Model-theoretic aspects of relativised cylindric set algebras

Daniel Rogozin

1 The problems themselves

- 1. Suppose $\mathcal{C} \in \mathbf{RCA}_{\omega}$, whether \mathcal{C} has a complete, ω -dimensional representation?
- 2. Is the class \mathbf{IG}_{ω} (the isomorphism-closure of the ω -dimensional cylindric relativised set algebras in which the unit is closed under substitutions and permutations) a variety, or even a pseudo-elementary class? Is it closed under ultraproducts?

2 Boolean algebras with operators and cylindric algebras

Definition 1.

- 1. Let $\mathcal{B} = \langle B, +, -, 0, 1 \rangle$ be a Boolean algebra. An operator is an n-ary function $\Omega : B^n \to B$ satisfying the following conditions:
 - Normality: for all $b_0, \ldots, b_{n-1} \in B$, if $b_1 = 0$ for some i < n, then

$$\Omega(b_0,\ldots,b_{i-1},0,b_{i+1},\ldots,b_{n-1})=0$$

• Additivity: for all $b_0, \ldots, b_{n-1}, b, b' \in B$ we have

$$\Omega(b_0,\ldots,b_{i-1},(b+b'),b_{i+1},\ldots,b_{n-1}) = \Omega(b_0,\ldots,b_{i-1},b,b_{i+1},\ldots,b_{n-1}) + \Omega(b_0,\ldots,b_{i-1},b',b_{i+1},\ldots,b_{n-1})$$

2. Let I be an index set, a Boolean algebra with operators (BAO) is an algebra $\langle B, +, -, 0, 1, \{\Omega_i\}_{i \in I}\rangle$ such that $\langle B, +, -, 0, 1 \rangle$ is a Boolean algebra and for each $i \in I$ Ω_i is an operator.

Definition 2. Let $\mathcal{B} = \langle B, +, -, 0, 1, \{\Omega_i\}_{i \in I} \rangle$ be a BAO, then

1. An operator Ω is completely additive, if for each $b_0, \ldots, b_{n-1} \in B$ and $X \subseteq B$, one has

$$\Omega(b_0, \dots, b_{i-1}, \sum X, b_{i+1}, \dots, b_{n-1}) = \sum_{x \in X} \Omega(b_0, \dots, b_{i-1}, x, b_{i+1}, \dots, b_{n-1})$$

- 2. \mathcal{B} is completely additive, if for each $i \in I$ Ω_i is additive,
- 3. A class K of BAOs is completely additive, if every $B \in K$ is completely additive.

2.1 Atom structures and canonical extensions

Definition 3. Let I be an index set and $\{\Omega_i\}_{i\in I}$ a set of function symbols

- 1. An atom structure is a relational structrure $\mathcal{F} = \langle W, \{R_i\}_{i \in I} \rangle$ such that R_i is a n+1-ary relation symbol, if $\Omega_{i \in I}$ is an n-ary function symbol,
- 2. Let \mathcal{B} be an atomic BAO of the signature I, the atom structure of \mathcal{B} , written as $\mathbf{At}\mathcal{B}$, is an atom structure $\langle \operatorname{At}(\mathcal{B}), \{R_i\}_{i\in I} \rangle$ such that for each $a, b_0, \ldots, b_{n+1} \in \operatorname{At}(\mathcal{B})$ and for each $i \in I$

$$\mathbf{At}\mathcal{B} \models R_i(a, b_0, \dots, b_{n+1}) \text{ iff } \mathcal{B} \models a \leqslant \Omega_i(b_0, \dots, b_{n+1})$$

3. Let $\mathcal{F} = \langle W, \{R_i\}_{i \in I} \rangle$ be an atom structure, the complex algebra of \mathcal{F} , written as $\mathbf{Cm}\mathcal{F}$, is a $BAO \langle \mathcal{P}(W), \cup, -, \emptyset, W, \{\Omega_{R_i}\}_{i \in I} \rangle$ such that for all $X_0, \dots, X_{n-1} \subseteq W$ and for each $i \in I$

$$\Omega_{R_i}(X_0,\ldots,X_{n-1}) = \{a \in W \mid \exists b_0 \in X_0 \ldots \exists b_{n-1} \in X_{n-1} \mathcal{F} \models R_i(a,b_0,\ldots,b_{n-1})\}$$

The following duality is due to Thomason [18].

Fact 1.

- 1. Let \mathcal{B} be a complete atomic BAO, then $\mathcal{B} \cong \mathbf{Cm}(\mathbf{At}(\mathcal{B}))$,
- 2. Let \mathcal{F} be an atom structure, then $\mathcal{F} \cong \mathbf{At}(\mathbf{Cm}(\mathcal{B}))$.

Let A be a non-empty subset of a Boolean algebra \mathcal{B} , A is a *filter*, if A is closed under finite infima and upwardly closed. A is an ultrafilter, if it has no non-trivial extensions. That is, if $A \subseteq A'$, then $A' = \mathcal{B}$.

Definition 4. Let $\mathcal{B} = \langle B, +, -, 0, 1, \{\Omega_i\}_{i \in I}\rangle$ be a BAO and $\mathbf{Uf}(\mathcal{B})$ the set of its ultrafilters. The ultrafilter frame of \mathcal{B} (or canonical frame) is a relational structure $\mathcal{F}_{\mathcal{B}} = \langle \mathbf{Uf}(\mathcal{B}), R_{\Omega_i} \rangle$ such that for each ultrafilters $\beta_0, \ldots, \beta_{n-1}, \gamma$ one has

$$\mathbf{Uf}(\mathcal{B}) \models R_{\Omega_i}(\beta_0, \dots, \beta_{n-1}, \gamma) \text{ iff } \{\Omega(b_0, \dots, b_{n-1}) \mid b_0 \in \beta_0, \dots, b_{n-1} \in \beta_{n-1}\} \subseteq \gamma.$$

Definition 5. Let \mathcal{B} be a BAO, then

- 1. The canonical extension of \mathcal{B} is a complex algebra of the canonical frame $\mathbf{Cm}(\mathcal{F}_{\mathcal{B}})$ denoted as \mathcal{B}^+ ,
- 2. The class of BAOs is canonical, if it is closed under canonical extensions.

Theorem 1. Let A, B be BAOs,

- 1. There exists $\iota : \mathcal{A} \hookrightarrow \mathcal{A}^+$ such that $\iota : a \mapsto \{\gamma \in \mathbf{Uf}(\mathcal{A}) \mid a \in \gamma\}$.
- 2. If $i: A \hookrightarrow B$, then this embedding might be extented to the embedding $i^+: A^+ \hookrightarrow B^+$

Fact 2.

2.2 (Representable) cylindric algebras and cylindric set algebras

Let α be an ordinal. Let U^{α} be the set of all functions mapping α to a non-empty set U. We denote $x(i) = x_i$ for $x \in U^{\alpha}$ and $i < \alpha$.

Definition 6.

- 1. A subset of U^{α} is an α -ry relation on U. For $i, j < \alpha$, the i, j-diagonal D_{ij} is the set of all elements of U such that $y_i = y_j$. If $i < \alpha$ and X is an α -ry relation on U, then the i-th cylindrification C_iX is the set of all elements of U that agree with some element of X on each coordinate except the i-th one. To be more precise, $C_iX = \{y \in U^{\alpha} \mid \exists x \in X \forall i < \alpha \ (i \neq j \Rightarrow y_j = x_j)\}$.
- 2. A cylindic set algebra of dimension α is an algebra consisting of a set S of α -ry relation on some base set U with the constants and operations $0 = \emptyset$, $1 = U^{\alpha}$, \cap , -, the diagonal elements $\{D_{ij}\}_{i,j<\alpha}$, the cylindrifications $\{C\}_{i<\alpha}$. A generalised cylindric set algebra of dimension α is a subdirect of cylindric algebras that have dimension α
- 3. A cylindric algebra of dimension α is an algebra $\mathcal{C} = \langle \mathcal{B}, \{c_i\}_{i < \alpha}, \{d_{ij}\}_{i,j < \alpha} \rangle$ such that
 - \mathcal{B} is a Boolean algebra, for each $i, j < \alpha$ c_i is an operator and $d_{ij} \in \mathcal{B}$
 - For each $i < \alpha$, $a \le c_i a$, $c_i (a \land c_i b) = c_i a \land c_i b$ and $d_{ii} = 1$
 - For every $i, j < \alpha$, $c_i c_j a = c_j c_i a$
 - If $k \neq i, j < \alpha$, then $d_{ij} = c_k(d_{ij} \wedge d_{jk})$
 - If $i \neq j$, then $c_i(d_{ij} \wedge a) \wedge c_i(d_{ij} \wedge -a) = 0$

 $\mathbf{C}\mathbf{A}_{\alpha}$ is the class of all cylindric algebras of dimension α

4. An α -dimensional cylindric algebra C is representable, if it is isomorphic to a generalised cylindric set algebra of dimension α . Such is isomorphism is a representation of C. \mathbf{RCA}_{α} is the class of all representable cylindric algebras that have dimension α . In particular, we are interested in the case when $\alpha = \omega$.

2.3 Substitution in cylindric algebras

Definition 7. Given a cylindric algebra of dimension α C, let x be a term of its signature, the substitution operator s_j^i have the following definition:

$$s_{j}^{i}x = \begin{cases} x, & \text{if } i = j \\ c_{i}(d_{ij} \land x), & \text{otherwise} \end{cases}$$

Proposition 1. Let α be an ordinal and let $i, j, k, l < \alpha$. The following facts hold in \mathbf{CA}_{α}

- 1. $s_i^i x \leq c_i x$.
- 2. $s_j^i(x \wedge y) = s_j^i x \wedge s_j^i y$, $s_j^i(x \vee y) = s_j^i x \vee s_j^i y$, $-s_j^i x = s_j^i(-x)$. Moreover, s_j^i is completely additive.
- 3. $i \neq k, l$ implies $s_i^i d_{ik} = d_{jk}$ and $s_i^i d_{kl} = d_{kl}$.
- 4. $d_{jk} \wedge s_j^i = d_{jk} \wedge s_k^i$.

- 5. $s_i^i c_i x = c_i x$.
- 6. $k \neq i, j \text{ implies } s_j^i c_i x = c_i s_j^i x.$
- 7. $c_i s_i^i x = c_i s_i^j x$.
- 8. $i \neq j$ implies $c_i s_i^i x = s_i^i x$.
- 9. $i \neq k$ implies $s_i^i s_k^i = s_k^i x$.
- 10. If either $i \notin \{k, l\}$ and $k \notin \{i, j\}$, or j = l, then $s_i^i s_l^k x = s_l^k s_i^i x$.
- 11. $s_i^i s_i^j x = s_i^i x$.
- 12. $s_k^i s_i^j x = s_k^i s_k^j x = s_k^j s_i^i x$

3 Model-theoretic and universal algebraic preliminaries

3.1 Ultraproducts

Here are the required notions and facts from model theory and universal algebra [9] [11] [17]. Let Λ be an index set and D an ultrafilter on the Boolean algebra $\langle \mathcal{P}(\Lambda), \cup, -, \Lambda, \varnothing \rangle$. Consider the product $M = \prod_{\lambda \in \Lambda} M_{\lambda}$ of the Ω -structures $\{M_{\lambda}\}_{{\lambda} \in \Lambda}$ and the equivalence relation on $\operatorname{dom}(M)$ defined as

$$a_1 \sim a_2 \Leftrightarrow \{\lambda \in \Lambda \mid a_1(\lambda) = a_2(\lambda)\} \in D$$

Let us denote $\operatorname{dom}(M)/\sim$ as U and $[a]_{\sim}$ as a/D, where $a\in\operatorname{dom}(M)$. We also denote the $\operatorname{ultraproduct}$ of $\{M_{\lambda}\}_{\lambda}$ as $\prod_{\lambda\in\Lambda}M_{\lambda}/D$, or, for brevity, as $\prod_{D}M_{\lambda}$. The Ω -symbols have the following interpretation

- 1. If $c \in \text{Cnst}$, then $c^U = c^M/D$
- 2. If $f \in \text{Fn}$ is an n-ary function symbol and $\overline{a} \in M^n$, then $f^U(\overline{a}) = f^M(x) = f^M(\overline{a})/D$
- 3. If $R \in \text{Fn}$ is an n-ary relation symbol and $\overline{a} \in M^n$, then $U \models R(\overline{a}/D)$ iff $\{\lambda \in \Lambda \mid M_{\lambda} \models R(\overline{a}(\lambda))\} \in D$

The ultraproduct is principal if D is a principal filter.

Definition 8.

- 1. Let $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ be a set of Ω -structures such that every M_{λ} is isomorphic to the single structure M, then their ultraproduct over D is called the ultrapower over D. The denotation is $\prod_{n} M$ or M^{Λ}/D .
- 2. If $\prod_{D} M \cong N$ for some structure N, then M is an ultraroot of N.

Theorem 2 (Los). Let $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ be Ω -structures and D an ultrafilter on Λ , and let $U=\prod_{D}M_{\lambda}$ be an ultraproduct of $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ over D. For each first-order formula $\varphi(x_1,\ldots,x_n)$ and for each $a_1/D,\ldots,a_n/D\in U$:

$$U \models \varphi(a_1/D, \dots, a_n/D) \text{ iff } \{\lambda \in \Lambda \mid \varphi(a_1(\lambda), \dots, a_n(\lambda))\} \in D$$

The Los has the following helpful corollary:

Corollary 1. Let $\prod_{D} M$ be an ultrapower of M. For $a \in M$, let us define a function $\overline{a} : a \mapsto a/D$. Then such a map is an elementary embedding of M into $\prod_{D} M$.

Moreover, any elementary equivalent structures have isomorphic ultrapowers.

Recall that a class of Ω -structures **K** is called *elementary*, if **K** = Mod(T) for some first-order theory **T**. In that case, T is an axiomatisation of **K**.

Theorem 3. Let \mathbf{K} be a class Ω -structures, \mathbf{K} is elementary iff \mathbf{K} is closed under isomorphic copies, ultraroots, and ultrapowers.

4 IG_{ω} and ultraproducts

5 IG $_{\omega}$ is (not) (pseudo-)elementary; is (not) a variety

References

- [1] Hajnal Andréka, Robert Goldblatt, and István Németi. Relativised quantification: Some canonical varieties of sequence-set algebras. *The Journal of Symbolic Logic*, 63(1):163–184, 1998.
- [2] Hajnalka Andréka. A finite axiomatization of locally square cylindric-relativized set algebras. Studia Scientiarum Mathematicarum Hungarica, 38(1-4):1–11, 2001.
- [3] Dov M Gabbay and Valentin B Shehtman. Products of modal logics. part 2: Relativised quantifiers in classical logic. *Logic Journal of the IGPL*, 8(2):165–210, 2000.
- [4] Robert Goldblatt. Varieties of complex algebras. Annals of pure and applied logic, 44(3):173–242, 1989.
- [5] Robert Goldblatt. Elementary generation and canonicity for varieties of boolean algebras with operators. *Algebra Universalis*, 34(4):551–607, 1995.
- [6] L Henkin, J D Monk, and A Tarski. Cylindric Algebras Part I. North-Holland, 1971.
- [7] Leon Henkin, J.Donald Monk, and Alfred Tarski. Representable cylindric algebras. *Annals of Pure and Applied Logic*, 31:23 60, 1986.
- [8] Robin Hirsch and Ian Hodkinson. Relation algebras from cylindric algebras, i. *Annals of Pure and Applied logic*, 112(2-3):225–266, 2001.
- [9] Robin Hirsch and Ian Hodkinson. Relation algebras by games. Elsevier, 2002.
- [10] Robin Hirsch and Ian Hodkinson. Completions and complete representations. In *Cylindric-like Algebras and Algebraic Logic*, pages 61–89. Springer, 2013.
- [11] Wilfrid Hodges et al. A shorter model theory. Cambridge university press, 1997.
- [12] Ian Hodkinson. Atom structures of cylindric algebras and relation algebras. Annals of Pure and Applied Logic, 89(2):117 148, 1997.

- [13] Agi Kurucz. Representable cylindric algebras and many-dimensional modal logics. In *Cylindric-like Algebras and Algebraic Logic*, pages 185–203. Springer, 2013.
- [14] Anatolij Ivanovic Mal'Cev. *Algebraic systems*, volume 192. Springer Science & Business Media, 2012.
- [15] Maarten Marx and Yde Venema. Multi-dimensional modal logic. Springer, 1997.
- [16] Istvan Németi. A fine-structure analysis of first-order logic. Arrow Logic and Multimodal Logics, Studies in Logic, Language and Information, pages 221–247, 1996.
- [17] Hanamantagouda P Sankappanavar and Stanley Burris. A course in universal algebra. Graduate Texts Math, 78, 1981.
- [18] Steven K Thomason. Categories of frames for modal logic. The journal of symbolic logic, 40(3):439–442, 1975.
- [19] Yde Venema. A modal logic for quantification and substitution. *Logic Journal of the IGPL*, 2(1):31–45, 1994.
- [20] Yde Venema. Cylindric modal logic. Journal of Symbolic Logic, pages 591–623, 1995.
- [21] Yde Venema. Atom structures. Advances in Modal Logic, 1:63-72, 1996.
- [22] Yde Venema. *Cylindric Modal Logic*, pages 249–269. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.