Национальный исследовательский университет «МЭИ»

Институт радиотехники и электроники Кафедра радиотехнических систем Методы оптимального приема сигналов в аппаратуре потребителей СРНС

Курсовая работа по дисциплине «АППАРАТУРА ПОТРЕБИТЕЛЕЙ СПУТНИКОВЫХ РАДИОНАВИГАЦИОННЫХ СИСТЕМ»

ФИО студента: <u>Лебедев Д.Д.</u>

Группа: <u>ЭР-15-16</u>

Вариант №:10

ФИО преподавателя: Корогодин И.В.

Оценка: _____

Введение

Издревле человек искал способы как добраться до определенного места, искал ориентиры, плыл по звездам, пользовался позиционными методами определения своего местоположения и т.п. На сегодняшний день любой человек имея смартфон в кармане, может определить где он находится и как ему добраться до пункта назначение. Все это возможно благодаря СРНС. Они стали неотъемлемой частью жизни в различных сферах. Наиболее распространенными являются системы ГЛОНАСС (Россия), GPS (США), Galileo (Евросоюз), Beidou (Китай).

Цель проекта - добавление в программное обеспечение приемника функции расчета положения спутника Beidou на заданное время по данным его эфемерид.

Требования к разрабатываемому программному модулю:

- 1) требования назначения;
- 2) отсутствие утечек памяти;
- 3) малое время выполнения; 4) низкий расход памяти;
- 5) корректное выполнение при аномальных входных данных.

Для достижения цели выполняется ряд задач, соответствующих этапам проекта и контрольным мероприятиям:

- 1) обработка данных от приемника, работа со сторонними сервисами для подготовки входных и проверочных данных для разрабатываемого модуля;
 - 2) моделирование модуля в Matlab/Python;
- 3) реализация программного модуля на C/C++, включая юниттестирование в Check. Этапы курсовой работы отличаются осваиваемыми инструментами.

ЭТАП 1. ИСПОЛЬЗОВАНИЕ СТОРОННИХ СРЕДСТВ 1.1Общие сведения.

Навигационная система «Бэйдо́у» - китайская спутниковая система навигации.

В задание дан номер спутника BEIDOU- 10, а также бинарный и текстовый файл со значениями эфемерид для различных спутников, полученный от трехдиапазонной антенны Harxon HX-CSX601A, установленной на крыше корпуса Е МЭИ.

Она через 50-метровый кабель, сплиттер, bias-tee и усилитель подключена к трем навигационным приемникам:

- Javad Lexon LGDD,
- SwiftNavigation Piksi Multi,
- Clonicus разработки ЛНС МЭИ.

Эти приемники осуществляют первичную обработку сигналов Beidou B1I, выдавая по интерфейсам соответствующие потоки данных - наблюдения псевдодальностей и эфемериды спутников. Данные от приемника Clonicus, записанные 2 марта 2021 года.

C10	37948	IGSO-5	BDS-2	02.12.11	3378	Используется по ЦН

Рисунок 1 — состояние 10-го спутника системы BEIDOU с «Информационноаналитического центра координатно-временного и навигационного обеспечения»

Из рисунка 1 можно выяснить, что спутник используется по цели назначению, его номер 37948, тип космического аппарата, тип системы и дату запуска.

1.2 Определение формы орбиты и положения спутника на ней с помощью сервиса CelesTrak.

Для выполнения этого пункта перейдем на сайт CelesTrak (https://celestrak.com). Настроим параметры и выберем необходимый спутник, после чего будет построена Земля и орбита спутника вокруг нее (рисунок 2).

Рисунок 2 – Результат моделирования на CelesTrak

Значения совпадают, значит это действительно нужный нам спутник, проведем моделирование на момент времени 15:00, 2 марта 2021, так как на данном сервисе отсчет времени происходит по UTC(+0).

1.3 Расчет графика угла места собственного спутника от времени по данным Trimble GNSS Planning Online.

Зададим предварительные параметры для моделирования GNSS Planning Online , координаты установим в соответствии с расположением антенны — и они будут соответствовать значению корпуса Е, также начальное время будет соответствовать 15:00, временной пояс будет равен UTC (+0) на всем этапе моделирования в сервисе GNSS Planning Online, высота выбирается примерно, с учетом разных критериев и будет равна 150м.

Рисунок 3 — Моделирование с помощью сервиса Trimble GNSS Planning

В настройках ограничим выходные данные, дабы не загромождать графики и выбираем 10 спутник.

Рисунок 4 – График угла места спутника Beidou C10

По графику угла места можно сделать вывод, что спутник наблюдается с 3:40 до 15:10 по UTC(+0).

Далее переходим во вкладку Sky Plot и пользуемся возможностью пронаблюдать, траекторию спутника на небосводе в разное характерное время.

Рисунок 5 – SkyView спутника Beidou C10 в 15:00

Рисунок 6 – SkyView спутника Beidou C10 в 3:40

Рисунок 7 – SkyView спутника Beidou C10 в 10:00

Рисунок 8 – SkyView спутника Beidou C10 в 15:10

По полученным данным подтверждаем, что спутник наблюдается с 3:40 до 15:10 по UTC(+0), в остальное время он находится вне зоны видимости.

1.4 Формирование списка и описание параметров, входящих в состав эфемерид

Таблица 1 – Значения эфемерид спутника С10

Параметр	Обозначение параметра	Значение
Satnum	PRN	10
toe (MC)	toe	219600000.000
Crs (рад)	-	-1.71125000000000000e+02
Dn (рад/мс)	Δn	2.01794115271825003e-12
М0 (рад)	Mo	-1.24602686448891453e+00
Сис (рад)	-	-5.77326864004135132e-06
e	e	6.87512021977454424e-03
Cus (рад)	-	-3.77185642719268799e-08
$\operatorname{sqrtA}(m^{\frac{1}{2}})$	\sqrt{A}	6.49323067474365234e+03
Сіс (рад)	-	-1.38301402330398560e-07
Omega0 (рад)	Ω_0	2.63308102577652559e+00
Cis (рад)	-	-1.04308128356933594e-07
і0 (рад)	i 0	8.93007494398020185e-01
Стс (рад)	-	2.18765625000000000e+02
Omega (рад)	ω	-2.55042188550297588e+00
OmegaDot (рад/мс)	Ω	-2.84118977552985422e-12
iDot (рад/сек)	ірот	-5.40379651838676155e-13
Tgd (мc)	$T_{ m gd}$	2.0400000000000000e+05
Тос (мс)	Тос	2.19600000000000000e+08

af2 (мс/мс^2)	-	0.00000000000000000e+00
afl (мс/мс)	-	6.05826500077455421e-12
af0 (мс)	-	-8.54813233017921448e-02
URA	-	0
IODE	-	257
IODC	-	0
codeL2	-	0
L2P	-	0
WN	-	789