

Avaliação 1			Nota:		
Curso Bacharelado em (Ciência da Computa	ção			
	s e Programaç	ão 2			
Nome do(a) acadêmico(a)					
Nº de matrícula	Turma 2º Período	Data da Avaliação 11/12/2023	Professor(a) Ana Paula Freitas Vilela Boaventura		
Tipo 1					

- A avaliação é individual e sem consulta;
- A avaliação tem o valor de 10,0 (dez) pontos;
- O conteúdo exigido compreende os seguintes tópicos apresentados no *Plano de Ensino* da disciplina: Linguagem C, *String*, Registros, Módulos, Variáveis locais e Globais, Passagem de Parâmetros por valor;
- O envio da prova será feito via e-mail oficial do discente para ana vilela@ufj.edu.br;
- A interpretação do enunciado, faz parte da avaliação e qualquer tentativa de fraude acarretará abertura de processo administrativo na UFJ;
- Na avaliação, será levado em conta a lógica, a criatividade, a sintaxe, o uso correto dos comandos, a correta declaração dos tipos, os nomes das variáveis, a indentação, uso equilibrado de comentários no código e, evidentemente, a clareza.
- 1 (6.0 pontos) Seja uma estrutura global do tipo struct cliente, que contenha os campos:

int CPF.

char nome [50];

float compras[3];

- a) Declare um vetor global com 3 posições do tipo struct cliente; (1.0 (um) ponto)
- b) No programa principal, invoque a função le_escreve(), para ler e escrever os campos do vetor de struct; (1.0 (um) ponto)
- c) No programa principal, invoque a função verifica(), que confere se o nome "Maria" foi digitado. Se tiver sido digitado, o módulo verifica imprime na tela em qual posição do vetor o registro da Maria se encontra (1º, 2º ou 3º posição (2.0 (um) ponto)
- d) No programa principal, invoque a função media (), que calcula a média dos valores comprados para cada cliente e imprima na tela. O subprograma media() deverá informar o nome do cliente que efetuou o maior gasto (2.0 (dois) pontos)
- 2 (4.0 pontos) Faça um programa que calcule a expressão a seguir:
 - a) Crie uma função principal que leia o valor de N, do tipo inteiro e de escopo local. Chame a função soma(N) e imprima na tela o resultado (1.0 ponto);
 - b) Crie um arquivo somatorio.h, que tenha a função int soma(int N), que seja capaz de calcular a seguinte expressão e retorne o valor do somatório (1.5 pontos por calcular o somatório corretamente e 1.5 para o Fibonacci):

$$\sum_{i=1}^{N} i + fib(i)$$

Biblioteca: string.h

strcpy(str1,str2): faz a cópia do conteúdo da str2 na str1 strcmp(str1,str2): faz a comparação da str1 com a str2

Avaliação 1			Nota:			
Curso	Curso					
Bacharelado em Ciência da Computação						
Disciplina						
Álgoritmos e Programação 2						
Nome do(a) acadêmico(a)						
Nº de matrícula	Turma	Data da Avaliação	Professor(a)			
	2º Período	11/12/2023	Ana Paula Freitas Vilela Boaventura			
Tipo 2						

- A avaliação é individual e sem consulta;
- A avaliação tem o valor de 10,0 (dez) pontos;
- O conteúdo exigido compreende os seguintes tópicos apresentados no *Plano de Ensino* da disciplina: Linguagem C, *String*, Registros, Módulos, Variáveis locais e Globais, Passagem de Parâmetros por valor;
- O envio da prova será feito via e-mail oficial do discente para ana_vilela@ufj.edu.br;
- A interpretação do enunciado, faz parte da avaliação e qualquer tentativa de fraude acarretará abertura de processo administrativo na UFJ;
- Na avaliação, será levado em conta a lógica, a criatividade, a sintaxe, o uso correto dos comandos, a correta declaração dos tipos, os nomes das variáveis, a indentação, uso equilibrado de comentários no código e, evidentemente, a clareza.
- 1 (6.0 pontos) Seja uma estrutura global do tipo struct estudante, que contenha os campos: int matricula, frequencia; //sendo a frequência o percentual. char nome[50]; float nota[3];
 - a) Declare um vetor global com 3 posições do tipo struct estudante; (1.0 (um) ponto)
 - b) No programa principal, invoque a função le_escreve(), para ler e escrever os campos do vetor de struct; (1.0 (um) ponto).
 - c) No programa principal, invoque a função Confere(), que verifica se o nome "Aline" foi digitado. Se tiver sido digitado, o módulo verifica imprime na tela em qual posição do vetor o registro da Aline se encontra (1º, 2º ou 3º posição (2.0 (um) ponto)
 - d) No programa principal, invoque a função Media (), que verifica se o estudante foi aprovado ou não. Para ser aprovado, precisa ter uma média aritmética maior ou igual a seis e a frequência maior ou igual a 75%. (4.0 (dois) pontos)
- 2 (4.0 pontos) Faça um programa que calcule a expressão a seguir:
 - a) Crie uma função principal que leia o valor de N, do tipo inteiro e de escopo local. Chame a função soma(N) e imprima na tela o resultado (1.0 ponto):
 - b) Crie um arquivo somatorio.h, que tenha a função int soma(int N), que seja capaz de calcular a seguinte expressão e retorne o valor do somatório (1.5 pontos por calcular o somatório corretamente e 1.5 para o Fatorial):

$$\sum_{i=1}^{N} i * i!$$

Biblioteca: string.h

strcpy(str1,str2): faz a cópia do conteúdo da str2 na str1 strcmp(str1,str2): faz a comparação da str1 com a str2

Avaliação 1			Nota:		
Curso Bacharelado em (Ciência da Computa	ção			
Disciplina Algoritmos	s e Programaç	- ão 2			
Nome do(a) acadêmico(a)					
Nº de matrícula	Turma 2º Período	Data da Avaliação 11/12/2023	Professor(a) Ana Paula Freitas Vilela Boaventura		
Tipo 3					

- A avaliação é individual e sem consulta;

- A avaliação tem o valor de 10,0 (dez) pontos;
- O conteúdo exigido compreende os seguintes tópicos apresentados no *Plano de Ensino* da disciplina: Linguagem C, *String*, Registros, Módulos, Variáveis locais e Globais, Passagem de Parâmetros por valor;
- O envio da prova será feito via e-mail oficial do discente para ana vilela@ufj.edu.br;
- A interpretação do enunciado, faz parte da avaliação e qualquer tentativa de fraude acarretará abertura de processo administrativo na UFJ;
- Na avaliação, será levado em conta a lógica, a criatividade, a sintaxe, o uso correto dos comandos, a correta declaração dos tipos, os nomes das variáveis, a indentação, uso equilibrado de comentários no código e, evidentemente, a clareza.
- 1 (6.0 pontos) Seja uma estrutura global do tipo struct paciente, que contenha os campos:

int CPF,

char nome [50]:

float massaCorporal[3], altura; //massaCorporal é "quanto o paciente pesa", em kg

- a) Declare um vetor global com 3 posições do tipo struct paciente; (1.0 (um) ponto)
- b) No programa principal, invoque a função Le_escreve(), para ler e escrever os campos do vetor de struct; (1.0 (um) ponto)
- c) No programa principal, invoque a função Atualiza(), que altera o campo nome do 1º paciente para "Maria" e escreve na tela os nomes cadastrados.(1.0 (um) ponto)
- d) No programa principal, invoque a função IMC (), que calcula a média aritmética dos valores do vetor massaCorporal. Usando o peso médio, calcule e retorne o valor do IMC, sabendo que: IMC = Peso/(altura)².

De uma forma generalizada e considerando apenas uma casa depois da vírgula, o módulo IMC() deverá informar se o peso dos pacientes está abaixo do peso abaixo (IMC menor ou igual a 18,4), normal (IMC entre 18,5 e 24,9) ou acima (maior ou igual a 25). (1.0 para calcular a média, 0.5 para calcular o IMC e 1.5 para indicar a saída correta no programa principal)

- 2 (4.0 pontos) Faça um programa que calcule a expressão a seguir:
 - c) Crie uma função principal que leia o valor de N, do tipo inteiro e de escopo local. Chame a função soma(N) e imprima na tela o resultado (1.0 ponto);
 - d) Crie um arquivo somatorio.h, que tenha a função float soma(int N), que seja capaz de calcular a seguinte expressão e retorne o valor do somatório (1.5 pontos por calcular o somatório corretamente e 1.5 para o Fatorial):

$$S = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{N!}$$

Biblioteca: string.h

strcpy(str1,str2): faz a cópia do conteúdo da str2 na str1 strcmp(str1,str2): faz a comparação da str1 com a str2

Avaliação 1			Nota:		
Curso Bacharelado em 0	Ciência da Compu	ıtação	I		
Disciplina					
Algoritmos e Programação 2					
Nome do(a) acadêmico(a)					
Nº de matrícula	Turma 2º Período	Data da Avaliação 11/12/2023	Professor(a) Ana Paula Freitas Vilela Boaventura		
Tipo 4					

- A avaliação é individual e sem consulta;
- A avaliação tem o valor de 10,0 (dez) pontos;
- O conteúdo exigido compreende os seguintes tópicos apresentados no *Plano de Ensino* da disciplina: Linguagem C, *String*, Registros, Módulos, Variáveis locais e Globais, Passagem de Parâmetros por valor:
- O envio da prova será feito via e-mail oficial do discente para ana vilela@ufj.edu.br;
- A interpretação do enunciado, faz parte da avaliação e qualquer tentativa de fraude acarretará abertura de processo administrativo na UFJ:
- Na avaliação, será levado em conta a lógica, a criatividade, a sintaxe, o uso correto dos comandos, a correta declaração dos tipos, os nomes das variáveis, a indentação, uso equilibrado de comentários no código e, evidentemente, a clareza.
- 1 (6.0 pontos) Seja uma estrutura global do tipo struct produtos, que contenha os campos:

int identificador, quantidade [3]; /*sendo a quantidade em estoque para tamanho P, M,e G, respectivamente.*/

char nome[50]:

float preco;

- a) Declare um vetor global com 3 posições do tipo struct produtos; (1.0 (um) ponto)
- b) No programa principal, invoque a função le_escreve(), para ler e escrever os campos do vetor de struct; (1.0 (um) ponto).
- c) No programa principal, invoque a função Busca(), que verifica se o campo cujo nome é "bermuda" consta nos registros. Se tiver, indique quantas peças no tamanho M, caso contrário informe que a peça não foi cadastrada (2.0 (um) ponto).
- d) No programa principal, invoque a função CalculaTotal (), que contabiliza o valor total de estoque, levando em conta o valor e a quantidade de cada peça. (2.0 (dois) pontos)
- 2 (4.0 pontos) Faça um programa que calcule a expressão a seguir:
 - c) Crie uma função principal que leia o valor de N, do tipo inteiro e de escopo local. Chame a função soma(N) e imprima na tela o resultado (1.0 ponto);
 - d) Crie um arquivo somatorio.h, que tenha a função int soma(int N), que seja capaz de calcular a seguinte expressão e retorne o valor do somatório (1.5 pontos por calcular o somatório corretamente e 1.5 para o Fibonacci):

$$S = 1 + \frac{Fib(1)}{1} + \frac{Fib(2)}{2} + \frac{Fib(3)}{3} + \dots + \frac{Fib(N)}{N}$$

Biblioteca: string.h

strcpy(str1,str2): faz a cópia do conteúdo da str2 na str1 strcmp(str1,str2): faz a comparação da str1 com a str2