Groverize Monotone Local Search. (Short Note)

David Ponarovsky

April 25, 2023

1 Todo.

- 1. Write the table (sage script).
- 2. Add definitions. Problem description.
- 3. Complete the 'proof'.
- 4. Prove lower bound.

2 Introduction.

We follow the study of [Fom+15], who relate between the parametrized complexity to the general average case complexity. Crudely put, they shown that for particular wide range of **NP** hard problems, a solution which run exponentially at some complexity parameter, for example the treewidth of a graph, can be used to derive a batter than bruteforce solution for the general problem. We continue their work by plugin the Grover search [Gro96] routine instead the original sampling process.

Definition 1 (Implicit Set System). We define an implicit set system as a function Φ that takes as input a string $I \in \{0,1\}^*$ and outputs a set system (U_I, \mathcal{F}_I) , where U_I is a universe and \mathcal{F}_I is a collection of subsets of U_I . The string I is referred to as an instance and we denote by $|U_I| = n$ the size of the universe and by |I| = N the size of the instance.

We assume that $N \geq n$. The implicit set system Φ is said to be polynomial time computable if (a) there exists a polynomial time algorithm that given I produces U_I , and (b) there exists a polynomial time algorithm that given I, U_I and a subset S of U_I determines whether $S \in \mathcal{F}_I$. All implicit set systems discussed in this paper are polynomial time computable, except for the minimal satisfying assignments of d-CNF formulas which are not polynomial time computable unless P=NP

An implicit set system Φ naturally leads to some problems about the set system (U_I, \mathcal{F}_I) . Find a set in \mathcal{F}_I . Is \mathcal{F}_I non-empty? What is the cardinality of \mathcal{F}_I ? In this paper we will primarily focus on the first and last problems. Examples of implicit sets systems include the set of all feedback vertex sets of a graph of size at most k, the set of all satisfying assignments of a CNF formula of weight at most W, and the set of all minimal hitting sets of a set system. Next we formally define subset problems.

An instance IA set $S \in \mathcal{F}_I$ if one exists.

An example of a subset problem is MIN-ONES d-SAT. Here for an integer k and a propositional formula F in conjunctive normal form (CNF) where each clause has at most d literals, the task is to determine whether F has a satisfying assignment with Hamming weight (number of 1s) at most k, i.e., setting at most k variables to 1. In our setting, the instance I consists of the input formula F and the integer k, encoded as a string over 0s and 1s. The implicit set system Φ is a function from I to (U_I, \mathcal{F}_I) , where U_I is the set of variables of F, and \mathcal{F}_I is the set of all satisfying assignments of Hamming weight at most k.

$$\sum_{k' \le k} \frac{1}{\sqrt{p(k')}} \cdot c^{k'-t} N^{\mathcal{O}(1)} \le \max_{k' \le k} \left(\frac{\binom{n-|X|}{t}}{\binom{k'}{t}} \right)^{\frac{1}{2}} \cdot c^{k'-t} N^{\mathcal{O}(1)} = \left(\max_{k' \le k} \frac{\binom{n-|X|}{t}}{\binom{k'}{t}} \cdot c^{2(k'-t)} \right)^{\frac{1}{2}} N^{\mathcal{O}(1)} = \left(\max_{k \le n-|X|} \frac{\binom{n-|X|}{t}}{\binom{k}{t}} \right)^{\frac{1}{2}} \cdot c^{2(k-t)} N^{\mathcal{O}(1)} \le \left(2 - \frac{1}{c^2} \right)^{\frac{n-|X|}{2}} N^{\mathcal{O}(1)}$$

References

- [Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. 1996. arXiv: quant-ph/9605043 [quant-ph].
- [Fom+08] Fedor V. Fomin et al. "On the minimum feedback vertex set problem: exact and enumeration algorithms". In: *Algorithmica* 52.2 (2008), pp. 293–307. ISSN: 0178-4617. DOI: 10.1007/s00453-007-9152-0. URL: https://doi.org/10.1007/s00453-007-9152-0.
- [Fom+10] Fedor V. Fomin et al. "Iterative compression and exact algorithms". In: *Theoret. Comput. Sci.* 411.7-9 (2010), pp. 1045–1053. ISSN: 0304-3975. DOI: 10.1016/j.tcs.2009. 11.012. URL: https://doi.org/10.1016/j.tcs.2009.11.012.
- [Cyg+11] Marek Cygan et al. "Solving connectivity problems parameterized by treewidth in single exponential time (extended abstract)". In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science—FOCS 2011. IEEE Computer Soc., Los Alamitos, CA, 2011, pp. 150–159. DOI: 10.1109/FOCS.2011.23. URL: https://doi.org/10.1109/FOCS.2011.23.
- [tV13] Pim van 't Hof and Yngve Villanger. "Proper interval vertex deletion". In: Algorithmica 65.4 (2013), pp. 845–867. ISSN: 0178-4617. DOI: 10.1007/s00453-012-9661-3. URL: https://doi.org/10.1007/s00453-012-9661-3.

Problem Name	Parameterized		Groverize	New bound	Previous Bound	
FEEDBACK VERTEX SET	3 ^k (r) [C:	yg+11]	1.3744^{k}	1.6667^n (r)		
Feedback Vertex Set	3.592^k	[KP14]	1.3865^{k}	1.7217^n	1.7347^{n}	[FTV15
Subset Feedback Vertex Set	4 ^k [Wahlstr	om14]	1.3919^{k}	1.7500^n	1.8638^{n}	[Fom+14
FEEDBACK VERTEX SET IN TOURNAMENTS	1.6181^{k}	[KL16]	1.2720^{k}	1.3820^n	1.4656^{n}	[KL16
Group Feedback Vertex Set	4 ^k [Wahlstr	om14]	1.3919^{k}	1.7500^n	NPR	
Node Unique Label Cover	$ \Sigma ^{2k}$ [Wahlstr	om14	1.3919^{k}	$(2-\frac{1}{ \Sigma ^2})^n$	NPR	
Vertex (r, ℓ) -Partization $(r, \ell \leq 2)$	3.3146^k [KolayP15; B	as+17]	1.3817^{k}	1.6984^{n}	NPR	
Interval Vertex Deletion		Cao16]	1.3466^{k}	1.8750^n		for $\varepsilon < 10^{-20}$ [BFP13
Proper Interval Vertex Deletion	6^k [tV13;	Cao15	1.4087^{k}	1.8334^{n}	$(2-\varepsilon)^n$	for $\varepsilon < 10^{-20}$ [BFP13
BLOCK GRAPH VERTEX DELETION	4^k [A	gr+16	1.4044^{k}	1.7500^n	$(2-\varepsilon)^n$	for $\varepsilon < 10^{-20}$ BFP13
Cluster Vertex Deletion	1.9102^k B	or+14	1.3919^{k}	1.4765^{n}	1.6181^{n}	Fom+10
THREAD GRAPH VERTEX DELETION	8^k [Ka	an+15	1.3919^{k}	1.8750^{n}	NPR	•
Multicut on Trees	1.5538^k [Ka	an+14	1.3138^{k}	1.3565^{n}	NPR	
3-Hitting Set	2.0755^k [MagnusP	hD07	1.4087^{k}	1.5182^{n}	1.6278^{n}	[MagnusPhD07
4-HITTING SET	3.0755^k [Fo	m+10	1.2593^{k}	1.6750^{n}	1.8704^{n}	[Fom+10
d -Hitting Set $(d \ge 3)$	$(d - 0.9245)^k$ [Fo	[m+10]	1.1763^{k}	$(2-\frac{1}{(d-0.9245)})^n$		[Coc+16; Fom+10
Min-Ones 3-SAT	2.562^k [abs-1007]	-1166]	1.3296^{k}	1.6097^n	NPR	
Min-Ones d-SAT $(d \ge 4)$	d^k	-	1.3763^{k}	$(2-\frac{1}{d})^n$	NPR	
Weighted d-SAT $(d \ge 3)$	d^k		1.3763^{k}	$(2-\frac{d}{d})^n$	NPR	
Weighted Feedback Vertex Set	3.6181^k [A	gr+16]	1.1763^{k}	1.7237^{n}	1.8638^{n}	[Fom+08
Weighted 3-Hitting Set	2.168^k	[SZ15]	1.3593^{k}	1.5388^{n}	1.6755^{n}	[Coc+16
Weighted d-Hitting Set $(d \ge 4)$	$(d-0.832)^k$ [Fom+10]	SZ15]	1.3919^{k}	$(2-\frac{1}{d-0.932})^n$		[Coc+16

Table 1: Summary of known and new results for different optimization problems. NPR means that we are not aware of any previous algorithms faster than brute-force. All bounds suppress factors polynomial in the input size N. The algorithms in the first row are randomized (r).

- [BFP13] Ivan Bliznets, Fedor V. Fomin, and Yngve Pilipczuk Michałand Villanger. "Largest chordal and interval subgraphs faster than 2ⁿ". In: Algorithms—ESA 2013. Vol. 8125. Lecture Notes in Comput. Sci. Springer, Heidelberg, 2013, pp. 193–204. DOI: 10.1007/978-3-642-40450-4_17. URL: https://doi.org/10.1007/978-3-642-40450-4_17.
- [Bor+14] Anudhyan Boral et al. "A fast branching algorithm for cluster vertex deletion". In: Computer science—theory and applications. Vol. 8476. Lecture Notes in Comput. Sci. Springer, Cham, 2014, pp. 111–124. DOI: 10.1007/978-3-319-06686-8_9. URL: https://doi.org/10.1007/978-3-319-06686-8_9.
- [Fom+14] Fedor V. Fomin et al. "Enumerating minimal subset feedback vertex sets". In: Algorithmica 69.1 (2014), pp. 216–231. ISSN: 0178-4617. DOI: 10.1007/s00453-012-9731-6. URL: https://doi.org/10.1007/s00453-012-9731-6.
- [Kan+14] Iyad Kanj et al. "Algorithms for cut problems on trees". In: Combinatorial optimization and applications. Vol. 8881. Lecture Notes in Comput. Sci. Springer, Cham, 2014, pp. 283–298. DOI: 10.1007/978-3-319-12691-3_22. URL: https://doi.org/10.1007/978-3-319-12691-3_22.
- [KP14] Tomasz Kociumaka and Marcin Pilipczuk. "Faster deterministic Feedback Vertex Set".
 In: Inform. Process. Lett. 114.10 (2014), pp. 556-560. ISSN: 0020-0190. DOI: 10.1016/j.ipl.2014.05.001. URL: https://doi.org/10.1016/j.ipl.2014.05.001.
- [Cao15] Yixin Cao. "Unit interval editing is fixed-parameter tractable". In: Automata, languages, and programming. Part I. Vol. 9134. Lecture Notes in Comput. Sci. Springer, Heidelberg, 2015, pp. 306–317. DOI: 10.1007/978-3-662-47672-7_25. URL: https://doi.org/10.1007/978-3-662-47672-7_25.
- [FTV15] Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. "Large induced subgraphs via triangulations and CMSO". In: SIAM J. Comput. 44.1 (2015), pp. 54–87. ISSN: 0097-5397. DOI: 10.1137/140964801. URL: https://doi.org/10.1137/140964801.

- [Fom+15] Fedor V. Fomin et al. Exact Algorithms via Monotone Local Search. 2015. arXiv: 1512. 01621 [cs.DS].
- [Kan+15] Mamadou Moustapha Kanté et al. "An FPT algorithm and a polynomial kernel for linear rankwidth-1 vertex deletion". In: 10th International Symposium on Parameterized and Exact Computation. Vol. 43. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2015, pp. 138–150.
- [SZ15] Hadas Shachnai and Meirav Zehavi. "A multivariate approach for weighted FPT algorithms". In: Algorithms—ESA 2015. Vol. 9294. Lecture Notes in Comput. Sci. Springer, Heidelberg, 2015, pp. 965–976. DOI: 10.1007/978-3-662-48350-3_80. URL: https://doi.org/10.1007/978-3-662-48350-3_80.
- [Agr+16] Akanksha Agrawal et al. "A faster FPT algorithm and a smaller kernel for block graph vertex deletion". In: LATIN 2016: theoretical informatics. Vol. 9644. Lecture Notes in Comput. Sci. Springer, Berlin, 2016, pp. 1–13. DOI: 10.1007/978-3-662-49529-2_1. URL: https://doi.org/10.1007/978-3-662-49529-2_1.
- [Cao16] Yixin Cao. "Linear recognition of almost interval graphs". In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, 2016, pp. 1096–1115. DOI: 10.1137/1.9781611974331.ch77. URL: https://doi.org/10.1137/1.9781611974331.ch77.
- [Coc+16] Manfred Cochefert et al. "Faster algorithms to enumerate hypergraph transversals". In: LATIN 2016: theoretical informatics. Vol. 9644. Lecture Notes in Comput. Sci. Springer, Berlin, 2016, pp. 306–318. DOI: 10.1007/978-3-662-49529-2_23. URL: https://doi.org/10.1007/978-3-662-49529-2_23.
- [KL16] Mithilesh Kumar and Daniel Lokshtanov. "Faster exact and parameterized algorithm for feedback vertex set in tournaments". In: 33rd Symposium on Theoretical Aspects of Computer Science. Vol. 47. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016, Art. No. 49, 13.
- [Bas+17] Julien Baste et al. "Parameterized complexity dichotomy for (r, ℓ) -vertex deletion". In: Theory Comput. Syst. 61.3 (2017), pp. 777–794. ISSN: 1432-4350. DOI: 10.1007/s00224-016-9716-y. URL: https://doi.org/10.1007/s00224-016-9716-y.