Data Mining

Lecture 4 Decision Trees and Classification

http://www.informatik.uni-hamburg.de/WTM/

Overview

- Decision trees for classification
- Decision tree induction
- Criteria for attribute split
 - Information Gain
 - Gini Impurity
- Continuous attributes
- Gain ratio
- Missing values
- Pruning
- Limitations of decision trees

Motivation: Making decisions

New ideas every weekday

TED.com

Dan Gilbert: Why we make bad decisions,

TED talks,. Video online

Decision Boundaries

Decision Boundaries

History of Decision Trees

- 1966: Hunt, colleagues in psychology used full search decision tree methods to model human concept learning
- 1977: Breiman, Friedman, colleagues in statistics develop simultaneous Classification And Regression Trees (CART)
- 1986: Quinlan's landmark paper on ID3
- Late 1980s: Various improvements, i.e: coping with noise, continuous attributes, missing data, non-axis-parallel DTs
- 1993: Quinlan's updated algorithm, C4.5
- Towards 2000: Quinlan: More pruning, overfitting control heuristics (C5.0, etc.); combining DTs; incremental learning

Supervised vs. Unsupervised Learning (discrete outputs)

today

- Supervised Learning (Classification)
 - The training data (observations, measurements, etc.) are accompanied by categorical class labels (discrete or nominal)
 - New data is classified based on the training
- Unsupervised Learning (Clustering)
 - Given a set of measurements, observations, etc. of which the class labels are unknown
 - Aim: establishing the existence of clusters in the data

Supervised vs. Unsupervised Learning (continuous outputs)

Supervised Learning (Regression)

- The training data (observations, measurements, etc.) are accompanied by continuous output values
- For new data where output values are missing, "predict" the most likely output values based on the training
- Unsupervised Learning (general case)
 - Given a set of measurements, observations, etc. of which the class labels are unknown
 - Aim: represent the data in another form
 - E.g. compressed via PCA, ...

Decision Trees

- Split classification into a series of choices about features in turn
- Lay them out in a tree
- Progress down the tree to the leaves

Example: Anyone for Tennis?

Decide whether to play tennis based on the weather

Rules and Decision Trees

- Tree can be turned into a set of rules:
 - if (outlook = sunny & humidity = normal) | (outlook = overcast) | (outlook = rain & wind = weak)
 then play tennis
- How do we generate the trees?
 - Need to choose features / attributes
 - Need to choose order of features / attributes

Decision Trees

- Efficient method for producing classifiers from data
 - Supervised learning methods that construct decision trees from a set of input-output samples.
 - Guarantees that a simple tree is found
 - but not necessarily the simplest one
- Consists of
 - Nodes that are tests on the attributes
 - Outgoing branches of a node correspond to all the possible outcomes of the test at the node
 - Leaves that are sets of samples belonging to the same class

Example of Decision Tree for Credit Approval

Credit Analysis

_									
	salary	education	label	#					
	10000	high school	reject	1					
	40000	under graduate	accept	2					
	18000	under graduate	reject	3					
	75000	graduate	accept	4					
	15000	graduate	accept	5					
						\mathcal{C}	salary > 20000		
					200		\ \v00		
	no yes								
	education = graduate 🔘								
							accept		
				yes	S/ \	\no			
					4		. 1		
				accep	Ţ	reiec	CT		

Decision Tree for Classification

- Given:
 - Database of samples, each assigned a class label.
- Task: Develop a model/profile for each class:
 - Example profile (good credit):

```
(salary > 20k) or (salary <= 20k and education = graduate) => Credit = Good (approved)
```

Classification by Decision Tree Induction

- Decision tree generation consists of two phases:
 - 1. Tree **construction**:
 - At start, all the training examples are at the root.
 - Partition the examples recursively based on selected attributes.
 - 2. Tree *pruning*:
 - Identify and remove branches that reflect noise or outliers.
- Decision tree <u>use</u>: Classifying an unknown sample
 - Test the attribute values of the sample against the decision tree

Decision Tree: Example

Classification – a Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is the training set
 - The model is represented as decision trees, classification rules, or mathematical formulae (e.g. neural network)
- Model usage: for classifying future or unknown objects
 - Evaluate the model
 - The known label of test sample is compared with the classified result from the model
 - E.g., accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set (check for overfitting)
 - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

Process (1): Model Construction

Process (2): Using the Model

Decision Tree Induction: Training Dataset

This follows an example of Quinlan's ID3

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Output: A Decision Tree for "buys_computer"

Decision Tree

- Requirements for a Decision Tree algorithm:
 - 1. Consistent attribute-value description for all data
 - Predefined classes
 - 3. Discrete classes
 - Sufficient data
 - 5. "Logical" classification models (not weighted decisions)
- Pros
 - Fast execution time
 - Generated trees (rules) are easy to interpret by humans
 - Scale well for large data sets
 - Can handle high dim. data

- Cons
 - Cannot capture correlations among attributes
 - Consider only axis-parallel cuts

Decision Tree Algorithms

- Classifiers from machine learning and statistical community:
 - ID3
 - C4.5 [Quinlan 93] → C5.0
 - CART (as an advance in applied statistics)
- Classifiers for large databases:
 - SLIQ, SPRINT
 - SONAR
 - Rainforest
- Aspects are quality of the tree, scalability, and memory use.

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class.
 - There are no remaining attributes for further partitioning
 - majority voting is employed for classifying the leaf
 - There are no samples left

Decision Tree Algorithms: First Splitting

salary		
10000	reject	1
15000	accept	5
18000	reject	3
40000	accept	2
75000	accept	4

high-school rejec	t 1	10000	reject	1
under-graduate acce	pt 2	40000	accept	2
under-graduate rejec	t 3	18000	reject	3
		•		

graduate	accept	4	75000	accept	4
graduate	accept	5	15000	accept	5

we did not explain how we selected "education" attribute for splitting

Reminder...log₂p

Brief Review of Entropy

- Entropy (Information Theory)
 - Measure of uncertainty associated with a random variable
 - Higher entropy ⇒ higher uncertainty
 - Lower entropy ⇒ lower uncertainty
 - Calculation: For a discrete random variable Y taking m distinct values $\{y_1, ..., y_m\}$, where $p_i = P(Y = y_i)$

$$H(Y) = \sum_{i=1}^{m} p_i \cdot \log(\frac{1}{p_i}) = -\sum_{i=1}^{m} p_i \cdot \log(p_i)$$

weighted average surprise over the classes

Brief Review of Entropy

$$H(Y) = \sum_{i=1}^{m} p_i \cdot \log(\frac{1}{p_i}) = -\sum_{i=1}^{m} p_i \cdot \log(p_i)$$

for

Three examples for m=2 classes:

■
$$p_1=0$$
, $p_2=1$
 $H(Y) = -0 \cdot \log(0) - 1 \cdot \log(1) = -0 \cdot (-\infty_{small}) - 1 \cdot 0 = 0$

$$p_1 = 0.25, p_2 = 0.75$$

$$H(Y) = -0.25 \cdot \log(0.25) - 0.75 \cdot \log(0.75) = -0.25 \cdot (-2) - 0.75 \cdot (-0.415)$$

$$= 0.811$$

$$p_1 = 0.5, p_2 = 0.5$$

$$H(Y) = -0.5 \cdot \log(0.5) - 0.5 \cdot \log(0.5) = -0.5 \cdot (-1) - 0.5 \cdot (-1) = 1$$

Select the Attribute with highest Information Gain (ID3/C4.5)

- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , (m classes) estimated by $|C_{i,D}|/|D|$
- Information (entropy) to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Average information needed, after using attribute A to split D into k partitions:

$$Info_A(D) = \sum_{j=1}^k \frac{|D_j|}{|D|} \cdot Info(D_j)$$

weighted average over the partitions

entropy in partition

Information gained by branching on attribute A:

$$Gain(A) = Info(D) - Info_A(D)$$

Information Gain – Example

- Class "buys_computer =yes" (9x)
- Class "buys_computer =no" (5x)

age	yes _i	no _i	I(yes _i , no _i)
<=30	2	3	0,971
3140	4	0	0
>40	3	2	0,971

Info(D) = I(9,5) = -	$-\frac{9}{14}\log$	$_{2}(\frac{9}{14})$	$-\frac{5}{14}\log$	$g_2(\frac{5}{14})$
= 0.94				

$Info_{age}(D) = \underbrace{\frac{5}{14}I(2,3)}$	$+\frac{4}{14}I(4,0) + \frac{5}{14}I(3)$,2)
= 0.694	o o	

"age <=30" has 5 out of 14 samples, with 2 "yes" and 3 "no"

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Gain(age) = Info(D) - Info_{age}(D)$$

= 0.246

• Information gains for other splits:

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$

Decision Tree Algorithm

- Key idea: Recursive Partitioning
 - Take all of your data.
 - Consider all possible values of all variables.
 - Select the variable/value $(X=t_1)$ that produces the greatest separation in the target.
 - $(X=t_1)$ is called a "split".
 - If X< t₁ then send data point to the "left" branch, otherwise, send data point to the "right" branch.
 - Now repeat same process on these two "nodes"
- → You get a "tree"
- Note: CART only uses binary splits.

Computing Information-Gain for Continuous-Valued Attributes

- Let attribute A be a continuous-valued attribute
- Must determine the best split point for A
 - Sort the value A in increasing order
 - Typically, the *midpoint* between a pair of adjacent values is considered as a possible *split point*
 - (a_i+a_{i+1})/2 is the midpoint between the values of a_i and a_{i+1}
 - The point with the *minimum expected information requirement* for A is selected as the split-point for A
- Split:
 - D1 is the set of tuples in D satisfying A ≤ split-point, and
 D2 is the set of tuples in D satisfying A > split-point

Attribute Selection Measure Comparison

- Information gain (ID3/C4.5)
 - All attributes are assumed to be categorical.
 - Can be modified for continuous-valued attributes.
- Gini impurity (IBM Intelligent Miner, CART, SLIQ, SPRINT)
 - All attributes are assumed continuous-valued.
 - Can be modified for categorical attributes.
 - Assume there exist several possible split values for each attribute.

Gini

- Corrado Gini, Italian statistician, 1884-1965
- Gini coefficient
 - Used to show inequality of income distribution in a population
 - Large if unequal incomes, small if equal incomes
- Gini impurity
 - A measure for the distribution of labels in a set
 - Large if many equally distributed labels, small if large probability only for few labels
- Hence, Gini index ≠ Gini coefficient
 - Attention: Both sometimes referred to as "Gini index"

Attribute Selection using Gini Impurity

- A data set D contains examples from m classes, and
- p_i is the relative frequency of class j in D.
- Then Gini impurity, Gini(D), is defined as:

$$Gini(D) = \sum_{j=1}^{m} p_{j} (1 - p_{j}) = 1 - \sum_{j=1}^{m} p_{j}^{2}$$

$$weighted \ average \ probability \ of \ over \ the \ classes \ incorrect \ labeling$$

- Gini measures how often a randomly chosen element from the set would be incorrectly labeled if it was randomly labeled according to the distribution of labels in the subset.
- Should be minimized!
- Note: while $\Sigma_i p_i = 1$ always, not so $\Sigma_i p_i^2$

Attribute Selection using Gini Impurity

$$Gini(D) = \sum_{j=1}^{m} p_j (1 - p_j) = 1 - \sum_{j=1}^{m} p_j^2$$

- Minimum (1-1=0) when all records belong to one class
 - → most interesting information for a split
- Maximum (1 1/m) when records are equally distributed among all classes
 - → least interesting information

Gini impurity for *m*=2 classes

Splitting Based on *Gini* Impurity

• When a node p is split into k partitions, the quality of split is computed as $\frac{k}{n}$

$$Gini_{split} = \sum_{i=1}^{\kappa} \frac{n_i}{n} Gini(i)$$

where: n_i = number of records at <u>child</u> i, n = number of records at node p.

- Interpretation: weighted sum of Gini impurity for subsets i of samples caused by splitting
- If a data set D is split into two subsets D_1 and D_2 with sizes n_1 and n_2 respectively, the *Gini* impurity *Gini*(D) is defined as

$$Gini_{split}(D) = \frac{n_1}{n}Gini(D_1) + \frac{n_2}{n}Gini(D_2)$$

Splitting Based on *Gini* Impurity

- Need to enumerate all possible splitting points for each attribute
- The attribute that provides the smallest Gini_{split}(D) is chosen to split the node

Gini Impurity – Example

- Class "buys_computer =yes" (9x)
- Class "buys_computer =no" (5x)

Gini(D) = Gini(9,5) = 1	$-\left(\frac{9}{14}\right)^2$	$-\left(\frac{5}{14}\right)^2$
=0.459		

(5X)			Gir	$ni_{age}(D) = \frac{5}{14}Gini(2,3) + \frac{4}{14}Gini(4,0) + \frac{5}{14}Gini(3,2)$
age	yes _i	no _i	Gini(yes _i ,no _i)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
<=30	2	3	0,48	= 0.343
3140	4	0	0	"age <=30" has 5 out of 14 samples,
>40	3	2	0,48	with 2 "yes" and 3 "no"

<i>y</i> = 0.5 15	0
ge <=30" has 5 o	ut of 14 samples,
with 2 "yes"	and 3 "no"

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Compute Gini for other splits:

$$Gini(income) = ...$$

$$Gini(student) = ...$$

$$Gini(credit_rating) = ...$$

- Consider also other splits, e.g. age {<=30 & 31...40} and {>40}
- Split at lowest value

Examples for Computing Gini (for *m*=2 classes)

• Gini Impurity for a given node t: $Gini(t) = 1 - \sum_{j=1}^{m} p(j \mid t)^2$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Gini =
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

 $p(j \mid t)$ is the *relative frequency* of class j at node t

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Gini =
$$1 - (1/6)^2 - (5/6)^2$$
 = 0.278

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = \mathbf{0.444}$$

$$P(C1) = 3/6$$
 $P(C2) = 3/6$

Minimum

Making decisions – Errors in value Fresher after lunch

Dan Gilbert: Why we make bad decisions, TED talks <u>Video online</u>

Search

- In Matlab, t = classregtree(X,y,'Name',value) creates a decision tree.
- Example: Create a classification tree for Fisher's iris data, a typical test case for many classification techniques.

- In Matlab, t = classregtree(X,y,'Name',value) creates a decision tree.
- Example: Create a classification tree for Fisher's iris data, a typical test case for many classification techniques.
 - In this data set, four attributes (Sepal Length, Sepal Width, Petal Length and Petal Width) are considered in order to distinguish three species of flowers (*Iris setosa*, *Iris* virginica and *Iris versicolor*).
 - Commands:

```
load fisheriris;
t = classregtree(meas, species,... 'names', {'SL'
'SW' 'PL' 'PW'});
```

Program generates a decision tree based on the data set.

Final Decision tree for classification

- 1. if PL<2.45 then node 2 elseif PL>=2.45 then node 3
- class = setosa
- 3. if PW<1.75 then node 4 elseif PW>=1.75 then node 5
- 4. if PL<4.95 then node 6 elseif PL>=4.95 then node 7
- 5. class = virginica
- if PW<1.65 then node 8 elseif PW>=1.65 then node 9
- 7. if PW<1.55 then node 10 elseif PW>=1.55 then node 11
- 8. class = versicolor
- 9. class = virginica
- 10. class = virginica
- 11. class = versicolor

- We can also prune the tree to avoid overfitting
- tt = prune(t,'level',2)

Advanced Decision Trees

- C4.5
 - Improved handling of continuous variables
 - C source code available
- C5
 - Quinlan made further improvements (boosting)
 - Many commercial data mining packages use the C5 algorithm
 - Source code available at a cost!
- CART
 - Breiman et al (Classification & regression trees, 1984)
 - similar to C4.5, boosting & bagging the data sets

Decision Tree Algorithms – C4.5

- Recursive building tree phase:
 - 1. Initialize root node of tree.
 - 2. while a node N that can be split:
 - 3. for each attribute A, evaluate splits on A,
 - 4. use best split to split N.
- Use entropy (information gain) to find best split
- Separate attribute lists maintained in each node of tree

C4.5 – Possible Mechanisms for Tests

a. "standard" test on a *discrete attribute*: one branch for each possible value of that attribute

b. If attribute Y has continuous numeric values, binary test with outcomes $Y \le Z$ and Y > Z could be defined $\le $20,000 > $20,000$

 c. possible values are allocated to a variable number of groups with one outcome/branch for each group

New example (1) Threshold Finding with Gain

Sometimes we have to find the threshold and the attribute

Database D

Attribute 1	Attribute 2	Attribute 3	Class
Α	70	True	Class1
Α	90	True	Class2
Α	85	False	Class2
Α	95	False	Class2
Α	70	False	Class1
В	90	True	Class1
В	78	False	Class1
В	65	True	Class1
В	75	False	Class1
С	80	True	Class2
С	70	True	Class2
С	80	False	Class1
С	80	False	Class1
С	96	False	Class1

Attribute 2:

- After a sorting process, the set of values is: {65, 70, 75, 78, 80, 85, 90, 95, 96},
- ... the set of potential threshold values Z is: {65, 70, 75, 78, 80, 85, 90, 95}.
- The optimal Z value is Z=80 (highest Inf. Gain)

- $Info_{Z=80}(D) \Rightarrow 9/14 \cdot (-7/9 \cdot log_2(7/9) 2/9 \cdot log_2(2/9))$ + $5/14 \cdot (-2/5 \cdot log_2(2/5) - 3/5 \cdot log_2(3/5))$ = 0.837 bits
- Gain(Z=80) = 0.940 0.837 = 0.103 bits

However, Attribute 1 gives the highest gain of 0.246 bits, and therefore this attribute will be selected for the first splitting

(are attributes with many values favoured in general ... ?)

New Example (2) Initial Decision Tree

Initial decision tree and subset cases for a database **D**

New example (3) Final Decision Tree

All of them are in CLASS1

Final Decision Tree as Pseudo Code

Decision Tree – Pseudo-code Example:

```
If
         Attribute1 = A
         Then
                   If
                            Attribute2 <= 70
                            Then
                                     Classification = CLASS1;
                            Else
                                     Classification = CLASS2;
Elseif
         Attribute1 = B
         Then
                                     Classification = CLASS1;
         Attribute1 = C
Elseif
         Then
                  If
                            Attribute3 = True
                            Then
                                     Classification = CLASS2;
                   Else
                                     Classification = CLASS1.
```

C4.5 Algorithm: Gain Ratio

- Revision: Measures we defined so far:
 - Entropy to classify a tuple in D:
 - Information needed (after using A to split D into k partitions) to classify D:
 - Information gained for attribute A:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

$$Info_A(D) = \sum_{j=1}^{k} \frac{|D_j|}{|D|} \cdot Info(D_j)$$

 $Gain(A) = Info(D) - Info_A(D)$

- Information gain measure is biased towards attributes with a large number of values (this is also true for the Gini index)
- C4.5 (a successor of ID3) uses gain ratio to normalize the information gain
 (equally sized partitions)

$$SplitInfo = -\sum_{j=1}^{k} \left(\frac{\left| D_{j} \right|}{\left| D \right|} \cdot \log_{2} \left(\frac{\left| D_{j} \right|}{\left| D \right|} \right) \right)$$

GainRatio(A) = Gain(A) / SplitInfo(A)

Of 1 Log₁x Log₂x Ln x

Log_{0.5} x

58

Information Gain \rightarrow Gain Ratio (prev. Example)

Class "buys_computer =yes" $Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14})$ (9x) = 0.94

Class "buys_computer =no" (5x)

$Info_{age}(D) = \underbrace{\frac{5}{14}I(2,3)}$	$+\frac{4}{14}I(4,0)$	(3,2)
/ = 0.694		

age	yes _i	no _i	I(yes _i , no _i)
<=30	2	3	0,971
3140	4	0	0
>40	3	2	0,971

"age <=30" has 5 out of 14 samples, with 2 "yes" and 3 "no"

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

$$SplitInfo(age) = -\sum_{j=1}^{3} \left(\frac{|D_{j}|}{|D|} \cdot \log_{2} \left(\frac{|D_{j}|}{|D|} \right) \right)$$

$$= -\frac{5}{14} \log_{2} \left(\frac{5}{14} \right) - \frac{4}{14} \log_{2} \left(\frac{4}{14} \right) - \frac{5}{14} \log_{2} \left(\frac{5}{14} \right)$$

$$= 1.577$$

$$GainRatio(age) = 0.246 / 1.557 = 0.156$$

C4.5 Algorithm for Continuous Numeric Values

- Define binary test with outcomes X≤Z and X>Z, based on comparing the value of attribute against a threshold value Z
- Sort the training samples w.r.t. the values of the chosen attribute X
 - Number of these values is finite
 - Notation for sorted order: $\{v_1, v_2, ..., v_m\}$
- Examine all splits to find the optimal split
 - *m*-1 possible splits on *X*.
 - Any threshold value between v_i and v_{i+1} has the same effect of dividing the cases into $\{v_1, v_2, ..., v_i\}$ and $\{v_{i+1}, v_{i+2}, ..., v_m\}$.
- Normal choice as representative threshold: *midpoint* of each interval: $(v_i + v_{i+1})/2$
 - C4.5 chooses the *smaller* value v_i of an interval $\{v_i, v_{i+1}\}$, rather than the midpoint ensures that threshold values exist in the data

C4.5 Algorithm: Unknown Values

- In C4.5, samples with unknown values are distributed probabilistically according to the relative frequency of known values
- New information gain criterion for split in attribute X:

$$Gain(X) = \mathbf{F} \cdot (Info(D) - Info_X(D))$$

- Factor F = number of samples in database with known value for a given attribute / total number of samples in a data set
- Factor F here 13/14

C4.5 Algorithm: Unknown Values – Example (1)

13 remaining cases with values for Attribute1

Info(D) =
$$-8/13 \log_2 (8/13) - 5/13 \log_2 (5/13) =$$
0.961 bits

8 belong to CLASS1 5 belong to CLASS2

Test X₁ for the three values A, B, or C:

Info_{X1}(D) =
$$5/13 (-2/5 \log_2 (2/5) - 3/5 \log_2 (3/5))$$

+ $3/13 (-3/3 \log_2 (3/3) - 0/3 \log_2 (0/3))$
+ $5/13 (-3/5 \log_2 (3/5) - 2/5 \log_2 (2/5))$
= **0.747 bits**

Gain
$$(X_1) = 13/14 \cdot (0.961 - 0.747) = 0.199$$
 bits

Factor F

Attribute 1	Attribute 2	Attribute 3	Class
A	70	True	Class1
Α	90	True	Class2
Α	85	False	Class2
А	95	False	Class2
Α	70	False	Class1
	90	True	-Class1
В	78	False	Class1
В	65	True	Class1
В	75	False	Class1
С	80	True	Class2
С	70	True	Class2
С	80	False	Class1
С	80	False	Class1
С	96	False	Class1

C4.5 Algorithm: Unknown Values – Example (2)

Distribution of samples into subsets with corresponding weight factors *w*

	1		
Attribute 1	Attribute 2	Attribute 3	Class
Α	70	True	Class1
Α	90	True	Class2
Α	85	False	Class2
Α	95	False	Class2
Α	70	False	Class1
?	90	True	Class1
В	78	False	Class1
В	65	True	Class1
В	75	False	Class1
С	80	True	Class2
С	70	True	Class2
С	80	False	Class1
С	80	False	Class1
С	96	False	Class1

D1: Attribute 1 = A

Att.2	Att.3	Class	W
70	True	Class1	1
90	True	Class2	1
85	False	Class2	1
95	False	Class2	1
70	False	Class1	1
90	True	Class1	5/13

D1: Attribute1 = B

Att.2	Att.3	Class	W
90	True	Class1	3/13
78	False	Class1	1
65	True	Class1	1
75	False	Class1	1

D1: Attribute1 = C

D1.7 ((ilibato1 = 0						
Att.2	Att.3	Class	W			
80	True	Class2	1			
70	True	Class2	1			
80	False	Class1	1			
80	False	Class1	1			
96	False	Class1	1			
90	True	Class1	5/13			

C4.5 Algorithm: Generalizing Partitioning

- When a sample from D with known value is assigned to subset D_i , its probability belonging to D_i is 1, and in all other subsets is 0
- C4.5 associates with each sample (having missing value) a weight w representing the probability that it belongs to each subset D_i:

$$W_{\text{new}} = W_{\text{old}} \cdot P(D_i)$$

Splitting set D using test X_1 on Attribute1: New weights w_i will be probabilities, here: 5/13, 3/13, and 5/13, since initial w_{old} is 1

$$|D_1| = 5+5/13$$
, $|D_2| = 3+3/13$, and $|D_3| = 5+5/13$

- The decision tree **leaves** are defined with two new parameters: $(|D_i|/E)$
- | D_i | is the sum of the *fractional samples* that reach the leaf, and
 E is the *number of samples* belonging to classes other than nominated class
- (3.4 / 0.4) means:
 - 3.4 (or 3 + 5/13) fractional training samples reached leaf,
 - 0.4 (or 5/13) of which did not belong to the class of the leaf

Partitioning – Example

Decision tree for the database D with missing values:

```
If
     Attribute1 == A
      Then
               If
                         Attribute2 <= 70
                         Then
                                   Classification = CLASS1
                                                                (2.0 / 0);
               Else
                                   Classification = CLASS2
                                                                (3.4 / 0.4);
Flseif Attribute1 == B
      Then
                                   Classification = CLASS1
                                                                (3.2 / 0);
Flseif Attribute1 == C
      Then
               If
                         Attribute3 = True
                         Then
                                   Classification = CLASS2
                                                                (2.4 / 0.4);
               Else
                                   Classification = CLASS1
                                                                (3.0 / 0).
```

(| Di | /E):

Di = sum of the fractional samples that reach the leaf,

E = number of samples that belong to classes other than the nominated class.

Enhancements to Basic Decision Tree Induction (Intermediate Summary)

- Allow for continuous-valued attributes
 - Partition the continuous attribute value into a discrete set of intervals, dynamically defined using the data's attribute values
- Handle missing attribute values
 - Assign probability to each of the possible values
- Attribute construction
 - Create new attributes based on existing ones that are sparsely represented
 - This reduces fragmentation, repetition, and replication
- Challenge: incremental learning of decision trees

Decision Tree Algorithms – Building and Pruning

Building phase

Recursively split nodes using best splitting attribute for node.

Pruning phase

- Smaller imperfect decision tree generally achieves better accuracy on test data.
- Prune leaf nodes recursively to prevent over-fitting.

Avoid Overfitting in Classification

- The generated tree may overfit the training data:
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Result: poor accuracy for unseen samples
- Two approaches to avoid overfitting:
 - Prepruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Pruning a Decision Tree

- Pruning: Discarding one or more subtrees and replacing them with leaves
 - C4.5 follows a postpruning approach (pessimistic pruning)

will we replace this subtree with a single leaf node?

Pruning Decision Tree: Predicted Error

$$PE = \sum_{i=1}^{nodes} n_i \cdot U_{25\%}$$

$$Class 1 (6,0)$$

$$Class 2 (1,0)$$

$$Class 2 (1,0)$$

of samples in the node

upper limit on error rate (for the node): from statistical tables for binomial distributions

Using default confidence of 25%, upper limits on the error rates for all nodes are collected from statistical tables for binomial distributions:

Tree: $U_{25\%}(6,0) = 0.206$, $U_{25\%}(9,0) = 0.143$, $U_{25\%}(1,0) = 0.750$

Node: $U_{25\%}$ (16,1) = 0.157

Predicted errors for the subtree and the replaced node are:

• $PE_{tree} = 6 \cdot 0.206 + 9 \cdot 0.143 + 1 \cdot 0.750 = 3.257$

• $PE_{node} = 16 \cdot 0.157 = 2.512$

Since PE_{tree} > PE_{node}, replace the subtree with the new leaf node.

$U_{CF}(|D_i|,E)$

- Consider classifying E examples incorrectly out of $|D_i|$ samples (like observing E events in $|D_i|$ trials in the binomial distribution)
- For a given confidence level CF, the upper limit on the error rate over the whole population is $U_{CF}(|D_i|,E)$ with CF% confidence.
- Example:
 - U_{25%} (100,6)
 - 100 examples in a leaf
 - 6 examples misclassified
 - How large is the true error assuming a pessimistic estimate with a confidence of 25%?

Extracting Decision Rules from Trees

- Represent the knowledge in the form of IF-THEN rules
 - One rule is created for each path from the root to a leaf.
 - Each attribute-value pair along a path forms a conjunction.
 - The leaf node holds the class prediction.
- Rules are easier for humans to understand

Examples:

Rule Ordering

If more than one rule is triggered, we need conflict resolution

- Size ordering
 - assign the highest priority to the triggering rules that has the "toughest" requirement (i.e., with the most attribute tests)
- Class-based ordering
 - Rules for the most frequent class come first, or
 - Sort based on misclassification cost per class
- Rule-based ordering (decision list)
 - rules are organized into one long priority list, according to some measure of rule quality (e.g. accuracy, # attribute tests) or by experts

C4.5 Algorithm: Generating Decision Rules may not really simplify

Decision rules for database **D**:

Attribute 1	Attribute 2	Attribute 3	Class
Α	70	True	Class1
Α	90	True	Class2
Α	85	False	Class2
Α	95	False	Class2
Α	70	False	Class1
?	90	True	Class1
В	78	False	Class1
В	65	True	Class1
В	75	False	Class1
С	80	True	Class2
С	70	True	Class2
С	80	False	Class1
С	80	False	Class1
С	96	False	Class1

```
If Attribute1 = A and Attribute2 <= 70
Then Classification = CLASS1 (2.0 / 0);

If Attribute1 = A and Attribute2 > 70
Then Classification = CLASS2 (3.4 / 0.4);

If Attribute1 = B
Then Classification = CLASS1 (3.2 / 0);

If Attribute1 = C and Attribute3 = True
Then Classification = CLASS2 (2.4 / 0.4);

If Attribute1 = C and Attribute3 = False
Then Classification = CLASS1 (3.0 / 0).
```

Limitations of Decision Trees and Decision Rules (1)

Example:

- 2D samples are classified using a third dimension for classes
- Problematic: classification function is much more complex with related attributes

Limitations of Decision Trees and Decision Rules (2)

Limitations of Decision Trees and Decision Rules (3)

- Let a given class be supported, if any k out of n conditions are met.
- To represent this classifier with rules, it would be necessary to define $\binom{n}{k}$ regions only for one class

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

- Example: Medical diagnostic:
 - If 4 out of 11 symptoms support diagnosis of a given disease, then the corresponding classifier will generate 330 regions in 11-dimensional space for positive diagnosis only.
 - ⇒ corresponds to 330 decision rules.

Limitations of Decision Trees and Decision Rules: Further Ideas

• Introducing new attributes, rather than removing old ones, can avoid sometimes-intensive fragmentation of the n-dimensional space:

Solution 2: Introduce new derived attributes:

B1 = A1
$$\vee$$
 A2 \vee A3
B2 = A4 \vee A5 \vee A6 \rightarrow B1 \wedge B2 \wedge B3 \rightarrow C1
B3 = A7 \vee A8 \vee A9

Decision Trees (Summary)

Advantages

- Automatically create tree representations from data
- Trees can be converted to rules, can discover "new" rules
- Identify most discriminating attribute first
 - Using Information Gain (Ratio) or Gini Impurity
- Tree can handle discrete, continuous, mixed, and missing attributes

Disadvantages

- Trees can become large and difficult to understand
- Can produce counter-intuitive rules
- Examines attributes individually, but not inter-attribute relationships
- Future splits not known when splitting → not globally optimal tree
- Tree induction rules have no direct relation to training objective, i.e. minimizing the classification error

Limitations: Decisions over Time

Dan Gilbert: Why we make bad decisions,

TED talks, 2008. Video online