Analiza 1

Vid Drobnič

Kazalo

1	Števila		
	1.1	Naravna števila	2
	1.2	Cela števila	3
	1.3	Racionalna števila	3

1 Števila

1.1 Naravna števila

- Z njimi štejemo: 1, 2, 3
- Množico naravnih števil označimo z N

$$\mathbb{N} = \{1, 2, 3, ...\}$$

 $\bullet\,$ Vsako naravno število nima naslednika $n^+~(n^+=n+1)$

Peanovi aksiomi:

 $\mathbb N$ je množica skupaj s pravilom, ki vsakemu naravnemu številu ndodeli njegovega naslednika $n^+\in\mathbb N$ in velja:

- 1. za vse $m, n \in \mathbb{N}$ če $m^+ = n^+$, potem m = n
- 2. obstaja $1\in\mathbb{N},$ ki ni naslednik nobenega naravnega števila
- 3. Če je $A\subset \mathbb{N}$ in če je $1\in A^{-1}$ in če velja: če $n\in A,$ potem $n^+\in A^{-2},$ potem $A=\mathbb{N}$

Aksiom (3) se imenuje aksiom popolne indukcije.

- Naravna števila lahko **seštevamo**, **množimo**.
- \mathbb{N} so urejena po velikosti $1, 2, 3, 4, 5, \dots$

$$\{3,5,6,10\} \subset \mathbb{N}$$

$$\{3,5,7,16,23,\ldots\}\subset\mathbb{N}$$

- Vsaka neprazna podmnožica N ima najmanjši element.
- \bullet V splošnem ne velja³, da ima vsaka neprazna podmnožica $\mathbb N$ največji element.

¹indukcijska baza

²indukcijski korak

³ne velja za vse (množice)

1.2 Cela števila

Označimo jih z Z

$$\mathbb{Z} = \{0, 1, -1, 2, -2, ...\}$$

- \bullet Seštevanje in množenje se iz $\mathbb N$ razširita na $\mathbb Z$.
- Poleg tega je definirano odštevanje.
- Množico celih števil uredimo na običajen način.
- Ni res, da bi imela vsaka neprazna podmnožica Z najmanjši element.
- V splošnem deljenje ni definirano $(\frac{3}{2})$

1.3 Racionalna števila

Racionalna števila so kvocienti celih števil. Bolj natančno: kvoceinti celih in naravnih števil.

Dva ulomka $\frac{m}{n},\frac{k}{l}$ predstavljata isto racionalno število če: ml=nklahko naredimo:

$$\mathbb{Z} \times \mathbb{N} = \{(m, n), m \in \mathbb{Z}, n \in \mathbb{N}\}\$$

Množico $\mathbb{Z} \times \mathbb{N}$ razdelimo na razrede: urejena para (m, n) in (k, l) sta v istem razredu, če velja ml = nk.

Racionalno število je razred urejenih parov in ga označimo z $\frac{m}{n}.$

$$\mathbb{Q} = \{ \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N} \}$$

Seštevanje v \mathbb{Q} :

$$\frac{m}{n} + \frac{k}{l} = \frac{ml + kn}{nl}, m, k \in \mathbb{Z}, n, l \in \mathbb{N}$$

Seštevanje ulomkov je <u>dobro definirano:</u>

če je:
$$\frac{m'}{n'} = \frac{m}{n}, \frac{k'}{l'} = \frac{k}{l}$$

potem je: $\frac{m'}{n'} + \frac{k'}{l'} = \frac{m}{n} + \frac{k}{l}$

vemo: m'n = mn' in k'l = kl'

Dokaz:

$$\frac{m'}{n'} + \frac{k'}{l'} = ^{(def)} \frac{m'l' + n'k'}{n'l'} \cdot \frac{mk}{mk} =$$

$$= \frac{m'l'mk + n'k'mk}{n'ml'k} =$$

$$= \frac{m'mk'l + m'nk'k}{m'nk'l} = \frac{ml + nk}{nl} = ^{(def)} = \frac{m}{n} + \frac{k}{l}$$

Množenje v Q:

$$\frac{m}{n} \cdot \frac{k}{l} = \frac{mk}{nl}, m, k \in \mathbb{Z}, n, l, \in, \mathbb{N}$$

Množenje je dobro definirano (izpeljava doma).

Deljenje v \mathbb{Q} :

$$\frac{m}{n}: \frac{k}{l} = \frac{ml}{nk}, m, k \in \mathbb{Z}, n, l \in \mathbb{N}, k \neq 0$$

Naj bo A (številska) množica z operacijama + in \cdot .

Osnovne lastnosti računskih operacij bomo imenovali **aksiomi**. Druge lastnosti izpeljemo iz aksiomov.

A1 asociativnost seštevanja

Za vse
$$a, b, c \in A$$
 velja $(a + b) + c = a + (b + c)$

A2 komutativnost seštevanja

Za vse $a,b\in A$ velja da a+b=b+a

A3 obstoj enote za seštevanje

Obstaja za element $0 \in A$ za katerega velja da: 0 + a = a za vse $a \in A$

A4 obstoj nasprotnega števila

Za vsak $a \in A$ obstaja nasprotno število $-a \in A$ za katerega velja: (-a) + a = 0

 $\underline{\text{Opomba:}}$ Množica Aza operacijo +, ki ustreza aksiomom od A1 do A4 je $\overline{\textbf{Abelova}}$ grupa za +.

<u>Trditev:</u> Naj (A, +) ustreza aksiomom od A1 do A4.

- (1) $\forall a \in A \text{ ima eno samo nasprotno število}$
- (2) **Pravilo krajšanja:** za vse $a, x, y \in A$ velja: $a + x = a + y \Rightarrow x = y$
- (3) -0 = 0

Dokaz:

(1) izberemo poljubno število $a \in A$. Dokazujemo da ima a natanko 1 nasprotni element.

Po A4 nasprotno število obstaja. Denimo, da sta $b,c\in A$ nasprotni števili od a.

$$b+a=0 \text{ in } c+a=0$$

$$(a+b)+c\stackrel{\text{A2}}{=}(b+a)+c\stackrel{\text{predp.}}{=}0+c\stackrel{\text{A2}}{=}c$$

$$(a+b)+c\stackrel{\text{A2}}{=}(b+a)+c\stackrel{\text{A1}}{=}b+(a+c)\stackrel{\text{A2}}{=}b+(c+a)\stackrel{\text{predp.}}{=}b+0\stackrel{\text{A2}}{=}0+b\stackrel{\text{A3}}{=}b$$

$$c=b$$

(2)

$$a + x = a + y \stackrel{A4}{\Rightarrow}$$

$$\Rightarrow (-a) + (a + x) = (-a) + (a + y) \stackrel{A1}{\Rightarrow}$$

$$\Rightarrow ((-a) + a) + x = ((-a) + a) + y \stackrel{A4}{\Rightarrow}$$

$$\Rightarrow 0 + x = 0 + y \stackrel{A3}{\Rightarrow}$$

$$\Rightarrow x = y$$

(3)
$$-0 = 0$$

 $0 \stackrel{\text{A4}}{=} (-0) + 0 \stackrel{\text{A2}}{=} 0 + (-0) \stackrel{\text{A3}}{=} -0$

Odštevanje v A: razlika števil a in b je vsota a in nasprotnega elementa od b.

$$a - b := a + (-b)$$

b-a je rešitev enačbe a+x=b

Pozor: odštevanje ne ustreza aksiomom od A1 do A4.