Lecture 20

Universal hashing

Hash functions must be deterministic, but we do not want to let users know what they are. However, they can often guess. As with quick-sort, a malicious user can submit input data that makes the algorithm run an unreasonably long time, which can cause security and performance problems.

Example 20.1. Java String hashcode computes the address of a string using the Unicode values for each character (A-Z) corresponds to 65-90, a-z to 97-122). For $s=s[0]\cdots s[n-1]$ use integer arithmetic to calculate the hash via $s[0]\cdot 31^{n-1}+s[1]\cdot 31^{n-2}+...+s[n-1]$. Can you find two 2-character strings with the same hashcode? Why might this cause a problem in practice?

eg.
b C
q8 67 =
$$31 \times 97 + 31 + 67$$

= $31 \times 97 + 98$
a b
: $h(bC) = h(ab)$

 $31(S_0-S_0^1)=S_1^1-S_1$ want to be 1 want to be 31

lower/upper case difference: 0...25

mix IC/UC diff: 7...57

 $S_031 + S_1 = S_0'31 + S_1'$

A nice way to use randomization is to choose the hash function at runtime randomly from a family of hash functions. Ideally, the probability of a collision between two elements is only 1/m, which is what a random guess would yield, so malicious users cannot force collisions. A family of hash functions that satisfies this is called *universal*.

Formally, if F is a universal family of hash functions then for any keys $k \neq k'$,

$$\frac{1}{|F|} \left| \{ h \in F : h(k) = h(k') \} \right| \le \frac{1}{m}.$$

Example 20.2. Construct the family of hash function $F = \{h_{ab}\}$ by taking a prime $p \ge m$ and for $0 < a < p, 0 \le b < p$ define

$$h_{ab}(x) = ax + b \mod p \mod m$$
.

Prove that this is a universal family.

$$|F| = (P-1)P$$

Get collision of and only if (iff); between keys on & y

(axtb) mod p mod m = (aytb) mod p mod m

iff (auth)mudp - (ayth)modp is divisible by m

iff a(x-y) mod p is divisible by m

iff a modp
$$\longrightarrow$$
 a [(x-y) mod p] = im $*$
a between 0 and p

coses:

1)
$$x-y \equiv 0 \mod p \longrightarrow \frac{1}{p}$$
 chance of chaosing 0

Now since p is prime
$$(x-y) \not\equiv 0 \Rightarrow (x-y) \dot{t} \equiv |m_0 dp|$$

from *: a(x-y)t mod p = imt

$$a = 7 \text{ m t}$$
 find \hat{i} .

We know $a < p$

$$\therefore \hat{i} \text{ m} + \langle p - 1 \rangle$$

$$\vec{i} \langle p - 1 \rangle$$

So number of distinct values of (7) given different values of (9) is at most

therefore number of hab causing a collision is at most P(p-1) where P(p-1) is the amount of (a)s, and P is the potential amount of (b)s

so probability of collision is $\leq \frac{1}{p(p-1)} \frac{p(p-1)}{m} = \frac{1}{m}$

Combining 182

$$p(\text{collision}) = \frac{1}{p} + \frac{1}{m} \leqslant \frac{2}{m}$$

20.1 Summary of Table implementations

We summarise the table implementations that we have looked at so far in terms of worst and average case.

Table 20.1: Worst case running time (asymptotic order)

Data structure	Insert	Find	Delete	Traverse
Unsorted list (array)	1	n	n	n
Unsorted list (pointer)	1	n	n	n
Sorted list (array)	n	$\log n$	n	n
Sorted list (pointer)	n	n	n	n
Binary search tree	n	n	n	n
Balanced BST	$\log n$	$\log n$	$\log n$	n
Hash table (chaining)	n	n	n	m+n

Table 20.2: Average case running time (asymptotic order)

Data structure	Insert	Find	Delete	Traverse
Unsorted list (array)	1	n	n	n
Unsorted list (pointer)	1	n	n	n
Sorted list (array)	n	$\log n$	n	n
Sorted list (pointer)	n	n	n	n
Binary search tree	$\log n$	$\log n$	$\log n$	n
Balanced BST	$\log n$	$\log n$	$\log n$	n
Hash table (chaining)	λ	λ	λ	m+n

Example 20.3. If we want to print out all items of a table in sorted order, what is the best data structure? If we do not mind an occasional long wait and mostly do lookups, which is best? If we do a lot of insertions and deletions and few lookups, and are riskaverse, which is best?