Primitive Roots of Unity (4)

> (Recall) Euler's Totient Function

$$\phi$$
 (N) = the number of 1 \leq K \leq N such that K and N are relatively prime

Theorem

There are ϕ (P-1) primitive roots of unity.

Examples

- \triangleright (P=7) ϕ (6)=2 (3,5 are prim roots)
- > (P=11) ϕ (10)=4 (2,6,7,8 are prim roots)

Primitive Roots of Unity (5)

- For each $1 \le A \le P-1$, take the **least K** ≥ 1 with $A^K \equiv 1 \pmod{P}$. K is the **order** of A (mod P).
- $\triangleright \psi(K) = \#$ of elements A with order K
- > K divides P-1 because the sequence $A^K \pmod{P}$ ($K \ge 1$) is cyclic and $A^{P-1} \equiv 1$ (by Fermat's Little Thm).
- \triangleright We want: $\psi(P-1) = \phi(P-1)$.

Primitive Roots of Unity (6)

- > It is enough to prove $\psi(K) = \phi(K)$ for any K dividing P-1.
- > This follows from the following 3 claims:
 - (1) The sum of $\psi(K)$ is equal to P-1 (where K divides P-1). (Obvious)
 - (2) The sum of $\phi(K)$ is equal to P-1 (where K divides P-1). (Week 1)
 - (3) $\psi(K) = 0$ or $\phi(K)$.

Primitive Roots of Unity (7)

Proof of Claim (3): $\psi(K) = 0$ or $\phi(K)$. Assume $\psi(K)\neq 0$. Take $1\leq A\leq P-1$ with order K. For each $1 \leq M \leq K$, $(A^{M})^{K} \equiv A^{MK} \equiv (A^{K})^{M} \equiv 1^{M} \equiv 1.$ By **Lagrange's Theorem**, A^{M} (1 \leq M \leq K) are the elements whose K-th powers are $\equiv 1$. Among them, A^N (1 $\leq N \leq K$, N and K are relatively prime) are the elements with order K. Hence $\psi(K) = \phi(K)$.