Lecture 14: Decision trees

Reading: Section 9.2

GU4241/GR5241 Statistical Machine Learning

Linxi Liu March 2, 2017

Decision trees, 10,000 foot view

- 1. Find a partition of the space of predictors.
- 2. Predict a constant in each set of the partition.
- The partition is defined by splitting the range of one predictor at a time.
 - \rightarrow Not all partitions are possible.

Example: Predicting a baseball player's salary

The prediction for a point in R_i is the average of the training points in R_i .

How is a decision tree built?

- ▶ Start with a single region R_1 , and iterate:
 - 1. Select a region R_k , a predictor X_j , and a splitting point s, such that splitting R_k with the criterion $X_j < s$ produces the largest decrease in RSS:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2$$

- 2. Redefine the regions with this additional split.
- Terminate when there are 5 observations or fewer in each region.
- ▶ This grows the tree from the root towards the leaves.

How is a decision tree built?

How do we control overfitting?

- ▶ Idea 1: Find the optimal subtree by cross validation.
 - \rightarrow There are too many possibilities, so we would still over fit.
- ▶ Idea 2: Stop growing the tree when the RSS doesn't drop by more than a threshold with any new cut.
 - ightarrow In our greedy algorithm, it is possible to find good cuts after bad ones.

How do we control overfitting?

Cost complexity pruning:

► Solve the problem:

minimize
$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2 + \alpha |T|.$$

- ▶ When $\alpha = \infty$, we select the null tree.
- ▶ When $\alpha = 0$, we select the full tree.
- ▶ The solution for each α is among T_1, T_2, \ldots, T_m from weakest link pruning.
- Choose the optimal α (the optimal T_i) by cross validation.

Cross validation

- 1. Split the training points into 10 folds.
- 2. For k = 1, ..., 10, using every fold except the kth:
 - ▶ Construct a sequence of trees T_1, \ldots, T_m for a range of values of α , and find the prediction for each region in each one.
 - \blacktriangleright For each tree T_i , calculate the RSS on the test set.
- 3. Select the parameter α that minimizes the average test error.

Note: We are doing all fitting, including the construction of the trees, using only the training data.

Example. Predicting baseball salaries

Example. Predicting baseball salaries

Classification trees

- ▶ They work much like regression trees.
- ▶ We predict the response by **majority vote**, i.e. pick the most common class in every region.
- ▶ Instead of trying to minimize the RSS:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2$$

we minimize a classification loss function.

Classification losses

► The 0-1 loss or misclassification rate:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} \mathbf{1}(y_i \neq \hat{y}_{R_m})$$

The Gini index:

$$\sum_{m=1}^{|T|} q_m \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}),$$

where $\hat{p}_{m,k}$ is the proportion of class k within R_m , and q_m is the proportion of samples in R_m .

► The cross-entropy:

$$-\sum_{m=1}^{|T|} q_m \sum_{k=1}^{K} \hat{p}_{mk} \log(\hat{p}_{mk}).$$

Classification losses

Figure: Node impurity measures for two-class classification

Classification losses

The Gini index and cross-entropy are better measures of the purity of a region, i.e. they are low when the region is mostly one category.

Motivation for the Gini index:

If instead of predicting the most likely class, we predict a random sample from the distribution $(\hat{p}_{1,m},\hat{p}_{2,m},\ldots,\hat{p}_{K,m})$, the Gini index is the expected misclassification rate.

▶ It is typical to use the Gini index or cross-entropy for growing the tree, while using the misclassification rate when pruning the tree.

Example. Heart dataset.

Some advantages of decision trees

- ▶ Very easy to interpret!
- Closer to human decision-making.
- Easy to visualize graphically.
- ▶ They easily handle qualitative predictors and missing data.

Classification and Regression trees, in a nut shell

- ▶ Grow the tree by recursively splitting the samples in the leaf R_i according to $X_j > s$, such that (R_i, X_j, s) maximize the drop in RSS.
 - \rightarrow Greedy algorithm.
- ► Create a sequence of subtrees T_0, T_1, \ldots, T_m using a **pruning** algorithm.
- ▶ Select the best tree T_i (or the best α) by cross validation.
 - ightarrow Why might it be better to choose lpha instead of the tree T_i by cross-validation?

Example. Heart dataset.

How do we deal with categorical predictors?

Categorical predictors

- ▶ If there are only 2 categories, then the split is obvious. We don't have to choose the splitting point s, as for a numerical variable.
- ▶ If there are more than 2 categories:
 - ▶ Order the categories according to the average of the response:

```
ChestPain: a > ChestPain: c > ChestPain: b
```

- ► Treat as a numerical variable with this ordering, and choose a splitting point s.
- One can show that this is the optimal way of partitioning.

Missing data

- ▶ Suppose we can assign every sample to a leaf R_i despite the missing data.
- ▶ When choosing a new split with variable X_j (growing the tree):
 - ▶ Only consider the samples which have the variable X_j .
 - ► In addition to choosing the best split, choose a second best split using a different variable, and a third best, ...
- ► To propagate a sample down the tree, if it is missing a variable to make a decision, try the second best decision, or the third best, ...