9.64. Электрическое поле образовано двумя параллельными пластинами, находящимися на расстоянии $d=2\,\mathrm{cm}$ друг от друга. К пластинам приложена разность потенциалов $U=120\,\mathrm{B}$. Какую скорость v получит электрон под действием поля, пройдя по линии напряженности расстояние $\Delta r=3\,\mathrm{mm}$?

Решение:

Для того чтобы сообщить электрону кинетическую энергию $W_{\rm K} = \frac{mv^2}{2}$, силы электрического поля должны совершить работу $A = e\Delta \varphi$, где $\Delta \varphi$ — разность потенциалов между точками, расстояние между которыми равно Δr . Напряженность поля $E = \frac{\Delta \varphi}{\Delta r}$, откуда $\Delta \varphi = E\Delta r$. Тогда работа сил поля $A = eE\Delta r$ или, учитывая, что $E = \frac{U}{d}$, $A = \frac{eU\Delta r}{d}$. Поскольку $A = W_{\rm K}$, то $\frac{eU\Delta r}{d} = \frac{mv^2}{2}$, откуда $v = \sqrt{\frac{2eU\Delta r}{md}} = 2,53\cdot 10^6\,{\rm M/c}$.

9.65. Электрон в однородном электрическом поле получает ускорение $a=10^{12}~{\rm M/c^2}$. Найти напряженность E электрического поля, скорость v, которую получит электрон за время t=1мкс своего движения, работу A сил электрического поля за это время и разность потенциалов U, пройденную при этом электроном. Начальная скорость электрона $v_0=0$.

Решение:

В электрическом поле на электрон действует кулоновская сила $\vec{F} = e\vec{E}$ (силу тяжести не учитываем, поскольку для электрона mg << eE). Согласно второму закону Ньютона

$$\vec{F}=m\vec{a}$$
 или $e\vec{E}=m\vec{a}$, откуда $E=\frac{m\alpha}{e}=5.7~\mathrm{B/m}$. За время t

электрон приобретает скорость $v=at=10^6\,\mathrm{M/c},\ \mathrm{T.~e.}$ силы электрического поля совершают работу A, равнук, приращению кинетической энергии электрона. $A=\frac{mv^2}{2}=4.5\cdot 10^{-19}\,\mathrm{Дж.}$ С другой стороны, работа сил поля A=eU, откуда $U=\frac{A}{e}=2.8\,\mathrm{B}.$

9.66. Электрон летит от одной пластины плоского конденсатора до другой. Разность потенциалов между пластинами U=3 кВ; расстояние между пластинами d=6 мм. Найти силу F, действующую на электрон, ускорение a электрона, скорость v, с которой электрон приходит ко второй пластине, и поверхностную плотность заряда σ на пластинах.

Решение:

В электрическом поле на электрон действует кулоновская сила $\vec{F}=e\vec{E}$. Напряженность поля $E=\frac{U}{d}$, тогда $F=\frac{eU}{d}=9.6\cdot 10^{-14}$ Н. По второму закону Ньютона $\vec{F}=m\vec{a}$, откуда $a=\frac{F}{m}=1.05\cdot 10^{17}\,\mathrm{m/c^2}$. При перемещении электрона от одной пластины к другой силы поля совершают работу A=eU, в результате которой электрон приобретает кинетическую энергию $W_{\rm K}=\frac{mv^2}{2}$. Поскольку $A=W_{\rm K}$, то $eU=\frac{mv^2}{2}$, откуда $v=\sqrt{\frac{2eU}{m}}$; $v=3.24\cdot 10^7\,\mathrm{m/c}$. Поверхностная плотность заряда $\sigma=\varepsilon\varepsilon_0E=5.3\,\mathrm{mKn/m^2}$.

9.67. Электрон с некоторой начальной скоростью v_0 влетает в плоский горизонтально расположенный конденсатор паразлельно пластинам на равном расстоянии от них. Разность потен-

циалов между пластинами конденсатора $U=300~\mathrm{B}$; расстояние между пластинами $d=2~\mathrm{cm}$; длина конденсатора $l=10~\mathrm{cm}$. Какова должна быть предельная начальная скорость v_0 электрона, чтобы электрон не вылетел из конденсатора? Решить эту же задачу для α -частицы.

Решение:

В плоском конденсаторе электрон будет двигаться по параболе подобно горизонтально брошенному телу в поле силы тяжести, на электрон в конденсаторе действует постоянная сила $\vec{F} = e\vec{E}$, под действием которой он получит ускорение $\vec{a} = \frac{e\vec{E}}{c}$. Пролетая длину l кон-

денсатора за время $t = \frac{l}{v}$, электрон отклонится на

расстояние $y = \frac{at^2}{2} = \frac{eEl^2}{2mv^2}$. Чтобы электрон не вылетел из

конденсатора, должно выполняться условие $y \ge \frac{d}{2}$. Отсюда

 $v_0 \le l \sqrt{\frac{eE}{md}}$. Подставляя числовые данные, получим для электрона $v_0 = 3,64 \cdot 10^7$ м/с и для α -частицы $v_0 = 6 \cdot 10^5$ м/с.

9.68. Электрон с некоторой скоростью влетает в плоский горизонтально расположенный конденсатор параллельно пластинам на равном расстоянии от них. Напряженность поля в конденсаторе E = 100 B/m; расстояние между пластинами d = 4 см.

Через какое время t после того, как электрон влетел в конденсатор, он попадет на одну из пластин? На каком расстоянии s от начала конденсатора электрон попадет на пластину, если он ускорен разностью потенциалов U = 60 В?

Решение:

Вдоль горизонтальной осн движение электрона будет равномерным со скоростью $v_x = v_0$, т. к. вдоль оси x га него не действуют силы. При равномерном движении кордината x изменяется со временем $x = v_0 t$. Вдоль оси y на электрон действуют две силы:

сила тяжести тд и сила электростатического $\vec{F} = e\vec{E}$. Сила тяжести $mg = (9.11 \cdot 10^{-31} \cdot 9.8)$ Н надцать порядков меньше электростатической силы $F = (1.6 \cdot 10^{-19} \cdot 10^2)$ Н и ею можно пренебречь. Под действием электростатической силы движение электрона вдоль оси у будет равноускоренным, а координата у изменяется со временем по закону $y = \frac{at^2}{2} = \frac{Ft^2}{m^2} = \frac{eEt^2}{m^2}$. Отсюда при $y = \frac{d}{2}$ имеем $t = \sqrt{\frac{dm}{aE}} \approx 48$ нс. Пройдя разность потенциалов U, электрон за счет работы A сил электростатического поля приобретает кинетическую энергию, т. е. $A = eU = \frac{mv_0^2}{2}$, откуда $v_0 = \sqrt{\frac{2eU}{m}}$. Тогда через время t=48 не он упадет на пластину на расстоянии $S=v_0t=t$ $\times \sqrt{\frac{2eU}{c}}$. Подставив числовые данные, получим $S=22\,\mathrm{cm}$

9.69. Электрон влетает в плоский горизонтально расположенный конденсатор параллельно пластинам со скоростью $v_0 = 9 \times 10^6$ м/с. Разность потенциалов между пластинами U = 100 В; расстояние между пластинами d = 1 см. Найти полное a_n нормальное a_n и тангенциальное a_n ускорения электрона через время t = 10 нс после начала его движения в конденсаторе.

Решение:

Движение электрона в электрическом поле конденсатора аналогично движению тела, брошенного горизонтально в поле силы тяжести. На электрон действует кулоновская сила $\vec{F} = e\vec{E}$. По второму закону Ньютона $\vec{F} = m\vec{a}$ или $e\vec{E} = m\vec{a}$.

Отсюда полное ускорение электрона $a = \frac{eE}{m}$ или, с учетом

 $E = \frac{U}{d}$, $a = \frac{eU}{md} = 17.6 \cdot 10^{14} \text{ м/c}^2$. Через время t после на-

чала движения его нормальное ускорение $a_n = \frac{av_0}{\sqrt{v_0^2 + a^2t^2}}$,

тангенциальное ускорение $a_{\tau} = \frac{a^2t}{\sqrt{v_0^2 + a^2t^2}}$ (см. задачу

1.30). Подставляя числовые значения, получим $a_n = 8 \times 10^{14} \,\mathrm{m/c^2}; \ a_\tau = 15.7 \cdot 10^{14} \,\mathrm{m/c^2}.$

9.70. Протон и α -частица, двигаясь с одинаковой скоростью, влетают в плоский конденсатор параллельно пластинам. Во сколько раз отклонение протона полем конденсатора будет больше отклонения α -частицы?

Решение:

Найдем отклонение Δy полем конденсатора для любой положительно заряженной частицы. По второму закону Ньютона кулоновская сила $\vec{F} = m\vec{a}$ нам $q\vec{E} = m\vec{a}$. Пусть за время t частица пролетает по оси x

расстояние l. Движение частицы по оси x — равномерное, со скоростью v_0 , т. к. проекция силы \vec{F} на ось x равна нулю, следовательно, $t=\frac{l}{v_0}$. Движение частицы вдель оси y — равноускоренное под действием силы \vec{F} , направленной вдоль этой оси. Ускорение $a=\frac{qE}{m}$. Тогда

$$\Delta y = \frac{\alpha t^2}{2}$$
 или $\Delta y_2 = \frac{2eEl^2}{2m_2v_0^2}$. Тогда $\frac{\Delta y_1}{\Delta y_2} = \frac{m_\alpha}{2m_\rho} = 2$.

9.71. Протон и α -частица, ускоренные одной и той же разностью потенциалов, вылетают в плоский конденсатор паралленьно пластинам. Во сколько раз отклонение протона полем конденсатора будет больше отклонения α -частицы?

Решение:

Если ускорения протона и α -частицы будут одинаковы, то и отклонение Δy у них будет одно и то же (см. задачу 9.70).

9.72. Электрон влетает в плоский горизонтально расизложенный конденсатор параллельно его пластинам со скоростью $v_0 = 10^7 \, \mathrm{m/c}$. Напряженность поля в конденсаторе $E = 10 \, \mathrm{kB/M}$; длина конденсатора $I = 5 \, \mathrm{cm}$. Найти модуль и направление скорости v электрона при вылете его из конденсатора.

решение:

Полная скорость электрона в момент вылета из конденсатора $\vec{v} = \vec{v}_x + \vec{v}_y$, где $\vec{v}_x = \vec{v}_0$, $\vec{v}_y = \vec{a}t$. В скалярной форме $v = \sqrt{v_x^2 + v_y^2}$. Поскольку $a = \frac{eE}{v_x}$, $t = \frac{l}{v_y}$

(см. задачу 9.67). то
$$v = \sqrt{v_0^2 + \left(\frac{eEl}{n_1v_0}\right)^2} = 1.33 \cdot 10^7 \text{ м/c. Ha}$$

правление скорости v электрона определяется углом α . Из рисунка видно, что $\cos\alpha = v_0 \ / \ v$; $\alpha \approx 41^\circ$.

9.73. Пучок электронов, ускоренных разностью потенциалов U = 300 В, при прохождении через незаряженный плоский горизонтально расположенный конденсатор параллельно его пластинам дает светящееся пятно на флуоресцирующем экране, расположенном на расстоянии x = 12 см от конца конденсатора. При зарядке конденсатора пятно на экране смещается на расстояние y = 3 см. Расстояние между пластинами d = 1.4 см; длина конденсатора l = 6 см. Найти разность потенциалов U, приложенную к пластинам конденсатора.

Решенне:

двух движений: 1) по инерции вдоль оси x с постоянной скоростью v_0 , приобретенной под действием разности по тенциалов U_0 , которую электрон прошел до конденсатора-2) равноускоренного движения в вертикальном направ. лении к положительно заряженной пластине под дей. ствием постоянной силы поля конденсатора. По выхода из конденсатора электрон будет двигаться равномерис со скоростью v, которую он имел в точке M в момент вы лета из конденсатора. Из рисунка видно, что $y = h_1 - h_2$ где h_1 — расстояние, на которое сместится электрон в вертикальном положении во время движения в конденсаторе: $h, \ extstyle extstyl$ электрон попал бы, двигаясь по выходе из конденсатора по направлению начальной скорости v_0 , и точкой C, в которую электрон попадет в действительности. Выразим отдельно h_1 и h_2 . По формуле длины пути равноускоренього найдем $h_i = at^2/2$, где a — ускорсние, полученное электроном под действием поля конденсатора; t — время полета электрона внутри конденсатора. По второму закону Ньютона $a = F/m_e$, где $F = eE = \frac{eU}{d}$ — сила, с которой поле действует на электрон. Из формулы пути равномерного движения $t = \frac{l}{v_0}$. Выражение скорости v_0 найдем из условия равенства работы, совершенной пелем при перемещении электрона, и приобретенной им кинстической энергии; $\frac{m_e v_0^2}{2} = eU_0$. Отсюда $v_0^2 = \frac{2eU_0}{\cdots}$ — (2) Подставляя в формулу (1) значения a, F, t и v_0^2 , нелу чим $h_1 = \frac{Ul^2}{4dU}$. Длину отрезка h_2 найдем из подобия пре

Движение электрона внутри конденсатора складывается из

утельников MDC и векторного: $h_2 = \frac{v_1 x}{v}$, где v_1 — скорость электрона в вертикальном положении в точке M. Скорость v_1 найдем по формуле $v_1 = at$, которая с учетом выражений для a, F и t примет вид $v_1 = \frac{eUl}{dm_e v_0}$. Подставив выражение v_1 в формулу (3), получим $h_2 = \frac{eUlx}{dm_e v_0^2}$, или, заменив v_0^2 по формуле (3), найдем $h_2 = \frac{Ulx}{2dU_0}$. Тогда $y = h_1 + h_2 = \frac{Ul^2}{4DU_0} + \frac{Ulx}{2dU_0} = \frac{Ul}{2dU_0} \left(\frac{l}{2} + x\right)$, откуда $U = \frac{2ydU_0}{l + (l/2 + x)}$; U = 28 B.

9.74. Электрон движется в плоском горизонтально расположенном конденсаторе параллельно его пластинам со скоростью $v = 3,6 \cdot 10^7$ м/с. Напряженность поля внутри конденсатора E = 3,7 кВ/м; длина пластин конденсатора l = 20 см. На какое расстояние y сместится электрон в вертикальном направлении под действием электрического поля за время его движения в конденсаторе?

Решение:

Имеем
$$y = \frac{eEl^2}{2m_e v^2}$$
 (см. задачу 9.70). $y = 0.01$ м.

9.75. Протон влетает в плоский горизонтально расположенный конденсатор параллельно его пластинам со скоростью $\Psi_0 = 1.2 \cdot 10^5$ м/с. Напряженность поля внутри конденсатора E = 3 кВ/м; длина пластин конденсатора l = 10 см. Во сколько

раз скорость протона ν при вылете из конденсатора будет $\delta_{0,1\mathbf{k}}$ ше его начальной скорости ν_0 ?

Решение:

Скорость протона в момент вылета равна $v = \sqrt{v_x^2 + v_y^2}$, где $v_x = v_0$, $v_y = at = \frac{q_p E l}{m_p v_0}$ (см. задачу 9.70). Отсюда скорость $v = \sqrt{v_0^2 + \left(\frac{q_p E l}{m_p v_0}\right)^2} = 2,69 \cdot 10^5 \, \text{м/c}$. Тогда отношение скоростей $\frac{v}{v_0} = 2,24$.

9.76. Между пластинами плоского конденсатора, находящимися на расстоянии $d_1 = 5$ мм друг от друга, приложена разность потенциалов U = 150 В. К одной из пластин прилегает плоскопараллельная пластинка фарфора толщиной $d_2 = 3$ мм. Найти напряженности E_1 и E_2 электрического поля в воздухе и фарфоре.

Решение:

56

Разность потенциалов между обкладками конденсатора $U=\int\limits_{1}^{2}\vec{E}d\vec{l}$ — (1). Поскольку в плоском конденсаторе в пределах каждого диэлектрика поле однородно, равенство (1) может быть записано в виде $U=E_{1}l_{1}+E_{2}l_{2}$, где $l_{1}=d_{1}-d_{2}$ — толщина слоя воздуха, $l_{2}=d_{2}$ — толщина слоя фарфора. Граница раздела диэлектриков параллельна обкладкам и, следовательно, нормальна силовым линиям поля. В отсутствие свободных зарядов на поверхности диэлектрика $D_{1}=D_{2}$ и $\varepsilon_{1}E_{1}=\varepsilon_{2}E_{2}$. Диэлектрическая прочицаемость воздуха $\varepsilon_{1}=1$, диэлектрическая прочи

мость фарфора
$$\varepsilon_2=6$$
. Решая систему уравнений $U=E_1(d_1-d_2)+E_2d_2$, получим $E_1=\frac{U}{(d_1-d_2)+\varepsilon_1d_2/\varepsilon_1}$; $E_1=\varepsilon_2E_2$, $E_2=\frac{\varepsilon_2U}{d_1\varepsilon_2+d_2\varepsilon_1}=60~\mathrm{кB/m}$ и $E_2=\frac{U}{\varepsilon_2(d_1-d_2)/\varepsilon_1+d_2}$; $E_2=\frac{\varepsilon_1U}{d_1\varepsilon_2+d_2\varepsilon_1}=10~\mathrm{kB/m}$.

9.77. Найти емкость C земного шара. Считать радиус земного шара R = 6400 км. На сколько изменится потенциал земного шара, если ему сообщить заряд q = 1 Кл?

Решение:

Имеем $C = 4\pi\varepsilon\varepsilon_0 R$. Подставляя числовые данные, получим $C = 4\cdot3,14\cdot1\cdot8,85\cdot10^{-12}\cdot6400\cdot10^3 = 711$ мкФ. Если земному шару сообщить заряд q=1 Кл, его потенциал увеличится на величину $\Delta \varphi = \frac{q}{C} = 1406$ В.

9.78. Шарик радиусом R = 2 см заряжается отрицательно до **потенциа**ла $\varphi = 2$ кВ. Найти массу m всех электронов, составляющах заряд, сообщенный шарику.

Решение:

Емкость шарика $C = 4\pi\varepsilon\varepsilon_0 R$. После зарядки до потенциала $q = \varphi C = \varphi 4\pi\varepsilon\varepsilon_0 R$. Количество электронов, составляющих этот заряд, $N = \frac{q}{a}$ или $N = \frac{4\pi\varepsilon\varepsilon_0 R\varphi}{a}$. Масса всех электро-

HOB
$$m = Nm_e = \frac{4\pi\varepsilon\varepsilon_0 R\varphi m_e}{e}$$
; $m = 2.5 \cdot 10^{-20}$ KT.

9.79. Восемь заряженных водяных капель радиусом $r = 1 \, \text{г.м.}_{R}$ зарядом q = 0,1 нКл каждая сливаются в одну общую водяную каплю. Найти потенциал φ большой капли.

Решение:

Потенциал на поверхности большой шарообразной канди $\varphi = \frac{Q}{4\pi\varepsilon_0 R}$ — (1), где Q — заряд капли, R — ее раднус

$$\varphi = \frac{1}{4\pi\varepsilon_0 R}$$
 — (1), где Q — заряд капли, R — ее раднус. Потенциал на поверхности малой капли $\varphi_0 = \frac{q}{4\pi\varepsilon_0 r}$, где q — заряд капли, r — ее радиус. Если n одинаконых капель сливаются в одну, ее заряд равен $Q = nq$. С учетом этого, разделив (1) на (2), получим $\frac{\varphi}{\varphi_0} = n\frac{r}{R}$ — (3). Объем большой капли равен сумме объемов маленьких капель: $\frac{4}{3}\pi R^3 = n\frac{4}{3}\pi r^3$, откуда $\frac{r}{R} = \frac{1}{\sqrt[3]{n}}\varphi_0 = \frac{n}{\sqrt[3]{n}}\frac{q}{4\pi\varepsilon_0 r}$; $\varphi = 3.6$ кВ.

9.80. Два шарика одинаковых радиуса $R=1\,\mathrm{cm}$ и массы $m=40\,\mathrm{mr}$ подвешены на нитях одинаковой длины так, что их поверхности соприкасаются. Когда шарики зарядили, нати разошлись на некоторый угол и сила натяжения нитей стала равной $T=490\,\mathrm{mkH}$. Найти потенциал φ заряженных шариков, если известно, что расстояние от центра каждого шарика до точки подвеса $l=10\,\mathrm{cm}$.

Решение:

Задача аналогична 9.15. Шарикам сообщили заряд $q = 8l\sqrt{\pi T \varepsilon \varepsilon_0 \left(1 - \left(\frac{mg}{T}\right)^{\frac{3}{2}}\right)} = 21,7 \cdot 10^{-9} \; \text{Кл.} \;\; \text{Потенциал} \;\; \text{шари-}$

ков
$$\varphi = \frac{q}{C} = \frac{q}{4\pi\varepsilon\varepsilon_0 R}$$
; $\varphi = 19.5$ кВ.

9.81. Шарик, заряженный до потенциала $\varphi = 792$ В, имеет попростную плотность заряда $\sigma = 333$ нКл/м². Найти радиус r парика.

решенис:

Потенциал шарика и его заряд связаны соотношением $q = C \varphi$, где заряд $q = \sigma \cdot 4\pi r^2$, емкость шарика $C = 4\pi \varepsilon \varepsilon_0 r$.

Иначе,
$$\sigma r = \varepsilon \varepsilon_0 \varphi$$
, откуда $r = \frac{\varepsilon \varepsilon_0 \varphi}{\sigma} = 0.021$ м.

9.82. Найти соотношение между радиусом шара R и максимальным потенциалом φ , до которого он может быть заряжен в воздухе, если при нормальном давлении разряд в воздухе наступает при напряженности электрического поля $E_0=3$ МВ/м. Каким будет максимальный потенциал φ шара диаметром D=1м?

Решение:

Напряженность поля у поверхности заряженного шара равна $E=\frac{q}{4\pi\varepsilon\varepsilon_0R^2}$. Заряд q и потенциал φ шара связаны соотношением $q=C\varphi$, где емкость шара $C=4\pi\varepsilon\varepsilon_0R$. Отсюда $E=\frac{\varphi}{R}$. Поскольку максимального значения потенциал достигает при $E=E_0$, то $\varphi_{max}=E_0R$ или $\varphi_{max}=3\cdot 10^6R$. При диаметре шара $D=1\,\mathrm{M}$ имеем $\varphi_{max}=1.5\,\mathrm{MB}$.

9.83. Два шарика одинаковых радиуса $R=1\,\mathrm{cm}$ и массы $m=0,15\,\mathrm{kr}$ заряжены до одинакового потенциала $\varphi=3\,\mathrm{kB}$ и находятся на некотором расстоянии r_1 друг от друга. При этом их энергия гравитационного взаимодействия $W_{\mathrm{rp}}=10^{-11}\,\mathrm{Дж}$. Шарики сближаются до расстояния r_2 . Работа, необходимая для

сближения шариков, $A = 2 \cdot 10^{-6} \, \text{Дж}$. Найти энергию r электростатического взаимодействия имриков после их сб $\frac{1}{2}$ жения.

Решение:

До сближения шарики обладали эпергией гравитационно- $_{\odot}$ взаимодействия $W_{\rm up} = Gm^2/r_{\rm l}$ — (1) и энергией электри-

ческого взаимодействия
$$W_{\alpha} = \frac{q_1 q_2}{4\pi e v_0 r_1}$$
 — (2). Заряд и в-

рика $q=C\varphi=4\pi\varepsilon\varepsilon_0 R\varphi$ — (3). Поскольку раднусы и новедения шариков одинаковы, то $q_1=q_2=q$ и уравнение (2) ε

учетом (3), можно переписать
$$W_{ct} = \frac{4\pi \varepsilon v_0 R^2 \phi^2}{r_1}$$
. Из (1)

изпадем
$$r_1 = \frac{Gm^2}{W_{\rm rp}}$$
. Тогда $W_2 = \frac{4\pi \varepsilon v_0 R^2 \varphi^2 W_{\rm rp}}{Gm^2}$ — (4). Для

сближения шариков необходимо совершить работу 1 против сил поля, которая равна приращению энергии электростатического взаимодействия. $A = W'_{01} - W_{01}$, то W'_{01} — некомая энергия электростатического взаимодействия шариков после их сближения. Отею в $W'_{01} = A + W'_{01}$ или, с учетом (4), $W'_{01} = A + \frac{4\pi\varepsilon\varepsilon_i R^2\phi^2W}{Cm^2}$.

Подставляя числовые данные, получим $W'_{\rm an}=2.67$ мк/Дж.

9.84. Плонадь пластин плоского воздушного конденсатора $S = 1 \text{ m}^2$, расстояние между ними d = 1.5 мм. Найти емкость этого конденсатора.

Решение:

Емкость илоского конденсатора определяется сооти зивением $C = \varepsilon \varepsilon_0 S / d$. Для воздуха $\varepsilon = 1$. Подставиз числовые значения, получим C = 5.9 нФ.