

Interactive Mathematical Proof Verification System

Daniel Armaganian, Tzahi Bakal

Supervisors: Dr. Dan Lemberg, Mrs. Elena Kramer

Motivation

Background

LLMs like ChatGPT, can generate complex mathematical proofs.

Problem

ChatGPT lacks the ability to verify these proofs.

Need

A system to verify Al-generated proofs for accuracy.

Introduction

Study Focus

Address the challenge of verifying ChatGPT-generated mathematical proofs.

Methodology

Utilizes ChatGPT's API and Agda's verification based on Intuitionistic and Homotopy Type Theories.

Objective

Create a system that verifies proofs generated by ChatGPT, verified through Agda.

Outcome

A system that reliably verifies ChatGPT-generated mathematical proofs.

Technologies and Theories

- Intuitionistic and Homotopy Type Theories
- ()2) Agda
- 03 ChatGPT

Intuitionistic and Homotopy Type Theories

- Intuitionistic Type Theory:
 - Treats proofs as algorithms proving something means constructing it step by step.
- Homotopy Type Theory:
 - Simplifies handling complex structures using the Univalence Axiom, treating equivalent objects as identical.

Agda

- What is Agda?
 - A dependently typed functional programming language
 - Used for writing and verifying formal proofs
- Why Agda?
 - Treats proofs as algorithms
 - Allows complex mathematical structures with precise verification

```
data \mathbb{N} : Set where zero . \mathbb{N} suc \mathbb{N} \to \mathbb{N}
```

$$_{\text{zero}}^{+}$$
 $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$
 zero n = n
 suc m n = suc (m + n)

ChatGPT

- What is ChatGPT?
 - A Large Language Model designed for natural language processing
- Why ChatGPT?
 - Generates human-like proofs from natural language inputs
 - Provides an API that will be used for communication with Agda

Research/Engineering Process

- Ol Algorithm
- 02 Diagrams
- 03 Challenges
- 04 Prototype

Algorithm

Receive mathematical proof request from user ChatGPT generates mathematical proof Verify generated mathematical proof using Agda Refine proof Send feedback back to ChatGPT Display results

Diagrams

Use Case Diagram

Diagrams

Activity Diagram

Challenges

- Non-Convergence
- Efficiency
- Smooth communication between ChatGPT and Agda
- Agda code

Prototype

Verification Plan

Test Case	Test Case Description	Expected Outcome
1	Input a valid natural language mathematical statement into ChatGPT	ChatGPT generates a semi-formal proof, which is translated into Agda code for verification
2	Proof verification fails due to incorrect input	The system provides feedback, and ChatGPT refines the proof
3	Input a large and complex proof statement	The system efficiently handles the input and completes verification within an acceptable time-frame

Verification Plan

Test Case	Test Case Description	Expected Outcome
4	Attempt to verify an invalid or incomplete proof	The system detects the errors, provides feedback, and does not falsely confirm validity
5	User interrupts the iterative refinement process	The system safely halts the refinement process, saving the current state of the proof
6	The maximum duration of the iterative process is reached	The system safely halts the refinement process, saving the current state of the proof

Expected Achievements

1

Successful Convergence of ChatGPT Generated Proofs

2

Increased Efficiency in Mathematical Proof Verification

3

Improved Trustworthiness of ChatGPT Generated Proofs

Thank You for Listening!

