Effect of Annotation Errors on Drone Detection with YOLOv3

Aybora Köksal, Kutalmış Gökalp İnce, Aydın Alatan Middle East Technical University Electrics and Electronical Engineering Department Center For Image Analysis (OGAM)

Outline

Introduction

Performance of YOLOv3 on Anti-UAV Dataset

Performance of YOLOv3 with Simulated Annotation Errors

Annotation Correction

Conclusion

Introduction

The main aims of this study are,

 Understanding the effects of annotation errors in a training set for object detection

 Automatically detecting and correcting annotation errors in any tracking dataset with a ground truth

Introduction

UAV detection by fine tuning YOLOv3[1]

• Bad results due to annotation errors

What about correcting them?

[1]: Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. CoRR, abs/1804.02767, 2018

Only thermal images of test-dev dataset is used

- 70 videos -> Training Set
- 30 videos -> Validation Set

- Metrics used to measure performance:
 - Hit: IoU between detection output and ground truth > 0.5
 - Hit Rate: $\frac{\# of \ hits}{\# of \ positive \ samples}$
 - False Alarm: IoU between detection output and ground truth = 0
 - False Alarm Per Minute: # of false alarms/minute through all samples
 - Tracking Accuracy: $\frac{1}{T}\sum_{t=1}^{T}IoU_t*v_t*p_t+(1-p_t)(1-v_t)$ v_t : Visibility Flag p_t : Prediction Flag
 - Modified Tracking Accuracy: $\frac{\sum_{t=1}^{T} IoU_t * v_t * p_t + (1-p_t) * (1-v_t)}{\sum_{t=1}^{T} max(v_t, p_t) + (1-p_t) * (1-v_t)}$

Modified Tracking Accuracy:

$$\frac{\sum_{t=1}^{T} IoU_t * v_t * p_t + (1-p_t) * (1-v_t)}{\sum_{t=1}^{T} max(v_t, p_t) + (1-p_t) * (1-v_t)} \quad \begin{array}{c} v_t : \text{Visibility Flag} \\ p_t : \text{Prediction Flag} \end{array}$$

• Objectness Threshold = 0.5

• Hit Rate: 97.5%

• False Alarm Per Min: 2.4

• Tracking Accuracy: 73.6%

Modified Tracking Accuracy: 73.5%

 Target detection and tracking results are quite acceptable, but not accurate due to existing annotation errors in the dataset

1) Additional Boxes: An extra box which does not contain any target

- Two types of additional boxes:
 - Temporarily Consistent
 - Random additional box created in one frame
 - This box tracked in consecutive frames
 - Completely Random
 - New random additional box created in each frame with a probability p

2) Missing Boxes: Unavailability of the annotation of a true object

- Two types of missing boxes:
 - Temporarily Consistent
 - Boxes are missing in consecutive frames
 - Completely Random
 - Each box can be a missing box with a probability p

3) Shifted Boxes: Slightly translated version of the true object box

• Gaussian noise $(0, \sigma)$ added to the center of the each box.

Sizes of the boxes stay same.

	FA	HR	TA	MTA
Original Annotations	2.4	97.5	73.6	73.5
Additional Boxes (25%)	9.7	97.8	74.9	74.3
Additional Boxes (50%)	18.8	95.6	69.4	68.6
Tmp. Cons. Add. Box. (25%)	5.6	96.5	72.7	72.5
Missing Boxes (25%)	0.3	94.1	71.3	71.3
Tmp. Cons. Mss. Box. (25%)	1.0	83.2	62.5	62.4
Tmp. Cons. Mss. Box. (50%)	0.9	34.7	27.2	27.2
Shifted Boxes ($\sigma = 1.5$)	2.2	90.8	68.8	68.8
Shifted Boxes ($\sigma = 10\%$)	1.1	29.9	23.3	23.3
Combined	2.3	71.2	54.2	54.2

When Objectness Threshold is fixed to 0.5

	Thrs	HR	TA	MTA
Original Annotations	0.5	97.5	73.6	73.5
Additional Boxes (25%)	0.72	94.1	72.1	72
Additional Boxes (50%)	0.68	92.2	67	66.9
Tmp. Cons. Add. Box. (25%)	0.58	95.6	72	72
Missing Boxes (25%)	0.4	97.2	73.2	73.1
Tmp. Cons. Mss. Box. (25%)	0.38	90.8	67.9	67.8
Tmp. Cons. Mss. Box. (50%)	0.3	56	43.2	43.1
Shifted Boxes ($\sigma = 1.5$)	0.48	92.4	70	69.9
Shifted Boxes ($\sigma = 10\%$)	0.3	87.8	64.8	64.7
Combined	0.49	72.8	55.4	55.3

When FA/min is fixed to 2.4

Proposed solution:

Conventional template matching

Assumptions:

- No missing and additional boxes
- Appearance of the object does not change significantly between consecutive frames

If the assumptions hold:

Shifted box errors can be recovered using consecutive frames

Let c_k be the object center at frame k

- Get the object template at frame k centered at c_k
- Search the template around c_{k+1} on frame k+1 using normalized cross correlation to find the displacement $d_{k\rightarrow k+1}$
- Find the displacement $d_{k+1 \rightarrow k}$
- If $d_{k \to k+1}$ and $d_{k+1 \to k}$ are consistent and correlation score is above selected threshold record the displacement, otherwise break the track
- If frame k+1 has no annotated objects, break the track

Frame k

Frame k+1

For a track starting at frame k, corrected center at frame k+n

$$\hat{c}_{k+n} = \hat{c}_k + \sum_{t=k}^{k+n-1} d_{t \to t+1}$$

Assumption:

Displacements should have zero mean

Problem:

• Errors in $d_{k \rightarrow k+1}$ are accumulated

Solution:

Remove the trend of accumulative displacement

- Annotation correction applied 100 videos on Anti-UAV dataset
- Human subjects preferred corrected annotations on 66 videos
- 34 remaining videos are left with original annotations

	Thrs	HR	TA	MTA
Original Annotations	0.5	97.5	73.6	73.5
Corrected (Training Set)	0.55	98.0	74.8	74.7
Corrected (Training + Val Set)	0.55	98.8	76.3	76.2

When FA/min is fixed to 2.4

Conclusion

- Performance of YOLOv3 on Anti-UAV dataset is relatively well.
 - Good in terms of hit and false alarm rates, not great in terms of tracking accuracy.
- Annotation errors degrade performance
- Shifted box errors are corrected with a semi-automated method
 - Results got better.
- Calculating IoU between corrected annotations and original annotations, we get 86.4% tracking accuracy
 - An algorithm which has a generalization ability can reach a maximum of 86.4% tracking accuracy (without memorizing)

Thank You!