

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики Кафедра прикладной математики и экономико-математических методов

ОТЧЁТ

по дисциплине:

«Теория и системы поддержки принятия решений» на тему:

«Многокритериальная линейная оптимизация. Задание 1»

Направление: 01.03.02

Обучающийся: Бронников Егор Игоревич

Группа: ПМ-1901

Санкт-Петербург 2022

Задача 1

Kpumepuu:

$$f_1 = x_1 + x_2 + 2 \longrightarrow max$$

 $f_2 = x_1 - x_2 + 6 \longrightarrow max$

Ограничения:

$$\begin{cases} x_1 + 2x_2 \le 6 \\ 0 \le x_1 \le 4 \\ 0 \le x_2 \le 2 \end{cases}$$

Найти компромиссное решение

1) Находим индивидуальные экстремальные значения рассматриваемых критериев:

$$max f_1 = 7$$
, $x_1 = 4$, $x_2 = 1$: $f_2 = 9$
 $max f_2 = 10$, $x_1 = 4$, $x_2 = 0$: $f_1 = 6$

2) Введём компромиссную переменную z и сформулируем неравенства для относительных отклонений:

$$f_1: x_1 + x_2 + 2 + 7z \ge 7$$

$$f_2: x_1 - x_2 + 6 + 10z \ge 10$$

$$z \ge 0$$

3) Формулируем вспомогательную целевую функцию:

$$F=z\longrightarrow min$$

4) Решаем задачу оптимизации:

Целевая функция:

$$F=z\longrightarrow min$$

Ограничения:

$$\begin{cases} x_1 + 2x_2 \le 6 \\ 0 \le x_1 \le 4 \\ 0 \le x_2 \le 2 \\ x_1 + x_2 + 2 + 7z \ge 7 \\ x_1 - x_2 + 6 + 10z \ge 10 \\ z \ge 0 \end{cases}$$

Её решение имеет вид:

$$z^* = 0.0588235, \ x_1^* = 4, \ x_2^* = 0.0588235: \ f_1^* = 6.58824 \ f_2^* = 9.41177$$

Таким образом, мы получили эффективное решение. Значение z^* показывает, что относительные отклонения компромиссных значений критериев f_1 и f_2 от их оптимальных величин $f_{1,max}$ и $f_{2,max}$ не превышает 6%, что хорошо:

$$f_{1,max} = 7, \ f_{2,max} = 10$$

Ответ: $x_1^* = 4$, $x_2^* = 0.0588235$: $f_1^* = 6.58824$, $f_2^* = 9.41177$

Задача 2

Kpumepuu:

$$f_1 = x_1 + x_2 + 2 \longrightarrow max$$

 $f_2 = x_1 - x_2 + 6 \longrightarrow max$

Ограничения:

$$\begin{cases} x_1 + 2x_2 \le 6 \\ 0 \le x_1 \le 4 \\ 0 < x_2 < 2 \end{cases}$$

Критерий f_1 — главный и уступка $p_1=10\%$

1) Находим индивидуальные экстремальные значения рассматриваемых критериев:

$$max f_1 = 7$$
, $x_1 = 4$, $x_2 = 1$: $f_2 = 9$
 $max f_2 = 10$, $x_1 = 4$, $x_2 = 0$: $f_1 = 6$

2) Получаем дополнительное ограничение для f_1 :

$$f_1: x_1 + x_2 + 2 \ge 7 \times (1 - 0.1) = 6.3$$

3) Решаем задачу максимизации для f_2 с исходными ограничениями и с дополнительным ограничением:

Целевая функция:

$$f_2 = x_1 - x_2 + 6 \longrightarrow max$$

Ограничения:

$$\begin{cases} x_1 + 2x_2 \le 6 \\ 0 \le x_1 \le 4 \\ 0 \le x_2 \le 2 \\ x_1 + x_2 + 2 \ge 6.3 \end{cases}$$

Ответ: $x_1^* = 4$, $x_2^* = 0.3$: $f_1^* = 6.3$, $f_2^* = 9.7$

Задача 3

Kpumepuu:

$$f_1 = x_1 + x_2 + 2 \longrightarrow max$$

 $f_2 = x_1 - x_2 + 6 \longrightarrow max$

Ограничения:

$$\begin{cases} x_1 + 2x_2 \le 6 \\ 0 \le x_1 \le 4 \\ 0 \le x_2 \le 2 \end{cases}$$

Уступка p_1 для первого критерия f_1 составляет 5, 10 и 15% Уступка p_2 для второго критерия f_2 равна 10, 15 и 20%

Найти решение методом последовательных уступок (случай двух критериев)

1) Находим индивидуальные экстремальные значения рассматриваемых критериев:

$$max f_1 = 7$$
, $x_1 = 4$, $x_2 = 1$: $f_2 = 9$
 $max f_2 = 10$, $x_1 = 4$, $x_2 = 0$: $f_1 = 6$

3

2) При максимизации f_1 уступка по f_2 приводит к следующему ограничению:

$$f_2: x_1 - x_2 + 6 \ge 10 \times (1 - p_2)$$

При максимизации f_2 уступка по f_1 приводит к следующему ограничению:

$$f_1: x_1 + x_2 + 2 \ge 7 \times (1 - p_1)$$

$J_1 \longrightarrow max$:				
p_2 для f_2	f_1	f_2		
0	6	10		
0.03	6.3	9.7		
0.05	6.5	9.5		
0.08	7	9		
0.1	7	9		
0.15	7	9		
0.2	7	9		

 $f_2 \longrightarrow max$:

p_1 для f_1	f_1	f_2
0	7	9
0.05	6.65	9.35
0.1	6.3	9.7
0.15	6	10

Таблица 1. Метод последовательных уступок II

 $Puc.\ 1.\ \Gamma$ рафик зависимости f_2 от f_1

Теперь лицо принимающее решение может выбрать любую точку на этом графике.

Задача 4

Kpumepuu:

$$f_1 = x_1 + x_2 + 2 \longrightarrow max$$

 $f_2 = x_1 - x_2 + 6 \longrightarrow max$

Ограничения:

$$\begin{cases} x_1 + 2x_2 \le 6 \\ 0 \le x_1 \le 4 \\ 0 \le x_2 \le 2 \end{cases}$$

Найти решение многоритериальной задачи с двумя целевыми функциями методом равных и наименьших отклонений

1) Находим индивидуальные экстремальные значения рассматриваемых критериев:

$$max f_1 = 7$$
, $x_1 = 4$, $x_2 = 1$: $f_2 = 9$
 $max f_2 = 10$, $x_1 = 4$, $x_2 = 0$: $f_1 = 6$

2) Переписываем два критерия:

$$x_1 + x_2 + 2 - f_1 = 0$$

$$x_1 - x_2 + 6 - f_2 = 0$$

 f_1 и f_2 теперь рассматриваем как дополнительные переменные

3) Записываем дополнительное соотношение (условие равенства отклонений):

$$\frac{x_1 + x_2 + 2}{7} - \frac{x_1 - x_2 + 6}{10} = 0$$

5

4) Формулируем и решаем замещающую задачу (f_1 выбираем в качестве целевой функции):

Целевая функция:

$$f_1 = x_1 + x_2 + 2 \longrightarrow max$$

Ограничения:

$$\begin{cases} x_1 + 2x_2 \le 6\\ 0 \le x_1 \le 4\\ 0 \le x_2 \le 2\\ \frac{x_1 + x_2 + 2}{7} - \frac{x_1 - x_2 + 6}{10} = 0 \end{cases}$$

Ответ: $x_1^* = 4$, $x_2^* = 0.5882$: $f_1^* = 6.5882$, $f_2^* = 9.4118$

Задача 5

Kpumepuu:

$$f_1 = x_1 + x_2 + 2 \longrightarrow max$$

 $f_2 = x_1 - x_2 + 6 \longrightarrow max$

Ограничения:

$$\begin{cases} x_1 + 2x_2 \le 6 \\ 0 \le x_1 \le 4 \\ 0 \le x_2 \le 2 \end{cases}$$

Найти решение многоритериальной задачи с двумя целевыми функциями методом весовых оценок критериев (метод экспертных оценок)

1) Задаём значения весовых коэффициентов:

$$\alpha_1 = 0.7, \ \alpha_2 = 0.3: \ \alpha_1 + \alpha_2 = 1$$

2) Формулируем обобщающую целевую функцию:

$$F = \alpha_1 f_1 + \alpha_2 f_2 = 0.7(x_1 + x_2 + 2) + 0.3(x_1 - x_2 + 6) \longrightarrow max$$

6

3) Решаем задачу оптимизации:

Целевая функция:

$$F = 0.7(x_1 + x_2 + 2) + 0.3(x_1 - x_2 + 6) \longrightarrow max$$

Ограничения:

$$\begin{cases} x_1 + 2x_2 \le 6 \\ 0 \le x_1 \le 4 \\ 0 \le x_2 \le 2 \end{cases}$$

Ответ: $F^* = 7.6, \ x_1^* = 4, \ x_2^* = 1: \ f_1^* = 7, \ f_2^* = 9$

Сводный результат

	f_1	f_2	x_1	x_2
$f_1 \longrightarrow max$	7	9	4	1
$f_2 \longrightarrow max$	10	6	4	0
Задача 1	6.58824	9.41177	4	0.0588235
Задача 2	6.3	9.7	4	0.3
Задача 4	6.5882	9.4118	4	0.5882
Задача 5	7	9	4	1