendo X = { (dados1;saidaDesejada1); (dados1;saidaDesejada2),...}
- A taxa de aprendizagem η (deve ser positiva).

```
Inicializar todos pesos da rede com zero : wij = 0
Repetir ate encontrar erroGeral=0:
     epocas = epocas + 1
          erroGeral = 0
          Para cada neuronio j: 1 a k da rede :
          vi = 0
          Para cada atributo i: 0 a n dos dados de X :
               vj = vj + xi * wij
          yj = f(vj)
          erroj = dj - yj
          se erroj!=0 entao :
               delta = n * erroj * xi
               wij = wj + delta
     erroGeral = erroGeral + abs(erroj)
```

Qual o objetivo do treinamento de uma rede neural?

O que estamos procurando?



## Os pesos sinápticos.

São neles que o conhecimento adquirido pela rede fica armazenado.

## Rede Perceptron – Limitações

#### Tabela OR

| x1 | x2 | d |
|----|----|---|
| 0  | 0  | 0 |
| 0  | 1  | 1 |
| 1  | 0  | 1 |
| 1  | 1  | 1 |



### Rede Perceptron – Limitações

#### Tabela XOR

| ×1 | x2 | d |
|----|----|---|
| 0  | 0  | 0 |
| 0  | 1  | 1 |
| 1  | 0  | 1 |
| 1  | 1  | 0 |



- **Pesos** inicializados com zero:  $w_{10} = 0, w_{11} = 0, w_{12} = 0$
- limiar:  $Q(v_k) = \begin{array}{ccc} 1 & se \ v_k \geq 0 \\ 0 & caso \ contr \'ario \end{array}$  , taxa de aprendizagem:  $\eta = 1$

| <b>x1</b> | <b>x2</b> | d | x0 = 1                                    |
|-----------|-----------|---|-------------------------------------------|
| 0         | 0         | 0 | 0 x1 $w11=0.0$ $w10=0.0$                  |
| 0         | 1         | 1 | $0  x2 \qquad 1 \longrightarrow y1 = 1.0$ |
| 1         | 0         | 1 | w12 = 0.0                                 |
| 1         | 1         | 1 | propagação                                |

- $v_1 = x_0 \times w_{10} + x_1 \times w_{11} + x_2 \times w_{12}$
- $v_1 = 1 \times 0 + 0 \times 0 + 0 \times 0 = 0$
- $y_1 = Q(v_1) = Q(0) = 1.0$

- Ajuste dos pesos (Aplicando a regra delta)
  - $erro_1 = d_1 y_1 = 0 1.0 = -1.0$
  - $w_{10} = w_{10} + \eta \times erro_1 \times x_0 = 0.0 + 1 \times -1.0 \times 1 = -1.0$
  - $w_{11} = w_{11} + \eta \times erro_1 \times x_1 = 0.0 + 1 \times -1.0 \times 0 = 0.0$
  - $w_{12} = w_{12} + \eta \times erro_1 \times x_2 = 0.0 + 1 \times -1.0 \times 0 = 0.0$

- Pesos atuais:  $w_{10} = -1.0, w_{11} = 0.0, w_{12} = 0.0$
- limiar:  $Q(v_k) = \begin{array}{ccc} 1 & se \ v_k \geq 0 \\ 0 & caso \ contr \'ario \end{array}$  , taxa de aprendizagem:  $\eta = 1$

| <b>x1</b> | <b>x2</b> | d | x0 = 1                                   |
|-----------|-----------|---|------------------------------------------|
| 0         | 0         | 0 | 0 x1 $w11=0.0$ $w10 = -1.0$              |
| 0         | 1         | 1 | $1 \qquad x_2 \qquad 1 \qquad y_1 = 0.0$ |
| 1         | 0         | 1 | w12 = 0.0                                |
| 1         | 1         | 1 | propagação                               |

- $v_1 = x_0 \times w_{10} + x_1 \times w_{11} + x_2 \times w_{12}$
- $v_1 = 1 \times -1.0 + 0 \times 0.0 + 1 \times 0.0 = -1.0$
- $y_1 = Q(v_1) = Q(-1.0) = 0.0$
- Ajuste dos pesos (Aplicando a regra delta)
  - $erro_1 = d_1 y_1 = 1 0.0 = 1.0$
  - $w_{10} = w_{10} + \eta \times erro_1 \times x_0 = -1.0 + 1 \times 1.0 \times 1 = 0.0$
  - $w_{11} = w_{11} + \eta \times erro_1 \times x_1 = 0.0 + 1 \times 1.0 \times 0 = 0.0$
  - $w_{12} = w_{12} + \eta \times erro_1 \times x_2 = 0.0 + 1 \times 1.0 \times 1 = 1.0$

- Pesos atuais:  $w_{10} = 0.0, w_{11} = 0.0, w_{12} = 1.0$
- limiar:  $Q(v_k) = egin{array}{ccc} 1 & se \, v_k \geq 0 \\ 0 & caso \, contr \acute{a}rio \end{array}$  , taxa de aprendizagem:  $\eta = 1$

| <b>x1</b> | <b>x2</b> | d | x0 = 1                                          |
|-----------|-----------|---|-------------------------------------------------|
| 0         | 0         | 0 | 1 $\times 1$ $\times 1 = 0.0$ $\times 10 = 0.0$ |
| 0         | 1         | 1 | 0 X2 1 → Y1 = 1.0                               |
| 1         | 0         | 1 | W12 = 1.0                                       |
| 1         | 1         | 1 | propagação                                      |

- $v_1 = x_0 \times w_{10} + x_1 \times w_{11} + x_2 \times w_{12}$
- $v_1 = 1 \times 0.0 + 1 \times 0.0 + 0 \times 1.0 = 0.0$
- $y_1 = Q(v_1) = Q(0.0) = 1.0$

- Ajuste dos pesos (Aplicando a regra delta)
  - $erro_1 = d_1 y_1 = 1 1.0 = 0.0$ 
    - quando o erro é zero, não há ajuste de pesos.

- Pesos atuais:  $w_{10} = 0.0, w_{11} = 0.0, w_{12} = 1.0$
- limiar:  $Q(v_k) = egin{array}{ccc} 1 & se \, v_k \geq 0 \\ 0 & caso \, contr lpha rio \end{array}$  , taxa de aprendizagem:  $\eta = 1$

| <b>x1</b> | <b>x2</b> | d | x0 = 1                   |
|-----------|-----------|---|--------------------------|
| 0         | 0         | 0 | 1 x1 $W11=0.0$ $W10=0.0$ |
| 0         | 1         | 1 | 1 ×2 1.0                 |
| 1         | 0         | 1 | W12 = 1.0                |
| 1         | 1         | 1 | propagação               |

- $v_1 = x_0 \times w_{10} + x_1 \times w_{11} + x_2 \times w_{12}$
- $v_1 = 1 \times 0.0 + 1 \times 0.0 + 1 \times 1.0 = 1.0$
- $y_1 = Q(v_1) = Q(1.0) = 1.0$

- Ajuste dos pesos (Aplicando a regra delta)
  - $erro_1 = d_1 y_1 = 1 1.0 = 0.0$ 
    - quando o erro é zero, não há ajuste de pesos.

- Erro Acumulado para época 1 :
  - Erro Geral:
    - ullet = abs(erroEntrada1) + abs(erroEntrada2) + abs(erroEntrada3) + abs(erroEntrada4) =
    - $\bullet = abs(-1.0) + abs(1.0) + abs(0.0) + abs(0.0)$
    - $\bullet = 2.0$
- Como ainda há erro, o algoritmo prossegue ...

- Pesos atuais:  $w_{10} = 0.0, w_{11} = 0.0, w_{12} = 1.0$
- limiar:  $Q(v_k) = egin{array}{ccc} 1 & se \, v_k \geq 0 \\ 0 & caso \, contr \acute{a}rio \end{array}$  , taxa de aprendizagem:  $\eta = 1$

| <b>x1</b> | <b>x2</b> | d |   | x0 = 1            |
|-----------|-----------|---|---|-------------------|
| 0         | 0         | 0 | 0 | w11=0.0 $w10=0.0$ |
| 0         | 1         | 1 | 0 | x2                |
| 1         | 0         | 1 |   | W12 = 1.0         |
| 1         | 1         | 1 |   | propagação        |

- $v_1 = x_0 \times w_{10} + x_1 \times w_{11} + x_2 \times w_{12}$
- $v_1 = 0 \times 0.0 + 0 \times 1.0 + 1 \times 0.0 = 0.0$
- $y_1 = Q(v_1) = Q(0.0) = 1.0$

- Ajuste dos pesos (Aplicando a regra delta)
  - $erro_1 = d_1 y_1 = 0 1.0 = -1.0$
  - $w_{10} = w_{10} + \eta \times erro_1 \times x_0 = 0.0 + 1 \times -1.0 \times 1 = -1.0$
  - $w_{11} = w_{11} + \eta \times erro_1 \times x_1 = 0.0 + 1 \times -1.0 \times 0 = 0.0$
  - $w_{12} = w_{12} + \eta \times erro_1 \times x_2 = 1.0 + 1 \times -1.0 \times 0 = 1.0$

- Pesos atuais:  $w_{10} = -1.0, w_{11} = 0.0, w_{12} = 1.0$
- limiar:  $Q(v_k) = \begin{pmatrix} 1 & se \ v_k \geq 0 \\ 0 & caso \ contr \acute{a}rio \end{pmatrix}$ , taxa de aprendizagem:  $\eta = 1$

| <b>x1</b> | <b>x2</b> | d |   |           | ;          | x0 = 1       |
|-----------|-----------|---|---|-----------|------------|--------------|
| 0         | 0         | 0 | 0 | <b>x1</b> | w11=0.0    | W10 = -1.0   |
| 0         | 1         | 1 | 1 | x2        |            | 1 > Y1 = 1.0 |
| 1         | 0         | 1 |   |           | W12 = 1.0  |              |
| 1         | 1         | 1 |   |           | propagação |              |

- $v_1 = x_0 \times w_{10} + x_1 \times w_{11} + x_2 \times w_{12}$
- $v_1 = 1 \times -1.0 + 0 \times 0.0 + 1 \times 1.0 = 0.0$
- $y_1 = Q(v_1) = Q(0.0) = 1.0$

- Ajuste dos pesos (Aplicando a regra delta)
  - $erro_1 = d_1 y_1 = 1 1.0 = 0.0$ 
    - quando o erro é zero, não há ajuste de pesos.

- Pesos atuais:  $w_{10} = -1.0, w_{11} = 0.0, w_{12} = 1.0$
- limiar:  $Q(v_k) = \begin{pmatrix} 1 & se \ v_k \geq 0 \\ 0 & caso \ contr \'ario \end{pmatrix}$  , taxa de aprendizagem:  $\eta = 1$

| <b>x1</b> | <b>x2</b> | d | x0 = 1                      |
|-----------|-----------|---|-----------------------------|
| 0         | 0         | 0 | 1 x1 $w11=0.0$ $w10 = -1.0$ |
| 0         | 1         | 1 | 0 X2 Y1 = 0.0               |
| 1         | 0         | 1 | W12 = 1.0                   |
| 1         | 1         | 1 | propagação                  |

- $v_1 = x_0 \times w_{10} + x_1 \times w_{11} + x_2 \times w_{12}$
- .0  $v_1 = 1 \times -1.0 + 1 \times 0.0 + 0 \times 1.0 = -1.0$ 
  - $y_1 = Q(v_1) = Q(-1.0) = 0.0$
- Ajuste dos pesos (Aplicando a regra delta)
  - $erro_1 = d_1 y_1 = 1 0.0 = 1.0$
  - $w_{10} = w_{10} + \eta \times erro_1 \times x_0 = -1.0 + 1 \times 1.0 \times 1 = 0.0$
  - $w_{11} = w_{11} + \eta \times erro_1 \times x_1 = 0.0 + 1 \times 1.0 \times 1 = 1.0$
  - $w_{12} = w_{12} + \eta \times erro_1 \times x_2 = 1.0 + 1 \times 1.0 \times 0 = 1.0$

- Pesos atuais:  $w_{10} = 0.0, w_{11} = 1.0, w_{12} = 1.0$
- limiar:  $Q(v_k) = \begin{pmatrix} 1 & se \ v_k \geq 0 \\ 0 & caso \ contr \acute{a}rio \end{pmatrix}$ , taxa de aprendizagem:  $\eta = 1$

| <b>x1</b> | <b>x2</b> | d | x0 = 1                       |
|-----------|-----------|---|------------------------------|
| 0         | 0         | 0 | 1 x1 $w11 = 1.0$ $w10 = 0.0$ |
| 0         | 1         | 1 | 1 ×2 1.0                     |
| 1         | 0         | 1 | w12 = 1.0                    |
| 1         | 1         | 1 | propagação                   |

- $v_1 = x_0 \times w_{10} + x_1 \times w_{11} + x_2 \times w_{12}$
- $v_1 = 1 \times 0.0 + 1 \times 1.0 + 1 \times 1.0 = 2.0$
- $y_1 = Q(v_1) = Q(2.0) = 1.0$

- Ajuste dos pesos (Aplicando a regra delta)
  - $erro_1 = d_1 y_1 = 1 1.0 = 0.0$ 
    - quando o erro é zero, não há ajuste de pesos.

- Erro Acumulado para época 2 :
  - Erro Geral:
    - ullet = abs(erroEntrada1) + abs(erroEntrada2) + <math>abs(erroEntrada3) + abs(erroEntrada4) =
    - $\bullet = abs(-1.0) + abs(0.0) + abs(1.0) + abs(0.0)$
    - = 2.0
- Como ainda há erro, o algoritmo prossegue ...

- Pesos atuais:  $w_{10} = 0.0, w_{11} = 1.0, w_{12} = 1.0$
- ullet limiar:  $Q(v_k)=egin{array}{ccc} 1 & se \, v_k \geq 0 \ 0 & caso \, contr lpha rio \end{array}$  , taxa de aprendizagem:  $\eta=1$

| <b>x1</b> | <b>x2</b> | d | x0 = 1                   |
|-----------|-----------|---|--------------------------|
| 0         | 0         | 0 | 0 x1 $w11=1.0$ $w10=0.0$ |
| 0         | 1         | 1 | 0 X2 1 Y1 = 1.0          |
| 1         | 0         | 1 | w12 = 1.0                |
| 1         | 1         | 1 | propagação               |

- $v_1 = x_0 \times w_{10} + x_1 \times w_{11} + x_2 \times w_{12}$
- $v_1 = 1 \times 0.0 + 0 \times 1.0 + 0 \times 1.0 = 0.0$
- $y_1 = Q(v_1) = Q(0.0) = 1.0$

- Ajuste dos pesos (Aplicando a regra delta)
  - $erro_1 = d_1 y_1 = 0 1.0 = -1.0$
  - $w_{10} = w_{10} + \eta \times erro_1 \times x_0 = 0.0 + 1 \times -1.0 \times 1 = -1.0$
  - $w_{11} = w_{11} + \eta \times erro_1 \times x_1 = 1.0 + 1 \times -1.0 \times 0 = 1.0$
  - $w_{12} = w_{12} + \eta \times erro_1 \times x_2 = 1.0 + 1 \times -1.0 \times 0 = 1.0$

- Pesos atuais:  $w_{10} = -1.0, w_{11} = 1.0, w_{12} = 1.0$
- limiar:  $Q(v_k) = egin{array}{ccc} 1 & se \, v_k \geq 0 \\ 0 & caso \, contr \acute{a}rio \end{array}$  , taxa de aprendizagem:  $\eta = 1$

| <b>x1</b> | <b>x2</b> | d | x0 = 1                        |
|-----------|-----------|---|-------------------------------|
| 0         | 0         | 0 | 0 x1 $w11 = 1.0$ $w10 = -1.0$ |
| 0         | 1         | 1 | 1 ×2 1.0                      |
| 1         | 0         | 1 | w12 = 1.0                     |
| 1         | 1         | 1 | propagação                    |

- $v_1 = x_0 \times w_{10} + x_1 \times w_{11} + x_2 \times w_{12}$
- $v_1 = 1 \times -1.0 + 0 \times 1.0 + 1 \times 1.0 = 0.0$
- $y_1 = Q(v_1) = Q(0.0) = 1.0$

- Ajuste dos pesos (Aplicando a regra delta)
  - $erro_1 = d_1 y_1 = 1 1.0 = 0.0$ 
    - quando o erro é zero, não há ajuste de pesos.

- Pesos atuais:  $w_{10} = -1.0, w_{11} = 1.0, w_{12} = 1.0$
- limiar:  $Q(v_k) = egin{array}{ccc} 1 & se \, v_k \geq 0 \\ 0 & caso \, contr \acute{a}rio \end{array}$  , taxa de aprendizagem:  $\eta = 1$

| <b>x1</b> | <b>x2</b> | d | x0 = 1                                    |
|-----------|-----------|---|-------------------------------------------|
| 0         | 0         | 0 | 1 x1 $w11=1.0$ $w10=-1.0$                 |
| 0         | 1         | 1 | $0  X2 \qquad 1 \longrightarrow Y1 = 1.0$ |
| 1         | 0         | 1 | w12 = 1.0                                 |
| 1         | 1         | 1 | propagação                                |

- $v_1 = x_0 \times w_{10} + x_1 \times w_{11} + x_2 \times w_{12}$
- $v_1 = 1 \times -1.0 + 1 \times 1.0 + 0 \times 1.0 = 0.0$
- $y_1 = Q(v_1) = Q(0.0) = 1.0$

- Ajuste dos pesos (Aplicando a regra delta)
  - $erro_1 = d_1 y_1 = 1 1.0 = 0.0$ 
    - quando o erro é zero, não há ajuste de pesos.

- Pesos atuais:  $w_{10} = -1.0, w_{11} = 1.0, w_{12} = 1.0$
- limiar:  $Q(v_k) = \begin{pmatrix} 1 & se \ v_k \geq 0 \\ 0 & caso \ contr \acute{a}rio \end{pmatrix}$ , taxa de aprendizagem:  $\eta = 1$

| <b>x1</b> | <b>x2</b> | d | x0 = 1                    |
|-----------|-----------|---|---------------------------|
| 0         | 0         | 0 | 1 x1 $w11=1.0$ $w10=-1.0$ |
| 0         | 1         | 1 | 1 ×2 1.0                  |
| 1         | 0         | 1 | w12 = 1.0                 |
| 1         | 1         | 1 | propagação                |

- $v_1 = x_0 \times w_{10} + x_1 \times w_{11} + x_2 \times w_{12}$
- $v_1 = 1 \times -1.0 + 1 \times 1.0 + 1 \times 1.0 = 1.0$
- $y_1 = Q(v_1) = Q(1.0) = 1.0$

- Ajuste dos pesos (Aplicando a regra delta)
  - $erro_1 = d_1 y_1 = 1 1.0 = 0.0$ 
    - quando o erro é zero, não há ajuste de pesos.

- Erro Acumulado para época 3 :
  - Erro Geral:
    - ullet = abs(erroEntrada1) + abs(erroEntrada2) + <math>abs(erroEntrada3) + abs(erroEntrada4) =
    - $\bullet = abs(-1.0) + abs(0.0) + abs(0.0) + abs(0.0)$
    - $\bullet = 1.0$
- Como ainda há erro, o algoritmo prossegue ...

- Pesos atuais:  $w_{10} = -1.0, w_{11} = 1.0, w_{12} = 1.0$
- limiar:  $Q(v_k) = egin{array}{ccc} 1 & se \, v_k \geq 0 \\ 0 & caso \, contr \acute{a}rio \end{array}$  , taxa de aprendizagem:  $\eta = 1$

| <b>x1</b> | <b>x2</b> | d | x0 = 1                        |
|-----------|-----------|---|-------------------------------|
| 0         | 0         | 0 | 0 x1 $w11 = 1.0$ $w10 = -1.0$ |
| 0         | 1         | 1 | 0 x2 1 → Y1 = 0.0             |
| 1         | 0         | 1 | w12 = 1.0                     |
| 1         | 1         | 1 | propagação                    |

- $v_1 = x_0 \times w_{10} + x_1 \times w_{11} + x_2 \times w_{12}$
- $v_1 = 1 \times -1.0 + 0 \times 1.0 + 0 \times 1.0 = -1.0$
- $y_1 = Q(v_1) = Q(-1.0) = 0.0$
- Ajuste dos pesos (Aplicando a regra delta)
  - $erro_1 = d_1 y_1 = 0 0.0 = 0.0$ 
    - quando o erro é zero, não há ajuste de pesos.

- Pesos atuais:  $w_{10} = -1.0, w_{11} = 1.0, w_{12} = 1.0$
- limiar:  $Q(v_k) = \begin{cases} 1 & se \ v_k \ge 0 \\ 0 & caso \ contr \'ario \end{cases}$ , taxa de aprendizagem:  $\eta = 1$

| <b>x1</b> | <b>x2</b> | d |   |           | x0 = 1                 |
|-----------|-----------|---|---|-----------|------------------------|
| 0         | 0         | 0 | 0 | <b>x1</b> | w11 = 1.0 $w10 = -1.0$ |
| 0         | 1         | 1 | 1 | x2        | 1 Y1 = 1.0             |
| 1         | 0         | 1 |   |           | w12 = 1.0              |
| 1         | 1         | 1 |   |           | propagação             |

- $v_1 = x_0 \times w_{10} + x_1 \times w_{11} + x_2 \times w_{12}$
- $v_1 = 1 \times -1.0 + 0 \times 1.0 + 1 \times 1.0 = 0.0$ 
  - $y_1 = Q(v_1) = Q(0.0) = 1.0$

- Ajuste dos pesos (Aplicando a regra delta)
  - $erro_1 = d_1 y_1 = 1 1.0 = 0.0$ 
    - quando o erro é zero, não há ajuste de pesos.

- Pesos atuais:  $w_{10} = -1.0, w_{11} = 1.0, w_{12} = 1.0$
- limiar:  $Q(v_k) = egin{array}{ccc} 1 & se \, v_k \geq 0 \\ 0 & caso \, contr \acute{a}rio \end{array}$  , taxa de aprendizagem:  $\eta = 1$

| <b>x1</b> | <b>x2</b> | d |   |    | ×          | 0 = 1               |
|-----------|-----------|---|---|----|------------|---------------------|
| 0         | 0         | 0 | 1 | x1 | w11= 1.0   | w10 = -1.0          |
| 0         | 1         | 1 | 0 | x2 |            | 1 → Y1 = <b>1.0</b> |
| 1         | 0         | 1 |   |    | w12 = 1.0  |                     |
| 1         | 1         | 1 |   |    | propagação |                     |

- $v_1 = x_0 \times w_{10} + x_1 \times w_{11} + x_2 \times w_{12}$
- $v_1 = 1 \times -1.0 + 1 \times 1.0 + 0 \times 1.0 = 0.0$
- $y_1 = Q(v_1) = Q(0.0) = 1.0$

- Ajuste dos pesos (Aplicando a regra delta)
  - $erro_1 = d_1 y_1 = 1 1.0 = 0.0$ 
    - quando o erro é zero, não há ajuste de pesos.

- Pesos atuais:  $w_{10} = -1.0, w_{11} = 1.0, w_{12} = 1.0$
- limiar:  $Q(v_k) = \begin{array}{ccc} 1 & se \ v_k \geq 0 \\ 0 & caso \ contr \'ario \end{array}$  , taxa de aprendizagem:  $\eta = 1$

| <b>x1</b> | <b>x2</b> | d | x0 = 1                    |
|-----------|-----------|---|---------------------------|
| 0         | 0         | 0 | 1 x1 $w11=1.0$ $w10=-1.0$ |
| 0         | 1         | 1 | 1 ×2 1.0                  |
| 1         | 0         | 1 | w12 = 1.0                 |
| 1         | 1         | 1 | propagação                |

- $v_1 = x_0 \times w_{10} + x_1 \times w_{11} + x_2 \times w_{12}$
- $v_1 = 1 \times -1.0 + 1 \times 1.0 + 1 \times 1.0 = 1.0$
- $y_1 = Q(v_1) = Q(1.0) = 1.0$

- Ajuste dos pesos (Aplicando a regra delta)
  - $erro_1 = d_1 y_1 = 1 1.0 = 0.0$ 
    - quando o erro é zero, não há ajuste de pesos.

- Erro Acumulado para época 4 :
  - Erro Geral:
    - ullet = abs(erroEntrada1) + abs(erroEntrada2) + <math>abs(erroEntrada3) + abs(erroEntrada4) =
    - $\bullet = abs(0.0) + abs(0.0) + abs(0.0) + abs(0.0)$
    - $\bullet = 0.0$
  - O algoritmo pára.
- Resultado:
  - O algoritmo encontrou os pesos adequados:

$$w_{10} = -1.0, w_{11} = 1.0, w_{12} = 1.0$$

A rede está pronta para ser testada (ou usada).

Carrega-se, na topologia da rede, os pesos encontrados na fase de treinamento.



Modelo = Corresponde a uma instancia do Algoritmo de IA gerada a partir dos dados de treinamento

② Esta fase implementa apenas a propagação. Informa-se novos valores para as entradas e a rede gera a saída correspondente.

#### Testando o modelo:

| ×1 | x2 |
|----|----|
| 0  | 0  |
| 0  | 1  |
| 1  | 0  |
| 1  | 1  |



$$v_j = \sum_{i=0}^{n} (x_i \times w_{ij})$$
$$y_j = f(v_j)$$

Função de ativação-Limiar  $f(v_j) = \begin{cases} 1 \text{ se } v_j \ge 0 \\ 0 \text{ se } v_j < 0 \end{cases}$ 

#### Testando o modelo:





$$v1 = 1 \times -1.0 +$$
 $0 \times 1.0$ 
 $0 \times 1.0$ 
 $= -1$ 
 $Y1 = Q(-1) = \mathbf{0}$ 

$$v_j = \sum_{i=0}^n (x_i \times w_{ij})$$

$$y_j = f(v_j)$$

$$f(v_j) = \begin{cases} 1 \text{ se } v_j \ge 0 \\ 0 \text{ se } v_j < 0 \end{cases}$$

#### Testando o modelo:





$$v1 = 1 \times -1.0 + 0 \times 1.0$$
 $1 \times 1.0$ 
 $= 0$ 
 $Y1 = Q(0) = 1$ 

$$v_j = \sum_{i=0}^n (x_i \times w_{ij})$$

$$y_j = f(v_j)$$

$$f(v_j) = \begin{cases} 1 \text{ se } v_j \ge 0\\ 0 \text{ se } v_j < 0 \end{cases}$$

#### Testando o modelo:

| ×1 | x2 |
|----|----|
| 0  | 0  |
| 0  | 1  |
| 1  | 0  |
| 1  | 1  |



$$v1 = 1 \times -1.0 + 1 \times 1.0 + 1 \times 1.0 = 0$$
 $v1 = 0$ 
 $v1 = 0$ 
 $v1 = 0$ 
 $v1 = 0$ 

$$v_j = \sum_{i=0}^n (x_i \times w_{ij})$$

$$y_j = f(v_j)$$

$$f(v_j) = \begin{cases} 1 \text{ se } v_j \ge 0 \\ 0 \text{ se } v_j < 0 \end{cases}$$

#### Testando o modelo:

| ×1 | x2 |
|----|----|
| 0  | 0  |
| 0  | 1  |
| 1  | 0  |
| 1  | 1  |



$$v_j = \sum_{i=0}^n (x_i \times w_{ij})$$

$$y_j = f(v_j)$$

$$f(v_j) = \begin{cases} 1 \text{ se } v_j \ge 0\\ 0 \text{ se } v_j < 0 \end{cases}$$

- Atividade 1: Implemente em Python o algoritmo de treinamento da rede Perceptron para as tabelas:
  - OR
  - AND
  - XOR

 Atividade 2: Considere os dados da tabela, selecione os atributos mais adequados, faca o pre-processamento. E, a seguir, use uma rede perceptron para classificar os clientes. Use a mesma topologia da atividade anterior.

| Cliente | Renda | Dívida | Classe |
|---------|-------|--------|--------|
| 101     | 2800  | 550    | bom    |
| 102     | 1300  | 500    | mau    |
| 103     | 1400  | 80     | bom    |
| 104     | 500   | 200    | mau    |
| 105     | 1100  | 270    | mau    |
| 106     | 1800  | 450    | bom    |
| 107     | 2400  | 650    | bom    |
| 108     | 1950  | 600    | bom    |
| 109     | 450   | 70     | mau    |
| 110     | 2750  | 730    | bom    |
| 111     | 850   | 90     | mau    |
| 112     | 1300  | 200    | mau    |
| 113     | 2100  | 750    | bom    |
| 114     | 900   | 300    | mau    |
| 115     | 2700  | 250    | bom    |
| 116     | 1600  | 500    | mau    |
| 117     | 1900  | 150    | bom    |
| 118     | 2500  | 800    | bom    |
| 119     | 1600  | 700    | mau    |
| 120     | 2300  | 500    | bom    |
| 121     | 2100  | 250    | bom    |

 Atividade 3: Implemente em Python o algoritmo de treinamento da rede Perceptron como classificador binário para Planta Iris.
 Calcule também a acurácia.

#### Planta Iris

# **Topologia para 2 classes**Classificador Binario Neural



Topologia: 4 x 2

Camada de entrada(dados): 4

Camada de saida (neuronios): 2



Tipo de Planta Iris

| <b>x1</b> | <b>x2</b> | х3  | <b>x4</b> | d1 | d2 |
|-----------|-----------|-----|-----------|----|----|
| 5.1       | 3.5       | 1.4 | 0.2       | 1  | 0  |
| 7         | 3.2       | 4.7 | 1.4       | 0  | 1  |
|           |           |     |           |    |    |

Iris-Setosa Nao Iris-Setosa

 Atividade 4: Implemente em Python o algoritmo de treinamento da rede Perceptron para reconhecer as letras. Teste usando letras com ruido.



Atributos dos objetos Topologia: 25 x 2