Linear regression

Diane Lingrand

UNIVERSITÉ CÔTE D'AZUR Master Data Science M1

2020 - 2021

Outline

1 Linear regression

2 Logistic regression

3 Evaluation (focused on binary classification)

- data:
 - scalar value : x
 - many scalar values : vector : $\mathbf{x} = [x_0 x_1 ... x_n]$
- we want to predict y value
- Examples :
 - amount of rain from altitude in the Alps
 - price of an appartment from size in m²
 - vote from age, sex, income, residence location, ...
 - risk of a disease from age, weight, result of blood analysis, ...

Linear regression

- Regression : determine value of y with respect to x.
- Linear : the function is a line parameterised by $\theta = [\theta_0 \theta_1]$:

$$y = \theta_0 + x * \theta_1$$

- Learning : determine θ_0 et θ_1
- Regression : compute $y = h_{\theta}(x) = \theta_0 + x * \theta_1$
- Cost function (or error) :

$$J(\theta) = \frac{1}{2m} \sum (h_{\theta}(x^{i}) - y^{i})^{2}$$

Learning : determine θ

- Cost minimisation $J(\theta)$
 - Let us consider cases where $heta_0=0$: determine $heta_1$ that minimises J(heta)

- Exhaustive search?
- Gradient descent

Gradient descent (one variable)

- ullet Find extrema of J : find the zeros of $\frac{dJ}{d heta_1}$
- Iterative algorithm :
 - ullet pick initial value of $heta_1$
 - while $J(\theta_1)$ changes (stop when $\frac{dJ}{d\theta_1}(\theta_1) \simeq 0$) :
 - replace θ_1 by $\theta_1 \alpha \, \frac{dJ}{d\theta_1}$ ($\alpha >$ 0, small)
 - ullet α : learning rate
 - α has to be chosen carefully :
 - if too small : slow convergence
 - if too big : oscillations
 - \Rightarrow plot $J(\theta)$

Gradient descent (many variables)

- many scalar values : vector $\mathbf{x} = [x_1...x_n]$
- linear model : $y = \theta_0 + x_1 \theta_1 + x_2 \theta_2 + ... + x_n \theta_n$
- Find extrema of J : find the zeros of $\frac{dJ}{d\theta}$
- Iterative algorithm :
 - pick initial value of $\theta = [\theta_0...\theta_n]$
 - while $J(\theta)$ changes (stop when $\frac{dJ}{d\theta}(\theta) \simeq 0$) :
 - replace each θ_i by $\theta_i \alpha \frac{dJ}{d\theta_i}$ ($\alpha > 0$, small)

Gradient descent: many data

- batch gradient descent
 - all training samples for each step
- stochastic gradient descent
 - one training sample for each step (need to shuffle training data)
- mini batch (b=10)
 - a set of b training samples for each step

Outline

1 Linear regression

2 Logistic regression

3 Evaluation (focused on binary classification)

- Supervised learning = learn to predict an output when given an input vector
- We know the class / label y for all training data x
- Logistic regression is a classification method
 - Linear regression leads to values $h_{\theta}(x) \in \mathcal{R}$
 - the idea : values in [0 1] then thresholding at 0.5
- Also known as logit regression or maximum-entropy classification

- Data separation according to labels (0 or 1).
 - Linear separation : line, plane or hyperplane
 - Non-linear separation : polynomial or gaussian
- Notations :
 - data : $x = [x_1 \ x_2...]$ • labels : $y \in \{0, 1\}$
 - ullet decision criteria $h_{ heta}$ parameterised by heta

•
$$\theta = [\theta_0 \ \theta_1 \ ...]$$

Linear separation

- Decision boundary :
 - line of equation : $\theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0$
 - also written as : $\theta^T x = 0$
- Decision :
 - if $\theta^T x \ge 0$ then y = 1
 - if $\theta^T x < 0$ then y = 0

Logistic function

$$h_{\theta}(\mathsf{x}) = s(\theta^T \mathsf{x})$$

with:

$$s(z) = \frac{1}{1 + e^{-z}}$$

- The decision is:
 - if $h_{\theta}(x) \geq 0.5$ then y = 1
 - if $h_{\theta}(x) < 0.5$ then y = 0

Logistic regression : learning

- data : $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})$
- m data
- ullet learning aims at finding heta
- method :
 - error minimisation
 - gradient descent (or other minimisation method)

Linear regression

Cost function

$$J = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \log(h_{\theta}(\mathsf{x}^{(\mathsf{i})})) + (1 - y^{(i)}) \log(1 - h_{\theta}(\mathsf{x}^{(\mathsf{i})})))$$

Gradient descent

For all components θ_i de θ :

$$\theta_j = \theta_j - \alpha \frac{\partial J}{\partial \theta_j}$$

with

$$\frac{\partial J}{\partial \theta_{j}} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

Non linear logistic regression

polynomial model :

$$x = [x_0x_1...x_nx_0^2x_1^2...x_0x_1x_0x_2...$$

- under-fitting
 - add parameters
- over-fitting
 - reduce the number of parameters

- in order to avoid over-fitting
- add $\|\theta\|$ to the cost :

$$J = \|\theta\| - C \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \log(h_{\theta}(\mathsf{x}^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(\mathsf{x}^{(i)})))$$

- norm : \mathcal{L}_1 (Lasso), \mathcal{L}_2 (Ridge), Elastic-Net $(\frac{1-\rho}{2}\|\theta\|_2^2 + \rho\|\theta\|_1)$
- many solvers :
 - Coordinate Descent (C++ LIBLINEAR library),
 - Stochastic Average Gradient (SAG) or variant SAGA : good for large dataset
 - Broyden–Fletcher–Goldfarb–Shanno algorithm (small data set only) : family of Newton algorithm
- more details on https://scikit-learn.org/stable/modules/linear_ model.html#logistic-regression

Logistic regression using OpenCV

From https://docs.opencv.org/3.0-last-rst/modules/ml/doc/logistic_regression.html:

A sample set of training parameters for the Logistic Regression classifier can be initialized as follows :

- LogisticRegression::Params params;
- PARAMS.ALPHA = 0.5;
- PARAMS.NUM_ITERS = 10000;
- PARAMS.NORM = LOGISTICREGRESSION::REG_L2;
- PARAMS.REGULARIZED = 1;
- PARAMS.TRAIN_METHOD = LOGISTICREGRESSION::MINI_BATCH;
- PARAMS.MINI_BATCH_SIZE = 10;

Logistic regression using scikit-learn

Description at: https://scikit-learn.org/stable/modules/ generated/sklearn.linear_model.LogisticRegression.html A toy example:

```
#logistic regression object creation
logisticRegr = LogisticRegression()
#learning
logisticRegr.fit(bows, labels)
#predicted labels computation
labelsPredicted = logisticRegr.predict(bows)
#score computation and display
score = logisticRegr.score(bows, labels)
print("train score = ", score)
#objet saving
with open('sauvegarde.logr', 'wb') as output:
  pickle.dump(logisticRegr, output, pickle.HIGHEST_PROTOCOL)
#object loading
with open('sauvegarde.logr', 'rb') as input:
   logisticRegr = pickle.load(input)
```

Outline

1 Linear regression

2 Logistic regression

3 Evaluation (focused on binary classification)

Splitting the dataset

- Training data : for learning
 - contains both positives and negatives samples
- Validation data
 - for learning stopping
 - for hyperparameters learning
- Test data
 - evaluation of the performances of the classification
 - contains both positives and negatives samples with the same ratio as in the train dataset
- Ratio: usually 60% 20% 20% or 80% 0% 20%
- If the size of the data set is small:
 - cross-validation (k-fold)

True false positives negatives

true positives (TP): positive samples computed as positives true negatives (TN): negatives samples computed as negatives false positives (FP): negatives samples computed as positives false negatives (FN): positive samples computed as negatives

Confusion matrix:

		estimated classes	
		cat	no cat
true	cat	9	1
classes	no cat	1	9

True false positives negatives

true positives (TP): positive samples computed as positives true negatives (TN): negatives samples computed as negatives false positives (FP): negatives samples computed as positives false negatives (FN): positive samples computed as negatives

sensibility, recall, TP rate : $\frac{TP}{TP+FN}$ specificity, selectivity, TN : $\frac{TN}{TN \perp FP}$

precision, positive predictive value : $\frac{TP}{TP+FP}$

negative predictive value : $\frac{TN}{TN+FN}$

F-mesure (*F1 score*):

$$2\frac{\text{precision.recall}}{\text{precision+recall}} = \frac{2TP}{2TP + FP + FN}$$

accuracy:
$$\frac{TP+TN}{P+N} = \frac{TP+TN}{TP+FP+TN+FN}$$

ROC curve

• ROC : Receiver Operating Characteristic

• AUC : Area Under Curve