2 Messbare Funktionen und das Lebesgue-Integral

TODO: Einleitung mit Bildern

2.1 Messbare Funktionen

Definition 2.1. Sei \mathcal{A} eine σ -Algebra auf $X \neq \emptyset$ und \mathcal{B} eine σ -Algebra auf $Y \neq \emptyset$. Eine Abbildung $f: X \to Y$ heißt \mathcal{A} - \mathcal{B} -messbar, wenn $f^{-1}(B) \in \mathcal{A} \ \forall B \in \mathcal{B}$.

Bemerkung 2.2. a) Sei $f: X \to Y$ $\mathcal{A}\text{-}\mathcal{B}\text{-messbar}$. Dann ist f $\mathcal{A}'\text{-}\mathcal{B}'\text{-messbar}$ für jede $\sigma\text{-Algebra }\mathcal{A}'$ auf X mit $A \subset \mathcal{A}'$ und \mathcal{B}' auf Y mit $\mathcal{B}' \subset \mathcal{B}$. Weiter ist die Einschränkung $f|_{X_0}: X_0 \to Y$ für jedes $X_0 \in \mathcal{A}$ $\mathcal{A}_{X_0}\text{-}\mathcal{B}\text{-messbar}$ (vgl. (1.1)).

- b) Wenn $A = \mathcal{P}(X)$ oder $\mathcal{B} = \{\emptyset, X\}$, dann ist $f: X \to Y$ $\mathcal{A}\text{-}\mathcal{B}\text{-messbar}$.
- c) Sei $A \subset X$. Setze $\mathbf{1}_A(x) := \begin{cases} 1 & , x \in A \\ 0 & , x \notin A \end{cases}$. Sei $B \in \mathcal{B}_d$. Dann gilt:

$$\mathbf{1}_{A}^{-1}(B) = \begin{cases} A & ,1 \in B \text{ und } 0 \notin B, \\ A^{c} & ,1 \notin B \text{ und } 0 \in B, \\ X & ,1 \in B \text{ und } 0 \in B, \\ \emptyset & ,1 \notin B \text{ und } 0 \notin B \end{cases}$$

d) Sei \mathcal{A} eine σ -Algebra auf $X \Rightarrow \mathbf{1}_A$ ist \mathcal{A} - \mathcal{B}_1 -messbar $\Leftrightarrow A \in \mathcal{A}$. $\mathbf{1}_{\Omega}$ ist nicht \mathcal{B}_1 - \mathcal{B}_1 -messbar.

Ana III, 10.11.2008

Satz 2.3. Seien A, B, C σ -Algebra auf $X, Y, Z \neq \emptyset$. Dann gelten:

- a) Wenn $f: X \to Y$ A-B-messbar und $g: Y \to Z$ B-C-messbar, dann ist $h:= g \circ f: X \to Z$ A-C-messbar.
- b) Seien $\emptyset \neq \mathcal{E} \subset \mathcal{P}(Y)$, $B = \sigma(\mathcal{E})$, $f: X \to Y$. Dann gilt: $f \ \mathcal{A}\text{-}\mathcal{B}\text{-}messbar} \Leftrightarrow f^{-1}(E) \in \mathcal{A} \ \forall E \in \mathcal{E}$.

Beweis. a) Sei $C \in \mathcal{C}$. Dann folgt, weil g messbar ist, dass $g^{-1}(C) \in \mathcal{B}$ gilt. Da auch f messbar ist, gilt auch $f^{-1}(g^{-1}(C)) \in \mathcal{A}$.

b) " \Rightarrow " ist klar, denn $\mathcal{E} \subset \sigma(\mathcal{E}) = \mathcal{B}$.

" \Leftarrow " zeigen wir mit dem Prinzip der guten Mengen: $f_*(\mathcal{A}) = \{C \subset Y : f^{-1}(B) \in \mathcal{A}\}$ ist eine σ -Algebra auf Y (siehe Übung). Nach Voraussetzung gilt $\mathcal{E} \subset f_*(\mathcal{A})$. Mit Lem 1.6 folgt $\sigma(f_*(\mathcal{A})) = f_*(\mathcal{A})$, d.h., $f^{-1}(B) \in \mathcal{A} \ \forall B \in \mathcal{B}$.

Definition 2.4. Sei $X \subset \mathbb{R}^d$ nichtleer, $X \in \mathcal{B}_d$. Die Funktion $f: X \to \mathbb{R}^k$ heißt Borel-messbar, wenn sie $\mathcal{B}(X)$ - \mathcal{B}_k -messbar ist.

Ab jetzt sei stets $\emptyset \neq X \in \mathcal{B}_d$ und "messbar" heiße stets Borel-messbar.

Satz 2.5 (Eigenschaften Borel-messbarer Funktionen). Seien $X \in \mathcal{B}_d$, $f, g: X \to \mathbb{R}^k$, wobei $f = (f_1, \dots, f_k)^T$. Dann gelten:

- a) f stetig $\Rightarrow f$ messbar
- b) f messbar $\Leftrightarrow f_1, \dots, f_k : X \to \mathbb{R}$ messbar
- c) $f, g \text{ messbar}, \alpha, \beta \in \mathbb{R} \Rightarrow \alpha \cdot f + \beta \cdot g : X \to \mathbb{R}^k \text{ messbar}$
- d) $f,g:X\to\mathbb{R}$ messbar $\Rightarrow f\cdot g:X\to\mathbb{R}$ und falls $f(x)\neq 0$ $\forall x\in X,$ dann ist $\frac{1}{f}:X\to\mathbb{R}$ messbar
- e) $f, g: X \to \mathbb{R}$ messbar $\Rightarrow \{x \in X : f(x) \ge g(x)\} \in \mathcal{B}(X)$. (Analog für ">")

Beweis. a) $U \subset \mathbb{R}^k$ offen $\stackrel{\text{f stetig}}{\Rightarrow} f^{-1}(U) \subset \mathcal{O}(X) \subset \mathcal{B}(X)$. Da $\mathcal{O}(X)$ Erzeuger von $\mathcal{B}(X)$ ist, folgt die Behauptung aus Satz 2.3b).

- b) " \Rightarrow ": Die Projektionen $p_j: \mathbb{R}^k \to \mathbb{R}, p_j(x) = x_j$, sind stetig und damit nach a) messbar. Damit $f_j = p_j \circ f$ messbar nach Satz 2.3a). " \Leftarrow ": Seien $a, b \in \mathbb{Q}^d$, $a \leq b$ (Erzeuger). $f(x) \in (a, b] \Leftrightarrow f_j(x) \in (a_j, b_j] \ \forall j \in \{1, \dots, k\}$. $f^{-1}((a, b]) = \bigcap_{j=1}^k \underbrace{f_j^{-1}((a_j, b_j])}_{\in \mathcal{B}(X) \text{ nach Vor.}} \in \mathcal{B}(X)$, also ist f messbar nach Satz 2.3b).
- c) Nach b) gilt: $h = (f, g)^T : X \to \mathbb{R}^{k+k}$ messbar. Ferner ist $\varphi : \mathbb{R}^{2k} \to \mathbb{R}, \varphi(x, y) = \alpha \cdot x + \beta \cdot y$ stetig und nach a) messbar.

 Satz 2.3a) $\alpha \cdot f + \beta \cdot g = \varphi \circ h$ messbar.
- d) Wie c) durch Stetigkeit der Multiplikation und Inversion.

e) Nach c) ist h = f - g messbar.

$$\{x \in X : f(x) \ge g(x)\} = \{x \in X : h(x) \ge 0\}$$

= $h^{-1}(\underbrace{\{y \in \mathbb{R} : y \ge 0\}}) \in \mathcal{B}(X).$

a) Sei $f:X\to\mathbb{R}^k$ messbar, $p\in[1,\infty].$ Dann ist $g:X\to\mathbb{R}, g(x)=|f(x)|_p,$ messbar, denn es gilt $g = |\cdot|_p \circ f$ und $|\cdot|_p$ ist stetig.

b) Sei $X=A\cup B,$ mit $A,B\in\mathcal{B}_d$ diskunkt und $f:A\to\mathbb{R}^k,g:B\to\mathbb{R}^k$ messbar. Dann ist $h: X \to \mathbb{R}^k, h(x) = \begin{cases} \tilde{f}(x), & x \in A \\ g(x), & x \in B \end{cases}$

Beweis. Seien $a, b \in \mathbb{Q}^n$, $a \leq b$ (Erzeuger). Dann gilt:

$$h^{-1}((a,b]) = \{x \in X : h(x) \in (a,b]\}$$

$$= \{x \in A : f(x) \in (a,b]\} \cup \{x \in B : g(x) \in (a,b]\}$$

$$= \underbrace{f^{-1}((a,b])}_{\in \mathcal{B}(A) \subset \mathcal{B}(X)} \cup \underbrace{g^{-1}((a,b])}_{\in \mathcal{B}(B) \subset \mathcal{B}(X)} \in \mathcal{B}(X)$$

Dabei gilt (*) nach Korollar 1.11:

$$\mathcal{B}(A) = \{ C \in \mathcal{B}_d : C \subset A \} \subset \{ C \in \mathcal{B}_d : C \subset X \} = \mathcal{B}(X)$$

Mit Satz 2.3b) ist damit der Beweis erbracht.

$$\begin{aligned} \mathbf{Beispiel.} \ X &= \mathbb{R}^2, \ h: \mathbb{R}^2 \to \mathbb{R}, \\ h(x,y) &= \begin{cases} \frac{\sin(y)}{x} =: f(x,y), & (x,y)^T \in \mathbb{R}^2 \backslash (\{0\} \times \mathbb{R}) =: A \\ c &=: g(x,y), & (x,y)^T \in \{0\} \times \mathbb{R} =: B \end{cases}, \text{ wobei } c \in \mathbb{R} \text{ beliebig ist und } f,g \text{ stetig auf } A \text{ bzw. } B \text{ sind. Da } \mathbb{R}^2 = A \dot{\cup} B \text{ und } A, B \text{ disjunkt, folgt mit b) aus dem } f,g \text{ stetig auf } A \text{ bzw. } B \text{ sind. Da } \mathbb{R}^2 = A \dot{\cup} B \text{ und } A, B \text{ disjunkt, folgt mit b)} \end{aligned}$$

obigen Beispiel, dass h messbar ist.

Um für Funktionenfolgen $f_j: X \to \mathbb{R}$ $j \in \mathbb{N}$, immer $\sup_{n \in \mathbb{N}} f_j(x)$, $\inf_{n \in \mathbb{N}} f_j(x)$ bilden zu können, setzt man $\overline{\mathbb{R}} = [-\infty, \infty] := \mathbb{R} \cup \{-\infty, \infty\}$.

Rechenregeln: Sei $a \in \mathbb{R}$.

- $\pm \infty + (\pm \infty) = \pm \infty$, $\pm \infty + a = a \pm \infty = \pm \infty$
- $a \cdot (\pm \infty) = (\pm \infty) \cdot a = \begin{cases} \pm \infty, & a \in (0, \infty] \\ \mp \infty, & a \in [-\infty, 0) \end{cases}$
- Verboten bleiben: $+\infty + (-\infty), \frac{0}{0}, \frac{\pm \infty}{\pm \infty}, \frac{a}{0}$ usw.

Ordnung: $-\infty < a < +\infty \ (\forall a \in \mathbb{R}).$

Konvergenz: Für $(x_n)_{n\in\mathbb{N}}\subset\overline{\mathbb{R}}$ schreibe: $x_n\xrightarrow{n\to\infty}+\infty$,

falls $\forall C \in \mathbb{R} \ \exists N_c \in \mathbb{N} : x_n \ge c \ \forall n \ge N_c$

(Konvergenz gegen $-\infty$ entsprechend mit " \leq ")

Beispiel.
$$f: \mathbb{R} \to \overline{\mathbb{R}}, f(x) = \begin{cases} \frac{1}{x}, & x \neq 0 \\ +\infty, & x = 0 \end{cases}$$

Notation: Setze für $f, g: X \to \overline{\mathbb{R}}, \ a \in \overline{\mathbb{R}}$

$$\{f = g\} := \{x \in X : f(x) = g(x)\},\$$
$$\{f = a\} := \{x \in X : f(x) = a\}.$$

(Analog für \leq , <, =, >, \geq , ...)

Erinnerung: $f \leq g \Leftrightarrow f(x) \leq g(x) \ \forall x \in X$

Definition. Definiere auf $\overline{\mathbb{R}}$ die Borel'sche σ -Algebra $\overline{\mathcal{B}}_1$ durch

$$\overline{\mathcal{B}}_1 = \{ B \cup E : B \in \mathcal{B}_1, \ E \subset \{-\infty, +\infty\} \}. \tag{2.1}$$

Man prüft leicht nach, dass $\overline{\mathcal{B}}_1$ wirklich eine σ -Algebra auf $\overline{\mathbb{R}}$ ist. Offensichtlich gilt $\mathcal{B}_1 \subset \overline{\mathcal{B}}_1$.

Funktionen $f: X \to \overline{\mathbb{R}}$, die $\mathcal{B}(X)$ - $\overline{\mathcal{B}}_1$ -messbar sind, heißen ebenfalls (Borel-) messbar.

Lemma 2.6. *a)*

$$\overline{\mathcal{B}}_1 = \sigma(\{[-\infty, a] : a \in \mathbb{Q}\}) =: A_1$$

$$= \sigma(\{(a, \infty] : a \in \mathbb{Q}\}) =: A_2$$

$$= \sigma(\{[a, \infty] : a \in \mathbb{Q}\}) =: A_3$$

$$= \sigma(\{[-\infty, a] : a \in \mathbb{Q}\}) =: A_4$$

b) $f: X \to \overline{\mathbb{R}}$ ist messbar

$$\Leftrightarrow \{f \le a\} \in \mathcal{B}(x) \ \forall a \in \mathbb{Q}$$
$$\Leftrightarrow \{f < a\} \in \mathcal{B}(x) \ \forall a \in \mathbb{Q}$$
$$\Leftrightarrow \{f > a\} \in \mathcal{B}(x) \ \forall a \in \mathbb{Q}$$
$$\Leftrightarrow \{f \ge a\} \in \mathcal{B}(x) \ \forall a \in \mathbb{Q}$$

Als Spezialfall gelten die entsprechenden Äquivalenzen für Funktionen $f: X \to \mathbb{R}$, denn so ein f ist $\mathcal{B}(X)$ - $\overline{\mathcal{B}_1}$ -messbar genau dann, wenn es $\mathcal{B}(X)$ - \mathcal{B}_1 -messbar ist.

Beweis. a) $A_1 \subset A_2$ folgt aus $[-\infty, a] = (a, \infty]^c \in A_2$ und Lem 1.6. Genauso $A_3 \subset A_4$. $A_2 \subset A_3$ wegen $(a, \infty] = \bigcap_{n=1}^{\infty} [a + \frac{1}{n}, \infty] \in A_3$ und Lem 1.6. $A_4 \subset \overline{\mathcal{B}}_1$ wegen $[-\infty, a) = \{-\infty\} \cup (-\infty, a) \in \overline{\mathcal{B}}_1$ und Lem 1.6. Es bleibt zu zeigen: $\overline{\mathcal{B}}_1 \subset A_1$ Es gilt $\{-\infty\} = \bigcap_{n=1}^{\infty} [-\infty, -n] \in A_1 \Rightarrow (-\infty, a] = [-\infty, a] \setminus \{-\infty\}$ $\xrightarrow{\text{Lem 1.6}}_{\text{Satz 1.9}} \mathcal{B}_1 \subset (A_1)$. Ebenso $\{+\infty\} \in A_1 \Rightarrow \overline{\mathcal{B}}_1 \subset A_1$.

b) folgt aus a) und Satz 2.3b).

Spezialfall folgt aus $f^{-1}(B \cup E) = f^{-1}(B)$ für $B \in \mathcal{B}(X)$ und $E \subset \{-\infty, +\infty\}$.

Ana III, 14,11,2008

Definition. Sei $f_n: X \to \overline{\mathbb{R}}$ messbar, $n \in \mathbb{N}$. Definiere $\sup_{n \in \mathbb{N}} f_n: X \to \overline{\mathbb{R}}$ durch

$$\left(\sup_{n\in\mathbb{N}} f_n\right)(x) := \sup_{n\in\mathbb{N}} f_n(x), \ x\in X$$

(Analog definert man $\inf_{n\in\mathbb{N}} f_n$, $\underline{\lim}_{n\to\infty} f_n$, $\overline{\lim}_{n\to\infty} f_n$)

Falls: $\lim_{n\to\infty} f_n(x)$ in $\overline{\mathbb{R}}$ für alle $x\in X$ existiert, setzt man

$$\left(\lim_{n\to\infty} f_n\right)(x) := \lim_{n\to\infty} f_n(x) \in \overline{\mathbb{R}} \ (\forall x \in X).$$

Dabei gilt

$$\max_{1 \le n \le N} \{f_1, \dots, f_N\} = \sup\{f_1, \dots, f_N, f_N, \dots\}.$$

(min analog).

Satz 2.7. Seien $f_n: X \to \overline{\mathbb{R}}$ für jedes $n \in \mathbb{N}$ messbar. Dann sind die Funktionen $\sup_{n \in \mathbb{N}} f_n$, $\inf_{n \in \mathbb{N}} f_n$, $\lim_{n \to \infty} f_n$, $\overline{\lim}_{n \to \infty} f_n$ und (falls $\forall x \in X$ existent) $\lim_{n \to \infty} f_n$ messbar.

Beweis. Sei $a \in \mathbb{R}$. Dann gilt $\{(\sup_{n \in \mathbb{N}} f_n) \le a\} = \bigcap_{n \in \mathbb{N}} \{f_n \le a\} \in \mathcal{B}(X)$ und $\{x \in X : \inf_{n \in \mathbb{N}} f_n(x) \ge a\} = \bigcap_{n \in \mathbb{N}} \{x : f_n(x) \ge a\} \in \mathcal{B}(X)$.

Mit Lem 2.6 folgt dann, dass $\sup_{n\in\mathbb{N}} f_n$ und $\inf_{n\in\mathbb{N}} f_n$ messbar sind. Damit sind auch $\overline{\lim}_{n\to\infty} f_n = \inf_{j\in\mathbb{N}} \sup_{n\geq j} f_n$ und $\underline{\lim}_{n\to\infty} f_n = \sup_{j\in\mathbb{N}} \inf_{n\geq j} f_n$ messbar.

Wenn existent für alle $x \in X$, dann ist somit auch $\lim_{n\to\infty} f_n = \overline{\lim}_{n\to\infty} f_n$ messbar. \square

Bemerkung. Satz 2.7 ist falsch für überabzählbare Suprema, denn:

Sei $\Omega \in \mathcal{B}_1$ aus Satz 1.26, $f_x := \mathbf{1}_{\{x\}}$, $x \in \Omega$. Dann sind alle f_x messbar, aber $\sup_{x \in \Omega} \mathbf{1}_{\{x\}} = \mathbf{1}_{\Omega}$ ist nicht messbar, da $\Omega \notin \mathcal{B}_1$.

Satz 2.8. Seien $f, g: X \to \overline{\mathbb{R}}$. Dann gelten:

- a) Seien f, g messbar und $\alpha, \beta \in \mathbb{R}$. Wenn $\alpha \cdot f(x) + \beta \cdot g(x)$ für alle $x \in X$ definiert ist, dann ist $\alpha \cdot f + \beta \cdot g : X \to \overline{\mathbb{R}}$ messbar. Wenn $f(x) \cdot g(x)$ für alle $x \in X$ definiert ist, dann ist $f \cdot g : X \to \overline{\mathbb{R}}$ messbar.
- b) $f \ messbar \Leftrightarrow f_+ := \max\{f, 0\} \ und \ f_- := \max\{-f, 0\} \ messbar \Rightarrow |f| \ messbar$.

<u>Bemerkung zu b)</u>: $f = \mathbf{1}_{\Omega} - \mathbf{1}_{\Omega^c}$ ist mit Ω aus <u>Satz 1.26</u> nicht messbar, aber $|f| = \mathbf{1}_{\mathbb{R}^d}$ ist messbar.

Beweis. a) Betrachte $f_n(x) = \max\{-n, \min\{n, f(x)\}\}$ für $n \in \mathbb{N}$, $x \in X$. Genauso für g. Da konstante Funktionen immer messbar sind, sind nach Satz 2.7 $f_n, g_n \ \forall n \in \mathbb{N}$ messbar.

Es gilt: $f_n(x) \to f(x)$, $g_n(x) \to g(x)$ $(n \to \infty) \ \forall x \in X$ (auch dann, wenn $f(x), g(x) \notin \mathbb{R}$).

Sei $\alpha \cdot f(x) + \beta \cdot g(x)$ definiert. Dann gilt:

 $\alpha \cdot f_n(x) + \beta \cdot g(x) \xrightarrow{n \to \infty} \alpha \cdot f(x) + \beta \cdot g(x).$

(Das ist klar, wenn $f(x), g(x) \in \mathbb{R}$. Sei deshalb etwa $\alpha = \beta = 1, f(x) = \infty, g(x) \in \mathbb{R}$. Sei n > |g(x)|. Dann $\alpha \cdot f_n(x) + \beta \cdot g_n(x) = n + g(x) \xrightarrow{n \to \infty} \infty = f(x) + g(x)$.) Mit Satz 2.7 folgt dann, dass $\alpha \cdot f + \beta \cdot g$ messbar ist.

(Ähnlicher Beweis für $f \cdot g$. Beachte dabei: Falls $f(x) = 0, g(x) = \infty$ folgt: $f_n(x) \cdot g_n(x) = 0 \cdot n = 0 \xrightarrow{n \to \infty} 0 = f(x) \cdot g(x)$.)

b) Beide " \Rightarrow " folgen sofort aus Satz 2.7.

Erstes " \Leftarrow " folgt aus a) und $f = f_+ - f_-$, $|f| = f_+ + f_-$.

Beachte: f_+ und f_- sind nur einzeln gleich 0.

Bemerkung. Satz 2.7 und Satz 2.8 gelten genauso für R-wertige Funktionen.

Beispiel. Seien $f_j: X \to [0, \infty]$ messbar für $j \in \mathbb{N}$. Dann existiert $g_n(x) := \sum_{j=1}^n f_j(x) \in [0, \infty]$ für alle $x \in X$ und g_n ist nach Satz 2.8a) messbar für alle $n \in \mathbb{N}$. Mit Satz 2.7 ist also $g := \sum_{j=1}^{\infty} f_j = \sup_{n \in \mathbb{N}} g_n = \lim_{n \to \infty} g_n$ ebenfalls messbar.

Definition 2.9. Eine messbare Funktion $f: X \to \mathbb{R}$ heißt einfach, wenn sie endlich viele Werte annimmt, d.h. $|f(X)| < \infty$. Seien $y_1, \ldots, y_n \in \mathbb{R}$ alle verschiedenen Funktionswerte von f. Setze $A_j = f^{-1}(\{y_j\})$. Da f messbar ist, folgt nach Definition der Messbarkeit, dass $A_j \in \mathcal{B}(X)$ für alle $j \in \mathbb{N}$. Dann heißt

$$f = \sum_{j=1}^{n} y_j \cdot \mathbf{1}_{A_j}$$

die Normalform von f.

Beachte: Die Vereinigung $X = A_1 \dot{\cup} \dots \dot{\cup} A_n$ ist disjunkt.

Bemerkung 2.10. Linearkombinationen, Produkte, endliche Minima und Maxima einfacher Funktionen sind wieder einfach.

Satz 2.11. Sei $f: X \to \mathbb{R}$ messbar. Dann gelten:

- a) Es existieren einfache Funktionen f_n mit $f_n \xrightarrow{n \to \infty} f$ (punktweise).
- b) Ist f beschränkt, so gilt a) mit gleichmäßiger Konvergenz.
- c) Sei $f \geq 0$. Dann gilt a) mit f_n , die $f_n \leq f_{n+1}$ $(\forall n \in \mathbb{N})$ erfüllen.

Korollar 2.12. $f: X \to \overline{\mathbb{R}}$ messbar \Leftrightarrow es existieren einfache $f_n: X \to \overline{\mathbb{R}}$ mit $f_n \xrightarrow{n \to \infty} f$ (punktweise).

Beweis. Satz 2.11 und Satz 2.7. \Box

Beweis von Satz 2.11. c) Sei $f \ge 0$, $n \in \mathbb{N}$. Setze

$$B_{jn} := \begin{cases} [j \cdot 2^{-n}, (j+1) \cdot 2^{-n}), & j = 0, \dots, n \cdot 2^{n-1} \\ [n, \infty), & j = n \cdot 2^n \end{cases}$$

$$A_{jn} := f^{-1}(B_{jn}) \in \mathcal{B}(X) \text{ (da } f \text{ messbar)}$$

für alle $j=0,\ldots,n\cdot 2^n,\ n\in\mathbb{N}$. Dann folgt, dass die Vereinigung $X=\bigcup_{j=0,\ldots,n\cdot 2^n}A_{jn}$ für jedes $n\in\mathbb{N}$ disjunkt ist. Setze außerdem für $n\in\mathbb{N}$

$$f_n := \sum_{j=0}^{n \cdot 2^n} \underbrace{j \cdot 2^{-n}}_{=\min B_{jn}} \cdot \mathbf{1}_{A_{jn}}.$$

Dann ist f_n einfach und für $x \in A_{jn}$ gilt: $f_n(x) = j \cdot 2^{-n} \le f(x)$, also $f_n \le f \ \forall n \in \mathbb{N}$.

TODO: BILD

Ferner gilt

$$A_{jn} = \begin{cases} A_{2j,n+1} \dot{\cup} A_{2j+1,n+1}, & j = 0, \dots, n \cdot 2^n - 1 \\ \bigcup_{k=n \cdot 2^{n+1}}^{(n+1) \cdot 2^{n+1}} A_{k,n+1}, & j = n \cdot 2^n \end{cases}.$$

Für $x \in A_{in}$ gilt

$$f_n(x) = j \cdot 2^{-n} \begin{cases} = 2 \cdot j \cdot 2^{-(n+1)} = f_{n+1}(x), & x \in A_{2j,n+1} \\ \le (2 \cdot j+1) \cdot 2^{-(n+1)} = f_{n+1}(x), & x \in A_{2j+1,n+1} \end{cases}$$

Also gilt $f_n(x) \leq f_{n+1}(x) \ \forall x \in A_{jn}$, falls $j < n \cdot 2^n$. Sei $x \in A_{n \cdot 2^n}$. Dann gilt $f_n(x) = n = n \cdot 2^{n+1} \cdot 2^{-(n+1)} \leq k \cdot 2^{-(n+1)} = f_{n+1}(x)$ für alle $k \in \{n \cdot 2^{n+1}, \dots, (n+1) \cdot 2^{n+1}\}$. Also: $f_n \leq f_{n+1} \ (\forall n \in \mathbb{N})$.

A) Wenn $f(x) = \infty$, dann $x \in A_{n \cdot 2^n, n}$ für alle $n \in \mathbb{N} \Rightarrow f_n(x) = n \xrightarrow{n \to \infty} \infty = f(x)$.

B) Wenn $f(x) < \infty$, dann liegt x für alle $n \in \mathbb{N}$ mit n > f(x) in einem $A_{j(n),n}$ mit $j(n) < n \cdot 2^{-n}$. Dann folgt

$$f_n(x) = j(n) \cdot 2^{-n} \le f(x) \le f_n(x) + 2^{-n}$$
 (*).

Und somit $|f(x) - f_n(x)| \le 2^{-n} \xrightarrow{n \to \infty} 0$, woraus Behauptung c) folgt.

- a) Setze $f_n := (f_+)_n (f_-)_n$ für $n \in \mathbb{N}$. Dann ist f_n einfach. Nach c) gilt: $f_n \xrightarrow{n \to \infty} f_+ f_- = f$.
- b) Wenn f beschränkt ist, tritt für $n > ||f||_{\infty}$ in c) stets B) ein. Für alle $n > ||f||_{\infty}$ gilt dann (*) $\forall x \in X$, also $f_n \xrightarrow{n \to \infty} f$ (gleichmäßig).

2.2 Konstruktion des Lebesgue-Integrals

Weiterhin sei $\emptyset \neq X \in \mathcal{B}_d$ versehen mit $\mathcal{B}(X)$ und $\lambda = \lambda_d$.

Bemerkung. Alles in dem Abschnitt 2.2 geht entsprechend für beliebige Maßräume (X, \mathcal{A}, μ) .

Vorgehen

- A) Integral für einfache $f: X \to \mathbb{R}_+$.
- B) Integral für jedes messbare $f: X \to [0, \infty]$.
- C) Integral für gewisse messbare $f: X \to \overline{\mathbb{R}}$.

Ana III, 17.11.2008

Schritt A: Integral für einfache, positive Funktionen

Definition 2.13. Sei $f: X \to \mathbb{R}_+$ einfach mit Normalform $f = \sum_{k=1}^m y_k \mathbf{1}_{A_k}$. Dann setzt man:

$$\int f(x)dx := \int_X f(x)dx = \sum_{k=1}^m y_k \lambda(A_k) \in [0, \infty]$$

Beachte: $0 \cdot \infty = \infty \cdot 0 = 0, y_1, \dots, y_m \ge 0$ und $f(x) = y_k \Leftrightarrow x \in A_k$

<u>Problem:</u> f hat viele Darstellungen, z.B.: $\mathbf{1}_A = 2 \cdot \mathbf{1}_A - \mathbf{1}_X + \mathbf{1}_{A^c} = \mathbf{1}_A + 0 \cdot \mathbf{1}_{A^c}$

<u>Frage:</u> Ist $\int_x f dx$ unabhängig von der Darstellung von f?

Lemma 2.14. Seien $B_j \in \mathcal{B}(X), j = 1, ..., n$ mit $\bigcup_{j=1}^{\infty} B_j = X$ und $z_j \in \mathbb{R}, j = 1, ..., n$ sowie $f = \sum_{j=1}^{n} z_j \mathbf{1}_{B_j}$. Dann gilt:

$$\int_X f(x)dx = \sum_{j=1}^n z_j \lambda(B_j)$$

Beweis. Durch iteratives Schneiden und Differenzmengenbilden erhält man disjunkte $C_i \in \mathcal{B}(X), i = 1, ..., l$ sowie Mengen $I(j) \subset \{1, ..., l\}$ und $J(i) \subset \{1, ..., n\}$ mit: $(*)B_j = \biguplus_{i \in I(j)} C_i$ und $C_i \subset B_j, j \in J(i)$ $(\forall j = 1, ..., n, i = 1, ..., l)$. Dann folgt:

$$\sum_{j=1}^{n} z_j \cdot \lambda(B_j) = \sum_{j=1}^{n} z_j \sum_{i \in I(j)} \lambda(C_i) = \sum_{i=1}^{l} \lambda(C_i) \sum_{j \in J(i)} z_j =: S$$

Setze für $i=1,\ldots,l: w_i:=\sum_{j\in J(i)}z_j=f(x)$, wenn $x\in C_i$. Vereinige die C_i mit gleichem $w_i(i=1,\ldots,l)$ zu einer Menge $A_k\in\mathcal{B}(X)$ $(k=1,\ldots,m)$. Sei $f(x)=y_k$ für $x\in A_k$, d.h.: $A_k=f^{-1}(\{y_k\})$. Dabei sind y_1,\ldots,y_m die Funktionswerte von f, die paarweise verschieden sind. Da die C_i disjunkt sind, gilt $S=\sum_{k=1}^m y_k \lambda(A_k)$ und $f=\sum_{k=1}^m y_k \mathbf{1}_{A_k}$ ist die Normalform. Mit Def 2.13 folgt dann die Behauptung.

Lemma 2.15. Seien $f, g: X \to \mathbb{R}_+$ einfache Funktionen, $\alpha, \beta \in \mathbb{R}_+$, $A \in \mathcal{B}(X)$. Dann:

- a) $\int_X \mathbf{1}_A dx = \lambda(A)$
- b) $\int_{\mathcal{X}} (\alpha \cdot f + \beta \cdot g)(x) dx = \alpha \cdot \int_{\mathcal{X}} f(x) dx + \beta \cdot \int_{\mathcal{X}} g(x) dx$ (Beachte Bem 2.10)
- c) $f \leq g \Rightarrow \int_{X} f(x) dx \leq \int_{X} g(x) dx$

Beweis. a): Folgt aus Def 2.13.

- b),c): Es seien $f = \sum_{j=1}^n y_j \mathbf{1}_{A_j}, g = \sum_{k=1}^m z_k \mathbf{1}_{B_k}$ in Normalform. Seien C_i , i = 1, ..., l alle Schnitte der Form $A_j \cap B_k$, sodass $\{C_i : i = 1, ..., l\}$ disjunkt ist. Seien weiter $\overline{y_i} \in \{y_1, ..., y_n\}$ und $\overline{z_j} \in \{z_1, ..., z_m\}$ die Funktionswerte von f bzw. g auf C_i . Dann folgt: $f = \sum_{i=1}^l \overline{y_i} \mathbf{1}_{C_i}, g = \sum_{i=1}^l \overline{z_i} \mathbf{1}_{C_i}$.
 - b): Es gilt $\alpha \cdot f + \beta \cdot g = \sum_{i=1}^{l} (\alpha \cdot \overline{y_i} + \beta \cdot \overline{z_i}) \mathbf{1}_{C_i}$. Daraus folgt

$$\int_{X} (\alpha \cdot f + \beta \cdot g) dx \stackrel{\text{Lem 2.14}}{=} \sum_{i=1}^{l} (\alpha \cdot \overline{y_i} + \beta \cdot \overline{z_i}) \lambda(C_i)$$

$$= \alpha \sum_{i=1}^{l} \overline{y_i} \lambda(C_i) + \beta \sum_{i=1}^{l} \overline{z_i} \lambda(C_i)$$

$$\stackrel{\text{Lem 2.14}}{=} \int_{X} f dx + \int_{X} g dx.$$

c): Nach Voraussetzung gilt $\overline{y_i} \leq \overline{z_i}$. Damit und mit b),c) folgt:

$$\int_X f dx = \sum_{i=1}^l \overline{y_i} \lambda(C_i) \le \sum_{i=1}^l \overline{z_i} \lambda(C_i) = \int_X g dx.$$

Schritt B: Integral für messbare Funktionen $f: X \to [0, \infty]$

Sei $f: X \to [0, \infty]$ messbar. Nach Satz 2.11 gilt:

$$\exists$$
 einfache $f_n: X \to \mathbb{R}_+ \text{mit} f_n \le f_{n+1} \ (\forall n \in \mathbb{N}), f_n \to f \ (\text{pw}, n \to \infty)$ (2.2)

Nach Lem 2.15 gilt:

$$\int f_n dx \le \int f_{n+1} dx \quad (\forall n \in \mathbb{N}) \Rightarrow \exists \lim_{n \to \infty} \int f_n dx = \sup_{n \in \mathbb{N}} \int f_n dx \in [0, \infty]$$

Definition 2.16. Sei $f: X \to [0, \infty]$ messbar und $f_n, n \in \mathbb{N}$ wie in (2.2). Dann setze:

$$\int f dx = \int_X f(x) dx = \lim_{n \to \infty} \int f_n(x) dx = \sup_{n \in \mathbb{N}} \int_X f_n(x) dx \in [0, \infty]$$

Lemma 2.17. Sei $f: X \to [0, \infty]$ messbar. Dann gilt:

$$\int_X f(x)dx = \sup\left(\left\{\int_X g(x)dx : g : X \to \mathbb{R}_+ einfach, 0 \le g \le f\right\}\right) =: S$$

Beweis. Sei f_n wie in (2.2). Da $\int f dx = \sup_{n \in \mathbb{N}} \int f_n dx$, gilt $\int f dx \leq S$. Zu \geq : Sei g einfach mit $0 \leq g \leq f$ und $g = \sum_{k=1}^m y_k \mathbf{1}_{A_k}$ (Normalform). Sei $\alpha > 1$ fest, aber beliebig, und $B_n = \{x \in X : \alpha f_n(x) \geq g(x)\} =: \{\alpha f_n \geq g\}$ $(n \in \mathbb{N})$

Aus Satz 2.5 folgt dann: $B_n \in \mathcal{B}(X) \forall n \in \mathbb{N}$. Beachte dabei $\alpha \cdot f_n \geq \mathbf{1}_q(*)$

Sei $x \in X$. Wenn f(x) = 0, dann folgt wegen $0 \le g \le f$:

 $g(x) = 0 \Rightarrow x \in B_n \forall n \in \mathbb{N}$

Wenn $f(x) > 0 \Rightarrow f(x) > \frac{1}{\alpha}g(x)$. Da $f_n(x) \to f(x)$, folgt: $\exists n(x) \in \mathbb{N} : f_n(x) \ge \frac{1}{\alpha}g(x), \forall n \ge n(x) \Rightarrow x \in B_n \forall n \ge n(x)$

 $\Rightarrow X = \bigcup_{n \in \mathbb{N}} B_n$. Ferner $B_n \subset B_{n+1}$, da $f_n \leq f_{n+1} \ (\forall n \in \mathbb{N}) \ (**)$

Damit gilt

$$\begin{split} \int g(x)dx \overset{\text{Def 2.13}}{=} \sum_{k=1}^m y_k \cdot \lambda(A_k) &\overset{\text{Satz 1.14}}{\underset{(**)}{=}} \lim_{n \to \infty} \sum_{k=1}^m y_k \cdot \lambda(A_k \cap B_n) \\ &\overset{\text{Lem 2.14}}{=} \lim_{n \to \infty} \int g(x) \cdot \mathbf{1}_{B_n}(x) dx \overset{\text{Lem 2.15}}{\underset{(*)}{\leq}} \lim_{n \to \infty} \int \alpha \cdot f_n(x) dx \\ &\overset{\text{Lem 2.15}}{=} \alpha \cdot \lim_{n \to \infty} \int f_n(x) dx \overset{\text{Def 2.16}}{=} \alpha \cdot \int f(x) dx. \end{split}$$

Daraus folgt mit $\alpha \to 1$: $\int g dx \le \int f(x) dx \stackrel{\sup g}{\Rightarrow} S \le \int f dx$.

Lemma 2.18. Seien $f, g: X \to [0, \infty]$ messbar und $\alpha, \beta \in \mathbb{R}_+$. Dann:

a)
$$\int_{\mathcal{X}} (\alpha \cdot f + \beta \cdot g)(x) dx = \alpha \cdot \int_{\mathcal{X}} f(x) dx + \beta \cdot \int_{\mathcal{X}} g(x) dx$$

b)
$$f \leq g \Rightarrow \int_X f(x)dx \leq \int_X g(x)dx$$

c)
$$\int_X f(x)dx = 0 \Leftrightarrow \lambda(\{f > 0\}) = 0$$

Beweis. a) Seien f_n, g_n wie in (2.2). Nach Bem 2.10 und $\alpha, \beta \in \mathbb{R}_+$ erfüllen $\alpha f_n + \beta g_n$ (2.2) für $\alpha f + \beta g$.
Damit gilt

$$\int (\alpha f + \beta g) dx \stackrel{\text{Def } 2.16}{=} \lim_{n \to \infty} \int (\alpha f_n + \beta g_n) dx$$

$$\stackrel{\text{Lem } 2.15}{=} \lim_{n \to \infty} (\alpha \int f_n dx + \beta \int g dx)$$

$$\stackrel{\text{Def } 2.16}{=} \alpha \int f dx + \beta \int g dx.$$

- b) Sei $A = \{f > 0\} \in \mathcal{B}(X)$, seien f_n wie in (2.2) für f.
 - i) Sei $\lambda(A) = 0$. Da $0 \le f_n \le f$, gilt $f_n(x) = 0$, wenn $x \notin A$. Dann folgt $f_n \le \mathbf{1}_A \|f_n\|_{\infty} \stackrel{\text{Lem } 2.15}{\Rightarrow} 0 \le \int f_n dx \le \int \|f_n\|_{\infty} \mathbf{1}_A dx = \|f\|_{\infty} \lambda(A) = 0 \Rightarrow 0 = \lim_{n \to \infty} \int f_n dx \stackrel{\text{Def } 2.16}{=} \int f dx$.
 - ii) Es gilt

$$\int f(x)dx \stackrel{\text{Lem 2.17}}{=} \sup_{0 \le u \le f, u \text{ einfach}} \int u(x)dx$$

$$f \le g \sup_{0 \le u \le g, u \text{ einfach}} \int u(x)dx = \int g(x)dx.$$

iii) Sei $\int f dx = 0$. Setze $A_n := \{ f \geq \frac{1}{n} \}$ für $n \in \mathbb{N}$. Daraus folgt: $\bigcup_{n \in \mathbb{N}} A_n = A, f \geq \frac{1}{n} \mathbf{1}_{A_n}$. Damit $0 = \int f dx \geq \int \frac{1}{n} \mathbf{1}_{A_n} dx \stackrel{\text{Lem 2.15}}{=} \frac{1}{n} \lambda(A_n) \geq 0 \Rightarrow \lambda(A_n) = 0, \forall n \in \mathbb{N}$. $\Rightarrow \lambda(A) = \lambda(\bigcup_{n \geq 1} A_n) \stackrel{\text{Satz 1.14}}{\leq} \sum_{n=1}^{\infty} \lambda(A_n) = 0$.

Theorem 2.19 (Monotone Konvergenz, B. Levi). Seien $f_n: X \to [0, \infty]$ messbar und $f_n \leq f_{n+1}$ ($\forall n \in \mathbb{N}$). Sei $f = \lim_{n \to \infty} f_n = \sup_{n \in \mathbb{N}} f_n$. Dann:

$$\int_X f(x)dx = \int_X \lim_{n \to \infty} f_n(x)dx \stackrel{!}{=} \lim_{n \to \infty} \int_X f_n(x)dx = \sup_{n \in \mathbb{N}} \int f_n(x)dx$$

Bemerkung. a) Konvergenzaussage ist ohne Monotonie falsch: $\underline{\text{Bsp}}$: $f_n = \frac{1}{n} \mathbf{1}_{[0,n]} \to f = 0$ (glm.), aber $\int f_n dx = 1 \overset{n \to \infty}{\to} 0 = \int f dx$.

Ana III, 21.11.2008

b) Die Konvergenzaussage ist im allgemeinen falsch für fallende Folgen. <u>Bsp</u>: $f_n := \mathbf{1}_{[n,\infty]} : \mathbb{R} \to \mathbb{R} \Rightarrow f_n \xrightarrow{n \to \infty} 0$ (punktweise), $f_n \geq f_{n+1}$, aber $\int_{\mathbb{R}} f_n dx \stackrel{\text{einfache}}{=}_{\text{Funktion}} \lambda_1([n,\infty]) = \infty$ und $\int_{\mathbb{R}} 0 dx = 0$. c) Die Konvergenzaussage ist im allgemeinen sinnlos fürs Riemannintegral. Bsp: Sei $\mathbb{Q} = \{q_1, q_2, \dots\}, A_n := \{q_1, \dots, q_n\}, f_n = \mathbf{1}_{A_n}$. Dann ist f_n Riemannintegrierbar mit $f_n \leq f_{n+1}$, aber $\sup_{n \in \mathbb{N}} f_n = \mathbf{1}_{\mathbb{Q}}$ ist <u>nicht</u> Riemannintegrierbar, obwohl R- $\int_{\mathbb{R}} f_n dx = 0 \ \forall n \in \mathbb{N}.$

Beweis von Thm 2.19. Nach Satz 2.7 ist $f = \lim_{n \to \infty} f_n$ messbar. Zweites "=" folgt aus $\int f_n dx \leq \int f_{n+1} dx$ und Lem 2.18b). Nach (2.2) gibt es $\forall n \in \mathbb{N}$ einfache $u_{nj}: X \to \mathbb{N}$ $\mathbb{R}_+, \ j \in \mathbb{N} \text{ mit } u_{nj} \leq u_{n,j+1} \leq f_n \ (*) \text{ und } u_{nj} \xrightarrow{j \to \infty} f_n \ (\text{punktweise}).$

<u>Ziel</u>: Konstruiere zu f einfache v_j wie in (2.2) mit $v_j \leq f_j$.

Setze: $v_j = \max\{u_{1j}, u_{2j}, \dots, u_{jj}\}, j \in \mathbb{N}$. Dann ist v_j nach Bem 2.10 einfach.

Wegen (*): $v_j \leq v_{j+1}$ und $v_j \leq \max\{f_1, \ldots, f_j\}$ $\underset{\text{Monotonie}}{=} f_j \leq f$ (**). Ferner gilt für alle $j \in \mathbb{N}$ mit $j \leq n \Rightarrow u_{nj} \leq v_j$, damit:

 $f_n \stackrel{\text{nach Vor.}}{=} \sup_{j \in \mathbb{N}} u_{nj} \le \sup_{j \in \mathbb{N}} v_j \ (* * *).$

Es folgt $f = \sup_{n \in \mathbb{N}} f_n \stackrel{(***)}{\leq} \sup_{n \in \mathbb{N}} (\sup_{j \in \mathbb{N}} v_j) \leq f$, also $f = \sup_{j \in \mathbb{N}} v_j$, d.h., v_j erfüllt (2.2) für f. Per Definition gilt dann

$$\int_X f dx \stackrel{\mathrm{Def}}{=} \sup_{j \in \mathbb{N}} \int_X v_j dx \stackrel{(**)}{\leq} \sup_{j \in \mathbb{N}} \int_X f_j dx \stackrel{(**)}{\leq} \int_X f dx.$$

Korollar 2.20. a) Seien $f_i: X \to [0, \infty]$ messbar. Dann gilt

$$\int_{X} \left(\sum_{j=1}^{\infty} f_j \right) dx = \sum_{j=1}^{\infty} \int_{X} f_j dx$$

b) Sei $\omega: X \to [0, \infty]$ messbar. Setze für $A \in \mathcal{B}(X)$

$$\mu(A) := \int_X \mathbf{1}_A(x) \cdot \omega(x) dx$$

(Dann ist μ ein Ma β auf $\mathcal{B}(X)$ und wird Gewicht oder Dichte genannt.)

Beweis. a) Es gilt

$$\int_{X} \left(\sum_{j=1}^{\infty} f_{j} \right) dx = \int_{X} \left(\lim_{n \to \infty} \sum_{j=1}^{n} f_{j} \right) dx \stackrel{\text{Thm 2.19}}{=} \lim_{n \to \infty} \int_{X} \left(\sum_{j=1}^{n} f_{j} \right) dx$$

$$\stackrel{\text{Lem 2.18}}{=} \lim_{n \to \infty} \sum_{j=1}^{n} \int_{X} f_{j} dx = \sum_{j=1}^{\infty} \int_{X} f_{j} dx.$$

b) Zeige die Maßeigenschaft.

(M1): $\mu(\emptyset) = \int_X \mathbf{1}_{\emptyset}(x)\omega(x)dx = \int_X 0dx = 0.$

(M2) : Seien $A_n \in \mathcal{B}(X)$ disjunkt, $n \in \mathbb{N}$. Dann:

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \int_X \mathbf{1}_{\bigcup_{n\in\mathbb{N}}A_n}(x) \cdot \omega(x)dx$$

$$= \int_X \left(\sum_{n=1}^\infty \mathbf{1}_{A_n}\right)(x) \cdot \omega(x)dx$$

$$\stackrel{\text{a)}}{=} \sum_{n=1}^\infty \int_X \mathbf{1}_{A_n}(x)\omega(x)dx \stackrel{\text{Def}}{=} \sum_{n=1}^\infty \mu(A_n)$$

Lemma 2.21. Seien $f: X \to [0, \infty]$ messbar und $\emptyset \neq Y \in \mathcal{B}(X)$. Dann sind $f|_Y: Y \to [0, \infty]$ auf Y und $\mathbf{1}_Y \cdot f: X \to [0, \infty]$ auf X messbar und es gilt

$$\int_{Y} f dx = \int_{X} \mathbf{1}_{Y} \cdot f dx.$$

Beweis. $f|_Y$ ist messbar wegen Bemerkung 2.2 und $\mathbf{1}_Y \cdot f$ ist messbar nach Satz 2.5d). Setze

$$g := \sum_{j=1}^{n} z_j \cdot \mathbf{1}_{B_j} : X \to \mathbb{R}_+, \quad z_j \in \mathbb{R}_+, \ B_j \in \mathcal{B}(X).$$

Dann ist g einfach und es gelten $g|_{Y} = \sum_{j=1}^{n} z_{j} \cdot \mathbf{1}_{B_{j} \cap Y}$ und

$$\int_{Y} g dx \stackrel{\text{Def}}{=} \sum_{j=1}^{n} z_{j} \cdot \lambda(B_{j} \cap Y) = \int_{X} \sum_{j=1}^{n} z_{j} \cdot \mathbf{1}_{B_{j} \cap Y} dx$$
$$= \int_{X} \sum_{j=1}^{n} z_{j} \cdot \mathbf{1}_{B_{j}} \cdot \mathbf{1}_{Y} dx = \int_{X} \mathbf{1}_{Y} \cdot g dx.$$

Damit gilt die Behauptung für einfache Funktionen.

Für den allgemeinen Fall, in dem $f: X \to [0, \infty]$ beliebig ist und messbar ist, gibt es nach Satz 2.11 einfache $f_n: X \to [0, \infty]$ mit $f_n \nearrow f$ $(n \to \infty)$. Dann gelten auch $f_n|_Y \nearrow f|_Y$ und $\mathbf{1}_Y \cdot f_n \nearrow \mathbf{1}_Y \cdot f$ $(x \to \infty)$, also

$$\int_Y f dx \stackrel{\mathrm{Def}}{=} \lim_{n \to \infty} \int_Y f_n dx \stackrel{f_n \text{ einfach}}{=} \lim_{n \to \infty} \int_X \mathbf{1}_Y \cdot f_n dx \stackrel{\mathrm{Def}}{=} \int_X \mathbf{1}_Y \cdot f dx$$

Schritt C: Integral für R-wertige Funktionen

Sei $f: X \to \overline{\mathbb{R}}$ messbar. Nach Satz 2.8 sind dann auch $f_+, f_-: X \to [0, \infty]$ messbar.

Definition 2.22. Sei $\emptyset \neq X \in \mathcal{B}_d$. Eine messbare Funktion $f: X \to \overline{\mathbb{R}}$ heißt (Lebesgue-) integrierbar, wenn $\int_X f_+ dx$, $\int_X f_- dx < \infty$.

In diesem Fall definiert man (Lebesgue-) Integral) durch

$$\int_X f dx := \int_X f(x) dx := \int_X f_+(x) dx - \int_X f_-(x) dx \in \mathbb{R}.$$

Hiervon ist $f:X\to\mathbb{R}$ ein Spezialfall. Man setzt

$$\mathcal{L}^1(X) := \{ f : X \to \mathbb{R} \mid f \text{ messbar und integrierbar} \}.$$

Bemerkung. Sei $f: X \to [0, \infty]$ messbar. Wegen $f_- = 0$ gilt

$$f$$
 integrierbar $\Leftrightarrow \int_X f(x)dx < \infty$

Bemerkung. Für einen Maßraum (X, \mathcal{A}, μ) definiert man das Integral $\int f dx$ völlig analog, indem man \mathcal{A} - $\overline{\mathcal{B}}_1$ -messbare Funktionen betrachtet und überall $\lambda(A)$ durch $\mu(A)$ ersetzt.

Beispiel. Sei $X = \mathbb{N}, \mathcal{A} = \mathcal{P}(\mathbb{N})$ und μ das Zählmaß, d.h.: $\mu(A) := |A|$. Schreibe $f : \mathbb{N} \to \overline{\mathbb{R}}$ als $a_n = f(n)$. Dann $\int_{\mathbb{N}} f d\mu = \sum_{n=1}^{\infty} a_n$, falls existent.

Satz 2.23. Sei $f: X \to \mathbb{R}$ messbar. Dann sind äquivalent:

- a) f ist integrierbar.
- b) Es existieren integrierbare $u, v: X \to [0, \infty]$ mit f = u v (wobei u und v nie gleichzeitig ∞ -wertig sind.).
- c) Es existiert ein integrierbares $g: X \to [0, \infty]$ mit $|f| \leq g$.
- d) Die messbare Funktion $|f|: X \to [0, \infty]$ ist integrierbar.

Wenn a)-d) gelten, dann $\int_X f dx = \int_X u dx - \int_X v dx$. Weiter folgt $\mathcal{L}^1(X) = \{f: X \to \mathbb{R} \mid f \text{ messbar}, \int_X |f| dx < \infty\}$.

Beweis. Wir zeigen die Äquivalenz von a),b),c) und d) durch einen Ringschluss.

- a) \Rightarrow b): Wegen Lem 2.21 gilt $u = f_+, v = f_- (f_+, f_- \text{ nie gleichzeitig } \infty)$.
- b) \Rightarrow c): g := u + v ist integrierbar nach Lem 2.18. $|f| = |u + v| \le u + v = g$.
- c) \Rightarrow d): Aus Lem 2.18b) folgt $\int |f| dx \leq \int g dx < \infty$.
- d) \Rightarrow a): Es gilt $0 \le f_+, f_- \le |f| \Rightarrow f_+, f_-$ integrierbar $\stackrel{\text{Def } 2.22}{\Rightarrow} f$ ist integrierbar.

Letze Behauptung: Nach b) gilt: $\exists u, v \geq 0 : f = f_+ - f_- = u - v \Rightarrow f_+ + v = f_- + u \Rightarrow \int_X f_+ + \int_X v dx = \int_X f_- dx + \int_X u dx \Rightarrow \int_X f dx = \int_X u dx - \int_X v dx$, da alle Integrale endlich sind

Ana III. 24.11.2008

Korollar 2.24. Sei $f: X \to \overline{\mathbb{R}}$ integrierbar. Dann gilt $\lambda(\{|f| = \infty\}) = 0$.

Beweis. Betrachte $A:=\{|f|=\infty\}\in\mathcal{B}_d$. Es gilt $|f|\geq n\cdot \mathbf{1}_A$ ($\forall n\in\mathbb{N}$). Dann gilt $n\cdot\lambda(A)\stackrel{\mathrm{Lem}\ 2.15}{=}\int_X n\cdot \mathbf{1}_A dx\stackrel{\mathrm{Lem}\ 2.18}{\leq}\int_X |f| dx=:C\stackrel{\mathrm{Satz}\ 2.23}{<}\infty$ $\Rightarrow 0\leq\lambda(A)\leq\frac{C}{n}$ ($\forall n\in\mathbb{N}$).

Satz 2.25. Seien $f, g: X \to \mathbb{R}$ integrierbar und $\alpha \in \mathbb{R}$. Dann gelten:

a) $\alpha \cdot f$ und (soweit überall definiert) f + g sind integrierbar und es gelten:

$$\int_X \alpha \cdot f(x) dx = \alpha \cdot \int_X f(x) dx,$$

$$\int_X (f(x) + g(x)) dx = \int_X f(x) dx + \int_X g(x) dx.$$

Somit ist $\mathcal{L}^1(X)$ ein Vektorraum und das Integral eine lineare Abbildung von $\mathcal{L}^1(X)$ nach \mathbb{R} .

- b) Die Funktionen $\max\{f,g\}$ und $\min\{f,g\}$ sind integrierbar.
- c) Wenn $f \leq g$, dann $\int_X f(x)dx \leq \int_X g(x)dx$. (Das Integral ist monoton.)
- d) $|\int_X f(x)dx| \le \int_X |f(x)|dx$.
- e) Sei $\emptyset \neq Y \in \mathcal{B}(X)$. Dann sind $f|_Y$ und $\mathbf{1}_Y \cdot f$ integrierbar und es gilt

$$\int_{Y} f|_{Y}(x)dx = \int_{Y} \mathbf{1}_{Y}(x) \cdot f(x)dx.$$

f) Seien $\lambda(X) < \infty$ und $h: X \to \mathbb{R}$ messbar und beschränkt. Dann liegt h in $\mathcal{L}^1(X)$ und $|\int_X h(x)dx| \le ||h||_{\infty} \cdot \lambda(X)$.

Beweis. a) Es gilt

$$(\alpha \cdot f)_{\pm} = \begin{cases} \alpha \cdot f_{\pm}, & \alpha \ge 0 \\ [(-\alpha) \cdot (-f)]_{\pm} = (-\alpha) \cdot f_{\mp}, & \alpha \le 0. \end{cases}$$

Ferner sind nach Satz 2.23 und Lem 2.18 die Funktionen $\alpha \cdot f_{\pm}$ ($\alpha \geq 0$) und $(-\alpha) \cdot f_{\mp}$ ($\alpha \leq 0$) integrierbar. Somit folgt die Integrierbarkeit von $\alpha \cdot f$ und es gilt

$$\int \alpha \cdot f dx \stackrel{\text{Def } 2.22}{=} \int (\alpha \cdot f)_{+} dx - \int (\alpha \cdot f)_{-} dx$$

$$= \begin{cases} \int \alpha \cdot f_{+} dx - \int \alpha \cdot f_{-} dx. & \alpha \ge 0 \\ \int (-\alpha) \cdot f_{-} dx - \int (-\alpha) \cdot f_{+} dx. & \alpha \le 0 \end{cases}$$

$$\underset{\text{Def } 2.22}{\overset{\text{Lem } 2.18}{=}} \alpha \cdot \int f dx. \quad \text{(Beachte } -\alpha > 0 \text{ für } \alpha < 0 \text{)}$$

Ferner gilt $f + g = \underbrace{f_+ + g_+}_{=:u} - \underbrace{(f_- + g_-)}_{=:v}$. Dabei sind u, v nach Lem 2.18 und Satz

2.23 integrierbar und nie gleichzeitig ∞ -wertig.

<u>¬Denn:</u> Sei z.B. $f(x) = \infty$. Dann gilt $f_+(x) = \infty$, $f_-(x) = 0$. Dann ist $u(x) = \infty$. Ferner gilt $g(x) \neq \infty$ nach Voraussetzung, woraus $v(x) = g_-(x) \neq \infty$. ¬

Aus Satz 2.23 folgt, dass f + g integrierbar ist und es gilt

$$\int (f+g)dx = \int (f_{+} + g_{+})dx - \int (f_{-} + g_{-})dx$$

$$= \left(\int f_{+}dx + \int g_{+}dx\right) - \left(\int f_{-} + \int g_{-}dx\right)$$

$$\stackrel{\text{Def } 2.22}{=} \int fdx + \int gdx.$$

- b) $\max\{f,g\}$ ist messbar nach Satz 2.7, Ferner gilt $0 \le \max\{f,g\} \le |f| + |g|$, wobei |f| + |g| nach a) und Satz 2.23 integrierbar ist. Dann folgt mit Satz 2.23, dass $\max\{f,g\}$ integrierbar ist. Für das Minimum zeigt man es genauso.
- c) Sei $f \leq g$. Dann gilt $f_+ \leq g_+$ und $f_- = (-f)_+ \geq (-g)_+ = g_-$. Damit folgt

$$\int f dx = \int f_{+} dx - \int f_{-} dx \stackrel{\text{Lem 2.18}}{\leq} \int g_{+} - \int g_{-} dx = \int g dx.$$

d) Da $\pm f \le |f|$ gilt, liefern a) und c)

$$\pm \int f dx = \int \pm f dx \le \int |f| dx.$$

e) $f|_Y$ ist auf Y und $\mathbf{1}_Y \cdot f$ ist nach Bem 2.2, Satz 2.5 und Satz 2.7 auf X messbar. Klar ist, dass

$$(f|_Y)_{\pm} = f_{\pm}|_Y \text{ und } (\mathbf{1}_Y \cdot f)_{\pm} = \mathbf{1}_Y \cdot f_{\pm}$$
 (*)

gelten. Nach Lem 2.18 gilt $\int_X \mathbf{1}_Y \cdot f_{\pm} dx \leq \int_X f_{\pm} dx \stackrel{\text{n. Vor.}}{<} \infty$. Mit (*) und Def 2.22 ist also $\mathbf{1}_Y \cdot f$ untegrierbar und es gilt

$$\int_{X} \mathbf{1}_{Y} \cdot f dx \stackrel{\stackrel{(*)}{=}}{\underset{\text{Def 2.22}}{=}} \int_{X} \mathbf{1}_{Y} \cdot f_{+} dx - \int_{X} \mathbf{1}_{Y} \cdot f_{-} dx$$

$$\stackrel{\text{Lem 2.21}}{=} \int_{Y} (f_{+})|_{Y} dx - \int_{Y} (f_{-})|_{Y} dx \stackrel{(*)}{=} \int_{Y} f|_{Y} dx.$$

f) Sei nun $\lambda(X) < \infty$. Da $|h| \le ||h||_{\infty} \mathbf{1}_X$ integrierbar ist, ist nach Satz 2.23 integrierbar und nach d) und c) folgt

$$\left| \int_X h dx \right| \le \int_X |h| dx \le ||h||_{\infty} \cdot \lambda(X).$$

Beispiel. Sei $f: X \to \mathbb{R}$ einfach mit Normalform $f = \sum_{k=1}^m y_k \cdot \mathbf{1}_{A_k}$, wobei $y_k = 0$, falls $\lambda(A_k) = \infty$. Dann ist f integrierbar und $\int_X f(x) dx = \sum_{k=1}^m y_k \cdot \lambda(A_k)$.

Beweis. Satz 2.25a), da
$$\int \mathbf{1}_{A_k} = \lambda(A_k)$$
.

Ana III, 28.11.2008

Bemerkung 2.26. a) Sei $f: X \to \overline{\mathbb{R}}$ integrierbar und $X = A \dot{\cup} B$ für disjunkte $A, B \in \mathcal{B}_d$. Dann gilt

$$\int_X f dx = \int_X (\mathbf{1}_A + \mathbf{1}_B) \cdot f dx \stackrel{\mathbf{Satz}}{=} \int_X \mathbf{1}_A \cdot f dx + \int_X \mathbf{1}_B \cdot f dx$$

b) Sei $f:[a,b]\to\mathbb{R}$ stetig und Riemannintegrierbar. Nach Satz 2.25f) ist f Lebesgueintegrierbar.

Weiter gilt $R - \int_a^b f(x)dx = \int_{[a,b]} f(x)dx$.

Wir schreiben von nun an auch, $\int_a^b f(x)dx$ für das Lebesgueintegral. Der Hauptsatz der Differential- und Integralrechnung gilt auch für das Lebesgueintegral aus Ana I.

Beweis. Es gilt

$$R - \int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{j=1}^{n} f(\underbrace{a+j \cdot \frac{b-a}{n}}) = \lim_{n \to \infty} \int_{[a,b]} u_n dx,$$

wobei

$$u_n = \sum_{j=1}^n f(t_{jn}) \cdot \mathbf{1}_{[t_{j-1,n},t_{j,n}]}.$$

Ferner $||f - u_n||_{\infty} \xrightarrow{n \to \infty} 0$ (da f gleichmäßig stetig ist, vergleiche Ana1 §6). Damit gilt

$$|\int_{[a,b]} f(x)dx - \int_{[a,b]} u_n dx| \stackrel{\text{Satz 2.25}}{\leq} \int_{[a,b]} |f - u_n| dx$$

$$\stackrel{\text{Satz 2.25}}{\leq} ||f - u_n||_{\infty} \cdot (b - a) \xrightarrow{n \to \infty} 0.$$

c) <u>Warnung</u>: Es gibt stetige, uneigentlich Riemannintegrierbare Funktionen, die nicht Lebesgueintegrierbar sind.

Beispiel. Sei $X=[1,\infty],\ f(x)=\frac{\sin(x)}{x}.$ Aus Ana I §6 wissen wir: f ist uneigentlich Riemannintegrierbar und

$$|f| \ge \sum_{n=1}^{\infty} \frac{c}{2n} \cdot \mathbf{1}_{[\pi \cdot n + \frac{\pi}{2}, \pi \cdot n + \frac{3}{4} \cdot \pi]} =: g$$

für ein c > 0. Damit folgt

$$\int_X g(x) dx \stackrel{\text{Bem 2.10}}{=} \sum_{n=1}^{\infty} \frac{c}{2n} \cdot \int_X \mathbf{1}_{[\pi \cdot n + \frac{\pi}{2}, \pi \cdot n + \frac{3}{4} \cdot \pi]} = \frac{c\pi}{2} \cdot \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

Damit folgt, dass g nicht integrierbar ist und Lem 2.18 liefert

$$\int_{X} |f| dx \ge \int_{X} g(x) dx = \infty.$$

Also ist f nach Satz 2.23 nicht integrierbar.