PROPERTIES OF CONTEXT-FREE LANGUAGES

a.y. 2022-2023

1 / 47

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Closure wrt union

LEMMA

The class of free languages is closed w.r.t. set-union.

- Meaning:
 - \bullet If \mathcal{L}_1 and \mathcal{L}_2 are free languages
 - \bullet Then $\mathcal{L}_1 \cup \mathcal{L}_2$ is a free language.

Closure wrt union

PROOF

- ullet Let \mathcal{L}_1 and \mathcal{L}_2 be free languages.
- Then there exist two free grammars $\mathcal{G}_1 = (V_1, T_1, S_1, \mathcal{P}_1)$ and $\mathcal{G}_2 = (V_2, T_2, S_2, \mathcal{P}_2)$ such that $\mathcal{L}_1 = \mathcal{L}(\mathcal{G}_1)$ and $\mathcal{L}_2 = \mathcal{L}(\mathcal{G}_2)$.
- Let V_2' be a refreshing of V_2 to avoid possible name clashes with non-terminals in V_1 . (No refresh needed when all non-terminals of \mathcal{G}_2 are different from those of \mathcal{G}_1 .)
- Let $\mathcal{G} = (V_1 \cup V_2' \cup \{S\}, T_1 \cup T_2, S, \mathcal{P}_1 \cup \mathcal{P}_2' \cup \{S \to S_1 \mid S_2'\})$ where:
 - ullet S is a new symbol not in $V_1 \cup V_2'$
 - ullet S_2' stands for the refreshing of S_2
 - ullet $\mathcal{P}_{2}^{'}$ stands for the refreshing of the productions in \mathcal{P}_{2}
- Then $\mathcal{L}(\mathcal{G})$ is free and $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}_1) \cup \mathcal{L}(\mathcal{G}_2)$.

3 / 47

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Closure wrt union

PROOF: Why is \mathcal{G} free?

- ullet The productions of ${\cal G}$ are those in ${\cal P}_1 \cup {\cal P}_2' \cup \{S o S_1 \mid S_2'\})$
- The productions in both \mathcal{P}_1 and \mathcal{P}_2' have the same form as they do before name refreshing, hence the form $A \to \alpha$.
- The productions $S \to S_1$ and $S \to S_2'$ also have the form $A \to \alpha$.

Closure wrt union

PROOF: Why is $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}_1) \cup \mathcal{L}(\mathcal{G}_2)$?

- $w \in \mathcal{L}(\mathcal{G})$
- iff there exists a derivation $S \Rightarrow^* w$
- iff $S \Rightarrow S_1 \Rightarrow^* w$ or $S \Rightarrow S_2' \Rightarrow^* w$
- ullet iff $S_1 \Rightarrow^* w$ or $S_2 \Rightarrow^* w$
- iff $w \in \mathcal{L}(\mathcal{G}_1)$ or $w \in \mathcal{L}(\mathcal{G}_2)$
- iff $w \in \mathcal{L}(\mathcal{G}_1) \cup \mathcal{L}(\mathcal{G}_2)$.

5 / 47

Closure wrt union

PROOF: Why insisting on refreshing non-terminals?

Take

$$G_1: S_1 \rightarrow aA$$
 $A \rightarrow a$

$$\mathcal{G}_1: S_1 \rightarrow aA$$
 $\mathcal{G}_2: S_2 \rightarrow bA$

- Then $\mathcal{L}(\mathcal{G}_1) = \{aa\}$ and $\mathcal{L}(\mathcal{G}_2) = \{bb\}$.
- If, without any refreshing, we define

$$\begin{array}{cccc} \mathcal{G}: & \mathcal{S} & \rightarrow & \mathcal{S}_1 \mid \mathcal{S}_2 \\ & \mathcal{S}_1 & \rightarrow & a\mathcal{A} \\ & \mathcal{S}_2 & \rightarrow & b\mathcal{A} \\ & \mathcal{A} & \rightarrow & a \mid b \end{array}$$

- Then $\mathcal{L}(\mathcal{G}) = \{aa, ab, ba, bb\} \neq \mathcal{L}(\mathcal{G}_1) \cup \mathcal{L}(\mathcal{G}_2)$.
- What is the problem here?

Closure wrt union

PROOF: Why insisting on refreshing non-terminals?

Take

 $egin{array}{llll} \mathcal{G}_1: & S_1 &
ightarrow & aA & & \mathcal{G}_2: & S_2 &
ightarrow & bA \ & A &
ightarrow & a & & A &
ightarrow & b \end{array}$

- ullet Then $\mathcal{L}(\mathcal{G}_1)=\{\mathit{aa}\}$ and $\mathcal{L}(\mathcal{G}_2)=\{\mathit{bb}\}.$
- ullet By refreshing A to A' in \mathcal{G}_2 we rather get

• No mix up of productions now, and $\mathcal{L}(\mathcal{G}) = \{aa, bb\}.$

7 / 47

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Closure wrt concatenation

LEMMA

The class of free languages is closed w.r.t. concatenation.

- Meaning:
 - \bullet If \mathcal{L}_1 and \mathcal{L}_2 are free languages
 - Then $\{w_1w_2 \mid w_1 \in \mathcal{L}_1 \text{ and } w_2 \in \mathcal{L}_2\}$ is a free language.

Closure wrt concatenation PROOF

- Let \mathcal{L}_1 and \mathcal{L}_2 be free languages.
- Then there exist two free grammars $\mathcal{G}_1 = (V_1, T_1, S_1, \mathcal{P}_1)$ and $\mathcal{G}_2 = (V_2, T_2, S_2, \mathcal{P}_2)$ such that $\mathcal{L}_1 = \mathcal{L}(\mathcal{G}_1)$ and $\mathcal{L}_2 = \mathcal{L}(\mathcal{G}_2)$.
- Notice that, wlog, we can assume that there is no clash between the non-terminals of \mathcal{G}_1 and those of \mathcal{G}_2 . In fact, we can always apply renaming as done in the proof on closure wrt union.
- Let $\mathcal{G} = (V_1 \cup V_2 \cup \{S\}, T_1 \cup T_2, S, \mathcal{P}_1 \cup \mathcal{P}_2 \cup \{S \rightarrow S_1 S_2\})$ where S is a new symbol not in $V_1 \cup V_2$.
- Then $\mathcal{L}(\mathcal{G})$ is free and $\mathcal{L}(\mathcal{G}) = \{w_1 w_2 \mid w_1 \in \mathcal{L}(\mathcal{G}_1) \text{ and } w_2 \in \mathcal{L}(\mathcal{G}_2)\}.$

9 / 47

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Cleaning up free grammars

THEOREM

Let $\mathcal L$ be a context-free language. Then there exists a context-free grammar $\mathcal G$ such that $\mathcal L(\mathcal G)=\mathcal L\setminus\{\epsilon\}$ and that has:

- No ϵ -production (i.e. no production of the shape $A \to \epsilon$)
- No unit production (i.e. no production of the shape $A \rightarrow B$)
- No useless non-terminal (i.e. non-terminals that never appear in some derivations of some strings of terminals)

ϵ -production elimination sкетсн

- Find **nullable** non-terminals, i.e., every non-terminal A such that $A \Rightarrow^* \epsilon$
 - ullet Base: if $A \to \epsilon$ is a production, then A is nullable
 - **Iteration:** if $A \to Y_1 Y_2 \dots Y_n$ is a production and Y_1, Y_2, \dots, Y_n are all nullable, then A is nullable
- Substitute each production $A \to Y_1 Y_2 \dots Y_n$ by a family of productions where combinations of nullable Y_i s are removed from the body. (Exception: If all of Y_i s are nullable do not take in the family the production $A \to \epsilon$)
- ullet Eliminate every production $A \to \epsilon$

11 / 47

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

ϵ -production elimination example

$$\begin{array}{ccc} S & \rightarrow & ABC \mid abc \\ A & \rightarrow & aB \mid \epsilon \\ B & \rightarrow & bA \mid C \end{array}$$

$$C \rightarrow \epsilon$$

- A and C nullable by $A \rightarrow \epsilon, C \rightarrow \epsilon$
- B nullable by $B \to C$ and C nullable
- S nullable by $S \rightarrow ABC$ and A, B, C nullable
- Then the grammar becomes

$$S \rightarrow ABC \mid abc \mid AB \mid AC \mid BC \mid A \mid B \mid C$$

 $A \rightarrow aB$
 $B \rightarrow bA \mid C$

• Note: C is useless now

Remainder

THEOREM

Let \mathcal{L} be a context-free language. Then there exists a context-free grammar \mathcal{G} such that $\mathcal{L}(\mathcal{G}) = \mathcal{L} \setminus \{\epsilon\}$ and that has:

- No ϵ -production (i.e. no production of the shape $A \to \epsilon$)
- No unit production (i.e. no production of the shape $A \rightarrow B$)
- No useless non-terminal (i.e. non-terminals that never appear in some derivations of some strings of terminals)

NOTE

Each production $A \to \beta$ in $\mathcal G$ is such that either β is a single terminal or $|\beta| \ge 2$

13 / 47

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Pumping Lemma for free languages

LEMMA

Let $\mathcal L$ be a free language. Then

- $\exists p \in \mathbb{N}^+$ such that
- $\forall z \in \mathcal{L}$ such that |z| > p
- $\exists u, v, w, x, y$ such that
 - z = uvwxy and
 - $|vwx| \le p$ and
 - |vx| > 0 and
 - $\forall i \in \mathbb{N}.uv^iwx^iy \in \mathcal{L}$

Pumping Lemma for free languages PROOF

- ullet Let ${\mathcal L}$ be a free language
- ullet The lemma is about words longer than p>0, and hence different from ϵ
- ullet Then just consider a "cleaned-up" free grammar ${\mathcal G}$ such that ${\mathcal L}={\mathcal L}({\mathcal G})$
- Note: In any derivation tree, every path from the root to a terminal node traverses as many non-terminal nodes as the length of the path.

E.g., the length of a path traversing the nodes $\langle S, B_1, B_2, \dots, B_{k-1}, a \rangle$ is k.

15 / 47

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Pumping Lemma for free languages PROOF

- Define p to be the **length of the longest word** that can be derived by derivation trees whose paths from the root are at most as long as the number of non-terminals in \mathcal{G}
- Let $z \in \mathcal{L}$ be such that |z| > p
- Then there is a derivation tree for z which has at least a path whose length is strictly greater than the number of non-terminals

Pumping Lemma for free languages PROOF

- Consider the longest path in the tree, and the deepest pair of occurrences of the same non-terminal along that path
- Where the depth of a pair of non-terminals is the depth of its second occurrence going bottom-up
- For instance, below the deepest pair is always the pair of As

17 / 47

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Pumping Lemma for free languages PROOF

Let A be non-terminal of the deepest pair of occurrences of the same non-terminal along the path

Pumping Lemma for free languages PROOF

Call A1 and A2 the two occurrences of A

19 / 47

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Pumping Lemma for free languages PROOF

Then there are two distinct subtrees rooted at A: the "pink subtree" and the "green subtree"

Pumping Lemma for free languages PROOF

Then z = uvwxy

21 / 47

Formal Languages and Compiler

Paola Quaglia, 2022

Pumping Lemma for free languages PROOF

Then $uv^0wx^0y\in\mathcal{L}$.

Pumping Lemma for free languages PROOF

Then $uv^2wx^2y\in\mathcal{L}$.

23 / 47

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Pumping Lemma for free languages PROOF

Then $uv^3wx^3y \in \mathcal{L}$.

Pumping Lemma for free languages PROOF

Then

- $\forall i \in \mathbb{N}.uv^iwx^iy \in \mathcal{L}$
- $|vwx| \leq p$
 - By the choice of (A1, A2), the depth of the tree rooted at A2 is less than the number of non-terminals
 - Hence the length of its yield is bound by p
- |vx| > 0
 - ullet By ${\cal G}$ cleaned-up
 - If $A \Rightarrow^* \alpha A \beta$ then at least one symbol is derived by either α or β

25 / 47

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Pumping Lemma for free languages

WHAT IS THIS LEMMA GOOD FOR?

- Recall the structure of the statement
- ullet " Let ${\mathcal L}$ be a free language. Then *PL-THESIS*."
- By no means the lemma can be used to show that a certain language is free
- It is used to show that a language is not free
- Schema of such proofs:
 - ullet Assume that language ${\cal L}$ is free
 - Show that *PL-THESIS* is false, i.e., prove *not(PL-THESIS)*
 - ullet By contradiction, conclude that ${\cal L}$ is not free

Pumping Lemma for free languages **PL-THESIS**

- $\exists p \in \mathbb{N}^+$. $\forall z \in \mathcal{L}$: |z| > p. $\exists u, v, w, x, y$. P
- where
 - $P \equiv P1$ and P2 and P3 and P4
 - $P1 \equiv z = uvwxy$
 - $P2 \equiv |vwx| \le p$
 - $P3 \equiv |vx| > 0$
 - $P4 \equiv \forall i \in \mathbb{N}.uv^iwx^iy \in \mathcal{L}$

27 / 47

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Pumping Lemma for free languages not(PL-THESIS)

- not $(\exists p \in \mathbb{N}^+. \forall z \in \mathcal{L}: |z| > p. \exists u, v, w, x, y. P)$
- $\forall p \in \mathbb{N}^+$. not $(\forall z \in \mathcal{L}: |z| > p. \exists u, v, w, x, y. P)$
- $\forall p \in \mathbb{N}^+$. $\exists z \in \mathcal{L}$: |z| > p. not $(\exists u, v, w, x, y, P)$
- $\forall p \in \mathbb{N}^+$. $\exists z \in \mathcal{L}$: |z| > p. $\forall u, v, w, x, y$. not (P)
- $\forall p \in \mathbb{N}^+$. $\exists z \in \mathcal{L}$: |z| > p. $\forall u, v, w, x, y$. not (P1 and P2 and P3 and P4)

Pumping Lemma for free languages

not (P1 and P2 and P3 and P4)

- not (P1 and P2 and P3 and P4)
- not ((P1 and P2 and P3) and P4)
- not (P1 and P2 and P3) or not P4
- (P1 and P2 and P3) implies not P4
- (P1 and P2 and P3) implies not ($\forall i \in \mathbb{N}.uv^iwx^iy \in \mathcal{L}$)
- (P1 and P2 and P3) implies $\exists i \in \mathbb{N}$. not ($uv^iwx^iy \in \mathcal{L}$)

29 / 47

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Pumping Lemma for free languages not(PL-THESIS)

- $\forall p \in \mathbb{N}^+$. $\exists z \in \mathcal{L}$: |z| > p. $\forall u, v, w, x, y$.
 - $(z = uvwxy \text{ and } |vwx| \le p \text{ and } |vx| > 0)$
 - implies
 - $\exists i \in \mathbb{N}.uv^iwx^iy \notin \mathcal{L}$
- Operationally:
- Whichever positive natural number p is
- Choose a word z longer than p and belonging to the language
- Show that, **whichever** unpacking of z into uvwxy with $|vwx| \le p$ and |vx| > 0 is taken
- A natural number i can be **chosen** which is such that $uv^iwx^iy \notin \mathcal{L}$

$$\begin{array}{ccc} \mathcal{G}: & \mathcal{S} & \rightarrow & \mathsf{aSBc} \mid \mathsf{abc} \\ & cB & \rightarrow & Bc \\ & bB & \rightarrow & bb \end{array}$$

- \mathcal{G} is context-dependent and $\mathcal{L}(\mathcal{G}) = \{a^n b^n c^n \mid n > 0\}.$
- Is $\mathcal{L}(\mathcal{G})$ a free language?

31 / 47

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Pumping Lemma at work

LEMMA

 $\mathcal{L} = \{a^n b^n c^n \mid n > 0\} \text{ is not free}.$

- Suppose \mathcal{L} is free, and let p be an arbitrary positive integer
- Take $z = a^p b^p c^p$
- If $(z = uvwxy \text{ and } |vwx| \le p \text{ and } |vx| > 0)$
- Then vx cannot have occurrences of both as and cs because the last occurrence of a and the first occurrence of c are p+1 positions far. In fact, for some positive k and j
 - Either $vwx = a^k$
 - Or $vwx = a^k b^j$
 - Or $vwx = b^j$
 - Or $vwx = b^j c^k$
 - Or $vwx = c^k$

33 / 47

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Pumping Lemma at work

- Then vx has either no occurrences of c or no occurrences of a
- Then uv^0wx^0y cannot have the form $a^nb^nc^n$, hence $uv^0wx^0y\not\in\mathcal{L}$
- ullet Then, by contradiction wrt the Pumping Lemma, ${\cal L}$ is not free

AGAIN ON THE PROOF STRUCTURE

- ...let p be an arbitrary positive integer $\forall p$: Any p
- Take $z = a^p b^p c^p$

 $\exists z$: Choose $z \in \mathcal{L}$ longer than p

- ... If $(z = uvwxy \text{ and } |vwx| \le p \text{ and } |vx| > 0)$ then $\forall u, v, w, x, y : z = uvwxy \text{ and } |vwx| \le p \text{ and } |vx| > 0$
- $\bullet \ \dots uv^0wx^0y\not\in \mathcal{L}$

 $\exists i$: Choose a value for the iterator

• ... contradiction

35 / 47

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Pumping Lemma at work

- ullet $\mathcal G$ is context-dependent
- What is $\mathcal{L}(\mathcal{G})$?

• Derived strings have a bookmark D initially at rightmost position

$$S \rightarrow CD$$

• Strings can only grow longer by replacing C

$$C \rightarrow aCA \mid bCB \mid \epsilon$$

 Non-terminals close to the rightmost delimiter can be converted to the corresponding terminal

$$AD \rightarrow aD$$

$$BD \rightarrow bD$$

 Non-terminals and terminals can be swapped when the terminal is at the right of the non-terminal

$$Aa \rightarrow aA$$

$$Ab \rightarrow bA$$

$$Ba \rightarrow aB$$

$$Bb \rightarrow bB$$

37 / 47

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Pumping Lemma at work

S	by $S o CD$
$\Rightarrow CD$	by $C \rightarrow aCA$
$\Rightarrow aCAD$	by $C \rightarrow aCA$
\Rightarrow aa $CAAD$	by $C \rightarrow bCB$
\Rightarrow aab ${f C}$ BAAD	by $C o \epsilon$
\Rightarrow aabBAAD	by $AD o aD$
\Rightarrow aabB A a D	by $Aa o aA$
⇒ aab <mark>Ba</mark> AD	by $Ba o aB$
\Rightarrow aabaB AD	by $AD o aD$
\Rightarrow aaba B a D	by $Ba o aB$
\Rightarrow aabaa ${\sf BD}$	by $BD o bD$
\Rightarrow aabaab $ extstyle{ extstyle D}$	by $D ightarrow \epsilon$
\Rightarrow aabaab	

- $\bullet \ \mathcal{L}(\mathcal{G}) = \{ww \mid w \in \{a, b\}^*\}$
- Is $\mathcal{L}(\mathcal{G})$ a free language?

39 / 47

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Pumping Lemma at work

LEMMA

$$\mathcal{L}(\mathcal{G}) = \{ww \mid w \in \{a, b\}^*\}$$
 is not free.

Proof

Analogous to the previous one. A good choice for z is $z = a^p b^p a^p b^p$.

Free or not?

- $\{a^n b^n c^n \mid n > 0\}$
- Not free, by previous lemma
- $\{a^n b^n c^j \mid n, j > 0\}$
- Free, concatenation of two free languages
- $\{a^n b^n \mid n > 0\}$ and $\{c^j \mid j > 0\}$
- $\{a^{j}b^{n}c^{n} \mid j, n > 0\}$
- Free, concatenation of two free languages
- $\{a^j \mid j > 0\}$ and $\{b^n c^n \mid n > 0\}$

41 / 47

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Closure wrt intersection does not hold

LEMMA

The class of free languages is not closed w.r.t. intersection.

Proof

- By contradiction
- ullet Take two free languages \mathcal{L}_1 and \mathcal{L}_2 whose intersection is not free
- $\mathcal{L}_1 = \{a^n b^n c^j \mid n, j > 0\}$
- $\mathcal{L}_2 = \{a^j b^n c^n \mid n, j > 0\}$
- $\mathcal{L}_1 \cap \mathcal{L}_2 = \{a^n b^n c^n \mid n > 0\}$

Exercise

$$\mathcal{G}: S \rightarrow aSc \mid aTc \mid T$$

$$T \rightarrow bTa \mid ba$$

- Is \mathcal{G} ambiguous?
- Yes
 - $S \Rightarrow aTc \Rightarrow abac$
 - $S \Rightarrow aSc \Rightarrow aTc \Rightarrow abac$
- What is $\mathcal{L}(\mathcal{G})$? $\{a^k b^n a^n c^k \mid k \ge 0, n > 0\}$

43 / 47

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Exercise

$$\mathcal{G}: S \rightarrow 0B \mid 1A$$

$$A \rightarrow 0 \mid 0S \mid 1AA$$

$$B \rightarrow 1 \mid 1S \mid 0BB$$

ullet What is $\mathcal{L}(\mathcal{G})$? $\{w\mid w\in\{0,1\}^* \text{ and } \#(0,w)=\#(1,w)\}$

Exercise

- ullet Define ${\mathcal G}$ such that ${\mathcal L}({\mathcal G})=\{a^kb^nc^{2k}\mid k,n>0\}$
 - $S \rightarrow aScc \mid aBcc$
 - $B \rightarrow bB \mid b$
- Define \mathcal{G} such that $\mathcal{L}(\mathcal{G}) = \{a^k b^n c^{2k} \mid k, n \geq 0\}$
 - $S \rightarrow aScc \mid B$
 - $B \rightarrow bB \mid \epsilon$

45 / 47

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Exercise

$$\mathcal{G}: S \rightarrow aBS \mid bA$$

$$aB \rightarrow Ac \mid a$$

$$bA \rightarrow S \mid Ba$$

• Is
$$\mathcal{L}(\mathcal{G}) = \emptyset$$
?

No:
$$\underline{S} \Rightarrow aB\underline{S} \Rightarrow \underline{aB}bA \Rightarrow a\underline{bA} \Rightarrow \underline{aB}a \Rightarrow aa$$

Exercise

ullet Define a grammar ${\cal G}$ such that ${\cal L}({\cal G})$ is the set of all the even binary numbers

$$S \rightarrow 0S \mid 1S \mid 0$$

ullet Define a grammar \mathcal{G}' such that $\mathcal{L}(\mathcal{G}')=\{1^n0\mid n\geq 0\}$

$$S \rightarrow A0 \mid 0$$

$$A \rightarrow 1A \mid 1$$

• Is $\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G})$?

No: 000000 is in $\mathcal{L}(\mathcal{G})$ but not in $\mathcal{L}(\mathcal{G}')$