

2814ICT – DATA MANAGEMENT 7003ICT – DATABASE DESIGN

School of Information & Communication Technology Trimester 1, 2021

Assignment Part 1: Designing a Database for BigM

ASSIGNMENT TITLE: Logical Database model for BigM

Student 1	s-number: s5196431	Full name: Duwon Ha
Student 2	s-number: s5213262	Full name: Shinzo Tanimoto
Student 3	s-number: s5203114	Full name: Kavya Krishnakumar
Course Code: 2814ICT		Workshop/Lab day & time: Friday / 9am- 10:45am
Sessional's name: Emon Kumar Dey		Date submitted: 22th April 2021

Table of Contents

Table of Contents

Table of Contents	
List of Illustrations	
Acknowledgements:	
Entity Relationship Diagram	
Assumptions	
Normalisation	5
a) Relation Schema	5
b) Normalisation	5
Store	
Store Department	5
Department	
Product	
Product Order	
Customer	
Store Product	
Order	
Employee	
Appendices	ε
Bibliography	<u>c</u>

List of Illustrations

Figure1: Entity Relationship Diagram

Acknowledgements:

1) Emon Kumar Dey

Entity Relationship Diagram

Figure1: Entity Relationship Diagram

Assumptions

- Store Managers manage all supervisors in the store.
- One employee can only work in one department.
- Customers can only pick up orders as a whole, not as individual products.
- Every order has a unique order number assigned to it which is the primary key.
- When an order is taken, date identifying when the order will arrive at the store will be noted under the name orderArrivalDate.
- Similarly, date identifying when the order is ready to be picked up by the customer at the store is noted under pickUpDate.
- Big M does not make any deliveries.

Normalisation

- a) Relation Schema
- PRODUCT (<u>productNumber</u>, productName, productDescription, productSize, productPrice, productArrivalDate)
- 2. PRODUCT ORDER (productNumber, orderNumber, qtyOrdered)
- 3. ORDER (orderNumber, customerNumber, pickUpDate, storeNumber)
- 4. CUSTOMER (customerNumber, customerFirstName, customerLastName)
- 5. STORE PRODUCT (<u>storeNumber</u>, <u>productNumber</u>, productQty)
- 6. STORE (<u>storeNumber</u>, storeName, phone, fax, email, <u>supervisingStoreNumber</u>, <u>managerID</u>)
- 7. STORE DEPARTMENT (departmentID, storeNumber, numberOfDepartment)
- 8. DEPARTMENT (<u>departmentID</u>, departmentName, phone, email, *supervisorID*)
- 9. EMPLOYEE (<u>employeeID</u>, firstName, lastName, phone, dateOfBirth, startDateOfWork, hourlyRate, annualSalary, taxFileNumber, *departmentID*, *supervisorID*, *managerID*)
- b) Normalisation

Store

This table is in 3NF because it has full dependency without any transitive and partial dependencies.

• **Full Dependency:** <u>storeNumber</u> → storeName, phone, fax, email, *supervisingStoreNumber*, *managerID*

Store Department

Table: Store Department

This table is in 3NF because it has full dependency without any transitive and partial dependencies.

• Full Dependency: departmentID, storeNumber → numberOfDepartment

Department

Table: Department

This table is in 3NF because it has full dependency without any transitive and partial dependencies.

• Full Dependency: <u>departmentID</u> → departmentName, phone, email, *supervisorID*

Product

Table: Product

This table is in 3NF because it has full dependency without any transitive and partial dependencies.

• Full Dependency: productNumber — productName, productDescription, productSize, productPrice, productArrivalDate

Product Order

Table: Product Order

This table is in 3NF because it has full dependency without any transitive and partial dependencies.

• **Full Dependency:** *productNumber*, *orderNumber* → gtyOrdered

Customer

Table: Customer

This table is in 3NF because it has full dependency without any transitive and partial dependencies.

• Full Dependency: <u>customerNumber</u> → customerFirstName, customerLastName

Store Product

Table: Store Product

This table is in 3NF because it has full dependency without any transitive and partial dependencies.

• **Full Dependency:** *storeNumber*, *productNumber* → productQty

Order

This table is in a 2NF because it has a transitive dependency, but no partial dependency.

- Full Dependency: <u>orderNumber</u> → *customerNumber*, pickUpDate, *storeNumber*
- Transitive Dependency: {customerNumber} → pickUpDate

There is transition dependency among orderNumber, customerNumber and pickUpDate.

orderNumber -> customerNumber
{customerNumber} -> pickUpDate

However, there is no need to decompose this table into two because pickUpDate doesn't introduce big redundancy.

Employee

This table is in a 2NF because it has a transitive dependency, but no partial dependency.

- Full Dependency: employeeID → firstName, lastName, phone, dateOfBirth, startDateOfWork, hourlyRate, annualSalary, taxFileNumber, departmentID, supervisorID, managerID
- **Transitive Dependency:** {hourlyRate} -> annualSalary

There is transition dependency among employeeID, hourlyRate and annualSalary.

employeeID -> hourlyRate

{hourlyRate} -> annualSalary

However, there is no need to decompose this table into two because annualSalary doesn't introduce big redundancy

Appendices

Bibliography