Lycée Chateaubriand MPSI 3 • 2024 – 2025

William GREGORY

Colle 22 • INDICATIONS

Dérivation, Formules de Taylor, Développements limités

Exercice 22.1

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\left\{ egin{aligned} u_0 &= 1 \ orall n &\in \mathbb{N}, \quad u_{n+1} &= rac{1}{1+u_n}. \end{aligned}
ight.$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

indication

On note $f: x \longmapsto \frac{1}{1+x}$.

- Rechercher les points fixes de f, un intervalle stable de f au regard de u_0 et garder le point fixe ℓ de cet intervalle stable.
- ♦ À l'aide de l'inégalité des accroissements finis, montrer que

$$\forall n \in \mathbb{N}, \quad |u_{n+1} - \ell| \leqslant k|u_n - \ell|$$

où $k \in]0,1[$ et en déduire la convergence de $(u_n)_n$ vers $\ell.$

résultat

L'intervalle $\left[\frac{1}{2},1\right]$ est stable par f. On a $u_n\longrightarrow \frac{-1+\sqrt{5}}{2}.$

Exercice 22.2

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+^*$ dérivable. Soit $\ell \in \mathbb{R}$.

Montrer que

$$\frac{f'(x)}{f(x)} \xrightarrow[x \to +\infty]{} \ell \implies \frac{f(x+1)}{f(x)} \xrightarrow[x \to +\infty]{} e^{\ell}.$$

- indication -

1

On pourra considérer $g: x \longmapsto \ln(f(x))$ et utiliser le théorème des accroissements finis.

Exercice 22.3

Soient $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ dérivables. Soit $x_0\in\mathbb{R}$.

On suppose que

$$\forall x \in [a, b], \quad g'(x) \neq 0.$$

1. Soit $x > x_0$. Montrer que

$$\exists c \in]x, x_0[: \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(c)}{g'(c)}.$$

2. Soit $\ell \in \mathbb{R}$. Montrer que

$$\frac{f'(x)}{g'(x)} \xrightarrow[x \to x_0]{} \ell \quad \Longrightarrow \quad \frac{f(x) - f(x_0)}{g(x) - g(x_0)} \xrightarrow[x \to x_0]{} \ell.$$

indication

- 1. \blacklozenge On vérifiera d'abord que $g(a) \neq g(b)$ pour justifier le sens de l'expression proposée.
 - lacktriangle On appliquera le théorème de Rolle à une fonction h bien choisie, construite à l'aide de f et g.
- **2.** On remarquera que le c précédemment construit dépend de x. Lorsque x tend vers x_0 , c aussi.

Exercice 22.4

Soit $n \in \mathbb{N}$. Soit I un intervalle de \mathbb{R} . Soit $f: I \longrightarrow \mathbb{R}$ une fonction de classe \mathscr{C}^{n+1} . Soit $a \in I$. Montrer que pour tout $x \in I$, il existe $c_x \in \mathbb{R}$ compris entre a et x tel que

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + f^{(n+1)}(c_{x}) \frac{(x-a)^{n+1}}{(n+1)!}.$$

indication

Utiliser la formule de Taylor avec reste intégral et encadrer l'intégrale par des valeurs de la dérivée (n+1)-ième pour appliquer le théorème des valeurs intermédiaires.

Exercice 22.5

Soit $u \in \mathscr{C}^4 \big([0,1],\mathbb{R}\big)$. Soit f une fonction réelle telle que

$$\forall x \in [0,1], \quad -u''(x) = f(x).$$

Soit $n \in \mathbb{N}$. On pose $h \coloneqq \frac{1}{n+1}$ et, pour $i \in \llbracket 0, n+1 \rrbracket$, $x_i \coloneqq ih$.

- **1.** Soit $i \in [1, n]$. Comment approximer $f(x_i)$ avec $u(x_{i-1})$, $u(x_i)$ et $u(x_{i+1})$?
- **2.** Soit $i \in [1, n]$. Définir l'erreur d'approximation ε_i .
- **3.** Déterminer $C \in \mathbb{R}_+$ ne dépendant que de u tel que

$$\forall i \in [1, n], \quad |\varepsilon_i| \leqslant Ch^2.$$

2

indication

- 1. Utiliser la formule de Taylor-Young.
- 2. Il s'agit de la différence entre $f(x_i)$ et l'approximation déterminée précédemment.
- **3.** On utilisera la formule de Taylor reste intégral aux points (x_{i+1}, x_i) et (x_{i-1}, x_i) .

résultat

1.
$$\frac{-u(x_{i-1})+2u(x_i)-u(x_{i+1})}{h^2}.$$

2.
$$\varepsilon_i = \frac{-u(x_{i-1}) + 2u(x_i) - u(x_{i+1})}{h^2} - f(x_i).$$

3.
$$C = \frac{\sup_{x \in [0,1]} \left| u^{(4)}(x) \right|}{12}$$
.

Exercice 22.6

Soit $n \in \mathbb{N}$. Donner le développement limité en 0 à l'ordre 2n+2 de $x \longmapsto \ln\left(\frac{1+x}{1-x}\right)$.

indication

On pourra commencer par dériver la fonction proposée.

résultat

$$\ln\left(\frac{1+x}{1-x}\right) = 2x + \frac{2}{3}x^3 + \frac{2}{5}x^5 + \dots + \frac{2}{2n+1}x^{2n+1} + \underset{x \to 0}{\mathscr{O}}\left(x^{2n+2}\right).$$

Exercice 22.7

Donner le développement limité à l'ordre 3 en 1 de cos o ln.

résultat

$$\cos\Bigl(\ln(x)\Bigr) = 1 - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{2} + \mathop{o}_{x \to 1}\Bigl((x-1)^3\Bigr).$$

Exercice 22.8

Soit $n \in \mathbb{N}$. Donner le développement limité de $\arcsin(\cdot)$ en 0 à l'ordre 2n + 2.

indication -

Donner le développement limité en 0 à l'ordre 2n+1 de $x\longmapsto \frac{1}{\sqrt{1-x^2}}$ puis intégrer.

résultat

$$\frac{1}{\sqrt{1-x^2}} = \sum_{k=0}^{n} \frac{(2k)!}{2^{2k}(k!)^2} x^{2k} + \underset{x \to 0}{\circ} \left(x^{2n+1}\right)$$

$$\arcsin(x) = \sum_{k=0}^{n} \frac{(2k)!}{2^{2k}(2k+1)(k!)^2} x^{2k+1} + \underset{x \to 0}{\circ} (x^{2n+2}).$$

Exercice 22.9

On considère la fonction

$$f: \left| \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \left\{ \begin{array}{ccc} \mathrm{e}^{-\frac{1}{x^2}} & \mathrm{si} & x \neq 0 \\ 0 & \mathrm{si} & x = 0. \end{array} \right.$$

- **1.** Montrer que f est de classe \mathscr{C}^{∞} sur \mathbb{R} .
- **2.** Soit $n \in \mathbb{N}$. Déterminer le développement limité à l'ordre n de f en 0.

indication

- **1.** On montrera que f est de classe \mathscr{C}^k pour tout $k \in \mathbb{N}$ en étudiant $f^{(k)}$ en 0.
- 2. On peut alors appliquer la formule de Taylor-Young.