ANALYSIS ON PATIENT'S ATTENDANCE TO MEDICAL APPOINTMENT

IBNU ILYAS SYABAN NUGRAHA

Table of Content

- Background
- Data Exploration
- Data Modelling & Interpretation
- Conclusion

•••• Background

Background

The data is collected from the Brazilian public health system known as SUS (Sistema Unico de Saude / Unified Health System), one of the largest health system in the world.

This institution representing government investment of more than 9% of GDP. However, its operation is not homogeneous and there are distinct perceptions of quality from citizens in different regions of the country, resulting several cancellation to medical appointment.

This analysis is carried out to understand the outline of the Brazilian public health system and build a machine learning model to predict the patient's attendance.

Dataset

The dataset is from Kaggle with total of 110,527 row of data and 14 columns.

Data Feature	Description
Patientld	Identification of a patient
AppointmentID	Identification of each appointment
Gender	Male or Female
ScheduledDay	The day someone called or registered the appointment, this is before appointment of course
AppointmentDay	The day of the actual appointment, when they have to visit the doctor
Age	How old is the patient
Neighbourhood	Location of the hospital

Data Feature	Description		
Scholarship	Patient is enrolled in Brazilian welfare program or not (equivalent to BPJS)		
Hipertension	Hypertension status of the patients		
Diabetes	Diabetes status of the patients		
Alcoholism	Alcoholism status of the patients		
Handcap	Handicap status of the patients		
SMS_received	Messages sent to patients		
No-show	Attendance status of the patients (Yes means not attend)		

Data Exploration

Patient's Profile

65% of the patients are female.

Age

Majority of patients are 50 years old or older

No_Show

20%

of patients that have scheduled appointment didn't attend to the hospital.

Patient's Profile

- Only 10% of the patients have Scholarship.
- Regarding health condition, 80% 90% of the patients don't have major health issues.

Health Profile

SMS Received

SMS Received

- Only 32% of the patients received 1
 SMS, while the rest don't receive at all.
- Strangely, the No_Show rate is higher on the patients that received SMS.
- There is no detail about the content of the message, but we will assume it's related to the appointment.

Scheduling & Appointment

- Most of the appointments are same day appointment, followed by same week appointment.
- There are several appointments that are 3 6
 months long from the scheduling date.
- Almost all scheduling were done on weekdays. It's assumed that the hospital doesn't receive / open scheduling on weekends.
- May has the highest scheduling made.
- Those facts also happen to the appointment.
 This could be caused by the majority of same day appointment.

Scheduling & Appointment

- Same day appointment has the smallest no-show rate at 5%, while others have 245 33% No_Show rate.
- The longest waiting days (91-180 days) still has high ratio of attendance.
- Patients scheduled in Saturday has low No_Show rate, but doesn't count for the appointment day.

Data Modelling

Data Preprocessing

Label Encoding	oding Column Manipulation One Hot Encoding	
Column: Gender No_Show Encoded to have 0 or 1 value	Added features: WaitingDays: the gap between scheduling and appointment day. ScheduledDayIndex ScheduledMonth AppointmentDayIndex AppointmentMonth PatientCount: how many times patient makes appointment. Dropped features: PatientID AppointmentID AppointmentID AppointmentDay AppointmentDay	Column: • Neighbourhood Total unique values = 81

Modelling

Model	Method	Model Evaluation		
 Logistic Regression Decision Tree Random Forest XGBoost Those four models are chosen to be able to do classification (Yes / No) based on the features to predict No_Show.	 Baseline Undersampling Oversampling SMOTE Because the data is imbalanced (20:80), imbalanced handling should be done.	 Recall F1 Score Imbalanced nature of the data and to focus on False Negative. 		

Model Evaluation

index	Model	Method	Accuracy	Precision	Recall	F1
0	Logistic Regression	baseline	0.793802	0.331818	0.01628	0.031037
1	Decision Tree	baseline	0.734268	0.338297	0.324264	0.331132
2	Random Forest	baseline	0.796155	0.492848	0.169045	0.251744
3	XGBoost	baseline	0.79914	0.53481	0.075379	0.132134
0	Logistic Regression	undersampling	0.653291	0.309718	0.577163	0.403115
1	Decision Tree	undersampling	0.6171	0.292102	0.62355	0.397837
2	Random Forest	undersampling	0.624565	0.318799	0.748439	0.447139
3	XGBoost	undersampling	0.613255	0.319349	0.801293	0.456689
0	Logistic Regression	oversampling	0.653834	0.309935	0.576048	0.403027
1	Decision Tree	oversampling	0.723411	0.333877	0.365299	0.348882
2	Random Forest	oversampling	0.774214	0.420006	0.296833	0.347837
3	XGBoost	oversampling	0.631577	0.326967	0.771186	0.45923
0	Logistic Regression	oversampling SMOTE	0.781724	0.351351	0.089875	0.143136
1	Decision Tree	oversampling SMOTE	0.705225	0.314327	0.383586	0.34552
2	Random Forest	oversampling SMOTE	0.757747	0.381303	0.311998	0.343187
3	XGBoost	oversampling SMOTE	0.751821	0.37654	0.340767	0.357762
0	Logistic Regression	undersampling - scaled	0.660122	0.31198	0.560437	0.400829
1	Decision Tree	undersampling - scaled	0.615834	0.288026	0.60727	0.39073
2	Random Forest	undersampling - scaled	0.634427	0.322405	0.728145	0.446924
3	XGBoost	undersampling - scaled	0.62461	0.323459	0.779215	0.45715

The best model is XGBoost with undersampling, with Recall Score of 80%.

This means, out of positive value (No_Show = Yes), the model will predict 80% to be true.

Model Evaluation

	Model	Method	Accuracy	Precision	Recall	F1
3	XGBoost	undersampling	0.613255	0.319349	0.801293	0.456689
2	Random Forest	undersampling	0.624565	0.318799	0.748439	0.447139
0	Logistic Regression	undersampling	0.653291	0.309718	0.577163	0.403115
1	Decision Tree	undersampling	0.617100	0.292102	0.623550	0.397837

The best model is XGBoost with undersampling, with Recall Score of 80%.

This means, out of positive value (No_Show = Yes), the model will predict 80% to be true.

• Conclusion

Conclusion

- Overall, the No_Show rate of patients is 20%. This number is consistent if we look closely at each features related to patient's profile.
- The time of scheduling, appointment, and waiting days has higher chance in affecting patients to not attend.
- Beside same day, patient has waiting days ranging from 1 180 days. We should focus on these patients.

Recommendation

Push notification regarding Appointment Schedule that gives reminder on timely basis.

Integrate appointment into Calendar App

Open for scheduling and appointment on weekends. But this should be analysed further with the calculation of additional labor and operational cost.