Physical Design / Layout Design

Layout (mask) view of the Inverter

Layout (mask) view of the inverter.

P.K. Shetty, MSIS

Masks:

Schematic Diagram

Layout Diagram

Design / Layout Rules

Main objective of design rules is to obtain a circuit with optimum yield in as small an area as possible.

They represent a compromise between performance and yield.

- More conservative rules increase probability of correct circuit function
- More aggressive rules increase circuit performance (may at the expense of yield).

Two approaches used:

- Lambda based rules
- Micron based rules

Lambda Based Rules

Also known as scalable design rules as they allow first order scaling

- Moving from one process to another requires only a change in $\boldsymbol{\lambda}$
- Worked well for 4μm down to 1.2μm processes
- In general, process rarely shrinks uniformly

Micron Based Rules

- All minimum sizes and spacing specified in microns
- Rules don't have to be multiples of λ
- Can result in 50% reduction in area over λ based rules
- Standard in industry

Mask Layout

 Whenever a poly crosses a diffusion we get a transistor

Mask Layout of CMOS Inverter

Layout / Design Rules

P.K. Shetty, MSIS

Layout / Design Rules

P.K. Shetty, MSIS

Mask Layout of CMOS NAND Gate

Mask Layout of CMOS NOR Gate

Constructing Large Inverters

- Large inverters are required to handle large power
- Increasing the $\frac{W}{L}$ ratio
- Increases the drain area and hence Capacitance

Constructing Large Inverters

- Connecting many smaller inverters in parallel
- Yields a more optimum drain capacitance due to merged drain regions
- β is doubled

Constructing Large Inverters

- Further reduction in drain capacitance is achieved by using the *donut* ("round transistor") connection.
- Yields a more optimum drain capacitance due to merged drain regions
- β of the transistor is almost quadrupled

Complex Logic Gates Layout

- All complementary gates may be designed using a single row of n-transistors above or below a single row of p-transistors, aligned at common gate connections
- Most "simple" gates may be designed using an unbroken row of transistors in which abutting source-drain connections are made
- This is called the "line of diffusion" rule

Layout Automation

Automated layout techniques applicable to static complementary:

- CMOS circuit is converted into a graph where,
 - the vertices in the graph are the source/drain connections
 - the edges in the graph are transistors that connect particular source-drain vertices
- This results in 2 graphs: one for the n-logic tree and one for the p-logic tree

Example-1: [A + B + CD]'

Logic Circuit

P.K. Shetty, MSIS, MAHE

Graph representation

- If two edges are adjacent in the p- or n-graphs, then they may share a common source-drain connection and may be connected by abutment
- If there exists a sequence of edges (containing all edges) in the p-graph and n-graph that have identical labelling, then the gate may be designed with no breaks
- This path is known as "Euler path"

Algorithm

- 1. Find all Euler paths that cover the graph
- 2. Find a p- and n-Euler path that have identical labelling (a labelling is an ordering of the gate labels on each vertex)
- If the paths in step 2 are not found, then break the gate in the minimum number of places to achieve step 2 by separate Euler paths

Euler path is A-B-C-D

Layout

- A variation of the single line of n- and p- transistors occurs in logic gates where,
 - a signal is applied to the gates of multiple transistors
 - the gates are cascaded

Example-2: ((AB)'.(A+B))' → XNOR gate

Transistors may be stacked on the appropriate gate signal

With a single row of N and P transistors with a break

Uses a Stacked Layout

- The selection of the styles would depend on the overall layout – whether a
 - Short, fat cells were needed
 - Long, thin cells were needed
- The gate segments that are maximally connected to the supply and ground rails should be placed adjacent to these signals

Dynamic CMOS Logic

- 1. Single phase clock is used
- 2. The precharge phase occurs when clk = 0
- 3. The i/p capacitance of this gate is the same as the pseudo –NMOS gate
- 4. Pull-up time is improved by virtue of the active switch
- 5. Pull-down time is increased due to ground switch
- Ground switch may be omitted if the inputs are guaranteed to be zero during precharge

Limitations of Dynamic CMOS Logic

- The inputs can only change during the precharge phase and must be stable during evaluate portion of the cycle
- 2. Simple, single-phase dynamic CMOS gates cannot be cascaded

1. The inputs can only change during the precharge phase and must be stable during evaluate phase

2. Simple single-phase dynamic CMOS gates cannot be cascaded

Clocked CMOS Logic (C²MOS)

- The main use of this logic structure is to form clocked structures that incorporate latches or that interface with other dynamic forms of logic
- Has larger rise and fall times due to the series clocking transistors
- The series clock transistors can either be at the output of the gate or at the power supply ends

CMOS Domino Logic

Limitations

- 1. Each gate must be buffered
- 2. Only noninverting structures are possible
- 3. Charge redistribution is still a problem

Converting Domino Gate into Static

- This allows low frequency or static operation
- Precharge transistor may be eliminated if the time between evaluation phases is long enough to allow the weak pull-up to charge the output node.

What happens if clocked n-transistor is placed closest to the output?

NP Domino Logic (Zipper CMOS)

(a)

Advantages of Dynamic Logic

- Smaller area than fully static gates
- Smaller parasitic capacitances, hence higher speed
- Glitch free operation if designed carefully