Keshav Dandeva #11

Numerical Methods (ENUME) – Project Assignment B: Solving nonlinear equations

1. Write a program to solve an equation f(x) = 0 with:

$$f(x) = \left(\frac{6}{5}\right)^x + x + \sin\left(\sqrt{x}\right) - \frac{33}{4} \quad \text{for } x \in (0,10]$$

Apply the procedure *fzero* for this purpose. Plot the graph of the function f(x) in a given range of x and mark on it the solution \dot{x} to be considered later as an exact solution.

- **2.** Write a program for solving the equation f(x) = 0 using the bisection methods, as defined on the slide 3-16, with $a_0 = 10^{-6}$ and $b_0 = 10$. Use the inequality $\frac{1}{2}(b_i a_i) < \Delta$ as the criterion for terminating the iterations. Find the solution of the equation f(x) = 0 for $\Delta = 10^{-3}, 10^{-4}, \dots, 10^{-16}$. Plot the graph (Fig. 1) of the number of iterations *I versus* Δ . Plot the graph (Fig. 2) of the actual absolute error of the solution $\Delta x = |\hat{x} \dot{x}|$ versus Δ and compare with the criterion value $\frac{1}{2}(b_I a_I)$ versus Δ .
- 3. Write a program for solving the equation f(x) = 0 using the *regula-falsi* method, as defined on the slide 3-17, choose an integer value not closer to \dot{x} than 0.5 as a constant point x_0 ; choose the proper starting point x_1 . Use the inequality $|x_i x_{i-1}| < \Delta$ as the criterion for terminating the iterations. Find the solution of the equation f(x) = 0 for $\Delta = 10^{-3}, 10^{-4}, \dots, 10^{-16}$. Add the graph of number of iterations I versus Δ to Fig. 1. Plot the graph (Fig. 3) of the actual absolute error of the solution $\hat{\Delta}x = |\hat{x} \dot{x}|$ versus Δ and compare with the criterion value $|x_I x_{I-1}|$ versus Δ .
- **4.** Write a program for solving the equation f(x) = 0 using the secant methods, as defined on the slide 3-20. Choose the proper starting points x_0 and x_1 . Use the inequality $|x_i x_{i-1}| < \Delta$ as the criterion for terminating the iterations. Find the solution of the equation f(x) = 0 for $\Delta = 10^{-3}, 10^{-4}, ..., 10^{-16}$. Add the graph of the number of iterations I versus Δ to Fig. 1. Plot the graph (Fig. 4) of the actual absolute error of the solution $\hat{\Delta}x = |\hat{x} \dot{x}|$ versus Δ and compare with the criterion value $|x_I x_{I-1}|$ versus Δ .
- **5.** Write a program for solving the equation f(x) = 0 using the Newton's method, as defined on the slide 3-18. Choose the proper starting point x_0 ; compute f'(x) analytically. Use the inequality $|x_i x_{i-1}| < \Delta$ as the criterion for terminating the iterations. Find the solution of the equation f(x) = 0 for $\Delta = 10^{-3}, 10^{-4}, \dots, 10^{-16}$. Add the graph of the number of iterations *I versus* Δ to Fig. 1. Plot the graph (Fig. 5) of the actual absolute error of the solution $\hat{\Delta}x = |\hat{x} \dot{x}|$ versus Δ and compare with the criterion value $|x_I x_{I-1}|$ versus Δ .
- **6.** Examine the impact of the starting points on the relationships presented in Figs. 1–5.