Augmented Reality & Video Service Emerging Technologies

SIFT SURF FAST BRIEF ORB BRISK

Prof. Jong-Moon Chung

AR Feature Detection
& Description Method
Comparison

AR Feature Detection & Description Method Comparison

SIFT	SURF	FAST	BRIEF	ORB	BRISK
1999	2006	2006	2010	2011	2011
Difference of Gaussian	Fast Hessian	Binary comparison	N/A	FAST	FAST or AGAST
Local gradient magnitude	Integral box filter	N/A	Local binary	Local binary	Local binary
Yes	Yes	N/A	No	Yes	Yes
Square	HAAR rectangles	N/A	Square	Square	Square
Square	Dense	N/A	Random point-pair pixel compares	Trained point-pair pixel compares	Trained point-pair pixel compares
	1999 Difference of Gaussian Local gradient magnitude Yes Square	1999 2006 Difference of Gaussian Local gradient magnitude Yes Yes Square HAAR rectangles	1999 2006 2006 Difference of Gaussian Local gradient magnitude Yes Yes N/A Square HAAR rectangles 2006 Binary comparison N/A N/A N/A	1999 2006 2006 2010 Difference of Gaussian Fast Hessian comparison N/A Local gradient magnitude Yes Yes N/A No Square HAAR rectangles N/A Square Square Dense N/A Random point-pair pixel	1999 2006 2006 2010 2011 Difference of Gaussian Fast Hessian Comparison N/A FAST Local gradient magnitude Filter N/A Local binary binary Yes Yes N/A No Yes Square HAAR rectangles N/A Square Square Square Dense N/A Random point-pair pixel

Yong-Suk Park, Ph.D. Dissertation, Yonsei University, 2018

AR Feature Detection & Description Method Comparison

	SIFT	SURF	FAST	BRIEF	ORB	BRISK
Distance Function	Euclidean	Euclidean	N/A	Hamming	Hamming	Hamming
Robustness	6 Brightness, rotation, contrast, affine transforms, scale, noise	4 Scale, rotation, illumination, noise	N/A	2 Brightness, contrast	3 Brightness, contrast, rotation, limited scale	4 Brightness, contrast, rotation, scale
Pros	Accurate	Accurate	Fast, real-time applicable	Fast, real-time applicable	Fast, real-time applicable	Fast, real-time applicable
Cons	Slow, compute- intensive, patented	Slow, patented	Large number of interest points	Scale and rotation invariant	Less scale invariant	Less scale invariant

Yong-Suk Park, Ph.D. Dissertation, Yonsei University, 2018

SIFT SURF FAST BRIEF ORB BRISK SIFT

SIFT

❖ SIFT: Scale Invariant Feature Transform

- One of the first feature detectors scheme proposed
- Uses image transformations in the feature detection matching process
- SIFT Characteristics
 - · Highly accurate
 - However, large computational complexity limits use in real-time applications

❖ SIFT Processing Steps

- DoG (Difference of Gaussian) Generation
 - Build a scale space using an approximation based on DoG techniques
 - Local extrema of the DoG images (at varying scales) are the selected interest points
 - DoG images are produced by image convolving or blurring with Gaussians at each octave of the scale space in the Gaussian Pyramid
 - Gaussian image (based on set number of octaves)
 is down-sampled after each iteration of an octave

SIFT Processing Steps

- Why use DoG (Difference of Gaussian)?
 - DoG is a LoG (Laplacian of Gaussian) approximation method
 - DoG has low computational complexity compared to LoG
 - DoG does not need partial derivative computations like LoG does
 - DoG obtains local extrema of images with difference of the Gaussians

SIFT

❖ IPD (Interest Point Detection) Classical methods

- LoG (Laplacian of Gaussian) is useful in IPD
 - LoG is scale invariant when applied at multiple image scales
 - Popular approach to improve performance
 - Gaussian scale-space pyramid & kernel techniques are frequently used

- Classical methods for IPD (Interest Point Detection)
 - Approximation of LoG (Laplacian of Gaussian)
 - Laplacian
 - Differential operator of a function on Euclidean space
 - Second order Gaussian scale space derivatives are very sensitive to noise and require significant computation

SIFT

SIFT Processing Steps

- Keypoint Detection
 - Keypoint localization process
 - Each pixel in the DoG image is compared to its neighboring pixels
 - Comparison is processed on the current scale and two scales above and below
 - Candidate keypoints are pixels that are local maximums or local minimums (i.e., extrema)
 - · Final set of keypoints exclude low contrast points

SIFT Processing Steps

- Orientation Assignment
 - Keypoint orientation determination process
 - Orientation of a keypoint is the local image gradient histogram in the neighborhood of the keypoint
 - Peaks in the histogram are selected as the dominant orientations

SIFT

SIFT Descriptor Generation

- Compute the feature descriptor for each keypoint
- Feature descriptor consists of 128 orientation histograms

SIFT SURF FAST BRIEF ORB BRISK References

References

- J.-M. Chung, Y.-S. Park, J.-H. Park, and H. Cho, "Adaptive Cloud Offloading of Augmented Reality Applications on Smart Devices for Minimum Energy Consumption," KSII Trans. Internet Inf. Syst., vol. 9, no. 8, pp. 3090-3102, Aug. 2015.
- T. Lindeberg, "A Survey of Recent Advances in Visual Feature Detection," Neurocomputing, vol. 149, pp. 736-751, 2015.
- Y. Li, S. Wang, Q. Tian, and X. Ding "Scale-Space Theory: A Basic Tool for Analysing Structures at Different Scales," *Journal of Applied Statistics*, vol. 21, no. 2, pp. 224-270, 1994.
- D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," Int. Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, Nov. 2004.
- H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, "Speeded-Up Robust Features (SURF)," Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346-359, June 2008.
- E. Rosten and T. Drummond, "Machine Learning for High-speed Corner Detection," in *Proc. of the 9th European Conf. on Computer Vision (ECCV '06)*, Graz, Austria, May 2006, pp. 430-443.
- M. Calonder, V. Lepetit, C. Strecha, and P. Fua, "BRIEF: Binary Robust Independent Elementary Features," in *Proc. European Conf. on Computer Vision (ECCV 2010)*, Heraklion, Greece, Sep. 2010, pp. 778-792.
- E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, "ORB: An Efficient Alternative to SIFT or SURF," in *Proc. 2011 IEEE Int. Conf. on Computer Vision (ICCV)*, Barcelona, Spain, Nov. 2011, pp. 2564-2571.
- S. Leutenegger, M. Chli, and R. Siegwart, "BRISK: Binary Robust Invariant Scalable Keypoints," in *Proc. 2011 IEEE Int. Conf. on Computer Vision (ICCV)*, Barcelona, Spain, Nov. 2011, pp. 2548-2555.
- E. Mair, G. Hager, D. Burschka, M. Suppa, and G. Hirzinger, "Adaptive and Generic Corner Detection Based on the Accelerated Segment Test," in *Proc. European Conference on Computer Vision (ECCV 2010)*, Heraklion, Greece, Sep. 2010, pp. 183-196.
- Yong-Suk Park, "Computation Resource Allocation Through Smart Device Ad-hoc Cloud Establishment in Mobile Environments." Ph.D. Dissertation, Yonsei University, 2018.