Linear Algebra II Recitation 3

Yasuyuki Kachi & Shunji Moriya

1. Let A, B be 2×2 matrices. <u>True or false</u>:

- (1a) $(A+I)^2 = A^2 + 2A + I$. (1b) $(A+B)^2 = A^2 + 2AB + B^2$.
- (1c) Suppose AB = BA. Then $(A + B)^2 = A^2 + 2AB + B^2$.
- (2) Suppose $\det A \neq 0$. Then $(ABA^{-1})^3 = AB^3A^{-1}$.
- 2. Diagonalize $A = \begin{bmatrix} 8 & 1 \\ 8 & 6 \end{bmatrix}$.
- 3. Let $A = \begin{bmatrix} 8 & -10 \\ 5 & -7 \end{bmatrix}$.
 - (1) Diagonalize A. In other words, find a 2×2 matrix Q such that $Q^{-1}AQ$ is diagonal (and find $Q^{-1}AQ$ for your matrix Q).
 - (2) Put $B = Q^{-1}AQ$ for the matrix Q you obtained in (1). Prove $A = QBQ^{-1}$.

(Hint: multiply the defining equation of B by Q from the left and by Q^{-1} from the right.)

(3) For any integer $n \geq 0$, find the *n*-th power A^n using (2).

(Hint: like 1-(2), we see $A^n = QB^nQ^{-1}$, and B^n is easy to compute since B is diagonal.)

4. Triangularize each of the following matrix into a Jordan canonical form. If not feasible, then say 'not feasible'.

(1)
$$A = \begin{bmatrix} 14 & -27 \\ 3 & -4 \end{bmatrix}$$
 (2) $A = \begin{bmatrix} 12 & 9 \\ -16 & -12 \end{bmatrix}$

$$(2) A = \begin{bmatrix} 12 & 9 \\ -16 & -12 \end{bmatrix}$$

5. Let $A = \begin{bmatrix} 0 & 1 \\ -3 & 4 \end{bmatrix}$. Diagonalize A, and using the result, find A^n .

Recitation 3, Answer

- $1. \ (1a) \quad \text{True.} \qquad (1b) \ \text{False} \qquad (1c) \quad \text{True} \qquad (2) \quad \text{True}.$
- 2. $Q^{-1}AQ = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$ where $Q = \begin{bmatrix} 1 & 1 \\ -4 & 2 \end{bmatrix}$.

 Alternatively, $PAP^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$ where $P = \frac{1}{6} \begin{bmatrix} 2 & -1 \\ 4 & 1 \end{bmatrix}$
- $3. \quad (1) \ \ Q^{-1}AQ = \begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix}, \quad \text{where} \quad \ Q = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}.$
 - (2) Omitted.

(3)
$$A^n = \begin{bmatrix} 2 \cdot 3^n - (-2)^n & 2 \cdot (-2)^n - 2 \cdot 3^n \\ 3^n - (-2)^n & 2 \cdot (-2)^n - 3^n \end{bmatrix}$$

- 4. (1) $Q^{-1}AQ = \begin{bmatrix} 5 & 0 \\ 1 & 5 \end{bmatrix}$, where $Q = \begin{bmatrix} \frac{1}{\sqrt{3}} & 3\sqrt{3} \\ 0 & \sqrt{3} \end{bmatrix}$.
 - (2) $Q^{-1}AQ = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, where $Q = \begin{bmatrix} 1 & 3 \\ -1 & -4 \end{bmatrix}$.
- 5. $Q^{-1}AQ = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$, where $Q = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$. $A^n = \frac{1}{2} \begin{bmatrix} 3 3^n & 3^n 1 \\ 3 3^{n+1} & 3^{n+1} 1 \end{bmatrix}$