Optimierung

- Optimierungsansätze:
 - 1. Algorithmische/mathematische Optimierungen
 - 2. Wahl der Programmiersprache
 - 3. Compiler-spezifische Optimierungen
 - 4. Hardware-spezifische Optimierungen
- Optimierungsziele: Laufzeit aber auch: Speicherplatz, etc.

Optimierung - Tradeoffs

- Optimierter Code ist meist
 - aufwändiger zu schreiben
 - schwerer zu lesen/warten
 - komplizierter zu testen/debuggen
- Nur performanzkritischen Code optimieren!

Fibonacci-Reihe Definition

Fibonacci: Rekursiv

Laufzeit Fibonacci (Rekursiv)

n	Laufzeit	
039	< 0.50s	
40	0.55s	
42	1.42s	
44	3.73s	
46	9.74s	
48	26.00s	
50	67.49s	
52	> 2 min	
5393	sehr lange	

Quiz: Laufzeit Fibonacci (Rekursiv)

Warum steigt die Laufzeit dieser Implementierung so schnell?

Die Lösung verbraucht noch zu viele Zeilen Code
Es wird mit uint64_t statt mit int64_t Werten gerechnet
Aufgrund der Berechnung mittels doppelter Rekursion
Das Programm wurde in C und nicht in Assembly geschrieben

Laufzeitklassen

- \blacktriangleright (Komplexe) Laufzeit eines Algorithmus: f(n)
- ightharpoonup f(n) wächst vergleichbar zu einer "simplen" Funktion K(n)
 - ightharpoonup K(n) ist Laufzeitklasse des Algorithmus

K(n)	Laufzeitklasse
$\frac{2^n}{n^2}$	exponentiell quadratisch
n	linear
log <i>n</i> 1	logarithmisch konstant

Laufzeitklassen – n vs 2^n

n	f(n)	g(n)
1	1s	2s
2	2s	4s
4	4s	16s
6	6s	64s
8	8s	4min
10	10s	17min
15	15s	9h
20	20s	12d

Optimierungen - Laufzeitklassen

- Laufzeitklasse des Algorithmus entscheidend
 - Erst Laufzeitkomplexität optimieren!
- Andere Optimierungen zunächst unnötig
 - Insb. von frühzeitigen Mikrooptimierungen absehen!

Optimierung für kleine Eingabewerte

- Schlechtere Laufzeitklassen möglicherweise schneller
 - Konstante Faktoren und Offsets ausschlaggebend
- ► Muss individuell getestet werden

Quiz: Laufzeitklassen (1)

Welche der folgenden Optimierungsmöglichkeiten sollte in der Regel zuerst betrachtet werden?

Speicherzugriffe und Cacheverhalten
Die Anzahl verwendeter Variablen
Die Auswahl des Algorithmus (Verbesserung der Laufzeitklasse)
Die Länge des Codes

Quiz: Laufzeitklassen (2)

Was haben (frühzeitige) Mikrooptimierungen meist zur Auswirkung?

Der Code wird schwerer zu lesen und zu warten
Die Laufzeit des Algorithmus verbessert sich um mehrere Größenordnungen
Der Code wird fehleranfälliger und komplizierter zu debuggen
Der Code wirkt professioneller, was wiederum zu einer Gehaltserhöhung führt

Quiz: Laufzeitklassen (3)

Was gilt für zwei Algorithmen A und B, wobei sich Algorithmus A in einer besseren Laufzeitklasse befindet als Algorithmus B?

Algoritmus A braucht für alle Eingabewerte weniger Zeit
Algorithmus A braucht vor allem für große Eingabewerte weniger Zeit
Für kleine Eingabewerte kann Algorithmus B schneller sein
In der Praxis kann die Verwendung von Algorithmus B oft ausreichend sein

Fibonacci: Lineare Schleife

ightharpoonup Doppelte Rekursion (exponentiell) ightarrow Lineare Schleife

```
1 uint64_t fib2(uint64_t n) {
                                     11
      if (n == 0) {
                                            uint64_t i = 1;
                                     12
           return 0;
                                            for (; i < n; i++) {
3
                                     13
                                                uint64_t tmp = b;
                                     14
      if (n > 93) {
                                                b += a:
                                     15
           return UINT64_MAX;
                                     16
                                                a = tmp:
7
                                     17
8
                                     18
      uint64_t a = 0;
                                            return b:
                                     19
      uint64_t b = 1;
                                     20 }
10
11
       . . .
```

Ausblick: Formel von Binet

$$\mathtt{fib(n)} = \frac{1}{\sqrt{5}} \Biggl(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \Biggr)$$

- + Logarithmische Laufzeit (mit schneller Exponentiation)
- Fließkommazahlen mit begrenzten Nachkommastellen
 - Genauigkeitsverluste

Optimierung mittels Lookuptabelle (LUT)

- ► Nur 94 Fibonaccizahlen mit uint64_t darstellbar
- Vorberechnung der Zahlen mit implementiertem Algorithmus
 - Speichern in Lookuptabelle (LUT)
- Algorithmus schlägt Werte einfach in LUT nach

Fibonacci: LUT

```
_1 // All 94 64-bit fibonacci numbers (n = 0,...,93)
2 \text{ uint } 64 \text{ t } 1\text{ut } \lceil \rceil = \{
       0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,...,
       7540113804746346429,12200160415121876738};
5
6 uint64_t fib3(uint64_t n) {
       if (n > 93) {
           return UINT64_MAX:
1.0
return lut[n];
12 }
```

Quiz: Optimierung mittels LUTs

Wann sind LUTs zur Optimierung meist gut geeignet?

Für eine bekannte und "überschaubare" Menge an benötigten Werten
Für nicht-deterministische Algorithmen
Für Algorithmen mit unendlich vielen möglichen Eingabe- und Ausgabewerten
Für häufig auftretende, identische Berechnunge

Speicherplatzoptimierung

- + Mittels LUT konstante "Berechnungszeit"
- Nur verwendbar, wenn alle gewünschten Fibonacci-Zahlen bereits vorberechnet sind
- Lookuptabelle potentiell sehr groß
 - ► Hoher Speicherplatzverbrauch
 - ▶ Nicht für sehr große *n* praktikabel/möglich

Speicherplatzoptimierung: LUT verkleinern

- ► Lookuptabelle in Abschnitte unterteilen
 - Erste zwei Werte jeden Abschnitts speichern
 - Restlichen Werte ab Abschnittanfang dynamisch zur Laufzeit berechnen
- Z.B. 6 Abschnitte mit je 16 (14 im letzen Abschnitt) Zahlen
 - ► Lookuptabelle schrumpft von 94 Einträgen auf 12

Fibonacci: Kleine LUT (1)

```
1 #include <stdint.h>
_3 // LUT for n = {0,16,32,48,64.80}
4 uint64_t lut0[] = {
      0,987,2178309,4807526976,10610209857723,
     23416728348467685};
8 // LUT for n = \{1.17.33.49.65.81\}
9 uint64_t lut1[] = {
      1,1597,3524578,7778742049,17167680177565,
10
37889062373143906}:
12 . . .
```

Fibonacci: Kleine LUT (2)

```
12 . . .
13 uint64_t fib4(uint64_t n) {
      if (n > 93) {
14
           return UINT64_MAX;
15
16
17
      uint64_t index = n / 16;
18
      uint64 t a = lut0[index];
19
      uint64_t b = lut1[index];
20
21
       . . .
```

Fibonacci: Kleine LUT (3)

```
21
index *= 16;
      if (index == n)
23
          return a;
24
25
      index++;
26
      for (; index < n; index++) {
27
         uint64_t tmp = b;
28
          b += a;
29
          a = tmp;
30
31
32
33
      return b;
34 }
```

Laufzeit der Fibonacci Implementierungen im Vergleich

Laufzeitvergleich der Fibonacci Algorithmen

	Rekursiv	Schleife	LUT	Kleine LUT
Laufzeitklasse Wiederholungen	Exponentiell 1	Linear ——	Konstant 10.000.000	Konstant ¹
f(40)	0.55s	1.13s	0.03s	0.23s
f(45)	6.02s	1.27s	0.03s	0.36s
f(50)	67.49s	1.40s	0.03s	0.09s
f(93)	_	2.70s	0.03s	0.36s

¹Je weniger Werte die LUT umfasst, desto mehr hat die worst-case Laufzeit linearen "Charakter"

Quiz: Fibonacci (Kleine LUT) (1)

Um welchen Faktor können wir eine LUT ungefähr verkleinern, wenn wir sie mit der eben besprochenen Speicherplatzoptimierung (speziell für die Fibonacci Zahlen) in 8 Abschnitte aufteilen?

pprox 6		≈ 12
≈ 8		pprox 16

Quiz: Fibonacci (Kleine LUT) (2)

Für welche Eingabewerte hat die Laufzeit der kleinen LUT ihr

Minimum		Maximum
	Für die Werte am Anfang jedes Abschnitts	
	$n \in \{0, 16, 32, 48, 64, 80\}$	
	Für die Werte am Ende jedes Abschnitts	
	$n \in \{15, 31, 47, 63, 79\}$	

Quiz: Vergleich der Implementierungen

Welche Implementierung ist jeweils am besten auf (1) Laufzeit, (2) Speicherplatz, und (3) Laufzeit *und* Speicherplatz optimiert?

	1	2	3
Rekursiv			
Lineare Schleife			
LUT			
Kleine LUT			