Algebra y geometria I, si hay algun error hablar con Maxi Nielsen

69/69/420

Relaciones

Definiciones

Dados 2 conjuntos A y B, un **par ordenado** es de la forma (a,b) donde $a \in A$ y $b \in B$. a es la primer componente y b la segunda.

Producto cartesiano: $AxB = \{(a, b) : a \in A, b \in B\}$

Se grafica poniendo a los elementos de A sobre el semieje de las x y a los de B sobre el de la Y.

Teorema 1.1

Sean A, B v C:

1.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

2.
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

3. Conmutativa del \times

Relacion: Una relacion de un conjunto A en un conjunto B es un subconjunto \mathcal{R} de $A \times B$. Si $(a,b) \in \mathcal{R}$ se dice que a esta relacionado con b por \mathcal{R} y se nota $a\mathcal{R}b$.

Se grafica como el producto cartesiano y pintando los puntos. O en un diagrama de Venn s
shace una flecha de a a b si $a\mathcal{R}b$.

$$Dom(\mathcal{R}) = \{a \in A : (a, b) \in \mathcal{R}, \text{ para algun } b \in B\}$$

$$Im(\mathcal{R}) = \{b \in B : (a, b) \in \mathcal{R}, \text{ para algun } a \in A\}$$

Definicion Sea \mathcal{R} una relacion de un conjunto A en un conjunto B. Si $a \in A$, el conjunto

$$\mathcal{R}(\{a\}) = \mathcal{R}(a) = \{b \in B : (a,b) \in \mathcal{R}\}\$$

es la imagen de a por \mathcal{R} , y si $b \in B$, la pre-imagen de b por \mathcal{R} es el conjunto

$$\mathcal{R}^{-1}(\{b\}) = \mathcal{R}^{-1}(b) = \{a \in A : (a,b) \in \mathcal{R}\}\$$

Definicion En general, si \mathcal{R} una relacion de un conjunto A en un conjunto B y X es un subcinjunto de A, el conjunto

$$\mathcal{R}(X) = \{b \in B : (a, b) \in \mathcal{R}, \text{ para algun } a \in X\}$$

es la imagen de X por \mathcal{R} , y si Y es un subconjunto de B, la pre-imagen de Y por \mathcal{R} es el conjunto $\mathcal{R}^{-1}(Y) = \{a \in A : (a,b) \in \mathcal{R}, \text{ para algun } b \in Y\}$

Definicion Sea \mathcal{R} una relacion de un conjunto A en un conjunto B. La relacion inversa de \mathcal{R} , denotada por \mathcal{R}^{-1} es una realcion de B en A definida por: $x\mathcal{R}^{-1}y \Leftrightarrow y\mathcal{R}x$. es decir:

$$\mathcal{R}^{-1} = \{(x, y) : (y, x) \in \mathcal{R}\}$$

Teorema 1.3

Si \mathcal{R} es una relacion de un conjunto A en un conjunto B, entonces $(\mathcal{R}^{-1})^{-1} = \mathcal{R}$

Definicion Sean \mathcal{R} una relacion de un conjunto A en un conjunto B y \mathcal{S} una relacion de B en un conjunto C. La relacion composicion de \mathcal{R} con \mathcal{S} , denotada como $\mathcal{S} \circ \mathcal{R}$ es una relacion de A en C definida por: $x\mathcal{S} \circ \mathcal{R}y \Leftrightarrow \exists u \in B/x\mathcal{R}u \wedge u\mathcal{S}y$. Es decir,

$$S \circ \mathcal{R} = \{(x,y) \in AxC : (x,u) \in \mathcal{R} \text{ y } (u,y) \in S, \text{ para algun } u \in B\}.$$

Teorema 1.4

Sean \mathcal{R} una relacion de un conjunto A en un conjunto B, \mathcal{S} una relacion B en un conjunto C y \mathcal{T} una relacion de C en un conjunto D. entonces:

1.
$$T \circ (S \circ R) = (T \circ S) \circ R$$
 es asociativa

2.
$$(\mathcal{T} \circ \mathcal{S})^{-1} = \mathcal{S}^{-1} \circ \mathcal{T}^{-1}$$

Relaciones en un conjunto

Definicion

Sean \mathcal{R} una relacion en un conjunto A y $a, b, c \in A$. Se dice que \mathcal{R} es:

- reflexiva si $(a, a) \in \mathcal{R}, \forall a \in A$
- simetrica si $(a,b) \in \mathcal{R} \Rightarrow (b,a) \in \mathcal{R}$
- antisimetrica si $(a,b) \in \mathcal{R} \land a \neq b \Rightarrow (b,a) \notin \mathcal{R}$ o, equivalentemente, si $(a,b) \in \mathcal{R} \land (b,a) \in \mathcal{R} \Rightarrow a = b$
- transitiva si $(a,b) \in \mathcal{R} \land (b,c) \in \mathcal{R} \Rightarrow (a,c) \in \mathcal{R}$

Relaciones de orden

Definicion

Una relacion \mathcal{R} es un conjunto A es una relacion de orden si es reflexiva, antisimetrica y transitiva.

Cuando \mathcal{R} es una relacion de orden en un conjunto A, si $(a,b) \in \mathcal{R}$ diremos que a es anterior a b (precede) y se nota $a \prec b$.

Al par $(A, \mathcal{R})(o(A, \prec))$ se lo llama conjunto ordenado.

Definicion: Sea (A, \prec) . Diremos que 2 elementos distintos $x, y \in A$ son comparables si $x \prec y$ o $y \prec x$.

Un conjunto ordenado es totalmente ordenado si todo par de elementos es comparable.

Definicion: Sean (A, \mathcal{R}) y $B \subseteq A$. El **orden inducido por** \mathcal{R} **en** \mathbf{B} es $\mathcal{R}_B = \mathcal{R} \cap (BxB)$, es decir, si $x, y \in B, x\mathcal{R}_B y \Leftrightarrow x\mathcal{R} y$. La relacion \mathcal{R}_B se llama **orden en** \mathbf{B} **inducido por** \mathcal{R}

Un conjunto ordenado (B, \mathcal{S}) es un subconjunto ordenado de (A, \mathcal{R}) si $B \subseteq A$ y $\mathcal{S} = \mathcal{R}_B$

Ademas, si \mathcal{R}_B es un orden total en B, (B, \mathcal{R}_B) se llama subconjunto ordenado de (A, \mathcal{R}) o cadena.

Elementos distinguidos de un conjunto ordenado

Definicion: Sea (A, \prec) un conjunto ordenado

- Sea $a \in A$ es un elemento **minimal** si $\forall x \in A/x \prec a \Rightarrow x = a$
- Sea $a \in A$ es un elemento **maximal** si $\forall x \in A/a \prec x \Rightarrow x = a$
- Sea $a \in A$ se llama minimo (o primer elemento) si $\forall x \in A/a \prec x$
- Sea $a \in A$ se llama maximo (o ultimo elemento) si $\forall a \in A/x \prec a$

Si existen el minimo o el maximo estos son unicos.

Definicion: Sean (A, \prec) y $B \subseteq A$.

Un elemento $a \in A$ se llama **cota inferior** para B si $a \prec x, \forall x \in B$. Una cota inferior a' de B es el **infimo de B** si $a \prec a', \forall$ cota inferior de B.

Un elemento $a \in A$ se llama **cota superior** para B si $x \prec a, \forall x \in B$. Una cota superior a' de B es el **supremo de B** si $a' \prec a, \forall$ cota superior de B.

Si un conjunto ordenado tiene cotas superiores (inferiores) se dice que esta acotado superiormente (inferiormente). Si tiene ambas, se dice que el conjunto es acotado.

Relaciones de equivalencia

Definicion: Una relacion \mathcal{R} en un conjunto A es una relacion de eeuivalencia si es reflexiva, simetrica y transitiva.

Cuando \mathcal{R} es una relacion de equivalencia en un conjunto A, si $(a,b) \in \mathcal{R}$ diremos que a es equivalente a b y se nota $a \sim b$

Dada una relacion de equivalencia \mathcal{R} en un conjunto A y un elemento $a \in A$, el conjunto $\mathcal{R}(a)$ se llama clase de equivalencia de a, y se nota [a], es decir,

$$= \{ x \in A : (a, x) \in \mathcal{R} \}$$

Observar que, como \mathcal{R} es simetrica, [a]= $\{x \in A : (x,a) \in \mathcal{R}\}$. Todo elemento $x \in [a]$ se dice que es un **representante** de esa calse de equivalencia.

Proposicion 3.2

Sean \mathcal{R} una relacion de equivalencia en un conjunto A y $a, b \in A$. Entonces:

1.
$$[a] \neq \emptyset$$

2.
$$(a,b) \in \mathcal{R} \Rightarrow [a] = [b]$$

3.
$$(a,b) \notin \mathcal{R} \Rightarrow [a] \cap [b] = \emptyset$$

Notar que:

Todo elemento de A pertenece a alguna clase

Dos clases de equivalencia, o bien son iguales, o bien son conjuntos disjuntos.

Defincion: Una particion P de un conjunto A es una colección de conjuntos no vacios $\{X_1, X_2, ...\}$ tales que

• si
$$i \neq j$$
, $X_i \cap X_j = \emptyset$

•
$$\forall a \in A, \exists X_i \in P/a \in X_i$$

Proposicion 3.3

Sea P una particion del conjunto A. Existe una unica relacion de equivalencia en A cuyas clases de equivalencia son los elementos de P.

Definicion Sea \mathcal{R} una relacion de equivalencia en un conjunto A. Llamaremos **conjunto cociente de A por** \mathcal{R} , y lo notamos $A \mid_{\mathcal{R}}$, al conjunto cuyos elementos son las clases de equivalencia de A

definidas por \mathcal{R} , es decir:

$$A\mid_{\mathcal{R}}=\{[a]:a\in A\}$$