Cheat Sheet - Day 1

Introduction to Data Analysis with Python https://github.com/janekfleper/Workshop-Konstanz-2024

Basics

x = 1 y = "abc"	Assign a value to a <i>variable</i>
<pre>print("hello") print(x, 2, 3)</pre>	Print one or multiple values or variables
list(y) len([0, 1, 2])	A <i>function</i> is called with (optional) arguments
<pre>y.count("a") "abc".upper()</pre>	A <i>method</i> is called on a value or on a variable
# a comment	A # starts a <i>comment</i> that will not be evaluated
type(x)	Get the <i>type</i> of a value or of a variable

Data types

Data types	
"hello", 'abc', "0.9", str(123)	A <i>string</i> is a sequence of characters in quoation marks
12, -4, int("5")	An <i>integer</i> is a number without a decimal part
0.9, -3.1415, float("-0.1")	A <i>float</i> is a number with a decimal part
<pre>True, False, bool(0), x < 1</pre>	A <i>boolean</i> can only take the values True or False
[0, "abc", 0.1] list("hello")	A <i>list</i> is a mutable, sorted collection of values
{"a": 1, "b": 2} dict(a=1, b=2)	A <i>dictionary</i> is a mutable collection of key-value pairs
(0, "0.9", True) tuple([0, 1, 2])	A <i>tuple</i> is an immutable, sorted collection of values

Strings

s = "hello"	Initialize a string
len(s)	Get the length of a string
s[2], s[1:-1]	Get characters from a string
s[::-1]	Get a string in reverse order
"he" in s	Check if a string contains a substring
s + "abc"	Concatenate/append strings
s * 10	Repeat a string N times
<pre>s.isalpha() s.isnumeric()</pre>	Check properties of the characters in a string

Lists

x = [1, 2, 3]	Initialize a list with values
len(x)	Get the length of a list
x[2], x[0:-1]	Get values from a list
x[::-1]	Get a list in reverse order
x[0] = 3	Change a value in a list
x.append(4)	Append a value to a list
x.extend([4, 5])	Extend a list by another list
y = x + [4, 5]	Add lists to create a new list

Dictionaries

d = {"a": 1, "b": 2} d = dict(a=1, b=2)	Create a dictionary with key-value pairs
d["a"]	Get the value of a key from a dictionary
d["a"] = 0 d["c"] = 3	Update/add a key-value pair in/to a dictionary
<pre>d.keys() d.values() d.items()</pre>	Get all keys, all values or all key-value pairs in a dictionary

for loops

<pre>range(n) range(m, n)</pre>	Create a sequence from θ / m to n-1 in steps of 1
<pre>for i in range(n): print(i)</pre>	Iterate over the integer values in a sequence
<pre>for c in "hello": print(c)</pre>	Iterate over the characters in a string
for v in [0, -1, 2]: print(v)	Iterate over the values in a list
<pre>for k in d.keys(): print(k)</pre>	Iterate over the keys in a dictionary
x = [1, -5, 3, 0] y = [v+1 for v in x]	Create a new list with a list comprehension

Conditions and if - elif - else statements

a == b, a != b a > b, a >= b a < b, a <= b	Compare two values, the result will be True or False
<pre>if a < 0: a = -a elif a < 10: a = a - 10 else: a = a * 5</pre>	Check a condition with an if statement. Check multiple conditions with if and elif (as many as you want). The (optional) else block handles
a = a * 5	all other cases.

Jupyter shortcuts

Enter / Esc	Start/exit the edit mode
Shift + Enter	Run cell(s) and select next
A/B	Insert new cell above/below
X,C,V	Cut, copy or paste cell(s)
\mathbb{Z}/\mathbb{S} hift + \mathbb{Z}	Undo/redo cell operation