ULTIMATE GREYNESS

A car paint researcher is developing a new paint type. At this state of study, he is finding how he can mix different colors to create a new shade for grey color.

He has N different shades of grey color at his disposal. For each he has specification of its vividness V and dullness D. However, due to the properties of the color's chemicals, when he mixes multiple colors, he found that

- the total vividness is the product of vividness of all colors
- the total dullness is the sum of dullness of all colors.

His goal is to develop *a new unique grey color* such that the absolute difference between vividness and dullness is the smallest.

Obviously, it is necessary to use at least one color.

INPUT

The first line contains the integer N ($1 \le N \le 10$), the number of colors.

Each of the next N lines contains two integers separated by a space, the vividness and dullness of each color.

OUTPUT

Output the smallest possible difference between vividness and dullness.

EXAMPLES

INPUT	OUTPUT
1	5
3 8	
2	2
4 8	
5 10	
4	1
4 6	
1 8	
69	
17	