Correction TD 4 : Prog Dynamique

Exercice 1:

• Solution 1

```
\label{eq:combinaison} \begin{subarray}{l} int Combinaison (int n, int k) $\{$ \\ if $(k == 0 \mid\mid k == n)$ \\ return 1; \\ else \\ return Combinaison (n - 1, k - 1) + Combinaison (n - 1, k); $\} \end{subarray}
```

→ Complexité de la solution 1: exponontielle O(2ⁿ)

Solution 2

Idée: Pour éviter de calculer plusieurs fois un nombre, on calcule tous les nombres de petites tailles, ensuite, de tailles de plus en plus grandes avant d'arriver au nombre désiré.

 \rightarrow Complexité de la solution 2: $O(N*k) \rightarrow O(N^2)$

```
En Java
                                                       En C
public int Combinaison(int n, int k) {
                                                       int min (int a, int b) {
                                                         return (a < b)? a : b;
     int[][] B = new int[n + 1][k + 1];
     for (int i = 0; i \le n; i++) {
        for (int j = 0; j \le Math.min(i, k); j++) {
                                                      int Combinaison(int n, int k) {
          if (i == 0 || j == i)
                                                         int B[n + 1][k + 1];
             B[i][j] = 1;
                                                         for (int i = 0; i \le n; i++) {
                                                            for (int j = 0; j \le \min(i, k); j++) {
                                                              if (i == 0 || j == i)
             B[i][j] = B[i-1][j-1] + B[i-1][j];
                                                                 B[i][j] = 1;
                                                               else
                                                                 B[i][j] = B[i-1][j-1] + B[i-1][j];
     return B[n][k];
                                                            }
                                                         return B[n][k];
```

- Solution 3
- → Complexité de la solution 3: O(N*k) → $O(N^2)$

```
En Java
                                                        En C
public int Combinaison(int n, int k) {
                                                       int Combinaison(int n, int k) {
     int[] t = new int[n + 1];
                                                          int t[n + 1];
                                                          t[0] = 1;
     t[0] = 1;
     for (int i = 1; i \le n; i++) {
                                                          for (int i = 1; i \le n; i++) {
       t[i] = 1;
                                                             t[i] = 1;
       for (int j = i - 1; j >= 1; j--)
                                                             for (int j = i - 1; j >= 1; j--)
          t[j] = t[j] + t[j - 1];
                                                               t[j] = t[j] + t[j - 1];
     }
                                                          }
     return t[k];
                                                          return t[k];
  }
```

Exercice 2:

```
Solution itérative simple O(n)
                                                    Solution récursive simple O(n)
Solution par Tabulation en Java O(n)
                                                    Solution par Memoisation en Java O(log(n))
 public int puissanceDynamique(int a, int n) {
                                                     public int puissanceDynamique(int a, int n) {
     int[] T = new int [n + 1];
                                                         int[] T = new int[n + 1];
     T[0] = 1;
                                                         if (n == 0)
     for (int i = 1; i \le n; i++) {
                                                            return 1;
       T[i] = T[i-1]*a;
                                                         if (n == 1)
                                                            return a;
                                                         T[n/2] = puissanceDynamique(a, n/2);
     return T[n];
                                                          if (n \% 2 == 0)
                                                              T[n] = T[n/2] * T[n/2];
// sol non compatible avec la description
                                                            else
                                                               T[n] = T[n / 2] * T[n / 2] * a;
                                                         // sans if else
                                                    // T[n] = T[n/2] * T[n/2] * (n%2 == 1 ? a : 1);
                                                         return T[n];
                                                    }
// sol compatible avec la description
public int puissanceDynamique(int a, int n) {
     int[] T = new int[n + 1];
     T[0] = 1;
     for (int i = 1; i \le n; i++) {
       if (i % 2 == 0)
          T[i] = T[i / 2] * T[i / 2];
       else
          T[i] = T[i / 2] * T[i / 2] * a;
// sans if else
// T[i] = T[i/2] * T[i/2] * (n\%2 == 1 ? a : 1);
     }
     return T[n];
```

Exercice 3:

1. le produit de matrices utilisant cet ordre ((AB)C)D nécessite 30800 produits scalaires, c'est-à-dire,

AB: $20 \times 5 \times 100 = 10000$ ((AB)C): $20 \times 100 \times 8 = 16000$ ((AB)C)D: $20 \times 8 \times 30 = 4800$

2. le produit de matrices utilisant cet ordre (A(BC))D nécessite 9600 produits scalaires, c'està-dire,

BC: $5 \times 100 \times 8 = 4000$ ((A(BC)): $20 \times 5 \times 8 = 800$ ((AB)C)D: $20 \times 8 \times 30 = 4800$

Question 5.2 Ecrire une formule de récurrence pour calculer c(i, j).

-Correction

Supposons que la meilleure façon de parenthéser $M_i \dots M_j$ soit $(M_i \dots M_k)(M_{k+1} \dots M_j)$. La matrice $M_i \dots M_k$ est une matrice $d_{i-1} \times d_k$ et $M_{k+1} \dots M_j$ est une matrice $d_k \times d_j$. Le produit de ces deux matrices necessite $d_{i-1}d_kd_j$ produits scalaires. Au total, le nombre total de produits scalaires pour calculer $M_iM_{i+1} \dots M_{j-1}M_j$ est $c(i,k) + c(k+1,j) + d_{i-1}d_kd_j$. On obtient

$$c(i,j) = \begin{cases} \min_{i \le k < j} (c(i,k) + c(k+1,j) + d_{i-1}d_k d_j) & \text{si } i < j. \\ 0 & \text{si } i = j. \end{cases}$$

Question 5.3 Ecrire un algorithme utilisant la programmation dynamique

-Correction-

Donnée : une suite de matrices $M_1 \dots M_n$ avec la matrice M_i de dimention $d_{i-1} \times d_i$.

- initialiser tous les éléments de la matrice à ∞+
- 2. pour $i \ge 1$ allant n faire c(i, i) = 0;
- 3. pour ℓ à 1 allant n faire
 - (a) pour $i \ge 1$ allant $n \ell$ faire
 - i. pour k à 1 allant ℓ faire $c(i, i + \ell) = \min(c(i, i + \ell), c(i, i + k) + c(i + k + 1, i + \ell) + d_{i-1}d_{i+k}d_{i+\ell});$