Computación Bioinspirada

Dr. Edward Hinojosa Cárdenas ehinojosa@unsa.edu.pe

Primer Parcial

- Evaluación: Primer Parcial (Miércoles 25/04 14:00pm). Evaluación Escrita. Traer tres pliegos de papel, todos los útiles de escritorio, calculadora (no celulares).
- Entrega de notas hasta el lunes 30/04 14:00pm
- Reclamos de notas hasta el día 30/04 14:30pm
- Último día de presentación de Prácticas faltantes 30/04 14:30pm.
- Último día de presentación de Justificaciones 30/04 14:30pm.

Algoritmos Evolutivos

- La Programación Genética (PG) intenta responder una de las preguntas de las ciencias de la computación:
 - Como las computadoras pueden aprender a resolver problemas sin ser explícitamente programadas para tal?
 - Es decir, como las computadoras pueden hacer lo que debe ser hecho sin ser orientados exactamente para hacer ello?

- En 1975, John Hollanda (Ph. D. en Ciencias de la Computación – Universidad de Michigan, 1959) creó los Algoritmos Genéticos.
- En 1992, John Koza (Ph. D. en Ciencias de la Computación
- Univesidad de Michigan, 1972) usó los algoritmos genéticos para desarrollar programas para realizar ciertas tareas. Llamó a su método de programación genética.

- Programación:
 - Podemos representar un programa en un árbol.

- Genética:
 - Utiliza principios de selección natural.

- El uso de la Programación Genética ha sido extendida a problemas de diversas áreas del conocimiento, tales como:
 - Biotecnología.
 - Ingeniería Eléctrica.
 - Análisis Financiero.
 - Procesamiento de Imágenes.
 - Reconocimiento de Patrones.
 - Minería de Datos.
 - Lenguaje Natural.

- El uso de la Programación Genética ha sido extendida a problemas de diversas áreas del conocimiento, tales como:
 - Biotecnología.
 - Ingeniería Eléctrica.
 - Análisis Financiero.
 - Procesamiento de Imágenes.
 - Reconocimiento de Patrones.
 - Minería de Datos.
 - Lenguaje Natural.

- La PG es una extensión de los AG en el dominio de los programas, donde:
 - El individuo es un programa de computador.
 - El espacio de búsqueda son todos los posibles programas de computador.
- En resumen, la PG es un método de búsqueda, dentro de un espacio significativamente polinomial/exponencial y restricto de programas de computador, una solución exacta o por lo menos aproximada para resolver determinado problema.

- Un programa de computador es un extensión matemática compuesta de funciones y terminales.
- Las funciones pueden ser operaciones aritméticas (+, -, *, ...) operaciones booleanas (and, or, not, ...), funciones mateméticas (sen, cos, ...), operadores condicionales (if, then, ...), funciones de iteración (while, ...), funciones que causan recursión, funciones específicas del problema.
- Los terminales pueden ser variables (representando, posiblemente, las entradas) o constantes (5).

• Los programas de computador, en PG, son representado bajo una forma de árboles.

Las funciones aparecen en los nodos internos del árbol.

• Los terminales aparecen en los nodos fuera de los árboles.

Por ejemplo:

$$3x^2+2x+1$$

- La PG envuelve programas de computador a partir de los conjuntos de terminales y funciones.
- Un proceso de PG sigue le siguiente flujo. Considere probabilidades para los diferentes para:
 - Reproducción (10% a 20%)
 - Cruzamiento (70% a 80%)
 - Mutación (10% a 20%)

Flowchart for Genetic Programming

• Cada individuo tiene asociado a si una medida numérica, que es el resultado de la interacción con el ambiente.

 Es decir, es una medida de grado de adaptación del individuo.

• Está relacionada al proceso evolutivo, haciendo que tenga mayor probabilidad de que sus características sean propagadas y permanecer en las siguientes poblaciones.

• Ejemplo:

Input	Output
10	29
42	125
3	8

• Para la tabla anterior, que muestra una entrada y una salida, se requiere encontrar una función aritmética que realice esta asignación.

• El valor de aptitud para un individuo es la suma de las diferencias entre las salidas esperadas (listadas en la tabla anterior) y las salidas reales cuando se evalúa el individuo con uno de los tres valores de entrada.

 Cuanto menor sea el valor de la aptitud, mejor será el candidato.

- Definimos el conjunto de funciones y terminales:
- Un conjunto de funciones que contiene los operadores aritméticos de suma (+), resta (-) y multiplicación (*).
- Conjunto de terminales que contiene una sola variable denominada x. Y un conjunto constante que contiene los valores enteros 0, 1, 2, 3, 4 y 5.

Considerando un individuo:

Candidate 1: (+ (+ 3 2) (* 1 1))

Input	Expected	Actual	Difference
10	29	6	23
42	125	6	119
3	8	6	2

Fitness = 23 + 119 + 2 = 144

Considerando otro individuo:

$$(+ (- x x) (+ x x))$$

Candidate 2: (+ (- x x) (+ x x))

Input	Expected	Actual	Difference
10	29	20	9
42	125	84	41
3	8	6	2

Fitness = 9 + 41 + 2 = 52

Para los dos individuos:

Rank	Candidate					Fitness		
1st	(+	(-	х	x)	(+	х	x))	52
2nd	(+	(+	3	2)	(*	1	1))	144

Programación Genética - Reproducción

- Un individuo de la población es seleccionado de acuerdo con algún método basado en la aptitud.
- El individuo es copiado, sin ninguna alteración, para la próxima generación.

Programación Genética - Cruzamiento

Cambia el material genético entre dos individuos.

• Es seleccionado un punto de corte en los dos árboles y las ramas inferiores son intercambiadas.

Programación Genética - Cruzamiento

• Ejemplo (para el ejemplo anterior):

- Padre 1: (+ (- x x) (+ x x))
- Padre 2: (+ (+ 3 2) (* 1 1))
- Hijo 1: (+ (- x x) (* 1 1))
- Hijo 2: (+ (+ 3 2) (+ x x))

Programación Genética - Mutación

• La mutación consiste en un cambio aleatorio de una función, una entrada (o una constante) en el árbol.

Programación Genética - Mutación

• Ejemplo (para el ejemplo anterior):

Individuo 1: (+ (- x x) (+ x x))

• Individuo Mutado: (+ (+ x x) (+ x x))

Práctica 07 (0 a 20)

• Encontrar la función matemática que se ajuste al conjunto de 10 ejemplos:

Entrada	Salida
0	0
0.1	0.005
0.2	0.02
0.3	0.045
0.4	0.08
0.5	0.125
0.6	0.18
0.7	0.245
8.0	0.32
0.9	0.405

Práctica 07 (0 a 20)

 Conjunto de terminales: una variable (para la entrada), y los terminales −5 . . . + 5 (números enteros)

- Conjunto de funciones: +, -, *, %, /.
- Función de calidad: Error cuadrático medio sobre los 10 ejemplos.

$$\text{ECM} = \frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2.$$

Práctica 07 (0 a 20)

- Utilizar codificación vista en clase.
- Utilizar cruzamiento de un punto.
- Utilizar reproducción y mutación vistas en clase.
- Respuesta:

$$f(x) = \frac{x^2}{2}$$

GRACIAS

Dr. Edward Hinojosa Cárdenas ehinojosa@unsa.edu.pe