⊕ (•;••) &

K-fold 교차검증 R로 쉽게 이해하기!

조인식 조교

우리들의 숙적, Overfitting

- Overfitting이랑 문자 그대로 너무 과도하게 데이터에 대해 모델을 learning을 한 경우를 나타낸다.
- 주어진 데이터에 지나치게 꼭 맞는 모델을 생성할 경우 모델은 train데이터는 훌륭한 성능을 낼 수 있을지언정 Test데이터와 미래의 데이터에 대해서는 오히려 성능악화를 초래한다.

(http://sanghyukchun.github.io/59/)

우리들의 숙적, Overfitting

- Variance & Bias : 모델의 에러를 일으키는 요소
- Variance of model: 훈련자료가 바뀌었을 때 모델이 바뀌는 정도
- Bias of model: 개발된 모형과 실제 모형간의 차이
- Bias of data : 데이터의 편향상태, 데이터가 한쪽 레이블에 과도하게 치우쳐진 상태
- Bias Variance Tradeoff 모형에 대한 가정이 약할수록 bias는 작아지고 variance는 커지는 반면 모형에 대한 가정이 강할수록 bias는 커지고 variance는 강해진다.
- Variance와 bias를 잘 조절해서 최적의 성능을 가지는 모델을 만드는 것이 machine learning의 과제
- 이를 조절하기위하여 우리는 검증과정을 거쳐야 한다.

우리가 지금까지 해온 방법… Hold-out 기법

Idx = sample(1:150, 100)

Train = iris[Idx,]

Test = iris[-Idx,]

데이터를 k개의 fold로 만들어서 각 fold들이 test/train 역할을 분리해가며 교차검증을 실시

Valid

train

Phaze 1	Phaze 2	Phaze 3	Phaze 4	Phaze 5
fold1	fold1	fold1	fold1	fold1
fold2	fold2	fold2	fold2	fold2
fold3	fold3	fold3	fold3	fold3
fold4	fold4	fold4	fold4	fold4
fold5	fold5	fold5	fold5	fold5

Mean of Accuracy return

마지막 실습문제

1주에 배웠던 내용과 이번주에 배운 내용, 그리고 K-fold 교차검증을 이용해서 다음 함수를 구축해보자.

K-fold Cross validation을 하는 함수를 구현해본다.

K-fold Cross Validation으로 RandomForest 를 돌리고 이에 대한 결과로 평균 Accuracy를 리턴하는 함수를 만들어보자.

〈함수구조〉

[1]0.9533333

```
\ Kfold.rf(ds = "x인자", cl = "y인자", fold = 10)
Kfold.rf = function(ds, cl, fold = 10){
    ...(함수 구축)
}
```

 $\$ Kfold.rf(ds = iris[, -5], cl = iris[, 5], fold = 10)

힌트: fold를 나누는 함수 = caret 패키지의 createFolds(벡터, 폴드수)