MPEI 2024/25 - PL 6

Algoritmos Probabilísticos: Bloom Filters

Palavras chave: Geração de strings aleatórias, Funções de dispersão (hash functions), Bloom Filters.

6.1 Geração aleatória de chaves

1. Crie uma função para gerar um conjunto de chaves constituídas por caracteres, todas diferentes. O comprimento de cada chave deve ser escolhido aleatoriamente (distribuição uniforme) entre i_{min} e i_{max} .

A função deve ter como parâmetros de entrada o número de chaves a gerar (N), i_{min} e i_{max} , um vector com os caracteres a usar nas chaves e um vector com as probabilidades de cada um dos caracteres a utilizar. Se a função for chamada sem o último parâmetro, deve considerar os caracteres equiprováveis (ver a documentação da função nargin).

A função deve devolver um cell array com o conjunto de chaves geradas.

- 2. Usando a função, gere um conjunto de $N=10^5$ chaves usando todas as letras maiúsculas e minúsculas ('A' a 'Z' e 'a' a 'z') com igual probabilidade e em que $i_{min}=6$ e $i_{max}=20$.
- 3. (TPC) Também usando a função, gere um conjunto de $N=10^5$ chaves usando todas as letras minúsculas ('a' a 'z') com as probabilidades contidas no ficheiro prob_pt.txt 1 .

Considere novamente $i_{min} = 6$ e $i_{max} = 20$.

6.2 Funções de dispersão

- 1. Considere a função Matlab $string2hash()^2$ que implementa duas funções de dispersão diferentes.
 - Utilizando separadamente cada uma destas funções de dispersão, simule a inserção das chaves criadas em 6.1 em 3 *Chaining Hash Tables*, uma de tamanho 5×10^5 , outra de tamanho 10^6 e a terceira de tamanho 2×10^6 . Para cada uma das simulações:
 - (a) Guarde um vetor com os hashcodes obtidos.
 - (b) Registe o número de atribuições a cada uma das posições de cada *Hash Table*.
 - (c) Calcule o número de colisões (em cada *Hash Table* e para cada função de dispersão).
- 2. Utilizando a informação obtida no exercício anterior, compare o desempenho das funções de dispersão para cada tamanho diferente da *Hash Table*, relativamente a:
 - (a) Uniformidade, visualizando os histogramas dos hascodes com 100 intervalos;
 - (b) Número de colisões e número máximo de atribuições numa mesma posição da *Hash Table*.

¹Frequências das letras em Português (https://pt.wikipedia.org/wiki/Frequ%C3%AAncia_de_letras).

²https://www.mathworks.com/matlabcentral/fileexchange/27940-string2hash

6.3 Filtros de Bloom

Crie um conjunto de funções Matlab que implementem as funcionalidades de um *Bloom Filter* básico. As funções devem ter os parâmetros necessários para que seja possível criar *Bloom Filters* de diferentes tamanhos (n) e a utilização de diferentes números de funções de dispersão (k).

Na criação das diferentes funções de dispersão, adote o terceiro método descrito no slide "Como ter n funções de dispersão ?" da apresentação TP sobre funções de dispersão³ com a função que considera ter tido o melhor desempenho na experiências que efetuou na secção 6.2.

Sugestão: Criar pelo menos 3 funções: uma para inicializar a estrutura de dados; outra para inserir um elemento (ou elementos) no filtro; uma terceira para verificar se um elemento pertence ao conjunto.

- 1. Com as funções que desenvolveu, crie um *Bloom Filter* para guardar um conjunto, U_1 , de 1000 palavras diferentes⁴. Use um *Bloom Filter* de tamanho n=8000 e k=3 funções de dispersão.
- 2. Teste o *Bloom Filter* criado anteriormente, verificando a pertença de todas as palavras do conjunto U_1 . Obteve algum falso negativo?
- 3. Teste o *Bloom Filter* criado anteriormente, verificando a pertença de um novo conjunto, U_2 , com 100000 palavras todas diferentes das de U_1 . Indique a percentagem de falsos positivos obtidos.
- 4. Compare a percentagem de falsos positivos obtida anteriormente com a estimativa que aprendeu nas TPs.
- 5. Repita os exercícios 1 e 3 para um número de funções de dispersão k de 4 até 10. Faça um gráfico com a percentagem de falsos positivos em função de k. Analisando os resultados, qual o valor ótimo k? Compare este valor com o valor teórico que aprendeu nas TPs.

³https://elearning.ua.pt/mod/resource/view.php?id=1452582

⁴Sugestão: Pode usar chaves geradas aleatoriamente ou utilizar uma lista de palavras válidas para a língua portuguesa.