We claim:

1. A polymer electrolyte membrane comprising a highly fluorinated polymer comprising: a perfluorinated backbone, first pendent groups which comprise sulfonic acid groups, and crosslinks comprising trivalent groups according to the formula:

5

10

- 2. The polymer electrolyte membrane according to claim 1 wherein said first pendent groups are according to the formula: $-R^1$ -SO₃H, where R^1 is a branched or unbranched perfluoroalkyl or perfluoroether group comprising 1-15 carbon atoms and 0-4 oxygen atoms.
- 3. The polymer electrolyte membrane according to claim 1 wherein said first pendent groups are according to the formula: -O-CF₂-CF₂-CF₂-CF₂-SO₃H.
- 15 4. The polymer electrolyte membrane according to claim 1 wherein said first pendent groups are according to the formula: -O-CF₂-CF(CF₃)-O-CF₂-CF₂-SO₃H.
 - 5. A method of making a polymer electrolyte membrane comprising the steps of:
 - a) providing a highly fluorinated polymer comprising: a perfluorinated backbone, first pendent groups which comprise sulfonyl halide groups, and second pendent groups which comprise nitrile groups;
 - b) forming said fluoropolymer into a membrane;
 - c) trimerizing said nitrile groups to form crosslinks; and
 - d) converting said sulfonyl halide groups to sulfonic acid groups.
- 25

20

6. The method according to claim 5 wherein said second pendent groups are selected from $-C \equiv N$ and groups according to the formula: $-R^1-C \equiv N$, where R^1 is a

branched or unbranched perfluoroalkyl or perfluoroether group comprising 1-15 carbon atoms and 0-4 oxygen atoms.

- The method according to claim 5 wherein said first pendent groups are
 according to the formula: -R¹-SO₂X, where X is a halogen and where R¹ is a branched or unbranched perfluoroalkyl or perfluoroether group comprising 1-15 carbon atoms and 0-4 oxygen atoms.
- 8. The method according to claim 6 wherein said first pendent groups are

 10 according to the formula: -R¹-SO₂X, where X is a halogen and where R¹ is a branched or unbranched perfluoroalkyl or perfluoroether group comprising 1-15 carbon atoms and 0-4 oxygen atoms.
- 9. The method according to claim 7 wherein said first pendent groups are according to the formula: -O-CF₂-CF₂-CF₂-CF₂-SO₂X.
 - 10. The method according to claim 8 wherein said first pendent groups are according to the formula: -O-CF₂-CF₂-CF₂-CF₂-SO₂X.
- 20 11. The method according to claim 7 wherein said first pendent groups are according to the formula: -O-CF₂-CF(CF₃)-O-CF₂-CF₂-SO₂X.

25

- 12. The method according to claim 8 wherein said first pendent groups are according to the formula: -O-CF₂-CF(CF₃)-O-CF₂-CF₂-SO₂X.
- 13. A polymer electrolyte membrane made according to the method of claim 5.
- 14. A polymer electrolyte membrane made according to the method of claim 6.
- 30 15. A polymer electrolyte membrane made according to the method of claim 7.

- 16. A polymer electrolyte membrane made according to the method of claim 8.
- 17. A polymer electrolyte membrane made according to the method of claim 9.

5

15

20

25

- 18. A polymer electrolyte membrane made according to the method of claim 10.
- 19. A polymer electrolyte membrane made according to the method of claim 11.
- 10 20. A polymer electrolyte membrane made according to the method of claim 12.
 - 21. A polymer membrane comprising a highly fluorinated polymer comprising: a perfluorinated backbone, first pendent groups which comprise groups according to the formula -S0₂X, where X is F, Cl, Br, OH, or -O-M+, where M+ is a monovalent cation, and crosslinks comprising trivalent groups according to the formula:

- 22. The polymer membrane according to claim 1 wherein said first pendent groups are according to the formula: -R¹-SO₂X, where R¹ is a branched or unbranched perfluoroalkyl or perfluoroether group comprising 1-15 carbon atoms and 0-4 oxygen atoms.
 - 23. The polymer membrane according to claim 1 wherein said first pendent groups are according to the formula: -O-CF₂-CF₂-CF₂-CF₂-SO₂X.
 - 24. The polymer membrane according to claim 1 wherein said first pendent groups are according to the formula: -O-CF₂-CF(CF₃)-O-CF₂-CF₂-SO₂X.

25. A polymer comprising a highly fluorinated polymer comprising: a perfluorinated backbone, first pendent groups which comprise groups according to the formula -S0₂X, where X is F, Cl, Br, OH, or -O-M+, where M+ is a monovalent cation, and crosslinks comprising trivalent groups according to the formula:

5

10

- 26. The polymer according to claim 1 wherein said first pendent groups are according to the formula: $-R^1$ -SO₂X, where R^1 is a branched or unbranched perfluoroalkyl or perfluoroether group comprising 1-15 carbon atoms and 0-4 oxygen atoms.
- 27. The polymer according to claim 1 wherein said first pendent groups are according to the formula: -O-CF₂-CF₂-CF₂-CF₂-SO₂X.
- 15 28. The polymer according to claim 1 wherein said first pendent groups are according to the formula: -O-CF₂-CF(CF₃)-O-CF₂-CF₂-SO₂X.