Fourier-Methoden: Theorie und Anwendungen

Felix Wager

9. September 2025

Inhaltsverzeichnis

Abs	stract	3	
Einleitung			
2.1	Motivation	3	
2.2	Zielsetzung der Arbeit	3	
2.3	Aufbau der Arbeit	3	
Mat	thematische Grundlagen	3	
3.1	Historischer Hintergrund	3	
3.2	Komplexe Zahlen und die Eulerformel	3	
3.3	Skalarprodukt von Funktionen und Orthonormalsysteme	4	
3.4	Fourier-Reihe	5	
Fourier-Reihe			
4.1	Herleitung der Reihe	7	
4.2	Berechnung der Koeffizienten	7	
4.3	Eigenschaften und Konvergenz	7	
Von	der Reihe zur Fourier-Transformation	7	
5.1	Übergang zum Integral	7	
5.2	Fourier-Transformation und inverse Transformation	7	
5.3	Eigenschaften	7	
Diskrete Fourier-Transformation (DFT) 7			
6.1	Definition und Motivation	7	
6.2		7	
6.3		8	
	Eini 2.1 2.2 2.3 Mat 3.1 3.2 3.3 3.4 Fou 4.1 4.2 4.3 Von 5.1 5.2 5.3 Disl 6.1 6.2	2.1 Motivation 2.2 Zielsetzung der Arbeit 2.3 Aufbau der Arbeit Mathematische Grundlagen 3.1 Historischer Hintergrund 3.2 Komplexe Zahlen und die Eulerformel 3.3 Skalarprodukt von Funktionen und Orthonormalsysteme 3.4 Fourier-Reihe Fourier-Reihe 4.1 Herleitung der Reihe 4.2 Berechnung der Koeffizienten 4.3 Eigenschaften und Konvergenz Von der Reihe zur Fourier-Transformation 5.1 Übergang zum Integral 5.2 Fourier-Transformation und inverse Transformation 5.3 Eigenschaften Diskrete Fourier-Transformation (DFT) 6.1 Definition und Motivation 6.2 Herleitung aus der Fourier-Transformation	

7	Eigene Beiträge				
	7.1	Eigene Herleitung der DFT	8		
	7.2	Beweise			
	7.3	Eigener FFT-Algorithmus in Python			
	7.4	Audio-Programm zur Echtzeit-Visualisierung			
	7.5		10		
8	Anw	vendungen	10		
	8.1	Audio	10		
	8.2	Bild	10		
9	Diskussion 10				
	9.1	Bewertung der Ergebnisse	10		
	9.2	Stärken und Grenzen			
		Bedeutung im größeren Kontext			
10	Fazi	t und Ausblick	10		
	10.1	Zusammenfassung der Ergebnisse	10		
		Ausblick: Erweiterungen und Anwendungen			

1 Abstract

2 Einleitung

2.1 Motivation

Warum Fourier-Methoden heute so wichtig sind.

- 2.2 Zielsetzung der Arbeit
- 2.3 Aufbau der Arbeit
- 3 Mathematische Grundlagen

3.1 Historischer Hintergrund

Fourier und Wärmeleitung.

3.2 Komplexe Zahlen und die Eulerformel

Um sich die Arbeit mit Fourier Transformationen, Reihen und sonstigem erheblich zu erleichtern ist es sehr sinnvoll mit komplexen Zahlen zu arbeiten. Doch was sind komplexe Zahlen? Komplexe Zahlen sind prinzipiell nichts anderes, als eine Erweiterung der Menge der Reellen Zahlen, welche es ermöglicht die Wurzel von negativen Zahlen zu ziehen. Dafür wird die Wurzel die imaginäre Einheit i definiert. Mathematisch korrekt sieht das wie folgt aus:

$$i^2 = -1$$

Die Menge der komplexen Zahlen wird mit dem Symbol \mathbb{C} abgekürzt. Eine typische komplexe Zahl hat in der algebraischen Schreibweise die Form:

$$z = a + ib$$
 mit $a, b \in \mathbb{R}$

a ist hierbei der Realteil $\Re(z)$ und b der Imaginärteil $\Im(z)$ von z.

Um mit komplexen Zahlen bei Fourier Reihen zu arbeiten, benötigt man auch ein paar Rechenoperationen. Die wichtigsten beiden sind hier der Betrag und das komplex konjugierte einer komplexen Zahl. Eine komplexe Zahl lässt sich auch als Vektor im \mathbb{R}^2 betrachtet, so ist dann der Betrag als euklidische Norm dieses Vektors definiert.

$$|z| = \sqrt{a^2 + b^2}$$

Bedeutet in einem Koordinatensystem, bei dem der Real- und Imaginärteil einer Zahl auf den x- und y-Achsen festgehalten wird, ist der Betrag die Länge vom Ursprung bis zum Punkt im Koordinatensystem dieser Zahl. Und das komplex konjugierte einer Zahl ist eine Abbildung, welche lediglich den Imaginärteil mit -1 multipliziert:

$$\bar{z}: \mathbb{C} \to \mathbb{C}, \ z = x + iy \mapsto \bar{z} := x - iy$$

Mithilfe von komplexen Zahlen und den Taylorreihen von Sinus, Cosinus und der Exponentialfunktion e^x kann man nun die Eulerformel herleiten.

Wenn man den Betrag dieses Ausdrucks bildet, so fällt auf, dass hier das Ergebnis, unabhängig von x, 1 ist. Dies bedeutet, dass e^{ix} als ein gegen den Uhrzeigersinn rotierender Vektor, für steigende Werte für x, gesehen werden kann. Im vorher genannten Koordinatensystem, welches man auch die Gaußsche Zahlenebene nennt, sieht das so aus:

3.3 Skalarprodukt von Funktionen und Orthonormalsysteme

Des Weiteren spielen Orthonormalsysteme eine große Rolle, wenn man sich mit der Fourier Analyse beschäftigt. Allgemein lässt sich sagen, dass ein Orthonormalsystem eine Menge von Vektoren oder Funktionen, aus einem Vektorraum mit Skalarprodukt, sind, welche sowohl orthogonal zueinander, aber auch normiert zu sich selbst sind. Orthogonal sind sie, wenn das Skalarprodukt zweier unterschiedlicher Vektoren 0 ergibt und normiert, wenn das Skalarprodukt eines Vektors mit sich selbst 1 ergibt. Für alle Vektoren v_n im \mathbb{R}^n muss also folgendes gelten, damit die Menge der Vektoren ein Orthonormalsystem bildet:

1. Orthogonalität:
$$\langle v_i, v_j \rangle = 0 \quad \forall i \neq j$$

2. Normiertheit:
$$\langle v_i, v_j \rangle = \sum_{i=1}^n v_i^2 = ||v_i||^2 = 1 \quad \text{mit } i = j$$

$$\left(\text{Skalarprodukt: } \langle v, w \rangle := \sum_{i=1}^n v_i * w_i \right)$$

Hier sieht man auch, dass das Skalarprodukt eines Vektors mit sich selbst, das gleiche ist wie die quadrierte euklidische Norm des Vektors, wodurch der Begriff der Normiertheit anschaulicher wird. Wie schon erwähnt lassen sich diese Eigenschaften auch auf Funktionen anwenden. Hierfür definiert man die Normiertheit und die Orthogonalität auch, exakt gleich wie bei Vektoren, über das Skalarprodukt. Das Skalarprodukt für zwei Funktionen ist wie folgt definiert:

$$\langle v, w \rangle := \int_a^b v(x) * w(x) dx \quad \text{für } v, w : [a, b] \to \mathbb{R}$$

Falls eine Menge von Funktionen Orthogonalität und Normiertheit erfüllt, ist diese Menge auch ein Orthogonalsystem. Anschaulich kann man sich die Funktionen v(x) und w(x) noch als zwei Vektoren mit unendlich vielen Dimensionen vorstellen, wobei der x Wert angibt in welcher Dimension man sich befindet. Da das Skalarprodukt die jeweiligen Dimensionen von Vektoren multipliziert und diese schließlich aufsummiert, macht es Sinn, dass man bei Funktionen ähnlich vorgeht. So lässt sich also die Erweiterung der Summe zum Integral erklären. Die Formel für die Norm von Funktionen $\left(\|f\| = \sqrt{\int_a^b |f(x)|^2 dx}\right)$ ergibt sich, wenn man das für Funktionen definierte Skalarprodukt ähnlich wie bei Vektoren auf die Funktion selbst anwendet. Im komplexen Fall wird das Skalarprodukt leicht angepasst, indem der zweite Faktor komplex konjugiert wird:

$$\langle v,w\rangle := \int_a^b v(x)*\overline{w(x)}dx \quad \text{für } v,w:[a,b]\to \mathbb{C}$$

3.4 Fourier-Reihe

Der erste große Schritt, um die Fourier Transformation herzuleiten, ist die Fourier Reihe. Eine Reihe selbst ist in der Mathematik ist ein Begriff für eine unendliche Summe von Termen. Die Fourier Reihe ist hierbei eine besondere Reihe. Ihr Sinn ist es periodische Funktionen mithilfe von Sinus- und Kosinustermen zu approximieren. Joseph Fourier hat in seinem Werk "Théorie analytique de la chaleur" schließlich auch beweisen, dass jede periodische Funktion auf diese Weise dargestellt werden kann. Die Approximation selbst geschieht durch trigonometrische Polynome, mit welchen man später die Fourierreihe einer Funktion bildet. Ein trigonometrisches Polynom ist hier eine

Funktion der Form:

$$p(x) = a_0 + \sum_{k=1}^{n} a_k \cos(kx) + b_k \sin(kx) \quad a_k, b_k \in \mathbb{R}$$

Ziel ist es nun die Faktoren a_k und b_k in Abhängigkeit zur anzunähernden Funktion zu bestimmen. Denn durch die Zählervariable k, welche die Periodenlänge der Sinus- und Kosinusterme bestimmt, kann man durch die Faktoren a_k und b_k festlegen wie dominant die Anteile der Sinus und Kosinusterme, mit der jeweiligen Periodenlänge, in der zu approximierende Funktion sind. Um die Berechnung der Faktoren kompakter zu gestalten, kann man mit dem Zusammenhang $2\cos x = e^{ix} - e^{-ix}$ und $2i\sin x = e^{ix} + e^{-ix}$, einer Umstellung der Eulerformel, nun das trigonometrische Polynom zu dem komplexen trigonometrischen Polynom zusammenfassen:

$$p(x) = \sum_{k=-n}^{n} c_k e^{ikx}$$
 für geeignete $c_k \in \mathbb{C}$

Um jetzt den komplexen Faktor c_k , zunächst für 2π periodische Funktionen, zu berechnen, verwendet man ein Orthonormalsystem, welches aus den Funktionen $\varphi_n(x)$ besteht:

$$\phi_n(x): [-\pi, \pi] \to \mathbb{C}, \quad \phi_n(x) = \frac{1}{\sqrt{2\pi}} e^{inx} \quad \text{mit } n \in \mathbb{Z}$$

Dass die Menge an Funktionen φ_n ein Orthonormalsystem ist, habe ich im Anhang gezeigt (Beweis A. 1). Um endlich c_k zu berechnen, setzt man zunächst die zu approximierende Funktion f, mit der Periodizität 2π , mit dem trigonometrischen Polynom gleich und schränkt sie zudem ein:

$$f: [-\pi, \pi] \to \mathbb{C}, \quad f(x) = \sqrt{2\pi} * \sum_{k=-n}^{n} c_k \phi_k(x)$$

Anschließend bildet man das Skalarprodukt von f und φ_m , was möglich ist, da f auf der Definitionsbereich von f und φ_m gleich ist.

$$\langle f, \phi_m \rangle = \int_{-\pi}^{\pi} f(x) \overline{\phi_m(x)} dx = \int_{-\pi}^{\pi} \sqrt{2\pi} \sum_{k=-n}^{n} c_k \phi_k(x) \overline{\phi_m(x)} dx$$

Da Integral und Summe beide linear sind, darf man die Summe mit dem Integral vertauschen. Zudem hängt c_k nicht von x ab, wodurch der Faktor c_k für das Integral eine Konstante ist. Nach einer Abwandlung des Distributivgesetzes darf er somit herausgezogen werden. Man erhält also diesen Ausdruck:

$$\int_{-\pi}^{\pi} f(x)\overline{\phi_m(x)}dx = \sqrt{2\pi} \sum_{k=-n}^{n} c_k \int_{-\pi}^{\pi} \phi_k(x)\overline{\phi_m(x)}dx$$

Aufgrund dessen, dass die Menge der Funktionen φ_m ein Orthonormalsystem ist, ist jeder Summand, außer k=m, 0. Durch die Normiertheit des Orthonormalsystems bleibt übrig:

$$c_m = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x) \overline{\phi_m(x)} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{imx} dx$$

- 4 Fourier-Reihe
- 4.1 Herleitung der Reihe
- 4.2 Berechnung der Koeffizienten
- 4.3 Eigenschaften und Konvergenz
- 5 Von der Reihe zur Fourier-Transformation
- 5.1 Übergang zum Integral
- 5.2 Fourier-Transformation und inverse Transformation
- 5.3 Eigenschaften

Linearität, Verschiebung, Faltung.

- 6 Diskrete Fourier-Transformation (DFT)
- 6.1 Definition und Motivation
- 6.2 Herleitung aus der Fourier-Transformation

Eigene Herleitung

- 6.3 Beweise für die Korrektheit
- 6.4 FFT als effiziente Berechnung
- 7 Eigene Beiträge
- 7.1 Eigene Herleitung der DFT
- 7.2 Beweise
- 7.3 Eigener FFT-Algorithmus in Python
- 7.4 Audio-Programm zur Echtzeit-Visualisierung

Abbildung 1: Vergleich der FFT-Methoden anhand der Benchmarks.

Abbildung 2: Vergleich der FFT-Methoden für die zweite Messreihe.

Abbildung 3: Vergleich der FFT-Methoden für die zweite Messreihe.

7.5 Bildverarbeitung: Moiré-Muster entfernen mit 2D-FFT

8 Anwendungen

8.1 Audio

Echtzeitaufnahme und Visualisierung, Tonhöhenerkennung oder Noise Cancelling, Ergebnisse.

8.2 Bild

Röntgenbild und Moiré-Filterung, Ergebnisse.

9 Diskussion

- 9.1 Bewertung der Ergebnisse
- 9.2 Stärken und Grenzen
- 9.3 Bedeutung im größeren Kontext
- 10 Fazit und Ausblick
- 10.1 Zusammenfassung der Ergebnisse
- 10.2 Ausblick: Erweiterungen und Anwendungen