FOUNDATIONS OF STATISTICAL DECISION MAKING

Relationships and Prediction

July 09, 2019

Aaron R. Baggett, Ph.D.

Department of Physical Therapy University of Mary Hardin-Baylor PHTH 7147: Critical Inquiry I

Outline

- Correlation
- Predicting outcomes (Regression)

Recap

- Statistical variables
- Multiple group comparisons (ANOVA)

4 / 41

Resources

• Slides, data, and handouts available at:

bit.ly/umhb_dpt

- Today's example data are from the 2002-2004 National Education Longitudinal Study (NELS)
- Nationally representative, longitudinal study of U.S. high school students
- Surveys of students, their parents, math and English teachers, and school administrators
- Student assessments in math (10th & 12th grades) and English (10th grade)

Variables:

- 1. grades: GPA of student in 2002
- 2. pared: Highest education of parent (in years)
- 3. hwork: Amount of time spent doing homeworkd during the week (in hours)

Let's look at the NELS data

	grades	pared	hwork
1	78	13	2
2	79	14	6
3	79	13	1
4	89	13	5
5	82	16	3
6	77	13	4
100	74	12	4

8 / 41

Variable correlations

	Grades	Parent Education	Homework
Grades	1.00	_	_
Parent Education	0.29 (0.08)	1.00	_
Homework	0.33 (0.11)	0.28 (0.08)	1.00

- Statistical technique used to determine the degree to which two variables are related
- Two numerical variables: Pearson's r
- The degree of relationship between two variables can vary from -1.0 to 1.0
- This is sometimes referred to as magnitude
- The closer the relationship is to -1.0 or 1.0, the stronger the magnitude or degree of relation between two variables

- Correlation coefficients describe two characteristics:
 - 1. The degree to which two variables are related
 - 2. The direction, or type of effect one variable has on the other (i.e., positive or negative)

- Two types of correlation:
 - 1. Positive Correlation:
 - Higher scores on one variable associated with higher scores on a second variable
 - 2. Negative Correlation:
 - Higher scores on one variable associated with lower scores on a second variable

- It's always recommended that you visualize your correlational data first
- ullet The results may yield more information than the r alone
- ullet For example, imagine we have the following data with r=-0.064

Х	у
55.38	97.18
51.54	96.03
46.15	94.49
_	_
44.10	92.69
	55.38 51.54 46.15 —

- What determines a strong, medium, and small correlation?
 - Cohen (1988) suggested the following:
 - $r \leq$ 0.10 = small
 - $> 0.10 \ r \le 0.30 = \text{medium}$
 - $r \ge 0.50 = large$

- Once calculated, r can be squared (r^2)
- This is called a coefficient of determination
- Proportion of variability in one variable that can be accounted for (or explained) by variability in the other variable
- The remaining proportion can be explained by factors other than your variables
 - Ex.: $r = 0.50 \rightarrow r^2 = 0.25$

- We often examine correlations visually using a scatterplot
- Graphically depicts the relationship between 2 variables
- Typically, the predictor is on the X-axis and the outcome is on the Y-axis

	Quantitative X	Ordinal X	Nominal X
Quantitative Y	Pearson's r	_	_
Ordinal Y	Biserial r_b	Spearman $ ho$	_
Nominal Y	Point Biserial r_{pb}	Rank Biserial r_{rb}	Phi (ϕ)

Calkins (2005)

PREDICTION AND

REGRESSION

- Regression is a statistical procedure used to predict values of one variable from values of another variable
- It is a hypothetical model of the relationship between at least two variables
- The model used is a linear one
- Therefore, we describe the relationship using the equation of a straight line

 Imagine we suspect parents' education and time spent doing homework combine to predict students' grades

Regression model equation:

$$Y = a + bX_1 + bX_2 + e$$

- a = Intercept
 - \circ Point where regression line crosses Y axis
- b = Slope of the line

$$Y = a + bX_1 + bX_2 + e$$

- Y = Criterion or dependent variable
 - Variable being measured and predicted
 - \circ Y = students' grades
- X = Predictor or independent variable
 - Variable we use to predict the outcome
 - \circ X_1 = parents' education
 - \circ X_2 = homework

NELS Data

pared	n	mean_grades	sd_grades	mean_hw	sd_hw
10	4	72.25	2.87	3.75	1.26
11	3	78.33	7.51	3.33	1.15
12	13	78.08	9.80	4.46	1.81
13	23	79.22	6.07	4.78	2.19
14	19	81.37	6.85	5.32	1.57
15	15	81.67	6.82	5.53	2.45
16	12	83.42	6.54	5.75	2.30
17	8	82.50	9.96	5.62	2.39
18	2	87.00	18.38	6.00	1.41
20	1	80.00		6.00	

26 / 41

NELS Data

- Let's regress students' grades on parent education and time spent doing homework
- Notice the intercept term and coefficients for pared and hwork
- Interpretation can be tricky

28 / 41

```
##
   LINEAR REGRESSION
##
   Model Fit Measures
     Model
                        R<sup>2</sup>
##
##
              0.390
                        0.152
##
##
   MODEL SPECIFIC RESULTS
##
   MODEL 1
##
   Model Coefficients
##
      Predictor
                   Estimate
                               SE
                                         t
                                                  р
##
##
      Intercept
                     63.227
                               5.240
                                         12.07
                                                  < .001
##
      pared
                   0.871
                               0.384
                                       2.27
                                                 0.026
      hwork
                      0.988
                               0.361
                                       2.74
                                                   0.007
```

Baggett (PHTH 7147) Relationships and Prediction 07/09/2019

29 / 41

##					
##	MODEL 1				
##					
##	Model Coeffic	ients			
##					
##	Predictor	Estimate	SE	t	р
##					
##	Intercept	63.227	5.240	12.07	< .001
##	pared	0.871	0.384	2.27	0.026
##	hwork	0.988	0.361	2.74	0.007
##					

Interpretation

For a student who spends 0 hours weekly doing homework and whose parent has 0 years of education, we would predict his/her GPA to be approximately 63.23.

##					
##	MODEL 1				
##					
##	Model Coeffic	ients			
##					
##	Predictor	Estimate	SE	t	р
##	Intercept	63.227	5.240	12.07	< .001
##	pared	0.871	0.384	2.27	0.026
##	hwork	0.988	0.361	2.74	0.007
##					

Interpretation, contd.

For every 1 unit increase in parent education and time spent weekly doing homework, we would expect this students' GPA to increase by 0.871 and 0.988 points, respectively.

What's wrong here?

- We need to mean center both pared (M = 14.03, SD = 1.93) and hwork (M = 5.09, SD = 2.06)
- This will allow more realistic interpretation

```
##
   LINEAR REGRESSION
##
   Model Fit Measures
     Model
                        R<sup>2</sup>
##
##
              0.390
                        0.152
##
##
   MODEL SPECIFIC RESULTS
##
   MODEL 1
##
   Model Coefficients
      Predictor
##
                      Estimate
                                  SE
##
##
      Intercept
                       80.47
                                  0.709
                                           113.47
                                                     < .001
      pared_center
                    1.68
##
                                  0.742
                                             2.27
                                                      0.026
      hwork_center
                          2.03
                                  0.742
                                             2.74
                                                      0.007
```

Baggett (PHTH 7147)

```
##
    MODEL 1
##
    Model Coefficients
      Predictor
##
                       Estimate
                                    SE
                                              t
                                                         р
##
                          80.47
                                    0.709
                                              113.47
                                                         < .001
      Intercept
      pared center
                                                2.27
                                                          0.026
##
                           1.68
                                    0.742
      hwork_center
                           2.03
                                    0.742
                                                2.74
                                                          0.007
##
```

Interpretation

For a student who spends M = 5.09 hours weekly doing homework and whose parent has M = 14.03 years of education, we would predict his/her GPA to be approximately 80.47.

```
##
    MODEL 1
##
    Model Coefficients
      Predictor
##
                       Estimate
                                    SE
                                              t
                                                        р
##
                          80.47
                                    0.709
                                             113.47
                                                        < .001
      Intercept
      pared center
                                                2.27
                                                         0.026
##
                           1.68
                                    0.742
      hwork_center
                           2.03
                                    0.742
                                                2.74
                                                         0.007
##
```

Interpretation, contd.

For every 1 unit change in parent education and time spent weekly doing homework, we would expect a students' GPA to change by 1.68 and 2.03 points, respectively.

- Overall model interpretation
- ullet In regression, we typically use ${\cal R}^2$ as a meausre of effect size
- Proportion of variance explained by the model

## ## ##	Model	Fit	Measures	
## ##	Mode	el	R	R ²
## ##		1	0.390	0.152
$\pi\pi$				

##				
##	Model	Fit	Measures	
##	Mode		R	R ²
##		= 1		
##		1	0.390	0.152
##				

Interpretation

Parents' education and the time spent doing homework combine to explain approximately $0.152 \rightarrow 15.20\%$ of the variability in determining students' grades.

Recap

- Correlation and regression are used to predict outcomes using past data
- Interpretation can be tricky
- Causation cannot be assumed

