DADS6005 - Quiz 2 (KsqlDB)

สมาชิกในกลุ่ม

 ลัทธวรรณ จันทรสุขา
 6420422015

 ชนิษฐา ปะอันทัง
 6420422019

 พัฒนวงศ์ โชครตนสมบัติ
 6420422023

 ภูวดล ศรีธรรม
 6420422026

 ปจยา กาญจนแก้ว
 6420422028

บทนำ

จากชุดข้อมูลประกอบด้วยข้อมูลเกี่ยวกับการเลือกอาหาร โภชนาการ ความชอบ รายการโปรดในวัยเด็ก และข้อมูลอื่นๆ จากนักศึกษา 125 คน ภายใต้ 62 ห้อข้อ (คอลัมภ์) ที่ถูกนำมาจัดประเภท ซึ่งจะเป็นข้อมูลดิบและ unclean โดยการวิเคราะห์แบบ Real-time ใน ครั้งนี้ เพื่อทราบว่าข้อมูลโภชนาการสำคัญแค่ไหนสำหรับเด็กมหาลัยในปัจจุบัน รสนิยมในอาหารของพวกเขาถูกกำหนดโดยความชอบ ด้านอาหารของพวกเขาเมื่อตอนเป็นเด็กหรือไม่ อย่างไร นอกจากนี้ ลูกของพ่อแม่ที่ทำอาหารมีแนวโน้มที่จะเลือกอาหารได้ดีกว่าคนอื่น หรือไม่ เด็กเหล่านี้มีแนวโน้มที่จะมีรสนิยมแตกต่างจากคนอื่นหรือไม่ โดยจะอธิบายในรูปแบบการทำ Visualization ผ่านกราฟที่เข้าใจ ได้ง่าย

Dataset

- ข้อมูลจากไฟล์ CSV ชื่อ 'food coded'
- ข้อมูลรายละเอียดจากไฟล์ WORD ชื่อ 'codebook_food'

System design

1. นำข้อมูลจาก CSV ที่ผ่านการ Clean โดย Python แล้วลงใน Postgres เพื่อให้ได้ข้อมูล Column ขึ้นตามภาพ

2. ใช้ Python เพื่อเขียนแหล่งข้อมูลจาก CSV ในฐานข้อมูล SQL (DB) (ส่วนต้นทาง) จาก Postgres ระยะเวลาการเขียนอยู่ที่ 1 วินาที

```
In [1]: !pip show psycopg2
         Name: psycopg2
         Version: 2.9.6
Summary: psycopg2 - Python-PostgreSQL Database Adapter
         Home-page: https://psycopg.org/
Author: Federico Di Gregorio
         Author-email: fog@initd.org
License: LGPL with exceptions
         Location: c:\users\khanistha\anaconda3\lib\site-packages
         Requires:
         Required-by:
In [2]: !pip install psycopg2
         Requirement already satisfied: psycopg2 in c:\users\khanistha\anaconda3\lib\site-packages (2.9.6)
         เชื่อมต่อ ฐานข้อมูล Postgres
In [3]: import psycopg2
         from sqlalchemy import create_engine
         import pandas as pd
         import os
         import time
         from sqlalchemy import create_engine
         engine = psycopg2.connect(database="dbfood",
                                    host="localhost",
                                    user="postgres",
                                    password="123456",
port="5433")
```

```
Read data from history table
    In [7]: df = pd.read_sql('Select * from public.db_test2',engine)
                df = df[['ids', 'gpa', 'gender',
'breakfast', 'calories_chicken',
'calories_day', 'calories_scone',
                  'coffee', 'comfort_food', 'comfort_food_reasons',
                  'comfort_food_reasons_coded1','cook',
'comfort_food_reasons_coded','cuisine'
                 'comfort_food_reasons_coded','cuisine',
'diet_current','diet_current_coded','drink',
'eating_changes','eating_changes_coded',
'eating_changes_coded1','eating_out','employment',
'ethnic_food','exercise','father_education',
'father_profession','fav_cuisine','fav_cuisine_coded',
'fav_food','food_childhood','fries','fruit_day','grade_level','greek_food','healthy_feeling','healthy_meal','ideal_diet','ideal_diet','ideal_diet','income','indian_food','itife_rewarding','marital_status','meals_dinner_friend','mother_education','mother_profession','nutritional_check','on_off_campus','parents_cook','pay_meal_out','persian_food',
                  'on_off_campus','parents_cook','pay_meal_out','persian_food',
'self_perception_weight','soup','sports','thai_food','tortilla_calories',
'turkey_calories','type_sports','veggies_day','vitamins','waffle_calories','weights']]
                 df.head()
   Out[7]:
                     ids gpa gender breakfast calories_chicken calories_day calories_scone coffee comfort_food_comfort_food_reasons ... soup sports thai_food_tortill
                 0 1 2.4 ... 2 ... 1 ... 430 ... 0 ... 315 ... 1 ... none we dont have comfort ... 1 ... 1 ... 1 ...
                                                                                                                                  chocolate.
                  1 2 3.654
                                                                                                           420 ... 2 ...
                                                                       610
                                                                                                                                   chips, ice
cream
                                                                                                                                                    Stress, bored, anger ... 1 ... 1 ...
                                                                                                                             frozen vogurt.
                  2 3 3.3 ...
                                                                       720
                                                                                                          420 ... 2 ...
                                                                                                                                                         stress, sadness ... 1 ... 2 ...
             Insert data into FactInernetSales
In [8]: print("Row Inserted ")
             Row Inserted
In [*]: import sqlalchemy
             import pandas as pd
             import time
             for index, row in df.head(50).iterrows():
                    #mod = df.iloc[i:i+chunksize]
                  mod = pd.DataFrame(row.to_frame().T)
                   #mod.to_sql('db_food_coded2_stream', engine, if_exists='append', index=False)
                   print("Row Food name: " + mod.comfort_food_reasons.astype(str) + " " + mod.tortilla_calories.astype(str).astype(str))
                   time.sleep(1)
                   Row Food name: we don't have comfort 1165
             dtype: object
                   Row Food name: Stress, bored, anger 725
             dtype: object
                    Row Food name: stress, sadness 1165
             dtype: object
                    Row Food name: Boredom 725
             dtype: object
                    Row Food name: Stress, boredom, cravings 940 ...
```

3. เชื่อมต่อ SQL DB กับ Kafka Cluster ผ่าน topic 1 และส่งต่อให้ topic 2 โดยส่วนต้นทาง (NoSQL DB) จะใช้ข้อมูลจาก topic 3 ที่เพิ่มขึ้นอย่างต่อเนื่อง

Row Food name: None, i don't eat comfort food....

dtype: object

4. จะเห็นว่ามีข้อมูลรายละเอียด topics ที่เกิดขึ้นจากหน้า docker ดังนี้

5. และเมื่อนำมา Plot กราฟจากข้อมูลที่ได้ (ด้วยการใช้งาน Plotly)

```
In [ ]: import sys
            import pandas as pd
           import numpy as np
import plotly.express as px
           import matplotlib as mpl
           %matplotlib inline
           import matplotlib.pyplot as plt
           import seaborn as sns
           import seaborn
           plt.rcParams['font.family']='Tahoma'
print( f"Python {sys.version}" )
print( f"Pandas {pd._version_}" )
           print( f"NumPy {np.__version__}" )
In [ ]: import pandas as pd  #(version 1.0.0)
import plotly #(version 4.5.0)
           import plotly.express as px
           import dash
                                          #(version 1.8.0)
            import dash_core_components as dcc
           import dash_html_components as html
from dash.dependencies import Input, Output, State
           app = dash.Dash(__name__)
           df = pd.read_csv("food_coded.csv")
           df.info()
In [ ]: # create a list of our conditions :gender
conditions1 = [(df['gender'] == 1),(df['gender'] == 2),]
values1 = ['Female', 'Male']
df['gender_mean'] = np.select(conditions1, values1)
           # create a list of our conditions :calories_day
           conditions2 = [(df['calories_day'] == 1),(df['calories_day'] == 2),(df['calories_day'] == 3),(df['calories_day'] == 4)]
values2 = ['ฉันไม่รู้ว่าฉันควรกินก็แคล', 'มันไม่สำคัญเลย','มีความสำคัญปานกลาง', 'มันสำคัญมาก']
           df['calories_day_mean'] = np.select(conditions2, values2)
           df
In [ ]: #graph 1 Top 20 Members of Count Message
           groupby_gender=(df.groupby(['gender_mean']).count()[['ids']].sort_values('gender_mean', ascending=False))
           groupby_gender
           import plotly.graph_objects as go
           labels = ['Male','Female']
values = [49,76]
In [ ]: #graph 4 คุณทำอาหารบ่อยแค่ไหน ?
           cook_freq = (df.groupby(['cook']).count()[['cook1']].sort_values('cook', ascending=False))
#top_comment = Member_comment.nlargest(20, 'Message')
           cook_freq
           #graph 5 คุณกิน comfort food เมื่อมีอารมณ์แบบใด
           com_food_reason = (df.groupby(['comfort_food_reasons_coded_1']).count()[['comfort_food_reasons']].sort_values('comfort_food_reasons')
#top_comment = Member_comment.nlargest(20, 'Message')
           com_food_reason
```

```
# Develop Analysis Dashboard
from dash import Dash, dcc, html, Input, Output
from jupyter_dash import JupyterDash
import pandas as pd
                       #(version 4.5.4) #pip install plotly==4.5.4
import plotly
import plotly.express as px
import plotly.io as pio
app = JupyterDash(__name__)
#graph 1 gender
fig1 = go.Figure(data=[go.Pie(labels=labels, values=values, hole=.3)])
fig1.update_layout(title_text='The proportion of respondents separated by males and females')
#graph 4 คุณทำอาหารบ่อยแค่ใหน ?
fig4 = px.bar(cook_freq, x=cook_freq.index, y="cook1",title='คุณทำอาหารบ่อยแค่ไหน'
      ,template='simple_white', height=500,width=600)
#graph 5 คุณกิน comfort food เมื่อมีอารมณ์แบบใด ?
fig5 = px.bar(com_food_reason, x=com_food_reason.index, y="comfort_food_reasons",title='คุณกิน comfort food เมื่อมีอารมณ์แบบใด'
      ,template='simple_white', height=500,width=600)
#graph 6 คุณมีพฤติกรรมกินอาหารอย่างไร ?
fig6 = px.bar(diet_current, x=diet_current.index, y="diet_current",title='คุณมีพฤติกรรมกินอาหารอย่างไร'
,template='simple_white', height=500,width=600)
```

```
#dashhoard
app.lavout = html.Div([
     html.Div(children=[
          html.Hickildren='Data-streaming and real-time analytics',style={'textAlign':'center'}), html.Div(children='DADS6005 - Real-Time Projectd'),
               dcc.Graph(
                     id='example-graph1',
                     figure=fig1
          ], style={'padding': 10, 'flex': 5}),
      html.Div(children=[ html.H1(children='Data-streaming and real-time analytics',style={'textAlign':'center'}), html.Div(children='DADS6005 - Real-Time Projectd'),
                dcc.Graph(
                     id='example-graph4',
                    figure=fig4
          ], style={'padding': 10, 'flex': 5}),
     html.Div(children=[
   html.H1(children='Data-streaming and real-time analytics',style={'textAlign':'center'}),
   html.Div(children='DADS6005 - Real-Time Projectd'),
                dcc.Graph(
                     id='example-graph5',
                     figure=fig5
          ], style={'padding': 10, 'flex': 5}),
     html.Div(children=[
   html.H1(children='Data-streaming and real-time analytics',style={'textAlign':'center'}),
   html.Div(children='DAD56005 - Real-Time Projectd'),
               dcc.Graph(
   id='example-graph6',
   figure = fig6
          ], style={'padding': 10, 'flex': 5}),
], style={'display': 'flex', 'flexDirection': 'row', 'flex-wrap': 'wrap'})
if __name__ == '__main__':
    app.run_server(debug=True, port=8052)
```

จะได้ 5 กราฟ ดังนี้

ภาพซ้าย : Pie chart จะเห็นว่าสัดส่วนผู้ตอบแบบสอบถามเป็นฝ่ายหญิงมากกว่าชายที่ 21.6% จากหญิงที่ 60.8% และชายที่ 39.2% ภาพขวา : กราฟแท่งจะแสดงสัดส่วนความสำคัญของ Calories ต่อวัน โดยคนส่วนใหญ่เห็นว่ามีความสำคัญปานกลางมากกว่า 60 คน

ภาพซ้าย : กราฟแท่งแสดงระดับความบ่อยในการทำอาหารโดยระดับสูงสุดเป็นระดับที่ 3 (Whenever I can, but that is not very often ; เมื่อไหร่ก็ได้ แต่ก็ไม่บ่อยนัก)

ภาพขวา : กราฟแท่งจะแสดงสัดส่วนอารมณ์ที่จะรับประทาน Comfort Food โดยสัดส่วนสูงสุดเป็นระดับ 2 คือ เมื่อมีอารมณ์ความ เบื่อ (boredom) เป็นจำนวนเกือบ 50 คน และมีระดับ 1 คือ มีอารมณ์ความเครียด (stress) รองลงมา เป็นจำนวน 22 คน

กราฟสุดท้ายจะแสดงพฤติกรรมการกินของผู้ตอบแบบสอบถาม (Diet Current) โดยระดับที่ 2 (unhealthy/cheap/too much/random) เป็นระดับสูงสุด จำนวน 60 คน ขณะที่ระดับที่ 1 (healthy/balanced/moderated) รองลงมากว่า 50 คน

Reference:

Food choices College students' food and cooking preferences

>> https://www.kaggle.com/datasets/borapajo/food-choices?select=food_coded.csv