Suites de fonctions

I. Limite uniforme d'un produit

1) Puisque $||f_n - f||_{\infty} \xrightarrow[n \to +\infty]{} 0$, à partir d'un certain rang n_0 nous avons $||f_n - f||_{\infty} \leq 1$.

En particulier $||f_n||_{\infty} \leq ||f||_{\infty} + 1$, donc si f est bornée, les f_n le sont aussi, au moins à partir du rang n_0 .

Et de même, s'il existe un rang n_1 à partir duquel les f_n sont bornées, alors si n_2 est un entier fixé tel que $n_2 \ge \max(n_0, n_1)$ nous avons $||f||_{\infty} \le ||f_{n_2}||_{\infty} + 1$, et f est bien bornée.

2) Grâce à la question précédente, les f_n sont bornées à partir d'un certain rang, donc

$$||f_n g_n - fg||_{\infty} = ||f_n (g_n - g) + (f_n - f)g||_{\infty}$$

$$\leq ||f_n||_{\infty} ||g_n - g||_{\infty} + ||g||_{\infty} ||f_n - f||_{\infty}$$

$$\xrightarrow[n \to +\infty]{} 0$$

par somme de produits d'une suite bornée par une suite tendant vers 0.

- 3) $||f_n h fh||_{\infty} \le ||h||_{\infty} ||f_n f||_{\infty} \xrightarrow[n \to +\infty]{} 0$, en tant que produit d'une suite bornée par une suite tendant vers 0.
- 4) Considérons par exemple sur [0,1[les fonctions $f_n: x \mapsto x^n(1-x)$ et $h: x \mapsto \frac{1}{1-x}$. La suite (f_n) converge simplement vers la fonction nulle. Une étude de fonction assure que $|f_n|$ atteint son maximum en $\frac{n}{n+1}$, ce maximum vaut $\left(\frac{n}{n+1}\right)^n \times \frac{1}{n+1} \sim \frac{1}{\operatorname{e} n} \xrightarrow[n \to +\infty]{} 0$, donc (f_n) converge bien uniformément vers 0 sur [0,1[.

Mais $hf_n: x \mapsto x^n$, qui converge simplement vers 0, mais pas uniformément, car $\sup_{[0,1[} hf_n = 1.$

II. Étude du type de convergence (banque CCP MP)

1) Soit $g_n: X \longrightarrow \mathbb{C}$ et $g: X \longrightarrow \mathbb{C}$. Dire que (g_n) converge uniformément vers g sur X signifie que : $\forall \varepsilon > 0, \exists N \in \mathbb{N} / \forall n \in \mathbb{N}, n \geqslant N \Longrightarrow \forall x \in X, |g_n(x) - g(x)| \leqslant \varepsilon.$ Ou encore, (g_n) converge uniformément vers g sur $X \iff \lim_{n \to +\infty} \left(\sup_{x \in X} |g_n(x) - g(x)| \right) = 0.$

2) a) On pose pour tout $x \in \mathbb{R}$, $f_n(x) = \frac{n+2}{n+1} e^{-nx^2} \cos(\sqrt{n}x)$. Soit $x \in \mathbb{R}$. Si x = 0, alors $f_n(0) = \frac{n+2}{n+1}$, donc $\lim_{n \to +\infty} f_n(0) = 1$. Si $x \neq 0$, alors $\lim_{n \to +\infty} f_n(x) = 0$. En effet, $|f_n(x)| \underset{+\infty}{\sim} e^{-nx^2} |\cos(\sqrt{n}x)|$ et $0 \leq e^{-nx^2} |\cos(\sqrt{n}x)| \leq e^{-nx^2} \underset{n \to +\infty}{\longrightarrow} 0$.

On en déduit que (f_n) converge simplement sur $\mathbb R$ vers la fonction f définie par :

$$f(x) = \begin{cases} 0 & \text{si} \quad x \neq 0 \\ 1 & \text{si} \quad x = 0 \end{cases}$$

- b) Pour tout $n \in \mathbb{N}$, f_n est continue sur $[0, +\infty[$ et f non continue en 0 donc (f_n) ne converge pas uniformément vers f sur $[0, +\infty[$.
- c) Soit a>0. On a: $\forall x\in [a,+\infty[,|f_n(x)-f(x)|=|f_n(x)|\leqslant \frac{n+2}{n+1}\mathrm{e}^{-na^2}$ (majoration indépendante de x). Donc $||f_n-f||_{\infty}\leqslant \frac{n+2}{n+1}\mathrm{e}^{-na^2}$. Par ailleurs, $\lim_{n\to+\infty}\frac{n+2}{n+1}\mathrm{e}^{-na^2}=0$ (car $\frac{n+2}{n+1}\mathrm{e}^{-na^2}\underset{+\infty}{\sim}\mathrm{e}^{-na^2}$). Donc (f_n) converge uniformément vers f sur $[a,+\infty[$. d) On remarque que pour tout $n\in\mathbb{N}$, f_n est bornée sur $]0,+\infty[$ car pour
 - tout $x \in]0, +\infty[, |f_n(x)| \le \frac{n+2}{n+1} \le 2.$ D'autre part, f est bornée sur $]0, +\infty[$, donc, pour tout $n \in \mathbb{N}$, $\sup_{x \in]0, +\infty[} |f_n(x) - f(x)| = x$ On a $|f_n(\frac{1}{\sqrt{n}}) - f(\frac{1}{\sqrt{n}})| = \frac{(n+2)e^{-1}\cos 1}{n+1}$ donc $\lim_{n \to +\infty} |f_n(\frac{1}{\sqrt{n}}) - f(\frac{1}{\sqrt{n}})| = e^{-1}\cos 1 \ne 0.$ Or $\sup_{x \in [n]} |f_n(x) - f(x)| \ge |f_n(\frac{1}{\sqrt{n}}) - f(\frac{1}{\sqrt{n}})|$ donc $\sup_{x \in [n]} |f_n(x) - f(x)| \ge |f_n(\frac{1}{\sqrt{n}})|$

Or
$$\sup_{x \in]0,+\infty[} |f_n(x) - f(x)| \ge |f_n(\frac{1}{\sqrt{n}}) - f(\frac{1}{\sqrt{n}})|$$
, donc $\sup_{x \in]0,+\infty[} |f_n(x) - f(x)|$

$$f(x)|\underset{n\to+\infty}{\not\to} 0.$$

Donc (f_n) ne converge pas uniformément vers f sur $]0, +\infty[$.

III. Limite uniforme d'une suite de fonctions polynomiales

a) Pour = 1/2, il existe $N \in \mathbb{N}$ tel que $\forall n \ge N$, $\|P_n - f\|_{\infty} \le 1/2$ et donc $\|P_n - P_N\|_{\infty} \le 1$.

Seules les fonctions polynomiales constantes sont bornées sur \mathbb{R} donc $P_n - P_N$ est une fonction polynomiale constante. Posons λ_n la valeur de celle-ci.

b) $\lambda_n = P_n(0) - P_N(0) \to f(0) - P_N(0) = \lambda_\infty$. $P_n = P_N + P_n - P_N \xrightarrow{CS} P_N + \lambda_\infty$ donc par unicité de limite $f = P_N + \lambda_\infty$ est une fonction polynomiale.

IV. Interversion limite - intégrale sur un segment (banque CCP MP)

1) Pour $x \in [0,1]$, $\lim_{n \to +\infty} f_n(x) = (x^2 + 1)e^x$.

La suite de fonctions (f_n) converge simplement vers $f: x \mapsto (x^2 + 1)e^x$ sur [0, 1].

On a
$$\forall x \in [0,1]$$
, $f_n(x) - f(x) = (x^2 + 1) \frac{x(e^{-x} - e^x)}{n+x}$,

et donc : $\forall x \in [0,1], |f_n(x) - f(x)| \leq \frac{2e}{n}$ (majoration indépendante de x).

Donc $||f_n - f||_{\infty} \leqslant \frac{2e}{n}$.

De plus, $\lim_{n\to+\infty} \frac{2e}{n} = 0$ donc la suite de fonctions (f_n) converge uniformément vers f sur [0,1].

2) Par convergence uniforme sur le segment [0,1] de cette suite de fonctions continues sur [0,1], on peut intervertir limite et intégrale.

On a donc $\lim_{n \to +\infty} \int_0^1 (x^2 + 1) \frac{n e^x + x e^{-x}}{n + x} dx = \int_0^1 (x^2 + 1) e^x dx$. Puis, en effectuant deux intégrations par parties, on trouve $\int_0^1 (x^2 + 1) e^x dx = 2e - 3$.

V. Utilisation du théorème de convergence dominée

Essayons d'appliquer le théorème de convergence dominée.

Notons, pour tout $n \in \mathbb{N}^*$:

$$f_n:]0;a] \longrightarrow \mathbb{R}, x \longmapsto \frac{1}{x} \left(\left(1 + \frac{x}{n} \right)^n - 1 \right)$$

- Pour tout $n \in \mathbb{N}^*$, f_n est continue par morceaux (car continue) sur [0; a].
- Soit $x \in]0; a]$. On sait $: \left(1 + \frac{x}{n}\right)^n \xrightarrow[n \to +\infty]{} e^x$, donc $: f_n(x) \xrightarrow[n \to +\infty]{} \frac{e^x 1}{x}$. Ainsi, $f_n \xrightarrow[n \to +\infty]{} f$ sur]0; a], où :

$$f:]0; a] \longrightarrow \mathbb{R}, x \longmapsto \frac{\mathrm{e}^x - 1}{x}$$

- f est continue par morceaux (car continue) sur [0; a].
- Soit $n \in \mathbb{N}^*$.

Puisque : $\forall t \in]-1; +\infty[, \ln(1+t) \leq t,$

on a: $\forall t \in [0; +\infty[, 1+t \leq e^t],$

d'où, pour tout $x \in]0; a] : \left(1 + \frac{x}{n}\right)^n \leqslant \left(e^{\frac{x}{n}}\right)^n = e^x,$

puis : $0 \le \left(1 + \frac{x}{n}\right)^n - 1 \le e^x - 1$,

et enfin : $0 \leqslant f_n(x) \leqslant f(x)$.

L'application f est continue par morceaux sur $]0;a],\geqslant 0$, et intégrable sur $]0;a] \operatorname{car} f(x) = \frac{\operatorname{e}^x - 1}{x} \underset{x \longrightarrow 0}{\longrightarrow} 1$.

Ainsi, la suite $(f_n)_{n \ge 1}$ vérifie l'hypothèse de domination.

D'après le théorème de convergence dominée, on déduit :

$$\int_0^a f_n \xrightarrow[n \to +\infty]{} \int_0^a f$$

c'est-à-dire :

$$\int_0^a \frac{1}{x} \left(\left(1 + \frac{x}{n} \right)^n - 1 \right) dx \underset{n \to +\infty}{\longrightarrow} \int_0^a \frac{e^x - 1}{x} dx$$

VI. Recherche d'un équivalent d'une intégrale à paramètre entier naturel

D'abord, pour tout $n \in \mathbb{N}^*$ l'intégrale

 $I_n = \int_0^1 \ln(1+x^n) dx$, existe comme intégrale d'une application continue sur un segment.

On a, pour tout $n \in \mathbb{N}^*$, par le changement de variable $t=x^n, x=t^{\frac{1}{n}}, dx=\frac{1}{n}t^{\frac{1}{n}-1}dt$:

$$I_n = \int_0^1 \ln(1+t) \frac{1}{n} t^{\frac{1}{n}-1} dt = \frac{1}{n} \underbrace{\int_0^1 t^{\frac{1}{n}} \frac{\ln(1+t)}{t} dt}_{\text{notice } I_n},$$

où J_n est d'ailleurs une intégrale de fonction intégrable sur]0;1].

Pour obtenir la limite de J_n (si elle existe), nous allons utiliser le théorème de convergence dominée.

Notons, pour tout $n \in \mathbb{N}^*$:

$$f_n:]0;1] \longrightarrow \mathbb{R}, t \longmapsto t \frac{1}{n} \frac{\ln(1+t)}{t}$$

— Pour tout $n \in \mathbb{N}^*$, f_n est continue par morceaux (car continue) sur]0;1].

$$-f_n \underset{n \to +\infty}{\overset{C.S}{\underset{n \to +\infty}{\longrightarrow}}} f, \text{ où } f:]0;1] \longrightarrow \mathbb{R}, t \longmapsto \frac{\ln(1+t)}{t}, \text{ car, pour } t \in]0;1] \text{ fixé, on a}$$

$$t \stackrel{1}{\underset{n \to +\infty}{\longrightarrow}} 1.$$

- f est continue par morceaux (car continue) sur [0;1].
- On a, pour tout $n \in \mathbb{N}^*$ et tout $t \in]0;1]$:

$$|f_n(t)| = t \frac{1}{n} \frac{\ln(1+t)}{t} \le \frac{\ln(1+t)}{t}$$

et l'application $t \mapsto \frac{\ln(1+t)}{t}$ est continue par morceaux (car continue), $\geqslant 0$, intégrable sur]0;1], puisque $\frac{\ln(1+t)}{t} \xrightarrow[t \to 0]{} 1$. Ceci montre que la suite $(f_n)_{n\geqslant 1}$ vérifie l'hypothèse de domination.

D'après le théorème de convergence dominée :

$$\int_0^{+\infty} f_n \underset{n \to +\infty}{\longrightarrow} \int_0^{+\infty} f$$

Ainsi :
$$J_n \underset{n \to +\infty}{\longrightarrow} \int_0^{+\infty} \frac{\ln(1+t)}{t} dt = \frac{\pi^2}{12}.$$

On conclut : $\int_0^{+\infty} \ln(1+x^n) dx \underset{n \to +\infty}{\sim} \frac{\pi^2}{12} \frac{1}{n}.$