3. SKAITLU TEORIJAS LAPA, 2022-01-23

3.1 lesildīšanās

1.uzdevums: Dots naturāls skaitlis m. Atrisināt kongruenču vienādojumu:

$$x^2 \equiv 1 \pmod{m}$$
.

2.uzdevums: Izvēlēties jebkuru pirmskaitli p < 41 un pamatot, ka $n^2 + n + 41$ noteikti nedalās ar p nekādam naturālam n.

3.uzdevums: Skaitli 1234567891011...2022 veido, izrakstot pēc kārtas visu naturālo skaitļu decimālpierakstus no 1 līdz 2022. Atrast šī skaitla atlikumu, dalot ar 9.

4.uzdevums: Kādiem naturāliem a un b vienādojumam $ax \equiv 1 \pmod{b}$ eksistē atrisinājums? (Šādu atrisinājumu x sauc par skaitla a inverso pēc modula b un apzīmē $x = a^{-1}$.)

Ieteikums: Izmantot Bezū identitāti (Bézout's identity).

5.uzdevums: Cikliski pārvietojot ciparus bezgalīgas decimāldaļas 1/7 = 0.(142857) periodā, var iegūt dažādas citas racionālas dalas – piemēram, 3/7 = 0.(428571), 2/7 = 0.(285714) utt.

Atrast līdzīgu piecu dažādu ciparu virknīti 0.(abcde), kurā cikliski pārvietojot ciparus var iegūt racionālas daļas $\frac{k_1}{n}, \frac{k_2}{n}, \frac{k_3}{n}, \frac{k_4}{n}, \frac{k_5}{n}$, kurām visām ir viens un tas pats saucējs n < 100.

6.uzdevums: Dots kalkulators, kurš māk reizināt divus naturālus skaitļus a,b < 97 un atrod šī reizinājuma atlikumu $r \in \{0,\dots,96\}$, dalot ab ar m=97. Cik reizināšanas darbības uz šī kalkulatora noteikti ir pietiekamas, lai atrastu atlikumu

$$r \equiv x^y \pmod{97}$$
, kur $x, y < 97$ ir naturāli skaitļi.

Atbildei jābūt iespējami mazai, bet nav jāpamato, ka tā ir optimāla. Saskaitīt nepieciešamās reizināšanas, ja jāatrod atlikums, dalot ar 97 skaitlim 79⁷³.

3.2 Klases uzdevumi

1.uzdevums Pierādīt, ka sekojošiem vienādojumiem nav atrisinājumu veselos skaitļos:

(A)
$$y^2 - 5x^2 = 6$$
.

(B)
$$15x^2 - 7y^2 = 9$$
.

(C)
$$x^2 - 2y^2 + 8z = 19$$
.

(D)
$$x^3 + y^3 + z^3 = 1969^2$$
.

2.uzdevums: Kuriem pirmskaitliem p var atrisināt kongruenču vienādojumu $x^2 \equiv -1 \pmod{p}$ veselos skaitlos?

3.uzdevums: Pirmskaitlis p ir dalītājs izteiksmei $M = (N!)^2 + 1$. Pamatot, ka izpildās vienādība:

$$1 = (-1)^{\frac{p-1}{2}}.$$

Secināt no šejienes, ka eksistē bezgalīgi daudzi pirmskaitļi $p \equiv 1 \pmod{4}$.

4.uzdevums:

- (A) Fibonači skaitļu virkni definē ar sakarībām: $F_0 = 0$, $F_1 = 1$ un $F_n = F_{n-1} + F_{n-2}$ (ja $n \ge 2$). Pamatot, ka ikvienam naturālam m var atrast bezgalīgi daudzus tādus n, ka F_n dalās ar m.
- **(B)** At rast visus tos n, kam $F_n \equiv 0 \pmod{100}$.

5.Uzdevums (BW.2018.18): Dots tāds naturāls skaitlis $n \ge 3$, ka 4n + 1 ir pirmskaitlis. Pierādiet, ka $n^{2n} - 1$ dalās ar 4n + 1.

6.Uzdevums (BW.2016.1): Atrast visus pirmskaitļu pārus (p, q), kuriem

$$p^3 - q^5 = (p+q)^2.$$

3.3 Mājasdarba uzdevumi

Iesniegšanas terminš: 2022.g. 10.decembris.

Kam iesūtīt: kalvis.apsitis, domēns gmail.com

1.uzdevums: Regulāra *n*-stūra virsotnes savienotas ar slēgtu lauztu līniju, kurai ir *n* posmi.

- (A) Pierādīt, ka jebkuram pāra skaitlim $n \ge 4$, lauztajai līnijai ir vismaz divi paralēli posmi.
- (B) Pierādīt, ka jebkuram nepāra skaitlim n>3 nav iespējams, ka lauztajai līnijai ir tieši divi paralēli posmi (t.i. divi posmi ir paralēli, bet nekādi citi nav šiem diviem paralēli, vai arī paralēli savā starpā).

2.uzdevums: Dots pirmskaitlis p un naturāli skaitļi $a \ge 2$, $m \ge 1$. Zināms, ka $a^m \equiv 1 \pmod p$ un $a^{p-1} \equiv 1 \pmod p^2$.

- (A) Pierādīt, ka $a^m \equiv 1 \pmod{p^2}$.
- (B) Atrast kādu pirmskaitli p > 10 un naturālus skaitlus a, m, kam minētie apgalvojumi izpildās.

3.uzdevums: Vai var atrast piecus tādus pirmskaitlus p, q, r, s, t, ka $p^3 + q^3 + r^3 + s^3 = t^3$?

4.uzdevums: Dots nepāra vesels skaitlis a. Pierādīt, ka $a^{2^n} + 2^{2^n}$ un $a^{2^m} + 2^{2^m}$ ir savstarpēji pirmskaitļi visiem naturāliem n un m, kam $n \neq m$.

Piezīme: Pieraksts a^{b^c} nozīmē $a^{(b^c)}$ nevis $(a^b)^c = a^{b \cdot c}$, t.i.darbību locekļus "daudzstāvu" pakāpēs grupē no labās puses uz kreiso, nevis no kreisās uz labo.

5.uzdevums: Dots pirmskaitlis $p \ge 5$. Atrast, cik dažādi atlikumi pēc moduļa p var rasties, ja reizina trīs pēc kārtas sekojošus naturālus skaitlus.

6.uzdevums: Atrast visus naturālos skaitļus n are sekojošu īpašību: Dotajam n var izveidot divas netukšas galīgas veselu skaitļu kopas A un B, kuras jebkuram veselam skaitlim m apmierina tieši vienu no sekojošiem 3 apgalvojumiem:

- (A) Eksistē $a \in A$, kuram $m \equiv a \pmod{n}$,
- **(B)** Eksistē $b \in B$, kuram $m \equiv b \pmod{n}$,
- (C) Eksistē $a \in A$ un $b \in B$, kuriem $m \equiv a + b \pmod{n}$.