

Imperial College London

GiBERT - Introducing Linguistic Information into BERT through a Lightweight Gated Injection Method

Nicole Peinelt, Marek Rei, Maria Liakata

Pretrained Transformers

BERT (Devlin et al, 2019)

RoBERTa (Liu et al., 2019)

GPT2 (Radford et a., 2019)

ALBERT (Lan et al., 2020)

Pretrained embeddings F

Pretrained Transformers

Collocations (Mikolov et al., 2013, Pennington et al., 2014)

Dependencies (Levy and Goldberg, 2014)

Subword information (Bojanowski et al., 2017)

Semantic lexicons (Faruqui et al., 2015)

BERT (Devlin et al, 2019)

RoBERTa (Liu et al., 2019)

GPT2 (Radford et a., 2019)

ALBERT (Lan et al., 2020)

Collocations (Mikolov et al., 2013, Pennington et al., 2014)

Dependencies (Levy and Goldberg, 2014)

Subword information (Bojanowski et al., 2017)

Semantic lexicons (Faruqui et al., 2015)

BERT (Devlin et al, 2019)

RoBERTa (Liu et al., 2019)

GPT2 (Radford et a., 2019)

ALBERT (Lan et al., 2020)

Many resources & useful for Semantic Similarity Detection

Combining external information with BERT

Input modifications

Output modifications Internal modifications

Combining external information with BERT

- Internal modifications:
 - Changing BERT's internal architecture
 - Examples:
 - VilBERT (Lu et al., 2019)
 - KnowBERT (Peters et al., 2019)
 - InterBERT (Lin et al., 2020)

Injection methods

Attention injection

$$\mathbf{H^{i'}} = \mathbf{H^i} + \text{MultiHeadAtt}(\mathbf{H^i}, \mathbf{I}, \mathbf{I})$$

MultiheadAtt($\mathbf{Q}, \mathbf{K}, \mathbf{V}$)=[head₁; ...; head_h] $\mathbf{W}^{\mathbf{O}}$

head_j=Attention($\mathbf{QW_j^Q}, \mathbf{KW_j^K}, \mathbf{VW_j^V}$)

Gated injection

$$P = FeedForward(I)$$

$$\mathbf{H^{i'}} = \mathbf{H^i} + \mathbf{g} \odot \mathbf{P}$$

where

 \mathbf{H}_{i} = BERT's hidden representation after layer i

I = aligned injection sequence

 $\mathbf{H_{i}}$ ' = BERT's updated representation after layer i

Experimental Setup

- Embeddings:
 - Dependency-based (Levy and Goldberg 2014)
 - Counter-fitted (Mrkšic´ et al. 2016)
- Baselines:
 - KeLP (Filice et al., 2017)
 - ECNU (Wu et al., 2017)
 - Bunji (Koreeda et al., 2017)
 - **BERT** (Devlin et al. 2019)
 - SemBERT (Zhang et al. 2020)
 - AiBERT (attention injection)

1. Can the injection of linguistically enriched embeddings improve BERT's performance?

	MSRP	Quora	F1 A	SemEva B	l C	avg
Previous systems						
KeLP♦	-	2	-	.506	_	-
ECNU♦	-	-	.777	-	-	-
Bunji◊	-	2	-	9	.197	-
BERT*	.876	.902	.704	.473	.268	.645
SemBERT*	.876	.901	X	X	X	-
Our implementation	on					
AiBERT _{dependency}	.863	.903	.738	.498	.282	.657
AiBERT _{counter-fitted}	.877	.904	.724	.496	.263	.653
GiBERT _{dependency}	.883	.904	.768	.474	.238	.653
GiBERT _{counter-fitted}	.884	.907	<u>.780</u>	<u>.511</u>	.256	.668

AiBERT and GiBERT both improve over BERT.

2. Which injection method works best?

	MSRP	F1 ISRP Quora SemEval avg						
			Α	В	C			
Previous systems								
KeLP♦	-	-	-	.506	-	-		
ECNU♦	-	-	.777	-	-	-		
Bunji◊	-	2	-		.197	-		
BERT*	.876	.902	.704	.473	.268	.645		
SemBERT*	.876	.901	×	×	×	-		
Our implementation	n							
AiBERT _{dependency}	.863	.903	.738	.498	.282	.657		
AiBERT _{counter-fitted}	.877	.904	.724	.496	.263	.653		
GiBERT _{dependency}	.883	.904	.768	.474	.238	.653		
GiBERT _{counter-fitted}	.884	.907	.780	<u>.511</u>	.256	.668		

Gated injection at least as good as attention injection while using fewer additional parameters (0.23M vs. 1.64M)

Conclusion

1. Linguistically enriched embeddings improve BERT's performance

2. Gated injection method at least as effective as attention injection with fewer parameters

Thank you

