Lecture 22 Backtracking, Branch and Bound Algorithms

EECS 281: Data Structures & Algorithms

Types of Algorithm Problems

- Constraint satisfaction problems
 - Can we satisfy all given constraints?
 - If yes, how do we satisfy them?
 - · Need a specific solution
 - May have more than one solution
 - Examples: sorting, puzzles, GRE/analytical
- Optimization problems
 - Must satisfy all constraints (can we?) and
 - Must minimize an objective function subject to those constraints

Types of Algorithm Problems

- Constraint satisfaction problems
 - Can rely on Backtracking algorithms
- Optimization problems
 - Can rely on Branch and Bound algorithms

For particular problems, there may be much more efficient approaches, but think of these as a fallback to a more sophisticated version of a brute-force approach.

General Form: Backtracking

solution(v)

Check 'depth' of solution (constraint satisfaction)

promising(v)

Different for each application

checknode (v)

 Called only if partial solution is both promising and not a solution

Outline

- Review
 - Constraint Satisfaction
 - Optimization
- Backtracking
 - General Form
 - n Queens
- Branch and Bound
 - Traveling salesperson problem

Types of Algorithm Problems

- · Constraint satisfaction problems
 - Go over all possible solutions
 - Does a given input combination satisfy all constraints?
 - Can stop when a satisfying solution is found
- · Optimization problems
 - Similar, except we also need to compute the objective function every time
 - Stopping early = possible non-optimal solution

General Form: Backtracking

```
Algorithm checknode(node v)
  if (promising(v))
    if (solution(v))
      write solution*
    else
      for each node u adjacent to v
      checknode(u)
```

* Can exit here if only the existence of a solution is needed

An Alternate Form: Backtracking

* Can exit here if only the existence of a solution is needed

Backtracking Example: n Queens

Can *n* queens be placed on an *n* x *n* board so that no queens are threatened?

- n = 1: 1 queen, 1 x 1 board
- n = 2: 2 queens, 2 x 2 board
- n = 3: 3 queens, 3×3 board
- n = 4: 4 queens, 4 x 4 board
- n = 5: 5 queens, 5 x 5 board

Search Tree: n Queens

Backtracking Elements: n Queens

solution(v)

- · Check 'depth' of solution (constraint satisfaction)
- · Placed queen on each row
- That is, depth = N

checknode (v)

- · Called only if promising and not solution
- Recursive call to all positions (columns) of gueen within

8 Queens: Search Space

- Brute force checks about 4.43x10⁹ possibilities, including many ridiculous board configurations
- Even with sensible choices (1 gueen per row), the search space is still fairly large:
 - 16,772,216 possibilities
 - 92 solutions
- How can the search space be further reduced?

4 Queens Branches

anches searched

- A->E = vert. threat
- A->F = diag. threat
- A->G->I = vert. threat
- A->G->J = diag. threat
- A->G->K = 2 threats
- A->G->L = diag. threat

- **7.** A->H->I = vert. threat
- **8.** A->H->J->M = 2 threats
- 9. A->H->J->N = 2 threats
- $10.A \rightarrow H \rightarrow J \rightarrow O = diag. threat$ 11. A -> H -> J -> P = 2 threats
- 12.A -> H -> K = 2 threats
- 13.A -> H -> L = vert. threat
- 14.B->E = diag. threat
- 15.B->F = vert. threat
- 16.B->G = diag. threat
- **17.**B->H->I->M = vert. threat
- 18.B->H->I->N=3 threats
- 19.B->H->I->O = SOLUTION

4 Queens Recap

For 4 Queens

- Entire search tree has 256 leaves
- Backtracking enables searching of 19 branches before finding first solution
- Promising:
 - May lead to solution
- Not promising:
 - Will never lead to solution
 - Therefore should be pruned

Backtracking Elements: n Queens

promising(row, col)

- · Called for each node of the search tree
- · Assume data structures that can tell you if:
 - column[col] // is column 'col' available
 - leftDiagonal[x] // is upper-left to lowerright diagonal available
 - rightDiagonal[y] // is upper-right to lower-left diagonal available
- NOT promising if any of these are unavailable
 - We'll see what 'x' and 'y' are soon...

Summary: Backtracking

- Backtracking allows pruning of branches that are not promising
- All backtracking algorithms have a similar form
- Often, most difficult part is determining nature of promising()

Types of Algorithm Problems

- · Constraint satisfaction problems
 - Can we satisfy all given constraints?
 - If yes, how do we satisfy them?
 - · Need a specific solution
 - May have more than one solution
 - Examples: sorting, puzzles, GRE/analytical
- Optimization problems
 - Must satisfy all constraints (can we?) and
 - Must minimize an objective function subject to those constraints

2

Types of Algorithm Problems

- Constraint satisfaction problems
 - Can rely on Backtracking algorithms
- Optimization problems
 - Can rely on Branch and Bound algorithms

For particular problems, there may be much more efficient approaches, but think of these as a fallback to a more sophisticated version of a brute-force approach.

22

General Form: Branch & Bound

```
Algorithm checknode (Node v, Best currBest)
Node u
```

```
if (promising(v, currBest))
  if (solution(v)) then
    update(currBest)
  else
```

for each child u of v
 checknode(u, currBest)

return currBest

24

General Form: Branch & Bound

lowerbound()

- · Estimate of solution based upon
 - Cost so far, plus
 - <u>Under</u> estimate of cost remaining (aka <u>bound</u>)

promising()

- Different for each application, but must return true when lowerbound() < currBest
- A return of false is what causes pruning (≥)

Types of Algorithm Problems

- · Constraint satisfaction problems
 - Go over all possible solutions
 - Does a given input combination satisfy all constraints?
 - Can stop when a satisfying solution is found
- Optimization problems
 - Similar, except we also need to compute the objective function every time
 - Stopping early = possible non-optimal solution

21

Branch-and-Bound, a.k.a. B&B

- The idea of backtracking extended to optimization problems
- You are minimizing a function with this useful property:
 - A partial solution is pruned if its cost ≥ cost of best known complete solution
 - e.g., the length of a path or tour
- If the cost of a partial solution is too big drop this partial solution

2

General Form: Branch & Bound

solution()

Check 'depth' of solution (constraint satisfaction)

update()

• If new solution better than current solution, then update (optimization)

checknode()

· Called only if promising and not solution

0

The Key to B&B is the **Bound**

- The efficiency of B&B is based on "bounding away" (aka "pruning") unpromising partial solutions
- The earlier you know a solution is not promising, the less time you spend on it
- The more accurately you can compute partial costs, the earlier you can prune
- Sometimes it's worth spending extra effort to compute better bounds

26

Minimizing With B&B

- · Start with an "infinity" bound
- Find first complete solution use its cost as an upper bound to prune the rest of the search
- Measure each partial solution and calculate a lower bound estimate needed to complete the solution
- Prune partial solutions whose lower bounds exceed the current upper bound
- If another complete solution yields a lower cost that will be the new upper bound
- When search is done, the current upper bound will be a minimal solution

28

Summary Branch and Bound

- Method to prune search space for optimization problems
- Need to keep current best solution
- Measure partial solutions and combine with optimistic estimates of their completions
- If estimate is not an improvement, actual cannot be either, so prune

30

TSP Illustrated

Find tour of minimum length starting and ending in same city and visiting every city exactly once

24

TSP with Backtracking

Dead end in the graph = unpromising partial solution (all adjacent vertices are already visited)

Maximizing With B&B

- · Start with a "zero" bound
- Find first complete solution use its cost as a lower bound to prune the rest of the search
- Measure each partial solution and calculate an upper bound estimate needed to complete the solution
- Prune partial solutions whose upper bounds are less than the current lower bound
- If another complete solution yields a larger value that will be the new lower bound
- When search is done, the current lower bound will be a maximal solution

2

TSP Defined

- Hamiltonian Cycle
 - Definition: Given a graph G = (V, E), find a cycle that traverses each node exactly once
 - No vertex may appear twice, except the first/last
 - Constraint satisfaction problem
- Traveling Salesperson Problem
 - Definition: Hamiltonian cycle with least weight
 - Optimization problem

3

TSP: (NP) Hard Problem!

1954: n = 49

2004: n = 24978

http://www.math.uwaterloo.ca/tsp/sweden/index.html

Best solution so far Minimum cost if we complete a cycle from this partial solution... if cost is > 27 this partial solution is not promising

37

Bounding Function

- Estimate must be ≤ reality
- The bounding function must have complexity better than just continuing TSP for the k vertices not yet visited:
 - For instance, $O(k^2)$ is better than O(k!) for most values of k
- What method can we use to find the lowest cost way to connect k vertices together in $O(k^2)$ time?

Partial TSP Example

Current path: A - B - C

What's the best way to connect D, E, F, and G to each other?

Unvisited vertices: D, E, F, and G

Connect Partial Tour to Unvisited

Connect from A-B-C to D-E-F-G in the best. cheapest, fastest way

Unvisited vertices: D, E, F, and G

Optimal TSP With B&B

- Given n vertices, need to find best path out of (n-1)! options, use genPerms()
- Start with upper bound that is "infinity", or better yet a fast calculation of a path that is guaranteed not shorter than optimal
- Use the upper bound to prune the rest of the search, lowering it every time a shorter, complete path is found
- Measure each partial solution, the path length of the first $1 \le k$ points and estimate the cheapest cost to connect the remaining n - kpoints, this is the lower bound
- Prune a partial solution if its lower bound exceeds the current upper bound
- If another complete path is shorter than the upper bound, save the path and replace the upper bound
- When the search is done, the current upper bound will be a shortest path

Bounding Function

- Some vertices are connected so far, some vertices are not
- For ONLY the unvisited vertices, connect them together with lowest possible cost
- · Then connect the visited vertices to the unvisited
- Yes, this function considers solutions that violate constraints, but it's a LOWER bound so it's OK

Connect Unvisited Nodes **Together**

Current path: A - B - C

How many edges are we missing? A full TSP tour would have V edges (7), currently we have 5...

Unvisited vertices: D, E, F, and G

Generating Permutations

```
template <typename T>
void genPerms(vector<T> &path, size_t permLength) {
  if (permLength == path.size()) {
    // Do something with the path
    return;
  if (!promising(path, permLength))
  for (size_t i = permLength; i < path.size(); ++i) {</pre>
    swap(path[permLength], path[i]);
    genPerms(path, permLength);
    swap(path[permLength], path[i]);
  } // for i
} // genPerms()
```

Branch and Bound & Traveling Salesperson Problem

http://xkcd.com/399

NQueens Implementation

- · We know that:
 - Each row will have exactly one queen
 - Each column will have exactly one queen
 - Each diagonal will have at most one queen
- Don't model the chessboard as 2D array!
 - Instead, use 1D arrays of row position, column availability and diagonal availabilities
- To simplify the presentation, we will study for size 4x4

48

Implementing the Chessboard (cont.)

We need an array to keep track of the availability status of the column when we assign queens

Suppose that we have placed two queens

50

Implementing the Chessboard (cont.)

We also have 7 right diagonals (start indexing at upper right)

Diagonal Index = (row - col) + (n - 1)

52

The Recursive putQueen() Function

Implementing the Chessboard

First: We need to define an array to store the location of queens placed so far

positionInRow

49

Implementing the Chessboard (cont.)

We have 7 left diagonals (2 * N - 1); we want to keep track of available diagonals after queens are placed (start indexing at upper left)

Diagonal Index = row + col

5

The promising() Function

53

NQueens Demo

From a web browser: bit.ly/eecs281-nqueens-demo

From a terminal:

wget bit.ly/eecs281-nqueens-demo -O nqdemo.tgz

At the command line:

```
tar xvzf nqdemo.tgz
g++ -std=c++1z -03 *.cpp -o nqueens
./nqueens
```

55