블록과 함께하는 파이썬 딥러닝 케라스

Part 2 ch 6~7 RNN 순환신경망

Sequence data

- We don't understand one word only
- We understand based on the previous words + this word
- NN/CNN cannot do this

HELL?

LSTM(3, input_dim=1, input_length=4)

- 첫번째 인자 : 메모리 셀의 개수입니다.
- input_dim : 입력 속성 수 입니다.
- input_length : 시퀀스 데이터의 입력 길이

Dense If input_dim == 1

If input_dim == 4

Recurrent Networks offer a lot of flexibility:

상태 유지 모드 (stateful)

실제 데이터로 순환신경망 모델 만들어 학습해보기

RNN을 포함한 총 4가지 방법으로 Dense, RNN과 stateful-RNN 를 비교

- 1. Dense 입력 4개 출력 1개
- 2. LSTM(RNN) 입력 1개
- 3. LSTM(RNN) stateful 입력 1개
- 4. LSTM(RNN) stateful 입력 2개

학습과정

예측은 2가지 방법으로

- 1. 부분 예측
- 2. 전체 예측

1. 부분 예측

2. 전체 예측

중간에 한번 예측이 잘못이루어지면 계속 예측이 잘못됨

다층 퍼셉트론 모델 (Dense)

One-hot encoding

다층 퍼셉트론 모델 (Dense)

```
model = Sequential()
model.add(Dense(128, input_dim=4, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(one_hot_vec_size, activation='softmax'))
```

결과

LSTM model

LSTM model

```
model = Sequential()
model.add(LSTM(128, input_shape = (4, 1)))
model.add(Dense(one_hot_vec_size, activation='softmax'))
```

타임스텝은 하나의 샘플에 대한 시퀀스의 개수

LSTM model

```
x_{train} = np.reshape(x_{train}, (50, 4, 1)) # 샘플 수, 타임스텝 수, 속성 수
```

```
[[[0.84615385]
[[0.84615385 0.69230769 0.15384615 0.76923077]
                                                                     [0.69230769]
 [0.69230769 0.15384615 0.76923077 0.61538462]
                                                                     [0.15384615]
 [0.15384615 0.76923077 0.61538462 0.07692308]
                                                                     [0.76923077]]
 [0.76923077 0.61538462 0.07692308 0.53846154]
 [0.61538462 0.07692308 0.53846154 0.61538462]
                                                                    [[0.69230769]
 [0.07692308 0.53846154 0.61538462 0.69230769]
                                                                     [0.15384615]
 [0.53846154 0.61538462 0.69230769 0.76923077]
                                                                     [0.76923077]
 [0.61538462 0.69230769 0.76923077 0.84615385]
                                                                     [0.61538462]]
 [0.69230769 0.76923077 0.84615385 0.84615385]
 [0.76923077 0.84615385 0.84615385 0.30769231]
                                                                    [[0.15384615]
 [0.84615385 0.84615385 0.30769231 0.84615385]
                                                                     [0.76923077]
 [0.84615385 0.30769231 0.84615385 0.69230769]
                                                                     [0.61538462]
                                                                     [0.07692308]]
```

결과

LSTM stateful model

```
model = Sequential()
model.add(LSTM(128, batch_input_shape = (1, 4, 1), stateful=True))
model.add(Dense(one_hot_vec_size, activation='softmax'))
```


LSTM은 상태유지가 될때 진가를 발휘

LSTM stateful model

계속해서 상태를 유지할 수는 없다.. 언제 초기화? 두 시퀀스가 관계가 없는 경우

- 마지막 샘플 학습이 마치고, 새로운 에포크 수행 시에는 새로운 샘플 학습을 해야하므로 상태 초기화 필요
- 한 에포크 안에 여러 시퀀스 데이터 세트가 있을 경우, 새로운 시퀀스 데이터 세트를 학습 전에 상태 초기화 필요

LSTM stateful model

상태 초기화 코드

```
num_epochs = 2000

for epoch_idx in range(num_epochs):
    print ('epochs : ' + str(epoch_idx) )
    model.fit(x_train, y_train, epochs=1, batch_size=1, verbose=2, shuffle=False) # 50
is X.shape[0]
    model.reset_states()
```

LSTM stateful model

LSTM stateful model 결과

Multiple input LSTM stateful model

기상 예측의 경우 다양한 속성이 필요하다. 온도, 습도, 풍향, 풍속... 다중 속성이 입력으로 들어오는 경우의 RNN모델을 알아보자

Multiple input LSTM stateful model

```
model = Sequential()
model.add(LSTM(128, batch_input_shape = (1, 4, 2), stateful=True))
model.add(Dense(one_hot_vec_size, activation='softmax'))
```


Multiple input LSTM stateful model 결과

정리

다층퍼셉트론, 입력속성 4개

기본 LSTM, 입력속성 1개

상태유지 LSTM, 입력속성 1개

상태유지 LSTM, 입력속성 2개

