15 = 80%

EGZAMINACYJNA

reviem: 30% lub rozpodecia gezaminu

UZU	JPEŁNIA ZDAJĄCY	
KOD	PESEL	miejsce na naklejkę

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

CZĘŚĆ I

DATA: 17 maja 2016 r.

GODZINA ROZPOCZĘCIA: 14:00

CZAS PRACY: 60 minut

LICZBA PUNKTÓW DO UZYSKANIA: 15

UZUPEŁNIA ZDAJACY

wykonane: 2 klasa

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w notacji wybranej przez siebie: listy kroków, pseudokodu lub języka programowania, który wybierasz na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Zadanie 1. Liczby skojarzone 25 - 30 minut

Dwie różne liczby całkowite a i b większe od 1 nazwiemy skojarzonymi, jeśli suma wszystkich różnych dodatnich dzielników a mniejszych od a jest równa b+1, a suma wszystkich różnych dodatnich dzielników b mniejszych od b jest równa a+1.

Skojarzone są np. liczby 140 i 195, ponieważ:

- a) dzielnikami 140 są 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, a ich suma wynosi 196 = 195+1.
- b) dzielnikami 195 są 1, 3, 5, 13, 15, 39, 65, a suma tych liczb równa jest 141 = 140+1.

Zadanie 1.1. (0-1) ~ 5 minut

Zbadaj, które z następujących par liczb(a, b) są liczbami skojarzonymi, i wypełnij poniższą tabelę:

а	ь	dzielniki <i>a</i> (mniejsze od <i>a</i>)	dzielniki <i>b</i> (mniejsze od <i>b</i>)	suma dzielników a	suma dzielników b	skojarzone TAK/NIE
78	64	1, 2, 3, 6, 13, 26, 39	1, 2, 4, 8, 16, 32	90	63	NIE
20	21	1,2,4,5,10	1,3,7	22	11	NIE
75	48	1,3,5,15,25	1,2,9,8,16,29	49	53	ME

Miejsce na obliczenia.

$$16 \cdot 3 = 30 + 18$$

~ 20-25 min budowie programu zvozumicetem vozlora, zanie

Zadanie 1.2. (0-4) Sporo czasu

Dana jest liczba całkowita a większa od 1. Ułóż i zapisz w wybranej przez siebie notacji algorytm, który znajdzie i wypisze liczbę b skojarzoną z a lub komunikat "NIE", jeśli taka liczba nie istnieje.

W zapisie algorytmu możesz korzystać tylko z następujących operacji arytmetycznych: dodawania, odejmowania, mnożenia, dzielenia całkowitego i obliczania reszty z dzielenia.

Uwaga:

Przy ocenie algorytmu będzie brana pod uwagę liczba operacji arytmetycznych wykonywanych przez Twój algorytm.

Specyfikacja:

Dane:

Liczba całkowita a > 1.

Wynik:

Liczba całkowita b skojarzona z a lub komunikat "NIE", jeśli taka liczba nie istnieje.

Algorytm: diriders Suri (nuri) Sum = 1 In nun Sum return Sum div Sum A = dividers Sum (a) dividers Sum (divSum A -Nr zadania 1.1. 1.2. Wypelnia Maks. liczba pkt. 4 egzaminator Uzyskana liczba pkt.

Zadanie 2. Przestawienia w tablicy

baroko dobre, ale warto t -> optymalizować do

Parametrem podanej poniżej funkcji przestaw jest tablica A o długości n, indeksowana od 1. w której znajdują się liczby całkowite. Niech klucz będzie wartością pierwszego elementu tablicy A. Funkcja przestawia (zamienia wzajemnie) elementy tablicy A tak, aby po jej wykonaniu w lewej części tablicy były wszystkie elementy tablicy mniejsze od klucza, natomiast w prawej części – wszystkie większe lub równe kluczowi.

Specyfikacja:

Dane:

n-liczba całkowita dodatnia -> d tugość tablicy A
[1..n] - tablica liczb całkowitach A[1..n] – tablica liczb całkowitych

Wynik:

A[1..n] – tablica liczb całkowitych ułożona według podanej reguły

funkcja przestaw(A) $klucz \leftarrow A[1]$ $W \leftarrow 1$ dla $k = 2, 3, \ldots, n$ wykonaj jeśli A[k] < klucz zamień(A[w],A[k])

 $W \leftarrow W+1$

for (k=2; k = n; k+t) 2 if (A[k] < A[1]) {
Swap (A[w], A[k]);

Funkcja zamień(x,y) zamienia wzajemnie wartości zmiennych x i y – w powyższym (alkowille przypadku zamienia wzajemnie dwa elementy tablicy A

minut

Dana jest liczba n=6 oraz tablica A=[4,6,3,5,2,1]. Podaj kolejność elementów w tablicy Apo wykonaniu funkcji przestaw(A).

Miejsce na		(î —	1.	l
W	k	ACKI	zmiené	n:	
1	2	6	nie		
1	3	3	tok	[3,6,4,5,2,1]	
2	4_	5	nie		
2	5	2	tak	[3,2,4,5,6,1]	-
3	6	1	tak	[3,2,1,5,6,4)	_
Odp. $A = \dots$	3,21	1,5,6	14]	L (-) 1 (3 8 9)	

MIN 1R

cathou	ricie	111	2	1				
000	Zadanie 2	2.2. (0-1)		nuty				
V	Fodaj prz	ykład sied kona <i>zamie</i>	mioelementov	vej lablicy	A, dla	której fun	kcja <i>przesta</i> w	v(A) dokładnie
¥		a obliczeni		120,	4.	2,3,	4,5	
	w	k	A[k]	Zamia	na?			clua=10
	1	2	20	rue				· ·
	1	3	1	tah				
\$	1	4	2	tak				
	2	1-		1 /				
	3	15	3	tale		B B B	4,	5
Cathowai	Odp. $A =$	10.20	1 2.	2.6	57		- / (-l
Calkowal	6 ,	212			رر		ton T	OK
Mooke	Zadanie	23. (0-3)	10 m	inut				
	Tablica A	[1100] za	wiera wszystk	tie liczby ca	łkowite	z przedzia	łu <1, 100>	w następującej
V ,	3		00, 9, 19, 29,	1				+-
•	(najpierw	rosnaco w	szystkie liczb	y kończące	się na	0, potem r	osnaco liczby	kończące się
	na 9, pote	m na 8 itd.))			1	,	100
	Podai wa	rtość zmien	nei w oraz wa	ortości trzech	nierws	szych elem	entów teblicy	A(A[1], A[2],
			funkcji <i>przest</i>		i pierws	szyen elem	entow tablicy	A (A[1], A[2],
	Miejsce n	a obliczen	ia. 😥 u	oykonon	iii:	-		
	hFA	7 - a		0		a Wioin		10
t	TL"	1-7	t	ierws2	OL V	rung 5	za al	
	ro71	0	2 1		po	· W	= 2	
П	LZJ =	Q	di	uga -	mne	ig'52a	ed 10	po 9)
Δ	[3] =	: I		ecie	P	6. W=	3/10	· po J
7)		1	112	euce	m	miljsza	a od {C	(po 9 18)
	<i>Odp.</i> w =	10	*	na	koni	ec w	= 10,60	9 lind do
	4617	9	2] =19	4527	20	ĺ		prestavoienia
	$A[1] = \dots$, A[zj =($\dots A[\mathfrak{I}] = \dots$				1+9=10
		Γ		r zadania		21 22	23	1 1 -

Wypelnia egzaminator	Nr zadania	2.1.	2.2.	2.3.
	Maks. liczba pkt.	2	1	3
	Uzyskana liczba pkt.	2	1	3

Strona 7 z 8 -> tei CD-ROM

DVD-ROM