Devoir sur table nº 2

Mathématiques

Durée : 4h. Calculatrice interdite.

• Mettre le numéro des questions.

• Justifiez vos réponses.

• ENCADREZ vos résultats.

• Utilisez des mots en français entre les assertions mathématiques.

• Numérotez les copies doubles.

• Bon courage!

Questions de cours

1) Soit $n \in \mathbb{N}$. Démontrer la formule pour la somme $S_n = \sum_{k=1}^n k^2$.

2) Mettre sous formes polaire et algébrique le nombre complexe $a = \frac{1+i}{-\sqrt{3}+i}$. En déduire les valeurs exactes de $\cos\left(\frac{7\pi}{12}\right)$ et $\sin\left(\frac{7\pi}{12}\right)$.

3) Déterminer les racines cubiques de 2+2i. On calculera **explicitement** leurs formes algébriques (sans garder cos et sin).

Exercice 1. Dans cet exercice, on veut prouver que la suite $(\cos n)_{n\in\mathbb{N}}$ n'a pas de limite. On suppose donc par l'absurde qu'elle en possède une et on note ℓ cette limite.

- 1) Pourquoi a-t-on $\ell \in \mathbb{R}$?
- 2) Justifier que les suites $(\cos(n+1))_{n\in\mathbb{N}}$, $(\cos(n+2))_{n\in\mathbb{N}}$ et $(\cos(2n))_{n\in\mathbb{N}}$ convergent.
- 3) Factoriser $\cos(n+2) + \cos(n)$. En déduire que $\ell = 0$.
- 4) Exprimer cos(2n) en fonction de cos n. En déduire une contradiction.

Exercice 2. On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=\frac{\pi}{2}$ et pour tout $n\in\mathbb{N}, u_{n+1}=\sin(u_n)$.

- 1) a) Démontrer que pour tout $x \in \left[0, \frac{\pi}{2}\right]$, on a $0 \leqslant \sin(x) \leqslant x$.
 - b) Résoudre sur $\left[0, \frac{\pi}{2}\right]$, l'équation $\sin(x) = x$.

- 2) Démontrer que pour tout entier $n, u_n \in \left[0, \frac{\pi}{2}\right]$.
- 3) Étudier la monotonie de $(u_n)_{n\in\mathbb{N}}$.
- 4) Démontrer que $(u_n)_{n\in\mathbb{N}}$ converge.
- 5) Déterminer la limite de $(u_n)_{n\in\mathbb{N}}$.

Exercice 3.

1) Soient θ, α, β des réels. À l'aide de la technique de l'arc moitié, factoriser :

$$\frac{e^{i\theta} - e^{i\alpha}}{e^{i\theta} - e^{i\beta}}.$$

2) On considère A, B et M, trois points distincts du cercle trigonométrique, d'affixes respectives a, b et z. Montrer que :

$$\operatorname{arg}\left(\frac{z-a}{z-b}\right) \equiv \frac{1}{2}\operatorname{arg}\left(\frac{a}{b}\right) [\pi].$$
 (*)

- 3) Donner une interprétation géométrique du résultat précédent.
- 4) Que devient l'égalité (*) si on suppose en plus que A et B sont diamétralement opposés? Donner une interprétation géométrique pour cette nouvelle égalité obtenue.

Exercice 4. Soit $n \in \mathbb{N}^*$. Posons $j = e^{\frac{2i\pi}{3}}$ ainsi que $A = (1+1)^n$, $B = (1+j)^n$ et $C = (1+\overline{j})^n$.

- 1) Calculer en fonction de \bar{j} les nombres j^2 et $\frac{1}{j}$.
- 2) Placer de façon **exacte** les points d'affixe 1, j et \overline{j} dans un repère orthonormé. On expliquera comment on procède.
- 3) Calculer $1 + j + j^2$.
- 4) Pour $k \in \mathbb{Z}$, calculer $1 + j^k + j^{2k}$. On distinguera deux cas.
- 5) Mettre sous forme polaire 1+j et de $1+\overline{j}$. En déduire les formes polaires de B et C.
- 6) Calculer la partie réelle et la partie imaginaire de A+B+C en fonction de n.
- 7) Développer $A,\,B$ et C par la formule du binôme de Newton.
- 8) En déduire une expression pour la somme suivante :

$$S_n = \sum_{k=0}^{\left\lfloor \frac{n}{3} \right\rfloor} \binom{n}{3k}.$$

Exercice 5. Soit f la fonction définie par $f(x) = \arccos\left(\frac{2\sqrt{x}}{1+x}\right)$. On considère aussi la fonction auxiliaire définie par $g(x) = \frac{2\sqrt{x}}{1+x}$.

- 1) Étude de g.
 - a) Faire l'étude complète de la fonction g. On déterminera son domaine de définition, son domaine de dérivation, sa dérivée ainsi que son tableau de variations (limites comprises).
 - b) Le graphe de g possède-t-il une asymptote? Si oui, préciser laquelle.
 - c) Tracer le graphe de g. On fera apparaître l'asymptote, la tangente en 0 ainsi qu'une autre tangente remarquable.
- 2) Étude de f.
 - a) En justifiant soigneusement, déterminer le domaine de définition de f.
 - b) Faire de même pour son domaine de dérivabilité.
 - c) Pour $x \in D_{f'}$, calculer f'(x).
 - d) En déduire une simplification de f(x) pour tout $x \in D_f$. On distinguera deux cas.

Indication: faire apparaître la forme $\frac{u'(x)}{1+u(x)^2}$ dans la dérivée.

- 3) Changement de variable.
 - a) Justifier que pour tout $x \ge 0$, il existe un unique $\theta \in [0, \pi[$ tel que $\sqrt{x} = \tan(\frac{\theta}{2})$.
 - b) Exprimer $\sin \theta$ en fonction de $\tan \left(\frac{\theta}{2}\right)$.
 - c) Pour $\theta \in [0, \pi[$, simplifier $\arcsin(\sin \theta)$. On distinguera deux cas.
 - d) En déduire de nouveau une simplification de f(x).
- 4) Tracer le graphe de f.

Exercice 6. Soit u la suite définie par :

$$u_0 = 1$$
 $u_1 = 4$ et $\forall n \in \mathbb{N}, \quad u_{n+2} = \sqrt{u_{n+1}u_n}$

- 1) Montrer que u_n est bien défini et que $u_n > 0$ pour tout $n \in \mathbb{N}$.
- 2) On introduit v la suite auxiliaire suivante : $\forall n \in \mathbb{N}, \ v_n = \ln u_n$. Montrer que v est bien définie et qu'il s'agit d'une suite récurrente linéaire d'ordre deux.
- 3) Expliciter v_n puis u_n en fonction de n.
- 4) Déterminer $\lim_{n\to+\infty} u_n$.

Exercice 7. Autour du nombre e.

On pose
$$S_n = \sum_{k=0}^n \frac{1}{k!}$$
 et $u_n = \left(1 + \frac{1}{n}\right)^n$ pour $n \in \mathbb{N}^*$.

- 1) Rappeler la valeur de $\lim_{x\to 0} \frac{\ln(1+x)}{x}$. En déduire la limite de la suite $(u_n)_{n\in\mathbb{N}}$.
- 2) En utilisant le binôme de Newton, montrer que $u_n \leq S_n$.
- 3) Soit $n \in \mathbb{N}^*$. Montrer par récurrence sur $k \in [0, n]$ que $\frac{n!}{(n-k)!n^k} \geqslant 1 \frac{k(k-1)}{2n}$.
- 4) Montrer que pour tout $k \ge 2$, on a $\frac{1}{(k-2)!} \le \frac{1}{2^{k-3}}$.
- 5) En déduire que $S_n u_n \leqslant \frac{2}{n}$ puis que la suite $(S_n)_{n \in \mathbb{N}}$ converge vers e.
- 6) Soit $q \in \mathbb{N}^*$ et $n \geqslant q$. Montrer que $q!S_q$ est un entier et que $q!\sum_{k=q+1}^n \frac{1}{k!} < \frac{1}{q}$.
- 7) En déduire que e est irrationnel.