

Ab initio calculation of the rotation-vibration energy levels of H 3 + and its isotopomers to spectroscopic accuracy

Oleg L. Polyansky and Jonathan Tennyson

Citation: The Journal of Chemical Physics 110, 5056 (1999); doi: 10.1063/1.478404

View online: http://dx.doi.org/10.1063/1.478404

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/110/11?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Ab initio potential energy surface and vibration-rotation energy levels of lithium monohydroxide J. Chem. Phys. **138**, 234301 (2013); 10.1063/1.4810864

Ab initio prediction of the potential energy surface and vibration-rotation energy levels of Be H 2 J. Chem. Phys. **125**, 044306 (2006); 10.1063/1.2212932

Ab initio potential energy surface and rovibrational energies of H 3 O + and its isotopomers

J. Chem. Phys. **118**, 5431 (2003); 10.1063/1.1555974

The ab initio potential energy surface and vibrational-rotational energy levels of X 2 Σ + MgOH

J. Chem. Phys. 117, 1529 (2002); 10.1063/1.1485721

Ab initio prediction of the vibrational-rotational energy levels of hydrogen peroxide and its isotopomers

J. Chem. Phys. 115, 8345 (2001); 10.1063/1.1410976

JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 11 15 MARCH 1999

Ab initio calculation of the rotation-vibration energy levels of H_3^+ and its isotopomers to spectroscopic accuracy

Oleg L. Polyansky^{a)} and Jonathan Tennyson^{b)}
Department of Physics and Astronomy, University College London, London WC1E 6BT United Kingdom (Received 10 November 1998; accepted 11 December 1998)

Surfaces are fitted to the Born–Oppenheimer potential energy, electronic relativistic correction and adiabatic correction data calculated *ab initio* by Cencek *et al.* [J. Chem. Phys. **108**, 2831 (1998)]. These surfaces are used in calculations of the rotation–vibration energy levels of H_3^+ , H_2D^+ , D_2H^+ , and D_3^+ . Nonadiabatic corrections to the Born–Oppenheimer approximation are introduced following models developed for diatomics which involve the use of isotopomer independent scaled vibrational reduced masses. It is shown that for triatomics this approach leads to an extra term in the nuclear motion Hamiltonian. Our final calculations reproduce the known spectroscopic data for H_3^+ and its isotopomers to within a few hundredths of a cm⁻¹. © *1999 American Institute of Physics*. [S0021-9606(99)00811-9]

I. INTRODUCTION

 ${\rm H_3^+}$ is a system of importance in cool hydrogen plasmas such as those that occur in a variety of astrophysical environments. The spectrum of ${\rm H_3^+}$ has been extensively studied in both the laboratory and astrophysical environments, see reviews. ¹⁻⁶ In particular ${\rm H_3^+}$ has recently been successful detected in the interstellar medium via its infrared absorption spectrum. ⁷

H₃⁺ is the electronically simplest polyatomic molecule and, therefore, has become a benchmark system for high accuracy studies. 8-12 By combining high accuracy Born-Oppenheimer (BO) electronic structure calculations ¹⁰ and *ab initio* estimates of the adiabatic correction to the BO approximation, ab initio spectra accurate to few tenths of a cm⁻¹ have been achieved. 11,12 Very recently Cencek and coworkers have performed a series of calculations giving a submicrohartree accuracy potential-energy surface for H₃⁺. ^{13,14} These workers performed exceptionally high accuracy electronic structure calculations which they augmented with an electronic relativistic correction, calculated for the first time for H₃⁺, and mass-dependent adiabatic corrections to the Born-Oppenheimer (BO) approximation.¹³ Fits to these surfaces used in nuclear motion calculations on H₃⁺ and its isotopomers gave results which reproduced experiment within a "few tenths of cm⁻¹," similar to the accuracy of previous studies. In this work we show that with careful use of the calculations of Cencek et al., plus allowance for the failure of the BO approximation, it is possible to obtain results which reproduce the experimental data for H₃⁺ and its isotopomers to within a few hundredths of cm⁻¹.

Systematic studies of the effects of BO failure on the rotational and vibrational energy levels studies has been largely confined to diatomics. Since the classic paper of Kolos and Wolniewicz, 15 there have been a number of studies

of non-BO effects on the rotation—vibration energy levels of diatomic systems. Of relevance to the present work are studies on the H_2^+ and H_2 systems a number of which $^{16-23}$ are considered in some detail in the following subsection. One particular feature of these works, which we employ here, is that nonadiabatic effects can be modeled effectively using different masses for vibrational and rotational motion. We test this approach for the H_3^+ system and show that, in contrast to diatomics, the choice of different vibrational and rotational masses leads to an extra term in the nuclear motion Hamiltonian. Calculations using vibrational masses taken from diatomic studies 17,22,23 and this extra term in the Hamiltonian give excellent agreement with observations for all isotopomers of H_3^+ for which spectra have been recorded.

II. THEORY

A. Diatomic molecules

Bunker and Moss^{17} derived an effective vibration–rotation Hamiltonian for $^1\Sigma$ diatomic molecules which includes allowance nonadiabatic corrections to the BO approximation. Their Hamiltonian consists of three terms, the vibrational and rotational kinetic-energy operators, and the potential

$$\hat{H} = -\frac{\hbar^2}{2\mu^{V}R^2} \frac{\partial^2}{\partial R^2} + \frac{\hbar^2}{2\mu^{R}R^2} N(N+1) + (1+\gamma)W(R), \quad (1)$$

where R is the bond length and N the rotational quantum number. W is the sum of the mass-independent BO potential plus relativistic correction and the mass-dependent adiabatic correction. W is scaled by $(1+\gamma)$ to allow for nonadiabatic effects. The main means by which nonadiabatic effects are accounted for is via the two effective reduced masses. μ^V is the effective vibrational reduced mass and μ^R is the effective rotational reduced mass.

Hamiltonian (1) was recently used by $Moss^{22}$ for H_2^+ and D_2^+ , and Moss and $Jopling^{23}$ for HD^+ , who found that the spectra of all the isotopomers considered could be repro-

a)Permanent address: Institute of Applied Physics, Russian Academy of Science, Uljanov Street 46, Nizhnii Novgorod, Russia 603024.

b) Electronic mail: j.tennyson@ucl.ac.uk

duced to high accuracy with a single set of isotopomer independent parameters. Both Bishop and Shih, ¹⁶ and Bunker et al. ¹⁸ used a Hamiltonian similar to Eq. (1) for H_2 and D_2 , again with satisfactory results. A feature of these studies is that the effective vibrational reduced mass, μ^V , was found to differ significantly from that given by nuclear masses, whereas the effective rotational reduced mass, μ^R , was found to be close to the nuclear reduced mass by Moss for the H_2^+ problem, and set equal to the nuclear mass in the studies of H_2 .

It should be emphasized that calculations mentioned above do not represent the best available for the hydrogenic diatomics: Moss and co-workers have performed a series ultra high accuracy studies on H_2^+ as a three-body problem, and Schwartz and Le Roy²⁰ have conducted an elaborate, but still approximate, treatment of nonadiabatic effects in H_2 . However, it is beyond our present capabilities to perform calculations at this level for polyatomic systems.

B. Triatomic molecules

We wish to compute rotation–vibration spectra for H_3^+ to high accuracy. For this purpose we use the exact kinetic-energy operator approach of Sutcliffe and Tennyson who derived a number of Hamiltonians in internal coordinates expressed in terms of two distances and an included angle. 24–26 In this work we use atom–diatom scattering or Jacobi coordinate in which r_1 represents the distance between two atoms, the "diatom," and r_2 the distance from the center-of-mass of the diatom to the third atom. θ is the angle between r_1 and r_2 . Although it is not possible to represent the true symmetry of r_3^+ in these coordinates, they have been widely and successfully used for high-accuracy calculations on this system. $r_1^{10,11,13,14,27}$

Following Sutcliffe and Tennyson,²⁴ the body-fixed Hamiltonian can be written

$$\hat{H} = \hat{K}_V + \hat{K}_{VR} + V(r_1, r_2, \theta), \tag{2}$$

where V is the potential-energy surface, which is a function of internal coordinates only. In Jacobi coordinates, the vibrational kinetic-energy operator is

$$\begin{split} \hat{K}_{V} &= -\frac{\hbar^{2}}{2} \left[\frac{1}{\mu_{1}^{V}} \frac{\partial^{2}}{\partial r_{1}^{2}} + \frac{1}{\mu_{2}^{V}} \frac{\partial^{2}}{\partial r_{2}^{2}} + \left(\frac{1}{\mu_{1}^{V} r_{1}^{2}} + \frac{1}{\mu_{2}^{V} r_{2}^{2}} \right) \right. \\ &\times \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} \right]. \end{split} \tag{3}$$

The vibration–rotation kinetic-energy operator, which is null when the rotational angular momentum, J, is zero, is

$$\hat{K}_{VR} = \frac{1}{2\mu_2^R r_2^2} (\Pi_x^2 + \Pi_y^2) + \left(\frac{\cot^2 \theta}{2\mu_1^R r_1^2} + \frac{\sin^{-2} \theta}{2\mu_2^R r_2^2}\right) \Pi_z^2 + \frac{\cot \theta}{2\mu_1^R r_1^2} (\Pi_x \Pi_z + \Pi_z \Pi_x) + \frac{\hbar}{i} \frac{1}{2\mu_2^R r_2^2} \times \left(\frac{\partial}{\partial \theta} + \frac{\cot \theta}{2}\right) \Pi_y, \tag{4}$$

where Π_{α} is an angular momentum operator depending only on the Euler angles. In Eq. (4) it has been assumed that the z axis is placed along \underline{r}_2 . An embedding with the body-fixed z axis placed along \underline{r}_1 is obtained by replacing μ_2^R with μ_1^R and r_2 with r_1 .

For Jacobi coordinates the reduced masses used in Eqs. (3) and (4) are given by

$$\mu_1^{-1} = m_B^{-1} + m_C^{-1}, \quad \mu_2^{-1} = m_A^{-1} + (m_B + m_C)^{-1},$$
 (5)

where m_B and m_C are the masses of the atoms comprising the diatom, and m_A is the mass of the atom. In line with the diatomic Hamiltonian (1), the reduced masses have been labeled V or R according to whether they are involved in vibrational or rotational motion.

The Hamiltonian (2) depends on the three internal coordinates and the three Euler angles, (α, β, γ) , used to embed the axis system. The rotational motion of the system can be represented entirely in terms of Wigner rotation functions²⁸ $D_{k,M}^{J}{}^{\star}(\alpha,\beta,\gamma)=|J,M,k\rangle$, where M is the projection of the rotational motion on the space-fixed z axis and k is its projection on the body-fixed z axis. A standard step in the Sutcliffe–Tennyson procedure is to derive an effective internal coordinate Hamiltonian operator by multiplying from the left by $\langle J,M,k'|$, the right by $|J,M,k\rangle$ and integrating over all Euler angles. This gives^{24,25}

$$\hat{H} = \delta_{k,k'} \hat{K}_V + \hat{K}_{VR} + \delta_{k,k'} V(r_1, r_2, \theta), \tag{6}$$

where the vibrational kinetic-energy operator and the potential do not depend on the Euler angles and are, therefore, not altered by the integration. The effective rotation–vibration operator is ²⁵

$$\hat{K}_{VR} = \delta_{k,k'} \hbar^2 \left[\frac{(J(J+1) - 2k^2)}{2\mu_2^R r_2^2} + \frac{k^2}{\sin^2 \theta} \left(\frac{1}{2\mu_1^R r_1^2} + \frac{1}{2\mu_2^R r_2^2} \right) \right] + \delta_{k',k\pm 1} \frac{\hbar^2}{2\mu_2^R r_2^2} C_{Jk}^{\pm} \left(\mp \frac{\delta}{\delta \theta} + k \cot \theta \right), \tag{7}$$

where

$$C_{Jk}^{\pm} = (J(J+1) - k(k\pm 1))^{1/2}.$$
 (8)

In this form of \hat{K}_{VR} , it is clear that the term which depends on $\sin^{-2}\theta$ is potentially singular at linear geometries, i.e., $\theta = 0$ or π . This singularity can be avoided by choice of angular basis functions: Associated Legendre polynomials, $\Theta_{j,k}(\theta) = |j,k\rangle$, where k is explicitly coupled to the $|J,M,k\rangle$ used above. ²⁴

Multiply from left by $\langle j', k' |$, from the right by $|j,k\rangle$ and integrating over θ only gives a new effective, radial Hamiltonian:

$$\hat{H} = \delta_{k k'} \hat{K}_V + \hat{K}_{VR} + \delta_{k k'} \langle j', k | V(r_1, r_2, \theta) | j, k \rangle_{\theta}, \qquad (9)$$

where

$$\hat{K}_{V} = \delta_{k,k'} \delta_{j,j'} \left[-\frac{\hbar^{2}}{2\mu_{1}^{V}} \frac{\partial^{2}}{\partial r_{1}^{2}} - \frac{\hbar^{2}}{2\mu_{2}^{V}} \frac{\partial^{2}}{\partial r_{2}^{2}} + j(j+1) \right] \\
\times \left(\frac{\hbar^{2}}{2\mu_{1}^{V}r_{1}^{2}} + \frac{\hbar^{2}}{2\mu_{2}^{V}r_{2}^{2}} \right) - \delta_{k,k'} k^{2} \langle j', k | \sin^{-2}\theta | j, k \rangle \\
\times \left(\frac{\hbar^{2}}{2\mu_{1}^{V}r_{1}^{2}} + \frac{\hbar^{2}}{2\mu_{2}^{V}r_{2}^{2}} \right), \tag{10}$$

$$\hat{K}_{VR} = \delta_{k,k'} \delta_{j,j'} \hbar^{2} \frac{(J(J+1) - 2k^{2})}{2\mu_{2}^{R}r_{2}^{2}} \\
- \delta_{k',k\pm 1} \delta_{j,j'} \frac{\hbar^{2}}{2\mu_{2}^{R}r_{2}^{2}} C_{jk}^{\pm} C_{jk}^{\pm} \\
+ \delta_{k,k'} k^{2} \langle j', k | \sin^{-2}\theta | j, k \rangle \left(\frac{\hbar^{2}}{2\mu_{1}^{R}r_{1}^{2}} + \frac{\hbar^{2}}{2\mu_{2}^{R}r_{2}^{2}} \right). \tag{11}$$

Previous derivations of this effective radial Hamiltonian^{24–26} have omitted the matrix element over $\sin^{-2}\theta$ as, when $\mu_i^V = \mu_i^R$, this part of the operator cancels between \hat{K}_V and \hat{K}_{VR} . However, if $\mu_i^V \neq \mu_i^R$, a new term has to be considered in the Hamiltonian which has the form

$$\hat{K}_{\text{NBO}} = \delta_{k,k'} k^2 \langle j', k | \sin^{-2} \theta | j, k \rangle \left(\frac{\hbar^2}{2 r_1^2} \left(\frac{1}{\mu_1^R} - \frac{1}{\mu_1^V} \right) + \frac{\hbar^2}{2 r_2^2} \left(\frac{1}{\mu_2^R} - \frac{1}{\mu_2^V} \right) \right). \tag{12}$$

As μ_i^V is usually greater than μ_i^R , this extra term, which only occurs for J>0, is generally positive.

Matrix elements for the new operator have been included in both the program TRIATOM, 30 which works within a finite basis set representation, and DVR3D, 31 which employs as discrete variable representation (DVR). Within TRIATOM the extra matrix element $\langle j',k|\sin^{-2}\theta|j,k\rangle$ is calculated using M-point Gaussian quadrature based on the zeros of the associated Legendre polynomials Θ_{Mk} . Within DVR3D, the extra matrix elements implied by the new operator \hat{K}_{NBO} are simply computed with the quadrature approximation. The angular integrals over $\sin^{-2}\theta$ are singular for basis functions with k=0. However, in this case the matrix element is zero, so such problems are avoided.

III. CALCULATIONS

A. Effective potential-energy surfaces

As for previous studies of H_3^+ , 11,12,14 we write an effective potential-energy surface, W(R), as a function of internal coordinates, Q, for the ith isotopomer as

$$W_{i}(Q) = V_{BO}(Q) + V_{rel}(Q) + \frac{1}{\mu_{i}^{S}} \Delta V_{ad}^{S}(Q) + \frac{1}{\mu_{i}^{A}} \Delta V_{ad}^{A}(Q),$$
(13)

where $V_{\rm BO}$ is the Born–Oppenheimer potential and $V_{\rm rel}$ is the electronic relativistic correction. The mass-dependent terms in Eq. (13) are due to the adiabatic correction to the BO approximation. For ${\rm H_3^+}$ and ${\rm D_3^+}$ only the symmetric adiabatic correction, $\Delta V_{\rm ad}^S$, is nonzero. The mass factor for this term is

$$(\mu_i^S)^{-1} = m_A^{-1} + m_B^{-1} + m_C^{-1}. (14)$$

For ${\rm H_2D^+}$ and ${\rm D_2H^+}$ there is also an asymmetric adiabatic correction, ¹² $\Delta V_{\rm ad}^A$, which has a mass factor

$$(\mu_i^A)^{-1} = m_A^{-1} - m_B^{-1}, (15)$$

within a labeling scheme for which $m_B = m_C$.

The surfaces $V_{\rm BO}$, $V_{\rm rel}$, $\Delta V_{\rm ad}^S$, and $\Delta V_{\rm ad}^A$ used here are all parameterized using the *ab initio* data of Cencek *et al.*¹³ Analytic fits to the data of Cencek *et al.* have already been presented by Jaquet *et al.*, ¹⁴ however, as a cross check we have re-fitted the data.

Fits were performed using symmetry coordinates

$$S_{a} = (\tilde{R}_{12} + \tilde{R}_{23} + \tilde{R}_{31})/\sqrt{3},$$

$$S_{x} = (2\tilde{R}_{12} - \tilde{R}_{23} - \tilde{R}_{31})/\sqrt{6} = S_{e} \cos(\phi),$$

$$S_{y} = (\tilde{R}_{23} - \tilde{R}_{31})/\sqrt{2} = S_{e} \sin(\phi),$$
(16)

where for displacement coordinates

$$\tilde{R}_{ik} = R_{ik} - R_e \,, \tag{17}$$

and for Morse coordinates

$$\widetilde{R}_{jk} = \left[1 - \exp\left(-\beta \frac{R_{jk} - R_e}{R_e} \right) \right] / \beta.$$
(18)

In the above expressions R_{jk} is the distance between atom j and atom k, R_e is the equilibrium separation which was assumed to be $1.65a_o$ and the Morse parameter β was fixed at $1.3^{.32}$

Previous experience 11,12,14,27,32 has suggested that the BO potential, which of course shows dissociative behavior, is best represented using Morse coordinates; whereas the adiabatic and relativistic corrections are essentially polynomial functions which are best represented using displacement coordinates. In fact only the S_a coordinate is actually dissociative; tests showed that the best fits were obtained using Morse coordinates for S_a in $V_{\rm BO}$ and displacement coordinates in all other cases. The fits were performed using a function of the general form

$$V^{\text{fit}}(Q) = \sum_{n,m,k} V_{n,m,k} S_a^n S_e^{m+k} \cos(k\phi),$$
 (19)

where $m=0,2,4,\ldots$, and $k=0,3,6,\ldots$ for the symmetric functions $V_{\rm BO}$, $V_{\rm rel}$, and $\Delta V_{\rm ad}^S$, and $k=1,2,4,5,\ldots$ for $\Delta V_{\rm ad}^A$. Coefficients for the fits can be obtained from the EPAPS archive.³³

The order of each fit, N, can be defined as the lowest number such that n+m+k is always less than or equal to N. However, we did not retain all terms in expansion (19) for a given N. Instead constants which were poorly determined or strongly correlated were removed from the fits; such constants are given as blank entries.

For $V_{\rm BO}$ our tenth-order fit with 54 constants gives a standard deviation of $0.04\,{\rm cm}^{-1}$ compared with Jaquet *et al.* tenth-order fit which retained all 67 constants to fit 69 data points with a weighted standard deviation of $0.05\,{\rm cm}^{-1}$. Our fit to $V_{\rm rel}^{34}$ required 28 out of the 31 seventh-order constants and gave a standard deviation of effectively zero compared

TABLE I. Parameters, in atomic units, for the Morse oscillatorlike functions used for the radial basis functions in TRIATOM (Ref. 30) and used to generate the radial grids in DVR3D (Ref. 31).

		r_1			r_2	
	r_e	D_e	ω_e	r_e	D_e	ω_e
H ₃ ⁺	2.1	0.1	0.0118	1.71	0.26	0.009
H_2D^+	1.71	0.1	0.0108	1.65	0.215	0.008 95
D_2H^+	1.83	0.09	0.0081	1.62	0.17	0.0105
D_3^+	1.78	0.12	0.009	1.48	0.2	0.009

to the $0.19\,\mathrm{cm}^{-1}$ weighted standard deviation given by Jaquet *et al.* ninth-order fit. Our fit to $\Delta V_{\mathrm{ad}}^{S}$ used a full seventh-order fit and gave a mass-weighted standard deviation similar to that of Jaquet *et al.* full ninth-order fit.

The only fit which gave significantly different results from the work of Jaquet *et al.* was to $\Delta V_{\rm ad}^A$. Our full sixth-order fit reproduces all 116 unique data points³⁶ with a mass-weighted standard deviation of 0.005 cm⁻¹. This fit used only half the number of constants used by Jaquet *et al.*

We believe our fits to be more compact and stable representations of the *ab initio* data of Cencek *et al.* However, calculations by us using Jaquet *et al.* best surfaces yielded results which differ by less than 0.01 cm⁻¹ from ones obtained with our fits, which we use for all results presented below. This suggests that the results presented are not sensitive to these high accuracy fits. Conversely our nuclear motion calculations using Jaquet *et al.* surfaces, their model and masses gave good agreement with their results for H₃⁺ but results for the mixed isotopomers which differed by as much as 0.2 cm⁻¹. This suggests that the results are sensitive to the details of the nuclear motion calculations.

B. Nuclear motion calculations

As we are aiming for high accuracy in our calculations, we took considerable care to check the convergence of our rotation–vibration calculations. Convergence checks were performed for all four of the H_3^+ isotopomers discussed below. The calculations, including those which include the extra term \hat{K}_{NBO} , were cross checked by using adapted versions of both the finite basis representation program suite TRIATOM³⁰ and the discrete variable representation program suite DVR3D.³¹ The two approaches give very similar results as can be seen by comparing Tables II and III, which present results computed using TRIATOM, with our subsequent results which used DVR3D.

Our final nuclear motion calculations used DVR3D. Parameters for the Morse oscillatorlike functions, which determined the radial grids, are given in Table I. These differ somewhat from the parameters used by Jaquet *et al.* who used a set optimized some time ago by Miller and Tennyson.³⁷ The main difference is that for our set the values for ω_e have been lowered to give a larger spread of radial grid points. Our DVR3D calculations used 21 grid points in r_2 , 20 in r_1 and 36 angular grid points based on the zeros of Gauss-(associated) Legendre polynomials. For the vibrational step, a final Hamiltonian of dimension 2000 was used

in all cases. For the rotational step a final Hamiltonian of dimension $350 \times (J+1)$ was used. Comparing with Jaquet *et al.*, our vibrational calculations are somewhat larger but our rotational calculations are about 40% smaller. Tests suggested that our basis set is sufficient to converge all the energy levels considered to better than $0.005 \,\mathrm{cm}^{-1}$.

The aim of this work was to test a number of models for computing rotation–vibration spectra of H_3^+ and its isotopomers to accuracy well beyond that achievable within the BO approximation. The starting point for this was the BO potential energy, the electronic relativistic correction and the adiabatic correction surfaces fitted above.

There have been a number of studies exploring possible mass effects on the H_3^+ vibration–rotation spectrum, ^14,38 however, we adopted a somewhat different approach guided by the various diatomic studies discussed above. To model nonadiabatic effects we followed the recipe of Bunker and Moss ^17 and used separate masses for vibrational and rotational motions.

The rotational reduced masses, μ_i^R , were fixed to the values given by nuclear masses. There are two reasons for this choice: First the diatomic studies on both H_2^{+22} and $H_2^{16,18}$ set the rotational reduced mass at or near this value, second rotational nonadiabatic effects in triatomics are known to be related to rotational *g*-factors, ³⁹ and the rotational *g*-factors for H_3^+ are known to be particularly small. ⁴⁰

We tested a number of possible vibrational reduced masses. In the end we used the hydrogenic vibrational reduced masses found optimal by Moss for $\rm H_2^{+22}$ and hence derived a deuterium vibrational reduced masses using the scaling relation of Bunker and Moss. This yields $m_{\rm H} = 1.007\,537\,2$ u and $m_{\rm D} = 2.013\,814\,0$ u compared to values for the nuclear mass of $m_{\rm H} = 1.007\,276\,47\,$ u and $m_{\rm D} = 2.013\,553\,2$ u. These values were used for all isotopomers. It is likely that even closer agreement with experiment could be obtained by adjusting these masses, but this was not attempted.

Table II compares our models for all the known band origins of the H_3^+ system whereas Table III just considers a few transition frequencies for the three known vibrational bands of H_2D^+ . H_2D^+ is known to be particularly sensitive to non-BO effects. The first column in each table shows the results obtained using only the Born–Oppenheimer (BO) potential-energy surface plus relativistic correction. This level of calculation shows errors of more than 1 cm⁻¹. The second column shows the effect of including the adiabatic correction to the BO approximation: This model, which is equivalent to the best *ab initio* one used by Jaquet *et al.*, ¹⁴ gives errors of a few tenths of cm⁻¹. All calculations in the first two columns used nuclear masses.

In the third column of both tables we used the effective vibrational reduced masses discussed above. This results in a very significant improvement in the J=0 calculations: The errors are reduced by almost an order of magnitude to hundredths of cm⁻¹. However, for the results including rotational excitation, Table III, the improvement is not so great. There is another notable difference between the results of column 2 and the results of column 3 in Table III: The residues for the BO, relativistic plus adiabatic correction calcu-

TABLE II. J=0 band origins, and in cm⁻¹, for H_3^+ and its observed isotopomers. Results, which are given as observed-calculated, for various models calculated with TRIATOM.

		$E_{ m obs}$	ВО	$+\DeltaV_{\rm ad}$	$\mu^V \neq \mu^R$
H ₃ ⁺					
	01^{1}	2521.409	-0.11	-0.24	0.056
	10^{0}	3178.290	-1.30	-0.40	0.025
	02^{0}	4778.350	0.00	-0.50	0.020
	02^{2}	4998.045	-0.30	-0.64	0.010
	11^{1}	5554.155	-1.40	-0.50	0.000
H_2D^+					
	ν_1	2992.505	-1.46	-0.36	-0.020
	ν_2	2205.869	0.47	-0.25	-0.050
	ν_3	2335.449	0.47	-0.14	0.090
D_2H^+					
	ν_1	2736.981	-1.04	-0.28	0.001
	ν_2	1968.169	0.58	-0.11	0.023
	ν_3	2078.430	-0.74	-0.18	-0.004
D_3^+					
	01^{1}	1834.670			0.015

^aExperimentally derived data (Ref. 43).

lation (column 2) are systematic and smooth; those for the $\mu_i^V \neq \mu_i^R$ calculation are not. In the final column of Table III we show the effect of including the extra term in Hamiltonian, $\hat{K}_{\rm NBO}$, which arises when $\mu_i^V \neq \mu_i^R$. Including this term reduces the magnitude of the errors and recovers the situation whereby the residues, which are now a few hundredths of cm⁻¹, are systematic and smooth. Systematic and smooth residues are important as they can be accounted

TABLE III. Sample transition frequencies, in cm^{-1} , for H_2D^+ . Results, which are given as observed–calculated, were calculated using TRIATOM for various models.^a

JK_aK_c	JK_aK_c	$\nu_{\rm obs}$ (Refs. 44 and 45)	ВО	$+\Delta V_{\mathrm{ad}}$	$\mu^{V} eq \mu^{R}$	$+\hat{K}_{ m NBO}$
$\overline{\nu_2}$						
2 2 0	2 2 1	2208.417	-0.435	-0.242	-0.050	-0.068
3 2 1	3 2 2	2225.501	-0.385	-0.245	-0.062	-0.044
2 2 1	202	2283.810	-0.521	-0.239	+0.030	-0.059
2 2 0	101	2381.367	-0.573	-0.250	+0.008	-0.060
3 2 1	202	2448.627	-0.521	-0.259	-0.011	-0.076
3 3 1	2 1 2	2512.598	-0.647	-0.250	+0.075	-0.099
ν_3						
202	3 1 3	2223.706	-0.418	-0.163	+0.050	+0.068
2 2 1	3 1 2	2242.303	-0.753	-0.151	+0.140	+0.095
2 1 2	2 2 1	2272.395	-0.420	-0.168	+0.035	+0.099
2 2 0	2 1 1	2393.633	-0.320	-0.162	+0.140	+0.087
3 3 1	3 2 2	2466.041	-0.224	-0.164	+0.190	+0.080
3 3 1	2 2 0	2596.960	-0.185	-0.177	+0.167	+0.077
3 3 0	2 2 1	2602.146	-0.203	-0.172	+0.167	+0.080
ν_1						
202	2 2 1	2904.657	-1.364	-0.357	-0.073	+0.009
3 2 2	3 2 1	2963.513	-1.487	-0.355	+0.001	-0.012
3 3 1	3 3 0	2975.064	-1.438	-0.356	-0.020	-0.018

^aModels defined as follows: BO: *Ab initio* BO potential+relativistic surface. $+\Delta V_{\rm ad}$: As BO plus adiabatic correction surface, $\Delta V_{\rm ad}$. $\mu^V \neq \mu^R$: As $+\Delta V_{\rm ad}$ with $\mu^V \neq \mu^R$, no additional kinetic-energy term. $+\hat{K}_{\rm NBO}$: As $\mu^V \neq \mu^R$, but with the additional kinetic-energy term, $\hat{K}_{\rm NBO}$.

when using the results for spectroscopic assignments,⁴¹ and indeed can be easily corrected by fitting to experimental data. Furthermore, these residues are pointers on how the *ab initio* model can be further improved. Clearly this extra term, while not large, is important.

By allowing for nonadiabatic effects via scaled vibrational masses and the extra term in the Hamiltonian we obtain results which approach spectroscopic accuracy for all isotopomers. The diatomic procedure proposed by Bunker and Moss¹⁷ contained one further parameter, γ , which they used to scale the potential. Moss' studies^{22,23} on the H_2^+ system found that values of γ about -0.5×10^{-5} was appropriate for this system. Tests on the H_3^+ system with γ set to this value showed that the scaling was too small to make a noticeable difference to the results. This line of work was, therefore, not pursued.

Tables IV compares our final results generated for H_2D^+ with experimental data^{44,45}; a corresponding comparison with experimental data^{44,46} for D_2H^+ can be obtained from the EPAPS archive.³³ Table V presents some final results for H_3^+ ; a fuller set of H_3^+ results have been placed in the EPAPS archive.³³ All calculations were performed using our best model which includes adiabatic effects, vibrational mass scaling and \hat{K}_{NBO} . These tables show that the excellent results obtained in our test calculations are generally true for the range of energy levels considered. Our final results have improved the accuracy of the *ab initio* predictions by an order of magnitude.

For the mixed isotopomers, for which only rather limited spectral information is available, we compare with all transition frequencies. These results show similar systematic deviations for a particular vibrational band to the ones noted above. These deviations are small, less than a tenth of wave number in all cases, but real. At this stage it is not possible to say for certain whether they arise from small, residual errors in the BO or adiabatic surfaces or from the approximate way we correct the BO approximation. However, it should be noted that the largest systematic errors are for transitions involving the ν_2 and ν_3 states. These are known from previous studies^{12,27,42} to be the states most sensitive to non-BO effects. The influence of the adiabatic correction to the BO approximation on the calculated energy levels appears insensitive to the level of theory used to calculate it.¹³ It is, therefore, most likely that these residual problems are due to our relatively crude treatment of the vibrational nonadiabatic problem.

For H_3^+ there are too many assigned transitions for a compilation and instead Table V compares our results with energy levels for $1 \leq J \leq 3$ derived from experimental data⁴³ (a comparison for $J \leq 5$ can be obtained from the EPAPS archive³³). Also given for comparison are results obtained by Dinelli *et al.*⁴³ using the Dinelli, Polyansky, and Tennyson $(\mathrm{DPT})^{27}$ spectroscopically determined, effective potential-energy surface. The table includes predictions of H_3^+ energies up to the region where assigning quantum number labels becomes arbitrary for this molecule.⁴³ The H_3^+ observations cover a much wider range of energies than for the mixed isotopomers; it is therefore, not surprising that there are cases where our calculations give larger residues. It is notable that

^bModels defined as follows: BO: *Ab initio* BO potential+relativistic surface. $+\Delta V_{\rm ad}$: As BO plus adiabatic correction surface, $\Delta V_{\rm ad}$. $\mu^V \neq \mu^R$: As $+\Delta V_{\rm ad}$ with $\mu^V \neq \mu^R$.

TABLE IV. Comparison of observed (Refs. 44 and 45) and calculated tran-

sition frequencies for H_2D^+ in cm⁻¹. Δ is obs-calc. $J'K'_aK'_c$ $J''K''_aK''_c$ Δ $u_{\rm calc}$ ν_2 band 1837.573 1837.582 6 1 5 7 1 6 -0.0091837.688 1837.696 625 7 2 6 -0.0081892.541 1892.553 505 606 -0.0121892.558 1892.572 5 1 5 6 1 6 -0.0141895,995 1896.011 5 1 4 6 1 5 -0.0161896.345 1896.360 5 2 4 625 -0.0151952.024 1952.050 4 1 3 5 1 4 -0.0262012.621 2012.653 303 404 -0.0322013.010 2013.041 3 1 3 4 1 4 -0.0312053.211 2053.260 2.1.1 3 1 2 -0.0492060.684 2060.732 2 2 1 3 2 2 -0.0482067.003 202 303 -0.0452066.958 2068.680 2068.723 2 1 2 3 1 3 -0.043-0.0552102.488 2102.543 1 1 0 2 1 1 2115.046 2115.101 101 202 -0.0552119.938 2119.993 1 1 1 2 1 2 -0.0552160.176 2160.238 000 101 -0.0622186.344 2186.394 1 1 1 1 1 0 -0.0502208.417 2208.481 2 2 0 221 -0.0642218.393 2218.460 1 1 0 111 -0.0672225.501 2225.573 3 2 1 3 2 2 -0.0722240.512 2240.582 2 1 1 2 1 2 -0.070000 101 -0.0582246.697 2246.755 2284.889 2 2 1 202 -0.0792283.810 2381.367 2381.446 2 2 0 101 -0.0792448.627 2448.716 3 2 1 202 -0.0892 1 2 2512.598 2512.679 3 3 1 -0.0812537.200 2537.245 4 2 2 303 -0.045 ν_3 band 2108.633 2108.550 221 3 3 0 0.082 220 3 3 1 0.084 2111.142 2111.226 2157.701 2157.637 2 1 1 3 2 2 0.064 2190.664 2190.586 1 1 0 2 2 1 0.078 2223.706 2223.664 202 3 1 3 0.042 0.045 2239.592 2 1 2 303 2239.637 2242.303 2242.231 2 2 1 3 1 2 0.072 2245.109 2245.048 101 2 1 2 0.061 2257.495 2257.434 3 2 1 3 3 0 0.061 2261.132 404 4 1 3 2261.176 0.044 2263.753 3 1 3 3 2 2 2263.807 0.054 2271.135 2271.073 1 1 1 202 0.062 2272.395 2272.337 2 1 2 221 0.058 2275.403 2275.304 $0\ 0\ 0$ 111 0.099 2284.565 2284.513 303 3 1 2 0.052 2288.623 2288.560 2 1 1 220 0.063 2301.830 2301.773 202 2 1 1 0.057 2311.512 2311.449 101 1 1 0 0.063 2380.824 2380.780 2 1 1 202 0.044 2393.633 2393.571 2.2.0 2.1.1 0.062 2402.795 2402.727 1 1 1 000 0.068 2417.734 2417.689 202 111 0.045 2445.348 2445.302 2 1 2 101 0.046 0.054 2466.041 2465.987 3 3 1 3 2 2 2471.865 2471.836 303 2 1 2 0.029 2486.932 2487.897 3 1 3 202 0.035 2490.782 2490.784 4 2 3 4 1 4 -0.0022496.014 2495.955 2 2 1 1 1 0 0.059 2505.693 2505.672 4 1 3 3 2 2 0.021 2509.541 2509.488 220 111 0.053 2523.271 2523.256 404 3 1 3 0.015 2534.328 2534.286 3 2 2 2 1 1 0.042 4 2 3 3 1 2 0.033 2568.302 2568.269

2571.585

2572.755

2571.581

2572.749

505

5 1 5

4 1 4

404

TABLE IV. (Continued.)

$ u_{ m obs}$	$ u_{\mathrm{calc}}$	$J''K''_aK''_c$	$J'K'_aK'_c$	Δ
2578.462	2578.436	3 2 1	2 1 2	0.026
2596.960	2596.910	3 3 1	2 2 0	0.050
2601.146	2602.095	3 3 0	2 2 1	0.051
ν_1 band				
2839.387	2839.445	3 1 3	4 1 4	-0.058
2840.962	2841.006	2 1 1	3 1 2	-0.044
2871.897	2871.953	202	3 0 3	-0.056
2874.811	2874.872	2 1 2	3 1 3	-0.061
2887.370	2887.418	1 1 0	2 1 1	-0.048
2904.657	2904.688	202	2 2 1	-0.031
2906.523	2906.579	1 0 1	202	-0.056
2911.635	2911.692	1 1 1	2 1 2	-0.057
2946.802	2946.855	0 0 0	1 0 1	-0.053
2952.940	2952.980	2 1 2	2 1 1	-0.040
2963.513	2963.554	3 2 2	3 2 1	-0.041
2975.064	2975.114	3 3 1	3 3 0	-0.050
2978.045	2978.093	1 1 1	1 1 0	-0.048
2978.492	2978.545	3 3 0	3 3 1	-0.052
2979.987	2980.037	2 2 1	2 2 0	-0.050
2991.162	2991.217	2 2 0	2 2 1	-0.055
3003.276	3003.335	1 1 0	1 1 1	-0.049
3009.123	3009.184	3 2 1	3 2 2	-0.061
3028.263	3028.329	2 1 1	2 1 2	-0.066
3038.177	3038.232	1 0 1	0 0 0	-0.055
3063.006	3063.082	3 1 2	3 1 3	-0.076
3068.845	3068.897	2 1 2	1 1 1	-0.052
3072.190	3072.257	2 2 1	202	-0.067
3077.611	3077.663	202	1 0 1	-0.052
3094.671	3094.729	2 1 1	1 1 0	-0.058
3104.207	3104.253	3 1 3	2 1 2	-0.046
3109.645	3109.691	3 0 3	202	-0.046
3121.202	3121.258	3 2 2	2 2 1	-0.056
3137.007	3137.048	4 1 4	3 1 3	-0.041
3139.197	3139.237	4 0 4	3 0 3	-0.040
3140.044	3140.108	3 2 1	2 2 0	-0.064
3141.131	3141.190	3 1 2	2 1 1	-0.059
3160.971	3161.024	4 2 3	3 2 2	-0.053
3168.702	3168.737	5 0 5	4 0 4	-0.035
3178.973	3179.022	4 1 3	3 1 2	-0.049
3193.963	3194.025	4 2 2	3 2 1	-0.062
3208.187	3208.229	5 1 4	4 1 3	-0.042

our ab initio calculations reproduce the H₃⁺ energy levels with a standard deviation very similar to that given by the fitted DPT surface and that levels which are relatively poorly reproduced in our present calculations are also those for which DPT gives poorer results. In particular this is true for levels of the $\nu_1 + 2 \nu_2$ states which were originally assigned by Dinelli et al.⁴³ from the hot band data of Oka and co-workers. 47,48 These findings are consistent with the assumption that the main residual problem with our calculations is the treatment of the nonadiabatic correction to the BO approximation which, of course, cannot be properly modeled using a single potential-energy function.

We suspect, given the excellence of the ab initio electronic structure data that these calculations are based on, it would be difficult to greatly improve on these results ab initio without using a significantly more complicated model for the nonadiabatic effects. Besides BO breakdown there are other terms which might be important at the sub 0.1 cm⁻¹

0.004

0.006

TABLE V. $\mathrm{H_3^+}$ energy levels in cm⁻¹ relative to the $J\!=\!0$ ground state. E_{calc} are the results of this work, E_{DPT} are due to Dinelli *et al.* (Ref. 43) and E_{obs} are derived from experiment (see Ref. 43). Δ is obs-our calc. A fuller tabulation can be found in the electronic archive (Ref. 33).

TABLE V. (Continued.)

are deri	ved fi	rom ex	kperime	E_{DPT} are due ent (see Ref. the electronic	43). Δ is o	bs-our calc		$\nu_1 \nu_2^l$	J	G	U	$E_{\rm calc}$	E_{DPT}	$E_{ m obs}$	Δ
								03^{3}	2	3	3	7758.9880	7759.016	7758.878	-0.110
$\nu_1 \nu_2^l$	J	G	U	$E_{ m calc}$	$E_{ m DPT}$	$E_{ m obs}$	Δ	12^{2}	2	4	2	7914.5711	7915.369	• • • •	
000	1	1	0	C4 1249	CA 12C	64.126		12^{0}	2	2	0	7963.2742	7963.926	•••	
00^{0}	1 1	1 0	0	64.1248 86.9683	64.126 86.963	86.963		12^{0}	2	1	0	8013.4771	8014.294	• • • •	
00° 01^{1}	1	2	1	2548.1305	2548.176	2548.169	0.039	12^{2}	2	3	2	8056.8704	8057.661	8057.335	0.465
01^{1}	1	1	1	2609.5170	2609.552	2609.557	0.039	12^{2}	2	2	2	8135.2052	8136.059	•••	
01^{1}	1	0	-1	2616.6567	2616.694	2616.648	-0.040	12^{2}	2	0	2	8141.4552	8142.467	• • •	
10^{0}	1	1	0	3240.8468	3240.744	3240.735	-0.111	12^{2}	2	1	2	8167.6239	8168.538	•••	
10^{0}	1	0	0	3263.2301	3263.122	3263.006	-0.230	211	2	3	1	8589.5143	8590.737	•••	
02^{0}	1	1	0	4842.5900	4842.567	4842.573	-0.230	211	2	2	1	8687.4849	8688.750	•••	
02^{0}	1	0	0	4870.3388	4870.312	4870.242	-0.097	211	2	1	-1	8703.0024	8704.420	• • • •	
02^{0}	1	0	0	4870.3388	4870.312	4870.242	-0.097	211	2	1	1	8743.3275	8744.640	•••	
02^{2}	1	3	2	4994.8507	4994.829	4994.832	-0.018	21^{1}	2	0	1	8760.4418	8761.792	215.242	0.007
02^{2}	1	2	2	5087.6602	5087.626	5087.622	-0.038	00^{0}	3	3	0	315.3353	315.351	315.342	0.007
02^{2}	1	1	2	5125.3383	5125.301	5125.313	-0.025	00^{0}	3	2	0	428.0315	428.024	428.039	0.007
11 ¹	1	2	1	5584.1709	5584.235	5584.256	-0.025	00^{0}	3	1	0	494.7973	494.771	494.774	-0.023
11 ¹	1	1	1	5640.4473	5640.503	5640.486	0.039	$00^{0} \ 01^{1}$	3	0	0	516.9207	516.885	516.879	-0.042
11 ¹	1	0	-1	5644.6814	5644.745		0.037		3	4	1	2719.4145	2719.488	2719.466	0.042
20^{0}	1	1	0	6323.0017	6323.283			01^{1}	3	3	1	2876.8132	2876.848	2876.839	0.026
20^{0}	1	0	0	6345.0081	6345.284			01^{1} 01^{1}	3	2 2	-1	2931.3321	2931.380	2931.386	0.054
03^{1}	1	2	1	7046.9693	7046.854	7046.859	-0.110	01^{1} 01^{1}	3		1	2992.4228	2992.443	2992.467	0.044
03^{1}	1	0	-1	7043.2190	7043.094		0.110	01^{1}	3	1	-1	3002.8901	3002.909	3002.897	0.007
03^{1}	1	1	1	7103.1990	7103.078	7103.090	-0.109	01^{1}			-1	3025.9618	3025.965	3025.940 3063.476	-0.022 -0.001
03^{3}	1	4	3	7325.3785	7325.514	,,,	0.10)	10^{0}	3	1	1	3063.4774	3063.481		
03^{3}	1	3	3	7381.1558	7323.314			10° 10°	3	3 2	0	3485.3835	3485.308	3485.280	-0.103
03^{3}	1	2	3	7572.1611	7572.244			10 ⁰	3	1	0	3595.8505	3595.744	3595.773	-0.077 -0.141
12^{0}	1	1	0	7839.7435	7840.562			10^{0}	3	0	0	3661.2187	3661.090	3661.077	-0.141 -0.258
12^{0}	1	0	0	7857.6292	7858.509			02^{0}	3	3	0	3682.8684 5078.9349	3682.730 5078.933	3682.610 5078.925	-0.238 -0.010
12^{2}	1	3	2	7872.1364	7872.971			02^{2}	3	5	2	5105.2679	5105.284	5105.311	0.043
12^{2}	1	2	2	7958.3098	7959.172			02^{0}	3	2	0				-0.043
12^{2}	1	1	2	7988.9721	7989.897			02^{0}	3	1	0	5210.8302 5282.3792	5210.794 5282.315	5210.797 5282.299	-0.033 -0.078
21 ¹	1	2	1	8519.0331	8520.304			02^{2}	3	4	2	5299.2553	5299.233	5299.249	-0.078 -0.006
21^{1}	1	1	1	8571.9037	8573.222			02^{0}	3	0	0	5305.6346	5305.583	5305.608	-0.026
21 ¹	1	0	1	8573.4696	8574.839			02^{2}	3	3	2	5431.1736	5431.118	5431.119	-0.020
00^{0}	2	2	0	169.2915	169.302	169.311	0.020	02^{2}	3	1	-2^{-2}	5486.4840	5486.458	5486.447	-0.033
00^{0}	2	1	0	237.3682	237.359	237.356	-0.012	02^{2}	3	2	2	5533.7950	5533.738	5533.747	-0.048
01^{1}	2	3	1	2614.2276	2614.283	2614.275	0.047	02^{2}	3	0	2	5567.4027	5567.403	5567.370	-0.033
01^{1}	2	2	1	2723.9419	2723.971	2723.970	0.029	02^{2}	3	1	2	5573.8250	5573.767	5573.754	-0.071
01^{1}	2	1	-1	2755.5402	2755.577	2755.559	0.019	11 ¹	3	4	1	5764.7880	5764.873	5764.849	0.061
01^{1}	2	1	1	2790.3263	2790.352	2790.330	0.004	11 ¹	3	3	1	5910.0479	5910.105	5910.079	0.029
01^{1}	2	0	1	2812.8440	2812.869	2812.843	-0.001	11^{1}	3	2	-1	5949.3658	5949.454	5949.352	-0.014
10^{0}	2	2	0	3343.2385	3343.146	3343.195	-0.043	11^{1}	3	2	1	6015.9046	6015.945	6015.990	0.085
10^{0}	2	1	0	3409.9427	3409.832	3409.823	-0.120	11^{1}	3	1	-1	6023.7099	6023.772	6023.755	0.045
02^{0}	2	2	0	4942.7472	4942.733	4942.719	-0.028	11^{1}	3	0	-1	6047.4949	6047.543	6047.424	-0.070
02^{0}	2	1	0	5023.4992	5023.470	5023.459	-0.040	11^{1}	3	1	1	6080.9447	6080.969	6080.965	0.020
02^{2}	2	4	2	5032.4035	5032.399	5032.400	-0.004	20^{0}	3	3	0	6560.9737	6561.293		
02^{2}	2	3	2	5181.2147	5181.189	5181.184	-0.030	20^{0}	3	2	0	6669.5919	6669.886		
02^{2}	2	2	2	5266.4797	5266.435	5266.427	-0.052	20^{0}	3	1	0	6733.7638	6734.048		
02^{2}	2	0	2	5286.9580	5286.920	5286.895	-0.063	20^{0}	3	0	0	6754.9818	6755.282	•••	
02^{2}	2	1	2	5305.0164	5304.969	5304.966	-0.050	03^{1}	3	4	1	7229.8922	7229.819	•••	
11^{1}	2	3	1	5653.9361	5654.009	5653.983	0.047	03^{1}	3	2	-1	7362.2861	7362.213	7362.221	-0.065
11^{1}	2	2	1	5755.9587	5756.008	5756.063	0.104	03^{1}	3	3	1	7394.1063	7394.007	•••	
11^{1}	2	1	-1	5778.9399	5779.009	5778.986	0.046	03^{3}	3	6	3	7418.4465	7418.485	7418.421	-0.025
11^{1}	2	1	1	5815.8179	5815.862	5815.857	0.039	03^{1}	3	1	-1	7460.1394	7460.014	•••	
11^{1}	2	0	1	5835.3011	5835.345	5835.225	-0.076	03^{1}	3	2	1	7498.1707	7498.056	•••	
20^{0}	2	2	0	6422.6758	6422.972		0.070	03^{1}	3	0	-1	7525.7318	7525.654	•••	
20^{0}	2	1	0	6488.2490	6488.531			03^{1}	3	1	1	7597.1284	7597.114	•••	
03^{1}	2	3	1	7122.6770	7122.635	7122.638	-0.039	03^{3}	3	5	3	7659.5443	7659.577	•••	
03^{1}	2	1	-1	7208.4654	7208.350	7208.337	-0.128	03^{3}	3	4	3	7796.5703	7796.715	7796.601	0.031
03^{1}	2	2	1	7235.8426	7235.725	7235.761	-0.083	03^{3}	3	3	3	7854.3313	7854.569	7854.413	0.082
03^{1}	2	1	1	7301.5250	7301.438	7301.424	-0.101	03^{3}	3	0	3	7866.1204	7866.782	7866.287	0.167
03^{1}	2	0	1	7328.3377	7328.244	7328.119	-0.218	03^{3}	3	1	3	7977.8011	7978.186	•••	
03^{3}	2	5	3	7368.9322	7368.995		0.210	03^{3}	3	2	3	7991.1503	7991.928	•••	
03^{3}	2	4	3	7514.6723	7514.820			12^{0}	3	5	0	8017.8451	8017.963	8017.719	-0.126
00^{3}	2	1	3	7702.9887	7703.345			12^{0}	3	3	0	8138.8933	8139.345	8139.053	0.160
03^{3}	2	2	3	7752.0014	7752.085	7751.836	-0.165	12^{2}	3	4	2	8176.4463	8177.246		
03	_	_	J	1132.0014	1152.005	1131.030	0.103								

TABLE V. (Continued.)

$v_1v_2^l$	J	G	U	$E_{\rm calc}$	E_{DPT}	$E_{ m obs}$	Δ
12 ⁰	3	2	0	8220.5622	8221.193		
12^{0}	3	1	0	8259.8055	8260.620	•••	
12^{0}	3	0	0	8274.3487	8275.225	• • •	
12^{2}	3	3	2	8301.5470	8302.413	8302.090	0.543
12^{2}	3	1	-2	8334.5939	8335.708	•••	
12^{2}	3	2	2	8399.9457	8400.798	• • •	
12 ²	3	0	2	8424.8200	8425.805	8425.297	0.477

level, such as the radiative correction. Bishop and Cheung¹⁹ studied this effect *ab initio* for H_2 and found that it altered the vibrational spacings by $\sim 0.02\,\mathrm{cm}^{-1}$. This is probably too small to worry about in the context of H_3^+ .

It is unlikely that the small errors given by our present comparisons will extend to studies involving either more highly excited vibrational states or high rotational states. Moss and Bunker¹⁷ show that scaling the vibrational mass accounts for some vibrational nonadiabatic effects, but suggest that the scaling should itself be a function of *R*. Such an approach can be identified in the very detailed calculations performed by Schwartz and Le Roy,²⁰ who used five parameters to represent the vibrational reduced mass for each isotopomer of hydrogen. It would be surprising if the use of a constant scaled vibrational mass would give good results for highly excited vibrational states which sample a large range of coordinate values.

Our calculations do not include any allowance for nonadiabatic effects in the rotational motion. As argued above, there are reasons for suspecting that such effects might be relatively small in H_3^+ , nonetheless inspection of the errors shown in our calculations suggest some systematic variations with J. We will study higher J states and associated nonadiabatic effects in a future work.

IV. CONCLUSIONS

We have performed first principles rotation–vibration calculations on H₃⁺ and its isotopomers. These calculations used the very high accuracy electronic structure calculations data of Cencek *et al.*;¹³ the accuracy of our results is a testimony to the accuracy of these electronic structure calculations.

Using Cencek *et al.* data we have been able to test various levels of approximation for computing vibration—rotation spectra. As was known previously, ¹¹ calculations performed entirely with the BO approximation give frequencies 1 cm⁻¹ or more in error for the H₃⁺ system. Inclusion of the adiabatic correction to the Born–Oppenheimer (BO) approximation, sometimes also known as the BO diagonal correction, reduces the errors to a few tenths of cm⁻¹. ^{11,12,14} Modeling nonadiabatic corrections to the BO approximation by using different reduced masses for vibrational and rotational motion reduces these errors still further: To a few hundredths of cm⁻¹. However, using different vibrational and rotational masses also introduces an extra term into the Hamiltonian used here. This term, and similar ones we would expect to arise in other internal coordinate bent mol-

ecule Hamiltonians, is found to be important for obtaining accurate results for rotationally excited molecules. Altogether we have achieved near spectroscopic accuracy from first principles for this important benchmark system.

ACKNOWLEDGMENTS

We thank Professor Brian Sutcliffe for many helpful discussions over many years and dedicate this paper to him on the occasion of his formal retirement. This work was supported by the UK Engineering and Science Research Council. The work of O.L.P. was supported in part by the Russian Fund for Fundamental Studies.

- ¹T. Oka, Rev. Mod. Phys. **64**, 1141 (1992).
- ²S. Miller and J. Tennyson, Chem. Soc. Rev. 21, 281 (1992).
- ³ A. Dalgarno, Adv. At. Mol. Opt. Phys. **32**, 57 (1994).
- ⁴I. R. McNab, Adv. Chem. Phys. **89**, 1 (1994).
- ⁵S. Miller, H. A. Lam, and J. Tennyson, Can. J. Phys. **72**, 760 (1994).
- ⁶J. Tennyson, Rep. Prog. Phys. **58**, 421 (1995).
- ⁷T. R. Geballe and T. Oka, Nature (London) **384**, 224 (1996); B. J. McCall,
- T. R. Geballe, K. H. Hinkle, and T. Oka, Science 279, 1910 (1998).
- ⁸ J. B. Anderson, J. Chem. Phys. **96**, 307 (1992), and references therein.
- ⁹G. C. Lie and D. Frye, J. Chem. Phys. **96**, 6784 (1992).
- ¹⁰R. Röhse, W. Kutzelnigg, R. Jaquet, and W. Klopper, J. Chem. Phys. **101**, 2231 (1994).
- ¹¹ B. M. Dinelli, C. R. Le Sueur, J. Tennyson, and R. D. Amos, Chem. Phys. Lett. **232**, 295 (1995).
- ¹²O. L. Polyansky, B. M. Dinelli, C. R. Le Sueur, and J. Tennyson, J. Chem. Phys. **102**, 9322 (1995).
- ¹³ W. Cencek, J. Rychlewski, R. Jaquet, and W. Kutzelnigg, J. Chem. Phys. 108, 2831 (1998).
- ¹⁴ R. Jaquet, W. Cencek, W. Kutzelnigg, and J. Rychlewski, J. Chem. Phys. 108, 2837 (1998).
- ¹⁵W. Kolos and L. Wolniewicz, Rev. Mod. Phys. 35, 473 (1963).
- ¹⁶D. M. Bishop and S.-K. Shih, J. Chem. Phys. **64**, 162 (1976).
- ¹⁷P. R. Bunker and R. E. Moss, Mol. Phys. **33**, 417 (1977).
- ¹⁸P. R. Bunker, C. J. McLarnon, and R. E. Moss, Mol. Phys. **33**, 425 (1977).
- ¹⁹D. M. Bishop and L. M. Cheung, J. Chem. Phys. **69**, 1881 (1978).
- ²⁰C. Schwartz and R. J. Le Roy, J. Mol. Spectrosc. **121**, 420 (1987).
- ²¹C. A. Leach and R. E. Moss, Annu. Rev. Phys. Chem. 46, 55 (1995).
- ²²R. E. Moss, Mol. Phys. **89**, 195 (1996).
- ²³R. E. Moss and D. Jopling, Chem. Phys. Lett. **260**, 377 (1996).
- ²⁴ J. Tennyson and B. T. Sutcliffe, J. Chem. Phys. **77**, 4061 (1982).
- ²⁵B. T. Sutcliffe and J. Tennyson, Mol. Phys. **58**, 1053 (1986).
- ²⁶B. T. Sutcliffe and J. Tennyson, Int. J. Quantum Chem. **39**, 183 (1991).
- ²⁷B. M. Dinelli, O. L. Polyansky, and J. Tennyson, J. Chem. Phys. **103**, 10433 (1995).
- ²⁸ Sutcliffe and Tennyson (Refs. 24–26) actually use the complex conjugate of Wigner rotation matrices as their rotational basis functions.
- ²⁹ E. U. Condon and G. H. Shortley, *The Theory of Atomic Spectra* (Cambridge University Press, Cambridge, 1935).
- ³⁰ J. Tennyson, S. Miller, and C. R. Le Sueur, Comput. Phys. Commun. 75, 339 (1993).
- ³¹ J. Tennyson, J. R. Henderson, and N. G. Fulton, Comput. Phys. Commun. 86, 175 (1995).
- ³² W. Meyer, P. Botschwina, and P. G. Burton, J. Chem. Phys. **84**, 891 (1986)
- ³³ See AIP Document No. E-PAPS: E-JCPSA6-110-008911 for files containing: (a) Fitted constants for symmetric terms in the potential, (b) fitted constants for the asymmetric adiabatic correction term, (c) comparison of calculations and the experiment for D₂H⁺ transitions, (d) comparison of calculations and the experiment for H₃⁺ energy levels. EPAPS document files may be retrieved from our FTP server (http://www.aip.org/epaps/epaps.html) or from ftp.aip.org in the directory /epaps/. For further information, e-mail: paps@aip.org or fax: 516-576-2223.
- ³⁴Cencek *et al.*¹³ present the data for $V_{\rm rel}$ in cm⁻¹ and all other data in μ Hartree. We fitted $V_{\rm rel}$ in cm⁻¹, but have transformed the results to μ Hartree for consistency.

- ³⁵ A. S. Dickinson and P. R. Certain, J. Chem. Phys. **49**, 4209 (1968).
- 36 As discussed in Ref. 12, permutation of the nuclei for asymmetric geometries yields extra data for fits of $\Delta V_{\rm ad}^A$. Jaquet *et al.* (Ref. 14) do not appear to have used this property and their fit to the original 69 points performs notably worse for the supplementary points.
- ³⁷S. Miller and J. Tennyson, J. Mol. Spectrosc. **128**, 183 (1987).
- ³⁸R. Jaquet and R. Röhse, Mol. Phys. **84**, 291 (1995).
- ³⁹P. R. Bunker and R. E. Moss, J. Mol. Spectrosc. **80**, 217 (1980).
- ⁴⁰ J. Oddershede and J. R. Sabin, Chem. Phys. **122**, 291 (1988).
- ⁴¹O. L. Polyansky, J. Tennyson, and N. F. Zobov, Spectrochemica Acta A (in press).
- ⁴²B. M. Dinelli, S. Miller, and J. Tennyson, J. Mol. Spectrosc. **163**, 71 (1994).

- ⁴³B. M. Dinelli, L. Neale, O. L. Polyansky, and J. Tennyson, J. Mol. Spectrosc. **181**, 142 (1997).
- ⁴⁴ S. C. Foster, A. R. W. McKellar, I. R. Peterkin, J. K. G. Watson, F.-S. Pan, M. W. Crofton, R. S. Altman, and T. Oka, Can. J. Phys. 84, 91 (1986)
- ⁴⁵ I. N. Kozin, O. L. Polyansky, and N. F. Zobov, J. Mol. Spectrosc. 128, 126 (1988).
- ⁴⁶S. C. Foster, A. R. W. McKellar, and J. K. G. Watson, J. Chem. Phys. 85, 664 (1986).
- ⁴⁷M. G. Bawendi, B. D. Rehfuss, and T. Oka, J. Chem. Phys. **93**, 6200 (1990).
- ⁴⁸ L.-W. Xu, M. Rosslein, C. M. Gabrys, and T. Oka, J. Mol. Spectrosc. **153**, 726 (1992).