↔ Lycée de Dindéfélo ↔			A.S.: 2024/2025
Matière: Mathématiques	Niveau: TS2	Date: 22/05/2025	Durée : 4 heures
Composition Du 2 nd Semestre			

Exercice 1:(3 pts) Restitution de Connaissances

1 Soit Ω l'univers associé à une expérience aléatoire E et p une probabilité définie sur Ω . Recopie et complète les relations ci-dessous :

a
$$\mathbb{P}(\Omega) = \dots$$
 (0,25 pt)

$$\mathbb{P}(\varnothing) = \dots \tag{0.25 pt}$$

c Si
$$A$$
 et B sont deux événements incompatibles de Ω , alors $\mathbb{P}(A \cup B) = \dots$ (0,25 pt)

Soit
$$D$$
 un événement quelconque de Ω . $\mathbb{P}(D)=1,5$ est-il possible ? Si non, justifier votre réponse. (0,25 pt)

Soit f une fonction continue sur un intervalle I et (u_n) une suite convergente vers un nombre réel $L \in I$, définie par $u_{n+1} = f(u_n)$. Répondre par vrai ou faux à l'affirmation : L est solution de l'équation f(L) = L. (0,5 pt)

Soit (u_n) une suite géométrique de raison $q = \frac{1}{2}$ et de premier terme $u_2 = -3$. Choisir la bonne réponse dans chaque cas : $(3 \times 0.25 \text{ pt})$

Réponses	A	В	C
$\lim u_n$ est :	$-\infty$	$+\infty$	0
L'expression de u_n est :	$-3\left(\frac{1}{2}\right)^n$	$-3\left(\frac{1}{2}\right)^{n-3}$	$-3\left(\frac{1}{2}\right)^{n-2}$
L'expression de $S_n = u_2 + u_3 + \cdots + u_n$ est :	$u_0 \times \frac{1 - 0.5^{n-1}}{0.5}$	$u_2 \times \frac{1 - 0.5^{n-2}}{0.5}$	$u_2 \times \frac{1 - 0.5^{n-2}}{0.5}$

Exercice 2:(3 pts)

Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

1 On considère la transformation
$$S$$
 du plan d'écriture complexe $z'=(1-i\sqrt{3})z+2$.
Déterminer la nature de S . (0,5 pt)

2 Déterminer le rapport et l'angle de
$$S$$
. (0,5 pt)

3 Déterminer l'affixe du point
$$C$$
 image par S du point $A(2 - i\sqrt{3})$. (1 pt)

4 Quelle est l'affixe du point image par
$$S$$
 du point $D\left(-\frac{2\sqrt{3}}{3}i\right)$?

Que représente D pour la transformation S ?

(0,75 +0,25 pt)

Exercice 3:(4 pts)

On dispose de deux urnes identiques u_1 et u_2 contenant des boules indiscernables au toucher :

 u_1 contient 3 boules blanches et 6 boules noires.

 u_2 contient deux boules noires, une blanche et une rouge.

Une épreuve consiste à tirer au hasard une boule dans u_1 , la mettre dans u_2 , et tirer ensuite au hasard une boule dans u_2 .

On note B_k l'événement : « Tirer une boule blanche dans u_k », N_k l'événement : « Tirer une boule noire dans u_k », avec $k \in \{1, 2\}$.

R l'événement : « Tirer une boule rouge dans u_2 ».

2 a Montrer que
$$\mathbb{P}(N_2) = \frac{8}{15}$$
. (0,5 pt)

b Déterminer la probabilité de l'événement
$$B_2$$
. (0,5 pt)

- Déterminer la probabilité de tirer une boule blanche de u_1 , sachant que la boule tirée dans u_2 est noire. (0,5 pt)
- 3 Un joueur mise 500F et effectue une épreuve. Si à la fin de l'épreuve le joueur tire une boule blanche dans u_2 , il reçoit 3000F; si la boule tirée dans u_2 est noire, le joueur ne reçoit rien et si elle est rouge, il reçoit 500F.

On désigne X le gain du joueur (gain = différence entre ce qu'il reçoit et sa mise).

a Donner la loi de probabilité de
$$X$$
. (0,5 pt)

b Calculer l'espérance mathématique, la variance et l'écart-type de
$$X$$
. (0,75 pt)

c Déterminer la fonction de répartition de
$$X$$
 et la représenter. (0,75 pt)

Un joueur participe à plusieurs parties du jeu et on suppose que les épreuves sont indépendantes. Quelle est le nombre minimal de parties pour que la probabilité de réaliser au moins une fois l'événement X = 2500 soit supérieure à 0,97 ? (0,25 pt)

Problème: 10 pts

Le plan est muni d'un repère orthonormé (O; I; J) et C_f la courbe représentative de f dans ce plan.

Partie A: 2,5 pts

On considère la fonction g définie sur $]0; +\infty[$ par $g(x)=\ln\left(\frac{x+1}{x}\right)-\frac{1}{x+1}.$

1 Calculer les limites
$$\lim_{x\to 0^+} g(x)$$
 et $\lim_{x\to +\infty} g(x)$. (0,5 pt)

2 Étudier les variations de
$$g$$
 et dresser le tableau de variations de g . (1,5 pt)

3 Déduire du tableau de variations le signe de
$$g(x)$$
 pour tout $x > 0$. (0,5 pt)

Partie B: 5 pts

On considère la fonction f donnée par : $f(x) = \begin{cases} x \ln\left(\frac{x+1}{x}\right) + 1 & \text{si } x > 0 \\ (x^2 - 3x + 1)e^x & \text{si } x \leq 0 \end{cases}$

- 1 a Déterminer le domaine de définition de f. (0,5 pt)
 - b Calculer les limites aux bornes de D_f . (0,5 pt)
 - c En déduire l'existence d'asymptotes dont on précisera la nature et l'équation. (0,5 pt)
- 2 a Étudier la continuité de f en 0. (0,75 pt)
 - b Étudier la dérivabilité de f en 0 et interpréter les résultats. (0,75 + 0,25 pt)
- 3 Montrer que $f'(x) = \begin{cases} g(x) & \text{si } x > 0 \\ (x^2 x 2)e^x & \text{si } x < 0 \end{cases}$ (1 pt)
- 4 Dresser le tableau de variations de f. (0,75 pt)

Partie C: 2,5 pts

Soit h la restriction de f sur l'intervalle $]0; +\infty[$.

- 1 Montrer que h est bijective de $]0; +\infty[$ vers un intervalle J à préciser. (0,5 pt)
- 2 Étudier la dérivabilité de h^{-1} sur J. (0,5 pt)
- 3 Tracer sur le même graphe les asymptotes, C_f et $C_{h^{-1}}$. (1,5 pt)