STA 255 Tutorial 8

David Veitch

University of Toronto daveveitch.github.io

August 6, 2019

Agenda

Mahoot

2 Estimators (Exercise 7.11 Devore & Berk)

3 Estimators (Exercise 7.23 Devore & Berk)

Kahoot

Estimators (Exercise 7.11 Devore & Berk)

Of n_1 randomly selected male smokers, X_1 smoked filter cigarettes, whereas of n_2 randomly selected female smokers, X_2 smoked filter cigarettes. Let p_1 and p_2 denote the probabilities that a randomly selected male and female, respectively, smoke filter cigarettes.

- **1** Show that $X_1/n_1 X_2/n_2$ is an unbiased estimator for $p_1 p_2$
- What is the standard error of the estimator in part 1
- **3** How would you use the observed values x_1 and x_2 to estimate the standard error of your estimator
- If $n_1 = n_2 = 200$, $x_1 = 127$, $x_2 = 176$ use the estimator of part 1 to obtain an estimate of $p_1 p_2$
- Use the result of part 3 and part 4 to estimate the standard error of the estimator

Estimators (Exercise 7.11 Devore & Berk)

1.

$$E[X_1/n_1 - X_2/n_2] = E[X_1/n_1] - E[X_2/n_2]$$

$$= \frac{1}{n_1} E[X_1] - \frac{1}{n_2} E[X_2]$$

$$= p_1 - p_2$$

2. Using the fact that X_1 and X_2 are independent, and the formula for the variance of a binomial distribution, we get:

$$Var(X_1/n_1 - X_2/n_2) = Var(X_1/n_1) + Var(X_2/n_2)$$

$$= \frac{1}{n_1^2} Var(X_1) + \frac{1}{n_2^2} Var(X_2)$$

$$= \frac{n_1 p_1(1 - p_1)}{n_1^2} + \frac{n_2 p_2(1 - p_2)}{n_2^2} = \frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}$$

Estimators (Exercise 7.11 Devore & Berk)

3. Set
$$\hat{p}_1 = x_1/n_1$$
, $\hat{p}_2 = x_2/n_2$

4.
$$\hat{p}_1 - \hat{p}_2 = -.245$$

5. Plugging in \hat{p}_1 and \hat{p}_2 we get the standard error to be 0.041

Estimators (Exercise 7.23 Devore & Berk)

Let X denote the proportion of alloted time that a randomly selected student spends working on a certain aptitute test. Suppose the pdf of X, where $-1 < \theta$, is:

$$f(x;\theta) = \begin{cases} (\theta+1)x^{\theta} & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

A random sample of 10 students yields data: .92, .79, .90, .65, .86, .47, .73, .97, .94, .77.

- ① Use the method of moments to obtain an estimator of θ , and then compute the estimate for this data.
- 2 Obtain the maximum likelihood estimator of θ , and then compute the estimate for the given data.

Estimators (Exercise 7.23 Devore & Berk)

1.

$$E[X] = \int_0^1 x(\theta + 1)x^{\theta} dx = 1 - \frac{1}{\theta + 2}$$

$$\Rightarrow \hat{\theta} = \frac{1}{1 - \bar{X}} - 2 = \frac{1}{1 - .8} - 2 = 3$$

2.

$$f(x_1, \dots, x_n; \theta) = (\theta + 1)^n (\prod_{i=1}^n x_i)^{\theta}$$

$$\ln (f(x_1, \dots, x_n; \theta)) = n \ln(\theta + 1) + \theta \sum_{i=1}^n \ln(x_i)$$

$$\frac{\partial}{\partial \theta} \ln (f(x_1, \dots, x_n; \theta)) = \frac{n}{\theta + 1} + \sum_{i=1}^n \ln(x_i) = 0$$

$$\Rightarrow \hat{\theta} = -1 - \frac{n}{\sum_{i=1}^n \ln(x_i)}$$