Digital Systems Design and Laboratory [16. Sequential Circuit Design]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Sequential Logic Design

- ☐ Unit 11: Latches and Flip-Flops
- ☐ Unit 12: Registers and Counters
- ☐ Units 13--15: Finite State Machines
- ☐ Unit 16: Summary
- ☐ Designing a sequential circuit
 - Construct a state graph or state table (Unit 14)
 - Simplify it (Unit 15)
 - Derive flip-flop input equations and output equations (Unit 12)

Outline

- **□** Design Example --- Code Converter
- ☐ Design of Iterative Circuits
- Summary

BCD to Excess-3 Conversion

- ☐ Add 3 to BCD (0--9)
- ☐ Serial I/O with the LSB first

☐ Reset to initial stateafter receiving 4 inputs

X	Z
Input (BCD)	Output (Excess-3)
$t_3 t_2 t_1 t_0$	$t_3 t_2 t_1 t_0$
0000	0011
0001	0100
0010	0101
0011	0110
0100	0111
0101	1000
0110	1001
0111	1010
1000	1011
1001	1100
Others	XXXX

State Graph

X	Z
$t_3 t_2 t_1 t_0$	$t_3 t_2 t_1 t_0$
0000	0011
0001	0100
0010	0101
0011	0110
0100	0111
0101	1000
0110	1001
0111	1010
1000	1011
1001	1100
Others	XXXX

State Table

Time Input		Present	Next	State	Present	Output
Time	Sequence	State	X = 0	X = 1	X = 0	X = 1
t _o	Reset	А	В	С	1	0
+	O _{LSB}	В	D	F	1	0
t ₁	1 _{LSB}	С	E	G	0	1
	00 _{LSB}	D	Н	L	0	1
	01 _{LSB}	Е	1	M	1	0
t_2	10 _{LSB}	F	J	N	1	0
	11 _{LSB}	G	K	Р	1	0
	000 _{LSB}	Η	А	Α	0	1
	001 _{LSB}	1	Α	Α	0	1
	010 _{LSB}	J	Α	-	0	-
+	011 _{LSB}	K	Α	-	0	-
t ₃	100 _{LSB}	L	Α	-	0	-
	101 _{LSB}	M	А	-	1	-
	110 _{LSB}	N	Α	-	1	-
	111 _{LSB}	Р	А	-	1	-

State Reduction (1/3)

☐ Row matching

- $ightharpoonup M \equiv N \equiv P$
- $ightharpoonup H \equiv I \equiv J \equiv K \equiv L$
 - Use don't cares

Time	Input	Present	Next State		Present	Output
Time	Sequence	State	X = 0	X = 1	X = 0	X = 1
t _o	Reset	Α	В	С	1	0
+	O _{LSB}	В	D	F	1	0
t ₁	1 _{LSB}	С	Е	G	0	1
	00 _{LSB}	D	Н	$\Gamma \rightarrow H$	0	1
	01 _{LSB}	Е	1 → H	М	1	0
t ₂	10 _{LSB}	F	J → H	$N \rightarrow M$	1	0
	11 _{LSB}	G	к → н	$P \rightarrow M$	1	0
	000 _{LSB}	Н	А	Α	0	1
	001 _{LSB}	1	А	А	0	1
	010 _{LSB}	J	А	-	0	-
	011 _{LSB}	K	А	-	0	-
t ₃	100 _{LSB}	L	А	-	0	-
	101 _{LSB}	М	А	-	1	-
	110 _{LSB}	N	А	-	1	-
	111 _{LSB}	Р	А	-	1	-

State Reduction (2/3)

■ Row matching

$$\triangleright$$
 E \equiv F \equiv G

Time	Input	Present	Next	State	Present	Output
Time	Sequence	State	X = 0	X = 1	X = 0	X = 1
to	Reset	А	В	С	1	0
+	O _{LSB}	В	D	$F \rightarrow E$	1	0
t ₁	1 _{LSB}	С	E	$G \rightarrow E$	0	1
	00 _{LSB}	D	Н	Н	0	1
	01 _{LSB}	Е	Н	М	1	0
t_2	10 _{LSB}	F	Н	M	1	0
	11 _{LSB}	G	Н	M	1	0
	000 _{LSB}	Н	Α	Α	0	1
	001 _{LSB}	1	А	А	0	1
	010 _{LSB}	J	Α	-	0	-
	011 _{LSB}	K	А	-	0	-
t ₃	100 _{LSB}	L	Α	-	0	-
	101 _{LSB}	М	А	-	1	-
	110 _{LSB}	N	Α	-	1	-
	111 _{LSB}	Р	А	-	1	-

State Reduction (3/3)

7 states

Timo	Present	Next State		Present	Output
Time	State	X = 0	X = 1	X = 0	X = 1
t _o	А	В	С	1	0
+	В	D	E	1	0
t ₁	С	Е	Е	0	1
+	D	Н	Н	0	1
t ₂	Е	Н	M	1	0
	Н	А	Α	0	1
t ₃	М	А	-	1	~

State Assignment

- ☐ To simplify the next state functions
 - ➤ (B,C), (D,E), (H,M) should be adjacent
- ☐ To simplify the output functions
 - ➤ (A,B,E,M), (C,D,H) should be adjacent

Q_1	0	1
00	Α	В
01		С
11	Н	D
10	M	Е

Time	Present	Next State		Present	Output
Tille	State	X = 0	X = 1	X = 0	X = 1
t _o	А	В	С	1	0
+	В	D	Е	1	0
t ₁	С	E	Е	0	1
+	D	Н	Н	0	1
t_2	E	Н	М	1	0
+	Н	Α	Α	0	1
t ₃	М	А	-	1	-

		Next	State	Present	Output
	$Q_1Q_2Q_3$	X = 0	X = 1	X = 0	X = 1
Α	000	100	101	1	0
В	100	111	110	1	0
С	101	110	110	0	1
D	111	011	011	0	1
Ε	110	011	010	1	0
Н	011	000	000	0	1
М	010	000	XXX	1	X
-	001	XXX	XXX	X	X

Choose Flip-Flops and Derive Equations

- ☐ Choose D flip-flops
- ☐ Derive flip-flop input & output equations (by K-maps)

$$\triangleright D_1 = Q_1^+ = Q_2^+$$

$$> D_2 = Q_2^+ = Q_1$$

$$\triangleright$$
 D₃ = Q₃⁺ = Q₁Q₂Q₃ + X'Q₁Q₃' + XQ₁'Q₂'

$$\geq$$
 Z = X'Q₃' + XQ₃

		Next State		Present	Output
	$Q_1Q_2Q_3$	X = 0	X = 1	X = 0	X = 1
Α	000	100	101	1	0
В	100	111	110	1	0
С	101	110	110	0	1
D	111	011	011	0	1
E	110	011	010	1	0
Н	011	000	000	0	1
М	010	000	XXX	1	X
-	001	XXX	XXX	Х	X

Ų	\jmathϤᢋ∖	0		_
by K mans)	00	Α	В	
by K-maps)	01		С	
	11	Н	D	
	10	Μ	Ε	
	•			•

Q_2Q_3	Q ₁ 00	01	11	10
Q_2Q_3	1	1	0	0
01	Х	0	1	х
11	0	0	1	1
10	1	1	0	Х
		_	7	

Circuit Realization

Outline

- ☐ Design Example --- Code Converter
- **□** Design of Iterative Circuits
- Summary

Sequential Comparator

☐ Iterative circuit for comparing binary numbers

- $> X = X_1 X_2 X_3 ... X_n$
- $> Y = Y_1 Y_2 Y_3 ... Y_n$
- \triangleright Time: $t_1t_2t_3...t_n$
- \triangleright X₁ and Y₁: most significant bits

State Table and State Assignment

Present State	Ne	Output					
	$X_i Y_i = 00$	01	11	10	Z ₁	Z ₂	Z ₃
(X=Y) S ₀	S ₀	S ₂	S ₀	S ₁	0	1	0
(X>Y) S ₁	S_1	S_1	S_1	S_1	0	0	1
(X <y) s<sub="">2</y)>	S ₂	S ₂	S ₂	S ₂	1	0	0

A_iB_i	$A_{i+1}B_{i+1}$				Output		
	$X_i Y_i = 00$	01	11	10	Z ₁	Z ₂	Z ₃
(X=Y) S ₀	00	10	00	01	0	1	0
(X>Y) S ₁	01	01	01	01	0	0	1
(X <y) s<sub="">2</y)>	10	10	10	10	1	0	0

Choose Flip-Flops and Derive Equations

- ☐ Choose D flip-flops
- ☐ Derive flip-flop input equations and output equations
 - (By the Karnaugh maps)

$$\triangleright A_{i+1} = A_i + X_i'Y_iB_i'$$

$$\triangleright$$
 B_{i+1} = B_i +X_iY_i'A_i'

Output circuit

$$\triangleright Z_1 = A_{n+1}$$

$$> Z_2 = A'_{n+1}B'_{n+1}$$

$$> Z_3 = B_{n+1}$$

Typical Cell

Circuit Realization

Outline

- ☐ Design Example --- Code Converter
- ☐ Design of Iterative Circuits
- **□** Summary

Summary

- ☐ Problem statement
- "Initial" state graph and table generation
 - ➤ Unit 14
- ☐ State reduction
 - ➤ Unit 15
- ☐ State assignment
 - ➤ Unit 15
- ☐ Choice of flip-flops
 - ➤ Unit 11
- Derivation of flip-flop input equations and output equations
 - ➤ Unit 12
- ☐ Circuit realization and timing chart

Q&A