Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

Análisis de Variable Compleja - Catedrático: Dorval Carías 15 de octubre de 2022

Parcial 2

Problema 1 (10p). Estudie la convergencia puntual y uniforme de las sucesiones siguientes:

1. (nz^n)

Solución. Sea $f_n(z) = (nz^n)$, por criterio de la razón, tenemos

$$\begin{aligned} &\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(n+1)z^{n+1}}{nz^n} \right| \\ &= \lim_{n\to\infty} \frac{(n+1)}{n} |z| \\ &= |z| \end{aligned}$$

Entonces, si |z| < 1, la serie es absolutamente convergente (\implies puntualmente), si |z| > 1 la serie diverge y si |z| no hay conclusión.

2. $\left(\frac{z^n}{n}\right)$

Solución. Sea $f_n(z) = \left(\frac{z^n}{n}\right)$, considere

$$\left| \frac{z^n}{n} \right| = \frac{|z|^n}{n} \le |z|^n = r^n$$

Entonces, $|z| \le r$ tal que:

$$\sum_{n=1}^{\infty} r^n \le \sum_{n=0}^{\infty} r^n$$

la cual converge para r<1 y por medio del M-test de Weierstrass, $\sum_{n=1}^{\infty}\frac{z^n}{n}$ converge absoluta (\Longrightarrow puntual) y uniformemente.

3. $\left(\frac{1}{1+nz}\right)$, definida sobre $\{z \in \mathbb{C} \operatorname{Re} z \geq 0\}$

Solución. Sea $f_n(z) = \left(\frac{1}{1+nz}\right)$, considere

$$|1 + nz| = |nz + 1| \ge |nz| - |1| \ge |nz| - 1 \ge |nz|$$

Entonces,

$$\left| \frac{1}{1+nz} \right| \le \frac{1}{n|z|} = M_n$$

Ahora bien, nótese que

$$\sum_{n=1}^{\infty} = \frac{1}{n|z|},$$

es convergente para $\{z \in \mathbb{C}, \operatorname{Re} z \geq 0\}$ y por medio del M-test de Weierstrass, $\sum_{n=1}^{\infty} \frac{z^n}{n}$ converge absoluta (\Longrightarrow puntual) y uniformemente.

Problema 2 (10p). Presente un ejemplo de una serie convergente de números complejos $\sum_{n=0}^{\infty} z_n$, tal que la serie $\sum_{n=0}^{\infty} z_n^3$ diverge.

Solución. Sea

$$\sum_{n=0}^{\infty} z_n = \frac{5^0}{i} - \frac{5^0}{2i} - \frac{5^0}{2i} + \frac{5}{i} - \frac{5}{2i} - \frac{5}{2i} + \frac{5^2}{i} - \frac{5^2}{2i} - \frac{5^2}{2i} + \dots + \frac{5^n}{i} - \frac{5^n}{2i} - \frac{5^n}{2i} + \dots$$

$$= \left[\frac{5^0}{i} - \frac{5^0}{2i} - \frac{5^0}{2i} \right] + \left[\frac{5}{i} - \frac{5}{2i} - \frac{5}{2i} \right] + \left[\frac{5^2}{i} - \frac{5^2}{2i} - \frac{5^2}{2i} \right] + \dots + \left[\frac{5^n}{i} - \frac{5^n}{2i} - \frac{5^n}{2i} \right] + \dots$$

$$= 0$$

Pero si lo elevamos al cubo:

Problema 3 (15p). Investigue la convergencia de las series de números complejos a continuación:

1.
$$\sum_{n=1}^{\infty} \frac{1}{n+i}$$

Solución. Usando comparación al límite, se propone la serie armónica $\sum_{n=1}^{\infty} \frac{1}{n}$, la cual es divergente. Entonces,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{n+i}}{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \frac{n}{n+i}$$

$$= \lim_{n \to \infty} \frac{1}{1 + \frac{i}{n}}$$

$$= 1$$

Por lo tanto, el límite existe y entonces la serie original diverge.

2.
$$\sum_{n=1}^{\infty} \frac{in}{n+i}$$

Solución. Usando la definición,

$$a_n = \frac{in}{n+1}$$

$$\implies \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{in}{n+1}$$

$$= i \lim_{n \to \infty} \frac{n}{n+1}$$

$$= i \lim_{n \to \infty} \frac{\frac{n}{n}}{\frac{n}{n} + \frac{1}{n}}$$

$$= i$$

Como lím $_{n\to\infty} a_n \neq 0 \implies$ la serie diverge.

Problema 4 (25p). Demuestre los enunciados siguientes:

1. Suponga que f es analítica sobre una región A y que f (a_k) = 0 en una sucesión ($a_k \neq w$) que tiene límite $w \in A$, entonces f es idéntica a cero en A.

Demostración. Debemos probar que $f \equiv 0$. Sea f analítica sobre una región A (conjunto conexo por trayectorias y abierto), además w es el límite de la sucesión a_k , es decir es un punto de acumulación \Longrightarrow por la conexidad, todos los puntos $w, a_0, a_1, a_2, \cdots, a_{n-1}, a_n$ también están unidos por una trayectoria en $A \Longrightarrow$ cada uno de los puntos tienen una vecindad circular C_k con centro en cada uno de los puntos. Ahora bien, tomemos únicamente el límite de la sucesión w, tal que tenemos la hipótesis del teorema de Taylor, es decir que $\forall z \in C_w$ tenemos:

$$f(z) = \sum_{n=1}^{\infty} \underbrace{\frac{f^{(n)}(w)}{w!}}_{m_n} (z - w),$$

en donde $m_n = 0$ y repitiendo el procedimiento para todos los círculos, tenemos que $f \equiv 0$.

2. Si A es una región acotada y que f es analítica en la cerradura de A, entonces |f| alcanza su máximo sobre la frontera de \overline{A} .

Demostración. Sea f(z) = u(x,y) + iv(x,y) analítica sobre la cerradura \overline{A} de la región acotada A, es decir \overline{A} es un compacto. \Longrightarrow Como f(z) es analítica entonces también f(z) es continua en \overline{A} y su módulo debe preservar la continuidad también, es decir,

$$|f(z)| = |u(x,y) + iv(x,y)|$$

= $\sqrt{u^2(x,y) + v^2(x,y)}$

Entonces, por teorema de topología, la continuidad y la compacidad, implican que

$$< M \qquad \forall z \in \overline{A},$$

en donde M es el máximo sobre la frontera de \overline{A} .

Problema 5 (20p). Sea $P_n(z) = \sum_{k=0}^n \frac{z^k}{k!}$. Dado un número real positivo R, demuestre que P_n no tiene ceros en el disco con centro en el origen y radio R para todo n suficientemente grande.

Demostración. Sea un disco $D_R(0)$ para un n suficientemente grande. Debemos probar que P_n no tiene ceros en $D_R(0)$. Por medio del teorema de Rouché ¹ se propone una función $f(z) = \frac{P_n(z)}{e^z}$ y g(z) = 1, e^z se propone ya que no tiene ceros y se selecciona un n lo suficientemente grande tal que se cumpla que |f(z) - 1| < 1 y entonces se garantiza que P_n no tiene ceros en $D_R(0)$.

Problema 6 (20p). Sea f una función analítica sobre \mathbb{C} y tal que su parte real está acotada superiormente. Demuestre que f es constante.

Demostración. Este problema se resolvió en el **problema 7 de la tarea 3**, se propone función entera f(z), en donde su parte real u(x,y) = Re[f(z)] tiene cota superior u_0 . Entonces, se debe probar que u(x,y) es constante sobre el plano. Primero, se propone una función entera $h(z) = e^z$, la cual probaremos que es constante por Liouville. Sea entonces,

$$\begin{split} |h(z)| &= |e^{f(z)}| = \left| e^{\text{Re}[f(z)] + i \operatorname{Im}[f(z)]} \right| = \left| e^{\text{Re}[f(z)]} e^{i \operatorname{Im}[f(z)]} \right| \\ &= |e^{\operatorname{Re} f(z)} (\cos \operatorname{Im} \ f(z) + i \sin \operatorname{Im} \ f(z))| \\ &= |e^{\operatorname{Re} f(z)}| \cdot |\cos \operatorname{Im} \ f(z) + i \sin \operatorname{Im} \ f(z)| \\ &= e^{u(x,y)} \sqrt{\cos^2 \operatorname{Im} \ f(z) + \sin^2 \operatorname{Im} f(z)} \\ &= e^{u(x,y)} \cdot 1 \\ &< e^{u_0} \end{split}$$

 \implies Por Liouville h(z) es constante $\implies h'(z) = 0$. Pero por otra parte, nótese que

$$h'(z) = e^{f(z)} \cdot \underbrace{f'(z)}_{=0} = 0$$

Entonces f'(z) = 0 implicando que f(z) = u(x, y) es constante.

¹Definición del Teorema de Rouché