MTH1102D Calcul II

Chapitre 10, section 1: Les surfaces paramétrées et leur aire

Exemple 4: courbes sur une surface paramétrée

Soit *S* le cône paramétré par $\vec{R}(u, v) = v \cos u \vec{i} + v \sin u \vec{j} + v \vec{k}$, $0 \le u \le 2\pi$, $v \ge 0$.

- a) Identifier les courbes obtenues en fixant $u = u_0$.
- b) Identifier les courbes obtenues en fixant $v = v_0$.

Soit *S* le cône paramétré par
$$\vec{R}(u, v) = v \cos u \vec{i} + v \sin u \vec{j} + v \vec{k}$$
, $0 \le u \le 2\pi$, $v \ge 0$.

- a) Identifier les courbes obtenues en fixant $u = u_0$.
- b) Identifier les courbes obtenues en fixant $v = v_0$.

• Si $u = u_0$ alors

$$\vec{R}(u_0, v) = v \cos u_0 \vec{i} + v \sin u_0 \vec{j} + v \vec{k}$$

$$= v(\cos u_0 \vec{i} + \sin u_0 \vec{j} + \vec{k}), v \ge 0$$

$$= v \vec{d}$$

où $d = \cos u_0 \vec{i} + \sin u_0 \vec{j} + \vec{k}$ est un vecteur fixé.

Soit *S* le cône paramétré par
$$\vec{R}(u, v) = v \cos u \vec{i} + v \sin u \vec{j} + v \vec{k}$$
, $0 \le u \le 2\pi$, $v \ge 0$.

- a) Identifier les courbes obtenues en fixant $u = u_0$.
- b) Identifier les courbes obtenues en fixant $v = v_0$.

• Si $u = u_0$ alors

$$\vec{R}(u_0, v) = v \cos u_0 \vec{i} + v \sin u_0 \vec{j} + v \vec{k}$$

$$= v(\cos u_0 \vec{i} + \sin u_0 \vec{j} + \vec{k}), v \ge 0$$

$$= v \vec{d}$$

où $d = \cos u_0 \vec{i} + \sin u_0 \vec{j} + \vec{k}$ est un vecteur fixé.

 Cette courbe est une demi-droite issue de l'origine.

Soit *S* le cône paramétré par
$$\vec{R}(u, v) = v \cos u \vec{i} + v \sin u \vec{j} + v \vec{k}$$
, $0 \le u \le 2\pi$, $v \ge 0$.

- a) Identifier les courbes obtenues en fixant $u = u_0$.
- b) Identifier les courbes obtenues en fixant $v = v_0$.

• Si $v = v_0$ alors $\vec{R}(u, v_0) = v_0 \cos u \vec{i} + v_0 \sin u \vec{j} + v_0 \vec{k}$

Soit
$$S$$
 le cône paramétré par $\vec{R}(u, v) = v \cos u \vec{i} + v \sin u \vec{j} + v \vec{k}$, $0 \le u \le 2\pi$, $v \ge 0$.

- a) Identifier les courbes obtenues en fixant $u = u_0$.
- b) Identifier les courbes obtenues en fixant $v = v_0$.

- Si $v = v_0$ alors $\vec{R}(u, v_0) = v_0 \cos u \vec{i} + v_0 \sin u \vec{j} + v_0 \vec{k}$
- Cette courbe est un cercle de rayon v₀ situé à hauteur v₀.

Résumé

- Courbes sur une surface obtenues en fixant un paramètre dans la paramétrisation d'un cône.
- Ces courbes peuvent être identifiées car leur équation vectorielle est connue.