# Movies Recommendation in Flixste

Inês Rocha, Alona Spasenko

16/05/2020

## Introduction

Neste trabalho foram utilizados os modelos de recommendação: \* Popularity \* Association Rules \* Collaborative Filtering \* Context-aware recommendation Estes modelos foram aplicados a matrizes reais (matrizes com os ratings dos utilizadores) e a matrizes binárias (matrizes com indicação se um utilizador viu um certo filme).

## Problem definition

Com a evolução do nosso mundo atual, é cada vez mais importante reter a atenção dos utilizadores, e uma das estratégias para obter isto é recomendar conteúdo que o utilizador goste. Dado a plataforme de filmes Flixer, vamos obter um sistema de recomendação que permita que os utilizadores recebam os melhores filmes que se enquadram com as suas preferências.

## Exploratory data analysis and pre-processing steps

#### Pre-Processing steps

Ao ler os ficheiros txt, verificamos que o ficheiro "movie.txt" tinha uma vírgula separar o nome do filme do seu ID. Na primeira tentativa foi usada essa vírgula como o separador, mas apercebemo-nos que também existiam vírgulas nos títulos. Então para conseguirmos passar os dados para um tabela criámos uma expressão regular  $(",([^{\cdot},]^{*})^{*},"^{1})$  que encontrava a última vírgula (a vírgula que separa o nome do id) e substituía essa vírgula pelo caracter ' $^{\cdot}$ '.

Com esta substituição já podíamos na função read.table usar '^' como o separador e obter os dados corretos.

Depois de termos conseguido lido os ficheiros necessários foi feita uma limpeza aos dados:

- 1. Remover users que não tenham um destes géneros: "Female", "Male", "N/A"
- 2. Remover a data e a hora dos ratings
- 3. Existiam filmes com algo frases semelhante a "" no título, por isso foi criada uma expressão regular para as remover.

```
movies <- movies %>% mutate(moviename =gsub("&#[0-9]*;", "", moviename))
```

- 4. Remover linhas da datatable profile que tinham NA's
- 5. Foi criada uma tabela chamada aggMovies onde continha o idMovie, o número de Ratings que esse filme teve e a médias das suas avaliações, e com essa tabela:
  - Existia muitos filmes com pouca ratings, então para termos filmes com um número substancial de rating, removemos os filmes que não tinham um número de ratings maior que 2000
  - Removemos esses mesmos filmes da tabela movies
  - Removemos as avaliações que continha esses filmes removidos

## Exploratory data

## Análise dos filmes

Com o objetivo de fazer uma avaliação geral dos filmes foram considerados a quantidade de reviews e os ratings atribuídos pelos utilizadores.

Assim, foi obtido o seguinte gráfico para considerar os top-10 filmes mais votados:

Table 1: Os melhores filmes mais votados e com melhor score

|    | moviename                                          | numRatings | AvgRating |
|----|----------------------------------------------------|------------|-----------|
| 5  | Pirates of the Caribbean: At Worlds End            | 18026      | 4.204538  |
| 6  | Pirates of the Caribbean: Dead Mans Chest          | 21477      | 4.200587  |
| 13 | Transformers                                       | 14912      | 4.177441  |
| 11 | The Lord of the Rings - The Fellowship of the Ring | 17321      | 4.132123  |
| 9  | The Dark Knight                                    | 10538      | 4.126352  |
| 12 | The Lord of the Rings - The Two Towers             | 16920      | 4.121543  |
| 3  | Harry Potter and the Order of the Phoenix          | 15223      | 4.102838  |
| 2  | Forrest Gump                                       | 14157      | 4.101505  |
| 1  | 300                                                | 12611      | 4.059987  |
| 4  | Harry Potter and the Prisoner of Azkaban           | 16725      | 4.056652  |
| 7  | Saving Private Ryan                                | 10841      | 4.021539  |
| 10 | The Lion King                                      | 15507      | 4.009028  |
| 8  | Shrek                                              | 18730      | 4.000934  |

De seguida foram analisados os top-10 filmes com o melhor score:

Top 10 filmes mais votados



Assim, pode-se afirmar que existe uma correlação positiva entre os filmes mais votados e os filmes com os melhores scores, visto estas duas classes têm seis filmes em comum, como por exemplo 'Pirates of the Caribbean: Dead Mans Chest' que é o segundo filme mais votado e o segundo filme com melhor score.

Pirates of the Caribbean: At Worlds EndPirates of the Caribbean: Dead Mans ChestTransformers 
The Lord of the Rings – The Fellowship of the Ring The Lord of the Rings – The Two Towers Harry Potter and the Order of the Phoenix Forrest Gump 300 Harry Potter and the Prisoner of Azkaban -

#### Análise dos utilizadores

Relativamente a análise de utilizadores foi verificado que o género de utilizadores foi dividido proporcionalmente entre homens e mulheres.



De seguida foi feita uma análise relativamente ao número de votos de acordo com a idade e o género dos utilizadores.

É de notar que, para análise de número de ratings por idade, foi guardada a informação 'NA' sobre o género, isto é, para além dos géneros masculino e feminino, foi guardada a informação dos utilizadores cuja informação de sexo se perdeu, pois como se verificou no gráfico que segue, independentemente do género o número de reviews atinge o seu pico, aproximadamente nos 20 anos de idade.

Assim, foi verificado o comportamento (relativamente a deixar uma avaliação sobre um filme) bastante semelhante entre homens e mulheres, independentemente da idade em geral, exceto no caso de utilizadores mulheres entre 20 e 60 anos, que deixam ligeiramente menos reviews do que os homens na mesma idade.

Relativamente aos utilizadores com o género 'N/A', os mesmos seguem aproximadamente a mesma curva de número de reviews como os homens e mulheres, mas com as quantidades menores.

Verificou-se que independentemente do género da pessoa, a idade mais propícia a reviews é entre 20 e 35 anos.



## Modeling approaches

Para testar os modelos foram criados dois utilizadores:

• Um utilizador com o nome de newUserReal, que contém os dados dos seus ratings e que vai ser transformado numa "RealRatingMatrix". Os ratings do utilizador:

```
## # A tibble: 9 x 3
    moviename
##
                                   movieid rating
##
     <chr>>
                                      <int>
                                             <dbl>
## 1 Ghost Busters (Ghostbusters)
                                     22375
                                               4.5
## 2 I Am Legend
                                               3.2
                                     26324
## 3 Mrs. Doubtfire
                                     36803
                                               4.2
## 4 Rocky Balboa
                                               3
                                     42171
                                               4.6
## 5 Scary Movie 2
                                     46658
## 6 Speed
                                     49266
                                               2.6
## 7 The Craft
                                     53927
                                               1.5
## 8 The Truman Show
                                               4.7
                                     60584
## 9 Van Helsing
                                     64804
```

• Um outro utilizador com o nome de newUserBinary que viu os mesmo filmes, mas em vez de ter os ratings, tem só o valor de 1 (True) a indicar que ele os viu. Esse utilizador vai ser transformado numa "BinaryRatingMatrix".

## **Popularity**

## Informação binária

Para obter um modelo de recomendação baseado na popularidade e com dados binários, primeiro convertemos a tabela ratingsTimed numa "BinaryRatingMatrix".

A seguir criamos o modelo com o método "POPULAR"

```
modelPop <- Recommender(data=popMatrix, method="POPULAR")</pre>
```

Usando o utilizador new User Binary obtemos as seguintes recomendações com valor de N (1,2,5)

```
## # A tibble: 1 x 2
##
     moviename
                                          movieid
##
     <chr>>
                                             <dbl>
## 1 Transformers: Revenge of the Fallen
                                             62530
## # A tibble: 2 x 2
##
    moviename
                                                 movieid
##
     <chr>
                                                   <dbl>
## 1 Transformers: Revenge of the Fallen
                                                   62530
## 2 Pirates of the Caribbean: Dead Mans Chest
                                                   42237
## # A tibble: 5 x 2
##
     moviename
                                                          movieid
##
     <chr>
                                                            <dbl>
## 1 Transformers: Revenge of the Fallen
                                                            62530
## 2 Pirates of the Caribbean: Dead Mans Chest
                                                            42237
```

```
## 3 Shrek 45119
## 4 Pirates of the Caribbean: At Worlds End 39384
## 5 The Lord of the Rings - The Fellowship of the Ring 56915
```

#### Informação não binária

Para obter um modelo de recomendação baseado na popularidade e com dados não binários, primeiro convertemos a tabela ratingsTimed numa "RealRatingMatrix".

A seguir criamos o modelo com o método "POPULAR"

```
modelPop <- Recommender(data=popMatrix, method="POPULAR")</pre>
```

Usando o utilizador newUserReal obtemos as seguintes recomendações com valor de N (1,2,5)

```
## # A tibble: 1 x 2
##
     moviename
                                                movieid
     <chr>
                                                   <dbl>
## 1 Pirates of the Caribbean: Dead Mans Chest
                                                   42237
## # A tibble: 2 x 2
##
     moviename
                                                movieid
##
     <chr>>
                                                   <dbl>
## 1 Pirates of the Caribbean: Dead Mans Chest
                                                   42237
## 2 Pirates of the Caribbean: At Worlds End
                                                   39384
## # A tibble: 5 x 2
##
     moviename
                                                          movieid
##
     <chr>
                                                            <dbl>
## 1 Pirates of the Caribbean: Dead Mans Chest
                                                            42237
## 2 Pirates of the Caribbean: At Worlds End
                                                            39384
## 3 The Lord of the Rings - The Fellowship of the Ring
                                                            56915
## 4 The Lord of the Rings - The Two Towers
                                                            56916
## 5 Forrest Gump
                                                            17971
```

#### Association Rules

## Informação binária

Para obter um modelo de recomendação baseado em regras de associação e com dados binários, primeiro convertemos a tabela ratingsTimed numa "BinaryRatingMatrix".

A seguir criámos o modelo usando o método "arules":

```
modelAR <- Recommender(assoRulesMatrix, "AR", parameter = list(support=0.05, confidence=0.75))</pre>
```

No inicio tínhamos usado um suporte de 0.1 e confiança de 0.75 (o suporte é pequeno porque temos uma matriz muito esparsa), mas como o modelo só gerou 9 regras, não conseguíamos aplicar nenhuma ao nosso utilizador (newUserBinary), então reduzimos o suporte.

Com um suporte de 0.6 obtemos só uma recomendação, mas com 0.5 geramos 16862 regras.

```
## set of 16862 rules
```

E com essas regras conseguimos obter 18 recomendações para o nosso utilizador. Usando um valor de N (1,2,5), obtemos as seguintes recomendações:

```
## # A tibble: 1 x 2
##
     moviename
                                                movieid
                                                   <dbl>
##
     <chr>
## 1 Pirates of the Caribbean: Dead Mans Chest
                                                   42237
## # A tibble: 2 x 2
##
     moviename
                                                 movieid
##
     <chr>>
                                                   <dbl>
## 1 Pirates of the Caribbean: Dead Mans Chest
                                                   42237
## 2 Pirates of the Caribbean: At Worlds End
                                                   39384
## # A tibble: 5 x 2
##
    moviename
                                                          movieid
     <chr>
##
                                                            <dbl>
## 1 Pirates of the Caribbean: Dead Mans Chest
                                                            42237
## 2 Pirates of the Caribbean: At Worlds End
                                                            39384
## 3 The Lord of the Rings - The Fellowship of the Ring
                                                            56915
\#\# 4 The Lord of the Rings - The Two Towers
                                                            56916
## 5 Forrest Gump
                                                            17971
```

## Informação não binária

Usando o método "arules" não conseguimos usar uma "RealRatingMatrix".

## Collaborative Filtering

## Informação binária

O primeiro passo foi converter a tabela ratingsTimed numa "BinaryRatingMatrix".

A seguir foram criados os dois modelos:

- Item Based Collaborative Filtering (IBCF) com o método cosine e k=4
- User Based Collaborative Filtering (UBCF) com o método cosine e nn=3

Com os modelos criados, foi utilizado o utilizador newUserBinary.

Para obter as recomendações para os filmes, aplicamos os dois modelos com diferentes números de N (1,2,5).

Resultados de User Based Collaborative Filtering (UBCF):

```
## # A tibble: 1 x 2
##
     moviename
                        movieid
     <chr>>
                          <dbl>
## 1 Final Destination
                          17330
## # A tibble: 2 x 2
##
     moviename
                                                movieid
##
     <chr>>
                                                  <dbl>
## 1 Final Destination
                                                  17330
## 2 Harry Potter and the Prisoner of Azkaban
                                                  20644
```

```
## # A tibble: 5 x 2
##
    moviename
                                                movieid
     <chr>>
                                                  <dbl>
##
## 1 Final Destination
                                                  17330
## 2 Harry Potter and the Prisoner of Azkaban
                                                  20644
## 3 Monster-in-Law
                                                  34057
## 4 Scary Movie 3
                                                  46659
## 5 Scary Movie 4
                                                  46660
```

Resultados de Item Based Collaborative Filtering (IBCF):

```
## # A tibble: 1 x 2
##
     moviename
                   movieid
##
                     <dbl>
     <chr>
## 1 Scary Movie 3
                     46659
## # A tibble: 2 x 2
##
     moviename
                   movieid
                     <dbl>
##
     <chr>
## 1 Scary Movie 3
                     46659
## 2 Home Alone
                     25422
## # A tibble: 5 x 2
##
    moviename
                       movieid
     <chr>
                         <dbl>
## 1 Scary Movie 3
                         46659
## 2 Home Alone
                         25422
## 3 Jumanji
                         28315
## 4 Dr. Dolittle
                         14813
## 5 Miss Congeniality
                         36096
```

## Informação não binária

Este procedimento foi idêntico ao anterior, mas em vez de convertermos a tabela numa "BinaryRatingMatrix", convertemos numa "RealratingMatrix" e usamos o utilizador newUserReal.

Para obter as recomendações para os filmes, aplicamos os dois modelos com diferentes número de N (1,2,5).

Resultados de User Based Collaborative Filtering (UBCF):

```
## # A tibble: 1 x 2
##
     moviename
                  movieid
     <chr>
                    <dbl>
## 1 Shes the Man
                    47246
## # A tibble: 2 x 2
##
     moviename
                  movieid
     <chr>>
                    <dbl>
                    47246
## 1 Shes the Man
## 2 A Bugs Life
                      926
## # A tibble: 5 x 2
##
    moviename
                 movieid
##
     <chr>
                    <dbl>
```

```
## 1 Shes the Man 47246

## 2 A Bugs Life 926

## 3 Cinderella 10290

## 4 Mulan 34573

## 5 Shrek 45119
```

Resultados de Item Based Collaborative Filtering (IBCF):

```
## # A tibble: 1 x 2
##
     moviename
                    movieid
##
     <chr>>
                       <dbl>
## 1 American Pie 2
                        3317
## # A tibble: 2 x 2
##
     moviename
                             movieid
##
     <chr>>
                               <dbl>
## 1 American Pie 2
                                3317
## 2 Not Another Teen Movie
                               36907
## # A tibble: 5 x 2
##
     moviename
                                  movieid
##
     <chr>>
                                     <dbl>
## 1 American Pie 2
                                     3317
## 2 Not Another Teen Movie
                                    36907
## 3 Scary Movie 3
                                     46659
## 4 Scary Movie 4
                                    46660
## 5 Back to the Future Part III
                                     5000
```

## Analise of the results

Com o objetivo de avaliar a performance dos modelos foi usado método de validação cruzada. Tendo em conta que o modelo de association rules só foi possivel usando a binaryRatingMatrix, este só foi testado em relação a isso. Os restantes modelos falados neste trabalho, foram restados usando as duas variantes das matrizes.

Seguidamente foi definido o 5-fold cross validation para avaliação dos modelos e os respetivos métodos de previsão.

```
`user-based CF` = list(name = "UBCF",param = list(method = "cosine", nn = 3)),
`item-based CF` = list(name = "IBCF", param = list(method = "cosine", k = 4)))
```

Por fim, foram obtidos os resultados para os métodos de popularidade, IBCF, UBCF e regras de associação. Dado que tínhamos um grande número de dados, houve problemas com o espaço na RAM quando corríamos o método UBCF. Por isso foi feito um sampling de 200000 linhas da table ratingsTimed.

Para que seja possível visualizar as medidas de precisão e do recall de todos os modelos, prosseguiu-se com a junção de resultados das regras de associação com os restantes métodos e foi obtido o seguinte gráfico:

## Matrix Binária



Relativamente ao método de binary Rating<br/>Matrix, os resultados indicam que o item-besed CF é o método que apresenta os melhores resultado de precisão e de recall, apesar de diminuir com o número de recomendações.<br/> A performance do método de popularidade tem um comportamento semelhante ao de item-based CF, com a diferença de que decresce muito mais rapidamente com o aumento de número de recomendações O método de regras de associação e o user-based CF são os que têm a pior performance, sendo o método de associação é ligeiramente melhor do que o de user-based CF, tanto na precisão como no recall.

## Matrix Real



Relativamente ao método de real Rating<br/>Matrix, os resultados indicam que item-based-CF e o método de popularidade são métodos que tem o melhor recall, porém o item-based-CF ganha na precisão para 5 filmes recomendados. Por sua vez, o método de popularidade, para um filme recomendado é o método que tem a maior precisão. Independentemente de número de recomendações o user-based-CF é o método com os piores resultados de precisão e de recall.

Em geral, o método de binaryRatingMatrix tem uma performance muito melhor do que o realRatingMatrix.

## Context-aware recommendations

Para abordar o problema de recomendação de acordo com um contexto, foi adotada a seguinte estratégia:

 A informação relativa as idades e do género dos utilizadores foi distribuída em ranges de 5 anos, como por exemplo, consegue-se visualizar na seguinte tabela, de acordo com o número de pessoas que satisfazem estas condições:





Foi verificado que na sample a usar, havia mais utilizadores entre 15 e 20 anos tanto do sexo masculino como o de feminino; e com o avançar da idade o número de utilizadores tende a diminuir.

Após a divisão da informação de acordo com os ranges das idades e do género dos utilizadores é aplicado o método da popularidade, de acordo com as seguintes instruções:

• Como exemplo foi escolhido um utilizador aleatório do sexo feminino com 28 anos de idade e de seguida foi encontrado o range das idades que contém este valor:

• Assim obtém-se a informação de utilizadores que têm as mesmas características que o utilizador escolhido aleatoriamente para fazer a recomendação (nesta tabela só mostramos as 10 primeiras linhas) .

Table 2: Utilizadores com as mesmas características

| userid  | gender | location | memberfor           | lastlogin | profileview | age |
|---------|--------|----------|---------------------|-----------|-------------|-----|
| 611822  | Female | 221      | 2009-06-03 00:00:00 | 23        | 32          | 32  |
| 781852  | Female | 264      | 2009-11-01 00:00:00 | 91        | 29          | 29  |
| 868001  | Female | 77       | 2009-09-01 00:00:00 | 3         | 29          | 29  |
| 1011935 | Female | 255      | 2009-10-03 00:00:00 | 26        | 29          | 29  |
| 204758  | Female | 197      | 2009-10-02 00:00:00 | 153       | 31          | 31  |
| 224170  | Female | 485      | 2009-10-02 00:00:00 | 71        | 30          | 30  |
| 1008962 | Female | 714      | 2009-02-01 00:00:00 | 98        | 31          | 31  |
| 546888  | Female | 304      | 2009-11-01 00:00:00 | 23        | 29          | 29  |
| 235450  | Female | 345      | 2009-10-02 00:00:00 | 278       | 31          | 31  |
| 960176  | Female | 338      | 2009-06-01 00:00:00 | 16        | 29          | 29  |

• De seguida é aplicado o método de popularidade a informação previamente filtrada por range das idades e o género; e é obtido o resultado da recomendação (usando o utilizador newUserReal)

```
## # A tibble: 5 x 2
##
     moviename
                                                 movieid
     <chr>
##
                                                   <dbl>
## 1 Pirates of the Caribbean: Dead Mans Chest
                                                   42237
## 2 Shrek
                                                   45119
## 3 The Green Mile
                                                   55562
## 4 The Lord of the Rings - The Two Towers
                                                   56916
## 5 The Lion King
                                                   54612
```

## Conclusions, shortcomings and future work

Visto que para cada modelo (excepto association rules) foram aplicadas as duas abordagens: Usando as ratings dos utilizadores (realRantingMatrix) ou a indicação se um utilizador viu um determinado filme (binaryRatingMatrix), era esperado ter recomendações diferentes para o mesmo modelo mas com matrizes diferentes, o que se verificou.

No âmbito dos sistemas de recomendação sensíveis ao contexto, seria uma mais valia desenvolver um algoritmo de web scrapping que possa acrescentar a informação do género dos filmes (comédia, thriller, drama, etc). Assim, para além de fazer um sistema de recomedação baseado no range das idades e do sexo do utilizador, seria possível recomendar um filme com maior precisão, ao dispistar os géneros de filmes preferidos do utilizador em questão.

Como trabalho futuro seria aplicar os modelos a utilizadores reais e testar as suas precisões.