Pre-examen

[Durée deux heures. Aucun document n'est autorisé. Tous les exercices sont independantes. Seule les reponses soigneusement justifiées seront prise en compte.]

Exercice 1. Soit $\lambda: \mathbb{N} \to [0, 1]$ une probabilité sur \mathbb{N} telle que $\lambda(x) > 0$ pour tout x > 0 et telle que $\lambda(0) = 0$. On pose $\rho = \sum_{x \geqslant 1} x \lambda(x)$ (quantité éventuellement infinie). On définit une matrice de transition sur \mathbb{N} par

$$P(0,y) = \lambda(y), \quad P(x,y) = x^{-1} \mathbf{1}_{0 \le y \le x-1}, \quad x \ge 1, y \ge 0.$$

Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov de matrice de transition P. Soit $(\mathcal{F}_n = \sigma(X_0, ..., X_n))_{n\geqslant 0}$ la filtration engendrée par $(X_n)_{n\geqslant 0}$. On pose $S_x = \inf\{n\geqslant 0: X_n = x\}$ et $T_x = \inf\{n\geqslant 1: X_n = x\}$.

- a) Calculer $\mathbb{E}[X_{n+1}|\mathcal{F}_n]$ en fonction de X_n et ρ .
- b) Montrer que la chaîne est irréductible.
- c) La chaîne est-elle apériodique?
- d) Soit $x \ge 1$. Montrer que $\mathbb{P}_x(S_0 < +\infty) = 1$. En déduire que la chaîne est récurrente.
- e) Montrer que $\rho < \infty$ est une condition suffisante de récurrence positive.
- f) On pose $u(x) = \mathbb{E}_x[S_0]$. Écrire le système d'équations satisfaites par u(x). Vérifier que ce système possède une solution donnée par

$$u(x) = \sum_{k=1}^{x} \frac{1}{k}, \quad x \geqslant 1.$$

On admettra que le système admet une seule solution.

g) En déduire que

$$\sum_{x \ge 2} \log(x) \lambda(x) < +\infty$$

est une condition nécessaire et suffisante de récurrence positive.

- h) On choisit maintenant $\lambda(x) = 1/(x(1+x))$. Vérifier que λ est bien une probabilité et calculer $\mathbb{E}_0[T_0]$.
- i) (Avec la même λ de la question précédente) Soit $x \in \mathbb{N}$, que peut-on dire sur le comportement asymptotique de $\mathbb{P}_x(X_n = 0)$ quand $n \to \infty$?

Exercice 2.

a) Soit $(M_n)_{n\geq 0}$ une martingale telle que $\mathbb{E}[M_n^2]<+\infty$ et soit

$$A_n = \sum_{k=1}^{n} \mathbb{E}[(M_k - M_{k-1})^2 | \mathcal{F}_{k-1}]$$

pour tout $n \ge 1$ et $A_0 = 0$. Montrer que $M_n^2 - A_n$ est une martingale.

- b) Soit $(X_n)_{n\geqslant 0}$ la marche aléatoire simple sur \mathbb{Z} (c-à-d $X_{n+1}=X_n+Z_{n+1}$ où $(Z_n)_{n\geqslant 1}$ est une suite iid telle que $\mathbb{P}(Z_n=\pm 1)=1/2$). On suppose $X_0=0$. Montrer que X_n^2-n est une martingale par rapport à la filtration engendrée par les $(X_n)_{n\geqslant 0}$.
- c) Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov sur l'ensemble fini M de matrice de transition P. Soit $f\colon M\to\mathbb{R}$. Montrer que

$$M_n = f(X_n) - f(X_0) + \sum_{k=0}^{n-1} [f(X_k) - (Pf)(X_k)], \quad n \ge 1$$

est une martingale par rapport à la filtration engendrée par les $(X_n)_{n\geqslant 0}$. (On rappelle que $Pf(x) = \sum_{y\in M} f(y)P(x,y)$.

d) Soit $(M_n)_{n\geq 0}$ la martingale introduite à la question précédente. Montrer que

$$M_n^2 - \sum_{k=0}^{n-1} [P(f^2)(X_k) - (Pf(X_k))^2], \quad n \geqslant 1$$

est une martingale par rapport à la filtration engendrée par les $(X_n)_{n\geqslant 0}$. (par définition $f^2(x)=(f(x))^2$ pour tout $x\in M$)