HW7

计 37 张馨元 2023010872

25

证明. 设
$$f(x) = c_0 + c_1 x + c_2 x^2 + ... + x^{n-1}$$
,题中所说的基为 $[\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, ..., \boldsymbol{\alpha}_n]$

则在该基下 Ø 的方阵表示为
$$A = \begin{bmatrix} 0 & \cdots & 0 & -c_0 \\ 1 & \cdots & 0 & -c_1 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & -c_{n-1} \end{bmatrix}$$
 则有 $\alpha_i = \varnothing \alpha_{i-1} (i \in [2,n])$,故 $\alpha_i = \varnothing^{i-1} \alpha_1, i \in [1,n]$ 故 $\forall x \in V, \exists a_1, a_2, ..., a_n \in F, \text{s.t.} x = \sum_{i=1}^n a_i \alpha_i = \sum_{i=1}^n a_i \varnothing^{i-1} \alpha_1 = g(\varnothing) \alpha_1$ 故 $V = F[\varnothing] \alpha_1$ Ø $A = \varnothing (\varnothing^{n-1} \alpha_1) = \varnothing \alpha_n = \sum_{i=1}^n -c_{i-1} \alpha_i = \sum_{i=1}^n -c_{i-1} \varnothing^{i-1} \alpha_1$ 即 $f(\lambda)\alpha_1 = \mathbf{0}$ 则 $f(\lambda)\alpha_i = f(\varnothing)\varnothing^{i-1}\alpha_1 = \varnothing^{n-1} f(\varnothing)\alpha_1 = \mathbf{0}$ 故 $f(\lambda)$ 是一个 Ø 的一个零化多项式 若存在一个次数小于 n 的首一零化多项式 $g(\lambda) = \sum_{i=0}^k b_i \lambda^i$,则 $g(\varnothing)\alpha_1 = \mathbf{0}$ 则有 $\varnothing^k \alpha_1 = -\sum_{i=0}^{k-1} b_i \varnothing^i \alpha_1 = -\sum_{i=0}^{k-1} b_i \varnothing^i \alpha_1 = \alpha_{k+1} (k \in [2,n])$ 与题设矛盾

28

故 $f(\lambda)$ 为最小多项式

证明. 若 α 不是 \varnothing 的特征向量,则 \varnothing α 和 α 线性无关

故 $\left[\alpha \ \mathscr{A}\alpha\right]$ 是 F^2 的一组基,即 $F^2 = F[\mathscr{A}]\alpha$, F^2 为循环空间 而对于非纯量变换 \mathscr{A} , $\mathscr{A} - \lambda \mathscr{I} \neq \mathbf{O}$, $\forall \lambda \in F$ 故 $\dim(\operatorname{Ker}(\mathscr{A} - \lambda \mathscr{I})) < 2$, 总能找到 $\mathbf{x} \in F^2$, s.t. \mathbf{x} 不为 \mathscr{A} 的特征向量 故对于非纯量变换, F^2 总是循环空间

29

可知 (A-3I)(A+2I) = O,故最小多项式 $m(\lambda) = (\lambda-3)(\lambda+2)$,由循环分解定理知 $\mathbb{R}^3 = F[\mathscr{A}]\alpha_1 \oplus F[\mathscr{A}]\alpha_2$ (两个空间的最小多项式分别为 $(\lambda-3)$ 和 $(\lambda-3)(\lambda+2)$)

同様な行列型

$$\begin{bmatrix} 3 \\ 3 \\ -2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \\ -6 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ -2 \end{bmatrix} \begin{bmatrix} 3 \\ -3 \\ -6 \end{bmatrix} = \begin{bmatrix} 9 \\ -9 \\ 12 \end{bmatrix}$$
可求得 $\det \begin{pmatrix} \begin{bmatrix} 1 & 3 & 9 \\ -1 & -3 & -9 \\ 3 & -6 & 12 \end{bmatrix} \end{pmatrix} = 0$

故
$$\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$$
 生成的循环子空间为 span $\left(\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ -3 \\ -6 \end{bmatrix} \right)$

$$A\boldsymbol{\alpha} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, A^2\boldsymbol{\alpha} = \begin{bmatrix} 1-i \\ -3 \\ -1 \end{bmatrix}, A^3\boldsymbol{\alpha}_1 = \begin{bmatrix} 1-4i \\ 2i-7 \\ -4 \end{bmatrix}$$

$$\det\left(\begin{bmatrix} \boldsymbol{\alpha} & A\boldsymbol{\alpha} & A^2\boldsymbol{\alpha} \end{bmatrix}\right) = 1 \text{ } \mathbb{E} A^3\boldsymbol{\alpha} = (2+2i)\boldsymbol{\alpha} - (2i+5)A\boldsymbol{\alpha} + 4A^2\boldsymbol{\alpha}$$
 故 $\boldsymbol{\alpha}$ 的最小零化子为 $m(\lambda) = \lambda^3 - 4\lambda^2 + (2i+5)\lambda - 2(i+1)$
$$A\boldsymbol{\beta} = \begin{bmatrix} 1 \\ 0 \\ i \end{bmatrix} = \boldsymbol{\beta}$$
 故 $\boldsymbol{\alpha}$ 的最小零化子为 $m(\lambda) = \lambda - 1$

31

证明. 不妨设 \mathscr{A}^2 的循环向量为 α 则 $\forall \boldsymbol{x} \in F^n, \exists f(\lambda), \text{s.t.} f(\mathscr{A}^2) \boldsymbol{\alpha} = \boldsymbol{x}$ 令 $g(\mathscr{A}) = f(\mathscr{A}^2)$,则 $\forall \boldsymbol{x} \in F^n, \exists g(\lambda), \text{s.t.} g(\mathscr{A}) \boldsymbol{\alpha} = \boldsymbol{x}$ 故 $\boldsymbol{\alpha}$ 也是 \mathscr{A} 的循环向量

反过来不对

证明. 考虑 $A=\begin{bmatrix}1\\-1\end{bmatrix}$, $A^2=I$ 显然 A 有循环变量而 A^2 没有, 对应的线性变换有对应结论

32

对于可对角化的方阵,其最小多项式为 $m(\lambda) = \prod_{i=1}^k (\lambda - \lambda_i)$ 若 $\mathscr A$ 有循环向量,则 $m(\lambda) = f(\lambda)(f(\lambda))$ 为特征多项式) 故 $\deg(m(\lambda)) = \deg(f(\lambda))$,即 k = n 故 $\mathscr A$ 有 n 个互异的特征值

33

证明. 取 \mathscr{A} 的一个循环向量 α 因为 $\mathscr{B}\alpha \in V$,故有 $\mathscr{B}\alpha = \sum_{i=0}^{n-1} a_i \mathscr{A}^i \alpha = p(\mathscr{A})\alpha$ 由于 $\mathscr{A}\mathcal{B} = \mathscr{B}\mathscr{A}$,易知 $\mathscr{A}^k \mathscr{B} = \mathscr{B}\mathscr{A}^k$,故 $\mathscr{B}\mathscr{A}^k \alpha = \mathscr{A}^k \mathscr{B}\alpha = \mathscr{A}^k p(\mathscr{A})\alpha = p(\mathscr{A})\mathscr{A}^k \alpha$ 故 $(\mathscr{B} - p(\mathscr{A}))\mathscr{A}^k \alpha = \mathbf{0}$ 而 $\alpha, \mathscr{A}\alpha, ..., \mathscr{A}^{n-1}\alpha$ 线性独立 故 $\dim(\operatorname{Ker}(\mathscr{B} - P(\mathscr{A})) = n$ 故 $\mathscr{B} = p(\mathscr{A})$ 命题得证

证明.
$$A^2 = A \begin{bmatrix} 0 \\ 1 \end{bmatrix} = O$$

故 $F[\mathscr{A}] \alpha_1 = \{a_0\alpha_1 | a_0 \in F\}$,维数为 1
自然 $F^2 \neq F[\mathscr{A}] \alpha_1$
设 $\alpha_2 = \begin{bmatrix} x \\ y \end{bmatrix} \neq \mathbf{0}$
若 $x = 0$,则 $\alpha_2 \parallel \alpha_1$, $\alpha_2 = F[\mathscr{A}] \alpha_2 \cap F[\mathscr{A}] \alpha_1$
若 $x \neq 0$,则 $A\alpha_2 = \begin{bmatrix} 0 \\ x \end{bmatrix} \parallel \alpha_1$, $\alpha_2 = F[\mathscr{A}] \alpha_2 \cap F[\mathscr{A}] \alpha_1$
故 $\forall \alpha_2 \neq \mathbf{0}$, $F[\mathscr{A}] \alpha_2 \cap F[\mathscr{A}] \alpha_1 \neq \mathbf{0}$

证明.
$$\forall \boldsymbol{y} \in fV, \exists \boldsymbol{x} = \boldsymbol{x}_1 + \boldsymbol{x}_2 + ... + \boldsymbol{x}_n (\boldsymbol{x}_i \in V_i, i \in [1, s])$$
s.t. $\boldsymbol{y} = f(\mathscr{A})\boldsymbol{x}$ 故 $\boldsymbol{y} = f(\mathscr{A})\sum_{i=1}^n \boldsymbol{x}_i = \sum_{i=1}^n f(\mathscr{A})\boldsymbol{x}_i$ 因此 $fV = fV_1 + fV_2 + ... + fV_s$ 下面再证此和为直和: 设 $\boldsymbol{v} \in fV_i \cap fV_j, i \neq j$ 由于 $\boldsymbol{v} \in fV_i$,有 $\boldsymbol{v} = f(\mathscr{A})\boldsymbol{v}_1, \boldsymbol{v}_1 \in V_i$ 而又有 $\boldsymbol{v} \in fV_j$,则 $\boldsymbol{v}_1 \in V_j$ 故 $\boldsymbol{v}_1 = \boldsymbol{0}$ 故 $\boldsymbol{v}_1 = \boldsymbol{0}$ 故 $\boldsymbol{v} = \boldsymbol{0}$ 故 $\boldsymbol{v} = \boldsymbol{0}$

证明. 令 $p(\lambda) = (m(\lambda), f(\lambda))$ 若 $q(\lambda)$ 为 $f\alpha$ 的零化多项式,即 $q(\lambda)f(\lambda)\alpha = 0$,则知 $q(\lambda)f(\lambda)$ 为 α 的零化多项式

因此 $q(\lambda)f(\lambda)$ 中必含因子 $m(\lambda)$ 故 $q(\lambda)$ 最小为 $\frac{m(\lambda)}{p(\lambda)}$ 同理可知 $f\boldsymbol{\beta}$ 的最小多项式也为 $\frac{m(\lambda)}{p(\lambda)}$,命题得证

39

求出特征多项式 $f(\lambda) = (\lambda - 1)^3$ 由于 $A \neq O \land A^2 = O$ 可知 \mathscr{A} 的最小多项式为 $m(\lambda) = (\lambda - 1)^2$ 因此对 A 进行循环分解,有 $m_1 = m = (\lambda - 1)^2, m_2 = \lambda - 1$ 故 α_2 应为特征向量,相应地, α_1 不为特征向量

因此可取
$$\boldsymbol{\alpha}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \boldsymbol{\alpha}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

42

对 A 进行循环分解,得 $A = P^{-1} \operatorname{diag}(C(m_1), C(m_2), ..., C(m_s)) P$ 由于 A 的特征值仅有实数,故 m_i 均为实多项式, $C(m_i)$ 也均为实矩阵 故 A 相似于实矩阵 $\operatorname{diag}(C(m_1), C(m_2), ..., C(m_s))$

47

证明. 必要性:

若 V 中每个非零向量均为循环向量,且 $\mathscr A$ 的特征多项式在 F 上可约由于最小多项式和特征多项式的因式相同,则可设最小多项式 $m(\lambda) = \prod_{i=1}^s p_i(\lambda)^{r_i}, p_i(\lambda)$ 均不可约

根据空间准素分解定理知, $A \simeq \operatorname{diag}(P_1, P_2, ..., P_s)$,其中 P_i 的最小多项式为 $p_i(\lambda)^{r_i}$

又根据循环分解定理, 可知 $P_i \simeq diag(C_{i1}, C_{i2}, ..., C_{is_i})$

取 C_{11} 的循环向量 α ,由于 C_{11} 是 V 的真子空间, α 不是 V 的循环向量,与题设矛盾

故必要性得证

充分性:

若 🗹 的特征多项式 $f(\lambda)$ 在 F 上不可约,易知最小多项式 $m(\lambda) = f(\lambda)$

故 $\forall \boldsymbol{x} \in F^n$,有 $m(\lambda)\boldsymbol{x} = \mathbf{0}$

同时任意次数比 $m(\lambda)$ 低的多项式 $p(\lambda)$, 由于

 $\mathrm{Ker}(m) \cap \mathrm{Ker}(p) = \mathrm{Ker}((m,p)) = \mathrm{Ker}(1) = \{\mathbf{0}\}$

故 $p(\lambda)\boldsymbol{x} = \boldsymbol{0}$

即 $\forall x \in F^n, m(\lambda)$ 均为其最小多项式,由循环向量的定义知

 $\deg(F[\mathscr{A}]\boldsymbol{x}) = n$

故 $F[\mathscr{A}]\boldsymbol{x} = F^n$

故充分性得证