A Dynamic Analysis of the Market for Wide-Bodied Commercial Aircraft

C. Lanier Benkard, presented by Jacob Thompson

March 3, 2019

Motivation

- Empirical: firms often sell jetliners below static marginal cost, in contrast to standard models of firms in competition or oligopoly
- ► Lockheed L-1011 sold for below average variable cost for entire production run!

REVIEW OF ECONOMIC STUDIES

Motivation cont.

- Policy: airlines are the target of industrial policy
- ► Past theoretical literature finds that under certain conditions an unrestrained monopoly may pareto-dominate an oligopoly

Empirical Strategy

- Develop dynamic model with learning curves, differentiated products, entry costs, and closed loop strategic interaction
- Estimate the primitives of the model
- Find equilibrium

Theoretical Model

- Dynamic programming problem
- ▶ Products indexed by $j \in \mathbb{N}$, time periods indexed by $t \in \mathbb{N}$
- ▶ Three state variables per product, experience with product-j
- $ightharpoonup E_{jt} \in \mathcal{E}$,
- ▶ the product's "type" $\mu_i \in \mathcal{A}$ and
- ▶ the product's quality $\xi_{it} \in \mathcal{X}$
- ▶ Sets \mathcal{E} , \mathcal{A} , \mathcal{X} are sets of possible experience levels, product types and product quality levels.

Incumbent's Bellman system

$$\begin{split} V(i,s,M) &= \textit{max}_{\chi_{i}^{e},\chi_{j},q_{j} \forall j \in \mathcal{J}_{i}} \{ -\sum_{k=1}^{3} 1\{\chi_{i}^{e} = k\} x_{k}^{e} \\ &+ \sum_{j \in \mathcal{J}_{i}} [\chi_{j} \Phi_{jt} + (1 - \chi_{j}) \pi_{j} (i,s,q,M)] \\ &+ \beta \sum_{j \in \mathcal{J}_{i}} V(i',s',M') \mathcal{P}(i',s',M'|i,s,q,M,\chi,\chi^{e}) \} \end{split}$$

Incumbent Bellman, cont.

- ▶ State variables are: \mathcal{J}_i is set of products owned by firm i,
- $ightharpoonup \mathcal{M}$ is aggregate plane demand
- $ightharpoonup \phi_{jt}$ is a random scrap-value for each product
- \gt{s}_t is a vector whose length equals the number of possible firm-specific state-vectors
- ► Each element of s_t indicates the number of firms for which the possible state vector is the actual state vector

Incumbent Bellman, cont.

- ▶ Control variables are: exit rules, $\chi_{jt} \in \{0,1\}$
- ▶ quantities oproduced $q_{it} \in \mathbb{R}^+$
- ▶ entry rules $x_{it}^i \in \{0, 1, 2, 3\}$, 0, 1, 2, and 3 denote no entry, entry into small, medium, and wide-body jetliners
- $ightharpoonup \mathcal{P}$ denotes the transition probabilities for the future states.
- ▶ Is a more specific expression of $\beta E_t V(i_{t+1}, s_{t+1}, M_{t+1})$

Potential Entrant's Bellman system

$$V^{e}(s, M) = \max_{\chi_{i}^{e} \in \{0, 1, 2, 3\}} - \sum_{k=1}^{3} 1\{\chi_{i}^{e} = k\} \chi_{k}^{e}$$
$$+\beta \sum_{i', c', M'} V(i^{e}, s', M') \mathcal{P}(i^{e}, s', M'|s, q, M, \chi, \chi^{e})$$

Profit function

$$\pi_j(i,s,q,M) = p_j(i,s,q,M)q_j - c_j(i,q_j)$$

Equilibrium

- Model restricts equilibria to "Markov-perfect Nash Equilibrium(MPE)"
- ► MPE ⊂ SPNE; best-response functions function only of payoff relevant state-variables
- Further estrict equilibria further to symmetric equilibria
- Equilibria symmetric if strategies for any two identical firms facing identical states are likewise identical.

Estimating the model

labor requirements are characterized by:

$$InL_{lt} = InA + \theta InE_t + \gamma InS_t + \varepsilon_{lt}$$

▶ L_{lt} is labor input for good l at time t, A is a constant, E_t is experience, ε_{lt} is a plane-specific productivity shock, S_t is line-speed or the production rate.

Learning by doing

- ▶ $E_{t+1} = \delta E_t + q_t$ characterizes the evolution of the stock of experience
- This process captures organizational "forgetting"
- ► Intuition: turnover, lay-offs, and forgetting rarely-repeated tasks can cause effective experience to decline
- Benkard(2000) estimates the monthly depreciation factor $\delta = .96$ for a total yearly depreciation of $.613 = .96^{12}$
- learning parameter θ estimated to be -.63, and γ estimated to be .11, indicating slightly increasing returns to scale.
- ▶ to simplify the state space, Benkard defines $\mathcal{E} = \{1, 10, 20, 40, 70, 110, 165\}$

Estimation of Labor requirements

TABLE 1

Cost parameters

Parameter	Explanation	Value	
A	Labour cost intercept	7·73 (0·01)	
γ	Returns to scale	0·11 (0·17)	
δ	Depreciation of experience	0·613 (0·023)	
θ	Learning parameter	-0.63 (0.03)	
	(Implied learning rate)	36%	
W FC TCF TCC	Wage rate Fixed costs Total variable cost/labour cost Total variable cost intercept Cost/plane-size ratio	\$20/h \$200 million/year 6·0 36·2 1·0	
$x_1^l, x_1^h \\ x_2^l, x_2^h \\ x_3^l, x_3^h$	Type 1: entry cost distribution Type 2: entry cost distribution Type 3: entry cost distribution	\$2.5–\$3.5 billion \$3.3–\$4.6 billion \$4.4–\$6.2 billion	

Demand for Commercial Aircraft

- Author eschews product-characteristic discrete choice model
- Individual planes often change operators
- Treat aircraft purchases instead as rentals
- nested logit discrete choice model is estimated
- Assumes that aircraft purchases are independent even within the same firm
- ▶ Benkard(1996) argues that this assumption is relatively innocuous.
- nested logit includes two groups(nests), new and used (or narrow) planes
- generates more reasonable substitution patterns over standard logit

Estimation cont.

- Utility of a plane is denoted $u_{ijt} = x_{jt}\beta \alpha p_{jt} + \xi_{jt} + \zeta_{igt} + (1 \lambda)\varepsilon_{ijt}$
- \triangleright x_{jt} are observed qualities of the plane
- \triangleright ξ_{it} are unobserved qualities of plane
- ightharpoonup ζ_{igt} are unobserved group-specific tastes
- $ightharpoonup arepsilon_{ijt}$ are group-plane-specific tastes

Estimation cont.

Use GMM with an optimal weighting matrix with the following moment restriction:

$$E[\xi_{jt}|Z_{jt},\theta_0]=0$$

-Instruments include plane characteristics, wage rates, price of aluminium, and a model's time since rollout

Markov chain for aircraft demand

BENKARD COMMERCIAL AIRCRAFT

TABLE 3

Demand and other parameters

Parameter	Explanation	Value	
λ	Group corr. parameter	0·77 (0·18)	
α	Price coefficient	-0.024 (0.002)	
μ	Discrete plane types (small, medium, large)	$\{-2.6, -2.2, -1.6\}$	
$P(\mu^e)$	Entry type distribution (small, medium, large)	(0.50 0.38 0.12)	
ξ	Discrete plane qualities	$\{-0.90, -0.40, 0.11, 0.61\}$	
Δξ	Transition matrix for quality	$\begin{pmatrix} 1.00 & 0.04 & 0.033 & 0.000 \\ 0.00 & 0.44 & 0.233 & 0.200 \\ 0.00 & 0.48 & 0.667 & 0.800 \\ 0.00 & 0.04 & 0.067 & 0.000 \end{pmatrix}$	
M	Discrete market sizes	(10,339 10,929 11,519)	
ΔM	Transition matrix for market size	$\begin{pmatrix} 0.895 & 0.143 & 0.000 \\ 0.105 & 0.786 & 0.200 \\ 0.000 & 0.071 & 0.800 \end{pmatrix}$	
β	Firm's discount factor	0.925	
(Φ^l, Φ^h)	Range of scrap values	(\$300m, \$700m)	

Figure 2:

Simulation results

FIGURE 5
Twenty-year simulation: prices

Figure 3:

Simulation results cont.

FIGURE 6
Twenty-year simulation: cost curves

Figure 4:

Simulation results cont.

FIGURE 7
Twenty-year simulation: units produced

Figure 5:

Alternative market structures

- ► True market structure is compared to multi-product monopolist and multi-product social planner
- Unrestricted monopolist produces greater surplus than the oligopolistic market
- Consumers better off under actual market structure, but firms far worse off
- Consumers even better off under Social plannner but firm worse off
- Result of increasing returns to scale created by learning curve

Anti-trust policy

TABLE 7
Statistics from 10,000 industry simulations under alternative policies

Maximum concentration:	100%	60%	51%	
Concentration ratios:	(Invar	(Invariant distribution)		
1-Firm/plane	0.396	0.392	0.385	
S.D.	0.102	0.094	0.081	
2-Firm/plane	0.692	0.690	0.688	
S.D.	0.109	0.107	0.103	
Consumer surplus:				
Mean	135,373	134,917	133,895	
S.D.	7040	7268	7488	
Producer surplus:				
Mean	42,335	42,306	42,320	
S.D.	3769	3776	3785	
Total surplus:				
Mean	177,708	177,223	176,215	
S.D.	10,441	10,645	10,832	

Figure 6:

Anti-trust policy cont.

- Note that actual concentration ratios do not change substantially
- Primary result is reduction in supply by dominant firm
- ► Table 9 re-simulates the model under alternative parameterizations
- lacktriangle Only discount rate creates problems; larger eta causes more entry

Summary

- Dynamic oligopoly with learning curve
- Predicts many observed features of commercial jet industry
- Concrete policy implications for anti-trust enforcement and litigation