

小 MU 视觉传感器 III代 - 技术规格书

MU Vision Sensor III - Datasheet

杭州摩图科技有限公司 版本 V0.5 2019.04.18

目 录

夂	色责声明和版权公告	4
1	概述	5
	1.1 产品介绍	5
2	:硬件与结构	5
	2.1 产品外观	5
	2.2 尺寸标注	
	2.3 硬件功能介绍	
	2.4 电气特性	7
3	功能描述	8
	3.1 通讯模式	
	3.1.1 UART 模式	
	3.1.2 I2C 模式	
	3.2 视觉算法	
	3.2.1 图像识别的特性	
	3.2.2 图像坐标系与检测数据	
	3.2.3 算法列表	
	3.2.4 颜色检测,Vision-ID:1	10
	3.2.5 颜色识别,Vision-ID: 2	11
	3.2.6 球体检测,Vision-ID:3	12
	3.2.7 人体检测,Vision-ID:5	13
	3.2.8 图形卡片识别,Vision-ID: 6	14
	3.2.9 交通卡片识别,Vision-ID: 7	15
	3.2.10 数字卡片识别,Vision-ID: 8	15
	3.3 使用说明	17
	3.3.1 使用步骤	17
	3.3.2 设置地址	17
	3.3.3 设置输出模式	17
	3.3.4 版本校验	17
	3.3.5 设置硬件参数	17
	3.3.6 设置算法参数	17
	3.3.7 UART 报文读取检测结果	
	3.3.8 寄存器方式读取检测结果	
	3.3.9 检测结果读取方案示例	19
4	· MU Protocol 通讯协议	21
	4.1 协议格式	21
	4.2 应答码	21
	4.3 指소교	21

	4.3.1 写寄存器 0x01	21
	4.3.2 读寄存器 0x02	22
	4.3.3 数据报文 0x11	22
	4.3.4 请求报文 0x12	22
5	寄存器	23
6	固件更新	27
	6.1 下载 FLASH 工具	27
	6.2 下载小 MU 视觉传感器固件	
	6.3 固件更新	27
7	产品升级计划	29
	舒订历史	30

免责声明和版权公告

- •本手册中的信息仅适用于摩图科技公司所生产的小 MU 视觉传感器 MUVS-AB2 型号 V311 版本(下称产品)的出厂固件,固件的升级能够提升性能或者引入新功能,敬请留意 摩图科技官网 http://www.morpx.com 以便获取最新版本,版本更新不另行通告。
- •请仔细阅读和理解本手册中的信息,不正确的使用可能导致产品无法正常工作,检测效果变差,甚至产品损坏。
- •未经摩图科技确认及授权,不可私自维修或改装产品上的电子元件,造成损坏的将不予以保修。
- •本手册中所提及的技术方案、视觉算法、通讯协议均为摩图科技自主研发,具有知识 产权,任何组织或个人不得拷贝、抄袭、剽窃摩图科技的技术成果,对于任何侵权行为,摩 图科技将采取法律手段予以维权。
- •MORPX 是杭州摩图科技有限公司的注册商标,MU 是小 MU 视觉传感器的注册商标。 文本或图片中涉及到的所有商标(名称与图案)归属于其持有者,特此声明。

1 概述

1.1 产品介绍

小 MU 视觉传感器是一款用于图像识别的传感器,其内置的深度学习引擎可以识别多种目标物体,例如颜色检测,球体检测,人体检测,卡片识别等。检测结果可以通过 UART 或 I2C 进行输出,体积小巧,功耗低,所有算法本地处理,无须联网,可广泛应用于智能玩具、人工智能教具、创客等产品或领域。

2 硬件与结构

2.1 产品外观

图 1. 正面视图

图 2. 反面视图

2.2 尺寸标注

图 3. 正面尺寸标注视图

表 1. pcb 尺寸信息

项目	参数
K	33mm
宽	32mm
高	11.5mm
重量	6.8g

2.3 硬件功能介绍

(1) 处理器:

新一代小 MU 视觉传感器采用 ESP32 模组方案,其具有 240Mhz 双核处理器,具有更多的内存空间,相比前代产品,处理速度更快,识别率更高,可以集成更多的视觉算法。该模组集成有蓝牙和 WIFI 功能,今后将提供无线数据传输功能。

(2)摄像头模组

小 MU 视觉传感器采用一颗 VGA 分辨率 (640x480) 广角镜头

表 2. 镜头参数信息

分辨率	640x480
最大帧率	60fps
传感器尺寸	1/4"
视场角 FOV	84°
焦距 EFL	2.5mm
光圈 F	2.2
镜头直径	5.5mm

通过寄存器可以设置摄像头的若干参数,包括: CAM_ZOOM 数码变焦,CAM_ROTATE 图像旋转,CAM_FPS 采样速率,CAM_AWB 白平衡,详见寄存器 0x10:CAMERA_CONF1。

注 1: 传感器长时间使用后可能导致镜头表面留有指纹,污渍,可使用柔软的棉布顺时针轻轻擦拭清洁,不可使用水或其他任何溶剂擦拭。

注 2: 如果摄像头发生脱落,重新安装时,请将摄像头背面四个角的丝印数字 1, 12, 13, 24 与 MU 主板上镜头母座的数字 1, 12, 13, 24 对应插入,如果插反将导致传感器无法工作;

(3) 光线传感器

MU 采用一颗高度集成的光线传感器用于辅助摄像头调节, 具有光线强度检测, 红外接近检测, 红外滑动手势检测等。

注 1: 该传感器的部分功能将在今后开放给用户使用;

注 2: 如果该部件脱落,请按照图片中所示方向插入 MU 主板的 4x2pin 底座上。

(4) 电源与接口电平转换

兼容 3.3V 和 5V 主控平台。

(5)信号输出接口

用于与主控设备的信号传输使用,采用 PH2.0-4P 接口,UART 模式和 I2C 模式引脚定义见下表:

表 3. 信号输出接口定义

管脚	UART 模式	I2C 模式
1	RX	SDA
2	TX	SCL
3	GND	GND
4	VDD	VDD

(6)输出模式选择拨码开关

采用 2 位拨码开关来选择信号输出类型, 定义见下表:

表 4. 输出模式拨码开关定义

拨码 1	拨码 1 Wifi 开关		信号输出类型
0	禁止使用 Wifi 功能*	0	UART 通讯方式
1	允许使用 Wifi 功能*	1	I2C 通讯方式

注1: *所示功能, 当前版本尚不具备注2: 向上拨动为1, 向下拨动为0

(7) 地址选择拨码开关

采用 2 位拨码开关来设定小 MU 设备地址, 定义见下表:

表 5. 地址选择拨码开关定义

拨码 2	设备地址
0	0x60
1	0x61
0	0x62
1	0x63
	拨码 2 0 1 0

注 1: UART 模式下可使用 0x00 作为广播地址

注2: 向上拨动为1, 向下拨动为0

(8) 复位按键

短按重启传感器。

(9) 模式按键

工作模式: 预留功能

烧录模式:按住 Mode 键后短按 Reset 键,便可进入烧录模式,用于固件更新

(10) LED1, LED2 可编程指示灯

传感器工作状态指示灯,在图像识别过程中,可通过寄存器进行自定义配置。

(11) 电源指示灯

上电时,如果电源正常,则常亮白色,否则熄灭

(12) WIFI 状态指示灯(预留功能)

2.4 电气特性

表 6. 电气特性参数

表 0. 电 1行注多数					
项目	单位	最小值	典型值	最大值	
输入电压	V	3.3	5	5.5	
供电电流(1)	mA	500	-	-	
工作电流(UART 模式) ⁽²⁾	mA	60	80	90	
工作电流(I2C 模式) ⁽²⁾	mA	60	85	100	
UART 波特率	bps	9600	115200	921600	
I2C 工作频率	Kbps	-	100	400	
工作温度	°C	-20	25	70	
Wifi 输入频率	MHz	2412	_	2484	

注 1: 在使用 Wifi 时,天线初始化时需要一个至少 500mA 的电流,初始化之后会降低为正常功耗水平; 注 2: 此工作电流在未开启 Wifi 下测得,其与 LED 亮度,摄像头采样频率,算法开启状态等因素相关。

3 功能描述

3.1 通讯模式

小 MU 视觉传感器支持 UART 和 I2C 通讯模式,主控与传感器之间通过寄存器来实现功能设置或数据交互。

3.1.1 UART 模式

图 4. UART 模式工作原理框图

采用标准通用异步收发传输器协议 UART (Universal Asynchronous Receiver/Transmitter)。采用8位数据位,1位停止位,无校验位,默认波特率为9600,波特率可以通过寄存器0x09 UART修改,只需配置一次,重启后生效。

该模式需要按照 MU-Protocol 协议来读取寄存器,设置寄存器,收发报文等。算法检测结果可以通过 3 种方式输出:应答模式,连续模式,事件模式。

- (1) 应答模式: 当 MU 接收到主控设备发来的"请求报文 0x12"后,将当前最新的数据报文返回给主控设备;
 - (2)连续模式: 当 MU 每处理完一帧图像后,立即将数据报文发送给主控设备;
- (3)事件模式: 当 MU 检测到目标物体后,立即将数据报文发送给主控设备,如果没有检测到物体则不发送报文。

3.1.2 I2C 模式

图 5. I2C 模式工作原理框图

该模式采用标准 I2C 协议读取或设置寄存器,检测结果通过读取寄存器的方式来获取,因此只具有应答模式。

每次只可读取或写入一个字节,不支持多字节连续读取或写入。

3.2 视觉算法

小 MU 视觉传感器集成有多种计算机视觉算法,内置摩图科技自主研发的嵌入式深度学习引擎,可以支持物体的检测和分类。MU 支持同时开启多种算法,但算法开启越多,速度将会变慢。每种算法可以单独设置其输出模式,部分算法支持性能 Level,参数输入,多物体检测,详见各算法介绍。

3.2.1 图像识别的特性

图像识别是对光源、色彩、背景、物体移动速度等因素十分敏感的技术,使用环境的差异 会对图像检测结果将产生不同的影响,为了获取较好的识别结果:

- (1)避免在过暗、过亮、强逆光的环境下使用,比如昏暗的房间,具有强烈光亮差别的窗边等;
 - (2)避免让灯光或强烈阳光直射目标物体,避免造成物体反光;
 - (3)避免在彩色灯光或可变换的灯光下使用,稳定均匀的白色是最好的光源;
 - (4)避免正对光源使用;
- (5)颜色敏感型算法不要在有近似颜色的背景下使用,比如绿色网球不要在绿色地毯上使用;
 - (6)避免在有类似目标物体的环境下使用,避免误报,比如球体检测旁边有一个橙子;

3.2.2 图像坐标系与检测数据

小 MU 视觉传感器采用图像坐标系,左上角为坐标原点(0,0),图像长宽比例为 4: 3,图像检测结果量化到了 $0 \sim 100$ 的区间内,如下图所示:

图 6. 图像坐标示意图

检测数据:

(1) id: 算法类型编号 (2) num: 目标物体数量 (2) x: 水平中心坐标 (3) y: 垂直中心坐标 (4) width: 物体边缘宽度

(4) Width: 物体边缘宽度 (5) height: 物体边缘高度

(6) label: 分类标签编号,部分算法适用,详见各算法介绍

3.2.3 算法列表

表 7. 算法列表

算法	算法	识别对象			返回结果			特殊要求
ID	ID 类型	类型	data1	data2	data3	data4	data5	117/14/25/37
1	颜色检测	指定的颜色	х	у	width	height	label	良好的白色光源
2	颜色识别	指定区域颜色	R	G	В	/	label	良好的白色光源
3	球体检测	橙色乒乓球 绿色网球	х	у	width	height	label	背景不宜过于复杂,尽量排除与目标球体近似的物体
4	预留	1	/	/	/	/	/	1
5	人体检测	人体上半身	х	у	width	height	/	需要包含头部特征,正 对摄像头效果最好
6	图形类卡片识别	对号, 叉号, 圆形, 方形, 三角形 5 种 卡片	x	у	width	height	label	卡片与镜头尽量垂直, 卡片旋转<30°,倾斜角 度<30°
7	交通标志 类卡片识 别	前进, 左转, 右转, 掉头, 停止 5 种卡 片	х	у	width	height	label	卡片与镜头尽量垂直, 卡片旋转<30°,倾斜角 度<30°
8	数字类卡片识别	0~9数字卡片	х	у	width	height	label	卡片与镜头尽量垂直, 卡片旋转<30°,倾斜角 度<30°

3.2.4 颜色检测, Vision-ID: 1

简介:

该算法用于检测图像中是否存在指定颜色的色块,用户需要先设定好要检测的颜色分类标签以及最小尺寸,小于该设定尺寸的色块将被忽略,可以减少背景中的误报。如果检测到目标颜色,则返回该色块的坐标区域和尺寸大小。

目标物体:

表 8. 颜色检测分类表

分类标签	目标物体	图案	分类标签	目标物体	图案
1	黑色(深灰色)		2	白色(浅灰色)	
3	红色		4	黄色(橙色)	
5	绿色		6	青色(蓝绿色)	
7	蓝色		8	紫色	
0	未知	N/A			

- (1) 颜色检测对光源较为敏感,良好的白色稳定光源最为适宜;
- (2) 白平衡会对颜色检测产生明显的影响,建议使用自动锁定白平衡模式,将摄像头面对白纸进行测光,然后再识别颜色;
- (3) 适用于检测单一颜色的物体,混合颜色将会影响检测结果;
- (4) 由于光源照射造成颜色明暗分布不均匀或是产生阴影,可能会对检测结果有一定影响;
- (5) 环境背景中不宜出现与目标颜色类似的物体;
- (6) 所设定的最小检测区域越大,则可以更好的排除背景中杂色的干扰;
- (7) 目标物体越大,可以识别的距离越远,反之越近;
- (8) 由于 LED 灯光会对颜色检测产生影响,故该算法会关闭 LED 的 Auto 模式,即 LED 颜色不会随是否检测到物体而变化,但可以将 LED 在手动模式下设为白光用于补光灯使用;
- (9) 可以开启高速采样模式。

输入参数选项:

表 9. 颜色检测输入参数列表

输入参数	含义	范围	默认值
0x25 Param1	无效	1	1
0x26 Param2	无效	1	1
0x27 Param3	识别区域宽度	0 ~ 100%	10
0x28 Param4	识别区域高度	0 ~ 100%	10
0x29 Param5	分类标签	0~8	3(红色)

返回结果:目标区域的颜色 R, G, B 的平均值(0~255)及分类标签。

图 7. 颜色检测返回结果示意图

3.2.5 颜色识别, Vision-ID: 2

简介:

该算法用于检测图像中指定区域的颜色,用户需要先设定好要检测区域的中心坐标和范围 大小,返回该区域颜色 R, G, B 的平均值以及颜色分类标签(如下所示)。

目标物体:

表 10. 颜色识别分类表

分类标签	目标物体	图案	分类标签	目标物体	图案
1	黑色(深灰色)		2	白色(浅灰色)	
3	红色		4	黄色(橙色)	
5	绿色		6	青色(蓝绿色)	
7	蓝色		8	紫色	
0	未知	N/A			

- (10) 该算法用于识别指定区域的颜色;
- (11) 颜色检测对光源较为敏感,良好的白色稳定光源最为适宜;
- (12) 建议使用自动锁定白平衡模式,将摄像头面对白纸进行测光,然后再识别颜色;
- (13) 适用于单一颜色物体,混合颜色物体可能无法准确的识别颜色;
- (14) 所检测的目标区域越大,需要更多的计算时间;
- (15) 目标物体越大,可以识别的距离越远,反之越近;
- (16) 光线不足时,可以将 LED 设为手动模式,并使用较强的白光进行小范围内的补光。

输入参数选项:

表 11. 颜色识别参数列表

输入参数	含义	范围	默认值
0x25 Param1	识别区域中心X坐标	0 ~ 100%	50
0x26 Param2	识别区域中心Y坐标	0 ~ 100%	50
0x27 Param3	识别区域宽度	0 ~ 100%	5
0x28 Param4	识别区域高度	0 ~ 100%	5
0x29 Param5	无	/	/

返回结果:目标区域的颜色 R, G, B 的平均值 (0~255) 及分类标签。

图 8. 颜色识别返回结果示意图

3.2.6 球体检测, Vision-ID: 3

简介:

该算法用于检测图像中是否存在指定的球体:橙色乒乓球或绿色网球,检测到则返回球体的坐标区域,尺寸大小和分类标签。

目标物体:

表 12. 球体检测分类表

分类标签	目标物体	图案	分类标签	目标物体	图案
1	橙色乒乓球		2	绿色网球	

- (1) 尽量呈现完整的球体边缘特征, 当球体被遮挡后, 会影响检测效果;
- (2) 尽量不要在与球体颜色(橙黄色,绿色)近似的背景中使用;
- (3)球体周围不要出现类似球体且颜色相近的其他物体,如黄色的橙子,圆形图案等;
- (4) 乒乓球由于体积较小,有效检测范围会比网球近,可以通过 CAM_ZOOM 参数来改变视野范围;
- (5) 如果球体移动速度过快,会造成拖影现象,可以采用高速采样 CAM_FPS 改善该问题;
- (6)最好在白色灯光环境中使用,特殊环境可以改变白平衡参数来调整;
- (7)不要有强烈的侧光照到球体上而造成明显的明暗区域,造成球体成像失真;
- (8) 当图像中存在多个球体时,返回检测结果最好的那一个。

返回结果: 球体的中心坐标, 球体外边框大小, 分类标签。

图 9. 球体检测返回结果示意图

3.2.7 人体检测, Vision-ID: 5

简介:

该算法用于检测图像中是否存在人体,人体特征指由头部和上半身所围成的区域,检测到 则返回人体的坐标区域和大小。

目标物体:

表 13. 人体检测目标物体

	CC	-1 10.150 t.1.
分类标签	目标物体	图案
无	人体	

算法特殊性:

- (1)人体特征指由头部和上半身所围成的区域;
- (2)人体检测不区分性别和年龄,但会受到高矮胖瘦的影响,身材小则检测距离较近;
- (3)人体正对摄像头的检测效果最好,如果倾斜角度过大可能影响检测效果;
- (4) 当穿着衣物和背景近似时会影响检测效果;
- (5) 当图像中存在多个人体时,返回检测结果最好的那一个。

返回结果:人体的中心坐标和所围成的大小,无分类标签。

图 10. 人体检测返回结果示意图

3.2.8 图形卡片识别, Vision-ID: 6

简介:

该算法用于检测图像中是否存在指定的图形卡片,检测到则返回卡片的坐标区域,尺寸大 小和分类标签。

目标物体:

表 14. 图形卡片分类表

分类标签	目标物体	图案	分类标签	目标物体	图案
1	对号图案	Dispercions Uniform Control of C	2	叉号图案	Organization Control of Control o
3	圆形图案	Stape Cite Solution Solu	4	方形图案	Section Section 1
5	三角形图案	Prace franção	0	无效	

- (1) 当前版本仅支持上述表格中的图案;
- (2)卡片右上角的缺口及文字用于标记卡片正方向;
- (3)卡片中的矩形框是用于定位的,背景中应避免出现类似物体;
- (4)卡片垂直正对摄像头的检测效果最好,旋转角度<30°,倾斜角度<30°;
- (5)应避免强光直接照射到卡片上造成反光现象;
- (6) 当图像中存在多个卡片时,返回检测结果最好的那一个;
- (7)在准确率要求比较高,或是存在多组卡片混合使用的场合,请使用 Level 中的性能优先模式,该模式会大幅降低不同类型卡片之间的误报问题,但检测速度会随之降低,反之可使用速度优先或均衡性能模式。

返回结果:卡片中心坐标,卡片外框大小,分类标签

图 11. 卡片识别返回结果示意图

3.2.9 交通卡片识别, Vision-ID: 7

简介:

该算法用于检测图像中是否存在指定的交通卡片,检测到则返回卡片的坐标区域,尺寸大小和分类标签。

目标物体:

表 15. 交通卡片分类表

分类标签	目标物体	图案	分类标签	目标物体	图案
1	前进	Totals forward	2	左转	totisal
3	右转	Trufficiage.	4	掉头	Potstanove Company of the Company of
5	停止	Traffic rus	0	无效	

算法特殊性:

同图形卡片。

返回结果:

同图形卡片。

3.2.10 数字卡片识别, Vision-ID: 8

简介:

该算法用于检测图像中是否存在指定的数字卡片,检测到则返回卡片的坐标区域,尺寸大小和分类标签。

目标物体:

表 16. 数字卡片分类表

		衣 16. 致	子下万万尖衣		
分类标签	目标物体	图案	分类标签	目标物体	图案
1	数字 1	Number!	2	数字 2	1 Martie 2
3	数字3	3	4	数字 4	Lamber Lamber

5	数字 5	5	6	数字 6	6
7	数字 7	Number 7	8	数字 8	S Libris O
9	数字 9	Number 3	0	数字 0	Lambro 3

算法特殊性:

同图形卡片。

返回结果:

同图形卡片。

3.3 使用说明

3.3.1 使用步骤

- (1) 设置 Address 地址;
- (2) 设置 Output 模式;
- (3) 版本校验;
- (4) 配置硬件参数;
- (5) 配置算法参数;
- (6) 读取检测结果。

3.3.2 设置地址

通过拨码开关来设定 MU 的设备地址, 详见 2.3(7)

3.3.3 设置输出模式

通过拨码开关来设定通讯方式

注: 需要在设定完 Address 和 Output 之后再上电,已经上电的则需要按 reset 重启

3.3.4 版本校验

查询 PROTOCOL_VER 和 FIRMWARE_VER 寄存器来判断固件是否与手册一致,不一致则可能导致寄存器功能不同或算法版本区别。

3.3.5 设置硬件参数

根据实际应用场景和需求寄存器相应的寄存器参数,主要涉及 CAMERA_CONF1, LED1, LED2 寄存器。

3.3.6 设置算法参数

每个算法 VISION_ID 都具有相应的寄存器,在设置算法参数前需要先设置 VISION_ID

3.3.7 UART 报文读取检测结果

应答模式:读取报文前需要先发送"请求报文 0x12",然后等待接收"数据报文 0x11"

连续模式:接收"数据报文 0x11" 事件模式:接收"数据报文 0x11"

3.3.8 寄存器方式读取检测结果

适用于 UART 或 I2C 直接操作寄存器的方式,根据实际应用需求的不同,读取流程有不同的优化方案,一个必要的简单流程如下所示:

在实际使用时,可以根据其他寄存器来提高读取效率和可靠性,这类寄存器包括:

(1) REG_LOCK:

寄存器读取写安全锁,用于保护寄存器在读取期间不被更新,避免出现检测结果来在两帧 图像的情况;

(2) FRAME_CNT:

帧号,用于判断所读取的数据是否已更新,尤其是当新读取的数据与上一帧相同时;

(3) VISION_STATUS:

算法启用状态,用于快速查询已经开启的算法;

(4) VISION_DET:

算法检测状态,用于快速查询各算法是否检测到了目标物体,相应的算法位会置1;

(5) RESULT_NUM:

检测结果数量,用于查询有多少的检测结果可以读取。

(6) READ_STATUS:

寄存器读取状态,用于查询 RESULT_DATA1~5 的读取状态,有新的结果时该位置 1,读取后清 0,可以避免数据重复读取,或判断结果是否已更新。

- 注 1: 寄存器的详细含义见各寄存器说明;
- 注 2: RESULT_ID 默认参数为 1, 当算法不支持多物体检测时, 设置完 VISION_ID 后直接读取 RESULT_DATA 即可;
- 注3:对于快速实时性应用,直接读取 RESULT_DATA 会更高效。

3.3.9 检测结果读取方案示例

(1)快速读取方案

(2) 只读取检测到物体时的数据(RESULT_ID 默认为 1)

(3)读取全部算法与结果:

4 MU Protocol 通讯协议

UART 模式下的数据通信协议。

4.1 协议格式

START LEN ADDR CMD DATA CHK END

START: 起始码,始终为 0xFF

LEN: 长度,从起始码到结束码所有的字节数

ADDR : 设备地址, 范围 0x60~0x63, 特别的: 0x00 为广播地址, 所有设备都会接收

CMD: 指令码/应答码

DATA:数据,详见各指令码介绍

CHK : 校验码,从 START 至 DATA 所有字节累加求和

例: FF 08 60 01 20 03 8B ED 其中 8B 为校验码, 0xFF+0x08+0x60+0x01+0x20+0x03 = 0x8B

END:结束码,始终为 0xED

4.2 应答码

错误类型	起始码	长度	设备地址	应答码	数	据	校验码	结束码
应答正确				0xE0				
应答错误			0xE1					
未知错误				0xE2				
超时错误				0xE3				
校验错误	0xFF	LEN	ADDR	0xE4	#5A777	寄存器	СНК	0xED
长度错误	UXFF	LEIN	ADDR	0xE5	指令码	地址	СПК	UXED
指令错误				0xE6		,		
地址错误				0xE7				
参数错误			. =	0xE8				
写入错误				0xE9				

4.3 指令码

指令类型	起始码	长度	设备地址	指令码	数据			校验码	结束码		
写寄存器					0x01	RE	G	VAL		CHK 0xED	
读寄存器	0xFF	LEN	ADDR	0x02		RE	G		0xED		
数据报文	UXFF	LEIN	ADDK	0x11	FRAME	VISION	NUM	RESULTS	CHK	UXED	
请求报文				0x12		VISIO	N_ID				

4.3.1 写寄存器 0x01

描述: 向指定寄存器 REG 写入数据 DATA (1Byte)

起始码	长度	设备地址	指令	数	据	校验码	结束码
0xFF	LEN	ADDR	0x01	REG	DATA	СНК	0xED

REG:寄存器地址 DATA:寄存器参数

写入成功:

起始码	长度	设备地址	指令	数据		校验码	结束码
0xFF	LEN	ADDR	0xE0	0x01	REG	СНК	0xED

写入失败:

起始码	长度	设备地址	指令	校验码	结束码
0xFF	LEN	ADDR	应答码	СНК	0xED

4.3.2 读寄存器 0x02

描述: 读取指定寄存器 REG 的数据

起始码	长度	设备地址	指令	数据	校验码	结束码
0xFF	LEN	ADDR	0x02	REG	СНК	0xED

REG: 寄存器地址

读取成功:

起始码	长度	设备地址	指令	数	据	校验码	结束码
0xFF	LEN	ADDR	0xE0	0x02	DATA	CHK	0xED

DATA: 所读取的数据

读取失败:

起始码	长度	设备地址	指令	校验码	结束码
0xFF	LEN	ADDR	应答码	СНК	0xED

4.3.3 数据报文 0x11

描述: 传感器的图像检测结果报文, 无应答报文。

起始码	长度	设备地址	指令		数据			校验码	结束码
0xFF	LEN	ADDR	0x11	FRAME	VISION_ID	NUM	RESULTS	СНК	0xED

FRAME: 帧号, 1~100 循环累计, MU 每处理一帧数据,该位自动增1

VISION_ID: 算法类型编号 NUM: 检测结果 RESULT 的数量

RESULT: 检测结果数据,每条检测结果包含 5 个字节,不同算法所代表的含义不同,如下

所示:

算法	Byte1	Byte2	Byte3	Byte4	Byte5
颜色检测	Center_X	Center_Y	Width	Height	Label
颜色识别	R	G	В	/	Label
球体检测	Center_X	Center_Y	Width	Height	Label
人体检测	Center_X	Center_Y	Width	Height	/
卡片识别	Center_X	Center_Y	Width	Height	Label

4.3.4 请求报文 0x12

描述: 当 MU 接收到该报文后会立即返回当前检测结果。

起始码	长度	设备地址	指令	数据	校验码	结束码
0xFF	LEN	ADDR	0x12	VISION_ID	СНК	0xED

VISION_ID: 算法类型编号

请求成功: 返回 0x11 数据报文

请求失败:

起始码	长度	设备地址	指令	校验码	结束码
0xFF	LEN	ADDR	错误码	СНК	0xED

5 寄存器

Register Paralle	<i>⊃</i> =	引行器					
1985	Address	Register	Default	R/W	Bit	Symbol	Description
Dadd	0x01		0x03	R	[7:0]	PROTOCOL_VER	协议版本号
0x00	0x02		N/A	R	[7:0]	FIRMWARE_VER	固件版本号,与固件版本相关
No.04 SENSOR_CONFI	0x03		0x00	w	[0]	RESTART	0:正常工作
SENSOR_CONF					FO 41	DECEDI/ED	
0x004 SRNSOR_CONFI 传感報设置 1 0x00 R/W [2] DEFAULT 0: 当前配置 1: 效無所有等存額試入配置 1: 效無所有等存額試入配置 1: 效無所有等存額試入配置 1: 效無所有等存額試入配置 2: 分析報法可安之他,其口后侵感器将不会更新检测结果。直测验院安全镜,可以用于确保检测数据是					[0:1]	KESEKVED	·
R/W [7:3] RESERVED SPANISH	0x04	_	0x00	R/W	[2]	DEFAULT	0: 当前配置
R/W [0] REG_LOCK SPR		Nom VE					
Ox05 LOCK 寄存器領 Ox00 R/W [0] REG_LOCK 结果 直到解除安全領,可以用于确保检测数据是来自同一次的检测结果。0:关闭。1:并启。 R/W [0] LED1_MODE LED1 T作模式。0:自动模式。1:非动模式。1:非动模式。2000; 关闭。000; 关闭。000; 关闭。000; 关闭。000; 关闭。000; 差闭。000; 差别。000; 差别。000; 差别。000; 差别。000; 差别。000; 差别。000; 蓝色。100; 至初,可以用于确保检测数据是来自同一次的模式。1:例如图像后,LED1 灯光是否保持。0:关闭灯光。1:保持打光自由标模式:3 未检测到物体时 LED1 的颜色手动模式:1:保护预式:700。000; 关闭。000; 关闭。000; 关闭。000; 关闭。000; 经由。100; 蓝色。100; 红色。000; 关闭。000; 关闭。000; 关闭。000; 关闭。000; 关闭。000; 美阳,可以用于确保的工作,并加模式:并加设置 LED2 的颜色,非加模式:并加设置 LED2 的颜色,非加模式:并加设置 LED2 的颜色。100; 红色。100; 红色。100; 红色。100; 红色。100; 红色。100; 红色。100; 红色。100; 蓝色。100;					[7:3]	RESERVED	
0x06 LED1 LED1 设置 0x28 R/W [0] LED1_MODE 0: 自动模式: 注测到物体后 LED1 的颜色 000: 关闭 000: 关闭 000: 关闭 000: 关闭 001: 红色 100: 蓝色 101: 紫色 111: 白色 R/W [4] LED1_HOLD 每处理一帧图像后, LED1 灯光是否保持 0: 关闭灯光 1: 保持灯光 Bio耐表式: 当未检测到物体时 LED1 的颜色 900: 关闭 001: 红色 010: 蓝色 101: 紫色 110: 黄色 111: 白色 R/W [7:5] LED1_UNDETECT_COL 0R 010: 绿色 011: 黄色 100: 蓝色 101: 紫色 110: 青色 111: 白色 0x07 LED2 LED1 设置 R/W [0] LED2_MODE LED2_T作模式 1: 手动模式: 控测到物体后 LED2 的颜色 900: 关闭 001: 红色 001: 红色 001: 红色 001: 红色 001: 红色 101: 黄色 100: 蓝色 100: 蓝色 110: 黄色 110: 青色 111: 白色	0x05		0x00	R/W	[0]	REG_LOCK	结果,直到解除安全锁,可以用于确保检测数据是 来自同一次的检测结果 0:关闭
0x06 LED1 LED1 设置 0x28 R/W [3:1] LED1_DETECT_COLOR 手动模式: 手动设置 LED1 的颜色 000: 关闭 001: 绒色 010: 蓝色 110: 南色 111: 白色 R/W [4] LED1_HOLD 每处理一帧取像后, LED1 灯光是否保持 0: 关闭灯光 1: 保持灯光 自动模式: 当未检测到物体时 LED1 的颜色 手动模式: 当未检测到物体时 LED1 的颜色 100: 蓝色 101: 紫色 110: 南色 111: 白色 0x07 LED2 LED1 设置 R/W [0] LED2_MODE LED2_TM模式 0: 自动模式: 格测到物体后 LED2 的颜色 手动模式: 手动设置 LED2 的颜色 手动模式: 手动设置 LED2 的颜色 100: 紫色 100: 紫色 110: 南色 111: 白色 0x07 LED2 LED1 设置 LED2_DETECT_COLOR 2 自动模式: 标测到物体后 LED2 的颜色 100: 紫色 101: 紫色 100: 紫色 101: 紫色 1				R/W	[0]	LED1_MODE	0: 自动模式
Bin模式: 当末检测到物体时 LED1 的颜色 手动模式: 无效 000: 关闭 001: 红色 011: 黄色 100: 蓝色 101: 紫色 110: 青色 111: 白色 R/W [0] LED2_MODE LED2_T作模式 0: 自动模式 1: 手动模式 目动模式: 推测到物体后 LED2 的颜色 手动模式: 推测到物体后 LED2 的颜色 手动模式: 推测到物体后 LED2 的颜色 手动模式: 手动设置 LED2 的颜色 11: 连色 000: 关闭 000: 关闭 001: 红色 01: 黄色 100: 蓝色 101: 黄色 101: 黄色 100: 蓝色 101: 紫色 110: 青色 111: 白色	0x06		0x28		4		手动模式: 手动设置 LED1 的颜色 000: 关闭 001: 红色 010: 绿色 011: 黄色 100: 蓝色 101: 紫色 110: 青色 111: 白色 每处理一帧图像后, LED1 灯光是否保持 0: 关闭灯光
0x07 LED2 LED1 设置 0x28 R/W [0] LED2_MODE 0: 自动模式 1: 手动模式 1: 手动模式 自动模式: 检测到物体后 LED2 的颜色 手动模式: 手动设置 LED2 的颜色 000: 关闭 001: 红色 010: 绿色 010: 绿色 011: 黄色 100: 蓝色 100: 蓝色 110: 青色 111: 白色				R/W	[7:5]	I .	自动模式: 当未检测到物体时 LED1 的颜色 手动模式: 无效 000: 关闭 001: 红色 010: 绿色 011: 黄色 100: 蓝色 101: 紫色 110: 青色 111: 白色
0x07 LED2 LED1 设置 0x28 R/W [3:1] LED2_DETECT_COLOR 2 010: 绿色 011: 黄色 100: 蓝色 110: 青色 111: 白色				R/W	[0]	LED2_MODE	0: 自动模式
R/W [4] LED2_HOLD 每处理一帧图像后,LED1 灯光是否保持	0x07		0x28	R/W	[3:1]		自动模式: 检测到物体后 LED2 的颜色 手动模式: 手动设置 LED2 的颜色 000: 关闭 001: 红色 010: 绿色 011: 黄色 100: 蓝色 101: 紫色 110: 青色
				R/W	[4]	LED2_HOLD	每处理一帧图像后,LED1 灯光是否保持

						0. YAMA
						0: 关闭灯光
						1: 保持灯光
						自动模式: 当未检测到物体时 LED2 的颜色
						手动模式: 无效
						000: 关闭
						001: 红色
			R/W	[7:5]	LED2_UNDETECT_COL	010: 绿色
			''	[,,5]	OR	011: 黄色
						100: 蓝色
						101: 紫色
						110: 青色
						111: 白色
				ro 01	1554 15151	LED1 的发光强度
				[3:0]	LED1_LEVEL	范围: 0~15
0x08	LED_LEVEL	0x11	R/W			LED2 的发光强度
				[7:4]	LED2_LEVEL	范围: 0~15
						设置串口波特率,修改后会自动保存。串口其他参
						数,数据位: 8,停止位: 1,校验位: 无
						000: 9600
						001: 19200
	UART			[2:0]	BAUDRATE	010: 38400
0x09	串口设置	0x00	R/W			011: 57600
						100: 115200
						101: 230400
						110: 460800
						111: 921600
				[7:3]	RESERVED	
0x0A~	RESERVED	0x00	,			
0x0F	预留	0,00	,		XX	
						数码变焦,数字越大,则视野越远,但视角会变窄,
						反之视角越大,视野越近
				A_{λ}	- X ->	000: 默认配置/自动调节
				FD 01		001: ZOOM1
				[2:0]	CAM_ZOOM	010: ZOOM2
						011: ZOOM3
						100: ZOOM4
		-/42			*	101: ZOOM5
						旋转图像
				[3]	CAM_ROTATE	0: 默认方向
				[2]	CAMI_KOTATE	1: 图像旋转 180 度
						摄像头采样速率
				[4]	CAM_FPS	0:标准采样,性能与功耗较为均衡
0x10	CAMERA_CONF1	0x10	R/W			1: 高速采样,处理速度更快,减少图像拖影问
0.10	摄像头设置 1	0.10	10 00			题,但会增加功耗,适用于运动速度较快的场景
						白平衡模式
	W. J. a.					00:自动白平衡,适用于常规环境
						01:自动锁定白平衡,通过采集若干帧图像进
						行测光, 然后锁定白平衡参数, 适用于颜色敏感的
						算法,或是有大面积颜色背景的应用情况。
				[6:5]	CAM_AWB	测光时需要在白色灯光环境下进行,将摄像头
						面对一张白纸进行测光。
						10:白光/阴天,对于采用白色灯光的室内,或
						是阴天的室外,可以使用此模式
	1					11: 黄光/晴天,对于采用黄色灯光的室内,或
						是晴天的室外,可以使用此模式
						是晴天的室外,可以使用此模式
				[7]	RESERVED	是晴天的室外,可以使用此模式

0x1E	RESERVED 预留	0x00	/			
0x1F	FRAME_CNT 帧号	0x01	R	[0:7]	FRAME_CNT	帧号,每处理完一帧图像,帧号会增加 1,累计到 100 后置 1 重新计数 范围: 1~100
0x20	VISION_ID 算法类型编号	0x00	R/W	[7:0]	VISION_ID	算法类型编号 范围: 1~16
				[0]	STATUS	算法使能状态 0: 关闭算法 1: 开启算法
				[1]	DEFAULT_VISION	算法默认设置 0: 当前设置 1: 恢复默认设置
0x21 VISION_CONF1 算法设置 1	0v20	R/W	[3:2]	OUTPUT_MODE	检测结果输出模式 00:应答模式,接收到请求报文指令后,或 bit[7] 置 1 后,返回检测结果报文 01:连续模式,持续输出检测结果报文 10:事件模式,当检测到物体后,输出检测结 果报文	
	算法设置 1	0x20	R/W	[5:4]	LEVEL	算法性能,不同算法具有不同的 LEVEL 定义,详见算法介绍 00: 默认参数 01: 速度优先 10: 均衡性能 11: 准确率优先
				[6]	RESERVED	
					报文输出控制,在 UART 连续模式和事件模式下,	
			[7]	OUTPUT_EN	置1后会持续报文输出,在UART应答模式下,置 1后会返回一条报文,然后自动清0该位 0:关闭报文输出	
	DECEDI/ED					1: 开启报文输出
0x22~ 0x24	RESERVED 预留	0x00	1			
0x25	PARAM_VALUE1 算法参数字节 1	0x00	R/W	[7:0]	PARAM_VALUE1	
0x26	PARAM_VALUE2	0x00	R/W	77.01		
	算法参数字节 2	674		[7:0]	PARAM_VALUE2	
0x27	算法参数字节 2 PARAM_VALUE3 算法参数字节 3	0x00	R/W	[7:0]	PARAM_VALUE2 PARAM_VALUE3	算法配置参数,各算法具有不同的参数定义,详见 算法介绍
0x27 0x28	PARAM_VALUE3		R/W R/W		_	
	PARAM_VALUE3 算法参数字节 3 PARAM_VALUE4	0x00		[7:0]	PARAM_VALUE3	
0x28	PARAM_VALUE3 算法参数字节 3 PARAM_VALUE4 算法参数字节 4 PARAM_VALUE5	0x00 0x00	R/W	[7:0] [7:0]	PARAM_VALUE3	算法介绍
0x28	PARAM_VALUE3 算法参数字节 3 PARAM_VALUE4 算法参数字节 4 PARAM_VALUE5 算法参数字节 5	0x00 0x00	R/W	[7:0] [7:0] [7:0]	PARAM_VALUE3 PARAM_VALUE4 PARAM_VALUE5	算法 1 使能状态,当开启算法 1 后,该位自动置 1 0:未开启 1:已开启
0x28	PARAM_VALUE3 算法参数字节 3 PARAM_VALUE4 算法参数字节 4 PARAM_VALUE5 算法参数字节 5	0x00 0x00	R/W	[7:0] [7:0] [7:0]	PARAM_VALUE3 PARAM_VALUE4 PARAM_VALUE5 VISION1	算法介绍 算法 1 使能状态,当开启算法 1 后,该位自动置 1 0:未开启 1:已开启 下同
0x28 0x29	PARAM_VALUE3 算法参数字节 3 PARAM_VALUE4 算法参数字节 4 PARAM_VALUE5 算法参数字节 5	0x00 0x00 0x00	R/W	[7:0] [7:0] [7:0] [0]	PARAM_VALUE3 PARAM_VALUE4 PARAM_VALUE5 VISION1 VISION2	算法介绍 算法 1 使能状态,当开启算法 1 后,该位自动置 1 0:未开启 1:已开启 下同 算法 2 使能状态
0x28 0x29	PARAM_VALUE3 算法参数字节 3 PARAM_VALUE4 算法参数字节 4 PARAM_VALUE5 算法参数字节 5	0x00 0x00 0x00	R/W	[7:0] [7:0] [7:0] [0] [1] [2]	PARAM_VALUE3 PARAM_VALUE4 PARAM_VALUE5 VISION1 VISION2 VISION3	算法介绍 算法 1 使能状态, 当开启算法 1 后,该位自动置 1 0:未开启 1: 已开启 下同 算法 2 使能状态 算法 3 使能状态
0x28 0x29	PARAM_VALUE3 算法参数字节 3 PARAM_VALUE4 算法参数字节 4 PARAM_VALUE5 算法参数字节 5	0x00 0x00 0x00	R/W	[7:0] [7:0] [7:0] [0] [1] [2] [3] [4] [5]	PARAM_VALUE3 PARAM_VALUE4 PARAM_VALUE5 VISION1 VISION2 VISION3 VISION4 VISION5 VISION6	算法介绍 算法 1 使能状态, 当开启算法 1 后,该位自动置 1 0:未开启 1:已开启 下同 算法 2 使能状态 算法 3 使能状态 算法 4 使能状态
0x28 0x29	PARAM_VALUE3 算法参数字节 3 PARAM_VALUE4 算法参数字节 4 PARAM_VALUE5 算法参数字节 5	0x00 0x00 0x00	R/W	[7:0] [7:0] [7:0] [0] [1] [2] [3] [4] [5] [6]	PARAM_VALUE3 PARAM_VALUE4 PARAM_VALUE5 VISION1 VISION2 VISION3 VISION4 VISION5 VISION6 VISION7	算法介绍 算法 1 使能状态, 当开启算法 1 后,该位自动置 1 0:未开启 1:已开启下同 算法 2 使能状态 算法 3 使能状态 算法 4 使能状态 算法 5 使能状态 算法 5 使能状态 算法 5 使能状态 算法 7 使能状态
0x28 0x29	PARAM_VALUE3 算法参数字节 3 PARAM_VALUE4 算法参数字节 4 PARAM_VALUE5 算法参数字节 5	0x00 0x00 0x00	R/W	[7:0] [7:0] [7:0] [0] [1] [2] [3] [4] [5] [6] [7]	PARAM_VALUE3 PARAM_VALUE4 PARAM_VALUE5 VISION1 VISION2 VISION3 VISION4 VISION5 VISION6 VISION7 VISION8	算法介绍 算法 1 使能状态, 当开启算法 1 后,该位自动置 1 0:未开启 1:已开启下同 算法 2 使能状态 算法 3 使能状态 算法 4 使能状态 算法 5 使能状态 算法 6 使能状态 算法 6 使能状态 算法 8 使能状态
0x28 0x29	PARAM_VALUE3 算法参数字节 3 PARAM_VALUE4 算法参数字节 4 PARAM_VALUE5 算法参数字节 5 VISION_STATUS1 算法使能状态 1	0x00 0x00 0x00	R/W	[7:0] [7:0] [7:0] [0] [0] [1] [2] [3] [4] [5] [6] [7] [0]	PARAM_VALUE3 PARAM_VALUE4 PARAM_VALUE5 VISION1 VISION2 VISION3 VISION4 VISION5 VISION6 VISION7 VISION8 VISION9	算法介绍 算法 1 使能状态, 当开启算法 1 后,该位自动置 1 0:未开启 1:已开启 下同 算法 2 使能状态 算法 3 使能状态 算法 4 使能状态 算法 5 使能状态 算法 6 使能状态 算法 6 使能状态 算法 8 使能状态 算法 8 使能状态 算法 9 使能状态
0x28 0x29	PARAM_VALUE3 算法参数字节 3 PARAM_VALUE4 算法参数字节 4 PARAM_VALUE5 算法参数字节 5	0x00 0x00 0x00	R/W	[7:0] [7:0] [7:0] [0] [1] [2] [3] [4] [5] [6] [7]	PARAM_VALUE3 PARAM_VALUE4 PARAM_VALUE5 VISION1 VISION2 VISION3 VISION4 VISION5 VISION6 VISION7 VISION8	算法介绍 算法 1 使能状态, 当开启算法 1 后,该位自动置 1 0:未开启 1:已开启下同 算法 2 使能状态 算法 3 使能状态 算法 4 使能状态 算法 5 使能状态 算法 6 使能状态 算法 6 使能状态 算法 8 使能状态

				[4]	VISION13	算法 13 使能状态	
				[5]	VISION13	算法 14 使能状态	
				[6]	VISION15	算法 15 使能状态	
026	DECEDVED			[7]	VISION16	算法 16 使能状态	
0x2C~ 0x2F	RESERVED 预留	0x00	/				
				[0]	VISION1	算法 1 检测结果, 当检测到物体后置 1, 否则置 0, 可以快速的判断哪个算法检测到了物体 0: 未检测到物体 1: 检测到物体 下同	
	VISION_DET1			[1]	VISION2	算法 2 检测结果	
0x30	算法检测结果 1	0x00	R	[2]	VISION3	算法 3 检测结果: 球体检测	
	7772 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			[3]	VISION4	算法 4 检测结果	
				[4]	VISION5	算法 5 检测结果: 人体检测	
				[5]	VISION6	算法 6 检测结果	
						1111	
				[6]	VISION7	算法7检测结果:交通卡片识别	
				[7]	VISION8	算法 8 检测结果	
				[0]	VISION9	算法 9 检测结果	
				[1]	VISION10	算法 10 检测结果	
		()X()()		[2]	VISION11	算法 11 检测结果	
021	VISION_DET2			[3]	VISION12	算法 12 检测结果	
0x31	算法检测结果 2		R	[4]	VISION13	算法 13 检测结果	
					[5]	VISION14	算法 14 检测结果
					[6]	VISION15	算法 15 检测结果
			[7]	VISION16	算法 16 检测结果		
0,22	DECEDVED			[/]	VISICIVIO	并以 10 恒州 记录	
0x32~ 0x33	RESERVED 预留	0x00	/				
0x34	RESULT_NUM 检测结果数量	0x00	R	[7:0]	RESULT_NUM 检测结果的数量	检测结果的数量 范围 0~10	
	RESULT_ID			7	RESULT_ID	检测结果的编号	
0x35	检测结果编号	0x01	R/W	[7:0]	检测结果的编号	范围 1~10	
0x36	READ_STATUS1	51	R/W	[0]	DATA1	检测结果 1 读取状态,用于判断当前检测结果是否已读取,避免重复读取或判断结果是否更新0:已读取 1:未读取下同	
0230	读取状态 1	0x00	IV/VV	[1]	DATA2	检测结果 2 读取状态	
			X	[2]	DATA3	检测结果 3 读取状态	
				[3]	DATA4	检测结果 4 读取状态	
				[4]	DATA5	检测结果 5 读取状态	
				[7:5]	 预留	1	
0x37~	RESERVED						
0x3F	预留	0x00	/				
0x40	RESULT_DATA1 检测结果 1	0x00	R	[7:0]	RESULT_DATA1		
0x41	RESULT_DATA2 检测结果 2	0x00	R	[7:0]	RESULT_DATA2		
0x42	RESULT_DATA3 检测结果 3	0x00	R	[7:0]	RESULT_DATA3	检测结果, 各算法具有不同的参数定义, 详见算法 介绍	
0x43	RESULT_DATA4 检测结果 4	0x00	R	[7:0]	RESULT_DATA4		
0x44	RESULT_DATA5 检测结果 5	0x00	R	[7:0]	RESULT_DATA5		
其他	RESERVED 预留	0x00	/				

6 固件更新

6.1 下载 Flash 工具

固件更新采用 espressif 官方提供的 Flash 下载工具,下载地址如下,版本如有更新,请到 espressif 官网查询,不另行通知,下载后解压并完成安装。

下载地址:

https://www.espressif.com/sites/default/files/tools/flash_download_tools_v3.6.5.zip

6.2 下载小 MU 视觉传感器固件

请关注摩图官网,或联系售后技术支持获得最新版固件: http://www.morpx.com/

6.3 固件更新

(1)连线

需要自行准备一个 USB-UART 通讯模块,按照串口形式接线,TX 接 RX, RX 接 TX, 如下:

(2) 进入烧录模式

按住小 MU 视觉传感器的 Mode 键,再短按 Reset 键,松开 Mode 键,即可进入烧录模式。

(3) 双击打开程序 flash_download_tools_vx.x.x.exe

(4) 点击选择 ESP32 DownloadTool

(5)设置参数并添加固件路径

SPI SPEED: 40MHz SPI MODE: DIO FLASH SIZE: 32Mbit BAUD: 115200

注:对于高性能的串口模块,可以选择更高的波特率,比如921600,可以更快的

完成烧录

COM: 连接模块的对应 COM 端口,可以通过 Windowns 设备管理器查看串口模块所连接的 COM 端口。

(6)添加文件路径

点击红色方框内"..."按钮,选择所要更新的固件文件路径,并在前面方框内勾选√;

(7) 输入地址

在@符号后面输入地址: 0x10000,

这点尤为重要,不要输入错误地址,也不要尝试其他地址,否则可能导致传感器内置 固件损坏,如有发生,请联系摩图科技售后客服进行解决

电话: (0571)8195 8588 邮箱: support@morpx.com

(8) 更新固件

点击左下角 "START" 按钮开始下载并等待完成,当窗口最下方的绿色进度条至最右端并显示 "FINISH 完成"字样,则下载完成。

(9) 重启小 MU

7 产品升级计划

感谢您购买及使用小 MU 视觉传感器,作为一款全新的产品一经推出便获得了非常不错的 反响和好评,大家对视觉识别有了全新的认识,同时也征集了不少的用户建议和意见。鉴于广大 用户及市场的迫切需求,我们率先推出了一个稳定的版本给广大用户去体验和使用,虽然此时小 MU 的部分功能尚未完全开放给用户,但小 MU 是一款支持固件更新的硬件产品,我们将会持续 的推出新的功能,完善算法性能,丰富算法种类,固件更新请关注摩图科技官方网站: http://www.morpx.com。

修订历史

日期	版本	发布说明
2018.10.24	V0.1	起草
2018.11.19	V0.2	1.寄存器 0x00 协议版本号更新为 0x02;
		2.寄存器 0x04 删除 Restart 位和 Lock 位;
		3.增加 0x03 Restart 寄存器;
		4.增加 0x05 Lock 寄存器;
		5.寄存器 0x09 UART 默认波特率改为 9600;
		6.描述文字的修改。
2018.11.28	V0.3	1.寄存器 0x00 协议版本号地址变更为 0x01, 值更新为
		0x03;
		2.寄存器 0x01 固件版本号地址变更为 0x02, 值更新为
		0x03;
		3.增加 0x08 LED_LEVEL 寄存器;
		4.增加 Vision_ID 0x02 颜色识别算法;
		5.Vision_ID 0x03 球体检测算法增加 Label 输出;
		6.镜头参数更新;
		7.添加固件更新章节。
2018.12.29	V0.4	1.增加 Vision_ID 0x02 颜色识别算法;
		2.增加 Vision_ID 0x06 图形卡片识别算法;
		3.增加 Vision_ID 0x08 数字卡片识别算法;
		4.更新了 Vision_ID 0x07 交通卡片图案;
		5.寄存器 0x02 FIRMWARE_VER 固件版本号更新为 0x04;
		6.寄存器 0x08 LED_LEVEL 默认参数修改为 0x11;
		7.寄存器 0x10 CAMERA_CONF1 默认参数修改为 0x10,
		高速采样模式;
		8.寄存器 0x21 VISION_CONF1 默认参数修改为 0x20;
		9.数据报文中增加颜色检测和颜色识别内容;
		10.其他描述性文字的更新。
2019.04.22	V0.5	1.硬件更新,采用全新的光线传感器替代原光敏电阻,镜
		头参数更新;
	17	2.更新了形状卡片和数字卡片图案;
	72 =	3.文字描述及配图更新。
1	1	1