MASFit (Milano Antineutrino Spectrum Fitter)

MASFit is a code intended to simulate the antineutrino spectrum that JUNO will receive and evaluate the sensitivity of the experiment with a χ^2 test. The code will produce a simulated spectrum and fit it with both normal and inverted models, computing $\Delta \chi^2 = \chi_{IO}^2 - \chi_{NO}^2$.

You can run the code "MASFit_0.py" with Python giving as input the file "input_MASFit_0.txt" and "inputFlux.txt".

Command line example: $python3\ MASFit_0.py\ input_MASFit_0.txt\ input-Flux.txt$

The file "inputFlux.txt" contains the un-obscillated flux of anti-neutrinos from reactor. It has to have the same number of elements of the Nbin in the main code (you can set it from the input file).

The file "MASFit_func.py" is called in the main code and contains some of the functions used.

The code will produce two different outputs:

- if you use an Asimov data-set (Fluctuations=0) the output will be a plot of the simulated data with the two fits (called "MASFit_plot.png") and a file with all the free parameters of the fit and their reconstructed values (called "MASFit_parameters.txt")
- if the option Fluctuations is True (1) it will produce an histogram with the distribution of the Delta Chi Squared, doing M fits

This is an explanation of the input file, in which you can control everything of the simulation (names and values as to be separated form "tab"):

- Fluctuations? if the answer is 0 it will produce an Asimov data-set, if the answer i 1 it will introduce statistical fluctuation (Poisson) on the Asimov data-set.
- M is the number of fits you want to do with statistical fluctuations (1000 fits takes nearly 1 hour)
- **Nbin** is the number of bin in which you divide the histogram (suggested 200)

- Emin(MeV) is the lower energy for the simulation (don't go under 1.806)
- Emax(MeV) is the maximum energy for the simulation
- **Ncont** is the number of events you want to simulate (6y=100000, 20y=330000 etc..)
- Dist(km) is the mean distance between the reactors and JUNO

The following entries are the phisical parameters for neutrino oscillation

- Sin2Theta12
- Sin2Theta13_NO
- Sin2Theta13_IO
- DeltaM21
- DeltaM31_NO
- DeltaM32_IO

The following lines are parameters for the energy resolution and the sistematic uncertainties

- a(%) First term of the energy resolution $(a/\sqrt(E))$
- **b**(%) Second term of the energy resolution (the constant one)
- c(%) Third therm in the energy resolution (c/E)
- sigma_a(%) Uncertainties on the terms of the energy resolution
- sigma_b(%) ""
- sigma_c(%) ""
- sigma_alphaC(%) Correlated reactor uncertainty
- sigma_alphaD(%) Detector uncertainty
- $sigma_b2b(\%)$ Bin to bin uncorrelated uncertainty
- sigma_alphaR(%) Reactor uncorrelated uncertainty

- Systematics? if the answer is 0 it will do a fit with the standard χ^2 and some pull terms on a,b,c. If the answer is 1 it will introduce systematic uncertainties in the χ^2 (see below).
- Scan? If the answer is 1 it will produce a plot with the χ^2 scan in function of Δm_{3l}^2 , otherwise nothing will be produced.

Here you have the possibility to chose which parameter of the fit are free anch which are fixed. If you put 0 the parameter will be free, if you put 1 it will be fixed

- Fix_M21
- Fix_Theta13
- Fix_Theta12
- Fix_N
- Fix_a
- Fix_b
- Fix_c

The last option is if you want the plot to pop up, or just be saved

• Plot? if the answer is 1 it will pop up and block the terminal until you have closed it, if it is 0 it won't appear, but will be saved anyways.

Systematic χ^2

The minimizer used if systematic are on is:

$$\chi^2 = \sum_{i}^{n_{bin}} \left(\frac{(M_i - T_i \cdot (1 + \alpha_C + \sum_r w_r \cdot \alpha_r + \alpha_D))^2}{M_i + (T_i \cdot \sigma_{b2b})^2} \right) + \left(\frac{\alpha_C}{\sigma_C} \right)^2 + \left(\frac{\alpha_D}{\sigma_D} \right)^2 + \sum_r \left(\frac{\alpha_r}{\sigma_r} \right)^2$$

- α_C represents a rate uncertainty related to reactors, with $\sigma_C = 2\%$, and it's correlated among all bins.
- α_r models another rate uncertainty related to reactors that is different from core to core. In my code r=1, because I simulate only one core and $\sigma_C = 0.8\%$.
- α_D represents a rate uncertainty related to detector, with $\sigma_D = 1\%$, and it's correlated among all bins.
- $\sigma_{b2b} = 1\%$ models a shape uncertainty that affects each bin separately

Starting from this χ^2 I've then added some pull terms for the parameters of the energy resolution (a,b,c).

The pull terms are in the form $\left(\frac{a-a_0}{\sigma_a}\right)^2$.