ACE Examination Paper 2

Year 12 Mathematics Extension 1 Yearly Examination Worked solutions and marking guidelines

Section	Section I			
	Solution	Criteria		
1.	$\overrightarrow{AB} = 9\cancel{1} - 4\cancel{1}$ $3 - 4$ $2 - 4 - 6 - 8 - 10 - 12$	1 Mark: B		
2.	$\frac{d}{dx} \left(x \cos^{-1} x - \sqrt{1 - x^2} \right)$ $= x \times \frac{-1}{\sqrt{1 - x^2}} + \cos^{-1} x - \frac{1}{2\sqrt{1 - x^2}} \times -2x$ $= \cos^{-1} x$	1 Mark: C		
3.	$V = \pi \int_{a}^{b} y^{2} dx = \pi \int_{0}^{2} (3x+1)^{2} dx$ $= \pi \int_{0}^{2} (9x^{2} + 6x + 1) dx$ $= \pi [3x^{3} + 3x^{2} + x]_{0}^{2}$ $= \pi [(3 \times 2^{3} + 3 \times 2^{2} + 2) - 0]$ $= 38\pi \text{ cubic units}$	1 Mark: D		
4.	$u = 2 - x^{2}$ $\frac{du}{dx} = -2x \text{ or } -\frac{1}{2}du = xdx$ $\int \frac{x}{(2 - x^{2})^{3}} dx = -\frac{1}{2} \int \frac{1}{u^{3}} du$ $= -\frac{1}{2} \times -\frac{1}{2}u^{-2} + C$ $= \frac{1}{4(2 - x^{2})^{2}} + C$	1 Mark: B		
5.	$y = 2xe^{2x}$ $\frac{dy}{dx} = 2x \times 2e^{2x} + e^{2x} \times 2 = 4xe^{2x} + 2e^{2x}$ $\frac{d^2y}{dx^2} = 4x \times 2e^{2x} + e^{2x} \times 4 + 4e^{2x} = 8xe^{2x} + 8e^{2x}$ (A) $\frac{d^2y}{dx^2} - 4y = 8e^{2x}$ LHS = $8xe^{2x} + 8e^{2x} - 4(2xe^{2x})$ $= 8e^{2x} = RHS$	1 Mark: A		

	Solution	Criteria
6.	$\frac{\sin 2x}{\cos x} = \frac{2\sin x \cos x}{\cos x}$	1 Mark: A
	$\frac{1}{\cos 2x - 1} = \frac{1}{\cos^2 x - \sin^2 x - 1}$	
	$=\frac{2\sin x \cos x}{-2\sin^2 x}$	
	$=-\cot x$	
7.	$\frac{dy}{dx} = \frac{1}{5}(y-1)^2$	1 Mark: A
	$\frac{dx}{dy} = \frac{5}{(y-1)^2}$	
	$x = \int \frac{5}{(y-1)^2} dy = -5 (y-1)^{-1} + C$	
	Now $y = 0$, $x = 0 \Rightarrow C = -5$	
	$x = \frac{-5}{(y-1)} - 5$	
	$\frac{x+5}{5} = \frac{-1}{(v-1)}$	
	(x+5)(y-1) = -5	
	$y-1=\frac{-5}{(x+5)}$	
	$y = \frac{-5}{(r+5)} + 1$	
	(x + 3)	
	$=\frac{-5+x+5}{(x+5)}=\frac{x}{(x+5)}$	
8.	Let p be the probability of a truck. $p = 0.06, n = 30$	1 Mark: C
	$P(X = x) = {}^{30}C_x (0.06)^x (0.94)^{30-x}$	
	$P(X=3) = {}^{30}C_3 (0.06)^3 (0.94)^{27}$	
	= 0.1649	
	≈ 0.165	
9.	$h = \frac{V^2 \sin^2 \theta}{1 - \frac{1}{2}}$	1 Mark: B
	2g	
	$=\frac{(25)^2 \times \sin^2 30}{2 \times 9.8}$	
	2×9.8 = 7.9719	
	~ 7.97 metres	
10.	LHS = $2[3m - (-1)^{k+1}] + (-1)^{k+2}$	1 Mark: D
	$= 2 \times 3m + 2 \times (-1)^{k+2} + 1 \times (-1)^{k+2}$	
	$=3[2m+(-1)^{k+2}]$	
	=3p	
	= RHS	
	∴ Error in line 4.	

Section	ı II	
11(a)	$x = 2\sin\theta$ $\frac{dx}{d\theta} = 2\cos\theta$ $dx = 2\cos\theta d\theta$ When $x = 1$, $1 = 2\sin\theta$, $\theta = \frac{\pi}{6}$ $\int_{-1}^{1} \sqrt{4 - x^2} dx = \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \sqrt{4 - 4\sin^2\theta} \times 2\cos\theta d\theta$ $= 4 \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \cos^2\theta d\theta = 4 \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{1}{2} (1 + \cos2\theta) d\theta$ $= 4 \left[\frac{1}{2} \left(\theta + \frac{1}{2} \sin 2\theta \right) \right]_{-\frac{\pi}{6}}^{\frac{\pi}{6}}$ $= 2 \times \left[\left(\frac{\pi}{6} + \frac{1}{2} \sin \frac{\pi}{3} \right) - \left(-\frac{\pi}{6} + \frac{1}{2} \sin - \frac{\pi}{3} \right) \right]$ $= \frac{2\pi}{3} + \sqrt{3}$	3 Marks: Correct answer. 2 Marks: Uses the substitution and simplifies the integral. 1 Mark: Adjusts the limits and finds dx.
11(b)	$\cos \angle AOB = \frac{\underline{u} \cdot \underline{v}}{ \underline{u} \underline{v} }$ $= \frac{2 \times 1 + 2 \times (-2)}{\sqrt{2^2 + 2^2} \times \sqrt{1^2 + (-2)^2}}$ $= \frac{-2}{\sqrt{40}}$ $\angle AOB = 108.4349 \dots$ $\approx 108^{\circ}$	2 Marks: Correct answer. 1 Mark: Uses the formula for the angle between two vectors.
11(c) (i)	LHS = $\cot \theta - 2\cot 2\theta$ = $\frac{1}{\tan \theta} - 2 \times \frac{1}{\tan 2\theta}$ = $\frac{1}{\tan \theta} - 2 \times \frac{1 - \tan^2 \theta}{2\tan \theta}$ = $\frac{1}{\tan \theta} - \frac{1}{\tan \theta} + \tan \theta$ = $\tan \theta$ = RHS	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.
11(c) (ii)	$\tan\theta = \cot\theta - 2\cot 2\theta \text{ from part (i)}$ $\tan 2\theta = \cot 2\theta - 2\cot 4\theta$ $\tan 4\theta = \cot 4\theta - 2\cot 8\theta$ Substitute these results into the identity. LHS = $\tan\theta + 2\tan 2\theta + 4\tan 4\theta$ = $(\cot\theta - 2\cot 2\theta) + 2(\cot 2\theta - 2\cot 4\theta) + 4(\cot 4\theta - 2\cot 8\theta)$ = $\cot\theta - 8\cot 8\theta$ = RHS	2 Marks: Correct answer. 1 Mark: Uses the result in part (i) and makes some progress.

11(d)	$x = u^{2} + 1$ $dx = 2udu$ when $x = 10$, $u = 3$ and $x = 2$, $u = 1$ $\int_{2}^{10} \frac{x}{\sqrt{x - 1}} dx = \int_{1}^{3} \frac{u^{2} + 1}{u} (2udu)$ $= \int_{1}^{3} 2u^{2} + 2du$ $= 2\left[\frac{u^{3}}{3} + u\right]_{1}^{3}$ $= 2[(9 + 3) - \left(\frac{1}{3} + 1\right)]$ $= 21\frac{1}{3}$	2 Marks: Correct answer. 1 Mark: Sets up the integration using the substitution.
11(e)	Step 1: To prove true for $n = 1$ LHS = $\frac{1}{2!} = \frac{1}{2}$ RHS = $1 - \frac{1}{(1+1)!} = \frac{1}{2}$ Result is true for $n = 1$ Step 2: Assume true for $n = k$ $S_k = 1 - \frac{1}{(k+1)!}$ Step 3: To prove true for $n = k + 1$ $S_{k+1} = 1 - \frac{1}{(k+2)!}$ $S_k + T_{k+1} = S_{k+1}$ LHS = $1 - \frac{1}{(k+1)!} + \frac{k+1}{(k+2)!}$ = $1 - \frac{(k+2) - (k+1)}{(k+2)!}$ = $1 - \frac{1}{(k+2)!}$ = RHS Step 4: True by induction	3 marks: Correct answer. 2 marks: Proves the result true for $n = 1$ and attempts to use the result of $n = k$ to prove the result for $n = k + 1$ 1 mark: Proves the result true for $n = 1$.
11(f)	$V = \pi \int_0^4 x^2 dy$ $= \pi \int_0^4 y^{\frac{1}{2}} dy$ $= \pi \left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right]_{10}^4$ $= \frac{2\pi}{3} \left(4^{\frac{3}{2}} - 0^{\frac{3}{2}} \right)$ $= \frac{16\pi}{3} \text{ cubic units}$	2 Marks: Correct answer. 1 Mark: Uses volume formula with at least one correct value.

12(a)	$2\sin x - \cos x = A\sin(x - \alpha)$	2 Marks: Correct
(i)	$= A \sin x \cos \alpha - A \cos x \sin \alpha$	answer.
	$A\cos\alpha = 2$ ①	1 Mayle Chayya
	$A\sin\alpha = 1$ ②	1 Mark: Shows some
	Equation ② divided by equation ①	understanding.
	$\tan \alpha = \frac{1}{2}$	
	$\alpha = 26^{\circ}34'$	
	$\alpha = 26^{\circ}34$ Squaring and adding the equations	
	$A^{2}(\sin^{2}\alpha + \cos^{2}\alpha) = 1^{2} + 2^{2}$	
	$A^2 = 5$	
	$A = \sqrt{5} (A > 0)$	
	$\therefore 2\sin x - \cos x = \sqrt{5}\sin(x - 26^{\circ}34')$	
	251112 CO32 — V35111(2 20 34)	
12(a)	$\sqrt{5}\sin(x - 26^{\circ}34') = 1$	2 Marks: Correct
(ii)	$\sin(x - 26^{\circ}34') = \frac{1}{\sqrt{5}}$	answer.
	$\sin(x - 26.34) = \frac{1}{\sqrt{5}}$	1 Mark: Finds one solution or makes
	$x - 26^{\circ}34' = 26^{\circ}34' \text{ or } 153^{\circ}26'$	some progress
	$x = 53^{\circ}8' \text{ or } 180^{\circ}$	using part (a).
12(1)	<u> </u>	2.14
12(b)	$\overrightarrow{PR} = \overrightarrow{PQ} + \overrightarrow{QR}$	2 Marks: Correct answer.
	$= \left(-\underline{\iota} + 4\underline{\jmath}\right) + \left(4\underline{\iota} - 3\underline{\jmath}\right)$	answer.
	$=3\underline{i}+\underline{j}$ $ \overrightarrow{PR} = \sqrt{3^2+1^2}$	1 Mark: Finds \overrightarrow{PR} .
	$ PR = \sqrt{3^2 + 1^2}$ $= \sqrt{10}$	
	$= \sqrt{10}$	
12(c)	$N = 100 + Ae^{-0.09t}$	1 Mark: Correct
(i)	$dN = 0.00 \times 4a^{-0.09t}$	answer.
	$\frac{dN}{dt} = -0.09 \times Ae^{-0.09t}$	
	= -0.09(N - 100)	
12()	William A. Asham M. 400	2 M - 1 C .
12(c) (ii)	When $t = 1$ then $N = 400$ $400 = 100 + Ae^{-0.09 \times 1}$	2 Marks: Correct answer.
(11)	$Ae^{-0.09} = 300$	unower.
		1 Mark: Finds the
	$A = \frac{300}{e^{-0.09}} = 328.2522 \dots$	value of A or shows similar
	We need to find t when $N = 200$	understanding of
	$200 = 100 + \frac{300}{e^{-0.09}}e^{-0.09t}$	the problem.
	$e^{-0.09t} = 100 \div \frac{300}{e^{-0.09}} = 0.3046 \dots$	
	$t = \frac{\ln(0.3046 \dots)}{-0.09}$	
	= 13.2068	
	≈ 13.2 years	
	∴ It will 13.2 years for the number of animals to reach 200.	

12(d)	$x = \frac{1}{4} \tan \theta$	3 Marks: Correct answer.
	$\frac{dx}{d\theta} = \frac{1}{4}\sec^2\theta d\theta$ $1 + 16x^2 = 1 + 16\left(\frac{1}{4}\tan\theta\right)^2 = 1 + \tan^2\theta = \sec^2\theta$	2 Marks: Finds the solution in terms of θ .
	$\int \frac{1}{1+16x^2} dx = \int \frac{\frac{1}{4}\sec^2\theta}{\sec^2\theta} d\theta$	1 Mark: Sets up the integration using the substitution.
	$= \frac{1}{4} \int 1 d\theta$ $= \frac{1}{4} \theta + C$	
	$Now x = \frac{1}{4} \tan \theta$	
	$4x = \tan\theta$ $\theta = \tan^{-1}4x$	
	$\therefore \int \frac{1}{1 + 16x^2} dx = \frac{1}{4} \tan^{-1} 4x + C$	
12(e) (i)	Let p be the probability of hitting the target. p = 0.95, n = 40	2 Marks: Correct answer.
	$P(X = x) = {}^{40}C_x(0.95)^x(0.05)^{10-x}$ $P(X = 36) = {}^{40}C_{36}(0.95)^{36}(0.05)^{40-36}$ $= 0.09012 \dots$ ≈ 0.0901	1 Mark: Makes some progress.
12(e) (ii)	Misses at most 2 targets then X = 38, 39 and 40 $P(X = x) = {}^{40}C_x(0.95)^x(0.05)^{10-x}$ Expression is:	2 Marks: Correct answer.
	$P(X \ge 38) = P(X = 38) + P(X = 39) + P(X = 40)$	1 Mark: Uses the complementary
	$= {}^{40}C_{38}(0.95)^{38}(0.05)^2 + {}^{40}C_{39}(0.95)^{39}(0.05)^1 + {}^{40}C_{40}(0.95)^{40}$ = 0.676735	event or shows some understanding.
	≈ 0.6767	anderstanding.
13(a)	$\overrightarrow{CB} = \frac{1}{3}\overrightarrow{OA} = \frac{1}{3}\overrightarrow{u}$ $\overrightarrow{A} = \frac{1}{3}\overrightarrow{u}$	2 Marks: Correct
	$\overrightarrow{CB} = \frac{1}{3}\overrightarrow{OA} = \frac{1}{3}\underline{u}$ $\overrightarrow{OB} = \overrightarrow{OC} + \overrightarrow{CB}$	answer.
	$= v + \frac{1}{3}u$	1 Mark: Finds \overrightarrow{OB} .
	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ 1	
	$= v + \frac{1}{3}u - u$ 0	
	$= v - \frac{2}{3}u$	

			T
13(b)	<i>y</i> ↑		2 Marks: Correct
(i)			answer.
	V = 40		
			1 Mark: Finds
	Cliff 25 m		horizontal or
			vertical parametric
	O Sea	$\longrightarrow x$	equations or shows
			some
	Horizontally	Vertically	understanding of
	$a_x = \ddot{x} = 0$	$a_y = \ddot{y} = -10$	the problem.
	$v_x = \dot{x} = c_1$	$v_y = \dot{y} = -10t + c_3$	
	At $t = 0$, $v_x = 40 \implies c_1 = 40$	At $t = 0$, $v_y = 0 \implies c_3 = 0$	
	$v_{x} = \dot{x} = 40$	$v_{v} = \dot{y} = -10t$	
	$x = 40 + c_2$	$y = -5t^2 + c_4$	
	When $t = 0$, $x = 0 \Rightarrow c_2 = 0$	When $t = 0$ $y = 25 \Rightarrow c_4 = 25$	
	x = 40t	$v = -5t^2 + 25$	
12(6)		<u>, </u>	2 Marks: Correct
13(b) (ii)	Particle reaches the sea when $y = \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{3}{2}$	= 0	answer.
(11)	$0 = -5t^2 + 25$		allower.
	$t = \sqrt{5} \ (t > 0)$		1 Mark: Finds the
	Horizontal distance from the bas	se of the cliff.	time taken to reach
	x = 40t		the sea.
	$=40\times\sqrt{5}$		
	$=40\sqrt{5} \text{ m}$		
	∴ The rock hits the sea $40\sqrt{5}$ me	tres from the base of the cliff.	
13(c)	Step 1: To prove true for $n = 1$		3 marks: Correct
	$5^1 + 12 \times 1 - 1 = 16$		answer.
	Result is true for $n = 1$		
	Step 2: Assume true for $n = k$		2 marks: Proves the
	$5^k + 12k - 1 = 16m$		result true for $n = 1$
	where <i>m</i> is an integer		and attempts to use
	Step 3: To prove true for $n = k +$	1	the result of $n = k$ to
	$5^{k+1} + 12(k+1) - 1 = 16p$		prove the result for
	where <i>p</i> is an integer		n = k + 1.
	LHS = $5^{k+1} + 12(k+1) - 1$		
	$= 5^{k+1} + 12k + 11$		1 mark: Proves the
	$= 5(5^k + 12k - 1) - 48k + 1$	- 16	result true for $n = 1$.
	$= 5(5^k + 12k - 1) + 16(1$	— <i>эк)</i>	
	= 5(16m) + 16(1 - 3k)		
	= 16(5m + 1 - 3k)		
	=16p		
	= RHS		
	Step 4: True by induction		
13(d)	$ \underline{u}.\underline{v} = \underline{u} \underline{v} \cos\theta $		2 Marks: Correct
	$= 5 \times 5 \times \cos 60^{\circ}$		answer.
			1 Mark: Makes
	= 12.5		some progress.

13(e)	$\int_0^\pi \sin^4 x dx = \int_0^\pi (\sin^2 x)^2 dx$	3 Marks: Correct
	$\int_0^{\infty} \sin x dx = \int_0^{\infty} (\sin x)^2 dx$	answer.
	$= \int_0^{\pi} \left(\frac{1}{2}(1 - \cos 2x)\right)^2 dx$ $= \int_0^{\pi} \frac{1}{2}(\cos^2 2x - 2\cos 2x + 1) dx$	2 Marks: Makes significant progress towards the solution.
	$= \int_0^\pi \frac{1}{4} (\cos^2 2x - 2\cos 2x + 1) dx$	
	$= \frac{1}{4} \int_0^{\pi} \frac{1}{2} (1 + \cos 4x) - 2\cos 2x + 1 dx$	1 Mark: : Applies double angle trig identity.
	$= \frac{1}{4} \left[\frac{1}{2} x + \frac{1}{8} \sin 4x - \sin 2x + x \right]_0^{\pi}$	
	$=\frac{1}{4}\left[\left(\frac{\pi}{2}+\pi\right)-0\right]$	
	$=\frac{3\pi}{8}$	
14(a)	$\sin(-105^\circ) = \sin 255^\circ$ = $-\sin 75^\circ = -\sin(30^\circ + 45^\circ)$ = $-(\sin 30^\circ \cos 45^\circ + \cos 30^\circ \sin 45^\circ)$	2 Marks: Correct answer.
	$= -\left(\frac{1}{2} \times \frac{1}{\sqrt{2}}\right) + \left(\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}\right)$	1 Mark: uses the compound angle formula with at
	$=\frac{1+\sqrt{3}}{2\sqrt{2}}$	least one correct value.
14(b)	$x = 25t\cos\theta (1)$	2 Marks: Correct
(i)	$y = -5t^2 + 25t\sin\theta + 2(2)$	answer.
	Eqn (1) $t = \frac{x}{25\cos\theta}$ into eqn (2) $y = -5\frac{x^2}{25^2\cos^2\theta}$	1 Mark: makes some progress towards the
	Y 2 m	solution.
	$+25\frac{25\cos\theta}{25\cos\theta}\sin\theta + 2$	
	$y = -\frac{x^2}{125}\sec^2 40 + x \tan \theta + 2$	
	$y = -\frac{x^2}{125}(1 + \tan^2\theta) + x\tan\theta + 2$	
14(b) (ii)	When $x = 20$ then $y = 15$ Now (20, 15) satisfies the equation in part (i)	2 Marks: Correct
	$15 = -\frac{20^2}{125}(1 + \tan^2\theta) + 20\tan\theta + 2$	answer.
	$125 (1 + \tan^2 \theta) + 20 \tan^2 \theta$ $75 = -16(1 + \tan^2 \theta) + 100 \tan \theta + 10$	1 Mark: Determines
	$16\tan^2\theta - 100\tan\theta + 81 = 0$	the quadratic equation.
	$\tan\theta = \frac{100 \pm \sqrt{100^2 - 4 \times 16 \times 81}}{2 \times 16}$	
	$2 \times 16 = \frac{100 \pm \sqrt{4816}}{32} b$	
	$= {32} $ = 0.9563 or 0.52936	
	$\theta \approx 44^{\circ} \text{ or } 79^{\circ}$	
	∴ The ball must be thrown between 44° and 79°.	

14(c)	$A = \int_0^\pi \sin x dx - \int_0^\pi \sin^2 x dx$	2 Marks: Correct answer.
	$= \int_0^{\pi} \sin x dx - \int_0^{\pi} \frac{1}{2} (1 - \cos 2x) dx$	1 Mark: Sets up the integrand correctly.
	$= \left[-\cos x - \frac{1}{2} \left(x - \frac{1}{2} \sin 2x \right) \right]_0^{\pi}$	
	$= \left[-\cos \pi - \frac{1}{2} \left(\pi - \frac{1}{2} \sin 2\pi \right) \right] - \left[-\cos 0 - \frac{1}{2} \left(0 - \frac{1}{2} \sin 0 \right) \right]$	
	$=2-\frac{\pi}{2}$ square units	
14(d) (i)	A Bernoulli trial. There are only two outcomes: either 5 or not 5. Total outcomes: $6 \times 6 = 36$ Successful outcomes: $(1,4)$ $(2,3)$ $(3,2)$ $(4,1)$ $n = \frac{4}{100} = \frac{1}{100}$	1 Mark: Correct answer.
14(d) (ii)	$p = \frac{1}{36} = \frac{1}{9}$ $E(X) = p = \frac{1}{9}$	2 Marks: Correct answer.
	$Var(X) = p(1-p)$ $= \frac{1}{9} \times \left(1 - \frac{1}{9}\right)$ $= \frac{8}{81}$	1 Mark: Finds $E(X)$ or $Var(X)$.
14(e)	$\frac{dy}{dx} = 1 - 2y$	3 Marks: Correct
	$\frac{dx}{dy} = \frac{1}{1 - 2y}$	answer.
	$\frac{dy}{dy} = \frac{1}{1 - 2y}$ $x = \int \frac{1}{1 - 2y} dy$	2 Marks: Makes significant progress.
	$x = \int \frac{1}{1 - 2y} dy$ = $-\frac{1}{2} \ln(1 - 2y) + C$	1 Mark: Separates the variables and
	Now $x = 0$ $y = -1 \Rightarrow C = \frac{1}{2} \ln 3$	attempts to integrate.
	$x = -\frac{1}{2}\ln(1 - 2y) + \frac{1}{2}\ln 3$	
	$x = \frac{1}{2} \ln \left(\frac{3}{1 - 2y} \right)$	
	$2x = \ln\left(\frac{3}{1 - 2y}\right)$	
	$e^{2x} = \frac{3}{1 - 2y}$	
	$(1-2y)e^{2x}=3$	
	$-2ye^{2x} = 3 - e^{2x}$	
	$y = \frac{3 - e^{2x}}{-2e^{2x}}$	
	$\therefore y = \frac{1}{2}(1 - 3e^{-2x})$	