Exercise 3. $f \circ g$ is iso if f, g are, with $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

Proof. Let $a \xrightarrow{g} b$ and $b \xrightarrow{f} c$ be two iso arrows, with g^{-1} and f^{-1} their respective inverses. Then we have:

$$(f \circ g) \circ (g^{-1} \circ f^{-1}) = \qquad (g^{-1} \circ f^{-1}) \circ (f \circ g) =$$

$$f \circ (g \circ g^{-1}) \circ f^{-1} = \qquad g^{-1} \circ (f^{-1} \circ f) \circ g =$$

$$f \circ \mathbf{1}_b \circ f^{-1} = \qquad g^{-1} \circ \mathbf{1}_b \circ g =$$

$$(g^{-1} \circ \mathbf{1}_b) \circ g =$$

$$(g^{-1} \circ \mathbf{1}_b) \circ g =$$

$$(g^{-1} \circ \mathbf{1}_b) \circ g =$$

$$g^{-1} \circ g =$$

$$\mathbf{1}_c \qquad \mathbf{1}_a$$

so that $f \circ g$ is iso with inverse $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.