SEQUENCE LISTING

<110>	Yamanouchi Pharmaceutical Co., Ltd. TAKEDA, Masayoshi ABE, Kunitake YAMAJI, Noboru	
<120>	NOVEL PROMOTER	
<130>	Q83865	
<150> <151>	PCT/JP03/07807 2003-06-19	
<150> <151>	JP 2002-180543 2002-06-20	
<160>	33	
<170>	PatentIn version 3.3	
<210> <211> <212> <213>	1 3675 DNA Homo sapiens	
<220> <221> <222>	CDS (1)(3675)	
<400>	1 g cec ege geg ege gga tgg egg gge ttg geg geg etg tgg atg	48
	s Pro Arg Ala Arg Gly Trp Arg Gly Leu Ala Ala Leu Trp Met 5 10 15	40
	g geg eag gtg gee gag eag gea eet geg tge gee atg gga eee 1 Ala Gln Val Ala Glu Gln Ala Pro Ala Cys Ala Met Gly Pro 20 25 30	96
	g gca gcg cet ggg agc ceg agc gtc ceg cgt cet cet cea cee a Ala Ala Pro Gly Ser Pro Ser Val Pro Arg Pro Pro Pro 35 40 45	144
	g cgg ccg ggc tgg atg gaa aag ggc gaa tat gac ctg gtc tct 1 Arg Pro Gly Trp Met Glu Lys Gly Glu Tyr Asp Leu Val Ser 55 60	192
	c gag gtt gac cac agg ggc gat tac gtg tcc cat gaa atc atg c Glu Val Asp His Arg Gly Asp Tyr Val Ser His Glu Ile Met 70 75 80	240
	cag cgg cgg aga aga gca gtg gcc gtg tcc gag gtt gag tct s Gln Arg Arg Arg Ala Val Ala Val Ser Glu Val Glu Ser 85 90 95	288
	c ctt cgg ctg aaa ggc tcc agg cac gac ttc cac gtg gat ctg s Leu Arg Leu Lys Gly Ser Arg His Asp Phe His Val Asp Leu 100 105 110	336

								cct Pro								384
	_				-			cag Gln			_			_		432
_						_	_	tca Ser		_					-	480
								ggc Gly								528
								tca Ser 185								576
_	_	_			_	_		tcc Ser		_	_		_	-		624
								agt Ser								672
			_	_				ctg Leu								720
	_			_	_			tgt Cys		_	_	_			_	768
	_			_	-	-		ttc Phe 265		_		_			_	816
								ctt Leu								864
_	_					_		gtg Val	_	_		_	_	-		912
				-				acc Thr				_				, 960
								gga Gly							Asn	1008
	_		_		_			cta Leu 345	-	-	-	_			_	1056

		-			gca Ala	_				_	_		_	_		1:	104
cag Gln	tct Ser 370	gga Gly	ttg Leu	atg Met	ggg Gly	aaa Lys 375	gat Asp	Gly ggg	act Thr	cgt Arg	cat His 380	gac Asp	cac His	gcc Ala	atc Ile	1:	152
	_			_	gat Asp 390		_			_				-	-	1:	200
	_			_	ccc Pro		_		_	_	_					1:	248
_	_			-	gat Asp											1:	296
					aac Asn											13	344
					gag Glu											1.	392
					tcc Ser 470											1	440
					gct Ala											1	488
		_	_		aag Lys					_			-			1	536
_	_			_	tgc Cys	_		_					-	-		15	584
					aaa Lys											1	632
					tgt Cys 550											1	680
					gac Asp											1	728
					ccc Pro											1	776

					tgc Cys											1824
	_	_		_	acc Thr			_		_				_		1872
_					cgc Arg 630		_	_		_		_	_		_	1920
		-	_	_	gac Asp		_	_	-	-	-	-				1968
_	_	_		_	Gly				_		_					2016
_	-	_	_	-	tta Leu	_				_		-	-			2064
-					ttg Leu				_		-				-	2112
					aat Asn 710											2160
					ctt Leu											2208
	_				aac Asn		-	-	_							2256
					acc Thr											2304
					atc Ile											2352
				_	aat Asn 790	_		-				_				2400
					ccc Pro											2448
					tat Tyr											2496

cca acc aac gag aca ctg att gtg gag ctg ctg ttt cag gga agg aac Pro Thr Asn Glu Thr Leu Ile Val Glu Leu Leu Phe Gln Gly Arg Asn 835 840 845	2544
ccg ggt gtt gcc tgg gaa tac tcc atg cct cgc ttg ggg acc gag aag Pro Gly Val Ala Trp Glu Tyr Ser Met Pro Arg Leu Gly Thr Glu Lys 850 855 860	2592
cag ccc cct gcc cag ccc agc tac act tgg gcc atc gtg cgc tct gag Gln Pro Pro Ala Gln Pro Ser Tyr Thr Trp Ala Ile Val Arg Ser Glu 865 870 875 880	2640
tgc tcc gtg tcc tgc gga ggg gga cag atg acc gtg aga gag ggc tgc Cys Ser Val Ser Cys Gly Gly Gly Gln Met Thr Val Arg Glu Gly Cys 885 890 895	2688
tac aga gac ctg aag ttt caa gta aat atg tcc ttc tgc aat ccc aag Tyr Arg Asp Leu Lys Phe Gln Val Asn Met Ser Phe Cys Asn Pro Lys 900 905 910	2736
aca cga cct•gtc acg ggg ctg gtg cct tgc aaa gta tct gcc tgt cct Thr Arg Pro Val Thr Gly Leu Val Pro Cys Lys Val Ser Ala Cys Pro 915 920 925	2784
ccc agc tgg tcc gtg ggg aac tgg agt gcc tgc agt cgg acg tgt ggc Pro Ser Trp Ser Val Gly Asn Trp Ser Ala Cys Ser Arg Thr Cys Gly 930 935 940	2832
ggg ggt gcc cag agc cgc ccc gtg cag tgc aca cgg cgg gtg cac tat Gly Gly Ala Gln Ser Arg Pro Val Gln Cys Thr Arg Arg Val His Tyr 945 950 955 960	2880
gac tcg gag cca gtc ccg gcc agc ctg tgc cct cag cct gct ccc tcc Asp Ser Glu Pro Val Pro Ala Ser Leu Cys Pro Gln Pro Ala Pro Ser 965 970 975	2928
agc agg cag gcc tgc aac tct cag agc tgc cca cct gca tgg agc gcc Ser Arg Gln Ala Cys Asn Ser Gln Ser Cys Pro Pro Ala Trp Ser Ala 980 985 990	2976
ggg ccc tgg gca gag tgc tca cac acc tgt ggg aag ggg tgg agg aag Gly Pro Trp Ala Glu Cys Ser His Thr Cys Gly Lys Gly Trp Arg Lys 995 1000 1005	3024
cgg gca gtg gcc tgt aag agc acc aac ccc tcg gcc aga gcg cag Arg Ala Val Ala Cys Lys Ser Thr Asn Pro Ser Ala Arg Ala Gln 1010 1015 1020	3069
ctg ctg ccc gac gct gtc tgc acc tcc gag ccc aag ccc agg atg Leu Leu Pro Asp Ala Val Cys Thr Ser Glu Pro Lys Pro Arg Met 1025 1030 1035	3114
cat gaa gcc tgt ctg ctt cag cgc tgc cac aag ccc aag aag ctg His Glu Ala Cys Leu Leu Gln Arg Cys His Lys Pro Lys Lys Leu 1040 1045 1050	3159
cag tgg ctg gtg tcc gcc tgg tcc cag tgc tct gtg aca tgt gaa Gln Trp Leu Val Ser Ala Trp Ser Gln Cys Ser Val Thr Cys Glu 1055 1060 1065	3204

											gaa Glu 1080				3249
											tgc Cys 1095		cat His		3294
											gcc Ala 1110				3339
	ccc Pro 1115										ccc Pro 1125		agg Arg		3384
											gcc Ala 1140				3429
											gct Ala 1155		ggc Gly		3474
_	gcc Ala 1160										tcg Ser 1170				3519
											aag Lys 1185		gat Asp	_	3564
						cac His 1195		_		_	gta Val 1200		cag Gln		3609
						ttc Phe 1210			_	_	tgc Cys 1215	_	aag Lys		3654
_	tct Ser 1220	_			_	_									3675
<210 <211 <212 <213	.> 12 !> PF		sapie	ens											
<400)> 2														
Mat	T *) 7	۲ مم	N 1 - 7	\~~ (`l m.	~~ 7\-	~~ C1	1 T .	n	- הו	. T	. T-~	- Ma+	

Met Lys Pro Arg Ala Arg Gly Trp Arg Gly Leu Ala Ala Leu Trp Met 1 5 10 15

Leu Leu Ala Gl
n Val Ala Glu Gl
n Ala Pro Ala Cys Ala Met Gly Pro $20 \\ 25 \\ 30$

Ala	Ala	Ala 35	Ala	Pro	Gly	Ser	Pro 40	Ser	Val	Pro	Arg	Pro 45	Pro	Pro	Pro
Ala	Glu 50	Arg	Pro	Gly	Trp	Met 55	Glu	Lys	Gly	Glu	Tyr 60	Asp	Leu	Val	Ser
Ala 65	Tyr	Glu	Val	Asp	His 70	Arg	Gly	Asp	Tyr	Val 75	Ser	His	Glu	Ile	Met 80
His	His	Gln	Arg	Arg 85	Arg	Arg	Ala	Val	Ala 90	Val	Ser	Glu	Val	Glu 95	Ser
Leu	His	Leu	Arg 100	Leu	Lys	Gly	Ser	Arg 105	His	Asp	Phe	His	Val 110	Asp	Leu
Arg	Thr	Ser 115	Ser	Ser	Leu	Val	Ala 120	Pro	Gly	Phe	Ile	Val 125	Gln	Thr	Leu
Gly	Lys 130	Thr	Gly	Thr	Lys	Ser 135	Val	Gln	Thr	Leu	Pro 140	Pro	Glu	Asp	Phe
Cys 145	Phe	Tyr	Gln	Gly	Ser 150	Leu	Arg	Ser	His	Arg 155	Asn	Ser	Ser	Val	Ala 160
Leu	Ser	Thr	Cys	Gln 165	Gly	Leu	Ser	Gly	Met 170	Ile	Arg	Thr	Glu	Glu 175	
Asp	Tyr	Phe	Leu 180	Arg	Pro	Leu	Pro	Ser 185	His	Leu	Ser	Trp	Lys 190	Leu	Gly
Arg		Ala 195	Gln	Gly	Ser	Ser	Pro 200		His			Tyr 205	_	Arg	Ser
Thr	Glu 210	Pro	His	Ala	Pro	Gly 215	Ala	Ser	Glu	Val	Leu 220	Val	Thr	Ser	Arg
Thr 225	Trp	Glu	Leu	Ala	His 230	Gln	Pro	Leu	His	Ser 235	Ser	Asp	Leu	Arg	Leu 240
Gly	Leu	Pro	Gln	Lys 245	Gln	His	Phe	Cys	Gly 250	Arg	Arg	Lys	Lys	Tyr 255	Met
Pro	Gln	Pro	Pro 260	Lys	Glu	Asp	Leu	Phe 265	Ile	Leu	Pro	Asp	Glu 270	Tyr	Lys

Ser	Cys	Leu 275	Arg	His	Lys	Arg	Ser 280	Leu	Leu	Arg	Ser	His 285	Arg	Asn	Glu
Glu	Leu 290	Asn	Val	Glu	Thr	Leu 295	Val	Val	Val	Asp	Lys 300	Lys	Met	Met	Gln
Asn 305	His	Gly	His	Glu	Asn 310	Ile	Thr	Thr	Tyr	Val 315	Leu	Thr	Ile	Leu	Asn 320
Met	Val	Ser	Ala	Leu 325	Phe	Lys	Asp	Gly	Thr 330	Ile	Gly	Gly	Asn	Ile 335	Asn
Ile	Ala	Ile	Val 340	Gly	Leu	Ile	Leu	Leu 345	Glu	Asp	Glu	Gln	Pro 350	Gly	Leu
Val	Ile	Ser 355	His	His	Ala	Asp	His 360	Thr	Leu	Ser	Ser	Phe 365	Cys	Gln	Trp
Gln	Ser 370	Gly	Leu	Met	Gly	Lys 375	Asp	Gly	Thr	Arg	His 380	Asp	His	Ala	Ile
Leu 385	Leu	Thr	Gly	Leu	Asp 390	Ile	Cys	Ser	Trp	Lys 395	Asn	Glu	Pro	Cys	Asp 400
Thr	Leu	Gly	Phe	Ala 405	Pro	Ile	Ser	Gly	Met 410	Cys	Ser	Lys	Tyr	Arg 415	Ser
Cys	Thr	Ile	Asn 420	Glu	Asp	Thr	Gly	Leu 425	Gly	Leu	Ala	Phe	Thr 430	Ile	Ala
His	Glu	Ser 435	Gly	His	Asn	Phe			Ile		_		Glu	Gly	Asn
Met	Cys 450	Lys	Lys	Ser	Glu	Gly 455	Asn	Ile	Met	Ser	Pro 460	Thr	Leu	Ala	Gly
Arg 465	Asn	Gly	Val	Phe	Ser 470	Trp	Ser	Pro	Cys	Ser 475	Arg	Gln	Tyr	Leu	His 480
Lys	Phe	Leu	Ser	Thr 485	Ala	Gln	Ala	Ile	Cys 490	Leu	Ala	Asp	Gln	Pro 495	Lys
Pro	Val	Lys	Glu 500	Tyr	Lys	Tyr	Pro	Glu 505	Lys	Leu	Pro	Gly	Glu 510	Leu	Tyr

Asp Ala Asn Thr Gln Cys Lys Trp Gln Phe Gly Glu Lys Ala Lys Leu 515 520 Cys Met Leu Asp Phe Lys Lys Asp Ile Cys Lys Ala Leu Trp Cys His 535 Arg Ile Gly Arg Lys Cys Glu Thr Lys Phe Met Pro Ala Ala Glu Gly 550 Thr Ile Cys Gly His Asp Met Trp Cys Arg Gly Gly Gln Cys Val Lys Tyr Gly Asp Glu Gly Pro Lys Pro Thr His Gly His Trp Ser Asp Trp Ser Ser Trp Ser Pro Cys Ser Arg Thr Cys Gly Gly Val Ser His Arg Ser Arg Leu Cys Thr Asn Pro Lys Pro Ser His Gly Gly Lys Phe 615 Cys Glu Gly Ser Thr Arg Thr Leu Lys Leu Cys Asn Ser Gln Lys Cys 630 635 Pro Arg Asp Ser Val Asp Phe Arg Ala Gln Cys Ala Glu His Asn 650 645 Ser Arg Arg Phe Arg Gly Arg His Tyr Lys Trp Lys Pro Tyr Thr Gln 665 Val Glu Asp Gln Asp Leu Cys Lys Leu Tyr Cys Ile Ala Glu Gly Phe 680 Asp Phe Phe Phe Ser Leu Ser Asn Lys Val Lys Asp Gly Thr Pro Cys 695 700 Ser Glu Asp Ser Arg Asn Val Cys Ile Asp Gly Ile Cys Glu Arg Val 715 710 Gly Cys Asp Asn Val Leu Gly Ser Asp Ala Val Glu Asp Val Cys Gly 725 730 Val Cys Asn Gly Asn Asn Ser Ala Cys Thr Ile His Arg Gly Leu Tyr

745

740

Thr	Lys	His 755	His	His	Thr	Asn	Gln 760	Tyr	Tyr	His	Met	Val 765	Thr	Ile	Pro
Ser	Gly 770	Ala	Arg	Ser	Ile	Arg 775	Ile	Tyr	Glu	Met	Asn 780	Val	Ser	Thr	Ser
Tyr 785	Ile	Ser	Val	Arg	Asn 790	Ala	Leu	Arg	Arg	Tyr 795	Tyr	Leu	Asn	Gly	His 800
Trp	Thr	Val	Asp	Trp 805	Pro	Gly	Arg	Tyr	Lys 810	Phe	Ser	Gly	Thr	Thr 815	Phe
Asp	Tyr	Arg	Arg 820	Ser	Tyr	Äsn	Glu	Pro 825	Glu	Asn	Leu	Ile	Ala 830	Thr	Gly
Pro	Thr	Asn 835	Glu	Thr	Leu	Ile	Val 840	Glu	Leu	Leu	Phe	Gln 845	Gly	Arg	Asn
Pro	Gly 850	Val	Ala	Trp	Glu	Tyr 855	Ser	Met	Pro	Arg	Leu 860	Gly	Thr	Glu	Lys
Gln 865	Pro	Pro	Ala	Gln	Pro 870	Ser	Tyr	Thr	Trp	Ala 875	Ile	Val	Arg	Ser	Glu 880
Cys	Ser	Val	Ser	Cys 885	Gly	Gly	Gly	Gln	Met 890	Thr	Val	Arg	Glu	Gly 895	Cys
Tyr	Arg	Asp	Leu 900	Lys	Phe	Gln	Val	Asn 905	Met	Ser	Phe	Cys	Asn ·910	Pro	Lys
Thr	Arg	Pro 915	Val	Thr	Gly	Leu	Val 920		Cys	Lys	Val	Ser 925	Ala	Cys	Pro
Pro	Ser 930	Trp	Ser	Val	Gly	Asn 935	Trp	Ser	Ala	Cys	Ser 940	Arg	Thr	Cys	Gly
Gly 945	Gly	Ala	Gln	Ser	Arg 950	Pro	Val	Gln	Cys	Thr 955	Arg	Arg	Val	His	Tyr 960
Asp	Ser	Glu	Pro	Val 965	Pro	Ala	Ser	Leu	Cys 970	Pro	Gln	Pro	Ala	Pro 975	Ser
Ser	Arg	Gln	Ala 980	Cys	Asn	Ser	Gln	Ser 985	Cys	Pro	Pro	Ala	Trp 990	Ser	Ala

- Gly Pro Trp Ala Glu Cys Ser His $\,$ Thr Cys Gly Lys Gly $\,$ Trp Arg Lys $\,$ 995 $\,$ 1000 $\,$ 1005
- Arg Ala Val Ala Cys Lys Ser Thr Asn Pro Ser Ala Arg Ala Gln 1010 1015 1020
- Leu Leu Pro Asp Ala Val Cys Thr Ser Glu Pro Lys Pro Arg Met 1025 1030 1035
- His Glu Ala Cys Leu Leu Gln Arg Cys His Lys Pro Lys Lys Leu 1040 1045 1050
- Gln Trp Leu Val Ser Ala Trp Ser Gln Cys Ser Val Thr Cys Glu 1055 1060 1065
- Arg Gly Thr Gln Lys Arg Phe Leu Lys Cys Ala Glu Lys Tyr Val 1070 1075 1080
- Ser Gly Lys Tyr Arg Glu Leu Ala Ser Lys Lys Cys Ser His Leu 1085 1090 1095
- Pro Lys Pro Ser Leu Glu Leu Glu Arg Ala Cys Ala Pro Leu Pro 1100 , 1105 1110
- Cys Pro Arg His Pro Pro Phe Ala Ala Ala Gly Pro Ser Arg Gly 1115 1120 1125
- Ser Trp Phe Ala Ser Pro Trp Ser Gln Cys Thr Ala Ser Cys Gly 1130 1135 1140
- Gly Gly Val Gln Thr Arg Ser Val Gln Cys Leu Ala Gly Gly Arg 1145 1150 1155
- Pro Ala Ser Gly Cys Leu Leu His Gln Lys Pro Ser Ala Ser Leu 1160 1165 1170
- Ala Cys Asn Thr His Phe Cys Pro Ile Ala Glu Lys Lys Asp Ala 1175 1180 1185
- Phe Cys Lys Asp Tyr Phe His Trp Cys Tyr Leu Val Pro Gln His 1190 1200
- Gly Met Cys Ser His Lys Phe Tyr Gly Lys Gln Cys Cys Lys Thr 1205 1210 1215

```
Cys Ser Lys Ser Asn Leu
   1220
<210> 3
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> an artificially synthesized linker sequence
<400> 3
ctagcgcggc cgcaggatcc gactacaagg acgacgatga caaatgataa
                                                              / 50
<210> 4
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> an artificially synthesized linker sequence
                                                                     50
gatcttatca tttgtcatcg tcgtccttgt agtcggatcc tgcggccgcg
<210>
<211>
      34
<212> DNA
<213> Artificial Sequence
<220>
<223> an artificially synthesized primer sequence
<400> 5
                                                                     34
ggactagtct agaagctggg taccagctgc tagc
<210> 6
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> an artificially synthesized primer sequence
                                                                     29
ggactagtgt cgaccggtca tggctgcgc
<210> 7
<211>
      38
<212>
      DNA
<213> Artificial Sequence
<220>
<223> an artificially synthesized primer sequence
```

```
<400> 7
                                                                     38
ggactagtgc catgggaccc gcagcggcag cgcctggg
<210> 8
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> an artificially synthesized primer sequence
<400> 8
gggcggccgc acccctgtga atcgtgcagg ctgagttatt
                                                                     40
<210> 9
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> an artificially synthesized primer sequence
<400> 9
                                                                     41
ggactagtac catgaagccc cgcgcgcgcg gatggcgggg c
<210> 10
<211> 30
<212> DNA
<213> Homo sapiens
<400> 10
                                                                     30
ccctgtggtc aacctcgtag gcagagacca
<210> 11
<211>
      11
<212> PRT
<213> Artificial Sequence
<220>
<223> peptide expressed from polynucleotide comprising NotI recognition
      sequence and FLAG tag
<400> 11
Ala Ala Asp Tyr Lys Asp Asp Asp Lys
<210> 12
<211>
<212> PRT
<213> Homo sapiens
<400> 12
His Glu Ser Gly His
```

<211> 4 <212> I	13 41 DNA Artificial Sequence	
<220> <223>	an artificially synthesized primer sequence	
	13 cac cattgcccat cagtctggac acaactttgg c	41
<211> 4 <212> 1	14 41 DNA Artificial Sequence	
<220> <223> a	an artificially synthesized primer sequence	
	14 ttg tgtccagact gatgggcaat ggtgaaggcc a	41
<211> 3 <212> 1	15 31 DNA Homo sapiens	
	15 agt agcttctgcc agtggcagtc t	31
<211> 3 <212> 1	16 32 DNA Homo sapiens	
	16 tta cggctatcct ccgagcatgg ag	32
<211> 5 <212> 6	17 5023 DNA Homo sapiens	
	17	60
	cta caaaaatttt gcacacaatc attgtaattt tttccactaa agacaagtgt caa tacaatgcta ccttctttga aacctgacta gtttcagctg tgtgtgagat	60 120
		180
	gaa caaaattaca gactaaacag aatctttgta gggcacaaac acatccaatt gtt tcggttgtat ggatggtggt tttacataca aggtaatgtg cccacttgca	240
ctgcttta	agt ttaaagttta tgcaatttag aaaagggtta tgacaaagtt tggtcctttt 🦈	300

1

aatctaaaat	gccatttgtt	tccacatgag	aaagggccct	ggctcctttc	attgtgaaag	360
ggcactgggc	atgggagagc	atgcagccgt	tagaagaaac	tctctctcag	atcctttgct	420
aagcactttg	ttttatttt	taatttaatt	tttattctct	attgaaacgt	ctacttgata	480
ttcaaaatga	cctaagtaat	cagaacctct	gtctgaaagg	aaacaagtgc	taactgtgaa	540
tggtctaaat	aatttacagc	aacattttc	tgtgaagggc	cagatggtaa	atagtttagg	600
ctttgcaggg	cacacagtct	ctgttgcagt	gacttaactc	tgccattgtg	aaagcattca	660
cagacgatct	gcaaacaaat	aaaactttat	ttacaaaatg	agtcagctgg	ccagatttga	720
tcttaggcag	tagagagttt	tctgaccctg	gatgtaaaca	aatgatgaca	aaactgcttt	780
cctaaacttt	gacctcaaag	ttaagagtgc	taagttcttg	aagggctgca	aagtgaagta	840
gtttgaggct	ggcggtttgt	tttgactctt	ccaatatttg	ttctcagggt	tactttgctg	900
ggacaccttt	aaactgaagg	gactccatat	acatatttag	atttccattt	tacctttaaa	960
aattaggcag	gtctggtccc	caatactgta	tggcaccaac	ccatgcgctg	gccactcagt	1020
gccaggagtc	ccttttaagg	cagacacgtg	tgctccagtt	tgcccctccc	tctccatccc	1080
tccctgagac	ggacaggcag	ctgcgagtta	ctgccaccat	gttagatggc	cagtcttaaa	1140
ctcggtccac	tcgtgtgttt	tgcatctcag	ctcccactct	ggcctctata	gcctggactc	1200
aaccacccct	ctttgttacc	tggagacatt	catactgcag	gatgagcgct	gaaatccgtg	1260
caccgctaga	ggaactggga	aacactagtc	attttaaaga	atgttgtttc	tttcttcaca	1320
atgaaaagag	actcatttag	cactgctctg	gtcttactgt	tcttaagcat	accgtaagag	1380
tgaatccttt	tatatcagcc	attcttcttt	ttttccatct	gtttgaactt	acagaagagg	1440
gcccctaggt	atctccatgt	gatagactgg	aaaaaatctc	actccctttc	atgttacact	1500
ggacacaatt	agaagtacgt	agagatcccc	atttatcaag	cgtgcaatgt	actcaggaca	1560
agggaaattc	tgccggcaga	ttctggagac	ttccaggcac	tgccgaaccc	ccccttcaag	1620
gtaagtgtaa	gctccctgag	gtgtgagctg	aggcagacgc	ttgttaggca	ttggcagaga	1680
ggaagggtgg	caggtgtttt	aaggtccctc	ccaatgccag	gctttatgta	aaaaatattt	1740
gcactttgag	gaatggtttc	aaataaatga	ataagagagg	gagtgtgtgt	tgctatggaa	1800
tgaggatgcc	catacacagc	caggcggttc	tactgcccct	acctggggtc	tggggcttca	1860
ggacagccct	agcagggcgc	ctgctgggag	ctctccctgg	gtacccacag	actcgcgaca	1920
ggctgggcaa	agaaagccag	agcccaagac	accatttccc	ccattcatcc	ccctctccaa	1980
agtgtgcaaa	agaggcaacg	tcaagctaag	ctggctgtga	aggacactgg	aaccaaacaa	2040
agggcagctg	aaggcccagg	atccacataa	ggtgtgtgat	gggaaagcag	ccacggatgg	2100

ggagcgccac	acacacacac	gtgtgcaaac	atgcactccc	acgcgcgcag	tcctactgag	2160
aggtgacagc	gtgctggcag	tcctcagagc	cctcgcttgc	tctgggcacc	tcccctgcct	2220
gggctccgac	tttggcggca	tttgaggagc	ccttcagctc	cccactgcac	tgtgggagcc	2280
cctttctggg	ctggccaagg	ctggagccca	ctccctcagc	ttgcagggag	gtgtggaggg	2340
agaggcacga	gcgggaaccg	gggctgcgtg	cagcgcttgc	gggccagctg	gagttccggg	2400
tgggcgtggg	cttggcgggc	cccgcactca	gagcagccgg	ccagccctgc	tggccccggg	2460
caatgaggga	cttagcacct	gggccagtgg	ctgcggaggg	tgtactgggt	ccccagcag	2520
tgccggccca	ccggggctgt	gctcgatttc	ttgccgagcc	ttagctgcct	tcctgcgggg	2580
cagggctcgg	gacctgcagc	ccgccatgcc	tgagcctccc	acccactcca	tgggctcctg	2640
tgcggcccga	gcctccccaa	ggagcgccac	cccctgctcc	acagcgccca	gtcccatgga	2700
ccacccaagg	gctgaggaat	gcgagcgcac	ggcgcaggac	tggcaggcag	ctccacctgc	2760
gccccggtgc	ggggatccac	taggtgaagc	cagctgggat	cctgagtctg	gtggggatgt	2820
ggagagtctt	tatgtctagc	tcagggattg	taaatacacc	aatcagcacc	ctgtgtttag	2880
ctcaaggttt	gtgagtgcac	caatcgatac	tctgtatcta	gctgctctgg	tggggccttg	2940
gagaacctgt	gtgtggaaac	tctgtgtatc	taactaatct	gatggggacg	tggagaacct	3000
ttgtatctag	ctcagggatg	gtaaacgcac	caatcagcgc	cctgacaaaa	caggccactc	3060
ggctctacca	atcagcagga	tgtcgctagg	gccagataag	agaataaaag	caggctgccc	3120
cagccagccg	tggcaaccgg	ctcaggtccc	cttccatgct	gtggaagctt	tgttcttttg	3180
ctttttgcaa	taaatcttac	tactgctcac	tcttttttt	tttttttt	ttttttttt	3240
tgagacggag	tctcgctctg	tcgcccaggc	tggagtgcag	tggcgggatc	tcggctcact	3300
gcaagctccg	cctcccgggt	tcacgccatt	ctcctgcctc	agcctcccaa	gtagctggga	3360
ctacaggcgc	ccgccactac	gcccgtctaa	ttttttgtat	ttttagtaga	gacggggttt	3420
caccgtttta	gccgggatgg	tctcgatctc	ctgacctcgt	gatccgcccg	cctcggcctc	3480
ccaaagtgct	gggattacag	gcgtgagcca	ccgcgcccgg	cctactgctc	actctttggg	3540
tccactctgc	tttcatgagc	tgtaacactc	accgtgaaga	tctgcagctt	cactcctgag	3600
cccagcgaga	ccacgagccc	accgggaaga	acgaacaact	ccagacgctc	tgccttaaga	3660
gctgtaacac	tcaccgccta	ggtctgcagc	ttcaatcctg	agccagcgag	accacgaacc	3720
caccagaagg	aagaaactcc	gaacacatct	gaacatcaga .	agtaacaaac	tccagacgca	3780
ccaccttaag	agctgtaccc	actcaccgcg	agggtatgcg	gcttcattct	tgaagtcagt	3840
gagaccaaga	acccaccaat	tccagacaca	ctatgggctc	acagcgtgta	ctcgcgcaca [.]	3900

cgcagtcagg tgtggatgta	cacccgcgca	cacccaggca	catgtacacc	cgcgcgctca	3960
cacaccccat ccagctacag	cagaattctg	gcgaggctgt	tgaccgcaca	cctgctgcct	4020
ccttggccac cctgtccaca	cagtagcccg	atcgaccccc	gtggcggccg	agacccaggc	4080
ccatccgcag ccctgagacc	tccctaggga	ttgcacccag	cagccagtca	ccggcctccg	4140
cggcctggcc agttgagggt	ggccgtgacc	gcggggccag	gagcgccgcc	acatctcggg	4200
gcaaatggcg cgggggaaga	gtttcctcct	cagcctcccc	gtctccgatc	gctccgcaaa	4260
ctccagagcg aggcacgcgc	ctttaaaggc	aggtccgcgg	ctctcccacg	tcctggcgcc	4320
cggttttccg cacccagtgt	ccccacagct	gtgcccgggc	acagaggcgc	ggccagaccg	4380
cactccgcgg gctgcaggtg	tcccggcctc	tggcggcgcc	ggtgcggccc	ggaggtggga	4440
gcccgcggag ccactgcagt	agctggagtc	ccgccgagtc	cccagcccca	aggcagggca	4500
ggagcgcgca ccggccggag	gtccatgctg	agcatcgccc	gcgccggtgc	ccggcagcct	4560
ctccaactgt gtggtccccg	cgctggcaga	gaggcacgga	ctgcaggccg	tgggcagctc	4620
catcttcccg cgtcctcctc	ctctggcgct	gcccgctgtc	tcccgccttc	cctctgctcc	4680
cctctcgcct ccgcctcagc	gccccgctga	cctcgcctcc	tcccctctgc	tctttgtccc	4740
tgcactctcc cctcctcggt	cctctgaccc	ccccgccctc	acctcctccc	ctcctctc	4800
ccctgcccgc cccgcgctct	cccaccgctc	ccgccgcccc	cgccgccgcg	gctgccactc	4860
cgcccccgc gccgcacgga	gcttcagtaa	taaccccggc	gcggcggcgg	agtcgctgtg	4920
gggaateete eegegetetg	cctgggtcgg	gtcctccctg	cccgctcgca	cgctgccggc	4980
cggggaccct ccggtggccc	ctagcccctc	ggagcgctcc	tgg		5023
<pre><210> 18 <211> 30 <212> DNA <213> Homo sapiens <400> 18 tttgagacgg agtctcgctc <210> 19 <211> 29 <212> DNA <213> Homo sapiens</pre>	tgtcgcccag				30
<400> 19 ccaggagcgc tccgaggggc	taggggcca				29

<210> 20 <211> 43

<212> <213>	DNA Artificial Sequence	
<220> <223>	an artificially synthesized primer sequence	
<400> aagagc	20 totg ctagotgaga oggagtotog ototgtogoo cag	43
<210> <211> <212>	•	
<213>	Artificial Sequence	
<220> <223>	an artificially synthesized primer sequence	
<400>	21	
	ttag atctccagga gcgctccgag gggctagggg cca	43
<210> <211> <212>	22 42 DNA	
	Artificial Sequence	
<220> <223>	an artificially synthesized primer sequence	
<400>	22	
	gtat atgaactaca aaaattttgc acacaatcat tg	42
<210>	23	
<210>	25 25	
	DNA	
<213>	Homo sapiens	
<400>	23	
	gccc ttcacagaaa aatgt	25
_	- · · · · · · · · · · · · · · · · · · ·	
<210>	24	
<211>	24	
<212>	DNA	
<213>	Homo sapiens	
<400>	24	
	tato tocatgtgat agac	24
, ,		
<210>	25	
<211>	30	
<212>	DNA	
<213>	Homo sapiens	
<400>	25	
	gcta aggeteggea agaaategag	30

<210>	26			
<211>	31			
<212>	DNA			
<213>	Homo sapiens			
<400>	26			
	cct tttaatctaa	aatoccattt	a	31
geeegg	ccc cccaacccaa	aacyccactc	9	J I
.010	0.7			
<210>	27			
<211>	25			
<212>	DNA			
<213>	Homo sapiens		-	
<400>	27			
atggtgt	ctt gggctctggc	tttct		25
<210>	28			
<211>	31			
<212>	DNA		•	
<213>				
<213/	Homo sapiens			
<400>	28			~ -
aacaaa	ggc agctgaaggc	ccaggatcca	C	31
			•	
<210>	29			
<211>	28			
<212>	DNA			
<213>	Homo sapiens			
	-			
<400>	29			
	ggt ggccaaggag	gcagcagg		28
cggacag	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	goagoagg		
<210>	30			
<211>				
	19			
<212>	DNA			
<213>	Rattus sp.			
<400>	30			
agcctag	gete eegateeaa			19
<210>	31			
<211>	21			
<212>	DNA			
<213>	Rattus sp.			
	•			
<400>	31			
	cag agtctccaca	t		21
		-		
<210>	32			
<211>	15			
<211>				
<212>	DNA			

<400> aagcago	32 gegg eegag	15
<210>	33	
<211>	21	
<212>	DNA	
<213>	Rattus sp.	
<400>	33	
atcaaag	ggtg gaagaatggg a	21