Structure of Kaolinite and Influence of Stacking Faults: Reconciling Theory and Experiment Using Inelastic Neutron Scattering Analysis

by C. E. White, G. J. Kearley, J. L. Provis, and D. P. Riley

J. Chem. Phys. 138, 194501 (2013)

Kaolinite [kéiələnàit]

1:1 layered clay mineral
Al₂Si₂O₅(OH)₄ or Al₂O₃ · 2SiO₂ · 2H₂O

• Name derived from Chinese village Kao-Ling (高岭/高嶺, Gāolǐng)

 Used in ceramics / porcelain, toothpaste, cosmetics, paint, production of paper, etc.

Kaolinite Structure

FIG. 1. Schematic representation of kaolinite (depicted as a P1 unit cell). The 1:1 layering of silica and alumina sheets is labeled, as are the two types of H-atoms present (*inner* H-atoms and *inner surface* H-atoms).

Methods

 INS (inelastic neutron scattering) data collected at 30 K at ISIS, Rutherford Appleton Lab, UK

- DFT calculations by VASP code with PBE
 - DFT-NCA (normal coordinate analysis)
 - DFT-MD

 INS spectrum calculated by CLIMAX program from vib. frequencies and atomic displacements

INS Spectra

FIG. 2. Experimental INS spectrum of kaolinite (KGa-1b) and the calculated spectrum of the standard kaolinite structure³ using normal coordinate analysis with force constants calculated by DFT (DFT-NCA).

INS Spectra with Stacking Faults

Contributions from Different H-Atoms

Conclusion

 Computed INS spectrum with standard unit cell structure of kaolinite agrees well with experiment between 500 – 1200 cm⁻¹, but shows discrepancies at 200 – 400 cm⁻¹

- Incorporation of stacking faults gives better agreement with experiment
 - -0.3151a 0.3151b