UNIVERSIDADE ESTADUAL DE PONTA GROSSA SETOR DE CIÊNCIAS AGRÁRIAS E DE TECNOLOGIA DEPARTAMENTO DE INFORMÁTICA

EDUARDO LUIZ SCHADE SOARES

CÁLCULO DE APROXIMAÇÃO DA RAIZ DE 2 E DE TEMPO DE CHAVEAMENTO DE PROCESSOS

PONTA GROSSA 2018

- Introdução

A série utilizada para a demonstração do tempo de chaveamento entre processos foi a raiz de 2. Através desse cálculo foi possível "consumir" processamento da CPU e obter resultados relacionados ao tempo utilizado para *tarefas administrativas*, resultado da mudança de contexto dos processos.

- Série Iterativa

A raiz de 2 é um número irracional, ou seja, não é possível encontrar dois números inteiros que divididos um pelo outro resultem em $\sqrt{2}$. Assim, utiliza-se a aproximação para chegar ao resultado, cerca de 1,41421.

O cálculo de aproximação utilizado para chegar ao resultado foi:

$$X_{n+1} = \frac{Xn}{2} + \frac{1}{Xn}$$

Adaptado para o código em C:

```
i = 1;
while (i <= iteracoes) {
     xn = x;
     x = xn/2 + 1/xn;
     i++;
}</pre>
```

Esse cálculo recursivo gera uma sequência tal como essa:

```
1; \frac{3}{2}; \frac{17}{12}; \frac{577}{408}; \frac{665857}{470832}...
```

O resultado equivalente a essas frações em decimais:

```
1; 1.5; 1.416666667; 1.414215686; 1.414213562;
```

A precisão dos resultados são proporcionais a quantidade de iterações, quanto mais iterações, mais próximo o resultado será do seu valor real.

- Resultados do tempo de execução

Foi criado um programa que gerava processos filhos com o cálculo da raiz de 2. Através da criação de mais processos, pôde-se fazer uma estimativa do tempo de chaveamento entre processos.

Para chegar aos resultados estimados do tempo de mudança entre os processos, foi realizada a execução do programa em diferentes cenários. Cada cenário equivale a execução do programa sendo ele equivalente a somente um processo, ou sendo ele pai de processos filhos. Cada cenário foi executado 5

vezes, e assim, chegou-se a um resultado médio para ser utilizado. Todos os tempos são em segundos.

Para a criação de processos dentro de um programa, foi utilizada uma função da linguagem C chamada *fork*.

O número de iterações para o cálculo da raiz de 2 foi fixado em 99999999 em todos os cálculos de tempo.

Segue abaixo a tabela de cálculos dos tempos médios em cada cenário.

CENÁRIO 1 - Execução sem forks (Referência)

Referência 1	14.469911	
Referência 2	14.652099	
Referência 3	14.711079	
Referência 4	14.50477	
Referência 5	14.526115	
TEMPO MÉDIO	14.5727948	

O cenário 1 equivale ao tempo que será utilizado como referência para o tempo de execução estimado com 1, 2, 3 e 4 forks. Logo, foi multiplicado o tempo de referência pela quantidade de processos que serão contabilizados. Sendo assim:

1 PROCESSO (0 Forks)	14.5727948	
2 PROCESSOS (1 Forks)	29.1455896	
3 PROCESSOS (2 Forks)	43.7183844	
4 PROCESSOS (3 Forks)	58.2911792	
5 PROCESSOS (4 Forks)	72.863974	

CENÁRIO 2 - Execução com 1 fork (2 processos)

Referência 1	15.340753	
Referência 2	15.464887	
Referência 3	ncia 3 15.370589	
Referência 4	16.081868	
Referência 5	15.970999	
TEMPO MÉDIO	15.6458192	

CENÁRIO 3 - Execução com 2 forks (3 processos)

Referência 1	17.808901	
Referência 2	18.310503	
Referência 3	18.125062	
Referência 4	18.295931	
Referência 5	18.271655	
TEMPO MÉDIO	18.1624104	

CENÁRIO 4 - Execução com 3 forks (4 processos)

Referência 1	19.606588		
Referência 2	20.171325		
Referência 3	19.106218		
Referência 4	18.954131		
Referência 5	19.190398		
TEMPO MÉDIO	19.405732		

CENÁRIO 5 - Execução com 4 forks (5 processos)

Referência 1	23.924552	
Referência 2	25.54719	
Referência 3	25.009769	
Referência 4	25.714285	
Referência 5	24.739925	
TEMPO MÉDIO	24.9871442	

Com o cálculo estimado de tempo de execução em cada cenário, é finalmente possível encontrar o tempo de *overhead* através da subtração do tempo médio em cada cenário (2, 3, 4 e 5) pelo tempo de referência, encontrado no cenário 1. Assim:

	TEMPO DE REFERÊNCIA	TEMPO MÉDIO	OVERHEAD
1 PROCESSO (0 Forks)	14.5727948	14.5727948	0
2 PROCESSO (1 Forks)	29.1455896	15.6458192	-13.4997704
3 PROCESSO (2 Forks)	43.7183844	18.1624104	-25.555974
4 PROCESSO (3 Forks)	58.2911792	19.405732	-38.8854472
5 PROCESSO (4 Forks)	72.863974	24.9871442	-47.8768298

Traçando o gráfico, teremos:

O overhead resultou em um valor negativo, devido ao tempo de execução ser menor do que o tempo estimado.