Proof. Доказательство несчётности отрезка с помощью компактности.

Рассмотрим произвольную точку отрезка x_k и её окрестность размером $\frac{1}{10^k}$. Все такие окрестности образуют открытое покрытие отрезка, но их суммарная длина $\leq \frac{1}{9}$, что меньше длины произвольного отрезка. Почему-то это даёт противоречие.

Следствие. (из теоремы о непрерывности монотонной функции) У монотонной функции, заданной на промежутке, имеется не более чем счётное (HEHC) множество точек разрыва.

Пример.
$$\Theta(x) = sign(x)\frac{1}{2} + \frac{1}{2}$$

 $]x_k$ это k-тое рациональное число

$$f(x) = \sum_{k=1}^{+\infty} \frac{1}{2^k} \Theta(x - x_k)$$

f(x) имеет скачок в каждом рациональном значении аргумента.

Proof.
$$f(x-0) < f(x+0)$$

 $(f(x-0), f(x+0)) \leadsto q_x$
т. разрыва $\to \mathbb{Q}$

$$]x < t_0 < y$$

$$f(x) \le f(t_0) \le f(y)$$

$$f(x) \le f(x+0) \le f(t_0) \le f(y-0) \le f(y)$$

Таким образом, (f(x-0),f(x+0)) не имеет общих точек, тогда q_x все разные \Rightarrow взятие q_x — инъекция.

Упражнение. 1. Существует ли на плоскости более, чем счётное множество непересекающихся окружностей?

- 2. Существует ли на плоскости более, чем счётное множество восьмёрок?
- 3. Можно ли в счётном множестве задать такое континуальное семейство (A_{α}) , что: $\forall \alpha \in \mathbb{R} \ A_{\alpha} \subset A$

$$\alpha_1 \neq \alpha_2 \Rightarrow A_{\alpha_1} \neq A_{\alpha_2}$$

$$\forall \alpha, \beta : \alpha < \beta \ A_{\alpha} \subset A_{\beta}$$

Теорема 1. О существовании и непрерывности обратной функции.

$$f:\langle a,b
angle o\mathbb{R}$$
 — непр., строго монот. $m:=\inf_{\langle a,b
angle}f(x), M:=\sup_{\langle a,b
angle}f(x)$. Тогда:

- 1. f обратимая и $f^{-1}:\langle m,M\rangle \to \langle a,b\rangle$
- $2. \ f^{-1} \ cm$ от монотонна и того же типа (возрастает или убывает)
- 3. f^{-1} непрерывна

 Π римечание. Тип промежутка в f и f^{-1} совпадают.

Proof. Пусть $f \uparrow$

$$f(\langle a,b \rangle)$$
 — промежуток $\langle m,M \rangle$ (типы скобок совпадают) f — строго монот. $\Rightarrow f$ — инъекция. Тогда $f:\langle a,b \rangle \to \langle m,M \rangle$ — биекция $\forall x_1 < x_2 \ f(x_1) < f(x_2)$ $\forall y_1 < y_2 \ f^{-1}(y_1) < f^{-1}(y_2)$

1 Элементарные функции

Определение. Всё, для чего есть кнопочки на калькуляторе — элементарные функции: $const, x^a, a^x, \log_a x, \sin x, \cos x, \arcsin, \arctan x$

+ конечное число арифметических действий и композиций

1.1 x^a

Свойства:

$$1. \ x^{r+s} = x^r x^s$$

2.
$$(x^r)^s = x^{rs}$$

3.
$$(xy)^s = x^s y^s$$

$$f_a(x) = x^a, a \in \mathbb{Q}$$

Докажем непрерывность:

1.
$$a = 1$$
 $f_1(x) = x - \text{непр.}$

2.
$$a \in \mathbb{N}$$
 $f_a(x) = f_1(x) \cdot f_1(x) \dots f_1(x)$ — непр.

3.
$$a \in "-\mathbb{N}"$$
 $f_{-a}(x) \stackrel{def}{=} \frac{1}{f_a(x)}$

4.
$$a=0$$
 $f_0(x)\equiv 1$ (при $x\neq 0$, доопределим $f_0(0)=1$) — непр. в $\mathbb R$

5.
$$a=\frac{1}{n}, n\in\mathbb{N}, n$$
 — нечётно

 $f_n\uparrow$ строго $\inf_{x\in\mathbb{R}}f_n(x)=-\infty$ $\sup f_n=+\infty, f_n$ —непр. \Rightarrow по теореме о непрерывности монотонной функции f^{-1} — непр.

$$\exists f_n^{-1}: (-\infty, +\infty) \to \mathbb{R}$$

$$f_{\frac{1}{n}}(x) = f_n^{-1}(x)$$

6.
$$a=\frac{1}{n}, n\in\mathbb{N}, n$$
 – чётн.

$$f_n:[0,+\infty) \to [0,+\infty)$$
 — строго монот., непр.

$$f(0) = 0 \quad \sup f_n = +\infty$$

$$\exists f^{-1} : [0, +\infty) \to [0, +\infty)$$

$$f_{\frac{1}{n}}(x) := f_n^{-1}(x)$$

7. $a=\frac{p}{q}$ (несокр.), $p\in\mathbb{Z},q\in\mathbb{N}$

$$f_a := f_{\frac{1}{a}} \circ f_p$$

2 Производная

Определение. $f:\langle a,b\rangle \to \mathbb{R}$ $x_0 \in \langle a,b\rangle$ f — дифференцируема. в точке x_0 , если $\exists A \in \mathbb{R}$

$$f(x) = f(x_0) + A \cdot (x - x_0) + o(x - x_0), x \to x_0$$

При этом A называется производной f в точке x_0

Определение. f — дифференцируема в точке x, если

$$\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = A \in \mathbb{R}$$

A — производная f в точке x_0

Примечание. Второе определение не обобщимо на пространство произвольной размерности, в отличие от первого.

Теорема 2. Определение $1 \Leftrightarrow$ определению 2.

Proof. Докажем "⇐".

$$f(x) = f(x_0) + A \cdot (x - x_0) + o(x - x_0), x \to x_0$$
$$A = \frac{f(x) - f(x_0)}{x - x_0} - \frac{o(x - x_0)}{x - x_0}$$

Докажем "⇒".

$$\frac{f(x) - f(x_0)}{x - x_0} = A + \alpha(x) \quad \alpha(x) \xrightarrow[x \to x_0]{} 0$$

Примечание. 1. f — дифф. в $x_0 \Rightarrow f$ — непр. в x_0

2. $f'(x_0)$ — обозн. для производной Если $x_0 \in (a,b)$ в опр. 1, 2 $x \to x_0 + 0$ f — дифф. справа $\Rightarrow A$ — правостор. производная $f'_+(x)$ $x \to x_0 - 0$ слева $f'_-(x_0)$

$$\exists f'_+(x_0) = f'_-(x_0) = f -$$
 дифф. в x_0

3. $A = \pm \infty : f'(x_0) = \pm \infty$, но f не дифф.

Пример.

$$f(x) = \begin{cases} 0 & , \ x = 0 \\ x \sin \frac{1}{x} & , \ x \neq 0 \end{cases}$$

$$\exists \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$$

Определение.

$$y = f(x_0) + f'(x_0)(x - x_0)$$

— называется касательной к графику y = f(x) в точке x_0

Теорема 3. $f, g : \langle a, b \rangle \to \mathbb{R}$, дифф. в x_0

Тогда указанные ниже в левых частях дифференцируемы в x_0 и их производные равны.

1.
$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

2.
$$\forall \alpha \in \mathbb{R} \quad (\alpha f)'(x_0) = \alpha f'(x_0)$$

3.
$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

4. *Echu* $q(x_0) \neq 0$:

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$$

Proof. Докажем 4 по определению.

$$\frac{\frac{f}{g}(x_0) + h - \frac{f}{g}(x_0)}{h} = \frac{\frac{f(x_0 + h) - f(x_0)}{h}g(x_0) - f(x_0)\frac{g(x_0 + h) - g(x_0)}{h}}{\frac{g(x_0 + h)g(x_0)}{h}} \xrightarrow[h \to 0]{} \text{OK}$$

Теорема 4. О производной композиции.

$$f:\langle a,b \rangle o \langle c,d \rangle \quad x \in \langle a,b \rangle \quad f - \partial u \phi \phi. \ g \ x \ g:\langle c,d \rangle o \mathbb{R} \quad g - \partial u \phi \phi. \ y = f(x)$$
 Тогда $g \circ f - \partial u \phi \phi. \ g \ x; (g(f(x)))' = g'(f(x)) \cdot f'(x)$

Proof.

$$f(x+h) = f(x) + f'(x)h + \alpha(h)h, \alpha(h) \xrightarrow{h \to 0} 0$$

$$g(y+k) = g(y) + g'(y)k + \beta(k)k$$

$$|f'(x)h + \alpha(h)h = k; \quad k \xrightarrow{h \to 0} 0$$

$$g(f(x+h)) = g(f(x) + f'(x)h + \alpha(h)h) =$$

$$= g(f(x)) + g'(f(x))(f'(x)h + \alpha(h)h) + \beta(k)(f'(x)h + \alpha(h)h) =$$

$$= g(f(x)) + g'(f(x))f'(x)h + g'(f(x))\alpha(h)h + \beta(k)f'(x)h + \beta(k)\alpha(h)h$$

$$|g'(f(x))\alpha(h)h + \beta(k)f'(x)h + \beta(k)\alpha(h)h = \gamma(h) \cdot h; \quad \gamma(h) \xrightarrow{h \to 0} 0$$

Теорема 5. О производной обратной функции.

 $f:\langle a,b \rangle o \mathbb{R}$ — непр., сторого монот. $x\in\langle a,b \rangle$ $f-\partial u\phi\phi$. в $x;f'(x)\neq 0$ По определению f $\exists f^{-1}$ Тогда $f^{-1}-\partial u\phi\phi$. в y=f(x) и

$$(f^{-1})'(y) = \frac{1}{f'(x)}$$

Примечание. f^{-1} — дифф. \Rightarrow ф-ция очев.: $(f^{-1})'(f(x)) \cdot f'(x) = (f^{-1}(f(x)))' = (x)' = 1$ Proof. $\forall k \ \exists h : f(x+h) = y+k$

$$h = (x+h) - x = f^{-1}(y+k) - f^{-1}(y) = \tau(k)$$

$$\frac{f^{-1}(y+k) - f^{-1}(y)}{k} = \frac{\tau(k)}{f(x+\tau(k)) - f(x)} = \frac{1}{\underbrace{\frac{f(x+\tau(k)) - f(x)}{(x+\tau(k)) - x}}} \xrightarrow{\text{no t.o Hend. odd. odd.}} \frac{1}{f'(x)}$$

Пример.

$$y = \sin x$$

$$\arcsin' y = \frac{1}{\cos x} = \frac{1}{\sqrt{1 - \sin^2 x}} = \frac{1}{\sqrt{1 - y^2}}$$

Упражнение. arctan' y = 0

3 Теоремы о среднем

Лемма 1.
$$f: \langle a, b \rangle \to \mathbb{R} - \partial u \phi \phi$$
. в $x_0 \in (a, b)$; $f'(x_0) > 0$ Тогда $\exists \varepsilon > 0 \ \forall x: x \in (x_0, x_0 + \varepsilon) \ f(x_0) < f(x)$ $u \ \forall x: x \in (x_0 - \varepsilon, x_0) \ f(x_0) > f(x)$

Примечание. Это не монотонность.

Proof.

$$\frac{f(x) - f(x_0)}{x - x_0} \xrightarrow[x \to x_0]{} f'(x_0) > 0$$

 $x o x_0 + 0 \quad x - x_0 > 0 \Rightarrow f(x) - f(x_0) > 0$ вблизи x_0 (по теор. о стабилизации знака)

$$x
ightarrow x_0 - 0 \quad x - x_0 < 0 \Rightarrow f(x) - f(x_0) < 0$$
 вблизи x_0

Теорема 6. Ферма.

$$f:\langle a,b
angle
ightarrow\mathbb{R}$$
 $x_0\in(a,b)$ — точка максимума f — дифференцируема в x_0 Тогда $f'(x_0)=0$

Proof. Из леммы.

Если
$$f'(x_0) > 0$$
, то справа от x_0 есть $x : f(x) > f(x_0)$
Если $f'(x_0) < 0$, то слева от x_0 есть $x : f(x) > f(x_0)$

Теорема 7. Ролля.

$$f:[a,b] o\mathbb{R}$$
 — непр. на $[a,b]$, дифф. на (a,b) $f(a)=f(b)$. Тогда $\exists c\in(a,b):f'(c)=0$

Proof. По теореме Вейерштрасса.

$$x_0 = \max f(x); x_1 = \min f(x)$$

$$\{x_0, x_1\} = \{a, b\} \Rightarrow f = const; f' \equiv 0$$
 Иначе: пусть $x_0 \in (a, b) \xrightarrow[\text{т. Ферма}]{\text{т. Ферма}} f'(x_0) = 0$

Примечание. $f(x) = (x - a)^k g(x)$, где $g(a) \neq 0$

$$f'(x) = k(x-a)^{k-1}g(x) + (x-a)^k g'(x) = (x-a)^{k-1}(k \cdot g(x) + (x-a) \cdot g'(x))$$

Пример. $n \in \mathbb{N}$

$$Ln(x) = ((x^2 - 1)^n)^{(n)}$$

— это полиномы Лежандра (с точностью до умножения на константу)

 $\deg \operatorname{Ln} = n$

Утверждение: Ln имеет n различных вещественных корней.

M3137y2019 December 9, 2019