

Nội dung

- Khái niệm, giải tích vector
- Định luật Coulomb và cường độ điện trường
- Luật Gauss và dịch chuyển điện
- Năng lượng và điện thế
- Vật dẫn, điện môi và điện dung
- Dòng điện không đổi
- Giải phương trình Laplace-Poisson
- Trường điện từ dừng
- Lực từ, vật liệu từ, điện cảm
- Hệ phương trình Maxwell-Trường điện từ biến thiên

Dịch chuyển điện tích điểm trong điện trường

- Ta đã biết thức tính công: Công=Lực x quãng đường
- Một vi phân công chỉ phụ thuộc vào thành phần lực có cùng hướng với quãng đường đi được, tính theo công thức:

$$dW = \mathbf{F} \cdot d\mathbf{L}$$

• Công toàn phần được tính bằng tích phân đường trên toàn bộ quãng đường chuyển động L:

$$W = \int_{L} \mathbf{F} \cdot d\mathbf{L}$$

• Công dịch chuyển điện tích Q trên một quãng đường dL dưới tác động của ngoại lực:

$$dW = \mathbf{F}_{ngoai} \cdot d\mathbf{L} = -\mathbf{F}_{e} \cdot d\mathbf{L} = -Q\mathbf{E}_{e} \cdot d\mathbf{L}$$

• Công cần để dịch chuyển điện tích Q trên quãng đường L trong điện trường E:

 $W = \int_{L} dW = -Q \int_{L} \mathbf{E} \cdot d\mathbf{L}$

(Initial)

$$W = F_a L$$

$$W = F_t L$$

$$W = FL\cos\theta$$

$$W = F \cdot L$$

dL rất ngắn nên trên đọa
n dL ta xem như F_a đều

$$dW = F_t dL = F dL cos\theta = \mathbf{F}$$
 . dL = - QE.dL

Dịch chuyển điện tích điểm trong điện trường

Từ công thức:

$$W = \int_{L} dW = -Q \int_{L} \mathbf{E} \cdot d\mathbf{L}$$

$$W = -Q \int_{\text{dau}}^{\text{cuoi}} \mathbf{E} \cdot d\mathbf{L}$$

- Nếu dịch chuyển một điện tích dương theo chiều của vector E,
 ta thực hiện một công âm (nhận năng lượng)
- Nếu dịch chuyển một điện tích dương ngược chiều của vector E,
 ta thực hiện một công dương (cần ngoại lực tác động)
- Nếu dịch chuyển điện tích theo một đường kín, thì công thực hiện bằng không

$$\oint_{L} \mathbf{E} \cdot d\mathbf{L} = 0$$
 tính chất thế của trường tĩnh

Ví dụ 1. Xét điểm $P(\rho = 2, \phi = 400, z = 3)$ trong không gian có vector cường độ điện trường E = $100a_0 - 200a_0 + 300a_z$. Tính vi phân công dịch chuyển một điện tích Q = 20C đi một quãng đường $6\mu m$ theo các hướng a_{ρ} ; a_{ϕ} ; a_{z} ; E

a. Theo hướng **a**_o

Ta có vi phân công thực hiện được khi di chuyển điện tích một quãng dL: $dW = -Q \mathbf{E} \cdot d\mathbf{L}$

Trong đó: $d\mathbf{L} = d\rho \mathbf{a}_{\rho} = 6 \times 10^{-6} \mathbf{a}_{\rho}$

$$dW = -Q \mathbf{E} \cdot d\mathbf{L} = -(20 \times 10^{-6})(100\mathbf{a}_0 - 200\mathbf{a}_0 + 300\mathbf{a}_z)(6 \times 10^{-6}\mathbf{a}_0)$$

Do:

$$\mathbf{a}_{\rho}\mathbf{a}_{\rho}=1$$

$$\mathbf{a}_{\rho}\mathbf{a}_{\Phi}=0$$

$$\mathbf{a}_{\rho} \mathbf{a}_{z} = 0$$

$$dW = -(20 \times 10^{-6})(100)(6 \times 10^{-6}) = -12 \times 10^{-9}$$

$$dW = -12 \text{ nJ}$$

Xét điểm P(ρ = 2, ϕ = 400, z =3) trong không gian có vector cường độ điện trường E = $100a_{\rho} - 200a_{\phi} + 300a_{z}$. Tính vi phân công dịch chuyển một điện tích Q = 20C đi một quãng đường 6 μ m:

b. Theo hướng \mathbf{a}_{ϕ}

$$dL = 6 \times 10^{-6} a_{\phi}$$

$$dW = -Q \mathbf{E} \cdot d\mathbf{L} = -(20 \times 10^{-6})(100\mathbf{a}_{\rho} - 200\mathbf{a}_{\phi} + 300\mathbf{a}_{z})(6 \times 10^{-6} \mathbf{a}_{\phi})$$

Do:

$$\mathbf{a}_{\phi} \mathbf{a}_{\phi} = 1$$

$$\mathbf{a}_{\rho}\mathbf{a}_{\Phi}=0$$

$$\mathbf{a}_{\rho} \mathbf{a}_{z} = 0$$

$$dW = -(20 \times 10^{-6})(-200)(6 \times 10^{-6}) = 24 \times 10^{-9}$$

$$dW = 24 \text{ nJ}$$

Xét điểm $P(\rho = 2, \phi = 400, z = 3)$ trong không gian có vector cường độ điện trường E = 3 $100a_{p} - 200a_{\phi} + 300a_{z}$. Tính vi phân công dịch chuyển một điện tích Q = 20C đi một quãng đường 6µm:

c. Theo hướng **a**₇

$$dL = 6 \times 10^{-6} a_7$$

$$dW = -Q \mathbf{E} \cdot d\mathbf{L} = -(20 \times 10^{-6})(100\mathbf{a}_{0} - 200\mathbf{a}_{0} + 300\mathbf{a}_{z})(6 \times 10^{-6} \mathbf{a}_{z})$$

Do:

$$a_7 a_7 = 1$$

$$\mathbf{a}_{\rho}\mathbf{a}_{\Phi}=0$$

$$\mathbf{a}_{\rho} \mathbf{a}_{z} = 0$$

$$dW = -(20 \times 10^{-6})(300)(6 \times 10^{-6}) = -36 \times 10^{-9}$$

$$dW = -36 \text{ nJ}$$

Xét điểm P($\rho = 2$, $\phi = 400$, z = 3) trong không gian có vector cường độ điện trường E = $100a_0 - 200a_0 + 300a_z$. Tính vi phân công dịch chuyển một điện tích Q = 20C đi một quãng đường 6µm:

d. Theo hướng E

$$dL = 6 \times 10^{-6} a_F$$

$$\mathbf{a}_E = \frac{100\mathbf{a}_\rho - 200\mathbf{a}_\phi + 300\mathbf{a}_z}{[100^2 + 200^2 + 300^2]^{1/2}} = 0.267\,\mathbf{a}_\rho - 0.535\,\mathbf{a}_\phi + 0.802\,\mathbf{a}_z$$

$$dW = -Q \mathbf{E} \cdot d\mathbf{L}$$

$$= -(20 \times 10^{-6})(100\mathbf{a}_{\rho} - 200\mathbf{a}_{\phi} + 300\mathbf{a}_{z})(6 \times 10^{-6})(0.267 \mathbf{a}_{\rho} - 0.535 \mathbf{a}_{\phi} + 0.802 \mathbf{a}_{z})$$

Với:

$$a_i a_i = 1$$

$$a_i a_j = 0$$

$$dW = -44.9 \times 10^{-9}$$

$$dW = -44.9 \text{ nJ}$$

Dịch chuyển trong trường của điện tích dây

Công dịch chuyển điện tích (trong điện trường của một điện tích dây ρ_L) trên một đường tròn có bán kính ρ không đổi bằng 0

$$W = -Q \int_{cung} \mathbf{E} \cdot d\mathbf{L} = Q \int_{cung} \left(\frac{\rho_L}{2\pi\varepsilon_o} \frac{1}{\rho} \mathbf{a}_\rho \right) \left(\mathbf{a}_\phi \rho d\phi \right)$$
$$= -Q \int_{cung} \left(\frac{\rho_L d\phi}{2\pi\varepsilon_o} \right) \left(\mathbf{a}_\rho \cdot \mathbf{a}_\phi \right)$$

Công dịch chuyển điện tích dây trên một
 đường đi từ ρ=b đến ρ=a có góc φ không đổi:

$$W = -Q\mathbf{E} \cdot d\mathbf{L} = -Q\int_{b}^{a} \left(\frac{\rho_{L}}{2\pi\varepsilon_{o}} \frac{1}{\rho} \mathbf{a}_{\rho}\right) \cdot \left(\mathbf{a}_{\rho} d\rho\right)$$
$$= -Q\frac{\rho_{L}}{2\pi\varepsilon_{o}} \int_{b}^{a} \frac{1}{\rho} d\rho = -Q\frac{\rho_{L}}{2\pi\varepsilon_{o}} \ln\left[\frac{a}{b}\right]$$

$$\mathbf{E}_{d\hat{a}y} = \frac{\rho_L}{2\pi\varepsilon_o} \frac{1}{\rho} \mathbf{a}_{\rho}$$

Dịch chuyển trong trường của điện tích dây

Công dịch chuyển điện tích trên một đường đi từ
 ρ=b đến ρ=a có góc φ không đổi :

$$W = -Q \frac{\rho_L}{2\pi\varepsilon_o} \int_b^a \frac{1}{\rho} d\rho$$

$$= -Q \frac{\rho_L}{2\pi\varepsilon_o} \ln\left[\frac{a}{b}\right]$$

$$= -Q \frac{\rho_L}{2\pi\varepsilon_o} \ln\left[\frac{\sqrt{x_a^2 + y_a^2}}{\sqrt{x_b^2 + y_b^2}}\right]$$

$$= -Q \frac{\rho_L}{4\pi\varepsilon_o} \ln\left[\frac{x_a^2 + y_a^2}{x_b^2 + y_b^2}\right]$$

 Ví dụ 2 : Trong hệ tọa độ trụ, cho cường độ trường (E=k/ρ)a_ρ Chứng minh công dịch chuyển một điện tích Q một khoảng từ bán kính ρ₁ đến 2ρ₁ không phụ thuộc vào ρ

$$dW = -QEdL = -QEd\rho = \frac{-kQ}{\rho}d\rho$$

$$W = -kQ = -9\ln\left[\frac{2}{4}\right] = -kQ\ln 2$$

Hiệu điện thể

 Hiệu điện thế V: công cần thực hiện để dịch chuyến một đơn vị điện tích dương từ điểm B tới điểm A trong điện trường

$$V_{AB} = -\int_{B}^{A} \mathbf{E} \cdot d\mathbf{L} = \int_{A}^{B} \mathbf{E} \cdot d\mathbf{L}$$

Cận tích phân sẽ quyết định dấu của tích phân đó V_{AB} là một đại lượng vô hướng

Ví dụ đối với điện tích dây:

Ví dụ đối với điện tích dây:
$$V_{AB} = -\frac{\rho_L}{2\pi\varepsilon_o} \int_{\rho_B}^{\rho_A} \frac{1}{\rho} d\rho = -\frac{\rho_L}{2\pi\varepsilon_o} \ln\left[\frac{\rho_A}{\rho_B}\right]$$

$$V_{AB} = -\frac{\rho_L}{2\pi\varepsilon_o} \ln \left[\frac{\sqrt{x_A^2 + y_A^2}}{\sqrt{x_B^2 + y_B^2}} \right] = -\frac{\rho_L}{4\pi\varepsilon_o} \ln \left[\frac{x_A^2 + y_A^2}{x_B^2 + y_B^2} \right]$$

$$f(x) = \ln x \to f'(x) = \frac{1}{x}; \int \frac{1}{x} dx = \ln x \qquad \int_{\rho_B}^{\rho_A} \frac{1}{\rho} d\rho = (\ln \rho) \Big|_{\rho_A}^{\rho_B} = \ln \rho_A - \ln \rho_B = \ln \left(\frac{\rho_A}{\rho_B}\right)$$

Ví dụ 3 : Cho dây dài vô hạn mang điện tích đường ρ_i=(10⁻⁹/2) C/m đặt theo trục z.
 Tính hiệu điện thế giữa hai điểm A(2 m, π/2, 0) và B(4 m, π,5 m).

$$V_{AB} = -\int_{B}^{A} \mathbf{E} d\mathbf{L} = -\int_{\rho_{B}}^{\rho_{A}} \left(\frac{\rho_{L}}{2\pi\varepsilon_{o}\rho} \mathbf{a}_{\rho}\right) \left(d\rho \mathbf{a}_{\rho}\right) = -\int_{\rho_{B}}^{\rho_{A}} \frac{\rho_{L}}{2\pi\varepsilon_{o}\rho} \mathbf{a}_{\rho} d\rho$$

$$= -\int_{\rho_{B}}^{\rho_{A}} \frac{\rho_{L}}{2\pi\varepsilon_{o}\rho} (1) d\rho = -\frac{\rho_{L}}{2\pi\varepsilon_{o}} \int_{\rho_{B}}^{\rho_{A}} \frac{1}{\rho} d\rho = -\frac{\rho_{L}}{2\pi\varepsilon_{o}} \left(\ln\rho_{A} - \ln\rho_{B}\right)$$

$$= -\frac{\rho_{L}}{2\pi\varepsilon_{o}} \left(\ln\frac{\rho_{A}}{\rho_{B}}\right) = -\frac{\left(10^{-9}/2\right)}{2\pi\left(\frac{10^{-9}}{36\pi}\right)} \left(\ln\frac{2}{4}\right) = -9\ln\left(\frac{2}{4}\right) = 6,24V$$

$$\int \frac{1}{\rho} d\rho = \ln \rho$$

$$\int_{\rho_B}^{\rho_A} \frac{1}{\rho} d\rho = \ln \rho_A - \ln \rho_B = \ln \left(\frac{\rho_A}{\rho_B}\right)$$

Điện trường của một điện tích điểm

Tính hiệu điện thế giữa hai điểm A, B cùng nằm trên một trục xuyên tâm có khoảng cách r_A , r_B đặt trong điện trường của một điện tích điểm Q

Đã biết điện trường do điện tích điểm Q gây ra tại vị trí cách Q một khoảng r:

$$\mathbf{E} = \frac{Q}{4\pi\varepsilon_0 r^2} \mathbf{a}_r$$

$$V_{AB} = -\int_{B}^{A} \mathbf{E} \cdot d\mathbf{L} = -\int_{r_{B}}^{r_{A}} \left(\frac{Q}{4\pi\varepsilon_{o}r^{2}}\mathbf{a}_{r}\right) \cdot \left(dr\,\mathbf{a}_{r}\right) = -\frac{Q}{4\pi\varepsilon_{o}}\int_{r_{B}}^{r_{A}} \left(\frac{1}{r^{2}}\right) \cdot \left(\mathbf{a}_{r}\mathbf{a}_{r}\right)dr$$

$$= -\frac{Q}{4\pi\varepsilon_{o}}\int_{r_{B}}^{r_{A}} \frac{1}{r^{2}}dr = -\frac{Q}{4\pi\varepsilon_{o}}\left(-\frac{1}{r}\right) \begin{vmatrix} r_{B} \\ r_{A} \end{vmatrix} = \frac{Q}{4\pi\varepsilon_{o}}\left(\frac{1}{r_{A}} - \frac{1}{r_{B}}\right)$$

$V_{AB} = -\int_{B}^{A} \mathbf{E} \cdot d\mathbf{L} = -\frac{Q}{4\pi\varepsilon_{o}} \int_{r_{B}}^{r_{A}} \frac{1}{r^{2}} dr$

$$= \frac{Q}{4\pi\varepsilon_o} \left(\frac{1}{r}\right) \left| r_{A} \right| = \frac{Q}{4\pi\varepsilon_o} \left(\frac{1}{r_{A}} - \frac{1}{r_{B}}\right)$$

Liên hệ với công dịch chuyển một khối lượng m (trong vật lý)

$$W_{g} = \int \vec{\mathbf{F}}_{g} \cdot d \vec{\mathbf{s}} = \int_{r_{A}}^{r_{B}} \left(-\frac{GMm}{r^{2}} \right) dr = \left[\frac{GMm}{r} \right]_{r_{A}}^{r_{B}}$$
$$= GMm \left(\frac{1}{r_{B}} - \frac{1}{r_{A}} \right)$$

$$\mathbf{F}_{g} = G \frac{Mm}{r^2} \mathbf{a}_{r}$$

Hằng số hấp dẫn

$$G = 6,67 \times 10^{-11} \,\mathrm{Nm^2/kg^2}$$

Consider moving a particle of mass m under the

Ví dụ 4: Cho điện tích Q=500 pC đặt tại tâm gốc tọa độ. Tìm hiệu điện thế giữa hai điểm A và B cách tâm tương ứng r_A =5 m và r_B =15 m :

$$V_{AB} = \frac{Q}{4\pi\varepsilon_o} \left(\frac{1}{r_A} - \frac{1}{r_B} \right) = \frac{\left(500.10^{-12}\right)}{4\pi \left(\frac{10^{-9}}{36\pi}\right)} \left(\frac{1}{5} - \frac{1}{15} \right) = 0,6 \text{ V}$$

Ví dụ 5: Cho **E**=(-16/r²)**a**_r V/m trong hệ tọa độ cầu. Tính hiệu điện thế giữa hai điểm A(2m, π , π /2) và B(4m,0, π).

$$V_{AB} = -\int_{4}^{2} \left(\frac{-16}{r^{2}}\right) dr$$
$$= 16\left(\frac{1}{2} - \frac{1}{4}\right) = -4 \text{ V}$$

Ví dụ 6 : Tính điện thế tại điểm cách tâm một khoảng r,

trong điện trường do điện tích Q gây ra

$$\mathbf{E} = \frac{Q}{4\pi\varepsilon_{o}r^{2}}\mathbf{a}_{r}$$

$$d\mathbf{L} = dr \mathbf{a}_{r}$$

$$V_{r} = -\int \mathbf{E} \cdot d\mathbf{L}$$

$$= -\int \left(\frac{Q}{4\pi\varepsilon_{o}r^{2}}\mathbf{a}_{r}\right) \cdot (dr \mathbf{a}_{r})$$

$$= -\int \left(\frac{Q}{4\pi\varepsilon_{o}r^{2}}\right) dr$$

$$= \frac{Q}{4\pi\varepsilon_{o}r} + C \quad ; C = \text{constant}$$

Giá trị điện thế phụ thuộc C?

Điện thế tham chiếu ("chuẩn")

- Điện thế tại một điểm trong trường tĩnh điện có giá trị bằng công dịch chuyển một đơn vị điện tích dương từ điểm xét ra xa vô cùng
- Đối với trường sinh ra bởi điện tích điểm Q đặt tại gốc tọa độ, điện thế tại một điểm A bằng:

$$V_A = \int_A^\infty \mathbf{E} \cdot d\mathbf{L} = \int_{r_A}^\infty \left(\frac{Q}{4\pi\varepsilon_o r^2} \mathbf{a}_r \right) \cdot \left(dr \, \mathbf{a}_r \right)$$

$$= \frac{Q}{4\pi\varepsilon_o} \left(-\frac{1}{r} \right) \Big|_{r=r_A}^{r=\infty} = \frac{Q}{4\pi\varepsilon_o} \left(-\frac{1}{\infty} + \frac{1}{r_A} \right) = \frac{Q}{4\pi\varepsilon_o r_A}$$

Điện thế chính là hiệu giữa điện thế của một điểm bất kỳ và điện thế của một "điểm chuẩn" nằm ở xa vô cùng (điện thế bằng 0)

Chọn điện thế chuẩn

- Bên cạnh việc chọn điểm chuẩn ở xa vô cùng, có thể chọn điểm chuẩn ở một vị trí bất kỳ. Thường chọn điện thế chuẩn ở:
 - Đất
 - Vỏ của thiết bị điện
 - Vô cùng

Ví dụ với điện tích điểm:

$$V_{AB} = \frac{Q}{4\pi\varepsilon_o} \left(\frac{1}{r_A} - \frac{1}{r_B} \right)$$

Nếu chọn điểm vô cực làm gốc điện thế $(P_o = \infty)$, P bất kỳ, cách Q một khoảng r, thì điện thế V do Q tạo ra tại P là:

$$V = \frac{Q}{4\pi\varepsilon_o r} (P_o = \infty)$$

Nếu chọn $P_o(r_o, \theta_o, \phi_o)$ cách Q một khoảng r0 làm gốc điện thế, thì

$$V = V_{PP_o} = \frac{Q}{4\pi\varepsilon_o} \left(\frac{1}{r} - \frac{1}{r_o} \right)$$

- Ví dụ 7: Cho điện tích Q=500 pC đặt tại tâm gốc tọa độ. Tìm hiệu điện thế giữa hai điểm A và B cách tâm tương ứng $r_A=5$ m và $r_B=15$ m :
- $V_{AB} = \frac{Q}{4\pi\varepsilon_o} \left(\frac{1}{r_A} \frac{1}{r_B} \right)$ Cách 1: $= \frac{\left(500.10^{-12}\right)}{4\pi \left(\frac{10^{-9}}{36\pi}\right)} \left(\frac{1}{5} - \frac{1}{15}\right) = 0,6 \text{ V}$

Cách 2: Chọn thế chuẩn tại vô cực

$$V_A = \frac{Q}{4\pi\varepsilon_o} \left(\frac{1}{r_A}\right) = 0.9 \text{ V}$$

$$V_B = \frac{Q}{4\pi\varepsilon_o} \left(\frac{1}{r_B}\right) = 0.3 \text{ V}$$

$$\to V_{AB} = V_A - V_B = 0.6 \text{ V}$$

Điện thế của một phân bố điện tích

Xét một điện tích điểm tại vị trí r₁ trong không gian
 (không phải gốc tọa độ)

$$V_{A}\left(\mathbf{r}\right) = \frac{Q_{1}}{4\pi\varepsilon_{o}\left|\mathbf{r}-\mathbf{r}_{1}\right|}$$

Trong trường hợp có nhiều điện tích điểm

$$V_{A}\left(\mathbf{r}\right) = \sum_{m=1}^{N} \frac{Q_{m}}{4\pi\varepsilon_{o} \left|\mathbf{r} - \mathbf{r}_{m}\right|}$$

Điện thế với phân bố điện tích

• Điện thế khi điện tích phân bố theo mật độ điện tích:

-Đường
$$V(\mathbf{r}) = \int_{L} \frac{\rho_{L}(\mathbf{r}') dL}{4\pi\varepsilon_{o} |\mathbf{r} - \mathbf{r}'|}$$

-Mặt:
$$V(\mathbf{r}) = \int_{S} \frac{\rho_{S}(\mathbf{r}')dS'}{4\pi\varepsilon_{o}|\mathbf{r}-\mathbf{r}'|}$$

Đối với một phân bố điện tích khối:

$$V(\mathbf{r}) = \int_{V} \frac{\rho_{v}(\mathbf{r}') dv'}{4\pi\varepsilon_{o} |\mathbf{r} - \mathbf{r}'|}$$

$$V_{A}\left(\mathbf{r}\right) = \lim_{\delta vol \to 0} \sum_{m=1}^{N \to \infty} \frac{\delta Q_{m}}{4\pi\varepsilon_{o} \left|\mathbf{r} - \mathbf{r}_{m}\right|} = \int_{V} \frac{\overbrace{\rho_{v}\left(\mathbf{r}'\right) \cdot dv'}}{4\pi\varepsilon_{o} \left|\mathbf{r} - \mathbf{r}'\right|}$$

Khoảng cách giữa nguồn và điểm quan sát

Ví dụ 8: Tính điện thế tại điểm P, cách trụ
 dây mang điện tích đường ρ₁ một khoảng ρ

Đã có:
$$\mathbf{E}_{\hat{day} mang \, diện} = \frac{\rho_L}{2\pi\varepsilon_o} \frac{1}{\rho} \mathbf{a}_{\rho}$$

$$V_{\rho} = -\int \mathbf{E} \cdot d\mathbf{L} = \frac{-\rho_L}{2\pi\varepsilon_0} \ln \rho + C$$

Tìm C? Cần xác định vị trí điện thế chuẩn

Ví dụ 9: Cho dây dài vô hạn mang điện tích đường ρ_L =400pC/m đặt theo trục x. Điện thế chuẩn đặt tại điểm B(0,5,12)m. Tính điện thế tại điểm A(2, 3,-4)m.

Do sợi dây nằm theo trục x, thành phần theo trục x của hai điểm này có thể bỏ qua

$$\rho_A = \sqrt{3^2 + (-4)^2} = 5 \text{m}$$

$$\rho_B = \sqrt{5^2 + 12^2} = 13 \text{m}$$

 $V(\mathbf{r}) = \int_{L} \frac{\rho_{L}(\mathbf{r}') dL}{4\pi\varepsilon_{o} |\mathbf{r} - \mathbf{r}'|}$

- Ví dụ 10: Cho một điện tích 40 nC phân bố đều trên một vòng tròn bán kính a=2m. Tìm điện thế tại điểm M cách mặt phẳng vòng dây một khoảng 5m.
 - Điện thế tại điểm M $V(\mathbf{r}) = \int \frac{\rho_L(\mathbf{r}') dL}{4\pi\varepsilon_L |\mathbf{r} - \mathbf{r}'|}$ $\rho_L(\mathbf{r}') = \rho_L = \frac{40.10^{-9}}{2\pi(2)} = \frac{10^{-8}}{\pi} \text{C/m}$ Với $\mathbf{r} = z\mathbf{a}_z = 5\mathbf{a}_z$ $\rightarrow |\mathbf{r} - \mathbf{r}'| = R = \sqrt{2^2 + 5^2} = \sqrt{29} \text{m}$ $\mathbf{r}' = a\mathbf{a}_o = 2\mathbf{a}_o$ $dL = ad\phi = 2d\phi$

• So sánh kết quả khi điện tích tập trung tại tâm:

$$V = \int_{0}^{2\pi} \frac{40.10^{-9}}{4\pi \left(\frac{10^{-9}}{36\pi}\right)5} = 72V$$

• Ví dụ 11: Cho quả cầu bán kính a, điện tích khối ρ_{v0} . Tìm điện trường và thế ở trong và ngoài quả cầu?

$$V_r = -\int_{\infty}^r \mathbf{E} . d\mathbf{L} = \frac{Q}{4\pi\varepsilon_o r} +$$

$$\mathbf{E} = E(r)\mathbf{a}_r$$

$$D.S = q \to \varepsilon \mathbf{ES} = \mathbf{q}$$

Miền ngoài cầu:

$$\mathbf{E} = \begin{cases} \frac{\rho_{vo}}{3\varepsilon_o} r \mathbf{a}_r & r < a \\ \frac{\rho_{vo} a^3}{3\varepsilon_o r^2} \mathbf{a}_r & r > a \end{cases}$$

$$r > a; S = 4\pi r^{2}$$

$$q_{2} = \rho_{0} \frac{4\pi a^{3}}{3} \rightarrow \mathbf{E}_{2} = \frac{\rho_{0} a^{3}}{3\varepsilon r^{2}} \mathbf{a}_{r}$$

$$V_{2} = \int_{r}^{\infty} \mathbf{E}_{2} . d\mathbf{r} = \int_{r}^{\infty} E_{2} dr = \frac{\rho_{0} a^{3}}{3\varepsilon r}$$

Miền trong cầu:

$$r > a$$
; $S = 4\pi r^2$

$$q_1 = \rho_0 \frac{4\pi r^3}{3} \to \mathbf{E}_1 = \frac{\rho_0 r}{3\varepsilon} \mathbf{a}_r$$

$$V_{1} = \int_{r}^{\infty} \mathbf{E} \cdot d\mathbf{r} = \int_{r}^{a} E_{1} dr + \int_{a}^{\infty} E_{2} dr$$

$$= \frac{\rho_{0} a^{3}}{3\varepsilon} \left(\frac{-1}{r} \Big|_{a}^{\infty} \right) + \frac{\rho_{0}}{3\varepsilon} \left(\frac{r^{2}}{2} \Big|_{r}^{a} \right)$$

$$= \frac{\rho_{0}}{6\varepsilon} a^{2} - \frac{\rho_{0}}{6\varepsilon} r^{2} + \frac{\rho_{0} a^{2}}{3\varepsilon}$$

$$= \frac{\rho_{0}}{2} a^{2} - \frac{\rho_{0}}{6\varepsilon} r^{2}$$

$$\mathbf{E} = \begin{cases} \frac{\rho_{vo}}{3\varepsilon_o} r \mathbf{a}_r & r < a \\ \frac{\rho_{vo} a^3}{3\varepsilon_o r^2} \mathbf{a}_r & r > a \end{cases}$$

$$\mathbf{E}_2 = \frac{\rho_0 a^3}{3\varepsilon r^2} \mathbf{a}_r$$

$$\varepsilon_0 = 8,851 \times 10^{-12} = \frac{1}{36\pi} \times 10^{-9} \ F/m$$

- Ví dụ 12. Cho một trục điện dài l (coi là vô hạn), phân bố với mật độ điện tích đường τ (τ =q/l) C/m. Tính E và V tại điểm cách trục một khoảng ρ
 - Bài toán có tính đối xứng trục. Dùng luật Gauss:

$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \tau l \qquad D.S_{xq} = q = \tau l; S_{xq} = 2\pi \rho l$$

• Xét tại điểm M(ρ,ϕ,z), trường chỉ phụ thuộc ρ Thành phần hai đáy =0 do $\mathbf{E} \perp d\mathbf{S}$

$$\oint_{S} D_{\rho}.dS = \tau l$$

$$D_{\rho}.2\pi\rho l = \tau l \to D_{\rho} = \frac{\tau}{2\pi\rho} \to \mathbf{E}_{\rho} = \frac{\tau}{2\pi\varepsilon\rho} \mathbf{a}_{\rho}$$

Chọn điện thế chuẩn tại điểm có bán kính ρ_0

$$V = \int_{\rho}^{\rho_0} \frac{\tau}{2\pi\varepsilon\rho} d\rho = \frac{\tau}{2\pi\varepsilon} \left(\ln \rho_0 - \ln \rho \right) = \frac{\tau}{2\pi\varepsilon} \ln \frac{\rho_0}{\rho} = -\frac{\tau}{2\pi\varepsilon} \ln \rho + C$$

- Ví dụ 13: Phân bố điện tích khối Trong một thể tích trụ tròn bán kính a, chiều dài L, phân bố đều một điện tích có mật độ ρ_ν [C/m³] Tìm phân bố E, D, V
 - Bài toán có tính đối xứng trục.
 Dùng luật Gauss:

$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \sum_{s} q \longleftrightarrow D_{s} S_{sq} = \sum_{s} q$$

$$\rho \le a: \quad D_{\rho}.2\pi\rho L = \rho_{\nu}\left(\pi\rho^{2}L\right) \to D_{\rho} = \rho_{\nu}\frac{\rho}{2} \longleftrightarrow \mathbf{E} = \frac{\mathbf{D}}{\varepsilon} = \rho_{\nu}\frac{\rho}{2\varepsilon}\mathbf{a}_{\rho}$$

$$\rho \ge a: \quad D_{\rho}.2\pi\rho L = \rho_{\nu} \left(\pi a^2 L\right) \to D_{\rho} = \rho_{\nu} \frac{a^2}{2\rho} \longleftrightarrow \mathbf{E} = \frac{\mathbf{D}}{\varepsilon} = \rho_{\nu} \frac{a^2}{2\varepsilon\rho} \mathbf{a}_{\rho}$$

- Chọn thế tại a bằng 0
- Xét V ở ngoài khối trụ ρ>a:

$$V(\rho) = \int_{\rho}^{a} E_{\rho} d\rho = \int_{\rho}^{a} \rho_{\nu} \frac{a^{2}}{2\varepsilon\rho} d\rho = \rho_{\nu} \frac{a^{2}}{2\varepsilon} \ln \rho \Big|_{\rho}^{a} = \frac{\rho_{\nu} a^{2}}{2\varepsilon} \ln \frac{a}{\rho}$$

Xét V ở trong khối trụ ρ<=a:

$$V(\rho) = \int_{\rho}^{a} E_{\rho} d\rho = \int_{\rho}^{a} \frac{\rho_{\nu}}{2\varepsilon} \rho d\rho = \frac{\rho_{\nu}}{4\varepsilon} \left(a^{2} - \rho^{2}\right)$$

- Mặt đẳng thế là mặt mà nếu điểm đầu và điểm cuối đường đi cùng nằm trên mặt đó, thì hiệu điện thế bằng 0
- Nói cách khác: mặt đẳng thế là mặt mà các điểm trên đó có cùng một giá trị điện thế.

Từ biểu thức:
$$V_{AB} = -\int_{B}^{A} \mathbf{E} \cdot d\mathbf{L}$$

Ta thấy một mặt là đẳng thế $(V_{AB}=0)$ nếu:

E.dL=0 trên tất cả các đường nằm trên mặt đó, hay

E vuông góc với bề mặt đó

Gradient thé

Xét hiệu điện thế giữa hai điểm rất gần nhau, có thể viết:

$$V_{AB} = -\int_{B}^{A} \mathbf{E} \cdot d\mathbf{L} \implies \delta V \approx -\mathbf{E} \cdot \delta \mathbf{L} = -|\mathbf{E}| |\delta \mathbf{L}| \cos \theta$$

-Trong hệ tọa độ Đề-các:

$$dV = -\mathbf{E} \cdot d\mathbf{L} = -\left(E_x \mathbf{a}_x + E_y \mathbf{a}_y + E_z \mathbf{a}_z\right) \cdot \left(dx \mathbf{a}_x + dy \mathbf{a}_y + dz \mathbf{a}_z\right)$$
$$= -\left(E_x dx + E_y dy + E_z dz\right)$$

Ta cũng biết định nghĩa đạo hàm toàn phần của một hàm số V bất kỳ là:

$$dV = \frac{\partial V}{\partial x} dx + \frac{\partial V}{\partial y} dy + \frac{\partial V}{\partial z} dz$$

Gradient thé

So sánh giữa:
$$dV = -(E_x dx + E_y dy + E_z dz)$$

Với
$$dV = \frac{\partial V}{\partial x} dx + \frac{\partial V}{\partial y} dy + \frac{\partial V}{\partial z} dz$$

Ta có:
$$E_x = -\frac{\partial V}{\partial x}$$
 $E_y = -\frac{\partial V}{\partial y}$ $E_z = -\frac{\partial V}{\partial z}$

- Gradient được định nghĩa là tập hợp của các toán tử đạo hàm trên một hàm số vô hướng
- Gradient được hiểu như sau:
 - Độ lớn của nó biểu thị tốc độ biến thiên cực đại của hàm số tại điểm quan sát
 - Hướng của nó biểu thị hướng cần phải đi để đạt được tốc độ thay đổi cực đại đó.

Toán tử Gradient

• Để thuận tiện ta có thể viết:

$$\nabla V = \left(\frac{\partial V}{\partial x}\mathbf{a}_x + \frac{\partial V}{\partial y}\mathbf{a}_y + \frac{\partial V}{\partial z}\mathbf{a}_z\right) = \left(\frac{\partial}{\partial x}\mathbf{a}_x + \frac{\partial}{\partial y}\mathbf{a}_y + \frac{\partial}{\partial z}\mathbf{a}_z\right)V$$

Hay có thể định nghĩa toán tử vector "grad" như sau:

$$grad = \nabla = \frac{\partial V}{\partial x} \mathbf{a}_{x} + \frac{\partial V}{\partial y} \mathbf{a}_{y} + \frac{\partial V}{\partial z} \mathbf{a}_{z}$$

Khi đó ta có:

$$\mathbf{E} = -\left(\frac{\partial V}{\partial x}\mathbf{a}_x + \frac{\partial V}{\partial y}\mathbf{a}_y + \frac{\partial V}{\partial z}\mathbf{a}_z\right) = -\nabla V$$

$$\mathbf{E} = -\nabla V$$

 Tức là vector cường độ điện trường E chính bằng gradient của điện thế (về độ lớn).

Toán tử Gradient

Gradient trong các hệ tọa độ:

- Đề-các:
$$\nabla V = \frac{\partial V}{\partial x} \mathbf{a}_x + \frac{\partial V}{\partial y} \mathbf{a}_y + \frac{\partial V}{\partial z} \mathbf{a}_z$$

-Trụ:
$$\nabla V = \frac{\partial V}{\partial \rho} \mathbf{a}_{\rho} + \frac{1}{\rho} \frac{\partial V}{\partial \phi} \mathbf{a}_{\phi} + \frac{\partial V}{\partial z} \mathbf{a}_{z}$$

- Cầu:
$$\nabla V = \frac{\partial V}{\partial r} \mathbf{a}_r + \frac{1}{r} \frac{\partial V}{\partial \theta} \mathbf{a}_\theta + \frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \mathbf{a}_\phi$$

Lưỡng cực điện

• Lưỡng cực (lưỡng cực điện): 2 điện tích điểm có độ lớn bằng nhau, ngược dấu, khoảng cách giữa chúng rất nhỏ so với khoảng cách tới điểm cần xét

Mật độ năng lượng trong trường tĩnh điện

Nếu cần di chuyển điện tích dương Q_2 từ xa vô cùng vào không gian có điện trường gây ra bởi điện tích điểm dương Q_1 cố định,

ta cần thực hiện một công.

- Nếu Q₂ được giữ nguyên: Q₂ có một thế năng
- Nếu Q₂ được đặt tự do:
- + Q₂ sẽ dịch chuyển ra xa Q₁
- +Q₂ sẽ tích lũy động năng trong quá trình chuyển động.
- → Cần xác định thế năng của một hệ điện tích điểm.

$$W_E = \frac{1}{2} \int_{V} \rho_V V dv$$

có thể coi là công thức tính thế năng tổng quát cho các vật mang điện tích điểm, đường, mặt.

