

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA

Scuola di Scienze

Dipartimento di Informatica, Sistemistica e Comunicazione

Corso di Laurea in Informatica

Adozione di Tecniche di Machine Learning per l'Identificazione di Intrusioni nelle Reti di Telecomunicazioni

Relatore: Dott. Marco Savi

Laureando:

Nicolò Urbani

Correlatore: Jacopo Talpini 856213

Analisi Problema e Obiettivi

- Problema:
 - Aumento Attacchi Informatici nelle Reti di Telecomunicazione
- Network Intrusion Detection System (NIDS) cosa sono?
 - Monitorare i flussi di rete
 - Individuare <u>pattern</u> per il riconoscimento automatico degli attacchi
- Obiettivi:
 - Analizzare e Confrontare diverse tecniche di **Supervised Machine Learning** su diversi Dataset IDS
 - → Modello più Performante
 - Valutare il comportamento del modello combinando più dataset

NF-TON-IoT-v2

NF-CSE-CIC-IDS2018-v2

36% Traffico Benigno

88% Traffico Benigno

Sample Dataset NF-TON-IoT-v2

- ☐ 43 Features -Standard NetFlow-Versione 2 (CISCO)
- 8.5 milioni di dati
- Estratto del dataset NF-TON-IoT-v2 :

43 Features

IPV4_SRC_ ADDR	L4_SRC_ PORT	IPV4_DST_ ADDR	L4_DST_ PORT	L7_PROTO	IN_BYTES	IN_PKTS	OUT_ BYTES	LONGEST_FLOW_ PKT	•••	Label
192.168.1. 169	65317	239.255.25 5.250	1900	0	165	1	0	165		Benign
192.168.1. 79	54023	192.168.1.2 55	53	0	108	2	108	54		DoS
192.168.1. 169	41754	239.255.25 5.250	3766	0	48	1	0	48		Scanning

8.5 milioni

Tecniche di Machine Learning

Decision Tree

Boosted Decision Tree

Random Forest / Extra Trees

Neural Network

Confronto Modelli: NF-TON-IoT-v2 - Test Set

Performance Metrics		Decision Tree	Random Forest	Extra Trees	Boosted DT	Neural Network
Precision	Macro AVG	0.9212	0.9698	0.9498	0.9224	0.7388
	Weighted AVG	0.9752	0.9822	0.9812	0.9752	0.9448
Recall	Macro AVG	0.9171	0.9024	0.9013	0.9173	0.8722
	Weighted AVG	0.9751	0.9820	0.9811	0.9752	0.9259
F1	Macro AVG	0.9191	0.9216	0.9175	0.9197	0.7485
	Weighted AVG	0.9752	0.9819	0.9810	0.9752	0.9346
Accuracy		0.9751	0.9820	0.9811	0.9751	0.9259
Percentage False Benign		0.68%	0.30%	0.32%	0.67%	1.72%
Model Fitting Time (s)		89.13	234.9	305.3	89.74	145.44
Prediction Time(µs)		0.21	6.66	6.03	0.47	1.38

Random Forest NF-TON-IoT-v2

	precision	recall	f1-score	support
Benign	0.9970	0.9938	0.9954	609947
backdoor	0.9994	0.9952	0.9973	1681
DDoS	0.9925	0.9872	0.9898	202624
DoS	0.9269	0.9081	0.9174	71261
injection	0.9576	0.8918	0.9235	68446
MITM (Man In The Middle)	0.9420	0.3368	0.4962	772
password	0.9746	0.9680	0.9713	115333
ransomware	0.9706	0.9649	0.9677	342
scanning	0.9971	0.9960	0.9966	378142
XSS (Cross Site Scripting)	0.9404	0.9821	0.9608	245502
Accuracy			0.9820	1694050
Macro AVG	0.9698	0.9024	0.9216	1694050
Weighted AVG	0.9822	0.9820	0.9819	1694050

ARP Poisoning Port stealing ICMP Redirection

Predicted labels

Combinazione Dataset

Scenari - Combinazione Dataset

Scenario 1

→ Training Set : Dataset Combinato

→ Test Set: Dataset Combinato

Scenario 2

→ Training Set : Dataset Combinato

→ Test Set: NF-CSE-CIC-IDS2018-v2

Scenario 3

→ Training Set: NF-TON-IoT-v2

→ Test Set: NF-CSE-CIC-IDS2018-v2

Confronto Scenari: Test Set

Performance Metrics		Scenario 1	Scenario 2	Scenario 3	
Precision	Macro AVG	0.9718	0.9370	0.2362	
	Weighted AVG	0.9878	0.9973	0.8491	
Recall	Macro AVG	0.8683	0.8637	0.2319	
	Weighted AVG	0.9878	0.9971	0.8336	
F1	Macro AVG	0.8960	0.8925	0.2334	
	Weighted AVG	0.9872	0.9969	0.8413	
Accuracy		0.9877	0.9971	0.8345	
Percentage False Benign		0.46%	2.69%	5.52%	
Model Fitting Tir	ne (s)	289.96	469.00	376.87	
Prediction Time	(µs)	6.17	10.47	5.86	

Osservazioni Conclusive

- Applicare e Confrontare Tecniche di Machine Learning su Dataset presenti in letteratura
- ☐ Modello più performante: Random Forest → Performance confrontabili con i lavori dello stato dell'arte
- Aspetti Cruciali:
 - Schemi di Attacco
 - ☐ Etichettatura del Dataset
 - Sbilanciamento del Dataset
- ☐ Ulteriori Sviluppi futuri: Federated Learning (FL)
 - Addestramento Locale
 - ☐ Efficienza Computazionale e Privacy

GRAZIE PER L'ATTENZIONE

Approfondimenti

Scenario 1

	precision	recall	f1-score	support
Benign	0.9954	0.9976	0.9965	1053574
Bot	1.0000	1.0000	1.0000	6440
Infilteration	0.9584	0.3168	0.4762	5236
backdoor	0.9988	1.0000	0.9994	840
brute-force	0.9920	0.9774	0.9847	5579
ddos	0.9942	0.9914	0.9928	163874
dos	0.9513	0.9419	0.9466	57411
injection	0.9541	0.8819	0.9166	34243
mitm	0.9160	0.3109	0.4642	386
password	0.9713	0.9645	0.9679	57666
ransomware	0.9695	0.9298	0.9493	171
scanning	0.9957	0.9952	0.9954	189071
xss	0.9368	0.9799	0.9578	122751
Accuracy			0.9878	1697242
Macro AVG	0.9718	0.8683	0.8960	1697242
Weighted AVG	0.9878	0.9878	0.9872	1697242

Scenario 2

	precision	recall	f1-score	support
Benign	0.9972	0.9996	0.9984	8317784
Bot	1.0000	1.0000	1.0000	71548
Infilteration	0.9879	0.6014	0.7476	58180
brute-force	0.9929	0.9876	0.9903	61992
ddos	0.9987	0.9993	0.9990	695135
dos	0.9966	1.0000	0.9983	242000
injection	0.5858	0.4583	0.5143	216
Accuracy			0.9971	9446855
Macro AVG	0.9370	0.8637	0.8925	9446855
Weighted AVG	0.9973	0.9971	0.9969	9446855

Scenario 3

	precision	recall	f1-score	support
Benign	0.9448	0.9275	0.9336	8317784
ddos	0.0000	0.0000	0.0000	695135
dos	0.0001	0,0001	0.0001	242000
injection	0.0000	0.0000	0.0000	216
Accuracy			0.8336	9255135
Macro AVG	0.2362	0.2319	0.2334	9255135
Weighted AVG	0.8491	0.8336	0.8390	9255135

CSE-CID-IDS2018Random Forest

	precision	recall	f1-score	support
Benign	1.00	1.00	1.00	1663557
Bot	1.00	1.00	1.00	14310
Brute Force -Web	0.16	0.11	0.13	214
Brute Force -XSS	0.19	0.12	0.15	93
DDOS attack-HOIC	1.00	1.00	1.00	108086
DDOS attack-LOIC-UDP	1.00	0.99	0.99	211
DDoS attacks-LOIC-HTTP	1.00	1.00	1.00	30730
DoS attacks-GoldenEye	1.00	1.00	1.00	2772
DoS attacks-Hulk	1.00	1.00	1.00	43265
DoS attacks-SlowHTTPTest	1.00	1.00	1.00	1412
DoS attacks-Slowloris	1.00	1.00	1.00	951
FTP-BruteForce	1.00	1.00	1.00	2593
Infilteration	0.97	0.35	0.52	11636
SQL Injection	0.21	0.12	0.15	43
SSH-Bruteforce	1.00	1.00	1.00	9498
accuracy			1.00	1889371
macro avg	0.83	0.78	0.80	1889371
weighted avg	1.00	1.00	0.99	1889371

Combinazione Dataset CSE-CID-IDS2018 e NF-TON-IoT-v2

SHAP EXPLANATION NF-TON-IoT-v2

