International

Rectifier

AUTOMOTIVE MOSFET

PD -93992

IRF1405S IRF1405L

Typical Applications

- Electric Power Steering (EPS)
- Anti-lock Braking System (ABS)
- Wiper Control
- Climate Control
- Power Door

Benefits

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax

Description

Stripe Planar design of HEXFET® Power MOSFETs utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

HEXFET® Power MOSFET

D²Pak IRF1405S

TO-262 IRF1405L

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	131©		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	93⑥	A	
I _{DM}	Pulsed Drain Current ①	680		
P _D @T _C = 25°C	Power Dissipation	200	W	
	Linear Derating Factor	1.3	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy2	590	mJ	
I _{AR}	Avalanche Current	See Fig.12a, 12b, 15, 16	Α	
E _{AR}	Repetitive Avalanche Energy®		mJ	
dv/dt	Peak Diode Recovery dv/dt 3	5.0	V/ns	
TJ	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.75	°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB mount)®		40	

www.irf.com

1

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.057		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		4.6	5.3	mΩ	V _{GS} = 10V, I _D = 101A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = 10V, I_D = 250\mu A$
9fs	Forward Transconductance	69			S	$V_{DS} = 25V, I_D = 110A$
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 55V$, $V_{GS} = 0V$
				250		$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA .	$V_{GS} = 20V$
'GSS	Gate-to-Source Reverse Leakage			-200	117 ($V_{GS} = -20V$
Qg	Total Gate Charge		170	260		$I_D = 101A$
Q _{gs}	Gate-to-Source Charge		44	66	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		62	93		V _{GS} = 10V4
t _{d(on)}	Turn-On Delay Time		13			$V_{DD} = 38V$
t _r	Rise Time		190		ns	I _D = 110A
t _{d(off)}	Turn-Off Delay Time		130		115	$R_G = 1.1\Omega$
t _f	Fall Time		110			V _{GS} = 10V ④
LD	Internal Drain Inductance		4.5		nH	Between lead,
_D	Internal Diam Inductance		4.5			6mm (0.25in.)
	Laternal Common la distance		7.5			from package
L _S	Internal Source Inductance		7.5			and center of die contact
C _{iss}	Input Capacitance		5480			$V_{GS} = 0V$
Coss	Output Capacitance		1210		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		280			f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		5210			$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		900			$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance ⑤		1500			$V_{GS} = 0V$, $V_{DS} = 0V$ to 44V

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions					
Is	Continuous Source Current			404@		MOSFET symbol					
	(Body Diode)	1		1316	A	showing the					
I _{SM}	Pulsed Source Current				600		000	000	000	'`	integral reverse
	(Body Diode) ①		680	'	p-n junction diode.						
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 101$ A, $V_{GS} = 0$ V ④					
t _{rr}	Reverse Recovery Time		88	130	ns	$T_J = 25$ °C, $I_F = 101$ A					
Q _{rr}	Reverse RecoveryCharge		250	380	nC	di/dt = 100A/μs ④					
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)									

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 14. Threshold Voltage Vs. Temperature www.irf.com

Fig 15. Typical Avalanche Current Vs. Pulsewidth

Fig 16. Maximum Avalanche Energy Vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16). t_{av} = Average time in avalanche. D = Duty cycle in avalanche = t_{av} ·f

 $Z_{\text{thJC}}(D, t_{\text{av}})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot \text{I}_{a\text{V}} \text{)} = \Delta \text{T} / \text{Z}_{th\text{JC}} \\ I_{a\text{V}} &= 2\Delta \text{T} / \text{ [} 1.3 \cdot \text{BV} \cdot \text{Z}_{th} \text{]} \\ E_{A\text{S (AR)}} &= P_{D \text{ (ave)}} \cdot t_{a\text{V}} \end{split}$$

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

*** $\mbox{V}_{\mbox{GS}}$ = 5.0V for Logic Level and 3V Drive Devices

Fig 17. For N-channel HEXFET® power MOSFETs

D²Pak Package Outline

D²Pak Part Marking Information

TO-262 Package Outline

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. HEATSINK & LEAD DIMENSIONS DO NOT INCLUDE BURRS.

TO-262 Part Marking Information

EXAMPLE: THIS IS AN IRL3103L

LOT CODE 1789

ASSEMBLED ON WW 19, 1997

IN THE ASSEMBLY LINE "C"

D²Pak Tape & Reel Information

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- $\label{eq:starting} \begin{array}{ll} \text{ \ensuremath{\mathbb{Z}}} & \text{Starting T}_J = 25^\circ\text{C}, \ L = 0.11\text{mH} \\ & R_G = 25\Omega, \ I_{AS} = 101\text{A}. \ \mbox{(See Figure 12)}. \end{array}$
- 4 Pulse width \leq 400 μ s; duty cycle \leq 2%.
- $^{\circ}$ C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- © Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
- Dimited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- \$ This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

Data and specifications subject to change without notice.

This product has been designed and qualified for the industrial market.

Qualification Standards can be found on IR's Web site.

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.1/01