PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-155861

(43)Date of publication of application: 08.06.2001

(51)Int.Cl.

H05B 33/14

H05B 33/10

H05B 33/12

(21)Application number: 11-332277

(71)Applicant: SHARP CORP

(22)Date of filing:

24.11.1999

(72)Inventor: FUJITA YOSHIMASA

(54) COATING LIQUID FOR ORGANIC EL AND ORGANIC EL ELEMENT AND METHOD OF MANUFACTURING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a coating liquid that can well form a film of an organic EL layer in pattern formation of organic EL element, and an organic EL element and method of manufacturing the same.

SOLUTION: Coating liquid for organic EL is used when at least one organic EL layer of organic EL element is formed by printing method, and the coating liquid for organic EL contains at least one kind of solvent of which vapor pressure is not more than 500 Pa.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-155861 (P2001-155861A)

(43)公開日 平成13年6月8日(2001.6.8)

(51) Int.Cl. ⁷		識別記号	FΙ		テーマコード(参考)
H05B	·		H05B	33/14	B 3K007
	33/10			33/10	
	33/12			33/12	В

審査請求 未請求 請求項の数9 OL (全 9 頁)

(21)出願番号	特願平11-332277	(71) 出願人 000005049			
(22)出顧日	平成11年11月24日(1999.11.24)	シャープ株式会社 大阪府大阪市阿倍野区長池町22番22号 (72)発明者 藤田 悦昌			
		(72)発明者 藤田 悦昌 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内			
		(74)代理人 100103296			
		弁理士 小池 隆彌 Fターム(参考) 3K007 AB03 AB04 AB17 AB18 BA06			
		BB00 CA01 CA02 CA05 CB01 DA00 DB03 EB00 FA01 FA03			

(54) 【発明の名称】 有機EL用塗液及び有機EL素子並びにその製造方法。

(57)【要約】

【課題】 有機EL素子のパターン形成における有機E L層の成膜を良好に行うための塗液並びに有機EL素子 及びその製造方法を提案する。

【解決手段】 有機EL素子中の少なくとも1層の有機 EL層を印刷法で形成する際に使用される有機EL用塗 液であって、蒸気圧が500Pa以下である溶媒を少な くとも1種類含んでいることを特徴とする有機EL用塗 液及びそれを用いて形成した有機EL素子並びにその製 造方法。 1

【特許請求の範囲】

【請求項1】 有機EL素子中の少なくとも1層の有機 EL層を印刷法で形成する際に使用される有機EL用塗 ·液であって、蒸気圧が500Pa以下である溶媒を少な くとも1種類含んでいることを特徴とする有機EL用塗 液。

【請求項2】 前記有機EL用塗液は、ジエチルベンゼ ン、トリメチルベンゼン、トリエチルベンゼン、ニトロ ベンゼンのいずれかを含むことを特徴とする請求項1に 記載の有機EL用塗液。

【請求項3】 請求項1又は2に記載の有機EL用塗液 を用いて少なくとも1層の有機EL層を形成したことを 特徴とする有機EL素子。

【請求項4】 有機EL素子中の少なくとも1層の有機 EL層を印刷法で形成する有機EL素子の製造方法であ って、前記有機EL層を形成時の温度での蒸気圧が50 OPa以下である溶媒を少なくとも1種類含んでいる有 機EL用塗液を用いて、印刷装置で前記有機EL層を形 成することを特徴とする有機EL素子の製造方法。

【請求項5】 前記印刷法で形成する有機EL用塗液の 接する部分の温度が、前記溶媒の蒸気圧を500Pa以 下とすることを特徴とする請求項4に記載の有機EL素 子の製造方法。

【請求項6】 前記印刷装置が恒温槽中に保たれること によって、前記溶媒の蒸気圧を500Pa以下に保つこ とを特徴とする請求項4又は5に記載の有機EL素子の 製造方法。

【請求項7】 前記印刷装置は、少なくともロール部及 び基板を固定するステージを有し、前記ロール部と前記 ステージに冷却機構を有し、前記冷却機構によって前記 30 有機EL用塗液の接する部分の温度を、前記溶媒の蒸気 圧を500Pa以下となる温度に保つことを特徴とする 請求項4に記載の有機EL素子の製造方法。

【請求項8】 前記印刷法を行う印刷装置で用いる転写 基板の表面が凹凸状にパターン化されている、あるいは 親塗液部分と疎塗液部分にパターン化されていることを 特徴とする請求項3乃至7のいずれかに記載の有機EL 素子の製造方法。

【請求項9】 前記印刷法が凸版印刷法であることを特 徴とする請求項4乃至7のいずれかに記載の有機EL素 40 子の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、フルカラー表示可 能な有機EL索子を製造するための有機EL用塗液及び 有機EL案子並びにその製造方法に関する。

[0002]

【従来の技術】近年、高度情報化に伴い、薄型、低消費 電力、軽量の表示素子への要望が高まる中、低電圧駆 動、高輝度な有機ELディスプレイが、注目を集めてい 50 ン、トリメチルベンゼン、トリエチルベンゼン、ニトロ

る。特に、近年の研究開発によって有機系材料を用いた 有機EL素子の発光効率の向上は著しく、有機ELディ スプレイへの実用化が始まっている。しかしながら、有 機ELディスプレイを製造するにあたって、特に、高分 子材料は塗布により成膜を行うことが可能である事から 低コスト化が見込まれており、カラー化に向けての発光 層のパターニング方法が重要な研究目的の1つとなって いる。

【0003】具体的なパターニング方法としては、電着 法による方法(特開平9-7768号公報)やインクジ エット法による方法 (特開平10-12377号公 報)、印刷法(特開平3-269995号公報、特開平 10-77467号公報、特開平11-273859号 公報)が現在開示されている。

[0004]

【発明が解決しようとする課題】しかしながら、電着法 による方法では、良好な膜質の膜が得られないと言った 問題、あるいは用いることができる材料が限定されると 言った問題がある。また、インクジェット法では、膜の 表面形状が良好な膜が得られないと言った問題がある。 また、印刷法では、膜質、及び、表面形状が良好な膜が 得られる。しかし、有機ΕL素子の場合のように1μm_ 以下の薄膜を形成しようとした場合、ウエット状態での 膜厚も通常の印刷に比べて遥かに薄くする必要が生じ る。しかし、実際上記印刷法でパターニングした特許で 例示されている、クロロホルム、塩化メチレン、ジクロ ロエタン、テトラヒドロフラン、トルエン、キシレンと いう溶剤を用いた場合、ウエット状態での膜厚が薄いと ロール上、または、転写基板上で塗液が乾燥してしま い、基板に所望の膜を形成することが不可能であると言 った問題が生じる。また、特開平10-77467号公 報、特開平11-273859号公報で示されているマ イクログラビアコータでは、薄膜を得るために、基板の 送り方向と基板に塗液を転写するローラーが逆回転させ ており、その結果、パターン化された膜を形成すること が不可能である。

[0005]

【課題を解決するための手段】本発明は、上記問題を鑑 み成されたのもであり、印刷工程中で生じる塗液の乾燥 が起こる原因が、用いる溶剤の蒸気圧に密接に関係して いることを見出し、溶媒として低蒸気圧のものを少なく とも1種類含有させることで上記課題が解消できること を見出し、本発明を完成するに至った。

【0006】本発明の有機EL用塗液は、有機EL素子 中の少なくとも1層の有機EL層を印刷法で形成する際 に使用される有機EL用塗液であって、蒸気圧が500 Pa以下である溶媒を少なくとも1種類含んでいること を特徴とする。

【0007】前記有機EL用塗液は、ジエチルベンゼ

ベンゼンのいずれかを含むことを特徴とする。

【0008】本発明の有機EL素子は、前述の有機EL 用塗液を用いて少なくとも1層の有機EL層を形成した ことを特徴とする。

【0009】また、本発明の有機EL素子の製造方法は、有機EL素子中の少なくとも1層の有機EL層を印刷法で形成する有機EL素子の製造方法であって、前記有機EL層を形成時の温度での蒸気圧が500Pa以下である溶媒を少なくとも1種類含んでいる有機EL用塗液を用いて、印刷装置で前記有機EL層を形成することを特徴とする。

【0010】さらに、前記印刷法で形成する有機EL用 塗液の接する部分の温度が、前記溶媒の蒸気圧を500 Pa以下とすることを特徴とする。前記溶媒の蒸気圧を500 Pa以下に保つために、前記印刷装置が恒温槽中に保たれることを特徴とする。あるいは、前記印刷装置は、少なくともロール部及び基板を固定するステージを有し、前記ロール部と前記ステージに冷却機構を有し、前記冷却機構によって前記有機EL用塗液の接する部分の温度を、前記溶媒の蒸気圧を500 Pa以下となる温 20 度に保つことを特徴とする。

【0011】また、本発明の有機EL素子の製造方法は、前記印刷法を行う印刷装置で用いる転写基板の表面が凹凸状にパターン化されている、あるいは親塗液部分と疎塗液部分にパターン化されていることを特徴とする

【0012】さらには、前記印刷法が凸版印刷法であることを特徴とする。

[0013]

【発明の実施の形態】以下、本発明の好適な実施の形態 について図面を参照して説明する。

【0014】有機EL素子としては、図1に示すように、少なくとも基板1上に第1電極2、有機EL層3と第2電極4の構成からなり、有機EL層3と第2電極4の側壁には隔壁5が設けられている。また、コントラストの観点から、基板1の外側には、偏光板7が設けられていることが好ましく、また、信頼性の観点からは、有機EL素子の第2電極4上には、封止膜又は封止基板6を設けることが好ましい。本発明で説明する溶媒は、有機EL層3の形成時に使用されるものである。

【0015】基板1としては、石英基板、ガラス基板等の無機材料基板、ポリエチレンテレフタレート基板、ポリエーテルサルフォン基板、ポリイミド基板等の樹脂基板が使用可能であるが、本発明はこれらに限定されるものではない。

【0016】ここで、有機EL層3は、少なくとも1層の有機発光層を有する構造で、有機発光層の単層構造、あるいは、電荷輸送層と有機発光層との多層構造であっても良い。ここで、電荷輸送層、有機発光層はそれぞれ多層構造であっても良い。また、必要に応じて発光層と 50

電極の間にバッファー層を設けても良い。

【0017】また、有機EL層としては、少なくとも1層が、本発明による有機EL用塗液を用いて印刷法により形成されることが必要であるが、他の層は本発明の方法により作製しても良いし、また、従来の方法(例えば、真空蒸着法等のドライプロセスや、ディップコート法、スピンコート法、インクジェット法等のウエットプロセス)により作製しても良い。

【0018】次に、本発明による印刷法で用いる有機E L用塗液について説明する。本発明による有機EL用塗 液としては、発光層形成用塗液と電荷輸送層形成用塗液 に大別できる。

【0019】ここで、発光層形成用塗液としては、有機EL素子形成に用いられる公知な低分子発光材料、あるいは高分子発光材料、高分子発光材料の前駆体、又は、有機EL素子形成に用いられる低分子発光材料と高分子発光材料とを両方含んだ材料を、少なくとも印刷法で膜を形成する工程時での温度における蒸気圧が500Pa以下である溶媒を少なくとも1種類含む溶媒に溶解もしくは分散させた塗液を用いることができる。

【0020】有機EL用の公知の低分子発光材料とし て、例えば、トリフェニルブタジェン、クマリン、ナイ ルレッド、オキサジアゾール誘導体等があるが、本発明 は特にこれらに限定されるものではない。もしくは、有 機EL用の公知の高分子発光材料としては、例えば、ポ リ (2-デシルオキシ-1, 4-フェニレン) (DO= <u>PPP</u>)、ポリ [2, 5ービス [2ー (N, N, Nート リエチルアンモニウム) エトキシ] -1, 4-フェニレ ンーアルトー1, 4ーフェニレン] ジブロマイド (PP P-NE t,)、ポリ [2-(2'-エチルヘキシルオ キシ) -5-メトキシ-1, 4-フェニレンビニレン] (MEH-PPV) 、ポリ (5-メトキシー (2-プロ パノキシサルフォニド) -1, 4-フェニレンビニレ <u>ン) (MPS-PPV)</u>、ポリ [2, 5-ビス (ヘキシ _ルオキシー1, 4-フェニレン) - (1-シアノビニレ (CN-PPV)、ポリ [2-(2'-エチルへ キシルオキシ) -5-メトキシ-1, 4-フェニレン-(1-シアノビニレン)] (MEH-CN-PPV) 及 び、ポリ(ジオクチルフルオレン) (PDF) 等がある が、本発明は特にこれらに限定されるものではない。あ るいは、有機EL用の公知の高分子発光材料の前駆体と して、例えば、ポリ (p-フェニレン) 前駆体 (Pre -PPP)、ポリ (p-フェニレンビニレン) 前駆体 (Pre-PPV)、ポリ (p-ナフタレンビニレン) 前駆体(Pre-PNV)等があるが、本発明は特にこ れらに限定されるものではない。また、有機EL用の公 知の前述した低分子発光材料と、公知の高分子材料、例 えば、ポリカーボネート (PC)、ポリメチルメタクリ レート (PMMA)、ポリカルバゾール (PVCz) 等 とがあるが、本発明は特にこれらに限定されるものでは

ない。上述したような発光材料を、少なくとも印刷法で 膜を形成する際の温度における蒸気圧で500Pa以下 である溶媒を少なくとも1種類含む溶媒に溶解もしくは 分散させた塗液を用いることができる。更に好ましく は、膜の表面性の観点から、250Pa以下が好まし い。また、好ましくは、異なる2種類以上の溶媒の混合 溶媒を用いる場合は、印刷法で膜を形成する際の温度に おける蒸気圧が500Pa以下である溶媒が50wt% 以上含有されていることが好ましい。

【0021】また、これらの液に、必要に応じて粘度調 10 整用の添加剤、有機EL用、有機光導電体用の公知のホ ール輸送材料(例えば、N, N-ビスー(3ーメチルフ ェニル) -N, N'-ビス- (フェニル) -ベンジジン (TPD)、N, N'-ジ(ナフタレン-1-イル)-N, N'ージフェニルーベンジジン (NPD) 等がある が、本発明は特にこれらに限定されるものではな い。)、または、電子輸送材料、(3-(4-ビフェニ ルイル) -4-フェニレン-5-t-ブチルフェニルー 1, 2, 4-トリアゾール (TAZ)、トリス (8-ヒ ドロキシナト) アルミニウム (Alq:) 等のなどがあ るが、これらに限定されるものではない)、アクセプタ ー、ドナー等のドーパント等を添加しても良い。

【0022】電荷輸送層形成用塗液としては、公知な低 分子電荷輸送材料、あるいは高分子電荷輸送材料、高分 子電荷輸送材料の前駆体、又は、公知の低分子材料と高 分子材料とを両方含んだ材料を、少なくとも印刷法で膜 を形成する工程時での温度における蒸気圧が500Pa 以下である溶媒を少なくとも1種類含む溶媒に溶解もし くは分散させた塗液を用いることができる。

【0023】有機EL用、有機光導電体用の公知の低分 子電荷輸送材料として、例えば、TPD、NPD、オキ サジアゾール誘導体等があるが、本発明は特にこれらに 限定されるものではない。もしくは、公知の高分子電荷 輸送材料として、例えば、ポリアニリン (PANI)、 3, 4-ポリエチレンジオキシチオフェン (PEDO T)、ポリカルバゾール(PVC2)、ポリ(トリフェ ニルアミン誘導体) (Poly-TPD)、ポリ (オキ サジアゾール誘導体) (Poly-OX2) 等がある が、本発明は特にこれらに限定されるものではない。も しくは、有機EL用、有機光導電体用の公知の高分子電 40 荷輸送材料の前駆体として、例えば、Pre-PPV、 Pre-PNV等があるが、本発明は特にこれらに限定 されるものではない。もしくは、有機EL用、有機光導 電体用の前述の低分子電荷輸送材料と公知の高分子材料 (例えば、PC、PMMA、PVCz等があるが、本発 明は特にこれらに限定されるものではない。)からなる **塗液を用いることができる。**

【0024】上述したような電荷輸送材料を、少なくと も印刷法で膜を形成する際の温度における蒸気圧で50 解もしくは分散させた塗液を用いることができる。更に 好ましくは、膜の表面性の観点、有機EL素子として適 した膜厚を実現するためには、250Pa以下が好まし い。また、好ましくは、異なる2種類以上の溶媒の混合 溶媒を用いる場合は、印刷法で膜を形成する際の温度に おける蒸気圧が500Pa以下である溶媒が50wt% 以上含有されていることが好ましい。また、これらの液 に、必要に応じて、粘度調整用、アクセプター、ドナー 等のドーパント等を添加しても良い。

【0025】また、従来の方法で使用できる有機発光材 料としては、公知の有機EL用の発光材料が使用可能で あり、有機発光層は前記した有機発光材料のみから構成 されても良いし、添加剤等を含有しても良い。

【0026】また、従来の方法で使用できる電荷輸送材 料としては、公知の有機EL用、有機光導電体用の公知 の材料が使用可能であり、電荷輸送層は、前記した電荷 輸送材料のみから構成されても良いし、添加剤等を含有 しても良い。しかし、本発明は特にこれらに限定される ものではない。

【0027】また、印刷法で膜を形成する工程での温度 における蒸気圧が500Pa以下である溶剤としては、 例えば、エチレングリコール、プロピレングリコール、 トリエチレングリコール、エチレングリコールモノメチ ルエーテル、エチレングリコールモエチルエーテル、ト リエチレングリコールモノメチルエーテル、トリエチレ ングリコールモエチルエーテル、グリセリン、N、Nー ジメチルホルムアミド、Nーメチルー2ーピロリドン、 シクロヘキサノン、1ープロパノール、オクタン、ノナ ン、デカン、主シレン、ジエチルベンゼン、トリメチル ベンゼン、ニトロベンゼン等があるが、本発明は特にこ れらに限定されるものではない。

【0028】また、多層積層膜からなる有機ELディス プレイを作製する場合には、接する膜間での材料の混同 を防ぐ為、後に作製する層に使用する溶媒は先に形成し てある層を溶解させないものが好ましい。

【0029】次に、前記有機EL層3を挟持する第1電 極2と第2電極4としては、有機EL素子において、基 板及び第1電極が透明である場合は、有機EL層3から の発光は、基板側から放出されるので、発光効率を髙め る為、第2電極が反射電極であること、もしくは、第2 電極上に反射膜を有することが好ましい。逆に、第2電 極を透明材料で構成して、有機EL層からの発光を第2 電極側から放出させることもできる。この場合には、第 1電極が反射電極であること、もしくは、第1電極と基 板との間に反射膜を有することが好ましい。ここで、透 明電極としては、CuI、ITO、SnO2、ZnO等 の透明電極が使用可能で、反射電極としては、アルミニ ウム、カルシウム等の金属、マクネシウム・銀、リチウ ム-アルミニウム等の合金、カルシウム/銀、マグネシ OPa以下である溶媒を少なくとも1種類含む溶媒に溶 50 ウム/銀等の金属同士の積層膜、フッ化リチウム/アル

ミニウム等の絶縁体と金属との積層膜等が使用可能であるが、本発明は特にこれらに限定されるものではない。【0030】又、これらの材料を基板上もしくは有機E L層上にスパッタ、E B蒸着、抵抗加熱蒸着等のドライプロセスで成膜することが可能であるが、本発明は特にこれらに限定されるものではない。また、上記材料を結着樹脂中に分散して印刷法、インクジェット法等のウエットプロセスで成膜することが可能であるが、本発明は特にこれらに限定されるものではない。

【0031】次に、複数の有機EL素子から構成される 10 有機ELディスプレイについて説明する。

【0032】まず、有機ELディスプレイの各発光画素の配置について説明する。本発明の有機ELディスプレイは、図2(a)に示すように、ディスプレイの各部分が異なる発光色を持つエリアから構成されていても良いし、図3(a)に示すように、有機EL層が、マトリックス状に配置され構造をもっており、そのマトリックス状に配置された有機EL層は、好ましくは、各々が赤色(R)発光画素8、緑色(G)発光画素9、青色(B)発光画素10から構成されていても良い。また、このストライプ配列の代わりに、図3(b)、図3(c)に示すような配列でも良い。また、図3(d)に示されるように赤色(R)発光画素、緑色(G)発光画素、青色(B)発光画素の割合は、必ずしも、1:1:1の比で無くとも良い。また、各画素の発光面積は同一であっても良いが、異なっていても良い。

【0033】ここで、各画素間には、異なる発光色を持つ発光画素間には発光層の混ざりを防止する為、隔壁を設けることが好ましい。

【0034】隔壁としては、単層構造であっても良いし、多層構造であっても良い。また、隔壁の材質としては、本発明の有機EL用塗液に対して、不溶もしくは難溶であることが好ましい。また、より好ましくは、ディスプレイとしての表示品位を上げる目的で、ブラックマトリックス用の材料を用いることが良い。

【0035】次に、各画素に対応した第1電極間と第2電極間の接続方法について説明する。図4に示すように少なくとも第1電極若しくは第2電極がそれぞれの画素に独立の電極にしても良いし、図5に示すように、前記有機EL層に対応した第1電極と第2電極が共通の基板上で互いに直交するストライプ状の電極に成るように構成されても良いし、また、図6に示すように、第1電極もしくは第2電極が薄膜トランジスタ(TFT)を、介して共通の電極(ソースバスライン、ゲートバスライン)に接続していても良い。ここで、1画素に対応するTFTは、1つでも良いし、複数個でも良い。上記図3、4、5に示す符号は、図1と同じである。

【0036】次に、本発明による有機層の形成法について説明する。本発明の有機層の形成は、印刷法により発光層形成用塗液を成膜することで、第1電極上もしくは 50

電荷輸送層上に形成する。または、本発明の電荷輸送層 の形成は、印刷法により電荷輸送層形成用塗液を成膜す ることで、第1電極上、電荷輸送層上もしくは発光層上 に形成する。

【0037】また、本発明の印刷法としては、転写基板に有機EL用塗液をつけ、有機EL用塗液を、基板に移す方法で、例えば、凸版印刷、凹版印刷、平版印刷、オフセット印刷等が挙げられるが本発明は特にこれらに限定される物ではない、しかし、膜厚1μm以下の薄膜を均一に形成する為には凸版印刷、凹版印刷、平版印刷が良い。さらに1000Å以下の薄膜を均一に形成する為には、凸版印刷が好ましい。

【0038】また、印刷機の構造としては、図7に示すように、転写基板を固定するロール部17に固定されている転写基板16に、塗液投入口14から投入され、ブレード15を介して直接塗液18を塗布し、ステージ19上に設置された基板1上の第1電極2へ転写しても良いが、基板に形成される膜の膜厚の均一性の観点から図8に示すように塗液18をまず塗液を一時保持するロール部20に塗布し、そのロール部20を別のロール部20に塗布し、そのロール部20に変液18をまず塗液を一時保持するロール部20に塗布し、そのロール部20に変液18をまず塗液を一時保持するロール部20に変布し、そのロール部20を別のロール部20に変流18をまず塗液を一時保持するロール部20に変流18をもう一度ロール部21に転写し、その後、第1電極2上に転写することも可能である。

【0039】次に、ロール部に固定する転写基板について説明する。転写基板の材質としては、基板として樹脂基板を用いる場合には、金属材料でも樹脂材料でも良いが、基板として無機材料基板を用いる場合には、基板へのダメージを考えると樹脂材料が良く、例えば、金属材料としては、銅版等が有り、樹脂材料としては、APR(旭化成製)、富士トレリーフ(富士フィルム製)が挙げられるが、本発明は特にこれらに限定される物ではない。また、転写基板のパターンとしては、単純に凹凸のパターンが形成されていても良いし(凸版、凹版)、塗液に対して、親塗液部分と疎塗液部分のパターン化されていてもよい。(平版でも可)。

【0040】また、本発明の蒸気圧を満たす為に、室温で500Pa以下の溶媒を少なくとも含有する有機EL用塗液を用いて室温で膜を形成しても良いし、印刷装置を、恒温層若しくは恒温室に設置して、有機EL用塗液を印刷機で成膜する工程の温度を低温で行うことで有機EL用塗液中の溶媒の蒸気圧を500Pa以下に抑えても良い。

【0041】また、有機EL用塗液が触れる部分、例えば、塗液を一時保持するロール部、転写基板を固定するロール部及び基板を固定するステージに冷却機構(例えば、冷却水の循環機構、ペルチェ素子等)を取りつけ

て、膜形成時の温度での有機EL用塗液中の溶媒の蒸気 圧を500Pa以下に抑えても良い。また、印刷機の環 境は特に限定される物ではないが、膜の吸湿、材料の変 質を考えると不活性ガス中で行うことが好ましい。

【0042】また、本発明の記載の方法により膜を形成 した後に、残留溶媒を除去する目的で、加熱乾燥を行っ たほうが良い。乾燥を行う環境は特に限定される物では ないが、用いた有機材料の変質を防止する観点で、不活 性ガス中で行うことが好ましい。更に、好ましくは減圧 下で行う方が良い。

【0043】本発明を実施例により更に具体的に説明す るが、これらの実施例に本発明が限定される物ではな い。

【0044】<印刷機による成膜テスト>

(実施例1) 2mm幅のパターン形成したITO付きの ガラス基板上をフォトリソグラフィー法により作製し た。次に、このITO付きガラス基板を、例えばイソプ ロピルアルコール、アセトン、純水を用いた従来のウエ ットプロセスのよる洗浄法とUVオゾン処理、プラズマ 処理等の従来のドライプロセスにより洗浄する。

【0045】次に、PDFをoーキシレン溶媒に溶か し、青色発光層形成用塗液とした。次に、市販の凸版印 刷機を改造した印刷装置A(図7参照)あるいは印刷装 置B(図8参照)を恒温層中に入れ、塗工環境温度を2 O℃環境にし、上記塗液のITO付きガラス基板への転 写を行った。このとき転写基板としてはAPR (ショア A硬度 55) を用いた。また、印圧を0.1mmとし た。ここで、印刷装置Bは、アニロックスロールとして 300線/inchのものを用いた。

【0046】次に、この基板に先ほどのITOとは直交 30 する向きに2mm×100mm幅の穴の空いたシャドウ マスクを固定し、真空蒸着装置にいれ、1×10°To*

*rrの真空下でCaを50nm、Agを200nm真空 蒸着し、電極とした。

(実施例2) oーキシレンをトルエンにしたこと以外 は実施例1と同様にした。

(実施例3) oーキシレンをイソプロピルベンゼンに したこと以外は実施例1と同様にした。

(実施例4) o-キシレンをトリメチルベンゼンにし たこと以外は実施例1と同様にした。

(実施例5) oーキシレンをoーキシレンとニトロベ 10 ンゼンの4:6混合溶媒にしたこと以外は実施例1と同 様にした。

(実施例6) 塗工環境温度を0℃としたこと以外は実 施例1と同様にした。

(実施例7) 青色発光層形成用塗液の代わりに、Pr e-PPVをメタノール溶媒に溶かした緑色発光層形成 用塗液を用いたこと以外は実施例1と同様である。

(実施例8) メタノールをメタノールとエチレングリ コールの4:6混合溶媒にしたこと以外は実施例7と同 様にした。

(実施例9) 青色発光層形成用塗液の代わりに、ME H-CN-PPVをトルエン溶媒に溶かした赤色発光層 形成用塗液を用いたこと以外は実施例1と同様である。 (実施例10) トルエンを o ーキシレンとニトロベン ゼンの4:6混合溶媒にしたこと以外は実施例9と同様 にした。

【0047】上記の実施例1~10のようにして作製し た素子を、顕微鏡とUVランプを用い基板上に膜が形成 されているかの転写テストを行い、基板上に膜が形成さ れていた素子に関しては、直流電圧を印加することで発 光テストを行った。その結果を下記表1に示す。

[0048]

【表1】

	溶媒	成膜条件		印刷機A		印刷機B	
		蒸気圧 (Pa)	温度 (*C)	転写テスト	発光テスト	転写テ	発光テ
実施例 1	ローキシレン	700	20	^ <u>x</u>	<u> </u>	スト	スト
実施例 2	トルエン	2900	20	+ ^ -		×	
実施例3	イソプロピルベンゼン	430	20	l ô	Δ	×	
実施例 4	トリエチルベンゼン	247	20	Ö	0	ô	0
実施例 5	0-キシレン ニトロベンゼン	700	20	0	0	0	0
実施例 6	ローキシレン	170	0	0	-0	0	0
実施例7	メタノール	12300	2 0	×		×	
実施例 8	メタノール エチレングリコール	12300 10	2 0	0	0	0	0
実施例 9	トルエン	21000	20	×		×	
実施例10	o-キシレン ニトロペンゼン	700 20	2 0	0	0	0	0

転写テスト 1)〇:膜が形成する。 ×:膜が形成しない。

発光テスト 2)〇:均一な発光が観測された。 △:若干発光にムラがあった。

【0049】実施例6において、蒸気圧430Pa以下 で成膜できたことが示されたが、さらに、成膜温度を変 50 00pa以下となる温度で成膜することによって成膜が

化させて実験を行ったところ、キシレン溶媒で蒸気圧5

11

確認され、蒸気圧500Paを超える温度では成膜できない場合も生じ、蒸気圧600pa以上にすると成膜できなかった。

(実施例11) 130 n m の 膜厚を持つ I T O 付きガラス基板を、フォトリソグラフィ法により第1電極として130 μ m μ m

【0050】次に、ITO付きガラス基板を、例えばイソプロピルアルコール、アセトン、純水を用いた従来のウエットプロセスのよる洗浄法とUVオゾン処理、プラ 10 ズマ処理等の従来のドライプロセスにより洗浄する。

【0051】次に、この基板上にポリイミドからなるレジストをスピンコート法により膜厚 30μ mのレジスト膜を形成する。次に、マスクを用いて露光し、レジストの残さを洗い流し、ITOと平行の方向には 130μ mピッチで 40μ m幅の第1隔壁を作製する。

【0052】次に、この基板上にスピンコーターにより PEDOT水溶液を用い、厚さ100nmの正孔注入層 を形成する。

【0053】次に、市販の凸版印刷機(日本写真印刷株 20 式会社製)を改造したもの(位置合せ機構を設けた。)を恒温槽に入れ、塗工環境温度を20℃環境にし、恒温槽をN2で置換し、実施例5、実施例8、実施例10で用いた青色発光層形成用塗液、緑色発光層形成用塗液、赤色発光層形成用塗液を用いて図10に示すような270μmピッチで120μm幅のパターンを持つAPR樹脂転写基板を用いて、各塗液に対してX-Yステージのマイクロメーターを利用し、基板を130μmづつづらしながらそれぞれ転写を繰り返すことで青色、緑色、赤色の各100nmの膜厚の発光層を形成した。 30

【0054】ただし、ここでまずはじめに緑色発光層形成用塗液を用いて緑色発光層を形成した後、Ar雰囲気下で150℃で6時間、加熱処理を行うことで、前駆体をポリフェニレンビニレンに変換した。次に、青色発光層、赤色発光層を形成した後、1×10³ Torrの減圧下で100℃で1時間加熱乾燥を行った。

【0055】次に、第2電極として、厚さ 0.2μ m、幅 310μ m、ピッチ 340μ mのシャドウマスクを用いて、AlとLiを共蒸着することにより第2電極として、Al Li 合金電極を形成する。最後にエポキシ樹脂 40を用いて封止を行う。

【0056】以上のようにして作製した有機LEDディスプレイは、第1電極と第2電極間、第1電極間及び第2電極間でのショートは発生せず、また、発光層及び電荷輸送層の膜厚の不均一に伴う画素部のエッジからの不均一発光は見られなかった。また、このディスプレイに30Vのパルス電圧を印加することで、すべての画素から、発光が得られた。

[0057]

【発明の効果】本発明によれば、基板への塗液の転写を効率良く行うことができ、その結果、 $1 \mu m$ 以下の膜厚で有機EL層を均一に形成することが可能となり、効率の優れたカラー表示可能な有機EL素子、有機ELディスプレイを安価に製造することが可能となる。

12

【図面の簡単な説明】

【図1】本発明の有機EL素子の概略断面図である。

【図2】本発明の有機ELディスプレイの発光層の配置の概略部分平面図である。

【図3】本発明の有機ELディスプレイの電極の配置の 概略部分平面図である。

【図4】本発明の有機ELディスプレイの電極の配置の 概略部分平面図である。

【図5】本発明の有機ELディスプレイの電極の配置の 概略部分平面図である。

【図6】本発明の有機ELディスプレイの電極の配置の 概略部分平面図である。

【図7】本発明の有機ELディスプレイの印刷装置の概略部分断面図である。

0 【図8】本発明の有機ELディスプレイの印刷装置の概略部分断面図である。

【図9】本発明の有機ELディスプレイの印刷装置の概略部分断面図である。

【図10】本発明の実施例のAPR樹脂のパターンの概略部分平面図である。

【符号の説明】

- 1. 基板
- 2. 第1電極
- 3. 有機EL層
- 30 4. 第2電極
 - 5. 隔壁
 - 6. 封止基板、封止膜
 - 7. 偏光板
 - 8. 赤色(R)発光画素
 - 9. 緑色(G) 発光画素
 - 10. 青色(B) 発光画素
 - 11. 薄膜トランジスタ (TFT)
 - 12. ソースバスライン
 - 13. ゲートバスライン
 -) 14. 塗液投入口
 - 15. ブレード
 - 16. 転写基板
 - 17. 転写基板を固定するロール部
 - 18. 塗液
 - 19. X-Yステージ
 - 20. 塗液を一時保持するロール部(アニロックスロ
 - ール)
 - 21. ロール部

