OGC-biomass

Primary Analyses

Kelly Murray Stoker, David Murray-Stoker

Contents

Raw Data Management	3
Load Processed Data	6
	7 7 9
Consumer ANOVAs Biomass ANOVA Density ANOVA Predator ANOVAs	11 12 12 14 16 16
Size Groupings 2	20
Consumers 2 Predators 2	22 22 25 28
Density Change Consumers Predators	
Consumer Biomass	36 38 40 42
Consumers	14 45 45
	16 46
	18

Indicator Taxa Analysis	49
Carbon & Discharge ANCOVA	51
R Session Information	53

Raw Data Management

Raw data were imported and compiled for each of the two sampling periods, 1980s and 2010s. Subsets were merged or cast as needed for later analyses. Raw data were initially managed in the R environment, but final data management tasks were performed in Microsoft Excel after exporting the data; final data files are imported from csv files.

```
## Read in raw data files
raw.biomass.1982 <- read_csv("data/OGC_biomass_data-1982.csv", show_col_types = FALSE)
raw.biomass.1983 <- read_csv("data/OGC_biomass_data-1983.csv", show_col_types = FALSE)
raw.biomass.2010s <- read_csv("data/OGC_biomass_data-2010s.csv", show_col_types = FALSE)

## Set column structure for the raw data
raw.biomass.1982$Date <- as_factor(raw.biomass.1982$Date)
raw.biomass.1982$Snag <- as_factor(raw.biomass.1982$Snag)
raw.biomass.1983$Date <- as_factor(raw.biomass.1983$Date)
raw.biomass.1983$Snag <- as_factor(raw.biomass.1983$Snag)
raw.biomass.2010s$Date <- as_factor(raw.biomass.2010s$Date)
raw.biomass.2010s$Snag <- as_factor(raw.biomass.2010s$Snag)</pre>
```

```
## Biomass data management
## Create date-by-taxa matrices for biomass values
# 1982 raw biomass by taxa matrix
OGC.biomass.1982 <- dcast(
   raw.biomass.1982, Date ~ Genus, sum, value.var = "Biomass_Estimate"
   )
# 1983 raw biomass by taxa matrix
OGC.biomass.1983 <- dcast(
   raw.biomass.1983, Date ~ Genus, sum, value.var = "Biomass Estimate"
# 2010s raw biomass by taxa matrix
OGC.biomass.2010s <- dcast(
    raw.biomass.2010s, Date ~ Genus, sum, value.var = "Biomass_Estimate"
## Create dataframe of biomass values for each dataset
OGC.biomass.1982.values <- tibble(OGC.biomass.1982[, 2:59])
OGC.biomass.1983.values <- tibble(OGC.biomass.1983[, 2:48])
OGC.biomass.2010s.values <- tibble(OGC.biomass.2010s[, 2:64])
## Average by number of snags
OGC.biomass.1982.snag.correction
                                    <- OGC.biomass.1982.values/20
# Correct for 19 snags instead of 20 in first sample
OGC.biomass.1982.snag.correction[1, ] <- ((OGC.biomass.1982.snag.correction[1, ] * 20)/19)
OGC.biomass.1983.snag.correction <- OGC.biomass.1983.values/10
OGC.biomass.2010s.snag.correction <- OGC.biomass.2010s.values/10
## Add Date to the biomass data
OGC.biomass.1982.final <- OGC.biomass.1982.snag.correction %>%
    add_column(OGC.biomass.1982$Date) %>%
    rename(UID = "OGC.biomass.1982$Date")
OGC.biomass.1983.final <- OGC.biomass.1983.snag.correction %>%
    add_column(OGC.biomass.1983$Date) %>%
    rename(UID = "OGC.biomass.1983$Date")
OGC.biomass.2010s.final <- OGC.biomass.2010s.snag.correction %>%
    add_column(OGC.biomass.2010s$Date) %>%
   rename(UID = "OGC.biomass.2010s$Date")
## Export biomass data files
write_csv(OGC.biomass.1982.final, file = "data/OGC_1982_biomass_by_taxa.csv")
write_csv(OGC.biomass.1983.final, file = "data/OGC_1983_biomass_by_taxa.csv")
write csv(OGC.biomass.2010s.final, file = "data/OGC 2010s biomass by taxa.csv")
```

```
## Density data management
## Create date-by-taxa matrices for density values
# 1982 density by taxa matrix
OGC.density.1982 <- dcast(
   raw.biomass.1982, Date ~ Genus, sum, value.var = "Density"
   )
# 1983 density by taxa matrix
OGC.density.1983 <- dcast(
   raw.biomass.1983, Date ~ Genus, sum, value.var = "Density"
# 2010s density by taxa matrix
OGC.density.2010s <- dcast(
    raw.biomass.2010s, Date ~ Genus, sum, value.var = "Density"
## Create dataframe of density values for each dataset
OGC.density.1982.values <- OGC.density.1982[, 2:59]
OGC.density.1983.values <- OGC.density.1983[, 2:48]
OGC.density.2010s.values <- OGC.density.2010s[, 2:64]
## Average by number of snags
OGC.density.1982.snag.correction
                                     <- OGC.density.1982.values/20
# Correct for 19 snags instead of 20 in first sample
OGC.density.1982.snag.correction[1, ] <-((OGC.density.1982.snag.correction[1, ] * 20)/19)
OGC.density.1983.snag.correction <- OGC.density.1983.values/10
OGC.density.2010s.snag.correction <- OGC.density.2010s.values/10
## Add UID to density values
OGC.density.1982.final <- OGC.density.1982.snag.correction %>%
    add_column(OGC.density.1982$Date) %>%
   rename(UID = "OGC.density.1982$Date")
OGC.density.1983.final <- OGC.density.1983.snag.correction %>%
    add_column(OGC.density.1983$Date) %>%
    rename(UID = "OGC.density.1983$Date")
OGC.density.2010s.final <- OGC.density.2010s.snag.correction %>%
    add_column(OGC.density.2010s$Date) %>%
   rename(UID = "OGC.density.2010s$Date")
## Export density data files
write_csv(OGC.density.1982.final, file = "data/OGC_1982_density_by_taxa.csv")
write_csv(OGC.density.1983.final, file = "data/OGC_1983_density_by_taxa.csv")
write csv(OGC.density.2010s.final, file = "data/OGC 2010s density by taxa.csv")
```

Load Processed Data

```
## Read in data
biomass.data <- read_csv("data/OGC_final_biomass_data.csv", show_col_types = FALSE)
density.data <- read_csv("data/OGC_final_density_data.csv", show_col_types = FALSE)</pre>
## Set variables as factors
# Biomass data
                      <- as_factor(biomass.data$UID)</pre>
biomass.data$UID
biomass.data$Year
                          <- as_factor(biomass.data$Year)</pre>
biomass.data$Year_Recoded <- as_factor(biomass.data$Year_Recoded)</pre>
biomass.data$Season_Recoded <- as_factor(biomass.data$Season_Recoded)
biomass.data$Period
                          <- as_factor(biomass.data$Period)</pre>
# Density data
density.data$UID
                            <- as_factor(density.data$UID)</pre>
                            <- as_factor(density.data$Year)</pre>
density.data$Year
density.data$Year_Recoded <- as_factor(density.data$Year_Recoded)</pre>
density.data$Season
                           <- as_factor(density.data$Season)</pre>
density.data$Season_Recoded <- as_factor(density.data$Season_Recoded)</pre>
density.data$Period
                            <- as_factor(density.data$Period)</pre>
## Dataframe of sampling info
sampling.info <- biomass.data[, 1:6]</pre>
## Matrices of invertebrate biomass and density
invertebrate.biomass.matrix <- biomass.data[, 16:87]</pre>
invertebrate.density.matrix <- density.data[, 16:87]</pre>
## Filter biomass and density data by sampling period; no further subsetting
# Biomass data
biomass.1980s <- invertebrate.biomass.matrix[1:25, ]</pre>
biomass.2010s <- invertebrate.biomass.matrix[26:49, ]
# Density data
density.1980s <- invertebrate.density.matrix[1:25, ]</pre>
density.2010s <- invertebrate.density.matrix[26:49, ]</pre>
```

Biomass & Density ANOVAs

Biomass and density were compared by sampling period, season, and the interaction using an ANOVA with Type II sums-of-squares. ANOVA assumptions were inspected graphically using check_model(), and effect sizes for the ANOVAs were calculated as η_P^2 using eta_squared(). Post-hoc Tukey's HSD tests were conducted using HSD.test() to examine for differences among groups for influential factors in the ANOVA.

Biomass ANOVA

Figure 1: Diagnostic plots of the biomass ANOVA.

Residuals

Standard Normal Distribution Quantile

Table 1: ANOVA results for biomass by period, season, and the interaction.

	Sums-of-Squares	df	F	P-value
Period	6.348	1	6.014	0.019
Season	5.432	3	1.716	0.179
Period:Season	4.199	3	1.326	0.279
Residuals	43.275	41	NA	NA

Table 2: Tukey groups assigned to periods differing in biomass.

	Biomass	Grouping
1980	8.854356	a
2010	8.157834	b

Table 3: Table of the effect sizes in the biomass ANOVA.

Term	Eta-squared	CI	CI_Low	CI_High
Period	0.128	0.95	0.013	1
Season	0.112	0.95	0.000	1
Period:Season	0.088	0.95	0.000	1

Density ANOVA

```
density.anova <- lm(
    log(Summed_Density) ~ Period * Season, data = density.data
)</pre>
```


Figure 2: Diagnostic plots of the density ANOVA.

Table 4: ANOVA result for density by period, season, and the interaction.

	Sums-of-Squares	df	F	P-value
Period	0.201	1	0.204	0.654
Season	8.029	3	2.712	0.057
Period:Season	7.575	3	2.558	0.068
Residuals	40.465	41	NA	NA

Table 5: Tukey groups assigned to seasons differing in density.

	Density	Grouping
fall	11.45883	a
summer	11.28221	a
spring	11.03341	a
winter	10.36318	a

Table 6: Tukey groups assigned to seasons differing in density.

	D 11	α .
	Density	Grouping
fall:1980	12.12740	a
spring:2010	11.46404	ab
summer:1980	11.36928	ab
summer: 2010	11.19515	ab
fall:2010	10.79026	ab
spring:1980	10.60277	ab
winter:2010	10.45709	ab
winter:1980	10.28493	b

Table 7: Table of the effect sizes in the density ANOVA.

Term	Eta-squared	CI	CI_Low	CI_High
Period	0.005	0.95	0	1
Season	0.166	0.95	0	1
Period:Season	0.158	0.95	0	1

Consumer & Predators ANOVAs

Biomass and density values were subset and summed for consumer and predator taxa. Biomass and density were then compared by sampling period, season, and the interaction using an ANOVA with Type II sums-of-squares. ANOVA assumptions were inspected graphically using check_model(), and effect sizes for the ANOVAs were calculated as η_P^2 using eta_squared(). Post-hoc Tukey's HSD tests were conducted using HSD.test() to examine for differences among groups for influential factors in the ANOVA.

```
## Subset data to only include consumer taxa
# Biomass
consumer.biomass <- invertebrate.biomass.matrix[, 1:46] %>%
    rowSums()
consumer.biomass.data <- tibble(sampling.info, consumer.biomass)</pre>
# Density
consumer.density <- invertebrate.density.matrix[, 1:46] %>%
consumer.density.data <- tibble(sampling.info, consumer.density)</pre>
## Subset data to only include predator taxa
# Biomass
predator.biomass <- invertebrate.biomass.matrix[, 47:72] %>%
    rowSums()
predator.biomass.data <- tibble(sampling.info, predator.biomass)</pre>
predator.density <- invertebrate.density.matrix[, 47:72] %>%
    rowSums()
predator.density.data <- tibble(sampling.info, predator.density)</pre>
```

Consumer ANOVAs

Biomass ANOVA

```
consumer.biomass.anova <- lm(
  consumer.biomass ~ Period * Season, data = consumer.biomass.data
)</pre>
```


Figure 3: Diagnostic plots of the consumer biomass ANOVA.

Table 8: ANOVA results for consumer biomass by period, season, and the interaction.

	Sums-of-Squares	df	F	P-value
Period	214935664	1	10.005	0.003
Season	113765041	3	1.765	0.169
Period:Season	158830701	3	2.465	0.076
Residuals	880756410	41	NA	NA

Table 9: Tukey groups assigned to periods differing in consumer biomass.

	Consumer Biomass	Grouping
1980	8195.969	a
2010	4080.589	b

Table 10: Tukey groups assigned to season and period groups differing in consumer biomass.

	Consumer Biomass	Grouping
fall:1980	12700.172	a
summer:1980	9827.673	ab
winter:1980	5168.723	ab
spring:2010	5075.846	ab
spring:1980	4815.356	ab
summer:2010	4003.295	b
fall:2010	3612.908	b
winter:2010	3555.710	b

Table 11: Table of the effect sizes in the consumer biomass ANOVA.

Term	Eta-squared	CI	CI_Low	CI_High
Period	0.196	0.95	0.046	1
Season	0.114	0.95	0.000	1
Period:Season	0.153	0.95	0.000	1

Density ANOVA

```
consumer.density.anova <- lm(
   log(consumer.density) ~ Period * Season, data = consumer.density.data
)</pre>
```


Figure 4: Diagnostic plots of the consumer density ANOVA.

Table 12: ANOVA results for consumer density by period, season, and the interaction.

	Sums-of-Squares	df	F	P-value
Period	0.269	1	0.271	0.605
Season	8.236	3	2.768	0.054
Period:Season	7.867	3	2.644	0.062
Residuals	40.666	41	NA	NA

Table 13: Tukey groups assigned to seasons differing in consumer density.

	Consumer Density	Grouping
fall	11.41674	a
summer	11.26117	a
spring	11.00815	a
winter	10.31693	a

Table 14: Tukey groups assigned to season and period groups differing in consumer density.

	Consumer Density	Grouping
fall:1980	12.10793	a
spring:2010	11.43664	ab
summer:1980	11.35745	ab
summer:2010	11.16490	ab
fall:2010	10.72555	ab
spring:1980	10.57966	ab
winter:2010	10.40433	ab
winter:1980	10.24409	b

Table 15: Table of the effect sizes in the consumer density ANOVA.

Term	Eta-squared	CI	CI_Low	CI_High
Period	0.007	0.95	0	1
Season	0.168	0.95	0	1
Period:Season	0.162	0.95	0	1

Predator ANOVAs

Biomass ANOVA

```
predator.biomass.anova <- lm(
    log(predator.biomass) ~ Period * Season, data = predator.biomass.data
)</pre>
```


Figure 5: Diagnostic plots of the predator biomass ANOVA.

Table 16: ANOVA results for predator biomass by period, season, and the interaction.

	Sums-of-Squares	df	F	P-value
Period	0.145	1	0.076	0.784
Season	12.100	3	2.121	0.112
Period:Season	2.442	3	0.428	0.734
Residuals	77.975	41	NA	NA

Table 17: Tukey groups assigned to seasons differing in predator biomass.

	Predator Biomass	Grouping
fall	7.219654	a
spring	6.870266	a
summer	6.781070	a
winter	5.819327	a

Table 18: Table of the effect sizes in the predator biomass ANOVA.

Term	Eta-squared	CI	CI_Low	CI_High
Period	0.002	0.95	0	1
Season	0.134	0.95	0	1
Period:Season	0.030	0.95	0	1

Density ANOVA

```
predator.density.anova <- lm(
    log(predator.density) ~ Period * Season, data = predator.density.data
)</pre>
```


Figure 6: Diagnostic plots of the predator density ANOVA.

Table 19: ANOVA results for predator density by period, season, and the interaction.

	Sums-of-Squares	df	F	P-value
Period	7.688	1	5.651	0.022
Season	3.138	3	0.769	0.518
Period:Season	1.308	3	0.320	0.811
Residuals	55.780	41	NA	NA

Table 20: Tukey groups assigned to periods differing in predator density.

	Predator Density	Grouping
2010	7.688569	a
1980	6.889090	b

Table 21: Table of the effect sizes in the predator density ANOVA.

Term	Eta-squared	CI	CI_Low	CI_High
Period	0.121	0.95	0.01	1
Season	0.053	0.95	0.00	1
Period:Season	0.023	0.95	0.00	1

Size Groupings

Body sizes were plotted to estimate size groupings. For each taxon, we calculated mean body mass across time periods by dividing total biomass by total abundance. Primary consumers were classified as Small: 0 - 0.4 mg, Medium: 0.41 - 1.0 mg, and Large: 1.1 - 12.0 mg. Predators were classified as Small: 0 - 5.0 mg, Medium: 5.1 - 15.0 mg, and Large: 15.1 - 30.0 mg.


```
## Divide groups up by size as per plot groupings
# Consumer.size.groups <- cut(
    consumer.size.data$consumer.size.estimates, c(0, 0.4, 1.0, 12.0, Inf),
    right = FALSE
    )
consumer.size.data$size.group <- as.numeric(consumer.size.groups)

# Predators
predator.size.groups <- cut(
    predator.size.data$predator.size.estimates, c(0, 5, 15, 30, Inf),
    right = FALSE
    )
predator.size.data$size.group <- as.numeric(predator.size.groups)</pre>
```

Biomass Change

We numerically evaluated changes in biomass by size groupings for consumers and predators.

Consumers

Consumer taxa within each size grouping:

- Group 1: Amphinemura, Ancyronyx, Baetidae, Baetisca, Brachycentrus, Caenidae, Cheumatopsyche, Chironomidae, Crambidae, Cyrnellus, Dubiraphia, Elmidae, Ephemerellidae, Ephemeroptera, Heptageniidae, Hydropsychidae, Isonychia, Isopoda, Lepidoptera, Leptoceridae, Leptophlebiidae, Limnephilidae, Macronychus, Microcylloepus, Nectopsyche, Nemouridae, Neureclipsis, Polycentropodidae, Psephenus, Simuliidae, Stenelmis, Taeniopteryx, Tipulidae, Triaenodes, Trichoptera, Tricorythodes
- Group 2: Chimarra, Ectopria, Hydropsyche, Macrostemum, Paraponyx, Shipsa
- Group 3: Ironoquia, Neargyractis, Pteronarcys, Pycnopsyche

```
## Consumer data management
# 1980s
consumer.biomass.1980s <- biomass.data %>%
   filter(Period == "1980") %>%
    select(Amphinemura:Tricorythodes) %>%
   mutate(summed biomass = rowSums(.))
# Sum all biomass for the 1980s consumers
consumer.biomass.1980s.total.biomass <- sum(consumer.biomass.1980s$summed_biomass)</pre>
# Summed biomass = 204899.2
# 2010s
consumer.biomass.2010s <- biomass.data %>%
   filter(Period == "2010") %>%
    select(Amphinemura:Tricorythodes) %>%
   mutate(summed_biomass = rowSums(.))
# Sum all biomass for the 2010s consumers
consumer.biomass.2010s.total.biomass <- sum(consumer.biomass.2010s$summed biomass)
# Summed biomass = 97934.14
```

```
## 1980s consumers group 1 taxa
group.1.consumer.biomass.1980s <- consumer.biomass.1980s %>%
    select(Amphinemura, Ancyronyx, Baetidae, Baetisca, Brachycentrus, Caenidae,
                 Cheumatopsyche, Chironomidae, Crambidae, Cyrnellus, Dubiraphia, Elmidae,
                 Ephemerellidae, Ephemeroptera, Heptageniidae, Hydropsychidae, Isonychia,
                 Isopoda, Lepidoptera, Leptoceridae, Leptophlebiidae, Limnephilidae,
                 Macronychus, Microcylloepus, Nectopsyche, Nemouridae, Neureclipsis,
                 Polycentropodidae, Psephenus, Simuliidae, Stenelmis, Taeniopteryx,
                 Tipulidae, Triaenodes, Trichoptera, Tricorythodes) %>%
   mutate(summed biomass = rowSums(.))
## 1980s consumers group 1 total biomass
group.1.consumer.biomass.1980s.total.biomass <- sum(group.1.consumer.biomass.1980s$summed_biomass)
# Summed biomass = 78968.09
## 1980s consumers group 2 taxa
group.2.consumer.biomass.1980s <- consumer.biomass.1980s %>%
    select(Chimarra, Ectopria, Hydropsyche, Macrostemum, Paraponyx, Shipsa) %>%
   mutate(summed_biomass = rowSums(.))
## 1980s consumers group 2 total biomass
group.2.consumer.biomass.1980s.total.biomass <- sum(group.2.consumer.biomass.1980s$summed biomass)
# Summed biomass = 116946.4
## 1980s consumers group 3 taxa
group.3.consumer.biomass.1980s <- consumer.biomass.1980s %>%
    select(Ironoquia, Neargyractis, Pteronarcys, Pycnopsyche) %>%
   mutate(summed_biomass = rowSums(.))
## 1980s consumers group 3 total biomass
group.3.consumer.biomass.1980s.total.biomass <- sum(group.3.consumer.biomass.1980s$summed_biomass)
# Summed biomass = 8984.69
```

```
## 2010s consumers group 1 taxa
group.1.consumer.biomass.2010s <- consumer.biomass.2010s %>%
    select(Amphinemura, Ancyronyx, Baetidae, Baetisca, Brachycentrus, Caenidae,
                 Cheumatopsyche, Chironomidae, Crambidae, Cyrnellus, Dubiraphia, Elmidae,
                 Ephemerellidae, Ephemeroptera, Heptageniidae, Hydropsychidae, Isonychia,
                 Isopoda, Lepidoptera, Leptoceridae, Leptophlebiidae, Limnephilidae,
                 Macronychus, Microcylloepus, Nectopsyche, Nemouridae, Neureclipsis,
                 Polycentropodidae, Psephenus, Simuliidae, Stenelmis, Taeniopteryx,
                 Tipulidae, Triaenodes, Trichoptera, Tricorythodes) %>%
   mutate(summed biomass = rowSums(.))
## 2010s consumers group 1 total biomass
group.1.consumer.biomass.2010s.total.biomass <- sum(group.1.consumer.biomass.2010s$summed_biomass)
# Summed biomass = 38115.6
## 2010s consumers group 2 taxa
group.2.consumer.biomass.2010s <- consumer.biomass.2010s %>%
    select(Chimarra, Ectopria, Hydropsyche, Macrostemum, Paraponyx, Shipsa) %>%
   mutate(summed biomass = rowSums(.))
## 2010s consumers group 2 total biomass
group.2.consumer.biomass.2010s.total.biomass <- sum(group.2.consumer.biomass.2010s$summed biomass)
# Summed biomass = 59127.29
## 2010s consumers group 3 taxa
group.3.consumer.biomass.2010s <- consumer.biomass.2010s %>%
    select(Ironoquia, Neargyractis, Pteronarcys, Pycnopsyche) %>%
    mutate(summed_biomass = rowSums(.))
## 2010s consumers group 3 total biomass
group.3.consumer.biomass.2010s.total.biomass <- sum(group.3.consumer.biomass.2010s$summed_biomass)
# Summed biomass = 691.2489
## 1980s Consumers (% of total biomass within sampling period)
(group.1.consumer.biomass.1980s.total.biomass/consumer.biomass.1980s.total.biomass)*100
# Group 1 = 38.54%
(group.2.consumer.biomass.1980s.total.biomass/consumer.biomass.1980s.total.biomass)*100
# Group 2 = 57.08%
(group.3.consumer.biomass.1980s.total.biomass/consumer.biomass.1980s.total.biomass)*100
# Group 3 = 4.38\%
## 2010s Consumers
(group.1.consumer.biomass.2010s.total.biomass/consumer.biomass.2010s.total.biomass)*100
# Group 1 = 38.92%
(group.2.consumer.biomass.2010s.total.biomass/consumer.biomass.2010s.total.biomass)*100
# Group 2 = 60.37\%
(group.3.consumer.biomass.2010s.total.biomass/consumer.biomass.2010s.total.biomass)*100
\# Group 3 = 0.71\%
```

Predators

Predator taxa within each size grouping:

- Group 1: Acroneuria, Aeshnidae, Amphipoda, Anisoptera, Argia, Ceraclea, Ceratopogoninae, Cernotina, Coenagrionidae, Enallagma, Hemerodromia, Isoperla, Neoperla, Oecetis, Paragnetina, Perlesta, Perlidae, Perlodidae, Plecoptera
- Group 2: Aeshna, Boyeria, Corydalus, Hydroperla, Nasiaeschna
- Group 3: Helopicus, Neurocordulia

```
## Predator data management
# 1980s
predator.biomass.1980s <- biomass.data %>%
   filter(Period == "1980") %>%
    select(Acroneuria:Plecoptera) %>%
   mutate(summed_biomass = rowSums(.))
# Sum all biomass for the 1980s predators
predator.biomass.1980s.total.biomass <- sum(predator.biomass.1980s$summed_biomass)
# Summed biomass = 35683.48
# 2010s
predator.biomass.2010s <- biomass.data %>%
   filter(Period == "2010") %>%
   select(Acroneuria:Plecoptera) %>%
   mutate(summed_biomass = rowSums(.))
# Sum all biomass for the 2010s predators
predator.biomass.2010s.total.biomass <- sum(predator.biomass.2010s$summed_biomass)</pre>
\# Summed biomass = 41286.46
```

```
## 1980s predators group 1 taxa
group.1.predator.biomass.1980s <- predator.biomass.1980s %>%
    select(Acroneuria, Aeshnidae, Amphipoda, Anisoptera, Argia, Ceraclea,
                 Ceratopogoninae, Cernotina, Coenagrionidae, Enallagma, Hemerodromia,
                 Isoperla, Neoperla, Oecetis, Paragnetina, Perlesta, Perlidae, Perlodidae, Plecoptera)
    mutate(summed_biomass = rowSums(.))
## 1980s predators group 1 total biomass
group.1.predator.biomass.1980s.total.biomass <- sum(group.1.predator.biomass.1980s$summed_biomass)
# Summed biomass = 13214.15
## 1980s predators group 2 taxa
group.2.predator.biomass.1980s <- predator.biomass.1980s %>%
    select(Aeshna, Boyeria, Corydalus, Hydroperla, Nasiaeschna) %>%
   mutate(summed_biomass = rowSums(.))
## 1980s predators group 2 total biomass
group.2.predator.biomass.1980s.total.biomass <- sum(group.2.predator.biomass.1980s$summed_biomass)</pre>
# Summed biomass = 17395.72
## 1980s predators group 3 taxa
group.3.predator.biomass.1980s <- predator.biomass.1980s %>%
    select(Helopicus, Neurocordulia) %>%
   mutate(summed_biomass = rowSums(.))
## 1980s predators group 3 total biomass
group.3.predator.biomass.1980s.total.biomass <- sum(group.3.predator.biomass.1980s$summed_biomass)
# Summed biomass = 5073.609
```

```
## 2010s predators group 1 taxa
group.1.predator.biomass.2010s <- predator.biomass.2010s %>%
    select(Acroneuria, Aeshnidae, Amphipoda, Anisoptera, Argia, Ceraclea,
                 Ceratopogoninae, Cernotina, Coenagrionidae, Enallagma, Hemerodromia,
                 Isoperla, Neoperla, Oecetis, Paragnetina, Perlesta, Perlidae, Perlodidae, Plecoptera)
    mutate(summed_biomass = rowSums(.))
## 2010s predators group 1 total biomass
group.1.predator.biomass.2010s.total.biomass <- sum(group.1.predator.biomass.2010s$summed_biomass)
# Summed biomass = 15968.22
## 2010s predators group 2 taxa
group.2.predator.biomass.2010s <- predator.biomass.2010s %>%
    select(Aeshna, Boyeria, Corydalus, Hydroperla, Nasiaeschna) %>%
   mutate(summed_biomass = rowSums(.))
## 2010s predators group 2 total biomass
group.2.predator.biomass.2010s.total.biomass <- sum(group.2.predator.biomass.2010s$summed_biomass)
# Summed biomass = 18922.44
## 2010s predators group 3 taxa
group.3.predator.biomass.2010s <- predator.biomass.2010s %>%
    select(Helopicus, Neurocordulia) %>%
    mutate(summed_biomass = rowSums(.))
## 2010s predators group 3 total biomass
group.3.predator.biomass.2010s.total.biomass <- sum(group.3.predator.biomass.2010s$summed_biomass)
# Summed biomass = 6395.791
## 1980s Predators (% of total biomass within sampling period)
(group.1.predator.biomass.1980s.total.biomass/predator.biomass.1980s.total.biomass)*100
# Group 1 = 37.03%
(group.2.predator.biomass.1980s.total.biomass/predator.biomass.1980s.total.biomass)*100
# Group 2 = 48.75\%
(group.3.predator.biomass.1980s.total.biomass/predator.biomass.1980s.total.biomass)*100
\# Group 3 = 14.22\%
## 2010s Predators
(group.1.predator.biomass.2010s.total.biomass/predator.biomass.2010s.total.biomass)*100
# Group 1 = 38.68\%
(group.2.predator.biomass.2010s.total.biomass/predator.biomass.2010s.total.biomass)*100
# Group 2 = 45.83\%
(group.3.predator.biomass.2010s.total.biomass/predator.biomass.2010s.total.biomass)*100
# Group 3 = 15.49%
## Divide mean 2010s biomass by mean 1980s biomass
percent.predator.biomass.change <- (</pre>
    mean(predator.biomass.2010s.total.biomass)/mean(predator.biomass.1980s.total.biomass)
    )*100
# 2010s biomass = 115.70% of 1980s biomass
```

Biomass Change & Contribution of Dominant Caddisflies

```
## Hydropsyche
Hydropsyche.biomass.1980s <- biomass.1980s$Hydropsyche
Hydropsyche.biomass.2010s <- biomass.2010s$Hydropsyche

## Chimarra
Chimarra.biomass.1980s <- biomass.1980s$Chimarra
Chimarra.biomass.2010s <- biomass.2010s$Chimarra

## Cheumatopsyche
Cheumatopsyche.biomass.1980s <- biomass.1980s$Cheumatopsyche
Cheumatopsyche.biomass.2010s <- biomass.2010s$Cheumatopsyche
```

```
## Hydropsyche
(mean(Hydropsyche.biomass.2010s)/mean(Hydropsyche.biomass.1980s))*100
# 2010 biomass = 34.31% of 1980s
## Chimarra
(mean(Chimarra.biomass.2010s)/mean(Chimarra.biomass.1980s))*100
# 2010 biomass = 63.02% of 1980s
## Cheumatopsyche
(mean(Cheumatopsyche.biomass.2010s)/mean(Cheumatopsyche.biomass.1980s))*100
# 2010 biomass = 14.96% of 1980s
## Percent of total biomass made up by all 3 dominant caddisflies
# 1980s
((mean(Hydropsyche.biomass.1980s) + mean(Chimarra.biomass.1980s) +
         mean(Cheumatopsyche.biomass.1980s)) / mean(summed.biomass.1980s))*100
# 1980s = 60.80% of all biomass
# 2010s
((mean(Hydropsyche.biomass.2010s) + mean(Chimarra.biomass.2010s) +
          mean(Cheumatopsyche.biomass.2010s)) / mean(summed.biomass.2010s))*100
\# 2010s = 42.15\% of all biomass
```

Density Change

We numerically evaluated changes in density by size groupings for consumers and predators.

Consumers

Consumer taxa within each size grouping:

- Group 1: Amphinemura, Ancyronyx, Baetidae, Baetisca, Brachycentrus, Caenidae, Cheumatopsyche, Chironomidae, Crambidae, Cyrnellus, Dubiraphia, Elmidae, Ephemerellidae, Ephemeroptera, Heptageniidae, Hydropsychidae, Isonychia, Isopoda, Lepidoptera, Leptoceridae, Leptophlebiidae, Limnephilidae, Macronychus, Microcylloepus, Nectopsyche, Nemouridae, Neureclipsis, Polycentropodidae, Psephenus, Simuliidae, Stenelmis, Taeniopteryx, Tipulidae, Triaenodes, Trichoptera, Tricorythodes
- Group 2: Chimarra, Ectopria, Hydropsyche, Macrostemum, Paraponyx, Shipsa
- Group 3: Ironoquia, Neargyractis, Pteronarcys, Pycnopsyche

```
## Consumer data management
# 1980s
consumer.density.1980s <- density.data %>%
    filter(Period == "1980") %>%
    select(Amphinemura:Tricorythodes) %>%
    mutate(summed density = rowSums(.))
# Sum all density for the 1980s consumers
consumer.density.1980s.total.density <- sum(consumer.density.1980s$summed_density)</pre>
# Summed density = 2580454
# 2010s
consumer.density.2010s <- density.data %>%
    filter(Period == "2010") %>%
    select(Amphinemura:Tricorythodes) %>%
    mutate(summed_density = rowSums(.))
# Sum all density for the 2010s consumers
consumer.density.2010s.total.density <- sum(consumer.density.2010s$summed_density)</pre>
# Summed density = 2110836
```

```
## 1980s consumers group 1 taxa
group.1.consumer.density.1980s <- consumer.density.1980s %>%
    select(Amphinemura, Ancyronyx, Baetidae, Baetisca, Brachycentrus, Caenidae,
                 Cheumatopsyche, Chironomidae, Crambidae, Cyrnellus, Dubiraphia, Elmidae,
                 Ephemerellidae, Ephemeroptera, Heptageniidae, Hydropsychidae, Isonychia,
                 Isopoda, Lepidoptera, Leptoceridae, Leptophlebiidae, Limnephilidae,
                 Macronychus, Microcylloepus, Nectopsyche, Nemouridae, Neureclipsis,
                 Polycentropodidae, Psephenus, Simuliidae, Stenelmis, Taeniopteryx,
                 Tipulidae, Triaenodes, Trichoptera, Tricorythodes) %>%
   mutate(summed density = rowSums(.))
## 1980s consumers group 1 total density
group.1.consumer.density.1980s.total.density <- sum(group.1.consumer.density.1980s$summed_density)</pre>
# Summed density = 2302319
## 1980s consumers group 2 taxa
group.2.consumer.density.1980s <- consumer.density.1980s %>%
    select(Chimarra, Ectopria, Hydropsyche, Macrostemum, Paraponyx, Shipsa) %>%
   mutate(summed density = rowSums(.))
## 1980s consumers group 2 total density
group.2.consumer.density.1980s.total.density <- sum(group.2.consumer.density.1980s$summed_density)
# Summed density = 277220.8
## 1980s consumers group 3 taxa
group.3.consumer.density.1980s <- consumer.density.1980s %>%
    select(Ironoquia, Neargyractis, Pteronarcys, Pycnopsyche) %>%
   mutate(summed_density = rowSums(.))
## 1980s consumers group 3 total density
group.3.consumer.density.1980s.total.density <- sum(group.3.consumer.density.1980s$summed_density)
# Summed density = 913.8923
```

```
## 2010s consumers group 1 taxa
group.1.consumer.density.2010s <- consumer.density.2010s %>%
    select(Amphinemura, Ancyronyx, Baetidae, Baetisca, Brachycentrus, Caenidae,
                 Cheumatopsyche, Chironomidae, Crambidae, Cyrnellus, Dubiraphia, Elmidae,
                 Ephemerellidae, Ephemeroptera, Heptageniidae, Hydropsychidae, Isonychia,
                 Isopoda, Lepidoptera, Leptoceridae, Leptophlebiidae, Limnephilidae,
                 Macronychus, Microcylloepus, Nectopsyche, Nemouridae, Neureclipsis,
                 Polycentropodidae, Psephenus, Simuliidae, Stenelmis, Taeniopteryx,
                 Tipulidae, Triaenodes, Trichoptera, Tricorythodes) %>%
   mutate(summed density = rowSums(.))
## 2010s consumers group 1 total density
group.1.consumer.density.2010s.total.density <- sum(group.1.consumer.density.2010s$summed_density)
# Summed density = 1999623
## 2010s consumers group 2 taxa
group.2.consumer.density.2010s <- consumer.density.2010s %>%
    select(Chimarra, Ectopria, Hydropsyche, Macrostemum, Paraponyx, Shipsa) %>%
    mutate(summed density = rowSums(.))
## 2010s consumers group 2 total density
group.2.consumer.density.2010s.total.density <- sum(group.2.consumer.density.2010s$summed_density)
\# Summed density = 111083.3
## 2010s consumers group 3 taxa
group.3.consumer.density.2010s <- consumer.density.2010s %>%
    select(Ironoquia, Neargyractis, Pteronarcys, Pycnopsyche) %>%
   mutate(summed_density = rowSums(.))
## 2010s consumers group 3 total density
group.3.consumer.density.2010s.total.density <- sum(group.3.consumer.density.2010s$summed_density)
# Summed density = 130.0784
## 1980s Consumers (% of total density within sampling period)
(group.1.consumer.density.1980s.total.density/consumer.density.1980s.total.density)*100
# Group 1 = 89.22%
(group.2.consumer.density.1980s.total.density/consumer.density.1980s.total.density)*100
# Group 2 = 10.74%
(group.3.consumer.density.1980s.total.density/consumer.density.1980s.total.density)*100
\# Group 3 = 0.04\%
## 2010s Consumers
(group.1.consumer.density.2010s.total.density/consumer.density.2010s.total.density)*100
# Group 1 = 94.73%
(group.2.consumer.density.2010s.total.density/consumer.density.2010s.total.density)*100
# Group 2 = 5.26\%
(group.3.consumer.density.2010s.total.density/consumer.density.2010s.total.density)*100
\# Group 3 = 0.01\%
## Divide mean 2010s density by mean 1980s density
percent.consumer.density.change <- (</pre>
   mean(consumer.density.2010s.total.density)/mean(consumer.density.1980s.total.density)
```

)*100

2010s density = 81.80% of 1980s density

Predators

Predator taxa within each size grouping:

- Group 1: Acroneuria, Aeshnidae, Amphipoda, Anisoptera, Argia, Ceraclea, Ceratopogoninae, Cernotina, Coenagrionidae, Enallagma, Hemerodromia, Isoperla, Neoperla, Oecetis, Paragnetina, Perlesta, Perlidae, Perlodidae, Plecoptera
- Group 2: Aeshna, Boyeria, Corydalus, Hydroperla, Nasiaeschna
- Group 3: Helopicus, Neurocordulia

```
## Predator data management
# 1980s
predator.density.1980s <- density.data %>%
   filter(Period == "1980") %>%
    select(Acroneuria:Plecoptera) %>%
   mutate(summed_density = rowSums(.))
# Sum all biomass for the 1980s predators
predator.density.1980s.total.density <- sum(predator.density.1980s$summed_density)
# Summed density = 47433.32
# 2010s
predator.density.2010s <- density.data %>%
   filter(Period == "2010") %>%
   select(Acroneuria:Plecoptera) %>%
   mutate(summed_density = rowSums(.))
# Sum all biomass for the 2010s predators
predator.density.2010s.total.density <- sum(predator.density.2010s$summed_density)</pre>
# Summed density = 88336.69
```

```
## 1980s predators group 1 taxa
group.1.predator.density.1980s <- predator.density.1980s %>%
    select(Acroneuria, Aeshnidae, Amphipoda, Anisoptera, Argia, Ceraclea,
                 Ceratopogoninae, Cernotina, Coenagrionidae, Enallagma, Hemerodromia,
                 Isoperla, Neoperla, Oecetis, Paragnetina, Perlesta, Perlidae, Perlodidae, Plecoptera)
   mutate(summed_density = rowSums(.))
## 1980s predators group 1 total density
group.1.predator.density.1980s.total.density <- sum(group.1.predator.density.1980s$summed_density)
# Summed density = 46049.37
## 1980s predators group 2 taxa
group.2.predator.density.1980s <- predator.density.1980s %>%
    select(Aeshna, Boyeria, Corydalus, Hydroperla, Nasiaeschna) %>%
   mutate(summed_density = rowSums(.))
## 1980s predators group 2 total density
group.2.predator.density.1980s.total.density <- sum(group.2.predator.density.1980s$summed_density)
# Summed density = 47433.32
## 1980s predators group 3 taxa
group.3.predator.density.1980s <- predator.density.1980s %>%
    select(Helopicus, Neurocordulia) %>%
   mutate(summed_density = rowSums(.))
## 1980s predators group 3 total density
group.3.predator.density.1980s.total.density <- sum(group.3.predator.density.1980s$summed_density)
# Summed density = 158.1566
```

```
## 2010s predators group 1 taxa
group.1.predator.density.2010s <- predator.density.2010s %>%
    select(Acroneuria, Aeshnidae, Amphipoda, Anisoptera, Argia, Ceraclea,
                 Ceratopogoninae, Cernotina, Coenagrionidae, Enallagma, Hemerodromia,
                 Isoperla, Neoperla, Oecetis, Paragnetina, Perlesta, Perlidae, Perlodidae, Plecoptera)
    mutate(summed_density = rowSums(.))
## 2010s predators group 1 total density
group.1.predator.density.2010s.total.density <- sum(group.1.predator.density.2010s$summed_density)</pre>
# Summed density = 85669.75
## 2010s predators group 2 taxa
group.2.predator.density.2010s <- predator.density.2010s %>%
    select(Aeshna, Boyeria, Corydalus, Hydroperla, Nasiaeschna) %>%
    mutate(summed_density = rowSums(.))
## 2010s predators group 2 total density
group.2.predator.density.2010s.total.density <- sum(group.2.predator.density.2010s$summed_density)
# Summed density = 2425.899
## 2010s predators group 3 taxa
group.3.predator.density.2010s <- predator.density.2010s %>%
    select(Helopicus, Neurocordulia) %>%
   mutate(summed_density = rowSums(.))
## 2010s predators group 3 total density
group.3.predator.density.2010s.total.density <- sum(group.3.predator.density.2010s$summed_density)
\# Summed density = 241.0455
## 1980s Predators (% of total density within sampling period)
(group.1.predator.density.1980s.total.density/predator.density.1980s.total.density)*100
# Group 1 = 97.08%
(group.2.predator.density.1980s.total.density/predator.density.1980s.total.density)*100
# Group 2 = 2.58%
(group.3.predator.density.1980s.total.density/predator.density.1980s.total.density)*100
\# Group 3 = 0.33\%
## 2010s Predators
(group.1.predator.density.2010s.total.density/predator.density.2010s.total.density)*100
# Group 1 = 96.98%
(group.2.predator.density.2010s.total.density/predator.density.2010s.total.density)*100
# Group 2 = 2.75%
(group.3.predator.density.2010s.total.density/predator.density.2010s.total.density)*100
# Group 3 = 0.27%
## Divide mean 2010s density by mean 1980s density
percent.predator.density.change <- (</pre>
   mean(predator.density.2010s.total.density)/mean(predator.density.1980s.total.density)
    )*100
# 2010s density = 186.23% of 1980s density
```

Biomass & Density Chi-Squared Tests

We performed a chi-squared test to determine whether there were differences in biomass by size groupings between sampling period for consumers and predators. Chi-squared tests were performed using chisq.test(), with observed and expected frequencies examined to confirm test assumptions were met. Additionally, we assessed residuals to determine over- and under-represented size groupings by sampling period. Residuals were calculated as:

$$\frac{Observed-Expected}{\sqrt{Expected}}$$

Consumer Biomass

```
## Set consumer chi-square dataframe
consumer.biomass.chi.square.data <- as.data.frame(data.frame(matrix(0, nrow = 3, ncol = 2)))
colnames(consumer.biomass.chi.square.data) <- c("1980s", "2010s")
rownames(consumer.biomass.chi.square.data) <- c("Group_1", "Group_2", "Group_3")

## Add biomass values by groups for the 1980s and 2010s
# 1980s
consumer.biomass.chi.square.data$^1980s^ <- c(
    group.1.consumer.biomass.1980s.total.biomass,
    group.2.consumer.biomass.1980s.total.biomass,
    group.3.consumer.biomass.1980s.total.biomass
)

# 2010s
consumer.biomass.chi.square.data$^2010s^ <- c(
    group.1.consumer.biomass.2010s.total.biomass,
    group.2.consumer.biomass.2010s.total.biomass,
    group.3.consumer.biomass.2010s.total.biomass,
    group.3.consumer.biomass.2010s.total.biomass,
    group.3.consumer.biomass.2010s.total.biomass,
    group.3.consumer.biomass.2010s.total.biomass,
    group.3.consumer.biomass.2010s.total.biomass,
    group.3.consumer.biomass.2010s.total.biomass,
    group.3.consumer.biomass.2010s.total.biomass,
    group.3.consumer.biomass.2010s.total.biomass,
    group.3.consumer.biomass.2010s.total.biomass</pre>
```

```
consumer.biomass.chi.square.test <- chisq.test(consumer.biomass.chi.square.data)
# chi-squared = 2933.7, df = 2, P < 0.00001</pre>
```

Table 22: Observed biomass by size groupings for the consumer chi-squared test.

	1980s	2010s
Group_1	78968.09	38115.600
$Group_2$	116946.43	59127.287
Group_3	8984.69	691.249

Table 23: Expected biomass by size groupings for the consumer chi-squared test.

	1980s	2010s
Group_1	79219.67	37864.027
$Group_2$	119132.74	56940.979
$Group_3$	6546.81	3129.129

Table 24: Residual biomass by size groupings for the consumer chi-squared test.

	1980s	2010s
Group_1	-0.894	1.293
$Group_2$	-6.334	9.162
$Group_3$	30.130	-43.581

Figure 7: Plot of residuals from the consumer chi-squared test.

Consumer Density

```
## Set consumer chi-square dataframe
consumer.density.chi.square.data <- as.data.frame(data.frame(matrix(0, nrow = 3, ncol = 2)))
colnames(consumer.density.chi.square.data) <- c("1980s", "2010s")
rownames(consumer.density.chi.square.data) <- c("Group_1", "Group_2", "Group_3")

## Add density values by groups for the 1980s and 2010s
# 1980s
consumer.density.chi.square.data$^1980s^ <- c(
    group.1.consumer.density.1980s.total.density,
    group.2.consumer.density.1980s.total.density,
    group.3.consumer.density.1980s.total.density
)

# 2010s
consumer.density.chi.square.data$^2010s^ <- c(
    group.1.consumer.density.2010s.total.density,
    group.2.consumer.density.2010s.total.density,
    group.3.consumer.density.2010s.total.density,
    group.3.consumer.density.2010s.total.density,
    group.3.consumer.density.2010s.total.density,
    group.3.consumer.density.2010s.total.density,
    group.3.consumer.density.2010s.total.density,
    group.3.consumer.density.2010s.total.density,
    group.3.consumer.density.2010s.total.density,
    group.3.consumer.density.2010s.total.density,
    group.3.consumer.density.2010s.total.density</pre>
```

```
consumer.density.chi.square.test <- chisq.test(consumer.density.chi.square.data) # chi-squared = 46424, df = 2, P < 0.00001
```

Table 25: Observed density by size groupings for the consumer chi-squared test.

	1980s	2010s
Group_1	2302319.190	1999622.789
$Group_2$	277220.761	111083.255
Group_3	913.892	130.078

Table 26: Expected density by size groupings for the consumer chi-squared test.

	1980s	2010s
Group_1	2366292.170	1935649.809
$Group_2$	213587.435	174716.581
$Group_3$	574.238	469.732

Table 27: Residual density by size groupings for the consumer chi-squared test.

	1980s	2010s
Group_1	-41.587	45.982
$Group_2$	137.688	-152.236
Group_3	14.174	-15.672

Figure 8: Plot of residuals from the consumer chi-squared test.

Predator Biomass

```
## Set predator chi-square dataframe
predator.biomass.chi.square.data <- as.data.frame(data.frame(matrix(0, nrow = 3, ncol = 2)))
colnames(predator.biomass.chi.square.data) <- c("1980s", "2010s")
rownames(predator.biomass.chi.square.data) <- c("Group_1", "Group_2", "Group_3")

## Add biomass values by groups for the 1980s and 2010s
# 1980s
predator.biomass.chi.square.data$`1980s` <- c(
    group.1.predator.biomass.1980s.total.biomass,
    group.2.predator.biomass.1980s.total.biomass,
    group.3.predator.biomass.1980s.total.biomass
)

# 2010s
predator.biomass.chi.square.data$`2010s` <- c(
    group.1.predator.biomass.2010s.total.biomass,
    group.2.predator.biomass.2010s.total.biomass,
    group.3.predator.biomass.2010s.total.biomass,
    group.3.predator.biomass.2010s.total.biomass,
    group.3.predator.biomass.2010s.total.biomass,
    group.3.predator.biomass.2010s.total.biomass)</pre>
```

```
predator.biomass.chi.square.test <- chisq.test(predator.biomass.chi.square.data)
# chi-squared = 69.014, df = 2, P < 0.00001</pre>
```

Table 28: Observed biomass by size groupings for the predator chi-squared test.

	1980s	2010s
Group_1	13214.148	15968.223
$Group_2$	17395.718	18922.441
Group_3	5073.609	6395.791

Table 29: Expected biomass by size groupings for the predator chi-squared test.

	1980s	2010s
Group_1	13529.029	15653.342
$Group_2$	16837.200	19480.959
Group_3	5317.246	6152.154

Table 30: Residual biomass by size groupings for the predator chi-squared test.

	1980s	2010s
Group_1	-2.707	2.517
$Group_2$	4.304	-4.002
Group_3	-3.341	3.106

Figure 9: Plot of residuals from the predator chi-squared test.

Predator Density

```
## Set predator chi-square dataframe
predator.density.chi.square.data <- as.data.frame(data.frame(matrix(0, nrow = 3, ncol = 2)))
colnames(predator.density.chi.square.data) <- c("1980s", "2010s")
rownames(predator.density.chi.square.data) <- c("Group_1", "Group_2", "Group_3")

## Add density values by groups for the 1980s and 2010s
# 1980s
predator.density.chi.square.data$`1980s` <- c(
    group.1.predator.density.1980s.total.density,
    group.2.predator.density.1980s.total.density,
    group.3.predator.density.1980s.total.density
)

# 2010s
predator.density.chi.square.data$`2010s` <- c(
    group.1.predator.density.2010s.total.density,
    group.2.predator.density.2010s.total.density,
    group.3.predator.density.2010s.total.density,
    group.3.predator.density.2010s.total.density,
    group.3.predator.density.2010s.total.density
)</pre>
```

```
predator.density.chi.square.test <- chisq.test(predator.density.chi.square.data)
# chi-squared = 6.8918, df = 2, P = 0.03188</pre>
```

Table 31: Observed density by size groupings for the predator chi-squared test.

	1980s	2010s
Group_1	46049.372	85669.746
$Group_2$	1225.790	2425.899
Group_3	158.157	241.046

Table 32: Expected density by size groupings for the predator chi-squared test.

	1980s	2010s
Group_1	46018.078	85701.040
$Group_2$	1275.773	2375.916
Group_3	139.467	259.735

Table 33: Residual density by size groupings for the predator chi-squared test.

	1980s	2010s
Group_1	0.146	-0.107
$Group_2$	-1.399	1.025
Group_3	1.583	-1.160

Figure 10: Plot of residuals from the predator chi-squared test.

Biomass Contributions

Biomass contributions were calculated for consumer and predator groups.

Consumers

```
## Separate consumer biomass data by sampling period
# 1980s
consumer.1980s.biomass <- invertebrate.biomass.matrix %>%
    select(Amphinemura:Tricorythodes) %>%
    slice(1:25)
consumer.1980s.mean.biomass <- t(colMeans(consumer.1980s.biomass))
consumer.1980s.biomass.contribution <- (
        (consumer.1980s.mean.biomass/consumer.1980s.biomass)*100
)

# 2010s
consumer.2010s.biomass <- invertebrate.biomass.matrix %>%
        select(Amphinemura:Tricorythodes) %>%
        slice(26:49)
consumer.2010s.mean.biomass <- t(colMeans(consumer.2010s.biomass))
consumer.2010s.biomass.contribution <- (
        (consumer.2010s.mean.biomass/consumer.2010s.biomass)*100
)</pre>
```

Predators

Individual Body Size Change

We tested whether mean body sizes of the most dominant primary consumers and predators were different between sampling periods. We calculated the average percent composition of biomass for each taxon within each sampling period and focused on the five most dominant consumers and the three most dominant predators. We calculated average individual mass for each sampling month by dividing biomass by abundance and performed two-sample Welch t-tests on average mass between the 1980s and the 2010s for each of the dominant taxa.

- Dominant consumers = Hydropsyche, Cheumatopsyche, Chimarra, Heptageniidae, Chironomidae
- Dominant predators = Corydalus, Paragnetina, Neurocordulia

Body Size t-Tests

```
## Data management for body size t-tests
## Hydropsyche
Hydropsyche.80.size <- ((biomass.1980s$Hydropsyche)/(density.1980s$Hydropsyche))
Hydropsyche.10.size <- ((biomass.2010s$Hydropsyche)/(density.2010s$Hydropsyche))
## Cheumatopsyche
Cheumatopsyche.80.size <- ((biomass.1980s$Cheumatopsyche)/(density.1980s$Cheumatopsyche))
Cheumatopsyche.10.size <- ((biomass.2010s$Cheumatopsyche)/(density.2010s$Cheumatopsyche))
## Chimarra
Chimarra.80.size <- ((biomass.1980s$Chimarra)/(density.1980s$Chimarra))
Chimarra.10.size <- ((biomass.2010s$Chimarra)/(density.2010s$Chimarra))
## Heptageniidae
Heptageniidae.80.size <- ((biomass.1980s$Heptageniidae)/(density.1980s$Heptageniidae))</pre>
Heptageniidae.10.size <- ((biomass.2010s$Heptageniidae)/(density.2010s$Heptageniidae))</pre>
## Chironomidae
Chironomidae.80.size <- ((biomass.1980s$Chironomidae)/(density.1980s$Chironomidae))
Chironomidae.10.size <- ((biomass.2010s$Chironomidae)/(density.2010s$Chironomidae))
## Corydalus
Corydalus.80.size <- ((biomass.1980s$Corydalus)/(density.1980s$Corydalus))</pre>
Corydalus.10.size <- ((biomass.2010s$Corydalus)/(density.2010s$Corydalus))</pre>
## Paragnetina
Paragnetina.80.size <- ((biomass.1980s$Paragnetina)/(density.1980s$Paragnetina))
Paragnetina.10.size <- ((biomass.2010s$Paragnetina)/(density.2010s$Paragnetina))
## Neurocordulia
Neurocordulia.80.size <- ((biomass.1980s$Neurocordulia)/(density.1980s$Neurocordulia))
Neurocordulia.10.size <- ((biomass.2010s$Neurocordulia)/(density.2010s$Neurocordulia))
```

```
## Hydrospyche
t.test(log(Hydropsyche.80.size + 0.00001), log(Hydropsyche.10.size + 0.00001),
       paired = FALSE)
# t = 1.8613, df = 46.739, P-value = 0.069
## Cheumatopsyche
t.test(log(Cheumatopsyche.80.size + 0.00001), log(Cheumatopsyche.10.size + 0.00001),
       paired = FALSE)
\# \ t = 5.1915, \ df = 46.86, \ P-value < 0.001
## Chimarra
t.test(log(Chimarra.80.size + 0.00001), log(Chimarra.10.size + 0.00001),
       paired = FALSE)
# t = 0.42278, df = 44.042, P-value = 0.675
## Heptageniidae
t.test(log(Heptageniidae.80.size + 0.00001), log(Heptageniidae.10.size + 0.00001),
       paired = FALSE)
# t = -0.40634, df = 46.633, P-value = 0.686
## Chironomidae
t.test(log(Chironomidae.80.size + 0.00001), log(Chironomidae.10.size + 0.00001),
       paired = FALSE)
# t = -0.17408, df = 46.334, P-value = 0.863
## Corydalus
t.test(log(Corydalus.80.size + 0.00001), log(Corydalus.10.size + 0.00001),
       paired = FALSE)
# t = 1.2464, df = 31.152, P-value = 0.222
## Paragnetina
t.test(Paragnetina.80.size + 0.00001, Paragnetina.10.size + 0.00001,
       paired = FALSE)
\# \ t = 0.2442, \ df = 26.9, \ P-value = 0.809
## Neurocordulia
t.test(Neurocordulia.80.size + 0.00001, Neurocordulia.10.size + 0.00001,
       paired = FALSE)
# t = 1.3378, df = 28.187, P-value = 0.192
```

Community Composition

Community composition was evaluated by calculating a Bray-Curtis distance matrix on a taxon-by-sample biomass matrix. We then conducted a PERMANOVA on this distance matrix to test for effects of sampling period, season, and the interaction on community structure.

```
## Data management for the PERMANOVA
# Sample information for the distance matrix
distance.matrix.info <- biomass.data %>%
    select(UID, Year, Season, Period)
# Taxa-by-abundance community matrix
community.matrix <- log(invertebrate.biomass.matrix + 1)</pre>
## Calculate Bray-Curtis Distance
BC.distance.biomass <- vegdist(community.matrix, method = "bray")
## NMDS Ordination
BC.NMDS.biomass <- monoMDS(BC.distance.biomass, k = 2, model = "global")
# Stress = 0.1819
## PERMANOVA by period, season, and the interaction
community.composition.PERMANOVA <- adonis(</pre>
   BC.distance.biomass ~ Period * Season,
   data = distance.matrix.info,
   permutations = 10000
```

Table 34: Summary of the PERMANOVA comparing composition by period, season, and the interaction.

Term	df	Sums-of-Squares	Mean Square	F	\$R^2\$	P-value
Period	1	0.985	0.985	14.868	0.196	0.000
Season	3	1.046	0.349	5.265	0.209	0.000
Period:Season	3	0.267	0.089	1.341	0.053	0.137
Residuals	41	2.716	0.066	NA	0.542	NA
Total	48	5.013	NA	NA	1.000	NA

Indicator Taxa Analysis

We conducted an indicator species analysis to determine which taxa characterized specific sampling period and season groups.

```
## Create groups based on season: Group 1 = 1980s, Group 2 = 2010s
period.groups <- c(rep(1, 25), rep(2, 24))

## Run indicator analysis comparing by period
indicator.analysis <- multipatt(
    community.matrix,
    period.groups,
    control = how(nperm = 10000)
    )</pre>
```

Table 35: Summary table of the sign of the relationship from the indicator taxa analysis.

	1980s	2010s	Index	Test Statistic	P-value
A 1:					
Amphinemura	1	0	1	0.346	0.234
Ancyronyx	1	1	3	0.857	NA
Baetidae	1	1	3	1.000	NA
Baetisca	0	1	2	0.552	0.031
Brachycentrus	0	1	2	0.764	0.000
Caenidae	1	1	3	0.795	NA
Cheumatopsyche	1	1	3	1.000	NA
Chimarra	1	1	3	0.979	NA
Chironomidae	1	1	3	1.000	NA
Crambidae	0	1	2	0.281	0.360
Cyrnellus	0	1	2	0.645	0.000
Dubiraphia	1	1	3	0.319	NA
Ectopria	1	0	1	0.400	0.109
Elmidae	0	1	2	0.945	0.000
Ephemerellidae	1	1	3	0.795	NA
Ephemeroptera	0	1	2	0.996	0.000
Heptageniidae	1	1	3	1.000	NA
Hydropsyche	1	1	3	1.000	NA
Hydropsychidae	1	1	3	0.881	NA
Ironoquia	1	1	3	0.319	NA
Isonychia	1	1	3	0.904	NA
Isopoda	1	1	3	0.728	NA
Lepidoptera	0	1	2	0.568	0.004
Leptoceridae	0	1	2	0.886	0.000
Leptophlebiidae	0	1	2	0.599	0.004
Limnephilidae	0	1	2	0.284	0.358
Macronychus	1	1	3	0.958	NA
Macrostemum	0	1	2	0.839	0.000
Microcylloepus	0	1	2	0.704	0.000
Neargyractis	1	0	1	0.400	0.112
Gr.		_	-		
Nectopsyche	0	1	2	0.889	0.000

Table 35: Summary table of the sign of the relationship from the indicator taxa analysis. (continued)

	1980s	2010s	Index	Test Statistic	P-value
Nemouridae	1	0	1	0.200	1.000
Neureclipsis	1	1	3	0.589	NA
Paraponyx	1	1	3	0.429	NA
Polycentropodidae	0	1	2	0.661	0.001
Psephenus	1	0	1	0.200	1.000
Pteronarcys	1	0	1	0.937	0.000
Pycnopsyche	1	1	3	0.202	NA
Shipsa	1	0	1	0.200	1.000
Simuliidae	1	1	3	0.926	NA
Stenelmis	1	1	3	0.990	NA
Taeniopteryx	1	1	3	0.589	NA
Tipulidae	1	0	1	0.529	0.009
Triaenodes	0	1	2	0.733	0.000
Trichoptera	0	1	2	0.537	0.037
Tricorythodes	1	1	3	0.742	NA
Acroneuria	1	1	3	0.833	NA
Aeshna	1	0	1	0.200	1.000
Aeshnidae	0	1	2	0.289	0.232
Amphipoda	0	1	2	0.875	0.000
Anisoptera	0	1	2	0.289	0.228
Argia	0	1	2	0.745	0.000
Boyeria	0	1	2	0.507	0.043
Ceraclea	0	1	2	0.680	0.003
Ceratopogoninae	1	1	3	0.958	NA
Cernotina	0	1	2	0.577	0.002
Coenagrionidae	0	1	2	0.524	0.066
Corydalus	1	1	3	0.881	NA
Enallagma	0	1	2	0.537	0.007
Helopicus	1	0	1	0.200	1.000
Hemerodromia	1	1	3	0.881	NA
Hydroperla	0	1	2	0.289	0.234
Isoperla	0	1	2	0.426	0.113
Nasiaeschna	0	1	2	0.289	0.234
Neoperla	1	1	3	0.904	NA
Neurocordulia	1	1	3	0.821	NA
Oecetis	1	1	3	0.904	NA
Paragnetina	1	1	3	0.915	NA
Perlesta	1	1	3	0.795	NA
Perlidae	1	1	3	0.881	NA
Perlodidae	0	1	2	0.354	0.106
Plecoptera	1	1	3	0.728	NA

Carbon & Discharge ANCOVA

We evaluated the relationship between dissolved organic carbon and discharge using an ANCOVA. Monthly averages of carbon and discharge during our sampling periods (i.e., 1980s = December 1981-November 1983, 2010s = July 2015-August 2017) were used for this analysis. We structured the ANCOVA as:

```
Carbon = \alpha + \beta_1(\ln(\text{Discharge})) + \beta_2(\text{Period}) + \beta_3(\ln(\text{Discharge}) \times \text{Period}) + \epsilon
```

with the ANCOVA fitted using lm() and model assumptions checked using check_model(). Influence of terms within the model was estimated by Type II sums-of-squares using the Anova() function.

```
carbon.discharge.ancova <- lm(</pre>
     log(Carbon) ~ log(Mean_Discharge) * Period,
     data = biomass.data
     Linearity
                                                               Homogeneity of Variance
     Reference line should be flat and horizontal
                                                               Reference line should be flat and horizontal
     (VIF)Residual
                                                               Std.
                      1.8
                               2.0
                                        2.2
                                                                                1.8
                                                                                        2.0
                                                                                                 2.2
                                                                                                          2.4
                                                                                                                   2.6
                              Fitted values
                                                                                       Fitted values
     ©ollinearity
                                                               Influential Observations
     Higher bars (>5) indicate potential collinearity issue
                                                              Roints should be inside the contour lines
                                                               Residu
     ariance Inflation
            5
                                                               Std.
           log(Meanlog(Steamge)ischarge):Perioidd
                                                                        0.00
                                                                                              0.10
                                                                                                         0.15
                                                                                       Leverage (hii)
                             moderate (< 10)
                                                    high (>=
              low (< 5)
     Mormality of Residuals
                                                               Normality of Residuals
     Exportainty of Residuals

Exports should fall along the line

2

0

0

-2

-1

0

Standard Normal Dis
                                                               Distribution should be close to the normal curve
                                                               Density
                                                      2
                                                                                -0.4
                                                                                             0.0
                                                                                                         0.4
              Standard Normal Distribution Quantiles
                                                                                         Residuals
```

Figure 11: Diagnostic plots of the carbon by discharge ANCOVA.

Table 36: Summary of the carbon by discharge ANCOVA.

Term	Sums-of-Squares	df	F	P-value
log(Mean_Discharge)	3.098	1	35.101	0.000
Period	0.086	1	0.976	0.329
$\log(\text{Mean_Discharge})$:Period	0.007	1	0.076	0.784
Residuals	3.707	42	NA	NA

Table 37: Table of the effect sizes in the carbon by discharge ANCOVA.

Term	Eta-squared	CI	CI_Low	CI_High
log(Mean_Discharge)	0.455	0.95	0.27	1
Period	0.023	0.95	0.00	1
$\log(\text{Mean_Discharge})$:Period	0.002	0.95	0.00	1

R Session Information

Table 38: Packages for data management and analyses.

Package	Loaded Version	Date
agricolae	1.3-5	2021-06-06
bayestestR	0.11.5	2021-10-30
broom	0.7.12	2022-01-28
car	3.0-12	2021-11-06
carData	3.0-5	2022-01-06
correlation	0.8.0	2022-02-14
datawizard	0.3.0	2022-03-03
dplyr	1.0.8	2022-02-08
easystats	0.4.3	2021-11-07
effectsize	0.6.0.1	2022-01-26
forcats	0.5.1	2021-01-27
ggplot2	3.3.5	2021-06-25
indicspecies	1.7.9	2020-02-04
insight	0.16.0	2022-02-17
kableExtra	1.3.4	2021-02-20
knitr	1.37	2021-12-16
lattice	0.20 - 45	2021-09-22
modelbased	0.7.2	2022-02-28
parameters	0.16.0	2022-01-12
performance	0.8.0	2021-10-01
permute	0.9-7	2022-01-27
purrr	0.3.4	2020-04-17
readr	2.1.2	2022-01-30
report	0.5.1	2022-02-22
reshape2	1.4.4	2020-04-09
see	0.6.9	2022-02-15
$\operatorname{stringr}$	1.4.0	2019-02-10
tibble	3.1.6	2021-11-07
tidyr	1.2.0	2022-02-01
tidyverse	1.3.1	2021-04-15
vegan	2.5-7	2020-11-28
waterData	1.0.8	2017-04-28