

Soutenance du P4: le 15/04/2022

Version notebook : 6.3.0
Version Python : 3.8.8
Version Pandas : 1.2.4
Version Seaborn : 0.11.1
Version Matplotlib: 3.3.4

Plan

- Contexte et présentation des Data-Set
- Traitement et nettoyage du Data-Set
- Analyse exploratoire
- Modélisation
- Différents modèles
- * Résultats SiteEnrgyUse et CO2
- Modèles retenu et l'impact EnergyStarScore
- Conclusion

Contexte et présentation des Data-Set

Contexte:

- Des données prélevées de la consommation d'énergie des bâtiments de la ville de Seattle pour les années 2015 et 2016
- Cout important de prélèvement des données de consommations ainsi que fastidieuse à collecter

Mission:

- Prédire la consommation totale d'énergie ainsi que les émissions de CO2 de bâtiments pour lesquels elles n'ont pas encore été mesurées.
- Evaluer l'intérêt de l'ENERGY STAR Score" pour la prédiction d'émissions
- Mettre en place un modèle prédictif Robuste

Contexte et présentation des Data-Set

Présentation du jeu données:

Data_2015:

- il contient plus de 3340 prélèvements
- Taille: 3376 lignes, 46 colonnes, nombre de cases: 155296.
- Nombre de valeurs nulles: 26512
- Nombre de valeurs non nulles: 130468
- Le pourcentage des valeurs nulles: 16.9 %
- Le pourcentage des valeurs non nulles: 83.1 % Data 2016 :
- il contient plus de 3376 prélèvements
- Taille: 3376 lignes, 46 colonnes, nombre de

cases: 155296

- Nombre de valeurs nulles: 19952
- Nombre de valeurs non nulles: 135344
- Le pourcentage des valeurs nulles: 12.8 %
- Le pourcentage des valeurs non nulles: 87.2 %

Comparaison et merge de data_2015 et data_2016:

f)', 'SiteEUIWN(kBtu/sf)', 'SourceEUI(kBtu/sf)', 'SourceEUIWN(kBtu/sf)', 'SiteEnergyUse(kBtu)', 'SiteEnergyUsekN(kBtu)', 'St

eamUse(kBtu)', 'Electricity(kWh)', 'Electricity(kWh)', 'NaturalGas(therms)', 'NaturalGas(kBtu)', 'DefaultData', 'Comments',

'ComplianceStatus', 'Outlier', 'TotalGHGEmissions', 'GHGEmissionsIntensity']

Les deux Data-Set 2015, 2016 sont maintenant concaténé et mergé Ils sont groupés par OSEBuildingID Et une agrégation par la moyenne pour l'ensemble des colonnes numérique.

B.1. Présentation des valeurs NaN de toutes les colonnes:

Échantillon des colonnes presque entièrement nuls

	Variable_name	Missing_values	Missing_rate
36	Comments	3431	0.999709
38	Outlier	3397	0.989802
34	YearsENERGY	3312	0.965035
33	ThirdLarges	2830	0.824592
10	ThirdLarges	2825	0.823135
32	SecondLarge	1734	0.505245
9	SecondLarge	1728	0.503497

La distribution des valeurs NaN autour de la moyenne

B.1. Présentation des valeurs non nulles de toutes les colonnes:

	Variable_name	completation_values	completation_rate
0	DataYear	3432	100.000000
41	Address	3432	100.000000
1	CouncilDist	3432	100.000000
27	PropertyName	3432	100.000000
29	Neighborhood	3432	100.000000
35	DefaultData	3432	100.000000
37	ComplianceS	3432	100.000000
39	Latitude	3432	100.000000
25	BuildingType	3432	100.000000
40	Longitude	3432	100.000000
26	PrimaryProp	3432	100.000000
42	City	3432	100.000000
43	State	3432	100.000000
7	PropertyGFA	3432	100.000000
6	PropertyGFA	3432	100.000000
5	PropertyGFA	3432	100.000000
4	NumberofFloors	3432	100.000000
3	NumberofBui	3432	100.000000
2	YearBuilt	3432	100.000000
28	TaxParcelld	3431	99.970862

Filtration des colonnes au dessus de 80% de NaN:

Le Via la fonction « flt_nan » on fixe le seuil à 80% pour supprimer les colonnes supérieur ou égale à 80% de NaN

```
data_uni = flt_nan(data_uni, 80) # Suppréssion des colonnes qui contiennent plus de 80% de NaN data_uni.shape

(3432, 40)

Le Data-Set est passé de 45 colonnes à 40.
```

En therme de pourcentage, le Data-Set maintenant est à 96.8% de valeurs non nulles

19 Colonnes sans

NaN

Filtration des colonnes NaN:

Sur le « Barplot » à droit, les trois variables qui restent ont un pourcentage plus de 80% de NaN, qui représentaient presque 20% de NaN dans le Data-Set non filtré

> La distribution des valeurs NaN autour de la moyenne

Traitement des doublons et valeurs aberrantes:

Pour traiter les valeurs aberrantes il existe plusieurs méthodes comme z-score, Interquartiles, percentile.., dans un premier temps on va traiter les valeurs négatives, les doublons :

for col in ['SourceEUIWN(kBtu/sf)', 'PropertyGFABuilding(s)', 'PropertyGFAParking', 'NumberofBuildings'] :
 data_uni = data_uni[data_uni[col] >= 0]

Vérification des valeurs nulles dans:

'NumberofBuildings' et 'NumberofFloors'

```
1 (data_flt["NumberofBuildings"] ==0).value_counts()
False
Name: NumberofBuildings, dtype: int64
 1 (data_flt["NumberofFloors"] ==0).value_counts()
False
True
Name: NumberofFloors, dtype: int64
 1 (data_flt['PropertyGFATotal'] == 0).value_counts()
Name: PropertyGFATotal, dtype: int64
1 for col in ['NumberofBuildings', "NumberofFloors"]:
        data_flt[col] = data_flt[col].apply(lambda x : 1 if x == 0 else x)
          1 (data flt["NumberofBuildings"] ==0).value counts()
        Name: NumberofBuildings, dtype: int64
           1 (data_flt["NumberofFloors"] ==0).value_counts()
        Name: NumberofFloors, dtype: int64
```


<u>Traitement des valeurs aberrantes</u>: la méthode « Percentile »

Le Boxplot en dessous représente les deux targets les émissions CO2 et la consommation d'énergie totale avant et après l'application de la méthode Percentile, ou on a enlevé les 5% près de 100%, puis supprimer les valeurs nulles de notre Data-Set


```
for col in data_uni[outliers].columns:
    data_uni.loc[data_uni[col] > data_uni[col].quantile(0.95)] = np.nan
data_uni = data_uni.dropna()
```


(kBtu)'

Sélection des variables pour la modélisation:

Après le premier filtrage, maintenant on doit garder que les variables qui nous intéressent pour notre prédiction, en dessous la liste des variables potentielles

Des variables 'Object' qui concernent le type de bâtiments, le nom du produit, type de propriété principal, et le quartier ou se trouve le bâtiment

Des variables numériques comme l'âge de bâtiments que j'ai calculé en fonction de la variable YearOfBuilt, Latitude, Longitude, le nombre d'étage et le numéro du bâtiment La surface GFA totale après la vérification de la somme de la surface de parking et habitable

ENERGYSTARSScore

Les deux targets: SiteEnergyUse(kBtu) TotalGHGEmissions

	· · · · · · · · · · · · · · · · · · ·
3.0	1e7 Comparaison de l'énergie totale avec la somme
3.0	
2.5	
2.0	
1.5	
1.0	
0.5	
0.0	
	sum_energy total_energy

#	Column	7 'SourceEUl 8 'Electrici	lstrictCo GFAParkin GFABuild: (Btu/sf) [(kBtu/s lty(kBtu/s	ode', ng',	N(kBtu/sf)','S kBtu)','Addres	s', `
0	DataYear			non-null	float64	
1	BuildingTy	ne		non-null	object	
2	PrimaryPro	•		non-null	object	
3	Address	F 7 - 7 F -		non-null	object	
4	ZipCode		2409	non-null	float64	
5	TaxParcelI	dentificationNumber	2409	non-null	object	
6	CouncilDis	trictCode	2409	non-null	float64	
7	AgeOfBuild	ing	2409	non-null	float64	
8	Neighborho	od	2409	non-null	object	
9	Latitude		2409	non-null	float64	
10	Longitude		2409	non-null	float64	
11	YearBuilt			non-null	float64	
12	NumberofBu			non-null	float64	Legal I
13	NumberofFl			non-null	float64	
14	PropertyGF			non-null	float64	
15	PropertyGF			non-null	float64	
16		ABuilding(s)		non-null	float64	
17	ENERGYSTAR			non-null	float64	
18	SiteEUI(kB			non-null	float64	
19	SiteEUIWN(non-null	float64	
20	SourceEUI(non-null	float64	
21		N(kBtu/sf)		non-null	float64	
22	SiteEnergy	· · · · · · · · · · · · · · · · · · ·		non-null	float64	
23	SteamUse(k			non-null	float64	
24	Electricit			non-null	float64 float64	
25 26	NaturalGas			non-null		
27	Compliance TotalGHGEm			non-null	object float64	
27	TOCATORGE	12210112	2409	HOH-HUII	1104104	

Analyse univariée: Distribution des données quantitatives par rapport à la moyenne

Distribution de : NumberofFloors

Analyse univariée: distribution quantitatives et qualitatives

Analyse bivariée: la distribution de SiteEnergyUse par PrimaryPropertyType:

Analyse bivariée: la distribution de SiteEnergyUse par Neighborhood:

Analyse bivariée: la distribution de SiteEnergyUse par BuildingType:

C.2. Analyse bivariée:

On constate la présence de corrélations entre les variables suivantes:

- SiteEnergyUse et TotalGHGEmissions = 0.78 Une forte corrélation entre les deux plus la consommation augmentent plus les émissions augmentent
- TotalGHGEmissions et PropertyGFATotal=
 0.51
- SiteEnergyUse et PropertyGFATotal = 0.74 Il y a aussi une forte corrélation entre l'énergie cons et la suface totale GFA
- Concernant ENERGYSTARSScore on constate une faible corrélation avec le reste des variables

Modélisation

Démarche de modélisation:

Enregistrem résultats prédiction et comparaison Sans et avec **ENERGYSTA**

Différents modèles

Test et paramétrage de modèles: Ex de Ridge

```
Ridge

Lasso

RandomForestRegressor

XGBRegressor

XGBRegressor

LinearRegression
```

```
[[{'estimator_alpha': 0.2782559402207126, 'estimator_tol': 0.01}],
[{'estimator_alpha': 599.4842503189421, 'estimator_tol': 0.1}],
[{'estimator_leaf_size': 1,
    'estimator_n_neighbors': 15,
    'estimator_weights': 'distance'}],
[{'estimator_mestimators': 100}],
[{'estimator_learning_rate': 0.05,
    'estimator_max_depth': 6,
    'estimator_n_estimators': 100}],
[{'estimator_copy_X': True,
    'estimator_fit_intercept': False,
    'estimator_normalize': True}]]
```


Différents modèles

Test et paramétrage de modèles:

```
Fitting 5 folds for each of 40 candidates, totalling 200 fits
GridSearchCV(cv=5,
             estimator=Pipeline(steps=[('preprocessor',
                                        ColumnTransformer(remainder='passthrough',
                                                          transformers=[('Numeric',
                                                                         SimpleImputer(strategy='median'),
                                                                         <sklearn.compose._column_transformer.make_column_se</pre>
lector object at 0x00000208CA9316A0>),
                                                                         OneHotEncoder(handle unknown='ignore',
                                                                                       sparse=False),
                                                                          <sklearn.compose._column_transformer.make_column_se</pre>
lector object at 0x00000208CA1DBF40>)])),
                                       ('scaler', RobustScaler()),
                                       ('estimator', Ridge())]),
             param_grid={'estimator_alpha': array([1.00000000e-05, 1.29154967e-04, 1.66810054e-03, 2.15443469e-02,
       2.78255940e-01, 3.59381366e+00, 4.64158883e+01, 5.99484250e+02,
       7.74263683e+03, 1.00000000e+05]),
                         'estimator__tol': [0.01, 0.03, 0.05, 0.07]},
             verbose=3)
  1 ri_grid.best_params_
{'estimator_alpha': 0.2782559402207126, 'estimator_tol': 0.01}
  1 ri_grid.best_score_
0.7166313257224435
  1 ri_grid.score(X_test, y_test)
0.6996285132903666
  1 ridge_mdl = ri_grid.best_estimator_
```

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_estimatoralpha	param_estimatortol	params
19	0.040199	7.360865e- 03	0.006930	0.007205	0.278256	0.07	{'estimator
18	0.046862	9.879328e- 03	0.009372	0.007653	0.278256	0.05	{'estimator
17	0.040615	7.651191e- 03	0.009371	0.007652	0.278256	0.03	{'estimator
16	0.043737	6.249785e- 03	0.009373	0.007653	0.278256	0.01	{'estimator
12	0.040614	7.652047e- 03	0.009370	0.007651	0.021544	0.01	{'estimator
13	0.037490	7.652086e- 03	0.009372	0.007652	0.021544	0.03	{'estimator
14	0.043738	6.247568e- 03	0.009372	0.007652	0.021544	0.05	{'estimator

split0	_test_score	split1_test_score	split2_test_score	split3_test_score	split4_test_score	mean_test_score	std_test_score	rank_test_score
	0.733557	0.682347	0.745201	0.697558	0.724494	0.716631	0.023254	1
	0.733557	0.682347	0.745201	0.697558	0.724494	0.716631	0.023254	1
	0.733557	0.682347	0.745201	0.697558	0.724494	0.716631	0.023254	1
	0.733557	0.682347	0.745201	0.697558	0.724494	0.716631	0.023254	1
	0.731734	0.681781	0.744910	0.698351	0.723747	0.716105	0.022916	5
	0.731734	0.681781	0.744910	0.698351	0.723747	0.716105	0.022916	5
	0.731734	0.681781	0.744910	0.698351	0.723747	0.716105	0.022916	5

Résultats SiteEnrgyUse et CO2

Résultats SiteEnrgyUse sans ENERGYSTARScore:

En dessous le résultat de prédiction de tous les modèles sans ENERGYSTARScore qui sont classés par « Prediction score » on voit bien que les deux modèles XGBRegressor et RandomForestRegressor ils ont un score bien meilleur que les autres modèles .

'w:	without_EnergyStars'								
	Algorithme	Training score	Prediction score	RMSE	MAE	Median abs err			
5	XGBRegressor	0.896470	0.755356	702211.343943	1.087316e+06	418234.421875			
4	RandomFores	0.964531	0.750773	711300.655217	1.097452e+06	400163.937267			
2	Lasso	0.731961	0.734279	753427.119761	1.133185e+06	455008.564522			
0	LinearRegre	0.733019	0.733448	754365.912827	1.134956e+06	455379.029121			
1	Ridge	0.732762	0.732078	757220.863397	1.137870e+06	456769.511903			
3	KNeighborsR	1.000000	0.626263	858585.778540	1.343913e+06	504850.820124			

Résultats SiteEnrgyUse avec ENERGYSTARScore:

En dessous le résultat de prédiction de tous les modèles avec ENERGYSTARScore qui sont classés par « Prediction score » on voit bien que les deux modèles XGBRegressor et RandomForestRegressor ils ont un score bien meilleur que les autres modèles .

'w:	'with_EnergyStars'								
	Algorithme	Training score	Prediction score	RMSE	MAE	Median abs err			
5	XGBRegressor	0.937198	0.862763	540042.863345	8.362501e+05	352245.187500			
4	RandomFores	0.969861	0.846467	576772.388718	8.845098e+05	350596.369959			
2	Lasso	0.777954	0.789451	673547.367237	1.035805e+06	440496.917909			
1	Ridge	0.779176	0.787560	679668.026583	1.040446e+06	437546.356484			
0	LinearRegre	0.779326	0.784533	681910.399676	1.047832e+06	437245.505404			
3	KNeighborsR	1.000000	0.701416	823732.004507	1.233486e+06	521209.732771			

Résultats SiteEnrgyUse et CO2

Résultats CO2 sans et avec ENERGYSTARScore:

	Algorithme	Training score	Prediction score	RMSE	MAE	Median abs err
5	XGBRegressor	0.812485	0.458436	26.767344	41.595171	17.011964
4	RandomFores	0.927989	0.407396	27.343807	43.511116	16.922925
1	Ridge	0.480183	0.355654	30.074681	45.370936	19.302765
0	LinearRegre	0.481086	0.353767	30.101168	45.437308	19.457187
3	KNeighborsR	1.000000	0.317080	28.853885	46.709258	16.747819
2	Lasso	0.000000	-0.000392	41.429722	56.533158	37.795077

	Algorithme	Training score	Prediction score	RMSE	MAE	Median abs err
4	RandomFores	0.930238	4.659640e-01	3.010626e+01	4.736281e+01	17.903475
5	XGBRegressor	0.840633	4.625731e-01	3.000327e+01	4.751294e+01	17.196985
1	Ridge	0.489647	4.283513e-01	3.293464e+01	4.900234e+01	21.266504
3	KNeighborsR	1.000000	4.086764e-01	3.093430e+01	4.983848e+01	17.717074
2	Lasso	0.000000	-2.539851e-03	4.580369e+01	6.489377e+01	37.660000
0	LinearRegre	0.490242	-2.329901e+23	1.424943e+12	3.128390e+13	21.541677

Test des modèles non paramétrés

```
1 score with EnergyStars co2 np
      Algorithme Training score Prediction score
                                                    RMSE
                                                                MAE Median abs err
4 RandomFores...
                      0.931292
                                       0.524492 27.786386 44.915362
                                                                          16.111250
   XGBRegressor
                      0.977748
                                       0.507142 28.452177 45.727448
                                                                          16.226764
           Ridae
                       0.494617
                                       0.431895 32.005185 49.094229
                                                                          19.889769
    LinearRegre...
                      0.500088
                                       0.424018 32.355153 49.433413
                                                                          20.165000
           Lasso
                       0.381024
                                       0.386526 33.456430 51.016923
                                                                          21.450541
   KNeighborsR...
                      0.589998
                                       0.360313 32.113351 52.095448
                                                                          18.802000
```


Modèles retenu et l'impact EnergyStarScore

Modèles retenu:

Le modèle retenu dans les deux cas avec et sans ENERGYSTARScore c'est XGBRegressor

	Algorithme	Training score	Prediction score	RMSE	MAE	Median abs err
6	XGBRegressor	0.937198	0.862763	540042.863345	8.362501e+05	352245.187500
7	RandomFores	0.969861	0.846467	576772.388718	8.845098e+05	350596.369959
8	Lasso	0.777954	0.789451	673547.367237	1.035805e+06	440496.917909
9	Ridge	0.779176	0.787560	679668.026583	1.040446e+06	437546.356484
10	LinearRegre	0.779326	0.784533	681910.399676	1.047832e+06	437245.505404
0	XGBRegressor	0.896470	0.755356	702211.343943	1.087316e+06	418234.421875
1	RandomFores	0.964531	0.750773	711300.655217	1.097452e+06	400 165.93 7267
2	Lasso	0.731961	0.734279	753427.119761	1.133185e+06	455008.564522
3	LinearRegre	0.733019	0.733448	754365.912827	1.134956e+06	455379.029121
4	Ridge	0.732762	0.732078	757220.863397	1.137870e+06	456769.511903
11	KNeighborsR	1.000000	0.701416	823732.004507	1.233486e+06	521209.732771
5	KNeighborsR	1.000000	0.626263	858585.778540	1.343913e+06	504850.820124

Impact EnergyStarScore:

L'Energy Star Score est un score qui reflète l'efficacité énergétique d'un bâtiment parmi les bâtiments similaires déjà certifiés.

Un score de 50 signifie qu'il est dans la médiane alors qu'un score au dessus de 75 indique qu'il s'agit d'un bâtiment à haute performance.

- L'influence sur la prédiction de la consommation d'énergie totale est remarquable comme c'est illustré sur le tableau à gauche
- Par contre l'impact sur la prédiction des émissions CO2 il est faible par rapport à la prédiction de l'énergie totale

Conclusion

- ☐ Prédiction de la consommation d'énergie totale et les émission CO2:
- La modélisation est faite avec 5 modèles avec des résultats acceptable
- Les deux meilleurs modèles XGBRegressor et RandomForestRegressor
- La variable ENERGYSTARScore a une faible corrélation avec les autres Features mais un impact remarquable sur la prédiction des modèles
- ☐ Axes d'amélioration:
- Pour améliorer la performance des modèles il faudrait optimiser les paramètres des différents algorithmes via la validation croisée