Lec-23. 两个正态总体的区间估计、0-1 分 布参数的区间估计、正态总体的单侧置信 区间

主讲教师: 吴利苏 (wulisu@sdust.edu.cn)

页: wulisu.cn

本次课内容

两个正态总体参数的区间估计

- σ_1^2, σ_2^2 已知, $\mu_1 \mu_2$ 的置信区间
- $\sigma_1^2 = \sigma_1^2 = \sigma^2 + \mu_1 + \mu_2$ 的置信区间
- μ_1, μ_2 未知, σ_1^2/σ_2^2 的置信区间

0-1 分布参数的区间估计

正态总体均值与方差的单侧置信区间

两个正态总体均值差 $\mu_1 - \mu_2$ 的置信区间

设总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, σ_1^2, σ_2^2 已知.

 X_1, \dots, X_{n_1} 和 Y_1, \dots, Y_{n_2} 分别为来自总体 X, Y 的样本, 这两个样本相互独立. \bar{X}, \bar{Y} 分别为 X, Y 的样本均值, S_1^2, S_2^2 分别为 X, Y 的样本方差. 取枢轴量

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1),$$

• 则 $\mu_1 - \mu_2$ 的一个置信水平为 $1 - \alpha$ 的区间估计为

$$\left(\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right).$$

$$\bar{X} - \bar{Y} \sim N \left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right),$$

$$G = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1),$$

$$P\{-z_{\alpha/2} < G < z_{\alpha/2}\} = 1 - \alpha$$
解得置信区间为 $\left(\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right).$

 $ar{X}$ 和 $ar{Y}$ 分别为 μ_1,μ_2 的无偏估计, 故 $ar{X}-ar{Y}$ 是

 $\bar{Y} \sim N(\mu_2, \frac{\sigma_2^2}{n_2}).$

 $\mu_1 - \mu_2$ 的无偏估计. \bar{X} , \bar{Y} 相互独立, $\bar{X} \sim N(\mu_1, \frac{\sigma_1^2}{n_1})$,

两个正态总体均值差 $\mu_1 - \mu_2$ 的置信区间

设总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, $\sigma_1^2 = \sigma_1^2 = \sigma^2$ 未知.

取枢轴量
$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2),$$

• 则
$$\mu_1 - \mu_2$$
 的一个置信水平为 $1 - \alpha$ 的区间估计为
$$\left(\bar{X} - \bar{Y} \pm t_{\alpha/2} (n_1 + n_2 - 2) S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right).$$

其中 $S_W = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$, $S_W = \sqrt{S_W^2}$.

两个正态总体中, 方差未知且相等, 设样本独立且 $n_1 = 10$, $\bar{x}_1 = 500$, $s_1 = 1.10$; $n_2 = 20$, $\overline{x}_2 = 496$, $s_2 = 1.20$.

求 $\mu_1 - \mu_2$ 的一个置信水平为 0.95 的置信区间.

两个正态总体中, 方差未知且相等. 设样本独立且 $n_1 = 10$, $\overline{x}_1 = 500$, $s_1 = 1.10$; $n_2 = 20$, $\overline{x}_2 = 496$, $s_2 = 1.20$. 求 $\mu_1 - \mu_2$ 的一个置信水平为 0.95 的置信区间.

得到的置信区间的下限大于零,则推断 $\mu_1 > \mu_2$.

两个正态总体中, 方差未知且相等. 设样本独立且 $n_1 = 8$, $\overline{x}_1 = 91.73$, $s_1^2 = 3.89$; $n_2 = 8$, $\overline{x}_2 = 93.75$, $s_2^2 = 4.02$.

求 $\mu_1 - \mu_2$ 的一个置信水平为 0.95 的置信区间.

两个正态总体中, 方差未知且相等. 设样本独立且 $n_1 = 8$, $\overline{x}_1 = 91.73$, $s_1^2 = 3.89$; $n_2 = 8$, $\overline{x}_2 = 93.75$, $s_2^2 = 4.02$. 求 $\mu_1 - \mu_2$ 的一个置信水平为 0.95 的置信区间.

得到的置信区间的包含零,则推断 μ_1 和 μ_2 没有显著差别.

设两个正态总体均值差 $\mu_1 - \mu_2$ 的置信区间为 $(\underline{\theta}, \overline{\theta})$,

• 若 $0 \in (\underline{\theta}, \theta)$, 则推断 $\mu_1 = \mu_2$;

$$\underline{\theta} < 0 < \overline{\theta} \xrightarrow{\text{μ}} \mu_1 = \mu_2$$

• $\dot{\pi}$ $(\underline{\theta}, \overline{\theta})$ $\dot{\pi}$ 0 of $\dot{\theta}$, $\dot{\theta}$ $\dot{\theta}$

• 若
$$(\underline{\theta}, \theta)$$
 在 0 的左侧, 则推断 $\mu_1 < \mu_2$.

$$\overline{\theta} < 0 \xrightarrow{\text{μ}} \mu_1 < \mu_2.$$

两个正态总体方差 σ_1^2/σ_2^2 的置信区间

设总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, μ_1, μ_2 未知. 取枢轴量

$$\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

• 则 σ_1^2/σ_2^2 的一个置信水平为 $1-\alpha$ 的区间估计为 $\left(\frac{S_1^2}{S_2^2} \frac{1}{F_{\alpha/2}(n_1-1, n_2-1)}, \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\alpha/2}(n_1-1, n_2-1)}\right).$

两个正态总体中, 均值方差均未知. 设样本独立且 $n_1 = 18$, $s_1^2 = 0.34$; $n_2 = 13$, $s_2^2 = 0.29$. 求 σ_1^2/σ_2^2 的一个置信水平为 0.90 的置信区间.

两个正态总体中, 均值方差均未知. 设样本独立且 $n_1 = 18$, $s_1^2 = 0.34$; $n_2 = 13$, $s_2^2 = 0.29$. 求 σ_1^2/σ_2^2 的一个置信水平为 0.90 的置信区间.

得到的置信区间的包含 1, 则推断 σ_1^2 和 σ_2^2 没有显著差别.

设两个正态总体方差商 σ_1^2/σ_2^2 的置信区间为 $(\theta, \overline{\theta})$,

• $\ddot{a} \in (\theta, \overline{\theta})$, 则推断 $\theta = \overline{\theta}$;

$$\underline{\theta} < 1 < \overline{\theta} \xrightarrow{\text{$\underline{\mu}$}} \sigma_1^2 = \sigma_2^2$$

• 若 $(\theta, \overline{\theta})$ 在 1 的右侧, 则推断 $\sigma_1^2 > \sigma_2^2$; $\theta > 1 \xrightarrow{\text{μM}} \sigma_1^2 > \sigma_2^2$

•
$$\dot{\pi}$$
 $(\underline{\theta}, \overline{\theta})$ $\dot{\pi}$ 1 的左侧, 则推断 $\sigma_1^2 < \sigma_2^2$.

$$0 < \overline{\theta} < 1 \xrightarrow{\text{1th}} \sigma_1^2 < \sigma_2^2$$

单个正态总体参数的区间估计

待 估 参数	其他参数	枢轴量	置信区间
μ	σ^2 已知	$\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$	$\left(\overline{X}\pmrac{\sigma}{\sqrt{n}}z_{lpha/2} ight)$
μ	σ^2 未知	$\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$	$\left(\overline{X} \pm \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1)\right)$
σ^2	μ未知	$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$	$\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right)$

两个正态总体参数的区间估计

待估参数	其他参数	枢轴量	置信区间
$\mu_1 - \mu_2$	σ_1^2, σ_2^2 已知	$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$	$\left(\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$
$\mu_1 - \mu_2$	$\sigma_1^2 = \sigma_2^2 = \sigma^2 + \pi$	$\frac{(\bar{X}-\bar{Y})-(\mu_1-\mu_2)}{S_W\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2)$	$\left(\bar{X} - \bar{Y} \pm t_{\alpha/2}(n_1 + n_2 - 2)S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)$
σ_1^2/σ_2^2	μ_1, μ_2 未知	$\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$	$\left(\frac{S_1^2}{S_2^2} \frac{1}{F_{\alpha/2}(n_1-1, n_2-1)}, \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\alpha/2}(n_1-1, n_2-1)}\right)$

其他总体均值的区间估计

总体 X 的均值为 μ , 方差为 σ^2 , 非正态分布或不知分布形式. 样本为 X_1, \ldots, X_n . 当 n 充分大 (一般 n > 50) 时, 由中心极限定理知,

$$\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

设 \bar{X} 和 S^2 分别为样本均值和样本方差. μ 的置信水平为 $1-\alpha$ 的置信区间

- σ^2 已知时, 置信区间近似为 $(\overline{X} \pm z_{\alpha/2}\sigma/\sqrt{n})$.
- σ^2 未知时, 置信区间近似为 $(\overline{X} \pm z_{\alpha/2} S/\sqrt{n})$.

某市随机抽取 100 个家庭, 调查知道其中有 60 家拥有私家车. 试根据此调查结果, 求该市拥有私家车比例 p 的置信水平为 95% 近似置信区间.

解:

$$\hat{p}=\bar{x}=\frac{60}{100}=0.6, s^2\approx\hat{p}(1-\hat{p})=0.24, z_{0.025}=1.96.$$
 代入近似置信区间

$$(\bar{X} - z_{0.025}S/\sqrt{n}, \quad \bar{X} + z_{0.025}S/\sqrt{n})$$

得近似置信区间为 (0.512, 0.688).

. .

0-1 分布参数的区间估计

总体 $X \sim b(1, p), X_1, \dots, X_n$ (n > 50) 为样本.

• 则未知参数 p 的一个置信水平为 $1-\alpha$ 的置信 区间近似为

$$\left(\frac{-b-\sqrt{b^2-4ac}}{2a}, \frac{-b+\sqrt{b^2-4ac}}{2a}\right)$$

其中 $a=n+z_{\alpha/2}^2$, $b=-(2n\bar{X}+z_{\alpha/2}^2)$, $c=n\bar{X}^2$.

总体
$$X \sim b(1, p)$$
 的分布律为

$$P\{X = x\} = p^{x}(1-p)^{1-x}, x = 0, 1,$$

其中 p 未知参数.

$$\mu = p, \sigma^2 = p(1-p).$$

由中心极限定理

$$\frac{\sum X_i - E(\sum X_i)}{\sqrt{D(\sum X_i)}} = \frac{n\bar{X} - np}{\sqrt{np(1-p)}} \sim N(0,1).$$

则

$$P\left\{-z_{\alpha/2} < \frac{n\bar{X} - np}{\sqrt{np(1-p)}} < z_{\alpha/2}\right\} \approx 1 - \alpha$$

4

$$\sqrt{np(1-p)}$$
 等价于

 $P\left\{\left|\frac{n\bar{X}-np}{\sqrt{np(1-p)}}\right| < z_{\alpha/2}\right\} \approx 1-\alpha.$

故

$$(n+z_{\alpha/2}^2)p^2 - (2n\bar{X} + z_{\alpha/2})p + n\bar{X}^2 < 0.$$

16/24

$$\frac{-b-\sqrt{b^2-4ac}}{2a}$$

 $ap^2 + bp + c < 0$

记 $a=n+z_{\alpha/2}^2$, $b=-(2n\bar{X}+z_{\alpha/2}^2)$, $c=n\bar{X}^2$,

则由

解得

现从一批产品中取 100 个样本, 得一级品 60 个. 求这批产品得一级品率 p 的置信水平为 0.95 的置信 区间.

现从一批产品中取 100 个样本, 得一级品 60 个. 求这批产品得一级品率 p 的置信水平为 0.95 的置信区间.

解:
$$n=100$$
, $\bar{x}=0.6$, $1-\alpha=0.95$, $z_{\alpha/2}=z_{0.025}=1.96$. $a=n+z_{\alpha/2}^2=103.84$, $b=-(2n\bar{x}+z_{\alpha/2}^2)=-123.84$, $c=n\bar{x}^2=36$. 则 $p_1=\frac{-b-\sqrt{b^2-4ac}}{2a}=0.5$, $p_2=\frac{-b+\sqrt{b^2-4ac}}{2a}=0.69$. 故 p 的置信水平为 0.95 的置信区间为 $(0.5,0.69)$.

单侧置信区间

定义

若

$$P\{\theta > \underline{\theta}(X_1, ..., X_n)\} \ge 1 - \alpha,$$

则 $(\underline{\theta}, \infty)$ 称为参数 θ 的置信水平为 $1-\alpha$ 的单侧置信区间, $\underline{\theta}$ 称为单侧置信下限.

若

$$P\left\{\theta < \overline{\theta}(X_1, \dots, X_n)\right\} \ge 1 - \alpha,$$

则 $(-\infty, \overline{\theta})$ 称为参数 θ 的置信水平为 $1-\alpha$ 的单侧置信区间. $\overline{\theta}$ 称为单侧置信上限.

19/24

正态总体均值的单侧置信区间 (σ^2 未知)

设总体 $X \sim N(\mu, \sigma^2)$, μ , σ^2 均未知, $X_1, ..., X_n$ 是一个样本.

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1),$$

则

•
$$\mu$$
 的一个置信水平为 $1-\alpha$ 的单侧置信区间为
$$\left(\bar{X} - \frac{S}{\sqrt{n}} t_{\alpha}(n-1), +\infty\right).$$

• 单侧置信下限 $\mu = \bar{X} - \frac{S}{\sqrt{n}} t_{\alpha}(n-1)$.

20/24

• μ 的一个置信水平为 $1-\alpha$ 的单侧置信区间为

$$\left(-\infty, \bar{X} + \frac{S}{\sqrt{n}}t_{\alpha}(n-1)\right).$$

• 单侧置信上限 $\overline{\mu} = \overline{X} + \frac{S}{\sqrt{n}} t_{\alpha} (n-1)$.

正态总体方差的单侧置信区间 (μ未知)

设总体 $X \sim N(\mu, \sigma^2)$, μ , σ^2 均未知, $X_1, ..., X_n$ 是一个样本.

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

• 则 σ^2 的置信水平为 $1-\alpha$ 的单侧置信区间 $\left(0, \frac{(n-1)S^2}{\sqrt{2}-(n-1)}\right).$

• 单侧置信上限
$$\overline{\sigma^2} = \frac{(n-1)S^2}{\chi^2_{1-\alpha}(n-1)}$$
.

• σ^2 的置信水平为 $1-\alpha$ 的单侧置信区间为

$$\left(\frac{(n-1)S^2}{\gamma_2^2(n-1)},+\infty\right).$$

• 单侧置信下限 $\underline{\sigma}^2 = \frac{(n-1)S^2}{\chi_2^2(n-1)}$.

从一批灯泡中随机地取 5 只作寿命试验, 测得寿命 $(以 h \downarrow)$ 为

1050, 1100, 1120, 1250, 1280

设灯泡寿命服从正态分布, 求灯泡寿命均值地置信水平为 0.95 的单侧置信下限.

从一批灯泡中随机地取 5 只作寿命试验, 测得寿命 $(以 h \downarrow)$ 为

1050, 1100, 1120, 1250, 1280

设灯泡寿命服从正态分布, 求灯泡寿命均值地置信水平为 0.95 的单侧置信下限.

解:
$$1 - \alpha = 0.95$$
, $\alpha = 0.05$, $t_{\alpha}(n-1) = t_{0.05}(4) = 2.1318$. $\bar{x} = 1160$, $s^2 = 9950$. $\underline{\mu} = \bar{x} - \frac{s}{\sqrt{n}} t_{\alpha}(n-1) = 1065$.