Secflow

APRENDIZADO NÃO SUPERVISIONADO PARA ANÁLISE E DETECÇÃO DE ANOMALIAS EM REDES DE COMPUTADORES

Felipe Salles (1° autor)

Prof. Dr. Luiz Claudio Schara

Prof. Dra. Taiane Ramos

O1 Introdução

- Contextualização e Dificuldades.
- Proposta do projeto.

02 Metodologia

- Pré-Processamento.
- DBSCAN.

Resultados Preliminares

 Apresentação dos resultados preliminares da abordagem aplicada.

)4 Discussão e Trabalhos Futuros

 Discussão sobre trabalhos futuros e novas possibilidades de abordagem.

(1) Introdução

Contextualização sobre o Cenário de Detecção

Tipos de Sistemas de Detecção de Intrusão (IDS)

- AssinaturasAnomaliasHíbridos

Dificuldades Atuais

- Acompanhar a evolução e mudança de comportamento dos ataques.
- Ter uma boa base de dados para estudo.

(1) Introdução

Proposta do Secflow

 Estudar, avaliar edetectar anomalias na rede da Universidade Federal Fluminense (UFF).

Clustering

USO DE APRENDIZADO NÃO SUPERVISIONADO

Pré-Processamento

Fluxos Normais

UNSW-NB15

Extraímos 20% de cada *label*.

Tipos de Fluxos de Ataque

(!) Classes desbalanceadas

Refletem o cenário de uma rede real.

Labels	Amostras	20% de Amostras
Normal	93.000	18.600
Analysis	2677	535
Backdoor	2329	465
DoS	16.353	3270
Exploits	44.525	8905
Fuzzers	24.246	4849
Generic	58.871	11.774
Reconnaissance	13.987	2797
Shellcode	1511	302
Worms	174	34

Pré-Processamento

Aplicamos o PCA para seleção de features.

Explicando o funcionamento com um exemplo...

44 pontos

Exemplo DBSCAN (ε=R, MinPts=3)

Exemplo: 44 pontos

1°Passo-Para cada ponto, verificar se é um ponto central.

Exemplo DBSCAN (ε=R, MinPts=3)

Exemplo: 44 pontos

2º Passo-Se for um ponto central, adiciona os pontos vizinhos no mesmo grupo.

Exemplo DBSCAN (ε=R, MinPts=3)

Exemplo: 44 pontos

3ºPasso-Verifica se algum vizinho é um ponto central.

Exemplo DBSCAN (ε=R, MinPts=3)

Exemplo: 44 pontos

4°Passo-Se for um ponto central, coloca os vizinhos no mesmo grupo.

Exemplo DBSCAN (ε=R, MinPts=3)

Exemplo: 44 pontos

5°Passo-Repetir até que nenhum vizinho a um ponto central seja um ponto central.

Exemplo DBSCAN (ε=R, MinPts=3)

Exemplo: 44 pontos

5°Passo-Repetir até que nenhum vizinho a um ponto central seja um ponto central.

Exemplo DBSCAN (ε=R, MinPts=3)

Exemplo: 44 pontos

6°Passo-Verifica outros pontos para avaliar se é um ponto central. Nenhum vizinho é central.

Exemplo DBSCAN (ε=R, MinPts=3)

Exemplo: 44 pontos

7º Passo-Encontrou um ponto central. Inicia a formação de um novo cluster.

Exemplo DBSCAN (ε=R, MinPts=3)

Exemplo: 44 pontos

8º Passo-Pontos que não foram agrupados em nenhum cluster são anomalias.

Abordagem aplicada...

0: Normal 1: Ataque

0: Cluster

-1: Anomalia

Janela Deslizante

Análise Individual dos Fluxos na Janela

(3) Resultados Preliminares

Tabela 1

Matriz de Confusão Média das Janelas

Avaliação 1

Classe Real	Previsão	
	Ataque	Normal
Ataque	28.41	98.10
	(TP)	(FN)
Normal	68.87	804.60
	(FP)	(TN)

Avaliação 2

Classe Real	Previsão	
Classe Real	Ataque	Normal
Ataque	28.55	97.96
	(TP)	(FN)
Normal	178.84	694.63
	(FP)	(TN)

(3) Resultados Preliminares

Tabela 1

Matriz de Confusão Média das Janelas

Avaliação 3

Classe Real	Previsão	
Classe Real	Ataque	Normal
Ataque 📥	51.27	75.24
	(TP)	(FN)
Normal	351.87	521.60
	(FP)	(TN)

Avaliação 4

Classe Real	Previsão	
Classe Real	Ataque	Normal
Ataque 📥	53.81	72.70
	(TP)	(FN)
Normal	492.17	381.30
	(FP)	(TN)

$$\epsilon = 0.95$$
MinPts = 2
Acurácia Média = 0.43

(4) Discussão e Trabalhos Futuros

Anomalia Coletiva numa Janela Deslizante...

Avaliação Individual

 Avaliar a influência de cada fluxo novo individualmente.

Avaliação Coletiva

 Avaliar a influência de um conjunto de fluxos novos quando clusterizados.

(4) Discussão e Trabalhos Futuros

Dúvidas?