A.3 Stokesovy kovektory

Popis pomocí Stokesových vektorů je zvláště užitečný pro popis detekčních systémů, protože Stokesovy parametry jsou *zobecněné intenzity*. Použití ilustrujeme na optickém můstku z oddílu 2.1.

Intenzita měřená detektorem A je daná nultou složkou dopadajícího Stokesova vektoru

$$I_{\mathcal{A}} = s_0^{\mathcal{A}} \equiv \mathcal{D}^{\mathcal{A}} \cdot \mathcal{S}^{\mathcal{A}} \,, \tag{A.41}$$

kde jsme označili $\mathcal{D}^{A}=(1,0,0,0)$ "Stokesův kovektor" detektoru A. Tečka (\cdot) značí kontrakci 9 .

Stejně jako můžeme světelný svazek popisovat Stokesovými vektory v různých místech jeho dráhy, můžeme i signál měřený detektory popisovat vzhledem ke Stokesovým vektorům v různých místech. Označíme jedním apostrofem kovektory vzhledem ke světlu vstupujícímu do děliče \mathcal{D}' a vzhledem ke světlu před destičkou \mathcal{D}'' . Vyjádřením \mathcal{S}^{A} pomocí Stokesova vektoru vstupujícího do můstku \mathcal{S}^{in} a Muellerových matic půlvlnné destičky a polarizačního děliče

$$I_{A} = \mathcal{D}^{A} \cdot \left(\mathbb{M}_{A} \mathbb{M}_{\lambda/2} \mathcal{S}^{in} \right) = \left(\mathcal{D}^{A} \mathbb{M}_{A} \mathbb{M}_{\lambda/2} \right) \cdot \mathcal{S}^{in} \equiv \mathcal{D}^{"A} \cdot \mathcal{S}^{in}, \qquad (A.42)$$

⁹"Skalární součin".