AMS 572 Data Analysis I Nonparametric Statistical Methods

Pei-Fen Kuan

Applied Math and Stats, Stony Brook University

Nonparametric inference for two independent samples

Wilcoxon (Mann-Whitney) Rank Sum Test

1. Assume:

$$Y_{11}, \dots, Y_{1n_1} \text{ iid } \sim F_1(y)$$

 $Y_{21}, \dots, Y_{2n_2} \text{ iid } \sim F_2(y)$
 $H_0: F_1(y) = F_2(y)$

$$H_a: F_1(y) = F_2(y + \Delta)$$

where Δ is a constant

- 2. Pool the two samples
- 3. Rank them from smallest to largest
- 4. Compute the sum of the ranks, W_1 , in group 1

Wilcoxon Rank Sum Test

- ▶ There are $N = n_1 + n_2$ subjects in our study
- ▶ Thus there are $\binom{N}{n_1}$ possible outcomes
- ▶ Under H_0 , each is equally likely
- \triangleright We compute the distribution of W_1 by enumeration

- ► A new drug is being test in humans for the first time to assess effect on CD4+ T cells in patients with HIV
- ▶ 7 individuals are randomized to 2 groups: control $(n_1 = 3)$ or drug $(n_2 = 4)$
- ▶ Endpoint is percent change in CD4+ count from baseline
- ▶ Null hypothesis is the drug has no effect

$$H_0: \Delta = 0; H_a: \Delta \neq 0$$

- ▶ Data: control (65, 73, 69); drug (89, 70, 92, 88)
- ▶ There are $\binom{7}{3} = 35$ possible outcomes

Wilcoxon Rank Sum Test: $n_1 = 3, n_2 = 4$

Ranks	W_1	Ranks	W_1	Ranks	W_1
1,2,3	6	1,5,6	12	2,6,7	15
1,2,4	7	1,5,7	13	3,4,5	12
1,2,5	8	1,6,7	14	3,4,6	13
1,2,6	9	2,3,4	9	3,4,7	14
1,2,7	10	2,3,5	10	3,5,6	14
1,3,4	8	2,3,6	11	3,5,7	15
1,3,5	9	2,3,7	12	3,6,7	16
1,3,6	10	2,4,5	11	$4,\!5,\!6$	15
1,3,7	11	2,4,6	12	$4,\!5,\!7$	16
1,4,5	10	2,4,7	13	$4,\!6,\!7$	17
1,4,6	11	2,5,6	13	5,6,7	18
1,4,7	12	2,5,7	14		

Wilcoxon Rank Sum Test: $n_1 = 3, n_2 = 4$

\mathbf{W}	Freq	F(w)	w	Freq	F(w)
6	1	0.0286	13	5	0.6857
7	1	0.0571	14	4	0.8000
8	2	0.1143	15	3	0.8857
9	3	0.2000	16	2	0.9429
10	4	0.3142	17	1	0.9714
11	4	0.4286	18	1	1
12	4	0.5714			

Wilcoxon Rank Sum Test: $n_1 = 3, n_2 = 4$

- Note it is impossible to reject H_0 for a two-sided alternative when $\alpha = 0.05$.
- ▶ Observed $W_1 = 1 + 2 + 4 = 7$; do not reject H_0

$$p = 2(0.05714) = 0.1143$$

Wilcoxon Rank Sum Test

▶ It can be shown that

$$E(W_1) = \frac{n_1}{N} \frac{N(N+1)}{2} = \frac{n_1(N+1)}{2}$$

► Similarly

$$Var(W_1) = \frac{n_1 n_2 (N+1)}{12}$$

Wilcoxon Rank Sum Test: Large Sample Approx

▶ If n_1 and n_2 are large

$$Z = \frac{W_1 - E(W_1) - 0.5}{\sqrt{Var(W_1)}}$$

will be approx N(0,1).

- ▶ Approximation is good for $n_1, n_2 \ge 12$
- ▶ If there are ties

$$Var(W_1) = \frac{n_1 n_2 (N+1)}{12} - \frac{n_1 n_2}{12N(N-1)} \sum_{i=1}^{q} t_i (t_i - 1)(t_i + 1)$$

where q equals the number of sets of ties and t_i is the number of observations in the ith set

4□ > 4₫ > 4 Ē > 4 Ē > Ē 9 Q €

Mann-Whitney Test

ightharpoonup Consider all n_1n_2 possible pairs

$$(Y_{1i}, Y_{2j}); i = 1, 2, \dots, n_1; j = 1, 2, \dots, n_2$$

- Let U_1 equal the number of pairs with $Y_{1i} > Y_{2j}$ and U_2 equal the number of pairs with $Y_{1i} < Y_{2j}$
- ▶ It can be shown that

$$U_1 = W_1 - \frac{n_1(n_1+1)}{2}$$
 $U_2 = W_2 - \frac{n_2(n_2+1)}{2}$

► Mann Whitney test and Wilcoxon rank sum test are equivalent

Test whether drug group has higher median than placebo group

Drug Rank | Placebo Rank

Drug	1 COIII	1 lacebo	1 (01111)
6.9	18	6.4	11
7.6	25.5	6.7	13
7.3	23.5	5.4	3
7.6	25.5	8.2	28.5
6.8	15	5.3	2
7.2	22	6.6	12
8.0	27	5.8	8.5
5.5	4	5.7	6.5
5.8	8.5	6.2	10
7.3	23.5	7.1	21
8.2	28.5	7.0	20
6.9	18	6.9	18
6.8	15	5.6	5
5.7	6.5	4.2	1
8.6	30	6.8	-15 -∌→
		©PF.Kuar	ı

- $ightharpoonup H_0: \Delta = 0; H_a: \Delta > 0$
- $ightharpoonup C_{.05} = \{z : z > 1.645\}$
- $E(W_1) = \frac{15(31)}{2} = 232.5$

AMS 572 ©PF.Kuan 1

► Tie correction:

$$q = 7; t_1 = t_2 = 2; t_3 = t_4 = 3; t_5 = t_6 = t_7 = 2$$

$$\sum_{i=1}^{q} t_i(t_i - 1)(t_i + 1) = 78$$

$$78(15)^2$$

$$Var(W_1) = 581.25 - \frac{78(15)^2}{12(30)(29)} = 579.57$$

$$w_1 = 290.5$$

$$z = \frac{290.5 - 232.5 - 0.5}{\sqrt{579.57}} = 2.388;$$

- ightharpoonup Reject H_0
- $p = 1 \Phi(2.388) = 0.00846$

run;

```
data drug;
input trt $ bp @@;
datalines;
drug 6.9 drug 7.6 drug 7.3 drug 7.6 drug 6.8 drug 7.2 drug 8 dru
;
run;

proc npar1way wilcoxon correct=yes data=drug;
class trt;
var bp;
```

SAS Output

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable bp Classified by Variable trt

trt	N	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
drug	15	290.50	232.50	24.074239	19.366667
placebo	15	174.50	232.50	24.074239	11.633333

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	290.5000
Normal Approximation	
Z	2.3884
One-Sided Pr > Z	0.0085
Two-Sided Pr > Z	0.0169
t Approximation	
One-Sided Pr > 7	0.0118

 $\label{eq:Two-Sided Pr > |Z| 0.0237}$ Z includes a continuity correction of 0.5.

R Code and Output

```
> drug <- c(6.9,7.6,7.3,7.6,6.8,7.2,8.0,5.5,5.8,
7.3,8.2,6.9,6.8,5.7,8.6)
> placebo <- c(6.4,6.7,5.4,8.2,5.3,6.6,5.8,5.7,6.2,
7.1,7.0,6.9,5.6,4.2,6.8)
>
> wilcox.test(drug,placebo,exact=FALSE,correct=TRUE,
alternative='greater')
Wilcoxon rank sum test with continuity correction
data: drug and placebo
W = 170.5, p-value = 0.00846
alternative hypothesis: true location shift is greater than 0
```