Computational Intelligence

Syllabus and Lecture Plan

Instructor

Course Overview

Dr. Wenjun Wang

Associate Professor in Jinan University – University of Birmingham Joint Institute (J-BJI) @ JNU

Moile & Wechat

+86-13726771160 to 5pm, Mon to Fri)

13725771160 (WeChat)

(Officially available at 9am

The prerequisite for this course are prior modules on Statistics, Mathematical Modelling and some programming background, such as Matlab, C++, Python, R etc.

Computational Intelligence (CI) is the study of adaptive mechanisms to enable or facilitate intelligence behavior in complex, uncertain and changing environments.

These adaptive mechanisms include those artificial intelligence paradigms that exhibit

an ability to learn or adapt to new situations, generalize, abstract, discover and

associate1. The paradigms of CI are inspired from biology and nature, which covered

artificial neural networks (ANNs), evolutionary computing (EC), swarm intelligence (SI), artificial immune systems (AIS) and fuzzy systems (FS). This course is in an

introductory level and aims to introduce the fundamental concepts and applications of CI, such as basic concept, model, algorithm and systems, widely in machine learning,

soft computing (fuzzy systems), nature inspired computing, model-based systems and

qualitative reasoning. It will also make the students aware of how these components

interact within the general domain of computational intelligence.

Email address

wjwang@jnu.edu.cn

Textbook

Office Location

A. Engelbrecht, (2007), Computational Intelligence: An Introduction, (2nd ed.), John Wiley & Sons, Ltd, England. ISBN 0-470-84870-7.

R201,

https://www.wiley.com/en-

@ Experiment Building

us/Computational+Intelligence%3A+An+Introduction%2C+2nd+Edition-p-

9780470035610

Office Hours

References

 $1pm \sim 3.30pm$, Mon to Fri

Book in advance

Barreto Arrieta A. et al. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, pp. 82-115.

Craenen B., Eiben A. (2003): Computational Intelligence. In: Encyclopedia of Life Support Sciences, EOLSS Publishers Co.

Russell S., Norwig P. (2010). Artificial Intelligence: A Modern Approach, (3rd ed.), Prentice Hall. Available in the faculty library.

Marsland S. (2015). Machine Learning: An Algorithmic Perspective, (2nd ed.), CRC Press.

Sloman A. (2002). *The Irrelevance of Turing Machines to AI*. In Scheutz M. (ed.): Computationalism: New Directions, MIT Press, Cambridge, MA, pp. 87–127.

Woergoetter F., Porr B. (2008). Reinforcement learning, Scholarpedia, 3(3):1448.

Zadeh L. (2007). Fuzzy logic, Scholarpedia, 3(3):1766.

Course materials

- The accompanying website of this book, which can be located at
 http://ci.cs.up.ac.za, provides algorithms to implement many of the CI models
 discussed in this book.
- Computational Intelligence A Logical Approach, you can find some good readings on https://www.cs.ubc.ca/~poole/ci.html
- Introduction to Computational Intelligence, Master Programme in Cognitive Science, Comenius University in Bratislava, http://dai.fmph.uniba.sk/courses/ICI/
 http://dai.fmph.uniba.sk/w/Course:Introduction_to_computational_intelligence/en#References
- IEEE Computational Intelligence Society also hold a forum on https://cis.ieee.org/about/what-is-ci

Platform & Software

- MATLAB PlatMEO: https://github.com/BIMK/PlatEMO
- Java jMetal : http://jmetal.github.io/jMetal/
- Python Evolutionary algorithm toolbox : https://github.com/geatpy-dev/geatpy
- Software and Tutorials for Python are available on http://www.cse.msu.edu/~ptan/dmbook/software/

Course Schedule

Week	Lectures	Practice Sessions
Week 1	Introduction to CI	Introduction of programming
Week 2	ANN-1 from neuron to perceptron	1 st practical team-project start
Week 3	ANN-2 Multi-perceptron, Supervised Learning /Un, RL, DL	Team work
Week 4	ANN3- Other topics and summary	1 st team presentation & discussion
Week 5	EC-1 Benchmark problems and Evolutionary strategies	2 nd practical team-project start

Fall, 2023 Page 2

Week	Lectures	Practice Sessions
Week 6	EC-2 DE and Coevolution	Team work
Week 7	EC-3 Other topics and summary	2 nd team presentation & discussion
Week 8	SI-1 Particle Swarm Optimisation	3 rd practical team-project start
Week 9	SI-2 Ant algorithm and Artificial Bee Colony	Team work
Week 10	SI-3 Other topics and summary	3 rd team presentation & discussion
Week 11	AIS-1 Natural Immune System	4 th practical team-project start
Week 12	AIS-2 Artificial Immune Models and algorithms	Team work
Week 13	AIS-3 Other topics and summary	4 th team presentation & discussion
Week 14	FS-1: Fuzzy Sets, Logic and Reasoning	5 th practical team-project start
Week 15	FS-2: Fuzzy Controllers and Rough Sets	Team work
Week 16	FS-3: Other topics and applications	5 th team presentation & discussion
Week 17	Revision	Revision
Week 18	Revision	Revision

Exam schedule

Week	Subject	
Week 19	Final Exam which will be comprehensive and will contribute 70%.	
Week 20	Deadline of assignments submissions, that will contribute 5%×5=25%. Attendance and performance in due course will contribute 5%.	

Assignment Policy

Briefly, each practical assignment consists of three parts: data preparing or processing, model implementation and result analyzing to output a report document, better with no more than 3 pages (regular A4). It is recommended to use overleaf to edit your report, here is a link for PDF template,

https://www.overleaf.com/latex/templates/template-relatorios-feelt31109/kxrpjkbqhshg, or you can find what you like. To achieve good mark, assignments should be submitted before ddl with clear and brief statements or calculation. For home exercise it is not limits on pages.

Additional information

Course Forum: See blackboard (BB)

Social Network: WeChat 137 2677 1160

Fall, 2023 Page 3