Oficina de Estatística Tutorial 6

Virgilio Mendes

19/07/2019

Tutorial 6

Neste tutorial, vamos trabalhar com alguns tipos de teste de hipóteses para comparar duas amostras:

- 1. Teste t (pareado);
- 2. Teste t (para amostras independentes);
- 3. Teste Qui-Quadrado.

Teste t pareado

Para trabalharmos com um teste t pareado, vamos simular uma nota de avaliação do prefeito de Belo Horizonte antes e depois da inauguração de uma obra. Suponhamos que esta pesquisa de opinião peça para que cada um dos 150 respondentes avaliarem o prefeito numa escala de 0 a 10, sendo 0 a pior nota e 10 a melhor nota.

Em nossa simulação, estas notas estarão em uma distribuição normal de média 6.5 e desvio-padrão 0.5 antes da inauguração da obra e em uma distribuição normal de média 7.5 e desvio-padrão 1.0 após esta inauguração.

Assim como em tutoriais anteriores, vamos simular várias amostras das quais vamos sortear uma, com a qual trabalharemos. A principal diferença desta simulação para outra que fizemos é que agora nossa amostra é de fato um banco de dados e não somente um vetor. Dessa forma, precisamos criar um objeto de classe data.frame antes de iniciarmos o loop, para que guardemos um banco de dados em cada "prateleira" da nossa lista a cada iteração desse loop.

```
set.seed(1234)
amostras_pesquisas <- list()

n_amostra <- 150
banco_pesquisa <- data.frame(individuos = 1:150)

for (i in 1:100) {
   banco_pesquisa$antes <- rnorm(n_amostra, mean = 6.5, sd = 0.5)
   banco_pesquisa$depois <- rnorm(n_amostra, mean = 7.5, sd = 1.0)
   amostras_pesquisas[[i]] <- banco_pesquisa
}

amostra_sorteada <- sample(amostras_pesquisas, 1)[[1]]</pre>
```

Vamos então testar a H0 de que a média de avaliação do prefeito não se alterou após a inauguração da obra e uma Ha de que esta média de avaliação é maior uma vez inaugurada a obra. Para fazermos esse teste no R, também utilizamos a função t.test, agora especificando o argumento paired = T.

Antes de testarmos nossa hipótese, seria interessante visualizar a distribuição dessa nossa variável nos dois momentos analisados. Será que um box-plot nos sugeriria alguma plausibilidade para rejeitar nossa H0?

```
boxplot(amostra_sorteada$depois, amostra_sorteada$antes,
    main = "Distribuição da nota do prefeito\nantes e depois da inauguração da obra",
    names = c("Depois", "Antes"),
    ylab = "Nota média dada ao prefeito de Belo Horizonte",
    ylim = c(0,10))
```


O boxplot parece indicar a diferença entre essas médias, ainda que esses valores talvez fiquem próximos, dada a incerteza inerente à amostra.

Vamos testar então a hipótese com um nível de significância de 5%. Perceba que a ordem de inclusão dos elementos importa no teste, lembrando que nossa H0: Media_Depois = Media_Antes, e nossa Ha: Media_Depois > Media_Antes.

```
t.test(amostra_sorteada$depois, amostra_sorteada$antes,
    paired = T, conf.level = 0.95, alternative = "greater")
```

Paired t-test

data: amostra_sorteadadepois and amostras orteada antes t = 11.364, df = 149, p-value < 2.2e-16 alternative hypothesis: true difference in means is greater than 0 95 percent confidence interval: 0.8817737 Inf sample estimates: mean of the differences 1.032104

Nosso teste de hipótese nos mostra que podemos rejeitar a hipótese nula de que as médias não são diferentes, em favor da Ha de que a média após a inauguração da obra é maior, com um nível de significância de 0.05 (afinal, nosso p-valor é bastante baixo). Isso também pode ser verificado ao observamos a estimativa para a média dessas diferenças (1.03), além do limite inferior do intervalo de confiança calculado para essa estimativa (0.88).

Teste t para amostras independentes

A partir desse momento, vamos trabalhar com uma nova base de dados. Trata-se de um recorte da MUNIC de 2015. A MUNIC é uma pesquisa realizada pelo IBGE que apresenta um perfil dos municípios brasileiros. Nosso recorte inclui variáveis de recursos humanos, terceirização e informatização das cidades no país. Vamos então selecionar uma amostra estratificada por regiões do país de 5% do total de municípios no Brasil.

```
set.seed(1234)
library(splitstackshape)
munic_2015 <- read.csv2("https://raw.githubusercontent.com/lgelape/modus_2019/master/Bancos/munic2015_m
amostra_munic <- stratified(munic_2015, group = "regiao", size = 0.05)</pre>
```

O teste t para amostras independentes é adequado para testarmos a diferença entre alguma variável quantitativa em dois grupos. Para este tutorial, vamos testar se, em nossa amostra, há uma diferença entre a média do número de funcionários ativos na Administração Direta (variável munic_2015\$direta_ativos) entre dois grupos de cidade: um que possui e outro que não possui órgãos da administração indireta (variável munic_2015\$adm_indireta).

Sendo assim, nosso teste tem em H0: as médias são iguais entre esses dois grupos; e em Ha que as médias são diferentes (ou seja, é um teste bicaudal).

O que sugere um boxplot dessas duas variáveis em nossa amostra?

Distribuição do número de funcionários ativos entre municípios que possuem ou não possuem órgãos da administração indireta

Vamos agora testar nossa hipótese sob um nível de significância de 0.01.

```
# Antes, precisamos testar o pressuposto de mesma variância das
# nossas duas "amostras"
var.test(direta_ativos ~ adm_indireta, data = amostra_munic)
```

F test to compare two variances

data: direta_ativos by adm_indireta F = 0.072277, num df = 226, denom df = 49, p-value < 2.2e-16 alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: 0.04506778 0.10883678 sample estimates: ratio of variances 0.0722769

Welch Two Sample t-test

data: direta_ativos by adm_indireta t = -3.9104, df = 50.57, p-value = 0.0002753 alternative hypothesis: true difference in means is not equal to 0 99 percent confidence interval: -2618.2459 -490.4223 sample estimates: mean in group Não mean in group Sim 698.5859 2252.9200

Nosso teste de hipótese nos mostra que podemos rejeitar a hipótese nula de que as médias são iguais, com um nível de significância de 0.01 (afinal, nosso p-valor é baixo, sendo igual a 0.002753). Isso também pode ser verificado ao observamos o valor reportado para o intervalo de confiança da diferença entre essas médias, que não absorve o valor de 0.

Teste Qui-Quadrado

Por fim, temos o teste qui-quadrado, no qual testamos a associação entre duas variáveis categóricas. Utilizando a MUNIC de 2015, vamos testar se existe associação entre a ocorrência de contratação de uma assessoria jurídica (amostra_munic\$assessoria_juridica) e a existência de sistemas informatizados de execução orçamentária (amostra_munic\$folha_pagamento).

A hipótese nula de um teste qui-quadrado é a de que as variáveis em análise são independentes na população, enquanto Ha é a de que elas não são independentes.

A função que utilizamos no R para tanto é a chisq.test, que funciona de maneira bastante simples.

Pearson's Chi-squared test with Yates' continuity correction

data: amostra_municassessoria $_j$ uridicaandamostra $_m$ unicexecucao_orcamentaria X-squared = 1.0329e-29, df = 1, p-value = 1

De imediato não podemos rejeitar a H0 de que essas variáveis são independentes (basta olhar para o nosso p-valor).

Além disso, podemos guardar diversas informações relacionadas a um teste qui-quadrado num objeto, para podermos acessá-los posteriormente. Para além da estatística de teste, p-valor e nível de significância, conseguimos também tabelas das frequências esperada e observada, além das tabelas de resíduos e resíduos padronizados.

X-squared 1.032864e-29

```
# p-valor
teste_quiquadrado$p.value
```

[1] 1

```
# Tabela de valores observados
teste_quiquadrado$observed
```

Não Sim

Não 10 66 Sim 22 140

Tabela de valores esperados

teste_quiquadrado\$expected

Não Sim

Não 10.21849 65.78151 Sim 21.78151 140.21849

Tabela de residuos

teste_quiquadrado\$residuals

Não Sim

 \tilde{NA} £o -0.06834914 0.02693857 Sim 0.04681471 -0.01845116

Tabela de residuos padronizados

teste_quiquadrado\$stdres

Não Sim

 $N\tilde{A}$ £o -0.08904692 0.08904692 Sim 0.08904692 -0.08904692