EE3731C – Signal Processing Methods

Qi Zhao
Assistant Professor
ECE, NUS

Matlab and Image Processing Examples

Matlab and Images

- An image in MATLAB is a matrix
- Every pixel is a matrix element
- All the operators in MATLAB defined on matrices can be used on images: +, -, *, /, ^, sqrt, sin, cos etc.

The help in Matlab is very helpful.

Images in MATLAB

Intensity images: m-by-n

RGB images: m-by-n-by-3

Image Import and Export

Read and write images in Matlab

```
>> I = imread('singapore_rgb.jpg');
>> figure;
>> imshow(I);
>> size(I)
ans =
 256 512 3
>> I_gray = rgb2gray(I);
>> figure;
>> imshow(I_gray);
>> imwrite(I_gray, 'singapore_gray.jpg');
```


Images and Matrices

How to build a matrix (or image)?

```
>> A = [ 1 2 3; 4 5 6; 7 8 9 ]
A =

1 2 3
4 5 6
7 8 9
```


Images and Matrices

Accesing image elements (row, column)

ans =

2

5

8

Sobel Filter

Laplacian Filter

```
Kernel = [0 1 0;
1 -4 1;
0 1 0];
```


Mean Filter

Kernel = ones(15,15) / 15^2;

Gaussian Filter

Kernel = fspecial('gaussian', [15 15], 5);

0.0012 0.0015 0.0019 0.0023 0.0027 0.0029 0.0031 0.0032 0.0031 0.0029 0.0027 0.0023 0.0019 0.0015 0.0012 0.0015 0.

Median Filter

5x5

25x25

Sharpening

Denoising

Mean

Median

Gaussian

Images are Waves

Low-pass Filtered

High-pass Filtered

Inverse Transformed

Blending

- >> w=repmat(0:1/(size(Apple,2)-1):1,[size(Apple,1), 1, 3]);
- >> I=(1-w).*Apple+w.*Orange;
- >> imshow(I)

