

Deliver Time Optimization Project

By:
Boyang Wan
Henry Tang
Shuxi Chen
Jintao Li
Samarth Annigeri

What is ***instacart**?

What is ***instacart**?

Instacart: Groceries & Food 12+1

Shop Grocery Delivery Services

Maplebear Inc

#11 in Food & Drink *** 4.8 • 3.8M Ratings

Screenshots iPhone iPad

instacart

Need

now?

Free delivery

groceries

- A four-sided marketplace connecting customers, shoppers, drivers, and retail stores
- Fast-growing grocery delivery platform enabling 30-minute delivery
- Complex coordination between multiple stakeholders

How Does

***instacart**

Work?

Shop Owner

Partnership Contract

Listing Groceries
On Site / App

Sell

Advertise

Sign Up

Browse Goods

Fill out Details & Make Payment

Receive Goods

Shop Owner

Partnership Contract

Add to Cart

Listing Groceries On Site / App

Sell

Advertise

Get Paid

Receive Goods

Work?

Why use ***instacart**?

- Higher order values than food delivery
- Complex inventory management (fresh/frozen items)
- Greater batching potential

Why ***instacart** in Montreal?

- Complex road network (one-way streets)
- Frequent construction zones
- **Diverse** neighborhood densities
- Extreme seasonal weather
- High reliance on public transportation

Apoorva Mehta

Apoorva Mehta

Apoorva Mehta

- Shopper assignment to orders
- Minimizing in-store shopping time
- Batching multiple orders
- Determining the most efficient delivery routes

.

Optimization???

Apoorva Mehta

Shopper assignment to orders

Determining the most efficient delivery routes

Optimization???

Apoorva Mehta

- Shopper assignment to orders
- Determining the most efficient delivery routes

Why Dollarama?

- Well-distributed network across Montreal
- Represents residential, commercial, mixused, and suburban areas.

Focus on Peak Hours

- Focused on peak hours: 10:00 AM 3:00 PM
- Simulates busiest period for realistic demand.
- Enables effective modeling of shopper assignments and delivery routes.

Formulating the Optimization Problem

Pickup Stage

Assign shoppers to pick up orders from Dollarama stores.

Delivery Stage

Determine efficient routes for delivering orders to customers.

ľ

Project Objective

Minimize Average Delivery Time

Develop an optimization model for peak hour deliveries.

Key Assumptions

Proximity

Dollarama branches serve nearby customer locations.

Pre-packaged

Orders are ready for pickup at Dollarama stores.

Delivery Capacity

Shoppers can deliver up to two orders per trip.

Pickup Stage Optimization

Pickup Assignment Rules

Two Order Rule

2 orders within 10 minutes

assign the nearest shopper

One Order Rule

1 order and no additional order arrives within 10 minutes

assign the nearest shopper

Delivery Stage Optimization

Four Areas in Montreal

- City is divided into residential, commercial, mixed-use, and suburban zones.
- Each zone accounts for different traffic and geographic challenges

Real-World Traffic Constraints

- High-traffic zones
- Construction sites
- One-way streets

Optimized Delivery Sequence

The sequence of deliveries is optimized by serving the nearest customer first while considering proximity and travel conditions.

Mathematical Model: Variables and Parameters

Notation	Category	Description
S	Set	Set of supplier locations (possible pickup points).
D	Set	Set of demand locations (possible customer locations).
I	Set	Set of driver initial locations.
$\Delta_{ m S}$	Set	Set of pickup locations (only 1 element contained)
$\Delta_{ m D}$	Set	Set of delivery locations (up to 2 element contained)
$\mathrm{T_{ij}}$	Parameter	Travel time between locations i and j, where i, j \in S \cup D.
X _{ij}	Decision Variable	Binary variable: 1 if driver k travels from i to j, 0 otherwise.

Pickup Stage: Objective Function and Constraints

$$\min_{\{x_{ij}\}} \sum_{j} \sum_{i} T_{ij} \cdot x_{ij}$$
 s.t.
$$\sum_{j \in N} x_{ij} - \sum_{j \in N} x_{ji} \geqslant 0 \quad \forall i \in I$$

$$\sum_{j \in N} x_{ij} - \sum_{j \in N} x_{ji} \le 1 \quad \forall i \in I$$
 To make sure there's exactly one source node (one driver take the order)
$$\sum_{i \in I} (\sum_{j \in N} x_{ij} - \sum_{j \in N} x_{ji}) = 1$$
 Intermediate Node
$$\sum_{j \in N} x_{ij} - \sum_{j \in N} x_{ji} = 0 \quad \forall i \in N \setminus \{I \cup \Delta_s\}$$
 Intermediate Node
$$\sum_{i \in N} x_{ij} - \sum_{i \in N} x_{ji} = -1 \quad i = m \in \Delta_S$$
 Terminal Node

Delivery Stage: Objective Function and Constraints

$$\min_{\{x_{ij}\}} \sum_{j} \sum_{i} T_{ij} \cdot x_{ij}$$
 s.t.

$$\sum_{j \in N} x_{ij} - \sum_{j \in N} x_{ji} = egin{cases} 1 & i = m & \mathsf{Source\ Node} \ -1 & i = n & \mathsf{Terminal\ Node} \ 0 & \mathrm{o.\ w.} & \mathsf{Intermediate\ Node} \end{cases}$$

Intermediate Node

For any route starting from m and ending at n, the shortest path is found by solving the above optimization problem. We represent this shortest path as u(m,n). Assuming $\Delta_S = \{a\}$, $\Delta_D = \{b, c\}$, in order to find the shortest path starting from $a \in \Delta_S$, dropping by one of the element of Δ_D , and ending at the other, we need to compare u(a,b) + u(b,c) and u(a,c) + u(c,b).

Data Simulation

Location Setup

Dollarama Stores

Residential

Mixed-use

Commercial

Suburbs

Schema Summary

Percentage of Demand Points	Demand Sites (D)	Dollarama Stores (S)
45%	D1~D16	S 1
25%	D17~D26	S2
		S3
		S4
		Points 45% D1~D16 25% D17~D26 20% D27~D33

Initial Points for Drivers and Source Locations for Orders

Residential

Mixed-use

Commercial

Suburbs

Order Log

Order Number	Timestamp	S	D
1	10:03:11	S2	D20
2	10:05:42	S2	D25
3	10:07:59	S3	D30
4	10:11:33	S2	D17
5	10:18:42	S2	D19
6	10:24:19	S1	D6
7	10:27:03	S1	D6
8	10:34:28	S2	D19
9	10:37:39	S1	D4
10	10:41:09	S1	D8
11	10:45:00	S3	D31
12	10:46:59	S1	D14
13	10:49:42	S4	D36
1./	10.51.27	60	D10

Time Cost Setup

Driving Time Matrix (T_ij base)

Construction

Road Closure

Passable but slow

One-Way street

Distance Weighting

Residential

Mixed-use

Commercial

Suburbs

Weighting Schema

	Residential	Commercial	Mixed-used	Suburbs
Residential	Rand (0.05, 0.15)	0.15	0.1	0.05
Commercial	0.15	Rand (0.15, 0.25)	0.15	0.1
Mixed-used	0.1	0.15	Rand (0.1, 0.2)	0.05
Suburbs	0.05	0.1	0.05	0

Time Penalties

A=1 if Road closure

$$T_{ij} = T_{ij}^{\text{base}} + MA_{ij}$$

C=1 if One-Way street

$$T_{ij} = T_{ij}^{\text{base}} + MC_{ij}$$

B=1 if Passable but slow

$$T_{ij} = T_{ij}^{\text{base}} + MB_{ij}$$

Density Penalty

$$T_{ij} = T_{ij}^{\text{base}} \times (1 + \beta_{ij} \text{ density penalty})$$

Total Time Cost

$$T_{ij} = T_{ij}^{\text{base}} \times (1 + \beta_{ij} \text{ density penalty}) + MA_{ij} + MB_{ij} + MC_{ij}$$

Preliminary Result

```
initial points = ['D1', 'D2', 'D3']
   delta s = ['S19']
   delta d = ['D26', 'D88']
   source node = delta s[0]
   result p = optimize shortest path(tij matrix, initial points, delta s)
   result d = compare routes(tij matrix, source node, delta d)
   # Results
   print(f"Shortest Pickup Path: {result p['path']}")
   print(f"Pickup Travel Time: {result p['total time']} minutes")
   print(f"\nShortest Delivery Path: {result_d['shortest_path']}")
   print(f"Delivery Travel Time: {result d['total time']} minutes")
   print(f"Delivery Route Description: {result d['route description']}")
   total travel time = result p['total time']+result d['total time']
   print(f"\nTotal Travel Time: {total travel time} minutes")
 ✓ 0.5s
Shortest Pickup Path: [('D3', 'S19')]
Pickup Travel Time: 5.95 minutes
Shortest Delivery Path: ['S19', 'D75', 'D25', 'D26', 'D25', 'D88']
Delivery Travel Time: 49.116666699999996 minutes
Delivery Route Description: u(S19, D26) + u(D26, D88)
Total Travel Time: 55.0666667 minutes
```

Initial Point Chosen: D3

Pickup Path:

D3->S19

Pickup Time = 5.95 min

Delivery Path:

S19->D75->D25->D26->D25->D88

Delivery Time = 49.12 min

Total Time = 55.07 min

Time Window Integration

Why Time Windows?

- Instacart customers often specify preferred delivery intervals.
- Balances operational efficiency with customer-specific delivery preferences.

The New Constraint

- In the Delivery Stage, a time window metric measures the gap between order placement and the desired delivery time.
- Delivery routes prioritize orders nearing time window limits.

Key Benefits

- Improved customer satisfaction encourages loyalty and increases the likelihood of future orders.
- Better alignment with real-world operational settings.

Multi-Supplier & Multi-Store Integration

Why Multi-Supplier & Multi-Store?

- Real-world orders often span multiple suppliers (e.g., Provigo, IGA).
- Shared demand points between suppliers fulfill diverse customer needs.
- Enhances service flexibility and adapts to customer expectations.

New Model Features

- Many to many relationships: Demand points linked with multiple suppliers and shoppers.
- Flexible Shopper Routes: Shoppers can visit multiple suppliers in a single trip, allowing high-priority deliveries to be completed without waiting for all pickups to be finished.

Key Benefits

Adapts to Montreal's diverse supplier landscape and customer requirements.

Conclusion: Driving Sustainability Through Optimization

For Customers

Faster and more reliable access to groceries, improving convenience and satisfaction.

For Drivers

Increased earnings with more deliveries and reduced frustration from optimized routes.

For Instacart

Enhanced efficiency, stronger customer loyalty, and sustainable business growth.

For Environment

Reduced energy use and emissions, promoting eco-friendly delivery practices.

