Τεχνητή Νοημοσύνη ΙΙ

Παύλος Πέππας

Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Παραδείγματα

- Bird(Tweedy) $\forall x (Bird(x) \Rightarrow Flies(x))$
- $\forall x \forall y ((Mother(x) = Mother(y) \land \neg(x=y)) \Rightarrow Siblings(x,y))$ Mother(Con) = Mother(Mary)

Παραδείγματα

Mother(Con) = Mother(Mary)

```
- Bird(Tweedy)
∀x(Bird(x) ⇒ Flies(x))
- ∀x∀y((Mother(x) = Mother(y) ∧ ¬(x=y)) ⇒ Siblings(x,y))
```

Παραδείγματα

```
    Bird(Tweedy)
    ∀x(Bird(x) ⇒ Flies(x))
    ∀x∀y((Mother(x) = Mother(y) ∧ ¬(x=y))⇒ Siblings(x,y))
    Mother(Cop) = Mother(Mary)

Συνάρτηση
```

Σταθερά Παραδείγματα

- Bird($\frac{\mathsf{Tweedy}}{\mathsf{Flies}(\mathsf{x})}$) $\forall \mathsf{x}(\mathsf{Bird}(\mathsf{x}) \Rightarrow \mathsf{Flies}(\mathsf{x}))$
- $\forall x \forall y ((Mother(x) = Mother(y) \land \neg(x=y)) \Rightarrow Siblings(x,y))$ Mother(Con) = Mother(Mary)

Παραδείγματα

```
Bird(Tweedy)
\forall x ( Bird(x) \Rightarrow Flies(x) )
```

- $\forall x \forall y ((Mother(x) = Mother(y) \land \neg(x=y)) \Rightarrow Siblings(x,y))$ Mother(Con) = Mother(Mary)


```
	extbf{M} = egin{array}{|c|c|c|c|c|} & \ K \dot{\omega} \sigma \tau \alpha \varsigma, \, N \dot{\kappa} \kappa \circ \varsigma, & \ M \alpha \rho \dot{\alpha}, \, B \dot{\kappa} \iota \upsilon, \, \dot{O} \lambda \gamma \alpha \end{array} \end{array} A \delta \dot{\epsilon} \rho \phi \iota \alpha \ = \ \{ & \ (K \dot{\omega} \sigma \tau \alpha \varsigma, \, M \alpha \rho \dot{\alpha}), & \ M \eta \tau \dot{\epsilon} \rho \alpha (K \dot{\omega} \sigma \tau \alpha) = B \dot{\kappa} \iota \upsilon \\ & \ M \eta \tau \dot{\epsilon} \rho \alpha (N \dot{\kappa} \kappa \circ \varsigma) = \dot{O} \lambda \gamma \alpha \\ & \vdots & \vdots & \vdots \\ & \ \vdots & \ \end{array}
```

Mother $^{\it M}$ = Mητέρα, Siblings $^{\it M}$ = Αδέρφια, Con $^{\it M}$ = Κώστας, Marry $^{\it M}$ = Μαρία

Αλφάβητο ΚΛ

Λογικά Σύμβολα

```
Τελεστές: ¬, \wedge, \vee, \Rightarrow, \Leftrightarrow, \forall, \exists Παρενθέσεις: (, ) Μεταβλητές: x_1, x_2, \ldots, y, \ldots, z, \ldots Ισότητα: =
```

Σύμβολα Χρήστη

```
Κατηγορήματα: P, Q, Flies, Bird, . . .Συναρτήσεις: Mother, Color, . . .Σταθερές: Jim, Mary, table, . . .
```

<u>Όροι</u>

- Κάθε σταθερά και κάθε μεταβλητή είναι όρος
- Αν τα $t_p \dots t_n$ είναι όροι, και το f n-μελής συνάρτηση, τότε και το $f(t_p \dots t_n)$ είναι όρος.

<u>Όροι</u>

- Κάθε σταθερά και κάθε μεταβλητή είναι όρος
- Αν τα $t_p \ldots t_n$ είναι όροι, και το f n-μελής συνάρτηση, τότε και το $f(t_1,\ldots,t_n)$ είναι όρος.

Παραδείγματα Όρων:

```
john
mother(john)
father(mother(x))
```

<u>Όροι</u>

- Κάθε σταθερά και κάθε μεταβλητή είναι όρος
- Αν τα $t_1,\ldots t_n$ είναι όροι, και το f n-μελής συνάρτηση, τότε και το $f(t_1,\ldots,t_n)$ είναι όρος.

Παραδείγματα Όρων:

<u>Όροι</u>

- Κάθε σταθερά και κάθε μεταβλητή είναι όρος
- Αν τα $t_1,\ldots t_n$ είναι όροι, και το f n-μελής συνάρτηση, τότε και το $f(t_1,\ldots,t_n)$ είναι όρος.

Ατομικοί τύποι

- Αν τα $t_1,\ldots t_n$ είναι όροι, και το P n-μελές κατηγόρημα, τότε το P (t_1,\ldots,t_n) είναι ατομικός τύπος.
- Αν τα t_1 , t_2 είναι όροι, τότε το t_1 = t_2 ατομικός τύπος.

<u>Όροι</u>

- Κάθε σταθερά και κάθε μεταβλητή είναι όρος
- Αν τα $t_1, \ldots t_n$ είναι όροι, και το f n-μελής συνάρτηση, τότε και το $f(t_1, \ldots, t_n)$ είναι όρος.

Ατομικοί τύποι

- Αν τα $t_1, \ldots t_n$ είναι όροι, και το P n-μελές κατηγόρημα, τότε το P (t_1, \ldots, t_n) είναι ατομικός τύπος.
- Αν τα t_1 , t_2 είναι όροι, τότε το t_1 = t_2 ατομικός τύπος.

Παραδείγματα Ατομικών Τύπων:

```
Siblings(john, con)

cold()

on(x, table)

john = father(mary)
```

<u>Όροι</u>

- Κάθε σταθερά και κάθε μεταβλητή είναι όρος
- Αν τα $t_1, \ldots t_n$ είναι όροι, και το f n-μελής συνάρτηση, τότε και το $f(t_1, \ldots, t_n)$ είναι όρος.

Ατομικοί τύποι

- Αν τα $t_1, \ldots t_n$ είναι όροι, και το P n-μελές κατηγόρημα, τότε το P (t_1, \ldots, t_n) είναι ατομικός τύπος.
- Αν τα t_1 , t_2 είναι όροι, τότε το t_1 = t_2 ατομικός τύπος.

Παραδείγματα Ατομικών Τύπων:

Γενικός τύπος (ή απλά «τύπος»)

- Κάθε ατομικός τύπος είναι και γενικός τύπος.
- Αν τα φ, ψ είναι τύποι, τότε και τα ¬φ, (φ \land ψ), (φ \lor ψ), (φ \Rightarrow ψ), (φ \Leftrightarrow ψ) είναι τύποι.
- Αν το x είναι μεταβλητή και το ϕ είναι τύπος, τότε και τα $\forall x(\phi)$, $\exists x(\phi)$ είναι τύποι.

Πολλές φορές θα απλοποιείται ο συμβολισμός παραλείποντας παρενθέσεις, με την υπόθεση πως η \neg προηγείται των \land , \lor , που προηγούνται των \Rightarrow , \Leftrightarrow .

Γενικός τύπος (ή απλά «τύπος»)

- Κάθε ατομικός τύπος είναι και γενικός τύπος.
- Αν τα φ, ψ είναι τύποι, τότε και τα ¬φ, (φ \land ψ), (φ \lor ψ), (φ \Rightarrow ψ), (φ \Leftrightarrow ψ) είναι τύποι.
- Αν το x είναι μεταβλητή και το φ είναι τύπος, τότε και τα ∀ x(φ), ∃ x(φ) είναι τύποι.

Πολλές φορές θα απλοποιείται ο συμβολισμός παραλείποντας παρενθέσεις, με την υπόθεση πως η \neg προηγείται των \land , \lor , που προηγούνται των \Rightarrow , \Leftrightarrow .

Παραδείγματα Γενικών Τύπων:

```
Siblings(john, con)
\forall x \text{ (block(x)} \Rightarrow \exists y \text{ (on(x, y)} \land \neg block(y) \text{ )}
\text{summer()} \Rightarrow \text{atTheBeach(john)}
```

Ερμηνείες

Μια ερμηνεία Μ για το αλφάβητο Α αποτελείται από

- ένα μη-κενό σύνολο |Μ| που ονομάζεται σύμπαν,
- ένα σύνολο από σχέσεις πάνω στο |M| -- ειδικότερα, μια n-μελή σχέση P^M για κάθε n-μελές κατηγόρημα P του A.
- ένα σύνολο από συναρτήσεις πάνω στο |M| -- ειδικότερα, μια n-μελή σχέση f^M για κάθε n-μελή συνάρτηση f του A.
- μια συνάρτηση που αντιστοιχεί σε κάθε σταθερά c του A, ένα στοιχείο $c^{\rm M}$ του σύμπαντος της M.

Ερμηνείες

Μια ερμηνεία Μ για το αλφάβητο Α αποτελείται από

- ένα μη-κενό σύνολο |Μ| που ονομάζεται σύμπαν,
- ένα σύνολο από σχέσεις πάνω στο |M| -- ειδικότερα, μια n-μελή σχέση P^M για κάθε n-μελές κατηγόρημα P του A.
- ένα σύνολο από συναρτήσεις πάνω στο |M| -- ειδικότερα, μια n-μελή σχέση f^M για κάθε n-μελή συνάρτηση f του A.
- μια συνάρτηση που αντιστοιχεί σε κάθε σταθερά c του A, ένα στοιχείο $c^{\rm M}$ του σύμπαντος της M.

Αποτίμηση για μια ερμηνεία M του αλφαβήτου A, είναι μια συνάρτηση **v** που αντιστοιχεί κάθε μεταβλητή του A σε ένα στοιχείο του |M|.

Ορισμός Αληθείας του Tarski

$$\begin{split} \mathsf{M}, \mathsf{v} &\models \mathsf{t}_1 = \mathsf{t}_2 \; \; \mathsf{avv} \; \; \mathsf{v}(\mathsf{t}_1) = \mathsf{v}(\mathsf{t}_2) \\ \mathsf{M}, \mathsf{v} &\models \mathsf{P}(\mathsf{t}_1, \mathsf{t}_2, \dots \mathsf{t}_n) \; \; \mathsf{avv} \; (\mathsf{v}(\mathsf{t}_1), \mathsf{v}(\mathsf{t}_2), \dots \mathsf{v}(\mathsf{t}_n)) \in \mathsf{P}^{\textit{M}} \\ \mathsf{M}, \mathsf{v} &\models \neg \varphi \; \; \mathsf{avv} \; \mathsf{M}, \mathsf{v} \; \not\models \; \varphi \\ \mathsf{M}, \mathsf{v} &\models \varphi \land \psi \; \; \mathsf{avv} \; \mathsf{M}, \mathsf{v} \; \models \varphi \; \mathsf{kal} \; \mathsf{M}, \mathsf{v} \; \models \psi \\ \mathsf{M}, \mathsf{v} &\models \varphi \lor \psi \; \; \mathsf{avv} \; \mathsf{M}, \mathsf{v} \; \models \varphi \; \mathring{\eta} \; \mathsf{M}, \mathsf{v} \; \models \psi \\ \mathsf{M}, \mathsf{v} &\models \varphi \Rightarrow \psi \; \; \mathsf{avv} \; \mathsf{M}, \mathsf{v} \; \models \neg \varphi \; \mathring{\eta} \; \mathsf{M}, \mathsf{v} \; \models \psi \\ \mathsf{M}, \mathsf{v} &\models \varphi \Rightarrow \psi \; \; \mathsf{avv} \; \mathsf{M}, \mathsf{v} \; \models \varphi \Rightarrow \psi \; \mathsf{kal} \; \mathsf{M}, \mathsf{v} \; \models \psi \Rightarrow \varphi \\ \mathsf{M}, \mathsf{v} &\models \varphi \Rightarrow \psi \; \; \mathsf{avv} \; \mathsf{M}, \mathsf{v} \; \models \varphi \Rightarrow \psi \; \mathsf{kal} \; \mathsf{M}, \mathsf{v} \; \models \psi \Rightarrow \varphi \\ \mathsf{M}, \mathsf{v} &\models \forall \mathsf{x}(\varphi) \; \; \; \mathsf{avv} \; \mathsf{M}, \mathsf{v}[\mathsf{x}|\mathsf{c}] \; \models \varphi \; \mathsf{vla} \; \mathring{o} \mathring{o} \mathsf{a} \; \mathsf{ta} \; \mathsf{c} \; \varepsilon \; |\mathsf{M}| \\ \mathsf{M}, \mathsf{v} &\models \exists \; \mathsf{x}(\varphi) \; \; \; \mathsf{avv} \; \; \mathsf{un} \check{a} \mathsf{p} \mathsf{x} \mathsf{el} \; \mathsf{c} \; \varepsilon \; |\mathsf{M}| \; \mathsf{t\'etolo} \; \check{\omega} \mathsf{ote} \; \mathsf{M}, \mathsf{v}[\mathsf{x}|\mathsf{c}] \; \models \varphi \end{split}$$

Ικανοποιήσιμοι και Έγκυροι Τύποι

- Ο τύπος φ είναι **ικανοποιήσιμος** ανν υπάρχει ερμηνεία Μ και αποτίμηση ν τέτοιες ώστε Μ, ν ⊨ φ.
- Η ερμηνεία Μ είναι μοντέλο του τύπου φ (Μ ⊨ φ) ανν για κάθε αποτίμηση ν ισχύει Μ, ν ⊨ φ.
- Ο τύπος φ είναι **έγκυρος** ανν όλες οι ερμηνείες είναι μοντέλα του φ.
- Τ ⊨ φ ανν κάθε μοντέλο του Τ είναι και μοντέλο του φ.

ΘΕΩΡΗΜΑ: $T \models \varphi$ ανν $T \cup \{\neg \varphi\}$ είναι μη-ικανοποιήσιμο.

Άσκηση

Κατασκευάστε ερμηνεία M με $|M| = \{1, 2\}$, τέτοια που να επαληθεύει τον τύπο $\forall x (P(x) \lor Q(x))$ και να διαψεύδει τον τύπο $\forall x (P(x)) \lor \forall x (Q(x))$.

Το ίδιο για τους τύπους $\exists x(P(x)) \land \exists x(Q(x))$ και $\exists x(P(x) \land Q(x))$.

Το ίδιο για τους τύπους $\forall x \exists y (P(x,y))$ και $\exists y \forall x (P(x,y))$

Αναπαράσταση Γνώσης σε ΚΛ

Η ερμηνεία του P(x) είναι «ο x είναι πρώτος αριθμός», η ερμηνεία του E(x) είναι «ο x είναι άρτιος αριθμός» και τέλος η ερμηνεία του D(x, y) είναι «ο x διαιρεί τον y ». Μεταφράστε στα Ελληνικά τους παρακάτω τύπους:

- . $\forall x (E(x) \Rightarrow \forall y (D(x,y) \Rightarrow E(y)))$
- . $\forall x (P(x) \Rightarrow \exists y (E(y) \land D(x,y)))$
- $\exists x (E(x) \land P(x)) \land \neg \exists y ((x \neq y) \land E(y) \land P(y)))$

Χρήσιμες Ισοδυναμίες

- 1. $\neg(\phi \land \psi) \equiv (\neg \phi \lor \neg \psi)$
- 2. $\neg(\phi\lor\psi) \equiv (\neg\phi\land\neg\psi)$
- 3. ¬¬♦ **=** ♦
- 4. $\phi \wedge (\psi \vee \zeta) \equiv (\phi \wedge \psi) \vee (\phi \wedge \zeta)$
- 5. $\phi \lor (\psi \land \zeta) \equiv (\phi \lor \psi) \land (\phi \lor \zeta)$
- 6. $\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$
- 7. $\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \wedge (\psi \Rightarrow \varphi)$

Χρήσιμες Ισοδυναμίες

1.
$$\neg(\phi \land \psi) \equiv (\neg \phi \lor \neg \psi)$$

2.
$$\neg(\phi\lor\psi) \equiv (\neg\phi\land\neg\psi)$$

4.
$$\phi \wedge (\psi \vee \zeta) \equiv (\phi \wedge \psi) \vee (\phi \wedge \zeta)$$

5.
$$\phi \lor (\psi \land \zeta) \equiv (\phi \lor \psi) \land (\phi \lor \zeta)$$

6.
$$\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$$

7.
$$\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \wedge (\psi \Rightarrow \varphi)$$

8.
$$\neg \forall x (\varphi) \equiv \exists x (\neg \varphi)$$

Χρήσιμες Ισοδυναμίες

1.
$$\neg(\phi \land \psi) \equiv (\neg \phi \lor \neg \psi)$$

2.
$$\neg(\phi\lor\psi) \equiv (\neg\phi\land\neg\psi)$$

4.
$$\phi \wedge (\psi \vee \zeta) \equiv (\phi \wedge \psi) \vee (\phi \wedge \zeta)$$

5.
$$\phi \lor (\psi \land \zeta) \equiv (\phi \lor \psi) \land (\phi \lor \zeta)$$

6.
$$\phi \Rightarrow \psi \equiv \neg \phi \lor \psi$$

7.
$$\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \wedge (\psi \Rightarrow \varphi)$$

8.
$$\neg \forall x (\varphi) \equiv \exists x (\neg \varphi)$$

9.
$$\neg \exists x (\phi) \equiv \forall x (\neg \phi)$$

Χρήσιμες Ισοδυναμίες

1.
$$\neg(\phi \land \psi) \equiv (\neg \phi \lor \neg \psi)$$

2.
$$\neg(\phi\lor\psi) \equiv (\neg\phi\land\neg\psi)$$

4.
$$\phi \wedge (\psi \vee \zeta) \equiv (\phi \wedge \psi) \vee (\phi \wedge \zeta)$$

5.
$$\phi \lor (\psi \land \zeta) \equiv (\phi \lor \psi) \land (\phi \lor \zeta)$$

6.
$$\phi \Rightarrow \psi \equiv \neg \phi \lor \psi$$

7.
$$\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \wedge (\psi \Rightarrow \varphi)$$

8.
$$\neg \forall x (\varphi) \equiv \exists x (\neg \varphi)$$

9.
$$\neg \exists x (\phi) \equiv \forall x (\neg \phi)$$

10.
$$\forall x (\phi) \equiv \forall y (\phi [x|y])$$

11.
$$\exists x (\varphi) \equiv \exists y (\varphi [x|y])$$

ΠΡΟΣΟΧΗ:

- Οι ισοδυναμίες (10) – (11) ισχύουν μόνο όταν το γ δεν εμφανίζεται ελεύθερο στην φ.

Χρήσιμες Ισοδυναμίες

1.
$$\neg(\phi \land \psi) \equiv (\neg \phi \lor \neg \psi)$$

2.
$$\neg(\phi\lor\psi) \equiv (\neg\phi\land\neg\psi)$$

4.
$$\phi \wedge (\psi \vee \zeta) \equiv (\phi \wedge \psi) \vee (\phi \wedge \zeta)$$

5.
$$\phi \lor (\psi \land \zeta) \equiv (\phi \lor \psi) \land (\phi \lor \zeta)$$

6.
$$\phi \Rightarrow \psi \equiv \neg \phi \lor \psi$$

7.
$$\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \wedge (\psi \Rightarrow \varphi)$$

8.
$$\neg \forall x (\varphi) \equiv \exists x (\neg \varphi)$$

9.
$$\neg \exists x (\phi) \equiv \forall x (\neg \phi)$$

10.
$$\forall x (\phi) \equiv \forall y (\phi [x|y])$$

11.
$$\exists x (\varphi) \equiv \exists y (\varphi [x|y])$$

12.
$$\phi \land \forall x (\psi) \equiv \forall x (\phi \land \psi)$$

13.
$$\phi \lor \exists x (\psi) \equiv \exists x (\phi \lor \psi)$$

ΠΡΟΣΟΧΗ:

- Οι ισοδυναμίες (10) (11) ισχύουν μόνο όταν το γ δεν εμφανίζεται ελεύθερο στην φ.
- Οι ισοδυναμίες (12) (13) ισχύουν μόνο όταν το x δεν εμφανίζεται ελεύθερο στην φ.

Χρήσιμες Ισοδυναμίες

1.
$$\neg(\phi \land \psi) \equiv (\neg \phi \lor \neg \psi)$$

2.
$$\neg(\phi\lor\psi) \equiv (\neg\phi\land\neg\psi)$$

4.
$$\phi \wedge (\psi \vee \zeta) \equiv (\phi \wedge \psi) \vee (\phi \wedge \zeta)$$

5.
$$\phi \lor (\psi \land \zeta) \equiv (\phi \lor \psi) \land (\phi \lor \zeta)$$

6.
$$\phi \Rightarrow \psi \equiv \neg \phi \lor \psi$$

7.
$$\phi \Leftrightarrow \psi \equiv (\phi \Rightarrow \psi) \wedge (\psi \Rightarrow \phi)$$

8.
$$\neg \forall x (\varphi) \equiv \exists x (\neg \varphi)$$

9.
$$\neg \exists x (\varphi) \equiv \forall x (\neg \varphi)$$

10.
$$\forall x (\phi) \equiv \forall y (\phi [x|y])$$

11.
$$\exists x (\phi) \equiv \exists y (\phi [x|y])$$

12.
$$\phi \land \forall x (\psi) \equiv \forall x (\phi \land \psi)$$

13.
$$\phi \lor \exists x (\psi) \equiv \exists x (\phi \lor \psi)$$

14.
$$\forall x(\phi \land \psi) \equiv \forall x(\phi) \land \forall z(\psi[x|z])$$

ΠΡΟΣΟΧΗ:

- Οι ισοδυναμίες (10) (11) ισχύουν μόνο όταν το γ δεν εμφανίζεται ελεύθερο στην φ.
- Οι ισοδυναμίες (12) (13) ισχύουν μόνο όταν το x δεν εμφανίζεται ελεύθερο στην φ.
- Η ισοδυναμία (14) ισχύει μόνο όταν το z δεν εμφανίζεται ελεύθερο στα φ, ψ.

Σε έναν τύπο φ με ποσοδείκτη \exists , μπορούμε να αντικαταστήσουμε τον ποσοδείκτη και την μεταβλητή у που τον συνοδεύει, χρησιμοποιώντας ένα νέο συναρτησιακό σύμβολο f με παραμέτρους όλες τις μεταβλητές x_1, x_2, \ldots, x_n , των ποσοδεικτών \forall στην εμβέλεια των οποίων βρίσκεται η у (υπενθυμίζουμε ότι συναρτήσεις χωρίς παραμέτρους είναι ισοδύναμες με σταθερές).

Παραδείγματα

-∃y ∀x R(x,y) μετατρέπεται σε ∀x R(x,a)

Σε έναν τύπο φ με ποσοδείκτη \exists , μπορούμε να αντικαταστήσουμε τον ποσοδείκτη και την μεταβλητή у που τον συνοδεύει, χρησιμοποιώντας ένα νέο συναρτησιακό σύμβολο f με παραμέτρους όλες τις μεταβλητές x_1, x_2, \ldots, x_n , των ποσοδεικτών \forall στην εμβέλεια των οποίων βρίσκεται η у (υπενθυμίζουμε ότι συναρτήσεις χωρίς παραμέτρους είναι ισοδύναμες με σταθερές).

<u>Παραδείγματα</u>

```
-∃y ∀x R(x,y) μετατρέπεται σε ∀x R(x,a)
```

```
-∀x∃y(P(y) ⇒ R(x,y)) μετατρέπεται σε ∀x(P(f(x)) ⇒ R(x,f(x)))
```

Σε έναν τύπο φ με ποσοδείκτη \exists , μπορούμε να αντικαταστήσουμε τον ποσοδείκτη και την μεταβλητή у που τον συνοδεύει, χρησιμοποιώντας ένα νέο συναρτησιακό σύμβολο f με παραμέτρους όλες τις μεταβλητές x_1, x_2, \ldots, x_n , των ποσοδεικτών \forall στην εμβέλεια των οποίων βρίσκεται η y (υπενθυμίζουμε ότι συναρτήσεις χωρίς παραμέτρους είναι ισοδύναμες με σταθερές).

<u>Παράδειγματα</u>

```
-∃y ∀x R(x,y) μετατρέπεται σε ∀x R(x,a)
```

```
- ∀ x ∃ y (P(y) ⇒ R(x,y)) μετατρέπεται σε ∀ x (P(f(x)) ⇒ R(x,f(x)))
```

```
- \forall x \exists y \forall z \exists r (P(x,y) \Rightarrow R(y,z,r)) μετατρέπεται σε \forall x \forall z (P(x,f(x)) \Rightarrow R(f(x),z,g(x,z)))
```

Σε έναν τύπο φ με ποσοδείκτη \exists , μπορούμε να αντικαταστήσουμε τον ποσοδείκτη και την μεταβλητή у που τον συνοδεύει, χρησιμοποιώντας ένα νέο συναρτησιακό σύμβολο f με παραμέτρους όλες τις μεταβλητές x_1, x_2, \ldots, x_n , των ποσοδεικτών \forall στην εμβέλεια των οποίων βρίσκεται η y (υπενθυμίζουμε ότι συναρτήσεις χωρίς παραμέτρους είναι ισοδύναμες με σταθερές).

<u>Παράδειγματα</u>

```
-∃y∀x R(x,y) μετατρέπεται σε \forall x R(x,a)

-∀x∃y ( P(y) ⇒ R(x,y) ) μετατρέπεται σε \forall x( P(f(x)) ⇒ R(x,f(x)) )

-∀x∃y∀z∃r ( P(x,y) ⇒ R(y,z,r) ) μετατρέπεται σε \forall x ∀z ( P(x,f(x)) ⇒ R(f(x),z,g(x,z)) )
```

ΠΡΟΣΟΧΗ:

Όταν ένας τύπος φ μετατρέπεται μέσω Skolemization σε ένα νέο τύπο ψ, οι δύο τύποι δεν είναι απαραίτητα ισοδύναμοι. Ωστόσο ο φ είναι ικανοποιήσιμος ανν ο ψ είναι ικανοποιήσιμος.

Προετοιμασία για Αναγωγή σε ΚΛ

- 1. Απαλοιφή των \Rightarrow , ⇔
- 2. Μετακίνηση δίπλα στα κατηγορήματα.
- 3. Μετονομασία μεταβλητών.
- 4. Απαλοιφή Ξ.
- 5. Μετακίνηση ποσοδεικτών στην αρχή της πρότασης.
- 6. Επιμερισμός ∨ και ∧

Άσκηση

Μετατρέψτε τους παρακάτω τύπους σε CNF:

$$\forall x (Q(x) \Rightarrow \exists y P(x,y)) \Rightarrow (Q(c) \Rightarrow P(c,c))$$

$$\exists \forall x (P(x) \Rightarrow \exists y (E(y) \land D(x,y)))$$

$$\exists x \forall z (P(x,z) \land \forall x (Q(x,z))) \Leftrightarrow \exists x (P(x,x))$$

Κανόνας Αναγωγής

ΘΕΩΡΗΜΑ:

Αν τα c_1 , c_2 είναι μη-κενά clauses που δεν διαφωνούν σε κανένα literal, τότε για κάθε νέο literal x,

$$\{c_1 \cup \{x\}, c_2 \cup \{\neg x\}\} \models c_1 \cup c_2$$

Απόδειξη.

Έστω M τυχαία ερμηνεία τέτοια ώστε $M \models c_1 \cup \{x\}$ και $M \models c_2 \cup \{\neg x\}$. Av $M \models x$ τότε προκύπτει πως $M \models c_2$ και επομένως $M \models c_1 \cup c_2$.

Aν από την άλλη $M \models \neg x$ τότε προκύπτει πως $M \models c_1$. Επομένως και πάλι $M \models c_1 \cup c_2$. \square

Κανόνας Αναγωγής

ΘΕΩΡΗΜΑ:

Αν τα c_1 , c_2 είναι μη-κενά clauses που δεν διαφωνούν σε κανένα literal, τότε για κάθε νέο literal x,

$$\{c_1 \cup \{x\}, c_2 \cup \{\neg x\}\} \models c_1 \cup c_2$$

Απόδειξη.

Έστω Μ τυχαία ερμηνεία τέτοια ώστε $M \models c_1 \cup \{x\}$ και $M \models c_2 \cup \{\neg x\}$. Αν $M \models x$ τότε προκύπτει πως $M \models c_2$ και επομένως $M \models c_1 \cup c_2$.

Αν από την άλλη $M \models \neg x$ τότε προκύπτει πως $M \models c_1$. Επομένως και πάλι $M \models c_1 \cup c_2$. □

ΘΕΩΡΗΜΑ:

Ένα σύνολο τύπων Τ είναι μη-ικανοποιήσιμο ανν από το Τ προκύπτει το κενό clause μέσω αναγωγής.

Αναγωγή σε ΚΛ

Κατά την αναγωγή σε ΚΛ, κάθε literal με μεταβλητές ουσιαστικά αντιπροσωπεύει όλα του τα στιγμιότυπα.

Αναγωγή με Ισότητα - Προβλήματα

Παράδειγμα 1:

Έστω a, b, c τρεις σταθερές, και S το παρακάτω σύνολο προτάσεων κατηγορηματικής λογικής:

$$S = \{ a = b, b = c, \neg(a=c) \}$$

Προφανώς το S είναι μη-ικανοποιήσιμο. Ωστόσο η αναγωγή δεν παράγει το κενό σύνολο.

Αναγωγή με Ισότητα - Προβλήματα

Παράδειγμα 1:

Έστω a, b, c τρεις σταθερές, και S το παρακάτω σύνολο προτάσεων κατηγορηματικής λογικής:

$$S = \{ a = b, b = c, \neg(a=c) \}$$

Προφανώς το S είναι μη-ικανοποιήσιμο. Ωστόσο η αναγωγή δεν παράγει το κενό σύνολο.

Παράδειγμα 2:

Έστω a, b τρεις σταθερές, P κατηγόρημα και S το παρακάτω σύνολο προτάσεων κατηγορηματικής λογικής:

$$S = \{ a = b, P(a), \neg P(b) \}$$

Προφανώς το S είναι μη-ικανοποιήσιμο. Ωστόσο η αναγωγή δεν παράγει το κενό σύνολο.

Αναγωγή με Ισότητα – Λύση

Για τον σωστό χειρισμό της ισότητας προσθέτουμε στην βάση γνώσης μας τα ακόλουθα αξιώματα:

- E1. $\forall x (x = x)$
- E2. $\forall x \forall y (x=y \Rightarrow y=x)$
- E3. $\forall x \forall y \forall z (x=y \land y=z \Rightarrow x=z)$

Αναγωγή με Ισότητα – Λύση

Για τον σωστό χειρισμό της ισότητας προσθέτουμε στην βάση γνώσης μας τα ακόλουθα αξιώματα:

- E1. $\forall x (x = x)$
- E2. $\forall x \forall y (x=y \Rightarrow y=x)$
- E3. $\forall x \forall y \forall z (x=y \land y=z \Rightarrow x=z)$

Επίσης, για κάθε συνάρτηση f με n μεταβλητές προσθέτουμε το αξίωμα

E4.
$$f$$
. $\forall x_1 \ldots \forall x_n \forall y_1 \ldots \forall y_n (x_1=y_1 \land \ldots \land x_n=y_n \Rightarrow f(x_1,\ldots,x_n) = f(y_1,\ldots,y_n))$

και για κάθε κατηγόρημα Ρ με η όρους προσθέτουμε το αξίωμα

E5.P.
$$\forall x_1 \ldots \forall x_n \forall y_1 \ldots \forall y_n (x_1 = y_1 \land \ldots \land x_n = y_n \Rightarrow P(x_1, \ldots, x_n) \equiv P(y_1, \ldots, y_n))$$

Αναγωγή με Ισότητα – Λύση

Για τον σωστό χειρισμό της ισότητας προσθέτουμε στην βάση γνώσης μας τα ακόλουθα αξιώματα:

- E1. $\forall x (x = x)$
- E2. $\forall x \forall y (x=y \Rightarrow y=x)$
- E3. $\forall x \forall y \forall z (x=y \land y=z \Rightarrow x=z)$

Επίσης, για κάθε συνάρτηση f με n μεταβλητές προσθέτουμε το αξίωμα

E4.
$$f$$
. $\forall x_1 \ldots \forall x_n \forall y_1 \ldots \forall y_n (x_1=y_1 \land \ldots \land x_n=y_n \Rightarrow f(x_1,\ldots,x_n) = f(y_1,\ldots,y_n))$

και για κάθε κατηγόρημα Ρ με η όρους προσθέτουμε το αξίωμα

E5.P.
$$\forall x_1 \ldots \forall x_n \forall y_1 \ldots \forall y_n (x_1 = y_1 \land \ldots \land x_n = y_n \land P(x_1, \ldots, x_n) \Rightarrow P(y_1, \ldots, y_n))$$

Στην συνέχεια η ισότητα μπορεί να χρησιμοποιηθεί στην αναγωγή σαν ένα κοινό κατηγόρημα.

Αποδείξτε με αναγωγή πως το σύνολο $S = \{father(John) = Bill, \forall x (married(father(x), mother(x)), \neg married(Bill, mother(John))\} είναι μη-ικανοποιήσιμο:$

Αποδείξτε με αναγωγή πως το σύνολο $S = \{father(John) = Bill, \forall x (married(father(x), mother(x)), \neg married(Bill, mother(John))\} είναι μη-ικανοποιήσιμο:$

Απαρίθμηση προτάσεων S ως clauses:

```
1. { father(John)=Bill }
```

- 2. { married(father(x_1), mother(x_1)) }
- 3. { ¬married(Bill, mother(John)) }

Αποδείξτε με αναγωγή πως το σύνολο $S = \{father(John) = Bill, \forall x (married(father(x), mother(x)), \neg married(Bill, mother(John)) \}$ είναι μη-ικανοποιήσιμο:

Απαρίθμηση προτάσεων S ως clauses:

```
1. { father(John)=Bill }
```

- 2. { $married(father(x_1), mother(x_1))$ }
- 3. { ¬married(Bill, mother(John)) }

Προσθήκη αξιωμάτων ισότητας στην Βάση Γνώσης

(το (E5.P) "σπάει" σε 2 clauses κατά την μετατροπή σε CNF)

- E1. $\{x_2 = x_2\}$
- E2. $\{\neg(x_3=y_3), y_3=x_3\}$
- E3. { $\neg(x_4=y_4), \neg(y_4=z_4), x_4=z_4$ }
- E4.m. $\{\neg (x_5=y_5), mother(x_5) = mother(y_5) \}$
- E4.f. $\{\neg(x_6=y_6), father(x_6) = father(y_6)\}$
- E5.m { \neg ($x_7 = y_7$), \neg ($x_8 = y_8$), \neg married(x_7, x_8), married(y_7, y_8)) }

Αποδείξτε με αναγωγή πως το σύνολο $S = \{father(John) = Bill, \forall x (married(father(x), mother(x)), \neg married(Bill, mother(John)) \}$ είναι μη-ικανοποιήσιμο:

Απαρίθμηση προτάσεων S ως clauses:

- 1. { father(John)=Bill }
- 2. { married(father(x_1), mother(x_1)) }
- 3. { ¬married(Bill, mother(John)) }

Προσθήκη αξιωμάτων ισότητας στην Βάση Γνώσης

(το (E5.P) "σπάει" σε 2 clauses κατά την μετατροπή σε CNF)

- E1. $\{x_2 = x_2\}$
- E2. $\{\neg(x_3=y_3), y_3=x_3\}$
- E3. $\{\neg(x_{\Delta}=y_{\Delta}), \neg(y_{\Delta}=z_{\Delta}), x_{\Delta}=z_{\Delta}\}$
- E4.m. $\{\neg(x_5=y_5), \text{ mother}(x_5) = \text{mother}(y_5)\}$
- E4.f. $\{\neg(x_6=y_6), father(x_6) = father(y_6)\}$
- E5.m { \neg ($x_7 = y_7$), \neg ($x_8 = y_8$), \neg married(x_7, x_8), married(y_7, y_8)) }

Αναγωγή

- 4. { \neg (x₇=Bill), \neg (x₈=mother(John)), \neg married(x₇,x₈) }, (3), (E5.m), όπου y₇/Bill, y₈/mother(John)
- 5. { ¬(x₈=mother(John)), ¬married(father(John), x₈) }, (1), (4), όπου x_7 /father(John)
 - . $\{\neg(mother(John)=mother(John))\}$, (2), (5), όπου $x_1/John$, $x_8/mother(John)$
- 7. {}, (6), (E1), όπου

x2/mother(John)