
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2011; month=6; day=29; hr=8; min=42; sec=49; ms=278;]

Validated By CRFValidator v 1.0.3

Application No: 10584024 Version No: 4.0

Input Set:

Output Set:

Started: 2011-06-20 13:54:02.087

Finished: 2011-06-20 13:54:02.791

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 704 ms

Total Warnings: 6

Total Errors: 0

No. of SeqIDs Defined: 31

Actual SeqID Count: 31

Error code		Error Description
W	213	Artificial or Unknown found in <213> in SEQ ID (4)
W	213	Artificial or Unknown found in <213> in SEQ ID (5)
W	213	Artificial or Unknown found in <213> in SEQ ID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (7)
W	402	Undefined organism found in <213> in SEQ ID (13)
W	402	Undefined organism found in <213> in SEQ ID (25)

SEQUENCE LISTING

	CropDesign N.V.											
<120>	Plants having increased yield and method for making the same											
<130>	CD-106-PCT											
<140>	10584024											
<141>	2011-06-20											
<150>	US 60/532,287											
<151>	2003-12-22											
<160>	31											
<170>	PatentIn version 3.3											
<210>	1											
<211>	1311											
<212>	DNA											
<213>	Arabidopsis thaliana											
<220> <221> <223>	<pre>1> misc_feature 3> A variant of the coding sequence of the sequence deposited under accession number NM_121168 contains a G instead of C on position</pre>											
	851 and a T instead of C on position 1295											
	oor and a r indeeda or o on podreton rase											
<400>	1											
		60										
atgtati	1	60 120										
atgtati gtacago	1 tgct cttcttcgat gcatccaaat gcaaacaaag aaaatatctc tacttcagat											
atgtati gtacago gtatcao	1 tgct cttcttcgat gcatccaaat gcaaacaaag aaaatatctc tacttcagat gaga gttttgtacg aataacgaga tcacgagcta aaaaagccat gggaagagga	120										
atgtati gtacago gtatcao gatgtgo	tgct cttcttcgat gcatccaaat gcaaacaaag aaaatatctc tacttcagat gaga gttttgtacg aataacgaga tcacgagcta aaaaagccat gggaagagga atac ctccaacaaa accttcttt aaacagcaaa agagacgtgc agtacttaag	120 180										
atgtati gtacago gtatcao gatgtgo aaggcao	1 tgct cttcttcgat gcatccaaat gcaaacaaag aaaatatctc tacttcagat gaga gttttgtacg aataacgaga tcacgagcta aaaaagccat gggaagagga atac ctccaacaaa accttctttt aaacagcaaa agagacgtgc agtacttaag agta atacctctgc agatattatt tattcagaac ttcgaaaggg aggcaacatc	120 180 240										
atgtati gtacago gtatcao gatgtgo aaggcao gccatgo	1 tgct cttcttcgat gcatccaaat gcaaacaaag aaaatatctc tacttcagat gaga gttttgtacg aataacgaga tcacgagcta aaaaagccat gggaagagga atac ctccaacaaa accttcttt aaacagcaaa agagacgtgc agtacttaag agta atacctctgc agatattatt tattcagaac ttcgaaaggg aggcaacatc aaca gaaaatgtct aaaagagcct aaaaaagcag caaaggaagg tgctaacagt	120 180 240 300										
atgtati gtacage gtatcae gatgtge aaggcae gccatge aagatce	tgct cttcttcgat gcatccaaat gcaaacaaag aaaatatctc tacttcagat gaga gttttgtacg aataacgaga tcacgagcta aaaaagccat gggaagagga atac ctccaacaaa accttctttt aaacagcaaa agagacgtgc agtacttaag agta atacctctgc agatattatt tattcagaac ttcgaaaggg aggcaacatc aaca gaaaatgtct aaaagagcct aaaaaagcag caaaggaagg tgctaacagt gata ttctggtaga tatgcataca gaaaaatcaa aattagcaga agatttgtcc	120 180 240 300 360										
atgtati gtacage gtatcae gatgtge aaggcae gccatge aagatce actgage	tgct cttcttcgat gcatccaaat gcaaacaaag aaaatatctc tacttcagat gaga gttttgtacg aataacgaga tcacgagcta aaaaagccat gggaagagga atac ctccaacaaa accttcttt aaacagcaaa agagacgtgc agtacttaag agta atacctctgc agatattatt tattcagaac ttcgaaaggg aggcaacatc aaca gaaaatgtct aaaagagcct aaaaaagcag caaaggaagg tgctaacagt agata ttctggtaga tatgcataca gaaaaatcaa aattagcaga agatttgtcc agga tggctgaagc ccaagatgtc tctctttcaa actttaaaga tgaagaaatt	120 180 240 300 360 420 480 540										
atgtati gtacage gtatcae gatgtge aaggcae gccatge actgage tccaace catgtte	tgct cttcttcgat gcatccaaat gcaaacaaag aaaatatctc tacttcagat gaga gttttgtacg aataacgaga tcacgagcta aaaaagccat gggaagagga ataac ctccaacaaa accttcttt aaacagcaaa agagacgtgc agtacttaag agata atacctctgc agatattatt tattcagaac ttcgaaaggg aggcaacatc aaca gaaaatgct aaaagagcct aaaaaagcag caaaggaagg tgctaacagt ggta ttctggtaga tatgcataca gaaaaatcaa aattagcaga agatttgtcc agga tggctgaagc ccaagatgtc tctctttcaa actttaaaga tgaagaaatt gacac aagaaggtgg atcaggtgtc atggagttac ttcaagttgt agatattgat ggcg aagatccaca gtgttgcagc ttgtatgctg ctgatatata tgacaacata gcag agcttcaaca acgacccttg gctaattata tggagcttgt gcagcgagat	120 180 240 300 360 420 480 540										
atgtati gtacage gtatcae gatgtge aaggcae gccatge actgage tccaace catgtte	tget ettettegat geatecaaat geaaacaaag aaaatatete taetteagat gaga gttttgtacg aataacgaga teacgageta aaaaageeat gggaaagagga ataa eteetettt aaacageaaa agagacgtge agtaettaag agta atacetetge agatattatt tatteagaae ttegaaaggg aggeaacate aaaca gaaaatgeet aaaaagageet aaaaaageag eaaaggaagg tgetaacagt ggata ttetggtaga tatgeataca gaaaaateaa aattageaga agatttgtee agga tggetgaage eeaagatgte tetetteaa aetttaaaga tgaagaaatt eeaac aagaagatgg ateaggtgte atggagttae tteaagttgt agatattgat agataecaa gtgteg aagateeaa gtgttgeage ttgtatgetg etgatatata tgacaacata	120 180 240 300 360 420 480 540										

agttacattg aaaggcaaag actccagctc cttggtgtct cttgcatgct tatagcttca 780

aaatatgaag	agctttccgc	accaggggtg	gaggagtttt	gcttcattac	ggccaacaca	840
tacacaagac	cagaagtgct	gagcatggag	attcaaattc	taaattttgt	gcactttaga	900
ttatcggttc	ctaccaccaa	aacatttctg	aggcggttca	ttaaagcagc	tcaagcttcg	960
tacaaggtgc	ctttcattga	actggagtat	ttagcaaact	atctcgccga	attgacactg	1020
gtggaatata	gtttcctaag	gttcctgcca	tcactaattg	ctgcttcagc	tgttttccta	1080
gcccgatgga	cactcgacca	aactgaccat	ccttggaacc	ctactctgca	acactacacc	1140
agatatgagg	tagctgagct	gaagaacaca	gttctcgcca	tggaggactt	gcagctcaac	1200
accagtggct	gtactctcgc	tgccacccgt	gagaaataca	accaaccaaa	gtttaagagc	1260
gtggcaaagc	tgacatctcc	caaacgagtc	acatcactat	tctcaagatg	a	1311

<210> 2

<211> 436

<212> PRT

<213> Arabidopsis thaliana

<220>

<221> MISC_FEATURE

<223> A variant of the sequence deposited under accession number NP_568248 contains an arginine instead of a proline on position 284 and a phenylalanine instead of a serine on position 432

<400> 2

Met Tyr Cys Ser Ser Ser Met His Pro Asn Ala Asn Lys Glu Asn Ile 1 5 10 15

Ser Thr Ser Asp Val Gln Glu Ser Phe Val Arg Ile Thr Arg Ser Arg
20 25 30

Ala Lys Lys Ala Met Gly Arg Gly Val Ser Ile Pro Pro Thr Lys Pro 35 40 45

Ser Phe Lys Gln Gln Lys Arg Arg Ala Val Leu Lys Asp Val Ser Asn 50 55 60

Thr Ser Ala Asp Ile Ile Tyr Ser Glu Leu Arg Lys Gly Gly Asn Ile 65 70 75 80

Lys Ala Asn Arg Lys Cys Leu Lys Glu Pro Lys Lys Ala Ala Lys Glu 85 90 95

Gly	Ala	Asn	Ser 100	Ala	Met	Asp	Ile	Leu 105	Val	Asp	Met	His	Thr 110	Glu	Lys
Ser	Lys	Leu 115	Ala	Glu	Asp	Leu	Ser 120	Lys	Ile	Arg	Met	Ala 125	Glu	Ala	Gln
Asp	Val 130	Ser	Leu	Ser	Asn	Phe 135	Lys	Asp	Glu	Glu	Ile 140	Thr	Glu	Gln	Gln
Glu 145	Asp	Gly	Ser	Gly	Val 150	Met	Glu	Leu	Leu	Gln 155	Val	Val	Asp	Ile	Asp 160
Ser	Asn	Val	Glu	Asp 165	Pro	Gln	Cys	Cys	Ser 170	Leu	Tyr	Ala	Ala	Asp 175	Ile
Tyr	Asp	Asn	Ile 180	His	Val	Ala	Glu	Leu 185	Gln	Gln	Arg	Pro	Leu 190	Ala	Asn
Tyr	Met	Glu 195	Leu	Val	Gln	Arg	Asp 200	Ile	Asp	Pro	Asp	Met 205	Arg	Lys	Ile
Leu	Ile 210	Asp	Trp	Leu	Val	Glu 215	Val	Ser	Asp	Asp	Tyr 220	Lys	Leu	Val	Pro
Asp 225	Thr	Leu	Tyr	Leu	Thr 230	Val	Asn	Leu	Ile	Asp 235	Arg	Phe	Leu	Ser	Asn 240
Ser	Tyr	Ile	Glu	Arg 245	Gln	Arg	Leu	Gln	Leu 250	Leu	Gly	Val	Ser	Cys 255	Met
Leu	Ile	Ala	Ser 260	Lys	Tyr	Glu	Glu	Leu 265	Ser	Ala	Pro	Gly	Val 270	Glu	Glu
Phe	Суз	Phe 275	Ile	Thr	Ala	Asn	Thr 280	Tyr	Thr	Arg	Pro	Glu 285	Val	Leu	Ser
Met	Glu 290	Ile	Gln	Ile	Leu	Asn 295	Phe	Val	His	Phe	Arg 300	Leu	Ser	Val	Pro
Thr 305	Thr	Lys	Thr	Phe	Leu 310	Arg	Arg	Phe	Ile	Lys 315	Ala	Ala	Gln	Ala	Ser 320

Tyr Lys Val Pro Phe Ile Glu Leu Glu Tyr Leu Ala Asn Tyr Leu Ala 325 330 335

Glu Leu Thr Leu Val Glu Tyr Ser Phe Leu Arg Phe Leu Pro Ser Leu 340 345 350

Ile Ala Ala Ser Ala Val Phe Leu Ala Arg Trp Thr Leu Asp Gln Thr 355 360 365

Asp His Pro Trp Asn Pro Thr Leu Gln His Tyr Thr Arg Tyr Glu Val 370 375 380

Ala Glu Leu Lys Asn Thr Val Leu Ala Met Glu Asp Leu Gln Leu Asn 385 390 395 400

Thr Ser Gly Cys Thr Leu Ala Ala Thr Arg Glu Lys Tyr Asn Gln Pro \$405\$ \$410\$ \$415

Lys Phe Lys Ser Val Ala Lys Leu Thr Ser Pro Lys Arg Val Thr Ser 420 425 430

Leu Phe Ser Arg 435

<210> 3

<211> 654

<212> DNA

<213> Oryza sativa

<400> 3

cttctacatc ggcttaggtg tagcaacacg actttattat tattattatt attattatta 60 ttattttaca aaaatataaa atagatcagt ccctcaccac aagtagagca agttggtgag ttattgtaaa gttctacaaa gctaatttaa aagttattgc attaacttat ttcatattac 180 aaacaagagt gtcaatggaa caatgaaaac catatgacat actataattt tgtttttatt 240 attgaaatta tataattcaa agagaataaa tccacatagc cgtaaagttc tacatgtggt 300 gcattaccaa aatatatata gcttacaaaa catgacaagc ttagtttgaa aaattgcaat 360 ccttatcaca ttgacacata aagtgagtga tgagtcataa tattattttc tttgctaccc 420 atcatgtata tatgatagcc acaaagttac tttgatgatg atatcaaaga acatttttag 480 gtgcacctaa cagaatatcc aaataatatg actcacttag atcataatag agcatcaagt 540 600 aaaactaaca ctctaaagca accgatggga aagcatctat aaatagacaa gcacaatgaa

```
<210> 4
<211> 56
<212> DNA
<213> Artificial sequence
<220>
<223> primer PRM582
<400> 4
ggggacaagt ttgtacaaaa aagcaggctt cacaatgtat tgctcttctt cgatgc
                                                                    56
<210> 5
<211> 52
<212> DNA
<213> Artificial sequence
<220>
<223> primer PRM583
<400> 5
ggggaccact ttgtacaaga aagctgggtg cttggtgtca tcttgagaat ag
                                                                    52
<210> 6
<211> 11
<212> PRT
<213> Unknown
<220>
<223> motif 1, found in cyclin A proteins
<220>
<221> misc_feature
<222> 3
<223> Xaa at position 3 may be Val or Ile
<220>
<221> misc_feature
<222> 6
<223> Xaa at position 6 may be Ser or Ala
<220>
<221> misc_feature
<222> 7
<223> Xaa at position 7 may be Asp or Glu
<220>
<221> misc_feature
<222> 8
<223> Xaa at position 8 may be Asp or Glu
```

<220>

```
<221> misc_feature
<222> 10
<223> Xaa at positon 10 may be Lys, Arg or Thr
<400> 6
Trp Leu Xaa Glu Val Xaa Xaa Xaa Tyr Xaa Leu
             5
                                   10
<210> 7
<211> 15
<212> PRT
<213> Unknown
<220>
<223> motif 2, found in cyclin A2 proteins
<220>
<221> misc_feature
<222> 5
<223> Xaa at position 5 may be Val, Ile, Thr or Met
<220>
<221> misc_feature
<222> 6
<223> Xaa at position 6 may be Asp, Glu or Met
<220>
<221> misc_feature
<222> 8
<223> Xaa at position 8 may be Thr, Ser, His, Pro or Gly
<220>
<221> misc_feature
<222> 10
<223> Xaa at position 10 may be Arg or Leu
<220>
<221> misc_feature
<222> 11
<223> Xaa at position 11 may be Leu, Arg, Lys or Asn
<400> 7
Glu Leu Thr Leu Xaa Xaa Tyr Xaa Phe Xaa Xaa Phe Leu Pro Ser
                                   10
                                                       15
<210> 8
<211> 15
<212> PRT
<213> Arabidopsis thaliana
<400> 8
Trp Leu Val Glu Val Ser Glu Glu Tyr Lys Leu Val Ser Asp Thr
                5
                                   10
                                                       15
```

```
<210> 9
<211> 15
<212> PRT
<213> Arabidopsis thaliana
<400> 9
Trp Leu Val Glu Val Ser Asp Asp Tyr Lys Leu Val Pro Asp Thr
                     10
<210> 10
<211> 15
<212> PRT
<213> Arabidopsis thaliana
<400> 10
Trp Leu Val Glu Val Ser Glu Glu Tyr Thr Leu Ala Ser Asp Thr
                            10
<210> 11
<211> 15
<212> PRT
<213> Arabidopsis thaliana
<400> 11
Trp Leu Val Glu Val Ser Glu Glu Tyr Thr Leu Val Pro Asp Thr
                                 10
<210> 12
<211> 15
<212> PRT
<213> Oryza sativa
<400> 12
Trp Leu Val Glu Val Ser Glu Glu Tyr Lys Leu Val Pro Asp Thr
                                  10
<210> 13
<211> 15
<212> PRT
<213> Medicago
<400> 13
Trp Leu Val Glu Val Ser Glu Gly Tyr Lys Leu Gln Ala Asn Thr
                                  10
<210> 14
<211> 15
<212> PRT
<213> Nicotiana tabacum
```

```
Trp Leu Val Glu Val Ser Glu Glu Tyr Arg Leu Val Pro Asp Thr
                                  10
<210> 15
<211> 15
<212> PRT
<213> Arabidopsis thaliana
<400> 15
Trp Leu Ile Glu Val Ser Glu Glu Tyr Arg Leu Val Pro Glu Thr
                                  10
<210> 16
<211> 15
<212> PRT
<213> Arabidopsis thaliana
<400> 16
Trp Leu Val Glu Val Ala Glu Glu Tyr Arg Leu Ser Pro Glu Thr
              5
                                  10
                                                     15
<210> 17
<211> 15
<212> PRT
<213> Arabidopsis thaliana
<400> 17
Trp Leu Val Glu Val Ala Glu Glu Tyr Lys Leu Leu Ser Asp Thr
              5
                                  10
                                                     15
<210> 18
<211> 15
<212> PRT
<213> Oryza sativa
<400> 18
Trp Leu Val Glu Val Ala Glu Glu Tyr Arg Leu Val Pro Asp Thr
      5
                                  10
<210> 19
<211> 15
<212> PRT
<213> Arabidopsis thaliana
<400> 19
```

Trp Leu Ile Asp Val His Val Arg Phe Glu Leu Asn Pro Glu Thr

```
1 5 10 15
```

```
<210> 20
<211> 15
<212> PRT
<213> Arabidopsis thaliana
<400> 20
Glu Leu Thr Leu Thr Glu Tyr Thr Phe Arg Leu Phe Leu Pro Ser
                                    10
<210> 21
<211> 15
<212> PRT
<213> Arabidopsis thaliana
<400> 21
Glu Leu Thr Leu Val Glu Tyr Ser Phe Leu Arg Phe Leu Pro Ser
                                    10
<210> 22
<211> 15
<212> PRT
<213> Arabidopsis thaliana
<400> 22
Glu Leu Thr Leu Ile Asp Tyr His Phe Leu Lys Phe Leu Pro Ser
                                    10
<210> 23
<211> 15
<212> PRT
<213> Arabidopsis thaliana
<400> 23
Glu Leu Thr Leu Met Asp Tyr Pro Phe Leu Lys Phe Leu Pro Ser
                                    10
<210> 24
<211> 15
<212> PRT
<213> Oryza sativa
<400> 24
Glu Leu Thr Leu Ile Asp Tyr Ser Phe Leu Lys Phe Leu Pro Ser
                                    10
```

<210> 25

<211> 15

<212> PRT

<213> Medicago

Glu Leu Thr Leu Met Asn Tyr Gly Phe Leu Asn Phe Leu Pro Ser 5 10 <210> 26 <211> 15 <212> PRT <213> Nicotiana tabacum <400> 26 Glu Leu Thr Leu Val Asp Tyr Gly Phe Leu Lys Phe Leu Pro Ser 5 10 <210> 27 <211> 15 <212> PRT <213> Arabidopsis thaliana <400> 27 Glu Leu Ser Leu Leu Glu Tyr Thr Met Leu Ser His Ser Pro Ser 10 5 <210> 28 <211> 15 <212> PRT <213> Arabidopsis thaliana <400> 28 Glu Leu Ser Leu Leu Asp Tyr Ala Met Leu Arg Tyr Ala Pro Ser 5 10 <210> 29 <211> 15 <212> PRT <213> Arabidopsis thaliana <400> 29 Glu Leu Ser Met Leu Asp Tyr Gln Ser Val Lys Phe Leu Pro Ser 5 10 <210> 30 <211> 15 <212> PRT <213> Oryza sativa

<400> 30

Glu Leu Gly Val Met His Tyr Asp Thr Met Ile Met Phe Ser Pro Ser 1 5 10 15