Stochastic Collocation for Partial Differential Equations with Random Coefficients

Nicholas Krämer

May 28, 2018

Outline

PDEs with random coefficients

Stochastic collocation

Sparse interpolation operators

Convergence and stability of sparse interpolation

Conclusion

PDEs with random coefficients

What is a PDE with random coefficients?

It looks like:

Find u such that for almost every $\omega \in \Omega$:

$$\begin{cases} \mathcal{L}(\omega)u = f & \text{on } D \\ \mathcal{B}(\omega)u = g & \text{on } \partial D. \end{cases}$$

What is a PDE with random coefficients?

It looks like:

Find u such that for almost every $\omega \in \Omega$:

$$\begin{cases} \mathcal{L}(\omega)u = f & \text{on } D \\ \mathcal{B}(\omega)u = g & \text{on } \partial D. \end{cases}$$

► For illustration purposes we treat:

Find u such that for almost every $\omega \in \Omega$:

$$\begin{cases} -\operatorname{div}(a(\cdot,\omega)\nabla u) = f & \text{on } D \\ u = 0 & \text{on } \partial D. \end{cases}$$

$$\int_D a(x,\omega) \nabla u(x,\omega) \cdot \nabla v(x) \, dx = \int_D f(x) v(x) \, dx$$

$$\int_D a(x,\omega) \nabla u(x,\omega) \cdot \nabla v(x) \, dx = \int_D f(x) v(x) \, dx$$

- Well posed if
 - $f \in L^2(D)$
 - $a_{\mathsf{max}}(\omega) \geq a(x,\omega) \geq a_{\mathsf{min}}(\omega) > 0$ almost surely/everywhere

$$\int_{D} a(x,\omega) \nabla u(x,\omega) \cdot \nabla v(x) \, dx = \int_{D} f(x) v(x) \, dx$$

- ► Well posed if
 - $f \in L^2(D)$
 - $a_{\mathsf{max}}(\omega) \geq a(x,\omega) \geq a_{\mathsf{min}}(\omega) > 0$ almost surely/everywhere
- ▶ Quantity of interest : $\mathbb{E}[u(x)]$, Cov[u(x), u(y)], ...

$$\int_{D} a(x,\omega) \nabla u(x,\omega) \cdot \nabla v(x) \, dx = \int_{D} f(x) v(x) \, dx$$

- ► Well posed if
 - $f \in L^2(D)$
 - ▶ $a_{\max}(\omega) \ge a(x,\omega) \ge a_{\min}(\omega) > 0$ almost surely/everywhere
- ▶ Quantity of interest : $\mathbb{E}[u(x)]$, Cov[u(x), u(y)], ...
- ▶ Monte Carlo methods or spectral approximation (→ SC)

Reduce random field to countable collection of r.v.:

$$a(x,\omega) = \sum_{n \in \mathbb{N}} \varphi_n(x) Y_n(\omega)$$

(Karhunen-Loève, Polynomial Chaos, ...)

Reduce random field to countable collection of r.v.:

$$a(x,\omega) = \sum_{n \in \mathbb{N}} \varphi_n(x) Y_n(\omega)$$

(Karhunen-Loève, Polynomial Chaos, ...)

▶ Replace Ω by $(Y_1(Ω), Y_2(Ω), ...) ⊆ ℝ^N$

Reduce random field to countable collection of r.v.:

$$a(x,\omega) = \sum_{n \in \mathbb{N}} \varphi_n(x) Y_n(\omega)$$

(Karhunen-Loève, Polynomial Chaos, ...)

- ► Replace Ω by $(Y_1(Ω), Y_2(Ω), ...) ⊆ ℝ^N$
- Approximate the mapping

$$\begin{cases}
\mathbb{R}^{\mathbb{N}} \longrightarrow H_0^1(D) \\
y \longmapsto u(y) = u(a(y))
\end{cases}$$

Reduce random field to countable collection of r.v.:

$$a(x,\omega) = \sum_{n \in \mathbb{N}} \varphi_n(x) Y_n(\omega)$$

(Karhunen-Loève, Polynomial Chaos, ...)

- ▶ Replace Ω by $(Y_1(Ω), Y_2(Ω), ...) ⊆ ℝ^N$
- Approximate the mapping

$$\begin{cases}
\mathbb{R}^{\mathbb{N}} \longrightarrow H_0^1(D) \\
y \longmapsto u(y) = u(a(y))
\end{cases}$$

Can be a very high-dimensional problem!

Stochastic collocation

(A special form of spectral approximation)

Breaking down the problem

Finite noise assumption (not necessary but illustrative):

$$a(x,\omega)=a(x,Y_1(\omega),Y_2(\omega))$$

Breaking down the problem

► Finite noise assumption (not necessary but illustrative):

$$a(x,\omega) = a(x, Y_1(\omega), Y_2(\omega))$$

Problem to solve:

Find u s.t. for all $v \in H_0^1(D)$:

$$\int_D a(x, y_1, y_2) \nabla u(x, y_1, y_2) \cdot \nabla v(x) \, dx = \int_D f(x) v(x) \, dx$$

for almost all $(y_1,y_2) \in \Sigma := Y_1(\Omega) \times Y_2(\Omega) \subseteq \mathbb{R}^2$

Breaking down the problem

Finite noise assumption (not necessary but illustrative):

$$a(x,\omega) = a(x, Y_1(\omega), Y_2(\omega))$$

Problem to solve:

Find u s.t. for all $v \in H_0^1(D)$:

$$\int_D a(x, y_1, y_2) \nabla u(x, y_1, y_2) \cdot \nabla v(x) \, dx = \int_D f(x) v(x) \, dx$$

for almost all $(y_1,y_2) \in \Sigma := Y_1(\Omega) \times Y_2(\Omega) \subseteq \mathbb{R}^2$

lacktriangle For single evaluations $\gamma=(\gamma_1,\gamma_2)$ we can solve/approx. for u_γ

▶ Solve the problem for a lot of evaluations on some grid

- ▶ Solve the problem for a lot of evaluations on some grid
- ▶ Interpolate in the Σ -variable (the "random" input)

- ▶ Solve the problem for a lot of evaluations on some grid
- ► Interpolate in the Σ-variable (the "random" input)
- "Collocation" is actually "interpolation"

- Solve the problem for a lot of evaluations on some grid
- ► Interpolate in the Σ-variable (the "random" input)
- "Collocation" is actually "interpolation"
- SC is vector-valued interpolation in the stochastic variable

- ▶ Solve the problem for a lot of evaluations on some grid
- ► Interpolate in the Σ-variable (the "random" input)
- "Collocation" is actually "interpolation"
- ▶ SC is **vector-valued interpolation** in the stochastic variable

Again:

Solve the problem for each gridpoint \rightarrow interpolate

- ▶ Solve the problem for a lot of evaluations on some grid
- ► Interpolate in the Σ-variable (the "random" input)
- "Collocation" is actually "interpolation"
- SC is vector-valued interpolation in the stochastic variable

Again:

Solve the problem for each gridpoint \rightarrow interpolate

Important:

Also works for countably many variables o sparse interpolation

• Work in each direction (i = 1, 2)

▶ Work in each direction (i = 1, 2), $\Sigma = \Sigma_1 \otimes \Sigma_2$

- Work in each direction (i = 1, 2), $\Sigma = \Sigma_1 \otimes \Sigma_2$
- ▶ Discretize Σ_i with a grid: $\Gamma_i := \{t_{0,i}, ..., t_{N_i,i}\}$

- Work in each direction (i = 1, 2), $\Sigma = \Sigma_1 \otimes \Sigma_2$
- ▶ Discretize Σ_i with a grid: $\Gamma_i := \{t_{0,i}, ..., t_{N_i,i}\}$
- ▶ Lagrange basis: $\ell_{j,i}(t_{k,i}) = \delta_{jk}$ and interpolation operator

$$\mathcal{I}_i v(t) := \sum_{j=1}^{N_i} \ell_{j,i}(t) v(t_j)$$

- Work in each direction (i = 1, 2), $\Sigma = \Sigma_1 \otimes \Sigma_2$
- ▶ Discretize Σ_i with a grid: $\Gamma_i := \{t_{0,i}, ..., t_{N_i,i}\}$
- Lagrange basis: $\ell_{j,i}(t_{k,i}) = \delta_{jk}$ and interpolation operator

$$\mathcal{I}_i v(t) := \sum_{j=1}^{N_i} \ell_{j,i}(t) v(t_j)$$

▶ Interpolation space $\mathcal{P}_{N_i}(\Sigma_i)$ corresponding to \mathcal{I}_i and Γ_i

Global enumeration of local indices:

$$k := k_1 + N_1 k_2 \in \{0, ..., \underbrace{(N_1 + 1)(N_2 + 1)}_{=:N_P}\}$$

Global enumeration of local indices:

$$k := k_1 + N_1 k_2 \in \{0, ..., \underbrace{(N_1 + 1)(N_2 + 1)}_{=:N_P}\}$$

▶ Tensor-Lagrange basis $\ell_k(t_1, t_2) := \ell_{k_1, 1}(t_1)\ell_{k_2, 2}(t_2)$

Global enumeration of local indices:

$$k := k_1 + N_1 k_2 \in \{0, ..., \underbrace{(N_1 + 1)(N_2 + 1)}_{=:N_P}\}$$

- ▶ Tensor-Lagrange basis $\ell_k(t_1, t_2) := \ell_{k_1, 1}(t_1)\ell_{k_2, 2}(t_2)$
- Interpolation operator

$$\mathcal{I}_{\Sigma} v(t,s) := \sum_{k=1}^{N_P} \ell_k(t,s) v(t_{k_1,1},t_{k_2,2})$$

Global enumeration of local indices:

$$k := k_1 + N_1 k_2 \in \{0, ..., \underbrace{(N_1 + 1)(N_2 + 1)}_{=:N_P}\}$$

- ▶ Tensor-Lagrange basis $\ell_k(t_1, t_2) := \ell_{k_1, 1}(t_1)\ell_{k_2, 2}(t_2)$
- Interpolation operator

$$\mathcal{I}_{\Sigma} v(t,s) := \sum_{k=1}^{N_P} \ell_k(t,s) v(t_{k_1,1},t_{k_2,2})$$

▶ Interpolation space $\mathcal{P}_{(N_1,N_2)} := \mathcal{P}_{N_1}(\Sigma_1) \otimes \mathcal{P}_{N_2}(\Sigma_2)$

Solve equation at each gridpoint with FEM:

$$u_{h,k}(x) \approx u(x, t_{k_1,1}, t_{k_2,2})$$

Solve equation at each gridpoint with FEM:

$$u_{h,k}(x) \approx u(x, t_{k_1,1}, t_{k_2,2})$$

Interpolate these solutions for final approximation

$$u(x, y_1, y_2) \approx u_{h,p}(x, y_1, y_2) = \sum_{k=1}^{N_P} \ell_k(y_1, y_k) u_{h,k}(x)$$

Solve equation at each gridpoint with FEM:

$$u_{h,k}(x) \approx u(x, t_{k_1,1}, t_{k_2,2})$$

Interpolate these solutions for final approximation

$$u(x, y_1, y_2) \approx u_{h,p}(x, y_1, y_2) = \sum_{k=1}^{N_P} \ell_k(y_1, y_k) u_{h,k}(x)$$

Error sources:

Interpolation error + approximation error (e.g. FEM)

Solve equation at each gridpoint with FEM:

$$u_{h,k}(x) \approx u(x, t_{k_1,1}, t_{k_2,2})$$

Interpolate these solutions for final approximation

$$u(x, y_1, y_2) \approx u_{h,p}(x, y_1, y_2) = \sum_{k=1}^{N_P} \ell_k(y_1, y_k) u_{h,k}(x)$$

Error sources (think of: "variance-bias decomposition"): Interpolation error + approximation error (e.g. FEM)

What does the more general case look like?

Computing a quantity of interest

▶ Assume joint probability density function ρ for the r.v.:

$$\mathbb{E}u(x) = \int_{\Omega} u(x,\omega) \ d\mathbb{P}(\omega) \approx \int_{\Sigma} u_{h,p}(x,y) \rho(y) \ dy$$

Computing a quantity of interest

▶ Assume joint probability density function ρ for the r.v.:

$$\mathbb{E}u(x) = \int_{\Omega} u(x,\omega) \ d\mathbb{P}(\omega) \approx \int_{\Sigma} u_{h,p}(x,y) \rho(y) \ dy$$

▶ Introduce auxiliary density $\hat{\rho}$ for weighted Gaussian quadrature

$$\int_{\Sigma} u_{h,p}(x,y)\rho(y) dy = \sum_{k=1}^{N_P} u_{h,k}(x) \int_{\Sigma} \ell_k(y) \frac{\rho(y)}{\hat{\rho}(y)} \hat{\rho}(y) dy$$

Computing a quantity of interest

▶ Assume joint probability density function ρ for the r.v.:

$$\mathbb{E}u(x) = \int_{\Omega} u(x,\omega) \ d\mathbb{P}(\omega) \approx \int_{\Sigma} u_{h,p}(x,y) \rho(y) \ dy$$

▶ Introduce auxiliary density $\hat{\rho}$ for weighted Gaussian quadrature

$$\int_{\Sigma} u_{h,p}(x,y)\rho(y) dy = \sum_{k=1}^{N_P} u_{h,k}(x) \int_{\Sigma} \ell_k(y) \frac{\rho(y)}{\hat{\rho}(y)} \hat{\rho}(y) dy$$

Compute (possibly high-dimensional) quadrature

$$\int_{\Sigma} \ell_k(y) \frac{\rho(y)}{\hat{\rho}(y)} \hat{\rho}(y) \, dy \approx \sum_{i=1}^{N_Q} w_i \ell_k(x_i) \frac{\rho(x_i)}{\hat{\rho}(x_i)}$$

Stochastic Galerkin:

Stochastic Galerkin:

lacktriangle Ansatz and testfunctions for weak form. from $\mathcal{P}_N(\Sigma)\otimes V_h$

Stochastic Galerkin:

- lacktriangle Ansatz and testfunctions for weak form. from $\mathcal{P}_N(\Sigma)\otimes V_h$
- ► Fully coupled system of linear equations possible

Stochastic Galerkin:

- lacktriangle Ansatz and testfunctions for weak form. from $\mathcal{P}_N(\Sigma)\otimes V_h$
- ► Fully coupled system of linear equations possible

Stochastic Collocation:

Stochastic Galerkin:

- lacktriangle Ansatz and testfunctions for weak form. from $\mathcal{P}_N(\Sigma)\otimes V_h$
- ► Fully coupled system of linear equations possible

Stochastic Collocation:

Decoupled system of linear equations

Stochastic Galerkin:

- lacktriangle Ansatz and testfunctions for weak form. from $\mathcal{P}_N(\Sigma)\otimes V_h$
- ► Fully coupled system of linear equations possible

Stochastic Collocation:

- Decoupled system of linear equations
- Deal with nonindependent r.v. or nonlinear equations

Stochastic Galerkin:

- lacktriangle Ansatz and testfunctions for weak form. from $\mathcal{P}_N(\Sigma)\otimes V_h$
- Fully coupled system of linear equations possible

Stochastic Collocation:

- Decoupled system of linear equations
- Deal with nonindependent r.v. or nonlinear equations

Analogy between SC and SG:

Stochastic Galerkin:

- lacktriangle Ansatz and testfunctions for weak form. from $\mathcal{P}_N(\Sigma)\otimes V_h$
- Fully coupled system of linear equations possible

Stochastic Collocation:

- Decoupled system of linear equations
- Deal with nonindependent r.v. or nonlinear equations

Analogy between SC and SG:

► For certain interpolation points they give the same result

1. Expand random field \rightarrow countably many random variables

- 1. Expand random field \rightarrow countably many random variables
- 2. Truncate that expansion (finite noise) or not

- 1. Expand random field \rightarrow countably many random variables
- 2. Truncate that expansion (finite noise) or not
- 3. Solve PDE for points on tensor product grid

- 1. Expand random field \rightarrow countably many random variables
- 2. Truncate that expansion (finite noise) or not
- 3. Solve PDE for points on tensor product grid
- 4. Interpolate on that grid to obtain an approximation

- 1. Expand random field \rightarrow countably many random variables
- 2. Truncate that expansion (finite noise) or not
- 3. Solve PDE for points on tensor product grid
- 4. Interpolate on that grid to obtain an approximation
- 5. (High-dimensional grid curse of dimensionality)

- 1. Expand random field \rightarrow countably many random variables
- 2. Truncate that expansion (finite noise) or not
- 3. Solve PDE for points on tensor product grid
- 4. Interpolate on that grid to obtain an approximation
- 5. (High-dimensional grid curse of dimensionality)
- 6. SC decouples system of equations

A shorter version of that summary

1. Finite or countable noise

A shorter version of that summary

- 1. Finite or countable noise
- 2. Solve PDE for points on tensor product grid

A shorter version of that summary

- 1. Finite or countable noise
- 2. Solve PDE for points on tensor product grid
- Interpolate on that grid to obtain an approximation

Sparse interpolation operators

▶ Abstract point of view: *u* solves parametric PDE

$$G(a, u) = 0, \quad G: X \times V \longrightarrow W$$

▶ Abstract point of view: *u* solves parametric PDE

$$G(a, u) = 0, \quad G: X \times V \longrightarrow W$$

▶ No finite noise: a depends on countably many r.v., $y = (y_1, ...)$

▶ Abstract point of view: *u* solves parametric PDE

$$G(a, u) = 0, \quad G: X \times V \longrightarrow W$$

- ▶ No finite noise: a depends on countably many r.v., $y = (y_1, ...)$
- ▶ Work in $[-1,1]^{\mathbb{N}}$; interpolate mapping

$$\begin{cases} [-1,1]^{\mathbb{N}} \longrightarrow V \\ y \longmapsto u(y) \end{cases}$$

▶ Abstract point of view: *u* solves parametric PDE

$$G(a, u) = 0, \quad G: X \times V \longrightarrow W$$

- ▶ No finite noise: a depends on countably many r.v., $y = (y_1, ...)$
- ▶ Work in $[-1,1]^{\mathbb{N}}$; interpolate mapping

$$\begin{cases}
[-1,1]^{\mathbb{N}} \longrightarrow V \\
y \longmapsto u(y)
\end{cases}$$

lacktriangle Approach: interpolation tools in $[-1,1] o [-1,1]^{\mathbb{N}} o \mathsf{sparse}$

▶ Let $T := (t_k)_{k \in \mathbb{N}} \subseteq [-1, 1]$ sequence of points

- ▶ Let $T := (t_k)_{k \in \mathbb{N}} \subseteq [-1, 1]$ sequence of points
- Define the interpolation

- ▶ Let $T := (t_k)_{k \in \mathbb{N}} \subseteq [-1, 1]$ sequence of points
- ▶ Define the interpolation
 - Grid: $\Gamma_k := \{t_0, ..., t_k\}$ (nested)

- ▶ Let $T := (t_k)_{k \in \mathbb{N}} \subseteq [-1, 1]$ sequence of points
- ▶ Define the interpolation
 - Grid: $\Gamma_k := \{t_0, ..., t_k\}$ (nested)
 - ▶ Operator: \mathcal{I}_k on Γ_k

- ▶ Let $T := (t_k)_{k \in \mathbb{N}} \subseteq [-1, 1]$ sequence of points
- ▶ Define the interpolation
 - Grid: $\Gamma_k := \{t_0, ..., t_k\}$ (nested)
 - ▶ Operator: \mathcal{I}_k on Γ_k
 - ▶ Space: $\mathcal{P}_k([-1,1])$

- ▶ Let $T := (t_k)_{k \in \mathbb{N}} \subseteq [-1, 1]$ sequence of points
- ▶ Define the interpolation
 - Grid: $\Gamma_k := \{t_0, ..., t_k\}$ (nested)
 - ▶ Operator: \mathcal{I}_k on Γ_k
 - ▶ Space: $\mathcal{P}_k([-1,1])$
 - ▶ Difference operator $\Delta_k := \mathcal{I}_k \mathcal{I}_{k-1}$, $\mathcal{I}_{-1} = 0$

- ▶ Let $T := (t_k)_{k \in \mathbb{N}} \subseteq [-1, 1]$ sequence of points
- ▶ Define the interpolation
 - Grid: $\Gamma_k := \{t_0, ..., t_k\}$ (nested)
 - ▶ Operator: \mathcal{I}_k on Γ_k
 - ▶ Space: $\mathcal{P}_k([-1,1])$
 - ▶ Difference operator $\Delta_k := \mathcal{I}_k \mathcal{I}_{k-1}$, $\mathcal{I}_{-1} = 0$
- ▶ Nestnedness: $\Delta_k u(t) = \alpha_k h_k(t)$, $\alpha_k := u(t_k) I_{k-1} u(t_k)$

- ▶ Let $T := (t_k)_{k \in \mathbb{N}} \subseteq [-1, 1]$ sequence of points
- ▶ Define the interpolation
 - Grid: $\Gamma_k := \{t_0, ..., t_k\}$ (nested)
 - ▶ Operator: \mathcal{I}_k on Γ_k
 - ▶ Space: $\mathcal{P}_k([-1,1])$
 - ▶ Difference operator $\Delta_k := \mathcal{I}_k \mathcal{I}_{k-1}$, $\mathcal{I}_{-1} = 0$
- ▶ Nestnedness: $\Delta_k u(t) = \alpha_k h_k(t)$, $\alpha_k := u(t_k) I_{k-1} u(t_k)$
- "Hierarchical basis": $\{h_0, ..., h_k\}$ for \mathcal{P}_k

Interpolation in infinite dimensions 1/2

• Use as an index-set if working on $\mathbb{R}^{\mathbb{N}}$:

$$\mathscr{F} := \{ \nu \in \ell^{\infty}(\mathbb{N}) : \|\nu\|_{0} < \infty \}, \quad \|\nu\|_{0} = |\{ j \in \mathbb{N} : \ \nu_{j} \neq 0 \}|$$

• Use as an index-set if working on $\mathbb{R}^{\mathbb{N}}$:

$$\mathscr{F} := \{ \nu \in \ell^{\infty}(\mathbb{N}) : \|\nu\|_{0} < \infty \}, \quad \|\nu\|_{0} = |\{ j \in \mathbb{N} : \ \nu_{j} \neq 0 \}|$$

► An interpolation operator is well-defined if it uniquely defines a certain element in the interpolation space

• Use as an index-set if working on $\mathbb{R}^{\mathbb{N}}$:

$$\mathscr{F} := \{ \nu \in \ell^{\infty}(\mathbb{N}) : \|\nu\|_{0} < \infty \}, \quad \|\nu\|_{0} = |\{ j \in \mathbb{N} : \ \nu_{j} \neq 0 \}|$$

► An interpolation operator is well-defined if it uniquely defines a certain element in the interpolation space

Definition

Let $\Lambda \subset \mathscr{F}$ be a set with cardinality $|\Lambda| = N$. A set $\Gamma \subseteq [-1,1]^{\mathbb{N}}$ with cardinality $|\Gamma| = N$ is called *unisolvent* for \mathcal{P}_{Λ} if any element in \mathcal{P}_{Λ} is uniquely determined by its values on Γ .

For any index $\nu = (\nu_1, ...) \in \mathscr{F}$ define:

Interpolation

- ► Interpolation
 - Grid: $\Gamma_{\nu} := \bigotimes_{j \geq 1} \Gamma_{\nu_j}$

- Interpolation
 - Grid: $\Gamma_{\nu} := \bigotimes_{j \geq 1} \Gamma_{\nu_j}$
 - $lackbox{Operator: } \mathcal{I}_{
 u} := igotimes_{j \geq 1} \mathcal{I}_{
 u_j}$

- Interpolation
 - Grid: $\Gamma_{\nu} := \bigotimes_{j \geq 1} \Gamma_{\nu_j}$
 - Operator: $\mathcal{I}_{\nu} := \bigotimes_{j \geq 1} \mathcal{I}_{\nu_j}$
 - Space: $\mathcal{P}_{
 u} := igotimes_{j \geq 1} \mathcal{P}_{
 u_j}$

- Interpolation
 - Grid: $\Gamma_{\nu} := \bigotimes_{i \geq 1} \Gamma_{\nu_i}$
 - $lackbox{Operator:}\ \mathcal{I}_{
 u}:=igotimes_{j\geq 1}\mathcal{I}_{
 u_j}$
 - Space: $\mathcal{P}_{
 u} := \bigotimes_{j \geq 1} \mathcal{P}_{
 u_j}$
- Is that well-defined (i.e. unisolvent)?

- Interpolation
 - Grid: $\Gamma_{\nu} := \bigotimes_{i > 1} \Gamma_{\nu_i}$
 - Operator: $\mathcal{I}_{\nu} := \bigotimes_{j \geq 1} \mathcal{I}_{\nu_j}$
 - Space: $\mathcal{P}_{\nu} := \bigotimes_{j \geq 1} \mathcal{P}_{\nu_j}$
- Is that well-defined (i.e. unisolvent)?
- lacksquare Difference operator: $\Delta_
 u:=igotimes_{j\geq 1}\Delta_{
 u_j}$

- Interpolation
 - $ightharpoonup \operatorname{Grid}: \Gamma_{\nu} := \bigotimes_{i \geq 1} \Gamma_{\nu_i}$
 - $lackbox{Operator:}\ \mathcal{I}_{
 u}:=igotimes_{j\geq 1}\mathcal{I}_{
 u_j}$
 - Space: $\mathcal{P}_{
 u} := \bigotimes_{j \geq 1} \mathcal{P}_{
 u_j}$
- Is that well-defined (i.e. unisolvent)?
- lacksquare Difference operator: $\Delta_{
 u} := igotimes_{i \geq 1} \Delta_{
 u_i}$
- ▶ Hierarchical basis: $\{H_{\tilde{\nu}}: \ \tilde{\nu} \leq \nu\}$, $H_{\nu}(y):=\prod_{\nu_i \neq 0} h_{\nu_i}(y_j)$

For any index $\nu = (\nu_1, ...) \in \mathscr{F}$ define:

- Interpolation
 - Grid: $\Gamma_{\nu} := \bigotimes_{i \geq 1} \Gamma_{\nu_i}$
 - $lackbox{Operator:}\ \mathcal{I}_{
 u}:=igotimes_{j>1}\mathcal{I}_{
 u_j}$
 - Space: $\mathcal{P}_{\nu} := \bigotimes_{j \geq 1} \mathcal{P}_{\nu_j}$
- Is that well-defined (i.e. unisolvent)?
- lacksquare Difference operator: $\Delta_{
 u} := igotimes_{i \geq 1} \Delta_{
 u_i}$
- ▶ Hierarchical basis: $\{H_{\tilde{\nu}}: \ \tilde{\nu} \leq \nu\}$, $H_{\nu}(y):=\prod_{\nu_i \neq 0} h_{\nu_i}(y_j)$

Curse of dimensionality: $\dim \mathcal{P}_{\nu} = \prod_{i \geq 1} (1 + \nu_i)$

▶ $\Lambda \subseteq \mathscr{F}$ any finite set

- ▶ $\Lambda \subseteq \mathscr{F}$ any finite set
- ▶ Define the interpolation grid $\Gamma_{\Lambda} := \{y_{\nu} := (t_{\nu_i})_{i \geq 1}, \ \nu \in \Lambda\}$

- ▶ $\Lambda \subseteq \mathscr{F}$ any finite set
- ▶ Define the interpolation grid $\Gamma_{\Lambda} := \{y_{\nu} := (t_{\nu_i})_{j \geq 1}, \ \nu \in \Lambda\}$
- ▶ Define the interpolation operator $\mathcal{I}_{\Lambda} := \sum_{\nu \in \Lambda} \Delta_{\nu}$.

- ▶ $\Lambda \subseteq \mathscr{F}$ any finite set
- ▶ Define the interpolation grid $\Gamma_{\Lambda} := \{y_{\nu} := (t_{\nu_i})_{j \geq 1}, \ \nu \in \Lambda\}$
- ▶ Define the interpolation operator $\mathcal{I}_{\Lambda} := \sum_{\nu \in \Lambda} \Delta_{\nu}$.
- Without additional structure on Λ nothing is clear

- ▶ $\Lambda \subseteq \mathscr{F}$ any finite set
- ▶ Define the interpolation grid $\Gamma_{\Lambda} := \{y_{\nu} := (t_{\nu_i})_{j \geq 1}, \ \nu \in \Lambda\}$
- ▶ Define the interpolation operator $\mathcal{I}_{\Lambda} := \sum_{\nu \in \Lambda} \Delta_{\nu}$.
- Without additional structure on Λ nothing is clear
 - ▶ What is \mathcal{P}_{Λ} ?

- ▶ $\Lambda \subseteq \mathscr{F}$ any finite set
- ▶ Define the interpolation grid $\Gamma_{\Lambda} := \{y_{\nu} := (t_{\nu_j})_{j \ge 1}, \ \nu \in \Lambda\}$
- ▶ Define the interpolation operator $\mathcal{I}_{\Lambda} := \sum_{\nu \in \Lambda} \Delta_{\nu}$.
- Without additional structure on Λ nothing is clear
 - ▶ What is \mathcal{P}_{Λ} ?
 - ▶ Is Γ_{Λ} unisolvent?

- ▶ $\Lambda \subseteq \mathscr{F}$ any finite set
- ▶ Define the interpolation grid $\Gamma_{\Lambda} := \{y_{\nu} := (t_{\nu_j})_{j \ge 1}, \ \nu \in \Lambda\}$
- ▶ Define the interpolation operator $\mathcal{I}_{\Lambda} := \sum_{\nu \in \Lambda} \Delta_{\nu}$.
- Without additional structure on Λ nothing is clear
 - ▶ What is \mathcal{P}_{Λ} ?
 - ▶ Is Γ_{Λ} unisolvent?

Solution:

- ▶ $\Lambda \subseteq \mathscr{F}$ any finite set
- ▶ Define the interpolation grid $\Gamma_{\Lambda} := \{y_{\nu} := (t_{\nu_j})_{j \geq 1}, \ \nu \in \Lambda\}$
- ▶ Define the interpolation operator $\mathcal{I}_{\Lambda} := \sum_{\nu \in \Lambda} \Delta_{\nu}$.
- Without additional structure on Λ nothing is clear
 - ▶ What is \mathcal{P}_{Λ} ?
 - ▶ Is Γ_{Λ} unisolvent?

Solution:

▶ If $\nu \in \Lambda$, then $\tilde{\nu} \leq \nu$ should be in Λ

- ▶ $\Lambda \subseteq \mathscr{F}$ any finite set
- ▶ Define the interpolation grid $\Gamma_{\Lambda} := \{y_{\nu} := (t_{\nu_j})_{j \ge 1}, \ \nu \in \Lambda\}$
- ▶ Define the interpolation operator $\mathcal{I}_{\Lambda} := \sum_{\nu \in \Lambda} \Delta_{\nu}$.
- Without additional structure on Λ nothing is clear
 - ▶ What is \mathcal{P}_{Λ} ?
 - ▶ Is Γ_{Λ} unisolvent?

Solution:

- ▶ If $\nu \in \Lambda$, then $\tilde{\nu} \leq \nu$ should be in Λ
- Demand Λ to be "downward closed"

Definition

A generic index set $\Lambda \subseteq \mathscr{F}$ is downward closed if for any $\nu \in \Lambda$, the property $\tilde{\nu} \leq \nu$ implies $\tilde{\nu} \in \Lambda$.

Definition

A generic index set $\Lambda \subseteq \mathscr{F}$ is downward closed if for any $\nu \in \Lambda$, the property $\tilde{\nu} \leq \nu$ implies $\tilde{\nu} \in \Lambda$.

Theorem

Let $\Lambda \subseteq \mathscr{F}$ be a finite downward closed set. Then, Γ_{Λ} is unisolvent for

$$\mathcal{P}_{\Lambda} := \operatorname{span}\{y \mapsto y^{\nu}, \ \nu \in \Lambda\}, \quad y^{\nu} := \prod_{
u_i \neq 0} y_j^{
u_j},$$

and \mathcal{I}_{Λ} is the corresponding interpolation operator.

Conclude:

Conclude:

 $\mathcal{I}_{\Lambda} = \sum_{
u \in \Lambda} \Delta_{
u}$ is well-defined as interpolation on \mathcal{P}_{Λ}

Conclude:

 $\mathcal{I}_{\Lambda}=\sum_{\nu\in\Lambda}\Delta_{\nu}$ is well-defined as interpolation on \mathcal{P}_{Λ}

What we do not know (yet):

Conclude:

 $\mathcal{I}_{\Lambda}=\sum_{\nu\in\Lambda}\Delta_{\nu}$ is well-defined as interpolation on \mathcal{P}_{Λ}

What we do not know (yet):

▶ How can we compute $\mathcal{I}_{\Lambda}u$ for the solution u?

Conclude:

 $\mathcal{I}_{\Lambda}=\sum_{\nu\in\Lambda}\Delta_{\nu}$ is well-defined as interpolation on \mathcal{P}_{Λ}

What we do not know (yet):

- ▶ How can we compute $\mathcal{I}_{\Lambda}u$ for the solution u?
- ▶ How well does it approximate in the infinite-dim. $[-1,1]^{\mathbb{N}}$?

▶ $\Lambda := \Lambda_N$ has a partial ordering "≤": $\Lambda_N = \{\nu_1, ..., \nu_N\}$

- $\Lambda := \Lambda_N$ has a partial ordering " \leq ": $\Lambda_N = \{\nu_1, ..., \nu_N\}$
- lacktriangle Remove a maximal element $u_N o \Lambda_{N-1}$ downward closed

- $\Lambda := \Lambda_N$ has a partial ordering " \leq ": $\Lambda_N = \{\nu_1, ..., \nu_N\}$
- ightharpoonup Remove a maximal element $\nu_N o \Lambda_{N-1}$ downward closed
- Write difference operator as

$$\Delta_{\nu_n} u = \alpha_{\nu_n} H_{\nu_n}, \quad \alpha_{\nu_n} := u(y_{\nu_n}) - \mathcal{I}_{\Lambda_{n-1}} u(y_{\nu_n})$$

- ▶ $\Lambda := \Lambda_N$ has a partial ordering "≤": $\Lambda_N = \{\nu_1, ..., \nu_N\}$
- ightharpoonup Remove a maximal element $\nu_N o \Lambda_{N-1}$ downward closed
- Write difference operator as

$$\Delta_{\nu_n} u = \alpha_{\nu_n} H_{\nu_n}, \quad \alpha_{\nu_n} := u(y_{\nu_n}) - \mathcal{I}_{\Lambda_{n-1}} u(y_{\nu_n})$$

Compute recursively:

$$\mathcal{I}_{\Lambda_n} u = \mathcal{I}_{\Lambda_{n-1}} u + \Delta_{\nu_n} u = \mathcal{I}_{\Lambda_{n-1}} u + \alpha_{\nu_n} H_{\nu_n}, \quad \mathcal{I}_{\Lambda_0} \equiv 0$$

Algorithm:

Algorithm:

Until error small

Algorithm:

Until error small, pick ν^{N+1}

Algorithm:

Until error small, pick ν^{N+1} , compute $\mathcal{I}_{\Lambda_{N+1}}$ recursively

Algorithm:

Until error small, pick ν^{N+1} , compute $\mathcal{I}_{\Lambda_{N+1}}$ recursively

How do we pick the next multi-index?

Algorithm:

Until error small, pick ν^{N+1} , compute $\mathcal{I}_{\Lambda_{N+1}}$ recursively

How do we pick the next multi-index?

▶ non-adaptively: a-priori choice of nested sequences $(\Lambda_n)_n$

Algorithm:

Until error small, pick ν^{N+1} , compute $\mathcal{I}_{\Lambda_{N+1}}$ recursively

- ▶ non-adaptively: a-priori choice of nested sequences $(\Lambda_n)_n$
- ▶ adaptively: **Try** to find the *N* largest $\|\Delta_{\nu_n} u\|_{L^p}$

Algorithm:

Until error small, pick ν^{N+1} , compute $\mathcal{I}_{\Lambda_{N+1}}$ recursively

- ▶ non-adaptively: a-priori choice of nested sequences $(\Lambda_n)_n$
- ▶ adaptively: **Try** to find the *N* largest $\|\Delta_{\nu_n} u\|_{L^p}$
 - ► Find points which maximize interpolation error

Algorithm:

Until error small, pick ν^{N+1} , compute $\mathcal{I}_{\Lambda_{N+1}}$ recursively

- ▶ non-adaptively: a-priori choice of nested sequences $(\Lambda_n)_n$
- ▶ adaptively: **Try** to find the *N* largest $\|\Delta_{\nu_n} u\|_{L^p}$
 - Find points which maximize interpolation error
 - Attention to downward-closedness and other issues

Algorithm:

Until error small, pick ν^{N+1} , compute $\mathcal{I}_{\Lambda_{N+1}}$ recursively

- ▶ non-adaptively: a-priori choice of nested sequences $(\Lambda_n)_n$
- ▶ adaptively: **Try** to find the *N* largest $\|\Delta_{\nu_n} u\|_{L^p}$
 - Find points which maximize interpolation error
 - Attention to downward-closedness and other issues
 - ▶ In practice good behaviour; proof of convergence is **open**

Convergence and stability of sparse interpolation

▶ \mathcal{I}_{Λ} is projection from C([-1,1];V) onto ran \mathcal{I}_{Λ}

- ▶ \mathcal{I}_{Λ} is projection from C([-1,1];V) onto ran \mathcal{I}_{Λ}
- ▶ Interpolation stable $\leftrightarrow \mathbb{L}_{\Lambda} = \sup \frac{\|\mathcal{I}_{\Lambda}u\|_{L^{\infty}}}{\|u\|_{L^{\infty}}}$ bounded

- ▶ \mathcal{I}_{Λ} is projection from C([-1,1];V) onto ran \mathcal{I}_{Λ}
- ▶ Interpolation stable $\leftrightarrow \mathbb{L}_{\Lambda} = \sup \frac{\|\mathcal{I}_{\Lambda}u\|_{L^{\infty}}}{\|u\|_{L^{\infty}}}$ bounded

Error estimate needs stability:

- ▶ \mathcal{I}_{Λ} is projection from C([-1,1];V) onto ran \mathcal{I}_{Λ}
- ▶ Interpolation stable $\leftrightarrow \mathbb{L}_{\Lambda} = \sup \frac{\|\mathcal{I}_{\Lambda}u\|_{L^{\infty}}}{\|u\|_{L^{\infty}}}$ bounded

Error estimate needs stability:

▶ Use $v = \mathcal{I}_{\Lambda}v$ for $v \in \operatorname{ran} \mathcal{I}_{\Lambda}$ and operator norm of \mathcal{I}_{Λ} :

- ▶ \mathcal{I}_{Λ} is projection from C([-1,1];V) onto ran \mathcal{I}_{Λ}
- ▶ Interpolation stable $\leftrightarrow \mathbb{L}_{\Lambda} = \sup \frac{\|\mathcal{I}_{\Lambda}u\|_{L^{\infty}}}{\|u\|_{L^{\infty}}}$ bounded

Error estimate needs stability:

▶ Use $v = \mathcal{I}_{\Lambda}v$ for $v \in \operatorname{ran} \mathcal{I}_{\Lambda}$ and operator norm of \mathcal{I}_{Λ} :

$$\begin{aligned} \|u - \mathcal{I}_{\Lambda} u\|_{L^{\infty}} &\leq \|u - v_{\Lambda}\|_{L^{\infty}} + \|\mathcal{I}_{\Lambda} (u - v_{\Lambda})\|_{L^{\infty}} \\ &\leq (1 + \mathbb{L}_{\Lambda}) \inf_{v_{\Lambda} \in \mathsf{ran} \, \mathcal{I}_{\Lambda}} \|u - v_{\Lambda}\|_{L^{\infty}}. \end{aligned}$$

- ▶ \mathcal{I}_{Λ} is projection from C([-1,1];V) onto ran \mathcal{I}_{Λ}
- ▶ Interpolation stable $\leftrightarrow \mathbb{L}_{\Lambda} = \sup \frac{\|\mathcal{I}_{\Lambda}u\|_{L^{\infty}}}{\|u\|_{L^{\infty}}}$ bounded

Error estimate needs stability:

▶ Use $v = \mathcal{I}_{\Lambda} v$ for $v \in \operatorname{ran} \mathcal{I}_{\Lambda}$ and operator norm of \mathcal{I}_{Λ} :

$$\begin{aligned} \|u - \mathcal{I}_{\Lambda} u\|_{L^{\infty}} &\leq \|u - v_{\Lambda}\|_{L^{\infty}} + \|\mathcal{I}_{\Lambda} (u - v_{\Lambda})\|_{L^{\infty}} \\ &\leq (1 + \mathbb{L}_{\Lambda}) \inf_{v_{\Lambda} \in \mathsf{ran} \, \mathcal{I}_{\Lambda}} \|u - v_{\Lambda}\|_{L^{\infty}}. \end{aligned}$$

▶ Hopefully \mathbb{L}_{Λ} smaller than bound for $\inf_{\nu_{\Lambda} \in \operatorname{ran} \mathcal{I}_{\Lambda}} \|u - \nu_{\Lambda}\|$

▶ (Anisotropic) smoothness of $y \mapsto u(y)$

- ▶ (Anisotropic) smoothness of $y \mapsto u(y)$
- Use Taylor expansion: $u(y) = \sum_{\nu \in \mathscr{F}} t_{\nu} T_{\nu}$,

- ▶ (Anisotropic) smoothness of $y \mapsto u(y)$
- Use Taylor expansion: $u(y) = \sum_{\nu \in \mathscr{F}} t_{\nu} T_{\nu}$,
- ► Purely functional analytic statement:

- ▶ (Anisotropic) smoothness of $y \mapsto u(y)$
- Use Taylor expansion: $u(y) = \sum_{\nu \in \mathscr{F}} t_{\nu} T_{\nu}$,
- ▶ Purely functional analytic statement:

$$\inf_{v \in \operatorname{ran} \mathcal{I}_{\Lambda}} \|u - v\|_{L^{\infty}} \leq \left\| \sum_{\nu \notin \Lambda} t_{\nu} T_{\nu} \right\|_{L^{\infty}} \leq \sum_{\nu \notin \Lambda} \|t_{\nu}\|_{V}$$

- ▶ (Anisotropic) smoothness of $y \mapsto u(y)$
- Use Taylor expansion: $u(y) = \sum_{\nu \in \mathscr{F}} t_{\nu} T_{\nu}$,
- Purely functional analytic statement:

$$\inf_{v \in \operatorname{ran} \mathcal{I}_{\Lambda}} \|u - v\|_{L^{\infty}} \leq \left\| \sum_{\nu \notin \Lambda} t_{\nu} T_{\nu} \right\|_{L^{\infty}} \leq \sum_{\nu \notin \Lambda} \|t_{\nu}\|_{V}$$

"Stechkin"

- ▶ (Anisotropic) smoothness of $y \mapsto u(y)$
- Use Taylor expansion: $u(y) = \sum_{\nu \in \mathscr{F}} t_{\nu} T_{\nu}$,
- ▶ Purely functional analytic statement:

$$\inf_{v \in \mathsf{ran}\,\mathcal{I}_{\Lambda}} \|u - v\|_{L^{\infty}} \leq \left\| \sum_{\nu \notin \Lambda} t_{\nu} T_{\nu} \right\|_{L^{\infty}} \leq \sum_{\nu \notin \Lambda} \|t_{\nu}\|_{V}$$

• "Stechkin": if $(\|t_{\nu}\|_{\nu})_{\nu \in \mathscr{F}} \in \ell^{p}(\mathbb{N}_{0})$ for p < 1:

$$\sum_{
u
otin \Lambda} \|t_
u\|_{\mathcal{V}} \leq \mathcal{N}^{-s}, \quad s = rac{1}{
ho} - 1, \quad \mathcal{N} = |\Lambda|$$

Bounding the Lebesgue constant

Introduce **univariate** Lebesgue constants for $k \ge 0$:

$$\lambda_k := \sup \frac{\|\mathcal{I}_k u\|_{L^{\infty}}}{\|u\|_{L^{\infty}}}, \quad \delta_k := \sup \frac{\|\Delta_k u\|_{L^{\infty}}}{\|u\|_{L^{\infty}}}$$

Bounding the Lebesgue constant

Introduce **univariate** Lebesgue constants for $k \ge 0$:

$$\lambda_k := \sup \frac{\|\mathcal{I}_k u\|_{L^\infty}}{\|u\|_{L^\infty}}, \quad \delta_k := \sup \frac{\|\Delta_k u\|_{L^\infty}}{\|u\|_{L^\infty}}$$

Theorem

If there exists $\theta \geq 1$ such that $\lambda_k \leq (k+1)^{\theta}$ or $\delta_k \leq (k+1)^{\theta}$ holds for $k \geq 0$, then the Lebesgue constant \mathbb{L}_{Λ} satisfies $\mathbb{L}_{\Lambda} \leq N^{\theta+1}$ for any downward closed set Λ with $|\Lambda| = N$.

Bounding the Lebesgue constant

Introduce **univariate** Lebesgue constants for $k \ge 0$:

$$\lambda_k := \sup \frac{\|\mathcal{I}_k u\|_{L^\infty}}{\|u\|_{L^\infty}}, \quad \delta_k := \sup \frac{\|\Delta_k u\|_{L^\infty}}{\|u\|_{L^\infty}}$$

Theorem

If there exists $\theta \geq 1$ such that $\lambda_k \leq (k+1)^{\theta}$ or $\delta_k \leq (k+1)^{\theta}$ holds for $k \geq 0$, then the Lebesgue constant \mathbb{L}_{Λ} satisfies $\mathbb{L}_{\Lambda} \leq N^{\theta+1}$ for any downward closed set Λ with $|\Lambda| = N$.

Sketch of the proof.

Derive bounds for \mathbb{L}_{Λ} using a collection of δ .; then one case is clear, the other one will be clear inductively.

Conclude from the theorem:

 \mathbb{L}_{Λ} "inherits" bounds from univariate Lebesgue constants

Conclude from the theorem:

 \mathbb{L}_{Λ} "inherits" bounds from univariate Lebesgue constants

▶ Clenshaw-Curtis points: $\lambda_k \sim \log(k)$ but not nested

Conclude from the theorem:

 \mathbb{L}_{Λ} "inherits" bounds from univariate Lebesgue constants

- ▶ Clenshaw-Curtis points: $\lambda_k \sim \log(k)$ but not nested
- ▶ Leja points: $t_0 = 0$ and t_k given by

$$t_k := rg \max \left\{ \prod_{i
eq j} |t_i - t_j| : \ \{t_0, ..., t_k\} \in [-1, 1]^{k+1}
ight\}$$

Conclude from the theorem:

 \mathbb{L}_{Λ} "inherits" bounds from univariate Lebesgue constants

- ▶ Clenshaw-Curtis points: $\lambda_k \sim \log(k)$ but not nested
- ▶ Leja points: $t_0 = 0$ and t_k given by

$$t_k := \operatorname{\mathsf{arg}} \operatorname{\mathsf{max}} \left\{ \prod_{i
eq j} |t_i - t_j| : \ \{t_0, ..., t_k\} \in [-1, 1]^{k+1}
ight\}$$

▶ Bound is **promising** to be $\lambda_k \leq (1+k)$ - open problem!

Conclude from the theorem:

 \mathbb{L}_{Λ} "inherits" bounds from univariate Lebesgue constants

- ▶ Clenshaw-Curtis points: $\lambda_k \sim \log(k)$ but not nested
- ▶ Leja points: $t_0 = 0$ and t_k given by

$$t_k := rg \max \left\{ \prod_{i
eq j} |t_i - t_j|: \ \{t_0, ..., t_k\} \in [-1, 1]^{k+1}
ight\}$$

- ▶ Bound is **promising** to be $\lambda_k \leq (1+k)$ open problem!
- ▶ So-called \mathfrak{R} -Leja points: $\lambda_k \leq (1+k)^2 \Rightarrow \mathbb{L}_{\Lambda} \leq N^3$

▶ Interpolation on $[-1,1]^{\mathbb{N}}$ via Δ_k and downward closed sets

- ▶ Interpolation on $[-1,1]^{\mathbb{N}}$ via Δ_k and downward closed sets
- Compute via recursion formula

- ▶ Interpolation on $[-1,1]^{\mathbb{N}}$ via Δ_k and downward closed sets
- Compute via recursion formula
- lacktriangle Convergence boils down to stability bound \mathbb{L}_{Λ}

- ▶ Interpolation on $[-1,1]^{\mathbb{N}}$ via Δ_k and downward closed sets
- Compute via recursion formula
- \blacktriangleright Convergence boils down to stability bound \mathbb{L}_{Λ}
- ▶ Bestapproximation in ran \mathcal{I}_{Λ} gives error N^{-s}

- ▶ Interpolation on $[-1,1]^{\mathbb{N}}$ via Δ_k and downward closed sets
- Compute via recursion formula
- lacktriangle Convergence boils down to stability bound \mathbb{L}_{Λ}
- ▶ Bestapproximation in ran \mathcal{I}_{Λ} gives error N^{-s}
- ▶ \mathbb{L}_{Λ} inherits bound from λ_k or δ_k

- ▶ Interpolation on $[-1,1]^{\mathbb{N}}$ via Δ_k and downward closed sets
- Compute via recursion formula
- lacktriangle Convergence boils down to stability bound \mathbb{L}_{Λ}
- ▶ Bestapproximation in ran \mathcal{I}_{Λ} gives error N^{-s}
- ▶ \mathbb{L}_{Λ} inherits bound from λ_k or δ_k

Extensions:

- ▶ Interpolation on $[-1,1]^{\mathbb{N}}$ via Δ_k and downward closed sets
- Compute via recursion formula
- lacktriangle Convergence boils down to stability bound \mathbb{L}_{Λ}
- ▶ Bestapproximation in ran \mathcal{I}_{Λ} gives error N^{-s}
- ▶ \mathbb{L}_{Λ} inherits bound from λ_k or δ_k

Extensions:

- ▶ Interpolation on $[-1,1]^{\mathbb{N}}$ via Δ_k and downward closed sets
- Compute via recursion formula
- lacktriangle Convergence boils down to stability bound \mathbb{L}_Λ
- ▶ Bestapproximation in ran \mathcal{I}_{Λ} gives error N^{-s}
- ▶ \mathbb{L}_{Λ} inherits bound from λ_k or δ_k

Extensions:

▶ Sharper error-estimate: N^{-s} error instead of $N^{-(s-1-\theta)}$

- ▶ Interpolation on $[-1,1]^{\mathbb{N}}$ via Δ_k and downward closed sets
- Compute via recursion formula
- lacktriangle Convergence boils down to stability bound \mathbb{L}_{Λ}
- ▶ Bestapproximation in ran \mathcal{I}_{Λ} gives error N^{-s}
- ▶ \mathbb{L}_{Λ} inherits bound from λ_k or δ_k

Extensions:

- ▶ Sharper error-estimate: N^{-s} error instead of $N^{-(s-1-\theta)}$
- Non-polynomial interpolation: RKHS, piecewise linear functions (→ sparse grids), ...

Conclusion

1. Stochastic collocation is (high-dimensional) polynomial interpolation for vector-valued functions

- 1. Stochastic collocation is (high-dimensional) polynomial interpolation for vector-valued functions
- 2. Build sparse interpolation operators through $\Delta_{
 u}$

- 1. Stochastic collocation is (high-dimensional) polynomial interpolation for vector-valued functions
- 2. Build sparse interpolation operators through $\Delta_{
 u}$
- 3. They are well-defined on downward closed index sets

- 1. Stochastic collocation is (high-dimensional) polynomial interpolation for vector-valued functions
- 2. Build sparse interpolation operators through $\Delta_{
 u}$
- 3. They are well-defined on downward closed index sets
- 4. Convergence reduces to bounding \mathbb{L}_{Λ}

- 1. Stochastic collocation is (high-dimensional) polynomial interpolation for vector-valued functions
- 2. Build sparse interpolation operators through $\Delta_{
 u}$
- 3. They are well-defined on downward closed index sets
- 4. Convergence reduces to bounding \mathbb{L}_{Λ}
- 5. \mathbb{L}_{Λ} can be bounded by $N^{\theta+1}$ or better

- 1. Stochastic collocation is (high-dimensional) polynomial interpolation for vector-valued functions
- 2. Build sparse interpolation operators through $\Delta_{
 u}$
- 3. They are well-defined on downward closed index sets
- 4. Convergence reduces to bounding \mathbb{L}_{Λ}
- 5. \mathbb{L}_{Λ} can be bounded by $N^{\theta+1}$ or better if pointset is very nice = (nested, evenly spaced)

- 1. Stochastic collocation is (high-dimensional) polynomial interpolation for vector-valued functions
- 2. Build sparse interpolation operators through $\Delta_{
 u}$
- 3. They are well-defined on downward closed index sets
- 4. Convergence reduces to bounding \mathbb{L}_{Λ}
- 5. \mathbb{L}_{Λ} can be bounded by $N^{\theta+1}$ or better if pointset is very nice = (nested, evenly spaced)
- 6. Best N-term approx. gives error $(1+\mathbb{L}_{\Lambda})N^{-s}$ for s=1/p-1

- 1. Stochastic collocation is (high-dimensional) polynomial interpolation for vector-valued functions
- 2. Build sparse interpolation operators through $\Delta_{
 u}$
- 3. They are well-defined on downward closed index sets
- 4. Convergence reduces to bounding \mathbb{L}_{Λ}
- 5. \mathbb{L}_{Λ} can be bounded by $N^{\theta+1}$ or better if pointset is very nice = (nested, evenly spaced)
- 6. Best N-term approx. gives error $(1+\mathbb{L}_{\Lambda})N^{-s}$ for s=1/p-1
- 7. There is more to learn

1. Stochastic collocation is interpolation

- 1. Stochastic collocation is interpolation
- 2. Sparse interpolation: nested pointsets

- 1. Stochastic collocation is interpolation
- 2. Sparse interpolation: nested pointsets
- 3. Well-defined on downward closed index sets

- 1. Stochastic collocation is interpolation
- 2. Sparse interpolation: nested pointsets
- 3. Well-defined on downward closed index sets
- 4. Analysis: *N*-term approx. & Lebesgue const.

Main references

I. Babuška, F. Nobile, and R. Tempone.

A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Review, 52(2), 317-355. 2010.

A. Cohen and R. DeVore.

Approximation of high-dimensional parametric PDEs.

Acta Numerica, 24:1-154, 2015.

Sections 6.1 and 6.2.