Package 'statr'

July 26, 2018
Type Package
Title Matt Galloway Personal R Package
Version 0.1.0
Description This is a personal R package. It contains a number of various R functions for organization and convenience purposes.
<pre>URL https://github.com/MGallow/statr</pre>
BugReports https://github.com/MGallow/statr/issues
License GPL (>= 2)
ByteCompile TRUE
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Imports dplyr, ggplot2, magrittr, formatR, grid, devtools, ADMMsigma, glmnet
Suggests testthat, knitr, rmarkdown, pkgdown
SystemRequirements GNU make
VignetteBuilder knitr
R topics documented:
bsearch 2 compound 3 CVsplit 3 data_gen 4 dense 5

2 bsearch

enseQR	5
erivative	6
iagnostic	6
search	7
ro	7
ASSO	8
DA	8
nultiplot	9
redict_QDA	9
QDA	10
RIDGE	10
catter	11
dy	11
meit	12
ridiag	12
	13

bsearch Bisection search

Description

Index

Minimizes a univariate strictly pseudoconvex function over the interval [a, b]. This is augmented code from Adam Rothman's STAT 8054 course (2017).

Usage

```
bsearch(dg, a, b, L = 1e-07, quiet = FALSE)
```

Arguments

dg	the derivative of the function to minimize, where $dg(u, \ldots)$ is the function evaluated at u .
а	left endpoint of the initial interval of uncertainty.
b	right endpoint of the initial interval of uncertainty.
L	the maximum length of the final interval of uncertainty.
quiet	should the function stay quiet?
	additional argument specifications for dg

Value

returns the midpoint of the final interval of uncertainty.

compound 3

com	nn	un	А
COIII	υU	un	u

Generate compound symmetric matrices

Description

Generate a p-dimensional compound symmetric matrix.

Usage

```
compound(p = 8, n = NULL)
```

Arguments

p desired dimension

n option to generate n observations from covariance matrix S

Value

Omega, S

Examples

```
\# generate compound symmetric matrix with p = 5 compound(p = 5)
```

CVsplit

CV split

Description

splits data objects into training and testing sets

Usage

```
CVsplit(X, Y, split = 0.5, N = NULL)
```

Arguments

X	nxp data matrix. Each row corresponds to a single observation and each column contains n observations of a single feature/variable.
Υ	nxr response matrix. Each row corresponds to a single response and each column contains n response of a single feature/response.
split	fraction of objects devoted to training set
N	option to provide number of objects devoted to training set

Value

X.train, Y.train, X.test, Y.test

4 data_gen

data_gen

Normal regression data generator

Description

True beta values are generated from p^*r independent draws from N(0, 1/p) distribution. X are n independent draws from p multivariate normal N(0, SigmaX). Y is then generated using X and true beta values with an iid error term that follows r multivariate normal distribution N(0, Sigma).

Usage

```
data_gen(n, p, r = 1, sparsity = 0.5, Sigma = c("tridiag", "dense",
  "denseQR", "compound"), s = NULL, SigmaX = c("tridiag", "dense",
  "denseQR", "compound"), sx = NULL, ...)
```

Arguments

n	desired sample size
р	desired dimension
r	number of responses
sparsity	desired sparsity for beta
Sigma	covariance matrix structure used to generate $Y \mid X$
S	option to specify diagonal elements in Sigma
SigmaX	covariance matrix structure used to generate data X
sx	option to specify diagonal elements in SigmaX
	additional arguments to pass to data generating functions

Value

```
Y, X, betas, Sigma, SigmaX
```

Author(s)

Matt Galloway <gall0441@umn.edu>

Examples

```
# generate 100 observations with predictor dimension equal to 10 and response dimension equal to 5 data = data_gen(n = 100, p = 10, r = 5)
```

dense 5

dense

Generate dense matrices

Description

Generate p-dimensional matrices so that its inverse is dense.

Usage

```
dense(p = 8, base = 0.9, n = NULL)
```

Arguments

p desired dimensionbase base multiplier

n option to generate n observations from covariance matrix S

Value

Omega, S

Examples

```
# generate dense matrix with p = 5 dense(p = 5)
```

denseQR

Generate dense matrices (via spectral decomposition)

Description

Generate p-dimensional matrices so that its inverse is dense. The matrix will be generated so its first 'num' eigen values are 1000 and the remaining are 1. The orthogonal basis is generated via QR decomposition of

Usage

```
denseQR(p = 8, num = 5, n = NULL)
```

Arguments

p desired dimension

num number of 'large' eigen values. Note num must be less than p
n option to generate n observations from covariance matrix S

Value

Omega, S

6 diagnostic

Examples

```
# generate denseQR matrix with p = 5
denseQR(p = 5)
```

derivative

Derivative

Description

Takes the approximate derivative for a given function

Usage

```
derivative(g, x, delta = 1e-07)
```

Arguments

g the derivative of the function to minimize, where dg(u, ...) is the function evalu-

ated at u.

x value to evaluate the derivative at

delta defaults to 10e-8

diagnostic Diagnostic

Description

This function simply streamlines the process of creating diagnostic plots with ggplot

Usage

```
diagnostic(data., x., y.)
```

Arguments

data frame
x. x-axis
y. y-axis

Value

a residual plot and QQ plot

Examples

```
{\tt diagnostic(iris, Sepal.Length, Sepal.Width)}
```

dsearch 7

|--|

Description

Minimizes a univariate strictly quasiconvex function over the interval [a, b]. This is augmented code from Adam Rothman's STAT 8054 course (2017).

Usage

```
dsearch(g, a, b, L = 1e-07, eps = (L/2.1), quiet = FALSE)
```

Arguments

g	the function to minimize, where $g(u,\ldots)$ is the function evaluated at $u.$
а	left endpoint of the initial interval of uncertainty.
b	right endpoint of the initial interval of uncertainty.
L	the maximum length of the final interval of uncertainty.
eps	search parameter, must be less than L/2
quiet	should the function stay quiet?
•••	additional argument specifications for g

Value

returns the midpoint of the final interval of uncertainty.

fro	Mean Frobenius norm	

Description

calculates the average squared value of an object. That is, all elements are squared, summed, and divided by the total number of elements

Usage

fro(X)

Arguments

X object

Value

norm

8 LDA

LASSO	Lasso regression
-------	------------------

Description

calculate lasso regression coefficients using the optimal tuning parameter from the glmnet package.

Usage

```
LASSO(X, Y, lam = NULL, intercept = FALSE, standardize = FALSE)
```

Arguments

Χ nxp data matrix. Each row corresponds to a single observation and each column contains n observations of a single feature/variable. nxr response matrix. Each row corresponds to a single response and each col-Υ umn contains n response of a single feature/response.

lam tuning parameter

Value

betas, lam

LDA Linear Discriminant Analysis

Description

this function fit the LDA model

Usage

```
LDA(X, y, method = c("MLE", "diagonal", "ridge"), lam = NULL)
```

Arguments

n x p matrix where the ith row is the values of the predictor for the ith case Χ n entry response vector where the ith entry is the response category in 1, ..., C У for the ith case method

estimation method

lam optional tuning parameter specification

Value

returns a list with the parameter estimates

multiplot 9

multiplot

Multiple Plot

Description

Taken from: http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/

Usage

```
multiplot(..., plotlist = NULL, cols = 1, layout = NULL)
```

Arguments

... object can be passed in

plotlist plotlist

cols number of columns in layout

layout a matrix specify the layout. If present, 'cols' is ignored

Value

plots

predict_QDA

Predict QDA

Description

this function classifies test data using a fitted QDA model

Usage

```
predict_QDA(fit, Xtest)
```

Arguments

fit this is a list with elements pi.hats, mu.hats, and Sigma.hats where pi.hats is a list

of C response category sample proportions, mu.hats is a list of C p-dimensional sample mean proportions, Sigma.hats is a list of C p by p Sample covariance

matrices

Xtest this is a matrix with ntest rows and p column, each row is a test case

Value

returns a vector of ntest entries, where the ith entry is the estimated response category (some value in 1, ..., C) for the ith test case.

10 RIDGE

QDA

Quadratic Discriminant Analysis

Description

this function fit the QDA model

Usage

```
QDA(X, y, method = c("MLE", "diagonal", "ridge"), lam = NULL)
```

Arguments

Χ	n x p matrix where the ith row is the values of the predictor for the ith case
У	n entry response vector where the ith entry is the response category in $1,, C$ for the ith case
method	estimation method
lam	optional tuning parameter specification

Value

returns a list with the parameter estimates

RIDGE	Ridge regression	

Description

calculate ridge regression coefficients using the optimal tuning parameter from the glmnet package.

Usage

```
RIDGE(X, Y, lam = NULL, intercept = FALSE, standardize = FALSE)
```

Arguments

X	nxp data matrix. Each row corresponds to a single observation and each column contains n observations of a single feature/variable.
Υ	nxr response matrix. Each row corresponds to a single response and each column contains n response of a single feature/response.
lam	tuning parameter

Value

betas, lam

scatter 11

scatter Scatter

Description

This function simply streamlines the process of creating a scatterplot with ggplot

Usage

```
scatter(data., x., y.)
```

Arguments

data frame

x. x-axis

y. y-axis

Value

a scatterplot

Examples

```
scatter(iris, Sepal.Length, Sepal.Width)
```

tidy *Tidy*

Description

tidys package R code and updates package documentation. Directly uses Yihui Xie's 'formatR' package.

Usage

tidy()

12 tridiag

timeit

Time-It

Description

Simple function that prints the computation time of a function

Usage

```
timeit(f)
```

Arguments

f

the function to time

Value

returns the elapsed time

tridiag

Generate tri-diagonal matrices

Description

Generate p-dimensional matrices so that its inverse is tri-diagonal.

Usage

```
tridiag(p = 8, base = 0.7, n = NULL)
```

Arguments

p desired dimensionbase base multiplier

n option to generate n observations from covariance matrix S

Value

Omega, S

Examples

```
# generate tridiagonal matrix with p = 5 tridiag(p = 5)
```

Index

```
bsearch, 2
compound, 3
CVsplit, 3
data_gen, 4
dense, 5
denseQR, 5
derivative, 6
{\tt diagnostic}, {\color{red} 6}
dsearch, 7
fro, 7
LASSO, 8
LDA, 8
{\tt multiplot}, \textcolor{red}{9}
predict_QDA, 9
QDA, 10
RIDGE, 10
scatter, 11
{\tt tidy}, 11
{\tt timeit}, \textcolor{red}{12}
tridiag, 12
```