Ouverts et fermés

Exercice 1

Soit (u_n) une suite strictement croissante de réels. Déterminer une condition nécessaire et suffisante pour que $E = \{u_n, n \in \mathbb{N}\}$ soit fermé.

Exercice 2

Soit E un espace vectoriel de dimension finie. Montrer que l'ensemble des projecteurs de E est fermé dans $\mathcal{L}(E)$.

Exercice 3 CCP 2013

Soit E l'ensemble des fonctions continues de [0,1] dans $\mathbb R$ que l'on munit de la norme uniforme. On pose

$$A = \left\{ f \in E \mid f(0) = 0, \ \int_0^1 f(t) \ dt \ge 1 \right\}$$

- 1. Montrer que A est une partie fermée de E.
- **2.** Montrer que pour tout $f \in A$, $||f||_{\infty} > 1$.
- **3.** Soit $n \in \mathbb{N}^*$. Montrer que l'on peut choisir $\alpha \in]0,1]$ tel que la fonction

$$f_n: x \in [0,1] \mapsto \begin{cases} \frac{1}{\alpha} \left(1 + \frac{1}{n}\right) x & \text{si } x \le \alpha \\ 1 + \frac{1}{n} & \text{si } x > \alpha \end{cases}$$

appartienne à A.

4. En déduire la distance d(0, A).

Exercice 4 ★★★

Soit (u_n) une suite à valeurs dans un espace vectoriel normé E. On note V l'ensemble des valeurs d'adhérence de (u_n) .

- 1. Montrer que $V = \bigcap_{n \in \mathbb{N}} \overline{\{u_k, k \ge n\}}$.
- 2. En déduire que V est fermé.

Exercice 5

Montrer que les seules parties à la fois ouvertes et fermées d'un espace vectoriel normé E sont Ø et E.

Exercice 6

Soit E l'ensemble des suites complexes u telles que $\sum_{n\in\mathbb{N}}|u_n|$ converge. On pose $\|u\|=$

$$\sum_{n=0}^{+\infty} |u_n|.$$

L'ensemble $F = \left\{ u \in E, \sum_{n=0}^{+\infty} u_n = 1 \right\}$ est-il fermé? ouvert? borné?

Exercice 7 ★★

Petites Mines MP 2016

Soit $E = \mathcal{C}^0([0,1], \mathbb{R})$. On pose

O =
$$\{ f \in E \mid f(1) > 0 \}$$
 et $F = \left\{ f \in E, \int_0^1 f(t) dt \le 0 \right\}$

- 1. Montrer que O est ouvert pour $\|\cdot\|_{\infty}$.
- **2.** Montrer que F est fermé pour $\|\cdot\|_{\infty}$ et pour $\|\cdot\|_{1}$.
- **3.** O est-il ouvert pour $\|\cdot\|_1$?

Exercice 8

On note F l'ensemble des suites réelles nulles à partir d'un certain rang. On note E l'ensemble des suites réelles bornées muni de la norme infinie.

- 1. Montrer que F est un sous-espace vectoriel de E.
- **2.** F est-il fermé dans E? ouvert dans E?

Exercice 9 ***

Centrale MP

On note E l'ensemble des suites réelles bornées muni de la norme infinie. Les ensembles suivants sont-ils fermés ?

- 1. l'ensemble A des suites croissantes;
- 2. l'ensemble B des suites convergeant vers 0;
- 3. l'ensemble C des suites convergentes;
- **4.** l'ensemble D des suites admettant 0 pour valeur d'adhérence ;
- 5. l'ensemble E des suites périodiques.

Exercice 10 ★

- 1. Montrer que $A = \{(x, y) \in \mathbb{R}^2, e^{xy} > (x + y)^2\}$ est une partie ouverte de \mathbb{R}^2 .
- 2. Montrer que B = $\{(x, y) \in \mathbb{R}^2, \ln(1 + x^2 + y^2) \le x + y\}$ est une partie fermée de \mathbb{R}^2 .
- 3. Montrer que $C = \{(x, y) \in \mathbb{R}^2, \sin(x + y) = \sqrt{x^2 + y^2}\}$ est une partie fermée de \mathbb{R}^2 .

Exercice 11 ★

On munit l'espace vectoriel E des applications bornées de $\mathbb R$ dans $\mathbb R$ de la norme inifinie. Montrer que

$$F = \{ f \in E, \ \forall x \in \mathbb{R}, \ f(x) \ge 0 \}$$

est fermé.

Exercice 12 ★★

On note \mathbf{E}_n l'ensemble des polynômes unitaires de degré n à coefficients réels.

- **1.** Montrer que E_n est une partie fermée de $\mathbb{R}_n[X]$.
- **2.** Montrer que $\inf_{P \in E_n} \int_0^1 |P(t)| dt > 0$.

Adhérence et intérieur

Exercice 13

Montrer que l'adhérence de l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{K})$ est l'ensemble des matrices trigonalisables de $\mathcal{M}_n(\mathbb{K})$ ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$).

On pourra montrer que si $P \in \mathbb{R}[X]$ est scindé sur \mathbb{R} , unitaire et de degré n, alors pour tout $z \in \mathbb{C}$, $|P(z)| \ge |\operatorname{Im}(z)|^n$.

Exercice 14 ***

Soit A une partie convexe d'un espace vectoriel normé E. Montrer que \overline{A} et \mathring{A} sont convexes.

Exercice 15 ***

Soient $(n, p, r) \in (\mathbb{N}^*)^2 \times \mathbb{N}$. On pose

$$A_r = \{ M \in \mathcal{M}_{n,p}(\mathbb{K}), \text{ rg } M = r \}$$

$$B_r = \{ M \in \mathcal{M}_{n,p}(\mathbb{K}), \text{ rg } M \le r \}$$

$$C_r = \{M \in \mathcal{M}_{n,p}(\mathbb{K}), \operatorname{rg} M \ge r\}$$

Les ensembles A_r , B_r , C_r sont-ils ouverts ? fermés ? Déterminer leurs adhérences et leurs intérieurs.

Exercice 16 ★★★★

X (non PC/PSI) MP 2019

- **1.** On note A l'ensemble des polynômes à coefficients réels de degré n scindés sur \mathbb{R} à racines simples. Montrer que A est ouvert dans $\mathbb{R}_n[X]$.
- 2. Quelle est l'adhérence de A?

Exercice 17 ★★

Soit F un sous-espace vectoriel d'un espace vectoriel normé E.

- 1. Montrer que si F est ouvert, alors F = E.
- **2.** Montrer que si $F \neq E$, alors $\mathring{F} = \emptyset$.

Exercice 18 ★★

Soit F une partie fermée d'un espace vectoriel normé E. Montrer que Fr(Fr(F)) = Fr(F).

Exercice 19 ★★

Orthogonal et topologie

Soit F un sous-espace vectoriel d'un espace préhilbertien réel E que l'on munit de sa norme euclidienne.

- **1.** Montrer que pour tout $y \in E$, $\varphi_y : x \in E \mapsto \langle x, y \rangle$ est continue.
- **2.** Montrer que F^{\perp} est fermé dans E.
- 3. Montrer que de manière générale, $\overline{F} \subset (F^{\perp})^{\perp}$.

Exercice 20 ★

Soit A une partie bornée d'un espace vectoriel normé E. Montrer que \overline{A} est également bornée.

Exercice 21 ★ ESTP 1977

Soit E un espace vectoriel normé. On note respectivement \mathring{X} et \overline{X} l'intérieur et l'adhérence d'une partie X de E. On note également $\alpha(X) = \frac{\mathring{x}}{X}$ et $\beta(X) = \frac{\mathring{x}}{X}$.

- **1.** Montrer que si X est ouvert, alors $X \subset \alpha(X)$ et que si X est fermé, alors $\beta(X) \subset X$.
- **2.** Montrer que, de manière générale, $\alpha(\alpha(X)) = \alpha(X)$ et $\beta(\beta(X)) = \beta(X)$.
- 3. Dans cette question, on considère $E = \mathbb{R}$. Déterminer les ensembles $\overline{\mathbb{Q}}$ et $\mathring{\mathbb{Q}}$.
- **4.** Donner un exemple (dans $\mathbb R$ si l'on veut), où les ensembles suivants sont tous distincts :

$$X, \mathring{X}, \overline{X}, \alpha(X), \beta(X), \alpha(\mathring{X}), \beta(\overline{X})$$

5. A et B étant deux parties de E, montrer que $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. Donner un exemple simple où $A \cap \overline{B}$, $\overline{A} \cap \overline{B}$ et $\overline{A} \cap \overline{B}$ sont distincts et un autre où, A n'étant pas ouvert, $A \cap \overline{B}$ n'est pas inclus dans $\overline{A} \cap \overline{B}$.

Densité

Exercice 22

ENS PC 2010

X MP 2010

1. Déterminer f continue de [0,1] dans \mathbb{R} vérifiant :

$$\forall n \in \mathbb{N}, \ \int_0^1 f(t)t^n \ \mathrm{d}t = 0$$

2. Le résultat précédent persiste-t-il si on change la condition en

$$\forall n \ge n_0, \ \int_0^1 f(t)t^n \ \mathrm{d}t = 0$$

où n_0 est un entier non nul.

Exercice 23

Soit A une partie convexe et dense de \mathbb{R}^n . Montrer que $A = \mathbb{R}^n$.

Exercice 24 ENS MP 2010

Soit $(a_n)_{n\geq 0}$ une suite strictement croissante de réels strictement positifs. Montrer l'équivalence des conditions suivantes :

- (i) le sous-espace vectoriel engendré par la famille $(x \mapsto x^{a_n})_{n \geq 0}$ est dense dans $\mathcal{C}([0,1],\mathbb{R})$ pour la norme $\| \|_2 : f \mapsto \sqrt{\int_0^1 f^2};$
- (ii) la série de terme général $\frac{1}{a_n}$ diverge.

Exercice 25

Soit $f:[a,b]\to\mathbb{R}$ continue telle que pour tout $k\in\mathbb{N},$ $\int_a^b f(t)t^k\,\mathrm{d}t=0$. Que peut-on dire de f?

Exercice 26 Mines MP

Soit E un espace vectoriel normé.

- 1. Soit F un sous-espace vectoriel de E. Montrer que \overline{F} est encore un sous-espace vectoriel de E.
- 2. Soit H un hyperplan de E. Montrer que H est fermé ou dense dans E.

Exercice 27

Lemme de Riemann-Lebesgue

On considère un segment [a, b] de \mathbb{R} et un espace vectoriel normé de dimension finie \mathbb{E} .

1. Soit φ une fonction en escalier sur [a, b] à valeurs dans E. Montrer que

$$\lim_{\lambda \to +\infty} \int_{a}^{b} e^{i\lambda t} \varphi(t) \, dt = 0$$

2. Soit f une fonction continue par morceaux sur [a, b] à valeurs dans E. Montrer que

$$\lim_{\lambda \to +\infty} \int_{a}^{b} e^{i\lambda t} f(t) \, \mathrm{d}t = 0$$

3. Soit f une fonction intégrable sur $\mathbb R$ à valeurs dans $\mathbb E$. Montrer que

$$\lim_{\lambda \to +\infty} \int_{-\infty}^{\infty} e^{i\lambda t} f(t) \, dt = 0$$

Exercice 28

Adhérence des matrices diagonalisables

On note $\mathcal{D}_n(\mathbb{K})$ (resp. $\mathcal{T}_n(\mathbb{K})$) l'ensemble des matrices diagonalisables (resp. trigonalisables) de $\mathcal{M}_n(\mathbb{K})$.

- **1.** Montrer que $\mathcal{D}_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$.
- **2. a.** Soit $P \in \mathbb{R}[X]$ unitaire de degré d. Montrer que P est scindé dans $\mathbb{R}[X]$ si et seulement si

$$\forall z \in \mathbb{C}, |P(z)| \ge |\operatorname{Im}(z)|^d$$

b. En déduire que $\overline{\mathrm{D}_n(\mathbb{R})} = \mathcal{T}_n(\mathbb{R})$.

Exercice 29

On note $\mathcal{D}_2(\mathbb{R})$ (resp. $\mathcal{T}_2(\mathbb{R})$) l'ensemble des matrices diagonalisables (resp. trigonalisables) de $\mathcal{M}_2(\mathbb{R})$.

- **1.** Montrer que l'application φ : $M \in \mathcal{M}_2(\mathbb{R}) \mapsto tr(M)^2 4 \det(M)$ est continue.
- **2.** Soit $M\in\mathcal{M}_2(\mathbb{R})$. Montrer que M est trigonalisable dans $\mathcal{M}_2(\mathbb{R})$ si et seulement si $\phi(M)\geq 0$.
- **3.** En déduire que $\mathcal{D}_2(\mathbb{R})$ n'est pas dense dans $\mathcal{M}_2(\mathbb{R})$.
- **4.** Montrer que $\overline{\mathcal{D}_2(\mathbb{R})} = \mathcal{T}_2(\mathbb{R})$.

Exercice 30 ★★

Soient U et V deux parties denses d'un espace vectoriel normé E. On suppose que U est ouvert. Montrer que $U \cap V$ est dense dans E.

Exercice 31 ★★

Soit $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$.

- 1. On suppose A inversible. Montrer que $\chi_{AB} = \chi_{BA}$.
- **2.** Montrer par un argument de densité que le résultat précédent reste valable si on ne suppose plus A inversible.

Limite et continuité

Exercice 32

Les fonctions suivantes ont-elles une limite en (0,0)?

1.
$$f(x,y) = (x+y)\sin\left(\frac{1}{x^2+y^2}\right)$$
.

4.
$$f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$$
.

6. $f(x, y) = x^y$.

2.
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
.

5.
$$f(x,y) = \frac{x^2 + y^2 - 1}{x} \sin x$$
.

3.
$$f(x,y) = \frac{|x+y|}{x^2 + y^2}$$
.

7.
$$f(x,y) = \frac{\sin(x^2) + \sin(y^2)}{\sqrt{x^2 + y^2}}$$
.

Exercice 33 ★★

Pour $P \in \mathbb{R}[X]$, on pose $N_1(P) = \sum_{n=0}^{+\infty} |P^{(n)}(0)|$ et $N_2(P) = \sup_{t \in [-1,1]} |P(t)|$. On considère l'endomorphisme D de $\mathbb{R}[X]$ défini par D(P) = P' pour tout $P \in \mathbb{R}[X]$.

- **1.** Vérifier que N_1 et N_2 sont des normes sur $\mathbb{R}[X]$.
- **2.** Montrer que si l'on munit $\mathbb{R}[X]$ de la norme N_1 , alors D est continu.
- **3.** Montrer que si l'on munit $\mathbb{R}[X]$ de la norme N_2 , alors D n'est pas continu.

Exercice 34

On pose $E = \mathcal{C}^{\infty}([0,1],\mathbb{R})$. Montrer que l'application $\varphi \colon f \in E \mapsto f'$ n'est jamais continue de (E,N) dans (E,N) quelque soit la norme N dont on munit E.

Exercice 35 ★

Mines-Télécom (hors Mines-Ponts) MP 2021

Soit $E = \mathbb{C}[X]$. Pour $P = \sum_{k=0}^{+\infty} a_k X^k \in E$, on pose $||P|| = \sum_{k=0}^{+\infty} |a_k|$. Soit $b \in \mathbb{C}$. On définit l'application $f: P \in E \mapsto P(b)$.

- 1. Montrer que f est linéaire.
- 2. Etudier la continuité de f et calculer sa norme subordonnée le cas échéant.

Exercice 36 **

On note $E = \mathcal{C}^0([0,1],\mathbb{R})$. On munit E d'une norme définie de la manière suivante :

$$\forall f \in \mathcal{E}, \ \|f\| = \int_0^1 |f(t)| \ \mathrm{d}t$$

Pour $f \in E$, on définit

$$\phi(f): x \in [0,1] \mapsto \int_0^x f(t) \, \mathrm{d}t$$

- 1. Justifier que ϕ est un endomorphisme de E.
- **2.** Démontrer que ϕ est continu.
- **3.** On pose $f_n: x \in [0,1] \mapsto ne^{-nx}$ pour $n \in \mathbb{N}^*$. Calculer $||f_n||$ et $||\phi(f_n)||$.
- **4.** En déduire la norme de ϕ subordonnée à la norme $\|\cdot\|$.

Exercice 37 ★

On note E l'ensemble des suites réelles bornées que l'on munit de la norme uniforme. On pose Δ : $(u_n) \in E \mapsto (u_{n+1} - u_n)$. Montrer que Δ est un endomorphisme continu de E et déterminer sa norme d'opérateur.

Exercice 38 ***

Banque Mines-Ponts MP 2022

On fixe $\omega \in \mathcal{C}^0(\mathbb{R}, \mathbb{R}_+^*)$. Pour toute function $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$, on pose :

$$T_{\omega}(f)(x) = \frac{1}{\int_0^x \omega(t) dt} \int_0^x f(t)\omega(t) dt$$

- 1. Montrer que $T_{\omega}(f)$ est prolongeable par continuité en 0.
- **2.** Soit a > 0. Montrer que T_{ω} est un endomorphisme continu et injectif de $\mathcal{C}^0([0, a], \mathbb{R})$ muni de la norme infinie.
- **3.** Soient $\lambda \in \mathbb{R}$ et $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$, non nulle, telle que : $T_{\omega}(f) = \lambda f$.
 - a. Donner une équation différentielle vérifiée par f et la résoudre.
 - **b.** Montrer que $\lambda \in]0,1]$.

Exercice 39

Norme d'opérateur (ou norme subordonnée)

Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$.

1. On suppose que $\mathcal{M}_{p,1}(\mathbb{R})$ et $\mathcal{M}_{n,1}(\mathbb{R})$ sont munis de leurs normes uniformes respectives. Montrer que

$$|||A||| = \max_{1 \le i \le n} \sum_{j=1}^{p} |A_{i,j}|$$

2. On suppose que $\mathcal{M}_{p,1}(\mathbb{R})$ et $\mathcal{M}_{n,1}(\mathbb{R})$ sont munis de leurs normes 1 respectives. Montrer que

$$|||A||| = \max_{1 \le j \le p} \sum_{i=1}^{n} |A_{i,j}|$$

3. On suppose que $\mathcal{M}_{p,1}(\mathbb{R})$ et $\mathcal{M}_{n,1}(\mathbb{R})$ sont munis de leurs normes 2 respectives. Montrer que

$$|||A||| = \sqrt{\max \operatorname{Sp}(A^{\mathsf{T}}A)}$$

Exercice 40 ★★

On note E l'espace vectoriel des fonctions continues sur $[0,\pi]$ à valeurs dans $\mathbb R$ que l'on munit de la norme $\|\cdot\|_\infty$. On note D l'application qui à $f\in E$ associe $D(f):x\in [0,\pi]\mapsto \int_0^x f(t)\sin(t)\ dt$. Montrer que D est un endomorphisme continu de E et calculer sa norme d'opérateur.

Exercice 41 ★★★

On munit $E = \mathcal{C}^0([0,1], \mathbb{R})$ de la norme 1 définie par

$$\forall f \in E, \ \|f\|_1 = \int_0^1 |f(t)| \ dt$$

On note T l'application qui à $f \in E$ associe l'application T(f): $x \in [0,1] \mapsto \int_0^x f(t) dt$.

- 1. Montrer que T est un endomorphisme de E.
- **2.** Démontrer que T est continu sur $(E, \|\cdot\|_1)$ et déterminer $\|\|T\|\|$.
- 3. Vérifier que la borne supérieure qui définit |||T||| n'est pas atteinte.

Exercice 42

Mines-Télécom (hors Mines-Ponts) MP 2023

On pose $E = \mathcal{C}^0([0,1])$ que l'on muni de la norme uniforme $\|\cdot\|_{\infty}$. On pose pour $f \in E$,

$$u(f): x \in [0,1] \mapsto \int_0^1 \min(x,t) f(t) dt$$

Montrer que u est un endomorphisme continu de E et calculer ||u||.

Compacité

Exercice 43 ★★★

Centrale MP 2010

Donner un exemple de partie fermée bornée non compacte d'un espace vectoriel normé.

Exercice 44 ★★★★

ENS Ulm/Lyon/Cachan MP 2001

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ continue.

- **1.** On suppose qu'il existe $a \in \mathbb{R}$ tel que $f^{-1}(\{a\})$ soit un singleton. Montrer que f admet un extremum global.
- **2.** On suppose qu'il existe $a \in \mathbb{R}$ tel que $f^{-1}(\{a\})$ soit compact et non vide. Montrer que f admet un extremum global.
- **3.** On suppose que pour tout $a \in \mathbb{R}$, $f^{-1}(\{a\})$ est compact. Montrer que $\lim_{\|x\| \to +\infty} f(x)$ existe.

Exercice 45 ***

Centrale MP 2018

Soient E un espace vectoriel normé, K un compact de E et $g: K \to K$ une application 1-lipschitzienne. On cherche à montrer que g est surjective si, et seulement si, c'est une isométrie.

- 1. On commence par supposer g surjective. On considère x et y dans K ainsi que x_n et y_n des antécédents par g^n de x et y respectivement. On note (x', y') une valeur d'adhérence de la suite $(x_n, y_n)_{n \in \mathbb{N}}$. Montrer que x y est une valeur d'adhérence de la suite $(g^n(x') g^n(y'))_{n \in \mathbb{N}}$.
- **2.** Montrer que la suite $(\|g^n(x') g^n(y')\|)_{n \in \mathbb{N}}$ tend vers $\|x y\|$. En déduire que g est une isométrie.
- **3.** On suppose maintenant que *g* est une isométrie. Montrer que *g* est surjective. Donner un contre-exemple lorsque K est seulement bornée.

Exercice 46 ***

Centrale MP

Soit E un \mathbb{R} -espace vectoriel de dimension finie.

- 1. Pour un compact K non vide, on pose $\delta(K) = \sup_{(x,y) \in K^2} \|x y\|$. Montrer que $\delta(K)$ est bien défini. La borne supérieure est-elle atteinte ?
- **2.** Pour $a \in E$, on note S_a l'ensemble des compacts de E symétriques par rapport à a. Pour B compact de E, on pose

$$T(B) = \left\{ x \in B \mid \forall y \in B, \|x - y\| \le \frac{1}{2} \delta(B) \right\}$$

Montrer que T induit une application de S_a dans S_a .

- 3. Soit $B_0 \in \mathcal{S}_a$. On pose $B_{n+1} = T(B_n)$ pour $n \in \mathbb{N}$. Déterminer $\bigcap_{n \geq 0} B_n$.
- **4.** En déduire que toute isométrie de E conserve les milieux. Remarque : une isométrie de E est une application $u : E \to E$ telle que ||u(x) - u(y)|| = ||x - y|| pour tout $(x, y) \in E^2$.

Exercice 47 ★★★

Mines MP

Soit K une partie compacte non vide d'un espace vectoriel normé et $f: K \to K$ telle que

$$\forall (x, y) \in \mathbb{K}^2, \ x \neq y \implies \|f(x) - f(y)\| < \|x - y\|$$

- **1.** Montrer que f admet un unique point fixe.
- **2.** Soit (x_n) une suite de premier terme $x_0 \in K$ et telle que $x_{n+1} = f(x_n)$ pour tout $n \in \mathbb{N}$. Montrer que (x_n) converge vers l'unique point fixe de f.
- **3.** Donner un contre-exemple en ne supposant plus K compact.

Exercice 48 ***

Principe du maximum pour les polynômes (X 2019)

Soit $P \in \mathbb{C}[X]$. On note

$$B = \{z \in \mathbb{C}, |z| \le 1\}$$
 et $S = \{z \in \mathbb{C}, |z| = 1\}$

Montrer que

$$\max_{z \in \mathcal{B}} |P(z)| = \max_{z \in \mathcal{S}} |P(z)|$$

Exercice 49 ★

Montrer que $O_n(\mathbb{R})$ est une partie compacte de $\mathcal{M}_n(\mathbb{R})$.

Exercice 50

Soit $(E, \|\cdot\|)$ un espace vectoriel normé de dimension finie et $f: E \to \mathbb{R}$ continue. On suppose que $\lim_{\|x\|\to +\infty} f(x) = +\infty$. Montrer que f admet un minimum sur E.

Exercice 51 ★★★

Soient K et L des parties respectives de deux espaces vectoriels normés E et F. On suppose K compacte. Soit $f: K \to L$ bijective et continue. Montrer que f^{-1} est continue.

Exercice 52 ★★★★

Théorème de compacité de Riesz

Soit $(E, \|\cdot\|)$ un espace vectoriel normé.

- 1. Soit F un sous-espace vectoriel fermé de E tel que $F \neq E$.
 - **a.** Soit $x \in E \setminus F$. Justifier que $\delta = d(x, F) > 0$.
 - **b.** Justifier qu'il existe $v \in F$ tel que $0 < ||x v|| \le 2\delta$.
 - **c.** On pose $u = \frac{x v}{\|x v\|}$. Justifier que $d(u, F) \ge \frac{1}{2}$.
- 2. On note B la boule unité fermée de E i.e. $B = \{x \in E, \|x\| \le 1\}$. Montrer que si E n'est pas de dimension finie, alors B n'est pas compacte.

Exercice 53 **

Matrices stochastiques

On note \mathcal{S} l'ensemble des matrices *stochastiques* de $\mathcal{M}_{n,p}(\mathbb{R})$, c'est-à-dire l'ensemble des matrices $M \in \mathcal{M}_{n,p}(\mathbb{R})$ à *coefficients positifs* et telles que

$$\forall i \in [[1, n]], \sum_{j=1}^{p} M_{i,j} = 1$$

Montrer que S est une partie compacte de $\mathcal{M}_{n,p}(\mathbb{R})$.

Exercice 54 ***

Soient X une partie non vide d'un espace vectoriel normé E et $a \in E$.

- **1.** On suppose X compacte. Montrer qu'il existe $x_0 \in X$ tel que $||a x_0|| \le ||a x||$ pour tout $x \in X$.
- **2.** On suppose X fermée et E de dimension finie. Montrer qu'il existe $x_0 \in X$ tel que $\|a x_0\| \le \|a x\|$ pour tout $x \in X$.

Exercice 55 ★★★

Soit E un espace vectoriel normé. On note B la boule unité fermée de E et S la sphère unité de E. Montrer que S est compacte si et seulement si B est compacte.

Connexité

Exercice 56

ENS MP 2010

- **1.** Soient $r, n \in \mathbb{N}^*$, f_1, \dots, f_r des formes linéaires sur \mathbb{R}^n formant une famille libre. Quel est le nombre de composantes connexes par arcs de $\mathbb{R}^n \setminus \bigcup_{i=1}^n \operatorname{Ker} f_i$?
- **2.** Même question en remplaçant \mathbb{R} par \mathbb{C} .

Exercice 57

Soit E un \mathbb{R} -espace vectoriel normé de dimension supérieure ou égale à 2.

- 1. Montrer que la sphère unité S de E est connexe par arcs.
- 2. En déduire que toutes les sphères de E sont connexes par arcs.

Exercice 58 ★★

Soit $n \in \mathbb{N}^*$. $O_n(\mathbb{R})$ est-il connexe par arcs?

Exercice 59 ★★

Montrer que $SO_2(\mathbb{R})$ est connexe par arcs.

Exercice 60 ★★★

Connexité par arcs de $\mathrm{GL}_n(\mathbb{C})$

1. Soit $(A, B) \in GL_n(\mathbb{C})^2$. On pose

$$d: z \in \mathbb{C} \mapsto \det((1-z)A + zB)$$

Montrer que $V = \{z \in \mathbb{C}, \ d(z) \neq 0\}$ est connexe par arcs.

2. En déduire que $GL_n(\mathbb{C})$ est connexe par arcs.

Exercice 61 ★★

- **1.** Déterminer les applications $f: \mathbb{R} \to \mathbb{R}$ telles que $\forall x \in \mathbb{R}, f(x)^3 = x^3$.
- **2.** Déterminer les applications $f: \mathbb{C} \to \mathbb{C}$ continues telles que $\forall z \in \mathbb{C}$, $f(z)^3 = z^3$.

Exercice 62 ★★★

Soit $f: \mathbb{U} \to \mathbb{R}$ continue. Montrer que f n'est pas injective.

Exercice 63 ***

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ continue. Montrer que f n'est pas injective.