VE320 – Summer 2021

Introduction to Semiconductor Devices

Instructor: Yaping Dan (但亚平) yaping.dan@sjtu.edu.cn

Chapter 8 The pn Junction Diode

Outline

8.1 pn junction current

- 8.2 Generation-recombination currents
- 8.3 High-injection levels
- 8.4 A few more points on pn junctions (not in the textbook)

8.0 The logic behind the way to derive current

8.0 The logic behind the way to derive current

Assumptions of an ideal PN junction

- 1. The abrupt depletion layer approximation applies. The space charge regions have abrupt boundaries, and the semiconductor is neutral outside of the n= Ne expression P=Nien depletion region.
- 2. The Maxwell–Boltzmann approximation applies to carrier statistics.
- 3. The concepts of low injection and complete ionization apply. $N_a = N_b N_b = P_b$
- 4a. The total current is a constant throughout the entire pn structure.
- 4b. The individual electron and hole currents are continuous functions through the Ip(x) continuous In(x) pn structure.
- 4c. The individual electron and hole currents are constant throughout the depletion region. no loss of electrons & holas

in the depletion ho recombination

Boundary condition

Boundary condition

Boundary condition

Check your understanding

Problem Example #1

Consider a silicon pn junction at T = 300K. Assume the doping concentration in the n region is $N_d = 10^{16}$ cm⁻³ and the doping concentration in the p region is $N_a = 6 \times 10^{15}$ cm⁻³. Assume a forward bias of 0.6V is applied to the pn junction. Calculate the minority concentration at the edge of the depletion region.

- How to simplify?
- Boundary condition?
- how to get total current from minority currents?

$$=\frac{n_i}{N_o}$$

 n_{p0}

 $p_{p0} = N_a$

E=0

4N

minority

Minority carrier distribution

$$\delta p_n(x) = p_n(x) - p_{n0} = Ae^{x/L_p} + Be^{-x/L_p} \quad (x \le -x_p)$$

$$\delta n_p(x) = n_p(x) - n_{p0} = Ce^{x/L_n} + De^{-x/L_n} \quad (x \ge x_n)$$

$$p_{n}(x_{n}) = p_{n0} \exp\left(\frac{eV_{a}}{kT}\right)$$

$$n_{p}(-x_{p}) = n_{p0} \exp\left(\frac{eV_{a}}{kT}\right)$$

$$p_{n}(x \to -\infty) = p_{n0}$$

$$n_{p}(x \to -\infty) = n_{p0}$$

Minority carrier distribution

$$\Rightarrow \Delta p = p_n(x) - p_{n0} = p_{n0}(e^{\frac{qV_a}{kT}} - 1)e^{(x+x_p)/L_p}$$

$$\Rightarrow \Delta n = n_p(x) - n_{p0} = n_{p0} (e^{\frac{qV_a}{kT}} - 1)e^{(x_n - x)/L_n}$$

Minority carrier distribution

$$p_{\mathbf{k}} = p_{\varphi} + \delta p = n_i \exp\left(\frac{E_{Ei} - E_{Fp}}{kT}\right)$$

$$n = n_o + \delta n = n_i \exp\left(\frac{E_{Fn} - E_{Fi}}{kT}\right)$$

$$n_{n0} = N_a$$
 $n_{n0} = N_a$
 $n_{n0} = N_a$

$$ap(x) = (p_0 e^{\frac{y}{11}} e^{\frac{y}{11}} e^{\frac{y}{11}})$$

$$p_{n0} = \frac{n_i^2}{N_d}$$

$$o_{n0} = \frac{N_d}{N_d}$$

$$n_{p0} = \frac{n_i^2}{N_a}$$

 X_n

Minority carrier distribution

$$p = p_o + \delta p = n_i \exp\left(\frac{E_{Fi} - E_{Fp}}{kT}\right) \qquad n = n_o + \delta n = n_i \exp\left(\frac{E_{Fn} - E_{Fi}}{kT}\right)$$

$$np = n_i^2 \exp\left(\frac{E_{Fn} - E_{Fp}}{kT}\right)$$
For

Minority carrier distribution

$$p = p_o + \delta p = n_i \exp\left(\frac{E_{Fi} - E_{Fp}}{kT}\right)$$

$$np = n_i^2 \exp\left(\frac{E_{Fn} - E_{Fp}}{kT}\right)$$

$$np = n_i^2 \exp\left(\frac{E_{Fn} - E_{Fp}}{kT}\right)$$

$$nn_0 = N_a$$

$$p_{n0} = \frac{n_i^2}{N_d}$$

$$p_{n0} = \frac{n_i^2}{N_d}$$

$$n_{n0} = \frac{n_i^2}{N_d}$$

Minority carrier distribution

$$p = p_o + \delta p = n_i \exp\left(\frac{E_{Fi} - E_{Fp}}{kT}\right) \qquad n = n_o + \delta n = n_i \exp\left(\frac{E_{Fn} - E_{Fi}}{kT}\right)$$

VE320 Yaping Dan

• charge carrier transport: forward bias

$$J_{n,diff} = qD_n \frac{dn_p}{dx} = -\frac{qD_n n_{p0}}{L_n} \left(e^{\frac{qV_a}{kT}} - 1\right)e^{\frac{X_n - X}{L_n}}$$

$$I_{p,diff} = -qD_p \frac{dp_n}{dx} = -\frac{qD_p p_{n0}}{L_p} \left(e^{\frac{qV_a}{kT}} - 1 \right) e^{\frac{x+xp}{L_p}}$$

$$n_{n0} = N_d$$

$$p_n = p_{n0} e^{\frac{qV_a}{kT}}$$

$$p_{n0} = \frac{n_i^2}{N_d}$$

$$n_{n0} = \frac{n_i^2}{N_d}$$

$$n_{n0} = \frac{n_i^2}{N_d}$$

• charge carrier transport: forward bias

Assumption: No recombination-generation in depletion region.

Ideal pn junction current

Assumption: (No recombination-generation) in depletion region.

• Ideal pn junction current

charge carrier transport: <u>forward bias: current ratio</u>

Assumption: No recombination-generation in depletion region.

charge carrier transport: <u>reverse bias</u>

$$J_n = qD_n \frac{dn_p}{dx} = \frac{qD_n n_{p0}}{L_n}$$

$$J_p = -qD_p \frac{dp_n}{dx} = \frac{qD_p p_{n0}}{L_p}$$

$$J = J_n|_{x'=0} + J_n|_{x=0}$$

$$J = J_s \left(e^{\frac{qV_b}{kT}} - 1 \right) = -J_s$$

$$J_s = \frac{qD_n n_{p0}}{L_n} + \frac{qD_p p_{n0}}{L_p}$$

$$p_{p0} = N_a$$

$$n_{p0} = \frac{n_i^2}{N_a}$$

Assumption: No recombination-generation in depletion region.

$$J = J_n|_{x'=0} + J_n|_{x=0}$$

$$J = J_s \left(e^{\frac{qV_{\mathbf{k}}}{kT}} - 1 \right)$$

$$J_S = \frac{qD_n n_{p0}}{L_n} + \frac{qD_p p_{n0}}{L_p}$$

Check your understanding

Problem Example #2

Given the following parameters in a silicon pn junction, determine the ideal reverse-saturation current density of this pn junction at 300K.

Outline

- 8.1 pn junction current ideal pN junction
- 8.2 Generation-recombination currents 5 1/2
 - 8.3 High-injection levels
 - 8.4 A few more points on pn junctions (not in the textbook)

Reverse bias V_a <0

To simplify the calculation, we assume

$$E_t = E_i$$
, $\tau_n = \tau_p = \tau$

$$R_n = \frac{-n}{2\tau} = -G_0$$

$$R_{n} = \frac{(np - n_{i}^{2})}{\tau_{p} \left[n + n_{i} \exp\left(\frac{E_{t} - E_{i}}{kT}\right) \right] + \tau_{n} \left[p + n_{i} \exp\left(\frac{E_{i} - E_{t}}{kT}\right) \right]}$$

Reverse bias V_a <0

To simplify the calculation, we assume

$$E_{t} = E_{i}, \tau_{n} = \tau_{p} = \tau$$

$$R_{n} = \frac{n_{i}}{2\tau} = -G_{0}$$

$$V_{dep} = \sqrt{\frac{2\xi\left(V_{h} + V_{R}\right)}{\xi}} \quad V_{e} V_{e}$$

$$L_{r} = \int_{0}^{W} qG_{0}dx = \frac{qW_{i}g_{i}}{2\tau}$$

$$R_{n} = \frac{(np - n_{i}^{2})}{\tau_{p}\left[x + n_{i}\exp\left(\frac{E_{t} - E_{i}}{kT}\right)\right] + \tau_{n}\left[x + n_{i}\exp\left(\frac{E_{i} - E_{t}}{kT}\right)\right]}$$

Reverse bias V_a <0

To simplify the calculation, we assume

$$E_t = E_i$$
, $\tau_n = \tau_p = \tau$

$$R_n = \frac{-n_i}{2\tau} = -G_0$$

Current density from G-R in the depletion region:

$$J_r = \int_0^W qG_0 dx = \frac{qWn_i}{2\tau}$$

$$W = a + b = \sqrt{\frac{2\varepsilon(V_{bi} - V_a)}{q} \frac{N_d + N_a}{N_a N_d}}$$

$$R_n = \frac{(np - n_i^2)}{\tau_p \left[n + n_i \exp\left(\frac{E_t - E_i}{kT}\right) \right] + \tau_n \left[p + n_i \exp\left(\frac{E_i - E_t}{kT}\right) \right]}$$

Current density from G-R in the depletion region:

$$J_r = \int_0^W qGdx = \frac{qWn_i}{2\tau}$$

$$W = a + b = \sqrt{\frac{2\varepsilon(V_{bi} - V_a)}{q} \frac{N_d + N_a}{N_a N_d}}$$

In depletion region: $np = n_i^2 \exp(\frac{qV_a}{kT})$

e = 1/4 = x

To simplify the calculation, we assume

$$E_{t} = E_{i}, \tau_{n} = \tau_{p} = \tau$$

$$h_{i}^{2} \left(e^{\frac{2\pi i}{2}} - 1 \right)$$

When n=p, U reaches its max value.

$$\frac{2^{1/2}}{+ h! e^{2kT} + 2h!} = \frac{h! (e^{kT} - 1)}{2 \cdot h! (e^{2kT} + 1)}$$
ts max value.
$$= \frac{h!}{2 \cdot k!} (e^{2kT} + 1)$$

$$R_{n} = \frac{n_{r} - n_{r}}{C_{p}(n + n_{r} exp(\frac{E_{r}}{E_{T}}) + C_{n}(p + n_{r} exp(\frac{E_{r}}{E_{T}}))}$$

$$N = \beta \sqrt{\frac{8 V_{s}}{k_{T}}} = \sqrt{\frac{8 V_{s}}{k_{T}}}$$

$$h \approx p = n_i \exp\left(\frac{\$V_a}{2F_i}\right)$$

Current density from G-R in the depletion region:

For a non-ideal pn junction, the total current density:

Forward bias V > 3kT/q = 0.078V:

the ideality factor

$$J = J_F + J_r = J_s \left[\exp\left(\frac{qV_a}{kT}\right) - 1 \right] + \frac{qWn_i}{2\tau} \left[\exp\left(\frac{qV_a}{2kT}\right) - 1 \right]$$

Forward bias V> 3kT/q=0.078V:

$$J = J_F + J_r = J_S \exp\left(\frac{qV_a}{kT}\right) + \frac{qWn_i}{2\tau} \exp\left(\frac{qV_a}{2kT}\right) = J_0 \exp\left(\frac{qV_a}{nkT}\right)$$

Reverse bias:

$$J_{0} = -J_{s} - \frac{qWn_{i}}{2\tau} = -\left(\frac{qD_{n}n_{p0}}{L_{n}} + \frac{qD_{p}p_{n0}}{L_{p}}\right) - \frac{qWn_{i}}{2\tau}$$

the ideality factor

Check your understanding

Problem Example #3

A PN junction consisting an n-type semiconductor in contact with another p-type semicondcutor (to be covered later) has a depletion region in which n_0 and p_0 are nearly zero. Suppose a silicon PN junction has defects located at the middle of the semiconductor. The defect concentration is 10^{16} cm⁻³ and the capture rate C_n and C_p for electrons and holes are 10^{-10} cm⁻³/s. Find the leakage current of the Si PN junction.

$$C_n = C_p = 10^{-10} \text{ cm}^{-3}/\text{s}$$

 $N_t = 10^{16} \text{ cm}^{-3}$

Depletion region

Outline

- 8.1 pn junction current
- 8.2 Generation-recombination currents

8.3 High-injection levels

8.4 A few more points on pn junctions (not in the textbook)

8.3 High inject level

$$J = J_F + J_r = J_S \exp\left(\frac{qV_a}{kT}\right) + \frac{qWn_i}{2\tau} \exp\left(\frac{qV_a}{2kT}\right) = J_0 \exp\left(\frac{qV_a}{nkT}\right)$$

e-h pairs recombine in the depletion region

8.3 High inject level

$$J = J_F + J_T = J_S \exp\left(\frac{qV_a}{kT}\right) + \frac{qWn_i}{2\tau} \exp\left(\frac{qV_a}{2kT}\right) = J_0 \exp\left(\frac{qV_a}{nkT}\right)$$
Resistivity limited

Recombination

Recombination

Resistivity limited

Outline

- 8.1 pn junction current
- 8.2 Generation-recombination currents
- 8.3 High-injection levels
- 8.4 A few more points on pn junctions (not in the textbook)

8.4 A few points about pn junction

Energy consumption:

8.4 A few points about pn junction

• Energy consumption:

