Advanced Competitive Programming

國立成功大學ACM-ICPC程式競賽培訓隊 nckuacm@imslab.org

Department of Computer Science and Information Engineering
National Cheng Kung University
Tainan, Taiwan

Dynamic Programming

Outline

- Intro to DP
- Knapsack problem
- Longest Increase Subsequence (LIS)
- Longest Common Subsequence (LCS)

What is DP?

DP 是啥能吃嗎?

• 計算費伯納契數列

Intro to DP

• 計算費伯納契數列

Intro to DP

• 計算費伯納契數列

Intro to DP

- 動態規劃 = 分治 + 記憶化
- 三個重要性質
 - 最優子結構
 - 重複子問題
 - -無後效性

最優子結構

•問題的解,可以由子問題的解推得。 例如費氏數列 f[n] = f[n - 1] + f[n - 2]。

重複子問題

- 有很多子問題可歸為同樣的問題
- •->引入記憶化(把已取得的解儲存)

無後效性

• 確定的子問題解,並不會受到其他決策影響

經典 DP 問題

學習經典不如學習創造經典

2xN的格子, 用1x2與2x1的格子填滿的方法數

定義: f(N) 為 2 x N 格的方法數

狀態轉移: f(N) = f(N-1) +

狀態轉移: f(N) = f(N-1) + f(N-2)

邊界: f(1) = 1

邊界: f(1) = 1

$$f(2) = 2$$

1xN格子塗上紅、綠、藍三顏色, 且藍綠不可相鄰, 有幾種塗法?

如果定義: g(n) 為方法數 狀態轉移: 太難了

邊界: g(1) = 3

填了一格就得看前一次填的顏色, 這一格填什麼 很重要 (狀態的考慮要納入)

重新定義:

- f(n,0) 最後一格紅 方法數
- f(n,1) 最後一格綠 方法數
- f(n,2) 最後一格藍 方法數

狀態轉移:

- f(n,0) = f(n-1,0) + f(n-1,1) + f(n-1,2)
- f(n,1) = f(n-1,0) + f(n-1,1)
- f(n,2) = f(n-1, 0) + f(n-1, 2)

邊界:

•
$$f(1,0) = f(1,1) = f(1,2) = 1$$

•最後把結果相加 g(n) = f(n,0) + f(n,1) + f(n,2)

2 x N 的格子, 用 1 x 2 與 2 x 1 的格子 以及 L 型格子 填滿的方法數

定義: g(N) 方法數 狀態轉移: 太難了

觀察問題

放上L型後就會有一個缺口, 剩下未填滿的也是L形狀的 兩個L型拼起來,會變為2*i格子

狀態:

f(N, I): 2 x N 格的方法數 f(N, L): 2 x N + **上或下凸一格**的方法數

f(N, I)

f(N, L)

狀態轉移:

f(N, L) = f(N-1, I)*2 + f(N-1, L)有可能會有以下兩種填法

1x2格填充(強)

狀態轉移:

f(N, I) = f(N-1, I) + f(N-2, I) + 有可能會有以下兩種填法

狀態轉移:

f(N, I) = f(N-1, I) + f(N-2, I) + f(N-2, L) 還有可能會有以下填法(在凸一格的情況下塞 L 型)

邊界:

另一種解法(供參考)

狀態: g(N) 方法數 狀態轉移: 太難了.... 才怪!

狀態轉移:

$$g(N) = g(N-1) + g(N-2) +$$

 $2(g(N-3) + g(N-4) + ... + g(1))$

g(N-3)

狀態轉移:

$$g(N) = g(N-1) + g(N-2) +$$

 $2(g(N-3) + g(N-4) + ... + g(1))$

g(N-4)

狀態轉移:

$$g(N) = g(N-1) + g(N-2) +$$

 $2(g(N-3) + g(N-4) + ... + g(1))$

狀態轉移:

$$g(N) = g(N-1) + g(N-2) +$$

 $2(g(N-3) + g(N-4) + ... + g(1))$

這個轉移需要 O(N)

$$g(N) = g(N-1) + g(N-2) + 2(g(N-3) + ... + g(1))$$

利用 g(N-1) 這個狀態 g(N-1) = g(N-2) + g(N-3) + 2(g(N-4) + ... + g(1)) g(N-1) + g(N-3) - g(N-2) = 2(g(N-3) + ... + g(1))

$$g(N) = g(N-1) + g(N-2) + g(N-1) + g(N-3) - g(N-2)$$

= $2g(N-1) + g(N-3)$

$$g(N) = 2g(N-1) + g(N-3)$$

這個轉移只要 O(1)

邊界:

$$g(1) = 1$$

$$q(2) = 2$$

$$g(1) = 1$$

 $g(2) = 2$
 $g(3) = 1 + 2 + 2$

背包問題 Knapsack problem

Knapsack problem

 背包問題: 給定一個固定大小的背包, 以及各種不同大小和價值的物品, 問如何放置物品使得背包中總價值最大。

Knapsack problem

- •聽起來很貪心?
- 來看個例子
- 假設背包容量 = 8

價值	體積
10	2
80	3
110	4
150	5
200	6

Knapsack problem

- 經典背包問題
 - -無限背包
 - -01 背包
 - 多重背包

•對於每一種物品,其個數是無限多個

價值體積
10 2
80 3
110 4
150 5
200 6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- 定義 P[i]: 第 i 個物品的價值
- 定義 V[i]: 第 i 個物品的體積

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解

				-27		
/l						

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- •初始化為 0

0 0 0 0	0 0	0 0	0
---------	-----	-----	---

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = ?

0 0 0 0	0 0	0 0	0
---------	-----	-----	---

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 0 0	0 0	0 0	0
---------	-----	-----	---

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 0 0 0 0 0		0	0	10	0	0	0	0	0	0	0
------------------	--	---	---	----	---	---	---	---	---	---	---

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 10 0 0 0	0 0
-----------------	-----

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0	0	10	10	20	0	0	0	0	0

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

	0	0	10	10	20	20	0	0	0	0
1										

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

	0	0	10	10	20	20	30	0	0	0
1										

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

	0	0	10	10	20	20	30	30	0	0
L										

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 10 20 20 30 30 40 0	0 0 10 10 2	0 20 30 3	30 40 0
----------------------------	-------------	-----------	---------

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 10	20 20	30 30	40 40
-----------	-------	-------	-------

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 10 80	20 20	30 30	40 40	
--------------	-------	-------	-------	--

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 80 20 80	20 30	30 40	40
-----------------	-------	-------	----

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 80 80	20 90 30	30 40	40
--------------	-------------	-------	----

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

	0	0	10	80	80	90	30 160	30	40	40
L										

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 80 8	90 160	30 160 40 40
-------------	--------	-----------------

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

	0 0 10 80 80 90 160 160 40 170
--	--------------------------------

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 80 80 110	00 160 160 170 240
------------------	--------------------

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0	10	80	110	90 110	160	160	170	240
-----	----	----	-----	----------------------	-----	-----	-----	-----

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 80 110 110 16	50 160 170 240
----------------------	----------------

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 80 110 110 160 160 170 2	240
--	-----

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 80 110 110 160 190 2	1 70 220 240
-----------------------------	----------------------------

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 80 110	110 160 190 220 240
---------------	---------------------

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 80 1	.0 110 160	190 220 240
-------------	------------	-------------

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0	0	10	80	110	150	160	190	230	260	
---	---	----	----	-----	-----	-----	-----	-----	-----	--

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 80 110 150 160 190 230 2

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,其個數是無限多個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10	80 110	150 20	200	230	280	
--------	--------	--------	-----	-----	-----	--

價值	體積
10	2
80	3
110	4
150	5
200	6

```
for (int i = 0; i < 物品數量; ++i) {
  for (int j = V[i]; j <= 背包容量; ++j) {
    S[j] = max(S[j], S[j - V[i]] + P[i]);
  }
}
```

UVa OJ 10980 Lowest Price in Town

POJ 2063 Investment

- •對於每一種物品,至多拿一個
- 做法和無限背包相似, 差在順序
- 策略是由後向前更新

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

	0	0	0	0	0	0	0	0	0	0
4										

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

		0	0	0	0	0	0	0	0	0	10
--	--	---	---	---	---	---	---	---	---	---	----

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0	0	0	0	0	0	0	0	10	10

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 0 0 0 0 10	10 10
----------------	-------

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

		0	0	0	0	0	0	10	10	10	10
--	--	---	---	---	---	---	---	----	----	----	----

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

	0	0	0	0	0	10	10	10	10	10
4										

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0	0	0	0	10	10	10	10	10	10

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

	0	0	0	10	10	10	10	10	10	10
4										

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

		0	0	10	10	10	10	10	10	10	10
--	--	---	---	----	----	----	----	----	----	----	----

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

	0 0 10 10 10 10 10 10 10 10 90
--	--------------------------------

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 10 10 10 10 10 90	90
--------------------------	----

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

	0	0	10	10	10	10	10	10 90	90	90
1										

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

	0	0	10	10	10	10	10 90	90	90	90
4										

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 10 10	10 90	90 90	90
--------------	----------	-------	----

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0	0	10	10	10 80	90	90	90	90	90	
---	---	----	----	---------------------	----	----	----	----	----	--

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0	0	10	10 80	80	90	90	90	90	90	
---	---	----	---------------------	----	----	----	----	----	----	--

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 80 80 90 90 90 90 90 200	0 0 10 80 80 90 90 90 90
---------------------------------	--------------------------

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

	0 0 10 80 80 90 90 90 90 20
--	-----------------------------

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0	0	10	80	80	90	90	90 190	190	200

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 0 10 80 80	90 90 1	190 190 200
--------------	------------------------	-------------

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0	0	10	80	80	90 110	120	190	190	200	
---	---	----	----	----	----------------------	-----	-----	-----	-----	--

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0 10 80	80 110	120 190	190 200
---------	-----------	---------	---------

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

0	0	10	80	110	150	150	190	230	260

價值	體積
10	2
80	3
110	4
150	5
200	6

- •對於每一種物品,至多拿一個
- 定義 S[n]: 當背包的容量只有 n 時, 問題的最佳解
- S[n] = max(S[n], S[n-V[i]] + P[i])

|--|

價值	體積
10	2
80	3
110	4
150	5
200	6

01 背包問題

```
for (int i = 0; i < 物品數量; ++i) {
  for (int j = 背包容量; j >= V[i]; --j) {
    S[j] = max(S[j], S[j - V[i]] + P[i]);
  }
}
```

01 背包問題

- UVa OJ 624 CD
- UVa OJ 10819 Trouble of 13-Dots

•對於每一種物品,其個數是有限多個

- •對於每一種物品,其個數是有限多個
- 對該種物品,我們可以選擇 1, 2, 3, 4, ..., m 個

- •轉為01 背包問題
- •若第i種物品可選 m 個,則換成 m 個第i種物品

- 利用 binary 技巧優化
- 若第 i 種物品可選 m 個 , 則將其換為多件物品 , 物品的大小與價值皆為 r 倍的原物品大小與價值
- $r = \{1, 2, 4, ..., 2^{k-1}, n (2^k 1) /* 剩下的*/ \},$ k 為滿足 $n (2^k 1) > 0$ 的最大整數

- 舉個例子,當物品可選 13 個
- 則 k = 3, r = { 1, 2, 4, 6 }
- •=>造出 4 件物品,個別包含 1, 2, 4, 6 個原物品

Questions?

DP 經典問題 LIS and LCS

Longest Increasing Subsequence

Longest Increasing Subsequence: Robinson-Schensted-Knuth Algorithm

LIS 做法很多種,可以去看之前的講義或是

http://www.csie.ntnu.edu.tw/~u91029/LongestIncreasingSubsequence.html#3

練習時間

Longest Common Subsequence

定義問題

- •在兩個序列(A, B)中
- 找到一個共同子序列
 - 並且使子序列的長度儘可能地大。

補充說明 - 子序列

- 原序列:
 - -0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15
- 子序列:
 - 元素前後順序性不更動
 - 可不連續元素

Ex:

0, 6, 14, 15 8, 4, 12, 11, 7, 15

補充說明 - 共同子序列

•原序列:

- A: ATCGCCTC

- B: TCGCATCA

• 共同子序列

- 合法: CTC

- 不合法: TCA (不是A的子序列)

LCS

- 定義 DP 表
- dp[i][j] 定義為
 - -str A 的前 i 個字元以及
 - str B 的前 **j** 個字元
 - -的 LCS 長度
- dp[0][0] 也就是兩個空字串的 LCS = 0

LCS

- 例如
 - A: ATCGCCTC
 - B: TCGCATCA
 - -dp[3][2] = 2 // TC 相同

LCS

```
if A[i] != B[j] // 字串從一開始
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
if A[i] == B[j]
dp[i][j] = dp[i-1][j-1] + 1
```

// 建議從 **i=j=1** 開始做 注意邊界

狀態轉換示意圖

		Α	С	В	D	Ε	Α	Α	
	0	0	0	0	0	0	0	0	
Α	0	1	1	1	1	1	1	1	
В	0	1	1	2	2	2	2	2	
С	0	1	2	2	2	2	2	2	
D	0	1	2	2	3	3	3	3	
Α	0	1	2	2	3	3	4	4	
Ε	0	1	2	2	3	4	4	4	

回溯示意圖

		Α	С	В	D	Е	Α	Α
	0	0	0	0	0	0	0	0
Α	0	1	1	1	1	1	1	1
В	0	1	1	2	2	2	2	2
С	0	1	2	2	2	2	2	2
D	0	1	2	2	3	3	3	3
Α	0	1	2	2	3	3	4	4
E	0	1	2	2	3	4	4	4

DP 很難

- DP 應用的範圍很廣,而且很難
- 曾經有位大神說他寫了一千題才大概知道 DP 在幹嘛
- · 多看 DP 的題目可以幫助你發現他是 DP 題
- https://zerojudge.tw/Problems
- 在裡面搜尋 DP 可以取得寫不完的練習題
- 挑幾題寫看看吧