Graph Edge Colorings & the Uniqueness Spectrum

Yunus Biday

 $\label{eq:commonwealth} \mbox{ Virginia Commonwealth University } \\ \mbox{ bidavye@vcu.edu}$

October 11, 2023

Joint Work With

• Neal Bushaw

Joint Work With

- Neal Bushaw
- Ro Lee

Joint Work With

- Neal Bushaw
- Ro Lee
- Cindy Mitrovic

Brief Background

• Graph coloring is something that is widely studied.

Brief Background

- Graph coloring is something that is widely studied.
- There's many famous results such as the Four Color Theorem, Brooks' Theorem, Vizing's Theorem, Ramsey Theory, and many others.

Brief Background

- Graph coloring is something that is widely studied.
- There's many famous results such as the Four Color Theorem, Brooks' Theorem, Vizing's Theorem, Ramsey Theory, and many others.
- This is a very active field of research both in applied and pure mathematics.

Basic definitions

Definition

A graph G = (V, E) is an ordered pair where V is a set containing elements called vertices and E is a set of paired vertices which are called edges. For edge $e = \{v_1, v_2\}$ we call v_1 and v_2 the endpoints.

Basic definitions

Definition

A graph G = (V, E) is an ordered pair where V is a set containing elements called vertices and E is a set of paired vertices which are called edges. For edge $e = \{v_1, v_2\}$ we call v_1 and v_2 the endpoints.

Definition

Two edges are incident if they share an endpoint.

Basic definitions

Definition

A graph G = (V, E) is an ordered pair where V is a set containing elements called vertices and E is a set of paired vertices which are called edges. For edge $e = \{v_1, v_2\}$ we call v_1 and v_2 the endpoints.

Definition

Two edges are incident if they share an endpoint.

Definition

For a given graph G we denote the number of vertices as |G| and the number of edges as |G|.

Graph

• We can draw a graph by representing the vertices as circles and the edges as lines which connect them.

Graph

• We can draw a graph by representing the vertices as circles and the edges as lines which connect them.

Definition

A k-edge-coloring of a graph G = (V, E) is a function $c : E \to [k]$. We call c **proper** if no pair of incident edges is colored the same. The **chromatic index of** G, written $\chi'(G)$, is the minimum $k \in \mathbb{N}$ for which a proper k-edge-coloring of G exists.

Definition

A k-edge-coloring of a graph G = (V, E) is a function $c : E \to [k]$. We call c **proper** if no pair of incident edges is colored the same. The **chromatic index of** G, written $\chi'(G)$, is the minimum $k \in \mathbb{N}$ for which a proper k-edge-coloring of G exists.

• We can think of edge coloring as assigning a color to an edge.

Definition

A k-edge-coloring of a graph G = (V, E) is a function $c : E \to [k]$. We call c **proper** if no pair of incident edges is colored the same. The **chromatic index of** G, written $\chi'(G)$, is the minimum $k \in \mathbb{N}$ for which a proper k-edge-coloring of G exists.

- We can think of edge coloring as assigning a color to an edge.
- We call this coloring proper if whenever two edges share an endpoint they are colored differently.

Definition

A k-edge-coloring of a graph G = (V, E) is a function $c : E \to [k]$. We call c **proper** if no pair of incident edges is colored the same. The **chromatic index of** G, written $\chi'(G)$, is the minimum $k \in \mathbb{N}$ for which a proper k-edge-coloring of G exists.

- We can think of edge coloring as assigning a color to an edge.
- We call this coloring proper if whenever two edges share an endpoint they are colored differently.
- We can then think of the chromatic index as the minimum number of colors you need to properly edge color a graph.

K-Uniqueness

Definition

Given a proper k-edge-coloring c of a graph G, we say that a coloring of G is k-unique if there are exactly k edges of G whose colors are not repeated elsewhere in the coloring. That is, whenever

$$|\{k \in [k] : |c^{-1}(k)| = 1\}| = k.$$

K-Uniqueness

Definition

Given a proper k-edge-coloring c of a graph G, we say that a coloring of G is k-unique if there are exactly k edges of G whose colors are not repeated elsewhere in the coloring. That is, whenever $|\{k \in [k] : |c^{-1}(k)| = 1\}| = k$.

• A coloring is k-unique when exactly k edges have colors which appear nowhere else.

This is 0-unique

This is 1-unique

$$Spec = \{0, 1\}$$

$$\mathrm{Spec} = \{0,1,3\}$$

$$Spec = \{0, 1, 3, 5\}$$

$$Spec = \{0, 1, 2, 3, 5\}$$

Even More Coloring!

$$Spec = \{0\}$$

Even More Coloring!

$$Spec = \{0, 2\}$$

Even More Coloring!

 $Spec = \{0, 2, 4\}$

Important observations

Observation

If we recolor an edge from a color used exactly twice into a new color, our uniqueness goes up by two.

Important observations

Observation

If we recolor an edge from a color used exactly twice into a new color, our uniqueness goes up by two.

Observation

If we recolor an edge from a color used three (or more) times into a new color, our uniqueness goes up by one.

Definition (Bushaw-Bednar 2022)

The **uniqueness spectrum** of a graph G is the set of natural numbers k for which a k-unique coloring of G exists. We denote this set by $\operatorname{Spec}(G)$.

Definition (Bushaw-Bednar 2022)

The **uniqueness spectrum** of a graph G is the set of natural numbers k for which a k-unique coloring of G exists. We denote this set by $\operatorname{Spec}(G)$.

Definition

We say that a graph G is **full spectrum** whenever $Spec(G) = \{0, 1, ..., ||G|| - 2, ||G||\}.$

Definition (Bushaw-Bednar 2022)

The **uniqueness spectrum** of a graph G is the set of natural numbers k for which a k-unique coloring of G exists. We denote this set by $\operatorname{Spec}(G)$.

Definition

We say that a graph G is **full spectrum** whenever $Spec(G) = \{0, 1, ..., \|G\| - 2, \|G\|\}.$

• Why is ||G|| - 1 missing?

Definition (Bushaw-Bednar 2022)

The **uniqueness spectrum** of a graph G is the set of natural numbers k for which a k-unique coloring of G exists. We denote this set by $\operatorname{Spec}(G)$.

Definition

We say that a graph G is **full spectrum** whenever $Spec(G) = \{0, 1, ..., \|G\| - 2, \|G\|\}.$

- Why is ||G|| 1 missing?
- What kinds of graphs are full spectrum? What kinds are not?

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

For any graph G, there always exists a $\|G\|$ -unique coloring

Lemma

For any graph G, there always exists a ||G||-unique coloring

• Just color every edge something different!

Before Going Further

Definition

The degree of a vertex v is the number of edges which use v as an endpoint.

Before Going Further

Definition

The degree of a vertex v is the number of edges which use v as an endpoint.

Definition

The maximum degree of a graph G, denoted by $\Delta(G)$, is the maximum of the degrees.

Before Going Further

Definition

The degree of a vertex v is the number of edges which use v as an endpoint.

Definition

The maximum degree of a graph G, denoted by $\Delta(G)$, is the maximum of the degrees.

Theorem (Vizing 1964)

For any graph G the minimum number of colors $(\chi'(G))$ we need to edge color it is either $\Delta(G)$ or $\Delta(G) + 1$

Lemma

If G is a graph with $2\Delta(G) > ||G||$, then G is not full spectrum. Specifically, the graph can have no 0-unique coloring.

Not enough edges!

Graphs which aren't full spectrum

Lemma

If G is a graph with $2\Delta(G) > ||G||$, then G is not full spectrum. Specifically, the graph can have no 0-unique coloring.

Graphs which aren't full spectrum

Lemma

If G is a graph with $2\Delta(G) > ||G||$, then G is not full spectrum. Specifically, the graph can have no 0-unique coloring.

Lemma

If G is a graph with $2\chi'(G) > ||G||$, then G is not full spectrum. Specifically, the graph can have no 0-unique coloring.

Graphs which aren't full spectrum

Lemma

If G is a graph with $2\Delta(G) > ||G||$, then G is not full spectrum. Specifically, the graph can have no 0-unique coloring.

Lemma

If G is a graph with $2\chi'(G) > ||G||$, then G is not full spectrum. Specifically, the graph can have no 0-unique coloring.

• This is strictly weaker by Vizing's Theorem.

Definition

A color class is a set containing all edges that share a color.

Definition

A color class is a set containing all edges that share a color.

Lemma (Swap Rule)

Given color classes C_i and C_j where $|C_i| = 1$ and $|C_j| \ge 3$, you can recolor an edge from the color of C_j to the color of C_i

Definition

A color class is a set containing all edges that share a color.

Lemma (Swap Rule)

Given color classes C_i and C_j where $|C_i| = 1$ and $|C_j| \ge 3$, you can recolor an edge from the color of C_j to the color of C_i

• If some color is used once and another color is used 3 or more times you can recolor an edge.

Definition

A color class is a set containing all edges that share a color.

Lemma (Swap Rule)

Given color classes C_i and C_j where $|C_i| = 1$ and $|C_j| \ge 3$, you can recolor an edge from the color of C_i to the color of C_i

- If some color is used once and another color is used 3 or more times you can recolor an edge.
- This reduces the k-uniqueness!

Swap Rule Continued

Swap Rule Continued

Swap Rule Continued

Chain Theorem

Theorem (Chain Theorem)

Question

What causes the k-uniqueness to increase by 2?

Question

What causes the k-uniqueness to increase by 2?

• Some color gets used exactly twice

Question

What causes the k-uniqueness to increase by 2?

- Some color gets used exactly twice
- Some color gets used four or more times

Question

What causes the k-uniqueness to increase by 2?

- Some color gets used exactly twice
- Some color gets used four or more times
- Two colors get used exactly three times each

• Some color gets used exactly twice

• Some color gets used exactly twice

• Some color gets used four or more times

• Some color gets used four or more times

• Some color gets used four or more times

• Two colors get used exactly three times each

• Two colors get used exactly three times each

• Two colors get used exactly three times each

Theorem (Chain Theorem)

Theorem (Chain Theorem)

Given graph G with a k-unique coloring, if $k \leq ||G|| - 4$, then G also has a (k+2)-unique coloring

• Consider a k-unique coloring where $k \leq ||G|| - 4$

Theorem (Chain Theorem)

- Consider a k-unique coloring where $k \leq ||G|| 4$
- This means that there are at least 4 edges which use repeated colors

Theorem (Chain Theorem)

- Consider a k-unique coloring where $k \leq ||G|| 4$
- This means that there are at least 4 edges which use repeated colors
- Since there are 4 edges among the repeated colors it must be that case that either

Theorem (Chain Theorem)

- Consider a k-unique coloring where $k \leq ||G|| 4$
- This means that there are at least 4 edges which use repeated colors
- Since there are 4 edges among the repeated colors it must be that case that either
 - Some color gets used exactly twice

Theorem (Chain Theorem)

- Consider a k-unique coloring where $k \leq ||G|| 4$
- This means that there are at least 4 edges which use repeated colors
- Since there are 4 edges among the repeated colors it must be that case that either
 - ► Some color gets used exactly twice
 - Some color gets used four or more times

Theorem (Chain Theorem)

- Consider a k-unique coloring where $k \leq ||G|| 4$
- This means that there are at least 4 edges which use repeated colors
- Since there are 4 edges among the repeated colors it must be that case that either
 - ► Some color gets used exactly twice
 - Some color gets used four or more times
 - Every color gets used exactly three times

Theorem (Chain Theorem)

- Consider a k-unique coloring where $k \leq ||G|| 4$
- This means that there are at least 4 edges which use repeated colors
- Since there are 4 edges among the repeated colors it must be that case that either
 - Some color gets used exactly twice
 - Some color gets used four or more times
 - Every color gets used exactly three times
- So we must also be (k+2)-unique!

Theorem (Chain Theorem)

Theorem (Chain Theorem)

Given graph G with a k-unique coloring, if $k \leq ||G|| - 4$, then G also has a (k+2)-unique coloring

• There's an important observation.

Theorem (Chain Theorem)

- There's an important observation.
- If a graph G has a 0-unique and 1-unique coloring it must have $2, 3, 4, \ldots, \|G\| 3, \|G\| 2$ in the spectrum.

Theorem (Chain Theorem)

- There's an important observation.
- If a graph G has a 0-unique and 1-unique coloring it must have $2, 3, 4, \ldots, ||G|| 3, ||G|| 2$ in the spectrum.
- But we know that ||G|| 1 is never in the spectrum and that ||G|| is always in the spectrum!

Theorem (Chain Theorem)

Given graph G with a k-unique coloring, if $k \leq ||G|| - 4$, then G also has a (k+2)-unique coloring

- There's an important observation.
- If a graph G has a 0-unique and 1-unique coloring it must have $2, 3, 4, \ldots, ||G|| 3, ||G|| 2$ in the spectrum.
- But we know that ||G|| 1 is never in the spectrum and that ||G|| is always in the spectrum!

Corollary

If $graph\ G$ is 0-unique and 1-unique, then it is full spectrum.

Lemma

If G is a graph such that $2\chi'(G) < ||G||$, then G is full spectrum.

Lemma

If G is a graph such that $2\chi'(G) < ||G||$, then G is full spectrum.

• By the Chain Theorem we just need to show that G is 0 and 1 unique.

Lemma

If G is a graph such that $2\chi'(G) < ||G||$, then G is 0-unique.

Lemma

If G is a graph such that $2\chi'(G) < ||G||$, then G is 0-unique.

• We can take any coloring of G that uses $\chi'(G)$ many colors.

Lemma

If G is a graph such that $2\chi'(G) < ||G||$, then G is 0-unique.

- We can take any coloring of G that uses $\chi'(G)$ many colors.
- \bullet Such a coloring would always have some color c used three or more times by the pigeonhole principle.

Lemma

If G is a graph such that $2\chi'(G) < ||G||$, then G is 0-unique.

- We can take any coloring of G that uses $\chi'(G)$ many colors.
- Such a coloring would always have some color c used three or more times by the pigeonhole principle.
- If there was a color d used only once we know there must an edge of color c which can be recolored to d via the Swap Rule.

Lemma

- We can take any coloring of G that uses $\chi'(G)$ many colors.
- \bullet Such a coloring would always have some color c used three or more times by the pigeonhole principle.
- If there was a color d used only once we know there must an edge of color c which can be recolored to d via the Swap Rule.
- This reduces the uniqueness value of the coloring.

Lemma

- We can take any coloring of G that uses $\chi'(G)$ many colors.
- \bullet Such a coloring would always have some color c used three or more times by the pigeonhole principle.
- If there was a color d used only once we know there must an edge of color c which can be recolored to d via the Swap Rule.
- This reduces the uniqueness value of the coloring.
- Furthermore, we still only use $\chi'(G)$ many colors.

Lemma

- We can take any coloring of G that uses $\chi'(G)$ many colors.
- \bullet Such a coloring would always have some color c used three or more times by the pigeonhole principle.
- If there was a color d used only once we know there must an edge of color c which can be recolored to d via the Swap Rule.
- This reduces the uniqueness value of the coloring.
- Furthermore, we still only use $\chi'(G)$ many colors.
- Therefore, it is still true that there is color which is used three or more times

Lemma

- We can take any coloring of G that uses $\chi'(G)$ many colors.
- \bullet Such a coloring would always have some color c used three or more times by the pigeonhole principle.
- If there was a color d used only once we know there must an edge of color c which can be recolored to d via the Swap Rule.
- This reduces the uniqueness value of the coloring.
- Furthermore, we still only use $\chi'(G)$ many colors.
- Therefore, it is still true that there is color which is used three or more times
- We can repeat this process until all colors are used at least twice.

Lemma

- We can take any coloring of G that uses $\chi'(G)$ many colors.
- Such a coloring would always have some color c used three or more times by the pigeonhole principle.
- If there was a color d used only once we know there must an edge of color c which can be recolored to d via the Swap Rule.
- This reduces the uniqueness value of the coloring.
- Furthermore, we still only use $\chi'(G)$ many colors.
- Therefore, it is still true that there is color which is used three or more times
- We can repeat this process until all colors are used at least twice.
- Such a coloring is 0-unique!

Lemma

Lemma

If G is a graph such that $2\chi'(G) < ||G||$, then G is 1-unique.

• We can create a 0-unique coloring of G using $\chi'(G)$ many colors.

Lemma

- We can create a 0-unique coloring of G using $\chi'(G)$ many colors.
- Such a coloring has some color c used 3 or more times by the pigeonhole principle.

Lemma

- We can create a 0-unique coloring of G using $\chi'(G)$ many colors.
- Such a coloring has some color c used 3 or more times by the pigeonhole principle.
- ullet Pick any edge with color c and recolor it into a color used nowhere else.

Lemma

- We can create a 0-unique coloring of G using $\chi'(G)$ many colors.
- Such a coloring has some color c used 3 or more times by the pigeonhole principle.
- ullet Pick any edge with color c and recolor it into a color used nowhere else.
- Such a coloring would be 1-unique!

• We have that a graph is full spectrum if $2\chi'(G) < ||G||$.

- We have that a graph is full spectrum if $2\chi'(G) < ||G||$.
- We have that a graph is not full spectrum if $2\chi'(G) > ||G||$.

- We have that a graph is full spectrum if $2\chi'(G) < ||G||$.
- We have that a graph is not full spectrum if $2\chi'(G) > ||G||$.
- What about if $2\chi'(G) = ||G||$?

Definition

A matching is a edges sharing no endpoints.

Definition

A matching is a edges sharing no endpoints.

• Just like a color class!

Definition

A matching is a edges sharing no endpoints.

• Just like a color class!

Definition

The matching number of a graph G, denoted as $\alpha'(G)$, is the size of the largest matching in G.

Definition

A matching is a edges sharing no endpoints.

• Just like a color class!

Definition

The matching number of a graph G, denoted as $\alpha'(G)$, is the size of the largest matching in G.

Lemma

If G has $2\chi'(G) = ||G||$ and $\alpha'(G) \geq 3$ and G is not N₆, then G is full spectrum.

The Net Graph — N_6

The Net Graph — N_6

Final Result

Theorem

A graph G is full spectrum if and only if we have $2\chi'(G) \leq ||G||$, $\alpha'(G) \geq 3$, and G is not N_6 .

Question

What classes of graphs have full spectrum?

Question

What classes of graphs have full spectrum?

• Paths with 5 or more edges.

Question

What classes of graphs have full spectrum?

- Paths with 5 or more edges.
- Cycles with 6 or more edges.

Question

What classes of graphs have full spectrum?

- Paths with 5 or more edges.
- Cycles with 6 or more edges.
- Any class at all that satisfies the final result!

Looking Forward

- Hypergraphs!
- What about instead of just unique colors we look for color classes of other sizes?

Conclusion

Thank you everyone for listening! Any questions?