Álgebra Matricial Maestría en Cómputo Estadístico

CIMAT - MCE

Espacios vectoriales

Definición

Sea A un conjunto. Una operación en A es una función $f: A \times A \rightarrow A$.

Definición

Sea V un conjunto. Se dice que V es un espacio vectorial sobre K $(K = \mathbb{R} \ \delta \ \mathbb{C})$ si existe una operación + en V tal que

- i) $v_1 + (v_2 + v_3) = (v_1 + v_2) + v_3$ para cualesquiera $v_1, v_2, v_3 \in V$
- ii) Existe un elemento 0 en V tal que 0 + v = v + 0 = v para todo $v \in V$
- iii) Dado $v \in V$ existe un $u \in V$ tal que v + u = u + v = 0
- iv) $v_1 + v_2 = v_2 + v_1$, $\forall v_1, v_2 \in V$.

(cont.) Existe además una función $\cdot: K \times V \to V$ tal que

- i) $\alpha \cdot (v_1 + v_2) = \alpha \cdot v_1 + \alpha \cdot v_2$ para cualesquiera $\alpha \in K$, $v_1, v_2 \in V$
- ii) $(\alpha_1 + \alpha_2) \cdot v = \alpha_1 \cdot v + \alpha_2 \cdot v$ para cualesquiera $\alpha_1, \alpha_2 \in K$, $v \in V$
- iii) $\alpha_1 \cdot (\alpha_2 \cdot v) = (\alpha_1 \alpha_2) \cdot v$, para cualesquiera $\alpha_1, \alpha_2 \in K$, $v \in V$
- iv) $1 \cdot v = v$, $\forall v \in V$.

Ejemplo

 $V = \mathbb{R}^n$.

Ejemplo

El espacio trivial $V = \{0\}$.

Ejemplo

 $V=M_{m\times n}(\mathbb{R}).$

Sea V un espacio vectorial sobre K. $W \subset V$ es un subespacio de W si W es un espacio vectorial con las operaciones inducidas por V.

Proposición

Sea V un espacio vectorial sobre K, $W \subset V$, $W \neq \emptyset$. W es un subespacio de V si

- i) Si w_1 , $w_2 \in W$ entonces $w_1 + w_2 \in W$
- ii) Si $w \in W$, $\alpha \in K$ entonces $\alpha w \in W$

Ejemplo

El subespacio trivial $W = \{0\}$ de un espacio V.

Ejemplo

Lineas en \mathbb{R}^2

Ejemplo

Hiperplanos en \mathbb{R}^n

Sea V un espacio vectorial. Si W_1 , W_2 son subespacios de V entonces $W_1 \cap W_2$ es subespacio de V.

La unión de subespacios no es en general un subespacio.

Definición

Sea V un espacio vectorial, W_1 , W_2 subespacios de V. La suma de W_1 y W_2 es

$$W_1+W_2=\{v\in V\mid v=w_1+w_2,w_1\in W_1,w_2\in W_2\}$$

Sea V un espacio vectorial, W, U subespacios de V. Se dice que V es suma directa de W y U si V = W + U y $W \cap U = \{0\}$. en cuyo caso se escribe $V = W \oplus U$.

Proposición

 $V = W \oplus U$ si y solo si todo $v \in V$ se escribe de manera única como v = w + u con $w \in W$ y $u \in U$.

Definición

Sea V un espacio vectorial, W_i , $i=1,\ldots,r$ subespacios de V. Se dice que V es suma directa de los subespacios W_i si todo $v \in V$ se escribe de manero única como $v=w_1+\cdots+w_r$ con $w_i \in W_i$, lo cual se escribe como $V=W_1\oplus\cdots\oplus W_r$.

Sea V un espacio vectorial, W_1 , W_2 subespacios de V. Entonces W_1+W_2 es un subespacio de V. De hecho, es el espacio más pequeño de V que contiene a $W_1\cup W_2$.

Sea V un espacio vectorial y v_1 , ..., v_n vectores en V. Si α_1 , ..., α_n son escalares, el vector

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n$$

es una combinación lineal de v_1, \ldots, v_n .

Definición

Sea V un espacio vectorial y $S \subset V$. El espacio generado por S es el conjunto

$$gen(S) = \{ v \in V \mid v = \alpha_1 v_1 + \dots + \alpha_n v_n, a_i \in S, \alpha_i \in K \}$$

Sea V un espacio vectorial $y S \subset V$, $S \neq \emptyset$. gen(S) es un subespacio de V. Más aún, es el subespacio más pequeño que contiene a S.

.

Sea V un espacio vectorial. Sea $S = \{v_1, \dots, v_n\} \subset V$. S es linealmente independiente si

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n = \mathbf{0}$$

implica que $\alpha_1 = \ldots = \alpha_n = 0$. Si el conjunto no es linealmente independiente se dice que es linealmente dependiente.

Proposición

Sea V un espacio vectorial. Si $S = \{v_1, \ldots, v_n\} \subset V$ y v_j , $1 \leq j \leq n$ se puede escribir como una combinación lineal de los otros elementos de S entonces $gen(S \setminus \{v_j\}) = gen(S)$.

Sea V un espacio vectorial y sea $S = \{v_1, \ldots, v_n\} \subset V$. Si S contiene un subconjunto linealmente dependiente, entonces S es linealmente dependiente.

Proposición

Sea V un espacio vectorial y sea $S = \{v_1, \ldots, v_n\} \subset V$. Si S es linealmente independiente, entonces cualquier subconjunto de S también es linealmente independiente.

{0} es siempre linealmente dependiente, por lo que un conjunto linealmente independiente no puede contener a 0.

Sea V un espacio vectorial y sea $S = \{v_1, \ldots, v_n\} \subset V$.

- 1. Si S es linealmente independiente y $v \in V$, entonces $S \cup \{v\}$ es linealmente independiente si y solo si $v \notin \text{gen}(S)$.
- 2. Si $v_1 \neq 0$, S es linealmente dependiente si y solo si $v_j \in \text{gen}\{v_1, \dots, v_{j-1}\}$ para algún $2 \leq j \leq n$.

Proposición

Sea $S = \{v_1, \dots, v_n\} \subset \mathbb{R}^m$. Si n > m entonces S es linealmente dependiente.

Sea V un espacio vectorial, $W \subset V$ un subespacio. Una base de W es un subconjunto de W linealmente independiente que genera V.

Proposición

Sea V un espacio vectorial y sea $S = \{v_1, \ldots, v_n\} \subset V$ un subconjunto linealmente independiente. Si $v \in \text{gen}(S)$ y $v = \alpha_1 v_1 + \cdots + \alpha_n v_n = \beta_1 v_1 + \cdots + \beta_n v_n$, entonces $\alpha_i = \beta_i$, $i = 1, \ldots, n$, es decir la expresión lineal de v como combinación lineal de los vectores en S es única.

Sea V un espacio vectorial y sea $\mathcal{B} = \{v_1, \ldots, v_n\} \subset V$ una base. Si $v \in V$, las coordenadas de v respecto a \mathcal{B} son los escalares α_i , $i = 1, \ldots, n$, que aparecen en

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$$

Proposición

Sean V un espacio vectorial, W un subespacio de V, $S = \{v_1, \ldots, v_r\}$ un subconjunto de W linealmente independiente $y \ W = \text{gen}\{w_1, \ldots, w_s\}$. Entonces $s \ge r$.

Si \mathcal{B}_1 , \mathcal{B}_2 son dos bases del mismo espacio V, entonces $\#(\mathcal{B}_1) = \#(\mathcal{B}_2)$.

Definición

Sea V un espacio vectorial. La dimensión de V es el número de vectores en cualquier base de V.

Observemos que a una base no se le pueden quitar vectores que generen el espacio ni agregar vectores para mantener los vectores linealmente independientes.

Sea V un espacio vectorial. La dimensión de V, dimV, es el número de vectores en una base, y por lo tanto cualquiera, de V.

Sea V un espacio vectorial. La dimensión de V, dimV, es el número de vectores en una base, y por lo tanto cualquiera, de V.

Proposición

Sea V un espacio vectorial, dimV = r, $S \subset V$. Si V = gen(S), entonces existe un $\mathcal{B} \subseteq S$ tal que \mathcal{B} es base de V.

Proposición

Sea V un espacio vectorial, dimV = r, $S \subset V$. Si S es linealmente independiente, entonces existe $\mathcal{B} \supseteq S$ tal que \mathcal{B} es base de V.

Sea V un espacio vectorial y $W \subset V$ un subespacio. Entonces $dimW \leq dimV$.

Proposición

Sea V un espacio vectorial y $W \subset V$ un subespacio. Si dimW = dimV, entonces V = W.

Si un espacio vectorial V es de dimensión finita n y $\mathcal{B}_1 = \{v_1, \ldots, v_n\}$, $\mathcal{B}_2 = \{u_1, \ldots, u_n\}$ son dos bases distintas, entonces un vector $v \in V$ tendrá distintas coordenadas dependiendo de la base usada. Es decir

$$v = \sum_{i=1}^{n} \alpha_i v_i = \sum_{i=1}^{n} \beta_i u_i$$

Es posible encontrar una relación entre ambas coordenadas.

 $Si\ (v_i)_{\mathcal{B}_2}$ es el vector (en \mathbb{R}^n) de coordenadas de v_i con respecto a la base \mathcal{B}_2 , $v_{\mathcal{B}_1}$ es el vector de coordenadas de v con respecto a la base \mathcal{B}_1 y $v_{\mathcal{B}_2}$ es el vector de coordenadas de v con respecto a la base \mathcal{B}_2 , entonces existe una matrix invertible A dada por $A = ((v_1)_{\mathcal{B}_2} \cdots (v_2)_{\mathcal{B}_2})$ (es decir, tiene los vectores de coordenadas como columnas) tal que

$$v_{\mathcal{B}_2} = Av_{\mathcal{B}_1}$$

A es la matriz de cambio de coordenadas de la base \mathcal{B}_1 a la base \mathcal{B}_2 .

$$A_{\mathcal{B}_1 \to \mathcal{B}_2}$$

Proposición

Si A es la matriz de cambio de coordenadas de la base \mathcal{B}_1 a la base \mathcal{B}_2 entonces A^{-1} es la matriz de cambio de coordenadas de la base \mathcal{B}_2 a la base \mathcal{B}_1 .

$$A_{\mathcal{B}_2 \to \mathcal{B}_1} = (A_{\mathcal{B}_1 \to \mathcal{B}_2})^{-1}$$