컴퓨터구조실험 보고서 Booth multiplier 과제

과 목 컴퓨터구조실험

담당교수 이성원교수님

학 과 컴퓨터정보공학부

학 번 2021202058

이 름 송채영

제 출 일 2021. 03. 30

1. 결과 화면

Time	100	ns 200	ns 300	ns 400	ns
clk=					
count[2:0] =	0 1 2 3 -4	0 1 2 3 -4	0 1 2 3 -4	0 1 2 3 -4	
input1[3:0] =	+ 4	0	-2	-4	
input2[3:0] =	+ 5	(3	7	-4	
reset=(
result[7:0] =	0 5 + + 20	3 1 0	7 + 9 4 -14	+ 6 3 + 16	
start=					

Booth algorithm 의 test bench 에 값을 넣어 gtkwave 로 파형을 확인하였다. 먼저 전체결과를 설명해보면, 값이 들어간 후 3 번의 count 후에 결과값이 출력되는 것을 볼 수 있다. test bench 에 값을 넣은 기준은, 양수와 양수의 곱셈, 0 과의 곱셈, 음수와 양수의 곱셈, 음수와 음수의 곱셈에 해당하는 숫자를 넣어 확인해보았다. 곱셈의 결과가 잘 출력되는 것을 볼 수 있다.

) 10	ns	20	ns	30	ns	40	ns	50	ns	60	ns î	70	ns
000				001		010		011		100			
xxxx	0100												
xxxx	0101												
00000000		0000	0101	1110	0010	0001	0001	1110	1000	0001	0100		

첫 번째 예시는 0100(4) x 0101(5)이다.

М	А	Q	Q-1
0100	0000	0101	0
0100	1110	0010	1
0100	0001	0001	0
0100	1110	1000	1
0100	0001	0100	0

00010100, 즉 20 이므로 연산이 잘 된 것을 볼 수 있다.

120 ns	130	ns	140	ns	150	ns	16	60	ns	170	ns
	000		001		010		011	1		100	
000	0										
001	.1										
	0000	0011	00000	001	00000	0000					

두 번째 예시는 0000(0) x 0011(3)이다.

М	А	Q	Q-1
0000	0000	0011	0
0000	0000	0001	1
0000	0000	0000	0

00000000, 즉 0 이므로 연산이 잘 된 것을 볼 수 있다.

230 ns 240	ns 250	ns 2	60 ns	270	ns 280	ns 290	ns 3
000	001	01	0	011	(100		
1110							
0111							
00000	0001	0011 00	001001	00000	100 (11110	010	

세 번째 예시는 1110(-2) x 0111(7)이다.

М	А	Q	Q-1		
1110	0000	0111	0		
1110	0001	0011	1		
1110	0000	1001	1		
1110	0000	0100	1		
1110	1111	0010	0		

11110010, 즉 -14 이므로 연산이 잘 된 것을 볼 수 있다.

	000		001		010		011		100		
1100	000		1001		010		011		100		
1100											
	00001	100	00000	110	00000	011	00100	001	00010	000	

네 번째 예시는 1100(-7) x 1100(-7)이다.

М	А	Q	Q-1
1100	0000	1100	0
1100	0000	0110	0
1100	0000	0011	0
1100	0010	0001	1
1100	0001	0000	1

00010000, 즉 49 이므로 연산이 잘 된 것을 볼 수 있다.

2. 고찰

Pigridis	VVUVC3												
Time	10	ns	20	ns	30	ns	40	ns	50	ns	60	ns	70 ns
clk=(
count[2:0]=1	000				001		010		011		100		
input1[3:0]=1	xxxx	1000											
input2[3:0]=1	xxxx	1000											
reset=1													
result[7:0]=1	00000000		0000	1000	0000	0100	0000	0010	0000	0001	1100	0000	
start=1													

1000(-8) x 1000(-8)의 예시이다. -8 x -8 의 결과가 64 가 나와야 하지만 위의 wave 를확인해 보면 -64 가 나온 것을 알 수 있다.

М	А	Q	Q-1
1000	0000	1000	0
1000	0000	0100	0
1000	0000	0010	0

1000	0000	0001	0
1000	0100	0000	1

위 표에서 볼 수 있듯이, 01000000, 즉 64가 나와야 하지만,

```
include "alu.v"
module booth(input1, input2, clk, start, reset, result, count);
  input [3:0] input1, input2;
  input clk, start, reset;
  output [7:0] result;
  output reg [2:0] count;

reg [3:0] A, Q, M;
  reg Q_1;
  wire [3:0] add, sub;
```

코드에서 볼 수 있듯이, 4bit 로 표현했기 때문에 -8~7 까지만 표현할 수 있다. 따라서 sub 의 과정에서 8을 표현할 수 없기 때문에 계산오류가 있었다고 생각한다. 위의 계산 식에서 옳은 결과를 얻기 위해서 bit 수를 늘려주어 해결할 수 있다.

3. Reference

컴퓨터구조실험 강의자료