Deciding Presburger Arithmetic Using Automata Theory

Version 1.0

October 1, 2018

Fritz Kliemann

Fritz Kliemann Email: fritz.kliemann@gmx.at

Address: Linz, Austria

Abstract

J. Shallit has successfully used automata theory to find properties of automatic sequences [Sha13]. In a summer school course at RISC, JKU Linz [AEC16], he explained also how to use finite automata to decide Presburger arithmetic [Pre29].

This package, written as a Master thesis, implements the decision procedure which goes back to J. R. Büchi [Büc60]. Furthermore, it allows to construct a deterministic finite automaton from any first-order formula with the addition as the only operation.

The package Automata [DLM11] is used for the data structure of finite automata.

Copyright

© 2018 by Fritz Kliemann

This package may be redistribute and/or modify under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

Acknowledgements

I would like to thank my supervisor Erhard Aichinger for the opportunity to write this package and my parents for their support and patience.

The work was partially supported by the Austrian Science Fund (FWF), P29931.

Contents

1	Introduction		4
2	Crea	ing Predicata	
	2.1	Predicaton – an extended finite automaton	6
	2.2	Basic functions on Automata and Predicata	10
	2.3	Basic functions on Predicata	20
	2.4	Special functions on Predicata	39
	2.5	Detailed look at the special functions on Predicata	50
3	Parsing first-order formulas		54
	3.1	PredicataFormula – strings representing first-order formulas	54
	3.2	PredicataTree – converting first-order formulas into trees	58
	3.3	PredicataRepresentation – Predicata assigned with names and arities	64
	3.4	Converting PredicataFormulas via PredicataTrees into Predicata	73
4	Using Predicata		75
	4.1	Creating Predicata from first-order formulas	75
	4.2	Examples	96
References		110	
Index			111

Chapter 1

Introduction

The possibilities of the package Predicata, a combination of the words predicate and automata, can be best described with the following example.

For which natural numbers n does the formula, describing the McNuggets numbers,

$$\exists x : \exists y : \exists z : 6 \cdot x + 9 \cdot y + 20 \cdot z = n$$

hold? Furthermore, denoting the previous formula as P[n], for which natural number n does

$$(\forall m: m > n \Rightarrow P[m]) \land \neg P[n]$$

hold?

The idea is to create a deterministic finite automaton which corresponds to a first-order formula such that upon interpretation of every accepted word of the automaton the first-order formula is satisfied (Automata theory: [HMU01], [Pip97], [Koz97]).

The main object type Predicaton consists of an automaton and a list and represents a first-order formula containing the nullary operations 0 and 1 and the binary operation +. A first-order formula with n different free variables, where each free variable is assigned to pairwise distinct natural numbers, is represented by an automaton over the alphabet $\{0,1\}^n$. The variables are stored internally as a list of these n natural numbers, where the list coincides with the letters. The i-th position in a letter, i.e. in the n-tuple, corresponds to the variable at the i-th position in the list, i.e. to the variable which is assigned to the natural number at the i-th position. Leaving this technical details aside, the object type Predicaton (4.1.3) can also be called with a mathematically more intuitive first-order formula, which internally creates the deterministic finite automaton and takes care of the variables.

The special case are the first-order formulas with no free variable which can be seen as deterministic finite automaton with one state. This deterministic finite automatons can be either interpreted as True if the only state is a final state or as False otherwise. Thus this procedure, going back to J. R. Büchi ([Büc60]), decides the Presburger arithmetic (by Mojżesz Presburger, 1929, [Pre29]), the first-order theory of the natural numbers with the operation +.

For first-time users it is recommended to start with chapter 4, especially to start with the examples in section 4.2. The structure of the manual follows the structure of the package, thus the chapter 2 and 3 gives insight on how in the background a first-order formula is transferred into deterministic finite automaton. However this is quite lengthy and definitely not recommended to begin with.

Hence it's more interesting to start with the example from above:

• We start with A:=Predicaton("(E x:(E y:(E z:6*x+9*y+20*z=n)))");, consisting of a deterministic finite automaton with 17 states. The deterministic finite automaton displays the alphabet on the left, the states on the top, the transitions as entries in the table and the initial and final states at the bottom.

- Furthermore we can also display the Predicaton anytime with: Display(A);. Additionally, we can draw it with DrawPredicaton(A);, using the external program graphviz (for requirements refer to the manual of the package Automata).
- We can also test for accepted natural numbers with AcceptedByPredicaton(A, 20); where the optional second parameter gives an upper bound. DisplayAcceptedByPredicaton(A, 99); prints the accepted words converted into natural numbers in a nice format.
- To conclude with the example, we ask for the greatest natural number which cannot be purchased with the function B:=GreatestNonAcceptedNumber(A); and test for AcceptedWordsByPredicaton(B, 50); or sum up the regular expression PredicatonToRatExp(B) (note: here the binary representation is read form behind.)

Figure 1.1: A minimal DFA recognizing the numbers which can be purchased by the formula of A.

Chapter 2

Creating Predicata

2.1 Predicaton – an extended finite automaton

2.1.1 Predicaton (Automaton with variable position list)

▷ Predicaton(Automaton, VariablePositionList)

(function)

A Predicaton represents a first-order formulas, with n free variables, containing the nullary operations 0 and 1 and the binary operation +. It consists of an Automaton and a VariablePositionList. The first parameter is an Automaton from the package Automata, which is created as follows: Automaton(Type, Size, Alphabet, TransitionTable, Initial, Final). In order to create a Predicaton the Type must either be "det" or "nondet". The Size is a positive integer giving the number of states. The Alphabet must be a list of length 2^n , i.e. the list of all n-tuples $\{0,1\}^n$. The TransitionTable gives the transition matrix, where the entry at (i,j) denotes the state reached with the i-th letter (i-th row) and the j-th state (j-th column). The Initial and Final are the initial and final state sets.

The second parameter VariablePositionList must be of length n and must contain n pairwise distinct positive integers. It internally represents the occurring variables in the first-order formula by assigning pairwise distinct natural numbers to each free variable. The VariablePositionList coincides with the letters, i.e. the i-th position in the n-tuples correspond to the variable position at the i-th position in the list.

A word over the alphabet $\{0,1\}^n$ can be turned into n reversed binary representations of natural numbers by extracting the components of the letters. The i-th row of a word (choosing the i-th component of each letter) corresponds to the i-th entry in the VariablePositionList. The accepted words of the automaton represent those n natural numbers, such that upon interpretation the first-order formula is satisfied.

In the following example the Automaton A represents the formula x+y=z with the following variables: the variable x is assigned to 1, the variable y is assigned to 2 and the variable z is assigned to 3. The Predicaton P is created with the deterministic finite automaton A and the variable position list [1, 2, 3]. This means the first entry in the letters corresponds to the variable with the assigned natural number 1, i.e. x, the second entry to the number 2, i.e. the variable y and the third entry to the number 3, i.e. the variable z.

Later also a mathematically more intuitive method is introduced, see Predicaton (4.1.3) for creating a Predicaton from a first-order formula.

```
gap> A:=Automaton("det", 3,
> [ [ 0, 0, 0 ], [ 1, 0, 0 ], [ 0, 1, 0 ], [ 1, 1, 0 ],
> [ 0, 0, 1 ], [ 1, 0, 1 ], [ 0, 1, 1 ], [ 1, 1, 1 ] ],
> [ [ 1, 3, 3 ], [ 3, 2, 3 ], [ 3, 2, 3 ], [ 2, 3, 3 ],
> [ 3, 1, 3 ], [ 1, 3, 3 ], [ 1, 3, 3 ], [ 3, 2, 3 ] ],
> [ 1 ], [ 1 ]);
< deterministic automaton on 8 letters with 3 states >
gap> P:=Predicaton( A, [ 1, 2, 3 ]);
< Predicaton: deterministic finite automaton on 8 letters with 3 states
and the variable position list [ 1, 2, 3 ]. >
```

2.1.2 BuildPredicaton

```
\verb|>BuildPredication(Type, Size, Alphabet, TransitionTable, Initial, Final, \\ VariablePositionList) \\ \textit{(function)}
```

The function BuildPredicaton allows the creation of a Predicaton without specifying an Automaton.

```
Example -
gap> P:=BuildPredication("det", 3, [ [ 0, 0, 0 ], [ 1, 0, 0 ], [ 0, 1, 0 ],
> [ 1, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 1 ], [ 0, 1, 1 ], [ 1, 1, 1 ] ],
> [[1, 3, 3], [3, 2, 3], [3, 2, 3], [2, 3, 3], [3, 1, 3],
> [1, 3, 3], [1, 3, 3], [3, 2, 3]], [1], [1], [1, 2, 3]);
< Predicaton: deterministic finite automaton on 8 letters with 3 states</pre>
and the variable position list [ 1, 2, 3 ]. >
gap> Display(P);
Predicaton: deterministic finite automaton on 8 letters with 3 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
             1 2 3
  [0,0,0] | 1 3 3
  [1,0,0] | 3 2 3
  [0,1,0]
             3 2 3
  [ 1, 1, 0 ]
                2 3 3
  [0,0,1]
                3
                  1 3
  [ 1, 0, 1 ]
                1
             [0, 1, 1]
                1
  [ 1, 1, 1 ]
             3 2
 Initial states: [ 1 ]
                [ 1 ]
Final states:
```

2.1.3 IsPredicaton

```
▷ IsPredicaton(P) (function)
```

The function IsPredicaton checks if P is a Predicaton.

```
Example

gap> P:=BuildPredicaton("det", 2, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],

> [ [ 1, 2 ], [ 2, 2 ], [ 2, 2 ], [ 1, 2 ] ], [ 1 ], [ 1 ], [ 1, 2 ]);

< Predicaton: deterministic finite automaton on 4 letters with 2 states
```

```
and the variable position list [ 1, 2 ]. >
gap> IsPredicaton(P);
true
```

2.1.4 Display (Predication)

```
\triangleright Display (P) (method)
```

The method Display prints the transition table of the Predicaton P. The left side are the letters of the alphabet, the top row are the states and the transition from the i-th letter (row) and j-th state (column) is the entry (i, j).

```
gap> P:=Predicaton(Automaton("det", 3, [ [ 0, 0, 0 ], [ 1, 0, 0 ], [ 0, 1, 0 ],
> [ 1, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 1 ], [ 0, 1, 1 ], [ 1, 1, 1 ] ],
> [[1, 3, 3], [3, 2, 3], [3, 2, 3], [2, 3, 3], [3, 1, 3],
> [ 1, 3, 3 ], [ 1, 3, 3 ], [ 3, 2, 3 ] ], [ 1 ], [ 1 ]), [ 1, 2, 3 ]);
< Predicaton: deterministic finite automaton on 8 letters with 3 states</pre>
and the variable position list [ 1, 2, 3 ]. >
gap> Display(P);
Predicaton: deterministic finite automaton on 8 letters with 3 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
                1 2 3
  [0, 0, 0]
  [ 1, 0, 0 ]
              3
                    2
                       3
  [ 0, 1, 0 ]
              -1
                 3
                    2
                       3
  [ 1, 1, 0 ]
              2
                    3
                       3
  [0,0,1]
              3
                    1
  [ 1, 0, 1 ]
              1
                    3
  [0,1,1]
                 1
                    3
              [1, 1, 1]
              3 2
 Initial states: [ 1 ]
Final states:
                Г 1 7
```

2.1.5 View (Predication)

```
▷ View(P)

(method)
```

The method View applied on a Predicaton P returns the object text.

```
gap> P:=Predicaton(Automaton("det", 3, [ [ 0 ], [ 1 ] ], [ [ 2, 2, 3 ],
> [ 3, 2, 2 ] ], [ 1 ], [ 3 ]), [ 1 ]);;
gap> View(P);
< Predicaton: deterministic finite automaton on 2 letters with 3 states
and the variable position list [ 1 ]. >
```

2.1.6 Print (Predicaton)

```
    Print(P) 
    (method)
```

The method Print applied on a Predicaton *P* prints the input as a string.

```
Example

gap> P:=Predicaton(Automaton("det", 3, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],

> [ [ 1, 3, 3 ], [ 2, 3, 3 ], [ 3, 1, 3 ], [ 3, 2, 3 ] ], [ 1 ], [ 1 ]),

> [ 1, 2 ]);;

gap> Print(P);

Predicaton(Automaton("det", 3, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ], [ [ \
1, 3, 3 ], [ 2, 3, 3 ], [ 3, 1, 3 ], [ 3, 2, 3 ] ], [ 1 ], [ 1 ]), [ 1, 2 ]);;

gap> String(P);

"Predicaton(Automaton(\"det\", 3, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ], [ [ \
1, 3, 3 ], [ 2, 3, 3 ], [ 3, 1, 3 ], [ 3, 2, 3 ] ], [ 1 ], [ 1 ]), [ 1, 2 ]);;"
```

2.1.7 GetAlphabet

```
\triangleright GetAlphabet(n) (function)
```

The function GetAlphabet returns the alphabet A^n for $A := \{0, 1\}$.

```
_{-} Example _{\cdot}
gap> a1:=GetAlphabet(3);
[[0,0,0],[1,0,0],[0,1,0],[1,1,0],
 [0,0,1],[1,0,1],[0,1,1],[1,1,1]]
gap> P1:=Predicaton(Automaton("det", 3, a1,
> [[1, 3, 3], [3, 2, 3], [3, 2, 3], [2, 3, 3], [3, 1, 3],
> [ 1, 3, 3 ], [ 1, 3, 3 ], [ 3, 2, 3 ] ], [ 1 ], [ 1 ]), [ 1, 2, 3 ]);;
gap> Display(P1);
Predicaton: deterministic finite automaton on 8 letters with 3 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
             1 2 3
 [0,0,0] | 1 3 3
 [ 1, 0, 0 ]
                3
                  2 3
 [0, 1, 0]
             3
                   2
 [ 1, 1, 0 ] | 2
                   3
 [0,0,1] | 3
                  1 3
 [1,0,1] | 1 3 3
 [ 0, 1, 1 ]
             3 2 3
 [1, 1, 1]
Initial states: [ 1 ]
Final states:
               [ 1 ]
gap> a2:=GetAlphabet(0);
[[]]
gap> P2:=Predicaton(Automaton("det", 1, a2, [ [ 1 ] ], [ 1 ], [ 1 ]); [ ]);;
gap> Display(P2);
Predicaton: deterministic finite automaton on 1 letter with 1 state,
the variable position list [ ] and the following transitions:
      | 1
 [] | 1
Initial states: [ 1 ]
Final states:
```

2.2 Basic functions on Automata and Predicata

The package Automata allows lists of lists as input for the alphabet, but unfortunately is lacking in further support. The functions regarding the alphabet takes only ShallowCopy whereas a list of lists StructuralCopy is needed, as well as the method Display for automata prints with some weird spacing. Therefore this package reintroduces the basic Automata functions with another name to ensure full control. Nevertheless all credit belongs to the creators of the package Automata.

Note that the Predicata in the following examples corresponds to first-order formulas. The accepted natural numbers can be displayed with the functions from section 2.3.

Furthermore, note that the following functions can be either called with an Automaton or a Predicaton.

2.2.1 DisplayAut

```
▷ DisplayAut(P)

(function)
```

The function DisplayAut prints the Automaton or Predicaton P (called by Display (2.1.4)).

```
Example -
gap> A:=Automaton("det", 4, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],
> [[3, 2, 2, 4], [2, 2, 4, 2], [2, 2, 3, 2], [3, 2, 2, 4]],
> [1], [4]);
< deterministic automaton on 4 letters with 4 states >
gap> DisplayAut(A);
deterministic finite automaton on 4 letters with 4 states
and the following transitions:
          1 2 3 4
 [0,0] | 3 2 2 4
 [1,0]
             2
               2 4
          2
 [0, 1]
             2
 [1,1]
             3 2 2
Initial states: [ 1 ]
Final states:
```

2.2.2 DrawPredicaton

```
▷ DrawPredicaton(P) (function)
```

The function DrawPredicaton calls the function DrawAutomaton from the package Automata which uses graphviz [DEG⁺02], a software for drawing graphs developed at AT & T Labs, that can be obtained at http://www.graphviz.org/. For further details please refer to the manual of the package Automata.

```
Example

gap> A:=Automaton("det", 4, [[0,0],[1,0],[0,1],[1,1]],

> [[3,2,2,4],[2,2,4,2],[2,2,3,2],[3,2,2,4]],

> [1],[4]);

< deterministic automaton on 4 letters with 4 states >

gap> DisplayAut(A);

deterministic finite automaton on 4 letters with 4 states

and the following transitions:
```

2.2.3 IsDeterministicAut

```
▷ IsDeterministicAut(P)
```

(function)

The function IsDeterministicAut checks if the Type of an Automaton or a Predicaton P is "det". If yes then true, otherwise false.

```
gap> P:=Predicaton(Automaton("det", 5, [ [ 0 ], [ 1 ] ], [ [ 1, 2, 2, 3, 2 ],
> [ 2, 2, 1, 2, 4 ] ], [ 5 ], [ 1 ]), [ 1 ]);
< Predicaton: deterministic finite automaton on 2 letters with 5 states
and the variable position list [ 1 ]. >
gap> IsDeterministicAut(P);
true
```

2.2.4 IsNonDeterministicAut

```
▷ IsNonDeterministicAut(P)
```

(function)

The function IsNonDeterministicAut checks if the Type of an Automaton or a Predicaton P is "nondet". If yes then true, otherwise false.

```
\_ Example \_
gap> P:=Predicaton(Automaton("nondet", 2, [ [ 0 ], [ 1 ] ], [ [ 1 ], [ ] ],
> [1], [1]), [1]);
< Predicaton: nondeterministic finite automaton on 2 letters with 2 states</pre>
and the variable position list [ 1 ]. >
gap> Display(P);
Predicaton: nondeterministic finite automaton on 2 letters with 2 states,
the variable position list [\ 1\ ] and the following transitions:
        | 1
                 2
 [0] | [1] []
 Initial states: [ 1 ]
Final states: [1]
gap> IsNonDeterministicAut(P);
true
```

2.2.5 TypeOfAut

```
    TypeOfAut(P)

(function)
```

(function)

The function TypeOfAut returns the Type of an Automaton or a Predicaton P, either "det", "nondet" or "epsilon". Note that a Predicaton can only be a deterministic or nondeterministic finite automaton.

```
Example

gap> P:=Predicaton(Automaton("det", 5, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],

> [ [ 2, 2, 2, 2, 5 ], [ 2, 2, 5, 2, 2 ], [ 2, 2, 2, 3, 2 ], [ 4, 2, 2, 2, 2 ] ],

> [ 1 ], [ 5 ]), [ 1, 2 ]);;

gap> TypeOfAut(P);

"det"
```

2.2.6 AlphabetOfAut

```
\triangleright AlphabetOfAut(P) (function)
```

The function AlphabetOfAut returns the size of an Alphabet of an Automaton or a Predicaton P.

2.2.7 AlphabetOfAutAsList

The function AlphabetOfAutAsList returns a StructuralCopy of the Alphabet of an Automaton or a Predicaton *P*.

```
gap> # Continued
gap> AlphabetOfAutAsList(P);
[ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ]
```

2.2.8 NumberStatesOfAut

```
\triangleright NumberStatesOfAut(P) (function)
```

The function NumberStatesOfAut returns the number of the States of an Automaton or a $Predicaton\ P$

```
Example

gap> P:=Predicaton(Automaton("det", 5, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],

> [ [ 2, 2, 2, 2, 5 ], [ 4, 2, 5, 3, 2 ], [ 4, 2, 5, 3, 2 ], [ 2, 2, 2, 2, 2 ] ],

> [ 1 ], [ 5 ]), [ 1, 2 ]);;

gap> NumberStatesOfAut(P);

5
```

2.2.9 SortedStatesAut

```
\triangleright SortedStatesAut(P) (function)
```

The function SortedStatesAut returns the Automaton or the Predicaton *P* with sorted States, such that the initial states have the lowest and the final states the highest number.

```
_{-} Example
gap> P:=Predicaton(Automaton("det", 5, [ [ 0 ], [ 1 ] ], [ [ 1, 2, 2, 2, 2 ],
> [ 2, 2, 1, 3, 4 ] ], [ 5 ], [ 1 ]), [ 1 ]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
       1 2 3 4 5
  [0] | 1 2 2 2 2
  [1] | 2 2 1 3 4
Initial states: [ 5 ]
Final states: [1]
gap> S:=SortedStatesAut(P);;
gap> Display(S);
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5
 [0] | 2 2 2 2 5
 [1] | 4 2 5 3 2
Initial states: [ 1 ]
               [5]
Final states:
```

2.2.10 TransitionMatrixOfAut

```
▷ TransitionMatrixOfAut(P)
```

(function)

The function TransitionMatrixOf Aut returns a StructuralCopy of the TransitionMatrix of an Automaton or a Predicaton P.

2.2.11 InitialStatesOfAut

```
▷ InitialStatesOfAut(P)
```

The function InitialStatesOfAut returns the Initial states of an Automaton or a Predicaton P.

```
Example

gap> P:=Predicaton(Automaton("det", 5, [ [ 0 ], [ 1 ] ], [ [ 2, 2, 2, 3, 5 ],

> [ 4, 2, 5, 2, 2 ] ], [ 1 ], [ 5 ]), [ 1 ]);;

gap> InitialStatesOfAut(P);
[ 1 ]
```

2.2.12 SetInitialStatesOfAut

```
⊳ SetInitialStatesOfAut(P)
```

(function)

The function SetInitialStatesOfAut sets the Initial states of an Automaton or a Predicaton *P*.

```
_{-} Example _{-}
gap> P:=Predicaton(Automaton("det", 5, [ [ 0 ], [ 1 ] ], [ [ 2, 2, 2, 3, 5 ],
> [4, 2, 5, 2, 2]], [1], [5]), [1]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5
______
 [0] | 2 2 2 3 5
 \lceil 1 \rceil \mid 4 \mid 2 \mid 5 \mid 2 \mid 2
Initial states: [ 1 ]
Final states: [5]
gap> SetInitialStatesOfAut(P, 3);
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
        | 1 2 3 4 5
  [0] | 2 2 2 3 5
  [1] | 4 2 5 2 2
Initial states: [ 3 ]
Final states: [5]
```

2.2.13 FinalStatesOfAut

```
▷ FinalStatesOfAut(P)
```

(function)

The function FinalStatesOfAut returns the Final states of an Automaton or a Predicaton P.

```
[1] | 3 2 4 2
Initial states: [1]
Final states: [4]
gap> FinalStatesOfAut(P);
[4]
```

2.2.14 SetFinalStatesOfAut

```
\triangleright SetFinalStatesOfAut(P) (function)
```

The function SetFinalStatesOfAut sets the Final states of an Automaton or a Predicaton P.

```
gap> P:=Predicaton(Automaton("det", 4, [ [ 0 ], [ 1 ] ], [ [ 2, 2, 2, 4 ],
> [3, 2, 4, 2]], [1], [4]), [1]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 4 states,
the variable position list [ 1 ] and the following transitions:
       1 2 3 4
 [0] | 2 2 2 4
 [1] | 3 2 4 2
Initial states: [ 1 ]
Final states: [4]
gap> SetFinalStatesOfAut(P, [ 1, 2, 3 ]);
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 4 states,
the variable position list [ 1 ] and the following transitions:
       1 2 3 4
______
 [0] | 2 2 2 4
 [1] | 3 2 4 2
Initial states: [ 1 ]
Final states: [ 1, 2, 3 ]
```

2.2.15 SinkStatesOfAut

```
    SinkStatesOfAut(P) (function)
```

The function SinkStatesOfAut returns the sink states of an Automaton or a Predicaton P.

```
gap> SinkStatesOfAut(P);
[ 2 ]
```

2.2.16 PermutedStatesAut

```
▷ PermutedStatesAut(P, p)
```

(function)

The function PermutedStatesAut permutes the names of the states of an Automaton or a Predicaton P. The list p contains all states, where the state i (i.e. i-th position) is mapped to the state p[i].

```
gap> P:=Predicaton(Automaton("det", 6, [ [ 0 ], [ 1 ] ], [ [ 5, 2, 2, 3, 4, 6 ],
> [ 2, 2, 6, 2, 2, 2 ] ], [ 1 ], [ 6 ]), [ 1 ]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 6 states,
the variable position list [\ 1\ ] and the following transitions:
        1 2 3 4 5 6
  [0] | 5 2 2 3 4 6
  [1] | 2 2 6 2 2 2
Initial states: [ 1 ]
Final states: [6]
gap> Q:=PermutedStatesAut(P,[1,6,4,3,2,5]);;
gap> Display(Q);
Predicaton: deterministic finite automaton on 2 letters with 6 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5 6
  [0] | 2 3 4 6 5 6
  [1] | 6 6 6 5 6 6
Initial states: [ 1 ]
Final states:
              Г 5 1
```

2.2.17 CopyAut

```
▷ CopyAut(P)
▷ CopyPredicaton(P)
(function)
```

The function CopyAut copies either the Automaton or the Predicaton P.

2.2.18 MinimalAut

```
▷ MinimalAut(P) (function)
```

The function MinimalAut returns the minimal deterministic finite automaton of an Automaton P. Given a Predicaton P its automaton is minimized and returned as a Predicaton with the same variable position list.

```
_{-} Example _{-}
gap> P:=Predicaton(Automaton("det", 9, [[0, 0], [1, 0], [0, 1], [1, 1]],
> [ [ 2, 6, 7, 4, 5, 4, 5, 8, 9 ], [ 3, 6, 6, 4, 4, 4, 4, 8, 8 ],
> [ 4, 4, 5, 4, 5, 8, 9, 4, 5 ], [ 5, 4, 4, 4, 4, 8, 8, 4, 4 ] ],
> [1], [9]), [1, 2]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 4 letters with 9 states,
the variable position list [ 1, 2 ] and the following transitions:
          1 2 3 4 5 6 7 8 9
  [0,0] | 2 6 7 4 5 4 5 8 9
                    4 4 4 4 8 8
  [1,0] | 3 6 6
  [0,1] | 4 4 5 4 5 8 9 4 5
 [1,1] | 5 4 4 4 4 8 8 4 4
 Initial states: [ 1 ]
               [ 9 ]
 Final states:
gap> M:=MinimalAut(P);;
gap> Display(M);
Predicaton: deterministic finite automaton on 4 letters with 5 states,
the variable position list [ 1, 2 ] and the following transitions:
          1 2 3 4 5
  [0,0] | 1 2 2 3 2
  [1,0] | 2 2 2 2 4
                 1 2 2
  [0, 1]
            2 2
  [1,1] | 2 2 2
 Initial states: [ 5 ]
 Final states:
             [ 1 ]
gap> P:=Predicaton(Automaton("nondet", 8, [ [ 0 ], [ 1 ] ],
> [ [ [ 2 ], [ 2 ], [ 2 ], [ 4 ], [ 7 ], [ 6 ], [ 6 ], [ 8 ] ],
> [[3], [2], [4], [2], [6], [6], [8], [6]]],
> [1, 5], [4, 8]), [1]);;
```

2.2.19 NegatedAut

```
▷ NegatedAut(P) (function)
```

The function NegatedAut changes the Final states to non-final ones and the non-final states to Final ones.

```
_{-} Example _{-}
gap> P:=Predicaton(Automaton("det", 4, [ [ 0 ], [ 1 ] ], [ [ 2, 2, 2, 4 ],
> [3, 2, 4, 2]], [1], [4]), [1]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 4 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4
  [0] | 2 2 2 4
  [1] | 3 2 4 2
 Initial states: [ 1 ]
 Final states: [4]
gap> Q:=NegatedAut(P);;
gap> Display(Q);
Predicaton: deterministic finite automaton on 2 letters with 4 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4
  [0] | 2 2 2 4
  [1] | 3 2 4 2
 Initial states: [ 1 ]
 Final states: [ 1, 2, 3 ]
```

2.2.20 IntersectionAut

```
▷ IntersectionAut(P) (function)
```

The function IntersectionAut returns the intersection of two Automata or Predicata *P*. Note that the for intersection of two automata both must have the same ordered alphabet. For the intersection of two Predicata with different alphabets use IntersectionPredicata (2.3.19).

```
Example

gap> P1:=Predicaton(Automaton("det", 5, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],

> [ [ 2, 2, 2, 3, 5 ], [ 2, 2, 2, 3, 5 ], [ 4, 2, 5, 2, 2 ], [ 4, 2, 5, 2, 2 ] ],

> [ 1 ], [ 5 ]), [ 1, 2 ]);;
```

```
gap> P2:=Predicaton(Automaton("det", 2, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],
> [[1,2],[2,2],[2,2],[1,2]],[1],[1],[1]),[1,2]);;
gap> P3:=IntersectionAut(P1, P2);;
gap> Display(P3);
Predicaton: deterministic finite automaton on 4 letters with 9 states,
the variable position list [ 1, 2 ] and the following transitions:
          1 2 3 4 5 6 7 8 9
 [0,0] | 2 2 3 6 7
                          3 2 8 9
 [1,0] | 3
               3 3 6
                       6
                          3 3 8 8
 [0,1] | 4 3 3 3 3 8 8 3 3
 [1,1] | 5 2 3 3 2 8 9 3 2
Initial states: [ 1 ]
Final states: [9]
gap> P4:=MinimalAut(P3);;
gap> Display(P4);
Predicaton: deterministic finite automaton on 4 letters with 5 states,
the variable position list [ 1, 2 ] and the following transitions:
          1 2 3 4 5
 [0,0] | 1 2 2 3 2
 [1,0] | 2 2 2 2 2
 [0,1] | 2 2 2 2 2
 [1, 1] \mid 2 \mid 2 \mid 1 \mid 2 \mid 4
 Initial states: [ 5 ]
Final states:
```

2.2.21 UnionAut

```
▷ UnionAut(P) (function)
```

The function UnionAut returns the union of two Automata or Predicata P. Note that for the union of two automata both must have the same ordered alphabet. For the union of two Predicata with different alphabets use UnionPredicata (2.3.20).

```
_{-} Example .
gap> P1:=Predicaton(Automaton("det", 2, [ [ 0 ], [ 1 ] ],
> [ [ 1, 2 ], [ 2, 2 ] ], [ 1 ], [ 1 ]), [ 1 ]);;
gap> P2:=Predicaton(Automaton("det", 4, [ [ 0 ], [ 1 ] ],
> [[3, 2, 2, 4], [2, 2, 4, 2]], [1], [4]), [1]);;
gap> P3:=UnionAut(P1, P2);;
gap> Display(P3);
Predicaton: nondeterministic finite automaton on 2 letters with 6 states,
the variable position list [ 1 ] and the following transitions:
        1
                                    5
  [0] | [1] [2] [5] [4] [4] [6]
 [1] | [2] [4] [4] [6] [4]
Initial states: [ 1, 3 ]
Final states: [1,6]
gap> M:=MinimalAut(P3);;
gap> Display(M);
Predicaton: deterministic finite automaton on 2 letters with 4 states,
```

2.2.22 IsRecognizedByAut

```
▷ IsRecognizedByAut(P, word)
```

(function)

The function IsRecognizedByAut checks if a word, given by its letters, is accepted by the Automaton or Predicaton P.

```
_ Example .
gap> P:=Predicaton(Automaton("det", 5, [ [ 0 ], [ 1 ] ],
> [[5,5,5,4,5],[2,3,4,5,5]],[1],[4]),[1]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5
  [0] | 5 5 5 4 5
  [1] | 2 3 4 5
 Initial states: [ 1 ]
 Final states: [ 4 ]
gap> IsRecognizedByAut(P,[[1],[1],[1]]);
gap> IsRecognizedByAut(P,[[1],[1],[1],[0],[0]]);
true
gap> IsRecognizedByAut(P,[[1],[1],[0]]);
false
```

2.3 Basic functions on Predicata

The following functions act only on Predicata, accessing and modifying the alphabet $A := \{0,1\}^n$ for a natural number n (including 0).

2.3.1 DecToBin

```
\triangleright DecToBin(D) (function)
```

The function DecToBin returns for a natural numbers D or the list of its binary representation. Note that here, motivated on how the automata read the words, the binary representation are read in the other direction than usual, for example $4 = [0,0,1]_2$.

Example

```
gap> DecToBin(4);
[ 0, 0, 1 ]
gap> DecToBin(0);
[ 0 ]
```

2.3.2 BinToDec

```
    □ BinToDec (B) (function)
```

The function BinToDec returns for a list B (i.e. a binary representation), containing 0s and 1s, the corresponding natural number. Note again that here the $\sum b_{i+1} * 2^i$ starting at i = 0 is evaluated the other way around than it's usually done.

```
gap> BinToDec([ 0, 0, 1 ]);
4
gap> BinToDec([ 0, 0, 1, 0, 0, 0, 0 ]);
4
gap> BinToDec([ ]);
0
```

2.3.3 IsAcceptedWordByPredicaton

The function IsAcceptedWordByPredicaton checks if a list of natural numbers L or a list of binary representation L is accepted by the Predicaton P. Compare with IsRecognizedByAut (2.2.22), which uses the letters instead of the words.

```
Example _
gap> P:=Predicaton(Automaton("det", 5, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],
> [ [ 2, 2, 2, 2, 5 ], [ 4, 2, 2, 3, 2 ], [ 2, 2, 2, 2, 2 ], [ 2, 2, 5, 2, 2 ] ],
> [1], [5]), [1, 2]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 4 letters with 5 states,
the variable position list [ 1, 2 ] and the following transitions:
             1 2 3 4 5
  [0,0] | 2 2 2 2 5
  [1,0] | 4 2 2 3 2
  [0,1]
          2 2 2 2 2
          2 2 5
  [1,1]
Initial states: [ 1 ]
                [5]
Final states:
gap> IsAcceptedWordByPredicaton(P, [ 7, 4 ]);
true
gap> IsAcceptedWordByPredicaton(P, [ DecToBin(7), DecToBin(4) ]);
gap> IsAcceptedWordByPredicaton(P, [ [ 1, 1, 1, 0 ], [ 0, 0, 1, 0, 0, 0 ] ]);
true
gap> IsRecognizedByAut(P, [ [ 1, 0 ], [ 1, 0 ], [ 1, 1 ] ]); # 1st row = 7, 2nd row = 4
true
```

2.3.4 AcceptedWordsByPredicaton

The function AcceptedWordsByPredicaton returns the accepted words of the Predicaton *P* up to an upper bound *b* (on default b=10), either a positive integer or a list with positive integers as an individual bound for each variable. Alternatively, list of lists where each list contains the to be tested values is also allowed.

```
Example
gap> P:=Predicaton(Automaton("det", 5, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],
> [[2, 2, 2, 2, 5], [4, 2, 2, 3, 2], [2, 2, 2, 2, 2], [2, 2, 5, 2, 2]],
> [1], [5]), [1, 2]);;
gap> AcceptedWordsByPredicaton(P, [ 10, 20 ]);
[ [7, 4] ]
gap> P:=Predicaton(Automaton("det", 3, [ [ 0 ], [ 1 ] ],
> [ [ 1, 3, 2 ], [ 2, 1, 3 ] ], [ 1 ], [ 1 ]), [ 1 ]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 3 states,
the variable position list [ 1 ] and the following transitions:
          1 2 3
  [ 0 ]
          1 3 2
  [1] | 2 1 3
Initial states: [ 1 ]
Final states:
                [ 1 ]
gap> AcceptedWordsByPredicaton(P, 29);
[[0],[3],[6],[9],[12],[15],[18],[21],[24],[27]]
gap> AcceptedWordsByPredicaton(P, [ [121..144] ]);
[ [ 123 ], [ 126 ], [ 129 ], [ 132 ], [ 135 ], [ 138 ], [ 141 ], [ 144 ] ]
```

2.3.5 DisplayAcceptedWordsByPredicaton

The function DisplayAcceptedWordsByPredicaton prints the accepted words of the Predicaton *P* in a nice way. For one variable as a "list" with YES/no, for two variables as a "matrix" containing YES/no and for three variables as a "matrix", which entries are the third accepted natural numbers. The optional parameter *b* gives an upper bound for the displayed natural numbers, where either a positive integer or a list of positive integers denotes the maximal natural numbers which are asked for. The second optional parameter, if true allows to reduce YES/no to Y/n for the case of one variable.

```
Example

gap> P:=Predicaton(Automaton("det", 5, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],

> [ [ 2, 2, 2, 3, 5 ], [ 4, 2, 2, 3, 2 ], [ 2, 2, 2, 3, 2 ], [ 2, 2, 5, 3, 2 ] ],

> [ 1 ], [ 5 ]), [ 1, 2 ]);;

gap> AcceptedWordsByPredicaton(P);

[ [ 5, 4 ], [ 5, 6 ], [ 7, 4 ], [ 7, 6 ] ]

gap> DisplayAcceptedWordsByPredicaton(P, [8,10]);

If the following words are accepted by the given automaton, then: YES, otherwise if not accepted: no.
```

```
0
                                             10
   0 | no
          no
              no
                  no
                      no
                         no
                             no
                                 no
                                     no
                                         no
                                             no
   1 | no
                  no
              no
                      no
                          no
                             no
      no
          no
                  no
                             no
                                             no
              no
                     no
                         no
                                 no
                                     no
                                         no
      no
          no
                                             no
              no
                  no
                     no
                         no
                             no
                                 no
                                     no
                                         no
      no
          no
              no
                  no
                     no
                         no
                             no
                                 no
                                     no
                                         no
                                             no
      no
              no
                  no
                      YES no
                             YES no
                                     no
      no
                         no
          no
              no
                  no
                      no
                             no
                                 no
                                     no
                                         no
  7
                             YES no
                      YES no
      no
          no
                                             no
              no
                  no
                                     no
                         no
          no
              no
                  no
                     no
                             no
                                 no
                                     no
gap> P:=Predicaton(Automaton("det", 5, [ [ 0 ], [ 1 ] ],
> [[3, 2, 5, 4, 4], [3, 2, 4, 2, 4]],
> [1], [3, 4, 5, 1]), [1]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5
  [0] | 3 2 5 4 4
  [1] | 3 2 4 2
Initial states: [ 1 ]
                [1,3,4,5]
Final states:
gap> AcceptedWordsByPredicaton(P, 19);
[[0],[1],[2],[3],[4],[5]]
gap> DisplayAcceptedWordsByPredicaton(P, 29, true);
If the following words are accepted by the given automaton, then: Y,
otherwise if not accepted: n.
                2: Y
                       3: Y
                              4: Y
                                    5: Y
                                           6: n
  0: Y
         1: Y
                                                  7: n
                                                         8: n
  10: n 11: n
               12: n 13: n 14: n
                                   15: n 16: n
                                                 17: n
                                                        18: n
                                                              19: n
        21: n
               22: n 23: n 24: n
                                   25: n 26: n
                                                27: n
                                                       28: n
```

2.3.6 DisplayAcceptedWordsByPredicatonInNxN

The function DisplayAcceptedWordsByPredicatonInNxN prints the accepted words of the Predicaton P with a variable position list of length two in a fancy way in $\mathbb{N} \times \mathbb{N}$. It "draws" the natural number solutions of linear equations, which can be seen, due to the linearity, as "lines". The optional parameter 1 gives an upper bound for the displayed accepted words, it must be a list containing two positive integers.

```
Example

gap> P:=Predicaton(Automaton("det", 14, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],

> [ [ 6, 2, 2, 3, 4, 2, 2, 3, 7, 2, 10, 12, 12, 14 ],

> [ 2, 2, 12, 2, 9, 11, 7, 7, 2, 13, 2, 2, 7, 2 ],

> [ 2, 2, 12, 2, 7, 8, 14, 14, 2, 14, 2, 2, 14, 2 ],

> [ 5, 2, 2, 12, 3, 2, 2, 12, 7, 2, 13, 2, 2, 14 ] ],
```

```
> [ 1 ], [ 12, 13, 14 ]), [ 1, 2 ]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 4 letters with 14 states,
the variable position list [\ 1,\ 2\ ] and the following transitions:
           1 2 3 4 5 6 7 8 9 10 11 12 13 14
 [ 0, 0 ]
              6
                   2
                      3
                               2
                 2
                            2
                                       2 10 12 12 14
 [ 1, 0 ]
              2
                2
                   12 2
                           11 7 7
                                     2 \quad 13 \quad 2 \quad 2 \quad 7 \quad 2
                         9
                   12 2 7 8 14 14 2 14 2 2 14 2
 [0,1]
          2
                2
 [1,1] | 5 2 2 12 3 2 2 12 7 2 13 2 2 14
Initial states: [ 1 ]
Final states: [ 12, 13, 14 ]
gap> DisplayAcceptedWordsByPredicationInNxN(P, [ 15, 15 ]);
 15 -
 14 -
                                      0
                                  0
 12 -
                              0
 11 -
                          0
 10 -
                   0
  8 -
               0
                   0
   6 -
                      0
                          0
  3 -
   2 -
   1 -
                                          0
  0 -
             --|---|---|---|---|---|---|---|---|---|---|
                                  7 8
                                         9 10 11 12 13 14 15
           1
                   3
                      4
                          5
                              6
```

2.3.7 AutomatonOfPredicaton

```
▷ AutomatonOfPredicaton(P) (function)
▷ AutOfPredicaton(P) (function)
```

The function AutomatonOfPredicaton returns the Automaton of a Predicaton P.

```
gap> P:=Predicaton(Automaton("det", 4, [[0], [1]],
> [[4, 2, 3, 3], [3, 2, 2, 3]], [1], [3, 4, 1]), [1]);
< Predicaton: deterministic finite automaton on 2 letters with 4 states
and the variable position list [1]. >
gap> AutomatonOfPredicaton(P);
< deterministic automaton on 2 letters with 4 states >
```

2.3.8 VariablePositionListOfPredicaton

```
▷ VariablePositionListOfPredicaton(P) (function)

▷ VarPosListOfPredicaton(P) (function)
```

The function VariablePositionListOfPredicaton returns the variable position list of a Predicaton P.

```
Example

gap> P:=Predicaton(Automaton("det", 5, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],

> [ [ 1, 2, 2, 3, 2 ], [ 4, 2, 2, 5, 2 ], [ 2, 2, 1, 2, 3 ], [ 2, 2, 4, 2, 5 ] ],

> [ 1 ], [ 1 ]), [ 4, 9 ]);;

gap> VariablePositionListOfPredicaton(P);
[ 4, 9 ]
```

2.3.9 SetVariablePositionListOfPredicaton

```
▷ SetVariablePositionListOfPredicaton(P, 1) (function)
▷ SetVarPosListOfPredicaton(P, 1) (function)
```

The function SetVariablePositionListOfPredicaton sets the variable position list of a Predicaton P, permuting the alphabet if necessary, see PermutedAlphabetPredicaton (2.3.21).

```
Example

gap> P:=Predicaton(Automaton("det", 5, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],

> [ [ 1, 2, 2, 3, 2 ], [ 4, 2, 2, 5, 2 ], [ 2, 2, 1, 2, 3 ], [ 2, 2, 4, 2, 5 ] ],

> [ 1 ], [ 1 ]), [ 4, 9 ]);;

gap> SetVariablePositionListOfPredicaton(P, [ 1, 2 ]);

gap> VariablePositionListOfPredicaton(P);

[ 1, 2 ]
```

2.3.10 ProductLZeroPredicaton

```
\triangleright ProductLZeroPredicaton(P) (function)
```

The function ProductLZeroPredicaton takes the Predicaton P and adds a new state. This new state is final and is reached through $[0, \ldots, 0]$ from all Final states. Hence the returned Predicaton recognizes the product of the languages of the given Predicaton and the language containing all the zero words.

```
\_ Example \_
gap> P:=Predicaton(Automaton("det", 5, [ [ 0 ], [ 1 ] ], [ [ 3, 2, 4, 2, 2 ],
> [2, 2, 2, 5, 2]], [1], [5]), [1]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
     1 2 3 4 5
  [0] | 3 2 4 2 2
  [1] | 2 2 2 5 2
 Initial states: [ 1 ]
 Final states: [5]
gap> IsAcceptedWordByPredicaton(P, [ [ 0, 0, 1 ] ]);
gap> IsAcceptedWordByPredication(P, [ [ 0, 0, 1, 0 ] ]);
false
gap> PredicatonToRatExp(P);
[0][0][1]
gap> Q:=ProductLZeroPredication(P);;
gap> Display(Q);
Predicaton: nondeterministic finite automaton on 2 letters with 6 states,
the variable position list [ 1 ] and the following transitions:
       1 2 3 4 5

    [0]
    [3]
    [2]
    [4]
    [2]
    [6]

    [1]
    [2]
    [2]
    [5]
    [2]
    []

 Initial states: [ 1 ]
Final states: [5,6]
gap> IsAcceptedWordByPredicaton(Q, [ [ 0, 0, 1 ] ]);
gap> IsAcceptedWordByPredication(Q, [ [ 0, 0, 1, 0 ] ]);
true
gap> PredicationToRatExp(Q);
[ 0 ][ 0 ][ 1 ]([ 0 ][ 0 ]*U@)
gap> M:=MinimalAut(Q);;
gap> M:=PermutedStatesAut(M, [ 5, 2, 4, 3, 1 ]);;
gap> Display(M);
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
     | 1 2 3 4 5
______
  [0] | 3 2 4 2 5
  [1] | 2 2 2 5 2
Initial states: [ 1 ]
 Final states: [5]
gap> PredicationToRatExp(M);
[0][0][1][0]*
```

2.3.11 RightQuotientLZeroPredicaton

The function RightQuotientLZeroPredicaton takes the Predicaton P and runs through all final states. If a Final state is reached with $[0, \ldots, 0]$ then this state is added to the final states. Hence the returned Predicaton recognizes the right quotient of the language of the given Predicaton with the language containing only the zero words.

```
_ Example .
gap> P:=Predicaton(Automaton("det", 6, [ [ 0 ], [ 1 ] ], [ [ 3, 2, 4, 2, 6, 2 ],
> [2, 2, 2, 5, 2, 2]], [1], [6]), [1]);;
gap> Display(P);
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 6 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5 6
  [0] | 3 2 4 2 6 2
  [1] | 2 2 2 5 2 2
Initial states: [ 1 ]
Final states:
              [6]
gap> IsAcceptedWordByPredicaton(P, [ 4 ]);
gap> IsAcceptedWordByPredicaton(P, [ [ 0, 0, 1 ] ]);
gap> IsAcceptedWordByPredication(P, [ [ 0, 0, 1, 0 ] ]);
true
gap> PredicatonToRatExp(P);
[0][0][1][0]
gap> Q:=RightQuotientLZeroPredicaton(P);;
gap> Display(Q);
Predicaton: nondeterministic finite automaton on 2 letters with 6 states,
the variable position list [ 1 ] and the following transitions:
                 2
                                    5
        1
                        3
                              4
  [0] | [3] [2] [4] [2] [6] [2]
  [1] | [2] [2] [5] [2] [2]
Initial states: [ 1 ]
Final states: [5,6]
gap> IsAcceptedWordByPredicaton(Q, [ 4 ]);
true
gap> IsAcceptedWordByPredicaton(Q, [ [ 0, 0, 1 ] ]);
gap> IsAcceptedWordByPredicaton(Q, [ [ 0, 0, 1, 0 ] ]);
true
gap> PredicationToRatExp(Q);
[ 0 ] [ 0 ] [ 1 ] ([ 0 ] U@)
gap> M:=MinimalAut(Q);;
gap> M:=PermutedStatesAut(M, [ 6, 2, 5, 4, 3, 1 ]);;
gap> Display(M);
Predicaton: deterministic finite automaton on 2 letters with 6 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5 6
 [0] | 3 2 4 2 6 2
  [1] | 2 2 2 5 2 2
 Initial states: [ 1 ]
```

```
Final states: [5, 6]

gap> IsAcceptedWordByPredicaton(M, [4]);

true

gap> PredicatonToRatExp(M);

[0][0][1]([0]U@)
```

2.3.12 NormalizedLeadingZeroPredicaton

```
▷ NormalizedLeadingZeroPredicaton(P)
```

(function)

The function NormalizedLeadingZeroPredicaton returns the union of ProductLZeroPredicaton (2.3.10) and RightQuotientLZeroPredicaton (2.3.11) of the given Predicaton P. Therefore the returned Predicaton accepts any previously accepted words with cancelled or added leading zeros.

```
_{-} Example _{-}
gap> P:=Predicaton(Automaton("det", 7, [ [ 0 ], [ 1 ] ], [ [ 3, 2, 4, 2, 6, 2, 2],
> [ 2, 2, 7, 5, 2, 2, 2 ] ], [ 1 ], [ 6, 7 ]), [ 1 ]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 7 states,
the variable position list [ 1 ] and the following transitions:
       1 2 3 4 5 6 7
 [0] | 3 2 4 2 6 2 2
  [1] | 2 2 7 5 2 2 2
 Initial states: [ 1 ]
 Final states: [6,7]
gap> IsAcceptedWordByPredicaton(P, [ [ 0, 1 ] ]);
true
gap> IsAcceptedWordByPredicaton(P, [ [ 0, 1, 0 ] ]);
false
gap> IsAcceptedWordByPredicaton(P, [ [ 0, 0, 1 ] ]);
false
gap> IsAcceptedWordByPredication(P, [ [ 0, 0, 1, 0 ] ]);
gap> PredicationToRatExp(P);
[ 0 ]([ 1 ]U[ 0 ][ 1 ][ 0 ])
gap> Q:=NormalizedLeadingZeroPredication(P);;
gap> Display(Q);
Predicaton: nondeterministic finite automaton on 2 letters with 16 states,
the variable position list [ 1 ] and the following transitions:
       1 1
             2
                         3
  [0] | [2] [4] [3]
                                [ 3 ]
                                        [7] [8]
                                                      [ 9 ]
  [1] | [3]
                  [5]
                         [ 3 ]
                                [6]
                                        [ 3 ]
                                               [ 3 ]
                                                      [ 3 ]
                                                              [ 3 ]
                  10
                         11
                                12
                                        13
                                               14
                                                      15
  [0] | [9]
                [11] [13] [12] [12] [12] [16] [12]
 [1] | [3] [12] [14] [12] [15] [12] [12]
 Initial states: [ 1, 10 ]
 Final states: [5, 7, 8, 9, 14, 15, 16]
gap> AcceptedWordsByPredication(Q, 10);
```

```
[[2],[4]]
gap> IsAcceptedWordByPredicaton(Q, [ [ 0, 1 ] ]);
true
gap> IsAcceptedWordByPredicaton(Q, [ [ 0, 1, 0 ] ]);
true
gap> IsAcceptedWordByPredicaton(Q, [ [ 0, 0, 1 ] ]);
gap> IsAcceptedWordByPredication(Q, [ [ 0, 0, 1, 0 ] ]);
true
gap> M:=MinimalAut(Q);;
gap> M:=PermutedStatesAut(M, [ 3, 5, 1, 4, 2 ]);;
gap> Display(M);
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5
  [0] | 3 2 4 2 5
  [1] | 2 2 5 5 2
 Initial states: [ 1 ]
Final states:
              [5]
gap> AcceptedWordsByPredication(M, 10);
[[2],[4]]
gap> PredicationToRatExp(M);
[ 0 ]([ 0 ][ 1 ]U[ 1 ])[ 0 ]*
```

2.3.13 SortedAlphabetPredicaton

```
▷ SortedAlphabetPredicaton(P) (function)
▷ SortedAbcPredicaton(P) (function)
```

The function SortedAlphabetPredicaton returns the Predicaton P with the component-wise sorted Alphabet (from right to left with 0 < 1).

```
_{-} Example _{-}
gap> P:=Predicaton(Automaton("det", 3, [ [ 0, 0, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ],
> [ 1, 0, 1 ], [ 0, 1, 0 ], [ 0, 1, 1 ], [ 1, 1, 0 ], [ 1, 1, 1 ] ],
> [[1, 3, 3], [3, 2, 3], [3, 2, 3], [2, 3, 3], [3, 1, 3],
> [ 1, 3, 3 ], [ 1, 3, 3 ], [ 3, 2, 3 ] ], [ 1 ], [ 1 ]), [ 1, 2, 3 ]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 8 letters with 3 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
             1 2 3
  [0,0,0] | 1 3 3
  [ 0, 0, 1 ]
             3 2 3
  [ 1, 0, 0 ]
             3
                   2 3
  [1, 0, 1]
             2 3 3
                  1 3
  [ 0, 1, 0 ]
             3
  [ 0, 1, 1 ]
             | 1 3 3
 [ 1, 1, 0 ]
             1 3 3
 [1,1,1] | 3 2 3
Initial states: [ 1 ]
               Γ 1 T
Final states:
```

```
gap> Q:=SortedAlphabetPredicaton(P);;
gap> Display(Q);
Predicaton: deterministic finite automaton on 8 letters with 3 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
           1 2 3
 [0,0,0] | 1 3 3
 [1,0,0] | 3 2 3
 [ 0, 1, 0 ]
            3
 [ 1, 1, 0 ]
            | 1
 [ 0, 0, 1 ]
            3 2
 [ 1, 0, 1 ]
            2 3 3
 [0,1,1]
            1 3 3
 [1,1,1] | 3 2 3
Initial states: [ 1 ]
               Г 1 7
Final states:
```

2.3.14 FormattedPredicaton

```
▷ FormattedPredication(P)
```

(function)

The function computes first the NormalizedLeadingZeroPredication (2.3.12) and then the MinimalAut (2.2.18) of the Predication P.

```
_{-} Example _{-}
gap> P:=Predicaton(Automaton("det", 7, [ [ 0 ], [ 1 ] ], [ [ 3, 2, 4, 2, 6, 2, 2],
> [ 2, 2, 7, 5, 2, 2, 2 ] ], [ 1 ], [ 6, 7 ]), [ 1 ]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 7 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5 6 7
  [0] | 3 2 4 2 6 2 2
  [1] | 2 2 7 5 2 2 2
 Initial states: [ 1 ]
Final states: [6,7]
gap> PredicatonToRatExp(P);
[ 0 ]([ 1 ]U[ 0 ][ 1 ][ 0 ])
gap> M:=FormattedPredication(P);;
gap> Display(M);
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5
  [0] | 4 2 1 5 5
  [1] | 2 5 5 2 5
 Initial states: [ 3 ]
 Final states: [2]
gap> PredicatonToRatExp(M);
[ O ]([ O ][ 1 ]V[ 1 ])[ O ]*
```

2.3.15 IsValidInput

```
▷ IsValidInput(P, n) (function)
```

The function IsValidInput checks if the list n contains positive integers and if it is a valid variable position list of the given Predicaton P, i.e. variable position list is a subset of n.

2.3.16 ExpandedPredicaton

```
▷ ExpandedPredicaton(P, n) (function)
```

The function ExpandedPredicaton returns the Predicaton P with the new variable position list n. For each new variable position in n, the alphabet size doubles. In each step 0s and 1s are added at the correct position in all letters of the alphabet, whereas the transition matrix rows are copied accordingly. Formally this corresponds to the preimage of the homomorphism ignoring a component of the letters applied to the deterministic finite automaton.

```
gap> P:=Predicaton(Automaton("det", 3, [ [ 0 ], [ 1 ] ], [ [ 2, 2, 3 ],
> [3, 2, 2]], [1], [3]), [1]);
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 3 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3
 [0] | 2 2 3
 [1] | 3 2 2
Initial states: [ 1 ]
Final states:
               [ 3 ]
gap> Q:=ExpandedPredication(P, [ 1, 2, 3 ]);;
gap> Display(Q);
Predicaton: deterministic finite automaton on 8 letters with 3 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
             1 2 3
 [0,0,0] | 2
 [ 1, 0, 0 ]
             3
                  2 3
 [ 0, 1, 0 ]
             2
 [ 1, 1, 0 ]
            3 2 2
            2 2 3
 [0, 0, 1]
 [1, 0, 1] \mid 3 2 2
 [0,1,1] | 2 2 3
  [1,1,1] | 3 2 2
```

```
Initial states: [ 1 ]
Final states: [ 3 ]
```

2.3.17 ProjectedPredicaton

```
    ProjectedPredicaton(P, p) (function)
```

The function ProjectedPredicaton returns the Predicaton P with the new variable position list without p. The alphabet is halved, ignoring the 0s and 1s entries at position p relative to the VariablePositionList, whereas the transition matrix rows are combined accordingly. Formally this corresponds to the image of homomorphism which ignores the p-th component of the letters applied to the deterministic finite automaton. This function is used for the interpretation of the existence quantifier.

```
_{-} Example _{-}
gap> P:=Predicaton(Automaton("det", 3, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],
> [[1,3,3],[2,3,3],[3,1,3],[3,2,3]],[1],[1]),
> [ 1, 2 ]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 4 letters with 3 states,
the variable position list [ 1, 2 ] and the following transitions:
  [0,0] | 133
 [1, 0] | 2 3 3
 [0,1] \mid 313
 [1,1] | 3 2 3
Initial states: [ 1 ]
Final states:
               [ 1 ]
gap> Q:=ProjectedPredication(P, 1);;
gap> Display(Q);
Predicaton: deterministic finite automaton on 2 letters with 3 states,
the variable position list [ 2 ] and the following transitions:
        1 2 3
     ______
 [0] | 1 2 2
 [1] | 12
Initial states: [ 3 ]
               [2,3]
Final states:
gap> AcceptedWordsByPredication(P, 10);
[[0,0],[1,2],[2,4],[3,6],[4,8],[5,10]]
gap> AcceptedWordsByPredicaton(Q, 10);
[[0],[2],[4],[6],[8],[10]]
gap> PredicationToRatExp(P);
([1, 0][1, 1]*[0, 1]U[0, 0])*
gap> PredicationToRatExp(Q);
[ O ]([ O ]U[ 1 ])*U@
```

2.3.18 NegatedProjectedNegatedPredicaton

```
▷ NegatedProjectedNegatedPredication(P, p)
```

The function NegatedProjectedNegatedPredicaton returns the negated (NegatedAut (2.2.19)), projected (ProjectedPredicaton (2.3.17) with p) and negated Predicaton P. This function is used for the interpretation of the for all quantifier.

```
_{-} Example _{-}
gap> P:=Predicaton(Automaton("det", 2, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],
> [[1,2],[2,2],[2,2],[1,2]],[1],[1]),[1,2]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 4 letters with 2 states,
the variable position list [ 1, 2 ] and the following transitions:
           1 2
 [0,0] | 1 2
 [1,0] | 2 2
 [0,1] | 2 2
 [1,1] | 1 2
 Initial states: [ 1 ]
Final states: [1]
gap> AcceptedWordsByPredicaton(P, 5);
[[0,0],[1,1],[2,2],[3,3],[4,4],[5,5]]
gap> Q1:=ProjectedPredication(P, 1);;
gap> Display(Q1);
Predicaton: deterministic finite automaton on 2 letters with 1 state,
the variable position list [ 2 ] and the following transitions:
 [0] | 1
 [1] | 1
Initial states: [ 1 ]
Final states:
               [ 1 ]
gap> AcceptedWordsByPredicaton(Q1, 5);
[[0],[1],[2],[3],[4],[5]]
gap> Q2:=NegatedProjectedNegatedPredication(Q1, 2);;
gap> Display(Q2);
Predicaton: deterministic finite automaton on 1 letter with 1 state,
the variable position list [ ] and the following transitions:
      1
 [] | 1
Initial states: [ 1 ]
Final states:
               [1]
gap> AcceptedWordsByPredicaton(Q2);
[true]
```

2.3.19 IntersectionPredicata

```
▷ IntersectionPredicata(P1, P2, n) (function)
```

The function IntersectionPredicata returns the intersection (IntersectionAut (2.2.20)) of the Predicata of P1 and P2 after resizing (ExpandedPredicaton (2.3.16)) and sorting (SortedAlphabetPredicaton (2.3.13)) the alphabet to match the new variable position list n.

```
> [[4, 2, 2, 2, 5], [2, 2, 5, 2], [2, 2, 2, 3, 2], [4, 2, 2, 2, 2]],
> [ 1 ], [ 5 ]), [ 1, 2 ]);;
gap> Display(P1);
Predicaton: deterministic finite automaton on 4 letters with 5 states,
the variable position list [ 1, 2 ] and the following transitions:
           1 2 3 4 5
  [0,0] | 4 2 2 2 5
  [1,0] | 2 2 5 2 2
 [0,1] | 2 2 2 3 2
 [1,1] | 4 2 2 2 2
 Initial states: [ 1 ]
 Final states:
               [5]
gap> AcceptedByPredicaton(P1, 10);
[[4,2],[5,3]]
gap> P2:=Predicaton(Automaton("det", 6, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],
> [ [ 5, 2, 2, 3, 2, 6 ], [ 2, 2, 6, 2, 2, 2 ], [ 4, 2, 2, 2, 3, 2 ],
> [ 2, 2, 2, 2, 2, 2 ] ], [ 1 ], [ 6 ]), [ 1, 2 ]);;
gap> Display(P2);
Predicaton: deterministic finite automaton on 4 letters with 6 states,
the variable position list [ 1, 2 ] and the following transitions:
          1 2 3 4 5 6
  [0,0] | 5 2 2 3 2 6
  [1,0] | 2 2 6 2 2 2
 [0,1] | 4 2 2 2 3 2
  [1,1] | 2 2 2 2 2 2
 Initial states: [ 1 ]
 Final states: [6]
gap> AcceptedByPredicaton(P2, 10);
[[4,1],[4,2]]
gap> P3:=IntersectionPredicata(P1, P2, [ 1, 2 ]);;
gap> Display(P3);
Predicaton: deterministic finite automaton on 4 letters with 5 states,
the variable position list [ 1, 2 ] and the following transitions:
          1 2 3 4 5
 [0,0] | 1 2 2 2 4
  [1,0] | 2 2 1 2 2
 [0,1]
          | 2 2 2 3 2
 [1,1] | 2 2 2
 Initial states: [ 5 ]
 Final states:
             [ 1 ]
gap> AcceptedByPredicaton(P3, 10);
[[4,2]]
```

2.3.20 UnionPredicata

```
▷ UnionPredicata(P) (function)
```

The function UnionPredicata returns union (UnionAut (2.2.21)) of the Predicata of P1 and P2

after resizing (ExpandedPredicaton (2.3.16)) and sorting (SortedAlphabetPredicaton (2.3.13)) the alphabet to match the new variable position list n.

```
_{-} Example _{-}
gap> P1:=Predicaton(Automaton("det", 5, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],
> [ [ 4, 2, 2, 2, 5 ], [ 2, 2, 5, 2, 2 ], [ 2, 2, 2, 3, 2 ], [ 4, 2, 2, 2, 2 ] ],
> [ 1 ], [ 5 ]), [ 1, 2 ]);;
gap> Display(P1);
Predicaton: deterministic finite automaton on 4 letters with 5 states,
the variable position list [ 1, 2 ] and the following transitions:
          1 2 3 4 5
 [0,0] | 4 2 2 2 5
 [1,0] | 2 2 5 2 2
 [0,1] | 2 2 2 3 2
 [1,1] | 4 2 2 2 2
Initial states: [ 1 ]
Final states:
              [5]
gap> AcceptedByPredicaton(P1, 10);
[[4,2],[5,3]]
gap> P2:=Predicaton(Automaton("det", 6, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],
> [ [ 5, 2, 2, 3, 2, 6 ], [ 2, 2, 6, 2, 2, 2 ], [ 4, 2, 2, 2, 3, 2 ],
> [ 2, 2, 2, 2, 2, 2 ] ], [ 1 ], [ 6 ]), [ 1, 2 ]);;
gap> Display(P2);
Predicaton: deterministic finite automaton on 4 letters with 6 states,
the variable position list [ 1, 2 ] and the following transitions:
          1 2 3 4 5 6
 [0,0] | 5 2 2 3 2 6
 [1,0] | 2 2 6 2 2 2
 [0,1] | 4 2 2 2 3 2
 [1,1] | 2 2 2 2 2 2
 Initial states: [ 1 ]
Final states:
               「 6 T
gap> AcceptedByPredicaton(P2, 10);
[[4, 1], [4, 2]]
gap> P3:=UnionPredicata(P1, P2, [ 1, 2 ]);;
gap> Display(P3);
Predicaton: deterministic finite automaton on 4 letters with 6 states,
the variable position list [ 1, 2 ] and the following transitions:
          1 2 3 4 5 6
 [0,0] | 1 6 6 3 2 6
 [1,0] | 6 6 1 6 6 6
 [0,1] | 6 3 6 6 4 6
 [1,1] | 6 6 6 6 2 6
Initial states: [ 5 ]
Final states: [1]
gap> AcceptedWordsByPredicaton(P3, 9);
[[4,1],[4,2],[5,3]]
```

2.3.21 PermutedAlphabetPredicaton

```
    PermutedAlphabetPredicaton(A, 1)
    PermutedAbcPredicaton(A, 1)
    (function)
```

The function PermutedAlphabetPredicaton returns the Predicaton of the Automaton A with permuted alphabet according to 1 and accordingly swapped transition matrix rows. This is relevant for the first call of specific automata, where the variable order matters. E.g. the following automaton corresponds to the formula x + y = z, where the the variable x is at position 1, y at 2 and z at 3. So creating the automaton recognizing the same formula but with variable x at position x0, y1 at y2 and y3 at y4 and y5 at y6 are the permuted alphabet, i.e. each letter is permuted according to the given variable position list y2 (here y3, y4, y5).

```
Example
gap> A:=Automaton("det", 3, [ [ 0, 0, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ], [ 1, 0, 1 ],
> [ 0, 1, 0 ], [ 0, 1, 1 ], [ 1, 1, 0 ], [ 1, 1, 1 ] ],
> [[1, 3, 3], [3, 2, 3], [3, 2, 3], [2, 3, 3], [3, 1, 3], [1, 3, 3],
> [ 1, 3, 3 ], [ 3, 2, 3 ] ], [ 1 ], [ 1 ]);;
gap> DisplayAut(A);
deterministic finite automaton on 8 letters with 3 states
and the following transitions:
              1 2 3
  [0, 0, 0]
             | 1
                    3
                       3
 [0, 0, 1]
              1
                 3
                    2
 [ 1, 0, 0 ]
              3
  [1, 0, 1]
                 2
                       3
  [0, 1, 0]
                 3
                       3
                 1
                    3
                       3
  [0, 1, 1]
  [ 1, 1, 0 ]
                    3
                 1
  [1, 1, 1]
                3 2
Initial states: [ 1 ]
                [ 1 ]
Final states:
gap> P:=PermutedAlphabetPredicaton(A, [3,2,1]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 8 letters with 3 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
                 1 2 3
 [0, 0, 0]
                    3
                       3
                 1
  [ 1, 0, 0 ]
                 3
                    2
                       3
  [0, 0, 1]
                 3
                    2
                       3
  [ 1, 0, 1 ]
                 2
                    3
                       3
  [0,1,0]
                 3
                    1
                       3
  [ 1, 1, 0 ]
                 1
                    3
                       3
  [0, 1, 1]
                 1
  [1, 1, 1]
Initial states: [ 1 ]
                [ 1 ]
Final states:
```

2.3.22 PredicatonFromAut

```
▷ PredicatonFromAut(A, 1, n)
```

(function)

The function PredicatonFromAut returns the according to n resized (ExpandedPredicaton (2.3.16)) Predicaton of the Automaton A with the permuted alphabet (PermutedAlphabetPredicaton (2.3.21)), if the VariablePositionList I isn't sorted.

```
Example .
gap> A:=Automaton("det", 3, [ [ 0, 0, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ], [ 1, 0, 1 ],
> [ 0, 1, 0 ], [ 0, 1, 1 ], [ 1, 1, 0 ], [ 1, 1, 1 ] ],
> [[1, 3, 3], [3, 2, 3], [3, 2, 3], [2, 3, 3], [3, 1, 3], [1, 3, 3],
> [ 1, 3, 3 ], [ 3, 2, 3 ] ], [ 1 ], [ 1 ]);;
gap> DisplayAut(A);
deterministic finite automaton on 8 letters with 3 states
and the following transitions:
             1 2 3
 [ 0, 0, 0 ]
            1 3 3
 [0,0,1]
             3 2 3
 [ 1, 0, 0 ]
             3
                  2 3
 [ 1, 0, 1 ]
                2
             3
                      3
 [0, 1, 0]
                3
 [0,1,1]
                1
                      3
 [ 1, 1, 0 ]
             1 3 3
             3 2 3
 [1, 1, 1]
Initial states: [ 1 ]
Final states:
               [ 1 ]
gap> P:=PredicatonFromAut(A,[3,2,1],[1,2,3,4]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 16 letters with 3 states,
the variable position list [ 1, 2, 3, 4 ] and the following transitions:
                1 2 3
 [0,0,0,0]
                  1
                     3 3
 [ 1, 0, 0, 0 ]
                   3
                      2 3
 [0,0,1,0]
                3
                      2
                        3
  [1, 0, 1, 0]
                   2
                      3
                         3
 [ 0, 1, 0, 0 ]
                3
                      1
                         3
 [ 1, 1, 0, 0 ]
                1
                     3
                        3
 [ 0, 1, 1, 0 ]
                  1
                     3
                        3
 [ 1, 1, 1, 0 ]
                   3 2 3
 [0, 0, 0, 1]
                   1 3
 [ 1, 0, 0, 1 ]
                   3
                     2
                3
 [ 0, 0, 1, 1 ]
                3
                     2
                        3
  [ 1, 0, 1, 1 ]
                2
                      3
                        3
 [ 0, 1, 0, 1 ]
                3
                      1
                         3
 [ 1, 1, 0, 1 ]
                1 3 3
 [ 0, 1, 1, 1 ]
                  1 3 3
 [ 1, 1, 1, 1 ]
Initial states: [ 1 ]
               [ 1 ]
Final states:
```

2.3.23 FinitelyManyWordsAccepted

(function)

The function FinitelyManyWordsAccepted checks if a Predicaton has only finitely many solutions, except the leading zero completion.

2.3.24 PredicatonToRatExp

```
▷ PredicatonToRatExp(P)
```

(function)

The function PredicatonToRatExp returns the regular expression of the Automaton or Predicaton P.

```
Example

gap> # Continued

gap> P:=Predicaton(Automaton("det", 5, [ [ 0 ], [ 1 ] ],

> [ [ 5, 5, 5, 4, 5 ], [ 2, 3, 4, 5, 5 ] ], [ 1 ], [ 4 ]), [ 1 ]);;

gap> PredicatonToRatExp(P);
[ 1 ][ 1 ][ 1 ][ 0 ]*
```

2.3.25 WordsOfRatExp

```
▷ WordsOfRatExp(r, depth)
```

(function)

The function WordsOfRatExp returns all words which can be created from the regular expression r by applying the star operator at most depth times.

```
_ Example
gap> A:=Automaton("det", 3,
> [ [ 0, 0, 0 ], [ 1, 0, 0 ], [ 0, 1, 0 ], [ 1, 1, 0 ],
> [0,0,1],[1,0,1],[0,1,1],[1,1,1]],
> [ [ 1, 3, 3 ], [ 3, 2, 3 ], [ 3, 2, 3 ], [ 2, 3, 3 ],
> [3, 1, 3], [1, 3, 3], [1, 3, 3], [3, 2, 3]],
> [1], [1]);
< deterministic automaton on 8 letters with 3 states >
gap> r:=PredicatonToRatExp(A);
([ 1, 1, 0 ]([ 1, 0, 0 ]U[ 0, 1, 0 ]U[ 1, 1, 1 ])*
 [ 0, 0, 1 ]U[ 0, 0, 0 ]U[ 1, 0, 1 ]U[ 0, 1, 1 ])*
gap> WordsOfRatExp(r, 1);
[[[1, 1, 0], [1, 0, 0], [0, 0, 1]],
 [[1, 1, 0], [0, 1, 0], [0, 0, 1]],
 [[1, 1, 0], [1, 1, 1], [0, 0, 1]],
 [[1, 1, 0], [], [0, 0, 1]],
 [[0,0,0]],[[1,0,1]],
```

```
[ [ 0, 1, 1 ] ],
[ [ ] ] ]
```

2.3.26 WordsOfRatExpInterpreted

(function)

The function WordsOfRatExpInterpreted returns all words which can be created from the regular expression r by applying the star operator at most depth times (default depth=1) as a list of natural numbers.

2.4 Special functions on Predicata

2.4.1 IsValidInputList

```
▷ IsValidInputList(1, n)
```

(function)

The function IsValidInputList checks if the lists 1 and n correct lists for calling a Predicaton, i.e. both lists must contain positive unique integers and 1 must be a subset of n.

```
gap> IsValidInputList([1,2,3], [1,2,3,4]);
true
gap> IsValidInputList([1,1,2,3], [1,2,3,4]);
Variable position list must contain unique positive integers.
false
gap> IsValidInputList([4,3,5], [4,5]);
Variable position list must be a subset of requested size list.
Compare: [4,3,5] with [4,5]
false
gap> IsValidInputList([4,3,5], [3,4,5,6]);
true
```

2.4.2 BooleanPredicaton

```
\triangleright BooleanPredicaton(B, n)
```

(function)

The function BooleanPredicaton returns the Predicaton which consists of one state. This state is a final state if B is "true" and a non-final state if B is "false". The list n gives the resized variable position list.

```
_{-} Example _{-}
gap> P1:=BooleanPredicaton("true",[]);;
gap> Display(P1);
Predicaton: deterministic finite automaton on 1 letter with 1 state,
the variable position list [\ ] and the following transitions:
  [] | 1
Initial states: [ 1 ]
Final states: [1]
gap> P2:=BooleanPredicaton("false", [ 1, 2 ]);;
gap> Display(P2);
Predicaton: deterministic finite automaton on 4 letters with 1 state,
the variable position list [ 1, 2 ] and the following transitions:
       | 1
 [0,0] | 1
  [1,0] | 1
  [0,1] | 1
  [1,1] | 1
Initial states: [ 1 ]
              [ ]
Final states:
```

2.4.3 PredicataEqualAut

▷ PredicataEqualAut

(global variable)

The variable PredicataEqualAut returns the Automaton which recognizes the language of x = y.

2.4.4 EqualPredicaton

 \triangleright EqualPredicaton(1, n)

(function)

The function EqualPredicaton returns the Predicaton which recognizes the language of x = y, where x is at position 1[1] and y is at position 1[2]. The list n gives the resized variable position list.

```
_{-} Example _{-}
gap> P1:=EqualPredication([ 1, 2 ], [ 1, 2 ]);;
gap> Display(P1);
Predicaton: deterministic finite automaton on 4 letters with 2 states,
the variable position list [ 1, 2 ] and the following transitions:
         | 1 2
 [0,0] | 12
 [1,0] | 2 2
 [0, 1] | 2 2
 [1,1] | 1 2
Initial states: [ 1 ]
Final states: [1]
gap> P2:=EqualPredicaton([ 3, 4 ], [ 1, 2, 3, 4 ]);;
gap> Display(P2);
Predicaton: deterministic finite automaton on 16 letters with 2 states,
the variable position list [ 1, 2, 3, 4 ] and the following transitions:
                1 2
 [0, 0, 0, 0] \mid 1 2
 [ 0, 0, 1, 0 ]
                [0,0,0,1]
                2 2
 [ 0, 0, 1, 1 ]
               | 1 2
 [ 1, 0, 0, 0 ]
               | 1 2
 [1, 0, 1, 0] \mid 2 2
 [ 1, 0, 0, 1 ]
 [1,0,1,1] | 1 2
 [0,1,0,0] | 1 2
 [ 0, 1, 1, 0 ]
                | 2 2
 [ 0, 1, 0, 1 ]
                2
               1 2
 [ 0, 1, 1, 1 ]
 [1, 1, 0, 0] | 1 2
 [1, 1, 1, 0] \mid 2 2
 [1, 1, 0, 1] \mid 2 2
 [ 1, 1, 1, 1 ]
Initial states: [ 1 ]
               [ 1 ]
Final states:
```

2.4.5 PredicataAdditionAut

```
▷ PredicataAdditionAut
```

(global variable)

The variable PredicataAdditionAut returns the Automaton which recognizes the language x+y=z.

```
gap> A:=PredicataAdditionAut;
< deterministic automaton on 8 letters with 3 states >
gap> DisplayAut(A);
deterministic finite automaton on 8 letters with 3 states
```

```
and the following transitions:
              1 2 3
  [ 0, 0, 0 ]
              1
                     3
                        3
  [ 1, 0, 0 ]
                  3
                     2
                        3
  [0, 1, 0]
                  3
  [ 1, 1, 0 ]
                  2
  [ 0, 0, 1 ]
                  3
                     1
                        3
  [ 1, 0, 1 ]
                  1
                     3
                        3
  [ 0, 1, 1 ]
                  1
  [ 1, 1, 1 ]
                 3
Initial states: [ 1 ]
Final states:
```

2.4.6 AdditionPredicaton

```
▷ AdditionPredication(1, n) (function)
```

The function AdditionPredicaton returns the Predicaton which recognizes the language x+y=z, where x is at position 1[1], y is at position 1[2] and z is at position 1[3]. The list n gives the resized variable position list.

```
Example
gap> P:=AdditionPredicaton([1,2,3],[1,2,3]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 8 letters with 3 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
               1 2 3
  [0,0,0] \mid 1
                     3
                        3
  [ 1, 0, 0 ]
              3
                     2
                        3
  [ 0, 1, 0 ]
                  3
                     2
  [ 1, 1, 0 ]
                  2
  [0,0,1]
  [ 1, 0, 1 ]
                  1
                     3
                        3
  [0, 1, 1]
                  1
  [ 1, 1, 1 ]
                  3
Initial states: [ 1 ]
Final states:
                 [ 1 ]
gap> DisplayAcceptedByPredicaton(P, [ 15, 15, 30 ]);
                                                 10
                                                         12
   0 | 0
               2
                   3
                            5
                                6
                                    7
                                                         12
           1
                        4
                                        8
                                             9
                                                 10
                                                     11
                                                             13
                                                                 14
                                                                      15
   1 | 1
           2
               3
                   4
                       5
                            6
                                7
                                    8
                                        9
                                             10
                                                 11
                                                     12
                                                         13
                                                             14
                                                                  15
                                                                      16
   2 | 2
           3
               4
                   5
                       6
                            7
                                8
                                    9
                                        10
                                             11
                                                 12
                                                     13
                                                         14
                                                             15
                                                                 16
                                                                      17
   3 | 3
               5
                   6
                       7
                                9
                                    10
                                             12
                                                 13
                                                         15
                                                             16
                                                                      18
           4
                            8
                                        11
                                                     14
                                                                 17
   4 | 4
               6
                   7
                       8
                            9
                                10
                                    11
                                        12
                                             13
                                                 14
                                                     15
                                                         16
                                                             17
                                                                 18
                                                                      19
   5 | 5
               7
                   8
                            10
                                11
                                    12
                                        13
                                             14
                                                 15
                                                     16
                                                         17
                                                             18
                                                                 19
                                                                      20
   6 | 6
           7
               8
                   9
                       10
                                12
                                    13
                                        14
                                             15
                                                 16
                                                     17
                                                         18
                                                             19
                                                                 20
                                                                      21
                            11
   7 | 7
           8
               9
                   10 11
                            12
                                13
                                    14
                                             16
                                                 17
                                                     18
                                                         19
                                                             20
                                                                 21
                                                                      22
                                        15
   8 | 8
           9
                  11 12
                                                             21
                                                                 22
                                                                      23
               10
                           13
                                14
                                    15
                                        16
                                            17
                                                 18
                                                    19
                                                         20
```

```
10
                                 15
                                      16
                                                        20
                                                            21
                                                                 22
                                                                      23
                                                                          24
              11
                   12
                        13
                            14
                                          17
                                               18
                                                    19
10 | 10
          11
               12
                   13
                        14
                            15
                                 16
                                      17
                                          18
                                               19
                                                    20
                                                        21
                                                             22
                                                                 23
                                                                      24
                                                                          25
          12
                                                            23
                                                                 24
                                                                          26
11
     11
              13
                   14
                        15
                            16
                                 17
                                      18
                                          19
                                               20
                                                    21
                                                        22
                                                                      25
12
                                      19
                                               21
                                                   22
                                                        23
                                                            24
                                                                 25
                                                                          27
     12
          13
              14
                   15
                        16
                            17
                                 18
                                          20
                                                                      26
13 | 13
                   16
                        17
                                 19
                                      20
                                          21
                                               22
                                                   23
                                                        24
                                                            25
                                                                 26
                                                                      27
                                                                          28
          14
               15
                            18
14 | 14
          15
               16
                   17
                        18
                            19
                                 20
                                     21
                                               23
                                                   24
                                                        25
                                                            26
                                                                 27
                                                                          29
15 | 15
          16
              17
                   18
                        19
                            20
                                 21
                                     22
                                          23
                                               24
                                                   25
                                                        26
                                                            27
                                                                 28
                                                                      29
                                                                          30
```

2.4.7 AdditionPredicatonNSummands

```
▷ AdditionPredicationNSummands(N, 1, n)
```

(function)

The function AdditionPredicatonNSummands calls the function AdditionPredicatonNSummandsExplicit (2.5.2) and returns the Predicaton ognizing the language $x_1 + ... x_N = x_{N+1}$. The variables position list I gives the positions of the variables x_i and the list n gives the resized variable posi-The two functions AdditionPredicatonNSummandsIterative (2.5.3) and tion list. AdditionPredicatonNSummandsRecursive (2.5.4) create it in a more naive way, i.e. first creates the Predicaton from the simple automaton recognizing x + y = z step by step and the second creates the Predicaton recursively by splitting the variable position list.

```
Example
gap> P:=AdditionPredicationNSummands(3, [1, 6, 3, 9], [1, 3, 6, 9]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 16 letters with 4 states,
the variable position list [ 1, 3, 6, 9 ] and the following transitions:
                 1 2 3 4
  [ 0, 0, 0, 0 ]
                    1
                          2
  [ 1, 0, 0, 0 ]
                 4
                       2
                    4
                       2
  [0, 0, 1, 0]
                 [ 1, 0, 1, 0 ]
                    2
  [ 0, 1, 0, 0 ]
                    4
                       2
  [ 1, 1, 0, 0 ]
                    2
  [0, 1, 1, 0]
                    2
  [1, 1, 1, 0]
  [ 0, 0, 0, 1 ]
                    4
                       1
  [1, 0, 0, 1]
                    1
  [ 0, 0, 1, 1 ]
                    1
  [ 1, 0, 1, 1 ]
                    4
  [ 0, 1, 0, 1 ]
                    1
                       4
  [1, 1, 0, 1]
                    4
                       2
  [0, 1, 1, 1]
  [ 1, 1, 1, 1 ]
                    2 4 3 4
Initial states: [ 1 ]
                 [ 1 ]
Final states:
```

2.4.8 TimesNPredicaton

```
\triangleright TimesNPredicaton(N, 1, n) (function)
```

The function TimesNPredicaton returns the Predicaton calls the function TimesNPredicatonExplicit (2.5.5) and returns the Predicaton recognizing the language $N \cdot x = y$, where x is at position 1[1] and y is at position 1[2]. Note that $N \cdot x$ is a shortcut for N-times the addition of x. The list n gives the resized variable position list. The function TimesNPredicatonRecursive creates the Predicaton recursively from multiplications with N < 10.

2.4.9 SumOfProductsPredicaton

```
▷ SumOfProductsPredicaton(1, m, n) (function)
```

The function SumOfProductsPredicatonExplicit returns the Predicaton recognizing the language $\sum m_i \cdot x_i = 0$. The variables position list 1 gives the positions of the variables x_i , the list m gives the integers (positive or negative) and the list n gives the resized variable position list.

```
_ Example _
gap> P:=SumOfProductsPredication([ 1, 2, 3 ], [ 7, 4, -5 ], [ 1, 2, 3 ]);
< Predicaton: deterministic finite automaton on 8 letters with 16 states
and the variable position list [ 1, 2, 3 ]. >
gap> DisplayAcceptedByPredicaton(P, [ 15, 15, 100 ]);
                2
                    3
                        4
                             5
                                 6
                                     7
                                          8
                                              9
                                                   10 11 12 13 14 15
           1
   0 | 0
                             4
                                                  8
                3
                                     7
                                                           11
                        6
                                              10
                                                  __
                                                                    14
           5
                                 9
                                                       13
                ___
                    ___
                             ___
                                      ___
                                          ___
                                                   ___
                                                           ___
                ___
                    8
                        __
                             __
                                 __
                                     ___
                                          12
                                              ___
                                                   ___
                             11
                                                  15
                                     14
                                              ___
                                                           18
                10
                             ___
                                 ___
                                          ___
   7 | --
           ___
                        13
                            --
                                 ___
                                              17
                                                  --
                                                                    21
                                      ___
                                                           ___
   8 | --
           12
                    --
                        --
                             --
                                 16
                                     --
                                          __
                                              --
                                                       20
                                                           --
                    15
                                          19
```

```
10
      14
                                18
                                                          22
                                                                                    26
11
                17
                                          21
                                                                    25
12
                           20
                                                     24
                                                                               28
                                     23
                                                               27
13
           19
                                                26
                                                                         30
14
                      22
                                25
                                                          29
                                                                                    33
      21
```

2.4.10 TermEqualTermPredicaton

```
▷ TermEqualTermPredicaton(11, m1, i1, 12, m2, i2, n) (function)
```

The function TermEqualTermPredicaton returns the Predicaton recognizing the language $\sum m_{1i}$. $x_i + \sum i_1 = \sum m_{2i} \cdot y_i + \sum i_2$. The variables position lists 11 and 12 gives the positions of the variables x_i and y_i respectively, the lists m_1 and m_2 gives the integers (positive or negative) and the list m_1 gives the resized variable position list. Note: This function allows double occurrences of the same variable in both variable position lists 11 and 12. The lists i1 and i1 gives the integer additions on the left and right side, whereas 11 and m_1 or 12 and m_2 must contain at it's position "int". This function calls SumOfProductsPredicaton (2.4.9).

```
Example
gap> # 5*x1 + 2*x1 + 4 = 6*x2 + 1*x3
gap> P:=TermEqualTermPredicaton([ 1, 1, "int" ], [ 5, 2, "int" ], [ 4 ],
> [ 2, 3 ], [ 6, 1 ], [ ], [ 1, 2, 3 ]);
< Predicaton: deterministic finite automaton on 8 letters with 14 states
and the variable position list [ 1, 2, 3 ]. >
gap> AcceptedByPredicaton(P);
 [0,0,4],[1,1,5],[2,2,6],[2,3,0],[3,3,7],[3,4,1],
  [4,4,8],[4,5,2],[5,5,9],[5,6,3],[6,6,10],[6,7,4],
  [7, 8, 5], [8, 9, 6], [8, 10, 0], [9, 10, 7]]
gap> DisplayAcceptedByPredicaton(P, [10, 15, 100]);
    0
              2
                              6
                                              10
                                                     12
                                                                 15
                                                 11
                                                         13
                                                             14
      4
      11
          5
                  0
      18
          12
              6
  3
      25
                  7
          19
              13
                      1
      32
          26
              20
                  14
                      8
                          2
      39
          33
              27
                  21
                      15
                          9
                              3
  6
      46
          40
              34
                  28
                      22
                          16
                              10
                                  4
  7
      53
          47
              41
                  35
                      29
                          23
                              17
                                  11
                                      5
  8
      60
          54
              48
                  42
                      36
                          30
                              24
                                  18
                                      12
                                          6
                                              0
                                              7
  9
      67
          61
              55
                  49
                      43
                          37
                              31
                                  25
                                      19
                                          13
                                                  1
 10
      74
          68
              62
                  56
                      50
                          44
                              38
                                  32
                                      26
                                          20
                                              14
                                                  8
                                                     2
```

2.4.11 Greater Equal NP redication

```
    □ GreaterEqualNPredication(N, 1, n)
```

The function GreaterEqualNPredicaton returns the Predicaton recognizing the language x >= N.

```
_ Example .
gap> P:=GreaterEqualNPredication(15, [ 1 ], [ 1 ]);;
gap> P:=SortedStatesAut(P);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 8 states,
the variable position list [ 1 ] and the following transitions:
       1 2 3 4 5 6 7 8
 [0] | 7 6 3 3 4 4 6 8
 [1] | 2 5 8 3 3 4 6 8
Initial states: [ 1 ]
Final states: [8]
gap> DisplayAcceptedByPredicaton(P, 29, true);
If the following words are accepted by the given automaton, then: Y,
otherwise if not accepted: n.
  0: n 1: n 2: n 3: n 4: n
                                  5: n
                                         6: n
                                                7: n
                                                      8: n
 10: n 11: n 12: n 13: n 14: n 15: Y 16: Y 17: Y 18: Y 19: Y
 20: Y 21: Y 22: Y 23: Y 24: Y 25: Y 26: Y 27: Y 28: Y 29: Y
```

2.4.12 GreaterNPredicaton

```
▷ GreaterNPredicaton(N, 1, n)
```

The function GreaterNPredicaton returns the Predicaton recognizing the language x > N.

```
gap> P:=GreaterNPredicaton(15, [ 1 ], [ 1 ]);;
gap> P:=SortedStatesAut(P);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 6 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5 6
  [0] | 5 2 2 3 4 6
 [1] | 5 6 2 3 4 6
Initial states: [ 1 ]
Final states: [6]
gap> DisplayAcceptedByPredicaton(P, 29, true);
 If the following words are accepted by the given automaton, then: Y,
 otherwise if not accepted: n.
  0: n 1: n 2: n 3: n 4: n
                                  5: n
                                         6: n
                                                7: n
                                                     8: n
                                                             9: n
 10: n 11: n 12: n 13: n 14: n 15: n 16: Y 17: Y 18: Y 19: Y
 20: Y 21: Y 22: Y 23: Y 24: Y 25: Y 26: Y 27: Y 28: Y 29: Y
```

2.4.13 SmallerEqualNPredicaton

```
▷ SmallerEqualNPredication(N, 1, n)
```

(function)

The function SmallerEqualNPredicaton returns the Predicaton recognizing the language $x \le N$.

```
_{-} Example
gap> P:=SmallerEqualNPredication(15, [ 1 ], [ 1 ]);;
gap> P:=SortedStatesAut(P);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 6 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5 6
  [0] | 6 2 3 3 4 5
  [1] | 6 2 2 3 4 5
Initial states: [ 1 ]
Final states: [ 1, 3, 4, 5, 6 ]
gap> DisplayAcceptedByPredicaton(P, 29, true);
If the following words are accepted by the given automaton, then: Y,
otherwise if not accepted: n.
  0: Y 1: Y 2: Y 3: Y 4: Y
                                  5: Y
                                          6: Y
                                                7: Y
                                                      8: Y
  10: Y 11: Y 12: Y 13: Y 14: Y 15: Y 16: n 17: n 18: n 19: n
  20: n 21: n 22: n 23: n 24: n 25: n 26: n 27: n 28: n 29: n
```

2.4.14 SmallerNPredicaton

```
\triangleright SmallerNPredicaton(N, 1, n) (function)
```

The function SmallerNPredicaton returns the Predicaton recognizing the language x < N.

```
_ Example
gap> P:=SmallerNPredicaton(15, [ 1 ], [ 1 ]);;
gap> P:=SortedStatesAut(P);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 8 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5 6 7 8
  [0] | 8 2 7 4 4 5 5 7
  [1] | 3 2 6 2 4 4 5 7
 Initial states: [ 1 ]
 Final states: [1, 3, 4, 5, 6, 7, 8]
gap> DisplayAcceptedByPredicaton(P, 29, true);
 If the following words are accepted by the given automaton, then: Y,
 otherwise if not accepted: n.
  0: Y 1: Y
              2: Y 3: Y
                           4: Y
                                  5: Y
                                         6: Y
                                              7: Y 8: Y
 10: Y 11: Y 12: Y 13: Y 14: Y 15: n 16: n 17: n 18: n 19: n
 20: n 21: n 22: n 23: n 24: n 25: n 26: n 27: n 28: n 29: n
```

2.4.15 GreaterEqualPredicaton

```
▷ GreaterEqualPredication(1, n)
```

The function GreaterEqualPredicaton returns the Predicaton recognizing the language x >= y with the variables position list 1 giving the positions of the variables x and y. The list n gives the resized variable position list.

```
_ Example _
gap> P:=GreaterEqualPredicaton([1,2],[1,2]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 4 letters with 2 states,
the variable position list [ \ 1, \ 2 \ ] and the following transitions:
 [0,0] | 1 2
 [1,0] | 2 2
 [0, 1] | 1 1
 [1, 1] | 1 2
Initial states: [ 2 ]
Final states: [2]
gap> DisplayAcceptedByPredication(P, 10);
If the following words are accepted by the given automaton, then: YES,
otherwise if not accepted: no.
    0 1 2
                3 4 5
                          6
                             7
                                 8
  O | YES no no no no no no no no no
  1 | YES YES no no no no no no no no
  2 | YES YES YES no no
                      no no
                             no no no
  3 | YES YES YES YES no no no no no no
  4 | YES YES YES YES YES no no no no no
  5 | YES YES YES YES YES YES no no no no
  6 | YES YES YES YES YES YES YES no no no
  7 | YES YES YES YES YES YES YES no no no
  8 | YES YES YES YES YES YES YES YES no no
  9 | YES YES YES YES YES YES YES YES YES no
```

2.4.16 GreaterPredicaton

```
▷ GreaterPredication(1, n) (function)
```

The function GreaterPredicaton returns the Predicaton recognizing the language x > y with the variables position list 1 giving the positions of the variables x and y. The list x gives the resized variable position list.

(function)

```
Final states:
                 [ 1 ]
gap> DisplayAcceptedByPredicaton(P, 10);
If the following words are accepted by the given automaton, then: YES,
otherwise if not accepted: no.
     0
                  3
                                  7
                                      8
                                               10
          1
              2
                       4
                              6
   0 | no
          no
                  no
                                              no
              no
                      no
                          no
                              no
                                  no
                                      no
                                          no
   1 | YES no
              no
                  no
                      no
                          no
                              no
                                  no
                                      no
                                          no
                                              no
      YES YES no
                  no
                      no
                          no
                              no
                                  no
                                      no
                                          no
      YES YES YES no
                      no
                                              no
                          no
                              no
                                  no
                                      no
                                          no
      YES YES YES YES no
                          no
                              no
                                  no
                                          no
                                              no
                                      no
  5 | YES YES YES YES no
                              no
                                  no
                                      no
                                          no
                                              no
  6 | YES YES YES YES YES no
                                  no
  7 | YES YES YES YES YES YES YES no
                                      no
  8 | YES YES YES YES YES YES YES NO
                                          no
  9 | YES YES YES YES YES YES YES YES YES no
                                              nο
  10 | YES YES YES YES YES YES YES YES YES no
```

2.4.17 SmallerEqualPredicaton

```
▷ SmallerEqualPredication(1, n)
```

The function SmallerEqualPredicaton returns the Predicaton recognizing the language $x \le y$ with the variables position list 1 giving the positions of the variables x and y. The list y gives the resized variable position list.

```
Example _
gap> P:=SmallerEqualPredication([ 1, 2 ], [ 1, 2 ]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 4 letters with 2 states,
the variable position list [ 1, 2 ] and the following transitions:
          1 2
 [0,0] | 12
 [1, 0] | 1
 [0,1]
          2 2
 [1, 1] | 1 2
Initial states: [ 2 ]
Final states:
               [2]
gap> DisplayAcceptedByPredicaton(P, 10);
If the following words are accepted by the given automaton, then: YES,
otherwise if not accepted: no.
  YES
             YES YES
                    YES
                        YES
                           YES YES YES
             YES YES YES YES YES YES YES YES
      no
         no
  3 | no
         no
             no
                 YES YES YES YES YES YES YES
  4 | no
                 no
                    YES YES YES YES YES YES
  5 | no
                 no
                        YES YES YES YES YES
         no
             no
                    no
                            YES YES YES YES YES
  6 | no
         no
             no
                 no
                    no
                        no
  7 | no
                               YES YES YES YES
         no
             no
                 no
                    no
                        no
                            no
                                   YES YES YES
  8 no
                 no
                    no
                        no
                            no
                               no
             no
```

```
YES YES
9 | no
                                    no
                                         no
         no
              no
                  no
                       no
                           no
                                no
10 | no
                                                  YES
         nο
              nο
                  no
                       nο
                           nο
                                no
                                    nο
                                         no
```

2.4.18 SmallerPredicaton

```
▷ SmallerPredication(1, n) (function)
```

The function SmallerPredicaton returns the Predicaton recognizing the language x < y with the variables position list 1 giving the positions of the variables x and y. The list x gives the resized variable position list.

```
_ Example _
gap> P:=SmallerPredicaton([ 1, 2 ], [ 1, 2 ]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 4 letters with 2 states,
the variable position list [ 1, 2 ] and the following transitions:
  [0,0] | 1
                  2
  [ 1, 0 ]
           2
  [ 0, 1 ]
              1
                  1
  [1, 1]
           1
 Initial states: [2]
 Final states:
                 [ 1 ]
gap> DisplayAcceptedByPredicaton(P, 10);
 If the following words are accepted by the given automaton, then: YES,
 otherwise if not accepted: no.
              2
                           5
                                       8
   0 | no
          YES YES YES YES YES YES YES YES YES
   1 | no
              YES YES YES YES YES YES YES YES
                   YES YES YES YES YES YES YES
   2 | no
          no
              no
                       YES YES YES YES YES YES
      no
          no
              no
                  no
                           YES YES YES YES YES
      no
          no
              no
                  no
                      no
   5
      no
          no
              no
                  no
                      no
                           no
                               YES YES YES YES
                                               YES
   6
      no
          no
              no
                  no
                      no
                          no
                               no
                                   YES YES YES
                                              YES
   7
                                       YES YES YES
      no
                      no
                               no
                                   no
          no
              no
                  no
                          no
   8
                                           YES YES
      no
          no
              no
                   no
                      no
                          no
                               no
                                   no
                                       no
                                               YES
      no
          no
              no
                   no
                      no
                           no
                               no
                                   no
                                       no
                                           no
  10 | no
                                               no
          no
              no
                   no
                      no
                          no
                               no
                                  no
                                       no
                                          no
```

2.5 Detailed look at the special functions on Predicata

This section explains how the sums and products are computed and describes different methods. The explicit method, which computes the transition matrix with a transition formula, is more efficient than the other given methods. The recursive and iterative methods explain a more naive way how to compute the requested automaton, but are lacking in speed. Therefore they are not used in any further computation.

2.5.1 AdditionPredicaton3Summands

```
▷ AdditionPredicaton3Summands(1, n) (function)
▷ AdditionPredicaton4Summands(1, n) (function)
▷ AdditionPredicaton5Summands(1, n) (function)
```

The functions AdditionPredicatonNSummands returns the Predicaton recognizing the language $x_1 + ... x_N = x_{N+1}$ for N = 3, 4, 5.

```
gap> P:=AdditionPredication3Summands([ 1, 2, 3, 4 ],[ 1, 2, 3, 4 ]);
< Predication: deterministic finite automation on 16 letters with 4 states
and the variable position list [ 1, 2, 3, 4 ]. >
gap> P:=AdditionPredication4Summands([ 1, 2, 3, 4, 5 ], [ 1, 2, 3, 4, 5 ]);
< Predication: deterministic finite automation on 32 letters with 5 states
and the variable position list [ 1, 2, 3, 4, 5 ]. >
gap> P:=AdditionPredication5Summands([ 1, 2, 3, 4, 5, 6 ], [ 1, 2, 3, 4, 5, 6 ]);
< Predication: deterministic finite automation on 64 letters with 6 states
and the variable position list [ 1, 2, 3, 4, 5, 6 ]. >
```

2.5.2 AdditionPredicatonNSummandsExplicit

```
{\tt \hspace*{0.5cm}} {\tt \hspace*{0.5cm}}
```

The function AdditionPredicatonNSummandsExplicit returns the Predicaton recognizing the language $x_1 + \dots x_N = x_{N+1}$. The TransitionTable is assigned explicitly with the following transition property: The *i*-th state denotes carry *i* and there is a transition from state *i* to state *j* for the letter *a* if $\sum_{i=1}^{N} a_i = a_{N+1} + i + 2(j-i)$ holds. The variables position list 1 gives the positions of the variables x_i and the list n gives the resized variable position list.

```
Example

gap> P:=AdditionPredicatonNSummandsExplicit(3, [6, 11, 2, 9], [2, 3, 6, 7, 9, 11]);

< Predicaton: deterministic finite automaton on 64 letters with 4 states
and the variable position list [2, 3, 6, 7, 9, 11]. >

gap> P:=AdditionPredicatonNSummandsExplicit(11, [1..12], [1..12]);

< Predicaton: deterministic finite automaton on 4096 letters with 12 states
and the variable position list
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. >
```

2.5.3 AdditionPredicatonNSummandsIterative

```
\triangleright AdditionPredicatonNSummandsIterative(N, 1, n) (function)
```

The function AdditionPredicatonNSummandsIterative returns the Predicaton recognizing the language $x_1 + ... x_N = x_{N+1}$. The Predicaton is created by intersection (N-1)-times the simple automaton recognizing x + y = z. Due to intersecting and minimizing that often, this function shouldn't be used for large N (for example N > 10).

```
Example

gap> P:=AdditionPredicationNSummandsIterative(7, [ 1..8 ], [ 1..8 ]);

< Predication: deterministic finite automation on 256 letters with 8 states and the variable position list [ 1, 2, 3, 4, 5, 6, 7, 8 ]. >
```

2.5.4 AdditionPredicatonNSummandsRecursive

```
▷ AdditionPredicatonNSummandsRecursive(N, 1, n) (function)
```

The function AdditionPredicatonNSummandsRecursive returns the Predicaton recognizing the language $x_1 + ... x_N = x_{N+1}$. The Predicaton is created recursively splitting the variable position list until a length of 3 is reached, where the base cases are the simple automaton recognizing x + y = z. It is slightly faster than AdditionPredicatonNSummandsIterative (2.5.3) but nevertheless it shouldn't be used for large N (for example N > 10).

```
Example

gap> P:=AdditionPredicationNSummandsRecursive(7, [ 1..8 ], [ 1..8 ]);

< Predication: deterministic finite automation on 256 letters with 8 states and the variable position list [ 1, 2, 3, 4, 5, 6, 7, 8 ]. >
```

2.5.5 TimesNPredicatonExplicit

```
▷ TimesNPredicatonExplicit(N, 1, n) (function)
```

The function TimesNPredicatonExplicit returns the Predicaton recognizing the language $N \cdot x = y$. The TransitionTable is assigned explicitly with the following transition property: The *i*-th state denotes carry *i* and there is a transition from state *i* to state *j* for the letter a if $N \cdot a_1 = a_2 + i + 2(j - i)$. The variables position list 1 gives the positions of the variables x_i and the list n gives the resized variable position list.

```
gap> P:=TimesNPredicatonExplicit(1000, [ 1, 2 ], [ 1, 2 ]);
< Predicaton: deterministic finite automaton on 4 letters with 1001 states
and the variable position list [ 1, 2 ]. >
gap> IsAcceptedByPredicaton(P, [ 1, 1000 ]);
true
gap> IsAcceptedByPredicaton(P, [ 2, 2000 ]);
true
gap> IsAcceptedByPredicaton(P, [ 3, 3000 ]);
true
```

2.5.6 TimesNPredicatonRecursive

```
▷ TimesNPredicatonRecursive(N, 1, n) (function)
```

The function TimesNPredicatonRecursive returns the Predicaton recognizing the language $N \cdot x = y$. It splits the the multiplication into a multiplications of N_1 and N_2 , where $N = N_1 \cdot N_2$.

```
Example

gap> P:=TimesNPredicatonRecursive(100, [1,2],[1,2]);

< Predicaton: deterministic finite automaton on 4 letters with 101 states
and the variable position list [1, 2]. >

gap> P:=TimesNPredicatonRecursive(1000, [1,2],[1,2]);

< Predicaton: deterministic finite automaton on 4 letters with 1001 states
and the variable position list [1, 2]. >
```

2.5.7 Times2Predicaton

```
▷ Times2Predication(1, n)
                                                                                           (function)
▷ Times3Predication(1, n)
                                                                                           (function)

▷ Times4Predication(1, n)
                                                                                           (function)

▷ Times5Predication(1, n)
                                                                                           (function)
▷ Times6Predication(1, n)
                                                                                           (function)
▷ Times7Predication(1, n)
                                                                                           (function)

    ▷ Times8Predication(1, n)

                                                                                           (function)
▷ Times9Predication(1, n)
                                                                                           (function)
```

The functions Times 2Predicaton, Times 3Predicaton,... returns the Predicaton recognizing the language $N \cdot x = y$ for N = 2, ..., 9.

```
Example -
gap> P:=Times2Predicaton([ 1, 2 ], [ 1, 2 ]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 4 letters with 3 states,
the variable position list [ 1, 2 ] and the following transitions:
          1 2 3
 [0,0] | 1 3 3
 [ 1, 0 ] |
             2 3 3
  [0,1]
          3
               1 3
  [1,1]
          3 2
 Initial states: [ 1 ]
 Final states:
               [ 1 ]
gap> P:=Times3Predicaton([ 1, 2 ], [ 1, 2 ]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 4 letters with 4 states,
the variable position list [ 1, 2 ] and the following transitions:
           1 2 3 4
  [0,0] | 1 4 2 4
  [1,0] | 4 3 4 4
  [0,1] | 4 1 4 4
 [1,1]
          2 4 3 4
 Initial states: [ 1 ]
 Final states:
               [ 1 ]
```

Chapter 3

Parsing first-order formulas

3.1 PredicataFormula – strings representing first-order formulas

3.1.1 PredicataFormulaSymbols

▷ PredicataFormulaSymbols

(global variable)

The variable PredicataFormulaSymbols stores all inbuilt function symbols.

```
Example gap> PredicataFormulaSymbols; [ "*", "+", "-", "=", "gr", "geq", "less", "leq", "and", "or", "equiv", "equivalent", "implies", "not", "(", ")", "[", "]", ",", ":", "A", "E" ]
```

3.1.2 PredicataIsStringType

```
▷ PredicataIsStringType(S, T)
```

(function)

The function PredicataIsStringType checks if the string S represents one types T="variable", "integer" (greater equal 0), "negativeinteger", "boolean", "predicate", "internal predicate", "quantifier", "symbol", "binary symbol", "unary symbol". PredicataFormulaSymbols (3.1.1).

```
gap> PredicataIsStringType("x1", "variable");
true
gap> PredicataIsStringType("1", "integer");
true
gap> PredicataIsStringType("-1", "negativeinteger");
true
gap> PredicataIsStringType("true", "boolean");
true
gap> PredicataIsStringType("A", "quantifier");
true
gap> PredicataIsStringType("A", "symbol");
true
```

3.1.3 PredicataGrammarVerification

```
▷ PredicataGrammarVerification(S[, P])
```

(function)

The function PredicataGrammarVerification checks if the string S, with the optional argument PredicataRepresentation (3.3.10) P, is a well-formed formula in the Presburger arithmetic. First a lexical analysis is performed, checking if all symbols are correct. Then it is checked if the formula can be produced from the predefined grammar (see PredicataGrammar (4.1.1)). Finally, the range of the quantified variables is checked, as well as if all bounded variables doesn't also occur as free ones. Additionally, if the amount of opening and closing parenthesis differs, a corresponding message is returned.

```
gap> PredicataGrammarVerification("4+x=2*y");
true
gap> PredicataGrammarVerification("(E x:3+x=2*y)");
true
gap> PredicataGrammarVerification("= , 2 + <= x 4");
false</pre>
```

3.1.4 PredicataFormula

```
▷ PredicataFormula(S[, P])
```

(function)

The function PredicataFormula takes a string S, checks if it's a formula in the language of Presburger arithmetic (using with PredicataGrammarVerification (3.1.3)) and returns a PredicataFormula (use PredicataGrammar (4.1.1)) for an overview of the rules). The optional input P is explained at PredicataRepresentation (3.3.10), however on default the predefined variable PredicataList (3.3.23) is used.

```
gap> PredicataFormula("(E y: x + y = z)");

< PredicataFormula: ( E y : x + y = z ) >
```

3.1.5 IsPredicataFormula

```
▷ IsPredicataFormula(f)
```

(function)

The function IsPredicataFormula checks if f is a PredicataFormula.

```
gap> f:=PredicataFormula("(E y: x + y = z)");

< PredicataFormula: ( E y : x + y = z ) >
    gap> IsPredicataFormula(f);
    true
```

3.1.6 Display (PredicataFormula)

```
\triangleright Display(f) (method)
```

The method Display displays the PredicataFormula f.

```
gap> f:=PredicataFormula("(A x: (E y: x = y))");

< PredicataFormula: ( A x : ( E y : x = y ) ) >

gap> Display(f);

PredicataFormula: ( A x : ( E y : x = y ) ).
```

3.1.7 View (PredicataFormula)

```
\triangleright View(f) (method)
```

The method View applied on a PredicataFormula f returns the object text.

```
gap> f:=PredicataFormula("x + y = z");;
gap> View(f);
< PredicataFormula: x + y = z >
```

3.1.8 Print (PredicataFormula)

```
\triangleright Print(f) (method)
```

The method Print prints the PredicataFormula f as a string.

```
gap> f:=PredicataFormula("x = 4 and not x = 5");
< PredicataFormula: x = 4 and not x = 5 >
gap> Print(f);
PredicataFormula("x = 4 and not x = 5");
gap> String(f);
"PredicataFormula(\"x = 4 and not x = 5\");"
```

3.1.9 FreeVariablesOfPredicataFormula

The function FreeVariablesOfPredicataFormula returns the free variables of the PredicataFormula f as a list of strings.

```
gap> f:=PredicataFormula("(E n: 3*n = x) or (E m: 4*m = x)");
< PredicataFormula: (E n : 3 * n = x ) or (E m : 4 * m = x ) >
gap> FreeVariablesOfPredicataFormula(f);
[ "x" ]
```

3.1.10 Bounded Variables Of Predicata Formula

```
▷ BoundedVariablesOfPredicataFormula(f)
```

(function)

(function)

The function BoundedVariablesOfPredicataFormula returns the bounded variables of the PredicataFormula f as a list of strings.

```
Example
gap> f:=PredicataFormula("(E n: 3*n = x) or (E m: 4*m = x)");
< PredicataFormula: (E n : 3 * n = x ) or (E m : 4 * m = x ) >
gap> BoundedVariablesOfPredicataFormula(f);
[ "n", "m" ]
```

3.1.11 PredicataFormulaFormatted

```
▷ PredicataFormulaFormatted(f[, P])
```

(function)

The function PredicataFormulaFormatted adds missing parenthesis to the PredicataFormula f for unambiguous parsing in PredicataFormulaFormattedToTree (3.2.14).

```
gap> f:=PredicataFormula("(E y: x + y = z)");
< PredicataFormula: ( E y : x + y = z ) >
gap> F:=PredicataFormulaFormatted(f);
< PredicataFormulaFormatted: ( E y : ( ( x + y ) = z ) ) >
```

3.1.12 IsPredicataFormulaFormatted

▷ IsPredicataFormulaFormatted(f)

(function)

The function IsPredicataFormulaFormatted checks if f is a PredicataFormula.

```
gap> f:=PredicataFormula("(E y: x + y = z)");
  < PredicataFormula: ( E y : x + y = z ) >
  gap> F:=PredicataFormulaFormatted(f);
  < PredicataFormulaFormatted: ( E y : ( ( x + y ) = z ) ) >
  gap> IsPredicataFormulaFormatted(F);
  true
```

3.1.13 Display (PredicataFormulaFormatted)

```
\triangleright Display(F) (method)
```

The method Display displays the PredicataFormulaFormatted F.

```
Example

gap> F:=PredicataFormulaFormatted(PredicataFormula("(E y: x + y = z)"));

< PredicataFormulaFormatted: (E y: ((x + y) = z)) >

gap> Display(F);

PredicataFormulaFormatted: ["(", "E", "y", ":", "(", "(", "x", "+", "y", ")",

"=", "z", ")", ")"].

Concatenation: (Ey:((x+y)=z)).
```

3.1.14 View (PredicataFormulaFormatted)

```
\triangleright View(f) (method)
```

The method View applied on a PredicataFormulaFormatted F returns the object text.

```
gap> f:=PredicataFormula("x + y = z");;
gap> F:=PredicataFormulaFormatted(f);;
gap> View(F);
< PredicataFormulaFormatted: ( ( x + y ) = z ) >
```

3.1.15 Print (PredicataFormulaFormatted)

```
\triangleright Print(F) (method)
```

The method Print prints the PredicataFormulaFormatted *F* as a string.

```
gap> F:=PredicataFormulaFormatted(PredicataFormula("x = 4 and not x = 5"));
< PredicataFormulaFormatted: ( ( x = 4 ) and ( not ( x = 5 ) ) ) >
gap> Print(F);
PredicataFormulaFormatted(PredicataFormula(s"((x=4)and(not(x=5)))"));
gap> String(F);
"PredicataFormulaFormatted(PredicataFormula(\"((x=4)and(not(x=5)))\"));"
```

3.2 PredicataTree – converting first-order formulas into trees

3.2.1 PredicataTree

```
▷ PredicataTree([r]) (function)
```

The function PredicataTree creates the a tree with root r, which may be empty.

```
gap> PredicataTree("root");

< PredicataTree: [ "root" ] >
gap> PredicataTree();

< PredicataTree: [ "" ] >
```

3.2.2 IsPredicataTree

```
\triangleright IsPredicataTree(t) (function)
```

The function IsPredicataTree checks if t is a PredicataTree.

```
gap> f:=PredicataFormula("(E y: x + y = z)");
< PredicataFormula: ( E y : x + y = z ) >
gap> IsPredicataFormula(f);
true
```

3.2.3 Display (PredicataTree)

```
\triangleright Display(t) (method)
```

The method Display prints the PredicataTree t as a nested list, i.e. it's internal structure.

```
gap> t:=PredicataTree("only one element");

< PredicataTree: [ "only one element" ] >

gap> Display(t);

PredicataTree: [ "only one element" ].
```

3.2.4 View (PredicataTree)

```
\triangleright View(t) (method)
```

The method View applied on a PredicataTree t returns the object text.

```
gap> t:=PredicataTree("root");;
gap> View(t);
< PredicataTree: [ "root" ] >
```

3.2.5 Print (PredicataTree)

```
\triangleright Print(t) (method)
```

The method Print prints the PredicataTree t as a string.

```
gap> t:=PredicataTree("root");;
gap> Print(t);
PredicataTree: [ "root" ]
```

3.2.6 IsEmptyPredicataTree

```
\triangleright IsEmptyPredicataTree(t) (function)
```

The function IsEmptyPredicataTree checks if a given PredicataTree t is empty.

```
gap> t:=PredicataTree("root");
< PredicataTree: [ "root" ] >
gap> IsEmptyPredicataTree(t);
false
```

3.2.7 RootOfPredicataTree

```
\triangleright RootOfPredicataTree(t) (function)
```

The function RootOfPredicataTree returns the current root of the PredicataTree t.

```
gap> t:=PredicataTree("current root");
< PredicataTree: [ "current root" ] >
gap> RootOfPredicataTree(t);
"current root"
```

3.2.8 SetRootOfPredicataTree

```
▷ SetRootOfPredicataTree(t, n) (function)
```

The function SetRootOfPredicataTree changes the current root of the PredicataTree t to the input n.

```
gap> SetRootOfPredicataTree(t, "element #2");
gap> t:=PredicataTree("element #1");
< PredicataTree: [ "element #1" ] >
gap> SetRootOfPredicataTree(t, "element #2");
gap> Display(t);
PredicataTree: [ "element #2" ].
```

3.2.9 InsertChildToPredicataTree

```
▷ InsertChildToPredicataTree(t)
```

(function)

(function)

The function InsertChildToPredicataTree inserts a child to the current PredicataTree t.

```
gap> t:=PredicataTree("root");
< PredicataTree: [ "root" ] >
gap> InsertChildToPredicataTree(t);
gap> Display(t);
PredicataTree: [ "root", [ ] ].
gap> InsertChildToPredicataTree(t);
gap> Display(t);
PredicataTree: [ "root", [ ] ].
```

3.2.10 ChildOfPredicataTree

```
\triangleright ChildOfPredicataTree(t, i) (function)
```

The function ChildOfPredicataTree" enters the *i*-th child of the current PredicataTree t.

3.2.11 NumberOfChildrenOfPredicataTree

```
NumberOfChildrenOfPredicataTree(t)
```

The function NumberOfChildrenOfPredicataTree returns the number of children of the current $PredicataTree\ t$.

```
_ Example _
gap> t:=PredicataTree("root");
< PredicataTree: [ "root" ] >
gap> NumberOfChildrenOfPredicataTree(t);
gap> InsertChildToPredicataTree(t);
gap> InsertChildToPredicataTree(t);
gap> NumberOfChildrenOfPredicataTree(t);
gap> ChildOfPredicataTree(t, 1);
< PredicataTree: [ "root", [ ], [ ] >
gap> SetRootOfPredicataTree(t, "child 1");
gap> Display(t);
PredicataTree: [ "root", [ "child 1" ], [ ] ].
gap> NumberOfChildrenOfPredicataTree(t);
gap> InsertChildToPredicataTree(t);
gap> InsertChildToPredicataTree(t);
gap> NumberOfChildrenOfPredicataTree(t);
gap> Display(t);
PredicataTree: [ "root", [ "child 1", [ ], [ ] ].
```

3.2.12 ParentOfPredicataTree

```
▷ ParentOfPredicataTree(t)
```

(function)

The function ParentOfPredicataTree goes back to the parent of the current PredicataTree t.

```
\_ Example \_
gap> t:=PredicataTree("root");
< PredicataTree: [ "root" ] >
gap> InsertChildToPredicataTree(t);
gap> InsertChildToPredicataTree(t);
gap> Display(t);
PredicataTree: [ "root", [ ], [ ] ].
gap> ChildOfPredicataTree(t, 1);
< PredicataTree: [ "root", [ ], [ ] >
gap> SetRootOfPredicataTree(t, "child 1");
gap> ParentOfPredicataTree(t);
< PredicataTree: [ "root", [ "child 1" ], [ ] >
gap> ChildOfPredicataTree(t, 2);
< PredicataTree: [ "root", [ "child 1" ], [ ] >
gap> SetRootOfPredicataTree(t, "child 2");
gap> Display(t);
PredicataTree: [ "root", [ "child 1" ], [ "child 2" ] ].
```

3.2.13 ReturnedChildOfPredicataTree

```
▷ ReturnedChildOfPredicataTree(t, i)
```

(function)

The function ReturnedChildOfPredicataTree returns the *i*-th child of the current PredicataTree *t* as a new tree.

```
gap> t:=PredicataTree("root");
< PredicataTree: [ "root" ] >
gap> InsertChildToPredicataTree(t);
gap> ChildOfPredicataTree(t, 1);
< PredicataTree: [ "root", [ ], [ ] ] >
gap> SetRootOfPredicataTree(t, "child 1");
gap> ParentOfPredicataTree(t);
gap> r:=ReturnedChildOfPredicataTree(t, 1);
< PredicataTree: [ "child 1" ] >
```

3.2.14 PredicataFormulaFormattedToTree

▷ PredicataFormulaFormattedToTree(F)

(function)

The function converts a PredicataFormulaFormatted (3.1.11) F to a PredicataTree.

3.2.15 FreeVariablesOfPredicataTree

```
▷ FreeVariablesOfPredicataTree(t)
```

(function)

The function FreeVariablesOfPredicataTree returns the free variables of the PredicataTree t, which have been carried over from the PredicataFormula (3.1.4) and the PredicataFormulaFormatted (3.1.11).

```
gap> f:=PredicataFormula("(E y: x+y=z and y = x)");
< PredicataFormula: (E y: x + y = z and y = x) >
gap> F:=PredicataFormulaFormatted(f);
< PredicataFormulaFormatted: (E y: (((x + y) = z) and (y = x))) >
gap> t:=PredicataFormulaFormattedToTree(F);
< PredicataTree: ["E", ["y"], ["and", ["=", ["+", ["x"], ["y"]], ["z"]], ["z"]], ["y"], ["x"]]]] >
gap> FreeVariablesOfPredicataTree(t);
["x", "z"]
```

3.2.16 Bounded Variables Of Predicata Tree

▷ BoundedVariablesOfPredicataTree(t)

(function)

The function BoundedVariablesOfPredicataTree returns the bounded variables of the PredicataTree t, which have been carried over from the PredicataFormula (3.1.4) and the PredicataFormulaFormatted (3.1.11).

```
gap> f:=PredicataFormula("(E y: x+y=z and y = x)");
< PredicataFormula: (E y: x + y = z and y = x) >
gap> F:=PredicataFormulaFormatted(f);
< PredicataFormulaFormatted: (E y: (((x + y) = z) and (y = x))) >
gap> t:=PredicataFormulaFormattedToTree(F);
< PredicataTree: ["E", ["y"], ["and", ["=", ["+", ["x"], ["y"]], ["z"]], ["z"]], ["y"], ["x"]]]] >
gap> BoundedVariablesOfPredicataTree(t);
["y"]
```

3.2.17 PredicataTreeToPredicaton

```
\triangleright \ \mathsf{PredicataTreeToPredicaton}(t[,\ V]) \tag{function}
```

The function PredicataTreeToPredicaton calls PredicataTreeToPredicatonRecursive (3.2.18) to turn a PredicataTree (3.2.1) t into a Predicaton (2.1.1). The optional argument V allows to specify an order for the free variables in the tree.

```
_ Example _
gap> f:=PredicataFormula("(E y: x+y=z and y = x)");
< PredicataFormula: ( E y : x + y = z and y = x ) >
gap> F:=PredicataFormulaFormatted(f);
< PredicataFormulaFormatted: ( E y : ( ( ( x + y ) = z ) and ( y = x ) ) ) >
gap> t:=PredicataFormulaFormattedToTree(F);
< PredicataTree: [ "E", [ "y" ], [ "and", [ "=", [ "+", [ "x" ], [ "y" ] ],</pre>
[ "z" ] ], [ "=", [ "y" ], [ "x" ] ] ] >
gap> P:=PredicataTreeToPredicaton(t);
[ "Pred", < Predicata: deterministic finite automaton on 4 letters with 3 states
and the variable position list [1, 2]. >]
gap> Display(P[2]);
Predicata: deterministic finite automaton on 4 letters with 3 states,
the variable position list [ 1, 2 ] and the following transitions:
           1 2 3
  [0,0] | 3 2 3
  [1,0] | 3 1 3
  [0,1] | 2 3 3
 [1,1] | 1 3 3
Initial states: [ 2 ]
Final states: [2]
The alphabet corresponds to the following variable list: [ "x", "z" ].
```

3.2.18 PredicataTreeToPredicatonRecursive

```
▷ PredicataTreeToPredicatonRecursive(t, V)
```

The function PredicataTreeToPredicatonRecursive is called by PredicataTreeToPredicaton (3.2.17) in order to convert a PredicataTree t into a Predicata. The list V contains as first entry a list of free variables (not necessarily occurring) and as second entry a list containing the previous variables together with all bounded variables. This function goes down into the tree recursively until it reaches its leaves. Upon going up it creates the automaton of the Predicaton with relation to the variable position list.

```
Example
gap> F:=PredicataFormulaFormatted(PredicataFormula("(E y: x+y=z and y = x)"));;
gap> t:=PredicataFormulaFormattedToTree(F);;
gap> P:=PredicataTreeToPredicatonRecursive(t, [[ "x", "z" ], [ "x", "y", "z" ]]);;
gap> Display(P[2]);
Predicata: deterministic finite automaton on 4 letters with 3 states,
the variable position list [\ 1,\ 3\ ] and the following transitions:
           1 2 3
  [0,0]
              3 2 3
  [ 1, 0 ]
              3
                1 3
          [0,1] \mid 233
  [1, 1] | 1 3 3
 Initial states: [ 2 ]
Final states:
```

3.2.19 PredicataRepresentationOfPredicataTree

▷ PredicataRepresentationOfPredicataTree(t)

(function)

The function PredicataRepresentationOfPredicataTree returns the PredicataRepresentation of a PredicataTree t. For more details see PredicataRepresentation (3.3.10).

```
gap> t:=PredicataTree("root");;
gap> PredicataRepresentationOfPredicataTree(t);
< PredicataRepresentation containing the following predicates: []. >
```

3.3 PredicataRepresentation – Predicata assigned with names and arities

This section explains how to assign a name and an arity to a Predicata such that it can be reused in a PredicataFormula (3.1.4). The idea is to create elements containing the name, arity and the Predicata and combining them in a PredicataRepresentation (3.3.10). Additionally, there is a predefined variable PredicataList (3.3.23), which is called by the PredicataFormula on default, trying to simplify these quite lengthy construction.

3.3.1 PredicatonRepresentation

 \triangleright PredicatonRepresentation(name, arity, automaton)

(function)

The function PredicatonRepresentation creates the representation of a Predicaton, assigned with a name, an arity and an automaton (input may also be a Predicaton), allowing it to be called in a PredicataFormula (3.1.4) with Name [x1, ...xN] (where N is the arity).

```
Example

gap> A:=Predicaton(Automaton("det", 3, [[0, 0, 0], [1, 0, 0], [0, 1, 0],

> [1, 1, 0], [0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]],

> [[1, 3, 3], [3, 2, 3], [3, 2, 3], [2, 3, 3], [3, 1, 3],

> [1, 3, 3], [1, 3, 3], [3, 2, 3], [1], [1], [1]), [1, 2, 3]);;

gap> p:=PredicatonRepresentation("MyAdd", 3, A);

< Predicaton represented with the name: "MyAdd", the arity: 3

and the deterministic automaton on 8 letters and 3 states. >
```

3.3.2 IsPredicatonRepresentation

```
▷ IsPredicatonRepresentation(p)
```

(function)

The function IsPredicatonRepresentation checks if the argument p is a PredicatonRepresentation.

```
gap> A:=Predicaton(Automaton("det", 2, [[0], [1]], [[1, 2], [2, 2]],
> [1], [1]), [1]);;
gap> p:=PredicatonRepresentation("EqualZero", 1, A);
< Predicaton represented with the name "EqualZero", the arity 1 and
the deterministic automaton on 2 letters and 2 states. >
gap> IsPredicatonRepresentation(p);
true
```

3.3.3 Display (PredicatonRepresentation)

```
\triangleright Display(p) (method)
```

The method Display prints the PredicatonRepresentation p.

3.3.4 View (PredicatonRepresentation)

```
\triangleright View(p) (method)
```

The method View applied on a PredicatonRepresentation p returns the object text.

```
Example
gap> A:=Automaton("det", 4, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],
> [ [ 1, 2, 2, 3 ], [ 2, 2, 4, 2 ], [ 2, 2, 1, 2 ], [ 3, 2, 2, 4 ] ],
> [ 1 ], [ 1 ]);;
gap> p:=PredicatonRepresentation("MultipleOfThree", 2, A);;
gap> View(p);
< Predicaton represented with the name "MultipleOfThree", the arity 2 and the deterministic automaton on 4 letters and 4 states. >
```

3.3.5 Print (PredicatonRepresentation)

```
▷ Print(p) (method)
```

The method Print prints the PredicatonRepresentation *p* as a string.

3.3.6 NameOfPredicatonRepresentation

(function)

The function NameOfPredicatonRepresentation returns the name of p.

3.3.7 ArityOfPredicatonRepresentation

```
▷ ArityOfPredicatonRepresentation(p)
```

(function)

The function ArityOfPredicatonRepresentation returns the arity of p.

```
gap> p:=PredicatonRepresentation("NotTwo", 1, A);;
gap> ArityOfPredicatonRepresentation(p);
1
```

3.3.8 AutOfPredicatonRepresentation

(function)

The function ${\tt AutOfPredicatonRepresentation}$ returns the automaton of p.

3.3.9 CopyPredicatonRepresentation

```
        ▷ CopyPredicatonRepresentation(p)
```

(function)

The function CopyPredicatonRepresentation copies p.

```
Example

gap> A:=Automaton("det", 3, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],

> [ [ 1, 3, 3 ], [ 2, 3, 3 ], [ 3, 1, 3 ], [ 3, 2, 3 ] ], [ 1 ], [ 1 ]);;

gap> p:=PredicatonRepresentation("CopyPred", 2, A);;

gap> q:=CopyPredicatonRepresentation(p);

< Predicaton represented with the name "CopyPred", the arity 2 and the deterministic automaton on 4 letters and 3 states. >
```

3.3.10 PredicataRepresentation

```
▷ PredicataRepresentation([1])
```

(function)

The function PredicataRepresentation creates a collection of elements (PredicatonRepresentation (3.3.1)), where the list 1 may contain arbitrary many of them. The PredicataRepresentation is an optional input for the function PredicataFormula (3.1.4) (On default it uses the predefined variable PredicataList (3.3.23)). Note that the variables must be unique within one predicate call.

```
gap> P:=PredicataRepresentation(p1, p2);
< PredicataRepresentation containing the following predicates:
[ "MyEqual", "MyAdd"]. >
gap> f:=PredicataFormula("MyAdd[x,y,z] and MyEqual[x,y]", P);
< PredicataFormula: MyAdd [ x , y , z ] and MyEqual [ x , y ] >
```

3.3.11 IsPredicataRepresentation

```
▷ IsPredicataRepresentation(P)
```

(function)

The function IsPredicataRepresentation checks if the argument P is a PredicataRepresentation.

```
gap> # Continued example: PredicataRepresentation
gap> IsPredicataRepresentation(P);
true
```

3.3.12 Display (PredicataRepresentation)

```
\triangleright Display(p) (method)
```

The method Display prints the PredicataRepresentation P.

```
gap> # Continued example: PredicataRepresentation
gap> Display(P);
Predicata representation containing the following PredicatonRepresentations:
Predicata represented with the name: MyEqual, the arity: 2 and
the following automaton:
deterministic finite automaton on 4 letters with 2 states and
the following transitions:
         | 1 2
 [0,0] | 12
 [1,0] | 2 2
 [0,1] | 2 2
 [1,1] | 1 2
Initial states: [ 1 ]
Final states:
               [ 1 ]
Predicata represented with the name: MyAdd, the arity: 3 and
the following automaton:
deterministic finite automaton on 8 letters with 3 states and
the following transitions:
             1 2 3
 [0,0,0] | 1 3 3
 [1,0,0] | 3 2 3
 [0, 1, 0] \mid 3 2 3
 [1,1,0] | 2 3 3
 [ 0, 0, 1 ]
            3 1 3
 [ 1, 0, 1 ]
             | 1 3 3
  [0,1,1] | 1 3 3
```

```
[ 1, 1, 1 ] | 3 2 3
Initial states: [ 1 ]
Final states: [ 1 ]
```

3.3.13 View (PredicataRepresentation)

```
\triangleright View(P) (method)
```

The method View applied on a PredicataRepresentation P returns the object text.

```
gap> P:=PredicataRepresentation();;
gap> View(P);
< PredicataRepresentation containing the following predicates: []. >
```

3.3.14 Print (PredicataRepresentation)

```
▷ Print(P) (method)
```

The method Print prints the PredicataRepresentation *P* as a string.

```
gap> # Continued example: PredicataRepresentation
gap> Print(P);
PredicataRepresentation(PredicatonRepresentation("MyEqual", 2, Automaton\
("det", 2, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ], [ [ 1, 2 ], [ 2, 2 ], [\
2, 2], [1, 2]], [1], [1])), PredicatonRepresentation("MyAdd", 3\
, Automaton("det", 3, [ [ 0, 0, 0 ], [ 1, 0, 0 ], [ 0, 1, 0 ], [ 1, 1, 0 ], [ \
0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]], [[1, 3, 3], [3, 2, 3]
, [ 3, 2, 3 ], [ 2, 3, 3 ], [ 3, 1, 3 ], [ 1, 3, 3 ], [ 1, 3, 3 ], [ 3, 2, 3 ]
], [1], [1])))
gap> String(P);
"PredicataRepresentation(PredicatonRepresentation(\"MyEqual\", 2, Automa\
ton(\"det\", 2, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ], [ [ 1, 2 ], [ 2, 2\
], [ 2, 2 ], [ 1, 2 ] ], [ 1 ], [ 1 ])), PredicatonRepresentation(\"MyA\
dd\", 3, Automaton(\"det\", 3, [ [ 0, 0, 0 ], [ 1, 0, 0 ], [ 0, 1, 0 ], [ 1, 1\
, 0 ], [ 0, 0, 1 ], [ 1, 0, 1 ], [ 0, 1, 1 ], [ 1, 1, 1 ] ], [ [ 1, 3, 3 ], [ \
3, 2, 3], [3, 2, 3], [2, 3, 3], [3, 1, 3], [1, 3, 3], [1, 3, 3], [\
3, 2, 3 ] ], [ 1 ], [ 1 ])), PredicatonRepresentation(\"GreaterZero\", 1\
, Automaton(\"det\", 2, [ [ 0 ], [ 1 ] ], [ [ 1, 2 ], [ 2, 2 ] ], [ 1 ], [ 2 ]
)))"
```

3.3.15 NamesOfPredicataRepresentation

```
    NamesOfPredicataRepresentation(P)
```

(function)

The function NamesOfPredicataRepresentation returns the names of P.

```
Example

gap> # Continued example: PredicataRepresentation

gap> NamesOfPredicataRepresentation(P);

[ "MyEqual", "MyAdd" ]
```

3.3.16 AritiesOfPredicatonRepresentation

(function)

The function AritiesOfPredicatonRepresentation returns the arities of P.

```
gap> # Continued example: PredicataRepresentation
gap> AritiesOfPredicataRepresentation(P);
[ 2, 3 ]
```

3.3.17 AutsOfPredicataRepresentation

(function)

The function AutOfPredicataRepresentation returns the automaton of P.

3.3.18 ElementOfPredicataRepresentation

```
▷ ElementOfPredicataRepresentation(P, i)
```

(function)

The function ElementOfPredicataRepresentation returns the i-th element as a PredicatonRepresentation (3.3.1).

```
Example

gap> # Continued example: PredicataRepresentation

gap> ElementOfPredicataRepresentation(P, 1);

< Predicaton represented with the name "MyEqual", the arity 2 and the deterministic automaton on 4 letters and 2 states. >
```

3.3.19 Add (PredicataRepresentation)

```
\triangleright \operatorname{Add}(P, p) (method)
```

The method Add adds the PredicatonRepresentation p to P.

```
Example
gap> # Continued example: PredicataRepresentation
gap> A3:=Predicaton(Automaton("det", 2, [ [ 0 ], [ 1 ] ], [ [ 1, 2 ], [ 2, 2 ] ],
> [ 1 ], [ 2 ]), [ 1 ]);;
gap> p3:=PredicatonRepresentation("GreaterZero", 1, A3);;
gap> Add(P, p3);
gap> P;
< PredicataRepresentation containing the following predicates:
[ "MyEqual", "MyAdd", "GreaterZero" ]. >
```

3.3.20 Add (PredicataRepresentation (variant 2))

```
▷ Add(P, name, arity, automaton) (method)
```

The method Add adds the PredicatonRepresentation created from name, arity and automaton to P.

```
gap> # Continued example: PredicataRepresentation
gap> A4:=Predicaton(Automaton("det", 2, [[0], [1]], [[1, 2], [2, 2]],
> [1], [1]), [1]);;
gap> Add(P, "EqualZero", 1, A4);
gap> P;
< PredicataRepresentation containing the following predicates:
["MyEqual", "MyAdd", "GreaterZero", "EqualZero"]. >
```

3.3.21 Remove (PredicataRepresentation)

```
\triangleright Remove(P, i) (method)
```

The method Remove removes the i-th element of P.

3.3.22 CopyPredicataRepresentation

```
▷ CopyPredicataRepresentation(P) (function)
```

The function CopyPredicataRepresentation copies the PredicataRepresentation P.

```
gap> A:=Automaton("det", 3, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],
> [ [ 1, 3, 3 ], [ 2, 3, 3 ], [ 3, 1, 3 ], [ 3, 2, 3 ] ], [ 1 ], [ 1 ]);;
gap> p:=PredicatonRepresentation("CopyPred", 2, A);;
gap> P:=PredicataRepresentation(p);
< PredicataRepresentation containing the following predicates: [ "CopyPred" ]. >
gap> Q:=CopyPredicataRepresentation(P);
< PredicataRepresentation containing the following predicates: [ "CopyPred" ]. >
```

3.3.23 PredicataList

▷ PredicataList (global variable)

The variable PredicataList is a PredicataRepresentation (3.3.10) which is called on default by the PredicataFormula (3.1.4). Together with the functions AddToPredicataList (3.3.24) and RemoveFromPredicataList (3.3.26) the intention is to be able to use own predicates without specifying to much.

3.3.24 AddToPredicataList

```
▷ AddToPredicataList(p[, arity, automaton]) (function)
```

The function AddToPredicataList adds either a PredicatonRepresentation p or the created one with p being a string (name) as well as the arity and the automaton to PredicataList.

```
Example
gap> # Continued example: PredicataList
gap> A2:=Predicaton(Automaton("det", 2, [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ],
> [ [ 1, 2 ], [ 2, 2 ], [ 2, 2 ], [ 1, 2 ] ], [ 1 ], [ 1 ]), [ 1, 2 ]);;
gap> p2:=PredicatonRepresentation("MyEqual", 2, A2);;
gap> AddToPredicataList(p2);
gap> A3:=Predicaton(Automaton("det", 2, [ [ 0 ], [ 1 ] ], [ [ 1, 2 ], [ 2, 2 ] ],
> [ 1 ], [ 2 ]), [ 1 ]);;
gap> AddToPredicataList("GreaterZero", 1, A3);
gap> PredicataList;
gap> f:=PredicataFormula("MyAdd[x,y,z] and MyEqual[x,y]");
< PredicataFormula: MyAdd [ x , y , z ] and MyEqual [ x , y ] >
```

3.3.25 ClearPredicataList

```
▷ ClearPredicataList() (function)
```

The function ClearPredicataList clears the PredicataList.

```
gap> # Continued example: PredicataList
gap> ClearPredicataList();
gap> PredicataList;
< PredicataRepresentation containing the following predicates: []. >
```

3.3.26 RemoveFromPredicataList

```
▷ RemoveFromPredicataList(i) (function)
```

The function RemoveFromPredicataList removes the i-th element of the PredicataList.

3.4 Converting PredicataFormulas via PredicataTrees into Predicata

3.4.1 PredicataFormulaToPredicaton

```
\triangleright PredicataFormulaToPredicaton(f[, V]) (function)
```

The function PredicataFormulaToPredicaton takes a PredicataFormula (3.1.4) f and returns a Predicata which language recognizes the solutions of formula f. The input f must be a first-order formula containing the operations addition+ and the constant multiplication * (as a shortcut), see PredicataGrammar (4.1.1). The optional parameter V (list containing strings) allows to set an order of the free variables occurring in f. Note that the variables must not necessarily occur in the formula (for example x = 4 and V := ["x", "y"]).

```
_ Example .
gap> f:=PredicataFormula("x = 4");
< PredicataFormula: x = 4 >
gap> A:=PredicataFormulaToPredicaton(f);
Predicata: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5
 [0] | 4 2 2 3 5
 [1] | 2 2 5 2 2
Initial states: [ 1 ]
Final states:
The alphabet corresponds to the following variable list: [ "x" ].
 Regular expression of the automaton:
   [0][0][1][0]*
Output:
< Predicata: deterministic finite automaton on 2 letters with 5 states</pre>
and the variable position list [ 1 ]. >
```

3.4.2 StringToPredicaton

```
▷ StringToPredicaton(f[, V])
(function)
```

The function StringToPredicaton is the simpler version of PredicataFormulaToPredicaton (3.4.1), it takes an String f, converts it to a PredicataFormula and returns a Predicata. The optional parameter V allows to set an order for the variables.

```
_ Example <sub>-</sub>
gap> A:=StringToPredicaton("x+y = z");
Predicata: deterministic finite automaton on 8 letters with 3 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
              1 2 3
  [0,0,0] | 1 3 3
  [ 1, 0, 0 ]
                3
                    2 3
                   2 3
 [ 0, 1, 0 ]
              3
  [ 1, 1, 0 ]
              2 3 3
  [ 0, 0, 1 ]
              3 1 3
  [ 1, 0, 1 ]
                 1 3 3
                 1 3 3
  [ 0, 1, 1 ]
  [1,1,1]
              3 2 3
Initial states: [ 1 ]
Final states:
The alphabet corresponds to the following variable list: [ "x", "y", "z" ].
Regular expression of the automaton:
   ([ 1, 1, 0 ]([ 1, 0, 0 ]U[ 0, 1, 0 ]U[ 1, 1, 1 ])*
   [ 0, 0, 1 ]U[ 0, 0, 0 ]U[ 1, 0, 1 ]U[ 0, 1, 1 ])*
Output:
< Predicata: deterministic finite automaton on 8 letters with 3 states</pre>
and the variable position list [ 1, 2, 3 ]. >
```

Chapter 4

Using Predicata

The Presburger arithmetic, named after M. Presburger [Pre29] (translation: [Sta84]), is the first-order theory of natural numbers with a binary operation called addition. In 1929, M. Presburger proved the completeness and due to the constructive proof also the decidability with quantifier elimination. In this package the concepts of automata theory are used to decide Presburger arithmetic [Büc60].

4.1 Creating Predicata from first-order formulas

4.1.1 PredicataGrammar

```
▷ PredicataGrammar() (function)
```

The function PredicataGrammar returns the accepted grammar which is allowed as an input for PredicataFormula (3.1.4).

```
_{-} Example _{-}
gap> PredicataGrammar();
The accepted grammar is defined as follows:
 <formula>
          ::= ( <formula> )
            ( <quantifier> <var> : <formula> )
            <formula> <logicconnective> <formula>
            not <formula>
            <term> = <term>
            | <int> <compare> <var>
            <predicate>
             <boolean>
          ::= ( <term> )
 <term>
            | <int> * <var>
            | ( - <int> ) * <var>
            <var>
            | <int>
 <varlist> ::= <var> , <varlist> | <var>
```

4.1.2 PredicataPredefinedPredicates

```
▷ PredicataPredefinedPredicates()
```

(function)

The function PredicataPredefinedPredicates() returns the predefined predicates which are allowed as an input for PredicataFormula (3.1.4).

4.1.3 Predicaton (PredicataFormula)

```
\triangleright Predicaton(f) (method)
```

The method Predicaton with a PredicataFormula f as an argument calls PredicataFormulaToPredicaton (3.4.1) and returns a minimal Predicaton.

```
Regular expression of the automaton:
    ([ 1, 0 ][ 1, 1 ]*[ 0, 1 ]U[ 0, 0 ])*

Output:

< Predicaton: deterministic finite automaton on 4 letters with 3 states and the variable position list [ 1, 2 ]. >
```

4.1.4 Predicaton (PredicataFormula with variable list)

```
\triangleright Predicaton(f, V) (method)
```

The method Predicaton with a PredicataFormula f and a variable list V as arguments calls PredicataFormulaToPredicaton (3.4.1) and returns a minimal Predicaton.

```
_ Example -
gap> f:=PredicataFormula("2*x = y");
< PredicataFormula: 2 * x = y >
gap> Predication(f, [ "y", "x" ]);
Predicaton: deterministic finite automaton on 4 letters with 3 states,
the variable position list [ 1, 2 ] and the following transitions:
           1 2 3
______
  [0,0] | 1 3 3
  [1,0] | 3 1 3
  [0,1] | 2 3 3
  [1, 1] \mid 3 \mid 2 \mid 3
 Initial states: [ 1 ]
 Final states: [1]
 The alphabet corresponds to the following variable list: [ "y", "x" ].
 Regular expression of the automaton:
   ([ 0, 1 ][ 1, 1 ]*[ 1, 0 ]U[ 0, 0 ])*
 Output:
< Predicaton: deterministic finite automaton on 4 letters with 3 states</pre>
and the variable position list [ 1, 2 ]. >
```

4.1.5 Predicaton (String)

```
▷ Predicaton(S) (method)
```

The method Predicaton with a String S as an argument calls StringToPredicaton (3.4.2) and returns a minimal Predicaton.

4.1.6 Predicaton (String with variable list)

```
\triangleright Predicaton(S, V) (method)
```

The method Predicaton with a String S and a variable list V as arguments calls StringToPredicaton (3.4.2) and returns a minimal Predicaton.

```
_ Example .
gap> Predication("(E y: x+y = z and x = y)", [ "z", "x" ]);
Predicaton: deterministic finite automaton on 4 letters with 3 states,
the variable position list [ 1, 2 ] and the following transitions:
           1 2 3
 [0,0] | 133
 [ 1, 0 ]
             3 1 3
 [0,1]
          2 3 3
 [1,1] | 3 2 3
Initial states: [ 1 ]
Final states: [1]
The alphabet corresponds to the following variable list: [ "z", "x" ].
Regular expression of the automaton:
  ([0, 1][1, 1]*[1, 0]U[0, 0])*
Output:
< Predicaton: deterministic finite automaton on 4 letters with 3 states</pre>
and the variable position list [ 1, 2 ]. >
```

4.1.7 VariableListOfPredicaton

```
    VariableListOfPredicaton(P) (function)
```

The function VariableListOfPredicaton returns the variable list of a Predicaton *P* containing variable strings (see PredicataIsStringType (3.1.2)). Note that only the functions mentioned in this section preserve the variable list, since for the resizeable Predicata there are no reasons to

implement it. There the variable position list may be increased but there's no information on how to increase the variable list, which usually will be eliminated again.

```
_{-} Example
gap> P:=Predicaton("u3+2 = z5");
Predicaton: deterministic finite automaton on 4 letters with 4 states,
the variable position list [ 1, 2 ] and the following transitions:
           1 2 3 4
  [0,0] \mid 3224
  [1,0] | 2 2 3 2
  [0,1] | 2 2 4 2
  [1,1] | 3 2 2 4
Initial states: [ 1 ]
Final states: [ 4 ]
The alphabet corresponds to the following variable list: [ "u3", "z5" ].
Regular expression of the automaton:
   ([\ 0,\ 0\ ]{\tt U}[\ 1,\ 1\ ])[\ 1,\ 0\ ]*[\ 0,\ 1\ ]([\ 0,\ 0\ ]{\tt U}[\ 1,\ 1\ ])*
< Predicaton: deterministic finite automaton on 4 letters with 4 states</pre>
and the variable position list [1, 2]. >
gap> VariableListOfPredicaton(P);
[ "u3", "z5" ]
```

4.1.8 SetVariableListOfPredicaton

```
▷ SetVariableListOfPredicaton(P)
```

(function)

The function SetVariableListOfPredicaton substitutes the variables of a Predicaton P with a new unique variables V. Here only the variable names are changed, compare with VariableAdjustedPredicaton (4.1.9) where the position of the variables, i.e. the variable position list is permuted.

```
\_ Example \_
gap> P:=Predicaton("x+y = z");
Predicaton: deterministic finite automaton on 8 letters with 3 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
             1 2 3
 [0,0,0] | 1 3 3
 [1,0,0] | 3 2 3
 [ 0, 1, 0 ]
             3 2 3
 [ 1, 1, 0 ]
             2 3 3
 [0,0,1]
             3
                  1
             | 1 3 3
 [ 1, 0, 1 ]
 [0,1,1] | 1 3 3
 [1, 1, 1] \mid 3 \mid 2 \mid 3
 Initial states: [ 1 ]
Final states:
              [ 1 ]
 The alphabet corresponds to the following variable list: [ "x", "y", "z" ].
```

```
Regular expression of the automaton:
  ([ 1, 1, 0 ]([ 1, 0, 0 ]U[ 0, 1, 0 ]U[ 1, 1, 1 ])*
    [ 0, 0, 1 ]U[ 0, 0, 0 ]U[ 1, 0, 1 ]U[ 0, 1, 1 ])*
< Predicaton: deterministic finite automaton on 8 letters with 3 states</pre>
and the variable position list [ 1, 2, 3 ]. >
gap> SetVariableListOfPredicaton(P, [ "z", "y", "x" ]);
gap> Display(P);
Predicaton: deterministic finite automaton on 8 letters with 3 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
                1 2 3
 [0, 0, 0]
                1 3 3
 [ 1, 0, 0 ]
              3
                    2 3
 [ 0, 1, 0 ]
                 3
                    2
              [ 1, 1, 0 ]
              2
 [ 0, 0, 1 ]
              3
                   1
 [ 1, 0, 1 ]
                 1 3 3
 [0,1,1]
                1 3 3
 [1, 1, 1]
              3 2
Initial states: [ 1 ]
                [ 1 ]
Final states:
The alphabet corresponds to the following variable list: [ "z", "y", "x" ].
```

4.1.9 VariableAdjustedPredicaton

```
\triangleright VariableAdjustedPredicaton(P, V) (function)
```

The function VariableAdjustedPredicaton takes a Predicaton P and a permuted variable list V and returns the alphabet-permuted Predicaton corresponding to the old and the new variable list, each variable position of each variable may be changed. For x+y=z with ["x", "y", "z"] the function SetVariableListOfPredicaton (4.1.8) with ["z", "y", "x"] will change this to z+y=x but keep the automaton the same. Instead this function called with ["z", "y", "x"] won't change the formula x+y=z (with ["x", "y", "z"]) but instead changes the alphabet and the variable position list such that the variable "x" is set to the third position, "y" remains at the second position and "z" is set to the first position. Compare with PermutedAlphabetPredicaton (2.3.21) and SetVariablePositionListOfPredicaton (2.3.9).

```
_ Example .
gap> P:=Predicaton("x+y = z");
Predicaton: deterministic finite automaton on 8 letters with 3 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
             1 2 3
 [ 0, 0, 0 ]
               1 3 3
 [ 1, 0, 0 ]
                3
                  2 3
 [0,1,0]
             3 2 3
 [ 1, 1, 0 ]
             2 3 3
  [0, 0, 1]
             3 1 3
```

```
[1,0,1] | 1 3 3
  [0,1,1]
                1 3 3
  [1,1,1] | 3 2
Initial states: [ 1 ]
Final states: [1]
The alphabet corresponds to the following variable list: [ "x", "y", "z" ].
Regular expression of the automaton:
  ([ 1, 1, 0 ]([ 1, 0, 0 ]U[ 0, 1, 0 ]U[ 1, 1, 1 ])*
   [ 0, 0, 1 ]U[ 0, 0, 0 ]U[ 1, 0, 1 ]U[ 0, 1, 1 ])*
Output:
< Predicaton: deterministic finite automaton on 8 letters with 3 states</pre>
and the variable position list [ 1, 2, 3 ]. >
gap> Q:=VariableAdjustedPredicaton(P, [ "z", "y", "x" ]);;
gap> Display(Q);
Predicaton: deterministic finite automaton on 8 letters with 3 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
             1 2 3
 [0,0,0] | 133
 [ 1, 0, 0 ]
             3 1 3
  [0,1,0]
                3 2 3
             [ 1, 1, 0 ]
             1
  [ 0, 0, 1 ]
             3 2
             | 1 3 3
  [ 1, 0, 1 ]
  [ 0, 1, 1 ]
             2 3 3
 [1, 1, 1] \mid 3 \mid 2 \mid 3
Initial states: [ 1 ]
Final states:
                Γ17
The alphabet corresponds to the following variable list: [ "z", "y", "x" ].
```

4.1.10 VariableAdjustedPredicata

```
▶ VariableAdjustedPredicata(P1, P2, V) (function)
```

The function VariableAdjustedPredicata does the same as VariableAdjustedPredicaton (4.1.9) just for two Predicata P1 and P2 and a variable list V at the same time. Required for the next functions.

```
gap> P1:=Predicaton("x+y = z");;
gap> P2:=Predicaton("y = 4");;
gap> L:=VariableAdjustedPredicata(P1,P2, [ "x", "z", "y"]);
[ < Predicaton: deterministic finite automaton on 8 letters
  with 3 states and the variable position list [ 1, 2, 3 ]. >,
  < Predicaton: deterministic finite automaton on 8 letters
  with 5 states and the variable position list [ 1, 2, 3 ]. >
  , [ 1, 2, 3 ] ]
gap> VariableListOfPredicaton(L[1]);
[ "x", "z", "y" ]
```

```
gap> VariableListOfPredicaton(L[2]);
[ "x", "z", "y" ]
```

4.1.11 AndPredicata

```
▷ AndPredicata(P1, P2[, V])
```

(function)

The function AndPredicata returns the intersection of the two Predicata P1 and P2 where the variable list (optional, by default V is the union of the variables of P1 and P2) defines the intersection and not the variable position. This function can be used to connect the Predicata of two formulas instead of calling Predicaton on the two with and connected formulas. In the example x+y=z and y=4, even if the variable "y" doesn't have the same variable position (in the first formula position 2 and in the second position 1), will be intersected regarding the variable names.

```
_ Example
gap> P1:=Predicaton("x+y = z");
Predicaton: deterministic finite automaton on 8 letters with 3 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
              1 2 3
  [0,0,0] | 1 3 3
  [ 1, 0, 0 ]
             3
                   2 3
  [ 0, 1, 0 ]
              3
                   2 3
  [ 1, 1, 0 ]
                 2 3 3
             [0, 0, 1]
                 3 1 3
  [ 1, 0, 1 ]
                 1 3 3
  [ 0, 1, 1 ]
                 1
  [ 1, 1, 1 ]
              3 2 3
 Initial states: [ 1 ]
Final states:
The alphabet corresponds to the following variable list: [ "x", "y", "z" ].
Regular expression of the automaton:
   ([ 1, 1, 0 ]([ 1, 0, 0 ]U[ 0, 1, 0 ]U[ 1, 1, 1 ])*
    [ 0, 0, 1 ]U[ 0, 0, 0 ]U[ 1, 0, 1 ]U[ 0, 1, 1 ])*
Output:
< Predicaton: deterministic finite automaton on 8 letters with 3 states</pre>
and the variable position list [ 1, 2, 3 ]. >
gap> P2:=Predication("y = 4");
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5
  [0] | 4 2 2 3 5
  [1] | 2 2 5 2 2
 Initial states: [ 1 ]
Final states:
                [ 5 ]
 The alphabet corresponds to the following variable list: [ "y" ].
```

```
Regular expression of the automaton:
  [0][0][1][0]*
Output:
< Predicaton: deterministic finite automaton on 2 letters with 5 states</pre>
and the variable position list [ 1 ]. >
gap> P:=AndPredicata(P1, P2, [ "x", "y", "z"]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 8 letters with 6 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
             1 2 3 4 5 6
 [0,0,0] | 1 2 2 2 4 5
 [1, 0, 0] \mid 2 2 3 2 2 2
 [0, 1, 0] \mid 2 2 2 2 2 2
 [ 1, 1, 0 ]
            | 2 2 2 3 2 2
 [ 0, 0, 1 ]
            | 2 2 1 2 2 2
            1 2 2 2 4 5
 [ 1, 0, 1 ]
 [0,1,1] | 2 2 2 1 2 2
 [1,1,1] | 2 2 2 2 2 2
 Initial states: [ 6 ]
Final states:
The alphabet corresponds to the following variable list: [ "x", "y", "z" ].
gap> Q:=Predicaton("x+y = z and y = 4", [ "x", "y", "z"]);
Predicaton: deterministic finite automaton on 8 letters with 6 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
             1 2 3 4 5 6
 [0,0,0] | 5 2 2 2 4 6
 [ 1, 0, 0 ]
               2 2 3 2 2 2
               2 2 2 2 2 2
 [ 0, 1, 0 ]
            [1, 1, 0]
            2 2 2 3 2 2
 [0,0,1] | 2 2 6 2 2 2
 [1,0,1] | 5 2 2 2 4 6
 [0,1,1] | 2 2 2 6 2 2
 Initial states: [ 1 ]
               [6]
Final states:
The alphabet corresponds to the following variable list: [ "x", "y", "z" ].
Regular expression of the automaton:
  ([0, 0, 0] \cup [1, 0, 1])([0, 0, 0] \cup [1, 0, 1])
  ([ 1, 1, 0 ][ 1, 0, 0 ]*[ 0, 0, 1 ]U[ 0, 1, 1 ])([ 0, 0, 0 ]U[ 1, 0, 1 ])*
< Predicaton: deterministic finite automaton on 8 letters with 6 states</pre>
and the variable position list [ 1, 2, 3 ]. >
```

4.1.12 OrPredicata

```
▷ OrPredicata(P1, P2[, V]) (function)
```

The function OrPredicata returns the union of the two Predicata P1 and P2 with the variable list (optional, by default V is the union of the variables of P1 and P2). This function can be used to connect the Predicata of two formulas instead of calling Predicaton on the two with or connected formulas.

```
_ Example _
gap> P1:=Predicaton("u = 4");
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5
  [0] | 4 2 2 3 5
  [1] | 2 2 5 2 2
Initial states: [ 1 ]
Final states: [5]
The alphabet corresponds to the following variable list: [ "u" ].
Regular expression of the automaton:
  [0][0][1][0]*
Output:
< Predicaton: deterministic finite automaton on 2 letters with 5 states</pre>
and the variable position list [ 1 ]. >
gap> P2:=Predication("u = 2");
Predicaton: deterministic finite automaton on 2 letters with 4 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4
  [0] | 3 2 2 4
  [1] | 2 2 4 2
Initial states: [ 1 ]
Final states: [4]
The alphabet corresponds to the following variable list: [ "u" ].
Regular expression of the automaton:
  [0][1][0]*
Output:
< Predicaton: deterministic finite automaton on 2 letters with 4 states</pre>
and the variable position list [ 1 ]. >
gap> P:=OrPredicata(P1, P2);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
       | 1 2 3 4 5
  [0] | 1 2 2 5 3
  [1] | 2 2 1 2 1
```

```
Initial states: [ 4 ]
Final states: [ 1 ]
The alphabet corresponds to the following variable list: [ "u" ].
```

4.1.13 NotPredicaton

```
\triangleright NotPredicaton(P[, V]) (function)
```

The function NotPredicaton returns the negation of the Predicaton P. This function can be used to negate the Predicaton instead of calling Predicaton on the formula with prefix not. The optional parameter V allows to adjust the variable list (with VariableAdjustedPredicaton (4.1.9)).

```
_{-} Example
gap> P:=Predicaton("x < 4");</pre>
Predicaton: deterministic finite automaton on 2 letters with 4 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4
  [0] | 3 2 4 4
  [1] | 3 2 4 2
Initial states: [ 1 ]
Final states: [ 1, 3, 4 ]
The alphabet corresponds to the following variable list: [ "x" ].
Regular expression of the automaton:
   ([ 0 ]U[ 1 ])(([ 0 ]U[ 1 ])[ 0 ]*U@)U@
< Predicaton: deterministic finite automaton on 2 letters with 4 states</pre>
and the variable position list [ 1 ]. >
gap> NotPredication(P);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 4 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4
  [0] | 3 2 4 4
  [1] | 3 2 4 2
Initial states: [ 1 ]
Final states: [2]
 The alphabet corresponds to the following variable list: [ "x" ].
```

4.1.14 ImpliesPredicata

```
▷ ImpliesPredicata(P1, P2[, V])

(function)
```

The function ImpliesPredicata returns the implication of the Predicata P1 and P2 with variable list (optional, by default V is the union of the variables of P1 and P2). This function can be used

to connect the Predicata of two formulas instead of calling Predicaton on the two with implies connected formulas.

```
Example __
gap> P1:=Predicaton("(E m: x = 4*m)");
Predicaton: deterministic finite automaton on 2 letters with 4 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4
 [0] | 4 2 3 3
 [1] | 2 2 3 2
 Initial states: [ 1 ]
Final states: [ 1, 3, 4 ]
The alphabet corresponds to the following variable list: [ "x" ].
Regular expression of the automaton:
   [ 0 ]([ 0 ]([ 0 ]U[ 1 ])*U@)U@
Output:
< Predicaton: deterministic finite automaton on 2 letters with 4 states</pre>
and the variable position list [ 1 ]. >
gap> P2:=Predicaton("(E n: x = 2*n)");
Predicaton: deterministic finite automaton on 2 letters with 3 states,
the variable position list [ 1 ] and the following transitions:
       1 2 3
     ______
 [0] | 3 2 3
 [1] | 2 2 3
Initial states: [ 1 ]
Final states: [1, 3]
The alphabet corresponds to the following variable list: [ "x" ].
Regular expression of the automaton:
  [ O ]([ O ]U[ 1 ])*U@
Output:
< Predicaton: deterministic finite automaton on 2 letters with 3 states</pre>
and the variable position list [ 1 ]. >
gap> P:=ImpliesPredicata(P1, P2, [ "x" ]);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 1 state,
the variable position list [\ 1\ ] and the following transitions:
      | 1
_____
  [0] | 1
 [1] | 1
Initial states: [ 1 ]
Final states: [1]
 The alphabet corresponds to the following variable list: [ "x" ].
```

4.1.15 EquivalentPredicata

```
▷ EquivalentPredicata(P1, P2[, V])
▷ EquivPredicata(P1, P2[, V])
(function)
```

The function EquivalentPredicata returns the equivalence of the Predicata P1 and P2 with the variable list (optional, by default V is the union of the variables of P1 and P2). This function can be used to connect the Predicata of two formulas instead of calling Predicaton on the two with equiv connected formulas.

```
Example
gap> P1:=Predicaton("(E y: 2*x = 7+3*y)");
Predicaton: deterministic finite automaton on 2 letters with 6 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5 6
  [0] | 5 2 4 3 4 6
  [1] | 4 3 6 4 2 3
Initial states: [ 1 ]
Final states: [6]
The alphabet corresponds to the following variable list: [ "x" ].
Regular expression of the automaton:
   (([ 0 ][ 0 ]U[ 1 ])[ 1 ]*[ 0 ]U[ 0 ][ 1 ][ 0 ]*[ 1 ])
   ([ 1 ][ 0 ]*[ 1 ]U[ 0 ][ 1 ]*[ 0 ])*[ 1 ][ 0 ]*
Output:
< Predicaton: deterministic finite automaton on 2 letters with 6 states</pre>
and the variable position list [ 1 ]. >
gap> P2:=Predicaton("(E k: x = 5+3*k)");
Predicaton: deterministic finite automaton on 2 letters with 6 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5 6
  [0] | 5 2 4 3 4 6
  [1] | 4 3 6 4 2 3
Initial states: [ 1 ]
Final states: [6]
The alphabet corresponds to the following variable list: [ "x" ].
Regular expression of the automaton:
   (([0][0]U[1])[1]*[0]U[0][1][0]*[1])
    ([ 1 ][ 0 ]*[ 1 ]U[ 0 ][ 1 ]*[ 0 ])*[ 1 ][ 0 ]*
Output:
< Predicaton: deterministic finite automaton on 2 letters with 6 states</pre>
and the variable position list [ 1 ]. >
gap> P:=EquivalentPredicata(P1, P2);;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 1 state,
the variable position list [ 1 ] and the following transitions:
        | 1
```

```
[ 0 ] | 1 [ 1 ] | 1 Initial states: [ 1 ] Final states: [ 1 ]

The alphabet corresponds to the following variable list: [ "x" ].
```

4.1.16 ExistsPredicaton

```
▷ ExistsPredicaton(P, v[, V])
```

(function)

The function ExistsPredicaton returns the existence quantifier with the variable v applied on the Predicaton P. This function can be used to quantify the Predicaton instead of calling (E v: ...) on the formula. The optional parameter V allows to adjust the variable list (with VariableAdjustedPredicaton (4.1.9)).

```
_ Example _
gap> P:=Predicaton("5*x+6*y = n");
Predicaton: deterministic finite automaton on 8 letters with 12 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
             1 2 3 4 5 6 7 8 9 10 11 12
  [0,0,0] | 1 2 2 3 4 5 2 7 2 2 12 2
 [ 1, 0, 0 ]
             2
                  2
                        2
                           2
                             2
                                   2
                                      7
                     1
                                3
 [0,1,0]
             2
                  2
                     7
                        2
                           2
                             2 5 2 8
            4 2 2
                       7
 [ 1, 1, 0 ]
                          5 8 2 12 2
             7 2 2 5 12 9 2 8 2 2
 [0,0,1]
 [1, 0, 1]
             | 2 2 7 2 2 2 5 2 8 9 2 12
             | 2 2 8 2 2 2 9 2 10 11 2 6
 [0, 1, 1]
             | 12 2 2 8 9 10 2 6 2 2
 [1, 1, 1]
Initial states: [ 1 ]
               [ 1 ]
Final states:
The alphabet corresponds to the following variable list: [ "n", "x", "y" ].
Output:
< Predicaton: deterministic finite automaton on 8 letters with 12 states</pre>
and the variable position list [ 1, 2, 3 ]. >
gap> P:=ExistsPredicaton(P, "x");;
gap> P:=ExistsPredicaton(P, "y");;
gap> Display(P);
Predicaton: deterministic finite automaton on 2 letters with 12 states,
the variable position list [ 1 ] and the following transitions:
        | 1 2 3 4 5 6 7 8 9 10 11 12
 [0] | 9 2 3 2 4 5 3 7 8 2 4 11
 [1] | 12332
                     3 2 2 2 10 7 7 6
Initial states: [ 1 ]
               [ 1, 3, 7, 8, 9 ]
Final states:
The alphabet corresponds to the following variable list: [ "n" ].
```

4.1.17 ForallPredicaton

```
▷ ForallPredication(P, v[, V])
```

(function)

The function ForallPredicaton returns the for all quantifier with the variable v applied on the Predicaton P. This function can be used to quantify the Predicaton instead of calling (A $v:\ldots$) on the formula. The optional parameter V allows to adjust the variable list (with VariableAdjustedPredicaton (4.1.9)).

```
_{-} Example
gap> P1:=Predicaton("(E x: (E y: 5*x+6*y = n))");
Predicaton: deterministic finite automaton on 2 letters with 12 states,
the variable position list [ 1 ] and the following transitions:
        | 1 2 3 4 5 6 7 8 9 10 11 12
  [0] | 122 4 5 2 2 5 7 9 9 10 11
 [1] | 8 9 2 9 2 10 10 3 9 2 2 6
Initial states: [ 1 ]
Final states: [ 1, 9, 10, 11, 12 ]
The alphabet corresponds to the following variable list: [ "n" ].
Output:
< Predicaton: deterministic finite automaton on 2 letters with 12 states</pre>
and the variable position list [ 1 ]. >
gap> P2:=Predication("n > 19");
Predicaton: deterministic finite automaton on 2 letters with 7 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5 6 7
  [0] | 6 2 2 3 4 5 7
 Initial states: [1]
Final states: [7]
The alphabet corresponds to the following variable list: [ "n" ].
Output:
< Predicaton: deterministic finite automaton on 2 letters with 7 states</pre>
and the variable position list [ 1 ]. >
gap> P3:=ImpliesPredicata(P2, P1);;
gap> P:=ForallPredication(P3, "n");;
gap> Display(P);
Predicaton: deterministic finite automaton on 1 letter with 1 state,
the variable position list [ ] and the following transitions:
     1
_____
 [] | 1
Initial states: [ 1 ]
Final states: [ 1 ]
```

4.1.18 LeastAcceptedNumber

```
\triangleright LeastAcceptedNumber(P[, b]) (function)
```

The function LeastAcceptedNumber returns the Predicaton recognizing the least number which is accepted by the given Predicaton P. If the argument b is true (by default), then the Predicaton recognizing the least number greater 0 is returned (if there is one), otherwise 0 is included.

```
Example .
gap> P:=Predicaton("x >= 4");
Predicaton: deterministic finite automaton on 2 letters with 4 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4
  [0] | 3 2 2 4
  [1] | 3 4 2 4
Initial states: [ 1 ]
Final states: [ 4 ]
The alphabet corresponds to the following variable list: [ "x" ].
Regular expression of the automaton:
   ([ 0 ]U[ 1 ])([ 0 ]U[ 1 ])[ 0 ]*[ 1 ]([ 0 ]U[ 1 ])*
Output:
< Predicaton: deterministic finite automaton on 2 letters with 4 states</pre>
and the variable position list [ 1 ]. >
gap> L:=LeastAcceptedNumber(P);
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5
  [0] | 4 2 2 3 5
  [1] | 2 2 5 2 2
Initial states: [ 1 ]
Final states: [5]
The alphabet corresponds to the following variable list: [ "x" ].
Regular expression of the automaton:
  [0][0][1][0]*
Output:
< Predicaton: deterministic finite automaton on 2 letters with 5 states</pre>
and the variable position list [ 1 ]. >
```

4.1.19 GreatestAcceptedNumber

```
▷ GreatestAcceptedNumber(P) (function)
```

The function GreatestAcceptedNumber returns the Predicaton recognizing the greatest number which is accepted by the given Predicaton *P*.

```
_ Example
gap> P:=Predicaton("(E x: 2*x = y and x < 9)");
Predicaton: deterministic finite automaton on 2 letters with 8 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5 6 7 8
  [0] | 3 2 7 4 4 5 6 5
 [1] | 2 2 8 2 4 4 5 5
Initial states: [ 1 ]
Final states: [ 1, 3, 4, 5, 6, 7, 8 ]
The alphabet corresponds to the following variable list: [ "y" ].
Regular expression of the automaton:
   [ 0 ](([ 1 ]([ 0 ]U[ 1 ])U[ 0 ]([ 0 ][ 0 ]U[ 1 ]))
   (([ \ 0 \ ]U[ \ 1 \ ])[ \ 0 \ ]*U@)U[ \ 1 \ ]U[ \ 0 \ ]([ \ 0 \ ]([ \ 1 \ ][ \ 0 \ ]*U@)U@)U@)U@)U@
Output:
< Predicaton: deterministic finite automaton on 2 letters with 8 states</pre>
and the variable position list [ 1 ]. >
gap> G:=GreatestAcceptedNumber(P);
Predicaton: deterministic finite automaton on 2 letters with 7 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5 6 7
  [0] | 6 2 2 3 4 5 7
  [1] | 2 2 7 2 2 2 2
Initial states: [ 1 ]
Final states: [7]
The alphabet corresponds to the following variable list: [ "y" ].
Regular expression of the automaton:
   [0][0][0][1][0]*
Output:
< Predicaton: deterministic finite automaton on 2 letters with 7 states</pre>
and the variable position list [ 1 ]. >
```

4.1.20 LeastNonAcceptedNumber

```
▷ LeastNonAcceptedNumber(P)
```

(function)

The function LeastNonAcceptedNumber returns the Predicaton recognizing the Least number which is not recognized by the given Predicaton P.

```
[1] | 5 3 3 2 4 2 4
Initial states: [ 1 ]
               [ 1, 3, 4, 5, 6, 7 ]
Final states:
The alphabet corresponds to the following variable list: [ "x" ].
Regular expression of the automaton:
   ([ 0 ]([ 0 ][ 0 ]U[ 1 ])U[ 1 ]([ 0 ]U[ 1 ]))(([ 1 ][ 0 ]*[ 1 ]U[ 0 ])
   ([ O ]U[ 1 ])*U@)U[ O ]([ O ]([ 1 ][ O ]*[ 1 ]([ O ]U[ 1 ])*U@)U@)U[ 1 ]U@
Output:
< Predicaton: deterministic finite automaton on 2 letters with 7 states and</pre>
the variable position list [ 1 ]. >
gap> L:=LeastNonAcceptedNumber(P);
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5
  [0] | 4 2 2 3 5
 [1] | 2 2 5 2 2
Initial states: [ 1 ]
Final states: [5]
The alphabet corresponds to the following variable list: [ "x" ].
Regular expression of the automaton:
  [0][0][1][0]*
Output:
< Predicaton: deterministic finite automaton on 2 letters with 5 states</pre>
and the variable position list [ 1 ]. >
```

4.1.21 GreatestNonAcceptedNumber

```
▷ GreatestNonAcceptedNumber(P)
```

(function)

The function GreatestNonAcceptedNumber returns the Predicaton recognizing the greatest number which is not recognized by the given Predicaton P.

```
Regular expression of the automaton:
   ([ 0 ]([ 1 ][ 0 ]*[ 1 ]U[ 0 ])U[ 1 ][ 0 ]([ 0 ]U[ 1 ])
    [ 0 ]*[ 1 ]U[ 1 ][ 1 ])([ 0 ]U[ 1 ])*U[ 0 ]U@
Output:
< Predicaton: deterministic finite automaton on 2 letters with 6 states</pre>
and the variable position list [ 1 ]. >
gap> G:=GreatestNonAcceptedNumber(P);
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
         1 2 3 4 5
  [0] | 2 2 2 3 5
  \lceil 1 \rceil \mid 4 \mid 2 \mid 5 \mid 2 \mid 2
Initial states: [1]
Final states: [5]
The alphabet corresponds to the following variable list: [ "n" ].
Regular expression of the automaton:
  [1][0][1][0]*
Output:
< Predicaton: deterministic finite automaton on 2 letters with 5 states</pre>
and the variable position list [ 1 ]. >
gap> AcceptedByPredicaton(G);
[[5]]
```

4.1.22 InterpretedPredicaton

```
▷ InterpretedPredication(P)
```

(function)

The function InterpretedPredicaton returns true if the Predicaton *P* has exactly one state which is also a final state, thus the Predicaton is interpreted as true (if free variable occurs it is true for all natural numbers). Otherwise, false is returned.

```
< Predicaton: deterministic finite automaton on 1 letter with 1 state
and the variable position list [ ]. >
gap> InterpretedPredicaton(P);
The Predicaton is interpreted as True.
true
```

4.1.23 AreEquivalentPredicata

```
▷ AreEquivalentPredicata(P1, P2[, b])
```

(function)

The function AreEquivalentPredicata returns either true if the Predicatas P1 and P2 are equivalent or false otherwise. If the optional parameter b is true (by default) then the equivalence is computed w.r.t. the variable names, if false it is computed w.r.t. to the variable position list.

```
_ Example -
gap> P1:=Predicaton("x=4", ["x", "y"]);
Predicaton: deterministic finite automaton on 4 letters with 5 states,
the variable position list [ 1, 2 ] and the following transitions:
           1 2 3 4 5
 [0,0] | 4 2 2 3 5
  [1,0] | 2 2 5 2 2
  [0,1] | 4 2 2 3 5
  [1,1] | 2 2 5
Initial states: [ 1 ]
Final states: [5]
The alphabet corresponds to the following variable list: [ "x", "y" ].
< Predicaton: deterministic finite automaton on 4 letters with 5 states</pre>
and the variable position list [ 1, 2 ]. >
gap> P2:=Predicaton("u=4", ["u", "v", "w"]);
Predicaton: deterministic finite automaton on 8 letters with 5 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
             1 2 3 4 5
  [0,0,0] | 4 2 2 3 5
  [1, 0, 0]
             2
                   2 5 2 2
             | 4 2 2 3 5
 [ 0, 1, 0 ]
 [1,1,0] | 2 2 5 2 2
 [0, 0, 1] \mid 4 \quad 2 \quad 2 \quad 3 \quad 5
 [1,0,1] | 2 2 5 2 2
 [ 0, 1, 1 ]
             4 2 2 3 5
  [ 1, 1, 1 ]
             | 2 2 5 2 2
 Initial states: [ 1 ]
 Final states:
The alphabet corresponds to the following variable list: [ "u", "v", "w" ].
Output:
< Predicaton: deterministic finite automaton on 8 letters with 5 states</pre>
and the variable position list [ 1, 2, 3 ]. >
```

```
gap> AreEquivalentPredicata(P1, P2);
The Predication doesn't hold for all natural numbers and is interpreted as False.
false
gap> AreEquivalentPredicata(P1, P2, false);
The Predication holds for all natural numbers and is interpreted as True.
true
```

4.1.24 LinearSolveOverN

```
▷ LinearSolveOverN(A, b[, V])

(function)
```

The function LinearSolveOverN returns the Predicaton which language recognizes the solutions x of the linear equation $A \cdot x = b$. The argument A is a matrix (list of lists), the argument b a vector (list) and the optional argument b allows to specify an order (here the variables are named "x1", "x2", ...). Note that b and b may contain also negative integers, whereas the solution is over the natural numbers.

```
Example
gap> A:=LinearSolveOverN([ [ 1, -2, 3 ], [ 3, 4, -7 ] ], [ 2, 0 ]);
Predicaton: deterministic finite automaton on 8 letters with 17 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
                   2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
  [0, 0, 0]
                 2
                    2
                      2
                         2
                            4
                               2
                                  2
                                     2
                                       8
                                          2
                                             10 2
                                                   2 2
 [ 1, 0, 0 ]
                 2
                   2
                      2
                         14
                            2
                               9
                                  2
                                    2
                                       2
                                          8
                                             2
                                                2
                                                   12 2
                 11 2
                         2
                               2
                                  2
                                    7
                                        2
                                          2
                                             2
                                                   2
 [ 0, 1, 0 ]
                      17
                            2
  [ 1, 1, 0 ]
                 2
                   2
                      2
                         2
                            2
                               2
                                  6
                                    2
                                        2
                                          2
                                                2
 [0,0,1]
                2
                   2 2
                         3
                            2
                               4
                                  2
                                    2
                                       2
                                          16 2
                                                2
                                                   15 2
                2 2 2 2
                           13 2
                                  2
                                    2 12 2
                                             4
                                                2
                                                   2
 [1, 0, 1]
  [0, 1, 1]
             | 2 2 2 2 2 2 17 2
                                       2
                                          2
                                             2
                                                2
                                                   2
             17 2 5 2 2 2 2 14 2 2 2 12 2
  [1, 1, 1]
Initial states: [ 1 ]
                [ 17 ]
Final states:
The alphabet corresponds to the following variable list: [ "x1", "x2", "x3" ].
Output:
< Predicaton: deterministic finite automaton on 8 letters with 17 states and
the variable position list [ 1, 2, 3 ]. >
gap> AcceptedByPredicaton(A, 10);
[[1, 1, 1], [2, 9, 6]]
```

4.1.25 NullSpaceOverN

```
\triangleright NullSpaceOverN(A[, V]) (function)
```

The function NullSpaceOverN returns the Predicaton which language recognizes the solutions x of the linear equation $A \cdot x = 0$. The argument A is a matrix (list of lists) and the optional argument V allows to specify an order (here the variables are named "x1", "x2", ...). Note that A may contain also negative integers, whereas the solution is over the natural numbers.

```
Example
gap> N:=NullSpaceOverN([[1, -2, 3],[3, 4, -7]]);
Predicaton: deterministic finite automaton on 8 letters with 13 states,
the variable position list [ 1, 2, 3 ] and the following transitions:
             1 2 3 4 5 6 7 8 9 10 11 12 13
 [0, 0, 0]
                 2 2 2 4 2 2 2 8 2 2 2 2
 [ 1, 0, 0 ]
               2
                 2 2 12 2 9 2 2 2 2 10 2 2
                   1
 [0,1,0]
            2
                 2
                       2
                         2 2 2 7
            2
                 2 2 2
                         2 2
                                 2
                                    2
 [1, 1, 0]
                               6
 [0,0,1]
            2
                 2 2
                      3 2 4
                               2
                                 2
 [ 1, 0, 1 ]
            | 5 2 2 2 11 2 2 2 10 2 2 2
            | 2 2 2 2 2 2 1 2 2 2 4 3
 [ 0, 1, 1 ]
            2 2 5 2 2 2 2 12 2 10 2 2 2
 [1, 1, 1]
 Initial states: [ 1 ]
Final states:
               Г 1 7
The alphabet corresponds to the following variable list: [ "x1", "x2", "x3" ].
Output:
< Predicaton: deterministic finite automaton on 8 letters with 13 states and
the variable position list [ 1, 2, 3 ]. >
gap> AcceptedByPredicaton(N);
[[0,0,0],[1,8,5]]
```

4.2 Examples

4.2.1 Example 1: Getting familiar

The following example introduces the two ways of getting a Predicaton, either created from a first-order formula (see PredicataGrammar (4.1.1)), the mathematically more intuitive way, or from an Automaton, which at first sight may not completely obvious.

```
_ Example
gap> # We want a Predicaton accepting the binary representation of the number 4:
gap> DecToBin(4);
[0,0,1]
gap> A:=Predication("x = 4");
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5
  [0] | 4 2 2 3 5
  [1] | 2 2 5 2 2
 Initial states: [ 1 ]
              [5]
 Final states:
 The alphabet corresponds to the following variable list: [ "x" ].
 Regular expression of the automaton:
   [0][0][1][0]*
```

```
Output:
< Predicaton: deterministic finite automaton on 2 letters with 5 states</pre>
and the variable position list [ 1 ]. >
gap> # Accepted natural numbers?
gap> IsAcceptedByPredicaton(A, [ 4 ]);
gap> # Accepted binary representation, also with leading zero?
gap> IsAcceptedByPredicaton(A, [ [ 0, 0, 1 ] ]);
gap> IsAcceptedByPredicaton(A, [ [ 0, 0, 1, 0 ] ]);
true
gap> # Indeed any leading zeros can be added or cancelled:
gap> PredicationToRatExp(A);
[0][0][1][0]*
gap> # Now we create the Predicaton recognizing "y = 1" by hand:
gap> # Parameters: type, states, alphabet,
gap> Aut:=Automaton("det", 3,
                               [[0],[1]],
> # transitions from letter (row) and state (column) to state (row, column)
> [[3, 2, 3], [2, 3, 3]],
> # initial state, final states
> [ 1 ],
                 [2]);
< deterministic automaton on 2 letters with 3 states >
gap> # We create the Predicaton from the automaton and the variable position list.
gap> # Here we choose "y" to be at position 2.
gap> B:=Predication(Aut, [ 2 ]);
< Predicaton: deterministic finite automaton on 2 letters with 3 states</pre>
and the variable position list [2]. >
gap> SetVariableListOfPredication(B, [ "y" ]);
gap> # Then we use AndPredicata to apply "and" according to the variable names.
gap> # Hence the Predicaton is over the alphabet [[0, 0], [1, 0], [0, 1], [1, 1]],
gap> # where the first coordinate belong to "x" and the second to "y". Note that
gap> # [ "x", "y" ] is optional, by default it's sorted alphabetically.
gap> C:=AndPredicata(A, B, [ "x", "y" ]);;
gap> Display(C);
Predicaton: deterministic finite automaton on 4 letters with 5 states,
the variable position list [ 1, 2 ] and the following transitions:
           1 2 3 4 5
       ______
  [0,0] | 2 2 2 3 5
  [1,0] | 2 2 5 2 2
  [0,1] | 4 2 2 2 2
  [1,1] | 2 2 2 2 2
 Initial states: [ 1 ]
 Final states:
               [5]
 The alphabet corresponds to the following variable list: [ "x", "y" ].
gap> # So C accepts in the first component of the letter the variable x
gap> # and in the second component the variable y.
gap> IsAcceptedByPredicaton(C, [ 4, 1 ]);
gap> IsAcceptedByPredicaton(C, [ [ 0, 0, 1 ], [ 1 ] ]);
true
```

```
gap> # Alternatively, we could have created this Predicaton simply with
gap> D:=Predicaton("x = 4 and y = 1");
Predicaton: deterministic finite automaton on 4 letters with 5 states,
the variable position list [ 1, 2 ] and the following transitions:
           1 2 3 4 5
  [ 0, 0 ]
              2
                 2
                   2 3 5
  [1,0]
           2
                 2 5 2 2
                 2 \ 2 \ 2 \ 2
  [0,1]
           4
  [1,1]
           | 2
Initial states: [ 1 ]
Final states:
                Г 5 ]
The alphabet corresponds to the following variable list: [ "x", "y" ].
Regular expression of the automaton:
   [0, 1][0, 0][1, 0][0, 0]*
Output:
< Predicaton: deterministic finite automaton on 4 letters with 5 states</pre>
and the variable position list [ 1, 2 ]. >
gap> DrawPredication(D);
gap> # Furthermore, we can use the following function to see the allowed grammar:
gap> PredicataGrammar();
```


Figure 4.1: A minimal DFA recognizing x = 4 (x corresponding to the first component of each letter) and y = 1 (y corresponding to the second component).

4.2.2 Example 2: Recalling the motivation

We recall the example from the section 1. There we wanted to get the Predicaton recognizing all natural numbers which can be purchased by 6, 9 and 20.

```
_ Example _
gap> # We create the Predicaton of the following formula
gap> A:=Predicaton("(E x:(E y:(E z:6*x+9*y+20*z=n)))");
Predicaton: deterministic finite automaton on 2 letters with 17 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
      _____
 [0] | 17 12 6 3 5 5 6 4 7 6 5 10 13 13 14 15 16
 [1] | 2 9 13 5 13 5 3 15 10 14 14 4 13 5 5 11 8
Initial states: [1]
Final states: [ 1, 13, 14, 15, 16, 17 ]
The alphabet corresponds to the following variable list: [ "n" ].
Output:
< Predicaton: deterministic finite automaton on 2 letters with 17 states</pre>
and the variable position list [ 1 ]. >
gap> Display(A);
Predicaton: deterministic finite automaton on 2 letters with 17 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 [0] | 17 12 6 3 5 5 6 4 7 6 5 10 13 13 14 15 16
 [1] | 2 9 13 5
                     13 5 3 15 10 14 14 4 13 5 5 11 8
Initial states: [ 1 ]
Final states: [ 1, 13, 14, 15, 16, 17 ]
The alphabet corresponds to the following variable list: [ "n" ].
gap> # We ask for the accepted natural numbers.
gap> AcceptedByPredicaton(A, 20);
[[0],[6],[9],[12],[15],[18],[20]]
gap> DisplayAcceptedByPredicaton(A, 99, true);
If the following words are accepted by the given automaton, then: Y,
otherwise if not accepted: n.
  0: Y
       1: n
              2: n 3: n
                            4: n
                                 5: n
                                         6: Y
                                               7: n
                                                      8: n
                                                            9: Y
 10: n 11: n 12: Y 13: n 14: n 15: Y 16: n 17: n 18: Y 19: n
 20: Y 21: Y 22: n 23: n 24: Y 25: n 26: Y 27: Y
                                                     28: n 29: Y
 30: Y 31: n 32: Y 33: Y 34: n 35: Y 36: Y 37: n
                                                    38: Y 39: Y
 40: Y 41: Y 42: Y 43: n 44: Y 45: Y 46: Y 47: Y
                                                    48: Y 49: Y
 50: Y 51: Y 52: Y 53: Y 54: Y 55: Y
                                        56: Y 57: Y
                                                     58: Y 59: Y
 60: Y 61: Y 62: Y 63: Y 64: Y 65: Y
                                        66: Y 67: Y
                                                     68: Y 69: Y
 70: Y 71: Y 72: Y 73: Y 74: Y 75: Y
                                        76: Y 77: Y 78: Y 79: Y
 80: Y 81: Y 82: Y 83: Y 84: Y 85: Y 86: Y 87: Y 88: Y 89: Y
 90: Y 91: Y 92: Y 93: Y 94: Y 95: Y 96: Y 97: Y 98: Y 99: Y
gap> # We create the Predicaton accepting the greatest non-accepted number.
gap> # First we create a PredicatonRepresentation, containing a name,
gap> # an arity and an automaton (the input may also be a Predicaton).
gap> p:=PredicatonRepresentation("P", 1, A);
```

```
< Predicaton represented with the name "P", the arity 1 and</pre>
the deterministic automaton on 2 letters and 17 states. >
gap> AddToPredicataList(p);
gap> PredicataList;
< PredicataRepresentation containing the following predicates: [ "P" ]. >
gap> B:=Predicaton("(A m: m > n implies P[m]) and not P[n]");
Predicaton: deterministic finite automaton on 2 letters with 8 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5 6 7 8
  [0] | 2 2 2 3 2 5 2 8
  [1] | 7 2 8 2 4 2 6 2
Initial states: [ 1 ]
Final states: [8]
The alphabet corresponds to the following variable list: [ "n" ].
Regular expression of the automaton:
  [1][1][0][1][0]*
< Predicaton: deterministic finite automaton on 2 letters with 8 states</pre>
and the variable position list [ 1 ]. >
gap> AcceptedByPredication(B, 50);
[ [ 43 ] ]
gap> # We look at the regular expression and compute the natural number
gap> PredicatonToRatExp(B);
[1][1][0][1][0]*
gap> BinToDec([ 1, 1, 0, 1, 0, 1 ]);
gap> # Alternatively, we can also use the inbuilt function:
gap> C:=GreatestNonAcceptedNumber(A);
Predicaton: deterministic finite automaton on 2 letters with 8 states,
the variable position list [ 1 ] and the following transitions:
        | 1 2 3 4 5 6 7 8
  [0] | 2 2 2 3 2 5 2 8
 [1] | 7 2 8 2 4 2 6 2
Initial states: [ 1 ]
Final states: [8]
The alphabet corresponds to the following variable list: [ "n" ].
Regular expression of the automaton:
  [1][1][0][1][0]*
< Predicaton: deterministic finite automaton on 2 letters with 8 states</pre>
and the variable position list [ 1 ]. >
```


Figure 4.2: A minimal DFA recognizing the numbers which can be purchased by the formula of A.

4.2.3 Example 3: Divisible by three

A very common example from an automata theory lecture is finding the natural numbers which are divisible by three. Sometimes this example is solve with clear rules, sometimes with a lot of handwaving.

However, the following way is a solid approach in the first-order language with + using the shortcut 3*x:=x+x+x.

Here, first the Predicaton for 3*y=x is created with the transition rule with the k-th state having carry (k-1): 3*a[1]=a[2]+(i-1)+2*((j-1)-(i-1)). For the existence quantifier we ignore the second component of each letter, which yields a nondeterministic finite automaton. We apply the leading zero completion (see NormalizedLeadingZeroPredicaton (2.3.12)), i.e. any leading zero may be cancelled or added to the accepted words. Then we apply the subset construction and return the minimal automaton.

```
_{-} Example
gap> # We ask if there exists "y" s.t. 3*y=x.
gap> A:=Predicaton("(E y: 3*y = x)");
Predicaton: deterministic finite automaton on 2 letters with 3 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3
 [0] | 1 3 2
 [1] | 2 1 3
Initial states: [ 1 ]
Final states: [1]
The alphabet corresponds to the following variable list: [ "x" ].
Regular expression of the automaton:
  ([ 1 ]([ 0 ][ 1 ]*[ 0 ])*[ 1 ]U[ 0 ])*
Output:
< Predicaton: deterministic finite automaton on 2 letters with 3 states</pre>
and the variable position list [ 1 ]. >
gap> # Compare with:
gap> B:=Predicaton("3*y = x");
Predicaton: deterministic finite automaton on 4 letters with 4 states,
the variable position list [ 1, 2 ] and the following transitions:
         1 2 3 4
 ______
 [0,0] | 1 2 2 3
 [1,0] | 2 2 1 2
 [0,1] | 2 2 4 2
 [1, 1] \mid 3 2 2 4
Initial states: [ 1 ]
Final states: [1]
The alphabet corresponds to the following variable list: [ "x", "y" ].
Regular expression of the automaton:
  ([ 1, 1 ]([ 0, 1 ][ 1, 1 ]*[ 0, 0 ])*[ 1, 0 ]U[ 0, 0 ])*
Output:
< Predicaton: deterministic finite automaton on 4 letters with 4 states</pre>
and the variable position list [ 1, 2 ]. >
gap> Display(B);
Predicaton: deterministic finite automaton on 4 letters with 4 states,
the variable position list [ 1, 2 ] and the following transitions:
         1 2 3 4
 [0,0] | 1223
 [1,0] | 2 2 1 2
 [0,1] | 2 2 4 2
 [1,1] | 3 2 2 4
Initial states: [ 1 ]
Final states: [1]
```


Figure 4.3: A minimal DFA recognizing the numbers divisible by 3.

4.2.4 Example 4: Linear congruences

We can solve the linear congruences $4 \cdot x = 7$ modulo 5 in the natural numbers.

```
and the variable position list [ 1 ]. >
gap> AcceptedByPredicaton(A, 20);
[[3],[8],[13],[18]]
gap> # We asked for some accepted words and suggest as a solution x = 3+5*k.
gap> B:=Predicaton("(E k: x = 3+5*k)");
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
        | 1 2 3 4 5
     _____
 [0] | 4 1 2 3 5
 [1] | 2 5 1 4 3
Initial states: [ 1 ]
Final states: [5]
The alphabet corresponds to the following variable list: [ "x" ].
< Predicaton: deterministic finite automaton on 2 letters with 5 states</pre>
and the variable position list [ 1 ]. >
gap> # Indeed:
gap> AreEquivalentPredicata(A, B);
The Predicaton holds for all natural numbers and is interpreted as True.
gap> DrawPredication(A);
gap> # Furthermore, we look at a system of linear congruences.
gap> C:=Predicaton("(E y1: x = 1 + 2*y1) and (E y2: x = 2 + 3*y2)");
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
        | 1 2 3 4 5
  [0] | 2 2 4 3 5
 [1] | 4 2 5 4 3
 Initial states: [ 1 ]
Final states: [5]
The alphabet corresponds to the following variable list: [ "x" ].
Regular expression of the automaton:
   [ 1 ][ 1 ]*[ 0 ]([ 1 ][ 0 ]*[ 1 ]U[ 0 ][ 1 ]*[ 0 ])*[ 1 ][ 0 ]*
Output:
< Predicaton: deterministic finite automaton on 2 letters with 5 states</pre>
and the variable position list [ 1 ]. >
gap> AcceptedByPredicaton(C, 20);
[[5],[11],[17]]
gap> # We suggest:
gap> D:=Predicaton("(E k: x = 5 + 6 * k)");
Predicaton: deterministic finite automaton on 2 letters with 5 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5
  [0] | 2 2 4 3 5
  [1] | 4 2 5 4 3
```

```
Initial states: [ 1 ]
Final states: [ 5 ]

The alphabet corresponds to the following variable list: [ "x" ].

Regular expression of the automaton:
    [ 1 ][ 1 ]*[ 0 ]([ 1 ][ 0 ]*[ 1 ]U[ 0 ][ 1 ]*[ 0 ])*[ 1 ][ 0 ]*

Output:

< Predicaton: deterministic finite automaton on 2 letters with 5 states and the variable position list [ 1 ]. >
gap> AreEquivalentPredicata(C, D);
The Predicaton holds for all natural numbers and is interpreted as True.
true
```


Figure 4.4: A minimal DFA recognizing the solutions of the linear congruence A.

4.2.5 Example 5: GCD and LCM

We can also compute the GCD and LCM of two natural numbers, however at the first sight it's not completely obvious how to obtain the GCD.

```
gap> # All multiples of the GCD of 6 and 15. If there exists z such that gap> # it is a multiple of the GCD(6, 15) after some number y, then also gap> # z+x is a multiple of the GCD.

gap> A:=Predicaton("(E y: (A z: z>=y implies ((Ea : (Eb: z= 6*a+15*b))\) implies (Ec: (Ed: z+x= 6*c+15*d))))");
```

```
Predicaton: deterministic finite automaton on 2 letters with 3 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3
  [0] | 1 3 2
  [1] | 2 1 3
Initial states: [ 1 ]
Final states: [1]
The alphabet corresponds to the following variable list: [ "x" ].
Regular expression of the automaton:
   ([ 1 ]([ 0 ][ 1 ]*[ 0 ])*[ 1 ]U[ 0 ])*
Output:
< Predicaton: deterministic finite automaton on 2 letters with 3 states</pre>
and the variable position list [ 1 ]. >
gap> # This Predicaton is already known from Example 2 and we test for the least
gap> # accepted natural number greater 0 (>= 0 with optional parameter false):
gap> B:=LeastAcceptedNumber(A);
Predicaton: deterministic finite automaton on 2 letters with 4 states,
the variable position list [ 1 ] and the following transitions:
       1 2 3 4
  [0] | 2 2 2 4
  [1] | 3 2 4 2
Initial states: [ 1 ]
Final states: [ 4 ]
The alphabet corresponds to the following variable list: [ "x" ].
Regular expression of the automaton:
  [1][1][0]*
< Predicaton: deterministic finite automaton on 2 letters with 4 states</pre>
and the variable position list [ 1 ]. >
gap> AcceptedByPredicaton(B);
[[3]]
gap> # We get the multiples of the LCM(6, 15) straightforwardly.
gap> C:=Predicaton("(E a: 6*a = x) and (E b: 15*b = x)");
Predicaton: deterministic finite automaton on 2 letters with 17 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
  [0] | 17 2 6 3 4 5 10 7 8 9 12 11 16 13 14 15 17
  [1] | 2 2 17 6 7 13 5 3 11 16 10 4 12 8 15 9 14
Initial states: [ 1 ]
Final states: [ 1, 17 ]
 The alphabet corresponds to the following variable list: [ "x" ].
```

```
Output:
< Predicaton: deterministic finite automaton on 2 letters with 17 states</pre>
and the variable position list [ 1 ]. >
gap> D:=LeastAcceptedNumber(C);
Predicaton: deterministic finite automaton on 2 letters with 7 states,
the variable position list [ 1 ] and the following transitions:
        1 2 3 4 5 6 7
  [0] | 6 2 2 2 2 2 7
  [1] | 2 2 7 3 4 5 2
Initial states: [ 1 ]
Final states: [7]
The alphabet corresponds to the following variable list: [ "x" ].
Regular expression of the automaton:
  [0][1][1][1][0]*
Output:
< Predicaton: deterministic finite automaton on 2 letters with 7 states</pre>
and the variable position list [ 1 ]. >
gap> AcceptedByPredicaton(D, 100);
[ [ 30 ] ]
```

4.2.6 Example 6: Theorems

```
_{-} Example _{-}
gap> # Which of the followings sentences are true?
gap> A1:=Predicaton("(E x:(A y: x = y))");
Predicaton: deterministic finite automaton on 1 letter with 1 state,
the variable position list [ ] and the following transitions:
      | 1
_____
  [] | 1
 Initial states: [1]
 Final states: []
 Regular expression of the automaton:
  empty_set
 Due to the automaton the formula is false.
  false
 Output:
< Predicaton: deterministic finite automaton on 1 letter with 1 state</pre>
and the variable position list []. >
gap> A2:=Predicaton("(A x:(E y: x = y))");
Predicaton: deterministic finite automaton on 1 letter with 1 state,
the variable position list [ ] and the following transitions:
     | 1
  [] | 1
 Initial states: [ 1 ]
```

```
Final states: [1]
 Regular expression of the automaton:
   []*
 Due to the automaton the formula is true.
   true
 Output:
< Predicaton: deterministic finite automaton on 1 letter with 1 state</pre>
and the variable position list []. >
gap> A3:=Predicaton("(A x:(E y: x = y+1))");
Predicaton: deterministic finite automaton on 1 letter with 1 state,
the variable position list [ ] and the following transitions:
  [] | 1
 Initial states: [ 1 ]
 Final states: []
 Regular expression of the automaton:
  empty_set
 Due to the automaton the formula is false.
  false
 Output:
< Predicaton: deterministic finite automaton on 1 letter with 1 state</pre>
and the variable position list []. >
gap> A4:=Predicaton("(A x:(E y: x = 2*y) or (E y: x=2*y+1))");
Predicaton: deterministic finite automaton on 1 letter with 1 state,
the variable position list [ ] and the following transitions:
     | 1
  [] | 1
 Initial states: [ 1 ]
 Final states: [1]
 Regular expression of the automaton:
   []*
 Due to the automaton the formula is true.
   true
 Output:
< Predicaton: deterministic finite automaton on 1 letter with 1 state</pre>
and the variable position list []. >
gap> A5:=Predicaton("(A n:(E n0: n > n0 implies (E x: (E y: 5*x+6*y=n))))");
Predicaton: deterministic finite automaton on 1 letter with 1 state,
the variable position list [ ] and the following transitions:
     | 1
  [] | 1
```

```
Initial states: [ 1 ]
 Final states: [1]
 Regular expression of the automaton:
   []*
 Due to the automaton the formula is true.
   true
 Output:
< Predicaton: deterministic finite automaton on 1 letter with 1 state</pre>
and the variable position list []. >
gap> # Furthermore, we can use "true" and "false" as predicates;
gap> A6:=Predicaton("true and (false implies true) implies true");
Predicaton: deterministic finite automaton on 1 letter with 1 state,
the variable position list [ ] and the following transitions:
       | 1
  [] | 1
 Initial states: [ 1 ]
 Final states: [1]
 Regular expression of the automaton:
   []*
 Due to the automaton the formula is true.
   true
 Output:
< Predicaton: deterministic finite automaton on 1 letter with 1 state
and the variable position list []. >
```


Figure 4.5: The minimal DFA which is interpreted as true.

Figure 4.6: The minimal DFA which is interpreted as false.

References

- [AEC16] 3rd Algorithmic and Enumerative Combinatorics Summer School 2016. https://www.risc.jku.at/conferences/aec2016/, 2016. Accessed: 2018-07-01. 2
- [Büc60] J. R. Büchi. Weak Second-Order Arithmetic and Finite Automata. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 6, (6):66–92, 1960. 2, 4, 75
- [DEG⁺02] D. Dobkin, J. Ellson, E. Gansner, E. Koutsofios, S. North, and G. Woodhull. Graphviz Graph Drawing Programs. Technical report, AT&T Research and Lucent Bell Labs, 2002.
- [DLM11] M. Delgado, S. Linton, and J. Morais. Automata, a package on automata, Version 1.13. http://www.fc.up.pt/cmup/mdelgado/automata/, 2011. Refereed GAP package. 2
- [HMU01] J. E. Hopcroft, R. Motwani, and J. D. Ullman. *Introduction to Automata Theory, Languages, and Computation*. Cengage Learning, Boston, MA, USA, 2nd edition, 2001.
- [Koz97] D. C. Kozen. *Automata and Computability*. Springer-Verlag, Berlin, Heidelberg, 1st edition, 1997. 4
- [Pip97] N. Pippenger. *Theories of Computability*. Cambridge University Press, New York, NY, USA, 1st edition, 1997. 4
- [Pre29] M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In *Comptes Rendus du I congrès de Mathématiciens des Pays Slaves*, page 92–101. Warszawa, 1929. 2, 4, 75
- [Sha13] J. Shallit. Decidability and Enumeration for Automatic Sequences: A Survey. In A. A. Bulatov and A. M. Shur, editors, *Computer Science Theory and Applications*, page 49–63, Berlin, Heidelberg, 2013. Springer-Verlag. 2
- [Sta84] R. Stansifer. Presburger's Article on Integer Airthmetic: Remarks and Translation. Technical Report TR84-639, Cornell University, Computer Science Department, September 1984. Accessed: 2018-07-01. 75

Index

AcceptedByPredicaton, 22	DecToBin, 20
AcceptedWordsByPredicaton, 22	Display
Add	PredicataFormula, 55
PredicataRepresenation, 70	PredicataFormulaFormatted, 57
PredicataRepresenation (variant 2), 71	PredicataRepresentation, 68
AdditionPredicaton, 42	PredicataTree, 58
AdditionPredicaton3Summands, 51	Predicaton, 8
AdditionPredicaton4Summands, 51	PredicatonRepresentation, 65
AdditionPredicaton5Summands, 51	DisplayAcceptedByPredicaton, 22
AdditionPredicatonNSummands, 43	DisplayAcceptedByPredicatonInNxN, 23
AdditionPredicatonNSummandsExplicit, 51	DisplayAcceptedWordsByPredicaton, 22
${\tt AdditionPredicatonNSummandsIterative},$	DisplayAcceptedWordsByPredicatonInNxN,
51	23
AdditionPredicatonNSummandsRecursive,	DisplayAut, 10
52	DrawPredicaton, 10
AddToPredicataList, 72	
AlphabetOfAut, 12	ElementOfPredicataRepresentation, 70
AlphabetOfAutAsList, 12	EqualPredicaton, 40
AndPredicata, 82	EquivalentPredicata, 87
AreEquivalentPredicata, 94	EquivPredicata, 87
AritiesOfPredicatonRepresentation, 70	ExistsPredicaton, 88
ArityOfPredicatonRepresentation, 66	ExpandedPredicaton, 31
AutOfPredicaton, 24	FinalStatesOfAut, 14
AutOfPredicatonRepresentation, 67	FinitelyManyWordsAccepted, 38
AutomatonOfPredicaton, 24	ForallPredication, 89
AutsOfPredicataRepresentation, 70	FormattedPredicaton, 30
	FreeVariablesOfPredicataFormula, 56
BinToDec, 21	FreeVariablesOfPredicataTree, 62
BooleanPredicaton, 39	rieevaliablesoirieulcatallee, 02
BoundedVariablesOfPredicataFormula, 56	GetAlphabet, 9
BoundedVariablesOfPredicataTree, 62	GreaterEqualNPredicaton, 45
BuildPredicaton, 7	GreaterEqualPredicaton, 47
ChildOfPredicataTree, 60	GreaterNPredicaton, 46
ClearPredicataList, 72	GreaterPredicaton, 48
CopyAut, 16	GreatestAcceptedNumber, 90
	GreatestNonAcceptedNumber, 92
CopyPredicateRepresentation, 71	1 , ,
CopyPredicaton, 16 CopyPredicatonRepresentation, 67	ImpliesPredicata, 85
	InitialStatesOfAut, 13

InsertChildToPredicataTree, 60	PredicataGrammar, 75
InterpretedPredicaton, 93	PredicataGrammarVerification, 55
IntersectionAut, 18	PredicataIsStringType, 54
IntersectionPredicata, 33	PredicataList, 72
IsAcceptedByPredicaton, 21	PredicataPredefinedPredicates, 76
IsAcceptedWordByPredicaton, 21	PredicataRepresentation, 67
IsDeterministicAut, 11	PredicataRepresentationOfPredicata-
IsEmptyPredicataTree, 59	Tree, 64
IsNonDeterministicAut, 11	PredicataTree, 58
IsPredicataFormula, 55	PredicataTreeToPredicaton, 63
IsPredicataFormulaFormatted, 57	PredicataTreeToPredicatonRecursive, 63
IsPredicataRepresentation, 68	Predicaton
IsPredicataTree, 58	Automaton with variable position list, 6
IsPredicaton, 7	PredicataFormula, 76
IsPredicatonRepresentation, 65	PredicataFormula with variable list, 77
IsRecognizedByAut, 20	String, 77
IsValidInput, 31	String with variable list, 78
IsValidInputList, 39	PredicatonFromAut, 37
1 , , , ,	PredicatonRepresentation, 64
LeastAcceptedNumber, 90	PredicatonToRatExp, 38
LeastNonAcceptedNumber, 91	Print
LinearSolveOverN,95	PredicataFormula, 56
	PredicataFormulaFormatted, 58
MinimalAut, 17	PredicataRepresentation, 69
NameOfPredicatonRepresentation, 66	PredicataTree, 59
NamesOfPredicataRepresentation, 69	Predicaton, 8
Namesoffiedicatanepresentation, 09	PredicatonRepresentation, 66
NegatedProjectedNegatedPredicaton, 32	ProductLZeroPredicaton, 25
NormalizedLeadingZeroPredicaton, 28	ProjectedPredicaton, 32
NotPredication, 85	5
NullSpaceOverN, 95	Remove
NumberOfChildrenOfPredicataTree, 60	PredicataRepresenation, 71
NumberStatesOfAut, 12	RemoveFromPredicataList, 73
Number Statesor Aut, 12	ReturnedChildOfPredicataTree, 61
OrPredicata, 84	RightQuotientLZeroPredicaton, 26
	RootOfPredicataTree, 59
ParentOfPredicataTree, 61	
PermutedAbcPredicaton, 36	SetFinalStatesOfAut, 15
PermutedAlphabetPredicaton, 36	SetInitialStatesOfAut, 14
PermutedStatesAut, 16	${\tt SetRootOfPredicataTree, 60}$
PredicataAdditionAut,41	SetVariableListOfPredicaton, 79
PredicataEqualAut, 40	SetVariablePositionListOfPredicaton, 25
PredicataFormula, 55	SetVarPosListOfPredicaton, 25
PredicataFormulaFormatted, 57	SinkStatesOfAut, 15
PredicataFormulaFormattedToTree, 62	${\tt SmallerEqualNPredicaton, 46}$
PredicataFormulaSymbols, 54	SmallerEqualPredicaton, 49
PredicataFormulaToPredicaton, 73	SmallerNPredicaton, 47

SmallerPredicaton, 50
SortedAbcPredicaton, 29
SortedAlphabetPredicaton, 29
SortedStatesAut, 12
StringToPredicaton, 74
SumOfProductsPredicaton, 44
TermEqualTermPredicaton, 45
Times2Predicaton, 53
Times3Predicaton, 53
Times4Predicaton, 53
Times5Predicaton, 53
Times6Predicaton, 53
Times7Predicaton, 53
Times8Predicaton, 53
Times9Predicaton, 53
TimesNPredicaton, 44
TimesNPredicatonExplicit, 52
TimesNPredicatonRecursive, 52
TransitionMatrixOfAut, 13
TypeOfAut, 11
UnionAut, 19
UnionPredicata, 34
VariableAdjustedPredicata, 81
VariableAdjustedPredicaton, 80
VariableListOfPredicaton, 78
VariablePositionListOfPredicaton, 25
VarPosListOfPredicaton, 25
View
PredicataFormula, 56
PredicataFormulaFormatted, 57
PredicataRepresentation, 69
PredicataTree, 59
Predicaton, 8
PredicatonRepresentation, 66
WordsOfRatExp, 38
WordsOfRatExpInterpreted, 39