Self-adaptive Systems

Software Evolution Perspective of Autonomic Systems

IBM's Complexity Solution

Automation through self-adaptive, selfmanaging systems or autonomic computing

What is Autonomic Computing

Webster's definition:

- Acting or occurring involuntarily; automatic; an automatic reflex
- Relating to, affecting, or controlled by the autonomic nervous system or its effects or activity
- Autonomic nervous syst: that part of the nervous system that governs involuntary body functions like erspiration or heart rate

IBM's definition

An approach to self-managed computing systems with a minimum of human interference

 The term derives from the body's autonomic nervous system which controls key functions without conscious awarenesss or involvement

Decide

hostile, forbidding, cole frosty, glacial; haughty idea noun 1 the idea of d hericoncept, notion, c thought. 2 our idea is new shop: plan, schen

Resource

Autonomic Systems

What is the most famous autonomic system?

You all know it intimately ©

Famous Autonomic System

- Autonomic nervous System
- Parasympathetic
 - Day-to-day internal processes
- Sympathetic
 - Stressful situation processes

Temperature, heartrate, breathing rate, bloodpressure, pupil dilation, tears, digestion, immune response

Monitor and Regulate!

Characteristics of autonomic or selfmanaging systems

- Self awareness, reflexivity, identy
 - Possesses a system identity
 - Must know itself
 - Needs detailed knowledge of its components, status, interconnections
- Able to configure and reconfigure itslef under varying conditions
 - adaptive algorithms, machine learning, optimizations, monitoring and execution

Characteristics of autonomic or selfmanaging systems

- Self-*
- Autonomic software system needs to be autonomic by suporting behaviour types
 - Self-configuring: means choosing a suitable behaviour based on user preferences, context
 - Self-tuning means choosing behaviours that optimize certain qualities (performance, profits...)

Characteristics of autonomic or selfmanaging systems

Self-*

- Self-configuring: means choosing a suitable behaviour based on user preferences, context
- Self-tuning means choosing behaviours that optimize certain qualities (performance, profits...)
- Self-repairing means shifting execution to another behaviour, given current one is failing
- Self-protecting means choosing a behaviour that minimizes risk (attacks, virus)

What autonomic systems deliver

IBM's approach

- Create and deploy self-managing infrastructure technologies to
 - reduce complexity
 - lower cost of ownership
 - increase reliability
- Establish an architectural framework for autonomic computing
 See
- Provide technologies to reduce the cost of managing systems
 - Automating automation

Adaptation

Usually the model for offline adaptation

(a)

Adaptation

Feedback and Feedforward

Autonomic System (AS)

Autonomic Element (AE)

Autonomic Manager (AM)

Managed Element (ME)

Manageability Endpoint (ME)
Manageability Interface (MI)

Knowledge sources
Enterprise service bus

Autonomic Element

Autonomic Manager

Consists of an Autonomic

Manager (AM) and an

Autonomic Element (AE)

Manager and managed element form a

level of indirection

- Spatially and temporally separate entities
- Enterprise Service Bus

Sensors Effectors

Analyze - Plan

Monitor Knowledge Execute

Sensors *** Effectors

Managed Element

Level of indirection

Models

- Perspective of control theory, adaptive control concerns the automatic adjustment of control mechanisms.
- Adaptive control researchers investigate parameter adjustment algorithms that allow the adaptation of the control mechanisms while guaranteeing global stability and convergence
- Control theory offers several reference models for realizing adaptive control.
- Model Reference Adaptive Control (MRAC)
- Model Identification Adaptive Control (MIAC)

Fig. 8.5: Model Reference Adaptive Control (MRAC)

Fig. 8.6: Model Identification Adaptive Control (MIAC)

Conclusions

- Models (control theory lends a helping hand)
- Self-* properties
- Offline vs. Runtime evolution