

Introdução a Linguagens de Programação

Curso Superior de Tecnologia em Sistemas Embarcados

Professor: Fernando Silvano Gonçalves fernando.goncalves@ifsc.edu.br
Março de 2023

Cronograma

Encontro	Data	Nº Aulas	Conteúdo
1	29-fev.	04	Recepção e Apresentação do Unidade / Apresentação do Plano de Ensino / Avaliação Diagnóstica / Introdução a sistemas embarcados
2	02-mar.	04	Conceitos e Características e Aplicações de Sistemas Embarcados / Histórico de Sistemas Embarcados / Práticas com Arduino
3	07-mar.	04	Microcontroladores, Microprocessadores / Periféricos / Introdução ao Arduino / Introdução ao C
4	14-mar.	04	Introdução à Linguagens de Programação
5	21-mar.	04	Linguagem de Programação C
6	28-mar.	04	Linguagens de Programação C para arduino
7	04-abr.	04	Variáveis e Operadores
8	11-abr.	04	Estruturas Condicionais
9	18-abr.	04	Estruturas de Repetição
10	25-abr.	04	Avaliação 01

Cronograma

Encontro	Data	Nº Aulas	Conteúdo
11	02-mai.	04	Microcontroladores
12	09-mai.	04	Entradas e Saídas Digitais
13	16-mai.	04	Conversor Analógico-Digital
14	18-mai.	04	Sensores
15	23-mai.	04	Comunicação Serial
16	06-jun.	04	PWM
17	13-jun.	04	Temporizadores
18	20-jun.	04	Interrupções
19	27-jun.	04	Avaliação 02
20	04-jul.	04	Conselho de Classe / Atividades de Encerramento da UC
		80	

Pauta

- Microcontroladores e Microprocessadores;
- Periféricos;
- Arduino;
- Introdução ao C;
- Variáveis;
- Operadores;

Microcontroladores e Microprocessadores

Microcontroladores e Microprocessadores

Microcontroladores e Microprocessadores

Microcontroladores e Microprocessadores

- Computador em um único chip;
- Custo reduzido;
- Recursos integrados:
 - RAM;
 - ROM;
 - Conversor A/D e D/A;
 - Portas I/O;
- Timers e Interrupções;
- Podem ser programados com código Assembly ou em linguagens de alto nível;

Microcontroladores

Microprocessadores

- Circuito integrado que realiza as funções de cálculo e tomada de decisão de um computador;
- Controlado por um programa armazenado na memória, executando diferentes operações;
- Memórias RAM e ROM portas de I/O e Timers externos;
- Computador de propósito geral;
- Comunicação por barramentos.

Microprocessadores - Características

- Memória de programa: Armazena as instruções que um microprocessador deve executar (ROM);
- Memória de dados: Área de leitura e escrita de dados temporários sempre que necessário (RAM);
- ULA: Unidade Lógica Aritmética, responsável pelos cálculos e a lógica matemática para tomada de decisão;

Microprocessadores - Características

- CPU: Unidade Central de Processamento, responsável pelo processamento de dados da unidade, ela quem interpreta os comandos e ativa os dispositivos de entrada e saída;
- Periféricos: Circuitos que realizam funções específicas auxiliando a CPU no controle e interface com dispositivos externos.

Microprocessadores

Microcontroladores Vs Microprocessadores

Microcontrolador:

- CPU, RAM, ROM, I/O e Timer encapsulados em um único chip;
- Tamanho fixo no chip de RAM, ROM e portas I/O;
- Aplicada a soluções onde custo, consumo de energia e espaço são críticas;
- Propósito específico;
- Ex: 8051, PIC, Atmel, Motorola, etc.

Microprocessador:

- CPU independente, RAM, ROM, I/O e Timer separados;
- Desenvolvedor pode definir a quantidade de RAM, ROM e portas I/O;
- Custo mais elevado;
- Propósito geral;
- Ex: 8085, 8086, Cortex-M4 Cortex-A5, etc.

Periféricos

Periféricos

Periféricos - Características

- Responsáveis pelo sensoriamento e atuação das aplicações;
- Diferentes características devem ser consideradas na sua especificação (consumo de energia, protocolo de comunicação, taxa de amostragem);
- Grande variedade existente hoje no mercado;
- Especificação diretamente dependente do escopo e orçamento do projeto;
- Necessário um profundo conhecimento do escopo da aplicação para sua definição.

Periféricos - Exemplos de Uso

- Avaliar se há pessoas em um ambiente;
- Monitorar nível de luminosidade;
- Monitorar nível de umidade do solo;
- Controlar quantidade de água dispersa em determinado local;
- Medir distância de um objeto;
- Seguir determinada trajetória;

Periféricos - Cuidados ao Especificar

- Qual a taxa de amostragem que eu preciso?
- Qual o protocolo de comunicação? Ele é compatível com a placa que estou utilizando?
- O custo deste sensor está dentro do orçamento do projeto?
- Qual o seu consumo de energia?

Periféricos - Cuidados ao Manusear

- Verificar se as ligações estão corretas antes de ligar;
- Verificar se os polos de alimentação estão corretamente ligados;
- Verificar se a tensão de alimentação e de comunicação estão corretas;
- Verificar compatibilidade com a plataforma embarcada;
- Verificar necessidade de algum componente adicional no circuito de ligação (resistor, capacitor).

Sensores

Sensores

Displays

Atuadores

Onde comprar material?

- No Brasil
 - Filipe Flop (www.filipeflop.com);
 - □ Proesi (www.proesi.com.br);
 - Robocore (www.robocore.net);
- No exterior
 - Ali Express (pt.aliexpress.com/);
 - Deal Extreme (<u>www.dx.com/pt/</u>);
 - Ebay (www.ebay.com);

Arduino

Arduino

Arduino

- Plataforma Open-Source de protótipos eletrônicos baseados em hardware e software flexível e fácil de usar;
- Destinado a qualquer pessoa interessada em criar objetos ou ambientes interativos;
- Projeto teve início em 2005 na cidade de Ivrea, Itália;
- Placa baseada em microcontrolador Atmel AVR e um ambiente de desenvolvimento baseado em C++;

Arduino - Primeiras versões

Arduino - Modelos existentes

Características do Arduino UNO

Microcontrolador:	ATmega328
Tensão de Operação:	5V
Tensão de Entrada:	7 – 12v
Pinos Digitais:	14 (com 6 pinos com saída PWM)
Pinos Analógicos:	6
Corrente por pino I/O:	40mA
Memória Flash:	32KB
SRAM:	2KB
Clock Speed:	16MHz

Portas

Portas

Tipos de Portas

- □ Portas Digitais;
- □ Portas Analógicas;
- □ Portas PWM;

Portas Digitais

- 14 Portas Digitais;
- □ 0/5v
 - LOW e HIGH;

Portas Analógicas

- 6 Portas Analógicas
 - □ 0 ~ 5V.

Portas PWM (~)

- Onda quadrada onde se controla a porcentagem do tempo em que ela permanece em nível lógico alto (Duty Cycle).
- Alteração no Duty Cycle provoca mudança no valor médio da onda, variando entre 0v e 5v.
- Valor do Duty Cycle armazenado em um registrador de 8 bits variando entre 0 e 255.

Shields

Shields

Shields

- Shields são placas que podem ser conectados sobre o Arduino estendendo as suas funcionalidades;
- Shields seguem a mesma filosofia do Arduino:
 - Open;
 - Fácil de Montar;
 - "Barato"

Software de Desenvolvimento

Software de Desenvolvimento

Software de Desenvolvimento

- Open-Source;
- Windows, Mac e Linux;
- Disponível em: http://arduino.cc

Características da IDE

- ☐ Facilita o desenvolvimento de software;
- Muitos exemplos para as bibliotecas padrão;
- Permite a gravação do código no microcontrolador;
- Monitor serial para troca de mensagens;

Desenvolvimento para Arduino

Primeiros Passos

Primeiros Passos

Protoboard e Jumpers

Led

- Led Difuso
 - Tensão 2V.
 - Corrente 20 mA ~ 0,02 A

$$R = \frac{(Vfonte - Vled)}{Iled}$$

- R = Resistência;
- Vfonte = Tensão da fonte;
- Vled = Tensão do Led;
- Iled = Corrente do Led.
- http://blog.novaeletronica.com.br/calculadora-online-resistor-limitador-led/

Resistor

Santa Catarina

Pratica 1: Acionando um Led

Prática 1: Acionando um Led

```
#define led1 9
Void setup(){
   pinMode(led1, OUTPUT);
Void loop(){
   digitalWrite(led1, HIGH);
   delay(1000);
   digitalWrite(led1, LOW);
   delay(1000);
```


Prática 2: Semáforo

- Com base no exemplo anterior, monte um circuito que demonstre o funcionamento de um semáforo de trânsito. Esse deve obedecer os seguintes critérios:
 - A luz verde deve ficar acesa por 1,5 segundos;
 - A luz amarela deve ficar acesa por 1 segundo;
 - A luz vermelha deve ficar acesa por 3 segundos.
- Os leds devem ser acesos na sequência correta de funcionamento do semáforo de trânsito;
- Não deve haver mais de um led acesso ao mesmo tempo.

Obrigado!

Fernando Silvano Gonçalves

fernando.goncalves@ifsc.edu.br

se.cst.tub@ifsc.edu.br