

电信级PaaS云平台网络实践

目录

- ●背景介绍
- ●容器网络现状分析
- ●容器网络的挑战
- ●PaaS网络实践
- •Q & A

应用场景

公有云服务

私有云与企业IT云

NFV(网络功能虚拟化)

网络需求

- 高吞吐量,低延时
- •融合异构网络
- •满足灵活的网络配置需求

目录

- ●背景介绍
- •容器网络现状分析
- ●容器网络的挑战
- ●PaaS网络实践
- •Q & A

docker原生网络

- Host模式: 使用宿主机name space、IP和端口
- Container模式:使用已经存在容器的name space、IP和端口
- None模式:容器拥有自己的name space,需要另外添加网卡、配置 IP等
- Bridge模式: 默认模式,为容器分配name space、网卡和IP等,并连接到宿主机的虚拟网桥(docker0)

docker原生overlay网络

docker overlay

特点:

- L2 Over L3
- 支持多网络平面
- 容器IP与位置无关
- docker天然集成

缺点:

- 与外部网络对接困难
- 还达不到生产级别

flannel — 经典容器overlay网络

flannel

特点:

- L3 Over L3
- 每一个节点有一个独立的子网
- 根据etcd动态生成路由
- 部署、配置简单

缺点:

- 无网络隔离
- 容器无法带IP迁移

Calico – 纯层三解决方案

Calico

特点:

- 纯层三转发,性能较好
- 网络隔离好
- 支持容器带IP迁移

缺点:

- 需要二层互通
- 网络平面单一

对比

	docker overlay	flannel	calico
性能	较差	较差	较好
支持带ip迁移	是	否	是
网络隔离	是	否	是
基础网络限制	IP可达	IP可达	层二互通
支持多网络平面	是	否	否

Kuryr - 连接Docker与Neutron的桥梁

Kuryr与Kubernetes的集成

Kuryr - 特色

- 统一了容器网络模型
- 支持多种容器编排引擎
 - Kubernetes, Mesos, Docker Swarm
- 可以灵活选择底层实现方案,避免厂商Lock-In
- 天生支持与VM混合组网
- 可以使用Neutorn提供的各种高级网络特性
 - LBaaS, FWaaS
 - •安全组,NAT

Kuryr - 现状

- 所依赖的某些Neutron特性尚未实现
 - Neutron trunk API
- 对kubernetes的支持未实现
 - CNI Plugin
- 生产环境还无法使用

容器网络性能加速 - DPDK

DPDK in Container

前提:

- 暴露主机PCI硬件信息给容器
- 提升容器特权权限

风险:

增加了系统的受攻击面,存在潜在的 安全风险

容器网络性能加速 - SR-IOV

SR-IOV NIC for Container

容器中使用VF口:

- a. 将VF添加到容器
- b. 设置VLAN tag
- c. 设置IP地址
- d. 设置路由

目录

- ●背景介绍
- ●容器网络现状分析
- ●容器网络的挑战
- ●PaaS网络实践
- •Q & A

容器集群网络CT化的挑战

网络层次过多, 性能低

网络平面单一

没有标准框架

没有完善的DPDK解决方案

网络可定制性不足

目录

- ●背景介绍
- ●容器网络现状分析
- ●容器网络的挑战
- ●PaaS网络实践
- •Q & A

网络组件框架

knitter与kuryr比较

	knitter	kuryr – k8s
多网络平面支持	是	否
网络平面按需配置	是	否
实现语言	golang	python
数据持久化	etcd	etcd
keystone支持	否	是

扁平化的网络架构与混合组网

- 融合异构网络,裸机、VM和容器网络互通
- 扁平化的网络架构,容器直达SDN网络

可定制的微服务网络平面

IT Pod


```
{
    "pod_type":"it",
    "network_plane":"std",
    "networks":[
        "std":"net1"
]
}
```

CT Pod


```
{
    "pod_type":"ct",
    "network_plane":"std, control, media",
    "networks":[
        "std":"net1",
        "control":"net2",
        "media":"net3"
]
}
```


DPDK快通道与kubernetes的集成

目录

- ●背景介绍
- ●容器网络现状分析
- ●容器网络的挑战
- ●PaaS网络实践
- •Q & A

Q&A

谢谢!

未来,不等待......

