Construction of New Codes

Qi Zhang

Aarhus University School of Engieering

13/04/2014

1 Concatenated Codes

2 Interleaving

Concatenated codes

- Concatenated coding, devised by Forney in 1966, is a powerful technique for constructing long powerful codes from short component codes.
- Single level concatenation often uses a non-binary code as an outer code and a binary code as an inner code.

Figure: Communication system using a concatenated code.

Concatenated codes

- The primary reason for using a concatenated code is to achieve higher reliability with less implementation complexity than a single coding operation.
- Concatenated codes are effective against a mixture of random errors and bursts.
- Concatenated codes are widely used in both communication and digital data storage system to achieve higher reliability with reduced decoding complexity.
- Concatenation can also be multilevel, with multiple outer codes concatenated with multiple inner codes.

Concatenated codes Encoding

- A simple concatenated code is formed from two codes: an (n_1, k_1) binary code C_1 and an (n_2, k_2) non-binary code C_2 with symbols from $GF(2^{k_1})$.
- The each symbol of the code vector in C_2 can be represented by k_1 bits.
- k_1k_2 information bits are divided into k_2 components with k_1 bits each.
 - **1** These k_2 components are encoded based on coding rule of C_2 to an n_2 -component codeword.
 - **2** Each k_1 bits are encoded into an n_1 -component codeword in C_1 .

Concatenated codes Encoding

- Each block of a simple concatenated code has n_1n_2 bits in total.
- The encoded information is transmitted, one C_1 codeword at a time.
- lacksquare C_1 and C_2 are called inner code and outer coder.
- If the minimum distance of C_1 and C_2 is d_1 and d_2 , respectively, then the minimum distance of the concatenated code is at least d_1d_2 .

Concatenated Codes Decoding

- The concatenated code of C_1 and C_2 is decoded in two steps:
 - **1** Each C_1 is decoded when it arrives. The check parity bits are removed, leaving n_2 components with k_1 -bits each.
 - **2** The n_2 -components codeword is decoded based on decoding method of C_2 .

- The Concatenation of the (15,11) RS code with symbols from $GF(2^4)$ and the (7,4) binary Hamming code.
- Each code symbol of the RS code is represented by a byte of four binary bits. i.e., each 4-bit byte is encoded into (7,4) Hamming code.
- The resulted concatenated code is a (105, 44) binary code.
- As the minimum distance of Hamming code (7,4) is 3 and the minimum distance of RS code (15,11) is 5, the minimum distance of the concatenated code is 15.

Figure: A concatenated code of $C_{RS}(15,11)$ and Hamming code $C_b(7,4)$.

Figure: Errors happen in the concatenated code of $C_{RS}(15, 11)$ and Hamming code $C_b(7, 4)$.

Figure: Errors happen in the concatenated code of $C_{RS}(15, 11)$ and Hamming code $C_b(7, 4)$.

Figure: Using Error detection by Hamming code $C_b(7,4)$ and error correction by $C_{RS}(15,11)$.

Interleaving

Figure: An illustration of interleaving.

Why interleaving is needed?

- Interleaving can reduce the effect of the burst errors.
- The essence of interleaving is that it randomizes and distributes a burst over many received vectors, thus it reduces the size of the error event per received vector.

Why interleaving is needed?

Figure: Interleaving randomizes a burst error.

Figure: An interleaved concatenated coding system.

- Interleave is often used in concatenated code.
- Let the outer code C_2 be an (n_2, k_2) block code with symbols from $GF(2^m)$. The inner code C_1 be an (n_1, k_1) binary linear code with $k_1 = \lambda m$.
- A message of k_2 *m*-bit components (i.e., k_2m bits) is first encoded into an n_2 -component codeword in C_2 .
- This codeword is temporarily stored in a buffer as a row in a matrix.
- After λ outer codewords have been formed, the buffer stores a matrix of size $\lambda \times n_2$.
- Each column of the matrix has λm bits. These λm bits can be encoded into an n_1 -bit codeword in C_1 .
- A completed interleaved code matrix has n_1n_2 bits.
- Each encoded column is transmitted serially.
- The outer code is interleaved by a depth of λ .

Figure: An interleaved concatenated code matrix.

Continuing...

- When each inner codeword is received and decoded, the errors are corrected or detected. The parity check bits are removed.
- The decoded λ bytes are stored in a receiver buffer as a column in a $\lambda \times n_2$ matrix.
- After decoding n_2 inner codes is finished, the receiver buffer contains a $\lambda \times n_2$ matrix.
- Then each row of the $\lambda \times n_2$ matrix can be decoded based on the outer code C_2 .
- After λ outer codes have been decoded, the size of the matrix becomes $\lambda m \times k_2 = k_1 \times k_2$

