Unit 4: Fermats Little Theorem and Eulers Theorem

Paul Ycay MATH 409

December 13, 2019

The following theorems are ones to be marked. There is a separate file of handwritten notes for the rest of the theorems in this chapter

Theorem 4.2. Let a and n be natural numbers with (a, n) = 1. Then $(a^j, n) = 1$ for any natural number j.

Proof. Suppose $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$. Then $a = a_1^{b_1} a_2^{b_2} \dots a_c b^c$ and $n = n_1^{m_1} n_2^{m_2} \dots n_l b^l$, for $b, c, m, l \in \mathbb{N}$. Since (a, n) = 1, neither a nor n share a common factor. Let $j \in \mathbb{N}$. Then,

$$a^{j} = (a_{1}^{b_{1}} a_{2}^{b_{2}} \dots a_{c}^{b_{c}})^{j}$$
$$= a_{1}^{b_{1}j} a_{2}^{b_{2}j} \dots a_{c}^{b_{c}j}$$

Assuming all exponents are different, then bases have not changed and thus, a^j does not have a common factor with n. Hence, $(a^j, n) = 1$

Theorem 4.3. Let $a, b, n \in \mathbb{Z}$ with n > 0 and (a, n) = 1. If $a \equiv b \pmod{n}$, then (b, n) = 1

Proof. If (a, n) = 1, then for some $x, y \in \mathbb{Z}$, (i) ax + ny = 1. If $a \equiv b \pmod{n}$, then for some $t \in \mathbb{Z}$, (ii) nt = a - b. This implies that a = nt + b. Substituting (ii) into (i), we have

$$(a)x + ny = 1$$
$$(nt + b)x + ny = 1$$
$$ntx + bx + ny = 1$$
$$n(tx + y) + bx = 1$$
$$nc + bx = 1, c \in \mathbb{Z}$$

Thus (b, n) = 1

Theorem 4.8. Let a and n be natural numbers with (a, n) = 1 and let $k = ord_n(a)$. Then the numbers a_1, a_2, \ldots, a_k are pairwise incongruent $modulo\ n$

Proof. By contradiction, suppose powers i, j, with $1 \leq j < i < k$, such that $a^i \equiv a^j \pmod{n}$. Then $a^{i-j}a^j \equiv a^j \pmod{n} \implies a^{i-j} \equiv 1 \pmod{n}$ (by right multiplying with the inverse). But i-j < k; this contradicts k being the smallest natural number where $a^k \equiv 1 \pmod{n}$. Thus, if (a, n) = 1 and $k = ord_n(a)$, then a, a^2, \ldots, a^k are pairwise incongruent $mod\ n$, i.e., values $mod\ n$ never repeat.

Theorem 4.10. Let a and n be natural numbers with (a, n) = 1, let $k = ord_n(a)$, and let $m \in \mathbb{N}$. Then $a^m \equiv 1 \pmod{n}$ if and only if k|m

Proof. i) Suppose (a, n) = 1, $k = ord_n(a)$, $m \in \mathbb{Z}$. Suppose $a^m \equiv 1 \pmod{n}$. By division algorithm, m = kq + r, 0 < r < k. Then

$$a^{m} \equiv a^{kq+r} \mod n$$

$$\equiv (a^{k})^{q} a^{r} \mod n$$

$$\equiv 1^{q} a^{r} \mod n, \text{ by order property}$$

$$\equiv a^{r} \mod n$$

Then r has to be 0, which implies that m = kq. Therefore, $k = ord_n(a)|m$ ii) Assume $k = ord_n(a)|m$. Then

$$a^{m} \equiv a^{kq} \mod n$$

$$\equiv (a^{k})^{q} \mod n$$

$$\equiv 1^{q} \mod n, \text{ by order property}$$

$$\equiv 1 \mod n$$

Theorem 4.13. Let p be a prime and let a be an integer not divisible by p; that is, (a, p) = 1. Then $a, 2a, 3a, \ldots, pa$ is a complete residue system $modulo\ p$

Proof. Let p be a prime and let $(a, p) = 1, a \in \mathbb{Z}$. Consider $a, 2a, 3a, \ldots, pa$. To show that this is a complete residue system, let $an \equiv am \pmod{p}, n, m \in \mathbb{Z}$. Then $n \equiv m \pmod{p}$. Then, each element in $a, 2a, \ldots, pa$ are distinct $modulo\ p$; each element is congruent to one element in the complete residue system since there are p distinct elements. Thus, $a, 2a, \ldots, pa$ is a complete residue system $mod\ p$.

Exercise 4.20. Find the remainder upon division of 314^{159} by 31

Solution. By F.L.T, $314^{30} \equiv 1 \pmod{31}$, and 159 = 30 * 5 + 9. So, we have $314^{159} \equiv (314^{30})^{5+9} \pmod{31} \implies 314^{159} \equiv (1)^5 314^9 \pmod{31}$. We just have to find the remainder of 314^9 divided by 31.

$$314 \equiv 4 \pmod{31}$$

 $314^3 \equiv 4^3 \pmod{31}$
 $\equiv 2 \pmod{31}$
 $314^9 \equiv 2^3 \pmod{31}$

Thus, the remainder of 314^{159} by 31 is 8.