Esercizio 1 Si consideri l'applicazione lineare $F_k:\mathbb{R}^4\to\mathbb{R}^3$ dipendente da un parametro reale k definita da

$$F_k(x, y, z, t) = (x - 5y + kz - kt, x + ky + kz + 5t, 2x - 10y + (k+1)z - 3kt).$$

- (a) Stabilire per quali valori di k il vettore $w_k = (1, k, -1)$ appartiene a $\text{Im}(F_k)$;
- (b) stabilire per quali valori di k esiste un unico vettore $v_k \in \mathbb{R}^4$ tale che $F_k(v_k) = w_k$;
- (c) determinare l'insieme

$$A = \{v \in \mathbb{R}^4 : F_0(v) = w_0\}$$

e stabilire se A è un sottospazio di \mathbb{R}^4 .

Esercizio 2 Dati i vettori $v_1 = (1, 2, -3), v_2 = (-1, 2, 1), v_3 = (0, 4, -2), v_4 = (-1, 6, -1)$ si chiede di:

- (a) dimostrare se v_1, v_2, v_3, v_4 sono generatori di \mathbb{R}^3 ;
- (b) trovare una base di $V = \langle v_1, v_2, v_3, v_4 \rangle$;
- (c) stabilire se una base di V è anche una base di \mathbb{R}^3 ;
- (d) determinare, se esistono, due sottospazi diversi $U_1,\,U_2$ tali che

$$U_1 \oplus V = U_2 \oplus V$$
.

Esercizio 3 Sia $E = (e_1, e_2, e_3)$ la base canonica di \mathbb{R}^3 e consideriamo l'endomorfismo F di \mathbb{R}^3 dato da $F(e_1) = e_1 - 2e_2$, $F(e_2) = 2e_1 + 6e_2$, $F(e_3) = 3e_1 - e_2 + 5e_3$.

- (a) determinare la matrice associata $M_E^E(F)$;
- (b) determinare autovalori ed autovettori di F;
- (c) stabilire se F è diagonalizzabile;
- (d) data la base ordinata $B = (3e_2 + e_3, 5e_2 + e_3, -e_1 + e_3)$ di \mathbb{R}^3 ; determinare la matrice $M_B^B(F)$ associata ad F rispetto alla base B.