Comparative Genomics

Gloria I. Giraldo-Calderón August 2016

Sample of comparative genomic queries that can be solved with VectorBase

General features

Table 2. General characteristics of the A. darlingi genome

Genome feature	A. darlingi	A. gambiae ^a	A. aegypti ^a
Genome size (Mb)	173.92	278.25	1379
Percent of $G+C$ (%)	48.15	40.9	38.2
Protein coding length (Mb) and (% genome length)	18.2 (10.4)	64.92 (23.3)	224.9 (16.3)
Total number of exons	47 990 ^b	56 210	66 827
Number of protein-coding genes	10457 ^b	12 670	15 704
Percent genes with introns (%)	91.59	93.6	90.1
Average number of exons per gene	4.6	4.4	4.0
Average gene length (bp)	1735	5124°	14587°
Total tRNAs	346	450	995

^aStatistics were derived from genome updates for *A. gambiae* AgamP3 (Vectorbase, version 66.3) and *A. aegypti* AaegL1 (Vectorbase, version 66.1). ^bIncludes 13 mitochondrial genes.

Marinotti et al. 2013. Nucleic Acids Res. 41(15): 7387-400.

^cIncludes introns but not untranslated regions.

Sample of comparative genomic queries that can be solved with VectorBase

Homologous genes (infer gene function)

Table 3. Numbers of annotated genes encoding OBP and OR

Protein	Ae. albopictus	Ae. aegypti	An. gambiae	Cx. quinquefasciatus	D. melanogaster
ОВР	86	64	58	50	51
OR	158	110	80	88	61

Sample of comparative genomic queries that can be solved with VectorBase

Molecular evolution

Fig. 2. Expansion and contraction of gene families among mosquito species. The numbers designate the number of gene families that have expanded (green) and contracted (red) since the split from the last common ancestor. The most recent common ancestor (MRCA) has 7,590 gene families. Aedae, Ae. aegypti; Aedal, Ae. albopictus; Anoda, An. darlingi; Anoga, An. gambiae; Cxqu, Cx. quinquefasciatus; Drome, D. melanogaster.

VectorBase Genomes

Arthropoda

Insecta

- Diptera
- Hemiptera
- Phthiraptera

Acari

Mollusca

Gastropoda (snail, *Biomphalaria glabrata*)

Outline

Protein comparisons

- gene trees
- paralogues and orthologues
- the use of BioMart

DNA comparisons

- pairwise alignments

Protein comparisons

- Protein comparison are done for all genes in all VectorBase genomes, https://www.vectorbase.org/genomes

- gene alignments (input) ---> gene trees

gene trees ---> infer homologues (paralogues and orthologues)

Pipeline for protein comparisons

longest protein for every gene in VectorBase

align all proteins vs all proteins

gene trees are inferred

the gene tree is reconciled with the species tree to infer homologous genes

Gene Trees

Gene Trees

A species with one or multiple homolog gene copies: **paralogs**

Different species with one or multiple homolog gene copies: orthologs

Gene Trees

Orthologues @

 Ib
 Download protein sequences

□ Download DNA sequences

Summary of orthologues of this gene

Click on 'Show details' to display the orthologues for one or more groups of species. Alternatively, click on 'Configure this page' to choose a custom list of species.

Species set	Show details	With 1:1 orthologues	With 1:many orthologues	With many:many orthologues	Without orthologues
All (35 species)		28	13	0	0
Anophelinae (19 species)		15	8	0	0
Brachycera (8 species)		8	0	0	0
Culicinae (2 species)	O	1	2	0	0
Eukaryota (1 species)		1	0	0	0
Gastropoda (1 species)		0	1	0	0
Hemiptera (1 species)		1	0	0	0
Phlebotominae (2 species)	0	2	0	0	0

Selected orthologues

Show All + entries			Show/hide columns			Filte	er	X.
Species	Туре	dN/dS	Ensembl identifier & gene name	Compare	Location		Target %id	Query %id
Aedes albopictus	1-to-many	0.01178	AALF007317 No description	Region Comparison Alignment (protein) Alignment (cDNA) Gene Tree (image)	JXUM01S000183:187269-188006:-1		98	43
Aedes albopictus	1-to-many	0.11956	AALF007320 No description	Region Comparison Alignment (protein) Alignment (cDNA) Gene Tree (image)	JXUM01S000183:208383-227964:-1		87	52
Culex quinquefasciatus	1-to-1	n/a	CPIJ009246 GPROP3 ultraviolet wavelength sensitive opsin	Region Comparison Alignment (protein) Alignment (cDNA) Gene Tree (Image)	supercont3.237:371599-376427:-1		93	93

Paralogues @

Show All + entries		Show/hide columns			Filter	XV III
Туре	Ancestral taxonomy	Ensembl identifier & gene name	Compare	Location	Target %id	Query %id
Paralogues (same species)	Neoptera	AAEL003035 GPROP9 short wavelength sensitive opsin [Source:VB Community Annotation;Acc:AAEL003035]	Region Comparison Alignment (protein) Alignment (cDNA)	supercont1.75:1344859-1358612:1	49	49
Paralogues (same species)	Arthropoda	AAEL005322 GPROP10 unknown wavelength sensitive opsin [Source:VB Community Annotation;Acc:AAEL005322]	Region Comparison Alignment (protein) Alignment (cDNA)	supercont1.151:1942356-1943586:1	30	29
Paralogues (same species)	Arthropoda	AAEL005625 GPROP5 long wavelength sensitive opsin [Source:VB Community Annotation;Acc:AAEL005625]	Region Comparison Alignment (protein) Alignment (cDNA)	supercont1.165:1782454-1783587:-1	37	36

Demo

Protein comparisons:

Go to the gene page in the genome browser, select the gene tab

Outline

Protein comparisons

- gene trees
- paralogues and orthologues
- the use of BioMart

DNA comparisons

- pairwise alignments

DNA comparisons

- criteria of inclusion: done for closely-related species only
- not ideal for fragmented genomes
- method used:
 - nucleotide alignment for closer species (LASTZ_NET)
 - amino acid alignment for more distant species (TRANSLATED_BLAT_NET)
- only updated when a genome assembly is updated
- helpful to identify conserved coding and non-coding regions
- useful to visualize and compare trouble homologs when annotating genes

VectorBase genomes

Arthropoda

Insecta

- Diptera: Aedes (2 spp), Anopheles (19*) except <u>A. minimus</u>, Culex quinquefasciatus, Glossina (6), <u>Lutzomyia longipalpis</u>, Musca domestica, <u>Phlebotomus papatasi</u>, <u>Stomoxys calcitrans</u>
- Hemiptera: Cimex lectularius and Rhodnius prolixus
- Phthiraptera: Pediculus humanus

Acari

- Ixodes scapularis and <u>Sarcoptes scabiei</u>

Mollusca

- Biomphalaria glabrata

* Anopheles: 19 spp and 21 genomes

<u>underline</u>: these 8 spp are not included in the alignments

https://www.vectorbase.org/compara_analyses.html

Available alignments

- · Click on a species name to expand/collapse its alignment list
- · Click on a analysis name to see available statistics

LASTZ_NET I examp	o state
	le stats
TRANSLATED_BLAT_NET I examp	le stats
LASTZ_NET I examp	le stats
LASTZ_NET I examp	le stats
TRANSLATED_BLAT_NET I examp	le stats
TRANSLATED_BLAT_NET I examp	le stats
	LASTZ_NET I example LASTZ_NET I example TRANSLATED_BLAT_NET I example

Anopheles gambiae	19 alignments	
Aedes aegypti	LASTZ_NET I example	stats
Anopheles albimanus	LASTZ_NET I example	stats
Anopheles arabiensis	LASTZ_NET I example	stats
Anopheles atroparvus	LASTZ_NET I example	stats
Anopheles christyi	LASTZ_NET I example	stats
Anopheles coluzzii	LASTZ_NET I example	stats
Anopheles culicifacies	LASTZ_NET I example	stats
Anopheles darlingi	LASTZ_NET I example	stats
Anopheles dirus	LASTZ_NET I example	stats
Anopheles epiroticus	LASTZ_NET I example	stats
Anopheles farauti	LASTZ_NET I example	stats
Anopheles funestus	LASTZ_NET I example	stats
Anopheles maculatus	LASTZ_NET I example	stats
Anopheles melas	LASTZ_NET I example	stats
Anopheles merus	LASTZ_NET I example	stats
Anopheles quadriannulatus	LASTZ_NET I example	stats
Anopheles sinensis	LASTZ_NET I example	stats
Anopheles stephensi	LASTZ_NET I example	stats
Culex quinquefasciatus	LASTZ_NET I example	stats
Anopheles maculatus	1 alignment	
Anopheles gambiae	LASTZ_NET I example	stats
Anopheles melas	5 alignments	
Anopheles arabiensis	LASTZ_NET I example	stats
Anopheles coluzzii	LASTZ_NET I example	stats
Anopheles gambiae	LASTZ_NET I example	stats
Anopheles merus	LASTZ_NET I example	stats
Anopheles quadriannulatus	LASTZ_NET I example	stats

Demo

DNA comparisons:

Go to the gene page in the genome browser, select the <u>location</u> tab

In summary

How to search for more information or help?

E-mail us at info@vectorbase.org

Thank you!