Métodos Numéricos

Prof. Juan Pablo Concha y Eduardo Uribe

Conferencia 8

Conferencia 8

Recordatorio

- Recordatorio
- Método de la secante
- Raíces múltiples
- Sistema de ecuaciones no lineales

Metodología

Fórmula de Newton-Raphson

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Raíces múltiples

Teorema

Sea $f(x) \in C^2([a,b])$. Si $\bar{x} \in [a,b]$ es tal $f(\bar{x}) = 0$ y $f'(\bar{x}) \neq 0$, entonces existe un radio $\delta > 0$ tal que el método de Newton genera una suceción $\{x_n\}_{n=1}^{\infty}$ que converge a \bar{x} desde cualquier punto inicial x_0 del intervalo $[\bar{x} - \delta, \bar{x} + \delta]$.

Motivación I

Inconvenientes del método

- No siempre converge.
- Necesita evaluar la derivada.
- Dificultad si la raíz es múltiple $(f(\bar{x}) = f'(\bar{x}) = 0)$

Cambiar el cálculo de la derivada.

Sustituir en la fórmula de Newton-Raphson

$$X_n = X_{n-1} - \frac{f(X_{n-1})}{f'(X_{n-1})}$$

la derivada $f'(x_{n-1})$ por una aproximación

$$f'(x_{n-1}) \approx \frac{f(x_{n-2}) - f(x_{n-1})}{x_{n-2} - x_{n-1}} \Longrightarrow x_n = x_{n-1} - \frac{f(x_{n-1})(x_{n-2} - x_{n-1})}{f(x_{n-2}) - f(x_{n-1})}$$

Motivación II

Cambiar la tangente por la secante

 x_n en vez de ser calculada como la raíz de la tangente a f en el punto $(x_{n-1}, f(x_{n-1}))$ se toma como la raiz de la recta secante

$$y(x) = f(x_{n-1}) \frac{x - x_{n-2}}{x_{n-1} - x_{n-2}} + f(x_{n-2}) \frac{x - x_{n-1}}{x_{n-2} - x_{n-1}}$$

entre los puntos $(x_{n-1}, f(x_{n-1}))$ y $(x_{n-2}, f(x_{n-2}))$. Por ende:

$$0 = f(x_{n-1}) \frac{x_n - x_{n-2}}{x_{n-1} - x_{n-2}} + f(x_{n-2}) \frac{x_n - x_{n-1}}{x_{n-2} - x_{n-1}}$$

que resulta de nuevo en:

$$x_n = x_{n-1} - \frac{f(x_{n-1})(x_{n-2} - x_{n-1})}{f(x_{n-2}) - f(x_{n-1})}$$

Formulación del método de la secante

Características

- Se necesitan dos puntos iniciales x₀, x₋₁ que aproximen una raíz de f.
- A diferencia del método de falsa posición los puntos no tienen que encerrar una raíz

Pseudocódigo

DATOS: x_0, x_{-1} : puntos iniciales;

TOL y MAX

RESULTADO: Solución aproximada x_0 , o falla del algoritmo.

PASO 1: n = 1

PASO 2: Si n > MAX, ENTREGA("FALLO") y STOP

PASO 3: $x_n = x_{n-1} - \frac{f(x_{n-1})(x_{n-2} - x_{n-1})}{f(x_{n-2}) - f(x_{n-1})}$

PASO 4: Si $|x_n - x_{n-1}| \le TOL$, ENTREGA (x_n) y STOP

PASO 5: n = n + 1 e IR A PASO 2

Relación con el método de falsa posición

Fórmula identica

Recordatorio

Dado dos puntos x_0 y x_1 el punto siguiente se determina como:

$$x_2 = x_1 - \frac{f(x_1)(x_0 - x_1)}{f(x_0) - f(x_1)}$$

Puntos subsiguientes

Secante x_1 y x_2

Falsa Posición x_1 y x_2 si $f(x_1)f(x_2) < 0$, sino x_0 y x_2

- x₂ siempre está entre x₀ y x₁.
- Los dos puntos de cada iteración encierran la raíz.

Ejemplo 2: $f(x) = \ln x$, $x_0 = 0.5$, $x_1 = 5$, $x_2 = 1.85463$

Ejemplo 3 (secante y falsa posición)

Datos

$$f(x) = \cos x - x$$
; $x_0 = 0.5$; $x_1 = \pi/4$

Raíces múltiples

Valores de las iteraciones

n	Secante Falsa Posici	
0	0.5	0.5
1	0.7853981634	0.7853981634
3	0.7363841388	0.7363841388
4	0.7390581392	0.7390581392
5	0.7390851493	0.7390848638
6	0.7390851332	0.7390851305
7	0.7390851332	0.7390851332

Multiplicidad de una raíz

Definición

Una raíz \bar{x} de la ecuación f(x) = 0 se dice que tiene multiplicidad m si para $x \neq \bar{x}$ la función f(x) puede escribirse como $f(x) = (x - \bar{x})^m q(x)$, y se cumple $\lim_{x \to \bar{x}} q(x) \neq 0$.

Teorema (criterio sencillo)

La función suave f tiene una raíz \bar{x} de multiplicidad m si

$$0 = f(\bar{x}) = f'(\bar{x}) = f''(\bar{x}) = \dots = f^{(m-1)}(\bar{x})$$

pero $f^{(m)}(\bar{x}) \neq 0$. El caso m = 1 se denomina raíz simple.

Ejemplo

 $f(x) = e^x - x - 1$ tiene una raíz de multiplicidad 2 en $\bar{x} = 0$.

Ejemplo 4. (Iteraciones del Método de Newton)

n	X _n	$e^{x_n} - x_n - 1$
0	1	0.7182818
1	0.5819767	0.2075957
2	0.319055	0.05677201
3	0.1679962	0.01493591
4	0.08634887	0.003837726
5	0.0437957	0.000973187
6	0.02205769	0.0002450693
7	0.01106939	6.149235e-005
8	0.005544905	1.540144e-005
9	0.002775014	3.853917e-006
10	0.001388149	9.639248e-007
11	0.0006942351	2.410369e-007
12	0.0003471577	6.026621e-008
13	0.0001735889	1.506742e-008

Convergencia no es cuadrática!!

Modificación del método de Newton

Observación

Si \bar{x} es una raíz de orden m de f(x) entonces también es una raíz, pero simple!, de $\mu(x)=\frac{f(x)}{f'(x)}$ pues

$$\mu(x) = \frac{(x - \bar{x})^m q(x)}{m(x - \bar{x})^{m-1} q(x) + (x - \bar{x})^m q'(x)}$$

y entonces

$$\mu(x) = (x - \bar{x}) \frac{q(x)}{mq(x) + (x - \bar{x})q'(x)}$$

pero $q(\bar{x}) \neq 0$.

Ejemplo 4 $\mu(x) = f(x)/f'(x) = (e^x - x - 1)/(e^x - 1)$

Modificación del método de Newton

Formulación

Idea: Aplicar Newton a $\mu(x)$. O sea:

$$g(x) = x - \frac{\mu(x)}{\mu'(x)} = x - \frac{f(x)/f'(x)}{\{[f'(x)]^2 - [f(x)][f''(x)]\}/[f'(x)]^2}$$
$$g(x) = x - \frac{f(x)f'(x)}{[f'(x)]^2 - f(x)f''(x)}$$

Formula de Newton-Raphson modificada

$$x_n = x_{n-1} - \frac{f(x_{n-1})f'(x_{n-1})}{f'(x_{n-1})^2 - f(x_{n-1})f''(x_{n-1})}$$

Ejemplo 4

Iteraciones

Método de Newton modificado para raíces múltiples

n	Xn	$e^{x_n} - x_n - 1$
0	1	0.7182818
1	-0.2342106	0.02540578
2	-0.00845828	3.567061e-005
3	-1.189018e-005	7.06879e-011
4	-4.226407e-011	0

Raíces múltiples

Sistema de ecuaciones no lineales

Ejemplo:

Sistema de dos ecuaciones y dos variables

$$x^2 + xy = 10$$
$$y + 3xy^2 = 57$$

si definimos:

$$u(x, y) = x^2 + xy - 10$$

 $v(x, y) = y + 3xy^2 - 57$

tenemos entonces:

$$u(x,y) = 0$$

$$v(x,y) = 0$$

Generalización de Newton-Raphson

Fórmula de Newton-Raphson en una dimensión

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$

Fórmula de Newton-Raphson en dos dimensiones

$$\begin{bmatrix} x_n \\ y_n \end{bmatrix} = \begin{bmatrix} x_{n-1} \\ y_{n-1} \end{bmatrix} - \begin{bmatrix} \frac{\partial u(x_{n-1}, y_{n-1})}{\partial x} & \frac{\partial u(x_{n-1}, y_{n-1})}{\partial y} \\ \frac{\partial v(x_{n-1}, y_{n-1})}{\partial x} & \frac{\partial v(x_{n-1}, y_{n-1})}{\partial y} \end{bmatrix}^{-1} \begin{bmatrix} u(x_{n-1}, y_{n-1}) \\ v(x_{n-1}, y_{n-1}) \end{bmatrix}$$

Iteraciones

Método de Newton en dos dimensiones

n	Xn	Уn	Un	V _n
0	1.5	3.5	-2.5	1.625
1	2.036029	2.843875	-0.06437496	-4.756208
2	2.003733	3.026739	0.07972475	1.096227
3	1.99767	2.999865	-0.01657656	-0.0678963
4	2.000468	2.99879	0.000855497	-0.03212949
5	1.999981	3.000329	0.0005264687	0.01167365
6	1.999984	2.999967	-0.0001797555	-0.001654913
7	2.000005	2.999994	2.405237e-005	-9.018645e-005
8	1.999999	3.000003	1.771516e-006	9.963969e-005
9	2	2.999999	-1.571398e-006	-2.252926e-005
10	2	3	3.393686e-007	1.477433e-006

Ejercicios

1) Use el método de Newton para encontrar una raíz de la ecuación

$$x^2 + 2xe^x + e^{2x} = 0$$

Empezando con $x_0 = 0$, use el método de newton modificado a partir del mismo punto. ¿Cuál es la multiplicidad de la raíz buscada?

 Resuelva usando el método de Newton para varias variables, el siguiente sistema no lineal

$$\begin{cases} 3x_1^2 - x_2^2 = 0 \\ 3x_1x_2^2 - x_1^3 = 1 \end{cases}$$

Para esto, tome como punto inicial $x^{(0)} = (1, 1)^T$ y realice dos iteraciones.

- 3) Considere la función $f(x) = 2x^2 x + 6e^{-x} 8$.
 - a) Usando el método iterativo de Newton, comenzando con $x_0=0.3$. Encuentre una raíz negativa de f(x)=0 con precisión de 10^{-4} , utilizando la máxima capacidad de dígitos de su calculadora.
 - b) Usando el método iterativo de la Secante, comenzando con $x_0 = 0.3$ y $x_1 = 0$. Encuentre una raíz negativa de f(x) = 0 con precisión de 10^{-4} , utilizando la máxima capacidad de dígitos de su calculadora.
 - c) Considerando los resultados obtenidos en a) y b) ¿Qué puede decir acerca de la convergencia de ambos métodos en este caso particular?