1 Premier problème

1.1 Généralités

- 1. $\mathcal{R}_{n}\left(p\right)$ ne contient pas la matrice nulle, ce n'est donc pas un s.e.v. de $\mathcal{M}_{n}\left(\mathbb{R}\right)$.
- 2. Sachant $A^p = I_n$, on sait que l'endomorphisme de \mathbb{R}^n canoniquement associé à A vérifie : $\varphi^{p-1} \circ \varphi = \varphi \circ \varphi^{p-1} = Id$, donc il est injectif et surjectif, ce qui entraı̂ne $A \in GL_n(\mathbb{R})$. Il en résulte que A est inversible, de plus $\left(A^{-1}\right)^p A^p = I_n$ par associativité de la multiplication des matrices carrées, et finalement $\left(A^{-1}\right)^p = I_n$, ce qui signifie $J^{-1} \in \mathcal{R}_n(p)$.
- 3. Si $(P^{-1}AP)^{p-1} = P^{-1}A^{p-1}P$, alors

$$(P^{-1}AP)^{p} = (P^{-1}A^{p-1}P) P^{-1}AP$$
$$= P^{-1}A^{p-1} (PP^{-1}) AP$$
$$= P^{-1}A^{p}P$$

Comme $\left(P^{-1}AP\right)^0=I_n=P^{-1}A^0P$, on peut déjà conclure : $\forall p\in\mathbb{N}, \left(P^{-1}AP\right)^p=P^{-1}A^pP$, et par suite, si $A\in\mathcal{R}_n\left(p\right)$ et $P\in GL_n\left(\mathbb{R}\right)$, alors $P^{-1}AP\in\mathcal{R}_n\left(p\right)$.

- 4. Si $A=diag\left(\lambda_1,\lambda_2,...,\lambda_n\right)$, alors $A^p=diag\left(\lambda_1^p,\lambda_2^p,...,\lambda_n^p\right)$, donc pour que $A\in\mathcal{R}_n\left(p\right)\cap\mathcal{D}_n\left(p\right)$, il faut et il suffit que les λ_i vérifient $\lambda_i^p=1$. Les coefficients λ_i étant réels, si p est un nombre impair, il y a solution unique $A=I_n$, alors que si p est pair, chaque λ_i peut prendre la valeur 1 ou -1. Ce qui donne 2^n solutions.
- 5. Soit $q\geqslant 2$., notons $d=p\wedge q$, le p.g.c.d. de p et q, alors il existe deux entiers p_1 et p_2 premiers entre eux tels que $p=dp_1$ et $q=dp_2$. Dans ces conditions, $a\in\mathcal{R}_n\left(p\right)\cap\mathcal{R}_n\left(q\right)$ équivaut à : $A^{dp_1}=I_n$ et $A^{dp_2}=I_n$, il en résulte d'une part que si $A\in\mathcal{R}_n\left(d\right)$, alors $a\in\mathcal{R}_n\left(p\right)\cap\mathcal{R}_n\left(q\right)$. Et inversement, si $a\in\mathcal{R}_n\left(p\right)\cap\mathcal{R}_n\left(q\right)$, alors comme p_1 et p_2 sont premiers entre eux, le théorème de Bézout fournit u et v tels que $1=p_1u+p_2v$, d'où $A^d=A^{d(p_1u+p_2v)}=\left(A^p\right)^u\left(A^q\right)^v=I_nI_n=I_n$, donc $A\in\mathcal{R}_n\left(d\right)$.

1.2 Etude de $\mathcal{R}_2(2)$.

- 1. $A \in \mathcal{R}_2(2) \setminus \{I_2, -I_2\}$, et $u \in \mathcal{L}(E)$, dont la matrice dans \mathcal{B} est A.
 - (a) Si $x \in \ker(u-id_E) \cap \ker(u+id_E)$, alors u(x) = x = -x, donc x est nul, on en déduit $\ker(u-id_E) \cap \ker(u+id_E) \subset \{0_E\}$, puis l'égalité car l'inclusion inverse est évidente D'autre part, il est clair que pour tout x de E, on a : $x = \frac{1}{2}(x-u(x)) + \frac{1}{2}(x+u(x))$, et on vérifie (comme dans le cours) que $\frac{1}{2}(x-u(x)) \in \ker(u+id_E)$, tandis que $\frac{1}{2}(x+u(x)) \in \ker(u-id_E)$. Ainsi $\ker(u-id_E) \oplus \ker(u+id_E) = E$. On a reconnu dans u la symétrie par rapport à $\ker(u-id_E)$, parallèlement à $\ker(u+id_E)$.
 - (b) En prenant e_1 dans $\ker\left(u-id_E\right)$ et e_2 dans $\ker\left(u+id_E\right)$, ce qui est possible, sinon $u=id_E$ ou $u=-id_E$ ce qui est exclu par hypothèse, la matrice de u est $\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$.
 - (c) Le passage de la base $\mathcal B$ à cette base particulière s'effectue à l'aide de la matrice de passage $P=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ de déterminant $ad-bc\neq 0$.

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = P^{-1}AP$$

$$A = P \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} P^{-1} = \frac{1}{ad - bc} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$= \frac{1}{ad - bc} \begin{pmatrix} ad + bc & -2ab \\ 2cd & -bc - ad \end{pmatrix}$$

2. Si on prend deux éléments A et B de \mathcal{R}_2 (2) qui ne commutent pas, il n'y a aucune raison pour que AB soit encore dans \mathcal{R}_2 (2), par exemple : $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $B = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ sont dans \mathcal{R}_2 (2), alors que $AB = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ et $(AB)^2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Géométriquement, cela signifie qu'en général, deux symétries du plan ne commutent pas et que le produit de deux symétries axiales n'est pas une symétrie axiale.

1.3 Etude de $\mathcal{R}_2(3)$.

Pour $v \in \mathcal{R}_2(3)$, on pose $F = \ker(v - id_E)$ et $G = \ker(v^2 + v + id_E)$ et on note M la matrice de v dans \mathcal{B} .

- 1. Décomposition de E.
 - (a) Soit $x \in F \cap G$, alors v(x) = x et $v^2(x) + v(x) + x = 0_E$, donc $3x = 0_E$, d'où $x = 0_E$, ainsi : $F \cap G \subset \{0_E\}$, l'inclusion inverse est immédiate.
 - (b) Soit $x \in E$,

$$\begin{split} v\left(\frac{1}{3}\left(x+v\left(x\right)+v^{2}\left(x\right)\right)\right)&=\frac{1}{3}\left(v\left(x\right)+v^{2}\left(x\right)+x\right),\ \mathrm{donc}\ \frac{1}{3}\left(x+v\left(x\right)+v^{2}\left(x\right)\right)\in F\\ \mathrm{d'autre\ part},\ \left(v^{2}+v+id_{E}\right)\left(\frac{1}{3}\left(2x-v\left(x\right)-v^{2}\left(x\right)\right)\right)\\ &=\frac{1}{3}\left(2v^{2}\left(x\right)-x-v\left(x\right)\right)+\frac{1}{3}\left(2v\left(x\right)-v^{2}\left(x\right)-x\right)+\frac{1}{3}\left(2x-v\left(x\right)-v^{2}\left(x\right)\right)\\ &=0_{E},\ \mathrm{donc}\ \frac{1}{3}\left(2x-v\left(x\right)-v^{2}\left(x\right)\right)\in G \end{split}$$

- (c) Enfin, tout x de E peut s'écrire $x=\frac{1}{3}\left(x+v\left(x\right)+v^{2}\left(x\right)\right)+\frac{1}{3}\left(2x-v\left(x\right)-v^{2}\left(x\right)\right)$, on en déduit : $E=F\oplus G$
- 2. Si $\dim F = 2$, alors F = E, donc $M = I_2$.
- 3. Supposons $\dim F = 1$.
 - (a) Alors comme $F \oplus G = E$, $\dim G = 1$. Il existe donc une base (g_1, g_2) de E, telle que $g_1 \in F$ et $g_2 \in G$.
 - (b) On a $v\left(g_{1}\right)=g_{1}$ et $v^{2}\left(g_{2}\right)+v\left(g_{2}\right)+g_{2}=0_{E}$ car $g_{2}\in G$, dans la base \mathcal{B}' v a pour matrice $M'=\left(\begin{array}{cc}1&a\\0&b\end{array}\right)$, d'où $M'^{2}=\left(\begin{array}{cc}1&a+ab\\0&b^{2}\end{array}\right)$, on en déduit $\left\{\begin{array}{cc}a+ab+a+0=0\\b^{2}+b+1=0\end{array}\right.$, ce qui est impossible avec b réel. Conclusion, F n'est pas de dimension 1.
- 4. Supposons enfin F de dimension 0.
 - (a) Si la famille $(e_1, v(e_1))$ était liée, il existerait un couple $(\alpha, \beta) \neq (0, 0)$ tel que $\alpha e_1 + \beta v(e_1) = 0_E$, comme β ne peut pas être nul sans que α le soit, il existe λ tel que $v(e_1) = \lambda e_1$, alors $v^3(e_1) = \lambda^3 e_1 = e_1$, donc $\lambda = 1$, ce qui contredit l'hypothèse $\dim F = 0$. Enfin comme $\dim E = 2$, la famille libre $(e_1, v(e_1))$ a la dimension requise pour être une base de E.
 - (b) Soit M' la matrice de v dans cette base, $M'=\begin{pmatrix}0&x\\1&y\end{pmatrix}$, où $v\left(v\left(e_1\right)\right)=xe_1+yv\left(e_1\right)$. Comme $\dim G=2$, on a $v^2\left(e_1\right)+v\left(e_1\right)+e_1=0_{E_1}$ donc x=y=-1. Donc la matrice de v dans \mathcal{B}' est $M'=\begin{pmatrix}0&-1\\1&-1\end{pmatrix}$, enfin la matrice de passage de \mathcal{B} à \mathcal{B}' est $P=\begin{pmatrix}1&a\\0&b\end{pmatrix}$, d'inverse

$$P^{-1}=\frac{1}{b}\left(\begin{array}{cc} b & -a \\ 0 & 1 \end{array}\right).$$
 On en déduit que la matrice de v dans la base \mathcal{B} est $M=PM'P^{-1}=\frac{1}{b}\left(\begin{array}{cc} ab & -1-a-a^2 \\ b^2 & -ab-b \end{array}\right).$

2 Deuxième problème

- 1. Soit φ la fonction $t\mapsto t+\sin t$, cette fonction est \mathcal{C}^{∞} sur \mathbb{R} , de dérivée définie par $\varphi'(t)=1+\cos t$, donc positive, nulle seulement en les points isolés $(2k+1)\pi$, par conséquent φ est strictement croissante sur \mathbb{R} , elle s'annule en l'unique point t=0.
- 2. Soit $x \in \mathbb{R}^*$, alors ψ est continue sur l'intervalle de bornes x et 2x, qui ne contient pas 0, donc f(x) existe.
- 3. Le changement de variable bijectif, de classe $\mathcal{C}^1, u = -t$ permet de montrer $f(-x) = \int_{-x}^{-2x} \frac{1}{t+\sin t} dt = \int_{x}^{2x} \frac{1}{-u-\sin u} (-du) = f(x)$, donc f est paire.
- 4. La fonction ψ étant continue sur [x,2x], la fonction f est dérivable, de plus,

$$f'(x) = 2\frac{1}{2x + \sin 2x} - \frac{1}{x + \sin x}$$
$$= \frac{2\sin x - \sin 2x}{(2x + \sin 2x)(x + \sin x)} = \frac{2\sin x (1 - \cos x)}{(2x + \sin 2x)(x + \sin x)}$$

Cette expression est celle d'une fonction \mathcal{C}^{∞} , donc f est \mathcal{C}^{∞} sur \mathbb{R}^*

- 5. f'(x) est du signe de $\sin x$, donc positif sur $[2k\pi, (2k+1)\pi]$, négatif sinon. Ce qui permet de trouver le sens de variations de f.
- 6. Etude au voisinage de l'infini.
 - (a) Pour $x>0, \ \left|\int_x^{2x}\left(\frac{1}{t+\sin t}-\frac{1}{t}\right)dt\right|\leqslant \int_x^{2x}\left|\frac{\sin t}{t(t+\sin t)}\right|dt\leqslant \int_x^{2x}\frac{1}{t(t+\sin t)}dt, \ \operatorname{car}|\sin t|\leqslant 1 \ \operatorname{et}\ t+\sin t>0.$ Conclusion : $\left|f\left(x\right)-\int_x^{2x}\frac{1}{t}dt\right|\leqslant \int_x^{2x}\frac{1}{t(t+\sin t)}dt.$
 - (b) De $\lim_{t\to+\infty}\left(\frac{t+\sin t}{t}\right)=1$, on déduit l'existence de m>0 tel que pour tout $t\geqslant m$, on ait $\frac{t+\sin t}{t}\geqslant \frac{1}{2}$, ce qui fournit le résultat demandé.
 - (c) De $t+\sin t\geqslant \frac{t}{2}$, on déduit $\left|f\left(x\right)-\int_{x}^{2x}\frac{1}{t}dt\right|\leqslant \int_{x}^{2x}\frac{2}{t^{2}}dt=\frac{1}{x}$, et donc $\lim_{x\to+\infty}\left(f\left(x\right)-\int_{x}^{2x}\frac{1}{t}dt\right)=0$. Or $\lim_{x\to+\infty}\left(\int_{x}^{2x}\frac{1}{t}dt\right)=\ln 2$, donc $\lim_{x\to+\infty}f\left(x\right)=\ln 2$.
- 7. Comportement de f au voisinage de 0.
 - (a) Pour t voisin de 0,

$$\frac{1}{t+\sin t} = \frac{1}{t+t-\frac{t^3}{6}+o\left(t^3\right)}$$

$$= \frac{1}{2t} \left(\frac{1}{1-\frac{t^2}{12}+o\left(t^2\right)}\right) = \frac{1}{2t} \left(1+\frac{t^2}{12}+o\left(t^2\right)\right)$$

$$= \frac{1}{2t} + \frac{t}{24} + o\left(t\right)$$

(b) Traduisons l'hypothèse $\lim_{t\to 0^+}g\left(t\right)=0: \forall \varepsilon>0, \exists \alpha>0, 0< t\leqslant \alpha\Rightarrow |g\left(t\right)|\leqslant \varepsilon.$ Par conséquent, si on prend x vérifiant $0< x\leqslant \frac{\alpha}{2},$ alors pour tout t de [x,2x], on a $:|g\left(t\right)|\leqslant \varepsilon,$ et donc aussi $\sup_{t\in [x,2x]}|g\left(t\right)|\leqslant \varepsilon.$ Il est donc clair que $\lim_{t\to 0^+}\sup_{t\in [x,2x]}|g\left(t\right)|=0.$

(c) h est continue sur \mathbb{R}_{+}^{*} , donc l'intégrale $\int_{x}^{2x}h\left(t\right)dt$ existe, on suppose de plus que $h\left(x\right)=o\left(x\right)$, au voisinage de 0, ceci entraı̂ne que pour t>0, $\lim_{t\to0}\frac{h(t)}{t}=0$, ou encore $h\left(t\right)=t\varepsilon\left(t\right)$ et $\lim_{t\to0}\varepsilon\left(t\right)=0$. Il en résulte :

$$\begin{split} \int_{x}^{2x} |h\left(t\right)| \, dt &\leqslant \int_{x}^{2x} |t\varepsilon\left(t\right)| \, dt \\ &\leqslant 2x \int_{x}^{2x} |\varepsilon\left(t\right)| \, dt \\ &\leqslant 2x \int_{x}^{2x} \sup_{t \in [x,2x]} |\varepsilon\left(t\right)| \, dt \\ &\leqslant 2x^{2} \sup_{t \in [x,2x]} |\varepsilon\left(t\right)| = o\left(x^{2}\right) \end{split}$$

Finalement : $\int_{x}^{2x} h(t) dt = o(x^{2})$.

- (d) D'après c) $\int_x^{2x} \left(\frac{1}{2t} + \frac{t}{24} + o\left(t\right)\right) dt = \frac{1}{2} \ln 2 + \left[\frac{t^2}{48}\right]_x^{2x} + o\left(x^2\right) = \frac{1}{2} \ln 2 + \frac{x^2}{16} + o\left(x^2\right)$. Ce qui prouve que f admet un développement limité à l'ordre 2 au voisinage de 0,
- (e) Et par suite f admet un prolongement continu en 0, (on pose $f(0) = \frac{1}{2} \ln 2$), ce prolongement étant dérivable et de dérivée nulle en 0.
- (f) Le D.L. $_2$ ci-dessus prouve que la courbe est au-dessus de sa tangente en 0(terme $\frac{x^2}{16}$) .
- (g) Pour $x \neq 0$, on a $f'(x) = \frac{2\sin x(1-\cos x)}{(2x+\sin 2x)(x+\sin x)} \underset{x \rightarrow 0}{\sim} \frac{2x\frac{x^2}{2}}{4x2x} = \frac{x}{8}$
- (h) $f''(0) = \lim_{x\to 0} \frac{f'(x) f'(0)}{x} = \frac{1}{8}$.

	x	0		π		2π	
8.	f'(x)	0	+	0	_	0	
	f(x)	$\frac{1}{2} \ln 2$	7		7		

Tracé sur $[0,4\pi]$:

