Summary of complex number formulae, Part 3, MATH103

Note on principal values of arguments

The principal value of the argument of a complex number is an angle θ satisfying $-\pi < \theta \le \pi$. Thus $z = re^{i\theta}$ will have θ in this range when the principal value is used. However,

$$e^{2\pi i} = 1$$
, so that $z = re^{i(\theta + 2k\pi)} = re^{i\theta}(e^{2\pi i})^k = re^{i\theta}$

for any integer k. That is, the angle can be changed by any multiple of 2π without changing z. You are always allowed to alter the argument of a complex number by a multiple of 2π (note 2π not π !) without changing the complex number. The principal value is simply what we get when we adjust the argument, if necessary, to lie between $-\pi$ and π . For example, $z = 2e^{5\pi i/4} = 2e^{-3\pi i/4}$, subtracting 2π from the argument $5\pi/4$, and the principal value of the argument of z is $-3\pi/4$. Unless specifically asked you need not check that you have given the principal value of the argument.

Method of solving equations of the form $z^n = a$ where a is complex

- (i) Find the modulus |a| and argument α of a, and write $a = |a|e^{i\alpha}$.
- (ii) Write $z = re^{i\theta}$ where r and θ are unknowns to be solved for.
- (iii) Therefore $z^n = r^n e^{in\theta}$.
- (iv) Now write the original equation as $r^n e^{in\theta} = |a|e^{i\alpha}$.

Using the result at the bottom of summary page 2 we deduce that

- $r^n = |a|$, giving $r = |a|^{1/n}$ (unique solution remembering r > 0);
- $n\theta = \alpha + 2k\pi$ for some integer k, that is

$$\theta = \frac{\alpha}{n} + \frac{2k\pi}{n}.$$

In fact we can always restrict attention to the values $k = 0, 1, \dots n-1$. Thus the solutions are $z = re^{i\theta}$ for the above values of r and θ (n values in all). Note that the angles θ might not lie between $-\pi$ and π , that is might not be the principal values of the argument of z.

Note that the solutions of $z^n = a$ are always equally spaced round the circle of radius $r = |a|^{1/n}$ centred at the origin. The angle between successive solutions is always $2\pi/n$.

If a question asks for it, you can now turn the values of z into x + iy form using $x = r \cos \theta$, $y = r \sin \theta$.

Note that in addition to the sines and cosines on summary sheet 2, you should also know that $\sin(\pi - \theta) = \sin \theta$ and $\cos(\pi - \theta) = -\cos \theta$. For example $\cos(5\pi/6) = -\cos(\pi/6) = -\sqrt{3}/2$ and $\sin(2\pi/3) = \sin(\pi/3) = \sqrt{3}/2$.

The quadratic formula also works when the coefficients are complex numbers, that is

$$az^2 + bz + c = 0$$
 has solutions $z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$,

when a, b, c are complex numbers. The interpretation of the square root here is that we find the two complex numbers whose squares are $b^2 - 4ac$. In practice, you will only be given exercises to do where you are first told to verify that some complex number w, when squared, gives $b^2 - 4ac$, so it follows that the square roots of $b^2 - 4ac$ are exactly $\pm w$.

If z is a solution of $z^n = a$ then \overline{z} is a solution of $z^n = \overline{a}$.