- 1. This was run on Flip1. More specifically: flip1.engr.oregonstate.edu

 Dual Intel(R) Xeon(R) CPU X5650 (6 cores each with Hyperthreading, 24 total threads)

 96GB RAM
- 2. Based on the raw data that I obtained from running this code with several different nodes and number of threads, I believe the volume is somewhere around 25.3.
- 3. A number of tables and graphs that I used with the data that I obtained:

MegaHeights Computed Per Second								
NUMT	500	1000	2000	5000	10000			
1	12.393674	12.31309	12.387524	12.3993	12.376266			
2	23.975981	24.46917	24.786263	24.41905	24.557247			
4	48.297634	49.18565	48.474072	47.97163	48.525753			
8	57.430748	58.01518	61.625256	66.68888	68.95079			

Raw Data							
NUMNODES	NUMT	Volume	Time				
500	1	25.31249	0.020172				
1000	1	25.31473	0.081214				
2000	1	25.29679	0.322906				
5000	1	25.20125	2.016242				
10000	1	16	8.079982				
500	2	25.31263	0.010427				
1000	2	25.31303	0.040868				
2000	2	25.29978	0.16138				
5000	2	24.886	1.023791				
10000	2	21.47362	4.072118				
500	4	23.31252	0.005176				
1000	4	25.31234	0.020331				
2000	4	25.31784	0.082518				
5000	4	25.53867	0.521141				
10000	4	25.79083	2.060761				
500	6	25.31252	0.005747				
1000	6	25.31252	0.022426				
2000	6	25.31036	0.069243				
5000	6	25.2171	0.475438				
10000	6	25.63435	2.055748				
500	8	25.31249	0.004353				
1000	8	25.31257	0.017237				
2000	8	25.3124	0.064908				
5000	8	25.2883	0.374875				
10000	8	25.32872	1.45031				

Used for storing Speedup and Fp calculations for 1-4 and and 1-2 NUMT

Speedup 1-4	Speedup 1-2	Fp 1-4	maxspeedup 1-4
0.9210	1	0.1144	1.1292
0.9999	0.9999	0.0013	1.0013
1.0008	1.0001	0.0153	1.0155
1.0134	0.9875	0.176	1.2136
1.3402	0.3421	0.3384	1.5114

- 4. Observing the graphs, I can see a clear pattern that more threads are increasing the speed of the calculations of the volume. This is much more pronounced after switching the X and Y axis and observing the graph as a function of NUMT.
- 5. This seems like a reasonable and expected pattern as increasing the number of threads doing the "work" of calculations by dividing the work would logically increase the speed of the calculations.
- 6. The Parallel Fraction for this application, using the Inverse Amdahl equation is $Fp = n/(n-1) * T_1 T_n / T_1$ or n/(n-1) * (1-(1/Speedup)). I used the latter equation after first calculating the Speedup.
- 7. If you used a million cores, you could calculate the Speedup to be 1,000,000. Then you could find the Fp with the equation above which would be 0.000001.

The max Speedup then calculated with 1/1-Fp would be 1.000001 which would be the max Speedup possible with a million cores.