Дискретная математика

Коченюк Анатолий

20 декабря 2020 г.

0.1 Введение

Связаться:

- stankev@gmail.com Собирать культуру общения: указывать Фамилию, Имя
- Телеграм @andrewzta (для немедленного ответа. Если нет, оно утонет).
- +79219034426 (для катастрофических ситуаций, ожидается, что звонить никто не будет) (ни в коем случае не писать смс)

Обращаться можно по методическим вопросам. Если проблема группы – пишет староста.

Не писать по учебно-методическим проблемам (общежитие, медосмотр, армия ..) для этого есть зам. декана Харченко (легко найти контакты в ису)

Про отчётность будет на первой практике.

Лекции есть в ютубе andrewzta

Глава 1

1 курс

1.1 Фундамент

Множество – неопределяемое понятие. Множество состоит из элементов. $a \in A$ а-маленькое принадлежит множеству А-большое

$$A = \{2, 3, 9\}$$

$$A = \{n \mid n \text{ чётно}, n \in \mathbb{N}\}$$
 — фильтр

A, B:

- $A \cup B = \{a \mid a \in A$ или $a \in B\}$
- $A \cap B = \{a \mid a \in A \text{ и } a \in B\}$
- $A \setminus B = \{a | a \in A \text{ и } a \notin B\}$
- $\overline{A} = \{a | a \notin A\}$??? U универсум

$$\overline{A} = U \setminus A$$

$$A \setminus B = A \cap \overline{B}$$

• $A \triangle B = A \oplus B = (A \cup B) \setminus (A \cap B)$

Замечание. Если множество – любой набор чего-угодно возникает парадокс Рассела

$$A = \{a|a$$
 – множество, $a \notin a\}$

Вопрос лежит ли в себе A?

Определение 1 (Пара). A, B — множества. Мы можем рассмотреть множество пар, где первый элемент из A, а второй из B

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

$$A \times A = A^2$$

$$(A \times B) \times C = \{(x, y) | x \in A \times B, y \in C\} = \{((a, b), y) | a \in A, b \in B, y \in C\}$$

$$A \times (B \times C) = \{(a, (y, z)) | a \in A, y \in B, z \in C\}$$

$$A \times B \times C = \{(a, b, c) | a \in A, b \in B, c \in C\}$$

Для простоты, здесь и далее эта операция будет считаться ассоциативной и первые две строчки будут давать то же, что третья – множество троек.

$$A \times A \times A = A^3 A^n = \begin{cases} A &, n = 1 \\ A \times A^{n-1} &, n > 1 \end{cases}$$

 $A^0 = \{ [] \} = \{ \varepsilon \}$ – пустая последовательность.

Пример.
$$A = 2, 3, 9 -> A \times A = \{(2, 2), (2, 3), (2, 9), (3, 2), (3, 3), \ldots\}$$

Замечание. У множества есть элемента и для любого элемента из универсума, он либо входит (1 раз) либо не входит.

Определение 2. Функция – отображение, которое каждому элементу из одного множества ставит в соответветвие единственный элемент из другого множества

$$f: A \to B$$

График $\{(x, f(x))\}.$

Формально будем отождествлять функцию и её график.

$$f \subset A \times B \quad \forall a \in A \exists ! b \in B \quad (a, b) \in f$$

Замечание. Не путайте принадлежность и включение

 $a \in A$

 $A, B, \forall a \text{ (если } a \in A, \text{ то } a \in B) A \subset B$

 $D_4 = \{n | n \text{ кратно } 4\}$

 $E = \{n|n$ чётно $\}$

 $D_4 \subset E$

 $\{2,3,9\} \subset \{2,3,4,\ldots,9\}$

 $A \subset A$

4

 $\emptyset \subset A$

 $A \subset U$

Замечание. Необязательно все b попадают в график.

 $sqr: \mathbb{N} \to \mathbb{N}$ – только квадраты чисел

Определение 3. $\forall b \in B \exists a \in A : b = f(a)$ – сюръекция

Определение 4. $\forall a \in A \forall b \in B \quad a \neq b \implies f(a) \neq f(b)$

Замечание. Принцип Дирихле – нет инъекции из большего в меньшее множества. Если кроликов больше, чем клеток, то какому-то кролику не хватит клетки

Определение 5. Если f – инъекция и сюръекция, то f – называется биекцией

Если между двумя конечными множествами есть биекция, то у низ равное количество элементов.

Определение 6. Два множества называется равномощными, если между ними есть дикция

 B^A – множество функций из A в B

$$|A| = a, |B| = b$$
 $|A \times B| = a \cdot b$ $|B^A| = b^a$

 $|A^{\emptyset}|=1$ эфемерная функция, которой ничего не передать

$$\emptyset^A = \emptyset, A \neq \emptyset$$

$$\emptyset^{\emptyset} = 1$$

Определение 7. $R \subset A \times B$ – отношение (бинарное)

Пример. $A = B = \mathbb{N}$ $R = \{(a, b) | a < b\}$ R = <

a:b 6:2 6 /5

$$A =$$
 люди, $B =$ собаки, $R = \{(a, b)|a -$ хозяин $b\}$

Рассмотрим 5 классов отношение на квадрате множества:

1. рефлексивные $\forall a \quad aRa$

RC(R) – рефлексивное замыкание, включаем все пары (a,a)

- 2. антирефлексивные $\forall a \neg aRa$
- 3. симметричные $aRb \implies bRa$
- 4. антисимметричные $aRb, a \neq b \implies \neg bRa$ или aRb и $bRa \implies a = b$
- 5. транзитивность $aRb, bRc \implies aRc$

Определение 8. 1+3+5 – рефлексивные, симметричные и тразитивные – называются отношениями эквивалентности.

Теорема 1. R — отношение эквивалентности на X, то элементы X можно разбить на классы эквивалентности так, что:

a и b в одном классе $\implies aRb$ a и b в разных классах $\implies \neg aRb$ множество таких классов обозначается X/R

$$N/\equiv_3=$$

$$\{ \{1,4,7,10,\ldots) \\ \{2,5,8,11,\ldots) \} \\ \{3,6,9,12,\ldots) \} \}$$

Замечание. Отношение равномощности – отношение эквивалентности.

Классы эквивалентности – порядки. Для конечного случая обозначаются числами

Определение 9. 1+4+5 – рефлексивные, антисимметричные и транзитивные – частичные порядки

Множество, на котором введён частичный порядок, то оно называется частично упорядоченным. (ч.у.м – частично упорядоченное множество, poset – partially organised set)

$$R \subset X \times X$$

6

$$X, Y, Z \quad R: X \times Y \quad S: Y \times Z$$

Определение 10. Композиция отношений:

$$T = R \circ S$$
 $xTy \iff \exists z : xRz$ и zSy

т.е. есть z, через который можно пройти, чтобы попасть в y из x

Замечание. $R \subseteq X \times X$ $S \subseteq X \times X$

$$R \circ S \subseteq X \times X$$

 $R \circ R \subseteq X \times X$ – пройти два раза по стрелкам

$$R^3=R\circ R^2=R^2\circ R$$
 – пути длины ровно 3

 $S \circ T \circ U$ – идём по стр
лке из S в T, а потом в U

Определение 11. Транзитивное замыкание.

$$R^+ = \bigcup_{k=1}^{\infty} R^k$$

 $R^0 = \{(x,x) | x \in X\}$ – они не включаются по дефолту в R^+

 $R^* = \bigcup_{k=0}^{\infty} R^k = R^+ \cup R^0$ — если между двумя вершинами существует какой-либо путь

Замечание. Транзитивное замыкание – транзитивно

Пусть
$$xR^+y \implies xR^iy$$

Пусть
$$yR^+z \implies yR^jz$$

$$\implies x(R^i \circ R^j)z \implies xR^kz$$

Замечание. $\forall T: T$ – транзитивно. $T \subset R \implies T^+ \subset R$

Доказательство. По индукции:

База:
$$R^1 \subset T$$
 – дано

Переход:
$$R^i \subset T \implies R^{i+1} \subset T$$

$$xR^{i+1}y \implies x(R \circ R^i)y \implies \exists z: xRz\&zR^iy \implies xTz\&zTy \implies xTy$$
 (по транзитивности $T)$

1.2 Булевы функции

 \emptyset – пустое множество. С функциями из/в него всё достаточно грустно. $\{unit\}$

void – ничего, константная функция

$$\mathbb{B} = \{0, 1\}$$

 $f:A_1\times A_2\times\ldots\times A_n\to B$ – функция от нескольких аргументов. Из одного, но декартового произведения

Булева функция: $f: \mathbb{B}^n \to B$

n=0 – ноль аргументов $\mathbb{B}^0=\{[]\}$

0, 1

n = 1

Таблица 1.1: n=1

Замечание. Подобные таблицы называются таблицами истинности функций

n=2

Таблица 1.2: n=2

x	У	0	\wedge	$\not\!$	P_1	#	P_2	\oplus	\vee	\downarrow	=	$\neg P_2$	\leftarrow	$\neg P_1$	\rightarrow	\uparrow	1
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

С помощью стрелки Пирса (\downarrow) и штриха Шеффера (†) можно выразить любую другую: $\neg x = x \downarrow x$

1.3 Задания булевых функций

Самый простой способ – таблица истинности

 $\oplus_n - 2^n$ значений. глупо их все отдельно описывать

1. Задание функции формулой.

Определим базисные функции, систему связок

например:
$$\land, \lor, \neg, \oplus$$

$$x_1 \oplus x_2 \oplus x_3 \dots$$

 $\{f_1,f_2,..,f_n\}$ – базисные. строка – формула. $f_i(x_1,\ldots,x_k)$ – формула

Определение 12. Дерево разбора формулы. Если у функции арность – k, то у ноды будет ровно k сыновей

 \overline{F} – функции, которые записываются формулами, используя F (замыкание F)

Теорема 2 (Теорема о стандартном базисе). $\overline{\{\land,\lor,\lnot\}} = \mathbb{B}$

Доказательство. Рассмотрим таблицу истинности функции f Она принимает n аргументов и в ней 2^n строк

Пусть $f \neq 0$. Рассмотрим строчки, в которых единицы.

По аргументам запишем с не – аргументы, которые 0, и без не – те, которые 1

 $\neg x_1 \wedge \neg x_2 \wedge x_3 \wedge \neg x_4 \wedge x^5 - 1$ на ровно одном наборе элементов. А теперь возьмём "или"по всем строкам, в которых 1

Одна такая строка называется термом.

Такая форма называется совершенной дизъюнктивной нормальная формой

Лемма 1. Любая функция, кроме тождественного 0 – есть СДНФ $x \vee \neg x$ – тождественный ноль

Напоминание о способах задания функций:

$$F$$
 $x_1, x_2, \ldots, x_n f \in F$

or(and(x, not(y)), or(0, z)). Такие формы называются формулами. По формуле можно построить дерево разбора.

 \land, \lor, \lnot

СДН Φ — дизюнкция термов, где каждый терм — коньюнкция литералов. Совершенная — в каждом терме есть все переменные по одному разу

Лемма 2. $\supset F$ – некоторое множество. $\overline{F} = \mathbb{BF}$

 $\sqsupset G$ — некоторое множество функций $\forall f \in F \quad f \in \overline{G}$

Тогда с помощью G можно выразить любую функцию $\overline{G}=\mathbb{BF}$

Доказательство. $G o F o orall \implies G o orall$ – то, что нужно доказать

фиксируем функцию $h \in \mathbb{BF}$. Она каким-то деревом разбора выражается через функции $f \in F$. Каждая функция f выражается через $g \in \overline{G}$, тогда подставим выражения функций f через g в узлах дерева и получим выражение функции h через \overline{G} , значит люая функция выражается через $\overline{G} \Longrightarrow \overline{G} = \mathbb{BF}$

Пример. $\{\oplus, \land, 1\}$

 $x \wedge y = x \wedge y$ — $\neg x = x \oplus 1$ — такая запись называется полиномом жегалкина

$$x \lor y = (x \land y) \oplus x \oplus y$$

$$x \wedge y = xy \oplus y \oplus x - \wedge$$
 опускают

$$(x \oplus y)(y \oplus z) = xy \oplus y \oplus xz \oplus yz$$

$$(x \oplus 1)(y \oplus 1) = xy \oplus x \oplus y \oplus 1$$

 $a \wedge a = a$ – идемпотентность

Теорема 3. Любая булева функция (кроме 0) имеет каноничный полином, причём единственный (с точностью до коммутативности и ассоциативности)

Доказательство. булевых функций от n аргументов – 2^{2^n}

Мономов – 2^n . Каждый из них мы можем взять или не взять \implies всего 2^{2^n} – 1, -1 из случая, где мы рассматриваем пустую сумму.

Есть инъекция из булевых функций в полиному Жегалкина. Это инъеция между равномощными множествами ⇒ это биекция. ■

1.4 Линейный функции

Полиному Жкгалкина, в которых нету ∧

$$x \oplus y \quad x \oplus y \oplus 1$$

Определение 13. Функция называется линейной, если её канонический полином Жегалкина не сожержит \wedge

Утверждение 1. Если F содержит только линейный функции, то и \overline{F} содержит только линейный функции

Доказательство. $x_1 \oplus x_2 \oplus x_3$

 $x_7 \oplus x_8 = (x_1 \oplus x_2 \oplus x_3) \dots$ Заменяем и получаем всё ещё сумму переменных или $\mathbb 1$

Если формально, строим дерево, заменяем узлы на линейные фукнции, заменяем повторы, раскрываем скобки (пользуемся ассоциативностью \oplus) и получаем линейную функцию.

Утверждение 2. Если F содержит только функции, сохраняющие 0, то и \overline{F} тоже

аналогично для 1

Определение 14. Функция f называется монотонной \iff для двух наборов x_1,x_2,\ldots,x_n y_1,y_2,\ldots,y_n , что $x_i\leqslant y_i$ 0<1

$$f(x_1, x_2, \dots, x_n) \le f(y_1, y_2, \dots, y_n).$$

Утверждение 3. Из монотонных функций не выразить немонотонную

Доказательство. Доказывается индукцией по дереву разбора. Увеличили аргумента, увеличился уровень выше, выше и корень тоже ■

Определение 15. Функция f называется самодвойственная, если $f(x_1, \ldots, x_n) = \neg f(\neg x_1, \ldots, \neg x_n)$

Утверждение 4. Из самодвойственных функций тоже не выйти. Тоже деревом разборп

Классы Поста:

- 1. F_0 сохраняющие 0
- 2. F_1 сохраняющее 1
- 3. F_l линейные
- 4. F_m монотонные
- 5. F_s самодвойственные

Лемма 3. $F \subseteq F_i, i \in \{0,1,l,m,s\} \implies \overline{F} \subseteq F_i$

Следствие 1. \overline{F} – не полно

Теорема 4 (критерий Поста). F – полное \iff $F \not\subseteq F_i$ для всех $i \in \{0,1,l,m,s\}$

Доказательство. ⇒ Если нет, то все функции лежат внутри этого класса. Не будет включена ↑ например, не лежащая ни в одном классе Поста

$$\iff f_0 \not\in F_0, f_1 \not\in F_1, f_l \not\in F_l, f_m \not\in F_m, f_s \not\in F_s$$

$$a(x)f_0(x,x,\ldots,x)$$

$$a\left(0\right) = 1$$

$$a \ a(1) = 1 \implies a(x) = 1$$

$$b \ a(1) = 0 \implies a(x) = \neg x$$

$$b(x) = f_1(x, x, \dots, x)$$
 $b(1) = 0$

1.
$$b(1) = 0 \implies b(x) = 0$$

2.
$$b(1) = 1 \implies b(x) = \neg x$$

1a 10

1b 0, ¬

2a 1, ¬

 $2b \neg, x$

1а 1,0 $f_m(x_1,\ldots,x_n) > f_m(y_1,\ldots,y_n)$ $x_i \leqslant y_i$ Значит первое – 1, а второе – 9

$$f_m(x_1,\ldots,x_n)$$

$$f_m(y_1,\ldots,x_n)$$

$$f_m(y_1,\ldots,x_n)$$

:

$$f_m(y_1,\ldots,y_n)$$

В какой-то момент единица сменилась нулём на соседних строках

$$f(y_1, \ldots, y_{i-1}, x_i, \ldots, x_n) = 1$$

$$f(y_1, \dots, y_{i-1}, y_i, \dots, x_n) = 0$$

$$x_i \leqslant y_i \quad x_i \neq y_i \implies x_i = 0, y_i = 1$$

 $c(z) = f_m(y_1, \dots y_{i-1}, z, x_{i+1}, \dots, x_n)$ здесь вместо х и у подставлены константы

$$c(z) = \neg z$$

2b
$$f_s$$
 $x_1, x_2, \dots, x_n : f_s(x_1, x_2, \dots, x_n) = \neg f(\neg x_1, \dots, \neg x_n) = t$

$$d(z) = f_s(z^{x_1}, z^{x_2}, \dots, z^{x_n}) \quad x^y = \begin{cases} x & , y = 1 \\ \neg x & , y = 0 \end{cases}$$

$$d(0) = t, d(1) = t$$

$$\begin{cases} t = 1 \implies d(t) = 1 \\ t = 0 \implies d(t) = 0 \end{cases}$$

Итак мы получили 1, 0, ¬

Воспользуемся нелинейной функцией: f_l среди нелинейных членов в полиноме Жегалкина выберем тот, в котором меньше всего переменных. Не умаляя общности скажем, что он выглядит как $xyu_1\dots u_k$ $k+2\geqslant 2$

 $h(x,y)=f_l(x,y,\mathbb{1},\mathbb{1},\dots,\mathbb{1}i,\mathbb{0},\mathbb{0},\dots\mathbb{0})$ Вместо u_k подставляем $\mathbb{1},$ а вместо остальных $\mathbb{0}$

$$h(x,y) = xy[\oplus x][\oplus y][\oplus 1]$$
 – восемь вариантов.

Если есть ⊕1, напишем ¬

$$xy[\oplus x][\oplus y]$$

$$xy = x \wedge y$$

$$xy \oplus x \oplus y = x \vee y$$

$$xy \oplus x$$
 $h(x, \neg y) = x(y \oplus 1) \oplus x = xy$

$$xy \oplus y \quad h(\neg x, y) = (x \oplus 1)y \oplus y = xy$$

1.5 Преобразование Мёбиуса

$$f(x_1, x_2, \dots, x_n) = x \vee y/x/y/1$$

$$a_{xy}xy \oplus a_xx \oplus a_yy \oplus a_1$$

$$f(x_1, x_2, \dots, x_n) = \bigoplus_{\vec{s} \in \mathbb{B}^n} a_s \prod_{i: s(i) = 1} x_i = \bigoplus_{\vec{s} \leqslant \vec{x}} a_{\vec{s}}$$

$$s(i) = 1 \implies x(i) = 1 \iff s \& x = s \iff s \leqslant x$$
 (покомпонентно)

Определение 16 (Доминирование). $\vec{a} \leqslant \vec{b} \iff \forall i \quad a_i \leqslant b_i$

Таблица истинности:

$$1 \quad 1 \quad \dots \quad 1 \quad \left| f_{11\dots_1} \right|$$

$$f\in \mathbb{B}^{2^n}$$

$$\vec{a} = M\vec{f}$$
 $\vec{f} = M\vec{a}$

$$M_{xs} = [s \leqslant x]$$

Преобразование Мёбиуса – матрица
$$M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Теорема 5. Преобразование матрицы – инволюция $(M = M^{-1})$

$$\vec{a}_t = \bigoplus_{x \leqslant t} f_x$$

Доказательство. $\bigoplus_{x\leqslant t}f_x=\bigoplus_{x\leqslant t}\bigoplus_{s\leqslant x}a_s=\bigoplus_{s,x:s\leqslant x\leqslant t}a_s=\bigoplus_S[(\#x:s\leqslant x\leqslant t)\%2]a_s=a_t$

- 1. $s \not \leqslant t \implies \#x = 0$
- $2. \ s = t \implies \#x = 1, s = x = t$
- 3. $s\leqslant t_1$ $s\neq ts$ нечётное число раз ксориться. z различных разрядов, $z\leqslant 1$ 2^z

Пример. $\begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}$ $a_{11}=1, a_{01}=0, a_{10}=0, a_{00}=1$

 $xy \oplus 1$ — штрих Шефера

1.6 Схемы из функциональных элементов (Boolean Circuts)

Определение 17. Топологической сортировкой называется отображение $\varphi:V\to\{1,\dots,n\}\quad u\neq v\implies \varphi(u)\neq \varphi(v)\quad uv\in E\implies \varphi(u)<\varphi(v)$

Теорема 6. Ациклический ориентированный граф имеет топологическую сортировку.

Лемма 4. Если G ациклический граф, то существует вершина, из которой не выходит рёбер

Доказательство леммы. Возьмём вершину: если

n>1 возьмём вершину из которой нет рёбер , дадим ей номер n и удалим её из графа. Граф от этого не стал иметь циклов, поэтому по индукционному предположению мы можем занумеровать оставшиеся n-1 элементов

Вершины, в которых нет рёбер называются x_1, x_2, \ldots, x_n . Дальше идут внутренние вершины, обозначаемые функциями. Например, если обозначена \wedge , то в неё входит два ребра. Если некоммутативная функция, то указывается порядок. Исходящая степень может быть любой. Завершает всё вершина выхода

Рис. 1.1: sceme

$$x \oplus y = (x \land \neg y) \lor (\neg x \land y)$$

Дерево разбора легко превращается в схему.

Теорема 7. Не существует формулы $len(\phi) = \tilde{O}(n)$ для \oplus_n в $\{\land, \lor, \lnot\}$

В схеме мы можем пересипользовать то, что в формуле пришлось бы повторять.

B – базис

Теорема 8. Функцию f можно задать формулой в базе $B \iff f$ можно представить схемой

Определение 18. Сложностью функции f в базисе B $size_B(f) = \min$ число функциональных элементов в схеме.

Определение 19. Глубина схемы определяется рекурсивно: глубина входов -0, глубина вершины - максимум из глубины входящих +1 depth $_B(f)$ - минимальная глубина схемы для функции.

Теорема 9. B_1, B_2 – базисы.

 $\exists c \ \forall f \ size_{B_1}(f) \leqslant c \cdot size_{B_2}(f)$

Доказательство. $B_2 = \{b_1, b_2, \dots, b_n\}$

 b_i выразим через B_1

 $C \leqslant \max_{b_i \in B_2} size_{B_1}(b_i)$

(оптимальная схема может быть лучше, поэтому ≤)

Теорема 10. То же самое про глубину

Следствие 2. size(f) без базиса – асимптотическое поведение не зависящее от базиса (по теоремам при переходе к другому базису всё отличается в константу)

Следствие 3. $c_1 size_{B_2}(f) \leqslant size_{B_1}(f) \leqslant c_2 size_{B_2}(f)$

Размер функции с точностью до константы не зависит от базиса

1.7 Конкретные схемы для логических операций

Числа храниться в виде двоичного кода. Занумеруем в двух числах биты: $x_0, \ldots, x_n, y_0, \ldots, y_n$

Побитовое $\mathbf{N}-n$ элементов \wedge принимающие соответствующие разряды.

$$z_0 = x_0 \wedge y_0 \dots z_n = x_n \wedge y_n$$

Размер схемы: n глубина: 1 size = n depth = 1

Побитовое ИЛИ – так же. Любая побитовая операция – так же.

Арифметические операции – не так же. Биты начинают зависеть друг от друга.

Сложение двух битов: заведём два выходных бита: $low=a\oplus b$ $high=a\wedge b$. Такая схема называется неполным сумматором. Неполным, потому что из него не собрать сумматор для целых чисел. Для второго бита понадобиться сложить биты чисел и ещё бит переноса. Но сумма трёх битов, к счастью, все ещё помещается в два бита $1+1+1=3=11_2$

a,b,c $low=\oplus_3(a,b,c)$ $high=med_3(a,b,c)$ – полный сумматор. Первому биту на перенос подаётся $\mathbb O$, а для остальных будут складываться соответствующие биты и перенос с предыдущих битов. Другое название – линейный сумматор.

size = n depth = n

Рис. 1.2: sum

$$\begin{array}{c|cccc} 0 & 0 & 0 & k \text{ (kill)} \\ 0 & 1 & x & p \text{ (propogate)} \\ 1 & 0 & x & p \\ 1 & 1 & 1 & g \text{ (generate)} \\ \end{array}$$

Схема композиции: принимает четыре значения, выдаёт два. Имеет константную глубину.

(Дальше жесть, которую я не могу нарисовать, но суть в том, что раз оно ассоциативное, то мы можем запилить двоичное дерево и делать всё за радостный логарифм.)

 $size = O(n) \quad depth = O(\log n)$ – Двоичный каскадный сумматор. Лучше сделать нельзя.

 $-y = (\sim y) + 1$ отрицательные числа храняться как дополнение +1

x-y=x+(y)+1. Отрицание y сделать легко, но как добавить ещё 1? Но у нас есть нулевой перенос в нулевой разряд. Давайте сделаем его $c_0=1$

Умножать двоичные числа в стлбик просто. Схема даже имеет название Матричный умножитель

Дерево Уоллиса: Во-первых превратим сумму трёх чисел в сумму двух. Для трёх чисел поразрядно сделаем сумматор, который будет возвращать сумму и перенос побитого. Здесь мы не передаём перенос никуда. Дальше из переносов сделаем число и из сумм сделаем число. Получим два числа и нам нужно сложить уже их.

1.8 Линейные программы

Определение 20. x_1, x_2, \ldots, x_n – переменные

 $x_{n+1}, x_{n+2}, \dots, x_{n+t}$ – дополнительные t переменных.

Для базиса (например \vee , \wedge ,).

$$\begin{aligned} x_{n+1} &= x_2 \vee x_7 \\ x_{n+2} &= \neg x_4 \\ x_{n+3} &= x_{n+1} \wedge x_{n+2} \\ &\vdots \end{aligned}$$

В дополнительных переменных разрешается одна функция из базиса применённая к предыдущим переменным.

Пример. Сделаем \oplus

 x_1, x_2

$$x_3 = \neg x_1$$

$$x_4 = \neg x_2$$

$$x_5 = x_1 \land x_4$$

$$x_6 = x_2 \land x_3$$

$$x_7 = x_5 \lor x_6$$

Теорема 11. \exists схема из функциональных элементов длины $t \iff \exists$ линейная программа длины t

Доказательство. Если на схеме задать топологическую сортировку (пронумеровать так, чтобы стрелки были из меньшего числа к большему, то можно идти по полученным номерам: сначала сделать доп. переменные от входов, потом уже зависящие не только от них, но от уже заведённых согласно схеме.

Обратно: каждой доп. переменной соответствует применение функции (функционального элемента) к уже полученным. В этот элемент идут аргументы из определения доп. переменной, а из неё, соответственно её значение. ■

Замечание. Линейных программ больше, чем схем из функциональных переменных:

$$\begin{cases} x_3 = \neg x_1 \\ x_4 = \neg x_2 \end{cases}$$
 и
$$\begin{cases} x_3 = \neg x_2 \\ x_4 = \neg x_1 \end{cases}$$
 приводят к одному результату и одной схеме,

но это различные линейные программы

$$\{\downarrow\}$$
 – базис.

$$n^2 \cdot (n+1)^2 \cdot \ldots \cdot (n+t-1)^2 \leqslant (n+t)^{2t}$$

Лемма 5. Схем из t функциональных переменных $\leqslant (n+t)^{2t}$

$$\frac{2^n}{3n}$$
 Cxem $c \leqslant \left(n + \frac{2^n}{3n}\right)^{\frac{2 \cdot 2^n}{3n}}$

$$\alpha\leqslant\frac{\left(n+\frac{2^n}{3n}\right)^{\frac{2\cdot 2^n}{3n}}}{2^{2^n}}$$
 – для функций, которые можно реализовать за $\frac{2^n}{3n}$ элементов

$$\log_2 \alpha \leqslant \frac{2^{2^n}}{3n} \log_2 \left(n + \frac{2^n}{3n} \right) - 2^n = 2^n \left(\frac{2}{3n} \log_2 \left(n + \frac{2^n}{3n} \right) - 1 \right) \leqslant 2^n \left(\frac{2}{3n} \cdot n - 1 \right) \leqslant -\frac{1}{3} 2^n$$

$$\alpha \leqslant 2^{-\frac{1}{3}2^n} \leqslant \left(\frac{1}{\sqrt[3]{2}}\right)^{2^n} \to 0, n \to \infty$$

$$\exists n_0 : n > n_0 \implies n + \frac{2^n}{3n} \leqslant 2^n$$

Теорема 12. $\forall c>0$ $g(n)\leqslant \frac{2^n}{3n}$ $\exists n_0:n>n_0,$ то (доля функций от n аргументов, которые можно реализовать с помощью $g(n))\leqslant c$

Или (доля функций . . .) $\rightarrow 0, n \rightarrow \infty$

Доказательство. $f(x_1x_2...x_ky_{k+1}...y_n)$

Рассмотрим таблица, где по горизонтали указывается набор x-ов, а по вертикали — y

$$x_1 \oplus y_2 \oplus y_3$$

Разобьём таблицы на горизонтальные полосы длины s

Столбцы $a \sim_j b$ – равны в j полосе – отношение эквивалентности

Число полос $p = \frac{2^k}{s}$

 \exists не более чем 2^s классов эквивалентности.

Для полосы j и маски $m-g_{jm}$ — значения маски в полосе, за её пределами — 0

Теперь возьмём мультиплексор (n входов, 2^n выходов, 1 на выходе с числом $(x_1 \dots x_n)_2$). Выделим в нём полосу j, в неё проогим те значения, которые могут быть 1

$$f(x_1 \dots x_k, y_{k+1} \dots y_n) = \bigvee_{j=1}^p g_{jm_j^c}$$

Суммарно:
$$2^k + 2^{k+s} + 2^{n-k} + 2^{n-k} \cdot \frac{2^k}{s} + 2^{n-k} + 2^{n-k} = O\left(2^{k+s} + \frac{2^n}{s}\right)$$

Теперь возьмём $k = \log_2 s$, а $s = n - 2\log_2 n$

$$2^{k+s} + \frac{2^n}{s} = 2^{n - \log n} + \frac{2^n}{n \cdot 2 \log_2 n} = O\left(\frac{2^n}{n}\right)$$

Определение 21. Алфавит Σ – любое непустое конечное множество.

Последовательность символов: Σ^2 $\Sigma^3\dots \bigcup_{k=0}^\infty \Sigma^k=:\Sigma^*$ — множество всех слов (или подстрочек) над алфавитом Σ

$$\Sigma^0 = \{\varepsilon\}$$

 α, β – два слова.

Определение 22. $\alpha\beta$ – конкатенация $\Sigma^* \times \Sigma^* \to \Sigma^*$ $\alpha \in \Sigma^k$ $\beta \in \Sigma^l$ $\gamma = \alpha\beta \in \Sigma^{k+l}$

$$\gamma[i] = \begin{cases} \alpha[i] & , i \leq k \\ \beta[i-k] & , i > k \end{cases}$$

Свойства конкатенации:

1.
$$(\alpha\beta)\gamma = \alpha(\beta\gamma)$$

$$2. \ \alpha \varepsilon = \epsilon \alpha = \alpha$$

Структуру с ассоциативностью и нейстральным элементом называют моноидом

Определение 23. Σ, Π – алфавиты

Обобщённым кодом ϕ называется функция

$$\varphi: \Sigma^* \to \Pi^*$$
.

Определение 24. Код называется <u>декодируемым</u> (или однозначным), если $\alpha \neq \beta \implies \varphi(\alpha) \neq \varphi(\beta)$

Или, что то же самое, φ – инъективная функция.

Замечание. $zip: \Sigma^* \to \Sigma^*$ — однозначное декодируемый. Не требует, что-бы любая последовательность символов была валидным кодом, в который могло что-то зашифроваться.

 $jpeg: \Sigma^* \to \Sigma^*$ – сжатие с потерями. Когда декодируем, получаем другой файл. Несколько файлов могут сжаться в один код.

png – сжатие без потерь

Транслитерация фамилий в паспорте $A \to A$ $C \to S$ $\Psi \to CH$

Определение 25. Разделяемый код: каждый символ кодирует отдельно $\varphi: \Sigma \to \Pi^*$

$$\varphi(c_1c_2c_3\ldots c_n) = \varphi(c_1)\varphi(c_2)\ldots\varphi(c_n)$$

На время будем считать $\Sigma = \Pi$

Утверждение 5. Не существует кода $\Sigma^* \to \Sigma^*$, который не увеличивает любой текст, а некоторые уменьшает

Доказательство. Длины 0 меньше точно незакодировать

Длины 1 не можем опять.

Длины 2, опять та же проблемы, все тексты меньше уже заняты.

Замечание. Но zip то всё сжимает..

(zip архив точно не сожмёт дальше)

S – строка. Хотим построить для неё оптимальный код. Какой?

 $\Sigma = \{c_1, c_2, \dots, c_n\}$ p_i – количество вхождений c_i в S

 $\varphi: \Sigma \to \mathbb{B}^*$ – двоичный код. $l_i = len(\varphi(c_i)) \quad len(\varphi(s)) = \sum_{i=1}^k l_i p_i$

- Префиксный код
- код Хаффмана
- неравенство Крафта-МакМиллана

Определение 26. φ – префиксный код, если

 $\forall a,b \in \Sigma \quad \varphi(a)$ не префикс $\varphi(b).$

 ${\bf \Pi}{\bf pumep.} \buildrel{a}{b} \buildrel{00}{00}$ Это не префиксный код, потому что a префиксb с $\buildrel{11}{c}$

- a 0 b 00
- c 11

Это уже префиксный код

Лемма 6. Префиксный код однозначно декодируемый

Можно строить дерево двоичного кода.

Рис. 1.3: tree

Сиволам, которые встречаются чаще, хотелось бы выдать меньший код

Задача 1. Префиксный код, $\Sigma l_i p_i o \min$

Лемма 7 (1). \exists дерево оптимального, когда два символа с минимальным p_i являются братьями на максимальной глубине.

Доказательство. Рассмотрим дерево, расммотрим две минимальные вершины. Не может быть, чтобы брата не было (иначе у минимальной вершины можно было бы отрезать последний символ, оставив код префиксным.

Если два брата соотвествуют минимальным p_i – всё.

Если нет, p_i, p_j – минимальные p_k, p_l – самые глубокие

$$p_i, p_j$$
 – два самых минимальных $\implies p_j \leqslant p_k, p_j \leqslant p_l$

 p_k, p_l – два самых глубоких $\implies l_i \leqslant l_k]quadl_j \leqslant l_l$

$$\sum_{t} l_{t} p_{t} = \sum_{t \neq i, j, k, l} l_{t} p_{t} + p_{i} l_{i} + p_{j} l_{j} + p_{k} l_{k} + p_{l} l_{l}$$

$$\sum_{t} l'_{t} p_{t} = \sum_{t \neq i, j, k, l} l_{t} p_{i} + p_{j} l_{k} + p_{j} l_{l} + p_{k} l_{i} + p_{l} l_{j}$$

Их разность =
$$p_i(l_i - l_k) + p_j(l_j - l_l) - p_k(l_i - l_k) - p_l(l_j - l_l)$$

Пример.
$$\begin{pmatrix} a & b & c \\ 2 & 2 & 3 \end{pmatrix}$$

$$a = x0$$
 $b = x1$

Пусть мы объединили a и b в один символ x

aabbcccc = xxxxccc

$$\sum\limits_{a,b\to x} p_i l_i = \sum\limits_{i\neq x} p_i l_i + p_x l_x = \sum\limits_{i\neq x} p_i l_i + p_a (l_a-1) + p_b (l_b-1) = \sum\limits_{i(a,b)\text{отдельно}} p_i l_i - p_a - p_b$$

Пример. Код Хаффмана

Теорема 13 (Неравенство Крафта-МакМиллана). S $c_1 \dots c_k$

Можно построить однозначно декодируемый двоичный код слов l_i тогда и только тогда, когда

$$\sum_{i=1}^{k} s^{-l_i} \leqslant 1.$$

Доказательство.

$$= l_1 \leqslant l_2 \leqslant \dots l_k$$

$$2^{-l_1} \geqslant 2^{-l_2} \geqslant \dots \geqslant 2^{-l_k}$$

Рис. 1.4: haff

$$2^{-l_1} + \ldots + 2^{-l_i - 1} < \frac{1}{2} \quad \times 2^{l_i}$$

 \implies Пусть есть префиксный код. Запишем в листья его дерева $2^{-d}, d$ – глубина. После этого запишем в узлах сумму детей. Тогда в корне будет число $\leqslant 2^0 = 1$

Теперь пусть его однозначно декодируемый код. 0 и 1 заменим на а и b, чтобы они не интерпретировались как числа.

$$_1 \rightarrow aba$$

$$c_2 \to ab$$

$$\vdots \rightarrow aa$$

$$c_n \to bbb$$

Сложим их $(aba+ab+aa+bbb)^k=abaaba\dots aba+abab\dots ab+\dots+bbbbbb\dots bbb\ n^k$ слагаемых.

 $L = \max l_i$ максимальная длина слова в сумме – kL

Подставим $a=\frac{1}{2}$ $b=\frac{1}{2}$ в равенство

 $(\sum 2^{-li})^k =$ длины от 1 до kL и все слова различны

(слова длины 1) + (слова длины 2) + \dots + (слова длины kL)

Для i каждое слово вычислится в $(\frac{1}{2})^i$ и они все различны, т.е. их максимум 2^i , значит скобка не превышает 1

Значит
$$\left(\sum 2^{-li}\right)^k \leqslant kL \forall k$$

Если сумма слева > 1, то там растущае экспонента и она обгонит линейно растущую, значит сумма ≤ 1 , что и требовалось.

Рис. 1.5: отрезки

Замечание. Код Хаффмана – оптимальный префиксный ⇒

Пусть есть код с буквами a, b и букв a очень много

0 aaaaaaaaaa

 $10 \quad a$

11 b

1.9 Арифметическое кодирование

 c_1, c_2, \ldots, c_n – символы, которые встречаются f_1, f_2, \ldots, f_n раз

 $\sum f_i = L$ – длина текста, который мы хотим закодировать $p_i = \frac{f_i}{L}$

abacaba
$$p_a = \frac{4}{7}$$
 $p_b = \frac{2}{7}$ $p_c = \frac{1}{7}$

Алгоритм: l=0, r=1 Делим в пропорциях p_i -ых (порядок не важен, но должен быть одинаков у кодировщика и декодировщика) Далее берём следующую букву, выделяем соответствующий отрезок, зумимся в него и повторяем операцию, расмматривая его как изначальный.

$$1. \ 2^{-q}\leqslant r-l$$

$$\Longleftrightarrow -q\leqslant \log_2(l-r)$$

$$\Longleftrightarrow q\geqslant -\log_2(l-r)$$
 Ho также $q\leqslant \lceil -\log_2(l-r)\rceil$
$$l-r=\prod_{i=1}^L pc_i=\left(\prod_{i=1}^L p_i^{p_i}\right)^L$$

$$-\log_2(l-r)=-L\log_2\left(\prod_{i=1}^L p_i^{p_i}\right)=-L\sum_{i=1}^n p_i\log_2 p_i$$

$$q\leqslant \Theta L, \Theta=\sum_{i=1}^n p_i\log_2 p_i-$$
 энтропия

1.9.1 RLE-кодирование

Running length encoding. abbbbaaaaabbbbbb 1a4b5a5b

1.9.2 МТГ-кодирование

Move to front

abbbbaaaaabbbbbccccccaa

a b c

0 1 2

 $a \to 0, b \to 1$ но мы перемещаем b в начало

b a c

$$b \to 0, b \to 0, \dots, b \to 0, a \to 1, a \to 0 \dots, b \to 1, b \to 0 \dots, c \to 2, c \to 0$$

0100010000100002000000020 — резкий переход по частотам в сторону 0

 $\rightarrow bzip2$ – BWT Barrows Wheeler Transform :

abacaba\$\$

\$avacaba

a\$abacab

aba\$abac

acaba\$ab

abacaba\$

ba\$abaca

bacaba\$a

caba\$aba

последний столбец – результат abcb\$aaa

 $\mathrm{Text} \to \mathrm{BWT} \to \mathrm{MTF} \to \mathrm{AE}/\mathrm{Haff}$

1.9.3 LZ77-78

abacaba

abac(4,3) – отступи на 4 назад и повтори 3.

ababababc ab(2,2)(4,4)c ab(2,6)c

- a = 0
- b 1
- c 2
- ab 3
- ba 4
- ac 5
- ca 6
- aba
- a\$ 8
- ωψ

010230

1.10 Избыточное кодирование

1.10.1 бит чётности

Например перед каждыми 8 битами будет стоять бит чётности и если его значение не совпадает с чётностью 8-ю битов, то будет понятно, что память повредилась.. После этого

Определение 27 (расстояние Хэмминга). Пусть мы пользуемся кодирование постоянной длины.

H(x,y) – количество позиций $i:x[i] \neq y[i]$

H(001101, 101000) = 3

Замечание. А расстояние ли оно? Вспомним матан

- 1. $d(x,y) \ge 0$
- $2. d(x,y) = 0 \iff x == y$
- 3. d(x,y) = d(y,x)
- 4. $d(x,y) + d(y,z) \ge d(x,z)$

количество $\geqslant 0$

ноль, только если нет различий

Определение не учитывает порядок x, y

Если вхоидит в d(x, z), то входит в d(x, y) + d(y, z)

Всё выполняется, и правда расстояние

Пример. $ex: \sum \to \mathscr{B}^n$

Определение 28. Код обнаруживает d отибок, если $\min_{x,y\in\Sigma}H(c(x),c(y))=d(c)>k$

Если повредить $\leq k$ битов в c мы получим c', но оно не может быть корректным, значит мы точно поймём, что слово повредилось.

Пример. $c: \mathbb{B}^8 \to \mathbb{B}^9$

d(c)=2 Хотя бы два бита будут различаться. А значит такой код обнаруживает одну ошибку, согласно определения

Определение 29. Код c исправляет k ошибок, если d(c) > 2k

Внесём в слово $a\leqslant k$ ошибок. Получим a'. Кодировщик может восстановить символ, найдя код, отличающийся от a' не более, чем в k битах

 $H(a, a') \leqslant k$ $H(a, b) \leqslant k$ $H(a, b) \leqslant 2k?!!$

Утверждение 6. Если код c исправляет k ошибок, тогда он обнаруживает 2k ошибок

Утверждение 7. Если код c обнаруживает k ошибок, тогда он исправляет $\left\lfloor \frac{k}{2} \right\rfloor$ ошибок

Утверждение 8. $\forall k \exists$ код, который обнаруживает k ошибок

 $\Sigma \quad |\Sigma| \leqslant 2^n$

Сделаем код $c_i = i_2$ (в двоичной записи)

Повторим k+1 раз каждый бит

 $c: \Sigma \to \mathscr{B}^{(k+1)n}$ – он может обнаружить k ошибок

Определение 30. $\mathbb{B}^n, x \in \mathbb{B}^n, r \in \mathbb{Z}^+$

Шаром $S(x,r) = \{y | H(x,y) \leqslant r\}$

 $S(0000, 1) = \{0000, 0001, 0010, 0100, 1000\}$

Определение 31. V(n,r) – объём шара с радиусом r

объём не зависит от центра – n

Замечание. $V(n,r) = |S(x,r)| \forall x \in \mathbb{B}^n$

$$S(x,r) = \{z | z = t \oplus x \oplus y, t \in S(y,r)\}$$

$$H(x,z) = |\{i | x[i] \neq z[i]\}|$$

$$y = x \oplus (x \oplus y)$$

$$t = z \oplus (x \oplus y)$$

$$H(y,t) = |\{i|y[i] \neq t[i]\}| = |x[i] \oplus (x[i] \oplus y[i] \neq z[i] \oplus (x[i] \oplus y[i])| = \dots$$

Лемма 8. $x \neq y \in \Sigma$ c – код, исправляющий k ошибок

To
$$S(c(x), k) \cap S(c(y), k) \neq 0$$

$$z \in S\left(c(x), k\right) \cap S\left(c(y), k\right)$$

$$H(c(x), z) \leqslant k$$
 $H(c(y), z) \leqslant k \implies H(c(x), c(y)) \leqslant 2k$

Теорема 14 (граница Хемминга). c – код для m -символьного алфавита, исправляющий k ошибок

$$c: \Sigma \to \mathbb{B}^n$$
, to $m \cdot V(n,k) \leqslant 2^n$

Пример. 3 символа. испр. 1 ошибку. m = 3?

$$3 \cdot V(3,1) \leq 2^3$$

$$3\cdot 4 \not\leqslant 2^3$$

$$\log_2 n + \log_2 V(n,k) \leqslant n$$

$$\tfrac{\log_2 m}{n} \leqslant 1 - \tfrac{\log_2 V(n,k)}{n}$$

первое — скорость передачи, которая уменьшилась на $\frac{\log_2 V(n,k)}{n}$

Доказательство. \mathbb{B}^n $x_1 = c(1)$ испр. k ошибок

 $S(x_1, 2k)$ запрещены, т.к. слишком близко к x_1

$$x_2 \in \mathbb{B}^n \setminus S(x_1, 2k)$$
 $x_2 = c(2)$
 $x_3 \in \mathbb{B}^n \setminus \left(\bigcup_{i=1}^2 S(x_i, 2k)\right)$

Теорема 15 (граница Гильберта). Если $m \cdot V(n, 2k) \leq 2^n$, то \exists код $c : \Sigma \to \mathbb{B}^n$, исправляющий 2k ошибок $|\Sigma| = m$

$$V(n,r) = 1 + n + \frac{n(n-1)}{2} + \dots + C_n^r$$

$$r = 1 \quad V(n,1) = 1 + n$$

$$m(n+2) \leqslant 2^n$$

$$m \leqslant \frac{2^n}{n+1}$$

1.10.2 Код Хемминга

Занумеруем биты от 1 до n

Биты в коде Хемминга делятся на информационные и контрольные. Контрольные – те, у которых номер позиции это степень двойки.

Пусть $|\Sigma| \le 128$

Код постоянной длинны $\to \mathbb{B}^7$

Контрольному биту соответствуют позиции $P_i = \{j | j \& 2^i = 2^i \}$. контрольный бит равен ксору всех битов его множества.

Теорема 16. Код Хемминга исправляет одну ошибку

Доказательство. $\forall x, y \mid H(x, y) \geqslant 3$

Различается ≥ 3 инф бита – ОК

различается 1 инф бит $\implies \geqslant 2$ Различных контрольных бит. Суммарно расстояние хотя бы 3.

Различаются 2 инф бита. Пусть у них номера j_1, j_2 У них есть хотя бы одна позиция, в которой они различаются $(j_1 \oplus j_2 \neq 0)$, значит есть контрольный бит, учитывающий одно и не учитывающий другой. Хотя бы s-ый контрольный бит различаются \Longrightarrow

Замечание. В коде $12 \dots_2^{s-1} \dots |2^s|$

 $2^{s} - 1 - s$ – инф. бит s контрольных

 $2^{s}-1-s+s\leqslant 2^{s}-1$ – здесь неравенство выполняется как равенство.

 $\log(m) + \log(n+1) \leqslant n$

Глава 2

Комбинаторика

Раздел математики, изучающий комбинаторные объекты. Объекты, которые наделены какой-то внутренней структурой.

Основные задачи:

- 1. подсчёт и перечисление комбинаторных объектов
- 2. эффективная нумерация комбинаторных объектов. (мы можем хотеть эффективно их закодировать)

2.1 Вектора фиксированной длины

Последовательность из элементов какого-то алфавита Σ фиксированной длины n

$$\Sigma^n$$
 \mathscr{B}^n

Выполним задачу подсчёта. Сколько у нас двоичных векторов? 2^n

Для произвольного алфавита k^n

Задача перечисления: лексикографический порядок

2.2 Лексикографический порядок

Пусть есть множество A

$$X^* = \bigcup\limits_{k=0}^{\infty} X^k$$
 – все последовательности

пусть X линейно упорядочено, т.е. есть \leqslant и любые два элемента можно сравнить

$A\subseteq X^*$

Перенесём порядок с X на A. Этот перенос называется лексикографическим порядком на A

$$a = x_1 x_2 \dots x_l$$

$$b = y_1 y_2 \dots y_t$$

$$x_i, y_i \in X$$

Будем говорить $a\leqslant_{lex} b,$ если $\exists i\leqslant\min(l,t),$ что:

1.
$$i \leqslant j \implies x_i = y_i$$

2.
$$\begin{cases} i = l \\ i < t, x_{i+1} < y_{i+1} \end{cases}$$

Для
$$n = 3$$
 $011 - 3$ $100 - 4$

111 - 7

$$\Sigma = \{a, b, c\}$$
 $n = 2$ bb

bc

ca

 $^{\mathrm{cb}}$

cc

U

000 - 0 001 - 1

Пример. Двоичные вектора без двух единиц подряд.

010 - 2 100 - 4

101 - 5

Посчитаем их.

$$\begin{array}{lllll} \mathbf{n} & & f_n \\ 0 & \varepsilon & 1 \\ 1 & 0,1 & 2 \\ > 1 & 0.. \ \text{или } 10... & F_n = 0 F_{n-1} + 10 F_{n-2} - \Phi$$
ибоначчи

2.3 Перестановки

(permutations)

$$a_i \in \{1, 2, ..., n\} \quad i \neq j \implies a_i \neq a_j$$

- 123
- 132
- 213
- 231
- 312
- 321

$$\Sigma = \{\triangle, \circ, \star\}$$

- $\triangle \circ \star$
- $\triangle \star \circ$
- ∘∆⋆
- $\circ \star \triangle$
- ∗∆∘
- $\star \circ \triangle$

Подсчёт: на первую позицию можно поставить n элементов, на вторую n-1 и так далее получается $n(n-1)(n-2)\dots 2\cdot 1=n!$

Пусть те же условия, но позиций не n, а k

$$\begin{cases} n < k & \emptyset \\ n = k & \text{перестановки} \\ n > k & \dots \end{cases}$$

$$n = 4, k = 2$$
 21

23

24

Это так называемые размещения (arrangements)

$$A_n^k = n(n-1)(n-2)\dots(n-k+1) = n^{\underline{k}} = (n-k+1)^{\overline{k}} = \frac{n!}{(n-k)!}$$

 $n! = n^{\underline{n}}$

2.4 Сочетания

$$\{1, 2, \dots, n\}$$

Выбираем из этих элементов k и составляем из них множество $\{a_1,a_2,\ldots,a_k\}$ $a_i \neq a_j$

$$n = 3, k = 2 \quad \{1, 2\} \quad \{1, 3\} \quad \{2, 3\}$$

 $12~\mathrm{M}~21$ это разные размещения, но одно сочетание $\{1,2\}$

Чтобы подсчитать воспользуемся канонизацией:

из 7 по 4 $\{2,3,5,6\}$ $\{3,6,2,5\}\dots$ 24 способа записать одно и то же сочетание

Один из этих способов будем использовать как канонический. Путь это будет ествественное возрастающее представление $\{2,3,5,6\}$

 $\begin{array}{c} 123 \\ 124 \\ 125 \\ 134 \\ 135 \\ 145 \\ 234 \\ 235 \\ 245 \\ 345 \\ \end{array}$

Перечислили. Теперь займёмся подсчётом

 $A_{n,k}$ – множество. $a \sim b$, если они задают одно и то же сочетания $(sort(a) = sort(b) \quad set(a) = set(b))$

$$C_{n,k} = A_{n,k}|_{\sim}$$

У каждого класса эквивалентности получается одинаковый размер

$$|C_{n,k}|=rac{|A_{n,k}|}{k!}=rac{n!}{k!(n-k)!}=C_n^k=inom{n}{k}=$$
 биномиальный коэффициент = n choose k

$$C_{n,k}=C_{n-1,k-1}\cup C_{n-1,k}$$

$$\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$$
 – треугольник Паскаля

2.5 Код Грея

Определение 32. Код Грея на двоичных веторах:

перечисление $g_1g_2 \dots g_n$ $H(h_i, g_{i+1}) = 1$

концы тоже на расстоянии 1. Такой код называется циклическим

Теорема 17. Для любого n существует циклический код Грея \mathscr{B}^n

$$n = 1: 0 1$$

$$n \rightarrow n+1$$

Запишем два раза n один сверху вниз, другой наоборот. Затем припием к первому 0, а к другому 1

Пример. Целые числа от 1 до n кратные 3 или 5

$$C = C_3 \cup C_5$$

$$C_3 = \left\lfloor \frac{n}{3} \right\rfloor$$
 $C_5 = \left\lfloor \frac{n}{5} \right\rfloor$

Некоторые считаются два раза

2.6 Формула включений-исключений

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

$$C = C_3 + C_5 - C_{15}$$

 $|A \cup B \cup C| = |A \cup B| + |C| - |(A \cup B) \cap C| = |A| + |B| + |C| - |A \cap B| - |(A \cap C) \cup (B \cap C)| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |A \cap B| + |C| - |A \cap B| - |A \cap C| - |A \cap$

Теорема 18 (Формула включений-исключений). A_1, A_2, \ldots, A_n

$$\left|\bigcup_{i=1}^n A_i\right| = \sum_{\emptyset \neq I \subseteq \{1,2,\dots,n\}} (-1)^{|I|+1} \left|\bigcap_{i \in I} A_i\right|$$

Доказательство.
$$\left| \bigcup_{i=1}^n A_i \right| = \left| \bigcup_{i=1}^{n-1} A_i \cup A_n \right| = \left| \bigcup_{i=1}^{n-1} A_i \right| + |A_n| - \left| \bigcup_{i=1}^{n-1} (A_i \cap A_n) \right| = \sum_{\substack{I \subseteq \{1,2,\dots,n-1\}\\ (*)}} (-1)^{|I|+1} \left| \bigcap_{i \in I} A_i \right| + |A_n| + \sum_{\substack{J \subseteq \{1,2,\dots,n-1\}\\ (*)}} (-1)^{|I|+1} \left| \bigcap_{i \in J} A_i \cap A_n \right| = \prod_{i=1}^{n-1} (A_i \cap A_n)$$

2.7 Алгоритмы ..

Двоичные вектора фиксированной длины \mathscr{B}^n

Как нам сгенерировать все эти вектора?

```
gen:
    gen all, starting with 0
    gen all, starting with 1
```

Это рекурсия, мы каждый раз делим на два.

Другой взгляд: обход в глубину двоичного дерева.

```
gen(p) # p - prefix
    if len(p) == n:
        print(p)
        return
    gen(p+[0])
    gen(p+[1])

main:
    gen([])
```

Отметим, что эта программа печатает (перечисляет) вектора в лексигографическом порядке.

Перестановкаи

```
n = 3123, 132, 213, 231, 312, 321
```

Когда мы выбираем первый элемент, остаётся выбор только из двух, а на следующей итерации нет выбора — один возможный вариант.

```
gen(p):
    if len(p) = n:
        print(p)
        return
    for i = 1 .. n:
        if i not in p:
        gen(p+[i])
```

Строчки из 0 и 1 длинны $\leq n$

```
\bigcup_{k=0}^n \mathscr{B}^n
  \varepsilon
  0
 00
 000
 001
 01
 010
 011
Печатаем теперь не только в листе, а везде
    gen(p) # p - prefix
        print(p)
         if len(p) = n:
             return
         gen(p+[0])
        gen(p+[1])
    main:
        gen([])
В общем случает. Мы хотим сгенерировать объект
    gen(p) # p - префикс комбинаторного обекта
        if (p - k.o.):
             print(p)
        for (c in Sigma) # перебор в возрастающем порядке
             if (p+[c] -- префикс к.o.)
                  gen(p+[c])
Сочетания \Sigma = \{1, 2, \dots, n\}. Характеризуются двумя числами: n, k
    if len(p) = n:
        print(p)
        return
    for (c = 1 или (p[-1]+1) .. n-k+len(p)+1)
        if p != [] and c <= p[-1]
             continue
         if n-c < k-len(p)-1
             continue # break
        gen(p+[c])
```

Правильные скобочные последовательности.

Есть последовательность открывающихся и закрывающихся скобочек. И выполнены условия:

1. На любом префиксе $\#(-\#) \geqslant 0$

Оптимизация: храним префикс в общем массиве a и будет брать его срезы нужной длины. Кроме того создадим массив used — маска какие мы элементы взяли. а какие ещё нет

```
gen(p) # p -- длина префикса
if len(p) == n:
    print(a)
    return
for i = 1 .. n:
    if !used[i]:
        used[i] = true
        a[p]=i
        gen(p+1)
        used(p[i]) = false
```

Задача 2. Хотим получить k-ый (в лексикографическом порядке) объект (нумерация с 0)

```
gen(p)
    if p == n
        if k = 0
            print(a)
        k--
        return
    for i = 1 .. n:
        if !used[i]
            if k >= (n-p-1)!:
            k--(n-p-1)!
```

```
else:
                     used[i] = true
                     a[p] = i
                     gen(p+1)
                     used[i]=false
                     return
    gen(p) # p - префикс комбинаторного обекта
        if (p - k.o.):
             if (k=0):
                 print(p)
                 return
        for (c in Sigma) # перебор в возрастающем порядке
             if (p+[c] -- префикс к.o.)
                 t = количество к.о. с префиксом p+[c]
                 if k \ge t:
                     k-=t
                 else:
                     gen(p+[c])
                     return
                 gen(p+[c])
В перестановках мы можем оптимизировать ещё дальше и делать c = \left| \frac{k}{(n-p-1)!} \right| +
1 k = k\%(n-p-1)!
Из п берём т
gen(p):
    if p == m:
        print(a)
        return
    for c = 1(a[p-1] ... n-m+p+1:
        t = Из n-с выбираем m-p-1
        if k \ge t:
            k-=t
        else:
            gen(p+1)
Теперь будем выполнять обратную задачу: искать номер по объекту.
gen(p):
    if p -- k.o.:
        if p == z:
            res = k
        else:
            k++
```

```
for (c in Sigma):
        if (p+[c] -- префикс к.o):
            gen(p+[c])
Применим "изоморфный" алгоритм предыдущему:
    gen(p) # p - префикс комбинаторного обекта
        if (p - k.o.):
            if p = z:
                res = k
                return
            k++
        for (c in Sigma)
            if (p+[c] -- префикс к.o.)
                t = количество к.о. с префиксом p+[c]
                if (p+[c] -- префикс z):
                    gen(p+[c])
                    return
                else:
                    k += t
```

Следующий к.о.

к.о. лежит в упорядоченном множестве к.о. Следующий имеет с этим какойто общий префикс

- 1. максимальный общий префикс, который можно сохранить, увеличив след. р
- 2. Увеличить следующий элемент минимальным образом, заменив a на b
- 3. Дальше к этому элементу p+b нужно приписать минимальную возрастающую последовательность

3576421

2.8 Лекция

```
Перестановки n(n-1)(n-2)\dots Сочетания \frac{n(n-1)\dots(n-k+1)}{k!}=\frac{n!}{k!(n-k)!} Скобочные последовательности (((())) \quad (()()) \quad (()()) \quad ()(())
```

2.8.1 Рекуррентные соотношения

Сочетания

$$egin{pmatrix} n \\ k \end{pmatrix} = egin{pmatrix} n-1 \\ k-1 \end{pmatrix} + egin{pmatrix} n-1 \\ k \end{pmatrix}$$
 – Делим на две группы

Перестановки $P_n = P_{n-1} \cdot n$

Правильная скобочная последовательность:

- 1. У любого префикса неотрицательный баланс.
- 2. В конце баланс 0

Скобочная последовательность из n открывающихся скобок: длина 2n

Если мы на месте k, у нас есть какой-то неотрицательный баланс $b\geqslant 0$

 $A_{k,b}$ — количество префиксов правильных скобочных последовательностей, длины k, баланс в конце b

Тогда нужное нам количество $C_n = A_{2n,0}$

Так можно изобразить последовательность (())(). Такие графики называются путями Дика (Dyck Path)

$$A_{k,b} = A_{k-1,b+1} + A_{k-1,b-1}$$

$$A_{0,0} = 1$$

Сочетания тоже можно представить сеткой (рисунок выше)

$$A_{k,b} = A_{k-1,b+1} + \underbrace{A_{k-1,b+1}}_{b>0}$$

$$A_{0,0} = 1$$

Если убрать внешние скобки, то у оставшейся последовательности понизиться график Дика по балансу. Найдём индекс (первый), в котором баланс стал -1-i. Тогда можно представить последовательность в виде (псп)псп, где псп – правильная скобочная последовательность. Эти две последовательности никак не связаны друг другом, значит их можно отдельно посчитать и перемножить $C_{i-1}C_{n-i}$

$$C_n = \sum_{i=1}^n C_{i-1}C_{n-1} = \sum_{i=0}^{n-1} C_iC_{n-i-1}$$

 C_n – число Каталана: $1,1,2,5,14,42,\dots$

Деревья:

- 1. Двоичные деревья. . . . Числа Каталан
- 2. Разбиения

 $P_{n,k}$ – количество разбиения числа n на слагаемые $\leqslant k$

$$P_n = Pn, n$$

$$P_{0,k} = 1$$

$$P_{n,k} = P_{n-k,k} + P_{n,k-1}$$

Можно лучше: Пентагональная теорема Эйлера

3. Разбиения с различными элементами. Числа Белла B_n

 $S_2(n,k) = {n \brace k}$ – количество разбиений n-элементного множества на k непустых множеств, Числа Стирлинга 2 рода

 ${n \brace k} = {n-1 \brace k-1} + k \cdot {n-1 \brack k} -$ один в отдельном множестве + один в множестве с друзьями.

4. Разбиение на циклы. Для перестановки можно нарисовать граф циклов. Число Стирлинга 1 рода $S_1(n,k)=\begin{bmatrix}n\\k\end{bmatrix}$

$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix}$$

2.9 Группы действий

Размещение – список из kэлементов из первых nчисел (в списке различные) $n^{\underline{k}}$

Сочетание – облачко из k разных элементов от 1 до n

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Введём отношение: равенство с точностью до порядка. $4317 \sim 3714$, потому что можно переставить — поменять порядок.

$$A_{n,k}/_{\sim} = C_{n,k}$$

$$\{1, 2, \ldots, n\}^k$$

[1, 2, 3, 4] - 4! = k! в классе эквивалентности

$$[1, 1, 1, 1] - 1! \neq k!$$

Определение 33. Группоид – Множество X с бинарной операцией $\cdot: X \times X \to a \cdot b \to ab$

Определение 34. Полугруппа – группоид с ассоциативностью. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

Определение 35. Моноид – полугруппа с единицей: $\exists e : \forall a \cdot e = e \cdot a = a$

e – нейтральный элемент, нейтральное действие.

Пример. $a \to 3a$ Можем ли мы "отменить" это действие? Иногда можем $3a \to a$ (умножаем на $\frac{1}{3}$)

 $a \cdot 0 = 0$ Узнать что было до этого мы не можем. Нет обратного действия.

Определение 36. К Моноиду добавляется существование обратного элемента к любому элементу. $\forall a \exists a^{-1} \quad a \cdot a^{-1} = a^{-1} \cdot a = e$

Пример. $(\mathbb{Z},+)$

- $(\mathbb{R},+)$
- (\mathbb{R},\cdot) НЕ группа
- $(\mathbb{R} \setminus \{0\})$ группа
- (\mathbb{Z},\cdot) НЕ группа
- $(\{1,-1\},\cdot)$ группа

Определение 37. G – группа.

- 1. g(hk) = (h)k
- 2. $\exists e \quad eg = ge = g$
- 3. $\exists g^{-1}: gg^{-1} = g^{-1}g = e$

X – объекты.

$$gx=y\in X\quad G\times X\to X$$

- 1. h(gx) = (hg)x
- 2. ex = x

В таком случае говорят G действует на X

Пример. $X = \mathbb{R}^2$ $G = \mathbb{R} \setminus \{0\}, \cdots$ $g(x,y) \mapsto (gx,gy)$

Пример. $X=\mathbb{R}^2$ $G=[0,2\pi),+_{mod2\pi}$ – действие группы поворотов на множество точек

Пример. $X=\mathscr{B}^n$ $G=S_n$ – группа перестановок n элементов.

x = 11001 и применим к нему перестановку p = 31245

Получим y=px=10101 (первый идёт на позицию 3, второй на позицию 1, третий на позицию 2, 4 и5 остаются на месте)

Определение 38. Группа перестановок:

ab

Xотим (ab)x = a(bx)

$$x[i] \to b[i] \to a[b[i]$$

 $c=ab \quad c[i]=a[b[i]$ – это перестановка. Все b[i] различны, а значит и все a[b[i] различны

Даёт ли это нам группу

$$a[(b[c[i]])] \quad a(bc)$$

$$a[b[(c[i])]]$$
 $(ab)c$

Ассоциативность есть.

$$e_i = i \quad (ae)i = a_{e_i} = a_i$$

$$ea = ae = a$$

$$b=a^{-1}$$

$$ba = e$$
 $b[a[i] = ifori = 1 \dots n]$

Замечание. Умножение перестановок – действие S_n на S_n

Пример. $X = T^n$

$$G = \{0, \dots, n-1\}, +_{mod\ n}\}$$

[1,2,3,4] свинутая 3 раза [2,3,4,1]

X G – группа, которая действует на X

 \sim_G – эквивалентны с точностью до G

$$x \sim_G y \quad \exists g \in G \quad y = gx$$

1.
$$x \sim_G x$$
 $x = ex$

2.
$$x \sim_G y$$
 $y = gx$ $x = g^{-1}y$ $y \sim_G x$

3.
$$x \sim_G y$$
 $y \sim_G z$ $y = gx$ $z = hy = hgx$

X/G – классы эквивалентности, орбиты

Пример. 1. g(x,y) = (gx,gy). Коллинеарные вектора – орбиты

2. Повороты: Круги – орбиты

Определение 39. Неподвижные точки:

g $I_g = \{x | gx = x\}$ – элементы, на которые g действует никак.

$$g \neq 1$$
 $I_g = \{0, 0\}$ $g = 1$ $I_g = \mathbb{R}^2$

 $T^n, S_n \quad I_\pi =$ все элементы внутри цикла равны.

n = 6 сдвиг на 3. – три цикла.

n = 7 сдвиг на 3 – один большой цикл.

В общем случае для сдвигов число циклов это HOД(n,k)

Теорема 19 (Лемма Бернсайда).
$$|X/G| = \frac{\sum\limits_{g \in G} |I_g|}{|G|}$$

Доказательство. Построим таблицу $G \times X$ и выкинем все столбцы, кроме одного для каждой орбиты.

$$z = g_1 x \quad x = g_1^{-1} z$$

$$z = z \quad z = g_2 g_1^{-1} z$$

. . .

$$z = g_k g_1^{-1} z$$

 $\{h|hz=z\}=St\ z$ — действия, которые не меняют объект. Именно столько раз будет повторятся объект в столбце.

$$|G|\cdot|X/G| = \sum_{x\in X}|St|x| = \sum_{x\in X}\sum_{h\in G}[gx=x] = \sum_{g\in G}\sum_{x\in X}[gx=x] = \sum_{g\in G}|I_g|$$

$$[hx = x] = \begin{cases} 1 & , hx = x \\ 0 & , \text{ иначе} \end{cases}$$

Пример. X – размещения, S_k – перестановки

$$X/S_k$$
 – сочетания

$$|X/S_k| = \frac{|I_k|}{k!} = \frac{|X|}{k!}$$

Пример. n=3 \mathscr{B}^3

$$231 \mid 2$$

$$\frac{321}{321} \mid \frac{2}{4}$$

$$\frac{8+4+4+2+2+4}{6} = 4$$
 000 001 011 111

Для ожерелий $2^{HOД(n,k)}$

G – группа, $G\subseteq S_n$ – группа всех перестановок n элементов / симметрическая группа

$$X = A^n \quad |A| = k$$

$$g \in G$$
 $g \cdot x$ $x = [x_1, x_2, \dots, x_n], x \in A$

$$x_1 \to x_{g(i)}$$

Теорема 20 (Теорема Пойя).
$$|X/G|=rac{\sum\limits_{g}|I_{g}|}{|G|}=rac{\sum\limits_{g}k^{c(g)}}{|G|}=*$$

$$* = \frac{\sum\limits_{i=1}^n s_i k^i}{|G|} \quad s_i$$
 – число перестановок с i циклами в G

Если
$$G = S_n$$
 $s_i = \begin{bmatrix} n \\ i \end{bmatrix}$

$$|X/G| = \frac{\sum\limits_{i} \begin{bmatrix} n \\ i \end{bmatrix} k^{i}}{n!}$$

Пример. G= сдвиги $k^{c(g)}$ g= сдвиги на i c(g)=gcd(n,i)

$$\frac{\sum_{i} k^{gcd(n,i)}}{n}$$

2.10 Конструируемые комбинаторные объекты

A – множество комбинаторных объектов. Пусть комбинаторные объекты aимеют веса w(a)

$$a_n = |\{a \in A | w(a) = n\}|$$

$$f(A_1, A_2, \ldots, a_n) \mapsto B$$

 b_n зависит только от $a_{i,j}$

Пример (Дизъюнктное объединение). A, B – два множества комбинаторных объектов, без общих объектов. $A \cap B = \emptyset$

$$f(A,B)=A\cup B=C$$
 — функция конструирования $a_n,b_n \quad |C|=c_n=a_n+b_n$ $\cup \quad A=\{1,2,3,\ldots\} \quad B=\{1,2,3,\ldots\} \quad A\cup B=A=B$

 $A \sqcup B$ — объединение с учётом возможного повторения элементов. Вообще, получается мультимножество.

Рассмотрим множество пометок $M = \{a, b\}$

$$A \sqcup B = A \times \{a\} \cup B \times \{b\}$$

Пример (Декартово произведение, конструкция пары). A, B $A \times B = C$ $z \in C$ z = (x, y) $x \in A, y \in B$

$$z = (x, y)$$
 $w(z) = n = w(x) + w(y) \implies w(y) = n - w(x)$

$$c_n = \sum_{i=0}^n a_i \cdot b_{n-i}$$

В предыдущем примере w(a) = w(b) = 0 – "краска шарика не добавляет ему веса"

Пример (Последовательность). $A \quad a_0 = 0$

$$C = SeqA = \bigcup_{i=0}^{\infty} A^i = A^0 \cup \bigcup_{i=1}^{\infty} A \times A^{i-1} = A^0 \cup A \times \bigcup_{i=1}^{\infty} A^i = A^0 \cup A \times C$$

$$C = A^0 \cup A \times C$$
 $A^0 = E = \{[]\}$ $w([]) = 0$ $A \times C = B$

$$c_0 = e_0 + b_0 = 1$$

$$n < 0$$
 $c_n = e_n + b_n = 0 + \sum_{i=0}^n a_i c_{n-i} = \sum_{i=1}^n a_i c_{n-i}$

Пример. a_k вагонов веса k

Сколько способов составить поезд суммарного веса n

$$n = 0$$
 $c_0 = 1$

$$n > 0 \quad c_n = \sum_{i=1}^n a_i c_{n-i}$$

Пример.
$$U = \{ \bullet \}$$
 $u_0 = 0$ $u_1 = 1$ $u_2 = u_3 = \ldots = 0$

$$V = U \times U = \{(\bullet, \bullet)\}$$
 $v_0 = 0, v_1 = 0, v_2 = 1, v_3 = v_4 = \dots = 0$

$$Z = Seq\ U = \{[], [\bullet], [\bullet, \bullet], [\bullet, \bullet, \bullet], \ldots\}$$

$$z_0 = 1, z_1 = 1, z_2 = 1, \dots$$

$$z_0=1$$
 $z_n=\sum\limits_{i=1}^n u_i z_{n-i}=1\cdot z_{n-1}=z_{n-1}.$ По индукции $z_n=1$

$$Z^+ = Sqe^+ U$$
 $Seq Z^+2$

$$\{[],[[\bullet]],[[\bullet],[\bullet]],[[\bullet,\bullet]],\ldots\}$$

$$\{[], [1], [1, 1], [2], [1, 1, 1], [1, 2], [2, 1], [3], \}$$

Пример. Set MSet

$$A$$
 Set A – множества $X \subseteq A$ 2^A

$$B = Set A \quad b_n$$

Кононизация $X = \{x_1, x_2, \dots, x_l\}$

 $b_{n,k}$ – количество множеств веса n, содержащие объекты A веса $\leqslant k$

$$b_n = b_{n,n}$$

$$b_{n,k} = \sum_{t=0}^{\left\lfloor \frac{n}{k} \right\rfloor} {a_k \choose t} b_{n-kt,k-1}$$

 $Set~Z^+=\{\{\},\{1\},\{2\},\{1,2\},\{3\},\{1,3\},\{4\},\ldots\}$ – множество разбиений чисел на различные слагаемые

$$MSet~Z^+=\{\{\},\{1\},\underbrace{\{1,1\},\{2\}}_{2},\underbrace{\{1,1,1\},\{1,2\},\{3\}}_{3},\{1,1,1,1\},\ldots\}$$
 – множе-

ство разбиений чисел на слагаемые

$$b_{n,k} = \sum_{t=0}^{\lfloor nk \rfloor} \binom{a_k + t - 1}{t} b_{n-kt,k-1}$$

Пример (Сочетания с повторениями). $\{ \bullet, \bullet \}$

TODO дописать

Напоминание операций конструирования:

- 1. Дизъюнктное объединение $c_n = a_n + b_n$
- 2. Прямое произведение $c_n = \sum_{k=0}^{n} a_k b_{n-k}$

3. Seq, *
$$c_n = \sum_{k=1}^n a_k c_{n-k}$$

4. Set, MSet
$$c_n = c_{n,n}$$
 $c_{n,k} = \sum_{t=0}^{\lfloor \frac{n}{k} \rfloor} {a_k \choose t} C_{n-kt,k-1}$ ${a_{k+t-1} \choose t} C_{n-kt,k-1}$

2.11 Деревья с n вершинами

1. Помеченные/Непомеченные (непомеченное: 1-2 помеченные 1-2, 2-1 (разные корни))

2. С порядком на детях: Есть понятие первого, второго, .. сына

Без порядка, двоичный, троичный

Дерево $T = U \times SeqT$ – с порядком на детях.

$$F = SeqT$$
 (Forest)

$$t_n = \sum_{k=0}^{n} u_k f_{n-k} = f_{n-1}$$

$$u_1 = 1$$
 $u_0 = u_2 = u_3 = \ldots = 0$

$$f_n = \sum_{k=1}^n t_k f_{n-k}$$

$$t - n = f_{n-1}$$
 $f_{n-k} = t_{n-k+1}$

$$f_n = \sum_{k=1}^n t_k t_{n-k+1}$$

$$t_n = \sum_{k=1}^{n-1} t_k t_{n-k}$$

Нет порядка: $T = U \times MSetT$ F = MSetT

$$t_n = f_{n-1}$$
всё ещё

$$f_{n,k} = \sum_{k=0}^{\left\lfloor \frac{n}{k} \right\rfloor} {t_k + s - 1 \choose s} f_{n-ks,k-1}$$

$$B = \{ \bigcirc, lacktriangle \}$$
 – бусинки: чёрные и белые

$$C = CycB$$
 $C_4 = 6$

A CycA — множество циклов из множества A

$$C_n = \sum_{l=1}^{n} \frac{\sum_{k=0}^{l-1} I_{k,l}}{n}$$

Количество циклов в перестановке gcd(l, k)

Длина цикла $\frac{l}{gcd(l,k)}$

$$A \quad A^k = A \times A^{k-1}$$

 $S_{n,k}$ – число последовательностей длины k веса n

$$S_{n,k} = \sum_{i=1}^{n} a_i s_{n-i,k-1}$$

$$S_{\frac{n \cdot gcd(l,k)}{l},g}$$

Итого:
$$C_n = \sum_{\substack{l=1\\g=gcd(l,k)\\ng!l}}^{n} \sum_{k=0}^{l-1} \frac{1}{l} \cdot S_{\frac{ng}{l},g}$$

2.12 Помеченные объекты

Объекты-атомы. Атомы с пометками составляют новые объекты. У атом всегда разные пометки.

Пусть есть два помеченных к.о., состояющие из атомов. Составим из них новый к.о.

Новое "переразмечивание" называется согласованным с изначальными двумя, если порядок атомов внутри частей по возрастанию остаётся таким же.

Разберём операторы конструирования на помеченных объектов:

1.
$$A \times B = C \quad [\bigcirc \in A, \bigcirc \in B]$$

$$c_n = \sum_{k=0}^n \binom{n}{k} a_k b_{n-k}$$

2. Seq
$$U = S$$
 $s_n = \sum_{k=1}^n \binom{n}{k} u_k s_{n-k} = \binom{n}{1} u s_{n-1} = n \cdot s_{n-1}$

SeqU — перестановки

3. Set = MSet (не может быть двух одинаковых.

Последовательности длины k A^k

 $s_{n,k}$ – количество последовательностей длины k веса n

$$s_{n,k} = \sum_{i=1}^{n} {n \choose i} a_i s_{n-i,k-1} \qquad s_{n,1=a_n}$$

$$C = Set A$$

$$c_n = \sum_{k=1}^n \frac{s_{n,k}}{k!}$$

$$Set \ U \quad U^k \quad s \\ \quad n,k = \begin{cases} 0 & k \neq n \\ n! & k = n \end{cases}$$

$$s_{n,k} = n \cdot s_{n-1,k-1}$$

$$C_n = \frac{n!}{n!} = 1$$

Циклы для помеченных объектов: CycA = C $c_n = \sum_{k=1}^n \frac{s_{n,k}}{k}$

Размещения по k: $A_n^{(k)} = U^k \times Set\ U$

$$A_n^k = k! \binom{n}{k} \times 1 = \binom{n}{k} k! = \frac{n!}{(n-k)!}$$

 $C_n^{(k)} = Set^{=k}U \times Set~U \qquad Set^{=k} \quad C_{n,k} = \frac{s_{n,k}}{k!}$ – множества равно k

Разбиения на множества:

$$Set^{=k}$$
 Set^+U – разбиения на k множеств $\begin{Bmatrix} n \\ k \end{Bmatrix}$

Разбиение на циклы:

$$Set^{=k}\ Cyc^+U$$
 – разбиение на k циклов $\binom{n}{k}$

 $Set\ Set^+U$ — число Белла B_n

 $Set\ Cyc^+U$ – перестановки n!