

Facultad de Ciencias

Licenciatura en Ciencias de la Computación

Cómputo Evolutivo

Recocido Simulado

M. en C. Oscar Hernández Constantino (constantino92@ciencias.unam.mx)

Contenido de la Presentación

- 1. Escapando de los óptimos locales
 - 1.1 Multi-Inicio
- 2. Recocido Simulado

(SA, Simulated Annealing)

- 2.1 Motivación
- 2.2 Analogía con la naturaleza
- 2.3 Pseudocódigo
- 2.4 Aceptación de Movimientos
- 2.5 Parámetros
- 2.6 Estrategias de Enfriamiento

Escapando de los óptimos locales

Alternativas para evitar óptimos locales

- Iterar con diferentes soluciones
 - Multi-Inicio
 - Búsqueda Local Iterada (ILS, Iterated Local Search)
- Cambiar el paisaje (lanscape) de la función del problema
 - Cambiar la función objetivo o los datos de entrada
 - » Búsqueda local guiada (GLS)
 - » Métodos de Función sustituta (suavizado)
 - Usar vecindades diferentes
 - » Búsqueda con Vecindades Variables (VNS, Variable Neighborhood Search)
- Aceptar vecinos que no mejoran
 - Recocido Simulado (SA, Simulated Annealing)
 - Búsqueda Tabú (TS, Tabu Search)

```
Algoritmo 1: Búsqueda por Escalada con Multi-Inicio
  Entrada: MAX > 0, máximo de iteraciones; f : \rightarrow \mathbb{R}
  Resultado: s', mejor solución encontrada
1 s = inicializar Solución;
2 s_{hc} = búsqueda por escalada (s);
3 S_{meior} = S_{hc};
4 t = 1:
5 mientras t < MAX hacer
      // Reiniciar la búsqueda en un nuevo punto
s' = inicializar solución ;
     s'_{bs} = búsqueda por escalada (s);
      si f(s') < f(s) entonces
         // Actualizar la mejor solución encontrada
       s_{mejor} = s'_{hc};
```

13 devolver Smejor

8 9

10

11 12

Recocido Simulado (SA, Simulated Annealing)

Generalidades

 Algoritmo basado en el comportamiento de enfriamiento y cristalización de sustancias químicas.

Origen

- Nicholas Metropolis desarrolló un algoritmo para investigar las propiedades de la interacción de partículas (fundamento del SA), en 1953.
- Propuesto por Scott Kickpatrick en 1983 para diseño de computadoras (circuitos).
- Derivado de manera independiente en 1985 por Vlado Cerny para resolver el TSP.

Recocido en la Naturaleza

- Una formación cristalina es una organización de átomos o moléculas en un líquido o sólido. Ej: curazo, hielo, sal.
- En altas temperaturas no presentan mucha estructura.
- Temperaturas altas, dan bastante energía a los materiales.
- Cuando la temperatura baja, los materiales se estabilizan.
- El proceso de calentar y después enfriar un material para cristalizarlo es llamado recocido.
- Los materiales tienden a converger a un estado de energía mínima.

Justificación

Sea *E(s)* la energía de una configuración específica *s* de átomos en algún material. La probabilidad de que el sistema esté en dicha configuración es:

$$P(s) = \frac{e^{\frac{-E(s)}{k*T}}}{\sum_{w} e^{\frac{-E(w)}{k*T}}}$$

donde T es la temperatura, k es la constante de Boltzmann, w configuraciones posibles.

Supongamos que tenemos una configuración q, la probabilidad de aceptar r como nuevo estado es:

$$P(r|q) = \begin{cases} 1 & \text{Si } E(r) < E(q) \\ e^{\frac{E(q) - E(r)}{k * T}} & \text{Si } E(r) \ge E(q) \end{cases}$$

9

Motivación (analogía con la naturaleza)

Recocido en la Naturaleza	Recocido Simulado	
Estado del Sistema	Solución candidata	
Configuración molecular	Variables de decisión	
Energía	Función objetivo	
Estado Fundamental	Solución óptima global	
Estado meta estable	Óptima local	
Temperatura	Tendencia a explorar	
	el espacio de búsqueda	
Enfriamiento	Disminución de la tendencia	
	a explorar	
Cambio de configuraciones	Cambio de solución candidata	
moleculares		

```
Algoritmo 2: Recocido Simulado (SA, Simulated Annealing)
   Entrada: T_{ini} > 0, temperatura inicial; \alpha(T) \in [0, T_{max}], \forall T; s_0 \in S;
             N: S \to 2^S: f: \to \mathbb{R}
   Resultado: s<sub>mejor</sub>, mejor solución encontrada
1 S = S_0:
2 mientras Condición de Término hacer
       // s' \in N(s)
3
       Generar una solución candidata s';
4
       si f(s') < f(s) entonces
6
           // Aceptar la solución
           s = s';
       en otro caso
8
           Aceptar con probabilidad e^{-\frac{f(s')-f(s)}{T}}:
9
10
       /* Actualizar temperatura (valor de T)
11
12 devolver Smeior
```


Espacio de Búsqueda

Aceptación de Movimientos

$$P(\Delta E) = e^{-\frac{f(s') - f(s)}{T}} = e^{-\frac{\Delta E}{T}}$$

- Importancia de la Temperatura T
 - Si T es pequeña, tenemos una búsqueda local (hill climbing)
 - Si T es grande, tenemos una búsqueda aleatoria (caminata aleatoria)
- Diferencia en la evaluación de la solución candidata s'
 - Entre menor sea $\Delta E = f(s') f(s)$, mayor es la probabilidad de aceptación

Ejemplo de probabilidad de Aceptación

Supongamos que f(s) = 107, y f(s') = 120, entonces $\Delta E = f(s') - f(s) = 13$.

Т	− ΔΕ/Τ	р
1	—13	0.00000226
5	-2,6	0.074273578
10	—1,3	0.272531793
20	- 0,65	0.522045777
50	-0,26	0.771051586
10 ¹⁰	-0,000000001	0.999999999

Ejemplo de probabilidad de Aceptación II

Ahora veamos que pasa cuando fijamos la temperatura, por ejemplo T = 10. Consideremos además que f(s) = 120.

f(s')	$\Delta E = f(s') - f(s)$	р
147	27	0.067205513
127	7	0.496585304
120	0	1
107	-13	1
80	-40	1

Recordar que cuando f(s') < f(s) el movimiento siempre se acepta, por tanto se considera que en ese caso p = 1

Parámetros

- Temperatura Inicial
 - Muy alta: búsqueda aleatoria
 - Muy baja: búsqueda local (por escalada)
- Planificación del enfriamiento
 - Lineal
 - Logarítimico
 - Decrecimiento Lento
 - No monótono
 - Adaptativo
- Criterio de Término
 - Temperatura Final

Enfriamiento Lineal

• Este es el esquema más simple. Se utiliza la siguiente función:

$$T_{k+1} = T_0 - \eta k$$

- k es el número de iteración
- η es una constante para regular la velocidad con la que se disminuye la temperatura
- Usualmente se mantiene un valor de temperatura durante varias iteraciones

Enfriamiento Logarítmico

Enfriamiento con Decremento Lento

Ejemplo con diferentes valores de β

Es común que en este tipo de esquema la temperatura se actualiza en cada iteración.

Otras estrategias de Enfriamiento I

• Geométrico, también referenciado como exponencial.

$$T_{k+1} = \alpha T_k, \ \alpha \in (0,1)$$

Un valor típico es $\alpha \in (0,8,1)$.

Puede ser equivalente al enfriamiento con decrecimiento lento.

No monótono

Los esquemas típicos usan funciones de enfriamiento son monótonas.

Se pueden considerar variantes en donde la temperatura se incremente en diferentes momentos.

Esto favorece la diversificación.

Otras estrategias de Enfriamiento II

- Adaptativo La mayoría de las funciones de enfriamiento son estáticas (el comportamiento es definido a priori).
 En un esquema adaptativo la forma en que se actualiza la temperatura es dinámica y depende de información obtenida en la búsqueda.
- Dependientes de la dimensión Para funciones que tienen diferentes topologías entre diferentes dimensiones, se pueden utilizar diferentes esquemas de enfriamiento para diferentes dimensiones.