Tema VII: Определители

§ 2. Дальнейшие свойства определителей

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Альтернативное обозначение и терминологические замечания

На прошлой лекции мы ввели аксиомы определителя и показали, что отображение $M_n(F) \to F$, удовлетворяющее этим аксиомам, существует и определяется ими однозначно.

Сегодня мы познакомимся с некоторыми важными фактами теории определителей, но сначала добавим несколько небольших замечаний к материалу предыдущей лекции.

- 1. Альтернативное обозначение. Мы обозначили определитель матрицы A через $\det A$. В прошлом при работе с определителями 2-го и 3-го порядка определитель матрицы типа $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ обозначался через $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$. Будем использовать такое обозначение и для определителей высших порядков.
- 2. *Терминология и ее история*. Обозначение det произведено от слова «determinant», переводом которого является термин «определитель». Термин «determinant» ввел Гаусс в 1801. Аксиомы определителя предложены Вейерштрассом (не позже 1864); он же ввел обозначение det.
- 3. Допустимые вольности речи. Хотя матрица и ее определитель это не одно и то же, для краткости говорят о элементах, строках и столбцах определителя $\det A$, подразумевая соответственно элементы, строки и столбцы матрицы A.

Связь с определителями 2-го и 3-го порядка

Знакомые нам определители 2-го и 3-го порядка, конечно, являются частными случаями общего понятия определителя.

Напомним, что существование определителей доказывалось индукцией по размеру матрицы через разложение по строке (*определитель есть сумма произведений элементов строки на их алгебраические дополнения*).

Разложение по, скажем, первой строке определителя $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ дает равенство

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot d + b \cdot (-c) = ad - bc,$$

т.е. именно то равенство, которым вводился определитель 2-го порядка.

Аналогично, разложение по первой строке определителя $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$ дает

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg),$$

что приводит к привычной формуле для определителя 3-го порядка.

Теорема симметрии

Теорема

 $\det A = \det A^T$.

Доказательство. Определим отображение $D\colon M_n(F) \to F$ правилом

$$D(A) := \det A^T.$$

Если проверить, что это отображение удовлетворяет аксиомам ΔI - ΔIII , теорема единственности даст равенство $D(A)=\det A$, которое и нужно.

Начнем с
$$\Delta$$
III. Имеем $D(E) = \det E^T = \det E = 1$. \checkmark

Проверим ΔI . Нужно показать, что если в матрице A какие-то два соседних столбца равны, то D(A)=0. Два соседних столбца матрицы A – это две соседние строки матрицы A^T . Поэтому желаемое сводится к доказательству такой леммы:

Лемма

Если в $n \times n$ -матрице B какие-то две соседние строки равны, то $\det B = 0$.

Теорема симметрии (2)

Лемма

Если в $n \times n$ -матрице B какие-то две соседние строки равны, то $\det B = 0$.

Доказательство леммы. При n=1 утверждение тривиализируется.

Пусть n > 1. Проведем индукцию по n.

База индукции n=2. Определитель 2×2 -матрицы с двумя равными строками имеет вид $\begin{vmatrix} a & b \\ a & b \end{vmatrix}$ и, очевидно, равен 0.

Шаг индукции. Пусть n>2 и в $n \times n$ -матрице B равны k-я и (k+1)-я строки. Возьмем номер $i \neq k, k+1$ и разложим $\det B$ по i-й строке:

$$\det B = \sum_{j=1}^{n} b_{ij} B_{ij},$$

где $B_{ij}=(-1)^{i+j}M_{ij}$, а M_{ij} – определитель $(n-1)\times(n-1)$ -матрицы, полученной при вычеркивании i-й строки и j-го столбца из B. В каждой такой $(n-1)\times(n-1)$ -матрице есть две соседние равные строки, и, значит, $M_{ij}=0$ по предположению индукции. Отсюда $\det B=0$.

Лемма доказана; тем самым, проверена аксиома $\Delta I.$ \checkmark

Теорема симметрии (3)

Наконец, проверим ΔII . Пусть i-й столбец матрицы A представлен в виде

суммы двух столбцов:
$$\begin{pmatrix} a_{11} \dots a'_{1i} + a''_{1i} \dots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{k1} \dots a'_{ki} + a''_{ki} \dots a_{kn} \\ \vdots & \ddots & \vdots \\ a_{n1} \dots a'_{ni} + a''_{ni} \dots a_{nn} \end{pmatrix}.$$
 Рассмотрим матрицы

A' и A'', у которых элементы i-го столбца суть $a'_{k,i}$ и соответственно $a''_{k,i}$ k = 1, 2, ..., n, а остальные столбцы те же, что у A. Нужно проверить, что D(A) = D(A') + D(A''), r.e. $\det A^T = \det A'^T + \det A''^T$.

$$A^T = egin{pmatrix} a_{11} & \dots & a_{k1} & \dots & a_{n1} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a'_{1i} + a''_{1i} & \dots a'_{ki} + a''_{ki} & \dots a'_{ni} + a''_{n\,i} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{1n} & \dots & a_{kn} & \dots & a_{nn} \end{pmatrix}$$
 . Разложим $\det A^T$ по i -й

строке, обозначая через B_{ik} алгебраическое дополнение элемента $i ext{-}$ й строки и k-го столбца (оно одинаково для матриц A^T , $A^{\prime T}$ и $A^{\prime \prime T}$):

$$\det A^{T} = \sum_{k=1}^{n} (a'_{ki} + a''_{ki}) B_{ik} = \sum_{k=1}^{n} a'_{ki} B_{ik} + \sum_{k=1}^{n} a''_{ki} B_{ik} = \det A^{T} + \det A^{T}.$$

Теорема симметрии (4)

Мы проверили первую часть ΔII . Проверка второй части аналогична. Итак, отображение $D(A) := \det A^T$ удовлетворяет аксиомам ΔI – ΔIII . По теореме единственности $D(A) = \det A$, т.е. $\det A = \det A^T$.

Следствие теоремы симметрии – принцип равноправия строк и столбцов

Все свойства определителей, формулирующиеся для столбцов, верны и для строк, и наоборот. В частности:

- определитель равен сумме произведений элементов любого *столбца* на их алгебраические дополнения (*разложение по столбцу*).
- при элементарных преобразованиях I-го рода над *строками* определитель меняет знак, а элементарные преобразования II-го рода над *строками* не изменяют определитель.

Определитель полураспавшейся матрицы

Определение

Квадратная матрица L порядка n называется верхней полураспавшейся, если существуют квадратные матрицы A и B порядков p и q соответственно такие, что

$$L = \begin{pmatrix} A & N \\ O & B \end{pmatrix},$$

где O — нулевая $q \times p$ -матрица, а N — какая-то $p \times q$ -матрица. Квадратная матрица L порядка n называется нижней полураспавшейся, если существуют квадратные матрицы A и B порядков p и q соответственно такие, что

$$L = \begin{pmatrix} A & O \\ N & B \end{pmatrix}$$

где O — нулевая p imes q-матрица, а N — какая-то q imes p-матрица. A и B называются диагональными блоками полураспавшейся матрицы L.

Теорема об определителе полураспавшейся матрицы

Если L — полураспавшаяся матрица с диагональными блоками A и B, то $\det L = \det A \cdot \det B.$

Определитель полураспавшейся матрицы (2)

Теорема об определителе полураспавшейся матрицы

Если L — полураспавшаяся матрица с диагональными блоками A и B, то $\det L = \det A \cdot \det B.$

Доказательство. В силу теоремы симметрии достаточно рассмотреть случай верхней полураспавшейся матрицы.

Пусть $L = \begin{pmatrix} A \ N \\ O \ B \end{pmatrix}$, где A и B — квадратные матрицы порядков p и qсоответственно, O – нулевая $q \times p$ -матрица, а N – какая-то $p \times q$ -матрица. Зафиксируем матрицы B и N, а вместо матрицы A будем подставлять всевозможные матрицы из $M_p(F)$. Это позволяет определить отображение $D: M_n(F) \to F$ по правилу $D(A) := \det L$. Оно удовлетворяет ΔI и ΔII . Действительно, если в матрице A какие-то два соседних столбца равны, то их продолжения в матрице L тоже равны, откуда $D(A) = \det L = 0$. Пусть i-й столбец матрицы A есть сумма двух столбцов, а A^\prime и $A^{\prime\prime}$ матрицы, у которых i-й столбец заменен на первое и соответственно второе слагаемое. Продолжение i-го столбца матрицы A в матрице L есть сумма продолжений нулями i-х столбцов матриц A' и A''. Если L' и L'' – матрицы, получающиеся при подстановке матриц A' и A'' вместо A, то

$$D(A) = \det L = \det L' + \det L'' = D(A') + D(A'').$$

Определитель полураспавшейся матрицы (3)

Мы проверили первую часть ΔII . Проверка второй части аналогична. Итак, отображение $D(A):=\det L$ удовлетворяет аксиомам ΔI и ΔII . По следствию из теоремы единственности $D(A)=\det A\cdot D(E)$. Остается вычислить D(E), т.е. определитель

$$\begin{vmatrix} E & N \\ O & B \end{vmatrix} = \begin{vmatrix} 1 & 0 & \dots & 0 & n_{11} & \dots & n_{1q} \\ 0 & 1 & \dots & 0 & n_{21} & \dots & n_{2q} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & n_{p1} & \dots & n_{pq} \\ 0 & 0 & \dots & 0 & b_{11} & \dots & b_{1q} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & b_{q1} & \dots & b_{qq} \end{vmatrix} = \begin{vmatrix} 1 & \dots & 0 & n_{21} & \dots & n_{2q} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & n_{p1} & \dots & n_{pq} \\ 0 & \dots & 0 & b_{11} & \dots & b_{1q} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & b_{q1} & \dots & b_{qq} \end{vmatrix} = \dots = \begin{vmatrix} b_{11} & \dots & b_{1q} \\ \vdots & \ddots & \vdots \\ b_{q1} & \dots & b_{qq} \end{vmatrix}.$$

Разложим его по 1-му столбцу, получившийся определитель снова разложим по 1-му столбцу и так проделаем p раз. В результате получим, что $D(E)=\det B$. Из равенств $D(A)=\det A\cdot D(E)$ и $D(E)=\det B$ заключаем, что $\det L=D(A)=\det A\cdot \det B$.

Определитель произведения матриц

Теорема об определителе произведения матриц

Если A и B – $n \times n$ -матрицы, то $\det AB = \det A \cdot \det B$.

Это «мощное тождество» (по выражению Д.К.Фаддеева) нетривиально даже для случая n=2, где оно в развернутом виде выглядит так:

$$(ad - bc)(xt - yz) = (ax + bz)(cy + dt) - (ay + bt)(cx + dz).$$

Идеи, близкие к теореме об определителе произведения матриц, возникали в упоминавшейся работе Гаусса (1801), но в полной общности эту теорему доказали (независимо друг от друга) Бине и Коши (1812).

Доказательство. Зафиксируем матрицу A, а вместо матрицы B будем подставлять всевозможные матрицы из $M_n(F)$. Это позволяет определить отображение $D\colon M_n(F) \to F$ по правилу $D(B) := \det AB$. Проверим, что оно удовлетворяет $\Delta \mathrm{I}$ и $\Delta \mathrm{II}$.

Заметим, что i-й столбец матрицы AB состоит из произведений строк матрицы A на i-й столбец матрицы B. Поэтому если у B равны i-й и (i+1)-й столбцы, то и у произведения AB будут равны i-й и (i+1)-й столбцы и $D(B)=\det AB=0$. Итак, аксиома ΔI выполнена.

Определитель произведения матриц (2)

По той же причине, если i-й столбец матрицы B имеет общий множитель или представлен в виде суммы двух столбцов, то же будет верно для i-го столбца произведения AB. В силу этого выполнена аксиома ΔII .

По следствию из теоремы единственности $D(B) = \det B \cdot D(E)$.

Ho
$$D(E)=\det AE=\det A.$$
 Итак,

$$\det AB = \det B \cdot \det A = \det A \cdot \det B.$$

Определитель Вандермонда

Определение

 ${\it Mатрица}\ {\it Bандермондa}\ {\it порядка}\ n$ – это матрица, строками которой являются n геометрических прогрессий длины n с первым членом 1. Ее определитель называется определителем ${\it Bандермондa}\ {\it порядка}\ n$.

$$V(x_1, x_2, \dots, x_n) := \begin{vmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-2} & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-2} & x_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-2} & x_n^{n-1} \end{vmatrix}.$$

Вычислим определитель Вандермонда. Для этого вычтем из последнего столбца предпоследний, умноженный на x_1 , из (n-1)-го – (n-2)-й, умноженный на x_1 , . . . , из i-го – (i-1)-й, умноженный на x_1 , и так далее для всех столбцов. Эти преобразования не меняют определитель. Получим

$$V(x_1, x_2, \dots, x_n) = \begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & x_2 - x_1 & x_2(x_2 - x_1) & \dots & x_2^{n-2}(x_2 - x_1) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n - x_1 & x_n(x_n - x_1) & \dots & x_n^{n-2}(x_n - x_1) \end{vmatrix}.$$

Определитель Вандермонда (2)

Раскладывая этот определитель по первой строке, получаем, что

$$V(x_1, x_2, \dots, x_n) = \begin{vmatrix} x_2 - x_1 & x_2(x_2 - x_1) & \dots & x_2^{n-2}(x_2 - x_1) \\ \vdots & \vdots & \ddots & \vdots \\ x_n - x_1 & x_n(x_n - x_1) & \dots & x_n^{n-2}(x_n - x_1) \end{vmatrix}.$$

Для всех i от 1 до n-1 вынесем из i-й строки множитель $x_{i+1}-x_1.$ Получим

$$V(x_1, x_2, \dots, x_n) = (x_2 - x_1)(x_3 - x_1) \cdots (x_n - x_1) \begin{vmatrix} 1 & x_2 & \dots & x_2^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^{n-2} \end{vmatrix}.$$

Определитель в правой части — это определитель Вандермонда порядка n-1 от $x_2,\dots,x_n.$ Мы получили рекуррентное соотношение

$$V(x_1, x_2, \dots, x_n) = (x_2 - x_1)(x_3 - x_1) \cdots (x_n - x_1)V(x_2, \dots, x_n).$$

Используя его, выразим $V(x_2,\dots,x_n)$ через $V(x_3,\dots,x_n)$, затем $V(x_3,\dots,x_n)$ через $V(x_4,\dots,x_n)$, и т.д., пока не дойдем до $V(x_{n-1},x_n)$.

Определитель Вандермонда (3)

Учитывая, что
$$V(x_{n-1},x_n)=egin{bmatrix} 1 & x_{n-1} \\ 1 & x_n \end{bmatrix}=x_n-x_{n-1}$$
, окончательно получаем

$$\begin{vmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-2} & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_1^{n-2} & x_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-2} & x_n^{n-1} \end{vmatrix} = \prod_{1 \le j < i \le n} (x_i - x_j).$$

Важное следствие

Определитель Вандермонда отличен от нуля тогда и только тогда, когда среди его аргументов нет равных между собой.