

Sumário

- 1. Áreas
- 2. A área de um retângulo
- 3. A área de paralelogramos
- 4. A área de triângulos
- 5. O Teorema Fundamental da Proporcionalidade
- 6. Formulário Avaliativo

Áreas

Ideia Intuitiva

- ▶ Vem da ideia de medir a "ocupação" de uma região do plano por um contorno.
- ▶ Usaremos a área de um quadrado, dada axiomaticamente, para determinar algumas áreas planas, de contorno poligonal.

Região Poligonal

Definição 1

Uma região **triangular** é a figura plana formada por um triângulo e seus pontos interiores.

Região Poligonal

Definição 2

Uma região **poligonal** é a figura plana formada pela união de um número finito de regiões triangulares tais que se duas delas se interceptam, então a interseção ou é um ponto ou é um segmento.

Axioma 1

A cada região poligonal $\mathcal R$ está associado um único número real positivo, denotado por $A(\mathcal R)$.

O número $A(\mathcal{R})$ é a **área** de \mathcal{R} .

Axioma 2

Se dois triângulos são congruentes, as regiões triangulares determinadas por eles têm a mesma área.

Isso garante que a área da região poligonal não depende da sua posição no plano, mas apenas da sua forma e dos triângulos que a compõem.

Axioma 3

Se uma região \mathcal{R} é a união de duas regiões \mathcal{R}_1 e \mathcal{R}_2 , tais que \mathcal{R}_1 e \mathcal{R}_2 se interceptam em no máximo um número finito de segmentos e pontos, então

$$A(\mathcal{R}) = A(\mathcal{R}_1) + A(\mathcal{R}_2)$$

(a) É a soma de cada área triangular

(b) Não é a soma de cada área triangular

Axioma 4

A área de um quadrado é o produto do comprimento de seus lados.

Figura 2: A área de um quadrado com lados de comprimento a é $A(\Box ABCD)=a^2$

A área de um retângulo

Teorema 1

A área de um retângulo é o produto das medidas de seus lados não paralelos.

Figura 3: A área de um retângulo \mathcal{R} com lados de comprimento a e b é $A(\mathcal{R})=ab$

A partir do retângulo dado, do lado \overline{AB} prolongue o segmento num comprimento b. Do lado \overline{BC} , prolongue o segmento num comprimento a.

Traçando em F uma paralela à \overline{BC} e traçando em I uma paralela à \overline{AB} , obtemos um quadrado FGIB, de lados com comprimento a+b.

Sua área é dada por $(a + b)^2$.

► Traçando paralelas aos lados desse quadrado em *D* subdividimos esse quadrado em quatro regiões poligonais, que se interceptam em no máximo um segmento e/ou um ponto.

Com isso, a área de $\Box FGIB$ pode ser determinada pela soma das áreas $A(\mathcal{R}_1)$, $A(\mathcal{R}_2)$, $A(\mathcal{R}_3)$ e $A(\mathcal{R}_4)$, onde:

- $ightharpoonup \mathcal{R}_1$ é o retângulo original *ABCD*;
- $ightharpoonup \mathcal{R}_2$ é o quadrado *CDHI*;
- $ightharpoonup \mathcal{R}_3$ é o retângulo *DEGH*;
- $ightharpoonup \mathcal{R}_4$ é o quadrado *ADEF*.

▶ Já sabemos que $A(\mathcal{R}_2) = a^2$ e $A(\mathcal{R}_4) = b^2$.

$$A(\mathcal{R}_2) = A(\mathcal{R}_3)$$
, pois

- $A(\mathcal{R}_1) = A(\triangle ADC) + A(\triangle ABC);$
- $ightharpoonup A(\mathcal{R}_3) = A(\triangle EDG) + A(\triangle HGD);$
- Os 4 triângulos são congruentes (pq?).
- Pelos Axioma 2 e 3, os retângulos possuem a mesma área.

► Com isso,

$$(a+b)^2 = a^2 + b^2 + 2(A(\mathcal{R}_1)),$$

de onde segue que

$$A(\mathcal{R}_1) = \frac{a^2 + 2ab + b^2 - a^2 - b^2}{2} = ab.$$

Área de Triângulos Retângulos

Corolário 1

A área de um triângulo retângulo é a metade do produto das medidas dos seus catetos.

Figura 4: $A(\triangle ABC) = \frac{bc}{2}$

Demonstração do Corolário 1

A partir do triângulo dado, construa um retângulo de lados *b* e *c*.

- ▶ Os triângulos *ABC* e *DCB* são congruentes (pq?), logo possuem mesma área.
- ▶ Como a área do retângulo é igual à soma das áreas dos dois triângulos, obtemos

$$bc = A(\triangle ABC) + A(\triangle DCB) = 2A(\triangle ABC)$$
$$\Rightarrow A(\triangle ABC) = \frac{bc}{2}.$$

A área de paralelogramos

Antes de calcular a área de um paralelogramo, vamos estabelecer alguma nomenclatura.

- Costumamos designar um de seus lados como uma base.
- Fixada a base, dizemos que a distância entre a reta suporte deste lado e a reta suporte do seu lado oposto é a **altura** do paralelogramo relativa a esta base.

Na figura abaixo:

- $ightharpoonup h_1$ é a altura relativa à base \overline{AB} ;
- $ightharpoonup h_2$ é a altura relativa à base \overline{AD} .

Teorema 2

A área de um paralelogramo é o produto de qualquer uma de suas bases pela altura correspondente.

Figura 5: A área pode ser encontrada através das fórmulas $AB * h_1$ ou $AD * h_2$

- Escolha uma base e uma altura.
- ► A partir delas, construa um retângulo, como a seguir.

Figura 6: Base escolhida: \overline{AB} . Os lados \overline{AE} e \overline{CF} têm comprimento h

• Queremos provar que A(ABCD) = bh.

► A área do retângulo *AFCE* é dada por

$$A(AEFC) = (b + \overline{BF})h = bh + \overline{BF} * h,$$

com b = AB.

Figura 7: Base escolhida: \overline{AB} . Os lados \overline{AE} e \overline{CF} têm comprimento h

▶ Além disso, tal retângulo é composto por 3 regiões poligonais que se interceptam em no máximo um segmento.

► Então $A(AFCE) = A(\triangle ADE) + A(ABCD) + A(\triangle BFC)$.

▶ Os triângulos $\triangle ADE$ e $\triangle BFC$ são congruentes (pq?).

► Com isso, $A(\triangle ADE) = A(\triangle BFC) = \frac{BF*h}{2}$.

Portanto,

$$bh + \overline{BF} * h = A(AFCE) = A(\triangle ADE) + A(ABCD) + A(\triangle BFC)$$

$$= \frac{\overline{BF} * h}{2} + A(ABCD) + \frac{\overline{BF} * h}{2}$$

$$= A(ABCD) + \overline{BF} * h,$$

de onde segue que

$$A(ABCD) = bh + \overline{BF} * h - \overline{BF} * h$$

$$= bh$$

$$= \overline{BF} * h.$$

A área de triângulos

- Antes de calcular a área de um triângulo qualquer, vamos estabelecer alguma nomenclatura.
- Novamente, costumamos designar um de seus lados como uma base.
- Fixada a base, dizemos que a distância entre esta e o vértice oposto é a **altura** do triângulo relativa a esta base.

- Se todos os ângulos de um triângulo são agudos, então todas as alturas são interiores;
- se um dos ângulos é obtuso, então a altura correspondente a este vértice é interior, e as outras duas são exteriores;
- se o triângulo é retângulo, então duas altura coincidem com os catetos, e a altura correspondente à hipotenusa é interior.

Teorema 3

A área de um triângulo é a metade do produto da medida de qualquer um de seus lados escolhido como base pela altura correspondente.

Figura 8: A área do $\triangle ABC$, de lado $\overline{AC} = b$ e altura relativa ao mesmo igual à h, é $A(\triangle ABC) = \frac{bh}{2}$

A partir da região dada, construímos um paralelogramo com lados paralelos aos lados \overline{AC} e \overline{CB} .

- ► Os triângulos *ADB* e *ABC* são congruentes (pq?).
- ▶ Assim, $A(\triangle ADB) = A(\triangle ABC)$.

- ▶ Por outro lado, A(ACBD) = bh e $A(ACBD) = A(\triangle ADB) + A(\triangle ABC)$.
- Portanto,

$$bh = A(\triangle ADB) + A(\triangle ABC) = 2A(\triangle ABC)$$
$$\Rightarrow A(\triangle ABC) = \frac{bh}{2}.$$

O Teorema Fundamental da Proporcionalidade

Proposição 1

Proposição 1

As áreas de dois paralelogramos com uma mesma altura são proporcionais às suas bases relativas à esta altura.

Demonstração: Sendo h_1 a altura relativa ao lado \overline{AB} do primeiro paralelogramo e h_2 a altura relativa ao lado \overline{EF} do segundo:

▶ Hipótese:
$$h_1 = h_2$$

► Tese:
$$\frac{A(ABCD)}{A(EFGH)} = \frac{\overline{AB}}{\overline{EF}}$$

Demonstração: Proposição 1

Com efeito,

$$A(ABCD) = (\overline{AB}) * h$$
 e $A(EFGH) = (\overline{EF}) * h$.

Portanto,

$$\frac{\mathcal{A}(ABCD)}{\mathcal{A}(EFGH)} = \frac{(\overline{AB}) * h}{(\overline{EF}) * h}$$
$$= \frac{\overline{AB}}{\overline{EF}},$$

como queríamos demonstrar.

Proposição 2

Proposição 2

Prove que as áreas de dois triângulos com uma mesma altura são proporcionais às bases relativas a esta altura.

Demonstração: Exercício

Formulário Avaliativo

Exercícios

1. Mostre que a área de um trapézio é a metade do produto das somas dos comprimentos das bases pela altura relativa a uma delas.

Exercícios

2. Demonstre o teorema de Pitágoras baseando-se na figura ao lado, isto é, mostre que $a^2=b^2+c^2$, expressando a área do quadrado maior de dois modos diferentes: como o produto dos lados e como a soma das áreas dos quatro triângulos e do quadrado menor.

