有一项是符合题目要求的。

1. 设集合
$$M = \{x \mid 0 < x < 4\}$$
,  $N = \{x \mid \frac{1}{3} \le x \le 5\}$ , 则 $M \cap N = P$ 

A. 
$$\{x/0 < x \le \frac{1}{3}\}$$
 B.  $\{x/\frac{1}{3} \le x < 4\}$  C.  $\{x/4 \le x < 5\}$  D.  $\{x/0 < x \le 5\}$ 

B. 
$$\{x \mid \frac{1}{3} \le x < 4\}$$

C. 
$$\{x \mid 4 \le x < 5\}$$

D. 
$$\{x \mid 0 < x \le 5\}$$

2. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收 入的调查数据整理得到如下频率分布直方图:



根据此频率分布直方图,下面结论中不正确的是(

- A. 该地农户家庭年收入低于4.5万元的农户比率估计为6%
- B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10%
- C. 估计该地农户家庭年收入的平均值不超过6.5万元
- D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间 回题回



 $0, \quad \lim_{n \to \infty} \alpha \in (0, \frac{\pi}{2}), \quad \tan 2\alpha = \frac{\cos \alpha}{2 - \sin \alpha}, \quad \text{Wi} \tan \alpha = A$ 

A. 
$$\frac{\sqrt{15}}{15}$$
 B.  $\frac{\sqrt{5}}{5}$  C.  $\frac{\sqrt{5}}{3}$ 

B. 
$$\frac{\sqrt{5}}{5}$$

c. 
$$\frac{\sqrt{5}}{3}$$

D. 
$$\frac{\sqrt{15}}{3}$$

10. 粒 4 个 1 和 2 个 0 随机排成一行,则 2 个 0 不相邻的概率为 (

$$A. \frac{1}{3}$$

A. 
$$\frac{1}{3}$$
 B.  $\frac{2}{5}$ 

C. 
$$\frac{2}{3}$$

D. 
$$\frac{4}{5}$$

11. 已知A . B . C 是半径为1的球O的球面上的三个点,且 $AC \perp BC$  , AC = BC = 1 ,

则三棱锥O-ABC的体积为 A

A. 
$$\frac{\sqrt{2}}{12}$$

B. 
$$\frac{\sqrt{3}}{12}$$
 C.  $\frac{\sqrt{2}}{4}$ 

C. 
$$\frac{\sqrt{2}}{4}$$

D. 
$$\frac{\sqrt{3}}{4}$$

12. 设函数 f(x) 的  $\hat{\mathbf{c}}$  义域为  $\mathbf{R}$  , f(x+1) 为奇函数, f(x+2) 为偶函数, 当  $x \in [1,2]$  时, f(3) = f(1) = atb

 $f(x) = ax^2 + b$ . f(0) + f(3) = 6,  $\lim_{x \to 0} f(\frac{9}{2}) = 6$ A.  $-\frac{9}{4}$  B.  $-\frac{3}{2}$  C.  $\frac{7}{4}$  D.  $\frac{5}{2}$ 

A. 
$$-\frac{9}{4}$$

B. 
$$-\frac{3}{2}$$

C. 
$$\frac{7}{4}$$

D. 
$$\frac{5}{2}$$

二、填空题:本题共4小题,每小题5分,共20分。

13. 曲线  $y = \frac{2x-1}{x+2}$  在点 (-1,-3) 处的切线方程为 y = 37.

14. 已知向量a=(3,1), b=(1,0), c=a+kb. 若 $a\perp c$ , 则 $k=-\frac{10}{3}$ 

15. 已知  $F_1$ ,  $F_2$  为椭圆  $C: \frac{x^2}{16} + \frac{y^2}{4} = 1$  的两个焦点,  $P_2$  及为 C 上关于坐标原点对称的

两点,且 $|PQ|=|F_1F_2|$ ,则四边形 $PF_1QF_2$ 的面积为\_\_\_\_\_\_

16. 己知函数  $f(x)=2\cos(\omega x+\varphi)$  的部分图像如图所

示,则满足条件 $(f(x)-f(-\frac{7\pi}{4}))(f(x)-f(\frac{4\pi}{3}))>0$ 的最小正整数×为\_\_





三、解答题: 共70分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。

(一) 必考题: 共60分。

# 17. (12分)

甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:

| 1   | 一级品 | 二级品 | 合计  |
|-----|-----|-----|-----|
| 甲机床 | 150 | 50  | 200 |
| 乙机床 | 120 | 80  | 200 |
| 合计  | 270 | 130 | 400 |

- (1) 甲机床、乙机床生产的产品中一级品的频率分别是多少?
- (2) 能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?

Wh: 
$$K^2 = \frac{n(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
,  $\frac{P(K^2 \ge k)}{k} = 0.050 = 0.010 = 0.001$ 

### 18. (12分)

已知数列 $\{a_n\}$ 的各项均为正数,记 $S_n$ 为 $\{a_n\}$ 的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立。

①数列 $\{a_n\}$ 是等差数列: ②数列 $\{\sqrt{S_n}\}$ 是等差数列; ③ $a_2 = 3a_1$ .

注: 若选择不同的组合分别解答, 则按第一个解答计分.

## 19. (12分)

已知直三棱柱 $ABC-A_1B_1C_1$ 中,侧面 $AA_1B_1B$ 为正方形, AB=BC=2, E , F 分别为 AC 和  $CC_1$  的中点, D 为棱  $A_1B_1$  上的点,  $BF\perp A_1B_1$  .

- (1) 证明: BF L DE:
- (2)当 $B_iD$ 为何值时,面 $BB_iC_iC$ 与而DFE所成的二面角的正弦值最小?





# 20. (12分)

拋物线C的顶点为坐标原点O,焦点在x轴上,直线l: x = 1交C于P,Q两点,且 $OP \perp OQ$ .已知点M(2,0),且OM与l相切.

- (1) 求C, ⊙M 的方程;
- (2) 设人,人,人,是 C上的三个点,直线人人,人人,均与 OM 相切. 判断直线 A人,与 OM 的位置关系,并说明理由.

### 21. (12分)

已知a > 0且 $a \ne 1$ ,函数 $f(x) = \frac{x^a}{a^x} (x > 0)$ .

- (1) 当a=2时,求f(x)的单调区间:
- (2) 若曲线 y = f(x) 与直线 y = 1 有且仅有两个交点,求 a 的取值范围.
- (二) 选考题: 共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分。
- 22. [选修 4-4: 坐标系与参数方程] (10 分)

在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为  $\rho=2\sqrt{2}\cos\theta$ .

- (1) 将 C 的极坐标方程化为直角坐标方程;
- (2) 设点 A 的直角坐标为 (1,0) , M 为 C 上的动点,点 P 满足  $\overline{AP} = \sqrt{2}$   $\overline{AM}$  ,写出 P 的轨迹  $C_1$  的参数方程,并判断 C 与  $C_1$  是否有公共点.
- 23. [选修4-5: 不等式选讲] (10分)

已知的数f(x) = |x-2|, g(x) = |2x+3|-|2x-1|.

- (1) 画出 y = f(x) 和 y = g(x) 的图像;
- (2) 若  $f(x+a) \ge g(x)$ , 求 a 的取值范围.



扫描全能王 创建