

5 LAUNDRY DETERGENT AND/OR FABRIC CARE COMPOSITIONS COMPRISING A CHEMICAL ENTITY, WHICH
CONTAINS A DEPOSITION AID, AND A POLYMER

10

15

Field of the Invention

20 The present invention relates to laundry detergent and/or fabric care compositions comprising a chemical entity and a polymer; wherein the chemical entity comprises a deposition aid having a high affinity for cellulose and a benefit agent.

25

Background of the invention

Modern laundry detergent and/or fabric care compositions contain various detergent ingredients having one or more purposes in obtaining fabrics which are not only clean, fresh and sanitised but also have retained appearance and 30 integrity. Therefore, benefit agents such as perfumes, hygiene agents, insect control agents, bleaching agents, fabric softeners, dye fixatives, soil release agents, and fabric brightening agents have been incorporated into laundry detergent and/or fabric care compositions. In using such detergent components, it is important that these compounds deposit on the fabrics so as to be effective 35 during or after the laundering and/or fabric care process.

Polymers have been used by the detergent industry for some years. Indeed, it is known that polymers provide a variety of benefits to detergent compositions such as fabric cleaning, anti-redeposition of soils, color care, whiteness maintenance, and/or fabric softness.

5

However, there still remains a need to formulate laundry detergent and/or fabric care compositions providing improved cleaning and fabric care properties.

10 The above objective has been met by formulating laundry detergent and/or fabric care compositions comprising a chemical entity and a polymer; wherein the chemical entity comprises a deposition aid having a high affinity for cellulose and a benefit agent.

15 WO 91/10732 describes novel derivatives of cellulase enzymes combining a core region derived from an endoglucanase producible by a strain of *Bacillus* spp., NICMB 40250 with a Cellulose Binding Domain (CBD) derived from another cellulase enzyme, or combining a core region derived from another cellulase enzyme with a CBD derived from said endoglucanase, for improved binding properties. WO94/07998 describes cellulase variants of a cellulase classified in 20 family 45, comprising a CBD, a Catalytically Active Domain (CAD) and a region linking the CBD to the CAD, wherein one or more amino acid residues have been added, deleted or substituted and /or another CBD is added at the opposite end of the CAD. WO95/16782 relates to the cloning and high level expression of novel truncated cellulase proteins or derivatives thereof in *Trichoderma* 25 *longibrachiatum* comprising different core regions with several CBDs. WO97/01629 describes cellulolytic enzyme preparation wherein the mobility of the cellulase component may be reduced by adsorption to an insoluble or soluble carrier e.g. via the existing or newly introduced CBD. WO97/28243 describes a process for removal or bleaching or soiling or stains from cellulosic fabrics 30 wherein the fabric is contacted in aqueous medium with a modified enzyme which comprises a catalytically active amino acid sequence of a non-cellulolytic enzyme selected from amylases, proteases, lipases, pectinases and oxidoreductases, linked to an amino acid sequence comprising a cellulose binding domain and a detergent composition comprising such modified enzyme 35 and a surfactant. WO98/00500 discloses a composition comprising a protein

deposition aid having a high affinity for fibers or a surface and having a benefit agent attached / adsorbed thereto.

US 5,863,880 discloses laundry detergent compositions comprising a dye transfer inhibiting polymer and a surfactant system; useful for washing colored fabrics alone or together with white fabrics. US 5,834,412 discloses oligomeric or polymeric ethylene terphthalate ester derivatives comprising fluorescent whitening groups; useful as soil release agents in detergent compositions. US 5,789,369 discloses laundry detergent compositions comprising modified polyacrylic acid polymers having anti-redeposition performance. WO 97/42288 describes laundry detergent compositions comprising deterotive surfactant, non-cotton fabric soil release polymer, water-soluble/dispersible modified polyamine cotton soil release agent and carrier and adjunct ingredients. US 5,804,543 discloses laundry detergent compositions comprising anionic and nonionic surfactants, detergent builder, and a dye transfer inhibiting polymer. These compositions provide soil and stain removal as well as dye transfer inhibition benefits. WO 98/29529 discloses laundry detergent compositions comprising deterotive surfactants, organic/inorganic detergency builder and a dye fixative; providing appearance benefits and anti-fading to fabrics and textiles. WO 95/27028 discloses detergent compositions giving good fabric whiteness, comprising zeolite MAP, specified whitener, polymer and/or oxidative catalyst.

However, none of these documents disclose a laundry detergent and/or fabric care composition comprising a chemical entity and a polymer; wherein the chemical entity comprises a deposition aid having a high affinity for cellulose and a benefit agent; for improved cleaning and fabric care performance.

Summary of the invention

The present invention relates to laundry detergent and/or fabric care compositions comprising a chemical entity and a polymer; wherein the chemical entity comprises a deposition aid having a high affinity for cellulose and a benefit agent. These compositions provide improved fabric cleaning including stain/soil removal, anti-redeposition of soils and/or whiteness maintenance and improved

fabric care including color care, fabric softness, anti-wrinkling, anti-bobbling and anti-shrinkage properties to fabrics.

5

Detailed description of the invention

The present invention relates to laundry detergent and/or fabric care compositions comprising a chemical entity and a polymer; wherein the chemical entity comprises a deposition aid with a high affinity for cellulose and a benefit agent.

It has now surprisingly been found that the laundry detergent and/or fabric care compositions of the present invention combining a chemical entity comprising a deposition aid with a high affinity for cellulose and a benefit agent, with a polymer

provide improved fabric cleaning including stain/soil removal, anti-redeposition of soils and/or whiteness maintenance and improved fabric care including color care, fabric softness and/or anti-wrinkling, anti-bobbling and anti-shrinkage properties to fabrics. Without wishing to be bound by theory, it is believed that the binding of the deposition aid of the chemical entity onto the fabric results in a disruption of the fabric fibers. Therefore, the disruption of the fabric surface leaves the fibers more accessible to polymer activity, and thus results in enhanced performance of polymer properties. Moreover, the increased fabric fiber accessibility enhances the benefits obtained from the benefit agents of the chemical entity.

25

Suitable polymers for the purpose of the present invention include soil release polymers, dispersants, and anti-redeposition polymers. These polymer types provide fabric cleaning including stain/soil removal, anti-redeposition of soils and/or whiteness maintenance. Also suitable polymers are dye transfer inhibitors providing fabric color care and whiteness maintenance; and flocculants providing improved fabric care including color care and/or fabric softness.

35

THE CHEMICAL ENTITY

The laundry detergent and/or fabric care compositions of the present invention comprise as an essential element, a chemical entity. Such chemical entities comprise one or more deposition aid(s) having a high affinity for cellulose and 5 one or more benefit agent(s), and potentially one or more linking region(s).

The chemical entities of the present invention are comprised in the laundry detergent and/or fabric care compositions at a level of from 0.00001% to 50%, preferably from 0.001% to 20%, more preferably from 0.1% to 10% by weight of 10 the total composition.

The Deposition Aid

15 The deposition aid according to the present invention is any material which has a high affinity for cellulose. Suitable deposition aids for the present invention are enzymes. The preferred enzymes are cellulases, lipases, phospholipases, proteases, cutinases, keratinases, keratanases, peroxidases, gluco-amylases, amylases, xylanases, esterases, acetylesterases, pectinases, reductases, 20 oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, chitinases, mannanases, β -glucanases, arabinosidases, arabinofuranosidases, hyaluronidase, chondroitinase, dextranase, transferase, glycosyltransferases, laccase, or carbohydrases. Cellulases are especially preferred.

25 Preferably, the deposition aid for the purpose of the present invention is a binding domain of one of the aforementioned enzymes. In the context of the present invention the binding domain represents the binding site of an enzyme, defined as a sequence of amino acids which conserves the binding affinity of the 30 binding site. It is preferred that the binding site represented by the deposition aid is that of the enzymes cellulase, lipase, cutinase, keratinase, or protease. Especially preferred is the binding site of cellulase, in particular the Cellulose Binding Domain (CBD).

35 For the purposes of the present invention, the especially preferred deposition aid is indeed an "amino acid sequence comprising a Cellulose Binding Domain

(CBD)", a term which is intended to indicate an amino acid sequence capable of effective binding of the cellulase to a cellulosic substrate (e.g., as described in P. Kraulis et al., Determination of the three-dimensional structure of the C terminal domain of cellobiohydrolase I from *Trichoderma reesei*. A study using nuclear magnetic resonance and hybrid distance geometry-dynamically simulated annealing. *Biochemistry* 28:7241-7257, 1989). The classification and properties of cellulose binding domains are presented in P. Tomme et al., in the symposium "Enzymatic degradation of insoluble polysaccharides" (ACS Symposium Series 618, edited by J.N. Saddler and M.H. Penner, ACS, 1995).

10

Cellulose-binding (and other carbohydrate-binding) domains are polypeptide amino acid sequences which occur as integral parts of large polypeptides or proteins consisting of two or more polypeptide amino acid sequence regions, especially in hydrolytic enzymes (hydrolases) which typically comprise a catalytic domain containing the active site for substrate hydrolysis and a carbohydrate-binding domain for binding to the carbohydrate substrate in question. Such enzymes can comprise more than one catalytic domain and one, two or three carbohydrate-binding domains, and they may further comprise one or more polypeptide amino acid sequence regions linking the carbohydrate-binding domain(s) with the catalytic domain(s), a region of the latter type usually being denoted a "linker" or "linking region".

15

20

Examples of hydrolytic enzymes comprising a cellulose-binding domain are cellulase, xylanases, mannanases, arabinofuranosidases, acetyl esterases and chitinases. "Cellulose-binding domains" have also been found in algae, e.g. in the red alga *porphyra purpurea* in the form of a non-hydrolytic polysaccharide-binding protein [see P. Tomme et al., Cellulose-binding domains - Classification and Properties in Enzymatic Degradation of Insoluble Carbohydrates, John N. Saddler and Michael H. Penner (Eds.), ACS Symposium Series, No. 618 (1996)].

25

30

However, most of the known CBDs (which are classified and referred to by P. Tomme et al. (*op. cit.*) as "cellulose-binding domains") are derived from cellulases and xylanases.

35

In the present context, the term "cellulose-binding domain" is intended to be understood in the same manner as in the latter reference (P. Tomme et al., *op. cit.*) The P. Tomme et al. reference classifies more than 120 "cellulose-binding

domains" into 10 families (I-X) which may have different functions or roles in connection with the mechanism of substrate binding. However, it is to be anticipated that new family representatives and additional families will appear in the future.

5

In proteins/polypeptides in which CBDs occur (e.g. enzymes, typically hydrolytic enzymes such as cellulases), a CBD may be located at the N or C terminus or at an internal position.

10 The part of a polypeptide or protein (e.g. hydrolytic enzyme) which constitutes a CBD *per se* typically consists of more than about 30 and less than about 250 amino acid residues. For example, those CBDs listed and classified in Family I in accordance with P. Tomme et al. (*op. cit.*) consist of 33-37 amino acid residues, those listed and classified in Family IIa consist of 95-108 amino acid residues, 15 those listed and classified in Family VI consist of 85-92 amino acid residues, whilst one CBD (derived from a cellulase from *Clostridium thermocellum*) listed and classified in Family VII consists of 240 amino acid residues. Accordingly, the molecular weight of an amino acid sequence constituting a CBD *per se* will typically be in the range of from about 4kD to about 40kD, and usually below 20 about 35kD.

Cellulose binding domains can be produced by recombinant techniques as described in H. Stålbrand et al., *Applied and Environmental Microbiology*, Mar. 1995, pp. 1090-1097; E. Brun et al., (1995) *Eur. J. Biochem.* 231, pp. 142-148; 25 J.B. Coutinho et al., (1992) *Molecular Microbiology* 6(9), pp. 1243-1252

30 In order to isolate a cellulose binding domain of, e.g. a cellulase, several genetic engineering approaches may be used. One method uses restriction enzyme to remove a portion of the gene and then to fuse the remaining gene-vector fragment in frame to obtain a mutated gene that encodes a protein truncated for a particular gene fragment. Another method involves the use of exonucleases such as Ba131 to systematically delete nucleotides either externally from the 5' and the 3' ends of the DNA or internally from a restricted gap within the gene. These gene-deletion methods result in a mutated gene encoding a shortened 35 gene molecule whose expression product may then be evaluated for substrate-binding (e.g. cellulose-binding) ability. Appropriate substrates for evaluating the

binding ability include cellulosic materials such as Avicel TM and cotton fibres. Other methods include the use of a selective or specific protease capable of cleaving a CBD, e.g. a terminal CBD, from the remainder of the polypeptide chain of the protein in question.

5

Preferred CBDs for the chemical entities of the present invention are selected from the group consisting of : CBDs CBHII from *Trichoderma reesei*, CBDs CenC, CenA and Cex from *Cellulomonas fimi*, CBD CBHI from *Trichoderma reesei*, CBD Cellulozome from *Clostridium cellulovorans*, CBD E3 from *Thermonospora fusca*, CBD-dimer from *Clostridium stecorarium* (NCIMB11754) XynA, CBD from *Bacillus agaradherens* (NCIMB40482), and/or CBD family 45 originating from the fungal *Humicola Insolens* cellulase sold under the tradename "Carezyme" by Novo Nordisk A/S. Carezyme is an endoglucanase from family 45, derived from *Humicola insolens* DSM1800, having a molecular weight of about 43kDa and exhibiting cellulolytic activity.

10

More preferred CBDs for the chemical entities of the present invention are the CBD CenC from *Cellulomonas fimi*, CBD Cellulozome from *Clostridium cellulovorans*, CBD family 45 from *Humicola Insolens*, and/or mixtures thereof.

15

The linking region

20

The improved chemical entities of the present invention may further comprise one or more linking region(s). The term "linking region" is intended to indicate a region that adjoins the deposition aid and connects it to the chemical component(s). Suitable linking regions, if encompassed in the improved chemical entity of the present invention, are characterized by having one or more attachment point(s) for a chemical component and one or more moiety that will covalently bind to the deposition aid. Preferably, the linking regions of the present invention will encompass at least one attachment point to the deposition aid and more than one reactive group available to attach a chemical component, hereinafter referred to as a "polyreactive linking region". When present, this linking region can be achieved chemically or by recombinant techniques.

25

30

35

Suitable linking regions for the purpose of the present invention are :

1) Suitable are the polyethylene glycol derivatives described in the Shearwater polymers, Inc. catalog of January 1996, such as the nucleophilic PEGs, the carboxyl PEGs, the electrophilically activated PEGs, the sulphydryl-selective PEGs, the heterofunctional PEGs, the biotin PEGs, the vinyl derivatives, the PEG 5 silanes and the PEG phospholipids. In particular, suitable non-amino acid linking regions are the heterofunctional PEG, (X-PEG-Y) polymers from Shearwater such as PEG(NPC)2, PEG-(NH2)2, t-BOC-NH-PEG-NH2, t-BOC-NH-PEG-CO2NHS, OH-PEG-NH-tBOC, FMOC-NH-PEG-CO2NHS or PEG(NPC)2 MW 3400 from Sigma.

10 2) Other suitable linking regions are glutaric dialdehyde 50 wt% solution in water from Aldrich, disuccinimidyl suberate (DSS) form Sigma, γ -maleimidobutyric acid N-hydroxysuccinimide ester (GMBS) from Sigma, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) from Sigma and dimethyl suberimidate hydrochloride (DMS) from Sigma, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, N-ethyl-5-phenylisoaxolium-3-sulphonate, 1-cyclohexyl-3(2morpholinoethyl) carbodide metho-p-toluene sulphonate, N-ethoxycarbonyl-2-ethoxy 1,2, dihydroquinoline or glutaraldehyde.

15 3) Also suitable are the crosslinkers described in the 1999/2000 Pierce Products Catalogue from the Pierce Company, under the heading "Cross linking reagents : the SMPH, SMCC, LC-SMCC compounds, and preferably the Sulfo-KMUS compound.

20 Preferred linking regions therefrom are PEG(NPC)2, (NH2)2-PEG, t-BOC-NH-PEG-NH2, MAL-PEG-NHS, VS-PEG-NHS polymers from Shearwater and/or the Sulfo-KMUS compound from Pierce.

25 Suitable polyreactive linking regions include polyacrylic acid/ maleic acid polymers, polyvinyl alcohol polymers and/or amine-containing compounds as described in co-pending application PCT/US98/20491 filed on September 30, 1998 by P&G, hereby incorporated by reference. Such amine-containing 30 compounds include amino aryl derivatives, polyamines, substituted amines and amides, glucamines, dendrimers / chitosan saccharides, amine derivatives polysaccharides and peptidic polymers.

35 1) Poly acrylic acid/maleic acid : Suitable poly acrylic acid, maleic acid and/or mixtures thereof are those wherein one of the acid moiety is covalently bond to a NH2 group present in the amino acid sequence of the deposition aid. The other

acid units are the reactive groups available as potential attachment groups for chemical components via their alcohol/amine groups.

2) Poly vinyl alcohol polymers. These polymers can still comprise or not the

5 moiety containing the polymerisation initiator.

- Without the acid moiety containing initiator of polymerisation, this polymer can be linked for example, to the reactive group of aspartic or glutamic acid present in the amino acid sequence of the deposition aid via an esterification reaction. The poly vinyl alcohol polymer does further 10 comprise hydroxyl reactive groups available for attachment of acid/aldehyde containing chemical components.

- With an acid moiety containing initiator of polymerisation, this acid moiety of the initiator of polymerisation of the polymer for example, can be linked for example, to a NH₂ group present in the amino acid sequence of the deposition aid. The poly vinyl alcohol polymer does further comprise 15 hydroxyl reactive groups available for attachment of acid/aldehyde containing chemical components.

3) Also suitable are amine-containing compounds as described in co-pending 20 application PCT/US98/20491 filed on September 30, 1998 by P&G, hereby incorporated by reference and having the following general structure : B-(NH₂)_n; wherein B is a carrier material, and n is an index of value of at least 1.

Preferred B carriers are inorganic or organic carriers. By "inorganic carrier", it is meant carrier which are non-or substantially non carbon based backbones.

25

Preferred primary amines, among the inorganic carriers, are those selected from mono or polymers or organic-organosilicon copolymers of amino derivatised organo silane, siloxane, silazane, alumane, aluminum siloxane, or aluminum silicate compounds. Typical examples of such carriers are: organosiloxanes with 30 at least one primary amine moiety like the diaminoalkylsiloxane [H₂NCH₂(CH₃)₂Si]O, or the organoaminosilane (C₆H₅)₃SiNH₂ described in: Chemistry and Technology of Silicone, W. Noll, Academic Press Inc. 1998, London, pp 209, 106).

35

Preferred primary amines, among the organic carriers, are those selected from aminoaryl derivatives, polyamines, amino acids and derivatives thereof,

substituted amines and amides, glucamines, dendrimers, the polyvinylamines with a MW of from 600-50K; amino substituted polyvinylalcohol with a MW ranging from 400-300,000; polyoxyethylene bis [amine]; polyoxyethylene bis [6-aminoethyl]; N,N'-bis-(3-aminopropyl)-1,3-propanediamine linear or branched; 5 1,4-bis-(3-aminopropyl) piperazine, and mixtures thereof.

Preferred aminoaryl derivatives are the amino-benzene derivatives including the alkyl esters of 4-amino benzoate compounds, and more preferably selected from ethyl-4-amino benzoate, phenylethyl-4-aminobenzoate, phenyl-4-aminobenzoate,

10 4-amino-N'-(3-aminopropyl)-benzamide, and mixtures thereof.

Polyamines suitable for use in the present invention are polyethyleneimines polymers, poly[oxy(methyl-1,2-ethanediyl)], -(2-aminomethylmethylethyl)--(2-aminomethyl-ethoxy)- (= C.A.S No. 9046-10-0); poly[oxy(methyl-1,2-ethanediyl)],

15 -hydro--(2-aminomethylethoxy)-, ether with 2-ethyl-2-(hydroxymethyl)-1,3-propanediol (= C.A.S. No. 39423-51-3); commercially available under the tradename Jeffamines T-403, D-230, D-400, D-2000; 2,2',2"-triaminotriethylamine; 2,2'-diamino-diethylamine; 3,3'-diamino-dipropylamine, 1,3 bis aminoethyl-cyclohexane commercially available from Mitsubishi and the C12

20 Sternamines commercially available from Clariant like the C12 Sternamin(propylenamine) n with $n=3/4$, and mixtures thereof. Preferred polyamines are polyethyleneimines commercially available under the tradename Lupasol like Lupasol FG, G20,wfv, PR8515, WF, FC, G20, G35, G100, HF, P, PS, SK, SNA.

25

Preferred substituted amines and amides for use herein are selected from nipecotamide, N-coco-1,3-propenediamine; N-oleyl-1,3-propenediamine; N-(tallow alkyl)-1,3-propenediamine; 1,4-diamino cyclohexane; 1,2-diamino-cyclohexane; 1,12-diaminododecane, and mixtures thereof.

30

Other primary amine compounds suitable for use herein are the glucamines, preferably selected from 2,3,4,5,6-pentamethoxy-glucamine; 6-acetylglucamine, glucamine, and mixture thereof.

35

Also preferred compounds are the polyethylenimine and/or polypropylenimine dendrimers and the commercially available Starburst polyamidoamines (PAMAM)

dendrimers, generation G0-G10 from Dendritech and the dendrimers Astromols, generation 1-5 from DSM being DiAminoButane PolyAmine DAB (PA)_x dendrimers with $x = 2nx4$ and n being generally comprised between 0 and 4.

5 Still other preferred primary amine compounds are :

- polyvinylamines with a molecular weight (MW) ranging from 600, 1200, 3K, 20K, 25K or 50K;
- amino substituted polyvinylalcohol with a MW ranging from 400-300,000;
- polyoxyethylene bis [amine] available from e.g. Sigma;

10 - polyoxyethylene bis [6-aminohexyl] available from e.g. Sigma;

- N,N'-bis-(3-aminopropyl)-1,3-propanediamine linear or branched (TPTA)
- 1,4-bis-(3-aminopropyl) piperazine (BNPP).

15 The more preferred compounds are ethyl-4-amino benzoate, polyethyleneimine polymers commercially available under the tradename Lupasol like Lupasol FG, G20,wfv, PR8515, WF, FC, G20, G35, G100, HF, P, PS, SK, SNA; glucamine; the diaminobutane dendrimers Astramol, polyvinylamines with a MW ranging from 600, 1200, 3K, 20K, 25K or 50K; amino substituted polyvinylalcohol with a MW ranging from 400-300,000; polyoxyethylene bis [amine]; polyoxyethylene bis [6-aminohexyl]; N,N'-bis-(3-aminopropyl)-1,3-propanediamine linear or branched; 1,4-bis-(3-aminopropyl) piperazine, and mixture thereof. Most preferred primary amine compounds are selected from ethyl-4-amino benzoate, polyethyleneimine polymers commercially available under the tradename Lupasol like Lupasol FG, G20,wfv, PR8515, WF, FC, G20, G35, G100, HF, P, PS, SK, SNA; the diaminobutane dendrimers Astramol, N,N'-bis-(3-aminopropyl)-1,3-propanediamine linear or branched; 1,4-bis-(3-aminopropyl) piperazine, and mixtures thereof. Even most preferred compounds are those selected from ethyl-4-amino benzoate, polyethyleneimine polymers commercially available under the tradename Lupasol like Lupasol FG, G20,wfv, PR8515, WF, FC, G20, G35, G100, HF, P, PS, SK, SNA; N,N'-bis-(3-aminopropyl)-1,3-propanediamine linear or branched, 1,4-bis-(3-aminopropyl) piperazine, and mixtures thereof.

30 Most preferred polyreactive linking regions for use in the present invention are amino acids and their derivatives, especially ester and amide derivatives. These peptidic polymers are linked to the deposition aid via a peptidic linkage. More

preferred compounds are those providing enhanced surface substantivity due to its structural feature.

Suitable amino acids have the following functionality of formula:

5 R=H, (L)-R*,

Suitable amino acids for use herein are selected tyrosine, tryptophane, lysine, glutamic acid, glutamine, aspartic acid, arginine, asparagine, phenylalanine, proline, glycine, serine, histidine, threonine, methionine, and mixture thereof

10 Homopolymers with the same amino acids or heteropolymers with different amino acids are suitable. For example, the amino acids Serine, Threonine and Tyrosine possess the reactive hydroxyl group, the Cysteine present a reactive SH group, the Asparagine and Glutamine amino acids possess a reactive amido group and the Lysine a reactive amino group. The linking will preferably be
15 achieved on the Tyrosine, Cysteine or Lysine. Especially, the free NH₂ group from a Lysine amino acid or of the terminal amino acid within the peptidic polymer is used as attachment points for chemicals containing aldehyde, ene one, ketone, or acid or halogene moieties

Also suitable compound are the amino acid derivatives selected from tyrosine ethylate, glycine methylate, tryptophane ethylate and mixture thereof,

These peptidic polymers can be attached to the amino acid sequence comprising a cellulose binding domain, by recombinant technology. An example of the recombinant technique describing the expression of an enzyme with the CBD of different origin is described in S. Karita et al., (1996) Journal of Fermentation and Bioengineering, Vol. 81, No. 6, pp. 553-556. The polyreactive linking region can comprise from 1 to about 100 amino acid residues, in particular of from 2 to 40 amino acid residues, e.g. from 2 to 15 amino acid residues. It is preferred to use amino acids which are less favoured by the surrounding proteases. Indeed, any combination of amino acids can be selected to achieve maximal weight efficiency and protease stability. Suitable amino acid linking regions are the *Humicola insolens* family 45 cellulase linker, the NifA gene of *Klebsiella pneumoniae*-CiP linker, the *E. coli* OmpA gene-CiP linker, the E3 cellulase *Thermomonospora fusca* linker and the CenA cellulase linker; preferably the

Humicola insolens family 45 cellulase linker and the E3 cellulase *Thermomonospora fusca* linker.

Depending on the intended activity of the attached chemical component, said
5 chemical components can be linked permanently or temporarily to the deposition
aid and/or linking region. Therefore, the present invention further encompasses
chemical entities wherein the chemical component is linked to the deposition aid
and/or linking region by a weak bond. Said weak bond is a bond which can be
enzymatically cleaved, oxidized, cleaved by light radiation and/or hydrolysed
10 during or after the wash/fabric care process in order to release the chemical
component(s). Examples of weak bonds are Schiff-base or beta-amino-ketone
bonds.

15 **The Benefit Agents**

The chemical entity of the present invention comprises a benefit agent. The
benefit agent is understood within the context of the present invention as any
20 compound which gives a desirable effect on a fibre or fabric. The benefit agents
encompassed in the chemical entity are preferably selected from perfumes,
hygiene agents, insect control agents, fabric softening agents, soil release
agents, bleaching agents, dye fixatives agents, brighteners, surfactants and/or
mixtures thereof. More preferred benefit agents are the perfume agents, insect
control agents, hygiene agents and/or bleaching agents.

25 In addition to these chemical entities, the compositions of the present invention
can comprise the same benefit agents unmodified.

The benefit agent of the present invention may be encapsulated. Suitable
30 encapsulating material includes starches, poly(vinylacetate), urea/formaldehyde
condensate based materials. Especially suitable encapsulating materials are
water soluble capsules which consist of a matrix of polysaccharide and
polyhydroxy compounds such as described in GB 1,464,616. Other suitable
water soluble encapsulating materials comprise dextrans derived from
35 ungelatinized starch acid-esters of substituted dicarboxylic acids such as
described in US 3,455,838. These acid-ester dextrans are preferably, prepared

from such starches as waxy maize, waxy sorghum, sago, tapioca and potato. Suitable examples of said encapsulating materials include N-Lok manufactured by National Starch. The N-Lok encapsulating material consists of a modified maize starch and glucose. The starch is modified by adding monofunctional 5 substituted groups such as octenyl succinic acid anhydride.

Perfumes

10 A chemical entity suitable for the laundry detergent and/or fabric care compositions of the present invention is a perfume entity wherein at least one benefit agent is a perfume compound linked to a deposition aid and/or linking region via a weak bond. It is believed that high substantivity of the perfume will be achieved by linking the perfume agents to a deposition aid.

15 Without wishing to be bound by theory, it is believed that the slow hydrolysis of the weak bond within the improved perfume entity will improve the release of the perfume. Indeed, after the wash or fabric care process, the weak bond will be hydrolysed and the perfume will be released. It has been surprisingly found that these perfume entities in the compositions of the present invention, provide increased pleasing and long-lasting fragrance through economic and effective means. Furthermore, without wishing to be bound by theory, it is believed that the binding of the perfume entities of the present invention to the fabric surface 20 results in the disruption of the fabric fibers. The laundry soils and stains are so loosened from the fabric fibers and become more accessible to polymer cleaning. 25 Moreover, the fabric surface disruption leaves the fibers accessible, enhancing polymer activity thereon. Therefore, it has been found that the laundry detergent and/or fabric care compositions of the present invention combining these perfume entities with a polymer, provide long-lasting fragrance on dry laundered fabric as well as improved fabric cleaning and/or anti-redeposition of soils and/or 30 augmented color care and/or whiteness maintenance and/or enhanced fabric softness.

35 Fully-formulated fragrance can be prepared using numerous known odorant ingredients of natural or synthetic origin. The range of the natural raw substances can embrace not only readily-volatile, but also moderately-volatile and slightly-volatile components and that of the synthetics can include

representatives from practically all classes of fragrant substances, as will be evident from the following illustrative compilation. In this list of perfume ingredients, some are commercial names conventionally known to one skilled in the art, and also includes isomers. Such isomers are also suitable for use in the present invention. A typical disclosure of suitable ketone and/or aldehydes, traditionally used in perfumery, can be found in "perfume and Flavor Chemicals", Vol. I and II, S. Arctander, Allured Publishing, 1994, ISBN 0-931710-35-5. Preferred for the purpose of the present invention are the aldehydes or ketones based products.

- 10 - Natural products such as tree moss absolute, basil oil, citrus fruit oils (such as bergamot oil, mandarin oil, etc.), mastix absolute, myrtle oil, palmarosa oil, patchouli oil, petitgrain oil Paraguay, wormwood oil;
- Alcohols such as farnesol, geraniol, linalool, nerol, phenylethyl alcohol, rhodinol, cinnamic alcohol;
- 15 - Aldehydes such as citral, Helional™, alpha-hexyl-cinnamaldehyde, hydroxycitronellal, Lilial™ (p-tert.butyl-alpha -methyldihydrocinnamaldehyde), methylnonylacetalddehyde, 1-decanal, benzaldehyde, florhydral, 2,4-dimethyl-3-cyclohexen-1-carboxaldehyde; cis/trans-3,7-dimethyl-2,6-octadien-1-al; heliotropin; 2,4,6-trimethyl-3-cyclohexene-1-carboxaldehyde; 2,6-nonadienal;
- 20 alpha-n-amyl cinnamic aldehyde, P.T. Bucinal, lyral, cymal, methyl nonyl acetaldehyde, hexanal, trans-2-hexenal, and mixture thereof;
- Ketones such as allylione, alpha-ionone, beta -ionone, isoraldein (isomethyl-alpha -ionone), methylionone, Alpha Damascone, Delta Damascone, Iso Damascone, Carvone, Gamma-Methyl-Ionone, Iso-E-Super, 2,4,4,7-Tetramethyl-25 oct-6-en-3-one, Benzyl Acetone, Beta Damascone, Damascenone, methyl dihydrojasmonate, methyl cedrylone, and mixtures thereof;
- Esters such as allyl phenoxyacetate, benzyl salicylate, cinnamyl propionate, citronellyl acetate, citronellyl ethoxolate, decyl acetate, dimethylbenzylcarbinyl acetate, dimethylbenzylcarbinyl butyrate, ethyl acetoacetate, ethyl acetylacetate, hexenyl isobutyrate, linalyl acetate, methyl dihydrojasmonate, styrrallyl acetate, vetiveryl acetate, etc.;
- Lactones such as gamma-undecalactone, various components often used in perfumery, such as musk ketone, indole, p-menthane-8-thiol-3-one, and methyl-eugenol;
- 35 - Acetals and ketals include the well-known methyl and ethyl acetals and ketals, as well as acetals or ketals based on benzaldehyde, those comprising

phenylethyl moieties, or more recently developed specialties such as those described in a United States Patent entitled "Acetals and Ketals of Oxo-Tetralins and Oxo-Indanes, see U.S. Pat. No. 5,084,440, issued January 28, 1992, assigned to Givaudan Corp. ;

- 5 - Recent synthetic specialties include the enol ethers of alkyl-substituted oxo-tetralins and oxo-indanes as described in U.S. Pat. 5,332,725, July 26, 1994, assigned to Givaudan; or Schiff Bases as described in U.S. Pat. 5,264,615, December 9, 1991, assigned to Givaudan.
- 10 When encompassed in the compositions of the present invention, these perfume entities will be generally comprised at a level of from 0.001% to 20%, preferably from 0.005% to 5% by weight of the total composition.
- 15 ***Hygiene agent***
A further suitable chemical entity for the laundry detergent and/or fabric care compositions of the present invention is a hygiene entity wherein at least one benefit agent is a hygiene agent, linked to a deposition aid. The hygiene agent will be linked to the deposition aid via weak bond in order to release the active material upon time during or after the wash or fabric care process. Preferably, the hygiene agent comprises an hydroxyl, carboxyl or aldehyde reactive moiety.
- 20 It has been surprisingly found that such hygiene entities in the laundry detergent and/or fabric care compositions of the present invention, provide an extremely long lasting and very efficient control of the micro-organism growth on stored and weared fabrics. Furthermore, without wishing to be bound by theory, it is believed that the hygiene entity interacts with the fabric surface in such a way as to increase the accessibility of soils, stains, and fabric fibers. Therefore, it has been found that the laundry detergent and/or fabric care compositions of the present invention combining these hygiene entities with a polymer provide excellent control of micro-organism growth on stored and weared fabrics, as well as improved polymer performance such as fabric cleaning and/or anti-redeposition of soils and/or augmented color care and/or whiteness maintenance and/or enhanced fabric softness.

Sanitisation includes all positive effects obtained by the inhibition or reduction of microbial activity on fabrics and other surfaces, such as the prevention of malodour development and bacterial/fungal growth. For example, it provides prevention of malodour development on stored and weared fabrics. In particular,

5 the composition of the invention will inhibit or at least reduce the bacterial and/or fungal development on moist fabric waiting for further laundry processing and thereby preventing the formation of malodour. The term hygiene agents herein encompasses fungicides and antimicrobials that when applied to fabric respectively prevent or reduce the growth of fungi or bacteria. The sanitisation

10 benefits of the laundry detergent and/or fabric care compositions of the present invention can be evaluated by the Minimum Inhibitory Concentration (MIC) as described in Tuber. Lung. Dis. 1994 Aug; 75(4):286-90; J. Clin. Microbiol. 1994 May; 32(5):1261-7 and J. Clin. Microbiol. 1992 Oct; 30(10):2692-7.

15 Preferred antibacterial compounds are pentadecanol, cinamaldehyde, ionone, glutaraldehyde, citronellal. Other suitable antimicrobial compounds with an hydroxyl, carboxyl or aldehyde moiety are described in Parfums Cosmétiques Actualités No 125, Nov, 1995, 51-4. Other suitable antibacterial components are the Neradol which can for example be linked to the carboxylic groups or succinic acid linked to the alcohol group of the deposition aid and/or linking region. A further example are the compounds Cipamaldehyde and/or Beta ionone which can form for example a Schiff base or β -amino ketone with the NH₂ groups of the deposition aid and/or linking region.

20

25 Also suitable are the microbically active ingredients described in the handbook of Disinfectants and Antiseptics edited by J.M. Ascenzi and in WO97/46218 such as 2-hydroxydiphenyl ether, phenol derivatives, diphenyl compounds, benzyl alcohols, chlorhexidine, C12-14 alkylbetaines and C8-18 fatty acid amido alkylbetaines, amphoteric surfactants, trihalocarbanilides and quaternary ammonium salts. Also suitable are the cationic germicides described in EP 843 002 and in WO98/24314 and the antibacterial agents triclosan, triclocarban, DMDM hydantoin, piroctone olamine, zinc pyrithione, selenium disulfide, climnazole and 3-methyl-4-(1-methylethyl)phenol also therein described. Other examples of suitable fungicides are given in WO94/10286 (Henkel), CA943 429 (Unilever) and US3,426,024 (Henkel). Preferred antimicrobials are 2-thiocyanomethylthiobenzothiazole (Busan 30 WB ex Buckmann), butyl 4-

30

35

hydroxybenzoate (Butyl Parabens ex Nipa Labs), propyl 4-hydroxybenzoate (Propyl Parabens ex Nipa Labs), Terpineol, Borneol, Fenchyl alcohol, trichlorocarbanilidem, Irgasan DP300 (2,4,4'-trichloro 2'hydroxydiphenylehter) and the higher homologues of hydroxybenzoate esters. Further examples of 5 bactericides used in the hygiene agent entities of this invention include formaldehyde, 2-bromo-2-nitro-propane-1,3-diol sold by Inolex Chemicals, located in Philadelphia, Pennsylvania, under the trade name Bronopol®, and a mixture of 5-chloro-2-methyl-4-isothiazoline-3-one and 2-methyl-4-isothiazoline-3-one sold by Rohm and Haas Company under the trade name Kathon.

10

Further suitable hygiene agents include : 1- or 2-hexadecanol, 2-tetradecanol, 1-pentadecanol, 1-Undecanol, 2-dodecanol, 1-Tridecanol, nerolidiol, hinokitiol, tropolone, berberine, citronellic acid, Curcumin, 2-Mercaptopyridine N-oxide, Ellagic acid (dihydrate), 3-t-Butyl-5-methyl salicylic acid, 3-, 4- or 5-methyl salicylic acid, 1-nonanol, Decylalcohol, Cinamaldehyde, S- or R-Citronellal, Citronellol, Beta-ionone, Thujone, Coumarin and derivatives, Geraniol, Citral, Thymol, Iso-butyl- or Isopropyl-quinoline, 2-butyl-5-methylphenol, 2-Mercapto-3-pyrdinol, Perillyl alcohol, 6-hydroxy-1,3-benzoxathiol-2-one, BOAT, (Iso)-Eugenol, Menth-1-en-9-ol, 2-t-Butyl-4-methylphenol, Kojic acid, Camphene, Carveol, Dihydroxycarveol, Isojasnone, Methol, Cineol, Terpinol, Camphor, 2-t-Butyl-methyl phenol, 2-Tridecanone, Acetyl salicylic acid, Salicylaldoxime, Undecylenic aldehyde, Nerol, 3,5,5-trimethyl-1-hexanol, Adipic acid, Thiosalicylic acid, OH-Benzoic acid, 2-Methylbenzothiazole, 2-Aminobenzothiazole, Caryophyllene, Allyl-isocyanate, Carvone, Alpha-pinene, Salicylic acidfrole, Alpha-ionone, 2OH- or 3OH-Phenethyl alcohol, Trimethoxy BP, Undecylic aldehyde, Cineole, Anisaldehyde, Bornyl acetate, Salicylhydroxamic, Benzofuran Car., Syringaldehyde. Preferably, the levels of the hygiene entity should be such that they prevent bacterial and fungi growth on fabrics, rather than merely preventing growth within the laundry detergent and/or fabric care compositions per se.

When encompassed in the compositions of the present invention, these hygiene entities will be generally comprised at a level of from 0.00001% to 20%, preferably from 0.00001% to 5% by weight of the total composition.

35

Insect Control agent

Further suitable chemical entities for the laundry detergent and/or fabric care compositions of the present invention are insect control entities wherein at least one benefit agent is an insect control agent, linked to a deposition aid.

5

It has surprisingly been determined that such insect control entities in the laundry detergent and/or fabric care compositions of the present invention, provide a much longer lasting insect control by the slow release of the insect control agent. Moreover, the insect control entities upon binding to the fabric, cause disruption 10 of the fabric fibers leading to the laundry soils / stains and fibers being more accessible to polymer activity. Therefore, it has been found that the laundry detergent and/or fabric care compositions of the present invention combining these insect control entities with a polymer, provide enhanced insect control performance, as well as improved fabric cleaning and/or anti-redeposition of soils 15 and/or augmented color care and/or whiteness maintenance and/or enhanced fabric softness.

20

Such insect control agents are linked to the deposition aid and/or linking region preferably via a weak bond in order to release upon time the active material. For example, these materials can be linked to the NH₂ group present in the deposition aid and/or linking region via a Schiff base or Michael reaction.

25

The term insect control agent refers to both insecticides and insect repellents either individually or as mixtures. Examples of insect repellents can be found in Kirk-Othmer Encyclopedia of Chemical technology, Fourth edition, volume 13, pages 474 to 478. Suitable insect repellents include aldehyde based compounds such as Citronellal and Rotundial, ene one based compounds such as Butopyronoxyl (Indalone TM), benzyl benzoate, bioallethrin and dimethrin, N,N-diethyl toluamide ("DEET"), N,N-diethyl benzamide, p-menthane-3,8-diol, 30 1S,3S,4S,6S-carene-3,4diol (Sumitomo - US5,130,136), 1-piperidinecarboxylic acid, 2-(2-hydroxyethyl)-, 1-methylpropylester, 1-(3cyclohexen-1-yl carbonyl)-2methylpiperidine, 1-(3-cyclohexen-1-yl carbonmyl) piperidine, N,N-diethyl mandelamide, isopulegol hydrate, ethyl-3(N-butyl-N-acetyl) aminopropionate, diisopropyladipate, α -biasal, psearmint oil, benzyl alcohol, N,N-diethylphenylacetamide, vitamin E, citronella oil, coconut oil, cedar oil, geraniol, 35 lemon grass oil, thyme oil, reosemary oil, mint oil, geranium oil, eugenol, 3-

acetyl-2-(2-,6-dimethyl-5-heptenyl) oxazolidine, (2-
hydroxymethylcyclohexyl)acetic acid lactone and eucalyptol. Other insect control
agents are based on pyrethroid insecticides, in particular 3-phenoxybenzyl-DL-
cis, trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-carboxylate
5 (permethrin). WO98/17772 describes the insect repellent agent 3-(N-
butylacetamino) ethyl propionate for use in detergents.
Preferred insect repellents are aldehyde based compounds such as Citronellal
and Rotundial.

10 When encompassed in the compositions of the present invention, these insect
control entities are generally comprised at a level of from 0.1% to 40%,
preferably from 0.1% to 10% by weight of the total composition.

Bleaching agent

15 A further suitable chemical entity for the compositions of the present invention, is
a bleaching entity wherein at least one benefit agent is a bleaching agent, linked
to a deposition aid. Said bleaching agent can be selected from hydrophilic
bleach activators, hydrophobic bleach activators, metal catalysts and/or
20 photoactivated bleaches.

25 It has been surprisingly found that the bleaching action with such bleaching
entities within the laundry detergent and/or fabric care compositions of the
present invention, results in improved and increased stain/soil bleaching/removal
and whiteness maintenance. Without wishing to be bound by theory, it is
believed that improved stain/soil bleaching/removal and whiteness maintenance
results in the generation of oxygen radicals, peracetic acid or peracid
perhydrolysis occurring very close to the fabric. Said peracetic acid or peracid is
less dilute in the wash solution due to the bleach entity of the present invention
30 being very efficiently deposited onto the fabric and thereby improving the
bleaching action on the fabric. Moreover, the bleaching action from the
bleaching entity also lead to laundry soils and stains becoming solubilized due to
the bleach activity oxidizing a-polar groups into more polar groups. This
increased solubility of the laundry soils / stains provides greater accessibility for
35 the polymer to the soils and stains, thereby resulting in improved polymer
performance. Furthermore, It has been surprisingly found that the bleaching

entity disrupts the fabric fibers making the fibers more susceptible to polymer activity. Therefore, it has been found that the laundry detergent and/or fabric care compositions combining the bleaching entities with a polymer, provide improved stain/soil bleaching/ removal and whiteness maintenance coupled with enhanced 5 polymer activity such as fabric cleaning, anti-redeposition of soils, color care, whiteness maintenance, and fabric softness.

Preferably, the bleach activator is linked to the deposition aid via a linking region, more preferably via a polyreactive linking region. Without wishing to be bound by 10 theory, it is believed that the presence of such a linking region provides flexibility of movement to the bleach activator therefore enabling it to perform more efficiently its bleaching action on the fabric fibers.

15 1) Hydrophilic bleach activator : For example, Tetra Acetyl Ethylene Diamine (TAED) is a current bleach activator used in laundry detergent and forms peracetic acid in presence of H₂O₂. It is known that the two NH₂ groups of the Ethylene Diamine are diacetylated to form TAED. Without wishing to be bound by theory, it is believed that the diacetylation of the free NH₂ groups of the deposition aid and/or linking region, forms a substantive fabric hydrophilic bleach 20 activator. Hydrophilic bleach activator of the TAED type can be linked for example via a diacetylation reaction to any NH₂ groups of the deposition aid and/or linking region of the present invention.

25 2) Hydrophobic bleach activators such as Nonanoyl benzene sulphonate, are current bleach activators used in laundry detergent. It has been surprisingly found that the phenolic moiety can be replaced by the one present in the tyrosine amino acid present in the deposition aid and/or linking region. Active hydrophobic bleach activator precursors such as nonanyl unit can be linked to the phenol group of an amino acid such as tyrosine present in the peptidic deposition aid 30 and/or linking region. Similarly, if there is no phenol entity available in the deposition aid and/or linking region, a phenol unit can be linked to a group NH₂ in this deposition aid and/or linking region. Hydrophobic bleach activators in general can be linked to the deposition aid and/or linking region for example by a reaction on NH₂ groups.

35 Other examples of suitable hydrophobic bleach activators are : nonanoyloxybenzene-sulfonate (NOBS, described in US 4,412,934), 3,5,-

5 trimethylhexanolxybenzenesulfonate (ISONOBS, described in EP 120,591) or pentaacetylglucose (PAG) or Phenolsulfonate ester of N-nonanoyl-6-aminocaproic acid (NACA-OBS, described in WO94/28106), which are perhydrolyzed to form a peracid as the active bleaching species, leading to improved bleaching effect.

10 Also suitable bleach activators are the activators based on a caprolactam leaving group such as benzoyl caprolactam and quaternary ammonium hexanoyl caprolactam; the imides activators such as N-nonanoyl-N-methyl acetamide and unsymmetrical acyclic imide bleach activator of the following formula as disclosed 15 in the Procter & Gamble co-pending patent applications US serial No. 60/022,786 (filed July 30, 1996) and No. 60/028,122 (filed October 15, 1996) :

15 wherein R₁ is a C₇-C₁₃ linear or branched chain saturated or unsaturated alkyl group, R₂ is a C₁-C₈, linear or branched chain saturated or unsaturated alkyl group and R₃ is a C₁-C₄ linear or branched chain saturated or unsaturated alkyl group. These bleach activators can for example be linked to any NH₂ groups of 20 the polyreactive linking region.

Also suitable are the pre-formed peracid such as nonylamido peroxy adipic acid and N,N-phtaloylaminoperoxy caproic acid and the Di-acyl peroxides such as 25 dobenzoyl peroxide.

3) Metal catalysts : A third type of bleach activator that can be encompassed in the bleaching entity of the present invention, are the below described metal catalysts. For example, these catalysts can be linked via their capping cyclo azo 25 moieties to NH₂ groups of the deposition aid and/or linking region.

Examples of Metal-containing catalysts for use in bleach compositions, include cobalt-containing catalysts such as Pentaamine acetate cobalt(III) salts and manganese-containing catalysts such as those described in EPA 549 271; EPA 549 272; EPA 458 397; US 5,246,621; EPA 458 398; US 5,194,416 and US 30 5,114,611. Bleaching composition comprising a peroxy compound, a manganese-containing bleach catalyst and a chelating agent is described in the patent application No 94870206.3.

4) Photoactivated bleach : Another group of suitable bleach activators that can be encompassed in the bleaching entity of the present invention, are the photoactivated bleaches. For example, the linking can be achieved between the NH₂ groups of and the benzyls groups of these photoactivated bleaches,

5 activated via a preliminary bromination.

Suitable photoactivated bleaching agents are the sulfonated zinc and/or aluminum phthalocyanines. These materials can be deposited upon the substrate during the washing process. Upon irradiation with light, in the presence of oxygen, such as by hanging clothes out to dry in the daylight, the sulfonated zinc phthalocyanine is activated and, consequently, the substrate is bleached. Preferred zinc phthalocyanine and a photoactivated bleaching process are described in U.S. Patent 4,033,718. Typically, the compositions herein will contain about 0.025% to about 1.25%, by weight of sulfonated zinc phthalocyanine.

15

In addition to this bleaching entity, the compositions of the present invention can further comprise bleaching species such as hydrogen peroxide, PB1, PB4 and percarbonate with a particle size of 400-800 microns, typically be present at levels of from about 1% to about 25%.

20

When encompassed in the compositions of the present invention, these bleaching entities will be generally comprised at a level of from 0.001% to 40%, preferably from 0.1% to 10% by weight of the total composition.

25

Fabric softening agents

For the purpose of the present invention, further suitable chemical entities are fabric softening entities wherein at least one benefit agent is a fabric softening agent, linked to a deposition aid. It has been surprisingly found that such fabric softening entities within the laundry detergent and/or fabric care compositions of the present invention, provide anti-wrinkling, anti-bobbling and anti-shrinkage properties to fabrics, as well as fabric softness.

35

In recent years, consumer desirability for durable press fabric garments, particularly cotton fabric garments, has risen. Durable press garments include

those garments which resist wrinkling of the fabric both during wear and during the laundering process. Durable press garments can greatly decrease the hand work associated with laundering by eliminating ironing sometimes necessary to prevent wrinkling of the garment. However, in most commercially available

5 durable press fabrics, the fabric's ability to resist wrinkling is reduced over time as the garment is repeatedly worn and laundered. Therefore, the fabric softening entities of the present invention aid in eliminating this problem by providing excellent anti-wrinkling and softness properties due to effective deposition of the fabric softening entity on the fabric.

10 Without wishing to be bound by theory, it is believed that the binding of the deposition aid of the fabric softening entity to the fabric fibers results in loosening of and increased accessibility to soils and stains. In addition, the binding of the deposition aid loosens Ca^{++} salts from the fabric surface, which are known to give a "harsh" feeling to the fabric. Therefore, the combined activity the fabric

15 softening entity and a softener polymer such as a flocculant, leads to improved fabric softness.

Thus, it has been found that the laundry detergent and/or fabric care compositions of the present invention combining these fabric softening entities with a polymer, provide all benefits obtained from the fabric softening entities, and improved polymer benefits such as fabric cleaning, anti-redeposition of soils, color care, whiteness maintenance, and fabric softness.

20

Suitable fabric softening agents are dialkyl units that can be linked for example, by dialkylation of the NH_2 groups comprised in the deposition aid and/or linking region. Preferably such fabric softening entities will not comprise a weak bond.

25 Dialkyl units suitable for the compositions of the present invention can be extracted from the following cationic softening surfactants currently used in the laundry detergent and/or fabric care context.

The alkyl, or alkenyl chain must contain at least 11 carbon atoms, preferably at

30 least 16 carbon atoms. The chain may be straight or branched. Specific examples of the alkyl or alkenyl chains herein include :

- 35 1) N,N-di(tallowyl-oxy-ethyl);
- 2) N,N-di(2-tallowyloxy-2-oxo-ethyl);
- 3) N,N-di(2-tallowyloxyethylcarbonyloxyethyl);
- 4) N-(2-tallowyloxy-2-ethyl)-N-(2-tallowyloxy-2-oxo-ethyl);
- 5) N-(2-tallowyloxy-2-oxoethyl)-N-(tallowyl); and

6) 1,2-ditallowyloxy;
and mixtures of any of the above materials.

Preferred alkyl chains for the purpose of the present invention N,N-di(tallowoyloxy-ethyl), where the tallow chains are at least partially unsaturated.

5

Other suitable fabric softening agents include quaternary ammonium softening compounds having a solubility in water at pH2.5 and 20°C of less than 10g/l. It is particularly advantageous if the fabric softening agent is a quaternary ammonium compound in which at least one long chain alkyl group is connected to the quaternary ammonium compound via at least one ester link. Suitable cationic softener are described in US4,137,180 (Naik) and WO93/23510.

10

Also suitable as softening components are clay or silicone.

Suitable clays include a three layered smectite clay, preferably having a cationic exchange capacity as described in GB 1,400,898 and in USP 5,019,292. Especially preferred are clays which are 2:1 layer phyllosilicates possessing a lattice charge efficiency in the range of 0.2 to 0.4g equivalent per half unit cell as described in EP 350 288 (Unilever).

15

Also encompassed in the present invention are any polymeric lubricant suitable for softening a fabric. These include silicone and in particular those described in GB1,549,180; EP 459 821 (Unilever) and EP 459 822 (Unilever).

20

When encompassed in the present invention, these improved fabric softening entities will be generally comprised at a level of from 0.5% to 50%, preferably from 1% to 30, more preferably from 2% to 15% by weight of the composition.

Dye fixative agents

25

Further suitable chemical entities for the compositions of the present invention are dye fixative entities wherein at least one benefit agent is a dye fixative agent, linked to a deposition aid.

30

It has been surprisingly found that such dye fixative entities in the laundry detergent and/or fabric care compositions of the present invention, provide enhanced anti-wear properties and colour appearance. Indeed, coloured

garments have a tendency to wear and show colour appearance losses. A portion of this wear and colour appearance loss may be attributed to abrasion in the laundering process, particularly in automatic washing machines and automatic laundry dryers. Therefore, it has been found that the laundry

5 detergent and/or fabric care compositions combining these dye fixative entities with a polymer, reduce wear and colour appearance loss, and provide improved fabric cleaning and/or anti-redeposition of soils and/or augmented colour care and/or whiteness maintenance and/or enhanced fabric softness.

Without wishing to be bound by theory, it is believed that the binding of the dye 10 fixative entity to the fabric surface disrupt the fiber, resulting in increased accessibility to the laundry soils/stains and fabric fibers. This leads to better dye fixative performance of the chemical entity and to increased polymer benefits. Preferably, such dye fixative chemical entity is combined with a dye transfer inhibitor polymer, resulting in superior color care and wear appearance.

15 Dye fixative agents are well-known, commercially available materials which are designed to improve the appearance of dyed fabric by minimising the loss of dye from fabrics due to washing. Many dye fixatives are cationic, and are based on various quaternized or otherwise cationically charged organic nitrogen 20 compounds. Fixatives are available under various trade names from several suppliers. Representative examples include: CROSCOLOR PMF (July 1981, Code No. 7894) and CROSCOLOR NOFF (January 1988, Code No. 8544) from Crosfield; INDOSOL E-50 (February 27, 1984, Ref. No. 6008.35.84; polyethyleneamine-based) from Sandoz; SANDOFIX TPS, which is also 25 available from Sandoz and is a preferred polycationic fixative for use herein and SANDOFIX SWE (cationic resinous compound), REWIN SRF, REWIN SRF-O and REWIN DWR from CHT-Beitlich GMBH. Other cationic dye fixative agents are described in "Aftertreatments for improving the fastness of dyes on textile fibres" by Christopher C. Cook (REV. PROG. COLORATION Vol. 12, 1982).

30 Other dye fixative agents suitable for use in the present invention are ammonium compounds such as fatty acid - diamine condensates e.g. the hydrochloride, acetate, metosulphate and benzyl hydrochloride of oleyldiethyl aminoethylamide, oleylmethyl-diethylenediaminemethsulphate, monostearyl-ethylene 35 diaminotrimethylammonium methosulphate and oxidised products of tertiary

amines; derivatives of polymeric alkyldiamines, polyamine-cyanuric chloride condensates and aminated glycerol dichlorohydrins.

When encompassed in the compositions of the present invention, these dye fixing entities will be generally comprised at a level of from 0.01% to 30%, 5 preferably from 0.1% to 15% by weight of the total composition.

Soil release agents

10 A further suitable chemical entity for the compositions of the present invention is a soil release entity wherein at least one benefit agent is a soil release agent, linked to a deposition aid.

15 It has been surprisingly found that such soil release agents in the laundry detergent and/or fabric care compositions of the present invention, provide better deposition of the soil release agent onto the fabric and therefore better soil removal performance. Without wishing to be bound by theory, it is believed that the combination of such soil release entities with a polymer can enhance the removal of laundry soils and stains. Without wishing to be bound by theory, it is 20 believed that the soil release entity interacts with the fabric surface in such a way that the accessibility of the laundry soils / stains and fabric fibers is greatly increased. Consequently, a significantly enhanced fabric cleaning is obtained resulting from improved soil release / removal by the combined activity of the soil release entity and the polymer. In addition, the polymer provide further anti- 25 redeposition of soils, color care, whiteness maintenance and fabric softness, thanks to the increased accessibility.

30 Suitable soil release agents for use in the present invention include ethylene glycols oligomers, polyethylene glycol and derivatives such as transesterified polyethylene glycols, and propylene polyoxy ethylene. Other suitable soil release agents useful in compositions of the present invention are conventionally copolymers or terpolymers of terephthalic acid with ethylene glycol and/or propylene glycol units in various arrangements. Examples of such polymers are disclosed in the commonly assigned US Patent Nos. 4116885 and 4711730 and 35 European Published Patent Application No. 0 272 033. A particular preferred polymer in accordance with EP-A-0 272 033 has the formula

where PEG is $-(OC_2H_4)O-$, PO is (OC_3H_6O) and T is $(pcOC_6H_4CO)$.

5 Also very useful are modified polyesters as random copolymers of dimethyl
terephthalate, dimethyl sulfoisophthalate, ethylene glycol and 1-2 propane diol,
the end groups consisting primarily of sulphobenzoate and secondarily of mono
esters of ethylene glycol and/or propane-diol. The target is to obtain a polymer
capped at both end by sulphobenzoate groups, "primarily", in the present context
10 most of said copolymers herein will be end-capped by sulphobenzoate groups.
However, some copolymers will be less than fully capped, and therefore their end
groups may consist of monoester of ethylene glycol and/or propane 1-2 diol,
thereof consist "secondarily" of such species.
The selected polyesters herein contain about 46% by weight of dimethyl
15 terephthalic acid, about 16% by weight of propane -1.2 diol, about 10% by weight
ethylene glycol about 13% by weight of dimethyl sulfobenzoic acid and about
15% by weight of sulfoisophthalic acid, and have a molecular weight of about
3.000. The polyesters and their method of preparation are described in detail in
EPA 311 342.

20 Other suitable soil release agents are those of U.S. 4,968,451, November 6,
1990 to J.J. Scheibel and E.P. Gosselink: such ester oligomers can be prepared
by (a) ethoxylating alkyl alcohol, (b) reacting the product of (a) with dimethyl
terephthalate ("DMT") and 1,2-propylene glycol ("PG") in a two-stage
25 transesterification/oligomerization procedure and (c) reacting the product of (b)
with sodium metabisulfite in water; the nonionic end-capped 1,2-
propylene/polyoxyethylene terephthalate polyesters of U.S. 4,711,730,
December 8, 1987 to Gosselink et al, for example those produced by
transesterification/oligomerization of poly(ethyleneglycol) methyl ether, DMT, PG
30 and poly(ethyleneglycol) ("PEG"); the partly- and fully- anionic-end-capped
oligomeric esters of U.S. 4,721,580, January 26, 1988 to Gosselink, such as
oligomers from ethylene glycol ("EG"), PG, DMT and Na-3,6-dioxa-8-
hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric
compounds of U.S. 4,702,857, October 27, 1987 to Gosselink, for example
35 produced from DMT, Me-capped PEG and EG and/or PG, or a combination of
DMT, EG and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate; and

the anionic, especially sulfoaroyl, end-capped terephthalate esters of U.S. 4,877,896, October 31, 1989 to Maldonado, Gosselink et al, an example being an ester composition made from m-sulfobenzoic acid monosodium salt, PG and DMT optionally but preferably further comprising added PEG, e.g., PEG 3400.

5 Another preferred soil release agent is a sulfonated end-capped type described in US 5,415,807.

When encompassed in the compositions of the present invention, these soil release entities are generally comprised at a level of from 0.01% to 20%,

10 preferably from 0.1% to 5% by weight of the total composition.

Brightener agents

15 Also suitable as a chemical entity for the laundry detergent and/or fabric care compositions of the present invention is a brightener entity wherein at least one benefit agent is a brightener, linked to a deposition aid.

20 It has been surprisingly found that such brightener entities provide increased deposition of the brightener agent onto the fabric and therefore better whiteness maintenance performance. Without wishing to be bound by theory, it is believed that the specific combination of a brightener entity and a polymer interact with the fabric surface in such a way that the accessibility of the laundry soils / stains and fabric fibers is greatly increased. Consequently, a significantly enhanced fabric 25 whiteness maintenance is obtained coupled with enhanced polymer activity. Therefore, the laundry detergent and/or fabric care compositions of the present invention combining these brightener agents and a polymer, provide enhanced fabric whiteness maintenance, and additional polymer activity benefits such as improved fabric cleaning, anti-redeposition of soils, color care, and/or fabric 30 softness.

Suitable brighteners for compositions of the present invention are :

- Carbocycles types of compounds such as distyrylbenzenes, distyrylbiphenyls and divinylstibenes,

35 - Triazinylaminostilbenes,

- Stilbenyl-2H-triazoles such as stilbenyl-2H-naphtho[1,2-d]triazoles and

- bis(1,2,3-triazol-2-yl)stilbenes,
- Benzoxazoles such as stilbenylbenzoxazoles and bis(benzoxazoles),
- Furans, Benzo[b]furnas and Benzimidazoles such as bis(benzo[b]furan-2-yl)biphenyls and cationic benzimidazoles,
- 5 - 1,3-Diphenyl-2-pyrazolines
- Coumarins
- Naphtalimides
- 1,3,5-triazin-2-yl-Derivatives.

The brightener agents, for example of the Coumarin type, can be attached to the 10 NH₂ group or to an amido group from the deposition aid and/or linking region. Preferred are the bleach-stable brighteners such as 1,4-di(2-methylaminostyryl)benzene.

15 Other suitable brighteners are the hydrophilic optical brighteners having the structural formula:

wherein R₁ is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; 20 R₂ is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.

- When in the above formula, R₁ is anilino, R₂ is N-2-bis-hydroxyethyl and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-(N-2-bis-25 hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the rinse added compositions herein.
- 30 - When in the above formula, R₁ is anilino, R₂ is N-2-hydroxyethyl-N-2-methylamino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2'-

stilbenedisulfonic acid disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Corporation.

- When in the above formula, R₁ is anilino, R₂ is morphilino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Corporation.
- 10 Other suitable optical brighteners are anionic in character, examples of which are disodium 4,4'-bis-(2-diethanolamino-4-anilino -s- triazin-6-ylamino)stilbene-2:2' disulphonate, disodium 4, - 4'-bis-(2-morpholino-4-anilino-s-triazin-6-ylamino-stilbene-2:2' - disulphonate, disodium 4,4' - bis-(2,4-dianilino-s-triazin-6-ylamino)stilbene-2:2' - disulphonate, monosodium 4',4" -bis-(2,4-dianilino-s-triazin-6 ylamino)stilbene-2-sulphonate, disodium 4,4' -bis-(2-anilino-4-(N-methyl-N-2-hydroxyethylamino)-s-triazin-6-ylamino)stilbene-2,2' - disulphonate, di-sodium 4,4' -bis-(4-phenyl-2,1,3-triazol-2-yl)-stilbene-2,2' disulphonate, di-so-dium 4,4'bis(2-anilino-4-(1-methyl-2-hydroxyethylamino)-s-triazin-6- ylami-no)stilbene-2,2'disulphonate, sodium 2(stilbyl-4"-(naphtho-1',2':4,5)-1,2,3 - triazole-2"-sulphonate and 4,4'-bis(2-sulphostyryl)biphenyl. Highly preferred brighteners are the specific brighteners of copending European Patent application No. 95201943.8.

25 It has been surprisingly found that various brighteners not currently used in the detergent field could also be used in the present invention thanks to their increased fabric substantivity, in particular during a softening-through-the-wash process. Preferably, such brightener entities will not comprise a weak bond.

30 When encompassed in the compositions of the present invention, these brigthener agents will be generally comprised at a level of from 0.001% to 10%, preferably 0.005% to 3.5% by weight of the total composition.

Other suitable benefit agents

35 Also suitable as chemical entities for the compositions of the present invention are latex and resin entities. These latex and resin entities comprise a benefit

agent wherein at least one benefit agent is a latex or resin agent, linked to a deposition aid. Latex is defined as a material suitable for refining the drape of fabric. Resins prevent the formation of pills on the fabrics.

5 Without wishing to be bound by theory, it is believed that these chemical entities upon binding to the fabric surface increase the accessibility of laundry soils / stains and fabric fibers. Therefore, laundry detergent and/or fabric care compositions comprising these chemical entities combined with a polymer provide refining of fabric drape, prevention of pill formation, and improved
10 10 polymer activity such as fabric cleaning, anti-redeposition of soils, color care, whiteness maintenance, and fabric softness.

15 Suitable latex materials include a polyvinylacetate homopolymer such as 9802 (Vinamul). Suitable resins are Knittex BE from Ciba-Geigy or silicas such as Crosanol NS from Crosfiled.

20

THE POLYMER

25 The second essential element of the laundry detergent and/or fabric care compositions according to the present invention, is a polymer. Suitable polymers for use in the compositions of the present invention include soil release polymers, dispersants, anti-redeposition polymers, dye transfer inhibitors, flocculants, and/or mixtures thereof.

Soil release polymer

30 A suitable polymer for the purpose of the present invention is a soil release polymer. Soil release polymer activity results in release / removal of laundry soils and stains from the fabric surface. Without wishing to be bound by theory, it is believed that the binding of the chemical entities of the present invention, to the
35 fabric surface leads to disruption of the fabric fibers causing loosening of laundry soils and stains. As a result, the soil release polymer has increased accessibility

to the laundry soils and stains, and therefore the soil release polymers are able to more effectively and efficiently remove the soils and stains from the fabric fibers. This results in effective and efficient removal of soils and stains and in augmented fabric whiteness. Therefore, it has been found that the laundry 5 detergent and/or fabric care compositions of the present invention comprising a chemical entity and a soil release polymer, provide improved fabric cleaning and whiteness maintenance.

10 Suitable soil release polymers for the laundry detergent and/or fabric care compositions of the present invention are ethylene glycols oligomers, polyethylene glycol and derivatives such as transesterified polyethylene glycols, propylene polyoxy ethylene, and conventionally copolymers or terpolymers of terephthalic acid with ethylene glycol and/or propylene glycol units in various arrangements. Examples of such polymers are disclosed in the commonly 15 assigned US Patent Nos. 4116885 and 4711730 and European Published Patent Application No. 0 272 033. A particular preferred polymer in accordance with EP-A-0 272 033 has the formula :

where PEG is $-(OC_2H_4)O-$, PO is (OC_3H_6O) and T is $(pcOC_6H_4CO)$.

25 Also very useful are modified polyesters as random copolymers of dimethyl terephthalate, dimethyl sulfoisophthalate, ethylene glycol and 1-2 propane diol, the end groups consisting primarily of sulphobenzoate and secondarily of mono esters of ethylene glycol and/or propane-diol. The target is to obtain a polymer capped at both end by sulphobenzoate groups, "primarily", in the present context most of said copolymers herein will be end-capped by sulphobenzoate groups.

30 However, some copolymers will be less than fully capped, and therefore their end groups may consist of monoester of ethylene glycol and/or propane 1-2 diol, thereof consist "secondarily" of such species.

35 The selected polyesters herein contain about 46% by weight of dimethyl terephthalic acid, about 16% by weight of propane -1.2 diol, about 10% by weight ethylene glycol about 13% by weight of dimethyl sulfobenzoic acid and about 15% by weight of sulfoisophthalic acid, and have a molecular weight of about

3.000. The polyesters and their method of preparation are described in detail in EPA 311 342.

Other suitable soil release polymers are those of U.S. 4,968,451, November 6, 5 1990 to J.J. Scheibel and E.P. Gosselink: such ester oligomers can be prepared by (a) ethoxylating alkyl alcohol, (b) reacting the product of (a) with dimethyl terephthalate ("DMT") and 1,2-propylene glycol ("PG") in a two-stage transesterification/oligomerization procedure and (c) reacting the product of (b) with sodium metabisulfite in water; the nonionic end-capped 1,2- 10 propylene/polyoxyethylene terephthalate polyesters of U.S. 4,711,730, December 8, 1987 to Gosselink et al, for example those produced by transesterification/oligomerization of poly(ethyleneglycol) methyl ether, DMT, PG and poly(ethyleneglycol) ("PEG"); the partly- and fully- anionic-end-capped oligomeric esters of U.S. 4,721,580, January 26, 1988 to Gosselink, such as 15 oligomers from ethylene glycol ("EG"), PG, DMT and Na-3,6-dioxa-8-hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric compounds of U.S. 4,702,857, October 27, 1987 to Gosselink, for example produced from DMT, Me-capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate; and 20 the anionic, especially sulfoaroyl, end-capped terephthalate esters of U.S. 4,877,896, October 31, 1989 to Maldonado, Gosselink et al, an example being an ester composition made from m-sulfobenzoic acid monosodium salt, PG and DMT optionally but preferably further comprising added PEG, e.g., PEG 3400. Another preferred soil release polymer is a sulfonated end-capped type 25 described in US 5,415,807. Further suitable soil release agents are disclosed in U.S. Patent Nos 5,728,671; 5,691,298; 5,599,782; 5,182,043; 4,956,447; 4,976,879; 4,925,577; 4,861,5121; 4,000,093; 3,959,230; 3,893,9294; 201,824; 4,240,918; 4,525,524; 4,579,681; 4,220,918 and 4,787,989; EP 279,134; EP 457,205A; EP 219 048 and DE 2,335,044.

30

Soil release agents are generally comprised at a level of from 0.01% to 10%, preferably from 0.1% to 5%, more preferably from 0.2% to 3% by weight of the total composition.

A suitable polymer for the purpose of the present invention is a dispersant. Dispersants prevent the deposition onto the fabric surface of soils from the laundry wash solution. Without wishing to be bound by theory, it is believed that 5 the binding of the chemical entities of the present invention, to the fabric surface leads to disruption of the fabric fibers causing loosening of soil particles therefrom. As a result, the dispersant has increased accessibility to the soil particles, and therefore the dispersant is able to more effectively absorb onto the surface of the soil particles preventing their agglomeration. This results in a 10 barrier being formed between the soil particles and the fabric surface, and thus reduces the deposition of soil particles onto fabrics, thereby aiding in fabric cleaning and maintaining the whiteness of the fabric. Consequently, it has been found that the laundry detergent and/or fabric care compositions of the present invention comprising a chemical entity and a dispersant, provide improved fabric 15 cleaning and whiteness maintenance.

Suitable dispersants for use in laundry detergent and/or fabric care compositions of the present invention are polyalkyleneimine dispersants. Examples of such suitable dispersants can be found in European Patent Application Nos 111,965, 20 111,984 and 112,592; U.S. Patent Nos 4,597,898; 4,548,744 and 5,565,145. Another polymeric material which can be included is polyethylene glycol (PEG). PEG can exhibit dispersing agent performance as well as act as a clay soil removal-antiredeposition agent. Typical molecular weight ranges for these purposes from about 500 to about 100,000, preferably from about 1,000 to about 25 50,000, more preferably from about 1,500 to about 10,000. Further suitable dispersants are polyaspartate and polyglutamate dispersing agents may also be used, especially in conjunction with zeolite builders. Dispersing agents such as polyaspartate preferably have a molecular weight (avg.) of about 10,000. 30 Water-soluble organic salts such as homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of this type are disclosed in GB-A-1,596,756. Examples of such salts are polyacrylates of MW 2000-5000 and their copolymers with maleic anhydride, such copolymers having 35 a molecular weight of from 1,000 to 100,000. Especially, copolymer of acrylate and methylacrylate such as the 480N having a molecular weight of 4000, at a

level from 0.5-20% by weight of composition can be added in the laundry detergent and/or fabric care compositions of the present invention.

Other suitable dispersants can be lime soap peptiser compounds, which have 5 preferably a lime soap dispersing power (LSDP), as defined hereinafter of no more than 8, preferably no more than 7, most preferably no more than 6. The lime soap peptiser compound is preferably present at a level from 0.0001% to 20% by weight.

A numerical measure of the effectiveness of a lime soap peptiser is given by the 10 lime soap dispersant power (LSDP) which is determined using the lime soap dispersant test as described in an article by H.C. Borghetty and C.A. Bergman, J. Am. Oil. Chem. Soc., volume 27, pages 88-90, (1950). This lime soap dispersion test method is widely used by practitioners in this art field being referred to, for example, in the following review articles; W.N. Linfield, Surfactant science Series, 15 Volume 7, page 3; W.N. Linfield, Tenside surf. det., volume 27, pages 159-163, (1990); and M.K. Nagarajan, W.F. Masler, Cosmetics and Toiletries, volume 104, pages 71-73, (1989). The LSDP is the % weight ratio of dispersing agent to sodium oleate required to disperse the lime soap deposits formed by 0.025g of sodium oleate in 30ml of water of 333ppm CaCo₃ (Ca:Mg=3:2) equivalent 20 hardness.

Polymeric lime soap peptisers suitable for use herein are described in the article by M.K. Nagarajan, W.F. Masler, to be found in Cosmetics and Toiletries, volume 104, pages 71-73, (1989).

Hydrophobic bleaches such as 4-[N-octanoyl-6-amino hexanoyl]benzene 25 sulfonate, 4-[N-nonenoyl-6-amino hexanoyl]benzene sulfonate, 4-[N-decanoyl-6-amino hexanoyl]benzene sulfonate and mixtures thereof; and nonanoyloxy benzene sulfonate together with hydrophilic / hydrophobic bleach formulations can also be used as lime soap peptisers compounds.

Surfactants may also be used as lime soap peptiser compounds, such as certain 30 amine oxides, betaines, sulfobetaines, alkyl ethoxysulfates and ethoxylated alcohols. Exemplary surfactants having a LSDP of no more than 8 for use in accord with the present invention include C₁₆-C₁₈ dimethyl amine oxide, C₁₂-C₁₈ alkyl ethoxysulfates with an average degree of ethoxylation of from 1-5, particularly C₁₂-C₁₅ alkyl ethoxysulfate surfactant with a degree of ethoxylation 35 of amount 3 (LSDP=4), and the C₁₄-C₁₅ ethoxylated alcohols with an average

degree of ethoxylation of either 12 (LSDP=6) or 30, sold under the tradenames Lutensol A012 and Lutensol A030 respectively, by BASF GmbH.

5 Dispersing agents are generally incorporated into the laundry detergent and/or fabric care compositions of the present invention at a level from 0.0001-20%, preferably 0.5-20% by weight of the total composition.

Anti-redeposition polymers

10

A suitable polymer for the purpose of the present invention is an anti-redeposition polymer. Anti-redeposition polymers prevents the redeposition of soils from solution onto the fabric surface. Without wishing to be bound by theory, it is believed that the binding of the chemical entities of the present invention to the fabric surface, leads to disruption of the fabric fibers. As a result, the anti-redeposition polymers have an increase accessibility to the fabric fibers, and therefore are able to more efficiently absorb onto the fabric surface. This enables the anti-redeposition polymers to effectively change the surface charge density of the fabric, preventing the redeposition of soils from solution onto the fabric surface. Therefore, it has been found that the laundry detergent and/or fabric care compositions of the present invention comprising a chemical entity and an anti-redeposition polymer, provide improved fabric cleaning and whiteness maintenance.

25

Anti-redeposition polymers suitable for use in the laundry detergent and/or fabric care compositions of the present invention, include cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose, and homo- or co-polymeric polycarboxylic acids or their salts. Polymers of this type include the polyacrylates and maleic anhydride-acrylic acid copolymers, as well as 30 copolymers of maleic anhydride with ethylene, methylvinyl ether or methacrylic acid, the maleic anhydride constituting at least 20 mole percent of the copolymer.

35

Other suitable anti-redeposition polymers are alkoxylated polycarboxylates such as those prepared from polyacrylates, useful herein to provide additional grease removal performance. Such materials are described in WO 91/08281 and PCT 90/01815 at p. 4 et seq., incorporated herein by reference. Chemically, these

materials comprise polyacrylates having one ethoxy side-chain per every 7-8 acrylate units. The side-chains are of the formula $-(\text{CH}_2\text{CH}_2\text{O})_m(\text{CH}_2)_n\text{CH}_3$ wherein m is 2-3 and n is 6-12. The side-chains are ester-linked to the polyacrylate "backbone" to provide a "comb" polymer type structure. The 5 molecular weight can vary, but is typically in the range of about 2000 to about 50,000. Such alkoxyated polycarboxylates can comprise from 0.05% to 10% by weight of the compositions herein.

These anti-redeposition polymers are normally used at levels of from 0.05% to 10 10%, more preferably from 0.75% to 8%, most preferably from 1% to 6% by weight of the compositions of the present invention.

Dye transfer inhibitor polymers

15 A suitable polymer for the purpose of the present invention is a dye transfer inhibiting (DTI) polymer. Dye transfer inhibiting polymers inhibit the transfer of dyes from colored fabrics onto other fabrics washed therewith. Without wishing to be bound by theory, it is believed that binding of the chemical entity of the 20 present invention to the fabric surface results in disruption of the fabric fibers, and therefore enabling the dye transfer inhibitor polymers to have greater accessibility to the fabric dyes. These polymers have the ability to complex or adsorb fugitive dyes washed out of dyed fabrics before the dyes have the opportunity to become attached to other articles in the wash. Therefore, it has been found the laundry 25 detergent and/or fabric care compositions of the present invention comprising a chemical entity and a dye transfer inhibiting polymer, provide improved color care and whiteness maintenance benefits.

30 Suitable polymeric dye transfer inhibitors include polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidone polymers, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof.

a) Polyamine N-oxide polymers :

35 The polyamine N-oxide polymers suitable for use contain units having the following structure formula :

5

wherein P is a polymerisable unit, whereto the R-N-O group can be attached to or wherein the R-N-O group forms part of the polymerisable unit or a combination of both.

10

A is NC, CO, C, -O-, -S-, -N-; x is O or 1;

15

R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.

20

The N-O group can be represented by the following general structures :

25

wherein R1, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups.

30

The N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.

Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit, comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.

One class of said polyamine N-oxides comprises the group of polyamine N-

5 oxides wherein the nitrogen of the N-O group forms part of the R-group. Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.

Another class of said polyamine N-oxides comprises the group of polyamine N-

10 oxides wherein the nitrogen of the N-O group is attached to the R-group.

Other suitable polyamine N-oxides are the polyamine oxides whereto the N-O group is attached to the polymerisable unit.

Preferred class of these polyamine N-oxides are the polyamine N-oxides having the general formula (I) wherein R is an aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.

Examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyridine, pyrrole, imidazole and derivatives thereof.

Another preferred class of polyamine N-oxides are the polyamine oxides having the general formula (I) wherein R are aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is attached to said R groups.

Examples of these classes are polyamine oxides wherein R groups can be aromatic such as phenyl.

Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties. Examples of suitable 25 polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof.

The amine N-oxide polymers of the present invention typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1000000. However the amount of amine 30 oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by appropriate degree of N-oxidation. Preferably, the ratio of amine to amine N-oxide is from 2:3 to 1:1000000. More preferably from 1:4 to 1:1000000, most preferably from 1:7 to 1:1000000. The polymers of the present invention actually encompass random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is either an

35 amine N-oxide or not. The amine oxide unit of the polyamine N-oxides has a PKa < 10, preferably PKa < 7, more preferred PKa < 6.

The polyamine oxides can be obtained in almost any degree of polymerisation. The degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power.

Typically, the average molecular weight is within the range of 500 to 1000,000; 5 preferably from 1,000 to 50,000, more preferably from 2,000 to 30,000, most preferably from 3,000 to 20,000.

b) Copolymers of N-vinylpyrrolidone and N-vinylimidazole :

10 The N-vinylimidazole N-vinylpyrrolidone polymers suitable for use in the compositions of the present invention, have an average molecular weight range from 5,000-1,000,000, preferably from 5,000-200,000.

15 Highly preferred polymers comprise a polymer selected from N-vinylimidazole N-vinylpyrrolidone copolymers wherein said polymer has an average molecular weight range from 5,000 to 50,000 more preferably from 8,000 to 30,000, most preferably from 10,000 to 20,000.

The average molecular weight range was determined by light scattering as described in Barth H.G. and Mays J.W. Chemical Analysis Vol 113, "Modern Methods of Polymer Characterization".

20 Highly preferred N-vinylimidazole N-vinylpyrrolidone copolymers have an average molecular weight range from 5,000 to 50,000; more preferably from 8,000 to 30,000; most preferably from 10,000 to 20,000.

25 The N-vinylimidazole N-vinylpyrrolidone copolymers characterized by having said average molecular weight range provide excellent dye transfer inhibiting properties while not adversely affecting the cleaning performance of laundry detergent and/or fabric care compositions formulated therewith.

The N-vinylimidazole N-vinylpyrrolidone copolymer of the present invention has a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2, more preferably from 0.8 to 0.3, most preferably from 0.6 to 0.4 .

30 **c) Polyvinylpyrrolidone :**

Suitable polyvinylpyrrolidones ("PVP") for use in the compositions of the present invention, have an average molecular weight of from about 2,500 to about 400,000, preferably from about 5,000 to about 200,000, more preferably from about 5,000 to about 50,000, and most preferably from about 5,000 to about 35 15,000.

Suitable polyvinylpyrrolidones are commercially available from ISP Corporation, New York, NY and Montreal, Canada under the product names PVP K-15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average molecular weight of 160,000), and PVP K-90 (average molecular weight of 360,000). Other suitable polyvinylpyrrolidones which are commercially available from BASF Cooperation include Sokalan HP 165 and Sokalan HP 12; polyvinylpyrrolidones known to persons skilled in the detergent field (see for example EP-A-262,897 and EP-A-256,696).

10 d) Polyvinyloxazolidone :

Suitable polyvinyloxazolidones for use in the compositions of the present invention, have an average molecular weight of from about 2,500 to about 400,000, preferably from about 5,000 to about 200,000, more preferably from about 5,000 to about 50,000, and most preferably from about 5,000 to about 15,000.

15 e) Polyvinylimidazole :

Suitable polyvinylimidazoles for use in the compositions of the present invention, have an average of about 2,500 to about 400,000, preferably from about 5,000 to about 200,000, more preferably from about 5,000 to about 50,000, and most preferably from about 5,000 to about 15,000.

20 f) Cross-linked polymers :

Suitable for use in the compositions of the present invention are cross-linked polymers. Cross-linked polymers are polymers whose backbone are interconnected to a certain degree; these links can be of chemical or physical nature, possibly with active groups in the backbone or on branches; cross-linked polymers have been described in the Journal of Polymer Science, volume 22, pages 1035-1039.

25 30 In one embodiment, the cross-linked polymers are made in such a way that they form a three-dimensional rigid structure, which can entrap dyes in the pores formed by the three-dimensional structure. In another embodiment, the cross-linked polymers entrap the dyes by swelling.

Such cross-linked polymers are described in the co-pending patent application
35 94870213.9

The laundry detergent and/or fabric care compositions according to the present invention generally comprise dye transfer inhibiting polymers at a level of from 0.001% to 10 %, preferably from 0.01% to 2%, more preferably from 0.05% to 1% by weight of the total composition.

5

Flocculant polymers

A suitable polymer for the purpose of the present invention is a flocculant polymer. Flocculant polymers provide fabric softening benefits by lubricating the fabric surface, by enhancing the deposition of for e.g. smectite clay. Without wishing to be bound by theory, it is believed that the binding of the chemical entity of the present invention, to the fabric surface leads to disruption of the fabric fibers. The flocculant polymers have increased accessibility to the fabric fibers, deposit more clay, resulting in more efficient lubrication of the fabric surface. Lubrication of the fabric surface leads to fabric softness by reducing the "fuzz" formation or surface pilling which occurs on the fabric surface from washing. Such surface pilling causes increased fabric wear and leads to a harsh feeling of the fabric. Therefore, it has been found that the laundry detergent and/or fabric care compositions of the present invention comprising a chemical entity and a flocculant polymer, provide enhanced fabric softness.

Suitable flocculant polymers for use in the laundry detergent and/or fabric care compositions of the present invention include high molecular weight polyethylene oxides such as described in EP 299 575 and EP 313 146.

Flocculant polymers are normally used at levels of from 0.1% to 2%, more preferably from 0.15% to 1.5% by weight of the compositions of the present invention.

30

LAUNDRY DETERGENT AND/OR FABRIC CARE COMPONENTS

The laundry detergent and/or fabric care compositions of the invention may further comprise additional detergent and/or fabric care components. The precise nature of these additional components, and levels of incorporation

35

thereof will depend on the physical form of the composition, and the nature of the cleaning operation for which it is to be used.

The compositions of the invention may for example, be formulated as hand and

5 machine laundry detergent compositions including laundry additive compositions and compositions suitable for use in the soaking and/or pretreatment of stained fabrics, rinse added fabric softener compositions. Pre-or post treatment of fabric include gel, spray and liquid fabric care compositions. A rinse cycle with or without the presence of softening agents is also contemplated. The compositions

10 of the invention can also be used as detergent additive products in solid or liquid form. Such additive products are intended to supplement or boost the performance of conventional detergent compositions and can be added at any stage of the cleaning process.

15 The laundry detergent and/or fabric care compositions according to the invention can be liquid, paste, gels, bars, tablets, spray, foam, powder or granular forms. Granular compositions can also be in "compact" form, the liquid compositions can also be in a "concentrated" form. If needed the density of the laundry detergent compositions herein ranges from 400 to 1200 g/litre, preferably 600 to

20 950 g/litre of composition measured at 20°C.

The "compact" form of the compositions herein is best reflected by density and, in terms of composition, by the amount of inorganic filler salt; inorganic filler salts are conventional ingredients of detergent compositions in powder form; in conventional detergent compositions, the filler salts are present in substantial

25 amounts, typically 17-35% by weight of the total composition. In the compact compositions, the filler salt is present in amounts not exceeding 15% of the total composition, preferably not exceeding 10%, most preferably not exceeding 5% by weight of the composition. The inorganic filler salts, such as meant in the present compositions are selected from the alkali and alkaline-earth-metal salts

30 of sulphates and chlorides. A preferred filler salt is sodium sulphate.

Liquid detergent compositions according to the present invention can also be in a "concentrated form", in such case, the liquid detergent compositions according

35 the present invention will contain a lower amount of water, compared to conventional liquid detergents. Typically the water content of the concentrated liquid detergent is preferably less than 40%, more preferably less than 30%, most preferably less than 20% by weight of the detergent composition.

As already mentioned *vide supra*, all the components that may be linked to a deposition aid and/or linking region in accordance with the present invention, can also be incorporated into the laundry detergent and/or fabric care compositions of 5 the present invention in their unmodified, conventional form.

Surfactant system

10 The laundry detergent and/or fabric care compositions according to the present invention will preferably further comprise a surfactant system wherein the surfactant can be selected from nonionic and/or anionic and/or cationic and/or ampholytic and/or zwitterionic and/or semi-polar surfactants. Preferred surfactants are cationic surfactants.

15 The surfactant is typically present at a level of from 0.1% to 60%, preferably from 1% to 35%, more preferably from 1% to 30% by weight of laundry detergent and/or fabric care compositions of the present invention.

20 The surfactant is preferably formulated to be compatible with enzyme components present in the composition. In liquid or gel compositions the surfactant is most preferably formulated such that it promotes, or at least does not degrade, the stability of any enzyme in these compositions.

25 Cationic detergents suitable for use in the laundry detergent and/or fabric care compositions of the present invention are those having one long-chain hydrocarbyl group. Examples of such cationic surfactants include the ammonium surfactants such as alkyltrimethylammonium halogenides, and those surfactants having the formula :

wherein R^2 is an alkyl or alkyl benzyl group having from about 8 to about 18 carbon atoms in the alkyl chain, each R^3 is selected from the group consisting of - CH_2CH_2 -, - $CH_2CH(CH_3)$ -, - $CH_2CH(CH_2OH)$ -, - $CH_2CH_2CH_2$ -, and mixtures thereof; each R^4 is selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ hydroxyalkyl, benzyl ring structures formed by joining the two R^4 groups, -

5 $\text{CH}_2\text{CHOH-CHOHCOR}^6\text{CHOHCH}_2\text{OH}$ wherein R^6 is any hexose or hexose polymer having a molecular weight less than about 1000, and hydrogen when y is not 0; R^5 is the same as R^4 or is an alkyl chain wherein the total number of carbon atoms of R^2 plus R^5 is not more than about 18; each y is from 0 to about 10 and the sum of the y values is from 0 to about 15; and X is any compatible anion.

Quaternary ammonium surfactant suitable for the present invention has the formula (I):

Formula I

whereby R^1 is a short chainlength alkyl (C6-C10) or alkylamidoalkyl of the formula (II) :

15

Formula II

20 y is 2-4, preferably 3.

whereby R^2 is H or a C1-C3 alkyl,

whereby x is 0-4, preferably 0-2, most preferably 0,

whereby R^3 , R^4 and R^5 are either the same or different and can be either a short chain alkyl (C1-C3) or alkoxylated alkyl of the formula III,

25

whereby X^- is a counterion, preferably a halide, e.g. chloride or methylsulfate.

30

Formula III

R6 is C₁-C₄ and z is 1 or 2.

Preferred quaternary ammonium surfactants are those as defined in formula I

5 whereby

R₁ is C₈, C₁₀ or mixtures thereof, x=0,

R₃, R₄ = CH₃ and R₅ = CH₂CH₂OH.

Highly preferred cationic surfactants are the water-soluble quaternary

10 ammonium compounds useful in the present composition having the formula :

wherein R₁ is C₈-C₁₆ alkyl, each of R₂, R₃ and R₄ is independently C₁-C₄ alkyl, 15 C₁-C₄ hydroxy alkyl, benzyl, and -(C₂H₄₀)_xH where x has a value from 2 to 5, and X is an anion. Not more than one of R₂, R₃ or R₄ should be benzyl.

The preferred alkyl chain length for R₁ is C₁₂-C₁₅ particularly where the alkyl group is a mixture of chain lengths derived from coconut or palm kernel fat or is derived synthetically by olefin build up or OXO alcohols synthesis. Preferred groups for R₂R₃ and R₄ are methyl and hydroxyethyl groups and the anion X 20 may be selected from halide, methosulphate, acetate and phosphate ions.

Examples of suitable quaternary ammonium compounds of formulae (i) for use herein are :

coconut trimethyl ammonium chloride or bromide;

25 coconut methyl dihydroxyethyl ammonium chloride or bromide;

decy triethyl ammonium chloride;

decy dimethyl hydroxyethyl ammonium chloride or bromide;

C₁₂-15 dimethyl hydroxyethyl ammonium chloride or bromide;

coconut dimethyl hydroxyethyl ammonium chloride or bromide;

30 myristyl trimethyl ammonium methyl sulphate;

lauryl dimethyl benzyl ammonium chloride or bromide;

lauryl dimethyl (ethenoxy)₄ ammonium chloride or bromide;

choline esters (compounds of formula (i) wherein R₁ is

CH₂-CH₂-O-C-C₁₂-14 alkyl and R₂R₃R₄ are methyl).

35

||

O

di-alkyl imidazolines [compounds of formula (i)].

Other cationic surfactants useful herein are also described in U.S. Patent 4,228,044, Cambre, issued October 14, 1980 and in European Patent 5 Application EP 000,224.

Typical cationic fabric softening components include the water-insoluble quaternary-ammonium fabric softening actives or their corresponding amine precursor, the most commonly used having been di-long alkyl chain ammonium chloride or methyl sulfate.

10 Preferred cationic softeners among these include the following:

- 1) ditallow dimethylammonium chloride (DTDMAC);
- 2) dihydrogenated tallow dimethylammonium chloride;
- 3) dihydrogenated tallow dimethylammonium methylsulfate;
- 15 4) distearyl dimethylammonium chloride;
- 5) dioleyl dimethylammonium chloride;
- 6) dipalmityl hydroxyethyl methylammonium chloride;
- 7) stearyl benzyl dimethylammonium chloride;
- 8) tallow trimethylammonium chloride;
- 20 9) hydrogenated tallow trimethylammonium chloride;
- 10) C₁₂-14 alkyl hydroxyethyl dimethylammonium chloride;
- 11) C₁₂-18 alkyl dihydroxyethyl methylammonium chloride;
- 12) di(stearoyloxyethyl) dimethylammonium chloride (DSOEDMAC);
- 13) di(tallow-oxy-ethyl) dimethylammonium chloride;
- 25 14) ditallow imidazolinium methylsulfate;
- 15) 1-(2-tallowylamidoethyl)-2-tallowyl imidazolinium methylsulfate.

30 Biodegradable quaternary ammonium compounds have been presented as alternatives to the traditionally used di-long alkyl chain ammonium chlorides and methyl sulfates. Such quaternary ammonium compounds contain long chain alk(en)yl groups interrupted by functional groups such as carboxy groups. Said materials and fabric softening compositions containing them are disclosed in numerous publications such as EP-A-0,040,562, and EP-A-0,239,910.

35 The quaternary ammonium compounds and amine precursors herein have the formula (I) or (II), below :

(1)

(11)

5

wherein Q is selected from $-\text{O}-\text{C}(\text{O})-$, $-\text{C}(\text{O})-\text{O}-$, $-\text{O}-\text{C}(\text{O})-\text{O}-$, $-\text{NR}^4-\text{C}(\text{O})-$, $-\text{C}(\text{O})-\text{NR}^4-$:

R¹ is (CH₂)_n-Q-T² or T³;

R² is (CH₂)_m-Q-T⁴ or T⁵ or R³;

10 R³ is C₁-C₄ alkyl or C₁-C₄ hydroxyalkyl or H;

R⁴ is H or C₁-C₄ alkyl or C₁-C₄ hydroxalkyl;

T₁, T₂, T₃, T₄, T₅ are independently C₁₁-C₂₂ alkyl or alkenyl;

n and m are integers from 1 to 4; and

X⁻ is a softener-compatible anion

15

Non-limiting examples of softener-compatible anions include chloride or methyl sulfate.

20 The alkyl, or alkenyl, chain T₁, T₂, T₃, T₄, T₅ must contain at least 11 carbon atoms, preferably at least 16 carbon atoms. The chain may be straight or branched.

Tallow is a convenient and inexpensive source of long chain alkyl and alkenyl material. The compounds wherein T¹, T², T³, T⁴, T⁵ represents the mixture of long chain materials typical for tallow are particularly preferred.

Specific examples of quaternary ammonium compounds suitable for use in the aqueous fabric softening compositions herein include:

1) N,N-di(tallowyl-oxy-ethyl)-N,N-dimethyl ammonium chloride;
30 2) N,N-di(tallowyl-oxy-ethyl)-N-methyl, N-(2-hydroxyethyl) ammonium methyl sulfate;

3) N,N-di(2-tallowyl-oxy-2-oxo-ethyl)-N,N-dimethyl ammonium chloride;

4) N,N-di(2-tallowyl-oxy-ethylcarbonyl-oxy-ethyl)-N,N-dimethyl ammonium chloride;

5) N-(2-tallowyl-oxy-2-ethyl)-N-(2-tallowyl-oxy-2-oxo-ethyl)-N,N-dimethyl ammonium chloride;

6) N,N,N-tri(tallowyl-oxy-ethyl)-N-methyl ammonium chloride;

7) N-(2-tallowyl-oxy-2-oxo-ethyl)-N-(tallowyl-N,N-dimethyl-ammonium chloride; and

10) 8) 1,2-ditallowyl-oxy-3-trimethylammoniopropane chloride; and mixtures of any of the above materials.

When included therein, the laundry detergent and/or fabric care compositions of the present invention typically comprise from 0.2% to about 25%, preferably from about 1% to about 8% by weight of such cationic surfactants.

Suitable nonionic surfactants for use as the nonionic surfactant of surfactant systems of the compositions of the present invention, include polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols, with the polyethylene oxide condensates being preferred. These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 14 carbon atoms, preferably from about 8 to about 14 carbon atoms, in either a straight-chain or branched-chain configuration with the alkylene oxide. In a preferred embodiment, the ethylene oxide is present in an amount equal to from about 2 to about 25 moles, more preferably from about 3 to about 15 moles, of ethylene oxide per mole of alkyl phenol. Commercially available nonionic surfactants of this type include IgepalTM CO-630, marketed by the GAF Corporation; and TritonTM X-45, X-114, X-100 and X-102, all marketed by the Rohm & Haas Company. These surfactants are commonly referred to as alkylphenol alkoxylates (e.g., alkyl phenol ethoxylates).

The condensation products of primary and secondary aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide are suitable for use as the nonionic surfactant of the nonionic surfactant systems of the present invention. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from about 8 to about 22 carbon atoms.

Preferred are the condensation products of alcohols having an alkyl group containing from about 8 to about 20 carbon atoms, more preferably from about 10 to about 18 carbon atoms, with from about 2 to about 10 moles of ethylene oxide per mole of alcohol. About 2 to about 7 moles of ethylene oxide and most 5 preferably from 2 to 5 moles of ethylene oxide per mole of alcohol are present in said condensation products. Examples of commercially available nonionic surfactants of this type include TergitolTM 15-S-9 (the condensation product of C₁₁-C₁₅ linear alcohol with 9 moles ethylene oxide), TergitolTM 24-L-6 NMW (the condensation product of C₁₂-C₁₄ primary alcohol with 6 moles ethylene 10 oxide with a narrow molecular weight distribution), both marketed by Union Carbide Corporation; NeodolTM 45-9 (the condensation product of C₁₄-C₁₅ linear alcohol with 9 moles of ethylene oxide), NeodolTM 23-3 (the condensation product of C₁₂-C₁₃ linear alcohol with 3.0 moles of ethylene oxide), NeodolTM 45-7 (the condensation product of C₁₄-C₁₅ linear alcohol with 7 moles of 15 ethylene oxide), NeodolTM 45-5 (the condensation product of C₁₄-C₁₅ linear alcohol with 5 moles of ethylene oxide) marketed by Shell Chemical Company, KyroTM EOB (the condensation product of C₁₃-C₁₅ alcohol with 9 moles ethylene oxide), marketed by The Procter & Gamble Company, and Genapol LA O3O or O5O (the condensation product of C₁₂-C₁₄ alcohol with 3 or 5 moles of 20 ethylene oxide) marketed by Hoechst. Preferred range of HLB in these products is from 8-11 and most preferred from 8-10.

Also useful as the nonionic surfactant of the surfactant systems of the present invention are the alkylpolysaccharides disclosed in U.S. Patent 4,565,647, 25 Llenado, issued January 21, 1986, having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g. a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units. Any reducing saccharide containing 30 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties (optionally the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside). The intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 35 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.

The preferred alkylpolyglycosides have the formula

wherein R^2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from about 10 to about 18, preferably from about 12 to about 14, carbon atoms; n is 2 or 3, preferably 2; t is from 0 to about 10, preferably 0; and x is from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7. The glycosyl is preferably derived from glucose. To prepare these compounds, the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1-position). The additional glycosyl units can then be attached between their 1-position and the preceding glycosyl units 2-, 3-, 4- and/or 6-position, preferably predominately the 2-position.

The condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are also suitable for use as the additional nonionic surfactant systems of the present invention. The hydrophobic portion of these compounds will preferably have a molecular weight of from about 1500 to about 1800 and will exhibit water insolubility. The addition of polyoxyethylene moieties to this hydrophobic portion tends to increase the water solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is about 50% of the total weight of the condensation product, which corresponds to condensation with up to about 40 moles of ethylene oxide. Examples of compounds of this type include certain of the commercially-available PlurafacTM LF404 and PluronicTM surfactants, marketed by BASF.

Also suitable for use as the nonionic surfactant of the nonionic surfactant system of the present invention, are the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine. The hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000. This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from about 40% to about 80% by weight of polyoxyethylene and has a molecular

weight of from about 5,000 to about 11,000. Examples of this type of nonionic surfactant include certain of the commercially available TetronicTM compounds, marketed by BASF.

5 Preferred for use as the nonionic surfactant of the surfactant systems of the present invention are polyethylene oxide condensates of alkyl phenols, condensation products of primary and secondary aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide, alkylpolysaccharides, and mixtures thereof. Most preferred are C₈-C₁₄ alkyl phenol ethoxylates having from 3 to 15
10 ethoxy groups and C₈-C₁₈ alcohol ethoxylates (preferably C₁₀ avg.) having from 2 to 10 ethoxy groups, and mixtures thereof.

Highly preferred nonionic surfactants are polyhydroxy fatty acid amide surfactants of the formula.

15

$$\begin{array}{c} R^2 - C - N - Z, \\ || \quad | \\ O \quad R^1 \end{array}$$

20 wherein R¹ is H, or R¹ is C₁-4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof, R² is C₅-31 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof. Preferably, R¹ is methyl, R² is a straight C₁₁-15 alkyl or C₁₆-18 alkyl or alkenyl chain such as coconut alkyl or
25 mixtures thereof, and Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.

30 Suitable anionic surfactants to be used are linear alkyl benzene sulfonate, alkyl ester sulfonate surfactants including linear esters of C₈-C₂₀ carboxylic acids (i.e., fatty acids) which are sulfonated with gaseous SO₃ according to "The Journal of the American Oil Chemists Society", 52 (1975), pp. 323-329. Suitable starting materials would include natural fatty substances as derived from tallow, palm oil, etc.

35 The preferred alkyl ester sulfonate surfactant, especially for laundry applications, comprise alkyl ester sulfonate surfactants of the structural formula:

5 wherein R^3 is a C₈-C₂₀ hydrocarbyl, preferably an alkyl, or combination thereof, R^4 is a C₁-C₆ hydrocarbyl, preferably an alkyl, or combination thereof, and M is a cation which forms a water soluble salt with the alkyl ester sulfonate. Suitable salt-forming cations include metals such as sodium, potassium, and lithium, and substituted or unsubstituted ammonium cations, such as mono-ethanolamine, 10 diethanolamine, and triethanolamine. Preferably, R^3 is C₁₀-C₁₆ alkyl, and R^4 is methyl, ethyl or isopropyl. Especially preferred are the methyl ester sulfonates wherein R^3 is C₁₀-C₁₆ alkyl.

15 Other suitable anionic surfactants include the alkyl sulfate surfactants which are water soluble salts or acids of the formula RSO_3M wherein R preferably is a C₁₀-C₂₄ hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C₁₀-C₂₀ alkyl component, more preferably a C₁₂-C₁₈ alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g. sodium, potassium, lithium), or ammonium or substituted ammonium (e.g. methyl-, dimethyl-, and trimethyl 20 ammonium cations and quaternary ammonium cations such as tetramethylammonium and dimethyl piperidinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like). Typically, alkyl chains of C₁₂-C₁₆ are preferred for lower wash temperatures (e.g. below about 50°C) and C₁₆-18 alkyl chains 25 are preferred for higher wash temperatures (e.g. above about 50°C).

Other anionic surfactants useful for detergents purposes can also be included in the laundry detergent and/or fabric care compositions of the present invention. These can include salts (including, for example, sodium, potassium, ammonium, 30 and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, C₈-C₂₂ primary or secondary alkanesulfonates, C₈-C₂₄ olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No. 1,082,179, C₈-C₂₄ alkylpolyglycolethersulfates (containing up to 10 moles of 35 ethylene oxide); alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates,

alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinates (especially saturated and unsaturated C₁₂-C₁₈ monoesters) and diesters of sulfosuccinates (especially saturated and unsaturated C₆-C₁₂ diesters), acyl 5 sarcosinates, sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described below), branched primary alkyl sulfates, and alkyl polyethoxy carboxylates such as those of the formula RO(CH₂CH₂O)_k-CH₂COO-M⁺ wherein R is a C₈-C₂₂ alkyl, k is an integer from 1 to 10, and M is a soluble salt-forming cation. Resin acids and 10 hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil.

Further examples are described in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also 15 generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference).

When included therein, the laundry detergent compositions of the present invention typically comprise from about 1% to about 40%, preferably from about 20% 3% to about 20% by weight of such anionic surfactants.

Highly preferred anionic surfactants include alkyl alkoxyolated sulfate surfactants hereof are water soluble salts or acids of the formula RO(A)_mSO₃M wherein R is an unsubstituted C₁₀-C₂₄ alkyl or hydroxyalkyl group having a C₁₀-C₂₄ alkyl 25 component, preferably a C₁₂-C₂₀ alkyl or hydroxyalkyl, more preferably C₁₂-C₁₈ alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or 30 substituted-ammonium cation. Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein. Specific examples of substituted ammonium cations include methyl-, dimethyl, trimethyl-ammonium cations and quaternary ammonium cations such as tetramethyl-ammonium and dimethyl piperidinium cations and those derived from alkylamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like. Exemplary surfactants 35 are C₁₂-C₁₈ alkyl polyethoxylate (1.0) sulfate (C₁₂-C₁₈E(1.0)M), C₁₂-C₁₈ alkyl

polyethoxylate (2.25) sulfate (C₁₂-C₁₈E(2.25)M), C₁₂-C₁₈ alkyl polyethoxylate (3.0) sulfate (C₁₂-C₁₈E(3.0)M), and C₁₂-C₁₈ alkyl polyethoxylate (4.0) sulfate (C₁₂-C₁₈E(4.0)M), wherein M is conveniently selected from sodium and potassium.

5

Further highly preferred anionic surfactants are the mid-chain-branched anionic surfactants described in the co-pending US applications Serial Nos. US97/06485, US97/06474, US97/06339, US97/06476 and US97/06338 and in WO97/39091, hereby incorporated by reference. The compositions of the present invention generally comprise from 0.1% to 50%, preferably from 0.5% to 40% more 10 preferably from 1% to 35% by weight of the total composition of one or more longer alkyl chain, mid-chain branched surfactant compounds of the formula:

15 10 Ab - X - B wherein:
(I) Ab is a hydrophobic mid-chain branched alkyl moiety, having in total 9 to 22 carbons in the moiety, preferably from 12 to about 18, having: (1) a longest linear carbon chain attached to the - X - B moiety in the range of from 8 to 21 carbon atoms; (2) one or more C₁ - C₃ alkyl moieties branching from this longest linear carbon chain; (3) at least one of the branching alkyl moieties is attached directly to a carbon of the longest linear carbon chain at a position within the 20 range of the position 2 carbon, counting from position 1 carbon (#1) which is attached to the - X - B moiety, to the position of the terminal carbon minus 2 carbons, (the (ω - 2) carbon); and (4) when more than one of these compounds is present, the average total number of carbon atoms in the Ab-X moieties in the above formula is within the range of greater than 11 to 20, preferably 14.5 to 25 about 18, more preferably from about 15 to about 17;

25 20 (II) B is a hydrophilic moiety selected from sulfates, sulfonates, amine oxides, polyoxyalkylene, preferably polyoxyethylene and polyoxypropylene, alkoxylated sulfates, polyhydroxy moieties, phosphate esters, glycerol sulfonates, polygluconates, polyphosphate esters, phosphonates, sulfosuccinates, sulfosuccinates, polyalkoxylated carboxylates, glucamides, taurinates, sarcosinates, glycinate, isethionate, dialkanolamides, monoalkanolamides, monoalkanolamide sulfates, diglycolamides, diglycolamide sulfates, glycerol esters, glycerol ester sulfates, glycerol ethers, glycerol ether sulfates, polyglycerol ethers, polyglycerol ether sulfates, sorbitan esters, polyalkoxylated 30 35 sorbitan esters, ammonioalkanesulfonates, amidopropyl betaines, alkylated quats, alkylated/polyhydroxyalkylated quats, alkylated quats,

alkylated/polyhydroxylated oxypropyl quats, imidazolines, 2-yl-succinates, sulfonated alkyl esters, and sulfonated fatty acids; and
 (III) X is selected from -CH₂- and -C(O)-.

Preferred mid-banched anionic surfactants are of the above formula wherein the

5 A^b moiety is a branched primary alkyl moiety having the formula:

wherein the total number of carbon atoms in the branched primary alkyl moiety of this formula, including the R, R¹, and R² branching, is from 13 to 19; R, R¹, and R² are each independently selected from hydrogen and C₁-C₃ alkyl, preferably

10 methyl, provided R, R¹, and R² are not all hydrogen and, when z is 0, at least R or R¹ is not hydrogen; w is an integer from 0 to 13; x is an integer from 0 to 13; y is an integer from 0 to 13; z is an integer from 0 to 13; and w + x + y + z is from 7 to 13.

More preferably, said surfactant has the formula:

15 (I) $\text{CH}_3 \text{ (CH}_2\text{)}_a \overset{\text{CH}_3}{\text{CH}} \text{ (CH}_2\text{)}_b \text{CH}_2 \text{ OSO}_3\text{M}$, or

or mixtures thereof; wherein M represents one or more cations; a, b, d, and e are integers, a+b is from 10 to 16, d+e is from 8 to 14 and wherein further

20 when a + b = 10, a is an integer from 2 to 9 and b is an integer from 1 to 8;
 when a + b = 11, a is an integer from 2 to 10 and b is an integer from 1 to 9;
 when a + b = 12, a is an integer from 2 to 11 and b is an integer from 1 to 10;
 when a + b = 13, a is an integer from 2 to 12 and b is an integer from 1 to 11;
 when a + b = 14, a is an integer from 2 to 13 and b is an integer from 1 to 12;
 25 when a + b = 15, a is an integer from 2 to 14 and b is an integer from 1 to 13;
 when a + b = 16, a is an integer from 2 to 15 and b is an integer from 1 to 14;
 when d + e = 8, d is an integer from 2 to 7 and e is an integer from 1 to 6;
 when d + e = 9, d is an integer from 2 to 8 and e is an integer from 1 to 7;
 when d + e = 10, d is an integer from 2 to 9 and e is an integer from 1 to 8;
 30 when d + e = 11, d is an integer from 2 to 10 and e is an integer from 1 to 9;
 when d + e = 12, d is an integer from 2 to 11 and e is an integer from 1 to 10;
 when d + e = 13, d is an integer from 2 to 12 and e is an integer from 1 to 11;
 when d + e = 14, d is an integer from 2 to 13 and e is an integer from 1 to 12;

whereby, when more than one of these sulfate surfactants is present in the surfactant system, the average total number of carbon atoms in the branched primary alkyl moieties is from 11 to 20, preferably 14.5 to 18.

Particularly preferred is said surfactant which has an $A^b - X$ moiety comprising 5 from 11 to 20, preferably 16 to 18 carbon atoms and B is a sulfate group.

Ampholytic surfactants are also suitable for use in the laundry detergent and/or fabric care compositions of the present invention. These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or 10 aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight- or branched-chain. One of the aliphatic substituents contains at least about 8 carbon atoms, typically from about 8 to about 18 carbon atoms, and at least one contains an anionic water-solubilizing group, e.g. carboxy, sulfonate, sulfate. See U.S. Patent No. 3,929,678 to 15 Laughlin et al., issued December 30, 1975 at column 19, lines 18-35, for examples of ampholytic surfactants.

When included therein, the laundry detergent and/or fabric care compositions of the present invention typically comprise from 0.2% to about 15%, preferably from about 1% to about 10% by weight of such ampholytic surfactants.

20 Zwitterionic surfactants are also suitable for use in laundry detergent and/or fabric care compositions. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, 25 quaternary phosphonium or tertiary sulfonium compounds. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975 at column 19, line 38 through column 22, line 48, for examples of zwitterionic surfactants.

When included therein, the laundry detergent and/or fabric care compositions of the present invention typically comprise from 0.2% to about 15%, preferably from 30 about 1% to about 10% by weight of such zwitterionic surfactants.

35 Semi-polar nonionic surfactants are a special category of nonionic surfactants which include water-soluble amine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; water-soluble phosphine oxides containing one alkyl

moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from about 1 to about 3 carbon atoms.

5 Semi-polar nonionic detergent surfactants include the amine oxide surfactants having the formula

10 wherein R^3 is an alkyl, hydroxyalkyl, or alkyl phenyl group or mixtures thereof containing from about 8 to about 22 carbon atoms; R^4 is an alkylene or hydroxyalkylene group containing from about 2 to about 3 carbon atoms or mixtures thereof; x is from 0 to about 3; and each R^5 is an alkyl or hydroxyalkyl group containing from about 1 to about 3 carbon atoms or a polyethylene oxide group containing from about 1 to about 3 ethylene oxide groups. The R^5 groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.

15 These amine oxide surfactants in particular include C₁₀-C₁₈ alkyl dimethyl amine oxides and C₈-C₁₂ alkoxy ethyl dihydroxy ethyl amine oxides.

20 When included therein, the compositions of the present invention typically comprise from 0.2% to about 15%, preferably from about 1% to about 10% by weight of such semi-polar nonionic surfactants.

The laundry detergent and/or fabric care composition of the present invention may further comprise a cosurfactant selected from the group of primary or tertiary amines.

25 Suitable primary amines for use herein include amines according to the formula R_1NH_2 wherein R_1 is a C₆-C₁₂, preferably C₆-C₁₀ alkyl chain or $R_4X(CH_2)_n$. X is -O-, -C(O)NH- or -NH-, R_4 is a C₆-C₁₂ alkyl chain n is between 1 to 5, preferably 3. R_1 alkyl chains may be straight or branched and may be interrupted with up to 12, preferably less than 5 ethylene oxide moieties.

30 Preferred amines according to the formula herein above are n-alkyl amines. Suitable amines for use herein may be selected from 1-hexylamine, 1-

octylamine, 1-decylamine and laurylamine. Other preferred primary amines include C8-C10 oxypropylamine, octyloxypropylamine, 2-ethylhexyloxypropylamine, lauryl amido propylamine and amido propylamine.

5 Suitable tertiary amines for use herein include tertiary amines having the formula R₁R₂R₃N wherein R₁ and R₂ are C₁-C₈ alkylchains or

10 R₃ is either a C₆-C₁₂, preferably C₆-C₁₀ alkyl chain, or R₃ is R₄X(CH₂)_n, whereby X is -O-, -C(O)NH- or -NH-, R₄ is a C₄-C₁₂, n is between 1 to 5, preferably 2-3. R₅ is H or C₁-C₂ alkyl and x is between 1 to 6. R₃ and R₄ may be linear or branched ; R₃ alkyl chains may be interrupted with up to 12, preferably less than 5, ethylene oxide moieties. Preferred tertiary amines are R₁R₂R₃N where R₁ is a C₆-C₁₂ alkyl chain, R₂ and R₃ are C₁-C₃ alkyl or

20 where R₅ is H or CH₃ and x = 1-2.

Also preferred are the amidoamines of the formula:

25 wherein R₁ is C₆-C₁₂ alkyl; n is 2-4, preferably n is 3; R₂ and R₃ is C₁-C₄

30 Most preferred amines of the present invention include 1-octylamine, 1-hexylamine, 1-decylamine, 1-dodecylamine, C8-10oxypropylamine, N coco 1-3diaminopropane, coconutalkyldimethylamine, lauryldimethylamine, lauryl bis(hydroxyethyl)amine, coco bis(hydroxyethyl)amine, lauryl amine 2 moles propoxylated, octyl amine 2 moles propoxylated, lauryl amidopropyl-

dimethylamine, C8-10 amidopropyldimethylamine and C10 amidopropyl-dimethylamine.

The most preferred amines for use in the compositions herein are 1-hexylamine,

1-octylamine, 1-decylamine, 1-dodecylamine. Especially desirable are n-

5 dodecyldimethylamine and bishydroxyethylcoconutalkylamine and oleylamine 7 times ethoxylated, lauryl amido propylamine and cocoamido propylamine.

Conventional detergent enzymes

10 The laundry detergent and/or fabric care compositions may further comprise conventional detergent enzymes which include enzymes selected from cellulases, hemicellulases, peroxidases, proteases, gluco-amylases, amylases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases,

15 pullulanases, tannases, pentosanases, β -glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase or mixtures thereof. A preferred combination is a cocktail of conventional applicable enzymes like protease, amylase, lipase, cutinase and/or cellulase in conjunction with one or more plant cell wall degrading enzymes.

20

The cellulases usable in the present invention include both bacterial or fungal cellulases. Preferably, they will have a pH optimum of between 5 and 12 and a specific activity above 50 CEVU/mg (Cellulose Viscosity Unit). Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgaard et al, J61078384 and 25 WO96/02653 which discloses fungal cellulase produced respectively from Humicola insolens, Trichoderma, Thielavia and Sporotrichum. EP 739 982 describes cellulases isolated from novel *Bacillus* species. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275; DE-OS-2.247.832 and WO95/26398.

30 Examples of such cellulases are cellulases produced by a strain of *Humicola insolens* (*Humicola grisea* var. *thermoidea*), particularly the *Humicola* strain DSM 1800.

Other suitable cellulases are cellulases originated from *Humicola insolens* having a molecular weight of about 50KDa, an isoelectric point of 5.5 and containing 415 35 amino acids; and a ~43kD endoglucanase derived from *Humicola insolens*, DSM 1800, exhibiting cellulase activity; a preferred endoglucanase component has the

amino acid sequence disclosed in PCT Patent Application No. WO 91/17243. Also suitable cellulases are the EGIII cellulases from *Trichoderma longibrachiatum* described in WO94/21801, Genencor, published September 29, 1994. Especially suitable cellulases are the cellulases having color care benefits.

5 Examples of such cellulases are cellulases described in European patent application No. 91202879.2, filed November 6, 1991 (Novo). Carezyme and Celluzyme (Novo Nordisk A/S) are especially useful. See also WO91/17244 and WO91/21801. Other suitable cellulases for fabric care and/or cleaning properties are described in WO96/34092, WO96/17994 and WO95/24471.

10 Said cellulases are normally incorporated in the laundry detergent and/or fabric care compositions at levels from 0.0001% to 2% of pure enzyme by weight of the compositions.

15 Peroxidase enzymes are used in combination with oxygen sources, e.g. percarbonate, perborate, persulfate, hydrogen peroxide, etc and with a phenolic substrate as bleach enhancing molecule. They are used for "solution bleaching", i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution. Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase and haloperoxidase such as chloro- and bromo-peroxidase. Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, WO89/09813 and in European Patent application EP No. 91202882.6, filed on November 6, 1991 and EP No. 96870013.8, filed February 20, 1996. Also suitable is the laccase enzyme.

20 25 Enhancers are generally comprised at a level of from 0.1% to 5% by weight of total composition. Preferred enhancers are substituted phenothiazine and phenoxyazine 10-Phenothiazinepropionic acid (PPT), 10-ethylphenothiazine-4-carboxylic acid (EPC), 10-phenoxyazinepropionic acid (POP) and 10-methylphenoxyazine (described in WO 94/12621) and substituted syringates (C3-C5 substituted alkyl syringates) and phenols. Sodium percarbonate or perborate are preferred sources of hydrogen peroxide.

30 Said peroxidases are normally incorporated in the compositions herein at levels from 0.0001% to 2% of pure enzyme by weight of the composition.

35 Enzymatic system may be used as bleaching agents : The hydrogen peroxide may also be present by adding an enzymatic system (i.e. an enzyme and a substrate therefore) which is capable of generating hydrogen peroxide at the

beginning or during the washing and/or rinsing process. Such enzymatic systems are disclosed in EP Patent Application 91202655.6 filed October 9, 1991.

Other preferred enzymes that can be included in the compositions of the present invention include lipases. Suitable lipase enzymes for detergent usage include those produced by microorganisms of the *Pseudomonas* group, such as *Pseudomonas stutzeri* ATCC 19.154, as disclosed in British Patent 1,372,034. Suitable lipases include those which show a positive immunological cross-reaction with the antibody of the lipase, produced by the microorganism *Pseudomonas fluorescent* IAM 1057. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," hereinafter referred to as "Amano-P". Other suitable commercial lipases include Amano-CES, lipases ex *Chromobacter viscosum*, e.g. *Chromobacter viscosum* var. *lipolyticum* NRRLB 3673 from Toyo Jozo Co., Tagata, Japan; *Chromobacter viscosum* lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex *Pseudomonas gladioli*. Especially suitable lipases are lipases such as M1 Lipase^R and Lipomax^R (Gist-Brocades) and Lipolase^R and Lipolase Ultra^R(Novo) which have found to be very effective when used in combination with the compositions of the present invention. Also suitable are the lipolytic enzymes described in EP 258 068, WO 92/05249 and WO 95/22615 by Novo Nordisk and in WO 94/03578, WO 95/35381 and WO 96/00292 by Unilever.

Also suitable are cutinases [EC 3.1.1.50] which can be considered as a special kind of lipase, namely lipases which do not require interfacial activation. Addition of cutinases to detergent compositions have been described in e.g. WO-A-88/09367 (Genencor); WO 90/09446 (Plant Genetic System) and WO 94/14963 and WO 94/14964 (Unilever).

The lipases and/or cutinases are normally incorporated in the laundry detergent and/or fabric care compositions at levels from 0.0001% to 2% of pure enzyme by weight of the compositions.

Suitable proteases are the subtilisins which are obtained from particular strains of *B. subtilis* and *B. licheniformis* (subtilisin BPN and BPN'). One suitable protease is obtained from a strain of *Bacillus*, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE[®] by Novo Industries A/S of Denmark, hereinafter "Novo". The preparation of this enzyme and analogous

enzymes is described in GB 1,243,784 to Novo. Other suitable proteases include ALCALASE®, DURAZYM® and SAVINASE® from Novo and MAXATASE®, MAXACAL®, PROPERASE® and MAXAPEM® (protein engineered Maxacal) from Gist-Brocades. Also suitable for the present invention are proteases described in patent applications EP 251 446 and WO 91/06637, protease BLAP® described in WO91/02792 and their variants described in WO 95/23221. See also a high pH protease from *Bacillus* sp. NCIMB 40338 described in WO 93/18140 A to Novo. Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 92/03529 A to Novo. When desired, a protease having decreased adsorption and increased hydrolysis is available as described in WO 95/07791 to Procter & Gamble. A recombinant trypsin-like protease for detergents suitable herein is described in WO 94/25583 to Novo. Other suitable proteases are described in EP 516 200 by Unilever.

15 Proteolytic enzymes also encompass modified bacterial serine proteases, such as those described in European Patent Application Serial Number 87 303761.8, filed April 28, 1987 (particularly pages 17, 24 and 98), and which is called herein "Protease B", and in European Patent Application 199,404, Venegas, published October 29, 1986, which refers to a modified bacterial serine proteolytic enzyme which is called "Protease A" herein. Suitable is what is called herein "Protease C", which is a variant of an alkaline serine protease from *Bacillus* in which lysine replaced arginine at position 27, tyrosine replaced valine at position 104, serine replaced asparagine at position 123, and alanine replaced threonine at position 274. Protease C is described in WO 91/06637. Genetically modified variants, particularly of Protease C, are also included herein.

20 A preferred protease referred to as "Protease D" is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to those selected from the group consisting of +99, +101, +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206, +210, +216, +217, +218, +222, +260, +265, and/or +274 according to the numbering of *Bacillus amyloliquefaciens* subtilisin, as described in WO95/10591 and WO95/10592. The "protease D" variants have preferably the amino acid substitution set 76/103/104, more preferably the substitution set

N76D/S103A/V104I. Also suitable is a carbonyl hydrolase variant of the protease described in WO95/10591, having an amino acid sequence derived by replacement of a plurality of amino acid residues replaced in the precursor enzyme corresponding to position +210 in combination with one or more of the 5 following residues : +33, +62, +67, +76, +100, +101, +103, +104, +107, +128, +129, +130, +132, +135, +156, +158, +164, +166, +167, +170, +209, +215, +217, +218, and +222, where the numbered position corresponds to naturally- 10 occurring subtilisin from *Bacillus amyloliquefaciens* or to equivalent amino acid residues in other carbonyl hydrolases or subtilisins, such as *Bacillus lenthus* subtilisin (co-pending patent application published under WO98/55634).

More preferred proteases are multiply-substituted protease variants. These protease variants comprise a substitution of an amino acid residue with another naturally occurring amino acid residue at an amino acid residue position corresponding to position 103 of *Bacillus amyloliquefaciens* subtilisin in 15 combination with a substitution of an amino acid residue positions corresponding to positions 1, 3, 4, 8, 9, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 27, 33, 37, 38, 42, 43, 48, 55, 57, 58, 61, 62, 68, 72, 75, 76, 77, 78, 79, 86, 87, 89, 97, 98, 99, 101, 102, 104, 106, 107, 109, 111, 114, 116, 117, 119, 121, 123, 126, 128, 130, 131, 133, 134, 137, 140, 141, 142, 146, 147, 158, 159, 160, 166, 167, 170, 173, 20 174, 177, 181, 182, 183, 184, 185, 188, 192, 194, 198, 203, 204, 205, 206, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 222, 224, 227, 228, 230, 232, 236, 237, 238, 240, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 265, 268, 269, 270, 271, 272, 274 and 275 of *Bacillus amyloliquefaciens* subtilisin; wherein when said protease variant 25 includes a substitution of amino acid residues at positions corresponding to positions 103 and 76, there is also a substitution of an amino acid residue at one or more amino acid residue positions other than amino acid residue positions corresponding to positions 27, 99, 101, 104, 107, 109, 123, 128, 166, 204, 206, 210, 216, 217, 218, 222, 260, 265 or 274 of *Bacillus amyloliquefaciens* subtilisin 30 and/or multiply-substituted protease variants comprising a substitution of an amino acid residue with another naturally occurring amino acid residue at one or more amino acid residue positions corresponding to positions 62, 212, 230, 232, 252 and 257 of *Bacillus amyloliquefaciens* subtilisin as described in PCT application Nos. PCT/US98/22588, PCT/US98/22482 and PCT/US98/22486 all 35 filed on October 23, 1998 from The Procter & Gamble Company. Preferred multiply substituted protease variants have the amino acid substitution set

101/103/104/159/232/236/245/248/252, more preferably
101G/103A/104I/159D/232V/236H/245R/248D/252K according to the numbering
of *Bacillus amyloliquefaciens subtilisin*.

The proteolytic enzymes are incorporated in the detergent compositions of the
5 present invention a level of from 0.0001% to 2%, preferably from 0.001% to
0.2%, more preferably from 0.005% to 0.1% pure enzyme by weight of the
composition.

Amylases (α and/or β) can be included for removal of carbohydrate-based stains.

10 WO94/02597, Novo Nordisk A/S published February 03, 1994, describes
cleaning compositions which incorporate mutant amylases. See also
WO95/10603, Novo Nordisk A/S, published April 20, 1995. Other amylases
known for use in cleaning compositions include both α - and β -amylases.

15 α -Amylases are known in the art and include those disclosed in US Pat. no.
5,003,257; EP 252,666; WO/91/00353; FR 2,676,456; EP 285,123; EP 525,610;
EP 368,341; and British Patent specification no. 1,296,839 (Novo).

20 Examples of commercial α -amylases products are Purafect Ox Am[®] from
Genencor and Termamyl[®], Ban[®], Fungamyl[®] and Duramyl[®], all available from
Novo Nordisk A/S Denmark. WO95/26397 describes other suitable amylases : α -
amylases characterised by having a specific activity at least 25% higher than the
specific activity of Termamyl[®] at a temperature range of 25°C to 55°C and at a
pH value in the range of 8 to 10, measured by the Phadebas[®] α -amylase activity
assay.

25 Suitable are variants of the above enzymes, described in WO96/23873 (Novo
Nordisk). Preferred variants are those demonstrating improved thermal stability,
wherein at least one amino acid residue equivalent to F180, R181, G182, T183,
G184, or K185 has been deleted from the parent α -amylase. Preferably said
variants having improved thermal stability comprise the amino acid deletions
R181⁺ + G182⁺, or T183⁺ + G184⁺.

30 Other amylolytic enzymes with improved properties with respect to the activity
level and the combination of thermostability and a higher activity level are
described in WO95/35382.

Other suitable amylases are stability-enhanced amylases described in
WO94/18314, published August 18, 1994 and WO96/05295, Genencor,
35 published February 22, 1996 and amylase variants having additional modification
in the immediate parent available from Novo Nordisk A/S, disclosed in WO

95/10603, published April 95. Also suitable are amylases described in EP 277 216, WO95/26397 and WO96/23873 (all by Novo Nordisk).

Cleaning compositions which incorporate mutant amylases are described in WO94/02597, Novo Nordisk A/S published February 03, 1994. See also

5 WO95/10603, Novo Nordisk A/S, published April 20, 1995.

The amylolytic enzymes are incorporated in the laundry detergent and/or fabric care compositions of the present invention at a level of from 0.0001% to 2%, preferably from 0.00018% to 0.06%, more preferably from 0.00024% to 0.048% pure enzyme by weight of the compositions.

10

The above-mentioned enzymes may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Origin can further be mesophilic or extremophilic (psychrophilic, psychrotrophic, thermophilic, barophilic, alkalophilic, acidophilic, halophilic, etc.). Purified or non-purified forms of these enzymes may be used. Also included by definition, are mutants of native enzymes. Mutants can be obtained e.g. by protein and/or genetic engineering, chemical and/or physical modifications of native enzymes. Common practice as well is the expression of the enzyme via host organisms in which the genetic material responsible for the production of the enzyme has been cloned.

15

Said enzymes are normally incorporated in the laundry detergent and/or fabric care compositions at levels from 0.0001% to 2% of pure enzyme by weight of the compositions. The enzymes can be added as separate single ingredients (prills, granulates, stabilized liquids, etc. containing one enzyme) or as mixtures of two or more enzymes (e.g. cocranulates).

20

Other suitable detergent ingredients that can be added are enzyme oxidation scavengers which are described in Copending European Patent application 92870018.6 filed on January 31, 1992. Examples of such enzyme oxidation scavengers are ethoxylated tetraethylene polyamines.

25

A range of enzyme materials and means for their incorporation into synthetic detergent compositions is also disclosed in WO 9307263 A and WO 9307260 A to Genencor International, WO 8908694 A to Novo, and U.S. 3,553,139, January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. 4,101,457, Place et al, July 18, 1978, and in U.S. 4,507,219, Hughes, March 26, 1985. Enzyme materials useful for liquid detergent formulations, and their incorporation into

50
55
60
65
70
75
80
85
90
95

such formulations, are disclosed in U.S. 4,261,868, Hora et al, April 14, 1981. Enzymes for use in detergents can be stabilised by various techniques. Enzyme stabilisation techniques are disclosed and exemplified in U.S. 3,600,319, August 17, 1971, Gedge et al, EP 199,405 and EP 200,586, October 29, 1986, 5 Venegas. Enzyme stabilisation systems are also described, for example, in U.S. 3,519,570. A useful *Bacillus*, sp. AC13 giving proteases, xylanases and cellulases, is described in WO 9401532 A to Novo.

Builder system

10

The laundry detergent and/or fabric care compositions of the present invention may further comprise a builder system.

15

Any conventional builder system is suitable for use herein including aluminosilicate materials, silicates, polycarboxylates, alkyl- or alkenyl-succinic acid and fatty acids, materials such as ethylenediamine tetraacetate, diethylene triamine pentamethyleneacetate, metal ion sequestrants such as aminopolyphosphonates, particularly ethylenediamine tetramethylene phosphonic acid and diethylene triamine pentamethylenephosphonic acid. Phosphate builders can 20 also be used herein.

Suitable builders can be an inorganic ion exchange material, commonly an inorganic hydrated aluminosilicate material, more particularly a hydrated synthetic zeolite such as hydrated zeolite A, X, B, HS or MAP.

25

Another suitable inorganic builder material is layered silicate, e.g. SKS-6 (Hoechst). SKS-6 is a crystalline layered silicate consisting of sodium silicate ($\text{Na}_2\text{Si}_2\text{O}_5$).

30

Suitable polycarboxylates containing one carboxy group include lactic acid, glycolic acid and ether derivatives thereof as disclosed in Belgian Patent Nos. 831,368, 821,369 and 821,370. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycollic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates described in German Offenlegungsschrift 2,446,686, and 2,446,687 and U.S. Patent No. 3,935,257 and the sulfinyl carboxylates described in Belgian Patent No. 840,623. Polycarboxylates 35

containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in Netherlands Application 7205873, and the 5 oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No. 1,387,447.

Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.

10 Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,082,179, while polycarboxylates containing phosphone substituents are disclosed in British Patent No. 1,439,000.

15 Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5-tetrahydro-furan - cis, cis, cis-tetracarboxylates, 2,5-tetrahydro-furan -cis - dicarboxylates, 2,2,5,5-tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane -hexa-carboxylates and and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol 20 and xylitol. Aromatic poly-carboxylates include mellitic acid, pyromellitic acid and the phthalic acid derivatives disclosed in British Patent No. 1,425,343.

Of the above, the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.

25 Other builder materials that can form part of the builder system for use in granular compositions include inorganic materials such as alkali metal carbonates, bicarbonates, silicates, and organic materials such as the organic phosphonates, amino polyalkylene phosphonates and amino polycarboxylates.

30 Other suitable water-soluble organic salts are the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.

Polymers of this type are disclosed in GB-A-1,596,756. Examples of such salts are polyacrylates of MW 2000-5000 and their copolymers with maleic anhydride, 35 such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000.

Preferred builder systems for use in the present compositions include a mixture of a water-insoluble aluminosilicate builder such as zeolite A or of a layered silicate (SKS-6), and a water-soluble carboxylate chelating agent such as citric acid. More preferred builders are zeolite A and sodium tripolyphosphate.

Preferred builder systems for use in liquid detergent compositions of the present invention are soaps and polycarboxylates.

Detergency builder salts are normally included in the compositions of the present invention at a level from 5% to 80%, preferably from 10% to 70%, more preferably from 30% to 60% by weight of the composition.

Chelating Agents

The laundry detergent and/or fabric care compositions herein may also optionally contain one or more iron and/or manganese chelating agents. Such chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures therein, all as hereinafter defined. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.

Amino carboxylates useful as optional chelating agents include ethylenediaminetetracetates, N-hydroxyethyl ethylenediaminetriacetates, nitrilo-triacetates, ethylenediamine tetrapropionate, triethylenetetraamine-hexacetates, diethylenetriaminepentaacetates, and ethanoldiglycines, alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein. Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at least low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methyleneephosphonates) as DEQUEST. Preferred, these amino phosphonates do not contain alkyl or alkenyl groups with more than about 6 carbon atoms. Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,044, issued May 21, 1974, to

Connor et al. Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydroxy-3,5-disulfobenzene.

A preferred biodegradable chelator for use herein is ethylenediamine disuccinate ("EDDS"), especially the [S,S] isomer as described in U.S. Patent 4,704,233,

5 November 3, 1987, to Hartman and Perkins.

The compositions herein may also contain water-soluble methyl glycine diacetic acid (MGDA) salts (or acid form) as a chelant or co-builder useful with, for example, insoluble builders such as zeolites, layered silicates and the like.

If utilized in the compositions of the present invention, these chelating agents will 10 generally be comprised at a level of from 0.1% to 15%, preferably from 0.1% to 3.0% by weight of the composition.

Suds suppressor

15 Another optional ingredient is a suds suppressor, exemplified by silicones, and silica-silicone mixtures. Silicones can be generally represented by alkylated polysiloxane materials while silica is normally used in finely divided forms exemplified by silica aerogels and xerogels and hydrophobic silicas of various 20 types. These materials can be incorporated as particulates in which the suds suppressor is advantageously releasably incorporated in a water-soluble or water-dispersible, substantially non-surface-active detergent impermeable carrier. Alternatively the suds suppressor can be dissolved or dispersed in a liquid carrier and applied by spraying on to one or more of the other components.

25 A preferred silicone suds controlling agent is disclosed in Bartolotta et al. U.S. Patent 3 933 672. Other particularly useful suds suppressors are the self-emulsifying silicone suds suppressors, described in German Patent Application DTOS 2 646 126 published April 28, 1977. An example of such a compound is DC-544, commercially available from Dow Corning, which is a siloxane-glycol 30 copolymer. Especially preferred suds controlling agent are the suds suppressor system comprising a mixture of silicone oils and 2-alkyl-alcanols. Suitable 2-alkyl-alkanols are 2-butyl-octanol which are commercially available under the trade name Isofol 12 R.

Such suds suppressor system are described in Copending European Patent 35 application N 92870174.7 filed 10 November, 1992.

Especially preferred silicone suds controlling agents are described in Copending European Patent application N°92201649.8. Said compositions can comprise a silicone/silica mixture in combination with fumed nonporous silica such as Aerosil®.

5 The suds suppressors described above are normally employed at levels of from 0.001% to 2%, preferably from 0.01% to 1% by weight of the compositions herein.

Colour care and fabric care benefits

10 Technologies which provide a type of colour care benefit can also be included. Examples of these technologies are metallo catalysts for colour maintenance. Such metallo catalysts are described in copending European Patent Application No. 92870181.2. Dye fixing agents, polyolefin dispersion for anti-wrinkles and 15 improved water absorbancy, perfume and amino-functional polymer for color care treatment and perfume substantivity are further examples of colour care / fabric care technologies and are described in the co-pending Patent Application No. 96870140.9, filed November 07, 1996.

20 Fabric softening agents can also be incorporated into laundry detergent and/or fabric care compositions in accordance with the present invention. These agents may be inorganic or organic in type. Inorganic softening agents are exemplified by the smectite clays disclosed in GB-A-1 400 898 and in USP 5,019,292. Organic fabric softening agents include the water insoluble tertiary amines as 25 disclosed in GB-A1 514 276 and EP-B0 011 340 and their combination with mono C12-C14 quaternary ammonium salts are disclosed in EP-B-0 026 527 and EP-B-0 026 528 and di-long-chain amides as disclosed in EP-B-0 242 919. Other useful organic ingredients of fabric softening systems include high molecular weight polyethylene oxide materials as disclosed in EP-A-0 299 575 and 0 313 30 146.

30 Levels of smectite clay are normally in the range from 2% to 20%, more preferably from 5% to 15% by weight, with the material being added as a dry mixed component to the remainder of the formulation. Organic fabric softening agents such as the water-insoluble tertiary amines or dilong chain amide 35 materials are incorporated at levels of from 0.5% to 5% by weight, normally from 1% to 3% by weight whilst the high molecular weight polyethylene oxide

materials and the water soluble cationic materials are added at levels of from 0.1% to 2%, normally from 0.15% to 1.5% by weight. These materials are normally added to the spray dried portion of the composition, although in some instances it may be more convenient to add them as a dry mixed particulate, or 5 spray them as molten liquid on to other solid components of the composition.

Bleaching agent

Other detergent ingredients that can be included in the laundry detergent and/or 10 fabric care compositions of the present invention include bleaching agents.

The bleaching agent component for use herein can be any of the bleaching agents useful for cleaning compositions including oxygen bleaches as well as others known in the art. The bleaching agent suitable for the present invention 15 can be an activated or non-activated bleaching agent.

One category of oxygen bleaching agent that can be used encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this 20 class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of meta-chloro perbenzoic acid, 4-nonylarnino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid. Such bleaching agents are disclosed in U.S. Patent 4,483,781, U.S. Patent Application 740,446, European Patent Application 0,133,354 and U.S. Patent 4,412,934. Highly preferred bleaching agents also include 6-nonylarnino-6-oxoperoxycaproic acid 25 as described in U.S. Patent 4,634,551.

Another category of bleaching agents that can be used encompasses the halogen bleaching agents. Examples of hypohalite bleaching agents, for 30 example, include trichloro isocyanuric acid and the sodium and potassium dichloroisocyanurates and N-chloro and N-bromo alkane sulphonamides. Such materials are normally added at 0.5-10% by weight of the finished product, preferably 1-5% by weight.

Also suitable activators are acylated citrate esters such as disclosed in 35 Copending European Patent Application No. 91870207.7.

Useful bleaching agents, including peroxyacids and bleaching systems comprising bleach activators and peroxygen bleaching compounds for use in the compositions of the present invention are described in our co-pending applications USSN 08/136,626, PCT/US95/07823, WO95/27772, WO95/27773, 5 WO95/27774 and WO95/27775.

The hydrogen peroxide may also be present by adding an enzymatic system (i.e., an enzyme and a substrate therefore) which is capable of generating hydrogen peroxide at the beginning or during the washing and/or rinsing process. 10 Such enzymatic systems are disclosed in EP Patent Application 91202655.6 filed October 9, 1991.

Others

15 Other components such as soil-suspending agents, soil-release agents, optical brighteners, abrasives, bactericides, tarnish inhibitors, and/or coloring agents may be employed.

20 Other useful polymeric materials are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000. These are used at levels of from 0.20% to 5% more preferably from 0.25% to 2.5% by weight. These polymers and the previously mentioned homo- or co-polymeric polycarboxylate salts are valuable for improving whiteness maintenance, fabric ash deposition, and cleaning 25 performance on clay, proteinaceous and oxidizable soils in the presence of transition metal impurities.

30 It is well known in the art that free chlorine in tap water rapidly deactivates the enzymes comprised in detergent compositions. Therefore, using chlorine scavenger such as perborate, ammonium sulfate, sodium sulphite or polyethyleneimine at a level above 0.1% by weight of total composition, in the formulas will provide improved through the wash stability of the detergent enzymes. Compositions comprising chlorine scavenger are described in the European patent application 92870018.6 filed January 31, 1992.

Method of washing

The compositions of the invention may be used in essentially any washing, cleaning and/or fabric care methods, including soaking methods, pre-treatment

5 methods, methods with rinsing steps for which a separate rinse aid composition may be added and post-treatment methods.

The process described herein comprises contacting fabrics with a laundering solution in the usual manner and exemplified hereunder. A conventional laundry

10 method comprises treating soiled fabric with an aqueous liquid having dissolved or dispensed therein an effective amount of the laundry detergent and/or fabric care composition. The method of cleaning is preferably carried out at 5°C to 95°C, especially between 10°C and 60°C. The pH of the treatment solution is preferably from 7 to 12.

15

The following examples are meant to exemplify compositions of the present invention, but are not necessarily meant to limit or otherwise define the scope of the invention.

20

In the compositions, the enzymes levels are expressed by pure enzyme by weight of the total composition and unless otherwise specified, the detergent ingredients are expressed by weight of the total compositions. The abbreviated component identifications therein have the following meanings:

LAS	: Sodium linear C ₁₁ -13 alkyl benzene sulphonate.
TAS	: Sodium tallow alkyl sulphate.
CxyAS	: Sodium C _{1x} - C _{1y} alkyl sulfate.
CxyEz	: C _{1x} - C _{1y} predominantly linear primary alcohol condensed with an average of z moles of ethylene oxide.
CxyEzS	: C _{1x} - C _{1y} sodium alkyl sulfate condensed with an average of z moles of ethylene oxide.
QAS 1	: R ₂ .N+(CH ₃) ₂ (C ₂ H ₄ OH) with R ₂ = C ₈ -C ₁₁ .
CFAA	: C ₁₂ -C ₁₄ alkyl N-methyl glucamide.
TPKFA	: C ₁₂ -C ₁₄ topped whole cut fatty acids.
DEQA	: Di-(tallow-oxy-ethyl) dimethyl ammonium chloride.
Silicate	: Amorphous Sodium Silicate (SiO ₂ :Na ₂ O ratio = 1.6-3.2).

Zeolite A	: Hydrated Sodium Aluminosilicate of formula $\text{Na}_{12}(\text{AlO}_2\text{SiO}_2)_{12} \cdot 27\text{H}_2\text{O}$ having a primary particle size in the range from 0.1 to 10 micrometers (Weight expressed on an anhydrous basis).
Na-SKS-6	: Crystalline layered silicate of formula $\delta\text{-Na}_2\text{Si}_2\text{O}_5$.
Citric	: Anhydrous citric acid.
Carbonate	: Anhydrous sodium carbonate with a particle size between 200 and 900 micrometres.
Sulphate	: Anhydrous sodium sulphate.
Mg Sulphate	: Anhydrous magnesium sulfate.
STPP	: Sodium tripolyphosphate.
TSPP	: Tetrasodium pyrophosphate.
MA/AA	: Random copolymer of 4:1 acrylate/maleate, average molecular weight about 70,000-80,000.
PB4	: Sodium perborate tetrahydrate of nominal formula $\text{NaBO}_2 \cdot 3\text{H}_2\text{O} \cdot \text{H}_2\text{O}_2$.
Percarbonate	: Anhydrous sodium percarbonate of nominal formula $2\text{Na}_2\text{CO}_3 \cdot 3\text{H}_2\text{O}_2$.
TAED	: Tetraacetyl ethylenediamine.
CBD-NACA-OBS	: Reaction product of Cellulose Binding Domain from the cellulase sold under the tradename Carezyme by Novo Nordisk A/S with polytyrosine and (6-nonamidocaproyl) oxybenzene sulfonate molecules.
DTPA	: Diethylene triamine pentaacetic acid.
HEDP	: 1,1-hydroxyethane diphosphonic acid.
DETPMP	: Diethyltriamine penta (methylene) phosphonate, marketed by Monsanto under the Trade name Dequest 2060.
EDDS	: Ethylenediamine-N,N'-disuccinic acid, (S,S) isomer in the form of its sodium salt
Photoactivated Bleach	: Sulfonated zinc phtalocyanine encapsulated in dextrin soluble polymer.

Protease : Proteolytic enzyme sold under the tradename Savinase, Alcalase by Novo Nordisk A/S, the "protease D" variant with the substitution set N76D/S103A/V104I and the protease described in PCT application Nos. PCT/US98/22588, PCT/US98/22482 and PCT/US98/22486 with the amino acid substitution set 101G/103A/104I/159D/232V/236H/245R/248D/252K.

Amylase : Amylolytic enzyme sold under the tradename Termamyl® and Duramyl® available from Novo Nordisk A/S and those variants having improved thermal stability with amino acid deletions R181⁺ + G182⁺ or T183⁺ + G184⁺ as described in WO95/35382.

Lipase : Lipolytic enzyme sold under the tradename Lipolase, Lipolase Ultra by Novo Nordisk A/S and Lipomax by Gist-Brocades.

Cellulase : Cellulytic enzyme sold under the tradename Carezyme, Celluzyme and/or Endolase by Novo Nordisk A/S.

CMC : Sodium carboxymethyl cellulose.

PVP : Polyvinyl polymer, with an average molecular weight of 60,000.

PVNO : Polyvinylpyridine-N-Oxide, with an average molecular weight of 50,000.

PVPVI : Copolymer of vinylimidazole and vinylpyrrolidone, with an average molecular weight of 20,000.

Brightener 1 : Disodium 4,4'-bis(2-sulphostyryl)biphenyl.

Silicone antifoam : Polydimethylsiloxane foam controller with siloxane-oxyalkylene copolymer as dispersing agent with a ratio of said foam controller to said dispersing agent of 10:1 to 100:1.

SRP 1 : Anionically end capped poly esters.

HMWPEO : High molecular weight polyethylene oxide.

CBD-Rotundial : Reaction product of CBD Cellulozome from *Clostridium cellulovorans*, which is sold under the tradename Cellulose Binding Domain by Sigma with Rotundial molecules.

CBD-Damascone : Reaction product of CBD Cellulozome from *Clostridium cellulovorans*, which is sold under the tradename Cellulose Binding Domain by Sigma with polylysine and α -Damascone molecules.

Example 1

According to the present invention, this example illustrates the coupling of a perfume citral, hygiene agent glutaraldehyde or insect control agent citronellal to a CBD, as a deposition aid.

The reaction at equal mol takes place in mild conditions (pH 6 to 9.5, from 1 to 48hours / See for example Wirth, P et al 1991 Biorg.Chem 19, 133, 1991 and Chamow SM et al Bioconjugate chem, 4, 133 1994). The chemicals such as perfume (citral), insect control agent (citronellal) and hygiene agent (glutaraldehyde) are linked to NH₂ groups of the CBD, linking region and/or polyreactive linking region via Schiff's base reaction. The reaction could also be completed in anhydrous ethanol that contain a drying agent such as Sodium Sulphate.

In case the CBD possesses more than one Lysine or there is a polyreactive linking region comprising more than one lysine, the reaction is identical with the appropriate number of chemicals per CBD. For example 10 equivalent of aldehyde will be added per mol of CBD from family III that contain more than 10 Lysines.

For example, the CBD having at least one Lysine, has a NH₂ reactive moiety to be linked to perfume. The CBD is non volatile and does not change the character of the aldehyde.

25

Improved release on dry fabrics is obtained by the slow hydrolysis of the CBD perfume linkage.

5 Example 2

The following high density laundry detergent compositions were prepared according to the present invention :

	I	II
LAS	8.0	8.0
TAS	-	0.1
C25AS	2.0	2.0
C28AS	1.0	2.0
C25E7	5.0	4.0
C25E3S	5.0	4.5
QAS 1	0.5	1.0
Zeolite A	18.0	18.0
Citric	-	2.5
Carbonate	10.0	13.0
Na-SKS-6	10.0	10.0
Silicate	0.5	0.3
Sulfate	-	14
Mg sulfate	-	0.2
MA/AA	2.0	1.0
CMC	0.4	0.4
Percarbonate	18.0	-
TAED	3.9	-
SRP 1	-	0.2
EDDS	0.5	0.5
HEDP	0.4	0.4
Protease	0.05	0.03

	I	II
Amylase	0.008	0.008
Cellulase	0.0007	0.001
Lipase	0.01	0.01
Photoactivated bleach (ppm)	20	20
PVNO/PVPVI	-	0.1
Brightener 1	0.09	0.09
Perfume	0.4	0.4
Silicone antifoam	0.3	0.3
CBD-Damascone	5.0	1.0
Density in g/litre	850	850
Miscellaneous and minors	Up to 100%	

Example 3

5

The following granular laundry detergent compositions of particular utility under European machine wash conditions were prepared according to the present invention :

	I	II
LAS	10.0	10.0
C24AS/C25AS	1.0	1.0
C45E7	4.0	2.0
QAS 1	0.5	-
STPP	20.0	-
Zeolite A	-	17.0
Na-SKS-6	-	5.0
Carbonate	15.0	12.0
Sulfate	12.0	2.0
MA/AA	2.0	1.0
CMC	0.4	0.4
PB4	15.0	15.0
TAED	2.5	2.5
CBD-NACA-OBS	2.0	2.0
DETPMP	0.2	0.2

	I	II
HEDP	0.3	0.3
Protease	0.02	0.02
Lipase	0.004	0.004
Cellulase	0.0007	0.0007
Amylase	0.003	0.003
PVP	0.9	0.9
Photoactivated bleach (ppm)	20	20
Brightener 1	0.15	0.15
Clay	-	10
HMWPFO	-	0.2
Perfume	0.3	0.3
Silicone antifoam	2.0	2.0
Density in g/litre	650	650
Miscellaneous and minors	Up to 100%	

Example 4

5 The following liquid detergent formulations were prepared according to the present invention (Levels are given in parts per weight) :

	I	II
HLAS	11.5	7.0
C45E2.25S	4.0	4.0
C23E7	4.0	3.0
CFAA	4.0	2.0
TPKFA	10.0	6.0
Citric (50%)	5.0	3.0
CaCl ₂	0.01	0.01
Boric acid	2.0	1.0
Na hydroxide	0.7	1.5
Ethanol	1.75	2.0
1,2 Propanediol	9.0	8.0
Monoethanolamine	8.0	3.0
Protease	0.03	0.02
Lipase	0.002	0.001

	I	II
Amylase	0.002	0.002
Cellulase	0.001	0.0005
SRP 1	0.2	0.1
DTPA	0.4	0.2
PVNO	0.3	0.2
Brightener 1	0.2	0.1
Silicone antifoam	0.04	0.1
CBD-Damascone	2.0	1.0
Miscellaneous and water	Up to 100%	

Example 5

5 The following fabric softener and dryer added fabric conditioner compositions were prepared according to the present invention :

	I
DEQA	19.0
Hydrochloride acid	0.02
Cellulase	0.001
Perfume	1.0
Silicone antifoam	0.01
Electrolyte	0.1
CBD-Damascone	1.0
CBD Rotundial	0.5
Dye	25ppm
PVPVI	0.3
Water and minors	100%

Example 6

10

The following laundry bar detergent compositions were prepared according to the present invention :

LAS 8.8

C28AS	11.2
C45E7	2.0
Zeolite A	1.25
Carbonate	15.0
TSPP	2.5
STPP	8.0
DETPMP	0.7
MA/AA	0.5
SRP 1	0.3
Amylase	0.002
Protease	0.003
Cellulase	0.0005
CBD-Damascone	2.0