Final Project

Python for Data Analysis

Drug Consumption Analysis & Predictions

Cyprien NICOLAY - Timothé VITAL - Anna ZENOU DIA 5

Drug Consumption Dataset presentation

Main information about the dataset and its organization

Data Pre-Processing

How we processed the dataset to use it efficiently

Summary

Data Visualizations

Visualizations of the dataset's principal information and the links between the variables and the target

Data Modeling

Different algorithms applied to the dataset

B Drug Consumption Dataset

Link: https://archive.ics.uci.edu/ml/datasets/Drug+consumption+%28quantified%29#

1885 responses

	ID	Age	Genre	Education	Pays	Ethnicité	Neuroticisme	Extraversion	Ouverture à l'expérience	Agréabilité	Sérieux	Impulsivité	Recherche de sensation
0	1	0.49788	0.48246	-0.05921	0.96082	0.12600	0.31287	-0.57545	-0.58331	-0.91699	-0.00665	-0.21712	-1.18084
1	2	-0.07854	-0.48246	1.98437	0.96082	-0.31685	-0.67825	1.93886	1.43533	0.76096	-0.14277	-0.71126	-0.21575
2	3	0.49788	-0.48246	-0.05921	0.96082	-0.31685	-0.46725	0.80523	-0.84732	-1.62090	-1.01450	-1.37983	0.40148
3	4	-0.95197	0.48246	1.16365	0.96082	-0.31685	-0.14882	-0.80615	-0.01928	0.59042	0.58489	-1.37983	-1.18084
4	5	0.49788	0.48246	1.98437	0.96082	-0.31685	0.73545	-1.63340	-0.45174	-0.30172	1.30612	-0.21712	-0.21575

Alcool	Amphetamine	Amyl nitrite	Benzodiazepine	Caffeine	Cannabis	Chocolat	Cocaine	Crack	Ecstasy	Heroin	Ketamine	Substance psychoactive	LSD	Methadone	Champignon hallucinogène	Nicotine	Semeron	Substance Volatile
CL5	CL2	CL0	CL2	CL6	CL0	CL5	CL0	CL0	CL0	CL0	CLO	CL0	CL0	CL0	CL0	CL2	CL0	CL0
CL5	CL2	CL2	CL0	CL6	CL4	CL6	CL3	CL0	CL4	CL0	CL2	CL0	CL2	CL3	CL0	CL4	CL0	CL0
CL6	CL0	CL0	CL0	CL6	CL3	CL4	CL0	CL0	CL0	CL0	CL0	CL0	CL0	CL0	CL1	CL0	CL0	CL0
CL4	CL0	CL0	CL3	CL5	CL2	CL4	CL2	CL0	CL0	CL0	CL2	CL0	CL0	CL0	CL0	CL2	CL0	CL0
CL4	CL1	CL1	CL0	CL6	CL3	CL6	CL0	CL0	CL1	CL0	CL0	CL1	CL0	CL0	CL2	CL2	CL0	CL0

5 demographic features :

- Age
- Gender
- Level of education
- Country
- Ethnicity

7 personality features:

- Neuroticism
- Extraversion
- Opennes to experience
- Agreeableness
- Conscientiousness
- Impulsiveness
- Sensation seeking

All input attributes are originally categorical and are quantified. After quantification, values of all input features can be considered as real-valued.

B Drug Consumption Dataset

18 drugs:

- Alcohol
- Amphetamines
- Amyl nitrite
- Benzodiazepine
- Caffeine

- Chocolate
- Cocaïne
- Crack
- Ecstasy
- Heroin

- Ketamine
- Legal highs
- LSD
- Methadone
- Mushrooms

- Nicotine
- Volatile substance
- Semeron (fictitious drug)

Each of these drug variables can take 6 different values:

CL0: Never Used

CL1: Used over a Decade

CL2: Used in the Last Decade

CL3: Used in the Last Year

CL4: Used in the Last Month

CL5: Used in the Last Week

CL6: Used in the Last Day

Data Pre-Processing

Encoding columns into numeric data & One Hot Encoding

```
for column in col_drogue:
    le = LabelEncoder()
    df[column] = le.fit_transform(df[column])

for column in col_démographie:
    le = LabelEncoder()
    df[column] = le.fit_transform(df[column])

for column in col_personnalité:
    le = LabelEncoder()
    df[column] = le.fit_transform(df[column])
```

```
oh_data= pd.get_dummies(data_regulier, columns = ['Age', 'Education'])
      oh data.drop(['Age 2.59171'], axis=1,inplace = True)
      oh data.rename(columns = { 'Age -0.95197': 'Age: 18-24',
                                 'Age_-0.07854':'Age: 25-34',
                                 'Age 0.49788':'Age: 35-44',
                                 'Age 1.09449': 'Age: 45-54',
                                 'Age 1.82213': 'Age: 55-64',
                                 'Education -2.43591': 'Décrochage avant 16 ans',
                                 'Education -1.7379': 'Décrochage à 16 ans',
                                 'Education -1.43719': 'Décrochage à 17 ans',
                                 'Education -1.22751': 'Décrochage à 18 ans',
                                 'Education -0.61113': 'Ecole supérieure ou Université',
                                 'Education -0.05921':'Certificat professionnel',
                                 'Education 0.45468': 'Diplômé universitaire',
                                 'Education 1.16365': 'Diplômé de master',
                                 'Education 1.98437': 'Diplômé de doctorat'
                                }, inplace = True)
```

- **Dropping irrelevant feature columns**
- Dropping rows where people answered they took the ficticious drug (Semeron) to identify overclaimers and exclude their other answers
- Dropping ficticious drug column for the rest of the analysis

for classification

Binary Classification Problem for each drug:

```
def tester(f):
    if ((f==6) or (f==5) or (f==4) or (f==3) or (f==2) or (f==1)):
        f = 1
    elif (f==0):
        f = 0
    return f

def regulier(f):
    if ((f==6) or (f==5)):
        f = 1
    elif ((f==0) or (f==1) or (f==2) or (f==3) or (f==4)):
        f = 0
    return f
```

```
data_test=data.copy()
for col in col_drogue:
    data_test[col]=data_test[col].map(tester)
```

Tested the drug at least once (value 1):

- CL1: Used over a Decade
- CL2: Used in the Last Decade
- CL3: Used in the Last Year
- CL4: Used in the Last Month
- CL5: Used in the Last Week
- CL6: Used in the Last Day

Never tested the drug (value 0):

CL0: Never Used

The Data Visualizations

Visualizations of the number of users by category for each drug

Data Visualizations

Visualizations of the number of people who tested or not each drug

Data Visualizations

Heatmap: Correlations between each feature and drug

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

Data Modeling

Predicting whether an individual has ever tested a drug or not

A few algorithms tested to analyze Cannabis, Ecstasy, Mushrooms and LSD consumption

- **Logistic regression**
- **Decision Tree**
- **Random Forest**

- **KNN**
- **Support Vector Machine**

Predicting whether an individual has ever tested ecstasy or not

Grid Search to find the best parameters

Best params: {'criterion': 'entropy', 'max_depth': 7, 'max_features': 'auto', 'n_estimators': 500} Train f1 score: 0.696 Test f1 score: 0.704												
1	orecision	recall	f1-score	support								
0	0.75	0.71	0.73	302								
1	0.68	0.73	0.70	262								
accuracy			0.72	564								
macro avg	0.72	0.72	0.72	564								
weighted avg	0.72	0.72	0.72	564								

Confusion Matrix

Predicting whether an individual has ever tested ecstasy or not

Comparison of the models with ROC curves

F1 Scores of the models

	f1-score
Random Forest	0.703704
Suport Vector Machine	0.697936
K plus proches voisins	0.692029
Regression Logistique	0.691871
Decision Tree	0.690909

Same steps for other target variables Results for Cannabis:

Best params: {'criterion': 'entropy', 'max_depth': 5, 'max_features': 'auto', 'n_estimators': 500} Train f1 score: 0.911 Test f1 score: 0.914												
	precision	recall	f1-score	support								
0	0.80	0.48	0.60	125								
1	0.87	0.97	0.91	439								
accuracy			0.86	564								
macro avg	0.83	0.72	0.76	564								
weighted avg	0.85	0.86	0.84	564								

Thank you!