Module Title: INFORMATICS 1 - COMPUTATION AND LOGIC

Exam Diet (Dec/April/Aug): Dec 2009

Brief notes on answers:

	/ \	/ 4	/ -	~ ^ \			_	~
1	(a)	$\neg (A \rightarrow$. (R –	$\rightarrow (C')$	\longleftrightarrow \triangle	Λ	$R \wedge$	$\neg C$
т.	(00)	'(41 /	(1)	$^{\prime}$	· ′ ∡ .	1 / / 1	\cup \cap	

	A	В	С	$\neg C$	$B \to C$	$A \to (B \to C)$	$\neg (A \to (B \to C))$	$A \wedge B \wedge \neg C$
	t	t	t	f	t	t	f	f
	t	t	f	t	f	f	t	t
ſ	t	f	t	f	t	t	f	f
ſ	t	f	f	t	t	t	f	f
	f	t	t	f	t	t	f	f
	f	t	f	t	f	t	f	f
	f	f	t	f	t	t	f	f
	f	f	f	t	t	t	f	f

- (b) Both contingent.
- (c) Four marks for each sub-problem.

(i).
$$\neg (A \rightarrow (B \rightarrow C)) \leftrightarrow A \land B \land \neg C$$

$$\neg(A \to (B \to C)) \qquad (X \to Y \leftrightarrow \neg X \lor Y) \\
\neg(A \to (\neg B \lor C)) \qquad (X \to Y \leftrightarrow \neg X \lor Y) \\
\neg(\neg A \lor (\neg B \lor C)) \qquad (\neg(W \lor Z) \leftrightarrow \neg W \land \neg Z) \\
(\neg A \land \neg(\neg B \lor C) \qquad (\neg X \leftrightarrow X) \\
A \land \neg B \land \neg C) \qquad (\neg X \leftrightarrow X) \\
A \land B \land \neg C$$

(ii).
$$(A \to B) \to \neg (B \land \neg C) \leftrightarrow (A \land \neg B) \lor (B \to C)$$

$$(A \to B) \to \neg (B \land \neg C) \qquad (X \to Y \leftrightarrow \neg X \lor Y)$$

$$(\neg A \lor B) \to \neg (B \land \neg C) \qquad (\neg (W \land Z) \leftrightarrow \neg W \lor \neg Z)$$

$$(\neg A \lor B) \to (\neg B \lor \neg \neg C) \qquad (\neg \neg X \leftrightarrow X)$$

$$(\neg A \lor B) \to (\neg B \lor C) \qquad (X \to Y \leftrightarrow \neg X \lor Y)$$

$$(\neg (A \lor B) \lor (\neg B \lor C) \qquad (\neg (W \lor Z) \leftrightarrow \neg W \land \neg Z)$$

$$(\neg \neg A \land \neg B) \lor (\neg B \lor C) \qquad (\neg X \leftrightarrow X)$$

$$(A \land \neg B) \lor (\neg B \lor C) \qquad (\neg X \lor Y \leftrightarrow X \to Y)$$

$$(A \land \neg B) \lor (B \to C)$$

2. (a)
$$[p \land (s \rightarrow q)] \vdash s \rightarrow (p \land q)$$

$$\begin{array}{c} [p \wedge (s \rightarrow q)] \vdash s \rightarrow (p \wedge q) & (imp_intro) \\ [p \wedge (s \rightarrow q), s] \vdash p \wedge q & (and_intro) \\ [p \wedge (s \rightarrow q), s] \vdash p, [p \wedge (s \rightarrow q), s] \vdash q & (and_elim \text{ on both)} \\ [p, s \rightarrow q, s] \vdash p, [p, s \rightarrow q, s] \vdash q & (imm \text{ to finish first)} \\ [p, s \rightarrow q, s] \vdash q & (imp_elim) \\ [p, s] \vdash s & (imm \text{ to finish)} \end{array}$$

(b)
$$[(a \lor b) \to c, c \to a] \vdash b \to (a \lor c)$$

$$[(a \lor b) \to c, c \to a] \vdash b \to (a \lor c) \qquad (imp_intro)$$

$$[b, (a \lor b) \to c, c \to a] \vdash a \lor c \qquad (or_intro_left)$$

$$[b, (a \lor b) \to c, c \to a] \vdash a \qquad (imp_elim)$$

$$[b, (a \lor b) \to c] \vdash c \qquad (imp_elim)$$

$$[b] \vdash a \lor b \qquad (or_intro_right)$$

An alternative proof from step 2 is given here:

$$\begin{array}{c} [b,(a\vee b)\to c,c\to a]\vdash a\vee c \\ [b,(a\vee b)\to c,c\to a]\vdash c \\ [b,c\to a]\vdash a\vee b \\ [b,c\to a]\vdash b \end{array} \qquad \begin{array}{c} (or_intro_right) \\ (or_intro_right) \\ (or_intro_right) \\ (imm\ to\ finish) \end{array}$$

 $[b] \vdash b$

(imm to finish)

- 3. (a) $[(\neg a \lor \neg d \lor c) \land a \land d \land e \land (\neg c \lor \neg e \lor b)]$
 - (b) $[[\neg a, \neg d, c], [a], [d], [e], [\neg c, \neg e, b]]$
 - (c) Add $\neg b$ to axioms: $[[\neg a, \neg d, c], [a], [d], [e], [\neg c, \neg e, b], [\neg b]]$ Then apply Resolution proof rule:

$$\begin{aligned} [[\neg a, \neg d, c], [a], [d], [e], [\neg c, \neg e, b], [\neg b]] & ([\neg a, \neg d, c], [a]) \\ [[\neg d, c], [d], [e], [\neg c, \neg e, b], [\neg b]] & ([\neg d, c], [d]) \\ [[c], [e], [\neg c, \neg e, b], [\neg b]] & ([e], [\neg c, \neg e, b]) \\ [[c], [\neg c, b], [\neg b]] & ([c], [\neg c, b]) \\ [[b], [\neg b]] & [] \end{aligned}$$

- N.B. There are various way to derive the empty clause.
- 4. There are various potential ways of describing and modelling such a system.
 - (a) List states of the system.

Objects of system: driver's door, door key-slot, car's engine, engine's key-slot, key, door handle, door manual lock switch.

Object states:

Object	States		
Door	open/ closed, locked/ unlocked		
Door's key-slot	empty/contains key		
Engine	on/off		
Engine's key-slot	empty/contains key		

Joint states:

State ID	Description
1	initial state: door closed and locked, engine off, key-slots empty
2	same as 1, but door key-slot contains key
3	same as 2, but door unlocked
4	same as 3, but key-slot empty
5	same as 4, but door open
6	same as 4, but key in engine slot
7	same as 6, but engine on, door locked
8	same as 7, but engine off
9	same as 8, but engine key-slot empty

- (b) Goal of marker is to check for key behaviours in system:
 - Door won't open when locked but can handle action (loop at state)
 - Unlocked door won't open when key in either key-slot (loop at state)
 - Key cannot be removed whilst engine is on, must be turned off first.

An example FSM for modelling the system. $^{-}$

Transitions:

From	То	Action
1	1	open door
1	2	key placed in door key slot
2	1	key removed from door key slot
2	3	key turned
3	2	key turned
3	4	remove key
4	3	replace key
4	5	open door
4	6	put key in engine slot
5	4	close door
6	4	remove key from engine slot
6	7	turn key
6	6	open door
7	8	turn key
7	7	open door
8	7	turn key
8	9	remove key from engine slot
8	8	open door
9	4	flip manual switch
9	9	open door

- 5. (a) There are several ways to partition: $((aa^*(b|ca^*))|bca^*)$. An example solution is as follows were we partition the expression into three machines: aa^* , $b|ca^*$, bca^* . Or even to split $b|ca^*$.
 - (b) Compose the machines together using Sequence and Choice operators to create the complete machine. (See FSM diagram)
 - (c) $(0*1|10*|\varepsilon)011(011)*$

Figure 1: Q4. b)

Figure 2: Q5. a) sub-component 1

(d)

$$((b|b)|(a^*a|\varepsilon))c \qquad (rule 1)$$

$$(b|(a^*a|\varepsilon))c \qquad (rule 5)$$

$$(b|(aa^*|\varepsilon))c \qquad (rule 2)$$

$$(b|a^*)c \qquad (rule 3)$$

$$(a^*|b)c \qquad (rule 4)$$

$$(a^*c|bc)$$

Figure 3: Q5. a) sub-component $2\,$

Figure 4: Q5. a) sub-component 3

Figure 5: Q5. b)