POLITECHNIKA ŁÓDZKA

Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej

Kierunek: Matematyka Stosowana Specjalność: Matematyka finansowa i ubezpieczeniowa

O ROZKŁADZIE SUMY ZMIENNYCH LOSOWYCH

Maciej Domagała

Numer albumu: 219998

Praca magisterska napisana pod kierunkiem dr inż. Violetty Lipińskiej Instytut Matematyki

Spis treści

Wstęp

Rozdział 1

Podstawowe definicje i oznaczenia

1.1 Podstawowe definicje

Poniższa praca dotyczy pewnych własności zmiennych losowych, a zatem wskazane jest przytoczenie pewnych podstawowych definicji z zakresu probabilistyki.

Definicja 1 ([3], str. 18)

 $Trójkę\ (\Omega, \mathcal{F}, P)\ gdzie\ P\ jest\ funkcją\ prawdopodobieństwa\ określoną\ na\ \sigma\text{-}ciele\ \mathcal{F}\ pod-$ zbiorów zbioru zdarzeń elementarnych Ω , nazywamy przestrzenią probabilistyczną.

Definicja 2 ([3], str. 75)

Funkcję $X: \Omega \to \mathbb{R}$ nazywamy zmienną losową o wartościach w \mathbb{R} , jeżeli dla każdego $a \in \mathbb{R}$ zbiór $X^{-1}((1-\infty,a])$ jest zdarzeniem, czyli $X^{-1}((-\infty,a]) \in \mathcal{F}$.

Głównymi zmiennymi losowymi rozważanymi w tej pracy będą ciągłe zmienne losowe zdefiniowane następująco:

Definicja 3 ([1], str. 31)

Mówimy, że zmienna losowa X jest typu ciągłego, jeżeli istnieje nieujemna funkcja f, określona i całkowalna do jedynki na całej osi, spełniająca warunek

$$\forall_{[x_1,x_2]} P(\{\omega : x_1 \leqslant X(\omega) \leqslant x_2\}) = \int_{x_1}^{x_2} f(x) dx.$$

Definicja 4 ([1], str. 35)

Niech $p \in (0,1)$. Liczbę $q_p(X)$ spełniającą warunki:

$$P(X \leqslant q_p(X)) \geqslant p \land P(X < q_p(X)) \leqslant p$$

nazywamy kwantylem rzędu p zmiennej losowej X.

Kwantyle tego samego rzędu tworzą przedział $[q_X^-(p), q_X^+(p)]$ gdzie

$$q_X^-(p) = \sup\{x : P(X < x) < p\}$$
$$= \inf\{x : F(x) \geqslant p\}$$

oraz

$$q_X^+(p) = \inf\{x : F(x) > p\}$$
$$= \sup\{x : P(X < x) \leqslant p\}.$$

Można zauważyć, że gdy zmienna losowa X ma ciągłą i ściśle rosnącą dystrybuantę, to zachodzi równość $q_X^-(p)=q_X^+(p)$ dla każdego $p\in(0,1)$.

1.2 Miara ryzyka

Główną miarą ryzyka rozpatrywaną w tej pracy jest miara Value at Risk, zaproponowana w latach pięćdziesiątych zeszłego wieku przez m. in. Henry'ego Markowitza. W latach osiemdziesiątych firma JP Morgan wprowadziła system kalkulacji metryk VaR dla firm jako zastępstwo dla dotychczasowego systemu obliczania ryzyk portfeli inwestycyjnych. Sama miara jak i jej liczne pochodne (Expected Shortfall, CVaR) jest używana do dziś np. w przepisach regulacji zasad wypłacalności firm "Wypłacalność II" opublikowanych przez Europejski Urząd Nadzoru Ubezpieczeń i Pracowniczych Programów Emerytalnych (EIOPA).

Definicja 5 Niech X będzie zmienną losową o dystrybuancie F, oznaczającą wielkość straty portfela inwestycyjnego. Na zadanym poziomie ufności $p \in (0,1)$, Value at Risk jest najmniejszą taką liczbą x, że prawdopodobieństwo przekroczenia jej przez X jest nie większe niż (1-p):

$$VaR_p(X) = \inf\{x \in \mathbb{R} : F(x) \geqslant p\} = q_p(X).$$

Niech \mathcal{L} oznacza przestrzeń zmiennych losowych opisanych na przestrzeni probabilistycznej (Ω, \mathcal{F}, P) , reprezentujących stratę portfela inwestycyjnego w pewnym usta-

lonym przedziałe czasu. W celu poprawnego zdefiniowania miary ryzyka zakładać będziemy, że dla dowolnych $X_1, X_2 \in \mathcal{L}$ oraz $\lambda > 0$ zachodzi $X_1 + X_2 \in \mathcal{L}$ oraz $\lambda X_1 \in \mathcal{L}$.

Definicja 6 ([4], str. 5)

Funkcję rzeczywistą $\rho: \mathcal{L} \to \mathbb{R}$ nazywamy miarą ryzyka.

W pracy Artznera z 1999 roku przedstawione zostało pojęcie miar koherentnych, czyli spełniających pewne aksjomaty przedstawione poniżej. Koherentność miary ryzyka jest z finansowego punktu widzenia pożądanym zjawiskiem, wskazującym na dobre przełożenie pomiędzy zachowaniem ryzyk finansowych a wartością miary ryzyka.

Definicja 7 ([4], str. 7)

Miarę ryzyka $\rho: \mathcal{L} \to \mathbb{R}$ nazywamy koherentną, jeżeli spełnia własności:

1. monotoniczności, czyli dla dowolnych $X,Y \in \mathcal{L}$

$$X \leqslant Y \Rightarrow \rho(X) \leqslant \rho(Y),$$

2. niezmienności na przesunięcia, czyli dla dowolnego $c \in \mathbb{R}$ i $X \in \mathcal{L}$

$$\rho(X+c) = \rho(X) + c,$$

3. dodatniej jednorodności, czyli dla dowolnego $\lambda > 0$ i $X \in \mathcal{L}$

$$\rho(\lambda X) = \lambda \rho(X),$$

4. podaddytywności, czyli dla dowolnych $X, Y \in \mathcal{L}$

$$\rho(X+Y) \leqslant \rho(X) + \rho(Y).$$

Warto zauważyć, że pomimo dużej popularności miary Value at Risk, nie spełnia ona wszystkich warunków powyższej definicji.

Lemat 1

Miara ryzyka Value at Risk spełnia warunki dodatniej jednorodności, niezmienniczości na przesunięcia oraz monotoniczności, natomiast nie spełnia warunku podaddytywności. Nie jest zatem koherentną miarą ryzyka.

 $Dow \acute{o}d$.

Niech $p \in \mathbb{R}$.

1. Pokażmy warunek monotoniczności. Niech $X,Y\in\mathcal{L},\,x\in\mathbb{R}$ oraz $X\leqslant Y$. Zauważmy, że $Y\leqslant x\Rightarrow X\leqslant x$, co bezpośrednio implikuje $\{\omega\in\Omega:Y(\omega)\leqslant x\}\subset\{\omega\in\Omega:X(\omega)\leqslant x\}$. Zatem dla dowolnego poziomu ufności $p\in\mathbb{R}$ zachodzi

$$P(Y \leqslant x) \geqslant p \Rightarrow P(X \leqslant x) \geqslant p$$
.

Z dowolności $x \in \mathbb{R}$ mamy zatem

$${x \in \mathbb{R} : P(Y \leqslant x) \geqslant p} \subset {x \in \mathbb{R} : P(X \leqslant x) \geqslant p},$$

co z własności infimum zbiorów daje

$$\inf\{x \in \mathbb{R} : P(X \leqslant x) \geqslant p\} \leqslant \inf\{x \in \mathbb{R} : P(Y \leqslant x) \geqslant p\}.$$

Zatem $VaR_p(X) \leq VaR_p(Y)$.

2. Pokażmy warunek niezmienniczości na przesunięcia. Niech $c \in \mathbb{R}$ i $X \in \mathcal{L}$.

$$VaR_p(X+c) = \inf\{x \in \mathbb{R} : P(X+c \leqslant x) \geqslant p\} = \inf\{x \in \mathbb{R} : P(X \leqslant x-c) \geqslant p\}.$$

Dla y = x - c mamy x = y + c i z własności infimum zbioru

$$\inf\{x \in \mathbb{R} : P(X \leqslant x - c) \geqslant p\} = \inf\{y + c \in \mathbb{R} : P(X \leqslant y) \geqslant p\} = \inf\{y \in \mathbb{R} : P(X \leqslant y) \geqslant p\} + c = VaR_p(X) + c.$$

3. Pokażmy warunek dodatniej jednorodności. Niech $\lambda > 0$ i $X \in \mathcal{L}$.

$$VaR_p(\lambda X) = \inf\{x \in \mathbb{R} : P(\lambda X \leqslant x) \geqslant p\} = \inf\{x \in \mathbb{R} : P\left(X \leqslant \frac{x}{p}\right) \geqslant p\}$$
$$= \inf\{\lambda x \in \mathbb{R} : P(X \leqslant x) \geqslant p\} = \lambda VaR_p(X).$$

4. Pokażmy kontrprzykład na warunek podaddytywności. Niech p=0.95. Niech X będzie zmienną losową o rozkładzie dyskretnym, który można opisać poniższą tabelą

$$\begin{array}{c|cccc}
X & 100 & 0 \\
\hline
p_i & 0.96 & 0.04
\end{array}$$

Niech Y będzie zmienną losową o tym samym rozkładzie, niezależną od X.

Zauważmy, że $VaR_{0.95}(X) = VaR_{0.95}(Y) = 0$.

Rozważmy rozkład sumy X+Y. Możemy go przedstawić następująco

$$X + Y$$
 200 100 0
 p_i $(0.96)^2 = 0.9216$ 0.0768 $(0.04)^2 = 0.0016$

Otrzymujemy, że
$$VaR_{0.95}(X+Y) = 100$$
, zatem $VaR_{0.95}(X+Y) = 100 \nleq 0+0 = VaR_{0.95}(X) + VaR_{0.95}(Y)$, co przeczy warunkowi subaddytywności.

1.2.1 Definicja z punktu widzenia inwestora

Należy nadmienić, że w literaturze występuje zróżnicowanie dotyczące sposobu definiowania Value at Risk oraz aksjomatów określających koherentną miarę ryzyka. Podane w tym podrozdziale definicje dotyczą mierzenia zmiennych losowych opisujących pewną **stratę**. Takie podejście zaprezentowane jest np. w [5], [6] i dotyczy tzw. "ubezpieczeniowej" wersji Value at Risk. Często (np. w [2]) Value at Risk definiowany jest dla zmiennych losowych określających **zysk** inwestora, wówczas wprowadzany jest wzór

$$VaR_p^z(X) = -q_X^+(p) = -\inf\{x : P(X \le x) > p\} = VaR_p(-X).$$

Jeżeli zmienna losowa X przyjmuje jedynie wartości dodatnie, czyli inwestor na pewno nie poniesie żadnych strat, $VaR_p^z(X)$ przyjmuje wartości ujemne, zatem kapitał inwestora nie jest zagrożony. Znajdywanie wartości VaR portfela związane jest z oszacowaniem dystrybuanty, stąd też w tej pracy wykorzystywana jest definicja VaR bezpośrednio nawiązująca do rozkładu, czyli "kwantylowa" definicja VaR.

Rozdział 2

Ograniczenia dystrybuanty rozkładu sumy zmiennych losowych

Rozważmy łączny portfel ubezpieczyciela $\sum_{i=1}^{n} X_i$ składający się z ryzyk opisanych przez wektor $X = (X_1, ..., X_n)$, gdzie dystrybuanty brzegowe $F_i \sim X_i$ są znane, ale struktura zależności pomiędzy składowymi portfela jest nieznana. Problem polega na znalezieniu największej i najmniejszej wartości Value at Risk. Zważywszy na przyjętą definicję VaR (kwantyl rozkładu), problem w dużej mierze polega na rozpatrzeniu różnych postaci rozkładu sumy zmiennych losowych. Co za tym idzie, w tym i kolejnym rozdziale przedstawione zostaną rozważania dotyczące ograniczeń dystrybuanty sumy zmiennych oraz twierdzenie łączące otrzymane wyniki z ograniczeniami VaR.

Wprowadźmy oznaczenia:

$$M_n(t) := \sup \left\{ P\left(\sum_{i=1}^n X_i \leqslant t\right) : X_i \sim F_i, 1 \leqslant i \leqslant n \right\}$$

oraz

$$m_n(t) := \inf \left\{ P\left(\sum_{i=1}^n X_i \leqslant t\right) : X_i \sim F_i, 1 \leqslant i \leqslant n \right\},$$

gdzie supremum i infimum są brane z uwzględnieniem wszystkich możliwych zależności między zmiennymi X_i . Wówczas powyższe wzory indykują naturalną zależność

$$m_n(t) \leqslant P\left(\sum_{i=1}^n X_i \leqslant t\right) \leqslant M_n(t).$$

Na początku przedstawione zostanie twierdzenie wprowadzające tzw. standardowe ograniczenia dystrybuanty sumy zmiennych losowych. Przedstawmy najpierw dwie wykorzystywane w twierdzeniu definicje.

Definicja 8 ([5], str. 72)

Niech $t \in \mathbb{R}$. Liczbę

$$\bigwedge_{i=1}^{n} F_i(t) := \inf \left\{ \sum_{i=1}^{n} F_i(u_i) : \sum_{i=1}^{n} u_i = t \right\}$$

nazywamy minimalnym splotem dystrybuant (F_i) , zaś liczbę

$$\bigvee_{i=1}^{n} F_i(t) := \sup \left\{ \sum_{i=1}^{n} F_i(u_i) : \sum_{i=1}^{n} u_i = t \right\}$$

 $nazywamy \ maksymalnym \ splotem \ dystrybuant \ (F_i).$

Twierdzenie 2 ([5], str. 72)

Niech $X=(X_1,...,X_n)$ będzie wektorem losowym o dystrybuantach brzegowych $F_1,...,F_n$. Wówczas dla dowolnego $t \in \mathbb{R}$ zachodzą nierówności:

$$\max\left(\bigvee_{i=1}^{n} F_i(t) - (n-1), 0\right) \leqslant P\left(\sum_{i=1}^{n} X_i \leqslant t\right) \leqslant \min\left(\bigwedge_{i=1}^{n} F_i(t), 1\right).$$

Dowód.

Niech $n \in \mathbb{N}$, $t \in \mathbb{R}$ oraz niech $u_1, ..., u_n \in \mathbb{R}$ będą tak dobrane, że $\sum_{i=1}^n u_i = t$. Pokażmy najpierw, że zachodzi nierówność

$$P\left(\sum_{i=1}^{n} X_{i} \leqslant t\right) \leqslant P\left(\bigcup_{i=1}^{n} \{X_{i} \leqslant u_{i}\}\right) \tag{*}$$

Rozważmy następujące podzbiory przestrzeni \mathbb{R}^n :

$$A_1 = \{x = (x_1, ..., x_n) \in \mathbb{R}^n : x_1 + ... + x_n > u_1 + ... + u_n\}$$

$$A_2 = \{x = (x_1, ..., x_n) \in \mathbb{R}^n : \{x_1 > u_1\} \cap ... \cap \{x_n > u_n\}$$

Zauważmy, że dla pewnego małego $\epsilon > 0$ możemy dobrać następujące elementy:

$$x_1 = u_1 + \epsilon$$

$$x_1 = u_1 + \epsilon$$

:

$$x_{n-1} = u_{n-1} + \epsilon$$
$$x_n = u_n - \frac{(n-1)\epsilon}{2}.$$

Wówczas

$$x_1 + \dots + x_n = u_1 + \dots + u_n + (n-1)\epsilon - \frac{(n-1)\epsilon}{2} = u_1 + \dots + u_n + \frac{(n-1)\epsilon}{2}.$$

Widać, że $x = (x_1, ..., x_n) \in A_1$, ale $x_n < u_n$, zatem $x = (x_1, ..., x_n) \notin A_2$.

Z drugiej strony, jeżeli dla pewnego $x=(x_1,...,x_n)\in\mathbb{R}^n$ zachodzi warunek $\forall_i\ x_i>u_i$, to naturalnie $x_1+...+x_n>u_1+...+u_n$. Z powyższych wnioskujemy, że $A_2\subset A_1$ oraz $A_1\not\subset A_2$. Przechodząc do prawdopodobieństwa, mamy zatem $P(A_2)< P(A_1)$, co implikuje $P(A_1^c)< P(A_2^c)$, gdzie A_i^c oznacza dopełnienie zbioru A_i .

Przyjmując
$$A_1 = \left\{ \sum_{i=1}^n X_i > t \right\}$$
 oraz $A_2 = \bigcup_{i=1}^n \left\{ X_i > u_i \right\}$ dostajemy

$$P\left(\sum_{i=1}^{n} X_{i} \leqslant t\right) = P(A_{1}^{c}) < P(A_{2}^{c}) = P\left(\left(\bigcap_{i=1}^{n} \{X_{i} > u_{i}\}\right)^{c}\right) = P\left(\bigcup_{i=1}^{n} \{X_{i} \leqslant u_{i}\}\right).$$

Ponadto zauważmy, że

$$P\left(\bigcup_{i=1}^{n} \{X_i \leqslant u_i\}\right) \leqslant \sum_{i=1}^{n} P\left(\{X_i \leqslant u_i\}\right) = \sum_{i=1}^{n} F_i(u_i). \tag{\star } \star$$

Ograniczenie zostało pokazane dla dowolnych $u_1, ..., u_n \in \mathbb{R}$ spełniających $\sum_{i=1}^n u_i = t$. Biorąc elementy $u_1, ..., u_n \in \mathbb{R}$ minimalizujące sumę dystrybuant i korzystając z (\star) oraz $(\star\star)$ mamy więc

$$P\left(\sum_{i=1}^{n} X_i \leqslant t\right) \leqslant \min\left(\bigwedge_{i=1}^{n} F_i(t), 1\right).$$

Ograniczenie z góry zostało pokazane, pokażmy teraz ograniczenie z dołu. Udowodnimy pomocniczą nierówność

$$\sum_{i=1}^{n} F_i(t) - (n-1) \leqslant P(X_1 \leqslant u_1, ..., X_n \leqslant u_n). \tag{*'}$$

Pokażemy ją w sposób indukcyjny. Zauważmy wpierw, że dla n=2 zbiorów A_1 i A_2 zachodzi $P(A\cap B)=P(A)+P(B)-P(A\cup B)$, zatem

$$P(A \cap B) \geqslant P(A) + P(B) - 1 = P(A) + P(B) - (n-1)$$

Załóżmy, że dla dowolnego $n \in \mathbb{N}$ i zbiorów $A_1, ..., A_n$ zachodzi

$$P\left(\bigcap_{i=1}^{n} A_i\right) \geqslant \sum_{i=1}^{n} P(A_i) - (n-1). \tag{i}$$

Wówczas dla n+1 zbiorów $A_1,...,A_{n+1}$ zachodzi

$$P\left(\bigcap_{i=1}^{n+1} A_i\right) = P\left(\bigcap_{i=1}^{n} A_i \cap A_{n+1}\right) \geqslant P\left(\bigcap_{i=1}^{n} A_i\right) + P(A_{n+1}) - 1 \geqslant \sum_{i=1}^{n} P(A_i) - (n-1) + P(A_{n+1}) - 1 = \sum_{i=1}^{n+1} P(A_i) - ((n+1)-1).$$

Zatem indukcyjnie pokazaliśmy nierówność (i). Kładąc $A_i = \{X_i \leqslant u_i\}$ otrzymujemy wzór \star' . Ponadto, powtarzając rozumowanie z pierwszej części dowodu, jeżeli dla pewnego $x = (x_1, ..., x_n) \in \mathbb{R}^n$ zachodzi warunek $\forall_i \ x_i \leqslant u_i$, to naturalnie $x_1 + ... + x_n \leqslant u_1 + ... + u_n$. Stąd wynika

$$P(X_1 \leqslant u_1, ..., X_n \leqslant u_n) \leqslant P\left(\sum_{i=1}^n X_i \leqslant t\right) \tag{***}$$

Korzystając z \star ' oraz $\star\star$ ' oraz dobierając u_i maksymalizujące sumę dystrybuant otrzymujemy ograniczenie z dołu. Łącząc ograniczenia z góry i z dołu otrzymujemy tezę twierdzenia.

Należy nadmienić, że udowodnione powyżej twierdzenie jest dość ogólne - zachodzi dla dowolnej liczby zmiennych losowych oraz dla dowolnych postaci dystrybuant tych zmiennych. Wiąże się z tym pewne ograniczenie dokładności wyprowadzonych nierówności, bowiem pokazane w twierdzeniu 2 ograniczenia można polepszyć już dla $n \geqslant 3$ zmiennych, zakładając znajomość rozkładów X_i . Mimo tego ogólność zastosowania twierdzenia jest użyteczna - otrzymane wyniki można wykorzystać np. przy numerycznym poszukiwaniu wartości dystrybuanty sumy wykorzystując metodę poławiania - wówczas przedział otrzymany przy użyciu twierdzenia 2 możemy traktować jako przedział startowy algorytmu.

Okazuje się, że dla n=2 zmiennych losowych ograniczenia twierdzenia 2 są optymalne równe są odpowiednio $m_2(t)$ oraz $M_2(t)$. W kolejnym rozdziałe zostanie przedstawiony dowód tego faktu.

Rozdział 3

Maksymalny i minimalny VaR dla sumy dwóch zmiennych losowych

3.1 Ograniczenia dystrybuanty sumy dwóch zmiennych losowych

Niech zmienne losowe X_1 i X_2 mają dystrybuanty odpowiednio $F_1(x) = P(X_1 \le x)$ i $F_2(x) = P(X_2 \le x)$. Wprowadźmy ponadto dla uproszczenia zapisów $\psi_i(p) = VaR_p(X_i) = \inf\{x \in \mathbb{R} : F_i(x) \ge p\}$. Wobec oznaczeń wprowadzonych w poprzednim rozdziale można pokazać, że

$$M_2(t) = \inf_{0 \le u_1 \le t} \left\{ F_1(u_1) + F_2(t - u_1) \right\}, \tag{3.1}$$

$$m_2(t) = \sup_{0 < u_1 < t} \{ F_1(u_1) + F_2(t - u_1) \} - 1.$$
(3.2)

zakładając, że obie wartości należą do przedziału [0,1]. W tej pracy zamieszczone zostaną dowody twierdzeń dotyczących $M_2(t)$ - idee wykorzystywane przy rozważaniu $m_2(t)$ są analogiczne.

Aby pokazać (3.1), zauważmy najpierw pewną relację.

Twierdzenie 3 (własne)

Niech

$$p^* = \inf_{0 < u_1 < t} \{ F_1(u_1) + F_2(t - u_1) \}$$
(3.3)

oraz

$$\bar{c} = \sup \left\{ 0 < c < 1 : \sup_{0 < p < c} \left\{ \psi_1(p) + \psi_2(c - p) \right\} < t \right\}.$$
 (3.4)

 $W\acute{o}wczas\ p^{\star}=\bar{c}.$

 $Dow \acute{o}d$.

I. Pokażemy, że $p^* \leq \bar{c}$.

Załóżmy, że $p^* > \bar{c}$. Wówczas istnieje $\epsilon > 0$ takie, że $p^* > p^*_{\epsilon} = p^* - \epsilon > \bar{c}$. Warunek $p^*_{\epsilon} > \bar{c}$ oznacza istnienie takiego $p' \in (0, p^*_{\epsilon})$, że $\psi_1(p') + \psi_2(p^*_{\epsilon} - p') \geqslant t$.

Przypuść
my pierw, że $\psi_1(p') + \psi_2(p_{\epsilon}^{\star} - p') = t$.

Przyjmując $u_1' = \psi_1(p')$ oraz $u_2' = \psi_2(p_{\epsilon}^* - p')$ uzyskujemy $u_1' + u_2' = t$ oraz $F_1(u_1') + F_2(u_2') = p' + p_{\epsilon}^* - p' = p_{\epsilon}^* < p^*$ co przeczy definicji p^* .

Przypuśćmy, że $\psi_1(p') + \psi_2(p_{\epsilon}^{\star} - p') = t' > t$.

Ponownie, niech $u_1' = \psi_1(p')$ i $u_2' = \psi_2(p_{\epsilon}^* - p')$. Skoro t' > t to $t' - u_1' > t - u_1'$. Zatem z monotoniczności dystrybuanty

$$F_1(u_1') + F_2(t - u_1') \leqslant F_1(u_1') + F_2(t' - u_1') = p_{\epsilon}^*.$$

Z drugiej strony

$$p^* = \inf_{0 < u_1' < t} \left\{ F_1(u_1') + F_2(t - u_1') \right\} \leqslant F_1(u_1') + F_2(t - u_1'),$$

Co prowadzi do $p^{\star} \leqslant p_{\epsilon}^{\star}$, zatem sprzeczność z $p^{\star} > p_{\epsilon}^{\star}$.

II. Pokażemy, że $p^* \geqslant \bar{c}$.

Załóżmy, że $p^* < \bar{c}$. Wówczas dla dowolnego $p' \in (0, p^*)$ zachodzi $\psi_1(p') + \psi_2(p^* - p') < t$. Z drugiej strony $p^* = F_1(u_1^*) + F_2(t - u_1^*)$ dla pewnego $u_1^* \in (0, t)$, więc

$$\psi_1(p_1^*) + \psi_2(p^* - p_1^*) = t,$$

co ponownie doprowadza do sprzeczności.

Podobnie można przeprowadzić dowód twierdzenia

Twierdzenie 4 (własne)

Niech

$$p^{\star\star} = \sup_{0 < u_1 < t} \left\{ F_1(u_1) + F_2(t - u_1) \right\} - 1. \tag{3.5}$$

oraz

$$\underline{c} = \inf \left\{ 0 < c < 1 : \inf_{c < p < 1} \left\{ \psi_1(p) + \psi_2(1 + c - p) \right\} \geqslant t \right\}. \tag{3.6}$$

 $W \acute{o} w czas \ p^{\star\star} = c.$

Wnioskując z twierdzenia (3), aby pokazać (3.1) wystarczy pokazać, że $M_2(t) = \bar{c}$. Twierdzenie w takiej formie zostało udowodnione przez Makarova w 1981 roku. Dowód z uwzględnieniem prawostronnie ciągłej dystrybuanty zostanie przedstawiony poniżej.

Twierdzenie 5 ([3], str. 804)

Niech t będzie dowolną liczbą rzeczywistą. Wówczas zachodzi równość:

$$M_2(t) = \sup \left\{ 0 < c < 1 : \sup_{0 < p < c} \{ \psi_1(p) + \psi_2(c-p) \} < t \right\}.$$

Twierdzenie 6 ([3], str. 804)

Niech t będzie dowolną liczbą rzeczywistą. Wówczas zachodzi równość:

$$m_2(t) = \inf \left\{ 0 < c < 1 : \inf_{c < p < 1} \left\{ \psi_1(p) + \psi_2(1 + c - p) \right\} \ge t \right\}.$$

Przedstawmy najpierw metodę zdefiniowania zmiennej losowej θ wykorzystywaną w dowodzie. Zauważmy, że dla dowolnej zmiennej losowej X o dystrybuancie F możemy skonstruować zmienna θ w następujący sposób: gdy dla zdarzenia losowego ω zachodzi $P(X = X(\omega)) = 0$, to $\theta(\omega) = F(X(\omega))$, zaś gdy $P(X = X(\omega)) = p_i > 0$, to zmienna losowa θ jest jednostajnie określona na przedziale $[F(X(\omega)) - p_i, F(X(\omega))]$. Tak określona zmienna θ ma rozkład jednostajny na przedziale [0, 1].

Ponadto, zachodzi twierdzenie:

Twierdzenie 7 ([7], str. 111)

Niech θ będzie zmienną losową o rozkładzie jednostajnym na przedziale [0,1] niech zmienna losowa X będzie zdefiniowana jako $\psi(\theta)$, gdzie $\psi(p) = \inf\{x : F(x) \geqslant p\}$ dla pewnej dystrybuanty F. Wówczas zachodzą warunki:

- 1. $\{X \leqslant x\} = \{\theta \leqslant F(x)\}\ dla\ dowolnego\ x \in \mathbb{R}$
- 2. $X = \psi(\theta)$ ma rozkład o dystrybuancie F.

 $Dow \acute{o}d$.

Niech $x \in \mathbb{R}$ oraz $X \leqslant x$. Wówczas $\psi(\theta) \leqslant x$ czyli inf $\{t : F(t) \geqslant \theta\} \leqslant x$. To z kolei oznacza, że dla dowolnego $\epsilon > 0$ zachodzi $F(x + \epsilon) \geqslant \theta$, co z prawostronnej ciągłości dystrybuanty daje bezpośrednio $F(x) \geqslant \theta$.

Niech teraz $\theta \leqslant F(x)$ dla pewnego $x \in \mathbb{R}$. Wówczas $X = \psi(\theta) = \inf\{t : F(t) \geqslant \theta\} \leqslant x$, co dowodzi punktu 1 twierdzenia. Punkt 2 jest bezpośrednim następstwem punktu 1.

Dowód twierdzenia 4.

Niech X_1 i X_2 będą zmiennymi losowymi o dystrybuantach odpowiednio F_1 i F_2 Wprowadźmy oznaczenie

$$\bar{c} = \sup\{0 < c < 1 : \sup_{0 < p < c} \psi_1(p) + \psi_2(c-p)\} < t\}.,$$

I. Pokażemy, że $M_2(t) \geqslant \bar{c}$.

Dla zmiennej losowej X_1 skonstruujmy zmienną losową θ_1 w sposób podany wcześniej. Niech $0 \leqslant c \leqslant \bar{c}$ oraz

$$\theta_2 = \begin{cases} c - \theta_1 & \text{dla } \theta_1 < c \\ \theta_1 & \text{dla } \theta_1 \geqslant c \end{cases}$$

Zauważmy, że $\psi_2(\theta_2)$ ma rozkład o dystrybuancie F_2 . Mamy

$$P(\psi_2(\theta_2) \le y) = P(\{\psi_2(c - \theta_1) \le y\} \land \{\theta_1 < c\})$$

= $P(\{\psi_2(\theta_1) \le y\} \land \{\theta_1 \ge c\}) = P_1 + P_2.$

Zauważmy, że dla dowolnego $y \in \mathbb{R}$ zachodzi zależność

$$\{p: p < F(y)\} \subseteq \{p: \psi(p) \leqslant y\} \subseteq \{p: p \leqslant F(y)\}. \tag{*}_1$$

Istotnie, niech $y \in \mathbb{R}$ oraz p < F(y) i załóżmy, że $\psi(p) > y$. To oznaczałoby, że inf $\{x : F(x) \ge p\} > y$, czyli, że dla dowolnego x spełniającego $F(x) \ge p$ zachodzi x > y.

Zauważmy jednak, że istnieje takie $\epsilon > 0$, że $p + \epsilon < F(y)$. Niech x_1 będzie takie, że $F(x_1) = p + \epsilon$. Wówczas z jednej strony $F(x_1) = P + \epsilon > p$, zaś z drugiej $F(x_1) = p + \epsilon < F(y)$ co pociąga za sobą $x_1 \leq y$. Otrzymujemy sprzeczność z założeniem $\psi(p) > y$.

Pokażmy teraz drugie zawieranie. Niech $\psi(p) \leqslant y$ i załóżmy, że p > F(y). Warunek $\psi(p) \leqslant y$ oznacza, że istnieje takie x_1 , że $F(x_1) \geqslant p$ i $x_1 \leqslant y$. Skoro $x_1 \leqslant y$ to z własności dystrybuanty $F(x_1) \leqslant F(y)$ i finalnie $p \leqslant F(x_1) \leqslant F(y)$ co przeczy założeniu p > F(y). Powyższe rozważania dowodzą (\star_1) .

Niech $F_2(y) \leqslant c$. Korzystając z wykazanej zależności (\star_1) możemy zaprezentować poniższe nierówności:

$$P_1 = P(\{\psi_2(c - \theta_1) \le y\} \land \{\theta_1 < c\}) \le P(\{c - \theta_1 \le F_2(y)\} \land \{\theta_1 < c\})$$

= $P(c - F_2(y) \le \theta_1 < c) = c - (c - F_2(y)) = F_2(y),$

$$P_1 = P(\{\psi_2(c - \theta_1) \le y\} \land \{\theta_1 < c\}) \geqslant P(\{c - \theta_1 < F_2(y)\} \land \{\theta_1 < c\})$$

= $P(c - F_2(y) < \theta_1 < c) = c - (c - F_2(y)) = F_2(y),$

$$P_2 = P(\{\psi_2(\theta_1) \leqslant y\} \land \{\theta_1 \geqslant c\}) \leqslant P(\{\theta_1 \leqslant F_2(y)\} \land \{\theta_1 \geqslant c\}) = 0,$$

skąd otrzymujemy $P_1 + P_2 = F_2(y)$.

Niech $F_2(y) > c$. Wówczas w podobny sposób korzystając z zależności (\star_1) otrzymujemy:

$$P_1 = P(\{\psi_2(c - \theta_1) \le y\} \land \{\theta_1 < c\}) \le P(\{c - \theta_1 \le F_2(y)\} \land \{\theta_1 < c\})$$

= $P(c - F_2(y) \le \theta_1 < c) = P(\theta_1 < c) = c$,

$$P_1 = P(\{\psi_2(c - \theta_1) \le y\} \land \{\theta_1 < c\}) \geqslant P(\{c - \theta_1 < F_2(y)\} \land \{\theta_1 < c\})$$

= $P(c - F_2(y) < \theta_1 < c) = P(\theta_1 < c) = c$,

$$P_2 = P(\{\psi_2(\theta_1) \le y\} \land \{\theta_1 \ge c\}) \ge P(\{\theta_1 < F_2(y)\} \land \{\theta_1 \ge c\})$$

= $P(c \le \theta_1 \le F_2(y)) = F_2(y) - c$,

$$P_2 = P(\{\psi_2(\theta_1) \leqslant y\} \land \{\theta_1 \geqslant c\}) \leqslant P(\{\theta_1 \leqslant F_2(y)\} \land \{\theta_1 \geqslant c\})$$
$$= P(c \leqslant \theta_1 \leqslant F_2(y)) = F_2(y) - c,$$

skąd ponownie otrzymujemy $P_1 + P_2 = F_2(y)$. Finalnie oznacza to, że $P(\psi_2(\theta_2) \leq y) = F_2(y)$ dla dowolnego $y \in \mathbb{R}$, zatem $\psi_2(\theta_2) \sim F_2$. Z twierdzenia 5 wiemy również, że $\psi_1(\theta_1) \sim F_1$.

Niech zatem $c < \bar{c}$. Mamy

$$P(X_1 + X_2 \le t) = P(\psi_1(\theta_1) + \psi_2(\theta_2) \le t)$$

$$= P(\{\psi_1(\theta_1) + \psi_2(\theta_2) \le t\} \land \{\theta_1 < c\})$$

$$+ P(\{\psi_1(\theta_1) + \psi_2(\theta_2) \le t\} \land \{\theta_1 \ge c\}) = c + \tilde{P}_2 \ge c,$$

co wobec dowolności $c < \bar{c}$ daje

$$M_2(t) \geqslant \bar{c}. \tag{3.7}$$

II. Pokażemy, że $M_2(t) \leqslant \bar{c}$.

Niech $n \in \mathbb{N}$ będzie dostatecznie dużą liczbą naturalną. Wprowadźmy oznaczenia:

$$x_i = \psi_1\left(\frac{i}{n}\right); \quad y_i = \psi_2\left(\frac{i}{n}\right), \quad i = 0, 1, ..., n$$

Ponadto, niech

$$k_0 = \max\{1 \le k \le n : \max(x_i + y_{k-i+1}) \le t\}$$

Pokażemy dwie nierówności:

$$M_2(t) \leqslant \frac{k_0 + 2}{n} \text{ oraz } \frac{k_0}{n} \leqslant \bar{c} + \frac{3}{n}$$

IIa.
$$M_2(t) \leqslant \frac{k_0 + 2}{n}$$
.

Nierówność jest oczywista dla $k_0 \ge n-2$. Niech więc $k_0 \le n-3$ oraz wprowadźmy zbiory:

$$A_k = \left\{ \frac{k-1}{n} \le \theta_1 < \frac{k}{n} \right\} i \ B_k = \left\{ \frac{k-1}{n} \le \theta_2 < \frac{k}{n} \right\}, \quad k = 1, ..., n.$$

Z definicji k_0 wynika, że istnieje taki indeks i_0 , $1 \leqslant i_0 \leqslant k_0$, że $x_{i_0} + y_{k_0 - i_0 + 2} > t$. Rozważmy $r \geqslant i_0 + 1$ oraz $s \geqslant k_0 - i_0 + 3$. Wówczas widać, że na zbiorze A_r zachodzi $\theta_1 \geqslant \frac{i_0}{n}$, czyli $\psi_1(\theta_1) \geqslant x_{i_0}$, natomiast na zbiorze B_s zachodzi $\theta_2 \geqslant \frac{k_0 - i_0 + 2}{n}$, co implikuje $\psi_2(\theta_2) \geqslant y_{k_0 - i_0 + 2}$. Stąd i z możemy wnioskować, że na $A_r \cap B_s$ zachodzi $X_1 + X_2 = \psi_1(\theta_1) + \psi_2(\theta_2) \geqslant x_{i_0} + y_{k_0 - i_0 + 2} > t$. Wówczas korzystając z dopełnień zbiorów

$$\{X_1 + X_2 \leqslant t\} \subseteq (A_r \cap B_s)' = A_r' \cup B_s' = \bigcup_{i=1}^{i_0} A_i \cup \bigcup_{i=1}^{k_0 - i_0 + 2} B_i = \left\{\theta_1 < \frac{i_0}{n}\right\} \cup \left\{\theta_2 < \frac{k_0 - i_0 + 2}{n}\right\} = C.$$

Korzystając z własności prawdopodobieństwa otrzymujemy wniosek

$$P(X_1 + X_2 \le t) \le P(C) = \frac{i_0}{n} + \frac{k_0 - i_0 + 2}{n} = \frac{k_0 + 2}{n}.$$

Bezpośrednio stąd otrzymujemy $M_2(t) \leqslant \frac{k_0 + 2}{n}$.

IIb.
$$\frac{k_0}{n} \leqslant \bar{c} + \frac{3}{n}$$
.

Niech $j_0 \in \mathbb{N}$ będzie takie, że $\frac{j_0-1}{n} \leqslant \bar{c} < \frac{j_0}{n}$. Pokażemy wówczas, że $\frac{k_0}{n} \leqslant \frac{j_0-1}{n} + \frac{3}{n}$ czyli

$$k_0 \leqslant j_0 + 2. \tag{*}$$

Zauważmy, że dla $j_0 \ge n-2$ nierówność w **IIb** jest oczywista. Niech więc $1 \le j_0 \le n-3$. Istnieje taka $\delta > 0$, że $c_2 = \bar{c} + \delta < \frac{j_0}{n}$. Rozważmy dowolny indeks $0 \le i < j_0$ oraz $p \in \left[\frac{i}{n}; \frac{i+1}{n}\right]$. Mamy $c_2 - p \le \frac{j_0}{n} - \frac{i+1}{n} = \frac{j_0 - i - 1}{n}$, zatem z monotoniczności funkcji ψ

$$\psi_1(p) + \psi_2(c_2 - p) \leqslant \psi_1\left(\frac{i+1}{n}\right) + \psi_2\left(\frac{j_0 - i + 1}{n}\right)$$

 ${\bf Z}$ dowolności i mamy wówczas

$$\sup_{0$$

Jednocześnie z definicji \bar{c}

$$\sup_{0 t \tag{*}_2$$

oraz z definicji k_0

$$\max_{1 \leqslant i \leqslant k_0} (x_i + y_{k_0 - i + 1}) \leqslant t. \tag{*_3}$$

Łącząc nierówności \star_1 , \star_2 i \star_3 dostajemy

$$\max_{1 \le i \le k_0} (x_i + y_{k_0 - i + 1}) < \max_{1 \le i \le j_0} (x_i + y_{j_0 - i + 2}) = x_{l_0} + y_{j_0 - l_0 + 2}. \tag{*4}$$

dla pewnego $1 \leq l_0 \leq j_0$.

Jeśli $k_0 \leqslant j_0$ to $k_0 \leqslant j_0 + 2$ co dowodzi \star .

Jeśli $k_0 \geqslant j_0 + 1$ to zauważmy, że z \star_4

$$x_{l_0} + y_{k_0 - l_0 + 1} < x_{l_0} + y_{j_0 - l_0 + 2} \Rightarrow k_0 < j_0 + 1$$

co przeczy założeniu, że $k_0 \geqslant j_0 + 1$. Zatem zachodzi \star i bezpośrednio stąd mamy prawdziwość **IIb**.

Z IIa oraz IIb dostajemy

$$M_2(t) \leqslant \frac{k_0}{n} + \frac{2}{n} \leqslant \bar{c} + \frac{3}{n} + \frac{2}{n} = \bar{c} + \frac{5}{n}$$
 (3.8)

co z dowolności $n \in \mathbb{N}$ daje ostatecznie II. Z I i II otrzymujemy tezę twierdzenia. \square

3.2 Postać maksymalnego i minimalnego VaR

Z twierdzenia udowodnionego w poprzednim rozdziałe możemy wywnioskować postać VaR dla sumy dwóch zmiennych losowych. Wprowadźmy analogiczne oznaczenia

do tych z rozdziału 2. Niech $p \in (0,1)$ i $S_n = X_1 + ... + X_n$. Oznaczmy

$$\overline{VaR}_{p}(S_{n}) := \sup \left\{ VaR_{p}(S_{n}) : X_{i} \sim F_{i}, 1 \leqslant i \leqslant n \right\}, \tag{3.9}$$

$$\underline{VaR}_{p}(S_{n}) := \inf \left\{ VaR_{p}\left(S_{n}\right) : X_{i} \sim F_{i}, 1 \leqslant i \leqslant n \right\}, \tag{3.10}$$

Wówczas prawdziwy jest poniższy wniosek

Wniosek z twierdzeń 5 i 6 ([8], str. 14)

Dla dowolnego $p \in (0,1)$ zachodzą zależności

$$\overline{VaR}_p(X_1 + X_2) = \inf_{x \in [0, 1-p]} \{ F_1^{-1}(p+x) + F_2^{-1}(1-x) \}$$
(3.11)

oraz

$$\underline{VaR}_{p}(X_{1} + X_{2}) = \sup_{x \in [0,p]} \{F_{1}^{-1}(x) + F_{2}^{-1}(p - x)\}.$$
(3.12)

Obserwacją z powyższego wniosku jest fakt, że gdy współczynnik korelacji pomiędzy zmiennymi X_1 i X_2 wynosi $\rho=1$ (pełna komonotoniczność pomiędzy zmiennymi), to VaR niekoniecznie jest maksymalizowany. Prezentacją tej zależności może być przykład dotyczący dwóch zmiennych o rozkładzie normalnym. Zauważmy wpierw, że zachodzi twierdzenie

Twierdzenie 8 ([9], str. 52)

Niech X będzie zmienną losową o rozkładzie normalnym ze średnią μ oraz wariancją σ^2 o gestości

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right].$$

Wówczas dla dowolnego $p \in (0,1)$ zachodzi

$$VaR_p(X) = \mu + \sigma\Phi^{-1}(p).$$

 $Dow \acute{o}d$.

Korzystając bezpośrednio z definicji VaR oraz standaryzacji zmiennej losowej otrzy-

mujemy ciąg zależności

$$VaR_{p}(X) = \inf \left\{ x \in \mathbb{R} : P(X \leqslant x) \geqslant p \right\}$$

$$= \inf \left\{ x \in \mathbb{R} : P\left(\frac{X - \mu}{\sigma} \leqslant \frac{x - \mu}{\sigma}\right) \geqslant p \right\}$$

$$= \inf \left\{ x \in \mathbb{R} : \Phi\left(\frac{x - \mu}{\sigma}\right) \geqslant p \right\}$$

$$= \inf \left\{ x \in \mathbb{R} : \frac{x - \mu}{\sigma} \geqslant \Phi^{-1}(p) \right\}$$

$$= \inf \left\{ x \in \mathbb{R} : x \geqslant \mu + \sigma \Phi^{1}(p) \right\} = \mu + \sigma \Phi^{1}(p)$$

Przykład 1.

Niech zmienne losowe X_1, X_2 mają rozkład normalny z wartością oczekiwaną 0 oraz wariancją równą 1. Oznaczmy dystrybuanty tych zmiennych losowych jako F_1, F_2 . Niech p = 0, 95.

Bazując na wzorze (2.2), wprowadźmy funkcję g określoną wzorem:

$$g(x) = F_1^{-1}(0,95+x) + F_2^{-1}(1-x).$$

Interesuje nas minimum tej funkcji w przypadku, gdy $x \in [0; 0, 05]$.

Widzimy, że minimum tej funkcji jest osiągane dla x = 0,025 i wynosi:

$$g(0.025) = F_1^{-1}(0,975) + F_2^{-1}(0,975) = 2 \cdot F_1^{-1}(0,975) = 2 \cdot 1,959964 = 3,919928.$$

Zatem $\overline{VaR}_{0,95}(X_1 + X_2) = 3,919928.$

Z drugiej strony, suma $X_1 + X_2$ ma rozkład $N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2 + 2\rho\sigma_1\sigma_2)$ dla $X_1 \sim N(\mu_1, \sigma_1^2)$ i $X_2 \sim N(\mu_2, \sigma_2^2)$ oraz korelacji ρ pomiędzy nimi. Wobec tego dla $X_1, X_2 \sim N(0, 1)$ i $\rho = 1$ z poprzedniego twierdzenia dostajemy

$$VaR_{0.95}(X_1 + X_2) = \sqrt{4} \cdot \Phi^{-1}(0.95) = 2 \cdot 1,6449 = 3,2898.$$

Co za tym idzie, pełna komonotoniczność liniowa nie jest przypadkiem, w którym otrzymujemy maksymalny VaR sumy.

Bibliografia

- [1] Gajek L, Kałuszka M.: Wnioskowanie statystyczne, WNT, Warszawa 1996.
- [2] Jakubowski J.: Modelowanie rynków finansowych, Script, Warszawa 2006.
- [3] Jakubowski J., Sztencel R.: Rachunek prawdopodobieństwa dla (prawie) każdego, Script, Warszawa 2002.
- [4] Artzner P., Eber J., Delbaen F., Heath D.: Coherent Measures of Risk, Mathematical Finance 9(3):203-228, 1999.
- [5] Makarov G.D: Estimates for the distribution function of a sum of two random variables when the marginal distribution are fixed, Theory of Probability & Its Applications: Vol. 26, No. 4,1982.
- [5] Ruschendorf L., Mathematical Risk Analysis, Springer, Berlin 2013.
- [6] McNeil J. A., Frey R., Embrechts P., Quantitative Risk Management: Concepts, Techniques and Tools, Princeton University Press, 2005.
- [7] Shorack R. Galen, *Probability for Statisticians*, Springer-Verlag New York, 2000.
- [8] Embrechts P, Risk Aggregation under Dependence Uncertainty Challenges in Theory and Practice, Selected talk presentation, 2014.
- [9] Panjer H.H., Operational Risk: Modeling Analytics, John Wiley and Sons, 2006.