Computational Environmental Sciences and Toxicology, BIO 592 - 079

Spring 2019

Instructors: Dr. Denis Fourches (dfourch@ncsu.edu) (919) 515-8711

Dr. David Reif (dmreif@ncsu.edu) (919) 513-3812

Dr. Fred Wright (fred wright@ncsu.edu) (919) 515-9060

Dr. Yihui Zhou (yihui_zhou@ncsu.edu) (919) 515-8966

Course description: This 3-credit course will provide an introduction to computational toxicology and informatics methods in environmental sciences, designed for students interested in a survey of related topics. Statistical and computational methods will be introduced at an introductory graduate level. Topics to be covered include: dose-response analysis, physiologically-based pharmacokinetics, methods for exposomics and other 'omics, visualization and summary of high-dimensional data, QSAR, molecular descriptors, docking models, epidemiological designs, spatial analysis, and risk analysis/translation.

Textbook (none required)

Prerequisites: Some light computer programming is expected. Students with no exposure to programming will need to spend extra time learning introductory *R*.

Class Hours: Mondays & Wednesdays, 1:30PM – 2:45PM in Ricks Hall 336

Office Hours: Mondays and Wednesdays, directly after class. Other office hours by appointment with relevant instructor.

Grading: Based on an overall average of

- attendance (10%)
- homework (60%) six homeworks will be given (10% each)
- final presentation and short paper (30%) each student will present their work on a relevant computational env sci or toxicological project. Further details given about midway through the semester.

Expectations

- -Class attendance is expected. On some days, we will use class time to explore data and discuss problems. Reading assignments in the form of current publications may be given in advance of class.
- Homework is due in class on the due date. Students are encouraged to work together to *understand* problems, but each student *must* complete his/her own work. Direct copying is not acceptable and is strictly prohibited. See https://studentconduct.dasa.ncsu.edu/code/
- -Audit credit requires a score of at least 50% on the homework

Schedule and topics (may be modified)

Day	Topic
1/7/2019	Intro - the evolution of computational environmental sciences
1/9/2019	current work in computational environmental sciences
1/14/2019	A basic introduction to toxicological principles
1/16/2019	Dose response designs: terminology, time, dose
1/23/2019	Dose response analysis, points of departure and benchmark dose
1/28/2019	Physiologically-based pharmacokinetics 1
1/30/2019	Physiologically-based pharmacokinetics 2
2/4/2019	Exposure science, models and systems, analytical techniques
2/6/2019	Exposomics
2/11/2019	High-throughput screening: databases and data structures
2/13/2019	High-dimensional analysis methods 1: exploratory methods and dat
2/18/2019	High-dimensional analysis methods 2: multiple testing
2/20/2019	High-dimensional analysis methods 3: penalized methods and stati
2/25/2019	Omics methods for environmental sciences 1
2/27/2019	Omics methods for environmental sciences 2
3/4/2019	Visualization (including ggplot?)
3/6/2019	Adverse Outcome Pathways
3/18/2019	Comptox 1: molecular representation, drawing tools
3/20/2019	Comptox 2: database searching, chemical descriptors
3/25/2019	Comptox 3: ligand-based comp tox (read-across, QSAR, 2D similari
3/27/2019	Comptox 4: structure-based comp tox (molecular docking, molecula
4/1/2019	Epidemiology 1: observational studies and study design
4/3/2019	Epidemiology 2: measures of risk association and analysis methods
4/8/2019	Spatial analysis 1: basic principles and point processes
4/10/2019	Spatial analysis 2: smoothing, kriging, and inference
4/15/2019	Risk analysis
4/17/2019	Risk translation
4/22/2019	Misc/ Student presentations 1
4/24/2019	Student presentations 2