Systems Biology 551-1174-00L

Modeling Metabolic Networks: Flux Balance Analysis

30 Mar, 2017 Uwe Sauer, Molecular Systems Biology Jörg Stelling, BSSE

Content:

- From textbook biochemistry to genome-scale stoichiometric models (US)
- The solution space of stoichiometric models (JS)
- Flux balance analysis (JS)

Recap: Relationship between metabolite [conc] and fluxes are mass balances and kinetic equations

- concentrations and fluxes are intertwined
- dynamic ODE modelling required for considering metabolite dynamics
- in steady state we can work with mass balances alone because all fluxes are balanced and concentrations remain constant.

How to achieve a steady state in practise?

What computational challenges arises when modeling dynamics?

Restricting Scope to Steady State Greatly Simplifies the Analysis (and reduces insights!)

Differential Eqn Modeling vs FBA

- ODE fitting in exercise 5 allowed to test whether the dynamics of metabolite concentrations can be explained by a model (that represents our current knowledge of a biological process, glycolysis in the specific case) or needs further knowledge such as regulation. There is no other way to understand/check for consistency between dynamic experimental data and existing knowledge.
- ODE models require parameters for each reaction that must be obtained by fitting the model to data. The computational problem of parameter identification scales poorly with model size and lacking prior knowledge, because many (often non-linear) combinations of parameters lead to the same output. Due to this "curse of dimensionality" for a global, non-linear search in high-dimenstional spaces, mechanistic ODE modeling is typically restricted to smaller systems (eg a single metabolic or signaling pathway)
- If we can ensure that concentrations do not change during the period of analysis
 (ie system is in steady state), the problem can be simplified in metabolism by
 considering only balanced material fluxes in the network. Because of this
 computational simplification (to linear mass balance equations) also large
 networks become tractable. Methods that achieve that are constraint-based
 analyses. We will treat here one of them called flux balance analysis.

the more reactions the harder it gets to identify the parameters for the matrix.

5. Modelling Large Metabolic Networks: Flux Balance Analysis (FBA)

will occur in exam 100% (pure pen and paper calculation)

 Understand biological basis of constructing genome-scale stoichiometric models and their key elements.

(eg requirements, optimality assumption)

- Understand principles of steady-state as a key simplification/assumption to make use of large scale models.
- Learn to incorporate biological assumptions into steady-state FBA.

Exercise 6

Familiarize with FBA basics on a simple system with pen-and-pencil and computational modeling

- apply linear optimization to find a flux distribution.
- analyze the effect of constraints and optimization function on flux solution.

Recap: Requirements for Different Modeling Approaches

Model class

Topological (steady state)

Steady state

Stoichiometric (steady state)

our focus ->

Mechanistic (dynamic)

Level of abstraction

Interaction

Required information

Components and unspecified connections must be known

Example applications

- Genetic networks
- Protein-protein interaction
- Metabolite-protein interaction

Reaction stoichiometry

 $A + B \longleftrightarrow C \longrightarrow D$

Mass and energy balances thermodynamics (directionality)

Metabolic networks

- flux balance analysis
- elementary flux modes
-

Enyzme mechanism and regulation

Kinetic parameters

Kinetic models (including regulation)

The Problem to be Addressed: What Goes on Inside the Cell?

Given some measureable fluxes in/out of a cellular system, what is the underlying intracellular metabolism? In steady state!

Fluxes IN Fluxes OUT

Constraint-Based Stoichiometric Modeling

- Modeling and simulation concept primarily suited for metabolism
- Based primarily on mass balances (no parameters!)
- Many possible solutions exist how fluxes could be balanced!
- For steady state only !!
- What is the idea behind constraintbased modeling?
 - Not so much to make specific predictions, but rather to exclude impossible states in the model and analyze "what is left"!

For constraint-based modeling, we need to reconstruct a stoichiometric network model, ideally comprising as many metabolic reactions as possible!

Reconstruction (1)

Mass balance for steady-state:

$$\frac{dX}{dt} = -v_1 + v_2 = 0$$

$$\frac{dX_i}{dt} = s_{iI} \bullet v_I + \dots + s_{in} \bullet v_n = 0$$

Stoichiometric matrix (S)

n reactions

$$\begin{bmatrix} S_{il} & \dots & S_{in} \\ \vdots & \ddots & \vdots \\ S_{ml} & \dots & S_{mn} \end{bmatrix} \bullet \begin{bmatrix} v_l \\ \vdots \\ v_n \end{bmatrix} = \overrightarrow{0}$$

Reconstruction (2)

Glycolytic reactions	Genes
[c]GLC + ATP \longrightarrow G6P + ADP + H	glk
[c]G6P	pgi
$[c]ATP + F6P \longrightarrow ADP + FDP + H$	pfkA, pfkB
[c]FDP → DHAP + G3P	fbaA, fbaB
[c]DHAP ↔ G3P	tpiA
$[c]G3P + NAD + PI \leftrightarrow 13DPG + H + NADH$	gapA, gapC1, gapC2
[c]13DPG+ADP \longleftrightarrow 3PG+ATP	pgk
[c]3PG ↔2PG	gpmA, gpmB
[c]2PG \longleftrightarrow H ₂ O + PEP	eno
[c]ADP + H + PEP \longrightarrow ATP + PYR	pykA, pykF
	[c]GLC +ATP \rightarrow G6P + ADP + H [c]G6P \leftrightarrow F6P [c]ATP + F6P \rightarrow ADP + FDP + H [c]FDP \leftrightarrow DHAP + G3P [c]DHAP \leftrightarrow G3P [c]G3P + NAD + PI \leftrightarrow 13DPG + H + NADH [c]13DPG + ADP \leftrightarrow 3PG + ATP [c]3PG \leftrightarrow 2PG [c]2PG \leftrightarrow H ₂ O + PEP

ATP	-1
GLC	-1
ADP	1
G6P	1
Н	1
F6P	0
FDP	0
DHAP	0
G3P	0
NAD	0
PI	0
13DPG	0
NADH	0
3PG	0
2PG	0
PEP	0
H,O	0
PÝR	0
	HEX1

Reconstruction (2)

Reconstruction (3)

Where do we get the reactions for a given organisms from?

- Textbooks
- Scientific literature
- Databases (KEGG, Brenda, MetaCyc etc)
- Genome sequences

Genome-scale: Reconstruct matrix for the about 1000 reactions of metabolism

What other issues do we need to take care off?

- Reaction stoichiometry and directionality
- Cofactor specificity
- Localization of reactions (compartments)
- Special reactions (eg respiratory chains)

Reconstruction (4) "The Biomass Flux"

To account for new cells being made, we need biomass composition ("stoichiometry") and energy for assembly/polymerization!

Biosynthetic Building Blocks

All cellular macromolecules are synthesized from 11 carbon precursors and 3 cofactors

Glucose-6-P

P-enol-pyruvate

Fructose-6-P

Pyruvate

Ribose-5-P

Acetyl-CoA

Erythrose-4-P

 α -Ketoglutarate

Triose-P

(Succinyl-CoA)

3-Phosphoglycerat

Oxaloacetate

All are intermediates of glycolysis, TCA cycle or PP pathway

But how much is needed of each?

In the following we take a textbook approach. Later we will do it computationally.

Cofactors:

ATP, NADPH, NADH

how many biomass units do we get?

Physiology of the bacterial cell: A molecular approach Neidhardt, Ingraham, Schaechter, Sinauer Ass. 1990

BIOSYNTHESIS AND FUELING

Precursor metabolite		Bios	ynthetic pathway	Building blocks
		1 Enzyme 1 NH ₄ 1 NADPH ₂		
Pyruvate —		3 Enzymes	1 Enzyme 1 NH ₄ 1 NADPH ₂	• Valine
			4 Enzymes 1 -P 1 NADPH2 1 NH -1 NADH2	Leucine
Oxaloacetate -	l Enzyme → l NH;		1 Enzyme 2 -P 1 NH4	Asparagine Aspartate
	1 NADPH ₂	Pyro 2 Enzymes 1 -R 1 NADPH ₂	ivate 6 Enzymes 1 NH 4 Diamino- 2 NADPH2 pimelic acid 1 -P	Lysine
		1 Enzyme 1 NADPH ₂	5 Enzymes 5 NADPH ₂ 6-P	→ Methionine
		2 Enzymes	5 Enzymes	Threonine
			1 Pyruvste 2 NADPH ₂	Isoleucine
Ribose 5- phosphate		-3 -3 1 3	P NADH; NADH; NH;	Histidine

ETH zürich

0

0

0

0

0

0

0

0

0

1

0

0

0

0

139

Stoichiometric Modeling of Biomass Demands

Protein composition:

0.492 mmol alanine + ... + 0.514 mmol valine + 39.94 mmol ATP => 1 g Protein + 39.94 ADP + 39.94 P_i

Definition of biomass flux depends on:

- anabolic biochemistry
- macromolecular synthesis
- composition of macromolecules in a cell
- cellular content of macromolecules (does that remain constant?)

Biomass Stoichiometry: Building Block Requirements for 1 g of Cells

Metabolite Amount required

Glucose-6-P	205	NADH -3547
Fructose-6-P	71	NADPH 18225
Ribose-5-P	898	ATP 18485
Erythrose-4-P	361	
Triose-P	129	µmol / g _{cells}
3-Phosphoglycerat	1496	
P-enol-pyruvate	720	
Pyruvate	2833	These are the synthesis costs for
Acetyl-CoA	3748	building blocks like nucleotides and
lpha-ketoglutarate	1079	amino acids
Succinyl-CoA	10	What is missing in terms of cost? What is the currency for these additional
Oxaloacetate	1787	costs?

Reconstruction (4) Biomass Vector

To quantify the biomass (OUT) flux, we need: Biomass composition ("stoichiometry") & energy for polymerization!

cells, including stoichiometric composition and energy for polymerization!

Reconstruction (5) Adding constraints

Defining reaction directions

Irreversibility/Reversibility (internal reactions)

$$0 \le v_i \le \beta_i$$
 for v_i irreversible $\alpha_i \le v_i \le \beta_i$ for v_i reversible

we can set reversibility under the assumed conditions of the cell and by using biochemical logic

Ex. when there is ample ATP, reaction surely wont go the other way around too (reactions assumed to be irreversible)

On what principle is that definition based on?

Matrix Consists of 3 Sets of Processes

- Intracellular reactions R
- Intracellular transport reactions T
- Exchange fluxes E
 - used to define growth there are more cell the conditions (eg glucose uptake rate, changes too O2 consumption rate)
 - biomass production rate μ
 is part of this set of fluxes

Ex. glucose disappears, but there are more cells at the end. in itself all is balanced, but the conc. of glucose in medium changes, and there are more cells **Constraints on exchange fluxes** and conc. of CO2 **define growth conditions**

$$0 \le e_i \le \beta_i$$
 for products

$$\alpha_i \le e_i \le 0$$
 for substrates

Which fluxes are balanced – which are not? ie which metabolite [conc] are in steady state?

Genome-scale metabolic reconstructions

Organism	Genes	SKI	N_g	N _m	N _r	Status	Refs
Bacteria							
Bacillus subtilis	4,225	4.8	614	637	754	C, E	95
Escherichia coli	4,405	55.1	904 720 961	625 438 NA	931 627 1,107	C, E C, E C	39 92 53
Francisella tularensis	1,804	ND	350‡	NA	429	С	68
Geobacter sulfurreducens	3,530	ND	588	541	523	C, E	105
Haemophilus influenzae	1,775	8.9	296 400	343 451	488 461	C, E C, E	96 97
Helicobacter pylori	1,632	13	341 291 301‡∥	485 340 442	476 388 533∥	C, E C, E C	61 98 63
Lactococcus lactis	2,310	ND	358	422	621	C,E	99
Mannheimia succiniciproducens	2,463	ND	335	352	373	C, E	100
eseudomonas aeruginosa	5,640	5.7	546 718	467 623	542 800	C, E C	1 67 4
Staphylococcus aureus	2,702	16	619	571	641	C, E	4
Streptomyces coelicolor	8,042	0.13	700	500	700	C, E	36
rchaea							
Methanococcus jannaschii	1,821	0.3	436 [‡]	510	609	С	64
Methanosarcina barkeri	5,072	ND	692	558	619	C, E	106
ukarya							
Arabidopsis thaliana	28,848	ND	1,418	NA	894	С	66
Homo sapiens	28,783	48.5	2,709‡	661	1,093	С	65
Mus musculus	28,287	15.6	1,156§	872	1,220	C, E	94
Plasmodium falciparum	5,342	ND	737 [‡]	525	697	С	3
Saccharomyces cerevisiae	6,183	10.6	750 708	646 584	1,149 1,175	C, E C, E	45 93

1000 models

^{*}Several non-curated automated reconstructions are also available from KEGG52 and BioCyc69, ‡Only enzyme numbers were reported. §Genes as reported101. Latest numbers from HpCyc63. 1J. Edwards, personal communication. C, a curated network; E, a network that is evaluated using computational modelling methods that are based on a stoichiometric matrix; NA, not available; ND, not determined; N,, number of genes; N, number of metabolites; N, number of reactions; SKI, reported species knowledge index12.

- We have learned ...
 - what genome-scale metabolic networks models are (they only consist of reaction stoichiometry!)
 - how they are reconstructed from known biochemistry
- What do we have now? A model consisting of many mass balance equations that is greatly underdetermined – i.e. many possible solutions exist !!!

Exercise 6: FBA

Goal

 Learning the basic ingredients of Flux Balance Analysis

 Simulate and interpret flux distributions in a toy metabolic model

