The Matrix Cheatsheet by Sebastian Raschka is licensed under a Creative Commons Attribution 4.0 International License.

(last updated: June 22, 2018)

Task	MATLAB/Octave	Python NumPy	R	Julia	Task			
CREATING MATRICES								
Creating Matrices (here: 3x3 matrix)	M> A = [1 2 3; 4 5 6; 7 8 9] A = 1 2 3 4 5 6 7 8 9	<pre>P> A = np.array([[1,2,3], [4,5,6], [7,8,9]]) P> A array([[1, 2, 3],</pre>	<pre>R> A = matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,byrow=T) # equivalent to # A = matrix(1:9,nrow=3,byrow=T) R> A [,1] [,2] [,3] [1,] 1 2 3 [2,] 4 5 6 [3,] 7 8 9</pre>	J> A=[1 2 3; 4 5 6; 7 8 9] 3x3 Array{Int64,2}: 1 2 3 4 5 6 7 8 9	Creating Matrices (here: 3x3 matrix)			
Creating an column vector (nx1 matrix)	M> a = [1; 2; 3] a = 1 2 3	<pre>P> a = np.array([1,2,3]).reshape(3,1) P> b.shape (3, 1)</pre>	<pre>R> a = matrix(c(1,2,3), nrow=3, byrow=T) R> a [,1] [1,] 1 [2,] 2 [3,] 3</pre>	<pre>J> a=[1; 2; 3] 3-element Array{Int64,1}: 1 2 3</pre>	Creating a column vector (nx1 matrix)			
Creating an row vector (1xn matrix)	M> b = [1 2 3] b = 1 2 3	<pre>P> b = np.array([1,2,3]).reshape(1, 3) P> b array([[1],</pre>	<pre>R> b = matrix(c(1,2,3), ncol=3) R> b [,1] [,2] [,3] [1,] 1 2 3</pre>	<pre>J> b=[1 2 3] 1x3 Array{Int64,2}: 1 2 3 # note that this is a 2D array.</pre>	Creating an row vector (1xn matrix)			
Creating a random m x n matrix	M> rand(3,2) ans = 0.21977 0.10220 0.38959 0.69911	P> np.random.rand(3,2) array([[0.29347865, 0.17920462],	R> matrix(runif(3*2), ncol=2) [,1] [,2] [1,] 0.5675127 0.7751204 [2,] 0.3439412 0.5261893	<pre>J> rand(3,2) 3x2 Array{Float64,2}: 0.36882 0.267725 0.571856 0.601524</pre>	Creating a random m x n matrix			

	0.15624 0.65637		[3,] 0.2273177 0.223438	0.848084 0.858935	
Creating a	M> zeros(3,2)	P> np.zeros((3,2))	R> mat.or.vec(3, 2)	J> zeros(3,2)	Creating a
zero m x n matrix	ans =	array([[0., 0.],	[,1] [,2]	3x2 Array{Float64,2}:	zero m x n matrix
	0 0	[0., 0.],	[1,] 0 0	0.0 0.0	
	0 0	[0., 0.]])	[2,] 0 0	0.0 0.0	
	0 0		[3,] 0 0	0.0 0.0	
Creating an	M> ones(3,2)	P> np.ones((3,2))	R> matrix(1L, 3, 2)	J> ones (3, 2)	Creating an
m x n matrix of ones	ans =	array([[1., 1.],			m x n matrix of ones
	1 1	[1., 1.],	[,1] [,2]	1.0 1.0	
	1 1	[1., 1.]])	[1,] 1 1	1.0 1.0	
	1 1		[2,] 1 1	1.0 1.0	
			[3,] 1 1		
Creating an	M> eye(3)	P> np.eye(3)	R> diag(3)	J> eye(3)	Creating an
identity matrix	ans =	array([[1., 0., 0.],	[,1] [,2] [,3]	3x3 Array{Float64,2}:	identity matrix
	Diagonal Matrix	[0., 1., 0.],	[1,] 1 0 0	1.0 0.0 0.0	
	1 0 0	[0., 0., 1.]])	[2,] 0 1 0	0.0 1.0 0.0	
	0 1 0		[3,] 0 0 1	0.0 0.0 1.0	
	0 0 1				
Creating a	M> a = [1 2 3]	<pre>P> a = np.array([1,2,3])</pre>	R> diag(1:3)	J> a=[1, 2, 3]	Creating a
diagonal matrix			[,1] [,2] [,3]		diagonal matrix
	M> diag(a)	P> np.diag(a)	[1,] 1 0 0	# added commas because julia	
	ans =	array([[1, 0, 0],	[2,] 0 2 0	# vectors are columnar	
	Diagonal Matrix	[0, 2, 0],	[3,] 0 0 3		
	1 0 0	[0, 0, 3]])		J> diagm(a)	
	0 2 0			3x3 Array{Int64,2}:	
	0 0 3			100	
				0 2 0	
				0 0 3	
Getting the dimension	M> A = [1 2 3; 4 5 6]	•	MATRIX ELEMENTS R> A = matrix(1:6,nrow=2,byrow=T)	J> A=[1 2 3; 4 5 6]	Getting the dimension
of a matrix	A = [1 2 3, 4 3 6]		<u> </u>		of a matrix
(here: 2D, rows x cols)	1 2 3	i e	· ·	•	(here: 2D, rows x cols)
	4 5 6	array([[1, 2, 3],	[,1] [,2] [,3]	4 5 6	

[1,] 1 2 3

[4, 5, 6]])

l l	M> size(A)		[2,] 4 5 6	J> size(A)	
		P> A. shape	•	(2,3)	
			R> dim(A)		
		i	[1] 2 3		
Selecting rows		P> A = np.array([[1,2,3], [4,5,6], [7,8,9]])	R> A = matrix(1:9,nrow=3,byrow=T)	J> A=[1 2 3; 4 5 6; 7 8 9]; #semicolon suppresses output	Selecting rows
	% 1st row	# 1st row	# 1st row	#Semilenton subbiesses outbut	
				#1-t row	
		P> A[0,:]		#1st row	
		array([1, 2, 3])	[1] 1 2 3	J> A[1,:]	
	1 2 3			1x3 Array{Int64,2}:	
		# 1st 2 rows	# 1st 2 rows	1 2 3	
9			R> A[1:2,]		
	M> A(1:2,:)			#1st 2 rows	
i	ans =		[1,] 1 2 3	J> A[1:2,:]	
	1 2 3		[2,] 4 5 6	2x3 Array{Int64,2}:	
	4 5 6			1 2 3	
				4 5 6	
Selecting columns		P> A = np.array([[1,2,3], [4,5,6], [7,8,9]])	R> A = matrix(1:9,nrow=3,byrow=T)	J> A=[1 2 3; 4 5 6; 7 8 9];	Selecting columns
k	% 1st column	# 1st column (as row vector)	# 1st column as row vector	#1st column	
į į	M> A(:,1)	P> A[:,0]	R> t(A[,1])	J> A[:,1]	
			<u> </u>	3-element Array{Int64,1}:	
	1		[1,] 1 4 7	1	
	4	# 1st column (as column vector)		4	
	7	P> A[:,[0]]	# 1st column as column vector	7	
		1	R> A[,1]		
ļ	% 1st 2 columns	[4],	[1] 1 4 7	#1st 2 columns	
ļ	M> A(:,1:2)	[7]])		J> A[:,1:2]	
į	ans =			3x2 Array{Int64,2}:	
	1 2	# 1st 2 columns	R> A[,1:2]	1 2	
	4 5	P> A[:,0:2]	[,1] [,2]	4 5	
	7 8	array([[1, 2],	[1,] 1 2	7 8	
		[4, 5],	[2,] 4 5		
		[7, 8]])	[3,] 7 8		
Extracting rows and columns by			<pre>R> A = matrix(1:9,nrow=3,byrow=T)</pre>	J> A=[1 2 3; 4 5 9; 7 8 9]	Extracting rows and columns by criteria
	A =	[7,8,9]])		3x3 Array{Int64,2}:	
(here: get rows that have value 9 in column 3)	1 2 3	P> A	R> A	1 2 3	(here: get rows that have value 9 in column
Column 3)	4 5 9	array([[1, 2, 3],	[,1] [,2] [,3]	4 5 9	5)
	7 8 9	[4, 5, 9],	[1,] 1 2 3	7 8 9	
		[7, 8, 9]])	[2,] 4 5 9		
	M> A(A(:,3) == 9,:)		[3,] 7 8 9	# use '.==' for	
		P> A[A[:,2] == 9]		# element-wise check	
			R> A[A[,3]==9,]	J> A[A[:,3] .==9, :]	
	7 8 9	[7, 8, 9]])		2x3 Array{Int64,2}:	
	7 0 3	[7, 0, 3]])		ZX3 MIIAY\IIILU4,Z;.	

			[1] 7 8 9	4 5 9	
				7 8 9	
Accessing elements	M> A 51 2 2 4 5 6 7 2 2	D. A			Accessing elements
Accessing elements	M> A = [1 2 3; 4 5 6; 7 8 9]		<pre>matrix(c(1,2,3,4,5,9,7,8,9),nrow=3,byrow=T)</pre>	J> A=[1 2 3; 4 5 6; 7 8 9];	Accessing elements
(here: 1st element)					(here: 1st element)
	M> A(1,1)	P> A[0,0]	R> A[1,1]	J> A[1,1]	
	ans = 1	1	[1] 1	1	
	•	•	•	•	'
		MANIPULATING SH	IAPE AND DIMENSIONS		
	M> A = [1 2 3; 4 5 6; 7 8 9]	<pre>P> A = np.array([[1,2,3],[4,5,6],[7,8,9]])</pre>	<pre>R> A = matrix(1:9,nrow=3,byrow=T)</pre>		Converting
a matrix into a row vector (by column)					a matrix into a row vector (by column)
	M> A(:)	P> A.flatten(1) # returns a copy		J> vec(A)	
			R> as.vector(A)		
	ans =	array([1, 4, 7, 2, 5, 8, 3, 6, 9])		9-element Array {Int64,1}:	
	1	# alternatively A.ravel()	[1] 1 4 7 2 5 8 3 6 9	1	
		# ravel() returns a view		4	4
	7			7	7
	2			2	2
	5			5	
	3			3	,
	6			ϵ	5
	9			Ş	,
Converting	M> b = [1 2 3]	P> b = np.array([1, 2, 3])	R> b = matrix(c(1,2,3), ncol=3)	J> b=vec([1 2 3])	Converting
row to column vectors				3-element Array{Int64,1}:	row to column vectors
			R> t(b)	1	
		# alternatively	[,1]	2	
			[1,] 1	3	
	2		[2,] 2 [3,] 3		
		array([[1],	(3,1,3		
		[2],			
		[3]])			
Reshaping Matrices	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3],[4,5,6],[7,8,9]])	R> A = matrix(1:9,nrow=3,byrow=T)	J> A=[1 2 3; 4 5 6; 7 8 9]	Reshaping Matrices
	A =			3x3 Array{Int64,2}:	
(here: 3x3 matrix to row vector)	1 2 3	P> A		1 2 3	(here: 3x3 matrix to row vector)
		i	i	4 5 6	
	7 8 9	[4, 5, 9],	[1,] 1 2 3	7 8 9	
		[7, 8, 9]])	[2,] 4 5 6		
	<pre>M> total_elements = numel(A)</pre>		[3,] 7 8 9	<pre>J> total_elements=length(A)</pre>	
		<pre>P> total_elements = np.prod(A.shape)</pre>		9	
	•	•	•	•	•

R> total_elements = dim(A)[1] * dim(A)[2]

M> B = reshape(A,1,total_elements)

Matrix-scalar		P> A = np.array([[1,2,3], [4,5,6], [7,8,9]])	R> A = matrix(1:9, nrow=3, byrow=T)	J> A=[1 2 3; 4 5 6; 7 8 9];	Matrix-scalar
operations			D> 4 + 2	# elementwise operator	operations
			R> A * 2 [,1] [,2] [,3]	# erementwise operator	
	2 4 6	[8, 10, 12],	[1,] 2 4 6	J> A .* 2	

Matrix elements to power n		P> A = np.array([[1,2,3], [4,5,6], [7,8,9]])	R> A = matrix(1:9, nrow=3, byrow=T)	J> A=[1 2 3; 4 5 6; 7 8 9];	Matrix elements to power n
Matrix elements to never a		# A = A + A			Matrix elements to never a
		<pre># Note that NumPy was optimized for # in-place assignments # e.g., A += A instead of</pre>			
	M> A ./ A		R> A / A	J> A ./ A;	
	M> A A	P> A / A	R> A - A	J> A A;	
	M> A .+ A	P> A - A	R> A + A	J> A .+ A;	
		P> A + A			
	16 25 36 49 64 81	[49, 64, 81]])	[2,] 16 25 36 [3,] 49 64 81	16 25 36 49 64 81	
	1 4 9	[16, 25, 36],	[1,] 1 4 9	1 4 9	
	M> A .* A ans =	<pre>P> A * A array([[1, 4, 9],</pre>	R> A * A [,1] [,2] [,3]	<pre>J> A .* A 3x3 Array{Int64,2}:</pre>	
matrix-matrix operations					matrix-matrix operations
Element-wise	M> A = [1 2 3; 4 5 6; 7 8 9]	<pre>P> A = np.array([[1,2,3], [4,5,6], [7,8,9]])</pre>	R> A = matrix(1:9, nrow=3, byrow=T)	J> A=[1 2 3; 4 5 6; 7 8 9];	Element-wise
	50		[3,] 50	50	
	32		[2,] 32	32	
	14	array([[14], [32], [50]])	[1,] 14	14	
	ans =		[,1]	3-element Array{Int64,1}:	
	M> A * b	P> np.dot(A,b) # or A.dot(b)	R> t(b %*% A)	J> A*b	
	M> b = [1; 2; 3]	P> b = np.array([[1], [2], [3]])	R> b = matrix(1:3, nrow=3)	J> b=[1; 2; 3];	
multiplication		[7,8,9]])			multiplication
Matrix-vector	M> A = [1 2 3; 4 5 6; 7 8 9]		R> A = matrix(1:9, ncol=3)	J> A=[1 2 3; 4 5 6; 7 8 9];	Matrix-vector
	102 126 150		[3,] 102 126 150	102 126 150	
	66 81 96	[102, 126, 150]])	[2,] 66 81 96	66 81 96	
	30 36 42	[66, 81, 96],	[1,] 30 36 42	30 36 42	
	ans =	array([[30, 36, 42],	[,1] [,2] [,3]	3x3 Array{Int64,2}:	
	M> A * A	P> np.dot(A,A) # or A.dot(A)	R> A %*% A	J> A * A	
multiplication					multiplication
Matrix-matrix	M> A = [1 2 3; 4 5 6; 7 8 9]	<pre>P> A = np.array([[1,2,3], [4,5,6], [7,8,9]])</pre>	R> A = matrix(1:9, nrow=3, byrow=T)	J> A=[1 2 3; 4 5 6; 7 8 9];	Matrix-matrix
Mark marks		# A = A + A			Matthewatth
		<pre># in-place assignments # e.g., A += A instead of</pre>		J> A ./ 2;	
		# Note that NumPy was optimized for			
	M> A / 2	P> A / 2	R> A / 2	J> A 2;	
	M> A - 2		R> A - 2	J> A .+ 2;	
	M> A + 2	P> A - 2	N + Z	1. 10 10	
		P> A + 2	R> A + 2	8 10 12 14 16 18	
	14 16 18		[3,] 14 16 18	2 4 6	
	8 10 12	[14, 16, 18]])	[2,] 8 10 12	3x3 Array{Int64,2}:	

(here: individual elements squared)	M> A.^2	P> np.power(A,2)	R> A ^ 2	J> A .^ 2	(here: individual elements squared)
i	ans =	array([[1, 4, 9],	[,1] [,2] [,3]	3x3 Array{Int64,2}:	
	1 4 9	[16, 25, 36],	[1,] 1 4 9	1 4 9	
	16 25 36	[49, 64, 81]])	[2,] 16 25 36	16 25 36	
	49 64 81		[3,] 49 64 81	49 64 81	
Matrix to power n	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6],	R> A = matrix(1:9, ncol=3)	J> A=[1 2 3; 4 5 6; 7 8 9];	Matrix to power n
·		[7,8,9]])		(1 2 3, 1 3 3, 7 3 3, 7	·
(here: matrix-matrix multiplication	M> A ^ 2	<pre>P> np.linalq.matrix_power(A,2)</pre>	# requires the 'expm' package	J> A ^ 2	(here: matrix-matrix multiplication with
with itself)		array([[30, 36, 42],		3x3 Array{Int64,2}:	itself)
ľ	30 36 42			30 36 42	
	66 81 96	[102, 126, 150]])	This call packages (exp.,)	66 81 96	
	102 126 150			102 126 150	
	102 126 150		R> library(expm)	102 126 150	
			R> A %^% 2		
			[,1] [,2] [,3]		
			[1,] 30 66 102		
			[2,] 36 81 126		
			[3,] 42 96 150		
Matrix transpose	M> A = [1 2 3; 4 5 6; 7 8 9]			J> A=[1 2 3; 4 5 6; 7 8 9]	Matrix transpose
		[7,8,9]])		22	
	MS 41	P> A.T	į	3x3 Array{Int64,2}: 1 2 3	
	i i i i i i i i i i i i i i i i i i i	r> A. array([[1, 4, 7],		4 5 6	
	1 4 7	[2, 5, 8],	[1,] 1 4 7	7 8 9	
	2 5 8	[3, 6, 9]])	[2,] 2 5 8		
	3 6 9		[3,] 3 6 9	J> A'	
				3x3 Array{Int64,2}:	
			<u> </u>	1 4 7	
				2 5 8	
Determinant of a matrix:	M> A = [6 1 1; 4 -2 5; 2 8 7]	P> A = np.array([[6,1,1],[4,-2,5],		3 6 9 J> A=[6 1 1; 4 -2 5; 2 8 7]	Determinant of a matrix:
		[2,8,7]])	byrow=T)		
A -> A	A =		i	3x3 Array{Int64,2}:	A -> A
		P> A		6 1 1	
	4 -2 5	array([[6, 1, 1],		4 -2 5	
	2 8 7			287	
		[2, 8, 7]])	[2,] 4 -2 5		
	M> det(A)		[3,] 2 8 7	J> det(A)	
ŀ	ans = -306	<pre>P> np.linalg.det(A)</pre>		-306	
		-306	R> det(A)		
			[1] -306		
Inverse of a matrix	M> A = [4 7; 2 6]	P> A = np.array([[4, 7], [2, 6]])	R> A = matrix(c(4,7,2,6), nrow=2, byrow=T)	J> A=[4 7; 2 6]	Inverse of a matrix
,	A =			2x2 Array{Int64,2}:	
	4 7	P> A	R> A	4 7	
	2 6	array([[4, 7],	[,1] [,2]	2 6	
		[2, 6]])	[1,] 4 7		
	M> A_inv = inv(A)		[2,] 2 6	J> A_inv=inv(A)	

	A_inv =	<pre>P> A_inverse = np.linalg.inv(A)</pre>		2x2 Array{Float64,2}:			
	0.60000 -0.70000		R> solve(A)	0.6 -0.7			
	-0.20000 0.40000	P> A_inverse	[,1] [,2]	-0.2 0.4			
		array([[0.6, -0.7],	[1,] 0.6 -0.7				
		[-0.2, 0.4]])	[2,] -0.2 0.4				
				•			

ADVANCED MATRIX OPERATIONS

	M> x1 = [4.0000 4.2000 3.9000 4.3000 4.1000]'	P> x1 = np.array([4, 4.2, 3.9, 4.3, 4.1])	R> x1 = matrix(c(4, 4.2, 3.9, 4.3, 4.1), ncol=5)	J> x1=[4.0 4.2 3.9 4.3 4.1]';	Calculating the covariance matrix
of 3 random variables	4.1000]		1101-3)		of 3 random variables
	M> x2 = [2.0000 2.1000 2.0000 2.1000 2.2000]'	P> x2 = np.array([2, 2.1, 2, 2.1, 2.2])	R > x2 = matrix(c(2, 2.1, 2, 2.1, 2.2), ncol=5)	J> x2=[2. 2.1 2. 2.1 2.2]';	
(here: covariances of the means					(here: covariances of the means
of x1, x2, and x3)	M> x3 = [0.60000 0.59000 0.58000	P> x3 = np.array([0.6, 0.59, 0.58, 0.62,	R> x3 = matrix(c(0.6, 0.59, 0.58, 0.62, 0.63),	J> x3=[0.6 .59 .58 .62 .63]';	of x1, x2, and x3)
		0.63])	ncol=5)		
	M> cov([x1,x2,x3])	P> np.cov([x1, x2, x3])	<pre>R> cov(matrix(c(x1, x2, x3), ncol=3))</pre>	J> cov([x1 x2 x3])	
	ans =	Array([[0.025 , 0.0075 , 0.00175],	[,1] [,2] [,3]	3x3 Array{Float64,2}:	
	2.5000e-02 7.5000e-03 1.7500e-03	[0.0075 , 0.007 , 0.00135],	[1,] 0.02500 0.00750 0.00175	0.025 0.0075 0.00175	
	2.3000e-02 7.3000e-03 1.7300e-03	[0.0073 , 0.007 , 0.00133],	[1,] 0.02300 0.00730 0.00173	0.025 0.0075 0.00175	
	7.5000e-03 7.0000e-03 1.3500e-03	[0.00175, 0.00135, 0.00043]])	[2,] 0.00750 0.00700 0.00135	0.0075 0.007 0.00135	
	1.7500e-03 1.3500e-03 4.3000e-04		[3,] 0.00175 0.00135 0.00043	0.00175 0.00135 0.00043	
	M> A = [3 1; 1 3]	P> A = np.array([[3, 1], [1, 3]])	R> A = matrix(c(3,1,1,3), ncol=2)	J> A=[3 1; 1 3]	Calculating
eigenvectors and eigenvalues	A =			2x2 Array{Int64,2}:	eigenvectors and eigenvalues
	3 1	P> A	R> A	3 1	
	1 3	array([[3, 1],	[,1] [,2]	1 3	
		[1, 3]])	[1,] 3 1		
	<pre>M> [eig_vec,eig_val] = eig(A)</pre>		[2,] 1 3	<pre>J> (eig_vec,eig_val)=eig(a)</pre>	
	eig_vec =	<pre>P> eig_val, eig_vec = np.linalg.eig(A)</pre>		([2.0,4.0],	
	-0.70711 0.70711		R> eigen(A)	2x2 Array{Float64,2}:	
	0.70711 0.70711	<pre>P> eig_val</pre>	\$values	-0.707107 0.707107	
		array([4., 2.])	[1] 4 2	0.707107 0.707107)	
	Diagonal Matrix				

	2 0	P> eig_vec	\$vectors		
	0 4	Array([[0.70710678, -0.70710678],	[,1] [,2]		
		[0.70710678, 0.70710678]])	[1,] 0.7071068 -0.7071068		
			[2,] 0.7071068 0.7071068		
Generating a Gaussian dataset:	% requires statistics toolbox package	P> mean = np.array([0,0])		# requires the Distributions package from https://github.com/JuliaStats/Dist	Generating a Gaussian dataset:
	% how to install and load it in Octave:			3	
creating random vectors from the multivariate normal distribution given mean and	% download the package from:	P> cov = np.array([[2,0],[0,2]])	<pre>R> install.packages('MASS')</pre>		creating random vectors from the multivariate normal distribution given mean and covariance
covariance matrix	% http://octave.sourceforge.net/packages.p	P> np.random.multivariate_normal(mean, test)	R> library(MASS)	J> mean=[0., 0.]	matrix
(here: 5 random vectors with	% pkg install			2-element Array{Float64,1}:	(here: 5 random vectors with
mean 0, covariance = 0, variance = 2)	% ~/Desktop/io-2.0.2.tar.gz	Array([[1.55432624, -1.17972629],	R> mvrnorm(n=10, mean, cov)	0	mean 0, covariance = 0, variance = 2)
	% pkg install	[-2.01185294, 1.96081908],	[,1] [,2]	0	
	% ~/Desktop/statistics-1.2.3.tar.gz	[-2.11810813, 1.45784216],	[1,] -0.8407830 -0.1882706		
		[-2.93207591, -0.07369322],	[2,] 0.8496822 -0.7889329	J> cov=[2. 0.; 0. 2.]	
	M> pkg load statistics	[-1.37031244, -1.18408792]])	[3,] -0.1564171 0.8422177	2x2 Array{Float64,2}:	
			[4,] -0.6288779 1.0618688	2.0 0.0	
	M> mean = [0 0]		[5,] -0.5103879 0.1303697	0.0 2.0	
			[6,] 0.8413189 -0.1623758		
	M> cov = [2 0; 0 2]		[7,] -1.0495466 -0.4161082	<pre>J> rand(MvNormal(mean, cov), 5)</pre>	
	cov =		[8,] -1.3236339 0.7755572	2x5 Array{Float64,2}:	
	2 0		[9,] 0.2771013 1.4900494	-0.527634 0.370725 -0.761928 -3.91747 1.47516	
	0 2		[10,] -1.3536268 0.2338913	-0.448821 2.21904 2.24561 0.692063 0.390495	
	M> mvnrnd(mean,cov,5)				
	2.480150 -0.559906				
	-2.933047 0.560212				
	0.098206 3.055316				
	-0.985215 -0.990936				
	1.122528 0.686977				
	I		į		