

This force $dF_1 = \frac{6^2}{2E_0} da$ is a component of. net force perpendicular to surface. But, because the homisphere is conducting dFII (parallel to surface) is 0.

Hence $dF = dF_1 = \frac{\sigma^2}{2\epsilon_0} d\alpha$.

(to be origin). S_{A} , $d\overrightarrow{F} = \frac{\epsilon^2}{2\epsilon_6} da^{\$}$

da = R² sin o do dø.

The by:

of da? = df to the to the to da due to the henripsphere of the patches to which we recel to the to

to cal.

$$d\vec{F} = \frac{\sigma^2}{2\epsilon_0} da^2 = df_{\text{hemisphere}} + \sum_{n=1}^{\infty} df_{da,n}$$

Now, integrate

(d f. misphue.,
$$+$$
 $\sum_{n=1}^{\infty} df_{da,n}$) = $\int \frac{6^2}{2 \, \epsilon_n} da^2$ remain)

Remain)

All de Francisco de formain
$$\int_{n=1}^{\infty} dF_{da,n} = \int_{n=1}^{\infty} \frac{c^2}{2\xi_0} da^2$$

Remain

When we integrate it, due to HAMANAS Newton's Third Law it will follow action reaction pairs and got caredled.

Fhomisphere, =
$$\int \frac{6^2}{2^2 \epsilon_0^2} da^2$$

Frepulsie = $\int \frac{\epsilon^2}{2\epsilon_o} (R^2 \sin \theta \, d\theta \, d\phi) \hat{x}$.

 $\hat{\chi}_{0} \neq (\cos \theta)^{\frac{1}{2}} + (\cos \theta)^{\frac{1}{2}} + (\sin \theta \cos \theta)^{\frac{1}{2}}$ Frapusline. = $\int \frac{6^2}{2 \varepsilon_0} (R^2 \sin o do d\phi) \int_0^\infty \hat{r}^3 \hat{r}^3$. forom symmetry, integral will, i and it have.

Component as 7/2 2π Frequesive = $\int \frac{6^2}{2^2} (R^2 \sin \theta \, d\theta \, d\theta) . (\cos \theta)$ $= \int_{0}^{\pi/2} \int_{0}^{2\pi} \left(\frac{e^{2}}{2\xi_{0}} \right) \left(\frac{e^{2}}{2\xi_{0}} \right) \int_{0}^{2\pi} \left(\frac{e^{2}}{2\xi_{0}} \right) \left(\frac{e^$ $\frac{6^2 \times R^2}{2^2 \cdot \left(\text{Sin 0 cos 0 d 0} \right) \left(2\pi \right)}.$ $\frac{\pi 6^2}{2 \epsilon_0} R^2$, $\int_{1}^{\pi / 2} \sin 2\theta \, d\theta$. $\frac{\pi}{2^{\varepsilon}} \cdot 6^{2} R^{2} \left[\frac{-\omega 20}{2} \right]^{\frac{\pi}{2}}.$

Frepulsive =
$$\frac{\pi}{2\epsilon}$$
. $\frac{c^2 R^2}{2}$ [2]

= $\frac{\pi e^2 R^2}{2\epsilon}$.

= $\frac{\pi \times Q^2}{16\pi^2 R^4 \times 2\epsilon}$.

= $\frac{1}{32\pi\epsilon}$. $\frac{Q^2}{R^2}$.

Frepulsire =
$$\frac{1}{32\pi \epsilon_o} \times \frac{Q^2}{R^2}$$

a a

. -