1. Real Numbers

1.2 The set of real numbers

Cardinality: |A| = |B| if there exists a bijection $f: A \to B$

- 1. A is finite if empty or $|A|=|\{1,...,n\}|$ for some n; otherwise, infinite
- 2. A is countably infinite if $\left|A\right|=\left|N\right|$
- 3. A is countable if finite or countably infinite

Examples: $|\mathbb{Z}|=|\mathbb{N}|=|\mathbb{Q}|$ — coutably infinite; $\mathbb{R},\{x_n\}$ where $x_n=0/1$ — uncountable

An ordered set is a set S along with a binary relation < satisfying:

- 1. (Trichotomy property) For any $x,y \in S$, exactly one of x < y, x = y, or y < x holds
- 2. (Transitive property) If x < y, and y < z, then x < z

Let $E \subseteq S$, where S is an ordered set

- 1. upper bound: $b \in S$ s.t. $x \le b$ for all $x \in E$
- 2. lower bound: $b \in S$ s.t. $x \ge b$ for all $x \in E$
- 3. least upper bound $\sup: b_0 \leq b$ for all upper bounds b
- 4. greatest lower bound inf: $b_0 \ge b$ for all lower bounds b

LUB property: An ordered set S has the least-upper-bound property if every non-empty subset $E \subset S$ that is bounded above has a least upper bound, that is, $\sup E \in S$ exists.

Characterizaion of \mathbb{R} : There is a unique ordered field \mathbb{R} with the least upper bound property that contains \mathbb{Q} .

Archimedean Property of \mathbb{R} : If $x,y\in\mathbb{R}$ and x>0, then there exists an $n\in\mathbb{N}$ s.t. nx>y. " \mathbb{Q} is dense in \mathbb{R} ": If $x,y\in\mathbb{R}$ and x< y, then there exists an $r\in\mathbb{Q}$ s.t. x< r< y.

If $\sup A \in A$, A has a maximum: $\max A = \sup A$ If $\inf A \in A$, A has a minimum: $\min A = \inf A$

1.3 Absolute value and bounded functions

Absolute values

- 1. |x| < y iff -y < x < y
- 2. -|x| < x < |x|

Triangle inequality: $|x+y| \leq |x| + |y|$ (proof combining 1 and 2)

1. Real Numbers 1

Reverse triangle inequality: $||x|-|y|| \leq |x-y| \ \ (\leq |x|+|-y|=|x|+|y|)$

1. Real Numbers 2