Dealing with Uncertainty

Paolo Turrini

Department of Computing, Imperial College London

Introduction to Artificial Intelligence 2nd Part

Uncertainty and Probabilities

The main reference

Stuart Russell and Peter Norvig Artificial Intelligence: a modern approach Chapter 13

Outline

- Uncertainty
- Probability
- Probability and logic
- Inference

I have a lecture on Thursday in the early morning

I have a lecture on Thursday in the early morning and an alarm clock set for even earlier.

I have a lecture on Thursday in the early morning and an alarm clock set for even earlier.

Let action S_t = snooze the alarm clock t times

I have a lecture on Thursday in the early morning and an alarm clock set for even earlier.

Let action S_t = snooze the alarm clock t times

Will S_t get me there on time?

I have a lecture on Thursday in the early morning and an alarm clock set for even earlier.

Let action S_t = snooze the alarm clock t times

Will S_t get me there on time?

I have a lecture on Thursday in the early morning and an alarm clock set for even earlier.

Let action S_t = snooze the alarm clock t times

Will S_t get me there on time?

Problems:

partial observability (planned engineering works, announced strikes, etc.)

I have a lecture on Thursday in the early morning and an alarm clock set for even earlier.

Let action S_t = snooze the alarm clock t times

Will S_t get me there on time?

- partial observability (planned engineering works, announced strikes, etc.)
- 2 noisy sensors (BBC reports, Google maps)

I have a lecture on Thursday in the early morning and an alarm clock set for even earlier.

Let action S_t = snooze the alarm clock t times

Will S_t get me there on time?

- partial observability (planned engineering works, announced strikes, etc.)
- 2 noisy sensors (BBC reports, Google maps)
- 3 uncertainty in action outcomes (my phone might die, etc.)

I have a lecture on Thursday in the early morning and an alarm clock set for even earlier.

Let action S_t = snooze the alarm clock t times

Will S_t get me there on time?

- partial observability (planned engineering works, announced strikes, etc.)
- onoisy sensors (BBC reports, Google maps)
- uncertainty in action outcomes (my phone might die, etc.)
- immense complexity of modelling and predicting traffic

A binary true-false approach either:

A binary true-false approach either:

• might lead to conclusions that are too strong:

A binary *true-false* approach either:

• might lead to conclusions that are too strong: S_{25} will not get me there on time

A binary true-false approach either:

- might lead to conclusions that are too strong: S_{25} will not get me there on time
- Or too weak:

A binary true-false approach either:

- might lead to conclusions that are too strong: S_{25} will not get me there on time
- Or too weak:
 - "S₂₅ will not get me there on time unless there's no delay on the District Line and it doesn't rain and I haven't forgotten the keys at home etc."

default logic handles "normal circumstances":

Tube normally runs

- Tube normally runs
- Announced strikes normally happen

- Tube normally runs
- Announced strikes normally happen
- Issues:

- Tube normally runs
- Announced strikes normally happen
- Issues:
 - What assumptions are reasonable?

- Tube normally runs
- Announced strikes normally happen
- Issues:
 - What assumptions are reasonable?
 - How to handle contradiction? (e.g., will the tube run?)

default logic handles "normal circumstances":

- Tube normally runs
- Announced strikes normally happen
- Issues:
 - What assumptions are reasonable?
 - How to handle contradiction? (e.g., will the tube run?)

Also, fuzzy logic handles **degrees of truth**. It doesn't arguably handle uncertainty e.g., *Asleep* is true to degree 0.2

e..g, $S_{25} \mapsto_{0.4} AtLectureOnTime$

e..g, $S_{25} \mapsto_{0.4} AtLectureOnTime$ But...

• ReadingSteinbeck $\mapsto_{0.7}$ FallAsleep

e..g, $S_{25} \mapsto_{0.4} AtLectureOnTime$ But...

- ReadingSteinbeck $\mapsto_{0.7}$ FallAsleep
- $FallAsleep \mapsto_{0.99} DarkOutside$

e..g, $S_{25} \mapsto_{0.4} AtLectureOnTime$ But...

- ReadingSteinbeck $\mapsto_{0.7}$ FallAsleep
- $FallAsleep \mapsto_{0.99} DarkOutside$

Problems with combination, e.g., $ReadingSteinbeck \mapsto_{\sim 0.7} DarkOutside$

e..g, $S_{25} \mapsto_{0.4} AtLectureOnTime$ But...

- ReadingSteinbeck $\mapsto_{0.7}$ FallAsleep
- $FallAsleep \mapsto_{0.99} DarkOutside$

Problems with combination, e.g., $ReadingSteinbeck \mapsto_{\sim 0.7} DarkOutside$

Causal connections?

Probability

$$P(S_{25} \text{ gets me there on time}|...) = 0.2$$

Given the available evidence, S_{25} will get me there on time with probability 0.2

Probability

$$P(S_{25} \text{ gets me there on time}|...) = 0.2$$

Given the available evidence, S_{25} will get me there on time with probability 0.2

Probabilistic assertions summarize effects of:

Probability

$$P(S_{25} \text{ gets me there on time}|...) = 0.2$$

Given the available evidence, S_{25} will get me there on time with probability 0.2

Probabilistic assertions **summarize** effects of:

• laziness: failure to enumerate exceptions, qualifications, etc.

Probability

$$P(S_{25} \text{ gets me there on time}|...) = 0.2$$

Given the available evidence, S_{25} will get me there on time with probability 0.2

Probabilistic assertions **summarize** effects of:

- laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack of relevant facts, initial conditions, etc.

Probability

$$P(S_{25} \text{ gets me there on time}|...) = 0.2$$

Given the available evidence, S_{25} will get me there on time with probability 0.2

Probabilistic assertions summarize effects of:

- laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack of relevant facts, initial conditions, etc.
- Subjective/Bayesian view: Probabilities relate propositions to one's own state of knowledge e.g.,
 - $P(S_{25} \text{ gets me there on time}|\text{no reported accidents}) = 0.3$

 These are not claims of a "probabilistic tendency" in the current situation (but might be learned from past experience of similar situations)

- These are not claims of a "probabilistic tendency" in the current situation (but might be learned from past experience of similar situations)
- Probabilities of propositions change with new evidence:

- These are not claims of a "probabilistic tendency" in the current situation (but might be learned from past experience of similar situations)
- Probabilities of propositions change with new evidence: e.g., $P(S_{25}|\text{no reported accidents}, 5 \text{ a.m.}) = 0.8$

- These are not claims of a "probabilistic tendency" in the current situation (but might be learned from past experience of similar situations)
- Probabilities of propositions change with new evidence: e.g., $P(S_{25}|\text{no reported accidents}, 5 \text{ a.m.}) = 0.8$
- Analogous to logical entailment status $KB \models \alpha$, not truth.

Suppose I believe the following:

 $P(S_0 \text{ gets me there on time}|...) = 0.99$

```
P(S_0 \text{ gets me there on time}|...) = 0.99
```

$$P(S_1 \text{ gets me there on time}|...) = 0.90$$

```
P(S_0 \text{ gets me there on time}|...) = 0.99

P(S_1 \text{ gets me there on time}|...) = 0.90

P(S_{10} \text{ gets me there on time}|...) = 0.6
```

```
P(S_0 \text{ gets me there on time}|...) = 0.99

P(S_1 \text{ gets me there on time}|...) = 0.90

P(S_{10} \text{ gets me there on time}|...) = 0.6

P(S_{25} \text{ gets me there on time}|...) = 0.1
```

Suppose I believe the following:

```
P(S_0 \text{ gets me there on time}|...) = 0.99

P(S_1 \text{ gets me there on time}|...) = 0.90

P(S_{10} \text{ gets me there on time}|...) = 0.6

P(S_{25} \text{ gets me there on time}|...) = 0.1
```

Which action should I choose?

Suppose I believe the following:

```
P(S_0 \text{ gets me there on time}|...) = 0.99

P(S_1 \text{ gets me there on time}|...) = 0.90

P(S_{10} \text{ gets me there on time}|...) = 0.6

P(S_{25} \text{ gets me there on time}|...) = 0.1
```

Which action should I choose?

IT DEPENDS

Suppose I believe the following:

```
P(S_0 \text{ gets me there on time}|...) = 0.99

P(S_1 \text{ gets me there on time}|...) = 0.90

P(S_{10} \text{ gets me there on time}|...) = 0.6

P(S_{25} \text{ gets me there on time}|...) = 0.1
```

Which action should I choose?

IT DEPENDS on my preferences

Suppose I believe the following:

```
P(S_0 \text{ gets me there on time}|...) = 0.99

P(S_1 \text{ gets me there on time}|...) = 0.90

P(S_{10} \text{ gets me there on time}|...) = 0.6

P(S_{25} \text{ gets me there on time}|...) = 0.1
```

Which action should I choose?

IT DEPENDS on my preferences e.g., missing class vs. sleeping

Suppose I believe the following:

```
P(S_0 \text{ gets me there on time}|...) = 0.99

P(S_1 \text{ gets me there on time}|...) = 0.90

P(S_{10} \text{ gets me there on time}|...) = 0.6

P(S_{25} \text{ gets me there on time}|...) = 0.1
```

Which action should I choose?

IT DEPENDS on my preferences

e.g., missing class vs. sleeping

 S_0 : ages in the Huxley building, therefore feeling miserable.

Chances and Utility

Utility theory is used to represent and infer preferences

Chances and Utility

Utility theory is used to represent and infer preferences Decision theory = utility theory + probability theory

Begin with a set Ω —the sample space

Begin with a set Ω —the sample space e.g., 6 possible rolls of a dice.

Begin with a set Ω —the sample space e.g., 6 possible rolls of a dice.

 $w \in \Omega$ is a sample point/possible world/atomic event

$$0 \le P(w) \le 1$$

$$0 \le P(w) \le 1$$

$$\sum_{w} P(w) = 1$$

$$0 \le P(w) \le 1$$

$$\sum_{w} P(w) = 1$$

e.g.,
$$P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6$$
.

Events

An event A is any subset of Ω

Events

An event A is any subset of Ω

$$P(A) = \sum_{\{w \in A\}} P(w)$$

Events

An event A is any subset of Ω

$$P(A) = \sum_{\{w \in A\}} P(w)$$

E.g.,

$$P(\text{dice roll} < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2$$

A random variable is a function from sample points to some range, e.g., \mathbb{R} , [0,1], $\{true, false\}$. . .

A random variable is a function from sample points to some range, e.g., \mathbb{R} , [0,1], $\{true, false\}$. . .

e.g.,
$$Odd(1) = true$$
.

A random variable is a function from sample points to some range, e.g., \mathbb{R} , [0,1], $\{true, false\}$. . .

e.g.,
$$Odd(1) = true$$
.

P induces a probability distribution for any random variable *X*:

$$P(X = x_i) = \sum_{\{w: X(w) = x_i\}} P(w)$$

A random variable is a function from sample points to some range, e.g., \mathbb{R} , [0,1], $\{true, false\}$. . .

e.g.,
$$Odd(1) = true$$
.

P induces a probability distribution for any random variable *X*:

$$P(X = x_i) = \sum_{\{w: X(w) = x_i\}} P(w)$$

e.g.,

$$P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2$$

A proposition can be seen as an event (set of sample points) where the proposition is true

A proposition can be seen as an event (set of sample points) where the proposition is true

Given Boolean random variables A and B:

A proposition can be seen as an event (set of sample points) where the proposition is true

Given Boolean random variables A and B:

event a = set of sample points where A(w) = true

A proposition can be seen as an event (set of sample points) where the proposition is true

Given Boolean random variables A and B:

event a = set of sample points where A(w) = true

event $\neg a = \text{set of sample points where } A(w) = \text{false}$

A proposition can be seen as an event (set of sample points) where the proposition is true

Given Boolean random variables A and B:

event a = set of sample points where A(w) = true

event $\neg a = \text{set of sample points where } A(w) = \text{false}$

event $a \wedge b = \text{points where } A(w) = true \text{ and } B(w) = true$

Events and Propositional Logic

Proposition = disjunction of atomic events in which it is true

e.g.,
$$(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$$

e.g.,
$$(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$$

$$\Rightarrow P(a \lor b)$$

e.g.,
$$(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$$

$$\Rightarrow P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$$

e.g.,
$$(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$$

$$\Rightarrow P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$$

$$= P(\neg a \wedge b) + P(a \wedge \neg b) + P(a \wedge b) + P(a \wedge b) - P(a \wedge b)$$

e.g.,
$$(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$$

$$\Rightarrow P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$$

$$= P(\neg a \land b) + P(a \land \neg b) + P(a \land b) + P(a \land b) - P(a \land b)$$

$$= P(a) + P(b) - P(a \land b)$$

Probabilities are logical

Theorem (De Finetti 1931)

An agent who bets according to "illogical" probabilities can be tricked into a bet that loses money regardless of outcome.

Propositional e.g., Cavity (do I have a cavity?)

Cavity = true is a proposition, also written cavity

```
Propositional e.g., Cavity (do I have a cavity?)

Cavity = true is a proposition, also written cavity

Discrete e.g., Weather is one of \langle sunny, rain, cloudy, snow \rangle.

Weather = rain is a proposition.
```

```
Propositional e.g., Cavity (do I have a cavity?)

Cavity = true is a proposition, also written cavity

Discrete e.g., Weather is one of \( \sunny, rain, cloudy, snow \).

Weather = rain is a proposition.

Important: exhaustive and mutually exclusive
```

```
Propositional e.g., Cavity (do I have a cavity?)

Cavity = true is a proposition, also written cavity

Discrete e.g., Weather is one of \( \sunny, rain, cloudy, snow \).

Weather = rain is a proposition.

Important: exhaustive and mutually exclusive

Continuous e.g., Temp = 21.6; Temp < 22.0.
```

Probabilities

- Unconditional probabilities
- Conditional probabilities

Prior probability

Prior/unconditional probabilities of propositions:

Prior probability

Prior/unconditional probabilities of propositions: e.g., $P(\textit{Cavity} = \textit{true}) = 0.1 \text{ and} \\ P(\textit{Weather} = \textit{sunny}) = 0.72, \text{ correspond to belief} \\ \text{prior to arrival of any (new) evidence}$

Prior probability

Prior/unconditional probabilities of propositions: e.g.,

$$P(Cavity = true) = 0.1$$
 and

P(Weather = sunny) = 0.72, correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:

```
P(Weather) = (0.72, 0.1, 0.08, 0.1) (normalized, i.e., sums to 1)
```

Joint probability distribution probability of every sample point

Joint probability distribution probability of every sample point $P(Weather, Cavity) = a 4 \times 2 \text{ matrix of values:}$

Joint probability distribution probability of every sample point $P(Weather, Cavity) = a \ 4 \times 2 \text{ matrix of values:}$

Weather =			,	
Cavity = true				
Cavity = false	0.576	0.08	0.064	0.08

Joint probability distribution probability of every sample point $P(Weather, Cavity) = a \ 4 \times 2 \text{ matrix of values:}$

Weather =				
Cavity = true				
Cavity = false	0.576	0.08	0.064	0.08

Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

Conditional or posterior probabilities

Conditional or posterior probabilities

e.g.,
$$P(cavity|toothache) = 0.8$$

Conditional or posterior probabilities

e.g., P(cavity|toothache) = 0.8 i.e., given that toothache is all I know NOT "if toothache then 80% chance of cavity"

Conditional or posterior probabilities

e.g., P(cavity|toothache) = 0.8 i.e., given that toothache is all I know NOT "if toothache then 80% chance of cavity"

(Notation for conditional distributions: P(Cavity|Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., *cavity* is also given, then we have P(cavity | toothache, cavity) = ... = 1

 Note: the less specific belief remains valid after more evidence arrives, but is not always useful

- Note: the less specific belief remains valid after more evidence arrives, but is not always useful
- New evidence may be irrelevant, allowing simplification

- Note: the less specific belief remains valid after more evidence arrives, but is not always useful
- New evidence may be irrelevant, allowing simplification, e.g.,
 P(cavity|toothache) =
 P(cavity|toothache, Cristiano Ronaldo scores) = 0.8

- Note: the less specific belief remains valid after more evidence arrives, but is not always useful
- New evidence may be irrelevant, allowing simplification, e.g.,
 P(cavity | toothache) =
 P(cavity | toothache, Cristiano Ronaldo scores) = 0.8
 This kind of inference is crucial!

Definition of conditional probability:

$$P(a|b) = \frac{P(a \wedge b)}{P(b)}$$
 if $P(b) \neq 0$

Definition of conditional probability:

$$P(a|b) = \frac{P(a \wedge b)}{P(b)}$$
 if $P(b) \neq 0$

Product rule gives an alternative formulation:

$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

A general version holds for whole distributions, e.g., P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)

A general version holds for whole distributions, e.g., P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)

(View as a 4×2 set of equations, **not** matrix multiplication)

A general version holds for whole distributions, e.g., P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)

(View as a 4×2 set of equations, **not** matrix multiplication)

A general version holds for whole distributions, e.g., P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)

(View as a 4×2 set of equations, **not** matrix multiplication)

$$P(X_1,...,X_n) = P(X_1,...,X_{n-1}) P(X_n|X_1,...,X_{n-1})$$

A general version holds for whole distributions, e.g., P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)

(View as a 4×2 set of equations, **not** matrix multiplication)

$$\mathbf{P}(X_1, ..., X_n) = \mathbf{P}(X_1, ..., X_{n-1}) \ \mathbf{P}(X_n | X_1, ..., X_{n-1})
= \mathbf{P}(X_1, ..., X_{n-2}) \ \mathbf{P}(X_{n-1} | X_1, ..., X_{n-2}) \ \mathbf{P}(X_n | X_1, ..., X_{n-1})$$

A general version holds for whole distributions, e.g., P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)

(View as a 4×2 set of equations, **not** matrix multiplication)

$$\mathbf{P}(X_{1},...,X_{n}) = \mathbf{P}(X_{1},...,X_{n-1}) \ \mathbf{P}(X_{n}|X_{1},...,X_{n-1})
= \mathbf{P}(X_{1},...,X_{n-2}) \ \mathbf{P}(X_{n-1}|X_{1},...,X_{n-2}) \ \mathbf{P}(X_{n}|X_{1},...,X_{n-1})
= ...
= \prod_{i=1}^{n} \mathbf{P}(X_{i}|X_{1},...,X_{i-1})$$

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition φ , sum the atomic events where it is true:

$$P(\varphi) = \sum_{w:w \models \varphi} P(w)$$

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition φ , sum the atomic events where it is true:

$$P(\varphi) = \sum_{w: w \models \varphi} P(w)$$

$$P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2$$

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition φ , sum the atomic events where it is true:

$$P(\varphi) = \sum_{w: w \models \varphi} P(w)$$

$$P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$$

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$
$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\textit{cavity}|\textit{toothache}) = \frac{P(\textit{cavity} \land \textit{toothache})}{P(\textit{toothache})}$$
$$= \frac{0.108 + 0.12}{0.108 + 0.012 + 0.016 + 0.064} = 0.6$$

Normalization

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Denominator can be viewed as a normalization constant lpha

```
\begin{split} & \mathbf{P}(\textit{Cavity}|\textit{toothache}) = \alpha \, \mathbf{P}(\textit{Cavity}, \textit{toothache}) \\ & = \, \alpha \, [\mathbf{P}(\textit{Cavity}, \textit{toothache}, \textit{catch}) + \mathbf{P}(\textit{Cavity}, \textit{toothache}, \neg \textit{catch})] \\ & = \, \alpha \, [\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle] \\ & = \, \alpha \, \langle 0.12, 0.08 \rangle = \langle 0.6, 0.4 \rangle \end{split}
```

Let X be all the variables.

Let X be all the variables.

 Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E

Let X be all the variables.

- Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E
- Let the hidden variables be H = X Y E

Let X be all the variables.

- Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E
- Let the hidden variables be H = X Y E
 Then the required summation of joint entries is done by summing out the hidden variables:

$$P(Y|E=e) = \alpha P(Y, E=e) = \alpha \sum_{h} P(Y, E=e, H=h)$$

Let X be all the variables.

- Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E
- Let the hidden variables be H = X Y E
 Then the required summation of joint entries is done by summing out the hidden variables:

$$P(Y|E=e) = \alpha P(Y,E=e) = \alpha \sum_{h} P(Y,E=e,H=h)$$

The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables.

• Obvious problems: with *n* variables...

- Obvious problems: with *n* variables...
 - **①** Worst-case time complexity $O(d^n)$ where d is the largest arity

- Obvious problems: with *n* variables...
 - **1** Worst-case time complexity $O(d^n)$ where d is the largest arity
 - **2** Space complexity $O(d^n)$ to store the joint distribution

- Obvious problems: with *n* variables...
 - **①** Worst-case time complexity $O(d^n)$ where d is the largest arity
 - 2 Space complexity $O(d^n)$ to store the joint distribution
 - **3** How to find the numbers for $O(d^n)$ entries?

- Obvious problems: with *n* variables...
 - **①** Worst-case time complexity $O(d^n)$ where d is the largest arity
 - 2 Space complexity $O(d^n)$ to store the joint distribution
 - **3** How to find the numbers for $O(d^n)$ entries?

• Probability is a rigorous formalism for uncertain knowledge

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the size

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the size
- Independence and conditional independence provide the tools.

What's next?

- Bayes' rule
- Conditional and unconditional independence
- (hopefully) Bayesian Networks

A and B are independent iff

A and B are independent iff

$$P(A|B) = P(A)$$
 or $P(B|A) = P(B)$ or $P(A,B) = P(A)P(B)$

A and B are independent iff

$$P(A|B) = P(A)$$
 or $P(B|A) = P(B)$ or $P(A,B) = P(A)P(B)$

P(cavity | Cristiano Ronaldo scores) = P(cavity)

```
A and B are independent iff \mathbf{P}(A|B) = \mathbf{P}(A) or \mathbf{P}(B|A) = \mathbf{P}(B) or \mathbf{P}(A,B) = \mathbf{P}(A)\mathbf{P}(B)

P(cavity|Cristiano Ronaldo scores) = P(cavity)

P(Cristiano Ronaldo scores|cavity) = P(Cristiano Ronaldo scores|\neg cavity) = P(Cristiano Ronaldo scores)
```

A and B are independent iff

$$P(A|B) = P(A)$$
 or $P(B|A) = P(B)$ or $P(A,B) = P(A)P(B)$

P(cavity | Cristiano Ronaldo scores) = P(cavity)

 $P(\text{Cristiano Ronaldo scores}|\text{cavity}) = P(\text{Cristiano Ronaldo scores}|\neg\text{cavity}) = P(\text{Cristiano Ronaldo scores})$

P(Toothache, Catch, Cavity, Weather) = **P**(Toothache, Catch, Cavity)**P**(Weather)


```
P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity)P(Weather)
```

32 entries reduced to 12; for *n* independent biased coins, $2^n \rightarrow n$

- **P**(Toothache, Catch, Cavity, Weather)
- = P(Toothache, Catch, Cavity)P(Weather)
- 32 entries reduced to 12; for *n* independent biased coins, $2^n \rightarrow n$

Absolute independence powerful but rare