Appendix Viscosity

Dustyn Stanley

May 2025

A Parameter tracking for the viscosity ν nu

Throughout all proofs we write Navier-Stokes in the dimensional form

$$\partial_t u + (u \cdot \nabla)u + \nabla p = \nu \Delta u, \qquad \nabla \cdot u = 0,$$
 (1)

with a fixed positive viscosity $\nu > 0$.

A. Conventions

[label=A.0, leftmargin=2em]Scaling macro. All files load \newcommand{\nucl}{\nu}, so replacing "\nucl" in any line shows exactly where ν enters. Parabolic rescaling. To pass from the physical system eq:NS-nu to the normalised $\nu = 1$ version used inside many lemmas, apply

$$x' = x$$
, $t' = \nu t$, $u'(x', t') = u(x, t)$, $p'(x', t') = \nu^{-1} p(x, t)$.

Under this map Δ picks up the factor ν^{-1} , cancelling the right-hand side of eq:NS-nu. The Sobolev norms transform as $\|u\|_{H^s} = \nu^0 \|u'\|_{H^s}$. Constant tracking rule. Unless stated otherwise, every constant $C(\cdots)$ in an estimate satisfies

$$C(\nu, data) = \nu^{-k} C_0(data),$$

with an integer exponent $k \geq 0$ indicated in the surrounding text.

B. Global contraction of the heat semigroup

[Strict contraction] For every $s \ge 0$ and $\alpha > 0$,

$$||e^{\alpha \Delta} f||_{H^s} \le e^{-\alpha \lambda_s} ||f||_{H^s}, \qquad \lambda_s = 14(2\pi)^{2-2s}.$$

Consequently the suppression operator $L_{\alpha} = e^{\alpha \Delta}$ is a strict contraction on each Sobolev space H^s , independently of ν .

Diagonalise in Fourier; $e^{\alpha\Delta}\hat{f}(k)=e^{-\alpha|k|^2}\hat{f}(k)$ and $|k|^2\geq (2\pi)^2$ for $k\neq 0$ on 3 . Substitute into $\|\cdot\|_{H^s}^2=\sum_k k^{2s}|\hat{f}(k)|^2$.

C. Quick reference table

	Symbol	Meaning / location
		Physical viscosity; macro defined in the preamble.
3.	$\int_0^T \ \omega\ _{L^\infty}$	BKM integral; final estimates depend on ν^{-1} linearly.
	$\widetilde{C}_m(u)$	Constants in Lemma ??; scale like ν^{-m} .
	$e^{\alpha\Delta}$	Contraction factor $e^{-\alpha\lambda_s}$ independent of ν .

With these unified rules every proof can safely set $\nu=1$ inside technical lemmas and restore ν at the statement level via the parabolic rescaling map in **A.2**. A search for "\nucl" lists the exact lines where ν appears.