Certification Details

Fundamentals of Deep Learning

The format for demonstrating knowledge in the Instructor Certification interview will be a question and answer session with the expectation that you can demonstrate the ability to field student questions and understand the concepts at a deeper level than those attending a workshop.

The following is not a comprehensive list of topics. You may be asked questions on topics not included below to show your mastery of the subject matter.

To become certified to instruct DLI's **Fundamentals of Deep Learning** workshop, you must be prepared to explain the following concepts / terminology:

RMSE / MSE	Features	Reinforcement Learning
Softmax classifiers	Activation functions	LLMs
Cross-entropy	Frameworks	Padding
Natural Language Processing	Dropout	Hyperparameters
Transformers and attention	Adam / Adagrad / RSMProp	Parameters
GenAI - VAEs. GANs, diffusion, etc.	SGD / GD	Transfer Learning
Pooling	CNNs	Image Classification
Overfitting	Training, validation, and test datasets	Forwards and backwards propagation

The following resources may assist you in preparing for your interview:

Optimizers		
Title	Link	
An Overview of Gradient Descent Optimization Algorithms	An overview of gradient descent optimization algorithms	
SGD optimizer (Josh Starmer)	Stochastic Gradient Descent, Clearly Explained!!! Note: A little campy	
Gradient Descent with Momentum (Andrew Ng)	Gradient Descent With Momentum (C2W2L06) Note: A little extra information	
RSMProp optimizer (Andrew Ng)	RMSProp (C2W2L07)	
Adam optimizer (Andrew Ng)	Adam Optimization Algorithm (C2W2L08) Warning: Scary math ahead	
Adagrad optimizer (minutes 5:29 - 9:19)	■ L26/1 Momentum, Adagrad, RMSProp, Adam	

Cross Entropy	
Title	Link
Entropy, Cross Entropy (Aurelien Geron)	https://www.youtube.com/watch?v=ErfnhcEV108

Batch Normalization	
Title	Link
Batch Norm (Andrew Ng)	▶ Why Does Batch Norm Work? (C2W3L06)
Batch Normalization (DeepLizard)	■ Batch Normalization ("batch norm") explained

Embeddings	
Title	Link
Quick overview of the concept of embeddings	■ Embeddings
Embeddings developed using GloVe	■ NLP for Developers: Word Embeddings Rasa

Natural Language Processing / Transformer

NOTE: You are not required to know NLP beyond the basics. The following resources cover additional topics that are not part of the interview but will prepare you for more advanced student questions should they arise.

4.00.00.00.00.00.00.00.00.00.00.00.00.00	
Title	Link
Attention Is All You Need (December 6, 2017)	https://arxiv.org/pdf/1706.03762
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (October 11, 2018)	https://arxiv.org/pdf/1810.04805.pdf
Stanford CS224N: NLP with Deep Learning – Winter 2019 Transformers & Self-Attention	■ Stanford CS224N: NLP with Deep Learning Wi
Consider also reading papers / vide	os on:
NVIDIA's Megatron	https://arxiv.org/pdf/1909.08053.pdf
OpenAl's GPT2 / GPT3	Video ■ GPT 3 Demo and Explanation - An Al revolution f Paper - Language Model for Few-Shot Learners https://arxiv.org/pdf/2005.14165.pdf
Microsoft's Turing-NLG	

