HW1: Asymptotics

Gabriel ROMON

Problem 1

Let $(T_n)_{n\geq 1}$ be a sequence of random vectors of \mathbb{R}^d $(d\geq 1)$. T_n is said to be bounded in probability or tight (denoted $T_n=O_{\mathbb{P}}(1)$) if for any $\varepsilon>0$, there is some A>0 and $n_0\geq 1$ such that $n\geq n_0 \implies P(\|T_n\|_2\geq A)\leq \varepsilon$. More generally, if $(s_n)_{n\geq 1}$ is a sequence of real random variables we write $T_n=O_{\mathbb{P}}(s_n)$ if for any $\varepsilon>0$, there is some A>0 and $n_0\geq 1$ such that $n\geq n_0 \implies P(\|T_n\|_2\geq As_n)\leq \varepsilon$.

- 1. Show that if $T_n = o_{\mathbb{P}}(1)$ then $T_n = O_{\mathbb{P}}(1)$.
- 2. Show that if T_n converges in probability, T_n is tight.
- 3. Show that if T_n converges in distribution, T_n is tight.
- 4. Show that if $(\rho_n)_{n\geq 1}$ is a sequence that goes to ∞ and $\rho_n T_n$ converges in distribution, then $T_n = o_{\mathbb{P}}(1)$.
- 5. Suppose that T_n goes to 0 in probability. Let $g: \mathbb{R}^d \to \mathbb{R}$ be such that $g(x) = o(\|x\|_2^p)$ as $x \to 0$. Show that $g(T_n) = o_{\mathbb{P}}(\|T_n\|_2^p)$.
- 6. Suppose that T_n goes to 0 in probability. Let $g: \mathbb{R}^d \to \mathbb{R}$ be such that $g(x) = O(\|x\|_2^p)$ as $x \to 0$. Show that $g(T_n) = O_{\mathbb{P}}(\|T_n\|_2^p)$
- 7. Let $(X_n)_{n\geq 1}$ be a sequence of r.v.'s such that $X_n \sim \mathcal{P}(\frac{1}{n})$.
 - (a) Show that $X_n = o_{\mathbb{P}}(1)$.
 - (b) Show that for any sequence $(u_n)_{n\geq 1}$ of positive reals, $X_n = o_{\mathbb{P}}(u_n)$.
 - (c) Does X_n converge almost surely?
- 1. Let $\varepsilon > 0$. Since $T_n = o_{\mathbb{P}}(1)$, the sequence $P(\|T_n\|_2 \ge \varepsilon)$ goes to 0. There exists n_0 such that $n \ge n_0 \implies P(\|T_n\|_2 \ge \varepsilon) \le \varepsilon$ and we're done.
- 2. <u>Lemma 1</u>: If $X_n = O_{\mathbb{P}}(1)$ and $Y_n = O_{\mathbb{P}}(1)$ then $X + Y = O_{\mathbb{P}}(1)$. Proof: Let $\varepsilon > 0$. There are some $A_1, A_2 > 0$ and $n_1, n_2 \ge 1$ such that $n \ge n_1 \implies P(\|X_n\|_2 \ge A_1) \le \frac{\varepsilon}{2}$ and $n \ge n_2 \implies P(\|Y_n\|_2 \ge A_2) \le \frac{\varepsilon}{2}$. Let $A = \max(A_1, A_2)$, $n_0 = \max(n_1, n_2)$ and note that for $n \ge n_0$:

$$P(\|X_n + Y_n\|_2 \ge 2A) \le P(\|X_n\|_2 + \|Y_n\|_2 \ge 2A)$$

$$\le P(\|X_n\|_2 \ge A) + P(\|Y_n\|_2 \ge A)$$

$$\le P(\|X_n\|_2 \ge A_1) + P(\|Y_n\|_2 \ge A_2)$$

$$\le \varepsilon$$

Let T denote the limit of T_n in probability. We have $T_n - T = o_{\mathbb{P}}(1)$, hence 1. yields $T_n - T = O_{\mathbb{P}}(1)$. Since $T_n = T_n - T + T$ and $T = O_{\mathbb{P}}(1)$, the lemma yields $T_n = O_{\mathbb{P}}(1)$.

3. <u>Lemma 2</u>: Let (X_n^1, \ldots, X_n^d) be a random vector. (X_n^1, \ldots, X_n^d) is tight if and only if each of the X_n^i is tight.

Proof: \Rightarrow Let $\varepsilon > 0$. There are some A > 0 and $n_0 \ge 1$ such that $n \ge n_0 \implies P(\|X_n\|_2 \ge A) \le \varepsilon$. For $n \ge n_0$, $P(|X_n^i| \ge A) \le P(\|X_n\|_\infty \ge A) \le P(\|X_n\|_2 \ge A) \le \varepsilon$ and we're

Page 1

done.

 \Leftarrow Let $\varepsilon > 0$. There are some A_1, \ldots, A_d and n_1, \ldots, n_d linked to the $\frac{\varepsilon}{d}$ tightness of each X^i . Let $A = \sqrt{d} \max_{1 \le i \le d} A_i$ and $n_0 = \max_{1 \le i \le d} n_i$. For $n \ge n_0$ we have

$$P(\|X_n\|_2 \ge A) \le P(\sqrt{d}\|X_n\|_\infty \ge A)$$

$$= P(\bigcup_{i=1}^d |X_n^i| \ge \frac{A}{\sqrt{d}})$$

$$\le \sum_{i=1}^d P(|X_n^i| \ge \frac{A}{\sqrt{d}})$$

$$\le \varepsilon$$

Let us prove the result for d=1. By Lemma 1 it suffices to prove that if $T_n \in \mathbb{R}$ converges to 0 in distribution, then T_n is tight. The cdf of 0 is continuous everywhere except at 0, so $P(T_n \leq 1)$ goes to 1 as $n \to \infty$. Consequently $P(T_n \geq 2) \to 0$, hence T_n is tight.

Let $d \geq 2$ and T_n be a sequence that converges in distribution. By the continuous mapping theorem, each T_n^i converges in distribution, hence each T_n^i is tight. By Lemma 2, T_n is tight.

4. Let $\varepsilon > 0$ and X denote a random variable having the distribution of the limit of $\rho_n T_n$. By the continuous mapping theorem $\|\rho_n T_n\|_2$ converges in distribution to $\|X\|_2$. Since $\rho_n \to \infty$, we may assume WLOG that $\rho_n \geq 0$. Let A > 0 be fixed. There exists some n_0 such that $n \geq n_0 \implies \rho_n \geq A$. For $n \geq n_0$,

$$P(||T_n||_2 \ge \varepsilon) = P(\rho_n ||T_n||_2 \ge \varepsilon \rho_n)$$

$$\le P(\rho_n ||T_n||_2 \ge \varepsilon A)$$

Taking the lim sup on both side yields $\limsup_n P(\|T_n\|_2 \ge \varepsilon) \le \limsup_n P(\rho_n\|T_n\|_2 \ge \varepsilon A)$. The portmanteau theorem applied to $\rho_n\|T_n\|_2$ and the closed set $[\varepsilon A, \infty)$ gives

$$\limsup_{n} P(\rho_n || T_n ||_2 \ge \varepsilon A) \le P(||X||_2 \ge \varepsilon A)$$

hence $\limsup_n P(\|T_n\|_2 \ge \varepsilon) \le P(\|X\|_2 \ge \varepsilon A)$. Letting $A \to \infty$ yields $\limsup_n P(\|T_n\|_2 \ge \varepsilon) = 0$, hence $P(\|T_n\|_2 \ge \varepsilon) \to 0$ and $T_n = o_{\mathbb{P}}(1)$.

5. Let $\varepsilon > 0$. Since $g(x) = o(\|x\|_2^p)$ as $x \to 0$, there exists some R such that $x \in B_2(0,R) \setminus \{0\} \implies \frac{|g(x)|}{\|x\|_2^p} \le \frac{\varepsilon}{2}$. This implies

$$P(g(T_n) \ge \varepsilon ||T_n||_2^p) \le P(||T_n||_2 > R) \xrightarrow[n \to \infty]{} 0$$

and we're done.

6. Let $\varepsilon > 0$. Since $g(x) = O(\|x\|_2^p)$ as $x \to 0$, there exists some A > 0 and R > 0 such that $x \in B_2(0,R) \setminus \{0\} \implies \frac{|g(x)|}{\|x\|_2^p} \le A$. This implies

$$P(g(T_n) \ge 2A \|T_n\|_2^p) \le P(\|T_n\|_2 > R) \xrightarrow[n \to \infty]{} 0$$

Consequently there is some n_0 such that $n \geq n_0 \implies P(\|T_n\|_2 > R) \leq \varepsilon$. Hence $n \geq n_0 \implies P(g(T_n) \geq 2A\|T_n\|_2^p) \leq \varepsilon$ and we're done.

7. (a) Let $\varepsilon \in (0,1)$. Since X_n is integer-valued, we have

$$P(X_n \ge \varepsilon) \le P(X_n \ge 1) = 1 - P(X_n = 0) = 1 - \exp(-\frac{1}{n}) \xrightarrow[n \to \infty]{} 0$$

For $\varepsilon \geq 1$, $P(X_n \geq \varepsilon) \leq P(X_n \geq \frac{1}{2}) \xrightarrow[n \to \infty]{} 0$, hence X_n converges in probability to 0.

(b) Let $(u_n)_{n\geq 1}$ be a sequence of positive reals and $\varepsilon>0$. Note that

$$P(X_n \ge \varepsilon u_n) = P(X_n \ge \varepsilon u_n) 1_{u_n > \frac{1}{\varepsilon}} + \sum_{k=0}^{\infty} P(X_n \ge \varepsilon u_n) 1_{\frac{1}{2^k \varepsilon} \ge u_n > \frac{1}{2^{k+1}\varepsilon}}$$

$$\le P(X_n \ge 1) + \sum_{k=0}^{\infty} P\left(X_n \ge \frac{1}{2^{k+1}}\right) 1_{\frac{1}{2^k \varepsilon} \ge u_n > \frac{1}{2^{k+1}\varepsilon}}$$

$$\le P(X_n \ge 1) + \sum_{k=0}^{\infty} \left(1 - \exp(-\frac{1}{n})\right) 1_{\frac{1}{2^k \varepsilon} \ge u_n > \frac{1}{2^{k+1}\varepsilon}}$$

$$\le P(X_n \ge 1) + \sum_{k=0}^{\infty} \frac{1}{n} 1_{\frac{1}{2^k \varepsilon} \ge u_n > \frac{1}{2^{k+1}\varepsilon}}$$

$$\le P(X_n \ge 1) + \frac{1}{n}$$

$$\xrightarrow[n \to \infty]{} 0$$

Hence $X_n = o_{\mathbb{P}}(u_n)$.

(c) Note that $P(X_n \ge 1) = 1 - \exp(-\frac{1}{n}) \sim \frac{1}{n}$, hence $\sum_n P(X_n \ge 1) = \infty$. If the X_i are (at least pairwise) **independent**, Borel-Cantelli lemma yields $P(\limsup_n (X_n \ge 1)) = 1$. For almost all w, we have $X_n(w) \ge 1$ infinitely often, hence X_n cannot converge almost surely to 0. Thus X_n does not converge almost surely.

If the X_i are not independent, a.s. convergence to 0 may occur. Let $(\xi_n)_{n\geq 1}$ be a sequence of independent r.v's such that $\xi_n \sim \mathcal{P}(\frac{1}{n} - \frac{1}{n+1})$. Since the summands are ≥ 0 a.s., the series $\sum_{n\geq 1} \xi_n$ converges a.s. in $\overline{\mathbb{R}}$. Since

$$E\left(\sum_{n\geq 1}\xi_n\right) = \sum_{n\geq 1}E(\xi_n) = \sum_{n\geq 1}\frac{1}{n(n+1)} < \infty$$

 $\sum_{n\geq 1} \xi_n$ converges a.s. in \mathbb{R} . Thus it makes sense to define $X_n = \sum_{i\geq n} \xi_i$, and by what precedes X_n converges almost surely to 0. It remains to prove that $X_n \sim \mathcal{P}(\frac{1}{n})$.

$$P(X_n = p) = E(1_{X_n = p}) = E(\lim_k 1_{\sum_{i=n}^k \xi_i = p})$$

$$= \lim_k P(\sum_{i=n}^k \xi_i = p)$$

$$= \lim_k \frac{1}{p!} \left(\frac{1}{n} - \frac{1}{k+1}\right)^p \exp\left(-(\frac{1}{n} - \frac{1}{k+1})\right)$$

$$= \frac{1}{p!} \frac{1}{n^p} \exp(-\frac{1}{n})$$

Swapping the \lim_k and the expectation is motivated by the monotone convergence theorem. For fixed k, the distribution of $\sum_{i=n}^k \xi_i$ is that of a finite sum of independent Poisson random variables, which is well-known to be a Poisson where the parameters are summed.

Let $(T_n)_{n\geq 1}$ be a sequence of random vectors of \mathbb{R}^d $(d\geq 1)$ and T a random vector.

- 1. Show that if T_n converges almost surely to T, then T_n converges in probability to T.
- 2. Show that if T_n converges in probability to T, then T_n converges in distribution to T.
- 3. Show that if T is constant almost surely, convergence in distribution implies convergence in probability.
- 1. Let $A = \{w \in \Omega, T_n(w) \xrightarrow[n \to \infty]{} T(w)\}$. Note that $A = \bigcap_{m \ge 1} \bigcup_{n \ge 1} \bigcap_{k \ge n} \|T_k T\| < \frac{1}{m}$. By assumption, $P(A^c) = 0$, hence $P(\bigcup_{m \ge 1} \bigcap_{n \ge 1} \bigcup_{k \ge n} \|T_k T\| \ge \frac{1}{m}) = 0$, which implies $\forall m \ge 1, P(\bigcap_{n \ge 1} \bigcup_{k \ge n} \|T_k T\| \ge \frac{1}{m}) = 0$.

Let $\varepsilon > 0$. There is some $m \ge 1$ such that $\varepsilon \ge \frac{1}{m}$, hence

$$P(\|T_n - T\| \ge \varepsilon) \le P(\|T_n - T\| \ge \frac{1}{m}) \le P(\bigcup_{k > n} \|T_k - T\| \ge \frac{1}{m})$$

 $\bigcup_{k\geq n} ||T_k - T|| \geq \frac{1}{m}$ is a decreasing sequence of events, hence

$$P(\bigcup_{k \ge n} ||T_k - T|| \ge \frac{1}{m}) \xrightarrow[n \to \infty]{} P(\bigcap_{k \ge n} \bigcup_{k \ge n} ||T_k - T|| \ge \frac{1}{m}) = 0$$

Squeezing thus yields $P(||T_n - T|| \ge \varepsilon) \xrightarrow[n \to \infty]{} 0$, hence T_n converges to T in probability.

2. Let f be a K-Lipschitz function bounded by some $A \geq 0$. Note that for any $\varepsilon > 0$,

$$|f(T_n) - f(T)| \le K\varepsilon 1_{\|T_n - T\|_2 \le \varepsilon} + 2A1_{\|T_n - T\|_2 > \varepsilon}$$

Thus $|E(f(T_n)) - E(f(T))| \le E(|f(T_n) - f(T)|) \le K\varepsilon + 2AP(||T_n - T||_2 > \varepsilon)$. Taking \limsup on both side yields $\limsup_n |E(f(T_n)) - E(f(T))| \le K\varepsilon$. Letting $\varepsilon \to 0$ proves that $\lim_n E(f(T_n)) = E(f(T))$. By the portmanteau theorem, T_n converges to T in distribution.

3. If the random vector (T_n^1, \ldots, T_n^d) converges in distribution to some T with $T = (t_1, \ldots, t_d)$ a.s., then by the continuous mapping theorem each T_n^i converges in distribution to δ_{t_i} .

We recall a useful lemma about convergence:

<u>Lemma 3</u>: (X_n^1, \ldots, X_n^d) converges in probability to (X^1, \ldots, X^d) if and only if each real r.v. X_n^i converges in probability to X^i .

By Lemma 3 it suffices to prove the claim in the case d=1.

By the continuous mapping theorem applied with $x \mapsto |x-t|$, $|T_n-t|$ converges in distribution to 0. Let $\varepsilon > 0$ and note that

$$P(|T_n - t| \ge \varepsilon) \le P(|T_n - t| > \frac{\varepsilon}{2}) = 1 - P(|T_n - t| \le \frac{\varepsilon}{2})$$

Since the cdf of 0 is continuous at $\frac{\varepsilon}{2}$, the convergence of $|T_n - t|$ implies $P(|T_n - t| \le \frac{\varepsilon}{2}) \xrightarrow[n \to \infty]{} 1$ and we're done.

Let $\alpha \in (0,1)$, $\ell_{\alpha} : t \mapsto (1-\alpha)t^{+} + \alpha t^{-}$ and $\phi : (x,t) \mapsto \ell_{\alpha}(x-t)$. Let $(X_{n})_{n\geq 1}$ be a sequence of i.i.d. r.v.'s with positive density. For $n \geq 1$, let \hat{q}_n an M-estimator associated to ϕ .

- 1. Show that \hat{q}_n is an α -quantile of the sample X_1, \ldots, X_n . To simplify matters, \hat{q}_n will be chosen to be maximal.
- 2. Find k such that $\hat{q}_n = X_{(k)}$ where $X_{(1)} \leq \ldots \leq X_{(n)}$ are the order statistics. Show that the inequalities are strict almost surely.
- 3. We want to prove that \hat{q}_n is asymptotically normal.
 - (a) Show that X_1 has a unique α -quantile, say q.
 - (b) For $t \in \mathbb{R}$, show that $P(\sqrt{n}(\hat{q}_n q) \le t) = P(N \ge n\alpha)$ where $N \sim \mathcal{B}(n, F(q + t/\sqrt{n}))$ where F is the cdf of X_1 .
 - (c) What is the limiting distribution of $\frac{1}{\sqrt{n}}(N-nF(q+t/\sqrt{n}))$ as $n\to\infty$?
 - (d) Use Slutsky's theorem to conclude.
- 1. Let x_1, \ldots, x_n be fixed real numbers and $g: t \mapsto \frac{1}{n} \sum_{i=1}^n \ell_{\alpha}(x_i t)$. By definition, $\hat{q}_n \in \arg\min_t g(t)$. Each $t \mapsto \ell_{\alpha}(x_i - t)$ is a convex function, so g is convex and t is minimal if and only if $0 \in \partial g(t)$. Let $p(t) = |\{i \in [1, n], x_i < t\}|$ and $q(t) = |\{i \in [1, n], x_i > t\}|$. Subgradient calculus yields

$$\partial g(t) = -\frac{1}{n} \sum_{i=1}^{n} \begin{cases} \{\alpha - 1\} & \text{if } x_i < t \\ [\alpha - 1, \alpha] & \text{if } x_i = t \\ \{\alpha\} & \text{if } x_i > t \end{cases}$$
 where the summation is over sets
$$= \{p(t)(\alpha - 1) + q(t)\alpha\} + [(n - p(t) - q(t))(\alpha - 1), (n - p(t) - q(t))\alpha]$$

Thus
$$0 \in \partial g(t) \iff -p(t)(\alpha-1) - q(t)\alpha \in [(n-p(t)-q(t))(\alpha-1), (n-p(t)-q(t))\alpha]$$
 $\iff 0 \le n\alpha - p(t) \le n - (p(t)+q(t))$ $\iff \frac{n-p(t)}{n} \ge 1-\alpha \quad \text{and} \quad \frac{n-q(t)}{n} \ge \alpha$ Given the definition of $p(t)$ and $q(t)$, this can be rephrased as: t is minimal if and only if

it is an α -quantile of x_1, \ldots, x_n .

2. Let x_1, \ldots, x_n be fixed real numbers and p(t), q(t) be defined as above. We want to find the greatest t such that $p(t) \leq n\alpha$ and $q(t) \leq n(1-\alpha)$ both hold. Let us show that $t^* = x_{|n\alpha|+1}$ fits the bill. By definition, $p(t^*) \leq \lfloor n\alpha \rfloor \leq n\alpha$ and

$$q(t^*) \le n - (\lfloor n\alpha \rfloor + 2) + 1 = n(1 - \alpha) + \{n\alpha\} - 1 \le n(1 - \alpha)$$

If $t > x_{\lfloor n\alpha \rfloor + 1}$, then $p(t) \ge \lfloor n\alpha \rfloor + 1 > n\alpha$, hence t^* is the maximal t such that $p(t) \le n\alpha$ and $q(t) \leq n(1-\alpha)$. Thus $\hat{q}_n = x_{|n\alpha|+1}$.

<u>Remark</u>: $x_{\lceil n\alpha \rceil}$ is another α -quantile, but it is not maximal (consider n=6 and $\alpha=\frac{1}{2}$). To check that it is a quantile note that $p(x_{\lceil n\alpha \rceil}) \leq \lceil n\alpha \rceil - 1 < n\alpha$ and

$$q(x_{\lceil n\alpha \rceil}) \le n - (\lceil n\alpha \rceil + 1) + 1 = n - \lceil n\alpha \rceil \le n(1 - \alpha)$$

Let $1 \le i \ne j \le n$ and f denote the density of X_i .

Note that
$$P(X_i = X_j) = E(1_{X_i = X_j}) = \int 1_{x = y} dP_{(X_i, X_j)}(x, y)$$

$$= \int 1_{x = y} dP_{X_i} \otimes dP_{X_j}(x, y) \text{ by independence}$$

$$= \int \int 1_{x = y} f(x) f(y) dx dy$$

$$= \int \left(\int 1_{x = y} f(x)^2 dx \right) dy \text{ by Fubini}$$

For fixed y, the function $x \mapsto 1_{x=y} f(x)^2$ is 0 almost everywhere, thus $\int 1_{x=y} f(x)^2 dx = 0$, hence $P(X_i = X_j) = \int 0 dy = 0$.

3. (a) q is an α -quantile of X_1 if and only if $P(X_1 \leq q) \geq \alpha$ and $P(X_1 \geq q) \geq 1 - \alpha$. Since X_1 has a density, its cdf F is continuous. Since the density is > 0 everywhere, F is also strictly increasing, so F is a continuous increasing bijection from \mathbb{R} to (0,1).

Consequently there exists $q \in \mathbb{R}$ such that $F(q) = \alpha$, hence $P(X_1 \leq q) = \alpha$ and since X_1 is atomless, $P(X_1 \geq q) = P(X_1 > q) = 1 - \alpha$. Hence q is an α -quantile of X_1 .

If q is an α -quantile of X_1 , we have both $P(X_1 \leq q) \geq \alpha$ and $P(X_1 < q) \leq \alpha$. Since X_1 is atomless $P(X_1 \leq q) = P(X_1 < q) \leq \alpha$, hence $P(X_1 \leq q) = \alpha$ and q is unique by the injectivity of F.

(b) In this question it is essential that $\hat{q}_n = X_{\lceil n\alpha \rceil}$, contrary to what's stated in Question 1.

For $i \in [1, n]$, let $Y_i = 1_{X_i \le \frac{t}{\sqrt{n}} + q}$ and note that

$$P(\sqrt{n} (\hat{q}_n - q) \le t) = P(X_{\lceil n\alpha \rceil} \le \frac{t}{\sqrt{n}} + q)$$
$$= P(\sum_{i=1}^n Y_i \ge \lceil n\alpha \rceil)$$
$$= P(\sum_{i=1}^n Y_i \ge n\alpha)$$

 $\sum_{i=1}^{n} Y_i$ has distribution $\mathcal{B}(n, F(t/\sqrt{n}+q))$ as a sum of n i.i.d. Bernoulli r.v.'s.

If $\hat{q}_n = X_{\lfloor n\alpha \rfloor + 1}$, one gets $P(\sqrt{n} (\hat{q}_n - q) \leq t) = P(\sum_{i=1}^n Y_i \geq \lfloor n\alpha \rfloor + 1)$ but the last term isn't necessarily equal to $P(\sum_{i=1}^n Y_i \geq n\alpha)$ (if $n\alpha \in \mathbb{N}$ and $m \in \mathbb{N}$, $m \geq n\alpha$ does not imply $m \geq \lfloor n\alpha \rfloor + 1$)

(c) Note that

$$\begin{split} E\left[\exp\left(it\frac{1}{\sqrt{n}}\left(N-nF\left(q+\frac{t}{\sqrt{n}}\right)\right)\right)\right] \\ &=E\left[\exp\left(\frac{itN}{\sqrt{n}}\right)\right]\exp\left(-it\sqrt{n}F\left(q+\frac{t}{\sqrt{n}}\right)\right) \\ &=\left[1+F\left(q+\frac{t}{\sqrt{n}}\right)\left(\exp\left(\frac{it}{\sqrt{n}}\right)-1\right)\right]^n\exp\left(-it\sqrt{n}F\left(q+\frac{t}{\sqrt{n}}\right)\right) \end{split}$$

Since the density of X_1 is continuous, F is differentiable everywhere with F' = f. This provides the following asymptotic expansion for F:

$$\begin{split} F\left(q + \frac{t}{\sqrt{n}}\right) &= F(q) + \frac{t}{\sqrt{n}}f(q) + o\left(\frac{1}{\sqrt{n}}\right) \\ &= \alpha + \frac{t}{\sqrt{n}}f(q) + o\left(\frac{1}{\sqrt{n}}\right) \end{split}$$

Let Log denote the principal branch of the logarithm. For |z| < 1,

$$Log(1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^n$$

thus $\frac{|\operatorname{Log}(1+z) - z + \frac{z^2}{2}|}{|z^2|} = |z| \left| \sum_{n=3}^{\infty} \frac{(-1)^{n+1}}{n} z^{n-3} \right|$. $z \mapsto \sum_{n=3}^{\infty} \frac{(-1)^{n+1}}{n} z^{n-3}$ is a power

series with radius ≥ 1 , it is therefore bounded over $\overline{B}(0,\frac{1}{2})$. As a result

$$\lim_{z \to 0} \frac{\text{Log}(1+z) - z + \frac{z^2}{2}}{z^2} = 0$$

and $Log(1+z) = z - \frac{z^2}{2} + o(z^2)$. A bit of algebra shows that

$$\operatorname{Log}\left[1 + F\left(q + \frac{t}{\sqrt{n}}\right)\left(\exp\left(\frac{it}{\sqrt{n}}\right) - 1\right)\right] = \operatorname{Log}\left[1 + \frac{i\alpha t}{\sqrt{n}} + \frac{t^2}{n}\left(if(q) - \frac{\alpha}{2}\right) + o\left(\frac{1}{n}\right)\right]$$

$$= \frac{i\alpha t}{\sqrt{n}} + \frac{t^2}{n}\left(if(q) - \frac{\alpha}{2}\right) + \frac{\alpha^2 t^2}{2n} + o\left(\frac{1}{n}\right)$$

$$= \frac{i\alpha t}{\sqrt{n}} + \frac{t^2}{n}\left(if(q) - \frac{\alpha}{2} + \frac{\alpha^2}{2}\right) + o\left(\frac{1}{n}\right)$$

The original expectation turns into

$$E\left[\exp\left(it\frac{1}{\sqrt{n}}\left(N - nF\left(q + \frac{t}{\sqrt{n}}\right)\right)\right)\right] = \exp\left[n\left(\frac{i\alpha t}{\sqrt{n}} + \frac{t^2}{n}\left(if(q) - \frac{\alpha}{2} + \frac{\alpha^2}{2}\right) + o\left(\frac{1}{n}\right)\right)\right]$$

$$\cdot \exp\left(-it\alpha\sqrt{n} - it^2f(q) + o(1)\right)$$

$$= \exp\left[-\frac{\alpha(1 - \alpha)}{2}t^2 + o(1)\right]$$

$$\xrightarrow[n \to \infty]{} \exp\left[-\frac{\alpha(1 - \alpha)}{2}t^2\right]$$

The characteristic function of $\frac{1}{\sqrt{n}}\left(N-nF\left(q+\frac{t}{\sqrt{n}}\right)\right)$ converges pointwise to that of a $\mathcal{N}(0,\alpha(1-\alpha))$, hence $\frac{1}{\sqrt{n}}\left(N-nF\left(q+\frac{t}{\sqrt{n}}\right)\right)$ converges in distribution to $\mathcal{N}(0,\alpha(1-\alpha))$.

(d) Let
$$Z_n = \frac{1}{\sqrt{n}} \left(N - nF \left(q + \frac{t}{\sqrt{n}} \right) \right)$$
. Note that

$$P(N \ge n\alpha) = P\left(Z_n \ge \sqrt{n}\left(\alpha - F\left(q + \frac{t}{\sqrt{n}}\right)\right)\right) = P\left(-Z_n \le \sqrt{n}\left(F\left(q + \frac{t}{\sqrt{n}}\right) - F(q)\right)\right)$$

 $\sqrt{n}\left(F\left(q+\frac{t}{\sqrt{n}}\right)-F(q)\right)$ is a deterministic sequence that converges (everywhere, hence almost surely, thus in probability) to tf(q). We have

$$P(N \ge n\alpha) = P\left(-Z_n \underbrace{\frac{tf(q)}{\sqrt{n}\left(F\left(q + \frac{t}{\sqrt{n}}\right) - F(q)\right)} \frac{1}{f(q)}}_{\text{converges in probability to } \frac{1}{f(q)}} \le t\right)$$

By Slutsky's theorem, the random variable on the left of the \leq sign converges in distribution to $-\frac{1}{f(q)}\mathcal{N}(0,\alpha(1-\alpha))=\mathcal{N}(0,\frac{\alpha(1-\alpha)}{f(q)^2}).$

Hence $P(\sqrt{n}(\hat{q}_n - q) \le t) = P(N \ge n\alpha)$ converges to the cdf of a $\mathcal{N}(0, \frac{\alpha(1-\alpha)}{f(q)^2})$ evaluated at t (and this cdf is continuous).

This proves that $\sqrt{n} (\hat{q}_n - q)$ converges in distribution to a $\mathcal{N}(0, \frac{\alpha(1-\alpha)}{f(q)^2})$.

Let $\theta > 0$ and $(X_n)_{n \geq 1}$ be i.i.d. random variables following $\mathcal{U}([0, \theta])$. Show that the MLE $\hat{\theta}_n$ of θ is asymptotically exponential with convergence rate $\frac{1}{n}$.

Let x_1, \ldots, x_n be an *n*-sample. The likelihood of the model writes as

$$L(\theta) = \prod_{i=1}^{n} \frac{1}{\theta} 1_{[0,\theta]}(x_i) = \frac{1}{\theta^n} 1_{\min x_i \ge 0} 1_{\max x_i \le \theta}$$

If min $x_i < 0$, L = 0 and the MLE is not defined, so we may assume WLOG that min $x_i \ge 0$. L is 0 when $\theta < \max x_i$ and positive decreasing for $\theta \ge \max x_i$. Thus L has a unique maximum at $\theta = \max x_i$, hence $\hat{\theta}_n = \max x_i$.

Let us compute the cdf of $\hat{\theta}_n$. Let F denote the cdf of X_1 .

$$P(\max X_i \le t) = P(\bigcap_{i=1}^n X_i \le t) = F(t)^n$$

$$= \begin{cases} 0 & \text{if } t < 0\\ \frac{t^n}{\theta^n} & \text{if } t \in [0, \theta)\\ 1 & \text{if } t \ge \theta \end{cases}$$

The cdf is continuous so the distribution of $\max X_i$ is atomless.

Let $t \geq 0$. Since $\hat{\theta}_n$ is atomless,

$$P(n(\theta - \hat{\theta}_n) \le t) = P(\hat{\theta}_n \ge \theta - \frac{t}{n}) = 1 - P(\hat{\theta}_n \le \theta - \frac{t}{n})$$
$$= 1 - \left(\theta - \frac{t}{n}\right)^n \frac{1}{\theta^n} = 1 - \left(1 - \frac{t}{\theta n}\right)^n$$
$$\xrightarrow[n \to \infty]{} 1 - \exp(-\frac{t}{\theta})$$

If t < 0 similar computations show that $P(n(\theta - \hat{\theta}_n) \le t) \xrightarrow[n \to \infty]{} 0$

The limiting cdf is that of a $\mathcal{E}(\frac{1}{\theta})$ (and it is continuous), so $n(\theta - \hat{\theta}_n)$ converges in distribution to $\mathcal{E}(\frac{1}{\theta})$.

Let $a \in \mathbb{R}$, $\lambda > 0$ and $f: x \mapsto \lambda e^{-\lambda(x-a)} 1_{x \geq a}$. Let $(X_n)_{n \geq 1}$ be an i.i.d sequence of r.v.'s with density f. For $n \geq 1$, let $(\hat{a}_n, \hat{\lambda}_n)$ the MLE of (a, λ) . Show that \hat{a}_n is asymptotically exponential with convergence rate $\frac{1}{n}$ and $\hat{\lambda}_n$ is asymptotically normal.

Let x_1, \ldots, x_n be an *n*-sample. The likelihood of the model writes as

$$L(a,\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda(x-a)} 1_{x \ge a} = \lambda^n 1_{\min x_i \ge a} e^{-\lambda \sum_{i=1}^{n} (x_i - a)}$$

When $a > \min x_i$, $L(a, \lambda) = 0$ and the likelihood is minimized. We may therefore assume that $a \le \min x_i$. If $a = \frac{1}{n} \sum_{i=1}^n x_i$, then $a = x_1 = \ldots = x_n$ and $L(a, \lambda) = \lambda^n \xrightarrow[\lambda \to \infty]{} \infty$, so the MLE does not exist. We may thus assume additionally that the equalities $x_1 = \ldots = x_n$ do not hold, so $a < \frac{1}{n} \sum_{i=1}^n x_i$.

We have $\log L(a,\lambda) = n \log \lambda - \lambda \sum_{i=1}^n (x_i - a)$. Studying the derivative w.r.t λ shows that $\lambda \mapsto \log L(a,\lambda)$ reaches a unique maximum at $\lambda^*(a) = \frac{n}{\sum_{i=1}^n (x_i - a)}$ (which is well-defined given the previous assumption). Since \log is strictly monotonic, $\lambda \mapsto L(a,\lambda)$ also has its unique maximum at $\lambda^*(a)$.

Consider $(-\infty, \min x_i] \to \mathbb{R}, a \mapsto L(a, \lambda(a^*)) = \frac{n^n}{\left[\sum_{i=1}^n (x_i - a)\right]^n}$. This function is increasing in a, so it reaches its maximum at $a = \min x_i$.

Thus $\hat{a}_n = \min x_i$ and $\hat{\lambda}_n = \lambda(\hat{a}_n) = \frac{n}{\sum_{i=1}^n (x_i - \min x_i)}$.

The cdf of X_1 is given by $P(X_1 \le t) = \begin{cases} 0 & \text{if } t < a \\ 1 - e^{-\lambda(t-a)} & \text{if } t \ge a \end{cases}$ and the cdf of $\min X_i$ by $P(\min X_i \le t) = 1 - (1 - P(X_1 \le t))^n$.

Let $t \geq 0$. We have $P(n(\min X_i - a) \leq t) = 1 - (1 - (1 - e^{-\lambda \frac{t}{n}}))^n = 1 - e^{-\lambda t}$. For t < 0 we get $P(n(\min X_i - a) \leq t) = 0$ in a similar fashion. The cdf of $n(\min X_i - a)$ is that of a $\mathcal{E}(\lambda)$, hence $n(\min X_i - a) \sim \mathcal{E}(\lambda)$ (and remarkably this holds for finite n).

 X_1 is square-integrable with $E(X_1) = \frac{1}{\lambda} + a$ and $V(X_1) = \frac{1}{\lambda^2}$. Note that

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} - \min X_{i} - \frac{1}{\lambda}\right) = \sqrt{n} \cdot \frac{1}{n}\sum_{i=1}^{n}(X_{i} - E(X_{i})) + \sqrt{n}\left(a - \min X_{i}\right)$$

Since $\sqrt{n} \cdot \sqrt{n} (\min X_i - a)$ converges in distribution, Question 4 from Problem 1 implies that $\sqrt{n} (\min X_i - a) = o_{\mathbb{P}}(1)$. The CLT yields the convergence in distribution of $\sqrt{n} \cdot \frac{1}{n} \sum_{i=1}^{n} (X_i - E(X_i))$ to $\mathcal{N}(0, \frac{1}{\lambda^2})$. By Slutsky's theorem $\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} X_i - \min X_i - \frac{1}{\lambda}\right)$ converges in distribution to $\mathcal{N}(0, \frac{1}{\lambda^2})$.

The Delta Method applied with $x \mapsto \frac{1}{x}$ yields the convergence in distribution of

$$\sqrt{n} \left(\frac{1}{\frac{1}{n} \sum_{i=1}^{n} X_i - \min X_i} - \lambda \right)$$

to $\mathcal{N}(0, \frac{1}{\lambda^2} \cdot \lambda^4) = \mathcal{N}(0, \lambda^2).$

Let $\theta \in \mathbb{R}$ and $(X_n)_{n\geq 1}$ a sequence of i.i.d. r.v.'s following $\mathcal{N}(\theta^3, 1)$.

- 1. For $n \geq 1$ compute $\hat{\theta}_n$ the MLE of θ .
- 2. Show that $\hat{\theta}_n$ is consistent.
- 3. For what values of θ is $\hat{\theta}_n$ asymptotically normal?
- 4. Depending on θ find $\alpha > 0$ such that $|\hat{\theta}_n \theta| = O_{\mathbb{P}}\left(\frac{1}{n^{\alpha}}\right)$
- 1. Let x_1, \ldots, x_n be an n-sample. The likelihood of the model writes as

$$L(\theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp(-\frac{(x_i - \theta^3)^2}{2})$$
$$= \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} (x_i - \theta^3)^2\right)$$

Thus $\log L(\theta) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{i=1}^{n}(\theta^3 - x_i)^2$ which is a degree 6 polynomial in θ with leading coefficient $-\frac{n}{2}$. It is therefore coercive and reaches a global maximum at a critical point. We have

$$(\log L)'(\theta) = 0 \iff 6\theta^2 \sum_{i=1}^n (\theta^3 - x_i) = 0 \iff \theta = 0 \text{ or } \theta = \left(\frac{1}{n} \sum_{i=1}^n x_i\right)^{1/3} = \overline{x}^{1/3}$$

Up to a constant we have $(\log L)(0) = -\frac{1}{2} \sum_{i=1}^{n} x_i^2$ and

$$(\log L)\left(\overline{x}^{1/3}\right) = -\frac{1}{2}\sum_{i=1}^{n}(x_i - \overline{x})^2 = -\frac{1}{2}\left[\sum_{i=1}^{n}x_i^2 - \left(\sum_{i=1}^{n}x_i\right)^2\right] \ge (\log L)(0)$$

The MLE is thus $\hat{\theta}_n = \overline{x}^{1/3}$.

- 2. By the weak Law of Large Numbers \overline{X} converges in probability to θ^3 . The continuous mapping theorem applied with $x \mapsto x^{1/3}$ yields convergence in probability of $\overline{X}^{1/3}$ to θ , thus $\hat{\theta}_n$ is consistent.
- 3. By the CLT $\sqrt{n}(\overline{X}-\theta^3)$ converges in distribution to $\mathcal{N}(0,1)$. If $\theta \neq 0$ the function $x \mapsto x^{1/3}$ is differentiable at θ and the Delta Method yields convergence in distribution of $\sqrt{n}(\overline{X}^{1/3}-\theta)$ to $\mathcal{N}(0,\frac{1}{9\theta^{4/3}})$. Let Y be a r.v. with distribution $\mathcal{N}(0,1)$. When $\theta=0$, combining the CLT with the continuous mapping theorem gives convergence in distribution of $n^{1/6}\overline{X}^{1/3}$ to $Y^{1/3}$, which rewrites as $\left[n^{1/2}\overline{X}^{1/3}\right]\frac{1}{n^{1/3}} \to Y^{1/3}$. If $n^{1/2}\overline{X}^{1/3}$ converged in distribution, Slutksy's theorem would imply that $\left[n^{1/2}\overline{X}^{1/3}\right]\frac{1}{n^{1/3}} \to 0$ in distribution, a contradiction. Consequently, when $\theta=0$, $\hat{\theta}_n$ is not asymptotically normal.
- 4. For $\theta \neq 0$ we proved that $\sqrt{n}(\hat{\theta}_n \theta) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, \frac{1}{9\theta^{4/3}})$. Question 3 of Problem 1 implies that $\sqrt{n}(\hat{\theta}_n \theta)$ is tight, hence $\hat{\theta}_n \theta = O_{\mathbb{P}}\left(\frac{1}{\sqrt{n}}\right)$.

For
$$\theta = 0$$
, $n^{1/6}\hat{\theta}_n \xrightarrow[n \to \infty]{\mathcal{L}} Y^{1/3}$, and by the same argument $\hat{\theta}_n - \theta = O_{\mathbb{P}}\left(\frac{1}{n^{1/6}}\right)$.