班级

作业 20 微分方程基本概念

- 1. 写出下列条件所确定的微分方程:
- (1) 曲线在点M(x, y)处的法线与x轴的交点为Q, 且线段MQ被y轴平分;

解: 法线方程为 $Y-y=-\frac{1}{y'}(X-x)$, 法线与x轴的交点Y=0, $\Rightarrow X=x+y'y$

由已知
$$0 = \frac{x+X}{2} = \frac{x+x+y'y}{2} \Rightarrow y'y+2x=0$$

(2) 曲线上任意点M(x,y)处的切线与线段OM垂直;

解: 切线的斜率为 y', 线段 OM 的斜率为 $k = \frac{y}{r}$

由己知
$$y' \cdot \frac{y}{x} = -1$$
, $\Rightarrow yy' = -x$

三角形的面积为常数 a^2 .

(3) 曲线上任意点 M(x,y) 处的切线,以及 M 点与原点的连线,和 x 轴所围成的

解: 切线方程为Y-y=y'(X-x), M 点与原点的连线为 $Y=\frac{y}{x}X$

切线与x轴即直线Y=0的交点, $Y=0, \Rightarrow X=x-\frac{y}{y'}$

由己知
$$\frac{1}{2} \left| y \cdot \left(x - \frac{y}{y'} \right) \right| = a^2, \Rightarrow xy - \frac{y^2}{y'} = \pm 2a^2, \left(xy \pm 2a^2 \right) y' = y^2$$

2.. 求曲线簇 $xy = C_1 e^x + C_2 e^{-x}$ $(C_1, C_2$ 为任意常数)所满足的微分方程.

解:由己知,两边对自变量x求导 $y+xy'=C_1e^x-C_2e^{-x}$

两边再对自变量
$$x$$
 求导 $2y' + xy'' = C_1 e^x + C_2 e^{-x} \Rightarrow 2y' + xy'' = xy$

3. 潜水艇垂直下沉时所遇到的阻力和下沉的速度成正比,如果潜水艇的质量为*m*,且是在水面由静止开始下沉,求下沉的速度所满足的微分方程和初始条件.

解: 由己知,
$$m\frac{dv}{dt} = mg - kv, v(0) = 0$$

作业 21 可分离变量的微分方程

1. 解微分方程
$$y - xy' = a(y^2 + y')$$
.

解: 微分方程即
$$y - ay^2 = (x + a) \frac{dy}{dx}$$

分离变量
$$\frac{dy}{y-ay^2} = \frac{dx}{x+a}$$

两边积分
$$\int \frac{dx}{x+a} = \int \frac{ady}{ay(1-ay)} = \int \left(\frac{1}{ay} - \frac{1}{ay-1}\right) d(ay)$$

从而
$$\ln(x+a) = \ln\frac{ay}{ay-1} + \ln c = \ln\frac{acy}{ay-1} \Rightarrow x+a = \frac{acy}{ay-1}$$

2. 求解初值问题:
$$(1+e^{-x})y'\tan y + 1 = 0$$
, $y|_{x=0} = \pi$.

解: 微分方程即
$$(1+e^{-x})\tan y \frac{dy}{dx} = -1$$

分离变量
$$\frac{\sin y dy}{\cos y} = -\frac{dx}{1 + e^{-x}}$$

两边积分
$$-\int \frac{d\cos y}{\cos y} = -\int \frac{dx}{1+e^{-x}} = -\int \frac{e^x dx}{1+e^x} = -\int \frac{d(1+e^x)}{1+e^x}$$

从而
$$-\ln \cos y = -\ln (1 + e^x) - \ln c \Rightarrow \cos y = c(1 + e^x)$$

$$|\pm y|_{x=0} = \pi, \cos \pi = c(1+e^0) = 2c \Rightarrow c = -\frac{1}{2}, \cos y = -\frac{1}{2}(1+e^x)$$

3. 当 $\Delta x \rightarrow 0$ 时, α 是比 Δx 高阶的无穷小量,函数y(x) 在任意点处的增量

$$\Delta y = \frac{y\Delta x}{1+x^2} + \alpha , \quad \exists \ y(0) = \pi , \quad \vec{\Re} \ y(1) .$$

解: 由已知
$$\frac{\Delta y}{\Delta x} = \frac{y}{1+x^2}$$
, 从而 $\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{y}{1+x^2}$

分离变量
$$\frac{dy}{y} = \frac{dx}{1+x^2}$$

两边积分
$$\int \frac{dy}{y} = \int \frac{dx}{1+x^2} \Rightarrow \ln y = \arctan x + \ln c \Rightarrow y = ce^{\arctan x}$$

$$\pm y|_{x=0} = \pi$$
, $\pi = ce^{\arctan 0} = c \Rightarrow c = \pi$, $y = \pi e^{\arctan x}$

4. 解微分方程 $xy' = y \ln y$.

解: 微分方程即
$$x\frac{dy}{dx} = y \ln y$$

分离变量
$$\frac{dy}{y \ln y} = \frac{dx}{x}$$

两边积分
$$\int \frac{dy}{y \ln y} = \int \frac{d \ln y}{\ln y} = \int \frac{dx}{x} \Rightarrow \ln \ln y = \ln x + \ln c \Rightarrow \ln y = cx, y = e^{cx}$$

5. 一曲线通过点(2,3),它在两坐标轴之间的任意切线段均被切点所平分,求这曲线方程.

解: 由已知
$$y(2) = 3, Y - y = y'(X - x)$$

$$\stackrel{\text{def}}{=} X = 0, Y = y - xy', \frac{Y + 0}{2} = y \Rightarrow y - xy' = 2y, x \frac{dy}{dx} = -y$$

分离变量
$$\frac{dy}{y} = -\frac{dx}{x}$$

两边积分
$$\int \frac{dy}{y} = -\int \frac{dx}{x} \Rightarrow \ln y = -\ln x + \ln c \Rightarrow y = \frac{c}{x}$$

$$|\pm y|_{x=2} = 3, \quad 3 = \frac{c}{2}, \Rightarrow c = 6, y = \frac{6}{x}$$

6. 设有连接O(0,0)和A(1,1)的一段向上凸的曲线弧OA,对于OA上任一点P(x,y),

曲线弧OP与直线段 \overline{OP} 所围成的面积为 x^2 ,求曲线弧OA的方程.

解:设曲线为y = f(x)

由己知
$$\int_{0}^{x} y(t) dt - \frac{1}{2} xy = x^{2}, y(0) = 0, y(1) = 1 \Rightarrow y - \frac{y + xy'}{2} = 2x$$

微分方程即
$$xy' - y = -2x$$
, $\frac{xy' - y}{x^2} = \left(\frac{y}{x}\right)' = -\frac{2}{x}$

从而
$$\frac{y}{x} = -\int \frac{2}{x} dx$$
, $y = -x(2 \ln x - c) = x(c - 2 \ln x)$

$$\pm y|_{x=1} = 1, \quad 1 = c - 2\ln 1, \Rightarrow c = 1, y = x(1 - 2\ln x),$$

作业 22 齐次方程

1. 解微分方程
$$xy' = y \ln \frac{y}{x}$$
.

解:
$$\Leftrightarrow u = \frac{y}{x}$$
, 则 $y = ux$, $y' = u + xu'$

微分方程
$$xy' = y \ln \frac{y}{x}$$
, 即 $y' = \frac{y}{x} \ln \frac{y}{x} = u \ln u = u + xu'$

$$u(\ln u - 1) = x \frac{du}{dx}$$
, 分离变量 $\frac{du}{u(\ln u - 1)} = \frac{dx}{x}$

两边积分
$$\int \frac{du}{u(\ln u - 1)} = \int \frac{d(\ln u - 1)}{\ln u - 1} = \int \frac{dx}{x}$$

$$\ln(\ln u - 1) = \ln x + \ln c, \ln \frac{y}{x} = 1 + cx, y = xe^{1+cx}$$

2. 求解初值问题
$$(y + \sqrt{x^2 + y^2}) dx - x dy = 0 (x > 0), y(1) = 0$$
.

解:
$$\Leftrightarrow u = \frac{y}{x}$$
, 则 $y = ux$, $y' = u + xu'$

微分方程
$$\frac{dy}{dx} = \frac{y + \sqrt{x^2 + y^2}}{x}$$
, 即 $y' = \frac{y}{x} + \sqrt{1 + \left(\frac{y}{x}\right)^2} = u + \sqrt{1 + u^2} = u + xu'$

$$\sqrt{1+u^2} = x \frac{du}{dx}$$
 , 分离变量 $\frac{du}{\sqrt{1+u^2}} = \frac{dx}{x}$, 两边积分 $\int \frac{du}{\sqrt{1+u^2}} = \int \frac{dx}{x}$

$$\ln\left(u + \sqrt{1 + u^2}\right) = \ln x + \ln c, y + \sqrt{x^2 + y^2} = cx^2$$

$$\pm y(1) = 0$$
, $0 + \sqrt{1+0} = c$, $\Rightarrow c = 1$, $y + \sqrt{x^2 + y^2} = x^2$

3. 作适当的变量代换, 求下列方程的通解:

(1)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = (x+y)^2;$$

$$\Re : \ \diamondsuit u = x + y, \Rightarrow \frac{du}{dx} = 1 + y' = 1 + u^2, \Rightarrow \frac{du}{1 + u^2} = dx, \int \frac{du}{1 + u^2} = \int dx$$

$$\arctan u = x + c, y = \tan(x + c) - x$$

(2)
$$y' = \frac{y-x+1}{y+x+5}$$
;

再令
$$b-a+1=0, b+a+5=0 \Rightarrow b=-3, a=-2$$
, $x=X-2, y=Y-3$

再令
$$Y = uX$$
, $\Rightarrow Xu' + u = \frac{u-1}{u+1}$, $Xu' = \frac{u-1}{u+1} - u = \frac{-1-u^2}{u+1}$

从而
$$\int \frac{(u+1)du}{1+u^2} = \int \left(\frac{u}{1+u^2} + \frac{1}{1+u^2}\right) du = -\int \frac{dX}{X}$$
,

$$\frac{1}{2}\ln(1+u^2) + \arctan u = -\ln X - \frac{1}{2}\ln c, e^{-2\arctan u} = cX^2(1+u^2)$$

$$e^{-2\arctan\frac{y+3}{x+2}} = c\left[\left(x+2\right)^2 + \left(y+3\right)^2\right]$$

(3)
$$(x+2y)^2 y' = 1$$
.

解: 令
$$u = x + 2y$$
, 则 $u' = 1 + 2y' = 1 + \frac{2}{u^2} = \frac{u^2 + 2}{u^2}$, 分离变量 $\frac{u^2}{u^2 + 2}du = dx$,

两边积分
$$\int \frac{u^2 + 2 - 2}{u^2 + 2} du = \int dx \Rightarrow u - \sqrt{2} \arctan \frac{u}{\sqrt{2}} = x + c$$

$$x + 2y - \sqrt{2} \arctan \frac{x + 2y}{\sqrt{2}} = x + c, 2y - c = \sqrt{2} \arctan \frac{x + 2y}{\sqrt{2}}$$

4. 求曲线 y = y(x),使它正交于圆心在 x 轴上且过原点的任何圆(注:两曲线正交是指在交点处两曲线的切线互相垂直).

解:可设在x轴上且过原点的任何圆为 $(x-a)^2 + y^2 = a^2$,

则
$$x^2 + y^2 = 2ax$$
, $a = \frac{x^2 + y^2}{2x}$, $2(x-a) + 2yy' = 0$, $y' = \frac{a-x}{y}$

由已知曲线
$$y = y(x)$$
 应满足 $y' = -\frac{y}{a-x} = -\frac{y}{\frac{x^2 + y^2}{2x} - x} = -\frac{2xy}{y^2 - x^2}$

$$\Rightarrow u = \frac{y}{x}, \text{ My } y = ux, y' = u + xu' = \frac{2u}{1 - u^2}, xu' = \frac{u + u^3}{1 - u^2}, \frac{\left(1 - u^2\right)du}{u\left(1 + u^2\right)} = \frac{dx}{x},$$

$$\int \frac{1+u^2-2u^2}{u(1+u^2)} du = \int \frac{dx}{x}, \ln u - \ln(1+u^2) = \ln x + \ln c$$

$$\frac{u}{1+u^2} = cx, \frac{y}{x} = cx\left(1 + \frac{y^2}{x^2}\right), y = c\left(x^2 + y^2\right)$$

作业 23 一阶线性微分方程

1. 解微分方程
$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = \frac{\sin x}{x}.$$

解: 对照标准的一阶线性微分方程
$$\frac{dy}{dx} + P(x)y = Q(x)$$
,

$$\Rightarrow P(x) = \frac{1}{x}, Q(x) = \frac{\sin x}{x}, y = e^{-\int P(x)dx} \left[\int Q(x) e^{\int P(x)dx} dx + C \right]$$

$$y = e^{-\int_{x}^{1} dx} \left[\int \frac{\sin x}{x} e^{\int_{x}^{1} dx} dx + C \right] = e^{-\ln x} \left[\int \frac{\sin x}{x} e^{\ln x} dx + C \right] = e^{\ln \frac{1}{x}} \left[\int \frac{\sin x}{x} x dx + C \right]$$

$$= \frac{1}{x} \left[\int \sin x dx + C \right] = \frac{C - \cos x}{x}$$

2. 解微分方程
$$x \frac{dy}{dx} + y = x^2 + 3x + 2$$
.

解: 微分方程即
$$\frac{d(xy)}{dx} = x^2 + 3x + 2,$$

$$xy = \int (x^2 + 3x + 2) dx = \frac{1}{3}x^3 + \frac{3}{2}x^2 + 2x + c, y = \frac{1}{3}x^2 + \frac{3}{2}x + 2 + \frac{c}{x}$$

3. 解微分方程
$$(y^2 - 6x) \frac{dy}{dx} + 2y = 0$$
.

解: 观察发现, 微分方程等价为
$$y^2 - 6x + 2y \frac{dx}{dy} = 0$$
, $\frac{dx}{dy} - \frac{3}{y}x = -\frac{y}{2}$,

$$\Rightarrow P(y) = \frac{-3}{y}, Q(y) = \frac{-y}{2}, x = e^{-\int P(y)dy} \left[\int Q(y)e^{\int P(y)dy}dy + C \right]$$

$$x = e^{-\int \frac{-3}{y} dy} \left[\int \frac{-y}{2} e^{\int \frac{-3}{y} dy} dy + C \right] = e^{3\ln y} \left[\int \frac{-y}{2} e^{-3\ln y} dy + C \right]$$

$$= y^{3} \left(-\int \frac{1}{2y^{2}} dy + C \right) = y^{3} \left(\frac{1}{2y} + C \right) = \frac{y^{2}}{2} + Cy^{3}$$

4. 求解初值问题
$$\frac{dy}{dx} - y \tan x = \sec x$$
, $y|_{x=0} = 0$.

解: 对照标准的一阶线性微分方程
$$\frac{dy}{dx} + P(x)y = Q(x)$$
,

$$\Rightarrow P(x) = -\tan x, Q(x) = \sec x, y = e^{-\int -\tan x dx} \left[\int \sec x \cdot e^{\int -\tan x dx} dx + C \right]$$

$$y = e^{-\ln \cos x} \left[\int \sec x \cdot e^{\ln \cos x} dx + C \right] = \frac{x+c}{\cos x}, \quad \text{iff } y \Big|_{x=0} = 0, \quad y = \frac{x}{\cos x}$$

- 5. 设曲线积分 $\int_{L} yf(x)dx + [2xf(x) x^2]dy$ 在右半平面 (x > 0) 内与路径无关,其中 f(x) 可导,且 f(1) = 1,求 f(x) .
- 解: 由曲线积分在右半平面 (x>0)内与路径无关可知,

$$f(x) = 2x f(x) \left(2f(x) - 2x + \frac{1}{2x} (x) \right) =$$

$$\Rightarrow P(x) = \frac{1}{2x}, Q(x) = 1, y = e^{-\int \frac{1}{2x} dx} \left[\int 1 \cdot e^{\int \frac{1}{2x} dx} dx + C \right] = e^{-\frac{1}{2} \ln x} \left[\int e^{\frac{1}{2} \ln x} dx + C \right]$$

$$y = \frac{1}{\sqrt{x}} \left(\frac{2}{3} x^{\frac{3}{2}} + c \right) = \frac{2}{3} x + \frac{c}{\sqrt{x}} = f(x)$$

$$\pm f(1) = 1, \quad 1 = \frac{2}{3} + c, \Rightarrow c = \frac{1}{3}, f(x) = \frac{2}{3}x + \frac{1}{3\sqrt{x}}$$

6. 解微分方程 $\frac{dy}{dx} - 3xy = xy^2$.

解: 微分方程化为
$$\frac{1}{y^2} \frac{dy}{dx} - 3\frac{x}{y} = x$$
, $-\frac{d}{dx} \left(\frac{1}{y} \right) - 3\frac{x}{y} = x$, $\frac{d}{dx} \left(\frac{1}{y} \right) + 3\frac{x}{y} = -x$,

令
$$u = \frac{1}{y}$$
, ⇒ $\frac{du}{dx} + 3xu = -x$, 为一阶线性微分方程

$$P(x) = 3x, Q(x) = -x, u = e^{-\int 3x dx} \left[\int (-x) \cdot e^{\int 3x dx} dx + C \right] = e^{-\frac{3}{2}x^2} \left[-\int x e^{\frac{3}{2}x^2} dx + C \right]$$

$$u = \frac{1}{y} = e^{-\frac{3}{2}x^2} \left[-\int \frac{1}{3} e^{\frac{3}{2}x^2} d\left(\frac{3}{2}x^2\right) x + C \right] = e^{-\frac{3}{2}x^2} \left[-\frac{1}{3} e^{\frac{3}{2}x^2} + C \right] = Ce^{-\frac{3}{2}x^2} - \frac{1}{3}$$

作业 24 全微分方程

1. 判别下列方程中哪些是全微分方程,并求全微分方程的通解:

(1)
$$(3x^2 + 6xy^2)dx + (6x^2y + 4y^2)dy = 0$$
;

解: 因为
$$\frac{\partial (3x^2 + 6xy^2)}{\partial y} = 12xy = \frac{\partial (6x^2y + 4y^2)}{\partial x}$$
 且连续,从而该方程是全微分方程

$$0 = 3x^{2}dx + 6xy^{2}dx + 6x^{2}ydy + 4y^{2}dy = dx^{3} + 3y^{2}dx^{2} + 3x^{2}dy^{2} + \frac{4}{3}dy^{3}$$

$$= d\left(x^3 + +3x^2y^2 + \frac{4}{3}y^3\right), \quad \text{Mfff} \ x^3 + +3x^2y^2 + \frac{4}{3}y^3 = c$$

(2) $(x\cos y + \cos x)y' - y\sin x + \sin y = 0$;

解: 方程即 $(x\cos y + \cos x)dy + (-y\sin x + \sin y)dx = 0$

因为
$$\frac{\partial \left(-y \sin x + \sin y\right)}{\partial y} = -\sin x + \cos y = \frac{\partial (x \cos y + \cos x)}{\partial x}$$
且连续,从而该方程

是全微分方程,方程右边为某个函数u(x,y)的全微分,

$$u = y\cos x + x\sin y + g(y), u_y = x\cos y + \cos x = \cos x + x\cos y + g'(y)$$

$$\Rightarrow g'(y) = 0, g(y) = c_1$$

从而微分方程的通解为 $y \cos x + x \sin y = c$

(3)
$$e^{y}dx + (xe^{y} - 2y)dy = 0$$
.

解: 因为
$$\frac{\partial e^y}{\partial y} = e^y = \frac{\partial (xe^y - 2y)}{\partial x}$$
 且连续,从而该方程是全微分方程,从而该方程是

全微分方程,方程右边为某个势函数u(x,y)的全微分,可用曲线积分法求一个来。

$$\mathbf{u} = \int_{(0,0)}^{(x,y)} e^{y} dx + (xe^{y} - 2y) dy = \int_{0}^{x} e^{0} dx + \int_{0}^{y} (xe^{y} - 2y) dy = xe^{y} - y^{2}$$

从而微分方程的通解为 $xe^y - y^2 = c$

作业 25 可降阶的高阶微分方程

- 1. 求下列微分方程的通解
 - $(1) \quad y'' = x + \sin x;$

$$\mathbb{H}: \quad y' = \int (x + \sin x) dx = \frac{1}{2}x^2 - \cos x + c_1,$$

$$y = \int \left(\frac{1}{2}x^2 - \cos x + c_1\right) dx = \frac{1}{6}x^3 - \sin x + c_1 x + c_2$$

(2)
$$y''(e^x + 1) + y' = 0$$
;

解:
$$\Leftrightarrow p = y', \Rightarrow y'' = \frac{dp}{dx}, (e^x + 1)\frac{dp}{dx} + p = 0$$

分离变量
$$\frac{dp}{p} = -\frac{dx}{e^x + 1}$$
,

两边积分
$$\int \frac{dp}{p} = -\int \frac{e^x + 1 - e^x}{e^x + 1} dx = -x + \ln(e^x + 1) + \ln c_1$$
, $p = c_1 \frac{e^x + 1}{e^x} = \frac{dy}{dx}$

分离变量
$$dy = c_1 \frac{e^x + 1}{e^x} dx$$
, 两边积分 $y = c_1 \int \frac{e^x + 1}{e^x} dx = c_1 \int (1 + e^{-x}) dx$

$$y = c_2 + c_1 \left(x - e^{-x} \right)$$

(3)
$$y'' + \frac{2}{1-y}y'^2 = 0$$
;

解:
$$\Leftrightarrow p = y', \Rightarrow y'' = \frac{dp}{dx} = \frac{dp}{dy} \cdot \frac{dy}{dx} = p\frac{dp}{dy}, p\frac{dp}{dy} + \frac{2}{1-y}p^2 = 0$$

分离变量
$$\frac{dp}{p} = \frac{2}{y-1} dy$$
,

两边积分
$$\int \frac{dp}{p} = \int \frac{2}{y-1} dy$$
, $\ln p = 2 \ln (y-1) + \ln c_1$, $p = c_1 (y-1)^2 = \frac{dy}{dx}$

分离变量
$$\frac{dy}{(y-1)^2} = c_1 dx$$
, 两边积分 $c_1 x + c_2 = \int \frac{dy}{(y-1)^2} = \frac{-1}{y-1}$

$$y = 1 - \frac{1}{c_1 x + c_2}$$

(4)
$$y'' = (y')^3 + y'$$
.

解:
$$\Leftrightarrow p = y', \Rightarrow y'' = \frac{dp}{dx} = \frac{dp}{dy} \cdot \frac{dy}{dx} = p\frac{dp}{dy}, p\frac{dp}{dy} = p^3 + p$$

分离变量
$$\frac{dp}{p^2+1} = dy$$
,

两边积分
$$y = \int \frac{1}{p^2 + 1} dp = \arctan p - c_1, p = \tan(y + c_1) = \frac{dy}{dx}$$
,

分离变量
$$\cot(y+c_1)dy=dx$$
,

两边积分
$$x+c_2=\int\cot\left(y+c_1\right)dy=\ln\left|\sin\left(y+c_1\right)\right|$$
, $\sin\left(y+c_1\right)=\pm e^{x+c_2}$

2. 求解初值问题
$$\begin{cases} y^3y'' + 1 = 0 \\ y|_{x=1} = 1, y'|_{x=1} = 0 \end{cases}.$$

解:
$$\Leftrightarrow p = y', \Rightarrow y'' = \frac{dp}{dx} = \frac{dp}{dy} \cdot \frac{dy}{dx} = p\frac{dp}{dy}, y^3 p\frac{dp}{dy} + 1 = 0$$

分离变量
$$pdp = \frac{-1}{v^3}dy$$
, 两边积分 $\frac{p^2}{2} = \int \frac{-1}{v^3}dy = \frac{1}{2v^2} + \frac{1}{2}c_1, p^2 = y^{-2} + c_1$,

$$|\pm y|_{x=1} = 1, y'|_{x=1} = 0, \quad 0 = 1 + c_1, \Rightarrow p^2 = y^{-2} - 1, p = \frac{dy}{dx} = \pm \sqrt{y^{-2} - 1}$$

分离变量
$$\frac{ydy}{\sqrt{1-y^2}} = \pm dx$$
 , 两边积分 $-\int \frac{-2ydy}{2\sqrt{1-y^2}} = \pm x - c = -\sqrt{1-y^2}$,

$$\sqrt{1-y^2} = \pm x + c$$
, $\pm y |_{x=1} = 1, c = \mp 1$, $\lim \sqrt{1-y^2} = \pm x \mp 1$

3. 设第一象限内的曲线 y = y(x) 对应于 $0 \le x \le a$ 一段的长在数值上等于曲边梯形:

 $0 \le y \le y(x)$, $0 \le x \le a$ 的面积, 其中 a > 0 是任意给定的, y(0) = 1, 求 y(x).

解: 由己知
$$\int_{0}^{a} \sqrt{1 + \left[y'(x) \right]^{2}} dx = \int_{0}^{a} y(x) dx \Rightarrow 1 + y'^{2} = y, y' = \pm \sqrt{y - 1}$$

$$\int \frac{dy}{\sqrt{y-1}} = \pm \int dx = c \pm x, 2\sqrt{y-1} = c \pm x, y = 1 + \frac{(c \pm x)^2}{4}$$

$$\pm y(0) = 1$$
, $1 = 1 + \frac{c^2}{4}$, $c = 0$, $y = 1 + \frac{x^2}{4}$

作业 26 线性微分方程解的结构

1. 已知 $y_1(x) = e^x$ 是齐次线性方程

$$(2x-1)y''-(2x+1)y'+2y=0$$
的一个解,求此方程的通解.

解: 方程即
$$y'' - \frac{2x+1}{2x-1}y' + \frac{2}{2x-1}y = 0, p(x) = -\frac{2x+1}{2x-1}, q(x) = \frac{2}{2x-1}$$

由刘维尔公式
$$y_2 = y_1 \int \frac{1}{v_1^2} e^{-\int p(x)dx} dx = e^x \int \frac{1}{e^{2x}} e^{-\int -\frac{2x+1}{2x-1}dx} dx$$

$$y_2 = e^x \int e^{-2x} e^{\int \left(1 + \frac{2}{2x - 1}\right) dx} dx = e^x \int e^{-2x} e^{x + \ln(2x - 1)} dx = e^x \int (2x - 1) e^{-x} dx$$

$$= -e^{x} \int (2x-1) de^{-x} = -e^{x} \left[(2x-1) e^{-x} + 2e^{-x} \right] = -2x-1$$

由解的结构定理可知,方程的通解 $y = c_1 e^x - c_2 (2x+1)$

2. 若 y_1 , y_2 , y_3 是二阶非齐次线性微分方程(1)的线性无关的解,试用 y_1 , y_2 , y_3 表达方程(1)的通解.

解:由解的结构定理可知, y_2-y_1,y_3-y_1 均为对应的二阶齐次线性微分方程的解,而且现行无关。

从而: 由解的结构定理方程 (1) 的通解为 $y = c_1(y_2 - y_1) + c_2(y_3 - y_1) + y_1$

3 . 已 知 $y_1 = x^2$, $y_2 = x + x^2$, $y_3 = e^x + x^2$ 都 是 二 阶 线 性 非 齐 次 方 程 (x-1) $\dot{y} - x \dot{y} \rightarrow x - x + 2$ 的解,求此方程的通解.

解: 易知 $y_2 - y_1 = x$ $y_3 - y_3 e^x$ 线性无关,从而为二阶线性齐次方程 (x-1)y''-xy'+y=0 的线性无关的特解,由解的结构定理,二阶线性非齐次方程 $(x-1)y''-xy'+y=-x^2+2x-2$ 的通解为 $y=x^2+c_1x+c_2e^x$

作业 27 二阶常系数齐次线性微分方程

1. 求下列微分方程的通解

(1)
$$4y''-12y'+9y=0$$
;

解:特征方程为

$$4r^{2} - 12r + 9 = 0, r_{1,2} = \frac{-(-12) \pm \sqrt{(-12)^{2} - 4 \cdot 4 \cdot 9}}{2 \cdot 4} = \frac{3 \pm \sqrt{9 - 9}}{2} = \frac{3}{2}$$

从而通解为 $y = (c_1 + c_2 x)e^{\frac{3}{2}x}$

$$(2) \frac{\mathrm{d}^2 s}{\mathrm{d}t^2} + \frac{\mathrm{d}s}{\mathrm{d}t} = 0 ;$$

解:特征方程为
$$r^2 + r = r(r+1) = 0, r_1 = 0, r_2 = -1$$

从而通解为 $y = c_1 + c_2 e^{-x}$

(3)
$$y'' + 6y' + 13y = 0$$
;

解: 特征方程为
$$r^2 + 6r + 13 = 0$$
, $r_{1,2} = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 1 \cdot 13}}{2} = -3 \pm 2i$, $\alpha = -3$, $\beta = 2$

从而通解为 $y = (c_1 \cos 2x + c_2 \sin 2x)e^{-3x}$

(4)
$$y^{(5)} + 2y''' + y' = 0$$
.

解: 特征方程为
$$r^5 + 2r^3 + 1 = r(r^2 + 1)^2 = 0$$
, $r_{1,2} = i$, $r_{3,4} = -i$, $r_5 = 0$

从而通解为
$$y = (c_1 + c_2 x)\cos 2x + (c_3 + c_4 x)\sin 2x + c_5$$

2. 求方程 4y'' + 4y' + y = 0 满足所给初始条件 $y\big|_{x=0} = 2$, $y'\big|_{x=0} = 0$ 的特解.

解: 特征方程为
$$4r^2+4r+1=(2r+1)^2=0$$
, $r_{1,2}=-\frac{1}{2}$

从而通解为
$$y = (c_1 + c_2 x)e^{-\frac{1}{2}x}$$
,由 $y|_{x=0} = 2$ 得 $2 = (c_1 + c_2 \cdot 0)e^0 \Rightarrow c_1 = 2$

曲
$$y'|_{x=0} = 0$$
, $y' = c_2 e^{-\frac{1}{2}x} + (c_1 + c_2 x) e^{-\frac{1}{2}x} \cdot \left(-\frac{1}{2}\right)$ 得 $0 = c_2 + c_1 \cdot \left(-\frac{1}{2}\right)$, $c_2 = \frac{1}{2}c_1 = 1$

因此
$$y = (2+x)e^{-\frac{1}{2}x}$$

3. 设可微函数 $\varphi(x)$ 满足方程 $\varphi(x) = e - \int_0^x (x-u)\varphi(u)du$, 求 $\varphi(x)$.

解: 由已知
$$\varphi(0) = e$$
, $\varphi(x) = e - x \int_0^x \varphi(u) du + \int_0^x u \varphi(u) du$

$$\Rightarrow \varphi'(x) = -\int_0^x \varphi(u) du, \varphi'(0) = 0, \quad \Rightarrow \varphi''(x) = -\varphi(x), \varphi''(x) + \varphi(x) = 0$$

特征方程为
$$r^2+1=0$$
, $r_{1,2}=\pm i$

从而通解为
$$\varphi(x) = c_1 \cos x + c_2 \sin x$$
,,由 $\varphi(0) = e$ 得 $e = c_1 + c_2 \cdot 0 \Rightarrow c_1 = e$

曲
$$\varphi'(0) = 0$$
, $\varphi'(x) = -c_1 \sin x + c_2 \cos x$, 得 $0 = 0 + c_2$, $c_2 = 0$

因此
$$\varphi(x) = e \cos x$$

作业 28 二阶线性非齐次微分方程

1. 求下列各方程的通解

(1)
$$y'' + 5y' + 4y = 3 - 2x$$
;

解:对应齐次方程特征方程为
$$r^2 + 5r + 4 = (r+4)(r+1) = 0, r_1 = -4, r_2 = -1$$

非齐次项
$$f(x) = 3 - 2x$$
, 与标准式 $f(x) = P_n(x)e^{\lambda x}$ 比较得 $n = 1, \lambda = 0$

对比特征根, 推得
$$k=0$$
, 从而 $y^*=x^kQ_n(x)e^{\lambda x}=ax+b, y^{*'}=a, y^{*''}=0$

代入方程得
$$0+5a+4(ax+b)=3-2x \Rightarrow 5a+4b=3, 4a=-2, a=-\frac{1}{2}, b=\frac{11}{8}$$

从而通解为
$$y = c_1 e^{-4x} + c_2 e^{-x} - \frac{1}{2}x + \frac{11}{8}$$

(2)
$$2y'' + y' - y = 2e^x$$
;

解:对应齐次方程特征方程为

$$2r^2 + r - 1 = 0, r_{1,2} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 2} = \frac{-1 \pm 3}{4}, r_1 = \frac{1}{2}, r_2 = -1$$

非齐次项
$$f(x) = 2e^x$$
, 与标准式 $f(x) = P_n(x)e^{\lambda x}$ 比较得 $n = 0, \lambda = 1$

对比特征根, 推得
$$k = 0$$
, 从而 $y^* = x^k Q_n(x) e^{\lambda x} = a e^x$, $y^{*'} = a e^x$, $y^{*''} = a e^x$

代入方程得
$$2a+a-a=2 \Rightarrow a=1$$

从而通解为
$$y = c_1 e^{\frac{x}{2}} + c_2 e^{-x} + e^x$$

(3)
$$y'' + 3y' + 2y = 3xe^{-x}$$
;

解:对应齐次方程特征方程为
$$r^2 + 3r + 2 = (r+2)(r+1) = 0, r_1 = -2, r_2 = -1$$

非齐次项
$$f(x) = 3xe^{-x}$$
,与标准式 $f(x) = P_n(x)e^{\lambda x}$ 比较得 $n = 1, \lambda = -1$

对比特征根, 推得
$$k=1$$
, 从而 $y^*=x^kQ_n(x)e^{\lambda x}=(ax^2+bx)e^{-x}$,

$$y^{*'} = (-ax^2 + 2ax - bx + b)e^{-x}, y^{*''} = (ax^2 - 4ax + bx + 2a - 2b)e^{-x}$$

代入方程得
$$(ax^2-4ax+bx+2a-2b)+3(-ax^2+2ax-bx+b)+2(ax^2+bx)=3x$$

$$\Rightarrow 2a + b = 0, 2a = 3, \Rightarrow a = \frac{3}{2}, b = -2a = -3, \ y = \left(\frac{3}{2}x^2 - 3x + c_1\right)e^{-x} + c_2e^{-2x}$$

(4) $y'' + 4y = x \cos x$;

解:对应齐次方程特征方程为 $r^2 + 4 = 0$, $r_{1,2} = \pm 2i$

非齐次项
$$f(x) = x \cos x$$
, 与标准式 $f(x) = e^{\alpha x} \left[P_m(x) \cos \beta x + P_l(x) \sin \beta x \right]$

比较得 $n = \max\{m,l\} = 1, \lambda = i$,对比特征根,推得k = 0,从而特解形式可设为

$$y^* = x^k \left[{}_{1}Q_n(x) \cos \beta x + {}_{2}Q_n(x) \sin \beta x \right] e^{\alpha x} = (\alpha x + b) \cos x + (cx + d) \sin x,$$

$$y^{*'} = (-ax - b + c)\sin x + (cx + d + a)\cos x, y^{*''} = (-ax - b + 2c)\cos x - (cx + d + 2a)\sin x$$

代入方程得
$$3ax + 3b + 2c = x$$
, $3cx + 3d - 2a = 0 \Rightarrow a = \frac{1}{3}$, $c = 0$, $b = 0$, $d = \frac{2}{9}$

$$y = c_1 \cos 2x + c_2 \sin 2x + \frac{1}{3} \cos x + \frac{2}{9} \sin x$$

(5)
$$y'' - y = \sin^2 x$$
.

解:对应齐次方程特征方程为 $r^2 - 1 = 0, r_{1,2} = \pm 1$

非齐次项 $f(x) = \frac{1}{2} - \frac{1}{2}\cos 2x$,利用解的结构定理知特解形式可设为

$$y^* = a + b\cos 2x + c\sin 2x,$$

$$y^{*'} = -2b\sin 2x + 2c\cos 2x, y^{*''} = -4b\cos 2x - 4c\sin 2x$$

代入方程得
$$-a-5b\cos 2x-5c\sin 2x=\frac{1}{2}-\frac{1}{2}\cos 2x\Rightarrow a=-\frac{1}{2},b=\frac{1}{10},c=0$$

$$y = c_1 e^x + c_2 e^{-x} - \frac{1}{2} + \frac{1}{10} \cos 2x$$

2. 求方程
$$y'' + 4y' + 4y = e^{-2x}$$
 满足初始条件 $y(0) = 0$, $y'(0) = 1$ 的特解.

解:对应齐次方程特征方程为
$$r^2 + 4r + 4 = (r+2)^2 = 0, r_1 = r_2 = -2$$

非齐次项
$$f(x) = e^{-2x}$$
, 与标准式 $f(x) = P_n(x)e^{\lambda x}$ 比较得 $n = 0, \lambda = -2$

对比特征根, 推得k=2, 从而

$$y^* = x^k Q_n(x) e^{\lambda x} = ax^2 e^{-2x}, y^{*'} = (2ax - 2ax^2) e^{-2x}, y^{*''} = (2a - 8ax + 4ax^2) e^{-2x}$$

代入方程得
$$(2a-8ax+4ax^2)+4(2ax-2ax^2)+4ax^2=1, 2a=1, a=\frac{1}{2}$$

从而通解为
$$y = (c_1 + c_2 x + \frac{1}{2} x^2) e^{-2x}$$
, $y(0) = 0 \Rightarrow c_1 = 0$

$$y' = (-2c_2x - x^2 + c_2 + x)e^{-2x}$$
, $y'(0) = 1$, $\Rightarrow c_2 = 1$ 要的特解为 $y = \left(x + \frac{1}{2}x^2\right)e^{-2x}$

3. 已知二阶线性非齐次微分方程 y'' + p(x)y' + q(x)y = f(x) 的三个特解为 $y_1 = x$,

$$y_2 = e^x$$
, $y_3 = e^{2x}$. 试求方程满足初始条件 $y(0) = 1$, $y'(0) = 3$ 的特解.

解:由这个三个解的线性无关性,以及解的结构理论,得通解为

$$y = c_1(e^x - x) + c_2(e^{2x} - x) + x$$
, $\pm y(0) = 1 \not\equiv c_1 + c_2 = 1$

$$y' = c_1(e^x - 1) + c_2(2e^{2x} - 1) + 1 \not \boxtimes y'(0) = 3 \not \oplus c_2(2 - 1) + 1 = 3 \Rightarrow c_2 = 2, c_1 = -1$$

所要特解为
$$y = x - e^x + 2e^{2x} - 2x + x = 2e^{2x} - e^x$$

4. 设
$$f(x) = \sin x - \int_{0}^{x} (x-t)f(t)dt$$
, 其中 $f(x)$ 连续, 求 $f(x)$.

解:
$$f(x) = \sin x - x \int_{0}^{x} f(t)dt + \int_{0}^{x} tf(t)dt \Rightarrow f(0) = 0$$

$$f'(x) = \cos x - \int_{0}^{x} f(t)dt \Rightarrow f'(0) = \cos 0 = 1, \quad f''(x) + f(x) = -\sin x$$

对应齐次方程特征方程为 $r^2+1=0, r_1, =\pm i$

非齐次项
$$f(x) = -\sin x$$
, 与标准式 $f(x) = e^{\alpha x} [P_m(x)\cos \beta x + P_l(x)\sin \beta x]$

比较得 $n = \max\{m, l\} = 0, \lambda = i$,对比特征根,推得k = 1,从而特解形式可设为

$$y^* = x^k \left[{}_{1}Q_n(x)\cos\beta x + {}_{2}Q_n(x)\sin\beta x \right] e^{\alpha x} = ax\cos x + bx\sin x,$$

$$y'' = (a+bx)\cos x + (b-ax)\sin x, y''' = (2b-ax)\cos x + (-2a-bx)\sin x$$

代入方程得
$$2b\cos x - 2a\sin x = -\sin x \Rightarrow b = 0, a = \frac{1}{2}$$

$$f(x) = c_1 \sin x + c_2 \cos x + \frac{x}{2} \cos x$$
, $f(0) = 0 \Rightarrow c_2 = 0$

$$f'(x) = c_1 \cos x - c_2 \sin x - \frac{x}{2} \sin x + \frac{1}{2} \cos x$$
, $f'(0) = 1 \Rightarrow c_1 = \frac{1}{2}$

因此
$$f(x) = \frac{1}{2}\sin x + \frac{x}{2}\cos x$$

第十章《微分方程》测试题

- 1. 填空题
- (1) 函数 $y = e^{rx}$ 是常系数线性微分方程 y'' + py' + qy = 0 的解的充分必要条件是 $r^2 + pr + q = 0 ;$
- (2) 曲线簇 $y = \cos(x + C)$ (C 为任意常数)满足的一阶微分方程是 $y^2 + (y')^2 = 1$;
- (3) 已知二阶线性齐次方程的两个解 $y_1 = e^x$, $y_2 = xe^x$,则该方程为 y'' + 2y' + y = 0 ;
- (4) 方程 $y' = \frac{y}{x} + \tan \frac{y}{x}$ 的通解 $y > \sin \frac{y}{x} = cx$;
- (5) 设 $y_1 = 3$, $y_2 = 3 + x^2$, $y_3 = 3 + x^2 + e^x$ 都是方程 $(x^2 2x)y'' (x^2 2)y' + (2x 2)y = 6x 6$

的解,则方程的通解为 $y = 3 + c_1 x^2 + c_2 e^x$.

2. 求下列各方程的通解

(1)
$$(1+e^{\frac{x}{y}})dx+e^{\frac{x}{y}}(1-\frac{x}{y})dy=0$$
;

解: $\Leftrightarrow u = \frac{x}{y}$, 则 x = yu, dx = ydu + udy

原方程化为 $(1+e^u)ydu+(u+e^u)dy=0$, 分离变量 $\frac{(1+e^u)du}{u+e^u}+\frac{dy}{y}=0$,

两边积分得
$$\int \frac{(1+e^u)du}{(u+e^u)} + \int \frac{dy}{y} = \ln(u+e^u) + \ln y = \ln c$$

从而 $y(u + e^u) = c, x + ye^{\frac{x}{y}} = c$

(2)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x+y^3};$$

解: 原方程化为 $\frac{dx}{dy} - \frac{x}{y} = y^2$,,

从丽
$$x = e^{-\int \frac{-1}{y} dy} \left(\int y^2 e^{\int \frac{-1}{y} dy} dy + c \right) = e^{\ln y} \left(\int y dy + c \right) = \frac{y^3}{2} + cy$$

(3)
$$(1+x^2)y'' + 2xy' = 0$$
;

解: 令
$$y' = p$$
,则 $y'' = p'$ 原方程化为 $(1+x^2)p' + 2xp = 0$,

分离变量
$$\frac{\mathrm{d}p}{p} + \frac{2xdx}{1+x^2} = 0$$
,

两边积分得
$$\int \frac{\mathrm{d}p}{p} + \int \frac{2xdx}{1+x^2} = \ln p + \ln(1+x^2) = \ln c$$

从而
$$p = \frac{dy}{dx} = \frac{c}{1+x^2}$$
, $y = c \arctan x + c_1$

(4)
$$y'' = \frac{1}{x}y' + xe^x$$
;

解: 令
$$y' = p$$
,则 $y'' = p'$ 原方程化为 $p' - \frac{1}{x}p = xe^x$,

从丽
$$p = e^{-\int \frac{-1}{x} dx} \left(\int x e^x e^{\int \frac{-1}{x} dx} dx + c \right) = e^{\ln x} \left(\int e^x dx + 2c_1 \right) = x e^x + 2c_1 x = \frac{dy}{dx}$$

$$y = \int xe^{x}dx + c_{1}x = (x-1)e^{x} + c_{1}x^{2} + c_{2}$$

(5)
$$y'' + 9y = x \sin 3x$$
;

解:对应齐次方程特征方程为 $r^2+9=0$, $r_{1,2}=\pm 3i$

非齐次项
$$f(x) = x \sin 3x$$
, ,与标准式 $f(x) = e^{\alpha x} \lceil P_m(x) \cos \beta x + P_l(x) \sin \beta x \rceil$

比较得 $n = \max\{m, l\} = 1, \lambda = 3i$, 对比特征根,推得 k = 1, 从而特解形式可设为

$$y^* = x^k \Big[{}_{1}Q_n(x)\cos\beta x + {}_{2}Q_n(x)\sin\beta x \Big] e^{\alpha x} = (ax^2 + bx)\cos 3x + (cx^2 + dx)\sin 3x,$$

$$y^{*'} = (3cx^2 + 3dx + 2ax + b)\cos 3x + (2cx + d - 3ax^2 - 3bx)\sin 3x$$

$$y^{*"} = (2c - 6b - 12ax - 9dx - 9cx^{2})\sin 3x + (6d + 2a + 12cx - 9bx - 9ax^{2})\cos 3x$$

代入方程得 $(2c-6b-12ax)\sin 3x + (6d+2a+12cx)\cos 3x = x\sin 3x$

$$2c - 6b - 12ax = x, 6d + 2a + 12cx = 0 \Rightarrow a = -\frac{1}{12}, c = b = 0, d = \frac{1}{36}$$

$$y = c_1 \cos 3x + +c_2 \sin 3x - \frac{1}{12}x^2 \cos 3x + \frac{1}{36}x \sin 3x$$

(6)
$$xy'' - y' = x^2$$
;

解: 方程可化为
$$\frac{xy''-y'}{x^2} = \left(\frac{y}{x}\right)' = 1$$
, 从而 $\frac{y'}{x} = x + 2c_1$, $y' = x^2 + 2c_1x$
因此 $y = \int \left(x^2 + 2c_1x\right) dx = \frac{1}{3}x^3 + c_1x + c_2$

(7)
$$y'' + 4y' + 4y = 3e^{-2x}$$
;

解:对应齐次方程特征方程为 $r^2 + 4r + 4 = (r+2)^2 = 0, r_1 = r_2 = -2$

非齐次项
$$f(x) = 3e^{-2x}$$
, 与标准式 $f(x) = P_n(x)e^{\lambda x}$ 比较得 $n = 0, \lambda = -2$

对比特征根, 推得k=2, 从而

$$y^* = x^k Q_n(x) e^{\lambda x} = ax^2 e^{-2x}, y^{*'} = (2ax - 2ax^2) e^{-2x}, y^{*''} = (2a - 8ax + 4ax^2) e^{-2x}$$

代入方程得
$$(2a-8ax+4ax^2)+4(2ax-2ax^2)+4ax^2=3, 2a=3, a=\frac{3}{2}$$

从而通解为
$$y = (c_1 + c_2 x + \frac{3}{2} x^2) e^{-2x}$$

(8)
$$(2x-5y+3)dx-(2x+4y-6)dy=0$$
.

解: 令
$$x = X + a$$
, $y = Y + b$, 则 $y' = \frac{dY}{dX} = \frac{2X - 5Y + 2a - 5b + 3}{2X + 4Y + 2a + 4b - 6}$

再令
$$2a-5b+3=0$$
, $2a+4b-6=0$ \Rightarrow $b=1$, $a=1$, $x=X+1$, $y=Y+1$

再令
$$Y = uX$$
, $\Rightarrow Xu' + u = \frac{2-5u}{2+4u}$, $Xu' = \frac{2-5u}{2+4u} - u = \frac{2-7u-4u^2}{2+4u}$

从而
$$\int \frac{2+4u}{(2+u)(1-4u)} du = \int \left(\frac{-\frac{2}{3}}{2+u} + \frac{\frac{4}{3}}{1-4u}\right) du = \int \frac{dX}{X},$$

$$-\frac{2}{3}\ln(2+u) - \frac{1}{3}\ln(1-4u) = \ln X - \frac{1}{3}\ln c$$

$$2\ln(2+u) + \ln(1-4x) + 3\ln X = \ln c, (2+u)^{2}(1-4u)X^{3} = c$$

$$(2X+Y)^{2}(X-4Y)=c \, \text{III}(2x+y-3)^{2}(x-4y+3)=c$$

3. 设f(x)具有二阶连续导数,且f(0) = 0, f'(0) = 1,并且

$$[xy(x+y) - f(x)y]dx + [f'(x) + x^2y]dy = 0$$

为一全微分方程,求f(x).

解: 由己知
$$x(x+2y) - f(x) = f''(x) + 2xy$$
, $\Leftrightarrow f''(x) + f(x) = x^2$

对应齐次方程特征方程为 $r^2+1=0, r_1, =\pm i$

非齐次项
$$f(x) = x^2$$
, 与标准式 $f(x) = P_n(x)e^{\lambda x}$

比较得 $n=2,\lambda=0$,对比特征根,推得k=0,从而特解形式可设为

$$y^* = ax^2 + bx + c, y^{*'} = 2ax + b, y^{*''} = 2a$$

$$2a + ax^{2} + bx + c = x^{2} \Rightarrow a = 1, b = 0, c = -2$$

从通解为 $f(x) = c_1 \cos x + c_2 \sin x + x^2 - 2$, $f'(x) = c_2 \cos x - c_1 \sin x + 2x$,

$$\pm f(0) = 0, f'(0) = 1, c_1 - 2 = 0, c_2 = 1, c_1 = 2$$

因此
$$f(x) = 2\cos x + \sin x + x^2 - 2$$

4. 已知方程
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = ze^{2x}$$
 有形如 $z = f(e^x \sin y)$ 的解,试求出这个解.

解: 因为
$$\frac{\partial z}{\partial x} = f'(u)e^x \sin y$$
, $\frac{\partial^2 z}{\partial x^2} = f''(u)(e^x \sin y)^2 + f'(u)e^x \sin y$

$$\frac{\partial z}{\partial y} = f'(u)e^x \cos y, \frac{\partial^2 z}{\partial y^2} = f''(u)(e^x \cos y)^2 + f'(u)e^x(-\sin y)$$

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = f''(u)e^{2x} = f(u)e^{2x}, \Rightarrow f''(u) - f(u) = 0$$

特征方程为
$$r^2-1=0$$
, $r_1=1$, $r_2=-1$, $f(u)=c_1e^u+c_2e^{-u}$

因而,这个解为
$$z = f(e^x \sin y) = c_1 e^{e^x \sin y} + c_2 e^{-e^x \sin y}$$

5. 设函数 f(x) 在 $(-\infty, +\infty)$ 内具有连续导数,且满足

$$f(t) = 2 \iint_{x^2 + y^2 \le t^2} (x^2 + y^2) f(\sqrt{x^2 + y^2}) dx dy + t^4,$$

求 f(x).

解: 由极坐标
$$f(t) = 2\int_{0}^{2\pi} d\theta \int_{0}^{t} r^{2} f(r) r dr + t^{4} = 4\pi \int_{0}^{t} r^{3} f(r) dr + t^{4}$$

从而
$$f'(t) = 4\pi t^3 f(t) + 4t^3$$
, $f(0) = 0$, 即 $f'(t) - 4\pi t^3 f(t) = 4t^3$,

$$f(t) = e^{-\int (-4\pi t^3)} \left(\int 4t^3 e^{\int (-4\pi t^3)} dt + c \right) = e^{\pi t^4} \left(-\frac{1}{\pi} e^{-\pi t^4} + c \right) = -\frac{1}{\pi} + c e^{\pi t^4}$$

由
$$f(0) = 0$$
, 得 $c = \frac{1}{\pi}$, $f(t) = \frac{1}{\pi}e^{\pi t^4} - \frac{1}{\pi}$, $f(x) = \frac{1}{\pi}e^{\pi x^4} - \frac{1}{\pi}$

6. 设函数 $\varphi(x)$ 在实轴上连续, $\varphi'(0)$ 存在,且具有性质 $\varphi(x+y) = \varphi(x)\varphi(y)$, 试 求出 $\varphi(x)$.

解: 由己知 $\varphi(x+0) = \varphi(x)\varphi(0)$, $\Rightarrow \varphi(0) = 1$

$$\varphi'(x) = \lim_{y \to 0} \frac{\varphi(x+y) - \varphi(x)}{y} = \lim_{y \to 0} \frac{\varphi(x)\varphi(y) - \varphi(x)}{y} = \varphi(x)\lim_{y \to 0} \frac{\varphi(y) - \varphi(0)}{y}$$

从面
$$\varphi'(x) = \varphi(x)\varphi'(0)$$
,
$$\int \frac{d\varphi(x)}{\varphi(x)} = \int \varphi'(0)dx = \varphi'(0)x + \ln c$$

因此
$$\varphi(x) = ce^{\varphi'(0)x}$$
,由于 $\varphi(0) = 1$,故 $c = 1, \varphi(x) = e^{\varphi'(0)x}$

7. 设函数 y(x) ($x \ge 0$) 二阶可导,且 y'(x) > 0 , y(0) = 1 ,过曲线 y = y(x) 上任一点 P(x,y) 作该曲线的切线及 x 轴的垂线,上述两直线与 x 轴所围成的三角形面积记为 S_1 ,区间 (0,x] 上以 y = y(x) 为曲边的曲边梯形面积记为 S_2 ,并设 $2S_1 - S_2$ 恒为 1. 求此曲线 y = y(x) 的方程.

解:过曲线 y = y(x) 上任一点 P(x, y) 作该曲线的切线为 Y - y = y'(X - x)

当
$$Y = 0, X = x - \frac{y}{y'}$$
,从而 $S_1 = \frac{1}{2}y \left[x - \left(x - \frac{y}{y'}\right)\right] = \frac{y^2}{2y'}, S_2 = \int_0^x y(x)dx$

由已知
$$y(0) = 1, 2S_1 - S_2 = 1, \frac{y^2}{y'} - \int_0^x y(x) dx = 1, \Rightarrow y'(0) = 1, \quad y(y')^2 - y^2 y'' = 0$$

$$\Rightarrow y' = p, \Rightarrow y'' = p\frac{dp}{dy}, yp^2 = y^2 p\frac{dp}{dy}, \int \frac{dp}{p} = \int \frac{dy}{y}, \ln p = \ln y + \ln c$$

从而
$$y' = p = cy$$
, $\int \frac{dy}{y} = \int cdx$, $\ln y = cx + \ln c_1$, $y = c_1 e^{cx}$,

由于
$$y(0) = 1, y'(0) = 1$$
, 因此 $c = 1, c_1 = 1, y = e^x$