TD N°4: Intégration numérique

Ahmed Ammar (ahmed.ammar@fst.utm.tn)

Institut Préparatoire aux Études Scientifiques et Techniques, Université de Carthage.

Jan 13, 2020

Contents

Exercise 1: Valeur approchée de π

Étant donnée l'égalité:

$$\pi = 4\left(\int_0^\infty e^{-x^2} dx\right)^2 = 4\left(\int_0^{10} e^{-x^2} dx + \epsilon\right)^2 \tag{1}$$

avec $0<2<10^{-44}$, utiliser la méthode des trapèzes composite à 10 intervalles pour estimer la valeur de π .

Solution. La méthode des trapèzes composite à n intervalles pour calculer l'intégrale d'une fonction f sur l'intervalle [a,b] s'écrit

$$\int_{a}^{b} f(x) dx \approx h \left[\frac{1}{2} f(x_0) + \sum_{i=1}^{n-1} f(x_i) + \frac{1}{2} f(x_n) \right]$$

avec $h=\frac{b-a}{n}$ et $x_i=a+ih,\quad i=0,1,\ldots,n$ Ici on a $f(x)=e^{-x}$, $a=0,\,b=10,\,n=10$ d'où h=1 et on obtient

$$I \approx \frac{1}{2} + \sum_{i=1}^{9} e^{-i} + \frac{1}{2e^{100}}$$