Lista de Exercicios IPE#5

 $Taiguara\ Melo\ Tupinambas$

Entrega: 23 de junho de 2017

Exercício 1

A distribuição uniforme para o intervalo fechado, dado um parâmetro θ é descrita por:

$$f(x|\theta) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ 0, & caso \ contrário \end{cases}$$

A função de verossimilhança é calculada pelo produtório da probabilidade, $L(\theta|X) = \prod_{1}^{n} \frac{1}{\theta}$ e é descrito por:

$$L(\theta|X_{x_i:x_n}) = \begin{cases} \frac{1}{\theta^n}, & 0 \le x_i \le \theta \\ 0, & caso \ contrário \end{cases}$$

O estimador será dado pela maximização da função de verossimilhança. Nota-se que, para valores de $x_i \leq \theta$ a função é monotonicamente decrescente. Desta forma, a estimativa que maximiza essa função é o menor valor de $\theta \geq x_i$. Ou seja, o estimador de MV será o valor máximo das amostras $X_1, ..., X_n$.

$$\hat{\theta}_{MV} = \max(X_n) \tag{1}$$

O estimador de θ pelo Método dos Momentos da função uniforme é dado por:

$$E[X] = \frac{\theta}{2} \tag{2}$$

$$\hat{\theta}_{MM} = \frac{2}{n} \sum_{n} x_i \tag{3}$$

Simulando para um $\theta = 3$, temos que ambos estimadores convergem a medida que a quantidade de amostras aumenta

```
theta<-3
N<-1000
Theta_MV<-numeric(N)
Theta_MM<-numeric(N)

for (j in 1:N) {
    x<-runif(j,max=theta)

    # Máxima Verossimilhança
    Theta_MV[j]<-max(x)</pre>
```

Máxima Verossimilhança

Método dos Momentos

Exercício 2

O estimador de θ pelo Método dos Momentos é a mesma do exercício 1, pois abrindo o intervalo não muda o valor esperado da pdf

Porém, a função de verossimilhança para o intervalo aberto é descrita por:

$$L(\theta|X_{x_i:x_n}) = \begin{cases} \frac{1}{\theta^n}, & 0 < x_i < \theta \\ 0, & caso \; contr\'ario \end{cases}$$

Neste caso, para valores de $x_i < \theta$ a função é monotonicamente decrescente e o estimador seria dado pelo menor valor de $\theta > x_i$. Como não há nenhum valor possível de x_i que se iguala a θ , o estimador é indefinido.

Exercício 3

Como o intervalo da distribuição uniforme tem largura 1, a função de verossimilhança, dessa vez, é dada por:

$$L(\theta|X_{x_i:x_n}) = \begin{cases} 1, & \theta < x_i < \theta + 1\\ 0, & caso \ contrário \end{cases}$$

E seu valor máximo é 1, que ocorre quando $\theta < x_i < \theta + 1$, ou, fazendo modificaçÕes, $x_i - 1 < \theta < x_i$ Logo, o estimador $\hat{\theta}_{MV}$ estaria entre $\max(x_{i:n}) + 1 < \theta < \max(x_{i:n})$. Como o intervalo é aberto, não há valores de x_i que se igualam a θ e o estimador é indefinido. Caso o intervalo fosse fechado, porém, para uma quantidade infinita de amostras, o intervalo definido para θ convergiria para um ponto apenas, sendo ele o próprio θ . O estimador seria então definido por:

$$\hat{\theta}_{MV_1} = \min(X_n); ou \tag{4}$$

$$\hat{\theta}_{MV_2} = \max(X_n) - 1; \tag{5}$$

O estimador de θ pelo Método dos Momentos da função uniforme é dado por:

$$E[X] = \frac{2\theta + 1}{2} \tag{6}$$

$$\hat{\theta}_{MM} = \frac{2^{\sum_{i=1}^{n} x_i} - 1}{2} \tag{7}$$

Simulando para um $\theta = 3$, temos que ambos estimadores (caso o intervalo fosse fechado) convergem a medida que a quantidade de amostras aumenta.

```
theta<-3
N<-1000

Theta_MV1<-numeric(N)
Theta_MV2<-numeric(N)
Theta_MM<-numeric(N)</pre>
```

Máxima Verossimilhança 1

Máxima Verossimilhança 2

Método dos Momentos

