1 Esercizio 1

Consideriamo l'alfabeto di proposte atomiche $PA = \{p,q\}$ e la sequenza infinita $\sigma = \sigma_0 \sigma_1 \sigma_2 \dots$ in $(2^{PA})^{\omega}$. Per $i \in \mathbb{N}$, usiamo $\sigma[i...]$ per rappresentare la sequenza infinita $\sigma_i \sigma_{i+1} \dots$ Completare la tabella che segue indicando in ogni posizione se la formula è vera (V) o falsa (F) per la sotto-sequenza che inizia alla posizione data.

i	0	1	2	3	4	5	6
σ_i	Ø	{ <i>p</i> }	$\{p,q\}$	{q}	{ <i>p</i> }	Ø	{ <i>p</i> , <i>q</i> }
$p \wedge q$							
$\mathbf{F}(p \wedge q)$							
p U q							

2 Esercizio 2

Per ogni formula di LTL presentata qui sotto, dare una struttura di Kripke che la soddisfa se esiste o altrimenti spiegare perché non ce ne sono.

- 1. **GF***p*
- 2. $(\mathbf{GF}p) \wedge (\mathbf{GF} \neg p)$
- 3. $(p\mathbf{U}q) \wedge (p\mathbf{U}\neg q)$
- 4. $(\mathbf{G}p) \wedge (\mathbf{G} \neg p)$
- 5. $(\mathbf{G}p) \vee (\mathbf{G} \neg p)$
- 6. $(\mathbf{F}p) \wedge (\mathbf{F} \neg p)$

3 Esercizio 3

Indicare se le strutture di Kripke presentate qua sotto soddisfano le formule seguenti:

- 1. $G(b \Rightarrow XFb)$
- 2. a**U**b
- 3. **GF**c

