HW 01 (dataset "Flights" 5-10 questions)

```
library(tidyverse)
df_flights <- read_csv("flights.csv")</pre>
qlimpse(df_flights)
df_airlines <- read_csv("airlines.csv")</pre>
df_airports <- read_csv("airports.csv")</pre>
df_airports <- rename(df_airports,dest = faa)</pre>
df_planes <- read_csv("planes.csv")</pre>
Rows: 336,776
Columns: 19
$ year
               <dbl> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013,
$ month
               $ day
               $ dep_time
               <dbl> 517, 533, 542, 544, 554, 554, 555, 557, 557, 558, 558
$ sched_dep_time <dbl> 515, 529, 540, 545, 600, 558, 600, 600, 600, 600, 600
$ dep_delay
               <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, -2, -2, -2, -2,
$ arr_time
               <dbl> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 753, 84
$ sched_arr_time <dbl> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 745, 85
               <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -3, 7,
$ arr_delay
$ carrier
               <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV", "B6",
               <dbl> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79, 301,
$ flight
$ tailnum
               <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN", "N3
               <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR", "LGA
$ origin
$ dest
               <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL", "IAD
$ air_time
               <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 140, 138, 149,
$ distance
               <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 229, 944, 733
$ hour
               <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
               minuta
Warning message in system("timedatectl", intern = TRUE):
"running command 'timedatectl' had status 1"
```

Q1: In 2013, what season did most people travelled from New York City to other destination?

Warning message:

```
A spec_tbl_df: 4 × 2

seasonal n

<chr> <int>
Summer 86995
Spring 85960
Autumn 83731
Winter 80090
```

Q2:Which airlines were the most popular in summer 2013?

```
group_ss %>% filter(seasonal == "Summer") %>% count(carrier) %>% arrange(desc(n))
```

Q3: Which the top five most popular destinations have been visited in summer 2013?

```
group_ss %>%
  filter(seasonal == "Summer") %>% count(dest) %>% arrange(desc(n)) %>% head(5)
```

Q4: What the date was frequently delayed?

A grouped_df: 15 × 4

month	day	mean	sd	
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
3	8	83.65	90.41	
7	1	56.22	68.36	
9	2	53.06	90.22	
12	5	52.45	89.91	
7	10	51.20	91.36	
5	23	50.63	83.93	
9	12	49.43	93.35	
6	28	49.14	77.02	
6	24	47.54	79.96	
7	22	46.67	90.77	
4	19	45.74	87.18	
6	13	45.65	71.56	
7	23	44.57	60.23	
6	30	44.08	72.78	
8	8	43.21	68.93	

`summarise()` has grouped output by 'month'. You can override using the `.group

Q5: Airplanes flew from JFK to LAS, the Turbo Fans more efficient and economical than other types of engines? (JFK to

LAS 2248 miles)`

A t	i	b	b	e:	6	×	5
-----	---	---	---	----	---	---	---

engine	max_mpm	mean_mpm	median_mpm	count
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
Turbo-fan	5.87	3.48	3.75	2037
Turbo-jet	4.68	2.64	2.35	1332
Reciprocating	5.76	3.90	3.75	17
Turbo-shaft	3.77	2.62	2.02	8
4 Cycle	5.42	2.83	2.18	5
Turbo-prop	5.42	4.35	5.42	3

HW 02 (3-4 df, RPostgreSQL)

```
#install.packages("RPostgreSQL") Bug
#library(RPostgreSQL) Bug
df_friends <- data.frame(
    id_friends <- 1:4,
    name = c("Brown", "Sally", "Cony", "Choco"),
    fav_color = c("Yellow", "Orange", "Pink", "Purple"),
    age = c(25,20,22,18)
)
df_foods <- data.frame(
    id_menu <- 1:4,
    menu = c("Salmon", "Burger", "Cake", "Brownie"),
    price = c(159,89,99,59)
)</pre>
```

```
df_tracks <- data.frame(
    tracks_id = c(1,2,5,8),
    tracks_name = c("Magic Man","Pink Venom","Love Story","Gone")
)</pre>
```

```
install.packages("RPostgreSQL")
library(RPostgreSQL)
con <- dbConnect(</pre>
  PostgreSQL(),
  host = "arjuna.db.elephantsql.com",
  dbname = "hbixmfrb",
  port = 5432,
 user = "hbixmfrb",
  password = "JzVYFb76HjqY8Gv4XAL7n13DiAVSS0KZ"
)
dbListTables(con)
df_friends <- data.frame(</pre>
    id_friends <- 1:4,
    name = c("Brown", "Sally", "Cony", "Choco"),
    fav_color = c("Yellow","Orange","Pink","Purple"),
    age = c(25,20,22,18)
)
df_foods <- data.frame(</pre>
    id_menu <- 1:4,
    menu = c("Salmon", "Burger", "Cake", "Brownie"),
    price = c(159, 89, 99, 59)
df_tracks <- data.frame(</pre>
    tracks_id = c(1,2,5,8),
    tracks_name = c("Magic Man","Pink Venom","Love Story","Gone")
)
dbWriteTable(con, "df_friends", df_friends)
dbWriteTable(con,"df_foods", df_foods)
dbWriteTable(con,"df_tracks", df_tracks)
df1 <- dbGetQuery(con, "SELECT * FROM df_friends")</pre>
df2 <- dbGetQuery(con, "SELECT * FROM df_foods")</pre>
df3 <- dbGetQuery(con, "SELECT * FROM df_tracks")</pre>
dbDisconnect(con)
```