j 14 1

CLAIMS

What is claimed is:

6.

demodulated signal.

1

2

1

1	1.	An apparatus comprising:	
2	a first balancer to generate a first balancing signal from a first signal of a first index		
3	corresponding to a first frequency; and		
4	a first	combiner coupled to the first balancer to combine the first balancing signal	
5	and a second	signal of a second index corresponding to a second frequency, the second	
6	frequency being symmetrical to the first frequency with respect to a center frequency in a		
7	multi-carrier signal, the first combiner generating a first balanced signal corresponding to		
8	the second frequency.		
	2	The section of the in-the sector the first helengon comprises:	
1	2.	The apparatus of claim 1 wherein the first balancer comprises:	
2	a first	converter to convert the first signal into a first complex conjugate; and	
3	a first	multiplier coupled to the first converter to multiply the first complex	
4	conjugate wi	th a first balancing parameter, the first balancing parameter corresponding to	
5	the first frequency, the first multiplier generating the first balancing signal.		
1	3.	The apparatus of claim 1 wherein the first combiner includes a first	
2	subtractor to subtract the first balancing signal from the second signal to provide the first		
3	balanced signal.		
1	4.	The apparatus of claim 1 wherein the first balanced signal is a first desired	
1		**	
2	signal scaled	by a first complex factor.	
1	5.	The apparatus of claim 1 wherein the first signal is provided by a first sub-	
2	carrier demo	dulator operating at the first frequency.	

7. The apparatus of claim 1 further comprising:

The apparatus of claim 4 wherein the first desired signal is a first

1 1 1

2	a second balancer to generate a second balancing signal from the second signal; and
3	a second combiner coupled to the second balancer to combine the second balancing
4	signal with the first signal at a second frequency, the second combiner generating a second
5	balanced signal at the first frequency.

- 1 8. The apparatus of claim 7 wherein the second balancer comprises:
 2 a second converter to convert the second signal into a second complex conjugate;
 3 and
 4 a second multiplier coupled to the second converter to multiply the second complex
 - a second multiplier coupled to the second converter to multiply the second complex conjugate with a second balancing parameter, the second balancing parameter corresponding to the second frequency, the second multiplier generating the second balancing signal.
 - 9. The apparatus of claim 7 wherein the second combiner includes a second subtractor to subtract the second balancing signal from the first signal to provide the second balanced signal.
 - 10. The apparatus of claim 7 wherein the second balanced signal is a second desired signal scaled by a second complex factor.
 - 11. The apparatus of claim 7 wherein the second signal is provided by a second sub-carrier demodulator operating at the second frequency.
 - 12. The apparatus of claim 10 wherein the second desired signal is a second demodulated signal.
 - 13. The apparatus of claim 2 wherein the first balancing parameter is a ratio between output of the second sub-carrier demodulator and a conjugate output of the first sub-carrier demodulator when the multi-carrier signal contains a first sub-carrier signal modulated by a non-null complex number and a second sub-carrier signal modulated by a null complex number during a training process.

2

1

2

3

4 5

1

2

4

5

6 7

1

2

18.

1.

l	14. The apparatus of claim 8 wherein the second balancing parameter is a ratio	
2	between output of the first sub-carrier demodualtor and a conjugate output of the second	
3	sub-carrier demodulator when the multi-carrier signal contains a first sub-carrier signal	
1	modulated by a null complex number and a second sub-carrier signal modulated by a non-	
5	null complex number during a training process.	

- 1 15. The apparatus of claim 1 wherein the first signal is a first original signal to 2 be transmitted.
 - 16. The apparatus of claim 1 wherein the first desired signal is provided to a first sub-carrier modulator operating at the first frequency.
 - 17. The apparatus of claim 16 further comprising:
 a second balancer to generate a second balancing signal from the second signal; and
 a second subtractor coupled to the second balancer to subtract the second balancing
 signal from the first signal at a second frequency, the second subtractor generating a
 second balanced signal at the first frequency.

The apparatus of claim 17 wherein the second balancer comprises:

- a second converter to convert the second signal into a second complex conjugate; and a second multiplier coupled to the second converter to multiply the second complex conjugate with a second balancing parameter, the second balancing parameter corresponding to the second frequency, the second multiplier generating the second balancing signal.
- 19. The apparatus of claim 17 wherein the second balanced signal is a second desired signal scaled by a second complex factor.
- 1 20. The apparatus of claim 19 wherein the second desired signal is provided to 2 a second sub-carrier modulator operating at the second frequency.

1 . .

1	21.	The apparatus of claim 20 wherein one of the first and second balancing
2	parameters is	obtained during a training process.

- 22. The apparatus of claim 21 wherein the first balancing parameter is derived from outputs of first and second sub-carrier demodulators operating at first and second frequencies when the multi-carrier signal is generated from the first and second sub-carrier modulators receiving the first and second desired signal, the first desired signal being a non-null complex number and the second desired signal being a null complex number during the training process.
- 23. The apparatus of claim 21 wherein the second balancing parameter is derived from outputs of first and second sub-carrier demodulators operating at first and second frequencies when the multi-carrier signal is generated from the first and second sub-carrier modulators receiving the first and second desired signal, the first desired signal being a null complex number and the second desired signal being a non-null complex number during the training process.

24. A method comprising:

generating a first balancing signal from a first signal of a first index corresponding to a first frequency using a first balancer; and

combining the first balancing signal and a second signal of a second index corresponding to a second frequency using a first combiner, the second frequency being symmetrical to the first frequency with respect to a center frequency in a multi-carrier signal, the first combiner generating a first balanced signal corresponding to the second frequency.

- 25. The method of claim 24 wherein generating a first balancing signal comprises:
- 3 converting the first signal into a first complex conjugate by a first converter; and

1

2

4

5

6

i (i j

4	multiplying the first complex conjugate with a first balancing parameter by a first
5	multiplier, the first balancing parameter corresponding to the first frequency, the first
6	multiplier generating the first balancing signal.

- 1 26. The method of claim 24 wherein the first combiner includes a first 2 subtractor to subtract the first balancing signal from the second signal to provide the first 3 balanced signal.
- The method of claim 24 wherein the first balanced signal is a first desired signal scaled by a first complex factor.
- 1 28. The method of claim 27 wherein the first signal is provided by a first sub-2 carrier demodulator operating at the first frequency.
 - 29. The method of claim 28 wherein the first desired signal is a first demodulated signal.
 - 30. The method of claim 29 further comprising:
 generating a second balancing signal from the second signal using a second
 balancer; and
 - combining the second balancing signal with the first signal at a second frequency using a second combiner, the second combiner generating a second balanced signal at the first frequency.
- 1 31. The method of claim 30 wherein generating the second balancing signal comprises:
- converting the second signal into a second complex conjugate by a second converter; and
- multiplying the second complex conjugate with a second balancing parameter by a second multiplier, the second balancing parameter corresponding to the second frequency, the second multiplier generating the second balancing signal.

2

1

2

3

4

1

2

- 1 32. The method of claim 30 wherein the second combiner includes a second subtractor to subtract the second balancing signal from the first signal to provide the second balanced signal.
- 1 33. The method of claim 30 wherein the second balanced signal is a second desired signal scaled by a second complex factor.
- 1 34. The method of claim 33 wherein the second signal is provided by a second sub-carrier demodulator operating at the second frequency.
 - 35. The method of claim 34 wherein the second desired signal is a second demodulated signal.
 - 36. The method of claim 30 wherein the first balancing parameter is derived from outputs of the first and second sub-carrier demodulators when the multi-carrier signal contains the first sub-carrier signal modulated by a non-null complex number and the second sub-carrier signal modulated by a null complex number during a training process.
- The method of claim 30 wherein the second balancing parameter is derived from outputs of the first and second sub-carrier demodulators when the multi-carrier signal contains the first sub-carrier signal modulated by a null complex number and the second sub-carrier signal modulated by a non-null complex number during a training process.
- 1 38. The method of claim 26 wherein the first signal is a first original signal to 2 be transmitted.
 - 39. The method of claim 38 wherein the first desired signal is provided to a first sub-carrier modulator operating at the first frequency.
 - 40. The method of claim 39 further comprising:

2	generating a second balancing signal from the second signal by a second balancer;		
3	and		
4	subtracting the second balancing signal from the first signal at a second frequency		
5	by a second subtractor, the second subtractor generating a second balanced signal at the		
6	first frequency.		
1	41. The method of claim 40 wherein generating the second balancing signal		
2	comprises:		
3	converting the second signal into a second complex conjugate by a second		
4	converter; and		
5	multiplying the second complex conjugate with a second balancing parameter by a		
6	second multiplier, the second balancing parameter corresponding to the second frequency,		
7	the second multiplier generating the second balancing signal.		
1	42. The method of claim 40 wherein the second balanced signal is a second		
2	desired signal scaled by a second complex factor.		
1	43. The method of claim 42 wherein the second desired signal is provided to a		
2	second sub-carrier modulator operating at the second frequency.		
1	44. The method of claim 43 wherein one of the first and second balancing		
2	parameters is obtained during a training process.		
1	45. The method of claim 44 wherein the first balancing parameter is derived		
2	from outputs of first and second sub-carrier demodulators operating at first and second		
3	frequencies when the multi-carrier signal is generated from the first and second sub-carrie		
4	modulators receiving the first and second desired modulating signal, the first desired signal		
5	being a non-null complex number and the second desired signal being a null complex		
6	number during the training process.		
1	The method of claim 44 wherein the second balancing parameter is derived		

from outputs of first and second sub-carrier demodulators operating at first and second

t 3 .

1

2

3

4

5

6

7 8

9 10

11

12

13

14

1

2

3

4

5

1

2

3	frequencies when the multi-carrier signal is generated from the first and second sub-carrier
4	modulators receiving the first and second desired modulating signal, the first desired signal
5	being a null complex number and the second desired signal being a non-null complex
6	number during the training process.

47. A system comprising:

in-phase (I) and quadrature (Q) processing chains to generate I and Q samples from a multi-carrier signal having P sub-carrier signals at P carrier frequencies;

a bank of demodulators coupled to the I and Q processing chains to demodulate the P sub-carrier signals, the bank of demodulators generating P demodulated signals; and

a balancing unit coupled to the bank of demodulators to restore P original signals from the P demodulated signals, the balancing unit including P basic blocks, each of the basic blocks comprising:

a first balancer to generate a first balancing signal from a first signal at a first frequency, and

a first subtractor coupled to the first balancer to subtract the first balancing signal from a second signal at a second frequency, the second frequency being symmetrical to the first frequency with respect to a center frequency in the multi-carrier signal, the first subtractor generating a first balanced signal at the second frequency.

- 48. The system of claim 47 wherein the first balancer comprises:
 a first converter to convert the first signal into a first complex conjugate; and
 a first multiplier coupled to the first converter to multiply the first complex
 conjugate with a first balancing parameter, the first balancing parameter corresponding to
 the first frequency, the first multiplier generating the first balancing signal.
- 1 49. The system of claim 47 wherein the first combiner includes a first 2 subtractor to subtract the first balancing signal from the second signal to provide the first 3 balanced signal.
 - 50. The system of claim 47 wherein the first balanced signal is a first desired signal scaled by a first complex factor.

1 1 9

1

2

3

4

5

6

5

6 7

1

1	51.	The system of claim 50 wherein the first signal is provided by a first sub-
2	carrier demod	ulator operating at the first frequency.

- 52. The system of claim 51wherein the first desired signal is a first demodulated signal.
- 1 53. The system of claim 52 wherein each of the basic blocks further comprising:
 - a second balancer to generate a second balancing signal from the second signal; and a second combiner coupled to the second balancer to combine the second balancing signal with the first signal at a second frequency, the second combiner generating a second balanced signal at the first frequency.
- The system of claim 53 wherein the second balancer comprises:

 a second converter to convert the second signal into a second complex conjugate;

 and

 a second multiplier coupled to the second converter to multiply the second complex
 - a second multiplier coupled to the second converter to multiply the second complex conjugate with a second balancing parameter, the second balancing parameter corresponding to the second frequency, the second multiplier generating the second balancing signal.
- The system of claim 53 wherein the second combiner includes a second subtractor to subtract the second balancing signal from the first signal to provide the second balanced signal.
 - 56. The system of claim 53 wherein the second balanced signal is a second desired signal scaled by a second complex factor.
- The system of claim 56 wherein the second signal is provided by a second sub-carrier demodulator operating at the second frequency.

11.9

1	58.	The system of claim 57 wherein the second desired signal is a second
2	demodulated	signal.

- 59. The system of claim 53 wherein the first balancing parameter is derived from outputs of the first and second sub-carrier demodulators when the multi-carrier signal contains the first sub-carrier signal modulated by a non-null complex number and the second sub-carrier signal modulated by a null complex number during a training process.
- 60. The system of claim 53 wherein the second balancing parameter is derived from outputs of the first and second sub-carrier demodulators when the training multi-carrier signal contains the first sub-carrier signal modulated by a null complex number and the second sub-carrier signal modulated by a non-null complex number during a training process.
- 1 61. The system of claim 49 wherein the first signal is a first original signal to be transmitted.
 - 62. The system of claim 61 wherein the first desired signal is provided to a first sub-carrier modulator operating at the first frequency.
 - 63. The system of claim 62 further comprising:
 a second balancer to generate a second balancing signal from the second signal; and
 a second subtractor coupled to the second balancer to subtract the second balancing
 signal from the first signal at a second frequency, the second subtractor generating a
 second balanced signal at the first frequency.
- 1 64. The system of claim 63 wherein the second balancer comprises:
 2 a second converter to convert the second signal into a second complex conjugate;
 3 and
 4 a second multiplier coupled to the second converter to multiply the second complex
 5 conjugate with a second balancing parameter, the second balancing parameter

2

3

4

5

6

1

2

3

4

5

- corresponding to the second frequency, the second multiplier generating the second
 balancing signal.
- 1 65 The system of claim 63 wherein the second balanced signal is a second 2 desired signal scaled by a second complex factor.
- 1 66. The system of claim 65 wherein the second desired signal is provided to a second sub-carrier modulator operating at the second frequency.
- 1 67. The system of claim 66 wherein one of the first and second balancing parameters is obtained during a training process.
 - 68. The system of claim 67 wherein the first balancing parameter is derived from outputs of first and second sub-carrier demodulators operating at first and second frequencies when the multi-carrier signal is generated from the first and second sub-carrier modulators receiving the first and second desired modulating signal, the first desired signal being a non-null complex number and the second desired signal being a null complex number during the training process.
 - 69. The system of claim 67 wherein the second balancing parameter is derived from outputs of first and second sub-carrier demodulators operating at first and second frequencies when the training multi-carrier signal is generated from the first and second sub-carrier modulators receiving the first and second desired modulating signal, the first desired signal being a null complex number and the second desired signal being a non-null complex number during the training process.
- The apparatus of claim 1 wherein at least one of the first and second indices corresponds to a zero index.
- The apparatus of claim 70 wherein at least one of the first and second signals corresponds to one of the center frequency and a DC of a baseband signal of the multi-receiver signal.