# Plane groups from square cell









4







## Plane groups from centered rectangular cell



cm



cmm2









cmm2





# Plane groups from rhombic cell



р3





p31m



p3m1









p6





### p6mm









https://en.wikipedia.org/wiki/Wallpaper\_group

https://www2.clarku.edu/faculty/d
joyce/wallpaper/seventeen.html

## Tips to identify Plane group

- First look at symmetry of motif
  - 1 or 2 then p1 or p2
  - m or 2mm then pm, pg, pmm2, pmg2 or pgg2
  - it can also be cm or cmm if here is a diamond unit cell
  - 4 or 4mm then p4, p4mm, p4gm
  - 3 or 3m then p2, p3m1 or **p31m**
  - 6 or 6mm then p6 or p6mm
- Determine the unit cell and impose symmetry elements
- Glides are confusing

# Practice makes a human perfect

#### Let us move from 2D to 3D

- Ideally we should look at symmetry elements first
- But perception of 3D comes from 2D
- Our eyes see 2D images and the brain sees 3D
- 3D is stacking of 2D images
- Let us stack our five different 2D lattices

- Stacking of square lattice: Cubic and Tetragonal
- Stacking of rectangular lattice: Orthorhombic primitive and body cenetred
- Stacking of centered rectangular lattice: Orthorhombic base centered and body centered
- Stacking of hexagonal lattice: Rhombohedral and Hexagonal
- Stacking of oblique lattice: Monoclinic and Triclinic

#### 14 Bravais lattice in 3D

- 7 crystal classes
  Cubic (P, I, F)
  Tetragonal (P, I)
  Orthorhombic (P, I, B, F)
  Rhombohedral (P)
  Hexagonal (P)
  Monoclinic (P, B)
  Triclinic (P)
- Primitive (P)

  Body centered (I)

  Base centered (A, B, C)

  Face centered (F)



| Crystal<br>System | Axial and Angular<br>Relationships                                    | Bravais Lattice*              | No. of lattice<br>points/cell |
|-------------------|-----------------------------------------------------------------------|-------------------------------|-------------------------------|
| Cubic             | $a = b = c$ $\alpha = \beta = \gamma = 90^{\circ}$                    | Simple Cubic (P)              | 1                             |
|                   |                                                                       | Body Centred Cubic (I)        | 2                             |
|                   |                                                                       | Face Centred Cubic (F)        | 4                             |
| Tetragonal        | $a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$                 | Simple Tetragonal (P)         | 1                             |
|                   |                                                                       | Body Centred Tetragonal (I)   | 2                             |
| Orthorhombic      | $a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$              | Simple Orthorhombic (P)       | 1                             |
|                   |                                                                       | Body Centred Orthorhombic (I) | 2                             |
|                   |                                                                       | Base Centred Orthorhombic (C) | 2                             |
|                   |                                                                       | Face Centred Orthorhombic (F) | 4                             |
| Hexagonal         | $a = b \neq c$<br>$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ | Simple Hexagonal (P)          | 1                             |
| Rhombohedral      | $a = b = c$ $\alpha = \beta = \gamma \neq 90^{\circ}$                 | Simple Rhombohedral (P)       | 1                             |
| Monoclinic        | $a \neq b \neq c$ $\alpha = \gamma = 90^{\circ} \neq \beta$           | Simple Monoclinic (P)         | 1                             |
|                   |                                                                       | Base Centred Monoclinic (C)   | 2                             |
| Triclinic         | $a \neq b \neq c$<br>$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$  | Simple Triclinic (P)          | 1 50                          |



Number of lattice points per unit cell in 2D
 Primitive (p): 1
 Rectangular centered (c): 2

Number of lattice points per unit cell in 3D

Primitive (P): 1

Body centered (I): 2

Base centered (A, B, C): 2

Face centered (F): 4

Prove to your self that only 14 Bravais lattices are possible



Face centered tetragonal = Body Centered Tetragonal

# Minimum Symmetry for Crystal systems

| Crystal System: | Minimum Symmetry: | Typical Minerals: (Danish equivalent)                            |
|-----------------|-------------------|------------------------------------------------------------------|
| Triclinic       | No Symmetry       | Plagioclase, Microcline, Kalifeltspar, Kyanite                   |
| Monoclinic      | 1 A2              | [Clino]Pyroxene, [Clino]Amphibole, Micas(Glimmermineraler),      |
|                 |                   | Sanidine, Orthoclase, Silimanite, Andalusite, Gypsum(Gibs)       |
| Trigonal        | 1 A3              | Quartz, Calcite, Dolomite, Magnesite                             |
| Tetragonal      | 1 A4              | Zirconium(Zirkon)                                                |
| Hexagonal       | 1 A6              | Apatite, Beryllium(Beryl), Tourmaline, Corundum(Korund)          |
| Orthorhombic    | 3 A2              | [Ortho]Pyroxene, [Ortho]Amphibole, Staurolite, Olivine           |
| Cubic           | 4 A3              | Garnet(Granat), Sulphides[Pyrite, Galena, Sphalerite], Fluorite, |
|                 |                   | Magnetite, Hemalite                                              |