Университет ИТМО Факультет ФПИ и КТ

Отчёт

по лабораторной работе 1

«Моделирование»

Вариант 9

Студент:

Ляо Ихун

Гр.Р34131

Преподаватель:

Алиев Тауфик Измайлович

Цель работы:

Изучение методов обработки и статистического анализа результатов измерений на примере заданной числовой последовательности путем оценки числовых моментов и выявления свойств последовательности на основе корреляционного анализа, а также аппроксимация закона распределения заданной последовательности по двум числовым моментам случайной величины.

Выполнение:

1.Создание таблиц характеристик исходной

числовой последовательности

Характеристика	Количество случайные величин							
		10	20	50	100	200	300	
Мат.ож	знач	188.73	229.76	195.08	174.63	169.83	176.87	
	%	6.71	29.90	10.30	-1.27	-3.98		
Дов. инт. (0,9)	знач	47.44	48.91	26.64	19.28	12.87	10.86	
	%	336.76	350.23	145.27	77.45	18.45		
Дов. инт. (0,95)	знач	56.53	58.27	31.75	22.97	15.33	12.94	
	%	336.76	350.23	145.27	77.45	18.45		
Дов. инт. (0,99)	знач	74.29	76.59	41.72	30.19	20.15	17.01	
	%	336.76	350.23	145.27	77.45	18.45		
Дисперсия	знач	8318.92	17680.07	13117.60	13732.65	12238.14	13083.12	
	%	-36.41	35.14	0.26	4.96	-6.46		
С.к.о.	знач	91.21	132.97	114.53	117.19	110.63	114.38	
	%	-20.26	16.25	0.13	2.45	-3.28		
К-т вариации	знач	0.48	0.58	0.59	0.67	0.65	0.65	
	%	-25.27	-10.51	-9.21	3.77	0.72		

Чем больше значений берется в выборке, тем точнее рассчитываются параметры.

2.Создание график значений исходной числовой последовательности

Числовая последовательность такой графики не является периодической, возрастоющей или убывающей.

3. Автокорреляционный анализ

Когда t=0 видимо что ACF = 1, это потому что по-сути мы в том случае сравняем два одиноковой последовательности. Но в итоге ACF приближает к 0. Это значит что у нее слабая зависимость между собой.

4. Создание гистограмму распределения чистот исходной числовой последовательности

5. Аппроксимация закона распределения

Коэффициент вариации меньше 1, поэтому выбираем нормированный Эрланга k-го порядка где k = 2 по нашему варианту. $a=\frac{1}{F}$, где E измеренное математическое ожидание.

Получается $a \approx 0.006$.

6.Генерация случайных величин

Характеристика	Количество случайные величин							
		10	20	50	100	200	300	
Мат.ож	знач	126.98	169.92	178.15	164.83	168.75	172.64	
Дов. инт. (0,9)	знач	38.39	49.65	28.12	20.57	14.73	11.90	
Дов. инт. (0,95)	знач	45.75	59.16	33.51	24.51	17.55	14.18	
Дов. инт. (0,99)	знач	60.12	77.75	44.04	32.21	23.06	18.63	
Дисперсия	знач	5447.47	18221.26	14616.72	15632.66	16036.19	15692.00	
С.к.о.	знач	73.81	134.99	120.90	125.03	126.63	125.27	
К-т вариации	знач	0.58	0.79	0.68	0.76	0.75	0.73	

Математическое ожидание не превосходит доверительный интервал с веряностью 0.99. Аппроксимация выполнена качественно.

7. Автокорреляционный анализ сгенерированного

Сдвиг ЧП	1	2	3	4	5	6	7	8	9	10
К для сгенерир. ЧП	-0.007	0.006	-0.085	-0.159	-0.002	-0.042	0.004	0.025	-0.012	0.074

Когда t=0 видимо что ACF = 1, это потому что по-сути мы в том случае сравняем два одиноковой последовательности. Но в итоге ACF приближает к 0. Это значит что у нее слабая зависимость между собой.

8. Создание графики значения и гистограммы распределения частот сгенерированной последовательности

Красная – сгенерированная

Синяя – исходная

При сравнении заметим что распределения исходные и сгенерированные похожи. Тоже значит что аппроксимация выполнена качественно.

9.Оценка корреляционной зависимости сгенерированной последовательности

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} * \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = 0.994$$

Близко к 1. Это значит что между исходной и сгенерированной последовательностью существует сильная зависимость.

Вывод:

В ходе выполнения работы мы определили характеристики заданной исходной числовой последовательности. И мы проанализировали графику значений исходной последовательности, и определили что она не является убывающей, возрастоающей или периодической. И мы определили что последовательность случайна при помощи автокорреляционного анализа. Потом мы делаем аппроксимацию закона заданной последовательности, используя нормированной Эргина k-порядка потому что коэффициент вариации меньше 1. В том случае получаем параметры $\alpha \approx 0.006$ и k=2.

Последовательно мы сгенерировали новую последовательность по полученного распределения из аппроксимации. Мы делали такие же анализы для новой последовательности и получили характеристики новой сгенерированной последовательности. Результат заключается в том что новая последоваетльность тоже получайной и она имеет сильную зависимость с исходной последовательности. Их характеристики похожи. Все эти приводят к такому выводу что наша аппроксимация качественна.