高温超导体c轴电阻的普适标度律

高温超导体c轴电阻的反常

平面内电阻随温度降低而降低,典型的金属行为

垂直平面方向电阻随 温度降低而上升,典 型的半导体行为

a,b(x,y)

高温超导体c轴电阻的反常

平行和垂直平面方向 的电阻呈现出完全相 反的变化行为,这个 问题不能用能带论和 电子弱局域化理论解 释。

平面内电阻随温度降低而降低,典型的金属行为

垂直平面方向电阻随 温度降低而上升,典 型的半导体行为

已有的物理解释

平面内电阻随温度降低而降低,典型的金属行为

垂直平面方向电阻随 温度降低而上升,典 型的半导体行为 动力 学电 荷禁 闭

P.W. Anderson
1977 Nobel Laureate

电 的 相 形 際

A.J. Leggett 2003 Nobel Laureate

新的物理图象

c-轴电阻的半导体行为是各向异性的层间电子跃 迁与d(x²-y²) 波对称的赝能隙相互作用的结果

1. 赝能隙具有 d(x²-y²) 对称性

$$\Delta_k = \Delta \left(\cos k_x - \cos k_y \right)$$

2. c-轴电子跃迁积分强烈依赖CuO2平面内电子的动量方向

$$t_z \propto t_\perp \left(\cos k_x - \cos k_y\right)^2$$

赝能隙:正常态中出现的类超导能隙现象

费米面不连续

高温超导体的c轴电子结构 c (z) Cu CuO₂ plane a,b (x,y)

电子的层间跃迁过程

2nd layer 0 2p

1st layer O 2p

层间跃迁矩阵元

Xiang, Wheatley, PRL 77,4632

$$d_{x^2-y^2} = k_x^2 - k_y^2 \sim \cos k_x - \cos k_y$$

Fermi Surface of La_{2-x}Sr_xCuO₄

$$t_z \propto t_\perp \left(\cos k_x - \cos k_y\right)^2$$

LDA Band Structure Results

Hg1201

Hg1212

Hg1223

Coherent 3D Fermi surface measured by Polar Angular Magnetoresistance Oscillation

Hussey et al, Nature 425, 814 (03)

Projection of the FS onto the ab-plane

Polar AMRO, overdoped TI2201

Bilayer Split of Bi2212

Bogdanov et al, PRB 64, 180505 (01)

D L Feng et al, PRL **86**, 5550 (01)

两种各向异性相互作用会产生什么后果

1. 赝能隙具有 d(x²-y²) 对称性

$$\Delta_k = \Delta \left(\cos k_x - \cos k_y \right)$$

2. c-轴电子跃迁积分强烈依赖CuO2平面内电子的动量方向

$$t_z \propto t_\perp \left(\cos k_x - \cos k_y\right)^2$$

超导态:低能行为由能隙节点附近的准粒子决定

1. 电子沿c-轴方向的速度强烈依赖 平面内的动量

$$t_c \propto \left(\cos k_a - \cos k_b\right)^2$$

2. 超导及正常态的赝能隙具有d波对 称性

$$\Delta_k = \Delta \left(\cos k_a - \cos k_b\right)$$

超流密度

Cu0面内的超流密度

Panagopoulos, Xiang, PRL 81, 2336

$$\rho_{ab}^{s} \sim \int d^{3}k v_{ab}^{2}(k) \frac{\partial f(\lambda_{k})}{\partial \lambda_{k}}$$
$$\sim \int d\omega \frac{\partial f(\omega)}{\partial \omega} \rho(\omega) \sim \rho(T)$$

Universal gap slope:

The gap slope at the nodal point is approximately proportional to Tc independent on doping

C轴方向超流密度:随温度75变化

$$\rho_{c} \sim \int d^{3}k v_{c}^{2}(k) \frac{\partial f(\lambda_{k})}{\partial \lambda_{k}}$$

$$\sim \int d\omega \frac{\partial f(\omega)}{\partial \omega} \langle \cos^{4} 2\theta \rho(\omega, \theta) \rangle_{F.S.}$$

Xiang, Wheatley, PRL 77, 4632 (1996)

$$\left| \rho_c \sim \lambda_c^{-2} \sim N(0) t_\perp^2 \left[1 - 450 \left(\frac{T}{\Delta_0} \right)^5 \right] \right|$$

PRL **79**, 2320 (1997)

实验结果与理论预言的比较

超导准粒子的低频电导:普适的T³规律

$$\sigma_{\rm c} \approx 10\sigma_{\rm c,n}(0{\rm K}) \left(\frac{{\rm T}}{\Delta_0}\right)^3$$

Xiang, Hardy, PRB (2001)

正常态:导电行为由最大能隙处的电子激发决定

應能隙 △ 是控制低能电子激发行为的唯一能量尺度

Su, Luo, Xiang (2006)

$$\rho_c(T) = \alpha_c g\left(\frac{T}{\Delta}\right)$$

$$g\left(\frac{T}{\Delta}\right) \approx \frac{T}{\Delta} \exp\left(\frac{\Delta}{T}\right)$$

c轴方向电阻

$$\left| \sigma_{c} \sim \frac{1}{\Gamma} \int_{-\infty}^{\infty} d\omega \frac{\partial f(\omega)}{\partial \omega} \left\langle t_{z}^{2}(k) \rho(\omega, k) \right\rangle_{F.S} = \frac{1}{\Gamma} \int_{-\infty}^{\infty} d\omega \frac{\partial f(\omega)}{\partial \omega} N_{c}(\omega) \right|$$

$$\rho_c(T) = \sigma_c^{-1}(T) \propto T \exp\left(\frac{\Delta}{T}\right)$$

$$g\left(\frac{T}{\Delta}\right) \approx \frac{T}{\Delta} \exp\left(\frac{\Delta}{T}\right)$$

$$\begin{aligned} N_c(\omega) &= \left\langle t_z^2(k) \rho(\omega, k) \right\rangle_{FS} \\ &\approx N_0 \delta(\omega - \Delta) \end{aligned}$$

Normal state c-axis resistivity: Experimental Data

T. Watanabe et al. PRL 79, 2113 (1997)

Normal state c-axis resistivity: Scaling Behavior

Is Δ really the pseudogap energy scale?

In high temperatures above the pseudogap phase, the inplane resistivity varies linearly with T

$$\rho_{ab}(T) = \rho_{ab}(0) + \alpha_{ab}T$$

T. Watanabe et al. PRL 79, 2113 (1997)

Is Δ really the pseudogap energy scale?

$$\rho_{ab}(T) = \rho_{ab}(0) + \alpha_{ab}T$$

Is Δ really the pseudogap energy scale?

Pseudogap versus Doping

Summary

- 高温超导体的c轴电阻的反常是赝能隙与电子层间跃迁的强各向异性的相互作用造成的
- 层间动力学存在普适性
- 表征层间电子运动,赝能隙是唯一的控制参量

结束语

物理的可靠性随着检验总量的增加而增加,但随着理论中引入的参数增加而减少。

彭恒武