https://ivan-sergeyev.github.io/seymour/https://github.com/Ivan-Sergeyev/seymour https://ivan-sergeyev.github.io/seymour/docs/

Seymour

Ivan S and Martin Dvorak

December 21, 2024

Chapter 1

Code

1.1 TU Matrices

Definition 1 (TU matrix). Matrix. TU A rational matrix is *totally unimodular* (TU) if its every subdeterminant (i.e., determinant of every square submatrix) is 0 or ± 1 .

Lemma 2 (entries of a TU matrix). $def:code_tu_matrixMatrix.TU.applyIfAisTU$, $theneveryentry ofAis0or\pm 1$.

Proof sketch. $def:code_tu_matrixEveryentry is a square submatrix of size 1$, and therefore has determinant (and value of sketch). $def:code_tu_matrix is TU$. $def:code_tu_matrixMatrix.TU.submatrixLetAbearation almost the state of the state of a TU matrix is TU). <math>def:code_tu_matrixAny square submatrix of Bisasubmatrix of A$, $soits determinant is 0 or \pm 1$. Thus, B is TU.

Lemma 4 (transpose of TU is TU). $def:code_tu_matrixMatrix.TU.transposeLetAbeaTU matrix.Then A^T$ is TU.

Proof sketch. $def:code_tu_matrixAsubmatrixTofA^T$ is a transpose of a submatrix of A, so $det T \in \{0, \pm 1\}$. \Box Lemma 5 (appending zero vector to TU). $def:code_tu_matrixMatrix.TU_adjoin_row0s_iffLetAbeamatrix.Letabeama$

 $= [A/a] \ is \ TU \ exactly \ when \ A \ is.$ $Proof \ sketch. \ def: code_t u_m atrix, lem: code_s ubmatrix_o f_t u Let T be a square submatrix of C, and suppose A is TU. If$

0. Otherwise T is a submatrix of A, so $\det T \in \{0, \pm 1\}$. For the other direction, because A is a submatrix of C, we can apply lemma 3.

Lemma 6 (appending unit vector to TU). $def:code_t u_m atrix Let A beam atrix. Let a be a unit row. Then <math>C = [A/a]$ is TU exactly when A is.

Proof sketch. def:code_t $u_m atrix$, $lem: code_s ubmatrix_o f_t uLet Tbeas quare submatrix of C$, and suppose Ais TU.If entry of the unit row, then det T equals the determinant of some submatrix of A times ± 1 , so det $T \in \{0, \pm 1\}$. If T contains some entries of the unit row except the ± 1 , then det T=0. Otherwise T is a submatrix of A, so det $T \in \{0, \pm 1\}$. For the other direction, simply note that A is a submatrix of C, and use lemma A.

Lemma 7 (TUness with adjoint identity matrix). $def:code_t u_m atrix Matrix. TU_a djoin_i d_b elow_i ff, Matrix. TU_a djoin_i d_b elow_i ff, Matrix. TU_a djoin_i d_b elow_i ff$.

 $Proof\ sketch.\ \ def: code_t u_matrix Gaussian elimination. Basis submatrix: its columns formabas is of all columns, and the context of th$

Lemma 8 (block-diagonal matrix with TU blocks is TU). $def: code_t u_m atrix Matrix. from Blocks_TU Let A beam of the state of the s$

and A_2 are both TU. Then A is also TU.

- If T_1 is square, then T_2 is also square, and $\det T = \det T_1 \cdot \det T_2 \in \{0, \pm 1\}$.
- If T_1 has more rows than columns, then the rows of T containing T_1 are linearly dependent, so $\det T = 0$.
- Similar if T_1 has more columns than rows.

Lemma 9 (appending parallel element to TU). $def:code_t u_m atrix Let Abea TU matrix. Let abesome row of A. Then <math>= [A/a]$ is TU.

Proof sketch. def:code_t u_m atrixLetTbeasquaresubmatrixofC.IfTcontainsthesamerowtwice, thentherowsare dependent, sodet T=0. Otherwise T is a submatrix of A, so det $T \in \{0, \pm 1\}$.

Lemma 10 (appending rows to TU). $def:code_t u_m attrix Let Abea TU matrix. Let Bbea matrix whose every row is ar = [A/B] is TU.$

Proof sketch. $def:code_t u_m atrix, lem:code_t u_a dd_z ero_r ow, lem:code_t u_a dd_u nit_r ow, lem:code_t u_a dd_c opy_r ow Either repeatedly apply Lemmas 5, 6, and 9 or performs imilar case analysis directly. <math>\Box$

Corollary 11 (appending columns to TU). $def:code_t u_m atrix, lem:code_t u_a dd_z ero_row, lem:code_t u_a dd_u nit_row, lem:code_t u_a dd_copy_rowLetAbeaTU matrix.LetBbeamatrixwhoseeverycolumnisacolumno_set [A | B] is TU.$

 $Proof\ sketch.\ def: code_t u_m atrix, lem: code_t u_a dd_z ero_row, lem: code_t u_a dd_u nit_row, lem: code_t u_a dd_c opy_row, lem: code_t u_t ranspose \mathbf{C}^T \ \text{is TU by Lemma 10 and construction, so C is TU by Lemma 4.} \ \square$

Definition 12 (\mathcal{F} -pivot). Let A be a matrix over a field \mathcal{F} with row index set X and column index set Y. Let A_{xy} be a nonzero element. The result of a \mathcal{F} -pivot of A on the pivot element A_{xy} is the matrix A' over \mathcal{F} with row index set X' and column index set Y' defined as follows.

- For every $u \in X x$ and $w \in Y y$, let $A'_{uw} = A_{uw} + (A_{uy} \cdot A_{xw})/(-A_{xy})$.
- Let $A'_{xy} = -A_{xy}$, X' = X x + y, and Y' = Y y + x.

Lemma 13 (pivoting preserves TUness). $def:code_tu_matrix, def:code_pivotLetAbeaTUmatrix and let A_{xy}$ be a nonzero element. Let A' be the matrix obtained by performing a real pivot in A on A_{xy} . Then A' is TU.

 $Proof\ sketch.\ def: code_t u_m atrix, def: code_p ivot, lem: code_t u_a djoin_i d$

By Lemma 7 A is TU iff every basis matrix of $[I \mid A]$ has determinant ± 1 . The same holds for A' and $[I \mid A']$.

Determinants of the basis matrices are preserved under elementary row operations in $[I \mid A]$ corresponding to the pivot in A, under scaling by ± 1 factors, and under column exchange, all of which together convert $[I \mid A]$ to $[I \mid A']$.

Lemma 14 (pivoting preserves TUness). $def:code_tu_matrix, def:code_pivotLetAbeamatrix and letA_{xy}$ be a nonzero element. Let A' be the matrix obtained by performing a real pivot in A on A_{xy} . If A' is TU, then A is TU.

 $Proof\ sketch.\ def: code_tu_matrix, def: code_pivot, lem: code_pivot_tuReversetherowoperations, scaling, and column to the code of the$

1.1.1 Minimal Violation Matrices

Definition 15 (minimal violation matrix). def:code_t u_m atrixLetAbearational {0, ± 1 } matrix that is not TU but all of whose proper submatrices are TU. Then A is called a minimal violation matrix of total unimodularity (minimal violation matrix).

Lemma 16 (simple properties of MVMs). $def:code_mvmLetAbeam inimal violation matrix.$

A is square.

 $\det A \notin \{0, \pm 1\}.$

If A is 2×2 , then A does not contain a 0.

 $Proof\ sketch.\ def: code_mvm$

If A is not square, then since all its proper submatrices are TU, A is TU, contradiction.

If det $A \in \{0, \pm 1\}$, then all subdeterminants of A are 0 or ± 1 , so A is TU, contradiction.

If A is 2×2 and it contains a 0, then det $A \in \{\pm 1\}$, which contradicts the previous item.

Lemma 17 (pivoting in MVMs). $def:code_mvm$, $def:code_pivotLetAbeaminimalviolation matrix. Suppose Ahas 3 rows. Suppose we perform a real pivot in A, then delete the pivot row and column. Then the resulting matrix A' is also a minimal violation matrix.$

 $Proof\ sketch.\ \ def: code_nvm, lem: code_diagonal_with_tu_blocks, lem: code_reverse_pivot_tu, lem: code_pivot_tu, lem: code_submatrix_of_tu$

Let A'' denote matrix A after the pivot, but before the pivot row and column are deleted.

Since A is not TU, Lemma 14 implies that A'' is not TU. Thus A' is not TU by Lemma 8.

Let T' be a proper square submatrix of A'. Let T'' be the submatrix of A'' consisting of T' plus the pivot row and the pivot column, and let T be the corresponding submatrix of A (defined by the same row and column indices as T'').

T is TU as a proper submatrix of A. Then Lemma 13 implies that T'' is TU. Thus T' is TU by Lemma 3.

1.2 Matroid Definitions

Definition 18 (binary matroid). StandardRepresentation Let B be a binary matrix, let $A = [I \mid B]$, and let E denote the column index set of A. Let \mathcal{I} be all index subsets $Z \subseteq E$ such that the columns of A indexed by Z are independent over \mathbb{Z}_2 . Then $M = (E, \mathcal{I})$ is called a binary matroid and B is called its (standard) representation matrix.

Definition 19 (regular matroid). StandardRepresentation.IsRegular StandardRepresentation, def: $code_t u_m atri$

A is a signed version of B, i.e., |A| = B,

A is totally unimodular.

Then M is called a regular matroid.

Lemma 20 (regularity is ignostic of representation). $StandardRepresentation_toMatroid_isRegular_iffStandard add$

4

1.3 k-Separation and k-Connectivity

Definition 21 (k-separation). StandardRepresentation Let M be a binary matroid generated by a standard representation matrix B. Suppose that B is

partitioned as X_1 B_1 D_2 D_1 where $X_1 \sqcup X_2$ is a partition of the rows of X_2 D_1 D_2 D_3 where $X_1 \sqcup X_2$ is a partition of the rows of $X_1 \sqcup X_2$ is a partition of its columns. Let $X_1 \sqcup X_2 \sqcup X_3 \sqcup X_4 \sqcup X_4 \sqcup X_5 \sqcup X_$

- $|X_1 \cup Y_1| \ge k$ and $|X_2 \cup Y_2| \ge k$,
- \mathbb{Z}_2 -rank $D_1 + \mathbb{Z}_2$ -rank $D_2 \leq k 1$.

Then $(X_1 \cup Y_1, X_2 \cup Y_2)$ is called a (Tutte) k-separation of B and M.

Definition 22 (exact k-separation). $def: code_{ks} epAk-separation is called exact if the rank condition holds with eq$

Definition 23 (k-separability). $def:code_{ks}epWesaythatBandMare(exactly)$ (Tutte) k-separable f they have an

Definition 24 (k-connectivity). def:code_{ks}epFork ≥ 2 , M and B are (Tutte) k-connected if they have no ℓ -separation for $1 \leq \ell < k$. When M and B are 2-connected, they are also called *connected*.

1.4 \mathbf{Sums}

1.4.1 1-Sums

Definition 25 (1-sum of matrices). Matrix₁ sumCompositionLetBbeamatrixthatcanberepresented as X_1 B X_2 C

and B_2 are the two components of a 1-sum decomposition of B.

Conversely, a 1-sum composition with components B_1 and B_2 is the matrix B above.

The expression $B = B_1 \oplus_1 B_2$ means either process.

Definition 26 (matroid 1-sum). StandardRepresentation, Matrix₁ sumCompositionStandardRepresentation. $zeroblocksB_1$ and B_2 . Then the binary matroids M_1 and M_2 represented by B_1 and B_2 , respectively, are the two components of a 1-sum decomposition of M.

Conversely, a 1-sum composition with components M_1 and M_2 is the matroid M defined by the corresponding representation matrix B.

The expression $M = M_1 \oplus_1 M_2$ means either process.

Lemma 27 (1-sum is commutative). $StandardRepresentation. Is 1 sum Of StandardRepresentation_sum_commtod$ add

Proof. **Theorem 28** (1-sum of regular matroids is regular). StandardRepresentation.Is1sumOf.isRegular StandardRepresentation.Is1sumOf,StandardRepresentation.IsRegular Let M_1 and M_2 be regular matroids. Then $M = M_1 \oplus_1 M_2$ is a regular matroid.

Conversely, if a regular matroid M can be decomposed as a 1-sum $M = M_1 \oplus_1 M_2$, then M_1 and M_2 are both regular.

Proof sketch. StandardRepresentation.Is1sumOf,StandardRepresentation.IsRegular,lem:code_diagonal_with_t u_b le extractintolemmasaboutTUmatricesLetB,B₁, and B₂ be the representation matrices of M, M_1 , and M_2 , respectively.

- Converse direction. Let B' be a TU signing of B. Let B'_1 and B'_2 be signings of B_1 and B_2 , respectively, obtained from B. By Lemma 3, B'_1 and B'_2 are both TU, so M_1 and M_2 are both regular.
- Forward direction. Let B'_1 and B'_2 be TU signings of B_1 and B_2 , respectively. Let B' be the corresponding signing of B. By Lemma 8, B' is TU, so M is regular.

 $\textbf{Lemma 29} \ (\text{left summand of regular 1-sum is regular}). \ \textit{StandardRepresentation.} \\ \textit{Is1sumOf.} is \textit{Regular_leftStandardA} \\ \textit{add}$

Proof. StandardRepresentation.Is1sumOf,StandardRepresentation.IsRegular, lem:code $_submatrix_of_tu$

 $\textbf{Lemma 30} \ (\textbf{right summand of regular 1-sum is regular}). \ \textit{StandardRepresentation.Is1sumOf.isRegular}_{r} ight Standard \\ \textit{Add}$

Proof. StandardRepresentation.Is1sumOf,StandardRepresentation.IsRegular, lem:code_submatrix_of_tu \Box

1.4.2 2-Sums

be a matrix of the form
$$\begin{array}{c|c} Y_1 \\ X_1 \\ \text{Unit} \end{array}$$
 be a matrix of the form $\begin{array}{c|c} Y_1 \\ X_2 \end{array}$ $\begin{array}{c|c} \text{Unit} \end{array}$ $\begin{array}{c|c} Y_2 \\ \hline y \end{array}$

Suppose that \mathbb{Z}_2 -rank $D=1, x \neq 0, y \neq 0, D=y \cdot x$ (outer product).

Then we say that B_1 and B_2 are the two components of a 2-sum decomposition of B.

Conversely, a 2-sum composition with components B_1 and B_2 is the matrix B above.

The expression $B = B_1 \oplus_2 B_2$ means either process.

Definition 32 (matroid 2-sum). StandardRepresentation.Is2sumOf StandardRepresentation,Matrix₂sumCom and B_2 satisfy the assumptions of Definition 31. Then the binary matroids M_1

and M_2 represented by B_1 and B_2 , respectively, are the two *components* of a 2-sum decomposition of M.

Conversely, a 2-sum composition with components M_1 and M_2 is the matroid M defined by the corresponding representation matrix B.

The expression $M = M_1 \oplus_2 M_2$ means either process.

Lemma 33 (2-sum of TU matrices is a TU matrix). $StandardRepresentation_2 sum_i sRegular Matrix_2 sumComp$ and B_2 be TU matrices. Then $B = B_1 \oplus_2 B_2$ is a TU matrix.

 $Proof\ sketch.\ \ \text{Matrix}_2 sumComposition, def: code_t u_m atrix, lem: code_t u_a dd_o k_r ows, cor: code_t u_a dd_o k_cols, lem: code_m vm_p ivot, lem: code_m vm_p rops$

Let B'_1 and B'_2 be TU signings of B_1 and B_2 , respectively. In particular, let A'_1 , x', A'_2 , and y' be the signed versions of A_1 , x, A_2 , and y, respectively. Let B' be the signing of B where the blocks of A_1 and A_2 are signed as A'_1 and A'_2 , respectively, and the block of D is signed as $D' = y' \cdot x'$ (outer product).

Note that $[A'_1/D']$ is TU by Lemma 10, as every row of D' is either zero or a copy of x'. Similarly, $[D' \mid A'_2]$ is TU by Corollary 11, as every column of D' is either zero or a copy of y'. Additionally, $[A'_1 \mid 0]$ is TU by Corollary 11, and $[0/A'_2]$ is TU by Lemma 10.

todo: prove lemma below, separate into statement about TU matrices Lemma: Let T be a square submatrix of B'. Then det $T \in \{0, \pm 1\}$.

Proof: Induction on the size of T. Base: If T consists of only 1 element, then this element is 0 or ± 1 , so $\det T \in \{0, \pm 1\}$. Step: Let T have size t and suppose all square submatrices of B' of size $\leq t - 1$ are TU.

- Suppose T contains no rows of X_1 . Then T is a submatrix of $[D' \mid A'_2]$, so $\det T \in \{0, \pm 1\}$.
- Suppose T contains no rows of X_2 . Then T is a submatrix of $[A'_1 \mid 0]$, so $\det T \in \{0, \pm 1\}$.
- Suppose T contains no columns of Y_1 . Then T is a submatrix of $[0/A_2]$, so det $T \in \{0, \pm 1\}$.
- Suppose T contains no columns of Y_2 . Then T is a submatrix of $[A'_1/D']$, so det $T \in \{0, \pm 1\}$.
- Remaining case: T contains rows of X_1 and X_2 and columns of Y_1 and Y_2 .
- If T is 2×2 , then T is TU. Indeed, all proper submatrices of T are of size ≤ 1 , which are $\{0, \pm 1\}$ entries of A', and T contains a zero entry (in the row of X_2 and column of Y_2), so it cannot be a minimal violation matrix by Lemma 16. Thus, assume T has size ≥ 3 .
- . todo: complete proof, see last paragraph of Lemma 11.2.1 in Truemper

Theorem 34 (2-sum of regular matroids is a regular matroid). $StandardRepresentation. Is2sumOf. isRegular StandardRepresentation. Is2sumOf. StandardRepresentation. IsRegular Let <math>M_1$ and M_2 be regular matroids. Then $M=M_1\oplus_2 M_2$ is a regular matroid.

Proof sketch. StandardRepresentation.Is2sumOf,StandardRepresentation.IsRegular,Matrix₂sumComposition and B_2 be the representation matrices of M, M_1 , and M_2 , respectively. Apply Lemma 33.

 $\textbf{Lemma 35} \ (\text{left summand of regular 2-sum is regular}). \ \textit{StandardRepresentation. Is 2 sum Of. is Regular left Standard add}$

Lemma 36 (right summand of regular 2-sum is regular). $StandardRepresentation. Is 2 sum Of. is Regular_right StandardRepresentation. Is 2 sum Of. is Regular_right StandardRepresentation.$

1.4.3 3-Sums

Definition 37 (3-sum of matrices). Matrix₃sumCompositiontodo: add

 $\textbf{Definition 38} \ (\text{matroid 3-sum}). \ \ \textbf{StandardRepresentation.} \\ \textbf{Is 3 sum Of StandardRepresentation,} \\ \textbf{Matrix}_3 sum Compadd$

Theorem 39 (3-sum of regular matroids is regular). StandardRepresentation.Is3sumOf.isRegular StandardRepresentation.Is3sumOf,StandardRepresentation.IsRegular todo: add

 $\textbf{Lemma 40} \; (\text{left summand of regular 3-sum is regular}). \; \textit{StandardRepresentation. Is 3 sum Of. is Regular left Standard add} \; \\$

 $\textbf{Lemma 41} \ (\text{right summand of regular 3-sum is regular}). \ \textit{StandardRepresentation.Is3sumOf.isRegular_rightStandard} \\ add$