ERRATA: Peter H Zipfel "Modeling and Simulation of Aerospace Vehicle Dynamics", AIAA Educational Series, 2000. 2nd Edition, 2007 --- As of May 2013, sorry for the inconvenience, PHZ ---

Page		Wrong	Correct			
PART I						
76	line 25	The TM [T] WB is about this	The TM [T] ^{BS} is about this			
98	bottom equation	$\left[R^{S_1S_0}\right]^I = \left[R^{S_1E}\right]^I \left[R^{EI}\right]^I \left[\overline{R}^{S_0E}\right]^I$	$\left[R^{S_1S_0}\right]^I = \left[R^{S_1E}\right]^I \left[R^{EI}\right]^I \left[\overline{R}^{S_0I}\right]^I$			
99	Eq. 4.20	$\left[R^{S_1S_0}\right]^{\prime} = \left[T\right]^{\prime E} \left[R^{S_1E}\right]^{E} \left[\overline{T}\right]^{\prime E} \left[R^{EI}\right]^{\prime} \left[\overline{R}^{S_0E}\right]^{\prime}$	$\begin{bmatrix} R^{S_1S_0} \end{bmatrix}^I = \begin{bmatrix} T \end{bmatrix}^{IE} \begin{bmatrix} R^{S_1E} \end{bmatrix}^E \begin{bmatrix} \overline{T} \end{bmatrix}^{IE} \begin{bmatrix} R^{EI} \end{bmatrix}^I \begin{bmatrix} \overline{R}^{S_0I} \end{bmatrix}^I$			
101	Eq. 4.26	$ [\varepsilon R]^{A} = \begin{bmatrix} 0 & \varepsilon r_{12} & \varepsilon r_{13} \\ -\varepsilon r_{12} & 0 & \varepsilon r_{23} \\ -\varepsilon r_{13} & \varepsilon r_{23} & 0 \end{bmatrix} $ $ \dots + \sum_{i} m_{i} \bar{s}_{iB} s_{BR} + \bar{s}_{BR} \sum_{i} m_{i} s_{iB} - \sum_{i} m_{i} s_{iB} \bar{s}_{BR} - s_{BR} \sum_{i} m_{i} \bar{s}_{iB} $	$ [\varepsilon R]^A = \begin{bmatrix} 0 & \varepsilon r_{12} & \varepsilon r_{13} \\ -\varepsilon r_{12} & 0 & \varepsilon r_{23} \\ -\varepsilon r_{13} & -\varepsilon r_{23} & 0 \end{bmatrix} $ $ \dots + \sum_{i} m_i \overline{s}_{iB} s_{BR} E + \overline{s}_{BR} \sum_{i} m_i s_{iB} E - \sum_{i} m_i s_{iB} \overline{s}_{BR} - s_{BR} \sum_{i} m_i \overline{s}_{iB} $			
169	top eq. 3 rd line	$ + \sum_{i} m_{i} \overline{s}_{iB} s_{BR} + \overline{s}_{BR} \sum_{i} m_{i} s_{iB} - \sum_{i} m_{i} s_{iB} \overline{s}_{BR} - s_{BR} \sum_{i} m_{i} \overline{s}_{iB}$	$ + \sum_{i} m_{i} \overline{s}_{iB} s_{BR} E + \overline{s}_{BR} \sum_{i} m_{i} s_{iB} E - \sum_{i} m_{i} s_{iB} \overline{s}_{BR} - s_{BR} \sum_{i} m_{i} \overline{s}_{iB}$			
229	line 31	mirrored by the reflection tensor M_{jm}	mirrored by the reflection tensor M_{jp}			
235	Eq. 7.53	$\left[\mathcal{E}f_a\right]^{Bp} = \left[\frac{\partial m_a}{\partial v_B^A}(M, \text{Re})\right]^{Bp} \left[\mathcal{E}v_B^A\right]^{Bp} + \dots$	$\left[\mathcal{E}f_a\right]^{Bp} = \left[\frac{\partial f_a}{\partial v_B^A}(M, \operatorname{Re})\right]^{Bp} \left[\mathcal{E}v_B^A\right]^{Bp} + \dots$			
236	Eq. 7.56	$\left[I_{Bp}^{Bp}\right]^{Bp}\left[\frac{d\omega^{BpBr}}{dt}\right]^{Bp} = \left[\frac{\partial m_a}{\partial v_B^I}(M)\right]^{Bp}\left[\varepsilon v_B^I\right]^{Bp} +\left[\frac{\partial f_a}{\partial v_B^I}(M)\right]^{Bp}\left[\varepsilon v_B^I\right]^{Bp}$	$\left[I_{Bp}^{Bp}\right]^{3p}\left[\frac{d\omega^{B_{pB'}}}{dt}\right]^{3p}=\left[\frac{\partial m_{_{B}}}{\partial v_{_{B}}^{I}}(M)\right]^{3p}\left[\varrho v_{_{B}}^{I}\right]^{3p}+\left[\frac{\partial m_{_{A}}}{\partial \dot{v}_{_{B}}^{I}}(M)\right]^{3p}\left[\varrho \dot{v}_{_{B}}^{I}\right]^{3p}$			
239	line 17	Substituting Eq.(7.63) into Eq.(7.61) eliminates	Substituting Eq.(7.63) into Eq.(7.60) eliminates			
	4 1: 11	Because the reference roll rate	Because the reference roll rate			
249	4 lines below Eq.7.83	ϕ_r is also zero,	p_r is also zero,			
	-	PART 2	T F			
294	Eq. 9.9	$\omega^{BV} = \dot{\beta}u_3 + \dot{\alpha}b_2$	$\omega^{BV} = -\dot{\beta}u_3 + \dot{\alpha}b_2$			
294	Eq. after Eq. 9.9	$\left[\omega^{BV}\right]^{B} = \dot{\beta}\left[T\right]^{BV}\left[u_{3}\right]^{V} + \dot{\alpha}\left[b_{2}\right]^{B}$	$\left[\omega^{BV}\right]^{B} = -\dot{\beta}\left[T\right]^{BV}\left[u_{3}\right]^{V} + \dot{\alpha}\left[b_{2}\right]^{B}$			
297	line after Eq.9.17	$\left[\omega^{BU}\right]^{B}$ is given by Eq.(9.10)	$\left[\omega^{BV}\right]^{B}$ is given by Eq.(9.10)			
322	line above Eq. 9.64	velocity vector $V \mathbf{u}_{v}$	unit velocity vector \mathbf{u}_{v}			
322	Eq. 9.64	$\mathbf{a} = KV\mathbf{E}\mathbf{u}_{v}$	$\mathbf{a} = K\mathbf{E}\mathbf{u}_{v}$			
322	Eq. 9.65	$\mathbf{a} = KV(\mathbf{E}_{P}\mathbf{u}_{v} - G\mathbf{E}_{L}\mathbf{u}_{v}) = KV(\mathbf{U}_{v}\mathbf{U}_{LOS}\mathbf{u}_{v} - G\mathbf{U}_{v}\mathbf{U}_{LOA}\mathbf{u}_{v})$	$\mathbf{a} = K(\mathbf{E}_{P}\mathbf{u}_{v} - G\mathbf{E}_{L}\mathbf{u}_{v}) = KV(\mathbf{U}_{v}\mathbf{U}_{LOS}\mathbf{u}_{v} - G\mathbf{U}_{v}\mathbf{U}_{LOA}\mathbf{u}_{v})$			
324	last equation	$\begin{bmatrix} -\sin \gamma \\ 0 \\ \cos \chi \end{bmatrix}$	$\begin{bmatrix} -\sin\gamma \\ 0 \\ \cos\gamma \end{bmatrix}$			
372	Eq. 10.13	$\tan \phi = \frac{2(q_2 q_3 + q_0 q_1)}{q_0^2 - q_1^2 - q_2^2 - q_3^2}$	$\tan \phi = \frac{2(q_2 q_3 + q_0 q_1)}{q_0^2 - q_1^2 - q_2^2 + q_3^2}$			
392	Eq. 10.45	$v_B^I = v_B^E + \Omega^{BE} s_{BI}$	$v_B^I = v_B^E + \Omega^{EI} s_{BI}$			
432	equation which is written in middle of p432	$ = \left(\left[E \right]^{\hat{I}} - \left[\mathcal{E} R^{\hat{I}\hat{I}} \right]^{\hat{I}} \right) \left[\overline{T} \right]^{B\hat{I}} \left(\left[\hat{f}_{sp} \right]^{B} - \left[\mathcal{E} f_{sp} \right]^{B} \right) + \left[\hat{g} \right]^{\hat{I}} - \left[\mathcal{E} g \right]^{\hat{I}} $				

434	Eq. 10.93	$\left[\frac{d\varepsilon R^{\hat{I}I}}{dt}\right]^{\hat{I}} = \left[T\right]^{BI} \left[\varepsilon \omega^{BI}\right]^{B}$	$\left[\frac{d\varepsilon R^{\hat{I}I}}{dt}\right]^{\hat{I}} = \left[T\right]^{B\hat{I}} \left[\varepsilon \omega^{BI}\right]^{B}$
438	Eq. 10.98	$[] = \begin{bmatrix} & & O_{3\times3} \\ & 0 & -(\hat{f}_{sp})_3^{\hat{L}} & (\hat{f}_{sp})_2^{\hat{L}} \\ & & (\hat{f}_{sp})_3^{\hat{L}} & 0 & -(\hat{f}_{sp})_1^{\hat{L}} \\ & -(\hat{f}_{sp})_2^{\hat{L}} & -(\hat{f}_{sp})_1^{\hat{L}} & 0 \\ & & O_{3\times3} \end{bmatrix} []$	$[] = \begin{bmatrix} & & O_{3\times3} & \\ & 0 & -(\hat{f}_{sp})_3^{\hat{L}} & (\hat{f}_{sp})_2^{\hat{L}} \\ & & (\hat{f}_{sp})_3^{\hat{L}} & 0 & -(\hat{f}_{sp})_1^{\hat{L}} \\ & -(\hat{f}_{sp})_2^{\hat{L}} & (\hat{f}_{sp})_1^{\hat{L}} & 0 \\ & & O_{3\times3} & \end{bmatrix} []$