Mamba as a Bridge: Where Vision Foundation Models Meet Vision Language Models for Domain-Generalized Semantic Segmentation

(Xin Zhang, Robby T. Tan, in CVPR 2025)

Department of Metaverse Convergence at Chung-Ang University Myungjun Yun

MFuser?

- VFM(Vision Foundation Model) + VLM(Vision Language Model)의 장점을 결합
- VFM과 VLM을 결합할 때 늘어나는 patch sequence를 효율적으로 결합하는 Mamba 기반의 융합 프레임워크

Semantic Segmentation?

- Image의 모든 pixel을 특정 class로 분류해 pixel 단위로 이미지를 segmentation하는 task
- 자율주행, 의료 등 다양한 분야에서 사용

DGSS(Domain-Generalized Semantic Segmentation)?

- Semantic segmentation은 train dataset에 없는 새로운 도메인과 조건에서 낮은 성능(저조도, 비)
- Train dataset에 없는 새로운 도메인과 조건에서도 강건하게 동작하는 Semantic Segmentation 모델 개발

Unseen domain image

Output

VFM

- 대규모 Image data로만 학습한 foundation model
- Image의 detail한 특징 파악
- Train dataset에 없는 (의료, 항공...) domain에서는 약한 성능

Unseen Image

VLM

- Image ,text data로 학습한 foundation model
- Text Embedding을 semantic anchor로 활용해 domain이 변화해도 강건한 성능 유지
- 정확한 영역 파악, Detail한 특징 파악에 어려움

Unseen Image

VLM

MFuser

- VFM, VLM encoder에 많은 수의 parameters가 있어 fully fine-tuning은 비효율적임
- 원래 Encoder parameters는 고정, 추가로 trainable parameter 도입
- 하지만 VFM, VLM의 encoder를 결합하면 patch sequence가 두배가 되어 처리가 복잡해짐
- 이를 위해 VFM, VLM의 강점을 효율적으로 통합하는 Mamba 기반 MFuser 제안

Unseen Image

MFuser

RNN

- Input을 순서대로 처리해 data에 순서를 학습 -> 문맥 파악에 효과적
- Inference시 이전 상태와 현재 상태만 고려해 출력 -> Fast inference
- Train 과정에서 이전 상태에 출력이 필요해 병렬화 불가능 -> Slow Training
- Input sequence 길이에 상관없이 고정된 크기의 hidden state 유지(압축) -> 입력 Sequence가 길어지면 장기 의존 성 문제 발생

Transformer

- 모든 Input을 token으로 구성된 sequence로 봄 -> sequence의 이전 token에 attend해 문맥 파악 가능
- Position Encoding을 통해 토큰들의 순서 정보 주입 -> sequence의 순서 정보를 통해 문장의 구조 & 문맥 이해
- 모든 Token간에 관계를 병렬적으로 계산 가능 -> Training Parallelism
- But.. Inference시 다음 token을 생성하는데 이전 token을 순차적으로 attend -> Slow inference

Mamba

- RNN -> 순차적으로 정보를 처리하지만 Sequence가 길어지면 앞부분의 정보를 잊어버림 & 병렬화 문제로 느린 학습 속도
- Transformer -> 병렬 구조로 모든 단어의 관계를 한 번에 처리해 학습은 빠르지만, 추론 시 단어를 순차적으로 생성해야 해서 느림

모든 정보를 attend?

Memory에 context 저장

느린 학습 속도 문제 해결..
한정된 space에 잘 압축..

모든 정보를 왜 압축? 필요한 정보 Attend High memory & cost.. 느린 추론 속도..

- SSM(State Space Model)
 - ✓ Convolution을 통해 Fast training
 - ✓ **Recurrent**를 통해 Fast inference

 \overline{A} : Update memory matrix, \overline{B} : Input matrix, C: Output matrix

SSM

- Discretize
 - ✓ SSM은 연속 신호에서 사용했던 모델임, 따라서 Discrete-to-Continuous 필요
 - ✓ 이를 위해 ZOH(Zero-Order Hold) 사용
 - ✓ 출력된 Continuous signal을 sampling을 통해 discretize

SSM

- Convolution
 - ✓ LTI(Linear Time-Invariant)system

시간이 흘러도 모델의 동작을 결정하는 행렬 \bar{A} , \bar{B} , C가 변하지 않아 Recurrent 구조를 Convolution 구조로 변환 가능

Timestep 2

Timestep 1

 $h_1 = Ah_0 + Bx_1$

Background

SSM

Convolution

Timestep 0

 $h_0 = \overline{B}x_0$

= Ch

SSM

Convolution

Input

Kernel

SSM

Convolution

Timestep 1

Timestep 0

Timestep 2

SSM

- Training mode -> Convolution 연산을 통해 parallelizable training이 가능해 빠른 학습 가능
- Inference mode -> Recurrent를 통해 효율적인 추론 가능

Mamba?

- A matrix
 - ✓ Memory의 update를 담당
 - ✓ A matrix를 생성하는 것에 따라 이전 상태만 기억할지 모든 상태를 기억할지의 차이가 만들어짐

$$x_t = \bar{A}x_{t-1} + \bar{B}u_t$$

$$y_t = Cx_t$$

 x_t : Hidden state vector, u_t : Input vector, y_t : Output vector

 \overline{A} : Update memory matrix, \overline{B} : Input matrix, C: Output matrix

Mamba?

- HiPPO
 - ✓ 과거의 모든 정보를 압축하는 대신, 지금까지의 입력을 가장 잘 표현하는 하나의 연속 함수로 기억
 - ✓ 과거의 정보는 감소, 최신 정보는 민감하게 받아들임

$$A_{nk} = \begin{cases} (2n+1)^{1/2} (2k+1)^{1/2} & \text{if } n > k \\ n+1 & \text{if } n = k \\ 0 & \text{if } n < k \end{cases}$$

HiPPO

HiPPO?

- A matrix 계산
- n, k=0,0

•
$$n, k=1,0$$

$$\begin{bmatrix} 1 & N/A & N/A \\ N/A & N/A & N/A \end{bmatrix}$$

$$\begin{bmatrix} 1 & N/A & N/A \\ N/A & N/A & N/A \\ N/A & N/A & N/A \end{bmatrix} \qquad \begin{bmatrix} 1 & N/A & N/A \\ \sqrt{3} & N/A & N/A \\ N/A & N/A & N/A \end{bmatrix} \qquad \begin{bmatrix} 1 & N/A & N/A \\ \sqrt{3} & N/A & N/A \\ \sqrt{5} & N/A & N/A \end{bmatrix}$$

• n, k=0,1

•
$$n, k=0,2$$

$$\begin{bmatrix} 1 & 0 & N/A \\ \sqrt{3} & N/A & N/A \\ N/A & N/A & N/A \end{bmatrix}$$

•
$$n, k=1,2$$

$$\begin{bmatrix} 1 & 0 & 0 \\ \sqrt{3} & 2 & 0 \\ N/A & N/A & N/A \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ \sqrt{3} & 2 & 0 \\ \sqrt{5} & \sqrt{15} & N/A \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ \sqrt{3} & N/A & N/A \\ N/A & N/A & N/A \end{bmatrix}$$

•
$$n, k=2,1$$

$$\begin{bmatrix} 1 & 0 & 0 \\ \sqrt{3} & 2 & 0 \\ \sqrt{5} & \sqrt{15} & N/A \end{bmatrix}$$

$$A_{nk} = \begin{cases} (2n+1)^{1/2} (2k+1)^{1/2} & \text{if } n > k \\ n+1 & \text{if } n = k \\ 0 & \text{if } n < k \end{cases}$$

•
$$n, k=2,0$$

$$\begin{bmatrix} 1 & N/A & N/A \\ \sqrt{3} & N/A & N/A \\ \sqrt{5} & N/A & N/A \end{bmatrix}$$

•
$$n, k=1,1$$

$$\begin{bmatrix} 1 & 0 & N/A \\ \sqrt{3} & N/A & N/A \\ N/A & N/A & N/A \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ \sqrt{3} & N/A & N/A \\ N/A & N/A & N/A \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ \sqrt{3} & 2 & N/A \\ N/A & N/A & N/A \end{bmatrix}$$

•
$$n, k=2,2$$

$$\begin{bmatrix} 1 & 0 & 0 \\ \sqrt{3} & 2 & 0 \\ \sqrt{5} & \sqrt{15} & 3 \end{bmatrix}$$

Mamba

- SSM은 Audio, Vision 같이 Continuous한 분야에서는 좋은 성능을 보여줌
- 하지만 Text같이 Discrete한 분야에서는 약한 성능을 보임(특정 입력에 집중하거나 무시)
- ✓ Selection Mechanism
- ✓ Hardware-aware Algorithm

Selection Mechanism

- Selective Copying?
 - ✔ Input의 일부를 copying -> 순서대로 출력하는 task (input의 중요도를 판단 후 기억할지, 무시할지 결정)
 - ✓ 특정 Token만 hidden state에 선택적으로 update할 수 있어야 함

Selection Mechanism

- Selective Copying?
 - ✓ SSM은 Linear Time-Invariant 때문에 이 task를 잘 수행하지 못함
 - ✓ 고정된 Convolution kernel을 사용해 어떤 input이 들어와도 동일한 연산을 통해 중요한 정보만 선별하는 능력 이 떨어짐

$$x_t = \bar{A}x_{t-1} + \bar{B}u_t$$

$$y_t = Cx_t$$

 x_t : Hidden state vector, u_t : Input vector, y_t : Output vector

 \overline{A} : Update memory matrix, \overline{B} : Input matrix, C: Output matrix

Selection Mechanism

• Time-Invariant이 문제였다면 Time-variant로 Input에 따라 다른 연산이 가능하게 설계

Algorithm 1 SSM (S4)	Algorithm 2 SSM + Selection (S6)		
Input: $x:(B,L,D)$	Input: $x:(B,L,D)$		
Output: $y:(B,L,D)$	Output: $y : (B, L, D)$		
1: $A:(D,N) \leftarrow Parameter$	1: \mathbf{A} : (D, N) \leftarrow Parameter		
$ ightharpoonup$ Represents structured $N \times N$ matrix	▶ Represents st	ructured $N \times N$ matrix	
 2: B: (D, N) ← Parameter 3: C: (D, N) ← Parameter 4: Δ: (D) ← τ_Δ(Parameter) 5: A, B: (D, N) ← discretize(Δ, A, B) 6: y ← SSM(A, B, C)(x) ▶ Time-invariant: recurrence or convolution 	2: $B : (B, L, N) \leftarrow s_B(x)$ 3: $C : (B, L, N) \leftarrow s_C(x)$ 4: $\Delta : (B, L, D) \leftarrow \tau_{\Delta}(Parameter + s_{\Delta}(x))$ 5: $\overline{A}, \overline{B} : (B, L, D, N) \leftarrow discretize(\Delta, A, B)$ 6: $y \leftarrow SSM(\overline{A}, \overline{B}, C)(x)$ $\triangleright Time-varying:$	$S_B(x) = \text{Linear}_N(x)$ $S_C(x) = \text{Linear}_N(x)$ $S_{\Delta}(x) = Brodcast_D(\text{Linear}_1(x))$ $\tau_{\Delta} = \text{Softplus}$ recurrence (scan) only	
7: return y	7: return y		

Parallel Scan

- Training Parallelism?
 - ✔ Selection Mechanism으로 인해 더 이상 Time-Invariant하지 않기 때문에 미리 Kernel을 만드는 것이 불가능 해짐
 - ✓ 따라서 Convolution을 통한 Training Parallelism은 불가
 - ✓ 이 문제를 해결하기 위해 Parallel Scan 사용
 - ✓ 연산의 Associativity를 이용

Parallel Scan

- Training Parallelism?
 - ✓ 순서와 상관없이 먼저 계산할 수 있는거 먼저 계산

$$\begin{split} H_0 &= \overline{B}_0 x_0 \\ H_1 &= \overline{A}_1 (\overline{B}_0 x_0) + \overline{B}_1 x_1 \\ &= \overline{A}_1 \overline{B}_0 x_0 + \overline{B}_1 x_1 \\ H_2 &= \overline{A}_2 (\overline{A}_1 \overline{B}_0 x_0 + \overline{B}_1 x_1) + \overline{B}_2 x_2 \\ &= \overline{A}_2 \overline{A}_1 \overline{B}_0 x_0 + \overline{A}_2 \overline{B}_1 x_1 + \overline{B}_2 x_2 \\ H_3 &= \overline{A}_3 (\overline{A}_2 \overline{A}_1 \overline{B}_0 x_0 + \overline{A}_2 \overline{B}_1 x_1 + \overline{B}_2 x_2) + \overline{B}_3 x_3 \\ &= \overline{A}_3 \overline{A}_2 \overline{A}_1 \overline{B}_0 x_0 + \overline{A}_3 \overline{A}_2 \overline{B}_1 x_1 + \overline{A}_3 \overline{B}_2 x_2 + \overline{B}_3 x_3 \end{split}$$

Hardware-aware Algorithm

- ✔ GPU에서 연산은 용량이 크지만 속도가 느린 HBM에서 용량이 작지만 속도는 빠른 SRAM으로 tensor를 Copy
- ✓ SRAM에서 연산이 진행되고 다시 HBM으로 paste
- ✓ 계산 복잡도가 높은 연산을 제외한 연산은 SRAM에서의 연산보다 Copy & Paste 과정이 더 오래 걸림

Hardware-aware Algorithm

- Kernel fusion
- ✓ 여러 개의 연산을 하나로 합쳐줌

 \triangleright Represents structured $N \times N$ matrix

SRAM

Calculation2

Kernel fusion

Algorithm 2 SSM + Selection (S6)

SRAM

Calculation1

Input: x : (B, L, D)**Output:** y : (B, L, D)

HBM

Initial tensors

1: $A:(D,N) \leftarrow Parameter$

Background

HBM

Initial tensors

Hardware-aware Algorithm

Kernel fusion

SRAM

Calculation

✓ A, B, C, Δ를 HBM에서 SRAM으로 Copy

HBM

Write results

HBM

Write results

SRAM

Calculation

HBM

Write results

Hardware-aware Algorithm

- Kernel fusion
- ✓ A, B, C, Δ를 HBM에서 SRAM으로 Copy
- ✓ 3차원에서 4차원으로 늘어나는 Discretize를 SRAM에서 진행

Algorithm 2 SSM + Selection (S6) **Input:** x : (B, L, D)**Output:** y : (B, L, D)1: $A:(D,N) \leftarrow Parameter$ \triangleright Represents structured $N \times N$ matrix 2: $\mathbf{B}: (\mathsf{B}, \mathsf{L}, \mathsf{N}) \leftarrow s_{\mathsf{R}}(x)$ $S_R(x) = \text{Linear}_N(x)$ 3: $C: (B, L, N) \leftarrow s_C(x)$ $S_C(x) = \text{Linear}_N(x)$ 4: $\Delta : (B, L, D) \leftarrow \tau_{\Delta}(Parameter + s_{\Delta}(x))$ $S_{\Lambda}(x) = Brodcast_{D}(Linear_{1}(x))$ 5: $A, B : (B, L, D, N) \leftarrow \text{discretize}(\Delta, A, B)$ τ_{Δ} =Softplus 6: $y \leftarrow SSM(A, \overline{B}, C)(x)$ ▶ Time-varying: recurrence (scan) only 7: return y

Result

- Kernel fusion
- ✓ A, B, C, Δ를 HBM에서 SRAM으로 Copy
- ✓ 3차원에서 4차원으로 늘어나는 Discretize를 SRAM에서 진행
- ✓ 연산이 끝난 output을 SRAM에서 HBM으로 Copy

```
Algorithm 2 SSM + Selection (S6)
Input: x : (B, L, D)
Output: y : (B, L, D)
  1: A:(D,N) \leftarrow Parameter
                                        \triangleright Represents structured N \times N matrix
  2: \mathbf{B}: (\mathsf{B}, \mathsf{L}, \mathsf{N}) \leftarrow s_B(x)
                                                                 S_R(x) = \text{Linear}_N(x)
 3: C: (B, L, N) \leftarrow s_C(x)
                                                                 S_C(x) = \text{Linear}_N(x)
  4: \Delta : (B, L, D) \leftarrow \tau_{\Delta}(Parameter + s_{\Delta}(x))
                                                                 S_{\Lambda}(x) = Brodcast_{D}(Linear_{1}(x))
  5: \overline{A}, \overline{B}: (B, L, D, N) \leftarrow discretize(\Delta, A, B)
                                                                 \tau_{\Delta}=Softplus
  6: y \leftarrow SSM(A, \overline{B}, C)(x)
                                      ▶ Time-varying: recurrence (scan) only
  7: return y
```

Result

- ✓ Selection Mechanism으로 인해 Selective Copying task에서 정확도 향상
- ✓ Inference시 Transformer보다 월등한 속도를 보임

Model	Arch.	Layer	Acc.
S4	No gate	S4	18.3
-	No gate	S6	97.0
-	Mamba	S4	56.4
-	Mamba	Hyena	28.4
Mamba	Mamba	S6	99.8

Table 1: (**Selective Copying**.)
Accuracy for combinations of architectures and inner sequence layers.

Method

- MVFuser
- MTEnhancer

MVFuser

- VFM, VLM encoder의 효율적인 Fine-tuning
- VFM의 detail, VLM의 robustness 결합
- Long sequence 문제 해결 -> Mamba 구조 사용

MTEnhancer

- 기존 VLM 기반 방법론들은 시각적 특징과 Text Embedding이 미리 잘 정렬되어 있다고 가정
- 실제로는 클래스 이름만으로 얻은 Text Embedding이 다양한 이미지 유형에 충분히 적응하지 못하는 경우 발생
- MVFuser에서 융합된 시각적 특징을 Text Embedding에 통합하여 Text Embedding을 강화

c) MTEnhancer

MTEnhancer

✓ 먼저 Text embedding을 입력으로 받아 class간의 관계를 Encoding(Self-Attention)

c) MTEnhancer

MTEnhancer

- ✔ 먼저 Text embedding을 입력으로 받아 class간의 관계를 Encoding(Self-Attention)
- ✓ 시각적 특징 융합

c) MTEnhancer

MTEnhancer

- ✓ 먼저 Text embedding을 입력으로 받아 class간의 관계를 Encoding(Self-Attention)
- ✓ 시각적 특징 융합
- ✓ Text embedding update

c) MTEnhancer

Result

Qualitative results

- synthetic-to-real에서 비교한 결과 SOTA 달성
- G(GTAV): GTA V dataset, C(Cityscapes): 거리 풍경, B(BDD100K): 다양한 지리적, 환경적 조건을 포함한 주행 dataset M(Mapillary): 다양한 장소 dataset

Method	Backbone	synthetic-to-real				
Method	Backbone	$G \rightarrow C$	$G \rightarrow B$	$\mid G \rightarrow M$	Avg.	
SAN-SAW [43]	RN101	45.33	41.18	40.77	42.43	
WildNet [29]	RN101	45.79	41.73	47.08	44.87	
SHADE [66]	RN101	46.66	43.66	45.50	45.27	
TLDR [27]	RN101	47.58	44.88	48.80	47.09	
FAMix [14]	RN101	49.47	46.40	51.97	49.28	
SHADE [67]	MiT-B5	53.27	48.19	54.99	52.15	
IBAFormer [53]	MiT-B5	56.34	49.76	58.26	54.79	
VLTSeg [25]	CLIP-B	47.50	45.70	54.30	49.17	
CLOUDS [2]	ConvNeXt-L	60.20	57.40	67.00	61.50	
VLTSeg [25]	EVA02-L	65.60	58.40	66.50	63.50	
Rein [55]	EVA02-L	65.30	60.50	64.90	63.60	
Rein [55]	DINOv2-L	66.40	60.40	66.10	64.30	
SET [63]	DINOv2-L	68.06	61.64	67.68	65.79	
tqdm [40]	EVA02-L	68.88	59.18	70.10	66.05	
MFuser	CLIP-L	71.24	61.08	71.14	67.82	
MFuser	SIGLIP-L	<u>71.10</u>	61.19	71.71	<u>68.00</u>	
MFuser	EVA02-L	70.19	63.13	<u>71.28</u>	68.20	

	Params. (M)	FLOPs (G)	С	В	M	Avg.
self-attn (concat.)	4.20	98.64	70.24	62.31	71.11	67.89
self-attn (separate)	8.40	71.08	69.68	61.91	70.85	67.48
bi-deform-attn	3.35	34.65	69.46	61.17	70.11	66.91
MVFuser	1.67	17.21	70.19	63.13	71.28	68.20

Result

Conclusion

- DGSS를 위해 VFM과 VLM을 통합하도록 설계된 새로운 fusion framework인 MFuser를 제안
- MFuser는 VFM과 VLM의 상호 보완적인 강점을 활용하여 선형 복잡성을 갖춘 효율적이고 확장 가능한 fusion을 통해 증가된 patch token의 문제를 해결

Discussion

- MVFuser에서 gating mechanism을 사용해서 서로의 장점을 결합했다고 했는데 그 방식에 대한 설명이 좀 더 있었으면 좋겠음
- MTEnhancer에서 Text embedding을 왜 copy했는지 의문
- Parameters를 단일 모델과 비교한게 아니라 두 모델을 결합한 방법과만 비교해서 단일 모델과 비교해도 경쟁력이 있을까 의문

c) MTEnhancer

	Params. (M)	FLOPs (G)	C	В	M	Avg.
self-attn (concat.)	4.20	98.64	70.24	62.31	71.11	67.89
self-attn (separate)	8.40	71.08	69.68	61.91	70.85	67.48
bi-deform-attn	3.35	34.65	69.46	61.17	70.11	66.91
MVFuser	1.67	17.21	70.19	63.13	71.28	68.20

Discussion

- VLM, VFM을 어떤 모델을 사용했는지에 대해 따라 성능 차이 발생
- 다른 모델에 비해 성능이 좋지만, Domain-Generalized 관점에서는 오히려 데이터셋에 따라 편차가 심함
- Mamba model은 이미지 처리가 아니라 자연어 처리 기반으로 만들어짐
- 이미지를 처리하려면 추가적인 연산이 필요해 Low Parameters로 좋은 성능을 내는 Mamba의 장점이 사라짐

Method	Backbone	synthetic-to-real				
Method	Backbone	G→C	$G \rightarrow B$	$G{\rightarrow} M$	Avg.	
SAN-SAW [43]	RN101	45.33	41.18	40.77	42.43	
WildNet [29]	RN101	45.79	41.73	47.08	44.87	
SHADE [66]	RN101	46.66	43.66	45.50	45.27	
TLDR [27]	RN101	47.58	44.88	48.80	47.09	
FAMix [14]	RN101	49.47	46.40	51.97	49.28	
SHADE [67]	MiT-B5	53.27	48.19	54.99	52.15	
IBAFormer [53]	MiT-B5	56.34	49.76	58.26	54.79	
VLTSeg [25]	CLIP-B	47.50	45.70	54.30	49.17	
CLOUDS [2]	ConvNeXt-L	60.20	57.40	67.00	61.50	
VLTSeg [25]	EVA02-L	65.60	58.40	66.50	63.50	
Rein [55]	EVA02-L	65.30	60.50	64.90	63.60	
Rein [55]	DINOv2-L	66.40	60.40	66.10	64.30	
SET [63]	DINOv2-L	68.06	61.64	67.68	65.79	
tqdm [40]	EVA02-L	68 88	59 18	70.10	66.05	
MFuser	CLIP-L	71.24	61.08	71.14	67.82	
MFuser	SIGLIP-L	<u>71.10</u>	<u>61.19</u>	71.71	<u>68.00</u>	
MFuser	EVA02-L	70.19	63.13	<u>71.28</u>	68.20	

Mask R-CNN 1× schedule					
Backbone	APb	APm	Params	FLOPs	
Swin-T	42.7	39.3	48M	267G	
ConvNeXt-T	44.2	40.1	48M	262G	
VMamba-T	47.3	42.7	50M	271G	
Swin-S	44.8	40.9	69M	354G	
ConvNeXt-S	45.4	41.8	70M	348G	
VMamba-S	48.7	43.7	70M	349G	
Swin-B	46.9	42.3	107M	496G	
ConvNeXt-B	47.0	42.7	108M	486G	
VMamba-B	49.2	44.1	108M	485G	
Mask	R-CNN	13× M	S schedule		
Swin-T	46.0	41.6	48M	267G	
ConvNeXt-T	46.2	41.7	48M	262G	
NAT-T	47.7	42.6	48M	258G	
VMamba-T	48.8	43.7	50M	271G	
Swin-S	48.2	43.2	69M	354G	
ConvNeXt-S	47.9	42.9	70M	348G	
NAT-S	48.4	43.2	70M	330G	
VMamba-S	49.9	44.2	70M	349G	

ADE20K with crop size 512						
Backbone	mIOU	mIOU	Params	FLOPs		
Баскоопе	(SS)	(MS)	raianis	LOIS		
ResNet-50	42.1	42.8	67M	953G		
DeiT-S + MLN	43.8	45.1	58M	1217G		
Swin-T	44.5	45.8	60M	945G		
ConvNeXt-T	46.0	46.7	60M	939G		
NAT-T	47.1	48.4	58M	934G		
Vim-S	44.9	-	46M	-		
VMamba-T	47.9	48.8	62M	949G		
ResNet-101	43.8	44.9	86M	1030G		
DeiT-B + MLN	45.5	47.2	144M	2007G		
Swin-S	47.6	49.5	81M	1039G		
ConvNeXt-S	48.7	49.6	82M	1027G		
NAT-S	48.0	49.5	82M	1010G		
VMamba-S	50.6	51.2	82M	1028G		
Swin-B	48.1	49.7	121M	1188G		
ConvNeXt-B	49.1	49.9	122M	1170G		
NAT-B	48.5	49.7	123M	1137G		
RepLKNet-31B	49.9	50.6	112M	1170G		
VMamba-B	51.0	51.6	122M	1170G		

감사합니다.