执行器

- 4.1 执行器的构成
- 4.2 电动执行器
- 4.3 气动执行器
- 4.4 阀门电位器
- 4.5 调节阀特性分析

执行器构成

1、执行器的构成

图4-1气动执行器的结构

执行机构:接收气 (电)动控制信号 产生推力及位移的 装置

调节机构(调节阀): 改变改变阀芯与阀座开 度,改变能量或物料输 送量的装置

电动执行器

2、执行器的分类和特点

分类和特点	动力源	防爆等级	响应速度	功率	应用场合	与计算机 连接
气动执行器	压缩机	高	快	较小	快速防爆等 级高,石化	较难
电动执行器	电源	中等	较快	大	几乎所有	容易
液动执行器	油压机	较低	较慢	大	大功率机械 石化等	较难

功能: 它将输入的直流电流信号线性地转换成位移量。

1、结构组成

图4-2 电动执行器组成框图

电动执行器

(1) 信号综合放大(伺服放大器)

将调节器的输入控制信号与执行器反馈信号比较和放大,输出控制信号控制伺服电机的正反转。

(2) 手动控制(电动操作器)

自动时:接通伺服放大器,伺服电机受伺服放大器输出控制。

手动时: 切断伺服放大器的输出信号,由操作器的正、反按钮直接控制伺服电机的电源,实现输出轴(杆)正/停/反三种状态的遥控操作。

电动执行器

(3) 执行机构

接收控制信号,伺服电机经过减速器驱动输出轴(杆)产生位移。同时通过为止发送器将阀位转换为反馈电流送伺服放大器。

2、工作原理

$$\Delta I_{i}(I_{i}-I_{f})>0 \rightarrow U_{sa}>0 \rightarrow$$
 电机正转 $\rightarrow \theta \uparrow$

$$\Delta I_{i}(I_{i}-I_{f})<0 \rightarrow U_{sa}<0 \rightarrow$$
 电机反转 $\rightarrow \theta \downarrow$

$$\Delta I_{i}(I_{i}-I_{f})=0 \rightarrow U_{sa}=0 \rightarrow$$
 电机停转 $\rightarrow \theta \land \mathcal{E}$

$$I_{f}=K_{f}\theta \approx I_{i} \quad \theta = KI_{i}$$

4.2

3、伺服放大器

功能:信号综合、比较和放大,输出控制信号控制伺服电机的正反转。

图4-3伺服放大器原理框图

(1) 伺服放大器各个环节输出信号

固态继电器

 $V_{03} = V_H$, $V_{04} = V_L$, K_1 接通, i_{w2} 超前 i_{w1} 90°(C_D 串接 W_2),电机正转 $V_{03} = V_L$, $V_{04} = V_H$, K_2 接通, i_{w1} 超前 i_{w2} 90°(C_D 串接 W_1),电机反转 $V_{03} = V_L$, $V_{04} = V_L$, K_1K_2 均断开,电机停转。

电动执行器

(2) 工作原理

 $\Delta I_{i}(I_{i}-I_{f})>0 \rightarrow V_{01}, V_{02}>0 \rightarrow V_{03}=V_{H}\rightarrow K_{1}$ 接通 \rightarrow 电机正转 $\rightarrow \theta$ 个 $\Delta I_{i}(I_{i}-I_{f})<0 \rightarrow V_{01}, V_{02}<0 \rightarrow V_{04}=V_{H}\rightarrow K_{2}$ 接通 →电机反转 $\rightarrow \theta \downarrow$ $\Delta I_{i}(I_{i}-I_{f})=0 \rightarrow V_{01}, V_{02}=0 \rightarrow V_{03}=V_{L}, V_{04}=V_{L} \rightarrow K_{1}, K_{2}$

 \rightarrow 电机停转, θ 不变

图4-4伺服放大器原理图

4、执行机构

4.2

功能:接收伺服放大器的电信号,将其转换为推力及位移的装置。

组成: 伺服电机、减速机构、位置发送器。

图4-5 执行器执行机构

4.2

(1) 伺服电机

将伺服放大器输出的电功率转换成机械转矩。

图4-6 两相伺服电机结构示意图

图4-7 电动机特性曲线对比

4.2

自动:定子磁场将衔铁吸向定子的内表面,使簧片弯曲,通过杠杆把制动盘推开,使摩擦轮与制动盘脱开,电机转子自由转动。

图4-8 伺服电机自动控制

4.2

停止: 当电动机断电时,定子磁场消失,制动盘被弹簧推向左边与摩擦轮接触,将转子制动。

图4-9 伺服电机自动控制

4.2

手动: 电机右边端盖上的手把,将它拉出使制动盘和摩擦轮脱开,解除制动,人工手动控制。

图4-10 伺服电机手动控制

4.2

(2) 减速器(减速齿轮)

把高转速小转矩电机输出变为低转速大力矩输出。

 $(600 \sim 900/\min) \rightarrow 0.6r/\min$ 减速比1000~1500。

(3) 位置发送器

作用:将输出轴0~90°的转角转换成0~10mA或4~20mA直流

电流,作为阀位信号和反馈信号。 $0\sim 10mA$

 $0^{\circ} \sim 90^{\circ} \rightarrow 0 \sim L_{\text{max}} \rightarrow 0 \sim u_{f \text{max}} \rightarrow 4 \sim 20 mA(I_{\text{f}})$

图4-12 差动变压器结构原理图

电动执行器

$$U_{\rm f} = \frac{\omega (M_1 - M_2)U_1}{\sqrt{r_1^2 + (\omega L_1)^2}} = \pm \frac{2\omega \Delta M U_1}{\sqrt{r_1^2 + (\omega L_1)^2}}$$

图4-13 位置发送器信号传递框图

气动执行器

4.3

1、气动执行器结构

图4-14 气动执行器结构示意图

2、薄膜式气动执行器工作原理

执行机构
$$p \xrightarrow{\text{ $\begin{subarray}{c}} \begin{subarray}{c} \begin{sub$$$

调节机构 L→阀芯阀座开度变化→流量变化

原理公式

$$pA = KL$$
 $L = \frac{A}{K}p$ $p: p_{\min} \to p_{\max} \to L: 0 \to L_{\max}$ 阀门全开 (全关) \to 全关 (全开)

气开阀, 气关阀

3、执行机构与调节机构的作用方式

执行机构作用方式

正作用: P送入膜室的上腔,

P增加,阀杆下移。

反作用: P送入膜室的下腔,

P增加,阀杆上移。

气动执行器

4.3

调节机构的作用方式: 气关式和气开式。

气关式: P增大, 阀门关小。

气开式: P增大, 阀门开大。

调节阀有正装和反装两种。执行器的作用方式有四种组合。

气动执行器

图4-14执行器的作用方式

选择作用方式原则是: 当工作气源中断时, 气动信号消失, 阀门的位置应是最经济、安全的。(安全阀位)

例:油料储罐出口阀应是 气开阀。锅炉给水阀应是 气关阀。

4、执行器应用举例

例1: 储槽液位控制系统如图。

画出控制系统框图。

若储槽液体不能溢出,选择何种阀? 控制器的作用方向。

气动执行器

例1解答:从安全性考虑,为防止储槽液体溢出,应选择气(电)开阀。

控制系统各个环节作用方向为,对象+,变送器+,调节阀+。为了构成负反馈控制系统,控制器为—,

控制器应选择反作用。

也可这样判断,当液位升高时,应关小阀门,阀为气开阀。控制器输出信号应减小,控制器为反作用。

气动执行器

4.3

例2:锅炉锅筒液位控制系统如图。

要求锅炉不能烧干,画出控制系统框图。

选择何种阀?

控制器的作用方向。

加热室温度升高导致蒸汽量增加时,

控制系统如何克服扰动?

例2解答:

控制系统框图如图。

锅炉不能烧干,从安全性考虑,故障时无控制信号阀门应全开。控制阀应选电(气)关式。

差压变送器 "+",对象 "+",调节阀 "-"。为了构成闭环负反馈系统,控制器+,即正作用方式。

也可当液位升高时,应关小阀门,少进冷水。阀为气关阀,控制器输出信号应增加,控制器为正作用方式。

加热室温度升高导致蒸汽量增加时,液位下降,偏差减小,控制器输出信号减小,阀门开度增加,进水量增加,液位上升,克服干扰。

气动执行器

4.3

例3:反应器温度控制系统如图。

画出控制系统框图。

反应器温度不能过高,选择何种阀?

控制器的作用方向。

冷水压力突然升高,简述该

控制系统的调节过程。温度突然下降呢?

例3解答:控制系统框图如图。

温度不能过高,气源中断时阀门应全开,应选气关式。

方法一: 负反馈法。各个环节乘积为负。

阀-,副对象+,流量变送器+,副控制器+,正作用。

广义副对象为+,主对象-,温度变送器+,主控制器+,正作用。

方法二:过程分析法。

副调节器流量增大时,关小阀门,副控制器输出信号应增大,副控制器为正作用方式。

温度升高偏差增大时,开大阀门,副调节器输出信号减小,副调节器设定信号应增大,即主调节器输出信号增大。 主控制器为正作用方式。 冷水压力突然升高,流量增大,副调节器偏差增大,输出信号增大,关小阀门。克服扰动。

$$P \uparrow \to Q \uparrow \to \varepsilon \uparrow \to u_2 \uparrow \to$$
阀门关小 $\to Q \downarrow$

温度下降,主调节器输出减小,副调节器设定值减小,副调节器输出增大,关小阀门,冷水流量下降,温度上升。克服扰动。

$$t \downarrow \to \varepsilon \downarrow \to u_1(x_{2S}) \downarrow \to u_2 \uparrow \to$$
 阀门关小 $\to Q \downarrow \to t \uparrow$

电气阀门定位器

1、作用 电气转换及阀门定位,调节阀精确快速定位。

4-15阀门定位器示意图

2、工作原理

气压-位移负反馈系统。力矩平衡原理工作。

电气阀门定位器

力矩平衡原理示意图

$$\begin{split} \boldsymbol{M}_{i} &= K_{i}L_{i}\boldsymbol{I}_{i} \\ \boldsymbol{M}_{0} &= F_{0}L_{0} \\ \boldsymbol{M}_{f} &= K_{f}L_{f}\boldsymbol{I} \end{split} \qquad \boldsymbol{l} = \frac{K_{i}L_{i}}{K_{f}L_{f}}\boldsymbol{I}_{i} - \frac{F_{0}L_{0}}{K_{f}L_{f}} \end{split}$$

4-20mADC转换为0-I_{max}

电气阀门定位器

电气定位器机电系统框图

$$l = \frac{K_i L_i}{K_f L_f} I_i - \frac{F_0 L_0}{K_f L_f}$$

4-20mADC转换为0-I_{max}

电气阀门定位器

4-17 阀门定位器校验原理框图

零位调整,调调零螺钉

当
$$I_i = 4mA$$
 使 $P_1 = 20kPa$ $1 = 0$

量程调整,调量程螺钉(支点)

调量程支点右移,I_f减小,I量程增大。

调量程支点左移,If增大,I量程减小。

$$l = \frac{K_i L_i}{K_f L_f} I_i - \frac{F_0 L_0}{K_f L_f}$$

1、阀体部件流量方程

4.5

$$q_{v} = \frac{5.09A}{\sqrt{\zeta}} \sqrt{\frac{\Delta P}{\rho}} = K_{V} \sqrt{\frac{\Delta P}{\rho}}$$

$$\frac{\Delta L}{L} \uparrow \to \zeta \downarrow \to \frac{\Delta Q}{Q} \uparrow$$

K_V(流量系数):标准压差(100kPa),一定水温(5-40℃),介质密度为1g/cm³时,每小时流经阀体部件的流量数m³/h。

2、阀体部件的可调比

阀体部件的理想可调比

$$R = \frac{q_{v \max}}{q_{v \min}} = \frac{K_{V \max} \sqrt{\Delta P / \rho}}{K_{V \min} \sqrt{\Delta P / \rho}} = \frac{K_{V \max}}{K_{V \min}}$$

如R=30,阀前后压差一定,反映阀体部件的调节能力。 实际阀体工作状况

(1) 串联管道实际可调比

$$R_{r} = \frac{q_{v1\text{max}}}{q_{v1\text{min}}} = \frac{K_{V \text{max}} \sqrt{\Delta P_{1\text{min}} / \rho}}{K_{V \text{min}} \sqrt{\Delta P_{1\text{max}} / \rho}} = R \sqrt{\frac{\Delta P_{1\text{min}}}{\Delta P}}$$

$R_{\text{gis}} = R\sqrt{\frac{\Delta p_{1\min}}{\Delta p}} = R\sqrt{S}$ $S \downarrow \to R_{\text{gis}} \downarrow$

S:阀阻比

S越小,串联管道压力损失越大,实际可调范围越小。

串联管道

4.5

(2) 并联管道实际可调比

$$R_{\mathrm{gk}} = \frac{$$
总管最大流量}{ 阀体最小流量 + 旁路流量 = $\frac{\mathbf{q}_{v_{\mathrm{max}}}}{q_{v_{\mathrm{lmin}}} + \mathbf{q}_{v_{2}}}$ ΔP

工况1: 旁路阀关闭

$$R_{\text{xim}} = \frac{\mathbf{q}_{v \text{max}}}{q_{v \text{1min}} + \mathbf{q}_{v \text{2}}} = \frac{\mathbf{q}_{v \text{1max}}}{q_{v \text{1min}}} = R$$

工况2: 旁路阀全开

$$R_{\text{xim}} = \frac{q_{v \text{max}}}{q_{v \text{1min}} + q_{v 2}} \approx \frac{q_{v \text{max}}}{q_{v 2}} \quad (q_{v 2} >> q_{v \text{1min}})$$

实际可调比与阀体可调比无关。

并联管道

 q_{v1}

 $q_{\rm v}$

 q_{v1}

工况3: 旁路阀开度可变

4.5

$$R_{\text{FF}} = \frac{q_{v \max}}{q_{v \text{1min}} + q_{v2}} = \frac{q_{v \max}}{\frac{Xq_{v \max}}{R} + (1 - X)q_{v \max}} = \frac{R}{R - (R - 1)X}$$

$$q_{v1 \min} = \frac{q_{v1 \max}}{R} = X \frac{q_{v \max}}{R}$$

$$X = \frac{q_{v1 \max}}{q_{v \max}}$$

$$q_{v2} = q_{vmax} - q_{v1max} = q_{vmax} (1 - X)$$

$$X \downarrow \rightarrow q_{\nu 2} \uparrow \rightarrow R_{\overline{x}\overline{y}} \downarrow$$

并联管道,旁路流量越大,实际可调比越小。

(3) 阀体部件的流量特性

阀体部件的流量特性原理式

$$\frac{q_{v}}{q_{v\max}} = f(\frac{l}{L})$$

① 直线流量特性

$$d(\frac{q_{v}}{q_{v\max}}) = Kd(\frac{l}{L})$$

阀体单位相对位移的变化引起相对流量变化是常数。

积分
$$\frac{q_{v}}{q_{v \max}} = K \frac{l}{L} + C$$

边界条件
$$1=0$$
 $q_v=q_{v\min}$
$$1=L \quad q_v=q_{v\max}$$

$$C=\frac{q_{v\min}}{q_{v\max}}=\frac{1}{R} \qquad K=1-\frac{1}{R}$$
 直线流量特性
$$\frac{q_v}{q_{v\max}}=\frac{1}{R}+(1-\frac{1}{R})\frac{l}{L}$$

直线阀适合负荷变化不大中等流量场合。

$$\Delta(\frac{l}{L}) = 10\% \qquad \Delta(\frac{q}{q_{\text{max}}}) = 10\%$$

$$\frac{l}{L} = 10\% \quad \Delta(\frac{q_1}{q_{\text{max}}}) / (q_1/q_{\text{max}}) = \frac{20-10}{10} \times 100\% = 100\%$$

$$\frac{l}{L} = 50\% \quad \Delta(\frac{q_2}{q_{\text{max}}}) / (q_2/q_{\text{max}}) = \frac{60-50}{50} \times 100\% = 20\%$$

$$\frac{l}{L} = 80\% \quad \Delta(\frac{q_3}{q_{\text{max}}}) / (q_3/q_{\text{max}}) = \frac{90-80}{80} \times 100\% = 12.5\%$$

思考:

小负荷与大负荷时, 流量变化率情况

直线流量特性阀举例

$$q_{v\text{max}} = 60m^3 / h$$
 , $q_{v\text{min}} = 3m^3 / h$ $L = 10mm$, $1 = 5mm$ FJ, $q_v = ?$

$$\frac{q_{v}}{q_{v\max}} = \frac{1}{R} + (1 - \frac{1}{R})\frac{l}{L} \quad R = \frac{q_{v\max}}{q_{v\min}} = \frac{60}{3} = 20$$

$$\frac{q_v}{60} = \frac{1}{20} + (1 - \frac{1}{20})\frac{5}{10}$$
 $q_v = 31.5m^3 / h$

② 等百分比(对数)流量特性

$$\frac{d(\frac{q_{v}}{q_{v \max}})}{d(\frac{l}{L})} = K \frac{q_{v}}{q_{v \max}}$$

4.5

阀体单位相对位移的变化引起相对流量变化率是常数。

积分
$$\ln \frac{q_{v}}{q_{v \max}} = K \frac{l}{L} + C$$

边界条件
$$1=0$$
 $q_v = q_{v \min}$ $C = -\ln R$ $K = \ln R$ $1 = L$ $q_v = q_{v \max}$

等百分比(对数)流量特性

$$\frac{q_{v}}{q_{v\max}} = R^{(\frac{l}{L}-1)}$$

$$\frac{q_{v}}{q_{v\max}} = R^{(\frac{l}{L}-1)}$$

$$(\frac{q_v}{q_{v \text{max}}}) = 30^{0.1-1} \approx 4.68\%$$

测得
$$\Delta(\frac{q_v}{q_{v\text{max}}}) = 1.9\%$$

$$(\frac{q_v}{a}) = 30^{0.5-1} \approx 18.3\%$$

测得
$$\Delta(\frac{q_v}{q_{v\text{max}}}) = 7.4\%$$

$$(\frac{q_v}{q_{v \text{max}}}) = 30^{0.8-1} \approx 50.6\%$$
 测得 $\Delta(\frac{q_v}{q_{v \text{max}}}) = 20.5\%$

测得
$$\Delta(\frac{q_v}{q_{v\text{max}}}) = 20.5\%$$

流量变化率

$$\frac{\Delta(\frac{q_{v}}{q_{v \max}})}{\frac{q_{v}}{q_{v \max}}} \approx 40.5\%$$

等百分比阀

适合各种工况

对数流量特性阀举例

流量为 $q_{v\text{max}}$ 时,流量系数为 $K_{v\text{max}} = 60$,流量为 $q_{v\text{min}} = 2\text{m}^3/\text{h}$ 时,流量系数为 $K_{v\text{min}} = 3$,全行程L=4cm,求开度l=2cm时, $q_v = ?$

$$\frac{q_{v}}{q_{v \max}} = R^{(\frac{1}{L}-1)}$$

$$R = \frac{q_{v \text{max}}}{q_{v \text{min}}} = \frac{K_{v \text{max}}}{K_{v \text{min}}} = \frac{60}{3} = 20$$
 $q_{v \text{max}} = R \times q_{v \text{min}} = 20 \times 2 = 40 m^3 / h$

$$q_v = 40 \times 20^{(\frac{2}{4}-1)} = 8.94 \text{m}^3 / h$$

现测得两种流量特性的有关数据见表。设R=30试分别计算 其相对开度在10%,50%,80%各变化10%时的相对的变 化量及相对流量的变化率。据此分析它们对控制质量的影 响和选用原则。

相对开度(VL)(%) 相对流量(q/q _{max})(%)	0	10	20	30	40	50	60	70	80	90	100
直线流量特性	3.3	13.0	22.7	32. 3	42.0	51.7	61.3	71.0	80.6	90.3	100
对数流量特性	3.3	4. 67	6. 58	9. 26	13.0	18.3	25.6	36. 2	50.8	71. 2	100

直线流量特性
$$\Delta \frac{q}{q_{\text{max}}} = (22.7 - 13.0)\% = 9.7\%$$
 10%开度

4.5

$$\Delta \frac{q}{q_{\text{max}}} = (61.3 - 51.7)\% = 9.6\%$$
 50% 开度 $\Delta \frac{q}{q_{\text{max}}} = (90.3 - 80.6)\% = 9.7\%$ 80% 开度

对数流量特性
$$\Delta \frac{q}{q_{\text{max}}} = (6.58 - 4.67)\% = 1.91\%$$
 10%开度

$$\Delta \frac{q}{q_{\text{max}}} = (25.6 - 18.3)\% = 7.3\%$$
 50% 开度 $\Delta \frac{q}{q_{\text{max}}} = (71.2 - 50.8)\% = 20.4\%$ 80% 开度

相对开度(I/L)(%) 相对流量(q/q _{max})(%)	0	10	20	30	40	50	60	70	80	90	100
直线流量特性	3.3	13.0	22.7	32.3	42.0	51.7	61.3	71.0	80.6	90.3	100
对数流量特性	3.3	4. 67	6. 58	9. 26	13.0	18.3	25.6	36. 2	50.8	71.2	100

直线流量特性
$$\Delta \frac{q}{q_{\text{max}}} = \frac{9.7}{13} = 74.6\% 10\%$$
 开度

$$=\frac{9.6}{51.7}$$
 = **18.6%** 50% 开度 $=\frac{9.7}{80.6}$ = **12.0%** 80% 开度

对数流量特性

$$\Delta \frac{q}{q_{\text{max}}} / \frac{q}{q_{\text{max}}} = \frac{1.91}{4.67} = 40.9\%$$
 10%开度

$$=\frac{7.3}{18.3}$$
 = **39.9%** 50% 开度 $=\frac{20.4}{50.8}$ = **40.2%** 80% 开度

③ 抛物线流量特性

$$\frac{q_{v}}{q_{v \max}} = \frac{[1 + (R^{1/2} - 1)\frac{l}{L}]^{2}}{R}$$

介于直线与对数流量特 性之间

迅速开关的切断阀或双位控制系统。

习题

- 4
- 1、开方器用于何种场合?开方器中为何设置小信号切除电路?分析该电路的工作原理。
- 2、简述电动执行机构的构成原理。伺服电机的转向和位置与输入信号有什么关系?
- 3、执行器的作用与分类。
- 4、薄膜式气动执行机构的工作原理及原理式。
- 5、调节机构流量调节原理。
- 6、电动执行器的组成,其中伺服放大器、电动操作器、位置发送器、减速器和两相伺服电机作用。
- 7、伺服放大器中前置磁放大器、触发器、可控硅交流开关的作用。

习题

4

- 8、电气转换器的功能与工作原理。
- 9、气动阀门定位器的功能与工作原理。