Zad. 1) Dane są wartości chwilowe napięcia $u(t)=100\sqrt{2}\sin((314t+45^{\circ}))$ oraz prądu $i(t)=10\sqrt{2}\sin((314t-15^{\circ}))$. Obliczyć moc czynną, bierną , pozorną, współczynnik mocy oraz impedancję

Odp. P=500W Q=866var Z=5+j8,66

Zad. 2) Dane: $e(t) = \sqrt{2} \sin(\omega t)$, $R = 20\Omega$, $X_L = 40\Omega$ Jaką wartość pokaże watomierz?.

Odp. P=0

Zad. 3) Dane: \underline{E} =(100+j50)V, I_{zr} =5A, R=10 Ω , X_C =20 Ω , X_L =10 Ω . Zrób bilans mocy.

Zad. 4) Dane: $i_R(t)=I_mcos(\omega t)$, R, C Wyznacz wskazanie watomierza.

 $Odp. P = \frac{3R^3 I_m^2}{4R^2 + X_C^2}$

Zad. 5) Dane są wskazania amperomierza I_A oraz wartości $R,\ X_L,\ X_C$

Oblicz moc czynną, bierną oraz impedancję wypadkową układu.

 $P = I_A^2 \frac{X_C^2}{R} \qquad Q = I_A^2 \frac{(R^2 + X_C^2)X_L - R^2 X_C}{R^2}$

Zad. 6) Dane są wskazania watomierza P=290W, amperomierzy I_{A1} =5A, I_{A2} =4A.Rezystancja R1=8 Ω . Wyznacz: wartość rezystancji R_2 , reaktancji X_C oraz wartość skuteczną prądu płynącego przez R_2 .

Zad. 7)

Lampa jarzeniowa włączona w szereg z dławikiem do sieci o napięciu skutecznym U=220V i f=50Hz, pobiera moc P=450W, a razem z dławikiem 475W przy prądzie I=3,7A. Obliczyć współczynnik mocy całego obwodu, napięcie na lampie i na dławiku. Jaka powinna być pojemność kondensatora włączonego równolegle do układu, aby poprawić współczynnik mocy do wartości cosφ =0,9.

Zad. 8 Dla przedstawionych poniżej układów napisać: równania wynikające z praw Kirchhoffa , równania prądów oczkowych, równania potencjałów węzłowych.

Zad. 9 W podanych układach, wyznacz prąd gałęziowy I metodą Thevenina.

