High Performance Computing Exercise 1

Alessandro Minutolo

Introduction

Settings

CLUSTER: ORFEO – EPYC AMD NODES

TOOL: OSU BENCHMARK

Data Collection

2 full EPYC nodes

Increasing number of processes (from 2 to 256)

Increasing message size (from 2° to 218)

Broadcast Algorithms

Performances of different broadcast algorithms

Gather Algorithms

Performances of different gather algorithms

Performance Models

- Data collected with a fixed size of the message (4byte)
- Point to point communication time between cores (OSU benchmark)
- Mathematical models for ideal performances

Broadcast Models

Basic linear:

$$T = \max(T_{0,1}, T_{0,2}, ..., T_{0,n}) + overhead$$

• Chain:

$$T = \max(T_1, ..., T_k), k = 1, ..., 4$$

where T_k is the total time for the k-th chain: $T_k = T_{0,k_1} + \sum_{i=1}^{m_k-1} T_{k_i,k_{i+1}}$,

where T_{0,k_1} is the time to send the message from the root to the first process in the k-th chain and m_k is the total number of processes in the k-th chain

• Pipeline:

$$T = \sum_{i=0}^{N-1} T_{i,i+1}$$

Gather Models

Basic linear:

$$T = \max(T_{1,0}, T_{2,0}, ..., T_{n,0}) + overhead$$

• Binomial:

$$T = \sum_{l=0}^{L-1} \max\{T_{i,i+2^l} | i \text{ is a process at level } l\}$$

Linear w/ sync:

$$T = \sum_{i=1}^{N} T^{1st}_{i,0} + \max(T^{2nd}_{i,0}, \dots, T^{2nd}_{n,0})$$

