СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1 Аналитическая часть	5
1.1 Метод полного перебора	5
2 Конструкторская часть	6
2.1 Разработка алгоритмов	6
3 Технологическая часть	7
3.1 Реализация алгоритмов	7
4 Исследовательская часть	
4.1 Технические характеристики	8
4.2 Демонстрация работы программы	8
ЗАКЛЮЧЕНИЕ	9
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	10

введение

1 Аналитическая часть

В данном разделе приведены описания методов решения задачи коммивояжера.

1.1 Метод полного перебора

Метод полного перебора для решения задачи коммивояжера предполагает рассмотрение всех возможных путей в графе и выбор кратчайшего из них. Преимущество алгоритма – гарантия нахождения кратчайшего пути; недостаток – большая трудоемкость — O(n!) [ulianov].

2 Конструкторская часть

В данном разделе приведены схемы алгоритмов решения задачи коммивояжера: полным перебором и на основе муравьиного алгоритма. Также приведена оценка трудоёмкости рассмотренных алгоритмов.

2.1 Разработка алгоритмов

- 3 Технологическая часть
- 3.1 Реализация алгоритмов

4 Исследовательская часть

В данном разделе будет приведен анализ реализаций ...

4.1 Технические характеристики

Технические характеристики устройства, на котором осуществлялся анализ реализаций алгоритмов:

- операционная система Windows 10;
- оперативная память 16 Гб;
- процессор AMD Ryzen 7 4700U with Radeon Graphics;
- количество физических ядер 8;
- количество логических ядер 8.

Так как анализ проводился на ноутбуке, то для корректного замера времени ноутбук был подключен в сеть электропитания. Во время провидения анализа была обеспечена стабильная загруженность системы.

4.2 Демонстрация работы программы

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ