Step-1

Given that a+b=c+d

$$Ax = \lambda x$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a+b \\ c+d \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a+b \\ a+b \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\Rightarrow (a+b)\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Therefore $\lambda = a + b$ is one eigen value.

Trace of $A = \lambda_1 + \lambda_2$

$$a+d=(a+b)+\lambda_2$$

$$\lambda_2 = a + d - a - b$$
$$= d - b$$

Therefore the eigen values are $\lambda_1 = a + b, \lambda_2 = d - b$

Step-2

To find eigen vector for $\lambda_1 = a + b$, we solve $(A - \lambda_1 I)x = 0$

$$\begin{bmatrix} a - (a+b) & b \\ c & d - (a+b) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -b & b \\ c & d - (c + d) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 by replacing $a + b$ with $c + d$.

$$\begin{bmatrix} -b & b \\ c & -c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Applying the row operations on the coefficient matrix of this homogeneous system, we get

$$R_2 \to bR_2 + cR_1, R_1 / -b \Rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

This is the reduced matrix and so, we rewrite the homogeneous system from this.

$$x_1 - x_2 = 0$$

Putting $x_1 = 1$, the solution set $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is the eigen vector corresponding to $\lambda_1 = a + b$

Step-3

Similarly, To find eigen vector for $\lambda_2 = d - b$, we solve $(A - \lambda_2 I)x = 0$

$$\begin{bmatrix} a - (d - b) & b \\ c & d - (d - b) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} (a+b)-d & b \\ c & b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} (c+d)-d & b \\ c & b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 by replacing $c+d$ with $a+b$.

$$\begin{bmatrix} c & b \\ c & b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Applying the row operations on the coefficient matrix of this homogeneous system, we get

$$R_2 \to R_2 - R_1 \Rightarrow \begin{bmatrix} c & b \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

This is the reduced matrix and so, we rewrite the homogeneous system from this.

$$cx_1 + bx_2 = 0$$

Putting $x_1 = 1$, the solution set $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -b/c \end{bmatrix}$ is the eigen vector corresponding to $\lambda_2 = d-b$

Step-4

Thus the eigen values are $\lambda_1 = a + b$ and $\lambda_2 = d - b$ while the respective eigen vectors are $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -b/c \end{bmatrix}$