Aniversidad Central Del Ecuador

Autor: Darwin Morocho

Carrera: Ing. En Computación Gráfica

Tema: Interpolación por splines cúbicos (con la condición de frontera libre).

Consideremos los siguientes nodos $x_0=0$, $x_1=1$, $x_2=2$, $x_3=3$, y sea $f\left(x\right)=e^x$, queremos hallar el interpolante de splin cubico S(x) que pasa por los puntos $\left(x_0,f\left(x_0\right)\right)$, $\left(x_1,f\left(x_1\right)\right)$, $\left(x_2,f\left(x_2\right)\right)$, $\left(x_3,f\left(x_3\right)\right)$,

En este caso tenemos 4 puntos (0,1), (1,e), $(2,e^2)$, $(3,e^3)$, por tanto tendremos 3 polinomios talque $\begin{bmatrix} s_0(x) \\ (1) & some \end{bmatrix}$

$$s(x) = \begin{cases} s_0(x) \\ s_1(x) \text{, con } x \in [0,3] \text{.} \\ s_2(x) \end{cases}$$

A continuación pasamos a hacer uso de nuestro programa:

Recuerde que nuestro programa usa la condición de frontera libre, es decir $s''(x_0) = s''(x_3)$.

1.- Ingresamos el número de puntos a interpolar y después damos clic en el botón "guardar"

2.- Ahora procedemos al ingreso de los puntos (0,1), (1,e), $(2,e^2)$, $(3,e^3)$, para esto ingresamos primero el primer punto (0,1) como se muestra a continuación y luego damos clic en el botón "registrar"

3.- Repetimos el paso anterior también para los puntos (1,e) , $(2,e^2)$, $(3,e^3)$

4.- Una vez acabado de registrar todos los puntos aparecerá en el cuadro de texto inferior los polinomios interpolantes $s_0(x), s_1(x), s_2(x)$

5.- Una vez que se visualicen los polinomios interpolantes podemos hacer uso del botón "Visualizar gráfica de interpolación" el cual muestra en la parte derecha la gráfica de $s(x) = \begin{cases} s_0(x) \\ s_1(x) \end{cases}$, con $x \in [0,3]$ $s_2(x)$

Ahora supongamos que deseamos obtener un valor aproximado de f(1.5) donde $1.5 \in [0,3]$, entonces podemos afirmar que $f(1.5) \approx S(1.5)$, para esto en nuestro programa ingresamos 1.5 en la casilla del punto a evaluar y damos clic en el botón "Evaluar"

Por tanto podemos concluir que $f(1.5) \approx 4.230304039009999$.

Descarga autorizada desde: http://ingeuce.wix.com/ingeuce2