Álgebra Linear

Aula 3: Espaços Vetoriais 2

Mauro Rincon

Márcia Fampa

<u>cederj</u>

Definição: Os vetores $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_n} \in V$ são chamados linearmente dependentes (LD) se

$$\alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \dots + \alpha_n \mathbf{v_n} = \mathbf{0}$$

para algum $\alpha_i \neq 0$, $i = 1, 2, \dots, n$. Caso contrário dizemos que são <u>LI</u>.

Exemplo 1:

$$\overline{\text{Seja}\ V} = \mathbb{R}^2 \text{ e } \mathbf{v_1} = (1,2), \ \mathbf{v_2} = (0,1) \text{ e}$$

 $\mathbf{v_3} = (-1,1).$ Verifique se os vetores são $\underline{\text{LD}}$ ou $\underline{\text{LI}}.$

Com efeito,

$$\alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \alpha_3 \mathbf{v_3} = \mathbf{0} \Leftrightarrow$$

$$(\alpha_1 - \alpha_3, 2\alpha_1 + \alpha_2 + \alpha_3) = (0, 0)$$

Igualando os termos,

$$\alpha_1 - \alpha_3 = 0
2\alpha_2 + \alpha_2 + \alpha_3 = 0$$

$$\alpha_1 = \alpha_3
\alpha_2 = -2\alpha_1 - \alpha_3 = -3\alpha_1$$

Tomando $\alpha_3 = a \rightarrow \alpha_1 = a \land \alpha_2 = -3a$. Logo, $\alpha = (\alpha_1, \alpha_2, \alpha_3) = (a, -3a, a) \forall a \in \mathbb{R}$ Assim, $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_2}\}$ são LD.

Geometricamente:

Exemplo 2:

Considere agora somente os vetores $\mathbf{v_1} = (1, 2)$ e $\mathbf{v_2} = (0, 1)$ em V. Então $\{\mathbf{v_1}, \mathbf{v_2}\}$ são $\underline{\mathrm{LI}}$ ou $\underline{\mathrm{LD}}$.

Com efeito,

$$\alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} = 0 \Leftrightarrow (\alpha_1, 2\alpha_1 + \alpha_2) = (0, 0)$$

Logo,

$$\begin{array}{rcl}
\alpha_1 & = 0 \\
2\alpha_1 & + \alpha_2 & = 0
\end{array}$$

$$\left[\alpha_1 = 0, \alpha_2 = 0\right]$$

Assim,
$$\alpha = (\alpha_1, \alpha_2) = (0, 0) \Rightarrow \{\mathbf{v_1}, \mathbf{v_2}\}$$
 são LI.

Exemplo 3:

Seja $V = M_{3\times 1}(\mathbb{R})$. Verifique se os vetores

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \text{ e } \mathbf{v_2} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \text{ são LI ou LD.}$$

Com efeito, $\alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} = 0 \Leftrightarrow$

$$\alpha_1 \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow$$

$$\begin{bmatrix} \alpha_1 \\ -\alpha_1 + 2\alpha_2 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \frac{\alpha_1 = \alpha_2 = 0}{\text{Assim, } \{\mathbf{v_1}, \mathbf{v_2}\} \text{ são LI.}}$$

Exemplo 4:

Exemple 4.
$$\overline{V} = \{p_1(x), p_2(x), p_3(x)\}, \text{ onde} \\
p_1(x) = x^2 + x - 1, p_2(x) = 2x + 3 \text{ e} \\
p_3(x) = -x^2 + 1.$$
V \(\epsilon\) um conjunto LD ou LI?
$$\alpha_1 p_1(x) + \alpha_2 p_2(x) + \alpha_3 p_3(x) = 0 \Leftrightarrow \\
\alpha_1(x^2 + x - 1) + \alpha_2(2x + 3) + \alpha_3(-x^2 + 1) = 0$$

$$\alpha_1 x^2 + \alpha_2 + \alpha_3 = 0$$

$$\alpha_1 x^2 + \alpha_3 = 0$$

 $\therefore V \in LI.$

Exemplo 5:

Verifique que todo conjunto V contendo o vetor nulo é um conjunto $\overline{\mathrm{LD}}$.

Com efeito, seja $V = \{\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_i}, \cdots, \mathbf{v_n}\}$, onde $\mathbf{v_i} = \mathbf{0}$. Então, $\alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \dots + \alpha_i \mathbf{v_i} + \dots + \alpha_n \mathbf{v_n} = \mathbf{0}$ tem pelo menos uma solução não trivial, por exemplo: $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0 \land \alpha_i \neq 0$

Teorema: Um conjunto $V = \{\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_i}, \cdots, \mathbf{v_n}\}$ é <u>LD</u> se, e somente se, pelo menos um destes é combinação linear dos outros.

Demonstração:

 (\Rightarrow) Seja V LD. Por definição, existe pelo menos uma constante $\alpha_i \neq 0$, tal que

$$\alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \dots + \alpha_i \mathbf{v_i} + \dots + \alpha_n \mathbf{v_n} = \mathbf{0}$$

Logo,

$$\mathbf{v_i} = -\frac{\alpha_1}{\alpha_i} \mathbf{v_1} - \frac{\alpha_2}{\alpha_i} \mathbf{v_2} \dots - \frac{\alpha_n}{\alpha_i} \mathbf{v_n}$$

ou seja, $\mathbf{v_i}$ é uma combinação linear dos outros vetores.

 (\Leftarrow) Seja $\mathbf{v_i}$ uma combinação linear dos outros vetores,

$$\mathbf{v_i} = \beta_1 \mathbf{v_1} + \beta_2 \mathbf{v_2} + \dots + \beta_{i-1} \mathbf{v_{i-1}} + \beta_{i+1} \mathbf{v_{i+1}} + \dots + \beta_n \mathbf{v_n} \Rightarrow$$

$$\beta_1 \mathbf{v_1} + \beta_2 \mathbf{v_2} + \dots + \beta_{i-1} \mathbf{v_{i-1}} - 1 \mathbf{v_i} + \beta_{i+1} \mathbf{v_{i+1}} + \dots + \beta_n \mathbf{v_n} = 0$$

Como
$$\beta_i = -1 \neq 0$$
 então $\{\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_n}\}$ é LD.

Exemplo: Considere $V = \{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ e $\overline{W} = \{\mathbf{v_1}, \mathbf{v_2}\}$, onde $\mathbf{v_1} = (1, 2)$, $\mathbf{v_2} = (0, 1)$ e $\mathbf{v_3} = (-1, 1)$. Vimos que V é LD e W é LI. Mostremos que $\mathbf{v_3}$ é combinação linear de $\mathbf{v_1}$ e $\mathbf{v_2}$. De fato,

$$\mathbf{v_3} = \alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} \Leftrightarrow$$

$$(-1, 1) = \alpha_1(1, 2) + \alpha_2(0, 1) = (\alpha_1, 2\alpha_1 + \alpha_2)$$

Logo,
$$\alpha_1 = -1 \wedge \alpha_2 = 3$$

Ou seja,
$$\mathbf{v_3} = -\mathbf{v_1} + 3\mathbf{v_2}$$

Pode-se mostrar também que:

$$\begin{bmatrix} \mathbf{v_1} &= 3\mathbf{v_2} &- \mathbf{v_3} \\ \mathbf{v_2} &= \frac{1}{3}\mathbf{v_1} &+ \frac{1}{3}\mathbf{v_3} \end{bmatrix}$$

Propriedades de Dependência e Independência Linear

Seja V um espaço vetorial.

- 1) Se $S = \{ \mathbf{v} \} \subset V \land \mathbf{v} \neq 0$ então S é LI.
- **2)** Considera-se, por definição, que $\emptyset \subset V$ é LI.
- 3) Se $S_1 \subset S \in LD \Rightarrow S \in LD$.
- **4)** Se S é LI então $S_1 \subset S$ também é LI.
- 5) Se $S_1 = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\} \subset V$ é LI e $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}, \mathbf{w}\} \subset V$ é LD, então $w = \alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \dots + \alpha_n \mathbf{v_n}$

Exercícios

Fazer os exercícios das páginas 183 e 184 do livro texto.

2.8.1 - Base de um espaço vetorial V

Um conjunto $B = \{\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_n}\} \subset V$ é uma base do espaço vetorial V se:

- **a)** *B* é LI
- **b)** $B \text{ gera } V \Leftrightarrow [\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_n}] = V$

- Exemplo 1: $B = \{(1,0) \in (1,1)\}$ é base do \mathbb{R}^2 :
 - a) $B \in LI$ $\alpha_1(1,0) + \alpha_2(1,1) = (0,0) \Leftrightarrow$ $(\alpha_1 + \alpha_2, \alpha_2) = (0,0) \Leftrightarrow \alpha_1 = \alpha_2 = 0$
 - b) $[B] = \mathbb{R}^2$. Seja $(x, y) \in \mathbb{R}^2$. Então: $(x, y) = \alpha_1(1, 0) + \alpha_2(1, 1) = (\alpha_1 + \alpha_2, \alpha_2)$ Logo, $\alpha_2 = y \in \alpha_1 = x - y$

Assim, $\forall (x, y) \in \mathbb{R}^2$, têm-se:

$$(x,y) = (x-y)(1,0) + y(1,1)$$

De a) e b) têm-se que B é uma base do \mathbb{R}^2 .

Observações:

- 1) Quando $B = \{(1,0), (0,1)\}$ então B é uma base de \mathbb{R}^2 , denominada canônica. De fato:
 - a) $B \in LI$, pois $\alpha_1(1,0) + \alpha_2(0,1) = 0 \Leftrightarrow \alpha_1 = \alpha_2 = 0$
 - **b)** $\forall (x,y) \in \mathbb{R}^2, (x,y) = x(1,0) + y(0,1)$
- 2) De forma análoga temos que: $B = \{(1, 0, \dots, 0), (0, 1, \dots, 0), \dots, (0, 0, \dots, 1)\}$ é uma base do \mathbb{R}^n , denominada base canônica.
- 3) Para $B = \{1\}$ então temos a base canônica do \mathbb{R} .

3.20

2.8 - Base e dimensão

Exemplo 2:

Seja

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

Mostre que B é uma base para $M_{2\times 2}(\mathbb{R})$.

De fato:

a) $B \in LI$, pois:

$$\alpha_1 \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] + \alpha_2 \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] + \alpha_3 \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] + \alpha_4 \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$$

Assim,
$$\begin{bmatrix} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$$

b)
$$[B] = M_{22}$$
, pois:

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] = a \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right] + b \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right] + c \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right] + d \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right]$$

Exemplo 3:

 $\overline{B} = \{1, x, x^2, \dots, x^n\}$ é uma base do espaço vetorial P_n . De fato,

a) $B \in LI$, pois:

$$\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_n x^n = 0$$

$$Logo, \ \alpha_0 = \alpha_1 = \dots = \alpha_n = 0$$

b) Seja $p \in P_n$ então

$$p = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$
. Logo p é uma combinação linear de B . Portanto, B é uma base para P_n , chamada de base canônica. Observe que a base B tem $(n + 1)$ vetores: $\{1, x, x^2, \dots, x^n\}$

Exemplo 4: $B = \{(1, -1), (3, -3)\}$ não é uma base de \mathbb{R}^2 , pois B é LD.

Exemplo 5:

 $\overline{B} = \{(1, -1)\}$ não é uma base de \mathbb{R}^2 , pois B não gera o \mathbb{R}^2 .

De fato, $\forall (x,y) \in \mathbb{R}^2, (x,y) \neq \alpha_1(1,-1)$

Observação: Todo conjunto LI de um espaço vetorial V é base do subespaço por ele gerado.

- Exemplo:

$$\overline{B}=\{(1,2,1),(-1,-3,0)\}\subset\mathbb{R}^3$$
é LI e gera o subespaço

$$S = \{(x, y, z) \in \mathbb{R}^3 | 3x - y - z = 0\}.$$

Então B é uma base de S.

Teorema:

Se $B = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ é uma base de um espaço vetorial V, então todo conjunto com mais de \underline{n} vetores é LD.

De fato,

Seja $B' = \{\mathbf{w_1}, \mathbf{w_2}, \cdots, \mathbf{w_m}\}$ um conjunto de m vetores de V, com m > n. Queremos mostrar que B' é LD. Sejam x_1, x_2, \cdots, x_m não todos nulos tais que:

$$x_1\mathbf{w_1} + x_2\mathbf{w_2} + \dots + x_m\mathbf{w_m} = \mathbf{0}$$

<u>cederj</u>

Como B é uma base de V e $\mathbf{w_i} \in B' \subset V$ então $\exists \alpha_i, \beta_i, ..., \eta_i$ tal que:

$$\begin{cases} \mathbf{w_1} &= \alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \dots + \alpha_n \mathbf{v_n} \\ \mathbf{w_2} &= \beta_1 \mathbf{v_1} + \beta_2 \mathbf{v_2} + \dots + \beta_n \mathbf{v_n} \\ \vdots &= \vdots + \vdots + \dots + \vdots \\ \mathbf{w_m} &= \eta_1 \mathbf{v_1} + \eta_2 \mathbf{v_2} + \dots + \eta_n \mathbf{v_1} \end{cases}$$

Substituindo 2 em 1 e ordenando os termos:

$$(\alpha_1 x_1 + \beta_1 x_2 + \dots + \eta_1 x_m) \mathbf{v_1} + (\alpha_2 x_1 + \beta_2 x_2 + \dots + \eta_2 x_m) \mathbf{v_2} + \vdots$$

$$\vdots$$

$$(\alpha_n x_1 + \beta_3 x_2 + \dots + \eta_n x_m) \mathbf{v_n} = \mathbf{0}$$

Como os vetores $\{\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_n}\}$ são uma base para V então eles são <u>LI</u>. Então,

$$\begin{cases} \alpha_1 x_1 + \beta_1 x_2 + \dots + \eta_1 x_m = 0 \\ \alpha_2 x_1 + \beta_2 x_2 + \dots + \eta_2 x_m = 0 \\ \vdots + \vdots + \vdots + \dots = 0 \\ \alpha_n x_1 + \beta_n x_2 + \dots + \eta_n x_m = 0 \end{cases}$$

Sendo m > n, o sistema admite mais de uma solução, além da solução trivial.

$$\therefore B' = \{\mathbf{w_1}, \mathbf{w_2}, \cdots, \mathbf{w_m}\} \text{ \'e LD.} \blacksquare$$

Corolário: Duas bases quaisquer de um espaço vetorial têm o mesmo número de vetores.

De fato, sejam

$$A = \{\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_n}\}$$
$$B = \{\mathbf{w_1}, \mathbf{w_2}, \cdots, \mathbf{w_m}\}$$

duas bases para V.

Como
$$A$$
 é base e B é LI $\Rightarrow n \ge m$
Como B é base e A é LI $\Rightarrow m \ge n$ $\}$ $m = n$

Exemplos:

- 1) A base canônica do \mathbb{R}^3 tem três vetores. Logo, qualquer base do \mathbb{R}^3 tem três vetores.
- 2) A base canônica de $M_{2\times 2}(\mathbb{R})$ tem quatro vetores. Portanto, toda base do $M_{2\times 2}(\mathbb{R})$ tem quatro vetores.
- 3) A base canônica de P_n tem (n+1) vetores. Portanto, toda base do P_n tem (n+1) vetores.

<u>cederj</u>

2.8.2 - Dimensão de um espaço vetorial V

Definição: A dimensão de um espaço vetorial V não nulo é o número de vetores de uma base para V.

Denota-se por dim V.

Se V não possui base, dim V=0 (por exemplo, $V=\{0\}$ é $\underline{\mathrm{LD}}$)

Exemplos:

- 1) dim $\mathbb{R} = 1$
- 2) dim $\mathbb{R}^n = n$
- 3) dim $M_{2\times 2} = 4$

- **4)** dim $M_{m \times n} = m \times n$
- **5)** dim $P_n = n + 1$

Observação: Seja V um espaço vetorial, $\dim V = n$. Se $S \subset V$ é um subespaço de $V \Rightarrow$ dim $S \leq n$. Se dim $S = n \Rightarrow S = V$.

Suponha $V = \mathbb{R}^3$. Então se $S \subset \mathbb{R}^3$, temos dim S = 0, 1, 2 ou 3

- a) dim $S = 0 \Rightarrow S = \{0\}$
- **b)** dim $S = 1 \Rightarrow S$ é uma reta, passando pela origem
- c) dim $S = 2 \Rightarrow S$ é um plano, passando pela origem
- d) dim $S=3 \Rightarrow S=\mathbb{R}^3$

Teorema: Seja V um espaço vetorial de dimensão n. Qualquer conjunto de vetores LI em V é parte de uma base, isto é, pode ser completado até formar uma base de V.

Demonstração: Exercício

Exemplo: Sejam $\mathbf{v_1} = (1, 0, 2) \text{ e } \mathbf{v_2} = (0, -1, 3).$

Complete o conjunto $\{\mathbf{v_1}, \mathbf{v_2}\}$ de modo a formar uma base do \mathbb{R}^3 .

Sabemos que dim $\mathbb{R}^3 = 3$. Deve-se acrescentar um vetor

 $\mathbf{v_3} = (a, b, c) \neq \alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} = (\alpha_1, -\alpha_2, 2\alpha_1 + 3\alpha_2)$

Existem infinitos vetores, por exemplo,

$$\mathbf{v_3} = (2, -1, 0).$$

 $\therefore \{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ é uma base do \mathbb{R}^3

Teorema: Seja $B = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ uma base de um espaço vetorial V. Então, todo vetor $\mathbf{v} \in V$ se exprime de maneira única como combinação linear dos vetores de B.

Demonstração:

$$\mathbf{v} = \alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \dots + \alpha_n \mathbf{v_n} \quad \boxed{1}$$

Suponha, por absurdo, que ${\bf v}$ pode ser representado por:

$$\mathbf{v} = \beta_1 \mathbf{v_1} + \beta_2 \mathbf{v_2} + \dots + \beta_n \mathbf{v_n}$$
 (2)

Subtraindo membro a membro, temos:

$$\mathbf{0} = (\alpha_1 - \beta_1)\mathbf{v_1} + (\alpha_2 - \beta_2)\mathbf{v_2} + \dots + (\alpha_n - \beta_n)\mathbf{v_n}$$

Sendo $\{\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_n}\}$ uma base \Rightarrow LI. Assim,

$$\alpha_1 - \beta_1 = \alpha_2 - \beta_2 = \dots = \alpha_n - \beta_n = 0 \Rightarrow \alpha_i = \beta_i$$

∴ A representação de **v** é única.

Exercícios

Fazer os exercícios das páginas 191 a 193 do livro texto.