Due: 6 Nov 2020

Pre-Lab Assignment 6

§1 Instruction Decoder

§1.1 Control Signal

21.1	Contro	i Signai						
	Opcode	RegDst	RegWrite	ALUSrc1	ALUSrc2	ALUOp[2:0]	MemWrite	MemtoReg
lw	0000	0	1	0	1	000	0	1
SW	0001	0	0	0	0	000	1	0
add	0010	1	1	0	0	000	0	0
addi	0011	0	1	0	1	000	0	0
inv	0100	1	1	0	0	001	0	0
and	0101	1	1	0	0	010	0	0
andi	0110	0	1	0	1	010	0	0
or	0111	1	1	0	0	011	0	0
ori	1000	0	1	0	1	011	0	0
sra	1001	0	1	0	0	100	0	0
sll	1010	0	1	0	0	101	0	0
beq	1011	0	0	0	0	110	0	0
bne	1100	0	0	0	0	111	0	0
clr	1101	1	1	1	0	010	0	0
	1110							
	1111							

§1.2 Instruction Decoder

Please see attached *decoder.v* document for decoder module.

The testbench was assembled in decoder_tb.v with

The following output was derived from said supplied testbench.

§2 Translate the steps to Instructions!

- instruction 1:
- 1- Change the regfile read address2 to 1 <added >
- 2- Set ALUSrc2 to 0
- 3- Set the ALUOp to 1 (for 'inv' operation)
- 4- Set MemToReg to 0
- 5- Change the regfile write address2 to 1 <added >
- 6- Set RegWrite to 1
- 7- Reset RegWrite back to 0

inv \$1 \$1

- instruction 2:
- 1- Change the regfile read address2 to 1 <added >
- 2- Change the regfile write address to 1
- 3- Change the instr i to 8'h03 <added >
- 4- Change the ALUOp to 0x5 (for 'sll' operation)
- 5- Set RegWrite to 1
- 6- reset RegWrite back to 0

sll **\$1, \$1,** 0x03

• instruction 3:

- 1- Set the ALUSrc2 to 1
- 2- Set the value of instr i to 0xFF
- 3- Set the ALUOp to 0 (for 'add' operation)
- 4- Set the regfile read address1 to 3
- 5- Change the regfile read address2 to 1
- 6- Set MemWrite to 1
- 7- Reset MemWrite back to 0

sw \$1, 0xFF(\$3)

- instruction 4:
- 1- Set the value of instr i to 0xFF
- 2- Set the ALUSrc2 to 1
- 3- Change the regfile read address1 to 3
- 4- Set the ALUOp to 0 for 'add'
- 5- Set MemToReg to 1
- 6- Set regfile write address to 2
- 7- Set RegWrite to 1
- 8- Set RegWrite to 0

addi \$2, \$3, 0xFF

- instruction 5:
- 1- Change the regfile read address1 to 2
- 2- Change the ALUOp to 3'b011
- 3- Change the instr i to 8'hF0
- 4- Change the ALUSrc2 to 1
- 5- Change the regfile write address to 2
- 6- Change the RegWrite to 1
- 7- Change the RegWrite to 0

ori \$2, \$2, 0xF0

§3 Generate the Machine Code

Using the field coding from the Instruction Set document, the set of assembly instructions from §2 is converted to 16-bit Machine Code and listed in the following table:

Туре	Instruction	Machine Code	in Hex
R-type	inv \$1 \$1	0100_00_01_01_000000	0x4140
I-type	sll \$1, \$1, 0x03	1010_01_01_00000011	0xa502
I-type	sw \$1, 0xFF(\$3)	0001_11_01_11111111	0x1dff
I-type	addi \$2, \$3, 0xFF	0011_11_10_11111111	0x3eff
l-type	ori \$2, \$2, 0xF0	1000_10_10_11110000	0x8af0