	REPORT DO	CUMENTATI	ON PAGE		OMB No. 0704-018	00
Public reporting burden for the maintaining the data needed	is collection of information is	estimated to average 1 hour per	r response, including the time for	reviewing instructions,	searching existing data sources, pathodi	
collection of information if it d	oes not displav a currently va	dents should be aware that not	withstanding any other provision SE DO NOT RETURN YOUR FO	of law, no person shall	ons and Reports (0704-0188), 1215 Jeffe be subject to any penalty for failing to cor	rson Da nply with
1. REPORT DATE (D	D-MM-YYYY)	2. REPORT TYPE	SE DO NOT RETURN TOUR FO	OHM TO THE ABOVE	ADDRESS.	
	·	Technical Papers	,		3. DATES COVERED (From -	To)
4. TITLE AND SUBTI	TLE	1			Fo CONTRACT	
					5a. CONTRACT NUMBER	
				-	5b. GRANT NUMBER	
	* .			[OS. GITANT NOMBER	
					E. PROCENIA	
					5c. PROGRAM ELEMENT NU	IMBE
6. AUTHOR(S)	· · · · · · · · · · · · · · · · · · ·					
*			•	İ	5d. PROJECT NUMBER	
				<u> </u>	2303	
					5e. TASK NUMBER	
	* 1				m 208	
		•		j	5f. WORK UNIT NUMBER	
PERFORMING OR	ANUZATION NAME	3) 4115 455555			!	
Em Onjuning ORC	AANICATION NAME(S) AND ADDRESS(ES)	•		8. PERFORMING ORGANIZA	TION
ir Force Research	Laboratory (AFMC	·\			REPORT	
FRL/PRS	Laboratory (AFIVIC					
Pollux Drive						
Edwards AFB CA	12514 7040				.	
Juwaius AFD CA S	13324-1048			1	. !	
			•	-		
. SPONSORING / MO	NITORING AGENCY	NAME(S) AND ADDRE	ESS(ES)		10. SPONSOR/MONITOR'S	
					ACRONYM(S)	
in Force December 1, 1						
ir Force Research l	Laboratory (AFMC) .		İ	I	
AFRL/PRS				T-	11. SPONSOR/MONITOR'S	
Pollux Drive					NUMBER(S)	
Edwards AFB CA 93	3524-7048				(0)	
2. DISTRIBUTION / A	VAILABILITY STATE	MENT		<u> </u>	i	
	·			•		
pproved for public	release; distribution	unlimited.				
-		,				
B. SUPPLEMENTARY	NOTES		·	·····	<u> </u>	
			•			
. ABSTRACT					<u> </u>	
			•		<u> </u>	
			•			
. SUBJECT TERMS		· · · · · · · · · · · · · · · · · · ·				
. CODULCI IERMS						
SECURITY CLASSIF	ICATION OF		42 1 114174-1-1-1			
	· · · · · · · · · · · · · · · · · · ·		17. LIMITATION OF ABSTRACT	18. NUMBER	19a. NAME OF RESPONS	BLE
			OF ABSTRACT	OF PAGES	PERSON	
REPORT I	. ABSTRACT	c. THIS PAGE	-		Leilani Richardson	
			1		19b. TELEPHONE NUMBE	.R
nclassified (Unclassified	Unclassified	$(^{\wedge})$	1	(include area code) (661) 275-5015	
				1	1 (001) 413-3013	

62

Sommer Hears are and

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 NEW RANDUM FOR PRS (Contractor/In-House Publication)

FROM: PROI (TI) (STINFO)

01 November 1999

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-1999-0204 Christe, K.O., et al., "Relative Abilities of Fluorine and Chlorine to Stabilize Carbenium Ions"

Journal of the American Chemical Society

(Statement A)

Relative Abilities of Fluorine and Chlorine to Stabilize Carbenium Ions.

Crystal Structures of Two Fluoro-Substituted Carbocations and of As₂F₁₁

Karl O. Christe^{*,†,‡}, Xiongzhi Zhang[†], Robert Bau[†], Joachim Hegge[†], George A. Olah[†], G. K. Surya Prakash[†], and Jeffrey A. Sheehy[‡].

Contribution from the Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089, and the Propulsion Sciences and Advanced Concepts Division, Air Force Research Laboratory (AFRLS/PRS), Edwards Air Force Base, California 93524-7680

Abstract

The first crystal structures of fluoro-substituted carbocations without heteroatom stabilization and of the As₂F₁₁ anion are reported. The experimental geometries of the carbenium ions in $[(CH_3)_2CF]^{\dagger}AsF_6$, $[(m-CF_3C_6H_4)(C_6H_5)CF]^{\dagger}AsF_6$ and $[(m-CF_3C_6H_4)(C_6H_5)CF]^{\dagger}As_2F_{11}$ and their comparison with that of the [(o-ClC₆H₄)(C₆H₅)CCl]⁺ cation show that, in accord with previous theoretical calculations, chlorine stabilizes carbenium ions more efficiently than fluorine. The apparent discrepancy between these findings and a previously reached conclusion, based on an analysis of ¹³C NMR chemical shift difference data, are reconciled by using the direct ¹³C chemical shifts for judging the donor strength of a ligand. The ¹³C and ¹⁹F NMR spectra of the [(m-CF₃C₆H₄)(C₆H₅)CF]⁺ cation were recorded and analyzed with the help of RHF/6-31G(d,p) calculations using the GIAO method. In each of the three fluoro-substituted carbocation crystal structures studied, the carbenium centers are further stabilized by forming two fluorine bridges with the anions, resulting in pseudo-trigonal bipyramidal environments around the carbenium centers. The $[F_5As-F-AsF_5]^T$ anion in $[(m-CF_3C_6H_4)(C_6H_5)CF]^TAs_2F_{11}^T$ possesses a symmetric fluorine bridge with an As-F-As angle of 156.5(13) ° and staggered AsF₄ groups.

> DISTRIBUTION STATEMENT A: Approved for Public Release -Distribution Unlimited

20021122 015

Introduction

Although the nature and structures of carbocations have been studied extensively by electronic structure calculations and spectroscopic techniques, such as NMR or matrix isolation, the number of known crystal structures is quite small.1.2 Of particular interest in carbocation chemistry is the mechanism and extent to which the highly electron-deficient carbenium center can be stabilized by electron back-donation from its ligands and by bridging to its neighbors.2 Depending on the nature of the ligand, this stabilization can invoke either $p(\pi)$ back-donation, if the ligand has a free valence electron pair or involves an aromatic carbon atom, or C-H / C-C hyperconjugation, if the ligand is an alkyl group. If a ligand is highly electronegative, such as fluorine, the inductive electron withdrawing σ -effect is very strong and counteracts the $p(\pi)$ back-donation, as was demonstrated by natural bond orbital (NBO) analyses for CF3+3,4 and FCO^{+,4} Unfortunately, the theoretically well characterized CF₃⁺ and FCO⁺ cations cannot be stabilized as salts with presently known Lewis acids,4 and only one crystal structure was known for a fluoro-substituted carbocation, that of $[F_2C_S^3CF]^+$, which is stabilized by two sulfur heteroatoms. However, no structure was known for a fluorocarbenium ion without heteroatom stabilization.

The second topic of this study is the As₂F₁₁ anion. Its existence was first suggested in 1969 based on low-temperature IR⁶ and NMR⁷ observations. Subsequently, it was positively identified by low-temperature ¹⁹F NMR spectroscopy, ⁸⁻¹¹ specific conductivity, ⁹⁻¹² Raman, ^{12,13} and x-ray powder diffraction data. ¹⁴ However, no exact structural data were available for this interesting anion.

Experimental Section

Materials and Apparatus. α,α,α-Trifluorotoluene (Aldrich), 2,2-difluoropropane (PCR), SO₂ (Matheson), and AsF₅ and SO₂CIF (Ozark Mahoning) were used as received. The HF (Matheson) was dried by storage over BiF₅.¹⁵ Volatile compounds were handled either on a Pyrex glass vacuum line equipped with grease-free Kontes glass-Teflon valves or on a previously described¹⁶ stainless steel-Teflon FEP vacuum line. The NMR spectra were recorded in SO₂ solution at -20°C on a Bruker AM-360 spectrometer using 5 mm Teflon tubes (Wilmad Glass Co.) as sample containers. Single crystals were grown at low temperature by slow cooling of saturated HF solutions, and suitable crystals were selected and mounted with perfluoroether oil in a cold dry nitrogen flow. The diffraction data were collected at -100 °C, using a Siemens/ Nicolet/Syntex P2₁ diffractometer with MoKα radiation up to a 2θ limit of 55 ° and the computing packages SHELX-86¹⁷ and SHELX-93¹⁸ for refining the data.

Preparation of $[(CH_3)_2CF]^+AsF_6(I)$. In a 0.5 "o.d. Teflon FEP ampule, which was closed by a steel valve, equimolar amounts of $(CH_3)_2CF_2$ and AsF_5 and a large excess of anhydrous HF (3 mL) were combined at -196 °C. The mixture was warmed to -78 °C, followed by HF removal at -50 °C in a dynamic vacuum, resulting in a white solid that was stable at -50 °C and started to decompose at about -20 °C. It was identified by its crystal structure as $[(CH_3)_2CF]^+AsF_6$.

Preparation of $[(m-CF_3C_6H_4)(C_6H_5)CF]^+AsF_6(II)$ and $As_2F_{11}(III)$. α,α,α -Trifluorotoluene, when combined as described above for (I) with either equimolar amounts or an excess of AsF_5 in HF, SO_2ClF or SO_2 solution, gave exclusively $[(m-CF_3C_6H_4)(C_6H_5)CF]^+As_2F_{11}$ (vide infra). With a one-fold or larger excess of α,α,α -trifluorotoluene, the corresponding AsF_6 salt was obtained. The salts are white solids that are marginally stable at room temperature. (II) and (III) were characterized by their crystal structures and ^{13}C , ^{19}F , and ^{14}H NMR spectra.

Theoretical Calculations

Various ab initio calculations were carried out on the free [(CH₃)₂CF]⁺, [m- $(CF_3C_6H_4)(C_6H_5)CF_5^{\dagger}$, and $[As_2F_{11}]^{\dagger}$ ions using the Gaussian 98¹⁹ and ACES II²⁰ program systems on IBM RS/6000 work stations. The highest level of theory employed for each system was the restricted Hartree-Fock (RHF) method²¹ for [m-(CF₃C₆H₄)(C₆H₅)CF]⁺, the B3LYP²² densityfunctional approach for [As₂F₁₁], and the single- and double-excitation coupled-cluster method²³ with a noniterative treatment of connected triple excitations, ²⁴ denoted CCSD(T), for [(CH₃)₂CF][†]. Several atomic basis sets were employed, including the 6-31G(d,p)25 set for [m- $(CF_3C_6H_4)(C_6H_5)CF]^+, \text{ the } 6\text{-}311+G(d)^{26,27} \text{ set for } [As_2F_{11}]^-, \text{ and the } 6\text{-}311++G(2d,2p)^{28} \text{ and } TZ2P^{29}$ (triple-zeta, double-polarization) sets for [(CH₃)₂CF]⁺. Optimized geometries and vibrational spectra were obtained in every case, and for [(CH₃),CF]⁺, a study was made of the effects of rotating the methyl groups with respect to each other. Additionally, isotropic NMR shieldings for $[m-(CF,C_1H_1)(C_2H_2)CF]^+$ were calculated at the RHF/6-31G(d,p) level using the gaugeincluding atomic orbital (GIAO) solution to the gauge-invariance problem.³⁰ Chemical shifts were obtained by referring these shieldings to those of the standard reference compounds tetramethylsilane and fluorotrichloromethane, which were computed at the same level of theory.

Results and Discussion

Reliable bond length determinations are uniquely suited for evaluating the relative stabilization of carbenium ions by different ligands. The highly electron-deficient carbenium centers formally possess only six valence electrons and must be stabilized by the formation of partial multiple bonds. Therefore, the observed bond shortenings in carbenium ions, compared to normal single bonds, reveal the relative contributions from different ligands to the stabilization

of a carbenium ion. Whereas methods, such as ¹³C NMR shielding measurements, permit evaluation of only the total contribution from all ligands, structure determinations by single crystal x-ray diffraction give the individual contributions from each ligand.

[(CH₃)₂CF]^{*}AsF₆(I). The dimethylfluorocarbenium cation was first observed in 1967 by Olah, Chambers and Comisarow by low-temperature ¹H and ¹⁹F NMR spectroscopy of solutions of either 2,2-difluoropropane in SbF₃/SO₂ or 2-fluoropropene in FSO₃H/SbF₅. ^{31,32} Its ¹³C NMR spectrum was reported in 1972. ³³ Based on the observed ¹³C shift differences between the cations, (CH₃)₂CX^{*} and CX₃^{*}, and the related halocarbons, CH₃CHXCH₃ and CH₃CX=CH₂, it was concluded ^{33,34} that fluorine is a better back-donor than chlorine. This view was recently challenged, however, in two theoretical studies, one by Frenking and coworkers ³ and another by some of us. ⁴

Single crystals of (I) were obtained by slowly cooling equimolar amounts of $(CH_3)_2CF_2$ and AsF₅ in anhydrous HF solution (1).

$$(CH_3)_2CF_2 + AsF_5 \xrightarrow{HF} [(CH_3)_2CF]^+AsF_6^-$$
 (1)

The crystal and structure refinement data, atomic coordinates and equivalent isotropic displacement parameters, and selected bond lengths and angles of (I) are given in Tables 1-3. Full details of the structural results are available as Supplementary Material. The structure of an individual [(CH₃)₂CF]⁺ cation, connected by two fluorine bridges to neighboring AsF₆ anions, and a packing diagram of (I) are shown in Figures 1 and 2, respectively.

The structure of (I) is ionic, containing discrete $[(CH_3)_2CF]^+$ cations and AsF_6 anions. The C_2CF skeleton of the cation is planar, and its central C(1) atom completes its coordination with two longer, approximately perpendicular fluorine contacts of 2.66 and 2.78 Å, which are significantly shorter than the sum of the C-F van der Waals radii (3.17 Å)^{2.35} and involve the F(6)

and (F2') atoms of two different AsF, anions (see Figure 1). These fluorine bridges help to populate the empty p_z orbital of the carbenium center, thereby enhancing its stabilization. They also cause a slight distortion of the AsF; anions from octahedral symmetry. The C-F bond length in [(CH₂)₂CF]⁺ is 1.285(11) Å and is significantly shorter than the average length of 1.333 ± 0.005 Å found for olefinic C-F bonds, 36 indicating substantial electron back-donation from fluorine to the carbenium center. The C(1)-C(2) and C(1)-C(3) bonds of $[(CH_1), CF]^{+}$ were found to be 1.450(13) and 1.413(13) Å, respectively; the apparent difference in their lengths is less than 30 and is believed to be insignificant. This conclusion is supported by an ab initio calculation in which we froze the positions of the two methyl groups such that one C-H bond of one CH, group was coplanar with the unoccupied p_z orbital on the carbenium carbon and the other CH₃ group was rotated by 90°. Even at the highly correlated CCSD(T)/TZ2P level, the maximum differences in the calculated C-C bond lengths were only about 0.001 Å, suggesting that one-sided methyl hyperconjugation,³⁷ which is strongly angle dependent,^{1,38} is very unlikely to cause a difference as large as 0.037 Å in the C-C bond lengths. A similar theoretical analysis was carried out by Schleyer and coworkers for the 2-propyl cation, [(CH₁)₂CH]⁺, which showed that at the MP2/6-31G* level the C-C bond lengths change only by about 0.01 Å for its different rotational isomers.³⁸ It should be noted that the observed average C-C bond length in [(CH₂)₂CF]⁺ of 1.432 Å is significantly shorter than the average length of 1.510(5) Å found for the C-C bond in C-C=C type molecules,36 indicating significant C-C bond shortening due to methyl hyperconjugation.37

[$(m-CF_3C_6H_4)(C_6H_5)CF$]*AsF₆(II) and [$(m-CF_3C_6H_4)(C_6H_5)CF$]*As₂F₁₁(III). Our original intent was to prepare $C_6H_5CF_2$ *AsF₆ from $C_6H_5CF_3$ by fluoride abstraction with AsF₅ in HF solution, because the formation of the $C_6H_5CF_2$ * cation from $C_6H_5CF_2CI$ in SO₂/SbF₅ solutions at –

75 °C had previously been established by ¹H and ¹⁹F NMR spectroscopy. ³⁹ Surprisingly, it was found that under our conditions, i.e., C₆H₅CF₃ and AsF₅ in HF, SO₂ or SO₂ClF solutions at -20 °C, the only observed products were either (II) or (III), obtained when using an excess of trifluorotoluene or AsF₅, respectively. The formation of dimeric cations in (II) and (III) can be explained by a coupling reaction of an intermediate C₆H₅CF₂⁺ cation (2) with a second C₆H₅CF₃ molecule (3), a typical Friedel-Crafts benzylation.

$$CF_3 + AsF_5 \longrightarrow CF_2^+ AsF_6$$
 (2)

$$CF_2^+ AsF_6^- + CF_3 \xrightarrow{-HF} \left[\begin{array}{c} -HF \\ CF_3 \end{array} \right]^+ AsF_6^-$$
 (3)

This pronounced tendency of CF₂⁺ to dimerize resembles that of CH₂⁺ to polymerize. Compounds (II) and (III) are white solids that are marginally stable at room temperature.

The structure of the cation in (II) and (III) was established by ¹³C and ¹⁹F NMR spectroscopy, single crystal x-ray diffraction and electronic structure calculations. The ¹³C NMR assignments, summarized in Figure 3, are based on the observed ¹³C-¹⁹F coupling constants and the chemical shifts from an RHF/6-31G(d,p) calculation²¹ at the optimized geometry, which closely resembled the observed one. The calculated ¹⁹F shifts appear to be uniformly about 20 ppm more positive than the observed ones at this level of calculation. The observed

shift of 18.0 ppm for (II) is in good agreement with that of 11.5 ppm, previously reported for

 $[(C_6H_5)_2CF]^{+39}$ The observed chemical shifts for the three fluorines of the CF_3 group are, as expected, rotationally averaged.

The agreement between the calculated and observed ¹³C shifts (Figure 3) is generally quite good and even, in the cases of somewhat larger deviations, the overall shift sequences are retained, i.e., the ¹³C shifts decrease in the expected ⁴¹ order: $CF^+ > para-C > ortho-C > meta-C > ipso-C > CF_3$. The line width of the C2/C6 resonance was found to be larger than the others and to be strongly temperature dependent, possibly due to incipient rotational averaging of C2 and C6 in the given temperature range. The chemical shift of 207 ppm for the carbenium center in (II) agrees well with those of 209 and 212 ppm found for $[(C_6H_3)_2C(OH)]^+$ and $[(C_6H_3)_3C]^+$, respectively, ⁴¹ indicating comparable shielding and stabilization by the aryl groups through *ortho*- and *para*- quinoidal resonance structures.

Crystal and refinement data of compounds (II) and (III) are given in Table 1, and their atomic coordinates and selected bond lengths and angles are given in Tables 4-7. Full details of the structural results are available as Supplementary Material. The structures of the individual $[(m-CF_3C_6H_4)(C_6H_5)CF]^+$ cations, including their bridging to two neighboring AsF_6 or As_2F_{11} -anions, and packing diagrams are shown in Figures 4-8.

The structures of (II) and (III) are ionic, containing discrete $[(m\text{-CF}_3C_6H_4)(C_6H_5)CF]^+$ cations and AsF_6 and As_2F_{11} anions, respectively. In the cations, the C_2CF^+ skeleton is again perfectly planar, and the $-C_6H_4CF_3$ phenyl group is almost coplanar with it, but the unsubstituted phenyl groups in (II) and (III) are twisted by 39.3 ° and 47.5 °, respectively, out of their common planes. As in compound (I), the carbenium centers in (II) and (III) form along their p_z axes two close fluorine bridges of about 2.78 and 3.04 Å, respectively, with fluorine atoms from two different anions. Whereas the two bridging fluorine atoms of AsF_6 in (II) are *cis* to each other,

those of As_2F_{11} in (III) are *trans* to each other. The C-F bond length in (II) and (III) is about 1.31 Å and is only slightly shorter than the average C-F bond lengths of 1.333 \pm 0.005 and 1.33 Å found for olefinic C-F bonds³⁵ and the CF₃ group of this cation, respectively, indicating only weak back-donation from fluorine to the carbenium center. By contrast, the average C*-C_{ipso} bond length of 1.43 Å between the carbenium center and the carbon atoms of the phenyl groups is significantly shorter than that of 1.502(7) Å found for the C₆H₄-CF₃ bond in (II) and the average of 1.47 \pm 0.02 Å found for C₆H₃-CO₂H and salicylic acid,³⁶ but is similar to those of 1.449(2) and 1.425(10) Å, found for the trityl⁴⁰ and (o-ClC₆H₄)(C₆H₃)CCl* ⁴² cations, respectively. This C*-C_{ipso} bond shortening demonstrates that the aromatic substituents play the dominant role in stabilizing the carbenium center in (II) and (III). The average C-C bond distances (C_{ipso}-C_{ortho} = 1.407(7), C_{ortho}-C_{meta} = 1.373(7), C_{meta}-C_{para} = 1.395(7) Å) in the two phenyl rings are also similar to those found for the trityl⁴⁰ and (o-ClC₆H₄)(C₆H₅)CCl* ⁴² cations.

Relative Ability of Fluorine and Chlorine to Stabilize Carbenium Ions. A comparison of the bond lengths of (II) and (III) with that of the closely related $[(o-ClC_6H_4)(C_6H_5)CCl]^+$ cation⁴² and those of the corresponding $CH_3CX=CH_2$ haloolefins demonstrates that chlorine, $[R(C-Cl) - R(C^+-Cl) = 0.07 \text{ Å}]$, is a better electron back-donor than fluorine, $[R(C-F) - R(C^+-F) = 0.02 \text{ Å}]$. This finding confirms the results of the recent theoretical calculations^{3,4} and prompted us to analyze the following assumptions which led to the previous postulate^{33,34} of an opposite stabilization effect.

(i) The stabilizing effect of a halogen ligand is governed by $p(\pi)$ back-donation from the free valence electron pairs on the halogen and an opposing electron withdrawing inductive σ effect.

- (ii) The changes in the σ effect on going-from fluorine to the heavier halogens were assumed to be identical for neutral CH₃CHXCH₃ and CH₃CX=CH₂ halocarbons and CX⁺ carbenium ions, i.e., the slopes of the plots of their ¹³C NMR shifts against the electronegativity of the halogens were assumed to be identical.
- (iii) The deviations from parallelism, observed for the carbenium ions, were attributed exclusively to $p(\pi)$ back-donation and taken as a measure of the stabilizing power of the corresponding halogen.

The weak point of this postulate is assumption (ii). As was shown by previous theoretical calculations^{3,4}, C^* is highly electron-deficient and is more electronegative than chlorine. Therefore, in the carbenium cations chlorine becomes both a π and a σ donor, while the more electronegative fluorine is only a π donor and strongly withdraws electron density from the carbon through the σ effect, as previously shown for CF_3^* and CCl_3^* .

The reversal of direction of the σ effect from fluorine to the heavier halogen atoms occurs only in the carbenium ions but not in the neutral halocarbons in which the halogen ligands are always more electronegative than carbon and carry a negative charge. Consequently, assumption (ii) is deemed invalid.

Since the stabilization of a carbenium center should depend on the *total* electron density supplied by a given ligand to C^{+} , i.e., the sum of the π and the σ effects, and because the ¹³C

NMR shielding of C⁺ is governed by-its-electron density, the direct ¹³C NMR shifts, and not the shift differences between carbenium ions and neutral hydrocarbons, should be used to evaluate the stabilizing effect of ligands on a carbenium center. Inspection of published ¹³C NMR shift tables ⁴¹ for numerous carbenium ions strongly supports this conclusion.

The As_2F_{11} Anion. The As_2F_{11} anion had previously been identified by spectroscopic⁶⁻¹³ and conductometric^{9,12} studies and x-ray powder diffraction data;¹⁴ the present study is the first crystal structure determination of this anion. The structure of As_2F_{11} (Figure 8) resembles in most aspects those found for Sb_2F_{11} ,⁴³ with two somewhat distorted AsF_6 octahedra sharing one corner and a symmetric As-F-As bridge forming an angle of 156.5(13) °. The two AsF_6 octahedra in As_2F_{11} are staggered with respect to each other, forming dihedral angles of about 46 ° to minimize the F-F repulsions. This staggered arrangement is analogous to that previously found for the isoelectronic $[AsF_5-O-AsF_5]^2$ anion,⁴⁴ which possesses a symmetric As-O-As bridge with an angle of 136 °. The slight tilt of the fluorines of the equatorial AsF_4 planes toward the bridge can be explained by the longer As-F bridge bond being less repulsive than the shorter terminal $As-F_{ax}$ bonds. Only one AsF_6 group of As_2F_{11} is involved in the formation of two fluorine bridges to two cations causing slight elongations of the As(2)-F(8) and As(2)-F(9) bonds.

After completion of this study, we learned that Minkwitz and Neikes have also obtained a crystal structure of a salt containing an As_2F_{11} anion,⁴⁵ and that the geometry of their As_2F_{11} anion closely resembles that found by us for (III). Although the structures of the As_2F_{11} anions in both studies and that of isoelectronic $[AsF_5OAsF_5]^2$ are very similar, it should be kept in mind that in Sb_2F_{11} both the Sb-F-Sb bridge angle and the dihedral angle between the two SbF_6 octahedra are very soft and can vary over a wide range.^{43c} A similar behavior cannot be excluded

for As_2F_{11} , and additional crystal structures containing this anion will be needed to judge if similarly wide variations are possible for As_2F_{11} .

Conclusions

- (i) The first crystal structures of fluorosubstituted carbocations without heteroatom stabilization and As₂F₁₁ were determined.
- (ii) It is shown that in the absence of a better donor a fluoroligand can significantly stabilize a carbenium center through back-donation, as evidenced by a shortening of the C⁺-F bond in (CH₂),CF⁺ by about 0.05 Å.
- (iii) If aromatic carbon atoms or heteroatoms which are better back-donors are also present, the back-donation from fluorine is strongly diminished, as evidenced by a shortening of the C*-F bond in (II) by only 0.02 Å.
- (iv) Chlorine is a better back-donor than fluorine, as shown by a comparison of the analogous structures of $[(m-CF_3C_6H_4)(C_6H_5)CF]^+$ (Δ C⁺-F \approx 0.02 Å and Δ C⁺-C_{ipso} \approx 0.07 Å) and $[(o-ClC_6H_4)(C_6H_5)CCl]^+$ (Δ C⁺-Cl \approx 0.07 Å and Δ C⁺-C_{ipso} \approx 0.07 Å).
- (v) The crystal structure of $(CH_3)_2CF^+$ also shows strong evidence for stabilization of the carbenium center by methyl-hyperconjugation ($\Delta C^+-CH_3 \approx 0.08 \text{ Å}$).
- (vi) All three fluorosubstituted carbocation structures of this study are further stabilized by fluorine bridging with the counterions. These fluorine bridges are approximately perpendicular to the planar C_2CF^* skeleton and are along the axis of the unoccupied p_2 orbital of C^* .
- (vii) The structure of the As₂F₁₁ anion closely resembles that of isoelectronic [AsF₅OAsF₅]₂ with a bent symmetric As-F-As bridge and dihedral angles of about 46° (staggered AsF₄ groups).

Acknowledgements. The authors thank Mr. Allen Kershaw for recording some of the NMR spectra. The work at USC was financially supported by the National Science Foundation and that at the Air Force Research Laboratory by the Air Force Office of Scientific Research. One of us (J.H.) is grateful to the Deutsche Forschungsgemeinschaft for a stipend. We also thank Prof. R. Minkwitz for providing us with the results of his structure determination of (MeS)₂CSH⁺As₂F₁₁ prior to publication. This paper is dedicated to Prof. Felix Aubke on the occasion of his retirement.

Supporting Information Available: Tables of structure determination summaries, anisotropic displacement parameters, calculated hydrogen coordinates and isotropic displacement parameters of (I), (II) and (III) in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- † University of Southern California
- ‡ Air Force Research Laboratory
- (1) For recent reviews, see "Stable Carbocation Chemistry", Prakash, G. K. S.;

 Schleyer, P.v.R., Eds.; John Wiley & Sons, Inc. New York, 1997; Chapters 2, 11, and

 14 by Schleyer, P.v.R., et al., Sunko, D. E., and Laube, T., respectively.
- (2) Laube, T. Chem. Rev. 1998, 98, 1277.
- (3) Frenking, G.; Fau, S.; Marchand, C. M.; Gruetzmacher, H. J. Am. Chem. Soc. 1997, 119, 6648.
- (4) Christe, K. O.; Hoge, B.; Boatz, J. A.; Prakash, G. K. S.; Olah, G. A.; Sheehy, J. A.

 Inorg. Chem. 1999, 38, 3132.
- (5) Antel, J.; Harms, K.; Jones, P. G.; Mews, R.; Sheldrick, G. M.; Waterfeld, A. Chem. Ber. 1985, 118, 5006.
- (6) Christe, K. O.; Maya, W. Inorg. Chem. 1969, 8, 1253.
- (7) Brownstein, S. Canad. J. Chem. 1969, 47, 605.
- (8) Dean, P. A. W.; Gillespie, R. J.; Hulme, R. J. Chem. Soc. Chem. Commun. 1969, 990.
- (9) Gillespie, R. J.; Dean, P. A. W.; Hulme, R.; Humphreys, D. A. J. Chem. Soc. (A) 1971, 341.
- (10) Calves, J. Y.; Gillespie, R. J. J. Am. Chem. Soc. 1977, 99, 1788.
- (11) Cyr, T.; Brownstein, S. J. Inorg. Nucl. Chem. 1977, 39, 2143.
- (12) Barraclough, C. G.; Besida, J.; Davies, P. G.; O'Donnell, T. A. J. Fluorine Chem. 1988, 38, 405.
- (13) Al-Mukhtar, M.; Holloway, J. H.; Hope, E. G.; Schrobilgen, G. J. J. Chem. Soc. Dalton Trans. 1991, 2831.

- (14) Frlec, B., Gantar, D., Holloway, J. H. Vestn. Slov. Chem. Drus. 1979, 26, 415.
- (15) Christe, K. O.; Wilson, W. W.; Schack, C. J. J. Fluorine Chem. 1978, 11, 71.
- (16) Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Synth. 1986, 24, 3.
- (17) Sheldrick, G. M. SHELX L86, Program for Crystal Structure Solution. University of Goettingen, Germany, 1986.
- (18) Sheldrick, G. M. SHELX L93, Program for Crystal Structure Determination. University of Goettingen, Germany, 1993.
- Gaussian 98, Revision A.6, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
 Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, Jr. J. A.; Stratmann, R.
 E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.;
 Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.;
 Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A; Ayala, P. Y.; Cui, Q.; Morokuma,
 K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz,
 J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.;
 Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
 Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.;
 Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.; Gaussian, Inc.,
 Pittsburgh PA, 1998.
- (20) ACES II, Quantum Theory Project, University of Florida. Authors: Stanton, J. F.; Gauss, J.; Watts, J. D.; Nooijen, M.; Oliphant, N.; Perera, S. A.; Szalay, P. G.; Lauderdale, W. J.; Gwaltney, S. R.; Beck, S.; Balková, A.; Bernholdt, D. E.; Baeck, K.-K.; Rozyczko, P.; Sekino, H.; Hober, C.; Bartlett, R. J.. Integral packages included are VMOL (Almlöf, J.;

- Taylor, P.R.), BPROPS (Taylor, P.R.); and ABACUS (Helgaker, T.; Jensen, H.-J-Aa.; Jørgensen, P.; Olsen, J.; Taylor, P. R.).
- (21) Levine, I. N. Quantum Chemistry, 3rd edition (Allyn and Bacon, Boston, 1983), p. 373.
- (22) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- (23) Purvis, G. D. III; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.
- (24) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479.
- (25) Hariharan, P. C.; Pople, J.A. Theor. Chim. Acta 1973, 28, 213.
- (26) (a) Krishnan, R.; Binkley, J. S., Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. (b)
 Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. J. Comp. Chem. 1983, 4,
 294.
- (27) Curtiss, L.A.; McGrath, M. P.; Blaudeau, J. -P.; Davis, N. E.; Binning Jr. R. C.; Radom, L. J. Chem. Phys. 1995, 103, 6104.
- (28) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265.
- (29) The TZ2P basis set consists of (11s 6p 3d)/[5s 3p 2d] sets for C and F, and a (5s 3p)/[3s 2p] set for H. The sp functions for C and F, and the s functions for H, are from Dunning, T. H. in Methods of Electronic Structure Theory, ed. by Schaefer III, H. F. (Plenum, New York, 1977), p. 1. Polarization exponents have been optimized for some prototype molecules by Gauss, J.; Stanton, J. F.; Bartlett, R. J. (unpublished) using fourth-order many-body perturbation-theory methods, and contracted according to the procedure in Dunning, T. H. J. Chem. Phys. 1971, 55, 716.
- (30) Ditchfield, R. Mol. Phys. 1974, 27, 789.

- (31) Olah, G. A.; Chambers, R. D.; Comisarow, M. B. J. Am. Chem. Soc. 1967, 89, 1268.
- (32) Olah, G. A.; Comisarow, M. B. J. Am. Chem. Soc. 1969, 91, 2955.
- (33) Olah, G. A.; Mo, Y. K.; Halpern, Y. J. Am. Chem. Soc. 1972, 94, 3551.
- (34) Olah, G. A., Rasul, G.; Heiliger, L.; Prakash, G. K. S. J. Am. Chem. Soc. 1996, 118, 3580.
- (35) Bondi, A. J. Phys. Chem. 1964, 68, 441.
- (36) Tables of Interatomic Distances and Configuration in Molecules and Ions, Supplement 1956-59. Special Publication No. 18, The Chemical Society, London, Burlington House, W.1, 1965.
- (37) (a) Halpern, J. J. Chem. Phys. 1951, 19, 1073; (b) Muller, N.; Mulliken, R. S. J. Am.Chem. Soc. 1958, 80, 3489.
- (38) (a) Schleyer, P. v. R.; Koch, W.; Liu, B.; Fleischer, U. J. Chem. Soc. Chem. Commun.
 1989, 1098; (b) Koch, W.; Liu, B.; Schleyer, P. v. R. J. Am. Chem. Soc. 1989, 111,
 3479; (c) Koch, W.; Schleyer, P. v. R.; Buzek, P.; Liu, B. Croat. Chim. Acta 1992, 65,
 655.
- (39) Olah, G. A.; Cupas, C. A.; Comisarow, M. B. J. Am. Chem. Soc. 1966, 88, 362.
- (40) (a) Gomes de Mesquita, A. H.; MacGillavry, C. H.; Ericks, K. Acta Crystallogr. 1965, 18, 437. (b) Krebs, B.; Paulat, V. Z. Naturforsch. 1979, 34B, 900. (c) Calderazzo, F.; Pallavicini, P.; Pampaloni, G.; Zanazzi, P. F. J. Chem. Soc. Dalton Trans. 1990, 2743.
 (d) Krausse, J.; Heublein, G.; Rudakoff, G.; Leibnitz, P.; Reck, G. J. Crystallogr. Spectrosc. Res. 1991, 21, 45.
- (41) "Carbon-13 NMR Spectroscopy", Kalinowski, H. O.; Berger, S.; Braun, S. John Wiley & Sons, Inc. Chichester, 1986.
- (42) Laube, T.; Bannwart, E.; Hollenstein, S. J. Am. Chem. Soc. 1993, 115, 1731.

- Some typical examples of crystal structures of Sb₂F₁₁ salts are: (a) Mootz, D.; Bartmann, K. Angew. Chem. 1988, 100, 424. (b) Drews, T.; Seppelt, K. Angew. Chem. Int. Ed. Engl. 1997, 36, 273. (c) Burgess, J.; Fraser, C. J. W.; McRae, V. M.; Peacock, R. D.; Russell, D. R. J. Inorg. Nucl. Chem., Supplement 1976, 183. (d) McKee, D. E.; Adams, C. J.; Zalkin, A.; Bartlett, N. J. Chem. Soc. Chem. Commun. 1973, 26. (e) Zhang, D.; Rettig, S. J.; Trotter, J.; Aubke, F. Inorg. Chem. 1996, 35, 6113.
- (44) Haase, W. Acta Cryst. 1974, 330, 1722.
- (45) Minkwitz, R.; Neikes, F. private communication.

Table 1. Crystal data and structure refinement for [(CH₃)₂CF][†][AsF₆] (I), [m-(CF₃C₆H₄)(C₆H₅)CF][†] [AsF₆] (II) and [m-(CF₃C₆H₄)(C₆H₅)CF][†] [As₂F₁₁] (III).

Compound	I		11		Ш	
Empirical	C₃H ₆ AsF ₇		$C_{14}H_{9}AsF_{10}$		$C_{14}H_9As_2F_{15}$	
Formula						
Formula Weight	250.00		442.13	• • • • • • • • • • • • • • • • • • •	612.05	
Temperature	173(2) K	,	193(2) K		193(2) K	
Wavelength	0.71073 Å		0.71073 Å		0.71073 Å	
Crystal System	Monoclinic		Triclinic		Monoclinic	
Space Group	P2(1)/n (#14)		P(-1) (#2)		P2(1)/c (#14)	,
Unit Cell	a = 8.854(3)Å	$\alpha = 90 \text{ deg}$	a = 7.8612(14)Å	$\alpha = 83.157(9) \text{ deg}$	a = 15.101(5)Å	$\alpha = 90 \deg$
Dimensions	•					
	b = 9.544(3)Å	$\beta = 108.77(2) \text{ deg}$	b = 8.2778(15)Å	β=85.342(10)deg	b = 8.649(2)Å	$\beta = 99.09(4) \text{ deg}$
	c = 8.856(3)Å	γ = 90 deg	c = 13.1942(20)Å	γ =62.915(10) deg	c = 15.190(7)Å	$\gamma = 90 \text{ deg}$
Volume	708.6(4) Å ³		758.6(2) Å ³		1959.0(12) Å ³	
Z	4		2		4	•
Density	2.344 g/cm ³		1.936 g/cm ³	•	2.075 g/cm ³	
(calculated)			•			
Absorption	4.866 mm ⁻¹		2.347 mm ⁻¹	•	3.549 mm ⁻¹	-
coefficient					•	
F(000)	480		432		1176	
Goodness-of-fit on	1.178		1.036	,	1.019	
F^2					• •	
Final R indices	$R_i = 0.0713$	$wR_2 = 0.1744$	$R_1 = 0.0635$	$wR_2 = 0.1502$	$R_1 = 0.1076$	$wR_2 = 0.2777$
[I>2sigma(I)]						
R indices	$R_1 = 0.0800$	$wR_2 = 0.1959$	$R_1 = 0.0831$	$wR_2 = 0.1650$	$R_1 = 0.1617$	$wR_2 = 0.3431$
(all data)				•		

Table 2. Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters (Å² \times 10³) for [(CH₃)₂CF]⁺[AsF₆]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

			TI(aa)
x	У	Z	U(eq)
1487(1)	2647(1)	3948(1)	17(1)
2150(8)	4092(6)	3201(8)	40(2)
3363(6)	1906(6)	4427(6)	31(1)
1001(7)	1886(6)	2095(7)	34(1)
821(7)	1181(6)	4667(7)	35(1)
-382(7)	3362(7)	3464(7)	35(1)
1996(7)	3396(7)	5798(7)	38(1)
-583(6)	2969(6)	-3134(6)	31(1)
619(10)	2670(10)	-1905(10)	21(2)
1504(12)	3845(10)	-1008(11)	27(2)
959(11)	1237(9)	-1556(11)	25(2)
	1487(1) 2150(8) 3363(6) 1001(7) 821(7) -382(7) 1996(7) -583(6) 619(10) 1504(12)	1487(1) 2647(1) 2150(8) 4092(6) 3363(6) 1906(6) 1001(7) 1886(6) 821(7) 1181(6) -382(7) 3362(7) 1996(7) 3396(7) -583(6) 2969(6) 619(10) 2670(10) 1504(12) 3845(10)	1487(1) 2647(1) 3948(1) 2150(8) 4092(6) 3201(8) 3363(6) 1906(6) 4427(6) 1001(7) 1886(6) 2095(7) 821(7) 1181(6) 4667(7) -382(7) 3362(7) 3464(7) 1996(7) 3396(7) 5798(7) -583(6) 2969(6) -3134(6) 619(10) 2670(10) -1905(10) 1504(12) 3845(10) -1008(11)

Table 3. Bond lengths [Å] and angles [deg] for $[(CH_3)_2CF]^{\dagger}[A_5F_6]$.

As(1)-F(6)	1.710(5)
As(1)-F(5)	1.712(5)
As(1)-F(1)	1.713(6)
As(1)-F(4)	1.718(5)
As(1)-F(3)	1.718(5)
As(1)-F(2)	1.728(5)
F-C(1)	1.285(11)
C(1)-C(3)	1.413(13)
C(1)-C(2)	1.450(13)
F(1)-As(1)-F(4)	179.0(3)
F(6)-As(1)-F(3)	179.2(3)
F(1)-As(1)-F(3)	89.0(3)
F(4)-As(1)-F(3)	90.0(3)
F(6)-As(1)-F(2)	90.0(3)
F(5)-As(1)-F(2)	179.3(3)
F(1)-As(1)-F(2)	90.1(3)
F(4)-As(1)-F(2)	89.6(3)
F(3)-As(1)-F(2)	89.3(3)
F-C(1)-C(3)	117.3(8)
F-C(1)-C(2)	116.5(8)
C(3)-C(1)-C(2)	126.1(8)
C(1)-F(2')	2.66
C(1)-F(6)	2.78
F(2')···C(1)-F	78.9
F(6) ··C(1)-F	76.3
F(2') ··C(1)-C(2)	89.5
F(2') ··C(1)-C(3)	100.8
F(6) ··C(1)-C(2)	85.5
F(6) ··C(1)-C(3)	106.8

Table 4. Atomic coordinates (x 10³) and equivalent isotropic displacement parameters (Å² x 10³) for [(m-CF₃C₆H₄)(C₆H₅)CF]⁺[AsF₆]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	у	Z	U(eq)	
As(1)	167(1)	4363(1)	2282(1)	21(1)	
F(1)	2448(4)	2645(1)	2530(2)	32(1)	
F(2)	-2115(5)	6037(4)	2050(3)	39(1)	
F(3)	781(6)	4458(5)	1011(2)	45(1)	
F(4)	888(5)	5975(4)	2440(3)	43(1)	
F(5)	-440(6)	4255(5)	3560(3)	49(1)	
F(6)	-539(5)	2722(5)	2121(3)	46(1)	
F(11)	-4735(4)	14004(4)	2239(2)	28(1)	
F(12)	-2553(6)	13786(5)	5584(3)	45(1)	
F(13)	-1408(6)	11246(5)	6532(3)	47(1)	
F(14)	-4427(5)	12868(5)	6434(3)	48(1)	: .
C(1)	-3830(7)	12218(6)	2246(4)	23(1)	• •
C(2)	-2769(8)	12295(7)	5883(4)	28(1)	
C(11)	-3466(7)	,11537(7)	1273(4)	23(1)	
C(12)	-1979(7)	9793(7)	1117(4)	23(1)	
C(13)	-1677(8)	9160(7)	176(4)	28(1)	
C(14)	-2810(9)	10257(8)	-632(4)	33(1)	
C(15)	-4267(8)	12002(8)	-488(4)	31(1)	
C(16)	-4591(8)	12647(7)	453(4)	27(1)	
C(21)	-3348(7)	11277(6)	3243(4)	24(1)	
C(22)	-3275(7)	12211(6)	4045(4)	22(1)	
C(23)	-2814(7)	11315(7)	5006(4)	24(1)	
C(24)	-2430(8)	9484(7)	5187(4)	26(1)	
C(25)	-2546(8)	8562(7)	4401(4)	26(1)	
C(26)	-3022(7)	9450(6)	3437(4)	23(1)	
` '		•			

Table 5. Bond lengths [Å] and angles [deg] for [(m-CF₃C₆H₄)(C₆H₅)CF]⁺[AsF₆].

A = (1) T(A)	1.789(3)		F(4)-As(1)-F(3)	89.8(2)
As(1)-F(4)	1.710(3)		F(4)-As(1)-F(5)	90.4(2)
As(1)-F(3)	1.717(3)		F(3)-As(1)-F(5)	179.7(2)
As(1)-F(5)			F(4)-As(1)-F(2)	90.4(2)
As(1)-F(2)	1.720(3)		F(3)-As(1)-F(2)	91.0(2)
As(1)-F(6)	1.725(3)		F(5)-As(1)-F(2)	89.3(2)
As(1)-F(1)	1.734(3)		F(4)-As(1)-F(6)	179.5(2)
F(11)-C(1)	1.316(5)		F(3)-As(1)-F(6)	90.0(2)
F(12)-C(2)	1.331(7)		F(5)-As(1)-F(6)	89.8(2)
F(13)-C(2)	1.326(6)		F(2)-As(1)-F(6)	90.0(2)
F(14)-C(2)	1.349(6)		F(4)-As(1)-F(1)	89.7(2)
C(1)-C(11)	1.420(7)	•	F(5)-As(1)-F(1)	90.0(2)
C(1)-C(21)	1.431(7)	. •	F(2)-As(1)-F(1)	178.8(2)
C(2)-C(23)	1.502(7)		F(6)-As(1)-F(1)	88.9(2)
C(11)-C(16)	1.406(7)		F(11)-C(1)-C(11)	115.4(4)
C(11)-C(12)	1.410(7)		F(11)-C(1)-C(11) F(11)-C(1)-C(21)	114.1(4)
C(12)-C(13)	1.366(7)		C(11)- $C(1)$ - $C(21)$	130.5(4)
C(13)-C(14)	1.393(8)	•	F(13)-C(2)-F(12)	108.2(5)
C(14)-C(15)	1.399(8)		F(13)-C(2)-F(14)	105.9(5)
C(15)-C(16)	1.369(8)		F(12)-C(2)-F(14)	105.6(4)
C(21)-C(22)	1.402(7)		F(12)- $C(2)$ - $C(23)$	112.8(4)
C(21)-C(26)	1.408(7)		F(12)-C(2)-C(23)	113.0(5)
C(22)-C(23)	1.376(7)		F(12)- $C(2)$ - $C(23)$	110.9(5)
C(23)-C(24)	1.398(7)		C(16)-C(11)-C(12)	120.0(5)
C(24)-C(25)	1.390(7)		C(16)- $C(11)$ - $C(12)$	118.9(5)
C(25)-C(26)	1.379(7)	•	C(10)- $C(11)$ - $C(1)$	121.1(5)
		,	C(12) - C(11) - C(11)	119.9(5)
			C(12)-C(13)-C(14)	119.9(5)
			C(13)- $C(14)$ - $C(15)$	120.6(5)
	•		C(16)- $C(15)$ - $C(14)$	120.0(5)
			C(15)-C(16)-C(11)	119.6(5)
Duides bandar			C(22)-C(21)-C(26)	119.6(5)
Bridge bonds:	2.79		C(22)- $C(21)$ - $C(1)$	119.4(5)
$C(1) \cdot \cdot F(6)$	2.79		C(26)- $C(21)$ - $C(1)$	120.9(5)
$C(1) \cdot F(1)$	164.8		C(23)-C(22)-C(21)	119.7(4)
$F(1) \cdot \cdot C(1) \cdot \cdot F(6)$	81.1		C(22)- $C(23)$ - $C(24)$	120.4(5)
$F(1) \cdot \cdot C(1) \cdot \cdot F(11)$	84.4		C(22)-C(23)-C(2)	120.8(5)
F(6) ··C(1) ··F(11)			C(24)-C(23)-C(2)	118.8(5)
F(1) ··C(1) ··C(11)			C(25)-C(24)-C(23)	120.2(5)
$F(1) \cdot \cdot C(1) \cdot \cdot C(21)$			C(26)-C(25)-C(24)	119.9(5)
F(6) ··C(1) ··C(11)			C(25)-C(26)-C(21)	1
$F(6) \cdot \cdot C(1) \cdot \cdot C(21)$	90.8		0(25) 0(25) 0(21)	

Dihedral angle between phenyl groups 39.3

Table 6. Atomic coordinates (x 10³) and equivalent isotropic displacement parameters (Å² x 10³) for [(m-CF₃C₆H₄)(C₆H₅)CF]⁺[As₂F₁₁]. U(eq) is defined as one third of the

trace of the orthogonalized Uij tensor. U(eq) Z y 47(1) 2506(1) 1708(1) 669(2) As(1) 41(1) 3037(1) 1157(2) 4153(1) As(2) 140(8) 2652(14) 1304(24) 2914(9) F(1) 158(9) 278(27) 2375(16) 644(8) F(2)99(5) 3326(10) 1165(19) 5254(7) F(3) 156(8) 2002(14) 2392(18) 1586(16) F(4)98(3) -130(15) 1564(8) 1855(9) F(5) 93(5) 3047(8) -982(13) 1969(11) F(6) 111(5) 3479(11) 1536(17) 1723(12) F(7) 2021(8) 91(4) 1917(16) 4190(10) F(8) 96(5) 2560(11) -619(15) 4104(10) F(9) 112(5) 3942(9) 398(20) 3919(12) F(10)86(4) 3413(10) 2936(14) 4028(9) F(11) 50(2) 1897(6) 138(13) 8860(6) F(21)90(3) 4648(8) .2267(15) 10296(8) F(22) 5265(9) 86(4) 9432(9) 3643(13) F(23) 95(5) 5781(9) 9785(10) 1435(18) F(24) 36(3) 2084(10) 459(17) 8061(10) C(1)59(5) 5017(13) 2208(24) 9555(13) C(2) 41(4) 1331(10) 7356(11) 551(17) C(11)39(4) 1365(11) 1390(18) 6607(11) C(12)47(4) 621(12) 1454(21) 5959(11) C(13)C(14 C(15 C(16

entrological de la companya de la co	· .	24		
C(26)	7272(12)	463(19)	3353(11)	44(4)
C(25)	7233(12)	680(19)	4247(12)	44(4)
C(24)	8003(11)	1269(20)	4765(10)	43(4)
C(23)	8787(11)	1571(17)	4427(10)	.40(4)
C(22)	8809(10)	1287(17)	3534(10)	36(3)
C(21)	8028(9)	757(16)	2995(9)	30(3)
C(16)	7509(11)	-297(22)	559(9)	45(4)
C(15)	6816(12)	-220(21)	-196(10)	46(4)
C(14)	6053(13)	713(22)	-131(13)	56(5)
C(13)	3737(11)	1 .0 .()	` '	

Table 7. Bond lengths [Å] and angles [deg] for [(m-CF₃C₆H₄)(C₆H₅)CF]⁺[As₂F₁₁]

Bond distances:	•	,		
$\overline{\text{As}(1)}\text{-F}(2)$	1.623(13)		C(1)-C(21)	1.42(2)
As(1)-F(5)	1.636(13)		C(1)-C(11)	1.44(2)
As(1)-F(7)	1.655(14)		C(2)-C(23)	1.46(3)
As(1)-F(6)	1.663(11)		C(11)-C(12)	1.35(2)
As(1)-F(4)	1.673(14)		C(11)-C(16)	1.43(2)
As(1)-F(1)	1.881(13)		C(12)-C(13)	1.37(2)
As(2)-F(10)	1.612(13)		C(13)-C(14)	1.34(3)
As(2)-F(3)	1.652(10)		C(14)-C(15)	1.42(3)
As(2)-F(11)	1.663(11)		C(15)-C(16)	1.43(2)
As(2)-F(8)	1.687(12)		C(21)-C(26)	1.36(2)
As(2)-F(9)	1.695(13)		C(21)- $C(22)$	1.40(2)
As(2)-F(1)	1.874(14)		C(22)-C(23)	1.39(2)
F(21)-C(1)	1.31(2)		C(23)- $C(24)$	1.39(2)
F(22)-C(2)	1.33(2)		C(24)-C(25)	1.39(2)
F(23)-C(2)	1.32(2)		C(25)-C(26)	1.38(2)
F(24)-C(2)	1.34(2)			•
Bond angles:	: .		T(0) A (0) T(1)	97 1(8)
F(2)-As(1)-F(5)	94.2(10)		F(9)-As(2)-F(1)	87.4(8) 82.2(9)
F(2)-As(1)-F(7)	94.5(11)		F(8)-As(2)-F(1)	
F(5)-As(1)-F(7)	171.3(8)		As(2)-F(1)-As(1)	
F(2)-As(1)-F(6)	92.0(9)		F(21)-C(1)-C(21)	
F(5)-As(1)-F(6)	90.9(6)		F(21)-C(1)-C(11	
F(7)-As(1)-F(6)	88.8(7)	•	C(21)-C(1)-C(11	/>
F(2)-As(1)-F(4)	95.4(11)		F(23)-C(2)-F(24)	/
F(5)-As(1)-F(4)	89.8(9)		F(23)-C(2)-F(22)	
F(7)-As(1)-F(4)	89.4(10)		F(24)-C(2)-F(22)	
F(6)-As(1)-F(4)	172.5(10)		F(23)-C(2)-C(23	
F(2)-As(1)-F(1)	175.0(10)		F(24)-C(2)-C(23	
F(5)-As(1)-F(1)	87.9(8)		F(22)-C(2)-C(23	_ '_ /_ >
F(7)-As(1)-F(1)	83.4(9)		C(12)-C(11)-C(1	
F(6)-As(1)-F(1)	92.5(9)		C(12)-C(11)-C(1	
F(4)-As(1)-F(1)	80.1(10)	L. L. w	C(16)-C(11)-C(1	
F(10)-As(2)-F(3			C(11)- $C(12)$ - $C(1$	
F(10)-As(2)- $F(1$			C(14)-C(13)-C(1	
F(3)-As(2)-F(11	•		C(13)-C(14)-C(1	
F(10)-As(2)-F(8			C(14)-C(15)-C(1	
F(3)-As(2)-F(8)			C(15)-C(16)-C(1	
F(11)-As(2)-F(8			C(26)-C(21)-C(2	
F(10)-As(2)-F(9			C(26)-C(21)-C(1	(4.5)
F(3)-As(2)-F(9)			C(22)-C(21)-C(
F(11)-As(2)-F(9)			C(23)-C(22)-C(2	
F(8)-As(2)-F(9)			C(24)-C(23)-C(2	
F(10)-As(2)-F(1)			C(24)-C(23)-C(2	
F(3)-As(2)-F(1)	175.0(9)		C(22)-C(23)-C(2	(-)
F(11)-As(2)-F(1)			C(23)-C(24)-C(25) 123(2)

011	31\ C	1/0/	C(25)	
(7	/ / / /	7763-	1 11/2 フェ	
\sim	~ I /- C	~ ~ ~ · · ·	CV231	

122(2)

Bridge bonds:		Dihedral angles:
$\overline{C(1)\cdots F(4)}$	3.01	between: phenyl groups 47.46(43)
$C(1) \cdot \cdot F(6)$	3.07	[As(1)F(1,2,5,7)] and [As(2)F(1,3,9,11)] $44.97(61)$
$F(4) \cdot \cdot C(1) \cdot \cdot F(6)$	155.7	[As(1)F(1,2,4,6)] and [As(2)F(1,3,9,11)] 49.43(45)
$F(4) \cdot \cdot C(1) \cdot \cdot F(12)$	79.1	[As(1)F(1,2,4,6)] and [As(2)F(1,3,8,10)] 40.18(71)
$F(6) \cdot \cdot C(1) \cdot \cdot F(12)$	102.0	[As(1)F(1,2,5,7)] and [As(2)F(1,3,8,10)] $51.63(40)$
$F(4) \cdot \cdot C(1) \cdot \cdot C(3)$	117.8	[As(1)F(4,5,6,7)]and[As(2)F(8,9,10,11)] 14.21(44)
$F(6) \cdot \cdot C(1) \cdot \cdot C(3)$	84.1	
$F(4) \cdot \cdot C(1) \cdot \cdot C(9)$	74.6	
$F(6) \cdot C(1) \cdot C(9)$	83.3	

Diagram Captions

- Figure 1. Structure, numbering scheme, and fluorine bridging of the [(CH₃)₂CF]⁺ cation in

 (I). The displacement ellipsoids are drawn at the 50% probability level.
- Figure 2. Packing diagram for (I).
- Figure 3. Observed (calculated) ¹³C and ¹⁹F chemical shifts (ppm), multiplicity, and coupling constants (Hz) of the $[(m-CF_3C_6H_4)(C_6H_5)CF]^+$ cation.
- Figure 4. Structure, numbering scheme, and fluorine bridging of the $[(mCF_3C_6H_4)(C_6H_5)CF]^*$ cation in (II).
- Figure 5. Packing diagram for (II).
- Figure 6. Structures and numbering schemes for the ions in (III) with the displacement ellipsoids drawn at the 50% probability level.
- Figure 7. Fluorine bridges between C1 of the cation and F4 and F6 of the anions in (III).
- Figure 8. Packing diagram for (III).

Figure 3

F. 6

F.1. 8

SUPPORTING INFORMATION ,

Relative Abilities of Fluorine and Chlorine to Stabilize Carbenium Ions. Crystal Structures of Two Fluoro-Substituted Carbocations and of As_2F_{11} Karl O. Christe Axiongzhi Zhang Robert Bau, Joachim Hegge, George A. Olah, G. K. Surya Prakash, and Jeffrey A. Sheehy.

Contribution from the Loker Hydrocarbon Research Institute and Department of Chemistry,
University of Southern California, Los Angeles, California 90089, and the Propulsion Sciences
and Advanced Concepts Division, Air Force Research Laboratory (AFRLS/PRS), Edwards Air
Force Base, California 93524-7680

Abstract

The first crystal structures of fluoro-substituted carbocations without heteroatom stabilization and of the As₂F₁₁ anion are reported. The experimental geometries of the carbenium ions in [(CH₃)₂CF]⁺AsF₆, [(*m*-CF₃C₆H₄)(C₆H₅)CF]⁺AsF₆ and [(*m*-CF₃C₆H₄)(C₆H₅)CF]⁺As₂F₁₁ and their comparison with that of the [(*o*-ClC₆H₄)(C₆H₅)CCl]⁺ cation show that, in accord with previous theoretical calculations, chlorine stabilizes carbenium ions more efficiently than fluorine. The apparent discrepancy between these findings and a previously reached conclusion, based on an analysis of ¹³C NMR chemical shift difference data, are reconciled by using the direct ¹³C chemical shifts for judging the donor strength of a ligand. The ¹³C and ¹⁹F NMR spectra of the [(*m*-CF₃C₆H₄)(C₆H₅)CF]⁺ cation were recorded and analyzed with the help of RHF/6-31G(d,p) calculations using the GIAO method. In each of the three fluoro-substituted carbocation crystal structures studied, the carbenium centers are further stabilized by forming two fluorine bridges with the anions, resulting in pseudo-trigonal bipyramidal environments around the carbenium centers. The [F₅As-F-AsF₅] anion in [(*m*-CF₃C₆H₄)(C₆H₅)CF]⁺As₂F₁₁ possesses a symmetric fluorine bridge with an As-F-As angle of 156.5(13) ° and staggered AsF₄ groups.

Table S1. Crystal data and structure refinement for [(CH₃)₂CF]⁺[AsF₆]

Empirical formula $C_3H_6AsF_7$

Formula Weight 250.00

Temperature 173(2) K

Wavelength 0.71073 Å

Crystal System Monoclinic

Space Group P2(1)/n (#14)

Unit Cell Dimensions a = 8.854(3) Å

= 8.854(3) Å alpha = 90 deg.

beta = 108.77(2) deg.

b = 9.544(3) Å gamma = 90 deg.

c = 8.856(3) Å

Volume 708.6(4) Å³

Z

Density (calculated) 2.344 g/cm³

Absorption coefficient 4.866 mm⁻¹

F(000) 480

Theta range for data collection 2.83 to 27.54 deg.

Index ranges $-5 \le h \le 11, -12 \le k \le 12,$

-11<=|<=11

Reflections collected 1994

Independent Reflections 1502 [R(int) = 0.0614]

Refinement method Full-matrix least squares on F²

Data/restraints/parameters 1489 / 0 / 103

Goodness-of-fit on F² 1.178

Final R indices [I>2 sigma (I)] R1 = 0.0713, wR2 = 0.1744

R indices (all data) R1 = 0.0800, wR2 = 0.1959

Largest diff. peak and hole 1.766 and -2.255 e.A⁻³

Table S2. Anisotropic displacement parameters $(A^2 \times 10^3)$ for $I(CH_3)_2CF]^+[AsF_6]^-$. The anisotropic displacement factor exponent takes the form: -2 pi²[h²a*²U11 +...+ 2hka*b*U12]

	U 11	U22	U33	U23	U13	U12
As(1)	19(1)	16(1)	17(1)	0(1)	9(1)	-1(1)
F(1)	53(4)	24(3)	56(4)	8(3)	33(3)	-4(3)
F(2)	25(3)	42(3)	29(3)	4(3)	12(2)	11(2)
F(3)	39(3)	45(3)	20(2)	-8(2)	11(2)	-2(3)
F(4)	46(3)	20(3)	43(3)	10(2)	22(3)	-5(2)
F(5)	28(3)	40(3)	39(3)	3(3)	13(2)	15(2)
F(6)	37(3)	52(4)	27(3)	-19(3)	16(2)	-10(3)
F	26(3)	44(3)	19(2)	-2(2)	5(2)	3(2)
C(1)	19(4)	29(5)	20(4)	3(3)	12(3)	6(3)
C(2)	36(5)	22(4)	25(4)	-3(4)	12(4)	-10(4)
C(3)	34(5)	13(4)	33(5)	-6(3)	17(4)	-5(3)

Table S3. Calculated hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters (A² x 10³) for [(CH₃)₂CF]⁺[AsF₆].

	×	. y	Z	U(eq)
H(2A)	2603(20)	3772(41)	-950(74)	41
H(2B)	1430(72)	3837(44)	49(28)	41
H(2C)	1066(55)	4704(10)	-1531(7)	41
H(3A)	1417(72)	1116(13)	-424(13)	38
H(3B)	1699(61)	918(20)	-2070(65)	38
H(3C)	-9(16)	704(12)	-1937(70)	38

Table S4. Crystal data and structure refinement for [(m-CF₃C₆H₄)(C₆H₅)CF]⁺[AsF₆].

Empirical formula C₁₄H₉AsF₁₀

Formula Weight 442.13

Temperature 193(2) K

Wavelength 0.71073 Å

Crystal System Triclinic

Space Group P(-1) (#14)

Unit Cell Dimensions a = 7.8612(14) Å

beta = 85.342(10) deg.

alpha = 83.157(9) deg.

b = 8.2778(15) Å gamma = 62.915(10) deg.

c = 13.1942(20) Å

Volume 758.6(2) Å³

Z 2

Density (calculated) 1.936 g/cm³

Absorption coefficient 2.347 mm⁻¹

F(000) 432

Theta range for data collection 2.78 to 27.50 deg.

Index ranges -10 <= h <= 9, -10 <= k <= 10,

-17<=!<=17

Reflections collected 3960

Independent Reflections 3208 [R(int) = 0.0406]

Refinement method Full-matrix least squares on F²

Data/restraints/parameters 3208 / 0 / 226

Goodness-of-fit on F² 1.036

Final R indices [I>2 sigma (I)] R1 = 0.0635, wR2 = 0.1502

R indices (all data) R1 = 0.0831, wR2 = 0.1650

Largest diff. peak and hole 1.574 and -1.923 e.A⁻³

Table S5. Anisotropic displacement parameters $(A^2 \times 10^3)$ for $[(m-CF_3C_6H_4)(C_6H_5)CF]^{\pm}[AsF_6]^{-1}$. The anisotropic displacement factor exponent takes the form: $-2pi^2[h^2a^{*2}U11 + ... + 2hka^*b^*U12]$

	U11	U12	U33	U23	U13	U12
As(l)	17(l)	15(1)	27(1)	-2(1)	-3(1)	-2(1)
F(1)	20(2)	23(2)	43(2)	3(1)	-4(1)	-2(1)
F(2)	23(2)	24(2)	62(2)	-4(2)	-12(2)	-2(1)
F(3)	50(2)	47(2)	24(2)	-2(1)	0(2)	-10(2)
F(4)	40(2)	24(2)	65(2)	-4(2)	-20(2)	-12(2)
F(5)	49(2)	41(2)	34(2)	-3(2)	12(2)	-2(2)
F (6)	32(2)	29(2)	83(3)	-16(2)	4(2)	-16(2)
F(11)	30(2)	12(l)	35(2)	-2(1)	-3(1)	-2(1)
F(12)	72(3)	39(2)	37(2)	-8(2)	-4(2)	-35(2)
F(13)	48(2)	43(2)	41(2)	-6(2)	-21(2)	-9(2)
F(14)	38(2)	60(2)	50(2)	-33(2)	16(2)	-21(2)
C (1)	15(2)	16(2)	35(3)	0(2)	-7(2)	-4(2)
C(2)	22(3)	30(3)	29(3)	-7(2)	0(2)	-7(2)
C (11)	19(3)	19(2)	28(3)	-1(2)	-2(2)	-5(2)
C(12)	19(3)	19(2)	27(2)	1(2)	4(2)	-5(2)
C(13)	25(3)	22(2)	33(3)	-7(2)	5(2)	-7(2)
C(14)	44(4)	33(3)	25(3)	-4(2)	-1(2)	-19(3)
C(15)	32(3)	30(3)	30(3)	7(2)	-9(2)	-13(2)
C(16)	20(3)	21(2)	34(3)	3(2)	-4(2)	-5(2)
C(21)	17(2)	17(2)	28(2)	-1(2)	-2(2)	0(2)
C(22)	16(2)	11(2)	32(3)	-1(2)	-2(2)	-2(2)
C(23)	16(3)	20(2)	29(3)	-6(2)	1(2)	-1(2)
C(24)	23(3)	19(2)	26(2)	0(2)	-1(2)	-1(2)
C(25)	25(3)	18(2)	31(3)	-3(2)	1(2)	-5(2)
C(26)	19(3)	18(2)	30(3)	-8(2)	3(2)	-7(2)

Table S6. Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters ($A^2 \times 10^3$) for [(m-CF₃C₆H₄)(C₆H₅)CF]⁺[AsF₆].

	x	y	Z __	U(eq)
H(12)	-1233	9103	1634	28
H(13)	-838	8140	87	34
H(14)	-2592	9821	-1283	40
H(15)	-5006	12716	-1025	38
H(16)	-5400	13630	535	33
H(22)	-3507	13288	3943	26
H(24)	-2081	8853	5865	31
H(25)	-2330	7482	4512	32
H(26)	-3104	8971	3025	28

Table S7. Crystal data and structure refinement for [(m-CF₃C₆H₄)(C₆H₅)CF]⁺[-As₂F₁₁].

Empirical formula C₁₄H₉As₂F₁₅

Formula Weight 612.05

Temperature 193(2) K

Wavelength 0,71073 Å

Crystal System Monoclinic

Space Group P2(1)/c (#14)

Unit Cell Dimensions a = 15.101(5) Å alpha = 90 deg.

beta = 99.09(4) deg.

b = 8.649(2) Å gamma = 90 deg.

c = 15.190(7) Å

Volume 1959.0(12) Å³

Z

Density (calculated) 2.075 g/cm³

Absorption coefficient 3.549 mm⁻¹

F(000) 1176

Theta range for data collection 2.72to 27.50 deg.

Index ranges -16 <= h <= 16, -8 <= k <= 11,

-19<=l<=19

Reflections collected 4710

Independent Reflections 3703 [R(int) = 0.0742]

Refinement method Full-matrix least squares on F²

Data/restraints/parameters 3686 / 0 / 290

Goodness-of-fit on F² 1.019

Final R indices [I>2 sigma (I)] R1 = 0.1076, wR2 = 0.2777

R indices (all data) R1 = 0.1617, wR2 = 0.3431

Largest diff. peak and hole 1.935 and -0.848 e.A⁻³

Table S8. Anisotropic displacement parameters (A² x 10³) for $[(m-CF_3C_6H_4)(C_6H_5)CF]^+[As_2F_{11}]^-$. The anisotropic displacement factor exponent takes the form: $-2pi^2[h^2a^{*2}U11 + ... + 2hka^*b^*U12]$

As(l) 35(1) 42(1) 63(1) 5(1) 3(1) -5(1) As(2) 31(1) 42(1) 51(1) -9(1) 10(1) 0(1) F(1) 48(8) 159(17) 203(20) -12(15) -15(10) -34(9) F(2) 23(7) 201(21) 247(23) 78(19) 12(9) -5(9) F(3) 29(6) 144(13) 114(11) 15 (10) -19(6) 10(7) F(4) 232(23) 58(9) 166(18) 49(11) -2(16) 1(12) F(5) 141(8) 96(8) 60(8) -5(7) 27(7) -42(7) F(6) 165(14) 48(7) 66(7) 12(6) 21(8) 32(8) F(7) 147(14) 82(10) 116(12) -43(9) 58 (1) 3(9) F(8) 132(12) 86(9) 56(7) -1(7) 16(7) -21(9) F(9) 96 (1) 65(8) 143(13) -32(8) 62(9) -18(7) F(10)		U 11	U22	U33	U23	U 13	U12
As(2) 31(1) 42(1) 51(1) -9(1) 10(1) 0(1) F(1) 48(8) 159(17) 203(20) -12(15) -15(10) -34(9) F(2) 23(7) 201(21) 247(23) 78(19) 12(9) -5(9) F(3) 29(6) 144(13) 114(11) 15 (10) -19(6) 10(7) F(4) 232(23) 58(9) 166(18) 49(11) -2(16) 1(12) F(5) 141(8) 96(8) 60(8) -5(7) 27(7) -42(7) F(6) 165(14) 48(7) 66(7) 12(6) 21(8) 32(8) F(7) 147(14) 82(10) 116(12) -43(9) 58 (1) 3(9) F(8) 132(12) 86(9) 56(7) -1(7) 16(7) -21(9) F(9) 96 (1) 65(8) 143(13) -32(8) 62(9) -18(7) F(10) 145(14) 131(13) 64(8) 16(8) 32(9) -24(11) F(Δ c(1)	•					
F(1) 48(8) 159(17) 203(20) -12(15) -15(10) -34(9) F(2) 23(7) 201(21) 247(23) 78(19) 12(9) -5(9) F(3) 29(6) 144(13) 114(11) 15 (10) -19(6) 10(7) F(4) 232(23) 58(9) 166(18) 49(11) -2(16) 1(12) F(5) 141(8) 96(8) 60(8) -5(7) 27(7) -42(7) F(6) 165(14) 48(7) 66(7) 12(6) 21(8) 32(8) F(7) 147(14) 82(10) 116(12) -43(9) 58 (1) 3(9) F(8) 132(12) 86(9) 56(7) -1(7) 16(7) -21(9) F(9) 96 (1) 65(8) 143(13) -32(8) 62(9) -18(7) F(10) 145(14) 131(13) 64(8) 16(8) 32(9) -24(11) F(11) 86(9) 58(7) 116 (1) -30(7) 18(8) 13(6) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
F(2) 23(7) 201(21) 247(23) 78(19) 12(9) -5(9) F(3) 29(6) 144(13) 114(11) 15 (10) -19(6) 10(7) F(4) 232(23) 58(9) 166(18) 49(11) -2(16) 1(12) F(5) 141(8) 96(8) 60(8) -5(7) 27(7) -42(7) F(6) 165(14) 48(7) 66(7) 12(6) 21(8) 32(8) F(7) 147(14) 82(10) 116(12) -43(9) 58 (1) 3(9) F(8) 132(12) 86(9) 56(7) -1(7) 16(7) -21(9) F(9) 96 (1) 65(8) 143(13) -32(8) 62(9) -18(7) F(10) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
F(3) 29(6) 144(13) 114(11) 15 (10) -19(6) 10(7) F(4) 232(23) 58(9) 166(18) 49(11) -2(16) 1(12) F(5) 141(8) 96(8) 60(8) -5(7) 27(7) -42(7) F(6) 165(14) 48(7) 66(7) 12(6) 21(8) 32(8) F(7) 147(14) 82(10) 116(12) -43(9) 58 (1) 3(9) F(8) 132(12) 86(9) 56(7) -1(7) 16(7) -21(9) F(8) 132(12) 86(9) 56(7) -1(7) 16(7) -21(9) F(8) 132(12) 86(9) 56(7) -1(7) 16(7) -21(9) F(9) 96 (1) 65(8) 143(13) -32(8) 62(9) -18(7) F(9) 96 (1) 65(8) 143(13) -32(8) 62(9) -18(7) F(10) 145(14) 131(13) 64(8) 16(8) 32(9) -24(11) F(11)				• •			
F(4) 232(23) 58(9) 166(18) 49(11) -2(16) 1(12) F(5) 141(8) 96(8) 60(8) -5(7) 27(7) -42(7) F(6) 165(14) 48(7) 66(7) 12(6) 21(8) 32(8) F(7) 147(14) 82(10) 116(12) -43(9) 58 (1) 3(9) F(8) 132(12) 86(9) 56(7) -1(7) 16(7) -21(9) F(9) 96 (1) 65(8) 143(13) -32(8) 62(9) -18(7) F(10) 145(14) 131(13) 64(8) 16(8) 32(9) -24(11) F(11) 86(9) 58(7) 116 (1) -30(7) 18(8) 13(6) F(21) 28(5) 88(7) 36(5) -12(5) 8(4) 0(5) F(22) 54(8) 128(8) 85(8) -49(7) 5(6) -22(7) F(23) 94(9) 49(7) 103(10) -37(7) -24(8) 8(6) F(24)							
F(5) 141(8) 96(8) 60(8) -5(7) 27(7) -42(7) F(6) 165(14) 48(7) 66(7) 12(6) 21(8) 32(8) F(7) 147(14) 82(10) 116(12) -43(9) 58 (1) 3(9) F(8) 132(12) 86(9) 56(7) -1(7) 16(7) -21(9) F(9) 96 (1) 65(8) 143(13) -32(8) 62(9) -18(7) F(10) 145(14) 131(13) 64(8) 16(8) 32(9) -24(11) F(11) 86(9) 58(7) 116 (1) -30(7) 18(8) 13(6) F(21) 28(5) 88(7) 36(5) -12(5) 8(4) 0(5) F(22) 54(8) 128(8) 85(8) -49(7) 5(6) -22(7) F(23) 94(9) 49(7) 103(10) -37(7) -24(8) 8(6) F(24) 93(9) 98(11) 76(8) 18(8) -45(7) -18(8) CM 30(8) 32(8) 47(9) -1(7) 9(6) -3(6) C(2) 52(10) 68(13) 56(12) -1(11) 7(9) 14(9) C(11) 53(10) 33(8) 43(8) 4(7) 25(7) -11(7) C(12) 44(9) 36(8) 38(8) -2(7) 3(7) -2(7) C(13) 31(8) 56 (1) 55(11) 13(9) 6(8) 7(8) C(14) 56(11) 58(11) 48(10) 23(9) -6(9) -15(10) C(15) 57(11) 57 (1) 25(7) -2(7) 8(7) -13(9) C(16) 40(9) 71(2) 26(8) -8(8) 14(7) -28(8) C(22) 28(8) 29(7) 52(9) -8(7) 7(7) 2(6) C(23) 48(9) 25(7) 44(9) -2(6) 3(7) 11(7) C(24) 53(10) 51(10) 22(7) 2(7) -1(7) 3(8) C(25) 40(9) 44(9) 50 (1) 1(8) 14(8) 14(8) 1(7)							
F(6) 165(14) 48(7) 66(7) 12(6) 21(8) 32(8) F(7) 147(14) 82(10) 116(12) -43(9) 58 (1) 3(9) F(8) 132(12) 86(9) 56(7) -1(7) 16(7) -21(9) F(9) 96 (1) 65(8) 143(13) -32(8) 62(9) -18(7) F(10) 145(14) 131(13) 64(8) 16(8) 32(9) -24(11) F(11) 86(9) 58(7) 116 (1) -30(7) 18(8) 13(6) F(21) 28(5) 88(7) 36(5) -12(5) 8(4) 0(5) F(21) 28(5) 88(7) 36(5) -12(5) 8(4) 0(5) F(22) 54(8) 128(8) 85(8) -49(7) 5(6) -22(7) F(23) 94(9) 49(7) 103(10) -37(7) -24(8) 8(6) F(24) 93(9) 98(11) 76(8) 18(8) -45(7) -18(8) CM				•			• •
F(7) 147(14) 82(10) 116(12) -43(9) 58 (1) 3(9) F(8) 132(12) 86(9) 56(7) -1(7) 16(7) -21(9) F(9) 96 (1) 65(8) 143(13) -32(8) 62(9) -18(7) F(10) 145(14) 131(13) 64(8) 16(8) 32(9) -24(11) F(11) 86(9) 58(7) 116 (1) -30(7) 18(8) 13(6) F(21) 28(5) 88(7) 36(5) -12(5) 8(4) 0(5) F(21) 28(5) 88(7) 36(5) -12(5) 8(4) 0(5) F(22) 54(8) 128(8) 85(8) -49(7) 5(6) -22(7) F(23) 94(9) 49(7) 103(10) -37(7) -24(8) 8(6) F(24) 93(9) 98(11) 76(8) 18(8) -45(7) -18(8) CM 30(8) 32(8) 47(9) -1(7) 9(6) -3(6) C(2) <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							
F(8) 132(12) 86(9) 56(7) -1(7) 16(7) -21(9) F(9) 96 (1) 65(8) 143(13) -32(8) 62(9) -18(7) F(10) 145(14) 131(13) 64(8) 16(8) 32(9) -24(11) F(11) 86(9) 58(7) 116 (1) -30(7) 18(8) 13(6) F(21) 28(5) 88(7) 36(5) -12(5) 8(4) 0(5) F(21) 28(5) 88(7) 36(5) -12(5) 8(4) 0(5) F(22) 54(8) 128(8) 85(8) -49(7) 5(6) -22(7) F(23) 94(9) 49(7) 103(10) -37(7) -24(8) 8(6) F(24) 93(9) 98(11) 76(8) 18(8) -45(7) -18(8) CM 30(8) 32(8) 47(9) -1(7) 9(6) -3(6) C(2) 52(10) 68(13) 56(12) -1(11) 7(9) 14(9) C(11) 5							
F(9) 96 (1) 65(8) 143(13) -32(8) 62(9) -18(7) F(10) 145(14) 131(13) 64(8) 16(8) 32(9) -24(11) F(11) 86(9) 58(7) 116 (1) -30(7) 18(8) 13(6) F(21) 28(5) 88(7) 36(5) -12(5) 8(4) 0(5) F(21) 28(5) 88(7) 36(5) -12(5) 8(4) 0(5) F(21) 28(5) 88(7) 36(5) -12(5) 8(4) 0(5) F(22) 54(8) 128(8) 85(8) -49(7) 5(6) -22(7) F(23) 94(9) 49(7) 103(10) -37(7) -24(8) 8(6) F(24) 93(9) 98(11) 76(8) 18(8) -45(7) -18(8) CM 30(8) 32(8) 47(9) -1(7) 9(6) -3(6) C(2) 52(10) 68(13) 56(12) -1(11) 7(9) 14(9) C(11) 53(1							
F(10) 145(14) 131(13) 64(8) 16(8) 32(9) -24(11) F(11) 86(9) 58(7) 116 (1) -30(7) 18(8) 13(6) F(21) 28(5) 88(7) 36(5) -12(5) 8(4) 0(5) F(22) 54(8) 128(8) 85(8) -49(7) 5(6) -22(7) F(23) 94(9) 49(7) 103(10) -37(7) -24(8) 8(6) F(24) 93(9) 98(11) 76(8) 18(8) -45(7) -18(8) CM 30(8) 32(8) 47(9) -1(7) 9(6) -3(6) C(2) 52(10) 68(13) 56(12) -1(11) 7(9) 14(9) C(11) 53(10) 33(8) 43(8) 4(7) 25(7) -11(7) C(12) 44(9) 36(8) 38(8) -2(7) 3(7) -3(7) C(13) 31(8) 56 (1) 55(11) 13(9) 6(8) 7(8) C(14) 56(11)							
F(11) 86(9) 58(7) 116 (1) -30(7) 18(8) 13(6) F(21) 28(5) 88(7) 36(5) -12(5) 8(4) 0(5) F(22) 54(8) 128(8) 85(8) -49(7) 5(6) -22(7) F(23) 94(9) 49(7) 103(10) -37(7) -24(8) 8(6) F(24) 93(9) 98(11) 76(8) 18(8) -45(7) -18(8) CM 30(8) 32(8) 47(9) -1(7) 9(6) -3(6) C(2) 52(10) 68(13) 56(12) -1(11) 7(9) 14(9) C(11) 53(10) 33(8) 43(8) 4(7) 25(7) -11(7) C(12) 44(9) 36(8) 38(8) -2(7) 3(7) -3(7) C(13) 31(8) 56 (1) 55(11) 13(9) 6(8) 7(8) C(14) 56(11) 58(11) 48(10) 23(9) -6(9) -15(10) C(15) 57(11)<							
F(21) 28(5) 88(7) 36(5) -12(5) 8(4) 0(5) F(22) 54(8) 128(8) 85(8) -49(7) 5(6) -22(7) F(23) 94(9) 49(7) 103(10) -37(7) -24(8) 8(6) F(24) 93(9) 98(11) 76(8) 18(8) -45(7) -18(8) CM 30(8) 32(8) 47(9) -1(7) 9(6) -3(6) C(2) 52(10) 68(13) 56(12) -1(11) 7(9) 14(9) C(11) 53(10) 33(8) 43(8) 4(7) 25(7) -11(7) C(12) 44(9) 36(8) 38(8) -2(7) 3(7) -3(7) C(13) 31(8) 56 (1) 55(11) 13(9) 6(8) 7(8) C(14) 56(11) 58(11) 48(10) 23(9) -6(9) -15(10) C(15) 57(11) 57 (1) 25(7) -2(7) 8(7) -13(9) C(16) 40(9) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
F(22) 54(8) 128(8) 85(8) -49(7) 5(6) -22(7) F(23) 94(9) 49(7) 103(10) -37(7) -24(8) 8(6) F(24) 93(9) 98(11) 76(8) 18(8) -45(7) -18(8) CM 30(8) 32(8) 47(9) -1(7) 9(6) -3(6) C(2) 52(10) 68(13) 56(12) -1(11) 7(9) 14(9) C(11) 53(10) 33(8) 43(8) 4(7) 25(7) -11(7) C(12) 44(9) 36(8) 38(8) -2(7) 3(7) -3(7) C(12) 44(9) 36(8) 38(8) -2(7) 3(7) -3(7) C(13) 31(8) 56(1) 55(11) 13(9) 6(8) 7(8) C(14) 56(11) 58(11) 48(10) 23(9) -6(9) -15(10) C(15) 57(11) 57(1) 25(7) -2(7) 8(7) -13(9) C(16) 40(9)							
F(23) 94(9) 49(7) 103(10) -37(7) -24(8) 8(6) F(24) 93(9) 98(11) 76(8) 18(8) -45(7) -18(8) CM 30(8) 32(8) 47(9) -1(7) 9(6) -3(6) C(2) 52(10) 68(13) 56(12) -1(11) 7(9) 14(9) C(11) 53(10) 33(8) 43(8) 4(7) 25(7) -11(7) C(12) 44(9) 36(8) 38(8) -2(7) 3(7) -3(7) C(13) 31(8) 56(1) 55(11) 13(9) 6(8) 7(8) C(14) 56(11) 58(11) 48(10) 23(9) -6(9) -15(10) C(15) 57(11) 57 (1) 25(7) -2(7) 8(7) -13(9) C(16) 40(9) 71(2) 26(8) -8(8) 14(7) -28(8) C(21) 29(7) 31(7) 29(7) 0(6) 4(6) 7(6) C(22) 28(8) 29(7) 52(9) -8(7) 7(7) 2(6) C(23) 48(9) 25(7) 44(9) -2(6) 3(7) 11(7) C(24) 53(10) 51(10) 22(7) 2(7) -1(7) 3(8) C(25) 40(9) 44(9) 50(1) 1(8) 14(8) 1(7)	F(21)	28(5)			,		
F(24) 93(9) 98(11) 76(8) 18(8) -45(7) -18(8) CM 30(8) 32(8) 47(9) -1(7) 9(6) -3(6) C(2) 52(10) 68(13) 56(12) -1(11) 7(9) 14(9) C(11) 53(10) 33(8) 43(8) 4(7) 25(7) -11(7) C(12) 44(9) 36(8) 38(8) -2(7) 3(7) -3(7) C(13) 31(8) 56(1) 55(11) 13(9) 6(8) 7(8) C(14) 56(11) 58(11) 48(10) 23(9) -6(9) -15(10) C(15) 57(11) 57(1) 25(7) -2(7) 8(7) -13(9) C(16) 40(9) 71(2) 26(8) -8(8) 14(7) -28(8) C(21) 29(7) 31(7) 29(7) 0(6) 4(6) 7(6) C(22) 28(8) 29(7) 52(9) -8(7) 7(7) 2(6) C(23) 48(9) 25(7) 44(9) -2(6) 3(7) 11(7) C(24) 53(10) 51(10) 22(7) 2(7) -1(7) 3(8) C(25) 40(9) 44(9) 50(1) 1(8) 14(8) 1(7)	F(22)	54(8)	128(8)	85(8)	-49(7)	5(6)	
CM 30(8) 32(8) 47(9) -1(7) 9(6) -3(6) C(2) 52(10) 68(13) 56(12) -1(11) 7(9) 14(9) C(11) 53(10) 33(8) 43(8) 4(7) 25(7) -11(7) C(12) 44(9) 36(8) 38(8) -2(7) 3(7) -3(7) C(13) 31(8) 56 (1) 55(11) 13(9) 6(8) 7(8) C(14) 56(11) 58(11) 48(10) 23(9) -6(9) -15(10) C(15) 57(11) 57 (1) 25(7) -2(7) 8(7) -13(9) C(16) 40(9) 71(2) 26(8) -8(8) 14(7) -28(8) C(21) 29(7) 31(7) 29(7) 0(6) 4(6) 7(6) C(22) 28(8) 29(7) 52(9) -8(7) 7(7) 2(6) C(23) 48(9) 25(7) 44(9) -2(6) 3(7) 11(7) C(24) 53(10) 51(10) 22(7) 2(7) -1(7) 3(8) C(25) 40	F(23)	94(9)	49(7)	103(10)	-37(7)	-24(8)	8(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(24)	93(9)	98(11)	76(8)	18(8)	-45(7)	-18(8)
C(11) 53(10) 33(8) 43(8) 4(7) 25(7) -11(7) C(12) 44(9) 36(8) 38(8) -2(7) 3(7) -3(7) C(13) 31(8) 56(1) 55(11) 13(9) 6(8) 7(8) C(14) 56(11) 58(11) 48(10) 23(9) -6(9) -15(10) C(15) 57(11) 57(1) 25(7) -2(7) 8(7) -13(9) C(16) 40(9) 71(2) 26(8) -8(8) 14(7) -28(8) C(21) 29(7) 31(7) 29(7) 0(6) 4(6) 7(6) C(22) 28(8) 29(7) 52(9) -8(7) 7(7) 2(6) C(23) 48(9) 25(7) 44(9) -2(6) 3(7) 11(7) C(24) 53(10) 51(10) 22(7) 2(7) -1(7) 3(8) C(25) 40(9) 44(9) 50(1) 1(8) 14(8) 1(7)	CM	30(8)	32(8)	47(9)	-1(7)	9(6)	-3(6)
C(12) 44(9) 36(8) 38(8) -2(7) 3(7) -3(7) C(13) 31(8) 56 (1) 55(11) 13(9) 6(8) 7(8) C(14) 56(11) 58(11) 48(10) 23(9) -6(9) -15(10) C(15) 57(11) 57 (1) 25(7) -2(7) 8(7) -13(9) C(16) 40(9) 71(2) 26(8) -8(8) 14(7) -28(8) C(21) 29(7) 31(7) 29(7) 0(6) 4(6) 7(6) C(22) 28(8) 29(7) 52(9) -8(7) 7(7) 2(6) C(23) 48(9) 25(7) 44(9) -2(6) 3(7) 11(7) C(24) 53(10) 51(10) 22(7) 2(7) -1(7) 3(8) C(25) 40(9) 44(9) 50(1) 1(8) 14(8) 1(7)	C(2)	52(10)	68(13)	56(12)	-1(11)	7(9)	14(9)
C(13) 31(8) 56 (1) 55(11) 13(9) 6(8) 7(8) C(14) 56(11) 58(11) 48(10) 23(9) -6(9) -15(10) C(15) 57(11) 57 (1) 25(7) -2(7) 8(7) -13(9) C(16) 40(9) 71(2) 26(8) -8(8) 14(7) -28(8) C(21) 29(7) 31(7) 29(7) 0(6) 4(6) 7(6) C(22) 28(8) 29(7) 52(9) -8(7) 7(7) 2(6) C(23) 48(9) 25(7) 44(9) -2(6) 3(7) 11(7) C(24) 53(10) 51(10) 22(7) 2(7) -1(7) 3(8) C(25) 40(9) 44(9) 50(1) 1(8) 14(8) 1(7)	C(11)	53(10)	33(8)	43(8)·	4(7)	25(7)	-11(7)
C(14) 56(11) 58(11) 48(10) 23(9) -6(9) -15(10) C(15) 57(11) 57 (1) 25(7) -2(7) 8(7) -13(9) C(16) 40(9) 71(2) 26(8) -8(8) 14(7) -28(8) C(21) 29(7) 31(7) 29(7) 0(6) 4(6) 7(6) C(22) 28(8) 29(7) 52(9) -8(7) 7(7) 2(6) C(23) 48(9) 25(7) 44(9) -2(6) 3(7) 11(7) C(24) 53(10) 51(10) 22(7) 2(7) -1(7) 3(8) C(25) 40(9) 44(9) 50(1) 1(8) 14(8) 1(7)	C(12)	44(9)	36(8)	38(8)	-2(7)	3(7)	-3(7)
C(15) 57(11) 57 (1) 25(7) -2(7) 8(7) -13(9) C(16) 40(9) 71(2) 26(8) -8(8) 14(7) -28(8) C(21) 29(7) 31(7) 29(7) 0(6) 4(6) 7(6) C(22) 28(8) 29(7) 52(9) -8(7) 7(7) 2(6) C(23) 48(9) 25(7) 44(9) -2(6) 3(7) 11(7) C(24) 53(10) 51(10) 22(7) 2(7) -1(7) 3(8) C(25) 40(9) 44(9) 50(1) 1(8) 14(8) 1(7)	C(13)	31(8)	56 (1)	55(11)	13(9)	6(8)	7(8)
C(16) 40(9) 71(2) 26(8) -8(8) 14(7) -28(8) C(21) 29(7) 31(7) 29(7) 0(6) 4(6) 7(6) C(22) 28(8) 29(7) 52(9) -8(7) 7(7) 2(6) C(23) 48(9) 25(7) 44(9) -2(6) 3(7) 11(7) C(24) 53(10) 51(10) 22(7) 2(7) -1(7) 3(8) C(25) 40(9) 44(9) 50(1) 1(8) 14(8) 1(7)	C(14)	56(11)	58(11)	48(10)	23(9)	-6(9)	-15(10)
C(16) 40(9) 71(2) 26(8) -8(8) 14(7) -28(8) C(21) 29(7) 31(7) 29(7) 0(6) 4(6) 7(6) C(22) 28(8) 29(7) 52(9) -8(7) 7(7) 2(6) C(23) 48(9) 25(7) 44(9) -2(6) 3(7) 11(7) C(24) 53(10) 51(10) 22(7) 2(7) -1(7) 3(8) C(25) 40(9) 44(9) 50(1) 1(8) 14(8) 1(7)	C(15)	57(11)	57 (1)	25(7)	-2(7)	8(7)	-13(9)
C(21) 29(7) 31(7) 29(7) 0(6) 4(6) 7(6) C(22) 28(8) 29(7) 52(9) -8(7) 7(7) 2(6) C(23) 48(9) 25(7) 44(9) -2(6) 3(7) 11(7) C(24) 53(10) 51(10) 22(7) 2(7) -1(7) 3(8) C(25) 40(9) 44(9) 50(1) 1(8) 14(8) 1(7)			71(2)	26(8)	-8(8)	14(7)	-28(8)
C(22) 28(8) 29(7) 52(9) -8(7) 7(7) 2(6) C(23) 48(9) 25(7) 44(9) -2(6) 3(7) 11(7) C(24) 53(10) 51(10) 22(7) 2(7) -1(7) 3(8) C(25) 40(9) 44(9) 50(1) 1(8) 14(8) 1(7)			31(7)	29(7)	0(6)	4(6)	7(6)
C(23) 48(9) 25(7) 44(9) -2(6) 3(7) 11(7) C(24) 53(10) 51(10) 22(7) 2(7) -1(7) 3(8) C(25) 40(9) 44(9) 50(1) 1(8) 14(8) 1(7)			29(7)	52(9)	-8(7)	7(7)	2(6)
C(24) 53(10) 51(10) 22(7) 2(7) -1(7) 3(8) C(25) 40(9) 44(9) 50 (1) 1(8) 14(8) 1(7)			25(7)	44(9)	-2(6)	3(7)	11(7)
C(25) 40(9) 44(9) 50 (1) 1(8) 14(8) 1(7)						-1(7)	*
		, ,					
C(26) 54(10) 45(9) 37(8) 21(7) 22(8) 17(8)	C(26)	54(10)	45(9)	37(8)	21(7)	22(8)	17(8)

Table S9. Hydrogen coordinates ($\propto 10^4$) and isotropic displacement parameters ($A^2 \times 10^3$) for [(m-CF₃C₆H₄)(C₆H₅)CF]⁺[As₂F₁₁].

	x	y	z	U(eq)
	the contract			
H(12)	6529(18)	1928(102)	1898(99)	47
H(13)	5579(78)	1875(88)	635(12)	57
H(14)	5647(90)	801(30)	-581(101)	67
H(15)	6856(14)	-702(100)	-656(92)	. 56
H(16)	8272(152)	-1129(166)	546(10)	53
H(22)	9389(103)	1463(37)	3269(49)	44
H(24)	7991(12)	1483(44)	5408(123)	52
H(25)	6749(100)	459(47)	4477(48)	53
H(26)	6760(102)	100(76)	2979(76)	53