Respostas da Terceira Lista Quinzenal

Daniel Alves de Lima

Exercício 1.

Exercício 2. Primeiro, note que $\theta_{ab} = \theta_a \theta_b$, $\theta_e = id$ e $\theta_{a^{-1}} = \theta_a^{-1}$. Vejamos que $G \times_{\theta} H$ é grupo:

- (i) Associativa: $((x,a)(y,b))(z,c) = (x\theta_a(y),ab)(z,c) = (x\theta_a(y)\theta_{ab}(z),abc) = (x\theta_a(y)\theta_a(\theta_b(z)),abc) = (x\theta_a(y\theta_b(z)),abc) = (x,a)(y\theta_b(z),bc) = (x,a)((y,b)(z,c))$ para todo $(x,a),(y,b),(z,c) \in G \times_{\theta} H$.
- (ii) (e, e) é o elemento neutro: $\forall (x, a) \in G \times_{\theta} H$, $(e, e)(x, a) = (e\theta_{e}(x), a) = (ex, a) = (x, a)$ $(e, e) = (x\theta_{a}(e), a) = (xe, a) = (x, a)$.
- $\begin{array}{ll} (iii) \ \ To do \ elemento \ (x,a) \ possui \ (\theta_a^{-1}(x^{-1}),a^{-1}) \ como \ inverso, \ pois \ (x,a) (\theta_a^{-1}(x^{-1}),a^{-1}) = \\ (x\theta_e(x^{-1}),aa^{-1}) = (xx^{-1},e) = (e,e) \ e \ (\theta_a^{-1}(x^{-1}),a^{-1})(x,a) = (\theta_a^{-1}(x^{-1})\theta_{a^{-1}}(x),e) = \\ (\theta_a^{-1}(x^{-1})\theta_a^{-1}(x),e) = (\theta_a^{-1}(x^{-1}x),e) = (\theta_a^{-1}(e),e) = (e,e). \end{array}$

Exercício 3. (a) O centro C(G) de um p-grupo finito não-trivial G contem pelo menos p elementos.

- (b) Claramente, só pode ser $|C(G)| = p^i$, $i \ge 1$. Por cauchy, existe $H_1 < C(G)$ tal que $|H_1| = p$.
- (c) Todo subgrupo de C(G) é normal em G. Com efeito, sejam H < C(G), $g \in G$ e $h \in H$, tem-se $ghg^{-1} = h$ donde $H \triangleleft G$. Em particular, $H_1 \triangleleft G$.
- (d) Se $f: G \to H$ é um epimorfismo de grupos, então a atribuição $K \mapsto f(K)$ define uma correspondência biunívoca entre o conjunto $S_f(G)$ de todos os subgrupos K de G que contem K er f e o conjunto S(H) de todos os subgrupos de H. Sob esta correspondência, subgrupos normais levam à subgrupos normais.
- (e) Temos que $|G/H_1| = p^{m-1}$ por Lagrange. Se m = 1, então $< e >= H_0 \subseteq H_1 = G$. Se m > 1, existe $H_2/H_1 < G/H_1$ tal que $|H_2/H_1| = p$, $H_1 \subseteq H_2$ e $|H_2| = |H_1||H_2/H_1| = p^2$. Mas como mostro que $H_2 \triangleleft G$?