秋季学期微积分 A (1)课程

邹文明

第二章: 函数, 函数的极限与连续

§3. 函数极限的性质

函数极限与数列极限的关系:

定理 1. 设 X 为非空数集, x_0 为 X 的极限点, $f: X \to \mathbb{R}$ 为函数, 而 $a \in \mathbb{R} \cup \{\pm \infty, \infty\}$. 那么 $\lim_{X \ni x \to x_0} f(x) = a$

当且仅当对于 $X\setminus\{x_0\}$ 中以 x_0 为极限的任意数列 $\{a_n\}$,均有 $\lim_{n\to\infty} f(a_n) = a$.

证明: 必要性. $\forall \varepsilon > 0$, 由于 $\lim_{X \ni x \to x_0} f(x) = a$, 那么

 $\exists \delta > 0$ 使得 $\forall x \in \mathring{B}_X(x_0, \delta)$, 均有 $f(x) \in B(a, \varepsilon)$.

假设 $X\setminus\{x_0\}$ 中的数列 $\{a_n\}$ 趋近到 x_0 , 那么

 $\exists N > 0$ 使得 $\forall n > N$, 我们均有 $a_n \in \mathring{B}(x_0, \delta)$, 从而可知 $f(a_n) \in B(a, \varepsilon)$, 进而可得

 $\lim_{n\to\infty} f(a_n) = a.$

充分性. 现在用反证法. 假设当 $X \ni x \to x_0$ 时, f(x) 不趋近到点 a. 那么 $\exists \varepsilon_0 > 0$ 使得 $\forall \delta > 0$, $\exists x \in \mathring{B}_X(x_0, \delta)$ 满足 $f(x) \notin B(a, \varepsilon_0)$. 从而可知

 $\forall n \geq 1$, $\exists a_n \in \mathring{B}_X(x_0, \frac{1}{n})$ 使得 $f(a_n) \notin B(a, \varepsilon_0)$. 因此 $\{f(a_n)\}$ 不趋近到 a. 然而 $a_n \in \mathring{B}_X(x_0, \frac{1}{n})$,

因此 $\{f(a_n)\}$ 不超近到 a. 然间 $a_n \in B_X(x_0, \frac{1}{n})$, 于是由夹逼原理可知 $X \setminus \{x_0\}$ 中的数列 $\{a_n\}$ 趋近到 x_0 . 这与题设矛盾! 故所证结论成立.

评注

• 在上述定理中, 我们必须假设 a_n 不等于 x_0 . 例如我们可考虑函数

则 $\lim_{x\to 0} f(x) = 0$. 令 $a_n \equiv 0$, 则 $\lim_{n\to\infty} f(a_n) = 1$.

• 函数极限问题与数列极限问题等价!

该定理通常用来证明函数极限不存在

为此只需下述两条之一成立:

- 在 $X \setminus \{x_0\}$ 中构造以 x_0 为极限的数列 $\{a_n\}$ 使得数列 $\{f(a_n)\}$ 的极限不存在.
- 在 $X \setminus \{x_0\}$ 中构造以 x_0 为极限的两个不同数列 $\{a_n\}$ 和 $\{b_n\}$ 使得 $\{f(a_n)\}$ 和 $\{f(b_n)\}$ 趋近到不同的极限.

例 1. 求证: 极限 $\lim_{x\to 0} \operatorname{sgn}(x)$ 不存在.

证明: 由于
$$\lim_{n\to\infty}\frac{1}{n}=0$$
, 且

$$\lim_{n\to\infty} \operatorname{sgn} \frac{1}{n} = 1, \quad \lim_{n\to\infty} \operatorname{sgn} \left(-\frac{1}{n} \right) = -1,$$
故所求极限不存在.

思考题: 求证: 极限 $\lim_{x\to 0}\cos\frac{1}{x}$ 不存在.

性质 1. 函数极限若存在且有限, 必唯一.

性质 2. (局部有界性) 设 X 为非空数集, x_0 为 该集的极限点, $a \in \mathbb{R}$, 而函数 $f: X \to \mathbb{R}$ 使得 $\lim_{X\ni x\to x_0}f(x)=a, \ \mathbb{M}\ \exists \delta,M>0\ \ \notin \ \forall x\in \mathring{B}_X(x_0,\delta),$

我们均有 |f(x)| < M. 证明: 由定义可知, $\exists \delta > 0$ 使得 $\forall x \in \mathring{B}_X(x_0, \delta)$,

均有 |f(x) - a| < 1. 故 |f(x)| < 1 + |a|.

性质 3. (局部保序性) 设 X 为非空数集, x_0 为 其极限点, 而 $f,g:X\to\mathbb{R}$ 为函数使得

$$\lim_{X \ni x \to x_0} f(x) = a, \ \lim_{X \ni x \to x_0} g(x) = b.$$

- 如果 a > b, 则 $\exists \delta > 0$ 使得 $\forall x \in \mathring{B}_X(x_0, \delta)$, 我们均有 f(x) > g(x).
- 如果 $\exists \delta > 0$ 使得 $\forall x \in B_X(x_0, \delta)$, 我们均有 $f(x) \geq g(x)$, 则 $a \geq b$.

注: 同数列情形完全一样, 即便 $\forall x \in \mathring{B}_X(x_0, \delta)$, 均有 f(x) > g(x), 一般也不能推出 a > b.

但却 $\forall \delta > 0$, $\exists x \in B_X(x_0, \delta)$ 使得 $f(x) \leq g(x)$. 则 $\forall n \geq 1$, $\exists a_n \in B_X(x_0, \frac{1}{n})$ 使得 $f(a_n) \leq g(a_n)$. 又由夹逼原理可知 $\{a_n\}$ 在 $X\setminus\{x_0\}$ 中趋于 x_0 ,

证明: (1) 方法 1. 现用反证法. 我们假设 a > b,

于是由数列极限的保序性可得 $a = \lim_{n \to \infty} f(a_n) \leqslant \lim_{n \to \infty} g(a_n) = b,$

$$a = \lim_{n \to \infty} f(a_n) \leqslant \lim_{n \to \infty} g(a_n) = 0$$

矛盾! 故所证结论成立.

方法 2. 假设 $a, b \in \mathbb{R}$, 其它的情形会更为简单. 令 $\varepsilon = \frac{1}{2}(a-b)$. 则 $\exists \delta_1 > 0$ 使 $\forall x \in \mathring{B}_X(x_0, \delta_1)$, $|f(x) - a| < \varepsilon$. 同时 $\exists \delta_2 > 0$ 使 $\forall x \in \mathring{B}_X(x_0, \delta_2)$,

 $|g(x) - b| < \varepsilon$. $\Leftrightarrow \delta = \min(\delta_1, \delta_2)$, 那么

则 $\forall x \in \mathring{B}_X(x_0, \delta)$, 我们均有 $f(x) > a - \varepsilon = b + \varepsilon > g(x)$. (2) 同数列极限的情形一样, 由 (1) 可导出 (2).

 $\check{B}_X(x_0,\delta) = \check{B}_X(x_0,\delta_1) \cap \check{B}_X(x_0,\delta_2),$

推论. (局部保号性) 设 X 为非空的数集, x_0 为 其极限点, 而 $f: X \to \mathbb{R}$ 使得 $\lim_{X \ni x \to x_0} f(x) = a$.

- 如果 a > 0, 则 $\exists \delta > 0$ 使得 $\forall x \in \mathring{B}_X(x_0, \delta)$, 我们均有 f(x) > 0.
- 如果 $\exists \delta > 0$ 使得 $\forall x \in \mathring{B}_X(x_0, \delta)$, 我们均有 $f(x) \geq 0$, 则 $a \geq 0$.

注: (1) 由局部保序 (号) 性可导出极限唯一性.

(2) 若 $a \neq 0$, 则 f 在某个 $\mathring{B}_X(x_0)$ 上不为零.

定理 2. (四则运算) 设
$$X$$
 为非空的数集, x_0 为其极限点, 而 $f,g:X\to\mathbb{R}$ 为函数使得
$$\lim_{X\ni x\to x_0} f(x) = a, \lim_{X\ni x\to x_0} g(x) = b.$$
 则下列结论成立 (若等式右边有意义):

(1) $\lim_{X\ni x\to x_0} (\lambda f + \mu g)(x) = \lambda a + \mu b, \ \forall \lambda, \mu \in \mathbb{R}.$

(2)
$$\lim_{X \ni x \to x_0} (fg)(x) = ab$$
.

(3) $\lim_{X\ni x\to x_0} \frac{f}{g}(x) = \frac{a}{b}.$

广义四则运算 (a > 0 为实数)

- $a + (+\infty) = +\infty$, $a (+\infty) = -\infty$.
- $+\infty + (+\infty) = +\infty$, $-\infty (+\infty) = -\infty$.
- $a \times (+\infty) = +\infty$, $a \times (-\infty) = -\infty$, $a \times \infty = \infty$.

•
$$(-a) \times (+\infty) = -\infty$$
, $(-a) \times (-\infty) = +\infty$, $(-a) \times \infty = \infty$; $(+\infty) \times (+\infty) = +\infty$, $(-\infty) \times (-\infty) = +\infty$, $(+\infty) \times (-\infty) = -\infty$.

•
$$\frac{a}{\pm \infty} = 0$$
, $\frac{a}{\infty} = 0$, $\frac{a}{0^{+}} = +\infty$, $\frac{a}{0^{-}} = -\infty$, $\frac{a}{0} = \infty$.

• 无法确定型:
$$(+\infty) + (-\infty)$$
, $0 \times \infty$, $\frac{0}{0}$, $\frac{\infty}{\infty}$.

例 2. 研究有理函数在 $x \to \pm \infty$ 时的性态.

其中假设 a_n , $b_m > 0$. 于是我们有

(1)
$$\lim_{x \to +\infty} f(x) = \begin{cases} \frac{a_n}{b_m}, & 若 n = m, \\ 0, & 若 n < m, \\ +\infty, & 若 n > m, \end{cases}$$

$$(2)$$
 $\lim_{x \to -\infty} f(x)$

$$\frac{1}{x \to -\infty} J(x)$$

$$= \begin{cases}
\frac{a_n}{b_m}, & \text{ if } n = m, \\
0, & \text{ if } n < m, \\
+\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n > m \text{ if } n - m \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ if } n = m, \\
-\infty, & \text{ i$$

定理 3. (夹逼原理) 设 X 为非空的数集, x_0 为 其极限点, 而 $f,g,h:X\to\mathbb{R}$ 为函数满足:

(1)
$$\exists \delta > 0$$
 使得 $\forall x \in \mathring{B}_X(x_0, \delta)$, 均有 $g(x) \leqslant f(x) \leqslant h(x)$,

(2)
$$\lim_{X\ni x\to x_0}g(x)=\lim_{X\ni x\to x_0}h(x)=a\in\mathbb{R}\cup\{\pm\infty\}$$
, 则我们有 $\lim_{X\ni x\to x_0}f(x)=a$.

证明: 利用数列的夹逼原理或其证明思想.

定理 4. (复合函数极限) 设 X,Y 为非空数集, x_0 为 X 的极限点而 $y_0 \in \mathbb{R} \cup \{\infty, \pm \infty\}$, 并且函数 $f: X \to \mathbb{R}$, $g: Y \to \mathbb{R}$ 满足:

(1)
$$\forall x \in X \setminus \{x_0\}$$
, 均有 $f(x) \in Y \setminus \{y_0\}$, (2) $\lim_{X\ni x\to x_0} f(x) = y_0$, $\lim_{Y\ni y\to y_0} g(y) = a$,

则我们有 $\lim_{X \ni x \to x_0} g(f(x)) = a$.

注: 复合函数极限法则实质是在做变量替换.

证明: 由于 $\lim_{Y\ni y\to y_0}g(y)=a$, 则 $\forall \varepsilon>0$, $\exists \eta>0$ 使得 $\forall y \in \mathring{B}_Y(y_0, \eta)$, 均有 $g(y) \in B(a, \varepsilon)$. 又因 $\lim_{X\ni x\to x_0}f(x)=y_0, \ \mathbb{M}\ \exists \delta>0 \ \ \text{ it } \forall x\in \mathring{B}_X(x_0,\delta),$ $f(x) \in B(y_0, \eta)$. 由条件 (1) 可知 $f(x) \in Y \setminus \{y_0\}$, 于是 $f(x) \in \mathring{B}_Y(y_0, \eta)$, 从而 $g(f(x)) \in B(a, \varepsilon)$. 由此可知所证结论成立.

各种基本类型极限的关系

评注: 本节的 定理 1 是上述定理的特殊情形,由此可知该定理中的条件 (1) 不能去掉.

各种基本类型极限的关系

设 $x_0 \in \mathbb{R} \setminus \{0\}$, 而 $a \in \mathbb{R} \cup \{\infty, \pm \infty\}$, 由复合函数极限法则可知下述结论等价:

- $\bullet \lim_{x \to x_0} f(x) = a,$
- $\bullet \lim_{y \to 0} f(y + x_0) = a,$
- $\lim_{z \to \infty} f(\frac{1}{z} + x_0) = a.$

对于左极限、右极限也有类似的结论.

命题 1. 如果 $\lim_{x \to x_0} u(x) = a > 0$ 且 $\lim_{x \to x_0} v(x) = b$, 则 $\lim u(x)^{v(x)} = a^b$, 其中 $a, b \in \mathbb{R}$.

证明: 因 $\log y = \log a$,则由四则运算与复合 函数极限法则可知 $\lim v(x) \log u(x) = b \log a$.

 $\lim_{n \to \infty} e^y = e^{b \log a} = a^b$, 则由复合函数极限 $y \rightarrow b \log a$

法则可得 $\lim_{x \to x_0} u(x)^{v(x)} = \lim_{x \to x_0} e^{v(x) \log u(x)} = a^b$.

推论 1. 若 a > 0,而 $x_0 \in \mathbb{R}$,则 $\lim_{x \to x_0} a^x = a^{x_0}$.

推论 2. 若 $x_0 > 0$,而 $\alpha \in \mathbb{R}$,则 $\lim_{x \to x_0} x^{\alpha} = x_0^{\alpha}$.

注: 由极限定义立刻可得 $\lim_{x\to 0^+} x^{\alpha} = 0 \ (\alpha > 0)$.

推论 3. 假设 X 为非空的数集, x_0 为其极限点, 而函数 $f: X \to [0, +\infty)$ 使得 $\lim_{X \ni x \to x_0} f(x) = A$, 则我们有 $\lim_{X \ni x \to x_0} \sqrt{f(x)} = \sqrt{A}$.

推论 4. $\forall k \in \mathbb{N}^*$ 以及 $\forall x_0 \in \mathbb{R}$, $\lim x^k = x_0^k$. 证明: 若 $x_0 > 0$,则由前例可知所证成立.

若 $x_0 < 0$,则由复合函数极限法则可知

$$\lim_{x \to x_0} x^k \stackrel{y = -x}{=} \lim_{y \to -x_0} (-1)^k y^k = (-1)^k (-x_0)^k = x_0^k.$$

若 $x_0 = 0$, 由前例可知 $\lim_{x \to 0^+} x^k = 0$. 由复合函数

极限法则得 $\lim_{x\to 0^-} x^k \stackrel{y=-x}{=} \lim_{y\to 0^+} (-1)^k y^k = 0$. 于是

 $\lim_{k \to \infty} x^k = 0 = x_0^k$. 综上所述可知所证成立.

例 3. 求证: $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$.

证明: 由复合函数极限法则可得

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{1}{2} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^2 = \frac{1}{2}.$$

秋风起兮白云飞,草木黄落兮雁南归-汉•刘彻《秋风辞》

同学们辛苦了!