

Cambridge International Examinations

Cambridge International Advanced Subsidiary Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/22
Paper 2 Pure Mather	matics 2 (P2)		May/June 2017
			1 hour 15 minutes
Candidates answer o	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your ansi	wer correct to 3 significant figure
Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your answer	wer correct to 3 significant figure
Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your answer	wer correct to 3 significant figure
Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your answer	wer correct to 3 significant figure
Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your ans	wer correct to 3 significant figure
Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your answer	wer correct to 3 significant figure
Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your answer	wer correct to 3 significant figure
Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your ans	wer correct to 3 significant figure
Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your answer.	wer correct to 3 significant figure
Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your answers	wer correct to 3 significant figure
Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your answers	wer correct to 3 significant figure
Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your answers	wer correct to 3 significant figure
Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your answers	wer correct to 3 significant figure
Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your ans	wer correct to 3 significant figure
Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your answers	wer correct to 3 significant figure
Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your answers	wer correct to 3 significant figure
Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your answers	wer correct to 3 significant figure
Use logarithms to solve the	equation $3^{x+4} = 5^{2x}$, giving your answers	wer correct to 3 significant figure

(i) By sketching a suitable pair of graphs, show that the equation

3

	$x^3 = 11 - 2x$	
has exactly one real roo	ot.	
Use the iterative formula	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$	
	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$	ult of each iteration to 6 significa
Use the iterative formulation to find the root correct figures.		ult of each iteration to 6 significa
to find the root correct	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$	
to find the root correct figures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$	
to find the root correct figures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the res	
to find the root correct figures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the res	
to find the root correct figures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the res	
o find the root correct figures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the res	
to find the root correct figures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the res	
to find the root correct figures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the res	
to find the root correct figures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the res	
to find the root correct figures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the res	
to find the root correct figures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the res	
to find the root correct figures.	$x_{n+1} = \sqrt[3]{(11 - 2x_n)}$ to 4 significant figures. Give the res	

Give your	equation of the	e form ax	+by+c=	= 0 where	a, b and a	are intege	ers.		
•••••	•••••	••••••	•••••	••••••	•••••		•••••	•••••	• • •
				•••••	•		•		•••
		•••••	•••••		•••••			•••••	
•••••	•••••	•••••	•••••	••••••	•••••	••••••	•••••		. • •
		•••••	•••••		•••••			•••••	
••••••	•••••••••••	••••••••••	••••••	••••••	••••••		••••••		•••
•••••		•••••	•••••	•••••	•••••		•••••		••
									• •
•••••	•••••••	••••••	••••••	•••••	•••••			•••••	•
				•••••	•		•		•
•••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •		•••••	•••••	
•••••	•••••	••••••	•••••	•••••	•••••				•••
•••••	••••••	••••••	•••••	••••••	•••••	••••••	•••••	•••••	• • •
			•••••		• • • • • • • • • • • • • • • • • • • •				••

5

The variables x and y satisfy the equation $y = \frac{K}{a^{2x}}$, where K and a are constants. The graph of lny
against x is a straight line passing through the points $(0.6, 1.81)$ and $(1.4, 1.39)$, as shown in the diagram. Find the values of K and a correct to 2 significant figures.

	63 102 20 70
	$6x^3 + 13x^2 - 33x - 70$
	and hence factorise the expression completely.
•	
•	

	7	
(ii)	Deduce the roots of the equation	
	$6 + 13y - 33y^2 - 70y^3 = 0.$	[2]
		••••
		••••
		••••
		•••••
		••••
		••••
		••••
		••••
		••••
		••••
		•••••
		••••
		••••
		••••
		••••

© UCLES 2017

Find $\int (2\cos\theta -$							
		••••••	••••••	••••••		•••••	•••••
		•••••					•••••
		•••••					•••••
							•••••
						•••••	•••••
							••••
							••••
							••••
							••••
							••••
							••••
		••••••		••••••	•••••		••••
	•••••	••••••	••••••	••••••	•••••	•••••	••••
	••••••	••••••	••••••	••••••	•••••	•••••	••••
		•••••	••••••				•••••
	••••••••	••••••		•••••		•••••	••••
		••••••		••••••			••••
							••••
	••••••					•••••	••••
		••••••					••••

) ((i) Find $\int \left(\frac{4}{2x+1} + \frac{1}{2x}\right) dx.$	[:
(i	ii) Hence find $\int_{1}^{4} \left(\frac{4}{2x+1} + \frac{1}{2x} \right) dx$, giving your answer in the form $\ln k$.	Į

8

The diagram shows the curve with parametric equations

$$x = 2 - \cos 2t$$
, $y = 2\sin^3 t + 3\cos^3 t + 1$

for $0 \le t \le \frac{1}{2}\pi$. The end-points of the curve are (1, 4) and (3, 3).

(i)	Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{2}\sin t - \frac{9}{4}\cos t$. [5]	5]
		••
		••
		••
		••
		••
		••
		••
		••
		••
		••
		••
		••
		••
		••

			•••••				
•••••		••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
		•••••	•••••	•••••	•••••	•••••	
• • • • • • • • • • • • • • • • • • • •		••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •
		•••••		•			
		•••••	•••••				
Find the exa	act gradient	of the norr	mal to the	curve at the	point for wh	$\operatorname{nich} x = 2.$	
Find the exa	act gradient	of the norr	mal to the		point for wh		
Find the exa	act gradient	of the norr	mal to the				

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.