Communication-efficient Federated Learning Through 1-Bit Compressive Sensing and Analog Aggregation

Xin Fan¹, Yue Wang², Yan Huo¹, and Zhi Tian²

¹Beijing Jiaotong University, China

²George Mason University, USA

E-mail: {yhuo, fanxin}@bjtu.edu.cn, {ywang56,ztian1}@gmu.edu

- Introduction
- System Model
- Convergence Analysis
- Minimization of the Error Floor
- Simulation Results and Evaluation
- Conclusion

- Introduction
- System Model
- Convergence Analysis
- Minimization of the Error Floor
- Simulation Results and Evaluation
- Conclusion

Introduction

Background

Introduction

Motivation

- There may be aggregation errors, such as channel fading, noise perturbation, sparsification and so on.
- How these aggregation errors affect FL?
- Prior works assume that $E(g*g^H)=I$, so they can achieve power control like $E(p*h*g)<=Pmax \rightarrow p=Pmax/h$. (So called channel inversion power control)
- Without local gradients known in advance, how to achieve power control?
- Simple maximization of the number of participated workers is learningagnostic and hence not necessarily optimal
- How to select local workers?

- Introduction
- System Model
- Convergence Analysis
- Minimization of the Error Floor
- Simulation Results and Evaluation
- Conclusion

Federated learning (FL)

- Local devices (workers)
 - Receive the current sharing model $\mathbf{w} = [w^1, \dots, w^D] \in \mathcal{R}^D$ from a parameter server (PS)
 - Use local data to train the received model and get the updates (local gradients, \mathbf{g}_i)
 - Send \mathbf{g}_i to the PS
- PS
 - Receive the updates \mathbf{g}_i and average them $\mathbf{g} = \frac{1}{K} \sum_{i=1}^{U} K_i \mathbf{g}_i$
 - Update the sharing model $\mathbf{w} = \mathbf{w} \alpha \mathbf{g}$
 - Broadcast the updated sharing model to local workers

1-bit compressive sensing and analog aggregation transmission

- Sparsification
 - Top-k
- Dimension Reduction
 - Random Gaussian matrix $\Phi \in \mathbb{R}^{S \times D}$ $(S \ll D)$
- Quantization
 - The overall operation $\mathcal{C}(\mathbf{g}_{i,t}) = \operatorname{sign}(\Phi \operatorname{sparse}_{\kappa}(\mathbf{g}_{i,t}))$
- Transmission
 - Power control factor $p_{i,t} = \frac{\beta_{i,t} K_i b_t}{h_{i,t}}$

Federated learning (FL)

- Local devices (workers)
 - Receive the current sharing model $\mathbf{w} = [w^1, \dots, w^D] \in \mathcal{R}^D$ from a parameter server (PS)
 - Use local data to train the received model and get the updates (local gradients, \mathbf{g}_i)
 - Send \mathbf{g}_i to the PS
- PS
 - Receive the updates \mathbf{g}_i and average them $\mathbf{g} = \frac{1}{K} \sum_{i=1}^{U} K_i \mathbf{g}_i$
 - Update the sharing model $\mathbf{w} = \mathbf{w} \alpha \mathbf{g}$
 - Broadcast the updated sharing model to local workers

1-bit compressive sensing and analog aggregation transmission

- Sparsification
 - Top-k
- Dimension Reduction
 - Random Gaussian matrix $\Phi \in \mathbb{R}^{S \times D}$ $(S \ll D)$
- Quantization
 - The overall operation $\mathcal{C}(\mathbf{g}_{i,t}) = \operatorname{sign}(\Phi \operatorname{sparse}_{\kappa}(\mathbf{g}_{i,t}))$
- Transmission
 - Power control factor $p_{i,t} = \frac{\beta_{i,t} K_i b_t}{h_{i,t}}$

The received signal at PS

$$\mathbf{y}_t = \sum_{i=1}^{U} h_{i,t} p_{i,t} \mathcal{C}(\mathbf{g}_{i,t}) + \mathbf{z}_t$$

- Reconstruction
 - Reconstruct the sparse averaged gradient

1-bit compressive sensing

$$\mathbf{y} = Q(\Phi \mathbf{x}) = \Phi \mathbf{x} + \mathbf{n}$$

Quantization can be modeled as measurement noise

$$\|\mathbf{n}\|_2 = \left(\sum_i \|n_i\|^2\right)^{1/2} \le \epsilon.$$

A robust reconstruction can be achieved by solving

$$\widehat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{x}\|_1 \text{ s.t. } \|\mathbf{y} - \Phi \mathbf{x}\|_2 \le \epsilon$$

• Binary iterative hard thresholding (BIHT) algorithm

- Aggregation errors
 - Sparsification errors
 - Quantization errors
 - Additive white Gaussian noise (AWGN)
 - Reconstruction errors

- How these aggregation errors affect FL?
- Can we mitigate these errors?

- Introduction
- System Model
- Convergence Analysis
- Minimization of the Error Floor
- Simulation Results and Evaluation
- Conclusion

Convergence Analysis

Basic Assumptions

- Assumption 1 (Lipschitz continuity, smoothness): $\|\nabla F(\mathbf{w}_{t+1}) \nabla F(\mathbf{w}_t)\| \le L\|\mathbf{w}_{t+1} \mathbf{w}_t\|$
- Assumption 2 (twice-continuously differentiable): $\nabla^2 F(\mathbf{w}_t) \leq L\mathbf{I}$.
- Assumption 3 (sample-wise gradient bounded): $\|\nabla f(\mathbf{w}_t)\|^2 \le \rho_1 + \rho_2 \|\nabla F(\mathbf{w}_t)\|^2$
- Assumption 4 (local gradient bounded): $\|\mathbf{g}_{i,t}\|^2 \leq G^2, \forall i, t$

Theorem 1. Given the power scaling factor b_t , worker selection vectors $\beta_{i,t}$, and the learning rate $\alpha = \frac{1}{L}$, we have the following convergence rate at the T-th iteration.

$$\frac{1}{T} \sum_{t=1}^{T} \| \nabla F(\mathbf{w}_{t-1}) \|^{2} \leq \frac{2L}{T(1-\rho_{2})} \mathbb{E}[F(\mathbf{w}_{0}) - F(\mathbf{w}^{*})] + \frac{2L}{T(1-\rho_{2})} \sum_{t=1}^{T} B_{t}, \quad (20)$$

where

$$B_{t} = \frac{\sum_{i=1}^{U} K_{i} \rho_{1} (1 - \beta_{i,t})}{2LK \sum_{i=1}^{U} K_{i} \beta_{i,t}} + \frac{C^{2}}{2L} \left(1 + (1 + \delta) \frac{D - \kappa}{SD} G^{2} + \frac{\sigma^{2}}{\left(\sum_{i=1}^{U} K_{i} \beta_{i,t} b_{t}\right)^{2}} \right) + \sum_{i=1}^{U} \beta_{i,t} (1 + \delta) \frac{D - \kappa}{2LD} G^{2},$$

$$(21)$$

and \mathbf{w}_t converges to \mathbf{w}^* .

Convergence Analysis

Theorem 1. Given the power scaling factor b_t , worker selection vectors $\beta_{i,t}$, and the learning rate $\alpha = \frac{1}{L}$, we have the following convergence rate at the T-th iteration.

$$\frac{1}{T} \sum_{t=1}^{T} \| \nabla F(\mathbf{w}_{t-1}) \|^{2} \le \frac{2L}{T(1-\rho_{2})} \mathbb{E}[F(\mathbf{w}_{0}) - F(\mathbf{w}^{*})] + \frac{2L}{T(1-\rho_{2})} \sum_{t=1}^{T} B_{t}, \quad (20)$$

• From **Theorem 1**, we have

$$\frac{1}{T} \sum_{t=1}^{T} \| \nabla F(\mathbf{w}_{t-1}) \|^{2} \leq \frac{2L}{T(1-\rho_{2})} \mathbb{E}[F(\mathbf{w}_{0}) - F(\mathbf{w}^{*})] + \frac{2L}{T(1-\rho_{2})} \sum_{t=1}^{T} B_{t}$$

$$\xrightarrow{T \to \infty} \frac{2L}{T(1-\rho_{2})} \sum_{t=1}^{T} B_{t}.$$

To mitigate errors, minimize B_t

Convergence Analysis

Theorem 1. Given the power scaling factor b_t , worker selection vectors $\beta_{i,t}$, and the learning

rate $\alpha = \frac{1}{L}$, we have the following convergence rate at the T-th iteration.

 $\frac{1}{T}$

Introduction

*!_...

From Th

 $\frac{1}{T}\sum_{i=1}^{T}$

- Motivation
 - There may be aggregation errors, such as channel fading, noise perturbation, local worker selection, sparsification and so on.
 - How these aggregation errors affect FL?
 - Prior works assume that $E(g*g^H)=I$, so they can achieve power control like $E(p*h*g) <= Pmax \rightarrow p=Pmax/h$. (So called channel inversion power control)
 - Without local gradients known in advance, how to achieve power control?
 - Simple maximization of the number of participated workers is learningagnostic and hence not necessarily optimal
 - How to select local workers?

To mitigate errors, minimize B_t

(20)

- Introduction
- System Model
- Convergence Analysis
- Minimization of the Error Floor
- Simulation Results and Evaluation
- Conclusion

• To mitigate errors, minimize B_t

$$B_{t} = \frac{\sum_{i=1}^{U} K_{i} \rho_{1} (1 - \beta_{i,t})}{2LK \sum_{i=1}^{U} K_{i} \beta_{i,t}} + \frac{C^{2}}{2L} \left(1 + (1 + \delta) \frac{D - \kappa}{SD} G^{2} + \frac{\sigma^{2}}{\left(\sum_{i=1}^{U} K_{i} \beta_{i,t} b_{t}\right)^{2}} \right)$$
$$+ \sum_{i=1}^{U} \beta_{i,t} (1 + \delta) \frac{D - \kappa}{2LD} G^{2},$$

• The PS aims to determine the power scaling factor b_t , and the scheduling indicator $\beta_t = [\beta_{1,t}, \beta_{2,t}, ..., \beta_{U,t}]$, Such a joint optimization problem is formulated as

$$\min_{b_t, \beta_t} B_t
s.t. \frac{\beta_{i,t}^2 K_i^2 b_t^2}{h_{i,t}^2} \le P_i^{\text{Max}},
\beta_{i,t} \in \{0, 1\}, i \in \{1, 2, ..., U\}$$

The power control

$$\begin{aligned} p_{i,t} &= \frac{\beta_{i,t} K_i b_t}{h_{i,t}} \\ \mathbf{y}_t &= \sum_{i=1}^{U} h_{i,t} p_{i,t} \mathcal{C}(\mathbf{g}_{i,t}) + \mathbf{z}_t \\ \mathbf{y}_t &= \sum_{i=1}^{U} K_i b_t \beta_{i,t} \mathcal{C}(\mathbf{g}_{i,t}) + \mathbf{z}_t \\ \mathbf{\hat{y}}_t^{desired} &= \frac{\mathbf{y}_t}{\sum_{i=1}^{U} K_i \beta_{i,t} b_t} = \mathbf{y}_t^{desired} + \frac{\mathbf{z}_t}{\sum_{i=1}^{U} K_i \beta_{i,t} b_t} \end{aligned}$$

Maximum power limitation

$$|p_{i,t}c_{i,t}^s|^2 = \left(\frac{\beta_{i,t}K_ib_t}{h_{i,t}}c_{i,t}^s\right)^2 = \frac{\beta_{i,t}^2K_i^2b_t^2}{h_{i,t}^2} \le P_i^{\text{Max}}$$

where
$$\mathcal{C}(\mathbf{g}_{i,t}) = [c_{i,t}^1, ..., c_{i,t}^s, ..., c_{i,t}^S]^T$$
 $c_{i,t}^s = \pm 1$

$$\mathbf{g} = \frac{1}{K} \sum_{i=1}^{U} K_i \mathbf{g}_i$$

$$\mathbf{y}_{t}^{desired} = \frac{\sum_{i=1}^{U} K_{i} \beta_{i,t} \mathcal{C}(\mathbf{g}_{i,t})}{\sum_{i=1}^{U} K_{i} \beta_{i,t}}$$

The power control

$$p_{i,t} = \frac{\beta_{i,t} K_i b_t}{h}$$

$$\mathbf{y}_t = \sum_{i=1}^U h$$

$$\mathbf{y}_t = \sum_{i=1}^{C} \mathbf{y}_i$$

$$\mathbf{\hat{y}}_{t}^{desired}$$

Maximu

Introduction

Motivation

- There may be aggregation errors, such as channel fading, noise perturbation, local worker selection, sparsification and so on.
- How these aggregation errors affect FL?
- Prior works assume that $E(g*g^H)=I$, so they can achieve power control like $E(p*h*g) <= Pmax \rightarrow p=Pmax/h$. (So called channel inversion power control)
- Without local gradients known in advance, how to achieve power control?
- Simple maximization of the number of participated workers is learningagnostic and hence not necessarily optimal
- How to select local workers?

$$|p_{i,t}c_{i,t}^s| = \frac{1}{h_{i,t}}c_{i,t} = \frac{1}{h_{i,t}^2} \le P_i$$

where
$$\mathcal{C}(\mathbf{g}_{i,t}) = [c_{i,t}^1,...,c_{i,t}^s,...,c_{i,t}^S]^T$$
 $c_{i,t}^s = \pm 1$

$$\text{s.t.} \quad \frac{\beta_{i,t}^2 K_i^2 b_t^2}{h_{i,t}^2} \le P_i^{\text{Max}},$$

$$\beta_{i,t} \in \{0,1\}, i \in \{1,2,...,U\}$$

- Mixed integer programming (MIP)
 - The coupling of $\mathsf{b}_{\scriptscriptstyle\mathsf{t}}$ and $oldsymbol{eta}_t$
 - Non-convex

$$\min_{b_t, \beta_t} B_t
s.t. \frac{\beta_{i,t}^2 K_i^2 b_t^2}{h_{i,t}^2} \le P_i^{\text{Max}},
\beta_{i,t} \in \{0, 1\}, i \in \{1, 2, ..., U\}$$

- Optimal Solution via Discrete Programming
 - Given $\beta_t = [\beta_{1,t}, \beta_{2,t}, ..., \beta_{U,t}]$, the problem is convex.
 - The enumeration-based method may be applicable for a small number of workers, e.g., $U \le 10$
 - The complexity is $\mathcal{O}(2^U)$
- ADMM-based Suboptimal Solution
 - Decomposition
 - Decompose the hard combinatorial problem into U parallel smaller convex problems.
 - Iteratively solve them.
 - The complexity is $\mathcal{O}(U)$

- Introduction
- System Model
- Convergence Analysis
- Minimization of the Error Floor
- Simulation Results and Evaluation
- Conclusion

- MNIST dataset
 - 784-neuron input layer, a 64-neuron hidden layer, and a 10-neuron softmax output layer
 - The dimension of the gradient is D=50890
- Our proposed scheme:
 - One Bit Compressive Sensing and Analog Aggregation (OBCSAA)
- Baseline:
 - Perfect aggregation (ideal case): without transmission and compression, PS can obtain exact gradients for aggregation

- The performance with **Top-k**
 - The sparsity ratio are k/D: 10/50890, 100/50890, 1000/50890.

Fig. 1: The performance of our proposed OBCSAA under different sparsification operators.

- The performance with Dimension Reduction
 - Under S = 5000 and κ = 1000, our OBCSAA only use one wireless channel and 5000/50890 transmission time

Fig. 2: The performance of our proposed OBCSAA under different S.

- The performance with enumeration-based and ADMM-based methods
 - Enumeration can achieve better performance with higher complexity.

Fig. 3: The performance of joint optimization solving methods for our proposed OBCSAA under different U.

- Introduction
- System Model
- Convergence Analysis
- Minimization of the Error Floor
- Simulation Results and Evaluation
- Conclusion

Conclusion

- We propose a communication-efficient FL based on 1-bit CS and analog aggregation transmissions.
- We derive a closed-form expression for the expected convergence rate of the FL algorithm.
- We formulate a joint optimization problem of communication and learning.
- An enumeration-based method and an ADMM-based method are proposed to solve the non-convex problem, which are suitable for smallscale networks and approximate solution for large-scale networks.

THANKYOU

 $Xin\ FAN$

Email: fanxin@bjtu.edu.cn