Práctico 4

Matrices Definidas Positivas y Descomposición en Valores Singulares

Problemas del libro de Strang: secciones I.7 y I.8

1. Suponga que $S^T = S$ y que $Sx = \lambda x$ y $Sy = \alpha y$ son reales. Mostrar que

$$y^T S x = \lambda y^T x$$
, $x^T S y = \alpha x^T y$, $y \quad y^T S x = x^T S y$.

Mostrar que $y^T x$ debe ser cero si $\lambda \neq \alpha$: vectores propios ortogonales.

2. (Recomendado) Esta matriz M es antisimétrica y también _____. Entonces todos sus valores propios son puramente imaginarios y también se cumple que $|\lambda| = 1$. (||Mx|| = ||x|| para todo x tal que ||x|| = 1 para vectores propios.) Encontrar los cuatro valores propios a partir de la traza de M:

$$M = \frac{1}{\sqrt{3}} \begin{bmatrix} 0 & 1 & 1 & 1\\ -1 & 0 & -1 & 1\\ -1 & 1 & 0 & -1\\ -1 & -1 & 1 & 0 \end{bmatrix}$$

(Solo puede tener valores propios $i \circ -i$).

3. Mostrar que esta *A* (simétrica pero compleja) tiene solo una línea de vectores propios:

$$A = \begin{bmatrix} i & 1 \\ 1 & -i \end{bmatrix}$$

No es diagonalizable: los valores propios son $\lambda = 0$ y 0. La propiedad

$$A^T = A$$
,

no es una propiedad tan especial para matrices complejas. La buena propiedad es que $A = A^T$. Entonces todos los valores propios son reales y A tiene n vectores propios ortogonales.

4. Esta A es casi simétrica. Pero sus vectores propios están lejos de ser ortogonales:

$$A = \begin{bmatrix} 1 & 10^{-15} \\ 0 & 1 + 10^{-15} \end{bmatrix}$$

tiene vectores propios

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad y \quad [?]$$

¿Cuál es el ángulo entre los vectores propios?

- 5. ¿Qué matrices simétricas S son también ortogonales? Entonces $S^T = S$ y $S^T = S^{-1}$.
 - (a) Mostrar cómo la simetría y la ortogonalidad llevan a $S^2 = I$.
 - (b) ¿Cuáles son los posibles valores propios de S? Describir todas las posibles matrices Λ .

Entonces $S = Q\Lambda Q^T$ para alguna de esas matrices de valores propios Λ y una matriz ortogonal Q.

- 6. Si S es simétrica, mostrar que A^TSA también es simétrica (tomar la traspuesta de A^TSA). Aquí A es $m \times n$ y S es $m \times m$. ¿Los valores propios de S son iguales a los valores propios de S en caso de que S sea cuadrada e invertible, S se llama **congruente** a S se llama **congruente** a S se llama congruente a S se llama congruen
- 7. A partir de $S=Q\Lambda Q^T$, calcular la raíz cuadrada simétrica definida positiva $Q\sqrt{\Lambda}Q^T$ de cada matriz. Verificar que esta raíz cuadrada satisface que $A^TA=S$:

$$S = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix} \quad \text{y} \quad S = \begin{bmatrix} 10 & 6 \\ 6 & 10 \end{bmatrix}.$$

- 8. Suponga que C es definida positiva y que A tiene columnas independientes (es decir, $Ax \neq 0$ siempre que $x \neq 0$). Aplicar el test de energía a x^TA^TCAx para demostrar que $S = A^TCA$ es **definida positiva**.
- 9. Sin multiplicar, dado

$$S = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix},$$

encontrar:

- (a) el determinante de *S*,
- (b) los valores propios de *S*,
- (c) los vectores propios de *S*,
- (d) una razón por la cual *S* es simétrica definida positiva.
- 10. Consideremos una matriz simétrica $S = S^T$, con vectores propios (ortonormales) v_1 a v_n . Sean $\lambda_1 \ge \cdots \ge \lambda_n$ sus valores propios.

Cualquier vector x se puede escribir como una combinación $x = c_1v_1 + \cdots + c_nv_n$.

a) Explicar entonces estas dos fórmulas:

$$x^{T}x = c_1^2 + \dots + c_n^2,$$

$$x^{T}Sx = \lambda_1 c_1^2 + \dots + \lambda_n c_n^2.$$

b) El problema anterior da una forma clara para el cociente de Rayleigh x^TSx/x^Tx :

$$R(x) = \frac{x^T S x}{x^T x} = \frac{\lambda_1 c_1^2 + \dots + \lambda_n c_n^2}{c_1^2 + \dots + c_n^2}.$$

¿Por qué el valor máximo de ese cociente es igual al mayor valor propio λ_1 ? Esto puede ser la forma más simple de entender la "segunda construcción" de la SVD. Se puede ver que el cociente R(x) es máximo cuando $c_1 = 1$ y $c_2 = c_3 = \cdots = c_n = 0$.

- c) Ahora aparece λ_2 cuando $x = v_2$. Maximizamos $R(x) = x^T S x / x^T x$ bajo la condición $x^T v_1 = 0$. ¿Qué implica esta condición sobre c_1 ? ¿Por qué ahora el cociente en el Problema 11 se maximiza cuando $c_2 = 1$ y $c_1 = c_3 = \cdots = c_n = 0$?
- <u>d</u>) Siguiendo el anterior, ¿qué problema de maximización se resuelve con $x = v_3$? La mejor elección es $c_3 = 1$ y $c_1 = c_2 = c_4 = \cdots = 0$.

El máximo de

$$R(x) = \frac{x^T S x}{x^T x}$$

es λ_3 bajo qué dos condiciones sobre x?

- 11. Mostrar que A^T tiene los mismos (no nulos) valores singulares que A. Entonces $||A|| = ||A^T||$ para todas las matrices. Pero no es cierto que $||Ax|| = ||A^Tx||$ para todos los vectores; para eso se necesita que $A^TA = AA^T$. ¿ Por qué?
- 12. ¿Cuál es la norma $||A \sigma_1 u_1 v_1^T||$ cuando se elimina la pieza más grande de A? ¿Cuáles son todos los valores singulares de esta matriz reducida, y su rango?
- 13. Para maximizar $\frac{1}{2}x^TSx$ con x^Tx = 1, Lagrange trabajaría con

$$L = \frac{1}{2}x^T S x + \lambda (x^T x - 1).$$

Mostrar que

$$\nabla L = \left(\frac{\partial L}{\partial x_1}, \dots, \frac{\partial L}{\partial x_n}\right) = 0$$

es exactamente $Sx = \lambda x$.

Una vez más, el máximo de R(x) es λ_1 .

- 14. Si v es un vector propio de A^TA con $\lambda \neq 0$, entonces _____ es un vector propio de AA^T .
- 15. Si $A = U\Sigma V^T$ es cuadrada e invertible, entonces $A^{-1} = \underline{\hspace{1cm}}$. Encontrar todos los valores singulares de A^TA (no de A).

3