Análise Matemática - EXA 393

09 de Junho de 2023 Gleberson Antunes

Sugestões e correções podem ser enviadas para glebersonset@gmail.com.

Caro colega de curso, fico feliz que tenha chegado até essas soluções (Ficaria mais feliz se lerem isso hahaha). Meu nome é Gleberson Antunes e sou o autor dessas soluções (Acho melhor dizer que sou o criador dessa pasta, já que essas soluções não são necessariamente originais). Boa parte delas foram desenvolvidas durante os semestres **2022.2** e **2023.1**, onde fui monitor da disciplina EXA 393 - Análise Matemática, sob supervisão do Professor Dr. Jean Fernandes Barros.

Até então, o objetivo era treinar meus conhecimentos sobre Análise Real e minha digitação no TeX. Acontece que gosto de escrever, e fica aqui uma oportunidade de deixar uma marca no curso (Quem não quer ser lembrado? Hahahaha). Análise é uma disciplina um tanto quanto complicada. Mais do que tudo, é necessário maturidade matemática e muitas horas de estudo.

Isto posto, espero que minhas resoluções ajudem você de alguma maneira. Os pdfs que começam com a letra "E" foram desenvolvidos no semestre **2022.2**. Tome cuidado. Cometi muitos erros crassos durante a escrita deles. Os que começam com a letra "L" foram desenvolvidos no semestre **2023.1** e não vi erros.

Caso tenha dúvidas, não hesite em me enviar um e-mail:).

Análise Matemática - EXA 393 Gleberson Antunes 09 de Outubro de 2022

Lista de exercícios 4

Exercício 1. Seja (s_n) uma sequência em \mathbb{K} . Suponha que (s_n) é monótona decrescente em \mathbb{K} . Mostre que:

 (s_n) é limitada se, e somente se, (s_n) tem uma subsequência limitada.

Demonstração:

 (\Rightarrow) Suponhamos que (\mathbf{s}_n) é uma sequência monótona descrescente limitada. Então, existe c>0 real tal que

$$|\mathbf{s}_n| \leq \mathbf{c}^*$$

para todo n pertencente a N. Além disso

$$s_n > s_{n+1}$$
.

Seja então $(s_{n'})$ uma subsequência de (s_n) qualquer. Ora, sabemos que $(s_{n'})$ é uma restrição de s a um subconjunto \mathbb{N}' de \mathbb{N} infinito qualquer. Logo

$$s(\mathbb{N}') \subset s(\mathbb{N})$$

É fácil ver que $s(\mathbb{N})$ é um conjunto limitado pois vale *. Segue que $s(\mathbb{N}')$ é limitado uma vez que é um subconjunto de um conjunto limitado e portanto, $(s_{n'})$ é uma subsequência limitada.

 (\Leftarrow) Seja $(s_{n'})$ uma subsequência limitada de (s_n) , onde (s_n) é uma sequência monótona descrescente. Então, existe d > 0 real tal que

$$|\mathbf{s}_{n'}| \leq \mathbf{d}^{**}$$

para todo n' pertencente a \mathbb{N}' . Obviamente, dado n' pertencente a \mathbb{N}' qualquer, existe n pertencente a \mathbb{N} tal que

Logo

$$s_n < s_{n'} \le d$$

por **. Logo, (s_n) é uma sequência limitada.

Exercício 2. Seja (s_n) uma sequência em \mathbb{K} . Mostre que (s_n) é uma sequência convergente se, e somente se, para cada k pertencente a \mathbb{N} , (s_{n+k}) é uma sequência convergente.

 (\Rightarrow) Seja (s_n) uma sequência convergente. Então, existe a pertencente a K tal que

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} ; n > n_0 \Rightarrow |s_n - a| < \varepsilon$$

Dado k pertencente a \mathbb{N} , considere a subsequência (s_{n+k}) . Note que $n_0 < n_0 + k$. Assim

$$n + k > n_0 + k \Rightarrow n + k > n_0 \Rightarrow |s_{n+k} - a| < \varepsilon.$$

Portanto, (s_{n+k}) é uma sequência convergente.

Exercício 3. Seja (s_n) uma sequência em \mathbb{K} . Suponha que (s_n) tem limite $a \in \mathbb{K}$. Mostre que a sequência $(|s_n|)$ é convergente e tem limite |a|. Pergunta-se: Vale a recíproca? Justifique.

Demonstração:

Sendo (s_n) convergente então existe n_0 pertencente a \mathbb{N} tal que para todo $\varepsilon > 0$

$$n > n_0 \Rightarrow |s_n - a| < \varepsilon$$

Tome então o mesmo n₀. Daí

Ver desigualdades envolvendo módulo.

$$n > n_0 \Rightarrow ||s_n| - |a|| \le |s_n - a| < \varepsilon$$

Portanto, $(|\mathbf{s}_n|)$ é convergente.

A recíproca não vale. Considere a sequência ($|s_n|$) cujo termo geral é dado por $|s_n| = |-1|^n$. Essa sequência converge porém a sequência (s_n) cujo termo geral é dado por $s_n = -1^n$ não converge.

Exercício 4. Seja (s_n) uma sequência em \mathbb{K} . Mostre que (s_n) converge e tem limite 0 se, e somente se, $(|s_n|)$ converge e tem limite 0.

Demonstração:

 (\Rightarrow) Suponhamos que (s_n) é uma sequência convergente e tem limite 0. Então existe n_0 pertencente a \mathbb{N} tal que para todo $\varepsilon > 0$

$$n > n_0 \Rightarrow ||s_n| - 0| = |s_n - 0| < \varepsilon$$

Portanto, $(|\mathbf{s}_n|)$ converge para 0.

(⇐) Suponhamos que ($|s_n|$) é uma sequência convergente e tem limite 0. Então, existe n_0 pertencente a \mathbb{N} tal que para todo $\varepsilon > 0$

$$|n| > n_0 \Rightarrow |s_n - 0| = ||s_n| - 0| = |s_n| < \varepsilon$$

Portanto, (s_n) converge para 0.

Vocês vão provar esse Teorema em aula.

Teorema 1 (Teorema do valor médio). Seja $f:[a,b] \longrightarrow \mathbb{R}$ contínua e diferenciável em (a,b). Então, existe algum ponto c em (a,b) tal que $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Corolário 1. $|\sin x| \le |x|$, para todo $x \in \mathbb{R}$.

Demonstração:

- (1) Se x = 0 não há o que provar.
- (2) Se x \neq 0 então, pelo Teorema do valor médio, existe c
 entre (0,x) tal que

$$\cos c = \frac{\sin x - \sin 0}{x - 0} = \frac{\sin x}{x}$$

Ora, sabemos que $\left|\cos\,\mathbf{x}\right|\leq 1$ para todo \mathbf{x} em $\mathbb{R}.$ Logo

$$\frac{|\sin x|}{|x|} = |\cos c| \le 1$$
$$\Rightarrow |\sin x| < |x|$$

para todo $x \in \mathbb{R}$.

Exercício 5. Seja s : $\mathbb{N} \longrightarrow \mathbb{R}$ definida por $s_n = sin \frac{1}{n}$. Mostre que a sequência é convergente.

Demonstração:

Dado $\varepsilon>0$, tome $n_0=\frac{1}{\varepsilon}.$ Então

$$n > \frac{1}{\varepsilon} \Rightarrow |\sin \frac{1}{n} - 0| \le \left|\frac{1}{n}\right| = \frac{1}{n} < \varepsilon.$$

Exercício 6. Seja s : $\mathbb{N} \longrightarrow \mathbb{R}$ definida por $s_n = \frac{1}{n} sin \frac{1}{n}$. Mostre que a sequência (s_n) é convergente.

Demonstração:

Ora, sabemos que a sequência a : $\mathbb{N} \longrightarrow \mathbb{R}$ definida por

$$a_n = \frac{1}{n}$$

é convergente e tem limite igual a 0. Por outro lado, sabemos pelo Exercício 5 que a sequência (b_n) definida por

$$b_n = sin \frac{1}{n}$$

converge e tem limite igual a 0. Desse modo

$$\lim (a_n \cdot b_n) = \lim (s_n) = 0 \cdot 0 = 0.$$

Teorema 2. Se lim $(\mathbf{x}_n) = 0$ e (\mathbf{y}_n) é uma sequência limitada, então $\lim(\mathbf{x}_n \cdot \mathbf{y}_n) = 0$. Vimos esse mesmo result

Demonstração:

Vimos esse mesmo resultado para funções (algo mais geral) em cálculo I.

Sendo (y_n) uma sequência limitada, então existe c > 0 tal que $|y_n| \le c$. Por outro lado, sendo lim $(x_n) = 0$, existe n_0 em \mathbb{N} tal que para todo $\varepsilon > 0$

$$n > n_0 \Rightarrow |x_n - 0| \le \frac{\varepsilon}{c}$$

Desse modo

$$|\mathbf{x}_n| \cdot |\mathbf{y}_n| = |\mathbf{x}_n \cdot \mathbf{y}_n| \le \frac{\varepsilon}{c} \cdot \mathbf{c} = \varepsilon.$$

Exercício 7. Para cada $x \in \mathbb{R}$, seja $s : \mathbb{N} \longrightarrow \mathbb{R}$ definida por $\frac{cos(nx)}{n}$. Mostre que (s_n) é convergente.

Demonstração: Análoga ao Exercício 6.

Ora, sabemos que a sequência a : $\mathbb{N} \longrightarrow \mathbb{R}$ definida por

$$a_n = \frac{1}{n}$$

é convergente e tem limite igual a 0. Por outro lado, sabemos que a sequência (b_n) definida por

 $b_n = \cos(nx)$

é limitada pois $|\cos(nx)| \le 1$. Segue do Teorema 2 que

 $\lim(\mathbf{a}_n \cdot \mathbf{b}_n) = \lim(\mathbf{s}_n) = 0.$

Esse fato também vale para o módulo do seno. Vocês podem ter uma ideia mais geométrica olhando o gráfico da função seno e cosseno no geogebra.

Exercício 8. Seja (s_n) uma sequência tal que (s_{2n}) e (s_{2n-1}) são subsequências convergentes de (s_n) , e têm limite $a \in \mathbb{K}$. Mostre que (s_n) é convergente e têm limite a.

Demonstração:

Sendo (s_{2n}) convergente, então existe m_0 pertencente a \mathbb{N} tal que para todo $\varepsilon > 0$

$$2n > m_0 \Rightarrow |s_{2n} - a| < \varepsilon$$

Da mesma maneira, sendo (s_{2n-1}) convergente então existe p_0 pertencente a $\mathbb N$ tal que para todo $\varepsilon>0$

$$2n-1 > p_0 \Rightarrow |s_{2n-1} - a| < \varepsilon$$

Tome então $n_0 = máx\{m_0, p_0\}$. Então, para todo $\varepsilon > 0$

$$n > n_0 \Rightarrow |s_n - a| < \varepsilon$$
.

Exercício 9. Seja (s_n) uma sequência convergente em \mathbb{K} , cujo limite é um elemento não-nulo de \mathbb{K} . Mostre que, para n suficientemente grande, os termos da sequência (s_n) são todos não-nulos, e têm o mesmo sinal do limite.

Demonstração:

(1) Suponhamos $a = \lim(s_n) > 0$. Tome então $\varepsilon = \frac{a}{2}$. Logo, vai existir n_0 pertencente a \mathbb{N} tal que

$$n > n_0 \Rightarrow |s_n - a| < \frac{a}{2} \Leftrightarrow \frac{a}{2} < s_n < \frac{3a}{2}.$$

Ou seja, a partir de \mathbf{n}_0 , \mathbf{s}_n é sempre maior do que zero, logo têm o mesmo sinal de a.

(2) Suponhamos que $a=\lim(s_n)<0$. Tome então $\varepsilon=-a$. Logo, vai existir n_0 pertencente a $\mathbb N$ tal que

como a < 0, - a > 0.

$$n > n_0 \Rightarrow |s_n - a| < -a \Leftrightarrow 2a < s_n < 0.$$

Ou seja, a partir de n_0 , s_n é sempre menor do que zero, logo têm o mesmo sinal de a.

Exercício 10. Sejam (s_n) e (t_n) sequências convergentes em \mathbb{K} , cujo os limites são a e b, respectivamente. Mostre que:

- (a) Se, para n suficientemente grande, $s_n \leq t_n$, então $a \leq b$.
- (b) Se, para n suficientemente grande, $s_n \ge c$, então $a \ge c$.
- (c) Se a = b e, para n suficientemente grande, $s_n \le u_n \le t_n$ *** então (u_n) converge e tem limite a.

 Teorema do Confronto para sequências. Vimos no curso

Demonstração: de cálculo I uma versão mais geral.

(a) Por contraposição, suponhamos a>b. Então, a - $b=\lim(s_n)$ - $\lim(t_n)=\lim(s_n-t_n)>0$. Segue do Exercício 9 que para todo n suficiente grande

$$s_n - t_n > 0 \Leftrightarrow s_n > t_n$$
.

(b) Por contraposição, suponhamos a < c. Então, tomando $\varepsilon = c$ - a, vai existir \mathbf{n}_0 pertencente a $\mathbb N$ tal que

$$n > n_0 \Rightarrow |s_n - a| < c - a \Leftrightarrow -c + 2a < s_n < c \Rightarrow s_n < c$$
.

(c) Dado $\varepsilon > 0$, existe m_0 e p_0 naturais tais que

$$n > m_0 \Rightarrow |s_n - a| < \varepsilon$$

e

$$n > p_0 \Rightarrow |t_n - a| < \varepsilon$$

Tome $n_0 = máx\{m_0, p_0\}$. Assim

$$n > n_0 \Rightarrow a - \varepsilon < s_n < a + \varepsilon$$

$$n > n_0 \Rightarrow a - \varepsilon < t_n < a + \varepsilon$$

De *** segue que

$$a$$
- $\varepsilon < s_n \le u_n \le t_n < a + \varepsilon$
 $\Leftrightarrow |u_n - a| < \varepsilon.$

Portanto, (u_n) é uma sequência convergente, cujo limite é a.

Resolution.

Revolução porcial!

Análise Matemática - EXA 393 Gleberson Antunes

29 de Setembro de 2022

1 Avaliação 1

Exercício 1. Determine o conjunto solução em $\mathbb K$ da inequação

$$1 < |x| + |x - 1|$$

Demonstração:

- 1) Se $x \in (-\infty, 0)$ não há o que provar, pois a inequação é satisfeita.
- 2) Se $x \in [0, 1]$ então a inequação nunca é satisfeita.
- 3) Se $x \in (1, \infty)$ então a inequação é sempre satisfeita.

Logo, o conjunto solução da inequação é

$$S = (-\infty, 0) \cup (1, \infty).$$

Exercício 2. Dado $p \in \mathbb{N}$, com $p \ge 2$, considere o conjunto

$$X = \left\{ \frac{1}{p^n} : n \in \mathbb{N} \right\}$$
. Mostre que:

- (a) X é limitado em \mathbb{Q} .
- (b) inf X = 0 e sup $X = \frac{1}{p}$.

Demonstração:

(a) De fato, X é limitado em \mathbb{Q} .

Perceba que 0 é uma cota inferior de X pois

$$0 < \frac{1}{p^n}$$

para todo n
 pertencente aos naturais. Da mesma maneira, $\frac{1}{p}$ é uma cota superior de X
 pois

$$\frac{1}{p^n} \le \frac{1}{p}$$

para todo n pertencente aos naturais.

(b) Suponhamos que $a=\inf X$ seja maior que 0 e que a é um número racional. Como $\mathbb Q$ é arquimediano então o subconjunto $\mathbb N$ dos naturais contido em $\mathbb Q$ é ilimitado superiormente, logo existe um certo n em $\mathbb N$ tal que

$$\frac{1}{a}$$
 - 1 < (p - 1)n $\Rightarrow \frac{1}{a}$ < (p - 1)n + 1.

Ora, pela desigualdade de Desigualdade de Bernoulli

$$\frac{1}{a} < (p-1)n + 1 \le ((p-1)+1)^n = p^n$$

 $\Rightarrow a > \frac{1}{p^n}$

Portanto, $0 = \inf X$. Obviamente sup $X = \frac{1}{p}$ pois

$$\frac{1}{p^n} \le \frac{1}{p}$$

e, como sabemos, $\frac{1}{n}$ é o elemento máximo de X.

Exercício 3. Sejam $f, g: X \subset \mathbb{R} \longrightarrow \mathbb{R}$ funções limitadas.

- (a) Mostre que $fg: X \longrightarrow \mathbb{R}$ definida por fg(x) = f(x)g(x) é uma função limitada.
- (b) Mostre que $fg(X) \subset f(X)g(X)$.
- (d) Mostre que as funções $f, g: X \longrightarrow \mathbb{R}$ definidas por

$$f(x) = \begin{cases} 1, & x \ge 0\\ \frac{1}{2}, & x < 0 \end{cases}$$

e

$$g(x) = \begin{cases} \frac{1}{2}, & x \ge 0\\ 1, & x < 0 \end{cases}$$

tem-se sup $(fg) \le \sup f \sup g \in \inf fg \ge \inf f \inf g$.

Demonstração:

(a) Sendo $f,g: \mathbf{X} \longrightarrow \mathbb{R}$ funções limitadas, vai existir c e d reais, com c > 0 e d > 0 tais que

$$|f(x)| \le c$$

$$|g(x)| \le d$$

$$\Rightarrow |fg(x)| = |f(x)g(x)| = |f(x)||g(x)| \le cd$$

Portanto, $fg: X \longrightarrow \mathbb{R}$ é limitada.

(b) Seja $z \in fg(X)$. Então, vai exister algum x em X tal que

$$z = fg(x)$$

Por definição

$$z = fg(x) = f(x)g(x)$$

 $\Rightarrow z \in f(X)g(X).$

Portanto,

$$fg(X) \subset f(X)g(X)$$

(c) Primeiramente, note que a letra (a) nos garante que f(X)g(X) é um subconjunto limitado pois cada um dos seus elementos é limitado, portanto, faz sentido que exista um supremo e um ínfimo para este conjunto, pois é um subconjunto de \mathbb{R} limitado. Como era de se esperar, fg(X) é limitado e portanto possui supremo e ínfimo, pois é um subconjunto de um conjunto limitado.

É fácil ver que

$$\inf fg \le fg(\mathbf{x})$$

para todo fg(x) em fg(X). Ora, como fg(X) é um subconjunto de f(X)g(X) então

$$\inf f \inf g \leq fg(\mathbf{x})$$

para todo fg(x) em fg(X). Segue que inf f inf $g \leq \inf fg$.

De forma análoga, temos que

$$fg(x) \le \sup fg$$

para todo $fg(\mathbf{x})$ em $fg(\mathbf{X})$. Como sabemos, $fg(\mathbf{X})$ é um subconjunto de $f(\mathbf{X})g(\mathbf{X})$ então

$$fg(\mathbf{x}) \leq \sup f \sup g$$

para todo fg(x) em fg(X). Segue que sup $fg \leq \sup f \sup g$.

- (d) É claro que 1 é igual ao sup f que é igual ao sup g e $\frac{1}{2}$ é igual ao infímo de f que é igual ao ínfimo de g. Considere a função $fg(\mathbf{x})$ definida conforme o enunciado. Temos então dois casos:
- 1) $x \ge 0$.

$$fg(x) = f(x)g(x) = \frac{1}{2}$$

2) x < 0.

$$fg(x) = f(x)g(x) = \frac{1}{2}$$

Desse modo

$$\inf f \inf g = \frac{1}{4} < \frac{1}{2} = \inf fg$$

е

$$\sup fg = \frac{1}{2} < 1 = \sup f \sup g.$$

Lema 1. Sejam x e y números reais. Se x \leq y + ϵ para todo ϵ > 0 então x \leq y. **Demonstração**: Por contraposição, suponhamos y < x. Então

$$0 < x - y$$

Tome então $\epsilon = \frac{x-y}{2}.$ Desse modo, existe um $\epsilon > 0$ tal que

$$x > y + \epsilon$$

De fato

$$x > y + \frac{x-y}{2} = \frac{x+y}{2}$$

pois

$$2x - x - y > 0$$

Portanto, o Lema é verdadeiro.

Exercício 4. Seja Y um conjunto não vazio limitado de números reais. Mostre que

$$\sup Y - \inf Y = \sup\{|x - y| \mid x \in Y, y \in Y\}.$$

Demonstração: Definimos

$$A := \{ |x - y| \mid x \in Y, y \in Y \}$$

Sejam x, y elementos de Y. É claro que

$$x \le \sup Y \in \inf Y \le y$$

 $\Rightarrow x - y \le \sup Y - \inf Y$

Por outro lado

$$\inf Y \le x \text{ e } y \le \sup Y$$

$$\Rightarrow y - x = -(x - y) \le \sup Y - \inf Y$$

$$\Leftrightarrow |x - y| \le \sup Y - \inf Y$$

Portanto

$$\sup A < \sup Y - \inf Y$$

Sabemos, pela questão 5 da lista avaliativa avaliativa 1, que dado $\epsilon>0$, existe x em Y tal que sup Y - $\frac{\epsilon}{2}< x \leq$ sup Y e y em Y tal que inf Y $\leq y <$ inf Y + $\frac{\epsilon}{2}$. Daí

$$\sup Y - \inf Y - \epsilon = \sup Y - \frac{\epsilon}{2} - (\inf Y + \frac{\epsilon}{2}) < x - y \le |x - y| \le \sup A$$

$$\Rightarrow \sup Y - \inf Y \le \sup A + \epsilon$$

Como $\epsilon > 0$ é qualquer, segue do **Lema 1** que

$$\sup Y - \inf Y \le \sup A$$

Logo, sup Y - inf Y = sup A = sup{ $|x - y| | x \in Y, y \in Y$ }.

Exercício 5. Seja s : $\mathbb{N} \longrightarrow \mathbb{R}$ definida por $s_n = \cos \frac{n\pi}{2}$.

- (a) Mostre que (s_n) é limitada.
- (b) Mostre que (s_n) não é monótona.

Demonstração:

- (a) Como $n \in \mathbb{N}$, temos duas opções: Ou n é par ou n é impar. Analisaremos os dois casos.
- 1) Suponhamos n par. Assim, existe q inteiro tal que n = 2q. Segue que

$$(s_n)_{n \in 2\mathbb{N}} = \cos \frac{n\pi}{2} = \cos \frac{2q\pi}{2} = \cos q\pi = (-1)^q$$

2) Suponhamos
n ímpar. Assim, existe q inteiro tal que
n $=2{\bf q}+1.$ Segue que

$$(s_n)_{n \in 2\mathbb{N}+1} = \cos\frac{n\pi}{2} = \cos\frac{(2q+1)\pi}{2} = 0$$

Como não nos resta mais opções, temos que

$$-1 \le \mathrm{s}_n \le 1$$

para todo n
 natural. Portanto, (s_n) é uma sequência limitada.

(b) Note que $s_4 = 1$, $s_5 = 0$ e $s_6 = -1$. Assim

$$s_4 \le s_5 \not\Rightarrow s_4 \le s_6$$

mitada.

Análise Matemática - EXA 393 Gleberson Antunes

13 de Setembro de 2022

1 Lista de exercícios 1

Exercício 1. Seja K um corpo ordenado.

(a) Dados a, b, c, d $\in \mathbb{K}$ com c, d > 0. Mostre que se $\frac{a}{c} < \frac{b}{d},$ então

$$\frac{a}{c} < \frac{a+b}{c+d} < \frac{b}{d}$$

(b) Dados a, $b \in \mathbb{K}$, com $b \neq 0$, mostre que

$$\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$$

Demonstração:

(a) Ora,

$$\frac{a}{c} < \frac{b}{d} \Rightarrow \text{ad} < \text{bc}.$$

Isso é possível pois tanto c quanto d são maiores que zero. Logo, o produtdo cd é maior que 0. Daí, se segue que

$$ad + ac < bc + ac = a(c + d) < c(a + b) \Rightarrow \frac{a}{c} < \frac{a + b}{c + d}.$$

Por outro lado,

$$ad + bd < bc + bd = d(a + b) < b(c + d) \Rightarrow \frac{a+b}{c+d} < \frac{b}{d}$$

Portanto,

$$\frac{a}{c} < \frac{a+b}{c+d} < \frac{b}{d}$$

(b)

Primeiramente, note que, dado b maior que zero

$$1 = |\mathbf{b}| \cdot \frac{1}{|\mathbf{b}|}$$

Por outro lado,

$$1 = |1| = |\mathbf{b} \cdot \mathbf{b}^{-1}| = |\mathbf{b}| \cdot |b^{-1}|$$

Pela lei do corte da multiplicação, temos que

$$|\mathbf{b}| \cdot \frac{1}{|b|} = |\mathbf{b}| \cdot |b^{-1}|$$
$$\Rightarrow \frac{1}{|b|} = |b^{-1}|$$

Dessa maneira, temos que

$$\left| \frac{a}{b} \right| = |ab^{-1}| = |a||b^{-1}| = |a|\frac{1}{|b|} = \frac{|a|}{|b|}$$

Exercício 2. Seja \mathbb{K} um corpo ordenado. Dados a, b $\in \mathbb{K}$, mostre que:

(a) Para todo $x \in \mathbb{K}$, tem-se que

$$|x - a| + |x - b| \ge |a - b|$$

(b) Para todo $x \in \mathbb{K}$, tem-se que

$$||x - a| + |x - b|| \le |a - b|$$

Demonstração:

(a) Sabemos, pelas propiedades de valor absoluto, que dado $x \in \mathbb{K}$ temos que

$$|a - b| \le |a - x| + |x - b| = |x - a| + |x - b|$$

 $\Rightarrow |a - b| \le |x - a| + |x - b|$
 $\Leftrightarrow |x - a| + |x - b| \ge |a - b|$

(b) De forma análoga,

$$|x - a| \le |x - b| + |b - a|$$

 $\Rightarrow |x - a| - |x - b| \le |b - a|$
 $\Rightarrow |x - a| - |x - b| \le |a - b|$

Note que

$$\begin{aligned} |x - b| &\leq |x - a| + |a - b| \\ \Rightarrow |x - b| - |x - a| &= - \left(|x - a| - |x - b| \right) \leq |a - b| \end{aligned}$$

Ora, sabemos que $|x| \le a \Leftrightarrow x \le a$ e -x $\le a$ pois $|x| = \max \{x, -x\}$. Como |a - b| satisfaz essa mesma condição, temos que

$$||x - a| - |x - b|| \le |a - b|$$

Exercício 3. Seja \mathbb{K} um corpo ordenado.

(a) Mostre que, dados a, b, $\epsilon \in \mathbb{K}$, com $\epsilon > 0$, se $|a - b| < \epsilon$, então

$$a < |b| + \epsilon$$

(b) Mostre que, dados a, $b \in \mathbb{K}$, se $|a - b| < \epsilon$, para todo $\epsilon > 0$, então a = b.

Demonstração:

(a)

$$|a - b| < \epsilon \Leftrightarrow -\epsilon < a - b < \epsilon \Rightarrow -\epsilon - b < a < \epsilon + b$$

Como

$$|\mathbf{b}| = \max\{\mathbf{b}, -\mathbf{b}\}$$

Temos que

$$a < \epsilon + b \le \epsilon + |b|$$

 $\Rightarrow a < \epsilon + |b|$

(b) Por contraposição, suponhamos $a \neq b$. SPG, considere a < b, então tome

$$\epsilon = \frac{|b - a|}{2}$$

Logo, $\exists \epsilon > 0$ tal que $\epsilon < |b - a|$.

Exercício 4. Mostre que um corpo ordenado é completo se, e somente se, todo subconjunto não-vazio limitadado inferiormente tem ínfimo.

Demonstração:

 (\Rightarrow) Seja $\mathbb K$ um corpo ordenado e Y $\subset \mathbb K$ um subconjunto não-vazio limitado inferiormente.

Desse modo $\exists k \in \mathbb{K}$ tal que

$$k \le y, \forall y \in Y.$$

Sendo assim

$$-k > -y$$

Então, o conjunto

$$-Y = \{-y \mid y \in Y\}$$

é um subconjunto de $\mathbb K$ limitado superiormente. Como $\mathbb K$ completo, -Y possui um supremo a. Observe que

$$-y \le a \Rightarrow -a \le y, \forall y \in Y.$$

Seja então b em \mathbb{K} tal que - a < b \Rightarrow - b < a. Como a = sup (-Y), $\exists y_0 \in Y$ tal que -b < $-y_0 \le a \Rightarrow$ - a $\le y_0 < b$. Portanto, -a = inf Y.

(⇐) Análogo a ida.

Exercício 5. Seja $X \subset \mathbb{R}$, com $X \neq \emptyset$.

- (a) Se X é limitado superiormente, mostre que, dado $\epsilon > 0$, existe $x_0 \in X$ tal que sup X $\epsilon < x_0 \le \sup X$.
- (b) Se X é limitado inferiormente, mostre que, dado $\epsilon > 0$, existe $x_0 \in X$ tal que inf $X \le x_0 < \inf X + \epsilon$.

Demonstração:

(a) Suponhamos por absurdo que, dado $\epsilon > 0$, não existe $x_0 \in X$ tal que sup X - $\epsilon < x_0$. Então

$$x \le \sup X - \epsilon, \forall x \in X.$$

Assim, sup X - ϵ é uma cota superior de X menor que sup X. Absurdo! .

(b) De forma análoga, suponhamos por absurdo que, dado $\epsilon>0$, não existe $x_0\in X$ tal que $x_0<\inf X+\epsilon$. Então

$$\inf X + \epsilon \le x$$
, $\forall x \in X$.

Assim, inf $X + \epsilon$ é uma cota inferior de X maior que inf X. Absurdo!.

Lema 1.1 Sejam x, y $\in \mathbb{Z}$, x > 1, y > 1 e s $\in \mathbb{N}$. Se x \nmid y então $x^s \nmid y^s$.

Demonstração:

Pelo T.F.A, $\exists p_1^{n_1},...,p_r^{n_r}, p_1^{m_1},...,p_r^{m_r}$ primos, tais que $\mathbf{x}=p_1^{n_1}\cdot....\cdot p_r^{n_r}$ e $\mathbf{y}=p_1^{m_1}\cdot....\cdot p_r^{m_r}$. Como $\mathbf{x}\nmid \mathbf{y}$ então existe algum $p_i^{n_i}$ que é tal que $p_i^{n_i}\mid \mathbf{x}$ e $p_i^{n_i}\nmid \mathbf{y}\Rightarrow p_i^{s(n_i)}\mid \mathbf{x}^s$ e $p_i^{s(n_i)}\nmid \mathbf{y}^s\Rightarrow \mathbf{x}^s\nmid \mathbf{y}^s$.

Exercício 6. Mostre que, dados n, m $\in \mathbb{N}$, se $\sqrt[n]{m} \notin \mathbb{N}$ então $\sqrt[n]{m} \in \mathbb{R} - \mathbb{Q}$.

Demonstração:

Se fosse verdade que $\sqrt[n]{m} \in \mathbb{Q}$, então existem p, $q \in \mathbb{Z}$ com mdc(p, q) = 1 tais que

$$\sqrt[n]{m} = \frac{p}{q} \Rightarrow \mathbf{p}^n = \mathbf{m}\mathbf{q}^n \Rightarrow \mathbf{q}^n \mid \mathbf{p}^n$$

Mas, mdc(p, q) = 1, isto é, $q \nmid p$ e portanto $q^n \nmid p^n$ pelo **Lema 1.1**. Logo $\sqrt[n]{m}$ $\in \mathbb{R} - \mathbb{Q}$.

Exercício 7. Seja $X = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$. Mostre que:

- (a) X é limitado em \mathbb{Q} .
- (b) $\inf X = 0 e \sup X = 1$.

Demonstração:

(a) De fato, X é limitado em \mathbb{Q} .

Perceba que 0 é uma cota inferior de X pois, $\forall n \in \mathbb{N}$

$$0 < \frac{1}{n}$$

e 1 é uma cota superior de X pois, $\forall n \in \mathbb{N}$

$$\frac{1}{n} \leq 1$$

(b) Como \mathbb{Q} é arquimediano, se supormos que inf X > 0 então vai existir n $\in \mathbb{N}$ tal que $0 < \frac{1}{n} < \inf X$. Obviamente, $1 = \sup X$, pois $1 \in X$ e $\frac{1}{n} \le 1$, $\forall n \in \mathbb{N}$.

Exercício 8. Dado $p \in \mathbb{N}$, com $p \ge 2$, considere o conjunto

$$X = \left\{ \frac{1}{p^n} : n \in \mathbb{N} \right\}$$
. Mostre que:

- (a) X é limitado em \mathbb{Q} .
- (b) inf X = 0 e sup X = $\frac{1}{n}$.

Demonstração:

(a) De fato, X é limitado em \mathbb{Q} .

Perceba que 0 é uma cota inferior de X pois, $\forall n \in \mathbb{N}$

$$0 < \frac{1}{p^n}$$

e 1 é uma cota superior de X pois, $\forall n \in \mathbb{N}$

$$1 - \frac{1}{p^n} = \frac{p^n - 1}{p^n} > 0.$$

(b) Suponhamos que $a=\inf X>0,\,a\in\mathbb{Q}.$ Como $\mathbb{N}\subset\mathbb{Q}$ é ilimitado superiormente, existe $n\in\mathbb{N}$ tal que

$$\frac{1}{a}$$
 - 1 < (p - 1)n $\Rightarrow \frac{1}{a}$ < (p - 1)n + 1.

Ora, pela desigualdade de Desigualdade de Bernoulli

$$\frac{1}{a} < (p-1)n + 1 \le ((p-1)+1)^n = p^n$$

 $\Rightarrow a > \frac{1}{n^n}$

Portanto, $0 = \inf X$. Obviamente, sup $X = \frac{1}{p}$ pois, $\frac{1}{p^n} \le \frac{1}{p}$ $\forall n \in \mathbb{N}$, $e \xrightarrow{p}$ é um elemento de X.

Exercício 9. Seja $X \subset \mathbb{R}$, com $X \neq \emptyset$ limitado

- (a) Mostre que todo subconjunto de X não-vazio é limitado.
- (b) Se $\emptyset \neq Y \subset X$, mostre que inf $X \leq \inf Y \leq \sup Y \leq \sup X$.

Demonstração:

(a) Suponhamos por absurdo que existe $\emptyset \neq Y \subset X$ ilimitado. Então, não existem a, b $\in \mathbb{R}$ tal que a \leq y \leq b, \forall y \in Y. Ora, sendo X limitado, existem c, d \in \mathbb{R} que são tais que c \leq x \leq d, \forall x \in X. Como Y \subset X, c \leq y \leq d, \forall y \in Y. Absurdo! pois Y é ilimitado.

Como vimos anteriormente, todo subconjunto não-vazio de um conjunto limitado é limitado e, como $\mathbb R$ é um corpo ordenado completo, todo subconjunto não-vazio limitado possui um supremo e um ínfimo em $\mathbb R$. Logo, X e Y possuem supremo e ínfimo.

(b) Sejam a, $c \in \mathbb{R}$, $a = \inf X$ e $c = \inf Y$. Então, $c \le y$, $\forall y \in \mathbb{R}$. Ora, $a \le y$, $\forall y \in \mathbb{R}$, logo a $\le c$. De forma análoga, sejam b, $d \in \mathbb{R}$, $a = \sup X$ e $d = \sup Y$. Então, temos que $y \le d$, $\forall y \in \mathbb{R}$. Mas, $y \le b$, $\forall y \in \mathbb{R}$, logo $d \le b$. Como inf $Y \le \sup Y$, temos que

$$\inf X < \inf Y < \sup Y < \sup X$$

Exercício 10. Sejam X, Y $\subset \mathbb{R}$ não-vazios.

- (a) Suponha que, dados $x \in X$ e $y \in Y$, tem-se $x \leq y$.
 - (i) Mostre que sup $X \leq \inf Y$
- (ii) Mostre que sup $X = \inf Y$ se, e somente se, para cada $\epsilon > 0$, existem $x_0 \in X$ e $y_0 \in Y$ tais que $y_0 x_0 < \epsilon$.
- (b) Suponha que X e Y são limitados superiormente.
 - (i) Mostre que o conjunto $X + Y = \{x + y \mid x \in X, y \in Y\}$ é limitado superiormente.
 - (ii) Mostre que sup $(X + Y) = \sup X + \sup Y$.

Demonstração:

(a)

(i) É claro que X é um subconjunto limitado superiormente de \mathbb{R} e Y é um subconjunto limitado inferiormente de \mathbb{R} pois, dados $x \in X$ e $y \in Y$, tem-se $x \leq y$. Como \mathbb{R} é um corpo ordenado completo, X possui um supremo a e Y possui um ínfimo b em \mathbb{R} . Note que, dado $y \in Y$, $x \leq y \ \forall \ x \in X \Rightarrow \sup X \leq y \leq \inf Y$. Portanto,

$$\sup X \le \inf Y$$

(ii)

 (\Rightarrow)

Sabemos pela questão (5) que, sendo X limitado superiormente, Y limitado inferiormente e dado $\epsilon > 0, \; \exists \; y_0 \in Y \; tal \; que$

$$x \le \sup X \in y_0 \le \inf Y + \epsilon, \forall x \in X.$$

Como sup $X = \inf Y$, temos que

$$y_0 - x < \sup X + \epsilon - \sup X$$

 $y_0 - x < \epsilon$

 (\Leftarrow)

Se sup $X < \inf Y$ então teríamos

$$x \le \sup X < \inf Y \le y$$

 $\Rightarrow \inf Y - \sup X \le y - x$

 \forall
 $x\in X$ e \forall y \in Y. Tome então
 $\epsilon=\inf$ Y - sup X. Então, por hipótese, existem
 $y_0\in$ Y e $x_0\in X$ tais que

$$y_0 - x_0 < \epsilon$$

Absurdo! pois inf Y - sup $X \le y_0$ - x_0 . Logo, sup $X = \inf Y$.

(b)

(i)

Como X e Y são conjuntos limitados, \exists a, b, c, d \in \mathbb{R} , com a < b, c < d que são tais que X \subset [a, b] e Y \subset [c, d]. Desse modo, dados x \in X e y \in Y, temos que

$$a \le x \le b$$

$$c \le y \le d$$

$$\Rightarrow a + c \le x + y \le b + d$$

Portanto, X + Y = {x + y | x \in X, y \in Y} é limitado superiormente.

(ii)

X+Y é um subconjunto limitado superiormente de \mathbb{R} , que é ordenado completo, logo X+Y possui um supremo em \mathbb{R} . Como $x\leq \sup X$ e $y\leq \sup Y$, temos

$$x + y \le \sup X + \sup Y \Rightarrow \sup (X + Y) \le \sup X + \sup Y$$

Note que

$$x + y \le \sup (X + Y) \Rightarrow x \le \sup (X + Y) - y$$

Logo, sup (X + Y) - y é uma cota superior de X, para todo $x \in X$ e cada $y \in Y$. Assim, temos que sup $X \le \sup (X + Y)$ - y.

Por outro lado,

$$\sup X \le \sup (X + Y) - y \Rightarrow y \le \sup (X + Y) - \sup X$$

Dessa forma, sup (X+Y) - sup X é uma cota superior de Y, para todo $y \in Y$ e cada $x \in X$. Então, sup $Y \le \sup (X+Y)$ - sup $X \Rightarrow \sup X + \sup Y \le \sup (X+Y)$ Concluímos que

$$\sup (X + Y) = \sup X + \sup Y$$

Análise Matemática - EXA 393 Gleberson Antunes

18 de Dezembro de 2022

Gabarito - Avaliação III

Exercício 1. Seja $X \subset \mathbb{R}$ e a um ponto isolado de X. Mostre que toda função definida em X é contínua em a.

Demonstração. Ver observação 2 do capitulo 7 (Funções Contínuas) de Curso de Análise vol. 1.

Exercício 2. Seja $f: \mathbb{R} - \{-1, 1\} \longrightarrow \mathbb{R}$ definida por $f(x) = \frac{x^3 + x^2 - x - 1}{x^4 + 1}$. Mostre que existe uma função contínua $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ tal que $\phi|_{\mathbb{R} - \{-1, 1\}} = f$.

Demonstração. Ora, sabemos que as funções racionais são contínuas em todos os pontos em que são definidas. Portanto, f é descontínua em x=1 e x=-1. Logo estamos trabalhando com uma descontinuidade removível. Considere a função $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ dada por $\phi(x) = f(x)$, se $x \neq 1$ e $x \neq -1$, se x = 1 então $\phi(1) = 1$ e se x = -1 então $\phi(-1) = 0$. Note que ϕ é contínua em todos os seus pontos pois

$$\lim_{x \to 1^+} \phi(x) = \lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} \phi(x) = \lim_{x \to 1^-} f(x) = \phi(1) = 1$$

$$\lim_{x \to -1^+} \phi(x) = \lim_{x \to -1^+} \phi(x) = \lim_{x \to -1^-} \phi(x) = \lim_{x \to -1^-} f(x) = \phi(-1) = 0$$

Além disso, $\phi|_{\mathbb{R}-\{-1,1\}} = f$.

Teorema 1. A composta de duas funções contínuas é contínua.

Demonstração. Ver Teorema 6 do capítulo 7 (Funções Contínuas) de Curso de Análise vol. 1.

Exercício 3. Mostre que a função $f: \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}$ definida por $f(x) = \sqrt{x}$ é contínua. Conclua que a função $g: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $g(x) = \sqrt{1+x^2}$ é contínua.

Demonstração. Mostraremos que f é contínua em 0. Dado $\epsilon > 0$, tome $\delta = \epsilon^2$. Assim

$$0 < |x - 0| < \epsilon^2 \Rightarrow |x| < \epsilon^2 \Rightarrow \sqrt{|x|} = |\sqrt{x}| = |\sqrt{x} - 0| = |f(x) - 0| < \sqrt{\epsilon^2} = \epsilon$$

Portanto, f é contínua em 0. Mostraremos agora que f é contínua em todo ponto $a \in (0, \infty)$. De fato, dado $\epsilon > 0$, tome $\delta = \epsilon \cdot \sqrt{a}$. Assim

$$0 < |x - a| < \epsilon \cdot \sqrt{a} \Rightarrow \frac{|x - a|}{|\sqrt{x} + \sqrt{a}|}$$

$$= \frac{|(\sqrt{x} - \sqrt{a}) \cdot (\sqrt{x} + \sqrt{a}|)}{|\sqrt{x} + \sqrt{a}|} = |\sqrt{x} - \sqrt{a}| \cdot \frac{|\sqrt{x} + \sqrt{a}|}{|\sqrt{x} + \sqrt{a}|}$$

$$\Rightarrow |f(x) - f(a)| < \frac{\epsilon \cdot \sqrt{a}}{\sqrt{a}} = \epsilon.$$

Desse modo, f é contínua. Ora, sabemos que a função $h: \mathbb{R} \longrightarrow \mathbb{R}$ dada por $h(x) = 1 + x^2$ é contínua pois é uma função polinomial. Note que $h(\mathbb{R}) \subset \mathbb{R}_{\geq 0}$. Segue do **Teorema 1** que $f \circ h = g: \mathbb{R} \longrightarrow \mathbb{R}$ é contínua.

Teorema 2. Para que $f: X \subset \mathbb{R} \longrightarrow \mathbb{R}$ seja contínua no ponto $a \in X$ é necessário e suficiente que se tenha lim $f(x_n) = f(a)$ para toda sequência de pontos $x_n \in X$ com lim $x_n = a$.

Demonstração. Ver Teorema 4 do capítulo 7 (Funções Contínuas) de Curso de Análise vol. 1.

Teorema 3. Sejam $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ funções contínuas. Então a função $(f-g):\mathbb{R}\longrightarrow\mathbb{R}$ é contínua.

Demonstração. Ver Teorema 5 do capítulo 7 (Funções Contínuas) de Curso de Análise vol. 1.

Exercício 4. Um subconjunto $F \subset \mathbb{R}$ é dito fechado se, o limite de toda sequência convergente em F pertence a F, isto é, se (x_n) em F é tal que $x_n \to a$ então $a \in F$. Seja $f : \mathbb{R} \longrightarrow \mathbb{R}$ contínua. Mostre que o conjunto $Z_f = \{x \in \mathbb{R} \mid f(x) = 0\}$ é fechado. Conclua que se $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ são contínuas então o conjunto $F = \{x \in \mathbb{R} \mid f(x) = g(x)\}$ é fechado

Demonstração. Suponhamos, por absurdo, que Z_f não é fechado. Então existe uma sequência (z_n) de pontos de Z_f tal que $z_n \to a$ e $a \notin Z_f$. Como f é contínua então, pelo **Teorema 2**, temos que lim $f(z_n) = 0 = f(a)$. Portanto, $a \in Z_f$. Pelo **Teorema 3** temos que a função $h : \mathbb{R} \longrightarrow \mathbb{R}$ dada por h(x) = f(x) - g(x) é contínua. Então o conjunto $F = \{x \in \mathbb{R} \mid f(x) = g(x)\} = \{x \in \mathbb{R} \mid h(x) = 0\}$, o conjunto dos pontos em que h é zero. Pelo resultado anterior, F é fechado.

Definição 1.1. Um subconjunto D de \mathbb{R} é dito denso quando $\bar{D} = \mathbb{R}$ (o fecho de D é igual a \mathbb{R}). Isto significa dizer que o menor conjunto fechado que contém D

é a própria reta real \mathbb{R} ou equivalentemente, significa dizer que D está espalhado pela reta real, logo dado qualquer intervalo (a,b), com a < b, podemos encontrar x $\in D \cap (a,b)$.

Exercício 5. Seja D um subconjunto denso de \mathbb{R} . Se $f : \mathbb{R} \longrightarrow \mathbb{R}$ é contínua e f(x) = 0, para todo $x \in \mathbb{D}$, mostre que f é identicamente nula.

Demonstração. Seja $x \in \mathbb{R}$. Como D é denso em \mathbb{R} então para todo $\delta > 0$ existe $x_{\delta} \in \mathbb{D}$ tal que $x_{\delta} \in \mathbb{D} \cap (x - \delta, x + \delta)$. Montaremos agora uma sequência de elementos de D que converge para x. Tome $\delta = 1$ então existe $x_1 \in \mathbb{D}$ tal que $x_1 \in \mathbb{D}$ $\cap (x - 1, x + 1)$. Prossigamos, por recursão, da seguinte maneira: Tomaremos para cada $n \in \mathbb{N}, x_n \in D \cap (x - \frac{1}{n}, x + \frac{1}{n})$ tal que $x_n < x_{n+1}$. Note que essa sequência é monótona e limitada, portanto converge e possui lim $x_n = x$. Como a função f é contínua, segue do **Teorema 1** que lim $f(x_n) = 0 = f(x)$. Portanto, f é identicamente nula.

Análise Matemática - EXA 393

Gleberson Antunes

15 de Março de 2023

Exercício 1. Dados os conjuntos A e B, seja X um conjunto com as seguintes propriedades:

- i. $X \supset A \in X \supset B$.
- ii. Se $Y \supset A$ e $Y \supset B$ então $Y \supset X$.

Prove que $X = A \cup B$.

Demonstração. Facilmente verificamos que $A\cup B$ satisfaz as condições i e ii. Suponhamos agora que existe um conjunto Z que também satisfaz essas duas condições. Então

$$Z \supset A \cup B$$

pelo item ii. Por outro lado,

$$A \cup B \supset Z$$

também pelo item ii. Logo, só pode

$$Z = A \cup B$$
.

Exercício 12. Dada a função $f: A \longrightarrow B$:

- i. Prove que se tem $f(X-Y)\supset f(X)-f(Y)$ sejam quais forem X e Y contidos em A.
- ii. Mostre que se f for injetiva então f(X Y) = f(X) f(Y) para quaisquer X, Y contidos em A.

Demonstração.

i. Seja $z \in f(X) - f(Y)$. Então $z \in f(X)$ e $z \notin f(Y)$. Assim, existe $x \in X$ tal que

$$f(x) = z$$

e não existe $y \in Y$ tal que

$$f(y) = z$$
.

Logo, não pode $x \in Y$, portanto, $x \in X - Y$, desse modo

$$f(x) = z \in f(X - Y).$$

ii. Ora, sabemos que

$$X - Y = X \cap (A - Y)$$

Então

$$f(X - Y) = f(X \cap (A - Y))$$

Segue da injetividade de f que

$$f(X \cap (A - Y)) = f(X) \cap f((A - Y))$$

Notemos o seguinte:

$$f(X) - f(Y) = f(X) \cap (B - f(Y))$$

Então, dado $z \in f(A - Y)$, temos que

$$z \neq f(y)$$

para todo $y \in Y$, logo

$$z \in B - f(Y)$$

Portanto

$$f(X - Y) \subset f(X) - f(Y)$$

Como a outra inclusão se verifica por i, temos que

$$f(X - Y) = f(X) - f(Y)$$

Exercício 13. Mostre que a função $f:A\longrightarrow B$ é injetiva se, e somente se, f(A-X) = f(A) - f(X) para todo $X \subset A$.

Demonstração. Sabemos pelo **Exercício 12** que se f é injetiva e X e Y são subconjuntos quaisquer de A então

$$f(X - Y) = f(X) - f(Y).$$

Em particular

$$f(A - X) = f(A) - f(X)$$

pois A é subconjunto de si mesmo.

Exercício 14. Dada a função $f: A \longrightarrow B$, prove:

- i. $f^{-1}(f(X)) \supset X$ para todo $X \subset A$.
- ii. f é injetiva se, e somente se, $f^{-1}(f(X)) = X$ para todo $X \subset A$.

Demonstração.

i. Seja $x \in X$. Existe $b \in B$ tal que f(x) = b. Segue que

$$x \in f^{-1}(\{f(x)\}) = f^{-1}(\{b\}) \subset f^{-1}(f(X)).$$

Logo, $x \in f^{-1}(f(X))$.

ii.

 \Rightarrow Suponhamos que f seja injetiva, então, dados $x, x' \in A$ distintos, os subconjuntos unitários $\{f(x)\}, \{f(x')\} \subset B$ são tais que

$$\{f(x)\} \cap \{f(x')\} = \emptyset$$

e

$$f^{-1}(\{f(x)\}) = \{x\} \in f^{-1}(\{f(x')\}) = \{x'\}.$$

Segue que, dado $X \subset A$ qualquer, temos que

$$f^{-1}(f(X)) = f^{-1}(\bigcup_{x \in X} \{f(x)\}) = \bigcup_{x \in X} f^{-1}(\{f(x)\}) = \bigcup_{x \in X} \{x\} = X.$$

 \Leftarrow Suponhamos que, dados $x, x' \in A$, tenhamos

$$\{f(x)\} = \{f(x')\}$$

então f(x) = f(x'). Segue que

$$f^{-1}(\{f(x)\})=\{x\}=\{x'\}=f^{-1}(\{f(x')\})$$

então x = x', logo f é injetiva.

Exercício 15. Dada $f: A \longrightarrow B$, prove:

i. Para todo $Z \subset B$, tem-se $f(f^{-1}(Z)) \subset Z$.

ii. f é sobrejetiva se, e somente se, $f(f^{-1}(Z)) = Z$ para todo $Z \subset B$.

Demonstração.

i. Seja $y \in f(f^{-1}(Z))$. Então existe $x \in f^{-1}(Z)$ tal que f(x) = y. Segue que

$$y \in f(\lbrace x \rbrace) \subset Z$$
.

Logo, $f(f^{-1}(Z)) \subset Z$.

ii.

 \Rightarrow Suponhamos que fseja sobrejetiva. Então, dado $z \in Z,$ temos que

$$f^{-1}(\{z\}) \neq \emptyset.$$

Além disso,

$$f(f^{-1}(\{z\})) = \{z\}.$$

Segue que

$$f(f^{-1}(Z)) = f(\bigcup_{z \in Z} f^{-1}(\{z\})) = \bigcup_{z \in Z} f(f^{-1}(\{z\})) = \bigcup_{z \in Z} \{z\} = Z.$$

 \Leftarrow Dado $z \in Z$, seja $\{z\} \subset B$. Então

$$f(f^{-1}(\{z\}))=\{z\}$$

Como $f(\emptyset) = \emptyset$, deve existir algum $x \in A$ tal que f(x) = z, logo f é sobrejetiva. \square

Exercício 16. Dada uma família de conjuntos $(A_{\lambda})_{{\lambda}\in L}$, seja X um conjunto com as seguintes propriedades:

- i. Para todo $\lambda \in L$, tem-se $X \supset A_{\lambda}$.
- ii. Se $Y \supset A_{\lambda}$ para todo $\lambda \in L$, então $Y \supset X$.

Prove que, nestas condições, tem-se $X = \bigcup_{\lambda \in L} A_{\lambda}$.

Demonstração. Análoga a demonstração do Exercício 2.

Análise Matemática - EXA 393

Gleberson Antunes

25 de Março de 2023

Exercício 1. Seja $X \neq \emptyset$ um conjunto infinito enumerável. Consideremos o conjunto das partes finitas de X, isto é, o conjuntos de todos os subconjuntos não-vazios de X que são finitos, denotemo-no por $\mathcal{P}_F(X)$. Observemos que $\mathcal{P}_F(X) \subset \mathcal{P}(X)$. Definamos sobre $\mathcal{P}_F(X)$ a seguinte relação:

$$A \sim B$$
 se, e somente se $\#A = \#B$.

Mostre que \sim é uma relação de equivalência.

Demonstração. Utilizaremos o fato de que a relação "="é uma relação de equivalência.

i . $A \sim A$.

Seja $A \in \mathcal{P}_F(X)$. Então, de fato, $A \sim A$ pois

$$\#A = \#A$$
.

ii. Se $A \sim B$ então $B \sim A$.

Sejam $A, B \in \mathcal{P}_F(X)$. Se $A \sim B$ então

$$\#A = \#B$$
.

Segue que

$$\#B = \#A$$

Logo, $B \sim A$, como queríamos.

iii. Se $A \sim B$ e $B \sim C$ então $A \sim C$.

Sejam $A, B, C \in \mathcal{P}_F(X)$ tais que $A \sim B$ e $B \sim C$. Então

$$\#A = \#B$$

 \mathbf{e}

$$\#B = \#C.$$

Logo

$$\#A = \#C.$$

E, portanto, $A \sim C$, como queríamos. Concluímos que " \sim " é uma relação de equivalência em $\mathcal{P}_F(X)$.

Agora, dado $A \in \mathcal{P}_F(X)$, consideremos \overline{A} a classe de equivalência de representante A. Sendo assim, a família $\{\overline{A} \mid A \in \mathcal{P}_F(X)\}$ é uma partição de $\mathcal{P}_F(X)$. Definamos a função $\phi : \mathcal{P}_F(X)/\sim \longrightarrow \mathbb{N}$ por $\phi(\overline{A}) = \#A$. Mostre que ϕ é uma bijeção.

Demonstração. Inicialmente, verificaremos que ϕ é bem definida.

i . ϕ é bem-definida.

Sejam $A, B \in \mathcal{P}_F(X)$. Se $A \sim B$ então

$$f(\overline{A}) = \#A = \#B = f(\overline{B}).$$

ii . ϕ é injetiva.

Sejam $\overline{A}, \overline{B} \in \mathcal{P}_F(X)/\sim$. Se

$$f(\overline{A}) = \#A = f(\overline{B}) = \#B$$

então $A \sim B$, logo $\overline{A} = \overline{B}$, portanto, f é injetiva.

iii. ϕ é sobrejetora.

Sejam n um número natural qualquer e $\alpha: \mathbb{N} \longrightarrow X$ uma bijeção entre \mathbb{N} e X. Como X é infinito enumerável, existe algum elemento $x_n \in X$ tal que $\alpha(n) = x_n$. Considere o conjunto I_n formado por todos os números naturais menores ou iguais a n. Segue então que

$$\phi(\overline{I_n}) = n.$$

Concluímos que ϕ é uma bijeção.

Exercício 2. Sejam $X \neq \emptyset$ e a função $f: X \longrightarrow X$. Como $f(X) \subset X$, podemos definir indutivamente $f^1 = f$ e $f^{n+1} = f \circ f^n$, para cada $n \in \mathbb{N}$. Dizemos que um subconjunto A de X é f-estável se $f(A) \subset A$. Obsermemos que X sempre tem dois subconjuntos f-estáveis, que são \emptyset e X.

Dado $x_0 \in X$, consideremos o conjunto

$$O_f(x_0) = \{x_0, f(x_0), f^2(x_0), ..., f^n(x_0), ...\}$$

denominado a órbita de x_0 por f. Um ponto $x_0 \in X$ é dito periódico se existe $n_0 \in \mathbb{N}$ tal que $f^n(x_0)$. O menor número natural n_0 (sempre existe!) tal que x_0 é periódico é dito o período de x_0 . Observe que $O_f(x_0)$ é f-estável.

- (a) Mostre que se $x_0 \in X$ é um ponto periódico, então a órbita de x_0 é um conjunto finito de X. Neste caso, quantos elementos tem a órbita de x_0 ? Justifique.
- (b) Mostre que se f é injetiva, mas não é sobrejetiva, dado $x_0 \in X f(X)$, então a órbita de x_0 é um conjunto infinito enumerável.
- (c) Mostre que X é finito se, e somente se, existe uma função f tal que os únicos subconjuntos f-estáveis de X são \emptyset e X.

Demonstração.

(a). Sejam $x_0 \in X$ um ponto periódico de f e $n_0 \in \mathbb{N}$ o menor númeral natural tal que $f^{n_0}(x_0) = x_0$. Afirmamos que $\#O_f(x_0) = n_0$. Considere a aplicação

$$\phi: I_{n_0} \longrightarrow O_f(x_0)$$
$$n \longmapsto f^n(x_0).$$

i ϕ é injetiva.

Sejam $m, n \in I_{n_0}$. Se

$$f^m(x_0) = f^n(x_0)$$

então existe $h \in \mathbb{N}$ tal que

$$f^h(f^m(x_0)) = f^h(f^n(x_0)) = x_0$$

Assim

$$m + h = n_0 = n + h$$
$$\Rightarrow m = n.$$

Logo, f é injetiva.

ii. ϕ é sobrejetora.

Seja $f^n(x_0) \in O_f(x_0)$. Se o índice n for menor que n_0 então $n \in I_{n_0}$ e

$$\phi(n) = f^n(x_0).$$

Se n for maior que n_0 então, o algoritimo da divisão euclidiana nos garante que

$$n = n_0 q + r$$

onde $0 \le r < n_0$. Segue que

$$\phi(r) = f^r(x_0) = f^r(f^{n_0}(x_0)) = f^r(f^{n_0q}(x_0)) = f^{n_0+q}(x_0).$$

Desse modo, ϕ é uma bijeção e $\#O_f(x_0) = n_0$.

(b.) Notemos o seguinte: Como X é f—estável, temos que

$$f(X) \subset X \Rightarrow f^2(X) = f(f(X)) \subset f(X) \subset X.$$

Indutivamente

$$f^n(X) \subset f(X) *$$

para todo $n \in \mathbb{N}$. Como $x_0 \in X - f(X)$ então x_0 não é um ponto periódico de f. De fato, como $x_0 \notin f(X)$ então $x_0 \notin f^n(X)$ para todo $n \in \mathbb{N}$, uma vez que vale *.

Considere agora a aplicação

$$\alpha: \mathbb{N} \longrightarrow O_f(x_0)$$

 $n \longmapsto f^n(x_0).$

i. α é injetiva. (Provaremos uma equivalência, isto é, provaremos que os elementos de $O_f(x_0)$ são dois a dois distintos, por indução).

O caso n = 1 é verdade. De fato, $x_0 \neq f(x_0)$, pois $x_0 \notin f(X)$. Como f é injetiva, segue que

$$f(x_0) \neq f(f(x_0)) = f^2(x_0)$$

Suponhamos que a afirmação é válida para um certo n, isto é, $f^n(x_0) \neq f^{n+1}(x_0)^{**}$. Se fosse verdade que

$$f^{n+1}(x_0) = f^{n+2}(x_0).$$

Então, seguiria da injetividade de f que

$$f(f^n(x_0)) = f(f^{n+1}(x_0)) \Rightarrow f^n(x_0) = f^{n+1}(x_0).$$

Absurdo por **. Logo, dados $m,n\in\mathbb{N}$ distintos, temos que $\alpha(n)=f^n(x_0)\neq f^m(x_0)=\alpha(m)$. Portanto, α é injetiva.

ii. α é sobrejetiva.

De fato, dado $f^n(x_0) \in O_f(x_0)$, tome $n \in \mathbb{N}$. Então $\alpha(n) = f^n(x_0)$, como queríamos. Concluímos que α é uma bijeção entre \mathbb{N} e $O_f(x_0)$. Desse modo, a órbita de x_o é um conjunto infinito enumerável.

(c.)

 \Rightarrow Suponhamos que $X=\{x_1,...,x_n\}$ um conjunto finito. Definamos a aplicação

$$\alpha(x) = \begin{cases} x_{n+1}, & \text{se } 1 \le x \le n - 1 \\ x_1, & \text{se } x = n \end{cases}$$

Como X é finito, existe uma bijeção $\rho:I_n\longrightarrow X$ tal que $\rho(n)=x_n.$ Considere a aplicação

$$f = \rho \circ \alpha : X \longrightarrow X$$

 $x_n \longmapsto x_{n+1}.$

Afirmamos que, com exceção dos subconjuntos \emptyset e X, nenhum outro é f—estável. Seja

$$\{x_{ik}, ..., x_{ij}\}$$

um subconjunto próprio não-vazio de X com os índices ordenados. Então

$$f(\{x_{ik},...,x_{ij}\}) \not\subset \{x_{ik},...,x_{ij}\}$$

pois $f(x_{ij}) = x_{ij+1} \notin \{x_{ik}, ..., x_{ij}\}.$

 \Leftarrow Por contraposição, suponhamos que X é infinito. Dado $x_0 \in X$, considere

$$O_f(x_0) = \{x_0, f(x_0), f^2(x_0),, f^n(x_0),\}$$

a órbita de x_0 . Note que não se pode

$$O_f(x_0) \neq X$$

pois então, $O_f(x_0)$ seria um conjunto f—estável próprio e não-vazio de X e, como sabemos, os únicos subconjuntos f-estáveis de X são \emptyset e X. Sendo assim, nos resta

$$O_f(x_0) = X.$$

Então, deve existir algum número natural n tal que $f^n(x_0) = x_0$. Segue do item (a) da Questão 2 que X é finito.

Concluímos que X infinito é um absurdo.

Análise Matemática - EXA 393 Gleberson Antunes

28 de Março de 2023

Para resolver essa questão, utilizaremos dois lemas.

Lema. $f^n(x_0) \notin f^{n+1}(X), \forall n \in \mathbb{N}$.

Demonstração. Por indução, considere o caso n=1. Então

$$f(x_0) \notin f^2(X)$$
,

pois, caso pertencesse, seguiria da injetividade de f que

$$f(x_0) = f(f(x)) = f^2(x) \Rightarrow x_0 = f(x),$$

para algum $x \in X$, mas, $x_0 \in X - f(X)$. Suponha que a afirmação é válida para um certo n maior que 1, isto é,

$$f^{n}(x_{0}) \notin f^{n+1}(X)$$
. *

Ou seja, $f^n(x_0) \neq f^{n+1}(x)$, para todo $x \in X$. Então, caso

$$f^{n+1}(x_0) \in f^{n+2}(X),$$

existiria algum $x \in X$ tal que $f^{n+1}(x_0) = f^{n+2}(x)$. Segue da injetividade de f que

$$f(f^n(x_0)) = f(f^{n+1}(x)) \Rightarrow f^n(x_0) = f^{n+1}(x).$$

Absurdo por *.

Lema 2. Fixado $g \in \mathbb{N}$, temos que $f^g(x_0) \notin f^{g+n}(X)$, $\forall n \in \mathbb{N}$.

Demonstração. Seja $g \in \mathbb{N}$ qualquer. Por indução, o caso n=1 se verifica pelo **Lema 1**, uma vez que

$$f^g(x_0) \notin f^{g+1}(X).$$

Suponhamos que a afirmação é válida para um certo n maior que 1, isto é

$$f^g(x_0) \notin f^{g+n}(X)$$
.

Então, caso

$$f^g(x_0) \in f^{g+(n+1)}(X),$$

existiria algum $x \in X$ tal que

$$f^g(x_0) = f^{g+(n+1)}(x).$$

Mas isso é absurdo, pois

$$f^{n+1}(X) \subset f^n(X)$$

para todo $n \in \mathbb{N}$ e, como f(X) é f-estável, temos que

$$f^g(f^{n+1}(X)) = f^{g+(n+1)}(X) \subset f^g(f^n(X)) = f^{g+n}(X),$$

e $f^{g}(x_0) \notin f^{g+n}(X)$, portanto, não pode pertencer a $f^{g+(n+1)}(X)$.

(b). Mostre que se f é injetiva, mas não é sobrejetiva, dado $x_0 \in X - f(X)$, então a órbita de x_0 é um conjunto infinito enumerável.

Demonstração. Considere agora a aplicação

$$\alpha: \mathbb{N} \longrightarrow O_f(x_0)$$

 $n \longmapsto f^n(x_0).$

1. α é injetiva.

Sejam $m,n\in\mathbb{N}$ tais que m>n. Então m=n+r, onde $r\geq 1.$ Se fosse verdade que

$$f^m(x_0) = f^n(x_0),$$

então seguiria que

$$f^{m}(x_{0}) = f^{r}(f^{n}(x_{0})) = f^{n}(x_{0}),$$

ou seja, $f^n(x_0)$ é um ponto periódico da função f. Sendo assim, a órbita de $f^n(x_0)$ é um conjunto finito.

Seja r_0 o menor número natural (que existe por conta do Princípio da Boa Ordenação) tal que

$$f^{r_0}(x_0) = f^n(x_0).$$

Observe o seguinte: $r_0 > n \ge 1$ (estritamente maior) pois segue do **Lema 1** que $f^n(x_0) \ne f^{n+1}(x_0)$.

Como $r_0 < 2r_0$, segue que $r_0 - 1 < 2r_0 - 1$. Pelo **Lema 1** e **Lema 2**, concluímos que

$$f^{r_0-1}(x_0) \notin f^{2r_0-1}(X),$$

ou seja, $f^{r_0-1}(x_0) \neq f^{2r_0-1}(x_0)$ ** . Mas

$$f(f^{r_0-1}(x_0) = f^{r_0}(x_0) = f^n(x_0) = f(f^{2r_0-1}(x_0) = f^{2r_0}(x_0).$$

Absurdo, por **. Logo, f não poderia ser injetiva.

Concluimos que $f^m(x_0) = f^n(x_0) \Rightarrow m = n$, logo α é injetiva.

2. α é sobrejetora.

Dado
$$f^n(x_0) \in O_f(x_0)$$
, tome $n \in \mathbb{N}$. Então $\alpha(n) = f^n(x_0)$.

Análise Matemática - EXA 393 Gleberson Antunes

28 de Março de 2023

(b). Mostre que existe $m \in \mathbb{N}$ tal que b < mc.

Demonstração.

Sem perda de generalidade, suponhamos que c < b. Então $1 \le c < b$. Tome m = b + 1. Note que

$$b < (b+1)c,$$

pois

$$bc + c - b = b(c - 1) + c \ge 0.$$

Análise Matemática - EXA 393

Gleberson Antunes

25 de Abril de 2023

Exercício 4. Sejam \mathbb{K} , \mathbb{L} corpos. Uma função $f: \mathbb{K} \longrightarrow \mathbb{L}$ chama-se um homomor-fismo quando se tem f(x+y) = f(x) + f(y) e $f(x \cdot y) = f(x) \cdot f(y)$ para quaisquer que sejam $x, y \in \mathbb{K}$.

- i. Dado um homomorfismo $f: K \longrightarrow L$, prove que f(0) = 0.
- ii. Prove também que, ou f(x) = 0 para todo $x \in K$, ou então f(1) = 1 e f é injetivo.

Lema 1. Sejam \mathbb{K} , \mathbb{L} corpos e $f: \mathbb{K} \longrightarrow \mathbb{L}$ um homomorfismo tal que f(1) = 1. Dado $x \in \mathbb{K}$ não-nulo, temos que $f(x^{-1}) = f(x)^{-1}$.

Demonstração. Seja $x \in \mathbb{K}$ não-nulo. Então

$$1 = f(x \cdot x^{-1}) = f(x) \cdot f(x^{-1}).$$

Multiplicando ambos os lados da igualdade por $f(x)^{-1}$, segue que

$$f(x)^{-1} = f(x^{-1}).$$

Demonstração.

i. Ora, sabemos que 0 = 0 + 0. Então

$$f(0) = f(0+0) = f(0) + f(0).$$

Ou seja,

$$f(0) = f(0) + f(0).$$

Somando (-f(0)) em ambos os lados da igualdade, tem-se que

$$f(0) + (-f(0)) = f(0) + f(0) + (-f(0)).$$
$$0 = f(0),$$

como queríamos provar.

ii. Ora, sabemos que $x = x \cdot 1$. Então

$$f(x) = f(x \cdot 1) = f(x) \cdot f(1).$$

Note que

$$f(x) - f(x) \cdot f(1) = f(x)[1 - f(1)] = 0.$$

Como \mathbb{K} é um corpo e, portanto, é um domínio de integridade, temos que f(x)=0 para todo $x\in\mathbb{K}$ ou f(1)=1.

Provaremos agora que, quando f(1) = 1, f é injetiva. Sejam $x, y \in \mathbb{K}$ tais que

$$f(x) = f(y) \Rightarrow f(x - y) = 0.$$

Se fosse verdade que $z=x-y\neq 0$ então seguiria do $\bf Lema~1$ que

$$f(z) \cdot f(z)^{-1} = 1.$$

Mas, f(z) = f(x - y) = 0. Desse modo,

$$f(z) \cdot f(z)^{-1} = 0 \cdot f(z)^{-1} = 0.$$

O que é absurdo! Logo, $x - y = 0 \Rightarrow x = y$.

Exercício 5. Seja $f: \mathbb{Q} \longrightarrow \mathbb{Q}$ um homomorfismo. Prove que, ou f(x) = 0 para todo $x \in \mathbb{Q}$ ou então f(x) = x, para todo $x \in \mathbb{Q}$.

Demonstração. Trata-se de um caso particular do Exercício 4.

Lema 2. Sejam X um conjunto finito e $f: X \longrightarrow X$ uma função. Então f é injetiva se, e somente se, f é sobrejetiva.

Demonstração. Encontra-se em https://llnq.com/DSiUm.

Exercício 8. Seja K um conjunto onde são válidos todos os axiomas de corpo, salvo a existência de inverso multiplicativo.

- i. Dado $a \neq 0$ em \mathbb{K} , prove que a função $f : \mathbb{K} \longrightarrow \mathbb{K}$, definida por f(x) = ax é uma bijeção se, e somente se, a possui inverso.
- ii. Mostre que f é injetiva se, e somente se, vale a lei do corte para a.
- iii. Conclua que, se \mathbb{K} é finito, a lei do corte é equivalente à existência de inverso para cada elemento não-nulo de \mathbb{K} .

Demonstração.

i.

 \Rightarrow Suponhamos por absurdo que $a\in\mathbb{K}$ não possui inverso. Então não existe $b\in\mathbb{K}$ tal que

$$a \cdot b = b \cdot a = 1.$$

Como $1 \in \mathbb{K}$ (Por causa dos axiomas do corpo) e, como f é bijeção, existe $x \in \mathbb{K}$ tal que

$$f(x) = 1 = ax$$
.

Mas isso é absurdo por *, uma vez que x seria o inverso de a.

 \Leftarrow Suponhamos que a possui inverso. Considere a aplicação $f:\mathbb{K}\longrightarrow\mathbb{K}$ dada por f(x)=ax.

Note que f é injetiva. De fato, sejam $x, y \in \mathbb{K}$ tais que

$$f(x) = f(y)$$

$$\Leftrightarrow ax = ay$$

Multiplicando ambos os lados da igualdade por a^{-1} , temos que

$$a^{-1}ax = a^{-1}ay \Rightarrow x = y. **$$

Notemos também que f é sobrejetiva. Dado $y \in \mathbb{K}$, temos que

$$y = f(a^{-1}y).$$

Logo, f é uma bijeção, como queríamos provar.

ii.

 \Rightarrow Suponhamos que fseja injetiva. Se não valesse a lei do corte para a, existiriam $x,y\in\mathbb{K}$ tais que

$$ax = ay \Rightarrow x \neq y.$$

Mas isso é absurdo, pois sendo f injetiva, temos que

$$f(x) = f(y) \Rightarrow x = y.$$

 \Leftarrow Suponhamos que valha a lei do corte para a. Então, dados $x,y\in\mathbb{K}$, temos que

$$ax = ay \Rightarrow x = y$$
.

Logo, f é injetiva.

iii. Suponhamos que \mathbb{K} é finito.

 \Rightarrow (Por contraposição) Seja $a \in \mathbb{K}$ não-nulo, que não possui inverso multiplicativo. Então, o item i nos garante que a aplicação

$$f: \mathbb{K} \longrightarrow \mathbb{K}$$

$$x \longmapsto ax$$
,

não é bijetiva. Suponhamos agora, por absurdo, que vale a lei do corte em \mathbb{K} . Então o item ii nos garante que f é injetiva. Seguiria então do **Lema 2** que f é uma bijeção, o que é absurdo!

 \Leftarrow Segue do passo **.

Exercício 14. Seja a um elemento de um corpo ordenado \mathbb{K} . Definamos $f: \mathbb{Z} \longrightarrow \mathbb{K}$ pondo $f(n) = a^n$. Prove que f é crescente se a > 1, decrescente se a < 1 e constante se a = 1.

Demonstração. Suponhamos inicialmente que 1 < a. Note que

$$1 < a < a^2 < \dots < a^n < \dots$$

basta multiplicar a desigual dade 1 < a por a, n vezes. Isso traduz o seguinte fato: Para todo n natural, temos que $1 < a^n$ ***. Provaremos agora que f é crescente, isto é, se $x < y \Rightarrow f(x) < f(y)$.

Sejam $m, n \in \mathbb{Z}$ tais que n < m. Então m = n + h, onde $1 \le h, h \in \mathbb{N}$. Segue que $a^n < a^m$ pois

$$a^{m} - a^{n} = a^{(n+h)} - a^{n} = a^{n} \cdot a^{h} - a^{n} = a^{n}(a^{h} - 1).$$

Como vale ***, temos que $1 < a^h \Leftrightarrow 0 < a^h - 1$. Assim

$$0 < a^n(a^h - 1) \Leftrightarrow a^n < a^m.$$

Logo, f é crescente.

Suponhamos agora que a < 1. Note que

$$\dots < a^n < \dots < a^2 < a < 1,$$

basta multiplicar a desigual dade a < 1 por a, n vezes. Isso traduz o seguinte fato: Para todo n natural, temos que $a^n < 1$ ****. Provaremos agora que f é descrescente, isto é, se x < y então f(x) > f(y).

Sejam $m, n \in \mathbb{Z}$ tais que n < m. Então m = n + h, onde $1 \le h, h \in \mathbb{N}$. Segue que $a^n > a^m$ pois

$$a^{n} - a^{m} = a^{n} - a^{n} \cdot a^{h} = a^{n}(1 - a^{h}).$$

Como vale ****, temos que $a^h < 1 \Leftrightarrow 0 < 1 - a^h$. Assim

$$0 < a^n (1 - a^h) \Leftrightarrow a^m < a^n.$$

Logo, f é decrescente.

Suponhamos agora que a=1. Nosso objetivo é provar que f(n)=1, para todo $n\in\mathbb{Z}$. Façamos indução em n.

Para n=1, temos que $f(1)=1^1=1$. Suponha então que a afirmação é válida para um certo n>1. Então

$$f(n+1) = 1^{(n+1)} = 1^n \cdot 1 = 1.$$

Se n=0, então

$$f(0) = 1^0 = 1,$$

por definição. Seja então n < 0 inteiro. Então $f(-n) = 1^{-n} = 1$, como acabamos de provar. Segue que

$$f(n) = \frac{1}{1^{-n}} = 1.$$

Logo, f é constante.

Exercício 26. Seja a > 1 em um corpo arquimediano \mathbb{K} . Considere a função $f : \mathbb{Z} \longrightarrow \mathbb{K}$, definida por $f(n) = a^n$. Prove as seguintes afirmações:

i. $f(\mathbb{Z})$ não é limitado superiormente.

ii.
$$inf f(\mathbb{Z}) = 0$$
.

Demonstração.

i. Como a>1, temos que a=1+h, onde $h\in\mathbb{K}$ é maior que zero. Suponhamos, por absurdo, que $f(\mathbb{Z})$ é limitado superiormente. Então existe $\alpha\in\mathbb{K}$ (não confundir com supremo) tal que $f(n)\leq\alpha$ para todo $n\in\mathbb{Z}$. Como \mathbb{K} é arquimediano, $\mathbb{N}\subset\mathbb{K}$ é ilimitado superiormente. Então existe $n\in\mathbb{N}$ tal que

$$n > \frac{\alpha - 1}{h}$$
.

Segue da **Desigualdade de Bernoulli** que

$$\alpha < 1 + nh \le (1+h)^n = a^n,$$

o que é absurdo, uma vez que α é uma cota superior de $f(\mathbb{Z})$. Segue que $f(\mathbb{Z})$ é ilimitado superiormente.

ii. Vimos na questão 14 que se a>1 então $a^n>1$ para todo n natural. Se n=0 então $a^0=1$ por definição. Se n<0 então $a^n=\frac{1}{a^{-n}}<1$, onde $a^{-n}>1$. Segue daí que $0< a^n$ para todo $n\in\mathbb{Z}$.

Veja o item 12' da definição de ínfimo do livro do Elon. Utilizaremos essa equivalência agora para provar que nenhum $\alpha > 0$ pode ser o ínfimo de $f(\mathbb{Z})$.

Suponhamos que $\alpha>0$ é o ínfimo de $f(\mathbb{Z})$. Como \mathbb{K} é arquimediano, existe $n\in\mathbb{N}$ tal que

$$n > \frac{\frac{1}{\alpha} - 1}{h}$$
.

Segue da **Desigualdade de Bernoulli** que

$$\frac{1}{\alpha} < 1 + nh < (1+h)^n = a^n.$$

Consequentemente

$$a^{-n} = \frac{1}{a^n} < \alpha,$$

o que é absurdo, uma vez que $\alpha \leq a^n$, para todo $n \in \mathbb{Z}$. Segue então que $0 = \inf f(\mathbb{Z})$.

Exercício 22. Prove que, para todo x num corpo ordenado \mathbb{K} , tem-se

$$|x-1| + |x-2| \ge 1.$$

 $|x-1| + |x-2| + |x-3| \ge 2.$

Demonstração. Seja $x \in \mathbb{K}$.

i. Note que |2-1|=1. Segue daí que

$$1 = |2 - 1| = |(2 - x) + (x - 1)| \le |x - 2| + |x - 1|$$
$$\Rightarrow 1 \le |x - 2| + |x - 1|$$

ii. Note que |3-1|=2. Segue daí que

$$2 \le |x-1| + |x-3|.$$

Como $|x-2| \ge 0$, segue que

$$2 \le |x-1| + |x-2| + |x-3|$$
.

Exercício 39. Sejam A, B conjuntos de números reais positivos. Definamos $A \cdot B = \{x \cdot y \mid x \in A \ e \ y \in B\}$. Prove que se A e B forem limitados então $A \cdot B$ é limitado, sendo $sup(A \cdot B) = supA \cdot supB$ e $inf(A \cdot B) = infA \cdot infB$.

Demonstração. Sejam $sup A = \alpha$ e $sup B = \beta$. Então $|x| \le \alpha$ e $|y| \le \beta$ para cada $x \in A$ e $y \in B$, respectivamente. Segue daí que

$$|x \cdot y| < \alpha \cdot \beta$$

para cada $x \in A$ e $y \in B$. Consequentemente, temos que $-\alpha \cdot \beta \leq x \cdot y \leq \alpha \cdot \beta$. Logo, $A \cdot B$ é limitado. Como $A \cdot B \subset \mathbb{R}$, existe $\psi = \sup(A \cdot B) \in \mathbb{R}$, pois \mathbb{R} é um corpo ordenado completo. Provaremos agora que $\sup(A \cdot B) = \sup A \cdot \sup B$. Como $x \leq \alpha$ e $y \leq \beta$ para cada $x \in A$ e $y \in B$ e ambos são números reais positivos, temos que

$$x \cdot y \le \alpha \cdot \beta$$
.

Como $\psi = \sup(A \cdot B)$ é a menor das cotas superiores de $A \cdot B$, temos que

$$x \cdot y \le \psi \le \alpha \cdot \beta$$
. (1)

Segue que (1) que

$$x \le \frac{\psi}{y}$$

para todo $x \in A$ e cada $y \in B$. Logo, temos que

$$x \le \alpha \le \frac{\psi}{y}$$
, (2)

pois α é a menor das cotas superiores de A. Segue de (2) que

$$y \leq \frac{\psi}{\alpha}$$
,

para todo $y \in B$. Logo, temos que

$$y \leq \beta \leq \frac{\psi}{\alpha}$$

pois β é a menor das cotas superiores de B. Daí

$$\alpha \cdot \beta \leq \psi$$
,

o que implica que $sup(A \cdot B) = supA \cdot supB$. Provaremos agora que $inf(A \cdot B) = infA \cdot infB$.

Sejam ρ, σ e θ os infímos de A, B e $A \cdot B$, respectivamente. Como os elementos de A e B são todos positivos, temos que $\rho \cdot \sigma \leq x \cdot y$, para cada $x \in A$ e $y \in B$. Como θ é a maior das cotas inferiores de $A \cdot B$, temos que $\rho \cdot \sigma \leq \theta$. Por um lado, temos que

$$\frac{\theta}{x} \le y,$$

para todo $y \in B$ e cada $x \in A$. Como σ é a maior das cotas inferiores de B, temos que

$$\frac{\theta}{x} \le \sigma \le y.$$

Segue que

$$\frac{\theta}{\sigma} \le x$$
.

para todo $x \in A$. Como ρ é maior das cotas inferiores de A, temos que

$$\frac{\theta}{\sigma} \le \rho \Rightarrow \theta \le \rho \cdot \sigma.$$

Portanto, temos que $inf(A \cdot B) = infA \cdot infB$.

EXA 393 - Análise Matemática

Gleberson Antunes

18 de Abril de 2023

1. Um conjunto $A \subset \mathbb{R}$ é aberto se, e somente se, cumpre a seguinte condição: "Se uma sequência (x_n) converge para um ponto $a \in A$ então $x_n \in A$ para todo n suficientemente grande".

Demonstração.

 \Rightarrow Suponhamos que $A \subset \mathbb{R}$ seja um conjunto aberto. Seja (x_n) uma sequência de números reais tais que $x_n \longrightarrow a \in A$. Como A é aberto, todos os seus pontos são pontos interiores. Sendo assim, existe $\varepsilon > 0$ tal que

$$(a - \varepsilon, a + \varepsilon) \subset A$$
.

Como \mathbb{R} é arquimediano, dado $\epsilon > 0$, existe $m_0 \in \mathbb{N}$ tal que

$$0<\frac{1}{m_0}<\varepsilon$$
.

Existe então $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \Rightarrow \mid x_n - a \mid < \frac{1}{m_0} < \varepsilon.$$

Ou seja, $n > n_0 \Rightarrow x_n \in A$.

 \Leftarrow Suponhamos que A não é aberto. Então existe $a \in A$ que não é ponto interior. Assim, dados quaisquer $\varepsilon > 0$, temos que

$$(a-\varepsilon,a+\varepsilon) \not\subset A$$
.

Montaremos agora uma sequência que converge para a, com a propriedade de que nenhum dos termos dessa sequência está em A.

Dado $\varepsilon_1 = 1$, tome $x_1 \in (a-1,a+1)$ tal que $x_1 \notin A$. Tome agora $\varepsilon_2 = min\{|x_1 - a|, \frac{1}{2}\}$ e $x_2 \in (a - \varepsilon_2, a + \varepsilon_2)$ tal que $x_2 \notin A$. Tome $\varepsilon_3 = min\{|x_2 - a|, \frac{1}{3}\}$ e $x_3 \in (a - \varepsilon_3, a + \varepsilon_3)$ tal que $x_3 \notin A$. Prossigamos dessa maneira de forma que obtenhamos uma sequência (x_n) de números reais tais que

$$|x_{n+1} - a| < |x_n - a| e |x_n - a| < \frac{1}{n}$$
.

Note que $x_n \longrightarrow a \in A$, mas $x_n \notin A$ para todo $n \in \mathbb{N}$. Absurdo! Logo A é aberto. \square

Análise Matemática - EXA 393

Gleberson Antunes

01 de Maio de 2023

Lema 1. Seja \mathbb{K} um corpo ordenado. Dados $a, b, c, d \in \mathbb{K}$ positivos, temos que

$$a < b \quad e \quad c < d \quad \Rightarrow \quad ac < bd.$$

Demonstração. Como c>0, temos que ac < bc. Da mesma maneira, como a>0, temos que ac < ad. Por fim, como d>0, temos que ad < bd. Segue da transitividade de < que: $ac < ad < bd \Rightarrow ac < bd$.

Exercício 11 Seja P o conjunto dos elementos positivos de um corpo ordenado \mathbb{K} .

- i. Dado um número natural n, prove que a função $f: P \longrightarrow P$, definida por $f(x) = x^n$ é monótona crescente (isto é, $x < y \Rightarrow f(x) < f(y)$).
- ii. Dê um exemplo em que f não é sobrejetiva.
- iii. Prove que f(P) não é um subconjunto limitado superiormente de \mathbb{K} .

Demonstração.

i. Faremos indução em n e utilizaremos o **Lema 1**. Para n=1, a afirmação é verdadeira pois $x < y \Rightarrow f(x) < f(y)$. Suponhamos agora que a afirmação é verdadeira para um certo n > 1. Ora, sabemos que

$$0 < x < y$$
 e $0 < x^n < y^n \Rightarrow x^{n+1} < y^{n+1}$,

pelo **Lema 1**. Segue então que, dado n natural, $x < y \Rightarrow f(x) < f(y)$.

ii. (Quando li essa questão pela primeira vez, não entendi muito bem, afinal essa função é sobrejetiva (em \mathbb{R}). Acabei me passando nisso durante uma monitoria e passei um vexame kkk).

Considere o nosso corpo ordenado como sendo \mathbb{Q} . Seja então \mathbb{Q}^+ o conjunto dos elementos positivos de \mathbb{Q} . Então, a aplicação $f:\mathbb{Q}^+ \longrightarrow \mathbb{Q}^+$, dada por $f(x)=x^2$ não é sobrejetiva, pois não existe $x \in \mathbb{Q}^+$ tal que f(x)=2.

iii. Suponhamos que f(P) é um subconjunto limitado superiormente de \mathbb{K} . Então existe $\alpha \in \mathbb{K}$ tal que $f(x) = x^n \leq \alpha$, para todo $x \in P$. Note que α deve ser positivo. Segue da **Desigualdade de Bernoulli** que $(1 + \alpha)^n > 1 + n\alpha > \alpha$. Logo, f(P) é ilimitado superiormente,

Exercício 24. Prove que, num corpo ordenado \mathbb{K} , as seguintes afirmações são equivalentes:

- i. \mathbb{K} é arquimediano.
- ii. \mathbb{Z} é ilimitado superior e inferiormente.
- iii. \mathbb{Q} é ilimitado superior e inferiormente.

Demonstração.

i \Rightarrow ii. Suponhamos que \mathbb{K} é arquimediano. Então $\mathbb{N} \subset \mathbb{K}$ é ilimitado superiormente. Sabemos que $\mathbb{Z} = -\mathbb{N} \cup \{0\} \cup \mathbb{N}$. Se supormos que \mathbb{Z} é limitado superiormente, então existe $\alpha \in \mathbb{K}$ tal que $z \leq \alpha$, para todo $z \in \mathbb{Z}$. Como $\mathbb{N} \subset \mathbb{K}$ é ilimitado superiormente, existe $n \in \mathbb{N} \subset \mathbb{Z}$ tal que $\alpha < n$. Logo, \mathbb{Z} é ilimitado superiormente. Se supormos que \mathbb{Z} é limitado inferiormente, então existe $\beta \in \mathbb{K}$ tal que $\beta \leq z$, para todo $z \in \mathbb{Z}$. Observe que β deve ser negativo. Segue que $-\beta > 0$. Então existe $n \in \mathbb{N}$ tal que $-\beta < n$. Daí, $-n < \beta$. Logo, \mathbb{Z} é ilimitado inferiormente.

ii. Suponhamos que \mathbb{Q} é limitado superiormente. Então existe $\alpha \in \mathbb{K}$ tal que $q \leq \alpha$, para todo $q \in \mathbb{Q}$. Como $\mathbb{Z} \subset \mathbb{Q}$ é ilimitado superiormente, existe $z \in \mathbb{Z} \subset \mathbb{Q}$ tal que $\alpha < z$. Logo, \mathbb{Q} é ilimitado superiormente. De forma análoga, provamos que \mathbb{Q} é ilimitado inferiormente.

iii. Suponhamos que \mathbb{K} não é arquimediano. Então existe $\alpha \in \mathbb{K}$ tal que $n \leq \alpha$ para todo $n \in \mathbb{N}$. Como \mathbb{Q} é ilimitado superiormente, existe $q = \frac{m}{n} \in \mathbb{Q}$ tal que $\alpha \leq \frac{m}{n}$. SPG, suponhamos que m, n são todos positivos. Como $\frac{1}{n} \leq 1$, segue que $\frac{m}{n} \leq m$. Logo $\alpha \leq \frac{m}{n} \leq m$, onde $m \in \mathbb{N}$, o que é absurdo pois \mathbb{K} não é arquimediano. Concluímos então que \mathbb{N} é ilimitado superiormente e, portanto, \mathbb{K} é arquimediano.

Exercício 33. Sejam $A \subset B$ subconjuntos não-vazios limitados de números reais. Prove que $infB \le infA \le supA \le supB$.

Demonstração. Sejam $a,b \in \mathbb{R}$ tais que a=infA e b=infB. Como A é um subconjunto de B, temos que $b \leq y$, para todo $y \in A$. Ora, $a \leq y$, para todo $y \in A$ (pois a é o ínfimo do conjunto A), logo $b \leq a$ (pois a é a maior das cotas inferiores de A). Análogamente, sejam $c,d \in \mathbb{R}$, tais que c=supA e d=supB. Temos que $y \leq d$, para todo $y \in A$ (pois d é o supremo de B e A é um subconjunto de B). Por outro lado, $y \leq c$, para todo $y \in A$ (pois c é o supremo do conjunto A), logo $c \leq d$ (pois o supremo de A é a menor das cotas superiores de A). Concluímos que

$$infB \le infA \le supA \le supB$$
.

Exercício 37. Dados $A, B \subset \mathbb{R}$ não-vazios e limitados, seja $A + B = \{x + y \mid x \in A \ e \ y \in B\}$. Prove que

i. A + B é limitado.

ii.
$$sup(A + B) = supA + supB$$
.

iii.
$$inf(A+B) = infA + infB$$
.

iv Enuncia e demonstre resultados análogos supondo apenas A e B limitados superiormente (ou A e B limitados inferiormente).

Demonstração.

i. Como A e B são conjuntos limitados de números reais, existem $a,b,c,d\in\mathbb{R},$ com a< b e c< d que são tais que $A\subset [a,b]$ e $B\subset [c,d]$. Desse modo, dados $x\in A$ e $y\in B$ quaisquer, temos que

$$a \le x \le b$$

$$c \le y \le d$$

$$\Rightarrow a + c \le x + y \le b + d.$$

Portanto, $A+B=\{x+y\mid x\in A,y\in B\}$ é limitado.

ii. A+B é um subconjunto limitado de \mathbb{R} , que é ordenado completo, logo A+B possui um supremo em \mathbb{R} . Como $x \leq supA$ e $y \leq supB$, temos

$$x + y \le supA + supB \Rightarrow sup(A + B) \le supA + supB.$$

Note que

$$x + y \le \sup(A + B) \Rightarrow x \le \sup(A + B) - y$$
.

Logo, sup(A+B)-y é uma cota superior de A, para todo $x\in A$ e cada $y\in B$. Assim, temos que $supA\leq sup(A+B)-y$.

Por outro lado,

$$y \le \sup(A+B) - \sup A.$$

Dessa forma, sup(A+B)-supA é uma cota superior de B. Então, $supB \leq sup(A+B)-supA \Rightarrow supA+supB \leq sup(A+B)$.

Concluímos que

$$sup(A+B) = supA + supB.$$

iii. Análogo ao item ii.

iv Análogo ao item ii e iii.

Análise Matemática - EXA 393 Gleberson Antunes

16 de Maio de 2023

As resoluções são desprentesiosas e sujeitas à erros. Sugestões e correções podem ser enviadas para glebersonset@gmail.com.

Exercício 1. Seja $f: \mathbb{R} - \{0\} \longrightarrow \mathbb{R}$ definida por $f(x) = e^{\frac{-1}{x}}$. Mostre que $\lim_{x \to 0^+} f(x) = 0$.

$$Demonstração. \ \mathrm{Dado} \ \varepsilon>0, \ \mathrm{tome} \ \delta=\frac{1}{ln\Big[\frac{1}{\varepsilon}\Big]}. \ \mathrm{Então}$$

$$0 < x < \frac{1}{ln\left[\frac{1}{\varepsilon}\right]} \Rightarrow \frac{1}{x} > ln\left[\frac{1}{\varepsilon}\right] \Rightarrow e^{\frac{1}{x}} > \frac{1}{\varepsilon} \Rightarrow \frac{1}{\frac{1}{\varepsilon}} = \left|e^{\frac{-1}{x}} - 0\right| < \varepsilon.$$

Análise Matemática - EXA 393 Gleberson Antunes

25 de Maio de 2023

Sugestões e correções podem ser enviadas para glebersonset@gmail.com.

Exercício 1. Se lim $x_n = a$ então lim $|x_n| = |a|$. Dê um contra-exemplo mostrando que a recíprova é falsa, salvo quando a = 0.

Demonstração.

1. Mostraremos que $(|x_n|)$ converge para |a|.

Sejam (x_n) uma sequência e $a = \lim x_n$. Considere a sequência $(|x_n|)$. Dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \Rightarrow ||x_n| - |a|| \le |x_n - a| < \varepsilon.$$

Logo, $\lim |x_n| = |a|$.

2. Mostraremos que não vale a recíproca do resultado.

Considere a sequência (x_n) , cujo termo geral é dado por $x_n = (-1)^n$. Seja então a sequência $(|x_n|)$, cujo termo geral é dado por $|x_n| = |(-1)^n|$. **Evidentemente**, $|(-1)^n| \longrightarrow 1$, mas $(-1)^n$ não converge, pois admite duas subsequências que convergem para pontos distintos.

3. Mostraremos que vale a recíproca quando a=0.

Seja (x_n) uma sequência de números reais. Suponhamos que a sequência $(\mid x_n \mid)$ converge para 0. Então, dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \implies |x_n - 0| = ||x_n| - |0|| < \varepsilon.$$

Exercício 2. Seja lim $x_n = 0$. Para cada n, ponha $y_n = min\{|x_1|, |x_2|, ..., |x_n|\}$. Prove que $y_n \longrightarrow 0$.

Demonstração. Dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \implies |y_n - 0| = |y_n| \le |x_n| = |x_n - 0| < \varepsilon.$$

Logo, $\lim y_n = 0$.

Exercício 3. Se lim $x_{2n} = a$ e lim $x_{2n-1} = a$, prove que lim $x_n = a$.

Demonstração. Como $x_{2n} \longrightarrow a$, dado $\varepsilon > 0$, existe $n_1 \in \mathbb{N}$ tal que

$$2n > n_1 \Rightarrow |x_{2n} - a| < \varepsilon.$$

Analogamente, como $x_{2n-1} \longrightarrow a$ existe $n_2 \in \mathbb{N}$ tal que

$$2n - 1 > n_2 \implies |x_{2n-1} - a| < \varepsilon.$$

Tome $n_0 = m \acute{a} x \{n_1, n_2\}$. Então

$$n > n_0 \implies |x_n - a| < \varepsilon.$$

Exercício 4. Se $\mathbb{N} = \mathbb{N}_1 \cup \mathbb{N}_2 \cup ... \cup \mathbb{N}_k$ e $\lim_{n \in \mathbb{N}_1} x_n = \lim_{n \in \mathbb{N}_2} x_n = ... \lim_{n \in \mathbb{N}_k} x_n = a$, então $\lim_{n \in \mathbb{N}} x_n = a$.

Demonstração. Imediata do Exercício 3.

Exercício 6. Se lim $x_n = a$ e lim $(x_n - y_n) = 0$, então lim $y_n = a$.

Demonstração. Note que $y_n = x_n - (x_n - y_n)$. Logo

$$\lim y_n = \lim [x_n - (x_n - y_n)] = a - 0 = a.$$

Exercício 7. Seja $a \neq 0$. Se lim $\frac{y_n}{a} = 1$ então lim $y_n = a$.

Demonstração. Note que $y_n = \frac{y_n}{a} \cdot a$. Logo

$$\lim y_n = \lim \left(\left[\frac{y_n}{a} \right] \cdot a \right) = 1 \cdot a = a.$$

Exercício 8. Seja $b \neq 0$. Se lim $x_n = a$ e lim $\frac{x_n}{y_n} = b$, então lim $y_n = \frac{a}{b}$.

Demonstração. Note que $y_n = x_n \cdot \frac{y_n}{x_n}$. Logo

$$\lim y_n = \lim \left(\left[x_n \cdot \frac{y_n}{x_n} \right] \right) = \frac{a}{b}.$$

Exercício 9. Se lim $x_n = a \neq 0$ e lim $x_n y_n = b$, então lim $y_n = \frac{b}{a}$.

Demonstração. Note que $y_n = x_n y_n \cdot \frac{1}{x_n}$. Logo

$$\lim y_n = \lim \left(\left[x_n y_n \cdot \frac{1}{x_n} \right] \right) = b \cdot \frac{1}{a} = \frac{b}{a}.$$

Lema 1. Dado a > 1, considere a sequência $\left(a^{\frac{1}{n}}\right)$. Então $\lim_{n \to \infty} a^{\frac{1}{n}} = 1$.

Demonstração. Dado $\varepsilon>0,$ tome $n_0>\frac{\ln\,a}{\ln(1+\varepsilon)}.$ Então

$$n > n_0 \Rightarrow \frac{1}{n} < \frac{ln(1+\varepsilon)}{ln\ a} \Rightarrow \frac{1}{n} \cdot ln\ a < ln(1+\varepsilon).$$

Note que

$$\frac{1}{n} \cdot \ln a < \ln(1+\varepsilon) \Rightarrow a^{\frac{1}{n}} < 1+\varepsilon \Rightarrow \mid a^{\frac{1}{n}} - 1 \mid < \varepsilon.$$

.

Logo, $\lim_{n \to \infty} a^{\frac{1}{n}} = 1$.

Exercício 14. Seja $a \ge 0$, $b \ge 0$. Prove que $\lim_{n \to \infty} \sqrt[n]{a^n + b^n} = m x\{a, b\}$.

Demonstração. Seja $c=m \land x\{a,b\}.$ Como $a\geq 0$ e $b\geq 0,$ temos que

$$a^n \le c^n$$
 e $b^n \le c^n$.

Consequentemente,

$$c^n < a^n + b^n < 2c^n$$

o que é equivalente a $c \leq \sqrt[n]{a^n + b^n} \leq 2^{\frac{1}{n}} \cdot c$. De posse do **Lema 1**, temos que $\lim_{n \to +\infty} c = \lim_{n \to +\infty} \left[2^{\frac{1}{n}} \cdot c\right] = c$. Segue do **Teorema do Confronto para sequências** que $\lim_{n \to +\infty} \sqrt[n]{a^n + b^n} = c$.

Análise Matemática - EXA 393 Gleberson Antunes

03 de Junho de 2023

Sugestões e correções podem ser enviadas para glebersonset@gmail.com.

Exercício 1. Uma função $f:A\longrightarrow \mathbb{R}$, definida num aberto $A\subset \mathbb{R}$, é contínua se, e somente se, para todo $c\in \mathbb{R}$, os conjuntos $E[f< c]=\{x\in A\mid f(x)< c\}$ e $E[f>c]=\{x\in A\mid f(x)> c\}$ são abertos.

Demonstração. Seja $c \in \mathbb{R}$ qualquer.

 \Rightarrow Suponhamos que f seja contínua. Se fosse verdade que E[f < c] não é aberto, então algum ponto $x' \in E[f < c]$ não é ponto interior. Como f é contínua em x', dado $\varepsilon = c - f(x')$, existe $\delta > 0$ tal que

$$d(x, x') < \delta \implies d(f(x), f(x')) < c - f(x').$$

Note que, para todo $x \in A \cap [(x'-\delta, \ x'+\delta)], \ f(x) \in (-c+2f(x'), \ c)$. Mas aí, W $= A \cap [(x'-\delta, \ x'+\delta)]$ é uma vizinhança aberta de x' que está contida em E[f < c], o que contradiz o fato de x' não ser um ponto interior de E[f < c]. Logo E[f < c] é aberto. De forma análoga, mostramos que E[f > c] é aberto.

 \Leftarrow Seja $x' \in A$ qualquer. Dado $\epsilon > 0$, definamos $a = f(x') + \epsilon$ e $b = f(x') - \epsilon$. Por hipótese, os conjuntos E[f < a] e E[f > b] são abertos. Existem então $\delta_1 > 0$ e $\delta_2 > 0$ tais que

$$(x'-\delta_1, x'+\delta_1) \subset E[f < a]$$
 e $(x'-\delta_2, x'+\delta_2) \subset E[f > b]$

Tome $\delta = min\{\delta_1, \delta_2\}$. Então

$$d(x, x') < \delta \Rightarrow f(x) < f(x') + \epsilon \quad e \quad d(x, x') < \delta \Rightarrow f(x) > f(x') - \varepsilon$$

$$\Leftrightarrow d(x, x') < \delta \implies d(f(x), f(x')) < \varepsilon.$$

O leitor mais interessado pode consultar essa referência: https://encr.pw/J6M7j. Ela apresenta uma equivalência a definição de continuidade, muito utilizada por Topólogos, quando trabalham com **Espaços Topológicos** que não possuem métrica.

Análise Matemática - EXA 393 Gleberson Antunes

08 de Junho de 2023

Sugestões e correções podem ser enviadas para glebersonset@gmail.com.

Exercício 1. Seja $(x_n)_{n\in\mathbb{N}}$ uma sequência em um corpo ordenado \mathbb{K} tal que $x_n \longrightarrow a$, com $a \in \mathbb{K} - \{0\}$. Mostre que, dado $k \in \mathbb{N}$, com $k \geq 2$, existe $n_0 \in \mathbb{N}$ tal que $|x_n| > \frac{|a|}{k}$, para todo $n > n_0$.

Demonstração. O Exercício 1 da Lista 9 (Encontra-se em https://llnk.dev/uN2mU>) nos garante que se $x_n \longrightarrow a$, então $|x_n| \longrightarrow |a|$. De posse desse resultado, dado $k \in \mathbb{N}$, com $k \geq 2$, tome $\varepsilon = |a| - \frac{|a|}{k}$. Existe então $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \implies || x_n | - | a || < | a | - \frac{|a|}{k}$$

$$\Leftrightarrow \frac{|a|}{k} < |x_n| < 2|a| + \frac{|a|}{k}$$

.

Ou seja existe $n_0 \in \mathbb{N}$ tal que $|x_n| > \frac{|a|}{k}$, para todo $n > n_0$.

Exercício 2. Seja $(x_n)_{n\in\mathbb{N}}$ uma sequência em um corpo ordenado \mathbb{K} tal que $x_n \longrightarrow 0$. Considere, para cada $n \in \mathbb{N}$, $y_n = \min\{|x_1|, |x_2|, ..., |x_n|\}$. Mostre que $y_n \longrightarrow 0$.

Demonstração. Exercício 2 da Lista 9. Encontra-se em https://llnk.dev/uN2mU.

Exercício 3. Sejam $k \in \mathbb{N}$ e a > 0. Para cada $n \in \mathbb{N}$, suponha que $a \le x_n \le n^k$. Mostre que $\sqrt[n]{x_n} \longrightarrow 1$.

Demonstração. O **Exemplo 13** do Capítulo 3 de Curso de Análise Vol 1 prova que a sequência $\sqrt[n]{a} \longrightarrow 1$. O **Exemplo 14** desse mesmo capítulo prova que a sequência $\sqrt[n]{n} \longrightarrow 1$. Note agora que

$$\sqrt[n]{n^k} = n^{\frac{k}{n}} = [n^{\frac{1}{n}}]^k = [\sqrt[n]{n}]^k \longrightarrow 1^k = 1.$$

Perceba que $a \le x_n \le n^k \Leftrightarrow \sqrt[n]{a} \le \sqrt[n]{x_n} \le \sqrt[n]{n^k}$, para todo $n \in \mathbb{N}$. De posse do **Teorema do confronto para sequências**, temos que $\sqrt[n]{x_n} \longrightarrow 1$.

Exercício 4. Seja o conjunto $X = \left\{1 - \frac{1}{n}, 1 - \frac{1}{n}, ..., 1 - \frac{1}{n}, 1\right\}$ com n+1 elementos. Usando a desigualdade entre as médias aritmética e geométrica dos elementos de X, mostre que a sequências $x_n = \left(1 - \frac{1}{n}\right)^n$ é crescente e que $x_n \ge \frac{1}{4}$ para todo $n \ge 2$.

Demonstração. O **Exercício 54** do Capítulo 3 de Curso de Análise Vol 1 nos garante que dado um conjunto $H = \{x_1, x_2, ..., x_n\}$, com n números reais positivos, vale

$$\sqrt[n]{x_1 \cdot x_2 \cdot \ldots \cdot x_n} \leq \frac{x_1 + x_2 + \ldots + x_n}{n}$$

Não provarei isso por motivos de preguiça e de trauma. Utilizando essa desigualdade, temos que

$$\sqrt[n+1]{\left(1-\frac{1}{n}\right)^n} \le \frac{n}{n+1} = \left(1-\frac{1}{n+1}\right).$$

Daí

$$\left(1 - \frac{1}{n}\right)^n \le \left(1 - \frac{1}{n+1}\right)^{n+1}.$$

O que prova que a sequência $x_n = \left(1 - \frac{1}{n}\right)^n$ é crescente, uma vez que $n < n + 1 \Rightarrow x_n < x_{n+1}$.

Provaremos agora que $x_n \ge \frac{1}{4}$ para todo $n \ge 2$. Por indução, para n = 2, temos que

$$\left(1 - \frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \ge \frac{1}{4}.$$

Suponhamos que a afirmação é válida para um certo n > 2. Isto é,

$$\left(1 - \frac{1}{n}\right)^n \ge \frac{1}{4}.$$

A desigualdade entre as médias aritmética e geométrica nos garante que

$$\left(1 - \frac{1}{n+1}\right)^{n+1} \ge \left(1 - \frac{1}{n}\right)^n \ge \frac{1}{4},$$

o que prova a indução. Logo, $x_n \ge \frac{1}{4}$ para todo $n \ge 2$.

Exercício 5. Sejam as sequências $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ num corpo arquimediano \mathbb{K} , definidas por

$$x_n = \left(1 + \frac{1}{n}\right)^n \quad e \quad y_n = \left(1 - \frac{1}{n+1}\right)^{n+1}$$

- (a) Mostre que $\lim x_n y_n = 1$.
- (b) Se $\mathbb{K} = \mathbb{R}$, mostre que $y_n \longrightarrow \frac{1}{e}$, onde e é o número de Euler.

Demonstração.

(a). Notemos inicialmente que

$$x_n = \left(1 + \frac{1}{n}\right)^n = \left(\frac{n+1}{n}\right)^n.$$

Por outro lado,

$$y_n = \left(1 - \frac{1}{n+1}\right)^{n+1} = \left(\frac{n}{n+1}\right)^n \cdot \left(1 - \frac{1}{n+1}\right).$$

Como
$$\left(1 - \frac{1}{n+1}\right) \longrightarrow 1$$
, temos que

$$x_n y_n = \left(\frac{n+1}{n}\right)^n \cdot \left(\frac{n}{n+1}\right)^n \cdot \left(1 - \frac{1}{n+1}\right) = \left[\left(\frac{n+1}{n} \cdot \frac{n}{n+1}\right)^n\right] \cdot \left(1 - \frac{1}{n+1}\right)$$

$$=1 \cdot \left(1 - \frac{1}{n+1}\right) = \left(1 - \frac{1}{n+1}\right) \longrightarrow 1.$$

(b) O **Exemplo 16** do Capítulo 4 de Curso de Análise Vol 1 nos garante que $x_n \longrightarrow e$. Como $e \neq 0$, o **Teorema 6** desse mesmo capítulo nos garante que

$$y_n = \left[y_n \cdot x_n \right] \cdot \frac{1}{x_n} \longrightarrow 1 \cdot \frac{1}{e} = \frac{1}{e}.$$

Exercício 6. Dados $a, b \ge 0$, mostre que $\sqrt[n]{a^n + b^n} \longrightarrow m x\{a, b\}$.

Demonstração. Exercício 14 da Lista 9. Encontra-se em https://llnk.dev/uN2mU.

Exercício 7. Para cada $n \in \mathbb{N}$, seja $0 \le p_n \le 1$. Se $x_n \longrightarrow a$ e $y_n \longrightarrow a$, mostre que

$$p_n x_n + (1 - p_n) y_n \longrightarrow a.$$

Demonstração. Basta notar que

$$p_n x_n + (1 - p_n) y_n = p_n [x_n - y_n] + y_n \longrightarrow p_n [0] + a = a.$$

Análise Matemática - EXA 393 Gleberson Antunes

10 de Junho de 2023

Sugestões e correções podem ser enviadas para glebersonset@gmail.com.

Exercício 1. Mostre que são equivalentes:

- (a) $a \in X'$.
- (b) Existe $(x_n)_{n\in\mathbb{N}}$ em $X-\{a\}$, de termos dois a dois distintos, tal que $x_n\longrightarrow a$.

Demonstração.

 $(a)\Rightarrow (b)$. Suponhamos que $a\in X'$. Então, para todo $\delta>0$, temos que

$$X \cap [(a - \delta, a + \delta) - \{a\}] \neq \emptyset.$$

Tome $\delta_1=1$. Existe então $x_1\in X$ tal que

$$x_1 \in X \cap [(a-1, a+1) - \{a\}].$$

Tome agora $\delta_2 = \min \left\{ \mid x_1 - a \mid, \frac{1}{2} \right\}$. Existe então

$$x_2 \in X \cap [(a - \delta_2, a + \delta_2) - \{a\}].$$

Note que $x_1 \neq x_2$, pois $|x_2 - a| < |x_1 - a|$. Tome agora $\delta_3 = \min \left\{ |x_2 - a|, \frac{1}{3} \right\}$. Existe então

$$x_3 \in X \cap [(a - \delta_3, a + \delta_3) - \{a\}].$$

Note que $x_2 \neq x_3$, pois $|x_3 - a| < |x_2 - a|$. Prosseguindo dessa maneira, obtemos uma sequência de termos dois a dois distintos, tais que

$$|x_n - a| < \frac{1}{n},$$

para todo $n \in \mathbb{N}$. O Teorema do confronto para sequências nos garante então que $x_n \longrightarrow a$.

 $(b) \Rightarrow (a)$. Suponhamos que $(x_n)_{n \in \mathbb{N}}$ é uma sequência de pontos em $X - \{a\}$, de termos dois a dois distintos, tal que $x_n \longrightarrow a$. Dado $\varepsilon > 0$ arbitrário, existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \Rightarrow |x_n - a| < \varepsilon \Leftrightarrow x_n \in [X - \{a\}] \cap (a - \varepsilon, a + \varepsilon) = X \cap [(a - \varepsilon, a + \varepsilon) - \{a\}].$$
 Logo, $a \in X'$.

Mostre que se $X' \neq \emptyset$, então X é infinito.

Demonstração. Seja $X=\{x_1,x_2,...,x_n\}$ um conjunto finito. Sem perda de generalidade, suponhamos que $x_1 < x_2 < ... < x_n$. Notemos, inicialmente, que $X \not\subset X'$. De fato, dado $x_i \in X$, basta tomar

$$\delta = \min \left\{ \frac{|x_{i-1} - x_i|}{2}, \frac{|x_i - x_{i+1}|}{2} \right\}.$$

Segue que todos os pontos de X são pontos isolados. Mostraremos agora que nenhum ponto $z \in X^c$ é um ponto de acumulação de X. De fato, como

$$X^{c} = (-\infty, x_{1}) \cup (x_{1}, x_{2}) \cup ... \cup (x_{n-1}, x_{n}) \cup (x_{n}, \infty),$$

 $z \in X^c$ deve pertencer a algum dos abertos disjuntos que decompõe X^c . Como a interseção de cada um desses abertos com X é vazia, $z \notin X'$. Portanto, $X' = \emptyset$.

Exercício 2. Sejam $f: X \subset \mathbb{R} \longrightarrow \mathbb{R}$. Considere a nova definição de limite:

L $\in \mathbb{R}$ é o limite de f(x) quando x tende a a se, dado $\varepsilon > 0$, existe $\delta > 0$, tal que $|f(x) - L| < \varepsilon$, para todo $x \in X \cap (a - \delta, a + \delta)$.

Mostre que a nova definição coincide com a antiga quando $a \notin X$, mas quando $a \in X$, o novo limite existe se, e somente se, o antigo existe e é igual a f(a).

Demonstração. Evidente.

Exercício 3. Sejam $X \subset \mathbb{R}$ e $a \in X$ um ponto isolado. Mostre que toda função definida em X é contínua em a.

Demonstração. Sejam $f: X \longrightarrow \mathbb{R}$ uma função e $a \in X$ um ponto isolado. Como a é um ponto isolado, existe $\delta' > 0$ tal que $X \cap [(a - \delta, a + \delta)] = \{a\}$. Desse modo, dado $\varepsilon > 0$ arbitrário, tome $\delta = \delta'$. Assim

$$\forall x \in \left[X \cap (a - \delta, a + \delta)\right], \ f(x) \in (f(a) - \varepsilon, f(a) + \varepsilon).$$

Exercício 4. Sejam $f: X \subset \mathbb{R} \longrightarrow \mathbb{R}$ e $a \in X \cap X'$. Mostre que f é contínua em a se, e somente se, para todo (x_n) em X tal que $x_n \longrightarrow a$, tem-se que $f(x_n) \longrightarrow f(a)$.

Demonstração. Encontra-se em: Curso de Análise vol 1, Teorema 4, capítulo 7.

Exercício 5. Pergunta-se: Existe $\lim_{x \to 0} cos(\frac{1}{x})$? Justifique.

Demonstração. Dê uma olhada em: Curso de Análise vol 1, Exemplo 6, capítulo 6.

Exercício 6. Sejam $f,g:X\subset\mathbb{R}\to\mathbb{R}$ e $a\in X'$. Suponha que $\lim_{x\to a}g(x)=0$. Mostre que a condição necessária para que exista o limite de $\frac{f}{g}$ é que $\lim_{x\to a}f(x)=0$.

Demonstração. Suponhamos que existe $L=\lim_{x\longrightarrow \ a}\ \frac{f(x)}{g(x)}.$ Então

$$\lim_{x \to a} f(x) = \lim_{x \to a} \left[\frac{f(x)}{g(x)} \cdot g(x) \right] = \lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] \cdot \lim_{x \to a} g(x) = L \cdot 0 = 0.$$

Exercício 7. Sejam $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ funções contínuas em a, para cada $a \in \mathbb{R}$. Mostre que o conjunto $F = \{x \in \mathbb{R} : f(x) = g(x)\}$ é fechado.

Demonstração. Inicialmente, provaremos que o conjunto

$$S = \{ x \in \mathbb{R} \mid f(x) = 0 \},$$

é fechado. Seja (x_n) uma sequência de pontos de S, tal que $x_n \longrightarrow a$. Como f é contínua em a, temos que

$$f(x_n) \longrightarrow f(a) = 0,$$

uma vez que $f(x_n) = 0$, para todo $n \in \mathbb{N}$. Logo $a \in S$. Portanto, S é fechado. Provaremos agora que F é fechado. Como f e g são funções contínuas, a aplicação $h: \mathbb{R} \longrightarrow \mathbb{R}$ definida por h(x) = f(x) - g(x) é uma função contínua. Observe que

$$F = \{x \in \mathbb{R} : f(x) = g(x)\} = \{x \in \mathbb{R} \mid h(x) = 0\}.$$

Logo, F é fechado.

Exercício 8. Mostre que X é denso em Y se, e somente se, todo ponto de Y é limite de uma sequência de pontos de X.

Demonstração. Análoga à demonstração do Exercício 1.

Exercício 9. Seja D um subconjunto denso de \mathbb{R} . Se $f: \mathbb{R} \longrightarrow \mathbb{R}$ é contínua em cada ponto de D e f(x) = 0, para todo $x \in D$, mostre que f é identicamente nula.

Demonstração. Ora, sabemos que se D é um subconjunto denso de \mathbb{R} , então todo ponto de \mathbb{R} é limite de uma sequência de pontos de D. Seja $a \in \mathbb{R}$ qualquer e $(x_n)_{n \in \mathbb{N}}$ uma sequência de pontos de D, tal que $x_n \longrightarrow a$. Como f é contínua, note que

$$f(x_n) \longrightarrow f(a) = 0,$$

uma vez que $f(x_n) = 0$, para todo $n \in \mathbb{N}$.

Exercício 10. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ uma função contínua em a, para cada $a \in \mathbb{R}$. Suponha que f é constante em \mathbb{Q} , isto é, existe $k \in \mathbb{R}$ tal que f(x) = k, para todo $x \in \mathbb{Q}$. Mostre que f é constante (em \mathbb{R}).

Demonstração. Análoga à demonstração do **Exercício 9**. Basta considerar $D = \mathbb{Q}$.

Exercício 11. Seja $p: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$, que é a forma geral de uma função polinomial real de uma variável real de grau $n \in \mathbb{N}$,

isto é, para cada $i=0,1,2,...,n, a_i\in\mathbb{R}$ e $a_n\neq 0$. Mostre que, para cada $n\in\mathbb{N}$, existe $\lim_{x\to a} p(x)$ e é igual a p(a), ou seja, p é uma função contínua em cada ponto de \mathbb{R} .

Demonstração. Por indução. Para n=0, temos $p(x)=a_0$. Note que

$$\lim_{x \to a} p(x) = a_0,$$

onde $p(a)=a_0$. Suponhamos que essa afirmação é válida para um certo n>0. Isto é, $p(x)=a_0+a_1x+a_2x^2+...+a_nx^n$ e

$$\lim_{x \to a} p(x) = p(a) = a_0 + a_1(a) + a_2(a)^2 + \dots + a_n(a)^n.$$

Considere agora n+1 e $p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n + a_{n+1} x^{n+1}$, onde $a_{n+1} \neq 0$. Note que

$$\lim_{x \to a} p(x) = \lim_{x \to a} [a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n] + \lim_{x \to a} a_{n+1} x^{n+1}$$

$$= a_0 + a_1(a) + a_2(a)^2 + \dots + a_n(a)^n + a_{n+1}(a)^{n+1} = p(a).$$

Logo, existe $\lim_{x \longrightarrow a} p(x)$ e é igual a p(a). Portanto p é uma função contínua.

Exercício 12. Seja a função (racional) $f = \frac{p}{q}$, onde p e q são funções polinomiais reais de uma variável real de graus n e m, respectivamente. Observe que f está definida em $\{x \in \mathbb{R} \mid q(x) \neq 0\}$.

- (a) Se p(a) = 0 e $q(a) \neq 0$, mostre que existe $\lim_{x \to a} f(x)$ e é igual a 0.
- (b) Se $p(a) \neq 0$ e $q(a) \neq 0$, mostre que existe $\lim_{x \to a} f(x)$ e é igual a $\frac{p(a)}{q(a)}$.

(c) Seja a um zero de p de multiplicidade s e de q de multiplicidade t. Mostre que

(i) se
$$s = t$$
, existe $\lim_{x \to a} f(x)$ e é igual a $\frac{p_1(a)}{q_1(a)}$.

(ii) se s > t, existe $\lim_{x \to a} f(x)$ e é igual a 0.

(iii) se
$$s < t$$
, não existe $\lim_{x \to a} f(x)$.

Demonstração.

(a)

$$\lim_{x\longrightarrow \ a} f(x) \ = \ \lim_{x\longrightarrow \ a} \ \frac{p(x)}{q(x)} \ = \ \lim_{x\longrightarrow \ a} p(x) \cdot \left[\lim_{x\longrightarrow \ a} \ \frac{1}{p(x)} \right] \ = \ 0 \ \cdot \ \frac{1}{q(a)} \ = \ 0.$$

(b)

$$\lim_{x\longrightarrow \ a} f(x) \ = \ \lim_{x\longrightarrow \ a} \ \frac{p(x)}{q(x)} \ = \ \lim_{x\longrightarrow \ a} p(x) \cdot \left[\lim_{x\longrightarrow \ a} \ \frac{1}{p(x)} \right] \ = \ p(a) \ \cdot \ \frac{1}{q(a)} \ = \ \frac{p(a)}{q(a)}.$$

(c)

(i) Se s = t, então

$$\lim_{x \to a} f(x) = \lim_{x \to a} \frac{p(x)}{q(x)} = \lim_{x \to a} \frac{(x-a)^s \cdot p_1(x)}{(x-a)^s \cdot q_1(x)} = \lim_{x \to a} \frac{p_1(x)}{q_1(x)} = \frac{p_1(a)}{q_1(a)}.$$

(ii) Se s > t, então

$$\lim_{x \to a} f(x) = \lim_{x \to a} \frac{p(x)}{q(x)} = \lim_{x \to a} \frac{(x-a)^s \cdot p_1(x)}{(x-a)^t \cdot q_1(x)} = \lim_{x \to a} \frac{(x-a)^{s-t} \cdot p_1(x)}{q_1(x)}$$

$$= \left[\lim_{x \to a} (x - a)^{s - t} \right] \cdot \lim_{x \to a} \frac{p_1(x)}{q_1(x)} = 0 \cdot \frac{p_1(a)}{q_1(a)} = 0.$$

(iii) Se s < t, então

$$\lim_{x \to a} f(x) = \lim_{x \to a} \frac{p(x)}{q(x)} = \lim_{x \to a} \frac{(x-a)^s \cdot p_1(x)}{(x-a)^t \cdot q_1(x)} = \lim_{x \to a} \frac{\cdot p_1(x)}{(x-a)^{t-s} \cdot q_1(x)}$$

$$= \left[\lim_{x \to a} \frac{1}{(x-a)^{t-s}} \right] \cdot \lim_{x \to a} \frac{p_1(x)}{q_1(x)} = \infty.$$

Exercício 13. Seja $f: \mathbb{R} - \{-1, 1\} \longrightarrow \mathbb{R}$ definida por $f(x) = \frac{x^3 + x^2 - x - 1}{x^4 - 1}$. Calcule os limites de f(x) quando x tende a 1 e a -1.

Demonstração.

(a)

$$\lim_{x \to 1} \frac{x^3 + x^2 - x - 1}{x^4 - 1} = \lim_{x \to 1} \frac{(x+1)^2 \cdot (x-1)}{(x^2+1) \cdot (x+1) \cdot (x-1)} = \lim_{x \to 1} \frac{(x+1)^2}{(x^2+1) \cdot (x+1)}$$

$$= \lim_{x \to 1} \frac{(x+1)}{(x^2+1)} = \frac{2}{2} = 1.$$

(b)

$$\lim_{x \to -1} \frac{x^3 + x^2 - x - 1}{x^4 - 1} = \lim_{x \to -1} \frac{(x+1)^2 \cdot (x-1)}{(x^2+1) \cdot (x+1) \cdot (x-1)} = \lim_{x \to -1} \frac{(x+1)^2}{(x^2+1) \cdot (x+1)}$$

$$= \lim_{x \to -1} \frac{(x+1)}{(x^2+1)} = \frac{0}{2} = 0.$$

Exercício 14. Mostre que a função $f: \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}$ definida por $f(x) = \sqrt{x}$ é contínua e a, para cada $a \geq 0$.

Demonstração. A prova será dividida em duas partes. Na primeira parte, provaremos que f é contínua em a=0. Em seguida, na segunda parte, provaremos que f é contínua em a>0.

(a) Seja $(x_n)_{n\in\mathbb{N}}$ uma sequência de pontos em $\mathbb{R}_{\geq 0}$, tal que $x_n \longrightarrow 0$. Dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \Rightarrow |x_n - 0| < \varepsilon^2$$
,

o que implica que

$$|\sqrt{x_n} - 0| = |f(x_n) - 0| < \sqrt{\varepsilon^2} = \varepsilon.$$

Logo f é contínua em a=0, pelo **Exercício 4**.

(b) Sejam a > 0 e $(x_n)_{n \in \mathbb{N}}$ uma sequência de pontos em $\mathbb{R}_{\geq 0}$, tal que $x_n \longrightarrow a$. Dado $\varepsilon = 1$, existe $m_0 \in \mathbb{N}$ tal que

$$n > m_o \implies |x_n - a| < 1.$$

Pelas desigualdades de módulo, vistas em sala, e usando o fato de que os termos de (x_n) são não-negativos, temos que

$$|x_n - a| = |x_n| - |a| \le |x_n - a| < 1$$

$$\Leftrightarrow x_n < a+1$$

$$\Leftrightarrow \sqrt{x_n} < \sqrt{a+1}.$$

Daí

$$\sqrt{a} \le \sqrt{a} + \sqrt{x_n} < \sqrt{a+1} + \sqrt{a}.$$

Sem problema algum podemos inverter essa desigualdade, uma vez que os termos desta são todos não-negativos. Segue então que

$$\frac{1}{\sqrt{a+1}+\sqrt{a}} < \frac{1}{\sqrt{a}+\sqrt{x_n}} \le \frac{1}{\sqrt{a}}.$$

Novamente, utilizando o fato que $x_n \longrightarrow a$, dado $\varepsilon > 0$, existe $s_0 \in \mathbb{N}$ tal que

$$n > s_0 \implies |x_n - a| < \varepsilon \sqrt{a}$$
.

Tome agora $n_0 = min\{m_0, s_0\}$. Então

$$n > n_0 \implies |x_n - a| \cdot \frac{1}{\sqrt{a} + \sqrt{x_n}} < \varepsilon \sqrt{a} \cdot \frac{1}{\sqrt{a}} = \varepsilon.$$

Note que

$$\frac{|x_n - a|}{\sqrt{a} + \sqrt{x_n}} = \frac{|(\sqrt{x_n} - \sqrt{a}) \cdot (\sqrt{x_n} + \sqrt{a})|}{\sqrt{a} + \sqrt{x_n}} = |\sqrt{x_n} - \sqrt{a}| = |f(x_n) - f(a)|.$$

Ou seja

$$n > n_0 \Rightarrow |\sqrt{x_n} - \sqrt{a}| = |f(x_n) - f(a)| < \varepsilon.$$

Logo f é contínua em a, pelo **Exercício 4**. Isso prova que f é contínua em $\mathbb{R}_{\geq 0}$.

Exercício 15. Sejam $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ definidas por f(x) = 0, para todo $x \in \mathbb{R}$, g(y) = 1, para $y \neq 0$, e g(0) = 0. Mostre que $\lim_{x \to 0} f(x) = 0$, $\lim_{y \to 0} g(y) = 1$ e $\lim_{x \to 0} g \circ f(x) = 0$.

Demonstração. Notemos, inicialmente, que a função f é a função identicamente nula, portanto é contínua em todos os pontos do seu domínio, e a função g é descontínua na origem (Esse tipo de descontinuidade é chamada de **Descontinuidade de salto**. Para mais informações, veja https://encr.pw/kqD3F).

Seja $(x_n)_{n\in\mathbb{N}}$ uma sequência de pontos de $\mathbb{R}-\{0\}$, tal que $x_n\longrightarrow 0$. Como f é descontínua em 0, temos que

$$f(x_n) \longrightarrow 0,$$

pois $f(x_n) = 0$, para todo $n \in \mathbb{N}$. Daí

$$g(f(x_n)) \longrightarrow 0,$$

por conta da continuidade de g. Logo, temos que $\lim_{x \to 0} g \circ f(x) = 0$.

Exercício 16. Sejam $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ definidas por f(x) = 0, para todo $x \in \mathbb{R} - \mathbb{Q}$, f(x) = x, para todo $x \in \mathbb{Q}$, g(y) = 0, para $y \neq 0$, e g(0) = 1. Mostre que $\lim_{x \longrightarrow 0} f(x) = 0$, $\lim_{y \longrightarrow 0} g(y) = 1$ mas não existe $\lim_{x \longrightarrow 0} g \circ f(x)$.

Demonstração. Dê uma olhada em: Curso de Análise vol 1, exemplos pós Teorema 8, capítulo 6.

Exercício 17. Sejam $f: X \subset \mathbb{R} \longrightarrow \mathbb{R}$, $g: Y \subset \mathbb{R} \longrightarrow \mathbb{R}$ tais que $f(X) \subset Y$. Suponha que existe o limite de f(x) quando x tende para $a \in X'$ e que g é contínua em $b \in Y \cap Y'$. Mostre que existe o limite de $g \circ f(x)$ quando x tende a a.

Demonstração. Dê uma olhada em: Curso de Análise vol 1, Teorema 9, capítulo 6.

Exercício 18. Sejam $f: X \longrightarrow \mathbb{R}$ e $g: Y \longrightarrow \mathbb{R}$ tais que $f(X) \subset Y$. Mostre que se f é contínua em a e g é contínua em f(a) então $g \circ f$ é contínua em a.

Demonstração. Como g é contínua em f(a), dado $\varepsilon > 0$, existe $\delta_1 > 0$ tal que

$$|y - f(a)| < \delta_1 \Rightarrow |g(f(y)) - g(f(a))| < \varepsilon.$$

Como f é contínua no ponto a, dado $\delta_1 > 0$, existe $\delta_2 > 0$ tal que

$$|x-a| < \delta_2 \Rightarrow |f(x)-f(a)| < \delta_1.$$

Tome $\delta = min\{\delta_1, \delta_2\}$. Então

$$|x-a| < \delta \Rightarrow |f(x)-f(a)| < \delta_1 \Rightarrow |g(f(x))-g(f(a))| < \varepsilon.$$

Exercício 19. Seja $g: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $g(x) = \sqrt{1+x^2}$. Mostre que g é contínua em a, para cada $a \in \mathbb{R}$.

Demonstração. O Exercício 11 nos garante que toda função polinomial é contínua. Logo $h: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $h(x) = 1 + x^2$ é uma função contínua. O Exercício 14 nos garante que a aplicação $f: \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}$ definida por $f(x) = \sqrt{x}$ é contínua. De posse do Exercício 18, temos que $h \circ f = g$ é uma função contínua.

Exercício 20. Mostre que nem toda função $f:X\subset\mathbb{R}\longrightarrow\mathbb{R}$ monótona limitada tem limite em todo ponto de X'.

Demonstração. Considere a função $f: \mathbb{R} \longrightarrow \mathbb{R}$, dada por

$$f(x) = \begin{cases} x+1 & \text{se } x \ge 0\\ x-1 & \text{se } x < 0 \end{cases}$$

É claro que $0 \in \mathbb{R}' = \mathbb{R}$. O Teorema 11 do Cap 6 de Curso de Análise vol 1 nos garante que existe $\lim_{x \to 0} f(x)$ se, e somente se, existem $\lim_{x \to 0^-} f(x)$ e $\lim_{x \to 0^+} f(x)$ e são iguais. Note que

$$\lim_{x \to 0^{-}} f(x) = -1 \quad e \quad \lim_{x \to 0^{+}} f(x) = 1.$$

Logo, nem toda função monótona limitada tem limite em todo ponto de X'.

Análise Matemática - EXA 393 Gleberson Antunes

18 de Junho de 2023

Sugestões e correções podem ser enviadas para glebersonset@gmail.com.

Teorema 1. Sejam (x_n) e (y_n) sequências tais que $x_n \leq y_n$ para todo $n \in \mathbb{N}$. Se lim $x_n = \infty$ então lim $y_n = \infty$.

Demonstração. Suponhamos que lim $x_n = \infty$. Então, dado A > 0, existe $n_0 \in \mathbb{N}$ tal que

$$n > n_o \Rightarrow x_n > A$$
.

Consequentemente, para todo $n > n_0$, teremos

$$y_n \ge x_n > A$$
,

o que implica que lim $y_n = \infty$.

Teorema 2. Seja $x_n > 0$. Então $\lim x_n = 0 \Leftrightarrow \lim \frac{1}{x_n} = \infty$.

Demonstração.

 \Rightarrow Suponhamos que lim $x_n=0$. Dado $\varepsilon>0$, existe $n_0\in\mathbb{N}$ tal que

$$n > n_0 \Rightarrow |x_n - 0| < \frac{1}{\varepsilon}$$

$$\Leftrightarrow \frac{1}{\mid x_n \mid} = \frac{1}{x_n} > \varepsilon.$$

Logo, $\lim \frac{1}{x_n} = \infty$.

 \Leftarrow Suponhamos que lim $\frac{1}{x_n} = \infty$. Então, dado A > 0, existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \Rightarrow \frac{1}{x_n} > \frac{1}{A}$$

$$\Leftrightarrow x_n = |x_n| = |x_n - 0| < A.$$

Logo, $\lim x_n = 0$.

Lema 3. Considere a sequência $x_n = \sqrt{n}$. Então lim $x_n = \infty$.

Demonstração. De fato, dado A > 0, tome

$$n > A^2 \Rightarrow \sqrt{n} > A$$
.

Lema 4. Para todo $n \in \mathbb{N}$, temos que $\sqrt{n} < \sqrt{n+1}$.

Demonstração. Por indução, para n=1, temos que

$$\sqrt{1} = 1 < \sqrt{2} \approx 1, 4.$$

Suponhamos que a afirmação é válida para um certo n>1, isto é, $\sqrt{n}<\sqrt{n+1}$. Provaremos agora que $\sqrt{n+1}<\sqrt{(n+1)+1}$. De fato,

$$\sqrt{n+1} < \sqrt{n+2},$$

uma vez que

$$\sqrt{n+2} - \sqrt{n+1} \ = \ [\sqrt{n+2} - \sqrt{n+1}] \cdot \frac{\sqrt{n+2} + \sqrt{n+1}}{\sqrt{n+2} + \sqrt{n+1}} \ = \ \frac{1}{\sqrt{n+2} + \sqrt{n+1}},$$

e

$$\frac{1}{\sqrt{n+2}+\sqrt{n+1}} > 0.$$

Exercício 1. Prove que lim $\sqrt{n+1} - \sqrt{n} = 0$.

Demonstração. De posse dos Lemas 1 e 2 e Teorema 1 temos que lim $\sqrt{n+1} = \infty$. Evidentemente, lim $\sqrt{n+1} + \sqrt{n} = \infty$. Segue do Teorema 2 que

$$\lim \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0.$$

Note agora que

$$\lim [\sqrt{n+1} - \sqrt{n}] \ = \ \lim [\sqrt{n+1} - \sqrt{n}] \cdot \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} \ = \ \lim \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0,$$

o que prova o exercício.

Análise Matemática - EXA 393 Gleberson Antunes

18 de Junho de 2023

Sugestões e correções podem ser enviadas para glebersonset@gmail.com.

Exercício 1. Seja a sequência $s: \mathbb{N} \longrightarrow \mathbb{R}$ definida por $s_n = \cos \frac{n\pi}{2}$.

- (a) Liste a sequência s.
- (b) Descreva o conjunto dos termos da sequência s.
- (c) Mostre que a sequência (s_n) é limitada.
- (d) Pergunta-se: (s_n) é monótona? Justifique.

Demonstração.

- (a). (0,-1,0,1,0,-1...)
- (b). $s(\mathbb{N}) = \{-1, 0, 1\}.$
- (c). De fato, (s_n) é limitada uma vez que, para todo $n \in \mathbb{N}, |x_n| \leq 1$.
- (d). Uma sequência é dita monótona se é crescente, não-decrescente, decrescente e não-crescente. Note que $s_1 > s_2$ mas $s_3 > s_2$. Logo (s_n) não pode ser monótona.

Exercício 2. Dado $a \in \mathbb{K}$, seja a sequência (s_n) de termo geral $s_n = a^n$.

- (a) Para a=0 e a=1, mostre que a sequência (a^n) é monótona e limitada.
- (b) Para 0 < a < 1, mostre que a sequência é monótona e limitada.
- (c) Para a > 1, mostre que a sequência (a^n) é monótona, limitada inferiormente e ilimitada superiormente.

- (d) Para a = -1, mostre que a sequência (a^n) não é monótona, mas é limitada.
- (e) Para -1 < a < 0, mostre que a sequência (a^n) não é monótona, mas é limitada.
- (f) Para a < -1, mostre que a sequência (a^n) não é monótona e é ilimitada inferior e superiormente.

Demonstração.

(a). Se a=0, então $a^n=0$, para todo $n\in\mathbb{N}$. Então (a^n) é na verdade a sequência

$$(0,0,0,0,\ldots),$$

que é constante e, portanto, monótona. De forma análoga, se a=1, então $a^n=1$, para todo $n\in\mathbb{N}$. Então (a^n) é na verdade a sequência

que é constante e, portanto, monótona.

(b). Se 0 < a < 1, então afirmo que (a^n) é uma sequência decrescente limitada inferiormente por 0 e superiormente por 1. Provaremos agora que, para todo $n \in \mathbb{N}$, $0 < a^{n+1} < a^n < 1$. Para n = 1, temos que

$$0 < a < 1^* \implies 0 < a^2 < a < 1.$$

Para ver isto, basta multiplicar a desigualdade * por a. Suponhamos que a afirmação é válida para um certo n > 1, isto é,

$$0 < a^{n+1} < a^n < 1^{**}$$
.

Multiplicando a desigualdade ** por a, temos que

$$0 < a^{n+2} < a^{n+1} < a^n < 1$$
,

o que prova a indução, e mostra que (a^n) é decrescente e limitada inferiormente por 0 e superiormente por 1.

(c). Por indução, facilmente verificamos que $a^{n+1}>a^n>1$ para todo $n\in\mathbb{N}$. Logo, (a^n) é crescente (portanto, monótona). Mostraremos agora que (a^n) é ilimitada superiormente. Seja M>0 arbitrário. Como a>1, podemos escrever a como sendo a=1+h, onde h>0. Como $\mathbb{N}\subset\mathbb{R}$ é ilimitado superiormente, existe $n\in\mathbb{N}$ tal que

$$n > \frac{M-1}{h}$$

$$\Rightarrow M < 1 + nh \le (1+h)^n = a^n,$$

pela **Desigualdade de Bernoulli**. Logo, (a^n) é ilimitada superiormente.

(d) Se a=-1, então $a^n=1$, para n par e $a^n=-1$, para n ímpar. Logo, (a^n) é na verdade a sequência

$$(-1, 1, -1, 1, \ldots),$$

que apesar de não ser monótona, é limitada.

(e). Se
$$-1 < a < 0 < 1 \implies |a| < 1$$
. Note que

$$|a|^n = |a^n| < 1^n = 1.$$

Logo (a^n) é limitada, mas não é monótona pois seus termos alternam entre negativos e positivos.

(f). Note que $a_1=a<-1.$ Porém, $a_2=a^2>-a>1$ e $a_3=a^3<-a^2< a<-1.$ Ou seja

$$a_1 < a_2$$
 e $a_3 < a_1 < a_2$.

Logo, (a^n) não pode ser monótona. Note que a subsequência (a^{2n}) é uma subsequência ilimitada superiormente. Portanto (a^n) não pode ser limitada superiormente. Note agora que a subsequência (a^{2n+1}) é ilimitada inferiormente. Portanto, (a^n) não pode ser limitada inferiormente.

Análise Matemática - EXA 393 Gleberson Antunes

20 de Junho de 2023

Sugestões e correções podem ser enviadas para glebersonset@gmail.com.

Exercício 1. Para cada $n \in \mathbb{N}$, seja $f : \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^n \sin \frac{1}{x}$, se $x \neq 0$, e f(0) = 0.

- (a) Para cada $n \in \mathbb{N}$, mostre que existe $\lim_{x \to 0} f(x)$.
- (b) Para quais valores de $n \in \mathbb{N}$ existe

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}?$$

Justifique.

Teorema 1. Sejam $f,g:X\longrightarrow \mathbb{R}$ funções e $a\in X'$. Se $\lim_{x\longrightarrow a}f(x)=0$ e g é limitada, então $\lim_{x\longrightarrow 0}(fg)(x)=0$.

 $Demonstração. \text{ Suponhamos que } g \text{ \'e limitada. Então existe } \alpha > 0 \text{ tal que } | \ g(x) \ | < \ \alpha,$ para todo $x \in X$. Dado $\varepsilon > 0$, existe $\delta > 0$ tal que, para todo $x \in X$

$$|x-a| < \delta \Rightarrow |f(x)-0| < \frac{\varepsilon}{\alpha}.$$

Segue daí que

$$|x-a| < \delta \Rightarrow |f(x)-0| \cdot |g(x)| = |fg(x)-0| < \frac{\varepsilon}{\alpha} \cdot \alpha = \varepsilon.$$

Logo, $\lim_{x \to 0} (fg)(x) = 0$.

Demonstração.

(a). Seja $n \in \mathbb{N}$ qualquer. Ora, sabemos, pelas **Propriedades aritméticas de** limites que $\lim_{x \to 0} x^n = 0$. Outra coisa que sabemos é que $|\sin x| \le 1$, para todo $x \in \mathbb{R}$. Ou seja, a função $\sin(x)$ é limitada. Segue do **Teorema 1** que

$$\lim_{x \to 0} x^n \sin \frac{1}{x} = 0.$$

(b). Se $n \geq 2$, temos que

$$\lim_{x \longrightarrow 0} \frac{f(x) - f(0)}{x - 0} \ = \ \lim_{x \longrightarrow 0} \frac{x^n sin \ \frac{1}{x} - 0}{x - 0} \ = \ \lim_{x \longrightarrow 0} \frac{x^n sin \ \frac{1}{x}}{x} \ = \ \lim_{x \longrightarrow 0} x^{n-1} sin \ \frac{1}{x} = 0,$$

por causa do **Teorema 1**, uma vez que $\lim_{x \to 0} x^{n-1} = 0$. Se n = 1, temos que

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x \sin \frac{1}{x} - 0}{x - 0} = \lim_{x \to 0} \frac{x \sin \frac{1}{x}}{x} = \lim_{x \to 0} \sin \frac{1}{x},$$

que não existe pelo Exemplo 6 do capítulo 6 de Curso de Análise vol 1.

Exercício 2. Sejam $f, g: X \subset \mathbb{R} \longrightarrow \mathbb{R}$ e $a \in X'$. Suponha que existem os limites de (f+g)(x) e de g(x) quando x tende para a. Mostre que existe $\lim_{x \longrightarrow a} f(x)$.

Demonstração. Sejam $L = \lim_{x \to a} (f+g)(x)$ e $M = \lim_{x \to a} g(x)$. Note então que

$$\lim_{x \to a} f(x) = \lim_{x \to a} ([f(x) + g(x)] - g(x)) = \lim_{x \to a} (f(x) + g(x)) - \lim_{x \to a} g(x)$$

$$=L-M.$$

Exercício 3. Para cada $n \in \mathbb{N}$, seja $f : \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^n \sin \frac{1}{x} - \cos \frac{1}{x}$, se $x \neq 0$, e f(0) = 0. Para quais valores de n existe o limite de f(x) quando x tende para 0. Justifique?

Demonstração. Seja $n \in \mathbb{N}$ qualquer. Considere as sequências $\frac{1}{2n\pi}$ e $\frac{2}{4n\pi + \pi}$. É fácil ver que $\frac{1}{2n\pi} \longrightarrow 0$ e $\frac{2}{4n\pi + \pi} \longrightarrow 0$. Note agora que

$$= \left(\frac{1}{2n\pi}\right)^n \sin(2n\pi) - \cos(2n\pi) \longrightarrow 0 - 1 = -1.$$

Por outro lado

$$f\left(\frac{1}{2n\pi}\right) = \left(\frac{2}{4n\pi + \pi}\right)^n sin\left(\frac{2}{4n\pi + \pi}\right)^{-1} - cos\left(\frac{2}{4n\pi + \pi}\right)^{-1}$$

$$= \left(\frac{2}{4n\pi + \pi}\right)^n \sin\left(2n\pi + \frac{\pi}{2}\right) - \cos\left(2n\pi + \frac{\pi}{2}\right) \longrightarrow 0 - 0 = 0.$$

Logo, não existe $\lim_{x \to 0} f(x)$, por conta do **Teorema 6 do capítulo 6 de Curso de Análise vol 1**.

Exercício 4. Seja $f: \mathbb{R} - \{-1, 1\} \longrightarrow \mathbb{R}$ definida por $f(x) = \frac{x^3 + x - 1}{x^4 - 1}$. Mostre que não existe $\lim_{x \longrightarrow 1} f(x)$.

Demonstração. O Exercício 6 da Lista 12 (Encontra-se em https://llnk.dev/uN2mU>) nos fornece uma condição necessária para que o limite de um quociente, onde o limite do denominador é zero, exista. Neste caso, basta tomar a contrapositiva desse exercício. Como $\lim_{x \to -1} x^4 - 1 = 0$ e $\lim_{x \to -1} x^3 + x - 1 = 1$, não pode existir $\lim_{x \to -1} \frac{x^3 + x - 1}{x^4 - 1}$.

Teorema 1. p-q divide p^n-q^n , para todo $n\in\mathbb{N}$ e $p,q\in\mathbb{R}$ distintos. Além disso

$$p^{n} - q^{n} = (p - q)(p^{n-1} + p^{n-2}q + \dots + pq^{n-2} + q^{n-1}).$$

Demonstração. Encontra-se em https://encr.pw/lpIm6>.

Exercício 5. Para cada $n \in \mathbb{N}$, com $n \geq 2$, seja $f : \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}$ definida por $f(x) = \sqrt[n]{x}$. Para cada $a \geq 0$, mostre que existe $\lim_{x \to a} f(x)$.

Demonstração. Sejam $s \in \mathbb{N}$, com $s \ge 2$ e $a \in \mathbb{R}_{\ge 0}$ quaisquer. Afirmo que $\lim_{x \longrightarrow a} \sqrt[s]{x} = \sqrt[s]{a}$. A prova será dividida em duas partes. Na primeira parte, provaremos que $\lim_{x \longrightarrow 0} \sqrt[s]{x} = 0$. Em seguida, na segunda parte, provaremos que é $\lim_{x \longrightarrow a} \sqrt[s]{x} = \sqrt[s]{a}$, quando a > 0.

(a) Seja $(x_n)_{n\in\mathbb{N}}$ uma sequência de pontos em $\mathbb{R}_{\geq 0} - \{0\}$, tal que $x_n \longrightarrow 0$. Dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \implies |x_n - 0| < \varepsilon^s$$

o que implica que

$$|\sqrt[s]{x_n} - 0| = |f(x_n) - 0| < \sqrt[s]{\varepsilon^n} = \varepsilon.$$

Logo, $\lim_{x \to 0} \sqrt[s]{x} = 0$, pelo **Exercício 4**.

(b) Sejam a > 0 e $(x_n)_{n \in \mathbb{N}}$ uma sequência de pontos em $\mathbb{R}_{\geq 0} - \{a\}$, tal que $x_n \longrightarrow a$. Dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$n > n_0 \implies |x_n - a| < \varepsilon \sqrt[s]{a^{s-1}}.$$

De posse do **Teorema 1**, temos que

$$x_n - a = (\sqrt[s]{x_n} - \sqrt[s]{a})(\sqrt[s]{x_n^{s-1}} + \sqrt[s]{x_n^{s-2}}\sqrt[s]{a} + \dots + \sqrt[s]{x_n}\sqrt[s]{a^{s-2}} + \sqrt[s]{a^{s-1}}).$$

Como

$$\sqrt[s]{a^{s-1}} \le \sqrt[s]{x_n^{s-1}} + \sqrt[s]{x_n^{s-2}} \sqrt[s]{a} + \dots + \sqrt[s]{x_n} \sqrt[s]{a^{s-2}} + \sqrt[s]{a^{s-1}},$$

temos que

$$\frac{1}{\sqrt[s]{x_n^{s-1}} + \sqrt[s]{x_n^{s-2}}\sqrt[s]{a} + \ldots + \sqrt[s]{x_n}\sqrt[s]{a^{s-2}} + \sqrt[s]{a^{s-1}}} \ \le \ \frac{1}{\sqrt[s]{a^{s-1}}}$$

Daí

$$n > n_0 \implies |x_n - a| \cdot \frac{1}{\sqrt[s]{x_n^{s-1}} + \sqrt[s]{x_n^{s-2}}\sqrt[s]{a} + \dots + \sqrt[s]{x_n}\sqrt[s]{a^{s-2}} + \sqrt[s]{a^{s-1}}}$$

$$\frac{\mid x_n - a \mid}{\sqrt[s]{x_n^{s-1}} + \sqrt[s]{x_n^{s-2}}\sqrt[s]{a} + \ldots + \sqrt[s]{x_n}\sqrt[s]{a^{s-2}} + \sqrt[s]{a^{s-1}}} = \mid \sqrt[s]{x_n} - \sqrt[s]{a} \mid < \frac{\varepsilon \sqrt[s]{a^{s-1}}}{\sqrt[s]{a^{s-1}}} = \varepsilon.$$

Logo, $\lim_{x \longrightarrow a} \sqrt[s]{x} = \sqrt[s]{a}$, pelo **Exercício 4**, o que conclui a demonstração.

Análise Matemática - EXA 393 Gleberson Antunes

26 de Junho de 2023

Sugestões e correções podem ser enviadas para glebersonset@gmail.com.

Exercício 1. Seja $f:[a,b] \longrightarrow \mathbb{R}$ contínua e derivável em (a,b). Se f'(x)=0 para todo $x \in (a,b)$, então f é constante.

Demonstração. Como f é contínua, f([a,b]) é compacto. Pelo **Teorema de Wei**erstrass, existem $x_1, x_2 \in [a,b]$ tais que

$$f(x_1) \le f(x) \le f(x_2),$$

para todo $x \in [a, b]$. Se o mínimo $f(x_1)$ e o máximo $f(x_2)$ forem atingidos nos extremos desse intervalo, o **Teorema do Valor Médio, de Lagrange**, juntamente com a hipótese, nos garantem que

$$0 = \frac{f(b) - f(a)}{b - a}$$

$$\Rightarrow f(a) = f(b),$$

e aí f é constante. Suponhamos agora que o mínimo e o máximo não são atingidos simultaneamente nos extremos. Devemos então, ter $x_1, x_2 \in [a, b)$ ou $x_1, x_2 \in (a, b]$. Em ambos os casos, temos duas possibilidades. Ou $x_1 = x_2$ ou $x_1 \neq x_2$. No primeiro caso, facilmente verificamos que f será constante. Suponhamos então $x_1 < x_2$. Considere a aplicação contínua $g = f|_{[x_1,x_2]}$. Como a derivada de f no ponto a é o limite do **quociente de Newton** quanto x tende a a, temos para todo $s \in (x_1,x_2)$ que

$$\lim_{x \to s} \frac{f(x) - f(s)}{x - s} = \lim_{x \to s} \frac{g(x) - g(s)}{x - s} = f'(s) = 0.$$

Segue do Teorema do Valor Médio, de Lagrange que

$$0 = \frac{g(x_2) - g(x_1)}{x_2 - x_1}$$

$$\Rightarrow g(x_1) = (x_2)$$

$$\Rightarrow f(x_1) = f(x_2).$$

Logo, f é constante.

02 de Julho de 2023

Sugestões e correções podem ser enviadas para glebersonset@gmail.com.

Exercício 1. Seja $f \in C^2(\mathbb{R}; \mathbb{R})$, i.e., f é duas vezes diferenciável e f'' é uma função contínua. Suponha também que f''(x) = 0 para todo $x \in \mathbb{R}$. Mostre que f é um polinômio.

Demonstração. Seja [a, b] um intervalo fechado arbitrário. Como $f \in C^2(\mathbb{R}; \mathbb{R})$, f' é contínua em [a, b] e derivável em (a, b). Pelo **Teorema do Valor Médio**, existe para cada $x \in (a, b]$, um ponto $c \in (a, x)$ tal que

$$0 = f''(c) = \frac{f'(x) - f'(a)}{x - a}$$

$$\Rightarrow f'(x) = f'(a).$$

Logo, f' é constante em [a, b]. Como esse intervalo é arbitrário, f' é constante em \mathbb{R} . Seja $a \in \mathbb{R}$ tal que f'(x) = a, para todo $x \in \mathbb{R}$. Definamos a função g(x) = ax. Então

$$f(x) - ax = k$$

Uma vez que f'(x) = g'(x) para todo $x \in \mathbb{R}$. Segue que

$$f(x) = ax + k$$

Logo é um polinômio de grau no máximo 1.

07 de Julho de 2023

Sugestões e correções podem ser enviadas para glebersonset@gmail.com.

Exercício 1. Mostre que $f: \mathbb{R} \longrightarrow \mathbb{R}$ é contínua se, e somente se, para todo $X \subset \mathbb{R}$, $f(\overline{X}) \subset \overline{f(X)}$.

 \Rightarrow Sejam $X\subset\mathbb{R}$ e $a\in\overline{X}.$ Segue da continuidade de f que para todo $\varepsilon>0,$ existe $\delta>0$ tal que

$$|z-a| < \delta \Rightarrow |f(z)-f(a)| < \varepsilon.$$

Como $a \in \overline{X}$, temos que

$$[(a - \delta, a + \delta) - \{a\}] \cap X \neq \emptyset.$$

Ou seja, existe pelo menos um $x \in X$ tal que

$$|x-a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$$

$$\Leftrightarrow f(x) \in (f(a) - \varepsilon, f(a) + \varepsilon).$$

Como $\varepsilon > 0$ é arbitrário, temos que $f(a) \in \overline{f(X)}$.

É possível definir a continuidade de funções por meio de abertos. Diremos então que uma função $f: \mathbb{R} \longrightarrow \mathbb{R}$ é contínua quando, dado um aberto $V, f^{-1}(V)$ é aberto. É possível provar que essa definição é equivalente a definição de continuidade que vinhamos trabalhando até então. Segue a referência para quem se interessar: $\frac{\text{https:}}{\text{encr.pw}}$

Uma consequência dessa equivalência, e que podemos provar, vide: <https://llnq.com/u2k4c> é que uma função f é contínua se, e somente se, a imagem inversa de um conjunto fechado é também um conjunto fechado. Utilizaremos esse fato para provar a volta da demonstração.

 \Leftarrow Suponhamos que, para todo $X\subset\mathbb{R}$, temos $f(\overline{X})\subset\overline{f(X)}$. Seja $C\subset\mathbb{R}$ fechado. Provaremos que $D=f^{-1}(C)$ é fechado. Por hipótese, temos que

$$f(\overline{D}) \subset \overline{f(D)} = \overline{f[f^{-1}(C)]} \subset C.$$

Ou seja, $\overline{D} \subset f^{-1}(C) = D$. Logo, $D = \overline{D}$ e, portanto, f é contínua.

08 de Julho de 2023

Sugestões e correções podem ser enviadas para glebersonset@gmail.com.

Exercício 1. Seja $p : \mathbb{R} \longrightarrow \mathbb{R}$ um polinômio de grau par, cujo coeficiente líder é positivo. Prove que p assume um valor mínimo em \mathbb{R} , isto é, existe $x_0 \in \mathbb{R}$ tal que $p(x_0) \leq p(x)$ para todo $x \in \mathbb{R}$. Se $p(x_0) < 0$, mostre que p possui pelo menos duas raízes

Demonstração. Inicialmente, note que

$$\lim_{x \to -\infty} p(x) = \lim_{x \to -\infty} p(x) = \infty.$$

Existem então S, K > 0 que são tais que

$$x > S \implies p(x) > p(0)$$
 e $x < -K \implies p(x) > p(0)$.

Seja $V = \max\{S, K\}$. Então

$$|x| > V \Rightarrow p(x) > p(0).$$

Considere agora o intervalo fechado [-V, V]. Pelo **Teorema de Weierstrass**, existe $x_0 \in [-V, V]$ tal que $p(x_0) \le p(0)$. Segue que para todo $x \in \mathbb{R}, \ p(x_0) \le p(x)$.

Se $p(x_0) < 0$, basta então aplicar o **Teorema do Valor Intermediário** para obter as raízes desejadas. Se supormos que o coeficiente líder é negativo, então p admitirá um máximo absoluto. Utilizando o **Teorema do Valor Intermediário**, conseguimos provar que nesse caso, p também admite pelo menos duas raízes, desde que seja $p(x_0) > 0$.

18 de Julho de 2023

Sugestões e correções podem ser enviadas para glebersonset@gmail.com.

Exercício 1. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ contínua. Mostre que se existem $\lim_{x \longrightarrow -\infty} f(x)$ e $\lim_{x \longrightarrow -\infty} f(x)$, então f é uniformemente contínua.

Demonstração. Sejam $L=\lim_{x\longrightarrow -\infty}\ f(x)$ e
 $S=\lim_{x\longrightarrow -\infty}\ f(x).$ Dado $\varepsilon>0,$ existem
 M,N>0tais que

$$x > M \Rightarrow |f(x) - L| < \frac{\varepsilon}{2} \quad e \quad x < -N \Rightarrow |f(x) - S| < \frac{\varepsilon}{2}.$$

Para todos $x, y \in (M, \infty)$ e $x, y \in (-\infty, -N)$, temos que

$$|f(x) - f(y)| \le |f(x) - L| + |f(y) - L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

e

$$|f(x) - f(y)| \le |f(x) - S| + |f(y) - S| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Logo, f é uniformemente contínua nesses intervalos. Como f é uniformemente contínua no intervalo [-N,M], temos que f deve ser uniformemente contínua em toda a reta.

18 de Julho de 2023

Sugestões e correções podem ser enviadas para glebersonset@gmail.com.

Exercício 1. Seja $f:[a,b] \longrightarrow \mathbb{R}$ integrável. Mostre que a função $F:[a,b] \longrightarrow \mathbb{R}$, definida por $F(x) = \int_a^x f(t) dt$ é lipschitiziana.

Demonstração. Como f é limitada, existe $\alpha>0$ tal que $|f(t)|\leq\alpha$ para todo $t\in[a,b].$ Para todos $x,y\in[a,b]$, temos que

$$\left| \int_a^x f - \int_a^y f \right| = \left| \int_x^y f \right| \le \int_x^y |f| \le \alpha |x - y|.$$