Lecture 34.

Are B-field and E-field connected?

Displacement current.

Maxwell's correction to Ampere's law.

Last Time:

Everything is going so well so far...

- But: why changing magnetic flux creates electric current??
- What exactly moves the charges around??
 - Does the induced emf appear only in a loop?
 Can it appear in a piece of metal?
 - Yes. Example: Eddy currents.
- Can induced emf appear in air? In vacuum?
 Yes, it can.

Q: what physical entity exerts a force on electric charges?

What causes creation of emf in changing magnetic field?

- Charge motion is driven by electric field.
- Varying magnetic field creates electric field! In a wire, in a metal, in vacuum everywhere.
 - emf is defined as work done per unit charge: $d\varepsilon = dW/q$
 - Work of electric force: $dW = \vec{F} \cdot d\vec{l} = q\vec{E} \cdot d\vec{l}$
 - If a charge moves around a entire loop, as in this figure, the work is:

$$W_{\text{closed curve}} = q \oint \vec{E} \cdot d\vec{l}$$

$$\varepsilon = \oint \vec{E} \cdot d\vec{l}$$

Note: non-electrostatic E-field is non-conservative

Therefore: Faraday's law in integral form

$$\varepsilon = \oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

Faraday's law: (now a more sophisticated version describing the electric field induced by changing magnetic field)

- At the age of 14 he became an apprentice to a local bookbinder and bookseller
- In 1812, at the age of 20 and at the end of his apprenticeship, Faraday attended lectures by the eminent English chemist <u>Humphry Davy</u>
- Faraday subsequently sent Davy a 300-page book based on notes that he had taken during these lectures. Davy's reply was immediate, kind, and favourable.

https://en.wikipedia.org/wiki/Michael Faraday

$$\varepsilon = \oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

• In 1813, when Davy damaged his eyesight in an accident with <u>nitrogen trichloride</u>, he decided to employ Faraday as an assistant.

Faraday's law: (integral form)

$$\varepsilon = \oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

It is the first time when E-field and B-field appear in the same equation.

Conclusion:

- We now know two sources of E-field:
 - electric charges
 - > changing magnetic field

- Direction of induced E-field: Lenz's law + RHR!
- I.e. its direction is such that the induced current (in case it would have been created) would result in opposing the change of the magnetic flux.

Q: The magnetic field is decreasing.

How does the induced electric field look like?

E. Something else

Equations for E-field and B-field: Let's put them together

Gauss's law for electricity

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{in}}{\varepsilon_0}$$

Electric charges are sources of E-field

• Faraday's law

$$\varepsilon = \oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

Gauss's law for magnetism

$$\oint \vec{B} \cdot d\vec{A} = 0$$

There are no magnetic monopoles

• One important piece is still missing !!!

Ampere's law: (Integral form)

• It tells us that electric currents produce magnetic field. Okay.

- Ampere's law assumes a choice of:
 - \triangleright An integration path (curve C, along which we integrate \vec{B})
 - \triangleright ...and the surface (surface S) that C captures. We will say that I_{net} is the net current passing through that surface.

 Positive direction for the current: RHR with how you go along the loop

Ampere's law: (Going 3D)

- In fact, surface S is not required to be flat. It can be curved. It just must be any surface restricted by the curve C.
 - \triangleright Indeed, any current passing through S₁ (flat) also passes through S₂ (curved).

 \triangleright Here the net current passing through S_1 (flat) is zero, as well as the current passing through S_2 (curved).

• According to Ampere's law, if two surfaces are bound by the same closed curve, the current through them must be the same (since the integral of the B-field over the curve is for them the same).

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I$$

Ampere's law: (Going 3D)

- But: we are in trouble!
- Consider a charging capacitor, and a semisphere S₂ embracing one of the plates (say, with positive charge):
 - \blacktriangleright the integral over the curve gives $\mu_0 I$ for its flat surface, but zero for the spherical surface...
 - \blacktriangleright Then what is $\oint \vec{B} \cdot d\vec{l}$ over the curve C??

 We need to revisit Ampere's law, that states that B-field relates to currents...

Ampere's law: (Going 3D)

- Ideas:
 - Assume that Ampere's law is valid in many situations, and only needs fine-tuning
 - ➤ Note that electric field through S₂ changes.
 Can this observation be useful?
 - Wait... There are two sources of E-field:
 - (i) electric charges
 - ❖ (ii) changing B-field
 - ➤ What if, likewise, there are two sources of B-field:
 - (i) electric currents, and
 - ❖ (ii) changing E-field?

Ampere's law: (Let's fix it)

- Assumption:
 - ➤ B-field can be created not only by current (=moving charge), but also by changing electric flux (that's what J.C. Maxwell has recognized in 1855).

> Let us quantify this assumption.

Q: Show that for a charging capacitor, the current I that charges it and the electric flux Φ_e inside it are connected by:

$$E = \frac{G}{\varepsilon_o} = \frac{G}{A\varepsilon_o}$$

$$\frac{d\Phi_e}{dt} = \frac{I}{\varepsilon_0}$$

$$\frac{d}{dt} \phi_e = \frac{d}{dt} \left(A \cdot E(t) \right) = A \frac{d}{dt} \frac{Q(t)}{E_0 \rho} = \frac{1}{E_0} \frac{dQ(t)}{dt} = \frac{\overline{I}}{E_0}$$

$$T = \left[\mathcal{E}_{o} \frac{d\phi_{e}}{dt} \right]$$

Ampere's law (revisited):

• We found, for a charging capacitor:

$$\frac{d\Phi_e}{dt} = \frac{I}{\varepsilon_0}$$

- Therefore, the quantity $\varepsilon_0 \frac{d\Phi_e}{dt}$:
 - > Has units of current, [A]
 - \triangleright It passes through S_2 , and
 - \triangleright Equals the current I that passes through S_1
- We can use $\varepsilon_0 \frac{d\Phi_e}{dt}$, which we will call "displacement current" I_{disp}^{*} the same way as I in the Ampere's law, and claim changing E-field to be another source of B-field!

Ampere-Maxwell's law

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 (I_{\text{ext}} + I_{\text{disp}})$$

^{*)} Nothing is actually being displaced. The name appears for historical reasons from fluid model of electricity. Moreover, there is no current – there is only change of the electric flux!

Ampere-Maxwell's law

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 (I_{\text{ext}} + I_{\text{disp}})$$

$$I_{\rm disp} = \varepsilon_0 \; \frac{d\Phi_e}{dt}$$

- It states that there are two sources of B-field, currents and changing E-field, that should be considered on the same footing, always.
- Let's see how it works:

For
$$S_1$$
: $\oint \vec{B} \cdot d\vec{l} = \mu_0 (I + 0)$

For S₂:
$$\oint \vec{B} \cdot d\vec{l} = \mu_0 (0 + I_{\text{disp}})$$

 Note: displacement current is not a flow of charge. It looks like there is the "same" current "through" a capacitor, but it is just changing electric field, there is no actual charge transfer (since air inside a capacitor is an insulator) !!!

What is the direction of the B-field induced by changing electric field?

- As before, the induced B-field and $I_{\rm disp}$ must obey RHR.
- How do we define the direction of I_{disp} ??

$$I_{\text{disp}} = \varepsilon_0 \frac{d\Phi_e}{dt} = (\varepsilon_0 A) \frac{dE}{dt}$$

- ightharpoonup increasing E: $\frac{dE}{dt} > 0 \Rightarrow$ corresponds to $I_{\text{disp}} \uparrow \uparrow E$
- ightharpoonup decreasing E: $\frac{dE}{dt} < 0 \Rightarrow$ corresponds to $I_{\text{disp}} \uparrow \downarrow E$

The direction of I_{disp} depends on:

- (1) the direction of \vec{E} , and
- (2) on whether it is increasing or decreasing!

Q: An electrical current I charges a capacitor as shown. In this case, a displacement current I_{disp} flows between the capacitor plates because q(t) is changing as a function of time.

Using Ampere's law, what can you say about the magnetic fields $\vec{B}_1 \& \vec{B}_2$ arounds loop 1 & 2? Assume that you look at the capacitor from the top.

- A. \vec{B}_1 CW & \vec{B}_2 CW
- B. \vec{B}_1 CW & \vec{B}_2 CCW
- C. \vec{B}_1 CCW & \vec{B}_2 CW
- D. \vec{B}_1 CCW & \vec{B}_2 CCW
- $E. \quad \vec{B}_1 \text{ CW } \& \vec{B}_2 = 0$

Q: An electrical current I charges a capacitor as shown. In this case, a displacement current $I_{\rm disp}$ flows between the capacitor plates because q(t) is changing as a function of time.

Using Ampere's law, what can you say about the magnetic fields $\vec{B}_1 \& \vec{B}_2$ arounds loop 1 & 2? Assume that you look at the capacitor from the top.

- Loop 1: RHR for current $I \Rightarrow B_1 \neq 0$, CW
- Loop 2: \vec{E} is increasing (charging capacitor) => $I_{\text{dis}} \uparrow \uparrow \vec{E} => B_2 \neq 0$, CW (RHR)
- (A.) \vec{B}_1 CW & \vec{B}_2 CW
- B. \vec{B}_1 CW & \vec{B}_2 CCW
- C. \vec{B}_1 CCW & \vec{B}_2 CW
- D. \vec{B}_1 CCW & \vec{B}_2 CCW
- E. \vec{B}_1 CW & $\vec{B}_2 = 0$

Q: These figures show a side and top view of a capacitor with charge Q and electric and magnetic fields \vec{E} and \vec{B} at time t. At this time, the charge is:

- A. Increasing
- B. Decreasing
- C. Does not change

Q: These figures show a side and top view of a capacitor with charge Q and electric and magnetic fields \vec{E} and \vec{B} at time t. At this time, the charge is:

- (A.) Increasing
 - B. Decreasing
- C. Does not change

- \vec{B} CCW =>
- $I_{\rm disp}$ out of page, i.e. parallel to $\vec{E} =>$
- $\left(\frac{dE}{dt} > 0\right) \Rightarrow E$ is increasing =>
- *Q* is increasing.

We are looking from the top

Q: The electric field strength in four identical capacitors is shown as a function of time. Rank in order, from largest to smallest, the magnetic field strength at the outer edge of the capacitor (point P) at time t_1 .

A.
$$B_a > B_b > B_c > B_d$$

B.
$$B_a = B_b > B_c = B_d$$

C.
$$B_a > B_b = B_c > B_d$$

D.
$$B_b > B_a > B_d > B_c$$

E.
$$B_c > B_a > B_d > B_b$$

Q: The electric field strength in four identical capacitors is shown as a function of time. Rank in order, from largest to smallest, the magnetic field strength at the outer edge of the capacitor (point P) at time t_1 .

B.
$$B_a = B_b > B_c = B_d$$

C.
$$B_a > B_b = B_c > B_d$$

D.
$$B_b > B_a > B_d > B_c$$

$$E.B_c > B_a > B_d > B_b$$

$$\oint \vec{B} \cdot d\vec{l} = 2\pi r B = \varepsilon_0 \frac{d\Phi_E}{dt} = \varepsilon_0 A \frac{dE}{dt}$$

=> just rank the slopes

Q: The current in an <u>infinitely long</u> solenoid with uniform magnetic field \vec{B} inside is increasing so that the magnitude B increases in time as $B=B_0+kt$.

In what direction is the induced E-field on a circular loop of radius r outside the solenoid, as shown?

- A. CW
- B. CCW
- C. The induced E is zero
- D. Radial, inwards
- E. Radial, outwards

