

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 10a

FIG. 10b

FIG. 11

FIG. 12

FIG. 13

FIG. 15

FIG. 16

65nm CPL isolated lines, 193nm 0.85NA, TOK63 vector resist simulations

FIG. 17

FIG. 18

FIG. 19

• 0.15, 0.2, 0.3, 0.6σ conv

• 0.9/0.4 Q20

• 0.2, 0.3, 0.4σ + 0.9/0.4 Q20

• $0.3\sigma + 0.9/0.4 Q15$

FIG. 20

trial illuminator	prediction based on weighted and interpolated source measurements	Prolith simulation with this illuminator		
0.85_0.55Q30	0.293u	0.23u		
0.75_0.55Q20	0.416	0.41		
0.80_0.60Q20	0.383	0.355		
0.80_0.60annular	0.110	0.10		
0.75_0.55annular	0.118	0.105		

FIG. 22

FIG. 23

FIG. 24

Focus

FIG. 25

Aerial image calculation thresh(BF)-thresh(BF+0.2)

resist calculation CD(BF+0.2)-CD(BF)

FIG. 27a

Aerial image calculation thresh(BF)-thresh(BF+0.2)

FIG. 27b

FIG. 28

At σ=0.25, process is approximately isofocal.

DOF is good but dose latitude is low.

FIG. 30a

Illuminator = $\sigma(0.1 \text{ conv}) + (0.92/0.88Q5^{\circ})$

FIG. 31

Custom #2

FIG. 32

Exposure Latitude vs. DOF

optimization method	illumination	max EL	max DOF	DOF @ 10% EL	DOF @ 5% EL
standard	0.95/0.70Q30°	18%	0.3	0.18	0.24
simple isofocal compensation	0.25 conv	8%	>0.55	0	0.29
high EL isofocal compensation	0.92/0.88Q5°+0.1conv	16%	>0.65	0.57	0.63

FIG. 34

Large improvement in process window may be possible by appropriate use of illuminator to compensate isofocal curvature

FIG. 35a

FIG. 35c

FIG. 36b

0.97/0.40+0.4σ

FIG. 36c

FIG. 37

Under these conditions, the structure is very aberration sensitive

double line
line

PSW
180 phase
shift window

FIG. 38a

FIG. 38b

FIG. 39a

FIG. 39b

Illuminator comparison for double line

 σ =0.15 + small Cquad

FIG. 41

FIG. 42

Illum. Optimization with 0.75NA

tight Quasar looks best ⇒ 0.80/0.55Q30°

FIG. 43

Source visualization of aberration sensitivity

FIG. 44

Illuminator comparison for double line

FIG. 45

CPL with reduced aberration sensitivity increased pole size still gives favorable process window

FIG. 46

FIG. 47

6%Att-PSM, 1Anti-Scatterring Bar (ASB)/side 50nm ASB, 150nm pitch

FIG. 48

Optimization requires very wide CQuad or quasar

75nm trench, 15nm bias 6% att-psm,193nm 0.93NA

FIG. 49a

FIG. 49b

75nm trench, 15nm bias 6% att-psm, 193nm 0.93NA

1SB / side

FIG. 50

6%Att-PSM

35° Cquad + 0.10σ

Comparison of "mask assist" and "illuminator assist" for high DOF

Effect of bias

• Lower bias increases DOF. This is an advantage for the "simple mask, complex illuminator" case because there are no assist features to print when using low biases / high exposures.

Exposure Latitude (%) Group5 Doc: 193_trench_illum.pd2 10 -5nm 6 25nm 4 95_85CQ22.5_s10_15b 95_85CQ22.5_s10_25b 2 95_85_CQ22.5_s10_-5b 0 0.0 0.1 0.2 0.3 0.4 **Depth of Focus**

FIG.54

75nm trench, variable bias 6% att-psm, 193nm 0.93NA

t a

FIG. 55

CPL for double line

Print 50nm lines

FIG. 56

Source visualization map based on resist simulations for a grid of source points

"Best choice" for illumination based on process window metric is the indicated 0.64/0.42Quasar30°.

Note: smaller poles centered at the same location expected to give better process window - larger worse.

Lowest CD variation (best process!) is slightly off the diagonal

Expect wider pole to improved CDU

FIG. 58

Selecting illuminator based on process window alone gives >50% more CD variation than if source visualization of CDU is included

FIG. 59