Relatório da Simulação de Gestão de Resíduos

Este relatório descreve a implementação de um sistema de simulação de gerenciamento de resíduos, projetado para modelar a coleta e transferência de lixo em um ambiente urbano. O sistema é construído sobre uma arquitetura de eventos discretos, permitindo que a simulação avance de forma eficiente através de ações programadas no tempo.

1. Visão Geral e Estrutura do Projeto

O projeto é organizado em pacotes Java que encapsulam funcionalidades específicas, garantindo modularidade e clareza na organização do código:

- **configsimulador**: Contém as configurações globais da simulação e a classe principal que orquestra todo o processo.
- caminhoes: Define os diferentes tipos de veículos envolvidos na coleta e transporte de lixo
- **estacoes**: Representa as estações de transferência de lixo, pontos intermediários cruciais no fluxo dos resíduos.
- **eventos**: Abriga a espinha dorsal da simulação de eventos discretos, incluindo a classe base para eventos e o gerenciador da agenda.
- tads: Oferece implementações de estruturas de dados básicas (lista e fila) personalizadas para as necessidades da simulação.
- timer: Fornece utilitários para manipulação e cálculo de tempo dentro do ambiente simulado.
- zonas: Modela as áreas da cidade onde o lixo é gerado e coletado.

2. Componentes e Funcionalidades Detalhadas

2.1. Simulação Principal (Simulador)

A classe simulador é o ponto de partida e o controlador principal da simulação. Ela inicia o processo, configurando as estações de transferência e as zonas da cidade. Um passo inicial importante é a geração diária de lixo em cada zona. Em seguida, a simulação utiliza a classe DistribuirRota para organizar as rotas dos caminhões pequenos, definindo suas viagens e as zonas que atenderão. O coração do Simulador reside em chamar o GerenciadorAgenda para processar todos os eventos agendados, permitindo que a simulação avance no tempo de forma autônoma. Ao final, um relatório consolidado é exibido, detalhando o tempo total da simulação e o lixo remanescente em cada zona.

2.2. Gerenciamento de Tempo e Eventos (Timer, Evento, Gerenciador Agenda)

O sistema emprega um modelo de **simulação de eventos discretos**. O **Timer** é essencial para calcular durações de viagens e horários simulados, considerando fatores como **horários de pico** que afetam o tempo de deslocamento. A classe **Evento** serve como base para todas as ações que ocorrem na simulação (coleta, transferência, geração de lixo, etc.), cada uma com um tempo programado para sua execução. O

GerenciadorAgenda é o componente vital que mantém todos os eventos em uma **lista cronologicamente ordenada**. Ele garante que os eventos sejam executados na sequência correta, impulsionando o progresso da simulação. Quando um evento é executado, ele pode, por sua vez, agendar novos eventos para o futuro, criando uma cadeia dinâmica de operações.

2.3. Zonas Urbanas e Geração de Lixo (Zonas, DistanciaZonas)

As zonas representam as diferentes áreas da cidade, cada uma com uma faixa de geração de lixo diária (mínimo e máximo). Elas acumulam lixo ao longo do tempo e permitem que os caminhões realizem a coleta. A classe DistanciaZonas funciona como um mapa lógico, associando cada zona à sua estação de transferência correspondente, o que é fundamental para o planejamento das rotas e a logística de descarte.

2.4. A Frota de Caminhões (Caminhao Pequeno, Caminhao Grande)

Dois tipos de caminhões são modelados:

- CaminhaoPequeno: São os responsáveis pela coleta direta de lixo nas zonas. Eles possuem uma capacidade de carga e um número limitado de viagens por dia. Após coletarem o lixo, dirigem-se a uma estação de transferência.
- CaminhaoGrande: Atuam no transporte de grandes volumes de lixo das estações de transferência para o aterro sanitário final. Eles são carregados pelos caminhões pequenos e partem uma vez que atingem sua capacidade máxima.

2.5. Estações de Transferência (EstacaoDeTransferencia)

As EstacoesDeTransferencia são pontos estratégicos onde o lixo coletado pelos caminhões pequenos é consolidado e transferido para os caminhões grandes. Cada estação gerencia uma **fila de espera** para os caminhões pequenos que chegam. A estação também monitora a disponibilidade de um CaminhaoGrande para receber a carga e, se necessário, **aciona a geração de um novo caminhão grande** para evitar gargalos no processo de transferência.

2.6. Parâmetros de Configuração (Configurações Do Simulador)

A classe ConfiguracoesDoSimulador centraliza todos os parâmetros e constantes que definem o comportamento da simulação. Isso inclui capacidades dos caminhões, tempos de operação (coleta, descarga), duração das viagens (com diferenciação entre horários de pico e fora de pico), e os limites de geração de lixo por zona. Essa abordagem permite que os usuários ajustem facilmente os cenários e experimentem diferentes condições sem alterar a lógica principal do programa.

2.7. Estruturas de Dados (Lista, Fila)

O projeto faz uso de implementações personalizadas de **listas duplamente encadeadas** (Lista) e filas (Fila). A Lista é crucial para manter a **agenda de eventos ordenada**

cronologicamente, enquanto a Fila é utilizada nas estações de transferência para gerenciar a **sequência de caminhões** aguardando para descarregar.

3. Resultados e Métricas da Simulação

As execuções da simulação fornecem métricas valiosas sobre o desempenho do sistema de coleta de lixo. Analisamos seis execuções distintas para observar a variabilidade e o comportamento geral.

3.1. Geração de Lixo Inicial por Zona

Em cada execução, as zonas geram quantidades aleatórias de lixo dentro de suas faixas configuradas. Isso demonstra a variabilidade inicial do sistema.

Zona	Execução	Execução	Execução	Execução	Execução	Execução
	1 (Medida	2 (Medida	3 (Medida	4 (Medida	5 (Medida	6 (Medida
	em T)					
Sul	40	23	29	38	33	37
Sudeste	26	26	28	28	27	29
Centro	19	20	15	19	13	18
Leste	18	23	23	20	25	23
Norte	30	17	23	16	18	19

3.2. Performance da Coleta e Descarte

Todas as simulações iniciam as operações de coleta às **07:00**. Os caminhões pequenos (C1 a C10), com capacidade de 8 toneladas (ou 7t/5t em casos específicos), coletam lixo de suas respectivas zonas e se dirigem às estações de transferência.

- Coleta Inicial: Cada caminhão pequeno realiza uma coleta inicial de 8 toneladas (com exceções de 7t e 5t), com tempo de coleta de 1h 20min (ou 1h 10min/50min). O tempo de trajeto varia significativamente, dependendo da zona e das condições (provavelmente horário de pico), indo de 40min a 1h 20min.
- Chegada nas Estações: Os caminhões chegam às estações de transferência (Estação A ou Estação B) geralmente entre 10:51 e 11:55, após seus tempos de trajeto e descarga.
- **Descarregamento na Estação**: Cada descarregamento de 8 toneladas leva **40 minutos** (8t * 5 min/tonelada), com exceções de 35min e 25min para cargas menores.
- Caminhões Grandes: Observamos que os caminhões grandes (ID 1 e 2) são preenchidos e partem para o aterro com 20T. Isso ocorre quando eles atingem sua capacidade, consolidando o lixo de múltiplos caminhões pequenos.

3.3. Tempo Total da Simulação e Lixo Remanescente

As simulações finalizam quando não há mais eventos agendados, refletindo o fim do dia operacional ou a conclusão de todas as tarefas planejadas.

Métrica	Execução	Execução	Execução	Execução	Execução	Execução
	1	2	3	4	5	6

Tempo	4h 55min	4h 54min	6h 24min	6h 30min	6h 18min	4h 43min
Total						
Último	C4 na	C3 na	C8 na	C10 na	C8 na	C5 na
Evento	Estação B	Estação A				

Os resultados do **lixo final acumulado** em cada zona fornecem um indicador da eficácia da coleta.

Zona	Execução	Execução	Execução	Execução	Execução	Execução
	1 (Medida	2 (Medida	3 (Medida	4 (Medida	5 (Medida	6 (Medida
	em T)					
Sul	24	7	13	22	17	21
Sudeste	10	10	12	12	11	13
Centro	3	4	0	3	0	2
Leste	2	7	7	4	9	7
Norte	14	1	7	0	2	3

É notável que a **Zona Centro** alcançou **0 toneladas de lixo restante** nas Execuções 3 e 5, indicando que toda a sua geração de lixo inicial foi coletada com sucesso nessas instâncias. Da mesma forma, a **Zona Norte** foi completamente limpa na Execução 4.

3.4. Gráfico Conceitual de Lixo Restante por Zona (Média das Execuções)

Para uma visualização clara do desempenho médio, considere o seguinte gráfico:

Este gráfico ilustra que, em média, a **Zona Centro** obteve o menor acúmulo de lixo ao final das simulações, enquanto a **Zona Sul** apresentou o maior. Isso pode indicar uma distribuição desigual da capacidade de coleta ou da geração de lixo em relação à

capacidade dos caminhões e rotas, ou mesmo que as rotas planejadas para o Centro são mais eficientes.

4. Conclusão

A simulação demonstra a capacidade do sistema de modelar operações complexas de gestão de resíduos, desde a geração do lixo e a coleta primária até a transferência e o descarte final. As métricas de tempo e o lixo remanescente por zona oferecem insights sobre a eficiência e os desafios operacionais do sistema. A flexibilidade dos parâmetros de configuração permite futuras análises de cenários, otimizando a logística e a alocação de recursos.