Multi-dimensional Ito formula

Assume $dX_{i}^{i} = \mu_{i}^{i}dt + \frac{d}{d} \sigma_{i}^{ij}dW_{i}^{j}$, i = 1, ..., n

where W', ..., Wd are d independent Brownian motions.

On a matrix form:

Let $Z_t = f(t, X_t)$ where $f: [0, \infty) \times \mathbb{R}^n \to \mathbb{R}$ is $C^{1,2}$.

Theorem 4.19 (Ito's formula, multi-dim)

$$dZ_{t} = \frac{\partial f}{\partial t} dt + \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} dX_{t}^{i} + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} dX_{t}^{i} dX_{t}^{j}$$

where $dW_t^i dW_t^i = 0$ if $i \neq j$ $(dW_t^i)^2 = dt$

Alternatively,

$$dZ_{t} = \left(\frac{\partial f}{\partial t} + \sum_{i=1}^{N} \mu_{i}^{i} \frac{\partial f}{\partial x_{i}} + \frac{1}{2} \sum_{i,j=1}^{N} C_{t}^{ij} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right) dt + \sum_{i=1}^{N} \frac{\partial f}{\partial x_{i}} \sigma_{t}^{i} dW_{t}$$

where C= oo* and o' is the ith row of o.

Indeed,
$$dX_{t}^{i} dX_{t}^{i} = \left(\sum_{k=1}^{d} \sigma^{ik} dW^{k} \right) \left(\sum_{k=1}^{d} \sigma^{ik} dW^{k} \right) \left(\sum_{k=1}^{d} \sigma^{ik} dW^{k} \right) dt$$

$$= \left(\sum_{k=1}^{d} \sigma^{ik} dW^{k} \right) dt$$

Exercise 5.8 If $\int dX_t = \alpha X_t dt + \sigma X_t dW_t$ indep. BM's $\int dY_t = 8 Y_t dt + 8 Y_t dV_t$ indep. BM's

and Z = X Y , find dZ.

Solution: Ito's formula gives

 $dZ_{t} = Y_{t} dX_{t} + X_{t} dY_{t} + \frac{1}{2} \cdot 2 dX_{t} dY_{t}$ $= (\alpha + 8) Z_{t} dt + Z_{t} (\sigma dW_{t} + 8 dV_{t})$

Setting $W_{\underline{t}} := \frac{1}{\sqrt{\sigma^2 + S^2}} \left(\sigma W_{\underline{t}} + S V_{\underline{t}} \right)$, W is a BM (why?), and $dZ_{\underline{t}} = (\alpha + \delta) Z_{\underline{t}} dt + \sqrt{\sigma^2 + \delta^2} Z_{\underline{t}} dW_{\underline{t}}$.

Correlated Brownian motions

Let $\overline{W} = \begin{pmatrix} \overline{w}' \\ \vdots \\ \overline{w}^d \end{pmatrix}$ where $\overline{W}', ..., \overline{W}'$ are independent Brownian motions.

Consider $W = 8 \overline{W}$ where $S = \begin{pmatrix} S_{11} & \cdots & S_{1d} \\ S_{d1} & \cdots & S_{dd} \end{pmatrix} = \begin{pmatrix} S_{1} \\ \vdots \\ S_{d} \end{pmatrix}$

Then $E[(W_i^i)^2] = E[(\underbrace{z}_{j=1} s_{ij} W_i^j)^2]$

 $= \left(\stackrel{d}{\geq} S_{ij}^{2} \right) + = +$

so Wi is a Brownian motion.

row vector with $||S_i|| = 1$ $\sqrt{|S_i^2|} + \sqrt{|S_i^2|}$

Moreover, $dW_t dW_t = \left(\frac{d}{dt} \cdot S_{ik} dW_t^k\right) \left(\frac{d}{dt} \cdot S_{jk} d$

Prop 4.21 (Ito's formula, correlated version)

If W_t is a correlated Wiener process as above, and $dX_t = \mu_t dt + \sigma_t dW_t$, then $Z_t = f(t, X_t)$ and $dX_t = \mu_t dt + \sigma_t dW_t$, then $Z_t = f(t, X_t)$ satisfies $dZ_t = \frac{\partial f}{\partial t} dt + \sum_{i=1}^{N} \frac{\partial f}{\partial x_i} dX_t^i + \sum_{i=1}^{N} \frac{\partial^2 f}{\partial x_i \partial x_i^j} dX_t^i dX_t^i$ where $(dt)^2 = dt dW^i = 0$ $dW^i dW^i = g_{ij} dt$

Ex: Given $W = \begin{pmatrix} w' \\ w^2 \end{pmatrix}$ (where W', \overline{w}^2 are independent)

Construct $W = \begin{pmatrix} w' \\ w^2 \end{pmatrix}$ with correlation matrix $g = \begin{pmatrix} 1 & 3 \\ 9 & 1 \end{pmatrix}$.

Note that $S = \begin{pmatrix} 1 & 0 \\ 9 & \sqrt{1-g^2} \end{pmatrix}$ satisfies $SS^* = \begin{pmatrix} 1 & 9 \\ 9 & 1 \end{pmatrix} = 9$.

Thus $W = \begin{pmatrix} \overline{w'} \\ 9 & \overline{w'} + \sqrt{1-g^2} \overline{w'} \end{pmatrix}$ is correlated Wiener process with correlation matrix g.

What other choices for S are possible S