

Data Matrix and Dissimilarity Matrix

- Data matrix
 - ☐ A data matrix of n data points with / dimensions

 \square n data points, but registers only the distance d(i, j) (typically metric)

- Usually symmetric, thus a triangular matrix
- □ Distance functions are usually different for real, boolean, categorical, ordinal, ratio, and vector variables
- Weights can be associated with different variables based on applications and data semantics

$$= \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1l} \\ x_{21} & x_{22} & \dots & x_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nl} \end{pmatrix}$$

$$\begin{pmatrix} 0 & & & & \\ d(2,1) & 0 & & & \\ \vdots & \vdots & \ddots & & \\ & \vdots & \ddots & \ddots & & \\ \end{pmatrix}$$

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
<i>x1</i>	1	2
<i>x2</i>	3	5
<i>x</i> 3	2	0
<i>x4</i>	4	5

Dissimilarity Matrix (by Euclidean Distance)

	<i>x1</i>	<i>x</i> 2	<i>x3</i>	<i>x4</i>
x1	0			
<i>x2</i>	3.61	0		
<i>x3</i>	2.24	5.1	0	
<i>x4</i>	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p}$$

where $i = (x_{i1}, x_{i2}, ..., x_{il})$ and $j = (x_{j1}, x_{j2}, ..., x_{jl})$ are two l-dimensional data objects, and p is the order (the distance so defined is also called L-p norm)

- Properties
 - \Box d(i, j) > 0 if i \neq j, and d(i, i) = 0 (Positivity)
 - \Box d(i, j) = d(j, i) (Symmetry)
 - $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a metric
- □ Note: There are nonmetric dissimilarities, e.g., set differences

Special Cases of Minkowski Distance

- \square p = 1: (L₁ norm) Manhattan (or city block) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors $d(i,j) = |x_{i1} x_{i1}| + |x_{i2} x_{i2}| + \dots + |x_{il} x_{il}|$
- \square p = 2: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{il} - x_{jl}|^2}$$

- $\square p \rightarrow \infty$: (L_{max} norm, L_{\infty} norm) "supremum" distance
 - □ The maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{p \to \infty} \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p}} = \max_{f=1}^l |x_{if} - x_{jf}|$$

Example: Minkowski Distance at Special Cases

point	attribute 1	attribute 2
x 1	1	2
x2	3	5
x 3	2	0
x4	4	5

Manhattan (L₁)

L	x1	x2	x 3	x4
x1	0			
x2	5	0		
x3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x2	х3	x4
x1	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum (L_{∞})

${ m L}_{\infty}$	x1	x2	x 3	x4
x1	0			
x2	3	0		
x 3	2	5	0	
x4	3	1	5	0