Chapter 14: Dynamic Programming III

Subsequence of a String

- Let $S = s_1 s_2 ... s_m$ be a string of length m
- · Any string of the form

$$s_{i_1} \, s_{i_2} \, ... \, s_{i_k}$$
 with $i_1 < i_2 < ... < i_k$ is a subsequence of S

- E.g., if S = farmers
 - fame, arm, mrs, farmers, are some of the subsequences of S

Longest Common Subsequence

- · Let S and T be two strings
- If a string is both
 - · a subsequence of S and
 - a subsequence of T,
 - it is a common subsequence of S and T
- In addition, if it is the longest possible one, it is a longest common subsequence

Longest Common Subsequence

```
e.g.,S = algorithmsT = logarithms
```

- Then, aim, lots, ohms, grit, are some of the common subsequences of S and T
- Longest common subsequences: lorithms, lgrithms

Longest Common Subsequence

- Let $S = s_1 s_2 ... s_m$ be a string of length m
- Let $T = t_1t_2...t_n$ be a string of length n

✓ Can we quickly find a longest common subsequence (LCS) of S and T?

- Let $X = x_1x_2...x_k$ be an LCS of $S_{1,i} = s_1s_2...s_{i-1}s_i$ and $T_{1,j} = t_1t_2...t_{j-1}t_j$
- · Lemma:
 - If $s_i = t_j$, then $x_k = s_i = t_j$, and $x_1x_2...x_{k-1}$ must be the LCS of $S_{1,i-1}$ and $T_{1,j-1}$
 - If $s_i \neq t_j$, then X must either be
 - (i) an LCS of $S_{1,i}$ and $T_{1,i-1}$, or
 - (ii) an LCS of $S_{1,i-1}$ and $T_{1,i}$

- Let $len_{i,j} = length$ of the LCS of $S_{1,i}$ and $T_{1,j}$
- Lemma: For any $i, j \ge 1$,
 if c = + len len + 1
 - if $s_i = t_j$, $len_{i,j} = len_{i-1,j-1} + 1$
 - if $s_i \neq t_j$, len_{i,j} = max { len_{i,j-1}, len_{i-1,j} }

Length of LCS

```
Define a function Compute_L(i,j) as follows:
Compute_L(i, j) /* Finding len; */
 1. if (i == 0 or j == 0) return 0; /* base case */
 2. if (s_i == t_i)
     return Compute_L(i-1,j-1) + 1;
 3. else
    return max {Compute_L(i-1,j), Compute_L(i,j-1)};
       Compute_L(m, n) runs in O(2m+n) time
```

Overlapping Subproblems

- · To speed up, we can see that:
- To Compute_L(i, j-1) and Compute_L(i-1, j), has a common subproblem:
 Compute_L(i-1, j-1)
- In fact, in our recursive algorithm, there are many redundant omputations!
- Question: Can we avoid it?

Bottom-Up Approach

- Let us create a 2D table L to store all len_{i,j} values once they are computed
 - BottomUp_L() /* Finding min #operations */
 - 1. For all i and j, set L[i,0] = L[0,j] = 0;
 - 2. for (i = 1,2,..., m)

```
Compute L[i,j] for all j;
```

- /* Based on L[i-1,j-1], L[i-1,j], L[i,j-1] */
- 3. return L[m, n];

Running Time = $\Theta(mn)$

Example Run: After Step 1

		D	0	R	M	I	T	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0									
I	0									
R	0									
T	0									
У	0									
R	0									
0	0									
0	0									
M	0									

m = 9

Example Run: Step 2, i = 1

		٥	0	R	M	I	T	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	1 <	- 1 <	<u>-1</u> ∢	- 1∢	-1 ◀	-1 ←	- 1≪	-1 <	-1
I	0									
R	0									
T	0									
У	0									
R	0									
0	0									
0	0									
M	0					_				

Example Run: Step 2, i = 2

		D	0	R	M	I	T	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1	1	1	1
I	0	1	1	1	1	2	-2	2	2	2
R	0									
Т	0									
У	0									
R	0									
0	0									
0	0									
M	0									

Example Run: Step 2, i = 3

		D	0	R	M	I	T	0	R	У
	0	0	0	0	0	0	0	0	0	0
Q	0	1	1	1	1	1	1	1	1	1
I	0	1	1 ~	1	1	2_	2	2	2	2
R	0	1	1	2	2+	2 - 2	2	2	3	3
T	0									
У	0									
R	0									
0	0									
0	0									
M	0									

Example Run: Step 2, i = 4

		٥	0	R	M	I	-	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1	1	1	1
I	0	1	1	1	1	2	2	2	2	2
R	0	1	1	2	2	2	2	2	3	3
T	0	1	1	2	2	2	3	3	3	3
У	0									
R	0									
0	0									
0	0									
M	0									

Example Run: After Step 2

		٥	0	R	M	I	1	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1	1	1	1
I	0	1	1	1	1	2	2	2	2	2
R	0	1	1	2	2	2	2	2	3	3
1	0	1	1	2	2	2	3	3	3,	3
У	0	1	1	2	2	2	3	3	3	4
R	0	1	1	2	2	2	3,	2	4	4
0	0	1	2	2	2	2	3 ,	4	4	4
0	0	1	2	2	2	2	3	4	4	4
M	0	1	2	2	3	3	3	4	4	4

Extra information to obtain an LCS

		٥	0	R	M	I	T	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	1	1←	1←	1←	1	1←	1←	1←	1←
I	0									
R	0									
T	0									
У	0									
R	0									
0	0									
0	0									
M	0									

Extra Info: Step 2, i = 2

		D	0	R	M	I	T	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	11	1←	1←	1←	1←	1←	1←	1←	1←
I	0	11	11	11	11	217	2←	2←	2←	2←
R	0									
Т	0									
У	0									
R	0									
0	0									
0	0									
M	0									

Extra Info: Step 2, i = 3

		D	0	R	M	I	T	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	1	1←	1←	1←	1←	1←	1←	1←	1←
I	0	11	11	11	11	21	2←	2←	2←	2←
R	0	11	11	217	2←	21	21	21	312	3←
Т	0									
У	0									
R	0									
0	0									
0	0									
M	0									

Extra Info: After Step 2

		D	0	R	M	I	T	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	11	1←	1←	1←	1←	1←	1←	1←	1←
I	0	11	11	11	11	217	2←	2←	2←	2←
R	0	11	11	217	2←	21	21	21	312	3←
7	0	11	11	21	21	21	312	3←	3←	3←
X	0	11	11	21	21	21	3↑	3←	3←	45
R	0	11	11	217	21	21	3↑	3↑	41	41
0	0	11	21	21	21	21	3↑	41	41	41
0	0	11	21	21	21	21	3↑	4 r	41	41
M	0	11	21	21	3下	3←	3←	41	41	41

LCS obtained by tracing from L[m,n]

		D	0	R	M	I	T	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	11	1←	1←	1←	1←	1←	1←	1←	1←
I	0	11	11	11	11	217	2←	2←	2	2←
R	0	11	11	217	2←	21	21	21	312	3←
T	0	11	11	21	21	21	317	3←	3←	3←
У	0	11	11	21	21	21	3↑	3←	3←	45
R	0	11	11	21	21	21	3↑	3↑	4K	41
0	0	11	217	21	21	21	3↑	41	41	41
0	0	11	21	21	21	21	3↑	45	41	41
M	0	11	21	21	3下	3←	3←	41	41	41

Computing the length of an LCS

```
LCS_LENGTH(X,Y)
1 m \leftarrow X.length
2 n \leftarrow Y.length
3 for i \leftarrow 1 to m
4 c[i, 0] \leftarrow 0
5 for j \leftarrow 1 to n
6 c[0,j] \leftarrow 0
7 for i \leftarrow 1 to m
8 for j \leftarrow 1 to n
```

Computing the length of an LCS

```
if x_i == y_i
                    c[i, j] \leftarrow c[i-1, j-1]+1
10
                   11
12
                elseif c[i-1, j] \ge c[i, j-1] / * We can
  use > instead of > */
13
                      c[i,j] \leftarrow c[i-1,j]
                      b[i,j] \leftarrow \text{``} \uparrow"
14
15
                else c[i, j] \leftarrow c[i, j-1]
                      b[i, j] \leftarrow "\leftarrow"
16
17 return c and b
```

Remarks

- Again, a slight change in the algorithm allows us to obtain a particular LCS
- Also, we can make minor changes to the recursive algorithm and obtain a memoized version (whose running time is O(mn))

Writing a Translation Program

- In real life, different words may be searched with different frequencies
 e.g., apple may be more often than pizza
- Also, there may be different frequencies for the unsuccessful searches
 e.g., we may unlikely search for a word in the range (hotdog, pizza)

 Suppose your friend in Google gives you the probabilities of what a search will be:

< apple	0.01	= hotdog	0.02
= apple	0.21	(hotdog, pizza)	0.04
(apple, banana)	0.10	= pizza	0.04
= banana	0.18	(pizza, spaghetti)	0.11
(banana, burger)	0.05	= spaghetti	0.07
= burger	0.01	> spaghetti	0.04
(burger, hotdog)	0.12		

 Given these probabilities, we may want words that are searched more frequently to be nearer the root of the search tree

This tree has better expected performance

Expected Search Time

- To handle unsuccessful searches, we can modify the search tree slightly (by adding dummy leaves), and define the expected search time as follows:
- Let $k_1 < k_2 < ... < k_n$ denote the n keys, which correspond to the internal nodes
- Let $d_0 < d_1 < d_2 < ... < d_n$ be dummy keys for ranges of the unsuccessful search
 - dummy keys correspond to leaves

Modified Search tree for six keys

Search Time

- Lemma: Based on the modified search tree:
 - ✓ when we search for a word k_i , search time = node-depth(k_i)
 - ✓ when we search for a word in range
 d_j, search time = node-depth(d_j)

Expected Search Time

- Let p_i = Pr(k_i is searched)
- Let $q_j = Pr(word in d_j is searched)$

So,
$$\Sigma_i p_i + \Sigma_j q_j = 1$$

Expected search time

=
$$\Sigma_i$$
 p_i node-depth(k_i) + Σ_j q_j node-depth(d_j)

Optimal Binary search trees

$$0.1 + (0.15 + 0.1) \times 2 + (0.05 + 0.1 + 0.05 + 0.2) \times 3 + (0.05 + 0.05 + 0.05 + 0.1) \times 4 = 0.1 + 0.5 + 1.2 + 1.0 = 2.8$$

i	0	1	2	3	4	5
p_i		0.15	0.10	0.05	0.10	0.20
q_i	0.05	0.10	0.05	0.05	0.05	0.10

Optimal Binary Search Tree

Question:

Given the probabilities p_i and q_j , can we construct a binary search tree whose expected search time is minimized?

Such a search tree is called an Optimal Binary Search Tree

- Let T = optimal BST for the keys $(k_i, k_{i+1}, ..., k_j; d_{i-1}, d_i, ..., d_j).$
- · Let L and R be its left and right subtrees.
- Lemma: Suppose k_r is the root of T. Then,
- ✓ L must be an optimal BST for the keys $(k_i, k_{i+1}, ..., k_{r-1}; d_{i-1}, d_i, ..., d_{r-1})$
- \checkmark R must be an optimal BST for the keys $(k_{r+1}, k_{r+2}, ..., k_j; d_r, d_{r+1}, ..., d_j)$

- Let $E_{i,j}$ = expected time spent with the keys (k_i , k_{i+1} , ..., k_j ; d_{i-1} , d_i , ..., d_j) in optimal BST
- Note that, $E_{i,i-1} = (d_{i-1})$ and $E_{j+1,j} = (d_{j})$
- Let $w_{i,j} = \sum_{s=i \text{ to } j} p_s + \sum_{t=i-1 \text{ to } j} q_t$
 - = sum of the probabilities of keys

$$(k_i, k_{i+1}, ..., k_j; d_{i-1}, d_i, ..., d_j)$$

• Lemma: For any $j \ge i$, $E_{i,j} = \min_{i \le r \le j} \left\{ E_{i,r-1} + E_{r+1,j} + w_{i,j} \right\}$

Optimal Binary Search Tree

 Define a function Compute_E(i,j) as follows: Compute_E(i, j) /* Finding e_{i,i} */ 1. if (i == j+1) return q_i : /* Exp time with dummy key d_j */ 2. $min = \infty$; 3. for (r = i, i+1, ..., j) { $g = Compute_E(i,r-1) + Compute_E(r+1,j) + w_{i,j}$; if (g < min) min = g; 4. return min:

Optimal Binary Search Tree

- Question: We want to get Compute_E(1,n)
 What is its running time?
- Similar to Matrix-Chain Multiplication, the recursive function runs in $\Omega(3^n)$ time
- In fact, it will examine at most once for all possible binary search tree \rightarrow Running time = O(C(2n-2,n-1)/n)

Overlapping Subproblems

· Here, we can see that:

```
To Compute_E(i,j) and Compute_E(i,j+1) there are many COMMON subproblems Compute_E(i,i-1), Compute_E(i,i), Compute_E(i,i), Compute_E(i,i-1)
```

- So, in our recursive algorithm, there are many redundant computations!
- · Question: Can we avoid it?

```
for (r = i, i+1, ..., j) {
g = Compute_E(i,r-1) + Compute_E(r+1,j) + wi,j;
```

Bottom-Up Approach

- Let us create a 2D table E to store all E_{i,j} values once they are computed
- · Let us also create a 2D table W to store

all
$$w_{i,j} = w_{i,j-1} + p_j + q_j$$

- · We first compute all entries in W.
- Next, we compute $E_{i,j}$ for j-i=0,1,2,...,n-1

$$\mathbf{w}_{i,j} = \Sigma_{s=i \text{ to } j} \mathbf{p}_s + \Sigma_{t=i-1 \text{ to } j} \mathbf{q}_t$$

Bottom-Up Approach

```
BottomUp_E(i,j) /* Finding min #operations */
 1. Fill all entries of W
 2. for i = 0, 1, 2, ..., n, set E[i+1,i] = q_i;
 3. for (length = 0,1,2,...,n-1)
       for (i = 1, 2, ..n-length)
           Compute E[i,i+length];
    /* From W and E[x,y] with |x-y| < length */
 4. return E[1,n];
```

Running Time = $\Theta(n^3)$

The table e[i,j], w[i,j], and root[i,j] compute by OPTIMAL-BST on the key distribution.

i	0	1	2	3	4	5
p_i		0.15	0.10	0.05	0.10	0.20
q_i	0.05	0.15 0.10	0.05	0.05	0.05	0.10

For any $j \ge i$, $e_{i,j} = \min_{i \le r \le j} \{ e_{i,r-1} + e_{r+1,j} + w_{i,j} \}$

For Example

- e(1, 1) = min(e(1, 0) + e(2, 1) + w1,1) = 0.05 ++ 0.1 + 0.3 = 0.45
- e(2, 2) = min(e(2, 1) + e(3, 2) + w(2, 2) = 0.1 + 0.25 + 0.05 = 0.4
- e(1,2) = min(e(1,0) + e(2,2) + w(1,2), e(1,1) + e(3,2) + w(1,2)) = min(0.05 + 0.4 + 0.45 = 0.9, 0.45 + 0.05 + 0.45 = 0.95) = 0.9
- •
- e(1, 5) = min(e(1, 0) + e(2, 5), e(1, 1) + e(3, 5), e(1, 2) + e(4, 5), e(1, 3) + e(5, 5), e(1, 4) + e(6, 5)) + w(1,5)

Remarks

- Again, a slight change in the algorithm allows us to get the exact structure of the optimal binary search tree
- Also, we can make minor changes to the recursive algorithm and obtain a memoized version (whose running time is $O(n^3)$)

Practice at home

- Exercise 14.4-1, 14.4-3, 14.4-4
- Exercises 14.5-2, 14.5-3

Five lucky pirates has discovered a treasure box with 1000 gold coins ...

There are rankings among the pirates:

... and they decide to share the gold coins in the following way:

First, Rank-1 pirate proposes how to share the coins...

- If at least half of them agree, go with the proposal
- · Else, Rank-1 pirate is out of the game

Hehe, I am going to make the first proposal ... but there is a danger that I cannot share any coins

- In general, if Rank-1, Rank-2, ..., Rank-k pirates are out, then Rank-(k+1) pirate proposes how to share the coins...
- If at least half of the remaining agree, go with the proposal
- Else, Rank-(k+1) pirate is out of the game

Question: If all the pirates are smart, who will get the most coin? Why?

- If Rank-1 pirate is out, then Rank-2 pirate proposes how to share the coins...
- If at least half of the remaining agree, go with the proposal
- · Else, Rank-2 pirate is out of the game

Hehe, I get a chance to propose if Rank-1 pirate is out of the game

Brainstorm

• 外遇村裡有50對夫妻, 丈夫全都 有外遇。妻子都知道所有有外遇 的男人,就是不知道自己的先生 有外遇,妻子之間彼此也不會互 相交換訊息。村子有一個規定, 妻子若能證明自己的先生外遇, 就必需在當天晚上12:00殺死他。 有一天,公認不會說謊的皇后來 到外遇村,宣布至少有一位丈夫 不忠。結果會發生甚麼事?

