

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы упр	aon Houng)	
КАФЕДРА «Программное обеспечение С	ЭВМ и информационнь	ие технологии»
РАСЧЕТНО-ПОЯСН	НИТЕЛЬНАЯ	ЗАПИСКА
К ВЫПУСКНОЙ КВАЛІ	ИФИКАЦИОН	ННОЙ РАБОТЕ
HA	ТЕМУ:	
«Метод автоматического опр темпа цифровой музыкал	-	
байесовского иерарх		
1 1		1
Студент ИУ7-86Б	(Полина дата)	А. А. Петрова (И.О. Фамилия)
(Группа)	(Подпись, дата)	(н.о. фамилия)
Руководитель		К. А. Кивва
	(Подпись, дата)	(И.О. Фамилия)

СОДЕРЖАНИЕ

ВВЕДЕНИЕ			4		
1	Осн	Основная часть			
	1.1	Постановка задачи		5	
	1.2	Этапы работы метода		5	
		1.2.1 Определение темпа		5	
		1.2.2 Определение ритма		8	
	1.3	Исходные коды и интерфейс		11	
3 A	КЛН	ОЧЕНИЕ		13	
Cl	пис	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ		14	

ВВЕДЕНИЕ

Во время выполнения выпускной квалификационной работы был разработан метод автоматического определения переменного ритмического рисунка и переменного темпа цифровой музыкальной записи на основе байесовского иерархического моделирования.

1 Основная часть

1.1 Постановка задачи

Необходимо разработать метод определения переменного ритма и переменного темпа музыки на основе байесовского иерархического моделирования. Для этого требуется составить модели, которые будут использовать статистические данные о музыке, такие как темп и тактовый размер. Модель для определения темпа должна также учитывать жанр анализируемой музыки. Составленные модели должны быть обучены на наборе данных, включающих в том числе различные жанры [1]. После обучения моделей, они должны быть протестированы на новых данных, чтобы оценить их точность и эффективность.

Входные данные:

- аудиофайл;
- жанр музыки (строка).

Выходные данные:

- набор темпов (целые числа, в ВРМ);
- набор тактовых размеров (обыкновенные дроби в формате «a/b»).

Оба набора выходных данных должны сопровождаться временем, соответствующим каждому темпу или размеру.

Ограничения:

- загружаемые аудиофайлы должны быть в формате mp3;
- знаменатель тактового размера принимается равным 4.

1.2 Этапы работы метода

1.2.1 Определение темпа

Ниже представлены IDEF0-диаграммы для алгоритма определения переменного темпа музыки [2, 3].

Рис. 1.1 – IDEF0 нулевого уровня

Рис. 1.2 – Определение переменного темпа

Рис. 1.3 – Байесовское моделирование

Рис. 1.4 – Применение результатов к фрагментам аудио

1.2.2 Определение ритма

Ниже приведены IDEF0-диаграммы для алгоритма определения переменного ритма (тактового размера) музыки.

Рис. 1.5 – IDEF0 нулевого уровня

Рис. 1.6 – Определение переменного ритма

Рис. 1.7 – Определение границ размера

Рис. 1.8 – Байесовское моделирование

1.3 Исходные коды и интерфейс

В листингах ниже представлены реализации байесовских иерархических моделей для определения темпа и ритма (тактового размера) музыки. Для разработки моделей исполльзовалась библиотека РуМСЗ [4], а для работы с аудио – библиотека librosa [5].

Листинг 1: реализация байесовской модели для определения темпа

```
def bpm_model(min_bpm: int, max_bpm: int, bpm_dataset, genre_dataset,
      genres_ints, progress):
2
      with pm.Model() as model:
         # hyperpriors (lvl 1)
        tempo = pm.Uniform('tempo', lower=min_bpm, upper=max_bpm)
        progress.setValue(20)
 5
 6
        mu = (min bpm + max bpm) / 2.0
7
         sigma = (max_bpm - min_bpm) / 12.0
         genre_coef = pm.Normal('genre_coef', mu=0, sd=1, shape=len(
      genre_dataset.unique()))
9
         progress.setValue(40)
10
11
         # prior (lvl 2)
12
         bpm_est = mu + genre_coef[genres_ints] * sigma
13
        progress.setValue(60)
14
15
         # likelihood (lvl 3)
16
        bpm_obs = pm.Normal('bpm_obs', mu=bpm_est, sd=sigma, observed=
      bpm dataset)
17
         progress.setValue(80)
18
19
         # get the samples
20
         trace = pm.sample(1000, tune=500, chains=2, cores=1)
21
         progress.setValue(100)
22
23
      return trace
```

Листинг 2: реализация байесовской модели для определения ритма

```
def rhythm_model(measure_min, measure_max, rhythm_dataset, progress):
with pm.Model() as model:
# prior
```

```
measure = pm.Uniform('measure', lower=measure_min, upper=measure_max)
5
        progress.setValue(20)
        mu = (measure_min + measure_max) / 2.0
6
7
        progress.setValue(40)
8
        sigma = (measure_max - measure_min) / 12.0
9
        progress.setValue(60)
10
        # likelihood
11
12
        measure_obs = pm.Normal('measure_obs', mu=mu, sd=sigma, observed=
      rhythm_dataset)
13
        progress.setValue(80)
14
15
        trace = pm.sample(1000, tune=1000, chains=2)
16
        progress.setValue(100)
17
18
      return trace
```

На рисунке 1.9 представлен интерфейс разработанного приложения [6].

Рис. 1.9 – Интерфейс приложения

ЗАКЛЮЧЕНИЕ

Было разработано программное обеспечение, демонстрирующее практическую осуществимость спроектированного в ходе выполнения выпускной квалификационной работы метода автоматического определения переменного ритмического рисунка и переменного темпа цифровой музыкальной записи на основе байесовского иерархического моделирования.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Spotify Tracks Dataset [Электронный ресурс]. Режим доступа: https://www.kaggle.com/datasets/maharshipandya/-spotify-tracks-dataset (15.05.2023).
- 2. Kübler R. Bayesian Hierarchical Modeling in PyMC3. 2021.
- 3. Nakamura E., Itoyama K., Yoshii K. Rhythm transcription of MIDI performances based on Hierarchical Bayesian Modelling of repetition and modification of musical note patterns. 2016.
- 4. PyMC3 Documentation [Электронный ресурс]. Режим доступа: https://www.pymc.io/projects/docs/en/v3/ (дата обращения: 17.05.2023).
- 5. Librosa: audio and music processing in Python [Электронный ресурс]. Режим доступа: https://librosa.org/doc/latest/index.html (дата обращения: 17.05.2023).
- 6. PyQt Documentation v6.5.0 [Электронный ресурс]. Режим доступа: https://www.riverbankcomputing.com/static/Docs/PyQt6/ (дата обращения: 20.05.2023).