ALGEBRA PER INFORMATICA 2020-21

FOGLIO DI ESERCIZI 9

Esercizio 1. Sia $A = \{2,4,8,10,14,16\}$ e si consideri la seguente associazione a*b = resto della divisione di ab per 18.

Stabilire se * è un'operazione binaria sull'insieme A.

Esercizio 2. Per ciascuna delle seguenti operazioni binarie sull'insieme A indicato, stabilire se è associativa, commutativa, se esiste un elemento neutro e in tal caso se ogni elemento di A ha inverso.

- (1) $A = \mathbb{Q}, x * y = x y;$
- (2) $A = \mathbb{Z}, x * y = \max\{x, y\};$
- (3) $A = \mathbb{R}^2 \setminus \{(0,0)\}, (a,b)*(c,d) = (ac-bd,ad+bc);$
- (4) $A = \mathbb{N}, x * y = x + y + xy;$
- (5) $A = \mathbb{Z}, x * y = x^2 + y^2$;
- (6) $A = \mathbb{R}^2 \setminus \{(0,0)\}, (a,b) * (c,d) = (ac,bd);$
- (7) $A = \mathbb{R}, x * y = x(x+y);$
- (8) $A = \mathscr{P}(\mathbb{N}), X * Y = X \cap Y;$
- $(9) A = \mathscr{P}(\mathbb{N}), X * Y = X \cup Y \setminus X \cap Y = \{x \in X \cup Y \mid x \notin X \cap Y\}.$

Esercizio 3. Sia A un insieme di s elementi. Quante sono le operazioni binarie su A?

Esercizio 4. Si determini quali delle seguenti operazioni su \mathbb{R} sono associative e quali commutative:

$$x * y = \min\{x, y\}; \quad x * y = \frac{x + y}{|xy| + 1}; \quad x * y = e^{x + y}.$$

Esercizio 5. Si consideri l'insieme $\mathbb{Z}^{\mathbb{Z}} = \{f : \mathbb{Z} \to \mathbb{Z}\}$ con la seguente operazione:

$$f * g = h$$
, dove h è definita da $h(n) = f(n) + g(n) \ \forall n \in \mathbb{Z}$.

- (1) Si dimostri che $(\mathbb{Z}^{\mathbb{Z}}, *)$ è un monoide commutativo.
- (2) Qual è l'elemento neutro?
- (3) Quali elementi di $\mathbb{Z}^{\mathbb{Z}}$ hanno inverso? $(\mathbb{Z}^{\mathbb{Z}}, *)$ è un gruppo?

Esercizio 6. Si consideri l'insieme $\mathbb{Z}^{\mathbb{Z}} = \{f : \mathbb{Z} \to \mathbb{Z}\}$ con la seguente operazione:

$$f * g = h$$
, dove h è definita da $h(n) = f(n) \cdot g(n) \ \forall n \in \mathbb{Z}$.

- (1) Si dimostri che $(\mathbb{Z}^{\mathbb{Z}},*)$ è un monoide commutativo.
- (2) Qual è l'elemento neutro?

(3) Quali elementi di $\mathbb{Z}^{\mathbb{Z}}$ hanno inverso? $(\mathbb{Z}^{\mathbb{Z}},*)$ è un gruppo?

Esercizio 7. Sia G un gruppo. Provare che $(aba^{-1})^n = ab^na^{-1} \ \forall \ a,b \in G, \ \forall \ n \in \mathbb{Z}.$

Esercizio 8. Sia $f: \mathbb{Z}^2 \to \mathbb{Z}^2$ la funzione data da f(n,m) = (n-m,m+2). Stabilire se f ha inversa sinistra, se ha inversa destra e se è invertibile.

Esercizio 9. Sia $f: \mathbb{N} \to \mathbb{N}$ la funzione data da $f(x) = x^2$.

- (1) Stabilire se f è invertibile.
- (2) Determinare tre distinte inverse sinistre per f.
- (3) Esistono inverse destre per f?

Esercizio 10. (1) Sia $f : \mathbb{R} \to \mathbb{R}$ la funzione data da $f(x) = x^3$. Stabilire se f ha inversa sinistra, se ha inversa destra e se è invertibile.

(2) Sia $g : \mathbb{C} \to \mathbb{C}$ la funzione data da $g(x) = x^3$. Stabilire se g ha inversa sinistra, se ha inversa destra e se è invertibile.

Esercizio 11. Per ciascuno dei seguenti monoidi si determini, se esiste, l'inverso dell'elemento *x* assegnato:

- (1) $(\mathbb{N}, +, 0), x = 2;$
- (2) $(\mathbb{Z}, +, 0), x = 2;$
- (3) $(\mathbb{Z}, \cdot, 1), x = 2;$
- (4) $(\mathbb{Z}_{15}, +, \overline{0}), x = \overline{2};$
- (5) $(\mathbb{Z}_{15}, \cdot, \overline{1}), x = \overline{2};$
- (6) $(\mathbb{Z}_6, \cdot, \overline{1}), x = \overline{2};$
- (7) $(\mathbb{Z}^{\mathbb{Z}}, \circ, \operatorname{Id}_{\mathbb{Z}}), x : \mathbb{Z} \to \mathbb{Z}$ tale che $x(n) = 2 \ \forall n \in \mathbb{Z};$
- (8) $(\mathbb{Z}^{\mathbb{Z}}_{-}, \circ, \operatorname{Id}_{\mathbb{Z}}), x : \mathbb{Z} \to \mathbb{Z}$ tale che $x(n) = n + 2 \ \forall n \in \mathbb{Z};$
- (9) $(\mathbb{Z}^{\mathbb{Z}}, \circ, \operatorname{Id}_{\mathbb{Z}}), x : \mathbb{Z} \to \mathbb{Z}$ tale che $x(n) = 2n \ \forall n \in \mathbb{Z};$