Contrôle continu 1 (rattrapage)

Durée : 20 minutes. La calculatrice de l'Université de Bordeaux est autorisée. Aucun document n'est autorisé. **Exercice 1 : DM1 2014 allégé.**

On considère la suite $(u_n)_{n\geq 1}$ définie par $u_0>0$ et $u_{n+1}=\frac{1}{2}\left(u_n+\frac{3}{u_n}\right)$ pour $n\geq 0$. On admet que, pour tout $n\in\mathbb{N},u_n>0$.

- 1. Montrer que, pour $n \ge 0$, $u_{n+1}^2 3 = \frac{(u_n^2 3)^2}{4u_n^2}$.
- 2. Montrer que, pour $n \ge 1$, on a $u_n \ge \sqrt{3}$ et que la suite $(u_n)_{n \ge 1}$ est décroissante à partir du rang n = 1.
- 3. En déduire que la suite est convergente et déterminer sa limite.

Exercice 2. Calculez, si elle existe, la limite des suites de terme général suivant :

$$u_n = n^{(-1)^n} \ (n \ge 1), \quad p_n = \left(1 + \frac{2}{n}\right)^n \ (n \ge 1), \quad x_n = \sqrt{n+1} - \sqrt{n} \ (n \ge 0).$$

Correction du rattrapage du CC 1

Exercice 1 : DM1 2014 allégé.

$$1) \text{ Soit } n \in \mathbb{N}, \ u_{n+1}^2 - 3 = \frac{1}{4} \left(u_n^2 + 6 + \frac{9}{u_n^2} \right) - 3 = \frac{u_n^4 + 6u_n^2 + 9}{4u_n^2} - \frac{12u_n^2}{4u_n^2}, \ \text{d'où} \boxed{u_{n+1}^2 - 3 = \frac{(u_n^2 - 3)^2}{4u_n^2}}.$$

2) • D'après 1), pour $n \in \mathbb{N}$, $u_{n+1}^2 - 3 = \frac{(u_n^2 - 3)^2}{4u_n^2} \ge 0$, donc $\forall n \in \mathbb{N}, u_{n+1}^2 \ge 3$. On a admis que, pour tout $n \in \mathbb{N}, u_n > 0$, donc, pour tout $n \in \mathbb{N}, u_{n+1} \ge \sqrt{3}$, donc $\boxed{\forall n \in \mathbb{N}^*, u_n \ge \sqrt{3}}$.

• Soit
$$n \in \mathbb{N}, u_{n+1} - u_n = \frac{3}{2u_n} - \frac{u_n}{2}$$
. Alors

$$u_{n+1} - u_n \le 0 \Longleftrightarrow \frac{3}{2u_n} - \frac{u_n}{2} \le 0 \Longleftrightarrow \frac{3}{2} \le \frac{u_n^2}{2} \text{ (car } u_n > 0\text{)}$$
$$\iff 3 \le u_n^2 \Longleftrightarrow \sqrt{3} \le u_n \text{ (car } u_n > 0\text{)}.$$

Comme, pour tout $n \in \mathbb{N}^*$, $u_n \ge \sqrt{3}$, on en déduit que, pour tout $n \in \mathbb{N}^*$, $u_{n+1} - u_n \le 0$ c'est-à-dire, la suite $(u_n)_{\mathbb{N}}$ est décroissante à partir du rang 1. **NB**: on n'a pas dit dans l'énoncé que $u_0 \ge \sqrt{3}$!!

3) D'après la question 2), $(u_n)_{\mathbb{N}}$ est décroissante et minorée par $\sqrt{3}$, donc $\underline{(u_n)_{\mathbb{N}}}$ est convergente et sa limite ℓ vérifie $\ell \geq \sqrt{3}$. Puisque $(u_n)_{\mathbb{N}}$ est convergente alors la suite extraite $(u_{n+1})_{\mathbb{N}}$ est convergente et converge vers la même limite ℓ , donc $\lim_{n \to +\infty} u_{n+1} = \frac{1}{2} \lim_{n \to +\infty} \left(u_n + \frac{3}{u_n} \right) \Longleftrightarrow \ell = \frac{1}{2} \left(\ell + \frac{3}{\ell} \right) \Longleftrightarrow \frac{\ell}{2} = \frac{3}{2\ell}$, d'où $\ell^2 = 3$, i.e. $\ell = \pm \sqrt{3}$. Mais $\ell \geq \sqrt{3}$, donc $\ell = \sqrt{3}$.

Exercice 2.

1) Si n est pair alors n=2p et $u_{2p}=2p$ d'où $\lim_{p\to +\infty}u_{2p}=+\infty$. Et si n est impair alors n=2p+1 et $u_{2p}=\frac{1}{2p+1}$ d'où $\lim_{n\to +\infty}u_{2p+1}=0$. Donc $u_{2p}=\frac{1}{2p+1}$ d'où $u_{2p+1}=0$. Donc $u_{2p}=\frac{1}{2p+1}$ d'où $u_{2p}=\frac{1}{2p+1}$

2) Soit
$$n \ge 1$$
, on écrit $p_n = \exp(n\ln(1+\frac{2}{n}))$. Comme $n\ln(1+\frac{2}{n}) = \frac{\ln(1+\frac{2}{n})}{1/n}$, on utilise la définition de la dérivée de la fonction $f: x \mapsto \ln(1+2x)$ en 0 . En effet $\lim_{x\to 0} \frac{\ln(1+2x)}{x} = f'(0) = 2$, où $f'(x) = \frac{2}{1+2x}$. Puis $\lim_{n\to +\infty} n\ln(1+\frac{2}{n}) = \lim_{x\to 0} \frac{\ln(1+2x)}{x} = 2$, donc on obtient $\lim_{n\to +\infty} p_n = e^2$.

3) Soit
$$n \ge 0$$
, $\sqrt{n+1} - \sqrt{n} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}}$. Comme $\lim_{n \to +\infty} \sqrt{n+1} + \sqrt{n} = +\infty$ alors $\lim_{n \to +\infty} x_n = 0$.