

__23__ ___січня______2024___ р

Вчитель: Родіна А.О.

дата]

Тема: Прямокутні трикутники. Властивості прямокутних трикутників **Мета:**

- *Навчальна*: розглянути прямокутний трикутник та його елементи, засвоїти властивості прямокутних трикутників
- Розвиваюча: розвивати вміння аналізувати отримані знання, правильно користуватися креслярським приладдям;
- Виховна: виховувати інтерес до вивчення точних наук;

Компетенції:

- математичні
- комунікативні

Тип уроку: засвоєння нових знань;

Обладнання: конспект, презентація, мультимедійне обладнання;

Хід уроку

І. Організаційний етап

- Привітання
- Перевірка присутніх на уроці
- Перевірка виконання д/з
- Налаштування на роботу

II. Вивчення нового матеріалу

// Прямокутний трикутник та його елементи

Який трикутник називається прямокутним? (Учні висловлюють власну думку)

Прямокутний трикутник – це трикутник, в якого один кут прямий.

Гіпотенуза - це сторона, що лежить проти прямого кута прямокутного трикутника.

Катети – це сторони, що прилеглі до прямого кута прямокутного трикутника

// Властивості прямокутних трикутників

- ➤ Чому сума гострих кутів прямокутного трикутника дорівнює 90°? (Учні висловлюють власну думку)
- **1.** Сума гострих кутів прямокутного трикутника дорівнює 90° (Сума кутів трикутника дорівнює 180° . Так як один з кутів дорівнює 90° , то сума інших двох кутів $180^{\circ} 90^{\circ} = 90^{\circ}$)
- Як на вашу думку, чому гіпотенуза прямокутного трикутника більша за будь-який з його катетів? (Учні висловлюють власну думку)
- 2. Гіпотенуза прямокутного трикутника більша за будь-який з його катетів

(Ця властивість — наслідок теореми про співвідношення між сторонами і кутами трикутника, оскільки прямий кут більший за гострий)

3. Катет прямокутного трикутника, що лежить проти кута 30°, дорівнює половині гіпотенузи

Дано:

ВАС – прямокутний трикутник;

$$\angle A = 90^{\circ}$$

$$\angle B = 30^{\circ}$$

Довести:

$$AC = \frac{1}{2}BC$$

Доведення:

Прикладемо $\Delta BAD = \Delta BAC$

ть, чому $\angle D = \angle C = 60^{\circ}$? (Учні висловлюють власну думку)

$$\angle D = \angle C = 90^{\circ} - 30^{\circ} = 60^{\circ}$$
 (за властивістю гострих кутів прямокутного трикутника)

ightharpoonup Поясніть, чому ∠*DBC* = 60° (Учні висловлюють власну думку)

$$\angle DBC = \angle DBA + \angle CBA = 30^{\circ} + 30^{\circ} = 60^{\circ}$$
 (за основною властивістю вимірювання кутів)

$$\angle D = \angle C = 60^{\circ}$$
 $\rightarrow \Delta BCD - р$ івносторонній $\angle DBC = 60^{\circ}$

$$\Delta BCD$$
 — рівносторонній $\rightarrow DC = BC$

$$AC = \frac{1}{2}DC \rightarrow AC = \frac{1}{2}BC$$

Доведено

4. Якщо катет прямокутного трикутника дорівнює половині гіпотенузи, то кут, що лежить проти цього катета, дорівнює 30°

Дано:

BAC — прямокутний трикутник;

$$\angle A = 90^{\circ};$$

$$AC = \frac{1}{2}BC;$$

Довести:

$$\angle ABC = 30^{\circ}$$

Доведення:

Прикладемо $\Delta BAD = \Delta BAC$

$$AC = \frac{1}{2}BC \rightarrow DC = BC = BD$$

Який можемо зробити висновок? (Учні висловлюють власну думку)

$$DC = BC = BD \rightarrow \Delta BCD$$
 — рівносторонній $\rightarrow \angle C = 60^{\circ}$

ightharpoonup Поясніть, чому ∠*CBA* = 30°? (Учні висловлюють власну думку)

$$\angle \textit{CBA} = 90^{\circ} - 60^{\circ} = 30^{\circ}$$
 (за властивістю гострих кутів прямокутного трикутника)

Доведено

III. Закріплення нових знань та вмінь учнів

№1

- 1) Як називається трикутник, зображений на рисунку?
- 2) Назвіть гіпотенузу і катети цього трикутника

(MN i MV – катети; NV – гіпотенуза)

3) Яка зі сторін цього трикутника найдовша? (NV, так як гіпотенуза прямокутного трикутника більша за будь-який з його катетів)

№2

Знайдіть гострий кут прямокутного трикутника, якщо інший його гострий кут дорівнює:

- 1) 15°
- 2) 24°
- 3) 87°

Математика НОВА

★ 「EOMETPIЯ, 7 KЛAC

Розв'язання:

Так як сума гострих кутів прямокутного трикутника дорівнює 90°, то:

- 1) $90^{\circ} 17^{\circ} = 73^{\circ}$
- 2) $90^{\circ} 24^{\circ} = 66^{\circ}$
- 3) $90^{\circ} 87^{\circ} = 3^{\circ}$

Відповідь: 1) 73°; 2) 66°; 3) 3°

№3

Знайдіть кути рівнобедреного прямокутного трикутника

Дано:

 ΔBAC — рівнобедрений прямокутний трикутник;

$$\angle A = 90^{\circ}$$

Знайти:

$$\angle B - ?$$

Розв'язання:

Так як сума гострих кутів прямокутного трикутника дорівнює 90° і кути при основі рівнобедреного трикутника рівні, то:

$$\angle B = \angle C = \frac{90^{\circ}}{2} = 45^{\circ}$$

Відповідь: 45°

№4

У прямокутному трикутнику MNV ($\angle N = 90^{\circ}$) $\angle M = 30^{\circ}$. Знайдіть:

- 1) NV, якщо MV = 18 см
- 2) MV, якщо NV = 4 дм

Розв'язання:

1) NV, якщо MV = 18 см

$$NV = \frac{1}{2}MV = \frac{18}{2} = 9$$
 см

2) MV, якщо NV = 4 дм

Так як катет прямокутного $MV = 2NV = 2 \cdot 4 = 8$ дм трикутника, що лежить проти кута 30° , дорівнює половині гіпотенузи, то:

Відповідь: 1) 9 см; 2) 8 дм

№5

На рисунку BM — висота трикутника ABC. Знайдіть кути трикутника ABC, якщо $\angle ABM = 30^{\circ}$, $\angle CBM = 50^{\circ}$

Дано:

ABC — трикутник; BM — висота $\triangle ABC$; $\angle ABM = 30^{\circ}$; $\angle CBM = 50^{\circ}$.

Знайти:

∠A – ? ∠C – ? ∠ABC – ?

Розв'язання:

За основною властивістю вимірювання кутів:

$$\angle ABC = \angle ABM + \angle CBM = 30^{\circ} + 50^{\circ} = 80^{\circ}$$

Висота BM — ділить трикутник ABC на два прямокутні трикутники AMB і CMB.

Розглянемо прямокутний $\triangle AMB$ ($\angle M = 90^{\circ}$):

Так як сума гострих кутів прямокутного трикутника дорівнює 90° , то: $\angle A = 90^{\circ} - \angle ABM = 90^{\circ} - 30^{\circ} = 60^{\circ}$

Розглянемо прямокутний $\triangle CMB$ ($\angle M = 90^{\circ}$): Так як сума гострих кутів прямокутного трикутника дорівнює 90° , то:

 $\angle C = 90^{\circ} - \angle CBM = 90^{\circ} - 50^{\circ} = 40^{\circ}$

Відповідь: $\angle A = 60^{\circ}$; $\angle ABC = 80^{\circ}$; $\angle C = 40^{\circ}$

№6

Знайдіть гострі кути прямокутного трикутника, якщо:

- 1) Один з них на 28° більший за другий
- 2) Один з них у 5 разів менший за другий
- 3) Їх градусні міри відносяться як 2:3

Розв'язання:

$$\angle 1 + \angle 2 = 90^{\circ}$$
 (за властивістю гострих кутів прямокутних трикутників)

fx T

Математика НОВА

√x ½ ГЕОМЕТРІЯ, 7 КЛАС

1) Один з них на 28° більший за другий

Нехай
$$\angle 1 = x$$
, тоді $\angle 2 = x + 28^\circ$
 $x + x + 28^\circ = 90^\circ$
 $2x = 90^\circ - 28^\circ = 62^\circ$
 $x = \frac{62^\circ}{2} = 31^\circ$
 $\angle 1 = x = 31^\circ$
 $\angle 2 = x + 28^\circ = 31^\circ + 28^\circ = 59^\circ$

2) Один з них у 5 разів менший за другий

Нехай
$$\angle 1 = x$$
, тоді $\angle 2 = 5x$
 $x + 5x = 90^{\circ}$
 $6x = 90^{\circ}$
 $x = \frac{90^{\circ}}{6} = 15^{\circ}$
 $\angle 1 = x = 15^{\circ}$
 $\angle 2 = 5x = 5 \cdot 15^{\circ} = 75^{\circ}$

3) Їх градусні міри відносяться як 2:3

Нехай
$$\angle 1 = 2x$$
, тоді $\angle 2 = 3x$
 $2x + 3x = 90^{\circ}$
 $5x = 90^{\circ}$
 $x = \frac{90^{\circ}}{5} = 18^{\circ}$
 $\angle 1 = 2x = 2 \cdot 18^{\circ} = 36^{\circ}$
 $\angle 2 = 3x = 3 \cdot 18^{\circ} = 54^{\circ}$

Відповідь: 1) 31° і 59°; 2) 15° і 75°; 3) 36° і 54°

№7

Знайдіть менший з кутів, що утворює бісектриса прямого кута трикутника з гіпотенузою, якщо один з гострих кутів трикутника дорівнює 26°

Дано:

 ΔMNV — прямокутний; $\angle N = 90^{\circ}$; $\angle M = 26^{\circ}$; NL — бісектриса;

Знайти:

Менший з кутів, що утворює бісектриса прямого кута трикутника з гіпотенузою

Розв'язання:

Так як
$$NL$$
 – бісектриса, то $\angle LNV = \angle LNM = \frac{\angle MNV}{2} = \frac{90^{\circ}}{2} = 45^{\circ}$ Розглянемо ΔMNL : $\angle MLN = 180^{\circ} - \angle LNM - \angle LMN = 180^{\circ} - 45^{\circ} - 26^{\circ} = 109^{\circ}$ Так як кути MLN і NLV – суміжні, то: $\angle NLV = 180^{\circ} - \angle MLN = 180^{\circ} - 109^{\circ} = 71^{\circ}$

Відповідь: 71°

IV. Підсумок уроку

- Який трикутник називається прямокутним?
- Яка сторона прямокутного трикутника називається гіпотенузою?
- Які сторони прямокутного трикутника називаються катетами?
- Чому сума гострих кутів прямокутного трикутника дорівнює 90°?
- Чому гіпотенуза прямокутного трикутника більша за будь-який з його катетів?
- Чому дорівнює катет прямокутного трикутника, що лежить проти кута 30° ?

V. Домашнє завдання

Опрацювати матеріал, зробити конспект