Lecture 4 DC Resistivity: Surveys

GEOL 4397: Electromagnetic Methods for Exploration GEOL 6398: Special Problems

Jiajia Sun, Ph.D. Sept. 4th, 2018

Agenda

- Recap
- Sounding
- Profiling
- Different survey geometries
- Data
- Case Study

Understanding the charges

Elura Orebody Electrical resistivities

Rock Type	Ohm-m
Overburden	12
Host rocks	200
Gossan	420
Mineralization (pyritic)	0.6
Mineralization (pyrrhotite)	0.6

Images generated using DC_Plate2_5D.ipynb. A: -30x2(5mm), B: 30.25 m, M: -10.25 m, N = 10.25 m. ρ 1 = 500 Ω ·m, ρ 2 = 500 Ω ·m. dx = 10, dz=20, xc = 0, zc = -20, theta = 21.

Images generated using DC_Plate2_5D.ipynb. A: -30x2(5m), B: 30.25 m, M: -10.25 m, N = 10.25 m. ρ 1 = 500 Ω ·m, ρ 2 = 10 Ω ·m. dx = 10, dz=20, xc = 0, zc = -20, theta = 21.

- What could have happened?
- The electric field becomes discontinuous across the boundary.
- What is the easiest way to make the electric field discontinuous?

Test

Can you tell which one is conductive and which one is resistive?

https://gpg.geosci.xyz/content/DC_resistivity/DC_basic_principles_hetero geneous earth.html

Test

Now that you have figured out which one is conductive and which is resistive. What do you think the charges will look like for the following scenario?

https://gpg.geosci.xyz/content/DC_resistivity/DC_basic_principles_hetero geneous earth.html

Test

Now that you have figured out which one is conductive and which is resistive. What do you think the charges will look like for the following scenario?

normalized charge bensity

https://gpg.geosci.xyz/content/DC_resistivity/DC_basic_principles_hetero geneous earth.html

Charges on a resistor and conductor

Direct Current Resisitivity (DCR) experiment showing current path and charge built up near a (a) conductive and (b) resistive anomaly. Image Courtesy: https://em.geosci.xyz/content/geophysical_surveys/dcr/index.html

What if no charge would be built up?

- The electric field would not be distorted
- It would be the same as the electric field from a homogeneous Earth

DC resistivity would become totally useless!!

Currents and Apparent Resistivity

Apparent resistivity

$$\rho_a = \frac{\Delta V_{MN}}{IG}$$

Images generated using DC_Layered Earth.ipynb. A: -30 m, B: 30 m, M: -10 m, N = 10 m. ρ 1 = 100 Ω ·m, ρ 2 = 500 Ω ·m. h = 10 m.

Apparent resistivity

$$\rho_a = \frac{\Delta V_{MN}}{IG}$$

- If the Earth is homogeneous, the apparent resistivity is equal to the true resistivity of the Earth.
- For inhomogeneous Earth, the apparent resistivity is some complicated averaging of the resistivities of all materials encountered by the currents.

Apparent resistivity

$$\rho_a = \frac{\Delta V_{MN}}{IG}$$

- If the Earth is homogeneous, the apparent resistivity is equal to the true resistivity of the Earth.
- For inhomogeneous Earth, the apparent resistivity is some complicated averaging of the resistivities of all materials encountered by the currents.
- It can be interpreted as the resistivity that would have been measured if the Earth were homogeneous.

Agenda

- Recap
- Sounding
- Profiling
- Different survey geometries
- Data
- Case Study

- Keep the distance between M and N fixed
- Expand A and B

Observations:

- At small electrode spacings current flows only in near-surface regions. Apparent resistivities look similar to the true resistivity of overburden.
- As current flows deeper, apparent resistivities are influenced by the true resistivities of deeper materials.
- The sounding curve begins to indicate that there are at least 2 layers under this location.
- At very large electrode spacings most of the information reflects deeper ground because that is where most of the current is flowing.

https://em.geosci.xyz/content/geophysical_surveys/dcr/data.html

Observations

- The larger the distance between A and B, the deeper we can see.
- Because more currents are able to flow to deeper part of the Earth.

https://pburnley.faculty.unlv.edu/GEOL442_642/RES/NOTES/ResistivityNotes015Layered_02.html

Summary: soundings

DC Sounding curve

Scale length of array must be -20 large to see deep

6e-01

Wenner Array

- To generate a sounding curve, from which we could interpret the resistivity variation with depth, we would have to compute apparent resistivity for a variety of electrode spacings, a.
- Therefore, after making a measurement we would have to move all four electrodes to new positions.

$$\rho_a = 2\pi a \frac{\Delta V}{i}$$

https://pburnley.faculty.unlv.edu/GEOL442_642/RES/NOTES/ResistivityNotes19Sounding.html

Schlumberger Array

- a << s
- To make a sounding curve, we can simply increase the distance between the current electrodes A and B.
- In principle, we do not need to move potential electrodes, M and N.
- In practice, as the current electrodes are moved outward, the potential difference between M and N gets smaller. Eventually, smaller than our voltmeter is capable of reading. Therefore, we will need to increase a to increase the potential difference we are attempting to measure.

$$\rho_{\alpha} = \frac{\pi(s^2 - a^2/4)}{a} \frac{\Delta V}{i}$$

https://pburnley.faculty.unlv.edu/GEOL442_642/RES/NOTES/ResistivityNotes19Sounding.html

A three-layer model

For mode discussions on the sounding curves:

https://pburnley.faculty.unlv.edu/GEOL442_642/RES/NOTES/ResistivityNotes25MLayer1.html

- In this example, Wenner array is used.
- the entire electrode spread is moved from left to right.

https://pburnley.faculty.unlv.edu/GEOL442_642/RES/NOTES/ResistivityNotes22Profile.html

- If the electrode array is far removed from the vertical fault, the measured apparent resistivity is equal to the resistivity of the underlying rock.
- As the array approaches the fault, the resistivity varies in a discontinuous fashion
- The discontinuities in the resistivity profile correspond to array locations where electrodes move across the fault.

https://pburnley.faculty.unlv.edu/GEOL442_642/RES/NOTES/ResistivityNotes22Profile.html

Fixed geometry: Move laterally

Fixed geometry: Move laterally

Fixed geometry: Move laterally

Fixed geometry: Move laterally

Depth of investigation depends upon offset or array length

Summary: Profiling

 An array with fixed geometry (or, configuration) is moved along a line

Summary: Profiling

- An array with fixed geometry (or, configuration) is moved along a line
- The data provide information about lateral variations of the Earth's resistivity

Summary: Profiling

- An array with fixed geometry (or, configuration) is moved along a line
- The data provide information about lateral variations of the Earth's resistivity up to a depth that is determined by the length of the array

Summary: Soundings and Profiles

Sounding

Profiling

Basic Survey Setups

- Fixed locations for the A and B electrodes which are far apart.
- Voltage measurements are taken at various locations between A and B.

Optional reading materials

- https://em.geosci.xyz/content/geophysical_surveys/ dcr/survey.html
- https://gpg.geosci.xyz/content/DC resistivity/DC surveys.html#survey-configurations
- https://pburnley.faculty.unlv.edu/GEOL442 642/RES /NOTES/ResistivityNotes18FieldOverview.html
- https://pburnley.faculty.unlv.edu/GEOL442 642/RES /NOTES/ResistivityNotes21ASounding.html

Basic Survey Setups

What is pole-pole?

Dipole-Dipole

Variants of dipole-dipole

- If we put one of the current electrodes very far away from our survey area, it is called pole-dipole.
- If we put one of the current electrodes and one of the potential electrodes very far, it is called pole-pole.

Well-logging

Same physical principles, different geometry

Fig. 7-1—Normal device—basic arrangement.

Fig. 7-2-Lateral device-basic arrangement.

From Chapter 7 of the Schlumberger Log Interpretation Principles/Applications Textbook

Survey configurations

An example of a co-linear survey with multiple lines.

An example of a 3D DC survey

Survey configurations

An example of a co-linear survey with multiple lines.

An example of an E-Scan survey, which uses a pole-pole configuration in a non-grid format.

Survey configurations

Electrodes can be placed at the surface or along boreholes.

DC resistivity surveys in a tunnel environment. The tunnel restricts where the electrodes can be placed

Agenda

- Recap
- Sounding
- Profiling
- Different survey geometries
- Data
- Case Study

Measured voltages

• The flow of currents in the ground causes charges to be built up on interfaces between regions of differing conductivity. These charges contribute to the measured potential difference (or, voltage).

$$\Delta V_{MN} = V_M - V_N = \rho I \frac{1}{2\pi} \left(\frac{1}{r_{AM}} - \frac{1}{r_{BM}} - \frac{1}{r_{AN}} + \frac{1}{r_{BN}} \right)$$

Calculating apparent resistivity

 Converting voltage measurements to apparent resistivity is extremely valuable for plotting data and making first assessments about the subsurface.

$$\rho = \frac{\Delta V_{MN}}{IG}$$

Visualizing data: Sounding Curve

https://pburnley.faculty.unlv.edu/GEOL442_642/RES/NOTES/ResistivityNotes25MLayer1.html

Visualizing data: Pseudosection

Each data point is an apparent resistivity:

$$\rho_a = \frac{2\pi\Delta V}{IG}$$

Visualizing data: Pseudosection

- lines at 45° degree angles, are drawn from the mid-points of the current and potential electrode pairs and the datum (i.e., apparent resistivity) is plotted at the intersection of these lines.
- In cases where a pole transmitter or receiver is used, the 45° lines are drawn directly from the electrode location.

Example Pseudosections

Dipole-dipole survey

https://em.geosci.xyz/content/geophysical_surveys/dcr/interpretation.html#dcr-synthetics

Example pseudosections

Example pseudosections

2) The conductive block with geologic noise.

Example pseudosections

3) The "UBC-GIF model"

Inversion

Example 1: buried prism

• Pole-dipole; n=1,8; a=10m; N=316; $(\alpha_s, \alpha_x, \alpha_z)$ =(.001, 1.0, 1.0)

Example 2: prism with geologic noise

• Pole-dipole; n=1,8; a=10m; N=316; $(\alpha_s, \alpha_x, \alpha_z)$ =(.001, 1.0, 1.0)

Example 3: UBC-GIF model

Pole-dipole; n=1,8; a=10m

Cast History at Mt. Isa

Setup

Geologic model

Question

- Can DC data delineate the various units shown in the geologic cross section?
- Can conductive units, which would be potential targets within the siltstones, be identified with DC data?

Properties

Rock Unit	Conductivity
Native Bee Siltstone	Moderate
Moondarra Siltstone	Moderate
Breakaway Shale	Very High
Mt Novit Horizon	High
Surprise Creek Formation	Low
Eastern Creek Volcanics	Low

Survey and Data

- 10 survey lines
- Two survey configurations.

Surface topography

Data set #1:

Apparent resistivity, pole - dipole.

Survey and Data

- 10 survey lines
- Two survey configurations.

Surface topography

Data set #2:

Apparent resistivity, dipole - pole

Processing and interpretation

3D resistivity model

Animation

Synthesis

- Identified a major conductor → black shale unit
- Some indication of a moderate conductor

Credit: Doug Oldenburg, Seogi Kang and Linsey Heagy from UBC-GlEastern Creek
Volcanics

Optional reading materials

 https://em.geosci.xyz/content/case histories/mt is a/index.html