Numbering (numbering)

Dada uma floresta com N nós, uma numeração da mesma é uma atribuição de números inteiros positivos a cada aresta (ligação) da floresta. Uma numeração é bonita se, para cada nó, as suas arestas tiverem os números $1, 2, \ldots, d$ numa qualquer ordem (onde d é o grau do nó).

São-te dados N inteiros positivos A_0, \ldots, A_{N-1} . Determina se existe uma floresta em N nós tal que:

- para $0 \le i \le N 1$, o grau do nó $i \notin A_i$;
- admite pelo menos uma numeração bonita.

Além disso, se existir uma floresta deste tipo, deves construir um exemplo.

Implementação

Deves submeter um único ficheiro de código .cpp.

Entre os ficheiros do problema encontrarás um template numbering.cpp com um exemplo de implementação.

Tens de implementar a seguinte função:

```
C++ variant<bool, vector<pair<int, int>>> find_numbering(int N, vector<int>
A);
```

- O inteiro N representa o número de nós.
- O array A, indexado de 0 até N-1, contém os valores $A_0, A_1, \ldots, A_{N-1}$, onde A_i é o grau do i-ésimo nó.
- A função deve devolver um valor booleano ou um array de pares de inteiros.
 - Se não existir nenhuma floresta válida (satisfazendo as condições do enunciado), a função deve devolver false.
 - Se existir uma floresta válida, tens duas opções:
 - * Para receber a pontuação máxima, a função deve devolver um array de pares de inteiros, representando uma floresta válida.
 - * Para receber uma pontuação parcial, a função deve devolver true ou um qualquer array de inteiros que não descreva uma floresta válida.

O avaliador irá chamar a função find numbering e irá escrever o seguinte no ficheiro de output:

- Se o valor devolvido for false, irá escrever uma única linha com a string NO.
- Se o valor devolvido for true, irá escrever uma única linha com a string YES.
- Se o valor devolvido for um array de pares de inteiros com tamanho M, irá escrever uma linha com a string YES, seguida de uma linha com M, seguida de M linhas com os pares do array.

Avaliador Padrão

O diretório do problema contém uma versão simplificada do avaliador oficial, que podes usar para testar o teu problema localmente. O avaliador exemplo lê os dados de input de stdin, chama as funções que deves implementar, e finalmente escreve o output para stdout.

numbering Página 1 de 3

O input é feito de 2 linhas, contendo:

- Linha 1: o inteiro N.
- Linha 2: $A_0, A_1, \ldots, A_{N-1}$.

O output é feito de múltiplas linhas, contendo os valores devolvidos pela função find_numbering.

Restrições

- $2 \le N \le 10^5$.
- $0 \le A_i \le N 1$.

Pontuação

O teu programa será testado num conjunto de casos de teste agrupados por subtarefa. A pontuação de uma subtarefa será o mínimo das pontuações obtidas em cada um dos casos de teste.

- Subtarefa 1 [0 pontos]: Casos de exemplo.
- Subtarefa 2 [16 pontos]: $A_i \leq 2$.
- Subtarefa 3 [12 pontos]: $A_i \leq 3$.
- Subtarefa 4 [16 pontos]: Seja count(i) o número de ocorrências de i em A. É garantido que count $(i) \ge \text{count}(i+1) + \text{count}(i+2) + \dots$ para $1 \le i \le N-1$.
- Subtarefa 5 [10 pontos]: $N \leq 12$.
- Subtarefa 6 [24 pontos]: $N \leq 500$.
- Subtarefa 7 [22 pontos]: Nenhuma restrição adicional.

Para cada caso de teste em que exista uma floresta válida, a tua solução:

- obtém pontuação máxima se devolver uma floresta válida.
- obtém 50% dos pontos se devolver true ou um array que não descreva uma floresta válid.
- obtém 0 pontos caso contrário.

Para cada caso de teste em que não exista uma floresta válida, a tua solução:

- obtém pontuação máxima se devolver false.
- obtém 0 pontos caso contrário.

numbering Página 2 de 3

Exemplos

stdin	stdout
4 1 1 2 1	NO
10 1 1 1 2 3 3 2 1 1 1	YES 8 0 9 1 3 2 4 3 4 4 5 5 6 5 7 6 8

Explicação

No **primeiro caso de exemplo**, queremos uma floresta válida com 4 nós: 3 com grau 1 e 1 com gray 2. Podemos mostrar que isto não é possível. Supõe um

No **primeiro caso de exemplo**, queremos uma floresta válida com 4 nós: 3 com grau 1 e 1 com grau 2. Podemos mostrar que isto não é possível. Suponhamos que essa floresta existe, então deve haver uma aresta com o número 2 a partir do nó com grau 2. Esta aresta liga-se a outro nó que deve ter grau pelo menos 2. No entanto, esse nó não existe, uma vez que todos os outros nós têm grau 1.

No **segundo caso de exemplo**, queremos uma floresta válida com 10 nós: 6 com grau 1, 2 com grau 2 e 2 com grau 3. Essa floresta existe e o resultado é apresentado abaixo:

Nota que os nós 4 e 5 têm três arestas numerados com 1, 2 e 3.

Além disso, os nós 3 e 6 têm duas arestas numeradas com 1 e 2.

Finalmente, os nós 0,1,2,7,8 e 9 têm uma aresta numerada com 1.

numbering Página 3 de 3