22MAT121-Discrete Mathematics AIE-C

SET-A

- 1. Let R be a relation on the set of ordered pairs of positive integers such that $((a,b),(c,d)) \in R$ if and only if a+d=b+c. Show that R is an equivalence relation. What are the elements in the equivalence class of (1,1)? [6 Marks]
- 2. Let $R = \{(x, y) : x = y^2\}$ is a relation defined on \mathbb{Z}^+ . Is it reflexive, irreflexive, antisymmetric, and/or asymmetric? [4 Marks]

22MAT121-Discrete Mathematics AIE-C

SET-B

- 1. Let $R = \{(x, y) : x < y^2\}$ is a relation defined on \mathbb{Z}^+ . Is it reflexive, irreflexive, antisymmetric, and/or asymmetric? [4 Marks]
- 2. Let R be a relation on the set of ordered pairs of positive integers such that $((a, b), (c, d)) \in R$ if and only if ad = bc. Show that R is an equivalence relation. What are the elements in the equivalence class of (2, 2)? [6 Marks]

SET-A

- 1. Let R be a relation on the set of ordered pairs of positive integers such that $((a,b),(c,d)) \in R$ if and only if a+d=b+c. Show that R is an equivalence relation. What are the elements in the equivalence class of (1,1)? [6 Marks]
- 2. Let $R = \{(x, y) : x = y^2\}$ is a relation defined on \mathbb{Z}^+ . Is it reflexive, irreflexive, antisymmetric, and/or asymmetric? [4 Marks]

SET-B

- 1. Let $R = \{(x, y) : x < y^2\}$ is a relation defined on \mathbb{Z}^+ . Is it reflexive, irreflexive, antisymmetric, and/or asymmetric? [4 Marks]
- 2. Let R be a relation on the set of ordered pairs of positive integers such that $((a,b),(c,d)) \in R$ if and only if ad = bc. Show that R is an equivalence relation. What are the elements in the equivalence class of (2,2)? [6 Marks]