Chapitre 2 Calculs algébriques (1) : puissances et développements

Table 2.1 – Objectifs. À fin de ce chapitre 2...

	Pour m'entraîner <u></u>		
Je dois connaître/savoir faire	6	•	Ō
Manipulez les puissances			
définition et calculs de puissances d'exposants dans $\ensuremath{\mathbb{Z}}$	2.1, 2.2	2.3, 2.4, 2.5,	2.6
règles opératoires des puissances	2.7 à 2.11	2.12, 2.13,	2.14, 2.15
Calculs algébriques			
simple, double et triple distributivité	2.16, 2.17	2.18, 2.19, 2.20	
identité remarquable produit de conjugués		2.26, 2.27, 2.28	
identité remarquable carrés de sommes		2.29, 2.30	
utiliser les parenthèses de sécurité	2.23	2.31, 2.32, 2.33	
justifier si des égalités sont toujours vraies		2.34 à 2.37	2.38
Modélisation en géométrie			
calculs de périmètres et d'aires	2.21, 2.22	2.24, 2.25	
justifier à l'aide d'identités		2.39, 2.40	
Bilan			
règles de puissances et développements			2.41, 2.42, 2.43
Club de maths : Identités et interprétations géométriques			

2.1 Puissances de base réelle et d'exposant dans $\mathbb Z$

Figure 2.1 – Vocabulaire et priorités sur opérations et signes : ajouter des parenthèses si ambigüité sur la base!

Notation 2.1 Pour tout $a \in \mathbb{R}^*$ et $n \in \mathbb{N}$:

$$a^0=1$$

$$a^1=a \qquad a^{-1} \quad \text{est $"$ l'inverse de a^1 "} \qquad a^{-1}=\frac{1}{a} \qquad \frac{1}{a^{-1}}=a$$

$$a^2=aa=a\times a \qquad a^{-2} \quad \text{est $"$ l'inverse du carr\'e de a "} \qquad a^{-2}=\frac{1}{a^2}=\left(\frac{1}{a}\right)^2 \qquad \frac{1}{a^{-2}}=a^2$$

$$\text{$"$ le carr\'e de l'inverse de a "} \qquad a^{-3}=\frac{1}{a^3}=\left(\frac{1}{a}\right)^3 \qquad \frac{1}{a^{-3}}=a^3$$

$$\text{$"$ le cube de l'inverse de a "} \qquad a^{-n}=\frac{1}{a^n}=\left(\frac{1}{a}\right)^n \qquad \frac{1}{a^{-n}}=a^n$$

$$\text{$"$ le cube de l'inverse de a "} \qquad a^{-n}=\frac{1}{a^n}=\left(\frac{1}{a}\right)^n \qquad \frac{1}{a^{-n}}=a^n$$

$$\text{$"$ (inverse de a) exposant n "}$$

 \bigcirc $a^1=a$ et a^{-1} sont de même signe car $a\times a^{-1}=1$. De même a^n et a^{-n} sont de même signe.

■ Exemple 2.1
$$5^{-1} = \frac{1}{5}$$
 $(-2)^{-1} = \frac{1}{-2} = \frac{-1}{2}$ $(-1)^{-1} = \frac{1}{-1} = -1$ $\left(\frac{2}{3}\right)^{-1} = \frac{3}{2}$ $\frac{1}{5^{-1}} = 5$
■ Exemple 2.2 $5^{-2} = \frac{1}{5^2} = \frac{1}{25}$ $\frac{1}{5^{-3}} = 5^3$ $a^{-4} = \frac{1}{a^4}$ $\left(\frac{5}{3}\right)^{-2} = \left(\frac{3}{5}\right)^2 = \frac{3^2}{5^2}$ $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$

■ Exemple 2.3
$$-3^2 = -(3^2) < 0$$
; $(-3)^2 = (-3)(-3) > 0$ $(-3)^{-2} = \frac{1}{(-3)^2} > 0$; $(-2)^{-3} = \frac{1}{(-2)^3} < 0$

Théorème 2.1 Pour tous $m, n \in \mathbb{Z}$ et tous $a, b \in \mathbb{R}^*$:

Règle 1 : Multiplication de puissances de même base $a^m \times a^n = a^{m+n}$ $\frac{a^m}{a^n} = a^m \times \frac{1}{a^n} = a^{m-n}$ « je multiplie des puissances, les bases sont les mêmes, j'ajoute les exposants »

Conséquence : Puissance d'une puissance $(a^n)^m=a^{nm}$

Règle 2 : Multiplication de puissances de même exposant « la puissance d'un produit est le produit des puissances ».

$$(ab)^n = a^n b^n$$
 $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ en particulier: $(ab)^2 = a^2 b^2$ $\left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2}$

2.2 Classifier les expressions algébriques

Définition 2.1 — monômes et polynôme. Pour $a \in \mathbb{R}^*$ et $n \in \mathbb{N}$, un terme de la forme ax^n est un monôme (1) de la variable x (2) de degré n (3) et de coefficient a.

Les monômes de même degré sont dit similaires.

Un polynôme est une somme de monômes.

- **Exemple 2.4** $5x^2 + 3x + 2$ est un polynome sous forme *ordonnée réduite*.
- 2 est le terme constant
- 3x est le terme linéaire. Il est similaire à x.
- x^2 5

3

- $5x^2$ est le monôme de degré 2. Il est similaire à x^2 .
- Exemple 2.5 $\frac{1}{x} = x^{-1}$ n'est pas un monôme (exposant négatif).
- Exemple 2.6 $\frac{1}{x}$ et $\frac{2x-3}{5x+4}$ sont des expressions fractionnaires.

Définition 2.2 Réduire une somme de termes c'est regrouper les termes similaires.

2.3 Multiplier des expressions

Développer est une activité qui consiste à exploiter les 2 règles suivantes jusqu'à plus possible pour écrire une expression égale sous forme d'une somme de termes.

Règle 1 : Axiome de distributivité : Pour tout a,c et $d \in \mathbb{R}$:

 $a(c+d) = a \times c + a \times d$

Règle 2: Pour tout $a \in \mathbb{R}$: $-a = (-1) \times a$

La double distributivité Pour tout a,b,c et $d \in \mathbb{R}$: $(a+b)(c+d) = a \times c + a \times d + b \times c + b \times d$

■ Exemple 2.7 Pour $x \in \mathbb{R}$, développer, simplifier, réduire et ordonner les expressions : 1

$$A = (6x+3) - (2x-5)$$

$$B = (-5x + 1)(3x - 1)$$

$$C = 4(5x+6) - 5x(2x-3)$$

solution.

$$A = (6x + 3)$$
: $-(2x - 5)$

$$=4x+8$$

$$B = (-5x + 1)(3x - 1)$$

$$= (-15x^2) + 5x + 3x + (-$$

$$= -15x^2 + 8x - 1$$

$$A = (6x+3) \vdots - (2x-5) \qquad B = (-5x+1)(3x-1) \qquad C(x) = 4(5x+6) \qquad \vdots - 5x(2x-3)$$

$$= 6x + 3 : -2x + 5 = (-15x^{2}) + 5x + 3x + (-1) = 20x + 24 : -10x^{2} + 15x$$

$$= -10x^2 + 35x + 24$$

¹Utiliser l'exerciseur en ligne https://www.mathix.org/exerciseur_calcul_litteral/

2.4 Identités et identités remarquables

Définition 2.3 Une *identité* est une égalité dans laquelle apparaît une ou plusieurs lettres (dites variables) et qui reste vraie quelles que soient les valeurs prises par les variables.

■ Exemple 2.8 L'égalité 2(2+6x) + 6(3x-4) = 10(3x-2) est une identité.

Démonstration. Développer le membre de gauche MG et le membre de droite MD:

Proposition 2.2 — Le carré d'une somme. Pour tout a et $b \in \mathbb{R}$ on a :

$$(a+b)^2 = a^2 + 2ab + b^2 (a-b)^2 = a^2 - 2ab + b^2$$

Démonstration. Développer (a + b)(a + b) et (a - b)(a - b).

Figure 2.2 – Illustration géométrique du carré de la somme pour $a, b \ge 0$

Proposition 2.3 — Différence de deux carrés. Pour tous nombres A et B on a l'égalité suivante :

$$(a-b)(a+b) = (a+b)(a-b) = a^2 - b^2$$

(a-b) et (a+b) sont des termes conjugués.

Démonstration. Développer (a + b)(a - b).

Figure 2.3 – Illustration géométrique de la différence de deux carrés, avec $a \ge b \ge 0$

5

2.5 Exercices

2.5.1 Exercices : puissances d'exposants dans $\mathbb Z$

$$a \neq 0, n > 0$$
:

$$a^n = \underbrace{a \times a \times \ldots \times a}_{n \text{ facteurs}}$$

$$a^{-n} = \frac{1}{a^n} = \left(\frac{1}{a}\right)^n$$

■ Exemple 2.9

$$a^{-1} = \frac{1}{a^1} = \frac{1}{a}$$
$$5^{-2} = \frac{1}{5^2} = \frac{1}{25}$$
$$\left(\frac{4}{3}\right)^2 = \frac{4}{3} \times \frac{4}{3} = \frac{16}{9}$$

$$\frac{1}{2^3} = 2^{-3}$$

$$\frac{1}{5^{-2}} = 5^2$$

$$\left(\frac{2}{5}\right)^{-1} = \frac{5}{2}$$

$$\left(\frac{2}{3}\right)^{-2} = \left(\frac{3}{2}\right)^2 = \frac{9}{4}$$

$$(0,2)^{-1} = \left(\frac{1}{5}\right)^{-1} = \frac{5}{1} = 5$$

$$(0,75)^{-2} = \left(\frac{3}{4}\right)^{-2} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$$

Exercice $2.1 - \blacksquare$ la notation.

Écrire sous forme d'une puissance les expressions suivantes :

$$A = 3 \times 3 \times 3 \times 3$$

$$B = -6 \times (-6) \times (-6)$$

$$C = \frac{2\pi}{3} \times 3$$

$$D = \frac{1}{7 \times 7}$$

$$C = \frac{2\pi}{3} \times \frac{2\pi}{3} \times \frac{2\pi}{3} \times \frac{2\pi}{3}$$

$$D = \frac{1}{7 \times 7}$$

$$E = \frac{1}{5 \times 5 \times 5}$$

$$F = \frac{1}{10}$$

$$E = \frac{1}{5 \times 5 \times}$$
$$F = \frac{1}{10}$$

Écrire les valeurs numériques des expressions suivantes. Vous donnerez une fraction irréductible ou valeur décimale.

1.
$$A = 2^5$$

 $B = 10^{-4}$

$$C = (-7)^2$$

$$D = 3 - 4^1$$

$$E = 3 - 2^{0}$$

$$F = 5 - 3^{-1}$$

2.
$$A = 2 \times 10^{-2}$$

 $B = \left(\frac{5}{3}\right)^{-1}$

$$C = \left(-\frac{9}{7}\right)^{-1}$$

$$E = \left(\frac{2}{3}\right)^{-4}$$

$$F = (99)^{0}$$

$$E = 0.2^{-1}$$

$$F = 0.2^{-2}$$

$$B = \left(\frac{5}{3}\right)^{-1}$$

$$C = \left(-\frac{9}{7}\right)^{-1}$$

$$D = \left(\frac{5}{3}\right)^{-3}$$

$$F = (99)^0$$

3.
$$A = (0.7)^{-1} = \left(\frac{7}{10}\right)^{-1}$$

 $B = (0.8)^{-2} = \left(\frac{8}{10}\right)^{-2}$

$$D = 0.25^{-2}$$

$$E = 0.2^{-1}$$
 $F = 0.2^{-2}$

■ Exemple 2.10 — Priorités des exposants sur les autres opérations et les signes.

On peut rajouter des parenthèses pour clarifier l'ambiguïté sur les termes à multiplier.

 $(3a)^4$

 $-a^4$

 $(-a)^4$ signifie $3 \times aaaa$ signifie (3a)(3a)(3a)(3a) signifie $-1 \times aaaa$ signifie (-a)(-a)(-a)

 $3a^{-1}$

 $(3a)^{-1}$

 $-a^{-2} \qquad (-a)^{-2}$

signifie $3 \times \frac{1}{a} = \frac{3}{a}$

signifie $\frac{1}{3a}$

signifie $-1 \times \frac{1}{a^2} = \frac{-1}{a^2}$

signifie $\frac{1}{(-a)^2} = \frac{1}{a^2}$

Exercice 2.3 — \blacksquare .

1. Écrire les valeurs numériques de :

$$A = (-2)^{1} = \dots$$
 $D = (-2)^{-2} = \dots$ $G = -3^{-2} = \dots$ $E = (-2)^{-3} = \dots$ $H = 3^{-2} = \dots$ $G = (-2)^{-1} = \dots$ $G = (-2)^{-1} = \dots$ $G = (-3)^{2} = \dots$ $G = (-3)^{$

2. Sachant que $2^{15} = 32768$ et $4^5 = 1024$, on peut en déduire que :

a)
$$(-2)^{15} = \dots (-2)^{-15} = \dots (-$$

Exercice $2.4 - \mathbf{m}$.

Complétez par >, < ou =:

Exercice 2.5

Proposer pour chacune des régions A, B, C et D des diagrammes de Venn ci-dessous, une puissance de la forme b^n ($n \in \mathbb{Z}$, $b \in \mathbb{R}$) qui peut convenir. Plusieurs réponses sont possibles.

La base \boldsymbol{b} est négative

(a) Diagramme 1

(b) Diagramme 2

Exercice $2.6 - \blacksquare$.

Écrire les valeurs numériques des expressions suivantes.

$$A = \left(\frac{1}{5}\right)^{2} \times (-3)^{3}$$

$$B = (-5)^{2} \times \left(\frac{2}{5}\right)^{2}$$

$$C = \left(\frac{5}{3}\right)^{0} \times 2^{-1}$$

$$D = \frac{2^{-3}}{3^{0}}$$

$$E = -2^{-3} \times (-2)^{0}$$

$$F = \left(\frac{-3}{5}\right)^{-3}$$

2.5.2 Exercices : puissances et règles opératoires

■ Exemple 2.11 — produit de puissances de même base.

$$A = 7^4 \times 7^5 = 7^{4+5} = 7^9$$

$$B = x^6 x^2 = x^{6+2} = x^9$$

Exercice $2.7 - \mathbf{H}$.

Simplifier les produits suivants :

$$A = x^{4}x^{2}$$

$$B = 5^{2}(5^{6})$$

$$C = x^{3}x^{7}$$

$$D = 11^{4} \times 11^{x}$$

$$E = (x^{6})x$$

$$F = (x^{k})(x^{2})$$

$$G = x^{-5}x^{3}$$

$$H = x^{-2}x^{-4}x^{5}$$

$$J = x^{5}x^{-3}x^{-4}x^{-4}x^{-5}$$

■ Exemple 2.12 — quotient de puissances de même base.

$$A = \frac{5^6}{5^3} = 5^{6-3} = 5^3$$
 $B = \frac{2^2}{2^{-3}} = 2^{2-(-3)} = 2^{2+3} = 2^5$ $C = \frac{x^{11}}{x^6} = x^{11-6} = x^5$

Exercice 2.8 — **■** .

Simplifier les quotients suivants :

$$A = \frac{7^8}{7^3} \qquad \qquad C = \frac{4^2}{4^{-3}} \qquad \qquad E = \frac{3^8}{3^8} \qquad \qquad G = \frac{x^5}{x^2} \qquad \qquad I = \frac{x^{-2}}{x^7}$$

$$B = \frac{4^{10}}{4^3} \qquad D = \frac{3^8}{3^2} \qquad F = \frac{3^5}{3} \qquad H = \frac{x^3}{x^4} \qquad J = \frac{x^{16}}{x^{10}}$$

■ Exemple 2.13 — puissances de puissances.

$$A = (3^5)^2 = (3^5)(3^5) = 3^{5 \times 2} = 3^{10} \quad B = (x^4)^5 = x^4 x^4 x^4 x^4 x^4 x^4 = x^{4 \times 5} = x^{20} \quad C = (x^3)^k = x^{3 \times k} = x^{3k} = x$$

Exercice $2.9 - \blacksquare$.

Simplifier les puissances de puissances suivantes :

$$A = (5^{3})^{2} \qquad \qquad C = (x^{4})^{3} \qquad \qquad E = (x^{5})^{5} \qquad \qquad G = (x^{k})^{8} \qquad \qquad I = (11^{x})^{2y}$$

$$B = (a^{2})^{-1} \qquad D = (3^{8})^{4} \qquad F = (7^{6})^{x} \qquad H = (x^{3})^{t} \qquad J = (13^{a})^{-5b}$$

Exercice 2.10 — mélange.

Simplifier les expressions suivantes :

$$A = b^{5} \times b^{7}$$

$$B = \frac{t^{9}}{t^{2}}$$

$$C = (x^{6})^{3}$$

$$D = \frac{x^{6}}{x^{n}}$$

$$E = (x^{2s})^{3}$$

$$F = x^{k} \div x^{3}$$

$$G = 3^{2} \times 3^{x} \times 3^{4}$$

$$H = (a^{4})^{3x}$$

$$J = b^{7x} \div b$$

■ Exemple 2.14 — puissances de produits et quotients.

$$A = (3x)^3 = 3^3 x^3 = 27x^3$$

$$B = \left(\frac{x}{y}\right)^4 = \frac{x^4}{y^4}$$

Exercice $2.11 - \blacksquare$. Simplifier les parenthèses dans les expressions suivantes :

$$A = (2a)^2 \qquad \qquad B = (5x^2)^3 \qquad \qquad C = \left(\frac{x}{2}\right)^3 \qquad \qquad D = \left(\frac{3}{x}\right)^2 \qquad \qquad E = \left(\frac{a}{b^2}\right)^4$$

Exemple 2.15 — produit d'expressions de la forme ax^n avec n > 0.

$$(2x^{3})(4x^{7}) = 2 \times 4 \times x^{3}x^{7} = 8x^{3+7} = 8x^{10} \qquad (-x^{2})^{5} = (-1)^{5} \times x^{2}x^{2}x^{2}x^{2}x^{2} = -x^{10}$$
$$(-3x^{5})(6x) = -3 \times 6 \times x^{5}x = -18x^{5+1} = -18x^{6} \qquad (3x^{5})^{2} = (3x^{5})(3x^{5}) = 9x^{5+5} = 9x^{10}$$

Exercice 2.12 — **■** .

Simplifie les expressions suivantes.

$$A = (7x^{3})(2x^{8}) \qquad D = (-5x^{6})^{3} \qquad G = (-xy)^{2} \qquad J = (3x^{2})^{3} \qquad M = -(-2x)^{3}$$

$$B = (-2x^{5})(9x) \qquad E = (2x^{2})^{6} \qquad H = (-x^{2})^{3} \qquad K = (-4xy^{2})^{3} \qquad N = (-x)^{3}(-x)^{4}$$

$$C = (8x^{3})(-2x^{5}) \qquad F = -(-3x)^{2} \qquad I = (3x)^{3} \qquad L = -(4x)^{2} \qquad O = -(-x)^{2}(x)^{3}$$

■ Exemple 2.16 — simplifier et éliminer les exposants négatifs.

$$A = 3x^{-1} = \frac{3}{x}$$

$$B = (3x)^{-1} = \frac{1}{3x}$$

$$C = \left(\frac{3}{x^3}\right)^{-2} = \left(\frac{x^3}{3}\right)^2 = \frac{x^6}{3^2} = \frac{x^6}{9}$$

Exercice 2.13 — **★**.

Simplifier les expressions suivantes et éliminer les exposants négatifs.

$$A = 5x^{-1} B = (5x)^{-1}$$

$$C = \left(\frac{5}{x}\right)^{-1} D = \left(\frac{n}{5}\right)^{-2}$$

$$E = \frac{12}{x^{-2}} F = (5x^2)^{-2}$$

$$G = xy^{-1} H = \left(\frac{x}{y}\right)^{-2}$$

$$J = x^3x^{-7}$$

■ Exemple 2.17 — quotients de puissances. Simplifier et éliminer les exposants négatifs

$$\frac{2x^5}{3x^8} = \frac{2}{3}\frac{x^5}{x^8} = \frac{2}{3}x^{5-8} = \frac{2}{3}x^{-3} = \frac{2}{3}\frac{1}{x^3}$$

$$\frac{5x^3}{2x^{-2}} = \frac{5}{2} \frac{x^3}{x^{-2}} = \frac{5}{2} x^{3-(-2)} = \frac{5}{2} x^5$$

Exercice $2.14 - \blacksquare$.

Simplifier les expressions suivantes et éliminer les exposants négatifs.

$$A = \frac{x^{7}x}{x^{10}}$$

$$B = \frac{x^{2}x^{-1}}{x^{4}x^{3}}$$

$$C = (x^{3}x^{2})^{4}$$

$$D = \left(\frac{3x}{x^{2}}\right)^{2}$$

$$E = x^{4}(x^{-2})^{3}x^{5}$$

$$F = ((x^{2})^{6})^{3}$$

$$G = \left(\frac{2x^{2}}{5}\right)^{-1}$$

$$H = \frac{x^{2}x^{3}}{x^{-5}}$$

$$H = \frac{x^{2}x^{3}}{x^{-5}}$$

$$I = (x^{-4}x^{3})^{3}$$

$$L = \frac{x^{7}}{x^{8}x^{-5}}$$

$$K = \frac{x^{4}x^{-1}}{x^{8}}$$

$$L = \frac{x^{9}x^{-2}}{x}$$

$$O = \left(\frac{x^{5}x^{-2}}{x^{7}}\right)^{2}$$

■ Exemple 2.18 Simplifiez les fractions suivantes :

$$\frac{2x^3 - 5x + 5}{x} = 2\frac{x^3}{x} - 5\frac{x}{x} + \frac{5}{x} = 2x^2 - 6 + 5x^{-1} \qquad \left| \quad \frac{5x^2 - 2x + 1}{x^5} = \frac{5x^2}{x^5} - \frac{2x}{x^5} + \frac{1}{x^5} = 5x^{-3} - 2x^{-4} + x^{-5} + \frac{1}{x^5} = 5x^{-3} - 2x^{-4} + x^{-5} + \frac{1}{x^5} = \frac{5x^2}{x^5} - \frac{2x}{x^5} + \frac{1}{x^5} = \frac{5x^2}{x^5} - \frac{1}{x^5} + \frac{1}{x^5} = \frac{1}{x^5} + \frac{1}{x^5} + \frac{1}{x^5} + \frac{1}{x^5} = \frac{1}{x^5} + \frac{1}{x^5}$$

Exercice 2.15

Mêmes consignes et éliminer les exposants négatifs :

$$A = \frac{x+3}{x} \\ B = \frac{-x^2 + 3x + 1}{x} \qquad C = \frac{3x^2 - x + 2}{x^2} \\ D = \frac{x^2 - 1}{x^4} \qquad E = \frac{x^3 - x + 2}{5x^3} \\ F = \frac{6 + 3x}{x^{-3}} \qquad H = \frac{2x^5 + x^2 + 3x}{x^{-2}}$$

2.5.3 Exercices : développer simplifier réduire et ordonner

■ Exemple 2.19 — Simple distributivité.

$$A = 3(x + 5)$$
 $B = 4x(x - 2)$ $C = -2x(x - 5)$
= $3x + 15$ $= 4x^2 - 8x$ $= (-2x^2) + 10x$

Exercice 2.16 Développer, simplifier, réduire et ordonner les expressions suivantes :

$$A = 4(x+3) B = 5(6x+1)$$

$$C = 2x^{2}(3x-5) D = (4-3x) \times 2$$

$$E = -(4-3x) F = 5(2x+4x^{2}-2)$$

$$H = \frac{2}{5}x(\frac{3}{4}x-\frac{1}{2})$$

■ Exemple 2.20 — Simple distributivité et réduction.

$$A(x) = 2(x+6) \vdots + 2(x-3)$$
 $B(x) = -5(2x+6) \vdots - 2(3x-4)$ $C(x) = 4(5x+6) - 5x(2x-3)$
 $= 2x + 12 \vdots + 2x - 6$ $= -10x - 30 \vdots - 6x + 8$ $= \vdots$
 $= 4x + 6$ $= -16x - 22$ $=$

Exercice 2.17 Développer, simplifier, réduire et ordonner les expressions suivantes :

$$A = 2(x+4) + 3(x+5)$$

$$B = 5(x+2) + 4(x-2)$$

$$C = 3(4x+2) - 2x(x+2)$$

$$D = 7x(x-2) - (3x+5)$$

$$E = 5(4x+2) - \frac{6}{x^2}(3x-1)$$

$$F = 3x(4x-5) - 4(x^2+2) + 2x$$

■ Exemple 2.21 — Double distributivité.

$$A(x) = (2x + 4)(x + 5)$$

$$= 2x^{2} + 10x + 4x + 20$$

$$= 2x^{2} + 14x + 20$$

$$= 2x^{2} - 7x - 15$$

$$= C(x) = (3x - 4)(4x - 3)$$

$$= 2x^{2} + 3x + (-10x) + (-15) = 0$$

Exercice 2.18

Développer, simplifier, réduire et ordonner les expressions suivantes :

$$A = (2x+3)(x+5) \qquad C = (x-5)(2x-4) \qquad E = (3x-4)(2x-3) \qquad G = (x-\frac{2}{x})(x+\frac{1}{x})$$

$$B = (2x+4)(x-3) \qquad D = (2x+3)+(2x-5) \qquad F = (\frac{3}{2}x-\frac{4}{10})(\frac{x}{4}+\frac{3}{5}) \qquad H = (2-\frac{1}{x})(5+\frac{2}{x})$$

Exercice 2.19

Complétez les développements et simplifications suivantes :

$$A(x) = (x + \dots)(x + \dots)$$

$$= x^{2} + \dots x + \dots x + 24$$

$$= x^{2} + 10x + 24$$

$$= x^{2} + \dots x + \dots x + 18$$

$$= x^{2} + 10x + 24$$

$$= x^{2} + \dots x + \dots x + 18$$

$$= x^{2} + 11x + 18$$

$$E(x) = (x + \dots)(x - \dots)$$

$$= x^{2} + \dots x + 10x + \dots$$

$$= x^{2} + 13x + \dots$$

$$= x^{2} + 5x - \dots$$

$$= x^{2} - 14x + 33$$

$$C(x) = (x + \dots)(x + \dots)$$

$$= x^{2} + \dots x + \dots x + 18$$

$$= x^{2} + 11x + 18$$

$$F(x) = (x + \dots)(x + \dots)$$

$$= x^{2} + \dots x + \dots x + \dots$$

$$= x^{2} - 14x + 33$$

LG Jeanne d'Arc, 2nd

Nizar Moussatat

$$G(x) = (x + ...)(x + ...)$$
 $H(x) = (x + ...)(x - ...)$ $I(x) = (...x + ...)(...x - ...)$
 $= x^2 + ...x + ...x + ...$ $= x^2 + ...x - ...x + ...$ $= ...x^2 + ...x - ...x + ...$
 $= x^2 + 5x + 6$ $= x^2 - 25$ $= 9x^2 - 25$

■ Exemple 2.22 — Triple distributivité.

$$A = (x - 3)(x + 1)(x + 4)$$

$$= (x - 3)((x + 1)(x + 4))$$

$$= (x - 3)(x^{2} + 4x + x + 4)$$

$$= (x - 3)(x^{2} + 5x + 4)$$

$$= x^{3} + 5x^{2} + 4x$$

$$- 3x^{2} - 15x - 12$$

$$= x^{3} + 2x^{2} - 11x - 12$$

$$Description B = (x + 2)(x - 4)(x + 2)$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ...$$

$$= ..$$

Exercice 2.20

Développer, simplifier, réduire et ordonner les expressions suivantes :

$$A = x(x+2)(x+3) \qquad C = (x+4)(x-2)(x+3) \qquad E = (x-5)(x-1)(x+3)$$

$$B = (x+1)(x+2)(x+2) \qquad D = (x-2)^3 \qquad F = (2x+2)(3x-2)(x+3)$$

Exercice 2.21

Dans cet exercice, toutes les expressions littérales seront développées, réduites et ordonnées.

1. Dans cette question x=5. Déterminer le périmètre et l'aire du rectangle ABCD.

- 2. Déterminer en fonction de x :
 - a) le périmètre du rectangle ABCD.
 - b) l'aire du rectangle ABCD.

Exercice 2.22

Dans cet exercice, toutes les expressions littérales seront développées, réduites et ordonnées.

1. Dans cette question x=5. Déterminer le volume et l'aire latérale (les 6 faces) du pavé ci-contre.

- a) le volume du pavé.
- b) l'aire latérale du pavé.

■ Exemple 2.23 — parenthèses de sécurité et signes.

$$A = (5x - 3)(2x + 1) - 5(x + 4)$$

$$= ((5x - 3)(2x + 1)) - (5(x + 4))$$

$$= (10x^{2} - x - 3) - (5x + 20)$$

$$= 10x^{2} - x - 3 - 5x - 20$$

$$= 10x^{2} - 6x - 23$$

$$A = (5x - 3)(2x + 1) - 5(x + 4)$$

$$= ((5x - 3)(2x + 1)) + (-5(x + 4))$$

$$= (10x^{2} - x - 3) + (-5x - 20)$$

$$= 10x^{2} - x - 3 - 5x - 20$$

$$= 10x^{2} - 6x - 23$$

Exercice 2.23 — entrainement intelligent : variations.

Développer, simplifier, réduire et ordonner les expressions suivantes :

1.
$$A = (2x+3)(x^2-3) + 5(3x+1)$$
 $B = 2(x-2)(x-4) + (2x+3)$
2. $A = (x+3)(5x-3) - 4(2x-3)$ $C = 2x(x-2) + (x-4) - 2x(2x-3)$ $D = -\frac{1}{2}(3x-4)(4x+2) - 8(3-2x)$
3. $A = (2x+3)(3x-1) + (2x-3)(4x+1)$ $D = (5x+2)(3x-1) - (4x+1)(5x+2)$ $D = 5(x^2+4)(2x-3) - \frac{1}{3}(x-5)(2x-3)$

Exercice 2.24

Dans cet exercice, toutes les expressions littérales seront développées, réduites et ordonnées.

Le rectangle LIME a pour dimensions 6x - 3 et 3x + 2.

Le rectangle PATE a pour dimensions 2x - 1 et x + 2.

- 1. Exprimer en fonction de x l'aire du rectangle LIME.
- 2. Exprimer en fonction de x l'aire du rectangle PATE.
- 3. Exprimer en fonction de x l'aire de la partie grisée LIMTAP.

Exercice 2.25

Dans cet exercice, toutes les expressions littérales seront développées, réduites et ordonnées.

Dans la figure ci-contre, le réel x est supposé assez grand pour que les dimensions exprimées soient positives.

- 1. Exprimer en fonction de x l'aire du triangle ABC.
- 2. Exprimer en fonction de x l'aire du rectangle ACD.
- 3. En déduire en fonction de x l'aire du trapèze ABCD.

2.5.4 Exercices : identités et identités remarquables

■ Exemple 2.24 — produit de conjugués.

$$A(x) = (4 - y)(4 + y) \quad B(x) = (3x + 2)(3x - 2) \quad C(x) = (4x - 3y)(4x + 3y) \quad D(x) = \left(2x - \frac{3}{x}\right)\left(2x + \frac{3}{x}\right)$$

$$= 4^{2} - y^{2} \qquad = (3x)^{2} - 2^{2} \qquad = (4x)^{2} - (3y)^{2} \qquad = (2x)^{2} - \left(\frac{3}{x}\right)^{2}$$

$$= 16 - y^{2} \qquad = 9x^{2} - 4 \qquad = 16x^{2} - 9y^{2} \qquad = 4x^{2} - \frac{9}{x^{2}}$$

Exercice 2.26 — **■**.

Corriger les signes et complétez les développements suivants à l'aide d'identités remarquables :

Exercice 2.27 — **■**.

1. Entourez les multiplications qui correspondent à une multiplication de conjuguées :

$$(-x+2)(-x-2)$$
 $(x+2)(-x-2)$ $(x-2)(x+2)$ $(-x-2)(-x-2)$ $(3-4x)(3+4x^2)$ $(3x-4)(-3x+4)$ $(3x+4)(-3x-4)$ $(3+4x^2)(3-4x^2)$

2. Entourez les expressions qui sont égales à $a^2 - b^2$:

$$(a+b)(a-b)$$
 $(-a-b)(-a+b)$ $(-a+b)(-a+b)$

3. Entourez les expressions qui sont égales à $9a^2 - 4b^2$:

$$(3a+2b)(2b-3a)$$
 $(3a+2b)(3a-2b)$ $(3a-2b)(3a-2b)$ $(-3a+2b)(-3a-2b)$

Exercice 2.28

Développer les expressions suivantes à l'aide d'une identité remarquable :

1.
$$A = (10 - x)(10 + x)$$
 $| B = (x + 3)(x - 3)$ $| C = (x + y)(x - y)$
2. $A = (2x - 1)(2x + 1)$ $| B = (3x + 5)(3x - 5)$ $| C = (5 - 9x)(5 + 9x)$
3. $A = (\frac{3}{4}x - \frac{4}{5})(\frac{3}{4}x + \frac{4}{5})$ $| B = (\frac{2}{3}x + \frac{1}{5})(\frac{2}{3}x - \frac{1}{5})$ $| C = (x - \frac{2}{x})(x + \frac{2}{x})$

■ Exemple 2.25 — carrés de sommes.

$$A(x) = (x - 5)^{2} B(x) = (3x + 2)^{2} C(x) = (1 - 5y)^{2}$$

$$= (x)^{2} - 2(x)(5) + (5)^{2} = (3x)^{2} + 2(3x)(2) + (2)^{2} = (\frac{1}{3})^{2} - 2(\frac{1}{3})(5y) + (5y)^{2}$$

$$= x^{2} - 10x + 25 = 9x^{2} + 12x + 4 = \frac{1}{9} - \frac{10}{3}y + 25y^{2}$$

Exercice 2.29

Corriger les signes et complétez les développements suivants à l'aide d'identités remarquables :

Exercice 2.30

Développer les expressions suivantes à l'aide d'une identité remarquable :

1.
$$A = (x-3)^2$$
 $B = (x+6)^2$ $C = (7-x)^2$
2. $A = (3x+5)^2$ $B = (3-2x)^2$ $C = (1+5x)^2$
3. $A = \left(x - \frac{1}{x}\right)^2$ $B = \left(1 + \frac{5}{x^2}\right)^2$ $C = \left(\frac{2}{x} - 5x\right)^2$

■ Exemple 2.26

$$A(x) = (3x^2 - 1)^2$$

$$= (3x^2)^2 - 2(3x^2)(1) + (1)^2$$

$$= 9x^4 - 6x^2 + 1$$

$$B(x) = 4 - (x+3)^2$$

$$= 4 - (x^2 + 6x + 9)$$

$$= 4 - x^2 - 6x - 9$$

$$= -x^2 - 6x - 5$$

Exercice 2.31

1. $A = (x^2 + 3)^2$

Développer les expressions suivantes à l'aide d'identités remarquables :

2.
$$A = 2x + 5 - (x + 2)^2$$
 $B = 4 - 3x + (x - 1)^2$ $C = (x - 1)(x + 1) - (2x + 1)^2$
3. $A = (x - 2)^2 + (3x - 4)^2$ $B = (6x + 9)^2 - (x - 5)(x + 5)$ $C = (x + 7)(x - 7) - (x + 4)^2$
4. $A = (3x - y)^2 - (3x + y)^2$ $B = (2x - 5)(x + 3) - (1 - x)^2$ $C = (5x + \frac{2}{x})^2 - (2x + 3)(2x - 3)$

 $B = (x^2 - y^2)^2$ $C = (3 - 5x^2)^2$

■ Exemple 2.27 — parenthèses de sécurité et carrés de sommes.

$$A = 5(x+3)^{2}$$

$$\neq (5x+15)^{2}$$

$$= 5((x+3)^{2})$$

$$= 5(x^{2}+6x+9)$$

$$= 5x^{2}+30x+45$$

$$A = 5(x+3)^{2}$$

$$= (5(x+3))(x+3)$$

$$= (5x+15)^{2}$$

$$= (5x+15)(x+3)$$

$$= (5x)^{2}+2(5x)(15)+(15)^{2}$$

$$= 5x^{2}+30x+45$$

$$= 5x^{2}+30x+45$$

Exercice 2.32

Développer simplifier réduire et ordonner à l'aide d'identités remarquables adaptées :

1.
$$A = 2(4x - 3)^2$$
 $\Big| B = -(6x - 5)^2$ $\Big| C = -5\left(x - \frac{1}{x}\right)^2$
2. $A = 4 - 5(2x - 3)^2$ $\Big| B = \frac{1}{3}(6x - 2)(6x + 2) - 2$ $\Big| C = (3x + 2)(3x - 2) - 2(x - 5)^2$

Exemple 2.28 — développements astucieux. $A = (2x - 1)(x + 2)(2x + 1)$ $= ((2x - 1)(2x + 1))(x + 2)$ $= (4x^2 - 1)(x + 2)$

 $=4x^3+8x^2-x-2$

Exercice 2.33

Développer simplifier réduire et ordonner à l'aide d'identités remarquables adaptées :

$$A = (1+x)(1-x)(1+x^{2})$$

$$B = (4+x^{2})(2-x)(2+x)$$

$$C = [(x-1)(x+1)]^{2}$$

$$D = (x-2y)^{2}(x+2y)^{2}$$

2.5.5 Exercices : justifier des identités

Une identité sur \mathbb{R} est une égalité vraie pour toutes les valeurs $x \in \mathbb{R}$.

On vérifie une identité en comparant les formes développées, simplifiées, réduites et ordonnées des membres de gauche et de droite.

■ Exemple 2.29 Montrer que pour tout $x \in \mathbb{R}$ on a 7(x-8) - 3(x-20) = 4(x+1)

solution.
$$MG = 7(x - 8) - 3(x - 20)$$
 et $MD = 4(x + 1)$
= $7x - 56 - 3x + 60 = 4x + 4$ = $4x + 4$

On a pour tout
$$x \in \mathbb{R}$$
: $7(x-8) - 3(x-20) = 4(x+1)$.

Exercice 2.34

Montrer que pour tout $x \in \mathbb{R}$ on a (2x-3)(5x-1)+3(x+5)(x-5)=x(13x-17)-72. Vous développerez séparément les membres de gauche et de droite.

Exercice 2.35

Montrer que pour tout
$$x \in \mathbb{R}$$
 on a : $(3x - 5)^2 - 49 = 9(x - 4)\left(x + \frac{2}{3}\right)$.

Exercice 2.36

Montrer que pour tout $x \in \mathbb{R}$ on a : $-2(x-1)^2 + 8 = -2(x-3)(x+1)$.

Exercice 2.37

Montrer que pour tout
$$x \in \mathbb{R}$$
 on a : $3(2x+1)^2 - 48 = 12\left(x + \frac{5}{2}\right)\left(x - \frac{3}{2}\right)$.

Exercice 2.38

Trouver deux nombres a et b tel que pour tout $x \in \mathbb{R}$, $(x+a)^2 - b = x^2 + 22x + 71$.

Exercice 2.39

Le quadrilatère ABCD représenté ci-contre est un parallélogramme. On se place dans les cas ou les expressions des longueurs sont positives.

Montrer que pour tout x, ABCD est un losange.

Exercice 2.40

- 1. Dans cette question x=5. Montrer que le triangle ABC est un triangle rectangle en C.
- 2. On admet que pour x assez grand, les longueurs sont postives. Montrer alors que le triangle ABC est rectangle.

2.5.6 Exercices : applications aux puissances

■ Exemple 2.30 Simplifier les ecritures suivantes.

$$A = \frac{3^{2x}3^{3y}}{3^5}$$

$$= \frac{3^{2x+3y}}{3^5}$$

$$= 3^{2x+3y}$$

$$= 3^{2x+3y-5}$$

Exercice 2.41 Simplifier les expressions suivantes :

1.
$$A = x^{-2n} \times x^2$$
 | $B = x^{2n+1}x^{5-n}$ | $C = x \times x^{3n}$
2. $A = (x^{2n+1})^2$ | $B = (3x^{n+2})^2$ | $C = (x^{3n+1})^{-1}$
3. $A = \frac{x^{-n}}{x^{2+n}}$ | $B = \frac{x^{2n+1}}{x^{5-n}}$ | $C = \frac{1}{x^{2-n}}$
4. $A = \frac{(x^2)^{n+1}}{x^{3n}}$ | $B = \frac{x^5}{(x^3)^n}$ | $C = \frac{(x \times x^n)^2}{x^{3n}}$

Exercice 2.42 — **■** .

1. Écrire les valeurs suivantes comme puissances de 2 ou de 3

2. Écrire les valeurs suivantes comme puissances de 2 :

$$A = 2 \times 2^{a}$$
 $\begin{vmatrix} B = 4 \times 2^{b} \end{vmatrix}$ $\begin{vmatrix} C = 8 \times 2^{b} \end{vmatrix}$ $\begin{vmatrix} D = (2^{x+1})^{2} \end{vmatrix}$ $\begin{vmatrix} E = (2^{1-n})^{-1} \end{vmatrix}$
 $F = \frac{2^{m}}{2^{-m}}$ $\begin{vmatrix} G = \frac{4}{2^{1-n}} \end{vmatrix}$ $\begin{vmatrix} H = \frac{2^{x+1}}{2^{x}} \end{vmatrix}$ $\begin{vmatrix} I = \frac{4^{x}}{2^{1-x}} \end{vmatrix}$

3. Écrire les valeurs suivantes comme puissances de 3 :

$$A = 9 \times 3^{p}$$
 $B = 27^{a}$ $C = 3 \times 9^{n}$ $D = 27 \times 3^{d}$ $E = 9 \times 27^{t}$ $F = \frac{3^{y}}{3}$ $G = \frac{3}{3^{y}}$ $H = \frac{9}{27^{t}}$ $I = \frac{9^{a}}{3^{1-a}}$ $J = \frac{9^{n+1}}{3^{2n-1}}$

■ Exemple 2.31 Développer simplifier et réduire les expressions suivantes :

$$A = (2^{x} + 3)(2^{x} + 1)$$

$$= 2^{x}2^{x} + 2^{x} + 3(2^{x}) + 3$$

$$= 2^{x+x} + 4(2^{x}) + 3$$

$$= 2^{2x} + 4(2^{x}) + 3$$

$$= 3^{2x} + 2 + 3^{-2x}$$

$$= 3^{2x} + 2 + \frac{1}{3^{2x}}$$

Exercice 2.43 Développer, simplifier, réduire et ordonner les expressions suivantes :

$$A = (2^{x} + 1)(2^{x} + 3)$$

$$B = (3^{x} + 2)(3^{x} + 5)$$

$$C = (3^{x} - 1)^{2}$$

$$D = (2^{x} + 3)(2^{x} - 3)$$

$$E = (5^{x} - 2)(5^{x} - 4)$$

$$F = (4^{x} + 7)^{2}$$