

ITA OBJETIVO 1

2023

QUÍMICA

Dados

- Constante de Avogadro, $N_{\rm A} = 6.02 \times 10^{23} \, {\rm mol}^{-1}$
- Carga elementar, $e = 1.6 \times 10^{-19} \,\mathrm{C}$
- Constante de Planck, $h = 6.6 \times 10^{-34} \,\mathrm{m}^2 \,\mathrm{kg} \,\mathrm{s}^{-1}$
- Constante de atoionização da água, $K_{\rm w}=1\times10^{-14}$ Velocidade da luz no vácuo, $c=3\times10^8\,{\rm m\,s^{-1}}$
- Constante de Faraday, $F = 96500 \,\mathrm{C} \,\mathrm{mol}^{-1}$
 - Constante dos gases, $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
 - Constante de Rydberg, $\mathcal{R}_{\infty} = 1.1 \times 10^7 \, \mathrm{m}^{-1}$

Definições

- Composição do ar atmosférico: 79% N_2 e 21% O_2

Aproximações Numéricas

- $\sqrt{2} = 1.4$

- $\sqrt{3} = 1.7$ $\sqrt{5} = 2.2$ $\log 2 = 0.3$ $\log 3 = 0.5$ $\ln 10 = 2.3$

Tabela Periódica

Elemento Químico	Número Atômico	$\begin{array}{c} {\rm Massa~Molar} \\ {\rm (gmol^{-1})} \end{array}$	Elemento Químico	Número Atômico	$\begin{array}{c} {\rm Massa~Molar} \\ {\rm (gmol^{-1})} \end{array}$
Н	1	1,01	\mathbf{S}	16	32,06
\mathbf{C}	6	12,01	Cl	17	$35,\!45$
N	7	14,01	Mo	42	$95,\!95$
O	8	16,00	Ru	44	101,07
Na	11	22,99	Pd	46	$106,\!42$
${ m Mg}$	12	24,31			

Questão 49. A série de Balmer é formada pelo conjunto de linhas no espectro dos átomos de hidrogênio com $n_1 = 2$. As linhas dessa série são observadas em 656 nm, 486 nm, 434 nm e 410 nm.

Assinale a alternativa que mais se aproxima do próximo comprimento de onda na série.

- \mathbf{A} () 317 nm
- **B**() 337 nm
- **C**() 357 nm
- \mathbf{D} () 377 nm
- **E**() 397 nm

Questão 50. O etanol é um componente renovável e de queima limpa que pode ser adicionado à gasolina. A combustão do etanol líquido libera 684 kJ por mol de etanol em pressão constante e 25 °C.

Assinale a alternativa que mais se aproxima da energia interna de combustão do etanol líquido em e 25 °C.

- $A() -684 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\mathbf{B}(\) -681 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $C() -639 \text{ kJ mol}^{-1}$

- $D() +681 \text{ kJ mol}^{-1}$
- $\mathbf{E}(\) +684 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

Questão 51. A cafeína, um estimulante do café e do chá, tem massa molar entre $100\,\mathrm{g\,mol}^{-1}$ e $200\,\mathrm{g\,mol}^{-1}$. A composição percentual em massa desse composto é igual a 49,48% de carbono, 5,19% de hidrogênio, 28,85% de nitrogênio e o restante de oxigênio.

Assinale a alternativa com a fórmula molecular da cafeína.

 \mathbf{A} () $C_4H_5N_2O$

 ${\bf B}(\) \ {\bf C}_5{\bf H}_7{\bf N}_2{\bf O}$ ${\bf C}(\) \ {\bf C}_8{\bf H}_{12}{\bf N}_3{\bf O}_2$ ${\bf D}(\) \ {\bf C}_8{\bf H}_{10}{\bf N}_4{\bf O}_2$ ${\bf E}(\) \ {\bf C}_{10}{\bf H}_{10}{\bf N}_3{\bf O}_2$

Questão 52. Assinale a alternativa com o número de isômeros constitucionais com fórmula molecular C_5H_{10} .

A() 8

B() 9

C() 10

D() 11

E() 12

Questão 53. Um nuclídeo tem átomos com 44 nêutrons, 42 prótons e 42 elétrons.

Assinale a alternativa com a representação correta do nuclídeo.

A() Molibdênio-44

B() Molibdênio-86

C() Rutênio-44

D() Rutênio-86

E() Paládio-86

Questão 54. O metal bário é produzido pela reação do metal alumínio com óxido de bário:

$$3 \operatorname{BaO}(s) + 2 \operatorname{Al}(s) \xrightarrow{\Delta} \operatorname{Al}_2 O_3(s) + 3 \operatorname{Ba}(s)$$

Considere as reações:

$$2\,\mathrm{Ba(s)} + \mathrm{O}_2(\mathrm{g}) \longrightarrow 2\,\mathrm{BaO(s)} \quad \Delta H_\mathrm{r}^\circ = -1107\,\mathrm{kJ}\,\mathrm{mol}^{-1}$$

$$2 \operatorname{Al}(s) + \frac{3}{2} \operatorname{O}_2(g) \longrightarrow \operatorname{Al}_2 \operatorname{O}_3(s) \quad \Delta H_r^{\circ} = -1676 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

Assinale a alternativa que mais se aproxima da entalpia de reação de produção de bário metálico com alumínio.

A() -24 kJ mol^{-1}

 $\mathbf{B}(\) -16 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

 $C() -12 \text{ kJ mol}^{-1}$

 $D() +16 \text{ kJ mol}^{-1}$

 $\mathbf{E}(\) +24 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

Questão 55. O "ar" na roupa espacial dos astronautas é, na verdade, oxigênio puro na pressão de 0.3 bar. Cada um dos dois tanques da roupa espacial tem o volume de $3980\,\mathrm{cm}^3$ e pressão inicial de $5860\,\mathrm{kPa}$. A temperatura do tanque é mantida em 16°C.

Assinale a alternativa que mais se aproxima da massa de oxigênio contida nos tanques.

A() 155 g

 $\mathbf{B}(\)\ 310\,\mathrm{g}$ $\mathbf{C}(\)\ 465\,\mathrm{g}$

D() 620 g

E() 775 g

Questão 56. A testosterona é o principal hormônio sexual masculino e um esteroide anabolizante.

Testosterona

Assinale a alternativa com o número de átomos de hidrogênio na testosterona.

A() 22

B() 24

C() 26

D() 28

E() 30

Questão 57. A cada segundo, uma lâmpada emite 2.4×10^{21} fótons com comprimento de onda igual a 633 nm.

Assinale a alternativa que mais se aproxima da potência produzida pela lâmpada como radiação nesse comprimento de onda.

A() 250 W

B() 500 W

C() 750 W

D() 1000 W

E() 1250 W

Questão 58. Considere os dados em 25 °C.

	$C_3H_8(g)$	$\mathrm{H}_{2}\mathrm{O}\left(\mathrm{l}\right)$	$CO_2(g)$
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	$-104\mathrm{kJ}\mathrm{mol}^{-1}$	$-286\mathrm{kJ}\mathrm{mol}^{-1}$	$-394\mathrm{kJ}\mathrm{mol}^{-1}$

Assinale a alternativa que mais se aproxima do volume de propano que deve ser queimado a 0 °C e 1 atm para fornecer $350 \, \text{kJ}$ de calor.

A() 3,1 L

B() 3,5 L

C() 4,1 L

D() 4,5 L

E() 5,1 L

Questão 59. A densidade do gás de um composto de boro e hidrogênio é $0,685\,\mathrm{g\,L^{-1}}$ em $200\,^{\circ}\mathrm{C}$, quando sua pressão é $730\,\mathrm{Torr.}$ O composto é formado por 78,1% de boro e 21,9% de hidrogênio em massa.

Assinale a alternativa com a fórmula molecular do composto.

 $\mathbf{A}(\)\ \mathrm{BH}_3$

 $\mathbf{B}(\)$ BH₄

 $\mathbf{C}()$ B_2H_6

 \mathbf{D} () B_2H_8

 $\mathbf{E}(\)\ \mathrm{B}_{2}\mathrm{H}_{10}$

Questão 60. Considere os compostos:

- 1. CH₃CH₂CH₂OH
- 2. CH₃CH₂CH₂CH₂COOH
- 3. CH₂CHCH₃
- 4. CH_3C_2Br

Assinale a alternativa com a classificação dos compostos, respectivamente.

- A() Álcool; ácido carboxílico; alceno; haleto orgânico.
- **B**() Aldeído; ácido carboxílico; alcino; haleto orgânico.
- C() Cetona; aldeído; alcino; haleto de arila.
- **D**() Álcool; ácido carboxílico; alceno; haleto orgânico.
- E() Álcool; aldeído; alcano; peróxido orgânico.