# Microarchitectural Implications of Event-driven

Server-side Web Applications

Yuhao Zhu

**UT** Austin

with Daniel Richins, Matthew Halpern, Vijay Janapa Reddi



# Instruction Supply is a Critical Aspect of Microarchitecture Design

a.k.a., Common Case Design

Cache

Instruction Supply

Branch Predictor

TI B

a.k.a., Common Case Design

Instruction
Supply

Branch
Predictor

TLB

a.k.a., Common Case Design

Cache

Hot instructions

Instruction Supply

Branch Predictor

Hot branch history patterns

TLB

a.k.a., Common Case Design

Cache

Hot instructions

Instruction Supply

Branch Predictor

Hot branch history patterns

TLB

Hot pages

a.k.a., Common Case Design



a.k.a., Common Case Design

SPEC CPU **Event-driven** (mostly) **Applications** Hot Cache instructions Instruction Branch Hot branch history patterns Predictor Supply Hot pages















Hot pages























# Applications

| Application   | Domain                    |
|---------------|---------------------------|
| Etherpad Lite | Document<br>Collaboration |
| Let's Chat    | Messaging                 |
| Lighter       | Content<br>Management     |
| Mud           | Gaming                    |
| Todo          | Task<br>Management        |
| Word Finder   | API Services              |





I-Cache Parameters

32 KB, 64 B cache line, 8-way



32 KB, 64 B cache line, 8-way



I-Cache Parameters
32 KB, 64 B cache line, 8-way



I-Cache Parameters
32 KB, 64 B cache line, 8-way



## Node.js has 4.2 X higher MPKI than SPEC CPU.



I-Cache Parameters
32 KB, 64 B cache line, 8-way

High I-\$ Miss Ratio

High I-\$ Miss Ratio



High I-\$ Miss Ratio





High I-\$ Miss Ratio





High I-\$ Miss Ratio





High I-\$ Miss Ratio





High I-\$ Miss Ratio



High I-\$ Miss Ratio





High I-\$ Miss Ratio



Large Instruction Reuse-distance



High I-\$ Miss Ratio



Large Instruction Reuse-distance



Inter-event Code Reuse



High I-\$ Miss Ratio



Large Instruction Reuse-distance



Inter-event Code Reuse



High I-\$ Miss Ratio



Large Instruction Reuse-distance





Inter-event Code Reuse

High I-\$ Miss Ratio



Large Instruction Reuse-distance



K

Inter-event Code Reuse



High I-\$ Miss Ratio



Large Instruction Reuse-distance



Inter-event Code Reuse



High I-\$ Miss Ratio



Large Instruction Reuse-distance



Inter-event Code Reuse



High I-\$ Miss Ratio



Large Instruction Reuse-distance



Inter-event Code Reuse



High I-\$ Miss Ratio



Large Instruction Reuse-distance



Inter-event Code Reuse Large Event Footprint

Most instruction reuses are inter-event.



High I-\$ Miss Ratio



Large Instruction Reuse-distance





Code Reuse

Inter-event Large Event Footprint

High I-\$ Miss Ratio



Large Instruction Reuse-distance



Inter-event Code Reuse



High I-\$ Miss Ratio



Large Instruction Reuse-distance



Inter-event Code Reuse



High I-\$ Miss Ratio



Large Instruction Reuse-distance



Inter-event Code Reuse



High I-\$ Miss Ratio



Large Instruction Reuse-distance



Inter-event Code Reuse



High I-\$ Miss Ratio



Large Instruction Reuse-distance



Inter-event Code Reuse



High I-\$ Miss Ratio



Large Instruction Reuse-distance



Inter-event Code Reuse



High I-\$ Miss Ratio



Large Instruction Reuse-distance



Inter-event Code Reuse Large Event Footprint

Most events' footprints do not fit in a typical I-\$.



High I-\$ Miss Ratio



Large Instruction Reuse-distance





Code Reuse Footprint

Inter-event Large Event



Few **Event Types** 

High I-\$ Miss Ratio Large Instruction Reuse-distance Inter-event Large Event Footprint Code Reuse Few Minimal Tight

Loops

**Event Types** 

High I-\$ Miss Ratio Large Instruction Reuse-distance Inter-event Large Event Code Reuse Footprint Few Minimal Tight Event Types Loops Event-driven

**Applications** 

High I-\$ Miss Ratio



Large Instruction Reuse-distance





Code Reuse

Inter-event Large Event Footprint





Few **Event Types**  Minimal Tight Loops



Event-driven **Applications** 

# Microarchitecture Behaviors

High I-\$ Miss Ratio Large Instruction Reuse-distance Inter-event Large Event Code Reuse Footprint Minimal Tight **Event Types** Loops Event-driven **Applications** 

# Microarchitecture Behaviors

Application Characteristics

High I-\$ Miss Ratio **Event-driven Applications** 

# Microarchitecture Behaviors

Application Characteristics

Can we better capture instruction locality to improve instruction supply efficiency?

















1. **Retain** the reused portion of an event's footprint in the cache



1. **Retain** the reused portion of an event's footprint in the cache



- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position

### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position



### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position



### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position



### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position



### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position



### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

### **PRACTICES**

MISS

a

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position

Inter-event Locality Lost!

MRU

LRU

k i

#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ LRU Cache Insertion Policy (LIP) (Qureshi et al., [ISCA'07])
  - Insert incoming line into LRU position, not MRU position











### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ Temporal Instruction Fetch Streaming (TIFS) (Ferdman et al., [MICRO'08])
  - Find patterns in miss sequences

#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ Temporal Instruction Fetch Streaming (TIFS) (Ferdman et al., [MICRO'08])
  - Find patterns in miss sequences



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ Temporal Instruction Fetch Streaming (TIFS) (Ferdman et al., [MICRO'08])
  - Find patterns in miss sequences



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ Temporal Instruction Fetch Streaming (TIFS) (Ferdman et al., [MICRO'08])
  - Find patterns in miss sequences



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ Temporal Instruction Fetch Streaming (TIFS) (Ferdman et al., [MICRO'08])
  - Find patterns in miss sequences



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ Temporal Instruction Fetch Streaming (TIFS) (Ferdman et al., [MICRO'08])
  - Find patterns in miss sequences



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ Temporal Instruction Fetch Streaming (TIFS) (Ferdman et al., [MICRO'08])
  - Find patterns in miss sequences



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ Temporal Instruction Fetch Streaming (TIFS) (Ferdman et al., [MICRO'08])
  - Find patterns in miss sequences



#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

- ▶ Temporal Instruction Fetch Streaming (TIFS) (Ferdman et al., [MICRO'08])
  - Find patterns in miss sequences



### Exploit Inter-Event Locality

#### **PRINCIPLES**

- 1. **Retain** the reused portion of an event's footprint in the cache
- 2. **Prefetch** the unretained part

#### **PRACTICES**

- ▶ Temporal Instruction Fetch Streaming (TIFS) (Ferdman et al., [MICRO'08])
  - Find patterns in miss sequences







#### 88% Average MPKI Reduction



## **Exploit Instruction Locality**

a.k.a., Common Case Design

SPEC CPU **Event-driven** (mostly) **Applications** Hot Cache instructions Branch Instruction Hot branch history patterns Predictor Supply Hot pages

## **Exploit Instruction Locality**

a.k.a., Common Case Design

SPEC CPU **Event-driven** (mostly) **Applications** Hot Cache instructions **Branch** Instruction Hot branch history patterns Predictor Supply Hot pages

### Beyond Instruction Cache — Branch Predictor



Tournament Predictor

12-bit history register256 local branch histories

#### Beyond Instruction Cache — Branch Predictor



Tournament Predictor

12-bit history register256 local branch histories

### Beyond Instruction Cache — TLB



I-TLB Parameters
64 KB, 4-way
4 KB page size

### Beyond Instruction Cache — TLB



I-TLB Parameters
64 KB, 4-way
4 KB page size









# Event-based processing is a fundamental computation pattern.



# Event-based processing is a fundamental computation pattern.

Web Mobile Sensor networks Cloud Internet-of-Things











## Microarchitectural Implications of Event-driven

Server-side Web Applications

#### Yuhao Zhu

**UT** Austin

with Daniel Richins, Matthew Halpern, Vijay Janapa Reddi

