ÉQUATIONS DIFFÉRENTIELLES STOCHASTIQUES

Dans cette feuille, $(B_t)_{t\geq 0}$ est un mouvement brownien réel sur l'espace filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$.

Exercice 1 (Examen 2015). On se donne une constante $\sigma > 0$ et on considère l'EDS

$$dX_t = -\frac{X_t}{1+t}dt + \frac{\sigma}{1+t}dB_t, \qquad X_0 = 0.$$

- 1. Justifier que cette EDS admet une unique solution $(X_t)_{t\geq 0}$.
- 2. Calculer la différentielle stochastique du processus $(Y_t)_{t\geq 0}$ défini par $Y_t:=(1+t)X_t$. En déduire la forme explicite de $(X_t)_{t\geq 0}$. Justifier que $X_t\to 0$ quand t tend vers l'infini.
- 3. On fixe a > 0 et on note $\tau_a := \inf\{t \ge 0 \colon X_t \ge a\}$. Pour $t \ge 0$, on pose

$$M_t := \exp\left(\frac{2at}{\sigma^2}(X_t - a) + \frac{2a}{\sigma^2}X_t\right).$$

Montrer que $(M_t)_{t>0}$ est une martingale, et en déduire la valeur de $\mathbb{P}(\tau_a < \infty)$.

4. Conclure que la variable aléatoire $X^* := \sup_{t \ge 0} X_t$ est la racine carrée d'une variable aléatoire de loi exponentielle dont on précisera le paramètre.

Exercice 2 (Examen 2016). On considère l'équation différentielle stochastique

$$X_0 = 0,$$
 $dX_t = \frac{1}{2(1 + X_t^2)} dt + \frac{1}{\sqrt{1 + X_t^2}} dB_t,$

où B désigne un mouvement brownien réel. Le but est d'étudier les variables aléatoires

$$X_{\star} := \inf\{X_t : t \ge 0\} \in [-\infty, 0] \quad \text{et} \quad X^{\star} := \sup\{X_t : t \ge 0\} \in [0, +\infty].$$

- 1. Justifier que cette EDS admet une unique solution forte.
- 2. Trouver $F \in \mathcal{C}^2$ avec $F(0) = 1, F(\infty) = 0$, telle que $(F(X_t))_{t \geq 0}$ soit une martingale locale.
- 3. Soient a, b > 0. On pose $\tau := \tau_{-a} \wedge \tau_b$, où pour tout $r \in \mathbb{R}$, $\tau_r := \inf\{t \geq 0 \colon X_t = r\}$.
 - (a) Montrer que $(e^{-X_{t\wedge\tau}})_{t\geq 0}$ est une martingale de carré intégrable, et que pour $t\geq 0$,

$$\mathbb{E}\left[e^{-2X_{t\wedge\tau}}\right] = 1 + \mathbb{E}\left[\int_0^{t\wedge\tau} \frac{e^{-2X_s}}{1 + X_s^2} \, ds\right].$$

- (b) En déduire une constante C(a,b) telle que pour tout $t \geq 0$, $\mathbb{E}[t \wedge \tau] \leq C(a,b)$.
- 4. Déduire des deux questions précédentes que

$$\mathbb{P}(\tau_{-a} < \tau_b) = \frac{1 - e^{-b}}{e^a - e^{-b}} \quad \text{et} \quad \mathbb{P}(\tau_{-a} > \tau_b) = \frac{e^a - 1}{e^a - e^{-b}}.$$

5. Conclure que $X^* = \infty$ p.s. et que $-X_*$ suit une loi exponentielle.

Exercice 3 (Monotonie). Soient $b, \sigma \colon \mathbb{R} \to \mathbb{R}$ des fonctions lipschitziennes, et $x \le y$ des réels. On note $(X_t)_{t \ge 0}$ et $(Y_t)_{t \ge 0}$ les solutions de $dZ_t = b(Z_t) \, dt + \sigma(Z_t) \, dB_t$ avec $X_0 = x$ et $Y_0 = y$.

1. Justifier que le processus $(U_t)_{t\geq 0}$ défini par la formule suivante a bien un sens :

$$U_t := \int_0^t \frac{\sigma(X_s) - \sigma(Y_s)}{X_s - Y_s} \mathbf{1}_{X_s \neq Y_s} dB_s + \int_0^t \frac{b(X_s) - b(Y_s)}{X_s - Y_s} \mathbf{1}_{X_s \neq Y_s} ds.$$

2. Établir l'identité suivante, valable pour tout $t \geq 0$:

$$X_t - Y_t = (x - y) \exp\left\{ U_t - \frac{1}{2} \int_0^t \left(\frac{\sigma(X_s) - \sigma(Y_s)}{X_s - Y_s} \right)^2 \mathbf{1}_{X_s \neq Y_s} ds \right\}.$$

3. En déduire que presque-sûrement : $\forall t \geq 0, X_t \leq Y_t$.

Exercice 4 (Changement de variable). Établir l'existence d'une unique solution forte à l'EDS

$$dX_t = \left(\sqrt{1 + X_t^2 + \frac{X_t}{2}}\right) dt + \sqrt{1 + X_t^2} dB_t, \qquad X_0 = x$$

puis la déterminer explicitement en effectuant le changement de variable $Y_t = \operatorname{argsinh}(X_t)$.

Exercice 5 (Brownien géométrique). Le but de cet exercice est de résoudre l'EDS suivante :

$$dX_t = \{r(t)X_t + f(t)\} dt + \{v(t)X_t + g(t)\} dB_t, \qquad X_0 = \zeta,$$

où $v, r, f, g \colon \mathbb{R}_+ \to \mathbb{R}$ sont boréliennes bornées et $\zeta \in L^2$ est indépendante de $(B_t)_{t \geq 0}$.

- 1. Montrer que cette équation admet une unique solution forte.
 - 2. Trouver une solution dans le cas où f = g = 0 et où r et v sont des fonctions constantes.
 - 3. En déduire une solution dans le cas où f = g = 0 mais r et v ne sont pas constantes.
 - 4. Résoudre le cas général.

 Indication : On pourra s'inspirer de la variation de la constante pour passer de la solution d'une équation différentielle homogène à une équation avec second membre.

Exercice 6 (Sinh du brownien). Soit $((B_t, C_t))_{t\geq 0}$ un brownien plan. Pour $t\geq 0$, on pose

$$Y_t := \int_0^t e^{C_t - C_s} dB_s$$
 et $W_t := \int_0^t \frac{1}{\sqrt{1 + Y_s^2}} dB_s + \int_0^t \frac{Y_s}{\sqrt{1 + Y_s^2}} dC_s$.

- 1. Montrer que $(W_t)_{t\geq 0}$ est un mouvement brownien réel.
- 2. Vérifier que $(Y_t)_{t\geq 0}$ est solution de l'équation différentielle stochastique

$$dY_t = \sqrt{1 + Y_t^2} dW_t + \frac{Y_t}{2} dt; \qquad Y_0 = 0.$$

- 3. Pour $t \ge 0$, on pose $X_t := \sinh(W_t)$. Quelle équation différentielle stochastique vérifie le processus $(X_t)_{t>0}$? Que peut-on en conclure?
- 4. Pour $0 \le s \le t$, on pose $\widetilde{B}^t_s := B_t B_{t-s}$. On rappelle que $(\widetilde{B}^t_s)_{0 \le s \le t}$ est un mouvement brownien sur [0,t]. Prouver l'identité suivante, valable pour tout $f \in L^2([0,t])$:

$$\int_0^t f(s) dB_s = \int_0^t f(t-s) d\widetilde{B}_s^t.$$

- 5. Pour $t \ge 0$, on pose $Z_t := \int_0^t e^{C_s} dB_s$. Montrer que pour tout $t \ge 0$, Z_t a même loi que Y_t .
- 6. Montrer que $(Y_t)_{t\geq 0}$ n'est pas une martingale, mais que $(Z_t)_{t\geq 0}$ en est une.