Ćwiczenia 1 Zajęcia organizacyjne, schematy blokowe

Andrzej Abramowski

Polsko-Japońska Akademia Technik Komputerowych

7 października 2017 r.

Poznajmy się

Prowadzący

Andrzej Abramowski e-mail: aabramow@pjwstk.edu.pl konsultacie:

- w soboty zjazdowe ok. 8.00 i ok. 13.30 w sali ćwiczeniowej (117)
- w niedziele zjazdowe ok. 13.45 w sali ćwiczeniowej (117)
- inne terminy ustalane mailowo

Materialy

Materiały związane z ćwiczeniami zostaną umieszczone w usłudze SharePoint (http://o365.pjwstk.edu.pl).

Zaliczenie

Ocena

 $55\% \cdot \frac{\text{liczba punktów z kolokwiów}}{\text{maks. liczba punktów z kolokwiów}} + 45\% \cdot \frac{\text{liczba punktów z ćwiczeń}}{\text{maks. liczba punktów z ćwiczeń}}$

Ocena	Wynik
5	>87,5%
4+	>81,25%
4	>75%
3+	>62,5%
3	>50%

Egzamin

Do egzaminu dopuszczone są tylko te osoby, które uzyskały pozytywną ocenę z zajęć. Osoby uzyskujące ocenę $4+\mathrm{i}~5~\mathrm{s}$ ą zwolnione z egzaminu.

Ćwiczenia

Zajęcia sobotnie

Przedstawiona jest lista zadań do samodzielnego rozwiązania. Gdy student rozwiąże zadanie, podnosi rękę. Następnie podchodzi do niego prowadzący, sprawdza poprawność rozwiązania, zadaje pytanie sprawdzające samodzielność oraz wystawia ocenę w skali od 0 do 1 punktu. Jeżeli student nie zdążył rozwiązać wszystkich zadań w sobotę, istnieje możliwość ich oddania w niedzielę. Procedura sprawdzania zadań jest identyczna, oceniane są one jednak w skali od 0 do 0,5 punktu.

Zajęcia niedzielne

Po krótkim wprowadzeniu teoretycznym, przedstawiana jest lista przykładowych zadań. Zadania rozwiązywane są samodzielnie, prowadzący natomiast stara się wyjaśniać wszelkie wątpliwości na bieżąco.

Materialy

Strona firmy Oracle

- Tutorial (http://docs.oracle.com/javase/tutorial/)
- Dokumentacja
 (http://docs.oracle.com/javase/8/docs/api/)

Podręczniki

- K. Sierra, B. Bates "Java. Rusz głową!"
- C. S. Horstmann, G. Cornell, "Java. Podstawy."
- H. Schildt "Java. Kompendium programisty."
- B. J. Evans, D. Flanagan "Java w pigułce."
- B. Eckel "Thinking in Java."

Inne materialy

http://edu.pjwstk.edu.pl/wyklady/ppj/scb/

O programowaniu słów kilka

Najważniejsze wymagania

- Znajomość języka angielskiego
- Cierpliwość i systematyczność

Co o programowaniu wiedzieć należy?

- Ukończenie studiów informatycznych wymaga znajomości programowania
- Programowanie narzuca algorytmiczny sposób myślenia
- Systematyczność popłaca, a wszelkie zaległości szybko się ujawniają
- Programowania najlepiej uczyć się poprzez samodzielne rozwiązywanie problemów
- Ważny jest zarówno wynik działania programu, jak i styl pisania kodu

Elementy schematu blokowego

Ważne

Można podejrzeć elementy schematu blokowego na wikipedii (https://pl.wikipedia.org/wiki/Schemat_blokowy).

Przykład schematu blokowego

Zadania

- Narysuj schemat blokowy przedstawiający proces przygotowania wody na herbatę.
- Narysuj schemat blokowy obliczający i wyświetlający sumę cyfr wprowadzonych z klawiatury.
- Oane są następujące zbiory:
 - $A = [-5; \infty]$
 - $B = [-\infty; 5]$
 - C = (-10; 10)

Narysuj schemat blokowy algorytmu jednoznacznie klasyfikującego przynależność danej wartości X do jednego lub kilku z powyższych zbiorów.

Przykładowe rozwiązanie zadania trzeciego

Zadania

- Przedstaw schemat blokowy sprawdzający czy wprowadzona z klawiatury liczba jest liczbą pierwszą.
- Dane są następujące zbiory:
 - $A = (-15; 10] \cup (-5; 0) \cup [5; 10]$
 - $B = [-\infty; -13] \cup (-8; -3)$
 - $C = [-4; \infty]$

Narysuj algorytm jednoznacznie klasyfikujący zmienną X o losowej wartości z przedziału $(-\infty;\infty)$ o rozkładzie jednorodnym. Zadbaj o optymalność rozwiązania.

Przykładowe rozwiązanie zadania pierwszego

Zadanie dodatkowe - sortowanie

W czasie przerwy do bufetu ustawiła się kolejka. Narysuj schemat blokowy pozwalający ustawić osoby stojące w kolejce od najniższej do najwyższej.

Ważne

Dostępne operacje to porównanie wzrostu dwóch osób i zamiana ich miejscami.

Algorytmy sortowania

- Sortowanie przez wybieranie (ang. selection sort)
- Sortowanie bąbelkowe (ang. bubble sort)
- Sortowanie przez wstawianie (ang. insertion sort)
- Sortowanie przez scalanie (ang. merge sort)
- Sortowanie szybkie (ang. quicksort)

Schematy blokowe w praktyce

Unified Modeling Language (UML)

- Standard w dziedzinie modelowania kodu
- Możliwość tworzenia pewnych fragmentów kodu na podstawie schematów UML
- Typowo wykorzystywany jest przez duże firmy (niekoniecznie programistyczne) i w dużych projektach

Książki

- M. Fowler "UML w kropelce"
- R. Miles, K. Hamilton "UML 2.0: Wprowadzenie"
- D. Pilone "UML 2.0: Almanach"

Ważne

Przed zapoznaniem się dokładniej z notacją UML dobrze jest znać pojęcia dziedziczenia, interfejsu itp.

Pierwszy program

```
// Dwa slashe oznaczaja komentarz
// Program jest zamkniety w klasie
public class Hello {
    // Wykonywana jest zawartosc funkcji main
    public static void main(String[] args) {
        // Wypisz na konsoli "Witaj swiecie!"
        System.out.println("Witaj swiecie!");
    }
}
```

Ważne

- Nazwy klasy zwyczajowo zaczynają się od dużej litery
- Nazwa pliku musi odpowiadać nazwie klasy
- Plik musi posiadać rozszerzenie .java

Uruchamianie programu w języku Java

Dwustopniowy proces:

- Kompilacja programu tekstowego za pomocą polecenia javac
- Uruchomienie skompilowanego kodu za pomocą polecenia java

Ważne

Do pisania programów w Javie konieczna jest instalacja rozszerzenia JDK (Java Development Kit).

Uruchamianie programu w języku Java

Należy wykonać kolejne czynności:

- Stworzenie programu w dowolnym edytorze tekstowym
- Zapisanie treści programu pod nazwą zgodną z nazwą publicznej klasy i rozszerzeniem .java (dla naszego programu będzie to Hello.java)
- Sompilacja programu poleceniem javac Hello.java
- Utworzenie przez kompilator pliku Hello.class (w przypadku nieudanej kompilacji zostaną wypisane komunikaty opisujące błędy, należy je poprawić i spróbować ponownie)
- Uruchomienie programu za pomocą polecenia java Hello (bez rozszerzenia)

Ważne

Dobrze jest wprowadzić w treść programu błędy i zapoznać się z najbardziej powszechnymi komunikatami kompilatora (usunięcie średnika, nawiasów klamrowych, brak deklaracji zmiennych itp.).

Zmienne

```
public class VariableTest {
  public static void main(String[] args) {
   // Deklarujemy zmienna x
   // int oznacza liczbe calkowita (ang. integer)
   int x:
   // Przypisujemy jej wartosc 1 (inicjacja)
   x = 1:
   System.out.println(x);
   // Zwiekszmy wartosc x o 1
   x = x + 1;
   System.out.println(x);
```