\mathbf{M}^{P}	1	162

EXAM 2

Form A

Fall 2010

NAME	
STUDENT ID	
RECITATION INSTRUCTOR	
RECITATION TIME	

- 1. Fill in your name, your student ID, your recitation instructors name, and your recitation time above.
- 2. Be sure that the color of your answer sheet matches the color of your exam.
- 3. On the answer sheet, write your name, your division and section number, and your student identification number, and fill in the corresponding circles. Leave the test/quiz number blank. Also, fill in the (recitation) instructor name, the course (MA 162), and date (10/19/10).
- 3. There are 12 questions. The first 8 are worth 8 points each and the last 4 are worth 9 points each. For each question, mark the letter corresponding to your answer on the answer sheet.
- 4. At the end of the exam turn in both the question sheets and the answer sheet.
- 5. No books, notes, or calculators may be used.

1. Evaluate $\int_0^{\pi/2} \cos^3 x \sin^2 x \ dx.$

- A. $\frac{2}{15}$
- B. $\frac{7}{10}$
- C. $\frac{15}{24}$
- D. $\frac{1}{8}$
- E. $\frac{4}{9}$

2. Evaluate $\int_0^{\pi/4} \tan x \sec^4 x \ dx.$

- A. $\frac{\pi}{8}$
- B. $\frac{2}{3}$
- C. $\frac{3}{4}$
- D. $\frac{1}{2}$
- E. $\frac{\pi}{4}$

3. When one makes a suitable trigonometric substitution to evaluate

$$\int \frac{x^3}{\sqrt{x^2 - 9}} \, dx,$$

which integral arises?

- A. $27 \int \sec^4 \theta \, d\theta$
- B. $\frac{1}{27} \int \sec^4 \theta \tan \theta \, d\theta$
- C. $9 \int \frac{\sec^3 \theta}{\tan \theta} d\theta$
- D. $27 \int \sin^3 \theta \, d\theta$
- E. $9 \int \frac{\sin^3 \theta}{\cos \theta} d\theta$

4. Evaluate $\int_0^{1/\sqrt{2}} \frac{x^2}{\sqrt{1-x^2}} dx$.

- A. $\frac{\pi}{2} \frac{1}{8}$
- $B. \quad \frac{\pi}{2} \frac{\sqrt{3}}{2}$
- $C. \quad \frac{\pi}{8} \frac{\sqrt{2}}{2}$
- D. $\frac{\pi}{8} \frac{1}{4}$
- E. $\frac{\pi}{3} + \sqrt{2}$

5. Compute $\int_{-2}^{0} \frac{dx}{x^2 + 4x + 8}$.

- A. $\frac{\pi}{16}$
- B. $\frac{\pi}{8}$
- C. $1 + \frac{\pi}{2}$
- D. $\frac{\pi}{4}$
- E. $\frac{\pi}{2}$

6. Find the correct form of the partial fraction decomposition of

$$\frac{x-5}{(x-1)^2(x^2-9)(x^2+9)}.$$

A.
$$\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x-3} + \frac{D}{x+3} + \frac{Ex+F}{x^2+9}$$

B.
$$\frac{A}{(x-1)^2} + \frac{B}{x-3} + \frac{C}{x+3} + \frac{Dx+E}{x^2+9}$$

C.
$$\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x^2-9} + \frac{Dx+E}{x^2+9}$$

D.
$$\frac{A}{(x-1)^2} + \frac{Bx+C}{x^2-9} + \frac{Dx+E}{x^2+9}$$

E.
$$\frac{A}{(x-1)^2} + \frac{B}{x^2 - 9} + \frac{C}{x^2 + 9}$$

7. Evaluate $\int_0^2 \frac{1}{(x+1)(x+2)} dx$.

- A. $\ln 2 \ln 4$
- B. $\ln 2 + \ln 4 + \ln 3$
- C. $\frac{\ln 3}{2} + \frac{\ln 4}{2} + \ln 2$
- D. $\ln 3 \ln 4$
- E. $\ln 3 \ln 4 + \ln 2$

8. Given that $\int_1^2 \frac{1}{x^2 - 2x + 2} dx = \frac{\pi}{4}$, evaluate

$$\int_{1}^{2} \frac{3x+5}{x^2-2x+2} \ dx.$$

- A. $\ln 2 + \frac{\pi}{4}$
- $B. \quad 2\ln 2 \frac{\pi}{2}$
- C. $\frac{3}{2} \ln 2 + 2\pi$
- D. $\frac{1}{2} \ln 2 + \frac{\pi}{2}$
- E. $\frac{3}{4} \ln 2 + \frac{\pi}{6}$

- 9. Which of the following improper integrals converge.
 - (1) $\int_{1}^{\infty} \frac{x^2 + 2x + 1}{x^5 + 1} dx$, (2) $\int_{-1}^{1} \frac{1}{x^3} dx$, (3) $\int_{1}^{\infty} e^{-x} \cos^2 x dx$.
- (1) and (2) converge. (3) diverges. A.
- В. (1) and (3) converge. (2) diverges.
- C.(2) and (3) converge. (1) diverges.
- D. (1) converges. (2) and (3) diverge.
- \mathbf{E} . (1), (2) and (3) converge.

10. Find the arclengh of the curve

$$y = \frac{2}{3}(x+1)^{3/2}, \qquad -1 \le x \le 2.$$

- В.
- C.
- D.
- E.

11. Which integral gives the surface area of the surface obtained by rotating the curve

$$y = 1 + 2x^2, \qquad 0 \le x \le 1,$$

about the y-axis.

A.
$$2\pi \int_0^1 (1+2x^2)\sqrt{1+16x^2} \ dx$$

B.
$$2\pi \int_0^1 x\sqrt{1+16x^2} \, dx$$

C.
$$2\pi \int_0^1 x(1+2x^2) \, dx$$

D.
$$2\pi \int_0^1 x(1+16x^2) dx$$

E.
$$2\pi \int_0^1 (1+2x^2)(1+16x^2) dx$$

12. The substitution $u = \sqrt{1+x}$ transforms the integral

$$\int_3^8 \frac{1}{x\sqrt{1+x}} \, dx$$

into which integral?

A.
$$\int_3^8 \frac{1}{(u^2 - 1)u} \, du$$

B.
$$\int_{2}^{3} \frac{1}{(u^2 - 1)u} du$$

$$C. \int_2^3 \frac{2u}{u^2 - 1} \, du$$

D.
$$\int_{3}^{8} \frac{1}{u^2 - 1} du$$

$$E. \quad \int_2^3 \frac{2}{u^2 - 1} \, du$$