Ames Housing Sale price

Breakout Room 2:

Anastasiya, Bryan, Jamie, Qiwen, Russell, Sheng Jun

Guiding questions

Main

What is the price of the new property?

Additional

- Does an increase of Overall Quality of property affect the sale price?
- Does the price vary with different House Style?
- Does older property cost less than newer ones?

Problem Statement

Who?

House owners, Landlords, Real estate agents & Clients

Problem?

Short and long-term financial planning due to the volatility of the housing market

Solution!

Regression models (Linear, Lasso and Ridge)

Data Cleaning & Feature Engineering

Source:

Ames, Iowa, USA 2006 - 2010 Null Value Imputation

Convert Data Types

New Columns

- Mean for Continuous Variables (Lot Frontage)
- Existence for Categorical (Garage and Basement)
- Removed columns more than 50% Null (Pool QC)

- Categorical Data into integer (BsmtExposure:
- Good Exposure 4
- Average Exposure 3
- Minimum Exposure 2
- No Exposure 1
- No Basement 0)

- Age (Year Sold Year Remodelled)
- Square Feet (Garage + Basement + 1st/2nd Floor SF)

Exploratory Data Analysis and Feature selection

Selecting Numerical Variables

High corr

- 0.7

- 0.6

0.4

- 0.3

- 0.2

Low corr

Blue - Quality

Overall Quality 80%
 Corr

Red - Area

Garage, Basement, Floor space above 60% Corr

Green - Age

Year
 Built/Remodelled
 above 50% Corr

Selecting Categorical Variables

Feature engineering candidates:

 Meaningful distribution by classes to sale price

EDA: Linearity of Variables to Sale price

Gr Liv Area vs sale price by neighborhood

- Homoscedastic
- Positive Correlation with Sale Price
- Removed two outliers to prevent overfitting

Model Fitting and Evaluation

Modeling Overview

Model Evaluation

Model Scores	Root Mean Squared Error	R ² (0 to 1)
Baseline	79,309	0.000
LR Model	25,505	0.8966
Lasso	25,556	0.8967
Ridge	25,597	0.8958

Predictions vs. Actuals

 Low residuals around highest distributed price range (150K - 200K)

 High residuals for outlier prices (one-off categorical factors affecting price greatly)

Guiding questions

Main:

Additional:

- With an increase of Overall Quality of property does price increase?
- Does the price vary with different House Style?
- Does older property cost less than newer ones?

Problem Statement

Who?

House owners, Landlords, Real estate agents & Clients

Problem?

Short and long-term financial planning due to the volatility of the housing market

Solution!

Regression models (Linear, Lasso and Ridge)

Predictions

Distribution of predicted and known prices (train data)

The distributions of predicted price and known sale price are overlapped. It means that the range, mean and median are similar.

Conclusion and Recommendations

Guiding questions

Main:

What is the price of the new property?

Additional:

- With an increase of Overall Quality of property does price increase?
 - Does the price vary with different House Style?
- Does older property cost less than newer ones?

Problem Statement

Who?

House owners, Landlords, Real estate agents & Clients

Problem?

Short and long-term financial planning due to the volatility of the housing market

Solution!

Regression models (Linear, Lasso and Ridge)

Interpreting Results

- With an increase of Overall Quality of property does price increase?
- 1. 'Overall Quality' (overall_qual corr.: 0.804683)
 - Overall quality one of the most influencing features. With an increase in 1 grade of quality the price increase on \$ 13,986.

Does the price vary with different House Style?

- 2. 'One storey'
 - One storey house styles cost more than other styles.
 - Does older property cost less than newer ones?
- 3. Older property cost less (year_built corr..: 0.573751)
 - With an increase in one year the property rise in price in \$ 5,069.

Stakeholder Recommendations

To House Owners, Landlords, Real Estate Agents:

Features that greatly increase the price of your property:

- 1. Basement and the overall area of the property.
- 2. Overall material and finish quality.
- 3. A number of fireplaces.
- 4. 'One storey' house style.

Stakeholder Recommendations

To House Buyers:

Features to consider when buying a property:

- 1. Houses which were built earlier cost less.
- 2. **Kitchen quality influence on sale price**. The cost of renovation of the kitchen should be considered. With an increment in kitchen quality by 1, the price of the house rises by \$ 6,183.
- 3. Less emphasis on the exterior material quality as an increase in quality results in an increase of only \$ 3,879.

Further research suggestions

The current model should be explored on other datasets, as it is possible that the model will have different results based on location.

Based on current model limitations, following research proposed:

- To evaluate the generalizability of the model more data required.
- Prices higher than \$ 500,000 should be explored separately. The model shows worse predictions for such a high price. More data should be collected for high price property separately.
- Features with a negative slope. Additional models should be built to evaluate the influence of the features on price.
- Use a combination of more complicated models for prediction.

Thank you

Panel open for Q&A

Workflow

- Problem Statement 1 slide
- Data Overview, Data Cleaning 1 slide
- Exploratory Data Analysis & Feature
 Engineering qual, sqft, age -> sale prices 3 slides
- Modeling And Evaluation 1st slide for CV and methods, 2nd or 3rd slide for results (training data CV), predictions vs residuals
 - Lasso
 - Linear Regression
 - Ridge
- Predictions (Kaggle saleprice pred) 1 slide
- Conclusion and Recommendations
- Further research suggestions