Filtro Elíptico

Danilo Souza Hugo Santos Welton Araújo

¹Universidade Federal do Pará

03 de Julho de 2012

Agenda

- **1** Introdução
- 2 Filtro Elíptico
 - Projeto de Filtros Elípticos
 - Projeto do filtro
 - Tranformação em Frequeência
 - Tranformação Bilinear
- A Implementação
 - Resultados
 - Filtro I
 - Filtro II

Filtros Digitais

- Filtros FIR
- Filtros IIR
 - Mapemamento de filtros analógicos
 - Menor ordem
 - Mais difíceis de projetar
 - Problemas com Estabilidade

Menor ordem que outros filtros IIR

DesvantagensNão possui fase linear

Projetado somente em termos de magnitude

Abordagens

- Duas abordagens
- Abordagem I
 - Projetar filtro Passa-Baixa analógico
 - Realizar transformação em frequência (s → s)
 - Aplicar transformação do filtro (s → z)
- Abordagem II
 - Projetar filtro Passa-Baixa analógico
 - Aplicar transformação do filtro (s → z)
 - Realizar transformação em frequência (z → z)

Projeto dos filtros

- ullet Encontrar a frequência digital ω
- Encontrar a frequência distorcida Ω
- É preciso encontrar algumas constantes para calcular a ordem do filtro

• Filtro passa-baixa

$$s' \leftrightarrow \frac{1}{a} \frac{s}{\Omega_p}$$
 (1)

• Filtro rejeita-faixa

$$s' \leftrightarrow \frac{1}{a} \frac{B_s}{s^2 + \Omega_0^2} \tag{2}$$

• Mapear o plano s para o plano z

•

$$z = \frac{1 + s(T/2)}{1 - s(T/2)}$$

- Mapear o eixo jw para a circunferência de raio unitário
- Mapear o lado esquerdo do plano s para o interior da circunferência de raio unitário
- Mapear o lado direto do plano s para o exterior da circunferência de raio unitário
- Compressão das frequências (warping)
- $-\infty < \Omega < \infty$ para $-\pi < \omega < \pi$

Requisitos dos filtros

A_p	1 dB
A_r	40 dB
Ω_p	1000 Hz
Ω_r	1290 Hz
$\Omega_{\mathcal{S}}$	3000 Hz

A_p	0,5 aB
A_r	60 dB
Ω_p 1	40 rad/s
Ω_r 1	50 rad/s
$\Omega_r 2$	70 rad/s
Ω_p 2	80 rad/s
Ως	240 rad/s

Resposta em magnitude

..pictures/Filtro1/RespMagnitudeFiltro1.png

Resposta em Fase

..pictures/Filtro1/RespFaseFiltro1.png

Resposta ao Impulso

..pictures/Filtro1/RespImpulsoFiltro1.png

Diagrama de polos e zeros

..pictures/Filtro1/DiagramaFiltro1.png

Resposta em magnitude

..pictures/Filtro2/RespMagnitudeFiltro2.png

Resposta em Fase

..pictures/Filtro2/RespFaseFiltro2.png

Resposta ao Impulso

..pictures/Filtro2/RespImpulsoFiltro2.png

Diagrama de polos e zeros

..pictures/Filtro2/DiagramaFiltro2.png