6.1 The Horse Race

Assumption: Let m horses run in a race. Let the ith horse win with probability p_i .

Payoff:

- If horse *i* wins, the payoff is o_i for 1.
- An investment of one dollar on horse *i* yields:

$$\begin{cases} o_i \text{ dollars,} & \text{if horse } i \text{ wins,} \\ 0 \text{ dollars,} & \text{if horse } i \text{ loses.} \end{cases}$$

• The gambler distributes **all** her money on the m possible bets: $b_1, \ldots, b_m, \ b_i \geq 0, \ \sum_i b_i = 1$

Some intuitive possibilities

- Put all of the money on the horse with the highest return.
- Put all of the money on the horse with the highest probability.
- Risky: most probable horse might still lose.
- Better to hedge.

Gambler's Wealth After n Races

Let S_n be the gambler's wealth after n races. Then

$$S_n = \prod_{i=1}^n S(X_i),$$

where S(X) = b(X) o(X) is the factor by which the gambler's wealth is multiplied when horse X wins.

Your Name Example Presentation 3 / 16

Constant rebalanced porfolios

- Use a fixed distribution of the stocks \vec{b}
- Not the same as buy and hold.
- Example: $\vec{b} = (1/2, 1/2)$

Iter: 1,2,3,4,5,...

Cash: 1,1,1,1,1,...

Stock: 1,2,1,2,1,...

• Wealth: $1, \frac{3}{2}, \frac{3}{4} + \frac{3}{4} \frac{1}{2} = \frac{9}{8}, \frac{9}{8} \frac{3}{2}, \dots$

• Wealth increases by a factor of $\frac{9}{8}$ every two iterations.

Kelly's rule

- Suppose that the returns are drawn from a fixed and known distribution.
- The optimal strategy, in terms of rate of increase of log wealth, is a constant rebalanced portfolio.
- But which portfolio?

What Are Universal Portfolios?

- **Concept:** Introduced by Thomas M. Cover, a universal portfolio is an investment strategy that asymptotically achieves the same growth rate of wealth as the best rebalanced portfolio in hindsight—without knowing the future in advance.
- **Key Idea:** Rather than fix a single strategy, the universal portfolio effectively averages over all possible rebalanced portfolios and updates weights based on observed performance.
- Goal: Leverage the law of large numbers—type property so that, over time, the universal portfolio tracks the growth rate of the best static rebalancing strategy.

Model Setup

- Consider a market with *m* assets (e.g. stocks).
- Trading occurs in **discrete time**: t = 1, 2, ..., n.
- Let $x_t \in \mathbb{R}^m$ be the gross returns of the m assets between time t-1 and t.
 - For example, if the *j*-th asset goes up by 2%, then $x_t^{(j)} = 1.02$.
- A portfolio vector $b_t \in \mathbb{R}^m$ specifies how one's capital is allocated among the m assets at time t.
 - The entries of b_t sum to 1 and are nonnegative: $\sum_{j=1}^m b_t^{(j)} = 1$, $b_t^{(j)} \geq 0$.

Wealth Evolution

- Let S_t denote the wealth at time t.
- Given a portfolio b_t at time t, the wealth is updated by

$$S_{t+1} = S_t \left(b_t \cdot x_{t+1} \right),$$

where $b_t \cdot x_{t+1}$ is the dot product of b_t and x_{t+1} .

• The goal is to choose $\{b_t\}_{t=1}^n$ to maximize the final wealth S_{n+1} or equivalently $\log S_{n+1}$.

8 / 16

Cover's Universal Portfolio (Informal Definition)

- Consider all constant-rebalanced portfolios. A constant-rebalanced portfolio (CRP) is one that keeps the same fraction in each asset at every time step.
- ② Assign a prior. Treat each CRP as an element in the simplex of possible weights $b \in \Delta^m$. Typically, one uses the *Dirichlet* (or uniform) prior over the simplex.
- Update posterior. After each period, update this distribution (the "mixture") over all CRPs based on how well each CRP performed.
- **The second of the second of**

$$b_{t+1} = \int b \, d\mu_t(b),$$

where μ_t is the posterior over the simplex after observing t periods.

Your Name Example Presentation February 23, 2025 9 / 16

Key Result

- **Asymptotic Optimality:** Cover showed that the growth rate of the *universal portfolio* will, in the limit, approach the growth rate of the best *single* constant-rebalanced portfolio in hindsight.
- Formally, let b^* be the CRP that maximizes $\log S_n$ in hindsight. Then the ratio of the universal portfolio's wealth U_n to the wealth of b^* (both starting at 1) grows sub-exponentially in n.

$$\frac{U_n}{S_n(b^*)} \geq \exp(-o(n)) \quad \text{as } n \to \infty.$$

• This means that the universal portfolio is *universally* good, without prior knowledge of which CRP is best.

Practical Construction

- Objective the Simplex:
 - In practice, the integral over all b in the simplex is approximated by a finite grid or sampling.
- Recompute Weights:

$$w_{t+1}(b) = \frac{w_t(b) \cdot (b \cdot x_{t+1})}{\int w_t(u) \cdot (u \cdot x_{t+1}) du}$$

where $w_t(b)$ is the "weight" or "posterior" for CRP b.

Ompute New Investment:

$$b_{t+1} = \int b w_{t+1}(b) db \quad \approx \sum_{b \in \mathcal{B}} b w_{t+1}(b).$$

Q Rebalance Accordingly: Actually execute b_{t+1} in the market at time t+1.

Simple Example (2 Assets)

- Suppose there are 2 assets, so $b \in [0,1]$ with $b_1 = b$, $b_2 = 1 b$.
- Uniform Prior: Start with $w_0(b) = 1$ for $b \in [0, 1]$.
- **Observations:** If the asset returns over first period are (x_1, x_2) , then after seeing that outcome, the weight function updates:

$$w_1(b) \propto b x_1 + (1-b) x_2.$$

• **Next Step:** The universal strategy at t = 1 invests

$$b_1 = \int_0^1 b \, \frac{b \, x_1 + (1-b) \, x_2}{Z} \, db,$$

where Z is a normalization constant to ensure the posterior integrates to 1.

February 23, 2025

Numerical Illustration

- By discretizing $b \in [0,1]$ into many small steps, you can numerically approximate the integrals.
- Over time, the algorithm will put more weight on the "best" fraction b* that maximizes growth, but it still accounts for uncertainty and adapts as the environment changes.

Summary

- Cover's Universal Portfolio is a powerful idea that uses mixture methods over all possible constant-rebalanced portfolios.
- Guarantees: It asymptotically matches the best constant-rebalanced strategy in hindsight.
- Implementation: Although conceptually elegant, the naive integral approach can be computationally expensive. Practical approximations are used (discretization, sampling, etc.).
- Significance: This method bridges information theory and portfolio choice, illustrating how "universal" strategies can learn from the market without predictions.

14 / 16

References

T. M. Cover, Universal Portfolios, Math. Finance, Vol. 1, No. 1 (1991), pp. 1–29.

T. M. Cover and J. A. Thomas, *Elements of Information Theory*, Wiley, 2nd edition, 2006.

T. M. Cover, *Universal Portfolios*, in The Kelly Capital Growth Investment Criterion: Theory and Practice (2011), World Scientific.

Blocks of Highlighted Text

In this slide, some important text will be highlighted because it's important. Please, don't abuse it.

Block

Sample text

Alertblock

Sample text in red box

Examples

Sample text in green box. The title of the block is "Examples".