Trabajo Práctico N° 2

<u>Tema</u>: Regresión Lineal. Regresión Múltiple.

Ejercicio Nº 1

Para el problema 1, del trabajo práctico N°1, resolver:

- a) Calcular la recta de mejor ajuste.
- b) Graficar la recta encontrada.
- c) Si la cantidad de personas ocupadas es 6 ¿Cuál es la duración de la tarea?
- d) Considerando la recta de regresión, que se puede decir acerca de la predicción que se puede establecer a partir de la misma.

Ejercicio N° 2 (Ejercicio Obligatorio)

Las calificaciones de 40 alumnos en álgebra y en estadística han sido las de la tabla adjunta.

Álgebra	3	4	5	6	6	7	7	8	10
Estadística	2	5	5	6	7	6	7	9	10
N° de alumnos	4	6	12	4	5	4	2	1	2

- a) Obtener la ecuación de la recta de regresión de calificaciones de estadística respecto de las calificaciones de álgebra.
- b) ¿Cuál será la nota esperada en estadística para un alumno que obtuvo un 4,5 en álgebra?

Ejercicio N° 3 (Ejercicio Obligatorio)

Dado el siguiente conjunto de parejas de datos X e Y.

X	9	11	9	8	7	12	13
Υ	4	1	4	3	2	5	5

- a) Construya una gráfica de dispersión de las parejas de datos. ¿Parece ser lineal la relación?
- b) Determine la línea de regresión por mínimos cuadrados para predecir Y dado X.
- c) Determine la línea de regresión por mínimos cuadrados para predecir X dado Y. ¿Son iguales ambas rectas? Explique.
- d) Utilice la relación entre X e Y para predecir el valor de Y si X=12 (redondeando a dos cifras decimales).

Ejercicio Nº 4

El número de horas dedicadas al estudio de una asignatura y la calificación obtenida en el examen correspondiente, de ocho personas es:

Horas	20	16	34	23	27	32	18	22
Calificación	6.5	6	8.5	7	9	9.5	7.5	8

Se pide:

- a) Hallar la recta de regresión de la calificación obtenida, dado las horas dedicadas a estudio.
- b) Calificación estimada para una persona que hubiese estudiado 28 horas.
- c) Calcular el error de predicción y extrae conclusiones.

<u>Ejercicio N° 5</u> (Ejercicio Obligatorio)

La siguiente tabla incluye información acerca del peso (en kg.), la altura (en cm.), contorno de cintura (en cm.) y la edad de 12 individuos

Individuo	Peso, y	Altura, x₁	Contorno cintura, x ₂	Edad, x ₃
1	74	168	62	25
2	92	196	75	31
3	63	170	60	29
4	72	175	71	64
5	58	162	66	44
6	78	169	62	41
7	85	190	79	57
8	85	186	74	35
9	73	176	70	34
10	62	170	66	29
11	80	176	71	19
12	72	179	69	50

- a) Ajuste una ecuación de regresión lineal múltiple de la forma $\hat{y}=b_0+b_1x_1+b_2x_2+b_3x_3$
- b) Estime el peso de un individuo que tiene 42 años, una altura de 160 cm. y un contorno de cintura de 68 cm.

Ejercicio Nº 6 (Ejercicio Obligatorio)

A continuación, se registran las observaciones del rendimiento de una reacción química a varias temperaturas:

y (%)	x (°C)
77,4	150
76,7	150
78,2	150
84,1	200
84,5	200
83,7	200
88,9	250
89,2	250
89,7	250
94,8	300
94,7	300
95,9	300

- a) Ajuste una ecuación de regresión múltiple de la forma $\hat{y} = b_0 + b_1 x + b_2 x^2$
- b) Estime el rendimiento de la reacción química para una temperatura de 225°C.

<u>Ejercicio N° 7</u>

Se considera que la energía eléctrica que consume una planta química cada mes está relacionada con la temperatura ambiente promedio x_1 , el número de días al mes x_2 , la pureza promedio del producto x_3 , y las toneladas de producto fabricado x_4 . Se dispone de los datos históricos del año pasado y se presentan en la siguiente tabla:

у	X ₁	X ₂	X ₃	X ₄
240	25	24	91	100
236	31	21	90	95
290	45	24	88	110
274	60	25	87	88
301	65	25	91	94
316	72	26	94	99
300	80	25	87	97
296	84	25	86	96
267	75	24	88	110
276	60	25	91	105
288	50	25	90	100
261	38	13	89	98

- a) Ajuste un modelo de regresión lineal múltiple con el uso del conjunto anterior de datos.
- b) Pronostique el consumo de energía para un mes en el que $x_1 = 75^{\circ}F$, $x_3 = 85 \ pureza$, $x_2 = 24 \ días$ y $x_4 = 98 \ toneladas$.

Ejercicio Nº 8

Se lleva a cabo un estudio sobre el desgaste de un cojinete (y) y su relación con x_1 = viscosidad del aceite y x_2 = carga. Se obtienen los siguientes datos:

у	x_1	x_2
193	1,6	851
230	15,5	816
172	22,0	1058
91	43,0	1201
113	33,0	1357
12,5	40,0	1115

- a) Estime los parámetros desconocidos de la ecuación de regresión lineal múltiple.
- b) Pronostique el uso cuando la viscosidad del aceite es 20 y la carga 1200.

<u>Ejercicio Nº 9</u> (Ejercicio Obligatorio)

Se pretende estudiar la posible relación lineal entre el precio de pisos en miles de euros, en una conocida ciudad española y variables como la superficie en m² y la antigüedad del inmueble en años. Para ello, se realiza un estudio, en el que se selecciona de forma aleatoria

una muestra estratificada representativa de los distintos barrios de la ciudad. Los datos aparecen en la siguiente tabla.

Precio	Superficie	Antiguedad
200	100	20
120	70	15
155	120	30
310	150	20
320	90	12
400	227	400
100	75	100
80	65	80
75	80	75
169	150	169
110	120	110
210	100	210
200	125	200
180	137	180
140	90	140
95	110	95

- a) Encontrar la ecuación de regresión mínimos cuadrados del precio sobre la superficie y la antigüedad.
- b) Analizar qué tan buena puede ser la predicción obtenida a partir del modelo anterior.
- c) Estimar el precio del inmueble si tiene una superficie de 95 m² y una antigüedad de 25 años.
- d) Calcular las desviaciones estándar s₁, s₂ y s₃.
- e) Calcular el error estándar de estimación del precio sobre la superficie y la antigüedad.