Zadanie: MYS

Myszy

Akademia Programowania PWSW, dzień V, Dostępna pamięć: 128 MB.

Ponownie odwiedzamy kota Bitoma, tym razem spotykając go polującego wraz z przyjaciółmi w pewnym długim korytarzu podzielonym na n fragmentów (od 1 do n). Na każdym z fragmentów znajduje się pewna liczba myszy (być może zero). Każdy z k kotów będzie polował na pewnym spójnym obszarze korytarza, przy czym obszary te nie będą na siebie zachodziły, aby koty nie pokłóciły się o zdobycze. Kot polujący na przedziale [i,j] ($1 \le i \le j \le n$) jest w stanie złapać $\max(s-(j-i)^2$, 0) myszy, gdzie s to łączna liczba myszy przesiadująca na fragmencie [i,j] korytarza.

Pomóż kotom wybrać najlepsze miejsca do polowania i określ ile myszy są w stanie upolować.

Wejście

W pierwszym wierszu standardowego wejścia znajdują się dwie liczby całkowite n i k, oznaczające odpowiednio liczbę fragmentów, na które podzielony jest korytarz oraz liczbę polujących kotów. W kolejnym wierszu znajduje się ciąg n liczb całkowitych z przedziału od 0 do 10^6 , oznaczający ile myszy znajduje się na każdym z odcinków korytarza.

Wyjście

Na standardowe wyjście należy wypisać jedną liczbę całkowitą, oznaczającą maksymalną liczbę myszy jakie mogą zostać złapane przez koty.

Przykład

Dla danych wejściowych: poprawnym wynikiem jest: 8 2 14

8 2 1 5 1 4 3 2 7 0

Wyjaśnienie przykładu: Pierwszy kot poluje na odcinku od 2 do 4 łapiąc 6 z 10 myszy, zaś drugi kot poluje na odcinku od 5 do 7 łapiąc 8 z 12 myszy.

Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

Podzadanie	Warunki	Liczba punktów
1	$1 \leqslant k \leqslant n \leqslant 10$	15
2	$1 \leqslant k \leqslant n \leqslant 200$	30
3	$1 \leqslant k \leqslant n \leqslant 2000$	55