D.S. d'Analyse Numérique ISIMA 1ère année – 29-11-2012

V. Barra, J. Koko et Ph. Mahev

Durée : 2heures

Documents autorisés : cours, TD et TP de l'année.

Exercice 1 Soit le problème aux moindres carrés

$$Min||Ax - b||^2$$
 (\mathcal{P})

où A est de taille $n \times n$, $x \in \mathbb{R}^n$ et $b \in \mathbb{R}^n$. Soit J un sous-ensemble d'indices dans $\{1, \ldots, n\}$. On se propose de déterminer la variation de l'erreur obtenue en restreignant le problème initial au problème

$$Min||Ax - b||^2$$
; $x_i = 0$ pour $j \notin J$.

Soient A_1 de taille $n \times p$, A_2 de taille $n \times q$, $x_1 \in \mathbb{R}^p$ et $x_2 \in \mathbb{R}^q$. On suppose que $rang(A_1) = p$ et que $J = \{p + 1 \cdots n\}$.

On pose
$$A = [A_1 A_2]$$
 et $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$. $\Rightarrow A \begin{pmatrix} x \\ x_1 \end{pmatrix}$

- 1. A quelle condition le système Ax = b est-il compatible?
- 2. Donner une condition nécessaire et suffisante pour que x réalise le minimum de $||Ax b||^2$. A quelle condition la solution des moindres carrés est-elle unique?
- 3. Soit $\bar{x} = \begin{pmatrix} \bar{x}_1 \\ \bar{x}_2 \end{pmatrix}$ une solution des moindres carrés du problème (\mathcal{P}) . Exprimer \bar{x}_1 en fonction de A_1, A_2, b et \bar{x}_2 .
- 4. En déduire la relation $A_2^T K_1(A_2 \bar{x}_2 b) = 0$ ou K_1 est une matrice à déterminer en fonction de A_1 .
- 5. A quelle transformation linéaire correspond K_1 ?
- 6. Soit \tilde{x}_1 la solution des moindres carrés de $||A_1\tilde{x}_1 b||^2$. On pose $\bar{m} = ||A\bar{x} b||^2$ et $\tilde{m} = ||A_1\tilde{x}_1 b||^2$. Montrer que

$$\tilde{m} - \bar{m} = b^t K_1 A_2 \bar{x}_2$$

Interpréter ce résultat en fonction de l'objectif de l'exercice.

7. Application numérique. Déterminer $\tilde{m}, \bar{m}, \bar{x}, \tilde{x}_1, K_1$ avec :

$$\mathbf{A}_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \ \mathbf{A}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \ b = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}.$$

Exercice 2 On se propose d'étendre la factorisation PA = LU aux matrices rectangulaires quelconques.

1. Soit une matrice $A(m \times n)$ avec $m \ge n$ de rang n. Montrer qu'il existe une matrice $L(m \times m)$ triangulaire inférieure de diagonale unité, une matrice $U(m \times n)$ triangulaire supérieure et une matrice $P(m \times m)$ de permutation, telles que PA = LU. (On donnera la forme précise de la matrice L).

2. Partitionner les matrices L et U trouvées ci-dessus en :

$$L = \left[egin{array}{cccc} L_1 & | & L_2 \end{array}
ight] \qquad U = \left[egin{array}{ccc} U_1 \ \cdots \ U_2 \end{array}
ight]$$

avec $L_1(m \times n)$ triangulaire inférieure de diagonale unité, $L_2(m \times (m-n))$, $U_1(n \times n)$, triangulaire supérieure et $U_2((m-n) \times n)$.

Montrer alors que $PA = L_1U_1$.

3. On va maintenant s'appuyer sur la factorisation précédente pour résoudre le problème de moindres carrés visant à minimiser $||Ax - b||_2$ pour un $b \in \mathbb{R}^m$.

Supposons que $A = L_1U_1$ avec $A(m \times n)$, $L_1(m \times n)$ triangulaire inférieure de diagonale unité et $U_1(n \times n)$ triangulaire supérieure (on a simplement repris la factorisation trouvée à la question précédente en supposant P = I pour simplifier).

(a) Définir n matrices de Householder H_1, \ldots, H_n (symétriques, orthogonales de taille m) telles que

$$H_n \dots H_1 L_1 = \left[\begin{array}{c} L_3 \\ \dots \\ 0 \end{array} \right]$$

où $L_3(n \times n)$ est triangulaire inférieure.

Indication: on s'appuiera toujours sur la ligne de L_1 ayant un 1 sur la diagonale en commençant par la dernière.

Remarque: on ne demande pas le calcul explicite des H_i

On définit aussi

$$H_n \dots H_1 b = \left[\begin{array}{c} b_1 \\ b_2 \end{array} \right]$$

avec $b_1 \in \mathbb{R}^n$ et $b_2 \in \mathbb{R}^{m-n}$.

- (b) Montrer que la solution aux moindres carrés qui minimise $||Ax b||_2$ satisfait Ux = z où z est solution de $L_3z = b_1$. En déduire que l'erreur aux moindres carrés est égale à $||b_2||_2$. Ecrire l'algorithme en supposant toujours qu'il n'y a pas de pivots nuls et évaluer sa complexité en nombre de flops.
- (c) Application numérique :

$$A = \begin{bmatrix} 2 & -1 \\ 4 & 2 \\ -4 & 10 \\ -4 & 10 \end{bmatrix} \qquad b = \begin{bmatrix} 0 \\ 2 \\ -2 \\ -2 \end{bmatrix}$$

2