10350	Tutorial	Week	01	- Set	01
TOOOO	Luturai	week	\mathbf{OT}	- 560	v.

Name _____

Section ____

1. Let $f(x) = \frac{1}{x}$. Assuming that $h \neq 0$, find and simplify $\frac{f(x+h) - f(x)}{h}$.

Section _____

2. Simplify the following expression as far as possible. Your answer should have no negative exponents:

(a)
$$\frac{y^4(x^3y^{-2})^2}{2x^{-1}} \stackrel{?}{=}$$

(b)
$$\frac{(x^2+4)^2(3) - 2x(x^2+4)(3x-5)}{(x^2+4)^4} \stackrel{?}{=}$$

Section _____

3. Find ALL the zeroes of $f(x) = 2x^2 - x - 3$ exactly.

4. Solve $4^{x-2} = 8$. Be sure your answer is simplified.

5. Find and simplify the expression $\frac{g(n+1)}{g(n)}$ if $g(n) = \frac{2^n x^{2n-1}}{n^3}$.