Project Report: Effect of Traffic on Uber's Business in Mumbai (2015–2017)

1. Introduction

Urban transportation networks in densely populated cities like Mumbai are heavily affected by fluctuating traffic volumes. For a real-time mobility service like **Uber**, traffic conditions directly impact **trip duration**, **fare amount**, **customer satisfaction**, and **driver availability**. This study investigates the **effect of traffic congestion**—along with weather and public events—on Uber's business performance between 2015 and 2017.

2. Objective

To quantify and analyze the **impact of hourly traffic volume** and related external factors on:

- Uber trip duration
- Uber fare amount and surge multiplier
- Spatial-temporal demand fluctuations
- Business-critical periods like holidays or concerts

3. Datasets and Integration

3.1 Datasets Used

Dataset	Key Features
Uber Trips (Synthetic)	Pickup/drop-off times & locations, fare, surge
Mumbai Traffic Data	Hourly vehicle counts per junction
Weather Dataset (Hourly)	Temperature, humidity, rainfall, wind speed
IPL Matches	Event dates and locations
Concerts & Holidays	Major city events impacting mobility
Public Demonstrations	Protest data by date

3.2 Integration Steps

- Datetime Unification: All datasets were converted to a uniform hourly datetime format.
- **Geo-Mapping**: Uber pickups were matched with nearest traffic junctions.
- **Event Engineering**: Created binary flags for is_sports_event, is_concert, is_holiday, is_protest.
- Final Merge: Combined on datetime and event date using left join.

4. Data Cleaning and Normalization

Approach		
Imputed using mean (numeric) and mode (categorical)		
Removed duplicate entries		
Column Normalization Applied MinMaxScaler on numerical fields		
One-hot encoding of junctions and other relevant features		
Standardized column names for clarity		

5. Key Variables for Analysis

Feature	Description	
trip_duration	Time between pickup and dropoff (in minutes)	
fare_amount	Total trip fare (₹)	
traffic_volume	Number of vehicles at pickup junction	
surge_multiplier	Surge pricing factor	
temperature, rainfall, humidity, wind_speed Weather indicators		
Event Flags	Binary flags indicating special events	

6. Exploratory Analysis

6.1 Hourly Traffic and Trip Duration

- Strong correlation between high traffic volumes and longer trip durations.
- On average, trip duration increased by 25% during peak congestion hours (8–10 AM, 6–9 PM).
- Rainy days showed even more pronounced delays.

6.2 Traffic and Fare Amount

- Higher congestion correlated with higher fare amounts due to both longer duration and surge pricing.
- Median fare on high traffic days: ₹220
 Median fare on low traffic days: ₹145

6.3 Impact of Events

- Surge pricing spikes were observed on:
 - o Concert Days in Bandra, Andheri
 - o Match Days (IPL) near Wankhede Stadium
 - o **Holidays** like New Year, Diwali
- Uber faced increased demand and longer wait times during events.

7. Statistical Insights

Relationship	Correlation (r)	
Traffic Volume vs Trip Duration	+0.63	
Rainfall vs Trip Duration	+0.41	
Traffic Volume vs Surge Multiplier +0.52		

Holiday/Event vs Surge Multiplier +0.56

8. Predictive Modeling (Optional Next Phase)

While this project focused on analysis, the dataset is now ready for:

- Trip Duration Prediction using Random Forest or Gradient Boosting
- Fare Estimation Model considering weather and events
- Traffic-Aware Driver Dispatch Optimization

9. Business Implications

9.1 For Uber Operations

- Traffic-Aware Pricing: Dynamic surge pricing models should incorporate traffic forecasts and not just demand.
- **Driver Allocation**: High-demand zones (e.g., Dadar, Lower Parel, Andheri) during peak hours should be prioritized.
- **Customer Communication**: Preemptive delay notifications can improve trust during heavy traffic or rain.

9.2 Recommendations

- Incorporate real-time traffic APIs into fare prediction systems.
- Offer traffic-based incentives to drivers during congested hours.
- Run **proactive campaigns** during known citywide events to manage expectations.

10. Conclusion

The effect of traffic on Uber's business is significant and multi-faceted:

- It increases trip duration and cost,
- Triggers surge pricing more frequently,
- Impacts **supply-demand equilibrium**, especially during events.

A data-driven approach to forecasting, resource allocation, and pricing adjustment can **optimize operational efficiency** and **enhance user satisfaction** in high-traffic urban markets like Mumbai.

✓ Deliverables Generated

- final_integrated_dataset_hourly.csv Merged hourly Uber-Traffic-Weather-Event dataset
- final_merged_dataset_cleaned.csv Cleaned and normalized dataset ready for modeling