设 $\mathscr E$ 是 N 维欧几里得空间, $\mathscr V_{\mathscr E}$ 是其平移空间。考虑一个 N 向量场函数 $\mathbf f:\mathscr E \supset \Omega \to \mathscr V$,其中 $\mathscr V$ 的维数也是 N (N^n 维且 n=1)。由于 $\mathscr V$ 与 $\mathscr V_{\mathscr E}$ 是同维数的,因此这两个向量空间是同构的。我们可以把 $\mathbf f$ 的值看作 $\mathscr V_{\mathscr E}$ 中的一个向量,即 $\mathscr E$ 中的一个平移向量。在作图时,我们常将 $\mathbf f(X)$ 以某平移向量的形式,画在点 X 处(如图??所示)。若 $\mathscr E$ 的基本坐标系是 $(O,\{\widehat{\mathbf e}_i\})$,则任一点 $X\in\Omega$ 的位置向量 $\mathbf r_X=\sum_{i=1}^N x_i\widehat{\mathbf e}_i$,其中 (x_1,\cdots,x_N) 是点 X 在基本直角坐标系下的坐标。场函数 $\mathbf f(X)$ 的值,现作为 $\mathscr V_{\mathscr E}$ 中的一个向量,也具有在 $\{\widehat{\mathbf e}_i\}$ 下的坐标函数 $\mathbf f(X)=\sum_{i=1}^N f_i(X)\widehat{\mathbf e}_i$ 。设某曲线坐标系的基是 $\{\widehat{\mathbf c}_i\}$,则位置向量 $\mathbf r_X$ 和场函数值 $\mathbf f(X)$ 都可以写成点关于点 X 的 $\{\widehat{\mathbf c}_i\}$ 下的坐标(记得,曲线坐标系的基是依赖点 X 变化的), (x_1^c,\cdots,x_N^c) 和 (f_1^c,\cdots,f_N^c) 。场函数的导数 $\mathbf D\mathbf f(X)$ 在直角坐标系下的坐标矩阵和在曲线坐标系下的坐标矩阵之间,具有一般的的转换关系。本节将推导这个转换关系。

首先考虑由点 $X \in \mathcal{E}$ 出发的某平移 X' - X,它是一个平移向量,它可以用 $\mathcal{V}_{\mathcal{E}}$ 的基 $\{\hat{\mathbf{e}}_i\}$ 表示为 $X - X_0 = \sum_{i=1}^N (x_i' - x_i) \hat{\mathbf{e}}_i$ 。由于在给定直角坐标系下,欧几里得空间中的点与其在该直角坐标系下的坐标之间是双射关系,所以若视 X 为 (x_1, \cdots, x_n) 的函数,则由微分的定义,有

$$X' - X = \sum_{i=1}^{N} (x_i' - x_i) \widehat{\mathbf{e}}_i = \sum_{i=1}^{N} dx_i \widehat{\mathbf{e}}_i + \sum_{i=1}^{N} o(|\Delta x_i|) \widehat{\mathbf{e}}_i$$

其中 $\Delta x_i \equiv x_i' - x_i$, o(x) 表示 $x \to 0$ 时 x 的高阶无穷小,且在这里显然 $o(x) \equiv 0$,故记号 $\mathrm{d} x_i \equiv \Delta x_i$ 。 我们记 \mathbb{R}^n 中的一个向量 $\mathbf{x} = (x_1, \cdots, x_n)$ 为它所对应的点 $X \in \mathscr{E}$ 的在直角坐标系 $(O, \{\widehat{\mathbf{e}}_i\})$ 下的坐标,则 \mathbf{x} 亦是点 X 的位置向量 $\mathbf{r}_X \in \mathscr{V}_{\mathscr{E}}$ 在基 $\{\widehat{\mathbf{e}}_i\}$ 。 我们进一步记上式等号右边的向量 $\sum_{i=1}^N \mathrm{d} x_i \widehat{\mathbf{e}}_i$ 为 $\mathrm{d} \mathbf{x}$,我们可以说 $\mathrm{d} \mathbf{x}$ 在 $\{\widehat{\mathbf{e}}_i\}$ 下的坐标是 $\mathrm{d} x_i$ 。 值得注意的是,这些概念都是在关于具体某点 $X \in \mathscr{E}$ 的讨论之下的。

如果选择了一个曲线坐标系,它的参数映射是 $T: \mathbb{R}^N \supset \mathcal{U} \to \mathbb{R}^N$,即对任一点 $X \in \mathcal{E}$,总有唯一一组 $(u_1, \dots, u_N) \in \mathcal{U}$ 与之对应,则 $(x_1, \dots, x_N) = T(u_1, \dots, u_N)$ 。若记 x_i 在映射 T 下关于 (u_1, \dots, u_N) 的分量函数为 $x_i(u_1, \dots, u_N)$,则按照全微分的定义和写法有

$$dx_{i} = \sum_{j=1}^{N} \frac{\partial x_{i}}{\partial u_{j}} du_{j}, \quad i = 1, \dots, N,$$

$$d\mathbf{x} = \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\partial x_{i}}{\partial u_{j}} du_{j} \widehat{\mathbf{e}}_{i}$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N} h_{j}^{-1} h_{j} \frac{\partial x_{i}}{\partial u_{j}} du_{j} \widehat{\mathbf{e}}_{i}$$

$$= \sum_{j=1}^{N} h_{j} du_{j} \widehat{\mathbf{c}}_{j}$$

其中 h_i 是曲线坐标系在点 X 处的拉梅系数, $\hat{\mathbf{c}}_i$ 是曲线坐标系在点 X 处的基向量。可见在每一

更新至 2024-11-23

点 X 处,向量 d \mathbf{x} 在曲线坐标系的基下的坐标是 $(h_1 du_1, \cdots, h_N du_N)$ 。若记 d $\mathbf{x} = \sum_{i=1}^N dx_i^c \widehat{\mathbf{c}}_i$,则有坐标变换公式

$$\mathrm{d}x_i^c = h_i \mathrm{d}u_i, \quad i = 1, \cdots, N$$

现在我们考虑向量场函数 $\mathbf{f}(X)$ 的导数在直角坐标系和曲线坐标系下的坐标。函数 \mathbf{f} 在点 X 处的微分是 $\mathrm{D}\mathbf{f}(X)(X'-X)$,它是一个 $\mathscr{V}_{\mathscr{E}}$ 中的向量,我们记为 $\mathrm{d}\mathbf{f}$ 。我们记 $\mathbf{f}(X)$ 的导数 为 $\mathbf{L}=\mathrm{D}f(X)$,则 $\mathbf{L}\in\mathscr{L}(\mathscr{V}_{\mathscr{E}})$ 是 $\mathscr{V}_{\mathscr{E}}$ 上的一个线性算符。再利用之前的记法 $\mathrm{d}\mathbf{x}=X'-X$,我们有

$$d\mathbf{f} = \mathbf{L} d\mathbf{x}$$

我们关心的是 L 在直角坐标系下的坐标矩阵分量 L_{ij} 和在曲线坐标系下的坐标矩阵分量 L_{ij}^{c} 之间的关系。由于 df 是同一个向量,因此它由基 $\{\hat{\mathbf{c}}_i\}$ 的线性表出等于由基 $\{\hat{\mathbf{c}}_i\}$ 的线性表出。即

$$d\mathbf{f} = \sum_{i=1}^{N} \sum_{j=1}^{N} L_{ij} dx_j \widehat{\mathbf{e}}_i = \sum_{i=1}^{N} \sum_{j=1}^{N} L_{ij}^{c} dx_j^{c} \widehat{\mathbf{c}}_i$$

若记 S 是由基 $\{\hat{\mathbf{e}}_i\}$ 到基 $\{\hat{\mathbf{c}}_i\}$ 的过渡矩阵,则由定理??有

$$L_{ij}^{c} = \sum_{k,l=1}^{N} S_{ik}^{inv} L_{kl} S_{lj}, \quad i, j = 1, \cdots, N$$

我们已经知道, $L_{ij}=\partial f_i/\partial x_j$,视 $x_j=x_j\,(u_1,\cdots,u_N)$ 为映射 T 的分量函数,以及 S_{ij} 的表达式,上式可以进一步写成

$$L_{ij}^{c} = \sum_{k,l=1}^{N} S_{ik}^{inv} \frac{\partial f_k}{\partial x_l} h_j^{-1} \frac{\partial x_l}{\partial u_j}$$

再由坐标变换公式 $f_i = \sum_{j=1}^N f_j^c S_{ij}$,代入上式得

$$\begin{split} L_{ij}^{\mathrm{c}} &= \sum_{k,l=1}^{N} S_{ik}^{\mathrm{inv}} \frac{\partial}{\partial x_{l}} \left(\sum_{m=1}^{N} S_{km} f_{m}^{\mathrm{c}} \right) h_{j}^{-1} \frac{\partial x_{l}}{\partial u_{j}} \\ &= \sum_{k,l,m=1}^{N} S_{ik}^{\mathrm{inv}} \left(\frac{\partial S_{km}}{\partial x_{l}} f_{m}^{\mathrm{c}} + \frac{\partial f_{m}^{\mathrm{c}}}{\partial x_{l}} S_{km} \right) h_{j}^{-1} \frac{\partial x_{l}}{\partial u_{j}} \\ &= \sum_{k,l,m=1}^{N} \left(h_{j}^{-1} S_{ik}^{\mathrm{inv}} \frac{\partial S_{km}}{\partial x_{l}} \frac{\partial x_{l}}{\partial u_{j}} f_{m}^{\mathrm{c}} + h_{j}^{-1} S_{ik}^{\mathrm{inv}} S_{km} \frac{f_{m}^{\mathrm{c}}}{\partial x_{l}} \frac{\partial x_{l}}{\partial u_{j}} \right) \\ &= \sum_{k,l=1}^{N} h_{j}^{-1} S_{ik}^{\mathrm{inv}} \frac{\partial S_{kl}}{\partial u_{j}} f_{l}^{\mathrm{c}} + \sum_{k=1}^{N} h_{j}^{-1} \frac{\partial f_{i}^{\mathrm{c}}}{\partial u_{j}}, \quad i, j = 1, \cdots, N \end{split}$$

记上式第二项中的

$$\Gamma_{lj}^{i} = h_{j}^{-1} \sum_{k=1}^{N} \frac{\partial S_{kl}}{\partial u_{j}} S_{ik}^{\text{inv}}, \quad i, j, l = 1, \dots, N$$

称为该曲线坐标系的克里斯托菲尔符号($Christoffel\ symbols$)*。我们可以把 L 在直角坐标系和曲线坐标系下的坐标矩阵之间的关系总结为

$$L_{ij}^{c} = h_{j}^{-1} \frac{\partial f_{i}^{c}}{\partial u_{j}} + \sum_{l=1}^{N} \Gamma_{lj}^{i} f_{l}^{c}, \quad i, j = 1, \cdots, N$$

只要我们把某向量场物理性质视为欧几里得空间的平移向量,那么它的导数在曲线坐标系下的矩阵就必须满足上式。我们将会在本讲义的后面看到,有些向量场并不能简单视为平移向量,它们的导数在曲线坐标系下的矩阵就并不满足上式,而需根据这些向量场的物理定义来具体推算。

例 0.1 (柱坐标系和球坐标系的克氏符号). 我们由例??给出的 S_{cyl} 和 S_{sph} 可以写出三维 (N=3) 柱坐标系和球坐标系的克氏符号。柱坐标系的克氏符号为

$$\Gamma^{\rho} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -\frac{1}{\rho} & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \Gamma^{\varphi} = \begin{pmatrix} 0 & \frac{1}{\rho} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \Gamma^{z} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

球坐标系的克氏符号为

$$\Gamma^{r} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -\frac{1}{r} & 0 \\ 0 & 0 & -\frac{1}{r} \end{pmatrix}, \quad \Gamma^{\vartheta} = \begin{pmatrix} 0 & \frac{1}{r} & 0 \\ 0 & 0 & 0 \\ 0 & \frac{\cot \varphi}{r} & 0 \end{pmatrix}, \quad \Gamma^{\varphi} = \begin{pmatrix} 0 & 0 & \frac{1}{r} \\ 0 & -\frac{\cot \varphi}{r} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

更新至 2024-11-23

^{*}这里的克氏符号与有些文献中所说的第二类克氏符号定义相同。