Projects and laboratory on communication systems

Fissure sensor

FEZ49 GROUP

Antonietta Simone Domenico

Bulgarella Fabio

Loro Matteo

INTRODUCTION

- Our work consists on a board made up by several hardware components, taking these kinds of data from sensors:
 - Fissure size (X and Y axes)
 - Temperature
 - Humidity
 - Pressure
- HARDWARE:
 - FEZ Spider II
 - Sensors:
 - Laser mouse
 - Bosch BME280

FISSURE SENSOR:

Tecknet laser gaming mouse

- High resolution (8200 dpi, 0,003 mm)
- Laser sensor works on almost any surface
- Advantages compared to elastometers:
 - Lower price
 - Double directions measurement
 - Measurements not affected by temperature and other environmental conditions
 - It doesn't need a conditioning circuit
- Advantages compared to a standard mouse:
 - Better responsiveness
 - No standby-problem (power saving mode disabled)

Hardware

Bosch BME280 SENSOR:

Tempertature, pressure and humidity sensor

- TPH measurements are useful to understand how fissure size is affected by environmental parameters
- I2C interface fully supported by FEZ Spider II
- The sensor was calibrated in Politecnico LED with a Greisinger GFTH95, reference instrument
- Temperature range: -40°C / 85°C

LCD DISPLAY

- Shows real-time measurements
- Provides status icons:

TS: Time Sincronized

E: Ethernet Connection

M: MQTT Connection

XY: Mouse Connection

TPH: BME280 Connection

SD: SD card Connection

```
FEZ_49 Group
Temperature: 27.7 C*
Pressure: 1012.2 mBar
Relative Humidity: 43.2 %
DPI -> X: 0 Y: 0
mm -> X: 0.00 Y: 0.00
```

Sensor Drivers

Mouse

- Brand-new driver: the already available library didn't work properly, so we couldn't take advantage of mouse features
- RawDevice class used to read raw data directly from USB
- Compliant with HID protocol

BME280

- Out of range management implemented by us
- Compensation formulas alignment according to the calibration instrument

Data and Time Management

- A Time class is in charge of handle TimeService functionatilies needed to synchronize board clock to a NTP server
 - When SystemTimeChanged event is raised, the Time.SyncTimeOffset variable is set properly, so it can be used later to update unsynchronized timestamps
- System keeps track of time synchronization state and, according to it, adds a suffix (i.e. 20110601T003320_1351693418327) to JSON filename useful to:
 - Recognize unsynchronized files
 - Evaluate easily the new synchronized time when the file has to be converted, using the previously exposed variable

Storage and data submission

Sensors Handler

MQTT Handler

Receive ack from gateway (including file name)

Delete file correctly sent (file name received)

Cloud Connection

MQTT protocol has been used for both communication phases: Fez to GW and GW to Amazon IoT

Transmission algorithm:

- 1. JSON file is transmitted from FEZ to GW
- 2. GW sends an Ack toward FEZ to notify that JSON file was taken in charge.
- 3. GW, that has a "JSON file to be sent" queue, transmits measurements acquired to Amazon IoT.
- 4. Amazon IoT sends an Ack toward GW to notify that the JSON file was correctly received and measurements correctly processed.
- 5. GW builds an Ack containing the filename of correctly sent JSON and send it to FEZ.
- 6. FEZ process incoming Ack and delete corresponding file from SDcard.

Website – Home page

Website – Measurements page

Website – Board List page

Website – Map page

Test and Simulation

- Mechanical Fissure Simulator, realized with X and Y micrometer slides
- Push button to reset fissure displacements, useful during debug and installation phases

Test and Simulation

Mechanical Fissure Simulator

Thanks for your attention!