AutoML: Beyond AutoML

Structured Procastination

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

Idea

• incumbent driven methods (such as aggressive racing with adaptive capping) provide no theoretical guarantees about runtime

Idea

- incumbent driven methods (such as aggressive racing with adaptive capping) provide no theoretical guarantees about runtime
- task: for a fix set of configuration, identify the one with the best average runtime
- instead of top-down capping, use bottom up capping

Idea

- incumbent driven methods (such as aggressive racing with adaptive capping) provide no theoretical guarantees about runtime
- task: for a fix set of configuration, identify the one with the best average runtime
- instead of top-down capping, use bottom up capping
- start with a minimal cap-time and increase it step by step

Idea

- incumbent driven methods (such as aggressive racing with adaptive capping) provide no theoretical guarantees about runtime
- task: for a fix set of configuration, identify the one with the best average runtime
- instead of top-down capping, use bottom up capping
- start with a minimal cap-time and increase it step by step
- unsuccessful runs (with too small cap-time) are procrastinated to later
- → worst-case runtime guarantees

Algorithm 1 Structured Procrastination

```
Input : finite (small) set of configurations \Lambda, minimal cap-time \kappa_0, sequence of instances i^{(1)},\ldots,i^{(N)}

Output : best incumbent configuration \hat{\lambda}

for each \lambda \in \Lambda initialize a queue Q_{\lambda} with entries (i^{(k)},\kappa_0); // small queue in the beginning initialize a look-up table R(\lambda,i)=0; // optimistic runtime estimate
```

Algorithm 2 Structured Procrastination

while b remains do

```
Input : finite (small) set of configurations \Lambda, minimal cap-time \kappa_0, sequence of instances i^{(1)},\ldots,i^{(N)}

Output : best incumbent configuration \hat{\pmb{\lambda}}

for each \pmb{\lambda} \in \pmb{\Lambda} initialize a queue Q_{\pmb{\lambda}} with entries (i^{(k)},\kappa_0); // small queue in the beginning initialize a look-up table R(\pmb{\lambda},i)=0; // optimistic runtime estimate
```

Algorithm 3 Structured Procrastination

```
Input : finite (small) set of configurations \Lambda, minimal cap-time \kappa_0, sequence of instances i^{(1)},\ldots,i^{(N)}

Output : best incumbent configuration \hat{\pmb{\lambda}}

for each \pmb{\lambda} \in \pmb{\Lambda} initialize a queue Q_{\pmb{\lambda}} with entries (i^{(k)},\kappa_0); // small queue in the beginning initialize a look-up table R(\pmb{\lambda},i)=0; // optimistic runtime estimate
```

while b remains do

determine the best $\hat{\boldsymbol{\lambda}}$ according to $R(\boldsymbol{\lambda},\cdot)$;

Algorithm 4 Structured Procrastination

determine the best $\hat{\lambda}$ according to $R(\lambda, \cdot)$; get first element $(i^{(k)}, \kappa)$ from Q_{\S} ;

```
Input : finite (small) set of configurations \Lambda, minimal cap-time \kappa_0, sequence of instances i^{(1)},\ldots,i^{(N)}

Output : best incumbent configuration \hat{\lambda}

for each \lambda \in \Lambda initialize a queue Q_{\lambda} with entries (i^{(k)},\kappa_0); // small queue in the beginning initialize a look-up table R(\lambda,i)=0; // optimistic runtime estimate while h remains do
```

Algorithm 5 Structured Procrastination

if terminates then $R(\hat{\lambda}, i^{(k)}) := t$;

```
Input : finite (small) set of configurations \Lambda, minimal cap-time \kappa_0, sequence of instances i^{(1)},\dots,i^{(N)} Output : best incumbent configuration \hat{\pmb{\lambda}} for each \pmb{\lambda} \in \pmb{\Lambda} initialize a queue Q_{\pmb{\lambda}} with entries (i^{(k)},\kappa_0); // small queue in the beginning initialize a look-up table R(\pmb{\lambda},i)=0; // optimistic runtime estimate while b remains do determine the best \hat{\pmb{\lambda}} according to R(\pmb{\lambda},\cdot); get first element (i^{(k)},\kappa) from Q_{\hat{\pmb{\lambda}}}; Run \hat{\pmb{\lambda}} on i^{(k)} capped at \kappa;
```

Algorithm 6 Structured Procrastination

```
: finite (small) set of configurations \Lambda, minimal cap-time \kappa_0, sequence of instances i^{(1)},\ldots,i^{(N)}
Input
Output: best incumbent configuration \hat{\lambda}
for each \lambda \in \Lambda initialize a queue Q_{\lambda} with entries (i^{(k)}, \kappa_0);
                                                                                                                // small queue in the beginning
initialize a look-up table R(\lambda, i) = 0;
                                                                                                                 // optimistic runtime estimate
while b remains do
      determine the best \hat{\lambda} according to R(\lambda, \cdot):
        get first element (i^{(k)}, \kappa) from Q_{\mathfrak{J}};
        Run \hat{\lambda} on i^{(k)} capped at \kappa;
        if terminates then
       R(\hat{\lambda}, i^{(k)}) := t;
      else
        \left| \begin{array}{c} R(\pmb{\hat{\lambda}},i^{(k)}) := \kappa; \\ \text{Insert } (i^{(k)},2\cdot\kappa) \text{ at the end of } Q_{\pmb{\hat{\lambda}}}; \end{array} \right.
```

Algorithm 7 Structured Procrastination

```
: finite (small) set of configurations \Lambda, minimal cap-time \kappa_0, sequence of instances i^{(1)},\ldots,i^{(N)}
Input
Output: best incumbent configuration \hat{\lambda}
for each \lambda \in \Lambda initialize a queue Q_{\lambda} with entries (i^{(k)}, \kappa_0);
                                                                                                  // small queue in the beginning
initialize a look-up table R(\lambda, i) = 0;
                                                                                                    // optimistic runtime estimate
while b remains do
     determine the best \hat{\lambda} according to R(\lambda, \cdot):
       get first element (i^{(k)}, \kappa) from Q_{\mathfrak{J}};
       Run \hat{\lambda} on i^{(k)} capped at \kappa:
       if terminates then
      R(\hat{\lambda}, i^{(k)}) := t;
     else
          R(\hat{\lambda}, i^{(k)}) := \kappa;
         Insert (i^{(k)}, 2 \cdot \kappa) at the end of Q_{\mathfrak{s}};
     Replenish queue Q_{\hat{i}} if too small;
```

Algorithm 8 Structured Procrastination

```
: finite (small) set of configurations \Lambda, minimal cap-time \kappa_0, sequence of instances i^{(1)},\ldots,i^{(N)}
Input
Output: best incumbent configuration \hat{\lambda}
for each \lambda \in \Lambda initialize a queue Q_{\lambda} with entries (i^{(k)}, \kappa_0);
                                                                                                             // small queue in the beginning
initialize a look-up table R(\lambda, i) = 0;
                                                                                                              // optimistic runtime estimate
while b remains do
      determine the best \hat{\lambda} according to R(\lambda, \cdot):
        get first element (i^{(k)}, \kappa) from Q_{\mathfrak{J}};
        Run \hat{\lambda} on i^{(k)} capped at \kappa;
        if terminates then
       R(\hat{\lambda}, i^{(k)}) := t;
      else
            R(\hat{\lambda}, i^{(k)}) := \kappa;
        Insert (i^{(k)}, 2 \cdot \kappa) at the end of Q_{\mathbf{S}};
      Replenish queue Q_{\hat{i}} if too small;
return \hat{\boldsymbol{\lambda}} := \arg\min_{\boldsymbol{\lambda} \in \boldsymbol{\Lambda}} \sum_{k=1}^{N} R(\boldsymbol{\lambda}, i^{(k)})
```

Extensions

• We can derive theoretical optimality guarantees with structured procrastination (SP)

Extensions

- We can derive theoretical optimality guarantees with structured procrastination (SP)
- In practice, plain SP is rather slow and requires the setting of some hyperparameters

Extensions

- We can derive theoretical optimality guarantees with structured procrastination (SP)
- In practice, plain SP is rather slow and requires the setting of some hyperparameters
- Several extensions and similar ideas:
 - ► [Kleinberg et al. 2019]
 - ▶ [Weisz et al. 2018]
 - ▶ [Weisz et al. 2019]

AutoML: Beyond AutoML

Per-Instance Algorithm Configuration

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

Homogeneous vs. Heterogeneous Instances

Assumption of AC: Homogeneous Instance Distribution

- Algorithm configuration tools assume that the instance distribution is homogeneous (see video on "Best Practices for AC")
- Important because
 - there is a well-performing configuration for all (or most) instances
 - ▶ the racing algorithm can make educated decisions on subsets

Homogeneous vs. Heterogeneous Instances

Assumption of AC: Homogeneous Instance Distribution

- Algorithm configuration tools assume that the instance distribution is homogeneous (see video on "Best Practices for AC")
- Important because
 - there is a well-performing configuration for all (or most) instances
 - ▶ the racing algorithm can make educated decisions on subsets

Violated assumption of AC: Hetergeneous Instance Distribution

- The racing algorithm will make inconsistent (or even wrong) decisions
- There is no single well-performing configuration for all instances

Homogeneous vs. Heterogeneous Instances

Assumption of AC: Homogeneous Instance Distribution

- Algorithm configuration tools assume that the instance distribution is homogeneous (see video on "Best Practices for AC")
- Important because
 - there is a well-performing configuration for all (or most) instances
 - ▶ the racing algorithm can make educated decisions on subsets

Violated assumption of AC: Hetergeneous Instance Distribution

- The racing algorithm will make inconsistent (or even wrong) decisions
- There is no single well-performing configuration for all instances
- What should we do with heterogeneous instance distributions?

Why are systems for heterogeneous instance distributions important?

- We cannot guarantee homogeneity in practice
 - Instances might get larger and harder
 - The underlying task or business case might change

Why are systems for heterogeneous instance distributions important?

- We cannot guarantee homogeneity in practice
 - Instances might get larger and harder
 - The underlying task or business case might change
- We don't want to do algorithm configuration always from scratch

Why are systems for heterogeneous instance distributions important?

- We cannot guarantee homogeneity in practice
 - Instances might get larger and harder
 - The underlying task or business case might change
- We don't want to do algorithm configuration always from scratch
- An adaptive configuration system would be the holy grail
 - → hard to achieve

PIAC: Per-Instance Algorithm Configuration

PIAC: Per-Instance Algorithm Configuration

- You can use whichever kind of algorithm selection (wizard) you want
- Challenge: Building a portfolio
- Use case: Instances are heterogeneous

PIAC: Manual Expert Approach

Basic Assumption

Heterogeneous instance set can be divided into homogeneous subsets

PIAC: Manual Expert Approach

Basic Assumption

Heterogeneous instance set can be divided into homogeneous subsets

Manual Expert

- An expert knows the homogeneous subsets (e.g., origin of instances)
- Determine a well-performing configuration on each subset
 - \rightarrow portfolio of configurations
- Use Algorithm Selection to select a well-performing configuration on each instance

Instance-Specific Algorithm Configuration: ISAC [Kadioglu et al. 2010]

Idea

Training:

- Cluster instances into homogeneous subsets (using *g*-means in the instance feature space)
- Apply algorithm configuration (here GGA) on each instance set

Instance-Specific Algorithm Configuration: ISAC [Kadioglu et al. 2010]

Idea

Training:

- Cluster instances into homogeneous subsets (using *g*-means in the instance feature space)
- Apply algorithm configuration (here GGA) on each instance set

Test:

- **①** Determine the nearest cluster (k-NN with k=1) in feature space
- Apply optimized configuration of this cluster

ldea

- ullet Iteratively add configurations to a portfolio ${f P}$, start with ${f P}=\emptyset$
- ullet In each iteration, determine configuration that is complementary to ${f P}$

→ Maximize marginal contribution to P

Idea

- ullet Iteratively add configurations to a portfolio ${f P}$, start with ${f P}=\emptyset$
- In each iteration, determine configuration that is complementary to P
 - → Maximize marginal contribution to P

$$c(\mathbf{P}) - c(\mathbf{P} \cup {\lambda})$$

Idea

- ullet Iteratively add configurations to a portfolio ${f P}$, start with ${f P}=\emptyset$
- In each iteration, determine configuration that is complementary to P
 - → Maximize marginal contribution to P

$$c(\mathbf{P}) - c(\mathbf{P} \cup {\lambda})$$

Idea

- ullet Iteratively add configurations to a portfolio ${f P}$, start with ${f P}=\emptyset$
- In each iteration, determine configuration that is complementary to P
 - → Maximize marginal contribution to P

$$c(\mathbf{P}) - c(\mathbf{P} \cup {\lambda})$$

Idea

- ullet Iteratively add configurations to a portfolio ${f P}$, start with ${f P}=\emptyset$
- In each iteration, determine configuration that is complementary to P
 - → Maximize marginal contribution to P

$$c(\mathbf{P}) - c(\mathbf{P} \cup {\lambda})$$

Idea

- ullet Iteratively add configurations to a portfolio ${f P}$, start with ${f P}=\emptyset$
- In each iteration, determine configuration that is complementary to P
 - → Maximize marginal contribution to P

$$c(\mathbf{P}) - c(\mathbf{P} \cup {\lambda})$$

Heterogeneous example

Heterogeneous example

Heterogeneous example

Heterogeneous example

Search initial well performing configuration. Add ${oldsymbol \lambda}_0$ to ${f P}$

Search well performing configuration complementary to ${\bf P}.$ Add ${\bf \lambda}_1$ to ${\bf P}.$

Idea

• Optimize a schedule of configurations with algorithm configuration

ldea

• Optimize a schedule of configurations with algorithm configuration

Approach

• Iteratively add a configuration with a time slot t to a schedule $\mathcal{S} \oplus \langle \boldsymbol{\lambda}, t \rangle$

Idea

• Optimize a schedule of configurations with algorithm configuration

Approach

- Iteratively add a configuration with a time slot t to a schedule $\mathcal{S} \oplus \langle \pmb{\lambda}, t \rangle$
- In each iteration, only optimize on instances not solved so far
- The time slot is a further parameter in the configuration space

Idea

• Optimize a schedule of configurations with algorithm configuration

Approach

- Iteratively add a configuration with a time slot t to a schedule $\mathcal{S} \oplus \langle \pmb{\lambda}, t \rangle$
- In each iteration, only optimize on instances not solved so far
- The time slot is a further parameter in the configuration space
- Optimize marginal contribution per time spent:

$$\frac{c(\mathcal{S}) - c(\mathcal{S} \oplus \langle \boldsymbol{\lambda}, t \rangle)}{t}$$

Submodularity

Observation

- Performance metrics of Hydra and Cedalion are submodular
 - ► Family of functions
 - ▶ Adding an element to a set reduces the function value
 - ▶ Diminishing returns: decrease of the value reduction over time

Submodularity

Observation

- Performance metrics of Hydra and Cedalion are submodular
 - Family of functions
 - ▶ Adding an element to a set reduces the function value
 - ▶ Diminishing returns: decrease of the value reduction over time

Definition (Submodularity of f)

For every $X,Y\subseteq Z$ with $X\subseteq Y$ and every $x\in Z-Y$ we have that $f(X\cup\{x\})-f(X)\geq f(Y\cup\{x\})-f(Y)$

Submodularity

Observation

- Performance metrics of Hydra and Cedalion are submodular
 - Family of functions
 - ▶ Adding an element to a set reduces the function value
 - Diminishing returns: decrease of the value reduction over time

Definition (Submodularity of f)

For every $X,Y\subseteq Z$ with $X\subseteq Y$ and every $x\in Z-Y$ we have that

$$f(X \cup \{x\}) - f(X) \ge f(Y \cup \{x\}) - f(Y)$$

Advantage

We can bound the error of the portfolio/schedule:

At most away from optimum by factor of 0.63 (see [Streeter and Golovin. 2008])

Dynamic Instance Grouping [Liu et al. 2018]

Idea

- Similar to ISAC: group instances into clusters
- Similar to Hydra: refine clusters and configurations over several iterations

Dynamic Instance Grouping [Liu et al. 2018]

Idea

- Similar to ISAC: group instances into clusters
- Similar to Hydra: refine clusters and configurations over several iterations

Main Idea

- Group instances randomly into clusters
- 2 run AC on each cluster
- Update clusters based on performance (estimates)
- Go to 2. if budget is not empty
- Onsider all configurations ever found to create final portfolio

Dynamic Instance Grouping [Liu et al. 2018]

Idea

- Similar to ISAC: group instances into clusters
- Similar to Hydra: refine clusters and configurations over several iterations

Main Idea

- Group instances randomly into clusters
- 2 run AC on each cluster
- 3 Update clusters based on performance (estimates)
- Go to 2. if budget is not empty
- 6 Consider all configurations ever found to create final portfolio
- increase the configuration budget in each iteration
 - lacktriangleright first clusterings will have a poor quality o small configuration time
 - ightharpoonup later clusterings will be better ightharpoonup more configuration time

AutoML: Beyond AutoML

Racing for Algorithm Configuration

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

State-of-the-art Algorithm Configuration

SMAC: Sequential Model-based Algorithm Configuration [Hutter et al. 2011]

- Bayesian Optimization +
- aggressive racing +
- adaptive capping (for optimizing runtime)

Algorithm 1 SMAC

Input: instance set \mathcal{I} , Algorithm \mathcal{A} with configuration space $\mathbf{\Lambda}$, Initial configuration λ_0 , performance metric c, Configuration budget b

run history $\mathcal{D}_{\mathsf{Hist}} \leftarrow \mathsf{initial}$ design based on λ_0 ; while b remains do

// $\mathcal{D}_{ exttt{Hist}} = (oldsymbol{\lambda}, i, c(i, oldsymbol{\lambda}))_i$

Algorithm 2 SMAC

Input: instance set \mathcal{I} , Algorithm \mathcal{A} with configuration space Λ , Initial configuration λ_0 , performance metric c. Configuration budget b

// $\mathcal{D}_{\text{Hist}} = (\boldsymbol{\lambda}, i, c(i, \boldsymbol{\lambda}))_i$ run history $\mathcal{D}_{\mathsf{Hist}} \leftarrow \mathsf{initial} \mathsf{ design} \mathsf{ based} \mathsf{ on } \lambda_0$:

while b remains do

 $\hat{c} \leftarrow \text{train empirical performance model based on run history } \mathcal{D}_{\text{Hist}}$:

Algorithm 3 SMAC

Input: instance set \mathcal{I} , Algorithm \mathcal{A} with configuration space $\mathbf{\Lambda}$, Initial configuration λ_0 , performance metric c, Configuration budget b

run history $\mathcal{D}_{\mathsf{Hist}} \leftarrow \mathsf{initial}$ design based on λ_0 ; // $\mathcal{D}_{\mathsf{Hist}} = (\lambda, i, c(i, \lambda))_i$ while b remains do

 $\hat{c} \leftarrow \text{train empirical performance model based on run history } \mathcal{D}_{\text{Hist}};$

 $\mathbf{\Lambda}_{challengers} \leftarrow \mathsf{select}\ \mathsf{configurations}\ \mathsf{based}\ \mathsf{on}\ \hat{c};$

Algorithm 4 SMAC

Input: instance set \mathcal{I} , Algorithm \mathcal{A} with configuration space $\mathbf{\Lambda}$, Initial configuration λ_0 , performance metric c, Configuration budget b

```
run history \mathcal{D}_{\mathsf{Hist}} \leftarrow \mathsf{initial} design based on \lambda_0; // \mathcal{D}_{\mathsf{Hist}} = (\lambda, i, c(i, \lambda))_i while b remains do
```

 $\hat{c} \leftarrow \text{train empirical performance model based on run history <math>\mathcal{D}_{\text{Hist}}$:

 $\Lambda_{challengers} \leftarrow$ select configurations based on \hat{c} ;

 $\hat{oldsymbol{\lambda}}, \mathcal{D}_{\mathsf{Hist}} \leftarrow \mathsf{intensify}(oldsymbol{\Lambda}_{challengers}, \hat{oldsymbol{\lambda}});$ // racing and capping

Algorithm 5 SMAC

Input: instance set \mathcal{I} , Algorithm \mathcal{A} with configuration space $\mathbf{\Lambda}$, Initial configuration $\boldsymbol{\lambda}_0$, performance metric c, Configuration budget b

```
run history \mathcal{D}_{\mathsf{Hist}} \leftarrow \mathsf{initial} design based on \lambda_0; while b remains do
```

//
$$\mathcal{D}_{ exttt{Hist}} = (\pmb{\lambda}, i, c(i, \pmb{\lambda}))_i$$

 $\hat{c} \leftarrow \text{train empirical performance model based on run history } \mathcal{D}_{\mathsf{Hist}};$

 $\Lambda_{challengers} \leftarrow$ select configurations based on \hat{c} ;

 $\Lambda_{challengers} \leftarrow$ select configurations based on c

 $\hat{m{\lambda}}, \mathcal{D}_{\mathsf{Hist}} \leftarrow \mathsf{intensify}(m{\Lambda}_{challengers}, \hat{m{\lambda}});$ // racing and capping

return $\hat{\lambda}$

- Basic(N) uses a pretty basic comparison: $better_N(\lambda', \lambda)$:
 - ▶ Compare λ' and λ based on N instances

- Basic(N) uses a pretty basic comparison: $better_N(\lambda', \lambda)$:
 - ▶ Compare λ' and λ based on N instances
 - ▶ How does this relate to cross-validation?

- Basic(N) uses a pretty basic comparison: $better_N(\lambda', \lambda)$:
 - Compare λ' and λ based on N instances
 - How does this relate to cross-validation?
- ullet Problem: How to set N? Problems of large N? Small N?

- Basic(N) uses a pretty basic comparison: $better_N(\lambda', \lambda)$:
 - Compare λ' and λ based on N instances
 - ▶ How does this relate to cross-validation?
- Problem: How to set N? Problems of large N? Small N?
 - ightharpoonup Problem of large N: evaluations are slow
 - ightharpoonup Problem of small N: overfitting to a small set of instances
 - \longrightarrow Tradeoff: Choose N of moderate size

Question: Which N instances should we use?

- $oldsymbol{0}\ N$ different instances for each configuration
- $oldsymbol{Q}$ The same set of N instances for the entire run

Question: Which N instances should we use?

- $oldsymbol{0}$ N different instances for each configuration
- ② The same set of N instances for the entire run

Answer: the same N instances, so that we compare apples with apples (but: using the same instances can also yield overtuning)

Question: Which N instances should we use?

- $oldsymbol{0}$ N different instances for each configuration
- $oldsymbol{0}$ The same set of N instances for the entire run

Answer: the same N instances, so that we compare apples with apples (but: using the same instances can also yield overtuning)

If we sampled different instances for each configuration:

- Some configurations would randomly get easier instances
- Those configurations would look better than they really are

Question: For randomized algorithms, how should we set the seeds?

- Sample a new seed for each algorithm run
- Fix the seeds together with the instances

Question: For randomized algorithms, how should we set the seeds?

- Sample a new seed for each algorithm run
- Fix the seeds together with the instances

Answer: just like for instances, fix them to compare apples to apples

Question: For randomized algorithms, how should we set the seeds?

- Sample a new seed for each algorithm run
- Fix the seeds together with the instances

Answer: just like for instances, fix them to compare apples to apples

In summary, for each run of Basic(N): pick N (instance, seed) pairs and use them for evaluating each λ .

Question: For randomized algorithms, how should we set the seeds?

- Sample a new seed for each algorithm run
- Fix the seeds together with the instances

Answer: just like for instances, fix them to compare apples to apples

In summary, for each run of Basic(N): pick N (instance, seed) pairs and use them for evaluating each λ . (Different Basic(N) runs can use different instances and seeds.)

The concept of overtuning

Very related to overfitting in machine learning

- Performance improves on the training set
- Performance does not improve on the test set, and may even degrade

The concept of overtuning

Very related to overfitting in machine learning

- Performance improves on the training set
- Performance does not improve on the test set, and may even degrade

More pronounced for heterogeneous benchmark sets

- But it even happens for very homogeneous sets
- Indeed, one can even overfit on a single instance, to the seeds used for training

Overtuning Visualized

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=100: average runlengths across 100 runs with different seeds
- ullet Test cost of $\hat{\lambda}$ here based on 1000 new seeds

Overtuning Visualized

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=100: average runlengths across 100 runs with different seeds
- ullet Test cost of $\hat{\lambda}$ here based on 1000 new seeds

Overtuning Visualized

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=100: average runlengths across 100 runs with different seeds
- Test cost of $\hat{\lambda}$ here based on 1000 new seeds

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=?: average runlengths across N runs with different seeds
- ullet Test cost of $\hat{\lambda}$ here based on 1000 new seeds

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=?: average runlengths across N runs with different seeds
- ullet Test cost of $\hat{\lambda}$ here based on 1000 new seeds

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=?: average runlengths across N runs with different seeds
- ullet Test cost of $\hat{oldsymbol{\lambda}}$ here based on 1000 new seeds

Which of these results corresponds to ${\cal N}=1$, ${\cal N}=10$, and ${\cal N}=100$?

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=?: average runlengths across N runs with different seeds
- ullet Test cost of $\hat{oldsymbol{\lambda}}$ here based on 1000 new seeds

Which of these results corresponds to ${\cal N}=1$, ${\cal N}=10$, and ${\cal N}=100$?

- N=1: blue, N=10: red, N=100 dashed black
- N=1: dashed black, N=10: red, N=100 blue

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=?: average runlengths across N runs with different seeds
- ullet Test cost of $\hat{oldsymbol{\lambda}}$ here based on 1000 new seeds

Which of these results corresponds to ${\cal N}=1$, ${\cal N}=10$, and ${\cal N}=100$?

- N=1: blue, N=10: red, N=100 dashed black
- N=1: dashed black, N=10: red, N=100 blue

Correct Answer: 1

Intuition: get the best of both worlds

- Perform more runs for good configurations
 - to avoid overtuning
- Quickly reject poor configurations
 - to make progress more quickly

Intuition: get the best of both worlds

- Perform more runs for good configurations
 - to avoid overtuning
- Quickly reject poor configurations
 - to make progress more quickly

Definition: $N(\lambda)$ and $c_N(\lambda)$

 $N(\lambda)$ denotes the number of runs executed for λ so far.

 $\hat{c}_N(\lambda)$ denotes the cost estimate of λ based on N runs.

Intuition: get the best of both worlds

- Perform more runs for good configurations
 - to avoid overtuning
- Quickly reject poor configurations
 - to make progress more quickly

Definition: $N(\lambda)$ and $c_N(\lambda)$

 $N(\lambda)$ denotes the number of runs executed for λ so far. $\hat{c}_N(\lambda)$ denotes the cost estimate of λ based on N runs.

In the beginning: $N(\lambda) = 0$ for every configuration λ

Definition: domination

$$oldsymbol{\lambda}^{(1)}$$
 dominates $oldsymbol{\lambda}^{(2)}$ if

- ullet $N(oldsymbol{\lambda}^{(1)}) \geq N(oldsymbol{\lambda}^{(2)})$ and
- $\bullet \ \hat{c}_{N(\boldsymbol{\lambda}^{(2)})}(\boldsymbol{\lambda}^{(1)}) \leq \hat{c}_{N(\boldsymbol{\lambda}^{(2)})}(\boldsymbol{\lambda}^{(2)}).$

I.e.: we have at least as many runs for $\pmb{\lambda}^{(1)}$ and its cost is at least as low.

Definition: domination

$$\pmb{\lambda}^{(1)}$$
 dominates $\pmb{\lambda}^{(2)}$ if

- ullet $N(oldsymbol{\lambda}^{(1)}) \geq N(oldsymbol{\lambda}^{(2)})$ and
- $\bullet \ \hat{c}_{N(\boldsymbol{\lambda}^{(2)})}(\boldsymbol{\lambda}^{(1)}) \leq \hat{c}_{N(\boldsymbol{\lambda}^{(2)})}(\boldsymbol{\lambda}^{(2)}).$

I.e.: we have at least as many runs for $\lambda^{(1)}$ and its cost is at least as low.

$better(\lambda', \hat{\lambda})$ in a nutshell

ullet $\hat{\lambda}$ is the current configuration to beat (incumbent)

Definition: domination

$$\lambda^{(1)}$$
 dominates $\lambda^{(2)}$ if

- ullet $N(oldsymbol{\lambda}^{(1)}) \geq N(oldsymbol{\lambda}^{(2)})$ and
- $\bullet \ \hat{c}_{N(\boldsymbol{\lambda}^{(2)})}(\boldsymbol{\lambda}^{(1)}) \leq \hat{c}_{N(\boldsymbol{\lambda}^{(2)})}(\boldsymbol{\lambda}^{(2)}).$

I.e.: we have at least as many runs for $\pmb{\lambda}^{(1)}$ and its cost is at least as low.

$better(\lambda', \hat{\lambda})$ in a nutshell

- $oldsymbol{\hat{\lambda}}$ is the current configuration to beat (incumbent)
- Perform runs of λ' until either
 - $\hat{\lambda}$ dominates $\lambda' \leadsto$ reject λ' , or
 - lacksquare λ' dominates $\hat{oldsymbol{\lambda}} \leadsto$ change current incumbent $(\hat{oldsymbol{\lambda}} \leftarrow oldsymbol{\lambda}')$

Definition: domination

$$\lambda^{(1)}$$
 dominates $\lambda^{(2)}$ if

- ullet $N(oldsymbol{\lambda}^{(1)}) \geq N(oldsymbol{\lambda}^{(2)})$ and
- $\bullet \ \hat{c}_{N(\boldsymbol{\lambda}^{(2)})}(\boldsymbol{\lambda}^{(1)}) \leq \hat{c}_{N(\boldsymbol{\lambda}^{(2)})}(\boldsymbol{\lambda}^{(2)}).$

I.e.: we have at least as many runs for $\pmb{\lambda}^{(1)}$ and its cost is at least as low.

$better(\lambda', \hat{\lambda})$ in a nutshell

- $oldsymbol{\hat{\lambda}}$ is the current configuration to beat (incumbent)
- Perform runs of λ' until either
 - $\hat{\lambda}$ dominates $\lambda' \rightsquigarrow \text{reject } \lambda'$, or
 - lacksquare λ' dominates $\hat{oldsymbol{\lambda}} \leadsto$ change current incumbent $(\hat{oldsymbol{\lambda}} \leftarrow oldsymbol{\lambda}')$
- Over time: perform extra runs of $\hat{\lambda}$ to gain more confidence in it

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)})$
- We'll look at challengers λ' and λ''

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{oldsymbol{\lambda}}$	3	2	10

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)})$
- ullet We'll look at challengers $oldsymbol{\lambda}'$ and $oldsymbol{\lambda}''$

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{\lambda}$	3	2	10
$oldsymbol{\lambda}'$			

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)})$
- ullet We'll look at challengers $oldsymbol{\lambda}'$ and $oldsymbol{\lambda}''$

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{oldsymbol{\lambda}}$	3	2	10
$oldsymbol{\lambda}'$	2		

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)})$
- ullet We'll look at challengers $oldsymbol{\lambda}'$ and $oldsymbol{\lambda}''$

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{oldsymbol{\lambda}}$	3	2	10
$oldsymbol{\lambda}'$	2	10	

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)})$
- We'll look at challengers λ' and λ''

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{oldsymbol{\lambda}}$	3	2	10
$oldsymbol{\lambda}'$	2	10	
		$ ightarrow$ reject, since $\hat{c}_2(\pmb{\lambda}')=6>\hat{c}_2(\pmb{\hat{\lambda}})=2.5$	

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)})$
- We'll look at challengers λ' and λ''

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{\lambda}$	3	2	10
$oldsymbol{\lambda}'$	2	10	
		$ ightarrow$ reject, since $\hat{c}_2(oldsymbol{\lambda}')=6>\hat{c}_2(oldsymbol{\hat{\lambda}})=2.5$	
$oldsymbol{\lambda}''$	3		

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)})$
- We'll look at challengers λ' and λ''

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{oldsymbol{\lambda}}$	3	2	10
$oldsymbol{\lambda}'$	2	10	
		$ ightarrow$ reject, since $\hat{c}_2(oldsymbol{\lambda}')=6>\hat{c}_2(oldsymbol{\hat{\lambda}})=2.5$	
$oldsymbol{\lambda}''$	3	1	

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)})$
- ullet We'll look at challengers $oldsymbol{\lambda}'$ and $oldsymbol{\lambda}''$

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{\lambda}$	3	2	10
$oldsymbol{\lambda}'$	2	10	
		$ ightarrow$ reject, since $\hat{c}_2(oldsymbol{\lambda}')=6>\hat{c}_2(oldsymbol{\hat{\lambda}})=2.5$	
$oldsymbol{\lambda}''$	3	1	5

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)}$)
- ullet We'll look at challengers $oldsymbol{\lambda}'$ and $oldsymbol{\lambda}''$

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{\lambda}$	3	2	10
$oldsymbol{\lambda}'$	2	10	
		$ ightarrow$ reject, since $\hat{c}_2(\pmb{\lambda'})=6>\hat{c}_2(\pmb{\hat{\lambda}})=2.5$	
λ''	3	1	5

- ullet new incumbent: $\hat{oldsymbol{\lambda}} \leftarrow oldsymbol{\lambda}''$
- ullet Perform an additional run for new $\hat{oldsymbol{\lambda}}$ to increase confidence over time

Racing achieves the best of both worlds

Aggressive racing (aka FocusedILS): Fast progress and no overtuning

Racing achieves the best of both worlds

Aggressive racing (aka FocusedILS): Fast progress and no overtuning

Input : candidate configurations Λ_{new} , cutoff κ_{max} , previously evaluated runs $\mathcal{D}_{\mathsf{Hist}}$, budget T, incumbent $\hat{\lambda}$ while Λ_{new} not empty do

 $\pmb{\lambda}^{(t)} \leftarrow \mathsf{getNext}(\pmb{\Lambda}_{new});$

Input : candidate configurations Λ_{new} , cutoff κ_{max} , previously evaluated runs $\mathcal{D}_{\mathsf{Hist}}$, budget T, incumbent $\hat{\lambda}$ while Λ_{new} not empty do

```
\begin{split} \pmb{\lambda}^{(t)} &\leftarrow \mathsf{getNext}(\pmb{\Lambda}_{new});\\ i, s &\leftarrow \mathsf{instance} \text{ and seed drawn uniformly at random;}\\ c &\leftarrow \mathsf{EvaluateRun}(\pmb{\hat{\lambda}}, i, s, \kappa_{max});\\ \mathcal{D}_{\mathsf{Hist}} &\leftarrow \mathcal{D}_{\mathsf{Hist}} \cup (\pmb{\hat{\lambda}}, i, s, c); \end{split}
```

```
Input : candidate configurations \Lambda_{new}, cutoff \kappa_{max}, previously evaluated runs \mathcal{D}_{\mathsf{Hist}}, budget T, incumbent \hat{\lambda} while \Lambda_{new} not empty do  \begin{vmatrix} \lambda^{(t)} \leftarrow \mathsf{getNext}(\Lambda_{new}); \\ i,s \leftarrow \mathsf{instance} \text{ and seed drawn uniformly at random}; \\ c \leftarrow \mathsf{EvaluateRun}(\hat{\lambda},i,s,\kappa_{max}); \\ \mathcal{D}_{\mathsf{Hist}} \leftarrow \mathcal{D}_{\mathsf{Hist}} \cup (\hat{\lambda},i,s,c); \\ \text{while } true \text{ do} \\ \begin{vmatrix} \mathcal{I}^{+}, s^{+} \leftarrow \mathsf{getAlreadyEvaluatedOn}(\hat{\lambda},\mathcal{D}_{\mathsf{Hist}}); \\ \mathcal{I}^{(t)}, s^{(t)} \leftarrow \mathsf{getAlreadyEvaluatedOn}(\lambda^{(t)}, \mathcal{D}_{\mathsf{Hist}}); \\ i^{(t)}, s^{(t)} \leftarrow \mathsf{drawn uniformly at random from } \mathcal{I}^{+} \setminus \mathcal{I}^{(t)} \text{ and } s^{+} \setminus s^{(t)}; \end{aligned}
```

```
: candidate configurations \Lambda_{new}, cutoff \kappa_{max}, previously evaluated runs \mathcal{D}_{\text{Hist}}, budget T, incumbent \hat{\lambda}
Input
while \Lambda_{new} not empty do
          \boldsymbol{\lambda}^{(t)} \leftarrow \text{getNext}(\boldsymbol{\Lambda}_{new}):
             i, s \leftarrow instance and seed drawn uniformly at random:
             c \leftarrow \mathsf{EvaluateRun}(\hat{\lambda}, i, s, \kappa_{max}):
             \mathcal{D}_{\mathsf{Hiet}} \leftarrow \mathcal{D}_{\mathsf{Hiet}} \cup (\hat{\lambda}, i, s, c):
             while true do
                   \mathcal{I}^+, \mathbf{s}^+ \leftarrow \text{getAlreadyEvaluatedOn}(\hat{\lambda}, \mathcal{D}_{Hiet}):
                       \mathcal{I}^{(t)}, \mathbf{s}^{(t)} \leftarrow \mathsf{getAlreadvEvaluatedOn}(\boldsymbol{\lambda}^{(t)}, \mathcal{D}_{\mathsf{Hict}}):
                       i^{(t)}, s^{(t)} \leftarrow \text{drawn uniformly at random from } \mathcal{I}^+ \setminus \mathcal{I}^{(t)} \text{ and } \mathbf{s}^+ \setminus \mathbf{s}^{(t)}:
                       c_i \leftarrow \mathsf{EvaluateRun}(\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(t)}, \kappa_{max});
                       \mathcal{D}_{\mathsf{Hiet}} \leftarrow \mathcal{D}_{\mathsf{Hiet}} \cup (\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(t)}, c^{(t)}):
```

```
Input
                     : candidate configurations \Lambda_{new}, cutoff \kappa_{max}, previously evaluated runs \mathcal{D}_{Hist}, budget T, incumbent \lambda
while \Lambda_{new} not empty do
         \boldsymbol{\lambda}^{(t)} \leftarrow \text{getNext}(\boldsymbol{\Lambda}_{new}):
            i, s \leftarrow \text{instance} and seed drawn uniformly at random:
            c \leftarrow \mathsf{EvaluateRun}(\hat{\lambda}, i, s, \kappa_{max}):
            \mathcal{D}_{\mathsf{Hist}} \leftarrow \mathcal{D}_{\mathsf{Hist}} \cup (\hat{\lambda}, i, s, c):
            while true do
                  \mathcal{I}^+, \mathbf{s}^+ \leftarrow \text{getAlreadyEvaluatedOn}(\hat{\lambda}, \mathcal{D}_{Hiet}):
                     \mathcal{I}^{(t)}, \mathbf{s}^{(t)} \leftarrow \mathsf{getAlreadyEvaluatedOn}(\boldsymbol{\lambda}^{(t)}, \mathcal{D}_{\mathsf{Hist}});
                      i^{(t)}, s^{(t)} \leftarrow \text{drawn uniformly at random from } \mathcal{I}^+ \setminus \mathcal{I}^{(t)} \text{ and } \mathbf{s}^+ \setminus \mathbf{s}^{(t)}:
                      c_i \leftarrow \text{EvaluateRun}(\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(t)}, \kappa_{max});
                      \mathcal{D}_{\mathsf{Hiet}} \leftarrow \mathcal{D}_{\mathsf{Hist}} \cup (\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(t)}, c^{(t)});
                      if average cost of \hat{\lambda}^{(t)} > average cost of \hat{\lambda} across \mathcal{I}^{(t)} and \mathbf{s}^{(t)} then
                             break:
```

```
Input
                     : candidate configurations \Lambda_{new}, cutoff \kappa_{max}, previously evaluated runs \mathcal{D}_{Hist}, budget T, incumbent \lambda
while \Lambda_{new} not empty do
         \boldsymbol{\lambda}^{(t)} \leftarrow \text{getNext}(\boldsymbol{\Lambda}_{new}):
            i, s \leftarrow instance and seed drawn uniformly at random;
            c \leftarrow \mathsf{EvaluateRun}(\hat{\lambda}, i, s, \kappa_{max}):
            \mathcal{D}_{\mathsf{Hiet}} \leftarrow \mathcal{D}_{\mathsf{Hiet}} \cup (\hat{\lambda}, i, s, c):
            while true do
                   \mathcal{I}^+, \mathbf{s}^+ \leftarrow \text{getAlreadyEvaluatedOn}(\hat{\lambda}, \mathcal{D}_{Hiet}):
                      \mathcal{I}^{(t)}, \mathbf{s}^{(t)} \leftarrow \mathsf{getAlreadvEvaluatedOn}(\boldsymbol{\lambda}^{(t)}, \mathcal{D}_{\mathsf{Higt}}):
                      i^{(t)}, s^{(t)} \leftarrow \text{drawn uniformly at random from } \mathcal{I}^+ \setminus \mathcal{I}^{(t)} \text{ and } \mathbf{s}^+ \setminus \mathbf{s}^{(t)}:
                      c_i \leftarrow \mathsf{EvaluateRun}(\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(t)}, \kappa_{max}):
                      \mathcal{D}_{\mathsf{Hiet}} \leftarrow \mathcal{D}_{\mathsf{Hiet}} \cup (\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(t)}, c^{(t)}):
                      if average cost of \lambda^{(t)} > average cost of \hat{\lambda} across \mathcal{I}^{(t)} and \mathbf{s}^{(t)} then
                             break:
                   else if average cost of \lambda^{(t)} < average cost of \hat{\lambda} and \mathcal{I}^+ = \mathcal{I}^{(t)} and \mathbf{s}^{(t)} = \mathbf{s}^+ then
                          \hat{\boldsymbol{\lambda}} \leftarrow \boldsymbol{\lambda}^{(t)}:
```

```
: candidate configurations \Lambda_{new}, cutoff \kappa_{max}, previously evaluated runs \mathcal{D}_{\mathsf{Hist}}, budget T, incumbent \hat{\lambda}
Input
while \Lambda_{new} not empty do
         \boldsymbol{\lambda}^{(t)} \leftarrow \text{getNext}(\boldsymbol{\Lambda}_{new}):
            i, s \leftarrow \text{instance} and seed drawn uniformly at random:
            c \leftarrow \mathsf{EvaluateRun}(\hat{\boldsymbol{\lambda}}, i, s, \kappa_{max}):
            \mathcal{D}_{\mathsf{Hiet}} \leftarrow \mathcal{D}_{\mathsf{Hiet}} \cup (\hat{\lambda}, i, s, c):
            while true do
                   \mathcal{I}^+, \mathbf{s}^+ \leftarrow \text{getAlreadyEvaluatedOn}(\hat{\lambda}, \mathcal{D}_{Hiet}):
                      \mathcal{I}^{(t)}, \mathbf{s}^{(t)} \leftarrow \mathsf{getAlreadvEvaluatedOn}(\boldsymbol{\lambda}^{(t)}, \mathcal{D}_{\mathsf{Higt}}):
                      i^{(t)}, s^{(t)} \leftarrow \text{drawn uniformly at random from } \mathcal{I}^+ \setminus \mathcal{I}^{(t)} \text{ and } \mathbf{s}^+ \setminus \mathbf{s}^{(t)}:
                      c_i \leftarrow \mathsf{EvaluateRun}(\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(t)}, \kappa_{max}):
                      \mathcal{D}_{\mathsf{Hiet}} \leftarrow \mathcal{D}_{\mathsf{Hiet}} \cup (\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(t)}, c^{(t)}):
                      if average cost of \hat{\lambda}^{(t)} > average cost of \hat{\lambda} across \mathcal{I}^{(t)} and \mathbf{s}^{(t)} then
                             break:
                   else if average cost of \lambda^{(t)} < average cost of \hat{\lambda} and \mathcal{I}^+ = \mathcal{I}^{(t)} and \mathbf{s}^{(t)} = \mathbf{s}^+ then
                           \hat{\boldsymbol{\lambda}} \leftarrow \boldsymbol{\lambda}^{(t)}:
         if time spent exceeds T or \Lambda_{new} is empty then
                   return \hat{\lambda}. \mathcal{D}_{Hiet}
```

AutoML: Beyond AutoML

Best Practices for Algorithm Configuration

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

Pitfalls & Best Practices

The goals of automated algorithm configuration include:

The goals of automated algorithm configuration include:

 $\ensuremath{\mathbf{0}}$ reducing the expertise required to use an algorithm

The goals of automated algorithm configuration include:

- reducing the expertise required to use an algorithm
- less human-time

The goals of automated algorithm configuration include:

- reducing the expertise required to use an algorithm
- less human-time
- tuning algorithms to the task at hand

The goals of automated algorithm configuration include:

- reducing the expertise required to use an algorithm
- less human-time
- tuning algorithms to the task at hand
- faster development of algorithms

The goals of automated algorithm configuration include:

- reducing the expertise required to use an algorithm
- less human-time
- tuning algorithms to the task at hand
- faster development of algorithms
- facilitating systematic and reproducible research

BUT:

algorithm configuration can lead to over-tuning

The goals of automated algorithm configuration include:

- reducing the expertise required to use an algorithm
- 2 less human-time
- tuning algorithms to the task at hand
- faster development of algorithms
- facilitating systematic and reproducible research

BUT:

- algorithm configuration can lead to over-tuning
- ② using algorithm configuration requires (at least some) expertise in algorithm configuration

The goals of automated algorithm configuration include:

- reducing the expertise required to use an algorithm
- less human-time
- tuning algorithms to the task at hand
- faster development of algorithms
- facilitating systematic and reproducible research

BUT:

- algorithm configuration can lead to over-tuning
- ② using algorithm configuration requires (at least some) expertise in algorithm configuration
- if done wrong, waste of time and compute resources

- $9\ {\rm Steps}$ to your well-performing algorithm:
 - Define your performance metric

- $9\ \mbox{Steps}$ to your well-performing algorithm:
 - Define your performance metric
 - Oefine instance set

- $9 \ {\it Steps} \ {\it to} \ {\it your} \ {\it well-performing} \ {\it algorithm}:$
 - Define your performance metric
 - Oefine instance set
 - Split your instances in training and test

- 9 Steps to your well-performing algorithm:
 - Define your performance metric
 - Oefine instance set
 - Split your instances in training and test
 - Oefine the configuration space

- 9 Steps to your well-performing algorithm:
 - Define your performance metric
 - Oefine instance set
 - Split your instances in training and test
 - Define the configuration space
 - Ohoose your preferred configurator

- 9 Steps to your well-performing algorithm:
 - Define your performance metric
 - Oefine instance set
 - Split your instances in training and test
 - Define the configuration space
 - Choose your preferred configurator
 - Implement an interface between your algorithm and the configurator

- 9 Steps to your well-performing algorithm:
 - Define your performance metric
 - Oefine instance set
 - Split your instances in training and test
 - Define the configuration space
 - Ochoose your preferred configurator
 - Implement an interface between your algorithm and the configurator
 - Define resource limitations of your algorithm

- 9 Steps to your well-performing algorithm:
- Define your performance metric
- Oefine instance set
- Split your instances in training and test
- Oefine the configuration space
- Ohoose your preferred configurator
- Implement an interface between your algorithm and the configurator
- Define resource limitations of your algorithm
- Quantity Run the configurator on your algorithm and the training instances

- 9 Steps to your well-performing algorithm:
- Define your performance metric
- Oefine instance set
- Split your instances in training and test
- Oefine the configuration space
- 6 Choose your preferred configurator
- Implement an interface between your algorithm and the configurator
- Define resource limitations of your algorithm
- Nun the configurator on your algorithm and the training instances
- Validate the eventually returned configuration on your test instances

Pitfall 1: Trust your algorithm

We have encountered algorithms that

- ignored resource limitations
- returned wrong solutions
- even returned negative runtimes

Pitfall 1: Trust your algorithm

We have encountered algorithms that

- ignored resource limitations
- returned wrong solutions
- even returned negative runtimes

Best Practice 1: Never trust your algorithm

Explicitly check and use external software to:

- ensure resource limitations
- terminate your algorithm
- verify returned solutions
- measure performance

Pitfall 2: File System

Algorithm configurators ...

- often produce quite some log files (e.g., for each algorithm run)
- are often used on HPC clusters with a shared file system

Pitfall 2: File System

Algorithm configurators ...

- often produce quite some log files (e.g., for each algorithm run)
- are often used on HPC clusters with a shared file system
- \rightsquigarrow It's surprisingly easy to substantially slow down a shared file system

Pitfall 2: File System

Algorithm configurators ...

- often produce quite some log files (e.g., for each algorithm run)
- are often used on HPC clusters with a shared file system

 \rightsquigarrow It's surprisingly easy to substantially slow down a shared file system

Best Practice 2: Don't use the Shared File System

To relieve the file system of a HPC cluster:

- design well which files are required and which are not
- use a local (SSD) disc

Pitfall 3: Over-tuning

It's easy to overtune to different aspects, incl.:

- training instances
- random seeds
- machine type

Pitfall 3: Over-tuning

It's easy to overtune to different aspects, incl.:

- training instances
- random seeds
- machine type

In practice, it can be hard to prevent over-tuning, e.g., by

- using larger instance sets
- tuning on the target hardware

Best Practice 3: Check for Over-Tuning

Check for over-tuning by validating your final configuration on

- many random seeds
- a large set of unused test instances
- a different hardware

Algorithm configurators...

• use some kind of racing to not evaluate each configuration on all instances

Algorithm configurators...

- use some kind of racing to not evaluate each configuration on all instances
- can be mislead on subsets of instances if the instance set is heterogeneous

Algorithm configurators...

- use some kind of racing to not evaluate each configuration on all instances
- can be mislead on subsets of instances if the instance set is heterogeneous

 \leadsto returned configurations often perform worse than default configurations in the validation phase

Algorithm configurators...

- use some kind of racing to not evaluate each configuration on all instances
- can be mislead on subsets of instances if the instance set is heterogeneous

 \rightsquigarrow returned configurations often perform worse than default configurations in the validation phase

Best Practice 4: Ensure Homogeneity

Algorithm configurators should only run on homogeneous instance sets. Different degrees of homogeneity:

- Strong homogeneity: all instances agree on the ranking of configurations
- Weak homogeneity: all instances agree on the top-performing configurations

More Pitfalls and Best Practices

 \dots can be found in <code>[Eggensperger et al. 2019]</code>

AutoML: Beyond AutoML

Overview: Algorithm Configuration

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

• hyperparameter optimization (HPO) is not limited to ML

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - the algorithm at hand has parameters that influence its performance

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - the algorithm at hand has parameters that influence its performance
 - 2 you care about the empirical performance of an algorithm

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - the algorithm at hand has parameters that influence its performance
 - 2 you care about the empirical performance of an algorithm
- a limitation of HPO is that we assume that we care only about a single task (i.e., dataset or input to the algorithm)

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - the algorithm at hand has parameters that influence its performance
 - you care about the empirical performance of an algorithm
- a limitation of HPO is that we assume that we care only about a single task (i.e., dataset or input to the algorithm)
- Can we find an algorithm's configuration that performs well and robustly across a set of tasks?

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - 1 the algorithm at hand has parameters that influence its performance
 - you care about the empirical performance of an algorithm
- a limitation of HPO is that we assume that we care only about a single task (i.e., dataset or input to the algorithm)
- Can we find an algorithm's configuration that performs well and robustly across a set of tasks?
 - ▶ A hyperparameter configuration for a set of datasets

Generalization of HPO

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - the algorithm at hand has parameters that influence its performance
 - you care about the empirical performance of an algorithm
- a limitation of HPO is that we assume that we care only about a single task (i.e., dataset or input to the algorithm)
- Can we find an algorithm's configuration that performs well and robustly across a set of tasks?
 - ▶ A hyperparameter configuration for a set of datasets
 - A parameter configuration of a SAT solver for a set of SAT instances

Generalization of HPO

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - 1 the algorithm at hand has parameters that influence its performance
 - you care about the empirical performance of an algorithm
- a limitation of HPO is that we assume that we care only about a single task (i.e., dataset or input to the algorithm)
- ∼→ Can we find an algorithm's configuration that performs well and robustly across a set of tasks?
 - ▶ A hyperparameter configuration for a set of datasets
 - A parameter configuration of a SAT solver for a set of SAT instances
 - ▶ A parameter configuration of an AI planning solver for a set of planning problems
 - **.**...

Generalization of HPO

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - 1 the algorithm at hand has parameters that influence its performance
 - you care about the empirical performance of an algorithm
- a limitation of HPO is that we assume that we care only about a single task (i.e., dataset or input to the algorithm)
- Can we find an algorithm's configuration that performs well and robustly across a set of tasks?
 - ▶ A hyperparameter configuration for a set of datasets
 - A parameter configuration of a SAT solver for a set of SAT instances
 - ▶ A parameter configuration of an AI planning solver for a set of planning problems
- → Algorithm configuration

Algorithm Configuration Visualized

Definition

Given a parameterized algorithm ${\mathcal A}$ with possible (hyper-)parameter settings ${\pmb \Lambda}$,

Definition

Given a parameterized algorithm A with possible (hyper-)parameter settings Λ , a set of training problem instances \mathcal{I} ,

Definition

Given a parameterized algorithm $\mathcal A$ with possible (hyper-)parameter settings Λ , a set of training problem instances $\mathcal I$, and a cost metric $c: \Lambda \times \mathcal I \to \mathbb R$,

Definition

Given a parameterized algorithm $\mathcal A$ with possible (hyper-)parameter settings Λ , a set of training problem instances $\mathcal I$, and a cost metric $c:\Lambda\times\mathcal I\to\mathbb R$, the algorithm configuration problem is to find a parameter configuration $\lambda^*\in\Lambda$ that minimizes c across the instances in $\mathcal I$.

Definition

An instance of the algorithm configuration problem is a 5-tuple $(\mathcal{A}, \mathbf{\Lambda}, \mathcal{D}, \kappa, c)$ where:

- \bullet \mathcal{A} is a parameterized algorithm;
- ullet Λ is the (hyper-)parameter configuration space of ${\cal A}$;
- ullet $\mathcal D$ is a distribution over problem instances with domain $\mathcal I$;

Definition

An instance of the algorithm configuration problem is a 5-tuple $(\mathcal{A}, \mathbf{\Lambda}, \mathcal{D}, \kappa, c)$ where:

- \bullet \mathcal{A} is a parameterized algorithm;
- Λ is the (hyper-)parameter configuration space of A;
- \mathcal{D} is a distribution over problem instances with domain \mathcal{I} ;
- ullet $\kappa < \infty$ is a cutoff time, after which each run of ${\cal A}$ will be terminated if still running

Definition

An instance of the algorithm configuration problem is a 5-tuple $(\mathcal{A}, \mathbf{\Lambda}, \mathcal{D}, \kappa, c)$ where:

- \bullet \mathcal{A} is a parameterized algorithm;
- Λ is the (hyper-)parameter configuration space of A;
- \mathcal{D} is a distribution over problem instances with domain \mathcal{I} ;
- ullet $\kappa < \infty$ is a cutoff time, after which each run of ${\cal A}$ will be terminated if still running
- $c: \mathbf{\Lambda} \times \mathcal{I} \to \mathbb{R}$ is a function that measures the observed cost of running $\mathcal{A}(\mathbf{\lambda})$ on an instance $i \in \mathcal{I}$ with cutoff time κ

Definition

An instance of the algorithm configuration problem is a 5-tuple $(\mathcal{A}, \mathbf{\Lambda}, \mathcal{D}, \kappa, c)$ where:

- \bullet \mathcal{A} is a parameterized algorithm;
- Λ is the (hyper-)parameter configuration space of A;
- \mathcal{D} is a distribution over problem instances with domain \mathcal{I} ;
- ullet $\kappa < \infty$ is a cutoff time, after which each run of ${\cal A}$ will be terminated if still running
- $c: \mathbf{\Lambda} \times \mathcal{I} \to \mathbb{R}$ is a function that measures the observed cost of running $\mathcal{A}(\lambda)$ on an instance $i \in \mathcal{I}$ with cutoff time κ

The cost of a candidate solution $\lambda \in \Lambda$ is $f(\lambda) = \mathbb{E}_{i \sim \mathcal{D}}(c(\lambda, i))$.

The goal is to find $\lambda^* \in \arg\min_{\lambda \in \Lambda} f(\lambda)$.

Distribution of Instances

We usually have a finite number of instances from a given application

- We want to do well on that type of instances
- Future instances of this type should be solved well

Distribution of Instances

We usually have a finite number of instances from a given application

- We want to do well on that type of instances
- Future instances of this type should be solved well

Like in machine learning

- We split the instances into a training set and a test set
- We configure algorithms on the training instances
- We only use the test instances afterwards
 - → unbiased estimate of generalization performance for unseen instances

- Structured high-dimensional parameter space
 - categorical vs. continuous parameters
 - conditionals between parameters

- Structured high-dimensional parameter space
 - categorical vs. continuous parameters
 - conditionals between parameters
- Stochastic optimization
 - Randomized algorithms: optimization across various seeds
 - ▶ Distribution of benchmark instances (often wide range of hardness)
 - Subsumes so-called multi-armed bandit problem

- Structured high-dimensional parameter space
 - categorical vs. continuous parameters
 - conditionals between parameters
- Stochastic optimization
 - Randomized algorithms: optimization across various seeds
 - Distribution of benchmark instances (often wide range of hardness)
 - Subsumes so-called multi-armed bandit problem
- Generalization across instances
 - apply algorithm configuration to homogeneous instance sets
 - Instance sets can also be heterogeneous,
 i.e., no single configuration performs well on all instances
 - → combination of algorithm configuration and selection

- Structured high-dimensional parameter space
 - categorical vs. continuous parameters
 - conditionals between parameters
- Stochastic optimization
 - Randomized algorithms: optimization across various seeds
 - Distribution of benchmark instances (often wide range of hardness)
 - Subsumes so-called multi-armed bandit problem
- Generalization across instances
 - apply algorithm configuration to homogeneous instance sets
 - ► Instance sets can also be heterogeneous, i.e., no single configuration performs well on all instances
 - → combination of algorithm configuration and selection
- \rightsquigarrow Hyperparameter optimization is a subproblem of algorithm configuration

[Eggensperger et al. 2019]

AutoML: Beyond AutoML

Capping of Runtimes

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

Adaptive capping [Hutter et al. 2009]

- Assumptions
 - optimization of runtime
 - $\,\blacktriangleright\,$ each configuration run has a time limit (e.g., 300~sec)

Adaptive capping [Hutter et al. 2009]

- Assumptions
 - optimization of runtime
 - ▶ each configuration run has a time limit (e.g., 300 sec)
- E.g., $\hat{\lambda}$ needed 1 sec to solve i_1
 - ▶ Do we need to run λ' for 300 sec?
 - lacktriangle Terminate evaluation of λ' once guaranteed to be worse than $\hat{\lambda}$

Adaptive capping [Hutter et al. 2009]

- Assumptions
 - optimization of runtime
 - ▶ each configuration run has a time limit (e.g., 300 sec)
- E.g., $\hat{\lambda}$ needed 1 sec to solve i_1
 - ▶ Do we need to run λ' for 300 sec?
 - lacktriangle Terminate evaluation of λ' once guaranteed to be worse than $\hat{\lambda}$
- ightarrow To compare against $\hat{\pmb{\lambda}}$ based on N runs, we can terminate evaluation of $\pmb{\lambda}'$ after time $\sum_{k=1}^N c(\hat{\pmb{\lambda}},i_k)$

	i_1	i_2	
$\hat{\lambda}$	4	2	

	i_1	i_2	
$\hat{\lambda}$	4	2	
Wi	thout adaptive capping		
$oldsymbol{\lambda}'$			

	i_1	i_2	
$\hat{oldsymbol{\lambda}}$	4	2	
Wi	thout adaptive capping		
$oldsymbol{\lambda}'$	3		

	i_1	i_2	
$\hat{oldsymbol{\lambda}}$	4	2	
Wi	thout adaptive capping		
$oldsymbol{\lambda}'$	3	300	

	i_1	i_2
$\hat{oldsymbol{\lambda}}$	4	2
Wi	thou	t adaptive capping
$oldsymbol{\lambda}'$	3	300
		$ ightarrow$ reject $oldsymbol{\lambda}'$ (cost: 303)

	i_1	i_2
$\hat{oldsymbol{\lambda}}$	4	2
Wi	thout adaptive capping	
$oldsymbol{\lambda}'$	3	300
	ightarrow reject	λ' (cost: 303)
Wi	th adaptive capping	
$oldsymbol{\lambda}'$		

	i_1	i_2
$\hat{\lambda}$	4	2
Wi	thout adaptive capping	
$oldsymbol{\lambda}'$	3	300
	ightarrow reject	λ' (cost: 303)
Wi	th adaptive capping	
$oldsymbol{\lambda}'$	3	

	i_1	i_2
$\hat{oldsymbol{\lambda}}$	4	2
Wi	thout adaptive capping	
$oldsymbol{\lambda}'$	3	300
	ightarrow reject	λ' (cost: 303)
Wi	th adaptive capping	
$oldsymbol{\lambda}'$	3	300

i_1	i_2
$\hat{\lambda}$ 4	2
Without	adaptive capping
λ' 3	300
	$ ightarrow$ reject $oldsymbol{\lambda}'$ (cost: 303)
With ada	ptive capping
λ' 3	300
 	at off after $\kappa=4$ seconds, reject $\pmb{\lambda}'$ (cost: 7)

runtime cutoff $\kappa=300$, comparison based on 2 instances

	i_1	i_2
$\hat{\lambda}$	4	2
Wit	thout	adaptive capping
$oldsymbol{\lambda}'$	3	300
		$ ightarrow$ reject $oldsymbol{\lambda}'$ (cost: 303)
Wit	th ad	aptive capping
$oldsymbol{\lambda}'$	3	300
	\rightarrow (cut off after $\kappa=4$ seconds, reject $\pmb{\lambda}'$ (cost: 7)

Note: To combine adaptive capping with BO, we need to impute the censored observations caused by adaptive capping. [Hutter et al. 2011]

Overview of Racing and Adaptive Capping

```
: candidate configurations \Lambda_{new}, cutoff \kappa_{max}, previously evaluated runs \mathcal{D}_{\mathsf{Hist}}, budget T, incumbent \hat{\lambda}
Input
while \Lambda_{new} not empty do
         \boldsymbol{\lambda}^{(t)} \leftarrow \text{getNext}(\boldsymbol{\Lambda}_{new}):
             [... add new run for incumbent ...]:
             while true do
                   \mathcal{I}^+, \mathbf{s}^+ \leftarrow \mathsf{getAlreadyEvaluatedOn}(\hat{\boldsymbol{\lambda}}, \mathcal{D}_{\mathsf{Hiet}}):
                       \mathcal{I}^{(t)}, \mathbf{s}^{(t)} \leftarrow \text{getAlreadyEvaluatedOn}(\boldsymbol{\lambda}^{(t)}, \mathcal{D}_{\text{Hist}}):
                      i^{(t)}, s^{(t)} \leftarrow \text{drawn uniformly at random from } \mathcal{I}_+ \setminus \mathcal{I}^{(t)} \text{ and } \mathbf{s}^+ \setminus \mathbf{s}^{(t)};
                      \kappa^{(i)} \leftarrow \mathsf{AdaptCutoff}(\kappa_{max}, \langle (\boldsymbol{\lambda}^{(j)}, c^{(j)}) \rangle_{\boldsymbol{\lambda}(i) = \boldsymbol{\lambda}^{+}}) \cdot \xi;
                       c_i \leftarrow \mathsf{EvaluateRun}(\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(i)}, \kappa^{(i)}):
                       \mathcal{D}_{\mathsf{Hiet}} \leftarrow \mathcal{D}_{\mathsf{Hiet}} \cup (\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(t)}, c^{(t)}):
                       if average cost of \lambda^{(t)} > average cost of \hat{\lambda} across \mathcal{I}^{(t)} and \mathbf{s}^{(t)} then
                            break:
                   else if average cost of \lambda^{(t)} < average cost of \hat{\lambda} and \mathcal{I}^+ = \mathcal{I}^{(t)} and \mathbf{s}^{(t)} = \mathbf{s}^+ then
                            \hat{\boldsymbol{\lambda}} \leftarrow \boldsymbol{\lambda}^{(t)}:
         if time spent exceeds T or \Lambda_{new} is empty then
                   return \hat{\lambda}. \mathcal{D}_{uict}
```