

Operativni sistemi

- Upravljanje memorijom -

Prof. dr Dragan Stojanović

Katedra za računarstvo Univerzitet u Nišu, Elektronski fakultet

Operativni sistemi

Literatura

- Operating Systems: Internals and Design Principles, edition,
 W. Stallings, Pearson Education Inc., 7th 2012, (5th -2005, 6th 2008, 8th 2014, 9th 2017)
 - http://williamstallings.com/OperatingSystems/
 - http://williamstallings.com/OperatingSystems/OS9e-Student/
- Poglavlje 7: Upravljanje memorijom

Sistem za upravljanje memorijom

- Osnovne funkcije:
 - Evidencija slobodnih i zauzetih delova memorije u multiprogramskom sistemu
 - Dodela (alociranje) memorije procesima po potrebi
 - Kontinualna dodela memorije
 - Nekontinualna dodela memorije
 - Oslobađanje (dealociranje) memorije kada procesima više nije potrebna
 - Upravljanje zamenom (swapping) sadržaja između glavne memorije i diska kada glavna memorija nije dovoljna da smesti sve procese

Zahtevi upravljanja memorijom

- Relokacija
 - Proces se može smestiti počev od bilo koje memorijske adrese, po potrebi premestiti na disk i ponovo vratiti u memoriju počev od nove memorijske adrese. Memorijske reference moraju da se prevedu u stvarne, fizičke memorijske adrese.
- Zaštita memorije
 - Zaštita pristupa memorijskom prostoru jednog procesa od strane drugog procesa, kao i zabrana pristupa memorijskom prostoru OS.
- Zajedničko korišćenje memorije
 - Svaki mehanizam zaštite mora biti fleksibilan da obezbedi zajedničko korišćenje istog dela glavne memorije.
- Logička organizacija
 - Linearni adresni prostor sastavljen od sekvence bajtova ili reči
 - Podela programa u module koji mogu biti kompajlirani nezavisno
- Fizička organizacija
 - Dva nivoa: glavna i sekundarna memorija

Upravljanje memorijom

Memorijska slika procesa

Memorijska slika procesa (detaljnije)

- Izvršna datoteka se u određenom formatu procesa (exe, obj, elf,...) nalazi na sekundarnoj memoriji.
- Ova datoteka sadrži programski kôd, podatke koji su neophodni za izvršenje programa i informacije koje su neophodne OS-u da bi smestio taj program u memoriju i da bi ga izvršio.
- Memorijska slika procesa
 - Programski kod (code, text)
 - Podaci (inicijalizovani, neinicijalizovani, dinamički (*heap*)
 - Stek

Upravljanje memorijom Operativni sistemi

Memory Management Unit (MMU)

- MMU (Memory Management Unit) hardverska komponenta, obično na CPU čipu koja vrši transformisanje logičke (virtuelne) adrese u fizičku adresu
- Korisnički procesi rade sa logičkim (virtuelnim) adresama, oni nikad "ne vide" realne, fizičke adrese

Proširenje memorije prostorom na disku

Overlay

- Neophodan kada je proces veći od veličine memorije koja mu je dodeljena
- U memoriji su smešteni samo instrukcije i podaci procesa koji su neophodni u tekućem izvršavanju procesa
- Nepotrebni delovi procesa (overlay-i) se prebacuju na disk, a potrebni overlay-i se smeštaju u oslobođen deo memorije
- Aplikacioni programer je određivao delove programa koji će predstavljati overlay-e i redosled njihovog smeštanja u memoriju
- Primer: dvo-prolazni prevodilac (asembler)

Swap-ovanje

- Ceo proces može biti privremeno prebačen na disk i po potrebi opet smešten u memoriju da bi se nastavilo njegovo izvršavanje
- Mora biti obezbeđen direktan pristup swap području na disku
- Glavni problem je vreme utrošeno sa transfer memorijskih slika procesa
- Modifikovane verzije swapovanja mogu se naći na savremenim OS: UNIX, Linux, Windows, itd.

Upravljanje memorijom

Monoprogramiranje

- Najjednostavnija šema za upravljanje memorijom
- Samo jedan proces (program) može da se izvršava i bude u memoriji i on deli memoriju sa operativnim sistemom
 - a) Korišćen na *mainframe* računarima i mini-računarima
 - b) Na nekim *palmtop* računarima i ugrađenim računarskim sistemima
 - c) Na prvim personalnim računarima (MS DOS) gde je deo OS bio smešten u ROM u obliku BIOS (*Basic Input Output System*)

Podela (particionisanje) memorije

- Raniji načini upravljanja memorijom
 - Pre razvoja koncepta virtuelne memorije
 - Danas se uglavnom ne koristi osim u ugrađenim/mobilnim računarima
- Dve tehnike
 - Fiksna podela (particionisanje) memorije
 - Dinamička podela (particionisanje) memorije

Fiksna podela memorije (1)

- Memorija je podeljena na fiksne particije pri startovanju sistema
- Particije mogu biti iste ili različitih veličina
- Procesima se dodeljuje memorijska particija veća od zahtevane
 - Proces veći od najveće dostupne particije mora da se deli u module i primenjuje tehnika *overlay*
 - Interna fragmentacija Preostali deo particije se ne evidentira kao slobodan i ne može se dodeliti nijednom procesu

Operating System 8M
2M
4M
6M
8M
8M
12M
16M

(a) Equal-size partitions

(b) Unequal-size partitions

Fiksna podela memorije (2)

- Algoritam raspoređivanja
 - Proces se smešta u red čekanja na odgovarajuću particiju u skladu sa zahtevom nepovoljno ako veća particija bude oslobođena (a)

Proces se smešta u jedinstveni red čekanja – čim se oslobodi particija biva dodeljena prvom procesu od početka reda kome

odgovara (b)

Upravljanje memorijom
Operativni sistemi

Problemi fiksne podele memorije

- Broj aktivnih procesa je ograničen sistemom
 - Ograničen pre-determinisanim brojem fiksnih memorijskih particija
- Veliki broj veoma malih procesa neće efikasno koristiti memoriju
 - U oba slučaja, sa jednakim i nejednakim particijama

Dinamičko deljenje na particije (1)

- Broj memorijskih particija, njihova veličina i stanje (slobodna, zauzeta) se menjaju sa aktiviranjem i završavanjem procesa – dinamički (IBM OS/MVT)
- Povećava iskorišćenost memorije, ali usložnjava dodelu i oslobađanje memorije, kao i evidenciju slobodnog i zauzetog memorijskog prostora

Upravljanje memorijom

Dinamičko deljenje na particije (2)

OS (8M)

P2 (14M)

Empty (6M)

P4(8M)

Empty (6M)

P3 (18M)

Empty (4M)

- Eksterna fragmentacija Ukupna veličina slobodnih particija je dovoljna za smeštanje određenog procesa, ali je nekontinualna u memorijskom prostoru.
- Rešenje je kompakcija (sažimanje) –
 prebacivanje memorijskih delova procesa
 prema jednom kraju adresnog prostora
 - Zahteva mnogo procesorskog vremena

Dinamičko deljenje na particije (3)

- Evidencija slobodnih i zauzetih memorijskih particija
 - Bitmapa memorija je podeljena na alokacione jedinice od nekoliko reči do nekoliko KB: 0 slobodna, 1 zauzeta
 - Za proces koji zahteva k memorijskih jedinica, neophodno je pretražiti bitmapu za k sukcesivnih 0
 - Lančana lista elementi lančane liste sadrže oznaku da li se radi o procesu ili slobodnoj particiji, početnu adresu, veličinu i link
 - Moguće su odvojene liste za procese i slobodne particije ili ulančavanje samih slobodnih particija

Algoritmi dodele dinamičkih particija

- First fit (Prvo poklapanje, prvi odgovarajući) Pretražuje sve slobodne particije dok ne nađe dovoljno veliku, koja se deli na dva dela, jedan zauzima proces, a drugi deo ostaje kao slobodna particija
 - Jednostavno ukrupnjavanje susednih particija
- Next fit (Sledeće poklapanje, sledeći odgovarajući) Kao i prethodni, ali pretraživanje započinje od adrese gde je nadjena prethodna slobodna particija
- Best fit (Najbolje poklapanje, najbolje odgovarajući) Pretražuje sve particije dok ne nađe najmanju odgovarajuću particiju
 - Sporiji algoritam, jer zahteva pretraživanje cele liste osim ako je sortirana po veličini particija)
 - Generiše puno malih slobodnih particija (eksterna fragmentacija)
- Worst fit (Najgore poklapanje, Najgore odgovarajući) Uzima najveću odgovarajuću particiju sa ciljem da preostali deo bude dovoljno velik da bi bio upotrebljiv
- Quick fit (Brzo poklapanje) Organizuje posebne liste za particije određenih veličina (4KB, 8KB, 12KB, itd.) i eventualno binarno stablo u kome su čvorovi glave lančanih listi elemenata kojima se definišu particije odgovarajuće veličine

Primer sadržaja memorije pre i nakon alokacije bloka od 16MB

Upravljanje memorijom

Operativni sistemi

Sistem partnera (Buddy system)

- Celokupan raspoloživi memorijski prostor se tretira kao jedinstveni slobodni blok od 2^N
- Ako se pojavi zahtev za memorijom veličine s takve da je $2^{N-1} < s <= 2^N$, celokupan blok se dodeljuje
 - U suprotnom blok se deli na dva jednaka bloka duplo manje veličine (partnera, *buddies*)
 - Ovaj postupak se nastavlja sve dok se ne dobije najmanji blok veći ili jednak zahtevu s

Sistem partnera - primer

1 Mbyte block		11	M	
Request 100 K	A = 128 K 128 K	256 K	512 K	
Request 240 K	A = 128 K 128 K	B = 256 K	512 K	
Request 64 K	$A = 128 \text{ K} _{C = 64 \text{ K}} _{64 \text{ K}}$	B = 256 K	512 K	
Request 256 K	A = 128 K C = 64 K 64 K	B = 256 K	D = 256 K	256 K
Release B	A = 128 K C = 64 K 64 K	256 K	D = 256 K	256 K
Release A	128 K C=64 K 64 K	256 K	D = 256 K	256 K
	E = 128 K C = 64 K 64 K	256 K	D = 256 K	256 K
-	E = 128 K 128 K	256 K	D = 256 K	256 K
Release E	31	2 K	D = 256 K	256 K
Release D		11	M	

Relokacija

- Relokacija smeštanje i pomeranje procesa u memoriji
- Kada je program (*main* funkcija, korisničke funkcije, bibliotečke funkcije, itd.) linkovan u link editoru, formira se izvršni kôd (modul) na disku sa logičkim adresama. Relokacija se može obaviti:
 - U vreme punjenja, modifikovanjem svih adresa u skladu sa memorijskom adresom punjenja (IBM OS/360)
 - U vreme izvršenja, korišćenjem *base* (relocation) i *bounds* registara
- Memorijske adrese
 - Logička adresa referenca na memorijsku lokaciju nezavisna od stvarnog smeštanja procesa u memoriju
 - Relativna adresa poseban primer logičke adrese koja se izražava relativno u odnosu na neku poznatu adresu, obično vrednost u CPU registru
 - Fizička adresa adresa lokacije u glavnoj memoriji

23

Relokacija

Hardverska podrška za relokaciju

Upravljanje memorijom

Operativni sistemi

Nekontinualna dodela memorije

- Nekontinualna dodela memorije logički adresni prostor procesa ne mora biti smešten kontinualno u glavnoj memoriji
- Metode nekontinualne dodele:
 - Straničenje (*Paging*)
 - Segmentacija (Segmentation)
 - Segmentacija sa straničenjem (Segmentation with paging)

Straničenje

- Adresni prostor procesa je podeljen na delove određene veličine - Stranice (Page) – Logičke stranice
- Fizička memorija je (logički) podeljena na delove iste veličine – Stranični okviri (Page Frame) – Fizičke stranice
- Veličina stranica i straničnih okvira je od 512B 64KB (tipično 4KB)
- Veličina stranice savremenih računara može biti promenljiva:
 - MIPS (4KB-16MB), UltraSparc (8KB 4MB), Pentium (4KB 4MB), PowerPC (4KB), DEC Alpha (8KB), Itanium (4KB 256MB)
- Transformisanje iz logičke (virtuelne) u fizičku adresu obavlja se korišćenjem Tabele stranica (Page Table)

Stranice i okviri

- Da bi se startovao proces veličine n stranica neophodno je postojanje n slobodnih straničnih okvira u memoriji nema eksterne fragmentacije
- Interna fragmentacija u okviru poslednje stranice postoji interni fragment, jer proces (skoro) nikad ne zahteva ceo broj stranica
 - Zahtev 32128 B -> 8 stranica od 4KB = 32768
 - Interni fragment 640 B u poslednjoj stranici

Upra

Straničenje – tabele stranica

Tabele stranica za procese sa prethodne slike u poslednjem vremenskom trenutku

0	0				
1	1				
2	2				
3	3				
Process A					
page table					

Logičke adrese (primer za adresu 1502)

Operativni sistemi

Straničenje – primer

- Adresni prostor procesa sadrži 4 stranice
- Fizička memorija sadrži 8 straničnih okvira

- Primer

Prevođenje logičke u fizičku adresu

tabela stranica

Prevođenje logičke u fizičku adresu

primer

Stranice su veličine 1KB

Segmentacija

- Šema za upravljanje memorijom koja odgovara korisnikovom pogledu na memoriju u kome je program kolekcija segmenata
- Segment je logička jedinica poput: glavnog programa (main), procedura, funkcija, metoda, objekata, lokalnih i globalnih promenljivih, common blokova, magacina, tablica simbola, polja, itd.
- Svaki segment predstavlja poseban adresni prostor i sadrži linearnu sekvencu adresa, od 0 do određenog maksimuma.
- Prednosti segmentacije:
 - Segmenti mogu da rastu i smanjuju se nezavisno jedan od drugog, i da budu smešteni u nekontinualne memorijske particije
 - Svaki segment ima poseban tip zaštite u skladu sa tipom segmenta
 - Segmentacija omogućava deljenje segmenata sa procedurama i podacima između različitih procesa (deljene biblioteke shared library)
- Nedostatak:
 - Eksterna fragmentacija

Implementacija segmentacije

- Logička adresa se sastoji od dva dela segmenta, ofset
- Tabela segmenata transformiše logičku u fizičku adresu
- Ulaz u tabelu sadrži:
 - Baza (Base) sadrži startnu fizičku adresu segmenta u memoriji
 - Limit (Length) specificira veličinu segmenta
 - Zaštita specificira prava pristupa sadržaju segmenta
 - Validnost da li je segment u memoriji ili na disku
- Bazni registar tabele segmenata sadrži adresu početka tabele segmenata u memoriji
- Granični registar tabele segmenata- sadrži broj segmenata programa ili adresu završetka tabele segmenata

Segmentacija - primer

Smeštanje u memoriju procesa sa pet segmenata

Prevođenje logičke u fizičku adresu korišćenjem tabele segmenata

Prevođenje logičke u fizičku adresu

- primer

Upravljanje memorijom

Operativni sistemi

Deljenje segmenata

Više procesa koristi tekst editor, tako da dele segment sa kôdom editora, dok svaki proces ima sopstveni segment sa

podacima

Silberschatz, 2011

Upravljanje memorijom

Operativni sistemi

Domaći zadatak

- Poglavlje 7 Upravljanje memorijom
 - 🛮 7.8 Ključni pojmovi, kontrolna pitanja i problemi
- Paging & segmentation animations
 - https://apps.uttyler.edu/Rainwater/COSC3355/Animations