Linear Algebra cheat sheet

Vectors

dot product:
$$u * v = ||u|| * ||v|| * cos(\phi) = u_x v_x + u_y v_y$$
 cross product: $u \times v = \begin{pmatrix} u_y v_z - u_z v_y \\ u_z v_x - u_x v_z \\ u_x v_y - u_y v_x \end{pmatrix}$

$$\begin{array}{l} \|x\|_p := \sqrt[p]{\sum_{i=1}^n |x_i|^p} \\ \|x\|_1 := \sum_{i=1}^n |x_i| \ \ \|x\|_\infty = \max_i |x_i| \end{array}$$

enclosed angle:

$$cos\phi = \frac{u*v}{||u||*||v||}$$

$$||u||*||v|| = \sqrt{(u_x^2 + u_y^2)(v_x^2 + v_y^2)}$$

Matrices

basic operations

transpose: $[A^{\mathrm{T}}]_{ij} = [A]_{ji}$: "mirror over main diagonal" conjungate transpose / adjugate: $A^* = (\overline{A})^{\mathrm{T}} = \overline{A^{\mathrm{T}}}$ "transpose and complex conjugate all entries" (same as transpose for real matrices)

multiply:
$$A_{N\times M}*B_{R\times K}=M_{N\times K}$$
 invert: $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1}=\frac{1}{\det(\mathbf{A})}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}=\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

 $\|A\|_p = \max_{x \neq 0} \frac{\|Ax\|_p}{\|x\|_p}$, induced by vector p-norm

$$\begin{aligned} \|A\|_2 &= \sqrt{\lambda_{\max}(A^T A)} \\ \|A\|_1 &= \max_j \sum_{i=1}^m |a_{ij}|, \end{aligned}$$

 $||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|,$

condition: $\operatorname{cond}(A) = ||A|| \cdot ||A^{-1}||$

determinants

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n A_{i,\sigma_i}$$

For 3×3 matrices (Sarrus rule):

arithmetic rules:

$$\begin{split} \det(A \cdot B) &= \det(A) \cdot \det(B) \\ \det(A^{-1}) &= \det(A)^{-1} \\ \det(rA) &= r^n \det A \text{ , for all } A^{n \times n} \text{ and scalars } r \end{split}$$

eigenvalues, eigenvectors, eigenspace

- 1. Calculate **eigenvalues** by solving det $(A \lambda I) = 0$
- 2. Any vector x that satisfies $(A \lambda_i I) x = 0$ is **eigenvector** for λ_i .
- 3. $\operatorname{Eig}_A(\lambda_i) = \{x \in \mathbb{C}^n : (A \lambda_i)x = 0\}$ is **eigenspace** for λ_i .

definiteness

defined on $n \times n$ square matrices:

 $\forall \lambda \in \sigma(A)$.

 $\lambda > 0 \iff$ positive-definite

 $\lambda > 0 \iff$ positive-semidefinite

 $\lambda < 0 \iff$ negative-definite

 $\lambda < 0 \iff$ negative-semidefinite

if none true (positive and negative λ exist): indefinite equivalent: eg. $x^T Ax > 0 \iff$ positive-definite

rank

Let A be a matrix and f(x) = Ax.

rank(A) = rank(f) = dim(im(f))

- = number of linearly independent column vectors of A
- = number of non-zero rows in A after applying Gauss

kernel

 $\ker(A) = \{x \in \mathbb{R}^n : Ax = 0\}$ (the set of vectors mapping to 0) For nonsingular A this has one element and $\dim(\ker(A)) = 0$ (?)

trace

defined on n×n square matrices: $tr(A) = a_{11} + a_{22} + \cdots + a_{nn}$ (sum of the elements on the main diagonal)

span

Let v_1, \ldots, v_r be the column vectors of A. Then: $\operatorname{span}(A) = \{\lambda_1 v_1 + \dots + \lambda_r v_r \mid \lambda_1, \dots, \lambda_r \in \mathbb{R}\}\$

spectrum

 $\sigma(A) = \{ \lambda \in \mathbb{C} : \lambda \text{ is eigenvalue of A} \}$

properties

square: $N \times N$

symmetric: $A = A^T$

diagonal: 0 except a_{kk}

⇒ implies triangular (eigenvalues on main diagonale)

orthogonal: $A^T = A^{-1}$

 \Rightarrow normal and diagonalizable

unitary

Complex analogy to orthogonal: A complex square matrix is unitary if all column vectors are orthonormal

- \Rightarrow diagonolizable
- $\Rightarrow cond_2(A) = 1$
- $\Rightarrow |det(A)| = 1$

nonsingular

 $A^{n \times n}$ is nonsingular = invertible = regular iff:

There is a matrix $B := A^{-1}$ such that AB = I = BA

 $det(A) \neq 0$

Ax = b has exactly one solution for each b

The column vectors of A are linearly independent

rank(A) = nf(x) = Ax is bijective (?)

$$\Rightarrow det(A)^{-1} = det(A^{-1})$$

$$\Rightarrow det(A) = det(A)$$

$$\Rightarrow (A^{-1})^{-1} = A \\ \Rightarrow (A^{T})^{-1} = (A^{-1})^{T}$$

diagonalizable

 $A^{n \times n}$ can be diagonalized iff:

it has n linear independent eigenvectors

all eigenvalues are real and distinct

there is an invertible T, such that:

$$D := T^{-1}AT = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

$$A = T^{-1}DT$$
 and $AT = TD$

 $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A!

T can be created with eigenvectors of A and is nonsingular!

diagonally dominant matrix

$$\forall i. |a_{ii}| \ge \sum_{j \ne i} |a_{ij}|$$

 \Rightarrow nonsingular

Hermitian

A square matrix A where $A^* = A$ (equal to its adjugate)

A real matrix is Hermitian iff symmetric

 $\Rightarrow \Im(\det(A)) = 0$ (determinante is real)

triangular

A square matrix is right triangular (wlog n = 3):

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix}$$

⇒ Eigenvalues on main diagonale

idempotent

A square matrix A for which AA = A.

TODO: Use cases?

block matrices

Let B, C be submatrices, and A, D square submatrices. Then:

$$\det \begin{pmatrix} A & 0 \\ C & D \end{pmatrix} = \det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A)\det(D)$$

minors