Pointed Hopf actions on quantum generalized Weyl algebras

Jason Gaddis

Workshop on Noncommutative Geometry and Noncommutative Invariant Theory Banff International Research Station, Banff, Canada September 26, 2022

Pointed Hopf actions on quantum generalized Weyl algebras

Jason Gaddis

Workshop on Noncommutative Geometry and Noncommutative Invariant Theory Banff International Research Station, Banff, Canada September 26, 2022

(Joint work with Robert Won)

Let \Bbbk be a field. All algebras are \Bbbk -algebras.

Let k be a field. All algebras are k-algebras.

Goal

Study Hopf actions in the setting of $\mathbb{Z}\mbox{-}\mbox{graded}$ algebras.

Let k be a field. All algebras are k-algebras.

Goal

Study Hopf actions in the setting of $\mathbb{Z}\mbox{-}\mbox{graded}$ algebras.

The Weyl algebra

$$A_1(\mathbb{k}) = \mathbb{k}\langle x, y : xy - yx = 1 \rangle$$

is \mathbb{Z} -graded (set $\deg(x) = 1$ and $\deg(y) = -1$) but exhibits no finite-dimensional quantum symmetry (Cuadra-Etingof-Walton).

Let k be a field. All algebras are k-algebras.

Goal

Study Hopf actions in the setting of \mathbb{Z} -graded algebras.

The Weyl algebra

$$A_1(\mathbb{k}) = \mathbb{k}\langle x, y : xy - yx = 1 \rangle$$

is \mathbb{Z} -graded (set $\deg(x)=1$ and $\deg(y)=-1$) but exhibits no finite-dimensional quantum symmetry (Cuadra-Etingof-Walton).

Our interest is in actions on generalized Weyl algebras (GWAs) over a polynomial ring in one variable. These algebras are known to be twisted Calabi-Yau (Liu).

Let k be a field. All algebras are k-algebras.

Goal

Study Hopf actions in the setting of $\mathbb{Z}\mbox{-}\mbox{graded}$ algebras.

The Weyl algebra

$$A_1(\mathbb{k}) = \mathbb{k}\langle x, y : xy - yx = 1 \rangle$$

is \mathbb{Z} -graded (set $\deg(x)=1$ and $\deg(y)=-1$) but exhibits no finite-dimensional quantum symmetry (Cuadra-Etingof-Walton).

Our interest is in actions on generalized Weyl algebras (GWAs) over a polynomial ring in one variable. These algebras are known to be twisted Calabi-Yau (Liu).

So, this is a natural extension of the problem of studying Hopf actions on connected \mathbb{N} -graded twisted Calabi-Yau algebras (i.e., Artin-Schelter regular algebras).

Definition

Let $q\in \Bbbk^{\times}$ and let $h(t)\in \Bbbk[t]$ be non-constant. The corresponding *quantum generalized Weyl algebra* is

$$\mathbb{k}[t](u,v,q,h) = \mathbb{k}\langle u,v,t \mid ut - qtu,vt - q^{-1}tv,vu = h(t),uv = h(qt)\rangle.$$

Definition

Let $q\in \Bbbk^{\times}$ and let $h(t)\in \Bbbk[t]$ be non-constant. The corresponding *quantum generalized Weyl algebra* is

$$\mathbb{k}[t](u,v,q,h) = \mathbb{k}\langle u,v,t \mid ut - qtu, vt - q^{-1}tv, vu = h(t), uv = h(qt)\rangle.$$

Throughout we will assume q is a root of unity, $q \neq 1$.

Definition

Let $q \in \mathbb{k}^{\times}$ and let $h(t) \in \mathbb{k}[t]$ be non-constant. The corresponding quantum generalized Weyl algebra is

$$\mathbb{k}[t](u,v,q,h) = \mathbb{k}\langle u,v,t \mid ut - qtu, vt - q^{-1}tv, vu = h(t), uv = h(qt)\rangle.$$

Throughout we will assume q is a root of unity, $q \neq 1$.

A quantum GWA is \mathbb{Z} -graded (set deg(x) = 1 and deg(y) = -1).

Definition

Let $q\in \Bbbk^{\times}$ and let $h(t)\in \Bbbk[t]$ be non-constant. The corresponding *quantum generalized Weyl algebra* is

$$\mathbb{k}[t](u,v,q,h) = \mathbb{k}\langle u,v,t \mid ut - qtu,vt - q^{-1}tv,vu = h(t),uv = h(qt)\rangle.$$

Throughout we will assume q is a root of unity, $q \neq 1$.

A quantum GWA is \mathbb{Z} -graded (set deg(x) = 1 and deg(y) = -1).

Example

• Setting h = t, we obtain the *quantum planes*:

$$\mathbb{k}_q[u,v] = \mathbb{k}\langle u,v \mid uv - qvu\rangle$$

Definition

Let $q \in \mathbb{k}^{\times}$ and let $h(t) \in \mathbb{k}[t]$ be non-constant. The corresponding quantum generalized Weyl algebra is

$$\mathbb{k}[t](u,v,q,h) = \mathbb{k}\langle u,v,t \mid ut-qtu,vt-q^{-1}tv,vu=h(t),uv=h(qt)\rangle.$$

Throughout we will assume q is a root of unity, $q \neq 1$.

A quantum GWA is \mathbb{Z} -graded (set deg(x) = 1 and deg(y) = -1).

Example

• Setting h = t, we obtain the *quantum planes*:

$$\mathbb{k}_q[u,v] = \mathbb{k}\langle u,v \mid uv - qvu\rangle$$

• Setting h = t - 1, we obtain the *quantum Weyl algebras*:

$$A_1^q(\Bbbk) = \Bbbk \langle u, v \mid uv - qvu - 1 \rangle$$

Definition

Let $m,n\in\mathbb{N}$ such that m>1 and $m\mid n$, and let $\lambda\in\Bbbk$ be a primitive m^{th} root of unity. The generalized Taft algebra corresponding to this data is

$$T_n(\lambda, m) := \mathbb{k}\langle x, g \mid g^n - 1, x^m, gx - \lambda xg \rangle.$$

Definition

Let $m, n \in \mathbb{N}$ such that m > 1 and $m \mid n$, and let $\lambda \in \mathbb{k}$ be a primitive m^{th} root of unity. The generalized Taft algebra corresponding to this data is

$$T_n(\lambda, m) := \mathbb{k}\langle x, g \mid g^n - 1, x^m, gx - \lambda xg \rangle.$$

 \bullet (G, Won, Yee) Classified linear actions of Taft algebras on quantum planes and quantum Weyl algebras.

Definition

Let $m,n\in\mathbb{N}$ such that m>1 and $m\mid n$, and let $\lambda\in\mathbb{k}$ be a primitive m^{th} root of unity. The generalized Taft algebra corresponding to this data is

$$T_n(\lambda, m) := \mathbb{k}\langle x, g \mid g^n - 1, x^m, gx - \lambda xg \rangle.$$

- \bullet (G, Won, Yee) Classified linear actions of Taft algebras on quantum planes and quantum Weyl algebras.
- ullet (Cline, G) Extended the above to linear actions on quantum affine spaces and quantum matrix algebras. Studied actions of generalized Taft algebras, as well as their higher-dimensional analogues.

Definition

Let $m,n\in\mathbb{N}$ such that m>1 and $m\mid n$, and let $\lambda\in\Bbbk$ be a primitive m^{th} root of unity. The generalized Taft algebra corresponding to this data is

$$T_n(\lambda, m) := \mathbb{k}\langle x, g \mid g^n - 1, x^m, gx - \lambda xg \rangle.$$

- \bullet (G, Won, Yee) Classified linear actions of Taft algebras on quantum planes and quantum Weyl algebras.
- (Cline, G) Extended the above to linear actions on quantum affine spaces and quantum matrix algebras. Studied actions of generalized Taft algebras, as well as their higher-dimensional analogues.

The actions we consider here are generally distinct from those studied above.

Weakly $\mathbb{Z}\text{-graded}$ actions

Definition

Let $A = \bigoplus_{i \in \mathbb{Z}} A_i$ be a \mathbb{Z} -graded algebra and let H be a Hopf algebra that acts on A.

Weakly \mathbb{Z} -graded actions

Definition

Let $A = \bigoplus_{i \in \mathbb{Z}} A_i$ be a \mathbb{Z} -graded algebra and let H be a Hopf algebra that acts on A.

• We say the action of H on A is \mathbb{Z} -graded if A_i is an H-module for each $i \in \mathbb{Z}$.

Weakly \mathbb{Z} -graded actions

Definition

Let $A = \bigoplus_{i \in \mathbb{Z}} A_i$ be a \mathbb{Z} -graded algebra and let H be a Hopf algebra that acts on A.

- We say the action of H on A is \mathbb{Z} -graded if A_i is an H-module for each $i \in \mathbb{Z}$.
- We say that the action of H on A is weakly \mathbb{Z} -graded if A_0 and $A_{-i} \oplus A_i$ are H-modules for every $i \in \mathbb{N}$.

Weakly \mathbb{Z} -graded actions

Definition

Let $A = \bigoplus_{i \in \mathbb{Z}} A_i$ be a \mathbb{Z} -graded algebra and let H be a Hopf algebra that acts on A.

- We say the action of H on A is \mathbb{Z} -graded if A_i is an H-module for each $i \in \mathbb{Z}$.
- We say that the action of H on A is weakly \mathbb{Z} -graded if A_0 and $A_{-i} \oplus A_i$ are H-modules for every $i \in \mathbb{N}$.

The weakly \mathbb{Z} -graded setting captures group actions that preserve the \mathbb{Z} -grading of A up to the automorphism of \mathbb{Z} which sends 1 to -1.

Classic problem

Determine the groups that act faithfully on a quantum GWA $\it A$.

Classic problem

Determine the groups that act faithfully on a quantum GWA $\it A$.

Quantum problem

Study which cyclic subgroups G of $\operatorname{Aut}(A)$ are restrictions to the group of group-like elements of a generalized Taft algebra T which acts inner-faithfully on A.

Classic problem

Determine the groups that act faithfully on a quantum GWA A.

Quantum problem

Study which cyclic subgroups G of $\operatorname{Aut}(A)$ are restrictions to the group of group-like elements of a generalized Taft algebra T which acts inner-faithfully on A.

Such a T-action can be viewed as a quantum thickening of the action of G.

Classic problem

Determine the groups that act faithfully on a quantum GWA A.

Quantum problem

Study which cyclic subgroups G of $\operatorname{Aut}(A)$ are restrictions to the group of group-like elements of a generalized Taft algebra T which acts inner-faithfully on A.

Such a T-action can be viewed as a quantum thickening of the action of G.

Let $A = \mathbb{k}[t](u, v, q, h)$. Write $h = \sum h_i t^i$ and let $\ell = \gcd\{i - j \mid h_i h_j \neq 0\}$. Set

$$C_\ell = egin{cases} \mathbb{k}^ imes & ext{if h is a monomial} \ \{\ell^{ ext{th}} & ext{roots of unity}\} & ext{otherwise.} \end{cases}$$

Let $A = \mathbb{k}[t](u, v, q, h)$. Write $h = \sum h_i t^i$ and let $\ell = \gcd\{i - j \mid h_i h_j \neq 0\}$. Set

$$\mathcal{C}_\ell = egin{cases} \mathbb{k}^ imes & ext{if h is a monomial} \ \{\ell^{ ext{th}} & ext{roots of unity}\} & ext{otherwise}. \end{cases}$$

For $(\gamma,\mu)\in \mathcal{C}_\ell imes \Bbbk^ imes$, define $\eta_{\gamma,\mu}\in \operatorname{Aut}(A)$ by

$$\eta_{\gamma,\mu}(t) = \gamma t, \quad \eta_{\gamma,\mu}(v) = \mu v, \quad \eta(u) = \mu^{-1} \gamma^{\mathsf{deg}_t(h)} u.$$

Let $A = \mathbb{k}[t](u, v, q, h)$. Write $h = \sum h_i t^i$ and let $\ell = \gcd\{i - j \mid h_i h_j \neq 0\}$. Set

$$\mathcal{C}_\ell = egin{cases} \mathbb{k}^ imes & ext{if h is a monomial} \ \{\ell^{ ext{th}} ext{ roots of unity}\} & ext{otherwise}. \end{cases}$$

For $(\gamma, \mu) \in C_{\ell} \times \mathbb{k}^{\times}$, define $\eta_{\gamma, \mu} \in \operatorname{Aut}(A)$ by

$$\eta_{\gamma,\mu}(t) = \gamma t, \quad \eta_{\gamma,\mu}(extsf{v}) = \mu extsf{v}, \quad \eta(extsf{u}) = \mu^{-1} \gamma^{\mathsf{deg}_t(h)} extsf{u}.$$

When
$$q \neq -1$$
, then $\operatorname{Aut}(A) = \{ \eta_{\gamma,\mu} \mid (\gamma,\mu) \in C_{\ell} \times \mathbb{k}^{\times} \}.$

Let $A = \mathbb{k}[t](u, v, q, h)$. Write $h = \sum h_i t^i$ and let $\ell = \gcd\{i - j \mid h_i h_j \neq 0\}$. Set

$$C_\ell = egin{cases} \mathbb{k}^ imes & ext{if h is a monomial} \ \{\ell^{ ext{th}} & ext{roots of unity}\} & ext{otherwise}. \end{cases}$$

For $(\gamma, \mu) \in C_{\ell} \times \mathbb{k}^{\times}$, define $\eta_{\gamma, \mu} \in Aut(A)$ by

$$\eta_{\gamma,\mu}(t) = \gamma t, \quad \eta_{\gamma,\mu}(v) = \mu v, \quad \eta(u) = \mu^{-1} \gamma^{\mathsf{deg}_{\mathsf{t}}(h)} u.$$

When $q \neq -1$, then $\operatorname{Aut}(A) = \{ \eta_{\gamma,\mu} \mid (\gamma,\mu) \in \mathcal{C}_\ell \times \Bbbk^\times \}.$

If q=-1, then there is an order 2 automorphism Ω defined by

$$\Omega(t) = -t, \quad \Omega(v) = u, \quad \Omega(u) = v.$$

In this case, every automorphism of A is either some $\eta_{\gamma,\mu}$ or else $\Omega\circ\eta_{\gamma,\mu}$.

Let $A = \mathbb{k}[t](u, v, q, h)$. Write $h = \sum h_i t^i$ and let $\ell = \gcd\{i - j \mid h_i h_j \neq 0\}$. Set

$$C_\ell = egin{cases} \mathbb{k}^ imes & ext{if h is a monomial} \ \{\ell^{ ext{th}} & ext{roots of unity}\} & ext{otherwise}. \end{cases}$$

For $(\gamma, \mu) \in C_{\ell} \times \mathbb{k}^{\times}$, define $\eta_{\gamma, \mu} \in \operatorname{Aut}(A)$ by

$$\eta_{\gamma,\mu}(t) = \gamma t, \quad \eta_{\gamma,\mu}(v) = \mu v, \quad \eta(u) = \mu^{-1} \gamma^{\deg_t(h)} u.$$

When $q \neq -1$, then $\operatorname{Aut}(A) = \{ \eta_{\gamma,\mu} \mid (\gamma,\mu) \in C_{\ell} \times \mathbb{k}^{\times} \}.$

If q=-1, then there is an order 2 automorphism Ω defined by

$$\Omega(t) = -t$$
, $\Omega(v) = u$, $\Omega(u) = v$.

In this case, every automorphism of A is either some $\eta_{\gamma,\mu}$ or else $\Omega\circ\eta_{\gamma,\mu}$.

So, every automorphism of a quantum GWA is weakly \mathbb{Z} -graded. But, when $q \neq -1$, every automorphism is actually \mathbb{Z} -graded.

For our main result, it was necessary to first study actions of generalized Taft actions on the polynomial base ring $\Bbbk[t]$.

For our main result, it was necessary to first study actions of generalized Taft actions on the polynomial base ring k[t].

For
$$f = \sum f_i t^i \in \mathbb{k}[t]$$
, set $supp(f) = \{i \mid f_i \neq 0\} \subset \mathbb{Z}$.

For our main result, it was necessary to first study actions of generalized Taft actions on the polynomial base ring $\mathbb{k}[t]$.

For
$$f = \sum f_i t^i \in \mathbb{k}[t]$$
, set $supp(f) = \{i \mid f_i \neq 0\} \subset \mathbb{Z}$.

Proposition

Let
$$T = T_n(\lambda, m)$$
. Let $\gamma \in \mathbb{k} \setminus \{0, 1\}$ and $0 \neq \phi \in \mathbb{k}[t]$ with $\deg_t(\phi) = d$.

For our main result, it was necessary to first study actions of generalized Taft actions on the polynomial base ring $\Bbbk[t]$.

For
$$f = \sum f_i t^i \in \mathbb{k}[t]$$
, set $supp(f) = \{i \mid f_i \neq 0\} \subset \mathbb{Z}$.

Proposition

Let
$$T=T_n(\lambda,m)$$
. Let $\gamma\in \Bbbk\setminus\{0,1\}$ and $0\neq \phi\in \Bbbk[t]$ with $\deg_t(\phi)=d$.

- I. If $\Bbbk[t]$ is a T-module algebra with $g(t) = \gamma t$ and $x(t) = \phi$, then
- (1) γ is a primitive m^{th} root of unity,
- (2) $\lambda = \gamma^{d-1}$ and gcd(d-1, m) = 1, and
- (3) $supp(\phi) \subseteq \{d, d-m, d-2m, \ldots\}.$

Furthermore, the action is inner-faithful if and only if m = n.

For our main result, it was necessary to first study actions of generalized Taft actions on the polynomial base ring k[t].

For $f = \sum f_i t^i \in \mathbb{k}[t]$, set $supp(f) = \{i \mid f_i \neq 0\} \subset \mathbb{Z}$.

Proposition

Let $T = T_n(\lambda, m)$. Let $\gamma \in \mathbb{k} \setminus \{0, 1\}$ and $0 \neq \phi \in \mathbb{k}[t]$ with $\deg_t(\phi) = d$.

- I. If k[t] is a T-module algebra with $g(t) = \gamma t$ and $x(t) = \phi$, then
- (1) γ is a primitive m^{th} root of unity,
- (2) $\lambda = \gamma^{d-1}$ and gcd(d-1, m) = 1, and
- (3) $supp(\phi) \subseteq \{d, d-m, d-2m, \ldots\}.$

Furthermore, the action is inner-faithful if and only if m = n.

II. Conversely, if γ and ϕ satisfy the conditions (1)—(3), then there is a unique T-module algebra structure on $\mathbb{k}[t]$ such that $g(t) = \gamma t$ and $x(t) = \phi$.

Theorem

Let A = k[t](u, v, q, h) with $q^2 \neq 1$ and let $T = T_n(\lambda, m)$.

Theorem

Let $A = \mathbb{k}[t](u, v, q, h)$ with $q^2 \neq 1$ and let $T = T_n(\lambda, m)$.

- (A) There is an inner-faithful weakly \mathbb{Z} -graded T-module algebra structure on A if and only if
 - 1. supp(h) is contained in a single congruence class modulo m, and
 - 2. there exists an integer k coprime to m such that $lcm(m, ord(q^k)) = n$.

Theorem

Let $A = \mathbb{k}[t](u, v, q, h)$ with $q^2 \neq 1$ and let $T = T_n(\lambda, m)$.

- (A) There is an inner-faithful weakly \mathbb{Z} -graded T-module algebra structure on A if and only if
 - 1. supp(h) is contained in a single congruence class modulo m, and
 - 2. there exists an integer k coprime to m such that $lcm(m, ord(q^k)) = n$.
- (B) Assuming the conditions in (A) are satisfied, the inner-faithful weakly \mathbb{Z} -graded T-module algebra structures on A are parametrized by $\gamma, \mu \in \mathbb{k}^{\times}$ and $\phi(t) \in \mathbb{k}[t]$ of degree d such that
 - 1. ord(γ) = m and $\lambda = \gamma^{d-1}$,
 - 2. $lcm(m, ord(\mu)) = n$,
 - 3. $\operatorname{supp}(\phi)$ is contained in a single congruence class modulo m, and
 - 4. μq^{1-d} is an m^{th} root of unity.

Theorem

Let $A = \mathbb{k}[t](u, v, q, h)$ with $q^2 \neq 1$ and let $T = T_n(\lambda, m)$.

- (A) There is an inner-faithful weakly \mathbb{Z} -graded T-module algebra structure on A if and only if
 - 1. supp(h) is contained in a single congruence class modulo m, and
 - 2. there exists an integer k coprime to m such that $lcm(m, ord(q^k)) = n$.
- (B) Assuming the conditions in (A) are satisfied, the inner-faithful weakly \mathbb{Z} -graded T-module algebra structures on A are parametrized by $\gamma, \mu \in \mathbb{k}^{\times}$ and $\phi(t) \in \mathbb{k}[t]$ of degree d such that
 - 1. ord(γ) = m and $\lambda = \gamma^{d-1}$,
 - 2. $lcm(m, ord(\mu)) = n$,
 - 3. $supp(\phi)$ is contained in a single congruence class modulo m, and
 - 4. μq^{1-d} is an m^{th} root of unity.

These conditions guarantee an action even in the case of q=-1. However, when q=-1, there may be additional T-actions.

We can also frame our results in terms of quantum thickenings.

Theorem

Let $A = \mathbb{k}[t](u, v, q, h)$ with $q^2 \neq 1$. Let $G = \langle \eta_{\gamma, \mu} \rangle$ be a cyclic subgroup of $\operatorname{Aut}(A)$ of order n. Let $m = \operatorname{ord}(\gamma)$ so $m \mid n$.

We can also frame our results in terms of quantum thickenings.

Theorem

Let $A = \mathbb{k}[t](u, v, q, h)$ with $q^2 \neq 1$. Let $G = \langle \eta_{\gamma, \mu} \rangle$ be a cyclic subgroup of Aut(A) of order n. Let $m = \operatorname{ord}(\gamma)$ so $m \mid n$.

(A) The action of G is the restriction of the action to the group of group-likes of an inner-faithful weakly \mathbb{Z} -graded $T_n(\lambda, m)$ -module algebra action if and only if there exists an integer k coprime to m such that μq^k is an m^{th} root of unity.

We can also frame our results in terms of quantum thickenings.

Theorem

Let $A = \mathbb{k}[t](u, v, q, h)$ with $q^2 \neq 1$. Let $G = \langle \eta_{\gamma, \mu} \rangle$ be a cyclic subgroup of Aut(A) of order n. Let $m = \operatorname{ord}(\gamma)$ so $m \mid n$.

- (A) The action of G is the restriction of the action to the group of group-likes of an inner-faithful weakly \mathbb{Z} -graded $T_n(\lambda,m)$ -module algebra action if and only if there exists an integer k coprime to m such that μq^k is an m^{th} root of unity.
- (B) The actions of each $T_n(\lambda, m)$ whose group-like elements restrict to the action of G are parameterized by nonzero polynomials $\phi(t) \in \mathbb{k}[t]$ of degree d such that
 - 1. gcd(d-1, m) = 1, and
 - 2. $supp(\phi)$ is contained in a single congruence class modulo m.

Invariants

For a Hopf algebra H and an H-module algebra A, the fixed ring of A by H is

$$A^H = \{ a \in H \mid h(a) = \epsilon(h) \text{ a for all } h \in H \}.$$

Theorem

Let $A = \mathbb{k}[t](u, v, q, h)$ with q a root of unity, $q \neq 1$, and let $T = T_n(\lambda, m)$. Suppose that A is an inner-faithful weakly \mathbb{Z} -graded T-module algebra where g acts as $\eta_{\gamma,\mu} \in \operatorname{Aut}(A)$ with $\gamma \neq 1$.

Invariants

For a Hopf algebra H and an H-module algebra A, the fixed ring of A by H is

$$A^H = \{ a \in H \mid h(a) = \epsilon(h) \text{ a for all } h \in H \}.$$

Theorem

Let $A = \mathbb{k}[t](u, v, q, h)$ with q a root of unity, $q \neq 1$, and let $T = T_n(\lambda, m)$. Suppose that A is an inner-faithful weakly \mathbb{Z} -graded T-module algebra where g acts as $\eta_{\gamma,\mu} \in \operatorname{Aut}(A)$ with $\gamma \neq 1$. Then for some polynomial $H \in \mathbb{k}[Z]$,

$$A^T \cong \mathbb{k}[U, V, Z]/(UV - H).$$

Invariants

For a Hopf algebra H and an H-module algebra A, the fixed ring of A by H is

$$A^H = \{ a \in H \mid h(a) = \epsilon(h) \text{ a for all } h \in H \}.$$

Theorem

Let $A=\Bbbk[t](u,v,q,h)$ with q a root of unity, $q\neq 1$, and let $T=T_n(\lambda,m)$. Suppose that A is an inner-faithful weakly \mathbb{Z} -graded T-module algebra where g acts as $\eta_{\gamma,\mu}\in \operatorname{Aut}(A)$ with $\gamma\neq 1$. Then for some polynomial $H\in \Bbbk[Z]$,

$$A^T \cong \mathbb{k}[U, V, Z]/(UV - H).$$

Thank You!