(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001 年2 月15 日 (15.02.2001)

PCT

(10) 国際公開番号 WO 01/10439 A1

(51) 国際特許分類?: A61K 31/40, 31/4025, 31/445, 31/4468, 31/4525, 31/4535, 31/454, 31/422, 31/404, 31/4155, 31/4245, 31/5377, 31/4545, 31/4709, 31/4184, 31/427, 31/506, 31/433, 31/423, 31/4192, 31/429, 31/53, A61P 37/08, 29/00, 31/18, 11/08, 43/00 // C07D 207/14, 211/56, 211/58, 211/26, 401/04, 401/06, 401/12, 401/14, 403/06, 403/12, 405/06, 405/12, 405/14, 409/12, 409/14, 413/06, 413/14, 417/06, 487/04, 495/06, 495/04, 513/04

(21) 国際出願番号:

PCT/JP00/05260

(22) 国際出願日:

2000年8月4日 (04.08.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願平11/220864 1999 年8 月4 日 (04.08.1999)

(71) 出願人 (米国を除く全ての指定国について): 帝人株 式会社 (TEIJIN LIMITED) [JP/JP]; 〒541-0054 大阪府 大阪市中央区南本町1丁目6番7号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 塩田辰樹 (SH-IOTA, Tatsuki) [JP/JP]; 〒191-0065 東京都日野市旭が丘4丁目3番2号 帝人株式会社 東京研究センター内 Tokyo (JP). 須藤正樹 (SUDOH, Masaki) [JP/JP]; 〒475-0837 愛知県半田市有楽町7丁目106-1 ユートピアタウン112D Aichi (JP). 横山朋典 (YOKOYAMA,

Tomonori) [JP/JP]. 室賀由美子 (MUROGA, Yumiko) [JP/JP]. 上村 孝 (KAMIMURA, Takashi) [JP/JP]. 中西顕伸 (NAKANISHI, Akinobu) [JP/JP]; 〒191-0065 東京都日野市旭が丘4丁目3番2号 帝人株式会社 東京研究センター内 Tokyo (JP).

- (74) 代理人: 前田純博(MAEDA, Sumihiro); 〒100-0011 東京都千代田区内幸町2丁目1番1号 帝人株式会社 知的財産センター内 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: CYCLIC AMINE CCR3 ANTAGONISTS

(54) 発明の名称: 環状アミンCCR3拮抗剤

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow R^{4} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array} (I)$$

(57) Abstract: Drugs containing as the active ingredient cyclic amine derivatives represented by general formula (I), pharmaceutically acceptable acid addition salts thereof or pharmaceutically acceptable C_{1.6} alkyl adducts thereof. These drugs are efficacious in preventing and treating diseases in which CCR3 participates such as asthma and allergic rhinitis.

(57) 要約:

下記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分として含有する医薬。喘息、アレルギー性鼻炎などのCCR3が関与する疾患を治療、予防する作用を有する。

明細書

環状アミンCCR3拮抗剤

5 技術分野

本発明は、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮 商炎、およびアレルギー性結膜炎などのアレルギー性疾患、潰瘍性大腸炎およびク ローン病などの炎症性腸疾患、好酸球増加症、好酸球性胃腸炎、好酸球増加性腸症 、好酸球性筋膜炎、好酸球性肉芽腫、好酸球性膿疱性毛包炎、好酸球性肺炎、およ び好酸球性白血病など、好酸球、好塩基球、活性化T細胞などの増加、組織への浸 潤が病気の進行、維持に主要な役割を演じている疾患、またはHIV(ヒト免疫不 全ウイルス)の感染に起因するエイズ(AIDS:後天性免疫不全症候群)に対す る治療薬および/または予防薬として効果が期待できるCCR3拮抗剤に関する。

15 背景技術

10

20

近年、気管支喘息などのアレルギー性疾患の本質的な病態は慢性炎症であるという概念が確立され、なかでも好酸球の炎症局所への集積がその大きな特徴の一つとしてとらえられている(例えば、Busse, W. W. J. Allergy Clin. Immunol., 1998, 102, S17-S22; 藤澤隆夫, 現代医療, 1999, 31, 1297など参照)。例えば、サルの喘息モデルにおいて抗接着分子(I C A M - 1)抗体を投与することにより、好酸球の集積が抑えられ、遅発型の喘息症状発現が抑制されることからもアレルギー性疾患における好酸球の重要性が強く示唆されている(Wegner, C. D. et al., Science, 1990, 247, 456)。

この好酸球の集積/遊走を引き起こす特異的走化因子としてエオタキシンが同定された(例えば、Jose, P. J., et al., J. Exp. Med., 1994、179, 881; Garcia-Zepda, E. A. et al., Nature Mcd., 1996, 2, 449; Ponath, P. D. et al., J. Clin. Invest., 1996, 97, 604; Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725など参照)。さらに、エオタキシンは好酸球上に発現しているCCR3レセプターに結合し作用を発現することが解明され、また、エオタキシンー2、RANTES(regulated upon activation normal T-cell expressed and secretedの略称)、MCP-2(monocyte chemoattractant protein-2の略称)、MCP-3(

monocyte chemoattractant protein—3の略称)、MCP—4 (monocyte chemoatt ractant protein—4の略称) などの走化性因子もエオタキシンよりも作用強度は弱いもののCCR3を介してエオタキシンと同様の作用を示し得ることが知られている (例えば、Kitaura、M. et al., J. Biol. Chem., 1996, 271, 7725; Daugherty、B. L. et al., J. Exp. Med., 1996, 183, 2349; Ponath, P. D. et al., J. Exp. Med., 1996, 183, 2349; Ponath, P. D. et al., J. Exp. Med., 1996, 183, 2437; Hiath, H. et al., J. Clin. Invest., 1997, 99, 178; Patel, V. P. et al., J. Exp. Med., 1997, 185, 1163; Forssmann, U. et al., J. Exp. Med. 185, 2171, 1997など参照)。

5

10

15

エオタキシンの好酸球への作用は、遊走惹起のみでなく、接着分子受容体(CD11b)の発現増強(例えば、Tenscher, K. et al., Blood, 1996, 88, 3195など参照)、活性酸素の産生促進(例えば、Elsner, J. et al., Eur. J. Immunol., 1996, 26, 1919など参照)、EDN (eosinophil-derived neurotoxineの略称)の放出促進(El-Shazly, et al., Int. Arch. Allergy Immunol., 1998, 117 (suppl. 1), 55参照)など、好酸球の活性化に関する作用も報告されている。また、エオタキシンは骨髄からの好酸球およびその前駆細胞の血中への遊離を促進する作用を有することも報告されている(例えば、Palframan, R. T. et al., Blood, 1998, 91, 2240など参照)。

エオタキシンおよびCCR3が気管支喘息などのアレルギー性疾患において重要 な役割を演じていることが、多くの報告により示されている。例えば、マウス喘息 モデルにおいて抗エオタキシン抗体により好酸球浸潤が抑制されること(Gonzalo, 20 J.-A. et al., J. Clin. Invest., 1996, 98, 2332参照)、マウス皮膚アレルギー モデルにおいて抗エオタキシン抗血清により好酸球浸潤が抑制されること(Teixeir a, M. M. et al., J. Clin. Invest., 1997, 100, 1657) 、マウスモデルにおいて 抗工オタキシン抗体が肺肉芽腫の形成を抑制すること(Ruth, J. H. et al., J. I mmunol., 1998, 161, 4276参照)、エオタキシン遺伝子欠損マウスを用いた喘息モ 25 デルおよび間質性角膜炎モデルにおいて好酸球の浸潤が抑制されること(Rothenber g, M. E. et al., J. Exp. Med., 1997, 185, 785参照)、喘息患者の気管支では健 常者に比べエオタキシンおよびCCR3の発現が、遺伝子レベル、蛋白レベルとも に亢進していること (Ying, S. et al., Eur. J. Immunol., 1997, 27, 3507参照) 、慢性副鼻腔炎患者の鼻上皮下組織ではエオタキシンの発現が亢進していること(A 30 m. J. Respir. Cell Mol. Biol., 1997, 17, 683参照)などが報告されている。

WO 01/10439 PCT/JP00/05260

また、炎症性大腸疾患である潰瘍性大腸炎およびクローン病の炎症部位において、エオタキシンが多く発現していることが報告されていることから(Garcia-Zepda, E. A. et al., Nature Med., 1996, 2, 449参照)、これらの疾患においてもエオタキシンが重要な役割を担っていることがわかる。

5 これらのデータから、エオタキシンは、CCR3を介して好酸球を病変部位に集積、活性化することにより、好酸球が病変の進展に深く関わっていると想定され得る疾患、例えば、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、潰瘍性大腸炎およびクローン病などの炎症性腸疾患、好酸球増加症、好酸球性胃腸炎、好酸球増加性 間に、好酸球性筋膜炎、好酸球性肉芽腫、好酸球性膿疱性毛包炎、好酸球性肺炎、および好酸球性白血病などの発症、進展、維持に深く関与していることが強く示唆されている。

さらに、CCR3レセプターは好酸球のみならず好塩基球、Th2リンパ球上にも発現しており、エオタキシンによりこれらの細胞の細胞内カルシウムイオン濃度上昇および細胞遊走が惹起されることが報告されていることから、エオタキシンおよびCCR3は、これらの細胞を集積させ、活性化することによってもアレルギー性疾患など、これらの細胞が関与する疾患の発症、進展、維持に関わっていると考えられる(例えば、Sallusto, F. et al., Science, 1997, 277, 2005; Gerber, B. O. et al., Current Biol., 1997, 7, 836; Sallusto, F. et al., J. Exp. Med., 1998, 187, 875; Uguccioni, M. et al., J. Clin. Invest., 1997, 100, 1137; Yamada, H. et al., Biochem Biophys. Res. Commun., 1997, 231, 365など参照)。

15

20

25

30

したがって、エオタキシンのCCR3に対する結合を阻害する化合物、すなわち、CCR3拮抗剤は、エオタキシンに代表されるCCR3のリガンドの標的細胞への作用を阻害することにより、アレルギー性疾患、炎症性腸疾患などの疾患の治療薬および/または予防薬として有用であるといえるが、そのような作用を有する薬剤は現在知られてない。

また、HIV-1 (ヒト免疫不全ウイルス-1)が宿主細胞に感染する際にCCR3を利用することも報告されていることから、CCR3拮抗剤はHIVウイルス感染に起因するエイズ (AIDS:後天性免疫不全症候群)の治療薬もしくは予防薬としても有用であると考えられる(例えば、et al., Choe, H. et al., Cell, 19

WO 01/10439 PCT/JP00/05260

4

96. 85, 1135; Doranz, B. J. et al., Cell, 1996, 85, 1149参照)。

最近、キサンテン-9-カルボキサミド誘導体(W09804554参照)、ピペラジンまたはピペリジン誘導体(EP903349; W00029377; W00031033; W00035449; W00035451; W00035452; W00035453; W00035454; W00035876; W00035877参照)、ピロリジン誘導体(W00031032参照)、フェニルアラニン誘導体(W09955324; W099553300; W00004003; W00027800; W00027835; W00027843参照)、およびその他の低分子化合物(W09802151参照)が、CCR3レセプターに対する拮抗活性を有することが報告されている。しかしながら、これらの化合物は、本発明で用いる化合物とは異なる。また、本発明で用いる化合物は、W09925686に記載されている化合物と同一のものであるが、これらの化合物がCCR3レセプターに対する拮抗活性を有することは知られていない。

発明の開示

5

10

したがって、本発明の目的は、エオタキシンなどのCCR3のリガンドが標的細 15 胞上のCCR3に結合することを阻害する活性を有する低分子化合物を提供することである。

本発明のさらなる目的は、CCR3拮抗剤を用いて、エオタキシンなどのCCR3のリガンドが標的細胞上のCCR3に結合することが病因の一つであるような疾患の治療法および/または予防法を提供することである。

20 本発明者らは、鋭意研究を重ねた結果、アリールアルキル基を有する環状アミン誘導体、その薬学的に許容し得る $C_1 \sim C_6$ アルキル付加体、または薬学的に許容され得る酸付加体が、エオタキシンなどのCCR3のリガンドの標的細胞に対する結合を阻害する活性を有することを発見し、さらにはそれらの化合物がCCR3が関与すると考えられる疾患の治療薬もしくは予防薬となり得ることを知見して、さらに研究を進めた結果、本発明を完成した。

すなわち、本発明によれば、下記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 - C_6$ アルキル付加体を有効成分とする、CCR3拮抗作用を有する薬剤が提供される。

WO 01/10439 PCT/JP00/05260

5

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6} \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(1)

5

[式中、R¹はフェニル基、C₃-C₃シクロアルキル基、またはヘテロ原子として酸 素原子、硫黄原子、および/もしくは窒素原子を1~3個有する芳香族複素環基を 表し、上記R¹におけるフェニル基または芳香族複素環基は、ベンゼン環、またはへ テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1~3個有する 10 芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R¹におけるフ エニル基、Co~Coシクロアルキル基、芳香族複素環基、または縮合環は、任意個 のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモ イル基、C,-C。アルキル基、C。-C。シクロアルギル基、C。-C。アルケニル基 、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_3 - C_5$ アルキレン基、 C_2 15 -C₄アルキレンオキシ基、C₁-C₃アルキレンジオキシ基、フェニル基、フェノキ シ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、C, -C₂アルカノイル基、C₂-C₂アルコキカルボニル基、C₂-C₇アルカノイルオ キシ基、C,-C,アルカノイルアミノ基、C2-C7N-アルキルカルバモイル基、 C₄-C₆N-シクロアルキルカルバモイル基、C₁-C₆アルキルスルホニル基、C 20 。- C。(アルコキシカルボニル) メチル基、N-フェニルカルバモイル基、ピペリ ジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカルボニル基、式 :-NH(C=O)O-で表される2価基、式:-NH(C=S)O-で表される 2価基、アミノ基、モノ(C₁-C₆アルキル)アミノ基、もしくは、ジ(C₁-C₆ アルキル) アミノ基で置換されていてもよく、これらのフェニル基、C3-C8シク 25 ロアルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲ ン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、C1-C6アルキル基、 もしくはC,-C6アルコキシ基によって置換されていてもよい。

 R^2 は、水素原子、 $C_1 - C_6$ アルキル基、 $C_2 - C_7$ アルコキシカルボニル基、ヒ 30 ドロキシ基、またはフェニル基を表し、 R^2 における $C_1 - C_6$ アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 $C_1 - C_6$ アルキル基、もしくは

 $C_1 - C_6$ アルコキシ基によって置換されていてもよい。ただし、j = 0 のときは R^2 はヒドロキシ基ではない。

jは0-2の整数を表す。

kは0-2の整数を表す。

5 mは2-4の整数を表す。

nは0または1を表す。

 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい C_1-10 C_6 アルキル基を表す。

R⁴およびR5は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、 またはC₁-C₆アルキル基を表し、R⁴およびR⁵におけるC₁-C₆アルキル基は、 任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カ ルバモイル基、メルカプト基、グアニジノ基、 $C_3 - C_8$ シクロアルキル基、 $C_1 - C_8$ 『アルコキシ基、C』-C。アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基 15 、C1-C5アルキル基、C1-C5アルコキシ基、もしくはベンジルオキシ基によっ て置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジ ルオキシカルボニル基、C₂-C₇アルカノイル基、C₂-C₇アルコキシカルボニル 基、 $C_2 - C_7$ アルカノイルオキシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_2 - C_7$ N -アルキルカルバモイル基、C₁-C6アルキルスルホニル基、アミノ基、モノ(C1 -C₆アルキル)アミノ基、ジ(C₁-C₆アルキル)アミノ基、もしくは(ヘテロ原 子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族 複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換され ていてもよく、あるいは、R⁴およびR⁵は、いっしょになって3-6員環状炭化水 素を形成していてもよい。 25

pは0または1を表す。

q は 0 または 1 を表す。

Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-N$ 30 R^7- 、-NH-CO-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 と

されていてもよい。]

30

いっしょになってC。-C。アルキレン基を形成していてもよい。

R⁶は、フェニル基、C₃-C₈シクロアルキル基、C₃-C₆シクロアルケニル基 、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒 素原子を1-3個有する芳香族複素環基を表し、上記R⁶におけるフェニル基、ベン ジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子 、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合し て縮合環を形成していてもよく、さらに上記R⁶におけるフェニル基、C₃-C₈シク ロアルキル基、C₃-C₆シクロアルケニル基、ベンジル基、芳香族複素環基、また は縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニ 10 トロ基、チオシアナト基、カルボキシル基、カルバモイル基、トリフルオロメチル 基、C,-C,アルキル基、C,-C,シクロアルキル基、C,-C,アルケニル基、C $_1 - C_6$ アルコキシ基、 $C_3 - C_8$ シクロアルキルオキシ基、 $C_1 - C_6$ アルキルチオ基 、С₁-С₃アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基 、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、 15 3-フェニルウレイド基、C₂-C₁アルカノイル基、C₂-C₁アルコキシカルボニ ル基、C。-C,アルカノイルオキシ基、C。-C,アルカノイルアミノ基、C。-C, N-アルキルカルバモイル基、C₁-C₆アルキルスルホニル基、フェニルカルバモ イル基、N, N-ジ (C_1-C_6 アルキル)スルファモイル基、アミノ基、モノ (C_1 -C₆アルキル)アミノ基、ジ(C₁-C₆アルキル)アミノ基、ベンジルアミノ基、 $C_9 - C_7$ (アルコキシカルボニル) アミノ基、 $C_1 - C_6$ (アルキルスルホニル) ア 20 ミノ基、もしくはビス(C₁-C₆アルキルスルホニル)アミノ基により置換されて いてもよく、これらのフェニル基、C3-Cgシクロアルキル基、C3-Cgシクロア ルケニル基、ペンジル基、芳香族複素環基、または縮合環の置換基は、さらに任意 個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、 25 $C_1 - C_6$ アルキル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、モノ($C_1 - C_6$ $C_1 - C_6$ $C_1 - C_6$ 」-C₆アルキル)アミノ基、またはジ(C₁-C₆アルキル)アミノ基によって置換

さらに、本発明によれば、上記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3が関与する疾患の治療薬もしくは予防薬が提供される。

ここに、上記式(I)で表される化合物は、エオタキシンなどのCCR3レセプ

ターのリガンドが標的細胞に結合することを阻害する活性、およびエオタキシンなどのCCR3のリガンドの標的細胞への生理的作用を阻害する活性を有する。すなわち、上記式(I)で表される化合物はCCR3拮抗剤である。

5 発明を実施するための最良の形態

上記式(I)において、 R^1 はフェニル基、 $C_3 - C_8$ シクロアルキル基、またはへ テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する 芳香族複素環基を表し、上記R¹におけるフェニル基または芳香族複素環基は、ベン ゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子 を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに 10 上記R¹におけるフェニル基、C₃-C₈シクロアルキル基、芳香族複素環基、または 縮合環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキ シル基、カルバモイル基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 C_2 $-C_6$ アルケニル基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、 C_3 - C_5 アルキレン基、C₂-C₄アルキレンオキシ基、C₁-C₃アルキレンジオキシ基、フ 15 エニル基、フェノキシ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベン ゾイルアミノ基、C₂-C₇アルカノイル基、C₂-C₇アルコキカルボニル基、C₉ $-C_7$ アルカノイルオキシ基、 C_2 - C_7 アルカノイルアミノ基、 C_2 - C_7 N-アル キルカルバモイル基、 $C_4 - C_9 N - シクロアルキルカルバモイル基、<math>C_1 - C_6 アル$ キルスルホニル基、C₃-C₈(アルコキシカルボニル)メチル基、N-フェニルカ 20 ルバモイル基、ピペリジノカルボニル基、モルホリノカルボニル基、1-ピロリジ ニルカルボニル基、式:-NH(C=O)O-で表される2価基、式:-NH(C =S) O-で表される2価基、アミノ基、モノ (C₁-C₅アルキル) アミノ基、も しくはジ (C1-C6アルキル) アミノ基で置換されていてもよい。

R 「における「 C_3-C_8 シクロアルキル基」とは、例えばシクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基などの環状のアルキル基を意味し、その好適な具体例としては、シクロプロピル基、シクロペンチル基、およびシクロヘキシル基などが挙げられる。

R¹における、「ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原 30 子を1-3個有する芳香族複素環基」とは、例えば、チエニル、フリル、ピロリル 、イミダゾリル、ピラゾリル、オキサゾリル、イソオキサゾリル、チアゾリル、イ

ソチアゾリル、ピリジル、ピリミジニル、トリアジニル、トリアゾリル、オキサジアゾリル(フラザニル)、チアジアゾリル基などの芳香族複素環基を意味し、その好適な具体例としては、チエニル、フリル、ピロリル、イソオキサゾリル、およびピリジル基などが挙げられる。

5 R¹における「縮合環」とは、上記フェニル基または芳香族複素環基が、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と可能な任意の位置で縮合して形成される2環式芳香族複素環基を意味し、その好適な具体例としては、ナフチル、インドリル、ベンゾフラニル、ベンゾチエニル、キノリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾトリアゾリル、ベンゾオキサジアゾリル(ベンソフラザニル)、およびベンゾチアジアゾリル基などが挙げられる。

なかでもR¹は、フェニル基、チエニル基、ピラゾリル基、イソオキサゾリル基、ベンゾフラニル基、またはインドリル基である場合が特に好ましい。

 R^{-1} におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮 15 合環の置換基としての「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、 ョウ素原子などを意味する。

 R^1 の置換基としての「 C_1-C_6 アルキル基」とは、例えばメチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ペンチル、n-ペプチル、n-ペンチル、n-ペンチル、n-ペンチル、n-ペンチル、イソプロピル、イソブチル、n-ペンチル

 R^1 の置換基としての「 C_3-C_8 シクロアルキル基」とは、前記 R^1 における「 C_3-C_8 シクロアルキル基」の定義と同様であり、その好適な具体例も同じ基を挙げることができる。

 R^1 の置換基としての「 C_2-C_6 アルケニル基」とは、例えば、ビニル、アリル、1-プロペニル、2-プテニル、3-プテニル、2-メチル-1-プロペニル、4-ペンテニル、5-ヘキセニル、4-メチル-3-ペンテニル基などの C_2-C_6 の 直鎖または分枝状のアルケニル基を意味し、その好適な具体例としては、ビニル基 および2-メチル-1-プロペニル基などが挙げられる。

15

20

 R^1 の置換基としての「 C_1-C_6 アルコキシ基」とは、前記 C_1-C_6 アルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、メトキシ基、エトキシ基などが挙げられる。

 R^1 の置換基としての「 $C_1 - C_6$ アルキルチオ基」とは、前記 $C_1 - C_6$ アルキル基とチオ基とからなる基を意味し、その好適な具体例としては、メチルチオ基、エチルチオ基などが挙げられる。

 R^1 の置換基としての「 C_3-C_5 アルキレン基」とは、例えば、トリメチレン、テトラメチレン、ペンタメチレン、および1-メチルトリメチレン基などの C_3-C_5 の2価のアルキレン基を意味し、その好適な具体例としては、トリメチレン基、テトラメチレン基などが挙げられる。

 R^1 の置換基としての「 C_2-C_4 アルキレンオキシ基」とは、例えば、エチレンオキシ($-CH_2CH_2O-$)、トリメチレンオキシ($-CH_2CH_2CH_2O-$)、テトラメチレンオキシ($-CH_2CH_2CH_2CH_2CH_2O-$)、1,1-ジメチルエチレンオキシ($-CH_2C$ (CH_3) $_2O-$)基などの、 C_2-C_4 の2価アルキレン基とオキシ基とからなる基を意味し、その好適な具体例としては、エチレンオキシ基、トリメチレンオキシ基などが挙げられる。

 R^1 の置換基としての「 C_1-C_3 アルキレンジオキシ基」とは、例えばメチレンジオキシ($-OCH_2O-$)、エチレンジオキシ($-OCH_2CH_2O-$)、トリメチレンジオキシ($-OCH_2CH_2CH_2O-$)、プロピレンジオキシ($-OCH_2CH$ (CH_3)O-)基などの C_1-C_3 の2価アルキレン基と2個のオキシ基とからなる基を意味し、その好適な具体例としては、メチレンジオキシ基、エチレンジオキシ基などが挙げられる。

 R^1 の置換基としての「 C_2 - C_7 アルカノイル基」とは、例えば、アセチル、プロパノイル、プタノイル、ペンタノイル、ヘキサノイル、ヘプタノイル、イソブチリ25 ル、3-メチルブタノイル、2-メチルブタノイル、ピバロイル、4-メチルペンタノイル、3, 3-ジメチルプタノイル、5-メチルヘキサノイル基などの C_2 - C_7 の直鎖または分枝状のアルカノイル基を意味し、その好適な具体例としては、アセチル基などが挙げられる。

 R^1 の置換基としての「 C_2 - C_7 アルコキシカルボニル基」とは、前記 C_1 - C_6 30 アルコキシ基とカルボニル基とからなる基を意味し、その好適な具体例としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルカノイルオキシ基」とは、前記 C_2-C_7 アルカノイル基とオキシ基とからなる基を意味し、その好適な具体例としてはアセチルオキシキ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルカノイルアミノ基」とは、前記 C_2-C_7 ア ルカノイル基とアミノ基とからなる基を意味し、その好適な具体例としては、アセチルアミノ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルキルカルバモイル基」とは、前記 C_1-C_6 アルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-メチルカルバモイル基、N-エチルカルバモイル基などが挙げられる。

 R^1 の置換基としての「 C_4-C_9 $N-シクロアルキルカルバモイル基」とは、前記<math>C_3-C_8$ シクロアルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-シクロペンチルカルバモイル基、<math>N-シクロペキシルカルバモイル基などが挙げられる。

 R^1 の置換基としての「 $C_1 - C_6$ アルキルスルホニル基」とは、前記 $C_1 - C_6$ アルキル基とスルホニル基とからなる基を意味し、その好適な具体例としては、メチルスルホニル基などが挙げられる。

 R^1 の置換基としての「 C_3-C_8 (アルコキシカルボニル)メチル基」とは、前記 C_2-C_7 アルコキシカルボニル基とメチル基とからなる基を意味し、その好適な具 体例としては、メトキシカルボニルメチル基、エトキシカルボニルメチル基などが 挙げられる。

 R^1 の置換基としての「モノ(C_1 - C_6 アルキル)アミノ基」とは、前記 C_1 - C_6 アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、メチルアミノ基、エチルアミノ基などが挙げられる。

 R^1 の置換基としての「ジ(C_1-C_6 アルキル)アミノ基」とは、同一または異なった2つの前記 C_1-C_6 アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、ジメチルアミノ基、ジエチルアミノ基、N-エチル- N- チルアミノ基などが挙げられる。

上記の中でも、 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素 環基、または縮合環の置換基としては、ハロゲン原子、ヒドロキシ基、 $C_1 - C_6$ ア ルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ 基、 $C_3 - C_5$ アルキレン基、 $C_2 - C_4$ アルキレンオキシ基、メチレンジオキシ基、

20

25

フェニル基、N-フェニルカルバモイル基、アミノ基、およびジ(C_1 - C_6 アルキル)アミノ基を特に好ましい具体例として挙げることができる。特に好ましくは、ハロゲン原子、ヒドロキシ基、 C_1 - C_6 アルキル基、 C_1 - C_6 アルキルチオ基、メチレンジオキシ基、およびN-フェニルカルバモイル基を挙げることができる。

さらに、 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい。ここで、ハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ基を好適な具体例として挙げることができる。

上記式(I)において、 R^2 は、水素原子、 C_1-C_6 アルキル基、 C_2-C_7 アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、 R^2 における C_1-C_6 アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい。ただし、j=0のときは、 R^2 はヒドロキシ基ではない。

 R^2 における C_1 - C_6 アルキル基および C_2 - C_7 アルコキシカルボニル基は、 R^1 におけるフェニル基、 C_3 - C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基についてそれぞれ定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^2 における C_1-C_6 アルキル基またはフェニル基の置換基としてのハロゲン原子、 C_1-C_6 アルキル基および C_1-C_6 アルコキシ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基または縮合環の置換基について定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

なかでもR²は、水素原子を表す場合が特に好ましい。

上記式(I) において、jは0-2の整数を表す。jは0である場合が特に好ましい。

30 上記式 (I) において、kは0-2の整数を表し、mは2-4の整数を表す。なかでもkが0でmが3である場合の2-置換ピロリジン、kが1でmが2である場

合の3-置換ピロリジン、kが1でmが3である場合の3-置換ピペリジン、kが2でmが2である場合の4-置換ピペリジン、またはkが1でmが4である場合の3-置換ヘキサヒドロアゼピンが好ましい。特に好ましくは、kが1でmが2である場合の3-置換ピロリジンおよびkが2でmが2である場合の4-置換ピペリジンを挙げることができる。

上記式(I)において、nは0または1を表す。

特に、kが1でmが2でnが0である場合の3-7ミドピロリジン、およびkが2でmが2でnが1である場合の4-(アミドメチル) ピペリジンを特に好ましい例として挙げることができる。

上記式(I)において、 R^3 は水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

 R^3 における C_1 ー C_6 アルキル基は、前記 R^1 におけるフェニル基、 C_3 ー C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、その好適な具体例としては、メチル基、エチル基、およびプロピル基が挙げられる。

 R^3 における $C_1 - C_6$ アルキル基の置換基としてのフェニル基の置換基としてのハロゲン原子、 $C_1 - C_6$ アルキル基、および $C_1 - C_6$ アルコキシ基は、それぞれ、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

なかでも、 R^3 は水素原子または無置換の $C_1 - C_6$ アルキル基である場合が特に好ましい。

上記式(I)において、 R^4 および R^5 は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、または $C_1 - C_6$ アルキル基を表し、 R^4 および R^5 における $C_1 - C_6$ アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、 $C_3 - C_8$ シクロアルキル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルコキシ基、(任意個のハロゲン原子、ヒドロキシ基、 $C_1 - C_6$ アルコキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、

ベンジルオキシ基、ベンジルオキシカルボニル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルカルバモイル基、 C_1-C_6 アルキルスルホニル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、または(ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換されていてもよく、あるいは、 R^4 および R^5 は、いっしょになって3-6員環状炭化水素を形成していてもよい。

 R^4 および R^5 における $C_1 - C_6$ アルキル基は、前記 R^1 におけるフェニル基、 C_3 10 $- C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における C_1-C_6 アルキル基の置換基としてのハロゲン原子、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイ

- 15 ルアミノ基、 C_2-C_7 N- アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、モノ(C_1-C_6 アルキル)アミノ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。
- 20 R^4 および R^5 における C_1-C_6 アルキル基の置換基としての C_3-C_8 シクロアルキル基、および、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基は、前記 R^1 において定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における C_1-C_6 アルキル基の置換基としてのフェニル基の置換基としてのハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、前記 R^1 においてフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^4 、 R^5 およびその隣接炭素原子とからなる「3-6 員環状炭化水素」の好適な 30 具体例としては、シクロプロパン、シクロブタン、シクロペンタン、およびシクロ へキサンなどが挙げられる。なかでも、水素原子と C_1-C_6 アルキル基を、 R^4 と R^4

20

25

5の特に好ましい例として挙げることができる。

上記式(I)において、pは0または1を表し、qは0または1を表す。pとqがともに0である場合が特に好ましい。

上記式(I)において、Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-$ CO-、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7 ^7-SO_2-$ 、 $-SO_2-NR^7-$ 、-NH-CO-O-、または-O-CO-NH- で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 といっしょになって C_2-C_5 アルキレン基を形成していてもよい。

10 ここで、-CO-はカルボニル基を、 $-SO_2-$ はスルホニル基を、-CS-はチオカルボニル基をそれぞれ意味する。Gの特に好ましい例としては、例えば $-NR^7$ -CO-および-NH-CO-NH-で表される基などが挙げられる。

 R^7 における $C_1 - C_6$ アルキル基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^5 と R^7 とからなる「 C_2 - C_5 アルキレン基」とは、例えば、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、1-メチルトリメチレン、ペンタメチレンなどの C_2 - C_5 の直鎖または分枝状アルキレン基を意味し、その好適な具体例としてはエチレン、トリメチレン、テトラメチレン基などが挙げられる。なかでも R^7 としては、水素原子を特に好ましい例として挙げることができる。

上記式(I)において、 R^6 はフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を表し、上記 R^6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、

30 トリフルオロメチル基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_3 - C_8$ シクロアルキルオキシ基、 C_1

30

 $-C_6$ アルキルチオ基、 C_1-C_3 アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、3-フェニルウレイド基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、フェニルカルバモイル基、 $N,\ N-$ ジ(C_1-C_6 アルキル)スルファモイル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、ベンジルアミノ基、 C_2-C_7 (アルコキシカルボニル)アミノ基、 C_1-C_6 (アルキルスルホニル)アミノ基、もしくはビス(C_1-C_6 アルキルスルホニル)アミノ基ノ基により置換されていてもよい。

 R^6 における C_3 - C_8 シクロアルキル基、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基、および、縮合環は、前記 R^1 に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^6 における「 C_3-C_8 シクロアルケニル基」とは、例えば、シクロブテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、およびシクロオクテニル 基など環状アルケニル基を意味し、その好適な具体例としては、1-シクロペンテニル基、1-シクロヘキセニル基などが挙げられる。なかでも、 R^6 としては、フェニル基、フリル基、チエニル基、インドリル基、ベンゾフラザニル基を特に好まし い例として挙げることができる。

 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としてのハロゲン原子、 C_1-C_6 アルキル基、 C_2-C_6 アルケニル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、 C_1-C_3 アルキレンジオキシ基、 C_2-C_7 アルカノイル基、 C_2

- R^6 の置換基としての C_3 - C_8 シクロアルキル基は、前記 R^1 における C_3 - C_8 シ

好適な具体例として挙げることができる。

15

20

クロアルキル基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

 R^6 の置換基としての「 $C_3 - C_8$ シクロアルキルオキシ基」とは、前記 $C_3 - C_8$ シクロアルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、

5 シクロプロピルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基など を挙げることができる。

 R^6 の置換基としての「 C_2-C_7 (アルコキシカルボニル)アミノ基」とは、前記 C_2-C_7 アルコキシカルボニル基とアミノ基とからなる基を意味し、その好適な具 体例としては、例えばメトキシカルボニルアミノ基、エトキシカルボニルアミノ基 などを挙げることができる。

 R^6 の置換基としての「 C_1-C_6 (アルキルスルホニル)アミノ基」とは、前記 C_1-C_6 アルキルスルホニル基とアミノ基とからなる基を意味し、その好適な具体例としては、(メチルスルホニル)アミノ基などを挙げることができる。

 R^6 の置換基としての「ビス(C_1-C_6 アルキルスルホニル)アミノ基」とは、同一または異なった2つの前記 C_1-C_6 アルキルスルホニル基によって置換されたアミノ基を意味し、その好適な具体例としては、ビス(メチルスルホニル)アミノ基などを挙げることができる。

なかでも、 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の間換基としては、

25 ハロゲン原子、メルカプト基、ニトロ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、フェニル基、ベンジルオキシ基、フェニルスルフィニル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルアミノ基、アミノ基などを好ましい例として挙げることができる。特に好ましくは、ハロゲン原子、ニトロ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、フェニルスルフィニル基、およびアミノ基を挙げることができる。

さらに、 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロ

15

20

アルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルキル基、 C_1-C_6 アルキルル)アミノ基、またはジ(C_1-C_6 アルキル)アミノ基によって置換されていてもよい。

 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基の置換基としてのハロゲン原子、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、モノ(C_1-C_6 アルキル)アミノ基、およびジ(C_1-C_6 アルキル)アミノ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

上記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体は、その治療有効量を製薬学的に許容される担体および/または希釈剤とともに医薬組成物とすることによって、本発明のエオタキシンなどのCCR3のリガンドが標的細胞上のCCR3に結合することを阻害する医薬、あるいはエオタキシンなどのCCR3のリガンドの標的細胞への生理的作用を阻害する作用をもつ医薬、さらにはCCR3が関与すると考えられる疾患の治療薬もしくは予防薬とすることができる。すなわち上記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加塩体、またはその薬学的に許容される C_1-C_6 アルキル付加体は、経口的に、あるいは、静脈内、皮下、筋肉内、経皮、または直腸内など非経口的に投与することができる。

経口投与の剤形としては、例えば錠剤、丸剤、顆粒剤、散剤、液剤、懸濁剤、カ プセル剤などが挙げられる。

25 錠剤の形態にするには、例えば乳糖、デンプン、結晶セルロースなどの賦形剤; カルボキシメチルセルロース、メチルセルロース、ポリビニルピロリドンなどの結 合剤;アルギン酸ナトリウム、炭酸水素ナトリウム、ラウリル硫酸ナトリウムなど の崩壊剤などを用いて通常の方法により成形することができる。

丸剤、散剤、顆粒剤も同様に前記の賦形剤などを用いて通常の方法によって成形 30 することができる。液剤、懸濁剤は、例えばトリカプリリン、トリアセチンなどの グリセリンエステル類、エタノールなどのアルコール類などを用いて通常の方法に

15

よって成形される。カプセル剤は、顆粒剤、散剤、あるいは液剤などをゼラチンなどのカプセルに充填することによって成形される。

皮下、筋肉内、静脈内投与の剤型としては、水性あるいは非水性溶液剤などの形態にある注射剤がある。水性溶液剤は、例えば生理食塩水などが用いられる。非水性溶液剤は、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油、オレイン酸エチルなどが用いられ、これらに必要に応じて防腐剤、安定剤などが添加される。注射剤は、バクテリア保留フィルターを通す濾過、殺菌剤の配合の処置を適宜行うことによって無菌化される。

経皮投与の剤型としては、例えば軟膏剤、クリーム剤などが挙げられ、軟膏剤は 10 、ヒマシ油、オリーブ油などの油脂類、またはワセリンなどを用いて、クリーム剤 は、脂肪油、またはジエチレングリコールやソルビタンモノ脂肪酸エステルなどの 乳化剤を用いて通常の方法によって成形される。

直腸内投与のためには、ゼラチンソフトカプセルなどの通常の座剤が用いられる。本発明の環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体の投与量は、疾患の種類、投与経路、患者の年齢や性別、および疾患の程度などによって異なるが、通常成人一人当たり1-500mg/日である。

上記式 (I) の環状アミン誘導体の好適な具体例として、以下のTable 1. 1-1. 221に示される各置換基を含有する化合物を挙げることができる。

20 Table1.1-1.221において、「chirality」は「絶対配置」、すなわち環状アミンの環上の不斉炭素の絶対配置を意味する。「R」は、環状アミンの環上の不斉炭素原子がRの絶対配置をもつこと、「S」は、不斉炭素原子がSの絶対配置をもつこと、「-」はラセミ体であるか、あるいはその化合物が環状アミン上において不斉炭素原子をもたないことを意味する。

Table 1.1

Compd. No.	R ¹ (CH ₂)	K	m	ñ	chirality	H3	-(СН ₂) р (СН ₂) q G-H [©]
1	CHCH2-	1	2	0	•	н	- CH ₂ - N- C-
2	CH-CH ₂ -	1	2	0	-	н	-CH ₂ -N-C-CH ₃
3	CH-CH ₂ -	1	2	.0	-	н	- CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
4	CHCH ₂ -	1	_ 2	0	<u>-</u> 	н	- CH ₂ - N- C- CF ₃
5	CHCH ₂ -	1	2	0	S	Н	$-CH_2-N+C CF_3$ CF_3
6	CH-CH ₂ -	1	2	0 :	: S	н	-CH ₂ -N-C
7	CH-CH ₂ -	1	2	0	S	Н	-CH₂-N-C-
8	CH-2-	1	2	0	S	н	- CH ₂ -N-C-
9	C├──CH₂-	1	2	0	S	н	-CH ₂ -N-C-CI
10	CI—CH₂-	1	2	0	S	н	-CH ₂ -N-C
11	C├ ~ CH ₂ -	1	2	0	S	н	-CH ₂ -N-C

Table 1.2

,							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
12	CI-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C- OCH ₃
13	C⊢√CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
14	с⊢С сн₂-	1	2	0	S	н .	- CH ₂ - N C-
15	CH-CH ₂ -	1	2	0	S	н .	-CH ₂ -N-CI
16	C	1	2	0.	S	H .	-CH ₂ -H C- OCH ₃
17	CH2-	1	2	0	S	н	-CH ₂ -N-C-CI
18	с⊢С сн₂-	1	2	0	S	. н	- CH ₂ -N-C-CN
19	C⊢-{	1	2	0	S	Н	-CH ₂ -N-C
	С⊢√_СН₂-						- CH ₂ -N-C-CF ₃
21	CH ₂ -	1	2	0			- CH ₂ - N C - CF ₃
22	CH ₂ -	1	2	0	S	H	- CH ₂ -N-C-S

Table 1.3

Compd. No.	R ¹ (CH ₂),—	k 	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - G^6$
23	CH-CH ₂ -	1	2	0	S	н	- CH ₂ -N-C
24	СН-СН2-	1	2	0	S	Н	-CH ₂ -N-C-
25	CH-CH2-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
26	C⊢√CH₂-	1	2	0	S	н	-CH ₂ -N-C-
27	С⊢-{СН₂-	1	2	0	S .	, н	-CH ₂ -N-C-NO ₂
28	СН2−	. 1	2	0	S	Н	- CH ₂ -N-C-NO ₂
29	С⊢—СН₂-	1	2	0	R	Н	$-CH_2-N_1$ CF_3 CF_3
30	CI—CH₂-	1	2	0	R	Н	$-CH_2-NC$ F_3C
31	CH-€ CH ₂ -	1	2	0	R	H	- CH ₂ -N-C
32	с⊢{} сн₂-	1	2	0	R	н	- CH ₂ -N-C-✓
33	C├ - CH₂-	1	2	0	R	H .	-CH ₂ -N-C-CI

Table 1.4

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
34	с⊢√ि сн₂-	. 1	2	0	R	Н	-CH ₂ -N-C-OCH ₃
35	CH-CH2-	1	2	0	R	н	-сн ₂ -м-сосн ₃
36	CH-CH2-	1	2	0	R _.	н	-CH2-N-C- OCH3
37	CH-CH ₂ -	1	2	0	.R	н .	- CH ₂ - N-C-CF ₃
38	С├-{СН2-	1	2	0	R	Н	- CH ₂ - N- C- CH ₃
39	CH ₂ -	1	2	0	R	Н .	- CH ₂ -N-C-
40	CH-2-	1	2	0	R	н	-CH ₂ -N-С-С-ОСН ₃
41	С⊢√СН₂-	1	2	0	R	н	- CH ₂ - N- CI
42	CH-CH ₂ -	1	2	0	R .	H	- CH ₂ - N C CN
43	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
44	C├ - CH₂-	1	2	0	R	н	-CH ₂ -N-C

Table 1.5

Compd. No.	R ¹ (CH ₂);	ķ	m n	chirality	· fi ³	R ⁴ -(CH ₂) _p (CH ₂) _q G-H ⁰ R ⁵
45	CICH ₂ -	1	2 0	R	н	-CH ₂ -N-C
46	С├─॔СН2-	1	2 0	R	Н	- CH ₂ -N-C
47	C⊢√CH₂-	1 :	2 0	R	Н	- CH ₂ -N-C
48	CH-€	1 2	2 0	R	н	- CH ₂ -N-C- ← F
49	CHCH ₂ -	1 2	? 0	R	Н	-CH ₂ -N C-
50	CH-€-CH ₂ -	1 2	0	R	Н	-CH ₂ -N-C-CF ₃
51	CH2−	1 2	0	R .	H	- CH ₂ -N C-
52	C⊢—CH₂-				н	-CH₂-NC-
53	С⊢√_СН₂-	1 2	0	R	н	-CH ₂ -N-C-CI
54	С├─{_}-СН₂-	1 2	0	R	н	-CH ₂ -N-C-CI
55	CHCH ₂ -	1 2	0	R	н	- CH ₂ -N-CI

Table 1.6

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
56	CI—(CH₂-	1	2	0	R	н	- CH ₂ -N-C-
57	С⊢{СН₂-	1	2	0	R	н	-CH2-HC-
- 58	C├ \ CH ₂ -	1	2	0	R	н.	- CH ₂ -N-C-CI
59	C├ - CH ₂ -	1	2	0	R	н	- CH ₂ - N- C- Br
60	С⊢—СН ₂ -	1	2	0	R	н	-CH ₂ -N C-
61	CHCH ₂ -	.1	2	0	R	н	-CH ₂ -NC-CF ₃
62	C├	1	2	0	R .	Й	- CH ₂ - N C- CH ₃
63	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-СH ₂ CH ₃
64	CHCH ₂ -	1	2	0	R	н	-CH2-NC-CN
65	CI-CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-
66	CH-2-	1	2	0	R	н	-CH2-NC-

Table 1.7

Compd No.	R ¹ (CH ₂);	٧	m n	chirality	H ₃	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
67	CH-CH2-	1 .	2 0	R	н	-CH ₂ -N-C
68	С⊢СУ-СН₂-	1 2	2 0	R	н	-CH ₂ -N-C
69	CH2-	1 2	? 0	R	н	-CH ₂ -N-C
70	CHCH2-	1 2	0	R	н	-CH ₂ -N-C
71	C├ - CH₂-	1 2	0	R	н	$-CH_2-NC - CH_3$ H_3CO
. 72	CH-CH ₂ -	1 .2	0	R R	н	-CH ₂ -N-C
73	CH-2-	1 2	0	R	н ′	- CH ₂ -N-C
74	C⊢—CH₂-	1 2	0	R	н	-CH ₂ -N-C
75	CH-2-	1 2	0	R	н	-CH ₂ -N-C
76	CH ₂ -	1 2	0	R	н	- CH ₂ -N-C
77	C├ \ CH ₂ -	1 2	0	R	н	-CH₂-NC-F

Table 1.8

÷

Table							
Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p
78	C⊢(CH₂-	1	2	0	R	н	-CH ₂ -N-C
79	CICH ₂ -	1	2	0	R	н	$-CH_2-NC$
80	CH-CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-CF ₃
81	CH-CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-CH ₃
82	CICH ₂ -	1	2	0	-	—СH ₃	-CH ₂ -N-C-CF ₃
- 83	CH-CH2-	1	2	0	R	н	-CH ₂ -N-C
84	C	1	2	0	R	н	-CH ₂ -N-C
85	CHCH_2-	1	2	0	-	н	-(CH ₂) ₂ -N-C-
86	C	1	2	0	-	н	-(CH ₂) ₂ -N-C-NO ₂
87	C├ - CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
88	C ← CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C H F ₃ C

Table 1.9

Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
89	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-Br
90	CI-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-
91	С — С H ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI
92	с⊢ СН₂-	1	2	0	S	H	-(CH ₂) ₂ -N-C
93	CH-CH2-	1	2	0	S	н	OCH ₃
94	CHQ-CH2-	1	2	0	S .	Н	-(CH ₂) ₂ -N-C-OCH ₃
95	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-CF ₃
96	С⊢—СН2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CH ₃
97	С⊢—СН₂-	1	2	0	S	н	O -(CH ₂) ₂ -N-C-CI
	CH ₂ -						-(CH ₂) ₂ -N-C-OCH ₃
99	С⊢СН₂-	1	2	0	S _.	Н	-(CH ₂) ₂ -N-C-CI

Table 1.10

Compd.	(CH ₂),-	k	m	n	chirality	R³	一(CH ₂) p
100	CHCH2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CN
101	C├ - CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-
102	С├-{Сн₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
103	C├ - CH₂-	. 1	2	0	S	н	-(CH ₂) ₂ -N-CF ₃
104	с⊢СН2-	1	2	0	S	н ,	-(CH ₂) ₂ -N-CF ₃
105	СН ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-
106	CH-2-	1	2	0	S	н .	-(CH ₂)₂-N-C- H
107	C⊢-CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C
108	C├	1	2	0	S	Н	-(CH ₂) ₂ -N-C-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V
109	C⊢√ CH₂-	1	2	0	S	Н	-(CH ₂) ₂ -N-C
110	C├ \ CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-

Table 1	1.11						
Compd. No.	R^2 \rightarrow $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{1}}_{\frac{1}{R^5}}(CH_2)^{-\frac{1}{q}}G^{-\frac{1}{R^6}}$
111	с⊢(Сн₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
112	C├ - CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
113	C├ - CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
114	CH-√_CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
115	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
116	C├ - CH ₂ -	1	2	0	R	. н	-(CH ₂) ₂ -N-C-
117	CH-2-	1	2	.0	R	н	OCH ₃
118	C├-{	1	2	0	R R	н	-(CH ₂) ₂ -N-C-OCH ₃
119	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-C-CF ₃
120	C⊢-CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-Ü-CH ₃
121	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI

Table 1.12

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
122	С⊢—СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
123	C├ - CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
124	СН-СН2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
125	CHCH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C-O
126	CHCH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
127	CH-CH ₂ -	1	2	. 0	R	Н	-(CH ₂) ₂ -N-C- H
128	C├ - CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-S
129	C├ ~ CH ₂ -	1	2	Ö	R	Н	-(CH ₂) ₂ -N-C
130	C	1	2	0	R .	н	-(CH ₂) ₂ -N-C
131	С⊢С СН₂-	1	2	0 _.	R	н	-(CH ₂) ₂ -N-C-CF ₃
132	С⊢-{	1	2	0	R .	н	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1.13

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R ³	─(СН ₂) _p + (СН ₂) _q Ğ-Ĥ [€]
133	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
134	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
135	CI-CH ₂ -	1	2	0	R	H .	-(CH ₂) ₂ -N C-
136	C├ - CH ₂ -	1	2	0	R	н.	-(CH ₂) ₂ -N-C-
137	C⊢√CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-C
138	C├────────────────────────────────────	1	2	0	R	н	-(CH ₂) ₂ -N-C
139	C├────────────────────────────────────	1	2	0	R	н	-(CH ₂) ₂ -N-C
140	CI—CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
141	CH-2-	1	2	0	R	н	-(CH ₂) ₂ - N C - Н ₃ СО - Н ₃ СО - Н ₂ СО - Н ₃ С
142	CI—CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
143	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C

Table 1.14

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	ن ن	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
144	CI—CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
145	CH-CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
146	С⊢С СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
147	СНСН2-	1	2	0	.R	н	-(CH ₂) ₂ -N C-CH ₂ CH ₃
148	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CN
149	СН-СН2-	1	2	. 0	R	н	-(CH ₂) ₂ -N-C-
150	С⊢СН2-	1	2	0	R	Н	-(CH ₂) ₂ -N C-
151	С⊢СН₂-	• 1	2	0	R	н	-(CH ₂) ₂ -N-C
152	С⊢С СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
153	C├─ \ CH ₂ -	1.	2	0	R	н	-(CH ₂) ₂ -NC-F
154	CH-{	. 1	2	0	R	н	-(CH ₂) ₂ -N-C-

Table 1.15

Compd: No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
155	CH-2-	1	2	0	R	Н	-(CH ₂) ₂ -N C - OCH ₃
156	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCF ₃
157	С├──_СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
158	CHCH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C- H
159	CH-CH ₂ -	1	2	0	. R	H [']	$-(CH_2)_2 - NC - F$ F_3C
160	СН-СН2-	1	2	0	R	н	-(CH ₂) ₂ -N-C- F ₃ C
161	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
	С⊢—СН₂-						п)—
163	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C- H F ₃ C
164	C⊢-(CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N C
165	CH ₂ -	1	2	0	R		-(CH ₂) ₂ -N-C-CH ₃ .

Table 1.16

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
166	CI-CH ₂ -	1	2	0	R	н .	(S) P CF ₃ -CH ₃ CH ₃
167	CH-2-	1	2	0	R	н	(S) P -C++ N+C
168	CH-CH ₂ -	1	2	0	R	H	(S) P CI -CH-N-C-
169	CH-CH2-	1	2	0	R	н	(S) PCI
170	CH-CH ₂ -	1	2	0	R .	н	(S) Q CF ₃ -CH-N-C- F
171	CH-CH ₂ -	1	2	. 0	R	H .	(S) P -C+N-C-C-CI CH ₃
172	CH-CH ₂ -	1	2	0	·R	Н .	(S) P -CH-N-C- CH ₃
173	C├ - CH ₂ -	1	2	0	R	н	(S) P NO2.
174	C	1	2	0	R	н	(F) P CF3 -CH-N-C- CF3 -CH-N-C- CF3
175	C├ - CH ₂ -	1	2	0	R	н	(A) C C C C C C C C C C C C C C C C C C C
176	C ⊢ CH₂-	1	2	0	R	н	(A) O CI -CH-N-C-C
							-

Table 1.17

Compd.	R ¹ >-(CH ₂) _i -	k	m	n	chirality	R ³	-(СH ⁵) ^{Б д 2} (СН ⁵) ^Д G-Н 6
177	CI-CH ₂ -	1	2	0	R	н	(R) CI CI CI CI CH3
178	Ci—CH ₂ -	1	2	0	R	Н	(F) CF3 -CHN-C-CF3 CH3 F
179	CH-CH ₂ -	1	2	0	R	н	(A) P -CHN-C-CI H CH3
180	CH-CH ₂ -	1	2	0	R	н	(F) P -CHN-C-(N-C)
181	CH-CH ₂ -	1	2	0	R	Н	(F) P NO ₂ -CHN-C- NO ₂ CH ₃
182	CH₂-	1	2	·0	R	н	CH ₃ O CF ₃
183	С⊢—СН₂-	1	2	0	R	н	CH ₃ O Br
184	C├ - CH ₂ -	1	2	0	R	Н	CH ₃ O CI -CH N C - H S CH ₃
185	CI-CH ₂ -	1	2	0	R	н	CH3 O CI
186	C├ - ⟨}-CH ₂ -	1	2	0	R	н	CH3 O CF3
187	С⊢СУ-СН₂-	1	2	0	R	H .	CH3 O - CH N C - CI CH3

Table 1.18

Compd. No.	R ¹ -(CH ₂) _j -	k	m	n	chirality	R ³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
188	C├─(CH ₂ -	1	2	0	R	н	СH ³ С -СH ³ С
189	CI-CH ₂ -	1	2	0	R	н	CH ₃ O NO₂ -CHN-C-
190	CI-CH ₂ -	1	2	0	R	н	CH ₂ CF ₃
191	CH-2-	1	2	0	R	н	CH ₂ -S
192	C├─ ◯ -CH ₂ -	1	2	0	R	н	(A) + + + C - (A) - (A) + + + (A) - (A) + + (A) - (A)
193	C├ - CH ₂ -	1	2	0	R	н	(A) P C CI - CH N C C CI - CH ₂ CH ₂ C
194	C├ - CH ₂ -	1	2	0	R	н	CH ₂ -CF ₃
195	C├ - CH ₂ -	1	2	0	R	н .	(F) P -CHN-C-CI CH2-S
196	C ├── CH ₂ -	1	2	0	R·	Н.	CHICHOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO
197	C	1	2	0	R	н	(A) -CH+N-C- -H-H-C- -CH ₂ -S
198	СҢ СН₂-	1	2	0	R	Н	(A) P P P P P P P P P P P P P P P P P P P

Table 1.19

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _{р †} (CH ₂) _q G-H ²
199	CI-CH ₂ -	1	2	0	R	н	(S) P Br
200	CHCH ₂ -	1	2	0	R	н	CH2-C
201	CH-CH ₂ -	1	· 2	0	- R	н	(5) P C C C C C C C C C C C C C C C C C C
202	CHCH ₂ -	1	2	0	R	Н	(5) P CF3 -CH-N-C- F
203	CH2-	1	2	0	R	Н	(S) -C+N-C- CH ₂ -C)
204	CH2-	1	2	0	R	н	CH ₂ (S)
205	CHCH ₂ -	1	2	0	R	Н .	(S) P NO 2 -CH N-C- CH ₂ CH ₂
206	CHCH ₂ -	1	2	0	R	н	(OH ₂) ₂ - S-CH ₃
207	CHCH ₂ -	1	2	0	R	Н	(S) P Br -CH- NC- CH ₃ (CH ₂) ₂ -S- CH ₃
208	CHCH ₂ -	1	2	0	R	н	(OH ₂) ₂ -S-CH ₃ (OH ₂) ₂ -S-CH ₃ (OH ₂) ₂ -S-CH ₃
209	C⊢—CH₂-	1	2	0	R	н	(OH ₂) ₂ CH ₃
	•						

Table 1.20

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶ R ⁵
210	СН-СН2-	1	2	0	R	н	(C12)2-3-CH3 F
211	CH ₂ -	1	2	0	R	H.	(CH ₂) ₂ -S-CH ₃
212	CH-CH ₂ -	1	2	0	R	н	(S) P -CH-N-C- H Q (CH ₂) ₂ -\$-CH ₃
213	CH-CH ₂ -	1	2	0	R	н	(OH3/5-2-CH3
214	CH-2-	1	2	0	- .	н	-(CH ₂) ₃ - C-
215	CH2-	. 1	2	0		н	-(CH ₂) ₃ -C
216	C├ - CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-S
217	C├ - CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -C
218	CH-{	1	2	0	-	н	-(CH2)2 - CH3 $H3C$
							-(CH ₂) ₂ -С-С-С-ОСН ₃
220	CH-€-	1	2 .	0	-	Н	-(CH ₂) ₂ -C-CH ₃

Table 1.21

Table 1							
Compa.	R ² (CH ₂)j	k	m	n	chirality	R ³	一(CH ₂) p 5 (CH ₂) q G−H [€] R ⁵
221	CH-(CH2-	1	2	0	-	н	-(CH ₂) ₂ -C-
222	CH-2-	1	2	0	-	н	-(CH ₂) ₂ -C-CI
223	CH_CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -C-C-C(CH ₂) ₃ CH ₃
224	CH-CH ₂ -	1	2	0	-	H	- CH ₂ - \$ - CH ₃
225	CH-CH ₂ -	1	2	0	-	н	-(CH ⁵) ³ -C-N-
226	C├ - CH ₂ -	. 1	2	0	-	н	-(CH ₂) ₃ -C-N-OCH ₃
227	CHCH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C·N-Cl
228	CH-CH ₂ -	1	2	0	-	H	-(CH ₂) ₃ -C-N-OCH ₃
229	CH-{	1	2	0	-	Н	-CH ₂ -C-CH ₂ -C-N-CH ₃
230	CH2-	1	2	0	-	н	-CH ₂ -CH ₂ -C-N-F
231	CH-2-	1	2	0	-	н	-(CH ₂) ₃ -C-N-C-CH ₃

Table 1.22

12510				_			
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
232	CH-€CH ₂ -	1	. 5	0	-	н	-(CH ₂) ₃ -C-N-
233	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-N-CH ₂ -
234	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
235	CH-CH ₂ -	1	2	0	-	н	-CH ₂ -CH-CH ₂ -C-N-CH ₂ -C)
236	CH-€ CH₂-	1	2	0	-	н	- CH ₂ -N-S-CH ₃
237	CH-CH ₂ -	1	2	0	-	н	- CH ₂ -N-C-O-CH ₂
238	CHCH2-	1	2	0	-	Н .	- CH O C- N- CI
239	CH ₂	1	2	0	S	н	-CH ₂ -N-C-C-CF ₃
240	CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
241	CI CH₂−	1	2	0	S	н	-CH ₂ -N-C-CF ₃
242	CH2− CH2−	1	2	0	S	н	-CH ₂ -N-C-CF ₃

Table 1.23

Compd.	R ² (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_0$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
243	CI CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
244	CH₃ —CH₂-	1	2	0	S	Н .	-CH ₂ -N-C-CF ₃
245	F_CH ₂ -	1	2	0	S	H	-CH ₂ -N-C-CF ₃
246	CICH ₂ -	1	2	0	S·	Н	-CH ₂ -N-C-CF ₃
247	CI CI—CH₂-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
248	H₃CQ —CH₂-	1	2	0	S _.	н .	-CH ₂ -N-C-CF ₃
249	F ₃ C ————————————————————————————————————	1	2	0	s	н	-CH ₂ -N-C-€
250	H ₃ C —CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
251	F-CH ₂ -	1	_ 2	0	S	н	-CH ₂ -N-C-CF ₃
252	H ₃ CO—CH ₂ -	1	2	0	S	H <u>-</u>	-CH ₂ -N-C-CF ₃
253	H ₃ C-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
	•						

Table 1.24

·uoic							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_2)_{q}$
254	NO ₂	. 1	2	0	S	н	-CH ₂ -N-C-⟨CF ₃
255	O ₂ ·N	1	2	0	S	н	-CH ₂ -N-C-CF ₃
256	O ₂ N-CH ₂ -	1 .	2	0	S	н	-CH ₂ -N-C-CF ₃
257	CF ₃ —CH₂-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
258	СО ₂ СН ₂ СН ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
259	CH3	1	2	0	S	н	-CH ₂ -N-C-CF ₃
260	CI CH₂−	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
261	F ₃ C-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
	Br CH₂-						-CH ₂ -N-C-CF ₃
263	Br-CH ₂ -	1	2	0	S	_. н	-CH ₂ -N-C-
264	OH2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃

Table 1.25

Table 1							
Compd. No.	R ¹ (CH ₂);	k,	m	n	chirality	R³	-(CH ₂) p G (CH ₂) q G-R⁶
265	8r(CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-
266	O	1	2	0	S	н	-CH ₂ -N-C-CF ₃
267	OCH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
268	HC-C-N-CH-CH2	1	2 .	0	S	Н	-CH ₂ -N-C-CF ₃
269	H ₃ C-\$	1	2	0	S	н	-CH ₂ -N-C-CF ₃
270	H ₃ CO ₂ C ——————————————————————————————————	1	. 2	0	S	н	-CH ₂ -N-C-CF ₃
271	-CH ₂ -	1	2	0	S	, н	-CH ₂ -N-C-CF ₃
	HO————————————————————————————————————						-CH ₂ -N-C-CF ₃
273	CN —CH ₂ -	· 1	2	0	S	H	-CH ₂ -N-C-CF ₃
274	NC CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
275	NC-()-CH ₂ -	1	2	C) S	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.26

rable	1.20						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
276	F-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
277	Q-Q-12-	- 1	2	0	S	н	-CH ₂ -N-C-CF ₃
278	н₃∞₂с-{_}сн₂	- 1	2	0	S	н	-CH ₂ -N-C-C-CF ₃
279	F3CO-CH5-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
280	F ₃ CQ	1	2	0	S	н	-сн ₂ -и-с-С-С-С-С-3
281	HO ₂ C-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-C
282	(H ₃ C) ₃ C{CH ₂ -	- 1	2	0	S	н	-CH ₂ -N-C-CF ₃
283	CH ₃ CH ₂ - CH ₃	1 .	2	0	S	н	-CH ₂ -N-C-CF ₃
	CH-CH-						
285	CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
286	CH₂	1	2	0	R	н	-СH ₂ -N-С-С

Table 1.27

Compd.	R ¹ (CH ₂);	ķ	m	n	chirality	B ₃	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - (CH_2)_{\overline{q}} + G - R^6$
287	CI CH ₂ -	1	2	0	· R	н	-CH ₂ -N-C-CF ₃
288	CI CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
289	CI CI	1	2	0	R.	н	-CH ₂ -N-C-CF ₃
290	CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
291	F—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
292	CICH ₂ -	1.	2	0	R	н	-CH ₂ -N-C-CF ₃
293	CICH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
294	H ₃ CQ —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
295	F ₃ C ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
296	F_3C $-CH_2$ $-CH_2$ $-CH_2$	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
297	F€	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.28

labic	1.20						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
298	н₃со-{_}-сн₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
299	H ₃ C-\CH ₂ -	1	2	0	R ,	Н	-CH2-N-C-CF3
300	NO ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
301	O ₂ N CH ₂ -	1	2	0	R.	Н	-CH ₂ -N-C-CF ₃
302	O ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
303	CF ₃ CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
304	CO ₂ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
305	СН3	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
306	CI CI CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
307	F ₃ C-CH ₂ -	1	2	Ó	R	н	-CH ₂ -N-C-CF ₃
308	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.29

Table	1.23	_					<u> </u>
Compd. No.	R ¹ (CH ₂)-	ķ.	m	n	chirality	P3	-(СH ₂) , (СH ₂) , G -R ⁶
309	Br CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
310	Q-Q-OH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
311	Br—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
312	O-CH₂-	_. 1	2	0	R	н	-CH ₂ -N-C-CF ₃
313	OCH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
314	#c-c-h———aн≤	1	2	0	R	н	-CH ₂ -N-C-CF ₃
315	H ₂ C-\$ CH ₂ -	i	2	0	R	H	-CH ₂ -N-C-
316	H ₃ CO ₂ C ————————————————————————————————————	1	2	0	R	H	-CH ₂ -N-C-CF ₃
317	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
318	· HO-√CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
319	CN CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.30

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-GR^6$
320	NC CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
321	NC-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
322	F-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C
323		1	2	0	R .	н	-CH ₂ -N-C-CF ₃
324	н₃∞₂с-{сн₂-	1	2	0	R	н	-СH ₂ -N-С-С-С-С-
325	F3CO-CH2-	1	2	0	R	Н .	-CH ₂ -N-C-CF ₃
326	F ₃ CQ —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	HO ₂ C-CH ₂ -						-CH ₂ -N-C-CF ₃
328	(H ₃ C) ₃ C-(1 .	2	0 ,	R	н	-CH ₂ -N-C-CF ₃
329	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
330	CH-2-	0	3	1	•	н	-CH ₂ -N-C-

Table 1.31

Compd.	R ² (CH ₂);-	k	m	n	chirality	H3	$-(CH_2)_{\mu} + (CH_2)_{\mu} + G-R^6$
331	CI-CH ₂ -	0	3	1	-	н	-CH ₂ -N-C-CH ₃
332	CHCH ₂ -	0	.3	1	-	н	- CH ₂ -N-C- OCH ₃ OCH ₃
333	CH-CH ₂ -	0	3	. 1	-	н	-CH ₂ -N-C-\(\big \)
334	СН-СН2-	0	3	1	-	н	- CH ₂ -N-C-CH ₃
335	CH-CH ₂ -	0	3	1	-	H	- CH ₂ -N-C-NO ₂
336	CH-CH2-	0	3	1	-	н	-CH ₂ -N-C-CF ₃
337	CH-CH ₂ -	0	3	1	-	н	CH ₂ -N-C
338	CHCH ₂ -	0	3	1	-	H	$-CH_2-NC CH_3$
339	CH2−	0	3	1	R	Н	- CH ₂ -N-C- CF ₃
340	C├	0	3	1	S	Н	-CH ₂ -N-C-CF ₃
341	C⊢√_CH₂-	0	3	1	-	Н	-(CH ₂) ₂ -N-C-

Table 1.32

. 45,0							
Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
342	CH-€ CH₂-	0	3	1	-	н	- CH N- C-
343	CHCH ₂ -	0	3	1	•	н	- CH N- C- H CH(CH ₃) ₂
344	CH-CH ₂ -	0	3	1	-	. н	O − CH N C ← I H CH ₂ CH(CH ₃) ₂
345	С⊢√_СН₂-	0	3	1	-	н	-(CH ₂) ₃ -C-
346	C⊢CH₂-	0	3	1	-	н	-(CH ₂) ₂ -C
347	с⊢С сн₂-	0 -	3	1	-	н	O_{\parallel} -(CH ₂) ₂ -C- O_{\parallel} - CH ₃
348	CH-CH2-	0	3	1		н	O -(CH ₂) ₂ -C-CH ₃
349	с⊢ Сн₂-	0	3	1	· -	н	- CH ₂ - \$ CH ₃
350	CH-CH2-	0	3	1	- ·	н	-CH ₂ -N-S-CH ₃
351	CH-CH ₂ -	0	3	1	-	Н	- CH ₂ - N- C- О- CH ₂ -
							- CH O- C- N- CI

Table 1.33

Compd.	R ¹ (CH ₂)	k	m	n	chirality	H3	ー(CH ₂) _{p +5} (CH ₂) _q G-R ^s R ⁵
353	С⊢—СН2-	1	2	1	-	,H	-CH ₂ -N-C-
354	С⊢—СН2-	1	3	0	-	н	-CH ₂ -N-C-
355	С├-{	1	3	0	-	н	- CH ₂ -N-C-CH ₃
356	CH-CH ₂ -	1	3	0.	-	Н	-CH ₂ -N-C-N
357	CHCH ₂ -	1	3	0	-	н	$-CH_2-N-C$ H_3C
358	CH-CH ₂ -	1	3	0	-	Н	-CH ₂ -N-C-CF ₃
359	CH-CH ₂ -	1	3	0	-	Н	-(CH ₂) ₂ -N-C-
360	CH-CH ₂ -	1	3	0	-	Н	-(CH ₂) ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
361	CI—⟨	1	3	.0	· _	н	O -(CH ₂) ₃ - C-
362	CHCH ₂ -	1	3	0	-	н	-(CH ₂) ₃ -C
363	CH-2-	1	3	0	•	н	-(CH ₂) ₃ - C-S

Table 1.34

		_					•
Compd.	R ¹ (CH ₂)	k	m	n	chirality	⁻ R³	$-(CH_2)_{\overline{p}}$ $+ (CH_2)_{\overline{q}}$ $G - R^6$
364	C⊢-(1	3	0	-	н	-(CH ₂) ₂ -C
365	C├ - CH ₂ -	1	3	0	-	н	-(CH2)2-C - CH3 $H3C$
366	CH-€	1	3	Ö	-	н	-(CH ₂) ₂ -C-C-C-CH ₃
367	C├ - CH₂-	1	3	0	-	н	-(CH ₂) ₂ -C-\(\bigcup_CH_3\)
368	CH-CH ₂ -	1	3	. 0	-	н	-(CH ₂) ₂ -C-
369	C⊢√ CH₂-	1	3	0		н	-(CH ₂) ₂ -C-CI
370	C⊢√CH₂-	1	3	0	-	Н	-(CH ₂) ₂ - С-С-С(CH ₂) ₃ СН ₃
371	C⊢√ CH₂-	1	3	0	-	Н	-(CH ₂) ₂ -C
372	C ⊢ CH₂-	1	3	0	-	Н	CH ₂ S
373	C	1	3	0	-	н	-(CH ₂) ₃ -C-N-
374	CH-2-	1	3	0	· .	н	-(CH ₂) ₃ -C-N-OCH ₃

1

Table 1.35

Compd.	R ¹ (CH ₂) _j -	k	m	ñ	chirality	R³	-(CH ₂) _{р Т} (CH ₂) _q G-R ⁶ R ⁵
375	CH-CH2-	1	3	0	-	н	-(CH ₂) ₃ -C-N-Cl
376	CH-CH ₂ -	1	3	0	-	Н	-(CH ₂) ₃ -C-N-OCH ₃
377	CH-CH ₂ -	1	3	0	-	н	- CH ₂ -C-CH ₂ -C-N-CI CH ₃
378	CH2-	1	3	0	-	Н .	-CH ₂ -CH ₂ -C-N-F
379	C├─ \ CH ₂ -	1	3	0		н	-(CH ₂) ₃ -C-N-C-CH ₃
380	C⊢√ CH₂-	1	3	0	-	Н	-(CH ₂) ₃ - C- N- CH ₂ -
3.81	C⊢√CH ₂ -	1	3	0	-	Н.	- CH ₂ - N- S - CH ₃
382	C├ - CH ₂ -	1	3	0	-	н	- CH ₂ -N-C-O-CH ₂
383	C⊢CH2-	1	3	0	-	H	-CHOC-N-CI
	CH-CH ₂ -						-CH ₂ -N-C- NO ₂ -CH ₂ -N-C- NO ₂
385	CH2-	2	2	0	-	н	CH ₂ -N-C-\(\sigma\)

Table 1.36

Table !							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
386	€ CH₂-	2	2	0	-	H :	-CH ₂ -N-C-
387	CH₂-	2	2	0	-	Н	-CH ₂ -N-C-
388	CH ₂ -	2	2	0	-	Н	-CH ₂ -N-C-\(\sigma\)
389	-CH ₂ -	2	2	0	-	. н	-CH ₂ -N-C- H
390	—CH₂-	2	2	0	-	н	-CH ₂ -N-C-CF ₃
391	—CH₂-	2	2 .	0	-	н	-CH ₂ -N-C-CF ₃
392	◯ -CH₂-	2	.2	0	-	Н	-CH ₂ -N-C-OCF ₃
393	~ -CH₂-					н	-CH ₂ -N-C-
394	CH₂-	2	2	0	-	н	-CH ₂ -N-C-C
395	CH₂-	2	2	0		н	-CH ₂ -N-C
396		2	2	0	-	Н	-CH ₂ -N-C

Table 1.37

Compd. No.	R (CH ₂)	k	m	n	chirality		नि ⁴ −(CH _{2)p} † R ⁵ (CH _{2)q} G−H ⁰
397	CH₂-	2	2	0	-	н	-CH ₂ -N-C
398	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
399	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
400	CH₂-	2	2	0	÷	н	-(CH ₂) ₂ -N-C-NO ₂
401	-CH ₂ -	2	2	0	-	Н	-(CH ₂) _Z -N-C
402	CH₂-	2 ·.	. 2	0	-	Н	-(CH ₂) ₂ -N-C
403		2	2	0	-	Н	-(CH ₂) ₂ -N-C-CF ₃
404	€	2	2	0	-	Н	-(CH ₂) ₂ -N-C-C-C-C-3
405	CH ₂ -	2	2	0	-	н .	-(CH ₂) ₂ -N-C-
406	—CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
407	€ CH2-	2	2	0	· <u>-</u>	H	-(CH ₂) ₂ -N-C

Table 1.38

R ¹ /(CH ₂)j	k	m	n	chirality	·R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-✓ F
CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-C-CI
CH2-	2	2	0	-	н	(S) P -CH-N-C- H CH ₂ CH(CH ₃) ₂ :
. CH ₂ -	2	2	0	-	н	(S) II CH ₂ CH(CH ₃) ₂
◯ -CH₂-	2	2	0	-	Н	(5) P -CH-N-C
CH2-	2.	2	0	-	H	(S) (P) (CO ₂ CH ₃ (CH ₂ CH(CH ₃) ₂
CH₂-	2	2	0	, -	H	(S) Q -CH-N-C- H CH ₂ CH(CH ₃) ₂
CH ₂ -	2	2	0	-	H	(5) 0 -CH-N-C- H CH ₂ CH(CH ₃) ₂ F
—CH₂-	2	2	0	-	н	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂
—CH₂-	2	2	0	-	Н	(S) O Br CH-N-C- H H CH₂CH(CH₃)₂ .
CH₂-	2	2	0	•	н	(S) P - CH-N-C- H CH2CH(CH3)2
	CH_{2}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 1.39

							
Compd. No.	R ¹ (CH ₂);-	.k	m	n	chirality	<u>.</u>	「(CH ₂) _{p 1} (CH ₂) _q G-R ⁶ R ⁵
419.	СН₂-	2	2	0	-	н	(S) P -CH-N-C- Br CH₂CH(CH₃)₂
420	CH ₂ −	2	2	0	-	н .	(S) P -CH-N-C- H CH₂CH(CH₃)₂
421	CH₂-	2	2	0	-	н	(S) -CH-N-C-CI CH ₂ CH(CH ₃) ₂
422	—CH₂-	2	2	0	-	H	(R)
423	—CH₂-	. 2	2	. 0	-	н	(R)
424	CH₂-	2	2	0	-	н	(F) PO2 CH-N-C- H CH ₂ CH(CH ₃) ₂
425	CH₂-·	2	2	0	-	н	(<i>H</i>) (<i>P</i>) (<i>C</i>)
426	CH₂-	2	2	0	-	н	(A) (CF3 -CH-N-C- H CH ₂ CH(CH ₃) ₂
427	CH₂⁻	2	2	0	-	Н	(F) CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ F
428	CH ₂ -	2	2	0.	-	н	(FI) -CH-N-C- H CH ₂ CH(CH ₃) ₂
429	CH₂-	2	2	0	•	н	(A) P -CH-N-C- H CH ₂ CH(CH ₃) ₂

Table 1.40

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
430	CH₂-	2	2	. 0	-	н	(F) P CH -CH-N-C-
431	CH₂-	2	2	0 .	-	H	(A) P -CH-N-C- Br CH ₂ CH(CH ₃) ₂
432	CH₂-	2	2	0	-	н .	(A) P -CH-N-C
433	CH₂-	2	2	0	-	н	(A) CH
434	CHCH ₂ -	1	3	1	-	Н	-CH2-N-C-
435	с⊢СН₂-	1	3	1	-	н	-CH ₂ -N-C-
436	Ci—CH₂-	1	3	1	-	н	-CH ₂ -N-C-\(\sigma\)
437	C├ - CH ₂ -	1	3	1	-	н	-CH ₂ -N-C- H CO ₂ CH ₃
	C├─ੑ_CH₂-						CH ₂ -N-C-CF ₃
439	CI—CH₂-	1	3	1	-	н	-CH₂-N-C- F
440	C⊢√CH ₂ -	1	3	1	-	H	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.41

Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	R ³	(CH ₂) _p (CH ₂) _q G-R ⁶
441	CH-CH ₂ -	1	3	1	-	н	-CH ₂ -N-C-
442	CHCH ₂ -	1	3	1	-	Н	-CH ₂ -N-C-
443	CHCH ₂ -	1	3	1	-	H .	-CH ₂ -N-C-\Br
444	CHCH ₂ -	1	3	1	-	н	-CH ₂ -N-C
445	CHCH ₂ -	1	3	1	-	н	-CH ₂ -N-C
446	CH-CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C-
447	CH-CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C-
448	CH-CH ₂ -	1	3	1	- .	н	-(CH ₂) ₂ -N-C-NO ₂
449	CH-2−	1	3	1	- ,	н	-(CH ₂) ₂ -N-C
450	C├ ~ CH₂-	1	3	1	-	H	-(CH ₂) ₂ -N-C-CF ₃
451	CH-CH2-	1	3	1	-	н _.	$-(CH_2)_2 - N - C - CF_3$ $-(CH_2)_2 - N - C - CF_3$ F

Table 1.42

lable	1.42						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G^-R^6$
452	с⊢(сн₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C-OCF ₃
453	с⊢()—сн₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C-
454	с⊢С}−сн₂-	1	3	1	-	Н.	-(CH ₂) ₂ -N-C-C
455	C⊢√CH₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C
456	C⊢√CH2-	1	3	1	-	н	-(CH ₂) ₂ -N-C
457	C├ ~ _CH₂-	1	3	1	. -	Н	-(CH ₂) ₂ -N-C-CI
458 ·	CH-{CH₂-	2	2	1 .	- ·	н	- CH ₂ -N-C-
459	C├ - CH ₂ -	2	2	1	-	н.	- CH ₂ -N-C-CH ₃
460	CHCH2-	2	2	1	· -	н	- CH ₂ - N- C- CH ₃
461	CH-2-	2	2	1	-	H .	- CH ₂ -N-C-CF ₃
462	CH-CH2-	2	2	1	-	н ·	- CH ₂ -N-C

Table 1.43

Compd. No.	R ¹ (CH ₂)-	ķ	m	n	chirality	. D3	-(CH ₂) _p G-R ⁴ (CH ₂) _q G-R ⁶
463	С├-СН₂-	2	2	1	-	н	-CH ₂ -N-C-C
464	CH-CH2-	2	2	1	-	Н	-CH ₂ -N-C-OCH ₃
465	СН-СН ₂ -	. 2	2	1	-	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
466	с⊢—СН₂-	2	2	1	-	. Н	- CH ₂ -N-C-NO ₂
467	CH-2-	2	2 ·	1	-	н	-CH ₂ -N-C-
468	CH-CH ₂ -	2	2	. 1	-	н	-CH ₂ -N-C-\(\int\) H
469	CH√_CH₂-	2	2	1	-	н	- CH ₂ - N-C
470	C├ - CH ₂ -	2	2	1	-	н	$-CH_2-N$ $\stackrel{O}{C}$ \longrightarrow CN
471	C├ - CH ₂ -	2	2	1	-	н	$-CH_2-N_1$ C $-CO_2CH_3$
472	C├ - CH ₂ -	2	2	1	-	н	- CH2-NC
473	C⊢—CH₂-	2	2	1	-	н	-CH2-N-C
_							

Table 1.44

	• • •						
Compd. No.	R ² -(CH ₂) _j -	k	m	n	chirality	Ŕ³.	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
474	CH-€ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
475	C⊢√CH₂-	2	2	1	-	н	- CH ₂ - N- C- CH(CH ₃) ₂
476	CH2−	2	2	1	-	н	-CH ₂ -N C-\ NO ₂
477	CH-€ CH ₂ -	2	2	1		н	- CH ₂ -N-C-\OCH(CH ₃) ₂
478	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
479	C├ - CH₂-	2	2	1	- -	н	- CH ₂ - N C
480	CH-CH2-	2	2	1	-	н	-CH ₂ -N C Br
481	C├ - CH₂-	2	2	1	-	Н	-CH2-NC-S
482	C⊢-€CH₂-	2	2	1	-	Н	- CH ₂ -N-C-S
							-CH2-NC(S) CH3
484	CH-2-	2	2	1	-	н	- CH ₂ -N C-N H

Table 1.45

Compd. No.	H ₂ (CH ²)-	k	m	ñ	chirality	R²	(CH ₂) p (CH ₂) q G−H [€]
485	C	2	2	1		н	- CH ₂ -N-C-CF ₃
486	С⊢{СН₂-	2	2	1	-	н	-CH ₂ -N-C-CN
487	C├ - CH ₂ -	2	2	1		н	-CH ₂ -N-C-CI
488	C├ ─ CH ₂ -	2	2	1	-	H	- CH ₂ - N C - NH ₂
489	CHCH2-	2	2	1	-	H	- CH ₂ -N-C
490	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
491	CH2-	2	2	1	-	н	- CH ₂ -N-CF ₃
492	C├	2	. 2	1		н	-CH ₂ -N-C
493	C├ - CH ₂ -	2	2	1	· • .		- CH ₂ -N-C
494	CH-2-	2	2	1	-	Н	- CH ₂ -N-C
495	C├ ~ CH ₂ -	2	2	1	-	Н	- CH ₂ - N-C

Table 1.46

	• • •						
Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	Ŕ³	$-(CH_2)_{\overline{P}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
496	С⊢-(СН₂-	2	2	1	-	н	-CH₂-N-C-CF₃
497	с⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C
498	с⊢(сн₂-	2	2	1	-	н .	CH2- N-C- CF3
499	C	2	2	1	٠.	н	- CH ₂ -N-C-N(CH ₃) ₂
500	с⊢(сн₂-	2	2	1	-	н	-CH ₂ -N-C
501	CI-CH ₂ -	2	2	1		н · ·	-CH ₂ -N-C-NO ₂
502	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
503	CH2-	2	2	1		Н	- CH ₂ -N-C
504	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-OCH ₃
505	CH-2-	2	2	1	-	н	- CH ₂ -N-C
506	CH-2-	2	2	1	-	н	- CH ₂ -N-C

Table 1.47

R ² (CH ₂) _j -	k	m	11	chirality	Ħ³	ー(CH ₂) _p CH ₂)q G R ⁶ R ⁵
CI—⟨ CH₂-	2	2	1		н	- CH ₂ -N-C
CI—CH ₂ -	2	2	1	-	Н	- CH2- N-C-S
CH2−	2	2	1	-	Н	-CH2-N-C-S
C⊢√ CH₂-	2	2	1	-	Н	- CH ₂ - N- CH ₃
C⊢√CH₂-	2	2	1	-	H	-CH ₂ -N-C-C(CH ₃) ₃
C⊢√ CH₂-	2	2	1	-	н	- CH ₂ -N- C- CHCH ₃
CI—⟨¯¯⟩- CH ₂ -	2	2	1	-	н	O C-CH ₃ -CH ₂ -N-C- H
CH-CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- C(CH ₃) ₃
C⊢√CH₂-	2	2	1	-	Н	О - СН ₂ - № С- Н .
H ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
H ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
	$CI \longrightarrow CH_2-$ $CI \longrightarrow CH_2-$ $C \longmapsto CH_2-$	$CI - CH_2 - 2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CI \longrightarrow CH_{2} - CH_{2} - 2 2 1 - H$ $CI \longrightarrow CH_{2} - 2 2 1 - H$ $CI \longrightarrow CH_{2} - 2 2 1 - H$ $CI \longrightarrow CH_{2} - 2 2 1 - H$ $CI \longrightarrow CH_{2} - 2 2 1 - H$ $CI \longrightarrow CH_{2} - 2 2 1 - H$ $CI \longrightarrow CH_{2} - 2 2 1 - H$ $CI \longrightarrow CH_{2} - 2 2 1 - H$ $CI \longrightarrow CH_{2} - 2 2 1 - H$

Table 1.48

, abic	1.40	•					
Compd.	R ² (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
518	NH ₂	2	2	1	-	Н .	-CH ₂ -N-C-C-CF ₃
519	CH5-	2	2	1	-	н	сн ₂ -N-с-С _{F3}
520	CH-CH2-	2	2	1		−сн₃	-CH ₂ -N-C-CF ₃
521	CH-€	2	2	1	-	-(CH ₂) ₂ CH-	-CH ₂ -N-C-CF ₃
522	C	2	2	1	-	-CH ₂ CH-	-CH ₂ -N-C-CF ₃
523	CH-CH ₂ -	2	2	1	-	-(CH ₂) ₂ CH-	-CH _Z -N-C-
524	СНСН2-	2	2	, 1	-	-CH ₂ CH-	-CH2-14-C-
525	CICH ₂ -	2	. 2	1	-	н	-CH ₂ -N-C
526	CH2-	2	2	1	-	Н	-CH2-N-C-
527	C	2	2	1	-	. н	-CH2-N-C-\S
528	C├ \ CH ₂ -	2	2	1	· -	н	-CH ₂ -N-C-CS -CH ₂ -N-C-CH ₃ F ₃ C

Table 1.49

. 40.0	1.45				•		
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ď	ー(CH ₂) _p
529	СН-€-	2	2	1	-	Н	-CH ₂ -N-C-VONO ₂
530	CH2-	2	2	1	-	н	-CH ₂ -N-C
531	CI—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-S
532	С⊢СН₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₃ H ₃ C
533	с⊢(сн₂-	2	2	1	-	Н	-CH ₂ -N-CO
534	С ⊢ СН ₂ -	2	2	1	- -	н	-CH ₂ -N-C-NO ₂
535	СН-СН2-	2	2	1	-	Н	-CH ₂ -N-C-S
536	CH-2-	2	2	1	-	н	-CH ₂ -N-C-X-CH ₃ H ₃ C CH ₃
	C├ - CH ₂ -						-CH ₂ -N-C-C(CH ₃) ₃
538	CICH₂-	2	2	1	-	н	-CH ₂ -N-C-O H ₃ C -CH ₂ -N-C-O F ₃ C
539	CH ₂	2	2	1	-	Н	-CH ₂ -N-C-CH ₃ F ₃ C

Table 1.50

Compd. No.	R ¹ (CH ₂);	k	m	n chiralit	y R³	$-(CH_2)_p + (CH_2)_q G - R^6$
540	CICH ₂ -	2	2	1	н	-CH ₂ -N-C-N-C-N-CH ₃
541	CH-2-	2	2	1 -	н	-CH ₂ -N-C
542	CHCH ₂ -	2	2	1 -	· H	-CH ₂ -N-C-CH ₂ CH ₃
543	CHCH ₂ -	2	2	1 -	н	-CH ₂ -N-C
544	CH-CH2-	2	2	1 -	H	-CH ₂ -N-C
545	CH-CH2-	2	2	1 -	н	-CH ₂ -N-C-
546	C├ - CH₂-	2	2	1 -	н	-CH ₂ -N-C CI
547	C├ - CH₂-	2	2	1 -	· H	-сн ₂ -ү-с- Н С- Сі
548	C├ - CH₂-	2	2	1 -	Н	-CH2-N-C-CI
549	C├ - CH₂-	2	2	1 -	Н	-CH ₂ -N-C-
550	CH-2-	2	2 .	1 -	н	-CH ₂ -N-C

Table 1.51

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
551	с⊢СН₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CH ₃
552	C├ - CH ₂ -	2	2	. 1	-	н	-CH ₂ -N-C-CH ₂
553	С⊢√СН₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CF ₃
554	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-H
555	CH_CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-N-CI
556	CH-€-CH2-	2	2	1	-	н	-CH ₂ -H-C-N-CH ₃
557	CH-CH ₂ -	2	2	1	-	Н	-(CH ₂) ₂ -N-C-
558	CH2-	2	2	·1	-	Н	- CH N- C-
559	C├ \ CH ₂ -	2	2	1	-	н	-CHN-C-CF3
560	C⊢-(CH ₂ -	2	2	1	-	н .	-CHNC-CH
561	CI—(CH ₂ -	2	2	1	-	н	-CHNC-Br

Table 1.52

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	ft³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
562	с⊢()-сн₂-	2	2	1	-	н	-CHN-C-CI
563	CH-2-	2	2	1	-	н	O CF ₃ -CHNC-C-CF ₃ CH ₃ F ₃ C
564	CHCH ₂ -	2	2	1		Н	OCH2CH3 -CHNC
565	CH-CH ₂ -	2	2	1	-	Н	-CH-N-C-CF3
566	CH-CH ₂ -	2	2	1	-	н	-CHNC-CH3
567	CH-CH2-	2	2	. 1	-	н [.]	-CHNC-CF3
568	CH-CH2-	2	2	1	-	н	-CHNC-
569	CH2-	2	2	1	-	н	-CHNC-CF3
570	CI-CH ₂ -	2	2	1	-	н	-CHNC-F
571	CI—CH ₂ -	2	2	1	. -	н	-CHNC
572	СН-СН2-	2	2	1	-	н	-CHN CF3

Table 1.53

Compo	$H \xrightarrow{R^2} (CH_2)_{i-1}$	k	m	n	chirality	₽³	-(CH ₂) _p (CH ₂) _q G-R [€]
573	CH_CH ₂ -	2	2	1	.	Н	-CH N C S
574	CHCH ₂ -	2	2	1	-	. н	-CHNC-S Br
575	СЁ—СН₂-	2	2.	1	· -	н	-CH N C-(CH3)3
576	CI—CH ₂ -	2	2	1	-	Н	-CHNC- IHOSCH3
577	C⊢—CH₂-	2	2	1	-	н	-CH & C-O
578	CH-CH ₂ -	2	2	1	•	н	-CHNC-S
579	. C├─ ─ - CH ₂ -	2 :	2	1	-	Н	-CH N C N
580	CH2-	2 2	2	1	-	н	-CHNC-S CH3
581	CH ₂ -	2 2	2	1	<u>.</u>	н	-CHN - S
582	C⊢————————————————————————————————————	2 2		1	-	H	-CH N C S
583	СН2-	2 2	1	1	-	Н	- CH N CH3
							

Table 1.54

584 $CH - CH_{2} - 2 2 1 - H - CH_{N} C - CH_{3}$ 585 $CH - CH_{2} - 2 2 1 - H - CH_{N} C - CH_{3}$ 586 $CH - CH_{2} - 2 2 1 - H - CH_{N} C - CH_{3}$ 587 $CH - CH_{2} - 2 2 1 - H - CH_{N} C - CH_{3}$ 588 $CH - CH_{2} - 2 2 1 - CH_{N} C -$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-(CH ₂) _q -G-R ⁶
586 CH_{2}^{-} 2 2 1 - H $-\frac{CH}{CH_{3}}$ 587 CH_{2}^{-} 2 2 1 - H $-\frac{CH}{CH_{3}}$ 588 CH_{2}^{-} - CH_{2}^{-} 2 2 1 - H $-\frac{CH}{CH_{3}}$	
587 CH ₂ - 2 2 1 - H - CH ₃ CH ₃ CH ₂ - 2 2 1 - H - CH ₁ CH ₃)
588 CH2- 2 2 1 - H -CHNC-	•
LES LES	-CF ₃
·	-NH ₂
589 CH2- 2 2 1 · H -CHN-C-√	C(CH ₃) ₃
590 CH₂- 2 2 1 - H -CHNC- CH₃	CH(CH ₃) ₂
CH ₃	N(CH ₃) ₂
CH ₃	√ р-осн₃
. Cing	СН₂ОН
594 CH₂- 2 2 1 - H - CH₃- CH₃	.—() он

Table 1.55

Compd. No.	R ¹ (CH ₂)	k	តា	ñ	chirality	'R²	-(CH ₂) _p + (CH ₂) _q G-R ⁶
595	C├ - CH ₂ -	2	2	1	-	Н	-CH N C - CO₂CH3 CH3
596	CH-2-	2	2	1	-	н	- СН И С — С- СН3 СН3
597	CH_CH ₂ -	2	2	1		н	- CH N C - CH3
598	CH-CH ₂ -	2	2	1	-	н	- CH N C - O CH3
599	CH2-	2	2	1	- ·	Н	-CH N CH3
600	CHCH_2-	2	2	1	- *	Н	CH ₃
601	CHCH ₂ -	2	2	1	÷ .	H .	-CHNC-CH3
602	C├ - CH ₂ -	2	2	1	-	Н	$- \underset{CH_3}{\overset{O}{\overset{N}{\overset{CH_3}{\overset{N}{\overset{CH_3}{\overset{N}{\overset{CH_3}{\overset{C}{\overset{C}{\overset{C}{\overset{C}}{\overset{C}{\overset{C}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}}}}}}}$
603	C⊢-€	2	2	1	-	н	- CH N C - NH ₂ - CH ₃ - CH ₃
604	C├ \ CH ₂ -	2	2	1	-	н	-CH-M-C-() CH3 H
605	C├ - CH ₂ -	2	2	1	-	н	-сн ³

Table 1.56

	-						
Compd. No.	R ¹ (CH ₂) _i	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
606	C⊢(2	2	1	•	н	-CH-N-C-\S
607	CH-2-	2	2	1	-	н	- CH3 - CH3 - CH3
608	CH-CH ₂ -	2	2	·1	-	н	-CH-N-C
609	CH-CH ₂ -	2	2	1	-	н	-CH-N-CO CH3 H3C
610	CICH ₂ -	2	2	1	-	н	-CH-N-C-CH3
611	СН-СН2-	2	2	1	.	н	-CH-N-C
612	СН ₂ -	2	2	1	-	н	-c++ bc-
613	СН-СН2-	2	2	1	· -	н	-CH-N-C-CH ₃ CH ₃ F ₃ C
614	CHCH ₂ -	2	2	1	-	н	-CH-N-CN-CH ₃ -CH ₃ F ₃ C CH ₃
615	С⊢-{СН₂-	2	2	1	-	н	- CH- N-C- NH
616	CH-CH2-	2	2	1	•	н	-CH-N-CN

:

Table 1.57

rabie	1.5 /						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	[.] R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - G - R^6$
617	С⊢{СН₂-	2	2	1	-	Н	-CH-N-C-CF ₃
618	CH-2-	2	2	1	-	н	-CHN C- H CH(CH ₃) ₂
619	CHCH ₂ -	2	2	1	-	н	-CHN-C-CN -HH CH(CH ₃) ₂
620	CHCH ₂ -	2	2	1	-	н	- CH N C Br - H CH(CH ₃) ₂
621	CHCH ₂	2	2	1	-	H	-CH-N-C
622	CH	.2	2	1	-	Н	- CH N C N (CH ₃) ₂ - CH(CH ₃) ₂
623	CH2-	2	2	1	-	н	O OCH ₃ - CH № C — OCH ₃ - CH(CH ₃) ₂
624	CHCH ₂ -	2	2	1	-	н	- CH N C - NO ₂ - CH N C - NO ₂ CH(CH ₃) ₂
625	CH2-	2	2	1	-	н	- CH N C - NH ₂ - CH (CH ₃) ₂
626	C⊢CH₂-	2	2	1		. н ·	-CH-N-C- I H CH(CH ₃) ₂ CF ₃
627	C├ ~ CH ₂ -	2	2	1	-	н	OCH ₂ CH ₃ - CH N-C- CH(CH ₃) ₂

Table 1.58

lable 1	.58						
Compd.	R ¹ /(CH ₂)/-	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
628	CHCH ₂ -	2	2	1	-	Н	CH(CH³)5 - CH M C CO⁵CH³
629	С⊢—СН ₂ -	2	2	1	-	H	O F CF ₃ -CH N C CH(CH ₃) ₂
630	C├ - CH₂-	. 2	2	1.	-	н	- CH- N- C- OCF ₃ - CH- N- C- OCF ₃ - CH(CH ₃) ₂
631	CHCH ₂ -	2	2	1	-	н	- CH N C- CF ₃
632	CH2-	2	2	1	- -	<u>.</u> H	- CH N C-
633	С——СН ₂ -	2	2	1	-	н	- CH N C CF3 CH(CH3)2 F
634	CH2−CH2−	2	2	1	-	н	CF ₃ -CHNC
635	.CH_CH ₂ -	2	2	1		н	CH(CH ₃) ₂ O O CH(CH ₃) ₂ - CH N C I H CH(CH ₃) ₂
636	C!	2	2	1	-	. H	- CH N C- CH ₃ - CH N C- CH ₃ - CH (CH ₃) ₂
637	C⊢(2	2	1	-	н	-CH N C - CF ₃ -CH(CH ₃) ₂
638	C├ - CH₂-	2	2	1	-	н	- СН И С- - СН СН3)2 - СН(СН3)2

Table 1.59

Compd.	R (CH ₂)	ķ	m	В	chirality	ÎH³	
639	CH-2-	2	2	1	•	н	O -CHNC-\N(CH ₃) ₂ H CH(CH ₃) ₂
640	С⊢—СН₂-	2	2	1	-	н	- СН N С- Н СН(СН ₃) ₂
641	С⊢—СН₂-	2	2	1	-	н	- CH N C - CO₂CH₃ I H CH(CH₃)₂
642	С⊢ СН₂-	2	2	1	-	H	-CH-N-C
643	CHCH2-	2	2	1	-	H .	-CHNC-CF3 H CH(CH3)2
644	C├ - CH ₂ -	2	2	1	-	н	- CH-N-C
645	C├ - CH ₂ -	2	2	1	-	Н	- CH N C NH ₂ I H CH(CH ₃) ₂
646	C ├── CH ₂ -	2	2	1	-	Н	- СН- N- СН ₂ ОН Н СН(СН ₃) ₂
647	CICH ₂ -	2	2	1	-	н	- СН- N- С- С- СН ₃ - СН (СН ₃) ₂
648	CH2-	2	2	1	-	н	- CH N C - CH(CH ₃) ₂ - CH(CH ₃) ₂
649	CH ₂	2	2	1	-	н	О - СН И СН(СН ₃) ₂

Table 1.60

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
650	C├ - CH₂-	2	2	1		н	-CH-N-C-(CH(CH3)2
651	CH-CH ₂ -	2	2	1	-	Н	-CH-H-C-CHCH2
652	CH-CH2-	2	2	1	-	н	$-CHNC \longrightarrow NO_2$ $CH(CH_3)_2$
653	CH-€ CH ₂ -	2	2	1	-	Н	-CH-N-C- H CH(CH ₃) ₂ -O(CH ₂) ₄ CH ₃
654	CHCH₂-	2	2	1	-	Н	- CH- N- C
655	CHCH2-	· 2	2	1	-	н	-CH-N-C- CH(CH ₃) ₂
656	CH-€ CH ₂ -	2	2	1	•	н .	-CH-N-C- CH(CH ₃) ₂
657	C├────────────────────────────────────	2	2	1	-	н	-ÇH-N-C⟨S CH(CH ₃) ₂
658	CH-CH ₂ -	2	2	1	-	Ĥ.	-CH-N-C-\NH CH(CH ₃) ₂
659	CHCH2-	2	2	1	-	н	-CH-N-C
660	CH-€ CH ₂ -	2	2	1		н	-CH-N-CN-CN-CH(CH ₃) ₂

Table 1.61

Compd. No.	R ¹ (CH ₂)	k	ñ)	ñ	chirality	'R°	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + G - H^C$
661	С├-{СН²-	2	2	1	-	Н	-CH-N-C- S H CH(CH ₃) ₂ OCH ₃
662	C ⊢ C H₂-	2	2	1	-	н	CH(CH ₃) ₂ CH ₃
663	С├-(СН₂-	2	2	1	-	Н	- CHN-C CH H CH(CH ₃) ₂
664	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
665	CH	2	2	1	- .	Н	CH NC S CH(CH ₃) ₂
666	CH-2-	2	2	1	- *	Н	CH(CH ₃) ₂ CH ₃ CH ₃ CH ₃
667	CH-2-	2	2	1	-	н	-CH-N-C
668	CH-2-	2.	2	1	-	н	-CH-N-C-CH ₃ CH(CH ₃) ₂ CH ₃
669	CI—(2	2	1 .	-	Н	-CHN-C- CH(CH ₃) ₂ CH ₃
670	C├ ~ CH ₂ -	2	2	1	-	н	-CH-N-C- CH(CH ₃) ₂ Br
671	С⊢—СН₂-	2	2	1	- ·	Н	-CH-NC- NO ₂

Table 1.62

Table 1	1.62	•			÷		•
Compd.	R (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
672	с⊢С}-сн₂-	2	2	1	-	н	-CH-N-C-N
673	C ⊢ CH₂-	2	2	1		н	-CH-N-C-(S) -C(CH ₃) ₂
674	C├ - CH₂-	2	2	1	-	н	-CH-N-C-S
675	.C├ - ⟨_}- CH₂-	2	2	1	-	н	-CH-N-C-S CH ₃
676	C⊢√_CH₂-	2	2	1	-	н	-CH-N-C-N-CH(CH ₃) ₂ H
677	C├ - CH₂-	2	2	1	-	н	-CH-N-C-N-C-N-CH(CH ₃) ₂ CH ₃
678	CHCH ₂ -	2	2	1	-	н	-CH-N-C
679	C⊢(2	2	1	-	н	-CH-N-C-SI CH(CH ₃) ₂
680	CHCH ₂ -	2	2	1	-	н	-CHN-C-S Br
681	С⊢-{	2	2	1	-	H	-CH-N-C-CH ₃ -CH(CH ₃) ₂ -CH ₃
682	с⊢{_}сн₂-	2	2	1	-	н	-CH-N-C

Table 1.63

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	Ř³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
683	CH-2-	2	2	1	-	H	-CH-N-C-S SCH ₃
684	С⊢С СН₂-	2	2	1	-	н	-CH-N-C- S CH(CH ₃) ₂
685	C⊢√_CH₂-	2	2	1	-	н	-CH-N-C P -CH(CH ₃) ₂ P-CH ₃
686	C├ -	2	2	1	-	Н	- CH N C - CH ₂ CH(CH ₃) ₂
687	CH-{-}-CH2-	2	2	1	-	Н	-CHN-C-
688	CH-2-	2	2	1	-	н	-CHNC
689	C⊢()−CH₂-	2	2	1	-	Н	-CH N-C
690	CI—CH₂-	2	2	1	-	Н	-CHNC-Br
	CI—CH₂-						-CH M.C- (NCH3)2
692	C├ - CH ₂ -	2	2	1	-	н	-CH N C - OCH3
693	C├ ─ CH ₂ -	2	2	1	-	н	- CH N C - CF ₃

Table 1.64

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
694	CI-CH ₂ -	2	2	1	-	н .	-CH N C - OCH2CH3
695	ССН2-	2	2	1	· -	н	-CH № C
696	С⊢ СН₂-	2	2	1	-	н	- CH N-C
697	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-CN
698	С⊢—СН₂-	2	2	1	-	н	-CH N C- N(CH ₃) ₂
699	CH2-	2	2	1	-	Н	-сн и с С Осн₃
700	C ├── CH ₂ -	2	2	1	-	н	-CH N-C
701	C├ - CH ₂ -	2	2	1	-	н	-CHN-C
702	C├ - CH ₂ -	2	2	1	-	н	-CH N C-CF3
703	CI-CH ₂ -	2	2	1	-	н	-CHN-C-CH(CH ₃) ₂
704 ⁻	CH-2-	2	2	1	-	Н	-CHN-C

Table 1.65

Compd No.	R ¹ (CH ₂);	k m n	chirality	H ₂	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
705	C	2 2 1	-	н.	-CHNC-S
706	C├─ ─ CH ₂ -	2 2 1	-	Н	-CHNC-CH3
707	CH-CH ₂ -	2 2 1	-	н	-CH-N-C
708	CH-CH₂-	2 2 1	-	H	-CHN-C-SBr
709	CH ₂ -	2 2 1	<u>.</u> .	н	-CHN-C-SSCH3
710	CH2-	2 2 1	-	Н	-CH-N-C-S
711	CHCH ₂ -	2 2 1	-	н	-CH-N-C CH3
712	CH-{	2 2 1	-	Н	-chyc-st
'13 ह	CH ₂ - 2	2 1	-	Н	-CHN-C
14 c	CH2- 2	2 1	-	н	-CHN-C-S
15 c	⊢(¯)-CH ₂ - 2	2 1	-	н	-CHNC-S

Table 1.66

Compd. $R^2 \rightarrow (CH_2)$ k m n chirality $R^3 \rightarrow (CH_2)_0 = \frac{R^4}{R^5} (CH_2)_0 = G-R^4$ 716								
717 $CH - CH_{2} - CH_{2} - 2 = 2 = 1 - H - CH_{1} - CH_{2} - CH_$	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) _ρ + (CH ₂) _q G−R ⁶ R ⁵
718	716	C⊢(2	2	1	-	н	-c+4c-N
719 $CH - CH_2 - 2$ 2 2 1 - H $-CH_1 - CH_2 - CH_2$	717	CI-CH ₂ -	2	2	1	-	H·	-CHN-C- NO2
720 $CH - CH_2 - 2$ 2 1 - H $-CH - CH_2 - C$	718	CH- C H₂-	2	2	1		н	-CHNC-N
721 $CH - CH_{2} - CH_{2} - 2 + 2 + 1 + - CH_{2} - CH_{2$	719	CH-CH ₂ -	2	2	1	-	н	-c+n-c-
722 CH_{2}^{-} 2 2 1 - H CH_{2}^{-} CH ₂ OH 723 CH_{2}^{-} 2 2 1 - H CH_{2}^{-} CH ₂ OH 724 CH_{2}^{-} 2 2 1 - H CH_{2}^{-} C(CH_{3}^{-}) 725 CH_{2}^{-} 2 2 1 - H CH_{2}^{-} C CH_{2}^{-	720	CH-€	2	2	1	· -	н	-CHN-C- Br
723 CH_{2}^{-} 2 2 1 - H $-CH_{1}^{-}$ CH_{2}^{-} 12 2 1 - H $-CH_{1}^{-}$ $-CH_{1}^{-}$ $-CH_{2}^{-}$ $-C(CH_{3})_{3}$ 725 CH_{2}^{-} 2 2 1 - H $-CH_{1}^{-}$ $-CH_{1}^{-}$ $-CH_{2}^{-}$ $-C(CH_{3})_{3}$	721	CH-2-	2	2	1	-	н	-CH-N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
724 CH ₂ - 2 2 1 - H -CHN-C-C-(CH ₃) ₃ 725 CHC-CH ₂ - 2 2 1 - H -CHN-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	722	C├ - CH ₂ -	2	2 .	1	-	н	-сн-к-с-∕-сн₂он
725 c⊢ CH₂- 2 2 1 - H - CHN-C- C- C-								
	724	C├ ~ CH ₂ -	2	2	.1	-	н	-CH-N-C
726 CH₂- 2 2 1 - H -CHN-C-CH₃	725	CH-{	2	2	1	-	н	-c+14-c-(-)-c-(-)
	726	С⊢—СН₂-	2	2	1		н	-сни с-сн ³

Table 1.67

Compd. No.	R ¹ (CH ₂) _j	k r	n n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
727	CI—CH₂-	2 2	2 1	-	Н	-CH-N-C-()-CI
728	CI—CH ₂ -	2 2	. 1	-	н	-CH-N-C-NH2
729	CH√_CH2-	2 2	1	-	Н	-CHN-C-NO2
730	CHCH2-	2 2	1	-	H -	-c+n-c-
731	C├ - CH ₂ -	2 2	1	-	н	-CH-N-C
732	С├-{СН₂-	2 2	1	-	н	-CHN-CCF3
733	C├ ─ CH ₂ -	2 2	1	-	н	-CH-N-C- HO CH(CH ₃) ₂
734	CH₂-	2 2	1	-	H	-CHN-C
735	CH-€-CH2-	2 2	1	-	Н	-CHN-C-CF3
736	CH-2-	2 2	1	-	H	-CHN-C- H ₂ N CF ₃
737	CI{CH₂-	2 2	1	-	н	-CHN-C- CF3

Table 1.68

Table I							
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
738	CH-CH2-	2	2	1	-	н	-CH-N-CO-CH3
739	_ CH-CH ₂ -	2	2	1	-	н	-CH-N-C-NH
740 ·	CH-CH ₂ -	2	2	1	-	н	-CHN-C- NO ₂
741	CH-CH ₂ -	2	2	1	-	н	-CHN-C-S NO2
742	CH-CH ₂ -	2	2	1	-	н .	-CHN-C-S
743	CH-CH ₂ -	2	2	1	-	н	-chnc-Co
744	CH-CH ₂ -	2	2	1	-	Н	-chyc-CH3
745	CH-CH ₂ -	2	2	1	. •	н	-CHN-C-(CH3)3
746	C⊢CH₂-	2	2	1	-	н	-CH-N-C-N CH3
747	CH-2-	2	2	1	-	н	-CH-N-C
	C├ \ CH₂-						-chyc-Cs

Table 1.69

· abic	1.03						<u>.</u>
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	['] R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
749	С├-{СН₂-	2	2	1	-	н	-CH-N-C
750	CH-CH ₂ -	2	2	1	-	н .	-CH-N-C
751	CHCH ₂ -	2	2	1	-	Н	-СН-N-С
752	CHCH ₂ -	. 2	2	1		Н	-CH-N-C-CF ₃ -CH ₂ OH CF ₃
753	CI—CH ₂ -	. 2	2	1	-	н	-CH-N-C-CN CH2OH
754	CHCH2-	2	2	1	-	Н	-CH-N-C- H H CH2OH
755	CH2-	2	2	1		н	-CH-N-C-OCH ₃ -CH ₂ OH
756	CH-2-	2	2	1	-	н	-CH-N-C-NO ₂ -CH ₂ OH
757	CH2-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C-CH-CH ₂ CH ₃ -CH ₂ OH
758	C├ - CH ₂ -	2	2	1	-	Н	−CH-N-C− H CH ₂ OH
759	C├─ੑੑੑੑੑੑੑ - CH ₂ -	2	2	1	-	н	OCF ₃ -CH-N-C- CH ₂ OH

Table 1.70

i abic i	.,, 0						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
760	CI—CH₂-	2	. 2	1		н	-CH-N-C-CF3
761	CH-CH2-	2	2	1	-	н	OCF3 -CHN-CF H CH2OH
762	CH-CH2-	2	2	1	-	н	-CH-N-C- H CH₂OH
763	CH-2-	2	. 2	. 1	-	н	-CH-N-C- CH2OH
764	CH-2-	2	2	1	-	, н	СН3 Р СН3 Р СН3 .
765	CH-{	2	2	1	-	H,	CH ₃ O CH ₃ -C-N-C-
766	CHCH2-	2	2	1	- -	н	CH ₃ Q CF ₃
767	CI-CH ₂ -	2	2	1	-	Ĥ.	CH3 P CH3 -C-N-C-C-C-CO
768	CH-CH ₂ -	2	2	1	-	н	CH ₃ O Br
769	CH-(CH ₂ -	2	2	1	-	н	CH ₃ OCF ₃ -C-N-C-
770	CH-CH2-	2	2	1	-	н	CH ₃ P OCF ₃ -C-N-C- CH ₃ P CF ₃ -C-N-C- CH ₃ P CF ₃

Table 1.71

Compd.	R ² → (CH ₂);	k n	ח ו	chirality		(CH ₂) _p (CH ₂) _q G−R [€]
771	CI-CH ₂ -	2 2	1	-	н	CH ₃ P CF ₃ -C-N-C-F CH ₃
772	CH2-	2 2	1	-	н	CH ₃ P -C-N-C-C-CF ₃ CH ₃
773	C├ \ CH ₂ -	2 2	1		Н	C(CH ₃) ₃
774	CH-2-	2 2	1	· <u>-</u>	н	CH ₃ O CH ₃ SCH ₃
775	СН-СН2-	2 2	1	-	Н	CH ₃ Q CH ₃ -C-N-C-Q CH ₃ C(CH ₃) ₃
776	CH-CH ₂ -	2 2	1	-	н	CH ₃ 0 CH ₃ -C-N-C- O CH ₃
777	C ⊢ CH ₂ -	2 2	1	-	Н	CH ₃ O CF ₃ -C-N-C-C-CH ₃
778	С⊢СТ}-СН₂-	2 2	1	-	н	CH ₃ O NO ₂ -C-N-C-C-CI CH ₃
779	CI—CH₂-	2 2	1	-	н	CH ₃ Q CI -C-N-C-C
780	С⊢-{	2 2	1	-	Н	CH ₃ O NO ₂
781	CH-2-	2 2	1	-	Н	CH ₃ P

Table 1.72

lable 1	1.72						
Compd.	R ¹ (CH ₂)	k	m	n c	hirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
782	CH-CH2-	2	2	1 '	-	н	-C-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
783	C├─ੑCH₂-	2	2	1		н	CH ₃ O OCH ₂ CH ₃
784	C - 	2	2	1 ∙	-	н	CF ₃ -C-N-C-CH ₂ -CF ₃ -CH ₃
785	C├ - ⟨¯¯ ⟩ - CH ₂ -	2	2	1	-	Н	CH ₃ POCH ₃ CH ₃ OCH ₃
786	CH-CH ₂ -	ž	2	1	-	H	-C-N-C- H ₂ C-CH ₂
787	CH-CH2-	2	2	1		н .	-C-H ₂ CH ₃
788	CH-CH ₂ -	2	2	1	-	H .	H ₂ C—CH ₂
789	CH-2-	. 2	2	1	-	Н	-C-N-C-CH ³
790	CH-CH ₂ -	2	2	1	-	н	P CI
791	CHCH ₂ -	2	2	1	-	н	H ₂ C — CH ₂ OCF ₃ H ₃ C — CH ₂
792	ССН2-	2	2	1	-	н	-C-HC-C-CH ₂

Table 1.73

		_						•
	Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
•	793	CI-CH ₂ -	2	2	1	-	н	P CF ₃ -C-N-C-F H ₂ C-CH ₂
	794	CI——CH₂-	2	2	1	-	H .	H ₂ C-CH ₂ F
	795	CI——CH₂-	2	2	1	-	н	$ \begin{array}{c} $
	796	C├ \ CH₂-	2	2	1	-	н	H ₂ C—CH ₂
	797	CH-CH ₂ -	2	2	1	-	н	-C-N-C-C-C(CH ₃) ₃
	798	С⊢СН2-	2	2	1	-	Н	H ₂ C - CH ₂
	799	CHCH ₂ -	2	2	1	-	_. H	H ₂ C—CH ₂ CH ₃
	800	CH-CH ₂ -	2	2	1	-	H.	NO ₂ . NO ₂ . H ₂ C—CH ₂
	801	CH-CH ₂ -	2	2	1	-	н	H ₂ C-CH ₂ ' H
	802	C⊢√Ç-CH₂-	2	2	1	-	н .	H ₂ C—CH ₂
	803	CHCH ₂ -	2	2	1	-	н	OCH ₃ H ₂ C-CH ₂ OCH ₂ CH ₃ OCH ₂ CH ₃

Table 1.74

lable 1	./ 4		_				
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p -G-R ⁶
804	С⊢(СН₂-	2	2	1	-	Н	P CF3
805	CH-CH ₂	2	2	1	-	Н	H_2C-CH_2 OCH ₃
806	CHCH ₂ -	2	2	1.	. -	н	H ₂ C—CH ₂
807	C├ - CH ₂ -	2	2 .	1	-	н	(CH3)2-C-NH2
808	C├ \ CH ₂ -	2	2	1	-	н	-CH-N-C
809	C├ - CH ₂ -	2	2	1	-	н	-CH-NC
810	CHCH ₂ -	2	2 .	. 1	· -	H ·	-CH-MC-CD-CH3
811	CHCH2-	2	2	1	-	н	-CH-N-C-NH ₂
812	CHCH ₂ -	2	2	1		Н	- CH-N-C- S SCH ₃ (CH ₂) ₂ -C-NH ₂
813	CHCH ₂ -	. 2	2	1	-	н	- CH-N-C
814	C├	2	2	1	-	н.	(OH2)2 C-NH2 -CH-N-C-() OCE3

Table 1.75

rable	1.75						
Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
815	CH-2-	2	2	1	<u>-</u>	Н	· - CH-N-C - CF3
816	C⊢CH₂-	2	2	1	-	н	- CH-N-C- CF3 - CH-N-C- CF3 (CH ₂) ₂ - C-NH ₂
817	C├ \ CH ₂ -	2	2	1	-	н	CF ₃ -CH-N-C
818	С⊢_СН₂-	2	2	1	-	н	CH-N-C
819	C	2	2	.1	-	Н	CH-N-C CF3 (CH2)2-C-NH2 CF3
820	СНСН2-	2	2	1	• •	Н	$ \begin{array}{ccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & & $
821	CHCH ₂ -	2	2	1	-	H	-CH-N-C
822	CH-2-	2	2	1	-	H	-СН-И-С- СН2ОСН3
823	CH-CH ₂ -	2	2	1	-	H	-CH-N-C-
824	CH-2-	2	2	1	-	н	CH-N-C
825	C├ - CH ₂ -	2	2	1	-	н	CH ⁵ OCH ²

Table 1.76

· ubic ·							
Compd. No.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q-G}-R^6$
826	С⊢СУ-СН₂-	2	2	1	-	н	-CH-N-C-CH ₃ CH ₂ OCH ₃
827	CHCH ₂ -	2	2	1	-	н	-CH-N-C-NH CH₂OCH3
828	CH-CH2-	2	2 [.]	1	-	, H	-CH-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
829	CH-CH ₂ -	Ż	2	1	-	н	CH ₂ OCH ₃ F
830	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-F CH ₂ OCH ₃
831	CH-CH ₂ -	2	2	1		н	-CH-N-C- CH2OCH3
832 .	CH-CH ₂ -	2	2	1	-	н	-CH-N-C- CH2OCH3
833	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
834	CHCH ₂ -	2	2	1	-	н	$-CH-N-C- CF_3$ CH_2OCH_3
835	CH-(2	2	1	-	н	-CH-N-C- CH2OCH3
836	C├ - ⟨}-CH ₂ -					н	-CH-N-C- H CH2OCH3

Table 1.77

Compd. No.	R ² -(CH ₂);-	ķ	m	n	chirality		$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
837	C├ - CH ₂ -	2	2	1	-	н	O CF ₃ -CH-N-C
838	CH-CH ₂ -	2	2	1	-	Н	OCH ₂ CH ₃ -CH-N-C-
839	CHCH2-	2	2	1	-	Н	OCH ₃ -CH-N-C
840	CH√_CH₂-	2	2	1	-	н	-(CH ₂) ₃ -C-
841	CH-€	2	2	1	- ·	Н	-(CH ₂) ₂ - C
842	CHCH2-	2	2	1	-	н	-(CH ₂) ₂ -C-CI
843	С⊢СН2-	2	2	1	· -	Н	-(CH ₂) ₂ -CH ₃
844	C├─ ○ CH ₂ -	2	2	1	-	Н	-(CH ₂) ₂ -CH ₃
845 <u>.</u>	CH-€-CH2-	2	2	1	-	н	-(CH ₂) ₂ -C
							-(CH ₂) ₂ -C
847	C├ - CH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C-C-C-OCH ₃

Table 1.78

lable	1.70						
Compd.	R ¹ (CH ₂),—	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
848	CH-2-	2	2	1	-	н	$-(CH_2)_2 - CH_3$
849	CH2-	2	2	1	•	н	-(CH ₂) ₂ -C-OCH ₃
850	CH-CH ₂ -	2	.2	1	-	н	- CH ₂ -\$\text{\$\text{\$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
851	CH-CH2-	2	2	1	-	н	- CH ₂ - N- C- N- CF ₃
852	CH-2-	2	2	1	-	Н	-CH ₂ -N-C-N-CF ₃
853	CH-CH2-	2	2	1	- · ·. ·	н	- CH ₂ -N-C-N-
854	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C-N-C-N-H
855	CHCH ₂ -	2	2	1	-	н	- CH ₂ -N-C-N-CH ₃
856	C├	2	2	1 '	-	н	- CH ₂ - H C- H C- C- CH ₃
857	C⊢(CH ₂ -	2	2	1	-	н	-CH2-N-C-N-C-N-
858	CH-€	2	2	1	•	н	-CH ₂ -N-C-NOCH ₃
				<u>. </u>			

Table 1.79

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality		^{Д⁴} −(СН ₂) _р † (СН ₂) _q G−R [€] R ⁵
859	CHCH₂-	2	2	1	-	Н	- CH ₂ -N-C-N-
860	CHCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-N-CN
861	CH-CH ₂ -	2	2	1	-	. Н	- CH ₂ -N-C-N-
862	CHCH_2-	2	2	1	-	н	-CH ₂ -N-C-N- H H C-N- CH ₃
863	CHCH_2	2	2	1	-	н	-CH ₂ -N-C-N-H-H-H-
864	CH-CH ₂ -	2	2	· 1	<u>-</u>	Н	-CH2-N-C-N-C-N-C-OCH3
865	CHCH ₂ -	2	2	1	-	. н	-CH ₂ -N-S-CH ₃
866	CH-2-	2	2	1	<u>-</u>	н .	- CH ₂ -N-S-CF ₃
867	CHCH2-	2	2	1	-	н	-CH ₂ -N-S-CF ₃
868	CH_CH2-	2	2	1	-	н	- CH ₂ - N- S- CH ₂ CH ₃
869	CHCH_2-	2	2	1	-	н	- CH ₂ -N-S- H 0 CH(CH ₃) ₂

Table 1.80

Compd. No.	R ¹ (CH ₂) _i	k	m	n	chirality	R ³	-(CH ₂) p G (CH ₂) q G-R ⁶
870	CH₂-	2	2	1	-	Н	- CH ₂ -N-S-CH ₃
871	C ├── CH₂-	2	2	1	-	н .	- CH ₂ - N- S- (CH ₂) ₃ CH ₃
872	C⊢√CH₂-	2	2	1	-	н	- CH ₂ - N- S-
873	C⊢√CH₂-	2	2	1	-	н •	- CH ₂ -N-C-O CH ₂ -
874	CH2−	2.	2	1	-	н	- CH O C- N- CI
875	(CH ₂ -	2	2	1	-	н .	O CF ₃
876	BrCH ₂ -	2	. 2	1	-	н	-CH ₂ -N-C-CF ₃
877	NC-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
878	O ₂ N-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C- CF ₃
	O- O- CH₂-					н	- CH ₂ -N-C-CF ₃
880	O^O	2	. 2	1	-	н	- CH ₂ -N-C-CF ₃

Table 1.81

· abic							
Compd.	R ² (CH ₂)	k	m	11	chirality	H³	$-(CH_2)_{p} + (CH_2)_{q} G - R^{6}$
881	Br CH ₂ -	2	2	1	-	Н .	- CH ₂ - N C-
882	O-O-OH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
883	CI - CH ₂ -	2	2	1	, ⁻	H	- CH ₂ - N- C-
884	н°с.с-Й—Сч⁵-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
885	H ₃ C-\$ O O	2	2	1	-	H	-CH ₂ -N-C-
886	F-CH ₂ -	2	2	1	.	. н	-CH ₂ -N-C-CF ₃
887	F ₃ C-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
888	HO-CH ₂ -	2	2	1	- '	н	- CH ₂ - N C − CF ₃
·889	(C)-(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
890	CH ₂ -	2	2	1		н	- CH ₂ -N C-CF ₃
891	CH2−	. 2	2	1		н	- СH ₂ - № С — СF ₃

Table 1.82

Table 1	1.82						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
892	H₃CQ CH₂-	2	2	1	-	н	-CH2-N-C-CF3
	O ₂ N CH ₂ -					н	-CH ₂ -N C-CF ₃
894	H ₃ C ← CH ₃ − CH ₃	2	2	1	-	н	- CH ₂ -N-C-CF ₃
895	(CH ₂) ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
896	CN CH₂-	2 ^	2	1	-	н	-CH ₂ -N-C-CF ₃
897	HO ₂ C CH ₂ -	2	2	1		н	-CH ₂ -N-CF ₃
898	HO ₂ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
•	OCH ₃						- CH ₂ - N- C
900	H ₃ ∞ ₂ C-√	2	2	1	-	н	-CH ₂ -N-CF ₃
901	<u></u>	2	2	1	-	н	- CH ₂ -N-C-CF ₃
.902	O ₂ N CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.83

Compd. No.	R ² (CH ₂) _j	k	m	п	chirality	R³	—(CH ₂) p (CH ₂) q G−R ⁶
903	H₃CO CH₂- OCH₃	2	2	1	<u>-</u>	н	- CH ₂ - N- C - CF ₃
904	HO CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-
905	O ₂ N CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
906	(CH ₂) ₃ -	2	2	1	-	н .	- CH ₂ -N-C-CF ₃
907	CH(CH ₂) ₂ −	2	2	1	-	н	- CH ₂ -N-C-CF ₃
908	H C CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
909	N C-CH2-	2	2	1	-	н	- CH ₂ - N- C- CF ₃
910	CI CH ₂ -	2	2	1	-	. н	- CH ₂ -N-C-CF ₃
911	CICH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
912	Br CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
913	H ₃ CO-CH ₂ -	2	2	. 1	-	н	O CF3

Table 1.84

Compd.	H ¹ / _{H²} -(CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $G-R^6$
914	O+20-(C+2-	2	2	1	-	Н	- CH ₂ - N- C- CF ₃
915	OH CHCH₂-	2	2	1	-	Н	- CH ₂ - N- C-
916	. N CH₂-	2	2	1	-	н	- CH ₂ -N- C-CF ₃
917	N— CH₂-	2	2	.1	· _	н	- CH ₂ -N-C-CF ₃
918	H3CO2C: OH2	2	2	1	-	н	- CH ₂ -N-C-CF ₃
919	H ₃ C-\(\bigc\)- CH ₂ -	2	., 2	1	-	н	- CH ₂ -N-C-CF ₃
920	OCF₃ CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
	CH₂-					н	- CH ₂ -N-C-CF ₃
922) —сн₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
923	CH-CH-	.2	2	1	-	Н	- CH ₂ -N-C-CF ₃ - CH ₂ -N-C-CF ₃ - CH ₂ -N-C-CF ₃
924	H ₂ N-C	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.85

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	R ⁴ −(CH ₂) _p + (CH ₂) _q G−R ⁶ R ⁵
925	H ₂ N-C-CH ₂ -	2	2	1	<u>-</u>	Н	-CH ₂ -N-C-CF ₃
926	CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
927	F ₃ CQ —CH ₂ -	2	2	1	7	Н	-CH ₂ -N-C-CF ₃
928	F ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
929	H ₃ CS-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
930	CH₃ CH₂-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
931	NC —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
	NO ₂					н	-CH ₂ -N-C
933	CH-CH-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
934	~N CH₂-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
935	O ₂ N	2	2	1	-	Н	-CH ₂ -N-C-CF ₃

Table 1.86

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	[.] R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
936	NO ₂	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
937	(H ₃ C) ₂ N	2	2	1		н	-CH ₂ -N-C-CF ₃
938	C⊢√ CH₂-	2	2	1	•	н	-CH ₂ -N-C-C-CF ₃
939	O ₂ N CH ₂ -	2	2	1	•	Н .	-CH ₂ -N-C-CF ₃
940	OH CH₂-	2	2	1	-	. Н	-CH2-N-C-CF3
941	F ₃ C CH ₂ -	2	2	1	-	H .	-CH ₂ -N-C-CF ₃
942	C├ - CH ₂ -	2	2	1	<u>.</u> .	Н	$-CHNCH_3)_2 CF_3$ $-CH(CH_3)_2 CF_3$
943	CHCH2- '	1	4	0		Н	-CH ₂ -N-C-CF ₃
944	C├ - ()_CH ₂ -	·1:	4	0		н	-CH ₂ -N-C-CH ₃
945	С⊢—СН₂	1	4	0	<u>.</u> ·	н	-CH ₂ -N-C-\(\bigc\)
946	CH-€	1	4	0	-	н	-(CH ₂) ₂ -N-C-NO ₂

Table 1.87

Compd. R (CH ₂) k m n chirality	Ю	-(CH ₂) _p + (CH ₂) _q G-R ⁶
947 c⊢√ CH₂- 1 4 0 -	Н	-(CH ₂) ₂ -N-C
948 CH2- 1 4 0 -	н	-(CH ₂) ₃ -C-N-CI
949 с⊢√ Сн₂- 1 4 0 -	н	-(CH ₂) ₃ -C-N-CH ₂
950 c⊢√ cH₂- 0 4 1 -	Ĥ	- CH ₂ - N- C-
951 cH ₂ - 1 2 0 R	н	-CH ₂ -N-C-C-CH ₃
952 c⊢√ CH₂- 1 2 0 R	н	-CH ₂ -N-C-(CH ₃) ₂
953 c- CH ₂ - 1 2 0 R	н	-(CH ₂) ₂ -N-C
954 c⊢ CH₂- 1 2 0 R		-CH ₂ -N-C- H H ₃ C-NH
955 CH₂- 1 2 0 R	Н	-(CH ₂) ₂ -N-C- H H ₃ C-NH
956 C⊢√ CH₂- 1 2 0 R	н	-(CH ₂) ₂ -N-C
957 c⊢√ −cH₂- 1 2 0 R	н	-CH ₂ -N-C

Table 1.88

Compd.	R ¹ /(CH ₂)j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
958	с⊢—СН ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
959	CI——CH₂-	1	. 2	0	R	н	-CH ₂ -N-C-CH ₃
960	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
961	CH-CH2-	1	2	0	R	н	-CH2-N-C N-CH3
962	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-\ H
963	CH-CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-С-Д-ОН
964	CI—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H CO ₂ CH ₃
965	CI-CH ₂ -	1	2	0	Ŗ	Н	-(CH ₂) _Z -N-C- H
966	CH-2-	1	2	0	R	Н	-СH ₂ -N-С-С-СH ₃
967	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-C-CH ₃
968	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NH

Table 1.89

Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{\stackrel{\frown}{P}} + (CH_2)_{\stackrel{\frown}{q}} G - R^6$
969	С├-{}СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
970	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
971	CH-€-CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-N(CH ₃) ₂
972	CH-(-)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NH ₂
973	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH ₂
974	CHCH2-	1	2	0	R	Н	-CH ₂ -N-CNH ₂
975	CH-CH ₂ -	1	2	0	Ŗ	H .	-(CH ₂) ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	CH-CH ₂ -					н	-CH ₂ -N-C-NH
977	C⊢√CH₂-	1	2	0	R	H	-(CH ₂) ₂ -N-C-NH
978	C├─ੑੑCH₂-	1	2	0	R	Н	-CH2-N-C-NH
979	CH-CH2-	1	2	0	R	н	-(CH ₂) _Z -N-C-NH

Table 1.90

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{C}$ $+ \frac{1}{2}$
	С⊢(СH ₂ -			·		Н	-CH2-N-C-CH3
981	CI—CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
982	С⊢√_СН2-	1	2	0	R	. н	-CH ₂ -N-C-\(\sigma\) (H ₃ C) ₂ N
983	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C- H (H ₃ C) ₂ N
984	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
985·	CH-2-	1	2	0 .	R	н	-(CH ₂) ₂ -N-C-CH ₂ OH
986	CH-CH-	1	2	0	. R	H .	-CH ₂ -N-C-CF ₃
987	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
988	CH2-	1	4	0	-	н	-CH ₂ -N-C-CF ₃
							-CH₂-N-C-O-CH₂-⟨_)
990	C├ - CH ₂ -	1	4	0	-	н	-CH ₂ -N-C-

Table 1.91

							
Compd. No.	R ² (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
991	C⊢√ CH₂-	1	4	0	-	Н	-(CH ₂) ₂ -C-
992	C├ - CH ₂ -	1	4	0	-	н	$-(CH_2)_2$ - C - OCH_3
993	CH-CH2-	1	. 4	0	-	н	-(CH ₂) ₂ -CH ₃ H ₃ C
994	C├ \ CH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-
995	C├ - CH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C
996	CH-CH2-	1	4	0	-	H ••*	-(CH ₂) ₃ -C-N-CH ₃
997	C	2	2	1	-	Н	-CH-N-C
998	CH-CH2-	2	2	1	-	Н	CH ₂ CH(CH ₃) ₂
999	CH-CH2-	2	2	1	-	H	-CH-N-C
1000	с⊢—СН ₂ -	2	2	1	-	н .	O OCH ₃ -CHN-C- H CH ₂ CH(CH ₃) ₂
1001	CH-CH ₂ -	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂

Table 1.92

	•						
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	·R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1002	С⊢С СН₂-	2	2	1	-	н	O OCF ₃ - CH-N-C
1003	С⊢-{_}-СН₂-	. 2	2	1	-	· н	O CH2CH3 -CHN-C-CH30 CH2CH(CH3)2
1004	С⊢С СН₂-	2	2	1	-	н	OCH3 OCH3 OCH3 OCH3
1005	C├ - CH₂-	2	·2	1	-	н	-CHN-C- H -CH2CH(CH3)2 ○CH3
1006	CH-2-	2	2	1	- <i>'</i>	н	ОСН ₂ СН ₃ -СН-N-С-(С)-ОСН ₂ СН ₃ СН ₂ СН(СН ₃) ₂
1007	CH-CH2-	2	2	1	-	H	ОСН ₂ СН ₃ -СН-N-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-
1008	С⊢С СН₂-	2	2	1	-	н	- CH-N-C
1009	CH2-	2	2 ·	1	-	н ,	(CH2)2-Q-NH2
1010	CḤ-⟨CH₂-	2	2	1	-	н	OCH ₂ CH ₃ - CH-N-C
1011	CH-2-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C
1012	с⊢(сн₂-	2	2	1	-	н	(CH3)2-C-NH2 OCH3
							•

Table 1.93

· ·						·	
Compd No.	R ¹ /R ² (CH ₂) _j	ĸ	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1013	с⊢С сн₂-	2	2	1	· -	. н	CH ₂) ₂ -Q-NH ₂ OCH ₃
1014	CI—CH ₂ -	2	2	1		н	OCH ₂ CH ₃ -CH-N-C
1015	CH-CH ₂ -	2	2	1	-	Н	OCH2CH3
1016	CH-CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-CF ₃
1017	CH_CH ₂ -	2	2	0 ·	<u>-</u>	н	-СH ₂ -N-С-
1018	CH-CH₂-	2	2	1	-	Н	OCH₂CH₃ -CH₂-N-C
1019	С├-СН²-	2	2	1	-	н	OCH₂CH₃ CH₂-N-C
1020	CH-CH2-	2	2	1	-	H	OCH ₂ CH ₃
1021	C⊢√_CH₂-	2	2	1	-	н	-CH ₂ -N-C
1022	C├ - CH₂-	2	2	1	-	н	(S) OCH3
1023	СІ—СН2-	2	2	1	-	н	(S) Q CH ₂ CH ₃ -CH-N-C-C-CH ₃

Table 1.94

Compd.	R ¹ (CH ₂) _j	,k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1024	C ⊢ CH₂	2	2	1	-	н	(S) Q OCH ₃ -CH-N-C——OCH ₃
1025	CH-CH ₂ -	2	2	1	-	н	(S) P OCH ₂ CH ₃ -CH-N-C
1026	CH-CH ₂ -	2	2	1	-	н .	(S) OCH ₂ CH ₃ -CH-N-C
1027	CHCH ₂ -	2	2	1	-	H	(S) O OCH ₂ CH ₃ -CH-N-C- OCH ₃ CH ₃
1028	CHCH ₂ -	2	2	1	- '	Н	(S) OCH ₂ CF ₃ -CH-N-C- OCH ₂ CF ₃ OCH ₂ CF ₃
1029	CH-CH ₂ -	2	2	1	·-	н	(S) OCH ₂ CH ₃ -CH-N-C-CH-CH ₃ CH ₃
1030	CH_CH ₂ -	2	2	1		Н	(S) P -CH-N-C-CH3 CH3
1031	CH-CH2-	2	2	1	-	н	(S) OCH ₃ -CH-N-C
1032	CH-2-	2	2	1	-	н	(F) OCH ₃ -CHN-C-OCH ₃ CH ₃ OCH ₃
1033	C	2	2	1	-	Н	
1034	CH2-	2	2	1	-	н	(R) OCH ₃ -CHN-C-OCH ₃ -CH ₃ OCH ₃

114

Table 1.95

Compd.	R ² (CH ₂);-	k	m	n	chirality	P.3	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1035	С⊢{Сн₂-	2	2	1		н	(F) OCH ₂ CH ₃ -CH-N-C
1036	CHCH ₂ -	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C
1037	CHCH ₂ -	2	2	1	-	н	CH ₃ OCH ₂ CH ₃ OCH ₃ CH ₃
1038	CH-CH ₂ -	2	2	1	-	Н	(F) OCH ₂ CF ₃ -CH-N-C- H CH ₃ OCH ₂ CF ₃
1039	CHCH2-	2	2	1 -	-	н	(R) OCH ₂ CH ₃ -CH-N-C- H H CH ₃
1040	CHCH2-	2	2	1	-	н	(F) OCF ₃ -CH-N-C-CH-N-C-CH ₃
1041	CHCH2-	2	2	1	-	Н	(F) OCH3 -CH-N-C-CH3 CH3
1042						H	-CH ₂ -N-C
1043	C├-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	2	2	1	-	Н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ O
1044	C├ - CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1045	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C-OCH ₃
				•			

Table 1.96

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	, K ₃	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1046	C├	2	2	1	. •	н.	-CH ₂ -N-C-
1047	с⊢ Сн₂-	2	2	. 1		н	-CH ₂ -N-C
. 1048	CH-2-	2	2	1	-	н _.	$-CH_2-NC$ $-CH_2-NC$ $+CH_3$ $+CH_3$ $+CH_3$ $+CH_3$ $+CH_3$
1049	СН-СН ₂ -	2	. 2	1	-	H	$-CH_2-N-C-$ H_2N Br
1050	CH-√CH₂-	2	2	1	- .	н	(S) OCH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₃
1051	CH ₂ -	2	2	1	-	н	(S) Q CH ₂ CH ₃ -CH-N-C- CH ₂ CH ₃ CH ₂ CH(CH ₃) ₂
1052	CH2-	2	2	1	; -	H	(S) OCH ₃ -CH-N-C
1053	CHCH ₂ -	2	2 .	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1054	C├ - CH ₂ -	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1055	C├ - CH ₂ -	2	2	. 1	-	н	(S) OCH ₂ CH ₃ -CH-N-C- OCH ₃ CH ₂ CH(CH ₃) ₂
1056	CH-€ CH ₂ -	2	2	1		н	(S) Q OCH ₂ CF ₃ −CH-N-C− H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃

Table 1.97

Compd.	R ¹ (CH ₂)-	ĸ	m	ត	chirality		-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
1057	с⊢{_}сн₂-	2	2	1	-	Н	(F) OCH ₂ CH ₃ -CH-N-C
1058	CH-CH ₂ -	2	2	1	-	н	(S) Q OCH ₃ -CH-N-C- OCH ₃ -CH ₂ CH(CH ₃) ₂
1059	CH-CH ₂ -	2	2	1	-	H	(S) OCF ₃ -CH-N-C
1060	CH-CH ₂ -	2	2	1	-	н	(R) Q OCH ₂ CH ₃ -CH-N-C- OCH ₃ H CH ₂ CH(CH ₃) ₂
1061	CH-CH ₂ -	2	2	1	-	H	(R) QCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃
1062	CH	2	2	1	- · .	н	(S) OCH ₂ CH ₃ -CH-NC- H CH ₂ CH(CH ₃) ₂
1063	CHCH ₂ -	2	2	1	-	Н	(A) Q -CH-N-C- H CH ₂ CH(CH ₃) ₂
1064	CH-CH ₂ -	2	2	1	-	Н	(F) O OCF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1065	CH-CH ₂ -	2	2	1	-	Н	(A) OCH3 -CH-N-C- H CH2CH(CH3)2 OCH3
1066	C⊢√CH₂-	2	2	1	-	н	(A) CH ₂ CH ₃ -CH-N-C- H H CH ₂ CH(CH ₃) ₂
1067	CH-CH2-	2	2	1	-	H.	(F) OCH ₃ -CH-N-C

Table 1.98

Table 1	1.98						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) - (CH ₂) - G-R ⁶
1068	C ⊢	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1069	CH-CH ₂ -	2	2	1	-	н .	(A) OCH ₂ CH ₃ -CH-N-C
1070	C├ - CH₂-	2	2	1	-	н	CH ₂ OCH ₂
1071	CI—(CH₂-	2	2	1	-	н	-c+, v-c-, 1
1072	CH-CH ₂ -	2	2	1	: -	н	-CH-N-C-C(CH3)3
1073	CH2−	2	2	1	<u>-</u>	Н	OH20 CH2
1074	CH-(-)	2	2	1	-	Н	-CH-N-C
1075	CH-CH ₂ -	. 2	2	1		н	-CH NC-C
1076	CH2-	2	2	1	-	н	-CH-N-C
- 1077	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
1078	CH-CH ₂ -	2	2	1	-	н	-CH-NC-

Table 1.99

Compd.	R ¹ (CH ₂);	ķ	iù	n	chirality	· R³	$-(CH_2)_{\overline{P}} \stackrel{\mathbb{R}^4}{\overset{+}{\vdash}} (CH_2)_{\overline{q}} G^- \mathbb{R}^6$
1079	CHCH ₂ -	2	2	1	-	н	-CH-N-C-CH ₃
1080	CH-2-	2	2	1	*	, н	OH ₂ OCH ₂ CH ₃
1081	C	2	2	1	-	н	OCH ₃ -CH-N-C
1082	CHCH2-	2	2	1	-	н	CH-7-C
1083	CH-CH2-	2	2	1	-	Н	
1084	CH-CH2-	1	2	0	R	н	-CH ₂ -N-C-
1085	ССН2-	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1086	CH2-	1	2	0	R	н .	$-CH_2-N-C-$ H_2N
1087	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-H
1088	C├ - CH₂-	1	2	0	R	н	-сн ₂ -м-С-С
1089	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C

Table 1.100

· ubic	1.,00						
Compd.	R ² (CH ₂) _i -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1090	_CH-{	1	2	0	R	н	-CH ₂ -N-C
1091	CH-CH ₂ -	1	2	0	R	н	-CH ₂ CH ₂ -N-C-
1092	CHCH ₂ -	1	2	0	R	н	-CH ₂ CH ₂ -N-C-NO ₂
1093	CH-CH2-	1	2	0	R	н	$-CH_2CH_2-N$ C H_2N
1094	CH	1	2	0	R	Н	-CH₂CH₂-N-C-N-H
1095	CH-CH ₂ -	1	2	0	R _.	н	-СH ₂ CH ₂ -N-С-С
1096	CHCH_2-	1	2	0	R	н	-CH ₂ CH ₂ -N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
1097	CH-CH ₂ -	1	2	0	R	н	-CH2CH2-N-C-
1098	CH-2-	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1099	C⊢√CH₂-	1	2	0	R	н	-CH ₂ -N-C
1100	C├ - CH₂-	1	2	0	R	н	-CH ₂ -N-C

Table 1.101

lable						· _	
Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	. C3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1101	C├ - CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1102	C⊢√_CH₂-	1	2	0	R	н	-CH ₂ -N-CNO ₂
1103	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C- Br
1104	H ₃ C-CH ₂ - /	1	2	0	R	н	-CH ₂ -N-CF
1105	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1106	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
	H ₃ C-CH ₂ -					н .	-CH ₂ -N-C-NO ₂
	CH ₃					Н	-CH ₂ -N-C
1109	CH_3 CH_2 CH_3	1	2	0	R	H	-CH ₂ -N-C
1110	CH ₃ CH ₂ -	. 1	2	O.	R	Н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{3}$
1111	CH ₃ CH ₂ − CH ₃	1	2	0	R	H	-CH2-N-C- CH3

Table 1.102

Compd.	R ¹ (CH ₂)	k	m	n	chirality	[°] R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1112	CH ₃ CH ₂ - CH ₃	1	2	0	R	н .	-CH ₂ -N-C-\(\sigma\)-NO ₂
1113	C	2	2	1	-	н	-CH ₂ -N-C-⟨Sr -CH ₃
1114	CI—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1115	CH ₂ -	2	2	1	-	н ·	-CH ₂ -N-C
1116	C	2	. 2	1	-	н	-CH ₂ -N-C
1117	C⊢√_CH₂-	2	2	1	-	н	-CH ₂ -N-C
1118	Mc C C C C C C C C C C C C C C C C C C C	1	2	0	R	н	-СH ₂ -N-С-С-С-
	H₃CS—CH₂-					н	-CH ₂ -N-C-
1120	H ₃ CQ —CH ₂ - OCH ₃	1	2	. 0	R .	н	-CH ₂ -N-C-CF ₃
1121	H ₃ C O ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1122	H3G (H3C)2CH	1	2	0	R	H	CF ₃ -CH ₂ -N-C- CF ₃ -CH ₂ -N-C- CF ₃ -CH ₂ -N-C- CF ₃

Table 1.103

Compd.	R1 (CH ₂)-	k	m	n	chirality	Ή³	−(CH ₂) , R⁴ (CH ₂) , G −R ⁶
1123	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1124	O ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1125	СН-СН2-	2	2	1	-	H	- CH-N-C
1126	С⊢√_СН₂-	2	2	1	-	н	OH ₂ O CH ₂
1127	С⊢-СН₂-	2	2	1	-	Н	CH-N-C-NH
1128	С├-{	2	2	1	- •. •	H	-CH-N-C-(CF3 -CH-N-C-(F
1129	С⊢—СН₂-	.2	2	1	-	Н	-CH-N-C-CF3 -CH ₂ OCH ₂ CF
1130	C├ - CH₂-	2	2	1	-	н	-CH-N-C
1131	C⊢—CH₂-	2	2	1	-	н	CH-N-C-
1132	C├ ~ }_CH ₂ -	2	2	1	-	. Н	OH ₂ O CH ₂
1133	H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.104

Table							
Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
1134	H ₃ CO H ₃ CO− CH ₂ − H ₃ CO	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1135	O-CH ₂ -NO ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1136	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1137	О——— CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1138	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1139	(CH ₂) ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1140	O ₂ N CH ₂ -	1	2	0	R _,	н	O CF ₃
1141		1	2	0	R	H _. .	O CF3 -CH₂-N-C-
1142	CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1143	OH2O-CH2	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1144	CH ₂ CO CH ₂ - H ₃ CO CH ₂ - H ₃ CO	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.105

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
1145	H ₃ CO CH ₂ -NO ₂	1	2	0	R	H	-CH ₂ -N-C
1146	CH2O-CH2	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1147	HC-C-H-C-CH2	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1148	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1149	CH ₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C
1150	CH₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-CH ₂ CH ₃
1151	CH ₃ CH₂− CH₃	1	2	0	R.	H .	-CH ₂ -N-C-CH ₂ -CF ₃
1152	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н.	-CH ₂ -N-C-N-F
1153	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-H
1154	CH₃ N—CH₂-	1	2	0	R	Н	-CH2-HC-NCH3
1155	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃ F ₃ C

Table 1.106

Compd. No.	R ¹ (CH ₂),-	k	m	п	chirality	· R³	-(CH ₂) _p
1156	CH ₃ CH ₂ − CH ₃	1	2	0	R	н.	-CH ₂ -N-C-C(CH ₃) ₃
1157	CH₃ CH₂- CH₃	1	2	Ó	R .	н	-CH ₂ -N-C-SSCH ₃
1158	CH ₃ CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C
1159	CH ₃ CH ₂ -	1	2	0	R	н	$-CH_2-N-C \longrightarrow OCH_3$ $H_2N OCH_3$
1160	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	$-CH_2-N \cdot C \xrightarrow{CH_3}$ $H_2N Br$
1161	OH -CH ₂ -	1	2	0.	R	н	-CH ₂ -N-C-CF ₃
1162	H ₃ CO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
_	H ₃ CO-CH ₂ -						-CH ₂ -N-C-CF ₃
11.64	H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1165	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1166	H ₃ CO-CH ₂ -	1.	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.107

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	.Ll ₃	-(C ₂) _p (C ₂) _q G-R ⁶
1167	CH2-	2	2	1	. -	н	-CH ₂ -N-C-
1168	CL N CH₂-	1	2	0	R	н	-CH ₂ -N-C
1169	H ₃ C-C-N O S- CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1170	HN CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1171	CH-CH2-	1	2	0	R	н .	$-CH_2-N-C-$ Br
1172	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
1173	CHCH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C-N-N-OCH ₃
1174	C	1	2	0	R ·	н	-CH ₂ -N-C
1175	H ₃ C-CH ₂ -	1	2	0	R .	н	CH ₂ -N-C-Br
1176	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-OH
1177	H ₃ C-(1	2	0	R	н	-CH ₂ -N-C-N-OCH ₃

Table 1.108

Compd.	R \((CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1178	H₃C-⟨}-CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1179	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-NC- \bigvee_{H_2N}^{NO_2}$
1180	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H
1181	CH ₃ CH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C
1182	CH ₃ CH ₂ -	1	2	0	. R	н	-CH ₂ -N-C-N-H
1183	CH₃ CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1184	CH ₃ CH ₂ − CH ₃	1	2	0	R	H ·	$-CH_2-NCC$ H_2N
1185	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
							-CH ₂ -N-C-N-H
1187	C⊢CH₂-	2	2	1	-	н	-CH ₂ -N-C
1188	CH-CH ₂ -	2	2	1	-	н	-CH2-H-C-N-COH

Table 1.109

Compd.	R ¹ (CH ₂)	k	ñī	ñ	chirality	H3	-(СН ₂) , С (СН ₂) G-R'
1189	С⊢√СН₂-	2	2	. 1	-	н	-CH ₂ -N-C-N-H-OCH ₃
1190	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C
1191	CH ₃ CH ₂ - CH ₃	1	2	.0	R	н	-CH ₂ -N-C-⟨CF ₃
1192	CH₃ N—CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-⟨-F
	CH ₃ N—CH ₂ - CH ₃					Н	-CH ₂ -N-C-OCF ₃
1194	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N_1-C$ F_3C CF_3 F_3C
1195	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-Br
	CH ₃ CH ₂ − CH ₃					•	-CH ₂ -N-C-NO ₂
1197	CH₃ N CH₂− CH₃	1	2	0 .	R	н	-CH ₂ -N-C-CF ₃
1198	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-CI
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃

Table 1.110

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G^{-}R^6$
1200	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH₂-N-C-CI
1201	CH₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C-F
1202	CH₃ CH₂- CH₃	1	2	Ò	R	н	-CH ₂ -N-C-CF ₃
1203	H ₃ C-CH ₂ -	1	2	0	R	н	OCF₃ -CH₂-N-C-
1204	H ₃ C-CH ₂ -	1	2	0	R	н -	$-CH_2-N$ CF_3 F_3C
1205	H ₃ C-CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-
1206	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1207	H₃C- \ CH₂-	1	2	0	R	н .	-CH ₂ -N-C
1208	н₃с-{	1	2	0	R	н	-CH2-N-C-C
1209	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1210	H ₃ C-CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-CI

Table 1.111

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	'n'	-(CH ₂) _p
1211	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1212	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1213	C├ \ _CH ₂ -	2	2	1	-	н	$-CH_2-N+C F_3C$ CF_3
1214	C⊢√_CH₂-	2	2	1	-	н 	-CH₂-N-C- H F
1215	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI
1216	CI—CH₂-	2	2	1	-	Н	-CH ₂ -N-C-F
1217	C⊢√_CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1218	C├ ~ CH₂-	1	2	0	R	н	-CH ₂ -N-C
1219	CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-CI
1220	CH2-	1	2	0	R·	н	$-CH_2-N$ - C - H_2N
1221	C⊢-{¯¯}-CH₂-	1	2	0	R	н	$-CH_2-N$ H_2N H_2N

Table 1.112

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1222	C├ - CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-\ H N H
1223	CH-CH ₂ -	1	2	0	R .	Н	-CH ₂ -N-C
1224	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1225	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C _C CF ₃
1226	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S-CH ₃
1227	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- CI
1228	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-NC-$ H_2N
1229	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$ H_2N
1230	H ₃ C-CH ₂ -	1	2	0	R	. н	-CH₂-N-C-\\ H H CH3
1231	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1232	H ₃ C-\(\bigc\)-CH2-	1	2	0	R	н	$-CH_{2}-N\cdot C-$ $-CH_{2}-N\cdot C-$ $-CH_{2}-N\cdot C-$ $-CH_{2}-N\cdot C-$ $+O$ $+O$ $+O$ $+O$ $+O$ $+O$ $+O$ $+O$

Table 1.113

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1233	CH₃ CH₂−	1	2	0	R	Н	-CH ₂ -N-C
1234	CH ₃ CH ₂ - CH ₃		2	0	R .	н	-CH ₂ -N-C
1235	CH₃ CH₂− CH₃	1	2	0	R	н	-CH2-N-C-(CH3
1236	CH ₃ CH ₂ -					н	-CH ₂ -N-C
1237	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-F H ₂ N
1238	CH ₃ CH ₂ CH ₃					н	-CH ₂ -N-C-N H
1239	CH ₃ CH₂- CH₃	. 1	2	0	R	Н	-CH ₂ -N-C-
1240	CH ₃ CH ₂ CH ₃					H	-CH ₂ -N-C-NO ₂
1241	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1242	C⊢—CH₂-	2	2	1	-	н	-CH ₂ -N-C
1243	С⊢—СН₂-	2	2	1	•	Н	-CH ₂ -N-C-CI

Table 1.114

Table .							
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1244	C⊢CH₂-	2	2	1	-	н	-CH ₂ -N-C
1245	с⊢{_}СН₂-	2	2	1	-	н	-CH ₂ -N-C-F
1246	C⊢ √ }-CH₂-	2	2	1		н	-CH ₂ -N-C-√N H
1247	CH2−	2	2	1	-	н	-CH ₂ -N-C
1248	CH-{	2	2	1	•	н	-CH ₂ -N-C
1249	с⊢{_}-сн₂-	1	2	0	R	Н	-CH ₂ -N-C
1250	H ₃ C-\CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1251	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1252	CH-2-	1	2	0	R .	. н	-CH ₂ -N-C-CH(CH ₃) ₂
1253	H ₃ C-\CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₂
1254	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C

Table 1.115

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{\overline{H}_{5}}^{R^4}(CH_2)_{\overline{q}}G-R^6$
1255	C⊢(¯)−CH₂−	1	2	0	R	н	-CH ₂ -N-C
1256	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N Br
1257	CH ₃ N CH₂- CH₃	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1258	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1259	CH₃ CH₂− CH₃	1	2	0	R	н	$-CH_2-N-C$ H_2N
1260	H ₃ C-CH ₂ -	1	2.	0	R	н	-CH ₂ -N-C
1261	CHCH ₂ -	1	2	0	R	Н	$-CH_2-N-C-V-C-V-C-V-C-V-C-V-C-V-C-V-C-V-C-V-C$
1262	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N C \longrightarrow O C(CH_3)_3$ $+H_3C$
1263	CH₃ CH₂− CH₃	1	2	0	R	. н	$-CH_2 - N - C \longrightarrow O $ $+ G \longrightarrow O $ $+ G \longrightarrow O $ $+ G \longrightarrow O $
.1264	CHCH2-	1	2	0	R	н	-CH ₂ -N-C-\0 H ₃ C
1265	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.116

	• • • •						
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G−R ⁶
1266	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ² -H C O
1267	С⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃
1268	CH-2-	· 1	2	0	R	н	-CH ₂ -N-C
1269	CH-CH2-	1	2	0	R	н	-CH ₂ -N-C
1270	C⊢————————————————————————————————————	1	2	Ó	R	H	-CH2-N-C- HO
1271	CHCH2-	1	2	0	R	н	-CH ₂ -N-C
1272	H ₃ CCH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-N-N-H-OCF ₃
	H ₃ C-CH ₂ -		•			н	-CH ₂ -N-C-
1274	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C → Br
1275	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1276	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C

Table 1.117

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1277	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H
1278	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1279	CH₃ CH₃	1	2	0	R	Н	-CH ₂ -N-C
	CH ₃ CH ₂ -					Н	-CH ₂ -N-C-
1281	CH ₃ CH ₂ -	1	.2	0	R	Н	-CH ₂ -N-C
1282	С⊢√СН₂-	2	2	1	-	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1283	C⊢—CH₂-	2	2	1	-	н	-CH ₂ -N-C
1284	C⊢————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C- H
1285	C├ - CH₂-	2	2	1	- .	н	-CH ₂ -N-C
1286	H ₃ Ç N(OH ₂) ₃ O	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1287	0 ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.118

Compd.	R ² (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1288	HQ H₃CO————————————————————————————————————	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1289	CH ₃ N O—CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-OCH ₃
1290	CH₃ CH₂− CH₃	1	2	0	R	н	$-CH_2-N-C-$ H_2N CH_3 H_2N CH_3
1291	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-H
1292	H ₃ C-CH ₂ -	1	2	0	R	· H	$-CH_2-NCC-$ H_2N H_2N Br
1293	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H
1294	H ₃ C-\(\bigc\)-CH ₂ -	1	2	. 0	R	Н	-СH ₂ -N-ССF ₃
1295	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
-1296	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-√SCH ₃
1297	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-CH ₃ F ₃ C
1298	H ₃ CO CH ₂ -	1	2.	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.119

Table	1.113						
Compd.	R ² (CH ₂)	k	m	n	chirality		-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
1299	H ₃ CO ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1300	OCH ₃ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1301	OCH ₃ H ₃ CO CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1302	H ₃ C CH ₃ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1303	H ₃ CO CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1304	H ₂ CQ	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1305	H ₃ CO-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1306	H₃CCH₂Q H₃CO-⟨CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1307	H ₃ CO H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH₂-N-C-CF₃
1308	CH₂-	1	2	Ö	R	н	-CH ₂ -N-C-CF ₃
1309	H ₃ CO CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.120

		_					
Compd.	R ¹ (CH ₂) _i	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1310	H ₃ CQ HO-CH ₂ -	1	2	0	R	H	-CH2-N-C-C-CL3
1311	O_O CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1312	CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1313	Br −CH₂−	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1314	O ₂ NCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1315	H ₃ COCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1316	F ₃ C CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1317	O ₂ 'N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1318	CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1319	CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1320	ВСН2-	1	2	0	R	н.	-CH ₂ -N-C-CF ₃

Table 1.121

lable .	1.121						
Compd.	R ¹ (CH ₂),—	k	m	n	chirality	H3	-(CH ₂) p CH₂)q G-R⁶
1321	С⊢{СН₂-	1	2	0	R	н	-CH2-N-C-SPr
1322	CH-CH ₂ -	1	2	0	R	н	-сн ₂ -м-ссн ₃
1323	CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1324	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- HO CH ₃
1325	CH_CH2-	1	2	0	R	н	-CH ₂ -N-C
1326	СН-СН2-	1	2	0	R	н	-CH ₂ -N-C
1327	СН-СН2-	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1328	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-Br
1329	н₃с-{	1	2	0	R	н	-CH ₂ -N-C-СН ₃
1330	H ₃ C-\CH ₂ -	1	2	0	R	Н.	-CH ₂ -N-C
1331	H₃C- { }-CH₂-	1	2	0	R .	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃ HO

Table 1.122

Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) p R⁴ (CH ₂) q G−R ⁶
1332	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1333	H ₃ C-CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C-
1334	H ₃ C-CH ₂ -	1	2	0	·R	н :	$-CH_2-N-C-$ H_2N CH_3
1335	CH ₃ CH ₂ -	1	2	0	R .	н	-CH ₂ -N-CSr H CS-CI
1336	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
1337	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
1338	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1339	CH ₃ CH ₂ -	1	2 ·	0	R	H ·	-CH ₂ -N-C
1340	CH ₃ CH₂- CH₃	. 1	2	0	R	Н	-CH ₂ -N-C-
	CH ₃ CH₂− CH₃						-CH ₂ -N-C-CH ₃
1342	C⊢—CH₂-	2	2	1	-		-CH₂-N-C-S-CI
					•		

Table 1.123

					<u>.</u>		
Compd. No.	R ¹ (CH ₂);-	k	iù	īī.	chirality		$-(CH_2)_{p=1}^{R^4}(CH_2)_q G-R^6$
1343	CH-CH ₂ -	2	2	1	<u>-</u>	н	-CH ₂ -N-C-CH ₃
1344	С-СН2-	2	2	1	-	н	-CH ₂ -N-C
1345	CH-CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C
1346	С⊢СН₂-	2	2	1	-	н	-CH2-N-C-
1347	С-СН2-	1	2	0	R	Н	-CH ₂ -N-C-SCH ₃
1348	H ₃ C-\(\bigce\)-CH ₂ -	1	2	0	R.	н	-CH ₂ -N-C-√S CH ₃
1349	CH₃ N→CH₂- CH₃	1	2	0	R	Н	-CH₂-N-C-S CH₃
	CH2-				-	н	-CH ₂ -N-C-SCH ₃
1351	CHCH ₂ -	1	2	0	R	Н	ос-он» ни -он²-И-с-он»
1352	H ₃ CCH ₂ -	1	2	. 0	R ·	н	-042-H-0-043
1353	CH ₃	1	2	0	R	н	-042-12-043 -042-14-043
•							

Table 1.124

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p - (CH ₂) _q G-R ⁶
1354	CH-CH2-	2	2	1	-	Н	, - 013- M c - 013
1355	CH-€	1	2	0	R	н	$-CH_2-N$ H_2N CN H_2N
1356	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1357	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N$ CN H_2N
1358	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-CN H ₂ N
1359	CH ₃ CH ₂ − CH ₃	. 1	2	0	R	Н	-сн ₂ -N-с-
1360	CH ₃ N CH ₂ − CH ₃	1	2	0	R	Н	$-CH_{2}-N-C$ $-CH_{3}$ $-CH_{3}$ $-CH_{3}$ $-CH_{3}$
	H ₃ C-CH ₂ -						-CH ₂ -N-C- O O O O O O O O O O O O O O O O O O
1362	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1363	CH ₃ CH ₂ - CH ₃	1	,2	0	R	H ,	-CH ₂ -N-C-CH ₃
1364	н₃С-{СН₂-	1	2	0	R	н	-CH ₂ -N-C-CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃

Table 1.125

Compd.	R ¹ (CH ₂)	k	m	n	chirality	. 173	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1365	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1366	CH₃ CH₂- CH₃	1	2	0	R	H	-CH ₂ -N-C-CH ₃
1367	H ₃ CCH ₂ -	1	2	0	R	н	$-CH_2-N-C-CH_3$
1368	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1369	CH-CH2-	1	2	0	R	н	OCH ₂ CF ₃ -CH ₂ -N-C H F ₃ CCH ₂ O
1370	CH-2-	1	2	0	R	н	-CH ₂ -N-C-S Br
1371	С├-{	1	2	0	R	н	-CH ₂ -N-C-
1372	CHCH ₂ -	1	2	0	R	н	-CH2-NC-
	H ₃ C-CH ₂ -						-CH ₂ -N-C-CI
1374	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1375	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SBr

Table 1.126

· abic	20					•	
Compd. No.	R ² (CH ₂) _i	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶
1376	H₃C- \ CH₂-	1	2	0	R	н	-CH ₂ -N-C-
	H ₃ C-CH ₂ -					н	-CH2-N-C-
1378	CH ₃	1	2	0	R	н	-СH ₂ -N-С-С-СI
	CH ₃ CH ₂ -						-CH ₂ -N-C
1380	CH ₃ CH ₂ − CH ₃	1	2	0	R ·	н	-CH₂-N-C-SBr
1381	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1382	CH₃ CH₂− CH₃	1	2	0	R	н	-CH2-NCC-
1383	CH-CH ₂ -	2	2	1	-	н	-СH ₂ -N-С-СГ-СГ
1384	CHCH_2-	2	2	1	-	Н	-CH ₂ -N-C-SBr
1385	CH-{	2	2	1.	-	Н	$-CH_{2}-N\cdot C-S$ $-CH_{2}-N\cdot C-S$ $-CH_{2}-N\cdot C-S$ $-CH_{2}-N\cdot C-S$
1386	CH-{	2	2	1	•	н	-0+2-HC-

Table 1.127

Compd No.	· R1 (CH2)i-	k	m	n	chirality	H3	-(СН ₂) ,
1387	CH³ CH³	1	2	0	R	н	-CH ₂ -N-C
1388	CH₃ N—CH₂- CH₃	1	2	0	R	н.	-CH ₂ -N-C-(CH ₃) ₃
	CH ₃ CH ₂ - CH ₃					н	-CH ⁵ -HC- NO NO
1390	H ₃ C CH ₃ H ₃ C CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1391	H ₃ C — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CF ₃
1392	CI H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-⟨CF ₃
1393	н ₃ ссн ₂ —————сн ₂ -	1	2	0	R .	н	-CH ₂ -N-C
1394	O ₂ N — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1395	H ₂ C=CH-CH ₂ -	1	2	0	Ŗ	Н	-CH ₂ -N-C-CF ₃
1396	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1397	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.128

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1398	CH-CH-CH-	1	2		R	н	OCF3
1399	CH→CH→CH→	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1400	C⊢CH-CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1401	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-H
1402	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1403	H ₃ C-CH ₂ -	1	2	0	R	н .	-CH2-HC-√N
1404	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1405	H ₃ C-\(\bigce\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1406	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-√CH ₃
1407	H₃C- \ CH₂-	1	2	0	R	н	-CH ₂ -N-C-√N H ₃ CCH ₂ S
1408	H ₃ C—CH ₂ -	1	2	0	R	н	-CH2-N-C-

Table 1.129

				chirality	——————————————————————————————————————	一(CH ₂);;;;;;;(CH ₂);;;;(G-R ⁶ R ⁵
H ₃ C-\(\bigc\)-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-CH ₃
CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
CH-{	1	2	0	R	Н	-CH2-NHC-NH
J₃C-(CH₂-	1	2	0	R	Н	-CH ₂ -N-C-C-NH
CH ₃ CH ₂ - CH ₃	· 1	2	0	R	н	-CH ₂ -N-C-C-NH
CH ₂ −	2	2	1	-	Н	-CH ₂ -N-C
CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCN H ₂ N
3C-√CH2-	1	2	0	R	н	$-CH_2-N-C-$ H_2N SCN H_2N
CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-SCN
C⊢-{}_CH ₂ -	2	2	1		Н	-CH ₂ -N-C-SCN
C⊢√_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SH
	CH ₃ CH ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1.130

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
1420	H ₃ C- ⟨ }-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SH H ₂ N
1421	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-SH H ₂ N
1422	С⊢—СН₂-	2	2	1		н	-CH ₂ -N-C-SH
1423	C⊢ √ -CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1424	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1425	CH ₃ CH₂−	1	2	0	R	н	-CH ₂ -N-C-
1426	СН-СН2-	2	2	1	-	н	-CH ₂ -N-C-
1427	C⊢√_CH₂-	2	2	1	-	н	−CH ₂ −N-C−√ Br H H ₃ C-NH
1428	C⊢√CH₂-	2	2	Ϊ	-	Н	-CH ₂ -N-C
1429	ңссн₂о-{_}-анұ-	2	2	1	-	н	-CH ₂ -N-C- (H ₃ C) ₂ N -CH ₂ -N-C- H ₂ N CI -CH ₂ -N-C- CI -CH ₂ -N-C-
1430	O-CH ₂ -	2	2	i	-	н	-CH ₂ -N-C

Table 1.131

	•						
Compo	$d. \frac{R^1}{R^2} - (CH_2)_{i}$	k	m	n	chirality	Ŕ³	-(CH ₂) ₀ R ⁴ (CH ₂) ₀ G-R ⁶
1431	ңссн₂о-⟨_}-сн₂-	2	2	1	-	н	$-CH_2-N-C-$ H_2N H_2N
1432	O-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N H_2N
1433	ң,ССН 2О − СН2−	2	2	1	-	н	-CH2-NC
1434	H3CCH 2O-CH2-	2	2	1	-	Н	-CH ₂ -N°C- H HN CH ₂ -OCH ₂ CH ₃
1435	н₃ссн ₂ —{сн ₂ -	. 2	2	1	-	Н	-CH ₂ -N-C-
1436	(H ₃ C) ₂ CH-√ → CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1437	н ₅ С(СН ₂) ₂ О{\}СЧ ₂ -	2	2	1	-	H,	-CH ₂ -N-C-
1438	H ₂ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1439	(HaC)2CH-⟨_)-CH2-	2	2	1	-	н	-CH ₂ -N-C
1440	н,с(сн ₂) ₂ о-Ст ₂ - сн ₂ -	2	2	1	-	н	-CH ₂ -N-C
1441	H ₃ CS-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.132

Compd No.	R ² (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - G - R^6$
1442	н₃ссн₂-{}Сн₂-	2	2	1	-	н	-CH2-NC-CH2CH
1443	(ҢС)₂СН-СУ-СН ₹-	2	2	1	-	н	-CH2-NC
1444	ңс(сн ₂) ₂ о-(сн ₂ -	2	2	1	-	Н	-CH2-NC
1445	н₃ссн₂——————————————————————————————————	2	2	1	-	. H	-CH ² -N-CH ² CH ⁹
1446 ·	(H ₆ C) ₂ 'CH ← CH ₂ -	2	2	1.	-	н	-CH ² -W _C
1447	н ₃ с(сн ₂) ₂ о-√ он ₂ -	2	2	1	-	H ., ·	-012-12-C-12-C-14-C-12-C-12
1448	н₃¢ѕ-{}Сн₂-	2	2	1		н .	-CH2-NC-SCH
1449	н₃ссн ₂ {сн ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1450	(H ₂ C) ₂ CH- CH ₂ -CH	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1451	(H3CCH2)2N-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1452	HQ H ₃ CO———CH ₂ -	2	2	1	•	Н	-CH ₂ -N-C-CF ₃
			_				

Table 1.133

Compd.	H ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1453	н ₂ с(Сн ₂) ₂ О	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1454	ньссн 20-{СН2-	2	2	. 1	-	н	$-CH_2-N+C CF_3$
1455	H ₃ CQ HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1456	O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1457	(CH ₃) ₂ N-⟨□⟩-CH ₂ -	2	2	1	-	н	$-CH_2-NC-$ H_2N
1458	H ₃ CQ HO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C\longrightarrow CI$ H_2N
1459	(H ₃ C) ₂ N-CH ₂ -	2	2	1	<u>.</u> .	H	$-CH_2-NC-$ H_2N H_2N
1460	H ₃ CO HO—CH ₂ -	2	2	1	_	н	-CH ₂ -N-C
1461	H ₃ CQ HO————————————————————————————————————	2	2	1	-	Н	-CH2-NC-OCH
1462	H ₂ CQ HO—CH ₂ -	2	2	1 .	· •	н .	-CHZ-NC-OH
	СН-СН2-						-CH2-N-C CF3

Table 1.134

Compd. No.	R (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{\rho} + (CH_2)_{\overline{q}} - G - R^6$
1464	с⊢Сту−сн₂−	2	1	1	•	н	-CH ₂ -N-C-C-C-C-S
1465	CH-CH ₂ -	2	1	1		н	-CH ₂ -N-C
1466	CH-CH ₂ -	2	1	1	-	н	-CH ₂ -N-C-
1467	CH-CH ₂ -	2	1	1	-	н	-CH ₂ -N-C-
1468	С-СН2-	2	1	-1	-	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1469	C├ - CH ₂ -	2	1	1	-	Н	-CH ₂ -N-C-CF ₃
1.470	СН-СН2-	2	1	1		Н	-CH₂-N-C-CI
1471	С⊢_СН₂∸				-	н	-CH ₂ -N-C-F
1472	CH₃ S—CH₂-	1	2	0	R .	н	-сн ₂ -м-с-С _{F3}
1473	Br S CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1474	CH ₃ -	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{3}-N-C$ $-CH_{3}-N-C$

Table 1.135

Compd. No.	R ¹ (CH ₂)	ķ	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1475	CL CH2	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1476	Br S CH ₂ -	1	2	0	. _. R	н .	-CH ₂ -N-C-CF ₃
1477	Br Q CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1478	Br Q - CH ₂ -	1	2	0	R	н	O CF ₃ -CH ₂ -N-C-
1,479	CH ₃ CH ₂ CH ₃	1	2	0	R _.	н	-CH ₂ -N-C- CF ₃
	CH ₃					• н	-CH ₂ -N-C
1481	H_3C CH_3 H_3C	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1482	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1483	H ₃ C CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1484 c	CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1485	H₃CCH₂-	1	2	0	R	н	-CH ₂ -N-C-S

Table 1.136

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1486	H ₃ C-\(\bigce\)-CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C
1487	н ₃ С-Сн ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₂ N CI
1488	H₃C-⟨	1	2	0	R	н	-CH ₂ -N-C
1489	H ₃ C-\(\bigce\)-CH ₂ -	1	2	0	R	Н	-сн ₂ -N-с
1490	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH₂-N-C-CH₃
1491	H ₃ C-CH ₂ -	1.	2	0	R	н	-CH ₂ -N-C✓
1492	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\)
	CH₃ CH₂- CH₃					н	-012 HC -01
1494	CH ₃ CH ₃	1	2	0	R	Н	-CH2-N-C
1495	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N H ₃ -CH ₃
1496	CH₃ CH₃	1	2	0	R	н	-CH ₂ -N-C H -CH ₂ -N-CH ₃ -CH ₃ -CH ₃ -CH ₂ -N-CH ₃ -CH ₂ -N-CH ₃ -CH ₂ -N-CH ₃ -CH ₂ -N-CH ₃ -CH ₃ -N-CH ₃ -N-CH ₃ -CH ₃ -N-CH ₃

Table 1.137

Compd	R\						₽4
No.	R ² /-(CH ₂) _i	k	m	n	chirality	F3	$-(CH_2)_{p+1}^{4}(CH_2')_{q}G-H^{6}$
1497	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ⁵ -V-C
	CH ₃ CH ₂ CH ₃					н	-CH ₂ -N-C-√
	CH ₃ CH ₂ - CH ₃					H	-CH₂-N-C
1500	CH₃ N CH₂- · CH₃						-CH ⁵ -M-C O CH ³
1501	CH ₃ CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C
	CH ₃ CH ₂ -						-CH ₂ -N-CF F
1503	CH³ CH³	1	2.	0	R	й	O OCHF ₂
	H ₂ N-CH ₂ -						O CF ₃
1505	CH ₂ O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1506	CHCH₂-	2	1	1	-	н	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$
1507	CH- C H₂-	2	1	1	-	н	$-CH_2-NC-$ H_2N

Table 1.138

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1508	с⊢СН₂−	2	1	1		н	-CH ₂ -N-C
1509	CH-2-	2	1	1	-	н	-CH2-N-C-
1510	C	2	1	1		н	-CH ₂ -N-C
1511	CHCH ₂ -	2	. 1	1	-	н	-CH ₂ -N-C-SBr
1512	с⊢С≻сн₂-	2	1	1	-	н	$-CH_2-NC-$ H_2N
1513	C⊢————————————————————————————————————	2	1	1	- ·.·	н	-CH ₂ -N-C-
1514	(H ² CCH ²) ² V-CH ² -	2	2	1	-	н	-CH ₂ -N-C-CI
1515	HQ H₃CO-CH₂-	2	2	1	-	н	-CH ₂ -N-C-CI
1516	(H ² CCH ²) ² V————————————————————————————————————	2	2	1	-	н	$-CH_{2}-NC$ $-CH_{2}-NC$ $H_{2}N$ $-CH_{2}-NC$ $H_{2}N$ $H_{2}N$ G
1517	HQ. H₃CO-CH₂-	2	2	1	-	н	-CH ₂ -N-C
1518	HQ H ₃ CO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.139

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1519	HQ H₃CO—CH₂-	2	2	1		н _.	-ch2-hC-
1520	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1521	H ₃ CO-()-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1522	CH₂-	1	2	0	R	Н	-CH ₂ -N-C-Br
1523	H₃CQ H₃CO—СН₂-	1	2 ·	0	R	н	-CH ₂ -N-C-Br
1524	H ₃ CQ HO—CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-
1525	Br—CH₂-	1	2	0	R	Н .	-CH ₂ -N-C
1526	H₃CO- ()—CH₂-	1	2	0	R	н	-CH ₂ -N-C
1527	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
1528 ₁	H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C
1529 .	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-

Table 1.140

Table	1.140						
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1530	Br————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1531	H₃CO-€	1	2	0	R	н	-CH₂-N-C- F
1532	CH₂-	1	2	0	R	н	-CH₂-N-C-CF₃
1533	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF₃
1534	H ₃ CQ HO————————————————————————————————————	1	2	O	R	н	-CH ₂ -N-C-CF ₃
1535	Br—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1536	H₃CO-⟨¯¯⟩-CH₂-	1	2	0	R	н	-CH ₂ -N-C
1537	6					н .	-CH ₂ -N-C-CF ₃
1538	H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
1539	H ₃ CQ HO—CH ₂ —	1	2	0	R	н	-CH₂-N-C-CF₃
1540	BrCH ₂ -	1	2	0	R	н	$-CH_{2}-N-C-$ $-CH_$
	•						

Table 1.141

Compd. No.	R ¹ (CH ₂)-	ķ	m	n	chirality		(CH ₂) p (CH ₂) q G−R [€]
1541	H ₃ CO-CH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1542	CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1543	H ₃ CO C C H ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1544	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH₂-N-CF
1545	CL_S CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1546	H ₃ CO F CH ₂ -	1	2	0	R	H.	-CH ₂ -N-C-CF ₃
1547	H ₃ CO—Br	1	2	0	R	Н	-CH₂-N-C-CF₃
1548	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C CH ₃ -CH ₃ -CH ₃
1549 ·	H ₃ C-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1550	H ₃ C-CH ₂ -	1	2	0	R	Н	-045-M-C-M-C-M-C-CI
551	Н₃С-{	1	2	0	R	Н	-CH2-17-C-

Table 1.142

	•		_				
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - CH_2$
1552	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-
1553	H ² C————————————————————————————————————	1	2	0	R	н	-043-Hc-50
1554	H ₃ C-\(\bigce\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1555	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C
1556	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-QN H ₃ C
1557	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-V$ H_3C
1558	H ₃ CCH ₂ -	1	2	0	R ·	·H	-CH ₂ -N-C-√N=N H ₃ C N CH ₃
1559	H ₃ C-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃ H ₃ C
1560	H ₃ CCH ₂ -	1	2	0	R	н	-CH2-N-C
1561	H ₃ C-CH ₂ -	1	2	0	. R	н	$-CH_2-N \stackrel{C}{\leftarrow} \stackrel{CH_3}{\leftarrow} CH$
1562	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.143

Compo No.	$H = \frac{R^1}{R^2} - (CH_2)_{j-1}$	k	m	n	chirality	· R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_$
1563	H₃C-⟨CH ₂ -	1	2	0	R	. н	-CH'-N-C->
1564	H ₃ C-CH ₂ -	1	2	Ó	R	Н	-c+5-Ac-
1565	CH₃ N CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C
1566	CH₃ N CH₂- CH₃	. 1	2	0	R	н	$-CH_2-N$ C O_2 N OCH_3
1567	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -NC-C-NH ₂
1568	CH ₃ N→CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -MC-CF ₃
1569	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-cH ₂ -N ₁ -c
1570	н₃сѕ-{	2	2	1	-	н	-CH ₂ -N-C-
1571	H ₃ CS—CH ₂ -	2	2	1	-	н	-CH2-N-C
1572	CHO-CH2	2	. 2	1	-	н	-CH ₂ -N-C
1573	н,co	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.144

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1574	#°-{\}-_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2	. 2	1		н	-CH ₂ -N-C-CF ₃
1575	CH	2	2	1.	-	н	-CH ₂ -N-C-CF ₃
1576	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1577	но(сн.) 2- Н. с.	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1578	н ₃ с _ № с — — сн ₂ -	2	2	1		Н	-CH ₂ -N-C-CF ₃
1579	H.c O+15-	2	2	1		н	-CH ₂ -N-C-CF ₃
1580	PH C⟨P-CH²-	2	2	1	-	H	-CH ₂ -N-C-CF ₃
1581	С⊢—СН₂-	2	2	1	- ,	·H	-CH ₂ -N-C
1582	С⊢СН₂-	2	2	1	· -	н	-047 H.C 81,
1583	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1584	CH-{-}-CH2-					н	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $+l_{2}N$ $-CH_{2}-N\cdot C$ $+l_{2}N$ $+l_{2}N$

Table 1.145

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	–(CH ₂) 5 + (CH ₂) 5 G−R ⁶ R ⁵
1585-	CH- (CH₂-	1	2	0	. R	н	-CH ₂ -N-C-⟨S
1586	CH-CH ₂ -	-1	2	0	R	Н	-CH ₂ -N-C-\(\sigma\)
1587	CH-CH2-	1	2	0	R	н	-CH ₂ -N-C-
1588	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1589	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1590	H₃C-{CH₂-	1	2	0	R	н.	$-CH_2-N-C H_2N$ OCF_3
1591	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$
	H ₃ C-CH ₂ -					H .	-CH ₂ -N-C-√N=
1593	H ₃ C-CH ₂ -	1	2	0	В	н	-CH ₂ -N-C-
1594	CH ₃ N − CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
1595	CH ₃ N CH₂- CH₃	1	2	0	R _.	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+CF_{3}$ $-CH_{2}-N-C$ $+CF_{3}$ $-CH_{2}-N-C$ $+CF_{3}$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{3}-N-C$ $+CH_{2}-N-C$ $+CH_{3}-N-C$ $+C$

Table 1.146

Compd. No.	R (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1596	CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-C-⟨N
1597	CH ₃ CH ₃	1	2	0	R	н .	-CH ₂ -N-C-CI
1598	CH₃ CH₃		2	0	R R	Н	-CH ₂ -N-C-
1599	CH₃ CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1600	CHCH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N CF_3 H_2N
1601	C	2	2	1	-	H	-CH ₂ -N-C
1602	с⊢СН₂-	2	2	1	-	н	-CH ₂ -N-C-
•	с——СН ₂ -				<u>-</u>	н	-CH ₂ -N-C-√N-CI
1604	CHCH ₂ -	2	2	1	-	, н	-CH ₂ -N-C-
1605	CH-2-	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1606	C├ - ⟨¯}-CH₂-	1	2	0	R	н .	-CH ₂ -N-C- -CH ₂ -N-C- SCF ₃ -CH ₂ -N-C- SCF ₃

Table 1.147

Compd.	R ¹ (CH ₂);	k	m	n	chirality	, K³	ー(CH ₂) _p CH ₂) _q G-R ^S
1607	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1608	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C-SCF ₃
1609	С⊢√_СН2-	2	2	1	-	Н .	-CH ₂ -N-C-SCF ₃
1610	CF ₃ 9 CH ₂ -	2	2	1	-	. н	-CH ₂ -N-C-CF ₃
1611	CH	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1612	н²со(см.9²- НсО-сн²-	2	2	1	-	H	CF ₃
1613	H C CH, 8	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1614	F ₃ CS-CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C-CF ₃
1615	F ₃ C S-\(\bigcup_\)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1616	F ₃ CS-CH ₂ -	2	2	1	-	· н	$-CH_2-N-C$ H_2N
1617	F3CS-()-CH2-	2	2	1			-CH ₂ -N-C-Br

Table 1.148

		-					
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1618	. HQ H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH₂-N-C-
1619	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1620	HQ H ₃ CO-CH ₂ -	1	2	0	R	. H	
1621	HQ H ₃ CO-CH ₂ -	1	2	0	Ŗ	Н	-CH ₂ -N-C-CF ₃
1622	HQ H ₃ CO—CH ₂ -	1	2	0	R	Ĥ	-CH ₂ -N-C-CF ₃
1623	HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1624	но-{СН₂-	1	2	0	R	н	-CH ₂ -N-C-C-C-C-S
1625	HOCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1626	HO-{	1	.2	0	R	H .	-CH ₂ -N-C-F
1627	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- Н С-К-F
1628	H₃CS- \ CH₂-	1	2	0	R .	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.149

Compd No.	. R ² (CH ₂),	k	m	ñ	chirality	R²	∏ ⁴ −(CH ₂) p (CH ₂)q G−R ⁶
1629	H₃CS-()-CH₂-	. 1	2	0	R	н	-CH ₂ -N-C
1630	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1631	H ₂ NCH ₂ —CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C-CF ₃
1632	CF ₃ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1633	H_3CS NC CH_2	1	2	0	R	н	-СH ₂ -N-С-С-С-
1634	(H ₀ C) ₂ CH	1	.2	0	R	Н	- CH ₂ -N-C-СF ₃
1635	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1636	H ₃ C-CH ₂ -	1	2	0	R	н	H ₃ C CH ₃ O H ₃ C -CH ₂ -N-C
1637	CH ₃ CH ₃	1	2	0	R	· н	-CH ₂ -N-C-(CH ₂) ₄ CH ₃
1638	CH ₃ CH ₂ - CH ₃	1	2	0	R	H _.	-CH ₂ -N-C-(CH ₂) ₃ CH ₃
							-сн⁵-Дс-осн⁵сн³ Вс-осн⁵сн³

Table 1.150

					· · · · · · · · · · · · · · · · · · ·		
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶
1640	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1641	CH₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C
1642	CH₃ CH₂- CH₃	1	2	0	R	н	$-CH_2-N-C-N$ O_2N-N
1643	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-
•	CH ₃ CH ₂ -						•
1645	CI CH₂−	1	2		R	н .	-CH ₂ -N-C-CF ₃
1646	Br O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1647	н,с(сн ₂) ₃ —Сн ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1648	H ₃ C(CH ₂) ₃ ———————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1649	H ₃ C(CH ₂) ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1650	H ₃ C(CH ₂) ₂ —CH ₂ -	.1	2	0	R	н	-СH ₂ -N-С-СF ₃

Table 1.151

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality		-(СН ₂) _р
1651	н ₃ С(СН ₂)3————————————————————————————————————	2	2	1	-	н	-CH2-N-C
1652	H ₃ C(CH ₂) ₃	2	2	1	-	н	$-CH_2-NC \longrightarrow Br$ H_2N
1653	H ₃ C(CH ₂) ₂	2	2	1	-	Ħ	-CH2-N-CH2-CH4
1654	H ₃ C(CH ₂) ₂ {CH ₂ -	2	2	1		н	-CH ₂ -N-C
1655	H ₃ C(CH ₂) ₃	2	2	1	-	н	-CH2-NC
1656	H ₃ C(CH ₂) ₃ —CH ₂ —	2	2	1	-	Н	-CH ₂ -N-C-
1657	H ₃ C(CH ₂) ₂	2	2	1	-	Н	-CH ₂ -N-C
1658	H ₂ C(CH ₂) ₂	2	2	1	<u>-</u>	.	-CH ₂ -N-C-
	CH-2-				•	н	-CH ₂ -N-C-
1660	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1661	Br—⟨CH ₂ -	1	2	0	R	н	$-CH_{2}-NC-$
							·

Table 1.152

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	-(CH ₂) p CH₂ q G-R⁶
1662	8r	1	2	0	R	Н	-CH ₂ -N-C-F
1663	BrCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CI
1664	H₃CS————————————————————————————————————	2	2	1	-	н	$-CH_2-N-C-$ H H_2N
1665	H ₃ CS————————————————————————————————————	2	2	1	-	н	$-CH_2-N-C$ H_2N OCF_3
1666	H ₃ CS—СН ₂ -	2	2	1		Ĥ	-CH ₂ -N-C
1667	н₃ССН ₂ —(СН ₂ -	2	2	1	<u>.</u>	н	-CH ₂ -N-CBr
1668	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	·H	$-CH_2-NC-$ H_2N
1669	H ₂ CCH ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1670	H ₃ CCH ₂ -CH ₂ -	2	2	1		H .	$-CH_2-NC - $ H_2N
1,671	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1672	ӊссн₂—҉ि—сн₂-	2	. 2	1	-	н	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $+I_{2}N$ $-CH_{2}-N+C$ $+I_{2}N$

Table 1.153

Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - G^-R^6$
1673	н ₃ ССН ₂ —∕СН ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
1674	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- Br
1675	FCH ₂ -	2	2	1	-	н	-CH ₂ -N-CF
1676	FCH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1677	FCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-Br
1678	FCH ₂ -	2	2	1	-	H 	-CH ₂ -N-C
1679	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1680	F—CH ₂ -	2	2	1	-	н	$-CH_2-N \cdot C - OCF_3$ H_2N
1681		2	2	1	-	н	-CH ₂ -N-C
1682	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-CSr Br CI
1683	_ N 2 − CH₂ −	2	2	1	-	н	-CH ₂ -N-CBr

Table 1.154

R ² (CH ₂) _i	k	m	n	chirality	. K3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
	2	2	1	-	н	-CH ₂ -N-C
N C − CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
₩.c-()-cH²-	2	2	1	-	н	-CH ₂ -N-C
₩ c-()-cH²-	2	2	1	-	н	-CH2-N-C-
_H°C(CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
N C-N C-CH₂-	2,	2	1	-	н .	$-CH_2-N-C$ H H_2N
_N-c- 0-cH₂-	2	2	1		H	-CH ₂ -N-C
					н .	-CH ₂ -N-C-⟨Sr H
CH ₃	1	2	0.	R	н	-CH ₂ -N-C-Br
H ₃ C-СH ₃	1	2	0	R	н	-CH ₂ -N-C
CH ₃ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	CH2- N1C-CH2- N1C-CH2-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Table 1.155

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1695	СН ₃	1	2	0	R	н	-CH ₂ -N-C
1696	-CH ₃	1	2	0	R	н	$-CH_2-NC-$ H_2N
1697	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1698	CH ₃	1	2	0	R	н.	$-CH_2-N-C - OOCF_3$ $+H_2N$
1699	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1700	CH ₃	1	2	.0	R	H	-CH ^S -N-C-\Bu
1701	H ₂ C ₌ CH-\biggreen CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1702	H ₃ CO-()-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	CH ₂ -					н	-CH ₂ -N-C
							-CH ₂ -N-C
1705	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C
					·		

175

Table 1.156

Compd No.	$\begin{array}{ccc} & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	k	m	n	chirality	R³	—(CH ₂) p − (CH ₂) q G−R ⁶
1706	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\ H ₂ N
1707	н ₃ СЅ-{}СН ₂ -	1	2	0	R	H·	-CH ₂ -N-C
1708	н₃ссн₂-{}-сн₂-	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
	(ЊС)₂СН-СТУ-СН г				R	н	-CH ₂ -N-C- H ₂ N
1710	H ₃ C Br————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1711	CH₃ —CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1712	H ₃ CCH ₂ Q HO—CH ₂ —	1	2	0	R	' н	-CH ₂ -N-C-CF ₃
1713	H ₃ C HO————————————————————————————————————					н.	-CH ₂ -N-C-CF ₃
1714	H ₃ CO————————————————————————————————————	1	2	0	Ř	н	-CH ₂ -N-C-CF ₃
1715	N CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1716	CH₂-	1	2	0	Ŕ	н	-CH ₂ -N-C-CF ₃

Table 1.157

							
Comp No.	d. R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + G^4 + (CH_2)_{q} - G^6$
1717	H ₃ CO—(N—)—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-
-1718	CH ₃ CH ₂ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1719	CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1720	H5CO-CA H5C-CH2- CH3	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1721	н₃ссн₂—⟨СН₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1722	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1723	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H
1724	CH ₃ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1725	CH ₃ H ₃ C - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1726	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-CF
1727	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF

Table 1.158

Compd No.	R ² (CH ₂) _j -	k	m	, n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
1728	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1729	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1730	H ₂ CH ₂ -	1	2	0	R	н	-CH2-N-C-(CF3
1731	H ₃ COH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1732	носн ₂ —Сн ₂ -	1	2	0	R	Н	-CH2-N-C-CF3
1733	-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1734	H₃CSCH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1735	н₃ссн₂-√-сн₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	O-CH ₂ -					н .	-CH ₂ -N-C-CF ₃
1737	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1738	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1	. 1	5	9
---------	-----	---	---

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1739	(H6C)2CH-(-)-CH2-	1	2	0	R	Н	-CH ₂ -N-C-F
1740	CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1741	H ₃ CS-(-)-CH ₂ -	1 -	2	0	R	н	-CH ₂ -N-C-Br
1742	H ₂ CCH ₂ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1743	CH ₂ -	1	2	0	R	н	-сн ₂ -N-с-
1744	H ₃ C—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1745	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-C-Br
1746	(H ₂ C) ₂ CH CH ₂ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1747	CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
1748	ң₃ссн₂-{Сн₂-	1	2	0	R	н	-CH ₂ -N-C
1749	CH3 ⁻ CH2−	1	2	0	R	н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$ Br $-CH_{2}-N-C$ $H_{2}N$

179

Table 1.160

							<u> </u>	
Compo		CH ₂);—	k	m	n	chirality	R³	−(CH ₂) _p
1750		}—СН ₂ –	1	2	0	R	H .	-CH ₂ -N-C
1751	н₃сѕ-{¯	CH2	1	2	0	. R	н	-CH ₂ -N-C-OCF ₃
1752	ӊссн <u>;</u> —{	_}-сн₂-	1	2	0	R.	н .	-СH ₂ -N-С
1753		−CH ₂ −	1	2	0	R	· н	-CH ₂ -N-C
1754	H ₃ C-	CH₃ ≻−CH₂−	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
1755	H ₃ C	CH₃ ├─CH₂─	1 .	2	0	R	н	-CH ₂ -N-C-OCF ₃
1756	(H ₂ C) ₂ CH-{	_)—cн <i>z</i> -	1 .	2	0-	R	н	-CH ₂ -N-C
1757	Br Br	r					н	-CH ₂ -N-C-CF ₃
1758	H₃CO Br	Br ⊢-CH ₂ 3r	1	2 _.	0	R	н	-CH ₂ -N-C-CF ₃
1759	H ₃ C-	-CH₂ -	1	2	o ′	R	н	-он- ₂ — Он- ₂ сн,
1760	н₃с-{}	-CH₂-	1	2	0	R	н	-OH2-N-C-OCH3 CF2CHCIF

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	· R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
1761	H ₃ C-{	1	2	0	R	Н	-CH ² -H _C -C ₁ G H _V -C-H-C ₁
1762	CH ₃	1	2	0	·R	н	-CH ₂ -HC-N-CI
1763	CH ₂ -	2	2	0	-	н	-CH ₂ -N-C
1764	—CH₂-	2	2	0	-	Н	-CH ₂ CH ₂ -N-C
1765	—CH₂-	2	2	0	-,	н	(S) Q OCH₂CH₃ -CH-N-C- - H -CH₂CH(CH₃)₂
1766	CH ₂ -	· 2	2	0	-	Н	(<i>F</i>) OCH ₂ CH ₃ −CH-N-C- H CH ₂ CH(CH ₃) ₂
1767	C	1	3	1	-	Н .	-CH ₂ -N-C-
1768	С——СH ₂ —	1	3	1	-	н	-CH2CH2-N-C
	CH ₃ CH ₂ - CH ₃					н	-CH2-NC
1770	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C-N-CI
1771	CH ₃ N CH ₂ - CH ₃	1	2	.0	R	Н	-CH ₂ -NC-CH-N-C (H ₃ C) ₃ C-CH-N-C H ₃ C

Table 1.162

Compd. No.	R ¹ / _P -(CH ₂) _j -	k	m	n	chirality	. Ł3	$-(CH_2)_p + (CH_2)_q - G-R^6$
1772	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	HIC HC
1773	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	H ₃ C H C O
1774	CH ₃ N CH ₂ -	1	2	0	R	Н	-СH ₂ -N-С-N-С-N-С-ОСH ₃
1775	HO-CH ₂ -	1	2	0	R	Н	$-CH_2-N+C \longrightarrow H_2N$
1776	H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1777	CH2− CI	2	2	1		н	$-CH_2-N+C \longrightarrow H_2N$
1778	H ₃ C-(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1779	CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C- H ₂ N
1780	Br—⟨¯¯)—CH₂−	2	2	1	· <u>-</u>	н	$-CH_2-N+C$ H_2N CF_3
1781	HO-()-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1782	H ₂ C=CH-C	2	2	1	-	н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ CF_{3} $-CH_{2}-N-C$ $H_{2}N$

Table 1	1	.1	6	3
---------	---	----	---	---

Compd.	R ² (CH ₂);-	k	m	n	chirality	[·] R³	$-(CH_2)_{p} + G^4 (CH_2)_{q} - G^6$
1783	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1784	CH₂-	2	2	1		н	-CH ₂ -N-C-CF ₃
1785	CH ₃ (CH ₂) ₂	2	2	1		н	-CH ₂ -N-C
1786	O-CH ₂ -	2	2	1	-	н	$-CH_2-N-C- \longrightarrow CF_3$ H_2N
1787	CH ₃ (CH ₂) ₂	· 1	2	0	R	н	$-CH_2-N-C H_2N$ CF_3
1788	CH ₃	2	2	1		H	-CH ₂ -N-C
1789	H₃CO-{	2	2	1	-	н	$-CH_2-N-C \xrightarrow{CF_3}$
17 <u>9</u> 0	C├{}-CH ₂ -	1	2	0	S	н	$-CH_2-N-C CF_3$ H_2N
1791	C├─(1	2	0	S	н	$-CH_2-NC$ H_2N OCF_3 H_2N
1792	CH ₃	2	2	. 1	-	н .	-CH ₂ -N-C-F
1793	CI—CH2-	2	2	1		н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+$

Table 1.164

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	. Ł3	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1794	H₃C-{}CH₂-	2	2	1	•	н	-CH ₂ -N-C
1795	O-CH₂-	2	. 2	1	-	н	-CH ₂ -N-C-F
1796	Br-√CH₂-	2	2	1	-	н	-CH ₂ -N-C
1797	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1798	H ₃ CO-CH ₂ -	2	2	1	-	H .	-CH ₂ -N-C-F
[^] 1799	H ₂ C=CH-\(\bigc\)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1800	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
1801	~ CH ₂ -				-	н	$-CH_2-N-C$
1802	HO-√	1	2	0	R	н	-CH ₂ -N-C
1803	HO-CH ₂ -	1	2	0	R .	н	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CF_{3}$ $-CH_{2}-N+C$ $+CF_{3}$ $-CF_{3}$ $-CF_{3}$
1804	H ₃ C(CH ₂) ₂ {	2	. 2	1		н	-CH ₂ -N-C

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	₽³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
1805	Br—CH₂-	1	. 2	0	R	н	-CH ₂ -N-C-SCF ₃
1806	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1807	H ₃ CQ HO−CH ₂ −	1	2	, 0	R	н	-CH ₂ -N-C-SCF ₃
1808	HQ H₃CO-CH₂-	. 1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1809	HO(1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1810	CH2-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1811	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1812	H₃CS-{}CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1813	Н₃ССН₂-{}-СН₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1814	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1815	CH ₃ H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	'R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1816	(CH ₃) ₂ CH	1	2	0	R	н.	-CH ₂ -N-C-SCF ₃
1817	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1818	Вг—СН2-	1	2	0	R	н	-CH ₂ -N-C
1819	H₃CO-€ -CH2-	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1820	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1821	HO . H₃CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1822	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1823	CH₂-	1	2	0	R ,	н	-CH ₂ -N-C-OCHF ₂
1824	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1825	H ₃ CS-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1826	H₃CCH₂——————————————————————————————————	1	2	0	R	н	OCHF2 -CH2-N-C-OCHF2 -CH2-N-C-OCHF2

186

Table 1	1		1	6	7
---------	---	--	---	---	---

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)^{R^4}_{\rho}$ $+(CH_2)^{-1}_{q}$ $+(CH_2)^{R^5}_{q}$
1827	O−CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1828	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1829	H₃C — CH₂- H₃C	1	2	0	R	н	-CH2-N-C-OCHF2
1830	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1831	Br—CH₂-	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1832	H₃CO-{CH₂-	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1833	H ₃ CQ HO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1834	HQ H ₃ CO-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-C(CH ₃) ₃
1835	HO-{}CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1836	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1837	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1838	H₃CS	1	2	0	[.] R	н	-CH ₂ -N-C-(CH ₃) ₃
1839	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	. н	-CH ₂ -N-C-(CH ₃) ₃
1840	O-CH₂-	1	2	0	R ·	н	-CH ₂ -N-C-⟨ C(CH ₃) ₃
1841	CH ₃ C−(2−	1	2	0	R	н .	-CH ₂ -N-C-(CH ₃) ₃
1842	H_3 C CH_3 CH_2 CH_2	1	2	0	R	н	-CH ₂ -H-C-(CH ₃) ₃
1843	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1844	(CH ₃) ₃ C-\(\sigma\) CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1845	H₃CCH₂—CH₂-	1	2	0	R	н	-CH ₂ -N-CH ₂ CH ₃ CH ₂ -CH ₂ CH ₃
1846	H_3C CH_3 CH_2 CH_2	1	2	0	R .	н	-CH2-N-C-SCF3
1847	(CH ₃₎₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1848	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C

Compd.	R ¹ / ₂ (CH ₂) _j	k	m	n	chirality	₽³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
1849	CH₂-	1	2	0	R	Н	- CH ₂ -N-C-
1850	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	н	-CH2-N-C-
1851	CH ₃	1	2	0	R	н	-CH2-N-C-
1852	O-CH₂-	1	2	0	R	Н	-CH ₂ -N C-
1853	H ₃ CQ HO-CH ₂ -	1 .	2	0	R	Н	-CH ₂ -N-C-
1854	-CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-
1855	н₃ссн₂-{_}_сн₂-	1	2	0	R	н	-CH ₂ -N-C-
1856	CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1857	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1858	Br-CH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_2N H_2N
1859	H₃CO-{}-CH₂-	.1	2	0	R	н	-CH ₂ -N-C-Br

Table 1.170

Compd.	R ¹ /(CH ₂) ₁ -	k	m	п	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
1860	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-Br
1861	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1862	HO-CH ₂ -	1	2	0	R	н	-CH ⁵ -N-C
1863	O—CH₂-	1	2	0	R	н	-CH ₂ -N-C
1864	H ₃ CS-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N
1865	CH2-	1	2	0	R	н	-CH ₂ -N-C Br
1866	CH ₃ H ₃ C — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1867	(CH ₃) ₂ C H-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1868	(CH ³) ² C− C H ₂ −	1	2	0	R	н	-CH ₂ -N-C
1869	Br—⟨¯¯}CH₂-	1	2	0	R ·	н	-CH ₂ -N-C
	H₃CO-{CH₂-					Н	-CH ₂ -N-C-

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1871	H ₃ CQ HO—CH ₂ -	1	2	0	R	н	-CH2-N-C
1872	HQ H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1873	HOCH ₂ -	1	2	0	R	н .	-CH2-N-C-
1874	CH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C-
1875	-CH2-	1	2	0	R	Н	-CH ₂ -N-C-
1876	н₃cs-{	1	2	0	R	Н	$-CH_2-NC-$ H_2N
1877	н ₃ ссн ₂ ————————————————————————————————————	1	2	0	R	Н	$-CH_2-NC-$ H_2N
1878	O-CH ₂ -				R	Н	$-CH_2-N-C \longrightarrow H_2N$
1879	H_3C CH_3 $CH_2^ H_3C$	1	2	0	R	Н	-CH ₂ -N-C-
	(CH ₃) ₂ CH-CH ₂ -						H ₂ N
1881	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-

Table 1.172

Compd. No.	R ² (CH ₂);-	k	m	n	chirality	. K3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1882	Br—{	1	2	0	R	н	-CH ₂ -N-C-N-NO ₂
1883	H₃CO-{	1	2	0	R	н	-CH ₂ -N-C-
1884	H₃CQ HO—CH₂-	1	2	0	R	н	-CH ₂ -N-C
1885	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-NO ₂
1886	HO€	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1887	СH ₂ −	1	2	0	R	н .	-CH ₂ -N-C
1888	CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
1889	н₃сѕ-{}-сн₂-	1	2	0	R	н	-CH ₂ -N-C-
1890	н ₃ ссн ₂ —СН ₂ -	. 1	2	0	Ŕ	н	-CH ₂ -N-C
1891	O √ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1892	CH ₂ -	.1	2	0	R	н	-CH ₂ -N-C-NO ₂ -CH ₂ -N-C-NO ₂ -CH ₂ -N-C-NO ₂ -CH ₂ -N-C-NO ₂

Compd. No.	R^{1} $(CH_{2})_{j}$					₽³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1893	H ₃ C — CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1894					R	н	-CH ₂ -N-C
1895	(CH ₃) ₃ C-\(\bigcirc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1896	HQ H ₃ CO—CH ₂ —	1	2	0	R	н	$-CH_2-N-C-$ H_2N OCF_3 H_2N
1897	H ₃ CS-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3
1898	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1899	(CH ₃) ₂ CH-CH ₂ -	. 1	2	0	R	н	$-CH_2-N \cdot C \longrightarrow OCF_3$ H_2N
1900	H ₃ CO HO———————————————————————————————————	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1901	H ₃ C(CH ₂) ₂		2	0	R	н	-CH ₂ -N-C-OCF ₃
1902	O-CH ₂ -	1	2	0	R	н	$-CH_{2}-N$
1903	(СН₃)₂СН-{_}-СН₂-	2	2	1	-	Н	-CH ₂ -N-C

Table 1.174

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1904	н ₃ С(СН ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C OCF ₃
1905	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C
1906	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1907	HOCH₂-	1	2	0	R	н	-CH ₂ -N-C
1908	H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_2-NCC$ H_2N C H_2N
1909	H ₂ C=CH-\CH ₂ -	1	2	0	R	H	$-CH_2-NCC\longrightarrow OCF_3$ H_2N
1910	Br—⟨CH₂-	2	2	1	-	н	-CH ₂ -H-C
1911	CI—CH₂-	2	2	1	· -	н	$-CH_2-N$ H_2N OCF_3 H_2N
1912	HO{	2	2	1	-	н	-CH ₂ -N-C
1913	CH ₃	2	2	1	-	н	$-CH_2-N$ C H_2N OCF_3
1914	H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $+CH_{3}$ $+CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{3}$ $+CH_{2}-N-C$ $+CH_{3}$ $+CH_{2}-N-C$ $+CH_{3}$

Table 1.175

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p} + G^4 + (CH_2)_{q} - G^-R^6$
1915	H ₂ CCH ₂ Q HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C
1916	H ₃ C HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
1917	H ₃ CCH ₂ Q HO————————————————————————————————————	2	2	1	-	н	$-CH_2-N$ C H_2N C
1918	H ₃ C HO−CH ₂ −	2	2	1		н	$-CH_2-N-C \longrightarrow OCF_3$ $+_2N$
1919	NH ₂	2	2	1	-	н	-CH ₂ -N-C-\(\frac{\text{CF}_3}{\text{H}_2\text{N}}\)
1920	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1921	CH2-	1	2	0	R	н	$-CH_2-N$ H_2 H_2 H_2 OCF_3 H_2
1922	CH-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1923	Br—CH₂−	2	2	1	-	н	-CH ₂ -N-C-
1924	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1925	F{	2	2	1	-	н	-CH2-NC-SCF3

Table	1	.1	7	6
-------	---	----	---	---

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1926	F-CH ₂ -	2	2	1	-	. Н	-CH ₂ -N-C-SCF ₃
1927	HO-{	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1928	CH₂-	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1929	-CH ₂ -	2	2	1	-	· н	-CH ₂ -N-C-SCF ₃
1930	H ₃ CS-CH ₂ -	2	2	1		Н	-CH ₂ -N-C-SCF ₃
1931	н ₃ ссн ₂ ————————————————————————————————————	2	. 2	1	-	н	-CH ₂ -N-C-SCF ₃
1932	O CH2 ⁻	2	. 2	1	-	H	-CH ₂ -N-C-SCF ₃
1933	CH ₃				-	. н	-CH ₂ -N-C-SCF ₃
1934	CH ₃ H ₃ C ← CH ₂ − H ₃ C	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
	O ₂ N-{CH ₂ -				-	н	-CH2-N-C-SCF3
	H ₃ C						-CH₂-N-C-SCF3

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1937	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1938	В-СН2-	2	2	1	-	H	-CH ₂ -N-C
1939	H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-Br
1940	F—CH₂-	2	2	1	-	н	-CH ₂ -N-C
1941	F€	2	2	1	-	н	-CH ₂ -N-C
1942	HO-{\bigcirc}-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
1943	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1944	-CH ₂ -	2	2	1	- ,	н	-CH ₂ -N-C
1945	H₃CS-{\bigce}-CH2-	2	2	1	-	н	-CH ₂ -N-C-Br
1946	н ₃ ссн ₂ ————сн ₂ -	2	2	1	-	н	-сн ₂ -N-с
1947	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- CH ₃

Tab	le	1	1	7	8

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1948	CH ₃ CH ₂ −	2	2	1	<u>.</u> .	н	-CH2-N-C- BL
1949	H ₃ C — CH ₂ — CH ₂ —	2	2	1		н	-CH ⁵ -M-C
1950	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1951	H ₃ C	2	2	1	·. •	н	-CH ₂ -N-C
1952	Br—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
1953	H₃CO-(CH₂-	2	2	1	-	н	-CH ₂ -N-C-S-F
1954	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SF
1.955	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1956	HO-{	2	2	1	-	H	-CH ₂ -N-C- Br H
1957	CH₂-	2	2	1	-	н	-CH ₂ -N-C
1958	CH₂-	2	2	1	-	н	-CH ₂ -N-C

Table	1.	.1	7	9
-------	----	----	---	---

Compd.	R ² (CH ₂) _j -	k	m	'n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
1959	H₃CS	2	2	1	<u>-</u>	Н	-CH ₂ -N-C
1960	н₃ссн₂— Сн₂-	2	2	1	-	н	-CH ₂ -N-C
1961	O-√CH ₂ -	2	2	. 1	-	Н	-CH ₂ -N-C
1962	H ₃ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1963	H_3C CH_3 CH_2 CH_2	2	2	1	· •	. H	-CH ₂ -N-C
1964	O ₂ N-CH ₂ -	2	. 2	1	-	Н	-CH ₂ -N-C
1965	H ₃ C-\(\bigc\)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1966	(CH ₃) ₂ C H−√ − − − − − − − − − − − − − − − − − −	2	2	1	•	н	-CH ₂ -N-C
1967	Br—€CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1968	H ₃ CO-CH ₂ -	2	2	1			-CH ₂ -N-C
1969	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.180

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1970	CH ⁵ -	2	2	1		н	-CH ₂ -N-C-
1971	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1972	H ₃ CS-CH ₂ -	2	2	1		н	$-CH_2-\overset{\circ}{N}+\overset{\circ}{C}-\overset{\circ}{\bigvee}$ H_2N
1973	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	$-CH_2-NC-$ H_2N
1974	CH ₃ C+CH ₂ -	2	2	1	-	н	$-CH_2-NC-$ H_2N
1975	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1976	H ₃ C-CH ₂ -	2	2	·1	· _	н	-CH ₂ -N-C
1977	NC-CH ₂ -	2	2	1		н	-CH ₂ -N-C
1978	(CH ₃) ₂ C H-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1979	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1980	O CH₂-	2	2	1	-	н	$-CH_{2}-N$ C $H_{2}N$ $-CH_{2}-N$ C $H_{2}N$

Table	1	.1	8	1
-------	---	----	---	---

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	˳	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1981	0 ₂ N-{CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1982	NC-⟨CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1983	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1984	Br—€—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1985	H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N$ H_2N
1986	HO-{}-CH ₂ -	2	2	1	-	н	$-CH_2-NC \longrightarrow H_2N$
1987	CH ₂ −	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1988	-CH ₂ -	2	. 2	1	· ·	н	$-CH_2-N-C$ H_2N
1989	H₃CS-CH₂-	2	2	1	-	н	-CH ₂ -N-C-
1990	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1991	CH ₂ -	2	. 2	1	-	н	$-CH_2-N-C$ H_2N

201 .

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂)q G-R ⁶
1992	CH ₃ C+2-	2	2	1	-	Н	-CH ₂ -N-C-
1993	O ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1994	H ₃ CCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1995	NC-CH ₂ -	· 2	2	1	-	н .	-CH ₂ -N-C
1996	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C
1997	H_3C CH_3 CH_2 CH_2	2	2	1	-	н	-CH ₂ -N-C
1998	Br—CH ₂ -	2	2	1	-	н	CH ₂ -N-C-
1999	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2000	F—CH ₂ -	2	2	1	-	н	-CH2-N-C-
2001	HO-CH ₂ -	2	2	1	-	н	-CH2-N-C-CI
2002	HOCH₂-	2	2	1	-	н	-CH ₂ -N-C-CI

Table 1.183

202

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) ,
2003	CH ₂ -	2	2	1	-	Н	-CH2-N-C-
2004	H₃CS	2	2	1	-	. Н	-CH2-N-C-
2005	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	н	-CH2-N-C-
2006	CH ₃	. 2	2	1	-	Н	-CH ₂ -N-C-
2007	O ₂ N-{CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
2008	. H ₃ CCH ₂ -	2	2	1	-	н .	-CH ₂ -N-C
2009	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2010	(CH ₃) ₂ CH-CH ₂ -	2	2	1	- ·	H ·	-CH ₂ -N-C-C
2011	H_3C CH_3 CH_2 CH_2	2	2	1	-	н	-CH ⁵ -N-C-C
2012	Br—CH ₂ -	2	2	1		н	-CH ₂ -N-C-Br
2013	H₃CO-{CH₂-	2	2	1	-	н	-CH2-N-C- Br

Table	1.	.1	8	4
-------	----	----	---	---

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2014	HO-{	2	2	1	·	н	-CH ₂ -N-C-Br
2015	O-CH2-	2	2	1	-	н	-CH ₂ -N-C- Br H
2016	CH₂-	2	2	1	-	н	-CH ₂ -N-C- H
2017	H₃CS-CH₂-	2	2	1	-	Н	-CH ₂ -N-C- H
2018	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H
2019	O-{CH₂-	2	2	1	-	н	-CH ₂ -N-C- H
2020	CH ₃	2	2	1	-	н	-CH₂-N-C- H C- H C- CI
2021	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2022	H ₃ C-\(\bigc\)-CH ₂ -	2	2	1	-	Н .	-CH ₂ -N-C-
2023	NC-⟨CH ₂ -	2	2	1	-	н.	-CH2-N-C
2024	(CH ₃) ₂ CH-⟨}-CH ₂ -	2	2	1	•	н	-CH ⁵ -M-C- BL

Ta	ы	е	1.	1	8	5
ı a	~1	C			o	·

Compd. No.	R ¹ R ² (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2025	H ₃ C — CH ₂ — CH ₂ —	2	2	1	-	н	-сн ₂ -№ с- Вг
2026	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
20 <u>2</u> 7	Br—CH ₂ -	2	2	1	-	н .	$-CH_2-N-C- \xrightarrow{Q} \xrightarrow{Br} H_2 N$
2028	H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C H_2N$ Br
2029	HO-CH ₂ -	2	2	1	-	Н	$-CH_2-NC- \longrightarrow_{H_2N}^{O}$
2030	CH ₂ -	2	2	1	-	Н ,	-CH ₂ -N-CBr
2031	CH ₂ -	2	2	. 1	-	н	$-CH_2-N-C$ H_2N H_2N Br
2032	O CH₂-	2	2	1	±	н	$-CH_2-N-C$ H_2N Br
2033	CH ₃				-	н	$-CH_2-N-C$ H_2N Br
2034	O ₂ N—CH ₂ —	2	2	1	-	н	$\begin{array}{c} H_2N \\ -CH_2-N-C \\ H_2N \\ \end{array}$
2035	H₃C-{CH ₂ -	2	2	1		н	-CH ₂ -N-C

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	–(CH ₂) _p + (CH ₂) _q G−R ⁶
2036	NC-CH2-	2	2	1	•	н	-CH ₂ -N-C
2037	H ₃ C — CH ₂ -	2	2	1		н	-CH ₂ -N-C
	F-CH ₂ -					н	CH ₂ -N-C
2039	H ₃ C-CH ₂ -	2	2	1	-		-CH ₂ -N-C CN
2040	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH2-N-C-CH-OH
2041	H ₃ C-\(\)-CH ₂ -	1	2	0	R	н	-CH2-N-C-CH-
2042	H ₃ C-CH ₂ -	1	. 2	0	R ·	н	-CH ₂ -N-C
	H ₃ C-CH ₂ -				R	н	-CH ₂ -N-C-CH ₂ -CH ₃
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C
2045	CH₃ CH₂- CH₃	1	2	0	R	н	-CH2-N-C-N-CI
2046	CH ₃ CH ₂ - CH ₃ CH ₃ CH ₂ - CH ₂ - CH ₂ - CH ₃	1	2	0	R .	н .	-CH ₂ -N-C- HN OC-N- CH ₃ -N-C- HN C-N- CH ₃

Table 1.187

Compd.	R1 (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{H^5} (CH_2)_{q} - G^{-R^6}$
2047	CH ₃ N CH₂- CH₃	1	2	0	R	Н	-cH ₂ -N-C CH ₃ CH ₃
2048	CH ₃ CH ₂ - CH ₃	1	2	0	. R	Н	-CH ₂ -N-C
2049	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH2-N-CH3
2050	H ₃ C S CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2051	H ₃ C N-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2052	CH ₂ - OCH ₂ CH ₃	2	2	1	-	Н	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
2053	H ₃ CQ CH ₂ O-CH ₂ -	2	2	1	-	, H	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
	H ₃ CO-CH ₂ -					н	CH ₂ -N-C
2055	H ₃ CQ CH ₂ - OH	2	2	1	-	. Н	-CH ₂ -N-C
2056	Br CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N F F
	H ₃ CO—CH ₂ —						-CH ₂ -N-C

Table 1.188

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G^{-R^6}$
2058	H₃CQ OCH₃ CH₂-	2	2	1		Ĥ	-CH ₂ -N-C
2059	- - - - - - - - - - - - - - - - - - -	2	2	1	-	н	-CH ₂ -N-C
2060	H_3CO CH_2 OCH ₃	2	2	1	-	н	-CH ₂ -N-C
2061	F_CH ₃	2	2	1	-	н	-CH ₂ -N-C
2062 -	H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2063	H ₃ CQ H ₃ C————————————————————————————————————	2	2	1	-	H	$-CH_2-N-C$ H_2N H_2N
2064	Br CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
2065	H ₃ CCH ₂ Q H ₃ CCH ₂ O CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2066	OCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2067	(H ₃ C) ₂ CHCH ₂ ————————————————————————————————————	2	2	1	-	н	$-CH_2-N-C$ H_2N F
2068	CI F—CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C$ $+L_{2}N$ $+CH_{2}-N-C$ $+L_{2}N$ $+CH_{2}-N-C$ $+L_{2}N$

Table 1.189

Compd.	R ¹ (CH ₂)-	ķ	m	n	chirality	R³	$-(CH_2)_{\overline{0}} + \frac{R^4}{R^5} (CH_2)_{\overline{0}} - G^-R^6$
2069	H ₃ C H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2070	Br_CH ₂ -OCH ₃	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2071	H_3 CO $-$ C H_2 -OC H_3	2	2	1	-	н	-CH ₂ -N-C
2072	(Ӊ₃С)₂СНО-{}СӉ ₂ -	2	2	1	-	н	-CH ₂ -N-C
2073	CH ₂ Q -CH ₂ -	2	2	1	-	н	-CH _Z -N-C
2074	H ₃ CO- CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2075	H₃CQ CH₂- F	2	2	1	-	н	-CH ₂ -N-C
2076	F-CH ₂ -	2	2	1	•	• н	$-CH_2-N-C H_2N$
2077	CICH ₂ - OH	2	2	1	•	н.	$-CH_2-N-C$ H_2N H_2N
2078	H ₃ CCH ₂ Q OH CH ₂	2	2	1	-	H '.	$-CH_2-N-C$ H_2N
2079	CH ₂ Q H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_{2}-N-C$ $+ CH_{2}-N-C$ $+ CH_{2}-N-C$ $+ CH_{2}-N-C$ $+ CH_{2}-N-C$

Table 1.190

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2080	СН2Q Н3CO-СР-СН2-	2	2	1	-	н	-CH ₂ -N-C
2081	CI HO—CH₂–	2	2	1	· <u>-</u>	н	-CH ₂ -N-C
2082	OH H ₃ CO-CH ₂ -	2	2	1	•	н	$-CH_2-N-C$ H_2N
2083	H ₃ CQ HO−CH ₂ −	1	2	. 0	R	н	-CH ₂ -N-C- H ₂ N
2084	H ₃ CO HO-CH ₂ - H ₃ CO	1	2	0	R	н	-CH ₂ -N-C
2085	OH H ₃ CO-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C- H ₂ -N-C- H ₂ N
2086	HO-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
2087	(H ₃ C) ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2088	(H ₃ CCH ₂) ₂ N-\	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2089	F—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2090	○ - 0- ○ -CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$

Table 1.191

2091 CH_{2} 2 2 1 - H CH_{2} 2 2 1 - CH_{2} 3 CH_{2} 3 CH_{2} 3 CH_{2} 4 CH_{2} 3 CH_{2} 4 CH_{2} 6 CH_{2} 7 CH_{2} 7 CH_{2} 8 CH_{2} 8 CH_{2} 8 CH_{2} 8 CH_{2} 8 CH_{2} 9 $CH_{$	
2092 $CH - CH_2 - 2 + 2 + 1 - H - \frac{(R)}{C}$ 2093 $CH - CH_2 - 2 + 2 + 1 - H - \frac{(R)}{C}$ 2094 $CH - CH_2 - 2 + 2 + 1 - H - \frac{(R)}{C}$ 2095 $CH - CH_2 - 2 + 2 + 1 - H - \frac{(R)}{C}$	R ⁴ (CH ₂) _q G-R ⁶
2093 CH CH ₂ - 2 2 1 - H (R) 2094 CH CH ₂ - 2 2 1 - H (R) CH ₂ C (R) CH ₂ C (R) CH ₂ C (R) CH ₂ C CH ₂ C CH ₂ C (R) CH ₂ C CH ₂ C CH ₂ C (R) CH ₂ C CH ₂	OCH ₂ CH ₃
2094 CH ₂ - CH ₂ - 2 2 1 - H (R) 2095 CH ₂ - 2 2 1 - H (R) -CH ₂ -CH	+ N-C - NH
2095 CH₂- 2 2 1 - H - CH₂- CH₂- CH₂- CH₂- CH₂- CH₂- CH₂	O OCH ₂ CH ₃
<u> </u>	OCH2CH3
	OCH ₂ CH ₃
2096 CH₂- 2 2 1 - H - CH₂- CH₂- CH₂- CH₂- CH₂- CH₂- CH₂	O OCH ₂ CH ₃
ČH₂t	OCH ₂ CH ₃
	O CCH ₂ CH ₃
2099 CH ₂ - 2 2 1 - H	осн ₂ сн ₃
2100 CH₂- 2 2 1 - H - CH₂- CH₂- CH₂- CH₂- CH₂- CH₂- CH₂	OCH ₂ CH ₃
2101 CH ₂ - 2 2 1 - H (R - CH ₂ - CH	OCH ₂ CH ₃ H OCH ₃ OCH ₂ CH ₃ OCH ₂ CH ₃

Table 1.192

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2102	CH2-	2	2	1	-	н	CH2CH2-C-OCH2-
2103	CH-2-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C-H H H ₃ C-CHOCH ₂ -H R
2104	CI—CH2-	2	2	1	-	н	()
2105	H ₃ CO OH	2	2	1	-	н	$-CH_2-N-C$ H_2N
2106	H ₃ C OH CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2107	Br CH ₂ -	2	2	1	-	. н	-CH ₂ -N-C-F
2108	CH ₃ -CH ₂ -	2	2		-	н	-CH ₂ -N-C
2109	Br O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2110	H ₃ CCH ₂ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2111	F CH2−	2	2	1	-	н	-CH ₂ -N-C
2112	H ₃ CO — CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-F H ₂ N

Table 1.193

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
2113	H ₂ N H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-CF H
2114	H ₂ N H ₃ C — CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C-$ $H_{2}N$
2115	CI—CH₂-	2	2	1	-	Н	(F) 0 -CH N-C- H CH(CH ₃) ₂
2116	CI—()—CH ₂ -	2	2	1,	-	н	$(H) \qquad \bigcirc OCH_2CH_3$ $-CH-N-C- \bigcirc OCH_2CH_3$ $-H \qquad OCH_2CH_3$ $-H \qquad OCH_3CH_3$
2117	CHZ-	2	2	1	-	н	CH ₂ -NH
2118	HQ HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2119	OH HO-CH₂-	1	2	0	R	н	-CH ₂ -N-C
2120	Br—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
2121	OCH ₃ HOCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2122	CH2 [−]	1	2	0	R	н	-CH ₂ -N-C
2123	CH ₂ - NO ₂	1	2	0	,R·	н	$-CH_{2}-N-C$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N$ $+_{2}N$

Table 1.194

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^-R^6$
2124	O ₂ N . CH ₂ -	1	2	0	R	H	-CH _{2-N} -C- CF ₃
2125	O ₂ N H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
2126	O ₂ N H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2127	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2128	H ₂ N H ₃ CO—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C- CF ₃
2129	H ₂ N H ₃ C — CH ₂ -	1	2	0	R	н	$-CH_{2}-N+C-V$ $H_{2}N$
2130	O. V. CH⁵-	2	2	1	-	н	-CH ₂ -N-C
2131	CH ₃ CH₂- CH₃	2	2	1	-	Н	-CH ₂ -N-C
2132	H ₂ N CI—CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$ H_2N
2133	(H ₃ C) ₂ N CI—CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $+1_{2}N$ $-CH_{2}-N-C-$ $+1_{2}N$ $-CF_{3}$ $-CH_{2}-N-C-$ $+1_{2}N$ $-CF_{3}$ $-CH_{2}-N-C-$ $+1_{2}N$
2134	O CH ₂ - N(CH ₃) ₂	1	2	0	R	н	-CH ₂ -N-C- H ₂ N

Table 1.195

Compd.	R ¹ / _{H²} /(CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{{p}} + \frac{R^4}{R^5} (CH_2)_{{q}} G^-R^6$
2135	(H ₃ C) ₂ N H ₃ CO-CH ₂ -	1	2	0	R	Н	CH ₂ -N-C
2136	(H ₃ C) ₂ N H ₃ C————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2137	CH ₃ CH ₂	1	2	0	R	н	$-CH_{2}-N-C-$ $H_{2}N$ CF_{3} $H_{2}N$
2138	CH ₃ CH ₂ CH ₃	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2139	H ₃ C, CI CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2140	CH ₂ -	2	2	1	-	н	$-CH_2-N-CF$ H_2N
2141	H ₂ N HO—CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2
2142	H ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2143	HMC-CH3	2	2	1	-	н	CH ₂ -N-C
2144	H ₂ N H ₃ CO-CH ₂ -	2	2	1		н	$-CH_2-N-C-$ H_2N
2145	H ₂ N HO-CH ₂ -	2	2	1	-	Н	$\begin{array}{c} H_{2}N \\ \\ CF_{3} \\ -CH_{2}-N \cdot C \\ \\ H_{2}N \end{array}$ $-CH_{2}-N \cdot C - H_{2} \\ -CH_{2}-N \cdot C - H_{2} \\ \end{array}$

Table 1.196

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2146	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H ₂ N
2147	Q H ₃ C-C−NH H ₃ CO ← CH ₂ −	2	2	1	-	н	-CH ₂ -N-C
2148	О Н ₃ С-С−NН НО———————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
2149	O ₂ N HO-CH ₂ -	1	2	0	R	н.	CH ₂ -N-C
2150	H ₃ C-C-NH CII—CH ₂ -	1	2	0	R ·	н	$-CH_2-N-C H_2N$
2151	HMC-CH3	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2152	H ₃ C·C−NH H ₃ CO− C H ₂ −	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2153	H ₃ C-C-NH H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C \longrightarrow H_2N$
2154	H ₃ C-C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2155	О H ₃ C-C-NH HO-СН ₂ -СН ₂ -	2	2	1	-	Н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $+CH_{3}$ $+CH_{2}-N-C$ $+CH_{3}$ $+CH_{4}-N$ $+CH_{5}-N$ $+CH_{$
2156	HMC-CH3	2	2	1	-	Н	-CH ₂ -N-C

Table 1.197

Compd.	R (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{\overline{D}} + (CH_2)_{\overline{q}} G - R^6$
2157	CH ₃	1	2	0	R	Н .	$-CH_2-N-C-4$ H_2N
2158	H ₃ C-NH HO———————————————————————————————————	1	2	0	R	н	$-CH_2-NC- CF_3$ H_2N
2159	H₃C-NH H₃CO- CH₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
2160	H ₃ C-NH HO-CH ₂ -	2	2	1	•	н	$-CH_2-N-C$ H_2N F H_2N
2161	H ₃ C-NH CH-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C \longrightarrow F$ H_2N
2162	H ₃ C-NH H ₃ CO−CH ₂ −	2	2	1	-	н	$-CH_2-N-C H_2N$ CF_3
2163	HO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C H_2N$ CF_3
2164	,CH3 (N)—CH2−	1	2	0	R	· H	$-CH_2-N-C- \longrightarrow \begin{matrix} CF_3 \\ H_2N \end{matrix}$
2165	H N N CH₂-	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
2166	(\$,-cH₂-	1	2	0	R	Н	-CH ₂ -N-C
2167	H N CH ₂ -	1	2	0	R	H	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $+I_{2}N$

Table 1.198

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
2168	G-OCH ₃ H ₃ C CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
2169	H ₃ C-√СН ₃ −СН- СН ₃	1	2	0	R ·	H	-CH ₂ -N-C
2170	C) C)-CH ₂ -	1	2	0	R	н	$-CH_2-N-C \longrightarrow H_2N$
2171	H ₃ C N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CF ₃
2172	F ₃ C CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C
2173	S—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- CF ₃
2174	H ₃ C CH ₃ Br S CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$
2175	OC H ₃ N= CH ₂ - N- CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C-$ $H_{2}N$ $H_{2}N$
2176	H ₃ C CH ₂ -	1	. 2	0	R	н .	-CH ₂ -N-C
2177	H₃C OH	1	2	0	R	н	-CH ₂ -N-C
2178	CH ₂ OH H ₃ CO-C HN CH ₂ OH	1	2	0	R	н	$-CH_{2}-N\cdot C$ $+_{2}N$ $+_{2}N$

Table 1.199

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+ \frac{R^4}{P_1}$ $(CH_2)_q$ $G-R^6$
2179	H ₃ C-Ç ^N -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2180	C-(CH ₂) ₂ -	1	2	0	R	H	-CH ₂ -N-C
2181	H ₃ CO N CH ₂ -	1	2	0	R	н	$-CH_2-N-C-V$ H_2N CF_3
2182	H ₃ C N CH ₂ -	1	2	0	R	н	$-CH_2-N-C-V$ H_2N CF_3
2183	\$-NCH ₂ -	1	2	0	R	• н	-CH ₂ -N-C
2184	\$-N N=CH ₂ -	2	2	1		н	$-CH_2-N-C$ H_2N H_2N
2185	\$-N N=CH ₂	2	2	1	-	Н	$-CH_2-N-C-$ H_2N H_2N
2186	H N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H ₂ N
	H ₂ N HO-CH ₂ -					Н	$-CH_2-N$ - CF_3 H_2N
2188	CH2-	2	2	1	-	н	-CH ₂ -N-C
2189	CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$

Table 1.200

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2190	H N CH₂-	2	2	1	-	Н	-CH ₂ -N-C
2191	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2192	S-N O-CH ₂ -	2	2	1	-	н	$-CH_2-N-C - H_2N$
2193	S N CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2194	H ₂ N H ₃ C-CH ₂ -	2	2	1	-	н	CH ₂ -N-C
2195	H ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H ₂ N.
2196	H₃C-NH H₃C-⟨	1	2	0	R	н	$-CH_2-N-C H_2N$
2197	H ₃ C-NH H ₃ CO-CH ₂ -	1	2	0	. R	н	-CH ₂ -N-C
2198	H ₃ C-NH CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2199	H ₃ C-NH H ₃ C-CH ₂ -				-	н .	$-CH_2-N-C$ H_2N CF_3
2200	H ₃ C-NH CHCH ₂ -CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C \longrightarrow H_{2}N$ $-CH_{2}-N-C \longrightarrow H_{2}N$ $-CH_{2}-N-C \longrightarrow H_{2}N$

Table 1.201

Compd.	R^{i} $(CH_2)_{j}$	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{\overline{h}^4}{R^5}(CH_2)_{q}G-R^6$
2201	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C
2202	H O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2203	CH₂-	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2204	CH ₃	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2205	CH ₂ -CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H H_2N
2206	HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2207	HO—CH ₂ —	2	2	1	. -	H	$-CH_2-N-C-$ H H_2N
	CH—CH ₂ -					Н	$-CH_2 - N C - CF_3$ $H_2 N$
2209	HN-CH ₃	2	2	1	-	н	-CH ₂ -N-C
2210	CH₂-	1	2	0	R	н	$-CH_{2}-N-C-F$ $H_{2}N$ $-CH_{2}-N-C-F_{3}$ $H_{2}N$ CF_{3} G CF_{3}
2211	CH ₂ −	2	2	1		н	-CH ₂ -N-C

Table 1.202

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
2212	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2213	H ₂ N CH2-CH ₂ -	2	2	1	-	. H	-CH ₂ -N-C-S-N-CF ₃
2214	H ₂ N H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2215	H ₃ C-HN CHCH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
2216	СН ₃ N — СН ₂ - Н ₃ ССН ₂ Н	1	2	0	. R	н	$-CH_2-N-C$ H_2N H_2N
2217	H ₃ CO-Ç H ₃ C-V-CH ₂ - CH ₃	1	2	. 0	R	H	-CH ₂ -N-C-CF ₃
2218	C	1	2	0	R	H	-CHZ H C CF3
2219	C⊢————————————————————————————————————	1	2	0	R	н	-CH2-N-C-F3
2220	C├ - ⟨_}-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF ₃ HN C-N-CH(CH ₃) ₂
2221	CH-2-	1	2	0	R	н .	-CH2-N-C-N-CH(CH3)2 -CH2-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
2222	H ₃ C CO ₂ CH ₃ CH ₂ -CH ₂ -CH ₃	1	2	0	R	н	-CH ₂ -N-C

Table 1.203

labie	1.203						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2223	C├ - ⟨}CH ₂ -	1	2	0	R	·	-CH ₂ -N-C-N-N-N-CF ₃
2224	C├ - CH ₂ -	1	2	0	R	н	-CH2-N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
2225	C├ - CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-N-N-N-N-CF ₃
2226	H ₃ C, CI CH ₂ - CH ₃	1	2	0	R ·	н	$-CH_2-N-C \longrightarrow H_2N$
2227	C ├ - C H₂-	1	2	0	R	н	-CH2-N-C-S-N(CH3)2
2228	CI—⟨CH ₂ -	1	2	0	R	Н	-CH ₂ -N CF ₃
2229	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SOCF ₃
	H ₃ CCH ₂ —CH ₂ -					н	-CH ₂ -N-C
2231	CH ₃ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
2232	H ₃ CO—CH ₂ -					н	-CH ₂ -N-C
2233	CH ₂ N H	1	2	0	R	н	$-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{3}-N$ $-CH_{3}-N$ $-CH_{4}-N$ $-CH_{5}-N$ $-CH_$

Table 1.204

Compd. No.	R ² (0112)					R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
2234	CH ₂ - CH ₃ H					Н	-CH ₂ -N-C-CF ₃
2235	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2236	F CH ₂ -	1	2	0	R	н	$-CH_2-N$ H_2N OCF_3
2237	CH ₂ -					н	$-CH_2-N-C$ H_2N CF_3
2238	H ₃ CQ CH ₂ -					Н	$-CH_2-N$ C H_2 N C
2239	CH ₂ -CH ₃	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3 H_2N
2240	CH ₂ - CH ₃	1	2	0	R	н	$-CH_{2}-NC-$ $H_{2}N$ $H_{2}N$
2241	H ₃ C N N H		2			н	$-CH_2-N-C$ H_2N H_2N
2242	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S
2243	(H ₃ Ç) ₂ N-⟨\rightarrow\rightar	1	2	0	R	н	$-CH_2-NC- \bigcirc OCF_3$ H_2N
2244	(H ₃ Ç) ₂ N-CH ₂ - CH ₂ -	1	2	0	R	Н	$-CH_{2}-NC$ $-CH$

Table 1.205

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{\overline{H}^4}{R^5}(CH_2)_{q}$ $-G^-R^6$
2245	H ₃ C N CH ₂ -	1	2	0	R	Н	$-CH_2-N-C- \longrightarrow_{H_2N}^{CF_3}$
2246	H ₃ CCH ₂ -N-CH ₂ -CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$ H_2N
2247	(H ₃ C) ₂ CH N N CH-	1	2	0	R	Н	$-CH_2-N-C-$ H_2N H_2N
2248	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2249	H ₂ N H ₃ CO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2250	H ₂ N HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2251	H_2N H_3C —CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $H_{2}N$
2252	CH ₂ -	2	2	1	-	н	$-CH_2-NC H_2N$ CF_3
2253	III.				-		$-CH_2-NC- \longrightarrow H_2N$
2254	H ₃ CO CH ₂ -						$-CH_2-N C - CF_3$ $-CH_2-N C - CF_3$ $-CH_2-N C - CF_3$ $+ C - CF_3$ $+ C - CF_3$
2255	H ₃ C NH	2	2	1	-	Н	-CH ₂ -N-C

Table 1.206

Table	1.200						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - G^-R^6$
	CH ₂ -					н	$-CH_2-N-C- \longrightarrow_{H_2N}^{CF_3}$
2257	H ₃ CQ CH ₂ -	2	2	1	-	Н	$-CH_2-N-C- \bigvee_{H_2N}^{CF_3}$
2258	CI—CH ₂ -	1	2	0	R	Н	(S) O CI -CH-N-C-CI - CH ₃
2259	H ₃ CS-CH ₂ -	1	2	0	R	Н	(S) P -CH-N-C-CH-CI CH ₃
2260	CH ₂ -	1	2	0	R	Н	(S) P -CH-N-C-N-(S)
2261	CH2-	1	2	0	R	Н	CH3 CH3 CH3
2262	H ₃ CS-CH ₂ -	1	2	0	Ŗ	н	CH3 CH3
2263	CICH ₂ -	1	2	0	S	Н	(S) P -CH-N-C-CI CH ₃
2264	CH-2-	1	2	0	S	н	CH ₃
2265	H ₃ CS-CH ₂ -	1	2	0	S .	н	(S) P CI
2266	C	1	2	0	S	н	(S) P -CH-N-C-N- CH ₃

Table 1.207

· ubic i	.20,						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{1}{R^5} (CH_2)_{q} - G - R^6$
2267	CLCH ₂ -	2	2	1	-	Н .	(S) CI -CH-N-C CI CH ₃
2268	C⊢∕€}−CH₂−	2	2	1	• •	н	(S) CI -CH-N-C-CI CH ₃
2269	H₃CS-{\bigce}-CH2-	2	2	1	-	н	(S) Q CI -CH-N-C CI CH ₃
2270	CI—CH ₂ —	2	2	1	-	Н	(S) P -CH-N-C-N- CH ₃
2271	CI—CH₂-	2	2	1	-	' н	(S) P -CH-N-C-N-C-N-CH ₃
2272	H₃CS-{}CH₂-	2	2	1		н	(S) P
2273	CI—CH ₂ -	2	2	1	-	н	(S) CI -CH-N-C- CI -CH(CH ₃) ₂
2274	H₃CS-CH₂-	2	2	1	-	н	(S) Q -CH-N-C-C-CI -CH(CH ₃) ₂
2275	CICH ₂ -	2	2	1	-	Н	(S) 0 -CH-N-C-N- -CH H H CH(CH ₃) ₂
2276	C	2	. 2	1	-	н	(S) P -CH-N-C-N-CH CH(CH ₃) ₂
2277	H ₃ CS-CH ₂ -	2	2	1	-	н	(5) P -CH-N-C-N- H H H CH(CH ₃) ₂

Table 1.208

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
2278	CICH ₂	1	2	0	R	н	(S) P CF ₃ -CH _N -C-CF ₃ -CH ₃ H ₂ N
2279	C-CH2-	1	2	0	R	н	(S) P CF ₃ -CH ₁ N-C- CF ₃ CH ₃ H ₂ N
2280	CI—CH ₂ -	1	2	0	S	н	(S) O CF ₃ -CH-N-C CF ₃ CH ₃ H ₂ N
2281	H ₃ CS-CH ₂ -	. 1	2	0	S	Н	(S) O CF ₃ -CH _N -C-CF ₃ CH ₃ H ₂ N
2282	CHCH2-	2	2	1	-	н	(S) Q CF ₃ -C+N-C- H CH ₃ H ₂ N
2283	H ₃ CS-CH ₂ -	2	2	. 1	-	· Н	(S) O CF ₃ -CH-N-C- CH ₃ H CH ₃ H ₂ N
2284	CL CH ₂ -CH ₂ -	2	2	1	-	н .	(S) NH ₂ -C+N-C- CF ₃
2285	CI—CH ₂ -	2	2	1	-	. Н	(S) P NH ₂ - CH N-C
2286	H₃CS-()-CH ₂ -	2	2	1	<u>-</u>	н	(S) P NH ₂ -CH N-C CF ₃ CH(CH ₃) ₂ CF ₃
2287	CI—CH2-	2	2	1	-	н	(S) S CH-C-N-C-N-CH-CH(CH ₃) ₂
2288	H ₃ CS-CH ₂ -	2	2	1.		н	(S) P CI -CH N-C C CI (CH ₂) ₂ CONH ₂

Table 1.209

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{\overline{n}^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
2289	CI_CH ₂ -	2	2	1	-	н	(S) 0 -CH-N-C-N- - H H (CH ₂) ₂ CONH ₂
2290	CI_CH ₂ -	2	2	1	-	Н	(S) P -CH+N-C-CI CH ₂ OH
2291	C⊢—CH₂-	2	2	1	•	Н	(S) Q −CH+N-C−←CI H CH ₂ OH
2292	н ₃ СS-СН ₂ -	2	2	1		Н	(S) P −CH+NC-CI CH ₂ OH
2293	CI_CH _Z	2	2	1	-	Н	(S) 0 -CH-N-C-N- CH ₂ OH
2294	CHCH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N- CH2OH
2295	H₃CS-{CH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N- CH ₂ OH
2296	CICH ₂ -	1	2	0	R	н	(S) P CI -CH-N-C-CI (CH ₂) ₂ SO ₂ CH ₃
2297	H₃CS{\bigce}-CH2-	1	2	.0	R	Н	(S) Q CI -CH-N-C-CI (CH ₂) ₂ SO ₂ CH ₃
2298	CI—CH ₂ —	1	2	0	R	н	(S) 0 -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2299	H₃CS-{}CH₂-	1	2	0	R	н	(S) 0 -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃

Table 1.210

				_			
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2300	CH ₂ -	1	2	0	S	н	(S) CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2301	CL_CH2-	1	2	0	S	н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2302	CH ₂ -	1	2	0	R	н	(S) NH ₂ -CH-N-C (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2303	CH2-	1	2	0	R .	Н	(S) NH ₂ -CH-N-C (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2304	н ₃ cs-СН ₂ -	1	2	0	R	н	(S) PH2 -CH-N-C (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2305	CH ₂ -	1	2	0	S	н	(S) PH2 -CHN-C- (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2306	. H ₃ CS-CH ₂ -	1	2	0	S	н	(S) O NH ₂ - C H N C - C H N C C H N C C H N C C C C C C C C C
2307	с⊢Ср−сн₂−	1	2	0	R	н	(S)
2308	н₃cs-{сн ₂ -	1	2	0	R	н .	(S) S -CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2309	CICH ₂ _					н	(S) S -CH-N-C-N-(S) H H H H H (CH ₂) ₂ SO ₂ CH ₃
2310	CH ₂ -	1	2	0	S	н	(S) S -CH-N-C-N-(S) H H H H H H H H H H H H H H H H H H

Table 1.211

	1.211						
Compd No.	$R^2 \rightarrow (CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
2311	H₃CS-(CH ₂ -	1	2	0	s	Н	(S) S -CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2312	H ₃ CS-CH ₂ -	1	2	0	R	н	(S) O CF ₃ -CHN-C-CH ₃ -CH ₃ H ₂ N
2313	CL————————————————————————————————————	1	2	0	R	Н	(S) P CI -CH-N-C-CI CH ₃
2314	H₃CS-CH₂-	1	2	0	s S	н	(S) 0 -CH-N-C-N-C-N-C-N-CH ₃
2315	C	2	2	1	-	H	(S) CI -CH-N-C-CI CH(CH ₃) ₂
2316	CH ₂ −	1	2	0	S	н	(S) O NH ₂ -CH N-C CH ₂ (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2317	CICH ₂ -	2	2	1	-	Н	(S) NH2 -CH-N-C- H CH ₂ OH CF ₃
2318	CICH ₂ -	1	2	0	R	н	(S) S C C C C C C C C C
2319	CICH ₂ -	2	2	1	-	н	(S) S CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N
2320	CHCH_2-	2	2	1	- -	н	(S) S - CH-N-C-N- H H H CH(CH ₃) ₂
2321	H₃CS-CH₂-	2	2	1	-	н	(S) S -CH-N-C-N- H H CH(CH ₃) ₂

Table 1.212

iable	1.212						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2322	CI CH2− CH2−	2	2	1	-	н	(S) S -CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
2323	H ₃ CS-{CH ₂	2	2	1	-	н	(S) S -CH-N-C-N- H H CH(CH ₃) ₂
2324	CICH _Z -	2	2	1	-	н	(S) PCF ₃ -CH-N-C H H CH ₃ H ₂ N
2325	CICH _Z -	1	2	0	R	н	(S) S -CH-N-C-N-C CH ₃
2326	CH-2	1	2	0	R	н	(S) S N-C-N-C-N-CH3
2327	H ₃ CS-CH ₂ -	1	2	0	R	н	(S) S CH ₃
2328	CICH ₂ -	1	2	0	S	н	(S)
2329	C├ ─ _CH ₂ -	1	2	0	S	н	(S) S CH ₃
2330	H ₃ CS—CH ₂ -	1	2	0	S	н	(S) N CH ₃ CH ₃
2331	CI—(CH ₂ -	1	2	0	S	н	$ \begin{array}{ccc} (S) & O & CF_3 \\ -CH_{1} & CF_{2} & CF_{3} \end{array} $ $ \begin{array}{cccc} CH_{3} & H_{2}N \end{array} $
2332						н	(S) P CI -CH-N-C C CI (CH ₂) ₂ SO ₂ CH ₃

Table 1.213

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
2333	CI—(CH₂-	1	2	0	R	Н	(S) P -CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2334	H₃CS-CH2-	1	2	0	S	н	(S) P CI -CH-N-C
2335	CL_CH ₂ -	1	2	0	S	Н	(S) P -CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
2336	CHCH_2-	1	2	0	s ·	н	(S) P -CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2337	H₃CS-CH ₂ -	1	2	0	S	н	(S) P -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2338	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N- H H H (CH ₂) ₂ CONH ₂
, 2339	CH-CH ₂ -	2	2	1	-	н	$(S) \qquad P \qquad $
2340	H₃CS-CH₂-	2	2	1	-	н	(S) P NH ₂ -CHN-C- H CH ₂) ₂ CONH ₂ CF ₃
2341	C├ - CH ₂ -	2	2	1	-	н	(S) P NH ₂ -CHN-C- H CH ₂ OH CF ₃
2342	H₃CS-(CH₂-	2	2	1	-	н	(S) P NH ₂ - CHN-C- CH ₂ - CH ₂ OH CF ₃
2343	CICH _Z -CH _Z -	2	2	1		н	$(S) \qquad \bigcap_{CH+N-C} CI$ $-CH+N-C- \longrightarrow CI$ $(CH2)2CONH2$

Table 1.214

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
2344	CH_CH2-	2	2	1	-	Н	(S) Q CI -CH-N-C C CI (CH ₂) ₂ CONH ₂
2345	CHCH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N- (CH ₂) ₂ CONH ₂
2346	CICH ₂ -	2	2	1	-	н	(S) P NH ₂ - CHN- C- CHN- C- CH ₃ (CH ₂) ₂ CONH ₂ CF ₃
2347	CL CH ₂ -	1	2	0	S	Н	(S) P -CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
2348	Cl—CH ₂ —	1	2	0	R	н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2349	F—CH ₂ -	1	2	0	R	н	(S) O CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2350	F—CH ₂ -	1	2	0	R	н	(S) Q -CH-N-C
2351	CH ₂ -	1	2	0	R	н .	(S) O CI -CH-N-C-CH-CI (CH ₂) ₂ SO ₂ CH ₃
	CICH ₂ -						•
2353	CICH ₂ -	2	2	1	-	н	(S) Q - CH-N-C-N-CH3
2354	CI CH2−	1	2	0	R	н	(S) PCI -CH N-C CI (CH ₂) ₂ SO ₂ CH ₃

Table 1.215

Compd. No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
2355	Cl C⊢CH₂-	1	2	0	R	н	(S) OC CI -CH-N-C (CH ₂) ₂ SO ₂ CH ₃
2356	CI CH2⁻	1	2	0	R	Н	(S) P CI -CH-N-C- (CH ₂) ₂ SO ₂ CH ₃ CI
2357	Ct CH₂-	1	2	0	R	н	(S) P -CH-N-C-S CI (CH ₂) ₂ SO ₂ CH ₃
2358	CI————————————————————————————————————	1	2	0	R	н	(S) CH ₃ CH ₃ CH ₂) ₂ SO ₂ CH ₃
2359	CI—CH ₂ —	1	2	0	R	H,	(S) P -CH-N-C-S (CH ₂) ₂ SO ₂ CH ₃
2360	CL CH ₂ -	1	2	0	R	н	(S) 0 -CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2361	CICH ₂ -	1	2	0	R	н	(S) O C O
2362	CICH ₂ -	1	2	0	R	Н	(S) O -CH-N-C-NOCH ₃ (CH ₂) ₂ SO ₂ CH ₃
	CL CH ₂ −						(S) PC -CH-N-C- CH ₃
2364	CH_{2} CH_{2} CH_{2}	2	2	1	-	н	(S) PC Ci
2365	CI————————————————————————————————————	2	2	1	-	н	(S) O CI -CH-N-C-C

Table 1.216

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
2366	CL_CH2-	2	2	1	<u>-</u>	н	(S) 0 -CH N-C-CH3 CH3
2367	CICH ₂ -	2	2	1	-	н	(S) O -CHN-C-(S) CH3
2368	CH ₂ —CH ₂ —	2	2	1	-	H	CH ₃
2369	CI_CH ₂ -	2	2	1	-	н	(S) P OCH ₃
2370	CHCH_2-	2	2	1	-	н	(S) CI -CH-N-C-CI CH ₃
2371	CL —CH ₂ -	2	2	1	-	н	CH ₃ CI
2372	CH ₂ -	2	2	1	-	H ,	CH3
	F—CH ₂ -					н	CH3 CH3
2374	CH ₂ -	2	2	1	-	н	(S) P CI
2375	F-CH ₂ -	2	2	1	-	Н	(S) P CI -CH-N-C-C CI CH ₃
2376	F CH₂-	2	2	1	-	н	(S) P CI -CHN-C-CI CH3

Table 1.217

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
2377	F-CH ₂ -	2	2	1	-	Н	(S) CI -CH-N-C-CI -CH ₃
2378	CH ₂ -	2	2	1	-	Н	(S) CI -CH-N-C-CI CH ₃
2379	CICH ₂ -	2	2	1	-	н	(S) P Br -CHN-C- Br CH ₃ H ₂ N
2380	CICH ₂ -	2	2	1	-	н	(S) O -CH-N-C- CH ₃ H ₂ N
2381	CICH ₂ -	2	2	1	-	Н	(S) O -CH-N-C- H H CH ₃ HO
2382	CH ₂ -CH ₂ -	. 2	2	1	-	н	(S) P -CH-N-C-OH CH ₃
2383	CICH ₂ -	2	2	1		н	(S) S -CH-N-C-N-CH ₂
2384	CI_CI CH ₂ -	1	2	0	R	н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
	ĊI—CH⁵–					Н	(S) CI -CH-N-C-CH-CI (CH ₂) ₂ SO ₂ CH ₃
2386	CI CH ₂ -	1	2	0	R	Н	(S) O CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2387	F-CH ₂ -	1	2	0	R	н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃

Table 1.218

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2388	F—CH ₂ -	1	2	0	R	н	(S) CI -CH-N-C
2389	CH ₂ -	1	2	0	R	н	$(S) \bigcap_{CH \in \mathcal{N}} CI$ $(CH_2)_2SO_2CH_3$
2390	CICH ₂ -	1	2	0	R	. н	(S) O NH2
2391	CL CH ₂ -CH ₂ -	1	2	0	R	. н	(S) O NH2 - CH N- C (CH ₂) ₂ SO ₂ CH ₃ CI
2392	CL CH ₂ -	1	2	0	R	н	(S) P NH2 -CHN-C- (CH ₂) ₂ SO ₂ CH ₃
2393	CL CH ₂ -	1 ·	2	0	R	н	(S) S - C ++ N- C - N- CH ₂
2394	CI—CH ₂ —	2	2	1	-	н	(S) CI -CH-N-C-CI (CH ₂) ₂ SCH ₃
2395	CICH2-	2	2	1	-	н .	(S) P CH -CH-N-C-CH ₂ Ph
	CICH ₂ -						(S) P CI -CH-N-C CI (CH ₂) ₄ NH ₂
2397	Ct CH2−	2	2	1		н	-ch H c-C
2398	CI	2	2	1		н ,	(S) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C

Table 1.219

Compd No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R ³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2399	CL CH ₂ -CH ₂ -	2	2	1	-	Н	(5) Q CI -CH-N-C-CI H ₂ C OCH ₂ Ph
2400	CI CH₂−	2	2	1	-	н	(S) O CI -CH N C CI H ₂ C OH
2401	CI	2	2	1	-	н	(5) OCI -CH-N-C H ₂ C -CI
2402	CI—CH ₂ —	2	2	1	-	н	(S) PCI CH-N-C-CI CH ₂ OH
2403	F-CH ₂ -	2	2	1	-	н	(S) P CI -CH-N-C- CI CH ₂ OH
2404	F CH ₂ -	2	2	1	-	н	(S) -CH-N-C-CH CH ₂ OH
2405	FCH ₂ -	2	2	1	-	н	(S) −CH+N-C− CH ₂ OH
2406	F_CH₂-	2	2	1	-	Н	(S) -CH-N-C-CI CH2OH
2407	CH ₂ -	2	2	1	-	Н	(S) P CI -CH-N-C C CI CH₂OH
2408	H ₃ CSO ₂ ————————————————————————————————————	2	2	1	-	н	(S) CI -CH-N-C-CI CH₂OH
2409	H₃CO₂C- ⟨ }-CH₂-	2	2	1	-	н	(S) PCI -CH-N-C-CI CH₂OH

Table 1.220

Compd.	R ² (CH ₂)j-	, k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G^-R^6$
2410	CICH ₂ -	2	2	1		н	(S) OCI -CH-N-C
2411	CICH ₂ -	2	2	1	-	н	(S) OCI CI -CH-N-C CI CH ₂ OH
2412	CICH2-	.2	2	1	-	. Н	(S) O -CHN-C- H H CH₂OH
2413	CICH ₂ -	2	2	1	-	н	(S) O -CH-N-C-N
2414	CICH ₂ -	2	2	1	-	н	(S) P -CH+N-C-S -CH ₂ OH
- 2415	CICH ₂ -	2	2	1	. · -	н	(S) S OCH ₃ -CH-N-C-N-CH ₃ CH ₃
2416	CICH ₂ -	2	2	1	-	н	(S) S
2417	CICH ₂ -	2	2	Ì	-	н	(S) S CH ₃ CH ₃ CH ₃ CH ₃
							(S) S CH ₃ CH ₃
2419	CICH ₂ -	2	2	1	-	• н	(S) S CI -CHN-C-N-CI CH3
2420	CI CI—CH₂-	2	2	1	-	Н	(S) S CH ₃ CH ₃

Table 1.221

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	ー(CH ₂) _p
2421	CH ₂ -	2	2	1	-	н	(S)
2422	CH ₂ —CH ₂ —	1	2	0	R	Н	(S) S OCH ₃ -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2423	CL CH2-CH2-	1	2	0	R	Н	(S) S $-CHNC-N-C-N-C-N_3$ $(CH_2)_2SO_2CH_3$
2424	CI—CH ₂ —	1	2	0	R	н	(S) S CH ₃ -CH-N-C-N-CH ₃ (CH ₂) ₂ SO ₂ CH ₃
2425	CI CI—CH₂-	1	2	0	R	н	(S) S -CH-N-C-N-C-H ₃ (CH ₂) ₂ SO ₂ CH ₃
2426	CL CH ₂ -	1	2	0	R	Н	(S) S CI -CHN-C-N-C (CH ₂) ₂ SO ₂ CH ₃
2427	CI—CH ₂ -	1	2	0	R	н	(S) S -C+N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
2428	CI—CH ₂ -	1	2	0	R	н	(S) S - C + N - C - N - C - F (CH ₂) ₂ SO ₂ CH ₃

本発明においては、環状アミン化合物の酸付加体も用いられる。かかる酸として、例えば塩酸、臭化水素酸、硫酸、リン酸、炭酸などの鉱酸;マレイン酸、クエン酸、リンゴ酸、酒石酸、フマル酸、メタンスルホン酸、トリフルオロ酢酸、蟻酸などの有機酸が挙げられる。

うちらに、本発明においては、例えばヨウ化1-(4-クロロベンジル)-1-メチルー4- [$\{N-(3-h)$ フルオロメチルベンゾイル)グリシル} アミノメチル] ピペリジニウムのような、環状アミン化合物の C_1-C_6 アルキル付加体も用いられる。ここで、アルキル基としては、例えばメチル、エチル、n-プロピル、n-プチル、n-ペンチル、n-ペンチル、n-ペンチル、n-ペンチル、n-ペンチル、n-ペンチル、n-ペンチル、n-ペンチル、n-ペンチル、n-ペンチル、イソプロピル、イソプチル、n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n-ペン・n

本発明においては、上記式 (I)で表される化合物のラセミ体、および可能なすべての光学活性体も用いることができる。

上記式(I)で表される化合物は、国際公開WO9925686号パンフレット に記載されているように、下記に示すいずれかの一般的な製造法を用いることによ り合成可能である。

(製造法1)

20

下記式(II)

[式中、 R^1 、 R^2 、 R^3 、j、k、m、およびnは、上記式(I)におけるそれぞれ の定義と同じである。]

で表される化合物1当量と、下記式(III)

242

$$HO-C-(CH_2)_p \xrightarrow{R^4} (CH_2)_q - G-R^6$$
 (III)

5

10

[式中、 R^4 、 R^5 、 R^6 、G、p、およびqは、上記式 (I) におけるそれぞれの定義と同じである。]

で表されるカルボン酸、またはその反応性誘導体の0.1-10当量を無溶媒下、 または溶媒存在下に反応させることによる製造方法。

上記式(III)で表されるカルボン酸の「反応性誘導体」とは、例えば酸ハロゲン 化物、酸無水物、混合酸無水物などの合成有機化学分野において通常使用される反 応性の高いカルボン酸誘導体を意味する。

かかる反応は、適当量のモレキュラーシーブなどの脱水剤;ジシクロヘキシルカ 15 ルボジイミド(DCC)、N-エチル-N'-(3-ジメチルアミノプロピル)カ ルボジイミド(EDCIまたはWSC)、カルボニルジイミダゾール(CDI)、 N-ヒドロキシサクシンイミド(HOSu)、N-ヒドロキシベンゾトリアゾール (HOBt)、ベンゾトリアゾール-1-イルオキシトリス(ピロリジノール) ホ スホニウム ヘキサフルオロホスフェート(PyBOP)、2-(1H-ベンゾト20 リアゾールー1-1イル)-1,1,3,3-テトラメチルウロニウム ヘキサフ ルオロホスフェート (HBTU)、2-(1H-ベンゾトリアゾール-1-イル) -1, 1, 3, 3-テトラメチルウロニウム テトラフルオロボレート (TBTU)、2-(5-)ルボルネン-2, 3-ジカルボキシイミド) -1, 1, 3, 3-テトラメチルウロニウム テトラフルオロボレート (TNTU)、O-(N-サク)25 シニミジル)-1,1,3,3-テトラメチルウロニウム テトラフルオロボレー ト(TSTU)、ブロモトリス(ピロリジノ)ホスホニウム ヘキサフルオロホス フェート (PyBroP) などの縮合剤;炭酸カリウム、炭酸カルシウム、炭酸水 素ナトリウムなどの無機塩基、トリエチルアミン、ジイソプロピルエチルアミン、 ピリジンなどのアミン類、(ピペリジノメチル)ポリスチレン、(モルホリノメチ ル) ポリスチレン、(ジメチルアミノメチル)ポリスチレン、ポリ(4 - ビニルピ 30 リジン)などの高分子支持塩基などの塩基を適宜用いることにより、より円滑に進

行させることができる。

(製造法2)

下記式 (IV)

5

$$\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j} - X
\end{array}$$
(IV)

で表されるアルキル化試薬1当量と、下記式(V)

15

$$\begin{array}{c} (C H_2)_k \\ H N \\ (C H_2)_m \end{array} - (C H_2)_n - N - C - (C H_2)_p - R^4 \\ R^3 \\ (C H_2)_m \\ \end{array} (C H_2)_q - G - R^6$$
 (V)

20 [式中、R³、R⁴、R⁵、R⁶、G、k、m、n、p、およびqは、上記式 (I) に おけるそれぞれの定義と同じである。]

で表される化合物 0.1-10 当量を無溶媒下、または溶媒存在下に反応させることによる製造方法。

かかる反応は、上記製造法 1 と同様の塩基を適宜用いることにより、より円滑に 25 に進行させることができる。さらに、本製造方法において、ヨウ化カリウム、ヨウ 化ナトリウムなどのヨウ化物を共存させることにより、反応を促進できる場合があ る。

上記式(IV)において、Xはハロゲン原子、アルキルスルホニルオキシ基、アリールスルホニルオキシ基を表す。かかるハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子が好ましく挙げられる。アルキルスルホニルオキシ基の好適な具体例としては、メチルスルホニルオキシ基、トリフルオロメチルスルホニルオキシ基

2 4 4

などが挙げられる。アリールスルホニルオキシ基の好適な具体例としては、トシル オキシ基を挙げることができる。

(製造法3)

下記式 (VI)

5

$$R^1$$
 \rightarrow
 $(CH_2)_{j-1}$
 \rightarrow
 (VI)

10

. 25

[式中、 R^1 および R^2 は、上記式 (I) におけるそれぞれの定義と同じであり、 j は 1 または 2 を表す。]

または、下記式 (VII)

15
$$R^{1}$$
 – CHO (VII)

[式中、 R^1 は、上記式(I)における R^1 の定義と同じであり、jは0を表す場合に相当する。]

で表されるアルデヒド1当量と、上記式 (V) で表される化合物 0. 1-10 当量 20 を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

かかる反応は、一般に還元的アミノ化反応と呼ばれ、還元条件としては、パラジウム、白金、ニッケル、ロジウムなど金属を含む触媒を用いる接触水素添加反応、水素化リチウムアルミニウム、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウムなどの複合水素化物およびボランを用いる水素化反応、または電解還元反応などを用いることができる。

2 4 5

(製造法4)

下記式 (VIII)

[式中、R¹、R²、R³、R⁴、R⁵、R¹、j、k、m、n、p、およびqは、上記 10 式(I)におけるそれぞれの定義と同じである。]

で表される化合物1当量と、下記式(IX)

$$HO-\dot{A}-R^6$$
 (IX)

15 [式中、 R^6 は、上記式(I)における R^6 の定義と同じであり、Aはカルボニル基 またはスルホニル基を表す。]

で表されるカルボン酸またはスルホン酸、またはそれらの反応性誘導体 0. 1-1 0当量を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

上記式(IX)で表されるカルボン酸またはスルホン酸の反応性誘導体とは、例え 20 ば酸ハロゲン化物、酸無水物、混合酸無水物などの、合成有機化学分野で一般に使 用される反応性の高いカルボン酸またはスルホン酸誘導体を意味する。

かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いる ことにより、より円滑に進行させることができる。

(製造法5)

25 上記式 (VIII) で表される化合物 1 当量と、下記式 (X)

$$Z = C = N - R^{6} \tag{X}$$

 [式中、R⁶は上記式(I)におけるR⁶の定義と同じであり、Zは酸素原子または

 30 硫黄原子を表す。]

で表されるイソシアネートまたはイソチオシアネート0.1-10当量を、無溶媒

25

30

下または溶媒存在下に反応させることによる製造方法。

(製造法6)

下記式 (XI)

10 [式中、R¹、R²、R³、R⁴、R⁵、j、k、m、n、p、およびqは、上記式(I) におけるそれぞれの定義と同じであり、Aはカルボニル基またはスルホニル基を表す。]

で表される化合物1当量と、下記式 (XII)

$$R^6 - NH_2 \qquad (XII)$$

[式中、 R^6 は、上記式(I)における R^6 の定義と同じである。]

で表されるアミン0.1-10当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

20 かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いることにより、より円滑に進行させることができる。

上記製造法1-6において、各反応に供する基質が、一般に有機合成化学において各反応条件において反応するか、あるいは反応に悪影響を及ぼすことが考えられる置換基を有する場合には、その官能基を既知の適当な保護基で保護して反応に供した後、従来既知の方法を用いて脱保護することにより、目的の化合物を得ることができる。

さらに、本発明で用いられる化合物は、例えばアルキル化反応、アシル化反応、 還元反応などの、一般に有機合成化学において使用される既知の反応を用いて、上 記製造法6により製造される化合物の(単数または複数の)置換基をさらに変換す ることによっても得ることができる。

上記各製造法において、反応溶媒としてはジクロロメタン、クロロホルムなどの

247

ハロゲン化炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、ジエチルエーテル、テトラヒドロフランなどのエーテル類、酢酸エチルなどのエステル類、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどの非プロトン性極性溶媒、メタノール、エタノール、イソプロピルアルコールなどのアルコール類などが反応に応じて適宜用いられる。

いずれの製造方法においても、反応温度は-78°Cから+150°C、好ましくは0°Cから100°Cの範囲である。反応完了後、通常の単離、精製操作、すなわち濃縮、濾過、抽出、固相抽出、再結晶、クロマトグラフィーなどを行うことにより、目的とする上記式(I)で表される環状アミン化合物を単離することができる。また、それらは通常の方法により、薬学的に許容される酸付加体または C_1-C_6 アルキル付加体に変換することができる。

実施例

5

10

本発明を以下、実施例に基づいて説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。以下の実施例において各化合物に付された化合物番号は、Table1.1-1.221において好適な具体例として挙げた化合物に付された化合物番号(Compd.No.)と対応している。

- (3,4-ジフルオロベンゾイル)グリシル}アミノ]ピロリジンは以下のよう

に合成した。

25

30

1) 3-アミノー1-(4-クロロベンジル)ピロリジン・二塩酸塩

結晶 $(CH_3CN, 50mL)$ により目的とする3 - $\{(tert-プトキシカルボ$

25

30

 $^{1}H-NMR$ (CDC1₃, 300MH₂) δ

1.37 (s, 9 H), 1.5-1.7 (br, 1 H), 2.1-2.4 (m, 2 H), 2.5-2.7 (m, 2 H), 2.83
5 (br, 1 H), 3.57 (s, 2 H), 4.1-4.3 (br, 1 H), 4.9-5.1 (br, 1 H), 7.15-7.35 (br, 4 H); 純度はRPLC/MSで求めた(9 8%); ESI/MS m/e 3 1 1.0 (M++H、C₁₆H₂₄ClN₂O₂)

 $3-\{(tert-プトキシカルボニル) アミノ\}-1-(4-クロロベンジル) ピロリジン(6.38g、20.5mmol)の<math>CH_3OH(80mL)$ 溶液に1

M HC1-Et₂O (100mL) を加え、25℃で15時間攪拌した。溶媒を減圧下に除去し、固体を得、再結晶 (CH₃OH/CH₃CN=1:2、130mL)で精製することにより、3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩 (4.939g、85%)を白色粉末として得た:

 $^{1}H-NMR$ ($d_{6}-DMSO$, 300MHz) δ

15 3.15 (br, 1 H), 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H), 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H), 8.45 (br, 1 H), 8.60 (br, 1 H); 純度はRPLC/MSで求めた(>99%); ESI/MS m/e 211. 0 (M+H, C₁₁H₁₆ClN₂)

光学活性 (R) -3-アミノ-1-(4-クロロベンジル) ピロリジン・二塩酸 塩と (S) -3-アミノ-1-(4-クロロベンジル) ピロジジン・二塩酸塩を、それぞれ対応する原料を用いて上記の方法により合成した。生成物は、上記ラセミ 体と同じ ^1H-NMR を示した。

(R) -3-Tミノ-1-(4-Dロロベンジル)ピロリジン・二塩酸塩(4.54g、16.0mmol)、2M NaOH溶液(80mL)、および酢酸エチル(80mL)の混合物を攪拌し、有機層を分離し、水層を酢酸エチル(80mL×2)で抽出した。有機層を合わせて無水硫酸ナトリウムで乾燥、濾過、濃縮することにより遊離の(R) -3-Tミノ-1-(4-Dロロベンジル)ピロリジン(3.35g、99%)を得た。

- (R) -3-アミノー1-(4-クロロベンジル)ピロリジン(3.35g、16mmol)のCH₂Cl₂(80mL)溶液に、Et₃N(2.5mL、17.6mmol)、N-tert-プトキシカルボニルグリシン(2.79g、16.0mmol)、EDCI(3.07g、16.0mmol)およびHOBt(12.16g、16mmol)を加えた。反応混合物を25℃で16時間攪拌した後、2MNaOH溶液(80mL)を加えた。有機層を分離し、水層をジクロロメタンで抽出した(100mL×3)。有機層を合わせて水(100mL×2)と食塩水(100mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO₂、酢酸エチル)により、目的とする(R) -3-{N-(10tert-プトキシカルボニル)グリシル}アミノー1-(4-クロロベンジル)ピロリジン(5.40g、92%)を得た。
 - 3) (R) -1-(4-クロロベンジル) -3-(グリシルアミノ) ピロリジンの 合成
- 15 (4-クロロベンジル) ピロリジン (5.39g、14.7mmol) のメタノー ル(60mL)溶液に、4M HClジオキサン(38mL)溶液を加えた。この 溶液を室温で2時間攪拌した。反応混合物を濃縮し、2M NaOH溶液(80m L)を加えた。混合液をジクロロメタン(80mL×3)で抽出し、抽出液を合わ 20 せて無水硫酸ナトリウムで乾燥、濃縮した。カラムクロマトグラフィー(SiO。、 AcOEt/EtOH/Et₃N=90/5/5) により、(R) -3-(719)アミノ) -1-(4-クロロベンジル) ピロリジン(3.374g、86%)を得 $t: ^{1}H-NMR (CDC1_3, 270MHz) δ$ 1.77 (dd, J = 1.3および6.9 Hz, 1 H), 2.20-3.39 (m, 2 H), 2.53 (dd, J = 3.3 25 および9.6 Hz, 1 H), 2.62 (dd, J = 6.6および9.6 Hz, 1 H), 2.78-2.87 (m, 1 H) , 3. 31 (s, 2 H), 3. 57 (s, 2 H), 4. 38-4. 53 (br, 1 H), 7. 18-7. 32 (m, 4 H), 7. 3 9 (br. s. 1 H)
- 4) (R) -1-(4-クロロベンジル) -3-[{N-(3, 4-ジフルオロベ 30 ンゾイル) グリシル アミノ] ピロリジン (化合物番号 69)
 - 3, 4-ジフルオロベンゾイルクロリド(0.060mmol)のクロロホルム

溶液 (0.4mL) を、(R) -1-(4-クロロベンジル) -3-(グリシルアミノ) ピロリジン (0.050mmol) とトリエチルアミン (0.070mmol) のクロロホルム (1.0mL) 溶液に加えた。この反応混合物を室温で2.5時間攪拌した後、(アミノメチル) ポリスチレン樹脂 (1.04mmol/g、50mg、50mmol) を加え、混合物を室温で12時間攪拌した。反応混合物を濾過し、樹脂をジクロロメタン (0.5mL) で洗浄した。濾液と洗液とを合わせ、ジクロロメタン (4mL) を加え、溶液を2M NaOH水溶液 (0.5mL)にて洗浄し、濃縮することにより、(R) -1-(4-クロロベンジル) -3-[{N-(3,4-ジフルオロベンゾイル) グリシル} アミノ] ピロリジン (化合物番号69) を得た (7.8mg、38%):純度はRPLC/MSで求めた (>99%); ESI/MS m/e 408.0 (M*+H、C20H20C1F2N3O2)

[実施例1] <u>エオタキシンにより惹起されるCCR3発現細胞の細胞内カルシウム</u> 濃度上昇に対する被験化合物の阻害能の測定

15 CCR3レセプターを安定して発現するK562細胞を用いて、細胞内カルシウム濃度上昇に対する本発明による化合物の阻害能を次の方法にて測定した。

CCR3発現K562細胞を $10\,\text{mM}$ HEPES含有HBSS溶液に懸濁した ものに $1\,\text{mM}$ Fura $2\,\text{アセトキシメチルエステル}$ (同仁化学社製)を加え、 $3\,\text{7}$ でにて $3\,\text{0}$ 分間インキュベートした。これを $3\,\text{4}\,\text{0}$ nmと $3\,\text{8}\,\text{0}$ nmで励起し、

20 340/380比をモニターすることにより、細胞内カルシウム濃度を測定した。 アゴニストとしてヒトエオタキシン(0.5 μ g/ml)を用い、被験化合物の阻 害能はエオタキシンで刺激する5分前にCCR3発現K562細胞を被験化合物で 処理したときの細胞内カルシウム濃度を測定し、下記の式により抑制率(%)を算出した。

25

30

5

10

抑制率 (%) = $\{1 - (A - B) / (C - B)\} \times 100$

(A:被験化合物で処理した後エオタキシンで刺激したときの細胞内カルシウム濃度、B:無刺激のときの細胞内カルシウム濃度、C:被験化合物で処理せずにエオタキシンで刺激したときの細胞内カルシウム濃度)

本発明で用いる環状アミン誘導体の阻害能を測定したところ、例えば、下記の化

WO 01/10439 PCT/JP00/05260

251

合物は、 $10 \mu M$ の濃度おいて、それぞれ20-50%、50%-80%、および、>80%の阻害能を示した。

 $10 \mu M$ の濃度において 20 % - 50 %の阻害能を示した化合物:

化合物番号11、156、234、330、392、424、481、523、5 25, 533, 558, 567, 582, 602, 613, 630, 646, 64 5 9, 701, 738, 741, 754, 767, 814, 816, 833, 839 . 873, 902, 909, 945, 1002, 1159, 1170, 1258, 1315, 1352, 1357, 1407, 1417, 1448, 1472, 15 04, 1508, 1531, 1558, 1562, 1569, 1661, 1670 10 . 1686, 1719, 1751, 1756, 1769, 1775, 1783, 1 797, 1802, 1803, 1815, 1834, 1841, 1846, 188 3, 1887, 1889, 1892, 1913, 1924, 1928, 1960, 2006, 2013, 2035, 2052, 2083, 2113, 2127, 21 36, 2189, 2320, 2321, 2323, 2327, 2330, 2334 15 , 2336, 2338, 2345, 2394, 2394, 2398, 2398, 2 400, 2400, 2406, 2406, 2407, 2407, 2409, 240 9, 2420, 2420, 2421, 2421

 10μ Mの濃度において50%-80%の阻害能を示した化合物:

化合物番号 8 3 、 1 1 5 、 1 4 6 、 1 5 0 、 2 1 6 、 2 9 4 、 2 9 7 、 3 2 2 、 4 20 05, 440, 459, 461, 466, 482, 484, 487, 490, 49 2, 503, 526, 528, 550, 562, 570, 578, 620, 623 . 659, 685, 687, 703, 716, 730, 733, 755, 770, 850, 856, 867, 876, 998, 1015, 1024, 1223, 12 59, 1267, 1295, 1377, 1402, 1412, 1420, 1485 25 , 1519, 1550, 1560, 1595, 1601, 1650, 1701, 1 725, 1754, 1836, 1856, 1870, 1912, 1923, 192 9, 2095, 2120, 2138, 2179, 2258, 2260, 2261, 2267, 2268, 2270, 2275, 2276, 2278, 2287, 22 90, 2291, 2294, 2297, 2300, 2301, 2302, 2307 30 . 2309, 2313, 2317, 2322, 2324, 2326, 2328, 2 329, 2333, 2335, 2343, 2344, 2346, 2347, 234 329, 2333, 2335, 2343, 2344, 2346, 2347, 234 8, 2350, 2351, 2353, 2358, 2360, 2361, 2364, 2365, 2368, 2369, 2377, 2379, 2381, 2402, 24 03, 2404, 2405, 2408, 2410, 2411, 2416, 2417, 2418

10μMの濃度において>80%の阻害能を示した化合物:

5

化合物番号7、32、68、169、173、203、209、215、520、544、547、851、852、855、874、910、1003、1012、1032、1038、1042、1043、1046、1114、1190、1

244、1247、1384、1441、1513、1527、1545、1582、1673、1687、1689、1705、1850、1869、1871、1876、1877、1899、2027、2289、2293、2296、2298、2315、2318、2319、2325、2332、2349、2352、2354、2355、2356、2357、2359、2362、2363、2354、2356、2370、2371、2372、2373、2374、2375、2376、2378、2382、2383、2390、2393、2396、2412、2413、2414、2415、2422、2423、2424、2425、2426、2427、2428

- 20 [実施例2] <u>CCR3発現細胞膜画分へのエオタキシンの結合に対する阻害能の測定</u> ヒトCCR3発現K562細胞より調製した細胞膜画分を0.5mg/mLになるようにアッセイバッファー (25mM HEPES、pH7.6、1mM Ca Cl₂、5mM MgCl₂、0.5%BSA) に懸濁し膜画分懸濁液とした。被験化合物をアッセイバッファーで希釈した溶液を被験化合物溶液とした。 [¹²⁵I] 標25 識ヒトエオタキシン(アマシャム社製)を1μCi/mLになるようにアッセイバッファーで希釈した溶液を標識リガンド溶液とした。0.5%BSAで被覆した96ウェルマイクロプレートに、1ウェルあたり被験化合物溶液25μL、標識リガンド溶液25μL、膜画分懸濁液50μLの順番に分注し撹拌後(反応溶液100μL)、25℃で90分インキュベートした。
- 30 反応終了後、あらかじめ0.5%ポリエチレンイミン溶液にフィルターを浸漬した96ウェルフィルタープレート(ミリポア社製)で反応液をフィルター濾過し、フィ

WO 01/10439 PCT/JP00/05260

253

ルターを冷洗浄バッファー(アッセイバッファー+0.5M NaCl) 150μL で4回洗浄した(冷洗浄バッファー150μLを加えた後、濾過)。フィルターを風乾後、液体シンチレーターを1ウェルあたり25μLずつ加え、フィルター上の膜画分が保持する放射能をトップカウント(パッカード社製)にて測定した。

5 被験化合物の代わりに非標識ヒトエオタキシン100ngを添加したときのカウントを非特異的吸着として差し引き、被験化合物を何も添加しないときのカウントを100%として、ヒトエオタキシンのCCR3膜画分への結合に対する被験化合物の阻害能を算出した。

10 阻害率 (%) = $\{1 - (A - B) / (C - B)\} \times 100$

(A:被験化合物添加時のカウント、B:非標識ヒトエオタキシン100ng添加時のカウント、C: [125 I] 標識ヒトエオタキシンのみ添加したときのカウント) 本発明で用いる環状アミン誘導体の阻害能を測定したところ、本実施例における代表的な化合物の阻害能は、実施例1で認められた阻害能とほぼ同等であった。

産業上の利用可能性

15

20

25

本発明の環状アミン化合物、その薬学的に許容される酸付加体、またはその薬学的に許容されるC₁-C₆アルキル付加体を有効成分とする薬剤、もしくはCCR3が関与する疾患の治療薬もしくは予防薬は、CCR3拮抗剤として、エオタキシンなどのCCR3のリガンドの標的細胞に対する作用を抑制する作用を有する。したがって、これらは気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、ならびに潰瘍性大腸炎およびクローン病などの炎症性腸疾患など、好酸球、好塩基球、活性化T細胞などの組織への浸潤が病気の進行、維持に主要な役割を演じている疾患に対する治療薬および/または予防薬として有用である。また、CCR3拮抗作用に基づくHIV-1の感染を阻害する作用により、エイズの治療薬および/または治療薬としても有用である。

請求の範囲

1. 下記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3拮抗 作用を有する薬剤。

$$\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j} - N \\
 \downarrow (CH_{2})_{m}
\end{array}$$

$$\begin{array}{c}
CH_{2} \\
 \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} - H_{2} \\
 \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(1)

[式中、 R^1 はフェニル基、 $C_3 - C_8$ シクロアルキル基、またはヘテロ原子として酸 素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を 15 表し、上記R¹におけるフェニル基または芳香族複素環基は、ベンゼン環、またはヘ テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する 芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R1におけるフ ェニル基、C₃-C₈シクロアルキル基、芳香族複素環基、または縮合環は、任意個 のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモ イル基、C₁-C₆アルキル基、C₃-C₈シクロアルキル基、C₂-C₆アルケニル基 20 、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_3 - C_5$ アルキレン基、 C_5 $-C_4$ アルキレンオキシ基、 C_1-C_3 アルキレンジオキシ基、フェニル基、フェノキ シ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、C。 -C₇アルカノイル基、C₂-C₇アルコキカルボニル基、C₂-C₇アルカノイルオ キシ基、C2-C7アルカノイルアミノ基、C2-C7N-アルキルカルバモイル基、 25 $C_4 - C_9 N$ -シクロアルキルカルバモイル基、 $C_1 - C_6$ アルキルスルホニル基、 C_1 $_3-C_8$ (アルコキシカルボニル)メチル基、N-フェニルカルバモイル基、ピペリ ジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカルボニル基、式 :-NH(C=O)O-で表される2価基、式:-NH(C=S)O-で表される 2価基、アミノ基、モノ($C_1 - C_6$ アルキル)アミノ基、もしくはジ($C_1 - C_6$ ア 30 ルキル)アミノ基で置換されていてもよく、これらのフェニル基、C3-C8シクロ

PCT/JP00/05260

アルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 - C_6$ アルキル基、もしくは $C_1 - C_6$ アルコキシ基によって置換されていてもよい。

255

 R^2 は、水素原子、 C_1-C_6 アルキル基、 C_2-C_7 アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、 R^2 における C_1-C_6 アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい。ただし、j=0 のときは R^2 はヒドロキシ基ではない。

jは0-2の整数を表す。

10 kは0-2の整数を表す。

mは2-4の整数を表す。

nは0または1を表す。

 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

 R^4 および R^5 は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、または C_1-C_6 アルキル基を表し、 R^4 および R^5 における C_1-C_6 アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カ20 ルバモイル基、メルカプト基、グアニジノ基、 C_3-C_8 シクロアルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジルオキシカルボニル 基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコイルボニル 基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 Nーアルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、もしくは(ヘテロ原

複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換され 30 ていてもよく、あるいは、R⁴およびR⁵は、いっしょになって3-6 員環状炭化水 素を形成していてもよい。

子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族

WO 01/10439 PCT/JP00/05260

pは0または1を表す。

qは0または1を表す。

Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-N$ R^7- 、-NH-CO-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 といっしょになって C_2-C_5 アルキレン基を形成していてもよい。

 R^6 は、フェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_6$ シクロアルケニル基 、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒 10 素原子を1-3個有する芳香族複素環基を表し、上記R⁶におけるフェニル基、ベン ジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子 、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合し て縮合環を形成していてもよく、さらに上記R⁶におけるフェニル基、C₃-C₈シク ロアルキル基、C₃-C₆シクロアルケニル基、ベンジル基、芳香族複素環基、また は縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニ 15 トロ基、チオシアナト基、カルボキシル基、カルバモイル基、トリフルオロメチル 基、C,-C,アルキル基、C3-C8シクロアルキル基、C3-C6アルケニル基、C $_1$ -C₆アルコキシ基、C₃-C₈シクロアルキルオキシ基、C₁-C₆アルキルチオ基 、C₁-C₃アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基 、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、 20 3-フェニルウレイド基、C₂-C₁アルカノイル基、C₂-C₁アルコキシカルボニ ル基、C2-C7アルカノイルオキシ基、C2-C7アルカノイルアミノ基、C2-C7 N-アルキルカルバモイル基、C₁-C₆アルキルスルホニル基、フェニルカルバモ イル基、N, N-ジ (C_1-C_6 アルキル) スルファモイル基、アミノ基、モノ (C_1 25 - C₆アルキル)アミノ基、ジ(C₁-C₆アルキル)アミノ基、ベンジルアミノ基、 $C_2 - C_7$ (アルコキシカルボニル) アミノ基、 $C_1 - C_6$ (アルキルスルホニル) ア ミノ基、もしくは、ビス($C_1 - C_6$ アルキルスルホニル)アミノ基により置換され ていてもよく、これらのフェニル基、C3-C8シクロアルキル基、C3-C8シクロ アルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任 30 意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基 、 $C_1 - C_6$ アルキル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、モノ(

 $C_1 - C_6$ アルキル)アミノ基、もしくはジ($C_1 - C_6$ アルキル)アミノ基によって 置換されていてもよい。]

- 2. 上記式(I) においてk=1かつm=2である、請求項1記載のCCR3拮5. 抗作用を有する薬剤。
 - 3. 上記式(I) においてk=0かつm=3である、請求項1記載のCCR3拮抗作用を有する薬剤。
- 4. 上記式(I) においてk=1かつm=3である、請求項1記載のCCR3拮 抗作用を有する薬剤。
 - 5. 上記式(I)においてk=2かつm=2である、請求項1記載のCCR3拮抗作用を有する薬剤。

15

- 6. 上記式 (I) においてk=1かつm=4である、請求項1記載のCCR3拮抗作用を有する薬剤。
- 7. 上記式 (I) で表される化合物、その薬学的に許容される酸付加体、または 20 その薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3が関与する疾患の治療薬もしくは予防薬。

٠,٠

- 8. 疾患がアレルギー性疾患である請求項7記載の治療薬もしくは予防薬。
- 25 9. 疾患が気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、またはアレルギー性結膜炎である請求項8記載の治療薬もしくは予防薬。
 - 10. 疾患が炎症性腸疾患である請求項7記載の治療薬もしくは予防薬。
- 30 11. 疾患がエイズである請求項7記載の治療薬もしくは予防薬。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/05260

A. CLAS	SIFICATION OF SUBJECT MATTER					
Int	Cl' A61K31/40, 4025, 445, 4468 4	525, 4535, 454, 422, 404, 4155	4245 5377 4545			
C071						
	C07D207/14, 211/56, 58, 26, 401/04, 06, 12, 14, 403/06, 12, 405/06, 12, 14, 409/12, 14, 413/06, 14, 417/06, 487/04, 495/06, 04, 513/04 According to International Patent Classification (IPC) or to both national classification and IPC					
According	to International Patent Classification (IPC) or to both	national classification and IPC				
	S SEARCHED					
Int.	ocumentation searched (classification system follow	ed by classification symbols)				
4709		525, 4535, 454, 422, 404, 4155, 29, 53, A61P37/08, 29/00, 31/1				
			2, 14, 409/12, 14,			
	06. 14, 417/06, 487/04, 495/06, 04, tion searched other than minimum documentation to					
	bearing and the second and the secon	die extent mat such documents are included	in the fields searched			
Electronic o	lata base consulted during the international search (no	ome of data been and sub-security 11				
REG:	(STRY(STN), CA(STN), CAOLD(STN), C	APLUS (STN)	irch terms used)			
		•				
C DOCU	MENTO CONGINERED TO THE PARTY.					
	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.			
X A	WO, 99/25686, A1 (TEIJIN LIMI	TED),	1-10			
•	27 May, 1999 (27.05.99) & EP, 1030840, Al & AU, 991	3741 3	11			
	& NO, 2000002486, A	3/41, A				
Х	EP, 217286, A1 (OKAMOTO SHOSUI	Œ),	1,5,7-10			
A	08 April, 1987 (08.04.87),		2-4,6,11			
	Compound No. 42					
	& JP, 63-022061, A & US, 489 & AU, 8663051, A & CA, 129	5842, A				
	- 110, 0003031, A & CA, 123	7633, A				
X	WO, 98/50534, A1 (SMITHKLINE E	BEECHAM CORPORATION).	1,2,5			
A	12 November, 1998 (12.11.98)		3,4,6-11			
	& EP, 991753, A1 & AU, 9877 & BR, 9808502, A & ZA, 9803	2885, A				
	w bk, 5000502, A & ZA, 980.	3843, A				
Х	GB, 2106108, A (JOHN WYETH AND	BROTHER LIMITED)	1,5			
A	07 April, 1983 (07.04.83)		2-4,6-11			
1	& US, 4443461, A	1	5 1,0 11			
х	WO 97/400E1 31 (TAKED) OVER					
A	WO, 97/40051, A1 (TAKEDA CHEMI 30 October, 1997 (30.10.97)	CAL INDUSTRIES, LTD.),	1,5			
∑ Further	documents are listed in the continuation of Box C.		2-4,6-11			
		See patent family annex.				
* Special 'A" docume	categories of cited documents: It defining the general state of the art which is not	"T" later document published after the intern	national filing date or			
consider	ed to be of particular relevance	priority date and not in conflict with the understand the principle or theory under	application but cited to			
E" earlier d date	ocument but published on or after the international filing	A document of particular relevance; the cl	aimed invention cannot be			
L" docume	at which may throw doubts on priority claim(s) or which is	considered novel or cannot be considere step when the document is taken alone	ed to involve an inventive			
cited to	establish the publication date of another citation or other eason (as specified)	"Y" document of particular relevance: the ch	airned invention cannot be			
O" docume	at referring to an oral disclosure, use, exhibition or other	considered to involve an inventive step combined with one or more other such d	when the document is			
means	t published prior to the international filing date but later	combination being obvious to a person s	killed in the art			
than the priority date claimed "&" document member of the same patent family						
Date of the ac	tual completion of the international search	Date of mailing of the international search	report			
31 0	ctober, 2000 (31.10.00)	07 November, 2000 (07	7.11.00)			
lame and mailing address of the ISA/ Authorized officer						
Japanese Patent Office						
acsimile No.		m to the second				
		Telephone No.				
rm PCT/IS	A/210 (second sheet) (July 1992)					

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/05260

ategory*	Citation of document, with indication, where appropriate, of the releva	ant passages	Relevant to claim No
	& JP, 10-226669, A & EP, 915888, A1 & CA, 2251625, A & AU, 9724048, A & ZA, 9703493, A & CN, 1223659, A		
X A	KHALID, M. et al., "N,N'-disubstituted L-iso as novel cancer chemotherapeutic agents", Drugs Res. (1987), Vol.13, Suppl. 1, p.57-60	glutamines Exp.Clin.	1,5 2-4,6-11
PX PA	WO, 00/31032, A1 (F.HOFFMANN-LA ROCHE AG), 02 June, 2000 (02.06.00) & DE, 19955794, A & GB, 2343893, A & FR, 2786185, A		1,2,7-11 3-6
	·		

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

国際出願番号 PCT/JP00/05260

A. 発明の属する分野の分類(国際特許分類、(IPC)) Int. Cl ⁷ A61K31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 404, 4155, 4245, 5377, 4545, 4709, 4184, 427, 506, 433, 423, 4192, 429, 53, A61P37/08, 29/00, 31/18, 11/08, 43/00 //, CU7D2U7/14, 211/56, 58, 26, 401/04, 06, 12, 14, 403/06, 12, 405/06, 12, 14, 409/12, 14, 413/06, 14, 417/06, 487/04, 495/06, 04, 513/04					
B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl ⁷ A61K31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 404, 4155, 4245, 5377, 4545, 4709, 4184, 427, 506, 433, 423, 4192, 429, 53, A61P37/08, 29/00, 31/18, 11/08, 43/00 // C07D207/14, 211/56, 58, 26, 401/04, 06, 12, 14, 403/06, 12, 405/06, 12, 14, 409/12, 14, 413/06, 14, 417/06, 487/04, 495/06, 04, 513/04					
最小限資料以外	・の資料で調査を行った分野に含まれるもの ・ ・	:			
国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) REGISTRY (STN), CA (STN), CAOLD (STN), CAPLUS (STN)					
C. 関連する	らと認められる文献				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	きは、その関連する箇所の表示	関連する 請求の範囲の番号		
X A	WO, 99/25686, A1 (TEIJIN LIMITED) 2' & EP, 1030840, A1 & AU, 9913741, A & NO,		1-10 11		
X A	EP, 217286, A1 (OKAMOTO SHOSUKE) 8.4 化合物No.42参照 &JP, 63-022061, A &US, 4895842, A &A		1, 5, 7-10 2-4, 6, 11		
X A	WO, 98/50534, A1 (SMITHKLINE BEECHA 12.11月.1998(12.11.98) &EP, 991753, A1 &AU, 9872885, A &BR,		1, 2, 5 3, 4, 6-11		
x C欄の続き	さにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。		
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表された文献であった。 出願と矛盾するものではなく、発明の原理又は理の との理解のために引用するものではなく、発明の原理又は理の との理解のために引用するものではなく、発明の原理又は理の との理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1 上の文献との、当業者にとって自明である組合せ よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 「B陸調本参与で、1 た日			発明の原理又は理論 当該文献のみで発明 えられるもの 当該文献と他の1以 自明である組合せに るもの		
国際調査を完善	了した日 31.10.00	国際調査報告の発送日 0 /. 1]	.00		
日本	の名称及びあて先 国特許庁(ISA/JP) 郵便番号100-8915 郡千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 榎本 佳予子 - 円 電話番号 03-3581-1101	内線 3492		

株式PCT/ISA/210 (第2ページ) (1998年7月)

国際調査報告

国際出願番号 PCT/JP00/05260

C (続き) .	こ(続き). 関連すると認められる文献				
引用文献の		関連する			
カテゴリー* X A	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 GB, 2106108, A (JOHN WYETH AND BROTHER LIMITED) 7. 4月. 1983 (07. 04. 83) &US, 4443461, A	請求の範囲の番号 1,5 2-4,6-11			
X	WO, 97/40051, A1 (TAKEDA CHEMICAL INDUSTRIES, LTD.) 30. 10月.1997(30.10.97) & JP, 10-226689, A & EP, 915888, A1 & CA, 2251625, A & AU, 9724048, A & ZA, 9703493, A & CN, 1223659, A	1, 5 2-4, 6-11			
X A	KHALID, M. et al., "N, N'-disubstituted L-isoglutamines as novel cancer chemotherapeutic agents", Drugs Exp. Clin. Res. (1987), Vol. 13, Suppl. 1, p. 57-60	1, 5 . 2-4, 6-11			
PX [·] PA	WO, 00/31032, A1 (F. HOFFMANN-LA ROCHE AG) 2.6月.2000(02.06.00) &DE, 19955794, A &GB, 2343893, A &FR, 2786185, A	1, 2, 7-11 3-6			

