12. Ecuaciones diferenciales - 2° parte

Nomenclatura y consideraciones básicas:

- S.G. simboliza solución general, S.P. solución particular, S.S. solución singular.
- Dada la ecuación diferencial ordinaria $F(y^{(n)}, \dots, y', y, x) = 0$ de orden n, sus soluciones, de existir, no siempre admiten que se las exprese en forma explícita. Las soluciones son relaciones entre las variables que satisfacen a la ecuación diferencial; en especial, la S.G. debe contener n constantes arbitrarias esenciales.
- 01) Resuelva las siguiente ecuaciones diferenciales homogéneas de 1° orden.

a)
$$y' = \frac{y}{x} + \frac{y^2}{x^2}$$
 con $y(1) = 1$.

a)
$$y' = \frac{y}{x} + \frac{y^2}{x^2}$$
 con $y(1) = 1$.
b) $(x^2 + y^2) dx - 2xy dy = 0$.
c) $\frac{dy}{dx} = \frac{y + x \cos^2(y/x)}{x}$ con $y(1) = \frac{\pi}{4}$.
d) $y' = y/(x-y)$.

b)
$$(x^2+y^2) dx - 2xy dy = 0$$

d)
$$y' = y/(x-y)$$
.

- 02) Halle la familia de curvas ortogonales a $x^2 + y^2 = 2ax$.
- 03) Resuelva y' = (x y 1)/(x + y + 3) aplicando la transformación (x,y) = (u 1, v 2).
- 04) Resuelva las siguiente ecuaciones diferenciales totales exactas o convertibles a este tipo.

a)
$$2xydx + (x^2 + \cos y) dy = 0$$
.

d)
$$(y^2-y) dx + x dy = 0$$
. (*)

b)
$$y' = \frac{xy^2 - 1}{1 - x^2y}$$
 con $y(-1) = 1$.

e)
$$(x+y^2) dx - 2 y x dy = 0$$
.

c)
$$(6xy-y^3) dx + (4y+3x^2-3xy^2) dy = 0$$
. f) $y^2 \cos x dx + (4+5y \sin x) dy = 0$.

f)
$$y^2 \cos x \, dx + (4 + 5y \sin x) \, dy = 0$$

- 05) Resuelva la ecuación $x^2y' = y + xe^{-1/x}$ mediante el reemplazo $y = x^2q(x)$.
- 06) Halle la S.G. de las siguientes ecuaciones diferenciales.

a)
$$y'' + 8y' + 25y = 0$$
.

b)
$$y''' - 5y'' + 8y' - 4y = 2$$
.

c)
$$y'' - 3y' + 2y = xe^x + 2x$$
.

$$d) \quad y'' + y = \sec(x) .$$

e)
$$y'' - 2y' + y = x^{-1}e^x$$
.

f)
$$y'' + y' = 2 \operatorname{sen}(x)$$
.

- 07) Halle g de manera que $\bar{f}(x, y) = (yg'(x), x^2 g'(x))$ admita función potencial.
- 08) Halle la solución particular (S.P.).

a) S.P. de
$$y'' - y' - 2y = 4x^2$$
 tal que $y(0) = 1$, $y'(0) = 4$.

b) S.P. de
$$y'' - y' - 2y = e^{3x}$$
 con recta tangente de ecuación $y = 2x + 1$ en $(0,y_0)$.

c) S.P. de
$$y'' + 2y' + 2y = \text{sen}(2x) + \cos(2x)$$
 tal que $y(0) = 0$, $y'(0) = 1$.

d) S.P. de
$$y''' - 3y'' + 2y' = x^2 - x$$
 tal que $y(0) = 0$, $y'(0) = 2$, $y''(0) = 2$.

e) S.P. de
$$y'' - y = 2x - 1$$
 con recta normal de ecuación $x + 3y = 6$ en $(0,y_0)$.

09) Dada y'' + y = f(x), halle su S.G. sabiendo que $y = 2x^2$ es una S.P.

^(*) También es de variables separables, verifique que el método de resolución no cambia el tipo de solución obtenida.

10) El cuerpo de masa M puede desplazarse horizontalmente con rozamiento despreciable y está acoplado a la pared vertical mediante un resorte de constante k y un amortiguador de constante d. En tiempo t = 0 está en reposo en la posición x = 0 y se le aplica una fuerza F constante que lo lleva hacia x^+ partiendo con velocidad x'(0) = 0.

- a) Con F = 4.35, M = 3, k = 87 halle y grafique x(t) para: a_1) d = 12, a_2) d = 38.
- b) Indique las unidades de medida de x', x'', M, k, d cuando el tiempo se mide en segundos([t] = s), $[F] = Newton(N) = kgm/s^2$ y [x] = m.
- 11) En el circuito se observa una llave LL, una fuente de tensión E constante, un resistor de resistencia R, un inductor con inductancia L y un capacitor con capacitancia C; se suponen componentes ideales. Se denotan v_R , v_L y v las tensiones entre terminales del resistor, inductor y capacitor respectivamente.

Con
$$LL$$
 cerrada se cumple que: $E = v_R + v_L + v$ (1)

Siendo^(#) $i = Cv'$, resultan:
$$\begin{cases} v_R = Ri = RCv' \\ v_L = Li' = LCv'' \end{cases}$$
Reemplazando en (1) se obtiene:
$$LCv'' + RCv' + v = E$$

En tiempo t = 0, con capacitor descargado (v(0) = 0) se cierra LL y comienza a circular corriente ($i(0) = 0 \implies v'(0) = 0$). Halle y grafique v(t) e i(t) cuando el tiempo se mide en segundos (s), E = 0.05 Volt, $R/L = 4 \text{ s}^{-1}$, $(LC)^{-1} = 29 \text{ s}^{-2}$.

Nota: Observe que v(t) permite simular x(t) del ítem anterior para el caso caso "a₁" (equivalente eléctrico del sistema mecánico).

- 12) Sea v'' + kv' + 9v = 0 con v(0) = 0, v'(0) = 1; ¿para qué valores de k la solución v(t) presenta oscilaciones amortiguadas?.
- 13) Halle y grafique la familia de líneas de campo en los siguientes casos, al graficar recuerde orientar la líneas según el campo en cada punto.

- a) $\bar{f}(x,y) = (2y-x,x)$. b) $\bar{f}(x,y) = (y,x)$. c) $\bar{f}(x,y) = (x/2,y)$. e) \bar{E} según TP 11 ítem 16. f) \bar{E} según TP 11 ítem 17. g) $\bar{f}(x,y,z) = (y,z,x)$.

- d) $\bar{f}(x, y) = (kxy^2, x^2y)$, k constante. h) $\bar{f}(x, y, z) = (2,1,3)$, campo constante.
- 14) Demuestre que si $\bar{f}: D \subset \Re^2 \to \Re^2$ es un campo de gradientes, sus líneas de campo (que en cada punto tienen la dirección de \bar{f}) son ortogonales a sus líneas equipotenciales. ¿Cómo se enunciaría esta propiedad trabajando en \Re^3 ?.

i es la intensidad de corriente eléctrica en el circuito. Unidades de medida: [tensión] = Volt, [i] = Ampere, [R] = Ohm, [L] = Henry, [C] = Faradio.

15) Resuelva los siguientes sistemas de ecuaciones diferenciales lineales de 1° orden.

a)
$$\begin{cases} x' + y' = e^{-t} + y \\ 2x' + y' = \operatorname{sen}(t) - 2y \end{cases}$$
 con $x(0) = -2, y(0) = 1.$

b) m(x'', y'', z'') = (0, 0, -mg) tiro libre de masa puntual m desde (0,0,0) en el instante t = 0 con velocidad inicial $\bar{v}(0) = (v_x, 0, v_z)$; g constante (ac. de la gravedad).

c)
$$\begin{cases} 4x' - y' + 3x = \operatorname{sen}(t) \\ x' + y = \cos(t) \end{cases}$$
 equivalente a
$$\begin{pmatrix} 4 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -3 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \operatorname{sen}(t) \\ \cos(t) \end{pmatrix}.$$

d)
$$(x', y', z') = (y + z, 3x + z, 3x + y)$$
.

e)
$$\begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} \begin{pmatrix} y_1' \\ y_2' \\ y_3' \end{pmatrix} = \begin{pmatrix} -1 & -1 & -1 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \text{ con } y_1(0) = y_2(0) = 1, y_3(0) = -2.$$

f)
$$(x', y') = (3x - y/2 - 3t^2 - t/2 + 3/2, 2y - 2t - 1)$$
 con $x(0) = 2, y(0) = 3$.

Cuestionario

- a) Enuncie el teorema de existencia y unicidad de la solución de una ecuación diferencial ordinaria.
- b) Defina los tipos de soluciones de una ecuación diferencial ordinaria.
- c) Si y_{p_1} e y_{p_2} son soluciones de la ec. diferencial ay'' + by' + cy = f(x), demuestre que $y = y_{p_1} y_{p_2}$ es solución de la homogénea.
- d) Si y_{p_1} e y_{p_2} son respectivamente S.P. de $ay'' + by' + cy = f_1(x)$ e $ay'' + by' + cy = f_2(x)$ demuestre que $y = y_{p_1} + y_{p_2}$ es S.P. de $ay'' + by' + cy = f_1(x) + f_2(x)$.
- e) Halle una transformación que convierta la ecuación $y' = y x^{-1} + 1$ a una ecuación del tipo variables separables.

Resolución de ecuaciones diferenciales con el Mathematica

Se dispone de dos funciones, **DSolve** y **NDSolve**; trabajando con ec. diferenciales ordinarias:

DSolve[eqn, y, x] resuelve la ec.dif. eqn para la función y, con variable independiente x.

DSolve[eqn, y[x], x] resuelve para hallar la expresión formal de la S.G.

DSolve[$\{eqn,cond\}$, y[x], x] resuelve para hallar la expresión de la S.P. que cumple con **cond**.

DSolve[$\{eqn1,eqn2,...\}$, $\{y1[x],y2[x],...\}$, x] resuelve un sistema de ec. diferenciales.

NDSolve[eqn, y, {x,xmin,xmax}] encuentra una solución numérica de la ec.dif. **eqn** para la función **y**, con variable independiente **x** en el rango xmin a xmax.

NDSolve[{eqn1,eqn2, ...}, {y1,y2, ...}, {x,xmin,xmax}] es para sistema de ec. diferenciales. *Ejemplo 1*: resolvemos el ejercicio del ítem 11a.

DSolve[
$$\{y''[x] - y'[x] - 2y[x] = 4x^2, y[0] = 1, y'[0] = 4\}, y[x], x]^{(*)}$$

 $\{\{y[x] \rightarrow e^{-x} (2-3e^x + 2e^{3x} + 2e^x x - 2e^x x^2)\}\}$

y[x] /. % Devuelve la expresión de y[x] según (/.) el último resultado (%).

 $\{e^{-x}(2-3e^x+2e^{3x}+2e^xx-2e^xx^2)\}$ Aparece como lista o vector (de 1 componente).

%[[1]] Devuelve la 1° (única) componente del resultado anterior.

$$e^{-x}(2-3e^x+2e^{3x}+2e^xx-2e^xx^2)$$

 $f[x_] = Expand[\%]$ Define f[x] expandiendo (prop. distributiva) el resultado anterior.

$$-3+2e^{-x}+2e^{2x}+2x-2x^2$$

Donde dice y'' es con *doble prima*, no es y'' con comillas.

```
Ejemplo 2: resolvemos el ítem 12b del TP-1, trayectorias ortogonales a la familia y = Ce^x. fam1 = y[x] = c Exp[x]; Eliminate[{ fam1, D[fam1, x] }, c]
```

$$y[x] == y'[x]$$

% /.
$$y'[x] -> -1/y'[x]$$

$$y[x] == -\left(\frac{1}{y'[x]}\right)$$

$$DSolve[y'[x] = -1/y[x], y[x], x]$$

$$\{ \{ y[x] -> -Sqrt[-2 x + C[1]] \}, \{ y[x] -> Sqrt[-2 x + C[1]] \} \}$$

Vemos que la respuesta es del tipo $y = \pm \sqrt{\ }$; es decir, $y^2 = 2(k-x)$.

Graficamos algunas curvas de ambas familias

$$a = Table[Plot[\ c\ Exp[x]\ , \{x, -1, 4\}, PlotRange\ -> \{\ All\ , \{-2, 2\}\ \}\]\ , \\ \{c, -2, 2, 0.2\}]\ ;$$

b = Table[Plot[c Exp[x] , {x, -1, 4}, PlotRange
$$->$$
 { All , {-2, 2} }] , {c, -0.2, 0.2, 0.08}] ;

<< Graphics`ImplicitPlot`

$$c \, = \, Table[ImplicitPlot[\, y^2 == 2 \, (k-x) \, , \{x,-1,4\}], \, \{k,-4,4,0.5\}] \, ;$$

Show[a,b,c, AspectRatio -> Automatic];

Gráfico que genera el Show:

Ejemplo 3: una resolución numérica con graficación.

$$rr = NDSolve[{y'[x] == 2 x, y[0] == 2}, y, {x, -1, 1}]$$

 $\{\{y -> InterpolatingFunction[\{-1, 1, \}, <> \}\}\}$

Plot[Evaluate[$y[x] /. rr], \{x, -1, 1\}];$

y[0.5] /. rr En esta línea pedimos el valor numérico de la S.P. para x = 0.5 . {2.25}

 $^{^{(*)}}$ En esta línea se ordena: en el último resultado (%) reemplazar (/.) y'[x] por -1/y'[x].