# Digital Audio - Lab 1: Intro to IPython Notebook

**Marc Evrard** 

LIMSI-CNRS laboratory – University of Paris-Sud

December 3, 2014





#### **Tools installation**

Download:

http://continuum.io/downloads#py34 (http://continuum.io/downloads#py34)

Check if if you need the 32 or 64bits vesion by running:

uname -m

- x86 64 => 64-bit kernel
- $i68\overline{6} => 32$ -bit kernel

Install by running:

bash Anaconda-2.1.0-<your version>.sh

# Python tutorial

https://docs.python.org/3.4/tutorial/introduction.html (https://docs.python.org/3.4/tutorial/introduction.html)

The main Python interpreter can be used, but a better solution is to use the IPython interactive command shell.

## **Python exercise**

From the Python controlflow tutorial below, copy the 4.4 example to IPython, and make it run. Explain with your own words the principle of the "for & else" statement.

https://docs.python.org/3.4/tutorial/controlflow.html (https://docs.python.org/3.4/tutorial/controlflow.html)

4.4. break and continue Statements, and else Clauses on Loops

## **Numpy tutorial**

http://wiki.scipy.org/Tentative\_NumPy\_Tutorial (http://wiki.scipy.org/Tentative\_NumPy\_Tutorial)

Until the Copies and Views section (included).

# Pyplot exercise: plot a sinewave

$$y(t) = \sin(2\pi f t + \phi)$$

Here is a first example of a simple plot:

```
In [3]:
```

```
%matplotlib inline
import matplotlib.pyplot as plt
plt.plot([1,2,3,4])
plt.title('test')
plt.xlabel('some numbers')
plt.ylabel('some other numbers')
plt.legend(['a curve'], loc='best')
plt.show()
```



# **Expected result:**

```
In [3]:
ax = plt.figure().add_subplot(111)
ax.grid()
ax.plot(t_arr, s_arr)
```

Out[3]:

[<matplotlib.lines.Line2D at 0x106aecac8>]



## **Exercise:** basic synth

Create a basic synth based on simple sinewaves:

- You need to create a simple note progression within an octave
  Use a small function based on the previous sine generator you implemented
  Use another little function to convert from note to frequency
  If you enter a group of notes (e.g. in a list), the synth should generate and record the signal to

a wave file.

• Use this module to save to file: from scipy.io import wavfile

#### Note:

- No need to handle rhythm or any complex pattern
  Middle C note is 261.6 Hz
- For instance, a C-Maj scale in our system would be noted: [0, 2, 4, 5, 7, 9, 11, 12]

## **Exercise: decibels**¶

Compare loudness increase and dB increase between a 10 W and a 1000 W amplifier. Show the calculation details.

# IPython notebook tutoral

http://nbviewer.ipython.org/github/ipython/ipython/blob/2.x/examples/Notebook/User%20Interface.ipynb (http://nbviewer.ipython.org/github/ipython/ipython/blob/2.x/examples/Notebook/User%20Interface.ipynb)

Skip the Keyboard shortcut customization.

http://nbviewer.ipython.org/github/ipython/ipython/blob/2.x/examples/Notebook/Running%20Code.ipynb (http://nbviewer.ipython.org/github/ipython/ipython/blob/2.x/examples/Notebook/Running%20Code.ipynb)

Plot again your simple sine using these tools.