5 Nonlinear Programming

General form:

(N) Minimize (Maximize) f(x) subject to h(x) = 0 and $g(x) \le 0$,

where $x \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}$, $h = (h_1, \dots, h_m) : \mathbb{R}^n \to \mathbb{R}^m$, $g = (g_1, \dots, g_p) : \mathbb{R}^n \to \mathbb{R}^p$. Notions associated to (N)

• Feasible set: $S = \{x \in \mathbb{R}^n \mid h(x) = 0 \text{ and } g(x) \leq 0\}$

(Min) • $x^* \in \mathbb{R}^n$ (strict) optimal solution if $\forall x \in S$ ($x \neq x$) $f(x) \geq f(x^*)$

(Max) • $x^* \in \mathbb{R}^n$ local (strict) optimal solution if $\exists \xi_0 > 0$, $\forall x \in S$, $\|x - x^*\| < \xi_0$, $(x \neq x^*) \neq f(x^*) \neq f(x)$

5.1 Lagrange Multipliers (Sufficient Conditions)

(NE) Minimize f(x) subject to h(x) = 0,

where $x \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}$, $h = (h_1, \dots, h_m) : \mathbb{R}^n \to \mathbb{R}^m$, and $m \le n$.

Notions associated to (NE)

• A feasible point x^* (i.e., $h(x^*) = 0$) is a regular point of the constraints if

Example. Identify h and find the regular/non-regular points for the equations

h: $\mathbb{R}^{3} \to \mathbb{R}^{2}$, $h = (h_{1}h_{2})x_{1}x_{2} + x_{2}x_{3} + x_{3}x_{1} = a$, $x_{1} + x_{2} + x_{3} = b$. $h_{1}(x_{11}x_{2}, x_{3}) = X_{1}X_{2} + X_{2}X_{3} + X_{3}X_{1} - a$, $h_{2}(x_{11}x_{2})x_{3}) = X_{1} + X_{2} + X_{3} - b$. $\nabla h_{1}(x) = \begin{bmatrix} X_{2} + X_{3} \\ X_{1} + X_{3} \\ X_{1} + X_{3} \end{bmatrix}$, $\nabla h_{2}(x) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ Q. When are 2 vectors linearly indep? A. When they are proportional! $\nabla h_{1}(x)$, $\nabla h_{2}(x)$ for dep iff $X_{1} + X_{2} = X_{1} + X_{3} = X_{1} + X_{2}$ iff $X_{1} = X_{2} = X_{3}$ $\nabla h_{1}(x)$, $\nabla h_{2}(x)$ for dep iff $X_{2} + X_{3} = X_{1} + X_{3} = X_{1} + X_{2}$ iff $X_{1} = X_{2} = X_{3}$ $\nabla h_{1}(x)$, $\nabla h_{2}(x)$ for dep iff $X_{2} + X_{3} = X_{1} + X_{3} = X_{1} + X_{2}$ iff $X_{1} = X_{2} = X_{3}$ $\nabla h_{1}(x)$, $\nabla h_{2}(x)$ for $x = \{x_{1}, x_{2}, x_{3}\}$ $|X_{1} = X_{2} = X_{3} = X_{4} \in \mathbb{R}$

Rog Points: = 1 x = (X11 X21 X3) | X1 = X2 or X2 = X3 or X3 = X1)

• The tangent space at x^* on the surface $S := \{x \mid h(x) = 0\}$

$$T(x^*) = \{ y \in \mathbb{R}^n \mid Dh(x^*)y = 0 \} = \text{Null Space of } Dh(x^*) = \mathcal{N} \left(Dh(x^*) \right)$$

Note that $0 \in T(x^*)$ and when x^* is regular dim $T(x^*) = n - m$ by $\lim_{x \to \infty} P(x^*) + \lim_{x \to \infty} P(x^*) = n$

The tangent plane at x^*

$$TP(x^*) = T(x^*) + x^* = \{X^* + Y \mid Y \in T(X^*)\}$$

Tangent plane to the surface S at the point x^* .

Theorem. Suppose that $x^* \in S = \{x \mid h(x) = 0\}$ is a regular point and $T(x^*)$ is the tangent space at x^* . Then, $y \in T(x^*)$ if and only if there exists a differentiable curve in S passing through x^* with derivative y at x^* , (that is, $\exists x : I \to \mathbb{R}^n$, $x(I) \subset S$, $\exists t^* \in I : x(t_0) = x^*$, $\frac{dx}{dt}(t^*) = y$).

Proof. (4) Suppose $\exists x: I \rightarrow \mathbb{R}^n, left, x(I) \in S, \exists t \in I: x(t) = x^*, \frac{dx}{dt}(t') = y$ Since $x(t) \in S$, $\forall t \in I$ we know h(x(t)) = 0. Take a desirative w.n. to t

 $\frac{d}{dt}h(x(t)) = Dh(x(t)) \cdot \frac{dx}{dt}(t) = 0 \quad \text{Fint} = t^*$ $Dh(x^*) \quad y = 0 \quad \text{St} \quad y \in T(x^*)$

(=>) (skipped) regumes the Implicit Function Theorem

• The normal space at x^* on the surface $S = \{x \mid h(x) = 0\}$ $N(x^*) = \{x \in \mathbb{R}^n \mid x = Dh(x^*)^T z, \text{ for some } z \in \mathbb{R}^m\} = \text{Range or Image Dh}(x)^T = \mathbb{R}\left(Dh(x)^T\right)$

Note that $0 \in N(x^*)$ and that $N(x^*)$ is spanned by the vectors $\{\nabla h_i(x^*)\}_{i=\overline{1,m}}$, that is,

Assuming that x^* is regular, dim $N(x^*) = \text{tankDh}(X^*) = M$

The normal plane at x^*

$$NP(x^*) = N(x^*) + x^* = \left\{ \times + \times^* \mid \times \in \mathbb{N}(x^*) \right\}$$

Normal space in \mathbb{R}^3 .

Lemma. $T(x^*) = N(x^*)^{\perp}$, $T(x^*)^{\perp} = N(x^*)^{\perp \perp} = N(x^*)$. In particular, every vector $v \in \mathbb{R}^n$ can be represented uniquely as v = y + w with $y \in T(x^*)$, $w \in N(x^*)$ (or $\mathbb{R}^n = T(x^*) \oplus N(x^*)$).

Proof. \subset " For every $y \in T(x')$, $x \in N(x')$ then is $z \in \mathbb{R}^m s.t. x = Dh(x')^2$ $x^T y = z^T Dh(x') y = z^T \cdot 0 = 0 \Rightarrow T(x') \subset N(x')^T$. Conversely if $y \in N(x')^T$ by its def $\forall x \in N(x')$, $x^T y = 0 \Rightarrow z^T (Dh(x')^T y) = 0$, $\forall z \in \mathbb{R}^m \Rightarrow Dh(x')^T y = 0$ $\forall z \in \mathbb{R}^m$, $x = D(h(x')^T z)$ $\forall z \in \mathbb{R}^m$, $x = D(h(x')^T z)$ $\forall z \in \mathbb{R}^m$, $x = D(h(x')^T z)$ $\forall z \in \mathbb{R}^m$, $x = D(h(x')^T z)$ $\forall z \in \mathbb{R}^m$, $x \in \mathbb{R}^m$, $x \in \mathbb{R}^m$, $x \in \mathbb{R}^m$. $x \in \mathbb{R}^m$ $\forall z \in \mathbb{R}^m$, $x \in \mathbb{R}^m$, $x \in \mathbb{R}^m$. $x \in \mathbb{R}^m$ $\forall z \in \mathbb{R}^m$, $x \in \mathbb{R}^m$. $x \in \mathbb{R}^m$ $\forall z \in \mathbb{R}^m$, $x \in \mathbb{R}^m$. $x \in \mathbb{R}^m$ $\forall z \in \mathbb{R}^m$, $x \in \mathbb{R}^m$. $x \in \mathbb{R}^m$ $\forall z \in \mathbb{R}$

#20.4 \$ 459

 $S = \{x \in \mathbb{R}^3 \mid h_1(x) = x_1 = 0, h_2(x) = x_1 - x_2 = 0\}$ $Dh(x) = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix}, T(x) = \{y \mid \begin{bmatrix} 1 & 0 & 0 \\$

N(x) = the (x,x) plane!

1=0 and 1-42=0 =>42=0

Theorem (Lagrange Multipliers) Let x^* be a local extrema of $f: \mathbb{R}^n \to \mathbb{R}$ subject to h(x) = 0, where $h: \mathbb{R}^n \to \mathbb{R}^m$, $m \le n$. If x^* is a regular point then there exists $\lambda^* \in \mathbb{R}^m$ such that

$$Df(x^*) + \lambda^{*T} Dh(x^*) = 0^T \text{ or } \nabla f(x^*) = Dh(x^*)^T (-\lambda^*)$$

Proof. Equivalently, $\nabla f(x^*) \in \mathbb{R}(Dh(x^*)^T) =: N(x^*) = T(x^*)^T$ It suffices to pure that $\forall y \in T(x^*)$, $\nabla f(x^*)^T y = 0$ Let $y \in T(x^*) \Rightarrow \exists x: I \rightarrow \mathbb{R}^n \text{ Aff}, x(I) \in S$, $\exists t^* \in I \text{ s.t.} \times (t^*) = x^*, \frac{dx}{dt}(t^*) = y$ Take $\phi(t) = f(x(t))$. Then t^* is a local extrema for ϕ be x^* is a local extrema for ϕ be x^* is a local extrema for ϕ be x^* is a cuthcal number of ϕ , that is, $\frac{d\phi}{dt}(t^*) = Df(x^*) \cdot \frac{dx}{dt}(t^*) = Df(x^*) \cdot \frac{$

Lagrange's theorem states that if x^* is an extrema then the gradient of the objective function is a linear combination of the gradients of the constraints.

The vector λ^* is called the *Lagrange multiplier vector* and its components the *Lagrange multipliers*. A convenient way to apply Lagrange's theorem is provided by the Lagrangian function $L: \mathbb{R}^{m+n} \to \mathbb{R}$, defined by

$$L(x,\lambda) = f(x) + \lambda^T h(x).$$

Note that the unrestricted FONC for L: $0 = \nabla L(x,\lambda) = \begin{bmatrix} \nabla f(x) + Dh(x)^T \lambda \\ h(x) \end{bmatrix}$ is equivalent to the combination of the Lagrangian necessary condition and the constraint.

Example #20.5 p = 467(P) Min f(x) = x subject f(x) = 0 $f(x) = \begin{cases} x^2 & \text{if } x < 0 \\ 0 & \text{if } 0 \le x \le 1 \end{cases}$ Fearlies set f(x) = 0 f(x) = [0,1] f(x) = [0,1]However f'(x) = [0,1] f'(x) = [0,1]

Example #20.8 p470 (Po) Maximize $\frac{X^TQX}{X^TPX}$ mall $X \in \mathbb{R}^n$, $X \neq 0$, where Q=QT, Q >0 (postive semidefinite) XTQX >0, 4XER" P=PT, P>0 (postive definite) XTPX70, 4XER", X ≠0 X*15 a solution of (Po) iff tx*is a solution of Po) HtER?04 To avoid solution multipliesty we superImpose an extra and XTPX = 1 We get the equivalent pullem (Pi) Max xTQx on all xER subject to xTPX=1. $h(x) = 1 - X^T P x = 1 - \sum_{i=1}^{n} P_{ij} x_i x_j = 0$ We prove first that any fearable point of (Pi) is REGULAR! $\nabla h(x) = -2 Px$ Assume(by contr.) that x is non-regular (fearable) Hence Px=0 and xTPX=1=>0=1(Contradiction) $L(x_1\lambda) = x^TQx + \lambda(1-x^TPx)$ $L(X_1 \Lambda) = X \ \forall X + \Lambda (1 - \Lambda 1 \Lambda)$ Assume X is a solid m of (P_1) Fonc $\exists \lambda \in \mathbb{R}$, $DL(X_1 \lambda) = \begin{bmatrix} 2X^TQ - 2\lambda X^TP \\ 1 - X^TPX \end{bmatrix} = 0 \Rightarrow$ $Qx = \lambda Px = 0$ So $(Q - \lambda P)x = 0$ or $(\lambda P - Q)x = 0$ Since Pro, Will(P) = for so Ptexists => (\lambda In-P'Q) x = 0 $P^{-1}Qx = \lambda x$, that is, λ is an eigenvalue of $P^{-1}Q$ But $x^{-1}Px = 1$ $Qx = \lambda Px / x^{-1} \Rightarrow x^{-1}Qx = \lambda x^{-1}Px = \lambda$ If x* 1s a solution of (PA) then A* = x* Qx* is the largest eigenvalue

Homework 6. Due:

Name:

Show all your work and all details. Write accurately.

Problem 1. (a) Where is the assumption: " x^* is regular" essential in the proof of the results of section: Lagrange Multipliers

- (b) In the example on page 49 (#20.8 in the book) explain in what way is (P_0) equivalent to (P_1) . Prove your statements.
- (c) State the SOSC Theorem on p. 51 (or Theorem 20.5 p. 474 in the book) for x^* a local maximizer.

Problem 2. #20.2(c) on page 482

Problem 3. #20.8 on page 483

Problem 4. #20.18 on page 485 (follow the class notes)

Problem 5. #20.21 on page 486 (match it to a quadratic programming problem)

Start every new problem solution on the top of the page. Sign every sheet of paper you use.

Do not staple!

Homework 6 – Solutions

Total 80p

Problem 1. (a) Where is the assumption: " x^* is regular" essential in the proof of the results of section: Lagrange Multipliers

That assumption is essential in the Implicit Function Theorem which in turn is used for the proof of the theorem on p. 46 about the characterization of $y \in T(x^*)$ (iff there exists a differentiable curve in S passing through x^* with derivative y at x^*).

(b) In the example on page 49 (#20.8 in the book) explain in what way is (P_0) equivalent to (P_1) . Prove your statements.

(
$$P_0$$
) Maximize $\frac{x^TQx}{x^TPx}$, on all $x \in \mathbb{R}^n, x \neq 0$, (P_1) Maximize x^TQx where $Q = Q^T \geq 0$ subject to $x^TPx = 1$.

They are equivalent in the following sense:

1. If x^* is a solution of (P_1) then, for every $t \neq 0$, tx^* is a solution of (P_0) .

2. If x^* is a solution of (P_0) then $y = \frac{1}{\sqrt{x^{*T}Px^*}}x^*$ is a solution of (P_1) .

1. Let x^* be a solution of (P_1) , that is, $x^{*T}Px^* = 1$ and, for every u such that $u^TPu = 1$, $u^TQu \le x^{*T}Qx^*$ (*). For every $t \ne 0$ denote by $x_t = tx^*$. Note that $\frac{x_t^TQx_t}{x_t^TPx_t} = \frac{x^{*T}Qx^*}{x^{*T}Px^*} = x^{*T}Qx^*$.

For every $x \in \mathbb{R}^n$, $x \neq 0$, take $u = \frac{1}{\sqrt{x^T P x}}x$. Then $u^T P u = 1$ and we can use (*) to get $\frac{x^T Q x}{x^T P x} = u^T Q u \leq x^{*T} Q x^* = \frac{x_t^T Q x_t}{x_t^T P x_t}$, that is, x_t is a solution of (P_0) .

2. Let x^* be a solution of (P_0) , that is, for every $v \in \mathbb{R}^n$, $v \neq 0$, $\frac{v^T Q v}{v^T P v} \leq \frac{x^{*T} Q x^*}{x^{*T} P x^*} = y^T Q y$ (**). For every x such that $x^T P x = 1$, we use (**) to get $x^T Q x = \frac{x^T Q x}{x^T P x} \leq y^T Q y$ and since $y^T P y = 1$ we get that y is a solution of (P_1) .

(c) State the SOSC Theorem on p. 51 (or Theorem 20.5 p. 474 in the book) for x^* a local maximizer.

Theorem (SOSC-max). Suppose that $f, h \in C^2$ and there exist $x^* \in \mathbb{R}^n$ and $\lambda^* \in \mathbb{R}^m$ such that:

1. $Df(x^*) + \lambda^{*T}Dh(x^*) = 0^T$,

2. For all $y \in T(x^*)$, $y \neq 0$, we have $y^T D_x^2 L(x^*, \lambda^*) y < 0$.

Then x^* is a strict local maximizer of f subject to h(x) = 0.

Problem 2. #20.2(c) on page 482 Find local extremizers for the following optimization problem: Maximize x_1x_2 , subject to $x_1^2 + 4x_2^2 = 1$.

$$L(x_1, x_2, \lambda) = x_1x_2 + \lambda(x_1^2 + 4x_2^2 - 1)$$
. The Lagrange-FONC are

$$\frac{\partial L}{\partial x_1} = x_2 + 2\lambda x_1 = 0$$
$$\frac{\partial L}{\partial x_2} = x_1 + 8\lambda x_2 = 0$$

$$x_1^2 + 4x_2^2 = 1$$
.

If $x_1 = 0$ or $x_2 = 0$ then $x_1 = x_2 = 0$ in contradiction with the 3rd equation

Hence
$$x_1 \neq 0$$
, $x_2 \neq 0$ and $\frac{x_2}{x_1} = -2\lambda$, $\frac{x_1}{x_2} = -8\lambda \Rightarrow 16\lambda^2 = 1$ so $\lambda = \pm \frac{1}{4}$.

For $\lambda = 1/4$ we get $x_1 = -2x_2$ and from the 3rd $8x_2^2 = 1 \Rightarrow x_2 = \pm \frac{1}{2\sqrt{2}}$ and the points

$$(-\frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}), (\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}).$$

For $\lambda = -1/4$ we get $x_1 = 2x_2$ and from the 3rd $8x_2^2 = 1 \Rightarrow x_2 = \pm \frac{1}{2\sqrt{2}}$ and the points

$$(\frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}), (-\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}).$$

 $h(x_1, x_2) = x_1^2 + 4x_2^2 - 1$, $\nabla h(x_1, x_2) = (2x_1, 8x_2)^T$ so all the above points are regular $(\nabla h \neq 0)$.

$$D_x^2 L(x_1, x_2, \lambda) = \begin{bmatrix} 2\lambda & 1 \\ 1 & 8\lambda \end{bmatrix}$$

$$n(x_1, x_2) = x_1 + 4x_2 - 1, \quad \forall h(x_1, x_2) = (2x_1, 8x_2) \quad \text{so all the above points are regular } (\forall n \neq 0).$$

$$D_x^2 L(x_1, x_2, \lambda) = \begin{bmatrix} 2\lambda & 1 \\ 1 & 8\lambda \end{bmatrix}$$
For $(-\frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4}), \quad D_x^2 L = \begin{bmatrix} 1/2 & 1 \\ 1 & 2 \end{bmatrix}, \quad Dh(x)y = [-\sqrt{2}, 2\sqrt{2}] \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = 0 \Rightarrow y_1 = 2y_2 \text{ so}$

$$T(-\frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}) = \{ \begin{bmatrix} 2a \\ a \end{bmatrix} \mid a \in \mathbb{R} \}, [2a, a] \begin{bmatrix} 1/2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2a \\ a \end{bmatrix} = 8a^2 > 0, \text{ for } a \neq 0 \text{ so } a \neq 0 \text{$$

 $\left(-\frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}\right)$ is a strict local minimizer

For
$$(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}, \frac{1}{4})$$
, $D_x^2 L = \begin{bmatrix} 1/2 & 1\\ 1 & 2 \end{bmatrix}$, $Dh(x)y = [\sqrt{2}, -2\sqrt{2}] \begin{bmatrix} y_1\\ y_2 \end{bmatrix} = 0 \Rightarrow y_1 = 2y_2$ so

$$T(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}) = \left\{ \begin{bmatrix} 2a \\ a \end{bmatrix} \mid a \in \mathbb{R} \right\}, [2a, a] \begin{bmatrix} 1/2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2a \\ a \end{bmatrix} = 8a^2 > 0, \text{ for } a \neq 0 \text{ so } a \neq 0 \text$$

 $(\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}})$ is a strict local minimizer.

For
$$(\frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, -\frac{1}{4})$$
, $D_x^2 L = \begin{bmatrix} -1/2 & 1\\ 1 & -2 \end{bmatrix}$, $Dh(x)y = [\sqrt{2}, 2\sqrt{2}] \begin{bmatrix} y_1\\ y_2 \end{bmatrix} = 0 \Rightarrow y_1 = -2y_2$ so

$$T(\frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}) = \{ \begin{bmatrix} -2a \\ a \end{bmatrix} \mid a \in \mathbb{R} \}, [-2a, a] \begin{bmatrix} -1/2 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} -2a \\ a \end{bmatrix} = -8a^2 < 0, \text{ for } a \neq 0 \text{ so } a \neq 0$$

 $(\frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}})$ is a strict local maximizer.

For
$$\left(-\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}, -\frac{1}{4}\right)$$
, $D_x^2 L = \begin{bmatrix} -1/2 & 1 \\ 1 & -2 \end{bmatrix}$, $Dh(x)y = \begin{bmatrix} -\sqrt{2}, -2\sqrt{2} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = 0 \Rightarrow y_1 = -2y_2$

so
$$T(-\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}) = \{ \begin{bmatrix} -2a \\ a \end{bmatrix} \mid a \in \mathbb{R} \}, [-2a, a] \begin{bmatrix} -1/2 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} -2a \\ a \end{bmatrix} = -8a^2 < 0, \text{ for } a \neq 0 \text{ so }$$

 $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{2\sqrt{2}}\right)$ is a strict local maximizer.

Problem 3. #20.8 on page 483 Consider the problem: Minimize $2x_1 + 3x_2 - 4$, $x_1, x_2 \in \mathbb{R}$, subject to $x_1x_2 = 6$.

a. Use Lagrange's theorem to find all possible local minimizers and maximizers.

b. Use the second-order sufficient conditions to specify which points are strict local minimizers and which are strict local maximizers.

c. Are the points in part b global minimizers or maximizers? Explain.

a. $f(x_1, x_2) = 2x_1 + 3x_2 - 4$, $h(x_1, x_2) = x_1x_2 - 6$, $Df(x_1, x_2) = [2, 3]$, $Dh(x_1, x_2) = [x_2, x_1]$. Note that (0, 0) is not a feasible point. Therefore, any feasible point is regular. $L(x_1, x_2, \lambda) = 2x_1 + 3x_2 - 4 + \lambda(x_1x_2 - 6)$. The Lagrange-FONC are

$$\frac{\partial L}{\partial x_1} = 2 + \lambda x_2 = 0$$
$$\frac{\partial L}{\partial x_2} = 3 + \lambda x_1 = 0$$
$$x_1 x_2 = 6.$$

Clearly $\lambda \neq 0$, $x_1 = -3/\lambda$, $x_2 = -2/\lambda$ so $x_1x_2 = 6/\lambda^2 = 6 \Rightarrow \lambda = \pm 1$, and the possible local minimizers and maximizers are (-3, -2), (3, 2).

b. $D_x^2 L(x_1, x_2, \lambda) = \begin{bmatrix} 0 & \lambda \\ \lambda & 0 \end{bmatrix}$ $(-3, -2, 1) \Rightarrow D_x^2 L(x_1, x_2, \lambda) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Dh(x)y = [-2, -3] \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = 0 \Rightarrow 2y_1 + 3y_2 = 0 \text{ so } T(-3, -2) = \{[-3a, 2a]^T \mid a \in \mathbb{R}\} \ [-3a, 2a] \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -3a \\ 2a \end{bmatrix} = -12a^2 < 0, \text{ for } a \neq 0 \text{ so by SOSC } (-3, -2) \text{ is a strict local maximizer.}$ $(3, 2, -1) \Rightarrow D_x^2 L(x_1, x_2, \lambda) = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, Dh(x)y = [2, 3] \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = 0 \Rightarrow 2y_1 + 3y_2 = 0 \text{ so } T(3, 2) = \{[-3a, 2a]^T \mid a \in \mathbb{R}\} \ [-3a, 2a] \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -3a \\ 2a \end{bmatrix} = 12a^2 > 0, \text{ for } a \neq 0 \text{ so by SOSC } (3, 2) \text{ is a strict local minimizer.}$

c. f(-3, -2) = -16 < 8 = f(3, 2) so both points are not global extrema.

Problem 4. #20.18 on page 485 (follow the class notes) Consider the problem of minimizing a general quadratic function subject to a linear constraint:

minimize
$$\frac{1}{2}x^TQx - c^Tx + d$$

subject to $Ax = b$,

where $Q = Q^T > 0$, $A \in \mathbb{R}^{m \times n}$ with m < n, rankA = m and d is a constant. Derive a closed form solution to the problem

 $L(x,\lambda) = \frac{1}{2}x^TQx - c^Tx + d + \lambda(b-Ax)$. Suppose that x^* is a solution of the problem. Since the rank of $Dh(x^*) = -A$ is m we know that x^* is regular. According to Lagrange-FONC, there exits λ^* such that $D_xL(x,\lambda) = x^{*T}Q - c^T - \lambda^{*T}A = 0$ so $Qx^* = c + A^T\lambda^* \Rightarrow x^* = Q^{-1}A^T\lambda^* + Q^{-1}c$ (*)

 λ^* such that $D_x L(x, \lambda) = x^{*T}Q - c^T - \lambda^{*T}A = 0$ so $Qx^* = c + A^T\lambda^* \Rightarrow x^* = Q^{-1}A^T\lambda^* + Q^{-1}c$ (*) But $Ax^* = b$ gives $AQ^{-1}A^T\lambda + AQ^{-1}c = b$ so $\lambda^* = (AQ^{-1}A^T)^{-1}b - (AQ^{-1}A^T)^{-1}AQ^{-1}c$ and from (*) we get

$$x^* = Q^{-1}A^T(AQ^{-1}A^T)^{-1}b - Q^{-1}A^T(AQ^{-1}A^T)^{-1}AQ^{-1}c + Q^{-1}c.$$

Problem 5. #20.21 on page 486 (match it to a quadratic programming problem) Consider the discrete-time linear system $x_k = 2x_{k-1} + u_k$, $k \ge 1$, with $x_0 = 1$. Find the values of the control inputs u_1 and u_2 to minimize

$$x_2^2 + \frac{1}{2}u_1^2 + \frac{1}{3}u_2^2$$

Letting
$$z = [x_2, u_1, u_2]^T$$
 then $x_2^2 + \frac{1}{2}u_1^2 + \frac{1}{3}u_2^2 = z^TQz$, where $Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}$. ≥ 0

The linear constraint on z is obtained by writing $x_2 = 2x_1 + u_2 = 2(2 + u_1) + u_2 = 2u_1 + u_2 + 4$ and seeing it as Az = b where $A = \begin{bmatrix} 1 & -2 & -1 \end{bmatrix}$, b = 4.

This is a quadratic programming problem with solution

$$z^* = Q^{-1}A^T(AQ^{-1}A^T)^{-1}b = [1/3, -4/3, -1]^T \Rightarrow u_1^* = -4/3, \ u_2^* = -1.$$

5.1.1 Second-Order Conditions for (NE)

We assume that $f \in C^2(\mathbb{R}^n)$ and $h \in C^2(\mathbb{R}^n; \mathbb{R}^m)$, $h = (h_1, \dots, h_m)$.

We denote $D^2h_k(x) = H_k(x) = (\frac{\partial^2 h_k}{\partial x_i \partial x_j})_{i,j=\overline{1,n}}$ the Hessian matrix of h_k , $k=\overline{1,m}$ and by D_x^2L the Hessian matrix of $L(x,\lambda)$ with respect to x. We use the notation

$$\lambda \cdot H(x) = \lambda_1 H_1(x) + \ldots + \lambda_m H_m(x).$$

Theorem. (SONC) Let x^* be a local minimizer of $f: \mathbb{R}^n \to \mathbb{R}$ subject to h(x) = 0, where $h: \mathbb{R}^n \to \mathbb{R}^m$, $m \leq n$, and $f, h \in C^2$. Suppose that x^* is regular. Then, there exists λ^* such that:

- 1. $Df(x^*) + \lambda^{*T} Dh(x^*) = 0^T$,
- 2. For all $y \in T(x^*)$, we have $y^T D_x^2 L(x^*, \lambda^*) y \ge 0$.

Proof. Condition I is FONC (see Lagrange's Thm, p. 48) It remains to prove 2.

Let yeT(x*) => 3x: I > R", xeC2, x(I) cS={h=0}, 3t*eI, xt*f=x*, dx(t)=y Again this a heal win of ϕ (t)=fix(t)) so ϕ is emcave up (convex) around the so $\frac{d^2\phi}{dt}$ (t) (chain rule) $\frac{d^2d}{dt^2} = \frac{d}{dt} \left(Df(x(t)) \cdot \frac{dx}{dt}(t) \right) = \frac{dx}{dt}(t) D^2f(x(t)) \cdot \frac{dx}{dt}(t) Df(x(t)) \cdot \frac{d^2x}{dt}(t)$ $f_n t = t^* \text{ we get } y^T D^2 f(x^*) y + D f(x^*) \frac{d^2x}{dt^2} (t^*) \ge 0$ (*) We have x(I)CS, i.e., h(xch) = 0, $\forall t \in I \Rightarrow \lambda^* \cdot h(xch) = 0 \Rightarrow \frac{d^2}{dt^2}(\lambda^* h(xch)) = 0$ $\frac{d^2}{dt^2}(\lambda^* \cdot h(x(t))) = \frac{d}{dt}[\lambda^* \cdot \frac{d}{dt}h(x(t))] = \frac{d}{dt}\sum_{k=1}^{m} \lambda^* \cdot \frac{d}{dt}h_k(x(t)) = \sum_{k=1}^{m} \lambda^* \cdot \frac{d}{dt}[Dh_k(x(t)) \cdot \frac{dx}{dt}(t)]$ $= \sum_{k=1}^{m} \lambda^* \cdot \left[\frac{dx}{dt}D^2h_k(x(t)) \cdot \frac{dx}{dt} + Dh_k(x(t)) \cdot \frac{dx}{dt^2}(t)\right] = \frac{dx}{dt}[\lambda^* \cdot D^2h(x(t))] \frac{dx}{dt} + \lambda^* \cdot Dh(x(t)) \frac{dx}{dt^2} = 0$ Fnt=t* we get y []*. D2h(x*)] y + x*TDh(x*). d2x (t*) = 0 (**) (*)+(**) $y^{T}[D^{2}f(x^{*})+\lambda^{*}.D^{2}h(x^{*})]y+[D^{2}f(x^{*})+\lambda^{*}TDh(x^{*})]d^{2}x(t^{*}) \geq 0$ =0 bc of 1. D. L(X, X,) $L(x_1^*)^* = f(x_1^*) + \lambda \cdot h(x)$ St 2.

Theorem. (SOSC) Suppose that $f, h \in C^2$ and there exist $x^* \in \mathbb{R}^n$ and $\lambda^* \in \mathbb{R}^m$ such that:

1. $Df(x^*) + \lambda^{*T} Dh(x^*) = 0^T$,

2. For all $y \in T(x^*)$, $y \neq 0$, we have $y^T D_x^2 L(x^*, \lambda^*) y > 0$.

(Skipped proof)

Then x^* is a strict local minimizer of f subject to h(x) = 0, that is, $\forall x > 1$. h(x) = 0, $x + x^*$, $f(x^*) < f(x)$ Interpretation: If x*is a leal wen of (NE) then DZL(x,X) is positive sandefinite on T(x*) Conversely, if D'x L(x, x) is positive definite on T(x) then x is a strict leal min of (NE)

Example. 20.9 on p. 475 Max $\frac{\overline{XQX}}{\overline{XTPX}}$ mall $x \in \mathbb{R}^7, x \neq 0 \Rightarrow Max \overline{XTQX}$ Subjet $\overline{XTPX} = 1$ $h(x) = 1 - \overline{XTPX}$ Where $Q = \begin{bmatrix} 40 \\ 01 \end{bmatrix}$, $P = \begin{bmatrix} 20 \\ 01 \end{bmatrix}$

 $L(x,\lambda) = x^{T}Qx + \lambda(I - x^{T}Px)$

Lagrange and (FONC, p. 49) (XI-PQ)X=0 P-Q=[20] X=2

 $87 \times = \lambda = 2$ $2I - \begin{bmatrix} 20 \times 1 \\ 01 \times 2 \end{bmatrix} = \begin{bmatrix} 00 \times 1 \\ 01 \times 2 \end{bmatrix} = 0$ $87 \times 2 = 0$

 $E_{\lambda} = \int [\alpha] |\alpha \in \mathbb{R}$ $[\alpha \circ][2 \circ][\alpha] = 2\alpha^2 = 1, \alpha = \pm \frac{1}{\sqrt{2}}$

Denote by X = [\frac{1}{\sqrt{2}}, 0]. Eigenvectors are ± X* They are both head maxs!

 $D_{x}^{2}L(x, x') = 2Q - 2x^{*}P = \begin{bmatrix} 80 \\ 02 \end{bmatrix} - \begin{bmatrix} 80 \\ 04 \end{bmatrix} = \begin{bmatrix} 00 \\ 0-2 \end{bmatrix}$

 $T(x^*) = \{y \in \mathbb{R}^2 \mid Dh(x^*)y = -2x^*TPy = 0\} = \{y \mid y_1 =$ [-2/2,0]

2. tyeT(x*),y +0 (thatis a+0) yTD2 L(x,1x)y=[0,a)[00][0-2][a]=-2a^2<0 Sor X* is a heal MAX be Dx Lis negative definite (on T(x*))

Similarly for -x".

Quadratic Programming

#22.12

(Q) Minimize $\frac{1}{2}x^TQx$ subject to Ax = b,

where $Q = Q^T > 0$, that is, Q is positive definite: for every $x \in \mathbb{R}^n$, $x \neq 0$, $x^T Q x > 0$, h(x) = b - A x $A \in \mathbb{R}^{m \times n}$, m < n, rank A = m.

 $L(x, \lambda) = \frac{1}{2} x^{T} Q x + \lambda^{T} (b - Ax)$ Laprange Cond (FONC) for Soft x* and x*: D_L(x*, 1*) = x*TQ - x*TA = 0 | T $Q \times^* = A^T \lambda^* \Rightarrow x^* = Q^T A^T \lambda^* (1) \quad A \times^* = b \xrightarrow{(1)} (A Q^T A^T) \lambda^* = b (2)$

But AQ'AT is positive definite or invertible $X^{T}(AQ^{T}A^{T})x = (A^{T}X)^{T}Q^{T}(A^{T}X) = 2^{T}Q^{T}2 > 0, \forall x \neq 0$

 $Q^{1}>0$ bc $A^{T}x=0 \Rightarrow X=0$ CankA=m $(x+0 \Rightarrow 2+0)$

 $(2) \Rightarrow \lambda^* = (AQ^-AT)^-b \Rightarrow x^* = Q^-AT(AQ^-AT)^-b$ the only candidate for a minimizer

D_x L(x*, x*) = Q>0 everywhere (not only on T(x*)) => x*isa leal min Because fand have convex later. Xt is a gobal min

Particular Case $Q=I_n$, $f(x)=\frac{1}{2}x^TQx=\frac{1}{2}|x|^2=\frac{1}{2}\sum_{i=1}^n x_i^2s.t.Ax=b$ The solul min is x = AT (AAT) b

Example. #20.10 p478
$$X_k = aX_{k+1} + bu_k$$
, $k \ge 1$

Min $\frac{1}{2} \sum_{i \ge 1}^{\infty} q x_i^2 + hu_i^2$ subject h , $k = 1/N$ $X_0 - ghren$

Weighted Sam approach

 $2 = \begin{bmatrix} x \\ u \end{bmatrix}_{2Nx1}$, $Q = \begin{bmatrix} q In & 0 \\ 0 & rIn \end{bmatrix}$, $A = \begin{bmatrix} 1 & 0 & ... & 0 \\ -a & 1 & ... & 0 \end{bmatrix} = 0$
 $2 = \begin{bmatrix} x \\ u \end{bmatrix}_{2Nx1}$, $Q = \begin{bmatrix} q In & 0 \\ 0 & rIn \end{bmatrix}$, $A = \begin{bmatrix} 1 & 0 & ... & 0 \\ -a & 1 & ... & 0 \end{bmatrix} = 0$
 $A = \begin{bmatrix} ax_0 \\ 0 \end{bmatrix} \Rightarrow Min = 2 T Q \ge Shy tr A \ge T B$ with solution

 $2 = \begin{bmatrix} ax_0 \\ b \end{bmatrix} \Rightarrow Min = 2 T Q \ge Shy tr A \ge T B$ with solution

Example. #20.11 $x_k = 10.000$ $x_k = account balance at the end of north <math>k$ k = 1.10 k = 10

(SE)
$$X_k = 1.02 X_{k-1} - U_k$$
 So $b = -1$
Min $\frac{1}{2} \sum_{i=1}^{10} qX_i^2 + 12U_i^2$ Soly to (SE) It large \rightarrow reduce debt Ity large \rightarrow reduce to pay $q = 1, 12 = 10$

Example. #20.2(b) p.482 Max $4x_1 + x_2^2 + x_3^2 = 9$ $h(x_1, x_2) = x_1^2 + x_2^2 - 9 = 0$ $L(x_1, x_2, \lambda) = 4x_1 + x_2^2 + \lambda(x_1^2 + x_2^2 - 9), \nabla L = 0 \Rightarrow \begin{cases} 2x_1 + 2\lambda x_1 = 0 \\ 2x_2 + 2\lambda x_2 = 0 \end{cases}$ $x_1^2 + x_2^2 = 9$ $2x_2(1+\lambda) = 0 < x_2 = 0$ or x = -1 $X_{2}=0 \xrightarrow{3^{nd}} X_{1}=\pm 3$ $(3,0,-\frac{2}{3}),(-3,0,\frac{2}{3})$ $\lambda=-1 \xrightarrow{3^{nd}} X_{1}=2 \xrightarrow{3^{nd}} X_{2}=\pm \sqrt{5},(2,\pm \sqrt{5},-1)$ $\nabla h(x_1, x_2) = 2[x_1, x_2]^T \neq 0$ for all c.p. so they are all regular $D_{x}^{2} L(x_{11}x_{2},\lambda) = \begin{bmatrix} 2\lambda & 0 \\ 0 & 2+2\lambda \end{bmatrix} \quad \text{Check SOSC}$ For $(3_{1}0, -\frac{2}{3})$, $D_{x}^{2} L(3_{1}0, -\frac{2}{3}) = \begin{bmatrix} -\frac{4}{3} & 0 \\ 0 & \frac{2}{3} \end{bmatrix}$ $Dh(x^*)y = 2[3,0][Y_1] = 0 \Rightarrow y_1 = 0 \Rightarrow T(3,0) = Y[0][a \in \mathbb{R}]$ $y^{T} \cdot D_{x}^{2} L y = [0, a] \begin{bmatrix} -4/3 & 0 \\ 0 & 2/3 \end{bmatrix} \begin{bmatrix} 0 \\ a \end{bmatrix} = \frac{2}{3}a^{2} > 0, \forall a \neq 0 \Rightarrow (3,0) \text{ is a strict lead with }$ $Fr(-3(0)\frac{2}{3}) \Rightarrow D_{x}^{2}L(-3(0)\frac{2}{3}) = \begin{bmatrix} 4/3 & 0 \\ 0 & 10/3 \end{bmatrix} > 0 \Rightarrow (-3(0))$ \$\text{start keal min}\$ (2,±15) are short Ireal wax's

54

5.2Karush-Kuhn Tucker Condition

(N) Minimize (Maximize) f(x) subject to h(x) = 0 and $g(x) \le 0$,

 $h: \mathbb{R}^n \to \mathbb{R}^m, g: \mathbb{R}^n \to \mathbb{R}^p, \text{ and } m+p \leq n!$ More notions associated to (N)

• An inequality constraint $g_j(x) \leq 0$ is said to be active at x^* if $g_j(x) = 0$. It is inactive at x^* if g; (x*)<0 We denote the index set of active inequality constraints by

$$J(x^*) := \left\{ j \in \overline{I_P} \mid g_j(x^*) = 0 \right\}$$

• $x^* \in \mathbb{R}^n$ is regular if the vectors

{ Thi (x*), Tg; (x*) | i=1,m , j ∈ J(x*)} are linearly independent

First-Order Necessary Conditions for (N)

Theorem (KKT-FONC). Let $f, h, g \in C^1$. Let x^* be a regular point and a local minimizer for the problem (N-min): Minimize f subject to h(x) = 0, $g(x) \leq 0$. Then, there exist $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that:

1. $\mu^* \ge 0$. i.e. $\mu_j \ge 0$, $V_j = 1P$ 2. $Df(x^*) + \lambda^{*T} Dh(x^*) + \mu^{*T} Dg(x^*) = 0^T \text{ or } \nabla f(x^*) + \nabla h(x^*) \lambda^* + \nabla g(x^*) \mu^* = 0$ 1. μ ≥ 0. i.e. μ > 0, ∀j=1p

3. $\mu^{*T}g(x^*) = 0.$ or $0 = \lim_{x \to \infty} \mu_0^* g_0(x^*) = \lim_{x \to \infty} g_0(x^*) = 0$

Proof. Let S = 2 x /h(x)=0, g(x) < 0 } be the fearable set

S'= {x/h(x)=0, +jeJ(x*), g;(x)=0}, where x* is the regular local min of forer S; x* ES' due to the def of J(x*). Goal: x*isalad win of forer S'!

Since x*isabocal men of foren S, there is B* (an open ball containing x") such that

txesnB*, f(x) ≥ f(x) (1)

From the def of J(x*), tj&J(x*), gj(x*)<0 gicont 3B (openball intanyx*) such that

+xeB, +j≠J(x), gj(x)<0(2)

Friend X ES' nB' nB < bc x eB (2) + j e J(x), g; (x) < 0 > tj e Tip, g; (x) < 0 } as + f e J(x) = 0 } as +

Since XESOB* => f(X) > f(X) so my goal is met

By Lagrange FONC p. 48 (x*is regular) = XER", NERPs.t.

Df(x*) + X*T Dh(x*) + \mathbb{T} Dg(x*) = \overline{J}, where \text{tj \neq J(x)} we set \mu_j = 0 \in 2. and 3. H remains transc 1. (=> tj EJW), his >0 (4) - proof by contradiction - skipped

(We assume FjoEJix), MjoKO and prove that X'is NOT a heal min of f on S)

©® M. Voisei TM2016

Interpretation of KKT conditions: In problems we form the Lagrangian $L(x,\lambda,\mu):=f(x)+\lambda\cdot h(x)+\mu\cdot g(x)$ Then 2. Says $D_xL(x,\lambda,\mu)=0$ (2) We also have $\mu\geqslant 0$ (1) and $\mu\cdot g(x^*)=0$ (3) but also $\int h(x)=0$ (4) $g(x)\geq 0$ (5) 3 equalities and 2 ineq Strategy! $\mu=0$ fyether with $D_xL=0$ and $(4)_1(5)$ or $\mu\neq 0$ => $g(x^*)=0$

Example #21.1 a. p. 501

Minimize $X_1^2 + 4X_2^2$ subject to $X_1^2 + 2X_2^2 > 4 \Leftrightarrow g \leq 0$ $\Rightarrow g(x_1, x_2) = 4 - X_1^2 - 2X_2^2$ (a) $L(x_{11}X_{21}\mu) = X_1^2 + 4X_2^2 + \mu(4 - X_1^2 - 2X_2^2)$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_1] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_1] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_1] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_1] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_1] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_1] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_1] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_1] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_1] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_1] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_1] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_1] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_1] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_1] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_1] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_1] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_2] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_2] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_2] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_2] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_2] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_2] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_2] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_2] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_2] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_2] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_2, 2X_2 - 4\mu X_2] = 0$ $Q(x_{11}X_{21}\mu) = [2X_1 - 2\mu X_1, 2X_2 - 4\mu X_2, 2X_2$

5.2.2Second-Order Conditions for (N)

In this section, for a feasible point x^* , we denote by $T(x^*)$ the tangent space at x^* to the surface defined by the equality constraints h(x) = 0 and by the equations corresponding to active inequality constraints at x^* , namely, $g_j(x) = 0$, $j \in J(x^*)$:

$$T(x^*) = \{ y \in \mathbb{R}^n \mid Dh(x^*)y = 0, \ \forall j \in J(x^*), \ Dg_j(x^*)y = 0 \}.$$

Theorem (KKT-SONC). Let $f, h, g \in C^2$. Let x^* be a regular point and a local minimizer for the problem (N-min): Minimize f subject to h(x) = 0, $g(x) \leq 0$. Then, there exist $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that:

1.
$$\mu^* \ge 0$$
, $Df(x^*) + \lambda^{*T}Dh(x^*) + \mu^{*T}Dg(x^*) = 0^T$, $\mu^{*T}g(x^*) = 0$. KKT-FONC

2. For all $y \in T(x^*)$, $y^T D_x^2 [f(x^*) + h(x^*)^T \lambda^* + g(x^*)^T \mu^*] y \ge 0$. $D_{\times}^{\perp}L(X^{\star}, X^{\star}, \mu^{\star})$

Proof.

Part I. is exactly KKT-FONC For Part 2. Recall that we proved that since x'is a lead won of force S=1x/h(x)=0,90x160), x*is also a local win of force S'= 1x | h(x)=0, +jej(x"), gi(x)=0} (proced on p. 55)

We can use Lagrange SONC p.50 trget 2.

Let x^* be feasible for (N-min) and let $\mu^* \in \mathbb{R}^p$. Denote by $\tilde{J}(x^*, \mu^*) := \{j = \overline{1,p} \mid g_j(x^*) = 0, \ \mu_j^* > 0\}$ the index set of active inequality constraints (at x^*) for which $\mu_j^* > 0$. Clearly, $\tilde{J}(x^*, \mu^*) \subset \tilde{J}(x^*)$ Correspondingly we have the tangent space

$$\tilde{T}(x^*, \mu^*) = \{ y \in \mathbb{R}^n \mid Dh(x^*)y = 0, \ \forall j \in \tilde{J}(x^*, \mu^*), \ Dg_j(x^*)y = 0 \}.$$

to the surface defined by the equality constraints and the equations corresponding to active inequality constraints with $\mu_i^* > 0$. Note that the latter surface is possibly subject to fewer constraints, so $T(x^*)$ is SUBSPACE of $\tilde{T}(x^*, \mu^*)$.

Theorem (KKT-SOSC). Let $f, h, g \in C^2$. Suppose that there exist a regular feasible point x^* of (N-min) and $\lambda^* \in \mathbb{R}^m$, $\mu^* \in \mathbb{R}^p$ such that:

1.
$$\mu^* \ge 0$$
, $Df(x^*) + \lambda^{*T}Dh(x^*) + \mu^{*T}Dg(x^*) = 0^T$, $\mu^{*T}g(x^*) = 0$.

2. For all $y \in \tilde{T}(x^*, \mu^*)$, $y \neq 0$, $y^T D_x^2 [f(x^*) + h(x^*)^T \lambda^* + g(x^*)^T \mu^*] y > 0$. Then x^* is a strict local minimizer of (N-min). [Skipped Proof]

Example #21.1 b. p. 501
$$D_{X}^{2} L(x_{1}x_{2}|X) = \begin{bmatrix} 2-2/L & 0 \\ 0 & A \end{bmatrix}$$
, $J(x,1) = \{1\}$

For $\mu = L$, $x = \begin{bmatrix} \pm 0 \\ 0 \end{bmatrix}$, $D_{X}^{2} L(x_{1}X) = \begin{bmatrix} 0 & A \end{bmatrix}$, $J(x,1) = \{1\}$
 $T(x_{1}X) = \{1\} Dg(X)Y = 0\} = \{1\} [F+A,0][Y_{1}]=0\} = \{\begin{bmatrix} 0 \\ 0 \end{bmatrix} a \in \mathbb{R} \}$
 $g(x_{1},x_{2}) = A-x_{1}^{2}-2x_{2}^{2}$, $Dg(x_{1},x_{2}) = \begin{bmatrix} -2x_{1}, -4x_{2} \end{bmatrix}$
 $[a,a]\begin{bmatrix} 0 & 0 \\ 0 & A \end{bmatrix}\begin{bmatrix} a \\ 0 \end{bmatrix} = 4a^{2} > 0$, $\forall a \neq 0 \ (Y \neq 0)$ so $\begin{bmatrix} \pm 2 \\ 0 \end{bmatrix}$ and short

For $\mu = 2$, $x = \begin{bmatrix} 0 \\ \pm \sqrt{2} \end{bmatrix}$, $D_{X}^{2} L(x_{1}2) = \begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix}$, $J(x_{1}2) = \{1\}$
 $[a,a]\begin{bmatrix} 0 & 0 \\ 0 & A \end{bmatrix}\begin{bmatrix} a \\ 0 \end{bmatrix} = 4a^{2} > 0$, $\forall a \neq 0 \ (Y \neq 0)$ so $\begin{bmatrix} \pm 2 \\ 0 \end{bmatrix}$ and short

For $\mu = 2$, $x = \begin{bmatrix} 0 \\ \pm \sqrt{2} \end{bmatrix}$, $D_{X}^{2} L(x_{1}2) = \begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix}$, $J(x_{1}2) = \{1\}$
 $[a,a]\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 4a^{2} > 0$, $J(x_{1}2) = \{1\}$
 $[a,a]\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 4a^{2} > 0$, $J(x_{1}2) = \{1\}$
 $[a,a]\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 4a^{2} > 0$, $J(x_{1}2) = \{1\}$
 $[a,a]\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 4a^{2} > 0$, $J(x_{1}2) = \{1\}$
 $[a,a]\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 4a^{2} > 0$, $J(x_{1}2) = \{1\}$
 $[a,a]\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 4a^{2} > 0$, $J(x_{1}2) = \{1\}$
 $[a,a]\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 4a^{2} > 0$, $J(x_{1}2) = \{1\}$
 $[a,a]\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 4a^{2} > 0$, $J(x_{1}2) = \{1\}$
 $[a,a]\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 4a^{2} > 0$, $J(x_{1}2) = \{1\}$
 $[a,a]\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 4a^{2} > 0$, $J(x_{1}2) = \{1\}$
 $[a,a]\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 4a^{2} > 0$, $J(x_{1}2) = \{1\}$
 $[a,a]\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 4a^{2} > 0$, $J(x_{1}2) = \{1\}$
 $[a,a]\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 4a^{2} > 0$, $J(x_{1}2) = \{1\}$
 $[a,a]\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 4a^{2} > 0$, $J(x_{1}2) = \{1\}$
 $[a,a]\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 4a^{2} > 0$, $J(x_{1}2) = \{1\}$
 $[a,a]\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 4a^{2} > 0$, $J(x_{1}2) = 2a^{2} > 0$, $J(x_{1}2) = 2$

(d) RKT-SOSC
$$D_x^2 L(X_1X_2)H_1|_{Y_2} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

The state of the property of the property of the state of the property of the p

6 Convex Programming

General form:

(C) Minimize f(x) subject to $x \in S$,

where $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is convex, that is, $\forall x, y \in \mathbb{R}^n \forall t \in (0,1)$, $f(tx + (1-t)y) \leq t f(x) + (1-t)f(y)$ and $S \subset \mathbb{R}^n$ is convex, that is, $\forall x, y \in S$, $[x, y] := \{tx + (1-t)y \mid t \in [0,1]\} \subset S$

Theorem. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be convex and let $S \subset \mathbb{R}^n$ be convex. Then x^* is a local minimizer of f over S iff x^* is a global minimizer of f over S.

Proof. (\Leftarrow) is plan bc. global \Rightarrow head

(\Rightarrow) $\exists \varepsilon \circ \circ$; ($B(x^{\varepsilon}; \varepsilon)$), $\forall x \in S \cap B(x^{\varepsilon}; \varepsilon)$, $f(x^{\varepsilon}) \in f(x)$ (1)

** $\forall x \in S$, $\exists t \in (0,1)$, $\forall x \in S \in S$ small such that

** $x_{t} := t \times + (1-t) \times \in B(x^{\varepsilon}; \varepsilon)$ Because $x_{1} \times \in S \Rightarrow x_{t} \in S$ since $S : c \in S \in S$ ** $f(x^{\varepsilon}) \in f(x_{t}) \notin f(x) + (1-t) f(x^{\varepsilon})$ ** $\forall f(x^{\varepsilon}) \in f(x_{t}) \notin f(x) \Rightarrow f(x^{\varepsilon}) \in f(x)$, $\forall x \in S \in S$ ** $\exists x \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S \in S$ ** $\exists x \in S \in S \in S$ ** $\exists x \in S \in S \in S$ ** $\exists x \in S \in S \in S$ ** $\exists x \in S \in S \in S$ ** $\exists x \in S \in S \in S$ ** $\exists x \in S \in S \in S$ ** $\exists x \in S \in S \in S$ ** $\exists x \in$

Corollary. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be convex and let $S \subset \mathbb{R}^n$ be convex. The set of all global minimizers of f over S is a convex set.

Let $\lambda = \min_{x \in S} f(x)$. Then $x \in S$ a level set of a convex function argmin $f = \{x \mid f(x) \leq \lambda\}$ which is always shows! (the set of global mins) of free S

6.1 Convexity Criteria

Q is positive sem def on IZ-IZ

Proposition. The quadratic form $f(x) = x^T Q x$ is convex on Ω iff, for all $x, y \in \Omega$, $(x-y)^T Q (x-y) \ge 0$.

Here $Q \in \mathbb{R}^{n \times n}$, $Q = Q^T$.

Proof. $\forall x, y \in \Omega, \forall t \in (0,1), let x_t := tx + (1-t)y$

 $\frac{t_{f(x)+(i-t)}f_{(y)} - f_{(tx+(i-t)y)} = t_{x}^{T}Q_{x} + (i-t)y^{T}Q_{y} - (t_{x+(i-t)y)}^{T}Q_{(tx+(i-t)y)}}{= t_{x}^{T}Q_{x} + (i-t)y^{T}Q_{y} - t_{x}^{T}Q_{x} - t_{(i-t)}x^{T}Q_{y} - t_{(i-t)}y^{T}Q_{x} - (i-t)^{T}Q_{y}^{T}Q_{y}}{= t_{(i-t)}[x^{T}Q_{x} - x^{T}Q_{y} - y^{T}Q_{x} + y^{T}Q_{y}] = t_{(i-t)}(x-y)^{T}Q_{x}^{T}Q_{x}^{T}Q_{y}^{T}Q_{x}^{T}Q_{y$

fis convex on Ω means LHS >0 ←> PRHS >0 ←> ∀x,y∈Ω, (x-y) →0 (pick t + o,1)

Example. Is $f(x) = x_1x_2$ convex over the first quadrant $\Omega = \{x = (x_1, x_2) \mid x_1 \ge 0, x_2 \ge 0\}$?

 $f(x_1, x_2) = x_1 \cdot x_2 = x^T Q \times f_1 \times = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \text{ and } Q = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\uparrow x_2 \qquad \text{Take } x = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, y = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \Omega \text{ .Then } x - y = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

 $(x-y)^TQ(x-y) = [-1,1] \cdot \frac{1}{2} [-1] = \frac{1}{2} (-2) = -1 < 0$ $\frac{1}{2} [0,1][-1]$ so according to the pre-

so according to the previous

[10][1] So according to the previous

[10][1] Proposition f is not convex on [2]

Theorem. Let $f \in C^1(\Omega; \mathbb{R})$ be convex, where $\Omega \subset \mathbb{R}^n$ is open and convex. Then f is convex (on Ω) iff $\forall x, y \in \Omega, \ f(y) \ge f(x) + Df(x)(y - x).$

Proof. (⇒) Since f to convex, by def, tx,y∈Ω, tt∈(0,1) $f(ty+(1+x)) \leq tf(y)+(1-t)f(x) \Rightarrow f(x+t(y-x)) - f(x) \leq f(y)-f(x)$ Let + 10 | Gâteaux denir $Df(x)(y-x) \leq f(y) - f(x)$

(=) tx,y∈Ω, tte(0,1) let x:=tx+(1-t)y∈Ω since Ω is convex

We have f(x) = f(xt) + Df(xt)(x-xt) / timest f(y) > f(xt) + Df(xt) (y-xt) | times (1-t)

tf(x)+(1-t)f(y)=f(x+)+Df(x+)+x+-x+) St fis convex

Geometric Interpretation. The equ of the tangent Ine

(linear approx) to the graph of f at (x, f(x)) is = Df(x) (y-x)+ f(x) The taugent line hes below the graph of a (convex) function

Extension A rector q is called a SUBGRADIENT of fat XED if

tyes, fig1zfix)+gT(y-x)

The set of gisa subgradient of fatx =: of(x) convex subdifferential

The whole thery for non-smooth convex programmy Is based on this notion

of fat X

62

Theorem. Let $f \in C^2(\Omega; \mathbb{R})$ be convex, where $\Omega \subset \mathbb{R}^n$ is open and convex. Then f is convex (on Ω) iff, for every $x \in \Omega$, $D^2 f(x) \ge 0$ (is positive semidefinite). [Proof. skipped]

By definition a function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is concave if -f is convex. $\iff 0 \neq (\times) \leq 0$

Sylvester's Criterion Let $Q = Q^T \in \mathbb{R}^{n \times n}$. Then $Q > (\geq)0$ iff the leading principal minors of Q are

$$Q = \begin{bmatrix} 911 & 912 & 91n \\ 921 & 922 & 92n \\ 9m & 9m & -9nn \end{bmatrix}$$
Example. #22.6 p. 520

protive (non-negative) determinant of a subsquare matrix on the 1st diagonal

2.
$$f(x_1, x_2, x_3) = 4x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1x_2 + x_1x_3 - 3x_1 - 2x_2 + 15$$

$$D^{2}f(x) = \begin{bmatrix} 8 & 6 & 1 \\ 6 & 6 & 0 \\ 11 & 0 & 16 \end{bmatrix}$$

$$D^{2}f(x) = \begin{bmatrix} 8 & 6 & 1 \\ 6 & 6 & 0 \\ 11 & 0 & 10 \end{bmatrix} \qquad \Delta_{1} = 8 > 0$$

$$\Delta_{2} = \begin{vmatrix} 8 & 6 \\ 6 & 6 \end{vmatrix} = 12 > 0$$

$$\Delta_{3} = 480 + 0 + 0 - 6 - 0 - 360 = 114 > 0$$

According to Sylvesta's Listain D'fix)>0

3.
$$f(x_{11}x_2) = 2x_1x_2 - x_1^2 - x_2^2$$
 $D^2 f(x) = \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}$ $\Delta_1 = -2 < 0$

$$D^2f(x) = \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix} \quad \Delta$$

$$\Delta_2 = 0 \le 0$$

D2f(x) <0 =>-f 15 convex & f15 concare

6.2 Sufficient Optimality Conditions

the domain of f

Lemma. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be convex such that f is $C^1(\Omega)$, where $\Omega \subset D(f)$ is an open convex set. For every convex $S \subset \Omega$ and for every $x^* \in S$

$$\forall x \in S, \ (x \neq x^*), \ Df(x^*)(x - x^*) \ge 0 \Longrightarrow x^* \in \operatorname{argmin}\{f(x) \mid x \in S\}.$$

In other words, x^* is a global minimizer of f over S.

Proof. because f is gover on I , according to Thun p. 62, tx ES $f(x) = f(x^{+}) + Df(x^{+})(x-x^{+}) = f(x^{+}) = x^{+}$ a global win of f ore a S

Definition. Let $S \subset \mathbb{R}^n$ and let $x^* \in S$. A vector $d \in \mathbb{R}^n$ is a feasible direction at x^* (relative to S) if $d \neq 0$ and there exists $t_0 > 0$ such that, for every $0 \leq t \leq t_0$, $x + td \in S$.

When S is convex and $x, y \in S$, $y \neq x$, the direction d = y - x is feasible at x relative to S. Indeed

S $x+td = x+t(y-x)=: X_t$ $3+t_0=1$, $40 \le t \le 1$, $x_t=x+td=x+t(y-x)=ty+(1-t)x \in S$ Since Sis convex!

Theorem. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be convex such that f is $C^1(\Omega)$, where $\Omega \subset D(f)$ is an open convex set. Let $S \subset \Omega$ be convex. Suppose that $x^* \in S$ has the property that for every feasible direction d at x^* (relative to S), $d^T \nabla f(x^*) \geq 0$. Then x^* is a global minimizer of f over S.

Proof. $\forall x \in S (x \neq x^*), d = x - x^*$ is fearable at x^* . Then

Df(x*) (x-x*) = dT. \(\nabla f(x*) \) \(\tau \) from our assumption
\(\nabla f(x*)^T\). \(\delta \) According to the previous Lemma, \(\times \) is a glbal min of foreing to the previous Lemma, \(\times \) is a glbal min of foreing to the previous Lemma, \(\times \) is a glbal min of foreing to the previous Lemma, \(\times \) is a glbal min of foreing to the previous Lemma, \(\times \) is a glbal min of foreing to the previous Lemma, \(\times \) is a glbal min of foreing to the previous Lemma, \(\times \) is a glbal min of foreing to the previous Lemma, \(\times \) is a glbal min of foreing to the previous Lemma, \(\times \) is a glbal min of foreing to the previous Lemma, \(\times \) is a glbal min of foreing to the previous Lemma and \(\times \) over S

Corrolary. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be convex such that f is $C^1(\Omega)$, where $\Omega \subset D(f)$ is an open convex set. Suppose that $x^* \in \Omega$ has $\nabla f(x^*) = 0$. Then x^* is a global minimizer of f over Ω .

Proof. Vf(x)=0 ⇒ dT. Vf(x)=0 +d a fearable direction at x* According to the previous Thm, X" is a global win of f rea Ω

Theorem (CNE). Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be convex such that f is $C^1(\Omega)$, where $\Omega \subset D(f)$ is an open convex set that contains the convex feasible set

$$S := \{ x \in \mathbb{R}^n \mid h(x) = 0 \},$$

where $h \in C^1(\Omega; \mathbb{R}^m)$. Suppose that there exist $x^* \in S$ and $\lambda^* \in \mathbb{R}^m$ such that

(FONC) $Df(x^*) + \lambda^{*T}Dh(x^*) = 0^T$.

Then x^* is a global minimizer of f over S. (IS FONC) on FONC is sufficient.

Proof.

Since fis convex, txes, fix=fix+Df(x) (x-x)(1) (Thm.p.62) But Df(x*) = - X*TDh(x*) So (1) becomes

f(x) > f(x") - X*TDh(x") (x-x") (2)

Since Siscowex, txeS, tteloil), tx+ (1-t)x ES =>

 $h(tx+(1-t)x^*) = h(x^*+t(x-x^*)) = 0$

We get h(x++(x-x1)-h(x2) =0, +te(0,1). Let +10

 $Dh(x^*)(x-x^*) = 0 \longrightarrow \lambda^{*T}Dh(x^*)(x-x^*) = 0$

So (2) yields f(x) = f(x), i.l., x*is a global men of f over S

Theorem (CN). Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be convex such that f is $C^1(\Omega)$, where $\Omega \subset D(f)$ is an open convex set that contains the convex <u>feasible</u> set

$$S := \{ x \in \mathbb{R}^n \mid h(x) = 0, \ g(x) \le 0 \},\$$

where $h \in C^1(\Omega; \mathbb{R}^m)$, $g \in C^1(\Omega; \mathbb{R}^p)$. Suppose that there exist $x^* \in S$, $\lambda^* \in \mathbb{R}^m$, and $\mu^* \in \mathbb{R}^p$ such that

1. $\mu^* \ge 0$.

2.
$$Df(x^*) + \lambda^{*T}Dh(x^*) + \mu^{*T}Dg(x^*) = 0^T$$
. le KKT-FONC au SUFFICIENT

3.
$$\mu^{*T}g(x^*) = 0$$
.

Then x^* is a global minimizer of f over S.

formex means Thm TXES, fix1> fix1> fix1 + Dfix) (x-x*) (1) Relation 2. provides Df(x") = - \lambda*TDh(x") - \mu*TDg(x") (1) txes, f(x)=f(x*)-/**Dh(x*)(x-x*)-/**Dg(x*)(x-x*)(2) As purionsly sun =0 (See Theorem CNE mp. 65) We claim that $\mu^{*T}Dg(x^*)(x-x^*) \leq 0$ (3) Since Sis convex txes, tte(0,1), (1-t)x+txes => g((1-t)x++tx) <0, (1-t)x++tx =x++t(x-x*) sr g(x*+t(x-x*)) <0/times pt >0 from relation 1. $\mu^{*T}g(x^*+t(x-x^*)) \leq 0$ => $\mu^{*T}g(x^*+t(x-x^*))-\mu^{*T}g(x^*) \leq 0$ $\mu^{*T}g(x^*) = 0 \text{ (rulatin 3.)}$ µ* Dg (x+ (x-x) ≤0 1e. (3) 1s proved! Now (2) reads f(x) > f(x), txe Sie. x*is a gobal win of f tran S

Sufficient Optimality Conditions (Pa) Example. (#22.16, p. 543) Write the KKT conditions for the (LP) Minimize $f(x) = c^T x$ subject to $Ax = b, x \ge 0$. Are the KKT conditions necessary, sufficient, or both? $f(x)=c^{T}x$ f(tx+(1-t)y)=tf(x)+(1-t)f(y), $\forall t\in(0,1), \forall x,y\in\mathbb{R}^{n}=\Omega$ fis Amar => convex g(x) = -x which is linear => convex! h(x) = Ax - b $S = \{x \mid h \neq x \} = 0, g(x) \leq 0\}$ haffine -> cmuex S={x/h(x)=0}(){x/g(x)≤0} cmvox affine set level set for a convex convex too! So it is convex Another way to prove Sis convex: (by definition) TXNES, TE(O,1) I want tx+(1-t)yes

 $Ax=Ay=b_1x1130 \Rightarrow A(tx+(1-t)y)=tAx+(1-t)Ay=tb+(1-t)b=b$ x20,420 => tx20, (1+1) == 05/10 =>

Hence tx+ (1-time 5

(a) $Df(x) = C^T$, Dh(x) = A, $Dg(x) = -I_n$

1. $\mu^{*} \geq 0$ when $x^{*} \in S$ means 2. $c^{T} + \chi^{*} A - \mu^{*} = 0$ 4. $Ax^{*} = b$ 5. X*≥0

3. $\mu^{*T} x^* = 0$

(b) These conditions are sufficient because every LP problem is a convex programmery problem and we use theorem CN on page 66

(c) (Da) Max b.) subject to NA & CT (asymmetric duality) (p. 31)

(d) X* fearable for (Pa) (CT-X*TA) X*=0 => X* is optimal for (Pa) Let M' be such that M'T = CT- X*TA C) M' = C-ATX > 0 bc X*is fearble fr Da

So 1 and 3. hold but also 267 from KKT-FONC => X is a solution to the company of the company of

Example. #22.7 p. 526 m the brand

Final Exam Practice Problems

Problem 1. Prove that if f, g are convex so is $\max\{f, g\}$. Will $\min\{f, g\}$ remain convex (or concave)?

Problem 2. Find the range of values of the parameter α for which the function

$$f(x_1, x_2, x_3) = 2x_1x_3 - x_1^2 - x_2^2 - 5x_3^2 - 2\alpha x_1x_2 - 4x_2x_3$$

is concave.

Problem 3. (a) Let f be a convex function. Prove that x^* is a global minimum point of f iff $0 \in \partial f(x^*)$.

- (b) Prove that if g_1 is a subgradient of f_1 at x and g_2 is a subgradient of f_2 at x then $g_1 + g_2$ is a subgradient of $f_1 + f_2$ at x.
 - (c) If g is a subgradient of f at x and $\lambda > 0$ find a subgradient of λf at x.
- (d) Prove that the convex subfifferential is monotone, that is, for every $g_1 \in \partial f(x_1)$, $g_2 \in \partial f(x_2)$, $(g_1 g_2)^T (x_1 x_2) \geq 0$.

Problem 4. Find the subgradient of the absolute value function at x = 0 and at x = 1? Extrapolate to find the subgradient of the Euclidean Norm function everywhere.

Problem 5. Consider the problem:

Minimize
$$\frac{1}{2} ||Ax - b||^2$$
 subject to $x_1 + x_2 + \ldots + x_n = 1, x_1, x_2, \ldots, x_n \ge 0$.

Prove that this problem is a convex optimization problem.

Problem 6. Consider the problem:

Minimize
$$||x - x_0||^2$$
 subject to $||x||^2 = 9$,

where $x_0 = [1, \sqrt{3}]^T$. Give a geometric interpretation.

- (a) Find all points satisfying the Lagrange condition for the problem.
- (b) Using second-order conditions, determine whether or not each of the points in part a is a local minimizer.
 - (c) Is this problem convex?

Problem 7. #20.7, page 483

Problem 8. Consider the problem

Minimize
$$x_1x_2 - 2x_1$$
 subject to $x_1^2 - x_2^2 = 0$,

- a. Apply Lagrange's theorem directly to the problem to show that if a solution exists, it must be either $[1,1]^T$ or $[-1,1]^T$.
- b. Use the second-order necessary conditions to show that $[-1,1]^T$ cannot possibly be the solution.
- c. Use the second-order sufficient conditions to show that $[1,1]^T$ is a strict local minimizer.

Problem 9. #21.6, page 502

Problem 10. #21.23, page 507

Problem 11. #22.19, page 544

Problem 12. #22.23, page 546

Look also at other end-section problems in the book!