

Лекция 1

Введение в когнитивную и инженерную психологию

Доктор Лоренс Эр Янг Доктор Дивиа Си Чандра

_

Факторы когнитивной и инженерной психологии.

Dr. Laurence R. Young Dr. Divya C. Chandra Human factors engeneering

fb.com/groups/kursomir vk.com/kursomir

www.kursomir.ru

Введение в когнитивную и инженерную психологию. Человеческое зрение (Часть 1)

Содержание

- Обзор человеческих факторов
- Резюме полета
- Обзор самолета
- Нарратив пилотов во время полета
- Краткие итоги расследования
- Перечень вопросов, поднятых при исследовании влияния человеческого фактора
- Возможные решения вопросов, поднятых при исследовании влияния человеческого фактора
- Человеческое зрение и обзорность в самолете (Часть 1)

Обзор человеческих факторов

Обзор человеческих факторов, приведен в виде схем-рисунков, отображающих взаимодействие «человек-машина».

Image by MIT OpenCourseWare.

Резюме полета

- Модель самолета: Lockheed L-1011-385-1 TriStar;
- Маршрут рейса: Нью-Йорк—Маймами. Время отпраления: 9:20 утра, 29 декабря 1972 года;
- Время крушения: 11:42 на расстоянии 18 км. от Майми;
- Жертвы: 99 человек из 176 пассажиров.
- Причины крушения:
- Ошибка экипажа за контролем оборудования во время последних четырех минут полета;
- Отвлечение экипажа от работы из-за решения проблем негорящей лампочки индикатора выпуска переднего шасси.

Обзор самолета Lockheed L-1011-385-1 TriStar

- Самолет являлся конкурентом самолету Макдоннел Дуглас **ДС-10** (англ. McDonnell Douglas **DC-10**);
- Был рассчитан на перевозку 400 пассажиров. TriStar имел схему, при которой по одному турбовентиляторному двигателю Rolls-Royce было расположено под каждым полукрылом, а третий двигатель находился в основании киля;
- Количество произведенных самолетов между 1968-1984 равнялось 250 штукам;
- L-1011 рекламировался, как гораздо более технологически совершенный самолет своего времени, нежели другие;
- Первый широкофюзеляжный самолёт, получивший сертификат Федеральной администрации по авиации (FAA) на производство автоматизированной посадки по приборам, которая позволяла TriStar совершать практически «слепые» посадки в условиях нулевой видимости;
- Самолёт был оснащён уникальной системой прямого управления подъёмной силой (DLC), которая позволяла производить плавный заход на посадку;

- Самолет был оснащен четырьмя дублирующими гидравлическими системами (у прямых конкурентов было только по три);
- К сентябрю 2006 года, 33 самолета находились на вооружении сил специального назначения, также находился в распоряжении авиакомпании Hewa Bora Демократической Республики Конго;
- Большинство, оставшихся самолетов L-1011 сейчас продается на металлолом.

This image is in the public domain. Source: NASA

Описание полета

- Команда пилотов была квалифицированной. На капитана и первого офицера приходилось более сорока тысяч часов полета;
- На борту находились опытный бортинженер, а также бортмеханик;
- Полет был без осложнений на пути в Майами;
- Во время захода на посадку, ручка шасси была опущена, но только 2/3 передачи могло быть зафиксировано в необходимом положении (это показали цветовые индикаторы на приборной панели);
- Неуверенный в том, что нередача или индикатор работали верно, капитан принял решение прекратить приземление;
- Полет контролировался управлением воздушного движения на высоте 2000 футов и был дан курс на удержания самолета в воздухе до определения проблемы;
- Автонилот был занят удержанием курса на заданной высоте;

- Капитан приказал первому офицеру управлять самолетом пока он общается с управлением воздушного движения и координирует действия по диагностики проблемы с бортмехаником;
- При анализе было уставлено, что гидравлические системы были в норме, бортмеханик приказал направляться вниз в «чертову дыру» (ниша под кабиной);
- Второй пилот вытащил подозрительный индикатор, проверил его, и установил его обратно на панель неверным образом.

Диалог экипажа

Капитан: Ты установил ее боком.

Второй пилот: Нет, не думаю! Так сгодится!

Капитан: Тебе стоит повернуть ручку шасси на одну четверть оборота влево.

Капитан: Хей! Хей! Спустись вниз и посмотри, опущены ли носовые шасси вниз. Тебе

лучше сделать это.

Второй пилот: Подай мне платок или что то, чтобы я смог схватиться немного лучне!

Еще что-нибудь я могу сделать с этим?

Капитан: Спускайся и посмотри.

Второй пилот: Не выйдет, Боб! Если бы у меня были кусачки, я бы мог смягчить их с номощью Клинекс (туалетные салфетки).

Борт инженер: Я могу дать тебе кусачки, но, если поторопишься, то сломаень. Просто поверь мне.

- Второй пилот: Давай! Я смягчу их Клинекс.

В 11:40:38 раздался низкий звук сирены, сигнализирующий о потере высоты, но он был короткий и прозвучал на панели, который в это время пытался рассмотреть шасси. Изза шума в кабине и наушников экипаж его не услышал.

Второй пилот: Не, все правильно, мы скоро пересечем Шоссе Крома,

[Щелчок]

Второй пилот: Я не знаю, что это за ### держит эту ###.

Второй пилот: Вечно что-то! Могли бы по расписанию прилететь.

[Сигнал предупреждения о высоте]

Капитан: Мы можем сказать, если эта ### опущена, посмотрев на индикаторы.

Капитан: Я уверен, что она опущена, нет других вариантов! Это не поможет но, может быть!

Второй пилот: Я уверен, что поможет!

Инженер отранортовал, что он не может увидеть шасси через перископ, потому что темно.

Офицер технического обслуживания, сидящий на откидном кресле попытался помочь, но тоже ничего не увидел.

Проблема была обсуждена за 30 секунд до решения вернуться к аэропорту.

Авиадиспетчер: Истерн, эммм, 401! Как там у вас дела?

Капитан авиадиспетчеру: Ок, мы бы хотели развернуться и вернуться, вернуться назад.

Капитан: Слева чисто?

Второй пилот: Да!

Авиадиспетчер: Истерн 401, поверните на лево, курс 1-8-0.

Второй пилот: Мы что-то сделали с высотой!

Капитан: Что?

Второй пилот: Мы по-прежнему на двух тысячах, да?

Капитан: Эй! Что здесь происходит?

[щелчок]

[шесть пиков похожих на увеличение высоты на радиовысотомере]

[удар]

Image by MIT OpenCourseWare.

Расследование

- Осмотр обломков показал, что индикаторная лампочка перегорела и шасси работало;
- Предположили, что пилот мог случайно толкнуть штурвал, тем самым выбив автопилот из режима поддержания высоты и все 4 члена экипажа этого не заметили;
- Высота постепенно падала на протяжении нескольких минут перед крушением.

Проблемы человеческого фактора

- Плохое командное управление;
- Неспособность поддерживать приоритеты задач : «лететь, ориентироваться, общаться»;
- Слишком сильно рассчитывали на автоматику, тем самым потеряли владение ситуацией;
- Слишком сложный и загроможденный кокпит,

Возможные решения

- Тренинг по управлению экипажем;
- Упрощенный дизайн кабины (стекло?);
- Улучшить подготовку, подчеркивая первым, что самолеты должны летать;
- Более интеллектуальная автоматизация; улучшить сигнал по отключению автопилота.

Человеческое зрение и обзорность в самолете

Часть 1. Глаз

Image by MIT OpenCourseWare.

Движения глаза

- Отслеживание (версии): скачкообразное движение глаз, прослеживающее движение глаз;
- Вергенция;
- Компенсирующая (навигация);
- Нистагм;
- Миниатюра: сдвиг, резкое движение, сотрясение,

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.