

Lecture 3: Region Based Vision

Spring 2021

Slides by: Dr Carole Twining

Presented by: Terence Morley

Handouts & Lecture Notes

Report in Scientific American (June 2014): "In each study, however, those who wrote out their notes by hand had a stronger conceptual understanding and were more successful in applying and integrating the material than those who used [sic] took notes with their laptops."

The Pen Is Mightier Than the Keyboard

P. A. Mueller, D. M. Oppenheimer, *Psychological Science*, Vol 25, Issue 6, pp. 1159 – 1168, April-23-2014.

- Handouts are to aid note taking, not a total replacement for note taking
- Podcasts, slides, pdfs etc on BlackBoard

Segmenting an Image

- Point processing:
 - colour or grayscale values, thresholding
- Neighbourhood Processing:
 - Regions of similar colours or textures
- Edge information (next lecture)
- Prior information: (model-based vision)
 - I know what I expect a cat to look like

Overview

- Automatic threshold detection
 - Earlier, we did this by inspection/guessing
- Multi-Spectral segmentation
 - Satellite & medical image data
- Split and Merge
 - Hierarchical, region-based approach
- Relaxation labelling
 - Probabilistic, learning approach
- Segmentation as optimisation

Automatic Threshold Selection

Automatic Thresholding: GMM

Segmentation Rule

Image Histogram

- Assume scene mixture of substances, each with normal/gaussian distribution of possible image values
- Minimum error in probabilistic terms
- But mixture of gaussians not easy to find
- Doesn't always fit actual distribution

Automatic Thresholding: Otsu's Method

Mean across purples:

$$\bar{i}_{P} = \frac{1}{N_{P}} \sum_{i=0}^{T} i \times n(i)$$

Variance for purples:

$$\sigma_{\mathrm{P}}^2 = \frac{1}{\mathrm{N_P}} \sum_{\mathrm{i=0}}^{\mathrm{T}} \mathrm{n(i)} \left[\mathrm{i} - \overline{\mathrm{i}}_{\mathrm{P}} \right]^2$$

Choose T to minimize: $N_P \sigma_P^2 + N_G \sigma_G^2$

Extend to multiple classes

Automatic Thresholding: Max Entropy

For two sub-populations:

$$p_{P}(i) = \frac{n(i)}{N_{P}}, i < T$$

$$p_G(i) = \frac{n(i)}{N_G}, i \ge T.$$

Entropy: $-\sum \mathbf{p} \ln \mathbf{p}$

Two Entropies:

$$H_P = -\sum\limits_{i < T} p_P(i) \ \text{ln} \ p_P(i) \ \& \ H_G = -\sum\limits_{i \ge T} p_G(i) \ \text{ln} \ p_G(i)$$

Minimise: $\mathbf{H_G} + \mathbf{H_P}$ to find T.

• Makes two sub-populations as peaky as possible

Automatic Thresholding: Example

combine

Automatic Thresholding: Summary

- Geometric shape of histogram (bumps, curves etc)
 - Algorithm or just by inspection
- Statistics of sub-populations
 - Otsu & variance
 - **■** Entropy methods
- Model-based methods:
 - Sum of gaussians, gaussians & partial voluming etc.
- Detailed comparative evaluations for 40 methods
 - Sezgin M, Sankur B; Survey over image thresholding techniques and quantitative performance evaluation.
 Journal of Electronic Imaging, 13(1): pages 146-168, (2004).
- Fundamental limit on effectiveness:
 - Never be perfect if distributions overlap (two objects, shared colour!)
- Whatever method, need further processing

Multi-Spectral Segmentation

Multi-spectral Segmentation

- Multiple measurements at each pixel:
 - Satellite remote imaging, various wavebands
 - MR imaging, various imaging sequences
 - Colour (RGB channels, HSV etc)
 - Multispectral imaging of historical documents (visible+IR+UV)
- Scattergram of pixels in vector space:

- Can't separate using single measurement
- Can using multiple

Multi-Spectral Segmentation: Example

Spectral Bands

Over-ripe Orange

Scratched Orange

Multispectral Image Segmentation by Energy Minimization for Fruit Quality Estimation: *Martínez-Usó, Pla, and García-Sevilla,* Pattern Recognition and Image Analysis, 2005

Split and Merge

Split and Merge/Quadtree Segmentation

- Obvious approaches to segmentation:
 - Start from small regions and stitch them together
 - Start from large regions and split them

-Combine

- Start with large regions , split non-uniform regions
 - e.g. variance σ^2 > threshold
- Merge similar adjacent regions
 - e.g. combined variance σ^2 < threshold
- Region adjacency graph
 - housekeeping for adjacency as regions become irregular
 - regions are nodes, adjacency relations arcs
 - simple update rules during splitting and merging

Split and Merge/Quadtree Segmentation

Original

Split

Low Variance Regions

Merge

High Variance Regions

Split

Low Variance Regions

Merge

High Variance Regions

Split

Split & Merge: Example

Result

Original

Detail of Blocks

Relaxation Labelling

Aside: Conditional Probability

probability of A given that B is the case $P(A \mid B)$

- P(pet) = (□+□) etc

- Bayes Theorem:

P(pet | mammal)P(mammal) = P(mammal | pet)P(pet)

Relaxation Labelling:

Image histogram, object/background

Relaxation Labelling

- Evidence for a label at a pixel:
 - Measurements at that pixel (e.g., pixel value)
 - Context for that pixel (i.e., what neighbours are doing)
- Iterative approach, labelling evolves
- Soft-assignment of labels:

```
Possible labels: \{l_{\mu} : \mu = 1, \dots n\}

\mathbf{P_i}(\mu): Probability that pixel i has label l_{\mu}.

\sum_{\mu} \mathbf{P_i}(\mu) \equiv 1. normalised probability.
```

- Soft-assignment allows you to consider all possibilities
- Let context act to find stable solution

Relaxation Labelling

Compatibility:

Pixels i and j, labels μ and ν :

no effect $c_{\mathbf{i},\mathbf{i}}(\mu,\nu)=0$

If not neighbours

support (+ve) $c_{\mathbf{i},\mathbf{j}}(\mu,\mu) = \alpha$

Neighbours & same label

oppose (-ve) $c_{i,i}(\mu,\nu) = -\alpha$ if $\mu \neq \nu$ Neighbours & different label

lacktriangle Contextual support for label μ at pixel i:

Relaxation Labelling:

Update soft labelling given context:

$$P_i(\mu) \Leftarrow A_i P_i(\mu) (1 + s_i(\mu))$$

 A_i chosen so sums to 1 at i.

- The more support, more likely the label
- Iterate

Noisy Image

Threshold labelling

After iterating

Relaxation Labeling:

Value of α alters final result

Initialisation

$$\alpha = 0.90$$

Image: \mathcal{I} , value at pixel i: $\mathcal{I}(i)$

Label Image: L, label at pixel i: L(i)

Label configuration in neighbourhood of i: l(i)

• Maximise probability of labelling given image:

$$P(L|\mathcal{I}) = \prod P(L(i)|\mathcal{I}(i))P(L(i)|l(i))$$

i label at i given label at i given labels value at i in neighbourhood of i

Re-write by taking logs, minimise cost function:

$$C(L,\mathcal{I}) = \sum_{i} \left[-\log P(L(i)|\mathcal{I}(i)) - \log P(L(i)|l(i)) \right]$$
 label-data match label consistency

- How to find the appropriate form for the two terms?
- How to find the optimum?

P(L(i)|l(i)) • Exact form depends on type of data

label consistency ullet Histogram gives: $p(\mathcal{I}(i))$

 $P(L(i)|\mathcal{I}(i))$ • Model of histogram $P(L(i)|\mathcal{I}(i))$ label-data match (e.g., sum of gaussians, relaxation case)

Learning approach:

- Explicit training data (i.e., similar labelled images)
- Unsupervised, from image itself (e.g., histogram model):

Expectation/Maximization

- Given labels, construct model
- Given model, update labels
- Repeat

General case:

Cost function:
$$C(L, \mathcal{I}) =$$
 label-data match term

label consistency

- High-dimensional search space, local minima
- Analogy to statistical mechanics
 - crystalline solid finding minimum energy state
 - stochastic optimisation
 - simulated annealing
- Search:
 - Downhill
 - Allow slight uphill

Original

Relaxation

Optimisation