L	T	Р	С
4	0	0	4

Course Code: ECE201R01

Semester: V

MICROPROCESSOR & MICROCONTROLLER

(Common to ECE, EEE, EIE, ECE (CPS), Robotics & Artificial Intelligence, Electronics Engineering (VLSI Design & Technology)

Course Objective

To enable the learner to build small scale embedded systems for wide range of applications using Microprocessor/Microcontroller.

UNIT – I 15 Periods

Introduction to Microprocessor

Functional units of a computing system - Processor architecture: General internal architecture - Address - Data and control bus - Register set: General Purpose Registers (GPRs) - Status and Control registers - Processor operation - Types of architecture: Von Neumann - Harvard - CISC - RISC.

8086 Microprocessor: Architecture overview – Registers - Memory segmentation - Addressing modes - Overview of assembly Instruction set - Instruction cycle - Timing diagram – Sample assembly programs on ALU operations.

Case study on indigenous processor based on RISC-V ISA.

UNIT – II 15 Periods

Introduction to ARM & Cortex M3

Introduction to ARM: RISC design philosophy - ARM design philosophy - ARM nomenclature - ARM state registers - Features of ARM instruction set - ARM vs THUMB state.

Introduction to CORTEX series – Features of cortex-M3 – Architecture – Operational modes – Execution pipeline stages – Data types – Register set – Memory map – Bit banding – Power management – Overview of THUMB 2 instruction set – Sample assembly programs using THUMB 2 instruction set.

Unit – III 15 Periods

STM32: ARM Cortex-M3 based Microcontroller Architecture

Device overview - System architecture block diagram - Bus architecture - Reset and clock control - Memory map - General-purpose and alternate-function I/Os - General purpose timers- DMA - ADC - USART - I2C - NVIC - External interrupt.

Unit – IV 15 Periods

STM32: Application Programming and Interfacing

Embedded C programming on Cortex-M3: Digital & Analog interface – Counter – Delay generation – PWM generation – Event capturing – DMA – Serial I/O – External interrupt. Real-world interfacing: Character LCD – Matrix keypad – Stepper motor.

TEXT BOOKS

- STM32 Reference Manual: RM0008 Rev 21, February 2021. https://www.st.com/resource/en/reference_manual/cd00171190-stm32f101xx-stm32f102xx-stm32f103xx-stm32f105xx-and-stm32f107xx-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
- 2. Muhammad Ali Mazidi, Sarmad Naimi, Sepehr Naimi, *The stm32f103 arm microcontroller and embedded systems: Using assembly and c*, Micro Digital Ed, 1st Edition, 2020.

- 3. Douglas V. Hall, SSSP Rao, *Microprocessors and Interfacing*, Tata McGraw-Hill, 3rd Edition, 2017.
- 4. Yiu, Joseph, *The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors*, Newnes, Elsevier Inc., 3rd Edition, 2013.

REFERENCES

- 1. STM32F103C8 Datasheet:DS5319 Rev 18, March 2022. https://www.st.com/en/microcontrollers-microprocessors/stm32f103c8.html
- 2. Barry B. Brey, *The Intel Microprocessors, 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Pentium Pro Processor, Pentium II, Pentium III, Pentium IV, Architecture, Programming & Interfacing, Prentice Hall, 8th Edition, 2009.*
- 3. Andrew N. Sloss, Dominic Symes, Chris Wright, ARM System Developer's Guide: Designing and Optimizing System Software, Elsevier Inc., 2004.

ONLINE MATERIALS

- NPTEL: Microprocessors and Interfacing: https://onlinecourses.nptel.ac.in/noc20_ee11/preview
- 2. NPTEL: Embedded System Design with ARM: https://nptel.ac.in/courses/106105193

UNIT-WISE LEARNING OUTCOMES

Upon successful completion of this course, the learner will be able to:

Unit I	 Compare the CPU architectures based on instruction set and bus model Comprehend the architecture of 8086 microprocessor Develop simple assembly codes using x86 instruction set
Unit II	 Summarize the architectural features of ARM Cortex M3 CPU core Develop simple assembly codes using Thumb2 instruction set
Unit III	Summarize the architectural features of STM32 based microcontroller
Unit IV	 Develop embedded C code for Cortex M3 based microcontrollers Design small scale embedded systems using microcontroller