

Cours

Les Fondamentaux de l'Informatique

L'ADRESSAGE IP

Introduction

Les technologies de l'information ou IT en anglais, doivent pouvoir communiquer entre eux.

Quand on observe l'origine du réseau Internet, on va pouvoir noter que : les balbutiements d'Internet dates des années 60 ; le premier réseau à naitre est ARPANET en 1969 pour être présenté publiquement en 1972 ; dans la même année fût inventé les e-mails ; en 1974 les protocoles TPC et IP sont créé pour donner naissance à TCP/IP ; la première interconnexion de réseau se réalisa en connexion sans-fil.

Et oui, Internet désigne un réseau maillé résultant de la combinaison des plusieurs autres réseaux.

Et pour pouvoir communiquer entre eux, il était nécessaire de leur attribuer des adresses permettant de se repérer et distribuer les paquets.

Mais du coup, comment ça marche tout ça?

Internet Protocol Version 4

RFC: 760 et 791

L'Internet Protocol version 4 (IPv4) est le protocole le plus répandu à travers le monde. Il s'agit d'une adresse codée sur 32 bits (donc, 4 octets) offrant ainsi une possibilité de 2^32 adresses.

Cela peut paraitre immense : 4 294 967 296 adresses en tout.

Il faut cependant savoir que les adresses IPv4 étaient TOUTES utilisées dès février 2011!

Il faut savoir que lorsque que l'on va parler d'un « hôte », nous parlerons d'un appareil ayant une adresse IP. Chaque adresse est bien entendu unique sur Internet.

Bien qu'une adresse IP soit en décimal pour des raisons de praticité, quand on conçoit une adresse IP les calculs se font en binaire.

Exemple:

192.168.100.44

1100 0000 . 1010 1000 . 0110 0100 . 0010 1100

Donc, l'adresse IP locale 192.168.100.44 correspond en binaire à : 11000000.10101000.01100100.00101100

Chaque nombre d'une adresse en binaire est compris entre 0 et 255 soit 0000 000 et 1111 1111.

Toute adresse est composée de deux parties :

- Une partie « net-ID » qui identifie le réseau.
- Une partie « host-ID » qui identifie l'hôte.

Pour connaître quelle partie occupe quel segment de l'adresse, il faut en connaître sa classe.

Qu'est-ce qu'une classe d'adresse?

Historiquement, il a été établi ce que l'on appelle des classes d'adresses.

Cela permettait de découper le nombre d'adresse disponible est de les distribuer en fonction du besoin.

Classe A:

Les adresses de classe A voit la partie réseau (net-ID) se composer de 8 bits. L'host-ID étant donc composé de 24 bits.

Le bit de poids fort est de 0.

Exemple:			
	Net-ID	Host-ID	
	OXXX XXXX	. xxxx xxxx . xxxx xxxx . xxxx xxxx	

1 ^{ère} adresse de réseau	0000 0000 (0)
Dernière adresse de réseau	0111 1111 (127)
Nombre de réseaux possibles	128
Nombre de bits pour les hôtes	24
Nombre d'hôte possible	2^24 = 16 777 214 (16 777 214 - 2)

Classe B:

Les adresses de classe B voit la partie réseau (net-ID) se composer de 16 bits. L'host-ID étant donc composé de 16 bits également.

Le bit de poids fort est de 10.

Exemple:			
	Net-ID	Host-ID	
	10XX XXXX . XXXX XXXX	. XXXX XXXX . XXXX XXXX	

1 ^{ère} adresse de réseau	1000 0000 0000 0000 (32 768)
Dernière adresse de réseau	0111 1111 (49 152)
Nombre de réseaux possibles	16 384
Nombre de bits pour les hôtes	16
Nombre d'hôte possible	2^16 = 65 534 (65 536 – 2)

Classe C:

Les adresses de classe C voit la partie réseau (net-ID) se composer de 24 bits. L'host-ID étant donc composé de 8 bits.

Le bit de poids fort est de 110.

Exemple:			
	Net-ID	Host-ID	
	110X XXXX . XXXX XXXX . XXXX XX	XXX. XXXX XXXX	

1 ^{ère} adresse de réseau	1100 0000 0000 0000 0000 0000 (12 582 912)
Dernière adresse de réseau	1101 1111 1111 1111 1111 1111 (14 680 063)
Nombre de réseaux possibles	14 680 064
Nombre de bits pour les hôtes	8
Nombre d'hôte possible	2^8 = 254 (256 – 2)

Il existe les classe D et E mais ce sont des cas très particulier.

La classe D est réservé au multi-cast (streaming) et s'établie entre 224.0.0.0 à 239.255.255.255.

La classe E est réservé à l'IANA (Internet Assigned Numbers Authority) pour des expériences. La place s'étend de 240.0.0.0 à 255.255.255.

Les adresses non-utilisées :

0.X.X.X → Désigne les réseaux inconnus

127.X.X.X → Aussi appelé localhost (127.0.0.1) est l'adresse définissant l'hôte lui-

même. Aussi appelé « Loopback ».

 \rightarrow Adresse de Broadcast locale

APIPA

APIPA pour Automatic Private Internet Protocol Addressing est l'attribution d'une adresse IP de façon automatique lorsqu'un hôte est en incapacité d'en recevoir une.

169.254.0.0/16 169.254.0.0 à 169.254.255.255

En d'autres termes, si un équipement est configuré pour recevoir une adresse IP automatiquement via un serveur DHCP mais que l'adresse IP de l'équipement est par exemple « 169.254.0.1 » cela signifie que l'hôte ne parvient pas à joindre le serveur DHCP ou que le serveur DHCP ne parvient pas à attribuer d'adresse à l'hôte en question.

Invite de commandes

```
Microsoft Windows [version 10.0.19043.928]
(c) Microsoft Corporation. Tous droits réservés.

C:\Users\admin>ipconfig

Configuration IP de Windows

Carte Ethernet Ethernet0:

Suffixe DNS propre à la connexion. . . :
Adresse IPv6 de liaison locale. . . . . : fe80::fcf9:ea1a:e8ec:77b5%14

Adresse d'autoconfiguration IPv4 . . . : 169.254.119.181

Masque de sous-réseau. . . . . . . . . . . . 255.255.0.0

Passerelle par défaut. . . . . . . . . . . . . . . . .
```


IP publique et IP privée

RFC: 1918

Il existe 2 types d'adresse IP : les publiques et les privées.

Les IP publiques sont fourni par les FAI (Fournisseur d'Accès Internet), chaque adresse est totalement unique. L'attribution des plages d'adresses est assurée par l'IANA) un pôle de l'ICANN (Internet Corporation for Assigned Names and Numbers).

Les IP privées elles, sont réparties dans les trois classes d'IP principale :

Classe A: 10.0.0.0 à 10.255.255.255
Classe B: 172.16.0.0 à 172.31.255.255
Classe C: 192.168.0.0 à 192.168.255.255

Les adresses privées ne sont jamais utilisées pour identifier un hôte sur Internet! Ces adresses ne sont exploitées au sein d'un réseau local.

Les masques de réseau

Afin de pouvoir router les paquets de données sur Internet, il est nécessaire que les routeurs connaissent l'adresse du réseau de destination.

Pour calculer l'adresse de réseau, il faut ce que l'on appelle un masque de réseau.

Les masques par défauts :

Classes	Bits utilisés pour le masque de sous-réseau	Notation décimale
d'adresses		
Classe A	1111 1111 0000 0000 0000 0000 0000 000	255.0.0.0
Classe B	1111 1111 1111 1111 0000 0000 0000 0000	255.255.0.0
Classe C	1111 1111 1111 1111 1111 1111 0000 0000	255.255.255.0

Vous entendrez également parlez de *netmask* ou de *subnet mask*

Pour connaître l'adresse réseau, il faut effectuer un « ET » logique entre l'adresse IP de l'hôte et le masque de sous-réseau.

Calculer l'adresse réseau

Adresse IP	193	252	19	3
	1100 0001	1111 1100	0001 0011	0000 0011
Masque	255	255	255	0
	1111 1111	1111 1111	1111 1111	0000 0000
Adresse du réseau	193	252	19	0
	1100 0001	1111 1100	0001 0011	0000 0000

Le ET logique est un procédé mathématique qui consiste à ce que l'ensemble des états données dans un calcul soient les mêmes. Schématisons cela afin de simplifier la compréhension :

Dans cet exemple, afin d'allumer l'ampoule, il est nécessaire que les interrupteurs A ET B soient actionner. Sinon, la lumière ne s'allume pas.

Le procédé est le même dans notre calcul de l'adresse réseau. Il faut convertir l'adresse IP d'un hôte et son masque d'adresse en binaire puis effectuer un ET logique entre les deux adresses binaires.

Le résultat obtenu alors, sera le binaire de l'adresse réseau de l'hôte.

Calculer l'adresse de l'hôte

Adresse IP	193	252	19	3	
	1100 0001	1111 1100	0001 0011	0000 0011	
Complément du Masque	0000 0000	0000 0000	0000 0000	1111 1111	—
Adresse de l'hôte	0000 0000	0000 0000	0000 0000	0000 0011	
	0	0	0	3	

Grâce au masque de réseau, on peut définir :

- L'adresse réseau
- La partie hôte associée
- L'adresse de diffusion qui désigne tous les hôtes du réseau

Trois adresses spéciales

Il existe trois types d'adresses :

- L'unicast (je parle directement à un hôte)
- Le broadcast (je parle à tous les hôtes)
- Le multicast (je parle à un groupe d'hôte)

La notation CIDR

Vous verrez parfois des adresses IP noté ainsi : 192.168.0.5/24

Le /24 ou tout autre nombre est la notation CIDR.

Cette notation désigne le nombre de bit à 1 dans le masque d'adresse.

Donc dans le de notre exemple : 192.168.0.5/24, son masque est donc 255.255.255.0