

PRACOWNIA FIZYCZNA 1

Instytut Fizyki Centrum Naukowo Dydaktyczne

SPRAWOZDANIE Z ĆWICZENIA LABORATORYJNEGO

Temat:	Wyznaczan	ie maksymalno	ej energii p	romieniowani	ia beta m	etodą absor	pcyjną	
Wydział		AEiI	Kieı	unek	Informatyka			
Nr grupy		1	Rok	akademicki	2023/2024			
Rok studiów		2	Sen	nestr	3			
z fragme	ntów sprawozo	sze sprawozdanie dania nie jest zap powiedzialności	ożyczony z	cudzej pracy. O	świadczam	, że jestem		
L.P. II	mię i nazwisk	0						
1. C	Dominik Kłaput							
2. K	arol Pitera							
3.								
			1					
Data po	Data pomiarów			18.10.2023				
Ocena j		elementów spi	rawozdani			1	.	
data oceny	wstęp i cel ćwiczenia	struktura sprawozdania	obliczenia	rachunek niepewności	wykres	zapis końcowy	wnioski	
<u> </u>								
	_							
	ońcowa:		Ī					
Ocena lub liczba punktów								
			l					

Wstęp teoretyczny

Promieniowanie beta (β) jest jednym z trzech rodzajów promieniowania jądrowego, obok promieniowania alfa (α) oraz gamma (γ). Promieniowanie beta potrafi przeniknąć do około 3mm aluminium, co sprawia, że jest bardziej przenikliwe niż promieniowanie alfa które z trudem przenika przez cienki arkusz papieru, jednak mniej przenikliwe od promieniowania gamma które potrafi przeniknąć przez ponad 2 cm ołowiu. Powstaje ono z rozpadu beta podczas którego jądro emituje elektron (β -) lub pozytron (β +) mający taką samą masę jak elektron jednak z ładunkiem wynoszącym +e.

Dzięki pomiarom dokonanym na detektorze Geigera–Müllera możemy wyznaczyć wykres szybkości zliczeń impulsów w zależności od grubości aluminiowej blaszki umieszczonej między źródłem a miernikiem. Ten wykres pozwala z kolei określić maksymalny zasięg masowy promieniowania beta i aluminium dzięki czemu możemy odczytać jego energię maksymalną z wykresu.

Opracowanie wyników pomiarów

Rys.1 Wykres zależności natężenia wiązki od grubości absorbenta

Rys.2 Przybliżenie wykresu pokazujące niepewność u(I) zaznaczoną kolorem pomarańczowym

Rys.3 Wykres zależności logarytmu naturalnego z ilości zliczeń w jednostce czasu od grubości absorbenta (prezentowany przez niebieskie punkty połączone linią tego samego koloru)

Na wykresie zostały zaznaczone również:

- zielona prosta reprezentująca funkcje regresji liniowej,
- żółta prosta przedstawiająca szybkość zliczeń odpowiadającą promieniowaniu tła,
- moment przecięcia $\ln(I)$ z wartością tła oznaczony kolorem czerwonym, x_{max} =1,283 mm

Wartość współczynnika pochłaniania

 μ =0,202 cm²/g

Korzystając z prawa przenoszenia niepewności obliczyliśmy niepewność u(x_{max})

$$x_{max} = 1,283 \text{ mm} = 0,1283 \text{ cm}$$

 $u(x_{max}) = 0,22 \text{ mm} = 0,022 \text{ cm}$

$$x_{max} = 0.128(22)$$
cm

Wyznaczanie maksymalnego zasięgu masowego badanego promieniowania w badanym materiale (glinie)

$$R_{max} = \rho_{Al} \times x_{max}$$
$$\rho_{Al} = 2.72 \times 10^3 \, kg/m^3$$

$$1 \text{ kg/m}^3 = 1 \text{ mg/cm}^3$$

$$R_{max} = 0,1283 \times 2.72 \times 10^2 = 348,976 \text{ mg/cm}^2$$

Korzystając z prawa przenoszenia niepewności, obliczyliśmy niepewność u(R_{max})

$$u(R_{max}) = 13,1$$

 $R_{max} = 348(13)$ mg/cm²

E_{max} , keV	$R_{max}, \mathrm{mg/cm^2}$
100	13.5
150	26.5
200	42
250	59
300	78
400	120
500	165
800	310
1000	420

Rys.4 Tabela maksymalnego zasięgu masowego R promieniowania β i jego energii maksymalnej

Rys.5 Wykres maksymalnego zasięgu masowego R promieniowania β od jego energii maksymalnej

Odczytaliśmy z wykresu E_{max} dla otrzymanej wartości R_{max}

$$E_{max} = 871,792 \text{ keV}$$

$$u(E_{max}) = 29,57$$

Wyznaczyliśmy E'_{max} korzystając z półempirycznych zależności dla glinu, wstawiając R_{max} w jednostkach g/cm³

 $R_{max} = 0.348976 \; (g/cm2)$

 $E'_{max} = 0.8441 \text{ MeV}$

Korzystając z prawa przenoszenia niepewności wyznaczyć niepewność u(E'max)

$$u(E'_{max}) = 0.09 \text{ MeV}$$

$$E'_{max} = 0.84(9) \text{ MeV}$$

Test zgodności

Wyniki E' uzyskany korzystając z pół-empirycznej zależności dla glinu oraz E odczytany z tabeli, mieszczą się wzajemnie w granicach błędu obu pomiarów. Wskazuje to na akceptowalną dokładność naszych obserwacji.

Wnioski

Podczas przeprowadzania eksperymentu potwierdziliśmy charakterystykę przenikliwości promieniowania β i otrzymaliśmy niewykluczające się wyniki. Nasze wyniki odbiegają od tablicowych przez przeprowadzonych przez nastestów. Jednak bardziej prawdopodobne jest, że powoduje to różnica w charakterystyce źródła wykorzystanego przez nasw trakcie testów w stosunku to źródła badaczy odpowiedzialnych za wartość tablicową.

1 - https://www.products.pcc.eu/pl/academy/rozpad-promieniotworczy-pierwiastkow/