Digital Systems Design ECE 480/580

J. Jackson/D. Taylor

Soft-core processors

Department of Electrical and Computer Engineering
University of Alabama

1

System-on-a-chip (SoC)

- A chip that integrates all components of a computer or other embedded system
 - Key feature: everything on one chip
- Typically include:
 - CPU
 - Memory
 - General-purpose and/or dedicated I/O
 - Long-term storage
 - Application-specific hardware
- Examples:
 - Raspberry Pi series main chip is CPU/GPU SoC
 - Main hardware in most cell phones

System-on-a-programmable-chip (SoPC)

- Implementing an SoC on programmable logic
- Typically includes:
 - An intellectual property (IP) processor core
 - A customized selection of necessary hardware
- IP processor core is classified as either hard or soft
 - Refers to the flexibility or configurability of the core

3

Hard-core IP processor

- Less configurable, but higher performance
- Typically manufactured as a dedicated circuit connected to the interconnect matrix of the FPGA
- Examples:
 - Most FPGA manufacturers supply an ARM core on board some of their FPGA development boards
 - DE1-SoC has an ARM Cortex-A9 dual-core processor built into the FPGA fabric

Л

Soft-core IP processor

- Soft-core processors refer to using existing FPGA logic elements, memory, etc. to implement the processor logic
- Can be feature-rich, allowing specifications of parameters:
 - Memory/datapath width
 - ALU functionality
 - Number and types of peripherals
 - Memory and I/O address space
- These parameters are specified at compile time
- Major disadvantage
 - Soft cores typically have slower clock rates and higher power consumption than their hard-core counterparts

5

SoPC development tools

- A CAD tool, specific to each soft processor core, is used to specify these processor options
 - Additional options:
 - Register file size
 - Hardware multiply and divide support
 - Floating-point support
 - Interrupts
 - I/O hardware
 - Custom hardware
- Tool outputs a synthesizable HDL model of the processor
- User adds additional user logic and synthesizes using the CAD suite
- Application programs can be compiled by a custom compiler provided for the processor core

SoPC design flow

- SoPC processor core synthesis and associated tools are generally provided by traditional CAD tools.
- Various commercial and open-source processor cores
 - NIOS II
 - Microblaze
 - www.opencores.org
 - www.leox.org
- Commercial soft processor cores tend to be more efficiently implemented on FPGAs
 - Typically optimized by the manufacturer for a particular FPGA family
- Hardware and software can be designed concurrently
 - Hardware/Software co-design

7

SoPC design flow

- 1: software/hardware partition
- 2: hardware development
- 3: synthesis of soft-core
- 4: synthesis place-and-route
- 5: device programming
- 6: software development
- 7: BSP generation
- 8: compile and link
- 9: load
- 10: test

Note: this flow chart is for the Intel toolsuite and the NIOS II processor

Q

Initializing memory

- Once the program/data file has been generated, it must be loaded onto the processor's program and data memories
- Multiple methods
 - On-chip memory
 - For small applications, it might fit in the BRAM of the FPGA
 - Initialization through standard FPGA tools
 - Bootloader
 - A small software program, usually loaded onto on-chip memory or an EEPROM, that is responsible for communicating with another device and downloading an application program into external memory (SRAM, SDRAM, flash, etc.)
 - After download, control transferred to application program
 - External non-volatile storage

9

Hardware bootloader

- A hardware bootloader is like a software bootloader
 - Difference: implemented in dedicated logic within the processor core
- On power-up, the hardware bootloader stalls the processor and downloads the application code (typically through a serial interface)
 - Bootloader can start/stop the processor
 - Has access to at least some of the register set
 - Typically has direct access to memory or memory registers
- NIOS II and Microblaze support a hardware bootloader with a JTAG interface
 - What does this mean?
 - You can download new application software without recompiling the softcore processor hardware

SoPC design vs. Traditional design

- Traditional design flows:
 - ASIC application-specific integrated circuit
 - Fixed-processor design
- SoPC design advantages:
 - Reconfigurable nature
 - Short development cycle
- SoPC design disadvantages:
 - Higher unit costs in production
 - Relatively high power consumption

11

More on flexible hardware benefits

- Features and specifications are frequently modified throughout the design cycle
 - Marketing detects a shift in demand for additional features
 - Cell phones with/without cameras, MP3 players, etc.
 - A protocol or specification is introduced or updated
 - Introduction of USB 2.0/3.0 standards
- In traditional design modalities (ASICs and fixed processors), these changes could result in changes to:
 - ASIC design
 - Processor selection
 - PCB design
- These changes will increase product time-to-market and unit cost
- Can also affect multiple generations/versions of a single product or multiple product lines
 - Use of a single PCB for multiple product lines
 - Use of a single PCB for multiple versions of a single product

Comparing design modalities

Feature	SoPC	ASIC	Fixed processor
Software flexibility	Good	Good	Good
Hardware flexibility	Good	Poor	Poor
Development cost/time	Good	Poor	Good
Peripheral equipment costs	Good	Good	Poor
Performance	Average	Good	Good
Production cost	Average	Good	Good
Power efficiency	Poor	Good	Good

