

Как БЫСТРО перевести число из 8-ной в 16-ную СС и обратно

Чтобы быстро (то есть без деления столбиком) переводить числа из 8-ой в 16-ую систему счисления и обратно можно использовать понятие **триад** - это блок из трёх двоичных цифр и **тетрад** - это блок из четырёх двоичных цифр. Перевод будет производится через промежуточное двоичное представление числа, то есть так:

- 1) Число₈ => Число₂ => Число₁₆
- 2) Число₁₆ => Число₂ => Число₈

То есть в каждом переводе два шага: из восьмеричного в шестнадцатеричное посредством промежуточного двоичного и так же обратно.

Вот важная для понимания таблица - с помощью этой таблицы можно быстро переводить восьмеричное число в двоичное - идеально, если вы её запомните.

8-ная	2-ное	
цифра	представление	
0	000	
1	001	
2	010	
3	011	
4	100	
5	101	
6	110	
7	111	

Для примера переведём число 26₈ в двоичное. Цифры просто переписываются последовательно в их двоичном представлении: 2 - это 010, а 6 это 110, поэтому ответ будет 010110 или без нулей в старших (самых левых) незначащих разрядах: 10110₂.

Обратный перевод работает так же...

Например, 1000101_2 - в этом числе следует слева добавить пару нулей, чтобы получились целые триады. Сами триады нужно формировать справа-налево: 001 000 101 - выделил слева дописанные нули до формирования цельных триад. Далее переводим триады по таблице в восьмиричные цифры и пишем ответ: 105_8 .

С шестнадцатеричными числами аналогично, только таблица увеличена в два раза.

Обратите внимание, что, на самом деле, это всё та же таблица, повторенная два раза – отличие только в добавлении старшего разряда.

16-ная	2-ное	16-ная	2-ное
цифра	представление	цифра	представление
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	<mark>0</mark> 100	С	1 100
5	<mark>0</mark> 101	D	1 101
6	0110	Е	1 110
7	0111	F	1 111

Для примера переведём число 26_{16} в двоичное. Цифры просто переписываются последовательно в их двоичном представлении тетрадами: 2 – это 0010, а 6 это 0110, поэтому ответ будет 00100110 или без нулей в старших (самых левых) незначащих разрядах: 100110_2 .

Обратный перевод работает так же...

Например, 1000101_2 - в этом числе следует слева добавить один ноль, чтобы получились целые тетрады. Сами тетрады нужно формировать справа-налево: $0100\ 0101$ - выделил слева дописанный нуль до формирования цельных тетрад. Далее переводим тетрады по таблице в шестнадцатеричные цифры и пишем ответ: 45_{16} .

Теперь полный перевод числа $1A7_{16}$ в восьмиричную систему.

На первом шаге расписываем тетрадами: 0001 1010 0111, далее делим на триады справа-налево: 000 110 100 111, выписываем ответ: 647₈. Это действие занимает меньше минуты!

В обратную сторону так же...