Assignment-Regression Algorithm

1. Problem statement identification:

Stage1: ML

Stage2: Supervised Leaning method

Stage3: Regression

2. Dataset

1338 rows × 6 columns

- 3. Yes, We need preprocessing method since we have nominal datas (Sex, Smoker) to convert String data into numeric.
- 4. R2_score values:
 - 1. Multiple Linear Regression:

R2 value: 0.7894790349867009

2. Support Vector ML Regression

Assignment_SVML_Kernal hyper parameter with r values

Sl.n o	Hyper parameter	Linear	RBF	Poly	Sigmoid
1	C=1000	0.634036930 8871254	-0.1174909159 4992023	-0.05550593 751791011	-1.66590813 15533064
2	C= 800	0.62928717 85901891	-0.1194839750 339689	-0.0661157481 856669	-1.12756156645 5817
4	C=100	0.54328182 08756567	-0.1248036777 5039669	-0.0997617233 3666122	-0.1181455482 8411383
5	C=10	-0.00161760 5540934263 8	-0.0819691039 6420853	-0.09311615 532848538	-0.09078319 814614

Hyper parameter

C=1000

Linear

R_Value: 0.6340369308871254

kernel='linear'

C=1000

R2_Score value: 0.6340369308871254

3. Decision Tree

Assignment: Decision tree Regression- Hyper parameters with R values

<u>Sl.N</u> 0	Criteriao n	Max_feat ures	Splitter	R Value
1	Squared _error	Sqrt	best	0.679553 641359489
2	Squared _error	Sqrt	Random	0.6973832 909326495
3	Squared _error	auto	best	0.6623132 903803661
4	Squared _error	auto	Random	0.6980933 984406023
5	Squared _error	log2	best	0.6398772 872609122
6	Squared error	log2	Random	0.6738577 749631401
7	friedman _mse	Sqrt	best	0.7149923 349432595
8	friedman mse	Sqrt	Random	0.7076350 768998017
9	friedman _mse	auto	best	0.6586035 07799159
10	friedman mse	auto	Random	0.7193753 715117888
11	friedman mse	log2	best	0.6795796 589117227
12	friedman _mse	log2	Random	0.7003518 431318947

	•			
13	poisson	Sqrt	best	0.6370151
				046264717
14	poisson	Sqrt	Random	0.5985342
	***************************************			184884453

15	poisson	log2	best	0.6597147
	20000000			233352301
16	poisson	log2	Random	0.6302975
	***************************************			320496209
17	poisson	auto	best	0.6568278
		I		169253381
18	poisso	auto	random	0.7189475
	*******			453842333
19	absolute	sqrt	best	0.7245625
	_error	· .		680549648
20	absolute	sqrt	Random	0.6551961
	_error			43279222

21	absolute _error	log2	best	0.6968008 978205906
22	absolute _error	log2	random	0.5737609 430307047
23	absolute _error	auto	best	0.66802 7408988 5903
24	absolute _error	auto	random	0.7241032 787882982

criterion='absolute_error'
max_features='sqrt'
splitter='best'

R2_Value: 0.7245625680549648

4. Random forest:

SI.No	n_esti	criterio	max_fe	C_Valu	-	<u></u>
	on the web Fra	n	atures	e		
1	100	-	-	0.8250 491220 17278		
2	100	square d_error	sqrt	0.8388 598173 145339		
3	50	square d_error	sgurt	0.8369 776106 713841	T ₁	
4	100	square d_error	log2	0.8388 598173 145339		
5	50	square d_error	log2	0.8369 776106 713841		
6	100	friedma n_mse	sgurt	0.8390 780475 542116		
7	100	friedma n_mse	log2	0.8390 780475 542116		

	7	100	friedma n_mse	log2	0.8390 780475 542116		
·	8	50	absolut e_error	sqrt	0.8431 931214 38361	Best Model	
[9	50	absolut e_error	log2	0.8431 931214 38361	Best Model	
F	10	50	poisso	sqrt	0.8409		
5	Ĩ.		Ü		579434		
١	Д.				651613		
	11	50	poisso n	log2	0.8409 579434 651613		
	12	100	poisso n	log2	0.8417 099421 816833		
L							

n_estimators=50
random_state=0
criterion='absolute_error'
max_features='sqrt'

R2 value: 0.843193121438361

Conclusion:

In Random Forest supervised learning method, we are getting the best model out of all other methods. We can deploy in Production.