

Target = low latency = time needed to compute the CONV layer

=> Time needed to compute all the Multiply Accumulates (MACs) in the conv Layer

Latency = #cycles * time/cycle

- = #cycles * (critical path length)
- = #cycles * (#16b-multipliers and/or 32-bit adders chained without register in between)

(=2 in this example: 1 16-bit multiplier + 1 32-bit adder)

- = #macs_to_be_done average number of macs per cycle
- * (#16b-multipliers and/or 32-bit adders chained without register in between)
- = #macs_to_be_done
- * (#16b-multipliers and/or 32-bit adders chained without register in between)

(nb_mac_units * utilization)____ (=currently 1MAC unit active every third cycle = 1/3)

=> To decrease latency:

Increase number of MACs and/or Their utilization and/or The critical path length

will lead to changes to loops => adjust accordingly in TB and controller

Limited by:

- 1) bandwidth => can not infinitely pass more data in parallel to DUT
- 2) area => can not infinitely store data in memories/registers in DUT, nor have infinite amount of MAC units