Chapitre 10:

Phénomène de relaxation et résonance magnétique et

Un tout petit peu de transitions non adiabatiques

Pascal Parneix¹

Institut des Sciences Moléculaires d'Orsay Université Paris-Sud 11, Orsay

December 17, 2018

¹pascal.parneix@u-psud.fr

- Pour un système à 2 niveaux, nous allons traiter exactement l'interation d'un atome avec un champ magnétique dépendant du temps.
- Considérons un niveau atomique $J=\frac{1}{2}$. Nous noterons $|a\rangle=|\frac{1}{2},-\frac{1}{2}\rangle$ et $|b\rangle=|\frac{1}{2},\frac{1}{2}\rangle$.
- Cette situation physique peut correspondre à la configuration fondamentale d'un alcalin qui est caractérisé par le niveau ${}^2S_{\frac{1}{2}}$. Les états quantiques sont donc $|S,L,J,M\rangle=|\frac{1}{2},0,\frac{1}{2},\frac{1}{2}\rangle$ et $|\frac{1}{2},0,\frac{1}{2},-\frac{1}{2}\rangle$.
- Dans cet espace de Hilbert à 2 dimensions, la fonction d'onde du système s'écrit :

$$|\Psi(t)\rangle = c_a(t) |a\rangle + c_b(t) |b\rangle$$
 (1)

• L'évolution temporelle de cette fonction d'onde est gouvernée par l'équation de Schrodinger dépendante du temps :

$$H \mid \Psi(t) \rangle = i\hbar \frac{\partial}{\partial t} \mid \Psi(t) \rangle$$
 (2)

- **C**e système est soumis à l'action d'un champ magnétique $\vec{B}(t) = B_0 \vec{u}_z + B_1 \cos \omega t \vec{u}_x + B_1 \sin \omega t \vec{u}_y$.
- L'hamiltonien d'interaction s'écrit :

$$H = g\mu_B \left(B_0 J_z + B_1 \cos \omega t J_x + B_1 \sin \omega t J_y \right)$$

$$= \hbar \omega_0 J_z + \hbar \omega_1 \left(\frac{J_+ + J_-}{2} \right) \cos \omega t + \hbar \omega_1 \left(\frac{J_+ - J_-}{2 i} \right) \sin \omega t$$

$$= \hbar \omega_0 J_z + \frac{\hbar \omega_1}{2} e^{-i\omega t} J_+ + \frac{\hbar \omega_1}{2} e^{i\omega t} J_-$$
(3)

avec g le facteur de Landé du niveau considéré, $\hbar\omega_0=g\mu_B\,B_0$ et $\hbar\omega_1=g\mu_B\,B_1$.

- Notons que $\hbar\omega_0$ correspond à la différence d'énergie entre les 2 états quantiques $\mid a \rangle$ et $\mid b \rangle$. La pulsation ω_0 se situe dans le domaine des radio-fréquences.
- Dans le niveau ${}^2S_{\frac{1}{2}}$ de la configuration d'un alcalin, on trouve $g{=}2$. Ainsi dans le cas d'un champ magnétique statique appliqué égal a 1 T, on obtient $\hbar\omega_0=2\times0,467\times1=0,934~{\rm cm}^{-1}$.
- À partir de l'expression de cet hamiltonien d'interaction et en projetant la relation (2) sur les deux états quantiques, nous obtenons un système de deux équations différentielles du premier ordre couplées

$$\begin{cases} i \dot{c}_a = -\frac{\omega_0}{2} c_a + \frac{\omega_1}{2} e^{i\omega t} c_b \\ i \dot{c}_b = \frac{\omega_1}{2} e^{-i\omega t} c_a + \frac{\omega_0}{2} c_b \end{cases}$$

• Effectuons le changement de variable $b_b(t) = c_b(t) e^{i\omega t/2}$ et $b_a(t) = c_a(t) e^{-i\omega t/2}$. On en déduit alors :

$$\left\{ \begin{array}{l} \mathrm{i}\ \dot{b}_a = \left(\frac{\omega - \omega_0}{2}\right)b_a + \frac{\omega_1}{2}\,b_b \\ \\ \mathrm{i}\ \dot{b}_b = \frac{\omega_1}{2}\,b_a + \left(\frac{\omega_0 - \omega}{2}\right)b_b \end{array} \right.$$

• On en déduit que les variables $b_a(t)$ et $b_b(t)$ sont solutions de l'équation différentielle du second ordre :

$$\ddot{b}_{a/b} + \frac{\Omega^2}{4} \, b_{a/b} = 0 \tag{4}$$

avec
$$\Omega\left[=\sqrt{(\omega-\omega_0)^2+\omega_1^2}
ight]$$
 la fréquence de Rabi du système.

• Considérons le système à t=0 dans l'état $|a\rangle$. On a ainsi $b_a(t=0)=c_a(t=0)=1$ et $b_b(t=0)=c_b(t=0)=0$. On en déduit $b_b(t)=-i\frac{\omega_1}{\Omega}\sin(\frac{\Omega t}{2})$. Ainsi la probabilité $P_b(t)$ de de trouver dans l'état quantique $|b\rangle$ est donnée par :

$$P_{b}(t) = |c_{b}(t)|^{2}$$

$$= |b_{b}(t)|^{2}$$

$$= \left(\frac{\omega_{1}}{\Omega}\right)^{2} \sin^{2}\left(\frac{\Omega t}{2}\right)$$

$$= \frac{\omega_{1}^{2}}{(\omega - \omega_{0})^{2} + \omega_{1}^{2}} \sin^{2}\left(\frac{\Omega t}{2}\right)$$
(5)

• À la résonance $(\omega=\omega_0)$, la population oscille entre 0 et 1 avec une période $T=\frac{2\pi}{\omega_1}$.

- Quand on s'éloigne progressivement de la résonance, la période d'oscillation diminue et le maximum de la probabilité $P_b(t)$ diminue. Il est de plus en plus difficile de peupler l'état $|b\rangle$.
- Loin de la résonance ($|\omega \omega_0| >> \omega_1$), on obtient:

$$P_b(t) \approx \underbrace{\frac{\omega_1^2}{(\omega - \omega_0)^2}}_{\leq \leq 1} \sin^2(\frac{(\omega - \omega_0)t}{2})$$
 (6)

ce qui devient en accord avec le traitement perturbatif exposé dans le chapitre 7.

• Considérons un état quantique pur $|\Psi(t)\rangle$ tel que :

$$|\Psi(t)\rangle = \sum_{i} c_{i}(t) |i\rangle$$
 (7)

 Définissons l'opérateur de matrice densité associé à cet état quantique :

$$\rho(t) = |\Psi(t)\rangle\langle\Psi(t)|$$

$$= \sum_{i} \sum_{j} c_{i}(t)c_{j}^{*}(t)|i\rangle\langle j|$$
(8)

• Les éléments diagonaux de la matrice associée à l'opérateur $\rho(t)$ sont $\rho_{ii}(t) = \langle i \mid \rho(t) \mid i \rangle = c_i(t)c_i^*(t) = |c_i(t)|^2$. Ils correspondent à la population du système physique dans l'état $|i\rangle$.

- Les éléments de matrice hors-diagonaux $ho_{ij}(t) = \langle i \mid \rho(t) \mid j \rangle = c_i(t)c_j^*(t)$. On parle de termes de cohérence (sensible au déphasage entre $c_i(t)$ et $c_i^*(t)$).
- L'opérateur de la matrice densité satisfait aux propriétés suivantes :
 - ρ est un opérateur hermitique $(\rho_{ij}(t) = \rho_{ii}^*(t))$
 - Tr(ρ)=1 (conservation de la norme de $\Psi(t)\rangle$)
 - $\bullet \rho^2 = \rho$
 - $\langle A \rangle = Tr(\rho A)$
- En utilisant l'équation de Schrodinger dépendante du temps, l'évolution temporelle de la matrice densité est gouvernée par l'équation de Liouville-Von Neumann :

$$i\hbar \frac{d\rho}{dt} = [H, \rho] \tag{9}$$

- Placons nous maintenant dans le cas particulier de notre atome à deux niveaux $|a\rangle$ et $|b\rangle$ tel que $|\Psi(t)\rangle = c_a(t) |a\rangle + c_b(t) |b\rangle$.
- L'opérateur de la matrice densité associée à cet état quantique :

$$\rho(t) = |\Psi(t)\rangle\langle\Psi(t)|
= |c_b(t)|^2|b\rangle\langle b| + |c_a(t)|^2|a\rangle\langle a|
+ |c_b(t)c_a^*(t)|b\rangle\langle a| + |c_a(t)c_b^*(t)|a\rangle\langle b|$$
(10)

• En appliquant $\langle A \rangle = Tr(\rho A)$, notons que :

$$\langle J_x \rangle = \frac{1}{2} (\rho_{ab} + \rho_{ba})$$

$$\langle J_y \rangle = \frac{1}{2i} (\rho_{ab} - \rho_{ba})$$

$$\langle J_z \rangle = \frac{1}{2} (\rho_{bb} - \rho_{aa})$$
(11)

• L'hamiltonien du système peut s'écrire sous la forme :

$$H(t) = \frac{\hbar\omega_0}{2} \left[-\mid a\rangle\langle a\mid +\mid b\rangle\langle b\mid \right]$$
$$= \frac{\hbar\omega_1}{2} \left[e^{i\omega t}\mid a\rangle\langle b\mid + e^{-i\omega t}\mid b\rangle\langle a\mid \right]$$
(12)

Nous en déduisons le système d'équations suivant :

$$\left\{ \begin{array}{l} i\,\hbar\,\dot{\rho}_{aa} = \frac{\hbar\omega_1}{2}\left[e^{i\omega t}\rho_{ba} - e^{-i\omega t}\rho_{ab}\right] \\ i\,\hbar\,\dot{\rho}_{bb} = \frac{\hbar\omega_1}{2}\left[e^{-i\omega t}\rho_{ab} - e^{i\omega t}\rho_{ba}\right] \\ i\,\hbar\,\dot{\rho}_{ab} = \frac{\hbar\omega_1}{2}e^{i\omega t}\left[\rho_{bb} - \rho_{aa}\right] - \hbar\omega_0\,\rho_{ab} \\ i\,\hbar\,\dot{\rho}_{ba} = \frac{\hbar\omega_1}{2}e^{-i\omega t}\left[\rho_{aa} - \rho_{bb}\right] + \hbar\omega_0\,\rho_{ba} \end{array} \right.$$

- Effectuons un changement de variable $b_b(t) = c_b(t) e^{i\omega t/2}$ et $b_a(t) = c_a(t) e^{-i\omega t/2}$.
- On en déduit $\tilde{\rho}_{aa}(t) = |b_a(t)|^2 = \rho_{aa}(t)$ et $\tilde{\rho}_{bb}(t) = |b_b(t)|^2 = \rho_{bb}(t)$.
- Par contre $\tilde{\rho}_{ab}(t) = b_a(t)b_b^*(t) = e^{-i\omega t}\rho_{ab}(t)$ et $\tilde{\rho}_{ba}(t) = b_b(t)b_a^*(t) = e^{i\omega t}\rho_{ba}(t)$.
- On en déduit le nouveau système d'équations :

$$\begin{cases} 2i \, \dot{\tilde{\rho}}_{aa} = \omega_1 \left[\tilde{\rho}_{ba} - \tilde{\rho}_{ab} \right] \\ 2i \, \dot{\tilde{\rho}}_{bb} = \omega_1 \left[\tilde{\rho}_{ab} - \tilde{\rho}_{ba} \right] \\ 2i \, \dot{\tilde{\rho}}_{ab} = \omega_1 \left[\tilde{\rho}_{bb} - \tilde{\rho}_{aa} \right] + 2(\omega - \omega_0) \, \tilde{\rho}_{ab} \\ 2i \, \dot{\tilde{\rho}}_{ba} = \omega_1 \left[\tilde{\rho}_{aa} - \tilde{\rho}_{bb} \right] - 2(\omega - \omega_0) \, \tilde{\rho}_{ba} \end{cases}$$

- Considérons u(t) la partie réelle de $\tilde{\rho}_{ab}(t)$, on a donc $u(t) = \frac{\tilde{\rho}_{ab}(t) + \tilde{\rho}_{ba}(t)}{2}$.
- Considérons v(t) la partie imaginaire de $\tilde{\rho}_{ab}(t)$, on a donc $v(t) = \frac{\tilde{\rho}_{ab}(t) \tilde{\rho}_{ba}(t)}{2i}$.
- Considérons w(t) la différence de population entre les états quantiques $|a\rangle$ et $|b\rangle$, on a donc $w(t) = \frac{\tilde{\rho}_{bb}(t) \tilde{\rho}_{aa}(t)}{2}$.
- On en déduit :

$$\begin{cases} \dot{u} = (\omega - \omega_0) v \\ \dot{v} = -\omega_1 w - (\omega - \omega_0) u \\ \dot{w} = \omega_1 v \end{cases}$$

• **D**éfinissons le vecteur de Bloch, noté \vec{M} , dont les composantes sont u(t), v(t) et w(t). L'évolution temporelle de ce vecteur est gouvernée par :

$$\dot{\vec{M}}(t) = \vec{\Omega} \wedge \vec{M}(t) \tag{13}$$

avec $\vec{\Omega}$ le vecteur de rotation, de norme $\Omega = \sqrt{\omega_1^2 + (\omega - \omega_0)^2}$ qui correspond à la fréquence de Rabi, donné par :

$$\vec{\Omega} = \begin{pmatrix} \omega_1 \\ 0 \\ \omega_0 - \omega \end{pmatrix}$$
 (14)

- La norme du vecteur de Bloch est conservée au cours du temps.
- L'extrémité du vecteur de Bloch évolue sur une sphère de rayon 1/2 dans un plan perpendiculaire à $\vec{\Omega}$.

- Considérons le cas particulier d'une excitation résonnante ($\omega = \omega_0$).
- Le vecteur rotation est alors porté par l'axe x et le vecteur de Bloch va tourner dans le plan (yz) à la pulsation ω_1 .
- Si l'atome se trouve intialement dans l'état fondamental $|a\rangle$, on a alors u(t=0)=0, v(t=0)=0 et $w(t=0)=-\frac{1}{2}$ et on obtient u(t)=0, $\forall t,\ v(t)=\frac{1}{2}\sin(\omega_1 t)$ et $w(t)=-\frac{1}{2}\cos(\omega_1 t)$.
- Appliquons un pulse radio-fréquence d'une durée $t_1=\frac{\pi}{2\omega_1}$ (on parle de pulse $\frac{\pi}{2}$), on obtient $w(t=t_1)=0$ et $v(t=t_1)=\frac{1}{2}$. L'état quantique ainsi préparé est :

$$|\Psi(t=t_1)\rangle = e^{i\omega_0 t_1} \left(\frac{1}{\sqrt{2}} |a\rangle + \frac{1}{\sqrt{2}} e^{i\frac{\pi}{2}} |b\rangle\right)$$
 (15)

- Après ce pulse, le champ radio-fréquence est coupé, il y a donc précession libre du vecteur de Bloch dans le plan (xy) à la vitesse angulaire ω_0 .
- La différence de population w(t) reste égale à 0 (pas de modification de la différence de population).
- Au bout d'un temps t_2 tel que $t_2-t_1=\frac{\pi}{2\omega_0}$, le vecteur de Bloch est porté maintenant le long de l'axe (Ox). On obtient ainsi $u(t=t_1+t_2)=\frac{1}{2}$ et $v(t=t_1+t_2)=0$.
- L'état quantique ainsi préparé est :

$$|\Psi(t=t_1+t_2)\rangle = e^{i\omega_0(t_1+t_2)}\left(\frac{1}{\sqrt{2}}|a\rangle + \frac{1}{\sqrt{2}}|b\rangle\right) \tag{16}$$

• Lors de la précession libre, seul le déphasage entre les coefficients $c_a(t)$ et $c_b(t)$ est modifié au cours du temps.

Figure: Évolution temporelle de B_1 pour un pulse $\frac{\pi}{2}$.

- Si le pulse est d'une durée $2t_1=\frac{\pi}{\omega_1}$ (on parle de pulse $\mid \pi$), l'état quantique ainsi préparé est $\mid \Psi \rangle = \mid b \rangle$ et on obtient une inversion totale de population.
- L'intérêt fondamental du formalisme de la matrice densité réside dans le traitement des phénomènes de relaxation de nature radiative (émission spontanée) et collisionnelle.
- Les temps de relaxation des populations $(\tilde{\rho}_{bb})$ et des cohérences $(\tilde{\rho}_{ab})$ et $\tilde{\rho}_{ba}$ sont généralement différentes.

• On note T_1 le temps de relaxation des populations et T_2 le temps de relaxation des cohérences.

$$\dot{\tilde{\rho}}_{bb} = -\frac{\tilde{\rho}_{bb}}{T_1} \tag{17}$$

• Comme $\tilde{\rho}_{aa}(t) + \tilde{\rho}_{bb}(t) = 1$, on obtient également :

$$\dot{\tilde{\rho}}_{aa} = \frac{\tilde{\rho}_{bb}}{T_1} \tag{18}$$

• On en déduit :

$$\dot{w} = -\frac{w}{T_1} - \frac{1}{2T_1} \tag{19}$$

• Comme $\dot{\tilde{\rho}}_{ab}=-\frac{\tilde{\rho}_{ab}}{T_2}$ et $\dot{\tilde{\rho}}_{ba}=-\frac{\tilde{\rho}_{ba}}{T_2}$, on en déduit $\dot{u}=-\frac{u}{T_2}$ et $\dot{v}=-\frac{v}{T_2}$.

- Dans un processus de relaxation purement radiatif (trés faible pression), on peut montrer que $T_2 = 2 T_1$. Quand des collisions sont trés efficaces, T_2 devient généralement plus court que T_1 .
- En introduisant les termes de relaxation, on trouve :

$$\begin{cases} \dot{u} = -\frac{u}{T_2} + (\omega - \omega_0) v \\ \dot{v} = -\frac{v}{T_2} - \omega_1 w - (\omega - \omega_0) u \\ \dot{w} = \omega_1 v - \frac{w}{T_1} - \frac{1}{2T_1} \end{cases}$$

• Analysons la dynamique de relaxation à la résonance ($\omega=\omega_0$) pour un système isolé (pas de collision donc $T_2=2$ T_1) en posant $\Gamma_1=\frac{1}{T_1}$ et $\Gamma_2=\frac{1}{T_2}=\frac{\Gamma_1}{2}$. On obtient :

$$\begin{cases} \dot{u} = -\frac{\Gamma_1}{2} u \\ \dot{v} = -\frac{\Gamma_1}{2} v - \omega_1 w \\ \dot{w} = \omega_1 v - \Gamma_1 w - \frac{\Gamma_1}{2} \end{cases}$$

- Reprenons les mêmes conditions initiales, à savoir $| \Psi(t=0) = | a \rangle$. On trouve alors u(t)=0, $\forall t$. Nous avons donc à résoudre le système de deux équations différentielles couplées du premier ordre.
- La solution stationnaire est $w_s(t) = -\frac{\Gamma_1^2}{2(\Gamma_1^2 + 2\omega_1^2)}$ et $v_s(t) = \frac{\omega_1 \Gamma_1}{\Gamma_1^2 + 2\omega_1^2}$.
- La solution transitoire pour w(t) est donnée par :

$$w_t(t) = A' e^{\lambda_- t} + B' e^{\lambda_+ t}$$
 (20)

avec λ_+ et λ_- solutions de l'équation du second degré en λ :

$$\lambda^2 + \frac{3\Gamma_1}{2}\lambda + (\frac{\Gamma_1^2}{2} + \omega_1^2) = 0$$
 (21)

On trouve :

$$\lambda_{\pm} = -\frac{3\Gamma_1}{4} \pm \frac{1}{2} \sqrt{(\frac{\Gamma_1}{2})^2 - 4\omega_1^2} \tag{22}$$

• Considérons le cas d'un couplage radiatif tel que $\Gamma_1 < 4\omega_1$. Posons $\epsilon = (\frac{\Gamma_1}{4\omega_1})^2 \ (0 \le \epsilon < 1)$. On trouve alors :

$$\lambda_{\pm} = -\frac{3\Gamma_1}{4} \pm i\omega_1 \sqrt{1 - \epsilon} \tag{23}$$

La solution transitoire s'écrit alors :

$$w_t(t) = e^{\frac{-3\Gamma_1}{4}t} \left(A\cos\Omega_r t + B\sin\Omega_r t \right) \tag{24}$$

avec.

$$\Omega_r = \omega_1 \sqrt{1 - \frac{\Gamma_1^2}{16\omega_1^2}}$$

$$= \omega_1 \sqrt{1 - \epsilon} \tag{25}$$

• Les constantes A et B sont déterminées à partir des conditions intitiales de $w(t=0)=-\frac{1}{2}$ et $\dot{w}(t=0)=0$. On trouve :

$$w(t) = e^{\frac{-3\Gamma_1}{4}t} \left(-\frac{\omega_1^2}{\Gamma_1^2 + 2\omega_1^2} \cos \Omega_r t - \frac{3\Gamma_1 \omega_1^2}{4(\Gamma_1^2 + 2\omega_1^2)\Omega_r} \sin \Omega_r t \right) - \frac{1}{2\Gamma_1^2}$$
$$= \frac{1}{2(1+8\epsilon)} \left(e^{\frac{-3\Gamma_1}{4}t} \left(-\cos \Omega_r t - 3\sqrt{\frac{\epsilon}{1-\epsilon}} \sin \Omega_r t \right) - 8\epsilon \right)$$

- Notons que l'introduction de la relaxation radiative induit une modification de la fréquence d'osillation d'un facteur $\sqrt{1-\epsilon}$.
- Comme l'émission spontanée sera proportionnelle à la population dans l'état quantique $\mid b \rangle \quad (=w(t)+\frac{1}{2})$, il est possible de déterminer Γ_1 en suivant le signal de fluorescence (émission spontanée) en fonction du temps.

Couplage non-adiabatique

Dynamique de prédissociation

- Le mécanisme de prédissociation est un exemple de phénomène non-adiabatique
- Couplage entre un état lié et un état dissociatif. Couplage entre un état rovibrationnel (v, J) et les états du continuum de l'état dissociatif.
- L'analyse de l'élargissement spectral des états rovibrationnels donne des informations sur la dynamique de prédissociation.

 $\Delta \nu \Delta t \approx \hbar$

Couplage non-adiabatique

Soit $H_{\rm BO}^{(0)}$ l'hamiltonien Born-Oppenheimer d'ordre 0. On note $\mid g \rangle$, $\mid s \rangle$ et $\mid I \rangle$ des états propres de $H_{\rm BO}^{(0)}$, c'est-à-dire des états adiabatiques du système.

- L'état $\mid g \rangle$ correspond à l'état fondamental de la molécule. On suppose que l'état $\mid g \rangle$ est couplé radiativement uniquement à l'état $\mid s \rangle$, appelé état radiant ou état porte. On a donc $\langle g \mid \mu \mid s \rangle \neq 0$.
- Par contre, les états adiabatiques $\mid I \rangle$ sont supposés ne pas être couplés radiativement avec l'état fondamental $\mid g \rangle$. On a alors $\langle g \mid \mu \mid I \rangle = 0$. On parlera d'états non-radiants

Pour tenir compte des éventuels couplages non adiabatiques, nous allons écrire l'hamiltonien sous la forme suivante :

$$H_{\rm mol} = H_{BO}^{(0)} + V$$
 (27)

où V correspond à un terme de couplage entre états adiabatiques dont les éléments de matrice seront non nuls entre les états $\mid s \rangle$ et $\mid I \rangle$. On a donc $\langle s \mid V \mid I \rangle = V_{sl} \neq 0$.

• On note E_g , E_s et E_l respectivement les énergies des états Born-Oppenheimer $|g\rangle$, $|s\rangle$ et $|l\rangle$. On peut écrire :

$$H_{\mathrm{BO}}^{(0)} = E_{g} \mid g \rangle \langle g \mid +E_{s} \mid s \rangle \langle s \mid +\sum_{l} E_{l} \mid l \rangle \langle l \mid \qquad (28)$$

• Comme V_{sl} est non nul, la matrice de $H_{BO}^{(0)} + V$ n'est plus diagonale dans la base formée par les états propres de $H_{BO}^{(0)}$. L'hamiltonien H_{mol} peut se mettre sous la forme :

$$H_{\text{mol}} = E_{g} |g\rangle\langle g| + E_{s} |s\rangle\langle s|$$

$$+ \sum_{l} E_{l} |l\rangle\langle l|$$

$$+ \sum_{l} V_{sl} |s\rangle\langle l| + \sum_{l} V_{sl}^{*} |l\rangle\langle s|$$
(29)

• Notons $\mid n>$ les états moléculaires du système, c'est-à-dire les états propres de l'hamiltonien H_{mol} . Écrivons les états moléculaires du système sous la forme :

$$\mid n \rangle = C_n^{(s)} \mid s \rangle + \sum_{l} C_n^{(l)} \mid l \rangle$$
 (30)

• Nous allons regarder maintenant comment ces états moléculaires |n> peuvent être déterminés. Nous devons résoudre l'équation de Schrödinger indépendante du temps :

$$H_{\text{mol}} \mid n \rangle = E_n \mid n \rangle$$
 (31)

On aboutit à un jeu d'équations couplées qui s'écrivent :

$$(E_s - E_n)C_n^{(s)} + \sum_l V_{sl} C_n^{(l)} = 0$$
 (32)

$$V_{sl}^* C_n^{(s)} + (E_l - E_n) C_n^{(l)} = 0$$
 (33)

• À partir de l'équation (33), on trouve :

$$C_n^{(I)} = -\frac{V_{sI}^* C_n^{(s)}}{E_I - E_n} \tag{34}$$

que l'on injecte dans l'équation (32) pour finalement obtenir un système de n équations à n inconnues E_n :

$$E_s - E_n - \sum_{l} \frac{|V_{sl}|^2}{E_l - E_n} = 0$$
 (35)

• La résolution numérique de ce système d'équations permet d'obtenir les énergies des l+1 états propres moléculaires $\mid n \rangle$.

• En prenant en compte la normalisation des états moléculaires ($|C_n^{(s)}|^2 + \sum_{l} |C_n^{(l)}|^2 = 1$), on en déduit :

$$|C_n^{(s)}|^2 = \frac{1}{1 + \sum_{l} \frac{|V_{sl}|^2}{(E_l - E_n)^2}}$$
 (36)

- Dans ce modèle, seul l'état $|s\rangle$ est couplé à $|g\rangle$ par l'opérateur dipolaire électrique.
- Comme les états moléculaires $\mid n \rangle$ sont des combinaisons linéaires de $\mid s \rangle$ et $\mid I \rangle$, les éléments de matrice $\langle g \mid \mu \mid n \rangle$ non nuls sont simplement donnés par $\langle g \mid \mu \mid n \rangle = C_n^{(s)} \langle g \mid \mu \mid s \rangle$.
- La probabilité d'excitation par unité de temps est proportionnelle à $|\langle g \mid \mu \mid n \rangle|^2$, c'est-à-dire proportionnelle à $|C_n^{(s)}|^2$.

Nous allons maintenant considérer une approximation, proposée initialement par *Bixon et Jortner*, qui va nous permettre d'obtenir des expressions analytiques simples.

- Ce modèle postule un couplage V_{sl} constant (=V) et un nombre infini d'états |l> également espacés d'une valeur ε' , c'est-à-dire que $E_l=E_s+n'\varepsilon'$.
- On trouve :

$$E_n - E_s = \frac{\pi V^2}{\varepsilon'} cotang[\pi(\frac{E_n - E_s}{\varepsilon'})]$$
 (37)

en utilisant $\sum_{n'=-\infty}^{+\infty} \frac{1}{(n'-x)^2} = \frac{\pi^2}{\sin^2(\pi x)}.$

- Peut se résoudre à partir d'une méthode graphique.
- En posant $X = \frac{\pi(E_n E_s)}{\varepsilon'}$, on obtient :

$$\frac{\varepsilon'^2}{\pi^2 V^2} X = cotang(X) \tag{38}$$

• Les solutions (valeurs de E_n) sont données par les points d'intersection des deux courbes.

On trouve finalement :

$$|C_n^{(s)}|^2 = \frac{V^2}{V^2 + (E_n - E_s)^2 + (\frac{\pi V^2}{\varepsilon I})^2}$$
 (39)

en utilisant $\sum_{n'=-\infty}^{+\infty} \frac{1}{n'-x} = -\frac{\pi}{\tan(\pi x)}.$

- On peut définir la densité d'états qui correspond simplement au nombre d'états par unité d'énergie. Ainsi $\rho(E) = \frac{dN(E)}{dE}$ où N(E) correspond au nombre d'états compris dans l'intervalle [E, E+dE].
- Comme la répartition des états est uniforme (tous les états sont également espacés de la valeur ε'), la densité d'états, notée ρ , est donc constante et donnée par :

$$\rho = \frac{1}{\varepsilon'} \tag{40}$$

- Dans le cas d'une excitation en bande étroite quasi-monochromatique à la pulsation ω , la grandeur $|C_n^{(s)}|^2$ peut être simplement interprétée comme la probabilité d'exciter l'état moléculaire |n> d'énergie E_n , donc la probabilité d'absorption d'un photon $E=\hbar\omega=E_n-E_g$.
- **S**i on prend E_g comme notre référence d'énergie $(E_g = 0)$, la forme du spectre d'absorption en fonction de l'énergie E du photon suivra la dépendance de $|C_n^{(s)}|^2$ en fonction de E_n .

• Ainsi le profil spectral du spectre d'absorption sera une Lorentzienne centrée sur E_s dont la 1/2 largeur à mi-hauteur Δ est donnée par :

$$\Delta = \sqrt{V^2 + (\pi \rho V^2)^2}$$

$$= \pi \rho V^2 \sqrt{1 + (\frac{1}{\pi V \rho})^2}$$
(41)

- La largeur spectrale du spectre d'absorption est directement reliée aux valeurs du couplage V et de la densité d'états ρ .
- Lorsque $V\gg \varepsilon'$, la 1/2 largeur à mi-hauteur peut être approximée par :

$$\Delta = \frac{\pi V^2}{\varepsilon'} \tag{42}$$

Analysons maintenant le cas où le système est optiquement excité par un laser **ultra bref** (typiquement femtoseconde ou sub-picoseconde) et donc très large spectralement.

• Ainsi, à t=0, on aura préparé une superposition cohérente des états moléculaires $\mid n \rangle$ du type :

$$\Psi|(t=0)\rangle = C^{te} \times \langle s \mid \mu \mid g \rangle \times \sum_{n} E(\omega) C_{n}^{(s)*} \mid n \rangle$$
 (43)

avec $E(\omega)$ un terme proportionnel à l'amplitude du champ électrique de l'onde TEM à la pulsation $\omega = \frac{E_n - E_g}{\hbar}$.

• Dans le cas d'une impulsion laser ultra-brève, l'impulsion va être très large spectralement et on aura $E(\omega) = C^{\mathrm{te}} \ \forall \ \omega$ dans le cas limite d'un pulse δ .

• En remarquant que $C_n^{(s)*} = \langle n \mid s \rangle$, la fonction d'onde à t=0 s'écrira :

$$|\Psi(t=0)\rangle = C^{te} \times \sum_{n} \langle n \mid s \rangle |n\rangle$$

$$= C^{te} \times \sum_{n} |n\rangle \langle n \mid s\rangle$$

$$= C^{te} \times |s\rangle$$
(44)

• À l'aide d'un laser ultra-bref, l'état préparé correspond simplement à l'état non couplé $\mid s \rangle$. Ce résultat sera obtenu lorsque la durée de l'impulsion laser τ sera beaucoup plus courte que le temps caractéristique associé au couplage entre $\mid s \rangle$ et les états $\mid I \rangle$.

 Au cours du temps, l'évolution de ce paquet d'onde va être ensuite gouvernée par l'équation de Schrödinger dépendante du temps.
 Chaque état propre moléculaire |n > évolue avec sa pulsation propre \(\frac{E_n}{h} \). Ainsi, la fonction d'onde du système à un instant t s'écrit :

$$|\Psi(t)\rangle = C \sum_{n} C_n^{(s)*} e^{-i\frac{E_n}{\hbar}t} |n\rangle$$
 (45)

où C est une constante proportionnelle au moment de transition $< s|\mu|g>$.

 La probabilité de trouver la molécule dans l'état quantique |s > s'écrit sous la forme :

$$P_{s}(t) = \frac{|\langle s \mid \Psi(t) \rangle|^{2}}{|\langle s \mid \Psi(t=0) \rangle|^{2}}$$

$$\propto |\sum_{n} |C_{n}^{(s)}|^{2} e^{-i\frac{E_{n}}{h}t}|^{2}$$
(46)

• On en déduit l'expression suivante :

$$P_{s}(t) = \sum_{n} |C_{n}^{(s)}|^{4} + \sum_{n,n'} |C_{n}^{(s)}|^{2} |C_{n}'^{(s)}|^{2} \cos \frac{(E_{n} - E_{n'})t}{\hbar}$$
(47)

• Comme $\sum_{n} |C_n^{(s)}|^2 = 1$, on trouve :

$$P_s(t) = 1 - 2\sum_{n,n'} |C_n^{(s)}|^2 |C_n'^{(s)}|^2 \sin^2 \frac{(E_n - E_{n'})t}{2\hbar}$$
 (48)

- Dans le cas général, il apparaît clairement que l'évolution temporelle de l'état porte $|s\rangle$ va dépendre de :
 - L'énergie E_n des états moléculaires, solution de l'équation (35).
 - Le cu couplage à travers les coefficients $C_n^{(s)}$ (voir équation (36)).
- Dans le modèle proposé par Bixon et Jortner, nous avons vu que la différence d'énergie entre les états | I > est constante. Par contre, en toute rigueur, la différence d'énergie entre les états moléculaires | n > ne l'est pas automatiquement.

ullet En effet, l'équation (35) donne en prenant $V_{
m sl}=V$:

$$E_n - E_s = \frac{\pi V^2}{\varepsilon'} cotang[\pi(\frac{E_n - E_s}{\varepsilon'})]$$
 (49)

en utilisant la relation:

$$\sum_{n'=-\infty}^{+\infty} \frac{1}{n'-x} = -\frac{\pi}{\tan(\pi x)} \tag{50}$$

• Comme E_n sera compris entre 2 valeurs successives de E_l , nous ferons l'approximation que les états moléculaires seront également équidistants. Ainsi, $E_n = E_s + n\varepsilon'$. À partir de l'équation (39), nous obtenons :

$$P_{s}(t) = \left| \sum_{n} \frac{V^{2}}{\Delta^{2} + n^{2} \varepsilon'^{2}} e^{-i\frac{Es}{\hbar}t} e^{-i\frac{n\varepsilon'}{\hbar}t} \right|^{2}$$

$$= \left| \sum_{n} \frac{V^{2}}{\Delta^{2} + n^{2} \varepsilon'^{2}} e^{-i\frac{n\varepsilon'}{\hbar}t} \right|^{2}$$
(51)

- Cette fonction est strictement périodique avec la période $T=\frac{2\pi\hbar}{c'}=h\rho.$
- Aux dates $t=\frac{h}{\varepsilon'}$, $\frac{2h}{\varepsilon'}$,... la fonction $P_s(t)$ reprend exactement la même valeur qu'à l'instant initial t=0. On dit que l'on observe des récurrences. Le système initialement en $\mid s \rangle$ visite l'espace des $\mid I \rangle$ avant de revenir dans l'état $\mid s \rangle$.

The end ...

Merci de votre attention Bonnes vacances et ... bonnes révisions