Kwantyzacja i próbkowanie dźwięku oraz re-sampling

Plik: sin_60Hz

4 bity

8 bitów

16 bitów

24 bity

Plik: sin_440Hz

8 bitów

24 bity

Plik: sin_8000Hz

8 bitów

16 bitów

24 bity

Im większa liczba bitów, tym dokładniejsze odwzorowanie sygnału przez co zmniejsza się liczba szumów.

Przy powyższych metodach nie widać różnic.

PLIK sin_440Hz

Niewielka różnica między decymacją, a interpolacjami.

Plik sin_8000Hz

Problem z wyświetleniem o którym jest mowa w zadaniu. Dotyczy częstotliwości 16000 oraz mniejszych. Związane jest to z twierdzeniem Nyquista.

Widać wyraźne zmiany w widmach.

Obie interpolacje znacząco się od siebie różnią.

Co słychać czego nie słychać? Kwantyzacja

Im mniejsza ilość bitów dźwięk jest znacznie gorszy wraz z wzrostem ilości, znacznie się poprawia. Dla 4 bitów dźwięk mógłbym porównać do tego jakby ktoś krzyczał do mikrofonu z bliskiej odległości jest on również znacznie głośniejszy, jak "przester".

Działa tak samo niezależnie do wybranego dźwięku.

Decymacja

Różnica jest taka, że w tym przypadku dźwięk jest podobny do "ufo". Wraz ze wzrostem Hz lepsza jest jakość dźwięku.

Interpolacje

Niezależnie od interpolacji, dźwięk jest bardzo zniekształcony i niewiele przypomina oryginał. Warto zaznaczyć, że zniekształcenia są niemalże takie samo dla obu interpolacji.