MSO 202A: Complex Variables

August-September 2022

Assignment-4

Throughout C_R will denote the circle of radius R around origin, oriented counterclockwise, and $C_1 = C$.

1. (T)Show that

$$\int_{-\infty}^{\infty} \frac{1}{(1+x^2)^2} dx = \pi/2$$

2. Suppose f(z) is defined by the integral

$$f(z) = \int_{C_2} \frac{2\xi^2 + 7\xi + 1}{\xi - z} d\xi.$$

Find f'(1+i)

- 3. Compute $\int_{C_4} \frac{z}{z^2+4} dz$ where C_4 is the circe |z|=4 oriented anticlockwise.
- 4. (T)Suppose that f = u + iv is an entire function and u is bounded (or v is bounded). Show that f is constant.
- 5. Using Liouville's theorem, conclude that $\sin z, \cos z$ are not bounded functions.
- 6. (T)Suppose that f = u + iv is an entire function and $|f(z)| < |z|^n$ for some $n \ge 0$ and for all sufficiently large |z|. Show that f is a polynomial.
- 7. Suppose that f = u + iv is an entire function and u(or v) is a polynomial. Then show that f is a polynomial.
- 8. Show that if u is a bounded harmonic function on \mathbb{C} then u is constant.
- 9. (T)Let τ be a complex number which is not real. Suppose that f is an entire function such that f(z+1) = f(z) and $f(z+\tau) = f(z)$. Then show that f is a constant. (This exercise says that a doubly periodic entire function is constant.)
- 10. Let f be an entire function satisfying $|f(z)| \ge 1$ for all $z \in \mathbb{C}$. Show that f is constant.
- 11. (**T**)Suppose that $f: \mathbb{D} \to \mathbb{C}$ is anytic on unit disc $\mathbb{D} = \{z : |z| < 1\}$. Show that $|f'(0)| \le d/2$, where $d = \sup_{z,w \in \mathbb{D}} |f(z) f(w)|$ is the diameter of the image of f.
- 12. (**T**)Let Ω be a bounded open subset of \mathbb{C} and $f:\Omega\to\Omega$ is a holomorphic function. Prove that if there exists a point $a\in\Omega$ such that f(a)=a and f'(a)=1 then f is linear.

13. Let f be analytic on a region Ω and let C be a circle with interior containd in Ω . For any $a \in \Omega$ not on C show that

$$\int_C \frac{f'(\xi)}{(\xi - a)} d\xi = \int_C \frac{f(\xi)}{(\xi - a)^2} d\xi$$

14. (a) If f(z) is a holomorphic inside and on a circle C containing a prove that

$$f(a)^n = \frac{1}{2\pi i} \int_C \frac{f(z)^n}{(z-a)} dz.$$

- (b) Use (a) to show that $|f(a)|^n \leq LM^n/(2\pi D)$ where D is the distance of a from C, L is the length of C and M is the maximum value of |f(z)| on C.
- (c) Use (b) to show that $|f(a)| \leq M$. In other words, the maximum value of |f(z)| is obtained on the boundary. This result is known as Maximum Modulus Principle.
- (d) The maximum modulus value of f(z) = 1/z on unit circle is 1, yet |f(1/2)| = 2. Expalin why this does not contradict (c).
- 15. This exercise gives a generalization of Goursat's and Cauchy's theorem.

Let T be a triangle whose interior is contained in an open set Ω of \mathbb{C} . Suppose that $f:\Omega\to\mathbb{C}$ is a continuous function which is holomorphic on Ω in except possibly at a point z_0 . Prove that

$$\int_T f(z)dz = 0.$$

16. Let \mathbb{D} be an open disc and $f: \mathbb{D} \to \mathbb{C}$ be a continuous function which is holomorphic on $\mathbb{D} \setminus \{z_0\}$ for some fixed $z_0 \in \mathbb{D}$. Then prove that f has a primitive on \mathbb{D} .

(Remark: Hence we conclude that: Let $f:\Omega\to\mathbb{C}$ is a continuous function on an open set Ω and analytic on $\Omega\setminus\{z_0\}$ where $z_0\in\Omega$. Then show that f is analytic on Ω .)