Π екция 1.4.2021

1 Афинни подпространства

Линейни подпространства – припомняне

Твърдение 1 $1. \ \,$ Множеството V от решенията на хомогенна линейна система Ax = 0 с n неизвестни e(n-r)-мерно линейно подпространство на \mathbb{R}^n , където r е рангът на A.

2. Ако V е k-мерно линейно подпространство на \mathbb{R}^n , то съществува хомогенна линейна система Ax = 0 с n неизвестни, такава че V е множеството от решенията \dot{u} . При това системата може ∂a се вземе с n-k уравнения (това е минималният възможен брой).

Доказателство: Първото със сигурност е доказвано в курса по алгебра. Вероятно и второто, но ще дам едно негово доказателство.

Нека (v_1,\ldots,v_k) е базис на V. Тогава $x\in V\Leftrightarrow$ съществуват $\lambda_1,\ldots,\lambda_k\in\mathbb{R}$ такива, че $x=\lambda_1v_1+\cdots+\lambda_kv_k$. Идеята как да се построи търсената система е съвършено тривиална: Равенството $x = \lambda_1 v_1 + \dots + \lambda_k v_k$ е система от n уравнения. Изключваме $\lambda_1, \dots, \lambda_k$ от нея, тоест от някои k от уравненията изразяваме $\lambda_1, \ldots, \lambda_k$ чрез съответните x-ове и заместваме в останалите n-k уравнения. Така получаваме линейна система за x, на която всяко $x \in V$ е решение, което е очевидно от това как беше построена системата. Това е търсената система Ax = 0 с n - k уравнения. Останалата част от доказателството е за да се обясни защо наистина някои k от уравненията могат да се решат относно $\lambda_1,\ldots,\lambda_k$ и защо получената система няма други решения освен елементите на V.

Нека M е матрицата $n \times k$, чиито стълбове са v_1, \ldots, v_k . Тогава равенството

Нека
$$M$$
 е матрицата $n \times k$, чиито стълбове са v_1, \ldots, v_k . Тогава равенството $x = \lambda_1 v_1 + \cdots + \lambda_k v_k$ е еквивалентно на $x = M\lambda$, където $\lambda = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{pmatrix}$. Стълбовете на

M са линейно независими, защото са базис на V. Следователно рангът ѝ е k и значи някои k от редовете ѝ са линейно независими. За удобство на означенията нека това са първите k реда. Значи матрицата $k \times k$ от първите k реда на M има ранг k, тоест това е обратима матрица $k \times k$ и значи детерминантата ѝ е ненулева. Тогава по теоремата на Крамер системата от първите k уравнения на $x=M\lambda$ (матрицата на която е получената $k \times k$ матрица с ненулева детерминанта) може да се реши относно $\lambda_1, \ldots, \lambda_k$, и то по единствен начин. По такъв начин получаваме $\lambda_1,\ldots,\lambda_k$ като линейни комбинации на x_1,\ldots,x_k . Заместваме в останалите n-k уравнения на $x=M\lambda$ и получаваме система от вида

$$\begin{vmatrix} x_{k+1} &= b_{k+1,1}x_1 + \dots + b_{k+1,k}x_k \\ \vdots & & & \\ x_n &= b_{n,1}x_1 + \dots + b_{n,k}x_k \end{vmatrix}$$

Като прехвърлим всичко отляво получаваме хомогенната система

$$\begin{vmatrix}
-b_{k+1,1}x_1 - \dots - b_{k+1,k}x_k + x_{k+1} &= 0 \\
\vdots & \vdots & \vdots \\
-b_{n,1}x_1 - \dots - b_{n,k}x_k + x_n &= 0
\end{vmatrix}$$

тоест Ax=0, чиято матрица е $(n-k)\times n$ матрицата $A=(-B\ E_{n-k})$, където B е $(n-k)\times k$ матрицата $B=(b_{k+i,j})_{j=1,\dots,k}^{i=1,\dots,n-k}$, а E_{n-k} е единичната матрица от ред n-k. От това как построихме системата Ax=0 е ясно, че всяко $x\in V$ е нейно решение. Тъй като $\det E_{n-k} = 1 \neq 0$, то A има минор от ред n-k, който е ненулев. Следователно A има ранг $r \geq n - k$. Но A има n - k реда и значи $r \leq n - k$. Следователно r = n - k. От това следва, че линейното пространство от решенията на Ax=0 има размерност n-r=k. И тъй като пространството от решенията съдържа k-мерното пространство V, то съвпада с V.

И накрая, ако Ax = 0 е произволна система, пространството от решенията на която е V, то тя не може да има по-малко от n-k уравнения, защото иначе бихме имали r < n - k и пространството от решенията би било с размерност n - r > k.

Твърдение 2 Нека Ax = b е съвместима линейна система с n неизвестни и $x_0 \in \mathbb{R}^n$ е едно нейно решение. Тогава $x \in \mathbb{R}^n$ е решение на системата тогава и само тогава, когато $x = x_0 + v$ за някое решение v на съответната хомогенна система Ax = 0.

Доказателство: Това сигурно също е доказвано в курса по алгебра, но тъй като доказателството е съвсем просто, ще го напиша.

Тъй като x_0 е решение на системата Ax = b, то $Ax_0 = b$. Следователно x е решение на системата $\Leftrightarrow Ax = b \Leftrightarrow Ax = Ax_0 \Leftrightarrow A(x - x_0) = 0$ $\Leftrightarrow v = x - x_0$ удовлетворява Av = 0, тоест е решение на хомогенната система Ax = 0 $\Leftrightarrow x = x_0 + v$, където Av = 0, тоест v е решение на хомогенната система Ax = 0.

Твърдение 3 Произволно сечение на линейни подпространства е линейно подпространство.

Доказателство: Това сигурно също е доказвано в курса по алгебра, но тъй като доказателството е кратко и лесно, ще го напиша.

Нека U е линейно пространство и V_i , $i \in I$, са линейни подпространства на U. (Индексното множество I е произволно, тоест подпространствата може да са едно, две, краен брой, безкраен брой, но доказателството си върви по един и същ начин.)

Тъй като V_i е линейно подпространство за всяко $i \in I$, то $0 \in V_i$ за всяко $i \in I$.

Следователно $0\in\bigcap_{i\in I}V_i$ и значи $\bigcap_{i\in I}V_i$ не е празно. Нека $\lambda',\lambda''\in\mathbb{R},\ v',v''\in\bigcap_{i\in I}V_i$. Тогава $v',v''\in V_i$ за всяко $i\in I$ и тъй като V_i е

линейно подпространство за всяко $i \in I$, то $\lambda' v' + \lambda'' v'' \in V_i$ за всяко $i \in I$. Следователно $\lambda'v' + \lambda''v'' \in \bigcap V_i.$

С това е доказано, че
$$\bigcap_{i \in I} V_i$$
 е линейно подпространство на U .

Афинни подпространства

Нека l е права в геометричната равнина или геометричното пространство, V е линейното пространство на векторите, които са колинеарни с нея, и P_0 е точка от l. Тогава за произволна точка P имаме, че $P \in l$ тогава и само тогава, когато векторът $\overrightarrow{P_0P}$ е колинеарен с l, тоест когато $\overrightarrow{P_0P} \in V$. Следователно $l = \{P : \overrightarrow{P_0P} \in V\}$.

Аналогично, нека π е равнина в геометричното пространство, V е линейното пространство на векторите, които са компланарни с нея, и P_0 е точка от π . Тогава за произволна точка P имаме, че $P \in \pi$ тогава и само тогава, когато векторът $\overrightarrow{P_0P}$ е компланарен с π , тоест когато $\overrightarrow{P_0P} \in V$. Следователно $\pi = \left\{P : \overrightarrow{P_0P} \in V\right\}$.

Тия прости съображения са мотивацията за въвеждането на понятието афинно подпространство в произволно афинно пространство.

Нека \mathcal{A} е афинно пространство, моделирано върху линейното пространство U.

Определение 1 Подмножеството B на \mathcal{A} се нарича $a\phi$ инно подпространство на \mathcal{A} , ако $B = \left\{Q \in \mathcal{A} : \overrightarrow{P_0Q} \in V\right\}$, където V е линейно подпространство на U и $P_0 \in \mathcal{A}$, тоест ако за някое линейно подпространство V на U и някоя точка $P_0 \in \mathcal{A}$ е изпълнено $Q \in B \Leftrightarrow \overrightarrow{P_0Q} \in V$.

Твърдение 4 Нека B е афинното подпространство на A, зададено c линейното подпространство V на U и точката $P_0 \in A$, тоест $B = \left\{Q \in \mathcal{A} : \overrightarrow{P_0Q} \in V\right\}$. Тогава:

- 1. $P_0 \in B$. В частност, B не е празно множество.
- 2. За всяка точка $P \in B$ имаме $B = \left\{Q \in \mathcal{A} : \overrightarrow{PQ} \in V\right\}$.
- 3. $V = \left\{\overrightarrow{PQ}: P, Q \in B\right\}$ и дори за всяка точка $P \in B$ имаме $V = \left\{\overrightarrow{PQ}: Q \in B\right\}$.
- 4. Линейното подпространство V се определя еднозначно от B.
- $5. \ B \ e \ aфинно \ пространство, моделирано \ върху линейното \ подпространство \ V.$

Доказателство:

- 1. Имаме $\overrightarrow{P_0P_0}=0,$ а $0\in V,$ защото V е линейно подпространство на U. Следователно $P_0\in B.$
- 2. Нека $P \in B$. Тогава $\overrightarrow{P_0P} \in V$. За произволна точка $Q \in \mathcal{A}$ имаме $\overrightarrow{P_0Q} = \overrightarrow{P_0P} + \overrightarrow{PQ}$. Тъй като V е линейно подпространство и $\overrightarrow{P_0P} \in V$, от това равенство следва, че $\overrightarrow{P_0Q} \in V \Leftrightarrow \overrightarrow{PQ} \in V$. Следователно $\left\{Q \in \mathcal{A} : \overrightarrow{P_0Q} \in V\right\} = \left\{Q \in \mathcal{A} : \overrightarrow{PQ} \in V\right\}$, тоест $B = \left\{Q \in \mathcal{A} : \overrightarrow{PQ} \in V\right\}$.
- 3. Нека $P\in B$. Тогава от 2. следва, че за всяко $Q\in B$ имаме $\overrightarrow{PQ}\in V$. Значи $\left\{\overrightarrow{PQ}:Q\in B\right\}\subset V$.

За обратното включване: Нека $v \in V$. Тъй като \mathcal{A} е афинно пространство, то съществува единствено $Q \in \mathcal{A}$ такова, че $\overrightarrow{PQ} = v$. Тъй като $v \in V$, от 2. следва, че $Q \in B$. Следователно за всяко $v \in V$ съществува $Q \in B$ (и при това единствено) такова, че $\overrightarrow{PQ} = v$, тоест $v \in \left\{\overrightarrow{PQ} : Q \in B\right\}$. Значи $V \subset \left\{\overrightarrow{PQ} : Q \in B\right\}$.

Следователно $V = \{\overrightarrow{PQ} : Q \in B\}$, с което е доказано второто равенство.

А първото равенство следва от второто, защото

$$\left\{\overrightarrow{PQ}:P,Q\in B\right\}=\bigcup_{P\in B}\left\{\overrightarrow{PQ}:Q\in B\right\}=\bigcup_{P\in B}V=V.$$

- 4. Това следва от първото равенство в 3..
- 5. От 1. знаем, че B не е празно множество. От 3. (а и от 2.) следва, че за $P,Q \in B$ имаме $\overrightarrow{PQ} \in V$. Следователно като ограничим изображението $\mathcal{A} \times \mathcal{A} \ni (P,Q) \mapsto \overrightarrow{PQ} \in U$ върху $B \times B$ ще получим изображение $B \times B \to V$. Остава да проверим, че двете свойства от дефиницията на афинно пространство са изпълнени за това изображение.

Че за $P \in B$ и $v \in V$ съществува единствено $Q \in B$ такова, че $\overrightarrow{PQ} = v$, го видяхме при доказателството на обратното включване в 3.. А че за всеки $P, Q, R \in B$ е в сила правилото на триъгълника за събиране е ясно, тъй като то е в сила дори за всеки $P, Q, R \in \mathcal{A}$, защото \mathcal{A} е афинно пространство.

Следователно B е афинно пространство, моделирано върху V.

Твърдение 5 0-мерните афинни подпространства са едноточковите подмножества.

Доказателство: Размерността на афинно пространство по дефиниция е размерността на направляващото линейно пространство. Следователно афинното подпространство B е 0-мерно тогава и само тогава, когато направляващото му пространство V е 0-мерно, тоест когато $V = \{0\}$. Значи 0-мерно афинно пространство B се определя от $V = \{0\}$ и точка $P_0 \in \mathcal{A}$, така че получаваме

$$B = \left\{ P \in \mathcal{A} : \overrightarrow{P_0 P} \in V \right\} = \left\{ P \in \mathcal{A} : \overrightarrow{P_0 P} = 0 \right\} = \left\{ P \in \mathcal{A} : P_0 = P \right\} = \left\{ P_0 \right\}.$$

И тъй като можем да вземем произволно $P_0 \in \mathcal{A}$, то 0-мерните афинни подпространства на \mathcal{A} са всевъзможните едноточкови подмножества на \mathcal{A} .

Твърдение 6 \mathcal{A} е афинно подпространство на себе си. При това, ако $\dim \mathcal{A} = n$ е крайна, то \mathcal{A} е единственото n-мерно афинно подпространство на \mathcal{A} .

Доказателство: Нека $P_0 \in \mathcal{A}$ е произволна точка. Тъй като $\overrightarrow{P_0P} \in U$ за всяко $P \in \mathcal{A}$, то афинното подпространство, определено от V = U и P_0 , е $\left\{P \in \mathcal{A} : \overrightarrow{P_0P} \in U\right\} = \mathcal{A}$.

Нека $\dim \mathcal{A} = n$ е крайна. Това означава, че $\dim U = n$ е крайна. Нека B е n-мерно афинно подпространство на \mathcal{A} . Тогава направляващото линейно пространство V на B е n-мерно линейно подпространство на n-мерното U и следователно V = U. Значи B е афинно подпространство, определено от U и някоя точка $P_0 \in \mathcal{A}$, и от доказаното по-горе следва, че $B = \mathcal{A}$.

Определение 2 Нека U е линейно пространство, V е линейно подпространство на U и $u_0 \in U$. Означаваме $u_0 + V = \{u_0 + v : v \in V\}$.

Твърдение 7 Афинните подпространства на линейното пространство U са точно подмножествата от вида u_0+V , където V е линейно подпространство на U и $u_0 \in U$, като при това направляващото пространство на u_0+V е V. В частност, афинните подпространства на U през 0 са точно линейните подпространства на U.

Доказателство: Знаем, че U е афинно пространство, моделирано върху U, с изображението $\overrightarrow{uv}=v-u$.

Нека B е афинното подпространство през $u_0 \in U$ с направляващо пространство линейното подпространство V на U. Тогава

$$B = \{u \in U : \overrightarrow{u_0u} \in V\} = \{u \in U : u - u_0 \in V\} = \{u \in U : u - u_0 = v \text{ за някое } v \in V\}$$
$$= \{u \in U : u = u_0 + v \text{ за някое } v \in V\} = \{u_0 + v : v \in V\} = u_0 + V.$$

В частност, ако $u_0 = 0$, то B = 0 + V = V, тоест афинните подпространства на U през 0 са точно линейните подпространства V на U.

- **Твърдение 8** 1. Множеството B от решенията на съвместима линейна система Ax = b с n неизвестни e(n-r)-мерно афинно подпространство на \mathbb{R}^n , моделирано върху линейното подпространство V от решенията на съответната хомогенна система Ax = 0, където r е рангът на A.
 - 2. Ако B е k-мерно афинно подпространство на \mathbb{R}^n , то съществува линейна система Ax = b с n неизвестни, такава че B е множеството от решенията \hat{u} . При това системата може да се вземе с n-k уравнения (това е минималният възможен брой).

Доказателство:

- 1. Нека x_0 е едно решение на Ax = b (такова съществува, защото системата е съвместима). От Твърдение 2 и Определение 2 следва, че $B = x_0 + V$. По Твърдение 7 това означава, че B е афинно подпространство на \mathbb{R}^n , моделирано върху V. Освен това от 1. на Твърдение 1 имаме, че $\dim V = n r$, така че $\dim B = \dim V = n r$.
- 2. От Твърдение 7 следва, че $B = x_0 + V$ за някое $x_0 \in \mathbb{R}^n$ и някое линейно подпространство V на \mathbb{R}^n . При това $\dim V = \dim B = k$. От 2. на Твърдение 1 имаме, че V е множеството от решенията на някоя хомогенна система Ax = 0 с n неизвестни и n k уравнения. Нека $b = Ax_0$. Тогава x_0 е решение на системата Ax = b и от доказателството на 1. следва, че множеството от решенията ѝ е $x_0 + V$, тоест B. Така намерихме система Ax = b с n неизвестни и n k уравнения, множеството от решенията на която е B.

И накрая, не съществува система Ax = b с по-малко от n-k уравнения, множеството от решенията на която е B, защото в противен случай k-мерното направляващо пространство V на B би било линейното пространство от решенията на съответната хомогенна система Ax = 0, която има същия брой уравнения, тоест по-малко от n-k, а това противоречи на 2. на Твърдение 1.

Твърдение 9 Нека B и B' са афинни подпространства на A, моделирани съответно върху линейните подпространства V и V' на U. Тогава:

- 1. Ako $B \subset B'$, mo $V \subset V'$.
- 2. Aro $V \subset V'$ u $B \cap B' \neq \emptyset$, mo $B \subset B'$.
- 3. Ako $B \subset B'$, mo dim $B \leq \dim B'$.
- 4. Ако $B \subset B'$ $u \dim B = \dim B'$ e крайна, то B = B'.

Доказателство:

1. Това следва от 3. на Твърдение 4:

$$V = \left\{\overrightarrow{PQ}: P, Q \in B\right\} \subset \left\{\overrightarrow{PQ}: P, Q \in B'\right\} = V'.$$

2. Нека $P_0 \in B \cap B' \neq \emptyset$ (такава точка P_0 съществува, защото $B \cap B' \neq \emptyset$). Тогава

$$B = \left\{ P \in \mathcal{A} : \overrightarrow{P_0 P} \in V \right\} \subset \left\{ P \in \mathcal{A} : \overrightarrow{P_0 P} \in V' \right\} = B'.$$

- 3. Ако $B\subset B'$, то от 1. следва $V\subset V'$ и значи $\dim V\leq \dim V'$. Тъй като $\dim B=\dim V$ и $\dim B'=\dim V'$, то $\dim B\leq \dim B'$.
- 4. Ако $B \subset B'$, то от 1. следва $V \subset V'$. При това $\dim V = \dim B = \dim B' = \dim V'$ е крайна и значи V = V'. Тъй като $B \subset B'$, то $B \cap B' = B \neq \emptyset$, и тъй като освен това $V' = V \subset V$, от 2. получаваме $B' \subset B$. Следователно B = B'.

Определение 3 Нека B е афинно подпространство на A, моделирано върху V. Векторите $v \in V$ наричаме yспоредни на B и пишем $v \parallel B$.

Теорема 1 Нека $P_0 \in \mathcal{A}$, а $v_1, \ldots, v_k \in U$. Тогава най-малкото афинно подпространство B на \mathcal{A} , за което $P_0 \in B$ и $v_1, \ldots, v_k \parallel B$, е афинното подпространство породено от точката P_0 и $V = l(v_1, \ldots, v_k)$, тоест

$$B = \left\{ P \in \mathcal{A} : \overrightarrow{P_0 P} \in l(v_1, \dots, v_k) \right\} = \left\{ P \in \mathcal{A} : \exists \lambda_1, \dots, \lambda_k \in \mathbb{R} : \overrightarrow{P_0 P} = \lambda_1 v_1 + \dots + \lambda_k v_k \right\}.$$

(Че е най-малкото означава, че всяко афинно подпространство с тия свойства го съ-държа.)

Ако освен това $v_1, ..., v_k$ са линейно независими, то горното B е единственото k-мерно афинно подпространство B на A, за което $P_0 \in B$ и $v_1, ..., v_k \parallel B$.

Доказателство: Тъй като афинното подпространство B от формулировката е породено от P_0 и $l(v_1, \ldots, v_k)$ и имаме $v_1, \ldots, v_k \in l(v_1, \ldots, v_k)$, то $P_0 \in B$ и $v_1, \ldots, v_k \parallel B$.

Нека B' е произволно афинно подпространство, за което $P_0 \in B'$ и $v_1, \ldots, v_k \parallel B'$. Нека V' е направляващото пространство на B'. Тогава $v_1, \ldots, v_k \in V'$ и следователно $V = l(v_1, \ldots, v_k) \subset V'$. Освен това $P_0 \in B \cap B'$, така че $B \cap B' \neq \emptyset$. От 2. на Твърдение 9 тогава следва, че $B \subset B'$. Значи наистина B е най-малкото афинно подпространство на \mathcal{A} през P_0 , на което v_1, \ldots, v_k са успоредни.

Нека v_1, \ldots, v_k са линейно независими. Тогава $\dim B = \dim l(v_1, \ldots, v_k) = k$. Ако B' е k-мерно афинно подпространство на \mathcal{A} , за което $P_0 \in B'$ и $v_1, \ldots, v_k \parallel B'$, то от доказаното по-горе $B \subset B'$. Тъй като освен това $\dim B = k = \dim B'$ е крайна, то от 4. на Твърдение 9 следва, че B = B'. Значи наистина B е единственото k-мерно афинно подпространство на \mathcal{A} през P_0 , на което v_1, \ldots, v_k са успоредни.

Забележка 1 Ако в горната теорема v_1, \ldots, v_k са линейно зависими, то $\dim B < k$ (защото $\dim B = \dim l(v_1, \ldots, v_k) < k$).

Теорема 2 Нека $P_0, ..., P_k \in \mathcal{A}$. Тогава най-малкото афинно подпространство на \mathcal{A} , което ги съдържа, е афинното подпространство породено от точката P_0 и $V = l\left(\overrightarrow{P_0P_1}, ..., \overrightarrow{P_0P_k}\right)$, тоест

$$B = \left\{ P \in \mathcal{A} : \overrightarrow{P_0 P} \in l\left(\overrightarrow{P_0 P_1}, \dots, \overrightarrow{P_0 P_k}\right) \right\} = \left\{ P \in \mathcal{A} : \exists \lambda_1, \dots, \lambda_k \in \mathbb{R} : \overrightarrow{P_0 P} = \sum_{i=1}^k \lambda_i \overrightarrow{P_0 P_i} \right\}.$$

Ако освен това $P_0, \ldots, P_k \in \mathcal{A}$ не лежат в афинно подпространство на \mathcal{A} с размерност строго по-малка от k, то горното B е единственото k-мерно афинно подпространство B на \mathcal{A} , което ги съдържа.

Доказателство: Тъй като афинното подпространство B от формулировката е породено от P_0 и $l\left(\overrightarrow{P_0P_1},\ldots,\overrightarrow{P_0P_k}\right)$, имаме $P_0\in B$. Освен това за всяко $i=1,\ldots,k$ е изпълнено $\overrightarrow{P_0P_i}\in l\left(\overrightarrow{P_0P_1},\ldots,\overrightarrow{P_0P_k}\right)$ и следователно $P_i\in B$. Значи наистина B съдържа P_0,\ldots,P_k . От дефиницията на B и Теорема 1 е ясно, че B е най-малкото афинно подпространство през P_0 , на което $\overrightarrow{P_0P_1},\ldots,\overrightarrow{P_0P_k}$ са успоредни. Нека B' е произволно афинно подпространство, което съдържа P_0,\ldots,P_k . Нека V' е направляващото пространство на B'. Тогава $P_0\in B'$ и освен това за всяко $i=1,\ldots,k$ от $P_i\in B'$ следва $\overrightarrow{P_0P_i}\in V'$, тоест $\overrightarrow{P_0P_i}\parallel B'$. Значи B' е афинно подпространство през P_0 , на което $\overrightarrow{P_0P_1},\ldots,\overrightarrow{P_0P_k}$ са успоредни. Но B е най-малкото афинно подпространство с тия свойства. Следователно $B\subset B'$. Значи наистина B е най-малкото афинно подпространство на \mathcal{A} , което съдържа P_0,\ldots,P_k .

Имаме $\dim B = \dim l\left(\overrightarrow{P_0P_1}, \ldots, \overrightarrow{P_0P_k}\right) \leq k$. Нека $P_0, \ldots, P_k \in \mathcal{A}$ не лежат в афинно подпространство на \mathcal{A} с размерност строго по-малка от k. Тогава $\dim B \geq k$ и следователно $\dim B = k$. Ако B' е k-мерно афинно подпространство на \mathcal{A} , което съдържа P_0, \ldots, P_k , то от доказаното по-горе $B \subset B'$. Тъй като освен това $\dim B = k = \dim B'$ е крайна, то от 4. на Твърдение 9 следва, че B = B'. Значи наистина B е единственото k-мерно афинно подпространство на \mathcal{A} , което съдържа P_0, \ldots, P_k .

Забележка 2 Ако в горната теорема P_0, \ldots, P_k лежат в афинно подпространство на \mathcal{A} с размерност строго по-малка от k, то dim B < k (защото B е най-малкото, в което лежат).

Твърдение 10 Нека B е k-мерно афинно подпространство на A. Тогава съществуват точки $P_0, \ldots, P_k \in B$, които не лежат в афинно подпространство на A с размерност строго по-малка от k.

Доказателство: Нека V е направляващото пространство на B. Следователно $\dim V = \dim B = k$. Нека (v_1, \ldots, v_k) е базис на V. Нека P_0 е произволна точка от B. За $i = 1, \ldots, k$ нека P_i е единствената точка, за която $\overrightarrow{P_0P_i} = v_i$. Тъй като $v_1, \ldots, v_k \in V$ и $P_0 \in B$, то и $P_1, \ldots, P_k \in B$.

Нека B' е афинно подпространство, съдържащо P_0,\ldots,P_k . Нека V' е направляващото пространство на B'. Тогава за всяко $i=1,\ldots,k$ имаме $v_i=\overrightarrow{P_0P_i}\in V'$. Следователно $V=l(v_1,\ldots,v_k)\subset V'$, откъдето получаваме $\dim B'=\dim V'\geq \dim V=\dim B=k$. Значи наистина не съществува афинно подпространство на $\mathcal A$ с размерност строго по-малка от k, което съдържа така построените точки P_0,\ldots,P_k .

Пример 1 k = 1.

2=k+1 точки лежат в афинно подпространство с размерност строго по-малка от k=1, тоест в 0-мерно афинно подпространство, \Leftrightarrow съвпадат, защото 0-мерните афинни подпространства са едноточковите подмножества.

Твърдение 11 1. В геометричната равнина и в геометричното пространство 1-мерните афинни подпространства са правите.

2. В геометричното пространство 2-мерните афинни подпространства са равнините.

Доказателство:

1. В мотивацията в началото на въпроса видяхме, че ако l е права, V е линейното пространство на векторите, които са колинеарни с нея, и P_0 е точка от l, то $l = \left\{P: \overrightarrow{P_0P} \in V\right\}$. Това показва, че l е афинно подпространство, моделирано върху V. Тъй като знаем, че $\dim V = 1$, то l е 1-мерно афинно подпространство. Значи всяка права в геометричната равнина и в геометричното пространство е 1-мерно афинно подпространство.

Обратно: Нека B е 1-мерно афинно подпространство в геометричната равнина или в геометричното пространство. От Твърдение 10 следва, че съществуват две точки $P_0, P_1 \in B$, които не лежат в афинно подпространство с размерност по-малка от 1, тоест различни точки (поради Пример 1). Щом P_0 и P_1 са различни, през тях минава единствена права l. Както вече видяхме, l също е 1-мерно афинно подпространство. От последната част на Теорема 2 (единствеността) следва l=B. Значи всяко 1-мерно афинно подпространство в геометричната равнина и в геометричното пространство е права.

Следователно в геометричната равнина и в геометричното пространство всевъзможните 1-мерни афинни подпространства са всевъзможните прави.

2. В мотивацията в началото на въпроса видяхме, че ако π е равнина, V е линейното пространство на векторите, които са компланарни с нея, и P_0 е точка от π , то $\pi = \left\{P : \overrightarrow{P_0P} \in V\right\}$. Това показва, че π е афинно подпространство, моделирано върху V. Тъй като знаем, че $\dim V = 2$, то π е 2-мерно афинно подпространство. Значи всяка равнина в геометричното пространство е 2-мерно афинно подпространство.

Обратно: Нека B е 2-мерно афинно подпространство в геометричното пространство. От Твърдение 10 следва, че съществуват три точки $P_0, P_1, P_2 \in B$, които не лежат в афинно подпространство с размерност по-малка от 2. Значи не лежат в 1-мерно афинно подпространство, тоест на една права (поради първата част на твърдението). Щом P_0, P_1, P_2 не лежат на една права, през тях минава единствена равнина π . Както вече видяхме, π също е 2-мерно афинно подпространство. От последната част на Теорема 2 (единствеността) следва $\pi = B$. Значи всяко 2-мерно афинно подпространство в геометричното пространство е равнина.

Следователно в геометричното пространство всевъзможните 2-мерни афинни подпространства са всевъзможните равнини.

Горното твърдение мотивира следващото определение:

Определение 4 1-мерните афинни подпространства на произволно афинно пространство \mathcal{A} се наричат npaeu, 2-мерните – paehuhu, а ако $\dim \mathcal{A} = n$ е крайна, то (n-1)-мерните афинни подпространства се наричат xuneppaehuhu.

Пример 2 Нека A е n-мерно. Тогава хиперравнините са:

- 1. при n = 1 точките.
- 2. при n = 2 правите.
- 3. при n = 3 равнините.

Частни случаи на Теорема 2:

- $1. \ k=1$: През две различни точки в афинно пространство минава точно една права.
- $2.\ k=2$: През три различни точки в афинно пространство, които не лежат на една права, минава точно една равнина.
- 3. k = n 1: През n точки в n-мерно афинно пространство, които не лежат в (n-2)-мерно афинно подпространство, минава точно една хиперравнина.

Първите два частни случая по-горе са аксиоми при обичайното изграждане на геометрията. Това показва още веднъж, че геометрията, изградена въз основа на понятието афинно пространство, си е обичайната геометрия.

Твърдение 12 Ако B_i са афинни подпространства на \mathcal{A} , моделирани върху V_i , $i \in I$, $u B = \bigcap_{i \in I} B_i$ е непразно множество, то B е афинно подпространство на \mathcal{A} , моделирано върху $\bigcap_{i \in I} V_i$.

 \mathcal{A} оказателство: Нека $P_0 \in \bigcap_{i \in I} B_i$ (такова P_0 съществува, защото $\bigcap_{i \in I} B_i$ не е празно). Следователно за всяко $i \in I$ имаме $P_0 \in B_i$ и значи $B_i = \left\{P \in \mathcal{A} : \overrightarrow{P_0P} \in V_i\right\}$. Тогава $P \in \bigcap_{i \in I} B_i \Leftrightarrow$ за всяко $i \in I$ имаме $P \in B_i \Leftrightarrow$ за всяко $i \in I$ имаме $\overrightarrow{P_0P} \in V_i$ $\Leftrightarrow \overrightarrow{P_0P} \in \bigcap_{i \in I} V_i$. Значи $\bigcap_{i \in I} B_i = \left\{P \in \mathcal{A} : \overrightarrow{P_0P} \in \bigcap_{i \in I} V_i\right\}$. Тъй като от Твърдение 3 знаем, че $\bigcap_{i \in I} V_i$ е линейно подпространство на U, то последното равенство показва, че $\bigcap_{i \in I} B_i$ е афинното пространство през P_0 с направляващо пространство $\bigcap_{i \in I} V_i$.

Забележка 3 Всичко дотук очевидно остава в сила и ако вместо \mathbb{R} се вземе произволно поле F, тоест ако U е линейно пространство над произволно поле.

Твърдение 13 Нека A е евклидово афинно пространство (тоест U е евклидово линейно пространство) и B е афинно подпространство на A, моделирано върху линейното подпространство V на U. Тогава знаем, че V е евклидово линейно пространство V на V скаларно произведение и следователно V е евклидово афинно пространство.

Забележка 4 Винаги ще разглеждаме афинните подпространства на евклидово афинно пространство като евклидови афинни пространства по начина от горното твърдение, освен ако изрично не е казано друго.

2 Афинни координатни системи

Афинни координатни системи

Нека A е n-мерно афинно пространство, моделирано върху линейното пространство V.

Определение 5 Афинна координатна система K в A е двойка, състояща се от точка $O \in A$ и базис $e = (e_1, \ldots, e_n)$ на V. Пишем $K = Oe_1 \ldots e_n$. Точката O се нарича начало на координатната система, а e_1, \ldots, e_n – координатни или базисни вектори.

Определение 6 Нека $K = Oe_1 \dots e_n$ е афинна координатна система в A и $P \in A$. Koopduhamu на P спрямо K се наричат координатите на вектора \overrightarrow{OP} спрямо базиса $e = (e_1, \dots, e_n)$, тоест координатите на P спрямо K са $x_1, \dots, x_n \Leftrightarrow \overrightarrow{OP} = x_1e_1 + \dots + x_ne_n$. Пишем $P(x_1, \dots, x_n)$.

(Векторът $\overrightarrow{OP} \in V$ се нарича paduyc-вектор на P спрямо K.)

Векторът
$$x=\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}=\varkappa_e(\overrightarrow{OP})\in\mathbb{R}^n$$
 се нарича координатен вектор на P спрямо $K.$

Изображението

$$\varkappa_K: A \to \mathbb{R}^n: \quad P \mapsto x, \quad \text{TOECT } \varkappa_K(P) = \varkappa_e\left(\overrightarrow{OP}\right),$$

се нарича координатно изображение съответно на координатната система K. Ако $v \in V$ е вектор, то под координати на v спрямо K ще разбираме координатите на v спрямо базиса $e = (e_1, \ldots, e_n)$.

Забележка 5 Вместо $K = Oe_1 \dots e_n$ често се пише $K = Ox_1 \dots x_n$.

Правата през началото O, която е успоредна на i-тия координатен вектор e_i и е ориентирана с e_i , се нарича i-ти координатна ос и се означава често с Ox_i .

(Ос е ориентирана права.)

Когато размерността на афинното пространство е малка, често координатите се означават с x, y, z вместо с x_1, x_2, x_3 .

Оста Ox_1 (или Ox, ако първата координата е означена с x) се нарича abcuucha oc, а координатата x_1 (или x) — abcuuca.

При $n \ge 2$ оста Ox_2 (или Oy, ако втората координата е означена с y) се нарича opdu-натна oc, а координатата x_2 (или y) — opdu-ната.

При n=3 оста Ox_3 (или Oz, ако третата координата е означена със z) се нарича $anликаmнa\ oc$, а координатата x_3 (или z) — anликаma.

Пример 3 $\varkappa_K(O) = 0 \in \mathbb{R}^n$.

Това е така, защото $\overrightarrow{OO} = 0$ и координатите на нулевия вектор спрямо базиса e са нули.