1

Assignment 15

Rubeena Aafreen

Download the latex-tikz codes from

https://github.com/rubeenaafreen20/EE5609/tree/master/Assignment15

1 Problem

Let

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 2 & -2 & 2 \\ 2 & -3 & 2 \end{pmatrix} \tag{1.0.1}$$

Is A similar over the field of real numbers to a triangular matrix? If so, find such a triangular matrix.

2 **Definitions**

Characteristic Polynomial	For an $n \times n$ matrix A , characteristic polynomial is defined by,
	$p\left(x\right) = \left x\mathbf{I} - \mathbf{A}\right $
Theory	A is similar to triangular matrix J if \exists an invertible matrix P such that $\mathbf{A} = \mathbf{P}\mathbf{J}\mathbf{P}^{-1}$

TABLE 1: Definitions

3 Solution

Characteristic polynomial	$p(x) = \begin{vmatrix} x & -1 & 0 \\ -2 & x+2 & -2 \\ -2 & 3 & x-2 \end{vmatrix}$ $= x((x+2)(x-2)+6) + (-2(x-2)+4) + 0$ $= x(x^2+2) - 2x$ $= x^3$ $\implies \lambda = 0$
$dim(Ker(\mathbf{A} - \lambda \mathbf{I}))$	$(\mathbf{A} - 0\mathbf{I}) \mathbf{X} = 0$ $\implies \begin{pmatrix} 0 & 1 & 0 \\ 2 & -2 & 2 \\ 2 & -3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\implies x = -z, y = 0$ So,
	$\mathbf{v_1} = \begin{pmatrix} -1\\0\\1 \end{pmatrix}$
Find $\mathbf{v_2}$ such that $\mathbf{A}\mathbf{v_2} = \mathbf{v_1}$	$\begin{pmatrix} 0 & 1 & 0 \\ 2 & -2 & 2 \\ 2 & -3 & 2 \end{pmatrix} \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ $\implies \mathbf{v}_2 = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$
Find v_3 such that $Av_3 = v_2$	$\begin{pmatrix} 0 & 1 & 0 \\ 2 & -2 & 2 \\ 2 & -3 & 2 \end{pmatrix} \mathbf{v_3} = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$ $\implies \mathbf{v_3} = \begin{pmatrix} -\frac{3}{2} \\ -1 \\ 0 \end{pmatrix}$
	Let $\mathbf{P} = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{pmatrix}$ Then,

	$\mathbf{AP} = \begin{pmatrix} \mathbf{A}\mathbf{v}_1 & \mathbf{A}\mathbf{v}_2 & \mathbf{A}\mathbf{v}_3 \end{pmatrix}$ $\implies \mathbf{AP} = \begin{pmatrix} 0 & \mathbf{v}_1 & \mathbf{v}_2 \end{pmatrix}$ $= \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ $= \mathbf{PJ}$ $\implies \mathbf{AP} = \mathbf{PJ}$ $\implies \mathbf{A} = \mathbf{PJP}^{-1}$
Conclusion	Therefore, A is similar to triangular matrix and the triangular matrix is, $\mathbf{J} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

TABLE 2: Checking triangularizability of A