Package 'MantaID'

September 9, 2024

Title A Machine-Learning Based Tool to Automate the Identification of Biological Database IDs

Version 1.0.4

License GPL (>= 3) **Encoding** UTF-8

Description The number of biological databases is growing rapidly, but different databases use different IDs to refer to the same biological entity. The inconsistency in IDs impedes the integration of various types of biological data. To resolve the problem, we developed 'MantaID', a datadriven, machine-learning based approach that automates identifying IDs on a large scale. The 'MantaID' model's prediction accuracy was proven to be 99%, and it correctly and effectively predicted 100,000 ID entries within two minutes. 'MantaID' supports the discovery and exploitation of ID patterns from large quantities of databases. (e.g., up to 542 biological databases). An easy-to-use freely available open-source software R package, a user-friendly web application, and API were also developed for 'MantaID' to improve applicability. To our knowledge, 'MantaID' is the first tool that enables an automatic, quick, accurate, and comprehensive identification of large quantities of IDs, and can therefore be used as a starting point to facilitate the complex assimilation and aggregation of biological data across diverse databases.

2 Example

 ${\bf Maintainer}\ {\bf Zhengpeng}\ {\bf Zeng}\ {\bf <molaison@foxmail.com}{\bf >}$

Repository CRAN

Date/Publication 2024-09-09 07:50:02 UTC

Contents

Examp	.e ID example dataset.	
Index		19
	mi_unify_mod	18
	mi_tune_xgb	17
	mi_tune_rp	10
	mi_tune_rg	10
	mi_train_xgb	13
	mi_train_rp	13
	mi_train_rg	14
	mi_train_BP	13
	mi_to_numer	13
	mi_split_str	12
	mi_split_col	12
	mi_run_bmr	1
	mi_predict_new	1
	mi_plot_heatmap	10
	mi_plot_cor	10
	mi_get_padlen	9
	mi_get_miss	9
	mi_get_importance	8
	mi_get_ID_attr	8
	mi get ID	-
	mi get confusion	7
	mi_filter_feat	(
	mi_data_procID	
	mi_data_attributes	
	mi_clean_data	4
	mi_balance_data	4
	mi	3
	Example	2

Description

ID example dataset.

mi 3

Usage

Example

Format

A tibble with 5000 rows and 2 variables.

ID A identifier character.

class The database the ID belongs to.

mi

A wrapper function that executes MantaID workflow.

Description

A wrapper function that executes MantaID workflow.

Usage

```
mi(
    cores = NULL,
    levels = c("*", 0:9, letters, LETTERS, "_", ".", "-", " ", "/", "\\", ":"),
    ratio = 0.3,
    para_blc = FALSE,
    model_path = NULL,
    batch_size = 128,
    epochs = 64,
    validation_split = 0.3,
    graph_path = NULL
)
```

Arguments

The number of cores used when balancing data. cores The vector that includes all the single characters occurred in IDs. levels ratio The ratio of the test set. para_blc A logical value whether using parallel computing when balancing data. model_path The path to save models. batch_size The batch size of deep learning model fitting. The epochs of deep learning model fitting. epochs validation_split The validation ratio of deep learning model fitting. graph_path The path to save graphs.

Value

The list of models and graphs.

4 mi_clean_data

mi_balance_data	Data balance. Most classes adopt random undersampling, while a few classes adopt smote method to oversample to obtain relatively balanced data.
-----------------	---

Description

Data balance. Most classes adopt random undersampling, while a few classes adopt smote method to oversample to obtain relatively balanced data.

Usage

```
mi_balance_data(data, ratio = 0.3, parallel = FALSE)
```

Arguments

data A data frame. Except for class column, all are numeric types.

ratio Numeric between 0 and 1. The percent of the test set split from data.

parallel Logical.

Value

A list contains a train set and a test set.

mi_clean_data	Reshape data and delete meaningless rows.	
---------------	---	--

Description

Reshape data and delete meaningless rows.

Usage

```
mi_clean_data(data, cols = everything(), placeholder = c("-"))
```

Arguments

data A dataframe or tibble or data.table or matrix. Names of the column will be

regard as the class of ID included in column.

cols Character vectors. Columns of data that contain the IDs

placeholder Character vectors. IDs included in placeholder will be omitted.

Value

A tibble with two columns("ID" and "class")

mi_data_attributes 5

Examples

```
data <- tibble::tibble(
   "class1" = c("A", "B", "C", "D"),
   "class2" = c("E", "F", "G", "H"),
   "class3" = c("L", "M", "-", "O")
)
mi_clean_data(data)</pre>
```

mi_data_attributes

ID-related datasets in biomart.

Description

ID-related datasets in biomart.

Usage

```
mi_data_attributes
```

Format

A dataframe with 65 variables and 3 variables.

name The name of dataset.

description Description of dataset.

page collection of attributes.

mi_data_procID

Processed ID data.

Description

Processed ID data.

Usage

```
mi_data_procID
```

Format

A tibble dataframe with 5000 rows and 21 variables.

```
pos1 to pos20 Splited ID.
```

class The databases that ID belongs to.

6 mi_filter_feat

mi_data_rawID	ID dataset for testing.
---------------	-------------------------

Description

ID dataset for testing.

Usage

```
mi_data_rawID
```

Format

A tibble with 5000 rows and 2 variables.

ID A identifier character.

class The database the ID belongs to.

mi_filter_feat	Performing feature selection in a automatic way based on correlation and feature importance.
----------------	--

Description

Performing feature selection in a automatic way based on correlation and feature importance.

Usage

```
mi_filter_feat(data, cor_thresh = 0.7, imp_thresh = 0.99, union = FALSE)
```

Arguments

data	The data frame returned by mi_to_numer().
cor_thresh	The threshold set for Pearson correlation. If correlation value is over this threshold, the two features will be viewed as redundant and one of them will be removed.
imp_thresh	The threshold set for feature importance. The last several features with the lowest importance will be removed if remained importance lower than imp_thresh.
union	The method for combining the decisions of correlation method and importance method. If TRUE, any of the features calculated by the two methods will be returned. Otherwise, only features in the results of both methods will be returned.

Value

The names of the features that should be removed.

mi_get_confusion 7

mi got confucion	Computatha	confusion matrix	for the	predicted regult
<pre>mi_get_confusion</pre>	Compute the	compusion mairix	joi me	predicted result.

Description

Compute the confusion matrix for the predicted result.

Usage

```
mi_get_confusion(result_list, ifnet = FALSE)
```

Arguments

result_list A list returned from model training functions.

ifnet Logical. Whether the data is obtained by a deep learning model.

Value

A confusionMatrix object.

mi_get_ID	Get ID data from the Biomart database using attributes.
-----------	---

Description

Get ID data from the Biomart database using attributes.

Usage

```
mi_get_ID(
   attributes,
   biomart = "genes",
   dataset = "hsapiens_gene_ensembl",
   mirror = "asia"
)
```

Arguments

attributes	A dataframe. The information we want to retrieve. Use mi_get_ID_attr to hava try.
biomart	BioMart database name you want to connect to. Use biomaRt::listEnsembl to retrieve the possible database names.
dataset	Datasets of the selected BioMart database.
mirror	Specify an Ensembl mirror to connect to.

8 mi_get_importance

Value

A tibble dataframe.

mi_get_ID_attr

Get ID attributes from the Biomart database.

Description

Get ID attributes from the Biomart database.

Usage

```
mi_get_ID_attr(
  biomart = "genes",
  dataset = "hsapiens_gene_ensembl",
  mirror = "asia"
)
```

Arguments

biomart BioMart database name you want to connect to.Use biomaRt::listEnsembl to

retrieve the possible database names.

dataset Datasets of the selected BioMart database.

mirror Specify an Ensembl mirror to connect to.

Value

A dataframe.

mi_get_importance

Plot the bar plot for feature importance.

Description

Plot the bar plot for feature importance.

Usage

```
mi_get_importance(data)
```

Arguments

data

A table.

Value

A bar plot.

mi_get_miss 9

 ${\tt mi_get_miss}$

Observe the distribution of the false response of the test set.

Description

Observe the distribution of the false response of the test set.

Usage

```
mi_get_miss(predict)
```

Arguments

predict

An R6 class PredictionClassif.

Value

A tibble data frame that records the number of wrong predictions for each category ID

mi_get_padlen

Get max length of ID data.

Description

Get max length of ID data.

Usage

```
mi_get_padlen(data)
```

Arguments

data

A dataframe.

Value

An int object.

Examples

```
data(mi_data_rawID)
mi_get_padlen(mi_data_rawID)
```

mi_plot_heatmap

mi_plot_cor

Plot correlation heatmap.

Description

Plot correlation heatmap.

Usage

```
mi_plot_cor(data, cls = "class")
```

Arguments

data Data frame including IDs' position features.

cls The name of the class column.

Value

A heatmap.

Examples

```
data(mi_data_procID)
data_num <- mi_to_numer(mi_data_procID)
mi_plot_cor(data_num)</pre>
```

mi_plot_heatmap

Plot heatmap for result confusion matrix.

Description

Plot heatmap for result confusion matrix.

Usage

```
mi_plot_heatmap(table, name = NULL, filepath = NULL)
```

Arguments

table A table.
name Model names.

filepath File path the plot to save. Default NULL.

Value

A ggplot object.

mi_predict_new 11

mi_predict_new	Predict new data with a trained learner.
----------------	--

Description

Predict new data with a trained learner.

Usage

```
mi_predict_new(data, result, ifnet = F)
```

Arguments

data A dataframe.

result The result object from a previous training.

ifnet A boolean indicating if a neural network is used for prediction.

Value

A data frame that contains features and 'predict' class.

mi_run_bmr Compare classificat	ion models with small samples.
--------------------------------	--------------------------------

Description

Compare classification models with small samples.

Usage

```
mi_run_bmr(data, row_num = 1000, resamplings = rsmps("cv", folds = 10))
```

Arguments

data A tibble. All are numeric except the first column is a factor.

row_num The number of samples used.

resamplings R6/Resampling.Resampling method.

Value

A list of R6 class of benchmark results and scores of test set. examples data(mi_data_procID) mi_run_bmr(mi_data_procID)

mi_split_str

mi_split_col	Cut the string of ID column character by character and divide it into
	multiple columns.

Description

Cut the string of ID column character by character and divide it into multiple columns.

Usage

```
mi_split_col(data, cores = NULL, pad_len = 10)
```

Arguments

data Dataframe(tibble) to be split.

cores Int.The num of cores to allocate for computing.
pad_len The length of longest id, i.e. the maxlength.

Value

A tibble with pad_len+1 column.

mi_split_str	Split the string into individual characters and complete the character
	vector to the maximum length.

Description

Split the string into individual characters and complete the character vector to the maximum length.

Usage

```
mi_split_str(str, pad_len)
```

Arguments

str The string to be splited.

pad_len The length of longest ID, i.e. the maxlength.

Value

Splited character vector.

Examples

```
string_test <- "Good Job"
length <- 15
mi_split_str(string_test, length)</pre>
```

mi_to_numer 13

mi_to_numer

Convert data to numeric, and for the ID column convert with fixed levels.

Description

Convert data to numeric, and for the ID column convert with fixed levels.

Usage

```
mi_to_numer(
  data,
  levels = c("*", 0:9, letters, LETTERS, "_", ".", "-", " ", "/", "\\", ":")
)
```

Arguments

data A tibble with n position column(pos1,pos2,...) and class column.

levels Characters accommodated in IDs.

Value

A numeric data frame with numerical or factor type columns.

Examples

```
data(mi_data_procID)
mi_to_numer(mi_data_procID)
```

mi_train_BP

Train a three layers neural network model.

Description

Train a three layers neural network model.

Usage

```
mi_train_BP(
   train,
   test,
   cls = "class",
   path2save = NULL,
   batch_size = 128,
   epochs = 64,
   validation_split = 0.3,
   verbose = 0
)
```

14 mi_train_rg

Arguments

train A dataframe with the class column as label.

test A dataframe with the class column as label.

cls A character. The name of the label column.

path2save The folder path to store the model and train history.

batch_size Integer or NULL. The number of samples per gradient update.

epochs The number of epochs to train the model.

validation_split

Float between 0 and 1. Fraction of the training data to be used as validation data.

verbose The verbosity mode.

Value

A list object containing the prediction confusion matrix, the model object, and the mapping of predicted numbers to classes.

mi_train_rg Random Forest Model Training.

Description

Random Forest Model Training.

Usage

```
mi_train_rg(train, test, measure = msr("classif.acc"), instance = NULL)
```

Arguments

train A dataframe. test A dataframe.

measure Model evaluation method.

instance A tuner.

Value

A list of learner for predicting and predicted result of test set.

mi_train_rp 15

mп	tr	ain	rn

Classification tree model training.

Description

Classification tree model training.

Usage

```
mi_train_rp(train, test, measure = msr("classif.acc"), instance = NULL)
```

Arguments

train A dataframe. test A dataframe.

measure Model evaluation method. Use mlr_measures and msr() to view and choose

metrics.

instance A tuner.

Value

A list of learner for predicting and predicted result of test set.

mi_train_xgb

Xgboost model training

Description

Xgboost model training

Usage

```
mi_train_xgb(train, test, measure = msr("classif.acc"), instance = NULL)
```

Arguments

train A dataframe. test A dataframe.

measure Model evaluation method.

instance A tuner.

Value

A list of learner for predicting and predicted result of test set.

mi_tune_rp

mi_tune_rg

Tune the Random Forest model by hyperband.

Description

Tune the Random Forest model by hyperband.

Usage

```
mi_tune_rg(
  data,
  resampling = rsmp("cv", folds = 5),
  measure = msr("classif.acc"),
  eta = 3
)
```

Arguments

data A tibble. All are numeric except the first column is a factor.

resampling R6/Resampling.

measure Model evaluation method. Use mlr_measures and msr() to view and choose

metrics

eta The percent parameter configurations discarded.

Value

A list of tuning instance and stage plot.

mi_tune_rp

Tune the Decision Tree model by hyperband.

Description

Tune the Decision Tree model by hyperband.

Usage

```
mi_tune_rp(
  data,
  resampling = rsmp("bootstrap", ratio = 0.8, repeats = 5),
  measure = msr("classif.acc"),
  eta = 3
)
```

mi_tune_xgb

Arguments

data A tibble. All are numeric except the first column is a factor.

resampling R6/Resampling.

measure Model evaluation method. Use mlr_measures and msr() to view and choose

metrics.

eta The percent parameter configurations discarded.

Value

A list of tuning instance and stage plot.

mi_tune_xgb

Tune the Xgboost model by hyperband.

Description

Tune the Xgboost model by hyperband.

Usage

```
mi_tune_xgb(
  data,
  resampling = rsmp("cv", folds = 5),
  measure = msr("classif.acc"),
  eta = 3
)
```

Arguments

data A tibble.All are numeric except the first column is a factor.

resampling R6/Resampling.

measure Model evaluation method. Use mlr_measures and msr() to view and choose

metrics.

eta The percent parameter configurations discarded.

Value

A list of tuning instance and stage plot.

mi_unify_mod

mi_unify_mod	Predict with four models and unify results by the sub-model's specificity score to the four possible classes.
	field seem to the four possible elesses.

Description

Predict with four models and unify results by the sub-model's specificity score to the four possible classes.

Usage

```
mi_unify_mod(
  data,
  col_id,
  result_rg,
  result_rp,
  result_xgb,
  result_BP,
  c_value = 0.75,
  pad_len = 30
)
```

Arguments

data	A dataframe contains the ID column.
col_id	The name of ID column.
result_rg	The result from the Random Forest model.
result_rp	The result from the Decision Tree model.
result_xgb	The result from the XGBoost model.
result_BP	The result from the Backpropagation Neural Network model.
c_value	A numeric value used in the final prediction calculation.
pad_len	The length to pad the ID characters to.

Value

A dataframe.

Index

```
* datasets
    Example, 2
    mi_data_attributes, 5
    mi_data_procID, 5
    mi_data_rawID, 6
Example, 2
mi, 3
mi_balance_data, 4
mi_clean_data, 4
mi_data_attributes, 5
mi_data_procID, 5
mi_data_rawID, 6
mi_filter_feat, 6
mi_get_confusion, 7
mi_get_ID, 7
mi_get_ID_attr, 8
{\tt mi\_get\_importance}, 8
{\tt mi\_get\_miss}, {\tt 9}
mi_get_padlen, 9
mi_plot_cor, 10
mi_plot_heatmap, 10
{\tt mi\_predict\_new}, \\ 11
mi_run_bmr, 11
mi_split_col, 12
mi_split_str, 12
mi_to_numer, 13
mi_train_BP, 13
mi\_train\_rg, 14
mi_train_rp, 15
mi\_train\_xgb, 15
mi_tune_rg, 16
mi\_tune\_rp, 16
mi_tune_xgb, 17
{\tt mi\_unify\_mod,}~18
```