# 演習:主成分分析(sklearn)

- 設定
  - 乳がん検査データを利用しロジスティック回帰モデルを作成
  - 主成分を利用し2次元空間上に次元圧縮
- 課題
  - 32次元のデータを2次元上に次元圧縮した際に、うまく判別できるかを確認

#### In [26]:

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegressionCV
from sklearn.metrics import confusion_matrix
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('ggplot')
```

### In [2]:

cancer\_df = pd.read\_csv('./data/cancer.csv', encoding='utf-8')

## データの確認

#### In [7]:

print(cancer\_df.shape)
display(cancer\_df.head())

(569, 33)

|   | id       | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | smoothnes |
|---|----------|-----------|-------------|--------------|----------------|-----------|-----------|
| 0 | 842302   | М         | 17.99       | 10.38        | 122.80         | 1001.0    |           |
| 1 | 842517   | М         | 20.57       | 17.77        | 132.90         | 1326.0    |           |
| 2 | 84300903 | М         | 19.69       | 21.25        | 130.00         | 1203.0    |           |
| 3 | 84348301 | М         | 11.42       | 20.38        | 77.58          | 386.1     |           |
| 4 | 84358402 | М         | 20.29       | 14.34        | 135.10         | 1297.0    |           |
|   |          |           |             |              |                |           |           |

5 rows × 33 columns

前処理

## In [8]:

cancer\_df = cancer\_df.drop('Unnamed: 32', axis=1) # 不要列を削除

## In [9]:

print(cancer\_df.shape)

(569, 32)

- diagnosis: 診断結果 (良性がB / 悪性がM)
- 説明変数は3列以降、目的変数を2列目としロジスティック回帰で分類

## In [10]:

```
# 診断結果を \{良性: 0, 悪性: 1\} に変換 cancer_df['diagnosis'] = cancer_df['diagnosis'].apply(lambda x: 1 if x == 'M' else 0)
```

#### In [11]:

```
# 目的変数の抽出
```

y = cancer\_df['diagnosis']

## In [12]:

#### # 説明変数の抽出

X = cancer\_df.drop('diagnosis', axis=1)

#### In [13]:

display(X.head(3))

|   | id       | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_mean | CC |
|---|----------|-------------|--------------|----------------|-----------|-----------------|----|
| 0 | 842302   | 17.99       | 10.38        | 122.8          | 1001.0    | 0.11840         |    |
| 1 | 842517   | 20.57       | 17.77        | 132.9          | 1326.0    | 0.08474         |    |
| 2 | 84300903 | 19.69       | 21.25        | 130.0          | 1203.0    | 0.10960         |    |

3 rows × 31 columns

## 学習

## In [14]:

## # 学習用とテスト用でデータを分離

X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, random\_state=0)

#### In [15]:

```
# 標準化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

### In [16]:

```
# ロジスティック回帰で学習
model_lr = LogisticRegressionCV(cv=10, random_state=0)
```

## モデルの検証

## In [18]:

```
# スコアの確認
score_train = model_lr.score(X_train_scaled, y_train)
score_test = model_lr.score(X_test_scaled, y_test)

print(f'Train score: {score_train:.3f}')
print(f'Test score: {score_test:.3f}')
```

Train score: 0.988 Test score: 0.965

#### In [19]:

```
# テストデータから予測
y_pred = model_lr.predict(X_test_scaled)
```

#### In [21]:

```
# 混同行列
confusion_mat = confusion_matrix(y_true=y_test, y_pred=y_pred)
print(f'Confustion Matrix:\n{confusion_mat}')
```

Confustion Matrix:

[[89 1] [449]]

#### 考察:

ロジスティック回帰では、分類精度自体は非常に高い結果となった。 ただし、学習データのスコアよりテストデータのスコアが悪いことから過学習が疑われる。

## 主成分分析

#### In [36]:

```
pca = PCA(n_components=30)
pca.fit(X_train_scaled)
```

### Out[36]:

PCA(n\_components=30)

#### In [37]:

```
# 寄与率
ratio = pca.explained_variance_ratio_
print(ratio)
print(len(ratio))
```

```
[4.19356639e-01 1.89758038e-01 9.28752931e-02 6.47347758e-02 5.53789199e-02 3.92849216e-02 3.30951990e-02 1.98419580e-02 1.44186823e-02 1.30499234e-02 1.12985749e-02 1.00544239e-02 8.63128818e-03 7.60047785e-03 4.85373978e-03 3.03015543e-03 2.56268889e-03 1.92464885e-03 1.59237279e-03 1.44838730e-03 1.02528778e-03 1.01315561e-03 8.26568340e-04 6.97877320e-04 5.81699935e-04 5.28997538e-04 2.51858423e-04 2.09625384e-04 4.54459005e-05 2.48265533e-05]
```

## In [38]:

## # 寄与率をグラフ化

plt.bar([n for n in range(1, len(ratio) + 1)], ratio)
plt.show()



#### 考察:

寄与率を見ると、最初の2成分は非常に重要に見える。 7成分くらいまでは、必要そうに見える。

## 次元圧縮

#### In [40]:

```
# 2次元に次元圧縮する
pca2 = PCA(n_components=2)
X_train_pca2 = pca2.fit_transform(X_train_scaled)
```

#### In [41]:

```
print(X_train_pca2.shape)
```

(426, 2)

#### In [43]:

```
# 寄与率 (リストの要素数が2であることを確認)
ratio2 = pca2.explained_variance_ratio_
print(ratio2)
print(len(ratio2))
```

```
[0.41935664 0.18975804]
2
```

## In [45]:

tmp\_df = pd.DataFrame(X\_train\_pca2)
display(tmp\_df.head())

|   | 0         | 1         |
|---|-----------|-----------|
| 0 | -2.863510 | -0.280603 |
| 1 | -3.267414 | 1.073180  |
| 2 | 3.752043  | -3.397107 |
| 3 | -3.493976 | -2.684386 |
| 4 | -0.747713 | -2.469012 |

## In [47]:

```
tmp_df['Outcome'] = y_train.values
benign = tmp_df[tmp_df['Outcome'] == 0] # 0が両性
malignant = tmp_df[tmp_df['Outcome'] == 1] # 1が悪性
```

## In [49]:

```
plt.scatter(x=benign[0], y=benign[1], marker='o', label='Benign') # 良性は○でマーク plt.scatter(x=malignant[0], y=malignant[1], marker='^', label='Malignant') # 悪性は△でマーク plt.xlabel('PC 1') # 第1主成分をx軸 plt.ylabel('PC 2') # 第2主成分をy軸 plt.legend() plt.show()
```



## 考察:

次元圧縮後のクラスタ分類をした結果、ある直線を境界に分類されたように見える。 良性が悪性に分類されたように見える部分があるが、その逆はあまり無さそうに見える。 良性か悪性かの分類では、良性が悪性と分類される分(偽陽性)には問題は少ないと思われるため、 中々良いクラスタ分類が出来ているようには見える。