

第八章 假设检验

- 1 假设检验的基本概念
- 单个正态总体均值与方差的假设检验
- 两个正态总体均值差与方差比的假设检验

§1 假设检验的基本概念

引例 某产品出厂检验规定,次品率p不超过4%才能出厂. 现从一万件产品中任意抽查12件,发现3件次品,问该批产品能否出厂? 若抽查结果发现1件次品,问能否出厂?

解 假设 $H_0: p \le 0.04$, $H_1: p > 0.04$,

$$P_{12}(3) = C_{12}^3 p^3 (1-p)^9 = 0.0097$$

小概率事件发生

故认为原假设不成立,即该批产品次品率p > 0.04,则该批产品不能出厂.

$$P_{12}(1) = C_{12}^1 p^1 (1-p)^{11} = 0.306$$

这不是小概率事件,没理由拒绝原假设,从而接受原假设,即该批产品可以出厂.

注 本检验方法是概率意义下的反证法.

 $H_1: p > 0.04,$

假设检验的任务 必须在原假设与备择假设之间作一选择.

在原假设成立下,利用样本观测值对实际问题进行分析,如果发生小 概率事件,则拒绝接受原假设(接受备择假设).反之,则接受原假设. 这种统计推断的问题称为假设检验问题.

只对总体中的未知参数提出假设,然后进行检验的问题称为参数检验.

理论基础 小概率事件在一次试验中几乎不可能发生.

假设检验中的小概率值称为显著性水平,记为 $\alpha(0 < \alpha < 1)$. α 通常取 为0.01,0.05或0.1.

例 某车间用包装机包装糖果,每袋重量(单位g)服从正态分布.由已往经验知每袋重量的标准差 $\sigma = 0.5g$ 保持不变. 每隔一定时间需要检查包装机的工作情况, 现抽取 9 袋,测得它们的重量为

99.0, 100.2, 99.3, 99.1, 99.6, 99.2, 99.9, 100.1, 99.3,

根据质量要求每袋重量为100g,试问这段时间内包装机的工作是否正常(取显著性水平 $\alpha = 0.05$)?

解 设每袋重量 $X \sim N(\mu, 0.5^2)$,

包装机的工作是否正常,相当于判断 $\mu = \mu_0 = 100$ 是否正确.

原假设 H_0 : $\mu = \mu_0 = 100$

备择假设 H_1 : $\mu \neq 100$,

因为样本均值 \overline{X} 是总体均值 μ 的无偏估计,所以 $|\overline{X} - \mu|$ 应集中在0点阶

近,考虑
$$\left|\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\right|$$
, 在 H_0 正确条件下, $\mu=\mu_0$, 适当选取一个常数 k , 若 $\left|\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\right| \ge k$

就有理由怀疑原假设 H_0 的正确性,应该拒绝 H_0 .

$$u = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$$
 检验统计量

为了给出恰当的 k值,对于给定的显著性水平 α , 令

$$P\left\{\frac{|\overline{X} - \mu_0|}{\sigma / \sqrt{n}} \ge k\right\} = \alpha.$$

根据标准正态分布上 α 分位点的定义知 $k = u_{\alpha/2}$.

如果统计量
$$u$$
满足 $|u| = \left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| \ge u_{\alpha/2}$,则意味着小概率事件 $\alpha = 0.05$ 发生,

根据实际推断原理,应拒绝原假设 H_0 .

如果统计量
$$u$$
满足 $|u| = \left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| < u_{\alpha/2}$,则应接受原假设 H_0 .

$$W = \{ |u| \ge u_{\alpha/2} \}$$
 — 原假设 H_0 拒绝域

例 某车间用包装机包装糖果,每袋重量(单位g)服从正态分布.由已往经验知每袋重量的标准差 $\sigma = 0.5g$ 保持不变. 每隔一定时间需要检查包装机的工作情况,现抽取 9 袋,测得它们的重量为

99.0, 100.2, 99.3, 99.1, 99.6, 99.2, 99.9, 100.1, 99.3,

根据质量要求每袋重量为100g,试问这段时间内包装机的工作是否正常(取显著性水平 $\alpha = 0.05$)?

解 设每袋重量 $X \sim N(\mu, 0.5^2)$, $H_0: \mu = \mu_0 = 100$, $H_1: \mu \neq 100$, 现在 $\mu_0 = 100$, $\sigma = 0.5$, n = 9, $x = \frac{1}{9} \sum_{i=1}^{9} x_i = 99.52$, $u_{\alpha/2} = 1.96$, $W = \{|u| \ge u_{\alpha/2}\}$,

$$|u| = \frac{|x - \mu_0|}{\sigma / \sqrt{n}} = \frac{|99.52 - 100|}{0.5 / \sqrt{9}} = 2.88 > 1.96$$

所以拒绝 H_0 ,即认为这段时间内包装机的工作不正常.

假设检验的结果可能犯两类错误

第一类错误(弃真) 当原假设 H_0 为真时,作出的决定却是拒绝 H_0 ,犯这类错误的概率不超过显著性水平 α ,记为

$$P\{拒绝H_0|H_0正确\}=\alpha.$$

第二类错误(取伪) 当原假设 H_0 不正确时,作出的决定却是接受 H_0 ,犯这类错误的概率不妨记为 β ,

$$P\{$$
接受 $H_0 | H_0$ 不正确 $\} = \beta$.

	H_0 为真	H_0 不真
接受 H_0	正确	第二类错误
拒绝 H_0	第一类错误	正确

在确定检验法则时,应尽可能使犯两类错误的概率都较小.

当样本容量给定以后,若减少犯某一类错误的概率,则犯另一类错误的概率往往会增大,要使犯两类错误的概率都减小,只好增大样本容量.

在给定样本容量的情况下,我们总是控制犯第一类错误的概率,让它小于或等于 α ,而不考虑犯第二类错误的概率 β ,这类检验问题称为显著性检验.

只对总体中的未知参数提出假设,然后进行检验的问题称为参数检验的

对总体中的未知参数 θ 进行检验,

原假设 H_0 : $\theta = \theta_0$, 备择假设 H_1 : $\theta \neq \theta_0$. — 双边检验.

原假设 H_0 : $\theta = \theta_0 (\theta \ge \theta_0)$,备择假设 H_1 : $\theta < \theta_0$. —— 左边检验.

原假设 H_0 : $\theta = \theta_0 (\theta \le \theta_0)$,备择假设 H_1 : $\theta > \theta_0$. ——— 右边检验.

参数检验的一般步骤

- 1. 根据问题的要求,提出原假设 H_0 和备择假设 H_1 ;
- 2. 在 H_0 正确下确定检验统计量T及其分布;
- 3. 对于给定的显著性水平 α ,确定拒绝域W;
- 4. 根据样本值计算T的观察值t, 当 $t \in W$ 时,拒绝 H_0 , 否则接受 H_0 .

§2 单个正态总体的参数假设检验

- 1. 单个正态总体均值的假设检验
- 2. 单个正态总体方差的假设检验

假设总体 $X \sim N(\mu, \sigma^2)$, X_1 , X_2 , ..., X_n 是来自总体X 的样本,样本均值和样本方差分别为 \bar{X} , S^2 .

2.1 单个正态总体均值的假设检验

1. σ^2 已知时,关于 μ 的假设检验 ——u检验

双边检验 H_0 : $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$.

取检验统计量 $u = \frac{X - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$, 对于给定的显著性水平 α ,

$$P\left\{\frac{|\overline{X} - \mu_0|}{\sigma/\sqrt{n}} \ge u_{\alpha/2}\right\} = \alpha.$$

拒绝域为 $W = \{|u| \geq u_{\alpha/2}\}$

 $\varphi(x)$

对于给定的显著性水平
$$\alpha$$
,考虑 $P\left\{\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}} \le -u_\alpha\right\} = \alpha$.

拒绝域为
$$W = \{u \leq -u_{\alpha}\}$$

 $\varphi(x)$

右边检验
$$H_0$$
: $\mu = \mu_0 (\mu \le \mu_0), H_1$: $\mu > \mu_0$.

对于给定的显著性水平
$$\alpha$$
,考虑 $P\left\{\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \ge u_\alpha\right\} = \alpha$.

拒绝域为
$$W = \{u \ge u_{\alpha}\}$$

2. σ^2 未知时,关于 μ 的假设检验——t 检验

假设检验
$$H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$$
.

取检验统计量
$$t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t(n-1)$$
. $u = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$

$$u = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$$

对于给定的显著性水平 α , 拒绝域为 $W = \{|t| \geq t_{\alpha/2}(n-1)\}$

f(x)

左边检验
$$H_0: \mu = \mu_0 (\mu \ge \mu_0), H_1: \mu < \mu_0.$$

对于给定的显著性水平 α , 拒绝域为 $W = \{t \le -t_{\alpha}(n-1)\}$

右边检验
$$H_0$$
: $\mu = \mu_0 (\mu \le \mu_0), H_1$: $\mu > \mu_0$.

对于给定的显著性水平 α , 拒绝域为 $W = \{t \ge t_{\alpha}(n-1)\}$

例 某车间加工一种零件,要求长度为150(单位:mm),今从一批加工后的这种零件中抽取 9 个,测得长度如下:

147, 150, 149, 154, 152, 153, 148, 151, 155

假设零件长度X服从正态分布,问这批零件是否合格(显著性水平 $\alpha = 0.05$)?

解 设 $X \sim N(\mu, \sigma^2)$, 检验假设 H_0 : $\mu = \mu_0 = 150$, H_1 : $\mu \neq 150$.

检验统计量
$$t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t(n-1)$$
. 拒绝域为 $W = \{|t| \ge t_{\alpha/2}(n-1)\}$.

这里
$$n=9$$
, $x=\frac{1}{9}\sum_{i=1}^{9}x_i=151$, $s^2=\frac{1}{9-1}\sum_{i=1}^{9}(x_i-x_i)^2=7.5$, $s=\sqrt{7.5}=2.739$,

$$\alpha = 0.05$$
, $t_{\alpha/2}(n-1) = t_{0.025}(8) = 2.306$.

$$|t| = \frac{|151 - 150|}{2.739 / \sqrt{9}} = 1.096 < 2.306.$$

所以接受 H_0 ,即认为这批零件合格.

例 已知某厂生产的灯泡寿命X(单位h)服从正态分布 $N(\mu,200^2)$,根据经验,灯泡的平均寿命不超过1500h,现测试了25只采用新工艺生产的灯泡,测得其平均寿命为 1575 h,试问新工艺是否提高了灯泡的寿命(显著性水平 α =0.05).

 $\mu H_0: \mu = 1500 (\mu \le 1500), H_1: \mu > 1500.$

检验统计量
$$u = \frac{\overline{X} - 1500}{\sigma / \sqrt{n}} \sim N(0, 1)$$

对于给定的显著性水平 α = **0.05**, 查表得 $u_{\alpha} = u_{0.05} = 1.645$.

左边检验,拒绝域为 $W = \{u \ge u_{\alpha}\} = \{u \ge 1.645\}$

由于
$$n=25$$
, $\sigma=200$, $\overline{x}=1575$, $u=\frac{1575-1000}{200/\sqrt{25}}=1.875>1.645$

所以拒绝 H_0 ,而接受 H_1 ,即认为新工艺提高了灯泡的寿命.

2.2 单个正态总体方差的假设检验

原假设 <i>H</i> ₀	备择假设 <i>H</i> ₁	检验统计量及其在 H ₀ 为真时的分布	拒绝域
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$\chi^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\sigma_{0}^{2}}$	$\chi^{2} \leq \chi_{1-\frac{\alpha}{2}}^{2}(n)$ 或 $\chi^{2} \geq \chi_{\frac{\alpha}{2}}^{2}(n)$
$\sigma^2 \ge \sigma_0^2$	$\sigma^2 < \sigma_0^2$		$\chi^2 \leq \chi^2_{1-\alpha}(n)$
$\sigma^2 \leq \sigma_0^2$	$\sigma^2 > \sigma_0^2$		$\chi^2 \geq \chi_{\alpha}^2(n)$

2.均值 μ 未知时,方差 σ^2 的假设检验—— χ^2 检验

原假设 <i>H</i> ₀	备择假设 <i>H</i> ₁	检验统计量及其在 H ₀ 为真时的分布	拒绝域
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\chi^2 \le \chi_{1-\frac{\alpha}{2}}^2(n-1)$ 或 $\chi^2 \ge \chi_{\frac{\alpha}{2}}^2(n-1)$
$\sigma^2 \ge \sigma_0^2$	$\sigma^2 < \sigma_0^2$	$\sim \chi^2(n-1)$	$\chi^2 \leq \chi_{1-\alpha}^2(n-1)$
$\sigma^2 \leq \sigma_0^2$	$\sigma^2 > \sigma_0^2$		$\chi^2 \ge \chi_\alpha^2 (n-1)$

例 某厂生产的尼龙纤维的纤度在正常情况下服从正态分布, 某日抽取5根纤维,测得它们的纤度为

1.32,1.36,1.55,1.44,1.40

试问能否认为这一天尼龙纤维的纤度的标准差 σ =0.048(取 α =0.1).

解 检验假设 H_0 : $\sigma = 0.048$, H_1 : $\sigma \neq 0.048$.

检验统计量
$$\chi^2 = \frac{(n-1)S^2}{0.048^2} \sim \chi^2(n-1)$$
. 拒绝域 $W = \{\chi^2 \le \chi^2_{1-\alpha/2}(n-1)$ 或 $\chi^2 \ge \chi^2_{\alpha/2}(n-1)\}$

这里
$$\alpha$$
=0.1, $\chi^2_{1-\alpha/2}(n-1) = \chi^2_{0.95}(4) = 0.711$, $\chi^2_{\alpha/2}(n-1) = \chi^2_{0.05}(4) = 9.488$,

$$\bar{x} = 1.414, s^2 = 0.00778,$$

$$\chi^2 = \frac{(5-1)\times 0.00778}{0.048^2} = 13.51 > 9.488.$$

所以拒绝 H_0 ,即不能认为这一天尼龙纤度的标准差 $\sigma=0.048$.

§3 两个正态总体的参数假设检验

- 1. 两个正态总体均值差的假设检验
- 2. 两个正态总体方差比的假设检验

设总体 $X \sim N(\mu_1, \sigma_1^2)$ 与 $Y \sim N(\mu_2, \sigma_2^2)$ 独立, X_1, X_2, \dots, X_{n_1} 和 Y_2, Y_2, \dots, Y_{n_2} 分别为来自总体X与Y的样本.

3.1 两个正态总体均值差的假设检验

1.方差 σ_1^2, σ_2^2 已知时,均值差 $\mu_1 - \mu_2$ 的假设检验——u检验

原假设 <i>H</i> ₀	备择假设 <i>H</i> ₁	检验统计量及其在 H ₀ 为真时的分布	拒绝域
$\mu_1 - \mu_2 = \delta$	$\mu_1 - \mu_2 \neq \delta$	$u = \frac{\overline{X} - \overline{Y} - \delta}{}$	$ u \ge u_{\frac{\alpha}{2}}$
$\mu_1 - \mu_2 \ge \delta$	$\mu_1 - \mu_2 < \delta$	$u = \frac{1}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$u \leq -u_{\alpha}$
$\mu_1 - \mu_2 \leq \delta$	$\mu_1 - \mu_2 > \delta$	~ N(0,1)	$u \ge u_{\alpha}$

2.方差 $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 未知时,均值差 $\mu_1 - \mu_2$ 的假设检验——t检验

原假设 <i>H</i> ₀	备择假设 <i>H</i> ₁	检验统计量及其在 H ₀ 为真时的分布	拒绝域
$\mu_1 - \mu_2 = \delta$	$\mu_1 - \mu_2 \neq \delta$	$t = \frac{\overline{X} - \overline{Y} - \delta}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2} S_w}}$ $\sim t(n_1 + n_2 - 2)$	$\left t \right \ge t_{\frac{\alpha}{2}}(n_1 + n_2 - 2)$
$\mu_1 - \mu_2 \ge \delta$	$\mu_1 - \mu_2 < \delta$		$t \le -t_{\alpha}(n_1 + n_2 - 2)$
$\mu_1 - \mu_2 \leq \delta$	$\mu_1 - \mu_2 > \delta$		$t \ge t_{\alpha}(n_1 + n_2 - 2)$

其中
$$S_w = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

例 在甲、乙两个工厂生产的蓄电池中,分别取5个测量电容量,

甲厂: 143 141 138 142 140

乙厂: 141 143 139 144 141

设甲,乙两厂蓄电池的电容量分别为 $X \sim N(\mu_1, \sigma_1^2)$ 和 $Y \sim N(\mu_2, \sigma_2^2)$,且 $\sigma_1^2 = \sigma_2^2$. 问两厂的电容量有无显著差异(取 α =0.05)?

解 检验假设 H_0 : $\mu_1 = \mu_2$, H_1 : $\mu_1 \neq \mu_2$.

检验统计量
$$t = \frac{\overline{X} - \overline{Y}}{S_w \sqrt{1/n_1 + 1/n_2}} \sim t(n_1 + n_2 - 2)$$
. 拒绝域为 $W = \{ \mid t \mid \geq t_{\alpha/2}(8) = 2.306 \}$.

这里
$$\overline{x} = 140.8, \overline{y} = 141.6, s_1^2 = 3.699, s_2^2 = 3.799, s_w^2 = \frac{4 \times s_1^2 + 4s_2^2}{8} = 3.7499$$

$$|t| = \frac{|140.8 - 141.6|}{\sqrt{3.7499} \times \sqrt{1/5 + 1/5}} = 0.6535 < 2.306,$$

因此接受原假设 H_0 ,即认为两厂蓄电池的电容量无显著差异.

例 在甲、乙两个工厂生产的蓄电池中,分别取5个测量电容量,

甲厂: 143 141 138 142 140

乙厂: 141 143 139 144 141

设甲,乙两厂蓄电池的电容量分别为 $X \sim N(\mu_1, \sigma_1^2)$ 和 $Y \sim N(\mu_2, \sigma_2^2)$,且 $\sigma_1^2 = \sigma_2^2$. 问两厂的电容量有无显著差异(取 α =0.05)?

又解 两个样本容量相等,化为单个总体Z=X-Y均值是否为零的检验.

设Z=X-Y,则 $Z\sim N(\mu,\sigma^2)$,其中 $\mu=\mu_1-\mu_2,\sigma^2=\sigma_1^2+\sigma_2^2$.样本值为2,-2,-1,-2,-1.

检验假设 H_0 : $\mu=0, H_1$: $\mu\neq0$.

检验统计量 $t = \frac{Z}{S/\sqrt{n}} \sim t(n-1)$. 拒绝域 $W = \{|t| \geq t_{0.025}(4) = 2.7764\}$.

$$|t| = \frac{|\overline{z}|}{s / \sqrt{n}} = \frac{0.8}{\sqrt{2.699} / \sqrt{5}} = 0.2177 < 2.7764.$$

因此接受原假设 H_0 ,即认为两厂蓄电池的电容量无显著差异

3.2 两个正态总体方差比的假设检验

1.均值 μ_1 , μ_2 已知时,方差比 σ_1^2/σ_2^2 的假设检验——F检验

原假设 H_0	备择假设 <i>H</i> ₁	检验统计量及其在 H ₀ 为真时的分布	拒绝域
$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 \neq \sigma_2^2$	$F = \frac{\sum_{i=1}^{i=1} \cdot n_2}{\sum_{i=1}^{i} \cdot n_2}$	$F \leq F_{1-\frac{\alpha}{2}}(n_1, n_2)$ 或 $F \geq F_{\frac{\alpha}{2}}(n_1, n_2)$
$\sigma_1^2 \ge \sigma_2^2$	$\sigma_1^2 < \sigma_2^2$	$\sum_{j=1}^{n_2} (Y_j - \mu_2)^2 n_1$ $\sim F(n_1, n_2).$	$F \leq F_{1-\alpha}(n_1, n_2)$
$\sigma_1^2 \leq \sigma_2^2$	$\sigma_1^2 > \sigma_2^2$		$F \ge F_{\alpha}(n_1, n_2)$

2.均值 μ_1 , μ_2 未知时,方差比 σ_1^2/σ_2^2 的假设检验——F检验

原假设 <i>H</i> ₀	备择假设 <i>H</i> ₁	检验统计量及其在 H ₀ 为真时的分布	拒绝域
$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 \neq \sigma_2^2$	$F = \frac{S_1^2}{S_2^2}$	$F \leq F_{\frac{1-\alpha}{2}}(n_1 - 1, n_2 - 1)$ 或 $F \geq F_{\frac{\alpha}{2}}(n_1 - 1, n_2 - 1)$
$\sigma_1^2 \ge \sigma_2^2$	$\sigma_1^2 < \sigma_2^2$	$\sim F(n_1-1,n_2-1)$	$F \leq F_{1-\alpha}(n_1 - 1, n_2 - 1)$
$\sigma_1^2 \leq \sigma_2^2$	$\sigma_1^2 > \sigma_2^2$		$F \ge F_{\alpha}(n_1 - 1, n_2 - 1)$

例 从两个正态总体分别独立抽取样本观察值如下:

甲: 4.4 4.0 2.0 4.8 乙: 6.0 1.0 3.2 0.4

能否认为两个样本观察值来自同一总体(取 α =0.05).

解 设两个正态总体分别为 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2),$

首先检验 H_0 : $\sigma_1^2 = \sigma_2^2$, H_1 : $\sigma_1^2 \neq \sigma_2^2$.

检验统计量 $F = \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1)$, 拒绝域为 $W = \{F \le F_{1-\frac{\alpha}{2}}(3,3)\}$,

查表得 $F_{0.025}(3,3)=15.44$, $F_{0.925}(3,3)=\frac{1}{F_{0.025}(3,3)}=\frac{1}{15.44}=0.065$,

这里 $\overline{x} = 3.8$, $\overline{y} = 2.6$, $s_1^2 = 1.55$, $s_2^2 = 6.44$,

$$0.065 < \frac{s_1^2}{s_2^2} = \frac{1.55}{6.44} = 0.24 < 15.44,$$

因此接受原假设 H_0 ,即认为两个正态总体的方差相同.

例 从两个正态总体分别独立抽取样本观察值如下:

甲: 4.4 4.0 2.0 4.8 乙: 6.0 1.0 3.2 0.4

能否认为两个样本观察值来自同一总体(取 α =0.05).

解 再检验假设 H_0^* : $\mu_1 = \mu_2$, H_1^* : $\mu_1 \neq \mu_2$

由于
$$\sigma_1^2 = \sigma_2^2$$
但未知,取检验统计量为 $t = \frac{\bar{X} - \bar{Y}}{s_w \sqrt{1/n_1 + 1/n_2}} \sim t(n_1 + n_2 - 2)$.

拒绝域为 $W=\{|t|\geq t_{\alpha/2}(6)\},$ 查表得 $t_{0.025}(6)=2.4469,$

$$|t| = \frac{|3.80 - 2.65|}{\sqrt{\frac{3 \times 1.55 + 3 \times 6.44}{6} \cdot \sqrt{\frac{1}{4} + \frac{1}{4}}}} = 0.82 < 2.4469$$

因此接受 H_0 *,即认为两个正态总体的均值相同.

综上在显著性水平 $\alpha=0.05$ 下,认为两个样本值来自同一总体.

