Package 'pros'

December 15, 2018

December 15, 2018
Title Penalized Regression on Steroids
Version 0.1
Author Austin David Brown <pre></pre>
Maintainer Austin David Brown
scription This is a project for STAT8053 at the University of Minnesota.
Depends R (>= $3.5.1$)
License Licensed under the Apache-2 (https://www.apache.org/licenses/LICENSE-2.0) license.
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
R topics documented: cv.pros 1 predict.cv_pros 2 predict.pros 3 pros 3 Index 5
cv.pros Cross-validation

Description

The cv. pros function is used for K-fold cross-validation.

Usage

```
cv.pros(X, y, K_fold = 10, alpha = c(1, 0, 0, 0, 0, 0),
  lambdas = c(), step_size, algorithm = "proximal_gradient_cd",
  max_iter = 10000, tolerance = 10^(-8), random_seed = 0)
```

2 predict.cv_pros

Arguments

X is an $n \times m$ -dimensional matrix of the data. y is an $n \times m$ -dimensional matrix of the data.

alpha is a 6-dimensional vector of the convex combination corresponding to the pe-

nalization:

α₁ is the l¹ penalty.
α₂ is the l² penalty.
α₃ is the l⁴ penalty.

• α_4 is the l^6 penalty.

• α_5 is the l^8 penalty.

• α_6 is the l^10 penalty.

lambdas is a vector of dual penalization values to be evaluated.

step_size is a tuning parameter defining the step size. Larger values are more aggressive

and smaller values are less aggressive.

algorithm is the optimization algorithm

• proximal_gradient_cd uses proximal gradient coordinate descent.

• subgradient_cd uses subgradient coordinate descent.

max_iter is the maximum iterations the algorithm will run regardless of convergence.

tolerance is the accuracy of the stopping criterion.
random_seed is the random seed used in the algorithms.

Value

A class cv_pros

predict.cv_pros

Cross-validation Prediction

Description

The prediction function for cv.pros.

Usage

```
## S3 method for class 'cv_pros'
predict(cv_pros0bj, X_new)
```

Arguments

cv_pros0bj an object of class cv_pros

 X_{new} is an $n \times m$ -dimensional matrix of the data.

Value

A vector of prediction values.

predict.pros 3

Examples

```
cv = cv.pros(X_train, y_train)
pred = predict(cv, X_test)
```

predict.pros

Pros Prediction

Description

The prediction function for pros.

Usage

```
## S3 method for class 'pros'
predict(prosObj, X)
```

Arguments

pros0bj an object of class pros

X is an $n \times m$ -dimensional matrix of the data.

Value

A vector of prediction values.

Examples

```
fit = pros(X_train, y_train, lambda = .1)
pred = predict(fit, X_test)
```

pros

Pros

Description

The pros function is used to fit a single regression model with a specified penalization.

Usage

```
pros(X, y, alpha = c(1, 0, 0, 0, 0, 0), lambda, step_size,
  algorithm = "proximal_gradient_cd", max_iter = 10000,
  tolerance = 10^(-8), random_seed = 0)
```

4 pros

Arguments

 ${\sf X}$ is an $n \times m$ -dimensional matrix of the data.

y is an $n \times m$ -dimensional matrix of the data.

alpha is a 6-dimensional vector of the convex combination corresponding to the pe-

nalization:

• α_1 is the l^1 penalty.

• α_2 is the l^2 penalty.

• α_3 is the l^4 penalty.

• α_4 is the l^6 penalty.

• α_5 is the l^8 penalty.

• α_6 is the l^10 penalty.

lambda is the Lagrangian dual penalization parameter.

step_size is a tuning parameter defining the step size. Larger values are more aggressive

and smaller values are less aggressive.

algorithm is the optimization algorithm

• proximal_gradient_cd uses proximal gradient coordinate descent.

• subgradient_cd uses subgradient coordinate descent.

max_iter is the maximum iterations the algorithm will run regardless of convergence.

tolerance is the accuracy of the stopping criterion.

random_seed is the random seed used in the algorithms.

Value

A class pros

Index

```
cv.pros, 1
predict.cv_pros, 2
predict.pros, 3
pros, 3
```