Тема V: Линейные операторы

§ 3. Умножение операторов. Ранг матрицы

Б.М.Верников М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Умножение линейных операторов

Пусть V_1,V_2,V_3 – векторные пространства над одним и тем же полем F. Если $\mathcal{A}\colon V_1\to V_2$ и $\mathcal{B}\colon V_2\to V_3$ – линейные операторы, то определена их композиция $\mathcal{AB}\colon V_1\to V_3$, действующая по правилу

$$\mathcal{AB}(\mathbf{x}) := \mathcal{B}(\mathcal{A}(\mathbf{x}))$$
 для всех $\mathbf{x} \in V_1$.

Мы называем \mathcal{AB} произведением операторов \mathcal{A} и \mathcal{B} .

Линейность произведения операторов

Предложение

Произведение линейных операторов – линейный оператор.

$$\mathcal{AB}(\mathbf{x}+\mathbf{y}) = \mathcal{B}(\mathcal{A}(\mathbf{x}+\mathbf{y})) = \mathcal{B}(\mathcal{A}(\mathbf{x})+\mathcal{A}(\mathbf{y})) = \mathcal{B}(\mathcal{A}(\mathbf{x})) + \mathcal{B}(\mathcal{A}(\mathbf{y})) = \mathcal{AB}(\mathbf{x}) + \mathcal{AB}(\mathbf{y}).$$

Так же проверяется, что $\mathcal{AB}(t\mathbf{x}) = t\mathcal{AB}(\mathbf{x})$ для всех $\mathbf{x} \in V_1$ и $t \in F$.

Свойства умножения линейных операторов

Ассоциативность. Пусть V_1,V_2,V_3,V_4 – векторные пространства, $\mathcal{A}\colon V_1\to V_2,\ \mathcal{B}\colon V_2\to V_3$ и $\mathcal{C}\colon V_3\to V_4$ – линейные операторы. Тогда

$$(\mathcal{AB})\mathcal{C} = \mathcal{A}(\mathcal{BC}).$$

Ассоциативность – свойство композиции произвольных отображений.

Свойства умножения линейных операторов (2)

Дистрибутивность справа. Пусть V_1,V_2,V_3 – векторные пространства, $\mathcal{A}\colon V_1\to V_2,\,\mathcal{B}\colon V_1\to V_2$ и $\mathcal{C}\colon V_2\to V_3$ – линейные операторы. Тогда

$$(\mathcal{A} + \mathcal{B})\mathcal{C} = \mathcal{A}\mathcal{C} + \mathcal{B}\mathcal{C}.$$

Дистрибутивность слева. Пусть V_1,V_2,V_3 – векторные пространства, $\mathcal{A}\colon V_1\to V_2,\ \mathcal{B}\colon V_2\to V_3$ и $\mathcal{C}\colon V_2\to V_3$ – линейные операторы. Тогда

$$\mathcal{A}(\mathcal{B}+\mathcal{C})=\mathcal{A}\mathcal{B}+\mathcal{A}\mathcal{C}.$$

Доказательство. Для любого $\mathbf{x} \in V_1$ имеем

$$((\mathcal{A}+\mathcal{B})\mathcal{C})(\mathbf{x}) = \mathcal{C}((\mathcal{A}+\mathcal{B})(\mathbf{x})) = \mathcal{C}(\mathcal{A}(\mathbf{x})+\mathcal{B}(\mathbf{x})) = \mathcal{C}(\mathcal{A}(\mathbf{x})) + \mathcal{C}(\mathcal{B}(\mathbf{x}))$$

$$= \mathcal{AC}(\mathbf{x}) + \mathcal{BC}(\mathbf{x}) = (\mathcal{AC} + \mathcal{BC})(\mathbf{x}).$$

Аналогично проверяется дистрибутивность справа.

Дистрибутивность уже использует специфику линейных операторов; скажем, при композиции произвольных функций из $\mathbb R$ в $\mathbb R$ ее нет. (Докажите!)

П

Свойства умножения линейных операторов (3)

Следствие

Множество ${\rm Hom}(V,V)$ всех линейных операторов пространства V является ассоциативным кольцом относительно операций сложения и умножения линейных операторов.

Упражнения. 1. На пространстве $\mathbb{R}[x]$ всех многочленов над полем \mathbb{R} рассмотрим оператор дифференцирования: $\mathcal{D}(p) := p'$, где p' – производная многочлена p. Как действует квадрат оператора \mathcal{D} ?

- 2. Пусть \mathcal{R}_{α} оператор поворота плоскости \mathbb{R}^2 вокруг начала координат на угол α . Как действует произведение $\mathcal{R}_{\alpha}\mathcal{R}_{\beta}$?
- 3. Приведите пример двух линейных операторов $\mathcal A$ и $\mathcal B$ плоскости $\mathbb R^2$, таких, что $\mathcal A\mathcal B \neq \mathcal B\mathcal A$.

Матрица произведения операторов

Пусть $\mathcal{A}\colon V_1 \to V_2$ и $\mathcal{B}\colon V_2 \to V_3$ — линейные операторы, а пространства V_1, V_2, V_3 конечномерны и имеют размерности n, k и m соответственно. Зафиксируем базисы $P = \{\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n\}$ в $V_1, Q = \{\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_k\}$ в V_2 и $R = \{\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_m\}$ в V_3 . Тогда можно построить матрицу $A = (a_{ij})_{k \times n}$ оператора $\mathcal{A}\colon V_1 \to V_2$ в базисах P и Q и матрицу $B = (b_{ij})_{m \times k}$ оператора $\mathcal{B}\colon V_2 \to V_3$ в базисах Q и R. Теперь подсчитаем матрицу $C = (c_{ij})_{m \times n}$ произведения $\mathcal{AB}\colon V_1 \to V_3$ в базисах P и R.

Из выражения для образа вектора через матрицу оператора имеем:

$$C[\mathbf{x}]_P = \big[\mathcal{AB}(\mathbf{x})\big]_R = \big[\mathcal{B}(\mathcal{A}(\mathbf{x}))\big]_R = B\big[\mathcal{A}(\mathbf{x})\big]_Q = B(A[\mathbf{x}]_P).$$

Матрица произведения операторов (2)

Напомним, что произведение матрицы на столбец было определено в §V.1:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} := \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots & \vdots \\ a_{k1}x_1 + a_{k2}x_2 + \cdots + a_{kn}x_n \end{bmatrix}.$$

Возьмем
$$\mathbf{x}=\mathbf{p}_1$$
 в равенстве $C[\mathbf{x}]_P=B(A[\mathbf{x}]_P)$. Тогда $[\mathbf{p}_1]_P=\begin{bmatrix}0\\\vdots\\0\end{bmatrix}$.

Поэтому $A[\mathbf{p}_1]_P)$ – это первый столбец матрицы A, а $C[\mathbf{p}_1]_P$ – это первый столбец матрицы C. Итак, первый столбец матрицы C есть произведение матрицы B на первый столбец матрицы A.

Полагая в том же равенстве $\mathbf{x}=\mathbf{p}_2$ и т.д., получим, что каждый столбец матрицы C есть произведение B на столбец матрицы A с тем же номером. Другими словами, элемент матрицы C, стоящий на месте i,j есть сумма произведений элементов i-й строки матрицы B на соответствующие элементы j-го столбца матрицы A (правило «строка на столбец»).

Матрица произведения операторов (3)

Видим, что матрица произведения линейных операторов получается по правилу «строка на столбец» из матриц сомножителей. Именно поэтому произведение матриц *определяют* правилом «строка на столбец»!

Итак, произведение матриц G и H определено тогда и только тогда, когда число столбцов G равно числу строк H. Если $G=(g_{ij})_{p\times\ell}$, а $H=(h_{ij})_{\ell\times q}$, то произведением матриц G и H называется матрица $GH=(f_{ij})_{p\times q}$, где f_{ij} есть сумма произведений элементов i-й строки матрицы G на соответствующие элементы j-го столбца матрицы H:

$$f_{ij}:=g_{i1}h_{1j}+g_{i2}h_{2j}+\cdots+g_{i\ell}h_{\ell j}$$
 для всех $i=1,2,\ldots,p$ и $j=1,2,\ldots,q$.

Возвращаясь к произведениям линейных операторов, заключаем, что при соответствии, которое сопоставляет линейному оператору его матрицу, выполнено равенство

$$[\mathcal{A}\mathcal{B}]_{P,R} = [\mathcal{B}]_{Q,R}[\mathcal{A}]_{P,Q}.$$

Матрицы операторов перемножаются в порядке, обратном тому, в котором записаны операторы.

Свойства умножения матриц

Свойства умножения матриц

Пусть A, B и C — матрицы. Тогда:

- 1) если произведения AB и BC определены, то (AB)C = A(BC) (ассоциативность);
- 2) если A и B одного и того же размера и произведение AC определено, то (A+B)C=AC+BC (дистрибутивность справа);
- 3) если B и C одного и того же размера и произведение AB определено, то A(B+C)=AB+AC (дистрибутивность слева);
- 4) если произведение AB определено, то $(AB)^T = B^T A^T$.

Умножение матриц некоммутативно! Даже для квадратных матриц A и B одинакового размера, когда оба произведения AB и BA определены, как правило, $AB \neq BA$.

Упражнение: составьте две 2×2 -матрицы из цифр даты своего рождения.

Например, для даты 01.02.2003 эти матрицы будут $\begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}$ и $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.

Перемножьте эти матрицы в разном порядке и сравните результаты.

Свойства умножения матриц (2)

Свойства 1)-3) следуют из соответствующих свойств умножения линейных операторов. Можно проверить их и прямыми вычислениями.

Альтернативное доказательство ассоциативности. Пусть $A=(a_{ij})_{m\times n}$, $B=(b_{ij})_{n\times r}$ и $C=(c_{ij})_{r\times s}$. Положим $AB=(d_{ij})_{m\times r}$ и $BC=(f_{ij})_{n\times s}$. Далее, положим $(AB)C=(g_{ij})_{m\times s}$ и $A(BC)=(h_{ij})_{m\times s}$. Требуется доказать, что $g_{ij}=h_{ij}$ для всех $i=1,2,\ldots,m$ и $j=1,2,\ldots,s$. В самом деле:

$$g_{ij} = \sum_{k=1}^{r} d_{ik} c_{kj} = \sum_{k=1}^{r} \left[\left(\sum_{\ell=1}^{n} a_{i\ell} b_{\ell k} \right) \cdot c_{kj} \right] = \sum_{k=1}^{r} \sum_{\ell=1}^{n} a_{i\ell} b_{\ell k} c_{kj} =$$

$$= \sum_{\ell=1}^{n} \sum_{k=1}^{r} a_{i\ell} b_{\ell k} c_{kj} = \sum_{\ell=1}^{n} \left[a_{i\ell} \cdot \left(\sum_{k=1}^{r} b_{\ell k} c_{kj} \right) \right] = \sum_{\ell=1}^{n} a_{i\ell} f_{\ell j} = h_{ij}. \quad \Box$$

Упражнение: докажите свойство 4): если произведение AB определено, то

$$(AB)^T = B^T A^T.$$

Единичная матрица

Определение

Квадратная матрица, у которой все элементы главной диагонали равны 1, а все остальные элементы равны 0, называется единичной матрицей. Единичная матрица обозначается E (или E_n , если важен порядок).

Таким образом, единичная матрица выглядит следующим образом:

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}.$$
 Это не что иное как матрица единичного оператора $\mathcal{E}.$

Можно также записать $E_n=(\delta_{ij})_{n imes n}$, используя *символ Кронекера*

$$\delta_{ij} := egin{cases} 1, & ext{если } i = j, \ 0, & ext{если } i
et j. \end{cases}$$

Свойство единичной матрицы

Если произведение AE [соответственно EA] определено, то AE=A [соответственно EA=A].

Обратимые линейные операторы и их матрицы

Напомним, что отображение $f: M_1 \to M_2$ обратимо тогда и только тогда, когда f – взаимно однозначное отображение M_1 на M_2 .

Предложение

Если $A: V_1 \to V_2$ – взаимно однозначный линейный оператор векторного пространства V_1 на векторное пространство V_2 , то обратное отображение $A^{-1}: V_2 \to V_1$ также является линейным.

 $\mathbf{x}_1 := \mathcal{A}^{-1}(\mathbf{y}_1), \, \mathbf{x}_2 := \mathcal{A}^{-1}(\mathbf{y}_2).$ Тогда $\mathcal{A}(\mathbf{x}_1 + \mathbf{x}_2) = \mathcal{A}(\mathbf{x}_1) + \mathcal{A}(\mathbf{x}_2) = \mathbf{y}_1 + \mathbf{y}_2,$ откуда $\mathcal{A}^{-1}(\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{x}_1 + \mathbf{x}_2 = \mathcal{A}^{-1}(\mathbf{v}_1) + \mathcal{A}^{-1}(\mathbf{v}_2)$.

Доказательство. Рассмотрим произвольные вектора $y_1, y_2 \in V_2$ и пусть

Так же проверяется, что $\mathcal{A}^{-1}(t\mathbf{y}) = t\mathcal{A}^{-1}(\mathbf{y})$ для всех $\mathbf{y} \in V_2$ и $t \in F$.

Вспомним, что взаимно однозначное линейное отображение векторного пространства V_1 на векторное пространство V_2 мы называли *изоморфизмом*. У изоморфных пространств одинаковы размерности, поэтому матрица обратимого линейного отображения будет квадратной.

Обратная матрица

Если $\mathcal{A}\colon V_1\to V_2$ — взаимно однозначное линейное отображение векторного пространства V_1 на векторное пространство V_2 , а $\mathcal{A}^{-1}\colon V_2\to V_1$ — обратное отображение, то произведение $\mathcal{A}\mathcal{A}^{-1}$ — единичный оператор пространства V_1 , а произведение $\mathcal{A}^{-1}\mathcal{A}$ — единичный оператор пространства V_2 .

Переходя к матрицам, имеем $[\mathcal{A}\mathcal{A}^{-1}]=E$ и $[\mathcal{A}^{-1}\mathcal{A}]=E$, где E – единичная матрица. Отсюда $[\mathcal{A}^{-1}][\mathcal{A}]=E$ и $[\mathcal{A}][\mathcal{A}^{-1}]=E$.

Если обозначить $A:=[\mathcal{A}],\ B:=[\mathcal{A}^{-1}],$ то AB=E и BA=E. Вспомним, что в любой полугруппе с единицей e элемент b такой, что ab=ba=e называется обратным к элементу a. В курсе «Введение в математику» было проверено, что для данного a обратный к нему, если существует, определяется однозначно, что оправдывает обозначение $a^{-1}.$ В соответствии с этим, матрица B такая, что AB=BA=E для данной матрицы A называется обратной к матрице A и обозначается через $A^{-1}.$

Возникает два естественных вопроса:

- О Как узнать, имеет ли данная квадратная матрица обратную?
- **2** Если матрица A имеет обратную, то как вычислить A^{-1} ?

Ранг матрицы

Чтобы ответить на первый вопрос, введем одно новое понятие, которое будет полезно и во многих других задачах.

Пусть

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1i} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2i} & \dots & a_{2n} \\ a_{31} & a_{32} & \dots & a_{3i} & \dots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{ki} & \dots & a_{kn} \end{pmatrix}$$

– произвольная (не обязательно квадратная!) матрица.

Рангом матрицы по столбцам называется размерность подпространства, порождённого набором столбцов матрицы A, в пространстве всех столбцов высоты k над полем F.

Рангом матрицы по строкам называется размерность подпространства, порождённого набором строк матрицы A, в пространстве всех строк длины n над полем F.

Теорема о ранге матрицы

Ранги произвольной матрицы по строкам и по столбцам совпадают.

План доказательства

Теорема о ранге матрицы позволяет говорить просто «ранг матрицы», не уточняя, о каком ранге идет речь – по столбцам или по строкам. Но сначала нужно ее доказать. Теорема далеко не очевидна!

План доказательства таков: мы докажем, что элементарные преобразования не меняют ни ранг по столбцам, ни ранг по строкам. Затем мы покажем, что с помощью элементарных преобразований любую матрицу можно привести к такой матрице, для которой равенство рангов по столбцам и строкам будет очевидным.

Напомним список элементарных преобразований:

- І: Перестановка двух столбцов (строк).
- II: Прибавление к столбцу (строке) другого столбца (другой строки).
- III: Умножение столбца (строки) на ненулевой скаляр.

Мы доказывали, что элементарные преобразования обратимы. Это значит, что если над столбцами (строками) некоторой матрицы A выполнить произвольную последовательность элементарных преобразований, то над столбцами (строками) получившейся матрицы можно выполнить последовательность элементарных преобразований, которая приведет к исходной матрице A.

Элементарные преобразования сохраняют ранги

Напомним первый пункт плана доказательства теоремы о ранге: показать, что элементарные преобразования сохраняют ранг по столбцам/строкам. Из замечания об обратимости элементарных преобразований вытекает, что для этого достаточно проверить, что элементарные преобразования не увеличивают ранг по столбцам/строкам. Действительно, пусть известно, что ранг по столбцам/строкам не растет при элементарных преобразованиях, но какая-то последовательность преобразований приводит матрицу A к матрице A', ранг которой (по столбцам или строкам) строго меньше соответствующего ранга матрицы A. Тогда последовательность преобразований, которая приводит A' обратно к A, строго увеличивает ранг, противоречие!

Лемма 1

Элементарные преобразования над столбцами матрицы не увеличивают ранг матрицы по столбцам.

Доказательство. Ранг матрицы A по столбцам — это размерность $\dim S$ подпространства S, порождённого столбцами матрицы A. Элементарные преобразования над столбцами матрицы A приводят к матрице A', столбцы которой лежат в S, поэтому подпространство S', порождённое столбцами матрицы A', содержится в S. Отсюда $\dim S' \leqslant \dim S$.

Элементарные преобразования сохраняют ранги (2)

Применяя лемму 1 к матрице A^T , получаем симметричный результат:

Лемма 2

Элементарные преобразования над строками матрицы не увеличивают ранг матрицы по строкам.

Лемма 3

Элементарные преобразования над столбцами матрицы сохраняют линейные зависимости между ее строками.

Доказательство. Пусть в матрице
$$A=egin{pmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ a_{31} & a_{32} & \dots & a_{3j} & \dots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kj} & \dots & a_{kn} \end{pmatrix}$$
 СТРОКИ С НОМЕРАМИ i_1,\dots,i_s ЛИНЕЙНО ЗАВИСИМЫ В ПРОСТРАНСТВЕ СТР

строки с номерами i_1,\dots,i_s линейно зависимы в пространстве строк. Докажем, что и в матрице A', полученной из A применением какой-то последовательности элементарных преобразований над столбцами, строки с номерами i_1,\dots,i_s остаются линейно зависимыми, причем с теми же коэффициентами!

Элементарные преобразования сохраняют ранги (3)

Итак, пусть строки матрицы

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i_{1}1} & a_{i_{1}2} & \dots & a_{i_{1}j} & \dots & a_{i_{1}n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i_{s}1} & a_{i_{s}2} & \dots & a_{i_{s}j} & \dots & a_{i_{s}n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kj} & \dots & a_{kn} \end{pmatrix}$$

с номерами i_1,\dots,i_s линейно зависимы. Итак, пусть строки матрицы

$$\gamma_{1} \times \begin{pmatrix}
a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{i_{1}1} & a_{i_{1}2} & \dots & a_{i_{1}j} & \dots & a_{i_{1}n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{i_{s}1} & a_{i_{s}2} & \dots & a_{i_{s}j} & \dots & a_{i_{s}n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{k1} & a_{k2} & \dots & a_{kj} & \dots & a_{kn}
\end{pmatrix}$$

Элементарные преобразования сохраняют ранги (3)

Если выполнить элементарное преобразование II-го рода (прибавить к j_1 -му столбцу матрицы A ее j_2 -й столбец), то все равенства системы

$$\gamma_1 a_{i_1 j} + \dots + \gamma_s a_{i_s j} = 0, \tag{*}$$

кроме j_1 -го, не изменятся, но и равенство, соответствующее j_1 -му столбцу, останется верным, поскольку его левая часть примет вид

$$\gamma_1(a_{i_1j_1} + a_{i_1j_2}) + \dots + \gamma_s(a_{i_sj_1} + a_{i_sj_2}) =$$

$$= (\gamma_1 a_{i_1j_1} + \dots + \gamma_s a_{i_sj_1}) + (\gamma_1 a_{i_1j_2} + \dots + \gamma_s a_{i_sj_2}) = 0 + 0 = 0.$$

Аналогично, если выполнить элементарное преобразование III-го рода (умножить j_1 -й столбец матрицы A на скаляр $\lambda \neq 0$), то все равенства системы (\star), кроме j_1 -го, не изменятся, но и равенство, соответствующее j_1 -му столбцу, останется верным, поскольку его левая часть примет вид

$$\gamma_1(\lambda a_{i_1j_1}) + \dots + \gamma_s(\lambda a_{i_sj_1}) = \lambda \left(\gamma_1 a_{i_1j_1} + \dots + \gamma_s a_{i_sj_1} \right) = \lambda \cdot 0 = 0. \quad \Box$$

Элементарные преобразования сохраняют ранги (5)

Применяя лемму 3 к транспонированной матрице, получаем симметричный результат:

Лемма 4

Элементарные преобразования над строками матрицы сохраняют линейные зависимости между ее столбцами.

Из лемм 3 и 4 уже легко вывести нужный нам факт:

Следствие

Элементарные преобразования над столбцами (строками) матрицы не увеличивают ранг по строкам (столбцам).

Доказательство. Пусть матрица A' получена из матрицы A некоторой последовательностью элементарных преобразований над столбцами и ранг матрицы A' по строкам равен s. Тогда в A' есть s линейно независимых строк, скажем, с номерами i_1,\ldots,i_s . По лемме 3 строки матрицы A с теми же номерами i_1,\ldots,i_s обязаны быть линейно независимыми, откуда ранг матрицы A по строкам не меньше s. Тот же аргумент выводит симметричный результат из леммы 4.

Завершение доказательства теоремы о ранге

Итак, мы реализовали первую часть нашего плана, показав, что элементарные преобразования не меняют ранги по столбцам/строкам. Займемся второй частью: покажем, что с помощью элементарных преобразований любую матрицу A можно привести к матрице, для которой равенство рангов по столбцам и строкам очевидно.

Если все элементы матрицы A равны 0, то понятно, что ранги A и по столбцам, и по строкам равны 0. Если в A есть ненулевой элемент, то с помощью преобразований І-го рода переставим этот элемент на место 1,1, а затем с помощью преобразования III-го рода сделаем его равным 1. Теперь с помощью преобразований II-го и III-го родов «обнулим» все остальные элементы первой строки и первого столбца:

$$\begin{pmatrix} 1 & a_{12} & \dots & a_{1j} & \dots \\ a_{21} & a_{22} & \dots & a_{2j} & \dots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots \end{pmatrix} \xrightarrow{\text{II,III}} \begin{pmatrix} 1 & 0 & \dots & 0 & \dots \\ 0 & b_{22} & \dots & b_{2j} & \dots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & b_{i2} & \dots & b_{ij} & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots \end{pmatrix}.$$

Завершение доказательства теоремы о ранге (2)

Если в подматрице
$$\begin{pmatrix} b_{22} & \dots & b_{2j} & \dots \\ \vdots & \ddots & \vdots & \vdots \\ b_{i2} & \dots & b_{ij} & \dots \\ \vdots & \ddots & \vdots & \ddots \end{pmatrix}$$
 все элементы нулевые, то мы
$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}.$$
 Ясно, что ранги такой матрицы
$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

и по столбцам, и по строкам равны 1. Если $b_{ij} \neq 0$ для некоторых $i,j \geq 2$, то преобразованиями I-го рода переставим элемент b_{ij} на место 2,2, а затем с помощью преобразования III-го рода сделаем его равным 1. Теперь с помощью преобразований II-го и III-го родов «обнулим» все остальные элементы второй строки и второго столбца:

$$\begin{pmatrix} 1 & 0 & \dots & 0 & \dots \\ 0 & 1 & \dots & b_{2j} & \dots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & b_{i2} & \dots & b_{ij} & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots \end{pmatrix} \xrightarrow{\text{II,III}} \begin{pmatrix} 1 & 0 & \dots & 0 & \dots \\ 0 & 1 & \dots & 0 & \dots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & c_{ij} & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots \end{pmatrix}.$$

Завершение доказательства теоремы о ранге (3)

Ясно, что продолжая описанный процесс, мы приведем матрицу A к виду

$$\begin{pmatrix} 1 & 0 & \dots & 0 & 0 & \dots \\ 0 & 1 & \dots & 0 & 0 & \dots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \end{pmatrix},$$

где на местах 1,1; 2,2;...; r,r стоят 1, а на всех остальных местах стоят 0. У матрицы такого вида ранги и по столбцам, и по строкам очевидно равны r: первые r столбцов линейно независимы, а остальные нулевые, и то же верно для строк. Теорема о ранге доказана.

Сформулируем еще раз результат, который мы доказали:

Теорема о ранге матрицы

Ранги произвольной матрицы по строкам и по столбцам совпадают.

Ранг линейного оператора и ранг его матрицы

Пусть $\mathcal{A}\colon V_1\to V_2$ — линейный оператор конечномерного векторного пространства V_1 в векторное пространство V_2 . Напомним, что рангом \mathcal{A} мы называли размерность подпространства $\mathrm{Im}\,\mathcal{A}$. Если и пространство V_2 конечномерно, с оператором \mathcal{A} связывается его матрица $[\mathcal{A}]$, столбцы которой — это координаты образов элементов базиса пространства V_1 в базисе пространства V_2 . Образы элементов базиса пространства V_1 порождают $\mathrm{Im}\,\mathcal{A}$, поэтому размерность образа равна размерности подпространства, порождённого набором столбцов матрицы $[\mathcal{A}]$, т.е. рангу матрицы $[\mathcal{A}]$.

Итак, ранг линейного оператора равен рангу его матрицы!