Comparison of Different TCP flavors

Nisha Bhanushali (<u>nnb7791@rit.edu</u>) Alimuddin Khan (<u>aak5031@rit.edu</u>)

AGENDA

- Overview of TCP
- > TCP stop-and-wait
- > TCP Go-back-n
- > TCP Tahoe
- > TCP Reno

Overview of TCP

- Goals of TCP
 - Congestion Control
 - > Control the sending rate as per network traffic
 - > Reliable Data Transfer
 - > Re-transmit lost packets effectively

TCP with Stop-n-wait

- Overview of early TCP with stop n wait
- > Features:
 - Stop and wait
 - Send one packet and wait for the ACK
 - Once we receive the ACK send next packet
 - Retransmission
 - > Only way to detect packet loss is TO
 - ▶ If we don't receive the ACK after TO, resend the packet.

TCP with Go-back-n

- Overview of early TCP with go-back-n
- > Features:
 - Congestion window
 - Send more than one packets(same as the size of congestion window) in one RTT
 - > Slow start and Congestion avoidance
 - Slow Start -> CWND += 1 for each ACK received
 - ightharpoonup Congestion avoidance -> CWND = $\frac{1}{CWND}$
 - > Retransmission -> Go back n approach
 - Whenever a packet loss happens, retransmit all the packets after the lost packet including lost packet in the congestion window.
 - Only way to detect a packet loss is Time Out (Time out)

TCP Tahoe

- Overview of TCP Tahoe
- > Features:
 - Congestion window
 - Send more than one packets(same as the size of congestion window) in one RTT
 - > Slow start and Congestion avoidance
 - Slow Start -> CWND += 1 for each ACK received
 - \triangleright Congestion avoidance -> CWND = $\frac{1}{CWND}$
 - > Fast Retransmit
 - > Retransmit the Packet as soon as we receive 3 dupAcks
 - > Don't wait for time out for packet retransmission
 - > Early detection of packet loss
 - > reduce the CWND to 1 and enter Slow start

TCP Reno

- Overview of TCP Reno
- > Features:
 - Congestion window
 - Send more than one packets(same as the size of congestion window) in one RTT
 - > Slow start and Congestion avoidance
 - > Slow Start -> CWND += 1 for each ACK received
 - ightharpoonup Congestion avoidance -> CWND = $\frac{1}{CWND}$
 - > Fast Retransmit
 - > Retransmit the Packet as soon as we receive 3 dupAcks
 - Don't wait for time out for packet retransmission
 - Early detection of packet loss
 - Don't reduce the CWND to 1 and enter fast recovery
 - Fast Recovery
 - > Don't reduce the CWND to 1 after fast retransmission
 - For each dupACK where dupACK count > 3;
 - Increase CWND += 1
 - When a non-dupACK is received come out of fast recovery

Comparison of TCP Flavors with 0% packet loss

time

Comparison of TCP Flavors with 2% packet loss

Stop n wait - 2% loss

CWND_size

CWND_size

ssthresh

time

Comparison of TCP Flavors with 10% packet loss

Any Questions?