Analysis of Gender Wage Gap Across Educational Levels within Management Occupations

Scope and Data Filtering This analysis specifically targets the management occupations classified within the occupation codes 0010 to 0430. The dataset was filtered to include only individuals within these occupation codes, ensuring that the findings are relevant to the management sector.

Unconditional Gender Gap The initial analysis showed an unconditional gender gap in wages. This gap was quantified by adding a binary variable indicating gender (female = 1, male = 0) in a simple regression model where the dependent variable is the logarithm of hourly wages (lnw). The coefficient for the female variable was statistically significant and negative, suggesting that women earn less than men regardless of educational level.

Gender Gap Variation with Education Level To understand how the gender gap varies with educational attainment, the analysis expanded to include educational level variables. These variables were incorporated as dummy variables to capture the incremental effect of each educational level on the wage gap. The results showed that as the educational level increases, the gender wage gap changes, with the gap narrowing at higher education levels.

Inclusion of Marital Status

Further analysis incorporated marital status interaction terms to investigate their influence on the gender wage gap. The inclusion of these terms aimed to capture the combined effects of marital status and gender on wages. The model incorporating marital status interaction terms suggests that marital status also influences the gender wage gap, but like education, the significance of this influence varies. For example, coefficients for certain marital statuses, such as 'Widowed_divorced_88' and 'Divorced', were positive and statistically significant, indicating that women with these marital statuses may experience a different wage gap compared to never-married women.

Statistical Inference and Key Coefficients Interpretation The regression analysis provided the following key insights:

- The coefficient for the female variable in the simple model without education level controls was -0.186, with a p-value less than 0.05, indicating that women's earnings are about 18.6% less than men's when not accounting for education level.
- After including educational level controls, the coefficients for interaction terms between female
 and education levels showed differentials in the gender gap across educational categories. The
 coefficients for the interaction terms were positive but varied in significance. For instance, the
 coefficient for female*Post_secondary was 0.1738, suggesting a reduced gender wage gap at the
 post-secondary education level, but this coefficient was not statistically significant at
 conventional levels.
- The coefficient for female*Graduate was 0.9471, significant at the 10% level, indicating a substantial narrowing of the gender gap for those with graduate-level education.
- The model incorporating marital status interaction terms suggests that marital status also influences the gender wage gap, but like education, the significance of this influence varies. For example, coefficients for certain marital statuses, such as 'Widowed_divorced_88' and

- 'Divorced', were positive and statistically significant, indicating that women with these marital statuses may experience a different wage gap compared to never-married women.
- Regarding the R-squared value in the marital status regression output, it indicates that the
 model explains approximately 16.8% of the variability in the logarithm of hourly wages. When
 compared to earlier models that did not include marital status interaction terms, this value
 suggests a slight improvement in the model's ability to account for the variation in wages. This
 increase implies that the inclusion of marital status, alongside education level and gender, adds
 some explanatory power to the wage gap analysis, capturing more nuances of the underlying
 wage determinants.

Summary of Findings The analysis indicates that there is a persistent gender wage gap across all levels of education within management occupations. However, the gap diminishes with higher levels of educational attainment, being least pronounced among individuals with graduate degrees. This suggests that education may play a role in mitigating wage disparities between genders. The inclusion of marital status adds depth to the analysis, revealing that certain marital statuses, such as being widowed or divorced, are associated with a different wage pattern compared to never-married women, potentially indicating that marital status also has an influence on wage dynamics. Nevertheless, even after controlling for education and marital status, a statistically significant gap remains, which could be indicative of other underlying factors such as occupational segregation, work experience, or discrimination.

Tables and Graphs:

Regressions for unconditional Gender Gap

		Dependent variable: Inw
	(1)	(2)
female	-0.186***	-0.186***
	(0.010)	(0.011)
Constant	3.399***	3.399***
	(0.007)	(0.007)
Observations	14885	14885
R ²	0.021	0.021
Adjusted R ²	0.021	0.021
Residual Std. Error	0.633 (df=14883)	0.633 (df=14883)
F Statistic	318.849*** (df=1; 14883)	314.895*** (df=1; 14883)
Note:		p<0.1; "p<0.05; ""p<0.01

Robust SE slope: 0.06, CI [-0.234, 0.008] (wide)

- -> in 2014 in the USA we can be 95% confident that the average difference between hourly earnings of female market analysts versus male was -23% to 1%
- -> the Cl includes zero -> we cannot rule out with 95% confidence that their average earnings (female and male) are the same
- -> |t| = 1.8 < 1.96 cannot reject H_0
- -> it can be seen also by p-value> 0.05
- -> the coefficient cannot be considered statistically significant at 5% (significant at 10%)

Regression results for weekly earnings by education levels

Interaction terms

Out[21]: OLS Regression Results

OLO IVEGIESSION IVESI	JILS						
Dep. Variable:		1	nw	R-squa	red:	0.140)
Model:		0	LS A	lj. R-squa	red:	0.140)
Method:	Le	ast Squa	res	F-stati	stic:	526.9	,
Date:	Fri, 0	8 Dec 20	23 Prol	(F-statis	stic):	0.00)
Time:		18:01	:51 Lo	g-Likelih	ood:	-13339	
No. Observations:		148	885		AIC:	2.669e+04	ļ
Df Residuals:		148	379		BIC:	2.674e+04	1
Df Model:			5				
Covariance Type:		Н	C1				
		coef	std err	z	P> z	[0.025	0.975]
Inter	cept	2.6638	0.069	38.398	0.000	•	2.800
C(female)[T.T	•	-0.1903	0.010	-19.319	0.000	-0.210	-0.171
C(Secondary)	-	0.4190	0.071	5.940	0.000	0.281	0.557
C(Post_secondary)	[T.1]	0.5055	0.070	7.185	0.000	0.368	0.643
C(Undergraduate)	[T.1]	0.8172	0.070	11.715	0.000	0.680	0.954
C(Graduate)	[T.1]	1.0156	0.070	14.522	0.000	0.879	1.153
	3993.		Ourbin-W			1.874	
Prob(Omnibus):	0.	000 Jai	rque-Bera	(JB): 2	279850	0.610	
Skew: Kurtosis:		054 085		b(JB): d. No.		0.00	

Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

The results indicate increase in weekly earnings as education levels go higher.

Jut[22]:	OLS	Regression	Res
----------	-----	------------	-----

Dep. Variable:		Inw	R-squ	uared:	0.14	0	
Model:	0	DLS A	dj. R-squ	uared:	0.14	0	
Method:	Least Squa	eres	F-sta	tistic:	295.	2	
Date:	Fri, 08 Dec 2	023 Pro	b (F-stat	tistic):	0.0	0	
Time:	18:01	1:51 Lo	g-Likeli	hood:	-13337	7.	
No. Observations:	14	885		AIC: 2	2.669e+0	4	
Df Residuals:	14	875		BIC: 2	2.677e+0	4	
Df Model:		9					
Covariance Type:	F	HC1					
		ooof	std err		P> z	rn n25	0.9751
	Intercept			34.521		2.563	2.872
4,	male[T.True]		0.156		0.000		
	Secondary		0.081		0.000	0.213	0.529
fomaleIT True	:]:Secondary		0.158		0.317		
	t_secondary		0.080		0.000		
female[T.True]:Pos					0.272		
	dergraduate				0.000		
female[T.True]:Ur	•		0.157		0.310		
iemaie[i.irdej.or	Graduate			11.914			1.103
femaleIT To	ue]:Graduate				0.192		
remale[1.11	uej.Graduate	0.2000	0.107	1.300	0.192	-0.103	0.514
Omnibus:	14002.539	Durbin-W	atson:	1	.874		
Prob(Omnibus):	0.000 Ja	rque-Ber	a (JB):	2286373	.667		
Skew:	-4.058	Pro	b(JB):		0.00		
Kurtosis:	63.171	Cor	nd. No.		97.3		

Notes: [1] Standard Errors are heteroscedasticity robust (HC1)

There is a upward increasing trend in the weekly earnings as the education levels go higher considering for females in the above table.

Regression with marital status included (interaction terms)

Const	1000	1.
Out	1 47	10

OLS Regression Ro	esults							
Dep. Variable	c	Inw	R-8	quared:	0.1	68		
Mode	l:	OLS	Adj. R-e	quared:	0.1	67		
Method	: Least S	quares	F-8	tatietic:	15	5.6		
Date	Fri, 08 De	c 2023	Prob (F-et	atistic):	0.	.00		
Time	ic 18	3:02:10	Log-Like	ellhood:	-130	95.		
No. Observations	i:	14885		AIC:	2.623e+	04		
Of Residuals	c	14863		BIC:	2.640e+	04		
Df Mode	l:	21						
Covariance Type	С	HC1						
			coef	std err		Dalet	[0.025	0.9761
		ntercept			29.850		•	2.631
			-0.2771	0.162	-1.710			0.041
		condary		0.083	4.479	0.000	0.209	0.534
fema	le[T.True]: Se	•		0.163	0.928		-0.168	0.471
Johna			0.4517	0.083	5.461	0.000	0.290	0.614
female(T.T)	ue]:Post_se	•		0.163	1.050		-0.148	0.490
		graduate		0.082	9.390	0.000	0.607	0.928
female[T.	True]:Underg	raduate	0.1636	0.162	1.013	0.311	-0.153	0.480
		Graduate		0.082	11.269	0.000	0.763	1.084
fem	ale[T.True]:0	Graduate	0.2218	0.162	1.369	0.171	-0.096	0.539
	Married	civilian	0.3148	0.016	19.231	0.000	0.283	0.347
female[T.T	rue]:Married	civilian	-0.1032	0.025	-4.172	0.000	-0.152	-0.055
	Mai	rrled_AF	-0.3228	0.169	-1.909	0.056	-0.654	0.009
female	e[T.True]:Mai	rrled_AF	0.4442	0.196	2.266	0.023	0.060	0.829
	Married	_absent	0.3166	0.054	5.827	0.000	0.210	0.423
female[T.1	rue]:Married	_absent	-0.2075	0.113	-1.838	0.066	-0.429	0.014
W	dowed_divo	rced_88	0.2915	0.062	4.688	0.000	0.170	0.413
female[T.True]:W	dowed_divo	rced_88	-0.0656	0.078	-0.839	0.401	-0.219	0.088
		Divorced	0.2614	0.026	10.144	0.000	0.211	0.312
fem	ale[T.True]:[Divorced	-0.0354	0.035	-1.016	0.309	-0.104	0.033
	Se	eparated	0.2020	0.062	3.238	0.001	0.080	0.324
fema	ile[T.True]: Se	eparated	-0.0192	0.080	-0.239	0.811	-0.177	0.138
Omnibus:	14491.247	Durbl	n-Watson:		1.860			
Prob(Omnibue):	0.000	Jarque-	Bera (JB):	26853	20.684			
Skew:	-4.268		Prob(JB):		0.00			
Kurtoele:	68.244		Cond. No.		150.			

Notes: [1] Standard Errors are heteroscedasticity robust (HC1)