Attention-Based Models

@Xiaohan

Not All Contexts Are Created Equally Better Word Representations with Variable Attention

@CMU

Building it up from a simple start. To improve Word Embedding.

What's Word Embedding?

- Words are symbolic, hard to incorporate with the numerical machine learning.
- Some institutive methods are proposed.
 - One-Hoc...
 - Disadvantages: Non-informative.
- Representation Learning is involved to condense the word vector.
 - Word2Vec, Glove...
 - Disadvantages:
 - Treating all the contexts equally to involve much noise.
 - Example: We won the *game*, *Nicely* played.

Mathematically

CBOW

$$p(\mathbf{v}_0 \mid \mathbf{w}_{[-b,b]-\{0\}}) = \frac{\exp \mathbf{v}_0^{\top} \mathbf{O} \mathbf{c}}{\sum_{\mathbf{v} \in V} \exp \mathbf{v}^{\top} \mathbf{O} \mathbf{c}}$$
$$\mathbf{c} = \frac{1}{2b} \sum_{i \in [-b,b]-\{0\}} \mathbf{w}_i$$

Treating Equally

CBOW with Attention

$$\mathbf{c} = \sum_{i \in [-b,b]-\{0\}} a_i(w_i)\mathbf{w}_i$$
 Weighting is the core idea of Attention.

Weights are defined varying with applications. idea of Attention.

$$a_i(w) = \frac{\exp k_{w,i} + s_i}{\sum_{j \in [-b,b] - \{0\}} \exp k_{w,j} + s_j}$$

Case Study

Experiments

	POS Induction	POS Tagging	Sentiment Analysis	
CBOW	50.40	97.03	71.99	
Skip-ngram	33.86	97.19	72.10	
SSkip-ngram	47.64	97.40	69.96	
CBOW Attention	54.00	97.39	71.39	

- Attention aims at concerning the instinct structure.
 Here is the dependency syntax.
- Maybe, semantic analysis could be improved by future work.
 - Ship-Gram with Attention.

What's Attention-Based Models?

- Attention-based models are a mechanism to address the important components and avoid the noise.
- Usually, it could be represented as below, stated as Attention Equation.

$$\overrightarrow{c_i} = A \overrightarrow{h_j}$$

- A is the Alignment Matrix, which is generated by empirical consideration.
- Noted as ABM.

What's the advantages?

- Long-term sequence analysis.
 - Expanding the sibling window size or Enhancing with LSTM or GRU...
 - Long-term makes more noise, degrading the performance.
 - ABM is just born for this issue. By learning to weight the importance and ignore the irrelevance, long-term analysis is enhanced.
- Three Key Points
 - Why Attention?
 - Where to put Attention?
 - How to weight Attention?

Applications

Understanding Attention-Based Models by Applications.

- Machine Translation.
- Speech Recognition.
- Image Caption Generation.
- Abstractive Summarization.
- Reasoning about Entailment.
- Language Models.

Neural Machine Translation By Jointly Learning to Align and Translate

@Jacobs.University

Effective Approaches to Attention-Based Neural Machine Translation

@Standford

Machine Translation

Traditional Methods

- Phrase-based models with rules, syntax and probabilistic modelling.
- Main Concerns.
 - Alignment.
 - Generation.
 - ...

Neural Machine Translation

- Automatically learning to align and translate.
- Encoder-Decoder model.
 - Encode the source into a fixed-length vector.
 - Decode the target from the fixed-length vector.
- Disadvantages: Very bad performance for long sentences.

X Y Z <eos>

General RNN Encoder-Decoder

Source Encoding

$$h_t = f(x_t, h_{t-1})$$
$$c = q(\{h_1, \dots, h_{T_x}\})$$

Target Decoding

$$s_{i}=f(s_{i-1},y_{i-1},c_{i}).$$
 Why Attention?
$$p(y_{t}\mid\{y_{1},\cdots,y_{t-1}\},c)=g(y_{t-1},s_{t},c),$$

Why Attention? Where to put our 'Attention'?

$$p(\mathbf{y}) = \prod_{t=1}^{T} p(y_t \mid \{y_1, \dots, y_{t-1}\}, c),$$

Objective

Attention-Based Enhancement

Mathematically.

$$s_i = f(s_{i-1}, y_{i-1}, c_i).$$

 $p(y_t | \{y_1, \dots, y_{t-1}\}, c) = g(y_{t-1}, s_t, c),$

$$c_{i} = \sum_{j=1}^{T_{x}} \alpha_{ij} h_{j}.$$

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_{x}} \exp(e_{ik})},$$

$$e_{ij} = a(s_{i-1}, h_j)$$

Target Decoding

Attention-Based

Probabilistic Perspective

$$h_t = f(x_t, h_{t-1})$$
$$c = q(\{h_1, \dots, h_{T_x}\})$$

Experiments

Experiments

Are there more powerful weights?

• General Forms:

$$\begin{aligned} a_t(s) &= \operatorname{align}(h_t, \bar{h}_s) \\ &= \frac{\exp\left(\operatorname{score}(h_t, \bar{h}_s)\right)}{\sum_{s'} \exp\left(\operatorname{score}(h_t, \bar{h}_{s'})\right)} \end{aligned} \quad \quad \operatorname{score}(h_t, \bar{h}_s) = \begin{cases} h_t^\top \bar{h}_s & \textit{dot} \\ h_t^\top W_a \bar{h}_s & \textit{general} \\ v_a^\top \tanh\left(W_a[h_t; \bar{h}_s]\right) & \textit{concat} \end{cases}$$

To consider the position prior:

$$p_t = S \cdot \operatorname{sigmoid}(v_p^{\top} \tanh(W_p h_t)),$$
$$a_t(s) = \operatorname{align}(h_t, \bar{h}_s) \exp\left(-\frac{(s - p_t)^2}{2\sigma^2}\right)$$

To consider the input-feeding:

Experiments

System	Ppl	BLEU
Winning WMT'14 system - phrase-based + large LM (Buck et al., 2014)		20.7
Existing NMT systems		
RNNsearch (Jean et al., 2015)		16.5
RNNsearch + unk replace (Jean et al., 2015)		19.0
RNNsearch + unk replace + large vocab + ensemble 8 models (Jean et al., 2015)		21.6
Our NMT systems		
Base	10.6	11.3
Base + reverse	9.9	12.6 (+1.3)
Base + reverse + dropout	8.1	14.0 (+1.4)
Base + reverse + dropout + global attention (location)	7.3	16.8 (+2.8)
Base + reverse + dropout + global attention (location) + feed input	6.4	18.1 (+ <i>1.3</i>)
Base + reverse + dropout + local-p attention (general) + feed input	5.9	19.0 (+0.9)
Base + reverse + dropout + local-p attention (general) + feed input + unk replace	3.9	20.9 (+1.9)
Ensemble 8 models + unk replace		23.0 (+2.1)

Conclusions For Three Key Points

- Why Attention?
 - Long-term de-noising.
- Where to put Attention?
 - To add an attention layer between source encoding and target decoding.
- How to weight Attention?
 - To consider Position Prior.
 - To consider Input-Feeding.

Attention-Based Models for Speech Recognition

@Universite de Montreal

Attention-Based Recurrent Model for Speech Generation (ARSG)

 $y_i \sim Generate(s_{i-1}, g_i),$

Weighting Attention?

$$\alpha_{i,j} = \exp(e_{i,j}) / \sum_{j=1}^{L} \exp(e_{i,j})$$

MLP for the weights

$$e_{i,j} = w^{\mathsf{T}} \tanh(W s_{i-1} + V h_j + U f_{i,j} + b)$$
$$f_i = F * \alpha_{i-1}.$$

$$f_i = F * \alpha_{i-1}.$$

Two Tricks:

$$a_{i,j} = \exp(\beta e_{i,j}) / \sum_{j=1}^{L} \exp(\beta e_{i,j}),$$

Smoothing:

$$a_{i,j} = \sigma(e_{i,j}) / \sum_{j=1}^{L} \sigma(e_{i,j}) .$$

Experiments

Model	Dev	Test
Baseline Model	15.9%	18.7%
Baseline + Conv. Features	16.1%	18.0%
Baseline + Conv. Features + Smooth Focus	15.8%	17.6%
RNN Transducer [16]	N/A	17.7%
HMM over Time and Frequency Convolutional Net [25]	13.9%	16.7%

Conclusions For Three Key Points

- Why Attention?
 - Long-term de-noising.
- Where to put Attention?
 - To add an attention layer between input layer and hidden state recurrent layer.
- How to weight Attention?
 - To consider an MLP
 - To consider the smoothing trick.

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

@Toronto University

Architecture

Visualizing the process

LSTM with Attention

Noted we have already extracted a vector sequence.

$$\begin{pmatrix} \mathbf{i}_t \\ \mathbf{f}_t \\ \mathbf{o}_t \\ \mathbf{g}_t \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} T_{D+m+n,n} \begin{pmatrix} \mathbf{E} \mathbf{y}_{t-1} \\ \mathbf{h}_{t-1} \\ \hat{\mathbf{z}_t} \end{pmatrix}$$

LSTM

$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \mathbf{g}_t$$
$$\mathbf{h}_t = \mathbf{o}_t \odot \tanh(\mathbf{c}_t).$$

$$e_{ti} = f_{\text{att}}(\mathbf{a}_i, \mathbf{h}_{t-1})$$

$$\alpha_{ti} = \frac{\exp(e_{ti})}{\sum_{k=1}^{L} \exp(e_{tk})}.$$

$$\hat{\mathbf{z}}_t = \phi\left(\left\{\mathbf{a}_i\right\}, \left\{\alpha_i\right\}\right),$$

Attention to select input.

Experiments

		BLEU				
Dataset	Model	B-1	B-2	B-3	B-4	METEOR
Flickr8k	Google NIC(Vinyals et al., 2014) ^{†Σ}		41	27		
	Log Bilinear (Kiros et al., 2014a)°	65.6	42.4	27.7	17.7	17.31
	Soft-Attention	67	44.8	29.9	19.5	18.93
	Hard-Attention	67	45.7	31.4	21.3	20.30
Flickr30k	Google NIC $^{\dagger \circ \Sigma}$	66.3	42.3	27.7	18.3	
	Log Bilinear		38	25.4	17.1	16.88
	Soft-Attention	66.7	43.4	28.8	19.1	18.49
	Hard-Attention	66.9	43.9	29.6	19.9	18.46
COCO	CMU/MS Research (Chen & Zitnick, 2014) ^a					20.41
	MS Research (Fang et al., 2014) ^{† a}					20.71
	BRNN (Karpathy & Li, 2014)°		45.1	30.4	20.3	
	Google NIC $^{\dagger \circ \Sigma}$	66.6	46.1	32.9	24.6	
	Log Bilinear°		48.9	34.4	24.3	20.03
	Soft-Attention		49.2	34.4	24.3	23.90
	Hard-Attention	71.8	50.4	35.7	25.0	23.04

Conclusions For Three Key Points

- Why Attention?
 - To select the supposed input.
- Where to put Attention?
 - To add an attention layer between input layer and LSTM layer.
- How to weight Attention?
 - Nothing interesting.

A Neural Attention Model for Abstractive Sentence Summarization

@Facebook AI Research

Neural Language Model Based

Totally, we would like an MAP estimator.

$$\log p(\mathbf{y}|\mathbf{x}; \theta) \approx \sum_{i=0}^{N-1} \log p(\mathbf{y}_{i+1}|\mathbf{x}, \mathbf{y}_{c}; \theta),$$

 The terms are based on a language model that is the neural language model.

$$p(\mathbf{y}_{i+1}|\mathbf{y}_{c},\mathbf{x};\theta) \propto \exp(\mathbf{V}\mathbf{h} + \mathbf{W}\operatorname{enc}(\mathbf{x},\mathbf{y}_{c})),$$

 $\tilde{\mathbf{y}}_{c} = [\mathbf{E}\mathbf{y}_{i-C+1},\ldots,\mathbf{E}\mathbf{y}_{i}],$
 $\mathbf{h} = \tanh(\mathbf{U}\tilde{\mathbf{y}}_{c}).$

What we focus is the encoder.

Encoders

Bag-of-Word Encoder:

$$\mathrm{enc}_1(\mathbf{x},\mathbf{y}_\mathrm{c}) = \mathbf{p}^\top \tilde{\mathbf{x}},$$
 $\mathbf{p} = [1/M,\ldots,1/M],$ Treating each word equally $\tilde{\mathbf{x}} = [\mathbf{F}\mathbf{x}_1,\ldots,\mathbf{F}\mathbf{x}_M].$

Attention-Based Encoder:

$$\operatorname{enc}_3(\mathbf{x}, \mathbf{y}_{\operatorname{c}}) = \mathbf{p}^{\top} \bar{\mathbf{x}},$$
 Familiar Attention Trick $\mathbf{p} \propto \exp(\mathbf{\tilde{x}} \mathbf{P} \mathbf{\tilde{y}}_{\operatorname{c}}'),$ $\mathbf{\tilde{x}} = [\mathbf{F} \mathbf{x}_1, \dots, \mathbf{F} \mathbf{x}_M],$ $\mathbf{\tilde{y}}_{\operatorname{c}}' = [\mathbf{G} \mathbf{y}_{i-C+1}, \dots, \mathbf{G} \mathbf{y}_i],$ $\forall i \ \bar{\mathbf{x}}_i = \sum_{q=i-Q}^{i+Q} \mathbf{\tilde{x}}_i/Q.$

Training

- It's a direct HMM model with multiple time-delay circles.
 - Viterbi Decoding.
 - Beam-Search Viterbi Decoding.

$$\log p(\mathbf{y}|\mathbf{x};\theta) \approx \sum_{i=0}^{N-1} \log p(\mathbf{y}_{i+1}|\mathbf{x},\mathbf{y}_{c};\theta),$$

Experiments

		DUC-2004		Gigaword			
Model	ROUGE-1	ROUGE-2	ROUGE-L	ROUGE-1	ROUGE-2	ROUGE-L	Ext. %
IR	11.06	1.67	9.67	16.91	5.55	15.58	29.2
Prefix	22.43	6.49	19.65	23.14	8.25	21.73	100
COMPRESS	19.77	4.02	17.30	19.63	5.13	18.28	100
W&L	22	6	17	-	-	-	-
TOPIARY	25.12	6.46	20.12	-	-	-	-
Moses+	26.50	8.13	22.85	28.77	12.10	26.44	70.5
ABS	26.55	7.06	22.05	30.88	12.22	27.77	85.4
ABS+	28.18	8.49	23.81	31.00	12.65	28.34	91.5
REFERENCE	29.21	8.38	24.46	-	-	-	45.6

Conclusions For Three Key Points

- Why Attention?
 - To focus on important parts.
- Where to put Attention?
 - To add an attention layer for word weighting.
- How to weight Attention?
 - Nothing interesting.

Reasoning about Entailment with Neural Attention

@Google Deep Mind

Problem

- Automatically recognizing entailment relations between pairs of natural language sentences.
 - A wedding party taking pictures
 - Someone got married.

Architectures

Experiments

Model	k	$ \theta _{ ext{W+M}}$	$ \theta _{ m M}$	Train	Dev	Test
LSTM [Bowman et al., 2015] Classifier [Bowman et al., 2015]	100	≈ 10 M -	221k -	84.4 99.7	-	77.6 78.2
LSTM shared LSTM shared LSTMs	100 159 116	3.8M 3.9M 3.9M	111k 252k 252k	83.7 84.4 83.5	81.9 83.0 82.1	80.9 81.4 80.9
Attention Attention two-way	100 100	3.9M 3.9M	242k 242k	85.4 86.5	83.2 83.0	82.3 82.4
Word-by-word attention Word-by-word attention two-way	100 100	3.9M 3.9M	252k 252k	85.3 86.6	83.7 83.6	83.5 83.2

Experiments

Hypothesis: Two dogs swim in the lake.

dogs
are
around
are
grass
type
Premise

(c)

(d)

Conclusions For Three Key Points

- Why Attention?
 - To select important words.
- Where to put Attention?
 - Along with all the LSTMs.
- How to weight Attention?
 - Nothing interesting.

A Hierarchical Neural Auto-Encoder for Paragraphs and Documents

@Standford

Encoding Source Language with Convolutional Neural Network for Machine Translation

@Chinese Academy of Sciences

Paragraph Auto-Encoder Standard LSTM

Paragraph Auto-Encoder Hierarchical LSTM

LSTM with Attention

$$\begin{bmatrix} i_t \\ f_t \\ o_t \\ l_t \end{bmatrix} = \begin{bmatrix} \sigma \\ \sigma \\ \sigma \\ \end{bmatrix} W \cdot \begin{bmatrix} h_{t-1}^s(\operatorname{dec}) \\ e_t^s \\ m_t \end{bmatrix}$$
 Attention
$$c_t = f_t \cdot c_{t-1} + i_t \cdot l_t$$

$$h_t^s = o_t \cdot c_t$$

$$m_t = \sum_{i \in [1, N_D]} a_i h_i^s(\operatorname{enc})$$
 Attention Equation

Experiments

Model	Dataset	BLEU	ROUGE-1	ROUGE-2	Coherence(L)
Standard	Hotel Review	0.241	0.571	0.302	1.92
Hierarchical	Hotel Review	0.267	0.590	0.330	1.71
Hierarchical+Attention	Hotel Review	0.285	0.624	0.355	1.57
Standard	Wikipedia	0.178	0.502	0.228	2.75
Hierarchical	Wikipedia	0.202	0.529	0.250	2.30
Hierarchical+Attention	Wikipedia	0.220	0.544	0.291	2.04

Conclusions For Three Key Points

- Why Attention?
 - To select important words.
- Where to put Attention?
 - Along with all the LSTMs.
- How to weight Attention?
 - Nothing interesting.

An Overview of Attention-Based Models

@Xiaohan

Why Attention?

- Long-term de-noising.
 - Machine Translation.
 - Speech Recognition.
- To select effective input.
 - Image Caption Generator.
- To focus important parts.
 - Word Embedding.
 - Abstractive Summarization.
 - Reasoning about Entailment.
 - Language Model.

Where to put attention?

- To add an attention layer between source encoding and target decoding.
 - Machine Translation.
- To add an attention layer between input layer and hidden state recurrent layer.
 - Speech Recognition.
 - Language Models.
 - Reasoning about Entailment.
 - Image Caption Generator.
- To add an attention layer for word weighting.
 - Word Embedding.
 - Abstractive Summarization.

How to weight Attention?

- To consider Position Prior.
- To consider Input-Feeding.
- To consider an MLP
- To consider the smoothing trick.

Prospective

- I am supposed to share my options about the improvements of Attention-Based Models.
- But, time limits the reports.

Thanks.

• Q & A.