Classical statistical inference

Part 2

Associated notebook:

04-Basic statistical inference frequentists 2/Frequentist inference 01.ipynb

DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE.)

What is inference?

Derive **INFORMATION** based on **DATA** Examples:

- Exoplanet transit \Rightarrow M, d \Rightarrow P(M | d)
- Supernovae distances \Rightarrow Expansion rate H_0

Inference generally implies an underlying *statistical* model: PDF or regression laws with parmeters θ

FREQUENTIST STATISTICIAN:

BAYESIAN STATISTICIAN:

Three types of inference:

- Point estimation: "best" θ
- Confidence interval: Confidence around θ
- Hypothesis testing: data OK w. model?

https://xkcd.com/1132/

Example:

 θ = mean mag. of a population of galaxies

A: Your data set = subsample of measurements: $A = \{X_1, X_2, X_3, X_4\}$ where X = mag. (this is a RV)

$$\hat{\theta} = \frac{X_1 + X_2 + X_3 + X_4}{4} \equiv \text{Point estimate of } \theta$$

If you do the experiment with another sample $(\Rightarrow \text{ different } realisation)$ you will get another $\hat{\theta}$

Generalisation:

$$\hat{\theta} = g(X_1, X_2, X_3, \dots X_n)$$

- Point estimate of a param. is a *function* of RV X₁, ...
- It is as well a Random Variable (RV)
- It can be biased, is characterized by a variance but should ideally be consistent (converges towards θ)
- Distribution of $\hat{\theta}$ is called sampling distribution

Population mean: $\theta = 19.66$

Population mean: $\theta = 19.66$

Six different *samples* drawn from the true population

Six different samples drawn from the true population

Point estimate $\hat{\theta}$

Population mean: $\theta = 19.66$

Go to: Sect. II.1 of the notebook

Distribution of $\{\hat{\theta}_1, \hat{\theta}_2, ..., \hat{\theta}_k\} = \text{sample distribution}$

Summary statistics

Name	Population Statistics	Sample Statistics
size	N	n
mean	$\mu = \bar{X} = \frac{\sum_{i} X_{i}}{N}$	$\hat{\mu} = \bar{x} = \frac{\sum_{i} x_{i}}{n}$
Variance	$\sigma^2 = \frac{\sum_i (X_i - \bar{X})^2}{N}$	$s^2 = \frac{\sum_{i} (x_i - \bar{x})^2}{n - 1}$
Standard deviation	$\sigma = \sqrt{\sigma^2}$	$\hat{\sigma} = s = \sqrt{s^2}$

Summary (sample) statistics: standard error

Standard error (stde) ≠ Standard deviation (std)

Name	Formula
Standard error on the mean	$stde(\bar{x}) = \frac{s}{\sqrt{n}}$
Standard error on the stdev	$stde(s) = s/\sqrt{2(n-1)}$
Standard error on proportions	$stde(\hat{p}) = \frac{\sqrt{p(1-p)}}{\sqrt{n}}$

Central limit theorem

When independent random variables are added, their sum tends towards a normal distribution (if n >>)

- This is true even if the original RV are not normally distributed
- Sampling dist. of mean tends (for large n) towards a Normal distribution
- Sampling dist. of variance (for large n) does NOT tend towards a Normal distribution

Go to: Sect. II.1.1. of the notebook

Distribution of estimators

If RV $\{X_i\}$ whose population is distributed as $N(\mu, \sigma)$

- Sample distribution of $\hat{\mu} \sim N(\mu, \sigma/\sqrt{n}) \iff Z = \frac{\bar{X} \hat{\mu}}{(\sigma/\sqrt{n})} \sim N(0, 1)$
- Sample distribution of $t = \frac{\bar{X} \hat{\mu}}{(s/\sqrt{n})} \sim t(n-1)$ s is derived from the sample dist.

Student distribution

Sample distribution of

$$S = \frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1).$$
Chi square distribution

Classical statistical inference: confidence interval

Part 3

Associated notebook:

04-Basic statistical inference frequentists 2/Frequentist inference 02.ipynb

If RV $\{X_i\}$ whose population is distributed as $N(\mu, \sigma)$

 $1-\alpha$ CI = [a, b] such that p(a \leq X \leq b) = (1- α)

$$S_1 = \{x_1, x_2, x_3, x_4\}$$

If RV $\{X_i\}$ whose population is distributed as $N(\mu, \sigma)$

$$S_1 = \{x_1, x_2, x_3, x_4\}$$

 $S_1 = \{19.45, 16.20, 16.43, 19.10\}$

 $\hat{\mu_1} = 17.8$

If RV $\{X_i\}$ whose population is distributed as $N(\mu, \sigma)$

$$S_1 = \{x_1, x_2, x_3, x_4\}$$

$$S_1 = \{19.45, 16.20, 16.43, 19.10\}$$

$$\hat{\mu}_1 = 17.8$$

$$95.5 \% \text{ CI on } \hat{\mu}_1 ?$$

We need to look at the distribution of the estimator $\hat{\mu}$

95.5 % Cl on $\hat{\mu}_1$?

If RV $\{X_i\}$ whose population is distributed as $N(\mu, \sigma)$

Case 1: σ is known

$$\hat{\mu} \sim N(\mu, \sigma/\sqrt{n})$$

$$stde(\hat{\mu}) = \sigma/\sqrt{n}$$

95.5 % Cl on $\hat{\mu}_1$?

If RV $\{X_i\}$ whose population is distributed as $N(\mu, \sigma)$

Case 1: σ is known

$$\hat{\mu} \sim N(\mu, \sigma/\sqrt{n})$$

stde
$$(\hat{\mu}) = \sigma/\sqrt{n}$$

 $p(\hat{\mu}_1 \in [\mu \pm 2 \text{ stde}]) = 0.955$

If RV $\{X_i\}$ whose population is distributed as $N(\mu, \sigma)$

Case 1: σ is known

$$\hat{\mu} \sim N(\mu, \sigma/\sqrt{n})$$

$$stde(\hat{\mu}) = \sigma/\sqrt{n}$$

m depends on the distribution of the normalised estimator:

$$\frac{\mu - \hat{\mu}}{\text{stde}}$$

If RV $\{X_i\}$ whose population is distributed as $N(\mu, \sigma)$

Case 1: σ is known

$$stde(\hat{\mu}) = \sigma/\sqrt{n}$$

$$Z = rac{\mu - \hat{\mu}}{\sigma / \sqrt{\mathrm{n}}} \sim N(0, 1)$$

Case 2: σ is **un**known

$$stde(\hat{\mu}) = s/\sqrt{n}$$

$$t = \frac{\mu - \hat{\mu}}{s/\sqrt{n}} \sim t(n-1)$$

$$CI \equiv [\hat{\mu} \pm m \times stde]$$

Go to: Student_vs_Gauss.ipynb

Confidence interval

"Generic" strategy:

- Look at the PDF of the estimator of interest (the latter is often an output of Bayesian analysis) or of a normalised estimator of known distribution.
- Define region around your estimator (or a normalised estimator for which you know the distribution) that enclose $(1 \alpha) \times 100 \%$ of the area under the PDF.
- For CI around the mean: $CI_lpha=\left[ar{x}-q_{lpha/2}
 ight. stde, ar{x}+q_{lpha/2}
 ight. stde
 ight]$ $q_{lpha/2}=CDF^{-1}(1-lpha/2)$

For CI on other statistics (e.g. variance, difference between 2 means, proportions) : see <u>Frequentist inference 03.ipynb</u> (Material in <u>Frequentist inference 03.ipynb</u> is supplementary material)

Go to: Sect. II.2. of the notebooks