Three-Way Contingency Table Analysis

```
R
```

Table 1: Breslow-Day test on Homogeneity of Odds Ratios: cnt

Test statistic	df	P value
0.1691	1	0.6809

mantelhaen.test(cnt, correct = TRUE) ## For comparison only, since JTN's handout

Table 2: Mantel-Haenszel chi-squared test with continuity correction: cnt

			Alternative
Test statistic	df	P value	hypothesis
0.346	1	0.5564	two.sided

uses the default MH test method, which
includes Yate's correction

mantelhaen.test(cnt, correct = FALSE)

Table 3: Mantel-Haenszel chi-squared test without continuity correction: cnt

			Alternative
Test statistic	df	P value	hypothesis
0.4293	1	0.5123	two.sided

```
dat <- R.rspss("data/cnnpoll.sav", vlabs = T)
ft <- with(dat, {
    ftable(dat, row.vars = 1:2, col.vars = 3)
})
ft</pre>
```

	"ind"	"party affiliate"	"independent"
"response"	"sex"		
"CLINTON	N " MALE"	100	106
	"FEMALE"	157	89
"TRUMP"	"MALE"	139	128
	"FEMALE"	140	77

```
ftc <- matrix(ft, nrow = 4, byrow = T)
ftc</pre>
```

```
100 157
139 140
106 89
128 77
```


library(DescTools)
BreslowDayTest(ftc.a, correct = FALSE)

Table 6: Breslow-Day test on Homogeneity of Odds Ratios: ftc.a

Test statistic	df	P value
0.1691	1	0.6809

mantelhaen.test(ftc.a, correct = TRUE) ## For comparison only, since JTN's handout

Table 7: Mantel-Haenszel chi-squared test with continuity correction: ftc.a

			Alternative
Test statistic	df	P value	hypothesis
0.346	1	0.5564	two.sided

uses the default MH test method, which
includes Yate's correction

mantelhaen.test(ftc.a, correct = FALSE)

Table 8: Mantel-Haenszel chi-squared test without continuity correction: ftc.a

			Alternative
Test statistic	df	P value	hypothesis
0.4293	1	0.5123	two.sided

Matched Pairs

```
R
```

	not	depressed
not	146	47
depressed	155	303

What the results of the McNemar's Test should be:
mcnemar.test(cnt, correct = FALSE)

Table 10: McNemar's Chi-squared test: cnt

Test statistic	df	P value
57.74	1	2.988e-14 * * *

dat <- read.spss("data/dep.sav", to.data.frame = T)
sapply(dat, R.isna) ## THANK YOU!!!! (no NAs to deal with) ##</pre>

w1dep	w2dep	w3dep
0	О	0

```
# ## ... except the factor labels are kind of obnoxious for output... ##
dat <- within(dat, {
    levels(wldep) <- c("not", "depressed")
    levels(w2dep) <- c("not", "depressed")
})
names(dat) <- c("T1", "T2", "T3")</pre>
ft <- with(dat, {
```

```
ftable(dat, row.vars = 1, col.vars = 2)
})
ft
```

	"T2"	"not"	"depressed"
"T1"			
"not"		146	155
"depressed"	,	47	303

ftc <-
$$matrix(ft, \underline{nrow} = 2, \underline{byrow} = T)$$
 ftc

	not	depressed
not	146	47
depressed	155	303

mcnemar.test(ftc.a, correct = FALSE)

Table 15: McNemar's Chi-squared test: ftc.a

Test statistic	df	P value
57.74	1	2.988e-14 * * *

mosaicplot(ftc.a, type = "deviance", las = 2, color = mypal.a75[c(5, 16)])

Loglinear Model Analysis


```
dat <- R.rspss("data/reuters.sav", vlabs = F)
R.msmm(dat)</pre>
```

	M	SD	Min	Max	NAs
id	769.5	444.1	1	1538	0
response	0.84	0.73	O	2	O
party	0.42	0.49	O	1	377
partmiss	0.25	0.43	O	1	O
ind	0.14	0.35	O	1	O

Table 17: Table continues below

id	response	partmiss	ind	response.f
Min. : 1	Min. :0.00	Min. :0.0000	Min. :0.0000	Trump
				:554
1st Qu.:	1st	1st	1st	Clinton:677
308	Qu.:0.00	Qu.:0.0000	Qu.:0.0000	
Median:	Median	Median	Median	
616	:1.00	:0.0000	:0.0000	
Mean : 616	Mean :0.55	Mean	Mean	
		:0.0569	:0.0902	
3rd Qu.:	3rd	3rd	3rd	
924	Qu.:1.00	Qu.:0.0000	Qu.:0.0000	

id	response	partmiss	ind	response.f
Max. :1231	Max. :1.00	Max. :1.0000	Max. :1.0000	

ind.f

Independent:

111

Affililate:1120

tbl <- table(dat\$ind.f, dat\$response.f)</pre> dimnames(tbl) <- list(ind = levels(dat\$ind.f), response = levels(dat\$response.f))**mosaicplot**(tbl, $\underline{type} = "deviance", \underline{las} = 2, \underline{color} = mypal.a75[c(5, 16)])$

tbl

library(MASS)

logmodel <- $loglm(\sim ind + response, digits = 4, data = tbl)$

References1

Allaire, JJ, Joe Cheng, Yihui Xie, Jonathan McPherson, Winston Chang, Jeff Allen, Hadley Wickham, Aron Atkins, and Rob Hyndman. *rmarkdown: Dynamic Documents for R*, 2016. https://CRAN.R-project.org/package=rmarkdown.

Arnold, Jeffrey B. *Ggthemes: Extra Themes, Scales and Geoms for Ggplot2*, 2016. https://CRAN.R-project.org/package=ggthemes.

Aust, Frederik, and Marius Barth. *Papaja: Create APA Manuscripts with RMarkdown*, 2015. https://github.com/crsh/papaja.

Boettiger, Carl. *knitcitations: Citations for Knitr Markdown Files*, 2015. https://CRAN.R-project.org/package=knitcitations.

Chang, Winston. *Extrafont: Tools for Using Fonts*, 2014. https://CRAN.R-project.org/package=extrafont.

Daroczi, Gergely, and Roman Tsegelskyi. *Pander: An R Pandoc Writer*, 2015. https://CRAN.R-project.org/package=pander.

Francois, Romain. *Bibtex: Bibtex Parser*, 2014. https://CRAN.R-project.org/package=bibtex.

———. *Highlight: Syntax Highlighter*, 2015. https://CRAN.R-project.org/package=highlight.

Qiu, Yixuan. *Showtext: Using Fonts More Easily in RGraphs*, 2015. https://CRAN.R-project.org/package=showtext.

Qiu, Yixuan, and others. *Sysfonts: Loading System Fonts into R*, 2015. https://CRAN.R-project.org/package=sysfonts.

R Core Team. *R: A Language and Environment for Statistical Computing*. Vienna, Austria: R Foundation for Statistical Computing, 2016. https://www.R-project.org/.

Venables, W. N., and B. D. Ripley. *Modern Applied Statistics with S*. Fourth. New York: Springer, 2002. http://www.stats.ox.ac.uk/pub/MASS4.

Wickham, Hadley. *Ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York, 2009. http://ggplot2.org.

- ———. *Gtable: Arrange Grobs in Tables*, 2016. https://CRAN. R-project.org/package=gtable.
- ———. Scales: Scale Functions for Visualization, 2016. https://CRAN. R-project.org/package=scales.
- ——. "The Split-Apply-Combine Strategy for Data Analysis." *Journal of Statistical Software* 40, no. 1 (2011): 1–29. http://www.jstatsoft.org/v40/i01/.
- ———. Tidyr: Easily Tidy Data with Spread() and Gather() Functions, 2016. https://CRAN.R-project.org/package=tidyr.

Wickham, Hadley, and Winston Chang. *Devtools: Tools to Make Developing RPackages Easier*, 2016. https://CRAN.R-project.org/

¹ Note: This document was created using R-v3.3.2 R Core Team, R, and the following R-packages: base-v3.3. R Core Team, R, bibtex-vo.4. Francois, Bibtex, dplyr-vo.5. Wickham and Francois, Dplyr, DT-vo.2. Xie, DT, extrafontvo.17. Chang, Extrafont, ggplot2-v2.1. Wickham, Ggplot2, knitcitations-v1.o. Boettiger, knitcitations, knitr-v1.14. Xie, Dynamic Documents with R and Knitr, pander-vo.6. Daroczi and Tsegelskyi, Pander, papaja-vo.1. Aust and Barth, Papaja, plyr-v1.8. Wickham, "The Split-Apply-Combine Strategy for Data Analysis.", rmarkdown-v1.1. Allaire et al., rmarkdown, scales-vo.4. Wickham, Scales, tidyr-vo.6. Wickham, Tidyr, ggthemes-v3.2. Arnold, Ggthemes, gtablevo.2. Wickham, Gtable, kableExtra-vo.o. Zhu, KableExtra, tufte-vo.2. Xie and Allaire, Tufte, MASS-v7.3. Venables and Ripley, Modern Applied Statistics with S, devtools-v1.12. Wickham and Chang, Devtools, highlight-vo.4. Francois, Highlight, sysfonts-vo.5. Qiu and others, Sysfonts, and showtext-vo.4. Qiu, Showtext

package=devtools.

Wickham, Hadley, and Romain Francois. *Dplyr: A Grammar of Data Manipulation*, 2015. https://CRAN.R-project.org/package=dplyr. Xie, Yihui. *DT: A Wrapper of the Javascript Library Datatables*, 2015. https://CRAN.R-project.org/package=DT.

——. Dynamic Documents with R and Knitr. 2nd ed. Boca Raton, Florida: Chapman; Hall/CRC, 2015. http://yihui.name/knitr/. Xie, Yihui, and JJ Allaire. Tufte: Tufte's Styles for Rmarkdown Documents, 2016. https://CRAN.R-project.org/package=tufte.

Zhu, Hao. *KableExtra: Decorate Kable Output Using Pipe Syntax*, 2016. https://github.com/haozhu233/kableExtra.