تکلیف سوم درس ریز پردازنده و زبان اسمبلی

, آریا بنائی زاده 9431029

۱- در هر یک از دستورات زیر از چه مدهای آدرسدهی استفاده شده است؟

دستورالعمل	مد آرسدهی اُپرند اول (مد آدرس دهی در صورت نداشتن اُپرند)	مد آرسدهی اُپرند دوم (در صورت وجود)
SUB R7, R0	ن الله الله الله الله الله الله الله الل	w rem
ANDI R0, 0x40	ستقم وَط تبات	ستقتم داده
RJMP 0xFF	min / pie la grim	
IJMP	مسر سعتم حافظار برنام	
RCALL 0x1000	لسی حافظہ کر باسہ	
JMP 0x1000	متمتم ی مظارر به نا ب	
CPC R10, R7	مستم وَسط مَات	متقتم يوسط تبات
BRTC 0x400	سنى مقعد برناس	
ST -X, R0	عبر استم داده باید کاهن	مستقتم وَمط مَيات
LDI R12, 0x40	متقتم لوط ثبات	ستقيم داده
STS 0x100, R16	ستقيم حافظهر داده	متعتبم لوَحط تُبات
STD X+0x15, R4	Colored per	سقتم وَعامًا ت
Mov Rd, Rr	مستقيم وسط تنات	ستقيم آو ط سات
ELPM R0, Z	مستقيم وَمَا تَا	٦٠٠٠ روه و و و و د د د د د د د د د د د د د د د
IN R0, EEDR	Chi bu à reins	I/O rūm

۲- برنامهای بنویسید که معادل اسکی نام فامیل شما را در حافظه EEPROM میکروکنترلر بنویسید.

; Put letters ascii code in registers

LDI r16, 0X42; B

LDI r15, 0X41; A

LDI r14, 0X4E; N

LDI r13, 0X45; E

LDI r12, 0X49; I

; Wait for completion of previous write sbic EECR, EEWE rjmp EEPROM_write ; Set up address (r18:r17) in address register

```
out EEARH, r18
out EEARL, r17
; Write data "B"
out EEDR, r16
;move to next address and Write A
inc r17
out EEARL, r17
out EEDR, r15
;move to next address and write N
inc r17
out EEARL, r17
out EEDR, r14
;move to next address and write A
inc r17
out EEARL, r17
out EEDR, r15
;move to next address and write E
inc r17
out EEARL, r17
out EEDR, r13
;move to next address and write I
inc r17
out EEARL, r17
out EEDR, r12
; Write logical one to EEMWE
sbi EECR, EEMWE
; Start eeprom write by setting EEWE
sbi EECR, EEWE
ret
```

۳- وضعیت پرچمها را پس از اجرای هر یک از دستورالعملهای برنامه زیر مشخص نمائید. فرض کنید کلیه پرچمها پس از شروع برنامه 0 هستند.

Zel, Hel, Sel, Nel (F Hel (8 Iel (9 1) cen/121,2/20 5 < 1, N < 1 (Y T < 0 (Y

```
۴- در یک زیر روال، یک بایت داده را از ثبات EEDR از آدرس 0x100 حافظه EEPROM دریافت، آنرا به ثبات R10 منتقل،
                نیبلهای آنرا جابجا، بیت شماره ۴ آنرا ۱ و بیت پنجم آن را تست کنید و پیرو آن اقدامات زیر را انجام دهید:
    الف- اگر نتیجه تست بیت پنجم 1 بود، مقدار نهایی R0 را در آدرس 0x05 نسبت به مقدار فعلی ثبات Z در حافظه داده ذخیره
                                                                                     نمائيد (Z=0x9A).
    ب- اگر نتیجه تست بیت پنجم 0 بود، محتوای R0 را پس از یک شیفت منطقی به چپ، در عدد 0x2 ضرب و نتیجه را در دو
                                                             بایت متوالی در پشته ذخیره کنید (SP=0x300)
                                                ج- یس از ذخیره مقدار RO در پشته، مقدار نهایی SP چقدر است؟
                             حل: خانه 0x100 در واقع میشود خانه 256 ام حافظه پس EEARH یک و EEARL صفر میشود
EEPROM_read:
Ldi r17, 0x001
Ldi r16, 0x000
; Wait for completion of previous write
sbic EECR, EEWE
rjmp EEPROM_read
out EEARH, r17
out EEARL, r16
; Start eeprom read by writing EERE
sbi EECR, EERE
; Read data from data register
in r10, EEDR
; Swap Nibbles
Swap r10
; set bit 4
sbr r10,16
;T store
Bst r10,5
ret
                                                                                                    الف)
Brtc 2
Std Z+0x05,r0
Ret
                                                                                                     (ب
Lsl r0
Add r0,r0
Push r0
```

Push r0

صورت صعودی مرتب کند (فرض کنید این حافظه از پیش تعریف و مقداردهی شده است). برای مرتب کردن از bubble sort استفاده میکنیم این الگوریتم با مقایسه دو به دوی دو عدد پشت سر هم آرایه را مرتب می کند. کد زبان c این الگوریتم به صورت زیر است: void bubbleSort(int arr[], int n) int i, j; for (i = 0; i < n-1; i++)for (j = 0; j < n-i-1; j++)if (arr[j] > arr[j+1])swap(&arr[j], &arr[j+1]); برای نوشتن کد به زبان اسمبلی ابتدا آدرس های low و high آرایه را در ZHوZH ذخیره میکنیم و دو رجیستر (یکی برای شماره عدد مورد مقایسه و دیگری برای تعداد دفعات عمل مقایسه دو به دو) را با عدد 100 لود میکنیم و شروع به آوردن اعداد از Z به رجیستر میکنیم و اعداد را باهم مقایسه میکنیم اگر عدد ها در جای درست نبودند باید جایشان را عوض کنیم و دوباره در حافظه ذخیره کنیم(سابروتین swap این کار را انجام میدهد) .def i = r15 ; first loop index .def j = r14; second loop index bubbleSort: ldi ZH, high(ARRAY << 1) ; z high definition</pre> ldi ZL, low(ARRAY << 1) ; z low definition</pre> Ldi secondCounter, 100 firstLoop: Ldi j, 100 secondLoop: ;load in register for comparing lpm R17,Z+ lpm R18,Z mov r22, ZL cp r17,r18; compare 2 consecutive numbers brlt swapNumbers; branch to swap function dec i ; decrement i brne secondLoop; loop dec j; decrement j brne firstLoop rjmp bubbleSort swapNumbers: mov r21, r18 mov r0, r17 store in program memory spm mov ZL,R22 mov R0, R21 store in program memory spm ret

۵- برنامهای به زبان اسمبلی ATMega16 بنویسید که ۱۰۰ عدد که در آدرس ARRAY در حافظه برنامه قرار گرفتهاند را به