MASS. EA22. 2: Qual/o-

315066016573691

JABBIN RESERVOIR

WATER QUALITY AND SEDIMENT DATA REPORT

1989

JOHN P. DEVILLARS, SECRETARY

DEPARTMENT OF ENVIRONMENTAL PROTECTION

DANIEL S. GREENBAUM, COMMISSIONER
ARLEEN O'DONNELL, ASSISTANT COMMISSIONER

DIVISION OF WATER POLLUTION CONTROL

BRIAN M. DONAHOE, DIRECTOR

METROPOLITAN DISTRICT COMMISSION

M. ILYAS BHATTI, COMMISSIONER

DIVISION OF WATERSHED MANAGEMENT

JOSEPH M. MCGINN, DIRECTOR

7.32,1.07

Digitized by the Internet Archive in 2012 with funding from Boston Library Consortium Member Libraries

NOTICE OF AVAILABILITY

LIMITED COPIES OF THIS REPORT ARE AVAILABLE AT NO COST BY WRITTEN REQUEST TO:

MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION
TECHNICAL SERVICES BRANCH
WESTVIEW BUILDING, LYMAN SCHOOL GROUNDS
WESTBOROUGH, MA 01581

Furthermore, at the time of first printing, eight (8) copies of each report published by this office are submitted to the State Library at the State House in Boston; these copies are subsequently distributed as follows:

- . On shelf; retained at the State Library (two copies);
- . microfilmed; retained at the State Library;
- . delivered to the Boston Public Library at Copley Square;
- . delivered to the Worcester Public Library;
- . delivered to the Springfield Public Library;
- . delivered to the University Library at UMass, Amherst;
- . delivered to the Library of Congress in Washington, D.C.

Moreover, this wide circulation is augmented by inter-library loans from the abovelisted libraries. For example, a resident of Winchendon can apply at the local library for loan of the Worcester Public Library's copy of any DWPC/TSB report.

A complete list of reports published since 1963 is updated annually and printed in July. This report, entitled "Publications of the Technical Services Branch, 1963-(current year)," is also available by writing to the TSB office in Westborough.

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

1989

Prepared By

DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATER POLLUTION CONTROL TECHNICAL SERVICES BRANCH

AND

WESTBOROUGH

METROPOLITAN DISTRICT COMMISSION DIVISION OF WATERSHED MANAGEMENT ENVIRONMENTAL QUALITY SECTION

BOSTON

JULY 1990

COMMONWEALTH OF MASSACHUSETTS

EXECUTIVE OFFICE OF ENVIRONMENTAL AFFAIRS John P. DeVillars, Secretary

DEPARTMENT OF ENVIRONMENTAL PROTECTION METROPOLITAN DISTRICT COMMISSION Daniel S. Greenbaum, Commissioner Arleen O'Donnell, Assistant Commissioner

M. Ilyas Bhatti, Commissioner

DIVISION OF WATER POLLUTION CONTROL Brian M. Donahoe, Director

DIVISION OF WATERSHED MANAGEMENT Joseph M. McGinn, Director

TITLE: Quabbin Reservoir Water Quality and Sediment Data Report

DATE: 7-30-90

PREPARED BY: Elaine M. Hartman, DEP/Westborough

Patricia E. Austin, MDC/Boston

Kathleen M. Keohane, DEP/Westborough

David Chandler, MDC/Quabbin

REVIEWED BY:

Alan N. Cooperman, Supervisor

DWPC Technical Services Branch

Joseph M. McGinn, Director

MDC Division of Watershed Management

Paul M. Hogan

Basin Planning Manager

DWPC Technical Services Branch

<u>ITEM</u> PAGE

ACKNOWLEDGEMENTS

FOREWORD

LIST OF TABLES

LIST OF FIGURES

INTRODUCTION

METHODS

DESCRIPTION OF THE QUABBIN RESERVOIR BASIN

WATER QUALITY AND SEDIMENT DATA

WATER QUALITY DATA

CHEMICAL AND NUTRIENT

TOTAL METALS

PHYTOPLANKTON

CHLOROPHYLL

SECCHI DISC

BACTERIA

SEDIMENT DATA

TOTAL METALS AND NUTRIENT

REFERENCES

APPENDIX A: ANALYTICAL METHODS USED AT LAWRENCE EXPERIMENT STATION

APPENDIX B: ANALYTICAL METHODS USED AT MDC LABORATORIES

APPENDIX C: BOTTLE PREPARATION

APPENDIX D: PHYTOPLANKTON AND CHLOROPHYLL SAMPLING DEPTHS

APPENDIX E: QUABBIN RESERVOIR ELEVATIONS AND RAINFALL DATA

ACKNOWLEDGEMENTS

The Technical Services Branch of the Division of Water Pollution Control and the Division of Watershed Management of the Metropolitan District Commission extend their thanks to the following who helped in making this report possible:

The Lawrence Experiment Station of the Department of Environmental Protection whose staff conducted the metal and nutrient water and sediment analyses;

The Quabbin and Wachusett Laboratories of the Metropolitan District Commission whose staffs conducted the chemical, bacteriological and algal analyses and assisted with the field sampling:

- Robert Bishop and Peter Deslauriers, from MDC Quabbin;
- Lawrence Pistrang, from MDC Wachusett;

Bruce Spencer and Paul Lyons from MDC Quabbin, who contributed the descriptive material on the watershed;

Karen Eager, Richard Rondeau and Glenn Hazelton, from MDC Boston; and Paul Hogan, of TSB, for his guidance throughout.

FOREWORD

MASSACHUSETTS DIVISION OF WATER POLLUTION CONTROL (MDWPC)

The Massachusetts Division of Water Pollution Control was established by the Massachusetts Clean Water Act, Chapter 21 of the General Laws as amended by Chapter 685 of the Acts of 1966. Included in the duties and responsibilities of the Division is the periodic examination of the water quality of various coastal waters, rivers, streams and ponds of the Commonwealth, as stated in section 27, paragraph 5 of the Acts. This section further directs the Division to publish the results of such examination together with the standards of water quality established for the various waters. The Technical Services Branch of the Division of Water Pollution Control has, among its responsibilities, the execution of this directive. This report is published under the Authority of the Acts and is among a continuing series of reports issued by the Division presenting water quality data and analyses, water quality management plans, baseline and intensive limnological studies, and various special studies.

METROPOLITAN DISTRICT COMMISSION (MDC)

The Metropolitan District Commission's Division of Watershed Management (DWM) was established by the Massachusetts Legislature in 1984 and officially began operations on July 1, 1985. The legislative mission of the organization is to "...construct, maintain and operate a system of watersheds, reservoirs, water rights and rights in sources of supply in order to provide a sufficient supply of pure water to the Massachusetts Water Resources Authority." The Division must conserve and protect these resources in order to ensure the purity of the drinking water supply.

As provided in the enabling legislation, the Division of Watershed Management is responsible for monitoring the streams and reservoirs of the system and for conducting sanitary surveys of the watersheds. The DWM's Environmental Quality Section performs these tasks in order to ensure that Class A Water Quality Standards are met. MDC-DWM has responsibility for monitoring upstream of the distribution intakes, considered to be the Cosgrove Aqueduct at Wachusett Reservoir, the Winsor Dam at Quabbin Reservoir, and Shaft 4 at Sudbury Reservoir. The Massachusetts Water Resources Authority is responsible for monitoring the distribution system.

LIST OF TABLES

NUMBER	<u>TITLE</u>	PAGE
1	Reservoir Sampling Stations	11
2	Chemical and Nutrient Data, April 19, 1989	21
3	Chemical and Nutrient Data, May 18, 1989	25
4	Chemical and Nutrient Data, June 14, 1989	29
5	Chemical and Nutrient Data, July 19, 1989	37
6	Chemical and Nutrient Data, August 16, 1989	45
7	Chemical and Nutrient Data, September 21, 1989	53
8	Chemical and Nutrient Data, October 25, 1989	61
9	Chemical and Nutrient Data, November 15, 1989	67
10	Total Metals, April - November, 1989	69
11	Phytoplankton Enumeration and Chlorophyll a, April 19, 1989	71
12	Phytoplankton Enumeration and Chlorophyll a, May 18, 1989	72
13	Phytoplankton Enumeration and Chlorophyll a, June 14, 1989	73
14	Phytoplankton Enumeration and Chlorophyll a, August 16, 1989	74
15	Phytoplankton Enumeration and Chlorophyll a, September 21, 1989	75
16	Phytoplankton Enumeration and Chlorophyll \underline{a} , October 25, 1989	76
17	Phytoplankton Enumeration and Chlorophyll a, November 15, 1989	77
18	Chlorophyll <u>a</u> , April - November, 1989	78
19	Secchi Disc, April - November, 1989	78
20	Bacteria, April - November, 1989	79
21	Sediment Data, October, 1989, Stations in West Basin	82
22	Sediment Data, October, 1989, Stations in Central Basin	83
23	Sediment Data, October, 1989, Stations in East Basin	84

LIST OF FIGURES

FIGURE	TITLE		PAGE
1	Quabbin Reservoir	Basin Map	12
2	Quabbin Reservoir	Northwest Sampling Stations	13
3	Quabbin Reservoir	Northeast Sampling Stations	14
4	Quabbin Reservoir	Southwest Sampling Stations	15
5	Quabbin Reservoir	Southeast Sampling Stations	16
6	Quabbin Reservoir	Sediment Sampling Stations	17

INTRODUCTION

In 1989, the Massachusetts Division of Water Pollution Control and the Metropolitan District Commission - Division of Watershed Management initiated a cooperative and comprehensive study of the Quabbin Reservoir watershed system. This water supply was identified in the Massachusetts Nonpoint Source Management Plan (1989) as an area of primary concern for protection in the state. The State Water Resource Protection Strategy Report (1990) identified water supplies in general as areas of primary concern for protection. The Nonpoint Source Management Plan states that, "The DWPC will work with the Environmental Quality Section of the MDC-DWM to produce a viable and meaningful watershed protection plan (for Quabbin Reservoir). The DWPC will be able to lend water quality monitoring and assessment support as part of the plan."

Review by these agencies of the historical data on Quabbin and of the recommendations from earlier studies indicated that although a substantial data base exists for some parameters, several significant data gaps still remain. These included:

- 1. Reservoir data for most parameters for depths other than the surface.
- 2. Tributary information for metals and nutrients.
- 3. Tributary flow data.

The Quabbin project was designed to fill these gaps. The resulting information is being evaluated to assess the current trophic status, and to formulate nonpoint source control and other water quality protection strategies to produce a watershed management plan for the Quabbin system. The data and analyses will appear in a series of reports designed to provide timely release of the extensive information produced as part of this project. This report is the first in the series and is a compilation of the data from the in-reservoir portion of the project. The second publication will report the data from the tributary and outlet sampling. Subsequent reports will focus on the water quality analyses and recommendations for preservation/management of the system. The field and laboratory data will also be available on disk in a series of LOTUS files.

Field work for the project began in April 1989 and extended until November 1989 for the in-reservoir section of the project, and until April 1990 for the tributaries. Eight reservoir stations representing all areas of the reservoir were sampled from April through November 1989, once per month, or as weather permitted. In November, only two stations, Winsor Dam and the outlet to the Wachusett Reservoir, were sampled. An investigative sediment sampling program was also conducted at eleven stations in the reservoir. All major tributaries were sampled over the twelve month period. Nineteen tributary stations representing thirteen tributaries, plus the two outlets which discharge from the reservoir (Winsor Dam and Shaft 12 to Wachusett) were sampled twice per month for one year. The tributary stations were sited as close to the discharge point into the reservoir as possible in order that chemical and flow figures would represent total loadings from each of the tributary sub-drainage areas. In addition, six of the tributaries were also sampled at one upstream station each

for comparison with downstream water quality data. The water diverted from the Ware River basin was also sampled, if the diversion was operating on the sampling date.

During the course of the field sampling, preliminary data on the reservoir indicated that a closer examination should be given to conditions in the eastern arm of the reservoir. Due to the significant volume of water diverted from the Ware River, and since little historical nutrient, suspended solids or metal data existed for this system in the area upstream of the diversion intake in Barre, two sampling rounds were conducted in the Ware River watershed. The sampling was performed in order that preliminary information could be collected to determine if any of the Ware River sub-watersheds were contributing to the conditions in this portion of Quabbin. Sediment samples were also collected from the eastern arm to evaluate this avenue as a possible source.

METHODS

In order to characterize the reservoir, ten sampling stations were originally selected by the MDWPC and the MDC from a review of the topographic maps of the area and from an analysis of the studies performed earlier on this extensive waterbody. The stations identified for sampling were distributed throughout all areas of the reservoir as described in Table 1 and Figures 1 through 5. After the first sampling round was completed, the number of stations was reduced to eight due to equipment and time constraints. The plan involved sampling all stations on the same day using two boat crews composed of representatives from both organizations using identical field equipment. Samples were collected once per month from April through November. In November, samples were collected at only two stations, Winsor Dam and the outlet to the Wachusett Reservoir, due to adverse weather conditions.

The in-lake stations were sampled 0.5 m from the surface and one meter from the bottom during times of mixis and at the top and bottom of the epilimnion and hypolimnion during stratification. Samples were collected at these depths for total phosphorus, the nitrogen series, hardness, total and fixed solids, chloride, alkalinity, color and turbidity. Separate bacterial samples were taken from the surface for total coliform and total heterotrophic bacteria. Metal samples were collected from one meter above the sediment and analyzed for the following metals: aluminum, arsenic, cadmium, calcium, chromium, copper, iron, lead, mercury, nickel, silver, and zinc. Duplicate metal and nutrient samples were collected at one station by each crew on each sample date, together with equipment and distilled water blanks.

Vertical profiles were recorded on-site for pH, temperature, conductivity and dissolved oxygen using a digital 4041 Model Hydrolab, the Surveyor II. During mixed conditions, readings were taken at every 3 to 5 meters, while during stratification, readings were taken in the more changeable epilimnion and metalimnion at every meter, and in the hypolimnion at every meter until consistent readings were recorded in that strata and the determination was made that the hypolimnion could be characterized. From that point to the bottom, readings were taken at every 3 to 5 meters (depending on depth extent of layer), for the deep stations, and every one meter of depth at the shallower stations. This program was modified as time and weather conditions necessitated. Secchi

disc readings were noted at each station.

Composite algal samples were collected, at most stations, at depths of 0.5 meters, three times the Secchi disc and halfway in between. At station QR06 (the Shaft 12 aqueduct to Wachusett), algal samples were collected from depths selected to coincide with studies at the Wachusett Reservoir. Discrete algal samples were collected at this station in lieu of composite, and were also collected at some stations at which a dissolved oxygen maxima was noted. Appendix E details specific depths at which samples were collected at all stations for all depths and dates.

The nutrient and hardness samples were preserved using 2 ml of a 1:1 solution of sulfuric acid. Metal samples were preserved using 2 ml of a 1:1 solution of nitric acid. All samples were stored in iced coolers for transport to the laboratories at which they would be analyzed. A listing of the laboratories performing each analysis together with the laboratory methods used are listed in Appendices A and B. Appendix C describes sample container preparation.

Sediment testing was conducted in October 1989 at eleven stations selected by MDWPC-TSB and MDC-DWM after a review of the chemical and physical data collected during this and earlier studies, in conjunction with a review of the sediment sampling plan previously proposed by a consultant to MDC-DWM (Metcalf and Eddy, 1987). Five sediment sampling stations (QS-D, QS-E, QS-H, QS-I and QS-J) were selected to coincide with water quality sampling stations (QR01, QR04, QR06, QR07 and QR10). Three stations (QS-B, QS-G and QS-H) were selected to sample submersed ponds (Ash Pond, Greenwich Lake, and Quabbin Lake). Two stations were selected to provide background conditions (Prescott Brook and Cadwell Creek), and two stations were chosen to evaluate conditions in the eastern section of the reservoir (QS-K for the boat mooring area, and QS-J for the eastern shallows). The shallow areas in the western arm of the reservoir and the discharge of waters from the West Branch of the Swift River were sampled at station QS-A.

Sediments were collected using a one square meter Ponar sampler mounted to a winch on the side of the boat. The samples were collected in specially cleaned containers and were analyzed for the chemicals and nutrients listed in 314 CMR 9.00. Duplicate samples were taken at most sites. Four samples were collected in the eastern section of the reservoir at the location in which the Ware River is diverted into Quabbin. The stations sampled are listed in Table 1 and appear on the map in Figure 6.

TABLE 1

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

RESERVOIR SAMPLING STATIONS

WATED	COLUMN
WAICK	COLUMN

	DEP	MDC
Location	Station No.	Station No.
·		
West Arm (WA) Winsor Dam	QR01	202
(WA) Above Cadwell Creek	QR02	203
(WA) Above Atherton Brook	QR03	203A
Enfield	QRO4	210
Central Basin (CB)	QR05	
(CB) Quabbin Lake	QR06	206
(CB) West of Mount Zion	QR07	207
East Arm (EA) East of Mount L	QR08	208A
(EA) East of Mount Zion	QR09	208
(EA) Off Den Hill	QR10	

SEDIMENTS

	DEP
Location	Station No.
West Branch Swift River	QS-A
Ash Pond	QS-B
Cadwell Creek	QS-C
Winsor Dam	QS-D/QR01
Enfield	QS-E/QR04
Prescott Brook	QS-F
Greenwich Lake	QS-G
Shaft 12/Quabbin Lake	QS-H/QR06
Mid-Basin (CB)	QS-I/QR07
East Arm	QS-J/QR10
Boat Rental Area (EA)	QS-K

FIGURE 1: QUABBIN RESERVOIR LOCATOR MAP INDEX SHEET 1 OF SHEET 2 OF 4 Qrange Wendell Petersham | New Salgm Barre Pelham Hardwick Ouabbin Basin SHEET 4 OF 4 LEGEND Watershed Divide Ware Town Boundary PureWater SHEET 3 OF 4 12

FIGURE 5: QUABBIN RESERVOIR SOUTHEAST SAMPLING STATIONS

3 of 4

16

FIGURE 6: QUABBIN RESERVOIR SEDIMENT SAMPLING STATIONS

DESCRIPTION OF THE QUABBIN RESERVOIR BASIN

Quabbin Reservoir, located approximately 65 miles west of Boston in the Chicopee River Basin, was constructed in order to increase the water supply for the Metropolitan Boston area. The reservoir was created by impounding the waters of the East, Middle, and West Branches of the Swift River, and diverting water from 98 square miles of the Ware River basin into the reservoir. The two major retaining structures, Winsor Dam and Goodnough Dike were completed in 1939. At capacity (530 foot elevation-above Boston City Base), the reservoir has a surface area of 23,552 acres (36.8 square miles) with a volume of 412 billion gallons and a maximum depth of 150 feet. The reservoir is situated in the towns of Belchertown, Hardwick, New Salem, Pelham, Petersham, Shutesbury and Ware, with a length of 18 miles and a shoreline of 118 miles. Quabbin Reservoir is part of the MDC water supply system, which together with the Wachusett Reservoir, provides drinking water for 2.5 million people in 46 communities; this is approximately 40% of the state's population.

The drainage area to the reservoir (including the sixty islands and excluding the Ware River watershed) is 96,384 acres (150.6 square miles). Total land and water encompasses 119,936 acres (180.4 square miles). The Division of Watershed Management of the Metropolitan District Commission owns and manages 56,000 of these acres, providing control over 47% of the Quabbin watershed. A significant amount of the remaining watershed has some protection from development. Except for the two southern towns, Belchertown and Ware, the watershed is sparsely populated and has seen little growth in the last fifty years. Although much of the watershed is rough, rocky, wet, and not suitable for development, the potential for growth in the remaining areas could have significant impacts on water quality in the reservoir.

The MDC also has legislative authority for limited diversion from the Ware River watershed, located in the towns of Templeton, Hubbardston, Princeton, Barre, Rutland, and Ware. Diversion is possible between October 15 and June 15, if river flows exceed 85 million gallons per day. Exemption for increased withdrawals may be obtained if the need arises, as during drought conditions. Water from the Ware River enters the aqueduct in Barre and travels westward to Quabbin to discharge in the eastern arm, northeast of Shaft 12 (the outlet aqueduct for water being sent from Quabbin Reservoir to Wachusett Reservoir). A series of baffle dams in Quabbin extends the residence time of the Ware River water in the reservoir and prevents direct entry into Shaft 12.

Quabbin's wildlife community is abundant and varied, due primarily to the diversity of the forested habitats and the protection afforded in the area. The watershed has become a very unique forest and wildlife resource containing several rare, endangered or unique species. The reservation also not only serves as a "wildlife reservoir" to surrounding towns and supplements native populations in these areas, but is a widely used fishing resource. A series of management plans, developed by the MDC, manage the Quabbin Reservation for forestry, wildlife, and recreational values in conjunction with the water quality and water quantity aspects.

Topography

The topographic map of Massachusetts shows the Swift River Valley to be the largest north-south valley between the Connecticut River and the Atlantic Ocean. However, the Swift River drains only a portion of this great valley with the Millers River capturing the northern drainages which are sent westward to discharge into the Connecticut River. The Swift River Valley may have originally been carved by a much larger river.

The three principle tributaries of the Swift River enter Quabbin from the north and the northeast (Figure 1). The Middle Branch drains most of New Salem and has a small but steady flow due to the deep soils found in the northwest part of New Salem. The West Branch drains the Wendell and Shutesbury uplands and contains three valleys that merge just north of the reservoir. The West Branch has a larger drainage than the Middle Branch, but due to the shallow soils has smaller summer flows. The East Branch drains the largest area and originates in the uplands of Petersham and Phillipston. This drainage has a mixture of deep and shallow soils which maintains the largest year round flows of the three branches.

The uplands bordering the Quabbin Reservoir rise five hundred feet above the reservoir to an elevation of one thousand feet above mean sea level. The Prescott Peninsula and western uplands rise very steeply, whereas the eastern uplands rise more gradually.

An aerial view of the Quabbin topography appears smooth with an even surface of tree cover. The land has many small variations in the topography which the forest hides. Terraces, swamps, outcrops, small hills and valleys and other minor variations, some too small to be recorded on topographic maps, make the topography very irregular. The combination of this irregular topography and soils that vary in depth, drainage and fertility have resulted in a diverse forest and landscape.

Soils

The soils of the Quabbin watershed are primarily the glacial tills and alluvial sands and gravels. The till soils cover the uplands in varying depths from one to twenty feet or more. They are comprised of varying amounts of silt, sand, organic matter and rock. These components vary tremendously to produce both fine sandy loams and extremely rocky fine sandy loams. Some of the soils possess a hard mixture of clay and till at two feet to five feet beneath the surface which prevents the penetration of both roots and water. The deep alluvial soils are located in terraces along the sides of valleys and deposits in the valley bottoms. Their depths vary from a few feet to more than 100 feet. They are generally stratified with only an occasional large rock or outcrop.

WATER QUALITY AND SEDIMENT DATA

TABLE 2

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

CHEMICAL AND NUTRIENT DATA (mg/1)

APRIL 19, 1989

	TP	0.005							0.004				4F	0.002						0.003
	NO ₃	0.02							0.02				NO ₃	<0.02						0.02
Nitrogen	NH3	<0.02							<0.02			Nitrogen	NH ₃	<0.02						0.06 <0.02
Z	TKN	0.08							0.08			Z	TKN	<0.03						90.0
ids	Fixed	22							20			ids	Total Fixed	20						21
Solids	Total	31							30			Solids	Total	31						31
Temp	(o _c)	6.7	6.2	5.8	5.4	5.1	4.8	4.7	4.7			Temp	(°C)	6.5	6.2	0.9	5.4	5.1	5.0	4.9
Dissolved Oxygen	(%Sat)	66	100	100	66	86	86	16	96	STATION QR02	lved	Jen	(%Sat)	66	66	100	8 6	26	16	9.7
Dissolv	(mg/l)	12.3	12.4	12.5	12.5	12.5	12.5	12.5	12.4	STATIC	Dissolved	oxygen	(mg/l) (%Sat)	12.2	12.3	12.4	12.4	12.4	12.4	12.4
НО	(sn)	7.2	7.3	7.3	7.3	7.3	7.3	7.3	7.3			Нď	(SA)	7.2	7.2	7.2	7.2	7.3	7.3	7.2
	Alk Hard	12							6				Alk Hard	6						6
	Alk	3.7							3.6				Alk	9.0						8.0
	cl	6.5							0.9				c1	6.0						0.9
	(cu) cond	41	41	40	40	40	40	40	40				Cond	40	40	40	40	40	40	40
color	(cn)	15							വ			color	(cu) cond	2						Ŋ
Turb	_	0.4							0.3			Turb	(NTU)	0.3						0.3
Depth	(m)	0.5	S	10	15	20	25	30	35			Depth	(m)	0.5	ω	10	15	20	25	30

Note: Conductivity in µmhos/cm.

TABLE 2 (CONTINUED)

APRIL 19, 1989

STATION QR03

	TP	0.002		0.005				TP	0.004						0.004
	NO ₃	0.02		0.02				NO ₃	<0.02						0.03
	Nitrogen NH ₃	<0.02		<0.02			Nitrogen	NH ₃	<0.02 <0.02						<0.02
	TKN	<0.03		0.04				TKN	60.0						0.11
	Fixed	19		15			ds	Fixed	19						19
	Solids Total Fi	30		25			Solids	Total Fixed	29						27
	Temp	6.8	5.8	5.7	eti		Temp	(o°)	6.5	5.5	5.3	5.1	5.0	4.9	4.7
lved	en (%Sat)	66	96	96	ON QR04	lved	en	(%Sat)	66	6	97	95	96	96	95
Dissolved	Oxygen (mg/l) (%Sat)	12.0	12.1	12.1	STATION	Dissolved	Oxygen	(mg/l) (%Sat)	12.2	12.2	12.3	12.2	12.3	12.3	12.3
	pH (SU)	7.1	7.1	7.1				(SO)	7.0	7.1	7.1	7.1	7.1	7.1	7.1
	Alk Hard	ω		ω				Alk Hard	6						6
	Alk	3.0		3.1				Alk	3.6						3.6
	c1	6.5		0.9				Cl	5.5						5.0
	color (cU) cond	41	41	41			ы	(cu) cond	41	41	40	40	39	40	40
	color (cu)	rv		ហ			Color	(cn)	2						ហ
	Turb (NTU)	0.3		0.3			Turb	(NTU)	0.4						0.3
	Depth (m)	0.5	10	19			Depth	(m)	0.5	S	10	15	20	25	29

Note: Conductivity in µmhos/cm.

TABLE 2 (CONTINUED)

APRIL 19, 1989

		TP	0.005							0.005						TP	0.002							0.003	
		NO ₃	0.03							0.03						NO ₃	0.02							<0.02 <0.02	
	Nitrogen	NH ₃	<0.02							<0.02					Nitrogen	NH ₃	<0.02							<0.02	
	N	TKN	0.07		16 0.15										2	TKN	<0.03							<0.03	
	ds	Fixed	17							16					Solids	Fixed	11							15	
	Solids	Total Fixed	30							29					1	Total	23							28	
	Temp	(၁.)	7.2	6.4	6.1	5.4	5.3	5.2	5.2	5.1					Temp	(p,)	7.1	6.7	5.8	5.7	5.5	5.5	5.4	5.4	
lved	ue	(%Sat)	100	86	98	97	97	96	96	96			QR06	lved	ue	(%Sat)	96	66	96	94	93	93	93	93	
Dissolved	Oxygen	(mg/l)	12.1	12.1	12.2	12.3	12.3	12.3	12.3	12.3			STATION QR06	Dissolved	Oxygen	(mg/1)	11.7	12.2	12.0	11.9	11.8	11.7	11.7	11.7	
	pH (SU) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0												7.2	7.2	7.2	7.2	7.2								
		Alk Hard	6							11						Alk Hard	13							6	
		Alk	3.7							3.8						Alk	3.8							3.8	
		CJ	6.5							0.9						CJ	0.9							5.5	
		(CU) Cond	41	40	40	40	40	40	40	39					• .	Cond	42	42	42	42	40	40	40	42	
	Color	(cn)	ഹ							ហ					Color	(cn)	ഹ							Ŋ	
	Turb	(NTU)	0.3							0.3					Turb	(NTU)	0.3							0.4	
	Depth	(m)	0.5	S	10	15	20	25	30	34					Depth	(m)	0.5	Ŋ	10	15	20	25	30	32	

TABLE 2 (CONTINUED)

APRIL 19, 1989

STATION QR08

		0.004			0.004					0.01		0.007
	TP	0			0				TP	0		0
	NO ₃	0.03			0.02				NO3	0.07		90.0
Nitrogen	NH ₃	<0.02			<0.02 0.02			Nitrogen	NH ₃	0.02		0.03 <0.02 0.06
, Z	TKN	0.04			<0.03			N	TKN	0.16		0.03
ds	Fixed	18			20			ds	Fixed	24		24
solids	Total Fixed	28			30			Solids	Total Fixed	38		39
Temp	(°c)	8.9	8.3	7.4	8.9			Temp	(°C)	8.9	7.9	8.9
lved	(&Sat)	86	9.2	94	91	ATION QR10	lved	en	(&Sat)	86	94	06
Dissolved Oxygen	(mg/l) (%sat) (°C)	11.3	11.1	11.3	11.1	STATION	Dissolved	Oxygen	(mg/l) (%sat)	11.3	11.1	10.9
на	(sn)	7.2	7.2	7.1	7.0			ЬH	(sa)	9.9	6.7	6.7
	Hard	6			6				cl Alk Hard (SU)	6		10
	Alk	4.0			3.9				Alk	3.7		3.7
	CJ	0.9			8.0					8.5		9.5
	Cond	43	44	44	43				cond	54	23	53
color	(NTU) (CU) Cond Cl Alk Hard (SU)	2			9			Turb color	(cu) cond	20		20
Depth Turb Color	(NTU)	0.4			0.5				(NIU)	9.0		0.4
Depth	(m)	0.5	S	10	15			Depth	(m)	0.5	S	10

Note: Conductivity in µmhos/cm.

TABLE 3

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

CHEMICAL AND NUTRIENT DATA (mg/1)

MAY 18, 1989

T	•	<0.005							<0.00>				TP	<00 0>	•					<0.005
C ON	S	0.02							0.03			_	NO ₃	<0.0>	•					0.02
Nitrogen NH,	n	<0.02							<0.02			Nitrogen	NH ₃	<0.02	1					<0.02
TKN		0.21							0.28			Z	TKN	0.28) 					0.25
ds Fixed		57							56			ds	Fixed	20						59
Solids Total Fi		9/							77		61	Solids	Total	27						81
Temp		13.7	12.4	11.8	9.5	8.3	7.5	7.3	7.2		STATION QR02	Темр	(o _e)	13.3	12.6	11.6	9.4	8.8	8.0	7.8
olved Jen (%Sat)		107	102	102	105	66	96	95	93		STATI	lved	(&Sat)	112	106	105	100	66	66	97
Dissolved Oxygen (mg/l) (%Sa		11.2	10.9	11.1	12.0	11.6	11.5	11.4	11.3			Dissolved Oxygen	(mg/l)	11.7	11.4	11.5	11.4	11.5	11.7	11.5
pH (SU)		7.5	7.4	7.3	7.4	7.3	7.2	7.2	7.1			НД	(sa)	7.3	7.3	7.3	7.4	7.3	7.3	7.2
Alk Hard		ω							ω					8						ω
Alk		3.2							3,3				Alk Hard	3.1						n. 2
cl		0.9							0.9				c1	7.0						7.0
color (cu) cond		40	40	40	39	39	39	39	40				Cond	40	40	39	38	38	38	39
color (cu)		വ							2			color	(cu) cond	2					ı	ι.
Turb (NTU)		0.3							0.3			_	(NTO)	0.3					(e. o
Depth (m)		0.5	پ	10				30	က	C • 95		Depth	E)	0.5	<u>،</u> ک	10	15	20	25	30.5

TABLE 3 (CONTINUED)

MAY 18, 1989

STATION QR03

	TP	<0.005				0.009					TP	<0.005							900.0		
	NO ₃	0.02				<0.02					NO ₃	<0.02							0.02		
	Nitrogen NH ₃	<0.02				<0.02 <0.02				u u	NH ₃	<0.02							<0.02		
	TKN	0.23				0.20				N	TKN	0.46							0.27		
	Fixed	24				57				ds	Fixed	54							29		
	Solids Total Fi	28				78				Solids	Total Fixed	74							80		
	Temp	12.6	9.3	8.7	8.3	8.2		N QR04		Temp	(p.)	12.9	12.3	12.4	8.6	8.4	7.9	7.5	7.2		
lved	(%Sat)	113	103	100	97	94		STATION	lved	len	(%Sat)	107	104	105	100	86	86	98	93		
Dissolved	Oxygen (mg/l) (%	12.1	11.8	11.7	11.4	11.1			Dissolved	Oxygen	(mg/l) (%Sat)	11.3	11.1	11.2	11.3	11.5	11.6	11.4	11.3		
	pH (SU)	7.2	7.3	7.3	7.3	7.2				ЬH	(sa)	7.3	7.3	7.3	7.3	7.2	7.2	7.2	7.1		
	Alk Hard	7				6					Alk Hard	6							ω		
	Alk	2.8				3.1					Alk	3.3							3.4		
	cl	6.5				0.9					Cl	6.5							0.9		
	Cond	40	40	39	39	39				ע	(CU) Cond	41	41	40	39	39	38	39	39		
	color (cu)	8				S				Color	(cn)	5							2		
	Turb (NTU)	0.3				0.3				Turb	(NTU)	0.4							0.3		
	Depth (m)	0.5	ហ	10	15	20	22.9			Depth	(m)	0.5	S	10	15	20	25	30	34	36.6	

NOTE: Conductivity in µmhos/cm.

TABLE 3 (CONTINUED)

MAY 18, 1989

STATION QR06

TP	<0.005	T G	0.000
NO ₃	0.02	NO ₃	0.02
Nitrogen NH ₃	<0.02 0.02	Nitrogen NH3	<0.02 0.02 <0.02 <0.02
TKN	0.26	TKN	0.13
Solids Total Fixed	53	Solids Total Fixed	26
Solids Total Fix	74	Solids Total Fi	29
Temp (°C)	11.2 10.1 9.6 8.7 8.3	STATION QR07 lved en Temp (%Sat) (°C)	13.8 10.1 9.0 8.9 8.7 8.6
Dissolved Oxygen (mg/l) (%Sat)	100 105 106 104 102 99	STATIO olved gen (%Sat)	109 98 96 98 97
Dissolved Oxygen (mg/l) (%Sa	10.8 11.6 11.8 11.7 11.6	STAT Dissolved Oxygen (mg/l) (%Sa	11.3 11.1 11.3 11.3 11.3
pH (SU)	1.7.7.1.1.7.1.1.7.1.1.7.1.1.7.1.1.7.1.1.7.1.1.7.1.1.7.1	pH (SU)	7.1 7.1 7.1 7.1 7.1 7.0
Alk Hard	g 8	Alk Hard	10
Alk	3.3	Alk	3.4
c1	6 6.5	C1	6.5
Color (CU) Cond	4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 0 4 4 0 4 4 0 4 0 4 0 4 0 4 0 4 0 4 0 6 0 6	color (CU) Cond	44 41 41 40 40
color (cu)	м м	Color (CU) (2
Turb (NTU)	0.3	Turb (NTU)	0.5
Depth (m)	0.5 10 15 20 25 25.9	Depth (m)	0.5 10 15 20 21 21.3

NOTE: Conductivity in µmohs/cm.

TABLE 3 (CONTINUED)

MAY 18, 1989

STATION QR09

		TP	0.005				0.007					TP	0.011				0.014	
		NO ₃	0.02				<0.02					NO ₃	0.03				0.07	
	Nitrogen	NH ₃	<0.02				<0.02 <0.02				Nitrogen	NH ₃	<0.02				0.02	
	Z	TKN	0.31				0.43				Z	TKN	1.80				0.41	
	ds	Fixed	26				53				ds	Fixed	33				34	
	Solids	Total Fixed	31				70				Solids	Total Fixed	40				38	
	Temp	(°C)	15.8	11.4	6.7	9.5	9.5		QR10		Temp	(p.)	18.8	13.8	10.6	9.5	9.5	
lved	len	(%Sat)	101	110	105	96	96		STATION QR10	lved	len	g/l) (%Sat)	98	127	107	84	80	
Dissolved	Oxygen	(mg/l) (%Sat)	10.0	12.0	12.0	11.1	11.1		O)	Dissolved	Oxygen	(mg/1)	9.2	13.2	12.0	9.6	9.3	
	ЬH		6.9	6.8	6.8	6.8	6.8				ЬH	(SU)	6.7	6.5	6.5	6.4	6.3	
		Alk Hard (SU)	8				ω					Alk Hard	6				6	
			3.3				3.4					Alk	3.0				3.3	
		(CU) Cond Cl	7.0				6.5					CI	8.0				8.5	
		Cond	45	20	41	41	41					(CU) Cond	51	51	52	53	52	
	Color		13				ស				Color	(cn)	33				23	
	Turb	(UIN)	0.5				0.5				Turb	(NTU)	0.5				9.0	
	Depth	(E)	0.5	ഗ	10	13	14				Depth	(m)	0.5	2	10	15	16	16.5

NOTE: Conductivity in µmhos/cm.

TABLE 4

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

CHEMICAL AND NUTRIENT DATA (mg/l)

JUNE 14, 1989

		TP	<0.005										<0.005			900.0										<0.005	
		NO ₃	<0.02										<0.02			0.03										<0.02	
	Nitrogen	NH3	0.02										0.02			<0.02										0.02	
	Z	TKN	0.48										0.39			0.42										0.41	
	ids	Fixed	59										26			53										58	
	Solids	Total	79										16			73										78	
	Temp	(၁ _°)	18.2	18.2	18.2	18.2	18.2	18.1	18.0	17.9	17.9	17.7	16.2	14.2	12.1	10.9	10.8	10.1	9.8	6.7	9.5	9.4	9.3	8.7	8.1	7.7	
issolved	Jen	(%Sat)	93	93	93	93	92	93	93	93	92	95	86	94	6	96	96	94	94	93	93	93	93	90	88	83	
Diss	Oxygen	(mg/1)	8.9	8.9	8.9	8.9	8.8	8.9	8.9	8.9	8.8	9.1	9.7	10.2	10.5	10.6	10.6	10.6	10.7	10.6	10.6	10.6	10.6	10.5	10.4	10.0	
	ЬH	_	7.6	7.6	7.5	7.5	7.5	7.5	7.5	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.3	7.3	7.3	7.2	7.2	7.2	7.2	7.1	7.1	7.0	
		Alk Hard	6										6			6										11	
		Alk	3.4										3.5			3.6										3.6	
		cl	5.0										5.0			5.0										5.5	
		Cond	41	41	41	41	41	41	41	42	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	
	Color	(cn)	5										S			S										S	
	Turb	(NTU)	0.3										0.3			0.3										0.2	
	Depth	(m)	0.5	٦	2	e	4	2	9	7	ω	6	10	11	12	13	14	15	16	17	18	19	20	25	30	35	36.2

TABLE 4 (CONTINUED)

JUNE 14, 1989

STATION QR02

		TP	<0.005										0.007		0.007							900.0	
		NO ₃	<0.02										<0.02		<0.02							0.03	
	Nitrogen	NH ₃	<0.02										<0.02		0.02							<0.02	
	Z	TKN	0.39										0.45		0.31							0.27	
	ds	Fixed	9										29		26							57	
	Solids	Total	79										77		74							97	
	Temp	(oc)	18.7	18.4	18.2	18.1	18.0	18.0	18.0	17.9	17.9	17.9	15.5	13.2	12.2	11.4	10.8	10.6	9.8	9.3	8.5	8.3	
lved	en	(%Sat)	93	94	93	93	93	93	92	93	93	93	96	94	93	93	92	91	89	87	83	82	
Dissolved	Oxygen	(mg/1)	8.8	8.9	8.9	8.9	8.9	8.9	0.6	8.9	8.9	8.9	9.6	10.0	10.1	10.2	10.2	10.2	10.1	10.0	6.7	9.6	
	ЬH	(SO)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	6.9	6.9	6.9	6.9	6.8	6.7	6.7	9.9	
		Alk Hard	10										6		6							6	
		Alk	3.5										3.4		3.5							3.6	
		C1	0.9										0.9		5.5							5.5	
		Cond	41	41	40	41	41	41	41	40	41	40	41	42	42	42	42	41	41	40	41	41	
	Color	(cn)	ഹ										വ		വ							വ	
	Turb	(NTU)	0.3										0.3		0.3							0.3	
	Depth	(m)	0.5	٦	2	C	4	5	9	7	ω	6	10	11	12	13	14	15	20	25	30	32	35.9

NOTE: Conductivity in µmhos/cm.

TABLE 4 (CONTINUED)

JUNE 14, 1989

STATION QR03

		TP	<0.005								<0.005							0.005	
		NO ₃	0.05								0.02							0.03	
	Nitrogen	NH ₃	0.04								<0.02							<0.02	
	Z	TKN	0.42								0.36							0.49	
	ds	Fixed	62								30							52	
	Solids	Total	81								37							69	
	Temp	(o _e)	18.1	18.1	17.6	17.4	17.4	17.1	16.3	15.7	15.0	13.3	12.0	11.3	10.7	10.1	8.6	8.6	
lved	len	mg/l) (%Sat)	97	96	98	95	95	95	95	94	93	92	06	89	87	86	85	85	
Dissolved	Oxygen	(mg/1)	9.2	9.1	9.1	9.1	9.1	9.5	9.3	9.4	9.4	9.6	9.7	6.1	9.7	6.1	9.6	9.6	
	ЬH	(sa)	6.8	6.8	8.9	8.9	6.8	6.8	6.8	6.7	6.7	9.9	9.9	9.9	9.9	6.5	6.5	6.4	
		Alk Hard (SU)	ω								ω							ω	
		Alk	3.5								3.4							3.6	
		Cl	0.9								0.9							6.5	
		Cond	41	41	41	41	41	41	41	41	42	41	42	42	41	41	41	41	
	Color	(cu) cond	വ								5							S	
	Turb	(NTU)	0.3								0.3							0.3	
	Depth	(w)	0.5	-	2	က	4	വ	9	7	ω	6	10	11	12	15	20	21	22.1

NOTE: Conductivity in µmhos/cm.

TABLE 4 (CONTINUED)

JUNE 14, 1989

STATION QR04

		TP	<0.005										900.0			<0.00>						<0.00>	
		NO ₃	0.02										0.02			0.07						0.02	
	Nitrogen	NH ₃	<0.02										<0.02			0.03						<0.02	
	- 1	TKN	0.31										0.65			0.44						0.48	
	lds	Fixed	55										52			51						52	
	Solids	Total	75										67			67						73	
	Temp	(ລູ)	18.3	18.1	18.0	18.0	18.0	18.0	17.9	17.9	17.7	17.5	15.5	14.3	12.8	11.2	10.8	10.3	10.2	9.6	9.6	8.9	
lved	len	mg/l) (%Sat)	95	93	93	93	93	93	93	93	93	94	6	96	93	92	93	93	90	90	06	89	
Dissolved	Oxygen	(mg/l)	0.6	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	0.6	6.7	8.6	8.6	10.2	10.3	10.4	10.2	10.3	10.3	10.3	
	hф	(SO)	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.0	7.0	7.0	6.9	6.9	6.9	6.8	
		Hard	8										ω			11						6	
		Alk Hard	3.5										3.6			3.7						3.7	
		CI	5.5										5.5			5.5						5.5	
		Cond	41	41	42	42	42	42	42	42	41	41	41	41	41	41	41	41	41	41	41	42	
	Color	(cu) cond	2										S			S						2	
		(NTU)	0.3										0.3			0.3						0.3	
	Depth	(m)	0.5	-	2	n	4	S	9	7	ω	6	10	11	12	13	14	15	16	18	20	25	25.6

NOTE: Conductivity in µmhos/cm.

TABLE 4 (CONTINUED)

JUNE 14, 1989

STATION QR06

		TP	900.0							<0.005					<0.005						0.005
		NO ₃	<0.02							<0.02					<0.02						0.05
	Nitrogen	NH ₃	0.04							<0.02 <0.02					<0.02 <0.02						0.07
	Z	TKN	0.51	ı						0.43					0.39						0.35
	ds	Fixed	58							59					59						29
	Solids	Total	77							75					7.5						16
	Temp	(p°)	17.9	17.9	17.8	17.8	17.7	17.6	17.5	16.6	15.7	14.3	13.7	12.8	11.8	11.3	10.7	10.3	10.1	9.3	0.6
Dissolved	len	(%Sat)	92	06	91	91	92	06	93	93	92	92	94	91	06	88	98	98	85	82	79
Disso	Oxygen	(mg/l)	8.8	8.6	8.7	8.7	8.8	8.7	8.9	9.1	9.5	9.4	6.6	9.6	6.7	9.6	9.6	9.6	9.6	9.4	9.1
	ЬH	_	6.1	6.4	6.4	6.4	6.5	6.5	6.5	6.5	6.4	6.4	6.3	6.3	6.2	6.2	6.2	6.1	6.1	0.9	0.9
		Alk Hard	11							ω					8						11
		Alk	3.5							3.5					3.7						3.8
		cl	0.9							5.5					0.9						5.5
		Cond	40	40	40	40	40	40	40	40	39	38	40	39	40	39	40	39	40	39	39
	Color	(CU) Cond	5							2					2						₂
	Turb	(NTU)	0.3							0.3					0.3						0.3
	Depth	(m)	0.5	-	2	က	4	S	9	7	ω	6	10	11	12	13	14	15	16	21	23.5

NOTE: Conductivity in µmhos/cm.

TABLE 4 (CONTINUED)

JUNE 14, 1989

STATION QR07

ПР	<0.005						0.005				<0.005			<0.005	
NO ₃	<0.02						0.02				0.03			0.02	
Nitrogen NH ₃	<0.02						<0.02				0.03			0.02	
TKN	0.47						0.40				0.43			0.45	
Fixed	26						52				49			55	
Solids Total Fi	72						69				61			71	
Temp (°C)	18.5	17.5	17.4	17.3	17.2	17.1	16.7	13.6	12.4	11.9	11.3	11.0	10.5	10.3	
Dissolved Oxygen mg/l) (%Sat)	94	93	94	94	93	93	92	85	84	84	82	81	80	81	
Dissolved Oxygen (mg/l) (%Sa	8.9	0 8	9.0	0.6	0.6	0.6	0.6	8.9	0.6	9.1	0.6	0.6	0.6	9.1	
Hd (SU)	6.4	6.5	6.5	6.5	6.5	6.5	6.5	6.4	6.2	6.1	0.9	0.9	5.9	5.9	
Hard	6						ω				ω			6	
PH Alk Hard (SU)	3.6						3.7				3.8			3.8	
cı	6.0						5.5				0.9			6.5	
Cond	41	40	40	40	40	40	40	39	40	40	40	40	40	39	
Color (CU) Cond	2						2				വ			വ	
Turb (NTU)	0.3						0.4				0.3			0.3	
Depth (m)	0.5	7 7	က	4	2	9	7	80	6	10	11	12	17	20	21

NOTE: Conductivity in µmhos/cm.

TABLE 4 (CONTINUED)

JUNE 14, 1989

STATION QR09

		TP	0.010							0.010				0.007		0.007	
		NO ₃	<0.02							<0.02				0.04		0.05	
	Nitrogen	NH ₃	<0.02 <0.02							<0.02 <0.02				0.03		0.04	
	Z	TKN	1.10							0.53				0.42		0.41	
	ids	Fixed	25							46				31		33	
	Solids	Total	30							99				31		34	
	Temp	(o _c)	19.2	18.8	18.1	17.8	17.7	17.3	16.9	16.3	14.4	13.1	12.4	11.8	11.6	11.4	
lved	en	(mg/l) (%Sat) (°C)	93	90	89	88	87	88	84	83	74	70	67	99	65	64	
Dissolved	Oxygen	(mg/l)	8.7	8.4	8.5	8.4	8.4	8.5	8.2	8.1	7.6	7.4	7.2	7.2	7.1	7.0	
	Hd	(sa)	6.2	6.2	6.3	6.3	6.3	6.3	6.2	6.1	5.7	5.7	5.7	5.7	5.6	5.6	
		Alk Hard (SU)	8							6				6		6	
		Alk	3.7							3.7				3.7		3.8	
		CI	6.5							6.5				7.0		7.0	
	t ı	Cond	44	44	42	42	42	42	41	42	43	45	46	47	46	47	
	Color	(CU) Cond	15							10				15		15	
٠	Turb	(NTU)	0.4							0.4				0.4		0.4	
	Depth	(m)	0.5	-	2	က	4	2	9	7	ω	6	10	11	12	13	13.7

NOTE: Conductivity in µmhos/cm.

TABLE 4 (CONTINUED)

JUNE 14, 1989

STATION OR10

	TP	0.011							0.015				0.011			0.010	
	NO ₃	0.02 <0.02							0.02				0.04			90.0	
Nitroden	NH ₃	0.02							0.05				0.03			0.04	
ž	TKN	1.10							0.58				0.72			0.67	
Œ Œ	Fixed	30							33				34			36	
so tos	Total Fixed	37							38				34			36	
Temo	(o°)	19.7	19.2	18.9	18.8	18.7	18.4	17.7	16.3	14.5	13.1	12.0	11.2	10.8	10.6	10.0	
lved	(mg/l) (%Sat) (°C)	84	83	83	81	81	78	75	10	67	99	99	65	65	63	61	
Dissolved	(mg/1)	7.8	7.8	7.8	7.6	7.6	7.4	7.2	6.9	6.9	7.0	7.2	7.2	7.2	7.0	6.9	
HC	_	6.1	6.1	6.1	6.1	6.1	0.9	5.9	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.6	
	Hard	12							13				13			12	
	Alk	3.8							3.8				3.7			3.8	
	Cl	8.0							8.5				8.0			8.0	
	Cond	48	48	48	48	48	47	48	48	48	48	48	48	49	49	20	
(0)	(cn) cond	35							45				25			22	
r t		0.5							9.0				0.5			0.5	
Jonth	(m)	0.5	Н	2	က	4	S	9	7	ω	6	10	11	12	13	16	16.5

NOTE: Conductivity in µmhos/cm.

NOTE: Conductivity in µmhos/cm.

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

CHEMICAL AND NUTRIENT DATA (mg/l)

JULY 19, 1989

		TP	<0.00>	,					<0.00>						<0.005														<0.005	
		NO ₃	0.03						0.02						0.02														0.04	
	Nitrogen	NH ₃	<0.02						<0.02						<0.02														0.03	
	.i.N	TKN	0.21						0.21						0.28														0.22	
	ds	Fixed	50						51						53														53	
	Solids	Total Fixed	68						70						73														74	
	Temp	(°C)	22.0	21.0	22.0	21.9	21.7	21.7	21.6	20.7	18.8	17.0	15.4	14.6	13.8	13.0	12.2	12.0	11.5	11.2	10.8	10.6	10.5	10.4	10.0	9.4	8.9	8.4		8.2
lved	en	(%Sat)	102	103	115	124	131	139	147	151	143	135	126	122	119	113	106	107	102	66	96	94	94	92	92	91	87	81		78
Dissolved	Oxygen	(mg/l)	0.6	9.3	10.2	11.0	11.7	12.4	13.1	13.7	13.4	13.1	12.7	12.5	12.3	12.0	11.5	11.6	11.2	11.0	10.6	10.5	10.6	10.6	10.4	10.4	10.0	9.5		9.5
	ьн	(SU) (7.1	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.1	7.1	7.1	7.1	7.2	7.2	7.1	7.1	7.0	6.9	6.8	6.8	6.8	6.7	6.7	6.7	9.9	6.5		6.4
		Alk Hard	10						10						6														10	
		Alk	3.5						3.6						3.6														3.7	
		CJ	5.0						5.5						2.0														2.0	
		Cond	43	43	43	43	43	42	42	43	43	43	43	43	43	43	43	43	43	43	43	43	44	44	44	44	44	43		44
	Color	(cn)	2						S						₂														Ŋ	
		(NTU)	0.2						0.2						0.2														0.2	
	Depth	(m)	0.5	-	7	m	4	5	9	7	80	6	10	11	12	13	14	15	16	17	18	19		21	24	27	30	33	32	36

TABLE 5 (CONTINUED)

JULY 19, 1989

STATION QR02

		TP	<0.005							<0.005						<0.005									<0.005	
		NO ₃	0.03							0.03						0.02									0.03	
	Nitrogen	NH ₃	<0.02							<0.02						<0.02									0.02	
	Z	TKN	0.20							0.21						0.27									0.21	
	ds	Fixed	50							51						57									57	
	Solids	Total	70							72						79									79	
	Temp	(၁.)	22.2	22.2	22.0	21.9	21.9	21.9	21.8	21.8	19.8	17.4	15.4	14.3	13.0	12.6	12.3	11.7	11.2	10.8	10.4	9.8	9.3	0.6		
lved	len	(%Sat)	104	107	116	125	133	141	139	136	126	124	114	111	107	104	102	98	92	92	89	87	82	81		
Dissolved	Oxygen	(mg/l)	9.2	9.5	10.3	11.1	11.8	12.5	12.3	12.0	11.6	11.9	11.5	11.4	11.3	11.1	10.9	10.7	10.2	10.2	6.6	9.8	9.4	9.4		
	ЬH	(SU)	6.7	6.8	6.8	6.8	6.7	6.7	6.7	6.7	6.7	6.8	6.9	6.9	6.9	6.9	6.8	6.8	6.5	6.5	6.4	6.3	6.2	6.2	*6.0	
		Alk Hard	10							10						10									6	
		Alk	3.5							3.5						3.6									3.6	
		cl	5.0							2.0						5.5									2.0	
		Cond	43	43	43	43	43	43	43	42	43	43	43	43	43	44	43	43	43	43	43	43	44	43		
	Color	(cu) cond	S							S						S									S	
	Turb	(NTU)	0.2							0.2						0.2									0.2	•
	Depth	(m)	0.5	П	2	e	4	2	9	7	ω	6	10	11	12	13	14	15	16	17	20	23	26	29	30	31.8

* Laboratory analyses.
NOTE: Conductivity in µmhos/cm.

TABLE 5 (CONTINUED)

JULY 19, 1989

STATION QR03

	ТЪ	<0.005								0.010					900.0						<0.005	
	NO ₃	<0.02 <0.02								<0.02 <0.02					0.03						0.03	
Nitrogen	NH ₃	<0.02								<0.02					<0.02						0.02	
	TKN	0.21								0.22					0.20						0.23	
ids	Total Fixed	54								58					26						26	
Solids	Total	74								81					77						91	
Temp	(ac)	23.4	23.2	23.1	22.9	22.7	22.7	22.5	22.5	22.2	18.5	15.3	13.6	12.4	11.7	11.5	11.3	11.2	11.1	11.0		
Dissolved Oxygen	mg/l) (%Sat)	109	110	118	127	132	130	123	119	107	104	103	96	89	82	84	83	82	81	83		
Dissolv Oxygen	(mg/l)	9.4	9.6	10.3	11.0	11.6	11.4	10.8	10.4	9.5	9.8	10.4	10.1	9.5	9.3	9.5	9.1	9.1	0.6	9.5		
Hd	(SU)	6.8	6.8	6.8	6.8	6.8	6.8	6.7	6.7	6.7	6.7	6.7	6.5	6.4	6.3	6.2	6.1	6.1	6.1	0.9	*6.0	
	Hard	6								δ					6						6	
	Alk Hard (SU)	3.6								3.6					3.7						3.6	
	c1	5.0								5.0					5.0						5.0	
	Cond	43	43	42	43	43	43	43	43	43	43	42	42	43	42	43	43	43	43	42		
color	(cn) cond	2								2					2						2	
Turb	(NTU)	0.2								0.2					0.2						0.2	
Depth	(m)	0.5	-	2	က	4	S	9	7	ω	6	10	11	12	13	14	15	16	17	20	20.5	21.8

* Laboratory analyses.
NOTE: Conductivity in µmhos/cm.

TABLE 5 (CONTINUED)

JULY 19, 1989

STATION QR04

		TP	0.005							<0.005						900.0								<0.005	
		NO3	<0.02							:0.02						:0.02								*	
	Nitrogen		<0.02 <							<0.02 <0.02						<0.02 <0.02								0.03	
	Z	TKN	0.20							0.21						0.23								0.23	
	d,	Fixed	51							51						20								48	
	Solids	Total	69							70						69								65	
	Temp	(D.)	22.2	22.1	22.1	22.0	22.0	22.0	21.9	21.7	20.5	17.7	15.4	14.5	13.9	12.7	12.0	11.4	11.3	11.2	10.6	10.1	6.7	9.1	0.6
-	Lved	(%Sat)	104	107	116	124	132	140	148	155	163	164	172	174	161	154	117	106	66	92	85	87	87	84	84
-	Dissolved	(mg/1)	9.2	9.5	10.3	11.0	11.7	12.4	13.1	13.8	14.8	15.8	17.3	17.8	16.7	16.5	12.7	11.6	10.9	10.2	9.5	6.6	10.0	6.7	7.6
	Ha	(SU)	6.8	6.8	6.8	6.8	8.9	6.8	8.9	6.8	6.8	6.8	6.8	6.7	6.7	6.7	9.9	6.5	6.4	6.4	6.3	6.3	6.3	6.3	6.1
		Alk Hard	10							ω						6								10	
		Alk	3.6							3.6						3.7								3.7	
		Cl	5.0							5.0						5.0								5.0	
		Cond	43	43	43	43	43	43	43	43	43	43	44	44	44	44	43	44	44	44	44	44	44	44	44
	Color	(cu) cond	വ							S						S								S	
	Turb	(NTU)	0.2							0.2						0.3								0.2	
	Depth	(m)	0.5	1	2	က	4	2	9	7	80	6	10	11	12	13	14	15	16	17	20	23	26	29	30

*Sample discarded due to sampling error. NOTE: Conductivity in \$\mu\$mhos/cm.

TABLE 5 (CONTINUED)

JULY 19, 1989

STATION QR06

		TP	<0.005							<0.00>				0.009						0.007	
		NO ₃	0.03							<0.02				<0.02						<0.02	
	Nitrogen	NH3	<0.02							<0.02 <0.02				<0.02 <0.02						<0.02 <0.02	
	Z	TKN	0.27							0.23				0.29						0.41	
	ds	Fixed	43							44				42						48	
	Solids	Total Fixed	57							59				26						64	
	Temp	(ac)	22.4	22.4	22.4	22.4	22.4	22.4	22.3	22.3	21.8	15.9	14.0	13.2	12.7	12.3	11.9	10.9	10.5	6.6	
lved	en	(%Sat)	92	91	91	91	91	91	06	06	90	101	66	93	06	89	85	78	7.5	68	
Dissolved	Oxygen	(mg/l) (%Sat)	8.1	8.0	8.0	8.0	8.0	8.0	7.9	7.9	8.0	10.0	10.3	6.6	9.6	9.5	9.2	8.6	8.4	7.7	
	hф	(SU)	6.1	6.3	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.2	6.1	0.9	5.9	5.7	5.7	5.6	
			6							6				6						6	
		Alk Hard	3.1							3.5				3.6						3.9	
		Cl	5.5							5.5				2.0						5.0	
		(cu) cond	42	41	41	41	41	41	41	41	43	41	41	41	41	41	41	41	41	41	
	Color	(cn)	5							2				2						S	
	Turb	(NTU)	0.2							0.2				0.2						0.2	
	Depth	(m)	0.5	Н	2	က	4	2	9	7	ω	6	10	11	12	13	14	17	20	24	25

NOTE: Conductivity in µmhos/cm.

TABLE 5 (CONTINUED)

JULY 19, 1989

STATION QR07

		TP	<0.005							0.008						600.0			<0.005	
	Nitrogen	NH ₃ NO ₃	<0.02 <0.02							<0.02 <0.02						<0.02 <0.02			<0.02 <0.02	
	Nit	TKN	0.26 <							0.40 <						0.37 <			0.26 <	
	ds.	Fixed	39							45						47			20	
	Solida	Total	52							61						64			68	
	Temp	(°C)	22.6	22.5	22.5	22.4	22.4	22.4	22.4	22.4	22.2	19.9	16.7	14.3	13.6	13.0	12.7	12.1	11.7	
lved	len	mg/l) (%Sat)	91	89	90	90	89	89	89	89	87	86	75	71	71	70	69	69	72	
Dissolved	Oxygen	(mg/1)	8.0	7.8	7.9	7.9	7.8	7.8	7.8	7.8	7.7	7.9	7.4	7.3	7.4	7.4	7.4	7.5	7.6	
	hф	(SU)	6.2	6.3	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.1	5.8	5.7	5.6	5.6	5.6	5.6	5.6	
		Hard	8							ω						6			ω	
		Alk Hard	3.8							3.7						3.7			3.9	
		CI	5.0							5.5						5.5			2.0	
		Cond	42	42	42	42	42	41	41	41	41	41	42	42	42	42	42	41	41	
	Color	(CU) Cond	S							S						2			വ	
	Turb	(NTU)	0.2							0.2						0.2			0.5	
	Depth	(m)	0.5	П	2	က	4	2	9	7	80	6	10	11	12	13	14	17	19.7	20.7

NOTE: Conductivity in µmhos/cm.

TABLE 5 (CONTINUED)

JULY 19, 1989

STATION QR09

		TP	900.0							<0.005					<0.005			
	Nitrogen	NH ₃ NO ₃	<0.02 <0.02							<0.02 <0.02					<0.02 <0.02			
	iN	TKN	0.35							0.50					0.56			
	ids	Total Fixed	41							51					28			
	Solids	Total	99							69					35			
	Temp	(oc)	23.4	23.2	22.7	22.6	22.6	22.6	22.5	22.5	22.5	18.3	16.9	15.8	13.5	12.6		
lved	Jen	mg/l) (%Sat) (°C)	06	06	06	88	89	88	88	88	88	78	70	62	26	51		
Dissolved	Oxygen	(mg/l)	7.8	7.8	7.9	7.7	7.8	7.7	7.7	7.7	7.7	7.4	6.8	6.2	5.9	5.5		
	ЬH	(sn)	6.2	6.2	6.3	6.3	6.4	6.4	6.4	6.3	6.3	5.9	5.7	5.5	5.5	5.4		
		Alk Hard (SU)	6							80					6			
			3.8							3.7					3.9			
		(CU) Cond Cl	6.5							6.5					6.0			
	٠,	Cond	44	43	42	42	42	42	42	42	42	42	43	44	46	46		
	Colo	(cn)	10							7					7			
	Turb Color	(NIU)	0.2							0.2					0.3			
	Depth	(w)	0.5	-1	2	က	4	2	9	7	8	6	10	11	12	13	13.3	

NOTE: Conductivity in µmhos/cm.

TABLE 5 (CONTINUED)

JULY 19, 1989

STATION QR10

H H		•					0.019							900.0		0.007	
n NO ₂	5 5 5	70.07					0.04							90.0		0.02 <0.02	
Nitrogen NH ₂	500	70.07					<0.02							0.05		0.02	
TKN	20 0						0.50							0.30		0.60	
Fixed	27	· N					27							33		29	
Solids Total Fi	33)					31							37		34	
Temp	A AC	24.0	23.4	23.0	22.9	22.6	21.7	20.7	18.5	16.6	14.7	13.6	12.3	11.4	11.1	10.7	
Dissolved Oxygen mg/l) (%Sat)	Co	88	87	98	85	81	72	63	49	49	45	48	53	51	49	46	
Dissolved Oxygen (mg/l) (%Sa	7 6	7.5	7.5	7.5	7.4	7.1	6.4	5.7	4.6	4.8	4.6	5.0	5.7	5.6	5.4	5.2	
Hd (SU)		6.2	6.3	6.2	6.2	6.1	5.8	5.6	5.5	5.5	5.4	5.4	5.4	5.4	5.4	5.4	
Alk Hard	σ	`					σ							10		6	
Alk	0 ~	•					3.8							4.0		3.9	
C1	r.	•					6.5							7.0		7.0	
Cond	46	46	45	45	46	46	46	46	47	48	20	20	20	20	51	52	
Color (CU) Cond	α [α)					17							22		20	
Turb (NTU)		•					0.3							0.4		0.3	
Depth (m)	. L		2	က	4	Ŋ	9	7	ω	6	10	11	12	13	14	15	15.8

NOTE: Conductivity in µmhos/cm.

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

CHEMICAL AND NUTRIENT DATA (mg/1)

AUGUST 16, 1989

	TP	<0.005							<0.005										<0.00>									<0.005	
	NO ₃	<0.02							<0.02										<0.02									0.02	
Nitrogen	NH ₃	<0.02							<0.02										<0.02									<0.02	
Z	TKN	0.26							0.32										0.19									90.0	
ids	Fixed	43							45										44									46	
Solids	Total	61							64										62									68	
Temp		23.1	23.0	23.0	23.0	23.0	22.6	21.7	21.4	21.0	19.9	18.5	17.1	14.9	14.0	13.1	12.3	11.9	11.5	11.3	11.1	10.8	10.6	10.3	9.5	9.0	8.6	8.3	
issolved Oxygen	(%Sat)	100	109	117	127	133	140	149	155	159	155	135	131	122	116	112	108	105	103	100	94	06	89	98	82	19	74	70	
Dissolv Oxygen	(mg/l)	8.7	9.5	10.2	11.0	11.6	12.3	13.3	13.8	14.3	14.2	12.7	12.7	12.4	12.0	11.9	11.6	11.4	11.3	10.9	10.4	10.0	6.6	9.6	9.4	9.1	8.6	8.2	
Hd	~	7.1	7.0	7.0	7.0	6.9	6.9	6.8	6.8	6.8	8.9	6.8	6.8	6.9	6.9	6.9	6.9	6.8	6.7	9.9	9.9	6.3	6.2	6.1	6.1	6.0	0.9	5.9	
	Hard	6							ω										6									6	
	Alk Hard	3.3							3.0										2.7									2.8	
	C1	6.5							6.5										6.5									0.9	
	Cond	42	42	42	42	42	42	42	42	43	42	43	42	42	42	42	42	42	42	42	42	42	43	43	43	42	43	43	
Color	(cn)	S							2										Ŋ									S	
Turb	(NTU)	0.2							0.2										0.3									0.2	
Depth	(m)	0.5	-	2	m	4	2	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21	24	27	30	33	36	36.9

TABLE 6 (CONTINUED)

AUGUST 16, 1989

STATION QR02

		TP	<0.00>				<0.005										<0.005					<0.00>	
	c c	NO ₃	<0.02				<0.02										<0.02					0.02	
	Nitrogen	NH ₃	<0.02				<0.02										<0.02					0.18 <0.02	
		TKN	0.47				0.15										0.22					0.18	
	ds	Fixed	51				54										20					51	
	Solids	Total	69				73										89					70	
	Temp	(oc)	24.2	24.2	23.6	23.4	23.3	22.7	20.2	19.7	16.7	15.0	13.8	13.0	12.4	11.8	11.4	10.8	10.4	9.8	9.5	0.6	
lved	en	(%Sat)	103	106	114	117	113	101	107	110	113	112	112	110	106	105	95	83	80	92	71	70	
Dissolved	Oxygen	(mg/l)	8.8	9.1	9.8	10.1	6.1	8.9	9.8	10.2	11.1	11.4	11.6	11.6	11.4	11.4	10.4	9.5	0.6	8.6	8.2	8.1	
	hd	(SU)	9.9	6.7	6.7	6.7	6.7	6.7	9.9	9.9	6.7	6.7	6.7	6.7	6.7	9.9	6.5	6.2	6.1	0.9	5.9	5.8	
		Hard	6				ω										6					6	
		Alk	3.0				3.2										3.4					3.5	
		cl	6.5				6.5										0.9					0.9	
	Li .	Cond	42	42	42	42	42	42	41	42	42	43	43	43	43	42	42	42	42	42	42	43	
	Color	(CU) Cond	2				S										Ŋ					2	
	Turb	(NTU)	0.2				0.2										0.2					0.2	
	Depth	(m)	0.5	1	က	Ŋ	7	ω	6	10	11	12	13	14	15	16	17	20	23	26	29	31	31.7

NOTE: Conductivity in µmhos/cm.

TABLE 6 (CONTINUED)

AUGUST 16, 1989

STATION QR03

		TP	<0.005				<0.005									<0.005			<0.005	
	n	NO ₃	<0.02				<0.02									0.03			0.02	
	Nitrogen	NH ₃	0.20 <0.02				0.16 <0.02									0.25 <0.02			0.45 <0.02	
		TKN	0.20				0.16									0.25			0.45	
	ds	Fixed	49				48									52			57	
	Solids	Total	99				99									72			16	
	Temp	(°C)	24.3	24.2	23.8	23.8	23.7	23.6	22.6	18.6	14.6	13.4	12.8	12.1	11.6	11.4	11.0	10.8	10.8	
lved	Jen	mg/l) (%Sat)	104	108	126	143	142	136	125	118	109	108	86	88	79	77	73	72	71	
Dissolved	Oxygen	(mg/l)	8.8	9.2	10.8	12.2	12.2	11.7	11.0	11.1	11.2	11.3	10.4	9.5	8.6	8.4	8.1	8.0	7.9	
	Hď	(SO)	9.9	9.9	9.9	9.9	9.9	9.9	6.5	6.4	6.4	6.4	6.4	6.3	6.1	0.9	5.8	5.8	5.8	
		Alk Hard (SU	8				0									10			0	
		Alk	3.4				3.4									3.5			3.7	
		cı	6.5				6.5									6.5			0.9	
		Cond	42	42	42	42	42	42	41	41	42	43	43	42	42	43	43	43	43	
	Color	(CU) Cond	5				Ŋ									Ŋ			2	
	Turb	(NTU)	0.2				0.2									0.2			0.3	
	Depth	(m)	0.5	Н	m	S	7	æ	6	10	11	12	13	14	15	16	19	20	21	21.5

NOTE: Conductivity in µmhos/cm.

TABLE 6 (CONTINUED)

AUGUST 16, 1989

STATION QR04

	TP	<0.005						0.009											0.005						0.009	
	NO ₃	<0.02						<0.02											0.03						<0.02	
Nit room	NH ₃	<0.02						<0.02											<0.02						<0.02	
2	TKN	0.33						0.45											0.54						0.29	
<u>ب</u> م	Fixed	46						49											45						49	
g ()	Total	62						65											62						68	
r C	(D.)	23.3	23.3	23.3	23.2	23.2	23.1	22.7	22.7	20.9	20.2	18.2	17.2	15.7	14.1	13.3	12.4	12.0	11.6	11.3	10.7	10.4	9.8	9.3	8.9	
lved	(%Sat)	107	110	118	127	133	133	121	116	111	112	113	113	112	107	106	6	95	96	91	80	81	83	80	73	
Dissolved	mg/1)	9.2	9.5	10.2	11.0	11.6	11.6	10.6	10.2	10.0	10.3	10.8	11.0	11.3	11.1	11.1	10.4	10.3	10.5	10.0	0.6	9.1	9.4	9.5	8.4	
H		7.0	6.9	6.9	6.9	6.9	6.8	6.8	6.7	6.7	6.7	6.7	6.7	6.8	6.7	9.9	6.5	6.4	6.4	6.3	6.1	0.9	0.9	5.9	5.9	
	Hard	æ						8											8						ω	
	Alk Hard (SU)	3.3						3.4											3.6						3.8	
	c1	6.5						6.5											0.9						0.9	
	Cond	43	43	43	42	42	42	42	42	43	43	43	43	43	43	43	43	43	43	41	42	43	43	42	43	
יי	(cn)	5						ស											S						ស	
: 1		0.2						0.2											0.2						0.2	
Donth	(m)	0.5		2	m	4	S	9	7	80	6	10	11	12	13	14	15	16	17	18	21	24	27	30	32	33.3

NOTE: Conductivity in µmhos/cm.

TABLE 6 (CONTINUED)

AUGUST 16, 1989

STATION QR06

T G	<0.005							<0.00>						0.009									<0.00>		
NO ₃	0.02							<0.02						0.02									0.02		
Nitrogen NH ₃	<0.02							<0.02						<0.02									<0.02		
TKN	0.99							0.40						0.59									0.37		
Ga	48							20						45									52		
Solids Total Fi	67							70						65									78		
Temp	•	23.9	•	23.9	23.9	23.9	23.8	23.8	20.3	16.6	15.6	14.6	13.8	13.1	12.2	12.0	11.7	11.3	10.9	10.7	10.6	10.4	10.3	10.2	
ed Sat)	90	1 6 6	89	91	06	06	06	06	100	98	77	92	97	92	19	80	16	72	69	99	99	63	9	26	
Dissolved Oxygen (mg/l) (%Sa	7.7	٠, ۵	7.6	7.8	7.7	7.7	7.7	7.7	9.1	8.4	7.7	9.4	10.0	6.7	8.6	8.7	8.3	7.9	7.6	7.4	7.4	7.1	6.7	6.3	
hd (rs)	6.5	o v	6.4	6.5	6.5	6.5	6.5	6.4	6.4	5.9	5.7	5.7	0.9	0.9	5.8	5.8	5.7	5.7	5.6	5.6	5.6	5.6	5.5	5.5	
Alk Hard	ω							6						ω									10		
Alk	3.5							3.6						3.9									4.0		
ರ	6.0							6.0						7.0									6.0		
Cond	41	4 7	41	41	41	41	41	41	41	41	42	41	41	41	41	41	42	41	41	41	41	41	41	42	
color (cu) cond	S							ស						13									ω		
Turb (NTU)	0.2							0.2						0.5									0.3		
Depth (m)	0.5	ч с	1 W	4	S	9	7	ω	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	24.2

TABLE 6 (CONTINUED)

AUGUST 16, 1989

STATION QR07

		TP	<0.00>									<0.005			0.021				<0.00>
		NO ₃	<0.02									<0.02			0.02				0.03
	Nitrogen	NH ₃	<0.02									<0.02 <0.02			<0.02				0.02
	Z	TKN	09.0									0.37			0.44				0.57
	ds	Fixed	49									54			43				53
	Solids	Total	69									75			58				75
	Temp	(၁.)	24.4	24.4	24.1	23.9	23.7	23.7	23.7	23.7	23.6	23.5	22.1	17.6	14.9	13.6	13.0	11.7	
lved	en	mg/l) (%Sat)	91	06	89	88	06	88	87	87	87	87	80	99	59	52	99	58	
Dissolved	Oxygen	mg/1)	7.7	7.6	7.6	7.5	7.8	7.6	7.5	7.5	7.5	7.5	7.1	6.3	0.9	5.8	5.9	6.3	
	Hd	(SU) (6.5	6.5	6.5	6.5	6.4	6.4	6.4	6.4	6.4	6.3	0.9	5.7	5.6	5.5	5.5	5.5	
		Alk Hard (SU)	6									6			6				6
		Alk	3.6									3.7			4.1				4.0
		Cl	7.0									6.5			6.5				6.0
		(CU) Cond	40	40	41	41	41	41	41	41	41	41	41	43	43	43	43	42	
	Color	(cn)	5									S			13				10
	Turb	(NTU)	0.3									0.3			0.3				0.4
	Depth	(w)	0.5		2	က	4	S	9	7	ω	6	10	11	12	13	15	18	20

NOTE: Conductivity in µmhos/cm.

TABLE 6 (CONTINUED)

AUGUST 16, 1989

STATION QR09

	TP	<0.005									<0.005				<0.005		
u	NO ₃	<0.02									<0.02				90.0		
Nitrogen	NH ₃	<0.02									0.26 <0.02				0.03		
Ţ	TKN	0.29									0.26				0.50		
ds	Fixed	61			٠						53				31		
Solids	Total	87									73				36		
Temp	(ac)	25.3	25.0	24.9	24.5	24.3	24.1	24.1	24.0	23.9	23.2	21.3	19.9	14.3	13.9	13.9	
lved	(%Sat)	96	88	89	89	89	89	87	88	87	84	71	64	34	31	31	
Dissolved Oxygen	(mg/l) (%Sat)	7.5	7.4	7.5	7.5	7.5	7.6	7.4	7.5	7.4	7.3	6.3	5.9	3.5	3.2	3.2	
рН	(sn)	6.3	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.3	5.8	5.6	5.4	5.4	5.4	
	Alk Hard	6									6				6		
		3.9									3.6				4.2		
	CJ	6.5									6.5				6.5		
•.	(cu) cond	43	43	43	42	42	41	41	41	41	41	43	43	49	49	49	
Color	(cn)	10									2				23		
Turb Color	(NIU)	0.3									0.3				0.4		
Depth	(m)	0.5	1	2	က	4	2	9	7	ω	6	10	11	12	13	14	14.5

NOTE: Conductivity in µmhos/cm.

TABLE 6 (CONTINUED)

AUGUST 16, 1989

STATION QR10

		TP	<0.00>								0.008				0.005		0.005	
		NO3	0.28								0.02 <0.02				0.05		0.11	
	Nitrogen	NH ₃	<0.02								0.02				90.0		0.02	
	Z	TKN	0.51								0.58				0.40		0.27	
	ds	Fixed	39								33				35		35	
	Solids	Total	51								40				38		39	
	Temp	(°C)	24.6	24.5	24.3	24.0	23.6	23.4	22.9	22.5	22.2	20.8	18.3	15.4	12.7	12.1	11.5	10.9
Lved	ne	(%sat)	91	89	87	87	84	82	82	73	71	44	29	28	31	31	32	24
Dissolved	oxygen	(mg/l) (%Sat)	7.7	7.5	7.4	7.4	7.2	7.1	7.1	6.4	6.3	4.0	2.7	2.8	3.3	3.4	3.5	2.7
	ЬH		6.2	6.2	6.2	6.3	6.2	6.2	0.9	5.9	5.8	5.6	5.4	5.4	5.4	5.4	5.4	5.3
		Alk Hard (SU)	10								6				6		10	
		Alk	4.1								5.4				4.7		4.2	
		c1	7.0								8.0				8.0		8.0	
		cond	44	44	44	44	44	44	44	49	20	47	49	49	51	51	51	51
	color	(cn) cond	12								33				30		27	
	Turb	(NTU)	0.4								0.8				0.5		9.0	
	Depth	(m)	0.5	1	7	က	4	Ŋ	9	7	&	6	10	11	12	13	14	15

NOTE: Conductivity in µmhos/cm.

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

CHEMICAL AND NUTRIENT DATA (mg/1)

SEPTEMBER 21, 1989

		TP	0.017										0.010							0.012										0.012
		NO ₃	0.03										<0.02							0.02										0.04
	Nitrogen	NH ₃	<0.02										<0.02							<0.02										0.02
	N	TKN	0.43										0.23							0.34										0.30
	ds	Fixed	23										24							23										23
	Solids	Total	34										34							34										34
	Temp	(ac)	21.0	21.0	21.0	21.0	20.9	20.9	20.9	20.9	20.8	20.7	20.7	20.5	16.5	14.9	13.9	13.3	12.8	12.2	12.0	11.7	11.6	11.3	10.7	6.6	9.5	8.8	8.5	8.4
lved	en	(&Sat)	103	103	111	113	115	115	115	113	113	116	113	111	115	111	100	100	92	98	85	84	82	80	72	89	62	26	20	43
Dissolved	oxygen	(mg/l)	11	9.3	10.0	10.2	10.4	10.4	10.4	10.2	10.7	10.5	10.3	10.1	11.3	11.3	10.4	10.5		9.3			0.6		8.0	7.7		6.5	5.8	5.0
	ЬH	(sn)	6.3	6.4	6.4	6.4	6.3	6.3	6.3	6.4	6.4	6.4	6.4	6.4	6.4	6.3	6.3	6.2	0.9	5.9	6.3	5.9	5.8	5.8	2.1	2.6	2.6	5.5	5.5	5.4
		Hard	6										6							11										11
		Alk	3.5										3.5							3.5										3.7
		C1	6.5										6.5							0.9										0.9
		Cond	41	41	41	41	41	41	41	40	40	40	40	41	40	40	40	40	41	40	40	40	40	40	39	40	41	40	41	40
		(cn)	5										2							2										Ŋ
	Turb	(NTU)	0.2										0.2							0.2										0.3
	epth	(H)	0.5	1	7	က	4	5	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21		27	30		36	39

TABLE 7 (CONTINUED)

SEPTEMBER 21, 1989

STATION QR02

	TP	0.007									900.0									900.0							0.010
	Nitrogen NH ₃ NO ₃	<0.02 <0.02									<0.02 <0.02									<0.02 <0.02							0.04 0.03
	TKN	> 98.0									0.38 <									0.19 <							0.25
	Fixed	22									21									22							23
•	Solids Total Fi	34									33									33							34
ı	Temp	21.0	21.0	20.8	20.8	20.8	20.8	20.8	20.7	20.7	20.7	20.5	19.5	17.0	14.8	13.6	12.9	12.1	12.0	11.7	11.6	11.0	10.5	9.6	9.1	8.9	8.9
lved	en (%Sat)	101	104	111	120	128	137	147	143	144	144	145	147	146	141	135	126	112	109	101	98	72	67	29	20	48	45
Dissolved	Oxygen (mg/l) (%	9.1	9.4	10.0	10.8	11.5	12.3	13.2	13.0	13.1	13.1	13.2	13.6	14.2	14.3	14.1	13.3	12.1	11.8	11.0	10.4	8.0	7.5	6.8	5.8	5.5	5.2
:	hd (SU)	6.1	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.3	6.2	6.1	5.9	5.7	5.7	5.7	5.7	5.6	2.6	5.5	5.4	5.4	5.4
	Hard	6									ω									6							ω
	Alk Hard	3.5									3.5									3.6							4.0
	Cl	6.5									6.5									6.5							0.9
	Cond			40	40	40	40	40	40	40	40	40	40	40	40	40	41	40	40	41		40	40	40	40	40	40
•	color (cu)	2									Ŋ									S							Ŋ
	Turb Color (NTU) (CU)	0.2									0.2									0.3							0.3
	Depth (m)	0.5	-	7	က	4	5	9	7	80	6	10	11	12	13	14	15	16	17	18	19		25	28	31	34	34.5

NOTE: Conductivity in µmhos/cm.

TABLE 7 (CONTINUED)

SEPTEMBER 21, 1989

STATION QR03

		TP	900.0										0.008							0.024			0.018	
		NO3	<0.02										<0.02							0.02			0.02	
	Nitrogen	NH ₃	<0.02										<0.02							0.02			<0.02	
	Z	TKN	0.26										0.29							0.23			0.25	
	ids	Fixed	22										17							19			18	
	Solids	Total	33										33							34			33	
	Temp	(°C)	21.4	21.1	20.9	20.8	20.8	20.7	20.6	20.6	20.5	20.4	20.3	20.0	18.6	15.8	14.1	12.9	12.2	11.9	11.7	11.6	11.4	11.4
lved	len	(%Sat)	95	97	102	105	109	110	110	108	106	101	100	97	95	95	19	72	63	09	58	58	57	27
Dissolved	Oxygen	(mg/l)	8.5	8.7	9.5	9.5	8.6	10.0	10.0	9.8	9.6	9.5	9.1	8.9	8.7	9.1	8.2	7.6	6.8	6.5	6.4	6.3	6.2	6.2
	ЬH		6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.3	6.3	6.3	6.2	6.1	0.9	5.9	5.7	5.6	5.6	5.5	5.5	5.5	5.5
		Alk Hard (SU)	8										10							10			6	
		Alk	3.5										3.6							4.0			3.9	
		c1	6.5										0.9							6.0			6.0	
		(CU) Cond Cl	41	41	40	40	40	40	40	40	40	40	40	40	40	40	40	40	41	41	41	41	41	41
	Color	(cn)	5										S							S			വ	
	Turb	(NTU)	0.2										0.2							0.3			0.3	
	Depth	(m)	0.5	1	2	m	4	S	9	7	ω	6	10	11	12	13	14	15	16	17	18	19	20	20.5

NOTE: Conductivity in µmhos/cm.

TABLE 7 (CONTINUED)

SEPTEMBER 21, 1989

STATION QR04

	TP	0.007									0.010								0.008						0.010	
en	NH ₃ NO ₃	<0.02 <0.02									<0.02 <0.02								<0.02 <0.02						<0.02 0.02	
, N	TKN	0.22									0.34								0.25						0.23	
d s	Fixed	18									18								20						20	
Solids	Total	34									33								35						34	
Temp	(o _e)	21.0	21.0	20.8	20.8	20.7	20.7	20.7	20.7	20.6	20.6	20.4	19.6	17.1	15.2	13.9	13.0	12.6	12.0	11.6	11.5	11.3	10.8	10.3	9.4	
olved	(%Sat)	98	102	111	121	128	136	144	153	160	164	160	159	156	148	150	148	140	132	123	116	112	85	80	67	
Dissolved Oxygen	(mg/1)	8.8	9.2	10.0	10.9	11.6	12.4	13.1	13.9	14.5	14.9	14.5	14.7	15.1	15.0	15.5	15.7	15.0	14.3	13.5	12.7	12.3	9.4	0.6	7.7	
hd		6.4	6.5	6.5	6.5	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.3	6.2	5.9	5.8	5.7	5.7	5.6	5.6	5.6	5.6	5.5	5.5	5.5	
	Hard	ω									ω								8						ω	
	Alk Hard	3.6									3.6								3.7						3.8	
	C1	6.5									0.9								0.9						0.9	
	Cond	40	40	40	40	40	40	40	40	40	40	40	40	40	41	40	41	40	40	41	41	40	40	39	41	
Color	(cn)	2									Ŋ								S						S	
Turb	(NTU)	0.2									0.2								0.3						0.2	
Depth	(m)	0.5	1	2	3	4	2	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	23	26	28	

NOTE: Conductivity in µmhos/cm.

TABLE 7 (CONTINUED)

SEPTEMBER 21, 1989

STATION QR06

		TP	0.011											0.007							0.011				0.008	
		NO3	<0.02											<0.02							<0.02				0.03	
	Nitrogen	NH ₃	<0.02											<0.02							<0.02				0.04	
	Z	TKN	0.27											0.20							0.20				0.26	
	ids	Fixed	20											20							21				21	
	Solids	Total	27											27							28				27	
	Temp	(°C)	20.8	20.7	20.6	20.6	20.5	20.5	20.5	20.5	20.4	20.4	20.4	20.4	20.2	15.7	14.2	13.1	12.6	12.1	11.6	11.3	11.0	10.8	10.6	10.4
panto	len	(%Sat)	95	98	98	98	9.2	94	94	94	94	94	94	94	92	19	72	71	69	67	65	64	61	61	57	49
Dissolved	Oxygen	(mg/l)	9.8	8.6	8.6	8.6	8.6	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.4	7.9	7.5	7.5	7.4	7.3	7.1	7.0	6.8	6.8	6.4	5 .5
	ЬH	Alk Hard (SU)	6.1	6.3	6.3	6.3	6.3	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.3	0.9	5.7	5.6	5.6	5.5	5.5	5.5	5.4	5.4	5.4	5.4
		Hard	8											8							ω				ω	
		Alk	3.2											3.3							3.8				4.2	
		cl	6.5											6.5							6.5				6.5	
		Cond	39	39	39	39	39	38	38	38	38	37	37	37	36	37	37	36	35	35	34	34	34	34	33	34
	Color	(CU) Cond	5											ស							ស				7	
	Turb	(NTU)	0.2											0.2							0.3				0.7	
	Depth	(w)	0.5	1	2	ന	4	5	9	7	ω	6	10	11	12	13	14	15	16	17	18	19	20	21	24	25

NOTE: Conductivity in µmhos/cm.

TABLE 7 (CONTINUED)

SEPTEMBER 21, 1989

STATION QR07

		TP	0.008											0.008					0.010					0.011	
		NO ₃	0.08											<0.02					0.03					0.03	
	Nitrogen	NH ₃	<0.02											<0.02 <0.02					<0.02					0.03	
	Z	TKN	0.23											0.31					0.30					0.23	
	ds	Fixed	20											22					22					22	
	Solids	Total	28											28					28					28	
	Temp	(o _c)	20.7	20.6	20.5	20.5	20.4	20.4	20.4	20.4	20.4	20.2	20.1	19.9	19.7	17.3	15.0	13.9	13.6	13.0	12.7	12.4	12.0	11.8	11.6
lved	en	(%Sat)	95	94	94	94	92	92	92	92	92	89	88	87	83	67	26	53	52	52	51	20	20	49	48
Dissolved	Oxygen	(mg/1)	8.6	8.5	8.5	8.5	8.4	8.4	8.4	8.4	8.4	8.2	8.1	8.0	7.7	6.4	5.7	5.5	5.5	5.5	5.5	5.4	5.4	5.3	5.3
	hф	(sn)	5.9	6.2	6.2	6.2	6.2	6.2	6.2	6.3	6.3	6.3	6.2	6.1	6.1	5.7	5.5	5.5	5.5	5.4	5.4	5.4	5.4	5.4	5.3
		Alk Hard	7											ω					7					ω	
		Alk	3.7											3.8					4.3					4.3	
		cl	6.5											6.5					6.5					6.5	
	•	Cond	39	38		39	38	38	38	38	37	37	37	37	37	37	37	37	36	36	35	35	35	34	34
	Color	(cn)	S											S					വ					S	
	Turb	(NTU)	0.3											0.3					0.3					0.3	
	Depth	(m)	0.5	-	2	m	4	2	9	7	ω	6	10	11	12	13	14	15	16	17	18	19	20	21	21.5

NOTE: Conductivity in µmhos/cm.

TABLE 7 (CONTINUED)

SEPTEMBER 21, 1989

STATION QR09

		TP	0.011										0.014					0.016	
		NO ₃	0.02										<0.02					0.03	
	Nitrogen	NH ₃	<0.02										<0.02 <0.02					0.02	
	Z	TKN	0.25										0.30					0.22	
	ds	Fixed	22										22					20	
	Solids	Total	31										31					31	
	Temp	(o _c)	21.1	20.9	20.7	20.6	20.5	20.5	20.5	20.4	20.4	20.3	20.1	20.0	19.0	16.8	14.3	13.6	13.0
lved	Jen	(mg/l) (%Sat)	93	92	92	92	92	91	06	06	89	89	88	88	82	67	52	20	46
Dissolved	Oxygen	(mg/1)	8.4	8.3	8.4	8.4	8.4	8.3	8.2	8.2	8.1	8.1	8.1	8.1	7.7	6.5	5.6	5.2	4.9
	ЬH	(SO)	6.0	6.1	6.1	6.2	6.2	6.2	6.1	6.1	6.1	6.1	6.1	6.1	6.1	5.7	5.5	5.4	5.3
		Alk Hard (SU)	6										ω					ω	
		Alk	3.8										3.8					3.9	
		Cl	6.5										6.5					7.0	
	• •	(CU) Cond	40	40	39	39	39	39	39	38	38	38	38	37	37	37	37	36	36
	Color	(cn)	2										Ŋ					ហ	
	Turb	(NTU)	0.3										0.3					0.3	
	Depth	(m)	0.5	7	2	c	4	2	9	7	ω	6	10	11	12	13	14	15	15.4

NOTE: Conductivity in µmhos/cm.

TABLE 7 (CONTINUED)

SEPTEMBER 21, 1989

STATION OR10

	TP	0.012									0.016				0.032
u	NO3	<0.02									<0.02				0.09
Nitrogen	NH3	0.30 <0.02 <0.02									<0.02 <0.02				0.15 <0.02
Z	TKN	0.30									0.32				0.15
ids	Total Fixed	22									20				23
Solids	Total	33									32				36
Temp	(oc)	21.6	21.7	21.0	20.8	20.8	20.6	20.6	20.6	20.4	20.3	20.2	19.3	16.6	
lved	mg/l) (%Sat) (°C)	93	92	06	89	88	87	85	85	84	80	80	9		
Dissolved Oxygen	(mg/1)	8.3	8.2	8.1	8.0	7.9	7.9	7.7	7.7	7.6	7.3	7.3	5.6		
, Hď	(SU)	6.0	6.1	6.1	6.1	6.1	6.1	6.1	0.9	0.9	5.9	5.9	5.7	5.4	*6.0
	Alk Hard (SU)	8									ω				σ
		4.2									4.2				4.4
	Cl	7.5									7.5				7.5
	(CU) Cond	42	42	42	42	42	42	41	41	40	40	40	41	45	
Color	(cn)	7									7				15
Turb	(NTU)	0.5									0.5				0.7
Depth	E E	0.5	-	7	က	4	2	9	7	ω	0	10	11	12	15

*Laboratory Analysis NOTE: Conductivity in µmhos/cm.

TABLE 8

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

CHEMICAL AND NUTRIENT DATA (mg/1)

OCTOBER 25, 1989

STATION QR01

		TP	<0.005																			<0.005
		NO ₃	0.03																			0.04
	Nitrogen	NH ₃	<0.02																			<0.02
	Z	TKN	0.22																			0.29
	ds.	Fixed	22																			25
	Solids	Total	31																			32
	Temp	(o _c)	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.9	12.6	12.2	11.8	11.5	11.2	10.8	10.5	10.2	10.1	9.5	9.3	
lved	len	mg/l) (%Sat)	87	98	85	98	83	84	83	83	73	67	63	61	28	28	59	57	57	20	47	
Dissolved	Oxygen	(mg/l)	9.2	9.1	0.6	9.1	8.8	8.9	8.8	8.8	7.8	7.3	6.8	6.7	6.4	6.4	9.9	6.4	6.4	5.7	5.4	
	ЬH	(sn)	6.4	6.3	6.2	6.2	6.1	6.1	6.1	6.1	5.9	5.7	5.6	5.5	5.5	5.5	5.5	5.4	5.4	5.4	5.3	*5.9
		Hard	9																			7
		Alk	3.6																			3.8
		c1	7.0																			6.5
		Cond	41	40	41	41	40	40	40	40	40	40	40	40	41	41	41	41	40	40	40	
	Color	(CU) Cond	5																			2
	Turb	(NTU)	0.3																			0.3
	Depth	(m)	0.5	m	9	6	12	15	18	21	24	25	56	27	28	59	30	31	32	35	38	39

* Laboratory analysis NOTE: Conductivity in µmhos/cm.

TABLE 8 (CONTINUED)

OCTOBER 25, 1989

STATION QR02

		TP	<0.005															<0.00>
		NO ₃	0.03															0.03
	Nitrogen	NH ₃	<0.02															0.03
	Z	TKN	0.18															0.07
	ds	Fixed	23															21
	Solids	Total	31															28
	Temp	(oc)	13.3	13.2	13.1	13.1	13.1	13.0	12.9	12.7	12.6	12.6	12.3	12.1	11.5	10.9	10.3	6.6
lved	en	(mg/l) (%Sat) (°C)	88	84	84	83	82	80	78	74	72	73	67	64	59	52	20	4 8
Dissolved	Oxygen	(mg/l)	9.2	8.9	8.9	8.8	8.7	8.5	8.3	7.9	7.7	7.8	7.2	6.9	6.5	5.8	5.6	5.4
	ЬH	(SU)	0.9	5.9	5.9	5.9	5.9	5.8	5.8	5.7	5.6	5.6	5.5	5.5	5.4	5.3	5.3	5.3
		Alk Hard	9															9
		Alk	3.4															3.7
		c1	0.9															6.5
		(CU) Cond	40	40	39	40	40	40	40	41	41	41	41	41	40	41	41	41
	Color	(cn)	2															ഹ
	Turb	(NTU)	0.3															0.3
	Depth	(m)	0.5	c	9	6	12	15	18	21	22	23	24	25	56	27	30	31.5

NOTE: Conductivity in µmhos/cm.

TABLE 8 (CONTINUED)

OCTOBER 25, 1989

STATION QR03

	TP	<0.02 0.02 <0.005									0.02 <0.005	
	NO ₃	0.02									0.02	
Nitrogen	NH ₃	<0.02									0.09 <0.02	
, N	TKN	0.08									60.0	
d S	Fixed	22									22	
Solids	Total Fixed	30									30	
Temp	(a _e)	13.7	13.1	13.1	13.0	12.9	12.8	12.2	12.1	12.0	11.8	11.7
lved	(%Sat)	88	98	98	85	85	98	83	82	82	82	80
Dissolved Oxygen	(mg/l) (%Sat) (°C)	9.2	9.1	9.1	0.6	0.6	9.1	0.6	8.9	8.9	8.9	8.7
ЬН		6.0	0.9	0.9	0.9	5.9	5.9	5.9	5.8	5.7	5.8	2.1
	Alk Hard (SU)	9									ស	
	Alk	3.4									3.6	
	c1	6.5									0.9	
	Cond	39	40	40	40	40	39	38	40	40	38	37
Color	(cn)	2									Ŋ	
Turb	(NTU) (CU) Cond	0.3									0.4	
Depth	(w)	0.5	n	9	6	12	15	18	19	20	20.5	21

NOTE: Conductivity in µmhos/cm.

TABLE 8 (CONTINUED)

OCTOBER 25, 1989

STATION QR04

	TP	900.0														900.0
	NO_3	0.03														0.05
Nitrogen	NH ₃	<0.02														0.03
	TKN	0.08														0.10
ds	Total Fixed	21														21
Solids	Total	30														29
Temp	(၁.)	13.1	13.1	13.0	13.0	13.0	13.0	12.9	12.7	12.0	11.8	11.3	11.0	10.3	9.6	
		89	88	87	88	98	85	85	79	69	67	28	26	53	47	
Dissolved Oxygen	(mg/l) (%Sat)	9.4	9.3	9.5	9.3	9.1	0.6	0.6	8.5	7.5	7.3	6.3	6.2	5.9	5.4	
ьн	(sa)	6.1	0.9	6.0	0.9	0.9	0.9	5.9	5.9	5.7	5.6	5.4	5.4	5.3	5.3	*6.0
Hd	Hard	ω														7
	Alk	3.6														3.5
	C1	6.5														0.9
	Cond	40	40	40	40	40	40	40	39	40	41	40	40	40	40	
	(cu) cond cl	2														2
-	(NTU)	0.3														0.3
Depth	(m)	0.5	က	9	6	12	15	18	21	24	25	56	27	30	33	34

* Laboratory analysis NOTE: Conductivity in µmhos/cm.

TABLE 8 (CONTINUED)

OCTOBER 25, 1989

	TP	0.007									0.007				TP	0.007								900.0	
ı	1										0.03			ı		0.03								0.02	
_	NO ₃	<0.02									0				NO ₃	0								0	
Nitrogen	NH3	<0.02									<0.02		:	Nitrogen	NH ₃	<0.02								<0.02	
Z	TKN	0.09									0.11			- i	TKN	90.0								0.12	
lds	Fixed	22									24			Lds	Fixed	23								23	
Solids	Total	29									33		•	Solida	Total	30								32	
Temp	(o.)	12.7	12.7	12.7	12.6	12.6	12.5	12.5	12.4	12.3	11.5		(Temp	(a,)	12.5	12.4	12.4	12.1	12.0	11.9	11.8	11.8		11.8
issolved Oxygen	(%Sat)	91	87	87	87	98	98	98	85	83	59	N QR07	issolved	en	(%Sat)	06	88	88	87	87	87	87	98		86
Dissolv Oxygen	(mg/1)	7.6	9.3	9.3	9.3	9.5	9.5	9.5	9.1	8.9	6.5	STATION	Disso		(mg/l)	9.6	9.4	9.4	9.4	9.4	9.4	9.4	9.3		9.3
Hq		6.7	9.9	6.4	6.3	6.3	6.3	6.2	6.2	6.1	5.7		:		(sn)	0.9					0.9		0.9		5.9
	ard	7									9			•	Hard	9								7	
	Alk Hard	3.6									4.0				AIK H	4.0								4.0	
	C1	6.5									7.0			į	CI	7.0								7.0	
ង	Cond	6	39	38	37	36	36	35	34	33	33			, u	Cond		38	37	37	36	35	34	33		33
Color	(cn)	2									10			COLOR	(ດດ)	ស								ស	
Turb	(NTU)	0.3									0.5				(NTO)	0.3								0.4	
Depth	(w)	0.5	က	9	6	12	15	18	21	24	27			nebru	<u>ه</u>)	0.5	m	9	6	12	15	18	21	21.5	24

TABLE 8 (CONTINUED)

OCTOBER 25, 1989

STATION QR09

			0.007						0.008				0.010					0.018				0.015
	E	I.P	0						0			TP	0					0				0
	- 1	NO3	0.07						0.03			NO ₃	0.05					0.03				0.02
	Nitrogen	NH3	<0.02						<0.02		Nitrogen	NH ₃	0.02					<0.02				<0.02
		IKN	0.08						0.12		ż	TKN	0.10					0.13				0.16
	ds	Fixed	24						24		<u>م</u>	Fixed	26									28
	Solids	Total	34						36		, CO	Total	37									45
	Temp	(2)	12.2	11.9	11.7	11.7	11.4	11.3			T C C	(D.)	12.0	11.5	11.2	11.0	10.6	10.4	9.4	9.3	9.3	9.3
lved	en (4852±)	(*Sat)	89	87	98	85	84	83		N QR10	lved	(%Sat)	88	98	82	84	87	87	87	88	88	88
Dissolved	Oxygen	(mg/1)	9.6	9.4	9.4	9.3	9.2	9.1		STATION	Dissolved	(mg/l)	9.5	9.4	9.4	9.3	9.7	6.7	10.0	10.1	10.1	10.1
		(sn)	0.9	0.9	0.9		5.9				Ħ H	_	6.0	0.9	0.9	5.9	5.8	5.6	5.4	5.4	5.3	*6.0
	1	lard	2						9			lard	5					4				က
	, 1 K	А1к наго	4.4						4.4			Alk Hard	4.6					4.3				3.6
	5		7.5						7.0			CI	8.0					7.5				8.0
	7 C	Cona	40	40	40	39	39	38			1	Cond	41	41	41	40	39	38	37	37	37	37
		(00)	2						18		יין		17					37				52
	Turb	(NIO)	0.4						9.0		£	(NTU)	9.0					0.7				0.7
	Depth	E)	0.5	m	9	6	12	13	13.5		Denth	(m)	0.5	m	9	6	12	13	14	15	16	16.5

* Laboratory analysis NOTE: Conductivity in μ mhos/cm.

TABLE 9

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

CHEMICAL AND NUTRIENT DATA (mg/1)

NOVEMBER 15, 1989

		TP	0.005													<0.005
		NO ₃	0.03													0.07
	Nitrogen	NH ₃	<0.02													0.03
	N	TKN	0.48													0.49
	-ds	Fixed	20													20
	Solids	Total Fixed	30													30
	Temp	(°C)	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	10.8	9.6	9.5
plved	yen	(mg/l) (%Sat) (°C)	100	66	101	66	66	66	86	66	86	96	92	88	57	52
Dissolved	Oxygen	(mg/l)	11.1	11.0	11.2	11.0	11.0	11.0	10.8	10.9	10.8	10.6	10.2	6.7	6.5	0.9
	hd	(SU)	6.4													6.1
		Hard	6													ω
		Alk Hard (SU)	3.9													4.1
		Cl	6.5													6.5
		Cond	38													40
	Color	(NTU) (CU) Cond Cl	2													ம
	Turb	(NTU)	0.3													0.4
	Depth	(m)	0.5	က	9	6	12	15	18	21	24	27	30	33	36	38

NOTE: Conductivity in µmhos/cm.

TABLE 9 (CONTINUED)

NOVEMBER 15, 1989

STATION QR06

	TP	<0.00>									0.35 <0.02 0.04 <0.005	
	NO ₃	<0.02 0.05									0.04	
Nitrogen	NH3	<0.02									<0.02	
Z	TKN	0.21									0.35	
rds 1	Total Fixed	18									18	
Solids	Total	30									30	
Temp	(°C)	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	
lved	(%Sat)	119	119	118	116	114	114	112	114	112	112	
Dissolved Oxygen	(NTU) (CU) Cond Cl Alk Hard (SU) (mg/l) (%Sat) (°C)	13.2	13.2	13.0	12.8	12.6	12.6	12.4	12.6	12.4	12.4	
Hd	(sn)	6.4									6.4	
	Hard	8									ω	
	Alk	3.4									3.9	
	C1	6.5									6.5	
	Cond	38									38	
Color	(cn)	2									S	
Depth Turb Color	(NTU)	0.3									0.3	
Depth	(w)	0.5	က	9	6	12	15	18	21	24	27	27.5

NOTE: Conductivity in µmhos/cm.

TABLE 10

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

TOTAL METALS (mg/l)

APRIL - NOVEMBER 1989

STATIONS 1 - 5

Ag	<0.001	<0.001	<0.001	<0.001	
ت	0.002	0.002	0.003	0.003	
Zn	0.005 0.007 0.009 0.009 0.005 0.005	(0.002(0.006(0.039(0.005(0.009	0.024 0.007 0.006 0.018 0.008 <0.005	0.006 0.009 0.006 0.005 0.014	0.002
.i.	(0.002(0.003(0.003(0.003(0.003(0.003	(0.002(0.003(0.003(0.003(0.006(0.003	.00.002.0.003.0.006.0.003.0.003	0.0020.0030.0050.0050.0040.0030.003	<0.002
Нд	0.0003 0.0003 0.0010 0.0010 0.0002 0.0002	0.0003 0.0003 0.0006 0.0002 0.0002	0.0002 0.0002 0.0006 0.0002 0.0014	(0.0002(0.0002(0.0007(0.0002(0.0002(0.0002	<0.0002
Pb	0.003 (0.002 (0.002 (0.002 (0.002 (0.002	60.002 0.002 0.002 0.002 0.002 0.002	0.0020.0030.0020.0020.0020.002	(0.002(0.002(0.002(0.002(0.002(0.002(0.002	<0.002
Fe	0.026 0.013 0.030 0.090 0.130 0.080	0.021 0.030 <0.001 0.040 <0.003 0.230 0.070	0.054 0.011 0.080 0.080 0.230 0.050	0.022 0.040 0.060 0.080 0.030 0.090	0.037
ng	<0.002<0.004<0.009<0.003<0.003	0.0020.0020.0020.0020.0040.004	<0.002<0.002<0.002<0.002<0.002	<0.002<0.003<0.003<0.005<0.005	<0.002
Ca	2.3 2.4 2.5 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	22.22.22	4.9 4.0 2.3 1.4 1.3	2.2 2.2 2.3 1.3 8.1	2.2
PO	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	<0.001
As	0.0020.0020.0020.0020.0020.0020.0010.001	0.0020.0020.0020.0020.0020.001	0.0020.0020.0020.0020.0020.0020.002	0.0020.0010.0020.0020.0020.0020.002	<0.002
Ał	6.05 6.05 6.05 6.05 6.05 6.05	0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05	60.05 60.05 60.05 60.05 60.05	<0.05
ОЕРТН	33.0 35.0 35.0 35.0 35.0 39.0	30.5 30.0 30.0 30.0 34.5 31.5	18.3 20.0 21.0 20.5 20.5 20.0	27.4 34.0 25.0 29.0 32.0 34.0	33.5
DATE	4/19/89 5/18/89 6/14/89 7/19/89 8/16/89 9/21/89 10/25/89	4/19/89 5/18/89 6/14/89 7/19/89 8/16/89 9/21/89	4/19/89 5/18/89 6/14/89 7/19/89 8/16/89 9/21/89	4/19/89 5/18/89 6/14/89 7/19/89 8/16/89 9/21/89	4/19/89
STATION	0 80	0 802	oR03	ar04	oR05

NOTE: Depths expressed in meters.

TABLE 10 (CONTINUED)

TOTAL METALS (mg/l)

APRIL - NOVEMBER 1989

STATIONS 6 - 10

Ag	<0.001	<0.001	<0.001	<0.001
ت	0.002	0.002	0.002	0.002
Zn	0.005 0.009 0.009 0.012 0.005 0.007 0.005	0.003 0.008 0.013 0.024 <0.005	0.029 0.008 0.004 <0.005 <0.005 <0.005	0.092 0.006 0.007 0.005 0.005 0.005
N i	<0.002<0.003<0.003<0.003<0.003<0.003	(0.003(0.002(0.003(0.003(0.018	0.003 0.003 0.006 0.006 0.006	<0.002<0.003<0.008<0.003<0.003
Нд	0.0002 0.0002 0.0004 0.0002 0.0002 0.0002 0.0002	(0.0002(0.0002(0.0002(0.0002(0.0002	.0.00020.00030.0005.0.0002.0.0002	<0.0002<0.0002<0.0002<0.0002<0.0002<0.0002<0.0002
Pb	<0.002<0.002<0.003<0.002<0.002<0.002<0.002<0.002	(0.002(0.002(0.002(0.002(0.002(0.002	 .0002 .0003 .0002 .0002 .0002 .0002 .0002 	0.003 <0.002 <0.003 <0.002 <0.002 <0.002
Fe	0.048 0.045 0.060 0.080 0.240 0.200	0.010 <0.001 0.050 0.080 0.140 0.080	0.060 0.030 0.100 0.050 0.080 0.080	0.130 0.150 0.120 0.090 0.240 0.240
ng	(0.002(0.002(0.002(0.003(0.003(0.003	0.0020.0020.0030.0020.002	0.002 0.003 (0.002 (0.007 (0.002	<pre><0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 </pre>
Ca	2.2 3.0 3.0 1.7	2.22.2.6.6.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	2.5 2.6 2.7 2.3 3.0	2.6 2.2 2.7 1.7 0.8
po	. 0.001 0.001 0.001 0.001 0.001	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00	0.001 0.001 0.001 0.001 0.001
As	0.002 <0.001 <0.002 <0.002 <0.002 <0.001	<pre><0.001 <0.002 0.002 <0.002 <0.002 <0.002 <0.001</pre>	 .0002 .001 .002 .002 .002 .002 .002 .002 	<pre><0.002 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 </pre>
At	60.05 60.05 60.05 60.05 60.05	60.05 60.05 60.05 60.05 60.05	60.05 60.05 60.05 60.05 60.05	(0.05(0.05(0.05(0.05(0.05
ОЕРТН	31.0 25.9 26.0 24.0 23.0 24.0 27.0	20.0 22.0 19.7 20.0 20.5 21.5	13.0 17.0 12.0 13.0 13.5	10.0 15.2 17.0 15.0 15.0
DATE	4/19/89 5/18/89 6/14/89 7/19/89 8/16/89 9/21/89 10/25/89	5/18/89 6/14/89 7/19/89 8/16/89 9/21/89 10/25/89	4/19/89 5/18/89 6/14/89 7/19/89 8/16/89 9/21/89	4/19/89 5/18/89 6/14/89 7/19/89 8/16/89 9/21/89
STATION	o806	or07	0R09	0R10

NOTE: Depths expressed in meters.

TABLE 11

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

APRIL 19, 1989

PHYTOPLANKTON ENUMERATION (ASU/ml) AND CHLOROPHYLL a DATA (mg/m3)

ORGANISM	STATION	QR01	QR02	QR03	QR04	QR05	QR06	QR08	QR 10
	DEPTH	comp							
Bacillariophyceae (Diat	oms)								·
Rhizosolenia	•	17.0	18.3	4.7	21.2	45.0	63.2	30.0	0.0
Asterionella		73.0	93.0	89.6	74.9	41.1	37.6	40.9	28.5
Tabellaria		11.3	26.0	5.1	11.3	24.5	16.3	43.9	34.6
Other Centric	Diatoms	9.1	12.6	5.4	17.0	20.1	22.2	17.9	2.6
Other Pennate	Diatoms	3.0	1.8	1.9	2.6	3.0	3.3	4.2	15.2
TOTAL		113.4	151.7	106.7	127.0	133.7	142.6	136.9	80.9
Cyanophyceae (Blue-gree	ns)								
Anabaena		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Coccoid blue-g	reens	0.0	31.5	51.3	26.3	0.5	2.9	0.7	0.0
Other filament	ous	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0
TOTAL		0.0	31.5	51.3	26.3	0.5	2.9	1.0	0.0
Chlorophyceae (Greens)									
Coccoid greens		7.6	3.0	3.5	3.3	0.5	2.7	12.1	0.7
Desmids		9.2	1.7	4.8	2.5	1.7	6.1	0.7	0.8
Filamentous		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flagellates		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL		16.8	4.7	8.3	5.8	2.2	8.8	12.8	1.5
Chrysophyceae (Golden-b	rowns)								
Synura		2.3	2.3	10.1	5.2	4.7	0.0	7.7	0.6
Dinobryon		5.8	11.3	13.4	16.3	15.7	32.1	10.4	3.5
Chrysosphaerel	<u>la</u>	1.7	0.0	2.9	5.4	7.8	7.0	2.8	0.0
<u>Mallomonas</u>		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>Uroglenopsis</u>		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL		9.8	13.6	26.4	26.9	28.2	39.1	20.9	4.1
Dinophyceae (Dinoflagel	lates)								
TOTAL		6.8	12.2	18.0	8.1	23.8	7.4	11.6	5.6
TOTAL ALGAE (ASU/ML)		146.8	213.7	210.7	194.1	188.4	200.8	183.2	92.1
CHLOROPHYLL a (mg/m ³)		2.5	2.9	3.2	1.9	1.6	1.6	2.0	1.6

TABLE 12

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

PHYTOPLANKTON ENUMERATION (ASU/ml) AND CHLOROPHYLL a DATA (mg/m3)

MAY 18, 1989

ORGANISM		MOITAT	QR01	QR02	QR03	QR04	QR06	QR07	QR09	QR10
	D	EPTH	сотр	comp	comp	comp	comp	comp	comp	comp
Bacillari	ophyceae (Diatoms)									
	Rhizosolenia		57.4	47.1	39.4	50.9	85.4	67.2	27.5	7.8
	Asterionella		48.8	54.6	47.6	32.4	47.4	65.3	37.1	18.2
	Tabellaria		6.6	3.9	1.9	10.5	15.2	13.2	14.4	16.8
	Other Centric Diato	ms	5.4	3.5	4.7	4.9	4.2	6.8	5.6	3.6
	Other Pennate Diato	ms	1.2	1.2	0.9	0.7	2.8	1.2	1.6	7.6
	TOTAL		119.0	110.3	94.5	99.4	155.0	153.7	86.2	54.0
Cyanophyo	eae (Blue-greens)									
	Anabaena		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Coccoid blue-greens		12.1	2.1	4.6	1.2	7.0	21.6	6.6	1.4
	Other filamentous		0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.4
	TOTAL		12.1	2.1	4.6	1.2	7.0	21.6	6.6	2.8
Chlorophy	ceae (Greens)									
	Coccoid greens		6.4	3.8	5.9	2.2	1.4	13.0	5.2	0.0
	Desmids		6.6	5.2	7.6	4.0	6.0	3.2	1.9	4.0
	Filamentous		0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0
	Flagellates		0.0	0.0	0.0	0.0	0.0	1.7	0.6	0.0
	TOTAL		13.0	9.0	13.5	6.2	7.4	17.9	8.3	4.0
Chrysophy	ceae (Golden-browns)								
	Synura		0.0	4.7	6.4	0.0	0.0	0.6	2.3	0.0
	Dinobryon		1.2	7.6	5.2	5.2	0.0	37.3	0.6	4.2
	Chrysosphaerella		5.8	9.9	0.0	3.5	2.3	25.7	3.5	0.0
	Mallomonas		0.0	1.2	0.6	0.0	0.0	0.0	0.0	1.4
	Uroglenopsis		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TOTAL		7.0	23.4	12.2	8.7	2.3	63.6	6.4	5.6
Dinophyce	eae (Dinoflagellates	•								
	TOTAL		3.5	5.9	4.4	0.8	3.5	2.7	3.1	0.0
	TOTAL ALGAE (ASU/ML)	157.3	150.7	129.2	116.3	175.2	260.1	110.6	66.4
	CHLOROPHYLL a (mg/m	³)	1.1	1.1	1.0	0.8	1.4	1.7	1.6	2.1

TABLE 13 $\hbox{QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT }$ PHYTOPLANKTON ENUMERATION (ASU/ml) AND CHLOROPHYLL \underline{a} DATA (mg/m³)

JUNE 14, 1989

ORGANISM STAT		QR01	QR01	QR06	QR06	QR06	QRO7	QR07	QR07	QR10
DEPTI	H _O_m	6 m	12 m	<u>0 m</u>	4 m	<u>9 m</u>	<u>0 m</u>	4 m	<u>8 m</u>	<u>0 m</u>
Bacillariophyceae (Diatoms)										
Rhizosolenia	0.0	0.0	0.0	0.0	0.0	5.9	4.0	4.2	0.0	0.0
Asterionella	16.1	11.5	1.2	10.9	6.7	5.3	13.0	17.5	7.2	5.1
Tabellaria	0.0	0.0	0.0	5.1	0.0	0.0	8.9	0.0	0.0	1.6
Other Centric Diator		37.2	10.7	52.1	84.8	26.6	42.2	85.1	38.7	7.0
Other Pennate Diator		0.6	0.5	2.2	0.8	0.3	0.9	1.4	1.4	0.5
TOTAL	43.0	49.3	12.4	70.3	92.3	38.1	69	108.2	47.3	14.2
Cyanophyceae (Blue-greens)										
Anabaena	47.9	22.7	2.1	42.0	42.0	8.1	42.9	58.5	15.1	205.3
Coccoid blue-greens	5.4	8.9	4.3	5.9	3.1	8.4	6.4	8.5	1.8	19.2
Other filamentous	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL	53.3	31.6	6.4	47.9	45.1	16.5	49.3	67.0	16.9	224.5
Chlorophyceae (Greens)										
Coccoid greens	4.0	3.0	0.6	5.9	7.7	3.5	7.8	9.6	2.9	5.1
Desmids	1.5	1.8	4.1	5.6	4.9	2.1	2.7	1.5	5.2	2.3
Filamentous	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flagellates	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	0.0
TOTAL	6.3	4.8	4.7	11.5	12.6	5.6	10.5	11.1	9.3	7.4
Chrysophyceae (Golden-browns)									
Synura	0.0	0.0	1.7	0.0	0.7	1.6	0.0	1.7	4.7	0.0
Dinobryon	1.5	2.8	21.0	56.7	60.9	46.2	10.5	125.1	226.6	34.9
Chrysosphaerella	0.0	0.0	4.8	8.4	9.1	16.8	5.2	39.4	26.2	0.0
Mallomonas	1.5	0.0	0.6	0.4	0.7	0.0	0.0	3.5	1.2	0.0
<u>Uroglenopsis</u>	18.2	11.2	0.0	14.0	320.6	8.4	0.0	308.0	0.0	21.0
TOTAL	21.2	14.0	28.1	79.5	392	73	15.7	477.7	258.7	55.9
Dinophyceae (Dinoflagellates)									
TOTAL	3.0	6.0	9.7	2.1	5.6	5.6	1.2	6.1	10.5	0.6
TOTAL ALGAE (ASU/ML	126.8	105.7	61.3	211.3	549.7	139.5	148	670.1	342.7	302.6
CHLOROPHYLL <u>a</u> (mg/m ²		5.5			9.8			9	• • •	
	(composite)	(composite)		(comp	osite)	

TABLE 14

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

PHYTOPLANKTON ENUMERATION (ASU/ml) AND CHLOROPHYLL a DATA (mg/m3)

AUGUST 16, 1989

ORGANISM	STATION DEPTH	QR01 8 m	QR06 0 m	QR06 4 m	QR06 8 m	QR06 13 m
Bacillariophyceae (Diatom	s)					
Rhizosolenia		0.0	0.0	0.0	0.0	0.0
Asterionella		0.0	0.0	0.0	0.9	0.0
<u>Tabellaria</u>		0.0	0.0	0.4	0.0	0.5
Other Centric Di	atoms					
Other Pennate Di	atoms	0.0	0.0	0.0	0.2	0.0
TOTAL		0.0	0.0	0.4	1.1	0.5
Cyanophyceae (Blue-greens)					
Anabaena		0.0	0.0	0.0	0.0	0.0
Coccoid blue-gre	ens	4.7	29.7	36.0	20.2	1.4
Other filamentou	s	0.0	0.0	1.2	0.0	0.0
TOTAL		4.7	29.7	37.2	20.2	1.4
Chlorophyceae (Greens)						
Coccoid greens		0.0	3.2	1.8	7.0	4.9
Desmids		0.0	0.5	0.0	0.0	2.1
Filamentous		0.0	0.0	0.0	0.2	0.7
Flagellates		0.0	0.0	0.0	0.0	0.0
TOTAL		0.0	3.7	1.8	7.2	7.7
Chrysophyceae (Golden-bro	wns)					
Synura		0.0	0.0	0.0	0.0	3.5
Dinobryon		8.7	0.0	0.6	0.0	186.9
Chrysosphaerella		7.6	0.0	0.0	0.0	28.0
<u>Mallomonas</u>		0.0	0.0	0.0	0.0	0.9
<u>Uroglenopsis</u>		0.0	0.0	0.0	0.0	5.6
TOTAL		16.3	0.0	0.6	0.0	224.9
Dinophyceae (Dinoflagella	tes)					
TOTAL		0.0	3.5	7.0	3.4	12.6
TOTAL ALGAE (ASU,	/ml)	21.6	36.9	48.2	31.9	249.9
CHLOROPHYLL <u>a</u> (m	g/m ³)	5.6	•••••		5.7 posite)	

TABLE 15

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

PHYTOPLANKTON ENUMERATION (ASU/ml) AND CHLOROPHYLL a DATA (mg/m3)

SEPTEMBER 21, 1989

ORGANISM	STATION DEPTH	QR02 12.5 m	QR06 <u>0 m</u>	QR06 <u>6 m</u>	QR06 12 m
Bacillariophyceae (Diato	oms)				
Rhizosolenia		0.0	0.0	0.0	0.0
<u>Asterionella</u>		0.0	5.1	6.7	1.2
<u> Tabellaria</u>		0.0	5.1	10.7	6.2
Other Centric 1		0.0	0.2	0.0	0.7
Other Pennate 1	Diatoms	0.0	0.2	0.3	0.0
TOTAL		0.0	10.6	17.7	8.1
Cyanophyceae (Blue-green	ns)				
<u>Anabaena</u>		0.0	14.0	1.7	0.0
Coccoid blue-g		79.3	71.7	95.2	60.9
Other filament	ous	0.0	1.9	0.0	0.0
TOTAL		79.3	87.6	96.9	60.9
Chlorophyceae (Greens)					
Coccoid greens		1.7	7.8	3.9	5.1
Desmids		0.0	0.6	0.0	0.0
Filamentous		0.0	0.0	0.0	0.0
Flagellates		0.0	0.0	0.0	0.0
TOTAL		1.7	8.4	3.9	5.1
Chrysophyceae (Golden-b	rowns)				
Synura	- •	2.3	0.0	0.0	0.0
Dinobryon		3.5	0.0	1.4	0.0
Chrysosphaerel	la	11.1	0.0	0.0	1.6
<u>Mallomonas</u> <u>Uroglenopsis</u>	_	1.4	0.0	0.9	0.4
TOTAL		18.3	0.0	2.3	2.0
Dinophyceae (Dinoflagel TOTAL	lates)	3.7	0.0	4.8	1.2
TOTAL ALGAE (AS	SU/ml)	102.0	106.6	125.3	77.3
CHLOROPHYLL a	(mg/m ³)			3.1	
				composite;	

TABLE 16

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

PHYTOPLANKTON ENUMERATION (ASU/ml) AND CHLOROPHYLL \underline{a} DATA (mg/m³)

OCTOBER 25, 1989

ORGANISM	STATION DEPTH	QR06 0 m	QR06 3 m	QR06 6 m
Bacillariophyceae (Diatom	c.)			
Rhizosolenia	5)	0.9	0.0	0.0
Asterionella		23.3	30.8	29.4
Tabellaria		31.1	16.3	21.9
Other Centric Di	atoms	1.2	0.6	2.8
Other Pennate Di		0.5	1.1	0.3
TOTAL		57.0	48.8	54.4
Cyanophyceae (Blue-greens)			
Anabaena		19.6	18.2	5.0
Coccoid blue-gre Other filamentou		34.7	23.6	38.3
TOTAL		54.3	41.8	43.3
Chlorophyceae (Greens)				
Coccoid greens		6.4	2.5	.3.5
Desmids		2.9	4.2	2.1
Filamentous		0.0	0.0	0.0
Flagellates		0.0	0.0	0.0
TOTAL		9.3	6.7	5.6
Chrysophyceae (Golden-bro	wns)			
Synura		0.0	0.0	7.0
<u>Dinobryon</u> <u>Chrysosphaerella</u>		0.0	0.0	2.8
Mallomonas Uroglenopsis		1.2	1.9	0.0
TOTAL		1.2	1.9	9.8
Dinophyceae (Dinoflgellat TOTAL	es)	0.6	0.0	6.3
TOTAL ALGAE (ASU	/ml)	123.5	99.9	119.4
CHLOROPHYLL <u>a</u> (m	g/m ³)	•••••	2.7 (composi	

TABLE 17

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

PHYTOPLANKTON ENUMERATION (ASU/ml) AND CHLOROPHYLL \underline{a} DATA (mg/m 3)

NOVEMBER 15, 1989

ORGANISM	STATION DEPTH	QR01 comp	QR06 0 m	QR06 6 m	QR06 12 m
Bacillariophyceae (Di	atoms)				
Rhizosolenia		0.0	0.0	0.7	0.0
<u>Asterionella</u>		32.6	60.8	69.9	64.3
<u> Tabellaria</u>		26.4	35.7	47.4	82.3
Other Centri		0.5	11.4	10.9	12.6
Other Pennat	te Diatoms	0.0	0.7	0.5	0.2
TOT	AL	59.5	108.6	129.4	159.4
Cyanophyceae (Blue-gi	reens)				
Anabaena		0.0	3.5	9.8	1.6
Coccoid blue		13.6	24.8	16.5	17.3
Other filame	entous	0.0	0.0	0.2	0.0
TO	DTAL	13.6	28.3	26.5	18.9
Chlorophyceae (Greens	;)				
Coccoid gree		2.5	5.0	5.9	11.9
Desmids		0.8	4.3	4.1	2.3
Filamentous					
Flagellates					
TOT	AL	3.3	9.3	10.0	14.2
Chrysophyceae (Golder	n-browns)				
Synura		2.7	4.1	1.2	0.0
Dinobryon		2.3	6.4	1.0	7.0
Chrysosphaer	ella	8.2	10.5	7.0	9.3
Mallomonas		0.4	2.6	0.8	1.0
Uroglenopsis	<u>.</u>	0.0	9.3	0.0	1.2
тот	AL	13.6	32.9	10.0	18.5
Dinophyceae (Dinoflag	ellates)				
To		1.7	6.7	4.1	2.9
TOTAL ALGAE	(ASU/ml)	91.7	185.8	181.2	215.6
CHLOROPHYLL	<u>a</u> (mg/m ³)	3.4		4.6 (composi	

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT REPORT

CHLOROPHYLL a (mg/m³)

APRIL - NOVEMBER 1989

DATE	QR01	QR02	QR03	QR04	QR05	QR06	QR07	QR08	QR09	QR10
4/19/89	2.5	2.9	3.2	1.9	1.6	1.6		2.0		1.6
5/18/89	1.1	1.1	1.0	0.8		1.4	1.7		1.6	2.1
6/14/89	5.5					9.8	9.8			
7/19/89	1.6	4.4	1.8	2.8		1.6	2.2		0.9	1.9
8/16/89	5.6	9.0	2.2	12.2		5.7	6.9		3.3	3.6
9/21/89	2.8	4.4	5.0	2.8		3.1	3.1		3.6	4.4
10/25/89	2.5	2.3	2.4	2.7		2.7	3.1		3.5	3.4
11/15/89	3.4					4.6				

TABLE 19

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

SECCHI DISC (meters)

APRIL - NOVEMBER 1989

DATE	QR01	QR02	QR03	QR04	QR05	QR06	QR07	QR08	QR09	QR10
										
4/19/89	8.3	9.5	5.5	6.4	6.4	9.5		6.0		4.5
5/18/89	8.0	9.0	9.0	8.0		10.4	7.3		4.9	2.7
6/14/89	8.3	8.0	6.4	7.6		8.9	5.8		3.8	2.6
7/19/89	8.6	9.6	9.1	9.8		9.8	9.4		8.0	4.7
8/16/89	9.8	9.7	10.2	9.7		10.0	8.5		6.0	4.5
9/21/89	10.1	9.3	9.0	9.0		9.1	8.2		7.1	4.6
10/25/89	9.0	10.0	8.8	8.3		7.0	8.0		5.1	4.0
11/15/89	8.5					8.0				

TABLE 20

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

BACTERIA

APRIL 19, 1989

QR01 QR02 QR03 QR04 QR05 QR06 QR07 QR08 QR09 QR10

Heterotrophic								····	
48 Hours @ 20°C	1	1	18	1	2	0	 11		42
24 Hours @ 35°C	0	0	0	0	0	0	 1		13
Total Coliform	0	0	0	0	0	0	 0		1

MAY 18, 1989

QR01 QR02 QR03 QR04 QR05 QR06 QR07 QR08 QR09 QR10

Heterotrophic										
48 Hours @ 20°C	0	0	13	0		3	0		2	6
24 Hours @ 35°C	0	0	2	0		0	0		2	0
Total Coliform	0	0	0	2		0	0		0	7

JUNE 14, 1989

QR01 QR02 QR03 QR04 QR05 QR06 QR07 QR08 QR09 QR10

Heterotrophic							 	
48 Hours @ 20°C	9	3	17	28	 17	16	 31	23
24 Hours @ 35°C	0	0	0	1	 3	0	 7	0
Total Coliform	0	0	0	1	 2	0	 2	1

NOTE: Total heterotrophic bacteria expressed as CFU/ml. Total coliform expressed as coliforms/100ml.

TABLE 20 (CONTINUED)

BACTERIA

JULY 19, 1989

QR01 QR02 QR03 QR04 QR05 QR06 QR07 QR08 QR09 QR10

Heterotrophic						
48 Hours @ 20°C 16	27 15	18	19	19	 27	37
24 Hours @ 35°C 2	11 5	8	10	12	 13	22
Total Coliform 0	0 0	1	1	0	 0	1

AUGUST 16, 1989

QR01 QR02 QR03 QR04 QR05 QR06 QR07 QR08 QR09 QR10

Heterotrophic								
48 Hours @ 20°C	75	28	55	43	 40	34	 28	27
24 Hours @ 35°C	50	20	26	20	 12	22	 23	19
Total Coliform	3	0	0	0	 0	0	 3	0

SEPTEMBER 21,1989

QR01 QR02 QR03 QR04 QR05 QR06 QR07 QR08 QR09 QR10

Heterotrophic	<u> </u>						 	
48 Hours @ 20°C	29	10	24	25	 11	26	 27	13
24 Hours @ 35°C	13	4	9	7	 5	2	 4	6
Total Coliform	2	0	1	0	 0	1	 0	0

NOTE: Total heterotrophic bacteria expressed as CFU/ml. Total coliform expressed as coliforms/100ml.

TABLE 20 (CONTINUED)

BACTERIA

OCTOBER 25, 1989

QR01 QR02 QR03 QR04 QR05 QR06 QR07 QR08 QR09 QR10

Heterotrophic								
48 Hours @ 20°C	38	50	47	42	 27	22	 6	31
24 Hours @ 35°C	5	6	7	1	 2	5	 0	3
Total Coliform	3	0	0	1	 1	1	 0	1

NOVEMBER 15, 1989

QR01 QR02 QR03 QR04 QR05 QR06 QR07 QR08 QR09 QR10

Heterotrophic			 			
48 Hours @ 20°C	12	 	 	7	 	
24 Hours @ 35°C	3	 	 	1	 	
Total Coliform	2	 	 	1	 	

NOTE: Total heterotrophic bacteria expressed as CFU/ml. Total coliform expressed as coliforms/100ml.

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

SEDIMENT DATA (mg/kg dry weight)

OCTOBER 1989

STATIONS IN WEST BASIN

Zn

					STAT		STATIONS IN WEST BASIN	ASIN						
					QS-A WEST BRANCH SWIFT RIVER	ST BRA	NCH SWIF	FT RIVE	~					
SAMPLE NO.	XIVS	TKN	4	A	Fe	As	р	ت	3	Нg	Æ	.E	Pb	
2	15.4 26.5	3640 3560	009	10250 9400	13000	1.2	¢1.0 41.0	3.5	20	0.2	270	18	38	100
					So	QS-B ASI	ASH POND							
SAMPLE NO.	%IVS	TKN	TP.	Al	F.	As	Р	5	2	Ж	Æ	ž	Pp	
1 2	29 8.8	3640 1850	900 580	10650 7400	3000	<0.5 1.7	×1.0 ×1.0	<1.5 1.5	11 8.5	0.2	160 315	9 51	33	-
					0S-C		CADVELL CREEK	EK						
SAMPLE NO.	%TVS	TKN	4	Al	Fe	As	25	ņ	S	Нg	₹ C	ž	Pb	
2	13	2340	670 770	9900	10000	0.6	¢1.0	3.5	16	0.1	155	8.5	39	2.2
					0-S0	aS-D/aR01	WINSOR DAM	DAM						
SAMPLE NO.	%1VS	TKN	16	Al	e e	As	p	ت	ņ	Нĝ	ξ	ž	Pb	
- 2	10.1	5450 3490	1770 1200	11650 11750	13500	1.8	¢1.0 ¢1.0	3.0	14	0.2	700	9.5	36	25 8

Zu

53

Zn

53

Zn

50

TABLE 22

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

SEDIMENT DATA (mg/kg dry weight)

OCTOBER 1989

STATIONS IN CENTRAL BASIN

QS-E/QRO4 ENFIELD

				1			1						
Zn	110		Zn	45		Zn	23		Zn	150 135		uz	45
>	30		>	28		>	39		>	65 50		>	24 11
8	105		Pb	19		Pb	55		&	135		8	18
ž	= =		ž	15		ž	12		ž	18		Ë	10
준	850 400		듄	145	:	줃	435		포	550 2300		포	280 380
£ 6	0.4		Н	0.2		НВ	0.1	I LAKE	Н	0.1		Hg	0.2
3	26 17		2	10		23	16	QUABBIN LAKE	20	47 26		25	16
C	5.0	ROOK	Cr	4.5	H LAKE	در	4.0	12 -	C	7.0	NISIN	۲۵	5.5
p	41.0 41.0	PRESCOTT BROOK	P	41.0	GREENVICH LAKE	p	<1.0 <1.0	SHAFT	p	<1.0	MID-BASIN	p	<1.0 <1.0
As	2.5	QS-F PRE	As	0.7	0 9-S0	As	1.8	as-H/aR06	As	3.0	aS-1/aR07	As	0.9
ā	27500 17000	So	Fe	13000		Fe	33000	So	e e	25000 41000	-S 0	e e	13500 6000
At	17600 12000		Al	16000		Al	15500 13600		Al	21250 18500		At	8800
4	1080 890		4	730		4	1270 1130		4	510 560	·	4	600 350
T K	3150 2350		TKN	1400		TKN	3450 3100		TKN	1230 1630		TKN	850 920
XTVS	8.82 11.4		XIVS	6.5		XIVS	15.8		XTVS	6.09		%TVS	3.9
SAMPLE NO.	- 2		SAMPLE NO.	-		SAMPLE NO.	1 2		SAMPLE NO.	1 2		SAMPLE NO.	2

TABLE 23

QUABBIN RESERVOIR WATER QUALITY AND SEDIMENT DATA REPORT

SEDIMENT DATA (mg/kg dry weight)

OCTOBER 1989

STATIONS IN EAST BASIN

QS-J/QR10 NEAR DEN HILL

	11						N
Zn	83	150	75	155		Zn	83
>	41	55	54	09		>	36
Pb	55	120	31	120		Pb	75
ž	18	19	8.5	18		ž	11
M	9009	420	350	430		M C	370
Нд	0.2	0.1	0.2	0.2		H g	9.0
Co	22	21	8.5	18		23	17
Cr	7.0	5.5	2.5	0.9	AL AREA	ت	3.5
po	<1.0	<1.0	<1.0	<1.0	BOAT RENTAL AREA	р	<1.0
As	1.3	2.2	1.4	2.8	QS-K BC	As	1.3
Fe	21000	36000	18500	36500	ă	F.	23500
Al	13050	22450	10940	21150		AL	11300
TP	1370	2250 224	1070	2340		4	1730 11
TKN		3430				TKN	2960
TVS(%)	3.32	5.33	8.08	5.80		1VS(%)	31.0 5960
SAMPLE LOCATION	-	2	٣	7		SAMPLE LOCATION	-
SAMPLE						SAMPLE	

REFERENCES

APHA, AWWA, WPCF. 1985. Standard Methods for the Examination of Water and Wastewater 16th Edition. Washington, D.C.

Commonwealth of Massachusetts, Department of Environmental Protection. 1989. <u>Summary of Water Quality</u>, <u>Appendix IV - Nonpoint Source Assessment Report</u>. Westborough, Massachusetts.

_______, Division of Water Pollution Control. 1989. Standard Operating Procedures: Biomonitoring Program. Westborough, Massachusetts.

______, Metropolitan District Commission, Spencer, B. A. and P. J. Lyons. 1986.

A Ten Year Forest and Wildlife Management Plan for the Quabbin Watershed.

Belchertown, Massachusetts.

______, Metropolitan District Commission Division of Watershed Management. 1988. Quabbin and Ware River Watersheds Recreation and Public Access Policy and Plan. Boston, Massachusetts.

_______, Metropolitan District Commission Division of Watershed Management. 1988. Water Quality Report. Quabbin Reservoir and Wachusett Reservoir Watershed Monitoring Results. Boston, Massachusetts.

Metcalf and Eddy. 1987. Final Report to the Metropolitan District Commission on the Mercury Monitoring Action Plan for the Quabbin Reservoir. Wakefield, Massachusetts.

Tighe and Bond. 1985. <u>Water Quality Monitoring at Quabbin, Wachusett and Northfield Reservoirs and the Ware River Intake</u>. <u>Final Report Volume 1. June 1984 - July 1985</u>. Easthampton, Massachusetts.

Tighe and Bond. 1988. <u>Water Quality Monitoring at Quabbin, Wachusett and Northfield Reservoir and the Ware and Swift Rivers. Final Report Volume 2. May 1987 - April 1988</u>. Easthampton, Massachusetts.

United States Environmental Protection Agency. 1983. <u>Methods for Chemical Analysis of Water and Wastes</u>. National Environmental Research Center. Cincinnati, Ohio.

APPENDIX A

ANALYTICAL METHODS USED AT LAWRENCE EXPERIMENT STATION

Parameter	<u>Methods</u>	Units
Ag, As, Cd, Cr, Cu, Fe, Pb, Ni, Zn	EPA Manual Methods using Atomic Absorption graphite furnace analysis	mg/l
Hardness (Ca + Mg)	EPA Manual Methods using Atomic Absorption Spectroscopy, Flame A.A.	
Al	EPA Method 200.7: ICP Atomic Emissions Spectrometry	mg/l
Total Phosphorus	Sulfuric acid and ammonium peroxy- disulfate digestion. Ascorbic acid reduction. Manual spectrophotometric method using a 10 cm path length cell.	mg/l
Total Kjeldahl Nitrogen	Acid digestion using Technicon BD-40 Block Digester. Colori- metric analysis (reaction of ammonia, sodium salicylate, sodium nitroprusside, and sodium hypo- chlorite in buffered alkaline medium) using (Technicon) Traacs II auto analyzer.	mg/l
Ammonia Nitrogen	Phenate method, automated. Colorimetric analysis using (Technicon) Traacs II auto analyzer.	mg/l
Nitrate Nitrogen	Hydrazine reduction method, automated. Colorimetric analysis using (Technicon) Traacs II auto analyzer.	mg/l

APPENDIX B

ANALYTICAL METHODS USED AT MDC LABORATORIES

Parameter	Standard Method	Units
Alkalinity	SM403	mg/l
Bacteria Total Coliform	SM909A	Coliforms/100ml
Total Heterotrophic	SM907C	<pre>CFU/ml = (Colony Forming Units/ml)</pre>
Chloride	SM407B	mg/l
Chlorophyll	DWPC-SOP	mg/m3
Color	SM204A	Color Units
Phytoplankton	DWPC-SOP	ASU/ml
Solids Total Fixed	SM209A SM209D	mg/l mg/l
Turbidity	SM 214A	NTU = (Nephelometric Turbidity Units)

SM=Standard Methods for the Examination of Water and Wastewater, 16th Edition, 1985.

DWPC SOP=Standard Operating Procedures, Biology Section. Division of Water Pollution Control. 1989.

APPENDIX C

BOTTLE PREPARATION

Water Column Metals

One liter glass bottles with teflon lined plastic caps were rinsed with a 1:1 solution of nitric acid, followed by three rinses with distilled/deionized water. The bottles were next washed with a 1:1 solution of hydrochloric acid followed by three rinses with distilled/deionized water. Bottles were then rinsed three times in the field with sample water.

Water Column Nutrients

One liter glass bottles with teflon lined plastic caps were rinsed with a 1:1 solution of hydrochloric acid followed by three rinses with distilled/deionized water. Bottles were then rinsed three times in the field with sample water.

Sediment Metals and Nutrients

One-half liter plastic tubs were rinsed with a 30% solution of hydrochloric acid followed by three rinses with distilled/deionized water.

APPENDIX D

PHYTOPLANKTON AND CHLOROPHYLL SAMPLING INFORMATION

STATION	DATE	SAMP	SAMPLING DEPTHS	HS	STATION	PHYTO	ADDITIONAL SAMPLE	CHL a
OR01	/19/8	0.5	13.7	27.4	36.0	U		D D
QR01	18/	•	•	•	36.0	Ö		Ö
QR01	/14/8	0.5	6.0	2.	36.2	Q		ບ
QR01	/19/8	0.5	12.0	25.0	7.	ပ		ပ
QR01	/16/8	0.5	14.7	9.	•	ပ	D 8.0 m	ပ
QR01	/21/8	0.5	16.0	32.1	•	ပ		೮
QR01	0/25/	0.5	13.0	7.	0	ပ		ပ
QR01	1/15/8	0.5	12.5	25.5	39.0	υ		Ö
QR02	19/8	0.5	14.0	28.4	-	ပ		Ö
QR02	18/8	0.5	13.5	27.0	31.0	Ö		Ö
QR02	19/8	0.5	14.2	•	•	ບ		Ö
QR02	16/8	0.5	•	29.1	Ξ.	ပ		ပ
QR02	9/21/89	0.5	13.5	7.	35.0	ပ	D 12.5 m	ပ
QR02	/22/	0.5	15.0	30.0	2.	ပ		O
QR03	19/8	0.5	8.2	9		ບ		U
QRO3	18/8	0.5	10.0	•		ບ		Ö
QRO3	19/8	0.5	10.0	0	1	ບ		U
QR03	8/16/89	0.5	10.5	20.5	21.5	ບ		ပ
QR03	21/8	0.5	13.5	0	0	ပ		U
QR03	/25/	0.5	13.0	21.0	ij	ບ		ပ
	0,0			((•
QR04	8/61/	0.0	ر	ر د		ပ		ပ
QR04	/18/8	0.5	12.0	4.	5.	ບ		ບ
QR04	7/19/89	0.5	•	29.5	30.0	ບ		ပ
QR04	/16/8	0.5		6	•	ບ		Ö
QR04	1/8	0.5	13.5	7.	•	ပ		ت ت
QR04	10/25/89	0.5	12.5	25.0	34.9	ပ		ပ

		İ		erino	DEPTH	PHYTO	SAMPLE	CHL a
Q R0 5	4/19/89	0.5	9.5	19.2	35.0	υ		U
QR06	/19/8	0.5	16.0	31.0	0	ر		(
QR06	8/8	0.5	2.	•		י כ		י נ
QR06	/14/8	•	4.0	•	ਚ	ء د		י כ
QR06	/19/8	0.5	12.0		י ה ה	ء د		ပ (
QR06	/16/8	0.5	4	- α)	י כ	,	ပ (
QR06	/21/8	0.5	•		· יע	ء د	E 73.0 E	ပ (
QR06	12	0.5	3.0	9		ء د		ပ (
QR06	1/15/8	0.5	•	•	•	۵ ۵		ی ر
)		,
QR07	ω	0.5	11.0	19.8	-	ر		(
QR07	/14/8	0.5	•	8		ء د		
QR07	/19/8	0.5	10.0	•		3 C		ပ (
QR07	16/8	0.5	~		•	، ر		ပ
QR07	/21/		• ,	•	21.0	ပ (ပ
7000	0,70		•	·	-	ပ		ပ
, D. W.	/57/0	0.5	12.0	21.5	•	Ö		Ö
QRO8	4/19/89	0.5	7.0	13.0	16.0	೮		U
QR09	18/8	0.5	7.3	13.7	0 41	C		(
QR09	19/8	•	•		•) t		ပ (
QR09	16/8		•	, ~	•	ر ر		ပ
QR09	9/21/89	•	10.0) L	ט ז	ی ر		ပ -
R09	/25/	0.5	7.5	. n		טט		υυ
QR10	4/19/89	0.5	5.0	10	7,	(,
QR10	/18/8	•		α	T (ی ر		ပ (
QR10	14/8	•		•		ם כ		ပ
QR10	/19	0.5	7.0	14.0		י ב		(
QR10	/16/8		•	4	· ·	ی ر		ပ (
QR10		•	•	, m	· •	ى ر		ပ (
QR10	0/25/			1 1 0		، ر		೮
		•	٠	•	×	ر		(

NOTE: C=Composite Sample. D=Discrete Sample. Depths expressed in meters.

APPENDIX E

QUABBIN RESERVOIR ELEVATION AND RAINFALL DATA

NOTE: Volume is expressed in millions of gallons.

Capactly of reservoir is considered to be at 530 feet above Boston City Base.

*Average rainfall is the monthly average rainfall from the seven weather Pelham, Shaft 12, and at the MDC Administration Building in Belchertown. are located in North and South New Salem, Petersham, North Petersham, monitoring stations surrounding Quabbin Reservoir. These stations

