OKAN ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

2015-16

MAT234 Matematik IV – $\ddot{O}dev$ 5

N. Course

SON TESLIM TARIHI: Salı 5 Nisan 2016 saat 16:00'e kadar.

NEW RULE: Poor quality photos of answers sent by email will no longer be accepted.

I prefer to receive your answers on paper. If you must email your answers, then you must either

- (i) prepare them with LATEX;
- (ii) use a word processor;
- (iii) write them on paper, then use a proper flatbed scanner to scan them; or
- (iv) write them on paper, then use a "scanner" app on your mobile phone to scan them.

Make sure that your name and student number are clearly visible on every page that you send.

Egzersiz 10 (Sequences). Let $a_1 = 2$ and $a_{n+1} = \frac{1}{70} \left(1200 + a_n^2 \right)$ for all $n \in \mathbb{N}$.

- (a) [5p] Use a calculator or computer to calculate a_2 , a_3 , a_4 , a_5 and a_6 .
- (b) [15p] Show that $0 \le a_n \le 30$ for all $n \in \mathbb{N}$. [HINT: Use proof by induction.]
- (c) [15p] Is (a_n) increasing or decreasing? Prove your answer.
- (d) [10p] Show that (a_n) is convergent.
- (e) [10p] Calculate $\lim_{n\to\infty} a_n$.

Definition. A sequence (a_n) of real numbers is called a Cauchy sequence iff, $\forall \varepsilon > 0$ $\exists N = N(\varepsilon) \in \mathbb{N} \text{ such that}$

$$n, m > N \implies |a_n - a_m| < \varepsilon.$$

Egzersiz 11 (Subsequences and Cauchy Sequences).

- (a) [25p] Suppose that
 - (x_n) is a sequence of real numbers;
 - $x_n \to -\infty$ as $n \to \infty$;
 - (x_{n_k}) is a subsequence of (x_n) .

Show that $x_{n_k} \to -\infty$ as $k \to \infty$.

(b) [20p] Let $y_n = \frac{25n^2-2}{n^2}$. Use the definition to show that (y_n) is a Cauchy sequence.

Ödev 4'ün çözümleri

- 8. (a) $|z_n| = \left|\left(\frac{2n}{1+n}\right)\cos(n\pi)\right| = \left|\left(\frac{2n}{1+n}\right)(-1)^n\right| = \frac{2n}{1+n} < \frac{2n}{n} = 2$ for all $n \in \mathbb{N}$. Therefore (z_n) is bounded. (b) Clearly (g_n) is an increasing sequence (it is not possible to have $g_{n+1} < g_n$ since $g_{n+1} := \max\{g_n, \cos(n+1)\}$) and clearly (g_n) is bounded above by 1 (since $\cos x \le 1$), so this sequence converges by Theorem 5.1.
- 9. (a) Since $\frac{n}{2^n} \to 0$ as $n \to \infty$, and since cos is a continuous function, it follows that $a_n \to 1$ as $n \to \infty$. (b) $b_n \to 1$ as $n \to \infty$. We could, for example, use the Sandwich Rule to prove this using the inequality $(n^2) \le (n^2 + 1) \le (n + 1)^2$. Details left to you.
 - (c) $c_n = n^{\frac{2}{n}} = n^{\frac{1}{n}} \times n^{\frac{1}{n}} \to 1 \times 1 = 1 \text{ as } n \to \infty.$