

UNIVERSITY OF TRENTO NEXT GENERATION NETWORKS

IMPORT AND ANALYZE ONLINE NETWORKING DATASETS

ETTORE SAGGIORATO
STIVEN SHARRA
PROF. FABRIZIO GRANELLI
REPOSITORY

GOAL

 Build a software for automated processing and visualization of extracted information from online datasets

Build a Software for distinction of drones according to RCS measurments

TABLE 2

Mean, standard	deviation and ma	aximal value of	the RCS of each	drone over the	frequency range
TVICHIL SHIPCHIC	actimized and the	uammi vanc or	the reed of each	dione over the	nequency runge

Model 26GHz μ std ma	2	26GHz		28GHz		30GHz		32GHz		34GHz		36GHz			38GHz			40GHz						
	max	μ	std	max	μ	std	max	μ	std	max	μ	std	max	μ	std	max	μ	std	max	μ	std	max		
Group I																								
F450 (HH)	-17.1	5.9	3.3	-15.5	5.7	6.3	-16.1	6.2	7.6	-14.9	6.3	7.0	-15.7	6.3	8.0	-14.4	6.4	8.1	-14.2	6.1	8.3	-13.5	6.1	9.3
Helicopter (HH)	-17.3	5.8	6.3	-15.5	5.5	2.3	-16.3	5.7	8.6	-15.2	5.8	6.9	-15.6	5.9	5.4	-14.4	5.9	12.4	-14.0	5.8	8.8	-13.4	5.8	8.4
Mavic (HH)	-16.8	6.1	2.3	-16.8	5.6	2.4	-17.7	6.0	4.3	-16.7	6.3	6.5	-17.7	6.2	1.7	-16.0	6.3	7.1	-15.7	6.3	6.5	-15.0	6.2	7.5
Parrot (HH)	-19.5	6.2	4.6	-17.6	5.9	3.1	-18.0	6.0	5.7	-17.1	6.3	6.5	-17.8	6.3	8.2	-16.1	6.3	7.7	-15.7	6.3	9.5	-15.0	6.3	11.7
P4P (HH)	-16.4	5.6	2.6	-14.4	5.2	1.1	-14.2	5.4	3.0	-14.2	5.5	1.8	-15.6	5.5	2.5	-14.2	5.4	3.11	-13.2	5.5	2.5	-12.3	5.4	5.7
P4P (VV)	-15.7	5.5	0.1	-13.1	5.0	5.4	-14.6	5.5	3.8	-13.7	5.5	4.1	-15.1	5.5	2.6	-13.8	5.4	2.8	-12.9	5.4	4.6	-11.9	5.4	5.1
Group II																								
Hexa (HH)	-10.5	6.3	10.9	-10.1	6.3	14.0	-10.1	6.3	11.5	-8.8	6.4	12.6	-9.3	6.4	20.0	-7.9	6.4	14.0	-7.8	6.5	15.0	-7.2	6.5	16.6
Hexa (VV)	-10.5	6.2	11.4	-9.5	5.8	11.9	-9.3	6.2	12.2	-8.7	6.4	14.0	-10.0	6.4	12.8	-8.6	6.4	14.9	-7.9	6.4	15.8	-7.2	6.4	18.3
M100 (HH)	-10.5	6.8	15.8	-9.6	6.4	19.6	-8.6	6.4	16.0	-8.4	6.6	20.0	-9.7	6.6	20.5	-8.1	6.5	20.3	-7.4	6.5	19.7	-6.6	6.6	22.5
M100 (VV)	-10.0	6.5	14.8	-9.1	6.3	23.0	-8.5	6.4	17.8	-8.0	6.6	20.9	-9.1	6.5	18.3	-7.7	6.6	19.4	-7.0	6.5	20.0	-6.1	6.5	25.0
M100 (VH)	-17.2	5.4	0.1	-16.6	5.3	5.5	-13.9	5.5	5.0	-15.4	5.7	3.3	-15.5	5.9	4.0	-12.9	5.7	5.5	-13.2	5.6	5.8	-13.1	5.8	7.0
M100 (HV)	-17.8	5.5	-1.3	-18.3	5.8	1.2	-15.2	5.8	3.8	-16.1	5.9	3.5	-15.8	5.9	4.5	-12.6	5.6	6.1	-14.0	5.7	5.0	-13.6	5.7	7.2
Walkera (HH)	-12.6	6.1	8.1	-11.6	5.7	9.2	-10.5	5.8	9.4	-10.6	6.1	10.0	-12.2	6.1	8.4	-10.6	6.2	12.3	-9.7	6.0	11.0	-9.0	6.1	11.7
Walkera (VV)	-12.5	5.8	7.4	-11.4	6.7	9.9	-10.9	6.0	9.3	-10.3	6.1	11.5	-11.7	6.0	8.7	-10.1	6.0	12.6	-9.5	6.0	11.4	-8.5	5.9	13.2
Y600 (HH)	-16.8	6.5	6,3	-13.7	5.5	8.0	-13.6	5.9	8.1	-14.7	6.7	9.3	-16.2	6.7	9.7	-15.0	6.7	10.0	-13.8	6.5	13.5	-13.3	6.6	12.3
Y600 (VV)	-16.8	6.6	6.7	-13.6	5.5	8.8	-14.9	6.3	7.8	-14.8	6.8	11.8	-16.0	6.7	9.1	-15.0	6.8	11.8	-14.1	6.8	11.8	-13.0	6.6	12.3

mean(RCS) comparison

- mean(RCS) of group I and II are significantly different
- mean(RCS) it grows increasing frequency, but it does not depend on the group or single drone
- Therefore, it is not necessary to use ALL the frequencies in the statistical model, and we can limit ourselves to a few (see table 2 of the paper)

Std comparison

- The Std does not depend on the drone or on the frequency
- difference of an order of magnitude
- we don't use it in the statistical model

HH - VV comparison

Cross - polarization

Fig. 4.1 - Standard deviation comparison - M100

6.8

6.6

6.4

6.2

M100 HH

M100 HV

M100 HV

M100 HV

M100 HV

M100 HV

M100 HV

- HV cross-polarizations give small RCS compared to HH and VV, mean and std are smaller.
- HV's std is offset from that of HH, we don't use HV.

max(RCS) comparison

 max(RCS) is used to distinguish groups and/or single drones

Classifiers - Groups

HEXA M100 WALKERA

K Nearest Neighbors std success per drone

Decision Tree Classifier frequency - group success per drone

HEXA

	NO Std		Std	
	НН	VV	НН	VV
SGDC	0,94	0,925	1,0	1,0
KNN	0,9	0,85	0,9	0,85
DTC	1,0	0,925	1,0	0,975

Classifiers - Drones

Score(HH): 0.61

Score(VV): 0.625

Score(HH): 0.49

Score(VV): 0.625

Score(HH): 1.0 Score(VV): 0.6

UNIVERSITY OF TRENTO NEXT GENERATION NETWORKS

IMPORT AND ANALYZE ONLINE NETWORKING DATASETS

ETTORE SAGGIORATO
STIVEN SHARRA
PROF. FABRIZIO GRANELLI
REPOSITORY