Géométrie de l'espace

Dans tout ce qui suit l'espace est rapporté au repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$.

Activité

On considère dans l'espace les points A(2;1;3), B(1;1;-2) et C(2;-1;0).

- 1. Déterminer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- 2. a. Donner une représentation paramétrique de la droite (AB).
 - b. Est-ce que le point D(4, -3, 2) appartient à (AB) ?
 - c. Donner deux équations cartésiennes de la droite (AB).
- 3. Donner une équation cartésienne du plan (ABC).

1. Produit scalaire dans l'espace et applications

1. Définition:

Définition

Soient \vec{u} et \vec{v} deux vecteurs de l'espace, A, B et C trois points de l'espace tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$. Il existe au moins un plan (P) contenant les points A, B et C. Le produit scalaire des vecteurs \vec{u} et \vec{v} , noté $\vec{u} \cdot \vec{v}$, est le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$ dans le plan (P).

Remarque

Toutes les propriétés du produit scalaire dans le plan s'étendent dans l'espace.

Conséquences

- Soient \vec{u} et \vec{v} deux vecteurs du plan et A, B et C trois points du l'espace tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$. Soit H le projeté orthogonal de C sur la droite (AB). On a $\vec{u} \cdot \vec{v} = \overrightarrow{AB} \cdot \overrightarrow{AH}$.
- Si \vec{u} et \vec{v} sont deux vecteurs non nuls, alors $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}, \vec{v})$.
- \vec{u} et \vec{v} sont orthogonale si et seulement si $\vec{u} \cdot \vec{v} = 0$.
- Le produit scalaire $\vec{u} \cdot \vec{u}$ est un nombre positif, noté \vec{u}^2 , et appelé le carré scalaire de \vec{u} .

Propriété

Soient \vec{u}, \vec{v} et \vec{w} Trois vecteurs de l'espace et $k \in \mathbb{R}$.

- $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$;
- $(k\vec{u}) \cdot \vec{v} = k(\vec{u} \cdot \vec{v});$
- $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w};$
- $(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2$.

2. Expression analytique du produit scalaire dans l'espace :

Propriété

Si $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ et $\vec{v} = x'\vec{i} + y'\vec{j} + z'\vec{k}$ deux vecteurs de l'espace, alors : $\vec{u} \cdot \vec{v} = xx' + yy' + zz'$.

Conséquences

- Si $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$, $||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$.
- Si $A(x_A, y_A, z_A)$ et $B(x_B, y_B, z_B)$ deux points de l'espace, alors $AB = \sqrt{(x_B x_A)^2 + (y_B y_A)^2 + (z_B z_A)^2}$.

Application

Soient A(2, -1, 1), B(5, 3, 1) et C(6, -4, 1) trois points de l'espace. Calculer AB, AC et $\overrightarrow{AB} \cdot \overrightarrow{AC}$ puis en déduire la nature du triangle ABC.

- 3. Applications du produit scalaire
- a. Orthogonalité de deux droites dans l'espace

Propriété

Soient (D_1) et (D_2) deux droites de l'espace dirigées respectivement par $\vec{u_1}$ et $\vec{u_2}$. (D_1) et (D_2) sont perpendiculaire si et seulement si $\vec{u_1} \cdot \vec{u_2} = 0$.

Application

Montrer que $(D_1) \perp (D_2)$ dans les cas suivants :

a.
$$(D_1)$$
 est dirigée par $\vec{u}(1,2,3)$ et (D_2) :
$$\begin{cases} x=1+4t \\ y=2-2t \\ z=5 \end{cases}$$

- b. (D_1) est définie par les équations $x-2=\frac{y+1}{2}=\frac{5-z}{2}$ et (D_2) : $\begin{cases} x=3+2t\\ y=5-3t\\ z=-2-2t \end{cases}$, $t\in\mathbb{R}$.
- b. Équation cartésienne d'un plan défini par un point et un vecteur normal

Propriété

Soient $\vec{u}(a,b,c)$ un vecteur non nul et A un point de l'espace et $k \in \mathbb{R}$. L'ensemble des points M de l'espace tels que $\vec{u} \cdot \overrightarrow{AM} = k$ est un plan d'équation ax + by + cz + d = 0 $(d \in \mathbb{R})$.

Exemple

Soit $\vec{u}(2,3,-5)$ un vecteur et A(0,2,-1) un point de l'espace. Déterminons (P) l'ensemble des points M de l'espace tels que $\vec{u} \cdot \overrightarrow{AM} = -2$. On a $M(x,y,z) \in (P) \Leftrightarrow \vec{u} \cdot \overrightarrow{AM} = -2$

$$\Leftrightarrow 2(x) + 3(y-2) - 5(z+1) = -2$$

$$\Leftrightarrow 2x + 3y - 5z + 1 = 0$$

D'où (P) est le plan d'équation 2x + 3y - 5z + 1 = 0.

Propriété

Soit $\vec{n}(a,b,c)$ un vecteur non nul et $A(x_A,y_A,z_A)$ un point de l'espace. Il existe un unique plan (P) passant par A et de vecteur normal \vec{n} (C-à-d est un vecteur directeur d'une droite orthogonale à (P)).

$$M(x, y, z) \in (P) \Leftrightarrow \overrightarrow{AM} \perp \overrightarrow{n} \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{n} = 0.$$

Exemple

Déterminons une équation cartésienne du plan (P) passant par A(1,-2,3) et de vecteur normal $\vec{n}(1,-3,-2)$. Soit M(x,y,z) un point de (P). On a $\overrightarrow{AM}(x-1,y+2,z-3)$. On a $\overrightarrow{AM}\cdot\vec{n}=0\Leftrightarrow (x-1)-3(y+2)-2(z-3)=0$

$$\Leftrightarrow x - 3y - 2z - 1 = 0.$$

Méthode II : Puisque (P) est de vecteur normal $\vec{n}(1, -3, -2)$, alors (P) : x - 3y - 2z + d = 0. Or $A \in (P)$, alors 1 - 3(-2) - 2(3) + d = 0 et d = -1. D'où (P) : x - 3y - 2z - 1 = 0.

Application

- 1. Déterminer une équation cartésienne du plan (P) passant par A et de vecteur normal \vec{n} dans les cas suivants :
 - a. A(1,0,5) et $\vec{n}(-1,1,0)$.
 - b. $A(\sqrt{2}, -2, 5)$ et $\vec{n}(-1, 1, 0)$.
- 2. Déterminer une équation cartésienne du plan (P) passant par A et orthogonal à la droite

(D):
$$\begin{cases} x = 2 - 3t \\ y = -3 + t \\ z = 4 - 2t \end{cases}, t \in \mathbb{R}.$$

3. Donner une équation cartésienne du plan médiateur (P) du segment [MN] tel que M(0,5,-1) et N(2,1,1).

Exercice

On considère dans l'espace les points A(1;1;2), B(0;1;1) et le vecteur $\vec{n} = \vec{i} + \vec{j} - \vec{k}$.

- 1. Vérifier que les points O, A et B ne sont pas alignés.
- 2. Montrer que le vecteur \vec{n} est orthogonal aux vecteurs \overrightarrow{OA} et \overrightarrow{OB} .
- 3. En déduire une équation cartésienne du plan (OAB).
- 4. Donner une représentation paramétrique de la droite passant par le point A est orthogonale au plan (OAB).

c. Orthogonalité de deux plans dans l'espace

Propriété

Soient (P) et (Q) deux plans de l'espace et $\vec{n}_{(P)}$ et $\vec{n}_{(Q)}$ sont respectivement deux vecteurs normaux de (P) et (Q).

- (P) et (Q) sont orthogonales si et seulement si $\vec{n}_{(Q)} \cdot \vec{n}_{(P)} = 0$.
- (P) et (Q) sont parallèles si et seulement si $\vec{n}_{(Q)}$ et $\vec{n}_{(P)}$ sont parallèles.

Application

Etudier l'orthogonalité des plans (P) et (Q).

- (P): 2x + z 1 = 0 et (Q): x 2y 2z + 1 = 0.
- (P): x y 4z + 1 = 0 et (Q): 4x y 2z 3 = 0.

4. Distance d'un point de l'espace à un plan

Soient (P) un plan et A un point de l'espace et H la projection orthogonale de A sur le plan (P). La distance du point A au plan (P) est la distance AH et on la note par d(A, (P)).

Propriété

Soient (P) un plan d'équation ax + by + cz + d = 0 et $A(x_A, y_A, z_A)$ un point de l'espace. La distance du point A au plan (P) est : $d(A, (P)) = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + c^2}}$.

Exemple

Calculons la distance du point A(1,-1,2) du plan (P) d'équation (P): 2x+y-z+1=0. On a $\vec{n}(2,1,-1)$ est un vecteur normal de (P). Donc $d(A,(P))=\frac{|2(1)+(-1)-2+1|}{\sqrt{2^2+1^2+(-1)^2}}=\frac{0}{\sqrt{6}}=0$, on déduit que $A\in (P)$.

Application

On considère (P) le plan d'équation x+y+z+1=0 et A(1,2,0) est point de l'espace.

- 1. Calculer d(A, (P)).
- 2. Déterminer une représentation paramétrique de la droite (D) passant par A est orthogonal à (P).
- 3. Déterminer les coordonnées du point H le projeté orthogonal de A sur (P).

Exercice

On considère les points A(-1,0,1), B(1,2,-1) et C(1,-1,2) et soit (P) le plan d'équation x+y-z=0.

- 1. a. Donner une représentation paramétrique de la droite (AB). b. Vérifier que la droite (AB) est orthogonale à (P). c. Déterminer les coordonnées du point d'intersection de (AB) et (P).
- 2. Montrer que la droite (AC) est parallèle à (P).
- 3. Donner une équation cartésienne du plan (Q) passant par B et parallèle à (P).

II. Etude analytique d'une sphère

1. Equation cartésienne d'une sphère

La sphère (S) de centre $\Omega(a,b,c)$ et de rayon R est l'ensemble des points M de l'espace tels que $\Omega M=R$ et on la note par $S(\Omega,R)$. $M(x,y,z)\in (S)\Leftrightarrow \Omega M=R\Leftrightarrow \Omega M^2=R^2\Leftrightarrow (x-a)^2+(y-b)^2+(z-c)^2=R^2$.

$$\Leftrightarrow x^2 + y^2 + z^2 - 2ax - 2by - 2cz + a^2 + b^2 + c^2 = R^2$$

Cette équation est appelée équation cartésienne de la sphère (S).

Application

- 1. Donner une équation cartésienne du sphère (S_1) de centre $\Omega(2,0,1)$ et de rayon $R=\sqrt{2}$.
- 2. a. Donner une équation cartésienne du sphère (S_2) de centre $\Omega(1,-1,2)$ et passant par le point A(-1,4,5).
 - b. Est-ce que le point B(1,2,-2) appartient à (S_2) ?

Propriété

Soient A et B deux points de l'espace. L'ensemble des points M de l'espace tels que $\overrightarrow{AM} \cdot \overrightarrow{BM} = 0$ est la sphère de diamètre [AB].

Application

Donner, par deux méthodes, une équation cartésienne de la sphère de diamètre [AB] telle que A(-1,3,2) et B(-3,1,0).

a. Etude de l'ensemble des points M(x,y,z) tels que $x^2+y^2+z^2+ax+by+cz+d=0$

Propriété

Soient a, b et c et d des réels tels que $(a,b,c) \neq (0,0,0)$ et (S) l'ensemble des points M(x,y,z) de l'espace tels que $x^2 + y^2 + z^2 + ax + by + cz + d = 0$.

- Si $a^2 + b^2 + c^2 4d > 0$, (S) est une sphère de centre $\Omega(-\frac{a}{2}, -\frac{b}{2}, -\frac{c}{2})$ et de rayon $R = \frac{\sqrt{a^2 + b^2 + c^2 4d}}{2}$.
- Si $a^2 + b^2 + c^2 4d = 0$, (S) est le point $\Omega(-\frac{a}{2}, -\frac{b}{2}, -\frac{c}{2})$.
- Si $a^2 + b^2 + c^2 4d < 0$, (S) est l'ensemble vide.

Exemple

Soit (S) l'ensemble des points M(x,y,z) tels que (S): $x^2 + y^2 + z^2 - 2y + 3z + 2 = 0$. On a $x^2 + y^2 + z^2 - 2y + 3z + 2 = 0 \Leftrightarrow x^2 + y^2 - 2y + z^2 + 3z + 2 = 0$

$$\Leftrightarrow (x-0)^2 + (y-1)^2 - 1 + (z + \frac{3}{2})^2 - \frac{9}{4} + 2 = 0$$

$$\Leftrightarrow (x-0)^2 + (y-1)^2 + (z+\frac{3}{2})^2 = (\frac{\sqrt{5}}{2})^2$$

D'où (S) est une sphère de centre $\Omega(0,1,-\frac{3}{2})$ et de rayon $R=\frac{\sqrt{5}}{2}$.

Application

Déterminer (S) l'ensemble des points M(x,y,z) dans les cas suivants :

a.
$$x^2 + y^2 + z^2 - 4x - 6y = 0$$
.

b.
$$x^2 + y^2 + z^2 - 4x + 2y + 2z + 19 = 0$$
.

c.
$$x^2 + y^2 + z^2 + 4y - 2z + 5 = 0$$
.

b. Représentation paramétrique d'une sphère

Soit (S) une sphère de centre $\Omega(a,b,c)$ et de rayon R.

$$M(x, y, z) \in (S) \Leftrightarrow \begin{cases} x = a + R \sin \varphi \cos \theta \\ y = b + R \sin \varphi \sin \theta \\ z = c + R \cos \varphi \end{cases}, (\varphi, \theta) \in \mathbb{R}^2$$

Ce système est appelé représentation paramétrique de (S).

Application

Déterminer une représentation paramétrique la sphère (S) d'équation $x^2 + y^2 + z^2 = 1$.

4. Position relative d'un plan et d'une sphère et d'une sphère et une droite

a. Position relative d'une sphère et un plan

Propriété

Soient (S) la sphère de centre Ω et de rayon R et (P) un plan dans l'espace et $d = d(\Omega, (P))$.

- Si d > R, alors (P) ne coupe pas (S).
- Si d=R, alors (P) est tangent à (S) en un point H le projeté orthogonale de Ω sur (P).
- Si d < R, alors (P) coupe (S) suivant un cercle de centre H le projeté orthogonale de Ω sur (P) et de rayon $r = \sqrt{R^2 d^2}$.

Application

On considère l'ensemble (S) des points M(x,y,z) de l'espace tels que $x^2+y^2+z^2+2x-2y+2z-1=0$.

- 1. Montrer que (S) est une sphère en déterminant son centre et son rayon R.
- 2. Etudier la position relative de (S) et les plans suivants :

a.
$$(P_1): 2x + y + 2z - 3 = 0$$
.

b.
$$(P_2): x - 2y + 2z + 3 = 0$$
.

c.
$$(P_3): x + 2y - z + 9 = 0$$
.

b. Position relative d'une sphère et une droite

L'intersection d'une sphère et d'une droite est soit un deux-points, un point ou l'ensemble vide.

Application

Déterminer la position relative de la droite (D) de représentative paramétrique
$$\begin{cases} x=t & \text{avec les sphères } (S_1) : x^2+y^2+z^2+2x = 0 \text{ et } (S_2) : x^2+y^2+z^2-2x-2y-6z+\frac{31}{3}=0. \end{cases}$$

Exercice

Soit (P) le plan d'équation 2x-2y-5=0 et soit (S) l'ensemble des points M(x,y,z) tels que: $x^2+y^2+z^2-2x+4y+6z+11=0$.

- 1. Montrer que (S) est une sphère dont on déterminera le centre Ω et le rayon R.
- 2. Montrer que le plan (P) coupe la sphère (S) selon un cercle (C) dont on déterminera le centre H et le rayon r.
- 3. Déterminer une équation cartésienne de chacun des deux plans tangents à (S) et parallèle à (P).
- 4.a. Soit (Q) le plan d'équation x + y + z + 1 = 0.
 - a. Vérifier que le plan (P) est tangent à la sphère (S) puis déterminer leur point de contact.
- 5.a. Vérifier que $(P) \perp (Q)$.
 - b. Donner une représentation paramétrique de la droite (Δ) intersection de (P) et (Q).
- 6.a. vérifier que le point A(2; -1; -2) est un point de la sphère (S).
 - b. Déterminer une équation cartésienne du plan (Q) tangente à la sphère (S) au point A.

III. Produit vectoriel

1. Définition

Trois demi-droites non coplanaires de l'espace [OI), [OJ) et [OK) constituent dans cette ordre un **trièdre** noté ([OI), [OJ), [OK)). Le **bonhomme d'ampère** est une personne virtuelle placé le long de [OK), les pieds en O et qui regarde dans la direction de [OI). Si la cote [OJ) est à sa gauche, on dit que le trièdre ([OI), [OJ), [OK)) est **direct**. Soient \vec{i}, \vec{j} et \vec{k} des vecteurs définis par : $\vec{i} = \overrightarrow{OI}$ et $\vec{j} = \overrightarrow{OJ}$ et $\vec{k} = \overrightarrow{OK}$. Si que le trièdre ([OI), [OJ), [OK)) est direct on dit que le repère $(O, \vec{i}, \vec{j}, \vec{k})$ est direct. La base $(\vec{i}, \vec{j}, \vec{k})$ est direct si le repère $(O, \vec{i}, \vec{j}, \vec{k})$ est direct.

Définition

Le produit vectoriel de deux vecteurs non nuls \vec{u} et \vec{v} est le vecteur, noté $\vec{u} \wedge \vec{v}$ tel que :

- Si \vec{u} et \vec{v} sont colinéaires, alors $\vec{u} \wedge \vec{v} = \vec{0}$.
- Si \vec{u} et \vec{v} ne sont pas colinéaires alors $\vec{w} = \vec{u} \wedge \vec{v}$, tel que :
 - $-\vec{w} \perp \vec{u}$ et $\vec{w} \perp \vec{v}$.
 - La base $(\vec{u}, \vec{v}, \vec{w})$ est de sens direct.
- $\|\vec{u} \wedge \vec{v}\| = \|\vec{u}\| \times \|\vec{v}\| \times |\sin(\vec{u}, \vec{v})|.$

Propriété

- $\vec{u} \wedge \vec{v} = -\vec{v} \wedge \vec{u}$.
- $\vec{u} \wedge \vec{0} = \vec{0} \wedge \vec{u} = \vec{0}$.
- $\vec{u} \wedge (\vec{v} + \vec{w}) = \vec{u} \wedge \vec{v} + \vec{u} \wedge \vec{w}$.
- $(\alpha \in \mathbb{R})(\alpha \vec{u}) \wedge \vec{v} = \alpha(\vec{u} \wedge \vec{v}).$

2. Forme analytique du produit vectoriel

Propriété

Soient $\vec{u}(a,b,c)$ et $\vec{v}(a',b',c')$ deux vecteurs de l'espace. On a : $\vec{u} \wedge \vec{v} = \begin{vmatrix} b & b' \\ c & c' \end{vmatrix} \vec{i} - \begin{vmatrix} a & a' \\ c & c' \end{vmatrix} \vec{j} + \begin{vmatrix} a & a' \\ b & b' \end{vmatrix} \vec{k}$.

Exemple

Calculons le produit vectoriel des vecteurs $\vec{u}(0,1,-2)$ et $\vec{v}(-3,1,2)$. On a $\vec{u} \wedge \vec{v} = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$

$$\begin{pmatrix} -3\\1\\2 \end{pmatrix} = \begin{vmatrix} 1 & 1\\-2 & 2 \end{vmatrix} \vec{i} - \begin{vmatrix} 0 & -3\\-2 & 2 \end{vmatrix} \vec{j} + \begin{vmatrix} 0 & -3\\1 & 1 \end{vmatrix} \vec{k} = 4\vec{i} + 6\vec{j} + 3\vec{k}.$$

Application

Calculer le produit vectoriel des vecteurs $\vec{u}(-1,3,0)$ et $\vec{v}(2,-6,1)$.

3. Applications du produit vectoriel

a. Equation d'un plan défini par trois points non alignés

Si $\overrightarrow{AB} \wedge \overrightarrow{AC} \neq \overrightarrow{0}$, alors les point A, B et C ne sont pas alignés, par suite le vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}$ est normal au plan (ABC).

Application

On considère les points A(2,4,-5), B(1,0,4) et C(0,3,1).

- 1. Vérifier que les points A, B et C ne sont pas alignés.
- 2. Donner une équation du plan (ABC).

b. L'aire d'un triangle

Propriété

Soit ABC est un triangle. L'aire de ABC est $S_{ABC} = \frac{1}{2} \|\overrightarrow{AB} \wedge \overrightarrow{AC}\|$. Soit ABCD est un parallélogramme. L'aire de ABCD est $S_{ABCD} = \|\overrightarrow{AB} \wedge \overrightarrow{AC}\|$.

Application

On considère les points A(-1,2,0), B(3,0,4) et C(-2,1,2).

- 1. Vérifier que les points A, B et C ne sont pas alignés.
- 2. Déterminer l'aire du triangle ABC.

c. Distance d'un point à une droite

Soit (D) une droite passant par A et dirigée par un vecteur \vec{u} . La distance d'un point M de la droite (D) est la distance MH tel que H le projeté orthogonal de M sur (D). On note cette distance par $d(M, D(A, \vec{u}))$. Pour déterminer les coordonnées du points H on utilise : $H \in (D)$ et $\overrightarrow{MH} \cdot \vec{u} = 0$.

Propriété

$$d(M,D(A,\vec{u})) = \frac{\|\overrightarrow{AM} \wedge \vec{u}\|}{\|\vec{u}\|}$$

Application

- 1. Calculer la distance du point M(3,2,1) à la droite (D): $\begin{cases} x=1+t \\ y=1 \\ z=-t \end{cases}, t \in \mathbb{R}.$ 2. a. Calculer la distance du point N(-1,2,0) à la droite $(\Delta):$ $\begin{cases} x-y=1 \\ y+z=2 \end{cases}.$
- - b. Déterminer les coordonnées de H projeté orthogonal de N sur (Δ)

Exercice

Soit (S) la sphère de centre $\Omega(1, -1, 0)$ et de rayon $R = \sqrt{3}$.

- 1. Donner l'équation cartésienne de (S).
- 2. On considère les droites (D_1) : $\begin{cases} x = 2 \\ y = 2 + 4t \\ z = 5 + 4t \end{cases}$, $t \in \mathbb{R}$, (D_2) : $\begin{cases} x = 2 t \\ y = -2 + t \\ z = 1 t \end{cases}$, $t \in \mathbb{R}$ et (D_3) : $\begin{cases} x = -2 + 6t \\ y = 4t \\ z = t \end{cases}$, $t \in \mathbb{R}$.

$$(D_3): \begin{cases} x = -2 + 6t \\ y = 4t \\ z = t \end{cases}, t \in \mathbb{R}.$$

3. Calculer les distances $d(\Omega, (D_1)), d(\Omega, (D_2))$ et $d(\Omega, (D_3))$ puis étudier les positions relatives de (S) et les droites $(D_1), (D_2)$ et (D_3) .

a. Intersection de deux plans

Propriété

Soient (P) et (Q) deux plans de l'espace et $\vec{n}_{(P)}$ et $\vec{n}_{(Q)}$ sont respectivement deux vecteurs normaux de (P) et (Q). Si $\vec{n}_{(P)} \wedge \vec{n}_{(Q)} \neq \vec{0}$, alors (P) et (Q) sont sécantes suivant une droite (D) dirigée par le vecteur $\vec{n}_{(P)} \wedge \vec{n}_{(Q)}$.

Application

On considère les plans (P): 2x + z - 1 = 0 et (Q): x - 2y - 2z + 1 = 0.

- 1. Vérifier que (P) et (Q) sont sécantes suivant une droite (D) en déterminant un vecteur directeur.
- 2. Donner une représentation paramétrique de (D).

Exercice

Dans l'espace rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$, on considère les **points**: A(0; -2; -2), B(1; -2; -4), C(-3; -1; 2)

- 1. a. Montrer que $\overrightarrow{AB} \wedge \overrightarrow{AC} = 2\overrightarrow{i} + 2\overrightarrow{i} + \overrightarrow{k}$.
- b. En déduire 2x + 2y + z + 6 = 0 est une équation cartésienne du plan (ABC).
- 2. Soit (S) la sphère d'équation cartésienne $x^2 + y^2 + z^2 2x 2z 23 = 0$. Montrer que le centre de la sphère (S) est le point $\Omega(1;0;1)$ et que son rayon est R=5.

- 3.a. Vérifier que : $\begin{cases} x = 1 + 2t \\ y = 2t \\ z = 1 + t \end{cases}$ est une représentation paramétrique de la droite (Δ) passant par Ω et orthogonale au plan (ABC).
 - b. Déterminer les coordonnées du point H intersection de la droite (Δ) et du plan (ABC).
 - 4. Vérifier que $d(\Omega, (ABC)) = 3$ puis montrer que le plan (ABC) coupe la sphère (S) selon un cercle de rayon 4 et on déterminera le centre.

Exercice 9: Rattrapage 2017

Dans l'espace rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$, on considère la sphère (S) dont une équation cartésienne $x^2 + y^2 + z^2 - 2x - 2y - 2z - 1 = 0$. Et le plan (P) d'équation y - z = 0.

- 1.a. Montrer que le centre de (S) est $\Omega(1;1;1)$ et que son rayon R=2.
- b. Calculer $d(\Omega, (P))$ et en déduire le plan (P) coupe la sphère (S) selon un cercle (C).
- c. Déterminer le centre et le rayon du cercle (C).
- 2. Soit (Δ) la droite passant par le point A(1; -2; 2) et orthogonal au plan (P).
 - a. Montrer que $\vec{u}(0;1;-1)$ est un vecteur directeur de la droite (Δ) .
 - b. Montrer que : $\|\overrightarrow{\Omega A} \wedge \overrightarrow{u}\| = \sqrt{2}\|\overrightarrow{u}\|$ et en déduire que la droite (Δ) coupe la sphère (S) en deux points.
 - c. Déterminer le triple des coordonnées de chacun des points d'intersection de la droite (Δ) et la sphère (S).