Practical 1. Realize three input ANID, OR, NIAND and NIOR gates with logic diagram and truth table.

(i) AND chate:

Objectives: After completing this practical:

- @ We will be able to identify and explain of function of 3-input AND gate.
- 6 Draw the symbols for the AND hate.
- @ Develop truth tables for the 3-input ANO gate.

Requirements:

- (i) Digital Kit and Simulator
- (ii) AND gate
- (iii) lonnecting wires
- (iv) Interactive / Sequence generator as input
- (V) LED as OUtput

Theory:

(i) Introduction:

An ANID gate outputs a logical "high" (1) only if all inputs are high. For three-input and gate, the output depents on the logical conjuction of AIBIC.

(ii) Functional Expression:

The output of a three-input AND gate can be expressed as:

Y = A.B.C

(iii) Circuit Diagram:

Fig: - AND hate

(iv) Truth table.

A	B	c	Y (OU+PU+)				
0	0	0	0				
0	a	7	0				
0	1	0	0				
6	1	1	. 0				
1	0	0	0				
1	0	L	0				
1	1	0	0				
1	_	1	1				

Conclusion:

In this experiment, we explored the operation of a three-input AND hate. By connecting the inputs, and obestiving the output, we verified that the AND gate produces a high output only when all inputs are high. The truth table and circuit diagram confirm the logical behaviour of the gate.

(ii) OR HATE:

Objectives: The goal of this practical is to:

- @ Analyse the Function of a three-input orgate.
- 6 Draw the OR gate symbol accurately.
- @ Develop the truth table to obestive the output for different input combinations.

Requirements:

- (i) Digital Logic Kit and Simulator
- (ii) OR gate
- (111) (onnecting wires
- (iv) Interactive Bequerce generator as input
- (V) LED as output.

Theory:

(i) Introduction:

The OR gate Produces a high output when any one or more inputs are high (1). It performs a logical 'addition' operation.

(ii) Functional Expression:

The output of athree-input OR gates is given as: Y = A+B+C

(iii) Circuit Diagram:

(iv) Truth Table:

A	В	C	Y (output)
0	0	0	0
0	0	7	L
0	7	0	1
0	1	1	1
1	0	0	7
L	0	1	1
1	1	0	T
1	1	1	L

Conclusion:

Through this practical, we confirmed the behaviour of a three-input OR gate. The circuit and truth table show that the output becomes high when at least one input is high.

(iii) NAND WATE:

Objectives: The aim of this experiment is to:

- · Study the operation of the three-INPUT MAND gate.
- · Learn the symbolic representation of the NAMO gate.
- · Werify the truth table for all possible input combinations.

Requirements:

- (i) Digital Logical Kit and Simulator
- (ii) NANID gate
- (iii) connecting wires
- (iv) Interactive | sequence, generator as input
- (V) LED as output.

Theory

(1) Introduction:

The MANID gat combines on AND gate followed by a NIOT gate. It outputs low(0) only when an inputs are high(1).

(ii) Functional Expression:

The output of the NAMD gate is: $Y = (A \cdot B \cdot C) = \overline{A} + \overline{B} + \overline{C}$

(iii) Circuit Diagram:

(iv) Truth Table:

A	В	C	$X = A \cdot B \cdot C$	Y = x = (A.B.C)'
0	0	0	0	1
0	0	1	0	7
0	1	0	0	7
0	1	7	0	7
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	T	7	0
4				

Conclusion:

We have successfully implemented the three-input NANID gate and observed its outputs. The NANID gate operates as on ANID gate inverted, and the truth table confirms this behaviour.

(iv) NOR hate:

Objectives: This practical aims to:

- @Understand the functioning of a three-input MOR gate.
- 6) Draw the NOR gate symbol and - corresponding circuit.
- 1 Verify the truth table For different in put combinations.

Requirements:

- (i) Digital Logic Kit and Simulator
- (ii) NIOR gate
- (iii) Connecting wires
- (iv) Interactive 1 Sequence generator as input
 - VILED as output

Theory:

(i) Introduction:

The MOR gate is the combinate of an OR gate followed by a MOT gate. It outputs high (1) only when all inputs are 1000 (0).

(ii) Functional Expressions:

The output ob the MOR gate is: Y = (A+B+c)' = A. B. E

(iii) Circuit Diagram

(iv) Truth Table:

A	В	C	X = A+B+C	Y=x'
0	0	0	0	7
0	O	1	1	0
0	1	0	L	0
0	1	T	1	0
1	0	0	1	0
1	0	1	1	0
T	1	0	7	0
1	1	1	7	0

Conclusion:

In this pratical, we verified the operation of the three-input MOR gate. The cirwit implementation and truth take confirmed that the MOR gate outputs high only if ullipput are low.