Detecção de Documentos Acadêmicos Falsificados: Uma Solução Baseada em Aprendizado de Máquina

Autor(es) anônimo(s)¹

¹Endereço anônimo

e-mail(s) anônimo(s)

Abstract. In recent years in Brazil, the growth in entrants, graduates, and higher education institutions has intensified challenges in validating academic credentials, since verification remains largely manual, error-prone, and vulnerable to fraud. This article revisits the state of the art in machine-learning-based detection of forged academic documents and proposes a hybrid prototype that combines multimodal analysis, clustering, anomaly detection, and graded classification to assign a legitimacy score. By integrating the prototype into Jornada do Estudante, documents can be automatically validated prior to recording on a distributed ledger, thereby enhancing the security and reliability of credential issuance.

Resumo. Nos últimos anos, no Brasil, o crescimento de ingressantes, de formandos e de instituições de ensino superior intensificou os desafios relacionados à validação de certificados acadêmicos, já que a verificação é majoritariamente manual, sujeita a erros e a aceitação de fraudes. Este trabalho revisita o estado-da-arte em detecção de documentos falsificados via aprendizado de máquina, e propõe um protótipo híbrido que combina análise multimodal, clustering, detecção de anomalias e classificação por grau de legitimidade. Ao integrar o protótipo à Jornada do Estudante, documentos podem ser validados automaticamente antes do registro em sua rede distribuída, aumentando a segurança e a confiabilidade do credenciamento.

1. Problemática

Ao longo da última década, observa-se no Brasil um crescimento contínuo na emissão de diplomas de ensino superior, com um aumento superior a 31% de formandos desde 2013 [INEP 2024]. Embora isso revele um saldo extremamente positivo, também traz à tona desafios que precisam ser superados, entre eles a temática explorada neste estudo: a melhoria nos processos de regulação, supervisão e avaliação dessas emissões por parte do Ministério da Educação do Brasil (MEC).

Atualmente, a gerência, armazenamento e emissão de documentos acadêmicos, como diplomas e históricos escolares, é responsabilidade da instituição de ensino que os emite [MEC 1978]. Além disso, o processo, burocrático e não computadorizado, é suscetível a erros e até mesmo fraudes devido à ausência de transparência e redundância [Palma et al. 2019]. Assim, essa falta de modernização deixa brechas que são conhecidas e utilizadas por agentes mal-intencionados. Isso possibilita a criação de falsas instituições especializadas na venda de pacotes que incluem diversos certificados contrafeitos amparados em documentos oficiais adulterados, de forma a conferir aparência de legalidade a diplomas sem qualquer base acadêmica real [Dias and Leal 2022].

É neste cenário que o MEC, em parceria com o Ministério da Economia e diversas universidades federais, disponibiliza o sistema da Jornada do Estudante, que permite que discentes acompanhem suas trajetórias estudantis junto ao acesso a seus documentos acadêmicos pertinentes. Além disso, esse sistema também tem o potencial de tornar-se uma plataforma conjunta para a emissão e registro destes certificados e até mesmo dados regulatórios das instituições de ensino superior [RNP 2023]. Em consonância a essa iniciativa, o presente estudo trata da implementação e validação de um protótipo de software que combina diferentes técnicas de aprendizado de máquina, capaz de identificar certificados falsos antes de sua inserção nesse ambiente.

2. Estado da Arte

A pesquisa acadêmica sobre identificação de documentos falsificados é escassa, especialmente quando comparada aos estudos sobre detecção de fraudes. Enquanto a detecção de fraudes foca em adulterações de arquivos originais (como a mudança de notas, datas ou nomes), a de documentos falsificados busca identificar aqueles completamente forjados desde sua criação, sem terem sido emitidos por instituições oficiais. Essa distinção é importante porque a caracterização e o conjunto de desafios práticos diferem. Entretanto, os métodos e técnicas utilizadas muitas vezes se sobrepõem e complementam, como é o caso deste estudo, que aproveita referências em ambas as áreas e busca acrescentar às poucas soluções encontradas para a classificação de documentos falsificados em sua concepção.

No domínio geral, predominam estratégias de visão computacional, como o artigo de [Jaiswal et al. 2022], que utiliza autoencoders convolucionais sobre imagens hiperespectrais para identificar incompatibilidades entre tintas, ou como o trabalho de [James et al. 2020], que introduziram outra perspectiva ao reformular o problema como comparação de grafos, em que obtém, via OCR, caixas delimitadoras de tamanho entre caracteres, utilizando-as para o treinamento de classificadores que detectam a manipulação de pixels. Alternativamente, também existem propostas, como a de [Boonkrong 2024], que utilizam funções hash e registros imutáveis, em blockchain, para verificação posterior.

As abordagens preventivas mais robustas combinam múltiplas tecnologias para melhorar a detecção, destacam-se: o trabalho de [Kim 2022], que integra blockchain e aprendizado de máquina para diplomas, onde hashes e máscaras geradas por redes (Mask R-CNN / Faster R-CNN) são registradas para verificação e consenso; o trabalho de [Jain and Wigington 2019], que demonstra a eficácia da análise multimodal de características textuais e visuais, combinando extração OCR, representações textuais (ULM-FiT, FastText, n-grams) e codificações visuais (VGG-16) com diferentes estratégias de fusão; e o trabalho de [Mohammed et al. 2024], que utiliza clustering sobre a extração de features visuais para a detecção de anomalias entre documentos.

3. Metodologia

O objetivo do estudo é rotular documentos com base em um nível de probabilidade de falsificação. Para isso, é realizada a análise, extração e fusão multimodal de características visuais e textuais dos documentos, o que resulta em uma representação unificada e concisa de cada um. Com base no agrupamento dessas representações de acordo com suas similaridades, detectores de anomalias são utilizados para a classificação de novos documentos

submetidos através da avaliação do grau de desvio em relação aos grupos identificados. Finalmente, essa pontuação é mapeada para categorias discretas de suspeita, fornecendo um nível de probabilidade de fraude para cada inserção.

A escolha dessa abordagem tem por base a premissa de que documentos falsificados apresentam inconsistências sutis, tornando-os atípicos em relação aos padrões estabelecidos por documentos legítimos, sendo detectáveis através da análise multimodal das características extraídas de diversos contextos. Assim, o processo completo consiste em duas etapas: treinamento dos modelos de referência e classificação de novos documentos.

3.1. Treinamento dos Modelos de Referência

A fase de treinamento inicia com a coleta de certificações acadêmicas diversas fornecidas por uma instituição de ensino, seguida do pré-processamento através de técnicas de normalização de imagens e aplicação de OCR. Com o dataset formado, cada amostra passa pelo bloco de extração multimodal e, com base nas representações obtidas desse processamento, um algoritmo de clustering é utilizado para identificar grupos de documentos com comportamentos similares, estabelecendo padrões dominantes de normalidade. Por fim, detectores de anomalias são treinados para cada padrão descoberto, gerando modelos de referência normais.

3.1.1. Extração Multimodal

O módulo de extração multimodal captura e combina características independentes e, no contexto deste estudo, complementares. Essa abordagem opera, em paralelo, três diferentes subprocessos de aprendizado profundo para a extração de features:

- Extração visual: utiliza métodos de visão computacional para extrair características ligadas a qualidade e consistência visual dos documentos. Inclui análise de textura, propriedades de fonte (espessura, tamanho, espaçamento), qualidade de assinaturas e selos e padrões de cores e contrastes;
- Extração textual: utiliza processamento de linguagem natural para extrair características linguísticas. Analisa distribuição de termos e consistência na formatação de números e datas, por exemplo;
- Extração estrutural: semelhante à extração visual, no entanto extrai características ligadas à organização espacial e estrutural dos documentos. Examina formatação de tabelas, alinhamentos, margens, espaçamentos e a disposição geral dos elementos no documento.

Por fim, as características extraídas são normalizadas, submetidas a técnicas de redução dimensional e fundidas, o que resulta em uma representação completa, unificada e compacta de cada documento. Isso permite que o sistema detecte tanto fraudes grosseiras, como a presença de um selo ou logotipo claramente apócrifo, quanto inconsistências sutis presentes em contrafações bem elaboradas, como divergências estatísticas entre termos utilizados ou variações microtipográficas.

3.2. Classificação de Novos Documentos

O fluxo de classificação de um novo documento reutiliza o mesmo pipeline de préprocessamento e extração multimodal para garantir consistência na representação. O resultado é comparado contra todos os modelos de referência normal. Cada modelo calcula um escore de anomalia baseado na distância, ou similaridade, em relação aos padrões estabelecidos. Essas pontuações representam a probabilidade de falsificação do registro. Finalmente, utilizam-se métricas de consenso para categorizar o arquivo, isto é, classificá-lo como normal ou em níveis de suspeição a partir de limiares de pontos.

Referências

- Boonkrong, S. (2024). Design of an academic document forgery detection system. *International Journal of Information Technology*, pages 1–13.
- Dias, P. and Leal, A. (2022). Sites vendem diploma de curso superior para quem sequer pisou em sala de aula: 'documentação 100% original, emitida de dentro da universidade', diz atendente. O Globo. Disponível em: https://oglobo.globo.com/brasil/noticia/2022/11/sites-vendem-diploma-de-curso-superior-para-pessoas-que-nao-concluira ghtml. Acesso em: 05 abr. 2025.
- INEP (2024). Censo da educação superior 2023: notas estatísticas.
- Jain, R. and Wigington, C. (2019). Multimodal document image classification. In 2019 International Conference on Document Analysis and Recognition (ICDAR), pages 71–77.
- Jaiswal, G., Sharma, A., and Yadav, S. (2022). Deep feature extraction for document forgery detection with convolutional autoencoders. *Computers & Electrical Engineering*, 99:107770.
- James, H., Gupta, O., and Raviv, D. (2020). Ocr graph features for manipulation detection in documents. *arXiv* preprint *arXiv*:2009.05158.
- Kim, S.-K. (2022). Blockchain smart contract to prevent forgery of degree certificates: Artificial intelligence consensus algorithm. *Electronics*, 11(14):2112.
- MEC (1978). Portaria mec/dau n 33 de 2 de agosto de 1978: Estabelece a sistemática para o registro de diplomas de curso superior. Ministério da Educação do Brasil.
- Mohammed, S., Nwobodo, L., and Ekene, N. (2024). Certificate fraud verification model using clustered-based classification approach. *Explorematics Journal of Innovative Engineering and Technology*, 5(1):60–72.
- Palma, L. M., Vigil, M. A. G., Pereira, F. L., and Martina, J. E. (2019). Blockchain and smart contracts for higher education registry in brazil. *International Journal of Network Management*, 29.
- RNP (2023). Blockchain da jornada acadêmica. Youtube. Disponível em: https://www.youtube.com/watch?v=xqezMbjCeTM. Acesso em: 13 mai. 2025.