Hands-On ML ToC

- 1. Preface
 - 1. The Machine Learning Tsunami
 - 2. Machine Learning in Your Projects
 - 3. Objective and Approach
 - 4. Prerequisites
 - 5. Roadmap
 - 6. Changes in the Second Edition
 - 7. Other Resources
 - 8. Conventions Used in This Book
 - 9. Code Examples
 - 10. <u>Using Code Examples</u>
 - 11. O'Reilly Online Learning
 - 12. How to Contact Us
 - 13. Acknowledgments
- 2. I. The Fundamentals of Machine Learning
- 3. 1. The Machine Learning Landscape
 - 1. What Is Machine Learning?
 - 2. Why Use Machine Learning?
 - 3. Examples of Applications
 - 4. Types of Machine Learning Systems
 - 1. Supervised/Unsupervised Learning
 - 2. Batch and Online Learning
 - 3. Instance-Based Versus Model-Based Learning
 - 5. Main Challenges of Machine Learning
 - 1. Insufficient Quantity of Training Data
 - 2. Nonrepresentative Training Data
 - 3. Poor-Quality Data
 - 4. Irrelevant Features
 - 5. Overfitting the Training Data
 - 6. <u>Underfitting the Training Data</u>
 - 7. Stepping Back
 - 6. Testing and Validating
 - 1. <u>Hyperparameter Tuning and Model Selection</u>
 - 2. Data Mismatch
 - 7. Exercises
- 4. 2. End-to-End Machine Learning Project
 - 1. Working with Real Data
 - 2. Look at the Big Picture
 - 1. Frame the Problem
 - 2. Select a Performance Measure
 - 3. Check the Assumptions
 - 3. Get the Data
 - 1. Create the Workspace
 - 2. Download the Data
 - 3. Take a Quick Look at the Data Structure
 - 4. Create a Test Set
 - 4. Discover and Visualize the Data to Gain Insights
 - 1. Visualizing Geographical Data
 - 2. Looking for Correlations
 - 3. Experimenting with Attribute Combinations
 - 5. Prepare the Data for Machine Learning Algorithms
 - 1. Data Cleaning
 - 2. Handling Text and Categorical Attributes
 - 3. Custom Transformers
 - 4. Feature Scaling

- 5. <u>Transformation Pipelines</u>
- 6. Select and Train a Model
 - 1. Training and Evaluating on the Training Set
 - 2. Better Evaluation Using Cross-Validation
- 7. Fine-Tune Your Model
 - 1. Grid Search
 - 2. Randomized Search
 - 3. Ensemble Methods
 - 4. Analyze the Best Models and Their Errors
 - 5. Evaluate Your System on the Test Set
- 8. Launch, Monitor, and Maintain Your System
- 9. Try It Out!
- 10. Exercises
- 5. 3. Classification
 - 1. MNIST
 - 2. Training a Binary Classifier
 - 3. Performance Measures
 - 1. Measuring Accuracy Using Cross-Validation
 - 2. Confusion Matrix
 - 3. Precision and Recall
 - 4. Precision/Recall Trade-off
 - 5. The ROC Curve
 - 4. Multiclass Classification
 - 5. Error Analysis
 - 6. Multilabel Classification
 - 7. Multioutput Classification
 - 8. Exercises
- 6. <u>4. Training Models</u>
 - 1. Linear Regression
 - 1. The Normal Equation
 - 2. Computational Complexity
 - 2. Gradient Descent
 - 1. Batch Gradient Descent
 - 2. Stochastic Gradient Descent
 - 3. Mini-batch Gradient Descent
 - 3. Polynomial Regression
 - 4. Learning Curves
 - 5. Regularized Linear Models
 - 1. Ridge Regression
 - 2. <u>Lasso Regression</u>
 - 3. Elastic Net
 - 4. Early Stopping
 - 6. <u>Logistic Regression</u>
 - 1. <u>Estimating Probabilities</u>
 - 2. Training and Cost Function
 - 3. Decision Boundaries
 - 4. Softmax Regression
 - 7. Exercises
- 7. <u>5. Support Vector Machines</u>
 - 1. Linear SVM Classification
 - 1. Soft Margin Classification
 - 2. Nonlinear SVM Classification
 - 1. Polynomial Kernel
 - 2. Similarity Features
 - 3. Gaussian RBF Kernel
 - 4. Computational Complexity
 - 3. **SVM Regression**
 - 4. <u>Under the Hood</u>
 - 1. Decision Function and Predictions

- 2. Training Objective
- 3. Quadratic Programming
- 4. The Dual Problem
- 5. Kernelized SVMs
- 6. Online SVMs
- 5. Exercises
- 8. <u>6. Decision Trees</u>
 - 1. Training and Visualizing a Decision Tree
 - 2. Making Predictions
 - 3. Estimating Class Probabilities
 - 4. The CART Training Algorithm
 - 5. Computational Complexity
 - 6. Gini Impurity or Entropy?
 - 7. Regularization Hyperparameters
 - 8. <u>Regression</u>
 - 9. <u>Instability</u>
 - 10. Exercises
- 9. <u>7. Ensemble Learning and Random Forests</u>
 - 1. Voting Classifiers
 - 2. <u>Bagging and Pasting</u>
 - 1. <u>Bagging and Pasting in Scikit-Learn</u>
 - 2. Out-of-Bag Evaluation
 - 3. Random Patches and Random Subspaces
 - 4. Random Forests
 - 1. Extra-Trees
 - 2. Feature Importance
 - 5. Boosting
 - 1. AdaBoost
 - 2. Gradient Boosting
 - 6. Stacking
 - 7. Exercises
- 10. 8. Dimensionality Reduction
 - 1. The Curse of Dimensionality
 - 2. Main Approaches for Dimensionality Reduction
 - 1. Projection
 - 2. Manifold Learning
 - 3. PCA
 - 1. Preserving the Variance
 - 2. Principal Components
 - 3. Projecting Down to d Dimensions
 - 4. <u>Using Scikit-Learn</u>
 - 5. Explained Variance Ratio
 - 6. Choosing the Right Number of Dimensions
 - 7. PCA for Compression
 - 8. Randomized PCA
 - 9. Incremental PCA
 - 4. Kernel PCA
 - 1. <u>Selecting a Kernel and Tuning Hyperparameters</u>
 - 5. LLE
 - 6. Other Dimensionality Reduction Techniques
 - 7. Exercises
- 11. <u>9. Unsupervised Learning Techniques</u>
 - 1. Clustering
 - 1. K-Means
 - 2. <u>Limits of K-Means</u>
 - 3. <u>Using Clustering for Image Segmentation</u>
 - 4. <u>Using Clustering for Preprocessing</u>
 - 5. <u>Using Clustering for Semi-Supervised Learning</u>
 - 6. DBSCAN

7. Other Clustering Algorithms

- 2. Gaussian Mixtures
 - 1. Anomaly Detection Using Gaussian Mixtures
 - 2. Selecting the Number of Clusters
 - 3. <u>Bayesian Gaussian Mixture Models</u>
 - 4. Other Algorithms for Anomaly and Novelty Detection
- 3. Exercises
- 12. II. Neural Networks and Deep Learning
- 13. 10. Introduction to Artificial Neural Networks with Keras
 - 1. From Biological to Artificial Neurons
 - 1. Biological Neurons
 - 2. <u>Logical Computations with Neurons</u>
 - 3. The Perceptron
 - 4. The Multilayer Perceptron and Backpropagation
 - 5. Regression MLPs
 - 6. Classification MLPs
 - 2. <u>Implementing MLPs with Keras</u>
 - 1. <u>Installing TensorFlow 2</u>
 - 2. Building an Image Classifier Using the Sequential API
 - 3. <u>Building a Regression MLP Using the Sequential API</u>
 - 4. <u>Building Complex Models Using the Functional API</u>
 - 5. Using the Subclassing API to Build Dynamic Models
 - 6. Saving and Restoring a Model
 - 7. <u>Using Callbacks</u>
 - 8. <u>Using TensorBoard for Visualization</u>
 - 3. <u>Fine-Tuning Neural Network Hyperparameters</u>
 - 1. Number of Hidden Layers
 - 2. Number of Neurons per Hidden Layer
 - 3. Learning Rate, Batch Size, and Other Hyperparameters
 - 4. Exercises
- 14. 11. Training Deep Neural Networks
 - 1. The Vanishing/Exploding Gradients Problems
 - 1. Glorot and He Initialization
 - 2. Nonsaturating Activation Functions
 - 3. <u>Batch Normalization</u>
 - 4. Gradient Clipping
 - 2. Reusing Pretrained Layers
 - 1. Transfer Learning with Keras
 - 2. <u>Unsupervised Pretraining</u>
 - 3. Pretraining on an Auxiliary Task
 - 3. <u>Faster Optimizers</u>
 - 1. Momentum Optimization
 - 2. Nesterov Accelerated Gradient
 - 3. AdaGrad
 - 4. RMSProp
 - 5. Adam and Nadam Optimization
 - 6. Learning Rate Scheduling
 - 4. Avoiding Overfitting Through Regularization
 - 1. £1 and £2 Regularization
 - 2. Dropout
 - 3. Monte Carlo (MC) Dropout
 - 4. Max-Norm Regularization
 - 5. Summary and Practical Guidelines
 - 6. Exercises
- 15. 12. Custom Models and Training with TensorFlow
 - 1. A Quick Tour of TensorFlow
 - 2. <u>Using TensorFlow like NumPy</u>
 - 1. Tensors and Operations
 - 2. Tensors and NumPy

- 3. Type Conversions
- 4. Variables
- 5. Other Data Structures
- 3. Customizing Models and Training Algorithms
 - 1. Custom Loss Functions
 - 2. Saving and Loading Models That Contain Custom Components
 - 3. Custom Activation Functions, Initializers, Regularizers, and Constraints
 - 4. <u>Custom Metrics</u>
 - 5. <u>Custom Layers</u>
 - 6. Custom Models
 - 7. Losses and Metrics Based on Model Internals
 - 8. Computing Gradients Using Autodiff
 - 9. Custom Training Loops
- 4. TensorFlow Functions and Graphs
 - 1. AutoGraph and Tracing
 - 2. TF Function Rules
- 5. Exercises
- 16. 13. Loading and Preprocessing Data with TensorFlow
 - 1. The Data API
 - 1. Chaining Transformations
 - 2. Shuffling the Data
 - 3. Preprocessing the Data
 - 4. Putting Everything Together
 - 5. Prefetching
 - 6. Using the Dataset with tf.keras
 - 2. The TFRecord Format
 - 1. <u>Compressed TFRecord Files</u>
 - 2. A Brief Introduction to Protocol Buffers
 - 3. TensorFlow Protobufs
 - 4. <u>Loading and Parsing Examples</u>
 - 5. <u>Handling Lists of Lists Using the SequenceExample Protobuf</u>
 - 3. Preprocessing the Input Features
 - 1. Encoding Categorical Features Using One-Hot Vectors
 - 2. Encoding Categorical Features Using Embeddings
 - 3. <u>Keras Preprocessing Layers</u>
 - 4. TF Transform
 - 5. The TensorFlow Datasets (TFDS) Project
 - 6. Exercises
- 17. 14. Deep Computer Vision Using Convolutional Neural Networks
 - 1. The Architecture of the Visual Cortex
 - 2. Convolutional Layers
 - 1. Filters
 - 2. Stacking Multiple Feature Maps
 - 3. <u>TensorFlow Implementation</u>
 - 4. Memory Requirements
 - 3. Pooling Layers
 - 1. TensorFlow Implementation
 - 4. CNN Architectures
 - 1. LeNet-5
 - 2. AlexNet
 - 3. GoogLeNet
 - 4. VGGNet
 - 5. ResNet
 - 6. Xception
 - 7. <u>SENe</u>t
 - 5. <u>Implementing a ResNet-34 CNN Using Keras</u>
 - 6. <u>Using Pretrained Models from Keras</u>
 - 7. Pretrained Models for Transfer Learning
 - 8. Classification and Localization

- 9. Object Detection
 - 1. Fully Convolutional Networks
 - 2. You Only Look Once (YOLO)
- 10. <u>Semantic Segmentation</u>
- 11. Exercises
- 18. <u>15. Processing Sequences Using RNNs and CNNs</u>
 - 1. Recurrent Neurons and Layers
 - 1. Memory Cells
 - 2. <u>Input and Output Sequences</u>
 - 2. Training RNNs
 - 3. Forecasting a Time Series
 - 1. Baseline Metrics
 - 2. <u>Implementing a Simple RNN</u>
 - 3. Deep RNNs
 - 4. Forecasting Several Time Steps Ahead
 - 4. <u>Handling Long Sequences</u>
 - 1. Fighting the Unstable Gradients Problem
 - 2. <u>Tackling the Short-Term Memory Problem</u>
 - 5. Exercises
- 19. <u>16. Natural Language Processing with RNNs and Attention</u>
 - 1. Generating Shakespearean Text Using a Character RNN
 - 1. Creating the Training Dataset
 - 2. How to Split a Sequential Dataset
 - 3. Chopping the Sequential Dataset into Multiple Windows
 - 4. Building and Training the Char-RNN Model
 - 5. <u>Using the Char-RNN Model</u>
 - 6. Generating Fake Shakespearean Text
 - 7. Stateful RNN
 - 2. Sentiment Analysis
 - 1. Masking
 - 2. Reusing Pretrained Embeddings
 - 3. An Encoder–Decoder Network for Neural Machine Translation
 - 1. Bidirectional RNNs
 - 2. Beam Search
 - 4. Attention Mechanisms
 - 1. Visual Attention
 - 2. Attention Is All You Need: The Transformer Architecture
 - 5. Recent Innovations in Language Models
 - 6. Exercises
- 20. 17. Representation Learning and Generative Learning Using Autoencoders and GANs
 - 1. Efficient Data Representations
 - 2. Performing PCA with an Undercomplete Linear Autoencoder
 - 3. Stacked Autoencoders
 - 1. Implementing a Stacked Autoencoder Using Keras
 - 2. <u>Visualizing the Reconstructions</u>
 - 3. Visualizing the Fashion MNIST Dataset
 - 4. <u>Unsupervised Pretraining Using Stacked Autoencoders</u>
 - 5. Tying Weights
 - 6. Training One Autoencoder at a Time
 - 4. Convolutional Autoencoders
 - 5. Recurrent Autoencoders
 - 6. <u>Denoising Autoencoders</u>
 - 7. Sparse Autoencoders
 - 8. <u>Variational Autoencoders</u>
 - 1. Generating Fashion MNIST Images
 - 9. Generative Adversarial Networks
 - 1. The Difficulties of Training GANs
 - 2. <u>Deep Convolutional GANs</u>
 - 3. Progressive Growing of GANs

4. StyleGANs

- 10. Exercises
- 21. 18. Reinforcement Learning
 - 1. <u>Learning to Optimize Rewards</u>
 - 2. Policy Search
 - 3. Introduction to OpenAI Gym
 - 4. Neural Network Policies
 - 5. Evaluating Actions: The Credit Assignment Problem
 - 6. Policy Gradients
 - 7. Markov Decision Processes
 - 8. <u>Temporal Difference Learning</u>
 - 9. Q-Learning
 - 1. Exploration Policies
 - 2. Approximate Q-Learning and Deep Q-Learning
 - 10. <u>Implementing Deep Q-Learning</u>
 - 11. Deep Q-Learning Variants
 - 1. Fixed Q-Value Targets
 - 2. Double DON
 - 3. Prioritized Experience Replay
 - 4. <u>Dueling DQN</u>
 - 12. The TF-Agents Library
 - 1. Installing TF-Agents
 - 2. TF-Agents Environments
 - 3. Environment Specifications
 - 4. Environment Wrappers and Atari Preprocessing
 - 5. Training Architecture
 - 6. Creating the Deep Q-Network
 - 7. Creating the DQN Agent
 - 8. Creating the Replay Buffer and the Corresponding Observer
 - 9. <u>Creating Training Metrics</u>
 - 10. Creating the Collect Driver
 - 11. Creating the Dataset
 - 12. Creating the Training Loop
 - 13. Overview of Some Popular RL Algorithms
 - 14. Exercises
- 22. 19. Training and Deploying TensorFlow Models at Scale
 - 1. Serving a TensorFlow Model
 - 1. <u>Using TensorFlow Serving</u>
 - 2. Creating a Prediction Service on GCP AI Platform
 - 3. <u>Using the Prediction Service</u>
 - 2. <u>Deploying a Model to a Mobile or Embedded Device</u>
 - 3. <u>Using GPUs to Speed Up Computations</u>
 - 1. Getting Your Own GPU
 - 2. <u>Using a GPU-Equipped Virtual Machine</u>
 - 3. Colaboratory
 - 4. Managing the GPU RAM
 - 5. Placing Operations and Variables on Devices
 - 6. Parallel Execution Across Multiple Devices
 - 4. <u>Training Models Across Multiple Devices</u>
 - 1. Model Parallelism
 - 2. Data Parallelism
 - 3. Training at Scale Using the Distribution Strategies API
 - 4. Training a Model on a TensorFlow Cluster
 - 5. Running Large Training Jobs on Google Cloud AI Platform
 - 6. Black Box Hyperparameter Tuning on AI Platform
 - 5. Exercises
 - 6. Thank You!
- 23. A. Exercise Solutions
 - 1. Chapter 1: The Machine Learning Landscape

- 2. Chapter 2: End-to-End Machine Learning Project
- 3. Chapter 3: Classification
- 4. Chapter 4: Training Models
- 5. Chapter 5: Support Vector Machines
- 6. Chapter 6: Decision Trees
- 7. Chapter 7: Ensemble Learning and Random Forests
- 8. Chapter 8: Dimensionality Reduction
- 9. <u>Chapter 9: Unsupervised Learning Techniques</u>
- 10. Chapter 10: Introduction to Artificial Neural Networks with Keras
- 11. Chapter 11: Training Deep Neural Networks
- 12. Chapter 12: Custom Models and Training with TensorFlow
- 13. Chapter 13: Loading and Preprocessing Data with TensorFlow
- 14. Chapter 14: Deep Computer Vision Using Convolutional Neural Networks
- 15. Chapter 15: Processing Sequences Using RNNs and CNNs
- 16. Chapter 16: Natural Language Processing with RNNs and Attention
- 17. Chapter 17: Representation Learning and Generative Learning Using Autoencoders and GANs
- 18. Chapter 18: Reinforcement Learning
- 19. Chapter 19: Training and Deploying TensorFlow Models at Scale

24. B. Machine Learning Project Checklist

- 1. Frame the Problem and Look at the Big Picture
- 2. Get the Data
- 3. Explore the Data
- 4. Prepare the Data
- 5. Shortlist Promising Models
- 6. Fine-Tune the System
- 7. Present Your Solution
- 8. Launch!

25. C. SVM Dual Problem

26. D. Autodiff

- 1. Manual Differentiation
- 2. Finite Difference Approximation
- 3. Forward-Mode Autodiff
- 4. Reverse-Mode Autodiff

27. E. Other Popular ANN Architectures

- 1. Hopfield Networks
- 2. Boltzmann Machines
- 3. Restricted Boltzmann Machines
- 4. <u>Deep Belief Nets</u>
- 5. Self-Organizing Maps

28. F. Special Data Structures

- 1. Strings
- 2. Ragged Tensors
- 3. Sparse Tensors
- 4. Tensor Arrays
- 5. Sets
- 6. Queues

29. G. TensorFlow Graphs

- 1. TF Functions and Concrete Functions
- 2. Exploring Function Definitions and Graphs
- 3. A Closer Look at Tracing
- 4. Using AutoGraph to Capture Control Flow
- 5. <u>Handling Variables and Other Resources in TF Functions</u>
- 6. <u>Using TF Functions with tf.keras (or Not)</u>
- 30. Index