DSP Lab 3

SHEET 2 SOLUTIONS

(1st Problem) 1.10 in book

A digital communication link carries binary coded words representing samples of an input signal

$$X_a(t) = 3\cos(600 \pi t) + 2\cos(1800 \pi t)$$

The link is operated at 10000 bits/s and each input sample is quantized into 1024 different voltage levels.

- a) What is the sampling frequency and folding frequency?
- b) What is the Nyquist rate for the signal $X_a(t)$?
- c) What are the frequencies in the resulting discrete time signal X(n)?
- d) What is the resolution \triangle ?

(a) #bits/sample = log_(1024) | #bits = log_(levels)

Since loos is number of bits/s

bits/s bits/sample

- bits x sample a sample

5 Se Cond

Folding frequency = Fs = 1000 = 500 Hz

$$f_1 = \frac{600}{2} = 360$$

$$f_{2} = \frac{1800}{2} = 900$$
 max

Cousing (Relative or Normalized frequency)
$$f = \frac{F}{F_3} + \text{from properties of } f \left(\frac{1}{2} \right) + \frac{1}{2}$$
So 2

$$f_1 = \frac{600}{2} + \frac{1}{1000} = 0.3$$
 in range ν

$$f_2 = \frac{1800}{2} + \frac{1}{1000} = 0.970.5 \quad 2\pi(1) - 2\pi(0.1) = 2\pi(0.9)$$

= Xmax-Xmin # levels Xmax analog Cos 3(1) + 2(1) = 51- sa falon of min of malog cos -1 3(-1) +2(-1) = (-5)

Xmax: max amplitude

Xmin: min amp.

Levels lo24 "given"

(2nd Problem)

Quantize and encode the following sampled signal x(n) using 4 quantization levels and minimum number of bits. Compute the average error power in both cases.

$$X(n) = \{-1.22, 1.5, 3.24, 3.94, 2.20, -1.10, -2.26, -1.88, -1.2\}$$

Steps:

- D find min & max amp.
- (delta A)
- make ranges which equals #levels (+1)
- Calculate mid point for each range
- Quantize 6 average power error = 1 2 eq2 (# samples N i=1 ri

$$2 \Delta = \frac{\text{max} - \text{min}}{1} = \frac{3.94 - (-2.26)}{4} = 1.55$$

5

\ \gamma_{\text{.}}	X(n)	interval	$X_q(n)$	eq(n) = Xq(n) - X(n)	eq2
0	_1.22	1	-1.485	-0.265	()2
1	1.5	3	1.615	0.115	()2
_ 2	3.24	J	3.165	-0.675	•
3	3.94	7	1/	-0.775	1
4	2.2	3	1.615	-0.585	1
5	-1 - 1		-1.485	-0-385	1
6	-2.26		11	0.775	
子	-1.88		//	0-395	,
8	-1-2	1	1/	-0-285	
					3

- أ-1.485 م م 3 هـ ا- أ- أ - أ-1.485 م م 3.165 م م 1.615 م

$$N = 9 = \frac{1}{9} \left[\frac{(-0.265)^{2} + (0.115)^{2} + (-0.585)^{2} + (-0.585)^{2} + (-0.585)^{2} + (-0.585)^{2} + (-0.585)^{2} + (-0.285)^{2} + (-0.285)^{2} + (-0.285)^{2} + (-0.285)^{2} + (-0.285)^{2} + (-0.224225) + (-0.224225$$

Thanks to Dr. Hadeer ElSaadawy for her answers.