Remainder and Factor Theorem

Contents

1.	٧	Vhy learn?	2
2.	Р	olynomials	2
а	١.	Coefficient:	2
b).	Degree:	2
c	: .	Value:	2
3.	lo	dentities	3
а	١.	Equation	3
b).	Identical	3
c	·.	Solving – By comparing coefficients	3
C	ł.	Solving – By Substitution	3
4.	D	vivision of polynomials	4
а	۱.	Long Division	4
b).	Synthetic Divisor (works for Linear Divisor)	4
5.	R	emainder theorem	6
а	۱.	Confirming the REMAINDER THOREM	6
b).	Exercise on REMAINDER THOREM	6
6.	F	actor Theorem	7
7.	S	olutions of Cubic Equation	7

1. Why learn?

- Learn about Polynomials, meaning many terms in Greek
- A polynomial in the variable x is a collection of terms, each of the form ax^n where **a** is a constant and the power **n** is a non-negative integer.

2. Polynomials

Example of polynomials:

$$8x^3 - x^2 + 3x + 4$$
 (4 terms, powers in descending order)
2 - 5x + 3x²(3 terms, powers in ascending order)

Example of non-polynomials:

$$x^2 - 2x^{\frac{1}{2}} + 6$$
 (fractional powers of x)
 $x^2 + x^{-1} - 2$ (negative powers of x)

a. Coefficient:

In the term ax^n , a is called the coefficient of x^n

Example

$$8x^{3} - x^{2} + 3x + 4$$

$$\rightarrow coeff^{n}of x^{3} = 8$$

$$\rightarrow coeff^{n}of x^{2} = -1$$

$$\rightarrow coeff^{n}of x^{1} = 3$$

$$\rightarrow coeff^{n}of x^{0} = 4$$

b. Degree:

The degree of a polynomial in x is the highest power of x

→ the degree of
$$8x^3 - x^2 + 3x + 4$$
 is 3
→ the degree of $8x^3 - x^5 + 3x + 4$ is 5
→ the degree of 4 is 0

c. Value:

The value of a polynomial is its magnitude when x takes on a number.

For easy reference, polynomials are often denoted by function notations like f(x)

$$let f(x) = 4x^3 - 6x^2 + x$$
$$f(2) = 4(2)^3 - 6(2)^2 + 2 = 10 \rightarrow the \ value \ of \ f(x) \ is \ 10$$

3. Identities

What is the difference between an Equation and an Identity

a. Equation

Consider the polnomials
$$x^2 + 2x$$
 and $4x + 3$

$$x^2 + 2x = 4x + 3$$
 is only true when $x = -1$ and $x = 3$

 $x^2 + 2x = 4x + 3$ os and equation with finite numbers of solution

b. Identical

Consider the polnomials
$$x^2 - 4$$
 and $(x - 2)(x + 2)$

$$x^2 - 4 = (x - 2)(x + 2)$$
 is true for all value of x

They are identical,

 $x^2 - 4 = (x - 2)(x + 2)$ is and identity with infinite numbers of solutions

c. Solving - By comparing coefficients

Given that
$$3x^3 + 4x^2 - 17x - 11 = (Ax + 1)(x + B)(x - 2) + C$$

For all value of x, Find A, B, C

$$3x^{3} + 4x^{2} - 17x - 11 = (Ax^{2} + ABx + x + B)(x - 2) + C$$

$$3x^{3} + 4x^{2} - 17x - 11 = Ax^{3} + ABx^{2} + x^{2} + Bx - 2Ax^{2} - 2ABx - 2x - 2B + C$$

$$3x^{3} + 4x^{2} - 17x - 11 = Ax^{3} + (AB + 1 - 2A)x^{2} + (B - 2AB - 2)x - 2B + C$$

$$\rightarrow coef f^{n} of x^{3} \rightarrow A = 3$$

$$\rightarrow coef f^{n} of x^{2} \rightarrow AB + 1 - 2A = 4$$

$$3B + 1 - 6 = 4$$

$$3B = 9$$

$$B = 3$$

$$\rightarrow coef f^{n} of constant \rightarrow -2B + C = -11$$

$$-6 + C = -11$$

$$C = -5$$

d. Solving - By Substitution

1

Choose
$$x = 2$$
, find C
 $C = 3(2)^3 + 4(2)^2 - 17(2) - 11$
 $C = -5$

Choose $x = 0$, find B
 $-2B + C = -11$
 $-2B - 5 = -11$
 $B = 3$

Choose $x = 1$, find A
 $(Ax + 1)(x + B)(x - 2) + C = 3 + 4 - 17 - 11$
 $(A + 1)(1 + B)(1 - 2) + C = -21$
 $(A + 1)(1 + 3)(-1) - 5 = -21$
 $-4(A + 1) = -16$
 $A = 3$

4. Division of polynomials

a. Long Division

$$x^2 + 5x + 6 \int x^2 + 4x + 5$$

$$x^2 - 1 \sum x^3 - x^2 - 6$$

$$\begin{array}{r}
 x - 1 \\
 x^{2} - 1 \overline{\smash{\big)}} x^{3} - x^{2} - 6 \\
 -x^{3} + x \\
 -x^{2} + x - 6 \\
 -x^{2} + 1 \\
 \hline
 x - 7$$

b. Synthetic Divisor (works for Linear Divisor)

Divide
$$2x^4 - 3x^3 + x^2 + 1$$
 by $x - 2$

$$\rightarrow$$
 2 * 2 = 4

$$\rightarrow 1 * 2 = 2$$

$$2x^4 - 3x^3 + x^2 + 1$$
 by $x - 2 = (x - 2)(2x^3 + x^2 + 3x + 8) + 13$

5. Remainder theorem

What if the question only wants the remainder?

Divide
$$2x^4 - 3x^3 + x^2 + 1$$
 by $x - 2$
let $f(x) = 2x^4 - 3x^3 + x^2 + 1$
 $f(2) = 13$

a. Confirming the REMAINDER THOREM

$$f(x) = (x - a)Q(x) + R$$

if a polynomial f(x) is divided by a linear divisor $(x - a) \rightarrow remainder = f(a)$

if a polynomial f(x) is divided by a linear divisor $(ax - b) \rightarrow remainder = f\left(\frac{b}{a}\right)$

Let $f(x) = 4x^3 - 5x + 1$, find the remainder when divided by:

1	$x-2 \rightarrow x=2$
	$f(2) = 4(2)^3 - 5(2) + 1 = 23$
2	$2x - 1 \rightarrow x = \frac{1}{2}$
	$\boldsymbol{\mathcal{L}}$
	$f\left(\frac{1}{2}\right) = 4\left(\frac{1}{2}\right)^3 - 5\left(\frac{1}{2}\right) + 1 = -1$
3	$3x + 2 \rightarrow x = -\frac{2}{3}$
	$f\left(-\frac{2}{3}\right) = 4\left(-\frac{2}{3}\right)^3 - 5\left(-\frac{2}{3}\right) + 1 = -3\frac{4}{27}$
	$f\left(-\frac{1}{3}\right) = 4\left(-\frac{1}{3}\right) - 5\left(-\frac{1}{3}\right) + 1 = -3\frac{1}{27}$
4	$x \rightarrow x = 0$
	$f(0) = 4(0)^3 - 5(0) + 1 = 1$

b. Exercise on REMAINDER THOREM

1	The expression $4x^2 - px + 7$ leaves a remainder of -2 when divided by $(x - 3)$, Find p
	$f(x) = 4x^2 - px + 7$
	$f(3) = 4(3)^2 - 3p + 7 = -2$
	36 - 3p = -9
	-3p = -45
	p = 15
2	The expression $ax^3 + bx^2 + 6$,
	leaves a remainder of 10 and 1 when divided by $(x-2)$ and $(x+1)$ respectively,
	Find a and b
	$f(x) = ax^3 + bx^2 + 6$
	f(2) = 8a + 4b + 6 = 10
	f(2) = 2a + b = 1
	f(-1) = -a + b + 6 = 1
	f(-1) = -a + b = -5
	b = -5 + a
	b=-3, $a=2$

6. Factor Theorem

if the divisor (x - a) is a facetor of $f(x) \rightarrow f(x)$ has no remainder

$$f(x) = (x - a)Q(x) + 0$$
$$f(a) = 0$$

1	Determine whether $(x + 1)$ is a factor of
	$f(x) = 3x^4 + x^3 - x^2 + 3x + 2$ $f(-1) = 0$
	$f(x) = x^6 + 2x(x-1) - 4$ $f(-1) = 1$
2	Find value of k if $(x - 2)$ is a facetor of $x^3 - 2kx^2 + 3x + k$ $f(2) = x^3 - 2kx^2 + 3x + k = 0$
	$ \begin{vmatrix} 1 & 1 & 2kx & +3x + k & = 0 \\ 8 - 8k + 6 + k & = 0 \end{vmatrix} $
	k = 2

7. Solutions of Cubic Equation

Note: Only Step 1 is a new step, Step 2 and 3 is what we have learnt above or learnt before

Step 1

$$let f(x) = px^3 + qx^2 + rx + s$$

Obtain the 1st factor(x - k) by trial and error

i.e. find the value of k such that f(k) = 0 using calculator

Step 2

Factorize
$$f(x)$$
into $(x - k)(ax^2 + bx + c) = 0$

by long division or synthetic division

Step 3

if
$$f(x) = 0 \to x - k = 0$$
 or $ax^2 + bx + c = 0$

solve $ax^2 + bx + c = 0$ by factorizing or formulae

1	$f(x) = 2x^3 + 3x^2 - 11x - 6 = 0$
	Tips: try to use $\pm 1 \pm 2 \pm 3 \pm 6$, (factor of 6) for trial and error
	Step 1, trial and error
	$f(1) = 2x^3 + 3x^2 - 11x - 6 = -12 \neq 0 \text{ (skip)}$
	$f(2) = 2x^3 + 3x^2 - 11x - 6 = 0$
	(x-2) is a factor
	Step 2,
	$\frac{2x^3 + 3x^2 - 11x - 6}{(x - 2)} = (x - 2)(2x^2 + 7x + 3)$
	$\frac{(x-2)}{(x-2)} = (x-2)(2x^2 + 7x + 3)$
	Step 3,
	$f(x) = (x-2)(2x^2 + 7x + 3)$
	f(x) = (x-2)(2x+1)(x+3)
	$x = 2, \qquad x = -\frac{1}{2}, \qquad x = -3$
	$x - 2, x = -\frac{1}{2}, x = -3$