Problemas variables aleatorias continuas

- 1. El tiempo X que utiliza un comercial para exponer un producto cuando LO VENDE sigue, aproximadamente, una distribución normal con parámetros $\mu=3$ minutos 45 segundos y $\sigma=10$ segundos.
 - a. ¿Cuál es la probabilidad de que consiga la venta en menos de 4 minutos?
 - b. ¿Y en más de 3.5 minutos?

Solución

Tenemos que X es $N(\mu = 3, \sigma = 10)$ tenemos que P(X < 4) = 1

En segundo lugar nos piden $P(>3.5)=1-P(\leq 3.5)=1$

Los cálculos los podemos hacer con R

```
round(pnorm(4,mean=3,sd=10),4)# apartado a. P(X<4)
```

[1] 0.5398

```
round(1-pnorm(3.5,mean=3,sd=10),4)# apartado b. P(X>3.5)
```

[1] 0.4801

o con Google sheets (u otra hoja de cálculo)

	А	В	С	D	E
1					
2					
3	Problema 1	mu	sigma		
4	X normal	3	10		
5	P(X<4)=	0.5398			
6	Función	NORMDIST(4,3,	10,TRUE)		
7	P(X>3)=1-P(X<=3)	0.4801			
8	Función	1-NORMDIST(3.	5,3,10,TRUE)		
9					
4.0					

- 2. El tiempo X que utiliza un comercial para exponer un producto cuando NO VENDE sigue, aproximadamente, una distribución normal con parámetros $\mu = 2$ y $\sigma = 0.8$.
 - a. ¿Cuál es el cuantil 0.95 de esta variable? Interpretarlo en el sentido de tiempo perdido por el comercial.
 - b. ¿Cuál es el tiempo perdido en el 40% de las llamadas más cortas?

Solución

Tenemos que X es $N(\mu=2,\sigma=0.8)$ tenemos que buscar el cuantil 0.05 es decir el valor $x_{0.95}$ tal que $P(X < x_{0.95}) = 0.95$ que es $x_{0.95} = 2$

En segundo lugar nos piden el cuantil $x_{0.4}$ es decir el valor $x_{0.4}$ tal que $P(X < x_{0.4}) = 0.4$ que es $x_{0.4} = 1$

Los cálculos los podemos hacer con R

```
round(qnorm(0.95,mean=2,sd=0.8),4)# apartado a, cuantil 0.95
```

[1] 3.3159

```
round(qnorm(0.4, mean=2,sd=0.8),4)# apartado b. cuantil 0.4
```

[1] 1.7973

o con Google sheets (u otra hoja de cálculo)

9				
10	Problema 2	mu	sigma	
11	X normal	1	0.8	
12	cuantil 0.95	3.3159		
13	Función	NORMINV(0.95,	2,0.8)	
14	cuantil 0.4	1.7973		
15	Función	NORMINV(0.4,2	,0.8)	
16				

- 3. Un centro de atención telefónica por voz (call center) recibe por termino medio 102 llamadas por hora. Suponed que el tiempo entre llamadas consecutivas es exponencial.
 - a. Sea X el tiempo entre dos llamadas consecutivas ¿cuál es la distribución de X?
 - b. Calcular la probabilidad que pasen al menos 2.5 minutos hasta recibir la primera llamada.
 - c. Calcular la probabilidad que pasen menos de 3 minutos hasta recibir la siguiente llamada.
 - d. Calcular la esperanza y la varianza de X.

Solución

- a. En 60 minutos recibe 100 llamadas así que en un minuto recibe $\lambda=\frac{102}{60}=1.7$. Luego X= tiempo entre dos llamadas consecutivas en minutos sigue una ley $Exp(\lambda=1.7)$
- b. $P(X > 2.5) = 1 P(X \le 2.5) = 0.0143$.
- c. $P(X < 3) = P(X \le 3) = 0.9939$.
- d. $E(X) = \frac{1}{\lambda} = \frac{1}{1.7} = 0.5882 \text{ y } Var(X) = \frac{1}{\lambda^2} = \frac{1}{1.7^2} = 0.346.$

Cálculos con R

round(1-pexp(2.5, rate=1.7), 4) # apartado b.

[1] 0.0143

round(pexp(3,rate=1.7),4)# apartado c.

[1] 0.9939

o con Google sheets (u otra hoja de cálculo)

17				
18	Problema 3	lambda		
19	X exponencial	1.7		
20	P(X>2.5)=1-P(X<=2.5	0.0143		
21	Función	1-EXPON.DIST(2.5,B19,TRUE)	
22	P(X<=3)=	0.9939		
23	Función	EXPON.DIST(3,	B19,TRUE)	
24				

4. Sea X una variable aleatoria normal con parámetros $\mu=1$ y $\sigma=1$. Calculad el valor de b tal que $P\left((X-1)^2 \leq b\right)=0.1$.

Solución

La v.a. X es $N(\mu=1,\sigma=1)$ nos piden b tal que $P((X-1)^2 \le b) = 0.1)$,. Notemos que b >= 0, además sabemos que $Z = \frac{X-\mu}{\sigma} = \frac{X-1}{1} = X-1$ sigue una distribución N(0,1).

Tenemos que
$$P((X-1)^2 \le b) = P(-\sqrt(b) \le (X-1) \le \sqrt{b}) = P(-\sqrt(b) \le Z \le \sqrt{b}) = F_Z(\sqrt{b}) - F_Z(-\sqrt{b}) = F_Z(\sqrt{b}) - (1 - F_Z(\sqrt{b})) = 2 * F_Z(\sqrt{b}) - 1.$$

Entonces buscamos b tal que $2*F_Z(\sqrt{b})-1=0.1$ y de aquí tenemos que

 $F_Z(\sqrt{b}) = \frac{1+0.1}{2} = 0.55$ luego $\sqrt{b} = z_{0.55}$ y $b = \sqrt{z_{0.55}}$ donde \$z_{0.55}\$ es el cuantil 0.55 de una normal estándar $P(Z \le z_{0.55}) = 0.55$. En definitiva $b = \sqrt{z_{0.55}} = \sqrt{0.1257} = 0.3545$.

Para el cálculo del cuantil $z_{0.55}$ con R es

```
z0.55=round(qnorm(0.55,0,1),4)
z0.55
```

[1] 0.1257

round(sqrt(z0.55),4)

[1] 0.3545

5. Sea Z una variable aleatoria N(0,1). Calcular $P\left(\left(Z-\frac{1}{4}\right)^2>\frac{1}{16}\right)$.

Solución

$$\begin{split} P\left(\left(Z - \frac{1}{4}\right)^2 > \frac{1}{16}\right) &= 1 - P\left(\left(Z - \frac{1}{4}\right)^2 \le \frac{1}{16}\right) \\ &= 1 - P\left(-\sqrt{\frac{1}{16}} \le Z - \frac{1}{4} \le \sqrt{\frac{1}{16}}\right) \\ &= 1 - P\left(-\frac{1}{4} + \frac{1}{4} \le Z \le \frac{1}{4} + \frac{1}{4}\right) \\ &= 1 - P(0 \le Z \le 0.5) = 1 - (P(Z \le 0.5) - P(Z \le 0)) \\ &= 1 - (0.6915 - 0.5) = 0.8085. \end{split}$$

- 6. Un contratista de viviendas unifamiliares de lujo considera que el coste en euros de una contrata habitual es una variables X que sigue una distribución $N(\mu = 600000, \sigma = 60000)$
 - a. ¿Cuál es la probabilidad de que el coste del edificio esté entre 560000 y 660000 euros?
 - b. 0.2 es la probabilidad de que el coste de la vivienda supere ¿qué cantidad?
 - c. ¿Cuál es el coste mínimo del 5% de las casa más caras?

Solución

a. $P(560000 \le X \le 660000) = P(X \le 660000) - P(X \le 560000) = 0.8413 - round(pnorm(560000, mean = 600000, sd = 60000), 4)$.

Con R

round(pnorm(660000,mean=600000,sd=60000)-pnorm(560000,mean=600000,sd=60000),4)

[1] 0.5889

En el 58% de los casos (aproximadamente) el coste se tituará entre esas dos cantidades

b. Nos piden el valor x_0 tal que $P(X > x_0) = 0.2$, es decir el valor que supera el 20% de las viviendas más caras. Este valor será el que deje por debajo el coste del 89% de las casas por lo que es el cuantil 0.8 lo calculamos con R (ejercicio utiliza google sheets para obtener el mismo resultado)

qnorm(0.8,mean=600000,sd=60000)

[1] 650497.3

El 20% de las casas más caras cuestan por encima de 650500 euros aproximadamente.

c. Ahora somos más ambiciosos y que remos gastar para estar entre el 5% de casas más caras. De manera similar al caso anterior queremos calcular el cuantil $x_{0.95}$, lo haremos con R

qnorm(0.95,mean=600000,sd=60000)

[1] 698691.2

El 5% de viviendas más costosas supera los 699000 euros aproximadamente

Con Google sheets (u otra hoja de cálculo)

25	Problema 7	mu	sigma			
26	X normal	600000	60000			
27	P(560000 <x<660000)=< th=""><th>0.5889</th><th></th><th></th><th></th><th></th></x<660000)=<>	0.5889				
28	Función	NORMDIST(6600	00,B26,C26,TRU	E)-NORMDIST(56	0000,B26,C26,T	TRUE)
29	cuantil 0.8	650497.3				
30	Función	NORMINV(0.8,B	26,C26)			
31	cuantil 0.95	698691.2				
32	Función	NORMINV(0.95,	B26,C26)			
33						

7. Si X está distribuida uniformemente en (0,2) e Y es una variable exponencial con parámetro λ . Calcular el valor de λ tal que P(X < 1) = P(Y < 1).

Solución

Xsigue una ley U(0,2) luego $F_X(x) = P(X \le x) = \frac{x}{2}$ si 0 < x < 2 y la variable Y es una $Exp(\lambda)$ luego $F_Y(y) = P(Y \le y) = 1 - e^{-\lambda \cdot x}$ si x > 0.

Luego $P(X<1)=\frac{1}{2}$ y $P(Y\le1)=1-e^{\lambda\cdot1}$. POr lo tanto nos piden el valor de lambda tal que $\frac{1}{2}=1-e^{-\lambda}$. Así que $e^{-\lambda}=1-\frac{1}{2}=0.5$ luego $-\lambda=\ln(0.5)=-0.6931472$. por lo tanto $\lambda=0.6931472$.