Maths

Patrolin

April 4, 2020

Contents

1	Derivatives				
	1.1	Notati	ion	6	
	1.2	entary derivatives	7		
		1.2.1	By $\frac{d}{dx}f(x)$:	7	
		1.2.2	By $df(x)$:	8	
		1.2.3	By definition:	8	
		1.2.4	By implicit differentiation:	9	
		1.2.5	By fancy geometry:	9	
		1.2.6	By giving up:	10	
	1.3	Rules		11	
		1.3.1	Sum rule	11	
		1.3.2	Product rule	12	
		1.3.3	Derivative with respect to $f(x)$:	13	
		1.3.4	Chain rule	13	
		1.3.5	L'Hopital's rule	14	

4			CONTEN	ITS
	1.3.6	Derivative of inverse function		14

Chapter 1

Derivatives

The derivative is the rate of change at a specific point:

When
$$\frac{d}{dx}f(x) > 0$$
, $f(x)$ is increasing
When $\frac{d}{dx}f(x) < 0$, $f(x)$ is decreasing
When $\frac{d}{dx}f(x) = 0$, $f(x)$ is constant

1.1 Notation

If x is a variable, then dx is a small change in x.

dx approaches 0, but is not equal to 0.

Instead we ask what happens as dx gets closer and closer to 0:

$$dx \to 0$$

If y is a function of x, then dy and df(x) are the change caused by dx:

$$y = f(x)$$

$$\Rightarrow dy = df(x)$$

$$df(x) = f(x + dx) - f(x)$$

The derivative of f(x) is the ratio between df(x) and dx:

$$\frac{d}{dx}f(x) = \frac{df(x)}{dx}$$

Putting all of these ideas together gives us the equation for a derivative:

$$\begin{cases}
f(x)' = \frac{d}{dx}f(x) = \frac{df(x)}{dx} \\
df(x) = f(x+dx) - f(x) \\
dx \to 0 \ (dx \neq 0)
\end{cases}
\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

If we know the derivative, we can also compute df(x):

$$\frac{d}{dx}f(x) = \frac{df(x)}{dx}$$
$$df(x) = \frac{d}{dx}f(x) * dx$$

1.2 Elementary derivatives

1.2.1 By $\frac{d}{dx}f(x)$:

$$a \in R$$

$$f(x) = a$$

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{d}{dx}a = \lim_{h \to 0} \frac{a-a}{h}$$

$$\frac{d}{dx}a = \lim_{h \to 0} \frac{0}{h}$$

$$\frac{d}{dx}a = 0 : h \neq 0$$

1.2.2 By df(x):

$$d(x^{a}) = (x + dx)^{a} - x^{a}$$

$$+(dx + x + x + x + x + \dots)$$

$$+(x + dx + x + x + x + \dots)$$

$$= x^{a} + +(x + x + dx + x + \dots)$$

$$+(x + x + x + dx + \dots)$$

$$\vdots$$

$$d(x^{a}) = ax^{a-1}dx + (\dots)dx^{2}$$

$$\frac{d(x^{a})}{dx} = ax^{a-1} + (\dots)dx$$

$$\frac{d}{dx}x^{a} = ax^{a-1} \therefore dx \to 0$$

$$\Rightarrow \frac{d}{dx}x = 1$$

1.2.3 By definition:

$$\frac{d}{dx}e^x = e^x$$

9

1.2.4 By implicit differentiation:

This involves taking the derivatives of each variable separately. The variables may also be on one side of the equation.

$$y = \ln x$$

$$e^{y} = x$$

$$d(e^{y}) = d(x)$$

$$e^{y} dy = 1 dx$$

$$\frac{dy}{dx} = \frac{1}{e^{y}}$$

$$\frac{d}{dx} y = \frac{1}{x}$$

$$\frac{d}{dx} \ln x = \frac{1}{x}$$

1.2.5 By fancy geometry:

see https://lbry.tv/@3Blue1Brown:b/derivative-formulas-through-geometry

$$\frac{d}{dx}\sin x = \cos x$$

$$\frac{d}{dx}\cos x = -\sin x$$

Plus other trigonometric functions which you probably don't need.

1.2.6 By giving up:

$$\frac{d}{dx}x^{x} = x^{x}(\ln x + 1)$$

$$\frac{d}{dx}e^{-x} = -e^{-x}$$

$$\frac{d}{dx}a^{x} = a^{x} * \ln a$$

$$\frac{d}{dx}\log_{a}x = \frac{1}{x\ln a}$$

1.3. RULES 11

1.3 Rules

1.3.1 Sum rule

see https://lbry.tv/@3Blue1Brown:b/derivative-formulas-through-geometry

$$\frac{d}{dx}(g(x) + h(x)) = \frac{d}{dx}g(x) + \frac{d}{dx}h(x)$$

$$\frac{d}{dx}(\sin x + x^2) = \frac{d}{dx}\sin x + \frac{d}{dx}x^2 = \cos x + 2x$$
$$\frac{d}{dx}(x+1) = 1 + 0 = 1$$
$$\frac{d}{dx}(x^3 + e^x) = 3x^2 + e^x$$

1.3.2 Product rule

see https://lbry.tv/@3Blue1Brown:b/visualizing-the-chain-rule-and-product

$$\begin{aligned} d(g(x)*h(x)) &= dg(x)*h(x) + g(x)*dh(x) + dg(x)*dh(x) \\ \frac{d(g(x)*h(x))}{dx} &= \frac{dg(x)}{dx}*h(x) + g(x)*\frac{dh(x)}{dx} + \frac{dg(x)}{dx}*h(x)*dh(x) \\ \frac{d}{dx}(g(x)*h(x)) &= \frac{d}{dx}g(x)*h(x) + g(x)*\frac{d}{dx}h(x) \ \because \ dh(x) \to 0 \end{aligned}$$

$$\frac{d}{dx}(\sin x * x^2) = \frac{d}{dx}\sin x * x^2 + \sin x * \frac{d}{dx}x^2 = \cos x * x^2 + \sin x * 2x$$

$$\frac{d}{dx}(2 * x) = 0 * x + 2 * 1 = 2$$

$$\frac{d}{dx}\frac{\sin x}{x} = \frac{d}{dx}(\sin x * 1/x) = \frac{\cos x}{x} - \frac{\sin x}{x^2}$$

This also leads to a formula for division:

$$\frac{d}{dx}\frac{g(x)}{h(x)} = \frac{\frac{d}{dx}g(x) * h(x) - g(x) * \frac{d}{dx}h(x)}{h(x)^2}$$

1.3. RULES 13

1.3.3 Derivative with respect to f(x):

You simply treat f(x) as if it was x:

$$\frac{d}{d(x^2)}\sin(x^2) = \cos(x^2)$$
$$\frac{d}{d(\sin x)}(\sin x)^3 = 3(\sin x)^2$$

1.3.4 Chain rule

$$\frac{d}{dx}g(h(x)) = \frac{dg(h(x))}{dx}$$
$$\frac{d}{dx}g(h(x)) = \frac{dg(h(x))}{dh(x)} * \frac{dh(x)}{dx}$$
$$\frac{d}{dx}g(h(x)) = \frac{d}{dh(x)}g(h(x)) * \frac{d}{dx}h(x)$$

$$\frac{d}{dx}\sin(x^2) = \cos(x^2) * 2x$$

$$\frac{d}{dx}\frac{1}{(\sin x)} = \frac{-1}{(\sin x)^2} * \cos x = -\frac{\cos x}{(\sin x)^2}$$

1.3.5 L'Hopital's rule

$$\lim_{x \to a} \frac{g(x)}{h(x)} = \lim_{x \to a} \frac{dg(x)}{dh(x)}$$

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x * dx}{1 * dx}$$

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} :: dx \neq 0$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

1.3.6 Derivative of inverse function

Given g(x), the inverse of f(x):

$$g(f(x)) = x$$

$$\frac{d}{dx}f(x) * \frac{d}{dx}g(x) = 1$$

$$\frac{d}{dx}g(x) = \frac{1}{\frac{d}{dx}f(x)}$$