Modeling predator-prey relationships in the presence of a multi-species parasite

Daniel Dale (Clemson University), Andalib Samandari (Georgia State University)

- Studying biological systems using mathematical tools
- Tools include: differential equations models, computer simulations and more
- Models can show whether real-life experiments are viable before spending resources

Examples:

- Modeling disease spread of COVID-19 to inform response efforts
- Understanding tumor behavior for chemotherapy

Project background

- Part of the 2022 SCMB Modeling Accelerator
- Learned to create mathematical models using ODEs (ordinary differential equations)
 and Netlogo (computer modeling software)
- Agent-based model a simulation exploring the interactions of individual units, or "agents", following a set of programmed rules
- Used ODE and agent-based models in tandem

Predatory birds, prey frogs, and inter-species *Riberoia ondatrae* (frog-mutating flatworm)

Predatory birds, prey frogs, and inter-species *Riberoia ondatrae* (frog-mutating flatworm)

Honorable mention: Ram's horn snail

Birds eat infected frogs, and parasites fully mature in birds' GI tract

Parasites infect frogs and become encysted in limb buds, causing deformities

Adult *Ribeiroia* ondatrae eggs spread through bird feces

After developing in eggs, parasites grow inside snails

Deformities can be severe, and research links them to increased predation rates (Sessions and Ruth 1990)

Why do we care?

Besides feeling bad for cute frogs...

- Research shows that human activity, such as polluting aquatic environments, can increase snail proliferation (Dell'Amore 2011)
- More snails means more parasites hatch to infect frogs
- More deformed frogs will increase the overall predation rate
- How does this increase in frog predation affect the biosystem as a whole?

Question: What are the effects of increased frog predation rates due to parasite-induced deformity?

Question: What are the effects of increased frog predation rates due to parasite-induced deformity?

Hypothesis: A higher predation rate will increase parasite spread. However, if the rate increase is too high it will destabilize the biosystem and detriment parasite spread.

Modelling the bio-system with ODEs

Finding the Goldilocks zone

The Lotka-Volterra equations

- A pair of differential equations often used to describe predator-prey relationships in nature
- α prey birth rate; assumed to reproduce exponentially in the absence of predation
- **B** prey predation rate by predators
- δ predator birth rate; depends on ability to eat prey, but not necessarily equal to predation rate
- γ predator death rate; can die of natural causes, or simply leave the biosystem

$$rac{dx}{dt} = lpha x - eta xy,$$
 $egin{aligned} & extbf{x: prey} \ extbf{y: predator} \ extbf{dy} \ extbf{dt} &= \delta xy - \gamma y, \end{aligned}$

Simplifying the biosystem

- Simplify the system to just bird-frog predation, and model parasites as interactions between them
 - Frog infection requires a distinct coefficient
 - Bird infection rate is equal to predation rate of infected frogs

A modified Lotka-Volterra model including parasite impact

$$\frac{dB}{dt} = -\mathbf{e_2}F_iB + \boldsymbol{\varepsilon}(FB + FB_i) + \boldsymbol{\varepsilon}(1 + \frac{\mathbf{e_2}}{e_1})(F_iB + F_iB_i) - xB$$

$$\frac{dB_i}{dt} = \mathbf{e_2}F_iB - xB_i$$

$$\frac{dF}{dt} = -\sigma B_iF - e_1(BF + B_iF) + \boldsymbol{r}(F + F_i)$$

$$\frac{dF_i}{dt} = \sigma B_iF - \boldsymbol{e_2}(BF_i + B_iF_i)$$

B: Healthy birds B: Infected birds

F: Healthy frogs F:: Infected frogs

σ: Infection rate from birds to frogs (by parasite)

e₁: Predation rate of healthy frogs

e₂: Predation rate of infected frogs

ε: Reproduction rate of birds (proportional to frogs)

r: Reproduction rate of frogs

x: Death rate of birds

A modified Lotka-Volterra model including parasite impact

$$\frac{dB}{dt} = -\mathbf{e_2}F_iB + \varepsilon(FB + FB_i) + \varepsilon(1 + \frac{\mathbf{e_2}}{e_1})(F_iB + F_iB_i) - xB$$

$$\frac{dB_i}{dt} = \mathbf{e_2}F_iB - xB_i$$

$$\frac{dF}{dt} = -\sigma B_iF - e_1(BF + B_iF) + r(F + F_i)$$

$$\frac{dF_i}{dt} = \sigma B_iF - \mathbf{e_2}(BF_i + B_iF_i)$$

- Parasite infection is modeled as interactions between frogs and birds (σ, e_2)
- Infected individuals exit the population of uninfected ones; therefore "birth" rate of infected individuals is the rate at which they leave the healthy population, AKA become infected ($e_2F_1B_1$, σB_1F)
- Bird infection rate is the predation rate of infected frogs (e₂)

Average infected population as relative predation increases

Total Average Infected Individuals

An agent-based model

Analyzing biosystem stability

Model background

- Used Netlogo to program model and run experiments
- Initial conditions scaled to approx. real-life population density of great blue herons and Pacific tree frogs
- Agents have an energy meter which is used up by moving, and refilled by feeding
- Birds attempt to "hunt" frogs near them, and frogs have a chance to escape

Model background

- A bird that eats an infected frog becomes infected
- For each infected bird near a healthy frog, the frog has a fixed chance to become infected
- We reduced infected frogs' chance of escape to represent increased predation rate

Key differences from ODE model

- Frog food respawn rate enforces a prey carrying capacity
- Models frog escape chance, rather than predation rate
- Goldilocks zone harder to ascertain due to noise
- Stability is more easily visible in fluctuations of graphs

Base predator-prey simulation

- Butterflies: birds
- 'x': frogs
- Light blue patch: contains frog food
- Dark blue patch: waiting for frog food to respawn

Simulation with parasite infection

- Red agents are infected
- Extremes of changing populations are more pronounced

No parasite

Parasite causing small increase in predation rate

Parasite causing large increase in predation rate

Experiment

- Varied frog escape chance using deformity-level, kept other parameters constant
 - Escape chance = (base chance)(100 deformity-level)
- Compared frequency of three events across deformity-level changes:
 - Parasite extinction
 - Bird extinction
 - Frog extinction
- Ran 50 trials for 50,000 time ticks each per deformity-level

How often does the parasite die out across repeated simulations?

deformity-level •

20%

50%

5%

How often do birds go extinct across repeated simulations?

deformity-level •

20%

5%

50%

How often do **frogs** go extinct across repeated simulations?

deformity-level •

20%

5%

50%

Conclusions

Conclusions

- Parasite spread is maximized within a certain range of deformity severity
- Outside this range, the parasite does not spread effectively; above it, the host populations also begin to destabilize
- Frogs are more likely than birds to survive destabilization
- Factors that increase parasite proliferation, and therefore frog predation, can have drastic effects on the host species

Sources

Dell'Amore, C. (2021, May 4). Parasite creating deformed frogs in western U.S. Animals. Retrieved September 27, 2022, from https://www.nationalgeographic.com/animals/article/11 0802-frogs-deformed-parasites-animals-environment-mutants

Hethcote, H. W., Wang, W., Han, L., & Ma, Z. (2004). A predator-prey model with infected prey. Theoretical population biology, 66(3), 259–268. https://doi.org/10.1016/j.tpb.2004.06.010

Johnson, P., & Lunde, K. (2005-06-15). Parasite Infection and Limb Malformations: A Growing Problem in Amphibian Conservation. In Amphibian Declines: The Conservation Status of United States Species.: University of California Press. Retrieved 22 Jul. 2022, from

https://california.universitypressscholarship.com/view/10 .1525/california/9780520235922.001.0001/upso-9780 520235922-chapter-20.

Sessions, S. K., & Ruth, S. B. (1990). Explanation for naturally occurring supernumerary limbs in amphibians. The Journal of experimental zoology, 254(1), 38–47. https://doi.org/10.1002/jez.1402540107

Venton, D. (2015). Many species, one health. Proceedings of the National Academy of Sciences, 112(6), 1647–1649. https://doi.org/10.1073/pnas.1423578112