### 7. Relational operations with dplyr

Data Science for OR - J. Duggan

### Relational Data with dplyr

- Typically, data analysis involves many tables of data that must be combined to answer questions
- Collectively, multiple tables of data are called relational data
- Relations are always defined between a pair of tables
- See tibbles x and y

```
## # A tibble: 3 x 2
##
       key val_x
##
     <dbl> <chr>
         1 \times 1
## 1
## 2 2 x2
## 3 3 x3
## # A tibble: 3 \times 2
##
       key val y
##
     <dbl> <chr>
## 1
         1 y1
```

# **Keys**

- The variables used to connect each pair of tables are called keys
- A key is a variable (or set of variables) that uniquely identifies an observation
- There are two types of keys:
  - A primary key uniquely identifies an observation in its own table
  - A foreign key uniquely identifies an observation in another table.



# **Mutating Joins**

- Allows you to combine variables from two tables
- First matches observations by their keys, and then copies across variables from one table to another
- Similar to mutate(), the join functions add variables to the right
- Types
  - Inner Join
  - Left Join
  - Right Join
  - Full Join

#### **Inner Joins**

inner\_join(x,y)

- Matches pairs of observations when their keys are equal
- Unmatched rows are not included in the result

```
## Joining, by = "key"
## # A tibble: 2 x 3
## key val_x val_y
## <dbl> <chr> <chr>
```

## 1 1 x1 y1 ## 2 2 x2 y2

| X   |   |         | У   |   |       |    |
|-----|---|---------|-----|---|-------|----|
| key | ÷ | val_x ‡ | key | ÷ | val_y | \$ |
|     | 1 | x1      |     | 1 | y1    |    |
|     | 2 | x2      |     | 2 | y2    |    |
|     | 3 | x3      |     | 4 | y3    |    |

### **Left Join**

## 3

left\_join(x,y)

A left join keeps all observations in x

```
## Joining, by = "key"
## # A tibble: 3 x 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
## 2 2 x2 y2
```

3 x3 <NA>

| X                | У       |  |     |    |                    |
|------------------|---------|--|-----|----|--------------------|
| key <sup>‡</sup> | val_x ‡ |  | key | \$ | val_y <sup>‡</sup> |
| 1                | x1      |  |     | 1  | yl                 |
| 2                | x2      |  |     | 2  | y2                 |
| 3                | x3      |  |     | 4  | у3                 |

### Right Join

right\_join(x,y)

A right join keeps all observations in y

```
## Joining, by = "key"
## # A tibble: 3 x 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
```

## 2 2 x2 y2 ## 3 4 <NA> y3

| X   |   |         | у |     |    |       |          |
|-----|---|---------|---|-----|----|-------|----------|
| key | ÷ | val_x ‡ |   | key | \$ | val_y | <u>.</u> |
|     | 1 | x1      |   |     | 1  | y1    |          |
|     | 2 | x2      |   |     | 2  | y2    |          |
|     | 3 | x3      |   |     | 4  | у3    |          |

### **Full Join**

full\_join(x,y)

A full join keeps all observations in  $\boldsymbol{x}$  and  $\boldsymbol{y}$ 

```
## Joining, by = "key"
## # A tibble: 4 x 3
##
      key val_x val_y
    <dbl> <chr> <chr>
##
## 1
        1 x1
            y1
    2 x2 y2
## 2
    3 x3 <NA>
## 3
    4 <NA>
## 4
               у3
```



# **Filtering Joins**

Match observations in the same way as mutating joins, but affect the observations, not the variables. Two types:

- semi\_join(x,y) keeps all observations in x that have a match in y
- anti\_join(x,y), drops all observations in x that have a match in y.

#### **Semi Joins**

semi\_join(x,y)

Keeps all observations in  $\boldsymbol{x}$  that have a match in  $\boldsymbol{y}$ 

```
## Joining, by = "key"
## # A tibble: 2 x 2
## key val_x
## <dbl> <chr>
## 1 1 x1
## 2 2 x2
```

| key | ÷ | val_x |
|-----|---|-------|
|     | 1 | x1    |
|     | 2 | x2    |
|     | 3 | x3    |

х

|     | •        | <b>'</b>           |
|-----|----------|--------------------|
| key | <b>‡</b> | val_y <sup>‡</sup> |
|     | 1        | y1                 |
|     | 2        | y2                 |
|     | 4        | у3                 |

### **Anti Joins**

Drops all observations in x that have a match in y.

```
anti_join(x,y)

## Joining, by = "key"

## # A tibble: 1 x 2

## key val_x

## <dbl> <chr>
## 1 3 x3
```

| x   |    |         | у   |   |                    |  |
|-----|----|---------|-----|---|--------------------|--|
| key | \$ | val_x ‡ | key | ÷ | val_y <sup>‡</sup> |  |
|     | 1  | x1      |     | 1 | y1                 |  |
|     | 2  | x2      |     | 2 | y2                 |  |
|     | 3  | x3      |     | 4 | у3                 |  |

Figure 5: Tables x and y

# Challenge 3.1

- Filter out incomplete flights from the dataset
- Join the flights data to the weather data
- Filter out missing temperature values
- Plot the relationship between temperatures and departure delays, facet by origin
- Use a sample of 10000 for the plot, with seed 99.

# **Summary**

- dplyr support relational data operations
- Mutating Joins
  - inner\_join()
  - left\_join()
  - right\_join
  - full\_join()
- Filtering Joins
  - semi\_join()
  - anti\_join()
- Important for exploratory data analysis and modelling