Tutorato Fisica, CdL Informatica Foglio 10

Giulia Mercuri: giulia.mercuri@edu.unito.it $10~{\rm giugno}~2021$

1 Esercizi

1.1 Esercizio 1 (tema d'esame)

Consideriamo lo spazio tridimensionale di coordinate (x, y, z). Nel piano (xy) vi è una carica puntiforme q > 0 posta in (-a, 0) ed una carica puntiforme q posta in (a, 0). Risolvere i seguenti quesiti.

- a) Calcolare il vettore campo elettrico \vec{E} nel punto (0, h).
- b) Per quale valore di h il campo elettrico è nullo?
- c) Calcolare il lavoro necessario per portare la carica q dall'infinito al punto (a,0) supponendo che la carica in (-a,a) sia già presente.
- d) Supponiamo che le due cariche ruotino attorno all'asse z nel piano xy con modulo della velocità angolare $\omega > 0$ costante. Calcolare il vettore velocità della carica q quando essa si trova nel punto (a,0).
- e) Calcolare il vettore campo magnetico generato dalle cariche in moto nell'origine degli assi.

1.2 Esercizio 2 (tema d'esame)

Nel circuito in figura $R=10~\Omega,~\epsilon_1=\epsilon~{\rm e}~\epsilon_2=2\epsilon,~{\rm con}~\epsilon=10V$.

Determinare:

- a) la corrente che percorre il circuito;
- b)la differenza di potenziale $V_A V_B$;
- c) il valore della f.e.m. V_0 che deve essere posta tra i punti A e C in modo che $V_A = V_B$ (disegnare la f.e.m. sul circuito in modo che si capisca la polarità);
- d) la corrente i che scorre nel resistore posto nel ramo centrale del circuito (vedi figura) qualora tra A e C sia presente la f.e.m. V_0 calcolata nel quesito c).

(Sostituire i valori numerici soltanto alla fine).

1.3 Esercizio 3 (tema d'esame)

Nel circuito in figura tutti i resistori valgono $R=10~k\Omega$, le f.e.m $\epsilon_1=V_0$ e $\epsilon_2=2V_0$, con $V_0=20V_0$ e le capacità C=10~nF.

Inizialmente linterruttore T è chiuso in posizione A ed il circuito è in condizioni stazionarie. Successivamente linterruttore T viene aperto portandolo in posizione B. Determinare la potenza erogata dalla f.e.m. ϵ_1 e la corrente nel resistore R3 nei seguenti istanti:

- a) immediatamente prima dell'apertura di T;
- b) subito dopo lapertura di T;
- c) quando si raggiunge la nuova condizione di stazionarietà.

(Sostituire i valori numerici soltanto alla fine).

1.4 Esercizio 4 (tema d'esame)

Si considerino i due circuiti in figura;

- a) la carica sui condensatori di capacità C e 16C del circuito di destra;
- b) le differenze di potenziale V_{A-B} e $V_{A'}-V_{B'};$
- c) nel caso in cui la f.e.m. $\epsilon_1=18V$, il valore della f.e.m. ϵ_2 per cui $V_A-V_B=V_{A'}-V_{B'};$
- d) il tempo in cui la f.e.m. ϵ_1 (circuito di sinistra) eroga un'energia pari a quella immagazzinata nel circuito di destra (si assuma $R=27~k\Omega$, $C=3~\mu F$ ed i valori di ϵ_1 e ϵ_2 determinati al quesito precedente).

