

計算理論 第6回

- 1. 有限オートマトン
- 2. 正則表現と正則言語
- 3. 正則言語の性質
- 正則言語に関する決定問題
 - DFAの最小化
 - 4. 文脈自由文法と言語
 - 5. プッシュダウン・オートマトン
 - 6. 文脈自由言語の性質
- 7. チューリングマシン

テキスト 4.3~4.4節

3

4.3.1 は読んでおくこと

本日の学習目標

- 空言語問題、所属性判定問題の定義と解法を説明できる
- 有限オートマトンの状態の同値性の定義と、その判定法を 説明できる
- 正則言語の等価性の判定法を、例を用いて説明できる
- 与えられた有限オートマトンを状態数最小の等価な 有限オートマトンに変換できる

- 4.3 正則言語に関する決定問題
- 4.3.2 正則言語の空言語判定(1)

■ 空言語問題:有限オートマトン

■ 入力:有限オートマトン A

■ 出力: $L(A) = \emptyset$ かどうか?

- 判定アルゴリズム
 - 開始状態から到達可能な状態に最終状態(受理状態) が1つでも含まれる $\Leftrightarrow L(A) \neq \emptyset$
 - 開始状態から遷移をたどって、到達可能な状態にマー ク付けを行う(状態遷移表でも状態遷移グラフでも)

4.3.2 正則言語の空言語判定(2)

■ 空言語問題:正則表現

■ 入力:正則表現 R

■ 出力: $L(R) = \emptyset$ かどうか?

- 判定アルゴリズム
 - A) 正則表現 R を有限オートマトン A に変換してから判定
 - B) 正則表現 R の構造を考慮して判定
 - $R = \emptyset \Leftrightarrow L(R) = \emptyset$
 - $R = a \ (\in \Sigma)$ **s.t.** $R = \epsilon \Leftrightarrow L(R) \neq \emptyset$
 - $R = R_1 + R_2 : L(R_1) = L(R_2) = \emptyset \iff L(R) = \emptyset$
 - $R = R_1 R_2 : L(R_1) = \emptyset$ **s.t.** $L(R_2) = \emptyset \Leftrightarrow L(R) = \emptyset$
 - $R = R_1^* : L(R) \neq \emptyset \ (:: \epsilon \in L(R))$

4.3.3 正則言語における所属性判定

■ 所属性判定問題:有限オートマトン

■ 入力:有限オートマトン A. 文字列 w

■ 出力: $w \in L(A)$ かどうか?

■ 判定アルゴリズム

■ 有限オートマトン *A* に *w* を入力する

ullet DFA, NFA, ϵ -NFA のいずれでも容易

正則表現 R が与えられたときは、 有限オートマトンに変換して判定 -

4.4 オートマトンの等価性と最小性 4.4.1 状態の同値性の判定

- DFA $A = (Q, \Sigma, \delta, q_0, F)$ の2つの状態 p, q が同値
 - 任意の入力列 $w \in \Sigma^*$ に対し、 $\widehat{\delta}(p,w)$ が受理状態 $\Leftrightarrow \widehat{\delta}(q,w)$ が受理状態
 - 状態 p,q が区別可能 ⇔ p,q が同値でない

10

4

状態の同値性:例4.18

- 状態 C と G は区別可能
 - $\hat{\delta}(C,\epsilon) = C$ は受理状態
 - $oldsymbol{\widehat{\delta}}(G,\epsilon)=G$ は受理状態でない
- 状態 A と G は区別可能
 - $\widehat{\delta}(A,01) = C$ は受理状態
 - **•** $\hat{\delta}$ (G,01) = E は受理状態でない
- 状態 A と E は同値
 - $oldsymbol{\delta}(A,\epsilon)=A,\;\widehat{\delta}(E,\epsilon)=E$ はともに受理状態でない
 - δ (A,1)=(E,1)=F 従って、1w $(w\in\Sigma^*)$ で到達する状態は同じ
 - $oldsymbol{\delta}(A,00)=(E,00)=G$ 従って、 $00w\ (w\in\Sigma^*)$ で到達する状態は同じ
 - $oldsymbol{\delta}(A,01)=(E,01)=\mathcal{C}$ 従って、 $01w\;(w\in\Sigma^*)$ で到達する状態は同じ
 - $\widehat{\delta}(A,0)=B,\;\delta(E,0)=H$ はともに受理状態でない

同値な状態をすべて見つけるアルゴリズム

- (表の)穴埋めアルゴリズム
 - DFA $A = (Q, \Sigma, \delta, q_0, F)$
 - ■区別可能な状態の対を見つけていく
 - 基礎: 受理状態 $p \in F$ と非受理状態 $q \in Q F$ は 区別可能
 - 再帰
 - **既に区別可能と分かっている状態対** (*r, s*)
 - ある $a \in \Sigma$ に対し、 $\delta(p,a) = r$, $\delta(q,a) = s$ なら p と q は区別可能

【定理4.20】 2つの状態が穴埋めアルゴリズムで区別 可能と判定されなければ、それらの状態は同値である

7

同値な状態をすべて見つけるアルゴリズム:例

- **例**4.19
 - DFA $A = (Q, \Sigma, \delta, q_0, F)$

В	x						E			
С	x	x					Y			
D	x	x	х		_					
E		x	x	x	x :区別可					
F	x	x	x		x					
G	x	x	х	х	x	x				
Н	x		x	x	x	x	x	l		
	Α	В	С	D	Е	F	G			

{A,E},{B,H},{D,F}**は** それぞれ同値

13

テキストにはない手法

- 同値な状態をすべて見つけるアルゴリズム:例

- 例4.19
 - **DFA** $A = (Q, \Sigma, \delta, q_0, F)$

α										β						
A	Α		В		D		Е		F		G		Н		С	
α	α	α	β	β	α	α	α	β	α	α	α	α	β	α	β	
γ (α, α)				$\delta\left(\alpha,\beta\right)$			$\epsilon (\beta, \alpha)$			β						
1	Α		Е		G B		Н		D		F		С			
δ	ϵ	δ	ϵ	γ	γ	γ	β	γ	β	β	γ	β	γ	γ	β	
$\zeta\left(\delta,\epsilon\right)$		η (γ, γ)	δ			ϵ			β						
Α		I	1	C	ī	В		Н		D		F		С		
δ	ϵ	δ	€	η	ζ	η	β	η	β	β	η	β	η	ζ	β	

非受理状態と 受理状態で分割

入力 0.1 の遷移先

入力 0.1の 遷移先で分割

{*A,E*},{*B,H*},{*D,F*}は **それぞれ同値**

4.4.2 正則言語の等価性の判定

- DFA A と B が等価
 - *L(A)* = *L(B) A* と *B* が同じ言語を受理する
- DFA A と B の等価性の判定
 - DFA A と B が等価 ⇔
 A の開始状態と B の開始状態が同値

NFA, ←-NFA, 正則表現 が与えられたときは, DFA に変換して判定

4.4.3 DFA の最小化

- 同値な状態が複数
 - DFA が冗長
 - 同値な状態を1状態にまとめることで、簡単化が可能
- DFA の最小化
 - **■** 与えられた DFA *A* に対し,

L(A) = L(B) となる状態数最小の DFA B を構成する

DFA の最小化:例4.22

- 状態の同値類
 - $\{A, E\}, \{B, H\}, \{C\}, \{D, F\}, \{G\}$
- 状態と同値類を状態と見なす

17

DFA の最小化: アルゴリズム(1)

- **DFA** $A = (Q, \Sigma, \delta, p_0, F)$ の状態数最小化アルゴリズム
 - 1. 各状態 $p \in Q$ と同値な状態をすべて求める
 - 2. 状態の同値類を1つの状態として DFA $B = (Q', \Sigma, \delta', p'_0, F')$ を構成する
 - Q':Q の同値類の集合
 - $\delta':\delta'(p',a)=q'$ ただし、 $p\in p'$ に対し $\delta(p,a)\in q'$ このような q' は一意に定まる
 - p₀′: p₀ を含む同値類
 - F': p∈F なる p を含む同値類の集合
 同値類 p' が A の受理状態を含めば、p' は受理状態
 - 3. 開始状態から到達不能な状態があれば削除する

18

4

DFA の最小化:例4.22

- 状態の同値類
 - $\{A, E\}, \{B, H\}, \{C\}, \{D, F\}, \{G\}$
- 状態と同値類を状態と見なす

DFA の最小化:アルゴリズム(2)

【定理4.23】 状態の同値という関係は推移律を満たす。 つまり、状態 p,q が同値であり、状態 q,r も同値で あれば、p,r も同値である

- 同値関係(反射律,対称律,推移律)
 - 状態集合は同値類に分割される
 - 各状態は、いずれかの同値類に含まれる
 - 各状態は、2つ以上の同値類に含まれることはない

19

20

NFA の最小化

- NFA の状態数最小化
 - 状態の同値関係だけではできない
 - テキスト p. 187 の例
 - 同値な状態はない
 - $\delta(A, 0) = B$ **受理状態**
 - $\delta(C,0) = A$ 非受理状態
 - **受理する言語:**{*w*0 | *w* ∈ Σ*}
 - 2状態の NFA で受理可能
 - ・状態 C は不要

24

4.4.4 最小化 DFA が最小である理由(1)

- $\mathbf{M} = (Q, \Sigma, \delta, p_0, F)$:最小化アルゴリズムで得られた DFA
 - M が言語 L(M) を受理する DFA の中で状態数最小であることを証明する
 - この証明から、状態数最小の DFA は(状態名の違いを除き) 一意に定まることが分かる
 - 背理法:L(M) = L(N) なる DFA $N = (Q', \Sigma, \delta', p'_0, F')$ (ただし、|Q'| < |Q|) を仮定
 - M の状態 p と N の状態 q が区別不能
 - 任意の入力列 $w \in \Sigma^*$ に対し、

 $\widehat{\delta}(p,w)$ が受理状態 $\Leftrightarrow \widehat{\delta'}(q,w)$ が受理状態

4

4.4.4 最小化 DFA が最小である理由(2)

- $lacksymbol{\bullet}$ DFA $M = (Q, \Sigma, \delta, p_0, F)$: 最小化アルゴリズムの結果
- DFA $N = (Q', \Sigma, \delta', p'_0, F')$ (|Q'| < |Q|)
 - 開始状態 p₀, p₀' は区別不能
 - L(M) = L(N) **sor**
 - $p \in Q$, $p' \in Q'$ が区別不能 \Rightarrow

各 $a \in \Sigma$ に対し、 $\delta(p,a) \in Q$ 、 $\delta'(p',a) \in Q'$ も区別不能

p と p' が区別不能なら、q と q'、r と r'、s と s' も区別不能

- ullet DFA $M = (Q, \Sigma, \delta, p_0, F)$: 最小化アルゴリズムの結果
- DFA $N = (Q', \Sigma, \delta', p'_0, F')$ (|Q'| < |Q|)
 - 開始状態 p₀, p₀′ は区別不能
 - L(M) = L(N) **cor**
 - $p \in Q, p' \in Q'$ が区別不能 ⇒ 各 $a \in \Sigma$ に対し、 $\delta(p,a) \in Q$ 、 $\delta'(p',a) \in Q'$ も区別不能
 - ullet 任意の $p\in Q$ は開始状態 p_0 から到達可能
 - 各 $p \in Q$ に対し、区別不能な $q \in Q'$ が存在
 - |Q'| < |Q| より、ある $p \in Q, q \in Q \ (p \neq q), \ p' \in Q'$ が存在し、p,p' が区別不能、かつ、q,p' が区別不能 次ページに図
 - p,q が区別不能(つまり、同値)となり、M が最小化アルゴリズムの結果であることに矛盾

27

4.4.4 最小化 DFA が最小である理由(4)

- **■** 任意の $p \in Q$ は開始状態 p_0 から到達可能
 - 各 $p \in Q$ に対し、区別不能な $q \in Q'$ が存在
- |Q'| < |Q| より、ある $p \in Q, q \in Q \ (p \neq q), \ p' \in Q'$ が存在し、p,p' が区別不能、かつ、q,p' が区別不能

30

4.4.4 最小化 DFA が最小である理由(3)

- DFA $M = (O, \Sigma, \delta, p_0, F)$: 最小化アルゴリズムの結果
- DFA $N = (Q', \Sigma, \delta', p'_0, F')$ (|Q'| < |Q|)
 - 開始状態 p₀, p₀′ は区別不能
 - L(M) = L(N) **to**
 - $p \in Q, p' \in Q'$ が区別不能 ⇒ 各 $a \in \Sigma$ に対し、 $\delta(p,a) \in Q$, $\delta'(p',a) \in Q'$ も区別不能
 - 任意の p∈ Q は開始状態 p₀ から到達可能
 - 各 $p \in Q$ に対し、区別不能な $q \in Q'$ が存在
 - |Q'| < |Q| より、ある $p \in Q, q \in Q \ (p \neq q), p' \in Q'$ が存在し、p, p' が区別不能、かつ、q, p' が区別不能
 - p,q が区別不能(つまり、同値)となり、M が最小化アルゴリズムの結果であることに矛盾

31

本日のまとめ

- 1. 有限オートマトン
- 2. 正則表現と正則言語
- 3. 正則言語の性質
- ➡ 正則言語に関する決定問題
 - DFAの最小化
 - 4. 文脈自由文法と言語
 - 5. プッシュダウン・オートマトン
 - 6. 文脈自由言語の性質
 - 7. チューリングマシン

本日の学習目標

目標を達成できたか 確認してみよう (復習も含めて)

- 空言語問題,所属性判定問題の定義と解法を説明できる
- 有限オートマトンの状態の同値性の定義と、その判定法を 説明できる
- 正則言語の等価性の判定法を、例を用いて説明できる
- 与えられた有限オートマトンを状態数最小の等価な 有限オートマトンに変換できる

テキスト 4.3~4.4節