Introduction

In this final report, I walk through my work on Tasks 1–3—document visualization, Gen AI extraction, and a GraphRAG chatbot for 10-K filings—highlighting my objectives, methods, experiments, and what I learned along the way. I'll also weave in more of my original narrative to capture the real challenges I faced.

Task 1 - Engineering: 2D Visualization & Outlier Detection

What I Did

- Chunking (parsing.py & chunking.py)
 Early on, I chased "perfect" chunking—trying to detect titles vs. body text via punctuation, newline characters, and word count features. Unfortunately, the filings were essentially HTML run through html2text, so I hit tons of edge cases. I even considered two fancy alternatives:
 - Embedding-based chunking (using semantic similarity to split)—but I
 realized it would depend heavily on the embedding model's precision
 and demand huge compute, so I scrapped it.
 - LLM-based chunking (ask a large model to split)—but that felt like cheating since I'm building an LLM app, and it removed the engineering challenge.
 - In the end, I settled on my heuristic: split on newlines, classify short/no-punctuation lines as "non-normal" headings, then build groups by merging subsequent paragraphs until I hit a normal paragraph. This simple approach handled most cases and let me keep moving forward.
- Embeddings & PCA
 I embedded each chunk with Sentence-BERT—splitting any chunk over the model's token limit. I then standard-scaled the embeddings and plotted cumulative variance versus number of PCA components. When I saw ≥95 % variance at 200 components, I hard-set that as my hyperparameter.
- Clustering & Outlier Flagging
 I ran KMeans from 15 to 80 clusters, using the silhouette score to choose the best. (I picked 15 as a theoretical minimum—there are about 15 distinct sub-headings—and 80 because I guessed each section might split into up to four sub-clusters.) Beyond 80, the score crept up but felt meaningless, so I

stuck with that window. I flagged a chunk as an outlier if its distance to the nearest cluster centroid exceeded the 90th percentile across all chunks.

Visualization

For plotting, I used t-SNE to reduce the 200-dimensional PCA results to 2D. I generated scatter plots colored by cluster, by outlier flag, and by original section number. The visualizations looked clean, though I noted that t-SNE's compression sometimes warped true distances and made outliers less distinct.

Key Takeaway

I learned that a rule-based heuristic—though imperfect—can outperform over-engineered solutions when data quality is low. Chasing perfection on chunking would've stalled the project; a "good enough" method kept me productive.

Task 2 - Gen Al Extraction: Embedding-Based QA Pipeline

What I Did

Assumptions

I assumed users always specify:

- 1. A year (2018–2020)
- 2. A company (Apple, Google, or Microsoft)
- 3. A single factual metric (e.g., "number of weeks in fiscal year 2017")

Filtering & Retrieval

I first filtered chunks by year and ticker. Then I embedded the user's query and each section description to pick the top 3 most relevant sections, shrinking ~2,800 chunks to ~100.

Summarization & Re-ranking

To reduce noise, I summarized each chunk to ≤200 tokens and re-embedded those summaries. From each of the 3 sections, I took the top 3 summaries (9 in total), then picked the 5 with highest similarity to the query.

LLM Prompting

I passed those 5 context chunks to GPT-4 with a structured prompt asking for a concise factual answer. I validated against a small ground-truth set (5 values per query).

Results

- I achieved 5/5 correct answers for Apple and Microsoft.
- Two Google queries failed only because key tables never made it into the plain-text conversion (e.g., COVID-19 impact stats).

Key Takeaway

Embedding-based section filtering plus chunk summarization gave me a fast, accurate pipeline without exhaustive search over thousands of chunks.

Task 3 - Chatbot Application: GraphRAG Pipeline

What I Did

- After Task 2's filtering, I built a knowledge graph per sub-dataset using Llama-Index's GraphRAG (defaults: max 10 triplets/chunk, neighbor depth 3).
- I routed user queries through the GraphRAG API, letting it traverse nodes and edges to formulate answers.
- I compared accuracy, answer completeness, and response time against my embedding pipeline.

Results

- GraphRAG matched the 5/5 accuracy with virtually no extra tuning.
- Answers felt more coherent and contextually linked, thanks to the graph structure.
- But runtime ballooned to ~2.5 minutes per question, versus seconds for the embedding approach.

Key Takeaway

Graph reasoning delivers richer answers at the cost of speed. I'll explore caching, parallel graph construction, or lighter graph pruning to speed things up.

Overall Conclusions & Next Steps

 Embrace "Good Enough"
 I spent too long on perfect chunking before realizing a simple heuristic was more productive. Next time, I'll balance rigor with pragmatism.

- 2. Optimize GraphRAG
 I'll tune triplet limits, prune low-value nodes, and batch requests to cut down latency.
- 3. Expand & Automate
 I plan to broaden the query set, include more companies and filing types, and automate hyperparameter selection (chunk size, section thresholds, graph depth) based on query complexity.

Personal Reflections

I learned that it's all too easy to get stuck on edge cases—like bullet-list paragraphs—and lose sight of progress. Task 2 showed me how embeddings can zero in on relevant content almost instantly, while Task 3 proved that graph-based reasoning can elevate answer quality, even if it's slower. Most importantly, I'll carry forward the lesson to iterate fast, accept "good enough" where appropriate, and always measure real-world performance. I'm excited to tackle the next round of optimizations!