Programmatic Truthmaker Semantics

ADVANCES IN TRUTHMAKER SEMANTICS: II Benjamin Brast-McKie & Miguel Buitrago July 29, 2025

Broad Ambitions

Extend the standard methodology in semantics to:

- Rapidly prototype semantic theories by reducing cognitive load
- Facilitate collaboration and increase accessibility
- Support the maturity of the discipline

"Standard Methodology"

Difficulties

The standard methodology has the following drawbacks:

- Computationally grueling to prototype semantic theories
- Problems of accuracy, redundancy, and memory
- Limits the development of complex semantic theories
- Restricts which language fragments can be studied/combined

An Extended Methodology

Humans should not be carrying the computational load.

- SAT solvers, SMT solvers, Z3
- Examples: inequalities, bitvectors as states
- Z3 constraints as truth-conditions

Conceptual Engineering

This methodology has the following advantages:

- Efficiently prototype new semantic theories
- Modular semantics, theory of propositions, operators
- Evaluate unified languages with many operators
- Compare rival theories over large data sets

Give it a try at: https://pypi.org/project/model-checker/

Bilateral Propositions

Following Fine (2017a,b,c), a modalized state space is any $S^{\Diamond} = \langle S, P, \sqsubseteq \rangle$ where $\langle S, \sqsubseteq \rangle$ is a complete lattice of states, $P \subseteq S$ is a nonempty subset of possible states, and \sqsubseteq is the parthood relation satisfying the following constraints:

Nonempty: $P \neq \emptyset$.

POSSIBILITY: If $s \in P$ and $t \sqsubseteq s$, then $t \in P$.

The world states may then be defined, and a further constraint imposed:

Compatible: $s \circ t := s.t \in P$.

World States: $W := \{w \in P \mid \forall s \circ w (s \sqsubseteq w)\}.$

WORLD SPACE: If $s \in P$, then $s \sqsubseteq w$ for some $w \in W$.

A *bilateral proposition* is any ordered tuple $\langle V, F \rangle \in \mathbb{P}$ where

Closure: $V, F \subseteq S$ are each closed under nonempty fusion.

Exclusive: The states in *V* are incompatible with the states in *F*.

Exhaustive: Every possible state in *P* is compatible with a state in *V* or *F*.

A model $\mathcal{M} = \langle S, P, \sqsubseteq, |\cdot| \rangle$ of \mathcal{L} assigns each $|p_i| = \langle |p_i|^+, |p_i|^- \rangle \in \mathbb{P}$.

- $|\neg A| = \langle |A|^-, |A|^+ \rangle$.
- $|A \wedge B| = \langle |A|^+ \otimes |B|^+, |A|^- \oplus |B|^- \rangle$ where $X \otimes Y := \{s.t \mid s \in X, t \in Y\}.$
- $|A \vee B| = \langle |A|^+ \oplus |B|^+, |A|^- \otimes |B|^- \rangle$ where $X \oplus Y := X \cup Y \cup (X \otimes Y)$.

Minimal Countermodels

Fine (2012) originally introduced a primitive *imposition relation* $t \rightarrow_w u$ which indicates that "u is a possible outcome of imposing the change t on the world [state] w", and is subject to the following frame constraints on imposition:

INCLUSION: If $t \rightarrow_w u$, then $t \sqsubseteq u$.

ACTUALITY: If $t \sqsubseteq w$, then $t \rightarrow_w u$ for some $u \sqsubseteq w$.

INCORPORATION: If $t \rightarrow_w u$ and $v \sqsubseteq u$, then $t.v \rightarrow_w u$.

COMPLETENESS: If $t \rightarrow_w u$, then u is a world-state.

An abridged semantics for $\mathcal{L} = \langle \mathbb{L}, \neg, \wedge, \vee, \square \rightarrow \rangle$ may then be stated as:

- $\mathcal{M}, w \models p_i \text{ iff } s \in |p_i|^+ \text{ for some } s \sqsubseteq w.$
- $\mathcal{M}, w \models A \Longrightarrow C \text{ iff } \mathcal{M}, u \models C \text{ whenever } t \in |A|^+ \text{ and } t \rightarrow_w u.$

Defining Imposition

Definition: The frame constraints admit exceptions to $\Box A := \top \Box \rightarrow A$.

State Space:
$$P = \{a, b, c, b, c, b, c\}$$
, $W = \{a, b, c\}$, $S/P = \{a, b, a, c, a, b, c\}$

Imposition:
$$\rightarrow$$
 = { $\langle a, a, a \rangle$, $\langle b, b.c, b.c \rangle$, $\langle c, b.c, b.c \rangle$, $\langle \Box, a, a \rangle$, $\langle \Box, b.c, b.c \rangle$, $\langle \Box, b.c, b.c \rangle$ }

Interpretation: $|A| = \langle \{a\}, \{b.c\} \rangle$

Premise: $\mathcal{M}, a \models \top \Longrightarrow A$ since the set of \top -alternatives to $a = \{a\}$.

Conclusion: \mathcal{M} , $a \not\models \Box A$ since \mathcal{M} , $b.c \not\models A$.

The definition $\Box A := \top \Box \rightarrow A$ is preserved by the following definition of \rightarrow , where ' $s \sqsubseteq_t w$ ' reads 's is a *t-compatible part* of w':

Compatible Part:
$$s \sqsubseteq_t w := s \sqsubseteq w \land s \circ t$$
.

Maximal Compatible Parts:
$$w_t := \{s \sqsubseteq_t w \mid \forall r \sqsubseteq_t w (s \sqsubseteq r \rightarrow r = s)\}.$$

Imposition:
$$t \rightarrow_w u := u \in W \land \exists s \in w_t(s.t \sqsubseteq u).$$

We may then derive rather than posit the frame constraints on imposition, making the logic for \rightarrow both stronger and more computable.

Computational Complexity as a Theoretical Virtue

- 1. Z3 saves its 'Function' objects as a mix of array-like and lambda-like objects.
- 2. This means Z3 saves every value (that it is forced to for a given countermodel) for every input combination, meaning that the (worst-case) space complexity of functions is proportional to the input space.
- 3. Defining computational complexity: an algorithm takes O(n) runtime or space if it scales linearly with some quantity n as n grows indefinitely large.
- 4. With inputs in $A \times B$, A being the space of atomic sentences and B the space of bitvectors, 'verify' has a worst-case complexity of $O(|A||B|) = O(|A|2^N)$, N the size of the bitvectors.
- 5. With inputs in B^3 , 'imposition' has a complexity of $O(2^{3N})$.
- 6. In practice, this means much slower runtimes for the imposition semantics: imposition semantics takes about 10 times as long as logos to run for N=4.

- 7. Since the complexity of 'imposition' is exponential with N, this is only more marked for larger values of N, which can be useful for finding easily interpretable models.
- 8. As a result, we now have methodological reason to favor theories that keep the arity of primitives low.
- 9. This reasoning is not too different from familiar questions of theoretical simplicity: this is just a notion of simplicity with regards to the computer

Proofs

P1 (INCLUSION) If $t \rightarrow_w u$, then $t \sqsubseteq u$. *Proof.* Assuming $t \rightarrow_w u$, it follows that $u \in W$ where $s.t \subseteq u$ for some $s \in w_t$. Since $t \sqsubseteq s.t$, it follows that $t \sqsubseteq u$ as desired. **P2** (ACTUALITY) If $t \sqsubseteq w$ and $w \in W$, then $t \rightarrow_w u$ for some $u \sqsubseteq w$. *Proof.* Assume $t \subseteq w$ for $w \in W$. Thus $w \in P$ where w.t = w, and so $w \circ t$. Since $w \sqsubseteq w$, we know $w \sqsubseteq_t w$. Let $r \sqsubseteq_t w$ where $w \sqsubseteq r$, and so $r \sqsubseteq w$, and so $w \in w_t$. Since $w.t \subseteq w$, we know $t \to_w w$, and so $t \to_w u$ for some $u \subseteq w$. \square **P3** (INCORPORATION) If $t \rightarrow_w u$ and $v \sqsubseteq u$, then $t.v \rightarrow_w u$. *Proof.* Assuming $t \rightarrow_w u$ and $v \sqsubseteq u$, we know $u \in W$ where $s.t \sqsubseteq u$ for some $s \in w_t$. Thus $s.t.v \sqsubseteq u$ and $s \sqsubseteq_t w$ where (1): $r \sqsubseteq s$ whenever $r \sqsubseteq_t w$ and $s \sqsubseteq r$. So $s \sqsubseteq w$. Since $u \in P$, we also know that $s \circ t.v$, and so $s \sqsubseteq_{t.v} w$. Let $q \sqsubseteq_{t,v} w$ where $s \sqsubseteq q$, and so $q \sqsubseteq w$ where $q \circ t.v$, and so $q.t.v \in P$. Thus $q.t \in P$, and so $q \circ t$. It follows that $q \sqsubseteq_t w$, and so $q \sqsubseteq s$ follows from (1). Generalizing on q, we know (2): $q \subseteq s$ whenever $q \subseteq_{t,v} w$ and $s \subseteq q$. Having already shown that $s \sqsubseteq_{t,v} w$, it follows from (2) that $s \in w_{t,v}$.

Since $s.t.v \subseteq u$ for $u \in W$, we may conclude that $t.v \rightarrow_w u$ as desired.