$\begin{array}{c} \text{Supervised ML (training)} \\ \theta \\ \text{Parameters} \\ \downarrow \\ \text{Features} \\ X \end{array} \xrightarrow{\text{Prediction}} \begin{array}{c} \text{Output} \\ \hat{Y} \end{array} \xrightarrow{\text{Output}} \hat{Y} \\ \downarrow \\ \text{Labels} \\ Y \end{array}$

Sentiment analysis

Sentiment analysis

Vocabulary

A lot of zeros! That's a sparse representation.

Problems with sparse representations

Positive and negative counts

Corpus

I am happy because I am learning NLP

I am happy

I am sad, I am not learning NLP

I am sad

Positive and negative counts

Positive tweets

I am happy because I am learning NLP

I am happy

Negative tweets

I am sad, I am not learning NLP

Positive and negative counts

Positive tweets

I am happy because I am learning NLP

I am happy

Vocabulary	PosFreq (1)	
	3	
am	3	
happy	2	
because	1	
learning	1	
NLP	1	
sad	0	
not	0	

Word frequency in classes

Vocabulary	PosFreq (1)	NegFreq (0)	
1)	3	3	-
am	3	3	fregs: dictionary mapping from
happy	2	0	(word, class) to frequency
because	1	0	(word, class) to frequency
learning	1	1	
NLP	1	1	
sad	0	1	
not	0	1	

Feature extraction

fregs: dictionary mapping from (word, class) to frequency

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$
 Features of tweet m Bias Sum Pos. Frequencies Frequencies

Feature extraction

NegFreq (0)
3
3
0
0
1
1_
2
1

I am sad, I am not learning NLP

Feature extraction

I am sad, I am not learning NLP

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

Preprocessing: stop words and punctuation

@YMourri and @AndrewYNg are tuning a GREAT AI model at https://deeplearning.ai!!!

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai!!!

	Stop words
7	and
	is
	are
	at
	has
	for

2	
3.0	
1	
"	

Preprocessing: stop words and punctuation

@YMourri @AndrewYNg tuning	Stop words	Punctuation
GREAT AI model	and	,
https://deeplearning.ai!!!-	is	
	а	:
@YMourri @AndrewYNg tuning	at	!
GREAT AI model	has	ш
https://deeplearning.ai	for	
Tittps://accpicartiffs.ar	of	

Preprocessing: Handles and URLs

Preprocessing: Stemming and lowercasing

General overview

General Implementation

Overview of logistic regression

Overview of logistic regression

$$h(x^{(i)}, \theta) = \frac{1}{1 + e^{-\theta^T x^{(i)}}} \underbrace{\otimes}_{0.6}^{0.5} \underbrace{\otimes}_{0.4}^{0.5} \underbrace{\otimes}_{0.4}^{$$

Overview of logistic regression

Training LR

Testing logistic regression

•
$$X_{val} Y_{val} \theta$$

$$h(X_{val}, \theta)$$

$$pred = h(X_{val}, \theta) \ge 0.5$$

Testing logistic regression

•
$$X_{val} Y_{val} \theta$$

$$h(X_{val}, \theta)$$

$$pred = h(X_{val}, \theta) \ge 0.5$$

$$h(X_{val}, \theta)$$

$$pred = h(X_{val}, \theta) \ge 0.5$$

$$\begin{bmatrix} 0.3 \\ 0.8 \\ 0.5 \\ \vdots \\ h_m \end{bmatrix} \ge 0.5 = \begin{bmatrix} 0.3 \ge 0.5 \\ 0.8 \ge 0.5 \\ 0.5 \ge 0.5 \\ \vdots \\ pred_m \ge 0.5 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ \frac{1}{\vdots} \\ pred_m \end{bmatrix}$$

Testing logistic regression

•
$$X_{val} Y_{val} \theta$$

$$h(X_{val}, \theta)$$

$$pred = h(X_{val}, \theta) \ge 0.5$$

$$\sum_{i=1}^{m} \frac{(pred^{(i)} == y_{val}^{(i)})}{m}$$

$$\begin{bmatrix} \frac{0}{1} \\ 1 \\ \vdots \\ \underline{pred}_{m} \end{bmatrix} == \begin{bmatrix} \frac{0}{0} \\ 1 \\ \vdots \\ \underline{Y_{val_{m}}} \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 1 \\ \vdots \\ \underline{pred}_{m} == Y_{val_{m}} \end{bmatrix}$$

Testing logistic regression

•
$$X_{val} Y_{val} \theta$$

$$h(X_{val} \theta)$$

$$pred = h(X_{val} \theta) \ge 0.5$$

$$\sum_{i=1}^{m} \frac{(pred^{(i)} == y_{val}^{(i)})}{m}$$

Testing logistic regression
$$Y_{val} = \begin{bmatrix} 0 \\ 1 \\ \frac{1}{0} \\ 0 \\ 1 \end{bmatrix} \quad pred = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \quad (Y_{val} == pred) = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

$$accuracy = \frac{4}{5} = 0.8$$

Cost function for logistic regression

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log (1 - h(x^{(i)}, \theta)) \right]$$

$$\frac{y^{(i)} - h(x^{(i)}, \theta)}{0 \quad \text{any} \quad 0}$$

$$1 \quad 0.99 \quad \sim 0$$

$$1 \quad \sim 0 \quad -\inf$$

Cost function for logistic regression

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$

$$\frac{y^{(i)} h(x^{(i)}, \theta)}{1 \quad \text{any} \quad 0}$$

$$0 \quad 0.01 \quad \text{-0}$$

$$0 \quad \text{-1} \quad -\ln f$$

Cost function for logistic regression

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log h(x^{(i)}, \theta)] + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta))]$$

Cost function for logistic regression

