

Reference

- Chapters 9, 10, 11 of Sutton and Barto
 - Provide general understanding of function approximation
- Practical advances over past decade
 - Research articles best source
- Chapters 6 and 7, Lapan
 - Focusses on problems needing high-computational resources (1-2 days to converge)
 - Review it for computational efficiency
 - Use of wrappers to simplify code writing
 - Use of PTAN libraries for simplifying functionality
 - For this class: I will instead use simple examples (computationally doable)

Notations

- Random variables in Capital
- Vector in bold small

$$s: state \ vector$$
 $a: action \ vector$
 $s = [S_1, ... S_N]$ $a = [A_1, ... A_M]$

UMassAmherst

Deep-Q Network (DQN)

• Work over past decade

DQN architecture

- Learns Q-values
- Actions in the output layer
- Size of output layer = number of actions

Algorithm 1 Deep Q-learning with Experience Replay

end for end for

Mnih, V., Playing Atari with Deep Reinforcement Learning, 2013, https://doi.org/10.48550/arXiv.1312.5602

```
Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights for episode =1, M do
Initialise sequence s_1=\{x_1\} and preprocessed sequenced \phi_1=\phi(s_1) for t=1, T do

With probability \epsilon select a random action a_t otherwise select a_t=\max_a Q^*(\phi(s_t),a;\theta)

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set s_{t+1}=s_t, a_t, x_{t+1} and preprocess \phi_{t+1}=\phi(s_{t+1})

Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}

Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}

Set y_j=\begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j+\gamma \max_{a'} Q(\phi_{j+1}, a';\theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
```

Perform a gradient descent step on $(y_i - Q(\phi_i, a_i; \theta))^2$ according to equation 3

• New feature: Experience replay:

- Agent selects and executes an action according to an epsilon-greedy policy
- store the agent's experiences at each time-step, $e_t = (s_t, a_t, r_t, s_{t+1})$ in a data-set $D = e_1, \dots, e_N$, pooled over many episodes into a replay memory
- Randomly draw minibatch size number of samples from D

Mnih, V., Playing Atari with Deep Reinforcement Learning, 2013, https://doi.org/10.48550/arXiv.1312.5602

```
Algorithm 1 Deep Q-learning with Experience Replay
```

```
Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do
    Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
    for t = 1, T do
          With probability \epsilon select a random action a_t
         otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
         Execute action a_t in emulator and observe reward r_t and image x_{t+1}
         Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
         Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
         Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
        Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
         Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
    end for
end for
```

- Uses same NN for updating the
- transition state as well.

Mnih, V., Playing Atari with Deep Reinforcement Learning, 2013, https://doi.org/10.48550/arXiv.1312.5602

```
Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory \mathcal{D} to capacity N

Initialize action-value function Q with random weights for episode =1,M do

Initialise sequence s_1=\{x_1\} and preprocessed sequenced \phi_1=\phi(s_1) for t=1,T do

With probability \epsilon select a random action a_t otherwise select a_t=\max_a Q^*(\phi(s_t),a;\theta)

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set s_{t+1}=s_t,a_t,x_{t+1} and preprocess \phi_{t+1}=\phi(s_{t+1})

Store transition (\phi_t,a_t,r_t,\phi_{t+1}) in \mathcal{D}

Sample random minibatch of transitions (\phi_j,a_j,r_j,\phi_{j+1}) from \mathcal{D}

Set y_j=\begin{cases} r_j \\ r_j+\gamma\max_{a'}Q(\phi_{j+1},a';\theta) \end{cases} for non-terminal \phi_{j+1}

Perform a gradient descent step on (y_j-Q(\phi_j,a_j;\theta))^2 according to equation 3 end for
```

end for

```
    Mnih, V. et. al., Human-level control through deep
reinforcement learning, Nature, 2015
<a href="https://www.nature.com/articles/nature14236">https://www.nature.com/articles/nature14236</a>
```

```
Algorithm 1: deep O-learning with experience replay.
Initialize replay memory D to capacity N
                                                                           WITH TARGET
Initialize action-value function Q with random weights \theta
                                                                           NETWORK (use
Initialize target action-value function \hat{Q} with weights \theta^- = \theta
                                                                           different NN for
For episode = 1, M do
  Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = (s_1) updating transition
  For t = 1.T do
                                                                           state)
       With probability \varepsilon select a random action a_t
                                                                           Every C steps reset the
      otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
                                                                           arget network to actual
      Execute action a_t in emulator and observe reward r_t and im x_t = x_{t+1} network
      Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
      Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
      Sample random minibatch of transitions (\phi_j, a_i, \phi_{j+1}) from D
                                                if coisode terminates at step j+1
      Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
      network parameters \theta
      Every C steps reset \hat{Q} = Q
  End For
End For
```

Note: ϕ are transformation of states, e.g., in games multiple snapshots of an image can be represented as a 'state'

Mnih, V., Playing Atari with Deep Reinforcement Learning, 2013, https://doi.org/10.48550/arXiv.1312.5602

Note: ϕ are transformations done on raw data to convert them to a standardized 'state', e.g., in games multiple snapshots of an image can be represented as a 'state'

In examples in this class, we ignore this

https://www.nature.com/articles/nature14236 Algorithm 1: deep Q-learning with experience replay. Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$ For episode = 1, M do Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$ For t = 1.T do With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D $Set y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$ Perform a gradient descent step on $\left(y_j - Q\left(\phi_j, a_j; \theta\right)\right)^2$ with respect to the network parameters θ Every C steps reset $\hat{Q} = Q$ End For End For

Mnih, V. et. al., Human-level control through deep

reinforcement learning, Nature, 2015

DQN algorithm

(without the state feature transformation)

Initialize Q(s,a) with random weights θ Initialize target function $\hat{Q}(s,a)$ with random weights $\hat{\theta}$ Set $\varepsilon \leftarrow 1.0$ Initialize replay buffer memory D to capacity NFor episode = 1 to M, do

For t=1 to T (end of episode) do

- 1. With probability ε , select a random action, a_t ; otherwise, $a_t = argmax_a Q(s, a)$
- Execute action a_t in an emulator and observe the reward, r_t , and the next state, s_{t+1} .
- 3. Store transition (s_t, a_t, r_t, s_{t+1}) in the replay buffer D.
- 4. Sample a random mini-batch of transitions $(s_i, a_i, r_i, s'_{i+1})$ in from the replay buffer D.
- 5. For every transition, calculate target

1.
$$y_j = \begin{cases} r_j \text{ if episode has terminated in } j+1 \\ r_j + \gamma \max_{a' \in A} \hat{Q}(s_{j+1}', a'), \text{ otherwise} \end{cases}$$

- 6. Calculate loss: $\mathcal{L} = (Q(s_j, a_j; \theta) y_j)^2$ and update $Q(s, a; \theta)$ using the SGD algorithm by minimizing the loss with respect to network parameters θ .
- 7. Every C steps, set $\hat{Q}=Q$ (copy weights from Q to \hat{Q}). End t loop

End episode loop

UMassAmherst

The Commonwealth's Flagship Campus