MATH1851

Notes for HKU \cdot Spring 2024

Author: Jax

 $\textbf{Contact:} \ enhanjax@connect.hku.hk$

MORE notes on my website!

1 Limits and Continuity

1.1 Introduction to the concept of limit

We can conceptualize that the limit of a function f(x) is L as x approaches c, given that we can make f(x) as close to L as we want for all x sufficiently close to a, from both sides, without actually letting x be a. We can write this as:

$$\lim_{x \to a} f(x) = L$$

1.2 One-sided limits

There are two sides that x can tend to a number. We can write it as $x \to n^-$ and $x \to n^+$, which represents from the negative (left) / positive (right) side.

1.3 Existence of limits

Condition for limit to exist

The limit for a function f(x) only exists if and only if:

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$$

WARNING: If the **limit is** ∞ it **doesn't exist**.

For this example, when $x \to 0^-, y \to -\infty$.

Similarly, as $x \to 0^+, y \to +\infty$.

Hence, we can conclude that the limit for this function as $x \to 0$ doesn't exist.

1.4 Continuity

Continuity

A function f(x) is *continuous* at x = a if:

$$\lim_{x \to a} f(x) = f(a)$$

Continuity properties

For f, g continuous at c, the following are also continuous at c:

- 1. $f \pm g$
- 2. *kf*
- 3. *fg*
- 4. $\frac{f}{g}$, given that $g(c) \neq 0$

Intermediate value theorem (IVT)

If a function f is continuous on [a, b], there is a number c in [a, b] where f(c) in [f(a), f(b)].

To prove that there is a root, we can use the IVT by showing there is a **change of sign** between the interval given.

To show that there's only one solution, check if f'(x) > 0 or < 0 (strict >) in the interval.

1.5 Computing limits

Indeterminate forms

Indeterminate forms are forms that cannot be solved by simply substituting the value of x into the function. They are:

$$\frac{0}{0}, \quad \frac{\infty}{\infty}, \quad 0 \cdot \infty, \quad \infty - \infty, \quad \infty^0, \quad 1^\infty, \quad \infty^0$$

Note that $\infty + \infty = \infty$. Related: L'Hopital's rule

Using the limit laws

For functions f,g and using $\lim_{x\to a}=\bigcirc$ for simpler notation:

- 1. $\lim_{x\to a} c = c$
- 2. $\bigcirc (f \pm g) = \bigcirc f \pm \bigcirc g$
- 3. $\bigcirc(k \cdot f) = \bigcirc k \cdot \bigcirc f$
- 4. $\bigcirc(f^n) = (\bigcirc f)^n$
- 5. $\bigcirc(fg) = \bigcirc f \bigcirc g$
- 6. $\bigcirc(\frac{f}{g}) = \frac{\bigcirc f}{\bigcirc g}$, given that $\bigcirc g \neq 0$. This strict condition prevents indeterminate forms.

We can use these laws to break a limit into separate limits, and compute that way. Also note that:

7. $\bigcirc f(g) = f(\bigcirc g)$, given that f is **continuous** at $\bigcirc g$

Limit of a polynomial

For the limit of a polynomial p(x):

$$\lim_{x\to a} p(x) = p(a)$$

2

This can be proven easily with the limit laws above.

Techniques to compute limits

To solve for limits, we have to get the expression to the right form - a polynomial, for us to substitute our limit value into the function.

To do this, often we have to factorize or rationalize.

Example 1.1 Indeterminate forms by substitution

This applies limit law #5. As substituting into the function directly gives 0/0, we have to change it into a form such that we could apply the limit laws directly.

$$\lim_{x \to 2} \frac{x^2 + 4x - 12}{x^2 - 2x} = \frac{(x - 2)(x + 6)}{(x - 2)x}$$
$$= \frac{x + 6}{x}$$

Substituting 2 gives = 4

The squeeze / sandwich theorem

Suppose $f(x) \le g(x) \le h(x)$ in the range [a, b], for c in [a, b]:

$$\lim_{x \to c} f \le \lim_{x \to c} g \le \lim_{x \to c} h$$

We will make use of the fact that the limits can be equal to solve for the limit of g(x).

Example 1.2 Squeezing a function

When we can't seem to factorize a function, we can try squeezing it between two other functions.

$$\lim_{x \to 0} x^2 \cos \frac{1}{x}$$

We know the limits of the function $\cos \frac{1}{x}$, so we can start from there.

Given that
$$x \neq 0, -1 \leq \cos \frac{1}{x} \leq 1$$

Multiplying
$$x^2$$
 on both sides, $-x^2 \le \cos x^2 \frac{1}{x} \le x^2$

As
$$\lim_{x\to 0} \pm x^2 = 0$$
, we can conclude that $\lim_{x\to 0} x^2 \cos \frac{1}{x} = 0$

1.6 Infinite limits

Determining infinite limits

If f(x) gets (negatively) arbitrarily large when x approaches a, we can say:

$$\lim_{x \to a} f(x) = (-)\infty$$

After we know that the limit may be infinity, we then have to make sure that the limit is the same from both sides, so that the limit is actually ∞ . We can do so by plugging numbers which are approaching the limit from both sides.

Example 1.3 Infinite limit exists

$$\lim_{x \to 0} \frac{6}{x^2}$$

Consider both
$$\lim_{x\to 0^-} \frac{6}{x^2}$$
, $\lim_{x\to 0^+} \frac{6}{x^2}$:
$$\lim_{x\to 0} \frac{6}{x^2} = \infty$$

Example 1.4 Infinite limit doesn't exist

$$\lim_{x \to 4} \frac{3}{(4-x)^3}$$

Checking both sides, we can conclude that the limit doesn't exist, as:

$$\lim_{x \to 4^+} \frac{3}{(4-x)^3} = -\infty, \quad \lim_{x \to 4^-} \frac{3}{(4-x)^3} = \infty$$

1.7 Limits at infinity

Infinity operations

Note the following operations:

- 1. $\infty + k = \infty$
- 2. For k < 0, $k\infty = -\infty$

Determining limits of infinity

It is not hard to see that, for rational numbers n:

$$\lim_{x \to \pm \infty} \frac{k}{x^n} = 0$$

The easiest way to determine the limit would be to *factorize* the function so that we can use the fact above.

Determining limits of infinity of polynomials

Using the above fact, we can see that for a polynomial p(x) with degree n and largest coefficient a_n :

$$\lim_{x \to +\infty} p(x) = a_n x^n$$

Which means we can only consider the largest term in a polynomial for limits of infinity.

Example 1.5 Indeterminate forms by substitution of infinity

Substituting ∞ into the function gives $\infty - \infty - \infty$, which is indeterminate. Hence, we must factorize it.

$$\lim_{x \to \infty} 2x^4 - x^2 - 8x = \lim_{x \to \infty} \left[x^4 \left(2 - \frac{1}{x^2} - \frac{8}{x^3} \right) \right]$$
$$= \infty \times 2$$

Or we can just simply use the theorem above and consider $\lim_{x\to\infty} 2x^4$ only to give ∞ .

Example 1.6 Factor polynomials limit to infinity

We can simply consider the largest terms on each side and give the final answer easily.

$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 + 6}}{5 - 2x} = \lim_{x \to -\infty} \frac{\sqrt{3x^2}}{-2x}$$

$$= \lim_{x \to -\infty} \frac{\sqrt{3}|x|}{-2x} \leftarrow \sqrt{x^2} = |x|$$

$$= \lim_{x \to -\infty} \frac{-\sqrt{3}}{-2} \leftarrow |c|, c < 0 = -c$$

$$= \frac{\sqrt{3}}{2}$$

Note that, as we are considering the negative limit of infinity, we need to add - to the abs sign on line 3.

1.8 Asymptotes

Vertical asymptotes

f will have v-asymptotes at x = a if any \pm is true:

$$\lim_{x \to a^{\pm}} f(x) = \pm \infty$$

Horizontal asymptotes

f will have h-asymptotes at y = L if any \pm is true:

$$\lim_{x \to \pm \infty} f(x) = L$$

Related: Graphing functions

2 Trigonometry review

Trigonometric identities

- 1. $\sin^2 x + \cos^2 x = 1$
- 2. $\tan x = \frac{\sin x}{\cos x}$ 3. $\csc x = \frac{1}{\sin x}$ 4. $\sec x = \frac{1}{\cos x}$ 5. $\cot x = \frac{1}{\tan x}$

- $6. \sin 2x = 2\sin x \cos x$
- $7. \cos 2x = \cos^2 x \sin^2 x$
- 8. $\tan 2x = \frac{2\tan x}{1-\tan^2 x}$
- 9. $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$
- 10. $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$
- 11. $\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$ 12. $1 + \tan^2 x = \sec^2 x$
- $13. \ 1 + \cot^2 x = \csc^2 x$

Related: Techniques of integration

3 Derivatives

First principle

The first principle is the definition of the derivative of a function f(x) at x = a:

$$f'(x) = \frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Differentiability

The function is differentiable at x = a if:

$$\lim_{x \to a^-} f' = \lim_{x \to a^+} f'$$

3.1 Differentiation formulas and rules

Basic formulas

- We can differentiate individual items: $(f \pm g)' = f' \pm g'$
- We can factor out a multiplicative constant: (cf)' = cf'
- Derivative of a constant is 0: $\frac{d}{dx}k = 0$
- Power rule: $\frac{d}{dx}x^n = nx^{n-1}$

Chain rule

Shorthand: d1x2 + d2x1

$$(u(v))' = u'(v)v'$$
 or $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$

Product rule

Shorthand: d from outside to inside

$$(uv)' = uv' + vu'$$
 or $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$

Quotient rule

Shorthand: move lower **d** upper - **d** lower x upper, lower square

$$\left(\frac{u}{v}\right)' = \frac{vu' - uv'}{v^2}$$
 or $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

	f(x)	f'(x)
1.	a^x	$\ln a \cdot a^x$
2.	e^{kx}	ke^{kx}
3.	$\ln kx$	x^{-1}
4.	x	$\frac{ x }{x}$
5.	$\sin kx$	$k\cos kx$
6.	$\cos kx$	$-k\sin kx$
7.	$\tan kx$	$k \sec^2 kx$
8.	$\csc x$	$-\csc x \cot x$
9.	$\sec x$	$\sec x \tan x$
10.	$\cot x$	$-\csc^2 x$
11.	$\sin^{-1} x$	$(\sqrt{1-x^2})^{-1}$
12.	$\cos^{-1} x$	$-(\sqrt{1-x^2})^{-1}$
13.	$\tan^{-1} x$	$(1+x^2)^{-1}$

Note that the trigo derivatives can be extended to hyperbolic trigo functions, with the except of $\frac{d}{dx}\operatorname{sech} u = -\operatorname{sech} u \tanh u$.

3.2 Techniques of differentiation

Parametric differentiation

For a parametric equation y = f(t) and x = g(t):

$$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$$

Derivative of Inverse functions

At c, we first find f'(x) and the value of $f^{-1}(c)$, then we apply the formula to find the value of $f^{-1'}(c)$:

$$f^{-1'}(c) = \frac{1}{f'(f^{-1}(c))}$$

 $f^{-1}(c)$ can be found by solving f(x) = c.

Implicit differentiation

Differentiate all xy, add y' behind all differentiations of y.

To find y' for $y^2 = x^2 + \sin(xy)$:

$$y^2 = x^2 + \sin(xy)$$

$$2yy' = \frac{d}{dx}(\sin(xy))$$

$$2yy' = 2x + \cos(xy)(xy' + y)$$

Then we simply collect terms of y'

$$y' = \frac{2x + y\cos(xy)}{2y - x\cos(xy)}$$

To find the second derivative y'', differentiate the expression and substitute y' back in.

Logarithmic differentiation

For y = f(x), $y' = f(x) \times (\ln f(x))'$. (Takes natural log for both sides)

To find $\frac{dy}{dx}$ for $y = x^x$:

$$y = x^x$$

$$ln y = x ln x$$

$$\frac{1}{y}\frac{dy}{dx} = \ln x + 1$$

$$\frac{dy}{dx} = x^x (\ln x + 1) = x^x (x \ln x)'$$

L'Hopital's rule

For any $a \in [\mathbb{R}, \pm \infty]$, if $\lim_{x \to a} (\frac{f}{g})$ is in indeterminate form after substitution, we can conclude:

$$\lim_{x \to a} \left(\frac{f}{g}\right) = \lim_{x \to a} \left(\frac{f'}{g'}\right)$$

To find $\lim_{x\to-\infty} xe^x$, we first check if the limit is indeterminate, then we can apply the rule:

$$\lim_{x \to -\infty} x e^x \implies \infty \times 0$$

$$\lim_{x \to -\infty} x e^x = \lim_{x \to -\infty} \frac{x}{e^{-x}}$$

$$= \lim_{x \to -\infty} \frac{1}{-e^{-x}} \text{ (rule applied)}$$

$$= 0$$

3.3 Important theorems

Mean value theorem (MVT)

For f(x) that is *continuous* in [a,b] and *differentiable* in (a,b):

$$f'(c) = \frac{f(b) - f(a)}{b - a}, \quad c \in (a, b)$$

The theorem tells us that, in described conditions, there must be a point c where the slope of the tangent line is equal to the slope of the line from $a \to b$ (secant line).

 $Source:\ https://tutorial.math.lamar.edu/Classes/CalcI/MeanValueTheorem.aspx$

Rolle's theorem

For f(x) that is *continuous* in [a,b] and *differentiable* in (a,b):

 $\forall f(a) = f(b) \text{ there exists } f'(c) = 0, \quad c \in (a, b)$

For F' = f, if F has 4 roots, then f has 3 roots.

3.4 Extremum points

Critical and inflection points

A **critical point** is a point where f'(x) = 0 or undefined, or the end-points of the domain if inclusive. An **inflection point** is a point where f''(x) = 0 or undefined, that the **concavity** of the function changes.

Max/minimum points

The absolute maximum/minimum points are the points where the function has the largest/s-mallest value in the entire domain.

The **local maximum/minimum points** are the points where the function has the largest/smallest value in a small interval around the point.

3.5 Determining shape of graph

Concavity

Concavity is the direction of the curve, and can be described by the values of f' and f'':

$$f''$$
 - + + - + f' - + - + f'

Note: Arrows goes clock-wise.

	Step	Expression
1.	Determine domain of function	
2.	Special points without continuity?	
3.	Axis intercepts	(f(x) = 0, 0) (0, f(0))
4.	Critical points	f'(x) = 0 or undefined
5.	Point maxima?	+f''(x) or $-f''(x)$
6.	Inflection points	f''(x) = 0 or undefined
7.	Horizontal asymptotes	$\lim_{x \to \pm \infty} f(x) = n?$
8.	Vertical asymptotes	$\lim_{x \to a^{\pm}} f(x) = \pm \infty?$
9.	Area strictly increasing/decreasing?	f'(x) > 0 or f'(x) < 0
10.	Area concavity?	$-++-/-+-+/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

Related: Definition of asymptotes

Higher derivatives

Derivatives of higher order (e.g. f''(x), f'''(x)) can be expressed as $f^{(n)}(x)$

Integrals

Definition of natural logs

$$\ln x = \int_1^x \frac{1}{t} dt, \quad x > 0$$

4.1 Definite integrals

Signed areas

Signed area is the area between the curve and the x-axis, where the area above the x-axis is positive and below is negative.

Properties of definite intergrals

1. $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$ 2. $\int_{a}^{a} f(x)dx = 0$ 3. $\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$ 4. $\int_{a}^{b} kf(x)dx = k\int_{a}^{b} f(x)dx$ 5. $\int_{a}^{b} (f(x) \pm g(x))dx = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$

4.2 Fundamental theorem of calculus

Fundamental theorem of calculus (FTC)

If f(x) is continuous in [a, b], then:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Where F(x) is the definite integral of f(x).

Second fundamental theorem of calculus

If f(x) is continuous in [a, b], then:

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

Find g'(x) for $g(x) = \int_1^{x^2} \cos t \ dt$:

We first define $G(u) = \int_1^u \cos t \ dt$, then we can apply the chain rule:

$$g'(x) = (G(x^2))'$$
$$= G'(x^2) \cdot 2x$$
$$= \cos x^2 \cdot 2x$$

Cases of area 0

For $\int_a^b f(x)dx$:

- If b = a, then the area is 0 (no width)
- If f(x) = f(-x) and a = -b, then the area is 0 (symmetry)

Techniques of integration 4.3

Overview

- By substitution: "sub $g(x) \to u$, find du and replace all functions of x(dx) with u(du)"
- By part: " $\int ab = a \int b \int (a' \times \int b)$ "
- By joining recurring parts: " $\int ab = f(ab) + \int ab \rightarrow 2 \int ab = f(ab)$ "
- By partial fractions: "k/f(x)g(x) = A/f(x) + B/g(x)"
 By trigonometric identities
- By multiplying fractions by one: "Multiplying $\frac{\sec^2 x}{\sec^2 x}$ to fit trigo form"

Integration by substitution

For $\int f(g)g' dx$:

- 1. Let u = g
- 2. Find du = q'dx
- 3. Change limits in terms of u if definite
- 4. Replace all $g \to u$ and $g'dx \to du$
- 5. Integrate, then substitute $u \to g$

Integration by parts

$$\int ab = a \int b - \int (a' \times \int b)$$

Tips: Let a (differentiating term) to the first term you see on the list:

- 1. Logarithmic
- 2. Inverse trigo
- 3. Alebratic (polynomial)
- 4. Trigo
- 5. Exponential

Deriving the IBP formula

The formula is derived from the product rule of differentiation:

$$(ab)' = a'b + b'a$$

$$b'a = (ab)' - a'b$$

$$\int b'a = ab - \int a'b$$

$$\int ab = a \int b - \int (a' \times \int b)$$

Trigo-identities substitution tips

Use the following trigonometric identities to simplify the integral:

- $\bullet \sin^2 x + \cos^2 x = 1$
- $\bullet \sin^2 x = \frac{1 \cos 2x}{2}$
- $\cos^2 x = \frac{1 + \cos 2x}{2}$
- $2\sin x \cos x = \sin 2x$
- $\bullet \cos 2x = \cos^2 x \sin^2 x$
- $\bullet \sec^2 x = 1 + \tan^2 x$
- $\bullet \csc^2 x = 1 + \cot^2 x$

Use the following substitutions for similar expressions:

Expressions of the form
$$\begin{cases} a^2 - f(x)^2 & \to f(x) = a \sin \theta \\ a^2 + f(x)^2 & \to f(x) = a \tan \theta \\ f(x)^2 - a^2 & \to f(x) = a \sec \theta \end{cases}$$

Remember that this uses integration by substitution, so we need to find dx in terms of θ .

4.4 Solids of revolution

Solids of revolution

A 3D shape formed by rotating a region around an axis.

A region is defined by 2 curves and an interval:

- 1. The vertical region bounded by an outer cruve R(x) and an inner curve r(x).
- 2. The inner curve is y = 0 for the region bounded by the x-axis.
- 3. The horizontal region is bounded by an interval x : [a, b]

Note that for the methods below, the terms x and y can be *switched* to fit the problem.

 $\{f(x) \to \circlearrowright x\}$ denotes using a function of x to find the volume of a solid of revolution around the x-axis.

If the volume is generated by the rotation about an axis other than the main axes, we can simply *shift* the function to fit the main axes.

Volume by Washers (Disk)

$$\{f(x) \rightarrow \circlearrowright x\}: \quad V = \pi \int_a^b R^2(x) - r^2(x) dx$$

For rotating about y = n: $\forall f(x) \to f(x) - n$

Volume by Cylindrical shells

$$\{f(x) \to \circlearrowright y\}: \quad V = 2\pi \int_a^b [x] [R^2(x) - r^2(x)] dx$$

For rotating about x = n: $[x] \to [x - n]$

4.5 Arcs and surfaces

Arc length

The arc length of a curve y = f(x) from x = a to x = b is given by:

$$L = \int_a^b \sqrt{1 + f'^2(x)} dx$$

And for parametized equations x = f(t), y = g(t):

$$L = \int_{a}^{b} \sqrt{f'^{2}(t) + g'^{2}(t)} dt$$

Area surfaces of revolution

Used to find the *surface area* generated by rotating a curve along an axis.

$$\{f(x) \rightarrow \circlearrowright x\}: \quad A = 2\pi \int_a^b f(x) \sqrt{1 + f'^2(x)} dx$$

And for parametized equations x = f(t), y = g(t):

$$A = 2\pi \int_{a}^{b} g(t) \sqrt{f'^{2}(t) + g'^{2}(t)} dt$$

5 First Order Differential Equations

Differential equations are equations that involve a function and its derivatives.

Order of differential equations

A n ordered differential equation is an equation of the form:

$$F(x, y, y' \dots y'_n) = 0$$

Where y'_n is the nth derivative of y with respect to x. The highest degree of the derivative is n for a n-ordered differential equation. Note that y is really just y(x) (A function of x)

5.1 Solving linear 1st-ODEs

Linear differential equations

Linear differential equations does not contain non-linear functions. (e.g. $\sin y$) Otherwise, it's a non-linear ODE.

Solving by integrating factors

We can solve a linear 1st-ODE as followed, given a **particular solution** of y(x):

$$y' + p(x)y = q(x)$$
 : $\times e^{\int p(x)}$

The multiplied integration factor $e^{p(x)}$ will give us a product of the *product rule*, then we simply integrate both sides to solve for y. Make sure that the **coefficient of** y' **is 1**.

Separable equations

We can solve a separable equation as followed, given a **particular solution** of y(x):

$$\frac{dy}{dx} = f(x)g(y)$$
$$g(y)^{-1}dy = f(x)dx$$
$$\int g(y)^{-1} dy = \int f(x) dx \Leftarrow [(x,y) \to c]$$

5.2 Solving non-linear 1st-ODEs

Bernoulli's equation

A non-linear 1st-ODE of the form can be solved by:

$$y' + p(x)y = q(x)y^n$$
 $n \in \mathbb{R}$: sub $u = y^{1-n} \to y' = \frac{1}{1-n}u^{\frac{1}{1-n}-1}u'$

The substitution $u = y^{1-n}$ will turn the equation into a linear ODE, then simply solve using integrating factors.

Riccati's equation

A non-linear 1st-ODE of the form can be solved by the following, given a **particular solution** of y(x):

$$y' = p(x)y^2 + q(x)y + r(x)$$
 : sub $y = y(x) + u^{-1}$

Homogeneous equations

A homogeneous equation has it's x and y terms in the same degree. (e.g. $x^2 + xy + y^2 = 0$)

A homogeneous 1st-ODE of the form can be solved by the following, given a **particular solution** of y(x):

$$y' = f(\frac{y}{x})$$
 : sub $u = \frac{y}{x} \rightarrow y' = u + xu'$

We can **divide the formula** by x^n or y^n to get the equation in the desired form (every term is the ratio $\frac{y}{x}$). Otherwise, we can shift the origin using X = x - n and Y = y - m.

After substitution, we will get a **separable equation** after the substitution, and the particular solution is used.

5.3 Exact equations

Partial derivatives

A partial derivative is a derivative of a function with respect to one of its variables, with the others held constant. The following notation expresses the partial derivative of f with respect to x:

$$\frac{\partial f}{\partial x}$$

$$F = 2x + y$$

$$\frac{\partial F}{\partial x} = 2$$

Exact equations

An exact equation is simply a 1st-ODE where dF = 0.

The expressed equation dF is exact if:

$$dF = Mdx + Ndy$$
 : $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

Solving exact equations

To find the solution of an exact equation:

$$\begin{split} M &= \frac{\partial F}{\partial x}, \quad N = \frac{\partial F}{\partial y} \\ \partial F &= M \partial x \\ F &= \int M dx + g(y) \\ \frac{\partial F}{\partial y} &= N \\ \frac{\partial \int M dx + g(y)}{\partial y} &= N \rightarrow g'(y) \\ \int g'(y) \, dy &= g(y) \rightarrow F \end{split}$$

g(y) is present as we are integrating partially with respect to x, and g(y) is the constant of integration. Hence, the solution would be:

$$\int Mdx + g(y) = c$$

6 Second Order Differential Equations

6.1 Solving homogeneous linear 2nd-ODEs

Constant coefficient Homogeneous 2nd-ODEs

The term homogeneous is used differently from the previous section.

A homogeneous 2nd-ODE is of the form:

$$ay'' + by' + cy = \mathbf{0}$$

Where a, b, c are constants. (Coefficients are constants)

We first use the following substitution:

$$ay'' + by' + cy = 0$$
: $y = e^{\lambda x} \implies a\lambda^2 + b\lambda + c = 0 \rightarrow \lambda$

To find the general solution, we put the λ roots into the quadratic characteristic equation:

- 1. $\lambda_1 \neq \lambda_2$: $y = c_1 \mathbf{e}^{\lambda_1 x} + c_2 \mathbf{e}^{\lambda_2 x}$
- 2. $\lambda_1 = \lambda_2$: $y = c_1 \mathbf{e}^{\lambda x} + c_2 x \mathbf{e}^{\lambda x}$
- 3. $\{\lambda_{1,2} = \alpha \pm \beta i\} \in \mathbb{C}: \quad y = c_1 \mathbf{e}^{\alpha x} \cos(\beta x) + c_2 \mathbf{e}^{\alpha x} \sin(\beta x)$

If given **particular solutions** of y and y', we can solve for c_1 and c_2 by finding y' with our general solution and substituting.

Cauchy-Euler equations

A Cauchy-Euler equation is a slight variation of homogenous 2nd-ODEs, which is of the following form and can be solved by:

$$ax^2y'' + bxy' + cy = 0$$
 : $y = x^{\lambda} \implies a(\lambda^2 - \lambda) + b\lambda + c = 0$

The general solutions is similar to that of the homogeneous 2nd-ODEs, but with all terms of $x \to \ln x$:

- 1. $e^{\lambda x} \to x^{\lambda}$
- 2. $e^{\lambda x} \to x^{\lambda}$, $x \to \ln x$
- 3. $e^{\alpha x} \to x^{\alpha}$, $\beta x \to \beta \ln x$

6.2 Solving non-homogeneous linear 2nd-ODEs

Constant coefficient Non-homogeneous 2nd-ODEs

A non-homogeneous 2nd-ODE is of the form:

$$ay'' + by' + cy = g(x)$$

Where a, b, c are constants. (Coefficients are *constants*)

We first solve for $\lambda_{1,2}$ for the **complementary homogenous function** F_c :

$$F_c: ay'' + by' + cy = 0$$

The general solution for the non-homogeneous 2nd-ODE F is:

$$F = F_c + F_p$$

Where F_p is a **particular solution** of F. To solve for F_p , we can use the following methods:

- 1. Method of undetermined coefficients
- 2. Variation of parameters

Method of undetermined coefficients

To solve for F_p for a non-homogeneous 2nd-ODE, let F_p as the following if g(x) consists of:

- $e^{ax} \to F_p = Ae^{ax}$
- $\sin x$ and $/ \cos x \rightarrow F_p = A \sin x + B \cos x$
- $x^n \to F_p = Ax^n = A_n x^n + A_{n-1} x^{n-1} + \dots + A_0$ (polynomial of degree n)

Then substitute $F_p \to y$ into the non-homogeneous 2nd-ODE and solve for A and B. Finally, the general solution is $F = F_c + F_p$.