Reductions

CPSC 320 2024W1

Context

- You encounter a new problem A
 - You don't have an algorithm to solve it
 - But it seems similar to a problem B that you do know how to solve
 - so, you might use your solver for B rather than writing an entirely new solver for A
- Definition: an instance of a problem is a valid input

How a reduction works

How a reduction works (continued)

You need to:

- Show how to transform an arbitrary instance I_A of A into an instance I_B of B
- Show how to transform a solution S_B of I_B into a solution S_A of I_A
- Prove that S_A is a correct solution to I_A , assuming that S_B is a correct solution to I_B

The total running time is:

- The sum of the two transformations
- Plus the time to solve I_B

Reduction example

- A: Given a list of numbers [X₁, X₂,..., X_n], find the smallest gap between any two of them
- B: Sorting a list of values
- Reduction:
 - Given an instance I_A of A, let I_B= I_A
 - Sort the list I_B to get a list [Y₁, Y₂,..., Y_n]
 - $\circ \text{ Return } \min_{i=1,2,\dots,n-1} \{Y_{i+1} Y_i\}$

Reduction example and clicker question

- A: Given a list of numbers [X₁, X₂,..., X_n], determine if there are any duplicates in the list
- B: Given a list of numbers [X₁, X₂,..., X_n], find the smallest gap between any two of them

Reduction:

- \circ Given an instance I_A of A, let $I_B = I_A$
- Solve I_B to get the value smallestGap
- Return True to A if

Fill the blank!

; else return False

Reduction example 3

- A: Given a SAT instance where all clauses have length 2, is there a way to assign truth values to variables such that all clauses evaluate to True? (AKA, 2-SAT)
 - \circ E.g., $(x \vee \overline{y}) \wedge (y \vee z)$
- **B:** Given a SAT instance where all clauses have length 3, is there a way to assign truth values to variables such that all clauses evaluate to True? (3-SAT)

Reduction:

- Given an instance $\mathbf{I_A}$ of \mathbf{A} , repeat the last literal in each clause and "OR" it to the previous literal to obtain $\mathbf{I_B}$, e.g., $(x \lor \overline{y} \lor \overline{y}) \land (y \lor z \lor z)$
- Solve I_B to obtain a truth assignment S_B (if it exists, or the value NO if I_B is not satisfiable
- \circ $S_A = S_B$