Python Libraries (Intro)

These libraries form the backbone of many data science and machine learning projects in Python, each offering specialized tools to handle specific types of data and analyses efficiently.

OpenCV (Open Source Computer Vision Library)

Description:

OpenCV is an open-source library primarily used for computer vision tasks. It allows for image and video processing, which includes capabilities like image transformations, feature detection, object detection, and much more.

Key Features:

- Image Processing: Functions for reading, writing, and manipulating images.
- Video Analysis: Capabilities for capturing, processing, and analyzing videos.
- Object Detection: Includes pre-trained models and tools for detecting faces, eyes, pedestrians, etc.
- Machine Learning: Includes machine learning algorithms for training models on images and videos.

Example Use Case:

)

Detecting edges in an image using Canny Edge Detection:

```
import cv2

image = cv2.imread('example.jpg',
0)
edges = cv2.Canny(image, 100, 200)

cv2.imshow('Edges', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()
```

Pandas

Description:

Pandas is a powerful data manipulation and analysis library for Python. It provides data structures like Series (1-dimensional) and DataFrame (2-dimensional), which are efficient for data handling and manipulation.

Key Features:

- Data Structures: Series and DataFrame for data manipulation.
- Data Cleaning: Functions for handling missing data, duplicates, and other data preprocessing tasks.
- Data Transformation: Merging, joining, and reshaping datasets.
- Data Analysis: Descriptive statistics and operations on data.

Example Use Case:

Reading a CSV file and performing data analysis:

```
import pandas as pd

df = pd.read_csv('data.csv')
print(df.head())
print(df.describe())
```

PIL (Python Imaging Library) / Pillow

Description:

PIL, now maintained under the name Pillow, is a library for opening, manipulating, and saving many different image file formats in Python. It supports image processing tasks such as filtering, transforming, and enhancing images.

Key Features:

- Image Opening and Saving: Supports various image formats (JPEG, PNG, GIF, etc.).
- Image Processing: Functions for resizing, cropping, filtering, and more.
- Image Enhancements: Adjusting brightness, contrast, color, and sharpness.

Example Use Case:

Opening an image, applying a filter, and saving it:

```
from PIL import Image, ImageFilter

image = Image.open('example.jpg')

blurred_image =
 image.filter(ImageFilter.BLUR)

blurred_image.save('blurred_exam-
ple.jpg')
```

NumPy (Numerical Python)

Description:

NumPy is a foundational package for numerical computing in Python. It provides support for arrays, matrices, and a collection of mathematical functions to operate on these data structures efficiently.

Key Features:

- Multidimensional Arrays: Support for large, multi-dimensional arrays and matrices.
- Mathematical Functions: Functions for performing element-wise operations and matrix manipulations.
- Linear Algebra: Tools for linear algebra, Fourier transforms, and random number generation.
- Performance: Optimized for performance with operations implemented in C.

Example Use Case:

```
import numpy as np
array = np.array([1, 2, 3, 4, 5])
print("Array:", array)
print("Mean:", np.mean(array))
print("Sum:", np.sum(array))
```

Scikit-Learn (Sklearn)

Description:

Scikit-Learn is a machine learning library for Python. It provides simple and efficient tools for data mining and data analysis, including algorithms for classification, regression, clustering, and dimensionality reduction.

Key Features:

- Algorithms: Implements a wide range of supervised and unsupervised learning algorithms.
- Data Preprocessing: Tools for feature extraction, normalization, and transformation.
- Model Evaluation: Functions for model evaluation and selection, including cross-validation and hyperparameter tuning.
- Integration: Integrates well with other scientific Python libraries like NumPy and Pandas.

Example Use Case:

```
from sklearn.datasets import
load_iris
from sklearn.model_selection import
train_test_split
from sklearn.ensemble import
RandomForestClassifier
from sklearn.metrics import
accuracy_score
iris = load_iris()
X_train, X_test, y_train, y_test =
train_test_split(iris.data,
iris.target, test_size=0.3,
random_state=42)
model = RandomForestClassifier()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
print("Accuracy:",
accuracy_score(y_test,
predictions))
```