Lab A: Multi-rate Filtering

Team 7 朱祐葳 蘇莙傑 吳宜凡

Outline

- Introduction
- 10.4 Using Decimation in Filters
- 10.5 Using Interpolation in Filters
- 10.6 Multi-stage Decimation

Introduction

10.4 Using Decimation in Filters

Using Decimation in Filters

Down sampling + lowpass FIR filter

Using Decimation in Filters

Down sampling + lowpass FIR filter

Frequency Aliasing

Algorithmic Decimation Design Parameters

- Pipeline II = down sampled rate
- Read data in original rate for efficiency
- Minimise the area

Algorithmic Decimation

Illustration 145: Schedule of Decimation by Two

Algorithmic Decimation: READ Pipeline

□ Timing

original

Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.00 ns	3.455 ns	0.62 ns

■ Latency

Summary

Latency (cycles)		Latency (absolute)		Interval (cycles)			
min	max	min	max	min	max	Туре	
1	27	5.000 ns	0.135 us	1	27	none	

□ Timing

MAC unroll

Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00 ns	8.702 ns	1.25 ns

■ Latency

□ Summary

Latency (groles)		les) Latency (absolute)		Interval (cycles)			
min	max	min	max	min	max	Туре	
1	23	10.000 ns	0.230 us	1	23	none	

■ Timing

READ pipeline

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.00 ns	3.455 ns	0.62 ns

■ Latency

■ Summary

Latency (cycles)		Latency (absolute)		Interval (cycles)		
min	max	min	max	min	max	Туре
1	21	5.000 ns	0.105 us	1	21	none

□ Timing

loop unroll

Summary

Clock	Target	Estimated	Uncertainty
ap_cll	10.00 ns	8.702 ns	1.25 ns

■ Latency

■ Summary

Later (cycles)		Latency (absolute)	Interval	(cycles)	
min	max	min	max	min	max	Type
1	9	10.000 ns	90.000 ns	1	9	none

Algorithmic Decimation

```
if ( x->available(RATE)){
    READ:for(int i=0;i<RATE;i++)
    x_int = x->read();
    regs << x_int;

    MAC:for (int i = 0; i<N; i++) {
        acc += h[i]*regs[i];
    }
    y->write(acc);
}
```

Main loop

MAC loop

Testbench

```
for (i = 0; i < NUM_SAMPLES; i++) {
    signal = 0.98 * sin(2 * pi * i / 64);
    input[i] = signal;
    strmInput.write(signal);
    fir_filter(&strmInput, taps, &strmOutput);
}</pre>
```

Input Signal

Filter

Algorithmic Decimation


```
1 #include <ac_channel.h>
 2 #include <ac fixed.h>
 3 #include "shift class.h"
 4 void dec2(ac_channel< ac_fixed<8,1> > &x,
                   ac_fixed<8,1> h[4],
 5
 6
                   ac_channel< ac_fixed<19, 4 >  &y){
     static shift_class<ac_fixed<8,1>,4> regs;
     ac_fixed<19,8>temp=0;
     static ac_int<1,0> cnt;
10
11
     regs << x.read();
12
    MAC: for (int i = 0; i < 4; i++) {
13
       temp += h[i]*regs[i];
14
15
    if(cnt==1)//Phase 1
16
      y.write(temp);
17
    cnt++;
18 }
PATH: $MGC HOME/shared/examples/docs/bluebook/filter/dec2 pure.cpp
```


Illustration 146: Understanding Decimation

Phase1: y[5] = h[0]*regs[0] + h[1]*regs[1] + h[2]*regs[2] + h[3]*regs[3]

Phase0: temp = h[2]*regs[1] + h[3]*regs[2]

Phase1: y[5] = h[0]*regs[0] + h[1]*regs[1] + temp

Shift and Discard

Shift, compute and write output

Algorithmic vs. Manual Decimation: Constraints

- All IO mapped to wire enable interfaces
- All arrays mapped to registers
- IO input rate=1 sample/clock (algorithmic)
- Main loop pipelined with II=2 (algorithmic) / input rate (manual)
- All loops (algorithmic) / MAC loop (manual) fully unrolled

10.5 Using Interpolation in Filters

Using Interpolation in Filters

Up sampling + lowpass FIR filter

Using Interpolation in Filters

Up sampling + lowpass FIR filter


```
void inter(hls::stream<ap_fixed<W0,I0> >* x,
15
                 ap_fixed<W1,I1> h[N],
16
                 hls::stream<ap_fixed<_WN<W0,W1,N>::val,_WN<I0,I1,N>::val> >* y) {
         static shift_class<ap_fixed<W0,I0>,N> regs;
         ap_fixed<_WN<W0,W1,N>::val,_WN<I0,I1,N>::val> acc = 0;
         WRITE: for (int i = 0; i < RATE; i++){
20
             if(i == 0)
21
                 regs << x->read();
22
             else
                 regs << 0:
24
             MAC: for (int j = 0; j < N; j++) {
                 acc += h[j] * regs[j];
             y->write(acc);
             acc = 0;
```

main loop

MAC loop

Illustration 147: Schedule of Interpolation by Two

Write pipeline **Performance Estimates ■ Timing ■ Summary** Clock Target Estimated Uncertainty 3.957 ns ap_clk 5.00 ns 0.62 ns ■ Latency ■ Summary Latency (cycles) Latency (absolute) Interval (cycles) min min min Type max max 0.180 us 0.180 us 36 36 36 36 none □ Detail ■ Instance **⊞** Loop

Utilization Estimates

original

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	722	120
Expression	12	140	140	141	-
FIFO	-	-	7-0	(5)	180
Instance	5 -	1	123	317	
Memory	-	<u> </u>	2000	-	120
Multiplexer	12	140	-	33	-
Register	-	.=.	3	-	1=3
Total	0	1	126	350	0
Available	280	220	106400	53200	0
Utilization (%)	0	~0	~0	~0	0

Utilization Estimates

MAC pipeline

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	0 5 0	-	-	-
FIFO	9	320	-	-	121
Instance	0	2	224	306	(4)
Memory	-	-			-
Multiplexer	-	17 - 30	-	33	-
Register	2	-	3	152	_
Total	0	2	227	339	0
Available	280	220	106400	53200	0
Utilization (%)	0	~0	~0	~0	0

Utilization Estimates Write pipeline

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	4	1941	1943	=	-
Expression		(-)	(-)	-	/ -
FIFO	-	-		100	(57)
Instance	0	1	269	426	127
Memory	4	121	-0.25		1=1
Multiplexer	Ħ	(-)	(-)	33	1 - 3
Register	-	6-5	3	-	67
Total	0	1	272	459	0
Available	280	220	106400	53200	0
Utilization (%)	0	~0	~0	~0	0

Utilization Estimates

loop unroll

Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	2	4	12		
Expression	- 8	0	0	216	-
FIFO	*	1			*
Instance	2	-	5	105	
Memory	8				3)
Multiplexer	23			152	-
Register	- 8	-	156		- 5
Total	0	4	161	473	0
Available	280	220	106400	53200	0
Utilization (%)	0	1	~0	~0	0

filter

MAC loop

pipeline II=input rate(2) unroll

Phase 0:
$$y[n] = h[0] * x1 + h[2] * x0$$

Shift input

Phase 1:
$$y[n] = h[1] * x1 + h[3] * x0$$

Shift zero

c.f. algorithmic interpolation Explicit code sharing - slightly better area?

```
void fir_filter(streamIn_t* x,
                     fixIn_t h[NUM_TAPS],
                     streamOut_t* y) {
         static shift class<fixIn t, NUM TAPS> regs;
 6
         static fixOut_t temp;
         static uint1 t cnt;
 8
         if (cnt == 0)
10
             regs << x->read();
11
         else
12
             regs << 0;
13
         MACO: for (int i = 0; i < S_RATE; i++) {
             temp += h[ i * S_RATE + cnt] * regs[ i * S_RATE + cnt];
14
15
16
         y->write(temp);
17
         temp = 0;
18
         cnt++;
```

Phase 0 filter

Phase 1

MAC loop

Performance Estimates I Timing Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.00 ns	4.170 ns	0.62 ns

■ Latency

■ Summary

Latency (cycles)		Latency (absolute)		Interval (cycles)			
min	max	min	max	min	max	Type	
12	12	50.000 ns	60.000 ns	12	12	none	

Performance Estimates

□ Timing

loop unroll

Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00 ns	8.599 ns	1.25 ns

■ Latency

Summary

Latency (cycles)		Latency (absolute)		Interval (cycles)			
min	max	min	max	min	max	Туре	
8	8	80.000 ns	80.000 ns	8	8	none	

Performance Estimates MAC pipeline **■ Timing ■ Summary** Estimated Clock Target Uncertainty 5.00 ns ap_clk 4.170 ns 0.62 ns ■ Latency **■ Summary** Latency (absolute) Latency (cycles) Interval (cycles) Type min min max min max 5.000 ns 75.000 ns 15 none 15

Utilization Estimates original

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	120	<u> </u>	<u>~</u>	-	<u> 10</u>
Expression	-	0	0	145	_
FIFO	.=0	-	-	-	-
Instance		-	5	105	7
Memory	42	2	<u> </u>	2	2
Multiplexer	-	<u>=</u>	=	89	-
Register	-	-	105	7	-
Total	0	Į,	110	339	0
Available	280	220	106400	53200	0
Utilization (%)	0	0	~0	~0	0

Utilization Estimates MAC pipeline

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	178	-	<u>-</u>		-
Expression	121	0	0	147	<u> </u>
FIFO	-	<u> </u>	2	=	<u> </u>
Instance	-	-	5	105	-
Memory	178	-	5	-	-
Multiplexer	121	<u> </u>	10	96	<u> </u>
Register	0	<u> </u>	170	32	4
Total	0	0	175	380	0
Available	280	220	100400	53200	0
Utilization (%)	0	0	~0	~0	0

Utilization Estimates

loop unroll

Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	2	- 4	-	-	2
Expression	2	0	0	162	2
FIFO	2		4	-	2
Instance	9	14	5	105	2
Memory	9	14	=		2
Multiplexer	2	74	4	60	2
Register	9	14	64	<u> </u>	2
Total	0	0	69	327	0
Available	280	220	106400	53200	0
Utilization (%)	0	0	~0	~0	0

Algorithmic vs. Manual Interpolation: Constraints

- All IO mapped to wire enable interfaces
- All arrays mapped to registers
- Main loop pipelined with II=input rate, input rate = 2 (algorithmic)
- All loops (algorithmic) / MAC loop (manual) fully unrolled

Algorithmic vs. Manual Interpolation

Algorithmic vs. Manual Interpolation

Performance Estimates

□ Timing

■ Summary

3	Clock	Target	Estimated	Uncertainty
	ap_clk	5.00 ns	4.294 ns	0.62 ns

□ Latency

■ Summary

Latency (cycles)		Latency (absolute)		Interval (cycles)			
min	max	min	max	min	max	Type	
11	11	55.000 ns	55.000 ns	11	11	none	

■ Detail

- **■** Instance
- **■** Loop

Performance Estimates

■ Timing

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.00 ns	4.170 ns	0.62 ns

■ Latency

■ Summary

Latency (cycles)) Latency (absolute)		Interval (cycles)			
min	max	min	max	min	max	Туре	
12	12	60.000 ns	60.000 ns	12	12	none	

■ Detail

- **■** Instance
- **⊞** Loop

Algorithmic vs. Manual Interpolation

Utilization Estimates

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	0.70	-	-	1.5
FIFO	2	121	-		<u>-</u>
Instance	0	2	224	306	943
Memory	-	-	-	-	-
Multiplexer	-	0.50	-	33	0.750
Register	2	22	3		2
Total	0	2	227	339	0
Available	280	220	106400	53200	0
Utilization (%)	0	~0	~0	~0	0

Utilization Estimates

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP -		-	-	-	-
Expression	(2)	0	0	147	2
FIFO	-0	=	=	(=)	<u> </u>
Instance	-	-	5	105	-
Memory	-	-	-	-	-
Multiplexer	(2)		20	96	2
Register	0	=	170	32	=
Total	0	0	175	380	0
Available	280	220	106400	53200	0
Utilization (%)	0	0	~0	~0	0

10.6 Multi-stage Decimation

Multi-stage Decimation

Multi-block Decimation

When no resource sharing between cascading decimation filters is needed

```
void dec2_2stage(streamIn_t &x,
 5
                      fixIn_t h[NUM_TAPS],
                      streamOut_t &y) {
 6
         static streamMid t y int;
         //#pragma HLS DATAFLOW
 8
         #pragma HLS stream variable=x depth=2
 9
         #pragma HLS stream variable=y_int depth=2
10
         #pragma HLS stream variable=y depth=2
11
                                                             BLOCK0
                                                                        pipeline II=4
12
13
         static bool f0_vld_in, f0_vld_out, f1_vld_out;
                                                             BLOCK1
                                                                        pipeline II=2
         f0 vld in = true;
14
15
         BLOCK0:dec<0,8,1,8,1,NUM_TAPS,S_RATE>(x,h,y_int,f0_vld_in,f0_vld_out);
16
         BLOCK1:dec<1,18,4,8,1,NUM_TAPS,S_RATE>(y_int,h,y,f0_vld_out,f1_vld_out);
```

Multi-block Decimation

Single-block Decimation

Can take advantage of decreasing rate of computation at each stage

```
void dec2_2stage(fixIn_t &x,
                     fixIn t h[NUM TAPS],
                     fixOut_t &y) {
         static fixMid_t y0_int = 0;
         static uint2_t cnt;
         uint2 t sel;
         if ( !cnt[0] ) {//sel for cnt==0 and cnt==2
10
             sel = 0;
11
12
13
         } else if( cnt == 3 ) {
14
             sel = 1;
          } else {
15
16
             sel = 2;
17
18
         switch(sel){
19
             case a.
                                                                               filter0
                 dec2<0>(x,h,y0 int);//read x every 4 clocks with II=2
20
                 preak;
21
22
                                                                               filter1
                 dec2<1>(y0_int,h,y);
23
24
                 break;
25
             default:
26
                 break;
27
28
         cnt++;
29
```

pipeline II=2, read rate = 4

- in mutually exclusive conditions
 - resource can be shared

pipeline II=2, read rate = 8 output rate = 16

Algorithmic Single-block Decimation

Single-block Decimation: Pipeline

Performance Estimates

■ Timing

original

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.00 ns	3.455 ns	0.62 ns

■ Latency

■ Summary

Latency (cycles)		Latency (Latency (absolute)		Interval (cycles)	
min	max	min	max	min	max	Туре
24	24	0.120 us	0.120 us	24	24	none

■ Detail

■ Instance

■ Loop

Performance Estimates

□ Timing

MAC pipeline

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.00 ns	3.744 ns	0.62 ns

■ Latency

■ Summary

	(cycles)	Interval	Latency (cycles) Latency (absolute)		tency (cycles)	
Туре	max	min	max	min	max	min
none	15	15	75.000 ns	75.000 ns	15	15

■ Detail

■ Instance

■ Loop

Performance Estimates

■ Timing

loop unroll

Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00 ns	9.400 ns	1.25 ns

■ Latency

Summary

Latency (cycles)		Latency (absolute)		Interval		
min	max	min	max	min	max	Type
1	9	10.000 ns	90.000 ns	1	9	none

□ Detail

■ Instance

⊞ Loop

Single-block Decimation: Pipeline

Utilization Estimates Summary Original

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	2	-	-	-
Expression	-	1-0	0	170	-
FIFO	2	_	_		_
Instance	=	143	10	230	-2
Memory	-	-	-	-	-
Multiplexer	-	-	-	107	-
Register	2	_	325	-	_
Total	0	2	335	507	0
Available	280	220	106400	53200	0
Utilization (%)	0	~0	~0	~0	0

Utilization Estimates MAC pipeline

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	=	2	=	=	=
Expression	-	-	0	178	*
FIFO	-	-	70	-	34
Instance	_	2	10	230	2
Memory	127	-	4	-	#
Multiplexer	-	-	- 8	131	=
Register	0	-	432	64	74
Total	0	2	442	603	0
Available	280	220	106400	53200	0
Utilization (%)	0	~0	~0	1	0

Utilization Estimates Summary IOOP unroll

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	82	7	-	- 4	121
Expression	12	0	0	68	125
FIFO	12	-	-	2	125
Instance	12	=	10	230	626
Memory	-	=	-	2	125
Multiplexer	12	=	-	107	826
Register	12	=	210	4	828
Total	0	7	220	405	0
Available	280	220	106400	53200	0
Utilization (%)	0	3	~0	~0	0

Manual Single-block Decimation

Can take advantage of decreasing rate of computation at each stage

```
if(!phase cnt[0])//if even counts
19
             sel phase = 0;
20
         else if (phase cnt % 4 == 3)//if every 4th odd count
             sel_phase = 1;
         else
             sel_phase = 3;//do nothing
24
         if ( phase cnt % 4 == 0 ){//read at rate of 4
             x int = x->read();
             f0 vld in = true;
         } else
             f0 vld in = false;
31
         switch(sel_phase){
32
33
                 f0.exec(x_int,h,y0_int,f0_vld_in,f0_vld_out);
34
                 break;
                 f1.exec(y0_int,h,y1_int,f0_vld_out, f1_vld_out);
                 iT(TI_VIa_out) {
                      y->write(y1_int);
                  break:
41
             default:
                  break;
43
         phase_cnt++;
```

phase_cnt is used to count all phases (16 in total)
coarse grain counter

filter0

filter1

- in mutually exclusive conditions
 - resource can be shared

read input at rate 4: no need be larger than f0 read rate * sampling rate

```
if(!phase_cnt[0])//if even counts
   sel_phase = 0;
else if (phase_cnt % 4 == 3)//if every 4th odd count
    sel_phase = 1;
else
    sel_phase = 3;//do nothing
if ( phase_cnt % 4 == 0 ){//read at rate of 4
   x_int = x->read();
   f0_vld_in = true;
} else
   f0_vld_in = false;
                                                  filter0
switch(sel_phase){
        f0.exec(x_int,h,y0_int,f0_vld_in,f0_vld_out);
       break;
       f1.exec(y0_int,h,y1_int,f0_vld_out, f1_vld_out);
       if(fi_via_out) {
                                                  filter1
           y->write(y1_int);
       break;
    default:
       break;
phase_cnt++;
```

cnt	read input	f0 call	f0 output	f1 call	f1 output
0000	x 🗀	Х			
0001	read rate	= 2			
0010		X		write	rate = 4
0011				x 🖒	X
0100	x 🗀	X			
0101		write	rate = 4		
0110		x 🖒	x		
0111				X	
1000	x 🗀	Х	read rate	= 2	
1001					
1010		Х			
1011				X	
1100	x 🖒	Х			
1101					
1110		x 🗀	x		
1111				x	47

Manual Single-block Decimation

Multi-stage Decimation Comparison

https://github.com/yuweitt/HLS-CodingStyle-FIR_FILTER