POSITIVE RATIONAUS

DEFINITION

 number you add q times to get 1. · solution to gx=1 EX: 1 is solution 3x=1 P repeated add" of \(\frac{1}{q} \), p times P12 EN, 9 = 03

MULTIPLICATION

Meaning Example

One Third 5's Solution to 3x = 5

Two thirds 5's (One Third 5's) + (One Third 5's)

Repeated Adda? Five 3's $\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{5}{3}$ by definit ?

MULTO IS COMMUTATIVE

Why Five $\frac{1}{3}$'s = One Third 5's Because $\frac{5}{3}$ is a solution $\frac{1}{3}$ 3x = 5

$$3 \cdot \frac{5}{3} = \frac{1}{3} + \frac{1}{3} +$$

EXPONENTIATION

Example 03 Meaning Solu to $\chi^3 = \alpha$ $\Lambda^{\frac{1}{3}} \cdot \Lambda^{\frac{1}{3}}$ $(a^{\frac{1}{3}})^5$ Repeated multⁿ $a^{\frac{1}{3}} \cdot a^{\frac{1}{3}} \cdot a^{\frac{1}{3}} \cdot a^{\frac{1}{3}} \cdot a^{\frac{1}{3}}$ POWER of POWER $\overline{\text{MM}} \quad \left(Q_{\frac{1}{3}} \right)_{2} = \left(Q_{2} \right)_{\frac{1}{3}}$ Because (a3) is a $((\alpha^{\frac{1}{3}})^{5})^{3} = \alpha^{\frac{1}{3}} \cdot \alpha^{\frac{1}{3}} \cdot \alpha^{\frac{1}{3}} \cdot \alpha^{\frac{1}{3}} \cdot \alpha^{\frac{1}{3}} \cdot \alpha^{\frac{1}{3}}$ $\cdot \alpha^{\frac{1}{3}} \cdot \alpha^{\frac{1}{3}} \cdot \alpha^{\frac{1}{3}} \cdot \alpha^{\frac{1}{3}} \cdot \alpha^{\frac{1}{3}} \cdot \alpha^{\frac{1}{3}}$ $\circ \alpha^{\frac{1}{3}}, \alpha^{\frac{1}{3}}, \alpha^{\frac{1}{3}}, \alpha^{\frac{1}{3}}, \alpha^{\frac{1}{3}}$ = 0.00.00.00.00 So $\left(a^{\frac{1}{3}}\right)^5 = \left(a^{\frac{1}{3}}\right)^{\frac{1}{3}} = a^{\frac{5}{3}}$

OTHER PROPERTIES STILLHOLD, TOO.)