Longitudinal data

Nora Wickelmaier

Last modified: December 6, 2024

Outline

1 Introduction mixed-effects models

2 Sleep study

3 Parameter estimation

Introduction mixed-effects models

Mixed-effects models

- Mixed-effects models take account of dependencies in hierarchical, longitudinal, and other dependent data
- Mixed-effects models have been developed in a variety of disciplines with varying names and terminology
 - Random-effects models (statistics, econometrics)
 - Variance and covariance component analysis (statistics)
 - Hierarchical linear models (education)
 - Multilevel models (sociology)
 - Contextual-effects models (sociology, political science)
 - Random-coefficient models (econometrics)
 - Repeated-measures models (statistics, psychology)

Fox (2016)

Data schema for dependent data

Person Time		Observ.	Covariates				
1	1	<i>y</i> ₁₁	X ₁₁₁		X _{11p}		
1	2	<i>y</i> ₁₂	<i>x</i> ₁₂₁		x_{12p}		
1	n_1	y_{1n_1}	x_{1n_11}		x_{1n_1p}		
Ν	1	YN1	x_{N11}		x_{N1p}		
Ν	2	YN2	x_{N21}		x_{N2p}		
Ν	n_N	y_{Nn_N}	x_{Nn_N1}		X_{Nn_Np}		

- $i = 1, \ldots, N$ persons
- $j = 1, \ldots, n_i$ time points for person i
- All observations: $\sum_{i}^{N} n_{i}$
- Vector of all observations for person i $(\mathbf{y}_i)_{n_i \times 1}$
- Vector of covariates for person i at time point j $(\mathbf{x}_{ij})_{p \times 1}$
- All covariates of person i
 (X_i)_{n_i×p}

- ullet Consider two normal random variables X and Y with a correlation ho_{xy}
- We then have a bivariate normal distribution with mean vector μ and covariance matrix $oldsymbol{\Sigma}$

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \left(\mu = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, \, \mathbf{\Sigma} = \begin{pmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{pmatrix} \right)$$

where
$$\sigma_{xy} = \rho_{xy} \cdot \sigma_x \cdot \sigma_y$$

Mixed-effects models

- Mixed-effects models are a class of statistical models that include fixed effects as well as random effects
- Fixed effects vs. random effects¹
 - For fixed effects, only effects of the factor levels used in the present study are considered (manipulated conditions, e.g., assigned groups, but also sex, or other variables . . .)
 - → Of interest is how these levels differ
 - For random effects, the factor levels considered in a study are regarded as a (random) sample from some population (e.g., words, raters, subjects, . . .)
 - ightarrow Of interest are conlusions about the underlying population and its variation

¹Some critical discussion on these definitions: http://andrewgelman.com/2005/01/25/why_i_dont_use/

Crossed random effects

• In many experiments in psychology the reaction of each subject $(j=1,\ldots,N)$ to a complete set of stimuli or items $(k=1,\ldots,K)$ is measured

$$y_{ijk} = \beta_0 + \beta_i x_i + v_{0j} + \eta_{0k} + \varepsilon_{ijk}$$

Cubicat

with
$$\varepsilon_{ijk} \stackrel{iid}{\sim} N(0, \sigma^2)$$
, $\upsilon_{0j} \stackrel{iid}{\sim} N(0, \sigma_\upsilon^2)$, and $\eta_{0k} \stackrel{iid}{\sim} N(0, \sigma_\eta^2)$

Data are completely crossed: all subjects work on all items

				Subj	lect	
		1	2	3		20
	1	1	1	1		1
	2	1	1	1		1
Item	3	1	1	1		1
	:	:	:	:	:	:
	10	1	1	1		1
	10		т_	т_		

Crossed random effects

```
> head(dat, 12)
       cond
              item
                     av
    1 cond1 item01 105
    1 cond1 item02 116
    1 cond1 item03 104
    1 cond1 item04
    1 cond1 item05
                     99
    1 cond1 item06 109
    1 cond1 item07 100
    1 cond1 item08 103
    1 cond1 item09
                     89
10
    1 cond1 item10
                     94
11
    2 cond1 item01 107
    2 cond1 item02 100
```

```
> xtabs( ~ item + id. dat)
        id
item
                  5 6 7 8 9 ...
  item02.1
  item04 1
  item05
  item06
  i \pm em 07
  item08
  item09
  item10
```

Nested random effects

- We talk about nested random effects, when certain levels of one factor are combined only with certain leves of another factor (factors are nested within each other)
- The standard example for a nested design are students in classes in schools

$$y_{ijk} = \beta_0 + v_{0i} + \eta_{0ij} + \varepsilon_{ijk}$$

Classes

with $\varepsilon_{ijk} \stackrel{iid}{\sim} N(0, \sigma^2)$, $\upsilon_{0i} \stackrel{iid}{\sim} N(0, \sigma_v^2)$, and $\eta_{0ij} \stackrel{iid}{\sim} N(0, \sigma_\eta^2)$

						Cla	15565				
		1	2	3	4	5	6	7	8	9	10
	1	n_1	n_2								
	2			n_3	n_4						
Schools	3					n_5	n_6				
	4							n_7	<i>n</i> ₈		
	5									n_9	n_{10}

Nested random effects

```
> head(dat, 12)
   id
        class
               school
    1 class01 school1 105
    2 class01 school1
    3 class01 school1 119
    4 class01 school1
    5 class01 school1 107
    6 class01 school1 100
    7 class01 school1
    8 class01 school1 108
    9 class01 school1 108
   10 class01 school1
   11 class01 school1
12 12 class01 school1
```

Linear model

• We have observations $(y_i, x_{i1}, \dots, x_{ip})$ with $i = 1, \dots, N$ and the stochastical model

$$y_i = \beta_0 + \beta_1 \cdot x_{i1} + \ldots + \beta_p \cdot x_{ip} + \varepsilon_i$$

$$\varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$$

In matrix notation

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \boldsymbol{\varepsilon}_i$$

which corresponds to

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_N \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ 1 & x_{31} & x_{32} & \dots & x_{3p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{N1} & x_{N2} & \dots & x_{Np} \end{pmatrix} \cdot \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \vdots \\ \varepsilon_N \end{pmatrix}$$

Linear mixed-effects model

• The linear mixed-effects model has the general form

$$\mathbf{y}_i = \mathbf{X}_i \, eta + \mathbf{Z}_i \, oldsymbol{v}_i + oldsymbol{arepsilon}_i$$

with fixed effects β , random effects v_i , and the design matrices X_i and Z_i and the assumptions

$$\boldsymbol{v}_i \stackrel{iid}{\sim} N(\mathbf{0}, \boldsymbol{\Sigma}_{v}), \qquad \boldsymbol{\varepsilon}_i \stackrel{iid}{\sim} N(\mathbf{0}, \sigma^2 \mathbf{I}_{n_i})$$

This implies for the marginal covariance matrix

$$Cov(\mathbf{y}_i) = \mathbf{\Sigma}_i = \mathbf{Z}_i \mathbf{\Sigma}_v \mathbf{Z}_i' + \sigma^2 \mathbf{I}_{n_i}$$

Linear mixed-effects model

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_N \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ 1 & x_{31} & x_{32} & \dots & x_{3p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{N1} & x_{N2} & \dots & x_{Np} \end{pmatrix} \cdot \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} z_{10} & z_{11} & \dots & z_{1q} & \dots \\ z_{20} & z_{21} & \dots & z_{2q} & \dots \\ z_{30} & z_{31} & \dots & z_{3q} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ z_{N0} & z_{N1} & \dots & z_{Nq} & \dots \end{pmatrix} \cdot \begin{pmatrix} \upsilon_{10} \\ \vdots \\ \upsilon_{1q} \\ \upsilon_{20} \\ \vdots \\ \upsilon_{Nq} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \vdots \\ \varepsilon_N \end{pmatrix}$$

Linear mixed-effects model

• Random intercept model

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + v_{0i} + \varepsilon_i$$

with $v_{0i} \stackrel{iid}{\sim} N(0, \sigma_v^2)$, $\varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$, v_{0i} and ε_{ij} i.i.d.

Random slope model

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + v_{0i} + v_{1i} x_{ij} + \varepsilon_i$$

with

$$\begin{pmatrix} v_{0i} \\ v_{1i} \end{pmatrix} \stackrel{iid}{\sim} N \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{\Sigma}_{v} = \begin{pmatrix} \sigma_{v_0}^2 & \sigma_{v_0v_1} \\ \sigma_{v_0v_1} & \sigma_{v_1}^2 \end{pmatrix} \end{pmatrix}$$

$$\boldsymbol{\varepsilon}_i \stackrel{iid}{\sim} N(\mathbf{0}, \sigma^2 \mathbf{I}_{n_i})$$

Longitudinal data

- Longitudinal data consist of repeated measurements on the same subject taken over time
 - are special cases of mixed-effects models
 - contain a time covariate
 - time trends within and between subjects are of interest
- We will look at an example from the lme4 package²

```
library(lme4)
data(sleepstudy)
?sleepstudy
str(sleepstudy)
summary(sleepstudy)
head(sleepstudy)
```

²The example can be found in a book draft by Douglas Bates: http://lme4.r-forge.r-project.org/ or the JSS paper on lme4: https://www.jstatsoft.org/article/view/v067i01

Sleep study

- Average reaction time per day for subjects in a sleep deprivation study
- On day 0, the subjects had their normal amount of sleep
- Starting that night they were restricted to 3 hours of sleep per night
- Observations represent the average reaction time on a series of tests given each day to each subject

A data frame with 180 observations on the following 3 variables

Reaction	Average reaction time (ms)
Days	Number of days of sleep deprivation
Subject	Subject number on which the observation was made

Visualization of data

boxplot(Reaction ~ Days, sleepstudy)

Visualization of individual data


```
library(lattice)

xyplot(Reaction ~ Days | Subject,
  data = sleepstudy,
  type = c("g","b"),
  xlab = "Days of sleep deprivation",
  ylab = "Average reaction time (ms)",
  aspect = "xy")
```

Random intercept model

 The random intercept model adds a random intercept for each subject

$$y_{ij} = \beta_0 + \beta_1 Days_{ij} + v_{0i} + \varepsilon_i$$

with
$$v_{0i} \stackrel{iid}{\sim} N(0, \sigma_v^2)$$
, $\varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$

 The slope is identical for each subject (and the population)

Random intercept model

```
lme0 <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy)</pre>
summary(lme0)
# model matrices
X <- model.matrix(~ Days, sleepstudy)</pre>
Z <- model.matrix(~ 0 + Subject, sleepstudy)</pre>
# coefficients
coef(lme0)
fixef(lme0)
ranef(lme0)
```

Random slope model

 The random slope model adds a random intercept and a random slope for each subject

$$y_{ij} = \beta_0 + \beta_1 Days_{ij} + v_{0i} + v_{1i} Days_{ij} + \varepsilon_{ij}$$

with

$$\begin{pmatrix} v_{0i} \\ v_{1i} \end{pmatrix} \stackrel{iid}{\sim} N \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \; \mathbf{\Sigma}_{v} = \begin{pmatrix} \sigma_{v_0}^2 & \sigma_{v_0v_1} \\ \sigma_{v_0v_1} & \sigma_{v_1}^2 \end{pmatrix} \end{pmatrix}$$

$$\varepsilon_{ii} \stackrel{iid}{\sim} N(0, \sigma_{\varepsilon}^2)$$

Individual slopes for each subject

Random slope model

```
lme1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)</pre>
summary(lme1)
# model matrices
X <- model.matrix(~ Days, sleepstudy)</pre>
Z <- model.matrix(~ 0 + Subject + Subject:Days, sleepstudy)
# coefficients
coef(lme1)
fixef(lme1)
ranef(lme1)
```

Model with uncorrelated random effects

• We will now consider a model without correlated random effects

$$y_{ij} = eta_0 + eta_1 Days_{ij} + v_{0i} + v_{1i} Days_{ij} + arepsilon_{ij}$$

with

$$v \stackrel{iid}{\sim} N\left(\mathbf{0}, \mathbf{\Sigma}_v = \begin{pmatrix} \sigma_{v_0}^2 & 0 \\ 0 & \sigma_{v_1}^2 \end{pmatrix}\right) \quad \text{and} \quad \varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma_{\varepsilon}^2)$$

```
lme2 <- lmer(Reaction ~ Days + (Days || Subject), sleepstudy)
summary(lme2)

# likelihood-ratio test
anova(lme1, lme2)
# confidence intervals
confint(lme2)</pre>
```

Confidence intervals and interpretation

- The results indicate that the extra parameter $\sigma_{v_0v_1}$ does not produce a significantly better fit
- Results show that we have a significant effect for days with an average increase in reaction time of 10.47 ms for each day of sleep deprivation
- We get an estimate of $\sigma_{\upsilon_0}=24.17$ for the standard deviation of reaction time for subjects and a standard deviation of $\sigma_{\upsilon_1}=5.80$ for the dependence of reaction time on days of sleep deprivation

Examining random effects and predictions

```
coef(lme2)
fixef(lme2)
ranef(lme2)
# correlational structure for intercepts and slopes
dotplot(ranef(lme2, condVar = TRUE),
        scales = list(x = list(relation = "free")))[[1]]
# predictions for all subjects
predict(lme2)
```

Examining random effects and predictions

Subject

Examining random effects and predictions

- Within-subject regression line shows regression line fitted to data for each individual
- Population regression line shows fixed effects for mixed-effects model
- Mixed model regression line shows individual regression lines as predicted by mixed-effects models

Shrinkage

- When per-subject slopes and intercepts calculated from a mixed-effects model are compared to estimated slopes and intercepts within subjects, estimates from mixed-effects model are closer to the population estimates (the fixed effects)
- This pattern is sometimes described as shrinkage of coefficients toward the population values
- The more within-subject variance, the stronger parameters shrink towards the population parameters

Assumptions

- Assumptions can be checked visually
- Normality assumption

```
qqmath(lme2,
     col = sleepstudy$Subject,
    pch = sleepstudy$Days)
```

• Independence assumption

https://bbolker.github.io/morelia_2018/notes/mixedlab.html

Assumptions

Maximum Likelihood Estimation

- The maximum likelihood principle was introduced by R. A. Fisher
 - It can be used for almost all estimation problems, also complex ones
 - The resulting estimation functions have many desirable properties
- Obtaining the MLE $\hat{\vartheta}$ takes the following steps
 - 1. Generate the log-likelihood

$$\log L(\vartheta)$$

2. Take the derivative of the log-likelihood with respect to parameter ϑ

$$(\log L)'(\vartheta) = \frac{d \log L(\vartheta)}{d\vartheta}$$

3. Set the derivative equal to 0

$$(\log L)'(\hat{\vartheta}) = 0$$

4. Solve the resulting equation for the estimator $\hat{\vartheta}$

Restricted Maximum Likelihood Estimation

- The restricted maximum likelihood (REML) approach is a form of Maximum Likelihood Estimation
- In particular, REML is used as a method for fitting linear mixed-effects models
- In contrast to traditional Maximum Likelihood Estimation, REML can produce unbiased estimates of variance and covariance parameters
- MLE and REML do not outmatch each other, both can be used
- REML is the default in 1me4, but if we want to conduct likelihood ratio tests, only MLE estimates are valid

References

- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using Ime4. *Journal of Statistical Software*, *67*(1), 1–48. https://doi.org/10.18637/jss.v067.i01
- Bates, D. M. (2010). Ime4: Mixed-effects modeling with R.
- Fox, J. (2016). Applied regression analysis and generalized linear models. Sage Publications.