Manual for Package: mathematics Revision 19M

Karl Kästner

$\mathrm{June}\ 12,\ 2022$

Contents

1	calend	ar	1
	1.1	days_per_month	1
	1.2	isnight	1
2	mathe	matics	1
	2.1	cast_byte_to_integer	1
3	comple	ex-analysis	1
	3.1	1 11	1
	3.2	$complex_exp_product_im_re \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	2
	3.3	$complex_exp_product_re_im \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	2
	3.4	$complex_exp_product_re_re $	2
	3.5	croots	3
	3.6	$root_complex \dots \dots \dots \dots \dots$	3
	3.7	test_imroots	3
4	deriva	tion	3
	4.1	derive_acfar1	3
	4.2	derive_ar1_spectral_density	4
	4.3	derive_ar2param	4
	4.4		4
	4.5	_	4
	4.6		4
	4.7		4
	4.8	derive_laplacian_fourier_piecewise_linear	4
	4.9		4
	4.10		4
	4.11		4
5	deriva	tion/master	5

	5.1	derive_bc_one_sided	5
	5.2	derive_convergence	5
	5.3	derive_error_fdm	5
	5.4	derive_fdm_poly	5
	5.5	derive_fdm_power	5
	5.6	derive_fdm_taylor	5
	5.7	derive_fdm_vargrid	5
	5.8	derive_fem_2d_mass	5
	5.9	derive_fem_error_2d 5	5
	5.10	derive_fem_error_3d6	3
	5.11	derive_fem_sym_2d	3
	5.12	derive_grid_constants	3
	5.13	derive_interpolation	3
	5.14	derive_laplacian	3
	5.15	derive_limit	3
	5.16	derive_nc_1d	3
	5.17	derive_nc_1d	3
	5.18	derive_nc_2d	3
	5.19	derive_nonuniform_symmetric	3
	5.20	derive_richardson	7
	5.21	derive_sum	7
	5.22	nn	7
	5.23	test_derive	7
	5.24	test_derive_fdm_poly	7
	5.25	test_filter	7
	5.26	test_vargrid	7
6	deriva	tion 7	7
U	6.1	$ m simplify_atan \dots \dots$	
	0.1	Simping_atan	1
7	mathe	matics 8	3
	7.1	entropy	3
8	finance	e 8	3
	8.1	derive_skewrnd_walsh_paramter	
	8.2	gbm_cdf	
	8.3	gbm_fit	
	8.4	gbm_fit_old	
	8.5	gbm_inv	
	8.6	gbm_mean	
	8.7	gbm_median	
	8.8	gbm_pdf	
	8.9	gbm_simulate	
	8.10	gbm_skewness	
	-	5	

	8.11	gbm_std
	8.12	gbm_transform_time_step
	8.13	put_price_black_scholes
	8.14	skewgbm_simulate
	8.15	skewrnd_walsh
9	finance	·
	9.1	$test_gbm \ \ldots \ \ldots \ \ldots \ \ \ \ \ \ \ \ \ \ \ \ \ $
	9.2	$test_gbm_pdf \dots \dots$
	9.3	$test_skewrnd_walsh $
10	c ·	/ecmpm
10		7/@STFT 10
	10.1	STFT
	10.2	itransform
	10.3	stft
	10.4	stftmat
	10.5	transform
11	fourier	. 11
тт	11.1	amplitude_from_peak
	11.1	dftmtx_man
	11.3	example_fourier_window
	$11.3 \\ 11.4$	fft_man
	11.4 11.5	fftsmooth
	11.6	fix_fourier
	11.0 11.7	fourier_axis
	11.7	fourier_axis_2d
	11.9	fourier_cesaro_correction
	11.10	fourier_coefficient_piecewise_linear
	11.10	fourier_coefficient_piecewise_linear_1
	11.11 11.12	fourier_coefficient_ramp3
	11.12	fourier_coefficient_ramp_pulse
	11.13	fourier_coefficient_ramp_step
	11.14	fourier_coefficient_square_pulse
	11.16	fourier_coefficients
	11.17	
	11.18 11.19	
		fourier_derivative_matrix_2d
	11.20	fourier_expand
	11.21	fourier_fit
	11.22	fourier_interpolate
	11.23	fourier_matrix
	11.24	fourier_matrix2
	11.25	fourier_matrix3

11.26	fourier_matrix_exp
11.27	fourier_multiplicative_interaction_coefficients 16
11.28	fourier_power
11.29	fourier_power_exp
11.30	fourier_predict
11.31	fourier_quadratic_interaction_coefficients
11.32	fourier_random_phase_walk
11.33	fourier_range
11.34	fourier_regress
11.35	fourier_resampled_fit
11.36	fourier_resampled_predict
11.37	fourier_signed_square
11.38	fourier_transform
11.39	fourier_transform_fractional
11.40	hyperbolic_fourier_box
11.41	idftmtx_man
11.42	laplace_2d_pwlinear
11.43	mean_fourier_power
11.44	moments_fourier_power
11.45	nanfft
11.46	peaks
11.47	roots_fourier
11.48	spectral_density
11.49	std_fourier_power
11.50	test_complex_exp_product
11.51	test_fourier_filter
11.52	test_idftmtx
11.53	var_fourier_power
12 math	
12.1	gaussfit_quantile
19 maam	etry/@Geometry 21
13.1	Geometry
13.1 13.2	arclength
13.2 13.3	arclength_old
13.4	arclength_old2
13.4 13.5	base_point
13.6	base_point_limited
13.0 13.7	centroid
13.7	cosa_min_max
13.8 13.9	cross2
13.9 13.10	curvature
13.10 13.11	ddot
10.11	uuo_0

13.12	distance	22
13.13	distance2	22
13.14	dot	23
13.15	edge_length	23
13.16		23
13.17		23
13.18	hexagon	23
13.19	inPolygon	23
13.20		23
13.21		23
13.22	inTriangle	24
13.23		24
13.24		24
13.25		24
13.26	minimum_distance_lines	24
13.27		24
13.28		24
13.29		24
13.30		25
13.31		25
13.32		25
13.33		25
13.34		25
13.35		25
13.36		25
13.37		26
13.38		26
13.39		26
13.40		26
13.41		26
13.42		26
13.43		26
13.44		26
13.45	tobarycentric2	27
13.46	tobarycentric3	27
13.47		27
13.48		27
13.49		27
13.50		27
13.51		27
13.52		27
13.53		28
13.54		28
13.55	_	28

	13.56	tri_isacute	3
	13.57	tri_isobtuse	3
	13.58	tri_semiperimeter	3
	13.59	tri_side_length	3
14	geome	try 29)
	14.1	Polygon	
	14.2	bounding_box	9
	14.3	curvature_1d	9
	14.4	cvt	9
	14.5	deg_to_frac	9
	14.6	ellipse)
	14.7	ellipseX)
	14.8	ellipseY)
	14.9	first_intersect)
	14.10	golden_ratio)
	14.11	hypot3)
	14.12	meanangle)
	14.13	meanangle2)
	14.14	meanangle3	1
	14.15	meanangle4	1
	14.16	medianangle	1
	14.17	medianangle2	1
	14.18	pilim	1
	14.19	streamline_radius_of_curvature	1
15	histogi	m cam/@Histogram 32	2
	15.1	2x	2
	15.2	Histogram	2
	15.3	bimodes	2
	15.4	cdf	2
	15.5	cdfS	2
	15.6	chi2test	2
	15.7	cmoment	2
	15.8	cmomentS	2
	15.9	entropy	2
	15.10	entropyS	3
	15.11	export_csv	
	15.12	iquantile	
	15.13	kstest	
	15.14	kurtosis	
	15.15	kurtosisS	
	15.16	mean	
	15.17	meanS	

15.18	median
15.19	medianS
15.20	mode
15.21	modeS
15.22	moment
15.23	momentS
15.24	pdf
15.25	quantile
15.26	quantileS
15.27	resample
15.28	setup
15.29	skewness
15.30	skewnessS
15.31	stairs
15.32	stairsS
15.33	std
15.34	stdS
15.35	var
15.36	varS
16 histog	
16.1	hist_man
16.2	histadapt
16.3	histconst
16.4	pdf_poly
16.5	plotcdf
16.6	test_histogram
17 mathe	ematics 36
17.1	imrotmat
10 lincon	-algebra 36
18 linear	9
18.1 18.2	
18.3	$\operatorname{colnorm} \dots \dots$
18.4	
16.4	connectivity_matrix
19 linear	-algebra/coordinate-transformation 37
19.1	barycentric2cartesian
19.2	barycentric2cartesian3
19.3	cartesian2barycentric
19.4	cartesian_to_unit_triangle_basis
19.5	ellipsoid2geoid
19.6	example_approximate_utm_conversion
	<u>_</u>
	7

	10.7	1.11.9.4
	19.7	latlon2utm
	19.8	latlon2utm_simple
	19.9	lowrance_mercator_to_wgs84
	19.10	nmea2utm
	19.11	sn2xy
	19.12	unit_triangle_to_cartesian
	19.13	utm2latlon
	19.14	xy2nt
	19.15	xy2sn
	19.16	xy2sn_java
	19.17	xy2sn_old
20	linear-	algebra 39
	20.1	det2x2
	20.2	det3x3
	20.3	$\det 4x4 \dots 39$
	20.4	$diag2x2 \dots $
	20.5	down
	20.6	eig2x2
21		algebra/eigenvalue 40
	21.1	eig_bisection
	21.2	eig_inverse
	21.3	eig_inverse_iteration
	21.4	eig_power_iteration
22	linear-	algebra/eigenvalue/jacobi-davidson 40
	22.1	afun_jdm
	22.2	davidson
	22.3	jacobi_davidson
	22.4	jacobi_davidson_qr
	22.5	jacobi_davidson_qz
	22.6	jacobi_davidson_simple
	22.7	jdqr
	22.8	jdqr_sleijpen
	22.9	jdqr_vorst
	22.10	jdqz
	22.11	mfunc_jdm
	22.11	mgs
	22.12	minres
	22.13	mv_jacobi_davidson
23		algebra 56
	23.1	first

	23.2	gershgorin_circle	56
	23.3	haussdorff	56
	23.4		56
	23.5	9	56
	23.6	inv3x3	56
	23.7		56
	23.8		57
o 4	1.	1 1 /1	
24		0 /	57
	24.1		57
	24.2		57
	24.3	8	57
	24.4		57
	24.5		57
	24.6	0	57
	24.7	0 1	57
	24.8		57
	24.9		58
	24.10	9	58
	24.11	test_lanczos	58
25	linear-	algebra	58
	25.1	8	58
	20.1		-
26		v	58
	26.1	0	58
	26.2	minres_recycle	58
27	linear-	algebra	58
	27.1	8 8 4 4	58
	27.2		58
	27.3		59
	27.4		59
	27.5		59
	27.6		59
	27.7	1	59
	27.8		59
	27.9		59
	27.10		59
	27.10		60
	27.11		60
	27.12		60
	27.13		60
	27.14		60 60

	27.16	orth_man	60
	27.17	orthogonalise	60
	27.18	padd2	61
	27.19	paddext	61
	27.20	paddval1	61
	27.21	paddval2	61
28		algebra/polynomial	61
	28.1	chebychev	
	28.2	piecewise_polynomial	
	28.3	roots1	
	28.4	roots2	
	28.5	roots2poly	
	28.6	roots3	
	28.7	roots4	
	28.8	roots_piecewise_linear	
	28.9	test_roots4	62
	28.10	vanderi_1d	62
00	1.		00
29		algebra	62 62
	29.1	randrot	_
	29.2	right	
	29.3	rot2	
	29.4 29.5	rot2dir	
		rot3	
	29.6	rotR	
	29.7	rownorm	
	29.8	simmilarity_matrix	
	29.9	spnorm	
	29.10	spzeros	
	29.11	test_roots3	
	29.12	transform_minmax	
	29.13	transpose3	64
	29.14	transposeall	
	29.15	up	
	29.16	vander_nd	
	29.17	$vanderd_2d \dots \dots$	64
30	logic		64
00	30.1	bitor_man	64
31	master	<i>,</i> =	65
	31.1	attach_boundary_value	
	31.2	cartesian_polar	65

	31.3	img_vargrid	65
	31.4	plot_basis_functions	65
	31.5	plot_convergence	65
	31.6	plot_dof	65
	31.7	plot_eigenbar	65
	31.8	plot_error_estimation	65
	31.9	plot_error_estimation_2	65
	31.10	plot_error_fem	66
	31.11	plot_fdm_kernel	66
	31.12	plot_fdm_vs_fem	66
	31.13	plot_fem_accuracy	66
	31.14	plot_function_and_grid	66
	31.15	plot_hat	66
	31.16	plot_hydrogen_wf	66
	31.17	plot_mesh	66
	31.18	plot_mesh_2	66
	31.19	plot_refine	66
	31.20		67
	31.21		67
	31.22		67
	31.23	plot_wavefunction	67
32	master	r/ported	67
	32.1	• =	67
	32.2		67
	32.3		67
	32.4		67
	32.5	derivative_2d	67
	32.6		68
	32.7	element_neighbour_2d	68
	32.8	prefetch_2d	68
	32.9	promote_2d_3_10	68
	32.10	promote_2d_3_15	68
	32.11		68
	32.12	promote_2d_3_6	68
	32.13		68
	32.14	promote_3d_4_20	68
	32.15	promote_3d_4_35	68
	32.16	vander_2d	69
	32.17	vander_3d	69
33	numbe	on theory	69
		ri-theory	~ ~
	33.1	v	69

	33.3	floorn
	33.4	iseven
	33.5	multichoosek
	33.6	nchoosek_man
	33.7	pythagorean_triple
	33.8	roundn
34	numer	ical-methods 70
	34.1	advect_analytic
35	numer	ical-methods/differentiation 70
	35.1	derivative1
	35.2	derivative2
36	numer	ical-methods 70
	36.1	diffuse_analytic
37	numer	ical-methods/finite-difference 72
	37.1	cdiff
	37.2	cdiffb
	37.3	central_difference
	37.4	cmean
	37.5	cmean2
	37.6	derivative_matrix_1_1d 7
	37.7	derivative_matrix_2_1d 7
	37.8	derivative_matrix_2d
	37.9	derivative_matrix_curvilinear
	37.10	derivative_matrix_curvilinear_2
	37.11	difference_kernel
	37.12	diffusion_matrix_2d_anisotropic
	37.13	diffusion_matrix_2d_anisotropic2
	37.14	distmat
	37.15	downwind_difference
	37.16	gradpde2d
	37.17	laplacian
	37.18	laplacian_fdm
	37.19	lrmean
38	numer	ical-methods/finite-difference/master 73
	38.1	fdm_adaptive_grid
	38.2	$fdm_adaptive_refinement_old \dots \dots$
	38.3	$fdm_assemble_d1_2d \ldots \ldots 75$
	38.4	$fdm_assemble_d2_2d \ldots \ldots$
	38.5	fdm_confinement

	38.6	$fdm_{-}d_{-}vargrid \dots \dots$	74
	38.7	$fdm_h_unstructured \ldots \ldots \ldots \ldots \ldots \ldots$	74
	38.8	fdm_hydrogen_vargrid	74
	38.9	$fdm_mark_unstructured_2d \ldots \ldots \ldots \ldots \ldots$	74
	38.10	$fdm_plot \dots \dots$	74
	38.11	$fdm_plot_series \dots \dots$	74
	38.12	$fdm_refine_2d \ldots \ldots \ldots \ldots \ldots \ldots$	74
	38.13	$fdm_refine_3d \dots \dots$	74
	38.14	$fdm_refine_unstructured_2d \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	74
	38.15	$fdm_schroedinger_2d \dots \dots \dots \dots \dots \dots \dots$	75
	38.16	$fdm_schroedinger_3d \dots \dots \dots \dots \dots \dots \dots \dots$	75
	38.17	relocate	75
39	numer	rical-methods/finite-difference	7 5
	39.1	mid	75
	39.2	pwmid	75
	39.3	ratio	75
	39.4	steplength	75
	39.5	swapoddeven	75
	39.6	test_derivative_matrix_2d	76
	39.7	test_derivative_matrix_curvilinear	76
	39.8	test_difference_kernel	76
	39.9	$upwind_difference $	76
40	numer	rical-methods/finite-element	76
	40.1	Mesh_2d_java	76
	40.2	Tree_2d_java	76
	40.3	assemble_1d_dphi_dphi	76
	40.4	assemble_1d_phi_phi	76
	40.5	assemble_2d_dphi_dphi_java	76
	40.6	assemble_2d_phi_phi_java	77
	40.7	assemble_3d_dphi_dphi_java	77
	40.8	assemble_3d_phi_phi_java	77
	40.9	boundary_1d	77
	40.10	boundary_2d	77
	40.11	boundary_3d	77
	40.12	check_area_2d	77
	40.13	circmesh	77
	40.14	cropradius	77
	40.15	display_2d	77
	40.16	display_3d	78
	40.17	distort	78
	40.18	err_2d	78
	40.19	estimate_err_2d_3	78

	40.20	example_1d	78
	40.21	example_2d	78
	40.22	explode	78
	40.23		78
	40.24	fem_2d_heuristic_mesh	78
	40.25	fem_get_2d_radial	78
	40.26	fem_interpolation	79
	40.27	fem_plot_1d	79
	40.28	fem_plot_1d_series	79
	40.29	fem_plot_2d	79
	40.30	fem_plot_2d_series	79
	40.31	fem_plot_3d	79
	40.32	fem_plot_3d_series	79
	40.33	fem_plot_confine_series	79
	40.34	fem_radial	79
	40.35	flip_2d	30
	40.36	get_mesh_arrays	30
	40.37	hashkey	30
41		,	30
	41.1	0	30
	41.2	0	30
	41.3	0	30
	41.4	0	30
	41.5	0	30
	41.6		30
	41.7	0	31
	41.8	0	31
	41.9	9	31
	41.10		31
	41.11		31
	41.12		31
	41.13		31
	41.14		31
	41.15		31
	41.16	e e e e e e e e e e e e e e e e e e e	31
	41.17	9	32
	41.18	0	32
	41.19		32
	41.20	0	32
	41.21	9	32
	41.22	9	32
	41.23		32
	41.24	int_2d_gauss_33	32

41.25	int_2d_gauss_4	82
41.26	int_2d_gauss_6	82
41.20 41.27	int_2d_gauss_7	83
41.28	int_2d_gauss_9	83
41.29	int_2d_nc_10	83
41.20 41.30	int_2d_nc_15	83
41.31	int_2d_nc_21	83
41.32	int_2d_nc_3	83
41.33	int_2d_nc_6	83
41.34	int_3d_gauss_1	83
41.35	int_3d_gauss_11	83
41.36	int_3d_gauss_14	83
41.30 41.37	int_3d_gauss_15	84
41.38	int_3d_gauss_24	84
41.39	int_3d_gauss_4	84
41.40	int_3d_gauss_45	84
41.41	int_3d_gauss_5	84
41.42	int_3d_nc_11	84
41.42	int_3d_nc_4	84
41.44	int_3d_nc_6	84
41.45	int_3d_nc_8	84
41.40	IIIt_5tt_IIt_0	04
42 numer	rical-methods/finite-element	85
42.1	interpolation_matrix	85
42.2	mark	85
42.3		
	mark_ld	85
42.4	$mark_1d$	85 85
$42.4 \\ 42.5$	$mesh_1d_uniform \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	85
42.5	mesh_1d_uniform	85 85
$42.5 \\ 42.6$	mesh_1d_uniformmesh_3d_uniformmesh_interpolateneighbour_1d	85 85 85
42.5 42.6 42.7	mesh_1d_uniform	85 85 85 85
42.5 42.6 42.7 42.8	mesh_1d_uniformmesh_3d_uniformmesh_interpolateneighbour_1d	85 85 85 85 85
42.5 42.6 42.7 42.8 42.9	mesh_1d_uniform	85 85 85 85 85 85
42.5 42.6 42.7 42.8 42.9 42.10	mesh_1d_uniform	85 85 85 85 85 86
42.5 42.6 42.7 42.8 42.9 42.10 42.11	mesh_1d_uniform	85 85 85 85 85 86 86
42.5 42.6 42.7 42.8 42.9 42.10 42.11 42.12	mesh_1d_uniform . mesh_3d_uniform . mesh_interpolate . neighbour_1d . old . pdeeig_1d . pdeeig_2d . pdeeig_3d . polynomial_derivative_1d potential_const .	85 85 85 85 85 86 86
42.5 42.6 42.7 42.8 42.9 42.10 42.11 42.12 42.13	mesh_1d_uniform	85 85 85 85 86 86 86
42.5 42.6 42.7 42.8 42.9 42.10 42.11 42.12 42.13	mesh_1d_uniform	85 85 85 85 86 86 86 86
42.5 42.6 42.7 42.8 42.9 42.10 42.11 42.12 42.13 42.14 42.15	mesh_1d_uniform mesh_3d_uniform mesh_interpolate neighbour_1d old pdeeig_1d pdeeig_2d pdeeig_3d polynomial_derivative_1d potential_const potential_coulomb	85 85 85 85 86 86 86 86 86
42.5 42.6 42.7 42.8 42.9 42.10 42.11 42.12 42.13 42.14 42.15	mesh_1d_uniform mesh_3d_uniform mesh_interpolate neighbour_1d old pdeeig_1d pdeeig_2d pdeeig_3d polynomial_derivative_1d potential_const potential_coulomb potential_harmonic_oscillator project_circle	85 85 85 85 86 86 86 86 86 86
42.5 42.6 42.7 42.8 42.9 42.10 42.11 42.12 42.13 42.14 42.15 42.16 42.17	mesh_1d_uniform mesh_3d_uniform mesh_interpolate neighbour_1d old old pdeeig_1d pdeeig_2d pdeeig_3d polynomial_derivative_1d potential_const potential_coulomb potential_harmonic_oscillator project_circle project_rectangle	85 85 85 85 86 86 86 86 86 86 86
42.5 42.6 42.7 42.8 42.9 42.10 42.11 42.12 42.13 42.14 42.15 42.16 42.17 42.18	mesh_1d_uniform mesh_3d_uniform mesh_interpolate neighbour_1d old pdeeig_1d pdeeig_2d pdeeig_3d polynomial_derivative_1d potential_const potential_coulomb potential_harmonic_oscillator project_circle project_rectangle promote_1d_2_3	85 85 85 85 86 86 86 86 86 86 86

	42.22	quadrilaterate	87
	42.23		87
	42.24	refine_1d	87
	42.25		87
	42.26	refine_2d_structural	87
	42.27		87
	42.28		87
	42.29		88
	42.30		88
	42.31		88
	42.32		88
	42.33		88
	42.34		88
	42.35		88
	42.36		88
	42.37		88
43	numer	ical-methods/finite-volume/@Advection	89
	43.1	Advection	89
	43.2	$dot_advection $	89
44		, , ,	89
	44.1	0 1	89
	44.2	O Company of the comp	89
	44.3	dot_burgers_fft	89
15	numon	ical-methods/finite-volume/@Finite_Volume	89
40	45.1	•	89
	45.1		90
	45.3		90 90
	45.4		90 90
	45.5	1 1 0	90 90
	40.0	step_unspirt	90
46	numer	ical-methods/finite-volume/@Flux_Limiter	90
	46.1	·	90
	46.2		90
	46.3	9	91
	46.4		91
	46.5		91
	46.6		91
	46.7		91
	TU.1	111uoci , , , , , , , , , , , , , , , , , , ,	
			91
	46.8	superbee	
		superbee	91

47	numer	ical-methods/finite-volume/@KDV	92
	47.1	dot_kdv_fdm	92
	47.2	dot_kdv_fft	92
	47.3	kdv_split	92
48	numer	$ical-methods/finite-volume/@Reconstruct_Average_E$	volve 92
	48.1	Reconstruct_Average_Evolve	92
	48.2	$advect_highres \ \dots \dots \dots \dots \dots \dots \dots \dots \dots$	93
	48.3	advect_lowress	93
49	numer	ical-methods/finite-volume	93
	49.1	Godunov	93
	49.2	Lax_Friedrich	93
	49.3	Measure	93
	49.4	Roe	93
	49.5	fv_swe	94
	49.6	staggered_euler	94
	49.7	staggered_grid	94
50	numer	ical-methods	94
	50.1	grid2quad	94
٠.		• 1 1 1 1 1 1	0.4
51		ical-methods/integration	94
	51.1	cumintL	94
	51.2	cumintR	94
	51.3	int_trapezoidal	94
52	numer	${\it ical-methods/interpolation/@Kriging}$	95
	52.1	Kriging	95
	52.2	estimate_semivariance	95
	52.3	$interpolate_{\dots$	95
5 9	numon	ical-methods/interpolation/@RegularizedInterpolator	.1 05
JJ		RegularizedInterpolator1	
	53.2	init	95 95
	00.∠		90
54	numer	ical-methods/interpolation/@RegularizedInterpolator	2 96
	54.1	RegularizedInterpolator2	96
	54.2	init	96
		*l	0.00
55		${ m ical-methods/interpolation/@RegularizedInterpolator}$	
	55.1	RegularizedInterpolator3	96
	55.2	init	96
56	numer	ical-methods/interpolation	96

	56.1	IDW	96
	56.2	IPoly	96
	56.3	IRBM	
	56.4	ISparse	
	56.5	Inn	97
	56.6	Interpolator	97
	56.7	fixnan	97
	56.8	idw1	
	56.9	idw2	97
	56.10	inner2outer	98
	56.11	inner2outer2	98
	56.12	$interp1_circular \dots \dots \dots \dots \dots \dots \dots \dots \dots $	98
	56.13	$interp1_limited \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	98
	56.14	$interp1_man $	98
	56.15	$interp1_piecewise_linear \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	98
	56.16	$interp1_save $	
	56.17	$interp1_slope \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	
	56.18	$interp1_smooth$	
	56.19	$interp1_unique \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
	56.20	$interp2_man$	
	56.21	interp_angle	
	56.22	interp_fourier	
	56.23	interp_fourier_batch	
	56.24	$interp_sn \dots \dots$	
	56.25	$interp_sn2$	
	56.26	$interp_sn3$	
	56.27	$interp_sn_\dots\dots\dots$	
	56.28	limit_by_distance_1d	
	56.29	resample1	
	56.30	resample_d_min	
	56.31	resample_vector	
	56.32	test_interp1_limited	101
57	numor	ical-methods	101
91	57.1	inverse_complex	
	57.2	maccormack_step	
	57.3	minmod	
	51.0		101
58	numer	ical-methods/multigrid	101
	58.1	mg_interpolate	101
	58.2	mg_restrict	101
59		ical-methods/ode/@BVPS_Characteristic	101
	ьO 1	LIVING Chamactonistic	1 () 1

	59.2	assemble1_A
	59.3	$assemble 1_A_Q \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	59.4	$assemble 2_A \ldots \ldots$
	59.5	assemble_AA
	59.6	assemble_AAA
	59.7	assemble_Ic
	59.8	bvp1c
	59.9	check_arguments
	59.10	couple_junctions
	59.11	derivative
	59.12	init
	59.13	inner2outer_bvp2c
	59.14	reconstruct
	59.15	resample
	59.16	solve
	59.17	test_assemble1_A
	59.18	test_assemble2_A
60	numer	$ical-methods/ode/@Time_Stepper$ 104
	60.1	Time_Stepper
	60.2	solve
01		*1 (11/-1 10.4
θŢ		$_{ m cal-methods/ode}$ 104
	61.1	bvp2fdm
	61.2	bvp2wavetrain
	61.3	bvp2wavetwopass
	61.4	ivp_euler_forward
	61.5	ivp_euler_forward2
	61.6	ivprk2
	61.7	ode2_matrix
	61.8	ode2characteristic
	61.9	step_trapezoidal
	61.10	test_bvp2
62	numer	ical-methods/optimisation 106
_	62.1	aitken_iteration
	62.2	anderson_iteration
	62.3	armijo_stopping_criterion
	62.4	astar
	62.5	binsearch
	62.6	bisection
	62.7	box1
	62.8	box2
	62.9	cauchy

	62.10	cauchy2	107
	62.11	directional_derivative	
	62.12	dud	
	62.13	extreme3	
	62.14	extreme_quadratic	
	62.15	ftest	
	62.16	fzero_bisect	
	62.17	fzero_newton	108
	62.18	grad	108
	62.19	hessian	108
	62.20	hessian_from_gradient	109
	62.21	hessian_projected	109
	62.22	line_search	109
	62.23	line_search2	109
	62.24	line_search_polynomial	109
	62.25	line_search_polynomial2	110
	62.26	line_search_quadratic	110
	62.27	line_search_quadratic2	110
	62.28	line_search_wolfe	110
	62.29	ls_bgfs	110
	62.30	$ls_broyden \ \ldots \ldots \ldots \ldots \ldots \ldots$	111
	62.31	$ls_generalized_secant \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	111
	62.32	nlcg	111
	62.33	nlls	111
	62.34	picard	
	62.35	poly_extrema	
	62.36	quadratic_function	
	62.37	quadratic_programming	
	62.38	quadratic_step	
	62.39	rosenbrock	
	62.40	sqrt_heron	
	62.41	$test_directional_derivative \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
	62.42	test_dud	
	62.43	test_fzero_newton	
	62.44	$test_line_search_quadratic2 \dots \dots \dots \dots \dots \dots$	
	62.45	test_ls_generalized_secant	
	62.46	test_nlcg_6_order	
	62.47	test_nlls	113
63	numer	ical-methods/pde	113
50	63.1	laplacian2d_fundamental_solution	
	33.1		110
64		ical-methods/piecewise-polynomials	113
	611	Hammital	119

	64.2	hp2_fit
	64.3	hp2_predict
	64.4	hp_predict
	64.5	hp_regress
	64.6	lp_count
	64.7	lp_predict
	64.8	lp_regress
	64.9	lp_regress
65	numer	ical-methods 114
	65.1	test_adams_bashforth
66	patter	ns 115
	66.1	band_pattern
	66.2	hexagonal_pattern
67	regress	sion/@PolyOLS 115
	67.1	PolyOLS
	67.2	coefftest
	67.3	detrend
	67.4	fit
	67.5	fit
	67.6	predict
	67.7	$\operatorname{predict}_{-}$
	67.8	slope
68	regress	sion/@PowerLS 116
•	68.1	PowerLS
	68.2	fit
	68.3	predict
	68.4	$\operatorname{predict}_{-}$
69	rogross	${ m sion/@Theil}$
	_	Theil
	69.2	detrend
	69.3	fit
	69.4	predict
	69.5	slope
	09.0	stope
7 0	regress	
	70.1	Theil_Multivariate
	70.2	areg
	70.3	ginireg
	70.4	hess implered
	70.5	11lin 118

	70.6	lsq_sparam
	70.7	polyfitd
	70.8	regression_method_of_moments
	70.9	robustlinreg
	70.10	theil2
	70.11	theil_generalised
	70.12	total_least_squares
	70.13	weighted_median_regression
71	set-the	eory 120
	71.1	issubset
72	mathe	matics 120
	72.1	shuffle_index
7 3	sional_	processing 120
	73.1	acfar1
	73.2	acfar1_2
	73.3	acfar2
	73.4	acfar2_2
	73.5	ar1_cutoff_frequency
	73.6	ar1_effective_sample_size
	73.7	ar1_mse_mu_single_sample
	73.8	ar1_mse_pop
	73.9	ar1_mse_range
	73.10	ar1_spectrum
	73.11	ar1_to_tikhonov
	73.11	ar1_var_factor
	73.12	ar1_var_factor
	73.14	ar1_var_range2
	73.14	arldelay
	73.16	ar1delay_old
	73.17	ar2_acf2c
	73.18	ar2conv
	73.19	ar2dof
	73.20	ar2param
	73.21	asymwin
	10.21	asymwii
74	_	processing/autocorr 123
	74.1	autocorr2
	74.2	autocorr_bandpass
	74.3	autocorr_brownian_phase
	74.4	autocorr_brownian_phase_2d
	74.5	autocorr brownian phase across 124

	74.6	autocorr_decay_rate
	74.7	autocorr_effective_sample_size
	74.8	autocorr_fft
	74.9	autocorr_genton
	74.10	autocorr_highpass
	74.11	autocorr_lowpass
	74.12	autocorr_periodic_additive_noise
	74.13	autocorr_periodic_windowed
	74.14	autocorr_radial
7 5	signal-	processing 125
	75.1	average_wave_shape
	75.2	bandpass
	75.3	bandpass1d
	75.4	$bandpass1d_fft \dots $
	75.5	$bandpass1d_implicit \dots \dots$
	75.6	bandpass2
	75.7	$bandpass2d\dots$
	75.8	$bandpass2d_2 \dots \dots 126$
	75.9	$bandpass2d_fft \ldots $
	75.10	$bandpass2d_ideal $
	75.11	$bandpass2d_implicit \dots \dots$
	75.12	$bandpass2d_iso\ldots\ldots\ldots\ldots\ldots 126$
	75.13	$bandpass_arg \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	75.14	bandpass_f0_to_rho
	75.15	bandpass_max
	75.16	bandpass_max2
	75.17	bartlett
	75.18	bin1d
	75.19	bin2d
	75.20	binormrnd
	75.21	coherence
	75.22	conv1_man
	75.23	conv2_man
	75.24	$conv2z \dots \dots 128$
	75.25	conv30
	75.26	$conv\ \dots\ \dots\ \dots\ 128$
	75.27	$conv_centered \dots \dots \dots 128$
	75.28	$convz \ \dots \ \dots \ 128$
	75.29	$cos exp delay \dots \dots \dots 128$
	75.30	csmooth
	75.31	$daniell_window \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	75.32	$danielle_window \ \dots \ \dots \ 129$
	75 33	db?neper 190

75.34	db2power
75.35	derive_bandpass_normalization_and_zeros 129
75.36	derive_danielle_weight
75.37	derive_limit_0_acfar
75.38	detect_peak
75.39	determine_phase_shift
75.40	determine_phase_shift1
75.41	digital_low_pass_filter
75.42	doublesum_ij
75.43	effective_sample_size_to_ar1
75.44	filt_hodges_lehman
75.45	filter1
75.46	filter2
75.47	filter
75.48	filter_r_to_f0
75.49	filter_rho_to_f0
75.50	filter_twosided
75.51	filteriir
75.52	filterp
75.53	filterp1
75.54	filterstd
75.55	firls_man
75.56	fit_spectral_density
75.57	fit_spectral_density_2d
75.58	fit_spectral_density_radial
75.59	flattopwin
75.60	frequency_response_boxcar
75.61	freqz_boxcar
75.62	gaussfilt1
75.63	hanchangewin
75.64	hanchangewin2
75.65	hanwin
75.66	hanwin
75.67	high_pass_1d_simple
75.68	highpass
75.69	highpass1d_fft_cos
75.70	highpass1d_implicit
75.71	highpass2d_fft
75.72	highpass2d_ideal
75.73	highpass2d_implicit
75.74	highpass_arg
75.75	highpass_fc_to_rho
75.76	jackknife_block
75.77	kaiserwin

75.78	kalman	5
75.79	lanczoswin	5
75.80	last	5
75.81	lowpass	5
75.82	lowpass1d_fft	
75.83	lowpass1d_implicit	5
75.84	lowpass2	5
75.85	lowpass2d_2	6
75.86	lowpass2d_anisotropic	
75.87	lowpass2d_fft	6
75.88	lowpass2d_ideal	6
75.89	lowpass2d_implicit	6
75.90	lowpass_arg	6
75.91	lowpass_fc_to_rho	6
75.92	lowpass_iir	6
75.93	lowpass_iir_symmetric	6
75.94	lowpassfilter2	7
75.95	maxfilt1	7
75.96	meanfilt1	7
75.97	meanfilt2	
75.98	medfilt1_man	
75.99	medfilt1_man2	7
75.100	medfilt1_padded	7
75.101	medfilt1_reduced	
75.102	mid_term_single_sample	
75.103	minfilt1	
75.104	mu2ar1	8
75.105	mysmooth	8
75.106	nanautocorr	8
75.107	nanmedfilt1	8
75.108	neper2db	8
75.109	oscillator_noisy	
75.110	peaks_man	9
75.111	periodogram	9
75.112	periodogram_2d	9
75.113	periodogram_annular	9
75.114	periodogram_bartlett	9
75.115	periodogram_bootstrap	9
75.116	periodogram_confidence_interval	9
75.117	periodogram_median	9
75.118	periodogram_p_value	
75.119	periodogram_qq	
75.120	periodogram_quantiles	
	periodogram_radial	

	75.122	periodogram_std
	75.123	periodogram_test_periodicity
	75.124	periodogram_test_periodicity_2d
	75.125	periodogram_test_stationarity
	75.126	periodogram_welsh
	75.127	polyfilt1
	75.128	qmedfilt1
	75.129	radial_window
	75.130	randar1
	75.131	randar1_dual
	75.132	randar2
	75.133	randarp
	75.134	range_window
	75.135	rectwin
	75.136	recursive_sum
	75.137	select_range
	75.138	smooth1d_parametric
	75.139	smooth2
	75.140	smooth_man
	75.141	smooth_parametric
	75.142	smooth_parametric2
	75.143	smooth_with_splines
	75.144	smoothfft
76	signal-	processing/spectral-density 144
	76.1	
	10.1	$spectral_density_ar2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 144$
	76.2	spectral_density_ar2
		spectral_density_area
	76.2	spectral_density_area
	76.2 76.3 76.4 76.5	spectral_density_area
	76.2 76.3 76.4	spectral_density_area
	76.2 76.3 76.4 76.5	spectral_density_area144spectral_density_bandpass2d_ideal144spectral_density_bandpass_2d144spectral_density_bandpass_2d_scale144spectral_density_bandpass_2d_scale_old144spectral_density_bandpass_continuous144
	76.2 76.3 76.4 76.5 76.6 76.7 76.8	spectral_density_area144spectral_density_bandpass2d_ideal144spectral_density_bandpass_2d144spectral_density_bandpass_2d_scale144spectral_density_bandpass_2d_scale_old144spectral_density_bandpass_continuous144spectral_density_bandpass_continuous145
	76.2 76.3 76.4 76.5 76.6 76.7 76.8 76.9	spectral_density_area144spectral_density_bandpass2d_ideal144spectral_density_bandpass_2d144spectral_density_bandpass_2d_scale144spectral_density_bandpass_2d_scale_old144spectral_density_bandpass_continuous144spectral_density_bandpass_continuous_max145spectral_density_bandpass_continuous_max2par145
	76.2 76.3 76.4 76.5 76.6 76.7 76.8 76.9 76.10	spectral_density_area144spectral_density_bandpass2d_ideal144spectral_density_bandpass_2d144spectral_density_bandpass_2d_scale144spectral_density_bandpass_2d_scale_old144spectral_density_bandpass_continuous144spectral_density_bandpass_continuous_max145spectral_density_bandpass_continuous_max2par145spectral_density_bandpass_continuous_scale145
	76.2 76.3 76.4 76.5 76.6 76.7 76.8 76.9	spectral_density_area144spectral_density_bandpass2d_ideal144spectral_density_bandpass_2d144spectral_density_bandpass_2d_scale144spectral_density_bandpass_2d_scale_old144spectral_density_bandpass_continuous144spectral_density_bandpass_continuous_max145spectral_density_bandpass_continuous_max2par145spectral_density_bandpass_continuous_scale145spectral_density_bandpass_discrete145
	76.2 76.3 76.4 76.5 76.6 76.7 76.8 76.9 76.10 76.11 76.12	spectral_density_area144spectral_density_bandpass2d_ideal144spectral_density_bandpass_2d144spectral_density_bandpass_2d_scale144spectral_density_bandpass_2d_scale_old144spectral_density_bandpass_continuous144spectral_density_bandpass_continuous_max145spectral_density_bandpass_continuous_max2par145spectral_density_bandpass_continuous_scale145spectral_density_bandpass_discrete145spectral_density_bandpass_discrete145spectral_density_brownian_phase145
	76.2 76.3 76.4 76.5 76.6 76.7 76.8 76.9 76.10 76.11 76.12 76.13	spectral_density_area144spectral_density_bandpass2d_ideal144spectral_density_bandpass_2d144spectral_density_bandpass_2d_scale144spectral_density_bandpass_2d_scale_old144spectral_density_bandpass_continuous144spectral_density_bandpass_continuous_max145spectral_density_bandpass_continuous_max2par145spectral_density_bandpass_continuous_scale145spectral_density_bandpass_discrete145spectral_density_brownian_phase145spectral_density_brownian_phase_2d145
	76.2 76.3 76.4 76.5 76.6 76.7 76.8 76.9 76.10 76.11 76.12 76.13 76.14	spectral_density_area144spectral_density_bandpass2d_ideal144spectral_density_bandpass_2d144spectral_density_bandpass_2d_scale144spectral_density_bandpass_2d_scale_old144spectral_density_bandpass_continuous144spectral_density_bandpass_continuous_max145spectral_density_bandpass_continuous_max2par145spectral_density_bandpass_continuous_scale145spectral_density_bandpass_discrete145spectral_density_brownian_phase145spectral_density_brownian_phase_2d145spectral_density_brownian_phase_across145
	76.2 76.3 76.4 76.5 76.6 76.7 76.8 76.9 76.10 76.11 76.12 76.13 76.14 76.15	spectral_density_bandpass2d_ideal
	76.2 76.3 76.4 76.5 76.6 76.7 76.8 76.9 76.10 76.11 76.12 76.13 76.14 76.15 76.16	spectral_density_bandpass2d_ideal
	76.2 76.3 76.4 76.5 76.6 76.7 76.8 76.9 76.10 76.11 76.12 76.13 76.14 76.15 76.16 76.17	spectral_density_bandpass2d_ideal
	76.2 76.3 76.4 76.5 76.6 76.7 76.8 76.9 76.10 76.11 76.12 76.13 76.14 76.15 76.16	spectral_density_bandpass2d_ideal

	76.20	spectral_density_highpass
	76.21	spectral_density_highpass2d_ideal
	76.22	spectral_density_highpass_2d
	76.23	spectral_density_highpass_cos
	76.24	spectral_density_lorentzian
	76.25	spectral_density_lorentzian_max
	76.26	spectral_density_lorentzian_max2par
	76.27	spectral_density_lorentzian_scale
	76.28	spectral_density_lowpass
	76.29	spectral_density_lowpass2d_ideal
	76.30	spectral_density_lowpass_2d
	76.31	spectral_density_lowpass_one_sided
	76.32	spectral_density_periodic_additive_noise
	76.33	spectral_density_wperiodic
77	signal-	processing 148
	77.1	spectrogram
	77.2	std_window
	77.3	sum_i_lag
	77.4	sum_ii
	77.5	sum_ii
	77.6	sum_ij
	77.7	sum_ij
	77.8	sum_ij_partial
	77.9	sum_multivar
	77.10	test_acfar1
	77.11	test_acfar1_2
	77.12	test_acfar1_3
	77.13	test_acfar1_4
	77.14	test_acfar2
	77.15	$test_ar1_var_factor \dots 149$
	77.16	$test_ar1_var_factor_2$
	77.17	$test_ar1_var_mu_single_sample $
	77.18	test_ar1_var_pop
	77.19	$test_ar1_var_pop_1$
	77.20	test_ar1delay
	77.21	test_bivariate_covariance_term
	77.22	test_convexity
	77.23	test_lanczoswin
	77.24	test_madcorr
	77.25	$test_randar1 \dots \dots$
	77.26	$test_randar1_multivariate \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	77.27	$test_randar2$
	77.28	test sum ii 151

77.29	0 test_sum_multivar	1
77.30	0 test_trifilt1	1
77.31	test_wautocorr	1
77.32	$2 \text{test_wavelet_transform} \dots \dots \dots \dots \dots 15$	1
77.33	$8 ext{test_wordfilt} ext{$	1
77.34	$test_xar1_mid_term \dots 15$	1
77.35	$_{ m 0}$ tikhonov_to_ar1	1
77.36	5 trapwin	1
77.37	$^{\prime}$ trifilt1	2
77.38	3 trifilt 2	2
77.39) triwin	2
77.40) triwin2	2
77.42	varar1	2
77.42	welch_spectrogram	2
77.43	8 wfilt	2
77.44		
77.45	-	
77.46	6 window_make_odd	3
77.47	' winfilt0	3
77.48		
77.49	_	
77.50) wmedfilt	3
77.53		
77.52	wordfilt_edgeworth	4
77.53	8 wrapphase	4
77.54		
77.55	xcorr_man	4
78 sort		
78.1	$sort2 \dots \dots$	4
78.2	sort2d	4
-	ial-functions 15	_
79.1	bessel_sphere	
79.2	digamma_man	
79.3	$\exp 10 \dots $	
79.4	hankel_sphere	
79.5	hermite	
79.6	legendre_man	
79.7	neumann_sphere	5
90 -4-4	lating 15	_
80 stat:		
80.1	atan_s2	
8U.2	рега китт	n

	80.3	beta_mean
	80.4	beta_mode_to_parameter
	80.5	beta_skew
	80.6	beta_std
	80.7	chi2_kurt
	80.8	chi2_mean
	80.9	chi2_skew
	80.10	$chi2_std \dots \dots$
	80.11	$coefficient_of_determination \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	80.12	$conditional_expectation_normal $
	80.13	$correlation_confidence_pearson \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
81	statisti	ics/distributions 157
01	81.1	PDF
	81.2	binorm_separation_coefficient
	81.3	binormcdf
	81.4	binormfit
	81.5	binormpdf
	81.6	edgeworth_cdf
	81.7	edgeworth_pdf
	81.8	gam_moment2param
	81.9	logn_mean
	81.10	logn_mode
	81.11	logn_moment2param
	81.12	logn_param2moment
	81.13	logn_std
	81.14	lognpdf
	81.15	pdfsample
	81.16	t2cdf
	81.17	t2inv
00		
82	statisti	
	82.1	example_standard_error_of_sample_quantiles
	82.2	f_var_finite
	82.3	fisher_mean
	82.4	fisher_std
	82.5	gam_mean
	82.6	gam_std
	82.7	gamma_mode_to_parameter
	82.8	gamma_stirling
	82.9	gaussfit3
	82.10	gaussfit_quantile
	82.11	geoserr
	82.12	geostd

	82.13	hodges_lehmann_correlation
	82.14	hodges_lehmann_dispersion
83	statisti	ics/information-theory 161
	83.1	akaike_information_criterion
	83.2	$bayesian_information_criterion \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
84	statisti	
	84.1	kurtncdf
	84.2	kurtnpdf
	84.3	kurtosis_bias_corrected
	84.4	limit $\dots \dots \dots$
	84.5	$log factorial \ldots \ldots$
	84.6	$loglogpdf \dots \dots$
	84.7	$lognfit_quantile \dots \dots$
	84.8	logskewedf
	84.9	logskewpdf
85	statist	log u
	85.1	$lambertw_numeric \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	85.2	$logtrial tcdf \dots \dots$
	85.3	logtrialtinv
	85.4	$log trial t mean \dots \dots$
	85.5	$logtrial tpdf \dots \dots$
	85.6	logtrialtrnd
	85.7	logtricdf
	85.8	logtriinv
	85.9	logtrimean
	85.10	logtripdf
	85.11	logtrirnd
	85.12	logucdf
	85.13	logucm
	85.14	loguinv
	85.15	logumean
	85.16	logupdf
	85.17	logurnd
	85.18	loguvar
	85.19	medlogu
	85.20	test_logurnd
	85.21	triedf
	85.22	triinv
	85.23	trimedian
	85.24	tripdf
	85.25	trirnd 166

86	statisti	ics 1	66
	86.1	max_exprnd	66
	86.2	maxnnormals	
	86.3	$mean_generalized_gampdf \dots \dots$	66
	86.4	midrange	66
	86.5	minavg	66
	86.6	mode_man	67
97	atatiati	ica/mamant statistics	67
01	87.1	ics/moment-statistics 1 autocorr_man3	
	87.2	autocorr_man4	
	87.3	autocorr_man5	
	87.4	blockserr	
	87.5	comoment	
	87.6	corr_man	
	87.7	cov_man	
	87.8	dof	
	87.9	edgeworth_quantile	
	87.10	effective_sample_size	
	87.11	f_correlation	69
	87.12	f_finite	69
	87.13	lmean	69
	87.14	lmoment	69
	87.15	maskmean	69
	87.16	masknanmean	69
	87.17	mean1	69
	87.18	mean_man	69
	87.19	mse	70
	87.20	nanautocorr_man1	70
	87.21	nanautocorr_man2	70
	87.22	nanautocorr_man4	
	87.23	nancorr	70
	87.24	nancumsum	70
	87.25		70
	87.26	nanr2	71
	87.27	nanrms	71
	87.28	nanrmse	
	87.29	nanserr	
	87.30	nanwmean	
	87.31	nanwstd	
	87.32	nanwar	
	87.33	nanxcorr	
	87.34	pearson	
	87.35	•	72

	87.36	pool_samples	2
	87.37	qmean	2
	87.38	range_mean	2
	87.39	rmse	2
	87.40	serr	2
	87.41	serr1	3
	87.42	test_qskew	3
	87.43	test_qstd_qskew_optimal_p	3
	87.44	wautocorr	3
	87.45	wcorr	3
	87.46	wcov	
	87.47	wdof	
	87.48	wkurt	
	87.49	wmean	
	87.50	wrms	
	87.51	wserr	4
	87.52	wskew	4
	87.53	wstd	
	87.54	wvar	4
88	statisti	ics 17	5
	88.1	nangeomean	
	88.2	nangeostd	
o o		. /	_
89	89.1	ics/nonparametric-statistics 173 kernel1d	
		kernel2d	
	09.2	Remeizd	Э
90	statisti	ics 178	5
	90.1	normmoment	5
	90.2	normpdf2	6
91	statisti	ics/order-statistics 170	6
-	91.1	hodges_lehmann_location	
	91.2	kendall	
	91.3	kendall_to_pearson	
	91.4	mad2sd	
	91.5	madcorr	
	91.6	median2_holder	
	91.7	median_ci	
	91.8		
		median_man	
	91.9	median_man	7
		mediani	
	91.9 91.10 91.11	mediani	7

	91.12	nanwquantile
	91.13	oja_median
	91.14	qkurtosis
	91.15	qmoments
	91.16	qskew
	91.17	qskewq
	91.18	qstdq
	91.19	quantile1_optimisation
	91.20	quantile2_breckling
	91.21	quantile2_chaudhuri
	91.22	quantile2_projected
	91.23	quantile2_projected2
	91.24	quantile_envelope
	91.25	quantile_regression_simple
	91.26	ranking
	91.27	spatial_median
	91.28	spatial_quantile
	91.29	spatial_quantile2
	91.30	spatial_quantile3
	91.31	spatial_rank
	91.32	spatial_sign
	91.33	spatial_signed_rank
	91.34	spearman
	91.35	spearman_rank
	91.36	spearman_to_pearson
	91.37	wmedian
	91.38	wquantile
92	statist	ics 181
	92.1	qstd
	92.2	quantile_extrap
	92.3	quantile_sin
93	statist	ics/random-number-generation 182
	93.1	laplacernd
	93.2	randc
	93.3	skewness2param
	93.4	skewpdf_central_moments
	93.5	skewrnd
	93.6	skewrnd2
94	statist	ics 182
J-1	94.1	range
	94.2	resample_with_replacement

95	statist	ics/resampling-statistics/@Jackknife	183
	95.1	Jackknife	183
	95.2	estimated_STATIC	183
	95.3	matrix1_STATIC	183
	95.4	matrix2	183
96	statist	ics/resampling-statistics	184
	96.1	block_jackknife	184
	96.2	jackknife_moments	
	96.3	moving_block_jackknife	
	96.4	randblockserr	
	96.5	$resample \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	
97	statist	ics	185
٠.	97.1	scale_quantile_sd	
	97.2	sd_sample_quantiles	
	97.3	skew_generalized_normal_fit	
	97.4	skew_generalized_normpdf	
	97.5	skewcdf	
	97.6	skewparam_to_central_moments	
	97.7	skewpdf	
	97.8	spatialrnd	
	97.9	$test_mean_generalized_gampdf$	
	97.10	test_skew_generalized_normpdf	
	97.11	trimmed_mean	
	97.12	ttest2_man	
	97.13	ttest_man	
	97.14	ttest_paired	
	97.15	wgeomean	
	97.16	wgeovar	
	97.17	wharmean	
	97.18	wharstd	
	97.19	wharvar	
	97.20	wnormpdf \dots	187
98	stocha	estic	187
	98.1	brownian_noise_1d_acf	187
	98.2	brownian_noise_1d_fft	187
	98.3	$brownian_noise_2d_fft $	
99	mathe	matics	188
	99.1	$ternary_diagram \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
10	0 test/m	naster	188

100.1	dat_test_lanczos_3d_k_20_n_40
100.2	poisson2d_blk
100.3	qr_implicit_givens_2
100.4	spectral_derivative_2d
100.5	test_2d_eigensolver_hydrogen
100.6	test_2d_refine
100.7	test_3d_eigensolver_hydrogen
100.8	test_FEM
100.9	test_Mesh_3d
100.10	test_arnoldi
100.11	test_arpackc
100.12	test_assemble
100.13	test_assembly_performance
100.14	test_bc_one_sided
100.15	test_compare_solvers
100.16	test_complete
100.17	test_convergence
100.18	test_convergence_b
100.19	test_df_2d
100.20	test_eig_algs
100.21	test_eig_inverse
100.22	test_eigs_lanczos
100.23	test_eigs_lanczos_1
100.24	test_eigs_lanczos_2
100.25	test_eigs_lanczos_performance
100.26	test_fdm
100.27	test_fdm_d_vargrid
100.28	test_fdm_spectral
100.29	test_fem
100.30	test_fem_1d
100.31	test_fem_1d_higher_order
100.32	test_fem_2d_adaptive
100.33	test_fem_2d_higher_order
100.34	test_fem_3d_higher_order
100.35	test_fem_3d_refine
100.36	test_fem_b
100.37	test_fem_derivative
100.38	test_fem_quadrature
100.39	test_final
100.40	test_fix_substitution
100.41	test_forward
100.42	test_get_sparse_arrays
100.43	test_harmonic_oscillator
100.44	test_high_order_fdm_periodic_bc

100.45	100
100.45 100.46	test_hydrogen_wf
100.40 100.47	test_interpolation
100.47	test_inverse_problem
100.48	test_inverse_problem
100.49 100.50	test_jama
100.50	
	test_jd
100.52	test_jdqz
100.53 100.54	test_lanczos_2
	test_lanczos_biorthogonal
100.55	test_laplacian
100.56	test_laplacian_non_uniform
100.57	test_laplacian_simple
100.58	test_mesh_2d_uniform
100.59	test_mesh_2d_uniform_2
100.60	test_mesh_circle
100.61	test_mesh_generation
100.62	test_mesh_interpolate
100.63	test_mg
100.64	test_minres_recycle
100.65	test_multigrid
100.66	test_nc
100.67	test_nonuniform_symmetric
100.68	test_pde
100.69	test_permutation
100.70	test_poison_fem
100.71	test_polar
100.72	test_potential
100.73	test_powers
100.74	test_precondition
100.75	test_project_rectangle
100.76	test_qr
100.77	test_quantum_well
100.78	test_radial_adaptive
100.79	test_radial_confinement
100.80	test_radial_fixes
100.81	test_refine_2d
100.82	test_refine_2d_b
100.83	test_refine_3d
100.84	test_refine_structural
100.85	test_regularisation
100.86	test_round_off
100.87	test_schrödinger_potentials
100.88	test_uniform_mesh

	100.89	test_vargrid			
10	101test 19				
	101.1	$test_bandpass2d \dots \dots$			
	101.2	test_gaussfit3			
	101.3	test_geoserr			
	101.4	test_hexagonal_pattern			
	101.5	test_lognfit_quantile			
	101.6	test_lowpass1d_implicit			
	101.7	$test_lowpass2d_anisotropic $			
	101.8	test_lowpass2d_fft			
	101.9	test_max_normal			
	101.10	test_moments_fourier_power			
	101.11	$test_mtimes3x3198$			
102wavelet 1					
	102.1	contiuous_wavelet_transform			
	102.2	cwt_man			
	102.3	example_wavelets			
	102.4	phasewrap			
	102.5	test_cwt_man			
	102.6	test_phasewrap			
	102.7	test_wavelet			
	102.8	test_wavelet2			
	102.9	test_wavelet_analysis			
	102.10	test_wavelet_reconstruct			
	102.11	test_wtc			
	102.12	wavelet			
	102.13	wavelet_reconstruct			
	102.14	$wavelet_transform \ \dots \ $			

1 calendar

$1.1 \quad days_per_month$

1.2 isnight

2 mathematics

mathematical functions of various kind

2.1 cast_byte_to_integer

cast byte to integer

3 complex-analysis

operations on complex numbers

3.1 complex_exp_product_im_im

3.2 complex_exp_product_im_re

3.3 complex_exp_product_re_im

$3.4 \quad complex_exp_product_re_re$

3.5 croots

```
nth-roots of a complex number
input:
c : complex number
n : order of root
    n must be rational, to obtain n solutions
    otherwise no finite set of solutions exists
r : roots of the complex number
```

root	of a complex number
3.7	$test_imroots$
4	derivation
deriv	ation of several functions by means of symbolic computation
4.1	derive_acfar1
4.2	derive_ar1_spectral_density
4.3	derive_ar2param
	•
4.4	derive_arc_length
4.5	derive_fourier_power
	•
4.6	derive_fourier_power_exp
4.7	derive_laplacian_curvilinear
	-

 ${\bf 3.6 \quad root_complex}$

4.8	$derive_laplacian_fourier_piecewise_linear$
4.9	${\bf derive_logtripdf}$
4.10	${\tt derive_smooth1d_parametric}$
4.11	$derive_spectral_density_bandpass_initial_condition$
	derivation/master derive_bc_one_sided
5.2	$\mathbf{derive_convergence}$
5.3	$derive_error_fdm$
5.4	$derive_fdm_poly$
5.5	$derive_fdm_power$

- ${\bf 5.6}\quad {\bf derive_fdm_taylor}$
- 5.7 derive_fdm_vargrid
- 5.8 derive_fem_2d_mass
- 5.9 derive_fem_error_2d
- 5.10 derive_fem_error_3d
- $5.11 \quad derive_fem_sym_2d$
- ${\bf 5.12}\quad derive_grid_constants$
- 5.13 derive_interpolation
- 5.14 derive_laplacian
- 5.15 derive_limit

5.16	$ m derive_nc_1d$
5.17	$ m derive_nc_1d_$
5.18	derive_nc_2d
5.19	$derive_nonuniform_symmetric$
%	
5.20	derive_richardson
5.21	$derive_sum$
5.22	nn
5.23	${ m test_derive}$
5.24	$test_derive_fdm_poly$
5.25	test_filter

5.26 test_vargrid

6 derivation

derivation of several functions by means of symbolic computation

$6.1 \quad simplify_atan$

symbolic simplification of the arcus tangent

7 mathematics

mathematical functions of various kind

7.1 entropy

8 finance

- $8.1 \quad derive_skewrnd_walsh_paramter$
- $8.2 \quad gbm_cdf$
- $8.3 \quad gbm_fit$
- 8.4 gbm_fit_old

8.5	${ m gbm_inv}$
8.6	gbm_mean
8.7	${ m gbm_median}$
8.8	${ m gbm_pdf}$
8.9	${\bf gbm_simulate}$
8.10	${ m gbm_skewness}$
8.11	${ m gbm_std}$
8.12	${\tt gbm_transform_time_step}$
8.13	${ m put_price_black_scholes}$

 $8.14 \quad skewgbm_simulate$

8.15 skewrnd_walsh

- 9 finance/test
- $9.1 ext{test_gbm}$
- 9.2 $test_gbm_pdf$
- 9.3 test_skewrnd_walsh
- 10 fourier/@STFT
- 10.1 STFT

class for short time fourier transform

Note: the interval Ti should be set to at leat 2*max(T), as otherwise coefficients

tend to oscillate in the presence of noise

Note: for convenience, the independent variable is labeled as time (t),

but the independent variable is arbitrary, so it works likewise in space

10.2 itransform

inverse of the short time fourier transform

10.3 stft_

static wrapper for STFT

10.4 stftmat

transformation matrix for the short time fourier transform

10.5 transform

short time fourier transform

11 fourier

support and analysis functions both for the discrete (fast) fourier transform (dft/fft) and continuous fourier analysis (fourier series)

11.1 amplitude_from_peak

```
amplitude and standard deviation of the amplitude of a frequency
   component

represented by a peak in the fourier domain
input :
h : peak height
w : peak width at half height

output:
a : amplitude in real space
s : standard deviation of the frequency (!)
```

11.2 dftmtx_man

```
fourier matrix in matlab style with a limited number of rows, columns of higher frequencies are omitted
```

```
input :
n : number of samples
nr : number of columns
output :
F : fourier matrix
```

11.3 example_fourier_window

11.4 fft_man

```
fast fourier transform for complex input data input: F \,:\, \text{data in real space} \text{output :} F \,:\, \text{fourier transformation of } F
```

11.5 fftsmooth

smooth the fourier transform and determine upper and lower bound confidence intervals $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

```
input :
f :
sfunc : a smoothing function (for example fir convolution with
    rectangular window)
        returns filtered (mean) value and normalized fir window
nf : window length
nsigma : number of standard deviations for confidnce intervals

output :
ff : filtered fourier transform
l : lower bound
u : upper bound
```

11.6 fix_fourier

```
fill gaps (missing data) by means of fourier extrapolation
fix periodic data series with fourier interpolation
longest gap should not exceed 1/2 of the shortest time span of
   interest (1/cutoff frequency)
note: this limit equals the position of first side lobe of the ft
   of a rectangular window with gap length
```

11.7 fourier_axis

11.8 fourier_axis_2d

11.9 fourier_cesaro_correction

11.10 fourier_coefficient_piecewise_linear

fourier series coefficients of a piecewise linear function
(not coefficient of discrete fourier transform)
function can be discontinuous between intervals
scales domain length to 2pi

input :
l,r : end points of piecewise linear function
lval, rval : values at end points
L : length of domain
n : number of samples/highest frequency

output :
a, b : coefficients for frequency components

11.11 fourier_coefficient_piecewise_linear_1

fourier series coefficients of a piecewise linear function (not coefficient of discrete fourier transform) function can be discontinuous between intervals scales domain length to 2pi

input :

X : end points of piecewise linear function

Y : values at end points

output :

ab : coefficients for frequency components

11.12 fourier_coefficient_ramp3

fourier series coefficient of a ramp

11.13 fourier_coefficient_ramp_pulse

fourier series coefficient of a ramp pules

11.14 fourier_coefficient_ramp_step

fourier coefficient of a ramp-step

11.15 fourier_coefficient_square_pulse

fourier series coefficients of a square pulse

11.16 fourier_cubic_interaction_coefficients

11.17 fourier_derivative

derivative via fourier transform exponential convergence for periodic functions results in spurious oscillations for aperiodic functions

input:

x : data, sampled in equal intervals

k : order of the derivative

dx: kth-derivative of x

note : 1) the derivative converges with spectral accuracy, i.e. is exact up to rounding condition for L sufficiently large and x being periodic

- 2) the derivative converges with order p, when x has only p-continous derivatives, including discontinuous derivatives over the boundary
- 3) discontinuous derivatives result in gibbs phenomenon

11.18 fourier_derivative_matrix_1d

11.19 fourier_derivative_matrix_2d

11.20 fourier_expand

expand values of fourier series

11.21 fourier_fit

fit a fourier series to a set of sample points that are not spaced
 in
equal intervals

11.22 fourier_interpolate

interpolate samples y sampled at moments (location) t to locations ti

11.23 fourier_matrix

transformation matrix for a continuous fourier series (not for the discrete ${\rm dft/fft}$)

11.24 fourier_matrix2

transformation matrix for a continuous fourier series (not for the discrete ${\rm dft/fft}$)

11.25 fourier matrix3

transformation matrix for the continous fourier transform this is a matrix with (2*n+1) real columns

11.26 fourier_matrix_exp

transformation matrix for a continuous fourier series (not for the discrete dft/fft)

11.27 fourier_multiplicative_interaction_coefficients

11.28 fourier_power

powers of a continuous fourier series in sin/cos form
powers of a^p = (ur + u1 sin(ot) + u2 sin(ot+dp))^p
phase of first component assumed 0
frequencies higher than 2-omega ignored in input
frequencies higher than 3-omega not computed

11.29 fourier_power_exp

11.30 fourier_predict

expand a continous fourier series at times t

11.31 fourier_quadratic_interaction_coefficients

11.32 fourier_random_phase_walk

evaluete fourier series where the phase undergoes a brownian motion

11.33 fourier_range

```
approximate range of a continous Fourier series with 2 components range(y) = max(y) - min(y)
```

11.34 fourier_regress

```
fit a continous fourier series to a set of sample points not
    sampled
at equal intervals
```

11.35 fourier_resampled_fit

fits coefficients of a continuous fourier transform, but stores them as resampled values

11.36 fourier_resampled_predict

interpolates a continuous fourier series that has been stored as
 values
at their support points

11.37 fourier_signed_square

```
coefficients of the fourier series of | cos a + cos t | (cos a +
    cos t)
in general
    cos a is midrange
    cos t is tidal variation
c.f Dronkers
```

11.38 fourier_transform

```
continuous fourier transformation of y
(not discrete fourier transformation dft/fft)

input:
    b : data sampled at equal intervals
    T : length of data in time or space, i.e. position of last sample if
    position of first sample is 0
    T_max : maximum period to include

output :
    A : fourier matrix
    p : fourier transformation of b
    tt : TODO
```

11.39 fourier_transform_fractional

11.40 hyperbolic_fourier_box

11.41 idftmtx_man

inverse matrix for the discrete fourier transform in matlab style with a limited number of columns, thus ignoring higher frequencies keep 2nc+1 columns (mean and conj-complex pairs of nc frequencies)

11.42 laplace_2d_pwlinear

least squares with piecewise integration [x0,p,q,r] piecewise linear polynomials at the boundaries

11.43 mean_fourier_power

11.44 moments_fourier_power

11.45 nanfft

discrete fourier transform of a data series with gaps

11.46 peaks

```
peaks of the power spectrum of a disctrete fourier transform
rule for peaks: there is no higher value left or right of the "peak
               until the signal drops to p*y_peak, p = 0.5
works best, when spectrum has been smoothened
input :
f : frequency
y : absolute value of fourier transform (power spectrum)
L : length in space or time of series
output :
a0 : amplitude
s0 : standard deviation (error?) of amplitude
w0 : width of peak
lambda = wave length (period?)
pdx : index of peak
f : frequency (if not given as input)
11.47 roots_fourier
zeros of continuous fourier series series
       f = a_0 + sum_j = n a_i cos(j x) + b_i sin(j x)
11.48 spectral_density
```

$11.49 \quad std_fourier_power$

spectral density

11.50 test_complex_exp_product

- 11.51 test_fourier_filter
- 11.52 test_idftmtx
- $11.53 \quad var_fourier_power$

12 mathematics

mathematical functions of various kind

12.1 gaussfit_quantile

- 13 geometry/@Geometry
- 13.1 Geometry

13.2 arclength

```
arc length of a two dimensional curve 
8th order accurate does not require the segments length to vary smoothly note: the curve can be considered parametric, e.g. x = x(t), y=y(t) and and t = t(s), but the error term contains derivatives of t, thus a non smooth t (strongly varying distance between points) requires the scaling as done below
```

13.3 arclength_old

 $\hbox{arc length of a two dimensional function}\\$

13.4 arclength_old2

arc length of a two dimensional function

13.5 base_point

base point (fusspunkt), i.e. point on a line with shortest distance to another point $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left$

13.6 base_point_limited

base point (Fusspunkt) of a point on a line

13.7 centroid

centroid pf a polygone

13.8 cosa_min_max

13.9 cross2

cross product in two dimensions

13.10 curvature

curvature of a function in two dimensions

13.11 ddot

sum of squares of cos of inner angles of triangle

13.12 distance

equclidan distance between two points

13.13 distance2

euclidean distance between two points
this function requires a and be of equal dimensions, or the least
the first pair or second pair to be a scalar

13.14 dot

dot product

13.15 edge_length

edge length

13.16 enclosed_angle

angle enclosed between two lines

13.17 enclosing_triangle

smallest enclosing equilateral triangle with bottom site paralle to \mathbf{v}

13.18 hexagon

coordinates of a hexagon, scaled and rotated

13.19 inPolygon

flag points contained in a polygon much faster than matlab internal function

13.20 inTetra

flag points contained in tetrahedron

13.21 inTetra2

flag points contained in tetrahedron

13.22 inTriangle

flag points contained in triangle
function [flag, c] = inTriangle(P1,P2,P3,P0)

13.23 intersect

intersect between two lines

13.24 lineintersect

intersect of two lines

13.25 lineintersect1

intersect of two lines

13.26 minimum_distance_lines

minimum distance of two lines in three dimensions

13.27 mittenpunkt

mittenpunkt of a triangle

13.28 nagelpoint

nagelpoint of a triangle

13.29 onLine

13.30 orthocentre

orthocentre of triangle

13.31 plumb_line

13.32 poly_area

area of a polygon
function A = poly_area(x,y)

13.33 poly_edges

edges of a polygon

13.34 poly_set

associate point at arbitary location with a polygon it is contained in and assign the value of the polygon to it

13.35 poly_width

width of polygon width holes by surface normals holes / islands separated with NaN order of points of outer boundary must be cw order of points of holes must be ccw note that this function does not give the true width for expanding sections use voronoi polygons for this

13.36 polyxpoly

intersections of two polygons

13.37 project_to_curve

closest point on a curve with respect to a point at distance to the curve

13.38 quad_isconvex

13.39 random_disk

draw random points on the unit disk

13.40 random_simplex

random point inside of a triangle

13.41 sphere_volume

volume of a sphere
function v = sphere_volume(r)

13.42 tetra_volume

volume of a tetrahedron

13.43 tobarycentric

cartesian to barycentric coordinates

13.44 tobarycentric1

cartesian to barycentric coordinates

13.45 tobarycentric2

cartesian to barycentric coordinates

13.46 tobarycentric3

cartesian to barycentric coordinates

13.47 tri_angle

cos of angles of a triangle

13.48 tri_area

angle of a triangle

13.49 tri_centroid

centroid of a triangle

13.50 tri_distance_opposit_midpoint

distance between corner of a triangle and its opposing mid-point

13.51 tri_edge_length

edge length of a triangle

13.52 tri_edge_midpoint

mid point of a triangle

13.53 tri_excircle

excircle of a triangle

13.54 tri_height

height of a triangle

13.55 tri_incircle

incircle of a triangle

13.56 tri_isacute

flag acute triangles

13.57 tri_isobtuse

flag obntuse triangles

13.58 tri_semiperimeter

semiperimeter of a triangle

13.59 tri_side_length

edge lenght of triangle

14 geometry

14.1 Polygon

Simple 2D polygon class

Polygon properties:

x - x coordinates of polygon
y - y coordinates of polygon
nnodes - number of nodes in the polygon

Polygon methods:

in - checks whether given points lie inside, on the edge, or
 outside of the polygon
area - returns the area of the polygon
centerline - computes the centerline of the river
iscw - check whether polygon is clockwise
reverse - reverse the order of the polygon

14.2 bounding_box

bounding box of X

14.3 curvature_1d

curvature of a sampled parametric curve in two dimensions

14.4 cvt

centroidal voronoi tesselation

14.5 deg_to_frac

degree, minutes and seconds to fractions

14.6 ellipse

return points on an ellipse
n : number of points
ci : confidence interval, i.e. for 1 sigma

14.7 ellipseX

x-coordinates of y-coordinates of an ellipse

14.8 ellipseY

14.9 first_intersect

get first intersection between lines in $\ensuremath{\mathtt{A}}$ and $\ensuremath{\mathtt{B}}$

14.10 golden_ratio

golden ratio

14.11 hypot3

hypothenuse in 3D

14.12 meanangle

weighted mean of angles

14.13 meanangle 2

mean angle

14.14 meanangle3

mean angle

14.15 meanangle4

mean angle

14.16 medianangle

```
{\tt median} angle angle, that has the smallest squared distance to all others
```

14.17 medianangle 2

```
median angle
input
alpha : x*m, [rad] angle

ouput
ma : 1*m, [rad] median angle
sa : 1*m, [rad] standard error of median angle for uncorrelated
    error
```

14.18 pilim

limit to +- pi

14.19 streamline_radius_of_curvature

```
streamline radius of curvature simplifies when rotatate to streamwise coordinates to R = 1/dv/ds * u
```

15 histogram/@Histogram

- 15.1 2x
- 15.2 Histogram
- 15.3 bimodes
- 15.4 cdf
- 15.5 cdfS
- 15.6 chi2test
- 15.7 cmoment
- 15.8 cmomentS

15.9 entropy

15.10 entropyS

 $15.11 \quad export_csv$

15.12 iquantile

15.13 kstest

15.14 kurtosis

15.15 kurtosisS

15.16 mean

15.17 meanS

15.18 median

- 15.19 medianS
- 15.20 mode
- $15.21 \mod S$
- 15.22 moment
- 15.23 momentS
- 15.24 pdf
- 15.25 quantile
- 15.26 quantileS
- 15.27 resample
- 15.28 setup

- 15.29 skewness
- 15.30 skewnessS
- 15.31 stairs
- 15.32 stairsS
- 15.33 std
- 15.34 stdS
- 15.35 var
- 15.36 varS
- 16 histogram
- 16.1 hist_man

- 16.2 histadapt
- 16.3 histconst
- $16.4 \quad pdf_{-}poly$
- 16.5 plotcdf
- 16.6 test_histogram

17 mathematics

mathematical functions of various kind

- 17.1 imrotmat
- 18 linear-algebra
- $18.1 \quad averaging_matrix_2$
- 18.2 colnorm

norms of columns

100	1 ,
18.3	${ m condest}_{-}$
(7)	COHUEST

estimation of the condition number

18.4 connectivity_matrix

19 linear-algebra/coordinate-transformation

19.1 barycentric2cartesian

barycentric to cartesian coordinates

19.2 barycentric2cartesian3

convert barycentric to cartesian coordinates

19.3 cartesian2barycentric

cartesian to barycentric coordinates

$19.4 \quad cartesian_to_unit_triangle_basis$

transform coodinates into unit triangle

19.5 ellipsoid2geoid

19.6 example_approximate_utm_conversion

19.7 latlon2utm

transform latitude and longitude to WGS84 UTM $\,$

19.8 latlon2utm_simple

19.9 lowrance_mercator_to_wgs84

convert lowrance coordinates to wgs84 based on spreadsheet by D Whitney King and Patty B at Lowrance

19.10 nmea2utm

convert nmea messages to utm coordinates

$19.11 \quad sn2xy$

convert sn to xy coordinates

19.12 unit_triangle_to_cartesian

transform coordinates in unit triangle to cartesian coordinates

19.13 utm2latlon

convert wgs84 utm to latitute and longitude

19.14 xy2nt

project all points onto the cross section and assign them $\ensuremath{\text{nz-}}$ coordinates

transform coordinate into N-T reference rotate coordinate, so that cross section goes along x-axis then x and y are n and t respectively scaled by width N and T coordinates ${\tt N}$

$19.15 \quad xy2sn$

convert cartesian to streamwise coordiantes

$19.16 \text{ xy}2\text{sn_java}$

use java port for speed up

19.17 xy2sn_old

transform points from cartesian into streamwise coordinates

 $\ensuremath{\mathsf{NOTE}}$: prefer the java version, this has some problems with round off

20 linear-algebra

20.1 det2x2

2x2 matrix inverse of 2x2 matrices stacked along dim 3

20.2 det3x3

determinant of stacked 3x3 matrices

$20.3 \det 4x4$

determinant of stacked 4x4 matrices

20.4 diag2x2

 ${\tt diagonal} \ {\tt of} \ {\tt stacked} \ {\tt 2x2} \ {\tt matrices}$

20.5 down

$20.6 \quad eig2x2$

eigenvalues of stacked 2x2 matrices

21 linear-algebra/eigenvalue

 ${\bf 21.1 \quad eig_bisection}$

21.2 eig_inverse

21.3 eig_inverse_iteration

${\bf 21.4 \quad eig_power_iteration}$

- 22 linear-algebra/eigenvalue/jacobi-davidson
- 22.1 afun_jdm
- 22.2 davidson
- 22.3 jacobi_davidson
- 22.4 jacobi_davidson_qr
- 22.5 jacobi_davidson_qz
- 22.6 jacobi_davidson_simple
- 22.7 jdqr

```
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   Both V and W orthonormal and orthogonal w.r.t. Qschur
%
   V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0
%
   (A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V
\mbox{\ensuremath{\mbox{\%}}} Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   V W AV.
%
   Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-
  tau*V
   V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0,
%
   (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV;
%
% Compute approximate eigenpair and residual
%
%
```

```
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
  W orthonormal, V and W orthogonal to Qschur,
   W'*W=eye(j), Qschur'*V=0, Qschur'*W=0
%
   W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V),
   M=W'*V
%
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
\% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R;
W=V*H; V(:,j+1)=[]; R=R'*R; M=H(1:j,:)';
%====== ARNOLDI (for initializing spaces)
  _____
%===== END ARNOLDI
  % not accurate enough M=Rw'\(M/Rv);
\%======= COMPUTE SORTED JORDAN FORM
  _____
% compute vectors and matrices for skew projection
% solve preconditioned system
\% 0 step of bicgstab eq. 1 step of bicgstab
```

```
% Then x is a multiple of b
% HIST=[0,1];
explicit preconditioning
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
implicit preconditioning
% collect the updates for x in 1-space
% but, do the orth to Q implicitly
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
% Do the orth to Q explicitly
% In exact arithmetic not needed, but
% appears to be more stable.
% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow, pause
\% 0 step of gmres eq. 1 step of gmres
% Then x is a multiple of b
% O step of gmres eq. 1 step of gmres
\% Then x is a multiple of b
HIST=1;
% Lucky break-down
HIST=[HIST; (gamma~=0)/sqrt(rho)];
% Lucky break-down
% solve in least square sense
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow,% pause
r=r/rho; rho=1;
% HIST=rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow,% pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow, pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow, pause
%----- compute schur form -----
A*Q=Q*S, Q'*Q=eye(size(A));
\% transform real schur form to complex schur form
%----- find order eigenvalues ------
%----- reorder schur form -----
%----- compute qz form ------
%----- sort eigenvalues ------
```

```
%----- sort qz form ------
% i>j, move ith eigenvalue to position j
% determine dimension
% defaults
%% 'v'
```

22.8 jdqr_sleijpen

```
% Read/set parameters
% Initiate global variables
% Return if eigenvalueproblem is trivial
% Initialize V, W:
 V,W orthonormal, A*V=W*R+Qschur*E, R upper triangular
% The JD loop (Standard)
   V orthogonal, V orthogonal to Qschur
%
   V*V=eye(j), Qschur'*V=0,
   W=A*V, M=V'*W
%
%
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
\% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   Both V and W orthonormal and orthogonal w.r.t. Qschur
%
   V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0
%
   (A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V
% Compute approximate eigenpair and residual
%
%
%
```

```
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   V W AV.
%
  Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-
  tau*V
%
   V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0,
%
   (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV;
% Compute approximate eigenpair and residual
%
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   W orthonormal, V and W orthogonal to Qschur,
   W'*W=eye(j), Qschur'*V=0, Qschur'*W=0
%
   W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V),
   M=W'*V
% Compute approximate eigenpair and residual
%
%
%
%
```

```
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R;
W=V*H; V(:,j+1)=[];R=R'*R; M=H(1:j,:)';
%====== ARNOLDI (for initializing spaces)
   %===== END ARNOLDI
   % not accurate enough M=Rw'\(M/Rv);
%====== COMPUTE SORTED JORDAN FORM
   _____
% compute vectors and matrices for skew projection
\% solve preconditioned system
% O step of bicgstab eq. 1 step of bicgstab
\% Then x is a multiple of b
% HIST=[0,1];
explicit preconditioning
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
implicit preconditioning
% collect the updates for x in 1-space
% but, do the orth to Q implicitly
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
% Do the orth to Q explicitly
% In exact arithmetic not needed, but
% appears to be more stable.
% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow, pause
\% 0 step of gmres eq. 1 step of gmres
% Then x is a multiple of b
% O step of gmres eq. 1 step of gmres
\% Then x is a multiple of b
HIST=1;
% Lucky break-down
HIST=[HIST; (gamma~=0)/sqrt(rho)];
% Lucky break-down
```

```
% solve in least square sense
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow,% pause
r=r/rho; rho=1;
% HIST=rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow,% pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow, pause
% HIST = rho;
% HIST=[HIST;rho];
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow, pause
%----- compute schur form -----
A*Q=Q*S, Q'*Q=eye(size(A));
\% transform real schur form to complex schur form
%----- find order eigenvalues ------
\%----- reorder schur form ------
%----- compute qz form ------
%----- sort eigenvalues ------
%----- sort qz form -----
% i>j, move ith eigenvalue to position j
% determine dimension
% defaults
%% 'v'
```

22.9 jdqr_vorst

```
% Read/set parameters
% Initiate global variables
% Return if eigenvalueproblem is trivial
% Initialize V, W:
  V,W orthonormal, A*V=W*R+Qschur*E, R upper triangular
% The JD loop (Standard)
   V orthogonal, V orthogonal to Qschur
%
   V*V=eye(j), Qschur'*V=0,
%
   W=A*V, M=V, *W
% Compute approximate eigenpair and residual
%
%
%
```

```
% Check for convergence
\mbox{\ensuremath{\mbox{\%}}} Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
\% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
   Both V and W orthonormal and orthogonal w.r.t. Qschur
   V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0
   (A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V
%
%
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
%
   V W AV.
%
   Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-
  tau*V
   V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0,
%
   (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV;
% Compute approximate eigenpair and residual
%
%
%
%
```

```
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
% The JD loop (Harmonic Ritz values)
  W orthonormal, V and W orthogonal to Qschur,
   W'*W=eye(j), Qschur'*V=0, Qschur'*W=0
  W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V),
%
   M=W'*V
% Compute approximate eigenpair and residual
%
%
%
% Check for convergence
% Expand the partial Schur form
Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
% Expand preconditioned Schur matrix PinvQ
% Check for shrinking the search subspace
% Solve correction equation
% Expand the subspaces of the interaction matrix
W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R;
W=V*H; V(:,j+1)=[]; R=R'*R; M=H(1:j,:)';
%====== ARNOLDI (for initializing spaces)
  %===== END ARNOLDI
  % not accurate enough M=Rw'\(M/Rv);
%====== COMPUTE SORTED JORDAN FORM
  _____
% accepted separation between eigenvalues:
% no preconditioning
\% solve left preconditioned system
% compute vectors and matrices for skew projection
% precondion and project r
% solve preconditioned system
```

```
% no preconditioning
\% solve two-sided expl. precond. system
% compute vectors and matrices for skew projection
% precondion and project r
% solve preconditioned system
% "unprecondition" solution
%%%% u(:,j+1)=Atilde*u(:,j)
%%%% r(:,j+1)=Atilde*r(:,j)
%----- compute schur form -----
A*Q=Q*S, Q'*Q=eye(size(A));
\% transform real schur form to complex schur form
%----- find order eigenvalues ------
%----- reorder schur form -----
%----- compute qz form ------
%----- sort eigenvalues ------
%----- sort qz form -----
% i>j, move ith eigenvalue to position j
% determine dimension
% defaults
```

22.10 jdqz

```
% Read/set parameters
% Return if eigenvalueproblem is trivial
% Initialize target, test space and interaction matrices
% V=RepGS(Qschur,V); [AV,BV]=MV(V); %%% more stability??
% W=RepGS(Zschur,eval(testspace)); %%% dangerous if sigma~lambda
% Solve the preconditioned correction equation
\% Expand the subspaces and the interaction matrices
% Check for stagnation
% Solve projected eigenproblem
% Compute approximate eigenpair and residual
\%=== an alternative, but less stable way of computing z =====
% display history
% save history
% check convergence
% EXPAND Schur form
\% Expand preconditioned Schur matrix MinvZ=M\Zschur
% check for conjugate pair
\mbox{\ensuremath{\mbox{\%}}} 
 To detect whether another eigenpair is accurate enough
% restart if \dim(V) > \max
% Initialize target, test space and interaction matrices
% additional stabilisation. May not be needed
% V=RepGS(Zschur,V); [AV,BV]=MV(V);
% end add. stab.
% Solve the preconditioned correction equation
\% expand the subspaces and the interaction matrices
```

```
% Check for stagnation
\% compute approximate eigenpair
% Compute approximate eigenpair and residual
% display history
% save history
% check convergence
% expand Schur form
% ZastQ=Z'*Q0
% the final Qschur
% check for conjugate pair
% t perp Zschur, t in span(Q0,imag(q))
% To detect whether another eigenpair is accurate enough
% restart if dim(V)> jmax
%===== END JDQZ
  ______
%-----
%====== PREPROCESSING
  _____
%====== ARNOLDI (for initial spaces)
\mbox{\ensuremath{\%}\xspace}\xspace then precond=I and target = 0: apply Arnoldi with A
%===== END ARNOLDI
  %====== POSTPROCESSING
  _____
%-----
%====== SORT QZ DECOMPOSITION INTERACTION MATRICES
  ===========
%====== COMPUTE SORTED JORDAN FORM
  %===== END JORDAN FORM
  _____
%====== OUTPUT
%====== UPDATE PRECONDITIONED SCHUR VECTORS
```

```
%====== SOLVE CORRECTION EQUATION
  % solve preconditioned system
%====== LINEAR SOLVERS
   _____
% [At,Bt]=MV(x); At=theta(2)*At-theta(1)*Bt;
% xtol=norm(r-At+Z*(Z'*At))/norm(r);
%===== Iterative methods
  % 0 step of bicgstab eq. 1 step of bicgstab
% Then x is a multiple of b
% HIST=[0,1];
explicit preconditioning
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
implicit preconditioning
% collect the updates for x in 1-space
% but, do the orth to Z implicitly
% compute norm in 1-space
% HIST=[HIST; [nmv,rnrm/snrm]];
% sufficient accuracy. No need to update r,u
\% Do the orth to Z explicitly
% In exact arithmetic not needed, but
% appears to be more stable.
% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow
\% 0 step of gmres eq. 1 step of gmres
% Then x is a multiple of b
%-----
% O step of gmres eq. 1 step of gmres
% Then x is a multiple of b
HIST=1;
% Lucky break-down
HIST=[HIST; (gamma~=0)/sqrt(rho)];
% Lucky break-down
% solve in least square sense
HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
plot(J,HIST(:,1),'*'); drawnow
%====== END SOLVE CORRECTION EQUATION
  _____
```

```
%====== BASIC OPERATIONS
 y(1:5,1), pause
%====== COMPUTE r AND z
% E*u=Q*sigma, sigma(1,1)>sigma(2,2)
\%====== END computation r and z
%====== Orthogonalisation
 _____
%====== END Orthogonalisation
 %====== Sorts Schur form
 kappa=max(norm(A,inf)/max(norm(B,inf),1.e-12),1);
 kappa=2^(round(log2(kappa)));
%----- compute the qz factorization ------
%----- scale the eigenvalues ------
\%----- sort the eigenvalues -----
\%----- swap the qz form ------
% repeat SwapQZ if angle is too small
%-----
% i>j, move ith eigenvalue to position j
% compute q s.t. C*q=(t(i,1)*S-s(i,1)*T)*q=0
C*P=Q*R
check whether last but one diag. elt r nonzero
C*q
% end computation q
%===== END sort QZ decomposition interaction matrices
%====== INITIALIZATION
```

```
% defaults
           %%%% search for 'xx' in fieldnames
%% 'ma'
%% 'sch'
%% 'to'
%% 'di'
% jmin=nselect+p0 %%%% 'jmi'
% jmax=jmin+p1 %%%% 'jma'
%% 'te'
%% 'pai'
%% 'av'
%% 'tr'
%% 'fix'
%% 'ns'
%% 'ch'
%% 'lso'
%% 'ls_m'
%% 'ls_t'
%% 'ls_e'
%% 'ty'
%% '1_'
%% 'u_'
%% 'p_'
%% 'sca'
%% 'v0'
initiation
'standard'
'harmonic'
'searchspace'
% or Operator_Form=3 or Operator_Form=5???
%====== DISPLAY FUNCTIONS
  _____
%_____
```

$22.11 \quad mfunc_{-j}dm$

22.12 mgs

- $22.13 \quad minres_{-}$
- 22.14 mv_jacobi_davidson
- 23 linear-algebra
- 23.1 first

23.2 gershgorin_circle

range of eigenvalues determined by the gershgorin circle theorem

23.3 haussdorff

```
haussdorf dimension
box counting: count cectangles passed through by line (covered by polygon)
```

```
Koch snow flake 3:4 -> 1.2619

Kantor set 2:3, (4:9) -> 0.6309

quadrat 4:2, 9:3, 16:4 -> 2
```

23.4 ieig2x2

reconstruct matrix from eigenvalue decomposition

23.5 inv2x2 2x2 inverse of stacked matrices 23.6 inv3x3 23.7 inv4x4 inverse of stacked 4x4 matrices 23.8 kernel2matrix ${\bf 24}\quad {\bf linear-algebra/lanczos}$ 24.1 arnoldi 24.2 arnoldi_new 24.3 eigs_lanczos_man 24.4 lanczos

 $24.5 \quad lanczos_{-}$

${\bf 24.6} \quad lanczos_biorthogonal$

- ${\bf 24.7} \quad lanczos_biorthogonal_improved$
- 24.8 lanczos_ghep
- 24.9 mv_lanczos
- 24.10 reorthogonalise
- 24.11 test_lanczos
- 25 linear-algebra
- 25.1 left

left element of vector, leftmost column is extrapolated

- ${\bf 26}\quad {\bf linear-algebra/linear-systems}$
- $26.1 \quad gmres_man$

break on convergence

26.2 minres_recycle

27 linear-algebra

27.1 lpmean

mean of pth-power of a

27.2 lpnorm

norm of 1th-power of a

27.3 matvec3

matrix-vector product of stacked matrices and vectors

27.4 max2d

 $\hbox{\tt maximum value and i-j index for matrix}$

27.5 mid

mid point between neighbouring vector elements

27.6 mpoweri

approximation of A^p, where p is not integer by quadtratic interpolation

$27.7 \quad \text{mtimes} 2x2$

27.8 mtimes3x3

product of stacked 3x3 matrices

27.9 nannorm

norm of a vector, skips nan-values

27.10 nanshift

shift vector, but set out of range values to NaN

27.11 nl

```
number rows (lines) of a matrix analogue to unix nl command
```

27.12 normalise

```
normalise a vector or the columns of a matrix
note that the columns are independently normalised, and hence not
   necessarily
orthogonal to each other use the gram schmidt algorithm for this (
   qr or orth)
```

27.13 normalize1

```
normalize columns in x to [-1,1]
```

27.14 normrows

27.15 orth2

make matrix A orhogonal to B

27.16 orth_man

orthogonalize the columns of A

27.17 orthogonalise

make x orthogonal to Y

27.18 padd2

padd values around a 2d (image) matrix, constant exprapolation

27.19 paddext

padd values to vactor
not suitable for noisy data
order = 0 : constant extrapolation (hold)
order = 1 : linear extrapolation

27.20 paddval1

padd values at end of \boldsymbol{x}

27.21 paddval2

padd values to x

28 linear-algebra/polynomial

28.1 chebychev

chebycheff polynomials

28.2 piecewise_polynomial

evaluate piecewise polynomial

28.3 roots1

roots of linear functions

28.4 roots2

roots of quadratic function $c1 x^2 + c2 x + c3 = 0$

28.5 roots2poly

28.6 roots3

28.7 roots4

$28.8 \quad roots_piecewise_linear$

$28.9 test_roots4$

28.10 vanderi_1d

vandermonde matrix of an integral

29 linear-algebra

29.1 randrot

random rotation matrix

29.2 right

get right column by shifting columns to left extrapolate rightmost column $\,$

29.3 rot2

rotation matrix from angle

29.4 rot2dir

rotation matrix from direction vector

29.5 rot3

29.6 rotR

29.7	rownorm
40.1	1 O W 11 O 1 11

$29.8 \quad simmilarity_matrix$

29.9 spnorm

frobenius norm

29.10 spzeros

allocate a sparze matrix of zeros

$29.11 \quad test_roots3$

29.12 transform_minmax

29.13 transpose3

transpose stacked 3x3 matrices

29.14 transposeall

29.15 up

- 29.16 vander_nd
- 29.17 vanderd_2d

30 logic

bitwise operations on integers

30.1 bitor_man

- 31 master/plot
- 31.1 attach_boundary_value
- 31.2 cartesian_polar
- $31.3 img_vargrid$
- $31.4 \quad plot_basis_functions$
- 31.5 plot_convergence

- $31.6 \quad plot_dof$
- 31.7 plot_eigenbar
- 31.8 plot_error_estimation
- 31.9 plot_error_estimation_2
- 31.10 plot_error_fem
- $31.11 \quad plot_fdm_kernel$
- $31.12 \quad plot_fdm_vs_fem$
- 31.13 plot_fem_accuracy
- $31.14 \quad plot_function_and_grid$
- 31.15 plot_hat

- $31.16 \quad plot_hydrogen_wf$
- 31.17 plot_mesh
- $31.18 \quad plot_mesh_2$
- 31.19 plot_refine
- 31.20 plot_refine_3d
- 31.21 plot_runtime
- 31.22 plot_spectrum
- 31.23 plot_wavefunction
- 32 master/ported
- 32.1 assemble_2d_phi_phi

- $32.2 \quad assemble_3d_dphi_dphi$
- 32.3 assemble_ $3d_phi_phi$
- $32.4 \quad dV_-2d_-$
- 32.5 derivative_2d
- 32.6 derivative_3d
- $32.7 \quad element_neighbour_2d$
- 32.8 prefetch_2d_
- $32.9 \quad promote_2d_3_10$
- $32.10 \quad promote_2d_3_15$
- 32.11 promote_ $2d_3_21$

- $32.12 \quad promote_2d_3_6$
- 32.13 promote_ $3d_4_10$
- $32.14 \quad promote_3d_4_20$
- $32.15 \quad promote_3d_4_35$
- 32.16 vander_2d
- 32.17 vander_3d
- 33 number-theory
- 33.1 ceiln

floor to leading n-digits

33.2 digitsb

number of digits with respect to specified base

33.3 floorn

floor to n-digits

33.4 iseven

true for even numbers in \boldsymbol{X}

33.5 multichoosek

all combinations of lenght k from set values with repetitions
c.f. nchoosek, combinations without repetition

input :
 x : scalar integer or vector of arbitrary numbers
 k : length of subsets

k : length of subsets

output :

if x scalar : number of combinations if x vector : the exact combinations

33.6 nchoosek_man

vecotrised binomial coefficient b = N!/K!(N-K)!

33.7 pythagorean_triple

pythagorean triple

33.8 roundn

round to n digits

34 numerical-methods

34.1 advect_analytic

35 numerical-methods/differentiation

35.1 derivative1

first derivative on variable mesh second order accurate

35.2 derivative2

second derivative on a variable mesh

36 numerical-methods

36.1 diffuse_analytic

37 numerical-methods/finite-difference

37.1 cdiff

```
differences of columns of X
degree = 1 : central first order differences
degreee = 2 : central second order differences
```

37.2 cdiffb

```
differences of columns of X
degree = 1 : central first order differences
degreee = 2 : central second order differences
TODO use difference matrix function for simplicity
```

37.3 central_difference

37.4 cmean

single gaussian smoothing step with kernel 1/4*[1,2,1]

37.5 cmean 2

37.6 derivative_matrix_1_1d

```
finite difference matrix of first derivative in one dimensions n: number of grid points h = L/(n+1) constant step with function [D1, d1] = derivative_matrix_1d(n,L,order)
```

37.7 derivative_matrix_2_1d

finite derivative matrix of second derivative in one dimension

37.8 derivative_matrix_2d

finite difference derivative matrix in two dimensions

37.9 derivative_matrix_curvilinear

derivative matrix on a curvilinear grid

37.10 derivative_matrix_curvilinear_2

derivative matrix on a two dimensional curvilinear grid the grid has not necessarily to be orthogonal

37.11 difference_kernel

difference kernels for equispaced grids c.f. Computing the Spectrum of the Confined Hydrogen Atom, Kastner, 2012

37.12 diffusion_matrix_2d_anisotropic

37.13 diffusion_matrix_2d_anisotropic2

37.14 distmat

distance matrix for a 2 dimensional rectangular matrix

37.15 downwind_difference

37.16 gradpde2d

```
objective function gradiend on two dimensional regular grid numeric gradient for non-linear least squares optimisation of a PDE on a rectangular grid x_* = \min(f(x)) f = (v(x) - v(x_*))^2 = f(x) + A dx + O(dx^2) a_ij = df_i/dx_j
```

37.17 laplacian

37.18 laplacian_fdm

finite difference matrix of the laplacian $\ensuremath{\mathsf{BC}}$

37.19 lrmean

mean of the left and right element

- 38 numerical-methods/finite-difference/master
- 38.1 fdm_adaptive_grid
- 38.2 fdm_adaptive_refinement_old
- 38.3 fdm_assemble_d1_2d
- 38.4 fdm_assemble_d2_2d
- 38.5 fdm_confinement
- $38.6 \quad fdm_d_vargrid$
- 38.7 fdm_h_unstructured
- $38.8 \quad fdm_hydrogen_vargrid$

38.9	$fdm_mark_unstructured_2d$
38.10	${ m fdm_plot}$
38.11	${ m fdm_plot_series}$
38.12	${ m fdm_refine_2d}$
38.13	fdm_refine_3d
38.14	$fdm_refine_unstructured_2d$
38.15	${ m fdm_schroedinger_2d}$
38.16	${ m fdm_schroedinger_3d}$

38.17 relocate

39 numerical-methods/finite-difference

39.1 mid

mid point between neighbouring vector elements

39.2 pwmid

segment end point to segment mid point transformation for regular 1 $\,$ d grids $\,$

39.3 ratio

ratio of two subsequent values

39.4 steplength

step length of a vector if it were equispaced

39.5 swapoddeven

swap odd and even elements in a vector

39.6 test_derivative_matrix_2d

39.7 test_derivative_matrix_curvilinear

39.8 test_difference_kernel

39.9 upwind_difference

- 40 numerical-methods/finite-element
- 40.1 Mesh_2d_java
- 40.2 Tree_2d_java
- $40.3 \quad assemble_1d_dphi_dphi$
- $40.4 \quad assemble_1d_phi_phi$
- $40.5 \quad assemble_2d_dphi_dphi_java$
- 40.6 assemble_2d_phi_phi_java
- 40.7 assemble_3d_dphi_dphi_java
- 40.8 assemble_3d_phi_phi_java

- $40.9 \quad boundary_1d$
- $40.10 \quad boundary_2d$
- $40.11 \quad boundary_3d$
- 40.12 check_area_2d
- 40.13 circmesh
- 40.14 cropradius
- $40.15 \quad display_2d$
- 40.16 display_3d
- 40.17 distort
- 40.18 err_2d

- 40.19 estimate_err_2d_3
- $40.20 \quad example_1d$
- 40.21 example_2d
- 40.22 explode
- 40.23 fem₂d
- 40.24 fem_2d_heuristic_mesh
- 40.25 fem_get_2d_radial
- 40.26 fem_interpolation
- 40.27 fem_plot_1d
- 40.28 fem_plot_1d_series

- $40.29 \quad fem_plot_2d$
- $40.30 \quad fem_plot_2d_series$
- $40.31 \quad fem_plot_3d$
- $40.32 \quad fem_plot_3d_series$
- $40.33 \quad fem_plot_confine_series$
- 40.34 fem_radial

adaptive grid constant grid

- $40.35 \quad flip_2d$
- $40.36 \ \text{get_mesh_arrays}$
- 40.37 hashkey

41.1 numerical-methods/finite-element/int 41.1 int_ld_gauss 41.2 int_ld_gauss_1 41.3 int_ld_gauss_2 41.4 int_ld_gauss_3 41.5 int_ld_gauss_4 41.6 int_ld_gauss_5

 $41.8 \quad int_1d_gauss_lobatto$

 $41.7 \quad int_1d_gauss_6$

- $41.10 \quad int_1d_nc_2$
- $41.11 \quad int_1d_nc_3$
- $41.12 \quad int_1d_nc_4$
- $41.13 \quad int_1d_nc_5$
- $41.14 \quad int_1d_nc_6$
- $41.15 \quad int_1d_nc_7$
- $41.16 \quad int_1d_nc_7_hardy$
- $41.17 \quad int_2d_gauss_1$
- $41.18 \quad int_2d_gauss_12$
- $41.19 \quad int_2d_gauss_13$

- $41.20 \quad int_2d_gauss_16$
- $41.21 \quad int_2d_gauss_19$
- $41.22 \quad int_2d_gauss_25$
- $41.23 \quad int_2d_gauss_3$
- $41.24 \quad int_2d_gauss_33$
- $41.25 \quad int_2d_gauss_4$
- $41.26 \quad int_2d_gauss_6$
- $41.27 \quad int_2d_gauss_7$
- $41.28 \quad int_2d_gauss_9$
- 41.29 int_2d_nc_10

- $41.30 \quad int_2d_nc_15$
- $41.31 \quad int_2d_nc_21$
- $41.32 \quad int_2d_nc_3$
- $41.33 \quad int_2d_nc_6$
- $41.34 \quad int_3d_gauss_1$
- $41.35 \quad int_3d_gauss_11$
- $41.36 \quad int_3d_gauss_14$
- 41.37 int_3d_gauss_15
- $41.38 \quad int_3d_gauss_24$
- $41.39 \quad int_3d_gauss_4$

- 41.40 int_3d_gauss_45
- $41.41 \quad int_3d_gauss_5$
- $41.42 \quad int_3d_nc_11$
- $41.43 \quad int_3d_nc_4$
- $41.44 \quad int_3d_nc_6$
- 41.45 int_3d_nc_8
- ${\bf 42} \quad numerical methods/finite-element$
- 42.1 interpolation_matrix
- 42.2 mark
- $42.3 \quad mark_{-}1d$

- $42.4 \quad mesh_1d_uniform$
- $42.5 \quad mesh_3d_uniform$
- 42.6 mesh_interpolate
- 42.7 neighbour_1d
- 42.8 old
- $42.9 \quad pdeeig_1d$
- 42.10 pdeeig_2d
- 42.11 pdeeig_3d
- 42.12 polynomial_derivative_1d
- 42.13 potential_const

42.14	${f potential_coulomb}$
42.15	$potential_harmonic_oscillator$
42.16	${ m project_circle}$
42.17	$project_rectangle$
42.18	${ m promote_1d_2_3}$
42.19	${ m promote_1d_2_4}$
42.20	$promote_1d_2_5$
42.21	$promote_1d_2_6$
42.22	quadrilaterate

 $42.23 \quad recalculate_regularity_2d$

- 42.24 refine_1d
- $42.25 \quad refine_2d_21$
- $42.26 \quad refine_2d_structural$
- $42.27 \quad regularity_1d$
- $42.28 \quad regularity_2d$
- $42.29 \quad regularity_3d$
- $T = [1 \ 2 \ 3 \ 4];$
- $42.30 \quad relocate_2d$
- 42.31 test_circmesh
- 42.32 test_hermite

42.33 tri_assign_points

42.34 triangulation_uniform

42.35 vander_1d

van der Monde matrix

42.36 vanderd₋1d

42.37 vanderi_1d

43 numerical-methods/finite-volume/@Advection

43.1 Advection

FVM treatment of the Advection equation

43.2 dot_advection

 ${\tt advection} \ {\tt equation}$

44 numerical-methods/finite-volume/@Burgers

$44.1 \quad burgers_split$

```
viscous Burgers' equation, mixed analytic and numerical derivative in frequency space by splitting sheme u_t = -(0.5*u^2)_x + c*u_xx
```

44.2 dot_burgers_fdm

```
viscous burgers' equation

u_t = -d/dx (1/2*u^2) + c d^2/dx^2 u_xx
```

44.3 dot_burgers_fft

```
viscous Burgers' equation in frequency space u_t + (0.5*u^2)_x = c*u_xx
```

45 numerical-methods/finite-volume/@Finite_Volume

45.1 Finite_Volume

```
finite volume method for partial differential equations 1+1
    dimensions
(time and space)
```

45.2 apply_bc

apply boundary conditions

45.3 solve

45.4 step_split_strang

step in time, treat inhomogeneous part by Strang splitting this scheme is not suitable for stationary solutions, for example steady shallow water flow

45.5 step_unsplit

step in time, without splitting the inhomogeneous term

$46 \quad numerical-methods/finite-volume/@Flux_Limiter$

46.1 Flux_Limiter

class of flux limiters

46.2 beam_warming

beam warming sheme
low resolution
note: works only if sign of eigenvalues point into the same
direction according to RL

46.3 fromm

fromme limiter
low res

$46.4 \quad lax_wendroff$

lax wendroff scheme second order accurate, but no tvd this is effectively not a limiter eq. 6.39 in randall, leveque

46.5 minmod

min-mod schock limiter

46.6 monotized_central

monotonized central flux limiter

46.7 muscl

muscl flux limiter

46.8 superbee

superbee limiter

46.9 upwind

godunov scheme
godunov, first order accurate

46.10 vanLeer

van Leer limiter

47 numerical-methods/finite-volume/@KDV

47.1 dot_kdv_fdm

korteweg de vries equation $u_t + (0.5*u^2)_x = c*u_xxx$

$47.2 \quad dot_kdv_fft$

korteweg de vries equation compute derivatives in frequency space $u_t + (0.5*u^2)_x = c*u_xxx$

47.3 kdv_split

korteweg de vries equation in frequency space, derivative treated by splitting scheme

48 numerical-methods/finite-volume/@Reconstruct_Average_Evolve

48.1 Reconstruct_Average_Evolve

```
Reconstruct Average Evolve Finite Volume Method for treatment of
    1+1D pdes

McCronack Scheme
err = 0(dt^2) + 0(dx^2), except as discontinuities
error:
    h_xxx(3:end-2) = 1/dx^3*( -0.5*h(1:end-4) + h(2:end-3) - h(4:end-1) + 0.5*h(5:end) );
    th = -1/6*dx^2*qh_.*(1 - (qh_*dt/dx).^2).*h_xxx;
```

48.2 advect_highres

single time step for the reconstruct evolve algorithm

48.3 advect_lowress

single time step
low resolution

49 numerical-methods/finite-volume

49.1 Godunov

Godunov, upwind method for systems of pdes

49.2 Lax_Friedrich

Lax-Friedrich-Method for hyperbolic conservation laws err = O(dt) + O(dx)|a dt/dx| < 1

49.3 Measure

49.4 Roe

non linear roe solver for the SWE (randall, leveque 15.3.1)

The roe solver guarantess:

- A is diagonalisable with real eigenvalues (15.12)
- can be determined by a closed formula
- is an efficient replacement for true Rieman solver

49.5 fv_swe

wrapper for solving SWE

49.6 staggered_euler

forward euler method with staggered grid

49.7 staggered_grid

staggered grid approximation to the SWE

50 numerical-methods

50.1 grid2quad

extract rectangular elements of a structured grid in form of an unstructured quad-mesh format

51 numerical-methods/integration

51.1 cumintL

cumulative integral from left to right

51.2 cumintR

cumulative integral from right to left

51.3 int_trapezoidal

integrate y along x with the trapezoidal rule

52 numerical-methods/interpolation/@Kriging

52.1 Kriging

class for Kriging interpolation

52.2 estimate_semivariance

estimate the parameter of the semivariance model for Kriging interpolation $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1$

 $\mbox{\ensuremath{\mbox{\%}}}$ set up the regression matrix and solve for parameters

52.3 interpolate_

interpolate with Krieging method

this function may interpolate several quantities per coordinate, using the same variogram, if the semivariance of the quantities differs,

the user may prefer to estimate the semivariance and interpolate each quantity individually

Xs : source point coordinates
Vs : value at source points
Xt : targe point coordinates
Vt : value at target points

E2t : squared interpolation error at target points

53 numerical-methods/interpolation/@RegularizedInterpolator

53.1 RegularizedInterpolator1

class for regularized interpolation (Thikonov) on a 1D mesh

53.2 init

initialize the interpolator with a set of sampling points

$54 \quad numerical-methods/interpolation/@RegularizedInterpolator$

54.1 RegularizedInterpolator2

class for regularized interpolation on an unstructures mesh (
 interpolation)

54.2 init

initialize the interpolator with a set of point samples

$55 \quad numerical-methods/interpolation/@RegularizedInterpolator$

55.1 RegularizedInterpolator3

class for regularized interpolation (Tikhonov) on a triangulation (unstructured mesh)

55.2 init

initialize the interpolator with a set of sampling points

56 numerical-methods/interpolation

56.1 IDW

spatial averaging by inverse distance weighting

56.2 IPoly

polynomial interpolation class

56.3 IRBM

56.4 ISparse

sparse interpolation class

56.5 Inn

nearest neighbour interpolation

56.6 Interpolator

56.7 fixnan

fill nan-values in vector with gaps

56.8 idw1

spatial average ny inverse distance weighting

56.9 idw2

spatial average by inverse distance weighting

56.10 inner2outer

linear interpolation of segment mit point to grid points at segment ends assumes equal grid spacing

56.11 inner2outer2

interpolate from element (segment) centres to edge points

56.12 interp1_circular

56.13 interp1_limited

interpolate values, but not beyond a certain distance
this function is idempotent, i.e. it will not extrapolate over into
 gaps
exceedint the limit and thus not spuriously extend the series when

called a second time on the same data

56.14 interp1_man

interpolate

56.15 interp1_piecewise_linear

56.16 interp1_save

make interpolation save to round off errors
the matlab internal interpolation suffers from rounding errors,
 which
are unacceptable when values of X and Y are large (for example UTm
 coordinates)
this normalization prevents this

56.17 interp1_slope

quadratic interpolation returning value and derivative(s)

56.18 interp1_smooth

56.19 interp1_unique

matlab fails to interpolate, when \boldsymbol{x} values are not unique this function makes the values unique before use

56.20 interp2_man

nearest neighbour interpolation in two dimensions

56.21 interp_angle

interpolate an angle

56.22 interp_fourier

interpolation by the fourier method

56.23 interp_fourier_batch

batch interpolation by the fourier interpolation

56.24 interp_sn

```
interpolate along streamwise coordinates
This gives similar result to setting aspect ratio for sN to
   infinity,
but not quite,as the input point set is not dense (scale for sN to
   infinity does not work)
        sdx = sdx(sdx_);
```

56.25 interp_sn2

interpolation in streamwise coordinates

56.26 interp_sn3

56.27 interp_sn_

56.28 limit_by_distance_1d

```
smooth subsequent values along a curve such that v(x0+dx) < v(x0) + (ratio-1)*dx if v is the edge length in a resampled polygon, then v_i/v_i+1) < ratio ratio^1 = exp(a*1)
```

56.29 resample 1

interpolation along a parametric curve with variable step width

56.30 resample_d_min

resample a function

${\bf 56.31 \quad resample_vector}$

resample a track so that velocity vectors do not run into each other $% \left(1\right) =\left(1\right) \left(1\right)$

56.32 test_interp1_limited

57 numerical-methods

57.1 inverse_complex

57.2 maccormack_step

57.3 minmod

58 numerical-methods/multigrid

58.1 mg_interpolate

58.2 mg_restrict

59 numerical-methods/ode/@BVPS_Characteristic

59.1 BVPS_Characteristic

solve coupled first- and second-order 1D boundary-value problems

59.2 assemble 1_A

assemble the discretisation matrix for a first order ode (mean component, zero frequency)

59.3 assemble 1_A_Q

assemble the discretisation matrix for a first order ode (mean component, zero frequency)

59.4 assemble 2_A

assemble the discretisation matrix for a second-order ode (non-zero frequency component) $\,$

59.5 assemble_AA

assemble the discretisation matrix for each channel iteratively calls assembly for each frequency components

59.6 assemble_AAA

assemble the discretisation matrix for the entire network iteratively calls assembly for each channel

- 59.7 assemble_Ic
- 59.8 bvp1c
- 59.9 check_arguments
- 59.10 couple_junctions
- 59.11 derivative
- 59.12 init
- ${\bf 59.13 \quad inner2outer_bvp2c}$
- 59.14 reconstruct

59.15 resample

59.16 solve

```
solve system of non-linear second order odes (in more than one
   variable)
as boundary value problems

odefun provides ode coefficients c:
c(x,1) y''(x) + c(x,2) y'(x) + c(x,3) y = c(x,4)
   c_1 y" + c_2 y' + c_3 y + c_4 = c_4

subject to the boundary conditions
bcfun provides v and p and optionally q, so that:

b_1 y + b_2 y' = f
   q(x,1)*( p(x,1) y_1(x) + p(x,2) y_1'(x)
   + q(x,2)*( p(x,1) y_r(x) + p(x,2) y_r'(x) = v(x)

where q weighs the waves travelling from left to right and right to
   left (default [1 1])
```

59.17 test_assemble1_A

59.18 test_assemble2_A

- $60 \quad numerical\text{-}methods/ode/@Time_Stepper$
- 60.1 Time_Stepper

60.2 solve

61 numerical-methods/ode

61.1 bvp2fdm

```
solve system of non-linear second order odes (in more than one
   variable)
as boundary value problems by the finite difference method

odefun provides ode coefficients c:
c(x,1) y''(x) + c(x,2) y'(x) + c(x,3) y = c(x,4)
c_1 y" + c_2 y' + c_3 y + c_4 = 0

subject to the boundary conditions
bcfun provides v and p and optionally q, so that:

b_1 y + b_2 y' = f
   q(x,1)*( p(x,1) y_1(x) + p(x,2) y_1'(x)
   + q(x,2)*( p(x,1) y_r(x) + p(x,2) y_r'(x) = v(x)

where q weighs the waves travelling from left to right and right to
   left (default [1 1])
```

61.2 bvp2wavetrain

solve second order boundary value problem by repeated integration

61.3 bvp2wavetwopass

two pass solution for the linearised wave equation solve first for the wave number k, and then for y

61.4 ivp_euler_forward

solve intial value problem by the euler forward method

61.5 ivp_euler_forward2

61.6 ivprk2

solve initial value problem by the two step runge kutta method

61.7 ode2_matrix

transformation matrix of second order ode to left and right going wave

```
c = odefun(x)
c1 y'' + c2' y + c3 y == 0
y = y_p + y_m, left and right going wave
d/dx [y_p, y_m] = A*[y_m, y_p]
```

61.8 ode2characteristic

second order odes transmittded and reflected wave

61.9 step_trapezoidal

single trapezoidal step

61.10 test_bvp2

62 numerical-methods/optimisation

62.1 aitken_iteration

62.2 anderson_iteration

62.3 armijo_stopping_criterion

armijo stopping criterion for optimizations

62.4 astar

astar path finding alforithm

62.5 binsearch

binary search on a line

62.6 bisection

bisection

$62.7 \quad box1$

test objective function for optimisation routines

62.8 box2

62.9 cauchy

62.10 cauchy2

solve non-linear system by cuachy's method slower than quadratic optimisation, but does not require a hessian fun : objective function, returns

f : scalar, objective function value

g : nx1, gradient
x : nx1, initial position

opt : options

62.11 directional_derivative

```
directional (projected) derivative
d : derivative, highest first
p : series expansion around x0
```

62.12 dud

optimization by the dud algorithm

62.13 extreme3

```
extract maxima by quadratic approximation from sampled function val
    (t)
intended to be called after [mval, mid] = max(val) for refinement
    of
locatian and maximum

input
t : sampling time (uniformly spaced)
v : values at sampling times
ouput:
tdx : index where extremum should be computed
t0 : location of the extremum
val0 : value of extremum
v'(dt0) = 0 and v''(dt0) determines type of extremum
```

${\bf 62.14} \quad {\bf extreme_quadratic}$

62.15 ftest

62.16 fzero_bisect

62.17 fzero_newton

62.18 grad

numerical gradient

62.19 hessian

numerical hessian

62.20 hessian_from_gradient

numerical hessian from gradient

62.21 hessian_projected

numerical hessian projected to one dimenstion

62.22 line_search

bisection routine

62.23 line_search2

bisection method

fun : objective funct
x0 : start value

 ${\tt f0}$: objective function value at ${\tt x0}$

g : gradient at x0

p : search direction from x0 (p = g for steepest descend)

h : initial step length (default 1)

 $\begin{array}{lll} \mbox{1b} & : \mbox{lower bound for } x \\ \mbox{up} & : \mbox{upper bound for } x \end{array}$

62.24 line_search_polynomial

polynomial line search
fun : objective funct
x0 : start value
f0 : objective function value at x0
g : gradient at x0
dir : search direction from x0 (p = g for steepest descend)
h : initial step length (default 1)
lb : lower bound for x
up : upper bound for x

62.25 line_search_polynomial2

cubic line search
fun : objective funct
x0 : start value
f0 : objective function value at x0
g : gradient at x0
dir : search direction from x0 (p = g for steepest descend)
h : initial step length (default 1)
lb : lower bound for x
up : upper bound for x

62.26 line_search_quadratic

quadratic line search
fun : objective funct
x0 : start value
f0 : objective function value at x0
g : gradient at x0
dir : search direction from x0 (p = g for steepest descend)
h : initial step length (default 1)
lb : lower bound for x
up : upper bound for x

62.27 line_search_quadratic2

quadratic line search

62.28 line_search_wolfe

line search by wolfe method
c.f.: OPTIMIZATION THEORY AND METHODS - Nonlinear Programming, Sun,
 Yuan

62.29 ls_bgfs

least squares by the bgfs method

62.30 ls_broyden

62.31 ls_generalized_secant

least squares by the secant method Barnes, 1965 Wolfe, 1959 Fletcher 1980, 6.3 seber 2003 gerber

62.32 nlcg

Shanno 1970

non-linear conjugate gradient
input:
x : nx1 start vectort

opt : struct options
fdx : gradient constraint

62.33 nlls

non-linear least squares

62.34 picard

picard iteration

62.35 poly_extrema

extrema of a polynomial

62.36 quadratic_function

evaluate quadratic function in higher dimensions

62.37 quadratic_programming

optimize by quadratic programming $% \left(1\right) =\left(1\right) \left(1\right$

62.38 quadratic_step

single step of the quadratic programming

62.39 rosenbrock

rosenbrock test function

$62.40 \quad sqrt_heron$

Heron's method for the square root

- 62.41 test_directional_derivative
- 62.42 test_dud
- 62.43 test_fzero_newton
- $62.44 \quad test_line_search_quadratic2$
- 62.45 test_ls_generalized_secant
- 62.46 test_nlcg_6_order
- 62.47 test_nlls

$$f = w'*(p*abs(x-1).^4) + w'*(1-p)*abs(x-1).^2;$$

- 63 numerical-methods/pde
- 63.1 laplacian 2d_fundamental_solution

64 numerical-methods/piecewise-polynomials

64.1 Hermite1

hermite polynomial interpolation in 1d

64.2 hp2_fit

fit a hermite polynomial
coefficients are derivative free
x0 : left point of first segment
x1 : right point of last segment
n : number of segments

x : sample x-value val : sample y-value

c : coefficients (values at points, no derivatives)

64.3 hp2_predict

prediction with pw hermite polynomial
c are values at support points

64.4 hp_predict

predict with piecewise hermite polynomial

64.5 hp_regress

fit piecewise hermite polynomial coefficients are values and derivatives

64.6 lp_count

lagrangian basis for interpolation count number of valid samples

$64.7 \quad lp_predict$

lagrangian basis piecwie interpolation, predicor

- 64.8 lp_regress
- $64.9 \quad lp_regress_$
- 65 numerical-methods
- 65.1 test_adams_bashforth
- 66 patterns
- 66.1 band_pattern
- 66.2 hexagonal_pattern
- 67 regression/@PolyOLS
- 67.1 PolyOLS

class for polynomial least squares

67.2 coefftest

67.3 detrend

detrending by polynomial regression

67.4 fit

fit a polynomial function like polyfit, but returns parameter error estimates TODO automatically activate scaleflag

67.5 fit_

fit a polynomial function

67.6 predict

predict polynomial function values

67.7 predict_

67.8 slope

slope by linear regression

68 regression/@PowerLS

68.1 PowerLS

class for power law regression

68.2 fit

```
fit a power law
like polyfit, but returns parameter error estimates
```

68.3 predict

```
predict with power law
      S2 = diag((A*obj.C)*A');
      L = Y - S;
      U = Y + S;
```

68.4 predict_

regression/@Theil 69

69.1Theil

Kendal-Theil-Sen robust regression

69.2 detrend

P : confidence interval

linear detrending of a set of samples by the Theil-Senn Slope

69.3 fit

```
fit slope and intercept to a set of sample with the Theil-Sen
   method
     : confidence interval c = 2*ns*normcdf(1) for ns-sigma
   intervals
param : itercept and slope
```

69.4 predict

predict values and confidence intervals with the Theil-Sen method

69.5 slope

fit the slope with the Theil-Sen method

70 regression

linear and non-linear regression

70.1 Theil_Multivariate

extension of the Theil-Senn regression to higher dimensions by means of the Gauss-Seidel iteration

70.2 areg

regression using the pth-fraction of samples with smallest residual

70.3 ginireg

gini regression

70.4 hessimplereg

hessian, gradient and objective function value of the simple regression ${\tt rhs} \, = \, {\tt p(1)} \, + \, {\tt p(2)} \, \, {\tt x} \, + \, {\tt eps}$

70.5 l1lin

solve ||Ax - b||_L1 by means of linear programming

70.6 lsq_sparam

```
parameter covariance of the least squares regression fun \ : \ model \ function \ for \ predtiction b \ : \ sample \ values f(p) = b p \ : \ parameter \ at \ point \ of \ evaluation \ (preferably \ optimum)
```

70.7 polyfitd

```
fit a polynomial of order n to a set of sampled values and sampled
  values
of the derivative

x0 must contain at least for conditioning as otherwise the
  intercept
cannot be determined
```

70.8 regression_method_of_moments

```
fit linear function | \ | \ a \ b \ x = y | \ | \ L2 by the method of moments y+eps = alpha + beta*x
```

70.9 robustling

```
fit a linear function by splitting the x-values at their median (med(y\_left) - med(y\_right))/(med(x\_left)-med(x\_right) this approach performs poorly compared to the theil-senn operator
```

70.10 theil2

Theil senn-estimator for two dimensions (glm)

70.11 theil_generalised

generalization of the Theil-Senn operator to higher dimensions,
for arbitrary functions such as polynomials and multivariate
 regression
either higher order polynomials or glm
c.f. "On theil's fitting method", Pegoraro, 1991

70.12 total_least_squares

total least squares

70.13 weighted_median_regression

weighted median regression c.f. Scholz, 1978

71 set-theory

71.1 issubset

test if set B is subset of A in O(n)-runtime

A : first set
B : second set

P : set of primes (auxiliary)

72 mathematics

mathematical functions of various kind

$72.1 shuffle_index$

73 signal-processing

73.1 acfar1

Autocorrelation function of the finite AR1 process

$$a_k = 1/(n-k)sum x_ix_i+1 + (xi + xi+k)mu + mu^2$$

= $r^k + 1/n sum_ij + 1/n$
pause

73.2 acfar1_2

autocorrelation of the ar1 process

73.3 acfar2

impulse response of the ar2 process

$73.4 \quad acfar2_2$

autocorrelation of the ar2 process
$$X_i + a1 X_{i-1} + a2 X_{i-2} = 0$$

73.5 ar1_cutoff_frequency

73.6 ar1_effective_sample_size

effective sample size correction for autocorrelated series

73.7 ar1_mse_mu_single_sample

standard error of a single sample of an ar1 correlated process

$73.8 \quad ar1_mse_pop$

variance of the population mean of a single realisation around zero ${\tt E[(mu_N-0)^2] = E[mu_N^n]}$

$73.9 \quad ar1_mse_range$

mean standard error of the mean of a range of values taken from an $\mbox{ar1}\mbox{ process}$

73.10 ar1_spectrum

spectrum of the ar1 process

73.11 ar1_to_tikhonov

convert ar1 correlation to tikhonovs lambda

73.12 ar1_var_factor

```
variance correction factor for an autocorrelated finite process n : [1 .. inf] population size m : [1 .. n] samples size rho : [ -1 < \text{rho} < 1 (for convergence) ] correlation of samples
```

73.13 arl_var_factor_

variance of an autocorrelated finite process

$73.14 \quad ar1_var_range2$

variance of sub sample starting at the end of the series from the finite length first order autocorrelated process $s2 = 1/m^2 \ sum_i^m \ sum_j^m \ rho^-|i-j|$

73.15 ar1delay

73.16 ar1delay_old

autocorrelation of the residual

$73.17 \quad ar2_acf2c$

determine coefficients of the ar2 process from the first two lags of the autocorrelation function

73.18 ar2conv

coefficients of the ar2 process determined from the two leading correlations of the acf $[1,r1,r2,\ldots]$

73.19 ar2dof

effective samples size for the ar2 process

73.20 ar2param

ar2 parameter estimation from first two terms of acf
acf = [1 a1 a2 ...]

73.21 asymwin

creates asymmetrical filter windows filter will always have negative weights

74	signal	-processing	/autocorr

74.1 autocorr2

- 74.2 autocorr_bandpass
- 74.3 autocorr_brownian_phase
- 74.4 autocorr_brownian_phase_2d
- 74.5 autocorr_brownian_phase_across
- 74.6 autocorr_decay_rate

estimate exponential decay of the autocorrelation

74.7 autocorr_effective_sample_size

effective sample size from acf

74.8 autocorr_fft

estimate sample autocorrelation function

 $74.9 \quad autocorr_genton$

autocorrelation function

74.10 autocorr_highpass
74.11 autocorr_lowpass
74.12 autocorr_periodic_additive_noise
74.13 autocorr_periodic_windowed
74.14 autocorr_radial
75 signal-processing
75.1 average_wave_shape
extract waves with varying length from a wave train and and averag their shape
75.2 bandpass
bandpass filter

 $75.3 \quad bandpass1d$

$75.4 \quad bandpass1d_fft$ filter input vector with a spatial (two-sided) bandpass in fourier space $bandpass1d_implicit$ bandpass275.6 bandpass filter bandpass2d $bandpass2d_2$ 75.8 $bandpass2d_fft$ 75.9 bandpass2d_ideal 75.10 $bandpass2d_implicit$ 75.11

bandpass2d_iso

75.12

75.13 bandpass_arg

determine correlation coefficient from frequency of mode for the $\operatorname{symmetric}$

75.14 bandpass_f0_to_rho

correlation coefficient for the pth-order symmetric bandpass filter
 with
maximum at f0 (when rho_lp = rho_hp)

75.15 bandpass_max

75.16 bandpass_max2

75.17 bartlett

```
Effective sample size factor for bartlett window c.f. thiebaux c.f spectral analysis-jenkins, eq. (6.3.27) c = acf note: results seams always to be 1 tac too low T : reduction factor for dof for ar1 with a = rho^k = \exp(-k/L), T = 2L
```

75.18 bin1d

bin values of \boldsymbol{v} sampled at \boldsymbol{x} into bins bounded by "edges" apply function \boldsymbol{v} to it

75.19 bin2d

bin values of \boldsymbol{V} sampled at \boldsymbol{X} and \boldsymbol{Y} into the grid structured grid ex ,ey

apply function func to all walues in the bin

func = mean : default

func = sum : non-normalized frequency histogram in 2D

75.20 binormrnd

generate two correlated normally distributed vectors

75.21 coherence

75.22 conv1_man

convolutions with padding

75.23 conv2_man

convolution in 2d

$75.24 \quad conv2z$

75.25 conv30

convolve with rectangular window of lenght \boldsymbol{n} circular boundaries

$75.26 \quad conv_{-}$

convolution of a with b

75.27 conv_centered

convolve x with filter window f
when length of f is even, this guarantees a symmetric result (no
 off by on
displacement) by making the length of f odd at first

75.28 convz

75.29 cosexpdelay

75.30 csmooth

smooth recursively with [1,2,1]/4 kernel function x = csmooth(x,n,p,circ)

75.31 daniell_window

Daniell window for smoothing the power spectrum c.f. Daniell 1946
Bloomfield 2000
meko 2015

75.32 danielle_window

danielle fourier window

75.33 db2neper

convert decibel to neper

75.34 db2power

power ratio from db

75.35 derive_bandpass_normalization_and_zeros

75.36 derive_danielle_weight

75.37 derive_limit_0_acfar

75.38 detect_peak

detect peaks in a vector
requires function value to fall to p*max before new value is
 allowed

75.39 determine_phase_shift

75.40 determine_phase_shift1

average phase and phase shift per time step of a train of waves

75.41 digital_low_pass_filter

design coefficients of a low pass filter with specified cut of
 frequency
and sampling period
alalogue low pass with pole at s=-omega_c=1/tau=1/RC
Ha = tau/(tau + s) = 1/(1 + omega_c*s)

75.42 doublesum_ij

double sum of r^i

$75.43 \quad effective_sample_size_to_ar1$

convert effective sample size to ar1 correlation

75.44 filt_hodges_lehman

75.45 filter1

filter along one dimension

75.46 filter2

filter columns of x (matlab does only support vector input)

75.47 filter_

invalidate values that exceed n-times the robust standard deviation

75.48 filter_r_to_f0

75.49 filter_rho_to_f0

75.50 filter_twosided

75.51 filteriir

```
filter adcp t-n data over time
v : nz,nt : values to be filtered
H : nt,1 : depth of ensemble
last: nt,1: last bin above bottom that can be sampled without
    side lobe interference
nf : scalar : number of reweighted iterations
when samples
 - distance to bed is reference (advantageous for near-bed suspended
     transport)
TODO for wash load: distance to surface is more relevant
 interpolate depending on z
when depth changes, neighbouring indices do not correspond to same
    relative position in the water column
relative poisition in the colum (s-coordinate) smoothes values
near the bed: absolute distance to bed is chosen
near surface: absolute distance to surface is chosen
-> cubic transformation of index
faster and avoid alising (smoothing along z)
       resample ensemble to same number of bins in S -> filter ->
           resample back
       use nonlinear transform z-s coordinates
-> resampling has to be local (Hi -> H-filtered)
filtered profile coordinates to sample coordinates
       zf -> zi (special transform)
 corresponding indices and fractions
 filtration step (update of hf and vf)
 sample coordinates to updated profile coordinates
 (the inverse step is actually not necessary)
write filtered value
75.52 filterp
```

75.53 filterp1

fir filter with some fancy extras

75.54 filterstd

75.55 firls_man

design finite impulse response filter by the least squares method

75.56 fit_spectral_density

fit spectral densities

75.57 fit_spectral_density_2d

fit spectral densities

75.58 fit_spectral_density_radial

fit spectral densities

75.59 flattopwin

the flat top window

$75.60 \quad frequency_response_boxcar$

frquency response of a boxcar filter

75.61 freqz_boxcar

frequncy response of a boxcar filter

75.62 gaussfilt1

filter data series with a gaussian window

75.63 hanchangewin

hanning window for change point detection

75.64 hanchangewin2

nanning window for chage point detection

75.65 hanwin

hanning filter window

75.66 hanwin_

hanning filter window

$75.67 high_pass_1d_simple$

75.68 highpass

high pass filter

$75.69 highpass1d_fft_cos$

filter the input vector with a cosine-shaped highpass in frequency space

75.70	$highpass 1 \\ d_implicit$
75.71	${ m highpass2d_fft}$
75.72	${ m highpass2d_ideal}$
75.73	${ m highpass2d_implicit}$
75.74	${ m highpass_arg}$
75.75	$highpass_fc_to_rho$
75.76	${f jackknife_block}$
75.77	kaiserwin

kaiser filter window

75.78 kalman

Kalman filter

75.79 lanczoswin

Lanczos window

75.80 last

lake tail, but for matrices

75.81 lowpass

low pass filter

$75.82 \quad lowpass1d_fft$

75.83 lowpass1d_implicit

75.84 lowpass2

design low pass filter with cutoff-frequency f1

$75.85 \quad lowpass2d_2$

75.86 lowpass2d_anisotropic

75.87 lowpass2d_fft

$75.88 \quad lowpass2d_ideal$ $75.89 \quad lowpass2d_implicit$

75.90 lowpass_arg

75.91 lowpass_fc_to_rho

75.92 lowpass_iir

iir-low pass

75.93 lowpass_iir_symmetric

two-sided iir low pass filter (for symmetry)

75.94 lowpassfilter2

low-pass filter of data

75.95 maxfilt1

75.96 meanfilt1

moving average filter with special treatment of the boundaries

75.97 meanfilt2

filter with a rectangular window along both dimensions

75.98 medfilt1_man

moving median filter, supports columnwise operation

$75.99 \quad medfilt1_man2$

moving median filter with special treatment of boundaries

75.100 medfilt1_padded

median filter with padding

75.101 medfilt1_reduced

median filter with padding

$75.102 \quad mid_term_single_sample$

variance of single sample, mid term

75.103 minfilt1

75.104 mu2ar1

error variance of the mean of the finite length ar1 process

 $(mu)^2 = (sum \ epsi)^2 = sum_i \ sum_j \ eps_i \ eps_j = sum_ii(rho,n)/n^2$ this has the limit s^2 for rho->1

75.105 mysmooth

75.106 nanautocorr

autocorrelation with nan-values

75.107 nanmedfilt1

medfilt1, skipping nans

75.108 neper2db

convert neper to db

75.109 oscillator_noisy

75.110 peaks_man

peaks of a periodogram

75.111 periodogram

compute the normalized periodogram

75.112 periodogram_2d

compute the normalized periodogram in two dimensions

75.113 periodogram_annular

75.114 periodogram_bartlett

estimate the spectral density nonparametrically with Bartlett's $\tt method$

75.115 periodogram_bootstrap

75.116 periodogram_confidence_interval

confidence interval for periodogram values

75.117 periodogram_median

$75.118 \quad periodogram_p_value$

75.119 periodogram_qq

qq-plot of a spectral density estimate by smoothing against the
 expected
beta-density

75.120 periodogram_quantiles

quantiles of a periodogram

75.121 periodogram_radial

75.122 periodogram_std

standard deviation of a periodogram

75.123 periodogram_test_periodicity

```
test a periodogram for hidden periodic frequency components
function [p,ratio,maxShat,mdx,fdx,S] = periodogram_test_periodicity
    (fx,Shat,nf,fmin,fmax,S,mode)
input:
      fx : frequengcies
      Shat : corresponding periodogram values
    nf : number of bins to test for periodicity, ignored when S
      fmin, fmax : frequency range limits to test
          : exact (a priori known theoretical spectral density,
          must not be estimated from the periodogram)
      mode : automatically set to "exact", when S given
            inclusive : estimate density by smoothing including the
                 central bin
             exclusive : estimate density by smoothing excluding the
                 central bin
      note: inclusive and exclusive lead to different distribution
           but identical p-values
```

75.124 periodogram_test_periodicity_2d

```
test a periodogram for hidden periodic frequency components

function [p,ratio,maxShat,mdx,fdx,S] = periodogram_test_periodicity
    (fx,Shat,nf,fmin,fmax,S,mode)
input:
    fx : frequengcies
    Shat : corresponding periodogram values
    nf : number of bins to test for periodicity, ignored when S
        is given
    fmin, fmax : frequency range limits to test
    S : exact (a priori known theoretical spectral density,
        must not be estimated from the periodogram)
    mode : automatically set to "exact", when S given
        inclusive : estimate density by smoothing including the
        central bin
```

exclusive : estimate density by smoothing excluding the central bin $% \left(1\right) =\left(1\right) +\left(1\right)$

note: inclusive and exclusive lead to different distribution but identical p-values

75.125 periodogram_test_stationarity

test a periodogram for statoinarity
note : the method works, but is of little practical use,
as it requires about 50 periods and a small dx to detect a
 frequency change by a factor of 2

75.126 periodogram_welsh

75.127 polyfilt1

polynomial filter, can be achieved by iteratively processing the data with a mean (zero-order) filter

75.128 qmedfilt1

medfilt1, after fitting a quadratic polynomial

75.129 radial_window

radial filter window in the 2d-frequency domain

75.130 randar1

generate random ar1 process
e1 = randar1(sigma,p,n,m)

75.131 randar1_dual

draw random variables of two corrlated ar1 processes

75.132 randar2

generate ar2 process

75.133 randarp

randomly generate the instance of an ar-p process

75.134 range_window

range of values within a certain range of indices (window)

75.135 rectwin

rectangular window

75.136 recursive_sum

75.137 select_range

75.138 smooth1d_parametric

smooth position of p0=x0,y0 between p1=x1,y1 and p2=x2,y2, so that distance to p1 and p2 becomes equal and the chord length remains the same

75.139 smooth2

smooth vectos of X

$75.140 \quad smooth_man$

75.141 smooth_parametric

smooth a parametric function given in x-y coordinates
 matvec2x2(R,[dxc;dyc])

75.142 smooth_parametric2

parametrically smooth the curve

$75.143 \quad smooth_with_splines$

75.144 smoothfft

filter with fast fourier transform

76 signal-processing/spectral-density

76.1 spectral_density_ar2

76.2 spectral_density_area

integrate the spectral density

- 76.3 spectral_density_bandpass2d_ideal
- 76.4 spectral_density_bandpass_2d
- 76.5 spectral_density_bandpass_2d_scale
- $76.6 \quad spectral_density_bandpass_2d_scale_old$
- 76.7 spectral_density_bandpass_continuous

```
S : spectral density of the bandpass filter in continuos space limit case of the discrete bandpass for dx \mbox{->}\mbox{0}
```

```
function [S,IS] = spectral_density_bandpass_continous(fx,fc,order)
```

f : frequency (abszissa)

fc : central frequncy, location of maximum on abszissa
order : number of times filter is applied iteratively, not
 necessarily integer

76.8 spectral_density_bandpass_continuous_max

maximum of the bandpass spectral density

76.9 spectral_density_bandpass_continuous_max2par

transform mode (maxima) of the bandpass spectral density into the
 paramter
of the underlying distribution

76.10 spectral_density_bandpass_continuous_scale

normaliztation scale of the spatial bandpass density

76.11 spectral_density_bandpass_discrete

spectral density of the discrete spatial (two-sided) bandpass filter $% \left(\frac{1}{2}\right) =\left(\frac{1}{2}\right) \left(\frac{1}{2$

76.12 spectral_density_brownian_phase

spectral density of a fourier series where the phase undergoes
 brownian motion
with standard deviation s per unit distance

76.13 spectral_density_brownian_phase_2d

76.14 spectral_density_brownian_phase_across

76.15 spectral_density_brownian_phase_mode

mode (maximum) of the spectral density of the fourier series with brownian phase

76.16 spectral_density_brownian_phase_mode2par

transform mode to parameters of the brownian phase spectral density

76.17 spectral_density_brownian_phase_scale

normalization scale of the brownian phase spectral density

$76.18 \quad spectral_density_estimate_2d$

76.19 spectral_density_flat

flat spectral density of a random vector woth iid elements

- 76.20 spectral_density_highpass
- 76.21 spectral_density_highpass2d_ideal
- $76.22 \quad spectral_density_highpass_2d$
- 76.23 spectral_density_highpass_cos

consine shaped spectral density of a highpass filter

76.24 spectral_density_lorentzian

lorentzian spectral density

76.25 spectral_density_lorentzian_max

mode (maximum) of the lorentzian spectral density

76.26 spectral_density_lorentzian_max2par

transform maximum of the lorentzian spectral density to its distribution parameters $% \left(1\right) =\left(1\right) +\left(1\right)$

76.27	$spectral_density_lorentzian_scale$	
	ization scale of the lorentzian spectral density spectral_density_lowpass	
76.29	$spectral_density_lowpass2d_ideal$	
76.30	$spectral_density_lowpass_2d$	
76.31	$spectral_density_lowpass_one_sided$	
76.32	$spectral_density_periodic_additive_noise$	
76.33	$spectral_density_wperiodic$	
77 signal-processing		
77.1	spectrogram	
spectrogram		
77.2	std _window	

moving block standard deviation

$77.3 \quad sum_i_lag$

```
sum of ar1 matrix with lag
sum_i=1^n rho^|i-k|
```

$77.4 \quad sum_i$

```
sum of ar1 matrix
sum_i=1^n sum_j=1^n rho^|i-j|
this is for the variance, take square root for the standard
    deviation factor
```

 $77.5 \quad sum_ii_$

$77.6 \quad sum_{ij}$

```
sum of ar1 matrix
sum_{i=1}^n sum_{j=1}^m r^|i-j|
```

 $77.7 \quad sum_ij_$

$77.8 \quad sum_ij_partial_$

77.9 sum_multivar

sum of matrix entries of bivariate ar1 process

77.10 test_acfar1

- 77.11 test_acfar1_2
- 77.12 test_acfar1_3
- 77.13 test_acfar1_4
- 77.14 test_acfar2
- 77.15 test_ar1_var_factor
- 77.16 test_ar1_var_factor_2
- $77.17 \quad test_ar1_var_mu_single_sample$
- 77.18 test_ar1_var_pop
- 77.19 test_ar1_var_pop_1
- 77.20 test_ar1delay

77.21	$test_bivariate_covariance_term$
77.22	$test_convexity$
77.23	${ m test_lanczoswin}$
77.24	${ m test_madcorr}$
77.25	${ m test_randar1}$
77.26	$test_randar1_multivariate$
77.27	${ m test_randar2}$
77.28	${ m test_sum_ij}$
77.29	$test_sum_multivar$

77.30 test_trifilt1

77.31 test_wautocorr

77.32 test_wavelet_transform

77.33 test_wordfilt

77.34 test_xar1_mid_term

77.35 tikhonov_to_ar1

convert coefficient of the tikhonov regularization to correlatioon of the ar1 process

77.36 trapwin

trapezoidal filter window

77.37 trifilt1

filter with triangular window
trifilt1 is ident to twice applying rectfilt1 (meanfilt1) with half
the domain size
note : inifnitely many convolution yield a gaussian

77.38 trifilt2

filter with a triangular window along both dimensions

77.39 triwin

triangular filter window

77.40 triwin2

triangular filter window

77.41 varar1

error variance of a single sample of a finite length ar1 process with respect to the mean, averaged over the population ${\sf var}$

77.42 welch_spectrogram

welch spectrogram

77.43 wfilt

filter with window

77.44 winbandpass

filter with bandpass

77.45 window2d

77.46 window_make_odd

77.47 winfilt0

filter with window

77.48 winlength

window length for desired cutoff frequency
power at fc is halved
H(wf) = 1/sqrt(2) H(f)
if the filter window were used as a low pass filter
note: the user should prefer a windowed ideal low pass filter
TODO, relate this to DOF

77.49 wmeanfilt

mean filter with window

77.50 wmedfilt

median filter with window

77.51 wordfilt

weighted order filter

77.52 wordfilt_edgeworth

weighed order filter

77.53 wrapphase

77.54 xar1

77.55 xcorr₋man

cross correlation of two sampled ar1 processes

78 sorting

78.1 sort2

sort two numbers

78.2 sort2d

sort elements of matrix in ${\tt X}$ returns row and column index of sorted values

79 special-functions

79.1 bessel_sphere

spherical Bessel function of the first kind

79.2 digamma_man

 $79.3 \exp 10$

79.4 hankel_sphere

spherical Hankel function for the far field (incident plane wave) first kind

79.5 hermite

probabilistic's hermite polynomial by recurrence relation

input :
n : order
x : value
output:

 $f : H_n(x)$ $df : d/dx H_n(x)$

79.6 legendre_man

legendre polynomials

79.7 neumann_sphere

spherical Neumann function
Bessel function of the second kind

80 statistics

$80.1 \quad atan_s2$

stadard deviation of the arcus tangens by means of taylor expansion

80.2 beta_kurt

80.3 beta_mean

$80.4 \quad beta_mode_to_parameter$

transform modes (mean and sd) to paramets of the beta function

80.5 beta_skew 80.6 beta_std 80.7 chi2_kurt 80.8 chi2_mean 80.9 chi2_skew 80.10 chi2_std 80.11 coefficient_of_determination $80.12 \quad conditional_expectation_normal$

80.13 correlation_confidence_pearson

c.f. Fischer 1921

confience intervals of the correlation coefficient

81 statistics/distributions

81.1 PDF

class for quasi-distributions from a set of sampling points

81.2 binorm_separation_coefficient

separation coefficient of a bimodal normal distribution

81.3 binormcdf

bio-modal gaussian distribution

81.4 binormfit

fit sum of to normal distribution to a histogram

81.5 binormpdf

81.6 edgeworth_cdf

edgeworth expansion of an unknown cumulative distribution with mean mu, standard deviation sigma, and third and fourth cumulants c.f. Rao 2010

81.7 edgeworth_pdf

probability density of and unknown distribution
with mean mu, standard deviation sigma, and third and fourth
 cumulants
c.f. Rao 2010

81.8 gam_moment2param

81.9 logn_mean

$81.10 logn_mode$

mode (maximum) of the log-normal density

$81.11 logn_moment2param$

transform the mode (mu,sd) to parameters of the log normal distribution

81.12 logn_param2moment

transform parameters to mode (mu, sd) for the \log normal distribution

$81.13 \log n_{std}$

$81.14 \quad lognpdf_{-}$

log normal distribution called by modes rather than parameters

81.15 pdfsample

pdf from sample distribution
Note: better use kernal density estimates

81.16 t2cdf

Hotelling's T-squared cumulative distribution

81.17 t2inv

inverse of Hotelling's T-squared cumulative distribution

82 statistics

 $82.1 \quad example_standard_error_of_sample_quantiles$

82.2 f_var_finite

reduction of variance when sampling from a finite population without replacement

82.3 fisher_mean

82.4 fisher_std

82.5 gam_mean

$82.6 \quad gam_std$

$82.7 \quad gamma_mode_to_parameter$

transform modes (mu,sd) to parameters of the gamma distribution

82.8 gamma_stirling

82.9 gaussfit3

82.10 gaussfit_quantile

82.11 geoserr

82.12 geostd

82.13 hodges_lehmann_correlation

hodges_lehmann correlatoon coefficient

- c.f. Shamos 1976
- c.f. Bickel and Lehmann 1976
- c.f. rousseeuw 1993
- c.f. Shevlyakov 2011

82.14 hodges_lehmann_dispersion

83 statistics/information-theory

83.1 akaike_information_criterion

```
akaike information criterion

serr : rmse of model prediction
n : effective sample size
k : number of parameters

c.f. akaike (1974)
c.f. sugiura 1978
```

83.2 bayesian_information_criterion

bayesian information criterion

84 statistics

84.1 kurtncdf

84.2 kurtnpdf

84.3 kurtosis_bias_corrected

bias corrected kurtosis

84.4 limit

limit a by lower and upper bound

84.5 logfactorial

approximate log of the factorial

84.6 loglogpdf

84.7 lognfit_quantile

84.8 logskewcdf

84.9 logskewpdf

85 statistics/logu

85.1 lambertw_numeric

lambert-w function

85.2 logtrialtcdf

pdf of a logarithmic triangular distribution

85.3 logtrialtiny

```
inverse of the logarithmic triangular distribution
= (d F log(a) log(b) + a log(b) - b log(a) - d F log(a) log(c) - a
    log(c) + d F log(b) log(c) + b log(c) - d F log^2(b))/((log(a)
    - log(b)) W((a^(-1/(log(a) - log(b))) (b^(-log(c)/log(a) - 1/
    log(a)) c)^(-log(a)/(log(a) - log(b))) (-d F log^2(b) + a log(b
    ) + d F log(a) log(b) + d F log(c) log(b) - b log(a) - a log(c)
    + b log(c) - d F log(a) log(c)))/(log(a) - log(b)))
x = (d F log(a) log(b) + a log(b) - b log(a) - d F log(a) log(c) - a
    log(c) + d F log(b) log(c) + b log(c) - d F log^2(b))/((log(a)
    - log(b)) W((a^(-1/(log(a) - log(b))) (b^(-log(c)/log(a) - 1/log
    (a)) c)^(-log(a)/(log(a) - log(b))) (-d F log^2(b) + a log(b) +
    d F log(a) log(b) + d F log(c) log(b) - b log(a) - a log(c) + b
    log(c) - d F log(a) log(c)))/(log(a) - log(b))))
```

85.4 logtrialtmean

mean of the logarithmic triangular distribution

85.5 logtrialtpdf

density of the logarithmic triangular distribution

85.6 logtrialtrnd

85.7 logtricdf

cumulative distribution of the logarithmic triangular distribution

85.8 logtriinv

invere of the logarithmic triangular distribution

85.9 logtrimean

mean of the logarithmic triangular distribution

85.10 logtripdf

probability density of the logarithmic triangular distribution

85.11 logtrirnd

85.12 logucdf

probability density of the logarithmic uniform distribution

85.13 logucm

central moments of the log-uniform distribution

85.14 loguinv

inverse of the log-uniform distribution

85.15 logumean

mean of the log-uniform distribution

85.16 logupdf

pdf of the log uniform distribution

85.17 logurnd

random numbers following a log-uniform distribution

85.18 loguvar

variance of the log-uniform distribution

85.19 medlogu

median of the log-uniform distribution

85.20 test_logurnd

85.21 tricdf

cumulative distribution of the log-triangular distribution

85.22 triinv

inverse of the triangular distribution

85.23 trimedian

median of the triangular distribution

85.24 tripdf

probability density of the triangular distribution

85.25 trirnd

random numbers of the triangular distribution

86 statistics

$86.1 \quad max_exprnd$

86.2 maxnnormals

expected maximum of n normal variables c.f. Wolperts this is the median, not the mean of the maximum! see median of gumbel

86.3 mean_generalized_gampdf

86.4 midrange

 $\mbox{\sc mid}$ range of columns of $\mbox{\sc X}$

86.5 minavg

solution of the minimum variance problem minimise the variance of the weighted sum of n-independent random variables with equal mean and individual variance

86.6 mode_man

87 statistics/moment-statistics

87.1 autocorr_man3

autoccorrelation of the columns of X

87.2 autocorr_man4

autocorrelation for x if x is a vector, or indivvidually for the columns of x if x is a matrix

c.f. box jenkins 2008 eq. 2.1.12

Note that it is faster to compute the acf in frequency space as done in the matlab internal function

87.3 autocorr_man5

autocorrellation of the columns of ${\tt X}$

87.4 blockserr

estimate the standard error of potetially sequentilly correlated data $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

by blocking

block length should be sufficiently larger than correlation length and sufficiently smaller than data length $\,$

this uses a sliding block approach, which reduces the variation of the error estimate

87.5 comoment

 $\begin{array}{c} {\tt non-central\ higher\ order\ moments\ of\ the\ multivariate\ normal} \\ {\tt distribution} \end{array}$

c.f. Moments and cumulants of the multivariate real and complex ${\it Gaussian \ distributions}$

note : there seem to be some typos in the original paper, for x^4 cii², the square seems to be missing

mu : nx1 mean vector

C : nxn covariance matrix

k : nx1 powers of variables in moments

87.6 corr_man

correlation of two vectors

$87.7 \quad cov_man$

covariance matrix of two vectors

87.8 dof

mininum number of support points for a polynomial of degree order in dim dimensions

87.9 edgeworth_quantile

inverse edgeworth expansion c.f. cornis fisher 1937

c.f. Rao 2010

c.f. 2.50 in hall

CHERNOZHUKOV 3.3

87.10 effective_sample_size

effective sample size of the weighted mean of uncorrelated data ${\tt c.f.}$ Kish

87.11 f_correlation

correction factor for standard error of the mean of n ar1-correlated iid samples $\ensuremath{\mathsf{S}}$

87.12 f_finite

reduction factor of standard error for sampling from a finite
 distribution
without replacement

87.13 lmean

mean of x.^l, not of abs

87.14 lmoment

1-moment of vector x

87.15 maskmean

mean of the masked values of X

87.16 masknanmean

87.17 mean1

mean of x

$87.18 \quad mean_man$

mean and standard error of X

87.19 mse

mean squared error of residual vector res this is de-facto the std for an unbiased residual

87.20 nanautocorr_man1

autocorrelation of a vector with nan-values

87.21 nanautocorr_man2

autocorrelation of a vector with nan-values

87.22 nanautocorr_man4

compute autocorrelation for x if x is a vector, or indivvidually
 for the
columns of x if x is a matrix
box jenkins 2008 eq. 2.1.12
TODO nan is problematic!
Note that it is faster to compute the acf in frequency space
as done in the matlab internal function

87.23 nancorr

(co)-correlation matrix when samples a NaN

87.24 nancumsum

cumulative sum, setting nan values to zero

87.25 nanlmean

mean of the 1-th power of the absolute value of \boldsymbol{x}

87.26 nanr2

coefficient of determination when samples are invalid

87.27 nanrms

root mean square value when sample contains nan-values

87.28 nanrmse

root mean square error from vector of residuals this is de-facto the std for an unbiased residual

87.29 nanserr

standard error of x with respect to mean when x contains nan values

87.30 nanwmean

```
weighted mean
min_x sum w (x-mu)^2 => mu = sum(wx)/sum(w)
varargin can be dim
function [mu serr] = nanwmean(w,x)
```

87.31 nanwstd

weighed standard deviation

87.32 nanwvar

```
weighted variance of columns, corrected for degrees of freedom (
   bessel)

s^2 = sum(w*(x-sum(wx)/sum(w))^2)/sum(w)
```

87.33 nanxcorr

87.34 pearson

pearson correlation coefficient

87.35 pearson_to_kendall

conversion of pearson to kendall correlation coefficient c.f. Kruskal 1958

87.36 pool_samples

pooled mean and standard deviation of several groups of different size, mean and standard deviation

87.37 qmean

trimmed mean

87.38 range_mean

87.39 rmse_

 $\hbox{root mean square error computed from a residual vector} \\ \hbox{this is de-facto the std for an unbiased residual}$

87.40 serr

standard error of the mean of a set of uncorrelated samples

87.41 serr1

87.42 test_qskew

87.43 test_qstd_qskew_optimal_p

87.44 wautocorr

autocorrelation for x if x is a vector, or indivvidually for the columns of x if x is a matrix samples can be weighted

c.f. box jenkins 2008 eq. 2.1.12

c.f. autocorr_man4

Note that it is faster to compute the acf in frequency space as done in the matlab internal function

87.45 wcorr

correlation of two vectors when samples are weighted

87.46 wcov

covariance of two vectors when samples are weighted

87.47 wdof

effective degrees of freedom for weighted samples

87.48 wkurt

kurtosis with weighted samples

87.49 wmean

```
weighted mean
min_x sum w (x-mu)^2 => mu = sum(wx)/sum(w)
varargin can be dim
function [mu serr] = wmean(w,x)
```

87.50 wrms

weighted root mean square

87.51 wserr

weighted root mean square error

87.52 wskew

```
skewness of a weighted set of samples function sk = wskew(w,x)
```

87.53 wstd

weighed standard deviation

87.54 wvar

```
weighted variance of columns, corrected for degrees of freedom (
    bessel)
variance of the weighted sample mean of samples with same mean (but
    not necessarily same variance)
s^2 = sum (w^2(x-sum(wx)^2))
s2_mu : error of mean, s2_mu : sd of prediction
```

88 statistics

88.1 nangeomean

88.2 nangeostd

geometric standard deviation ignoring nan-values

89 statistics/nonparametric-statistics

89.1 kernel1d

X : ouput x axis bins
xi : samples along x
m : number of bins in X
fun : kernel function

pdf : propability density of xi

89.2 kernel2d

kernel density estimate in two dimensions

90 statistics

90.1 normmoment

expected norm of $x.^n$, when values x in x are iid normal with mu and sigma

90.2 normpdf2

pdf of the bivariate normal distribution

91 statistics/order-statistics

91.1 hodges_lehmann_location

hodges lehman location estimator

Asymptotic rms efficency of location estimte:

mean: 1 s/sqrt(n)

hodges lehman: sqrt(pi/3)*s ~ 1.0233 s/sqrt(n) median: pi/2 s/sqrt(n) ~ 1.25 s / sqrt(n)

91.2 kendall

kendall correlation coefficient

91.3 kendall_to_pearson

convert kendall rank correlation coefficient to the person product
 moment
correlation coefficient

c.f. Kruska, 1985

$91.4 \mod 2sd$

transform median absolute deviation to standard deviation for normal distributed values

91.5 madcorr

proxy correlation by median absolute deviation

91.6 median2_holder

91.7 median_ci

median and its confidence intervals under assumption of normality se_me = sqrt(1/2 pi) 1.25331 * sd/sqrt(n)

91.8 median_man

median and confidence intervals c is a P value for the confidence interval, default is 0.95~(2-sigma) median of the colums of X

91.9 mediani

index of median, if median is not unique, any of the values is $\ensuremath{\mathtt{chosen}}$

91.10 nanmadcorr

proxy correlation by median absolute deviation

91.11 nanwmedian

weighted median, skips nan-values

91.12 nanwquantile

weighted quantile, skips nan values

91.13 oja_median

```
two dimensional oja median note: the multivariate median is not unique oja 1983, for extension to multivariate function, see chaudhri
```

91.14 qkurtosis

kurosis computed for quantiles

Note: this is a measurement of shape-tailedness and yields the same value for the normal distribution as "kurtosis"

However, this is a separate statistic and hence requires different methods for calculating P-values and hypothesis testing

91.15 qmoments

moments estimated from quantiles

91.16 qskew

skewness estimated from quantiles

Note: this is a measurement of shape-symmetry and yields the same value for the skew-normal distribution as "skewness"

However, this is an own statistic and hence requires different methods for calculating P-values and hypothesis testing

91.17 qskewq

skewness estimated by quantiles

91.18 qstdq

proxy standard deviation determined by quantiles

91.19 quantile1_optimisation

91.20 quantile2_breckling

qunatile regression

91.21 quantile2_chaudhuri

quantile regression

$91.22 \quad quantile 2_projected$

quantile in two dimensions

91.23 quantile2_projected2

spatial qunatile for chosen direction

91.24 quantile_envelope

91.25 quantile_regression_simple

simple quantile regression

91.26 ranking

ranking for spearman statistics

91.27 spatial_median

c.f. $0ja\ 2008$ is this the same as the $oja\ simplex\ median\ (c.f.\ small\ 1990)$?

91.28 spatial_quantile

spatial quantile

91.29 spatial_quantile2

spatial quantile

91.30 spatial_quantile3

spatial quantile

91.31 spatial_rank

unsigned rank

91.32 spatial_sign

spatial sign

91.33 spatial_signed_rank

signed rank

Note: this is only a true rank if ${\tt X}$ is normal with zero mean, abitrary variance

91.34 spearman

spearman's product moment coefficient

91.35 spearman_rank

91.36 spearman_to_pearson

conversion of spearman rank to person product moment correlation coefficient

91.37 wmedian

weighted median

91.38 wquantile

weighted quantile

92 statistics

92.1 qstd

92.2 quantile_extrap

92.3 quantile_sin

93 statistics/random-number-generation

93.1 laplacernd

random number of laplace distribution

93.2 randc

correlate to correlated standard normally distributed vectors

93.3 skewness2param

93.4 skewpdf_central_moments

93.5 skewrnd

random numbers of the skew normal distribution

93.6 skewrnd2

random numbers of the skew normal distribution

94 statistics

94.1 range

range and mid range of input

94.2 resample_with_replacement

95 statistics/resampling-statistics/@Jackknife

95.1 Jackknife

class for leave out 1 (delete 1) Jackknife estimates

- note 1 : the 1-delete jackknife does not yield consistend estimates
 for all functions,
 - in particular it will perform poorly on robust estimation functions
 - this is overcome by the d-delete jacknife, where d has to exceed the breakdown point
 - of the estimating function, for example sqrt(n) for the median
 - as this leads to unreasonably large number of repetitions, bootstrap
 - is recommended for large sample cases (or blocking for sequential data)
- note 2 : as a linearisation, jackknife underestimates the error variance in case of

dependence in the data

note 3 : studentisation and the leave out 1 jackknife are related
note 4 : the double 1 sample jacknife performs iferior to the d1
 jacknife

95.2 estimated_STATIC

jacknife estimate of mean, bias and standard error

 $\verb|theta0|: estimate from all samples|\\$

thetad : set of estimates obtained by leaving out one data point $\dot{}$

each

last dimension of theta is assumed to be the jackknife dimension

95.3 matrix1_STATIC

matrix of estimation for leaving out two samples at a time

95.4 matrix2

matrix of estimations for jacknive with two samples left out

96 statistics/resampling-statistics

96.1 block_jackknife

96.2 jackknife_moments

moments determined by the jacknife

func : function of interest on the samples (e.g. mean)

A : parameter matrix columns : parameters

rows : samples of the parameter sets

d : number of samples left out

96.3 moving_block_jackknife

```
blocked Jacknfife for autocorrelated data
sliding block, statistically more efficient but computationally
    expensive
note, number of blocks must be sufficiently large h ~ sqrt(n)? << n</pre>
```

96.4 randblockserr

standard error of sequentilly correlated data by blocking block length should be sufficiently larger than correlation length and sufficiently smaller than data length

this uses a sliding block approach, which reduces the variation of the error estimate $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

 $\ensuremath{\mathsf{TODO}}$ this does not work, randomly picking samples does not reveal the correlation

96.5 resample

```
resample a vector and apply function to it TODO, should be with replacement n : number of samples
```

m : number of subsamples

cx : maximum number of combinations

97 statistics

97.1 scale_quantile_sd

scale factor for the standard deviation of the asymtpotic distibution of sample quantiles (for normal distribution) see cadwell, 1952

- 97.2 sd_sample_quantiles
- 97.3 skew_generalized_normal_fit
- 97.4 skew_generalized_normpdf
- 97.5 skewcdf
- 97.6 skewparam_to_central_moments
- 97.7 skewpdf

skew-normal distribution c.f. Azzalini 1985

97.8 spatialrnd

$97.9 \quad test_mean_generalized_gampdf$

97.10 test_skew_generalized_normpdf

97.11 trimmed_mean

trimmed mean

97.12 $ttest2_man$

```
two-sample t-test here posix return value standard: h=0 accepted, h=1 failed note: the matlab logic is inverse : h=1 accepted, h=0 failed two sided univariate t-test
```

97.13 ttest_man

two-sample t-test
unequal sample size
equal variance

97.14 ttest_paired

```
paired t-test unequal sample size equal variance more powerfull than unpaired test, as long as correlation between x1 and x2 > 0
```

97.15 wgeomean

weighted geometric mean
function mu = wgeomean(w,x)

97.16 wgeovar

variance of the weighted geometric mean

97.17 wharmean

weighted harmonic mean

97.18 wharstd

97.19 wharvar

97.20 wnormpdf

wrapped normal distribution to the unit circle ${\tt c.f.}$ stephens

98 stochastic

98.1 brownian_noise_1d_acf

98.2 brownian_noise_1d_fft

98.3 brownian_noise_2d_fft

99 mathematics

mathematical functions of various kind

99.1 ternary_diagram

100 test/master

 $100.1 \quad dat_test_lanczos_3d_k_20_n_40$

100.2 poisson $2d_blk$

 $100.3 \quad qr_implicit_givens_2$

 $100.4 \quad spectral_derivative_2d$

 $100.5 \quad test_2d_eigensolver_hydrogen$

100.6 test_2d_refine

- $100.7 \quad test_3d_eigensolver_hydrogen$
- 100.8 test_FEM
- 100.9 test_Mesh_3d
- 100.10 test_arnoldi
- 100.11 test_arpackc
- 100.12 test_assemble
- 100.13 test_assembly_performance
- 100.14 test_bc_one_sided
- 100.15 test_compare_solvers
- 100.16 test_complete

100.17 test_convergence

 $100.18 \quad test_convergence_b$

 $100.19 \quad test_df_2d$

 $100.20 \quad test_eig_algs$

100.21 test_eig_inverse

 $100.22 \quad test_eigs_lanczos$

 $100.23 \quad test_eigs_lanczos_1$

 $100.24 \quad test_eigs_lanczos_2$

100.25 test_eigs_lanczos_performance

100.26 test_fdm

- 100.27 test_fdm_d_vargrid
- 100.28 test_fdm_spectral
- 100.29 test_fem
- $100.30 \quad test_fem_1d$
- 100.31 test_fem_1d_higher_order
- $100.32 \quad test_fem_2d_adaptive$
- $100.33 \quad test_fem_2d_higher_order$
- 100.34 test_fem_3d_higher_order
- 100.35 test_fem_3d_refine
- 100.36 test_fem_b

100.37 test_fem_derivative

 $100.38 \quad test_fem_quadrature$

100.39 test_final

100.40 test_fix_substitution

100.41 test_forward

 $100.42 \quad test_get_sparse_arrays$

100.43 test_harmonic_oscillator

 $100.44 \quad test_high_order_fdm_periodic_bc$

100.45 test_hydrogen_wf

100.46 test_ichol

- 100.47 test_interpolation
- 100.48 test_inverse_problem
- 100.49 test_it_vs_exact
- 100.50 test_jama
- 100.51 $test_{jd}$
- $100.52 \quad test_jdqz$
- 100.53 test_lanczos_2
- 100.54 test_lanczos_biorthogonal
- 100.55 test_laplacian
- 100.56 test_laplacian_non_uniform

 $100.57 \quad test_laplacian_simple$

100.58 test_mesh_2d_uniform

100.59 test_mesh_2d_uniform_2

100.60 test_mesh_circle

100.61 test_mesh_generation

 $100.62 \quad test_mesh_interpolate$

100.63 test_mg

100.64 test_minres_recycle

100.65 test_multigrid

100.66 test_nc

 $100.67 \quad test_nonuniform_symmetric$

 $100.68 \quad test_pde$

100.69 test_permutation

100.70 test_poison_fem

100.71 test_polar

100.72 test_potential

100.73 test_powers

100.74 test_precondition

100.75 test_project_rectangle

100.76 $test_qr$

 $100.77 \quad test_quantum_well$

100.78 test_radial_adaptive

100.79 test_radial_confinement

100.80 test_radial_fixes

100.81 test_refine_2d

100.82 test_refine_2d_b

100.83 test_refine_3d

100.84 test_refine_structural

100.85 test_regularisation

100.86 test_round_off

- $100.87 \quad test_schr\"{o}dinger_potentials$
- 100.88 test_uniform_mesh
- 100.89 test_vargrid
- 101 test
- $101.1 \quad test_bandpass2d$
- 101.2 test_gaussfit3
- 101.3 $test_geoserr$
- 101.4 test_hexagonal_pattern
- 101.5 test_lognfit_quantile
- $101.6 \quad test_lowpass1d_implicit$

- $101.7 \quad test_lowpass2d_anisotropic$
- $101.8 \quad test_lowpass2d_fft$
- 101.9 test_max_normal
- 101.10 test_moments_fourier_power
- $101.11 \quad test_mtimes3x3$
- 102 wavelet
- 102.1 continuous_wavelet_transform

```
continuous wavelet transform follows "The Illustrated Wavelet Transform Handbook: Introductory Theory and ..."
```

102.2 cwt_man

continuous fourier transform as of time of implmentation, the matlab interal cwt is affected by serious round-off errors and has issues with the scaling, which is not the case here

102.3 example_wavelets

102.4 phasewrap

wrap the phase to +/- pi

102.5 test_cwt_man

102.6 test_phasewrap

102.7 test_wavelet

102.8 test_wavelet2

 $102.9 \quad test_wavelet_analysis$

102.10 test_wavelet_reconstruct

 $102.11 \quad test_wtc$

102.12 wavelet

wavelet windows

102.13 wavelet_reconstruct

iverses wavelet transform for single frequency (reconstruction of time series) n: window lengths in multiples of filter period 1/f0

102.14 wavelet_transform

wavelet transform for single frequency n: window lengths in multiples of filter period 1/f0