

AULA I-ARMAZENAMENTO E ARQUIVOS

PROFA. DRA. LEILA BERGAMASCO

CC6240 – Tópicos Avançados em Banco de Dados

AULA I:ARMAZENAMENTO E ESTRUTURAS DE ARQUIVOS

ARMAZENAMENTO FÍSICO

- Classificados de acordo com custo, velocidade e confiabilidade
 - Cache
 - Memória principal
 - Memória flash
 - Disco magnético
 - Disco óptico
 - Fitas magnéticas

ARMAZENAMENTO FÍSICO

youtube.com/watch?v=lpYfep68xnA

DISCOS MAGNÉTICOS

- Placa
 - · Forma circular plana, dados são gravados na sua superfície
 - 2-3 placa, com duas faces.
 - Dividida em trilhas
- Trilha
 - 50-100 mil trilhas por placa que por sua vez são divididas em setores
- Setores
 - 500-1000 setores por trilha mais interna
 - 2000 setores por trilha (mais externa)
 - Menor unidade de dados → Cada setor possui 512 bytes
- Cilindro
 - Conjunto das mesmas trilhas pertencente a diferentes placas
 - A cabeça de leitura não funciona de forma independente.
- Cabeça leitura-escrita
 - "Flutua" muito próxima à placa
 - Função de leitura e escrita no disco
- Montagem do braço
 - Muitas placas para cada disco (1-5)
 - Uma cabeça leitura-escrita para cada placa e um braço para cada disco

DISCOS MAGNÉTICOS

- Controladora de disco
 - Comunicação entre computador e hardware do disco
 - · Aceita commandos ler/escrever e traduz em comandos para a cabeça dos discos
 - Checksum
 - Remapeamento
- Interfaces
 - ATA Advanced Technology Attachment
 - SATA Serial Ata
 - SCSI Small Computer System Connect
 - SAS Serial SCSI
- Arquiteturas
 - SAN Storage Area Network
 - Discos conectados por uma rede de alta velocidade
 - Utilizam armazenamento RAID
 - Visão lógica de apenas um disco
 - NAS Network Attached Storage
 - Interface de sistemas de arquivos:

MEDIDAS DE DESEMPENHO DOS DISCOS

- Capacidade
- Tempo de acesso (TA)
 - Tempo de busca médio (TB)
 - Tempo de latência rotacional médio (TL)
 - Tempo de transferência (TR)
 - TA =TB+TL + TR
- Taxa de transferência
- Confiabilidade
 - MTTF = Tempo Médio para falha (Mean time to failure)
 - Alguns fabricantes dizem que o MTTF é 1.200.000 horas = 136 anos!
 - Porém se não usássemos o disco. Horas de utilização diminuem o MTTF.
 - Atualmente um disco tem vida útil de 5 anos.

- RAID: Redundant Arrays Independent Disks.
 - Melhora a confiabilidade por redundância: espelhamento
 - Melhora o desempenho por paralelismo: espalhamento
- Espelhamento:
 - Um disco lógico consiste de dois ou mais discos físicos e cada escrita é feita nos dois discos. Se um dos discos falha, é possível ler os dados a partir do outro.
 - Mesmo assim se durante uma queda de energia o dado estiver sendo escrito nos discos, o dado é corrompido. Como proceder nesse caso?
- Espalhamento:
 - Espalhar dados por vários discos
 - Espalhamento no nível de bit
 - Espalhamento no nível de bloco (mais usado)

- Espelhamento: + confiabilidade + custo
- Espalhamento: confiabilidade + taxa de transferência

Não existe uma solução ideal!

- Combinação das duas soluções geram diferentes esquemas
 - Níveis de RAID

- RAID nível 0: apenas espalhamento a ní
 - Alta resposta, baixa confiabilidade. Exemplo

DISCO 02

DISCO 01

- RAID nível I: espelhamento a nível de bloco
 - Melhor custo de escrita, mais tolerante a falhas. Muito usado para armazenamento de logs

 RAID 1+0

- RAID nível I+0: espelhamento com espalhamento
 - Mais tolerante a falhas

- RAID nível 2: ECC (Error-Correcting-Code) código de correção de erro no estilo da memória
 - Checagem de erros. HDs atuais já trazem nativamente o checksum.

 RAID nível 3: um de dados e escrit

(c) RAID 2: memory-style error-correcting codes

tado para cada palavra

(d) RAID 3: bit-interleaved parity

- RAID nível 4:
 - Similar ao RAID 3 porém utiliza-se a distribuição e paridade por bloco. Paralelismo maior, bom para arquivos grandes.
- RAID nível 5:
 - Espalhamento no nível de bloco porém cada disco já possui sua respectiva porção de paridade. Logo o paralelismo aumenta ainda mais.

(e) RAID 4: block-interleaved parity

(f) RAID 5: block-interleaved distributed parity

- RAID nível 5:
 - Espalhamento no nível de bloco porém cada disco já possui sua respectiva porção de paridade. Logo o paralelismo aumenta ainda mais.

Discos lógicos com 3 discos Distribuição $Pi = B_{2i-1} \rightarrow B_{2i}$

DL I	DL2	DL3
$Ap_{(1,2)}$	AI	A2
A3	$Ap_{(3,4)}$	A4
A5	A6	Ap _(5,6)

Ap2

A4

- RAID nível 6:
 - Dobra a quantidade de discos de paridade. "Aguenta" falha em dois discos simultaneamente.

DL I	DL2	DL3	DL4
I	2	$P_{(1-2)}$	$P_{(1-2)}$
3	P3 ₍₃₋₄₎	P4 ₍₃₋₄₎	4
P5 ₍₅₋₆₎	P6 ₍₅₋₆₎	5	6
P8 ₍₇₋₈₎	7	8	P7 ₍₇₋₈₎

CONFIGURAÇÃO DE UM RAID NO STORAGE DELL

- https://www.youtube.com/watch?v=IINZKtkW54U
- https://www.delltechnologies.com/en-us/servers/specialtyservers/poweredge-xe-servers.htm#video-overlay=6179217788001

RAID – QUAL ESCOLHER?

- Fatores para escolha
 - Custo
 - Performance
 - Performance durante a falha
 - Performance durante a recuperação
- RAID 0 segurança do dado não é importante. Recuperação rápida
- RAID 2 e 4 Não são usados já que o RAID 3 e RAID 5 superaram suas características
- RAID 3 é baseada em busca a nivel de bit. Muito dispendisioso e não é utilizada hoje em dia. Nível 5, baseado em blocos é mais usado.
- Level 6 é pouco usado já que usar uma solução 5 ou 1 oferecem o mesmo nível se segurança.

RAID – QUAL ESCOLHER?

- RAID I tem performance melhor que RAID 5
- RAID I tem custo maior de armazenamento.
- Porém: Enquanto capacidade de disco aumenta 50%/ano, acesso ao disco diminui 3x a cada 10 anos!
- Logo o custo maior diminui ano a ano.
- RAID 5 é preferível para aplicações com baixa taxa de acesso porém grande quantidade de dados
- RAID I para o restante.

BIBLIOGRAFIA

 ABRAHAM SILBERSCHATZ, HENRY F. KORTH, S. SUDARSHAN. Sistema de Banco de Dados. 6. Campus. 0. ISBN 9788535245356.

ELMASRI, RAMEZ, SHAMKANT B. NAVATHE. Sistemas de banco de dados.
 Vol. 6. São Paulo: Pearson Addison Wesley, 2011.

DATE, CHRISTHOPER J. Introdução a Sistemas de Bancos de Dados, 5^a.
 Edição. Campus, Rio de Janeiro (2004).

ARQUIVOS

TAMANHOS DE REGISTROS

ORGANIZAÇÃO DE ARQUIVOS

Um banco de dados pode ser considerado uma coleção de tabelas

Cada tabela pode ser considerada um arquivo

Cada arquivo é sequência de registros (linhas da tabela)

Registro é uma sequência de campos

- Como organizar um banco de dados dentro de um disco?
- Lembrando que blocos tem tamanhos fixos
- Estratégia mais fácil de implementar
 - Registros com tamanho fixo
 - Registros do mesmo tipo

Um bloco pode armazenar uma sequência de registros

REGISTROS DE TAMANHO FIXO

```
create table disciplina (
   matricula number (5),
   nome char (22),
   nome_disciplina (22),
   num_disciplina number (5) )
```

- Desafios:
 - Exclusão
 - Limite de bloco

Se char = 1 byte e number (5) = 8 bytes. Cada registro da tabela terá 60 bytes

8	+ 22	+ 22	+ 8

record 0	10101	Srinivasan	Comp. Sci.	65000
record 1	12121	Wu	Finance	90000
record 2	15151	Mozart	Music	40000
record 3	22222	Einstein	Physics	95000
record 4	32343	El Said	History	60000
record 5	33456	Gold	Physics	87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000
record 11	98345	Kim	Elec. Eng.	80000

REGISTROS DETAMANHO FIXO

record 0	10101	Srinivasan	Comp. Sci.	65000
record 1	12121	Wu	Finance	90000
record 2	15151	Mozart	Music	40000
record 3	22222	Einstein	Physics	95000
record 4	32343	El Said	History	60000
record 5	33456	Gold	Physics	87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000
record 11	98345	Kim	Elec. Eng.	80000

REGISTROS DE TAMANHO FIXO

Exclusão registro 3 e "subir" registros subsequentes

record 0	10101	Srinivasan	Comp. Sci.	65000
record 1	12121	Wu	Finance	90000
record 2	15151	Mozart	Music	40000
record 4	32343	El Said	History	60000
record 5	33456	Gold	Physics	87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000
record 11	98345	Kim	Elec. Eng.	80000

Exclusão registro 3 e mover último registro

	•			•
record 0	10101	Srinivasan	Comp. Sci.	65000
record 1	12121	Wu	Finance	90000
record 2	15151	Mozart	Music	40000
record 11	98345	Kim	Elec. Eng.	80000
record 4	32343	El Said	History	60000
record 5	33456	Gold	Physics	87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000

3º opção: Excluir e esperar nova inserção, porém "varrer" todos os registros atrás de espaço livre é custoso

Soluções pouco eficientes e custosas! → em todas elas há acessos a blocos = ++tempo

REGISTROS DE TAMANHO FIXO

- Possível solução:
 - Cabeçalho com ponteiro apontando próximo registro livre.
 - Dentro do registro excluído, reutilizar o espaço com ponteiro para o próximo registro excluído ou se não tiver, armazenar um marcador de fim e inserir como último registro

			`	
10101	Srinivasan	Comp. Sci.	65000	
			,	
15151	Mozart	Music	40000	
22222	Einstein	Physics	95000	
			4	
33456	Gold	Physics	87000	
			<u>*</u>	
58583	Califieri	History	62000	
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	
	15151 22222 33456 58583 76543 76766 83821	15151 Mozart 22222 Einstein 33456 Gold 58583 Califieri 76543 Singh 76766 Crick 83821 Brandt	15151 Mozart Music 22222 Einstein Physics 33456 Gold Physics 58583 Califieri History 76543 Singh Finance 76766 Crick Biology 83821 Brandt Comp. Sci.	15151 Mozart Music 40000 22222 Einstein Physics 95000 33456 Gold Physics 87000 58583 Califieri History 62000 76543 Singh Finance 80000 76766 Crick Biology 72000 83821 Brandt Comp. Sci. 92000

Listas interligadas/livres

REGISTROS DE TAMANHO VARIÁVEL

- Armazenamento de vários tipos de registro em um arquivo
 - Tamanhos variáveis de campos
 - \blacksquare Campos repetidos (arrays, por exemplo \rightarrow atributos multivalorados)
- Solução:
 - Estruturas de páginas em slot
 - cabeçalho no início de cada bloco com: número de entradas de registro; final do espaço livre, array com local e tamanho de cada registro

REGISTROS DE TAMANHO VARIÁVEL

- Os registros começam a ser alocados no fim do bloco
 - Não necessita de ponteiros em cada registro
 - Apenas aponta para o inicio dos registros
 - Registros próximos se movem, objetivando menos fragmentação
- BD relacionais

ORGANIZAÇÃO DE REGISTROS

ORGANIZAÇÃO DE REGISTROS EM ARQUIVOS

- Como os registros são organizados dentro dos arquivos?
 - Sequencial
 - Heap
 - Hashing
- Sequencial
 - Projetada para processamento eficiente de registros em ordem, dada alguma chave de busca (qualquer atributo ou conjunto de atributos)
 - Registros encadeados por ponteiros.
 - Registros fisicamente armazenados em ordem de chave de busca
- Problemas:
 - Manter ordem física após muitas inserções e exclusões.
 - Geralmente inserções feitas em bloco de estouro.

ORGANIZAÇÃO DE REGISTROS EM ARQUIVOS - SEQUENCIAL

- Se houver espaço livre, insira no espaço.
- Se não houver espaço livre, adicione no bloco de estouro
- Em qualquer caso, atualize os ponteiros

10101	Srinivasan	Comp. Sci.	65000	
12121	Wu	Finance	90000	
15151	Mozart	Music	40000	
22222	Einstein	Physics	95000	
32343	El Said	History	60000	
33456	Gold	Physics	87000	
45565	Katz	Comp. Sci.	75000	
58583	Califieri	History	62000	
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	
32222	Verdi	Music	48000	

E O QUE ISSO IMPACTA NAS CONSULTAS SQL?

- Normalmente os BD armazenam cada relação (tabela) em um arquivo.
- Cada tupla (registro) possui tamanho fixo

- Funciona bem para BDs pequenos, médios
- BDs em grande escala: um arquivo único, grande é dedicado ao SGBD
- O SGBD armazena todas as relações neste arquivo e gerencia o próprio arquivo.

E O QUE ISSO IMPACTA NAS CONSULTAS SQL?

department

dept_name	building	budget
Comp. Sci. Physics	Taylor Watson	100000 70000

SELECT dept_name, building, budget, id, name, salary FROM department, instrutor WHERE department.dept_name = instrutor.dept_name

Comp. Sci.	Taylor	100000		
10101	Srinivasan	Comp. Sci.	65000	1
45565	Katz	Comp. Sci.	75000	
83821	Brandt	Comp. Sci.	92000	
Physics	Watson	70000	4	
33456	Gold	Physics	87000	

instructor

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
83821	Brandt	Comp. Sci.	92000

Trazer dados do disco para RAM:

- I. Traz o bloco de cada relação → registro próximos
- 2. Aplica-se where em um bloco só → uma leitura
- 3. Ponteiros entre os registros

PARTICIONAMENTO

- E quando uma relação é muito grande? Extrapolando um bloco?
- Particionamento de tabela: os registros em uma relação podem ser particionados em relações menores que são armazenadas separadamente
 - Por exemplo, a relação "transação" pode ser particionada em transaction_2018, transaction_2019, etc.
- As consultas devem acessar os registros em todas as partições, a menos que a consulta tenha uma seleção como ano = 2019, caso em que apenas uma partição é necessária
- Particionamento reduz os custos de algumas operações, como gerenciamento de espaço livre e permite que diferentes partições sejam armazenadas em diferentes dispositivos de armazenamento
- Por exemplo, partição de transação para o ano atual no disco, para anos mais antigos no disco magnético

ORGANIZAÇÃO DE REGISTROS EM ARQUIVOS

- Organização em Heap:
 - Qualquer registro pode ser colocado em qualquer lugar onde existe espaço.
 - Não existe ordenação de registro.
 - Normalmente um único arquivo para cada relação.
 - Busca linear para encontrar registro procurado: problemática
- Organização em Hashing:
 - Função de hash é calculada sobre algum atributo.
 - Resultado da função especifica o bloco do arquivo em que registro será colocado.
 - Veremos mais sobre isso na próxima aula.

BIBLIOGRAFIA

 ABRAHAM SILBERSCHATZ, HENRY F. KORTH, S. SUDARSHAN. Sistema de Banco de Dados. 6. Campus. 0. ISBN 9788535245356.

ELMASRI, RAMEZ, SHAMKANT B. NAVATHE. Sistemas de banco de dados.
 Vol. 6. São Paulo: Pearson Addison Wesley, 2011.

DATE, CHRISTHOPER J. Introdução a Sistemas de Bancos de Dados, 5^a.
 Edição. Campus, Rio de Janeiro (2004).

OBRIGADO E ATÉ A PRÓXIMA AULA!