Three things everyone should know to improve object retrieval

Relja Arandjelović and Andrew Zisserman (CVPR 2012)

Large scale object retrieval

- Find all instances of an object in a large dataset
 - Do it instantly
 - Be robust to scale, viewpoint, lighting, partial occlusion

Three things everyone should know

1. RootSIFT

2. Discriminative query expansion

3. Database-side feature augmentation

Bag of visual words particular object retrieval

Bag of visual words particular object retrieval

First thing everyone should know

1. RootSIFT

- Not only specific to retrieval
- Everyone using SIFT is affected
- 2. Discriminative query expansion

3. Database-side feature augmentation

Improving SIFT

- Hellinger or χ^2 measures outperform Euclidean distance when comparing histograms, examples in image categorization, object and texture classification etc.
- These can be implemented efficiently using approximate feature maps in the case of additive kernels
- SIFT is a histogram: can performance be boosted using a better distance measure?

Improving SIFT

- Hellinger or χ^2 measures outperform Euclidean distance when comparing histograms, examples in image categorization, object and texture classification etc.
- These can be implemented efficiently using approximate feature maps in the case of additive kernels
- SIFT is a histogram: can performance be boosted using a better distance measure?

Yes!

Hellinger distance

- Hellinger kernel (Bhattacharyya's coefficient) for L1 normalized histograms x and y: $H(x,y) = \sum_{i=1}^{n} \sqrt{x_i y_i}$
- Intuition: Euclidean distance can be dominated by large bin values, using Hellinger distance is more sensitive to smaller bin values

Hellinger distance (cont'd)

- Hellinger kernel (Bhattacharyya's coefficient) for L1 normalized histograms x and y: $H(x, y) = \sum_{i=1}^{n} \sqrt{x_i y_i}$
- Explicit feature map of x into x':
 - L1 normalize x
 - element-wise square root x to give x'
 - then x' is L2 normalized
- Computing Euclidean distance in the feature map space is equivalent to Hellinger distance in the original space, since:

$$x'^T y' = H(x, y)$$

Bag of visual words particular object retrieval

Bag of visual words particular object retrieval

Oxford buildings dataset

Landmarks plus queries used for evaluation

- Ground truth obtained for 11 landmarks over 5062 images
- Evaluate performance by Precision Recall curves

RootSIFT: results

- Philbin et.al. 2007: bag of visual words with:
 - tf-idf ranking
 - or tf-idf ranking with spatial reranking

Retrieval method	Oxford 5k	Oxford 105k	Paris 6k
SIFT: tf-idf ranking	0.636	0.515	0.647
SIFT: tf-idf with spatial reranking	0.672	0.581	0.657
RootSIFT: tf-idf ranking	0.683	0.581	0.681
RootSIFT: tf-idf with spatial reranking	0.720	0.642	0.689

RootSIFT: results, Oxford 5k

blue

SIFT:

RootSIFT: results

- "Descriptor Learning for Efficient Retrieval", Philbin et al., ECCV'10
 - Discriminative large margin metric learning approach
 - Learn a non-linear mapping function of the DBN form
 - 3M training pairs (positive and negative matches)

Retrieval method	Oxford 5k	Oxford 105k	Paris 6k
SIFT: tf-idf ranking	0.636	0.515	0.647
SIFT: tf-idf with spatial reranking	0.672	0.581	0.657
DBN SIFT: tf-idf with spatial reranking	0.707	0.615	0.689
RootSIFT: tf-idf ranking	0.683	0.581	0.681
RootSIFT: tf-idf with spatial reranking	0.720	0.642	0.689

Other applications of RootSIFT

- Superior to SIFT in every single setting
 - Image classification (dense SIFT used as feature vector, PHOW)
 - Repeatability under affine transformations (original use case)

SIFT: 10 matches

RootSIFT: 26 matches

RootSIFT: PASCAL VOC image classification

- Using the evaluation package of [Chatfield11]
- Mean average precision over 20 classes:
 - Hard assignment into visual words

• SIFT: 0.5530

RootSIFT: 0.5614

Soft assignment using Locality Constrained Linear encoding

• SIFT: 0.5726

• RootSIFT: 0.5915

RootSIFT: properties

- Extremely simple to implement and use
 - One line of Matlab code to convert SIFT to RootSIFT:

```
rootsift= sqrt( sift / sum(sift) );
```

- Conversion from SIFT to RootSIFT can be done on-the-fly
 - No need to modify your favourite SIFT implementation, no need to have
 SIFT source code, just use the same binaries
 - No need to re-compute stored SIFT descriptors for large image datasets
 - No added storage requirements
 - Applications throughout computer vision

k-means, approximate nearest neighbour methods, soft-assignment to visual words, Fisher vector coding, PCA, descriptor learning, hashing methods, product quantization etc.

RootSIFT: conclusions

- Superior to SIFT in every single setting
- Every system which uses SIFT is ready to use RootSIFT
- No added computational or storage costs
- Extremely simple to implement and use

We strongly encourage everyone to try it!

Second thing everyone should know

1. RootSIFT

2. Discriminative query expansion

3. Database-side feature augmentation

Query expansion

1. Original query

3. Spatial verification

4. Average query

5. Additional retrieved images

Average Query Expansion (AQE)

- BoW vectors from spatially verified regions are used to build a richer model for the query
- Average query expansion (AQE) [Chum07]:
 - Use the mean of the BoW vectors to re-query
 - Other methods exist (e.g. transitive closure, multiple image resolution) but the performance is similar to AQE while they are slower as several queries are issued
 - Average QE is the de facto standard
 - mAP on Oxford 105k:

Retrieval method	SIFT	RootSIFT
Philbin et.al. 2007: tf-idf with spatial reranking	0.581	0.642
Chum et.al. 2007: Average Query expansion (AQE)	0.726	0.756

Discriminative Query Expansion (DQE)

- Train a linear SVM classifier
 - Use query expanded BoW vectors as positive training data
 - Use low ranked images as negative training data
 - Rank images on their signed distance from the decision boundary

Discriminative Query Expansion: efficiency

- Ranking images using inverted index (as in average QE case)
- Both operations are just scalar products between a vector and x
 - For average QE the vector is the average query idf-weighted BoW vector
 - For discriminative QE the vector is the learnt weight vector w
 - Training the linear SVM on the fly takes negligible amount of time (30ms on average)

Query expansion

Discriminative Query Expansion: results

Significant boost in performance, at no added cost

• mAP on Oxford 105k:

Retrieval method	SIFT	RootSIFT
Philbin et.al. 2007: tf-idf with spatial reranking	0.581	0.642
Chum et.al. 2007: Average Query expansion (AQE)	0.726	0.756
Discriminative Query Expansion (DQE)	0.752	0.781

DQE: results, Oxford 105k (RootSIFT)

Legend:

Discriminative QE: red

Average QE: blue

Third thing everyone should know

1. RootSIFT

2. Discriminative query expansion

3. Database-side feature augmentation

Database-side feature augmentation

- Query expansion improves retrieval performance by obtaining a better model for the *query*
- Natural complement: obtain a better model for the database images [Turcot09]
 - Augment database images with features from other images of the same object

Image graph

- Construct an image graph [Philbin08]
 - Nodes: images
 - Edges connect images containing the same object
 - Compute the graph offline by using the standard retrieval system to query each database image in turn and record spatially verified images

Database-side feature augmentation (AUG)

• Turcot and Lowe 2009:

- Obtain a better model for database images
- Each image is augmented with all visual words from neighbouring images

Uses RootSIFT

Retrieval method	Oxford 5k	Oxford 105k
tf-idf ranking	0.683	0.581
tf-idf with spatial reranking	0.720	0.642
AUG: tf-idf ranking	0.785	0.720
AUG: tf-idf with spatial reranking	0.827	0.759

Note: idf weights are re-computed for the augmented dataset which improves performance, also our contribution

Database-side feature augmentation (AUG)

- Turcot and Lowe 2009:
 - Obtain a better model for database images
 - Each image is augmented with all visual words from neighbouring images

Spatial database-side feature aug. (SPAUG)

- AUG: Augment with all visual words from neighbouring images
- Spatial AUG: Only augment with visible visual words

Spatial db-side feature aug. (SPAUG): results

- 28% less features are augmented than in the original method
 - The original approach introduces a large number of irrelevant and detrimental visual words

Uses RootSIFT

Retrieval method	Oxford 5k	Oxford 105k
tf-idf ranking	0.683	0.581
tf-idf with spatial reranking	0.720	0.642
AUG: tf-idf ranking	0.785	0.720
AUG: tf-idf with spatial reranking	0.827	0.759
Spatial AUG: tf-idf ranking	0.820	0.746
Spatial AUG: tf-idf with spatial reranking	0.838	0.767

Spatial AUG vs AUG

Negative:

- The original method does not need to explicitly augment images, it is equivalent to sum tf-idf scores of neighbouring images at runtime
- Spatial database-side feature augmentation has to explicitly augment images, thus storage requirements are increased significantly

Positive:

 While achieving high recall of the original method, precision is improved

Final retrieval system

- Combine all the improvements into one system
 - RootSIFT
 - Discriminative query expansion
 - Spatial database-side feature augmentation

Final results

New state of the art on all three datasets (without soft assignment!):
 Oxford 5k
 Oxford 105k
 Paris 6k

Oxford 5k	Oxford 105k	Paris 6k
0.929	0.891	0.910

Quite close to total recall on Oxford 105k:

Summary

1. RootSIFT:

- Improves performance in every single experiment (not just retrieval)
- Every system which uses SIFT is ready to use RootSIFT
- Easy to implement, no added computational or storage cost
- 2. Discriminative query expansion:
 - Consistently outperforms average query expansion
 - At least as efficient as average QE
 - No arguments against it except for slightly increased implementation complexity
- 3. Database-size feature augmentation:
 - Useful for increasing recall
 - Our extension improves precision but increases storage requirements; this trade-off should be considered when deciding whether to use it or not