

Module 02 – Extra Class

Basic Probability

Nguyen Quoc Thai MSc in Computer Science

Objectives

Introduction

- Experiment
- Event
- Operations on Events
- * Relations of Events

- Definition
- * Rule of Probability
- Total Probability
- Bayes' Rule

Outline

SECTION 1

Introduction

SECTION 2

Introduction

Measure to the likelihood of an event occurring

Experiment & Event

- Experiment: implementation of set of basic conditions for observing a certain phenomenon
- An outcome: a result of an experiment
- A sample space: the set of all possible outcomes
- An event: a subset of the sample space

Experiment & Event

Toss a coin

Sample space: $S = \{heads, tails\}$

Roll a dice

Sample space: $S = \{1, 2, 3, 4, 5, 6\}$

Relation of Events

Assume A and B: two events in the same experiment

- > Implication
 - "event A implies event B": if event A occurs, then event B occurs
 - A \Rightarrow B means that A \subseteq B
- Equivalent
 - "event A equal event B": if $A \Rightarrow B$ and $B \Rightarrow A$
 - A⇔B

Operations on Events

- Intersection of events $(A \cap B)$
 - In the experiment of rolling a single die

- Event A: "the number rolled is even"
- Event B: "the number rolled is divisible by 3"
- Find the intersection of A and B?

Operations on Events

- \triangleright Intersection of events (A \cap B)
 - In the experiment of rolling a single die
 - Event A: "the number rolled is even"

$$=> A = \{2, 4, 6\}$$

• Event B: "the number rolled is divisible by 3"

$$=> B = \{3, 6\}$$

• Find the intersection of A and B?

S = sides of die

Operations on Events

- \triangleright Intersection of events (A \cap B)
 - In the experiment of rolling a single die
 - Event A: "the number rolled is even"

$$=> A = \{2, 4, 6\}$$

• Event B: "the number rolled is divisible by 3"

$$=> B = \{3, 6\}$$

• $A \cap B = \{6\}$

Operations on Events

- \triangleright Union of events (A \cup B)
 - In the experiment of rolling a single die
 - Event A: "the number rolled is even"
 - Event B: "the number rolled is divisible by 3"
 - Find the union of A and B?

Operations on Events

- \triangleright Union of events (A \cup B)
 - In the experiment of rolling a single die
 - Event A: "the number rolled is even"

$$=> A = \{2, 4, 6\}$$

• Event B: "the number rolled is divisible by 3"

$$=> B = \{3, 6\}$$

• Find the union of A and B?

S = sides of die

Operations on Events

- \triangleright Union of events (A \cup B)
 - In the experiment of rolling a single die
 - Event A: "the number rolled is even"

$$=> A = \{2, 4, 6\}$$

• Event B: "the number rolled is divisible by 3"

$$=> B = \{3, 6\}$$

• A \cup B = {2, 3, 4, 6}

S = sides of die

Operations on Events

Complements

- The complement of an event A in a sample space S, denoted A' (A^c)
- The collection of all outcomes in S that are not elements of the set A
- Corresponds to negating any description in words of the event A.
- A' \cup $A = \Omega$

Complement of an event A

An event A

Outline

SECTION 1

Introduction

SECTION 2

Classical Probability

Measure to the likelihood of an event occurring

$$P(A) = \frac{number\ of\ favorable\ outcomes}{total\ number\ of\ possible\ outcomes} = \frac{n_A}{n_\Omega}$$

Example

What is the probability of rolling a number is even on a regular dice?

- There are 6 faces on a fair die, numbered 1 to $6 \Rightarrow n(\Omega) = 6$
- A: "even number" => $A = \{2, 4, 6\} => n(A) = 3$

$$=> P(A) = 3/6 = 0.5$$

Geometric Probability

$$P(A) = \frac{measure of domain A}{measure of domain \Omega}$$

> 1-D Geometric probability

X is a random real number between 0 and 3. What is the probability X is closer to 0 than it is to 1?

- => A: "X is closer to 0 than to 1"
- => Measure: length in this 1D case: $P(A) = \frac{length\ of\ segment\ where\ 0 < X < 0.5}{length\ of\ segment\ where\ 0 < X < 3} = \frac{0.5}{3} = \frac{1}{6}$

Desired Outcomes

Geometric Probability

$$P(A) = \frac{measure of domain A}{measure of domain \Omega}$$

> 2-D Geometric probability

A dart is thrown at a circular dartboard such that it will land randomly over the area of the dartboard. What is the probability that it lands closer to the center "success" than to the edge?

- => A: "closer to center than edge"
- => Measure: area in this 2D case:

$$P(A) = \frac{area\ of\ desired\ outcomes}{area\ of\ total\ outcomes} = \frac{\frac{\pi r^2}{4}}{\pi r^2} = \frac{1}{4}$$

Rules of Probability

Addition

Mutually exclusive events

$$P(A+B) = P(A) + P(B)$$
, where A and B mutually exclusive $P(A \text{ or } B) = P(A) + P(B)$

In general

$$P(A+B) = P(A) + P(B) - P(AB)$$

 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

Rules of Probability

Addition

- Rolling a fair die. What is the probability of $A = \{1, 5\}$?
 - The problem states that the die is fair => all six possible outcomes are equally likely:

$$P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6})$$

• The events $\{1\},...\{6\}$ are disjoint:

$$1 = P(S) = P(\{1\}) + P(\{2\}) + ... + P(\{6\}) = 6P(\{1\})$$
$$=> P(\{1\}) = P(\{2\}) = P(\{3\}) = P(\{4\}) = P(\{5\}) = P(\{6\}) = 1/6$$

• Since {1} and {5} are disjoint:

$$P(A) = P({1, 5}) = P({1}) + P({5}) = 2/6 = 1/3$$

Rules of Probability

Addition

For any event A

$$P(A^c) = 1 - P(A)$$

$$P(A) = 1 - P(A^c)$$

Find the probability that when we roll a dice we get a number different than 1 and 6?

Let's A: "Getting the number 1 and 6" \Rightarrow A = {1, 6}

"Getting a number different than 1 and 6" = A^c

Since,
$$P(A) = P(1) + P(6) = 1/6 + 1/6 = 2/6 = 1/3$$

P("Getting a number different than 1 and 6") = 1 - P(A) = 1 - 1/3 = 2/3

Rules of Probability

Conditional Probability

Probability that A occurs given that B has already occurred

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Rules of Probability

Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

A fair die is rolled

- a) Find the probability that the number rolled is a five, given that it is odd.
- b) Find the probability that the number rolled is odd, given that it is a five.

Rules of Probability

Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

A fair die is rolled

- Sample space $S = \{1, 2, 3, 4, 5, 6\}$, consisting of 6 equally likely outcomes
- A: "a five is rolled" => $A = \{5\} => P(A) = 1/6$
- B: "an odd number is rolled" => B = $\{1, 3, 5\}$ => P(B) = $3/6 = \frac{1}{2}$
- $=> A \text{ and } B = \{5\} => P(A \text{ and } B) = 1/6$
- a) Find the probability that the number rolled is a five, given that it is odd.

$$P(A|B) = P(A \text{ and } B)/P(B) = (1/6)/(1/2) = 1/3$$

Rules of Probability

Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

A fair die is rolled

- Sample space $S = \{1, 2, 3, 4, 5, 6\}$, consisting of 6 equally likely outcomes
- A: "a five is rolled" => $A = \{5\} => P(A) = 1/6$
- B: "an odd number is rolled" => B = $\{1, 3, 5\}$ => P(B) = $3/6 = \frac{1}{2}$
- $=> A \text{ and } B = \{5\} => P(A \text{ and } B) = 1/6$
- b) Find the probability that the number rolled is odd, given that it is a five.

$$P(B|A) = P(B \text{ and } A)/P(A) = P(A \text{ and } B)/P(A) = (1/6)/(1/6) = 1$$

Rules of Probability

Multiplication

$$P(AB) = P(A).P(B|A) = P(B).P(A|B)$$

$$P(A_1A_2...A_n) = P(A_1).P(A_2|A_1).P(A_3|A_1A_2)...P(A_n|A_1A_2...A_{n-1})$$

In a factory there are 100 units of a certain product, 5 of which are defective. We pick three units from the 100 units at random. What is the probability that none of them are defective?

Rules of Probability

Multiplication

- Let's A_i as the event ith chosen unit is not defective, for i = 1, 2, 3
 - \Rightarrow Compute $P(A_1A_2A_3)$
 - $P(A_1) = 95/100$
 - Given that the first chosen item was good, the second item will be chosen from 94 good units and 5 defective units, thus: $P(A_2|A_1) = 94/99$
 - Given that the first and second chosen items were okay, the third item will be chosen from 93 good units and 5 defective units, thus: $P(A_3|A_2A_1) = 93/98$

$$\Rightarrow$$
 P(A₁A₂A₃) = 95/100.94/99.93/98 = 0.8560

Rules of Probability – Practice

Multiplication

$$P(AB) = P(A).P(B|A) = P(B).P(A|B)$$

$$P(A_1A_2...A_n) = P(A_1).P(A_2|A_1).P(A_3|A_1A_2)...P(A_n|A_1A_2...A_{n-1})$$

Suppose you take out two cards from a standard pack of cards one after another, without replacing the first card. What is probability that the first card is the ace of spades, and the second card is a heart?

Total Probability

Total Probability Theorem

The result of stage 2 depends on the result of stage 1. The results of step 1 are divided into n sets A_i, each of which will contain a number of outcomes that have the same effect on the probability of H occurring.

Total Probability

Total Probability Theorem

- Complete system of events
- Events A1, A2,..., An (n 2) of a trial is called complete system if:
 - $A_i \cdot A_j = \emptyset, \forall i \neq j$
 - $\sum_{i=1}^{n} A_i = A_1 + A_2 + A_3 + \dots + A_n = \Omega$
 - $P(A_1) + P(A_2) + ... + P(A_n) = 1$

 $\{A, \overline{A}\}$

 $\{AB, \overline{A}B, A\overline{B}, \overline{AB}\}$

Total Probability

Total Probability

Let $A_1, A_2, ..., A_n$ – complete system of events and assume. Consider any event H such that H occurs only when one of the events $A_1, A_2, ..., A_n$ occurred:

$$P(H) = P(H_1) + P(H_2) + P(H_3)$$

= P(A₁). P(H|A₁) + P(A₂). P(H|A₂) + P(A₃). P(H|A₃)

Total Probability

$$P(H) = \sum_{i=1}^{n} P(A_i).P(H|A_i)$$

Example: Widget Detection

Company M supplies 80% of widgets for a car shop and only 1% of their widgets turn out to be defective. Company N supplies the remaining 20% of widgets for the car shop and 3% of their widgets turn out to be defective. If a customer randomly purchases a widget from the car shop, what is the probability that it will be defective?

Example: Widget Detection

$$P(H) = \sum_{i=1}^{n} P(A_i). P(H|A_i)$$

H: "Widget being defective"

A_M: "Widget came from company M", A_N: "Widget came from company N"

Events A_M and A_N: complete system of events

$$=> P(A_M) = 0.8; P(A_N) = 0.2; P(H|A_M) = 0.01; P(H|A_N) = 0.03$$

The probability that it will be defective:

$$P(H) = P(H|A_M). P(A_M) + P(H|A_N). P(A_N)$$

$$= 0.01*0.8 + 0.03*0.2$$

$$= 0.014$$

Company M	Supplies 80% of widgets 1% are defective
Company N	Supplies 20% of widgets 3% are defective

Example: Pick Marble

- I have three bags that each contain 100 marbles:
 - Bag 1 has 75 red and 25 blue marbles
 - Bag 2 has 60 red and 40 blue marbles
 - Bag 3 has 45 red and 55 blue marbles.

I choose one of the bags at random and then pick a marble from the chosen bag, also at random. What is the probability that the chosen marble is red?

Example: Pick Marble

- ➤ I have three bags that each contain 100 marbles:
 - Bag 1 has 75 red and 25 blue marbles
 - Bag 2 has 60 red and 40 blue marbles
 - Bag 3 has 45 red and 55 blue marbles.

Example: Pick Marble

$$P(H) = \sum_{i=1}^{n} P(A_i). P(H|A_i)$$

R: "the event that the chosen marble is red"

 B_i : "the event that I choose Bag i"

Events B₁, B₂ and B₃: complete system of events

$$=> P(B_1) = 1/3; P(B_2) = 1/3, P(B_3) = 1/3; P(R|B_1) = 0.75; P(R|B_2) = 0.60; P(R|B_3) = 0.45$$

The probability that the chosen marble is red:

$$P(R) = P(R|B_1). P(B_1) + P(R|B_2). P(B_2) + P(R|B_3). P(B_3)$$

$$= 0.75 * 1/3 + 0.60 * 1/3 + 0.45 * 1/3$$

$$= 0.60$$

Probability

Bayes' Rule

 \triangleright Based on the outcome H, calculate the probability that the ith cause occur: $P(A_i|H)$

Bayes' Rule

Bayes' Rule

If A_1 , A_2 ,... A_n : complete system of events and H is any event with $P(A) \neq 0$:

$$P(A_i|H) = \frac{P(A_i)P(H|A_i)}{P(H)} = \frac{P(A_i)P(H|A_i)}{\sum_{j=1}^{n} P(A_j)P(H|A_j)}, i = 1, 2, ..., n$$

Example: Pick Marble

- ➤ I have three bags that each contain 100 marbles:
 - Bag 1 has 75 red and 25 blue marbles
 - Bag 2 has 60 red and 40 blue marbles
 - Bag 3 has 45 red and 55 blue marbles.

Suppose we observe that the chosen marble is red. What is the probability that Bag 1 was chosen?

Example: Pick Marble

$$P(H) = \sum_{i=1}^{n} P(A_i). P(H|A_i)$$

R: "the event that the chosen marble is red"

 B_i : "the event that I choose Bag i"

Events B₁, B₂ and B₃: complete system of events

$$=> P(B_1) = 1/3; P(B_2) = 1/3, P(B_3) = 1/3; P(R|B_1) = 0.75; P(R|B_2) = 0.60; P(R|B_3) = 0.45$$

The probability that the chosen marble is red:

$$P(R) = P(R|B_1). P(B_1) + P(R|B_2). P(B_2) + P(R|B_3). P(B_3) = 0.60$$

The probability that the chosen marble is red, Bag 1:

$$P(B_1|R) = \frac{P(R|B_1)P(B_1)}{P(R)} = \frac{0.75 * 1/3}{0.6} = \frac{5}{12}$$

Detect Spam E-Mail

Assume that the word 'offer' occurs in 80% of the spam messages in my account. Also, let's assume 'offer' occurs in 10% of my desired e-mails. If 30% of the received e-mails are considered as a scam, and I will receive a new message which contains 'offer', what is the probability that it is spam?

Detect Spam E-Mail

Assume that the word 'offer' occurs in 80% of the spam messages in my account. Also, let's assume 'offer' occurs in 10% of my desired e-mails. If 30% of the received e-mails are considered as a scam, and I will receive a new message which contains 'offer', what is the probability that it is spam?

Detect Spam E-Mail

Detect Spam E-Mail (Simple NLP problem)

Let A_1 : "Spam", A_2 : "Not spam" => A_1 , A_2 : complete system of events

H: "contains the word 'offer"

If a new message which contains 'offer', the probability that it is spam is:

$$P(A_1|H) = \frac{P(A_1)P(H|A_1)}{P(H)}$$

$$P(H|A_1) = 0.8$$
; $P(A_1) = 0.3$, $P(A_2) = 1 - P(A_1) = 0.7$, $P(H|A_2) = 0.1$

$$P(H) = P(A_1).P(H|A_1) + P(A_2).P(H|A_2) = 0.3*0.8 + 0.7*0.1 = 0.31$$

$$=> P(A_1|H) = (0.8*0.3)/(0.31) = 0.774$$

Practice:

A card is lost from a pack of 52 cards. From the remaining cards two are drawn randomly and found to be both clubs. Find the probability that the lost card is also a clubs.

Objectives

Introduction

- Experiment
- Event
- Operations on Events
- * Relations of Events

Probability

- Definition
- * Rule of Probability
- Total Probability
- Bayes' Rule

Reversed

Thanks!

Any questions?