PRIORITY SCHEDULING

A priority number is associated with each process

The CPU is allocated to the process with the highest priority (smallest number = highest priority)

Types:

Preemptive

Nonpreemptive

SJF is priority scheduling where priority is the inverse of predicted next CPU burst time

Problem:

Starvation -> low priority process may never execute

Solution:

Aging -> as time progresses increase the priority of the process

preemptive			

Priority
3
1
4
5
2

Priority scheduling Gantt Chart

Average waiting time = 8.2 msec

preemptive

PROCESS	BURST TIME	PRIORITY	ARRIVAL TIME
P1	5	3	0
P2	1	1	1
Р3	2	4	2

P4 1 5 3 P5 5 2 4

Chart

P1	P2	P1	P5	P1	P3	P4	
0	1	2 4	1 9) 1	L1	13	14

WT

P1 = (0 - 0) + (2 - 1) + (9 - 4) = 6ms $(1^{st} arrival - waiting time) + (2^{nd} waiting time for p2 - p1 last burst time) + <math>(3^{rd} waiting time until p5 complete - last p1 burst time)$

$$P2 = 1 - 1 = 0ms$$

$$P3 = 11 - 2 = 9ms$$

$$P4 = 13 - 3 = 10$$
ms

$$P5 = 4 - 4 = 0ms$$