Itemsets

Mining Massive Datasets

Prof. Carlos Castillo — https://chato.cl/teach

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapters 4, 5) slides by Lijun Zhang
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (Chapter 6) slides
- Data Mining Concepts and Techniques, 3^{rd} edition (2011) by Han et al. (Chapter 6)
- Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapters 5, 6) slides ch5, slides ch6

Market Basket Analysis

- Understand customers
 - Purchasing habits, sensitivity to price, promotions
- Understand products
 - Co-purchases, fast/slow movers
- Take action: promotions, store layout, ...

Transactions contain items, which can be grouped into itemsets

- Transactions
 - Sets of items bought by customers
- The Goal
 - Determine associations between groups of items bought by customers
- Quantification of the Level of Association
 - Frequencies of sets of items
- The Discovered Sets of Items
 - Large itemsets, frequent itemsets, or frequent patterns

"Transaction" is a general concept

Items	Transactions
Groceries	Grocery cart
University courses	Transcript of courses taken
Guests	Party
Actors	Movies
Symptoms	Patient
Streamed songs	Streaming subscriber
Words	Document
Liked photos	Instagram account

https://web.stanford.edu/class/cs102/lecturenotes/DataMining.pdf

Applications

- Supermarket Data
 - Target marketing, shelf placement
- Text Mining
 - Identifying co-occurring terms
- Generalization to Dependency-oriented Data Types
 - Web log analysis, software bug detection
- Other Major Data Mining Problems
 - Clustering, classification, and outlier analysis

Association rules

- Generated from frequent itemsets
- Formulation X⇒Y
 - {Soy latte} ⇒ {Brown Sugar}
 - $\{ Kale, Quinoa \} \Rightarrow \{ Almond milk \}$
- Applications
 - Promotion
 - Shelf placement
- Conditional Probability $P(Y|X) = \frac{P(X \cap Y)}{P(X)}$

Association rule mining

- U is a set of d items
- T is a set of n transactions $T_1, T_2, ..., T_n$ with $T_i \subseteq U$
- Itemset: a set of items
- k-itemset: a set of k items

How many different k-itemsets exist? 2^k

Binary representation of a transaction

tid	Set of items	Binary representation
1	Bread, Jam, Juice	110010
2	Tofu, Juice, Tomatoes	000111
3	Bread, Strawberries, Tofu, Juice	101110
4	Tofu, Juice, Tomatoes	000111
5	Strawberries, Juice, Tomatoes	001011

Support of an Itemset

Definitions

• Support of itemset *I*, written sup(*I*):

the fraction of transactions in the database $T = \{T_1 \dots T_n\}$ that contain I as a subset.

• Frequent itemset mining with support minsup:

Given a set of transactions $T = \{T_1, ..., T_n\}$, where $T_i \subseteq U$, find all itemsets I_i such that $sup(I_i) \ge minsup$

Example

tid	Set of items
1	Bread, Jam, Juice
2	Tofu, Juice, Tomatoes
3	Bread, Strawberries, Tofu, Juice
4	Tofu, Juice, Tomatoes
5	Strawberries, Juice, Tomatoes

- $sup(\{Bread, Juice\}) = 2/5 = 0.4$
- $sup(\{Strawberries, Tomatoes\}) = 1/5 = 0.2$
- If minsup=0.3, {Bread, Juice} is a frequent itemset

Exercise: compute support

TID	Iten	ns		
100	1	3	4	
200	2	3	5	
300	1	2	3	5
400	2	5		

- Write the support of every 2itemset and 3-itemset occurring in this database
- Indicate which are frequent itemsets if minsup = 1/2

Properties

 The smaller minsup is, the larger the number of frequent itemsets

```
Support monotonicity property: if J \subseteq I, sup(J) \ge sup(I) WHY?
```

Properties

Support monotonicity property:

if
$$J \subseteq I$$
, $sup(J) \ge sup(I)$

- Confusingly, some authors refer to this as the support anti-monotonicity property
- Downward closure property

Every subset of a *frequent* itemset is also *frequent*

Closed and Maximal Itemsets

Closed itemset

An itemset is **closed** if all itemsets containing it are **strictly less**frequent

tid	Set of items
1	Bread, Jam, Juice
2	Tofu, Juice, Tomatoes
3	Bread, Strawberries, Tofu, Juice
4	Tofu, Juice, Tomatoes
5	Strawberries, Juice, Tomatoes

Find a closed itemset in this set of transactions

Closed itemset

An itemset is **closed** if all itemsets containing it are strictly less frequent

```
tid Set of items

1    Bread, Jam, Juice

2    Tofu, Juice, Tomatoes

3    Bread, Strawberries, Tofu, Juice

4    Tofu, Juice, Tomatoes

5    Strawberries, Juice, Tomatoes
```

```
\begin{split} \sup(\{\text{Bread, Juice}\}) &= 2\\ \sup(\{\text{Bread, Juice, Jam}\}) &= 1\\ \sup(\{\text{Bread, Juice, Strawberries}\}) &= 1\\ \sup(\{\text{Bread, Juice, Tofu}\}) &= 1 \end{split}
```

{Bread, Juice} is a closed itemset

Maximal itemset

An itemset is **maximal** if:

it is closed and

it has support ≥ minsup

tid	Set of items
1	Bread, Jam, Juice
2	Tofu, Juice, Tomatoes
3	Bread, Strawberries, Tofu, Juice
4	Tofu, Juice, Tomatoes
5	Strawberries, Juice, Tomatoes

Exercise

Find three maximal frequent itemsets at minsup=0.4

Tip: first find all frequent itemsets at minsup=0.4

Maximal itemset

An itemset is **maximal** if:

it is closed and

it has support ≥ minsup

tid	Set of items
1	Bread, Jam, Juice
2	Tofu, Juice, Tomatoes
3	Bread, Strawberries, Tofu, Juice
4	Tofu, Juice, Tomatoes
5	Strawberries, Juice, Tomatoes

Maximal itemsets

{Bread, Juice}, {Strawberries, Juice}, {Tofu, Juice, Tomatoes}

... are **condensed** representations of frequent patterns, but do not retain information about the support of their subsets.

The Itemsets Lattice

26/32

Support of each itemset

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

30/32

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

The border is a graph cut and ...

- All itemsets above the border are frequent
- All itemsets below the border are not frequent
- All maximal frequent itemsets are adjacent to the border
- Any border respects the downward closure property

Summary

Things to remember

- Itemset, k-itemset, transaction, support
- Support monotonicity property
- Maximal and closed itemsets
- Itemset lattice

Exercises for TT11-TT12

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises $4.9 \rightarrow 1-3$, 5, 7-8
 - ⁻ Exercises $5.7 \rightarrow 1-5$
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al.
 - Exercises $6.1.5 \to 6.1.1 6.1.7$
- Introduction to Data Mining 2nd edition (2019) by Tan et al.
 - Exercises $5.10 \rightarrow 2-7$