Assignment 1	Graded
Student	
Sujith Potineni	
Total Points	
29 / 32 pts	
Question 1	
Read me first	0 / 0 pts
→ + 0 pts Correct	
+ 0 pts Incorrect	
Question 2	
Simulating a biased coin	6 / 6 pts
→ + 6 pts Correct	
+ 2 pts (a) Correct	
+ 4 pts (b) Correct	
+ 2 pts Vague description of a subroutine with a plausible justification.	
+ 2 pts (Mostly) correct subroutine without any justification.	
+ 3 pts (Mostly) correct subroutine without justifying the number of runs.	
+ 0 pts Incorrect	
Question 3	
Gates for universal classical computation	5 / 8 pts
+ 8 pts Correct	
→ + 2 pts (a)	
→ + 3 pts (b)	
+ 3 pts (c)	
+ 0 pts Incorrect	

Question 4

Dealing with error in randomized computation

8 / 8 pts

- **+ 2 pts** (a)
- + 2 pts (b)
- + 2 pts (c)
- + 2 pts (d)
- + 0 pts Incorrect
- Please note that the use of GenAI requires specific approval from the instructor. Please talk to me regarding your use of GenAI on this problem.

Question 5

Dirac notation and measurement exercises

10 / 10 pts

- - + 2 pts (a)
 - + 2 pts (b)
 - + 2 pts (c)
 - + 2 pts (d)
 - + 2 pts (e)
 - + 1 pt (e) verified for the basis
 - + 0 pts Incorrect

Q1 Read me first

0 Points

- Tests show that the people who get the most out of this assignment are those who read the "read me first" like this one.
- Collaboration and use of external sources are permitted, but must be fully acknowledged and cited. For your own learning, you are advised to work individually. Collaboration may involve only discussion; all the writing must be done individually.
- Please acknowledge, individually for every problem at the beginning of each solution, a
 list of all collaborators and sources consulted other than the course notes. Examples
 include: names of people you discussed homework with, books, other notes, Wikipedia
 and other websites. If no additional sources are consulted, you must write "sources
 consulted: none" or equivalent. Failure to acknowledge sources will lead to an
 automatic 1pt penalty.
- Late policy: In general **no late homework** will be accepted unless there is a genuine emergency backed up by official documents.
- All steps should be justified.
- You are encouraged to be **type in LaTeX**. To learn how to use LaTeX, I recommend the <u>tutorials on Overleaf</u>. It is ok to draw diagrams by hand and insert them as pictures in your TeX files.
- For each question below, upload a PDF file and/or type in the box (see <u>Gradescope x LaTeX tutorial</u>). Each submission should contain (1) the acknowledgement of all collaborators and sources consulted and (2) your solution.

Q2 Simulating a biased coin 6 Points

In class, we obtained a probabilistic computation model by taking a standard model of deterministic computation (say your favorite programming language) and add a new "coin flip" operation, which returns 0 or 1 equally likely.

- (a) Prove that there is a simple subroutine (written in pseudocode using only deterministic computation and "coin flip" operations) that simulates a biased coin, which returns 0 with probability 1/4 and 1 with probability 3/4.
- (b) Prove that for any $\varepsilon>0$ there is a subroutine that almost simulates a biased coin, which returns a value

$$r \in \{0, 1, \text{FAILURE}\}$$

such that $\Pr(r=\mathrm{FAILURE}) \leq arepsilon$, and the <u>conditional probability</u> $\Pr(r=0 \mid r \neq \mathrm{FAILURE}) = 1/3$.

Remark: A subroutine is a program that always halts in O(1) steps. In (b) this O(1) could depend on ε .

Sources consulted:		
None		

▼ Q2.pdf	≛ Download
Your browser does not support PDF previews. You can download the	e file instead.

Q3 Gates for universal classical computation 8 Points

- (a) Show that any Boolean function $f:\{0,1\}^n \to \{0,1\}$ can be computed by a classical Boolean circuit using the following set of logic gates: 2-bit AND, 2-bit OR, and NOT. (Hint: look up DNF formula.)
- (b) Show that any Boolean function $f:\{0,1\}^n \to \{0,1\}$ can be computed by a classical Boolean circuit using the following single logic gate: 2-bit NAND. Also, show this for the following single logic gate: 2-bit NOR.
- (c) Show that there are infinitely many Boolean functions $f:\{0,1\}^n \to \{0,1\}$ that cannot be computed by a classical Boolean circuit using the following set of logic gates: 2-bit XOR, and NOT.

Sources consulted:

1)

https://en.wikipedia.org/wiki/Disjunctive_normal_form

: 2)

https://mathworld.wolfram.com/DisjunctiveNormalForm.html

▼ Q3.pdf	≛ Download
Your browser does not support PDF previews. You can download the file ins	stead.
1 	
 	ا ا ان ـــــــــــــــــــــــــــــــــ

Q4 Dealing with error in randomized computation 8 Points

Suppose you are trying to write a computer program C to compute a certain Boolean function $f:\{0,1\}^n \to \{0,1\}$, mapping n bits to 1 bit. (For example, perhaps f specifies that f(x)=1 if and only if x represents a prime number written in base 2.) If C is a deterministic algorithm, then there is an obvious definition for "C successfully computes f"; namely, it should be that C(x)=f(x) for all inputs $x\in\{0,1\}^n$. But what if C is a probabilistic algorithm?

The best thing is if C is a zero-error algorithm for f, with failure probability p. This means:

- on every input x, the output of C(x) is either f(x) or is "?"
- on every input x we have $\Pr[C(x) = ?] \le p$

Important note: The second condition is not about what happens for a *random input* x. Instead, it demands that for *every* input x the probability of failure is at most p, where the probability is only over the internal "coin flips" of C.

- (a) If you have a zero-error algorithm C for f with failure probability 90% (quite high!), show how to convert it to a zero-error algorithm C' for f with failure probability at most 2^{-500} . The "slowdown" should only be a factor of a few thousand.
- (b) Alternatively, show how to convert C to an algorithm C'' for f which: (i) always outputs the correct answer, meaning C''(x) = f(x); (ii) has expected running time only a few powers of 2 worse than that of C. (Hint: look up the mean of a geometric random variable.)

The second best thing is if C is a one-sided error algorithm for f, with failure probability p. There are two kinds of such algorithms, "no-false-positives" and "no-false-negatives". For simplicity, let's just consider "no false-negatives" (the other case is symmetric); this means:

- on every input x, the output C(x) is either 0 or 1
- ullet on every input x such that f(x)=1, the output C(x) is also 1
- ullet on every input x such that f(x)=0, we have $\Pr[C(x)=1]\leq p$
- (c) If you have a no-false-negatives algorithm C for f with failure probability 90% (quite high!), show how to convert it to a no-false-negatives algorithm C' for f with failure probability at most 2^{-500} . The "slowdown" should only be a factor of a few thousand.

The third best thing (in fact, the worst thing, but it's still not so bad) is if C is a two-sided error algorithm for f, with failure probability p. This means:

- on every input x, the output C(x) is either 0 or 1
- on every input x we have $\Pr[C(x) \neq f(x)] \leq p$

Remark: It is actually very very rare in practice for a probabilistic algorithm to have two-sided error; in almost every natural case, an algorithm you design will have one-sided error at worst.

(d) If you have a two-sided error algorithm C for f with failure probability 40%, show how to convert it to a two-sided error algorithm C' for f with failure probability at most 2^{-500} . The "slowdown" should only be a factor of a few dozen thousand. (Hint: look up the Chernoff bound.)

https://www.perplexity.ai/	

▼ Q4.pdf	≛ Download
Your browser does not support PDF previews. You can download the	file instead.

Q5 Dirac notation and measurement exercises 10 Points

(a) Let
$$|\phi\rangle=3|0\rangle-5i|1\rangle$$
. What is $\langle\phi|\phi\rangle$?

- (b) What number, C, should $|\phi\rangle$ be divided by to make it a "normalized" state; i.e., a unit vector? For future reference, define $|\psi\rangle=C^{-1}|\phi\rangle$ to be this state vector.
- (c) What are the possible outcomes and associated probabilities if $|\psi\rangle$ is measured in the standard $\{|0\rangle,|1\rangle\}$ basis?
- (d) Same question as above for measuring in the $\{|+\rangle, |-\rangle\}$ basis.
- (e) Verify that $\frac{1}{\sqrt{2}}|0\rangle+\frac{i}{\sqrt{2}}|1\rangle$ and $\frac{1}{\sqrt{2}}|0\rangle-\frac{i}{\sqrt{2}}|1\rangle$ form an orthonormal basis for \mathbb{C}^2 . (These two vectors are sometimes called $|i\rangle$ and $|-i\rangle$.) Then do the prior question for measuring in the $\{|i\rangle,|-i\rangle\}$ basis.

Sources consulted:

Lecture Notes

▼ Q5.pdf	≛ Download
Your browser does not support PDF previews. You can download	l the file instead.