Tutorial 3 - Leyes Físicas III

NOMBRES:	_ CALIFICACIÓN:
FECHA: 13 de abril de 2018	PARALELO:

Resolver los siguientes problemas y, cuando corresponda, expresar las respuestas en unidades del Sistema Internacional (SI).

- a) Enuncie el principio de conservación de la energía.
 Escriba las ecuaciones de conservación de energía apropiadas para:
 - b) Problemas con fuerzas de rozamiento.
 - c) Problemas sin fuerzas de rozamiento.
 - d) ¿En cuál de los casos anteriores (b ó c) se conserva la energía mecánica?
- 2. Indique:
 - a) ¿Cuál es la diferencia entre fuerzas conservativas y disipativas?
 - b) Escriba un ejemplo de cada una de ellas.
- 3. Sobre un resorte, cuya constante k es $500\,\mathrm{N}\,\mathrm{m}^{-1}$, se deja caer desde una altura de $80\,\mathrm{cm}$ un bloque de $3\,\mathrm{kg}$.
 - a) Calcular la rapidez del bloque justo cuando impacta al resorte.
 - b) Calcular la distancia máxima que se comprime el resorte.

Asuma que no existe fricción entre el bloque y el aire.

4. En un puesto de carga de camiones de una oficina de correos, un paquete pequeño de 0.2 kg se suelta del reposo en el punto A de una vía que forma un cuarto de círculo con radio de 1.6 m (ver figura de abajo).

El paquete es tan pequeño relativo a dicho radio que puede tratarse como una partícula. El paquete se desliza por la vía y llega al punto B con rapidez de $4.8\,\mathrm{m\,s^{-1}}$. A partir de aquí, el paquete se desliza $3\,\mathrm{m}$ sobre una superficie horizontal hasta el punto C, donde se detiene.

- a) ¿Qué coeficiente de fricción cinética tiene la superficie horizontal?
- b) ¿Cuánto trabajo realiza la fricción sobre el paquete al deslizarse éste por el arco circular entre A y B?