

(Date of Deposit)

May 5, 1998

Hon. Commissioner of Patents and Trademarks Washington, D.C. 20231

Attorney Docket **CGNE 119-2 US**

RE: New Patent Application Transmittal

Sir:

Kindly award a filing date and serial number under 35 USC 111 to the patent application based upon the enclosed specification (and any drawings). Declaration and filing fee are deferred. Please direct all correspondence to the undersigned at the address indicated below.

INVENTOR: Harry Y. Yamamoto Residence: 716 Paoo Street

Honolulu, HI 96825

Citizenship: US

INVENTOR: Robert C. Bugos

Residence: 2135 Chamberlain Street

Honolulu, HI 96822

Citizenship: US

INVENTOR: David C. Rockholm

Residence: 1704 Anapuni Street

Honolulu, HI 96825

Citizenship: US

TITLE: PLANT VDE GENES AND METHODS RELATED THERETO

- [27] Specification (33 total pages including claims and abstract)
- [X] 22 Sheets of Drawings
- [] An Assignment of the invention in favor of the following organization is enclosed for recordation:
- [x] Priority is hereby claimed based upon the following:

This application is a continuation-in-part of US Serial No.08/747,574 filed November 7, 1996, which is a continuation-in-part of US Serial No. 60/023,502 filed August 6, 1996, which is a continuation-in-part of US Serial No. 60/006,315 filed November 7, 1995.

[] Sequence Listing, Computer Readable Form and Verified Statement Under 37 CFR 1.821-1.825

All correspondence regarding this application should be sent to:

CALGENE LLC 1920 Fifth Street Davis, CA 95616

Carl J. Schwedler

Respectfully submitted,

Reg. No. 36,924

Enclosure

PLANT VDE GENES AND METHODS RELATED THERETO

Field of the Invention

This invention relates to genes encoding plant violaxanthin de-epoxidase (vde) and methods of use related to the protein and the nucleic acid sequences. The invention is exemplified by methods of causing increased expression or decreased expression of plant vde genes in plants. Included are plants produced by the method.

INTRODUCTION

Background

Plant carotenoids are found in the membranes of chloroplasts and chromoplasts. They are instrumental in the photoprotective mechanisms of plants. Also, plant carotenoids have significant dietary implications. Thus, from an agronomic as well as a nutritional standpoint, study of the plant carotenoids and the enzymes involved in the biosynthesis of carotenoids is of interest.

Of particular interest are the late stages of the carotenoid biosynthetic pathway in plants, the xanthophyll cycle and its importance in photoregulation of photosynthesis. Photosynthesis is the process that enable plants to use light energy for growth and development. Thus, the availability of light of appropriate quality and quantity (photosynthetically active radiation or "PAR") is critical for plant growth and development. Ironically, light can also damage plants because plants have limited capacity to use light. When light intensity exceeds this capacity, irreversible damage can occur.

Plants have developed various mechanisms to cope with excess light such as varying leaf orientation or developing reflective surfaces. Such mechanisms appear to be specialized phenotypic strategies that are limited to certain types of

plants. One mechanism that is apparently used by all plants examined so far is the dissipation of excess energy as heat in the antenna (light absorbing structures) of the photosynthetic apparatus. Most of the excess energy is discarded as heat by a complex feed-back regulatory system that involves the transthylakoid Δ pH and formation of antheraxanthin and zeaxanthin catalyzed by violaxanthin de-epoxidase (vde) in the xanthophyll cycle. This system, termed energy dependent nonradiative energy dissipation or non-photochemical fluorescence quenching, reduces the quantum efficiency of photosystem II (PSII), helping to prevent PSII over reduction and photoinhibitory damage. In effect, this system provides a means to dump excess energy before it can damage the photosynthetic apparatus. The system has a wide dynamic range, both qualitatively and quantitatively, which enables it to function effectively over a wide-range of environmental conditions.

The ability to manipulate aspects of the xanthophyll cycle through genetic engineering techniques would permit the rapid introduction of improved plant varieties. However, it has been difficult to obtain purified fractions of the enzymes involved in the pathway and, prior to this invention, the corresponding genes have not been cloned.

SUMMARY OF THE INVENTION

DNA sequences encoding plant vde enzymes are provided herein. The sequences may be joined to heterologous DNA sequences for use as probes and in DNA constructs to modify the genotype of a host organism. DNA constructs and methods are provided to modify a host cell phenotype by altering the amount of photoprotection enzyme present in the host cell. In plastid containing host cells, zeaxanthin levels and sensitivity to light can be modified through alterations in the level of vde enzymes.

For example, over expression of vde is expected to increase the tolerance of plants to high light, drought and temperature stress (stress conditions exacerbate the condition

of excess light). Also, plants that are not currently tolerant to high light or low temperatures are expected to become more tolerant to these stresses. Plants that are better adapted to light stress are expected to be more productive and/or more resistant to disease. Alternatively, the under expression, or inhibition of vde activity is expected to increase photosynthetic efficiency under low light. The growing range of plants, crops, trees and ornamentals, could thus be modified.

Specific plant vde's are described. In particular, a 55 kD lettuce vde having the cDNA sequence and deduced amino acid sequence as shown in Fig. 1, a tobacco vde having the cDNA sequence and deduced amino acid sequence as shown in Fig. 2, and an Arabidopsis vde having the cDNA sequence and deduced amino acid sequence as shown in Fig. 3, are described. Figure 4 provides a comparison at the amino acid level of the proteins of Figures 1-3. In this amino acid sequence comparison the trasit peptides for the three sequences are boxed. Identical amino acids are denoted by a hyphen. Gaps inserted to optimize sequence alignments are denoted with a period. The thirteen highly conserved cysteine residues are denoted with an asterisk.

Figure 5 is a comparison of the identity and similarity of pre-protein and mature protein vde. As can be seen from Figure 5, diverse vde's have sequences with about 75% sequence identity with one another at the amino acid level. Thus, vde sequences having at least about 75% homology to amino acid sequences in Fig.1, Fig.2 or Fig. 3 are also contemplated hereunder.

Nucleic acid sequences encoding a plant vde having at least about 60% sequence identity, and more preferably at least about 70% sequence identity, with the sequences in Figs. 1, 2 or 3, and are likewise contemplated herein. For instance, a comparison of tobacco and lettuce vde nucleic acid sequences give 76% identity, excluding the transit peptides. A high degree of sequence identity at the N-terminus is particularly preferred. Other related plant photoregulatory

sequences having high degrees of similarity with fragments of the vde sequences shown are also contemplated.

In a different aspect of this invention, nucleic acid sequences related to the exemplified lettuce, tobacco and arabidopsis vde sequences of this invention are described with details regarding methods to obtain such sequences from a variety of sources and their use. In addition, cDNA sequences encoding mature vde's are given as well as transit peptides, mRNA, genomic plant vdes, and plant vde regulatory regions.

In a further aspect of this invention, methods of producing vde in host cells are described. In plastid containing cells, modifications in the xanthophyll cycle, particularly in the ratio of violaxanthin as to zeaxanthin are contemplated via increased production of vde or decreased production of vde. This will have applications in the increased feed value of plants. Zeaxanthin levels are important to crops such as alfalfa whose value in part is due to xanthophyll content.

Results from studies of transgenic plants demonstrates that xanthophyll-mediated energy dissipation in LHCII apparently protects PSII against the potentially damaging effects of high light. This protection is induced by the combined effects of a thylakoid ΔpH and the presence of zeaxanthin and antheraxanthin formed by violaxanthin deepoxidase (vde) activity.

DESCRIPTION OF THE FIGURES

- FIG. 1 cDNA sequence for romaine lettuce vde and deduced polypeptide sequence. The underlined sequences are those determined from peptide sequencing of purified lettuce vde. The polypeptide sequence begins at the first methionine of the open reading frame and is preceded by three termination codons in the same reading frame.
- FIG. 2 cDNA sequence for tobacco (Nicotiana tabacum cv. Xanthi) vde and deduced polypeptide sequence.
- FIG. 3 cDNA sequence for Arabidopsis thaliana (var. columbia) vde and deduced polypeptide sequence.

- FIG. 4 provides a comparison of the amino acid sequences of the proteins of Figures 1-3.
- FIG. 5 shows the percent similarity between the the proteins of Figures 1-3.
- FIG. 6 provides a comparison of hyropathy profiles for the vdes of three species.
- FIG. 7 provides a time-course comparison of effects of expressed vde.
- FIG. 8 is a table showing the results of pigment analysis of leaves of control and 18 vde-antisense tobacco plants (TAS-#).
- FIG. 9 shows the results of a control plant extraction for vde.
- FIG. 10 shows the results of extraction for vde in an antisense vde plant.

DETAILED DESCRIPTION OF THE INVENTION

A plant violaxanthin de-epoxidase or "vde" of this invention includes any sequence of amino acids, such as a protein, polypeptide or peptide, obtainable from a plant source, which demonstrates the ability to catalyze the production of zeaxanthin from violaxanthin under plant enzyme reactive conditions. By "enzyme reactive conditions" is meant that any necessary conditions that are available in an environment (i.e., such factors as temperature, pH, lack of inhibiting substances) which will permit the enzyme to function.

By "plant" is meant any plastid-containing organism. A "higher plant" shall mean any differentiated, multi-cellular plastid-containing organism. Of particular interest are plant vde's from angiosperms, both dicotyledonous and monocotyledonous plants.

In this invention, the cDNA sequence of a lettuce (Fig. 1), tobacco (Fig. 2) and Arabidopsis (Fig. 3) vde gene are provided. Transit peptide regions are identified in Fig. 4. From these sequences, genomic sequences may be obtained and the corresponding transcriptional and translational regulatory

regions determined. Also, using the lettuce and/or tobacco sequences provided, vde genes from other sources may be obtained. In particular, it is found that the N-terminal regions of the lettuce, tobacco, *Arabidopsis* and spinach proteins are conserved and therefore, an N-terminal peptide such as "VDALKTCACLLK" will find particular use in obtaining related sequences.

Constructs for use in the methods may include several forms, depending upon the intended use of the construct. Thus, the constructs include vectors, transcriptional cassettes, expression cassettes and plasmids. transcriptional and translational initiation region (also sometimes referred to as a "promoter") preferably comprises a transcriptional initiation regulatory region and a translational initiation regulatory region of untranslated 5' sequences, "ribosome" binding sites, " responsible for binding mRNA to ribosomes and translational initiation. It is preferred that all of the transcriptional and translational functional elements of the initiation control region are derived from or obtainable from the same gene. embodiments, the promoter will be modified by the addition of sequences, such as enhancers, or deletions of nonessential and/or undesired sequences. By "obtainable" is intended a promoter having a DNA sequence sufficiently similar to that of a native promoter to provide for the desired specificity of transcription of a DNA sequence of interest. It includes natural and synthetic sequences as well as sequences which may be a combination of synthetic and natural sequences.

A transcriptional cassette for transcription of a nucleotide sequence of interest will include in the direction of transcription, a transcription initiation region and optionally a translational initiation region, a DNA sequence of interest, and a transcriptional and optionally translational termination region functional in the host cell of interest. When the cassette provides for the transcription and translation of a DNA sequence it is considered an expression cassette. One or more introns may also be present.

Other sequences may also be present, including those encoding transit peptides.

The use of amino acid sequences from vde peptides to obtain nucleic acid sequences which encode lettuce vde is described herein. For example, synthetic oligonucleotides are prepared which correspond to the vde peptide sequences. The oligonucleotides are used as primers in polymerase chain reaction (PCR) techniques to obtain partial DNA sequence of vde genes. The partial sequences so obtained are then used as probes to obtain vde clones from a gene library prepared from lettuce tissue. Alternatively, where oligonucleotides of low degeneracy can be prepared from particular vde peptides, such probes may be used directly to screen gene libraries for vde gene sequences. In particular, screening of cDNA libraries in phage vectors is useful in such methods due to lower levels of background hybridization.

A nucleic acid sequence of a plant vde of this invention may be a DNA or RNA sequence, derived from genomic DNA, cDNA, mRNA, or may be synthesized in whole or in part. The gene sequences may be cloned, for example, by isolating genomic DNA from an appropriate source, and amplifying and cloning the sequence of interest using a polymerase chain reaction (PCR). Alternatively, the gene sequences may be synthesized, either completely or in part, especially where it is desirable to provide plant-preferred sequences. Thus, all or a portion of the desired structural gene (that portion of the gene which encodes the vde protein) may be synthesized using codons preferred by a selected host. Host-preferred codons may be determined, for example, from the codons used most frequently in the proteins expressed in a desired host species.

One skilled in the art will readily recognize that antibody preparations, nucleic acid probes (DNA and RNA) and the like may be prepared and used to screen and recover "homologous" or "related" vde's from a variety of plant sources. Homologous sequences are found when there is an identity of sequence, which may be determined upon comparison of sequence information, nucleic acid or amino acid, or

through hybridization reactions between a known vde and a candidate source. Conservative changes, such as Glu/Asp, Val/Ile, Ser/Thr, Arg/Lys and Gln/Asn may also be considered in determining sequence homology. Amino acid sequences are considered homologous by as little as 25% sequence identity between the two complete mature proteins. (See generally, Doolittle, R.F., OF URFS and ORFS (University Science Books, CA, 1986.)

Thus, other plant vde's may be obtained from the specific exemplified lettuce, tobacco and Arabidopsis sequences provided herein. Furthermore, it will be apparent that one can obtain natural and synthetic plant vde's, including modified amino acid sequences and starting materials for synthetic-protein modeling from the exemplified plant vde's and from plant vde's which are obtained through the use of such exemplified sequences. Modified amino acid sequences include sequences which have been mutated, truncated, increased and the like, whether such sequences were partially or wholly synthesized. Sequences which are actually purified from plant preparations or are identical or encode identical proteins thereto, regardless of the method used to obtain the protein or sequence, are equally considered naturally derived.

Typically, a plant vde sequence obtainable from the use of nucleic acid probes will show 60-70% sequence identity between the target vde sequence and the encoding sequence used as a probe. However, lengthy sequences with as little as 50-60% sequence identity may also be obtained. The nucleic acid probes may be a lengthy fragment of the nucleic acid sequence, or may also be a shorter, oligonucleotide probe. When longer nucleic acid fragments are employed as probes (greater than about 100 bp), one may screen at lower stringencies in order to obtain sequences from the target sample which have 20-50% deviation (i.e., 50-80% sequence homology) from the sequences used as probe. Oligonucleotide probes can be considerably shorter than the entire nucleic acid sequence encoding a vde enzyme, but should be at least about 10, preferably at least about 15, and more preferably at least about 20 nucleotides.

A higher degree of sequence identity is desired when shorter regions are used as opposed to longer regions. It may thus be desirable to identify regions of highly conserved amino acid sequence to design oligonucleotide probes for detecting and recovering other related vde genes. Shorter probes are often particularly useful for polymerase chain reactions (PCR), especially when highly conserved sequences can be identified. (See, Gould, et al., PNAS USA (1989) 86:1934-1938.)

To determine if a related gene may be isolated by hybridization with a given sequence, the sequence is labeled to allow detection, typically using radioactivity, although other methods are available. The labeled probe is added to a hybridization solution, and incubated with filters containing the desired nucleic acids, either Northern or Southern blots (to screen desired sources for homology), or the filters containing cDNA or genomic clones to be screened. Hybridization and washing conditions may be varied to optimize the hybridization of the probe to the sequences of interest. Lower temperatures and higher salt concentrations allow for hybridization of more distantly related sequences (low stringency). If background hybridization is a problem under low stringency conditions, the temperature can be raised either in the hybridization or washing steps and/or salt content lowered to improve detection of the specific hybridizing sequence. Hybridization and washing temperatures can be adjusted based on the estimated melting temperature of the probe as discussed in Beltz, et al. (Methods in Enzymology (1983) 100:266-285).

A useful probe and appropriate hybridization and washing conditions having been identified as described above; cDNA or genomic libraries are screened using the labeled sequences and optimized conditions. The libraries are first plated onto a solid agar medium, and the DNA lifted to an appropriate membrane, usually nitrocellulose or nylon filters. These filters are then hybridized with the labeled probe and washed as discussed above to identify clones containing the related sequences. When a genomic library is used, one or more

sequences may be identified providing both the coding region and the transcriptional regulatory elements of the vde gene from such plant source.

For immunological screening, antibodies to the vde protein can be prepared by injecting rabbits or mice with the protein purified from the original plant source or expressed from a host cell, such methods of preparing antibodies being well known to those in the art. Either monoclonal or polyclonal antibodies can be produced, although typically polyclonal antibodies are more useful for gene isolation. Western analysis may be conducted to determine that a related protein is present in a crude extract of the desired plant species, as determined by cross-reaction with the antibodies to the vde. When cross-reactivity is observed, genes encoding the related proteins are isolated by screening expression libraries representing the desired plant species. libraries can be constructed in a variety of commercially available vectors, including lambda gt11, as described in Maniatis, et al. (supra).

All plants studied to date utilize the xanthophyll cycle, and thus any given plant species can be considered as a source of additional vde proteins.

The nucleic acid sequences associated with plant vde proteins will find many uses. For example, recombinant constructs can be prepared which can be used as probes or will provide for expression of the vde protein in host cells to produce a ready source of the enzyme. Other useful applications may be found when the host cell is a plant host cell, either in vitro or in vivo. For example, by increasing the amount of a respective vde available to the plant xanthophyll cycle, an increased percentage of zeaxanthin may be obtained. In a like manner, for some applications it may be desired to decrease the amount of vde endogenously expressed in a plant cell by anti-sense or some other reducing technology such as co-supression. For example, to improve photosynthetic efficiency of a plant under low light, decreased expression of a vde may be desired.

Thus, depending upon the intended use, the constructs may contain the sequence which encodes the entire vde protein, or a portion thereof. For example, where antisense inhibition of a given vde protein is desired, the entire vde sequence is not required. Furthermore, where vde constructs are intended for use as probes, it may be advantageous to prepare constructs containing only a particular portion of an vde encoding sequence, for example a sequence which is discovered to encode a highly conserved vde region.

As discussed above, nucleic acid sequence encoding a plant vde of this invention may include genomic, cDNA or mRNA sequence. By "encoding" is meant that the sequence corresponds to a particular amino acid sequence either in a sense or anti-sense orientation. By "extrachromosomal" is meant that the sequence is outside of the plant genome of which it is naturally associated. By "recombinant" is meant that the sequence contains a genetically engineered modification through manipulation via mutagenesis, restriction enzymes, and the like.

A cDNA sequence may or may not contain pre-processing sequences, such as transit peptide sequences or targeting sequences to facilitate delivery of the vde protein to a given organelle or membrane location. The use of any such precursor vde DNA sequences is preferred for uses in plant cell expression. A genomic vde sequence may contain the transcription and translation initiation regions, introns, and/or transcript termination regions of the plant vde, which sequences may be used in a variety of DNA constructs, with or without the vde structural gene. Thus, nucleic acid sequences corresponding to the plant vde of this invention may also provide signal sequences useful to direct protein delivery into a particular organelle or membrane location, 5' upstream non-coding regulatory regions (promoters) having useful tissue and timing profiles, 3' downstream non-coding regulatory region useful as transcriptional and translational regulatory regions and may lend insight into other features of the gene.

Once the desired plant vde nucleic acid sequence is obtained, it may be manipulated in a variety of ways. Where the sequence involves non-coding flanking regions, the flanking regions may be subjected to resection, mutagenesis, etc. Thus, transitions, transversions, deletions, and insertions may be performed on the naturally occurring sequence. In addition, all or part of the sequence may be synthesized. In the structural gene, one or more codons may be modified to provide for a modified amino acid sequence, or one or more codon mutations may be introduced to provide for a convenient restriction site or other purpose involved with construction or expression. The structural gene may be further modified by employing synthetic adapters, linkers to introduce one or more convenient restriction sites, or the like.

The nucleic acid or amino acid sequences encoding a plant vde of this invention may be combined with other non-native, or "heterologous", sequences in a variety of ways. By "heterologous" sequences is meant any sequence which is not naturally found joined to the plant vde, including, for example, combinations of nucleic acid sequences from the same plant which are not naturally found joined together.

The DNA sequence encoding a plant vde of this invention may be employed in conjunction with all or part of the gene sequences normally associated with the vde. In its component parts, a DNA sequence encoding vde is combined in a DNA construct having, in the 5' to 3' direction of transcription, a transcription initiation control region capable of promoting transcription and translation in a host cell, the DNA sequence encoding plant vde and a transcription and translation termination region.

Potential host cells include both prokaryotic and eukaryotic cells. A host cell may be unicellular or found in a multicellular differentiated or undifferentiated organism depending upon the intended use. Cells of this invention may be distinguished by having a plant vde foreign to the wild-type cell present therein, for example, by having a

recombinant nucleic acid construct encoding a plant vde therein.

Depending upon the host, the regulatory regions will vary, including regions from viral, plasmid or chromosomal genes, or the like. For expression in prokaryotic or eukaryotic microorganisms, particularly unicellular hosts, a wide variety of constitutive or regulatable promoters may be employed. Expression in a microorganism can provide a ready source of the plant enzyme. Among transcriptional initiation regions which have been described are regions from bacterial and yeast hosts, such as *E. coli*, *B. subtilis*, *Sacchromyces cerevisiae*, including genes such as beta-galactosidase, T7 polymerase, tryptophan E and the like.

For the most part, the constructs will involve regulatory regions functional in plants. The open reading frame, coding for the plant vde or functional fragment thereof will be joined at its 5' end to a transcription initiation regulatory region such as the wild-type sequence naturally found 5' upstream to the vde structural gene. Numerous other transcription initiation regions are available which provide for a wide variety of constitutive or regulatable, e.g., inducible, transcription of the structural gene functions. Constitutive promoters such as the CaMV 35S promoter, double 35S promoter, 34S figwort promoter may be useful. Promoters which express in plastid containing cells will be of special interest. Some such promoters are preferentially expressed in plastid containing tissues, such as the ssu promoter. transcription/translation initiation regions corresponding to such structural genes are found immediately 5' upstream to the respective start codons. In embodiments wherein the expression of the vde protein is desired in a plant host, the use of all or part of the complete plant vde gene is desired; namely all or part of the 5' upstream non-coding regions (promoter) together with the structural gene sequence and 3'downstream non-coding regions may be employed. If a different promoter is desired, such as a promoter native to the plant host of interest or a modified promoter, i.e., having

transcription initiation regions derived from one gene source and translation initiation regions derived from a different gene source, including the sequence encoding the plant vde of interest, or enhanced promoters, such as double 35S CaMV promoters, the sequences may be joined together using standard techniques.

Expression of the vde transcript was followed in market romaine lettuce leaves that were dark adapted for an undetermined period of time. The same level of transcript was detected in both yellow leaves and rapidly expanding green leaves. However, a greater transcript level was detected in mature green leaves. Two hybridizing transcripts were observed for each sample indicating the possibility that the upper larger transcript may be processed to the slightly smaller transcript (1.7 kb) having the greater level of hybridization. The increased level of transcript in mature green leaves of lettuce may be due to two possible reasons: higher expression occurs in tissues with a higher density of fully developed chloroplasts or expression may be regulated by light intensity since the mature green leaves receive a higher intensity of light than the immature leaves which are partially shielded in the center of the head of lettuce. Hence, use of the vde promoter may be particularly useful in the transcription of vde nucleic acid sequences or for the expression of other nucleic acid sequences of interest.

Regulatory transcript termination regions may be provided in DNA constructs of this invention as well. Transcript termination regions may be provided by the DNA sequence encoding the plant vde or a convenient transcription termination region derived from a different gene source, for example, the transcript termination region which is naturally associated with the transcript initiation region. Where the transcript termination region is from a different gene source, it will contain at least about 0.5 kb, preferably about 1-3 kb of sequence 3' to the structural gene from which the termination region is derived.

Plant expression or transcription constructs having a plant vde as the DNA sequence of interest for increased or decreased expression thereof may be employed with a wide variety of plant life, particularly, plant life where light regulation or zeaxanthin levels are important. Plants of interest include, but are not limited to ornamental plant varieties, field and forage crops, including alfalfa and trees. Depending on the method for introducing the recombinant constructs into the host cell, other DNA sequences may be required. Importantly, this invention is applicable to dicot and monocot species alike and will be readily applicable to new and/or improved transformation and regulation techniques.

The method of transformation in obtaining such transgenic plants is not critical to the instant invention, and various methods of plant transformation are currently available. Furthermore, as newer methods become available to transform crops, they may also be directly applied hereunder. For example, many plant species naturally susceptible to Agrobacterium infection may be successfully transformed via tripartite or binary vector methods of Agrobacterium mediated transformation. In many instances, it will be desirable to have the construct bordered on one or both sides by T-DNA, particularly having the left and right borders, more particularly the right border. This is particularly useful when the construct uses A. tumefaciens or A. rhizogenes as a mode for transformation, although the T-DNA borders may find use with other modes of transformation. In addition. techniques of microinjection, DNA particle bombardment, and electroporation have been developed which allow for the transformation of various monocot and dicot plant species.

Normally, included with the DNA construct will be a structural gene having the necessary regulatory regions for expression in a host and providing for selection of transformant cells. The gene may provide for resistance to a cytotoxic agent, e.g. antibiotic, heavy metal, toxin, etc., complementation providing prototrophy to an auxotrophic host, viral immunity or the like. Depending upon the number of

different host species the expression construct or components thereof are introduced, one or more markers may be employed, where different conditions for selection are used for the different hosts.

Where Agrobacterium is used for plant cell transformation, a vector may be used which may be introduced into the Agrobacterium host for homologous recombination with T-DNA or the Ti- or Ri-plasmid present in the Agrobacterium host. The Ti- or Ri-plasmid containing the T-DNA for recombination may be armed (capable of causing gall formation) or disarmed (incapable of causing gall formation), the latter being permissible, so long as the vir genes are present in the transformed Agrobacterium host. The armed plasmid can give a mixture of normal plant cells and gall.

In some instances where Agrobacterium is used as the vehicle for transforming host plant cells, the expression or transcription construct bordered by the T-DNA border region(s) will be inserted into a broad host range vector capable of replication in E. coli and Agrobacterium, there being broad host range vectors described in the literature. Commonly used is pRK2 or derivatives thereof. See, for example, Ditta, et al., (Proc. Nat. Acad. Sci., U.S.A. (1980) 77:7347-7351) and EPA 0 120 515, which are incorporated herein by reference. Alternatively, one may insert the sequences to be expressed in plant cells into a vector containing separate replication sequences, one of which stabilizes the vector in E. coli, and the other in Agrobacterium. See, for example, McBride and Summerfelt (Plant Mol. Biol. (1990) 14:269-276), wherein the pRiHRI (Jouanin, et al., Mol. Gen. Genet. (1985) 201:370-374) origin of replication is utilized and provides for added stability of the plant expression vectors in host Agrobacterium cells.

Included with the expression construct and the T-DNA will be one or more markers, which allow for selection of transformed Agrobacterium and transformed plant cells. A number of markers have been developed for use with plant cells, such as resistance to chloramphenicol, kanamycin, the

aminoglycoside G418, hygromycin, or the like. The particular marker employed is not essential to this invention, one or another marker being preferred depending on the particular host and the manner of construction.

For transformation of plant cells using Agrobacterium, explants may be combined and incubated with the transformed Agrobacterium for sufficient time for transformation, the bacteria killed, and the plant cells cultured in an appropriate selective medium. Once callus forms, shoot formation can be encouraged by employing the appropriate plant hormones in accordance with known methods and the shoots transferred to rooting medium for regeneration of plants. The plants may then be grown to seed and the seed used to establish repetitive generations.

The invention now being generally described, it will be more readily understood by reference to the following examples which are included for purposes of illustration only and are not intended to limit the present invention.

EXAMPLES

Example 1 - Lettuce vde cDNA

Vde was purified from romaine lettuce (Lactuca sativa L. cv Romaine) chloroplasts and peptides from a tryptic digest along with the N-terminus were sequenced (Rockholm, Plant Physiol. (1996) 110:697-703). Two peptides (N-terminus and tryptic fragment #15, shown in Fig.1) were used to develop the oligonucleotides

5'-GAYGCHYTBAAGACHTGYGC-3' (216-fold degeneracy) and

5'TTGVARRTTDGGRATRAT-3' (144-fold degeneracy). The partial cDNA for vde was amplified by 35 cycles of polymerase chain reaction (PCR) containing 25 pmol of each primer and lettuce cDNA using an annealing temperature of 50°C. The PCR product was subcloned into pGEM-7Zf (Promega) by blunt-end cloning and sequenced. A cDNA library was constructed from poly(A)+ RNA isolated from a pooled sample of

various age romaine lettuce leaves using the Timesaver cDNA Synthesis Kit (Pharmacia) and ligated into lambda-ZAPII (Stratagene). A total of 2.5 x 10⁵ recombinant plaques were screened with the PCR product labeled by random priming and positive clones were plaque purified followed by in vivo excision of the plasmid. The cDNAs were subcloned into the Notl site of pGEM-5Zf and both strands of cDNA were sequenced completely using an Applied Biosystems Model 373A automated sequencer. The Genbank accession number is U31462.

The vde cDNA encompasses an open reading frame encoding a 473 amino acid protein with a calculated Mr of 54,447. The deduced protein contains an 125 amino acid putative transit peptide for transport into the chloroplast lumen where the enzyme is localized (Hager, Planta (1969)89:224-243). This was verified by in vitro transcription/translation of two vde (vde1:-234 to 1526 bp and vde2:-65 to 1578 bp of Fig. 1) cDNAs which produced a 55 Kd product on a sodium dodecyl sulfate (SDS)-polyacrylamide gel. The N-terminus of the mature vde protein (amino acid #126) was determined by N-terminal sequencing of purified vde from romaine lettuce. Therefore, mature vde consists of a 348 amino acid protein with a calculated Mr of 39,929 and a calculated pI of 4.57.

The primary structure of the deduced mature vde exhibits some characteristic features. The protein is hydrophilic overall with 57.2% of the total amino acid residues having polar side chains. Three interesting domains were identified in the deduced mature vde including a cysteine rich domain, a lipocalin signature and a highly charged domain. In the first domain 11 of the 13 total cysteines in the mature vde are present suggesting that this is most likely the site where dithiothreitol (DTT), a known inhibitor of vde, has its effect. The cysteines probably form more than one disulfide linkage since partial inhibition of vde activity with DTT results in an accumulation of antheraxanthin. The deduced mature vde also contains a lipocalin signature, a domain identified in a number of diverse proteins that bind small hydrophobic molecules. For example, crustacyanin, a protein

from lobster carapace which contains a lipocalin signature, binds the carotenoid astaxanthin. Similarly, this domain may play a role in binding the substrate violaxanthin. In the third domain approximately 47% of the residues have charged side chains. The most striking feature of this domain is the high concentration of glutamic acid residues; 27.6% of the residues in this domain (69.2% of the total in the mature vde) are glutamic acids whereas only 2% are aspartic acids

Figure 4 provides a detailed analysis of the deduced amino acid sequence of vde. The top portion provides a comparison of the deduced amino acid sequences of vde from three plant species. The transit peptides are located in the boxed region. Identical residues are indicated by hyphens (-). Gaps introduced to maximize sequence alignment are indicated by periods (.). Asterisks (*) identify the 13 cysteine residues that are conserved between the three sequences.

The bottom map of Figure 4 shows the three domains identified. The amino acid spanning regions for lettuce vde are indicated below the domains.

Figure 6 provides hyropathy profiles for the vdes from three species.

Example 2 - Expression of Lettuce vde cDNA in E.coli

Authenticity of the lettuce vde cDNA was confirmed by expression of the fragment vde2 in E. coli. Vde2 was subcloned in both sense and antisense orientations with respect to lacZ into the Notl site of pGEM-5Zf and transformed into E. coli DH5alpha. All cultures were incubated and induced with 10 mM IPTG (Bugos, Plant Mol Biol.(1991)17:1203-1215). Following the 2 hr induction, the cells were centrifuged at 4000xg for 10 min at 4°C. The cells were resuspended in 3 ml 50 mM Tris (pH 7.4), 1 mM EDTA and lysed using an ultrasonic cell disrupter equipped with a micro-probe for 10 cycles (30 sec on/30 sec off) while being cooled in an ice bath. The resulting extract was centrifuged at 1 0,000xg for 10 min at 4°C and the supernatant was collected for determining vde

activity using the *in vitro* assay and absorbance change at 502nm minus 540nm (Yamamoto, *Methods Enzymol*. (1985)110:303-312). The pellet was washed with 3 ml 50 mM Tris (pH 7.4),1 mM EDTA and centrifuged. The pellet was resuspended in 3 ml buffer and assayed. All assays contained 100 μ l *E. coli* extract or pellet resuspension. For quantification of xanthophyll pigments, the reactions were stopped at various times with addition of solid Tris and the xanthophylls were extracted 3 times with diethyl ether. The ether was dried under a stream of N₂ and the xanthophylls were solubilized in 100 μ l 90% acetone followed by HPLC analysis (Gilmore, *J. Chromatogr*. (1991)543:137-145).

Extracts from E. coli expressing the fragment orientated with lacZ (sense) had strong vde activity whereas no detectable activity was observed from extracts of E. coli transformed with vde2 in antisense orientation or pGEM-5Zf Furthermore, addition of DTT, a strong inhibitor of alone. de-epoxidase activity, abolished all vde activity. DTT (3mM, final conc.) was added directly to the assay 50 seconds after ascorbate (30mM, final conc.) addition. Specific activity of the enzyme was 64.9 ± 5.4 nmols violaxanthin deepoxidized/min/mg protein. Trace activity was detected in the membrane fraction of vde2 sense suggesting that some of the enzyme was not washed away following lysis or that lysis was not complete. An attempt to express the vde1 fragment was unsuccessful. E. coli transformed with vdel subcloned in pGEM-5Zf and orientated with lacZ did not grow.

To verify the products of de-epoxidation, the reaction with vde2 sense extract was stopped at various times and the xanthophylls were analyzed by HPLC. Antheraxanthin and zeaxanthin appeared consistent with sequential de-epoxidation and concomitant with the rapid decrease in violaxanthin, similar to observations reported over three decades earlier for de-epoxidation in lima bean (Phaseolus leunatus) leaves exposed to high light (Yamamoto, Arch. Biochem. Biophys. (1962)97:168-173). The specific activity of the enzyme was 19.4±0.9 nmols violaxanthin de-epoxidized/min/mg protein. This

is the first unequivocal evidence that the same enzyme catalyzes the two-step mono de-epoxidation reaction.

Example 3 - vde in Other Plants

Western analysis of vde from chloroplasts of various ${\rm C}_3$ plants and expressed vde in $E.\ coli$ demonstrate that the N-terminus is conserved.

Intact chloroplasts were isolated (Neubauer, *Plant Physiol*. (1992)99:1354-1361) and lysed with five freeze/thaw cycles using liquid N_2 (Hager, *Planta* (1975)88:27-44). Expression of vde2 in E. *coli* DH5-alpha was as described in Example 2 and the cells were lysed using the freeze/thaw method. Proteins were resolved on a 12% SDS-polyacrylamide gel and electrophoretically transferred to PVDF. Color development was performed following incubation with alkaline phosphatase-conjugated secondary antibodies. Protein was estimated using a prepared reagent (Biorad) and bovine gamma globulin as the standard.

The blot was probed with a polyclonal antibody prepared against a synthetic peptide derived from the N-terminus of lettuce vde (VDALKTCACLLK). Vde migrates with an approximate size of 43 kD.

The mature vde from market romaine lettuce, tobacco (Nicotiana tabacum L. cv Xanthi) and market spinach (Spinacia oleracea L.) all migrate with approximately the same Mr of 43K. The antibody recognized vde in these three plant species demonstrating that the N-terminus is conserved. Expressed vde2 in E. coli migrated at the same M_r as the romaine lettuce vde whereas extracts from E. coli containing only pGEM-5Zf produce some minor cross-reacting proteins, none of which having a M_r of 43K. The M_r 's of the above vde proteins are in agreement with the calculated M_r of the deduced mature vde (39.9K). Two interesting observations are evident from vde expressed in E. coli. The first is that the E. coli expressed vde produced many immunoreactive bands of lower molecular weight. Reasons for this may be due to some processing occurring at the C-terminus of the protein by E. coli (since

the antibody recognizes the N-terminus) or due to translational pausing. The second is that the bacterial expressed vde protein migrates at the same molecular weight as mature vde from romaine lettuce and not as the expected size of the deduced vde preprotein (54.4K) with the transit peptide. This suggests that *E. coli* may recognize the chloroplast transit peptide and cleave it. The N-terminus of the bacterial expressed vde will need to be sequenced to determine the actual site where cleavage is occurring. A similar observation was also reported for the nuclear-encoded chloroplast enzyme acetolactate synthase from *Arabidopsis* when expressed in *E. coli*.

Figure 7 shows the kinetics of absorbance change demonstrating expression of active violaxanthin de-epoxidase in $E.\ coli$ DH5 (top of Fig. 7). Expression was assayed from vde2 constructs in both sense and antisense orientations with respect to lacZ along with $E.\ coli$ containing the vector only (pGEM-5Zf). DTT (3mM, final concentration) was added directly to the assay 70 seconds after ascorbate (30 mM, final concentration) additioin. Specific activity of the enzyme was 64.9 ± 5.4 nmols violaxanthin de-epoxidized min -1 mg. protein -1.

The bottom of Figure 7 is a timecourse of xanthophyll conversions by expressed vde2 (sense construct) in *E. coli*. Specific activity of the enzyme was 19.4 ± 0.9 nmols violaxanthin de-epoxidized min -1 protein -1.

Example 4 - Effects of Expression of vde in Plants

In Figure 8, pigment analysis of leaves of 212 control tobacco plants (Ct-#) is provided, as well as the mean percentage of violaxanthin which is de-epoxidized. Also provided by Figure 8 is the pigment analysis of leaves of 18 vde-antisense tobacco plants (TAS-#).

Tobacco plants were transformed with an antisense construct of the tobacco vde cDNA under control of the CaMV 35S promoter (pB1121) using Agrobacterium tumefaciens LBA4404.

A total of 40 antisense plants were analyzed with 18 showing various levels of inhibition of de-epoxidation.

Relative pigment concentration for tobacco (Nicotiana tabacum L. cv. Xanthi) leaves was measured by leaf disks punched from tobacco leaves that were dark adapted for a few hours. One leaf disk (dark adapted) was extracted with acetone and analyzed by HPLC while another was light induced by exposing the disk to 1800 umol m -2 s -1 white light for 20 min while the leaf disk was floating on water in a water-jacketed beaker cooled at 20_C. Following the light treatment, the leaf disk was extracted and analyzed by HPLC.

Two vde-antisense tobacco plants (TAS-32 and TAS-39) were recovered that had undetectable levels of zeaxanthin following illumination with bright white light. Low levels of antheraxanthin (~2-3%) were present in some dark-adapted leaves and are assumed to represent incomplete epoxidase activity.

In Figures 9 and 10, results are provided from a comparison of measurements on a tobacco leaf from a control plant (Ct-30) and a vde-antisense plant (TAS-5), both of which were dark adapted for 24 hours. Under low light conditions, three leaf disks were punched from each leaf. One leaf disk (dark adapted) was extracted and analyzed by HPLC.

The remaining two leaf disks were pre-illuminated with 500 umol m -2 s -1 red light for 15 minutes. One of these disks was then extracted and analyzed by HPLC while the other was placed in the dark for 10 minutes prior to fluorometry and HPLC analysis.

It has also been observed that in tobacco plants where lettuce vde has been overexpressed from a 35S construct, flowering is delayed, and flowers are slightly larger.

CLAIMS

What is claimed is:

- 1. A DNA sequence encoding violaxanthin de-epoxidase wherein said DNA is joined to a heterologous nucleic acid sequence and said DNA has at least about 70% homology at the DNA level to the sequences shown in Fig. 1 or Fig. 2 or Fig. 3.
- 2. A DNA sequence encoding violaxanthin de-epoxidase wherein said DNA is joined to a heterologous nucleic acid sequence and said DNA has at least about 70% homology at the DNA level to the amino acids found at the N-terminus of the plant vde of Fig. 1 or Fig. 2 or Fig. 3.
- 3. A DNA sequence encoding an amino acid sequence comprising VDALKTCACLLK joined to a heterologous nucleic acid sequence.
- 4. A method of modifying vde levels in a host cell comprising growing a host cell having a vde modifying construct in its genome, wherein said vde modifying construct comprises, in the order of transcription, a plant transcription initiation region, a plant vde encoding sequence, and a transcriptional termination region, and wherein said construct contains at least one sequence heterologous to the other sequences of said construct or to said plant.
- 5. The method of Claim 4 wherein said construct further comprises a translation initiation region and a plastid translocation sequence and wherein said vde gene is in a sense orientation, whereby vde is overexpressed in said host cell.

- 6. The method of Claim 4 wherein said host cell is a plastid containing plant cell.
- 7. The method of Claim 6 wherein said vde gene is in an antisense orientation and vde is underexpressed in said plant.
- 8. A method of modifying sensitivity to light comprising growing a plant having a light modifying construct in its genome wherein said light modifying construct comprises, in the order of transcription, a plant transcription initiation region, a plant vde encoding sequence and a transcriptional termination region and wherein said construct contains at least one sequence heterologous to the other sequences of said construct or said plant.
- 9. A method of increasing zeaxanthin levels in a plant comprising growing a plant having a zeaxanthin modifying construct in its genome, wherein said zeaxanthin modifying construct comprises, in the order of transcription, a plant transcription initiation region, a plant vde encoding sequence and a transcriptional termination region and wherein said construct contains at least one sequence heterologous to the other sequences of said construct or said plant.
- 10. A plant, plant cell or other plant part comprising the DNA sequence of any one of Claims 1, 2 and 3.
- 11. A plant, plant cell or other plant part produced by the method of any one of Claims 4, 5, 6, 7, 8, and 9.
- 12. The method of Claim 8 wherein said plant vde encoding sequence expresses violaxanthin de-epoxidase (vde), whereby vde activity is increased and increased zeaxanthin and antheraxanthin production protects said plant against high light.

- 13. The method of Claim 8 wherein said plant vde encoding sequence is antisense with respect to said transcription intiation and termination regions, whereby zeaxanthin and antheraxanthin production is decreased and the sensitivity of said plant to light is increased.
- 14. A plant according to Claim 11 wherein flowering of said plant is delayed as compared to flowering in a control plant not produced by said method.
- 15. A plant according to Claim 11 wherein flowers of said plant are larger as compared to flowers of a control plant not produced by said method.

ABSTRACT

DNA sequences encoding plant vde enzymes are provided herein. The sequences may be joined to heterologous DNA sequences for use as probes and in DNA constructs to modify the genotype of a host organism. DNA constructs and methods are provided to modify a host cell phenotype by altering the amount of photoprotection enzyme present in the host cell. In plastid containing host cells, zeaxanthin levels and sensitivity to light can be modified through alterations in the level of vde enzymes.

09

TGTGGGTTCG AATTTTACCC ACCACAAGTT TTGTCCTACC ATAATTGGGA TAAGGAGTCT

120

AATTTCCCTT GTACAATTTT CCAATTTCTT CCTCCGCCAC ACCATATATA TACTGTACGC

CACTTCGAAC GCTACAATGT TTGAAAAAG ACGCAGATTT TACAAAGACG GAGAAGATAA

180

ATG TAAGCTTCAA GTACTCCGAT CGTCAGGTGG CCTTTGGAAG CCAACAAACT GGCT

240

AAT Asn CIC Leu AAA GAG GAA GCC Lys Glu Glu Ala TGC Phe Leu Cys TTT CTC GTA Ser Leu His Thr Val ACT TCT CTT CAC CTTLeu GCT Ala

300

CAA Gln G1yGGA AGT Ser TTT CAC AGG Phe His Arg TGT AAT GAA AGG Cys Asn Glu Arg Pro CCA TCA Ala Arg GCA AGA Tyr \mathtt{TAT} TTA Leu

360

TATTyrGGA Gly AAT Asn TCC AAC Ser Asn ATG ATG AAA ATT CGA Met Met Lys Ile Arg ATC . Ile 1 ATA Ile AAC CCT ACC / CCL Pro

420

TCA TTC Phe TCT Ser AAG ACA AGT Lys Thr Ser Lys Thr TTT ACA TCT TAT Phe Thr Ser Tyr TTGArg Leu TTC CGG Phe . TCTSer AAT Asn $\mathrm{T}\mathrm{T}\mathrm{T}$

FIGURE

Control and the second control and the second

ACAThxAsp GATATC Ile AGC Ser ATA TGC CAG Gln TCT AAA Cys Lys Asp Lys GATAAG TGC Ser His CAT AGC $_{
m LCT}$ Ser GAT Asp

480

TTG Thr ACT GGC ATG GIY Met AGG Leu Lys Arg AAA CTCAsp GAT TTT Phe CAA AGA Gln Arg ATA Ile GAA Glu GAG Glu Phe $_{
m LLL}$ AGTSer

540

TTG Leu GTA Val ATC Ile GCT Ala LTG Leu CAA Gln ATA Ile $_{
m LLC}$ Phe CAA Gln AGA Arg TGG Trp CAA Gln AAG Lys GAA Glu CTTLeu ATT Ile

009

Leu CTTGCT Ala GATAsp GTT Val GAT GCC (Asp Ala GTL Val AGA Pro Arg CCC Val GTTIle ATC GTT Val TTTPhe ACA Thr TGC Cys GTT

099

LysAAA Ala Leu CTTGAG ATT Ile Arg AGG TGC Cys GAA Glu Lys AAA CTC Leu TTATGT Cys GCT Ala \mathtt{TGT} Cys ACT ThrAAA Lys

 Thr Gln CAG Leu CTA $_{\mathrm{TGT}}$ Cys GCC Ala GTT Val AAC Asn GCA Ala GCG Ala TGT Cys TCT Ser CCA Pro AAC Asn GCA Ala ATA Ile TGT Cys

720

Asp GAC GGT G1yCys TGT AAA LysCAG ATA Glu Ile $_{\mathrm{TGT}}$ Cys GAG ACC GAA Glu Thr Glu CCT GAC Pro Asp CGTArg AAT Asn AAC Asn $_{
m LCC}$

FIGURE 1 2/6

delle of the first of the star for the star of the sta

780

TCC Ser GTTVal AGT GTG GTG GAC CAA TTC AAC GAG TGT GCG Ser Val Val Asp Gln Phe Asn Glu Cys Ala AAC Phe Glu Asn GAA TTCTTG

840

GTT Val CCG TTC Phe GAA GGTGTG Val Asp GATTCG AAA Lys CGG Arg CCC Pro GTG Val $_{
m LGL}$ Cys AAA Lys LysAAG CGA Arg

006

 AGT TTTGAC Asp AAA Lys TTT AAC ATG Asn Met Gln Asn Phe CAA AAT GTT Val GTG Ala Val CGT AAT GCA Asn Arg GAT Asp

Pro SCG

Phe TTTAla GCA Phe Asp TTT GAT GGT TTA AAT CCT ACA Gly Leu Asn Pro Thr TAT ATA ACA AGT Tyr Ile Thr Ser Trp TGG LysAAG GGG G1y

096

GGG Gly GTT Val Leu CTTTTT CAT ATG GAA AAT GAT AAA Phe His Met Glu Asn Asp Lys GAG CAA CTT CAT Gln Leu His Cys $_{\mathrm{TGT}}$ GAT Asp

1020

Arg ACT CGA TTTPhe GGT TTC Phe G1yGGT (AAA ACT TTG GAT Lys Thr Leu Asp ATA Ile TGG CGC Trp Arg ACA Thr TTALen AAC

1080

CTTLeu GGA GCA Pro Asp Leu Pro Gly Ala GTT CAA GAT CCA GAT CTT CCT Val Gln Asp Phe TTTCAA ACA 'GIn Thr Gln GTG Val Ala

FIGURE

1140

ATA Ile \mathtt{TAC} Trp TGG CAA GAT GAC Gln Asp Asp AAT CAT GAC AAT GAG TTT CTT CAC TAC ASN His Asp Asn Glu Phe Leu His Tyr TAT . Tyr .

TACTyrGTA Val ATA TTC (Ile Phe TAC CAA ATC GAA AAC AAA CCC GAT GAT Gln Ile Glu Asn Lys Pro Asp Asp TCC Ser TTA TCT Leu Ser

1200

ATC Ile GTG Val TCC Ser GGG Gly GGT (TACGGA Gly TGG GAT (Trp Asp (CGA AAC GAC GCA Arg Asn Asp Ala GGTG1yCGA Arg TAC TYY

1260

CAA Gln ATC ATC CCA AAC CTA Ile Ile Pro Asn Leu ACC CGA AGC CCG ACA CTC CCC GAA TCG Thr Arg Ser Pro Thr Leu Pro Glu Ser TAC Tyr

1320

ACC Thr ACA Thr TTT AAC AAT TTC ATA Phe Asn Asn Phe Ile GGT CGA GAC Gly Arg Asp TCC GTG Ser Val GCA GCC AAA Ala Ala Lys Lys

₹***

GAG AAA Glu Lys TGT GGG CCT GAG CCT CCA TTG GTG GAA AGG CTT Cys Gly Pro Glu Pro Pro Leu Val Glu Arg Leu AAT AGT Asn Ser GAC

ATA Ile GAG GTA Val GGC GAG AAG TTG TTG ATA AAA GAA GCT Gly Glu Lys Leu Leu Ile Lys Glu Ala GAG Glu GAA Glu BOB Ala

FIGURE 1

1. The state of th

1440

> 1 1 GAA GAA GAG GTT GAA AAA GAG GTG GAG AAG GTT AGA GAT ACT GAG ATG Glu Glu Val Glu Lys Glu Val Glu Lys Val Arg Asp Thr Glu Met

1500

GAT Asp TTT AAG GAG TTG CAA CAA Phe Lys Glu Leu Gln Gln CAG AGG TTG CTT GAA GGG Gln Arg Leu Leu Glu Gly $_{
m LLL}$ Phe TTGLeu ACT

1560

Glu GAA

1620

ACT GAA GTT GAA AAG CTT TTT GGG CGC Thr Glu Val Glu Lys Leu Phe Gly Arg GAA CTT CAA ATG GAA GCG Glu Leu Gln Met Glu Ala AAT Asn

1680

CTT AGA TAAATTT CGATGATTGA TTCAGACAAT Leu Arg GCG TTA CCG ATT AGG AAA Ala Leu Pro Ile Arg Lys

1740

ATATATAGTC ATATGGATTA TGTAGATACT AGAGAAAACC CAAAAAAACT TTTGTATACG

1800

TGATAAACGT GTTTGTGATT TGTTTATTGG CTTAAAATTG TAGAATAGCT TTTTTAATTC

FIGURE 1 5/6

1860

TTTACAAAAA AATTGATTGT CTATTGGTAG CCAAGAGGTT CACGAAAAGA CTGAAAGGGT

1920 CTTGCCGGT TTGCGGGTTA GGCCAAATTT TTTGGGGCGG GATCGGTCTT GATCGGGTTTT 1980

TCTTTAAAA CATGTATTTT TTATAAATGA TGAGTTATTT TCAATTTTTG GCTAAAAAAA

1981

FIGURE 1 9/9

56	104	152	200	248	296	344
TATTTTCATG AGTTTGCAGT TGGTGGTAAT ACGGTTGAAG A ATG GCT CTT GCC CCT 56 Met Ala Leu Ala Pro 5	GCC AAC CAT GAA ACC ATC AAA TAT TAT GTT GGG Ala Asn His Glu Thr Ile Lys Tyr Tyr Val Gly 15	CAT AAA AGG TTT AGC TGG GGT TGG GAA GAT TAC His Lys Arg Phe Ser Trp Gly Trp Glu Asp Tyr 30	GTA GCA AAA ATT TGT TCC AGC AGA CGG ATA CCT Val Ala Lys Ile Cys Ser Ser Arg Arg Ile Pro 50	TCT CCT AGA ATA TGC TGT GGT TTG GAT TCA AGA Ser Pro Arg Ile Cys Cys Gly Leu Asp Ser Arg 60	TCA CAC GGG AAA CAC AAT CTC TCT CCC GCA CAT Ser His Gly Lys His Asn Leu Ser Pro Ala His 75	GTA CCT AAG GGA AAT TCA GGA TGC AAA TTT CCA Val Pro Lys Gly Asn Ser Gly Cys Lys Phe Pro 95
TTTCATG AGTTTGCA	CTG Leu	GGT	GTC Val	AAA Lys	TTC Phe	AAT Asn 90
	TTT Phe	CCC Pro 25	ATA Ile	CGA Arg	CTA Leu	CAG Gln
	AAT Asn	CTT	AGT Ser 40	TTT Phe	CAA Gln	AAC Asn
	TCA	AAG	GGT	TAC Tyr 55	CTG Leu	ATT Ile
TAT	CAT His	TCA Ser	TTT Phe	AGA Arg	GGT G1Y 70	AGC Ser

392	440	488	536	584	632	680
AAA Lys	GAT Asp	AGG Arg	GTT Val 165	CAG Gln	AAT Asn	GTT Val
GCC Ala	GCT Ala	TGC Cys	AAT Asn	TGT Cys 180	TTC Phe	GAT Asp
TTT Phe 115	AAA Lys	GAG Glu	GCT Ala	GAA Glu	GAG Glu 195	TCT Ser
CAA Gln	TCA Ser 130	AAA Lys	GCA Ala	ACG Thr	GAC Asp	AAA Lys 210
GGC Gly	GCT Ala	CTG Leu 145	TGT Cys	GAA Glu	GTA Val	CGT Arg
TGG Trp	GTT Val	TTA Leu	GCA Ala 160	GAC Asp	GTC Val	CCT Pro
AAA Lys	TCA Ser	TGC Cys	CCT Pro	CCT Pro 175	AGT Ser	GTA Val
GAG Glu 110	TTG Leu	ACT Thr	AAC Asn	AGA Arg	AAC Asn 190	TGT Cys
TGG Trp	ATT Ile 125	TGT Cys	TCG Ser	AAT Asn	GAA Glu	AAA Lys 205
GTT Val	TTC Phe	ACT Thr 140	ATT Ile	AAC Asn	TTT Phe	AAG Lys
ATG Met	ATA Ile	AAG Lys	TGC Cys 155	TGC Cys	TTG Leu	CGA Arg
TTG Leu	GCT Ala	CTC Leu	AAG Lys	ACT Thr 170	GAT Asp	TCC Ser
GCT Ala 105	GTA Val	GCT Ala	GCG Ala	CAG Gln	GGT G1Y 185	GTC Val
GTA Val	ATT Ile 120	GAT Asp	CTT Leu	CTC Leu	TGT Cys	GCA Ala 200
GAT Asp	GCA Ala	GTT Val 135	GAG Glu	TGT Cys	AAA Lys	TGT Cys
AAA Lys	ACA Thr	GCG Ala	rra Leu 150	GCC Ala	ATA Ile	3AG 31u

THE RESERVE AND SAME WAS BOOK AND SAME AND SAME AND SAME AND SAME AND SAME BANK BANK BANK BANK

728	776	824	872	920	896	1016
D 0.	() O (O	4 1	4.5	.		
GAC Asp	CCC Pro 245	GAA Glu	GGA Gly	AAG Lys	CAA Gln	GAT Asp 325
TTT Phe	AAT Asn	GAA G1u 260	GAT Asp	CCA Pro	\mathtt{TAC}	GAG Glu
AAG Lys	TTG Leu	ACA Th <i>r</i>	CCT Pro 275	GAT Asp	CTC Leu	CCA Pro
CAG Gln	GGT Gly	CAT	ACA Th <i>r</i>	CAA Gln 290	CTT Leu	AGT Ser
GTC Val 225	CGC Arg	TTC Phe	CGT Arg	GTG Val	TAT Tyr 305	AAT Asn
CTT Leu	ACT Thr 240	GAG Glu	ATA Ile	TTC Phe	GAG Glu	GAA G1u 320
GTT Val	ATT Ile	CAT His 255	AGA Arg	AAA Lys	AAT Asn	GTA Val
AGT Ser	TTC Phe	TTG Leu	TGG Trp 270	CAA Gln	GAT Asp	AAA Lys
CCC Pro	TGG Trp	CAA Gln	TCT Ser	GTG Val 285	CAT His	TCC Ser
GAT Asp 220	AAA Lys	TGC Cys	TTA Leu	GCG Ala	AAT Asn 300	TCA Ser
CCT Pro	GGG G1y 235	GAT Asp	AAT Asn	TCA Ser	TAC Tyr	TTG Leu 315
GTA Val	AGC Ser	TTT Phe 250	666 G1y	CGA Arg	CTC Leu	ATT Ile
CCT Pro	TTT Phe	GCT Ala	GTG Val 265	ACT Thr	ATA Ile	TAT Tyr
TTT Phe	GAT Asp	GAT Asp	CTT Leu	TTT Phe 280	GGG G1y	TGG Trp
GAC Asp 215	AAA Lys	TTT Phe	AAA Lys	TTT Phe	CCG Pro 295	GAC
GGT Gly	ATG Met 230	ACT Thr	AAC Asn	GGA Gly	$\mathtt{r}\mathtt{A}\mathtt{r}$	SAT ASP 310

The first first of the first first of the first of the first of the first firs

1064	1112	1160	1208	1256	1304	1352
TAT Tyr	ATT Ile	AAC Asn	GTT Val	AAA Lys 405	GAA Glu	CGA Arg
GGA G1 <u>y</u> 340	AGC Ser	TTC Phe	CTT Leu	ATA Ile	AAA Lys 420	CAA Gln
GAT Asp	GAA Glu 355	GAT Asp	CCC	ATC Ile	GAT Asp	CTC Leu 435
TGG Trp	CCT Pro	CGT Arg 370	CCT Pro	ACG Thr	AGA Arg	GAG Glu
GCA Ala	TTG Leu	GGG G1y	GAA G1u 385	AGG Arg	GTG Val	AAA Lys
GAT Asp	GTT Val	GTT Val	CCT Pro	GAA Glu 400	AAG Lys	TTT Phe
AAT Asn 335	GCA Ala	AAA Lys	GGC Gly	GGA Gly	GAG Glu 415	$_{\rm G1Y}$
AGA Arg	AGT Ser 350	CAA Gln	TGT Cys	GAA Glu	GTA Val	GAA G1u 430
GGC Gly	AGA Arg	GCT Ala 365	ACA Thr	GAA Glu	GAA Glu	TTT Phe
AAG Lys	ACA Thr	GCA Ala	AAT Asn 380	GTG Val	GAA Glu	CTG Leu
\mathtt{TAT}	TAC Tyr	ACC Thr	GAC Asp	AAA Lys 395	GAA Glu	AAA Lys
TAC Tyr 330	CTT Leu	CAA Gln	ACA Thr	AAG Lys	ATA Ile 410	AGT Ser
GTG Val	GTA Val 345	TTG Leu	AAA Lys	GAG Glu	GAG Glu	TTC Phe 425
TTT Phe	TCT Ser	GAG Glu 360	ATA Ile	TTG Leu	GAG Glu	TTA Leu
ATA Ile	GGT Gly	CCG Pro	TTC Phe 375	AGG Arg	GTT Val	ACC Thr
TAC	GGT Gly	ATA Ile	ACA Thr	GAG Glu 390	GAA Glu	GTC Val

1400	1448	1500	1560	1589
GAT GAA GAG AAC TTC TTA AGA GAG CTG AGC AAA GAA GAA ATG GAT GTT Asp Glu Glu Asn Phe Leu Arg Glu Leu Ser Lys Glu Glu Met Asp Val 445	TTG GAT GGA CTT AAA ATG GAA GCA ACT GAG GTA GAA AAA CTT TTT GGG Leu Asp Gly Leu Lys Met Glu Ala Thr Glu Val Glu Lys Leu Phe Gly 455	CGT GCT TTA CCA ATA AGG AAA TTA A GGTAAGT ATTTTTAAAA CTATCAACAT Arg Ala Leu Pro Ile Arg Lys Leu 470	ATATACTACA TGTATAGTTG TATTTGATTC TTTTGCCTGG AATAGATTGC TTATACATCA	TGTATTGCTT CTTTTTCAGA AGCAAAAA

56	104	152	200	248	296	344
GCT Ala	TCA Ser 20	AAT Asn	CTC Leu	TCA Ser	AAT Asn	GTT Val 100
GTA Val						
	TTC: Phe	ATC Ile 35	GAT	AGG Arg	AAG Lys	GGT Gly
GCA Ala	TTT Phe	AGG Arg	GCT Ala 50	TTC Phe	TCA Ser	GTG Val
A ATG Met 1	CGA Arg	AAG Lys	AGT Ser	GCA Ala 65	CCA Pro	CTC Leu
AAGA	ATT Ile	AGA Arg	CAA Gln	TCT Ser	TTA Leu 80	AAA Lys
rgtg	CGT Arg 15	ACA Thr	ATC Ile	TTA Leu	CCA Pro	CTA Leu 95
ATAG'	GAC Asp	ATT Ile 30	CCA Pro	CCT Pro	GTG Val	TTG Leu
r AG	CAT His	GGC	CCT Pro 45	CGT Arg	ATT Ile	CTG Leu
GGCTTGGTGT GGGGAAGATT AGATAGTGTG	TGT Cys	CTT Leu	TTA Leu	TCA Ser 60	GAC Asp	CCG
3GGA)	CCT	AGG Arg	ATT Ile	TCC Ser	TTT Phe 75	GCT Ala
Ğ Le	TCA Ser 10	GGT Gly	AAG Lys	AGA Arg	ATA Ile	ACC Thr 90
rggtv	ACT Thr	ATT Ile 25	CTC Leu	${\tt GGG} \\ {\tt Gl} Y$	GGG G1Y	CTG Leu
3GCT.	TTC Phe	GGT Gly	TTG Leu 40	$_{\rm G1Y}^{\rm GGT}$	AAG Lys	GAG Glu
ICC (TGT Cys	GAT Asp	TTC Phe	ACT Thr 55	TCT Ser	AAA Lys
CCACGCGTCC	CAT His	GAT Asp	ACT Thr	ACA Thr	TTC Phe 70	CTG
CCA(ACA Thr 5	AGT Ser	3GC 31Y	AGA Arg	3GA 31Y	3AG 31u 85

392	440	488	536	584	632	680
GCA Ala	GCA Ala	CAG Gln	GGG Gly	GTG Val 180	CCT Pro	TTT Phe
GAT Asp	CTC (Leu	CTT (Leu (TGT (Cys (GCT (Ala	TTT (Phe 1 195	GAC RASP I
GTT Val	GAA Glu 130	TGC	AAA Lys	TGT (Cys)	GAA Glu	TCG (Ser 2
GCA Ala	ATA Ile	GCG Ala 145	ATT Ile	GAG Glu	GGA Gly	ATC Ile
GAT Asp	AGG Arg	GTC Val	CAG Gln 160	AAC Asn	CTC Leu	AAC Asn
GCA Ala	TGC Cys	AAT Asn	TGC Cys	TTC Phe 175	GAT Asp	TTC Phe
TCT Ser 110	GGA Gly	GCC Ala	GAG Glu	GAG Glu	TCT Ser 190	AAC Asn
CCA Pro	AAG Lys 125	GCA Ala	ACC Thr	GAT Asp	AAA Lys	CAG Gln 205
GTT Val	TTG Leu	TGT Cys 140	GAA Glu	GTT Val	AGA Arg	GTA Val
ATT Ile	TTA Leu	GCC Ala	GAT Asp 155	GTT Val	CCT Pro	CTT Leu
CTT Leu	TGC Cys	CCT Pro	CCA Pro	AGT Ser 170	GTT Val	GTT Val
TTC Phe 105	GCA Ala	AAC Asn	CGT Arg	AAC Asn	TGT Cys 185	TCT Ser
GCG Ala	TGT Cys 120	GCC Ala	AAC Asn	GAG Glu	AAG Lys	CCT Pro 200
TGC	ACT Thr	ATT Ile 135	AAT Asn	TTT Phe	AAA Lys	GAC Asp
GCT Ala	AAA Lys	TGC	TGC CYS 150	CTG	AGA Arg	CCA GAC Pro Asp
TTA Leu	CTT Leu	AAG Lys	ACC Thr	GAT Asp 165	TCG Ser	GCC Ala

728	776	824	872	920	968	1016
GCC Ala	CTT Leu	TTT Phe 260	GGT Gly	TGG	TTT Phe	GCA Ala
GAT Asp	AAG Lys	TTC Phe	CCT Pro 275	GAC Asp	ATA Ile	GGT Gly
TTT Phe	AAC Asn	GGA Gly	CAA Gln	GAT Asp 290	\mathtt{TAT}	$_{\rm G1Y}^{\rm GGT}$
ACC Thr 225	GAC Asp	AGT Ser	AAC Asn	CAA Gln	GAC ASP 305	$\mathtt{TAT}\\ \mathtt{T}Y^{\mathcal{I}}$
CCA Pro	GGT G1y 240	GAC Asp	CCT	\mathtt{TAT}	GAA Glu	GGA G1y 320
AAT Asn	GAA Glu	CTA Leu 255	GAT Asp	CAC His	CCT Pro	GAT Asp
TTG Leu	ACA Thr	ACC Thr	CAA Gln 270	CTT Leu	AAA Lys	TGG Trp
GGC Gly	CAC His	AAG Lys	GTG Val	TAC TYr 285	AAT Asn	GCT Ala
AGT Ser 220	TTC Phe	ATA Ile	TTC Phe	GAG Glu	GAG Glu 300	GAT Asp
ACA Thr	GAG Glu 235	AGA Arg	AAA Lys	AAC Asn	ATA Ile	AAC Asn 315
ATT Ile	CAT His	TGG Trp 250	CAA Gln	GAC Asp	AAG Lys	CGA Arg
TAC Tyr	CTG Leu	TCT Ser	GTA Val 265	CAT His	TCA Ser	$\tt GGG$
TGG Trp	CAG Gln	ATC Ile	GCC Ala	AAT Asn 280	TCA Ser	CGT Arg
AAG Lys 215	TGC Cys	AAC Asn	TCA Ser	TAC TYY	CTG Leu 295	TAC Tyr
666 61y	GAC Asp 230	GGA Gly	AGG Arg	CTC Leu	ATC Ile	$\begin{array}{c} \mathtt{TAC} \\ \mathtt{TYr} \\ 310 \end{array}$
AAC Asn	TTC Phe	GTT Val 245	ACT Thr	GTT Val	TAT TYr	GTA Val

1064	1112	1160	1208	1256	1304	1352
GAA G1u 340	ATT Ile	ATT Ile	GAA Glu	ACT Thr	AAG Lys 420	GAG Glu
CCA Pro	TTC Phe 355	AGA Arg	GTT Val	AGG Arg	CTG Leu	ATG Met 435
ATA Ile	ACA Thr	GAG Glu 370	GAG Glu	$_{\rm GLY}^{\rm GGT}$	GAA Glu	GAG Glu
ATT Ile	AGC Ser	GTG Val	AAA Lys 385	GTC Val	AAT Asn	GAA Glu
AGC Ser	TTC Phe	CTC	GTA Val	AAG Lys 400	TTT Phe	AAA Lys
AAT Asn 335	GAC Asp	GCG Ala	ATC Ile	GAG Glu	GGA Gly 415	AGT Ser
CCC	AGA Arg 350	CCT Pro	ATA Ile	GTG Val	GAA Glu	TTA Leu 430
TTA Leu	66C Gly	GAA Glu 365	AGG Arg	GAA Glu	GCT Ala	GAG Glu
GTA Val	ATA Ile	CCT Pro	GAA G1u 380	$^{ m AAG}_{ m LYS}$	TTG Leu	AGA Arg
TCT Ser	AGC Ser	GGT Gly	GGT Gly	GAG Glu 395	AGA Arg	GTG Val
AGT Ser 330	AAA Lys	TGT Cys	GAA Glu	GTA Val	CAG Gln 410	TTC Phe
AGA Arg	GCA Ala 345	ACA Thr	GAA Glu	GAG Glu	TTC Phe	AAT Asn 425
ACG Thr	GCA Ala	AAC Asn 360	GTG Val	GAA Glu	TTG Leu	GAG Glu
TAC Tyr	AAA Lys	GAT Asp	ACA Thr 375	GAA Glu	ACC Thr	GAG Glu
GTA Val	GAA Glu	ACG Thr	AAG Lys	ATA Ile 390	ATG Met	GAC Asp
GTT Val 325	CTC Leu	AGA Arg	GAG Glu	GAG Glu	GAG Glu 405	CAA Gln

1400	1450	1510	1555
TTT TTG GAT GAG ATC AAA ATG GAA GCA AGT GAG GTT GAA AAA TTG TTT Phe Leu Asp Glu Ile Lys Met Glu Ala Ser Glu Val Glu Lys Leu Phe 440	GGG AAA GCT TTG CCA ATC AGG AAG GTC AGG TAGAAACAAG AACCACCATT Gly Lys Ala Leu Pro Ile Arg Lys Val Arg 455	GTTGTACAAA CTATATTATA CATACTGTGT TCGGTTCATA TAAAGTAATA TTTTTGTACA	CAGTCATCAT CATTCCATAA CAATTGGATA AAAAAAAAA AAAAA

Tobacco Arabidopsis Lettuce	MALAPHSNFLANHETIKYYVGSKLPGHKRFSWGWEDYFGSIVVAKICSSR M-V-TCFT-PCHDRIFSS.D-GI-RLGITRK MSL-TVCKE-ALNL-AR-PCNEHRS.GQPPTN-IMM	50 33 43
Tobacco Arabidopsis Lettuce	RIPRYFRKSPRICCGLDSRGLQLF.SHGKHNLSPAHSINQNVPKGNSGCK NGT-LLK-LPPIQ-AD-RTTGGRSSRPAFR-GFSKGIFDIVPLP -SNNGYFN-F-LFTSYKTSSFSD-SHCKDK-QI.CSIDTSFEEIQRFD	99 81 90
Tobacco Arabidopsis Lettuce	FPKDVALMVWEKWGQFAKTAIVA1FILSVASKADA SKNELKELTAPLLL-LVG-LACAFLIVPS LKRGMT-ILEKQ-RIQLLVCTFVIVPRV	134 113 125
Tobacco Arabidopsis Lettuce	VDALKTCTCLLKECRLELAKCISNPACAANVACLQTCNNRPDETECQIKC	50 50 50
Tobacco Arabidopsis Lettuce	GDLFENSVVDEFNECAVSRKKCVPRKSDVGDFPVPDPSVLVQKFDMKDFS	100 100 100
Tobacco Arabidopsis Lettuce	GKWFITRGLNPTFDAFDCQLHEFHTE.ENKLVGNLSWRIRTPDGGFFTRSY-S	149 150 149
Tobacco Arabidopsis Lettuce	AVQKFVQDPKYPGILYNHDNEYLLYQDDWYILSSKVENSPEDYIFVYYKGNQVRTDLAF-HQIK-DR-	199 200 199
Tobacco Arabidopsis Lettuce	RNDAWDGYGGSVLYTRSAVLPESIIPELQTAAQKVGRDFNTFIKTDNTCG	249 250 249
Tobacco Arabidopsis Lettuce	PEPPI.VERLEKKVEEGERTIIKEVEEIEE <u>EVEK</u> VRDKEVTLFSKLF AI-TI-V <u>EVEK</u> GRT-MQR-A TAKI.IAV <u>EVEK</u> T-MQR-L	295 300 299
Tobacco Arabidopsis tettuce	EGFKELQRDEENFLRELSKEEMDVI.DGLKMEATEVEKI.FGRALPIRKLRN-KQVEF-EISKVQVKEI-NE-Q	344 349 348

- A Cysteine-rich domain
- B Lipocalin signature
- C Highly charged domain

Percent Identity and Similarity* of Pre-protein VDE

	Lettuce	Tobacco	Arabidopsis
Lettuce		67 (78)	69 (82)
Tobacco	69	Protein CDNA	68 (81)
Arabidopsis	66	68	

^{*}similarity values are in parentheses

Percent Identity and Similarity* of Mature VDE

	Lettuce	Tobacco	Arabidopsis
Lettuce		82 (90)	83 (91)
Tobacco	76	protein CDNA	83 (92)
Arabidopsis	74	77	

^{*}similarity values are in parentheses

FIGURE 7B

Plant	realment		- 1							
Ct-11	Dark	77 13	64 67	1 54	0	66 21	335 12	0 39	136.95	
	Light	77 65		6 25	30 93	62 74	338 15	0 40	131 76	60 5
Ct-12	Dark	71 60	77 74	1 19	0	78 93	312.05	0 36	150 08	
	Light	72 00	29 07	7.97	43 07	80 11	311.36	0 37	151 50	62 6
Ct-15	Dark	76 68	67 44	0	0	67 44	345 73	0 43	130.05	
	Light	74 45	26 73	7 78	37 44	71.95	337 87	0 42	126 36	60 4
Ct-18	Dark	68 28	82 55	2.33	0	84 88	288 36	0 35	136 67	
	Light	69 65	34 50	13.25	38 44	86 19	311 07	0 36	138 95	58.2
Ct-20	Dark	78 45	70 60	2 85	0	73 45	351 57	0 39	139 58	
	Light	77 38	23 14	5 46	42 66	71 26	343.25	0 39	133 61	67.2
CI-22	Dark	72 68	104 14	3 40	0	107 54	323.93	0 37	138.29	
	Light	72.13	27.63	6 62	78.66	112.91	315.07	0 40	128.30	73.5
Ct-24	Dark	70 77	76 82	1 55	0	78 37	334.20	0 43	132 95	
	Light	76 52	29 35	7 92	45.24	82 51	339 60	0 44	131 55	61.8
Ct-26	Dark	75.28	63 41	0	0	63 41	346 45	0 4	130.38	
	Light	77 34	26.27	6 16	34 19	66 62	346 91	0 44	128 27	58 6
Ct-30	Dark	78.23	59 66	1 73	0	61 39	357 63	0 45	127 62	
	Light	79 37	. 26 47	4 93	31.61	63 01	352 39	0 46	124 80	556
Ct-31	Dark	71 72	75 91	1 74	0	77 65	315 40	0 37	144.24	
	Light	73.00	31 43	8 74	37 65	77 82	312.80	0.38	145 13 -	586
Ct-39	Dark	75.99	77 93	0	0	77 93	335 79	0 43	127 17	
	Light	74 79	26 28	8 07	41.30	75 65	331 35	0 42	123 11	66.3
C1-40	Dark	77 56	79 07	2.99	0	82 06	358 33	0 44	126 05	
	tioht	77 78	27 44	10 10	47.03	B5.46	35 056	67.0	120 80	6 10

Mean = 62.4 \pm 5.0 N = 9'-cis-neoxanthin V = violaxanthin A = antheraxanthin Z = zeaxanthin L = lutein Chla = chlorophyll a Chlb = chlorophyll b All values are relative to chlorophyll a (mmol mol.1 Chla) except Chlb/Chla which is (mol/mol).

- 2																											
% Inhibition of De-epoxidation		94 1		92 5	,	72.0	i i	A C O		63.6	1	62.7		4.00		45.3		44.2	;	40.1		39.7	u o	0.000	7 36	†	
%V De-epoxidized		3.7		4.7		17.5	,	21.3		22.7		23.3	. ;	27.8		<u>x</u>		. 34.8		37.4		37 6	c	38.3	,	7.85	
ßß-Carotene	136.45	131 73	141 45	141.52	132.85	130 33	139 00	137 13	143 42	139.28	135.36	132.78	136 77	135 36	135 81	134 62	138 89	136.00	151 33	151.35	130 30	128 88	135 43	131 /3	140 21	136.93	133 21
Chlb/Chla	0.42	0 41	0 41	0 40	0 45	0 45	0.39	0 40	0 41	0 40	0.45	0 45	0 44	0 44	0.39	0 38	0.43	0 44	0.36	0.36	0 42	0 42	0 42	0.42	0.42	0 42	0 40
ر	325 75	330 95	329 29	322.29	335 21	326 90	300 82	300.63	317 69	325.32	339 63	340 45	340 84	332.00	323 30	313 46	319.39	322 14	295 52	308.06	342.09	337 57	321 12	320.33	324.02	317.11	321.37
V+A+Z	76 98	76.33	59.19	60 69	53 19	60.57	82.64	85 24	65.62	66.91	20 60	49 94	55 77	63 95	60 42	63 43	62 01	61 00	79.28	74 30	64.29	67 35	69 54	68.86	54.32	56 50	72 83
2	٥	0	0	0	0	9 37	0	8 27	0	8 53	0	7 18	0	13 99	c	9.98	0	14.33	0	12.81	0	17 49	0	17 84	0	18.59	0
- ~ ~ ~	- c	2 18	0	2.70	0	7.30	3 43	14.66	1 08	8 49	1 27	4 94	0	69 6	1 24	14 48	1 76	7 41	1.42	12.76	1 05	10 38	1 31	8 95	1 75	6 19	181
>	78 98	74 15	59 19	56.39	53 19	43.90	79 21	62.31	25	49 89	49.33	37 82	55 77	40.27	97	38 97	80.05	39.26	77.86	48.73	63.24	39 48	68.23	42.07	52 57	31.72	71 02
z	77.10	73.78	77 92	75 06	75.78	77 92	67.82	69.72	74 89	74 00	7 63	78.02	74 47	74.95	5	71.36	70	76 98	69 77	70.74	75.50	75 76	73 61	73.23	72.28	73 28	72 55
Treatment	1	Light	į	Light	ģ	Light Tight	Çaçı	Light	Ş	Light	ç	Light	, te	r g	ć	C oak	, ;	Light	Ą	Light	ł	Light	Dark	Light	Dark	Light	Dark
Plant	00.00	IAS-32	706.30	85-5X	4	7.54	745.5	2	100 47	5	, ,	2 - 0 < 1	9 0 4 1	9-54	1	TAS-37	6	79.7	70025	2	30 347	5	TAS-4	!	TAS-9) }	TAS-7

FIGURE 8 2 OF 3

29.6	28.8	25.0	24 8	23.7
43.9	4 4	46 8	46.9	47 6
130 57	135 87 133 77	135 12 131.32	127 38 126 85	131 12 128.96
0 40	0.41.	0.41	0 42 0 42	0 41 0 42
322.04	329 67 331 17	329 72 335.60	345 04 340.79	326.06 316 49
74 95	63 74 62 85	64 58 66.21	61.36 61.80	67 18 73.93
21.09	0 19 57	0 23 83	0 23 01	30 41
14.04	1 77 8 83	9.10	172	1 79 9 26
39 82	61 97 34 45	62 54 33.28	59 64 31.68	65.39
71 79	71 66 73.24	72 15 74 04	75.09 75.26	72.35
Light	Dark Light	Dark Light	Dark Light	Dark Light
	TAS-38	TAS-16	TAS-18	TAS-34

N = 9°-c/s-neoxanthin V = violaxanthin A = antheraxanthin Z = zeaxanthin L = tutein Chla = chlorophyll a Chlb = chlorophyll b

All values are relative to chlorophyll a (mmol mol-1 Chia) except Chib/Chia which is (mol/mol)

	Dark-adapted	Pre-illuminated	Post-fluorescence Analysis
V	04.00		
-	64.28	51.77	44.98
_ `	1.99	6.16	11.10
Z	0	10.17	13.77
V+A+Z	66.27	68.10	69.85
De-epoxidation (%)		19.5	30.00
(Fm/Fm') - 1			2.20
(Fo/Fo') - 1			0.15

All values are relative to chlorophyll a (mmol mol⁻¹ Chla).

		Analysis
		07.00
67.51	NA	65.38
0	NA	2.14
0	NA	0
67.51	NA	67.52
	NA	3.20
		1.34
		0
	0	0 NA 0 NA 67.51 NA

All values are relative to chlorophyll a (mmol mol⁻¹ Chla).

NA - Not assayed

United States Patent & Trademark Office

Office of Initial Patent Examination -- Scanning Division

Application deficiencies found during scanning:

	Application papers are not suitable for scanning and are not in compliance with 37 CFR 1.5 because.
	All sheets must be the same size and either A4 (21 cm × 29 T cm) or 8-1/2"x 11" Pages
2	 Drawings are not in compliance and were not scanned because. ☐ The drawings or copy of drawings are not suitable for electronic reproduction. ☐ All drawings sheets are not the same size. Pages must be either A4 (21 cm x 29.7 cm) or 8-1/2" x 11" ☐ Each sheet must include a top and left margin of at least 2.5 cm (1"), a right margin of at least 1.5 cm (9/16") and a bottom margin of at least 1.0 cm (3/8").
3	Pagers) are not of sufficient clarity, contrast and quality for electronic reproduction.
4	Page(s) are missing.
5	OTHER NO DECLARATION ENCLOSED