

XN297L 250Kbps 使用说明

目录

— 、		技术说明	3
二、		配置要求	3
	2.1	功能寄存器配置	3
	2.1.3	1 TX 模式	3
	2.1.2	2 RX 模式	3
	2.1	功率配置	3
三、		硬件要求	4
3.	1 晶	体频率精度要求	4
3.	2 PCI	B 布局要求	4
四、		软件要求	4
4.	1发	送过程要求4	4
4.	2 发	送 payload 长度要求	5
五、	支持	封装形式	5
六、	软件	· 应用	5
6.	1上	电初始化	5
6.	2上	电初始化配置发送(PTX)状态流程	6
6.	3上	电初始化配置接收(PRX)状态流程	6
6.	4 Bui	rst 发送(PTX)流程	7
6.	5 Bui	rst 接收(PRX)流程	7
6.	6 Bui	rst 接收转发送切换流程	7
6.	7 Bui	rst 发送转接收切换流程	8
6.	8 Enl	hanced 发送(PTX)流程	8
6.	9 Enl	hanced 接收(PRX)流程	8
6.	10 切	J换频点流程	9

版本	V 1.0
修订	2016. 12

一、技术说明

250Kbps 通信,相对于 1Mbps,具有带宽窄和通信距离远的优势,但正是由于其速率低带宽窄,对硬件晶体偏差和软件的干扰影响提出了更高的要求。

二、配置要求

2.1 功能寄存器配置

2.1.1 TX 模式

BB_CAL: 0x12, 0xEC, 0x6F, 0xA1, 0x46

RF_CAL: 0xF6, 0x3F, 0x5D

RF_CAL2: 0xD5, 0x21, 0xEB, 0x2C, 0x5A, 0x40

DEM_CAL: 0x1F

DEM_CAL2: 0x0B, 0xDF, 0x02

2.1.2 RX 模式

BB_CAL: 0x12, 0xEC, 0x6F, 0xA1, 0x46

RF_CAL: 0xF6, 0x3F, 0x5D (0x06, 0x3F, 0x5D, 安规时使用) ^①

RF_CAL2: 0xD5, 0x21, 0xEB, 0x2C, 0x5A, 0x40

DEM CAL: 0x1F

DEM CAL2: 0x0B, 0xDF, 0x02

备注①: RX 模式 RF_CAL 配置成 0x06, 0x3F, 0x5D 用于过 RX 模式的安规,不能用于 TX 模式,如果在 TX 模式下使用该配置会导致不良率升高,如果有 RX 切换到 TX 的操作,需要先将 RF_CAL 从 0x06, 0x3F, 0x5D 配置成 0xF6, 0x3F, 0x5D,再进入 TX 模式;如果不过安规建议使用和 TX 模式一样的配置 0xF6, 0x3F, 0x5D。

2.2 功率配置

RF_SETUP	输出功
寄存器	率 (dBm)
E7	11
Е6	10
D5	9
EC	5
D4	4
EA	-1
Е9	-9
D9	-10
F0	-23

三、硬件要求

3.1 晶体频率精度要求

设置频点的频率,用单载波模式进行测试,实测的频率与配置的的频率差不能超过 $-60^{\circ}+60$ KHz。

3.2 PCB 布局要求

硬件布局上,RF天线尽量与晶体和其它干扰源隔开,以免RF干扰到晶体,或者其它干扰源干扰到RF。

四、软件要求

4.1 发送过程要求

在发送数据过程(包括 Enhanced 模式回 ACK 过程)(按照 16 byte payload 计算,从 CE High 开始计算,时间大约为 1.65ms),整个系统不要有其它操作,其它操作都有可能会引入干扰影响发送信号质量,例如读写 SPI 操作等。

4.2 发送 payload 长度要求

发送 payload 长度,建议限制在 16byte 以内。

五、支持封装形式

XN297L 250Kbps 通信支持 QFN, COB, SOP16, SOP8, 和与 MCU 合封等不同封装形式。

六、软件应用

6.1 上电初始化

下述流程都以重新上电复位后的芯片进入休眠模式为起点,休眠状态和待机状态-I推荐的 SPI 最高速率为 1Mbps, 其它状态 SPI 速率最高为 4Mbps。

与 1Mbps 和 2Mbps 一样,唯一的区别体现在 RF_SETUP 寄存器 0x06<7:6>关于传输速率 配置差异。

顺序	操作说明
1	上电默认进入休眠模式
2	软件复位(命令字: 0x53, 0x5A)
3	复位释放(命令字: 0x53, 0xA5)
4	清 FLUSH_TX(1110 0001, 0)
5	清 FLUSH_RX(1110 0010,0)
6	清状态寄存器(配置 0x07 写 0x70)
7	打开接收通道 n (0-5)
,	(EN_RXADDR 寄存器 0x02)
8	设置通道 n 的地址宽度(3-5 字节)
0	(SETUP_AW 寄存器 0x03)

9	写地址(寄存器 0x0A~10,地址)
10	设置工作频点
10	(RF_CH 寄存器 0x05)
11	设置传输速率 250kbps 和功率档位
11	(RF_SETUP 寄存器 0x06 配置为 0b11xxxxxx)
12	设置接收数据长度
12	(寄存器 0x11 [~] 16)
13	配置 DEMOD_CAL (DEMOD_CAL 寄存器 0x19 为 1f)
14	配置 RF_CAL2(RF_CAL2 寄存器 0x1A 为
14	0xd5,0x21,0xeb,0x2c,0x5a,0x40)
15	配置 DEM_CAL2(DEM_CAL2 寄存器 0x1B 为
15	0x0b,0xdf,0x02)
16	配置 RF_CAL(RF_CAL 寄存器 0x1E 为
16	0xf6,0x37,0x5d)
17	配置 BB_CAL(BB_CAL 寄存器 0x1F 为
11	0x12,0xec,0x6f,0xa1,0x46)
	控制以下模式:
	1)CE 控制方式;
	2) IRQ 输出方式;
18	3) 最长数据长度;
10	4)是否使能动态 payload;
	5)是否使能 ACK 带 payload;
	6)是否使能 W_TX_PAYLOAD_NOACK 命令
	(FEATURE 寄存器 0x1D)
	设置 Burst 或者 Enhanced 模式(输出次数、传
19	输时延)
19	(EN_AA 寄存器 0x01 和 SETUP_RETR
	寄存器 0x04)

6.2 上电初始化配置发送(PTX)状态流程

顺序	操作说明
1	配置 Tx 模式 (config 寄存器 0x00 为 8E)
2	延时 10ms
3	CE HIGH
4	延时 10ms

6.3 上电初始化配置接收(PRX)状态流程

顺序	操作说明
1	配置 Rx 模式 (config 寄存器 0x00 为 8F)

2	延时 10ms
3	CE HIGH
4	延时 10ms

6.4 Burst 发送(PTX)流程

顺序	操作说明
1	写发射数据(命令字: 0xA0, payload)
2	延时 2ms
3	查询 STATUS 看发送是否完成(读 0x07 是否为 0x20 进行判断),完成后才能执行下一步
4	清 FLUSH_TX(1110 0001, 0)
5	清状态寄存器(配置 0x07 写 0x70)

备注:步骤 2 延时 2ms 是保证在发送过程中不要有其它操作;

6.5 Burst 接收(PRX)流程

顺序	操作说明
1	查询 STATUS 看接收是否完成(读 0x07 是否为
1	0x40 进行判断),完成后才能执行下一步
2	读接收数据(命令字: 0x61, payload)
3	清 FLUSH_RX(1110 0010,0)
4	清状态寄存器(配置 0x07 写 0x70)

6.6 Burst 接收转发送切换流程

顺序	操作说明
1	配置 Rx 模式 (config 寄存器 0x00 为 8F)
2	查询 STATUS 看接收是否完成(读 0x07 是否为
Δ	0x40 进行判断),完成后才能执行下一步
3	读接收数据(命令字: 0x61, payload)
4	清 FLUSH_RX(1110 0010,0)
5	清状态寄存器(配置 0x07 写 0x70)
6	配置 Tx 模式 (config 寄存器 0x00 为 8E)
7	写发射数据(命令字: 0xA0, payload)
8	延时 5ms
9	查询 STATUS 看发送是否完成(读 0x07 是否为
9	0x20 进行判断),完成后才能执行下一步
10	清 FLUSH_TX(1110 0001, 0)
11	清状态寄存器(配置 0x07 写 0x70)

备注: config 配成 8E 后,10us 内写 payload;写 payload 完后,需要延时 5ms 以上;

6.7 Burst 发送转接收切换流程

顺序	操作说明
1	配置 Tx 模式 (config 寄存器 0x00 为 8E)
2	写发射数据(命令字: 0xA0, payload)
3	延时 2ms
4	查询 STATUS 看发送是否完成(读 0x07 是否为
4	0x20 进行判断),完成后才能执行下一步
5	清 FLUSH_TX(1110 0001,0)
6	清状态寄存器(配置 0x07 写 0x70)
7	配置 Rx 模式 (config 寄存器 0x00 为 8F)
8	查询 STATUS 看接收是否完成(读 0x07 是否为
O	0x40 进行判断),完成后才能执行下一步
9	读接收数据(命令字: 0x61, payload)
10	清 FLUSH_RX(1110 0010,0)
11	清状态寄存器(配置 0x07 写 0x70)

6.8 Enhanced 发送(PTX)流程

顺序	操作说明
1	写发射数据(命令字: 0xA0, payload)
2	延时 2ms
3	查询 STATUS 看发送是否完成(读 0x07
	是否为 0x60 进行判断),完成后才能执行下一步
4	读接收数据(命令字: 0x61, payload)
5	清 FLUSH_TX(1110 0001,0)
6	清 FLUSH_RX(1110 0010,0)
7	清状态寄存器(配置 0x07 写 0x70)

6.9 Enhanced 接收(PRX)流程

顺序	操作说明
1	查询 STATUS 看接收是否完成(读 0x07 是否为 0x40 进行判断),完成后才能执行下一步
2	读接收数据(命令字: 0x61, payload)
3	写发射 ACK 数据(命令字: 0xA8, payload)
4	延时 2ms
5	清 FLUSH_TX(1110 0001,0)

6	清 FLUSH_RX(1110 0010,0)
7	清状态寄存器(配置 0x07 写 0x70)

6.10 切换频点流程

顺序	:	操作说明
1		配置频点(RF CH 寄存器 0x05 为 CH(切换信道))

备注: 配置频点只需要修改 0x05 寄存器, 其它均不需要操作