Recherche d'Informations 1 / 43

Recherche d'Informations

Sylvain Gault

8 octobre 2024

- Introduction
- 2 Matrice d'incidence terme-document
- TF-IDF
- 4 K-Means

Généralités

Définition

- En anglais Information Retrieval
- Trouver du contenu (habituellement des documents)
- Non structuré (habituellement du texte)
- Qui satisfait des besoins (en termes d'informations)
- Depuis une collection de documents (habituellement stockés sur ordinateurs)

Généralités

Exemples

- Recherche web
- Recherche locale (sur le PC de l'utilisateur)
- Recherche dans des e-mails
- Recherche dans des documents légaux
- Recherche dans une base de connaissance locale
- ...

Données structurées et non-structurées

Dans les années 90

- Beaucoup plus de données non-structurées que structurées
- Offres commerciales importante pour la gestion de données structurées
- Peu d'offres commerciales pour les données non-structurées

Aujourd'hui

- Beaucoup plus de données non-structurées que structurées
- Beaucoup d'offres commerciales de gestion de données non-structurées
- Un peu moins d'offres commerciales de gestion de données structurées (relativement)

Suppositions de base de la recherche d'information

Suppositions

- Collection de documents
 - Statique pour le moment
- But : retrouver les documents pertinents

Modèle de recherche classique

Exemple : se débarrasser des souris

Tâche

• Se débarrasser des souris d'une manière politiquement correcte

Besoin d'informations

• Enlever les souris sans les tuer

Requê<u>te</u>

Attraper souris vivantes

Exemple : se débarrasser des souris

Tâche

- Se débarrasser des souris d'une manière politiquement correcte
- Idée fausse sur le monde

Besoin d'informations

- Enlever les souris sans les tuer
- Mauvaise formulation

Requête

Attraper souris vivantes

Exemple : se débarrasser des souris

Tâche

- Se débarrasser des souris d'une manière politiquement correcte
- Idée fausse sur le monde

Besoin d'informations

- Enlever les souris sans les tuer
- Mauvaise formulation

Requête

- Attraper souris vivantes
- Attraper souris sans danger
- Rajouter des guillemets
- 9

Évaluation de la recherche d'information

Précision

- Fraction du nombre de documents retournés qui sont pertinents pour les besoins d'informations de l'utilisateur
- Nombre de vrai positifs / nombre de documents retournés

Rappel (recall)

- Fraction du nombre de documents pertinents du corpus qui sont retournés
- Vrais positifs / Nombre de pertinents

Évaluation de la recherche d'information

Précision

- Fraction du nombre de documents retournés qui sont pertinents pour les besoins d'informations de l'utilisateur
- Nombre de vrai positifs / nombre de documents retournés

Rappel (recall)

- Fraction du nombre de documents pertinents du corpus qui sont retournés
- Vrais positifs / Nombre de pertinents

- 1 Introduction
- 2 Matrice d'incidence terme-document
- 3 TF-IDF
- 4 K-Means

Matrice d'incidence terme-document

Définition

- Term-document incidence Matrix
- Matrice qui indique la présence d'un mot dans un document
- Pour chaque document
- Pour chaque mot d'un vocabulaire

Mot	Doc 1	Doc 2	Doc 3
the	1	1	1
very	1	0	1
best	1	0	0

Requêtes booléennes

Utilisation

- Rechercher d'une expression booléenne
 - Exemple : (the AND very) OR best
- Appliquer les opérateurs booléens sur les vecteurs de bits

Mot	Doc 1	Doc 2	Doc 3
the	1	1	1
very	1	0	1
best	1	0	0

Requête	Doc 1	Doc 2	Doc 3
the AND very	1	0	1
(the AND very) OR best	1	0	1

Limites de cette matrice

Limites

- Taille énorme pour un grand vocabulaire et beaucoup de documents
- Contient majoritairement des 0 si le vocabulaire est significativement plus grand que la longueur moyenne des documents
- Temps de calcul beaucoup trop grand

Solution

Limites de cette matrice

Limites

- Taille énorme pour un grand vocabulaire et beaucoup de documents
- Contient majoritairement des 0 si le vocabulaire est significativement plus grand que la longueur moyenne des documents
- Temps de calcul beaucoup trop grand

Solution

• Représentation creuse (sparse)

Index inversé

Mot	Doc 1	Doc 2	Doc 3
the	1	1	1
very	1	0	1
best	1	0	0

Mot	Liste de documents
the	1 2 3
very	1 3
best	1

Index inversé

Index inversé

- Stocke pour chaque mot...
- La liste des documents qui contiennent ce mot

Pour aller plus loin

Autres features

- Expressions communes dans les requêtes = nouveau mots
- Stocker la liste des positions où le mot est trouvé
 - Rehercher « d'expressions exactes » en comparant les positions
- Pondérer les recherches par le nombre d'occurrence des mots dans les documents

Ranking

- Recherche par expressions booléennes sort trop ou trop peu de documents
- Trier par pertinence serait plus judicieux
- \rightarrow Retourner *trop* de document n'est plus un problème

Pour aller plus loin

Autres features

- Expressions communes dans les requêtes = nouveau mots
- Stocker la liste des positions où le mot est trouvé
 - Rehercher « d'expressions exactes » en comparant les positions
- Pondérer les recherches par le nombre d'occurrence des mots dans les documents

Ranking

- Recherche par expressions booléennes sort trop ou trop peu de documents
- Trier par pertinence serait plus judicieux
- \rightarrow Retourner *trop* de document n'est plus un problème

- Introduction
- 2 Matrice d'incidence terme-document
- 3 TF-IDF
- 4 K-Means

Matrice de comptage terme-document

Matrice de décompte terme-document

- Similaire à la matrice d'incidence terme-document
- Compte le nombre d'occurrences
- Ne distingue pas l'ordre des mots (modèle Bag of Words)

Mot	Doc 1	Doc 2	Doc 3
the	10	9	20
very	5	0	1
best	15	0	0

Fréquence des termes

Term-Frequency

- lci « fréquence » désigne le pourcentage d'occurrence dans un document
- ... et pas une régularité temporelle
- La pertinence d'un document par rapport à un mot recherché croit avec la fréquence du mot dans le document
- ... mais pas linéairement

Exemple: « Écureuil »

- Un document qui mentionne « Écureuil » 10 fois est plus pertinent qu'un document qui le mentionne qu'une fois
- Mais pas 10 fois plus pertinent

Pondération logarithmique

Utiliser le log de la fréquence

- $w_{t,d} = 1 + log(tf_{t,d})$ si $tf_{t,d} > 0$
- $w_{t,d} = 0$ sinon
 - 0 \rightarrow 0, 1 \rightarrow 1, 2 \rightarrow 1.3, 10 \rightarrow 2, 1000 \rightarrow 4
- Éliminer les mots de la requête qui n'apparaissent pas dans le document

$$score_{q,d} = \sum_{t \in q \cap d} 1 + log(tf_{t,d})$$

• D'autres formules à base de log existent

Document Frequency

Description

- Les mots courant devraient compter moins que les mots rares
- Éliminer les stop words?
- Que faire des termes comme « augmenter », « ligne », « envoyer »?
 - Communs mais pas inutiles
 - Ils devraient avoir un poids faible mais > 0
- Le score de document-frequency le prend en compte

Document Frequency

Féquence-document?

- df_t est la fréquence du terme t dans le corpus
- Le nombre de documents qui contiennent t
- Mesure l'inverse de l'informativité
 - Plus df_t est faible, plus t est informatif
- IDF « inverse document frequency » :

$$idf_t = log(N/df_t)$$

- On utilise un log pour les mêmes raisons que pour tf
 - Un mot qui appraît dans 10 fois moins de documents est plus intéressant, mais pas 10 fois plus intéressant

Inverse-Document Frequency

Remarques sur idf

- La valeur *idf*_t est constante entre requêtes
 - Chaque terme a un *idf*, et c'est tout
- Ce facteur n'a aucune influence sur les requêtes à un seul mot
 - Tous les résultats sont pondérés par la même constante

Fréquence de corpus?

- Pourquoi ne pas compter le nombre d'occurrence des mots dans tout le corpus?
- Exemple : Deux mots de même nombre d'occurrences mais distribution différentes (uniforme, ou localisées dans peu de documents)
- Le mot avec une distribution uniforme est moins informatif

Term-Frequency Inverse-Document-Frequency

Définition

- $w_{t,d} = (1 + log(tf_{t,d})) \times log(N/df_t)$
- Valeur croissante avec le nombre d'occurrences dans un document
- Valeur croissante avec la rareté du terme dans le corpus

Term-Frequency Inverse-Document-Frequency

TF-IDF

$$score_{q,d} = \sum_{t \in q \cap d} w_{t,d}$$
 $score_{q,d} = \sum_{t \in q \cap d} tfidf_{t,d}$

Documents en tant que vecteurs

Description de l'espace

- Représenter les documents comme un vecteur de valeurs tfidf_{t,d} pour tous les mots du vocabulaire
- Les termes sont des dimensions de cet espace
- Les documents sont des points dans cet espace
- Espace de très haute dimensions sur le web (dizaines de millions)
- Avec beaucoup de zéros

Requêtes en tant que vecteurs

Idée

- Représenter les requêtes comme des vecteurs du même espace
- Trier les documents par rapport à leur proximité au vecteur correspondant à la requête
- Proximité = similarité des vecteurs
- Proximité ≈ inverse de la distance

Requêtes en tant que vecteurs

Idée

- Représenter les requêtes comme des vecteurs du même espace
- Trier les documents par rapport à leur proximité au vecteur correspondant à la requête
- Proximité = similarité des vecteurs
- Proximité ≈ inverse de la distance
- Rappel On veut s'éloigner du tout ou rien des requêtes booléennes

Espaces Vectoriels Formuler la proximité

ldée

• Prendre la distance entre les points

Formuler la proximité

Idée

- Prendre la distance entre les points
- Distance euclidienne?
- Les vecteurs de longueur différentes ont une distance très différente
- Schéma « Ragot Jalousie » au tableau

Formuler la proximité

Idée

- Prendre la distance entre les points
- Distance euclidienne?
- Les vecteurs de longueur différentes ont une distance très différente
- Schéma « Ragot Jalousie » au tableau
- Les angles sont une meilleure mesure

Similarité cosinus

Similarité cosinus

- Prendre le cosinus de l'angle entre les deux vecteurs
- Fonction de valeur décroissante quand l'angle augmente
- ullet deux vecteurs quasiment colinéaires auront une valeur proche de 1
- ullet ightarrow deux vecteurs très différents auront une valeur proche de 0
- Très rapide à calculer sans utiliser de fonction cos

Similarité cosinus

Calcul

$$\overrightarrow{q} \cdot \overrightarrow{d} = ||\overrightarrow{q}|| \times ||\overrightarrow{d}|| \times cos(\overrightarrow{q}, \overrightarrow{d})$$

$$cos(\overrightarrow{q}, \overrightarrow{d}) = \frac{\overrightarrow{q} \cdot \overrightarrow{d}}{||\overrightarrow{q}|| \times ||\overrightarrow{d}||}$$

$$= \frac{\overrightarrow{q}}{||\overrightarrow{q}||} \cdot \frac{\overrightarrow{d}}{||\overrightarrow{d}||}$$

Similarité cosinus

Calcul

$$\overrightarrow{q} \cdot \overrightarrow{d} = ||\overrightarrow{q}|| \times ||\overrightarrow{d}|| \times cos(\overrightarrow{q}, \overrightarrow{d})$$

$$cos(\overrightarrow{q}, \overrightarrow{d}) = \frac{\overrightarrow{q} \cdot \overrightarrow{d}}{||\overrightarrow{q}|| \times ||\overrightarrow{d}||}$$

$$= \frac{\overrightarrow{q}}{||\overrightarrow{q}||} \cdot \frac{\overrightarrow{d}}{||\overrightarrow{d}||}$$

• Normaliser les vecteurs avant pour éviter la division

Normalisation

Normalisation des vecteurs

• Diviser tous leurs coefficients par leur longueur

$$d_i' = rac{d_i}{\sqrt{\sum\limits_{j=1}^{|V|} d_j^2}}$$

Idem pour q

Similarité cosinus

Calcul

$$cos(\overrightarrow{q}, \overrightarrow{d}) = \overrightarrow{q} \cdot \overrightarrow{d}$$
$$= \sum_{i} q_{i}d_{i}$$

• Beaucoup plus rapide à calculer

Récap

Récap

- Les espaces vectoriels sont très utiles
- Permettent de sortir de la vue binaire des recherches booléennes
- Il existe d'autres variantes de TF-IDF, autre trick que log (ou autres avec log)
- D'autres distances que cosinus et d'autres normalisations

- Introduction
- 2 Matrice d'incidence terme-document
- 3 TF-IDF
- 4 K-Means

Exemple

Exemple

Exemple

Étapes

Choisir des centroïdes aléatoirement

- Choisir des centroïdes aléatoirement
- Affecter les points au centroïde le plus proche

- Choisir des centroïdes aléatoirement
- Affecter les points au centroïde le plus proche
- Déplacer les centroïdes au barycentre de leurs clusters

- Choisir des centroïdes aléatoirement
- Affecter les points au centroïde le plus proche
- Déplacer les centroïdes au barycentre de leurs clusters
- Recommencer tant qu'il y a du changement

\-IVIEATIS

Algorithme K-Means

Entrées

- K Le nombre de clusters
- Le jeu d'entraı̂nement $x^{(1)}, x^{(2)}, x^{(3)}, \dots$
- $x^{(i)} \in \mathbb{R}^n$ (pas de $x_0 = 1$ nécessaire ici)

Algorithme K-Means

Algorithme

- Initialiser aléatoirement K centroïdes de clusters $\mu_1,...,\mu_K \in \mathbb{R}^n$
- Faire
 - Calculer $D_{i,j}$ la distance entre $x^{(i)}$ et μ_j pour tous les points et tous les centroïdes
 - Calculer $C^{(i)}$ l'indice du cluster dont $x^{(i)}$ est le plus proche
 - Calculer les nouveaux μ_k , moyenne des points affectés au cluster k
- Répéter tant qu'au moins un centroïde a bougé

Fonction de coût de K-Means

Définition

• L'algorithme présenté minimise une certaine fonction

$$Cost(C, \mu) = \frac{1}{N} \sum_{i=1}^{N} \left| \left| x^{(i)} - \mu_{C^{(i)}} \right| \right|^2$$

Explications

- Minimise la moyenne...
- ... du carré de la distance...
- ... entre les points et le centroïde qui leur est affecté.

Intuition de la fonction de coût

Intuition

- Bouger les centroïdes au barycentre de leurs clusters fait décroître la moyenne des distances
- Affecter les points au centroïde le plus proche fait décroite la moyenne des distances
- Donc la fonction de coût doit décroître à chaque étape.

K-Means pour TF-IDF

Spécialisation pour TF-IDF : Spherical K-Means

- Les points sont sur une hypersphère
- Utiliser la distance cosinus pour affecter les points aux centroïdes
- Re-normaliser les vecteurs de centroïdes calculé

Questions?

Questions?

Questions?

Questions?

• Questions?

TP

TP

TP