Задача о взаимодействии двух математических подсистем:

Исходные данные:

Даны две математические подсистемы, которые мы будем называть \mathcal{A} и \mathcal{B} . Подсистема \mathcal{A} находится в Гильбертовом пространстве размерности N_a , а подсистема \mathcal{B} находится в Гильбертовом пространстве размерности N_b . До начала взаимодействия подсистемы \mathcal{A} и \mathcal{B} были не перепутаны между собой, то есть состояния каждой из подсистем можно было описать с помощью векторов в собственных Гильбертовых пространствах.

При взаимодействии между \mathcal{A} и \mathcal{B} описание двух подсистем с помощью двух векторов в пространствах размерности N_a и N_b становится некорректным. Полная математическая система находится в Гильбертовом пространстве \mathcal{C} , базис которого записывается как набор тензорных произведений базисных векторов \mathcal{A} и \mathcal{B} . То есть размерность полного пространства \mathcal{C} равна $N_a \cdot N_b$. Обратите внимание, что количество чисел, которое требуется для полного описания двух невзаимодействующих подсистем, равно $N_a + N_b$, а двух взаимодействующих подсистем - $N_a \cdot N_b$. Большее количество чисел позвляет описать перепутанные состояния, когда от состояния одной подсистемы зависит состояние другой.

Определния:

Определение 1: Перепутанные состояния - это такие состояния двух математических подсистем \mathcal{A} и \mathcal{B} , что характеризующий их вектор в полном пространстве \mathcal{C} не может быть представлен как тензорное произведение некоторых векторов в подпространствах \mathcal{A} и \mathcal{B} . В противном

случае состояния называются неперепутанными.

Определение 2: Критерием перепутанности будем называть длину разницы между исследуемым вектором и ближайшим к нему вектором неперепутанного состояния. Длина определяется метрикой, которая в данной задаче может быть введена как простейшая Евклидова метрика. То есть квадрат длины вектора равен сумме квадратов его проекций. Комментарий: ближайший вектор неперепутанного состояния в пространстве $\mathcal C$ является не единственным.

Постановка задачи:

- Задать начальные состояния двух математических подсистем $\mathcal A$ и $\mathcal B$ с помощью векторов в их Гильбертовых пространствах.
- С помощью тензорного произведения построить вектор в полном пространстве \mathcal{C} в начальный момент времени. Это состояние является неперепутанным, так как оно факторизуется по векторам в Гильбертовых пространствах каждой подсистемы.
- Ввести оператор взаимодействия между двумя подсистемами. Комментарий: оператор может быть задан с помощью симметричной квадатной матрицы со стороной $N_a \cdot N_b$. Построение матрицы взаимодействия \hat{V} следует обсудить перед решением задачи.

$$\frac{\mathrm{d}\mathbf{c}}{\mathrm{d}t} = \hat{V}\mathbf{c} \tag{1}$$

- Построить оператор эволюции \mathcal{A} и \mathcal{B} в полном пространстве \mathcal{C} , который представляет собой матричную экспоненту от оператора взаимодействия, умноженного на время.
- Написать код, который позволяет получить вектор двух подсистем \mathcal{A} и \mathcal{B} в любой момент времени.

- Написать код, который позволяет вычислить критерий перепутанности двух подсистем в полном Гильбертовом пространстве.
- Построить график зависимости критерия перепутанности двух подсистем $\mathcal A$ и $\mathcal B$ от времени.