

Project 1: Ensemble Learning

Presented by:

ADOU Kouamé Mathurin

KENNE Annine Duclaire

Nancy Fosua Boakye

MEGNE CHOUDJA Pauline Ornela

Introduction

To help create innovative model which better improves ML models, we carried out this project.

Objectives

- Analyze and preprocess the data.
- Build and train different models including logistic regression, SVM, FCN and decision tree.
- Combine those models based on different ensemble learning approaches.

Ensembling Learning is a meta approach which aims to seek better performance by combining the predictions from multiple models.

Figure 1 : Ensemble methods

a. Bagging Method

Figure 3: Bagging principle

b. Boosting Method(Adaboost)

step 1: Assign equal weights to each point in the dataset,

$$w_i = \frac{1}{N}, i = 1, \dots, N \tag{1}$$

step 2: Create the first base learner.

step 3: Compute the total error,

$$TE = \sum_{i=1}^{N} (y_i
eq \hat{y_i}) w_i$$
 (2)

step 4: Compute the performance of the model,

$$P = \frac{1}{2}log\left(\frac{1 - TE}{TE + \epsilon} + \epsilon\right) \tag{3}$$

step 5: Updating weight,

$$egin{cases} new_weight_{(y_i
eq \hat{y_i})} = old_weight_{(y_i
eq \hat{y_i})} \cdot e^P & (a) \ new_weight_{(y_i
eq \hat{y_i})} = old_weight_{(y_i
eq \hat{y_i})} \cdot e^{-P} & (b) \end{cases}$$

step 6:Randomly sample a new dataset.

step 7: Build a new model.

step 8: Repeat the same process from step 2 until the total number of fixed models.

step 9: Make predictions using test data.

c. Voting Method

Figure 4: Voting principle

Data Preprocessing

- Convert object feature to numerical values using one hot and label encoding.
- Oversampling and undersampling techniques to solve the issue of imbalanced data.

- Random Oversampler
- Random Undersampling

Figure 5: Class representation

Results and Discussions

Single Models				
Models		Precision		Accuracy
		2	4	
Logistic		1.00	0.95	0.987
SVM		1.00	0.95	0.987
DT		0.99	0.88	0.962
FCN		1.00	0.93	0.981
Ensemble Models				
Voting		1.00	0.95	0.987
Bagging	Logistic	1.00	0.95	0.987
	SVM	1.00	0.95	0.987
	DT	1.00	0.93	0.981
	FCN	1.00	0.95	0.987
Boosting	Logistic	1.00	0.88	0.987
	SVM	1.00	0.88	0.987
	DT	1.00	0.88	0.785
	FCN	1.00	0.88	0.968

Figure 6: Models summary

Conclusion

Based on our findings, we can conclude that:

- Label encoding performs better than the one hot encoding.
- The oversampling approach performs better than the undersampling.
- Having a good accuracy doesn't always implies good model.
- Ensembles methods improves the performance of a model, however, it is not guaranteed for all cases.

