103

Solution.

Carefully reflecting the graphs given in part (a) and (b) gives the following solution. The function $f(x) = (x+1)^3$ in part (b) can be graphed with a graphing calculator first.

6.3 **Exercises**

Exercise 6.1

Use the horizontal line test to determine whether the function is oneto-one.

c)
$$f(x) = x^2 + 2x + 5$$

e) $f(x) = x^3 - 5x^2$

e)
$$f(x) = x^3 - 5x^2$$

g)
$$f(x) = \sqrt{x+2}$$

d)
$$f(x) = x^2 - 14x + 29$$

f) $f(x) = \frac{x^2}{x^2 - 3}$
h) $f(x) = \sqrt{|x + 2|}$

f)
$$f(x) = \frac{x^2}{x^2 - 3}$$

h)
$$f(x) = \sqrt{|x+2|}$$

Exercise 6.2

104

Find the inverse of the function f and check your solution.

a)
$$f(x) = 4x + 9$$

b)
$$f(x) = -8x - 3$$

c)
$$f(x) = \sqrt{x+8}$$

d)
$$f(x) = \sqrt{3x + 7}$$

a)
$$f(x) = 4x + 9$$

b) $f(x) = -8x - 3$
c) $f(x) = \sqrt{x+8}$
d) $f(x) = \sqrt{3x+7}$
e) $f(x) = 6 \cdot \sqrt{-x-2}$
f) $f(x) = x^3$
g) $f(x) = (2x+5)^3$
h) $f(x) = 2 \cdot x^3 + 5$

f)
$$f(x) = x^3$$

g)
$$f(x) = (2x+5)^3$$

h)
$$f(x) = 2 \cdot x^3 + \frac{1}{2}$$

i)
$$f(x) = \frac{1}{x}$$

j)
$$f(x) = \frac{1}{x-1}$$

k)
$$f(x) = \frac{1}{\sqrt{x-2}}$$

l)
$$f(x) = \frac{-5}{4-x}$$

m)
$$f(x) = \frac{x}{x+2}$$

n)
$$f(x) = \frac{3x}{x-6}$$

o)
$$f(x) = \frac{x+2}{x+3}$$

p)
$$f(x) = \frac{7-x}{x-5}$$

i)
$$f(x) = \frac{1}{x}$$
 j) $f(x) = \frac{1}{x-1}$ k) $f(x) = \frac{1}{\sqrt{x-2}}$ l) $f(x) = \frac{-5}{4-x}$ m) $f(x) = \frac{x}{x+2}$ n) $f(x) = \frac{3x}{x-6}$ o) $f(x) = \frac{x+2}{x+3}$ p) $f(x) = \frac{7-x}{x-5}$ q) f given by the table below:

\boldsymbol{x}	2	4	6	8	10	12
f(x)	3	7	1	8	5	2

Exercise 6.3

Restrict the domain of the function f in such a way that f becomes a one-to-one function. Find the inverse of f with the restricted domain.

a)
$$f(x) = x^2$$

b)
$$f(x) = (x+5)^2 + 1$$

c)
$$f(x) = |x|$$

a)
$$f(x) = x^2$$
 b) $f(x) = (x+5)^2 + 1$ c) $f(x) = |x|$ d) $f(x) = |x-4| - 2$

e)
$$f(x) = \frac{1}{x^2}$$

e)
$$f(x) = \frac{1}{x^2}$$
 f) $f(x) = \frac{-3}{(x+7)^2}$

g)
$$f(x) = x^4$$

g)
$$f(x) = x^4$$
 h) $f(x) = \frac{(x-3)^4}{10}$

Exercise 6.4

Determine whether the following functions f and g are inverse to each other.

a)
$$f(x) = x + 3$$

a)
$$f(x) = x + 3$$
 and $g(x) = x - 3$

b)
$$f(x) = -x - 4$$
 and $g(x) = 4 - x$

$$g(x) = 4 - x$$

c)
$$f(x) = 2x + 3$$

$$g(x) = x$$

d)
$$f(x) = 6x - 1$$

$$a(x) = \frac{x+1}{2}$$

e)
$$f(x) = x^3 - 5$$

c)
$$f(x) = 2x + 3$$
 and $g(x) = x - \frac{3}{2}$
d) $f(x) = 6x - 1$ and $g(x) = \frac{x+1}{6}$
e) $f(x) = x^3 - 5$ and $g(x) = 5 + \sqrt[3]{x}$

f)
$$f(x) = \frac{1}{x^2}$$

f)
$$f(x) = \frac{1}{x-2}$$
 and $g(x) = \frac{1}{x} + 2$

Exercise 6.5

Draw the graph of the inverse of the function given below.

d)
$$f(x) = \sqrt{x}$$

e)
$$f(x) = x^3 - 4$$

f)
$$f(x) = 2x - 4$$

g)
$$f(x) = 2^{x}$$

$$\begin{array}{ll} \text{d) } f(x) = \sqrt{x} & \text{e) } f(x) = x^3 - 4 \\ \text{f) } f(x) = 2x - 4 & \text{g) } f(x) = 2^x \\ \text{h) } f(x) = \frac{1}{x-2} \text{ for } x > 2 & \text{i) } f(x) = \frac{1}{x-2} \text{ for } x < 2. \end{array}$$

i)
$$f(x) = \frac{1}{x-2}$$
 for $x < 2$