COM1002: Foundations of Computer Science

VICTOR: LOGICIAN FOR HIRE

Assessment

Hand in exercise sheet in tomorrows tutorial (worth 5% of this Semester COM1002)

A new exercise sheet will be uploaded onto MOLE today (not assessed)

Learning Objectives

- Finish off Set Theory (C2)
- Introduction to Predicate Logic. Express...
 - 1. All bees like all flowers
 - 2. Bees only like flowers
 - 3. Only bees like flowers

Using the **predicates**:

$$B(x) = "x is a bee"$$

$$F(x) =$$
" $x is a flower$ "

$$L(x,y) = "x likes y"$$

Warm up!

$A \cup B'$

$A \cup B'$

$A^{\prime}\!\cap\!B^{\prime}$

$A \cap B'$

$A \cap B'$

$(A \cup B)'$

$(A \cup B)'$

$A'\!\cup\! B'$

$A' \cup B'$

$$(B \cap A')$$

 $(A' \cup B)$

 $B \cap (A \cup C)$

 $(A \cup C \cup B')$

Simplify, with the aid of Venn Diagrams,

$$A \cap (\overline{A} \cup B)$$

$$A \cap (\overline{A} \cup B) = A \cap B$$

We can also prove this using algebraic laws

Algebraic Laws for Sets 1

These define equality of expressions:

Commutativity:

$$A \cup B = B \cup A \text{ and } A \cap B = B \cap A;$$

Associativity:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
 and $A \cap (B \cap C) = (A \cap B) \cap C$;

Idempotence:

$$A \cup A = A$$
 and $A \cap A = A$;

Algebraic Laws for Sets 2

Distributivity:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C);$

De Morgan's Laws:

$$(\overline{A \cup B}) = \overline{A} \cap \overline{B} \text{ and } (\overline{A \cap B}) = \overline{A} \cup \overline{B}$$

Double Complement Law:

$$\overline{\overline{A}} = A$$

this assumes a suitable universe;

Algebraic Laws for Sets 3

Universe Laws:

$$A \cup U = U$$
 and $A \cap U = A$;

Empty Set Laws:

$$A \cup \emptyset = A \text{ and } A \cap \emptyset = \emptyset;$$

Complement Laws:

$$A \cup \overline{A} = U \text{ and } A \cap \overline{A} = \emptyset;$$

Absorption Laws:

$$A \cup (A \cap B) = A \text{ and } A \cap (A \cup B) = A.$$

Try exercises 2.28

Exercise 2.28

Give a derivation of $A \cap (A \cup B) = A \cap B$

Predicate Logic

Learning Objective

We can write each of the following statements in predicate logic.

- 1. All bees like all flowers
- 2. Bees only like flowers
- 3. Only bees like flowers

Using the predicates

$$B(x) = "x is a bee"$$

 $F(x) = "x is a flower"$
 $L(x,y) = "x likes y"$

Motivation

To generalise from propositional logic:

In order to avoid its limitations:

it can not handle some concepts properly, i.e.

the distinctions between none, one, some and all;

These are important in specifications:

E.g. must a property hold for some or all values;

And in verification:

E.g. does a system match some part of its specification for some cases, or all.

Predicates 1

Propositions defined over variables:

- Eg the set builder notation:
 - { x : x has property P },
- Such a property is a predicate:
 - denoted P (x),
 - its truth value depends on the value of x,
 - its truth set is the set of x for which it is true;
- The variable is called a free variable:
 - giving it a value produces a proposition.

Predicates 2

Universe of Discourse:

- The set of possible values for a free variable:
 - the truth set is a subset of this;
- Predicates may have multiple free variables;
 - Their universe of discourse is a Cartesian product
 - they have tuples of values as their elements.

Predicates 3

Pairs of free variables are very common:

- Eg equality, set inclusion:
 - infix notation is commonly used for these:
 - eg 'x = y' rather than prefix '= (x, y)'
- Universe of discourse is a set of pairs;
- So is the truth set.

Try some of exercise 4.2.

Exercise 4.2

What are the truth sets of the following predicates?

- 1. Even (x) = "x is an even integer"
- 2. EvenPrime(x) "x is an even prime"

Quantification 1

Universal Quantification:

If the predicate is true for all values:

- The truth set must be the universe of discourse;
- It is said to be universally quantified;
- This is denoted $\forall x P(x)$:
 - which is a proposition,
 - where x is now bound by the quantifier $\forall x$,
 - which is read "for all x".

Quantification 2

Negation of Universal Quantification:

- If the predicate is true for no values:
 - the truth set must be the empty set;
- This is still universal quantification:
 - the predicate is not true for all values;
- It is denoted $\forall x P(x)$:
 - which is again a proposition,
 - where x is bound by the quantifier $\forall x$.

Try exercise 4.5.

Exercise 4.5

Using the predicates

```
B(x) = "x is a bee"

F(x) = "x is a flower"

L(x,y) = "x likes y"
```

Write each of the following statements in predicate logic.

- 1. All bees like all flowers
- 2. Bees only like flowers
- 3. Only bees like flowers

All bees like all flowers

UNIVERSE OF DISCOURSE = All living things

$$\forall x, y [(B(x) \land F(y)) \Rightarrow L(x, y)]$$

Bees only like flowers

$$\forall x, y [(B(x) \land L(x, y)) \Longrightarrow F(y)]$$

Only bees like flowers

$$\forall x, y [(F(y) \land L(x, y)) \Rightarrow B(x)]$$