Unimplemented Features - Comprehensive Analysis

Priority Matrix

```
High Priority + Low Complexity → Implement First ★★★
High Priority + High Complexity → Plan Carefully ★★
Low Priority + Low Complexity → Nice to Have ★
Low Priority + High Complexity → Future Maybe ○
```

Category 1: Hardware Devices (ASCOM Interfaces)

★★★ FilterWheel (IFilterWheelV2)

Status: Placeholder exists, ready to implement

Complexity: Low-Medium

Priority: High (essential for color imaging)

Use Case: Multi-band imaging (LRGB, narrowband)

Common Hardware:

- ZWO EFW (Electronic Filter Wheel)
- QHYCFW2/3
- Atik EFW2
- Manual filter wheels via serial

Implementation Needs:

☐ Hardware SDK integration (ZWO has Python SDK)
☐ Position control (move to filter 0-7)
☐ Filter naming system
☐ Focus offsets per filter
☐ Movement detection/completion
Calibration routine
Effort: 2-3 days Files to modify: (filterwheel.py), (main.py), (config.py)
Example SDK:

```
python

import zwoasi_efw as efw
efw.get_num_devices() # Detect wheels
wheel = efw.EFW(0)
wheel.set_position(2) # Move to filter 2
```

★★★ Focuser (IFocuserV3)

Status: Placeholder exists, ready to implement

Complexity: Low-Medium

Priority: High (essential for maintaining focus) **Use Case:** Auto-focus, temperature compensation

Common Hardware:

- Moonlite (USB/Serial)
- Pegasus Astro (USB)
- ZWO EAF (Electronic Auto Focuser)
- MyFocuserPro2
- Lakeside focusers

Implementation Needs:

☐ Absolute positioning (move to step N)
Relative moves (+/- N steps)
☐ Movement speed control
☐ Backlash compensation
☐ Temperature compensation
☐ Temperature sensor reading
☐ Position limits/safety

Effort: 3-4 days

Files to modify: (focuser.py), (main.py), (config.py)

Key Methods:

- (move_to_position(steps)) Absolute move
- [move_relative(steps)] Relative move
- (halt()) Emergency stop
- (get_temperature()) Read temp sensor
- (set_temp_compensation(enabled)) Enable temp comp

★★ Rotator (IRotatorV3)

Status: Not started

Complexity: Medium

Priority: Medium (needed for image composition)

Use Case: Field rotation, image framing

Common Hardware:

- Pegasus Astro Falcon Rotator
- Optec Pyxis
- PrimaLuceLab SESTO SENSO 2

Implementation Needs:

☐ Position control (degrees)

☐ Mechanical position (degrees)

☐ Sky position angle

☐ Reverse direction support

☐ Step size configuration

☐ Sync operation

Effort: 2-3 days

New files: (rotator.py) + routes in (main.py)

Switch (ISwitchV2)

Status: Not started

Complexity: Low-Medium

Priority: Low-Medium (convenience feature)

Use Case: Power control, dew heaters, flat panels

Common Hardware:

- Pegasus Astro Pocket Powerbox
- PrimaLuceLab EAGLE
- Custom Arduino-based controllers
- Lunatico AAG CloudWatcher

Implementation Needs:

 Multiple switch support (typically 4-8 switches) Switch naming Get/Set state (on/off) Analog value reading (voltage, current) PWM control (for dimmers) Effort: 2-3 days New files: (switch.py) + routes in (main.py) 				
Use Cases:				
 Dew heater control Flat panel on/off Camera power cycling Mount power control 				
• Dust cover motor				
★ ObservingConditions (IObservingConditionsV1) Status: Not started Complexity: Low-Medium Priority: Low-Medium (safety/automation) Use Case: Weather monitoring, safety checks				
Common Hardware:				
 Lunatico AAG CloudWatcher Boltwood Cloud Sensor Davis Weather Station PrimaLuceLab EAGLE weather 				
Implementation Needs:				
 Temperature reading Humidity reading Dew point calculation Cloud coverage Wind speed/direction 				

New files: observing conditions.py + routes		
○ SafetyMonitor (ISafetyMonitorV2)		
Status: Not started		
Complexity: Low Priority: Low (can use ObservingConditions) Use Case: Simple safe/unsafe signal		
Implementation Needs:		
☐ Safe/Unsafe property ☐ Connect/Disconnect		
Effort: 1 day Note: Often combined with ObservingConditions		
○ Dome (IDomeV2)		
Status: Not started		
Complexity: High Priority: Low (niche use case) Use Case: Observatory dome control		
Common Hardware:		
• NexDome		
 Sirius Observatory Dome Custom dome controllers 		
Implementation Needs:		
☐ Open/Close shutter ☐ Rotate to azimuth		
☐ Slaving to telescope		
Park position		
☐ Home detection ☐ Safety interlocks		
Effort: 5-7 days New files: dome.py + routes		

Effort: 2-3 days

Category 2: Network & Discovery

★★★ Alpaca Discovery Protocol (UDP)

Status: Not implemented

Complexity: Medium

Priority: High (improves user experience)

Use Case: Auto-discovery by clients (N.I.N.A., PHD2)

Current Limitation: Users must manually enter IP address

Implementation Needs:

☐ UDP broadcast listener on port 32227

☐ Respond with JSON discovery packet

☐ Include all device information

☐ Handle IPv4 and IPv6

Effort: 1-2 days

Files to modify: [main.py]

Discovery Packet Format:

```
json
 "AlpacaPort": 5555,
 "AlpacaDevices": [
  {"DeviceName": "OnStepX", "DeviceType": "Telescope", "DeviceNumber": 0},
  {"DeviceName": "ZWO Camera", "DeviceType": "Camera", "DeviceNumber": 0}
 ]
}
```

User Experience Impact: ***

N.I.N.A. will find your server automatically!

★★ mDNS/Bonjour Support

Status: Not implemented

Complexity: Low **Priority:** Medium

Use Case: Service advertising on local network

Implementation:

python

from zeroconf import ServiceInfo, Zeroconf

Advertise as _alpaca._tcp.local.

Effort: 1 day

Category 3: Imaging Workflows

★★★ Auto-Focus Routine

Status: Not implemented

Complexity: Medium-High

Priority: High (critical for quality)

Use Case: Maintain perfect focus during session

Implementation Needs:

- ☐ V-curve focus algorithm
- ☐ Star detection (HFR calculation)
- ☐ Temperature-based triggering
- ☐ Filter-specific offsets
- Backlash compensation
- ☐ Coarse + fine focusing

Requires: Focuser device implementation

Effort: 3-5 days

New files: (autofocus.py)

Algorithm:

- 1. Take exposure
- 2. Measure star HFR (Half-Flux Radius)
- 3. Move focuser
- 4. Repeat to find minimum HFR
- 5. Fit curve and move to optimal position

★★★ Plate Solving Integration

Status: Not implemented

Complexity: Medium

Priority: High (accurate positioning) Use Case: Precise goto, blind solving

Options:

- ASTAP (free, local)
- Astrometry.net (cloud-based)
- PinPoint (commercial)
- ANSVR (local server)

Implementation Needs:

- ☐ Call solver API/binary
- ☐ Parse RA/Dec result
- Sync telescope
- ☐ Iterative improvement

Effort: 3-4 days

New files: (platesolve.py)

Workflow:

- 1. Take image
- 2. Solve for RA/Dec
- 3. Compare to target
- 4. Sync or slew to correct
- 5. Repeat until within tolerance

★★ Dithering Support

Status: Not implemented

Complexity: Low-Medium

Priority: Medium (improves stacking) Use Case: Reduce pattern noise in stacks

Implementation Needs:

☐ Random offset generation

☐ Pulse guide in RA/Dec

Settling time after dither

☐ Pattern tracking (spiral, random)

Maximum dither distance

Effort: 2 days

New files: (dithering.py)

Typical Pattern:

- After each exposure
- Move ±5-15 pixels randomly
- Wait for settling (3-5 seconds)
- Continue imaging

★★ Meridian Flip Automation

Status: Not implemented

Complexity: Medium

Priority: Medium (long sessions)

Use Case: Continue imaging past meridian

Implementation Needs:

Detect approaching meridian	
Pause imaging	
☐ Flip mount (slew to other side	e)
☐ Recalibrate guiding	
Refocus if needed	
Resume imaging	

Effort: 2-3 days

Requires: Integration with imaging sequence

★★ Image Calibration Pipeline

Status: Not implemented

Complexity: Medium-High

Priority: Medium (quality improvement)

Use Case: Dark/Flat/Bias frame management

Implementation Needs:

Automatic dark frame capture
Flat frame sequences
🗌 Bias frame library
☐ Temperature-matched darks
☐ Frame storage/organization
Apply calibration to lights

Effort: 4-6 days

New files: (calibration.py)

***** Sequence Manager

Status: Not implemented

Complexity: High

Priority: Low (N.I.N.A. does this)

Use Case: Automated imaging sessions

Implementation Needs:

		Target l	ist mana	agement
--	--	----------	----------	---------

☐ Filter/exposure sequences

☐ Time-based scheduling

Conditions monitoring

Recovery from failures

Session planning

Effort: 7-10 days

Note: N.I.N.A. already provides this excellently

Category 4: Advanced Camera Features

★★ Multiple Simultaneous Exposures

Status: Not implemented

Complexity: Medium

Priority: Medium (efficiency)

Use Case: Guide while imaging, dual-camera rigs

Current Limitation: Cameras take turns exposing

Implementation Needs:

Thread-safe camera operations	,
-------------------------------	---

☐ Independent state machines per camera

☐ Synchronized start option

Resource locking

Effort: 2-3 days

Files to modify: [camera_*.py], [main.py]

† Fast Download Mode Status: Partial (Base64 implemented) **Complexity:** Low-Medium **Priority:** Low (current is acceptable) Use Case: Faster image transfer **Current Performance:** • Full frame: ~2-3 seconds download • Base64: ~1.33x overhead **Potential Improvements:** ☐ Compression (JPEG/PNG for preview) ☐ Progressive download Chunked transfer ☐ WebSocket streaming Effort: 2-3 days ***** Sub-Frame Download **Status:** Not implemented Complexity: Low **Priority:** Low Use Case: Guiding with small ROI Implementation: Download only ROI from sensor ☐ Reduce network traffic ☐ Faster for small guide stars **Effort:** 1-2 days ○ Video/Streaming Mode Status: Not implemented

Complexity: High

Priority: Low (not typical use case) **Use Case:** Focusing, polar alignment

Implementation:

☐ Continuous exposure loop			
☐ H.264 encoding			
☐ RTSP/WebRTC streaming			
Low latency (<500ms)			
Effort: 7-10 days			
Note: Planetary imaging users need this			
Category 5: Configuration & Management			
★★★ Web Configuration UI			
Status: Not implemented			
Complexity: Medium-High			
Priority: High (user experience)			
Use Case: Easy configuration without SSH			
Implementation Needs:			
☐ Web interface (React/Vue/vanilla JS)			
Device status dashboard			
☐ Configuration editor			
Live camera preview			
Mount control panel			
Log viewer			
System info (CPU, temp, disk)			
Effort: 5-7 days			
New files: (static/), (templates/)			
Pages:			
• Dashboard (all device status)			
Telescope control			
Camera settings			
• Filter/Focuser control			
• System logs			
Configuration editor			
★★ Configuration Persistence			

Status: Not implemented (uses config.py)

Complexity: Low
Priority: Medium
Use Case: Save settings between sessions
Current Limitation: All settings reset on restart
Implementation:
☐ JSON/YAML config file ☐ Save on change ☐ Load on startup ☐ Default values ☐ Validation
Effort: 1-2 days New files: config.json, config loader in main.py
★★ Enhanced Logging Status: Basic (print statements)
Complexity: Low
Priority: Medium
Use Case: Debugging, session history
Implementation:
Structured logging (JSON)
☐ Log levels (DEBUG, INFO, WARN, ERROR)
☐ Rotation policy
☐ Per-device logs
☐ Remote log viewing
☐ Log analysis tools
Effort: 2 days Files to modify: All modules
★ Backup/Restore System
Status: Not implemented
Complexity: Low

Implementation:

Use Case: Configuration backup

Priority: Low

☐ Backup config files					
☐ Export device settings					
Restore from backup Scheduled backups					
★ Performance Monitoring					
Status: Not implemented					
Complexity: Low-Medium					
Priority: Low					
Use Case: Optimization, diagnostics					
Metrics to Track:					
Exposure timing					
☐ Download speed					
☐ CPU usage					
☐ Memory usage					
☐ Temperature					
☐ Network throughput					
API response times					
Effort: 2-3 days					
Tools: Prometheus + Grafana					

Category 6: Security & Access

★★ Authentication

Status: Not implemented (open access)

Complexity: Medium

Priority: Medium (if internet-facing)

Use Case: Secure remote access

Current Risk: Anyone on network can control equipment

Implementation Options:

API key authentication
Username/password (OAuth2)
SSL/TLS encryption
☐ IP whitelist
☐ Rate limiting
Effort: 2-3 days
Libraries: Flask-Login, PyJWT
★ HTTPS/SSL Support
Status: HTTP only
Complexity: Low-Medium
Priority: Medium (if internet-facing)
Use Case: Encrypted communication
Implementation:
Self-signed certificate
Let's Encrypt integration
Certificate management
☐ HTTPS redirect
Effort: 1-2 days
○ VPN/Reverse Tunnel
Status: Not implemented
Complexity: Medium
Priority: Low (network configuration)
Use Case: Remote observatory access
Options:
WireGuard VPN
• ZeroTier
• Tailscale
Cloudflare Tunnel
Effort: 1-2 days (setup)

Category 7: Reliability & Recovery

★★ Improved Slewing Detection **Status:** Basic (OnStepX limitation) **Complexity:** Medium **Priority:** Medium Use Case: Accurate slew completion Current Issue: OnStepX doesn't provide reliable slewing status Workarounds: ☐ Poll position repeatedly ☐ Detect when position stabilizes ☐ Timeout-based completion ☐ Use OnStepX advanced commands Effort: 2-3 days **Files to modify:** [telescope.py] **★★** Automatic Error Recovery Status: Basic error handling only Complexity: Medium-High **Priority:** Medium Use Case: Unattended operation Implementation: Auto-reconnect on disconnect ☐ Retry failed operations ☐ Exposure retry on error ☐ Slew retry with offset

■ Watchdog timer

Error notifications

Effort: 3-4 days

Watchdog Service

Status: Not implemented

Complexity: Low

Priority: Low

Use Case: Automatic restart

Implementation:

bash

systemd already provides this

Restart=always RestartSec=10

Effort: Already configured in systemd service

Category 8: Integration & Interoperability

★★ INDI Protocol Support

Status: Alpaca only

Complexity: Very High

Priority: Low-Medium (Linux astronomy users) Use Case: Integration with Linux astronomy tools

INDI = Instrument Neutral Distributed Interface

Effort: 10-15 days

Alternative: Use INDI-to-Alpaca bridge (exists)

○ ASCOM COM Bridge

Status: Not needed (Alpaca is replacement)

Complexity: High **Priority:** Very Low

Use Case: Windows COM compatibility

Note: ASCOM Remote already does this

Action() Method Implementations

Status: Not implemented

Complexity: Low per action

Priority: Low (optional features)

Use Case: Device-specific commands

Examples:

• Mount: (:U#) (high precision toggle)

• Camera: "SetFanSpeed", "SetReadoutMode"

• OnStepX specific: PEC control, alignment

Effort: 1 day per device

Files to modify: All device drivers

Summary Tables

Quick Wins (High Impact, Low Effort)

Feature	Impact	Effort	Priority
UDP Discovery	***	1-2 days	***
Configuration Persistence	**	1-2 days	**
Enhanced Logging	**	2 days	**
Action() Methods	*	1 day	*

Essential Devices (Required for Full Imaging)

Device	Impact	Effort	Priority
FilterWheel	**	2-3 days	***
Focuser	**	3-4 days	***
Rotator	☆☆	2-3 days	**
Switch	*	2-3 days	*

Advanced Workflows (Pro Features)

Feature	Impact	Effort	Priority
Auto-Focus	***	3-5 days	***
Plate Solving	***	3-4 days	***
Web UI	***	5-7 days	***
Dithering	**	2 days	**
Meridian Flip	**	2-3 days	**

Total Effort Estimates

• High Priority Features: 20-30 days

• Medium Priority Features: 25-35 days

• Low Priority Features: 40-60 days

• Everything: 85-125 days (3-4 months full-time)

Recommended Implementation Order

Phase 1: Core Devices (2-3 weeks)

- 1. FilterWheel (ZWO EFW)
- 2. Focuser (Moonlite or ZWO EAF)
- 3. UDP Discovery Protocol
- 4. Configuration Persistence

Phase 2: Essential Workflows (2-3 weeks)

- 5. Auto-Focus Routine
- 6. Plate Solving Integration
- 7. Enhanced Logging
- 8. Improved Slewing Detection

Phase 3: User Experience (1-2 weeks)

- 9. Web Configuration UI
- 10. Authentication
- 11. Performance Monitoring

Phase 4: Advanced Features (3-4 weeks)

- 12. Dithering
- 13. Meridian Flip
- 14. Simultaneous Exposures
- 15. Rotator Support
- 16. Switch Device

Phase 5: Nice-to-Have (ongoing)

- 17. Image Calibration Pipeline
- 18. ObservingConditions
- 19. Dome Control
- 20. INDI Support

What Makes Sense for YOU?

Answer these questions:

- 1. Do you use filters? \rightarrow Implement FilterWheel $\uparrow \uparrow \uparrow \uparrow$
- 2. **Does focus drift?** \rightarrow Implement Focuser + Auto-Focus $\uparrow \uparrow \uparrow \uparrow$
- 3. Do you want auto-discovery in N.I.N.A.? \rightarrow UDP Discovery $\uparrow \uparrow \uparrow \uparrow \uparrow$
- 4. Need precise goto? → Plate Solving $\uparrow \uparrow \uparrow \uparrow$
- 5. Want easy configuration? → Web UI ★★★
- 6. **Remote access needed?** → Authentication + HTTPS ★★
- 7. **Use dew heaters?** → Switch Device ★★
- 8. Long exposures past meridian? \rightarrow Meridian Flip $\uparrow \uparrow \uparrow$
- 9. **Have rotator?** \rightarrow Rotator Interface $\uparrow \uparrow \uparrow$
- 10. **Do deep sky imaging?** \rightarrow Dithering $\uparrow \uparrow \uparrow$

Most users need: **FilterWheel + Focuser + UDP Discovery + Web UI =** ~2-3 weeks of development.