Decision Tree & Rule Learner

3조 (김성산 / 이승연 / 이승한)

목차

- < Decision Tree >
- 1) 개념 & 예시
- 2) 관련 용어 설명
- 3) 분류 기준 설정
- 4) 장.단점
- 5) 모델 개선하기

- < Rule Learner >
- 1) 개념 & 예시
- 2) 모델 개선하기
- 3) 장.단점

1) Decision Tree의 개념 & 예시

1) 정의

의사결정 규칙을 나무 구조로 나타내어,

전체 자료를 몇 개의 소집단으로 분류하거나 예측하는 분석 방법

2) 종류

- 분류 나무 : 목표변수가 "이산형"인 경우

- 회귀 나무 : 목표변수가 "연속형"인 경우

라제가 있는가? NO (YES 내일까지 인가? NO (YES 나이 아침에 한수있는가? YES (NO 사비병에 한수있는가? YES (NO 자체휴강

2) Decision Tree의 용어 설명

Root NodeInternal Node

Leaf Node

뿌리 마디: 시작되는 마디(전체 자료를 포함)

중간 마디: 부모 마디와 자식 마디가 모두 있는 마디

최종 마디: 자식마디가 없는 마디

- <u>가지(branch)</u>: 뿌리 ~ 최종마디까지 연결된 마디들
- <u>깊이(depth)</u>: 뿌리 ~ 최종마디까지의 중간 마디들의 '수'
- **가지 분할** : 나무의 가지를 생성하는 과정
- 가지 치기 : 생성된 가지를 잘라내어 모형을 단순화하는 과정

---> for 과대적합 방지

- 1) 사전 가지치기 (pre-pruning) : by <u>정지규칙</u>
- 2) 사후 가지치기 (post-pruning): 트리 만든 후, 데이터 포인트 적은 노드 삭제/병합

정지규칙: 더 이상 분리가 일어나지 않고, 현재의 마디가 최종마디가 되도록 하는 여러 규칙

→ ex : <u>최대 나무의 깊이</u>, 자식 마디의 최소 관측치 수....

사전 가지치기

사후 가지치기

이미 트리를 다 만들고 난 후에, 몇 개의 노드를 삭제하거나 병합해서 좀 더 일반적인 model로 만들기

3) Decision Tree의 분류 기준 설정

1. 엔트로피 지수

2. 지니 지수

1. 엔트로피 지수

<한 줄 요약>

분류기준으로 의해 나누어진 "노드의 구성 클래스가 얼마나 이질적"인가?

노드 B: Bad

하나의 노트의 Entropy
$$\operatorname{Entropy}(S) = \sum_{i=1}^{c} -p_i \; log_2(p_i)$$

여러 Entropy들의 가중평균

$$Entropy(S) = \sum_{i=1}^{n} w_i \ Entropy(P_i)$$

(p: 해당 클래스가 노드 내에서 차지하는 비율)

노드 A

- > # 노드 A는 클래스1(0.875) 클래스2(0.125)로 구성
- > -0.125*log2(0.125) 0.875*log2(0.875)

[1] 0.5435644

노드 B

- > # 노드 B는 클래스1(0.5) 클래스2(0.5)로 구성
- > -0.50*log2(0.50) 0.50*log2(0.50)

[1] 1

정보 이익 (Information Gain)

InfoGain(F) = Entropy(S1) - Entropy(S2)

(이 값이 "커야" 좋음)

- 1) Entropy(S1)이 커야
 - -> 얼마나 다양하게 섞인 데이터에서
- 2) Entropy(S2)이 작아야
 - -> 얼마나 노드 내의 클래스들을 동질적으로

2. 지니 지수 (지니 불순도)

Gini =
$$1 - \sum_{l=1}^{k} p_l^2$$

 $p_l(l = 1,..., k)$

노드 A: Good

노드 B: Bad

$$1 - (6/7)^2 - (1/7)^2 = 0.24$$

1 -
$$(3/8)^2$$
 - $(3/8)^2$ - $(1/8)^2$ - $(1/8)^2$ = **0.69**

즉, 엔트로피 지수, 지니 지수가

둘 다 "**작도록**" 분류 기준을 설정해야!!!

4) Decision Tree의 장.단점

< 장점 >

- 1) 구조가 단순하여 해석이 용이
- 2) 선형성,정규성,등분산성 등의 수학적 가정이 불필요한 비모수적 모형
- 3) 계산 비용이 낮아 대규모의 데이터셋에서도 빠르게 연산 가능
- 4) 수치형/범주형 변수 모두 사용가능

< 단점 >

- 1) 분류 기준값의 경계선 부근의 자료값에 대해서는 오차가 크다 (비연속성)
- 2) 로지스틱 회귀와 같이 각 예측변수의 효과 파악 어려움
- 3) 새로운 자료에 대한 예측이 불안정
- (-> 곧 과대적합함을 의미)
- (-> 가지치기 등을 통해 일반화 노력을 하지만, 그래도 다른 모델에 비해선 과대적합한 성향 O)

5) 모델 개선하기

"앙상블 모형"

<u>여러 개</u>의 분류모형의 결과를 종합하여 <u>분류의 정확도를 높이는 방법</u>!

1) 배강 : 여러 개의 분류모형에 의한 결과를 종합

1개의 분류기(나무)만을 사용할 때보다 좋겠지?

2) **부스팅** : 배깅과 유사

(차이점:분류하기 더 애매한 데이터에 '가중치'를 둠

-> "경계 부근에 있는 data"를 더 신경써서 트리 생성)

3) 랜덤 포레스트 : 배깅에 "랜덤" 과정을 추가

(쉽게 말하면, 데이터를 자식 노드로 나누는 기준을 정할 때, '전체 변수'가 아니라 '일부 변수'만을 랜덤으로 뽑아서 하여 가지를 나눔)

"랜덤 포레스트"

(간단히...자세한건 11단원)

의사결정 나무만을 사용한다면 "과적합"이 일어날 확률이 높기 때문에, 이를 해결하기 위해 <mark>랜덤</mark>하게 여러 개의 트리를 만드는 방법

포레스트 : 숲 = 나무의 모음

랜덤: 특성을 전부(X) 일부(O)만 랜덤하게 선택

ex) 기존의 의사결정나무 : 키,몸무게,국적,인종, 성별 등을 특성으로 이용해 tree 1개 만들기

랜덤 포레스트 : 키,몸무게, 국적 이용해 tree 1개

인종,성별,국적 이용해 tree 1개

국적,몸무게,성별 이용해 tree 1개......

-> 이런 거로 여러 개의 tree를 만듬!

Random Forest Simplified

1개의 의사결정 나무보다...

- 1) <u>높은 정확성</u>
- 2) <u>높은 일반화</u>(과적합 해결)

6) Rule Learner의 개념 & 예시

Rule Learner? 최적의 분류 규칙을 찾는 알고리즘

< 1R 알고리즘 >

전체의 데이터를 제일 잘 나눌 수 있는 "하나"의 규칙찾기!

> mushroom_1R

```
odor:

a -> e
c -> p
f -> p
l -> e
m -> p
n -> e
p -> p
s -> p
y -> p
(8004/8124 instances corre
```

```
8,124 송이의 버섯을 식용/독성으로 구분할 수
있는 제일 좋은 규칙(기준)은 "(odor)냄새" 이다!
```

(그 많은 버섯들을 '단 하나'의 기준으로만 나누다 보면 에러가 쫌 많겠지....?)

7) 모델 개선하기

< RIPPER 알고리즘>

(Repeated Incremental Pruning to Produce Error Reduction)

전체의 데이터를 제일 잘 나눌 수 있는 "여러 개"의 규칙찾기!

사용한 규칙들? (1R) odor → 1개 (RIPPER) odor, gill_size, gill_color → 9개 이건 '여러 개의' 기준으로 나누다 보니, 1R 알고리즘보다 에러가 훨씬 줄지!

8) Rule Learner의 장.단점

< 1R 알고리즘 >

- < 장점 >
- 1) 이해하기 쉬움
- 2) 더 복잡한 알고리즘을 위한 기초가 될 수 있음
- < 단점 >
- 1) 하나의 특징만을 사용한다 -> 너무 단순

< RIPPER 알고리즘 >

- < 장점 >
- 1) 이해하기 쉬움
- 2) 노이즈 값에 크게 영향 받지 않음
- 3) 의사결정나무 모형에 비해 간단한 모델을 만듬
- < 단점 >
- 1) 수치형 데이터에는 적용하기 좋지 않음
- 2) 다른 복잡한 모델 만큼 좋은 성능을 내지는 못함

지금까지 배운 Decision Tree & Rule Learning의 활용 분야는?

고객 타겟팅, 고객들의 신용 점수화, 고객행동 예측, 고객 세분화, 캠페인 반응 분석 등...

Ex) 기업의 고객 분석

Ex) 고객들의 신용 등급

감사합니다