Question 1 4 pts

<u>Def.</u> We say a sequence of random variables W_1,W_2,W_3,\ldots converges in probability to $lpha\in\mathbb{R}$ if for every arepsilon>0 we have

$$\lim_{n o\infty}P(|W_n-lpha|>arepsilon)=0.$$

<u>Problem:</u> Let X_1,X_2,X_3,\ldots be a sequence of independent random variables with $E(X_k)=\mu$ and ${
m Var}(X_k)=\sigma^2$ for $k=1,2,3,\ldots$

Also, let
$$\bar{X}_n \doteq \frac{1}{n} \sum_{k=1}^n X_k$$
.

Then

 $ar{X}_1,ar{X}_2,ar{X}_3,\ldots$ converges in probability to

- (A) 0
- (B) μ
- (C) $\mu + \varepsilon$
- (D) None of (A), (B), (C)

Please select:

- \bigcirc A
- B
- \bigcirc C
- \bigcirc D

Question 2 4 pts

Let X_1, X_2, X_3, \ldots be a sequence of independent random variables with $E(X_k) = \mu$ and $\mathrm{Var}(X_k) = \sigma^2$ for $k=1,2,3,\ldots$

If $\mu=4$ and $\sigma=1$, find $\lim_{n o\infty}P(ar{X}_n>4.000001)$,

where $\bar{X}_n \doteq \frac{1}{n} \sum_{k=1}^n X_k$.

Question 3

4 pts

Let X_1, X_2, X_3, \ldots be a sequence of independent random variables with moment generating functions $M_{X_1}(t), M_{X_2}(t), M_{X_3}(t), \ldots$, respectively.

Let random variable X have the moment generating function $M_X(t)$.

If there exists arepsilon>0 such that for every $t\in(-arepsilon,arepsilon)$, $M_{X_n}(t) o M_X(t)$ as $n o \infty$, then X_n converges in distribution to X.

- True
- False

Let X be a continuous random variable with the following probability density function (pdf):

$$f_X(x)=rac{1}{\sqrt{2\pi}}e^{-rac{x^2}{2}}$$
 for all $x\in\mathbb{R}.$

Then the moment generating function (mgf) of X is

(A)
$$M_X(t)=rac{1}{1-t}$$
 for $t<1$

(B)
$$M_X(t) = \left(1 - rac{t}{\lambda}
ight)^{-lpha}$$
 for $t < \lambda$.

(C)
$$M_X(t)=e^{rac{t^2}{2}}$$
 for all $t\in\mathbb{R}$

(D)
$$M_X(t)=(1-2t)^{-n/2}$$
 for $t<rac{1}{2}.$

A

 \bigcirc B

○ c

 \bigcirc D

Let $Z\sim N(0,1)$ and $U\sim \chi_n^2$ be independent. Then the random variable $rac{Z}{\sqrt{U/n}}$ is distributed according to

- (A) Normal
- (B) Chi-square
- (C) t_n
- (D) $F_{m,n}$
- (E) None of (A), (B), (C), (D)

Please select:

- \bigcirc A
- \bigcirc B
- \circ c
- \bigcirc D
- \bigcirc E