Model Categories by Example

Lecture 3

Scott Balchin

MPIM Bonn

E, D model categories Quillen functor f: 6 20: U that interacted well with the model structures ~ F: Ho(B) → Ho(O): U Ho(E) = Ho(D) F+U FILL was a Queller Egul. 18 Sometimes we need Quiller Cymaline > Holb) ~ Ho(0)

a Zig-Zag

sSet: = Set DOP Equipped with Kan model struct SSet Kan * Fis dis. were then Kan Complexes * Catib were the Monomorphisms Key fact: SSet Kan ~ a Top awllen (via geometric real) * Used Ex: SSet -> sSet to construct "Ex "(-)" as a junctorial f.b. (eplacement

Being closed under retracts

MC3) The three classes of morphisms are closed under retracts.

The meaning of this is that they are closed under retracts in $\mathbf{Mor}(\mathcal{C})$. That is, f is a retract of g if and only if there is a commutative diagram

where the horizontal composites are the identity.

An infinite family of model structures

in sset

Let fib_n be the collection of morphisms f such that $Ex^n(f)$ is a Kan fibration.

Proposition: (Bere] There is a model structure on sset such what * Wear Egu ose He wear Egus in SSet Kon sSet, (sset, = sset kan)

* Fibrations are fibr

· Cof = LLP(Decartic fib)

id: Set, -> 5 Set,+1

is a Quiller Eguiv.

New models from old

Proving MCI-MCS in general is hard

- 1) Passing model structures over adjunctions
- 2) Adding weak Equidaces
- 3) Cotegories enriched in model categories.

 All of there regure proporties/structures on the model cat we stort with

Cofibrant generation

Idea: If a model structure is cofibrantly generated then we can test various things against a small set of maps as opposed to all the (acyclic) cofibrations

Examples

Examples

Cat_{Nat}
$$T = \{ \phi \hookrightarrow \xi + 3, \{ \delta_0, 1 \} \hookrightarrow \{ \delta_0 \rightarrow 1 \}, \{ \delta_0 \Rightarrow 1 \} \}$$

Strøm model structure

Prop There is a model structure on Top where
weak Equal = homotopy Equal III This is not

· fils (Hurcicz) Subrations

· cox = closed Hurersicz cystrations

Top strøm

All objects are bigiblent

id: Top Quillen -> Top strøm

This is <u>not</u> coxil.

Generated. [Raptis]

Ch(R)
weak egus are the
chan homotopies

Fibrant generation

Coxib gen => Smallner Condition fib gen a cosmal new condition Only \$ 1 are cosmall in Set. is fibrally generated. s Pro (Set) [Quak]

Right transferred model structures

Suppose that ${\mathcal C}$ is a model category, and that we have an adjunction

$$U: \mathcal{D} \leftrightarrows \mathcal{C}: F$$

The *right transferred model structure* on \mathcal{D} (if it exists) has $f \colon X \to Y$ a:

- weak equivalence if U(f) is a we in 6
- fibration if U(f) is a fib in 6
- · cofibration if LLP (acrel & Jb)

Moreover the pair $F \dashv U$ is a Quillen adjunction between these model structures.

Existence of right transferred model structures

A map in \mathcal{D} is an *anodyne map* if it has the LLP with respect to all fibrations.

Proposition: Necessary and sufficient conditions for the right transferred model structure to exist are:

- · [factorization] Every morphism in] justous as a Cogibration followed by an acy. f.b + as an analyse map followed by a fis.
- · [Acyclaity] Every another Map is a weak Equivalence.

Factorizations

Proposition: Suppose that

· F present small objects.

Then every morphism factors as a cofibration followed a trivial fibration, and as an anodyne map followed by a fibration. Moreover if the model structure exists then it is cofibrantly generated by F(I) and F(J).

Acyclicity

Proposition: If a seguential colin of poshouts of images under f

y generating acyclic could in a weak Equi in D

Acy. I

Proposition: If D has fisher (eplacements

2) B has path objects for fish objects

Projective model on functor categories

Let $\mathcal D$ be a small category and $\mathcal C$ a cofibrantly generated model category. Then there is a *projective model structure* on the functor category $\mathcal C^{\mathcal D}$ where a map $f\colon X\to Y$ is a:

• weak equivalence if
$$\chi(d) \rightarrow \gamma(d)$$
 is a we in \mathcal{E} $\forall d \in \mathcal{D}$

· fibration if
$$\chi(a) \rightarrow \gamma(d)$$
 is a fib in & \forall \delta \ell

Projective model on functor categories

Let Daise Idea of proof using right trasfer machinery. be the discrete category of ob. on D. Codec (0) = Tob (D) 6 This has a cog. gen model struck when weak Egu yib trey are determined levelse.

Simplicial presheaves

Thomason model structure

Idea Transfer SSetkan to Cat such that they are Quillen Equivalent.

N: Cat SSet: Ti Problem Fibration objects and up being grapails

Set
$$\underset{E\times}{\text{SSet}}$$
 $\underset{E\times}{\text{SSet}}$ $\underset{N}{\text{Cat}}$

Thomason model structure

Prop There is a model structure on Cat such that a functor Fi & >D is in * W if Ex N(f) is a weak gun Set Kan *FB if Ex N(F) is a fileation in Set Kan · Cox if Up(age. fib) Cat thom

Catthon ~ @ sSet Kan

Thomason model structure

Proposition: If W is the category of weak equivlaneces of a model category, then W is fibrant in $\mathbf{Cat}_{\mathrm{Thom}}$.

Proposition: Every poset with five or less elements is cofibrant in Cat_{Thom} . The following poset is non-cofibrant in Cat_{Thom} and is the minimal such example in dimension and in cardinality.

Diffeological spaces

Diss the cost, of developed spaces. (Kihara) Egup DEPJ with a dyeologish structe such that 1 Cp3 Co DCp3 smooth deg. retractract → Sort: Ditt = aSet: 1-1 Ditt

Left transfer

Suppose that $\ensuremath{\mathcal{C}}$ is a model category, and that we have an adjunction

$$U:\mathcal{D}\rightleftarrows\mathcal{C}:G$$

The *left transferred model structure* on \mathcal{D} (if it exists) has $f: X \to Y$ a:

- weak equivalence if U(f) 'is in 6
- fibration if RUP (acy. Cog)
- cofibration if U(f) is in 6,

Moreover the pair G, U is a Quillen adjunction between these model structures.

Existence of left transferred model structures

Hard No way to get at generating cop + acyclic cop.

Lack of fibrantly generated things.

Women in Topology

Combinatorial model structures

A model category is said to be *combinatorial* if it is cofibrantly generated and the underlying category is locally presentable.

Injective model on functor categories

Let \mathcal{D} be a small category and \mathcal{C} a combinatorial model category. Then there is an *injective model structure* on the functor category $\mathcal{C}^{\mathcal{D}}$ where a map $f: X \to Y$ is a:

- weak equivalence if X(d) → y(d) is a were in 6 tode()
- · fibration if RLP (age, cyliations)
- cofibration if $\chi(A) \Rightarrow \chi(A)$ is cog in β $\forall A \in D$

Functoriality of functor categories

Let $F: \mathcal{B} \rightleftarrows \mathcal{C}: G$ be a Quillen adjunction of combinatorial model categories, then composition determines Quillen adjunctions

$$\mathcal{B}_{\mathrm{proj}}^{\mathcal{D}}
ightleftharpoons \mathcal{C}_{\mathrm{proj}}^{\mathcal{D}}$$

$$\mathcal{B}_{\mathsf{inj}}^{\mathcal{D}}
ightleftharpoons \mathcal{C}_{\mathsf{inj}}^{\mathcal{D}}$$

If the original Quillen adjunction is a Quillen equivalence then so is the induced adjunction between the functor categories.

Functoriality of functor categories

Let $f \colon \mathcal{D} \to \mathcal{E}$ be a functor between small categories. Then the following are Quillen adjunctions for f^* the induced pullback:

(1)
$$f_!: \mathcal{C}^{\mathcal{D}}_{\text{proj}} \rightleftarrows \mathcal{C}^{\mathcal{E}}_{\text{proj}}: f^*$$
.

(2)
$$f^*: \mathcal{C}^{\mathcal{D}}_{\text{inj}} \rightleftarrows \mathcal{C}^{\mathcal{E}}_{\text{inj}}: f_*$$
.