

PLENARY EXERCISES - TMA4145

Week 46, Wednesday 15. November 2023

Problem 1

Let $(X, \|\cdot\|_X)$ be a real Banach space, and assume that $f \in X^* = L(X, \mathbb{R})$.

1. Show that

$$H_f := \{x \in X : f(x) \geq 0\},\$$

is a non-empty, closed and convex subset.

2. Show that H_f is not a subspace if $f \neq 0$.

Hint:

- **1.** H_f is closed if for any convergent sequence $\{x_k\}_{k\in\mathbb{N}}$ converges to some $x\in H_f$.
- **2.** H_f is convex if for all $x, y \in H_f$ and any 0 < t < 1 we have $tx + (1 t)y \in H_f$.

1

Problem 2

Which of the following statements are true?

- **1.** Let U, V, W be normed spaces and let $S: U \to V$ and $T: V \to W$ be linear maps. If $S: U \to V$ and $T \circ S: U \to W$ are bounded, then $T: V \to W$ is bounded.
- **2.** Let U, V be normed spaces. If $\{T_n\} \subset L(U, V)$ is a sequence such that $T_n u \to 0$ for all $u \in U$, then $T_n \to 0$ in L(U, V).
- **3.** Let U, V be normed spaces, and $S, T \in L(U, V)$. Assume $W \subseteq U$ is a dense subspace such that Su = Tu for all $u \in W$, then S = T.

Hint:

- **1.** What do we know about the kernel of linear operators?
- **2.** Consider $U = \ell^1$ and $V = \mathbb{K}$.
- **3.** What does it mean for a subspace to be dense?

Problem 3

Let $a=(a_1,a_2,\ldots)\in\ell^\infty$ and assume there exists c>0 such that $|a_n|>c$ for all $n\in\mathbb{N}$. Define the linear operator $T_a:\ell^2\to\ell^2$ by

$$T_a x = (a_1 x_1, 0, a_3 x_3, 0, a_5 x_5, \ldots).$$

- **1.** Show that T_a is bounded on ℓ^2 .
- **2.** Find the operator norm of T_a .
- **3.** Determine for which sequences $a \in \ell^{\infty}$ the operator satisfies $T_a = T_a^2$.
- **4.** Show that $Ran(T_a)$ is closed.
- **5.** Determine the orthogonal complement of $Ker(T_a)$.

Hint:

- **1.** T_a is bounded if there exists C > 0 such that $||T_a x||_{\ell^2} \le C||x||_{\ell^2}$ for all $x \in \ell^2$.
- **2.** The operator norm is defined as $||T|| = \sup_{||x||_{\ell^2}=1} ||T_a x||_{\ell^2}$.
- **3.** Ran(T_a) is closed if for every convergent sequence $\{y^n\} \subset \text{Ran}(T_a)$ converging to $y \in \ell^2$, then $y \in \text{Ran}(T_a)$.
- **4.** The orthogonal complement is defined as $(\text{Ker}(T_a))^{\perp} = \{y \in \ell^2 : \langle x, y \rangle = 0, \forall x \in \text{Ker}(T_a)\}.$