A brief summary of thesis results

Daniel Miller

January 26, 2017

Some quick notation. If X is some space and $f: X \to \mathbf{C}$ a function, and $\mathbf{x} = (x_2, x_3, x_5, \dots)$ a sequence in X, write

$$L_f(x,s) = \prod_p \frac{1}{1 - f(x_p)p^{-s}}.$$

Theorem 1. If, for $\alpha \in [1/2, 1]$, we have

$$\left| \sum_{p \leqslant N} f(x_p) \right| \ll N^{\alpha + \epsilon},$$

then $\log L_f(\mathbf{x}, s)$ has analytic continuation to $\{\Re s > \alpha\}$. Conversely, if $L_f(\mathbf{x}, s)$ has analytic continuation to $\{\Re s > \alpha\}$ and moreover,

$$|\log L_f(\boldsymbol{x}, \sigma + it)| \ll |t|^{1-\epsilon},$$

for all $\sigma > \alpha$, then

$$\left| \sum_{p \leqslant N} f(x_p) \right| \ll \pi(N)^{\alpha + \epsilon}.$$

Roughly, this theorem says that analytic continuation of $\log L_f(\boldsymbol{x},s)$ to $\{\Re s > \alpha\}$ is equivalent to the bound $|\sum_{p\leqslant N} f(x_p)| \ll N^{\alpha+\epsilon}$.

Theorem 2. Let $d \ge 1$. For any $\alpha \in [0, 1/2]$, there exists a sequence \mathbf{x} in $(\mathbf{R}/\mathbf{Z})^d$ that is uniformly distributed, such that

- 1. $D_N = \Omega(N^{-\alpha+\epsilon})$ (aka, big-O, but not big-O of anything smaller).
- 2. For any $f \in C^{\infty}(\mathbf{R}/\mathbf{Z})^d$ with $\int f = 0$, the function $\log L_f(\mathbf{x}, s)$ has analytic continuation to $\{\Re s > 1/2\}$.

This says there are d-dimensional sequences whose discrepancy decays arbitrarily slowly, but whose L-functions are well behaved.

Theorem 3. There exists a sequence θ in $[0, \pi]$ such that for each $p, 2\sqrt{p}\cos(\theta_p) \in \mathbb{Z}$ and satisfies the Hasse bound, and such that

- 1. The discrepancy D_N is not $\ll N^{-\epsilon}$ for any ϵ .
- 2. The functions $L(\operatorname{sym}^k \boldsymbol{\theta}, s)$ satisfy the Riemann Hypothesis (for k odd).