Írja le a hatványsor definícióját.

A $(\alpha_n):\mathbb{N}\to\mathbb{R}$ sorozattal és az $a\in\mathbb{R}$ számmal képzett $\sum \alpha_n(x-a)^n \ (x\in\mathbb{R})$ végtelen sort a középpontú, (α_n) együtthatós hatványsornak nevezzük.

Fogalmazza meg a Cauchy Hadamard-tételt.

Tekintsük a $\sum\limits_{n=0}lpha_n(x-a)^n$ hatványsort, és tfh.: $\exists lim(\sqrt[n]{|lpha_n|})=:A\in\overline{\mathbb{R}}$

Ekkor

$$R := \left\{ egin{array}{ll} rac{1}{A}, & ha \ 0 < A < +\infty \ 0, & ha \ A = +\infty \ +\infty, & ha \ A = 0 \end{array}
ight\}$$

a hatványsor konvergenciasugara. Ez azt jelenti, hogy:

- 1. Ha $0 < R < +\infty$, akkor a hatványsor $x \in \mathbb{R}$ esetén abszolút konvergens, ha |x-a| < R és divergens, ha |x-a| > R
- 2. Ha R=0, akkor a hatványsor csak az x=a pontban konvergens.
- 3. Ha $R=+\infty$, akkor a hatványsor $\forall x\in\mathbb{R}$ pontban konvergens.

Adjon meg egy olyan hatványsort, amelyiknek a konvergenciahalmaza a (-1,1] intervallum.

$$\sum_{n=0} \frac{(-1)^n}{n} x^n$$

Adjon meg egy olyan hatványsort, amelyiknek a konvergenciahalmaza a [-1,1] intervallum.

$$\sum_{n=0}^{\infty} \frac{x^n}{n^2}$$

Definiálja a sin függvényt.

$$\sin(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Definiálja a cos függvényt.

$$\cos(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$