

HCC/HCF4511B

BCD-TO-SEVEN SEGMENT LATCH/DECODER/DRIVER

- HIGH-OUTPUT-SOURCING CAPABILITY (up to 25 mA)
- INPUT LÁTCHES FOR BCD CODE STORAGE
- LAMP TEST AND BLANKING CAPABILITY
- 7-SEGMENT OUTPUTS BLANKED FOR BCD INPUT CODES > 1001
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100mA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC TEN-TATIVE STANDARD N° 13A, "STANDARD SPE-CIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The **HCC 4511B** (extended temperature range) and the **HCF 4511B** (intermediate temperature range) are monolithic integrated circuits available in 16-lead dual in-line plastic or ceramic package and plastic micro package.

The **HCC/HCF 4511B** types are BCD-to-7-segment latch decoder drivers constructed with COS/MOS logic and n-p-n bipolar transistor output devices on a single monolithic structure. These devices combine the low quiescent power dissipation and high noise immunity features of COS/MOS with n-p-n bipolar output transistors capable of sourcing up to 25 mA. This capability allows the **HCC/HCF 4511B** types to drive LED's and other displays directly.

Lamp Test (LT), Blanking (BL), and Latch Enable or Strobe inputs are provided to test the display, shut off or intensity-modulate it, and store or strobe a BCD code, respectively. Several different signal may be multiplexed and displayed when external multiplexing circuitry is used.

November 1996 1/16

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V V
Vi	Input Voltage	- 0.5 to V _{DD} + 0.5	V
I ₁	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for Top = Full Package-temperature Range	200 100	mW mW
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C °C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functionnal operation of the device at these or any other conditions above those indicated in the operational sections of this spedification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to 18	٧
	HCF Types	3 to 15	V
V_{I}	Input Voltage	0 to V _{DD}	٧
Top	Operating Temperature : HCC Types	- 55 to + 125	ွင
	HCF Types	– 40 to + 85	°C

All voltage values are referred to V_{SS} pin voltage.

LOGIC DIAGRAMS

HCC/HFC4511B

TRUTH TABLE

LE	BI	LT	D	С	В	Α	а	b	С	d	е	f	g	Display
Х	Х	0	Х	Х	Х	Х	1	1	1	1	1	1	1	8
Х	0	1	Х	Х	Х	Χ	0	0	0	0	0	0	0	Blank
0	1	1	0	0	0	0	1	1	1	1	1	1	0	0
0	1	1	0	0	0	1	0	1	1	0	0	0	0	1
0	1	1	0	0	1	0	1	1	0	1	1	0	1	2
0	1	1	0	0	1	1	1	1	1	1	0	0	1	3
0	1	1	0	1	0	0	0	1	1	0	0	1	1	4
0	1	1	0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	1	0	0	0	1	1	1	1	1	6
0	1	1	0	1	1	1	1	1	1	0	0	0	0	7
0	1	1	1	0	0	0	1	1	1	1	1	1	1	8
0	1	1	1	0	0	1	1	1	1	0	0	1	1	9
0	1	1	1	0	1	0	0	0	0	0	0	0	0	Blank
0	1	1	1	0	1	1	0	0	0	0	0	0	0	Blank
0	1	1	1	1	0	0	0	0	0	0	0	0	0	Blank
0	1	1	1	1	0	1	0	0	0	0	0	0	0	Blank
0	1	1	1	1	1	0	0	0	0	0	0	0	0	Blank
0	1	1	1	1	1	1	0	0	0	0	0	0	0	Blank
1	1	1	Х	Х	Х	Χ				*				*

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			Т	est Con	dition	s				Value				
Symbol	Parame	ter	٧ı	۷o	I ₀	V _{DD}	T∟	ow*		25°C		T _{Hi}	igh*	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		5		0.04	5		150	
	Current	нсс	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	
			0/20			20		100		0.08	100		3000	μΑ
			0/ 5			5		20		0.04	20		150	
		HCF Types	0/10			10		40		0.04	40		300	
		1 7 7 00	0/15			15		80		0.04	80		600	
V _{OH}	Output High	n	0/ 5			5	4		4.1	4.55		4.2		
	Voltage		0/10			10	9		9.1	9.55		9.2		V
			0/15			15	14		14.1	14.55		14.2		
V _{OL}	Output Low	1	5/0			5		0.05			0.05		0.05	
	Voltage		10/0			10		0.05			0.05		0.05	V
			15/0			15		0.05			0.05		0.05	
V _{IH}	Input High			0.5/3.8		5	3.5		3.5			3.5		
	Voltage			1/8.8		10	7		7			7		V
				1.5/13.8		15	11		11			11		
V_{IL}				3.8/0.5		5		1.5			1.5		1.5	
	Voltage			8.8/1		10		3			3		3	V
				13.8/1.5		15		4			4		4	
V _{OH}	Output	HCC			0		4.1		4.10	4.55		4.20		
	Drive Voltage	Types			5					4.25				
	vollage				10	_	3.80		3.90	4.10		3.90		.,
					15	5				3.95				V
					20		3.55		3.40	3.75				
					25		3.40		3.10	3.55				
					0		9		9.10	9.55		9.20		
					5					9.25				
					10		8.85		9	9.15				.,
					15	10				9.05				V
					20		8.70		8.60	8.90		8.40		
					25		8.60		8.30	8.75				
					0		14		14.10	14.55		14.20		
					5					14.30				
					10		13.90		14	14.20		14		.,
					15	15				14.10]
					20		13.75		13.70	13.95		13.50		
		<u> </u>			25		13.65		13.50	13.80		13.10		

^{*} T_{Low} = -55° C for HCC device : -40° C for HCF device. * T_{High} = $+125^{\circ}$ C for HCC device : $+85^{\circ}$ C for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with V_{DD} = 5V, 2V min. with V_{DD} = 10V, 2.5 V min. with V_{DD} = 15V.

STATIC ELECTRICAL CHARACTERISTICS (continued)

			Т	est Con	dition	s			Value					
Symbol	Parame	eter	Vı	٧o	I ₀	V _{DD}	ΤL	ow*		25°C		T _{Hi}	igh [*]	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
V _{OH}	Output				0		4.1		4.1	4.57		4.1		
	Drive Voltage				5					4.24				
	vollage				10	_	3.6		3.6	4.12		3.3		
					15	5				3.94				V
					20		2.8		2.8	3.75		2.5		
					25					3.54				
					0		9.1		9.1	9.58		9.1		
					5					9.26				
		HCF			10		8.75		8.75	9.17		8.45		V
		Types			15	10				9.04				
					20		8.1		8.1	8.90		7.8		
					25					8.75				
					0		14.1		14.1	14.59		14.1		
					5					14.27				
					10		13.75		13.75	14.18		13.45		.,
					15	15				14.07				V
					20		13.1		13.1	13.95		12.8		
					25					13.80				
I _{OL}	Output		0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink Current	HCC Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current	1,7500	0/15	1.5		15	4.2		3.4	6.8		2.4		
			0/ 5	0.4		5	0.52		0.44	1		0.36		mA
		HCF Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
		1,7500	0/15	1.5		15	3.6		3	6.8		2.4		
I _{IH} , I _{IL}	Input Leakage	HCC Types	10/101	Any Ir	nout	18		± 0.1		±10 ⁻⁵	± 0.1		±1	۵
	Current	HCF Types	0/15	7 ti iy ii		15		±0.3		±10 ⁻⁵	± 0.3		± 1	μА
Cı	Input Capa	citance		Any Ir	put					5	7.5			pF

* T_{Low} = -55° C for HCC device : -40° C for HCF device. * T_{High} = $+125^{\circ}$ C for HCC device : $+85^{\circ}$ C for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with V_{DD} = 5V, 2V min. with V_{DD} = 10V, 2.5 V min. with V_{DD} = 15V.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, $C_L = 50$ pF, $R_L = 200$ K Ω , typical temperature coefficent for all V_{DD} values is 03 %/°C, all input rise and fall times= 20 ns)

Symbol	Parameter	Test Conditions		Value		Unit
Symbol	Parameter	V _{DD} (V) Min.	Тур.	Max.	Unit
t _{PHL}	Propagation Delay Time (data)	5		520	1040	
		10		210	420	ns
		15		150	300	
t _{PLH}	Propagation Delay Time (data)	5		660	1320	
		10		260	520	ns
		15		180	360	
t _{PHL}	Propagation Delay Time (BL)	5		350	700	
		10		175	350	ns
		15		125	250	
t _{PLH}	Propagation Delay Time (BL)	5		400	800	
		10		175	350	ns
		15		150	300	
t _{PHL}	Propagation Delay Time (LT)	5		250	500	
	, , ,	10		125	250	ns
		15		85	170	
t _{PLH}	Propagation Delay Time (LT)	5		150	300	
	, ,	10		75	150	ns
		15		50	100	
t _{TLH}	Transition Time	5		40	80	
		10		30	60	ns
		15		20	40	
t _{THL}	Transition Time	5		125	310	
		10		75	185	ns
		15		65	160	
t _{setup}	Setup Time	5	150	75		
·		10	70	35		ns
		15	40	20		
t _{hold}	Hold Time	5	0	-75		
		10	0	-35		ns
		15	0	-20		
t₩	Strobe Pulse Width	5	400	200		
		10	160	80		ms
		15	100	50		

Typical Output Low (sink) Current Characteristics.

Typical data-to-output, high-to-low-level propagation delay time as a function of load capacitance.

Typical high-to-low level transition ime as a function of load capacitance.

Typical data-to-output, low-to-high-level propagation delay time as a function of load capacitance.

Typical low-to-high level transition ime as a function of load capacitance.

Typical Voltage drop (V_{DD} to output) vs. Output source Current as a Function of Supply.

Typical Dynamic Power Dissipation Characteristics.

Derated Static Output Current Per Output.

Maximum continuous derated output current IOH applies to a single output with all other outputs sourcing an equal amount of current at the supply voltages shown Operation above the derating curve is not recommenced.

TYPICAL APPLICATIONS (interfacing with various displays)

DRIVING COMMON-CATHODE 7-SEGMENT LED DISPLAYS

TYPICAL APPLICATIONS (continued)

Driving Low-voltage Fluorescent Displays. Driving Incandescent Displays.

TEST CIRCUITS

Quiescent Device Current.

Noise Immunity.

Input Leakage Current.

Data Propagation Delay.

TEST CIRCUITS (continued)

Dynamic Power dissipation.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch				
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			20			0.787		
В			7			0.276		
D		3.3			0.130			
Е	0.38			0.015				
e3		17.78			0.700			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
Н	1.17		1.52	0.046		0.060		
L	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N			10.3			0.406		
Р	7.8		8.05	0.307		0.317		
Q			5.08			0.200		

SO16 (Narrow) MECHANICAL DATA

DIM.		mm		inch				
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			1.75			0.068		
a1	0.1		0.2	0.004		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	9.8		10	0.385		0.393		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181	_	0.208		
L	0.5		1.27	0.019	-	0.050		
М			0.62			0.024		
S			8° (r	max.)				

PLCC20 MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Α	9.78		10.03	0.385		0.395		
В	8.89		9.04	0.350		0.356		
D	4.2		4.57	0.165		0.180		
d1		2.54			0.100			
d2		0.56			0.022			
E	7.37		8.38	0.290		0.330		
е		1.27			0.050			
e3		5.08			0.200			
F		0.38			0.015			
G			0.101			0.004		
М		1.27			0.050			
M1		1.14			0.045			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

 $\ensuremath{\texttt{@}}$ 1996 SGS-THOMSON Microelectronics $\ensuremath{\texttt{-}}$ Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

