

北京杏林睿光科技有限公司

氦氖激光综合实验B型 售后培训

目录

- 1 产品概述
- 2 实验内容
- 总结

一、产品概述

本实验所用的氦氖激光器结构新颖,可开放展示、功率适中、模式良好,实验内容与教学知识点结合紧密,特别适合激光原理课程基础实验教学。RealLight推出的氦氖激光器实验在国内独家配置数字光斑轮廓仪,可以同时观测纵模和横模的分布,激光器可以连续改变腔型、模式等参数,优良的激光腔镜调整架极大的降低了氦氖激光器的调整难度。

氦氖激光器调腔与光束质量分析实验

- 实验 1 氦氖激光谐振腔调整与功率测量实验
- 实验 2 共焦球面扫描干涉仪调整实验
- <u>实验 3 氦氖激光纵模正交偏振与模式竞争观测实</u> <u>验</u>
- 实验 4 氦氖激光纵模测量与等效腔长测量实验
- 实验 5 高斯光束参数测量实验
- 实验6 激光横模变换与参数测量实验实验
- 实验 7 高斯光束变换与测量实验
- 实验 8 激光谐振腔设计实验

实验1 氦氖激光谐振腔调整与功率测量实验

- 1. 实验整体结构
- 2. 安装器件
 - A. 半外腔安装
 - B. 激光管安装
 - C. 后腔镜安装
- 3. <u>功率测试</u>

实验整体结构

1、根据氦氖激光谐振腔调整与功率测量实验装配图安装所有的器件。

半外腔调节

1、使用T型螺母将半外腔底座固定于导轨上

将T型螺母拧上支 杆,但不要拧紧

T型螺母要插入 中间的卡槽

转动支管 (即套筒) 拧紧可

激光管

阴极

安装激光管1

安装激光管2

4、后腔镜的安装

安装后腔镜时,需小心慢旋,不可强 旋,必要时可退旋后再进旋

5、半外腔激光器外壳安装

注:调节激光管的固定螺丝, 使激光管与导轨平行,调节时 注意力度,避免损坏激光管。

十字叉丝法调节后腔镜

1、使用台灯照亮十字叉丝板, 叉丝线朝向半外 腔激光器

2、通过叉丝 板小孔,调节 叉丝板位置, 将亮斑调整到 毛细管中心。 固定叉丝板位置

3、调节后腔 镜,保证最 中心亮斑在 周围亮斑的 中心位置

注:图片仅供 参考,中心亮 斑以实际为准

再放大

放大

十字叉丝法调节后腔镜

4、调节后腔镜旋钮,将叉丝像交点与毛细管内亮斑重合。反复调节,直至出激光

注: 激光器出光后, 禁止在叉丝板小孔处观察激光。

功率测量

1、细微后腔镜各个旋钮, 使输出功率达到最大

最大功率参考值: 0.71w

2、更换不同曲率半径的后腔镜,测量其处于不同位置时激光的功率

功率测量

3、实验数据(仅供参考)

k			
曲率半径后腔镜坐标	500	1000	2000
-60	0. 65	0. 417	0. 16
-50	0.67	0.343	0. 143
-40	0.768	0.313	0. 193
-30	0. 785	0.416	0. 138
-20	0.82	0.309	0. 141
-10	0.837	0.313	0. 162
0	0.691	0. 234	0. 15
10	0. 562	0. 225	0. 151
20	0. 519	0. 222	0. 154
30	0. 57	0. 223	0. 16
40	0. 575	0. 201	0. 151
50	0. 562	0.178	0. 168
60	0. 581	0. 158	0. 155

实验2 共焦球面扫描干涉仪调整实验

- 1. 实验整体结构
- 2. 安装器件
 - A. 激光准直调节
 - B. 连接共焦球面扫描干涉仪,示波器
 - C. 调节共焦腔
- 3. 获取信号

销售范例音频请点击

实验整体结构

1、根据共焦球面扫描干涉仪调整实验装配图安装所有的器件,并调节各 器件至同轴等高

激光准直调节

将可变光阑 靠近激光器, 调节可变光 阑使激光打 在可变光阑 中心

将可变光阑拉 远调节氦氖激 光器支架旋钮, 使激光打在可 变光阑中心

多次重复上述步骤直至任意 移动可变光阑激光都能打在 其中心

连接共焦球面扫描干涉仪,连接示波器

锯齿波输出接 共焦球面扫描 干涉仪

探测器电源 接探测器

锯齿波检测接示 波器,用于检测

调节共焦腔

调整共焦腔使散射光斑和小亮斑 与可变光阑同心(如上图)

自由光谱程及扫描干涉仪腔长测量

调整器件获得理想信号:

- (1) 调整探测器位置使得示波输 出的探测信号最强。
- (2) 微调共焦腔支架旋钮, 使得 示波器信号通道探测的信号峰值 最窄。
- (3) 调节扫频干涉仪的调制幅度 ,确保在一个锯齿波周期内出现 两个序列的纵模分布。
- (4) 使用示波器的光标测量功能 ,测量纵模间隔 Δx 1 和周期间隔

,例里纵侯间隔
$$\Delta x$$
1和周期间隔 Δx 1和周期间隔 Δx 2 Δx 2 Δx 1 纵模间隔 (5)根据公式 $\Delta v_{S.R=\Delta v_1} \cdot \frac{\Delta x_2}{\Delta x_1}$ 计算自由光谱程和扫描仪腔长 $\Delta v_{S.R} = \frac{c}{4l}$

(已知L=250mm,扫描干涉仪腔长参考值为*l*=30.2mm

实验3 氦氖激光纵模正交偏振与模式竞 争观测实验

- 1. 整体结构
- 2. 光路搭建
- 3. 实验现象
 - A. 正交偏振
 - B. 纵模竞争

整体结构

在实验2的光路基础上,将可变光阑更换成偏振片架。

偏振片 共焦腔 探测器

正交偏振现象观测

(1) 旋转偏振片角度,观察示波器纵模序列变化情况。验证氦氖激光器的偏振 态为正交偏振。

偏振片旋转0°

偏振片旋转180°

偏振片旋转90°

偏振片旋转270°

注意:如果使用半外腔激器做此实验,则观察到的是线偏振现象。

纵模竞争现象观测

(2) 取下偏振片,观察氦氖激光器纵模竞

实验4 氦氖激光纵模测量与等效腔长测量实验

- 1. 整体结构
- 2. 图像的获取与数据的处理

整体结构

根据氦氖激光模式分析与等效腔长测量实验装配图安装所有的器件。

注意: COMS相机要安装干涉滤光片和衰减片,不能用激光直接打在COMS上

激光横模测量

- (1) 在电脑上打开光束质量分析软件,调整相机的位置,使得激光光斑正入射到相机靶面。
- (2) 适当调整相机增益和快门速度,使得所有图像均不出现饱和为宜。

注: 具体操作方法可参考实验五

激光横模测量

(3) 改变后腔镜前后位置, 使激光器输出不同的模式

等效腔长测量

(1)对半外腔激光器调出 基模 (2)用卷尺测量半外腔激 光器的腔长L1 (3)测量两纵模的时间间隔 $\Delta x1$

<u>注:具体测量方法可参</u> 考实验二

(4)保持共焦扫描干涉仪的参数不变,换上内腔激光器,重上述步骤

数据的处理

	腔长/mm	纵模间隔
半外腔氦氖激光器	L2=35. 2cm	$\Delta x2=1.6$ ms
内腔氦氖激光器	L1=25cm	∆ <i>x1</i> =2.24ms

等效腔长计算

$$L = L_1 \cdot \frac{\Delta x_1}{\Delta x_2} = 35cm$$

实验5 高斯光束参数测量实验

- 1. 整体结构
- 2. 调整光束分析软件参数
- 3. 测量、处理数据
- 4. 高斯光束能量分布

整体结构

1、根据高斯光束参数测量实验装配图安装器件并调整至同轴等高。

调整光束分析软件参数

1.点击"设置-摄像机设置"。

2.设置"增益""曝光时间", 使光斑中心颜色为红色,恰 好不发白。

调整光束分析软件参数

3.设置X、Y方向的标定结果值为: 0.0052、0.0052。 点击"采集"

4. "伪彩色"选择"彩虹码1", "阈值选取"选择"自动阈值"。 开始记录数据。

开始读数

测量、处理数据

在氦氖激光出光口处直接使用光斑轮廓仪测量氦氖激光光斑半径,记录半径。向远离激光器方向移动光斑轮廓仪一个距离,通过导轨刻度记录移动距离,在此位置测量氦氖激光光斑半径。通过以上测量数值计算氦氖激光器的束腰位置、瑞利长度、远场发散角。

光斑半径测量参考数据

测量位置(mm)	100	200	300	400	500	600	700	800	900
横向半径(mm)	0.485	0.490	0.534	0.612	0.687	0.710	1.025	0.942	1.025
纵向半径(mm)	0.422	0.445	0.484	0.536	0.573	0.598	0.834	0.845	0.846
平均半径(mm)	0.454	0.468	0.509	0.574	0.630	0.654	0.929	0.893	0.935

测量、处理数据

■ 利用所测数据,拟合曲线 $d^2(z) = A + Bz + Cz^2$

实验所得的数据中:光斑直径为d,测量位置为z。(束腰位置的零点测量位置的起点0mm处)

Stronger Together

测量、处理数据

■ 光束参数的计算公式

束腰位置	$z_0 = \frac{-B}{2C}$
束腰半径	$\omega_0 = \frac{\sqrt{A - B^2/4C}}{2}$
远场发散角	$\theta = \sqrt{C}$
光束传输因子	$M^2 = \frac{\pi}{8\lambda} \sqrt{4AC - B^2}$
瑞利长度	$Z_R = \frac{1}{2C}\sqrt{4AC - B^2}$

高斯光束能量分布

取光斑上不同位置点,对比光斑颜色,画出高斯光束能量的分布图。

实验6激光横模变换与参数测量实验

- 1. 整体结构
- 2. 基模激光
 - A. 观察光斑
 - B. 参数测量
 - C. 数据处理
- 3. 多模激光
 - A. 改变输出模式
 - B. 参数测量
 - C. 数据处理

整体结构

使用半外腔激光器,并调出光,安装CMOS相机。

观察光斑、参数测量

用光束质量分析软件观察光斑形态,确定激光模式,测量其参数。

基模

参考数据

组次	1	2	3	4	5	6	7	8	9	10	11	12
测量位置(mm)	100	150	200	250	300	350	400	450	500	550	600	650
横向半径(mm)	0. 362	0. 3863	0. 394	0. 436	0. 4439	0.464	0. 4944	0. 5211	0. 5774	0. 6289	0. 6562	0. 7258
纵向半径 (mm)	0. 3639	0. 3685	0. 3625	0. 3939	0. 4136	0. 4263	0. 4324	0. 4764	0. 5512	0. 5961	0. 6063	0. 6811
平均半径(mm)	0. 36295	0. 3774	0. 37825	0. 41495	0. 42875	0. 44515	0.4634	0. 49875	0. 5643	0.6125	0. 63125	0. 70345

处理数据

■ 利用所测数据,拟合曲线 $d^2(z) = A + Bz + Cz^2$

实验所得的数据中:光斑直径为d,测量位置为z。(束腰位置的零点是测量位置的起点0mm处)

Stronger Together

处理数据

■ 光束参数的计算公式

束腰位置	$z_0 = \frac{-B}{2C}$
束腰半径	$\omega_0 = \frac{\sqrt{A - B^2/4C}}{2}$
远场发散角	$\theta = \sqrt{C}$
光束传输因子	$M^2 = \frac{\pi}{8\lambda} \sqrt{4AC - B^2}$
瑞利长度	$Z_R = \frac{1}{2C}\sqrt{4AC - B^2}$

改变光斑模式

并通过调节安装后腔镜的齿轮齿条平移台来改变激光器腔长,从而改变激光器的模式,测量其参数。

多模

组次	1	2	3	4	5	6	7	8	9	10	11	12
测量位置(mm)	100	150	200	250	300	350	400	450	500	550	600	650
横向半径(mm)	0. 4718	0. 5011	0. 5497	0. 6141	0. 6746	0. 7263	0. 7875	0.8546	0. 9144	0. 981	1. 0694	1. 1492
纵向半径(mm)	0.351	0. 3522	0. 3767	0. 4366	0. 4797	0. 5047	0. 5218	0. 5747	0. 6285	0. 6832	0. 7814	0. 7721
平均半径(mm)	0. 4114	0. 42665	0. 4632	0. 52535	0. 57715	0. 6155	0. 65465	0. 71465	0. 77145	0.8321	0. 9254	0.96065

处理数据

■ 利用所测数据,拟合曲线 $d^2(z) = A + Bz + Cz^2$

实验所得的数据中:光斑直径为d,测量位置为Z。(束腰位置的零点是测量位置的起点0mm处)

Stronger Together

处理数据

■ 光束参数的计算公式

束腰位置	$z_0 = \frac{-B}{2C}$
束腰半径	$\omega_0 = \frac{\sqrt{A - B^2/4C}}{2}$
远场发散角	$\theta = \sqrt{C}$
光束传输因子	$M^2 = \frac{\pi}{8\lambda} \sqrt{4AC - B^2}$
瑞利长度	$Z_R = \frac{1}{2C}\sqrt{4AC - B^2}$

实验7 高斯光束变换与测量实验

- 1. 整体结构
 - A. 聚焦光路
 - B. 准直光路
- 2. 高斯光束的聚焦
 - A. 透镜调整
 - B. 数据测量及处理
- 3. 高斯光束的准直
 - A. <u>透镜调整</u>
 - B. 数据测量及处理

整体结构

透镜调整

激光准直后放入透 镜,调整透镜的上 下和左右位置,使 反射的两个光斑重 合

数据测量及处理

固定透镜的位置,移动 COMS 相机至光斑半径最小处(此处为光束变换后的束腰位置)。记录此时的物距(即:原束腰到透镜之间的距离)、像距(透镜到变换后的束 腰位置之间的距离)及变换后束腰的半径。移动透镜改变像距,记录多组数据。

数据测量及处理

■ 根据公式

$$\begin{cases} l' = F + \frac{(l-F)F^2}{(l-F)^2 + (\frac{\pi\omega_0^2}{\lambda})^2} \\ \omega_0'^2 = \frac{\omega_0^2 F^2}{(F-l)^2 + (\frac{\pi\omega_0^2}{\lambda})^2} \end{cases}$$

计算出理论像距l'和变换后束腰的理论半径 $\omega_0'^2$

整体结构

透镜调整

调节两透镜之间的距离, 使其之间的距离为两焦距 之和

数据测量及处理

前后移动COMS相机,找出光斑最小的位置,即为准直后腰束位置。记录物距 (腰束到第一个透镜之间的距离)和准直后的腰斑半径。改变物距测量多组数据。

数据测量及处理

■ 分别代入公式

$$M' = M \sqrt{1 + (\frac{\lambda L}{\pi \omega_0^2})^2}$$
 π $M' = \frac{\omega_0''}{\omega_0}$ (其中 $\omega_0 = 0.2953mm, M = \frac{F_2}{F_1}$)

■ 比较两种方法求得准直倍率M'

实验8激光谐振腔设计实验

- 1. 后腔镜曲率半径对高斯光束的影响
- 2. 激光器腔长对高斯光束的影响

数据测量

1、将半外腔激光器的后腔镜分别换成 R=500、R=1000、R=2000 的腔镜。分别调出光后测量参数。

R=500

测量位置	200	300	400	500
横向半径	0. 381	0. 3095	0. 2501	0. 2043
纵向半径	0. 3701	0. 3014	0. 2416	0. 2088
平均半径	0. 37555	0. 30545	0. 24585	0. 20655

R=1000

测量位置	200	300	400	500
横向半径	0. 3512	0. 3178	0. 2875	0. 278
纵向半径	0. 3565	0. 3268	0. 2925	0. 2829
平均半径	0. 35385	0. 3223	0. 29	0. 28045

R=2000

测量位置	200	300	400	500
横向半径	0. 3819	0. 3673	0. 3612	0. 3571
纵向半径	0. 3906	0. 3748	0. 3625	0. 3608
平均半径	0. 38625	0. 37105	0. 36185	0. 35895

数据计算

■ 数据处理,用上述三个点的坐标代入公式

$$\frac{w_{(z)}^2}{w_0^2} - \frac{(z-c)^2}{Z_0^2} = 1$$

后腔镜的曲率半径为500、1000、2000mm时, $W_{(z)}$ $^{\mathbb{Z}}$ 都取前三组数据

$$\begin{cases} \frac{0.3755\vec{5}}{w_0^2} - \frac{(200-c)^2}{Z^2} = 1\\ \frac{0.3054\vec{5}}{w_0^2} - \frac{(300-c)^2}{Z^2} = 1\\ \frac{0.2458\vec{5}}{w_0^2} - \frac{(400-c)^2}{Z^2} = 1 \end{cases} \begin{cases} \frac{0.3538\vec{5}}{w_0^2} - \frac{(200-c)^2}{Z^2} = 1\\ \frac{0.322\vec{3}}{w_0^2} - \frac{(300-c)^2}{Z^2} = 1\\ \frac{0.29^2}{w_0^2} - \frac{(400-c)^2}{Z^2} = 1 \end{cases} \begin{cases} \frac{0.3862\vec{5}}{w_0^2} - \frac{(200-c)^2}{Z^2} = 1\\ \frac{0.3710\vec{5}}{w_0^2} - \frac{(300-c)^2}{Z^2} = 1\\ \frac{0.3618\vec{5}}{w_0^2} - \frac{(400-c)^2}{Z^2} = 1 \end{cases}$$

可得到下表数据

数据结论

	R=500	R=1000	R=2000
束腰半径W ₀	0. 1968	0. 2733	0. 3589
束腰位置 C	570. 8072	616. 9592	493. 3792
瑞利长度 Z_0	228. 1689	506. 8662	738. 1038

实验所得的数据中:平均半径为 $W_{(z)}$,测量位置为Z(单位均为mm)。(零点导轨的起点0mm处)

数据测量

任意选择一种曲率半径的腔镜,通过调节安装腔镜的齿轮齿条移动台来改变激光器腔长,分别测量高斯光束参数。(这里选择R=2000)

腔长(后 腔镜位置)	-10				
测量位置	200	300	400	500	
横向半径	0. 3702	0. 3481	0. 3461	0. 3396	
纵向半径	0. 3764	0. 3545	0. 3401	0. 3399	
平均半径	0. 3733	0. 3513	0. 3432	0. 3397 5	

腔长(后 腔镜位置)	10				
测量位置	200	300	400	500	
横向半径	0. 3745	0. 3524	0. 3479	0. 3466	
纵向半径	0. 383	0. 3602	0. 3438	0. 3462	
平均半径	0. 3787 5	0. 3563	0. 3458 5	0. 3464	

腔长(后 腔镜位置)	0				
 测量位置	200	300	400	500	
横向半径	0. 3819	0. 3673	0. 3612	0. 3571	
纵向半径	0. 3906	0. 3748	0. 3625	0. 3608	
平均半径	0. 3862 5	0. 3710 5	0. 3618 5	0. 3589 5	

数据计算

■ 数据处理,用上述三个点的坐标代入公式

$$\frac{w_{(z)}^2}{w_0^2} - \frac{(z-c)^2}{Z_0^2} = 1$$

腔长为-10、0、10mm时, $W_{(z)}$ 都取前三组数据

$$\begin{cases} \frac{0.3733^{2}}{w_{0}^{2}} - \frac{(200-c)^{2}}{Z^{2}} = 1\\ \frac{0.3513^{2}}{w_{0}^{2}} - \frac{(300-c)^{2}}{Z^{2}} = 1\\ \frac{0.3432^{2}}{w_{0}^{2}} - \frac{(400-c)^{2}}{Z^{2}} = 1 \end{cases} \begin{cases} \frac{0.36183^{2}}{w_{0}^{2}} - \frac{(400-c)^{2}}{Z^{2}} = 1\\ \frac{0.36183^{2}}{w_{0}^{2}} - \frac{(400-c)^{2}}{Z^{2}} = 1 \end{cases} \begin{cases} \frac{0.34583^{2}}{w_{0}^{2}} - \frac{(400-c)^{2}}{Z^{2}} = 1\\ \frac{0.36183^{2}}{w_{0}^{2}} - \frac{(400-c)^{2}}{Z^{2}} = 1 \end{cases} \begin{cases} \frac{0.34583^{2}}{w_{0}^{2}} - \frac{(400-c)^{2}}{Z^{2}} = 1\\ \frac{0.34583^{2}}{w_{0}^{2}} - \frac{(400-c)^{2}}{Z^{2}} = 1 \end{cases}$$

可得到下表数据

数据测量

腔长 (后腔镜位 置)	-10	0	10
束腰半径 w_0	0. 3383	0. 3589	0. 3442
束腰位置 C	450. 0923	493. 3792	440. 0625
瑞利长度 Z ₀	535. 9873	738. 1038	522. 3165

实验所得的数据中:平均半径为 $W_{(z)}$,测量位置为Z(单位均为mm)。(零点导轨的起点0mm处)

