Week 3: Decision Reducts CS286: Topics in Intelligent Systems

Katarzyna Tarnowska Ph.D.

The Department of Computer Science College of Science San Jose State University

9/2/2020

- Introduction
 - Readings
 - Motivation
 - Case study
- 2 Definitions
 - The concept of a reduct
 - Discernibility relation
 - Decision reducts and the core
- 3 Algorithms
 - Discernability matrix-based
 - Activity
 - Heuristics-based

- Introduction
 - Readings
 - Motivation
 - Case study
- 2 Definitions
 - The concept of a reduct
 - Discernibility relation
 - Decision reducts and the core
- Algorithms
 - Discernability matrix-based
 - Activity
 - Heuristics-based

- Introduction
 - Readings
 - Motivation
 - Case study
- 2 Definitions
 - The concept of a reduct
 - Discernibility relation
 - Decision reducts and the core
- Algorithms
 - Discernability matrix-based
 - Activity
 - Heuristics-based

Required readings

- Chapter 4.1.3: Reducts in Decision Support System for Diagnosis and Treatment of Hearing Disorders. The Case of Tinnitus. OR
- Chapter 4.1: Decision Reducts in Recommender System for Improving Customer Loyalty.

- Introduction
 - Readings
 - Motivation
 - Case study
- 2 Definitions
 - The concept of a reduct
 - Discernibility relation
 - Decision reducts and the core
- Algorithms
 - Discernability matrix-based
 - Activity
 - Heuristics-based

Motivation

- Multidimensional datasets
- Performance issue for data mining
- Cognitive overload for analysts

- Introduction
 - Readings
 - Motivation
 - Case study
- 2 Definitions
 - The concept of a reduct
 - Discernibility relation
 - Decision reducts and the core
- Algorithms
 - Discernability matrix-based
 - Activity
 - Heuristics-based

Case study - survey data

- Survey questions ("benchmarks") scored 1-10
- Each asks about customer experience in a particular area

Case study - large datasets of customer feedback surveys

- Conditions: survey answers
- **Decision**: net promoter score (NPS)

Client attributes		Customer attributes		attributes		Survey attributes and questions (customer experience on client's service)			NPS Status			
ID	Name	Adress,	Name	Location		Time	Cost	Q1 (score)	Q2 (score)	Q (score)	QN (score)	Promoter
1												Passive
2												Detractor

- Consulting developed a set of 200 questions possible to ask
- Analytical problem: which questions are core for insights into customer feedback?
- Motivation: optimize customer surveying time

Solution: compute decision reducts

- Turns out not all the attributes are necessary to retain the same knowledge
- In other words, you can discard certain attributes, without the loss of knowledge in the dataset

Solution: decision reducts + visual analytics

• Dataset as a "heatmap" (web-based visualization, using D3.js)

- Color-coding for the "criticality" of a question attribute
- Criticality computed as occurrence of an attribute in reducts

References: Tarnowska et al., 2017, Visual Analysis of Relevant Features in Customer Loyalty Improvement Recommendation in Advances in Feature Selection for Data and Pattern Recognition or 6.1: Decision Reducts as Heatmap in Tarnowska et al. Recommender System for Improving Customer Loyalty (CLIRS)

- Introduction
 - Readings
 - Motivation
 - Case study
- 2 Definitions
 - The concept of a reduct
 - Discernibility relation
 - Decision reducts and the core
- Algorithms
 - Discernability matrix-based
 - Activity
 - Heuristics-based

- Introduction
 - Readings
 - Motivation
 - Case study
- 2 Definitions
 - The concept of a reduct
 - Discernibility relation
 - Decision reducts and the core
- Algorithms
 - Discernability matrix-based
 - Activity
 - Heuristics-based

The concept of a reduct

- Consider a decision table
- Not every attribute is necessary for making a decision
- Only a subset of attributes is essential to make a decision
- A reduct a minimal subset of attributes that retain the characteristics (knowledge) of the entire decision table

- Introduction
 - Readings
 - Motivation
 - Case study
- 2 Definitions
 - The concept of a reduct
 - Discernibility relation
 - Decision reducts and the core
- 3 Algorithms
 - Discernability matrix-based
 - Activity
 - Heuristics-based

Discernibility relation - definition

Definition

Let objects $x, y \in U$ and set of attributes $B \subset A$. We say that x, y are *discernible* by B when there exists $a \in B$ such that $a(x) \neq a(y)$.

x, y are indiscernible by B when they are identical on B, that is, a(x) = a(y) for each $a \in B$.

 $[x]_B$ denotes a set of objects indiscernible with x by B.

Discernibility relation - example

Indiscernibility: example 1

U	Headache	Muscle pain	B Temp.	Flu
p1	Yes	Yes	Normal	No
p2	Yes	Yes	High	Yes
р3	Yes	Yes	Very-high	Yes
p4	No	Yes	Normal	No
р5	No	No	High	No
р6	No	Yes	Very-high	Yes
p7	No	Yes	High	Yes
р8	No	No	Very-high	No

Objects p_1 , p_2 , p_3 are **indiscernible** for attribute subset $B = \{Headache, Musclepain\}$

Also, there are three disjoint **indiscernibility classes**:

•
$$[p1]_B = \{p1, p2, p3\}$$

•
$$[p4]_B = \{p4, p6, p7\}$$

•
$$[p5]_B = \{p5, p8\}$$

- Introduction
 - Readings
 - Motivation
 - Case study
- 2 Definitions
 - The concept of a reduct
 - Discernibility relation
 - Decision reducts and the core
- Algorithms
 - Discernability matrix-based
 - Activity
 - Heuristics-based

Decision reduct - definition

Definition

A set of attributes $B \subset A$ is called **reduct of the decision table** if and only if:

- B keeps the discernibility of A, that is, for each $x, y \in U$, if x, y are discernible by A, then they are also discernible by B,
- B is irreducible, that is, none of its proper subset keeps discernibility properties of A (that is, B is minimal in terms of discernibility).

The set of attributes appearing in every reduct of information system A (decision table DT) is called **the core**.

An Example of Reducts & Core

$Reduct1 = \{Muscle-pain, Temp.\}$ Muscle Temp. Flu

Normal

Very-high

High

High

No

Yes

Yes

No

Yes

No

U1.U4 Yes

U3.U6 Yes

U5

$oldsymbol{U}$	Headache	Muscle pain	Temp.	Flu
U1	Yes	Yes	Normal	No
<i>U2</i>	Yes	Yes	High	Yes
U3	Yes	Yes	Very-high	Yes
U4	No	Yes	Normal	No
U5	No	No	High	No
U6	No	Yes	Very-high	Yes

Reduct2 = {Headache, Temp.}

U	Headache	Temp.	Flu
U1	Yes	Norlmal	No
U2	Yes	High	Yes
U3	Yes	Very-high	Yes
U4	No	Normal	No
U5	No	High	No
<i>U6</i>	No	Very-high	Yes

- Introduction
 - Readings
 - Motivation
 - Case study
- 2 Definitions
 - The concept of a reduct
 - Discernibility relation
 - Decision reducts and the core
- 3 Algorithms
 - Discernability matrix-based
 - Activity
 - Heuristics-based

- Introduction
 - Readings
 - Motivation
 - Case study
- 2 Definitions
 - The concept of a reduct
 - Discernibility relation
 - Decision reducts and the core
- 3 Algorithms
 - Discernability matrix-based
 - Activity
 - Heuristics-based

Discernability matrix-based algorithm - example 1

No	a	b	c	d
u1	a0	<i>b1</i>	c1	у
u2	al	<i>b1</i>	c0	п
			c1	n
u4	al	<i>b1</i>	c1	У

$$C = \{a, b, c\}$$

$$D = \{d\}$$

$$(a \lor c) \land b \land c \land (a \lor b)$$

$$= b \land c$$

Reduct =
$$\{b, c\}$$

In order to discern equivalence classes of the decision attribute *d*, to preserve conditions described by the discernibility matrix for this table

	u1	u2	u3	
u2	a,c			
u3	b	λ		
u4	λ	c	a,b	

Discernability matrix-based algorithm - example 2

Discernability function:

$$(b+c+d)b(a+b+c+d)(b+c)(b+d)(a+b+c)(a+b)(c+d) = b(c+d) = bc + bd$$

c.d

u6

Discernability matrix-based algorithm - example 3

Information System

	a	b	c	d	f
x1	0	L	0	L	0
x2	0	R	1	L	1
x3	0	L	0	L	0
x4	0	R	1	L	1
x5	1	R	0	L	2
x6	1	R	0	L	2
x 7	2	S	2	Н	3
x8	2	S	2	Н	3

REDUCTS

Discernibility Matrix

Discernibility Function:

$$f(a, b, c, d) = (b + c) (a + b) (a + b + c + d) (a + c) = (b + c) (a + b) (a + c) = (ba + bb + ca + cb) (a + c) = (b + ca) (a + c) = (b + ca) (a + c) = (b + ca) (b + ca) (b + ca) = ($$

Reducts: {b, a}, {c, a}, {c, b}

Discernability matrix-based algorithm to find reducts

- Construct a discernability matrix from a decision table
- Construct a discernability function from a discernability matrix
- The function is in conjunctive normal form (CNF)
- To convert to DNF (disjunctive normal form), apply the logic law of absorption: $a \land (a \lor b) = a$
- Find prime implicants from DNF
- These are the reducts

Prime implicants: example

Discernability function in conjunctive normal form (CNF):

$$\Phi^{U} = (p_{1}^{a} \vee p_{1}^{b} \vee p_{2}^{b}) \wedge (p_{1}^{a} \vee p_{2}^{a} \vee p_{3}^{b})
\wedge (p_{1}^{a} \vee p_{2}^{a} \vee p_{3}^{a})
\wedge (p_{2}^{a} \vee p_{3}^{a} \vee p_{1}^{b}) \wedge (p_{2}^{a} \vee p_{2}^{b} \vee p_{3}^{b})
\wedge (p_{2}^{a} \vee p_{3}^{a} \vee p_{1}^{b}) \wedge (p_{2}^{a} \vee p_{2}^{b} \vee p_{3}^{b})
\wedge (p_{2}^{a} \vee p_{3}^{a} \vee p_{4}^{a} \vee p_{1}^{b} \vee p_{2}^{b} \vee p_{3}^{b})
\wedge (p_{3}^{a} \vee p_{4}^{a}) \wedge (p_{4}^{a} \vee p_{3}^{b}) \wedge (p_{2}^{a} \vee p_{1}^{b})
\wedge (p_{2}^{b} \vee p_{3}^{b}) \wedge (p_{3}^{a} \vee p_{2}^{b}) \wedge p_{2}^{b}.$$

Discernability function in disjunctive normal form (DNF):

$$\Phi^{U} = (p_{2}^{a} \wedge p_{4}^{a} \wedge p_{2}^{b}) \vee (p_{2}^{a} \wedge p_{3}^{a} \wedge p_{2}^{b} \wedge p_{3}^{b})$$
$$\vee (p_{3}^{a} \wedge p_{1}^{b} \wedge p_{2}^{b} \wedge p_{3}^{b}) \vee (p_{1}^{a} \wedge p_{4}^{a} \wedge p_{1}^{b} \wedge p_{2}^{b}).$$

Here, we have found four prime implicants

 $\{p_2^a, p_4^a, p_2^b\}$ is the optimal result, because it is the minimal subset of *P*.

- Introduction
 - Readings
 - Motivation
 - Case study
- 2 Definitions
 - The concept of a reduct
 - Discernibility relation
 - Decision reducts and the core
- 3 Algorithms
 - Discernability matrix-based
 - Activity
 - Heuristics-based

Programming assignment 1

Implement an algorithm for finding decision reducts

- Read in data in .csv
- 2 Convert to decision table (DT)
- Oreate discernability matrix from DT
- Onstruct discernability function from discernability matrix
- Onvert discernability function from CNF to DNF
- Find prime implicants
- Print out reducts

Testing the algorithm:

- Test on a toy example (i.e. from the lectures)
- Test on a large dataset (i.e. from the lab)

- Introduction
 - Readings
 - Motivation
 - Case study
- 2 Definitions
 - The concept of a reduct
 - Discernibility relation
 - Decision reducts and the core
- 3 Algorithms
 - Discernability matrix-based
 - Activity
 - Heuristics-based

Other approaches - finding a core using heuristics

- The number of possible reducts can be 2^{N-1} where N is the number of attributes.
- Selecting the optimal reduct from all of possible reducts is time-complex and heuristics must be used.

Self-check

Make sure you know:

- **1** The definition of the *discernibility relation*.
- 2 The definition of decision reduct.
- An example/case study of a dataset where finding decision reducts would be beneficial and justify the case.
- How to apply the discernability matrix-based algorithm for finding reducts in a sample information system.

