

DATA REPAssignment Project Example REPASSION PROJECT EXAMPLE REPASS

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Bernhard Kainz (with thanks to

N. Dulay and E.

Edwards)

b.kainz@imperial.ac.uk

Why Binary Numbers?

- Computers process binary patterns
 - Patterns of Os and 1s

Assignment Project Exam Help

- To represent dat d to code it as a binary pattern https://eduassistpro.github.io/
- Most important to Addition Characters
 - Convert into binary

Decimal to Binary

- Steps:
 - · Divide the nambig hypergitility the question inder
 - Repeat previous https://eduassistpro.githubeio/quotient is obtained
 Add WeChat edu_assist_pro
 - Answer is obtained by reading the remainder column bottom to the top

Decimal to Binary (Example)

What is 98₁₀ in binary?

$$1100010_2 = 1 * 2^6 + 1 * 2^5 + 0 * 2^4 + 0 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0$$
$$= 64 + 32 + 0 + 0 + 0 + 2 + 0 = 98_{10}$$

Octal (Base 8)

- Used in the past as a more convenient base for representing long binary values
- · Converting to spingarment Project Exam Help
 - Starting from the end, each group of 3 bits (why? 8 = 23 https://eduassistpro.glittquotet)/
- Example: What is 10101, in O Add WeChat edu_assist_pro

Example: What is 357₈ in Binary?

	7	5	3
= 111011111	\downarrow	Ţ	Ţ
•	111	101	011

Hexadecimal (Base 16)

- Used by programmers to represent long binary values
 - Preferred over Octal
- 16 = 2⁴ → 4ABiniary digits Prepresent ane Hexadecimal digit (bits) starting f ach group of 4 bits represents https://eduassistpro.github.io/
- Example: What is 180401000 i edu_assist_pro

Example: What is 86₁₆ in Binary?

Binary vs. Hexadecimal

Hex	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Decimal	0	1	2	3	4	5	Ďr	7.	8	L A	10	11_	T ¹² 1	13	14	15
Binary	0	1	10	S ₁₁	100	101	110		1000	7.7	1010		1100	1101	1110	1111

https://eduassistpro.github.io/

Generally:

Add WeChat edu_assist_pro

	1 byte =	8 binary digits =	2 hexadecimal digits
1 word =	2 bytes =	16 binary digits =	4 hexadecimal digits
1 long word =	4 bytes =	32 binary digits =	8 hexadecimal digits

Representing Data

- Data Types of interest
 - Integers (Unaignigghaigend)Project Exam Help
 - Reals (Floating https://eduassistpro.github.io/
 - Add WeChat edu_assist_pro

Text

Signed and Unsigned Integers

 Natural numbers can be represented by their binary value within the computer

Assignment Project Exam Help

- Representation re important https://eduassistpro.github.io/
- Several possibilited WeChat edu_assist_pro
 - Sign & Magnitude
 - One's Complement
 - Two's Complement
 - Excess-n (Bias-n)
 - Binary-Coded Decimal (BCD)

Signed and Unsigned Integers

- In any representation, desirable properties are:
 - Only one bit Apastign premal Peroject Exam Help
 - Equal number of https://eduassistpro.github.io/
 - Maximum range of values Add WeChat edu_assist_pro
 - No gaps in the range
 - Fast, economic hardware implementation of integer arithmetic
 - Minimal number of transistors AND fast arithmetic, if possible

Sign & Magnitude

- Leftmost ("most significant") bit represents the sign of the integer
- Remaining bits to representation again the least of the l
- https://eduassistpro.github.io/ • For n-bits, -(2ⁿ⁻
- Simplest for hu
- Two representatients of the representation of the rep
- Costly to implement (need to compare signs and implement subtractors)

Bit Pattern	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sign & Magnitude	+0	+1	+2	+3	+4	+5	+6	+7	-0	-1	-2	-3	-4	-5	-6	-7

One's Complement

- Negative numbers are the complement of the positive numbers
- -(2ⁿ⁻¹-1) ≤ Ansignment Projet € Exam Help
 - Same as Sign &
- Less intuitive (fohttps://eduassistpro.githyghile/de
- Less costly to implement Chat edu_assist_pro
- Bit fiddly

Bit Pattern	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sign & Magnitude	+0	+1	+2	+3	+4	+5	+6	+7	-0	-1	-2	-3	-4	-5	-6	-7
1s Complement	+0	+1	+2	+3	+4	+5	+6	+7	-7	-6	-5	-4	-3	-2	-1	-0

Two's Complement

- Negative of an integer is achieved by inverting each of the bits and adding 1 to it:
 - Two's complete of the feet of the signer of the feet of the signer of the feet of the f
- $-2^{n-1} \le Two's c$ https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- Most useful property: X Y = X + (-Y)
 - No need for a separate subtractor (Sign & Magnitude) or carry-out adjustments (One's Complement)

Two's Complement

- Only one bit pattern for zero ©
 - Asymmetric one extra negative value

Assignment Project Exam Help

 Minor disadvant advantages https://eduassistpro.github.io/

Bit Pattern	0000	0001	0010	001	de	We	Cl Pa	t ^e ec	lu_	ass	ist <u></u> 0	pyo	1100	1101	1110	1111
Unsigned	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sign & Magnitude	+0	+1	+2	+3	+4	+5	+6	+7	-0	-1	-2	-3	-4	-5	-6	-7
1s Complement	+0	+1	+2	+3	+4	+5	+6	+7	-7	-6	-5	-4	-3	-2	-1	-0
2s Complement	+0	+1	+2	+3	+4	+5	+6	+7	-8	-7	-6	-5	-4	-3	-2	-1

Excess-n (Bias-n) - Motivation

- Sorting in Two's complement is not easy
 - Assuming you could compare numbers it would always say negative numbers are greater !!!
- https://eduassistpro.github.io/ Suppose we wan numbers, but wanted to keep the same edu_assistrepresents the smallest value and 111 represent t value in 3-bits?
 - This is the idea behind excess representation or biased representation
 - bitstring with N 0's maps to the smallest value and the bitstring with N
 1's maps to the largest value

Excess-n (Bias-n)

- Using 3-bits as example, 3-bits gives us: 2³ = 8 values in total
 - Assuming we start the hit properties. Field -1, 0, 1, 2, 3
 - Smallest value =
 - Each value stor https://eduassistpro.github.ib/cess-4 ©

A	Stored value	t edu_assist	_pro
	000		•
	001	-3	
	010	-2	
	011	-1	
	100	0	
	101	1	
	110	2	
	111	3	

Excess-n (Bias-n)

Bit Pattern	0000	0001	\ \ \ \ \	0011	nm	1	0110 Dro i	0111	1000	122	1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	2138	4	5	6	91	8	9	10	11	12	13	14	15
Sign & Magnitude	+0	+1	+2	⁺ h [·]	ttps	:://e	dua	ssis	tpr	o.gi	thul	၁ <mark>.၂</mark> ဝ	/ -4	-5	-6	-7
1s Complement	+0	+1	+2	+3 A	‡4,	$\overset{\pm 5}{\mathrm{We}}$ e	+6	t ec		ass	5	-4 Dro	-3	-2	-1	-0
2s Complement	+0	+1	+2	+3	+4	+5	+6	+7	-8	-7	-6	-5	-4	-3	-2	-1
Excess-8	-8	-7	-6	-5	-4	-3	-2	1	0	1	2	3	4	5	6	7

Binary Coded Decimal (BCD)

 Each decimal digit is represented by a fixed number of bits, usually four or eight

Assignment Project Exam Help

 Easy for human https://eduassistpro.github.io/

- Takes up much rAghe Spacehat edu_assist_pro
- Assuming 4-bits, the number 9876510 can be encoded as:

9	8	7	6	5	1	0
1001	1000	0111	0110	0101	0001	0000

Actual Binary: 10010110101010000011110 (24-bits)

Binary Coded Decimal (BCD)

Bit Pattern	0000	0001				0101	0110	0111	1000		1010	1011	1100	1101	1110	1111
Unsigned	0	1	2	2138	4	ent]	6	91	Exa	9	10	11	12	13	14	15
Sign & Magnitude	+0	+1	+2	†h	ttps	:://e	dua	ssis	tpr	o.gi	thul	oi.c	/ -4	-5	-6	-7
1s Complement	+0	+1	+2	+3 A	_				_	ass	5	-4 Dro	-3	-2	-1	-0
2s Complement	+0	+1	+2	+3	+4	+5	+6	+7	-8	-7	-6	-5	-4	-3	-2	-1
Excess-8	-8	-7	-6	-5	-4	-3	-2	1	0	1	2	3	4	5	6	7
BCD	0	1	2	3	4	5	6	7	8	9	-	-	-	-	-	-

Characters

- Characters are mapped to bit patterns
- · Common mapsinggement Asojean Exame Help

https://eduassistpro.github.io/

- ASCII
 - Uses 7-bits (128 Modather Chat edu_assist_pro
 - Most modern computer extend this to 8-bits yielding an extra 128 bit-patterns
 - 26 lowercase and uppercase letters, 10 digits, and 32 punctuation marks. Remaining 34 bit-patterns represent whitespace characters e.g. space (SP), tab (HT), return (CR), and special control characters

ASCII Character Set

								Bit positions
			Bit position	ons 654				3210
000	001	010	011	100	101	110	111	
NUL	DLE	SP	0	@	Р	6	р	0000
SOH	DC1	!	1	А	Q	а	q	0001
STX	DC2		mant	Pr&jec	t Elean	Llala	r	0010
ETX	DC3	W2#181	mignt		t Egan	Therp	S	0011
EOT	DC4	\$	4	D	Т	d	t	0100
ENQ	NAK	%		•		е	ų	0101
ACK	SYN	& ht	tns://e	duass	istoro	aithub	io/	0110
BEL	ETB	,	·poi//o			g	W	0111
BS	CAN	(8	Н		h	Х	1000
HT	EM) 🔥	dd 91/10	Chat e	du ac	sist_p	ro y	1001
LF	SUB	* 1	aa iv c	Cliat	,uu_as	Joio _j t_p	Z	1010
VT	ESC	+	•	K]	k	{	1011
FF	FS	,	<	L	\	I		1100
CR	GS	-	=	М]	m	}	1101
SO	RS		>	N	^	n	~	1110
SI	US	/	?	0	_	0	DEL	1111

Strings are represented as sequence of characters. E.g. **Fred** is encoded as follows:

English	F	r	е	d
ASCII (Binary)	0100 0110	0111 0010	0110 0101	0110 0100
ASCII (Hex)	46	72	65	64

Unicode

- Newer, more complex standard
- Attempting to spignished in propertification of the language of t

https://eduassistpro.github.io/

- Over 120,000 characters alrea Add WeChat edu_assist_pro
- First 65,536 (16-bit) characters cover the major alphabets of the world – more and more programming languages support this
- First 127 characters correspond to ASCII characters

Binary Experts now ©

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro