Algunos conceptos del calculo vectorial

Ivan Gil

26 de junio de 2017

1. Derivada

Iniciaremos la motivación con la noción de derivada en una variable real. Luego extenderemos estas ideas al espacio Euclideo \mathbb{R}^n :

Definición 1.1 (Derivada en \mathbb{R}). Sea $f: I \subset \mathbb{R} \longrightarrow \mathbb{R}$ y $x_0 \in I$. Se dice que que f es diferenciable en x_0 si existe el limite siguiente

$$\lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Cuando el limite anterior existe, a su valor lo llamamos derivada de f en x_0 y lo representamos por $f'(x_0)$. Ademas, a la función que asigna a cada $x \in I$ la derivada de f en x la llamamos $funcion\ derivada$ de f y representamos por f'(x).

Observación 1.1. Otra manera de expresar la derivada de f en x_0 es

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{x - x_0} = 0$$

Mas aun,

$$\lim_{x \to x_0} \left| \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{x - x_0} \right| = \lim_{x \to x_0} \frac{|f(x) - f(x_0) - f'(x_0)(x - x_0)|}{|x - x_0|} = 0$$

Este ultimo resultado es util para generalizar la noción de derivada a funciones $f: \mathbb{R}^m \longrightarrow \mathbb{R}^n$

Definición 1.2 (Derivada). Sea $f: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}^n$ y $x_0 \in U$. Se dice que que f es diferenciable en x_0 si existe una matriz $M_f(x_0) \in \mathcal{M}_{n \times m}$ tal que

$$\lim_{x \to x_0} \frac{||f(x) - f(x_0) - M_f(x_0)(x - x_0)||}{||x - x_0||} = 0.$$

En tal caso se dice que $M_f(x_0)$ es la derivada de f en x_0 . Ademas, a la función que asigna a cada $x \in U$ la derivada de f en x la llamamos función derivada de f y representamos por $M_f(x)$.

Observación 1.2. Esto ultimo nos muestra que, en general, la derivada de una función $f: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ es una matrix de orden $n \times m$.

Definición 1.3 (Matriz Jacobiana). Sea $f:U\subset\mathbb{R}^m\longrightarrow\mathbb{R}^n$ tal que $f\in\mathcal{C}^1(U)$ y $x_0\in U$. Llamamos matriz Jacobiana, y representamos como $J_f(x)$ a la matriz definida por

$$J_f(x) = \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\partial f \cdot e_i}{\partial x_j} \delta_{ij}$$

Observación 1.3. Si $f: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}^n$, entonces existen $f_i: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}$ tales que $f = (f_1, f_2, \dots, f_n)$.

Como $f \cdot e_i = f_i$, podemos escribir la matriz Jacobiana de f como:

$$J_f(x) = \sum_{i=1}^n \sum_{j=1}^m \frac{\partial f_i}{\partial x_j} \delta_{ij}$$

Observación 1.4. La matriz Jacobiana de f en x_0 es precisamente la matriz $M_f(x_0)$ de la definición de derivada. Asi que la derivada de una función $f: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}^n$ en $x_0 \in U$ es $J_f(x_0)$.

Ejemplo 1.1 Encontrar la derivada de las siguientes funciones

1.
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
 tal que $f(x, y, z) = 3x^2yz\hat{i} + 6xyz\hat{j}$

Solución:

Solo basta determinar la matriz Jacobiana de f. Asi que

$$J_f(x) = \begin{bmatrix} \frac{\partial 3x^2yz}{\partial x} & \frac{\partial 3x^2yz}{\partial y} & \frac{\partial 3x^2yz}{\partial z} \\ \frac{\partial 6xyz}{\partial x} & \frac{\partial 6xyz}{\partial y} & \frac{\partial 6xyz}{\partial z} \end{bmatrix}$$
$$= \begin{bmatrix} 6xyz & 3x^2z & 3x^2y \\ 6yz & 6xz & 6xy \end{bmatrix}$$

2.
$$f: \mathbb{R} \longrightarrow \mathbb{R}^2$$
 tal que $f(x) = 2x^2\hat{i} + 6x^3\hat{j}$

Solución:

Solo basta determinar la matriz Jacobiana de f. Asi que

$$J_f(x) = \begin{bmatrix} \frac{\partial 2x^2}{\partial x} \\ \frac{\partial 6x^3}{\partial x} \end{bmatrix}$$
$$= \begin{bmatrix} 4x \\ 18x^2 \end{bmatrix}$$

Definición 1.4 (Diferencial). Sea $f: U \subset \mathbb{R}^m \longrightarrow \mathbb{R}^n$ tal que $f \in \mathcal{C}^1(U)$. Se define el diferencial de f, y representamos por df, como

$$df = J_f(x)dx$$

donde
$$dx = \begin{bmatrix} dx_1 \\ dx_2 \\ \vdots \\ dx_m \end{bmatrix}$$

Ejemplo 1.2 Encontrar el diferencial de la función $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por $f(x, y, z) = 3\cos(xyz)\hat{i} + 4\sin(xyz)\hat{j} + x^2y^2z^2\hat{k}$ en $x_0 = (1, 1, \pi)$.

Solución:

En primer lugar vamos a determinar la matriz Jacobiana de f. Tenemos:

$$J_f(x) = \begin{bmatrix} \frac{\partial 3\cos(xyz)}{\partial x} & \frac{\partial 3\cos(xyz)}{\partial y} & \frac{\partial 3\cos(xyz)}{\partial z} \\ \frac{\partial 4\sin(xyz)}{\partial x} & \frac{\partial 4\sin(xyz)}{\partial y} & \frac{\partial 4\sin(xyz)}{\partial z} \\ \frac{\partial x^2y^2z^2}{\partial x} & \frac{\partial x^2y^2z^2}{\partial y} & \frac{\partial x^2y^2z^2}{\partial z} \end{bmatrix}$$

$$= \begin{bmatrix} -3yz\sin(xyz) & -3xz\sin(xyz) & -3xy\sin(xyz) \\ 4yz\cos(xyz) & 4xz\cos(xyz) & 4xy\cos(xyz) \\ 2xy^2z^2 & 2x^2yz^2 & 2x^2y^2z \end{bmatrix}$$

Evaluando la matriz Jacobiana en x_0 , se tiene

$$J_f(x_0) = J_f(1, 1, \pi) = \begin{bmatrix} -3\pi \operatorname{sen}(\pi) & -3\pi \operatorname{sen}(\pi) & -3\operatorname{sen}(\pi) \\ 4\pi \operatorname{cos}(\pi) & 4\pi \operatorname{cos}(\pi) & 4\operatorname{cos}(\pi) \\ 2\pi^2 & 2\pi^2 & 2\pi \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ -4\pi & -4\pi & -4 \\ 2\pi^2 & 2\pi^2 & 2\pi \end{bmatrix}$$

Por tanto determinamos el diferencial de f en x_0 , como sigue

$$df(x_0) = J_f(x_0)dx = \begin{bmatrix} 0 & 0 & 0 \\ -4\pi & -4\pi & -4 \\ 2\pi^2 & 2\pi^2 & 2\pi \end{bmatrix} \begin{bmatrix} dx \\ dy \\ dz \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ -4\pi dx - 4\pi dy - 4dz \\ 2\pi^2 dx + 2\pi^2 dy + 2\pi dz \end{bmatrix}$$