Quantum Systems

(Lecture 3: Quantum states and computation)

Luís Soares Barbosa

Universidade do Minho

The principles

Quantum computation explores the laws of quantum theory as computational resources.

Thus, the principles of the former are directly derived from the postulates of the latter.

- The state **space** postulate
- The state evolution postulate
- The state composition postulate
- The state **measurement** postulate

The underlying maths is that of Hilbert spaces.

The underlying maths: Hilbert spaces

Complex, inner-product vector space

A complex vector space with inner product which measures how much two vectors overlap:

$$\langle -|-\rangle: H \times H \longrightarrow \mathbb{C}$$

such that

$$(1) \quad \langle v | \sum_{i} \lambda_{i} \cdot |w_{i} \rangle \rangle = \sum_{i} \lambda_{i} \langle v | w_{i} \rangle$$

$$(2) \quad \langle v|w\rangle = \overline{\langle w|v\rangle}$$

(3)
$$\langle v|v\rangle \geq 0$$
 (with equality iff $|v\rangle = 0$)

Note: $\langle -|-\rangle$ is conjugate linear in the first argument:

$$\langle \sum_{i} \lambda_{i} \cdot |w_{i}\rangle |v\rangle = \sum_{i} \overline{\lambda_{i}} \langle w_{i}|v\rangle$$

Dirac's notation

Dirac's bra/ket notation is a handy way to represent elements and constructions on an Hilbert space

- $|u\rangle$ A ket stands for a vector in an Hilbert space H. In \mathbb{C}^n , it is a column vector of complex entries. Note that the identity for + (the zero vector) is just written 0.
- $\langle u|$ A bra is a vector in the dual space H^* , i.e. scalar-valued linear maps in H. In $(\mathbb{C}^n)^*$ it is the adjoint, i.e. the conjugate transpose, of the corresponding ket, therefore a row vector.

There is a bijective correspondence between $|u\rangle$ and $\langle u|$

$$|u\rangle = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \Leftrightarrow [\overline{u}_1 \cdots \overline{u}_n] = \langle u|$$

Inner product: examples

In C

$$\langle a+bi|c+di\rangle = (a-bi)(c+di) = ac+adi-bci+bd$$

In \mathbb{C}^n : The dot product

Amost useful example of a inner product is the dot product

$$\langle u|v\rangle = \underbrace{\begin{bmatrix} \overline{u_1} & \overline{u_2} & \cdots & \overline{u_n} \end{bmatrix}}_{\langle u|} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \sum_{i=1}^n \overline{u_i} v_i$$

where $\overline{c} = a - ib$ is the complex conjugate of c = a + ib

4□ > 4♠ > 4 = > 4 = > €

Old friends: The dual space

 H^*

If H is a Hilbert space, H^* is the space of linear maps from H to \mathfrak{C} .

Elements of H^* are denoted by

$$\langle u|: H \longrightarrow \mathcal{C}$$
 and defined as $\langle u|(|v\rangle) = \langle u|v\rangle$

In a matricial representation $\langle u|$ is obtained as the Hermitian conjugate (i.e. the transpose of the vector composed by the complex conjugate of each element) of $|u\rangle$, therefore the dot product of $|u\rangle$ and $|v\rangle$.

Old friends: Norms and orthogonality

- The inner product measures the degree of overlapping: $|v\rangle$ and $|w\rangle$ are orthogonal if $\langle v|w\rangle=0$
- The "length" of a vector uses the measure of its overlap with itself to yield the (Euclidean) norm:

$$\||v\rangle\| = \sqrt{\langle v|v\rangle}$$

(generalizing the distance between two points)

- $|v\rangle$ is a unit vector if $||v\rangle||=1$
- normalization: $\frac{|v\rangle}{\||v\rangle\|}$
- A set of vectors $\{|i\rangle,|j\rangle,\cdots,\}$ is orthonormal if each $|i\rangle$ is a unit vector and

$$\langle i|j\rangle = \delta_{i,j} = \begin{cases} i=j & \Rightarrow 1 \\ \text{otherwise} & \Rightarrow 0 \end{cases}$$

Old friends: Bases

Orthonormal basis

A orthonormal basis for a Hilbert space H of dimension n is a set $B = \{|i\rangle \mid i \in n-1\}$ of n linearly independent elements of H st

- $\langle i|j\rangle = \delta_{i,j}$ for all $|i\rangle, |j\rangle \in B$
- and B spans H, i.e. every $|v\rangle$ in H can be written as

Note that the amplitude or coefficient of $|v\rangle$ wrt $|i\rangle$ satisfies

$$\alpha_i = \langle i | v \rangle$$

Why?

Bases

$$\alpha_i = \langle i | v \rangle$$
 because

$$\langle i|v\rangle = \langle i|\sum_{j} \alpha_{j}j\rangle$$

$$= \sum_{j} \alpha_{j}\langle i|j\rangle$$

$$= \sum_{j} \alpha_{j}\delta_{i,j}$$

$$= \alpha_{j}$$

Note

If $|v\rangle$ is expressed wrt an orthonormal basis $\{|i\rangle \mid i \in n\}$, i.e.

$$|v\rangle = \sum_{i} \alpha_{i} |i\rangle$$
, then

$$\||v\rangle\| = \sum_{i} \|\alpha_{i}\|^{2}$$

Example: The Hadamard basis

One of the infinitely many orthonormal bases for a space of dimension 2:

$$\begin{split} |+\rangle &= \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \\ |-\rangle &= \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle \end{split}$$

Check, e. g.

$$\langle +|-\rangle \;=\; \frac{1}{2}(|0\rangle + |1\rangle, |0\rangle - |1\rangle) \;=\; \frac{1}{2}\left(\begin{bmatrix}1\\1\end{bmatrix}, \begin{bmatrix}1\\-1\end{bmatrix}\right) \;=\; \frac{1}{2}\begin{bmatrix}1&1\end{bmatrix}\begin{bmatrix}1\\-1\end{bmatrix} \;=\; 0$$

$$\| \left| + \right\rangle \| \ = \ \sqrt{\left\langle + \right| + \right\rangle} \ = \ \sqrt{\frac{1}{2}(\left| 0 \right\rangle + \left| 1 \right\rangle, \left| 0 \right\rangle + \left| 1 \right\rangle)} \ = \ \sqrt{\frac{1}{2}\left(\left[\frac{1}{1} \right], \left[\frac{1}{1} \right] \right)} \ = \ 1$$

Bases

A basis for H^* If $\{|i\rangle \mid i \in n\}$ is an orthonormal basis for H, then

$$\{\langle i | \mid i \in n\}$$

is an orthonormal basis for H^* .

Hilbert spaces

The complete picture

An Hilbert space is an inner-product space H st the metric defined by its norm turns H into a complete metric space, i.e.any Cauchy sequence

$$|v_1\rangle, |v_2\rangle, \cdots$$

$$\forall_{\epsilon>0} \exists_N \forall_{m,n>N} \||v_m-v_n\rangle\| \leq \epsilon$$

converges

(i.e. there exists an element $|s\rangle$ in H st $\forall_{\epsilon>0}\ \exists_N\ \forall_{n>N}\quad \||s-v_n\rangle\|\leq \epsilon$)

The completeness condition is trivial in finite dimensional vector spaces

The state space postulate

Postulate 1

The state space of a quantum system is described by a unit vector in a Hilbert space

- In practice, with finite resources, one cannot distinguish between a continuous state space from a discrete one with arbitrarily small minimum spacing between adjacente locations.
- One may, then, restrict to finite-dimensional (complex) Hilbert spaces.

The state space postulate

A quantum (binary) state is represented as a superposition, i.e. a linear combination of vectors $|0\rangle$ and $|1\rangle$ with complex coeficients:

$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

When state $|\varphi\rangle$ is measured (i.e. observed) one of the two basic states $|0\rangle,|1\rangle$ is returned with probability

$$\|\alpha\|^2$$
 and $\|\beta\|^2$

respectively.

Being probabilities, the norm squared of coefficients must satisfy

$$\|\alpha\|^2 + \|\beta\|^2 = 1$$

which enforces quantum states to be represented by unit vectors.

The state space of a qubit

Global phase

Unit vectors equivalent up to multiplication by a complex number of modulus one, i.e. a phase factor $e^{i\theta}$, represent the same state.

Let

$$|v\rangle = \alpha |u\rangle + \beta |u'\rangle$$

$$\| e^{i\theta} \alpha \|^2 = (\overline{e^{i\theta} \alpha})(e^{i\theta} \alpha) = (e^{-i\theta} \overline{\alpha})(e^{i\theta} \alpha) = \overline{\alpha} \alpha = \| \alpha \|^2$$

and similarly for β .

As the probabilities $\|\alpha\|^2$ and $\|\beta\|^2$ are the only measurable quantities, global phase has no physical meaning.

Representation redundancy

qubit state space ≠ complex vector space used for representation

The state space of a qubit

Relative phase

It is a measure of the angle between the two complex numbers. Thus, it cannot be discarded!

Those are different states

$$\frac{1}{\sqrt{2}}(|u\rangle+|u'\rangle) \quad \frac{1}{\sqrt{2}}(|u\rangle-|u'\rangle) \quad \frac{1}{\sqrt{2}}(e^{i\theta}|u\rangle+|u'\rangle)$$

...

Deterministic, probabilistic and quantum bits

(from [Kaeys et al, 2007])

The Bloch sphere: Representing $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

• Express $|\psi\rangle$ in polar form

$$|\psi
angle =
ho_1 e^{i\, arphi_1} |0
angle +
ho_2 e^{i\, arphi_2} |1
angle$$

• Eliminate one of the four real parameters multiplying by $e^{-i\varphi_1}$

$$|\psi\rangle = \rho_1 |0\rangle + \rho_2 e^{i(\phi_2 - \phi_1)} |1\rangle = \rho_1 |0\rangle + \rho_2 e^{i\phi} |1\rangle$$

making $\phi = \phi_2 - \phi_1$,

which is possible because global phase factors are physically meaningless.

The Bloch sphere: Representing $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

• Switching back the coefficient of $|1\rangle$ to Cartesian coordinates

$$|\psi\rangle = \rho_1 |0\rangle + (a+bi)|1\rangle$$

the normalization constraint

$$\| \rho_1 \|^2 + \| a + ib \|^2 = \| \rho_1 \|^2 + (a - ib)(a + ib) = \| \| \rho_1 \|^2 + a^2 + b^2 = 1$$

yields the equation of a unit sphere in the real tridimensional space with Cartesian coordinates: (a, b, ρ_1) .

The Bloch sphere: Representing $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$

• The polar coordinates (ρ, θ, ϕ) of a point in the surface of a sphere relate to Cartesian ones through the correspondence

$$x = \rho \sin \theta \cos \varphi$$
$$y = \rho \sin \theta \sin \varphi$$
$$z = \rho \cos \theta$$

• Recalling $\rho = 1$ (cf unit vector),

$$\begin{aligned} |\psi\rangle &= \rho_1 |0\rangle + (a+ib)|1\rangle \\ &= \cos \theta |0\rangle + \sin \theta (\cos \varphi + i \sin \varphi)|1\rangle \\ &= \cos \theta |0\rangle + e^{i\varphi} \sin \theta |1\rangle \end{aligned}$$

which, with two parameters, defines a point in the sphere's surface.

Actually, one may just focus on the upper hemisphere $(0 \le \theta' \le \frac{\pi}{2})$ as opposite points in the lower one differ only by a phase factor of -1, as suggested by

$$\begin{array}{lll} \theta'=0 & \Rightarrow & |\psi\rangle \; = \; \cos 0|0\rangle + e^{i\phi} \sin 0|1\rangle \; = \; |0\rangle \\ \theta'=\frac{\pi}{2} & \Rightarrow & |\psi\rangle \; = \; \cos\frac{\pi}{2}|0\rangle + e^{i\phi} \sin\frac{\pi}{2}|1\rangle \; = \; e^{i\phi}|1\rangle \; = \; |1\rangle \end{array}$$

Note that longitude (ϕ) is irrelevant in a pole!

Indeed, let $|\psi'\rangle$ be the opposite point on the sphere with polar coordinates $(1, \pi - \theta, \varphi + \pi)$:

$$\begin{split} |\psi'\rangle &= \cos{(\pi-\theta)}|0\rangle + e^{i(\phi+\pi)}\sin{(\pi-\theta)}|1\rangle \\ &= -\cos{\theta}|0\rangle + e^{i\phi}e^{i\pi}\sin{\theta}|1\rangle \\ &= -\cos{\theta}|0\rangle + e^{i\phi}\sin{\theta}|1\rangle \\ &= -|\psi\rangle \end{split}$$

which leads to

$$|\psi\rangle=\cos\frac{\theta}{2}|0\rangle+e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

where $0 \le \theta \le \pi$, $0 \le \phi \le 2\pi$

The map $\frac{\theta}{2} \mapsto \theta$ is one-to-one at any point but at $\frac{\theta}{2}$: all points on the equator are mapped into a single point: the south pole.

- The poles represent the classical bits. In general, orthogonal states correspond to antipodal points and every diameter to a basis for the single-qubit state space.
- Once measured a qubit collapses to one of the two poles. Which pole depends exactly on the arrow direction: The angle θ measures that probability: If the arrow points at the equator, there is 50-50 chance to collapse to any of the two poles.
- Rotating a vector wrt the z-axis results into a phase change (ϕ) , and does not affect which state the arrow will collapse to, when measured.

The state evolution postulate

If a quantum state is a ray (i.e. a unit vector in a Hilbert space H up to a global phase), its evolution is specified a certain kind of linear maps $U: H \longrightarrow H$.

Linearity

$$U\left(\sum_{j} \alpha_{j} |v_{j}\rangle\right) = \sum_{j} \alpha_{j} U(|v_{j}\rangle)$$

just by itself has an important consequence: quantum states cannot be cloned

The no-cloning theorem

Linearity implies that quantum states cannot be cloned

Let $U(|a\rangle|0\rangle) = |a\rangle|a\rangle$ be a 2-qubit operator and $|c\rangle = \frac{1}{\sqrt{2}}(|a\rangle + |b\rangle)$ for $|a\rangle$, $|b\rangle$ orthogonal. Then,

$$U(|c\rangle|0\rangle) = \frac{1}{\sqrt{2}}(U(|a\rangle|0\rangle) + U(|b\rangle|0\rangle))$$

$$= \frac{1}{\sqrt{2}}(|a\rangle|a\rangle + |b\rangle|b\rangle)$$

$$\neq \frac{1}{\sqrt{2}}(|a\rangle|a\rangle + |a\rangle|b\rangle + |b\rangle|a\rangle + |b\rangle|b\rangle)$$

$$= |c\rangle|c\rangle$$

$$= U(|c\rangle|0\rangle)$$

As already seen, $|x\rangle|y\rangle = |xy\rangle = |x\rangle \otimes |y\rangle$

But, linearity is not enough ...

... we need to enforce that the norm squared of the new amplitudes still represent a probability distribution

If
$$\sum_{j} \alpha_{j} U(|v_{j}\rangle) = \sum_{j} \alpha'_{j} |v_{j}\rangle$$
 then $\sum_{j} \|\alpha'_{j}\|^{2} = 1$

This is achieved by making U unitary, i.e. such that $U^{-1} = U^{\dagger}$.

What is U^{\dagger} ? The adjoint map

Given a linear map $U: H \longrightarrow H'$, its adjoint $U^{\dagger}: H' \longrightarrow H$ is the unique linear map such that

$$\langle U^{\dagger} a | b \rangle = \langle a | U b \rangle$$

or, in the more 'verbose' notation for the inner product

$$(U^{\dagger}|a\rangle,|b\rangle) = (|a\rangle,U|b\rangle)$$

Note that $(UV)^{\dagger} = V^{\dagger}U^{\dagger}$ and $U^{\dagger} = U$ because

$$\langle V^{\dagger} U^{\dagger} a | b \rangle = \langle U^{\dagger} a | V b \rangle = \langle a | U V b \rangle$$

and

$$\langle U^{\dagger^{\dagger}} a | b \rangle = \langle a | U^{\dagger} b \rangle$$

The state evolution postulate

Postulate 2

The evolution over time of the state of a closed quantum system is described by a unitary map.

The evolution is linear

$$U\left(\sum_{j} \alpha_{j} |v_{j}\rangle\right) = \sum_{j} \alpha_{j} U(|v_{j}\rangle)$$

and preserves the normalization constraint

If
$$\sum_{j} \alpha_{j} U(|v_{j}\rangle) = \sum_{j} \alpha'_{j} |v_{j}\rangle$$
 then $\sum_{j} \|\alpha'_{j}\|^{2} = 1$

The state evolution postulate

Preservation of the normalization constraint means that unit length vectors (and thus orthogonal subspaces) are mapped by U to unit length vectors (and thus to orthogonal subspaces).

It also means that applying a transformation followed by a measurement in the transformed basis is equivalent to a measurement followed by a transformation.

This entails a condition on valid quantum operators: they must preserve the inner product, i.e.

$$\langle Ua|Ub\rangle = \langle a|U^{\dagger}Ub\rangle = \langle v|w\rangle$$

which is only the case iff U is unitary, i.e. U^{\dagger} is the inverse of U:

$$U^{\dagger}U = UU^{\dagger} = I$$

Unitary maps

- Preserving the inner product means that a unitary operator maps orthonormal bases to orthonormal bases.
- Conversely, any operator with this property is unitary.
- If given in matrix form, being unitary means that the set of columns of its matrix representation are orthonormal (because the *j*th column is the image of $U|j\rangle$). Equivalently, rows are orthonormal (why?)

Unitary maps

Unitarity is the only constraint on quantum operators: Any unitary matrix specifies a valid quantum operator.

This means that there are many non-trivial operators on a single qubit (in contrast with the classical case where the only non-trivial operation on a bit is complement).

Finally, because the inverse of a unitary matrix is also a unitary matrix, a quantum operator can always be inverted by another quantum operator

Unitary transformations are reversible

A linear map $U: H \longrightarrow H'$ is fully characterized by specifying how it acts on a basis of H. If H is finite this leads to a natural representation of U as matrix.

Let $\{|j\rangle \mid j \in n-1\}$ be a basis for a *n*-dimensional Hilbert space H, and similarly $\{|i\rangle \mid i \in m-1\}$ for a *m*-dimensional H'. Then the $m \times n$ matrix corresponding to U is defined as

$$\begin{bmatrix} U|0\rangle & U|1\rangle & \cdots & U|n-1\rangle \end{bmatrix}$$

i.e. its j^{th} -column corresponds to m-dimensional vector $U|j\rangle$.

The Dirac notations provides a handy, alternative description of matrices via outer products.

Representing linear maps

Outer product

... is computed straightforwardly by matrix multiplication, e.g.

$$|0\rangle\langle 0| = \begin{bmatrix} 1\\0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0\\0 & 0 \end{bmatrix}$$
$$|1\rangle\langle 0| = \begin{bmatrix} 0\\1 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0\\1 & 0 \end{bmatrix}$$

In general, for vectors $|i\rangle,|j\rangle$ in an orthonormal basis, $|i\rangle\langle j|$ is a square matrix with 1 in position (i,j) and 0 elsewhere. As an operator, $|i\rangle\langle j|$ maps $|j\rangle$ into $|i\rangle$ because

$$|i\rangle\langle j||j\rangle = |i\rangle\langle j|j\rangle = |i\rangle$$

A linear map $U: H \longrightarrow H'$ can be represented as a matrix

$$\sum_{i \in m-1, i \in n-1} U_{i,j} |i\rangle\langle j|$$

Representing linear maps

Decomposition of the identity (for an orthonormal basis)

$$I_H = \sum_{i \in n-1} |i\rangle\langle i|$$

Thus,

$$U = I_{H'}UI_{H} = \sum_{i \in m-1} |i\rangle\langle i| \ U \sum_{j \in n-1} |j\rangle\langle j|$$
$$= \sum_{i \in m-1, j \in n-1} |i\rangle\langle i| \ U |j\rangle\langle j|$$
$$= \sum_{i \in m-1, j \in n-1} \langle i| U|j\rangle |i\rangle\langle j|$$

Clearly,

$$U_{i,j} = \langle i|U|j\rangle$$

Representing linear maps

because

$$\langle i|U|j\rangle = \langle i|\left(\sum_{i'\in m-1,j'\in n-1} U_{i',j'}|i'\rangle\langle j'|\right)|j\rangle$$

$$= \sum_{i'\in m-1,j'\in n-1} U_{i',j'}\langle i|i'\rangle\langle j|j'\rangle$$

$$= \sum_{i'\in m-1,j'\in n-1} U_{i',j'}\delta_{ii'}\delta_{jj'} = U_{i,j}$$

Representing linear maps

Any orthonormal provides a decomposition of the identity.

Is there a standard way to provide a decomposition for an arbitrary operator U over a Hilbert H?

Yes, if *U* is normal operator, i.e. $UU^{\dagger} = U^{\dagger}U$, because of the

Spectral theorem

Any normal operator on a finite, n-dimensional Hilbert space H provides a basis for H consisting of its eigenvectors. Thus,

$$U = \sum_{i \in n-1} \lambda_i |\lambda_i\rangle \langle \lambda_i|$$

where each $(\lambda_i, |\lambda_i\rangle)$ is a eigenvalue / eigenvector pair.

The
$$X=\begin{bmatrix}0&1\\1&0\end{bmatrix}=|0\rangle\langle 1|+|1\rangle\langle 0|$$
 gate

$$X|0\rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$$

As $X|+\rangle=|+\rangle$ and $X|-\rangle=-|-\rangle$, its spectral decomposition yields

$$X = |+\rangle\langle +|-|-\rangle\langle -|$$

The
$$Z=\begin{bmatrix}1&0\\0&-1\end{bmatrix}=|0\rangle\langle 1|+|1\rangle\langle 0|$$
 gate

Acts as

$$Z|0\rangle = |0\rangle$$
 and $Z|1\rangle = -|1\rangle$

i.e. leaves $|0\rangle$ invariant, but injects a phase $e^{i\pi}=-1$ to $|0\rangle$, corresponding to a rotation of π radians around the Z axis.

Clearly, its spectral decomposition yields:

$$Z = |0\rangle\langle 0| - |1\rangle\langle 1|$$

The phase shift gate

$$P_{\Phi} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\Phi} \end{bmatrix}$$

i.e.
$$P_{\Phi} |0\rangle = |0\rangle$$
 and $P_{\Phi} |1\rangle = e^{i\Phi} |1\rangle$.

The probability of measuring a $|0\rangle$ or $|1\rangle$ remains unchanged, but it modifies the phase of the quantum state.

This corresponds to a rotation of ϕ radians around the Z axis (i.e. along a line of latitude on the Bloch sphere) by ϕ radians.

Examples

- $Z = P_{\pi}$
- $S = P_{\frac{\pi}{2}} = \sqrt{Z} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{2}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
- $T = P_{\frac{\pi}{4}} = \sqrt{S}$ (also called the $\frac{\pi}{8}$ gate)

$$T = R_{\frac{\pi}{4}} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{bmatrix}$$

which, up to a global phase factor $e^{i\frac{\pi}{8}}$, is equivalent to

$$\begin{bmatrix} e^{-i\frac{\pi}{8}} & 0 \\ 0 & e^{i\frac{\pi}{8}} \end{bmatrix}$$

Pauli gates

X,Y,Z specify a rotation by π radians around the corresponding axes on the Bloch sphere.

$$I = |0\rangle\langle 0| + |1\rangle\langle 1| = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$X = |1\rangle\langle 0| + |0\rangle\langle 1| = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$Z = |0\rangle\langle 0| - |1\rangle\langle 1| = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$Y = i(-|1\rangle\langle 0| + |0\rangle\langle 1|) = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

Rotation gates

Correspond to arbitrary rotations around the three axes of the Bloch sphere

$$R_e(\theta) \stackrel{=}{=} e^{\frac{-i\theta E}{2}} = \cos\left(\frac{\theta}{2}\right)I - i\sin\frac{\theta}{2}E$$

where e = x, y, z and E = X, Y, Z.

because, for any real number θ and matrix R st $R^2 = I$, which is the case for X, Y, and Z.

$$e^{i\theta R} = cos(\theta)I + i\sin(\theta)R$$

Rotation gates as matrices in the computational basis

$$R_{x}(\theta) \ = \ \begin{bmatrix} \cos\left(\frac{\theta}{2}\right) & -i\sin\left(\frac{\theta}{2}\right) \\ -i\sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) \end{bmatrix}$$

$$R_{y}(\theta) = \begin{bmatrix} \cos\left(\frac{\theta}{2}\right) & -\sin\left(\frac{\theta}{2}\right) \\ \sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) \end{bmatrix}$$

$$R_{z}(\theta) = \begin{bmatrix} e^{-i\frac{\theta}{2}} & 0\\ 0 & e^{i\frac{\theta}{2}} \end{bmatrix}$$

Compute
$$R_z(\theta)|\psi
angle$$
 for $|\psi
angle=\cos\left(rac{\sigma}{2}
ight)|0
angle+e^{i\gamma}\sin\left(rac{\sigma}{2}
ight)|1
angle$

$$\begin{bmatrix} e^{-i\frac{\theta}{2}} & 0 \\ 0 & e^{i\frac{\theta}{2}} \end{bmatrix} \begin{bmatrix} \cos\left(\frac{\sigma}{2}\right) \\ e^{i\gamma}\sin\left(\frac{\sigma}{2}\right) \end{bmatrix} = \begin{bmatrix} e^{-i\frac{\theta}{2}}\cos\left(\frac{\sigma}{2}\right) \\ e^{i\frac{\theta}{2}}e^{i\gamma}\sin\left(\frac{\sigma}{2}\right) \end{bmatrix}$$
$$= e^{-i\frac{\theta}{2}} \begin{bmatrix} \cos\left(\frac{\sigma}{2}\right) \\ e^{i\theta}e^{i\gamma}\sin\left(\frac{\sigma}{2}\right) \end{bmatrix}$$
$$= e^{-i\frac{\theta}{2}} \left(\cos\left(\frac{\sigma}{2}\right)|0\rangle + e^{i(\gamma+\theta)}\sin\left(\frac{\sigma}{2}\right)|1\rangle \right)$$

As global phase is insignificant, the angle mapping $\gamma \mapsto \gamma + \theta$ is a rotation of θ around the z-axis of the Bloch sphere.

Theorem

Let U be a 1-gate, and v, w any two non-parallel axes of the Bloch sphere. Then there exist real numbers $\alpha, \beta \gamma, \delta$ st

$$U = e^{i\alpha}R_{\nu}(\beta)R_{\nu}(\gamma)R_{\nu}(\delta)$$

which means that any 1-gate can be expressed as a sequence of two rotations about an axis and one rotation about another non parallel axis, multiplied by a suitable phase factor.

proof hint: Recall U is unitary and unfold the definition of rotation gate.

The Hadamard gate creates superpositions

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H |0\rangle = |+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
 $H |1\rangle = |-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$

Building larger states from smaller

Operator U in the no-cloning theorem acts on a 2-dimensional state, i.e. over the composition of two gubits.

What does composition mean?

Postulate 3

The state space of a combined quantum system is the tensor product $V \otimes W$ of the state spaces V and W of its components.

Composing quantum states

State spaces in a quantum system combine through tensor: \otimes

n m-dimensional vectors \rightsquigarrow a vector in m^n -dimensional space

i.e. the state space of a quantum system grows exponentially with the number of particles: cf, Feyman's original motivation

Example

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \otimes \begin{bmatrix} d \\ e \\ f \end{bmatrix} = \begin{bmatrix} ad \\ e \\ f \end{bmatrix} \begin{bmatrix} ad \\ ae \\ af \\ bd \\ e \\ f \end{bmatrix} = \begin{bmatrix} ad \\ ae \\ af \\ bd \\ e \\ f \end{bmatrix}$$

Composing quantum states

Tensor $V \otimes W$

- $B_{V \otimes W}$ is a set of elements of the form $|v_i\rangle \otimes |w_i\rangle$, for each $|v_i\rangle \in B_V$, $|w_i\rangle \in B_W$ and $\dim(V \otimes W) = \dim(V) \times \dim(W)$
- $(|u_1\rangle + |u_2\rangle) \otimes |z\rangle = |u_1\rangle \otimes |z\rangle + |u_2\rangle \otimes |z\rangle$
- $|z\rangle \otimes (|u_1\rangle + |u_2\rangle) = |z\rangle \otimes |u_1\rangle + |z\rangle \otimes |u_2\rangle$
- $(\alpha|u\rangle)\otimes|z\rangle = |u\rangle\otimes(\alpha|z\rangle) = \alpha(|u\rangle\otimes|z\rangle)$
- $\langle (|u_2\rangle \otimes |z_2\rangle)|(|u_1\rangle \otimes |z_1\rangle)\rangle = \langle u_2|u_1\rangle \langle z_2|z_1\rangle$

Composing quantum states

Clearly, every element of $V \otimes W$ can be written as

$$\alpha_1(|v_1\rangle\otimes|w_1\rangle)+\alpha_2(|v_2\rangle\otimes|w_1\rangle)+\cdots+\alpha_{nm}(|v_n\rangle\otimes|w_m\rangle)$$

Example

The basis of $V \otimes W$, for V, W qubits with the computational basis is

$$\{|0\rangle\otimes|0\rangle,|0\rangle\otimes|1\rangle,|1\rangle\otimes|0\rangle,|1\rangle\otimes|1\rangle\}$$

Thus, the tensor of $\alpha_1|0\rangle+\alpha_2|1\rangle$ and $\beta_1|0\rangle+\beta_2|1\rangle$ is

$$\alpha_1\beta_1|0\rangle\otimes|0\rangle \ + \ \alpha_1\beta_2|0\rangle\otimes|1\rangle \ + \ \alpha_2\beta_1|1\rangle\otimes|0\rangle \ + \ \alpha_2\beta_2|1\rangle\otimes|1\rangle$$

i.e., in a simplified notation,

$$\alpha_1\beta_1|00\rangle + \alpha_1\beta_2|01\rangle + \alpha_2\beta_1|10\rangle + \alpha_2\beta_2|11\rangle$$

Bases

The computational basis for a vector space

$$\underbrace{V\otimes V\otimes \cdots \otimes V}_{n}$$

corresponding to the composition of n qubits (each living in V) is the set

$$\underbrace{\{\underbrace{|0\rangle\cdots|0\rangle|0\rangle}_{n},\,\,\underbrace{|0\rangle\cdots|0\rangle|1\rangle}_{n},\,\,\underbrace{|0\rangle\cdots|1\rangle|0\rangle}_{n},\,\,\cdots\,\,\underbrace{|1\rangle\cdots|1\rangle|1\rangle}_{n}\}}_{abv}$$

$$\underbrace{\{\underbrace{|0\cdots00\rangle}_{n},\,\,\underbrace{|0\cdots01\rangle}_{n},\,\,\underbrace{|0\cdots10\rangle}_{n},\,\,\cdots\,\,\underbrace{|1\cdots11\rangle}_{n}\}}_{n}$$

which may be written in a compressed (decimal) way as

$$\{|0\rangle, |1\rangle, |2\rangle, |3\rangle, \cdots |2^n - 1\rangle\}$$

Bases

The computational basis for a two qubit system would be

$$\{|0\rangle, |1\rangle, |2\rangle, |3\rangle\}$$

with

$$|0\rangle = |00\rangle = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \quad |1\rangle = |01\rangle = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \quad |2\rangle = |10\rangle = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \quad |3\rangle = |11\rangle = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$

Bases

There are of course other bases ... besides the standard one, e.g.

The Bell basis

$$\begin{split} |\Phi^{+}\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\Phi^{-}\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\Psi^{+}\rangle &= \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) \\ |\Psi^{-}\rangle &= \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{split}$$

Compare with the Hadamard basis for the single qubit systems

Representing multi-qubit states

Any unit vector in a 2^n Hilbert space represents a possible n-qubit state, but for

... a certain level of redundancy

- As before, vectors that differ only in a global phase represent the same quantum state
- but also the same phase factor in different qubits of a tensor product represent the same state:

$$|u\rangle\otimes(e^{i\varphi}|z\rangle) = e^{i\varphi}(|u\rangle\otimes|z\rangle) = (e^{i\varphi}|u\rangle)\otimes|z\rangle$$

Actually, phase factors in qubits of a single term of a superposition can always be factored out into a coefficient for that term, i.e. phase factors distribute over tensors

Representing multi-qubit states

Representation

Relative phases still matter (of course!)

$$\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \ \ \text{differs from} \ \ \frac{1}{\sqrt{2}}(e^{i\Phi}|00\rangle+|11\rangle)$$

even if

$$\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) = \frac{1}{\sqrt{2}}(e^{i\phi}|00\rangle+e^{i\phi}|11\rangle) = \frac{e^{i\phi}}{\sqrt{2}}(|00\rangle+|11\rangle$$

 The complex projective space of dimension 1 (depicted in the Block sphere) generalises to higher dimensions, although in practice linearity makes Hilbert spaces easier to use.

Entanglement

Most states in $V \otimes W$ cannot be written as $|u\rangle \otimes |z\rangle$

For example, the Bell state

$$|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

is entangled

Entanglement

Actually, to make $|\Phi^+\rangle$ equal to

$$(\alpha_1|0\rangle+\beta_1|1\rangle)\otimes(\alpha_2|0\rangle+\beta_2|1\rangle)\ =\ \alpha_1\alpha_2|00\rangle+\alpha_1\beta_2|01\rangle+\beta_1\alpha_2|10\rangle+\beta_1\beta_2|11\rangle$$

would require that $\alpha_1\beta_2=\beta_1\alpha_2=0$ which implies that either

$$\alpha_1\alpha_2=0 \ \ \text{or} \ \ \beta_1\beta_2=0$$

Note

Entanglement can also be observed in simpler structures, e.g. relations:

$$\{(a,a),(b,b)\}\subseteq A\times A$$

cannot be separated, i.e. written as a Cartesian product of subsets of A.

Acts on the standard basis for a 2-qubit system, flipping the second bit if the first bit is 1 and leaving it unchanged otherwise.

$$\begin{array}{lll} \textit{CNOT} &=& |0\rangle\langle 0| \otimes \textit{I} + |1\rangle\langle 1| \otimes \textit{X} \\ &=& |0\rangle\langle 0| \otimes (|0\rangle\langle 0| + |1\rangle\langle 1|) + |1\rangle\langle 1| \otimes (|1\rangle\langle 0| + |0\rangle\langle 1|) \\ &=& |00\rangle\langle 00| + |01\rangle\langle 01| + |11\rangle\langle 10| + |10\rangle\langle 11| \\ &=& \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \\ \end{array}$$

CNOT is unitary and is its own inverse, and cannot be decomposed into a tensor product of two 1-qubit transformations

The importance of *CNOT* is its ability to change the entanglement between two qubits, e.g.

$$\begin{array}{ll} \textit{CNOT} \, \left(\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \otimes |0\rangle \right) \; = \; \textit{CNOT} \, \left(\frac{1}{\sqrt{2}} (|00\rangle + |10\rangle) \right) \\ & = \; \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \end{array}$$

Being its own inverse, also takes an entangled state to an unentangled one.

Note that entanglement is not a local property in the sense that transformations that act separately on two or more subsystems cannot affect the entanglement between those subsystems:

$$(U \otimes V) |v\rangle$$
 is entangled iff $|v\rangle$ is

The notions of control/target bit in *CNOT* are arbitrary: they depend on what basis is considered. The standard behaviour is obtained in the computational basis. However, roles are interchanged in the Hadamard basis in which the effect of *CNOT* is

$$|++\rangle \mapsto |++\rangle \ |+-\rangle \mapsto |--\rangle \ |-+\rangle \mapsto |-+\rangle \ |--\rangle \mapsto |+-\rangle$$

Exercise

The proof

$$LHS = \frac{1}{2} \begin{bmatrix} H & H \\ H & -H \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & X \end{bmatrix} \begin{bmatrix} H & H \\ H & -H \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} H & HX \\ H & -HX \end{bmatrix} \begin{bmatrix} H & H \\ H & -H \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} I + HXH & I - HXH \\ I - HXH & I + HXH \end{bmatrix} = \frac{1}{2} \begin{bmatrix} I + Z & I - Z \\ I - Z & I + Z \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$= I \otimes |0\rangle\langle 0| + X \otimes |1\rangle\langle 1| = RHS$$

noting that

$$H \otimes H = (I \otimes H)(H \otimes I) = \frac{1}{\sqrt{2}} \begin{bmatrix} H & 0 \\ 0 & H \end{bmatrix} \begin{bmatrix} I & I \\ I & -I \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} H & H \\ H & -H \end{bmatrix}$$

Exercise

Discuss

Controlled Q-gates

From

to

$$C_Q|0\rangle|\phi\rangle = |0\rangle|\phi\rangle$$

 $C_Q|1\rangle|\phi\rangle = |1\rangle Q|\phi\rangle$

$$C_Q = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes Q$$

corresponding to the following matrix in the standard basis:

$$C_Q = \begin{bmatrix} 1 & 0 \\ 0 & Q \end{bmatrix}$$

Controlled phase shift gate

$$C_{e^{i\theta}} = |00\rangle\langle00| + |01\rangle\langle01| + e^{i\theta}|10\rangle\langle10| + e^{i\theta}|11\rangle\langle11|$$

$$C_{e^{i\theta}} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & e^{i\theta} & 0 \ 0 & 0 & 0 & e^{i\theta} \end{bmatrix}$$

Transforming a global into a local phase

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \longrightarrow \frac{1}{\sqrt{2}}(|00\rangle + e^{i\theta}|11\rangle)$$

Actually, a unitary transformation is completely determined by its action on a basis, but not by specifying what states the states corresponding to basis states are sent to.

Example: $e^{i\theta}$ takes the four quantum states to themselves (because e.g. $|10\rangle$ and $e^{i\theta}|10\rangle$ represent the same state), but a global phase can be transformed into a local one, as above

CCNOT or Toffoli gate

A 3-bit gate corresponding to controlled *CNOT*. If the first two bits are in the state $|1\rangle$ applies X the third bit, else it does nothing:

$$|q_1q_2q_3\rangle \mapsto |q_1q_2,q_3 \oplus (q_1 \wedge q_2)\rangle$$

In matrix form,

Universal set of gates?

Is there a universal set of quantum gates?

In general no: there are uncountably many quantum transformations, and a finite set of generators can only generate countably many elements. However, it is possible for finite sets of gates to generate arbitrarily close approximations to all unitary transformations.

Definitions

• The error in approximating U by V is

$$Er(U, V) = \max_{|\phi\rangle} \|(U - V)|\phi\rangle\|$$

- An operator U can be approximated to arbitrary accuracy if for any positive ϵ there exists another unitary transformation V st $Er(U,V) \leq \epsilon$.
- A set of gates is universal if for any integer n ≥ 1, any n-qubit unitary operator can be approximated to arbitrary accuracy by a quantum circuit using only gates from that set.

Universal set of gates?

Some examples

- The set {H, T} is universal for 1-gates.
- The set {*H*, *T*, *CNOT*} is a universal set of gates.

How efficient is an approximation?

To approximate an unitary transformation encoding some specific computation, one would expect to use a number of gates from the universal set which is polynomial in the number of qubits and the inverse of the quality factor ϵ .

Main result: theorem of Solovay-Kitaev