Lycée Garçons Sousse

Novembre 2022

Prof. Zied Fridhi

Série d'exercices n°9

Algorithmique et Programmation

4ème Sciences de l'Informatique

Durée: **H **** Coef: 3

Exercice n°1:

1. Soit l'algorithme, de la fonction inconnue, suivant :

```
Fanction Inconnue( F : texte ) : ......

DEBUT

auvrir("eleve.txt", F, "r" )

Retourner Fin_Fichier(F)

FIN
```


Après exécution de cet algorithme, et pour chacune des propositions suivantes, mettre dans chaque case la lettre ${\bf V}$ si la réponse est correcte ou la lettre ${\bf F}$ dans le cas contraire.

	Le fichier	F ne contient	pas des	données,	si la 1	fonction	Inconnue	retourne V	rai.
--	------------	---------------	---------	----------	---------	----------	----------	------------	------

Le fichier F contient des données, si la fonction Inconnue retourne le numéro de la ligne, sinon retourne -1.

2. Soient les différentes algorithmes de la procédure « afficher », ci-dessous (avec N un entier strictement supérieurs à 1).

Nº de l'algorithme	L'Algorithme
1	procedure afficher (N : entier) DEBUT Si N=1 ALORS ECRIRE (N) SINON afficher(N-1) ECRIRE (N) FINSI FIN
2	procedure afficher (N : entier) DEBUT Si N=1 ALORS ECRIRE (N) SINON ECRIRE (N) afficher(N-1) FINSI FIN
3	Procedure afficher (N : entier) DEBUT Si N=1 ALORS ECRIRE (N) SINON afficher(N-1) FINSI FIN

Pour chacun des ré	sultats ci-dessous,	mettre dans chaque case le n	uméro de l'algorithme de
la procédure « affic	her » qui correspo	ınd à l'affichage de ces résulta	ats :
	de l à N	boucle infinie	de N à 1

Exercice n°2:

Soit à remplir au hasard une matrice carrée d'ordre n (3< n < 23) par les entiers D ou 1.

NB: la fonction alea(a,b) permet de générer un entier aléatoire appartenant à l'intervalle (a, b-1).

A partir de cette matrice, on désire créer le programme suivant qui permet de :

- ✓ Remplir un fichier FH stocké physiquement sous la racine "c:\" par le nom "convert.dat". On remplit le fichier par des enregistrements renfermant les champs suivant :
 - Hex : représente la conversion en hexadécimale de chaque ligne de la matrice.
 - Oct : représente la conversion en octale de chaque colonne de la matrice.
 - ❖ Dec : représente la somme de Hex et Oct
 - Nb: représente le nombre de lettres existant dans la valeur de champs Hex.
- ✓ Trier le fichier dans l'ordre croissant par le nombre de lettre existante.
- ✓ Rechercher si le fichier admet le nombre X de lettre et afficher le premier enregistrement rencontré ainsi que sa position correspondante dans le fichier, avec X étant une valeur saisie par l'utilisateur sinon afficher le message suivant « le nombre de lettre cherché est inexistant »

Exe	empl	e : Pi	our r	1=9				4			5		_	1		5			
M	1	2	3	4	5	6	7	8	9		Avant	le tri	FH			Apr	ès le tri	de FH	
1	1	1	1	0	0	1	1	1	0		1CE	723	929	2		62	152	204	0
L	1	0	0	0	1	1	1	1	1		11F	533	634	1		199	322	619	0
3	1	1	1	1	1	1	1	1	1		1FF	557	878	2		42	711	523	0
4 5	0	0	1	1	0	0	0	1	0		62	152	204	0		11F	533	634	1
6	1	1	0	0	1	1	0	0	1	3	199	322	619	0		1C7	311	656	1
7	0	1	1	1	0	1	1	1	1		EF	732	713	2		1CE	723	929	2
8	0	0	1	0	0	0	0	1	0		42	711	523	0		1FF	557	878	2
9	1	1	1	1	1	1	0	1	0		1FA	757	1001	2		EF	732	713	2
	1	1	1	0	0	0	1	1	1		1C7	311	656	1	st 1	1FA	757	1001	2

- La première ligne de la matrice contient 111001110 son équivalent en hexadécimale est ICE.
- La première colonne de la matrice contient 111010011 son équivalent en octale est 723.
- La somme de la première ligne et la première colonne de la matrice M (l'équivalant de chacune en décimale) est : 462+467 = 929.
- La valeur de NB = 2 puisque ICE admet de 2 Lettre.

Travail demandé :

- 1- Ecrire l'algorithme du problème en le décomposant en modules.
- 2- Ecrire les algorithmes des modules envisagés.