WUOLAH

Final-2016-soluciones.pdf

Exámenes resueltos

- 2° Geometría III
- Facultad de Ciencias
 Universidad de Granada

WUOLAH + #QuédateEnCasa

#KeepCalm #EstudiaUnPoquito

Enhorabuena, por ponerte a estudiar te **regalamos un cartel** incluído entre estos apuntes para estos días.

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

Examen final

Geometría III – Grado en Matemáticas 5 de febrero de 2016 Universidad de Granada

- **1.** Sean A un espacio afín y dos subespacios afines $S, T \subset A$ tales que $\overrightarrow{S} \oplus \overrightarrow{T} = \overrightarrow{A}$.
 - (i) Definir la proyección π sobre S paralela a T y demostrar $\pi \circ \pi = \pi$. Dado $p \in A$, demostrar que $\pi(p)$ es el único punto de S tal que el vector que une p con $\pi(p)$ pertenece a \overrightarrow{T} .
 - (ii) Enunciar y demostrar el Teorema de Tales.
- **2.** Estudiar para qué valores reales a y b la aplicación afín $f: \mathbb{R}^3 \to \mathbb{R}^3$ dada por:

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} b \\ 0 \\ 1-a \end{pmatrix} + \begin{pmatrix} a & 0 & b \\ 0 & 1 & 0 \\ b & 0 & -a \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

es una isometría. Cuando lo sea, clasificarla y describirla geométricamente.

Solución: En primer lugar, la aplicación afín f será un movimiento rígido si, y sólo si, la matriz de la aplicación lineal asociada es ortogonal. Es decir, si, y sólo si,

$$\begin{pmatrix} a & 0 & b \\ 0 & 1 & 0 \\ b & 0 & -a \end{pmatrix} \begin{pmatrix} a & 0 & b \\ 0 & 1 & 0 \\ b & 0 & -a \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Leftrightarrow a^2 + b^2 = 1.$$

Asumamos, pues,

(1)
$$a^2 + b^2 = 1.$$

En segundo lugar,

$$\det \begin{pmatrix} a & 0 & b \\ 0 & 1 & 0 \\ b & 0 & -a \end{pmatrix} = -a^2 - b^2 = -1.$$

Por ser f una isometría inversa con matriz diagonalizable (ya que su matriz es simétrica), ha de ser una simetría respecto de un plano o una simetría deslizante. Para distinguir, estudiemos el conjunto de puntos fijos de f, que denotamos $P_f = \{w \in \mathbb{R}^3 : f(w) = w\}$. Una cuenta fácil da que este conjunto es el mismo que el de las soluciones del siguiente sistema de ecuaciones

$$(a-1)x + bz = -b$$
, $bx - (a+1)y = a-1$.

Escrito en forma matricial, queda

$$M = \begin{pmatrix} a - 1 & 0 & b \\ 0 & 0 & 0 \\ b & 0 & -a - 1 \end{pmatrix}, \ B = \begin{pmatrix} -b \\ 0 \\ a - 1 \end{pmatrix}, \ \tilde{M} = (M|B).$$

Por el Teorema de Rouché-Frobenius, el sistema es compatible si, y sólo si, $rango(\tilde{M}) = rango(M)$. Ahora bien, como

$$\det \begin{pmatrix} a-1 & b \\ b & -a-1 \end{pmatrix} = -a^2 + 1 - b^2 = 0,$$

Gana dinerito extra.

Recomienda a tus negocios favoritos que se anuncien en Wuolah y llévate 50€.

Te daremos un código promocional para que puedan anunciarse desde 99€.

1 Ve a tu negocio favorito

2 Dales tu código de promo

3 Diles que nos llamen o nos escriban.

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

2

entonces rango(M) = 1. Los otros dos menores de la matriz ampliada quedan

$$\det \begin{pmatrix} a-1 & -b \\ b & a-1 \end{pmatrix} = a^2 - 2a + 1 + b^2 = 2 - 2a, \quad \det \begin{pmatrix} b & -b \\ -a-1 & a-1 \end{pmatrix} = -2b.$$

Se tiene que el rango de la matriz ampliada es uno si, y sólo si, ambos determinantes valen cero, es decir, a = 1 y b = 0 simultáneamente. Resumiendo, f es una simetría respecto de un plano cuando a = 1 y b = 0, y en cualquier otro caso de a, b, es una simetría deslizante. Para describir *f* geométricamente, hemos de distinguir dos casos:

a = 1, b = 0: Sustituyendo en la expresión de f obtenemos

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

que trivialmente es la simetría respecto del plano $\pi = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}.$ $a \neq 0$: Sabemos que f es una simetría con deslizamiento. Para calcular el vector de deslizamiento, sabemos que 2v = pf(f(p)). Para ello, escogemos un punto fácil, por ejemplo p = (0, 0, -1) y entonces f(f(p)) = f(0, 0, 1) = (2b, 0, 1 - 2a). Por tanto, $v = \frac{1}{2}(0,0,-1)(2b,0,1-2a) = (b,0,1-a)$. Por otro lado, sea π el plano invariante. Por ejemplo, se sabe $\overrightarrow{\pi} = V_{+1}(\overrightarrow{f})$, es decir, el plano de direcciones de π es el subespacio propio asociado al +1 de \overrightarrow{f} . Así, un cálculo sencillo da

$$\vec{\pi} = \{(x, y, z) \in \mathbb{R}^3 : (a-1)x + bz = 0\}.$$

Si tomamos un punto p, calculamos f(p) porque el punto medio de p y f(p)pertenece a π . Por ejemplo, si p = (0, 0, -1), entonces f(p) = (0, 0, 1). El punto medio m = (0, 0, 0). Por tanto, el plano invariante es

$$\pi = \{(x, y, z) \in \mathbb{R}^3 : (a - 1)x + bz = 0\}.$$

3.-

(i) Clasificar la cuádrica de \mathbb{R}^3 de ecuación:

$$x^2 + y^2 - 2xz + 2x - 2y + 1 = 0.$$

(ii) Calcular y clasificar una cónica que pase por los puntos distintos (0, 0), (1, 0), (0, 1), (1,1) y (a,b) de \mathbb{R}^2 en función de los distintos valores de $(a,b) \in \mathbb{R}^2$.

Solución: Apartado (i) La matriz asociada a la cuádrica es de la forma

$$M = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \quad \tilde{M} = \begin{pmatrix} \frac{1}{1} & \frac{1}{1} & -1 & 0 \\ \frac{1}{1} & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}.$$

Por un lado,

$$\det(\tilde{M}) = \begin{vmatrix} 1 & 1 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{vmatrix} = - \begin{vmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{vmatrix} = -(-1)(-1) \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix} = 0.$$

Esto implica R=3. Cálculos sencillos también dan $\det(M)=-1$, luego y r=3. Además, el polinomio característico de M es $p(\lambda) = -\lambda^3 + 2\lambda^2 - 1$. Usando la Regla de Descartes, *M* admite un valor propio negativo y dos positivos. Por teoría, sabemos entonces que la cuádrica admite un cambio de coordenadas tal que la matriz asociada es

$$\tilde{M} \sim \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

Esto implica que la ecuación reducida es $x^2 + y^2 - z^2 = 0$. Por tanto, la cuádrica es un cono

Apartado (ii) En general, una cónica de \mathbb{R}^2 tiene de ecuación general

$$0 = Ax^2 + By^2 + 2Cxy + 2Dx + 2Ey + F = 0,$$

donde $A, B, C, D, E, F \in \mathbb{R}$ no todos nulos. Imponemos ahora que los puntos (0,0), (1,0), (0,1) y (1,1) pertenecen a la cónica. Esto implica que han de cumplir la ecuación, por lo que sustituyendo se obtiene un sistema de ecuaciones. Así, de (0,0) se obtiene F=0. Con los otros tres puntos sale el sistema

$$0 = A + 2C$$
, $0 = B + 2E$, $0 = A + B + 2C + 2D + 2E$.

Resolviendo el sistema obtenemos A = -2C, B = -2E, D = 0, luego la ecuación de la cónica se reduce a

$$0 = C(x^2 - x) + E(y^2 - y).$$

La hipótesis de que el quinto punto (a,b) sea un punto arbitrario de \mathbb{R}^2 distinto de los otros cuatro, significa que hemos de clasificar la cónica según los valores que puedan tomar C y E. Aparecen tres casos:

Caso E = 0: Como $C \neq 0$, entonces el punto (a, b) pertenece a la cónica formada por el par de rectas paralelas de ecuaciones x = 0, x = 1.

Caso C = 0: Como $E \neq 0$, el punto (a, b) pertenece a la cónica formada por el par de rectas paralelas de ecuaciones y = 0, y = 1.

Caso $EC \neq 0$: La matriz de la cónica queda

$$\tilde{M} = \begin{pmatrix} 0 & -C/2 & -E/2 \\ -C/2 & C & 0 \\ -E/2 & 0 & E \end{pmatrix}.$$

Como $EC \neq 0$, es claro que r=2. Es más, los valores propios de la matriz M son C y E, que podemos suponer que son o bien los dos positivos o bien uno positivo y otro negativo. Si ambos son positivos, será una elipse o el vacío. Si tienen distinto signo, una hipérbola o un par de rectas secantes. Calculamos det $\tilde{M}=-EC(E+C)/2$.

Si E + C = 0: Entonces E = -C, R = 2, y la cónica es un par de rectas secantes. De hecho, $0 = x^2 - y^2 - x + y = (x - y)(x + y - 1)$, que son las diagonales del cuadrado que forman los cuatro puntos.

Si $E+C\neq 0$: Entonces R=3. Si EC>0, como podemos suponer que E y C son positivos, entonces det $\tilde{M}<0$, luego la cónica será una elipse. Si EC<0, será una hipérbola.

4.– Calcular una proyectividad $f: \mathbb{P}^3 \to \mathbb{P}^3$ distinta de la identidad que deje invariante al plano H de ecuación $x_0 - x_1 + x_2 - x_3 = 0$.

Solución: (Elegante) Mirando la ecuación del plano, se ve que se pueden intercambiar x_0 y x_2 por un lado, y x_1 y x_3 por otro. Por tanto, una proyectividad que soluciona el problema es $f: \mathbb{P}^3 \to \mathbb{P}^3$, $f(x_0: x_1: x_2: x_3) = (x_2: x_3: x_0: x_1)$.

(Mecánica) El objetivo es construir una aplicación lineal inyectiva $\hat{f}: \mathbb{R}^4 \to \mathbb{R}^4$ tal que $\hat{f}(\hat{H}) = \hat{H}$. En tal caso, la proyectividad buscada será la única aplicación $f: \mathbb{P}^3 \to \mathbb{P}^3$ tal que $f \circ \pi = \pi \circ \hat{f}$, donde $\pi: \mathbb{R}^4 \setminus \{0\} \to \mathbb{P}^3$ es la proyección natural. Como sabemos, $\hat{H} = \pi^{-1}(H) \cup \{0\}$ ha de ser el subespacio vectorial de \mathbb{R}^4 de ecuación $x_0 - x_1 + x_2 - x_3 = 0$. Sea $B_u = (e_1, e_2, e_3, e_4)$ la base usual de \mathbb{R}^4 . Como queremos que $\hat{f}(\hat{H}) = \hat{H}$, la imagen por \hat{f} de una base de \hat{H} ha de ser otra base de \hat{H} . Calculamos una base de \hat{H} y la ampliamos a una base de \mathbb{R}^4 , por ejemplo $B = (v_1 = (1, 1, 0, 0), v_2 = (1, 0, 0, 1), v_3 = (0, 1, 1, 0), v_4 = e_1)$. Ahora, imponemos condiciones sobre estos vectores para que $\hat{f}(\hat{H}) = \hat{H}$ y $f \neq Id$. Por ejemplo,

$$\hat{f}(v_i) = v_i, \ i = 1, 2, 3, \quad \hat{f}(v_4) = 2v_4.$$

Las tres primera condiciones nos van a asegurar que

$$\hat{f}(\hat{H}) = \hat{f}(L\{v_1, v_2, v_3\}) = L\{\hat{f}(v_1), \hat{f}(v_2), \hat{f}(v_3)\} = L\{v_1, v_2, v_3\} = \hat{H}.$$

La última condición nos va a asegurar que \hat{f} no sea proporcional a la identidad, luego la proyectividad f será distinta de la identidad. Las condiciones anteriores se transforman en

$$\hat{f}(e_1) + \hat{f}(e_2) = e_1 + e_2$$
, $\hat{f}(e_1) + \hat{f}(e_4) = e_1 + e_4$, $\hat{f}(e_2) + \hat{f}(e_3) = e_2 + e_3$, $\hat{f}(e_1) = 2e_1$. Despejando, queda

$$\hat{f}(e_1) = 2e_1, \ \hat{f}(e_2) = -e_1 + e_2, \ \hat{f}(e_3) = e_1 + e_3, \ \hat{f}(e_4) = -e_1 + e_4.$$

La matriz de la aplicación lineal queda

$$M(\hat{f}, B_u) = \begin{pmatrix} 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Como el rango de esta matriz es máximo, entonces \hat{f} es inyectiva. \square

- **5.–** Definir el embebimiento canónico $f: \mathbb{R}^n \to \mathbb{P}^n$ del espacio afín en el espacio proyectivo y demostrar las siguientes propiedades:
 - (i) *f* es invectiva.
 - (ii) El complemento de la imagen de f en \mathbb{P}^n es el hiperplano proyectivo H_∞ de ecuación $x_{n+1} = 0$ (las coordenadas homogéneas son $(x_1 : \ldots : x_{n+1})$).
 - (iii) La imagen de un subespacio afín $S \subset \mathbb{R}^n$ por f es una variedad proyectiva X menos $X \cap H_{\infty}$. Además $\dim(S) = \dim(X)$.

