Supplementary

Epigenetic and genetic population structure is coupled in a marine invertebrate Katherine Silliman, Laura H. Spencer, Samuel J. White, Steven B. Roberts

1. General O. lurida methylation characteristics

 ${\bf Supplemental\ Table\ 1:\ Methylation\ coverage\ statistics.}$

sample	mean	median	var	sd	max	population
coverage1	12.61	12	37.65	6.14	100	HC
coverage2	11.04	10	28.66	5.35	82	HC
coverage3	12.28	11	36.98	6.08	99	HC
coverage4	12.9	12	40.99	6.4	93	HC
coverage5	9.96	9	25.55	5.05	92	HC
coverage6	8.9	8	22.25	4.72	85	HC
coverage7	13.82	13	41.28	6.43	97	HC
coverage8	12.02	11	36.77	6.06	100	HC
coverage9	14.96	14	42.8	6.54	88	$^{\mathrm{HC}}$
coverage10	15.26	13	107.12	10.35	100	SS
coverage11	15.95	12	167.15	12.93	97	SS
coverage12	11.89	11	33.05	5.75	92	SS
coverage13	18.55	17	84.6	9.2	103	SS
coverage14	20.87	19	101.26	10.06	99	SS
coverage15	19.58	17	131.26	11.46	99	SS
coverage16	20.31	18	133.11	11.54	102	SS
coverage17	14.7	13	74.64	8.64	108	SS
coverage18	14.33	13	45.48	6.74	94	SS

For detailed statistics of alignments prior to filtering, see bs-alignment-stats.csv

Supplemental Figure 1: Frequency distribution of % methylation in O. lurida prior to filtering (left) and after filtering for loci with at minimum 5x coverage (right).

Supplemental Table 2: Distribution of methylation in *Ostrea lurida* draft genome in relation to all CpG loci.

Feature	% of all CpGs in genome	% of all methylated loci	Ratio of % meth:%CpG
Exon	3.99%	14.71%	3.69
Intron	13.94%	19.76%	1.42
5' flanking region (-2kb)	3.91%	4.64%	1.19
3' flanking region (+2kb)	3.92%	4.66%	1.19
Transposable Elements	14.93%	13.83%	0.93
Unknown genome	56.01%	32.25%	0.58
regions			

Supplemental Figure 2: Top: Table showing the % of all CpG loci and methylated loci that overlap with each genomic feature. Bottom: A correlation plot, showing residuals from chi-squared tests of homogeneity on the distribution of methylated loci and CpG loci that intersect with features. Blue=positive associations, red=negative associations, and size of circles represents the absolute value of each correlation coefficient.

 $\label{lem:supplemental} \textbf{Supplemental Table 3}: \ Biological functions that are enriched in methylated genes the \textit{Ostrea lurida} genome. Also available in .csv format: https://github.com/sr320/paper-oly-mbdbs-gen/blob/master/analyses/methylated-loci-enriched-BP.csv$

GO Term	Biological Process	PValue	FDR	GO slim
GO:0007067	mitotic nuclear division	0	0.37	cell cycle and proliferation
GO:0007049	cell cycle	0	0.66	cell cycle and proliferation
GO:0051321	meiotic cell cycle	0.05	1	cell cycle and proliferation
GO:0000082	G1/S transition of mitotic cell cycle	0.07	1	cell cycle and proliferation
GO:0000086	G2/M transition of mitotic cell cycle	0.09	1	cell cycle and proliferation
GO:0007067	mitotic nuclear division	0	0.37	cell organization and biogenesis

GO Term	Biological Process	PValue	FDR	GO slim
GO:0016569	covalent chromatin modification	0.01	1	cell organization and biogenesis
GO:0060271	cilium	0.01	1	cell organization
GO:0042384	morphogenesis cilium assembly	0.01	1	and biogenesis cell organization
GO:0007030	Golgi organization	0.02	1	and biogenesis cell organization
GO:0030030	cell projection	0.05	1	and biogenesis cell organization
GO:0007005	organization mitochondrion	0.05	1	and biogenesis cell organization
GO:0001822	organization kidney	0.02	1	and biogenesis developmental
GO:0001843	development neural tube closure	0.07	1	processes developmental
GO:0006281	DNA repair	0	0.08	processes DNA metabolism
GO:0006260	DNA replication	0	0.37	DNA metabolism
GO:0006310	DNA	0.04	1	DNA metabolism
GO:0006302	recombination double-strand break repair	0.08	1	DNA metabolism
GO:0006284	base-excision repair	0.09	1	DNA metabolism
GO:0051301	cell division	0	0.12	other biological processes
GO:0007018	microtubule-based movement	0.02	1	other biological processes
GO:0042254	ribosome biogenesis	0.05	1	other biological processes
GO:0016032	viral process	0.05	1	other biological
GO:0043547	positive regulation of GTPase activity	0.05	1	processes other biological processes
GO:0000910	cytokinesis	0.06	1	other biological
GO:0032092	positive regulation	0.08	1	processes other biological
GO:0008104	of protein binding protein localization	0.09	1	processes other biological
GO:0031047	gene silencing by RNA	0.01	1	processes other metabolic processes
GO:0006511	ubiquitin- dependent protein catabolic process	0	0.12	protein metabolism
GO:0006412	translation	0	0.37	protein metabolism
GO:0050821	protein stabilization	0.01	1	protein metabolism
GO:0006468	protein phosphorylation	0.01	1	protein metabolism
GO:0006413	translational initiation	0.03	1	protein metabolism

GO Term	Biological Process	PValue	FDR	GO slim
GO:0000209	protein polyubiquitination	0.06	1	protein metabolism
GO:0042787	protein ubiquitination involved in ubiquitin- dependent protein catabolic process	0.08	1	protein metabolism
GO:0016567	protein ubiquitination	0.09	1	protein metabolism
GO:0000398	mRNA splicing, via spliceosome	0	0.53	RNA metabolism
GO:0006397	mRNA processing	0	1	RNA metabolism
GO:0006364	rRNA processing	0.01	1	RNA metabolism
GO:0006396	RNA processing	0.01	1	RNA metabolism
GO:0008380	RNA splicing	0.02	1	RNA metabolism
				RNA metabolism
GO:0006366	transcription from RNA polymerase II promoter	0.05	1	
GO:0008033	tRNA processing	0.06	1	RNA metabolism
GO:0006355	regulation of transcription, DNA-templated	0.09	1	RNA metabolism
GO:0006974	cellular response to DNA damage stimulus	0	0.05	stress response
GO:0006281	DNA repair	0	0.08	stress response
GO:0006302	double-strand break repair	0.08	1	stress response
GO:0006284	base-excision repair	0.09	1	stress response
GO:0015031	protein transport	0	0.23	transport
GO:0006886	intracellular protein transport	0	0.81	transport
GO:0006888	ER to Golgi vesicle-mediated transport	0	0.96	${ m transport}$
GO:0016192	vesicle-mediated transport	0.02	1	transport
GO:0006406	mRNA export from nucleus	0.04	1	transport
GO:0006606	protein import into nucleus	0.09	1	transport
GO:0042147	retrograde transport, endosome to Golgi	0.1	1	transport
GO:0098609	cell-cell adhesion	0.04	1	NA
GO:0070936	protein K48-linked ubiquitination	0.07	1	NA
GO:0003341	cilium movement	0.07	1	NA

Supplemental Figure 3: Gene body methylation patterns. A) relative location of methylation within gene bodies in *Ostrea lurida*. For this analysis methylated oci were designated as those with >50% methylation when averaged across all MBD18 samples, B) percent methylation across a gene body averaged across all MBD18 samples, and C) variation in percent methylation across a gene body, across all MBD18 samples.

2. Differential methylation analysis among populations

Supplemental Figure 4: Heat map of loci that are differentially methylated (DMLs) between the two populations.

Supplemental Figure 5: PCA of methylation data using DMLs only

Supplemental Figure 6: The % difference between each population's mean methylation for differentially methylated loci, which highlights that both populations have a similar number of hyper/hypo-methylated loci. Loci are sorted by % methylation difference.

 $\label{eq:supplemental} \textbf{Supplemental Table 4: GO terms and GO Slim terms of biological functions enriched in DMGs \& DMLs. \\ EASE scores shown. FDR for all terms is 1.0. Also available in .csv format: <math display="block"> \frac{\text{https://github.com/sr320/paper-oly-mbdbs-gen/blob/master/analyses/DMG-DML-EnrichedBP.csv}$

Go Slim	Term	Function	DMG	DML
cell adhesion	GO:0007155	cell adhesion	0.012	
cell adhesion	GO:0007156	homophilic cell	0.026	0.00091
		adhesion via		
		plasma membrane		
		adhesion molecules		
cell adhesion	GO:0016339	calcium-dependent		0.083
		cell-cell adhesion		
		via plasma		
		membrane cell		
	GO 0005015	adhesion molecules		
cell organization	GO:0007015	actin filament	0.014	
and biogenesis	GO 00 10 05 F	organization		
cell organization	GO:0048675	axon extension	0.047	
and biogenesis	GO 000 5 411	• 1	0.000	
cell organization	GO:0007411	axon guidance	0.063	
and biogenesis				

Go Slim	Term	Function	DMG	DML
cell organization and biogenesis	GO:0000904	cell morphogenesis involved in differentiation	0.095	
cell organization and biogenesis	GO:0030198	extracellular matrix organization	0.033	
cell organization and biogenesis	GO:0032836	glomerular basement membrane development	0.046	
cell organization and biogenesis	GO:0007040	lysosome organization	0.047	
cell organization and biogenesis	GO:0031023	microtubule organizing center organization	0.095	
cell organization and biogenesis	GO:0051259	protein oligomerization	0.098	
cell organization and biogenesis	GO:0048841	regulation of axon extension involved in axon guidance	0.033	
cell organization and biogenesis	GO:0045214	sarcomere organization	0.069	0.019
cell organization and biogenesis	GO:0055003	cardiac myofibril assembly		0.082
cell organization and biogenesis	GO:0032438	melanosome organization		0.021
cell organization and biogenesis	GO:0045332	$\begin{array}{c} {\rm phospholipid} \\ {\rm translocation} \end{array}$		0.0058
death	GO:0008625	extrinsic apoptotic signaling pathway via death domain receptors	0.095	
developmental processes	GO:0048675	axon extension	0.047	
developmental processes	GO:0007411	axon guidance	0.063	
developmental processes	GO:0032836	glomerular basement membrane development	0.046	
developmental processes	GO:0048841	regulation of axon extension involved in axon guidance	0.033	
developmental processes	GO:0045214	sarcomere organization	0.069	0.019
developmental processes	GO:0007423	sensory organ development	0.095	
developmental processes	GO:0055003	cardiac myofibril assembly		0.082
developmental processes	GO:0060429	epithelium development		0.071

Go Slim	Term	Function	DMG	DML
developmental processes	GO:0040027	negative regulation of vulval development		0.082
developmental processes	GO:0021942	radial glia guided migration of Purkinje cell		0.082
developmental processes	GO:0050767	regulation of neurogenesis		0.0058
developmental processes	GO:0060438	trachea development		0.082
developmental processes	GO:0001570	vasculogenesis		0.047
other biological processes	GO:0016477	cell migration	0.029	0.032
other biological processes	GO:0007281	germ cell development	0.048	
other biological processes	GO:0019915	lipid storage	0.043	
other biological processes	GO:0048477	oogenesis	0.046	
other biological processes	GO:0040008	regulation of growth	0.032	
other biological processes	GO:0042254	ribosome biogenesis	0.092	
other biological processes	GO:0019233	sensory perception of pain	0.016	
other biological processes	GO:0006879	cellular iron ion homeostasis		0.047
other biological processes	GO:0050982	detection of mechanical stimulus		0.082
other biological processes	GO:0050801	ion homeostasis		0.082
other biological processes	GO:0007017	microtubule-based process		0.082
other biological processes	GO:0032465	regulation of cytokinesis		0.057
other biological processes	GO:0006941	striated muscle contraction		0.082
other metabolic processes	GO:0042157	lipoprotein metabolic process	0.095	
other metabolic processes	GO:0010508	positive regulation of autophagy	0.063	
other metabolic processes	GO:0010923	negative regulation of phosphatase activity		0.028
protein metabolism	GO:0031398	positive regulation of protein ubiquitition	0.098	0.093
protein metabolism	GO:0016567	protein ubiquitition		0.0033

Go Slim	Term	Function	DMG	DML
protein metabolism	GO:0042787	protein ubiquitition involved in ubiquitin- dependent protein catabolic process		0.003
signal transduction	GO:0046426	negative regulation of JAK-STAT cascade		0.071
stress response	GO:0042594	response to starvation		0.03
transport	GO:0006895	Golgi to endosome transport	0.043	0.019
transport	GO:0034220	ion transmembrane transport	0.086	0.00049
transport	GO:0008333	endosome to lysosome transport		0.083
transport	GO:0045332	phospholipid translocation		0.0058
NA	GO:0044331	cell-cell adhesion mediated by cadherin	0.033	0.071
NA	GO:0072015	glomerular visceral epithelial cell development	0.095	
NA	GO:0086010	membrane depolarization during action potential	0.095	
NA	GO:1903955	positive regulation of protein targeting to mitochondrion	0.0082	
NA	GO:0038061	NIK/NF-kappaB sigling		0.071
NA	GO:0090175	regulation of establishment of plar polarity		0.082

3. Genetic Structure

Supplemental Figure 7: Admixture plot for 114 individuals at K=2 (determined to be the best K using the Evanno method), based on 3,724 SNPs.

 $\begin{tabular}{ll} \textbf{Supplemental Table 5}: Annotations for outlier SNPs that fall within 2kb of a gene. Also available in .bed format, HCSS_Afilt32m70_01_BS-gene2kb.bed \\ \end{tabular}$

SNP Contig	SNP Position	Feature Contig	Feature Start	Feature End			Gene Name	GO Terms
Contig29033	27589	Contig29033	11407	32648	gene	OLUR_00003721	Note=Similar to G2/mitotic-specific cyclin-B (Hydra viridissima OX%3D6082);	Ontology_term=GO:0005634;
Contig77382	11621	Contig77382	1559	12918	gene	OLUR_00016056	Note=Similar to Socs5: Suppressor of cytokine signaling 5 (Mus musculus OX%3D10090);	NA

Supplemental Table 6: DAVID enrichment results for genes with FST > 0.3. Also available in .tsv format, fst_g03_david.tab

Category	Term	Count	Percent Genes	PValue	Fold Enrichment	FDR
UP_KEYWORDS	Zinc-finger	7	26.92	0.0198	2.97	1
GOTERM_BP_DIRECT	GO:0006897~endocytosis	3	11.54	0.0236	11.34	1
GOTERM_BP_DIRECT	GO:0006915~apoptotic process	4	15.38	0.0281	5.50	1
UP_SEQ_FEATURE	compositionally biased region:Ser-rich	4	15.38	0.0584	4.19	1
GOTERM_BP_DIRECT	GO:0043401~steroid hormone mediated signaling pathway	2	7.69	0.0620	30.24	1
UP_SEQ_FEATURE	region of interest:Ligand-binding	2	7.69	0.0693	27.21	1
GOTERM_BP_DIRECT	GO:0010506~regulation of autophagy	2	7.69	0.0917	20.16	1
UP_KEYWORDS	Zinc	7	26.92	0.0969	2.05	1
INTERPRO	IPR000536:Nuclear hormone receptor, ligand-binding, core	2	7.69	0.0972	19.12	1
INTERPRO	IPR001628:Zinc finger, nuclear hormone receptor-type	2	7.69	0.0972	19.12	1
INTERPRO	IPR001723:Steroid hormone receptor	2	7.69	0.0972	19.12	1

4. mQTL analysis

Supplemental Figure 8: Comparison of mQTL results that intersect with the following genomic features: exon, intron, promoter region (within 2kb of the 5' end of a gene), gene region (genes plus 2kb upstream and downstream), transposable element, and unknown region of genome. A) SNPs designated as either local (red, within 50kb) or distant (orange) mQTLs, compared with the background (blue) of all SNPs used in the mQTL analysis. B) CpGs associated with either local (red) or distant (orange) mQTLs, compared to the background (blue) of all CpGs used in the mQTL

5. Genetic and epigenetic relationship at 10x MBD coverage

Supplemental Figure 9: Epigenetic divergence as a function of genetic distance, using CpG methylation data with a 10x coverage threshold. The y axes are the Manhattan distances from CpG methylation x1000 (a; using all methylation data and b; using DMLs). The linear regression lines are shown, together with the Pearson and Spearman correlation coefficients.

6. Genetic and epigenetic relationship at 5x coverage with NA values replacing data for the 1 or 2 samples not meeting coverage

For our comparative methylation analyses we filter for loci for which there is methylation data in at least 7 of the 9 samples in each population. This results in up to 2 samples that may not meet coverage thresholds, but which are included in analyses (e.g. PCA, distance matrix, differential methylation, etc.). We do agree that ideally all loci in all individuals would meet coverage thresholds, however given the nature of data derived from MBD-Seq library preparation (which is enriched for methylated regions), relaxing this setting was important to capture some loci with lower methylation levels in a population. Additionally, had we required that all samples meet 5x coverage thresholds, this would drastically reduce the dataset such that integration with genetic data would be quite limited. To examine how the the inclusion of data at loci with low coverage in 1-2 individuals per population affects our results, we re-ran methylation analyses where NA values replaced the up to 2 samples that did not meet 5x coverage threshold, and found that this approach slightly decreased noise in the methylation data, but did not qualitatively affect the relationships observed between the genome and epigenome, or the conclusions drawn therein. Here we provide key statistical results from methylation analyses, and figures that demonstrate the limited effects of these filtering changes on our conclusions about the relationship between genetic and epigenetic population structure:

Statistic	Analysis in main text	Revised analysis for supplemental
Number of differentially methylated loci (DMLs)	3,963	3,911
DMLs in genes	1,915	1,873
DMLs in exons	1,504	1,463
DMLs upstream of genes	178	180
DMLs downstream of genes	171	171
DMLs in transposable elements	188	188
DMLs in no known feature	500	497

Statistic	Analysis in main text	Revised analysis for supplemental
% of DMLs with higher methylation in South Sound population	54%	54%
Number of differentially methylated genes	1,447	1,462
Average Pst across random 10kb bins	0.30 +/- SD 0.26	0.30 +/- SD 0.25

Supplemental Figure 10: Revised panels B and C from Figure 3 in main text using methylation data where NA values replace loci in 1 or 2 samples not meeting 5x coverage threshold

Supplemental Figure 11: Revised Figure 4 in main text using methylation data where NA values replace loci in 1 or 2 samples not meeting 5x coverage threshold