

AUTOMOTIVE MOSFET

IRF2805

HEXFET® Power MOSFET

Typical Applications

• Climate Control, ABS, Electronic Braking, Windshield Wipers

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (Silicon limited)	175	
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (See Fig.9)	120	A
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (Package limited)	75	
I_{DM}	Pulsed Drain Current ①	700	
P _D @T _C = 25°C	Power Dissipation	330	W
	Linear Derating Factor	2.2	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy®	450	mJ
E _{AS} (6 sigma)	Single Pulse Avalanche Energy Tested Value [®]	1220	Ť
I _{AR}	Avalanche Current®	See Fig.12a, 12b, 15, 16	А
E _{AR}	Repetitive Avalanche Energy®		mJ
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	Ī
	Mounting Torque, 6-32 or M3 screw	1.1 (10)	N•m (lbf•in)

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.45	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

HEXFET(R) is a registered trademark of International Rectifier. www.irf.com

IRF2805

International Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.06		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.9	4.7	mΩ	V _{GS} = 10V, I _D = 104A ⊕
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = 10V, I_D = 250\mu A$
g _{fs}	Forward Transconductance	91			S	V _{DS} = 25V, I _D = 104A
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 55V$, $V_{GS} = 0V$
				250	μΛ	$V_{DS} = 55V$, $V_{GS} = 0V$, $T_{J} = 125$ °C
lana	Gate-to-Source Forward Leakage			200	nA -	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-200		V _{GS} = -20V
Qg	Total Gate Charge		150	230		I _D = 104A
Q _{gs}	Gate-to-Source Charge		38	57	nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		52	78		V _{GS} = 10V 4
t _{d(on)}	Turn-On Delay Time		14			$V_{DD} = 28V$
t _r	Rise Time		120		ns	$I_{D} = 104A$
t _{d(off)}	Turn-Off Delay Time		68		115	$R_G = 2.5\Omega$
t _f	Fall Time		110			V _{GS} = 10V ⊕
	Internal Drain Inductance		4.5		- nH	Between lead,
L _D	internal Drain inductance		4.5			6mm (0.25in.)
	Internal Course Industria		7.5		''''	from package
L _S	Internal Source Inductance		7.5			and center of die contact
C _{iss}	Input Capacitance		5110			V _{GS} = 0V
C _{oss}	Output Capacitance		1190		pF	$V_{DS} = 25V$
C_{rss}	Reverse Transfer Capacitance		210			f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		6470			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		860			$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance ⑤		1600] [V _{GS} = 0V, V _{DS} = 0V to 44V

Source-Drain Ratings and Characteristics

	•					
	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current		175	175		MOSFET symbol
	(Body Diode)		1/5	A	showing the	
I _{SM}	Pulsed Source Current		700	700		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 104A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time	T	80	120	ns	$T_J = 25^{\circ}C, I_F = 104A$
Q _{rr}	Reverse Recovery Charge		290	430	nC	di/dt = 100A/µs ⊕
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Starting $T_J = 25$ °C, L = 0.08mH $R_G = 25\Omega$, $I_{AS} = 104$ A. (See Figure 12).
- $\label{eq:loss} \begin{array}{l} \text{ } \\ \text{ }$
- 4 Pulse width \leq 400 μ s; duty cycle \leq 2%.
- $\ \ \, \ \, \ \,$ $\ \ \, \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \$ $\$ $\ \$ $\ \$ $\ \$ $\$ $\ \$ $\$ $\ \$ $\ \$ $\$ $\ \$ $\$ $\$ $\$ $\ \$ $\$
- $\ \, \ \,$ Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- This value determined from sample failure population. 100% tested to this value in production.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Forward Transconductance Vs. Drain Current

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Normalized On-Resistance Vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 14. Threshold Voltage Vs. Temperature www.irf.com

Fig 15. Typical Avalanche Current Vs. Pulsewidth

Fig 16. Maximum Avalanche Energy Vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16). t_{av} = Average time in avalanche. D = Duty cycle in avalanche = t_{av} ·f

 $Z_{\text{thJC}}(D, t_{\text{av}})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV-I}_{av} \text{)} = \triangle \text{T/ } Z_{thJC} \\ I_{av} &= 2\triangle \text{T/ [} 1.3 \cdot \text{BV-Z}_{th} \text{]} \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

TO-220AB Part Marking Information

1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.

2 CONTROLLING DIMENSION: INCH

EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED ON WW 19, 1997

IN THE ASSEMBLY LINE "C"

3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.

4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 8/02