Stat 134: Section 11

Adam Lucas

October 1st, 2018

Problem 1: Properties of the Geometric Distribution

Let $X_1, X_2 \stackrel{\text{i.i.d.}}{\sim} \text{Geom } (p) \text{ on } \{0, 1, 2, \ldots\}.$

- a. *Memoryless property:* Show that for all $k, m \ge 0$, $P(X_1 = m + k \mid X_1 \ge k) = P(X_1 = m)$. Provide an explanation for why this must be the case, in terms of sequences of successes and failures.
- b. Sums of geometrics: Let $Y = X_1 + X_2$. What is the distribution of Y? Find $P(X_1 = k \mid Y = n)$, for $0 \le k \le n$. (What distribution does this remind you of?)

Problem 2

How many raisins per cubic centimeter must a large batch of dough contain on average for there to be at least a 99% chance that one 50 cm³ cookie made from this dough contains at least one raisin? *From Ex* 3.5.2 *in Pitman's Probability*

Suppose X, Y, and Z are independent Poisson random variables, with parameters μ_X , μ_Y , μ_Z respectively. Find:

- a. P(X + Y = 4)
- b. $\mathbb{E}((X+Y+Z)^2)$

Hint: Recall the equation $Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$.

c. $P(\max\{X, Y, Z\} > k)$, for k = 0, 1, 2, ...

From Ex 3.5.11 in Pitman's Probability