"Ganon's 7th Phantom"

Homework Wk #4 Due Thursday 9/19/19

Exam #1 Tuesday 9/24/19

Today's Topics

- 1. Forces
- 2. Examples

Laws of Motion Big Picture

- Changes in motion are caused by forces. No force, no change in velocity.
- 2. Net acceleration is directly caused by net force.
- 3. Forces arise from interactions. "It takes two to tango."

Force Diagrams

Figure: 7.1 Force Diagrams

Force Diagrams

Figure: 7.2 Generating FBD's

C&J 4.7.20 A 5.0~kg rock and a $3.0\times10^4~kg$ pebble are held near the surface of the earth.

- Determine the magnitude of the gravitational force exerted on each by the earth.
- b. Calculate the magnitude of the acceleration of each object when released.

C&J 4.8.38 A 35.0~kg crate rests on a horizontal floor, and a 65.0~kg person is standing on the crate. Determine the magnitude of the normal force that

- a. the floor exerts on the crate and
- b. the crate exerts on the person.

C&J 4.8.39 A 60.0~kg crate rests on a level floor at a shipping dock. The coefficients of static and kinetic friction are 0.760 and 0.410, respectively. What horizontal pushing force is required to

- a. just start the crate moving and
- b. slide the crate across the dock at a constant speed?

C&J 4.8.42 A woman stands on a scale in a moving elevator. Her mass is $60.0\ kg$, and the combined mass of the elevator and scale is an additional $815\ kg$. Starting from rest, the elevator accelerates upward. During the acceleration, the hoisting cable applies a force of $9410\ N$. What does the scale read during the acceleration?

C&J 4.8.43 A car that has a mass m=1700~kg is parked on a road that rises 15° above the horizontal. What are the magnitudes of

- a. the normal force and
- b. the static frictional force that the ground exerts on the tires?

C&J 4.8.47 An $81.0\ kg$ baseball player slides into second base. The coefficient of kinetic friction between the player and the ground is 0.49.

- a. What is the magnitude of the frictional force?
- b. If the player comes to rest after 1.6 s, what was his initial velocity?

C&J 4.8.57 A worker stands still on a roof sloped at an angle of 36° above the horizontal. He is prevented from slipping by a static frictional force of 390~N. Find the mass of the worker.

C&J 4.AP.108 A skater with an initial speed of $7.60\ m/s$ stops propelling himself and begins to coast across the ice, eventually coming to rest. Air resistance is negligible.

- a. The coefficient of kinetic friction between the ice and the skate blades is 0.100. Find the deceleration caused by kinetic friction.
- b. How far will the skater travel before coming to rest?

C&J 4.AP.116 As part a of the drawing shows, two blocks are connected by a rope that passes over a set of pulleys. One block has a weight of $412\ N$, and the other has a weight of $908\ N$. The rope and the pulleys are mass-less and there is no friction.

- a. What is the acceleration of the lighter block?
- b. Suppose that the heavier block is removed, and a downward force of $908\ N$ is provided by someone pulling on the rope, as part b of the drawing shows. Find the acceleration of the remaining block.
- c. Explain why the answers in (a) and (b) are different.

Figure: 7.3 Force, Inertia, & Acceleration

- a. What is the acceleration of the lighter block?
- b. Suppose that the heavier block is removed, and a downward force of $908\ N$ is provided by someone pulling on the rope, as part b of the drawing shows. Find the acceleration of the remaining block.
- c. Explain why the answers in (a) and (b) are different.

C&J 4.AP.117 The three objects in the drawing are connected by strings that pass over massless and friction-free pulleys. The objects move, and the coefficient of kinetic friction between the middle object and the surface of the table is 0.100.

- a. What is the acceleration of the three objects?
- b. Find the tension in each of the two strings.

Figure: 7.4 Tension & Friction

- a. What is the acceleration of the three objects?
- b. Find the tension in each of the two strings.