75.15 / 75.28 / 95.05 - Base de Datos

Teoría del Diseño Relacional Parte II: Algoritmos

Alberto Fasce, Mariano Beiró

Dpto. de Computación - Facultad de Ingeniería (UBA)

Topics

- 1 Objetivo
- 2 Inferencia de dependencias funcionales
- 3 Clausuras de conjuntos de df's y atributos
- 4 Algoritmo de cubrimiento minimal
- 5 Algoritmo de descomposición a 3FN
- 6 Proyección de dependencias funcionales
- 7 Algoritmo de búsqueda de claves candidatas
- 8 Algoritmo de descomposición a FNBC
- 9 Algoritmo de verificación de junta sin pérdidas
- 10 Bibliografía

- Objetivo
- 2 Inferencia de dependencias funcionales
- 3 Clausuras de conjuntos de df's y atributos
- 4 Algoritmo de cubrimiento minimal
- 5 Algoritmo de descomposición a 3FN
- 6 Proyección de dependencias funcionales
- 7 Algoritmo de búsqueda de claves candidatas
- 8 Algoritmo de descomposición a FNBC
- 9 Algoritmo de verificación de junta sin pérdidas
- 10 Bibliografía

Algoritmos de normalización

- Supongamos que el diseñador de la base de datos definió un conjunto de dependencias funcionales F a partir de la semántica.
- A partir de dichas dependencias, nos interesa generar una descomposición lo menos redundante posible, preservando la información y las dependencias funcionales.
- A continuación describiremos una serie de algoritmos para convertir un esquema de base de datos a 3FN y a FNBC.
- Para ello será necesario introducir algunas definiciones previas relacionadas con los conjuntos de dependencias funcionales.

- 1 Objetivo
- 2 Inferencia de dependencias funcionales
- 3 Clausuras de conjuntos de dí's y atributos
- 4 Algoritmo de cubrimiento minimal
- 5 Algoritmo de descomposición a 3FN
- 6 Proyección de dependencias funcionales
- 7 Algoritmo de búsqueda de claves candidatas
- 8 Algoritmo de descomposición a FNBC
- 9 Algoritmo de verificación de junta sin pérdidas
- 10 Bibliografía

Inferencia de dependencias funcionales

Axiomas de Armstrong

- W.W. Armstrong propuso en 1974 tres reglas para inferir dependencias funcionales a partir de otras:
 - Axioma de reflexividad: $Y \subset X \Rightarrow X \rightarrow Y$
 - **Axioma de aumento:** $\forall W : X \rightarrow Y \Rightarrow XW \rightarrow YW$
 - Axioma de transitividad: $X \rightarrow Y \land Y \rightarrow Z \Rightarrow X \rightarrow Z$
- Estos axiomas pueden ser probados a partir de la definición de dependencia funcional (i.e., no son axiomas en *stricto sensu*).
- Los tres axiomas en conjunto son completos: Toda dependencia funcional que se puede inferir de F se puede inferir a través de los axiomas de Armstrong.
- La notación F ⊨ X → Y indica que la dependencia funcional X → Y puede inferirse a partir del conjunto de dependencias funcionales F.

Inferencia de dependencias funcionales

Axiomas de Armstrong

Exceso de notación

Cuando trabajemos con nombres de atributos abstractos como A, B, C, D o A_1, A_2, \ldots y escribamos un conjunto de atributos (por ejemplo, $\{B, C, D\}$), dentro de una dependencia funcional, omitiremos las llaves y las comas. En dicho ejemplo, lo denotaremos directamente BCD.

Ejercicio

Muestre que dado el conjunto de dependencias funcionales $F = \{A \rightarrow C, BC \rightarrow E, D \rightarrow B\}$ es posible inferir que $AD \rightarrow E$.

Inferencia de dependencias funcionales

Reglas de inferencia adicionales

Armstrong:

Regla de unión: $X \to Y \land X \to Z \Rightarrow X \to YZ$

Las siguientes tres reglas se deducen de los axiomas de

- Regia de union: $X \to Y \land X \to Z \Rightarrow X \to YZ$
 - Regla de pseudotransitividad: ∀W: X → Y ∧ YW → Z ⇒ XW → Z
 Regla de descomposición: X → YZ ⇒ X → Y ∧ X → Z

Alberto Fasce, Mariano Beiró | Dpto. de Computación - Facultad de Ingeniería (UBA)

- 1 Objetivo
- 2 Inferencia de dependencias funcionales
- 3 Clausuras de conjuntos de df's y atributos
- 4 Algoritmo de cubrimiento minimal
- 5 Algoritmo de descomposición a 3FN
- 6 Proyección de dependencias funcionales
- 7 Algoritmo de búsqueda de claves candidatas
- 8 Algoritmo de descomposición a FNBC
- 9 Algoritmo de verificación de junta sin pérdidas
- 10 Bibliografía

Clausura de conjuntos de dependencias funcionales y de atributos

- Partimos de una relación $R(A_1, A_2, ..., A_n)$.
- Dado un conjunto de dependencias funcionales *F*, la clausura de *F* (*F*⁺) es el conjunto de todas las dependencias funcionales que pueden inferirse de *F*. Esto es:

$$F^+ = \{(X \to Y) | F \models (X \to Y)\}.$$

■ Dado un conjunto de atributos X y un conjunto de dependencias F, la clausura de X con respecto a F (X_F^+) es el conjunto de todos los atributos A_i tales que la dependencia funcional $X \to A_i$ se infiere del conjunto de dependencias F. Esto es:

$$X_F^+ = \{A_i | F \models (X \rightarrow A_i)\}$$

Clausuras de conjuntos de dependencias funcionales y de atributos

Definiciones

- Las clausuras de conjuntos de atributos, X_F^+ , son una forma ordenada de construir F^+ .
- Esta clausura nos permite dar otra definición de clave candidata: Dado un esquema de relación R(A₁, A₂, ..., A_n) y un conjunto de dependencias funcionales F, CK es clave candidata de R si y sólo si CK_F⁺ = A₁A₂...A_n y ningún subconjunto propio cumple con esa propiedad.

Clausuras de conjuntos de dí's y de atributos

Algoritmo 1: Clausura de un conjunto de atributos X con respecto a F

Algoritmo 1: Clausura de un conjunto de atributos X con respecto a F

Input: Un conjunto de dependencias funcionales *F* de una relación universal *R*, un conjunto de atributos *X*.

Output: La clausura de X con respecto a F, X_F^+ .

```
begin
          X_{F}^{+} \leftarrow X;
          repeat
 3
               oldX^+ \leftarrow X_{\scriptscriptstyle \Gamma}^+;
 4
               foreach (Y \rightarrow Z) \in F do
 5
                     if Y \subset X_F^+ then
 6
                     X_F^+ \leftarrow X_F^+ \cup Z;
 8
                     end
               end
 9
          until oldX^+ = X_F^+;
10
11 end
```

- Objetivo
- 2 Inferencia de dependencias funcionales
- 3 Clausuras de conjuntos de df's y atributos
- 4 Algoritmo de cubrimiento minimal
- 5 Algoritmo de descomposición a 3FN
- 6 Proyección de dependencias funcionales
- 7 Algoritmo de búsqueda de claves candidatas
- 8 Algoritmo de descomposición a FNBC
- 9 Algoritmo de verificación de junta sin pérdidas
- 10 Bibliografía

Cobertura y equivalencia

Definiciones

Dados dos conjuntos de dependencias funcionales F y G, decimos que el conjunto F cubre a G cuando toda dependencia funcional X → Y ∈ G puede ser inferida a partir de F. Es decir:

$$\forall (X \rightarrow Y) \in G : F \models X \rightarrow Y.$$

■ Dos conjuntos de dependencias funcionales F y G son equivalentes cuando cada uno de ellos es cubierto por el otro. En otras palabras, F y G son equivalentes cuando sus clausuras coinciden: $F^+ = G^+$. Lo simbolizaremos $F \equiv G$.

Ejercicio

Muestre que los conjuntos de dependencias funcionales $F_1 = \{A \to B, B \to C, C \to A\}$ y $F_2 = \{A \to C, C \to B, B \to A\}$ son equivalentes.

Cubrimiento minimal de un conjunto de dependencias Definición

- Dado un conjunto de dependencias F, nos interesará encontrar un conjunto equivalente G que cumpla ciertas propiedades de minimalidad. En particular, nos interesa que:
 - No haya atributos innecesarios del lado izquierdo:

$$\forall (X \rightarrow Y) \in G : \not\exists (Z \rightarrow Y) \in G, Z \subset X, Z \neq X.$$

No haya dependencias redundantes:

$$\not\exists (X \to Y) \in G : G - \{X \to Y\} \equiv G.$$

■ A todo conjunto de dependencias funcionales *G* que es equivalente a *F* y cumple estas dos propiedades lo denominamos cubrimiento minimal de *F*.

Cubrimiento minimal de un conjunto de dependencias Algoritmo

- El algoritmo de cubrimiento minimal tiene 3 grandes pasos:
 - Pasar las dependencias funcionales a forma canónica (descomponer cada dependencia funcional X → Y en df's X → A_i con A_i ∈ Y.
 - Eliminar los atributos innecesarios del lado izquierdo de cada dependencia funcional $X \to A_i$.
 - 3 Eliminar las dependencias funcionales redundantes.

Algoritmo 2: Cubrimiento minimal de un conjunto de df's F

```
: Un conjunto de dependencias funcionales F.
    Input
    Output: Un cubrimiento minimal de F, F_{min}.
    begin
 2
         F_{min} \leftarrow F
         foreach (X \rightarrow Y) \in F_{min} do
 3
              F_{min} = F_{min} - \{X \rightarrow Y\};
 4
              foreach A_i \in Y do
 5
               F_{min} = F_{min} \cup \{X \rightarrow A_i\}; \#Pasamos a forma canónica
 6
 7
              end
 8
         end
         foreach (X \rightarrow A) \in F_{min} do
 9
              foreach B \in X do
10
                   if \{F_{min} - \{X \to A\}\} \cup \{(X - \{B\}) \to A\} \equiv F_{min} then
11
                        F_{min} = \{F_{min} - \{X \rightarrow A\}\} \cup \{(X - \{B\}) \rightarrow A\}; \#Eliminamos
12
                      atributos innecesarios del lado izquierdo
13
                   end
14
              end
15
         end
         foreach (X \rightarrow A) \in F_{min} do
16
              if F_{min} - \{X \rightarrow A\} \equiv F_{min} then
17
                 F_{min} = F_{min} - \{X \rightarrow A\}; #Eliminamos las df's redundantes
18
19
              end
20
         end
21 end
```

Cubrimiento minimal de un conjunto de dependencias

Ejemplo

Para la relación universal R(A, B, C, D, E, F, G) y el conjunto de dependencias funcionales $F = \{AB \rightarrow C, C \rightarrow A, BC \rightarrow D, ACD \rightarrow B, D \rightarrow E, D \rightarrow G, BE \rightarrow C, CG \rightarrow B, CG \rightarrow D, CE \rightarrow A, CE \rightarrow G\}$, encuentre un cubrimiento minimal.

Soluciones posibles

1-
$$F_{min}^1 = \{AB \rightarrow C, C \rightarrow A, BC \rightarrow D, CD \rightarrow B, D \rightarrow E, D \rightarrow G, BE \rightarrow C, CG \rightarrow D, CE \rightarrow G\}$$
2- $F_{min}^2 = \{AB \rightarrow C, C \rightarrow A, BC \rightarrow D, D \rightarrow E, D \rightarrow G, BE \rightarrow C, CG \rightarrow B, CE \rightarrow G\}$

- Objetivo
- 2 Inferencia de dependencias funcionales
- 3 Clausuras de conjuntos de df's y atributos
- 4 Algoritmo de cubrimiento minimal
- 5 Algoritmo de descomposición a 3FN
- 6 Proyección de dependencias funcionales
- 7 Algoritmo de búsqueda de claves candidatas
- 8 Algoritmo de descomposición a FNBC
- 9 Algoritmo de verificación de junta sin pérdidas
- 10 Bibliografía

Descomposición a 3FN

Algoritmo 3: Descomposición a 3FN (Elmasri, Navathe, 2016)

```
Input
             : Una relación universal R y un conjunto de dependencias funcionales F.
    Output: Una descomposición de R, D = (R_1, R_2, ..., R_n) que preserva la
              información y las dependencias funcionales, y está en 3FN.
 1 begin
 2
        D = \emptyset:
 3
        Encontrar un cubrimiento minimal F_{min} para F;
 4
        foreach (X|(\exists A)((X \rightarrow A) \in F_{min})) do
 5
            #(Para cada conjunto X del lado izquierdo)
            Crear un esquema de relación R_X(X, A_1, A_2, ..., A_k) en donde X \to A_i son las
 6
             únicas df's en F_{min} con el conjunto X en el lado izquierdo;
            D = D \cup R_X:
 7
 8
        end
 9
        Hallar todas las claves candidatas de R:
10
        if ningún esquema contiene una clave candidata de R then
            Tomar una de las claves candidatas CK de R;
11
12
            D = D \cup R_{CK}(CK);
13
        end
14
        do
15
            if los atributos de una relación R_i \in D están incluidos en los de otra relación
            R<sub>i</sub> (R<sub>i</sub> es redundante) then
16
                 D = D - R_i:
17
            end
18
        while hava relaciones redundantes en D:
19 end
```

- 1 Objetivo
- 2 Inferencia de dependencias funcionales
- 3 Clausuras de conjuntos de df's y atributos
- 4 Algoritmo de cubrimiento minimal
- 5 Algoritmo de descomposición a 3FN
- 6 Proyección de dependencias funcionales
- 7 Algoritmo de búsqueda de claves candidatas
- 8 Algoritmo de descomposición a FNBC
- 9 Algoritmo de verificación de junta sin pérdidas
- 10 Bibliografía

Proyección de dependencias funcionales

- Al descomponer una relación R con un conjunto de dependencias funcionales F en $D = (R_1(Z_1), R_2(Z_2), ..., R_n(Z_n))$, es necesario saber qué dependencias funcionales se preservan.
- En la descomposición a 3FN que presentamos está garantizada la preservación de todas las dependencias funcionales. Pero en la descomposición a FNBC ésto no está garantizado.
- Las dependencias que se preservan son las que surgen de la proyección de F sobre los atributos Z_i de cada una de las $R_i(Z_i)$.
- La proyección de un conjunto de dependencias funcionales F sobre un conjunto de atributos Z, F_Z, se define como:

$$F_Z^+ = \{X \to Y \in F^+ | X \cup Y \subset Z\}$$

Las dependencias funcionales preservadas en la descomposición son entonces:

$$F_{D}^{+} = (F_{Z_{1}} \cup F_{Z_{2}} \cup ... \cup F_{Z_{n}})^{+}$$

- Objetivo
- 2 Inferencia de dependencias funcionales
- 3 Clausuras de conjuntos de df's y atributos
- 4 Algoritmo de cubrimiento minimal
- 5 Algoritmo de descomposición a 3FN
- 6 Proyección de dependencias funcionales
- 7 Algoritmo de búsqueda de claves candidatas
- 8 Algoritmo de descomposición a FNBC
- 9 Algoritmo de verificación de junta sin pérdidas
- 10 Bibliografía

- Daremos una descripción de muy alto nivel de un algoritmo¹ para encontrar todas las claves candidatas en una relación R(A₁, A₂, ..., A_n), a partir de un conjunto de dependencias funcionales F.
 - 1 Calcular un cubrimiento minimal del conjunto de dependencias funcionales F. Inicializar el conjunto de atributos de cálculo $C_a = \{A_1, A_2, ..., A_n\}$.
 - 2 Hallar los atributos independientes del cálculo, A_{indep} , que son aquellos que no están presentes en ninguna dependencia funcional. Eliminarlos del conjunto de atributos de cálculo: $C_a = C_a A_{indep}$.
 - 3 Hallar los conjuntos de términos equivalentes, A_{equiv} , que son aquellos pares (X,Y) de términos que cumplen que $X \to Y$ y $Y \to X$ (con $X \cap Y = \emptyset$). De cada conjunto de términos equivalentes dejar sólo uno, y eliminar los restantes de C_a . Calcular la proyección de F_{min} en C_a , F_C .

¹Extraído del libro "Tecnología y diseño de bases de datos" de Piattini et al.

- 4 Construir una clave tentativa K_{tent} con todos los elementos que sean sólo implicantes en F_C (es decir, estén sólo en la parte izquierda). Si $K_{tent}^+ = C_a$ entonces K_{tent} es clave.
- 5 Si K_{tent} no resultó clave, entonces se comienzan a agregar otros atributos que sean implicantes pero que puedan ser implicados también. Se agregan alternativamente a K_{tent} todos los posibles subconjuntos de 1 atributo, luego aquellos de 2 atributos, etc, del conjunto $C_a K_{tent}^+$. Con cada uno de ellos se verifica si K_{tent} es clave de C_a calculando la clausura. Al hacer crecer los subconjuntos se deben obviar aquellos que resultaron ser clave de C_a , ya que no van a ser minimales.
- Por cada K_{tent} encontrado como clave de C_a se unen los atributos independientes, A_{indep} para obtener K, y se agrega K al resultado, CKs.
- Se calculan otras claves K con otros de los términos equivalentes encontrados en el paso 3, y se agregan todas al resultado, CKs.

Ejemplo I

Para la relación universal R(A, B, C, D, E, F, G, H, I, J) y el conjunto de dependencias funcionales

$$F = \{AB \rightarrow C, A \rightarrow DE, B \rightarrow F, F \rightarrow GH, D \rightarrow IJ, B \rightarrow A, H \rightarrow G\},$$
 calcule todas las claves candidatas existentes.

Solución

1-
$$F_{min} = \{AB \rightarrow C, A \rightarrow D, A \rightarrow E, B \rightarrow F, F \rightarrow H, D \rightarrow I, D \rightarrow J, B \rightarrow I, D \rightarrow I,$$

$$A, H \rightarrow G$$

$$2-A_{indep}=\emptyset$$

3-
$$A_{equiv} = \emptyset$$

$$4- CK = \{B\}$$

Observamos que $B^{+} = \{A, B, C, D, E, F, G, H, I, J\}$

No hay otras claves candidatas.

Ejemplo II

Para la relación universal R(A, B, C, D, E, F, G) y el conjunto de dependencias funcionales

 $F = \{AB \rightarrow F, D \rightarrow A, E \rightarrow D, D \rightarrow E, CF \rightarrow B, B \rightarrow C\}$, calcule todas las claves candidatas existentes.

Solución

1-
$$F_{min} = \{AB \rightarrow F, D \rightarrow A, E \rightarrow D, D \rightarrow E, CF \rightarrow B, B \rightarrow C\}$$

2-
$$A_{indep} = \{G\}; C_a = \{A, B, C, D, E, F\}$$

3-
$$A_{equiv} = \{E, D\}$$

eliminamos
$$D \rightarrow C_a = \{A, B, C, E, F\}$$

$$\rightarrow F_C = \{AB \rightarrow F, E \rightarrow A, CF \rightarrow B, B \rightarrow C\}$$

4-
$$K = \{E\}$$
, pero $E^+ = \{A, E\}$ → E no es clave.

Ejemplo II

Para la relación universal R(A,B,C,D,E,F,G) y el conjunto de dependencias funcionales

 $F = \{AB \rightarrow F, D \rightarrow A, E \rightarrow D, D \rightarrow E, CF \rightarrow B, B \rightarrow C\}$, calcule todas las claves candidatas existentes.

Solución

- 5- Agregamos a *K* otros atributos implicantes, primero de a uno:
 - $(EA)^+ = \{A, E\} \neq C_a \rightarrow \text{no es clave}$
 - \blacksquare $(EB)^+ = \{A, B, C, E, F\} = C_a \rightarrow \text{es clave}$
 - $(EC)^+ = \{A, C, E\} \neq C_a \rightarrow \text{no es clave}$
 - \blacksquare $(EF)^+ = \{A, E, F\} \neq C_a \rightarrow \text{no es clave}$

Ejemplo II

Para la relación universal R(A, B, C, D, E, F, G) y el conjunto de dependencias funcionales

 $F = \{AB \rightarrow F, D \rightarrow A, E \rightarrow D, D \rightarrow E, CF \rightarrow B, B \rightarrow C\}$, calcule todas las claves candidatas existentes.

Solución

5- Agregamos de a dos, evitando partir de EB:

- $(EAC)^+ = \{A, C, E\} \neq C_a \rightarrow \text{no es clave}$
- $(EAF)^+ = \{A, E, F\} \neq C_a \rightarrow \text{no es clave}$
- $(ECF)^+ = \{A, B, C, E, F\} = C_a \rightarrow \text{es clave}$

No hay grupos de tres a agregar, que no incluyan claves ya encontradas.

 \rightarrow Hemos encontrado $\{E, B\}$ y $\{E, C, F\}$

Ejemplo II

Para la relación universal R(A, B, C, D, E, F, G) y el conjunto de dependencias funcionales

 $F = \{AB \rightarrow F, D \rightarrow A, E \rightarrow D, D \rightarrow E, CF \rightarrow B, B \rightarrow C\}$, calcule todas las claves candidatas existentes.

Solución

- 6- Agregamos los atributos independientes, Aindep:
- $\rightarrow \{E, B, G\} \text{ y } \{E, C, F, G\}$
- 7- Agregamos las del término equivalente *D*:
- \rightarrow CKs = {{E,B,G}, {E,C,F,G}, {D,B,G}, {D,C,F,G}}

Ejercicio

Para la relación universal R(A, B, C, D, E, F, G, H, I, J) y el conjunto de dependencias funcionales

 $F = \{AB \rightarrow C, BD \rightarrow EF, AD \rightarrow GH, A \rightarrow I, H \rightarrow J\}$, calcule todas las claves candidatas existentes.

Solución

Hay una única clave candidata $CK = \{ABD\}$.

- 1 Objetivo
- 2 Inferencia de dependencias funcionales
- 3 Clausuras de conjuntos de df's y atributos
- 4 Algoritmo de cubrimiento minimal
- 5 Algoritmo de descomposición a 3FN
- 6 Proyección de dependencias funcionales
- 7 Algoritmo de búsqueda de claves candidatas
- 8 Algoritmo de descomposición a FNBC
- 9 Algoritmo de verificación de junta sin pérdidas
- 10 Bibliografía

Descomposición a FNBC

2

8

9

10 end

Algoritmo 4: Descomposición a FNBC (García-Molina, 2009)

```
Input
        : Una relación universal R y un conjunto de dependencias funcionales F.
Output: Una descomposición de R, D = (R_1, R_2, ..., R_n) que preserva la
          información y está en FNBC.
begin
    D = \{R\};
   while (\exists R_i(Z) \in D \text{ tal que } R_i(Z) \text{ no está en FNBC}) do
        Encontrar una dependencia funcional X \to Y contenida en R_i que viole la
        FNBC:
       Calcular X^+:
        D = D - \{R_i(Z)\}; #Eliminamos la relación que viola la FNBC
        D = D \cup \{R_{i1}(X^+)\}; \#Agregamos una relación para representar
        la dependencia funcional y otros atributos implicados por
       Χ
        D = D \cup \{R_{i2}(Z - (X^+ - X))\}; \#Agregamos una relación sin los
        atributos implicados por X
   end
```

- 1 Objetivo
- 2 Inferencia de dependencias funcionales
- 3 Clausuras de conjuntos de df's y atributos
- 4 Algoritmo de cubrimiento minimal
- 5 Algoritmo de descomposición a 3FN
- 6 Proyección de dependencias funcionales
- 7 Algoritmo de búsqueda de claves candidatas
- 8 Algoritmo de descomposición a FNBC
- 9 Algoritmo de verificación de junta sin pérdidas
- 10 Bibliografía

Algoritmo Chase

- Hemos presentado algoritmos de descomposición a 3FN y FNBC que preservan la información.
- La preservación de información implica que dada una relación R y una descomposición de R en $D = (R_1(Z_1), R_2(Z_2), ..., R_n(Z_n))$, toda instancia r de R puede recuperarse como:

$$r = \pi_{Z_1}(r) * \pi_{Z_2}(r) * ... * \pi_{Z_n}(r)$$

- El algoritmo de Chase nos permite verificar la preservación de información de una descomposición aún sin saber cómo la misma se obtuvo.
- Fue propuesto en 1979 por D. Maier, A. Mendelzon y Y. Sagiv, en simultáneo con A. Aho, C. Beeri y J. Ullman.

Algoritmo Chase

Principio de funcionamiento

- Analicemos la siguiente descomposición de la relación R(ABCD) con el conjunto de df's $F = \{A \rightarrow C, B \rightarrow D, AB \rightarrow CD\}$:
 - $\blacksquare R_1(AC)$
 - $\blacksquare R_2(BD)$
 - $= R_3(AB)$
- ¿Será que estamos preservando toda la información?
- El algoritmo chase utiliza una tabla denominada tableau, con tantas filas como relaciones y tantas columnas como atributos:

	Α	В	С	D	
R ₁					
R_2					
R_3					

- R(ABCD), $F = \{A \rightarrow C, B \rightarrow D, AB \rightarrow CD\}$:
 - $\blacksquare R_1(AC)$
 - \blacksquare $R_2(BD)$
 - $\blacksquare R_3(AB)$
- El algoritmo parte de una hipotética tupla (a_1, a_2, a_3, a_4) de la junta $r_1 \bowtie r_2 \bowtie r_3$ que se proyecta a cada una de las r_i : si una relación r_i contiene un atributo A_j , entonces en la posición (i, j) de la tabla escribimos el valor abstracto a_i .

	Α	В	C	D
R ₁	a ₁		a ₃	
R_2		a ₂		<i>a</i> ₄
R_3	a ₁	a ₂		

- R(ABCD), $F = \{A \rightarrow C, B \rightarrow D, AB \rightarrow CD\}$:
 - \blacksquare $R_1(AC)$
 - \blacksquare $R_2(BD)$
 - $\blacksquare R_3(AB)$
- Ahora rellenamos las demás posiciones con valores b_{ii}.

				,
	Α	В	С	D
R ₁	a ₁	b ₁₂	a_3	b ₁₄
R_2	<i>b</i> ₂₁	a_2	<i>b</i> ₂₃	a_4
R ₃	a ₁	a_2	<i>b</i> ₃₃	<i>b</i> ₃₄

- R(ABCD), $F = \{A \rightarrow C, B \rightarrow D, AB \rightarrow CD\}$:
 - \blacksquare $R_1(AC)$
 - R₂(BD)
 - \blacksquare $R_3(AB)$
- La dependencia funcional $A \rightarrow C$ está reflejada en la primera fila. Como en la tercera fila también tenemos A, reemplazamos b_{33} por a_3 para no violar la dependencia funcional.

	Α	В	С	D
R ₁	a ₁	<i>b</i> ₁₂	a 3	<i>b</i> ₁₄
R_2	<i>b</i> ₂₁	a_2	<i>b</i> ₂₃	a_4
R_3	a ₁	a_2	a_3	<i>b</i> ₃₄

- R(ABCD), $F = \{A \rightarrow C, B \rightarrow D, AB \rightarrow CD\}$:
 - \blacksquare $R_1(AC)$
 - \blacksquare $R_2(BD)$
 - $\blacksquare R_3(AB)$
- La dependencia funcional $B \rightarrow D$ está reflejada en la segunda fila. En la tercera, reemplazamos b_{34} por a_4 para no violar la dependencia funcional.

	Α	В	С	D	
R ₁	a ₁	<i>b</i> ₁₂	<i>a</i> ₃	b ₁₄	
R_2	<i>b</i> ₂₁	a_2	<i>b</i> ₂₃	a_4	
R_3	a ₁	a_2	a_3	a_4	

Principio de funcionamiento

- R(ABCD), $F = \{A \rightarrow C, B \rightarrow D, AB \rightarrow CD\}$:
 - \blacksquare $R_1(AC)$
 - \blacksquare $R_2(BD)$
 - \blacksquare $R_3(AB)$
- Observamos que $AB \rightarrow CD$ sólo se encuentra en la tercera fila.

	Α	В	С	D
R ₁	a ₁	b ₁₂	a 3	b ₁₄
R ₂	<i>b</i> ₂₁	a_2	<i>b</i> ₂₃	a_4
R ₃	a ₁	a ₂	a_3	a_4

■ La tercera línea del *tableau* indica que $(a_1, a_2, a_3, a_4) \in r$, y que por lo tanto podemos reconstruir r sin pérdida de información.

Principio de funcionamiento

	Α	В	С	D
R ₁	a ₁	b ₁₂	a ₃	b ₁₄
R ₂	<i>b</i> ₂₁	a_2	<i>b</i> ₂₃	a_4
R ₃	a ₁	<i>a</i> ₂	<i>a</i> ₃	<i>a</i> ₄

Observaciones:

- El *tableau* representa una instancia r de la relación universal R que se construye a partir de instancias de las relaciones R_i .
- Si logramos construir una tupla completa de r (la fila verde), entonces no hemos perdido información en la descomposición.
- Si no hubieramos incluído R₃ en la descomposición, aún preservándose todas las dependencias funcionales no se hubiera preservado la información.

- Veamos otro ejemplo: R(ABCDE) con un conjunto de dependencias funcionales $F = \{B \rightarrow C, C \rightarrow D, D \rightarrow A, B \rightarrow E\}$ es descompuesta en:
 - $\blacksquare R_1(AB)$
 - $\blacksquare R_2(BCD)$
 - R₃(DE)
- El tableau inicial tendrá el siguiente aspecto:

	Α	В	С	D	Е
R ₁	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅
R_2	<i>b</i> ₂₁	a_2	a 3	a_4	<i>b</i> ₂₅
R_3	<i>b</i> ₃₁	<i>b</i> ₃₂	<i>b</i> ₃₃	<i>a</i> ₄	a 5

- R(ABCDE), $F = \{B \rightarrow C, C \rightarrow D, D \rightarrow A, B \rightarrow E\}$:
 - \blacksquare $R_1(AB)$
 - \blacksquare $R_2(BCD)$
 - R₃(DE)
- Procesando la dependencia $B \rightarrow C$ observamos que:
 - B aparece en dos relaciones.
 - En una de ellas C no aparece. Remplazamos allí el b_{13} por a_3 .

	Α	В	С	D	E
R ₁	a ₁	<i>a</i> ₂	a_3	b ₁₄	<i>b</i> ₁₅
R_2	<i>b</i> ₂₁	a_2	a_3	a_4	<i>b</i> ₂₅
R_3	<i>b</i> ₃₁	<i>b</i> ₃₂	<i>b</i> ₃₃	a_4	a 5

- R(ABCDE), $F = \{B \rightarrow C, C \rightarrow D, D \rightarrow A, B \rightarrow E\}$:
 - \blacksquare $R_1(AB)$
 - \blacksquare $R_2(BCD)$
 - R₃(DE)
- Luego, al procesar $C \rightarrow D$ tenemos que:
 - C aparece en dos relaciones.
 - En una de ellas *D* no aparece. Remplazamos allí el *b*₁₄ por *a*₄.

	Α	В	С	D	Е
R ₁	a ₁	<i>a</i> ₂	a 3	a_4	b ₁₅
R_2	b ₂₁	a_2	a_3	a_4	<i>b</i> ₂₅
R_3	<i>b</i> ₃₁	b ₃₂	<i>b</i> ₃₃	a_4	a 5

- R(ABCDE), $F = \{B \rightarrow C, C \rightarrow D, D \rightarrow A, B \rightarrow E\}$:
 - \blacksquare $R_1(AB)$
 - $\blacksquare R_2(BCD)$
 - $\blacksquare R_3(DE)$
- Ahora procesamos $D \rightarrow A$:

	Α	В	С	D	E	
R ₁	a ₁	<i>a</i> ₂	<i>a</i> ₃	<i>a</i> ₄	b ₁₅	
R_2	a ₁	a ₂	a_3	a_4	<i>b</i> ₂₅	
R_3	a ₁	b ₃₂	<i>b</i> ₃₃	a_4	a 5	

- R(ABCDE), $F = \{B \rightarrow C, C \rightarrow D, D \rightarrow A, B \rightarrow E\}$:
 - \blacksquare $R_1(AB)$
 - $\blacksquare R_2(BCD)$
 - \blacksquare $R_3(DE)$
- **Y** por último, $B \rightarrow E$:

	Α	В	С	D	Е	
R ₁	a ₁	a ₂	a 3	<i>a</i> ₄	b ₁₅	
R_2	a ₁	a_2	a_3	a_4	<i>b</i> ₁₅	
R_3	a ₁	<i>b</i> ₃₂	<i>b</i> ₃₃	a_4	a 5	

- R(ABCDE), $F = \{B \rightarrow C, C \rightarrow D, D \rightarrow A, B \rightarrow E\}$:
 - $\blacksquare R_1(AB)$
 - \blacksquare $R_2(BCD)$
 - \blacksquare $R_3(DE)$

	Α	В	С	D	E	
R ₁	a ₁	a ₂	a 3	a_4	<i>b</i> ₁₅	
R_2	a ₁	a_2	a 3	a_4	<i>b</i> ₁₅	
R_3	a ₁	<i>b</i> ₃₂	<i>b</i> ₃₃	a_4	a 5	

- \blacksquare Observamos que ninguna fila nos quedó llena de elementos a_i .
- La descomposición por lo tanto no preserva la información.

	Α	В	С	D	Е	
R ₁	a ₁	a ₂	a ₃	a_4	b ₁₅	
R_2	a ₁	a ₂	a ₃	a_4	<i>b</i> ₁₅	
R_3	a ₁	b ₃₂	<i>b</i> ₃₃	a_4	<i>a</i> ₅	

- El mismo *tableau* sirve como contraejemplo de una instancia de R que al ser descompuesta en instancias de $R_1(Z_1), R_2(Z_2), ..., R_n(Z_n)$ pierde información.
- Es decir que, llamando *r* a la instancia de *R* determinada por el *tableau*:

$$\pi_{Z_1}(r) * \pi_{Z_2}(r) * ... * \pi_{Z_n}(r) \neq r$$

Ejercicio

Ejercicio

Dada la relación universal R(ABCDE) con el siguiente conjunto de dependencias funcionales

$$F = \{A \rightarrow C, B \rightarrow C, C \rightarrow D, DE \rightarrow C, CE \rightarrow A\}$$
, descompuesta en:

- \blacksquare $R_1(AD)$
- R₂(AB)
- R₃(BE)
- R₄(CDE)
- R₅(AE)

Determine si la misma es con o sin pérdidas.

Ejercicio

■ El tableau inicial tendrá el siguiente aspecto:

	Α	В	С	D	E	
R ₁	a ₁	b ₁₂	b ₁₃	a_4	b ₁₅	
R_2	a ₁	a ₂	<i>b</i> ₂₃	b ₂₄	<i>b</i> ₂₅	
R_3	<i>b</i> ₃₁	a ₂	<i>b</i> ₃₃	<i>b</i> ₃₄	a 5	
R ₄	<i>b</i> ₄₁	b ₄₂	a ₃	a_4	a ₅	
R_5	a ₁	<i>b</i> ₅₂	<i>b</i> ₅₃	<i>b</i> ₅₄	a ₅	

Ejercicio

■ Después de aplicar $A \rightarrow C$:

	Α	В	С	D	E	
R ₁	a ₁	b ₁₂	b ₁₃	a_4	b ₁₅	
R_2	a ₁	a ₂	<i>b</i> ₁₃	b ₂₄	<i>b</i> ₂₅	
R_3	<i>b</i> ₃₁	<i>a</i> ₂	<i>b</i> ₃₃	<i>b</i> ₃₄	a 5	
R ₄	<i>b</i> ₄₁	b ₄₂	a ₃	a_4	a 5	
R_5	a ₁	<i>b</i> ₅₂	b ₁₃	<i>b</i> ₅₄	a ₅	

Ejercicio

■ Después de aplicar B → C:

	Α	В	С	D	E	
R ₁	a ₁	b ₁₂	b ₁₃	a_4	b ₁₅	
R_2	a ₁	a ₂	<i>b</i> ₁₃	<i>b</i> ₂₄	<i>b</i> ₂₅	
R_3	<i>b</i> ₃₁	a ₂	<i>b</i> ₁₃	<i>b</i> ₃₄	a 5	
R_4	<i>b</i> ₄₁	b ₄₂	a ₃	a_4	a ₅	
R ₅	a ₁	<i>b</i> ₅₂	b ₁₃	<i>b</i> ₅₄	a ₅	

Ejercicio

■ Después de aplicar $C \rightarrow D$:

	Α	В	С	D	E	
R ₁	a ₁	b ₁₂	b ₁₃	a_4	<i>b</i> ₁₅	
R_2	a ₁	a ₂	<i>b</i> ₁₃	a_4	b ₂₅	
R_3	<i>b</i> ₃₁	a ₂	<i>b</i> ₁₃	a_4	a 5	
R_4	<i>b</i> ₄₁	b ₄₂	a ₃	a_4	a_5	
R ₅	a ₁	b ₅₂	<i>b</i> ₁₃	a_4	a ₅	

Ejercicio

■ Después de aplicar DE → C:

	Α	В	С	D	E	
R ₁	a ₁	b ₁₂	b ₁₃	a_4	<i>b</i> ₁₅	
R_2	a ₁	a ₂	<i>b</i> ₁₃	a_4	<i>b</i> ₂₅	
R_3	<i>b</i> ₃₁	a ₂	a_3	a_4	a 5	
R_4	<i>b</i> ₄₁	b ₄₂	<i>a</i> ₃	a_4	a ₅	
R_5	a ₁	<i>b</i> ₅₂	<i>a</i> ₃	a_4	<i>a</i> ₅	

Ejercicio

Por último, aplicando $CE \rightarrow A$:

	Α	В	С	D	E
R ₁	a ₁	b ₁₂	b ₁₃	a_4	b ₁₅
R_2	a ₁	a ₂	<i>b</i> ₁₃	<i>a</i> ₄	<i>b</i> ₂₅
R_3	a ₁	<i>a</i> ₂	a_3	a_4	<i>a</i> ₅
R ₄	a ₁	b ₄₂	a 3	a_4	a 5
R_5	a ₁	<i>b</i> ₅₂	a_3	a_4	a 5

■ ⇒ La descomposición es sin pérdidas.

- 1 Objetivo
- 2 Inferencia de dependencias funcionales
- 3 Clausuras de conjuntos de dí's y atributos
- 4 Algoritmo de cubrimiento minimal
- 5 Algoritmo de descomposición a 3FN
- 6 Proyección de dependencias funcionales
- 7 Algoritmo de búsqueda de claves candidatas
- 8 Algoritmo de descomposición a FNBC
- 9 Algoritmo de verificación de junta sin pérdidas
- 10 Bibliografía

Bibliografía

[ELM16] Fundamentals of Database Systems, 7th Edition.

R. Elmasri, S. Navathe, 2016.

Capítulo 15 (Algoritmo de descomposición a 3FN)

[PIAT06] Tecnología y diseño de bases de datos.

M. Piattini, E. Marcos, C. Calero, B. Vela, 2006.

Capítulo 12 (Algoritmo de extracción de claves candidatas)

[GM09] Database Systems, The Complete Book, 2nd Edition.

H. García-Molina, J. Ullman, J. Widom, 2009.

Capítulo 3 (Algoritmo de descomposición a FNBC)