Γραφική με Υπολογιστές 2017

Εργασία #2: Μετασχηματισμοί και Προβολές

Ζητούμενα

Α. Έστω $c \in \mathbb{R}^3$ η 3×1 στήλη με τις συντεταγμένες ενός διανύσματος \mathbf{u} ως προς κάποιο σύστημα συντεταγμένων και έστω $\mathcal L$ διανυσματικός μετασχηματισμός με 3×3 πίνακα γραμμικού μετασχηματισμού L. Έστω $d \in \mathbb{R}^3$ είναι οι μετασχηματισμένες συντεταγμένες του διανύσματος \mathbf{u} ως προς το ίδιο σύστημα. Να υλοποιήσετε τη συνάρτηση:

$$d = \text{vectrans}(c, L)$$

Φροντίστε η vectrans να δουλεύει σωστά και στην περίπτωση που τα c,d είναι $3\times n$ πίνακες με τις συντεταγμένες n διανυσμάτων.

Β. Έστω $c \in \mathbb{R}^3$ η 3×1 στήλη με τις συντεταγμένες ενός διανύσματος \mathbf{u} ως προς βάση (b_1, b_2, b_3) και $d \in \mathbb{R}^3$ οι συντεταγμένες του ίδιου διανύσματος ως προς βάση $(\mathcal{L}(b_1), \mathcal{L}(b_2), \mathcal{L}(b_3))$. Αν L είναι ο 3×3 πίνακας που περιγράφει τον γραμμικό μετασχηματισμό, να υλοποιήσετε τη συνάρτηση:

$$d = axistrans(c, L)$$

Φροντίστε η axistrans να δουλεύει σωστά και στην περίπτωση που τα c,d είναι $3 \times n$ πίνακες με τις συντεταγμένες n διανυσμάτων.

Γ. Έστω $c_{ph} \in \mathbb{R}^4$ η 4×1 στήλη με τις ομογενείς συντεταγμένες ενός σημείου p ως προς ένα σύστημα συντεταγμένων. Στο ίδιο σύστημα συντεταγμένων, έστω: L ένας 3×3 πίνακας που περιγράφει ένα γραμμικό μετασχηματισμό και $c_t \in \mathbb{R}^3$ στήλη 3×1 με τις συντεταγμένες ενός διανύσματος μετατόπισης t. Να υλοποιήσετε τη συνάρτηση:

$$c_{qh} = pointtrans(c_{ph}, L, c_t)$$

που υλοποιεί σημειακό μετασχηματισμό affine εφαρμόζοντας τον γραμμικό μετασχηματιμό του p κατά L και έπειτα την μετατόπιση του κατά t. Φροντίστε η pointtrans να δουλεύει σωστά και στην περίπτωση που τα c_{ph}, c_{qh} είναι $4 \times n$ πίνακες με τις συντεταγμένες n σημείων.

Δ. Έστω $c_{ph} \in \mathbb{R}^4$ η 4×1 στήλη με τις ομογενείς συντεταγμένες ενός σημείου p ως προς σύστημα συντεταγμένων με αρχή o και άξονες (b_1,b_2,b_3) . Έστω $d_{ph} \in \mathbb{R}^4$ οι ομογενείς συντεταγμένες του ίδιου σημείου ως προς σύστημα συντεταγμένων με αρχή $o \oplus \mathbf{v}_0$ και άξονες $(\mathcal{L}(b_1),\mathcal{L}(b_2),\mathcal{L}(b_3))$, όπου \mathcal{L} μετασχηματισμός όπως περιγράφηκε παραπάνω. Αν $c_o \in \mathbb{R}^3$ η 3×1 στήλη με τις συντεταγμένες του διανύσματος \mathbf{v}_0 ως προς το αρχικό σύστημα αξόνων, να υλοποιήσετε τη συνάρτηση:

$$d_{ph} = \operatorname{systemtrans}(c_{ph}, L, c_0)$$

Φροντίστε η systemtrans να δουλεύει σωστά και στην περίπτωση που τα c_{ph}, d_{ph} είναι $4 \times n$ πίνακες με τις συντεταγμένες n σημείων.

Ε. Αν το ${\bf u}$ είναι στήλη 3×1 με τις συντεταγμένες ενός μοναδιαίου διανύσματος και θ γωνία σε rad, να υλοποιήσετε τη συνάρτηση

$$R = \text{rotmat}(\theta, \mathbf{u})$$

που υπολογίζει τον πίνακα περιστροφής κατά θ περί άξονα που διέρχεται από την αρχή του συστήματος συντεταγμένων και είναι παράλληλος προς το \mathbf{u} .

ΣΤ. Έστω $c_{ph} \in \mathbb{R}^4$ η 4×1 στήλη με τις ομογενείς συντεταγμένες ενός σημείου ως προς το WCS, $\{o, \mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0\}$. Έστω ότι μία προοπτική κάμερα έχει κέντρο $c = o \oplus \mathbf{v}_c$ και μοναδιαία διανύσματα $\{\mathbf{x}_c, \mathbf{y}_c, \mathbf{z}_c\}$. Έστω ότι τα $\mathbf{v}_c, \mathbf{x}_c, \mathbf{y}_c, \mathbf{z}_c$ έχουν συντεταγμένες $c_{\mathbf{v}}, c_x, c_y, c_z$ αντίστοιχα ως προς το WCS και w είναι η απόσταση του πετάσματος από το κέντρο (μετρημένη στις μονάδες που χρησιμοποιεί το σύστημα συντεταγμένων της κάμερας). Να υλοποιήσετε τη συνάρτηση:

$$P = \operatorname{project}(w, c_{\mathbf{v}}, c_x, c_y, p)$$

που παράγει τις προπτικές προβολές (με w = 1) των τρισδιάστατων σημείων και τις επιστρέφει στον πίνακα P διάστασης $2 \times n$. Φροντίστε η project να δουλεύει σωστά και στην περίπτωση που το p είναι $4 \times n$ πίνακας με τις συντεταγμένες n σημείων.

Ζ. Να υλοποιήσετε τη συνάρτηση

$$P = \operatorname{projectKu}(w, c_{\mathbf{v}}, c_K, c_u, p)$$

που παράγει τις προοπτικές προβολές των τρισδιάστατων σημείων του p όπως και η προηγούμενη αλλά δέχεται ως είσοδο τις συντεταγμένες c_K και c_u (σε μη ομογενή μορφή) του σημείου στόχου K και το μονοδιαίου up vector $\mathbf u$ αντίστοιχα. Το $c_{\mathbf v}$ περιέχει όπως και πριν τις συντεταγμένες του κέντρου της κάμερας ως προς το WCS.

Παραδοτέα

- Τα προγράμματα σε μορφή σχολιασμένου πηγαίου κώδικα με σχόλια γραμμένα στα αγγλικά ή greeklish.
- Script επίδειξης με όνομα demo2a.m το οποίο να καλείται χωρίς εξωτερικά ορίσματα και να υλοποιεί τα παρακάτω διαδοχικά βήματα:

- 1. Ορίζει τα σημεία με συντεταγμένες $p_1 = [0,0,0]^T$, $p_2 = [1,0,0]^T$, $p_3 = [1,1,0]^T$, $p_4 = [0,1,0]^T$ ως προς το WCS.
- 2. Τα μετατοπίζει κατά $t_1 = [-1, -1, 3]^T$.
- 3. Τα περιστρέφει κατά γωνία $\phi=\pi/2$ rad περί άξονα που διέρχεται από το σημείο με συντεταγμένες $K=[4,-2,-3]^T$ και έχει κατεύθυνση παράλληλη προς το διάνυσμα $g=[2,3,1]^T$.
- 4. Τα μετατοπίζει κατά $t_1 = [1, 1, -3]^T$.

Η demo2a.m θα πρέπει να τυπώνει τις συντεταγμένες των σημείων μετά την εκτέλεση κάθε βήματος. Κάθε βήμα θα πρέπει να χρησιμοποιεί τον κατάλληλο συνδυασμό των συναρτήσεων που προδιαγράφονται παραπάνω.

- Script επίδειξης με όνομα demo2b.m το οποίο να καλείται χωρίς εξωτερικά ορίσματα, να διαβάζει το κουνέλι standford_bunny.plg και να εκτελεί τους παρακάτω μετασχηματισμούς:
- 1 4. Όμοια με τα βήματα του demo2a.m
 - 5. Χρησιμοποιώντας την έξοδο του βήματος 4, να υπολογίζει την προοπτική προβολή των σημείων του κουνελιού για κάμερα με $c_{\mathbf{v}} = [-10, -20, -30]^T$, $c_x = [1, 0, 0]^T$, $c_y = [0, 1, 0]^T$ και w = 1.
 - 6. Χρησιμοποιώντας την έξοδο του βήματος 4, να υπολογίζει την προοπτική προβολή των σημείων του κουνελιού για κάμερα με $c_{\mathbf{v}}=[-40,-10,-40]^T$, $c_K=[10,10,10]^T$, $c_u=[0,0,1]^T$ και w=1.

Χρησιμοποιείστε τη συνάρτηση readplg.m για να διαβάσετε το αρχικό μοντέλο. Για τα βήματα 1 - 4, το αρχικό wireframe και το αποτέλεσμα μετά από κάθε μετασχηματισμό να το παρουσιάσετε στο ίδιο σύστημα αξόνων καλώντας διαδοχικά την plotplg.m. Για τα βήματα 5 και 6 προβάλετε το αποτέλεσμα χρησιμοποιώντας επίσης την plotplg.m αλλά επεκτείνοντας με μηδέν τις συντεταγμένες των δυσδιάστατων σημείων που θα υπολογίσετε.

- Αναφορά με:
 - 1. Περιγραφή της λειτουργίας και του τρόπου κλήσης των προγραμμάτων,
 - 2. Περιγραφή των συναρτήσεων και παρουσίαση του αντίστοιχου ψευδοκώδικα,
 - 3. Τα ενδεικτικά αποτελέσματα που παράγονται από τα demos.

Υποβολή εργασίας

- Υποβάλετε ένα και μόνο αρχείο, τύπου zip.
- Το όνομα του αρχείου πρέπει να είναι ΑΕΜ. zip, όπου ΑΕΜ είναι τα τέσσερα ψηφία του Α.Ε.Μ. του φοιτητή της ομάδας.
- Το προς υποβολή αρχείο πρέπει να περιέχει τα αρχεία κώδικα Maltab και το αρχείο report.pdf το οποίο θα είναι η αναφορά της εργασίας.
- Η αναφορά πρέπει να είναι ένα αρχείο τύπου PDF, και να έχει όνομα report.pdf.
- Όλα τα αρχεία κώδικα πρέπει να είναι αρχεία κειμένου τύπου UTF-8, και να έχουν κατάληξη .m.

- Το αρχείο τύπου zip που θα υποβάλετε δεν πρέπει να περιέχει κανένα φάκελο.
- Για την ονομασία των αρχείων που περιέχονται στο προς υποβολή αρχείο, χρησιμοποιείτε μόνο αγγλικούς χαρακτήρες, και όχι ελληνικούς ή άλλα σύμβολα, πχ "#", "\$", "%" κλπ.

Θα αξιολογηθούν μόνο όσες εργασίες έχουν demos που τρέχουν!