Вычислить значение функции f(x) в точке x с помощью ряда Тейлора в окрестности точки $x_0=0$ и сравнить его со значением, полученным с помощью библиотечных функций:

№ варианта	X	Φ ункция $f(x)$
1	1	$\sin x^3/2 + x$
2	-1	$\cos x/3 + x - x^2$
3	1	$\frac{\cos x/3 + x - x^2}{e^{-x/7} + x + 1}$
4	-0.5	arcta 3x - x
5	-1	arctg 3x - x $5x$
		$\frac{10+x^2}{1}$
6	1	$\frac{3x}{10 + x^2}$ $\sinh 2x + x$ $\cosh \frac{x}{2} + x - x^2$
7	1	ab^{χ} ab^{χ}
		$\operatorname{cli}\frac{1}{2} + x - x$
8	-1	$x\sin 2x - 1$
9	-1	$x\sin 2x - 1$ $\cos \frac{x}{2} + x - 1$ $e^{2x} - x + 1$ $x\operatorname{arct} g x^{2} - 1$ $\frac{1}{(1 - x)^{2}}$ $x\operatorname{sh} x^{2}$
10	-1	$\frac{2}{\rho^{2x}-r+1}$
11	-1	$\frac{c}{xarcta} \frac{x+1}{x^2-1}$
12	-0.5	1/
		$/(1-x)^2$
13	0.5	$x \operatorname{sh} x^2$
14	1	$\operatorname{ch} 2x + x$
15	1.5	$x \ln x - 1$
16	-0.5	$\frac{\cosh 2x + x}{\sinh x - 1}$ $\frac{1}{\cos \frac{3x}{2} - x}$ $\frac{\sin 3x^2}{x} - x + 1$ $\frac{\arctan x}{x} - x$ $\frac{\sinh x}{x} - x$ $\sin 3x - \cos x^2 - x + 1$ $\frac{\sinh 2x^2}{x} - 1 - x^2$ $\frac{\sinh 2x}{x} + x$
17	0.5	$\sin 3x^2$
	3.2	$\frac{3xx + x}{x} - x + 1$
18	-0.5	$\frac{\lambda}{arcta x^3}$
		$\frac{x + c \cdot y \cdot x}{x} - x$
19	0.5	$\sin 3x - \cos x^2 - x + 1$
20	3/4	$\sinh 2x^2$
		$\frac{1}{x}-1-x^2$
21	-1	$\frac{x}{\operatorname{vch}} + x$
		$\frac{\operatorname{xch} \frac{x}{2} + x}{x}$
22	1.8	$\ln \frac{1}{2} - x$
23	-0.5	$arctg 2x^2 + 3x - 1$
24	1.5	$\ln x^2 - x + 1$
25	-0.5	$\sin x^3 - x$
26	1	$\sin x^3 - x$ $\cos \frac{x^2}{5} + 2x$
		$\cos\frac{\pi}{5} + 2x$
27	-0.5	$\sin 2x^3 - 2x$
28	3/5	$\cos x^5 + 2x - 1$
29	3/4	$\exp(-x^3) - x - 1$
30	0.5	$ \begin{array}{c} \cos x + 2x - 1 \\ \exp(-x^3) - x - 1 \\ arctg 2x^3 - 3x^2 \\ 2x \end{array} $
31	-0.5	2x
		$\overline{3-5x^3}$
32	-0.9	$\sinh 2x^6 + x$
33	4/5	$\frac{\sinh 2x^6 + x}{\cosh \frac{x^3}{2} + 5x - x^2}$ $\cosh 2x^4 - 3x^3$
24	2/7	2
34	-3/7	$\chi \sin 2\chi^{\tau} - 3\chi^{\sigma}$

35	1/4	$\cos\frac{2x}{3} + 2x - x^2$
36	6/7	$e^{2x^3} - x + 1$

При решении задачи рекомендуется пользоваться формулами (рядами) Тейлора:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$$

$$\exp x = 1 + \frac{x^1}{1!} + \frac{x^2}{2!} - \dots + \frac{x^n}{n!} + \dots$$

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$$

$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)} + \dots$$

$$\frac{1}{1-x} = 1 + x + x^2 \dots + x^n + \dots$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n+1} x^n}{n} + \dots$$

Пример кода (MS Visual Studio 2010):

```
#include <stdio.h>
#include <math.h>
double my_exp(double x, double eps = 0.001)
      double current, sum;
      int n = 1;
                  //индекс для вычисления факториала
      sum = 0;
                    //переменная для суммы ряда
      current = 1; //переменная для хранения текущего члена ряда
      while(fabs(current)>eps) //для знакопеременных рядов нужно abs(current) или
fabs(current)
       {
              sum+=current; //sum = sum + current изменяем значение суммы
              current*=x/n; //current = current * x / n изменяем значение текущего
элемента
             n++;
                             //n = n + 1 переменная цикла увеличивается
              /*if(n>10000)
                    сумма бесконечна?!
                    return ?
             }*/
       }
      return sum;
}
int _tmain(int argc, _TCHAR* argv[])
      double arg;
```

```
printf("\nThe argument value = ");
scanf("%lf", &arg);
double res = my_exp(arg);
printf("\nExp Sum = %lf\tTable value = %lf\n", res, exp(arg));
return 0;
}
```