BACKPROPAGATION Algorithm

BACKPROPAGATION (training example, η, nin, nout, nhidden)

Each training example is a pair of the form (\vec{x}, \vec{t}) , where (\vec{x}) is the vector of network input values, (\vec{t}) and is the vector of target network output values.

 η is the learning rate (e.g., .05). n_i , is the number of network inputs, n_{hidden} the number of units in the hidden layer, and n_{out} the number of output units.

The input from unit i into unit j is denoted x_{ji} , and the weight from unit i to unit j is denoted w_{ij}

- Create a feed-forward network with n_i inputs, n_{hidden} hidden units, and n_{out} output units.
- · Initialize all network weights to small random numbers
- Until the termination condition is met, Do
 - For each (\$\vec{x}\$, \$\vec{t}\$), in training examples, Do

Propagate the input forward through the network:

 Input the instance x, to the network and compute the output ou of every unit u in the network.

Propagate the errors backward through the network:

2. For each network output unit k, calculate its error term δ_L

$$\delta_k \leftarrow o_k(1-o_k)(t_k-o_k)$$

3. For each hidden unit h, calculate its error term δ_h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

Update each network weight wii

$$w_{ii} \leftarrow w_{ii} + \Delta w_{ii}$$

Where

$$\Delta w_{ji} = \eta \delta_j x_{i,j}$$

Training Examples:

Example	Sleep	Study	Expected % in Exams
1	2	9	92
2	1	5	86
3	3	6	89

Normalize the input

Example	Sleep	Study	Expected % in Exams
1	2/3 = 0.66666667	9/9 = 1	0.92
2	1/3 = 0.33333333	5/9 = 0.5555556	0.86
3	3/3 = 1	6/9 = 0.66666667	0.89

=== Code Execution Successful ===

```
import numpy as np
# Input data
X = np.array(([2, 9], [1, 5], [3, 6]), dtype=float)
y = np.array(([92], [86], [89]), dtype=float)
# Normalize the input
X = X / np.amax(X, axis=0) # maximum of X array longitudinally
y = y / 100 # normalize y
# Sigmoid Function
def sigmoid(x):
  return 1/(1 + np.exp(-x))
# Derivative of Sigmoid Function
def derivatives_sigmoid(x):
  return x * (1 - x)
# Variable initialization
epoch = 5000 # Setting training iterations
Ir = 0.1 # Setting learning rate
inputlayer_neurons = 2 # number of features in data set
hiddenlayer_neurons = 3 # number of hidden layer neurons
output neurons = 1 # number of neurons at output layer
# Weight and bias initialization
wh = np.random.uniform(size=(inputlayer_neurons, hiddenlayer_neurons))
bh = np.random.uniform(size=(1, hiddenlayer neurons))
wout = np.random.uniform(size=(hiddenlayer_neurons, output_neurons))
bout = np.random.uniform(size=(1, output neurons))
# Training loop
for i in range(epoch):
  # Forward Propagation
  hinpl = np.dot(X, wh)
  hinp = hinpl + bh
  hlaver act = sigmoid(hinp)
  outinp1 = np.dot(hlayer_act, wout)
  outinp = outinp1 + bout
  output = sigmoid(outinp)
  # Backpropagation
  EO = y - output
  outgrad = derivatives_sigmoid(output)
  d_output = EO * outgrad
  EH = d output.dot(wout.T)
  hiddengrad = derivatives sigmoid(hlayer act)
  d hiddenlayer = EH * hiddengrad
  # Update weights and biases
  wout += hlayer_act.T.dot(d_output) * Ir
  wh += X.T.dot(d hiddenlayer) * Ir
  bh += np.sum(d_hiddenlayer, axis=0, keepdims=True) * Ir
  bout += np.sum(d_output, axis=0, keepdims=True) * Ir
# Results
print("Input: \n" + str(X))
print("Actual Output: \n" + str(y))
print("Predicted Output: \n", output)
```