Abstractions += Landmarks

C. Domshlak M. Katz S. Lefler

Faculty of Industrial Engineering and Management Technion - Israel Institute of Technology ∃ackground

LM Enriched Task

Experimental Evaluation

Context

Background

Planning Forks

LM Enriched

Experimental Evaluation

Fork Abstractions

(K & Domshlak, ICAPS08)

Background Planning

Forks

LM Enriched Task

Experimenta Evaluation

Summar

+ ensuring proper action cost partitioning

Goal Sensitivity

Background

Forks

LM Enriched

Experimental Evaluation

Goal Sensitivity

Background

Forks

LM Enriched

Experimental Evaluation

Goal Sensitivity

Background

Forks

LM Enriched

Experimental Evaluation

Landmarks

Landmark = Implicit Goal

- A landmark is a fact that must be true at some point in every valid plan (Hoffmann, Porteous and Sebastia 2004)
- Some landmarks can be discovered automatically (Hoffmann, Porteous and Sebastia 2004, Richter, Helmert and Westphal 2008)

Planning

Landmarks

Task

Experimental Evaluation

Classical Planning Task

$$\Pi = \langle V, A, \mathscr{C}, I, G \rangle$$

Background

LM Enriched Task

Experimental Evaluation

Classical Planning Task

$$\Pi = \langle V, A, \mathscr{C}, I, G \rangle$$

Background

LM Enriched Task

Experimental Evaluation

Classical Planning Task

$$\Pi = \langle V, A, \mathcal{C}, I, G \rangle$$

Landmarks Set

$$L = \{l_1 \dots l_k\}$$

Background

LM Enriched Task

Experimental Evaluation

Classical Planning Task

$$\Pi = \langle V, A, \mathcal{C}, I, G \rangle$$

Landmarks Set

$$L = \{l_1 \dots l_k\}$$

Background

LM Enriched Task

Experimental Evaluation

Classical Planning Task

 $\Pi = \langle V, A, \mathcal{C}, I, G \rangle$

Landmarks Set

$$L = \{l_1 \dots l_k\}$$

Landmark Enriched Task

$$\Pi_L = \langle V_L, A_L, \mathscr{C}_L, I_L, G_L \rangle$$

Background

LM Enriched Task

Experimental Evaluation

Classical Planning Task

 $\Pi = \langle V, A, \mathcal{C}, I, G \rangle$

Landmarks Set

$$L = \{l_1 \dots l_k\}$$

$$\Pi_L = \langle V_L, A_L, \mathscr{C}_L, I_L, G_L \rangle$$

• Solve Π_L instead of solving Π

Background

LM Enriched Task

Experimental Evaluation

Using Landmarks

- Given state s, the number of "to be achieved from s" landmarks |L(s)| can be used as an (inadmissible) estimate (Richter et. al.)
 - \spadesuit used by LAMA a state of the art satisficing planner, and winner of the IPC-2008 sequential satisficing track
 - ♠ proper cost partitioning between landmarks ⇒ admissible estimate (Karpas & Domshlak, IJCAI09)
- multi-path-dependent search LM-A* (Karpas & Domshlak, IJCAI09) maintains the "to be achieved from s" landmark sets L(s) well

Background

LM Enriched Task

Experimental Evaluation

Using Landmarks

- Given state s, the number of "to be achieved from s" landmarks |L(s)| can be used as an (inadmissible) estimate (Richter et. al.)
 - ♠ used by *LAMA* a state of the art satisficing planner, and winner of the IPC-2008 sequential satisficing track
 - ♠ proper cost partitioning between landmarks ⇒ admissible estimate (Karpas & Domshlak, IJCAI09)
- multi-path-dependent search LM-A* (Karpas & Domshlak, IJCAI09) maintains the "to be achieved from s" landmark sets L(s) well

Background

LM Enriched Task

Experimental Evaluation

Classical Planning Task

$$\Pi = \langle V, A, \mathscr{C}, I, G \rangle$$

Landmarks Set

$$L = \{l_1 \dots l_k\}$$

Landmark Enriched Task

$$\Pi_L = \langle V_L, A_L, \mathcal{C}_L, I_L, G_L \rangle$$

1 Solve Π_L instead of solving Π

Background

LM Enriched Task

Experimental Evaluation

Classical Planning Task

$$\Pi = \langle V, A, \mathscr{C}, I, G \rangle$$

Landmarks Set

$$L = \{l_1 \dots l_k\}$$

Landmark Enriched Task

$$\Pi_L = \langle V_L, A_L, \mathscr{C}_L, I_L, G_L \rangle$$

- Solve Π_L instead of solving Π
- **2** Solve Π while using Π_L for heuristic estimate
 - Run LM-A* on Π
 - Given state s of Π and "to be achieved from s" landmarks L(s)
 - map (s,L(s)) to the corresponding state s' of Π_L
 - compute $h^{\mathfrak{F}}(s')$ [wrt Π_L]

Background

LM Enriched Task

Experimental Evaluation

Evaluation

$\operatorname{domain}\left(\mathscr{D}\right) \qquad -$	$h^{\mathfrak{F}}$	$h^{\mathcal{F}}$ on Π_L		LM-h [∓]	
	S	S	%S	S	%S
airport-ipc4 (17)	20	18	0.76	17	0.64
blocks-ipc2 (17)	21	18	78.21	17	12.19
depots-ipc3 (4)	7	4	5.80	4	1.33
driverlog-ipc3 (10)	12	11	1.26	11	0.67
freecell-ipc3 (5)	5	5	0.28	5	0.29
grid-ipc1 (2)	2	2	0.52	2	0.10
gripper-ipc1 (5)	7	5	23.34	6	0.84
logistics-ipc1 (5)	6	6	1.19	5	0.61
logistics-ipc2 (20)	22	20	24.21	20	28.47
miconic-strips-ipc2 (48)	51	52	0.63	108	0.17
mprime-ipc1 (22)	23	22	12.21	23	4.46
mystery-ipc1 (20)	20	20	2.59	20	1.14
openstacks-ipc5 (7)	7	7	0.18	7	0.18
pathways-ipc5 (4)	4	4	1.00	4	1.00
pipesworld-notankage-ipc4 (15)	16	15	1.42	15	0.64
pipesworld-tankage-ipc4 (10)	10	10	1.57	10	0.67
psr-small-ipc4 (48)	49	49	1.01	48	0.99
rovers-ipc5 (5)	6	6	0.43	5	0.40
satellite-ipc4 (6)	6	7	0.35	7	0.17
tpp-ipc5 (5)	6	6	1.21	5	1.21
trucks-ipc5 (6)	6	7	0.30	7	0.14
zenotravel-ipc3 (9)	11	9	1.12	9	0.59
s(p)	317	303		355	

Background

LM Enriched Task

Experimental Evaluation

Summary

%S denotes the average of ratios of expanded nodes.

Summary

Conclusions

- Additional information from landmarks integrated into planning task increases informativeness
- Landmark enriched heuristics should use landmark enriched search procedures

Background

Task

Experimental Evaluation