Inter-IIT Tech Meet Prep

Week 1: Elementary Number Theory

MathSoc IIT Delhi

Contents

T	Well-Ordering Principle and Mathematical Induction	2
2	Divisibility and the Division Algorithm	2
3	GCD and Euclidean Algorithm	2
4	Prime Numbers and Fundamental Theorem of Arithmetic	2
5	Special Number Classes	2
	5.1 Triangular Numbers	2
	5.2 Square Numbers and Pythagorean Triplets	3
	5.3 Pentagonal Numbers	
6	Modular Arithmetic and Congruences	3
	6.1 Complete and Reduced Residue Systems	3
	6.2 Linear Congruences	3
	6.3 Chinese Remainder Theorem	3
	6.4 Congruences Modulo a Prime Number	3
	6.5 Euler's and Fermat's Little Theorem	3
	6.6 Wilson's Theorem Application	3
	6.7 Hensel's Lemma	3
7	This Week's Problem	4
	7.1 Euler's Totient Function	4
	7.2 Problems	4

1 Well-Ordering Principle and Mathematical Induction

Definition 1.1. The Well-Ordering Principle states that every non-empty subset of the natural numbers has a least element.

This principle forms the foundation for proofs involving induction and is equivalent to the principle of mathematical induction.

Theorem 1.2 (Principle of Mathematical Induction). Let P(n) be a proposition involving a natural number n. Suppose:

- \bullet P(1) is true (base case),
- For all $k \in \mathbb{N}$, if P(k) is true, then P(k+1) is also true (inductive step),

then P(n) is true for all $n \in \mathbb{N}$.

2 Divisibility and the Division Algorithm

Definition 2.1. An integer a is divisible by b (denoted $b \mid a$) if there exists an integer k such that a = bk.

Theorem 2.2 (Division Algorithm). Given integers a and b with b > 0, there exist unique integers q and r such that:

$$a = bq + r$$
, $0 \le r < b$.

3 GCD and Euclidean Algorithm

Definition 3.1. The greatest common divisor (gcd) of two integers a and b is the largest integer that divides both.

Theorem 3.2 (Euclidean Algorithm). The gcd of a and b can be computed by repeatedly applying the division algorithm:

$$gcd(a, b) = gcd(b, a \mod b).$$

This process terminates when the remainder becomes zero.

4 Prime Numbers and Fundamental Theorem of Arithmetic

Definition 4.1. A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself.

Theorem 4.2 (Infinitude of Primes). There are infinitely many prime numbers.

Sketch. Assume finitely many primes p_1, p_2, \ldots, p_n . Consider $P = p_1 p_2 \cdots p_n + 1$. This number is not divisible by any p_i , hence either prime or divisible by a new prime.

Theorem 4.3 (Fundamental Theorem of Arithmetic). Every integer greater than 1 can be uniquely written as a product of primes, up to the order of the factors.

5 Special Number Classes

5.1 Triangular Numbers

Definition 5.1. A triangular number is of the form $T_n = \frac{n(n+1)}{2}$.

5.2 Square Numbers and Pythagorean Triplets

Definition 5.2. A **Pythagorean triplet** is a triple (a, b, c) such that $a^2 + b^2 = c^2$. Primitive triplets can be generated by:

$$a = m^2 - n^2$$
, $b = 2mn$, $c = m^2 + n^2$, with $m > n$, and m, n coprime, not both odd.

5.3 Pentagonal Numbers

Definition 5.3. A pentagonal number is of the form $P_n = \frac{3n^2 - n}{2}$.

6 Modular Arithmetic and Congruences

Definition 6.1. We say $a \equiv b \mod m$ if $m \mid (a - b)$. This defines a congruence relation.

6.1 Complete and Reduced Residue Systems

A complete residue system mod m is a set of integers containing one representative from each congruence class modulo m. A reduced residue system contains integers coprime to m modulo m.

6.2 Linear Congruences

To solve $ax \equiv b \mod m$, we reduce the problem using the gcd of a and m. If $gcd(a,m) \mid b$, then solutions exist.

6.3 Chinese Remainder Theorem

Theorem 6.2. Let m_1, \ldots, m_k be pairwise coprime. Then the system:

$$x \equiv a_i \mod m_i \quad (1 \le i \le k)$$

has a unique solution modulo $M = m_1 m_2 \cdots m_k$.

6.4 Congruences Modulo a Prime Number

Modular inverses exist modulo a prime p for any number not divisible by p. The set $\{1, 2, \ldots, p-1\}$ forms a multiplicative group mod p.

6.5 Euler's and Fermat's Little Theorem

Theorem 6.3 (Euler's Theorem). If gcd(a, m) = 1, then $a^{\phi(m)} \equiv 1 \mod m$.

Theorem 6.4 (Fermat's Little Theorem). If p is prime and $a \not\equiv 0 \mod p$, then $a^{p-1} \equiv 1 \mod p$.

6.6 Wilson's Theorem Application

Theorem 6.5 (Wilson's Theorem). For a prime p, $(p-1)! \equiv -1 \mod p$.

6.7 Hensel's Lemma

Theorem 6.6 (Hensel's Lemma (special case)). Let f(x) be a polynomial with integer coefficients. Suppose x_0 is a solution modulo p and $f'(x_0) \not\equiv 0 \mod p$. Then there exists a lift x_1 such that $x_1 \equiv x_0 \mod p$ and $f(x_1) \equiv 0 \mod p^2$.

7 This Week's Problem

7.1 Euler's Totient Function

Euler's totient function, denoted by $\phi(n)$, is defined as the number of positive integers less than or equal to n that are coprime to n, i.e.,

$$\phi(n) = |\{ 1 \le k \le n : \gcd(k, n) = 1 \}|.$$

Basic Properties

• If p is a prime number, then

$$\phi(p) = p - 1,$$

since all integers $1, 2, \ldots, p-1$ are coprime to p.

• If p is prime and $k \geq 1$, then

$$\phi(p^k) = p^k - p^{k-1} = p^k \left(1 - \frac{1}{p}\right).$$

This is because the only numbers not coprime to p^k are those divisible by p, and there are exactly p^{k-1} such numbers in $\{1, 2, \dots, p^k\}$.

ullet If m and n are coprime, then Euler's totient function is multiplicative:

$$\phi(mn) = \phi(m)\phi(n).$$

7.2 Problems

Problem 1: Let n have the prime factorization:

$$n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}.$$

Show using the above properties, that

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_r}\right).$$

Problem 2: Prove that the sum of all positive integers less than n and relatively prime to n is $\frac{1}{2}n\phi(n)$ if n>1.

Problem 3: Find all positive integers n such that $\phi(n)$ divides n.

Problem 4: If $\phi(mn) = \phi(m)$ and n > 1, prove that n = 2 and m is odd.

Problem 5: Given natural numbers a,b,c satisfying $\frac{a}{\phi(b)} = \frac{b}{\phi(c)} = \frac{c}{\phi(a)} = \frac{23}{10}$, prove that a=b=c.