تمرین سری چهارم درس هدایت و ناوبری

على بنىاسد

۲۹ خرداد ۲،۹۲

١ سوال اول

در این سوال به بررسی مسیر بالستیک موشک و مسیر بهینه آن پرداخته شده است.

١٠١ بخش الف

در این بخش به بررسی معادلات حرکت جسم نقطه در صفحه پرداخته شده است. معادلات حرکت جسم نقطه در صفحه به صورت زیر است:

$$\ddot{\mathbf{r}} = -\frac{GM}{r^3}\mathbf{r} + \text{Thrust} + \text{Drag} \tag{1}$$

در این معادله Thrust نیروی پیشران موشک و Drag نیروی مقاومت هوایی موشک است. در این مسیر فرض شده است که نیروی پیشران موشک به صورت زیر است:

Thrust =
$$\frac{T}{m}\hat{\mathbf{v}}$$
 (Y)

در این معادله T نیروی پیشران موشک و m جرم موشک است. همچنین فرض شده است که نیروی مقاومت هوایی به صورت زیر است:

$$Drag = -\frac{1}{2}\rho C_D A \dot{r} \hat{\mathbf{v}} \tag{\ratau}$$

در این معادله ρ چگالی هوا، C_D ضریب مقاومت هوایی و A مساحت مقطع عرضی موشک است. با جایگذاری معادلات (۲) و (۳) در معادله (۱) داریم:

$$\ddot{\mathbf{r}} = \left(-\frac{GM}{r^3}\mathbf{r} + \frac{T}{m}\hat{\mathbf{v}} - \frac{1}{2}\rho C_D A \dot{r} \hat{\mathbf{v}}\right) / (m - \dot{m}) \tag{\$}$$

با توجه به اینکه در این مسیر فرض شده است که موشک در ارتفاعهای بالا حرکت میکند، میتوان فرض کرد که چگالی هوا از رابطه زیر استفاده میشود:

$$\rho = \rho_0 \exp\left(-\frac{h}{h_0}\right) \tag{2}$$

پارامترهای معادله به صورت زیر تعریف میشوند:

- r : بردار موقعیت جسم نقطه
 - نابت گرانشی: $G \bullet$
 - جرم جسم مرکزی $M \bullet$
- و ناصله جسم نقطه از مرکز جسم مرکزی $r \bullet$

بردار موقعیت جسم نقطه به صورت زیر تعریف میشود:

$$\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} \tag{9}$$

با جایگذاری معادله (۶) در معادله (۱) داریم:

$$\ddot{x}\hat{\mathbf{i}} + \ddot{y}\hat{\mathbf{j}} = -\frac{GM}{(x^2 + y^2)^{3/2}}(x\hat{\mathbf{i}} + y\hat{\mathbf{j}}) \tag{Y}$$

بر اساس روابط بالا ارتفاع به صورت زیر بدست میآید.

$$h = \sqrt{x^2 + y^2} - a \tag{A}$$

در این رابطه a بیانگر شعاع زمین است. برای محاسبه سرعت تغیرات ارتفاع نیز به صورت زیر تعریف می شود.

$$\dot{h} = \frac{x\dot{x} + y\dot{y}}{\sqrt{x^2 + y^2}} \tag{9}$$

همچنین طول جغرافیایی برابر است با:

$$\lambda = \tan^{-1}\left(\frac{y}{x}\right) \tag{10}$$

و تغیرات طول جغرافیایی برابر است با:

$$\dot{\lambda} = \frac{x\dot{y} - y\dot{x}}{x^2 + y^2} \tag{11}$$

زاویه حمله به صورت زیر تعریف میشود:

$$\gamma = \tan^{-1} \left(\frac{\dot{h}}{\dot{\lambda}} \right) \tag{1Y}$$

با جایگذاری معادلات (۹) و (۱۱) در معادله (۱۲) داریم:

$$\gamma = \tan^{-1} \left(\frac{x\dot{y} - y\dot{x}}{x\dot{x} + y\dot{y}} \right) \tag{17}$$

لهرست مطالب	ۏ
سوال اول ۱۰۱ بخش الف	١
لهرست تصاویر	ۏ
پهر ست جداول	ۏ