

前言

本文档描述采用USB HID 进行升级的协议,使用此协议与上位机进行通信,达到升级固件的目的。 另外,使用HID设备与上位机通信,可以不需要驱动,直接将USB接到PC就可以进行升级。

最計

1	命令列表				
2	命令	命令详解			
	2.1	0x5AA0 进入 IAP 模式	. 4		
	2.2	0x5AA1 开始下载	. 4		
	2.3	0x5AA2 设置下载地址	. 4		
	2.4	0x5AA3 下载数据命令(1Kbyte 对齐多个包发送)	. 4		
	2.5	0x5AA4 下载结束	. 4		
	2.6	0x5AA5 固件 CRC 校验	. 4		
	2.7	0x5AA6 跳转命令	. 4		
	2.8	0x5AA7 获取 IAP 设置的 User Code 地址	. 5		
	2.9	0x5AA8 获取 SPI FLASH 大小	. 5		
	2.10	0x5AA9 设置 SPI FLASH 下载地址	. 5		
	2.11	0x5AAA 下载数据命令(按 Page 大小对齐多个包发送)	. 5		
	2.12	0x5AAB SPI FLASH CRC 校验	. 5		

1 命令列表

表 1 命令列表

命令值	描述	
0x5AA0	进入 IAP 模式	
0x5AA1	开始下载	
0x5AA2	设置地址(按 1K 对齐)	
0x5AA3	下载数据命令	
0x5AA4	下载结束	
0x5AA5	CRC 校验	
0x5AA6	跳转命令(跳转到用户 code)	
0x5AA7	获取 IAP 设置的 User Code 地址	
0x5AA8	获取 SPI FLASH SIZE	
0x5AA9	设置 SPI FLASH 下载地址	
0x5AAA	SPI FALSH 数据下载	
0x5AAB	SPI FLASH 数据 CRC 校验	

注意1: HID MaxPacket = 64Byte

注意2: 每一个包的前面两个Byte固定为命令

注意3: 命令按照MSB,LSB的顺序传输

ACK: 0XFF00, NACK: 0x00FF

2 命令详解

2.1 0x5AA0 进入 IAP 模式

作为一个特定的命令,当用户APP收到这个命令之后将进入IAP 模式。实现方式为收到这个命令之后擦除Flag然后Reset

上位机: [0x5A, 0xA0]

IAP设备响应: [0x5A, 0XA0, ACK/NACK]

2.2 0x5AA1 开始下载

上位机: [0x5A,0xA1]

IAP设备响应: [0x5A,0xA1,ACK/NACK]

2.3 0x5AA2 设置下载地址

设置下载地址需按照1Kbyte对齐,每下载1Kbyte数据之后,都需要重新设置下载地址。

上位机(命令+地址): [0x5A, 0xA2, 0x08, 0x00, 0x40, 0x00]

IAP设备响应: [0x5A,0xA2, ACK/NACK]

2.4 0x5AA3 下载数据命令(1Kbyte 对齐多个包发送)

下载数据命令采用 命令+长度+数据的格式进行发送,每包最大数据量为60Byte (64 – 命令 – 长度),当发送数据达到1Kbyte时,上位机需要等待设备的ACK响应。此时设备需将1Kbyte的数据写到FLASH。

上位机(命令(2Byte)+长度(2 Byte)+数据(n byte)):[0x5A,0xA3,LEN1, LEN0, DATA0....DATAn] 收完1K数据后IAP设备响应: [0x5A, 0XA3, ACK/NACK]

2.5 0x5AA4 下载结束

上位机: [0x5A, 0xA4]

IAP设备响应: [0x5A, 0xA4, ACK/NACK]

2.6 0x5AA5 固件 CRC 校验

上位机传输固件起始地址和固件大小/1K(固件大小按1K对齐,不足补0xFF),由IAP计算CRC之后返回给上位机。

上位机: [0x5A,0xA5, 0x08, 0x00, 0x40, 0x00, LEN1, LEN0]

IAP设备响应: [0x5A, 0xA5, ACK/NACK, CRC3, CRC2, CRC1, CRC0]

2.7 0x5AA6 跳转命令

跳转命令将跳转到用户代码进行运行

上位机: [0x5A,0xA6, 0x08, 0x00, 0x40, 0x00]

IAP设备响应: [0x5A,0xA6,ACK/NACK]

2.8 0x5AA7 获取 IAP 设置的 User Code 地址

返回IAP设置的APP 地址

上位机: [0x5A, 0xA7]

IAP 设备响应: [0x5A, 0xA7, ACK/NACK, 0x08, 0x00, 0x40, 0x00]

2.9 0x5AA8 获取 SPI FLASH 大小

返回SPI FLASH 大小(Size), SectorSize (Ssize)大小, PageSize大小(Psize)

上位机: [0x5A, 0xA8]

IAP 设备响应: [0x5A, 0xA8, ACK/NACK, Size3, Size2, Size1, Size0, Ssize3, Ssize2, Ssize1, Ssize0, PSize3, PSize2, PSize1, PSize0]

2.10 0x5AA9 设置 SPI FLASH 下载地址

设置下载地址需按照Page对齐(Page 大小根据0x5AA8获取),每下载一个Page数据之后,都需要重新设置下载地址。

上位机(命令+地址): [0x5A, 0XA9, 0x00, 0x00, 0x40, 0x00]

IAP设备响应: [0x5A,0XA9, ACK/NACK]

2.11 0x5AAA 下载数据命令(按 Page 大小对齐多个包发送)

下载数据命令采用 命令+长度+数据的格式进行发送,每包最大数据量为60Byte (64 – 命令 – 长度),当发送数据达到1个Page时,上位机需要等待设备的ACK响应。此时设备需将1个Page大小的数据写到FLASH。

上位机(命令(2Byte)+长度(2 Byte)+数据(n byte)):[0x5A,0xAA,LEN1, LEN0, DATA0....DATAn] 收完1K数据后IAP设备响应: [0x5A, 0XAA, ACK/NACK]

2.12 0x5AAB SPI FLASH CRC 校验

上位机传输需要校验的起始地址和page数(page大小根据0x5AA8获取到的page进行计算),由IAP 计算CRC之后返回给上位机。

上位机: [0x5A,0xAB, 0x00, 0x00, 0x40, 0x00, LEN1, LEN0]

IAP设备响应: [0x5A, 0xAB, ACK/NACK, CRC3, CRC2, CRC1, CRC0]

3 版本历史

表 2 文档版本历史

日期	版本	变更
2018.10.15	1.0.0	最初版本

2018.10.15 第 7 页 版本 1.0.1