19. Let $h \in \mathbb{R}, h > -1$. Then for all $n \in \mathbb{N}$, it follows that $P(n) : (1+h)^n \ge 1 + nh$.

Proof. (Induction).

For the basis case, suppose n = 1. Observe that $(1 + h)^1 = 1 + h = 1 + (1)h$, thus P(1).

Now suppose P(n) for some $n \in \mathbb{N}$. Hence $(1+h)^n \ge 1 + nh$. Now we consider two cases. Let $h \ge 0$. Then

$$h+1 \ge 1$$
$$(h+1)^n \ge 1^n$$
$$h(h+1)^n \ge h.$$

Now let 0 > h > -1. Similarly,

$$0 > h > -1$$

$$1 > h + 1 > 0$$

$$1^{n} > (h + 1)^{n} > 0$$

$$h < h(h + 1)^{n} < 0$$

Combining the inequality for both cases, we get $h(h+1)^n \ge h$ for all h > -1. Adding this inequality to our assumption, $(1+h)^n \ge 1 + nh$, we get $(1+h)^n + h(h+1)^n \ge 1 + nh + h$. Then $(h+1)^n(1+h) = (h+1)^{n+1} \ge 1 + h(n+1)$, thus P(n+1). Therefore, if $h \in \mathbb{R}, h > -1$, then for all $n \in \mathbb{N}$, it follows that $(1+h)^n \ge 1 + nh$ by induction.