1) النهاية المنتهية.

1.1 النهاية عند الصفر

 $h(x)=x^3$; $g(x)=x^2$; f(x)=x : فشاط تمهيدي : مثل مبيانيا الدوال : f(x)=x : f(x)=x : فلاحظ بالنسبة للدوال f(x) و g(x) و g(x) من g(x) فإن g(x) و أنه كلما اقترب من g(x) من g(x) و أنه كلما اقترب من g(x) من g(x) و أنه كلما اقترب من g(x) من g(x) و g(x) و g(x) من g(x) من g(x) من g(x) المن g(

$$\lim_{x\to 0} f(x) = 0$$

$$\lim_{x \to 0} x = 0$$
 * (1:

$$\lim_{x \to 0} x^2 = 0 \qquad *$$

$$n \in \mathbb{N}^* \qquad \lim_{x \to 0} x^n = 0 \qquad *$$

 $|f(x)| \prec u(x)$: x_0 اذا کان علی مجال منقط مرکزه (2

$$\lim_{x\to 0} u(x) = 0$$

$$\lim_{x \to 0} f(x) = 0$$
 فإن

 $\lim_{x\to 0}\frac{x}{r^2+1}$ و $\lim_{x\to 0}|x\cos x|$: أحسب النهايات التالية :

 x_0 النهاية l عندما تؤول x النهاية l

 $l \in \mathbb{R}$ و x_0 دالة عددية حيز تعريفها يحتوي على مجال منقط مركزه x_0 و

 x_0 نقول أن f(x) تؤول إلى اعتدما تؤول x إلى نقول

$$x - x_0 = h$$

اذن عندما تؤول x إلى x_0 فإن h تؤول إلى واذن

ومنه
$$f(x_0+h)-l$$
 تؤول إلى 0.

 x_0 دالة معرفة على مجال مفتوح منقط مركزه x_0

 x_0 عند t هي f(x) عند

 $oldsymbol{0}$ إذا وفقط إذا كانت نهاية h إلى h إذا وفقط إذا كانت نهاية h إلى h إلى h

$$f(x) = \frac{x+1}{x+3}$$
 :

 $\frac{1}{2}$ نلاحظ أنه عندما تقترب من 1 فإن f(x) تقترب من

لنبين ذلك

$$\left| f\left(1+h\right) - \frac{1}{2} \right| = \dots = \left| \frac{h}{2\left(h+4\right)} \right| < \frac{1}{2} \left| h \right|$$
 لدينا

$$\lim_{h\to 0}|h|=0$$
 ويما أن $\lim_{h\to 0}f\left(1+h\right)-rac{1}{2}=0$ فإن $\lim_{h\to 0}f\left(1+h\right)=rac{1}{2}$ أي $\lim_{h\to 0}f\left(x\right)=rac{1}{2}$

لاحظ أنه من الممكن تعويض x ب 1 من البداية.

$$x_0$$
 فاصية : ليكن I مجال مفتوح منقط مركزه x_0 .
$$|f(x)-l| \leq u(x) \qquad : I \qquad \text{ i.i.}$$
 إذا كان لكل x من x من x فإن x فإن x فإن x من x أيد المحمد المحمد

$$f(x) = x^2 \sin \frac{1}{x} + 2$$
 : تطبیق : لدینا $|f(x)-2| \le x^2$ لدینا $\lim_{x \to 0} f(x) = 2$

$$\lim_{x \to x_0} f(x) = l$$
 اذا كانت اذا كانت الماية : فإن فإن

ملاحظة: إذا كانت النهاية / موجودة فإنها وحيدة.

النهاية على اليمين – النهاية على اليسار مين $D_f = \begin{bmatrix} 0, +\infty \end{bmatrix}$ $f(x) = \sqrt{x}$ نتكن يتمهيد التكن $f(x) = \sqrt{x}$

على العموم : إذا قلنا بأن x تقترب من x_0 فهذا يعني أن x تقترب إلى x_0 من اليمين ومن اليسار.

 $oldsymbol{0}$ أما بالنسبة للدالة f فهي غير معرفة على يسار

. f(x) النهاية الممكن حسابها هي النهاية على يمين 0 النهاية الممكن

$$\lim_{\substack{x \to 0 \\ 0 \prec x}} f(x) = 0$$
 ونكتب **0** ونكتب

 $0 < \alpha$ حيث $]x_0, x_0 + \alpha[$ حيث على مجال مفتوح $]x_0, x_0 + \alpha[$ حيث على دالة معرفة على مجال مفتوح f(x) نقول أن f(x) تقبل النهاية f(x) على اليمين إذا وفقط إذا كان :

: نكل $\alpha \to 0$ يوجد $\alpha \to 0$ بحيث

$$x_0 \prec x \prec x_0 + lpha$$
 \Rightarrow $\left| f(x) - l \right| \prec \varepsilon$
$$\lim_{\substack{x \to x_0 \\ x_0 \prec x}} f(x) = l$$
 ونكتب
$$\lim_{x \to x_0^+} f(x) = l$$
 و

$$\lim_{x \to x_{0}^{-}} f(x) = l \qquad -2$$

: تكون للدالة f نهاية المناه وفقط إذا كان تكون للدالة عند المناه وفقط إذا كان المناه عند المناه المناه

الأستاذ محمد الرقب

$$\lim_{x \to x_0^+} f\left(x\right) = \lim_{x \to x_0^-} f\left(x\right) = l$$

$$\lim_{x \to 1^+} \sqrt{x - 1} = 0$$
من مثال:

_{x→1}+ النهاية المنتهية عند (2

$$h(x) = \frac{1}{x^2}$$
 و $g(x) = \frac{1}{x+1}$ و $f(x) = \frac{1}{x}$: مثل مبيانيا الدوال $g(x) = \frac{1}{x}$ و $g(x) = \frac{1}{x+1}$ و من المنحنيات نستنتج أن :

$$\lim_{x \to +\infty} f(x) = 0$$

$$\lim_{x \to +\infty} g(x) = 0$$

$$\lim_{x\to +\infty} h(x) = 0 \qquad \qquad \mathbf{9}$$

$$n \in \mathbb{N}^*$$

$$\lim_{x \to +\infty} \frac{1}{x^n} = 0$$

$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

ملاحظة:

عندما تؤول x إلى ∞ + إذا وفقط إذا كان:

$$\forall \varepsilon \succ 0 \quad \exists A \in \mathbb{R}^{*+} / A \prec x \quad \Rightarrow \quad l - \varepsilon \prec f(x) \prec l + \varepsilon$$

$$\lim_{x \to \infty} f(x) = l$$
 نقول أن

$$\lim_{x \to +\infty} f(x) - l = 0$$
 إذا وفقط إذا كانت

 $-\infty$ النهاية المنتهية عند (3

$$\lim_{x \to -\infty} f(x) = l$$

النهاية اللامنتهية (4
$$f(x) = \frac{1}{|x|}$$

الأستاذ محمد الرقبة

$$\lim_{x \to 0^+} f(x) = +\infty$$

$$\lim_{x \to +\infty} f(x) = 0$$

$$\lim_{x \to 0^{-}} f(x) = +\infty$$

$$f(x) = \frac{x+1}{x-1}$$

$$f(x) = \frac{x}{2x-1}$$

$$\lim_{x \to -\infty} f(x) = l$$

$$\lim_{x \to +\infty} f(x) = l$$

$$f\left(x\right) = \frac{2x^2}{x^2 - 1}$$

$$\lim_{x \to 1^+} f(x) = +\infty$$

$$\lim_{x \to 1^{-}} f(x) = -\infty$$

النهايات والترتيب

 x_0 مجال مفتوح منقط مركزه اليكن x_0

 x_0 خاصیة I وتقبل نهایة في f موجبة علی المجال I وتقبل نهایتها موجبة.

: و کان یه عند x_0 و کان یه فاید و کان یه خاصیهٔ عند x_0 و کان

$$f(x) \prec g(x)$$
 I اکل x من

$$\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$

الأستاذ محمد الرقب

$$x_0$$
 عند l عند و و نفس النهایة اعند عند عند خاصیة عند النهایة ا

$$f(x) \le h(x) \le g(x)$$
 من I من x ولكل x من x فيان فيان x من x فيان x فيان x فيان x

$$\lim_{x\to x_0} u(x) = +\infty$$
 و $u(x) \prec f(x)$ I فان لكل x من I من $f(x) = +\infty$ فإن فإن

$$\lim_{x\to x_0}f\left(x\right)=-\infty$$
 و $g\left(x\right)\prec f\left(x\right)$ و $g\left(x\right)\prec f\left(x\right)$ عن $g\left(x\right)\prec f\left(x\right)$ و $\lim_{x\to x_0}g\left(x\right)=-\infty$ فإن

 $-\infty$ ب ملاحظة : يمكن تعويض x_0 ب ملاحظة : ملاحظة

لعمليات على النهايات على النهايات $\frac{6}{1-1}$ العمليات على النهايات المنتهية لتكن g و g دالتين معرفتين على مجال مفتوح منقط مركزه g .

و لم عدد حقيقي.

$$\lim_{x \to x_0} g(x) = l$$
' و $\lim_{x \to x_0} f(x) = l$

$$\lim_{x \to x_0} f + g(x) = l + l'$$
 (1) فإن

$$\lim_{x \to x_0} f \times g(x) = l \times l'$$
 (2)

$$\lim_{x \to x_0} \lambda f(x) = \lambda l \tag{3}$$

$$l' \neq 0 \qquad \lim_{x \to x_0} \frac{1}{g(x)} = \frac{1}{l'}$$
 (4)

$$l' \neq 0 \qquad \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{l}{l'}$$
 (5)

f+g is in the interval $f+g$	g نهایة	f نهایهٔ
+∞	$+\infty$	l
-∞	$-\infty$	l
+∞	+∞	+∞
$-\infty$	$-\infty$	$-\infty$
شکل غیر محدد	$-\infty$	+∞

b- نهاية الجداء

$f \times g$ نهایة	نهاية g	f نهایة
+∞	$+\infty$	+∞
$-\infty$	$-\infty$	+∞
+∞	$-\infty$	$-\infty$
$+\infty$	$+\infty$	$l \succ 0$
$-\infty$	$-\infty$	$l \succ 0$
$-\infty$	$+\infty$	$l \prec 0$
$+\infty$	$-\infty$	$l \prec 0$
شكل غير محدد	$\pm\infty$	0

www.mathonec.com

الأستاذ محمد الرقبة

c نهاية مقلوب دالة

$\frac{1}{f}$ نهایة	نهایة ƒ
0	±∞ 0+
+∞	0+
$-\infty$	0-

d- نهایة خارج دالتین

$\frac{f}{g}$ نهایة	نهایة g	نهایهٔ ƒ
0	$\pm\infty$	l
$+\infty$	0_{+}	$l \succ 0$
$-\infty$	0_{+}	$l \succ 0$
+∞	0^{-}	$l \prec 0$
$-\infty$	0^{+}	$l \prec 0$
+∞	$l \succ 0$	+∞
$-\infty$	$l \prec 0$	$+\infty$
شکل غیر محدد	0	0
شکل غیر محدد	$\pm\infty$	$\pm\infty$

ملاحظة: شكل غير محدد لا يعني أنه لا يمكن حساب النهاية.

6) تطبیقات

$$n \in \mathbb{N}^*$$
 $\lim_{x \to +\infty} x^n$
 $n \in \mathbb{N}^*$ $\lim_{x \to -\infty} x^n$

b- نهاية دالة حدودية

خاصية : نهاية دالة حدودية عندما يؤول x إلى $\pm \infty$ هي نهاية حدها الأعلى درجة.

c نهایة دالة جذریة

ُ خاصْية : نهاية دالة جذرية عندما يؤول x إلى $\infty \pm$ هي نهاية خارج حديها الأكبر درجة.

d- نهاية دالة لاجذرية

$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 1}}{x} \qquad (6 \qquad \qquad \lim_{x \to +\infty} \sqrt{x^2 - 1} \qquad (1 \qquad : \frac{1}{x}) = \frac{1}{x}$$

$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 1}}{x} \qquad (7 \qquad \qquad \lim_{x \to +\infty} \sqrt{x^2 - 1} - x \qquad (2 \qquad \qquad \lim_{x \to +\infty} \sqrt{\frac{2x^2 - 1}{x + 1}} \qquad (8 \qquad \qquad \lim_{x \to +\infty} \sqrt{x^2 + 2} + x \qquad (3 \qquad \qquad \lim_{x \to +\infty} \sqrt{\frac{2x^2 + 1}{x^3 + x + 1}} \qquad (9 \qquad \qquad \lim_{x \to +\infty} \sqrt{x^2 - 2x + 2} \qquad (4 \qquad \qquad \lim_{x \to +\infty} \sqrt{\frac{x^2 + 2}{x^2 - x + 1}} \qquad (10 \qquad \qquad \lim_{x \to +\infty} \frac{1}{\sqrt{x - 1}} \qquad (5 \qquad \qquad)$$

II- نهايات الدوال المثلثية

$$\left|\sin x\right| \prec \left|x\right| \prec \left|tgx\right|$$
 $\int -\frac{\pi}{2}, \frac{\pi}{2} \left[$ ندن دينا لكل x من $\int -\frac{\pi}{2}, \frac{\pi}{2} \left[$ اذن $\int \frac{1}{2} \left(\sin x\right) dx$

$$\lim_{x \to \frac{\pi}{4}} tgx$$
 : चर्चमूहीं $\lim_{x \to \frac{\pi}{3}} \cos x$: $\lim_{x \to \frac{\pi}{6}} \cos^2 x + \sin x - 1$ $\lim_{x \to \frac{\pi}{6}} tgx$ $\lim_{x \to \frac{\pi}{2}} tgx$ $\lim_{x \to \frac{\pi}{2}} tgx$ $\lim_{x \to \frac{\pi}{2}} tgx$

بعض النهايات المهمة

$$\lim_{x\to 0}\frac{\sin x}{x} \quad (a)$$

$$\begin{vmatrix} \sin x \end{vmatrix} \prec \begin{vmatrix} x \end{vmatrix} \prec \begin{vmatrix} tgx \end{vmatrix}$$
 $= 1$ $\begin{vmatrix} \frac{x}{\sin x} \end{vmatrix} = 1$ $\begin{vmatrix} \sin x \end{vmatrix}$ $\begin{vmatrix} \frac{1}{\cos x} \end{vmatrix} = 1$ $\begin{vmatrix} \sin x \\ \frac{\sin x}{x} \end{vmatrix} = 1$ فإن

وبما أن x و $\sin x$ لهمًا نفس الإشارة بجوار و

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\sin ax}{ax} = 1$$

$$\lim_{x \to 0} \frac{\sin ax}{ax} = 1$$

X = ax يكفي وضع

$$\lim_{x\to 0} \frac{1-\cos x}{\frac{x^2}{2}}$$
 (b)

$$\lim_{x \to 0} \frac{1 - \cos x}{\frac{x^2}{2}} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{\frac{x^2}{2}}$$

 $a \in \mathbb{R}^*$

 $x \rightarrow \frac{\pi}{2}$

$$= \lim_{x \to 0} \frac{\sin \frac{\pi}{2}}{\frac{x}{2}} = 1$$

$$\lim_{x\to 0}\frac{tgx}{x} : \text{limber } (\mathbf{c})$$

$$\lim_{x \to 0} \frac{tgx}{x} = \lim_{x \to 0} \frac{1}{\cos x} \cdot \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\sin 3x}{\sin 4x} \tag{1}$$

$$\lim_{x \to 0} \frac{tg \, 5x}{2x} \tag{2}$$

$$\lim_{x \to \frac{\pi}{6}} \frac{\cos x - \sqrt{3}\sin x}{x - \frac{\pi}{6}}$$
 (3)

$$\lim_{x \to +\infty} \frac{\cos^2 x}{x^2 + 1} \tag{4}$$

```
إنجاز الاستاذ: محسن الشرفي
المعازيز
                      ثانوية المختار السوسى
                                                                                                               درس: النهاية و الإتصال مستوى الأولى علوم
                            Chorfi_mouhsine@yahoo.fr
                                                                        القدر ات المستهدفة
                                                                                    ـ حساب نهايات الدوال الحدودية و الدوال الجذرية و الدوال اللا جذرية .
                                                                                       ـ حساب نهايات الدوال المثلثية البسيطة باستعمال الدوال الإعتيادية .
                                                                                                                                               1 ـ النهاية 0 عند 0 :
                                                                                                        لتكن ع دالة معرفة على مجال مفتوح منقط مركزه 0.
                                                                                                       نقول إن نهاية f هي g عندما يؤول \chi إلى g إذا كان:
                                                                       |f(x)| < \varepsilon يوجد عنصر \alpha > 0 بحيث لكل \alpha > 0 يوجد عنصر \alpha > 0 يوجد عنصر
                                                                                                                                            • \lim_{x\to 0} f(x) = 0 و نكتب
                                                                                                                                                              خاصية:
                                             a\in\mathbb{R} الدوال المعرفة على الشكل a\in\mathbb{R} بحيث f(x)=ax^n بحيث a\in\mathbb{R} و a\in\mathbb{R} تؤول إلى a\in\mathbb{R} عندما يؤول a\in\mathbb{R}
                                                                                                                             \lim_{x \to 0} -4x^3 = 0 \quad \mathbf{g} \quad \lim_{x \to 0} 3x^2 = 0
                                                         a\in\mathbb{R} الدوال المعرفة على الشكل : f(\mathsf{x})=\mathsf{a}_3/|\mathsf{x}| بحيث a\in\mathbb{R} تؤول إلى 0 عندما يؤول \mathsf{x} إلى 0
                                                                                                                        \lim_{x \to 0} -\sqrt{|x|} = 0 e \lim_{x \to 0} 2\sqrt{|x|} = 0
                                                                                                                                            <u> 2 - النهاية اعند 2</u>
                                                                                                     x_0 دالة معرفة على مجال مفتوح منقط مركزه x_0 دالة معرفة على مجال
                                                                     \lim_{h\to 0} f(x_0+h)-l=0: نقول إن نهاية f(x_0+h)-l=0 إلى f(x_0+h)-l=0
                                                                                                                   \lim_{x \to 4} 2\sqrt{|x|} = 4
\lim_{x \to 1} 3x^2 = 3
\frac{1}{1} \lim_{x \to 1} 3x^2 = 3
\frac{1}{1} \lim_{x \to 1} 3x^2 = 3
\frac{1}{1} \lim_{x \to 1} 3x^2 = 3
                                                                                          \alpha>0 لتكن x_0,x_0+\alpha بحيث مجال من نوع x_0,x_0+\alpha بحيث
   نقول إن f تقبل النهاية x_0 على اليمين إذا كان قصورها على مجال x_0 حيث x_0 حيث x_0 ينطبق مع قصور دالة معرفة على مجال
                                                                                        . \lim_{\substack{x\to x_0\\x>x_0}}f(x)=l أو \lim_{x\to x_0^+}f(x)=l مفتوح منقط مركزه \lim_{x\to x_0^+}f(x)=l
                                                  خاصية : تكون لدالة f نهاية عند f إذا و فقط إذا كانت لها نفس النهاية على اليمين و على اليسار في f .
                                                                         \lim_{x \to x_0^+} f(x) = \lim_{x \to x^-} f(x) = l \iff \lim_{x \to x^-} f(x) = l
                                                                                                                                                                 مثال:
                                                    . 1 عند العدد f المعرفة على الشكل : \begin{cases} f(x) = 2x - 3 & (x \ge 1) \\ f(x) = -x & (x < 1) \end{cases} اندرس نهاية الدالة f عند العدد
                                                                      \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} -x = -1 و \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 2x - 3 = 2 - 3 = -1 لاينا :
                                                                                            . \lim_{x \to 0} f(x) = -1 فإن \lim_{x \to 0} f(x) = \lim_{x \to 0} f(x) = -1 بما أن
                                                                                                                                            <u>4 ـ النهاية () عند</u> ∞+ <u>:</u>
                                                                                                                                                                تعریف:
                                                                                                              [a,+\infty] دالة معرفة على مجال من نوع
                                                                                                                 _{+\infty} نقول إن نهاية f هي g عندما يؤول f إلى
                                                           |f(x)|<arepsilon يكون B>0 يوجد عنصر arepsilon>0 بحيث لكل x من المجال arepsilon>0 يوجد عنصر
                                                                                                                                            \lim_{x \to \infty} f(x) = 0 و نکتب
```

```
x الدوال المعرفة على الشكل: x \in \mathbb{R} و x \in \mathbb{R} عدما يؤول x \in \mathbb{R} الدوال المعرفة على الشكل x \in \mathbb{R} و x \in \mathbb{R} الدوال المعرفة على الشكل المعرفة على الشكل المعرفة على الشكل المعرفة على الشكل المعرفة على المعرفة المعرفة المعرفة على المعرفة على المعرفة على المعرفة المعرفة
                                                                                                                                                                                                                                                                                                                                                                                                                                         \lim_{x \to +\infty} \frac{-4}{\sqrt{|x|}} = 0 \quad \lim_{x \to +\infty} \frac{-4}{x^3} = 0 \quad \lim_{x \to +\infty} \frac{3}{x^4} = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              <u>:</u> +∞ عند <u>ا</u> النهاية <u>ا</u>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 [a,+\infty] دالة معرفة على مجال من نوع اf
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                _{+\infty} الى _{x} الى _{x} عندما يؤول _{x} الى _{x}
                                                                                                                                                                                                                                              . \lim_{x\to 0} f(x) = l و نكتب \lim_{x\to 0} f(x) = l هي \lim_{x\to 0} f(x) = l هي الدالة ال
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               <u>-∞ عند النهاية ا</u>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 [-\infty,b] دالة معرفة على مجال من نوع دالة معرفة الحرفة على دالة معرفة الحرفة على الحرفة الحر
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               _{-\infty} تكون نهاية f هي l عندما يؤول x إلى
                                                                                                                                                                                                                                                                                                                                                                                                                                           _{+\infty} عند و فقط إذا كانت نهاية الدالة f(-x) هي اعند
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              \lim_{x \to -\infty} f(x) = l \Leftrightarrow \lim_{x \to +\infty} f(-x) = l : بمعنی
                                                           \lim_{x \to x_0} f(x) = l فإن \lim_{x \to x_0} u(x) = 0 فإن \lim_{x \to x_0} f(x) = l فإن المفتوح منقط مركزه والمرازع والمركزة 
                                                                                              . \lim_{x \to +\infty} f(x) = l فإن \lim_{x \to +\infty} u(x) = 0 و \left| f(x) - l \right| < u(x) \left| a, +\infty \right| فإن \left| a, +\infty \right|
                                                                                        . \lim_{x\to a} f(x) = l فإن \lim_{x\to a} u(x) = 0 و |f(x)-l| < u(x) ]-\infty, b فإن ا-\infty, b
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  7 ـ إتصال دالة:
                                                                                                                                                                                                                                                                          f(x_0) يتساوي x_0 ينساوي x_0 إذا و فقط إذا كانت لها نهاية في متصلة في x_0 تساوي
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        . \lim_{x \to x_0} f(x) = f(x_0) : يعني
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     مثال:
                                                                                                                                                                                                                                                                                                                                                       \begin{cases} f(x)=x\sin(\frac{1}{x}) \\ f(0)=0 \end{cases} : الشكل على الشكل f(x)=x\sin(\frac{1}{x})
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0 لنبين ان f متصلة في
                                                                                                                                                                                                         . |\sin(x)| < 1 لأن لكل عدد حقيقي x لدينا |f(x) - 0| = |x\sin(\frac{1}{x})| < |x|
                                                                                                                                                                                                                                                                                                                            و لدينا |x| = 0 و منه \lim_{x \to 0} |x| = 0 و منه \lim_{x \to 0} |x| = 0
                                                                                                                                                                                                                                                                                                                                                                                                                             \frac{1}{2} خاصية \frac{1}{2} كل دالة حدودية متصلة في كل نقطة من \mathbb R . كل دالة جدرية متصلة في كل نقطة من مجموعة تعريفها .
                                                                                                                                                                                                                                                                                              .
بمعنى لحساب نهاية دالة حدودية في عدد حقيقي نقوم بتعويض المجهول بالعدد.
                                                                                                                                                                                 \lim_{x \to 0} (2x^2 - x + 4) = 2(1)^2 - 1 + 4 = 5
```

 $\lim_{x \to 0} (x^2 + 2x - 1) = (-2)^2 + 2(-2) - 1 = 4 - 4 - 1 = -1$

Chorfi_mouhsine@yahoo.fr

$$\lim_{x \to 2} \frac{2x+1}{x+1} = \frac{5}{3}$$

. x_0 له المعرفة كمايلي $\begin{cases} g(x)=f(x)(x\in Df)\\ g(x_0)=l \end{cases}$ هي دالة متصلة في x_0 تسمى تمديد بإتصال للدالة $g(x_0)=l$

. 3 المعرفة بـ $f(x) = \frac{x^2 - 9}{x^2}$ الغير معرفة في العدد

$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3} = \lim_{x \to 3} x + 3 = 3 + 3 = 6$$

$$\text{id} \quad \frac{x^2 - 9}{x - 3} = \frac{(x - 3)(x + 3)}{x - 3} = x + 3$$

$$\text{id} \quad \text{id} \quad \text{id$$

و منه الدالة g المعرفة على الشكل : $\begin{cases} g(x)=f(x)(x\neq3) \\ g(3)=6 \end{cases}$ تنطبق مع الدالة g على g المعرفة على الشكل : g متصلة في g

الدالة g تسمى تمديدا باتصال للدالة g في 3

ى ___. بنصال للدالة 6 في <u>9 - الإتصال على اليمين و على اليمار :</u> <u>خاصي</u>ة :

 x_0 على اليسار في x_0 إذا و فقط إذا كانت متصلة على اليمين و على اليسار في x_0 .

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0) \iff \lim_{x \to x_0} f(x) = f(x_0)$$

العمليات على النهايات المنتهية : x_0 و g لهما نهاية في x_0 و g لهما نهاية في x_0 و g

 $\lim(f+g) = \lim f + \lim g$

 $\lim(f \times g) = \lim f \times \lim g$

 $\lim(\lambda f) = \lambda \lim f$

$$\lim(\frac{1}{g}) = \frac{1}{\lim g}$$

$$\lim(\frac{f}{g}) = \frac{\lim f}{\lim g}$$

$$\lim |f| = \left| \lim f \right|$$

 $\lim \sqrt{f} = \sqrt{\lim f}$ فإن x_0 فإن مفتوح منقط مركزه منقط مركزه والنات والنات النات النات والنات النات ا

مثال:

$$\lim_{x \to 2} \left[\left(x^2 - x + 1 \right) + \left(\sqrt{x + 7} \right) - \left(\sqrt{\frac{x^2 + 4}{x - 1}} \right) \right]$$

$$= \lim_{x \to 2} \left(x^2 - x + 1 \right) + \lim_{x \to 2} \left(\sqrt{x + 7} \right) - \lim_{x \to 2} \left(\sqrt{\frac{x^2 + 4}{x - 1}} \right)$$

$$\lim_{x \to 2} (x^2 - x + 1) = 2^2 - 2 + 1 = 3$$

$$\lim_{x \to 2} \left(\sqrt{x+7} \right) = \sqrt{\lim_{x \to 2} (x+7)} = \sqrt{2+7} = \sqrt{9} = 3$$

$$\lim_{x \to 2} \left(\sqrt{\frac{x^2 + 4}{x - 1}} \right) = \sqrt{\lim_{x \to 2} \left(\frac{x^2 + 4}{x - 1} \right)} = \sqrt{\frac{2^2 + 4}{2 - 1}} = \sqrt{8} = 2\sqrt{2}$$

www.mathonec.com

 $\lim_{x \to 2} \left| \left(x^2 - x + 1 \right) + \left(\sqrt{x + 7} \right) - \left(\sqrt{\frac{x^2 + 4}{x - 1}} \right) \right| = 3 + 3 - 2\sqrt{2} = 6 - 2\sqrt{2}$ IIـ النهاية اللامنتهية 1 ـ النهاية ∞+ عند 0 : f دالة معرفة على مجال مفتوح منقط مركزه fنقول إن f تؤول إلى $\infty +$ عندما يؤول χ إلى 0 إذا كان : f(x) > A يوجد عنصر $\alpha > 0$ بحيث لكل $\alpha > 0$ يكون $\alpha > 0$ $\lim_{x \to 0} f(x) = +\infty \quad \text{iii}$ خاصية: الدوال المعرفة على الشكل: $f(x) = \frac{k}{\sqrt{x}}$ و $g(x) = \frac{k}{\sqrt{x}}$ و $g(x) = \frac{k}{\sqrt{x}}$ الدوال المعرفة على الشكل الشكل الشكل المعرفة على اليمين الشكل المعرفة على الشكل المعرفة على النمين الشكل المعرفة على النمين الشكل المعرفة على النمين المعرفة $\lim_{x \to 0} \frac{3}{\sqrt{|x|}} = +\infty \quad \lim_{x \to 0^+} \frac{4}{x^3} = +\infty \quad \lim_{x \to 0} \frac{3}{x^4} = +\infty$ <u>: مند +∞ عند 2</u> x_0 دالة معرفة على مجال مفتوح منقط مركزه x_0 . نقول إن f تؤول إلى $\infty+$ عندما يؤول x إلى x_0 إذا كانت الدالة $f(x_0+h)$ تؤول إلى $\infty+$ عندما يؤول f إلى $f(x_0+h)$ $\lim_{x \to 2} \frac{3}{\sqrt{(x-2)^2}} = +\infty \quad \text{o} \quad \lim_{x \to 1} \frac{3}{(x-1)^2} = +\infty$ <u>3 - النهاية ∞+ عند ∞+ :</u> تعريف : $[a,+\infty]$ دالة معرفة على مجال من نوع $+\infty$ الى x إلى $+\infty$ نقول إن نهاية x إلى $+\infty$ f(x) > A يكون B > 0 يكون A > 0 إذا كان لكل A > 0 يوجد عنصر B > 0 بحيث لكل بالمجال $\lim_{x\to +\infty} f(x) = +\infty \quad \text{with} \quad \mathbf{0}$ خاصية: الدوال المعرفة على الشكل: $f(x) = kx^n$ و $g(x) = k\sqrt{x}$ و $g(x) = k\sqrt{x}$ و $g(x) = kx^n$ الدوال المعرفة على الشكل الشكل الشكل الشكل المعرفة على الشكل الشكل المعرفة على الم $\lim 3\sqrt{x} = +\infty \quad \lim 3x^4 = +\infty$ $\underline{x_0}$ <u>النهاية $\underline{\infty}$ عند $\underline{\infty}$ النهاية $\underline{\infty}$ عند $\underline{\infty}$ </u> $\lim f(x) = -\infty \iff \lim (-f(x)) = +\infty$ $\lim f(x) = -\infty \Leftrightarrow \lim (-f(x)) = +\infty$ $\lim_{x \to x_0} f(x) = -\infty \iff \lim_{x \to x_0} \left(-f(x) \right) = +\infty$ $\lim_{x \to -\infty} -2x^3 = +\infty \quad \lim_{x \to -\infty} 3x^3 = -\infty$ Chorfi_mouhsine@yahoo.fr خاصيات النهايات و الترتيب:

		$\lim f(x) = +\infty$ فإن $\lim u(x) = +\infty$ و $\lim f(x) \ge u(x)$
		$\lim f(x) = -\infty$ فإن $f(x) \le u(x)$ و $f(x) \le u(x)$
		. العمليات على النهايات اللامنتهية و الأشكال الغير المحددة :
	<u>ية مجموع</u>	
نهایة <u>f</u> +g	هاية g	نهاية <u>f</u>
+∞	+∞	l
-∞	-∞	l
+∞	+∞	+∞
	-∞	_∞
شکل غیر محدد	∞+ نه في عدد حقيقي	-∞
	ه فی عدد حقیقی ا	نهایه داله
λf نهایة	<u>شارة Λ</u> موجبة سالبة	<u>نهایة f</u>
+∞	موجبة	+∞
-∞	سالبة	+∞
-∞	موجبة	_∞
+∞	سالبة	-∞
	موجبة سالبة باية جداع	نه
نهایة <u>fg</u>	هاية g	نهاية <u>f</u>
+∞	+∞	+∞
-∞	-∞	+∞
	-∞	
∞+ شکل غیر محدد	0	+∞
شکل غیر محدد	0	_∞
نهایة مقلوب <u>f</u>	مقلوب دالة	<u>نهاية f</u>
0+		+∞
+∞		0^{+}
0^{-}		-∞
-∞		0-
	ايةخارج	نه
نهایة خارج f علی <u>g</u> شکل غیر محدد	هاية g	نهاية <u>f</u>
شکل غیر محدد	∞	∞
شکل غیر محدد	0	0
+∞	0+	+∞
-∞	0-	+∞
0	+∞	0
0	_∞	0
0		[- نهاية الدوال المثلثية :
	$\lim_{x \to 0} \frac{\sin(x)}{x}$ $\lim_{x \to 0} \frac{\tan(x)}{x}$	<u>)</u> = 1
	$\lim_{x\to 0}\frac{1-\cos(x)}{x^2}$	$\frac{x}{J} = \frac{1}{2}$

