

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT Fachbereich Geowissenschaften

Einführung in Matlab

6. Differentialgleichungen

Prof. Dr. Christiane Zarfl, Dipl.-Inf. Willi Kappler, Prof. Dr. Olaf Cirpka

Sie wissen bereits...

- wie Sie durch Skripte Befehlsfolgen wiederverwertbar machen.
- wie Sie häufig vorkommende Berechnungen in Algorithmen formulieren.
- wie Sie eigene Funktionen zur Wiederverwertung von Berechnungsschritten erstellen.

Wie kann ich eigene Funktionen zur Lösung von Differentialgleichungen verwenden?

Nach diesem sechsten Block...

 können Sie mit Hilfe von selbst definierten Funktionen in Matlab bereits implementierte Lösungsmethoden für Differentialgleichungen verwenden.

Differentialgleichungen (DGLn)

einfache DGL

$$\frac{dy}{dt} = a \cdot y, \text{ mit y(0)} = y_0 \text{ bei t=0}$$

System von DGLn

$$\frac{dy_{1}}{dt} = f_{1}(t, y_{1}, ..., y_{n}), y_{1}(t_{0}) = y_{1,0}$$

$$\vdots$$

$$\frac{dy_{n}}{dt} = f_{1}(t, y_{1}, ..., y_{n}), y_{n}(t_{0}) = y_{n,0}$$

$$\Rightarrow \frac{dy}{dt} = f(t, y), y(t_{0}) = y_{0}$$

Generische Lösung von DGLn mit Matlab

- Matlab stellt Methoden zur DGL-Lösung bereit, z.B. ode45, ode15s, . . .
- Matlab braucht eine Funktion, in der die Veränderung $\partial x/\partial t$ in Abhängigkeit der Zeit und des gegenwärtigen Wertes x errechnet wird

```
• function dxdt = velo(t,x)
 dxdt = \cdots
```

- Input
 - erstes Argument: Zeit t
 - zweites Argument: Zustand x
- Output: Veränderung des Zustands mit der Zeit
- Matlab hat Funktionen zum Lösen von DGLn, die von einem Script (oder einer anderen Funktion) aufgerufen werden müssen spanne = [tmin tmax]

```
x0 = \cdots
[t,x]=ode15s(@velo,spanne,x0)
```

Radioaktiver Zerfall mit DGI-Löser

- Schreiben Sie eine Funktion radio.m für die DGL zur Beschreibung des radioaktiven Zerfalls eines Isotops A mit 100 Bq als Startwert und einer Zerfallsrate von 0,005 [1/Jahr]: function dxdt=radio(t,x).
- Schreiben Sie ein aufrufendes Script. Plotten Sie den Zeitverlauf über einen anschaulich gewählten Zeitraum.

Gekoppelte DGLn: Radioaktive Zerfallskette mit DGL-Löser

- Sie möchten nun nicht nur das Isotop A selbst, sondern auch sein Zerfallsprodukt B betrachten, das wiederum zerfällt. Schreiben Sie eine Funktion radiokette.m für die DGLn zur Beschreibung dieser radioaktiven Zerfallskette. Was sind sinnvoll gewählte Startwerte für A und B? Wählen Sie wieder die Zerfallsrate von 0,005 [1/Jahr] für A und 0,003 [1/Jahr] für B. Was ändert sich für Ihre Funktion function dxdt=radiokette(t,x) im Vergleich zur vorhergehenden Aufgabe?
- Schreiben Sie wieder ein aufrufendes Script. Plotten Sie den Zeitverlauf von A und B.

Zusatz: Particle Tracking durch ein Geschwindigkeitsfeld

• Geschwindigkeitsfeld: Brunnen plus Grundströmung

$$v_x(x,y) = \frac{T}{n \cdot m} \cdot I + \frac{1}{2 \cdot \pi \cdot n \cdot m} \cdot Q \cdot \left(\frac{x - x_b}{r^2}\right)$$
$$v_y(x,y) = \frac{1}{2 \cdot \pi \cdot n \cdot m} \cdot Q \cdot \left(\frac{y - y_b}{r^2}\right)$$

- m Mächtigkeit des Grundwasserleiters (=10 m)
- n Porosität (25 %)
- I Hydraulischer Gradient ohne Brunnen (=1%)
- Q Förderrate des Brunnens ($Q = 1000 \text{ m}^3/\text{d}$)
- T Transmissivität des Grundwasserleiters (= $5 * 10^{-3}$ m²/s)
- r Abstand zum Brunnen
- x_b,y_b Koordinaten des Brunnens (-50,0)

Zusatz: Particle Tracking durch ein Geschwindigkeitsfeld

- Schreiben Sie eine Funktion velo.m für das Geschwindigkeitsfeld function v=velo(t,x)
- Schreiben Sie ein aufrufendes Script mit Anfangspunkten wie in der Hausübung
 - Integrieren Sie über 14 Tage Laufzeit
 - Plotten Sie die Trajektorien

Nützliches

- Sehr guter Matlab Online Kurs mit Beispielen.
- Wie in den meisten anderen Dingen auch: Verwendung von Matlab wird "vertrauter"/leichter mit der Übung.