

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/524,388	09/07/2005	Chandur Sadarangani	047935/288415	6041
826	7590	04/05/2010		
ALSTON & BIRD LLP BANK OF AMERICA PLAZA 101 SOUTH TRYON STREET, SUITE 4000 CHARLOTTE, NC 28280-4000			EXAMINER	
			MOK, ALEX W	
			ART UNIT	PAPER NUMBER
			2834	
MAIL DATE	DELIVERY MODE			
04/05/2010	PAPER			

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No. 10/524,388	Applicant(s) SADARANGANI ET AL.
	Examiner ALEX W. MOK	Art Unit 2834

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If no period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 22 December 2009.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-21,23,24 and 26-29 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-21,23,24 and 26-29 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) Information Disclosure Statement(s) (PTO/SB/06)
 Paper No(s)/Mail Date 1/7/10, 1/28/10
- 4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date: _____
 5) Notice of Informal Patent Application
 6) Other: _____

DETAILED ACTION

Amendment

1. Acknowledgement is made of Amendment filed December 22, 2009.

Claim Rejections - 35 USC § 103

2. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

3. Claims 1, 2, 8-21, 23, 24, and 26-29 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sadarangani et al. (PCT Document No.: WO 01/78219), and further in view of Nagai et al. (US Patent No.: 6043572).

For claim 1, Sadarangani et al. teach an electrical machine comprising a stator comprising a plurality of stator elements (see figure 3) with magnetic flux conductors (reference numeral 3') and an electric conductor forming a winding (reference numeral 6a) extending in a winding path through each magnetic flux conductor, and a movable element (reference numeral 10) which comprises a number of permanent-magnet members (reference numeral 12') and which is movable in relation to the stator along a movement path, wherein the movable element is adapted to carry out a linear reciprocating motion (see page 18, lines 11-14), wherein the winding path comprises a first current-carrying section (reference numeral 6a) extending along the movement path, wherein each magnetic flux conductor is adapted to form, together with one of

said permanent-magnet members, a closed magnetic flux circuit extending around said current-carrying section (see figure 3), wherein each permanent-magnet member comprises a primary magnet that has a north pole and a south pole and a magnetic direction extending from the south pole to the north pole and essentially across the movement path (see figure 3), and wherein the permanent-magnet members are arranged in an alternating order in the movable element with respect to the magnetic direction of the primary magnet (see figure 3), characterized in that adjacent permanent-magnet members of the movable element are separated from each other by an intermediate member (reference numeral 13). Sadarangani et al. do not teach the intermediate member having at least one secondary magnet having a magnetic direction going across the magnetic direction of the primary magnet, wherein magnetic fields of adjacent permanent-magnet members and their secondary magnets are operable to mutually repel for essentially avoiding flux fringing in respect of the stator.

Nagai et al. teach a permanent magnet movable portion (reference numerals 10a-d, 11a-d, figures 1, 2) where the magnets with the N and S poles in the magnetic direction across the movement path (reference numeral 10a) constituting the primary magnet, and the magnets with the magnetic direction opposite that of the primary magnet (reference numeral 10b) constituting the secondary magnet of the intermediate member.

It would have been obvious to have the magnetic direction extend across the direction of the primary magnet for the secondary magnets of the intermediate member as taught by Nagai et al. in the invention of Sadarangani et al., since the technique of

Nagai et al. is used for correcting the leakage flux produced in the permanent magnet linear motor (see column 8, lines 7-21), the same field of endeavor as the claimed invention.

For claim 2, Sadarangani et al. disclose the claimed invention except for the magnetic direction of the secondary magnet extending parallel to the movement path. Nagai et al. illustrate the magnetic direction of the secondary magnet going across the magnetic direction of the primary magnet (see figures 1, 2), and it would have been obvious to include this technique of Nagai et al. in the invention of Sadarangani et al. as this configuration would reduce the magnetic flux leakage in the linear motor.

For claim 8, Sadarangani et al. disclose the claimed invention except for the magnetic direction of the secondary magnet being essentially perpendicular in relation to the magnetic direction of the primary magnets. Nagai et al. illustrate the magnetic direction of the secondary magnet being perpendicular to the magnetic direction of the primary magnet (see figures 1, 2), and it would have been obvious to include this technique of Nagai et al. in the invention of Sadarangani et al. as this configuration would reduce the magnetic flux leakage in the linear motor.

For claim 9, Sadarangani et al. disclose the magnetic flux circuit having a magnetic flux that is parallel to a plane perpendicular to the movement path (see page 18, claim 2).

For claim 10, Sadarangani et al. disclose the distance between the centre of adjacent permanent magnet members being essentially equal to the distance between the centre of adjacent magnetic flux conductors of the stator (see page 18, claim 3).

For claim 11, Sadarangani et al. disclose the magnetic flux conductors of the stator being arranged in an alternating order with respect to the direction of the magnetic flux in relation to the permanent magnet members in the respective magnetic flux circuit (see page 18, lines 22-25).

For claim 12, Sadarangani et al. disclose the essentially closed winding path having a second current carrying section extending parallel to the movement path (see page 19, lines 35+).

For claim 13, Sadarangani et al. disclose the first current carrying section of the winding path being associated with the first half of the magnetic flux conductors of the stator and the second current-carrying section of the winding path being associated with the second half of the magnetic flux conductors of the stator (page 20, lines 8-14).

For claim 14, Sadarangani et al. disclose the permanent magnet members of the movable element being adapted to cooperate with the magnetic flux conductors of the stator which are associated with the first current carrying section, and the magnetic flux conductors of the stator which are associated with the second current carrying section (page 20, lines 16-24).

For claim 15, the invention of Sadarangani et al. anticipates the magnetic flux conducting sections of each magnetic flux conductor being arranged in a line one after the other which is parallel to the movement path, and the magnetic flux in each conductor being extended in the same direction, since this constitutes the magnetic flux conductors being arranged in such a manner that the direction of the magnetic flux in relation to the winding is the same in each magnetic circuit as disclosed in Sadarangani

et al. (see page 19, lines 8-12). Sadarangani et al. also disclose the adjacent magnetic flux conductors being separated by an intermediate element (see page 21, lines 4-8), i.e. dividing member, but does not disclose the dividing member being made of magnetically conducting material. It would have been obvious to have this sort of material, since a person of ordinary skill in the art would have been able to select this known material for its suitability in the invention.

For claims 16 and 17, Sadarangani et al. disclose the claimed invention except for the sections forming a magnetic flux-conducting central section, and each of the magnetic flux conductor comprising at least the central section and two magnetic flux-conducting end sections. Since Sadarangani et al. anticipate the magnetic flux conducting sections as explained for claim 15, it would have been obvious to have these sections form a central section and end sections as recited in claims 16 and 17 since this would involve a rearrangement of parts which has been held to be a routine skill in the art. *In re Japikse*, 86 USPQ 70.

For claim 18, Sadarangani et al. disclose the intermediate element (i.e. dividing member) being magnetically isolating (see page 21, lines 7-8), i.e. magnetically insulating.

For claim 19, Sadarangani et al. disclose the claimed invention except for each dividing member forming a space with air along the end sections. It would have been obvious to have the dividing member form a space with air along the end sections, since this would involve a change in the shape of a component, and this particular configuration is just one of numerous configurations a person of ordinary skill in the art would find obvious for the purpose of providing magnetic insulation. *In re Dailey* 149 USPQ 47, 50 (CCPA 1966). See also Glue Co. v. Upton 97 US 3,24 (USSC 1878).

For claim 20, Sadarangani et al. disclose the claimed invention except for the dividing member being made of a magnetically conducting iron. It would have been obvious to have this configuration, since it has been held to be within the general skill of a worker in the art to select a known material on the basis of its suitability for the intended use as a matter of obvious design choice. *In re Leshin*, 125 USPQ 416.

For claim 21, Sadarangani et al. already anticipate the magnetic flux conducting section being arranged in a line one after the other parallel to the movement path as explained for claim 15, and this configuration would make the plane of these sections be disposed perpendicularly to the movement path.

For claim 23, Sadarangani et al. disclose the movable element connected to one piston that is movably arranged in a housing (see page 19, lines 25-27).

For claim 24, the housing of Sadarangani et al. (reference numerals 22, 23) can be used as a combustion chamber where the piston (reference numerals 20, 21) can move back and forth, and it would have been within the knowledge of a person skilled in

the art to enable the electrical machine disclosed by the references of Sadarangani et al. and Nagai et al. to cooperate with any type of engine, i.e. a combustion engine.

For claims 26 and 27, since the structural limitations of the electrical machine are disclosed by the inventions of Sadarangani et al. and Nagai et al. as explained for claim 1, this would enable the machine to be used as a generator for generating electric power, including generators that are adapted to constitute a component in a wind power plant or a wave power plant.

For claims 28 and 29, since the structural limitations of the electrical machine are disclosed by the inventions of Sadarangani et al. and Nagai et al. as explained for claim 1, this would enable the machine to be used as a motor for generating mechanical power, including motors that are adapted to form a drive motor in a vehicle.

4. Claims 3, 4, 6, and 7 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sadarangani et al. and Nagai et al. as applied to claims 1 and 2 above, and further in view of Richter (US Patent No.: 4308479).

For claim 3, the references of Sadarangani et al. and Nagai et al. teach the claimed invention except for the intermediate member having two secondary magnets. Richter provides a technique of providing magnets (reference numerals 62, 63, see figure 3) in between magnets referenced by numerals 47 and 48 for the purpose of reducing flux leakage (see column 1, lines 45-62), and it would have been obvious for a person of ordinary skill in the art to include the technique of Richter and rearrange the magnets so that two magnets can be placed in between the primary magnets in the

inventions of Sadarangani et al. and Nagai et al., since this configuration would further reduce the magnetic leakage flux of the linear motor.

For claims 4, 6, and 7, Sadarangani et al. and Nagai et al. disclose the claimed invention except for having the secondary magnets arranged so that the first secondary magnet is in the vicinity of the north pole of the primary magnet of the first permanent-magnet member and the south pole of the primary magnet of the second permanent-magnet member and so that the second secondary magnet is in the vicinity of the south pole of the primary magnet of the first permanent-magnet member and the north pole of the primary magnet of the second permanent-magnet member (claim 4), the magnetic flux conductors on each side of the primary magnet (claim 6) and the first secondary magnet extending between the first magnetic flux conductor of the two permanent-magnet members and the second secondary magnet extending between the second magnetic flux conductor of the two permanent-magnet members (claim 7). Richter already disclose the magnets and the magnetic flux conductors (reference numerals 50, 52) as explained for claim 3 above, and it would have been obvious to have the claimed configurations in the inventions of Sadarangani et al. and Nagai et al. since this would have involved rearranging the magnets and the magnetic flux conductors (reference numerals 50, 52) illustrated in figure 3 of Richter, and a person of ordinary skill would have applied these configurations for the purpose of reducing the leakage flux in the linear motor.

5. Claim 5 is rejected under 35 U.S.C. 103(a) as being unpatentable over Sadarangani et al., Nagai et al., and Richter as applied to claim 3 above, and further in view of Nashiki (US Patent No.: 6211593).

For claim 5, the references of Sadarangani et al., Nagai et al., and Richter teach the claimed invention except for the intermediate member having a layer of magnetically insulating material on the secondary magnets. Nashiki uses a similar technique of using magnetic insulating members on the magnetic poles (see column 4, lines 50-65), and it would have been obvious for a person of ordinary skill to apply this magnetic insulator of Nashiki onto the secondary magnets of the intermediate member in Sadarangani et al., Nagai et al., and Richter for the purpose of preventing demagnetization of the secondary magnets.

Response to Arguments

6. Applicant's arguments with respect to claims 1-21, 23, 24, and 26-29 have been considered but are moot in view of the new ground(s) of rejection.

Conclusion

7. Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

8. Any inquiry concerning this communication or earlier communications from the examiner should be directed to ALEX W. MOK whose telephone number is (571)272-9084. The examiner can normally be reached on 7:30-5:00 Eastern Time, 1st Friday off.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Quyen P. Leung can be reached on (571) 272-8188. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Tran N. Nguyen/

Primary Examiner, Art Unit 2834

Alex W. Mok
Examiner
Art Unit 2834

/A. W. M./
Examiner, Art Unit 2834