COMPLEX VARIETIES OF GENERAL TYPE WHOSE CANONICAL SYSTEMS ARE COMPOSED WITH PENCILS

By Meng Chen*

Throughout this paper, most our notations and terminologies are standard within algebraic geometry except for the following which we are in favour of:

:= definition;

 \sim_{lin} — linear equivalence;

 \sim_{num} — numerical equivalence.

Let X be a complex nonsingular projective variety of general type with dimension $d(d \ge 2)$. Suppose $\dim \Phi_{|K_X|}(X) = 1$, we usually say that the canonical system $|K_X|$ is composed with a pencil. Taking possible blow-ups $\pi: X' \to X$ according to Hironaka such that $g := \Phi_{|K_X|} \circ \pi$ is a morphism. We have the following commutative diagram:

$$X' \xrightarrow{f} C$$

$$\downarrow \psi$$

$$X' \xrightarrow{g} W_1 \subset \mathbb{P}^{p_g - 1}$$

$$\pi \downarrow$$

$$X$$

where we set $W_1 := \overline{\Phi_{|K_X|}(X)}$ and let $g := \psi \circ f$ be the Stein factorization of g. Note that f is a fibration onto a nonsingular curve C. Let F be a general fiber of f, then F is a nonsingular projective variety of dimension d-1. We also say that f is a derived fibration of the canonical map. Denote b := g(C), the genus of C.

The aim of this note is to build the following theorems.

Theorem 1. Let X be a complex nonsingular projective variety of general type with dimension $d(d \ge 3)$. Suppose the canonical system $|K_X|$ be composed with a pencil, using the above diagram and notations, and assume that $b \ge 2$, then either

$$p_g(F) = 1, \ p_g(X) \ge b - 1,$$

^{*} Supported by NNSFC

or

$$b = p_g(F) = p_g(X) = 2.$$

Remark 1. In the case of dimension 2, one can refer to [10].

Theorem 2. Under the same assumption as in Theorem 1, assume in addition that dimX =3 and K_X is nef and big, set $F_1 := \pi_* F$, then

- (1) If b = 1, then $p_q(F) \le 38$;
- (2) If b = 0, $K_X \cdot F_1^2 = 0$ and $p_q(X) \ge 20$, then

$$p_g(F) \le 38 + \frac{756}{p_g(X) - 19};$$

(3) If b = 0 and $K_X \cdot F_1^2 > 0$, then

$$p_g(F) \ge q(F) \ge \frac{1}{36}(p_g(X) - 1)(p_g(X) - 37).$$

The author would like to thank the referee for many skillful suggestions which greatly simplify our proofs and improve (1) of Theorem 2 to the present form. Also, I am indebt to Prof. Zhijie Chen whose opinion improves my calculation in (2) of Theorem 2.

§1. Proof of Theorem 1

Proof of Theorem 1. Using the first commutative diagram of this paper, we have the fibration $f: X' \to C$. Denote by \mathcal{L} the saturated subbundle of $f_*\omega_{X'}$ which is generated by $H^0(C, f_*\omega_{X'}), \mathcal{L}$ is of rank one under the assumption of the theorem. Thus we obtain the following exact sequence

$$0 \to \mathcal{L} \to f_*\omega_{X'} \to \mathcal{Q} \to 0.$$

We know that $R^i f_* \omega_{X'/C}$ is a semi-positive vector bundle (Griffith- Fujita-Kawamata-Ohno semipositivity). $\mathcal{Q} \otimes \omega_C^{-1}$ is automatically semi-positive. Since $H^0(C, \mathcal{L}) = H^0(C, f_*\omega_{X'})$, $H^0(C,\mathcal{Q})$ injects into $H^1(C,\mathcal{L})$. By Riemann-Roch, $h^0(C,\mathcal{Q}) \geq (b-1)(p_a(F)-1), h^1(C,\mathcal{L}) \leq (b-1)(p_a(F)-1)$ b-1, and hence we get $p_q(F) \leq 2$.

If $p_g(F) = 1$, then $p_g(X) = h^0(C, \mathcal{L}) \ge b - 1$ by the semipositivity of $\mathcal{L} \otimes \omega_C^{-1} = f_* \omega_{X'/C}$. If $p_g(F) = 2$, then we must have $h^0(Q) = h^1(\mathcal{L}) = b - 1$, so that $Q \otimes \omega_C^{-1}$ is of degree ≤ 0 . Since $f_*\omega_{X'}\otimes\omega_C^{-1}$ is semi-positive, this means that \mathcal{L} is of degree $\geq 2b-2$, with non-trivial H^1 . Hence $\mathcal{L} \cong \omega_C$, and $1 = h^1(C, \mathcal{L}) \geq h^0(\mathcal{Q}) = b - 1$. This shows that b = 2, $p_q(X) = h^0(C, \mathcal{L}) = 2$, completing the proof of Theorem 1.

§2. Proof of Theorem 2

At first, let us recall Miyaoka's inequality as follows.

Fact. ([7]) Let X be a nonsingular projective threefold with nef and big canonical divisor K_X . Then $3c_2 - c_1^2$ is pseudo-effective, where c_i 's are Chern numbers of X.

Proposition 2.1. Let X be a nonsingular projective 3-fold with nef and big canonical divisor K_X . Assume that $|K_X|$ be composed with a pencil and that $K_X \cdot F_1^2 = 0$, then

$$\mathcal{O}_F(\pi^*(K_X)|_F) \cong \mathcal{O}_F(\sigma^*(K_{F_0})),$$

where $\sigma: F \to F_0$ is the contraction onto the minimal model.

Proof. This can be obtained by a similar argument as that of Theorem 7 in [6].

PROOF OF THEOREM 2. We use the same exact sequence as in the proof of Theorem 1. It is easy to see that $K_{X'} \sim_{\text{num}} (\deg \mathcal{L})F + Z$, where Z is the fixed part.

Case (1). b = 1. In this case, we can suppose X' = X. Q is semi-positive. Note that $\deg Q = 0$; otherwise, by Riemann-Roch, we should have

$$h^0(C, f_*\omega_X) \ge \deg \mathcal{L} + \deg \mathcal{Q} > \deg \mathcal{L} = h^0(C, \mathcal{L}),$$

a contradiction. $R^1 f_* \omega_X$ is semi-positive, while $R^2 f_* \omega_X \cong \mathcal{O}_C$ by duality. Thus

$$\chi(X, \omega_X) = \chi(C, f_*\omega_X) - \chi(C, R^1 f_*\omega_X) + \chi(C, R^2 f_*\omega_X)$$

$$\leq \chi(C, f_*\omega_X) = \deg \mathcal{L} = p_g(X).$$

It follows from Miyaoka's inequality that $K_X^3 \leq 72 \deg \mathcal{L}$. On the other hand,

$$K_X^3 \ge (\deg \mathcal{L})K_X^2 \cdot F$$

= $(\deg \mathcal{L})K_F^2 \ge 2(\deg \mathcal{L})(p_g(F) - 2).$

This implies that $(\deg \mathcal{L})(p_g(F)-2) \leq 36 \deg \mathcal{L}$, i.e. $p_g(F) \leq 38$.

Case (2). b = 0 and $K_X \cdot F_1^2 = 0$. In this case, any vector bundle on C is a direct sum of line bundles. $f_*\omega_{X'}$ is a direct sum of \mathcal{L} and $p_g(F) - 1$ line bundles of degree -1 or -2, while $R^1 f_*\omega_{X'}$ is a direct sum of q(F) line bundles of degree ≥ -2 . Hence

$$\chi(X', \omega_{X'}) = \chi(C, f_*\omega_{X'}) - \chi(C, R^2 f_*\omega_{X'}) + \chi(C, \omega_C)$$

$$\leq \deg \mathcal{L} + 1 + q(F) - 1.$$

Then, by Proposition 2.1, we get

$$(\operatorname{deg} \mathcal{L})(p_g(F) - 2) \le \frac{1}{2}(\operatorname{deg} \mathcal{L})K_{F_0}^2 \le 36(\operatorname{deg} \mathcal{L} + q(F)).$$

Apply the inequality $p_q(F) \ge 2q(F) - 4$ ([2]), we get

$$(\deg \mathcal{L} - 18)p_g(F) \le 38 \deg \mathcal{L} - 72.$$

We obtained the desired inequality by substituting $\deg \mathcal{L}$ by $p_g(X) - 1$.

Case (3). b = 0 and $K_X \cdot F_1^2 > 0$. It is easy to check that $K_X \cdot F_1^2$ is an even number. We get the following inequality

$$K_X^3 \ge (\deg \mathcal{L})^2 K_X \cdot F_1^2 \ge 2(\deg \mathcal{L})^2$$
.

Therefore we have

$$2(\deg \mathcal{L})^2 \le 72(\deg \mathcal{L} + q(F)),$$

which directly induces what we want. The proof is completed.

3.1 Examples with $p_q(F) = 1$ and $p_q(X) \ge b$.

Let S be a minimal surface with $K_S^2 = 1$ and $p_g(S) = q(S) = 0$. We chose S in such a way that S admits a torsion element η of order 2, i.e., $\eta \in Pic^0S$ and $2\eta \sim_{\text{lin}} 0$. For the existence of this surface, we may refer to [1] or [9]. Let C be a nonsingular curve of genus $b \geq 1$. Set $Y := C \times S$. Let $p_1 : Y \longrightarrow C$ and $p_2 : Y \longrightarrow S$ be the two projection maps. Let D be an effective divisor on C with $\deg D = a > 0$. Let $\delta = p_1^*(D) + p_2^*(\eta)$, $B \sim_{\text{lin}} 2\delta \sim_{\text{lin}} p_1^*(2D)$, we can take B composed of 2a distinct points. The pair (δ, B) determines a smooth double cover X over Y. We have the following commutative diagram, where π is the double covering.

$$X \xrightarrow{\pi} Y = C \times S \xrightarrow{p_2} S$$

$$\parallel \qquad \qquad \downarrow^{p_1}$$

$$X \xrightarrow{\Psi} C$$

We can see that $\Phi_{|K_X|}$ factors through Ψ . These examples satisfy $p_g(X)=a+b-1$, $K_X^3=6(a+2b-2),\,h^2(\mathcal{O}_X)=0,\,q(X)=b,\,K_F^2=2,\,p_g(F)=1$ and q(F)=0.

3.2 Examples with $p_q(F) = 1$ and $p_q(X) = b - 1$.

In the construction of 3.1, take C be a hyperelliptic curve of genus $b \geq 3$. Let $\tau = p - q$ be a divisor on C such that $2\tau \sim_{\text{lin}} 0$. Take $\delta = p_1^*(\tau) + p_2^*(\eta)$, then $2\delta \sim_{\text{lin}} 0$. Therefore δ determines an unramified double cover $\pi: X \longrightarrow Y$. X is an example with $p_g(X) = b - 1$, $h^2(\mathcal{O}_X) = 0$, q(X) = b and $K_X^3 = 6(2b - 2)$.

3.3 Examples with b = 0 and $p_g(F) = 2$.

In the construction of 3.1, take S be a minimal surface S with $K_S^2=2$ and $p_g(S)=q(S)=1$ and take $C=\mathbb{P}^1$. Take an effective divisor D on C with deg $D=a\geq 3,\ \eta\in Pic^0S$ with $2\eta\sim_{\text{lin}}0$. Denote by $\delta:=p_1^*(D)+p_2^*(\eta)$ and $R\sim_{\text{lin}}2\delta\sim_{\text{lin}}p_1^*(2D)$. Thus the pair (δ,R) determines a double covering $\pi:X\to Y$. We can check that X is an example with $p_g(X)=a-1,\ K_X^3=6(a-2),\ b=0,\ K_F^2=4,\ q(F)=1$ and $p_g(F)=2$.

3.3 Examples with b=1 and $p_q(F)=2$.

Let S be a minimal surface with $p_g(S) = q(S) = 1$ and $K_S^2 = 2$. We know that the albanese map of S is just a genus two fibration onto an elliptic curve. It can be constructed from a double cover onto a ruled surface P which is over the elliptic curve with invariant e = -1. Furthermore, all the singularities on the branch locus corresponding to this double cover are negligible. Let $\pi_0: S \to \tilde{P}$ be this double cover with covering data (δ_0, R_0) . Note that q(P) = 1.

Take an elliptic curve E and denote $T := E \times \tilde{P}$. Let p_1 and p_2 be two projection maps. Take a 2-torsion element $\eta \in \operatorname{Pic}^0 E$. Since \tilde{P} is a fibration over an elliptic curve, we can take a 2-torsion element $\tau \in \operatorname{Pic}^0 \tilde{P}$ such that $\pi_0^*(\tau) \not\sim_{\operatorname{lin}} 0$ through the double cover π_0 .

Let $\delta_1 = p_1^*(\eta) + p_2^*(\delta_0)$ and $R_1 = 2\delta_1$, then the pair (δ_1, R_1) determines a double cover $\Pi_1 : Y \to T$. Let $\phi = p_1 \circ \Pi_1$. Take a divisor A on E with deg A = a > 0. Let $\delta_2 = \phi^*(A) + \Pi_1^* p_2^*(\tau)$ and $R_2 = 2\delta_2$, then the pair (δ_2, R_2) determines a smooth double cover $\Pi_2 : X \to Y$. We can see that X is a minimal threefold of general type and the

canonical system $|K_X|$ is composed with a pencil. $\Phi_{|K_X|}$ factors through Π_2 and ϕ . This example satisfies $b=1,\,p_g(F)=2,\,q(F)=1,\,K_F^2=16,\,p_g(X)=a,\,q(X)=2$ and $K_X^3=12a$.

References

- [1] Barth, W., Peters, C., Van de Ven, A.: Compact complex surfaces, Berlin Heidelberg New York: Springer 1984.
- [2] Debarre, O.: Addendum to Inégalités numériques pour les surfaces de type général, Bull. Soc. Math. France 111/4, 301-302(1983).
- [3] Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero, *Ann. of Math.* **79** (1964), 109–326.
- [4] Kawamata, Y.: Kodaira dimension of algebraic fiber spaces over curves, *Invent. Math.* **66** (1982), 57–71.
- [5] Kollár, J.: Higher direct images of dualizing sheaves II, Ann. of Math. 124 (1986), 171–202.
- [6] Matsuki, K.: On pluricanonical maps for threefolds of general type, J. Math. Soc. Japan, Vol. 38, No. 2, 1986, 339-359.
- [7] Miyaoka, Y.: The pseudo-effectivity of $3c_2-c_1^2$ for varieties with numerically effective canonical classes, In: Algebraic Geometry, Sendai, 1985 (Adv. Stud. in Pure Math. 10, 1987, pp. 449–476).
- [8] Ohno, K.: Some inequalities for minimal fibrations of surfaces of general type over curves, J. Math. Soc. Japan 44 (1992), 643–666.
- [9] Reid, M.: Surfaces with $p_g = 0$, $K^2 = 1$, J. Fac. Sci. Uni. Tokyo, Sect. IA, **25** (1978), 75–92.
- [10] Xiao, G.: L'irrégularité des surfaces de type général dont le système canonique est composé d'un pinceau, *Compositio Math.* **56** (1985), 251–257.

DEPARTMENT OF APPLIED MATHEMATICS TONGJI UNIVERSITY SHANGHAI, 200092 CHINA