

Sposobnosti človeka

Vsebina

- človekova obdelava informacij
- spomini
- procesorji
- mentalni model
- zaznavanje
- razumevanje
- Hick-Hymanov zakon
- Fittov zakon

Človekova obdelava informacij

- aspekti obdelave informacij
 - vid
 - sluh
 - zaznavanje
 - spomin
 - pozornost
 - razumevanje
 - odločanje
 - motorika

Človekova obdelava informacij

Spomini

spomin:

- kratkotrajni senzorni spomin (STSS)
- dolgotrajni spomin (LTM)
- delovni spomin (WM)

lastnosti:

- kodiranje: tip shranjenih elementov
- velikost: število shranjenih elementov
- čas pozabljanja: čas hrambe v spominu
 Miller, MIT OpenCourseWare, 6.831, UI Design and Implementation

Kratkotrajni senzorni spomin

- shranjevanje vizualne informacije
 - kodirana kot fizična slika: ukrivljenost, dolžine, robovi, barve fizkalno → intenziteta, frekvenca
 - velikost ~ 12 črk (značilk) [7 17]
 - čas pozabljanja: ~ 200 ms [70 ms 1000 ms]
- shranjevanje zvočne informacije
 - kodiranje kot fizični zvok: zvok, barva zvoka fizikalno: jakost zvoka, frekvenca
 - velikost ~ 5 črk (značilk) [4 6]
 - čas pozabljanja ~ 1500 ms [900 ms 3500 ms]
 Miller, MIT OpenCourseWare, 6.831, UI Design and Implementation

Procesorji

- človekovi procesorji imajo čas cikla
 - analogno ciklu procesorja računalnika
 - čas za sprejem enega vhoda in izdajo enega izhoda
 - procesor za zaznavanje:
 - procesor za razumevanje:
 - motorični procesor:

- $T_{p} \sim 100 \ ms [50 \ ms 200 \ ms]$
- $T_c \sim 70 \, ms \, [30 \, ms 100 \, ms]$
- $T_m \sim 70 \, ms[25 \, ms 170 \, ms]$
- hiter človek je lahko tudi deset krat hitrejši od počasnega človeka!!!

Vidiki mentalnega modela

- zaznavanje
- vidljivost
- razumevanje

Zaznavanje

- postavljanje novih izkušenj v relacijo s starimi izkušnjami in pričakovanji
 - »cocktail party effect«
- senzorni spomin sprejema ogromno količino informacij
 - tega se po večini ne zavedamo: filmi, računalniški zaslon, animacija, zvok
 - na zaznavo vplivajo spremembe: zvok, svetloba, gibanje, barve

Vidljivost

- vidljivost je odvisna od mesta pozornosti
- metafora iskalnega žarometa: pozornost v danem trenutku je usmerjena na en vhodni kanal
 - pozornost se spreminja serijsko od enega vhodnega kanala do drugega
 - vizualna prevlada: lažje sledimo vizualnim kanalom kot zvočnim kanalom
 - vsi dražljaji znotraj kanala na katerega je usmerjena pozornost se procesirajo vzporedno, če to želimo ali ne → interferenca dražljajev
- ali mesto uporabnikove pozornosti vključuje:
 - indikator tipke CapsLock? statusno vrstico?, vrstični menu? - kurzor miške?

Interferenca dražljajev

- sekundarni dražljaj je barva besedila
- ali so spodnje barve glasne?

Book

Pencil

Slide

Window

Car

Hat

sekundarni dražljaj nima nič s prikazanim sporočilom

Interferenca dražljajev

 sekundarni dražljaj (barva besedila) nasprotuje sporočilu, ki ga skušamo predstaviti

Green

Orange

Red

Black

Pink

Blue

 sekundarni dražljaj naj okrepi prikazano sporočilo in naj ne nasprotuje

Zlivanje med zaznavanjem

- dva dražljaj znotraj istega cikla procesorja za zaznavanje se zdita zlita $T_p \sim 100 \, ms [50 \, ms 200 \, ms]$
- posledice
 - $1/T_p$ slik na sekundo je dovolj za sprejem gibajoče slike (10 slik/s je še dovolj, 20 slik/s izgleda zvezno)
 - računalnikov odziv, ki je manjši kot T_p se zdi takojšen oziroma istočasen
 - zlivanje vpliva na naše dojemanje vzročne povezanosti oziroma kavzalnosti

»Kosi«

- »kos« (chunk) je enota zaznavanja ali spomina
- kos je definiran/prepoznan simbol
- kos predstavlja aktivacijo izkušnje iz preteklosti
- gradnja kosov je odvisna od predstavitve in tega, kar že vemo
 - težko: M W B L O A B I M B F I
 - lažje: MWB LOA BIM BFI
 - lahko: BMW AOL IBM FBI
- kosi dolžine 3-4 znake so idealni za kodiranje nepovezanih znakov (»three-letter acronym«)
- kosi v delovnem spominu: posamezne črke, skupine črk

Delovni spomin

- majhna kapaciteta: 4 ± 1 kosov (Parker, 2012) (dolgo časa 7 ± 2 kosa)
- hitro pozabljanje: ~ 10 sekund [5 nekaj 10 sekund]
- vztrajno ponavljanje izniči pozabljanje a zahteva pozornost
- interferenca konfliktnih kosov povzroči hitrejše pozabljanje

Dolgotrajni spomin

- velika kapaciteta
- šibko pozabljanje
- ustvarjalno ponavljanje (učenje) povzroči premik kosov iz delovnega spomina v dolgotrajni spomin z ustvarjanjem povezav z drugimi kosi

Razumevanje

- naloga procesorja za razumevanje:
 - primerja simbole (dražljaji, ki jih prepozna procesor za zaznavanje)
 - izbere odziv oziroma doseže odločitev
- vrste odločanja:
 - na osnovi izkušenj ali izurjenosti: zahteva malo pozornosti
 - na osnovi pravil: npr. če X potem je Y
 - na osnovi znanja: za neobičajne, nepričakovane probleme

Prepoznavanje vs. pomnjenje

- prepoznavanje: spomniti se s pomočjo vizualnega dražljaja ali namiga - razpoznati
- pomnjenje: spomniti se brez pomoči
- prepoznavanje je mnogo lažje
 - meniji so bolje naučljivi od ukaznega jezika
 - izbira je enostavnejša kot naštevanje možnosti

Motorično procesiranje

- nadzor z odprto zanko: motorični procesorji ne sprejemajo povratne informacije od senzornega sistema
 - motorični procesorji delujejo samostojno
 - čas cikla (sprejem vhoda, izdaja izhoda) je $T_p \sim 70 \, ms$
- nadzor z zaprto zanko:
 - premiki mišic ali rezultati premika mišic se zaznajo in se primerjajo z želenimi rezultati

Hick-Hymanov zakon o reakcijskem času

- enostaven reakcijski čas:
 - enak ciklu človekovih procesorjev za obdelavo informacij
 - čas potreben za sprejem enega dražljaja in izdajo enega odziva: $RT = T_p + T_c + T_m \sim 240 \, ms$
 - $T_{p} \sim 100 \, ms[50-200] \quad T_{c} \sim 70 \, ms[30-100] \quad T_{m} \sim 70 \, ms[25-170]$
- reakcijski čas za procesor za razumevanje je odvisen od informacijske vsebine dražljaja:

```
RT_c = c + d \cdot \log_2(1/Pr(stimulus)), c,d konstanti, odvisni od uporabnika
```

- število ciklov, ki jih zahteva procesor za razumevanje je proporcionalno količini informacije dražljaja
 - za N enakih dražljajev (vsak drugačen odziv):

$$RT_c = c + d \cdot \log_2(N)$$

Fittov zakon

- Fittov zakon je temeljni zakon človekovega senzornomotoričnega sistema
 - čas T za premik roke do tarče velikosti S na razdalji D je:
 T = RT + MT = a + b log (D/S + 1)

- odvisen je samo od indeksa težavnosti: $\log_2((D/S)+1)$
- RT = a (reakcijski čas za pomik roke) = $T_p + T_c + T_m \sim 240 \, ms$
- b je odvisen od uporabnika, naprave, okolja

Implikacije Fittovega zakona

- tarče na robu zaslona je lažje zadeti, saj je velikost tarče neskončna: T = a
 - Mac in Linux vrstična menija boljša od Windows menijev
 - neobčutljive obrobe zaslona niso smiselne, lahko za zadeti
- linerani izvlečni ali linerani dvižni meniji proti krožnim menijem
 - krožni (enak D, S primerljiv D) so 15-20 % hitrejši kot linearni meniji (večji D, majhen S)

Naloga vodenja

čas za pomik skozi tunel dolžine D in širine S je:

$$T = a + b D/S$$

- indeks težavnosti, D/S, je linearen in ne logaritmičen!!!
 - vodenje je težje od kazanja
- kaskade podmenijev so težke za uporabo

Razmerje hitrost/točnost

- točnost procesorja za razumevanje se spreminja z reakcijskim časom
 - točnost lahko zavzame vsako točko na krivulji
 - možno je s prakso oziroma vajo premakniti krivuljo

Močnostni zakon prakse

• Potrebni čas T_n za izvršitev istega opravila n-tič je odvisen od časa za enkratno izvedbo opravila in n-ja:

$$T_n = T_1 \cdot n^{-\alpha}$$

kjer je a tipično med 0.2 in 0.6

Izmerjeni/ocenjeni časi

- pritisk tipke na tipkovnici (ekspert, normalno, začetnik):
 0.08 sekunde, 0.28 sekunde, 1.2 sekunde
- pritisk ali spustitev tipke na miški: 0.1 sekunde
- kazanje po Fittovem zakonu:
 - $T = a + b \cdot \log (D/S + 1)$
 - T~1.1 sekunde za vse naloge kazanja: izbira, povleci

Izboljšava učinkovitosti miške

- pogosto uporabljene tarče naj bodo velike, na primer gumb za potrdi, redko uporabljene tarče so lahko majhne
- tarče, ki se uporabljajo skupaj, naj bodo ena poleg druge
- uporaba kotov in robov zaslona za tarče
- izogibanje nalog vodenja: linearna odvisnost