Lectures 9

CS436/536: Introduction to Machine Learning

Zhaohan Xi Binghamton University

zxi1@binghamton.edu

Recap: Linear Model for Three Learning Problems

Digits Data

Each example of a digit is a 16×16 image http://yann.lecun.com/exdb/mnist/

Digits Data

$$x = (1, x_1, ..., x_{256}) w = (w_0, w_1, ..., w_{256})$$

$$d_{VC} = 257$$

Features: Intensity and Symmetry

Human-like approach: Summarize image by a few features

feature: an important property of the input you think is useful for classification

Perceptron Model on Digits Data

Pocket Algorithm

Recap: Linear Models for Credit Analysis

Least Squares Linear Regression

$$error(h(x), f(x)) = (h(x) - f(x))^{2}$$
prediction actual

Least Squares Linear Regression

Recap: Ordinary Least Squares: Minimizing E_{in}

$$E_{in}(\mathbf{w}) = \frac{1}{N} (\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} - 2\mathbf{w}^T \mathbf{X}^T \mathbf{y} + \mathbf{y}^T \mathbf{y})$$

Differentiable

Let
$$\mathbf{A} = \mathbf{X}^T \mathbf{X}$$
 with dimensions $(d+1) \times (d+1)$
Let $\mathbf{b} = \mathbf{X}^T \mathbf{y}$ with dimensions $(d+1) \times 1$
Let $c = \mathbf{y}^T \mathbf{y}$

$$E_{in}(\boldsymbol{w}) = \frac{1}{N} (\boldsymbol{w}^T \boldsymbol{A} \boldsymbol{w} - 2 \boldsymbol{w}^T \boldsymbol{b} + c)$$

$$\nabla_{\boldsymbol{w}} E_{in}(\boldsymbol{w}) = \frac{1}{N} [(\boldsymbol{A} + \boldsymbol{A}^T) \boldsymbol{w} - 2\boldsymbol{b}]$$

Useful gradient identities:

•
$$\nabla_z(\mathbf{z}^T A \mathbf{z}) = (A + A^T) \mathbf{z}$$

•
$$\nabla_{\mathbf{z}}(\mathbf{z}^T\mathbf{b}) = \mathbf{b}$$

Recap: Ordinary Least Squares: Minimizing E_{in}

$$E_{in}(\boldsymbol{w}) = \frac{1}{N} (\boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w} - 2 \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{y} + \boldsymbol{y}^T \boldsymbol{y})$$

Let $\boldsymbol{A} = X^T X$, $\boldsymbol{b} = X^T y$, $\boldsymbol{c} = y^T y$

$$\nabla_{\boldsymbol{w}} E_{in}(\boldsymbol{w}) = \frac{1}{N} [(\boldsymbol{A} + \boldsymbol{A}^T) \boldsymbol{w} - 2\boldsymbol{b}]$$

$$(\mathbf{X}^T\mathbf{X})^T = (\mathbf{X})^T(\mathbf{X}^T)^T = \mathbf{X}^T\mathbf{X}$$

$$\nabla_{\boldsymbol{w}} E_{in}(\boldsymbol{w}) = \frac{2}{N} [\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w} - 2 \boldsymbol{X}^T \boldsymbol{y}]$$

Solve for w:

$$X^T X w = X^T y$$

$$\mathbf{w}_{lin} = \mathbf{X}^{\dagger} \mathbf{y}$$

where
$$\mathbf{X}^{\dagger} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$$

Flashback: VC Analysis, Approximation vs. Generalization

 $d_{VC} \uparrow \Rightarrow E_{in} \approx 0$: Higher chance of approximating target function on data $d_{VC} \downarrow \Rightarrow E_{in} \approx E_{out}$: Higher chance of generalizing to out of data

Depends only on \mathcal{H} ; Independent of f, P(x), \mathcal{A} (the learning algorithm) 12

Bias – Variance Analysis

• An alternate view of the approximation-generalization tradeoff for squared error measures (e.g. regression)

1. How well *can* a hypothesis in \mathcal{H} approximate f?

2. How close can we get to this using a finite dataset?

Bias-Variance Tradeoff

bias: How well can \mathcal{H} fit target f?

var: How often can we find a good approximation?

- 2 Data points
- 2 Hypothesis sets:

Flat lines \mathcal{H}_0 : $h(\mathbf{x}) = b$

Flat lines \mathcal{H}_0 : h(x) = b

- 2 Data points
- 2 Hypothesis sets:

Flat lines \mathcal{H}_0 : h(x) = b

Flat lines \mathcal{H}_0 : h(x) = b

Different Dataset \mathcal{D} , Different Output $g^{\mathcal{D}}$

• For a fixed test point x, $g^{\mathcal{D}}(x)$ is a random value that depends on \mathcal{D}

We can't pick our data set!

We must analyze the entire process:

- Sample a data set
- Fit it (pick g from $\mathcal H$ using $\mathcal A$)
- Measure E_{in}

Expected Behavior w.r.t. Data

Average (expected) prediction:

$$\mathbb{E}_{\mathcal{D}}[g^{\mathcal{D}}(\boldsymbol{x})] = \bar{g}(\boldsymbol{x}) \approx \frac{1}{K} \Big(g^{\mathcal{D}_1}(\boldsymbol{x}) + g^{\mathcal{D}_2}(\boldsymbol{x}) + \dots + g^{\mathcal{D}_K}(\boldsymbol{x}) \Big)$$

Variance of prediction: $var(\mathbf{x}) = \mathbb{E}_{\mathcal{D}}\left[\left(g^{\mathcal{D}}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^2\right]$

Different Dataset \mathcal{D} , Different Output $g^{\mathcal{D}}$

 $g^{\mathcal{D}}(x)$ is a random value depending on \mathcal{D} (randomly generated data)

$$\mathbb{E}_{\mathcal{D}}[g^{\mathcal{D}}(\mathbf{x})] = \bar{g}(\mathbf{x}) \approx \frac{1}{K} \Big(g^{\mathcal{D}_1}(\mathbf{x}) + g^{\mathcal{D}_2}(\mathbf{x}) + \dots + g^{\mathcal{D}_K}(\mathbf{x}) \Big), \text{ average prediction}$$

$$var(\mathbf{x}) = \mathbb{E}_{\mathcal{D}}\left[\left(g^{\mathcal{D}}(x) - \bar{g}(x)\right)^{2}\right]$$
, variance of prediction

Out of Sample Error: E_{out} on test point ${\pmb x}$ for data ${\mathcal D}$

- $E_{out}^{\mathcal{D}}(\mathbf{x}) = (g^{\mathcal{D}}(\mathbf{x}) f(\mathbf{x}))^2$, squared error depending on random \mathcal{D}
- E_{out} before seeing the data: $E_{out}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}}[E_{out}^{\mathcal{D}}(\mathbf{x})]$

Bias-Variance Decomposition: Expected Error on Test Point

$$E_{out}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}} \left[E_{out}^{\mathcal{D}}(\mathbf{x}) \right] = \mathbb{E}_{\mathcal{D}} \left[\left(g^{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}) \right)^{2} \right]$$

$$= \mathbb{E}_{\mathcal{D}} \left[g^{\mathcal{D}}(\mathbf{x})^{2} - 2g^{\mathcal{D}}(\mathbf{x}) f(\mathbf{x}) + f(\mathbf{x})^{2} \right]$$

$$= \mathbb{E}_{\mathcal{D}} \left[g^{\mathcal{D}}(\mathbf{x})^{2} \right] - 2\bar{g}(\mathbf{x}) f(\mathbf{x}) + f(\mathbf{x})^{2}$$

$$= \mathbb{E}_{\mathcal{D}} \left[g^{\mathcal{D}}(\mathbf{x})^{2} \right] + \bar{g}(\mathbf{x})^{2} - 2\bar{g}(\mathbf{x}) f(\mathbf{x}) + f(\mathbf{x})^{2}$$

$$= \mathbb{E}_{\mathcal{D}} \left[g^{\mathcal{D}}(\mathbf{x})^{2} \right] - \bar{g}(\mathbf{x})^{2} + \left(\bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^{2}$$

$$= \mathbb{E}_{\mathcal{D}} \left[\left(g^{\mathcal{D}}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^{2} \right] + \left(\bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^{2}$$

$$= var(\mathbf{x}) + bias(\mathbf{x})$$

The Bias-Variance Decomposition

• Fact: For any random variable X, (and also for any $X=\hat{\theta}-\theta$),

$$\mathbb{E}[X^2] = (\mathbb{E}[X])^2 + var(X)$$

estimator

unknown, fixed parameter

Theorem:
$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right] = \left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^{2} + var(\mathbf{x})$$

$$= bias(\mathbf{x}) + var(\mathbf{x})$$

$$= expected out of sample error at test point $\mathbf{x}$$$

Here,
$$var(\mathbf{x}) = \mathbb{E}_{\mathcal{D}}\left[\left(g^{\mathcal{D}}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^2\right]$$

E_{out} : Average over $oldsymbol{x}$

$$E_{out} = \mathbb{E}_{\mathbf{x}} \left[\mathbb{E}_{\mathcal{D}} \left[\left(g^{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}) \right)^{2} \right] \right] = \mathbb{E}_{\mathbf{x}} \left[\left(\bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^{2} + var(\mathbf{x}) \right]$$
$$= \mathbb{E}_{\mathbf{x}} [bias(\mathbf{x}) + var(\mathbf{x})]$$
$$= bias + var$$

generalization

How close is average learned hypothesis to target function?

How often can we find a good hypothesis?

Bias-Variance Tradeoff

bias: How well can \mathcal{H} fit target f?

var: How often can we find a good approximation?

Match Learning Power to Data, Not the Target f

$$\mathcal{H}_0$$
 $bias = 0.5$
 $var = 0.25$

$$\mathcal{H}_{0}$$
 \mathcal{H}_{1} $bias = 0.5$ $bias = 0.21$ $var = 0.25$ $var = 1.69$ $\checkmark E_{out} = 0.75$ $E_{out} = 1.90$

5 Data points

$$\mathcal{H}_{0}$$
 $bias = 0.5$
 $var = 0.1$
 $E_{out} = 0.6$

Bias-Variance Analysis: A Useful Conceptual Tool

- Depends on f, P(x) both **unknown**
- ullet Depends on ${\mathcal A}$
- The objective of \mathcal{A} is to minimize squared error
- But for Bias-Variance analysis, we will use the squared error of g selected by ${\mathcal A}$
- Developing a model:
 - Lower variance without increasing bias
 - Lower bias without increasing variance

Techniques discussed later in this course

Summary: The Learning Process

The Learning Process: For unknown f(x) [or P(y|x)] and P(x)

- Fix ${\cal H}$
- Draw N data points \mathcal{D} from $\boldsymbol{\mathcal{X}}$ i.i.d. at random according to $P(\boldsymbol{x})$
- ullet Pick $g^{\mathcal{D}}$ from \mathcal{H}
 - Which has $E_{in}(g^{\mathcal{D}})$ [measured on \mathcal{D}] and $E_{out}(g^{\mathcal{D}})$
- Expected error of learning process: Expectation over all ${\mathcal D}$
 - $\mathbb{E}_{\mathcal{D}}[E_{in}(g^{\mathcal{D}})]$
 - $\mathbb{E}_{\mathcal{D}}[E_{out}(g^{\mathcal{D}})]$

Summary: The Learning Curve

Decomposing the Learning Curve

Number of Data points, N

Pick \mathcal{H} to:

1. Generalize well, i.e., ensure $E_{out} \approx E_{in}$ 2. Fit \mathcal{D} , i.e., get small E_{in}

Number of Data points, N

Pick \mathcal{H} , \mathcal{A} to:

- 1. Approximate f
- 2. Not vary too wildly with \mathcal{D}