R P SARATHY INSTITUTE OF TECHNOLOGY

BIG DATA ANALYTICS - CASE STUDY

ASSIGNMENT - 05

- REG NO: 611721104063
- NAME: R.Poovarasan
- DEPT: B.E CSE B
- YEAR / SEM : III / V
- DATE: 11.09.2023

Contents

- ❖ Hadoop I/O
- Data Integrity
- *Compression
- Serialization
- ❖ File-Based Data Structures

Hadoop I/O

- Hadoop Comes with a set of primitives for data I/O.
- Some of these are techniques that are more general than Hadoop, such as data integrity and compression, but deserve special consideration when dealing with multiterabyte datasets.
- Others are Hadoop tools or APIs that form the building blocks for developing distributed system, such as serialization frameworks and on-disk data structures.

Data Integrity

 When the volumes of data flowing through the system are as large as the ones Hadoop is capable of handling, the chance of data corruption occurring is high

Checksum

- Usual way of detecting corrupted data
- Technique for only error detection (cannot fix the corrupted data)
- CRC-32 (cyclic redundancy check)
 - Compute a 32-bit integer checksum for input of any size

- Two major benefits of file compression
 - Reduce the space needed to store files
 - Speed up data transfer across the network
- When dealing with large volumes of data, both of these savings can be significant, so it pays to carefully consider how to use compression in Hadoop

Serialization

- Process of turning structured objects into a byte stream for <u>transmission</u> over a <u>network</u> or for <u>writing to persistent storage</u>
- Deserialization is the reverse process of serialization
- Requirements
 - Compact
 - To make efficient use of storage space
 - Fast
 - The overhead in reading and writing of data is minimal
 - Extensible
 - We can transparently read data written in an older format
 - Interoperable
 - We can read or write persistent data using different language

File-Based Data Structure

For some applications, you need a specialized data structure to hold your data. For doing MapReduce-based processing, putting each blob of binary data into its own file doesn't scale, so Hadoop developed a number of higher-level containers for these situations.

- Higher-level containers
- SequenceFile
- MapFile

PIG- HADOOP RELATED TOOLS

CONTENTS
1.What is Pig?
2.Features of Pig
3.Pig – Data Model
4.Pig Architecture
5.Application of pig

What is Pig?

Apache Pig is an abstraction over MapReduce. It is a tool/platform which is used to analyze larger sets of data representing them as data flows.
Pig is generally used with Hadoop; we can perform all the data manipulation operations in Hadoop using

Apache Pig.

To write data analysis programs, Pig provides a high-level language known as Pig Latin.
This language provides various operators using which programmers can develop their own functions for reading, writing, and processing data.

Features of Pig

- Rich set of operators: It provides many operators to perform operations like join, sort, filer, etc.
- Ease of programming: Pig Latin is similar to SQL and it is easy to write a Pig script if you are good at SQL.
- Optimization opportunities: The tasks in Apache Pig optimize their execution automatically, so the programmers need to focus only on semantics of the language.
- Extensibility: Using the existing operators, users can develop their own functions to read, process, and write data.
- UDF's: Pig provides the facility to create User-defined Functions in other programming languages such as Java and invoke or embed them in Pig Scripts.
- Handles all kinds of data: Apache Pig analyzes all kinds of data, both structured as well as unstructured. It stores the results in HDFS.

Pig - Data Model

Pig Architecture

Applications of Pig

- To process huge data sources such as web logs.
- To perform data processing for search platforms.
- To process time sensitive data loads.