Experimental Assignment 2 Medical Imaging Techniques (EECS4640/5640)

Professor Sadeghi-Naini

SeyedMostafa Ahmadi (#219138924) February 2023

Consideration	3
Question a	4
Question b	5
Question c	6
Question d	7
i) ii) Question e	7 7 8 9
i) ii) iii) Question f	9 9 9 11
i)	11

Consideration

After getting professor Sadeghi's approval, I programmed this assignment using Python (3.6) instead of Matlab.

You can find all my codes in the directory "codes" for each question in the following format: $q_a.py$ for the first question (or part a), $q_b.py$ for the second question (or part b), etc. To run the code for each item in a specific question, please uncomment it under the line:

in the corresponding file. For example, for running the code for *question e item ii*, i.e. *e-ii*), please uncomment the following line in file *q_e.py*:

item ii(rf=rf file, fs=fs, lowcut=lowcut, highcut=highcut)

Question a

The calculation is simple. First, we have to calculate the sampling time. We know each line has 10,000 samples and the sampling frequency is 500 MHz. So,

sampling time =
$$\frac{10,000}{(500 \times 10^6)} = 2 \times 10^{-5} \text{ sec}$$

And using sampling time (above) and the speed of sound (≈ 1540 m/s), we have:

max depth =
$$(2 \times 10^{-5}) \times (1540) = 0.0308 \,\text{m} \approx 3 \,\text{cm}$$

(You can also find the calculations in python in $q_a.py$ file.)

Question b

Depth	Center Frequency	Average Power Spectrum
3 mm to 4 mm	23.148 MHz	Normalized averaged power spectrum for depth (0.003, 0.004) 1.0 0.8 0.8 0.0 0.0 0.0 0.0 0.0
6.5 mm to 8 mm	23.614 MHz	Normalized averaged power spectrum for depth (0.0065, 0.008) 1.0 0.8 0.8 0.0 0.0 0.0 0.0 0.0
8 mm to 15 mm	0.000 MHz	Normalized averaged power spectrum for depth (0.008, 0.015) 1.0 0.8 0.8 0.0 0.0 0.0 0.0 0.0

Question c

If you look at the previous diagrams, all of them have a rise in (0, 0). And going deeper, the point goes higher. Eventually, in the third diagram, it is higher than the peak around 23 MHz! It is a pretty interesting experiment since it proves the wave is losing energy and more specifically, **its details**. Traveling through tissue, sound waves encounter variations in the density, speed of sound, and attenuation of the tissue. As the sound waves penetrate deeper into the tissue, they encounter higher-density and higher-attenuation tissue that slows them and causes them to lose their energy.

Question d

i)

Order: 4

Lower cut: 5 MHz Higher cut: 50 MHz

ii)

The first one is the original signal, and the second diagram is the filtered signal. The third diagram is nothing new but an all-in-one diagram! Obviously, high and low-frequency noises have been smoothed out.

iii)

I visualized it, but the resulting image had these properties:

Min value: -0.24909939 Max value: 0.42828718 Mean: 0.00056988286

And it is not going to be anything suitable to visualize as you can see below:

So, I thought it might be better to normalize the matrix to get better in visualization. This time matrix was like (but the result is not much better):

Min value: 0 Max value: 255 Mean: 93.480325

Question e

i)

As professor Sadeghi concluded in slide 41-44 of Lecture 4-5_Ultrasound Imaging, to achieve $A_{RX}(t)$, we have to create the analytical signal using the Hilbert transform. Package **scipy.signal** has the Hilbert transform in it. So, using it we create:

$$Analytical(t) = y(t) + j \cdot z(t)$$

Where z(t) = Hilbert(y(t)) and y(t) is the filtered signal.

Knowing that:

$$A_{RX}(t) = \sqrt{y_{RX}(t)^2 + z_{RX}(t)^2}$$

And this is easily achievable using Python built-in abs() function call when its input is the analytical signal!

ii)

iii)

I visualized it, but the resulting image had these properties:

Min value: -0.00082732504 Max value: 0.92912143 Mean: 0.036636807

And it is not going to be anything suitable to visualize as you can see below:

So, I normalized the values of the matrix using this transform:

$$img_{new} = \frac{(img - Min(img))}{Max(img) - Min(img)} \times 255$$

The new image has these properties:

Min value: 0 Max value: 255 Mean: 9.7760875

There are some visible stuff in the bottom of the image, but the contrast is too low to distinguish.

Question f

i)

Again, the properties of the resulting image matrix was not suitable to display with the best contrast possible.

Min value: -70.56744 Max value: -5.6456714 Mean: -43.993153

And again, to make the contrast better, I used this transform (we have learnt this transform in the previous experimental assignment):

the previous experimental assignment):
$$img_{new} = \frac{(img - Min(img))}{Max(img) - Min(img)} \times 255$$

And the resulting image was like:

Min value: 0 Max value: 255 Mean: 103.87835416666667

