

Entrenamiento Final Teoría de Números Día 1 Olimpiada Mexicana de Matemáticas en Gto. 18 de agosto de 2019

1. Repaso de Congruencias

Teorema .1. Sea f un polinomio con coeficientes enteros. Si $a \equiv b \mod m$ entonces $f(a) \equiv f(b) \mod m$.

Teorema .2. SUPER IMPORTANTE

- 1. $ax \equiv ay \mod m$ si y solo si $x \equiv y \mod \frac{m}{(a, m)}$.
- 2. Si $ax \equiv ay \mod m$ y (a, m) = 1, entonces $x \equiv y \mod m$.
- 3. $x \equiv y \mod m_i \ para \ i = 1, \ldots, r \ si \ y \ solo \ si \ x \equiv y \mod [m_1, m_2, \ldots, m_r].$

Teorema .3. Sean (a, m) = 1 y r_1, r_2, \ldots, r_n un sistema completo o reducido de residuos módulo m. Entonces ar_1, ar_2, \ldots, ar_n es un sistema completo o reducido de residuos módulo m.

Lema .4. Sea p un primo, entonces $x^2 \equiv -1 \mod p$ tiene solución si y solo si p=2 o $p \equiv 1 \mod 4$.

Lema .5. Si p es un número primo y $p \equiv 1 \mod 4$, entonces existen enteros positivos a, b tales que $a^2 + b^2 = p$.

Definición .6. Sea r_1, \ldots, r_n un sistema completo de residuos módulo m. El número de soluciones de $f(x) \equiv 0 \mod m$ es el número de r_i tales que $f(r_i) \equiv 0 \mod m$.

Definición .7. Sea $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$. Si $a_n \not\equiv 0 \mod m$ el grado de la congruencia $f(x) \equiv 0 \mod m$ es n. Si $a_n \equiv 0 \mod m$, sea j el mayor entero tal que $a_j \not\equiv 0 \mod m$, entonces el grado de la congruencia es j. Si todos los coeficientes son múltiplos de m, la congruencia no tiene grado asignado.

Teorema .8. Si $d \mid m, d > 0$, y u es una solución de $f(x) \equiv 0 \mod m$, entonces u es solución de $f(x) \equiv 0 \mod d$.

Teorema .9. La congruencia $f(x) \equiv 0 \mod p$ de grado n con coeficiente $a_n = 1$, tiene n soluciones si y solo si f(x) tiene un factor $x^p - x$ módulo p, esto es, si y solo si $x^p - x = f(x)q(x) + ps(x)$ donde q(x), s(x) tienen coeficientes enteros, q(x) tiene grado p-n y es mónico, y ya sea que s(x) es un polinomio de grado menor a n o es 0.

Corolario .10. Si $d \mid (p-1)$, entonces $x^d \equiv 1 \mod p$ tiene d soluciones.

Entrenamiento Final Teoría de Números Día 1 Olimpiada Mexicana de Matemáticas en Gto. 18 de agosto de 2019

1.1. Problemas

- 1. Demuestra que 38 no es divisor de $8n^2 + 8$ para ningún entero n.
- 2. Demuestra que $\frac{1}{5}n^5 + \frac{1}{3}n^3 + \frac{7}{15}n$ es entero para todo entero n.
- 3. Muestra que para todo primo p, si $a^p \equiv b^p \mod p$, entonces $a^p \equiv b^p \mod p^2$.
- 4. Si $f(x) \equiv 0 \mod m$ tiene exactamente j soluciones con p un primo, y $g(x) \equiv 0 \mod m$ no tiene soluciones, demuestra que $f(x)g(x) \equiv 0 \mod p$ tiene exactamente j soluciones.
- 5. Muestra que la congruencia $x^2 \equiv 1 \mod 2^{\alpha}$ tiene una solución cuando $\alpha = 1$, dos soluciones cuando $\alpha = 2$ y las cuatro soluciones $1, 2^{\alpha-1} 1, 2^{\alpha-1} + 1, -1$ cuando $\alpha \geq 3$.
- 6. Muestra que $x^{1}4 + 12x^{2} \equiv 0 \mod 13$ tiene 13 soluciones.
- 7. **Teorema.** Sea f(x) un polinomio fijo con coeficientes enteros, para cualquier entero positivo m denotamos N(m) como el número de las soluciones de $f(x) \equiv 0 \mod m$. Si $m = m_1 m_2$ donde $(m_1, m_2) = 1$, entonces $N(m) = N(m_1)N(m_2)$. Si $m = \Pi p^{\alpha}$ es la factorización canónica de m entonces $N(m) = \Pi N(p^{\alpha})$.
- 8. Resuelve la congruencia $x^3 9x^2 + 23x 15 \equiv 0 \mod 503$.
- 9. Prueba que para un entero fijo n la ecuación $\phi(x) = n$ tiene un número finito de soluciones.
- 10. Encuentra todos los enteros positivos n tales que $\phi(2n) = \phi(n)$.
- 11. Demuestra la generalización del teorema de Euler:

$$a^m \equiv a^{m-\phi(m)} \mod m$$

para todo entero a.

- 12. Demuestra que si los últimos dos dígitos de un entero positivo son 33 entonces hay un primo mayor a 7 que lo divide.
- 13. Resuelve el siguiente sistema de ecuaciones:

$$x^2 + 2x + 5 \equiv 0 \mod 65$$

$$3^{2x} + 2(3^x) + 5 \equiv 0 \mod 65$$

Entrenamiento Final Teoría de Números Día 1 Olimpiada Mexicana de Matemáticas en Gto. 18 de agosto de 2019

Para entretenerse

- 1. (IMO Shortlist 2002) Sean p_1, p_2, \ldots, p_n primos distintos mayores a 3. Demuestra que $2^{p_1p_{2n}} + 1$ tiene al menos 4^n divisores.
- 2. (IMO Shortlist 2002) Encuentra todos los pares de enteros positivos $m, n \geq 3$ para los cuales existe infinitos enteros positivos a tales que

$$\frac{a^m + a - 1}{a^n + a^2 - 1}$$

es entero.

- 3. (IMO Shortlist 2007) Para todos los enteros positivos n, demuestra que existe un entero positivo m tal que n divide a $2^m + m$
- 4. (IMO Shortlist 2011) Dado cualquier conjunto $A = \{a_1, a_2, a_3, a_4\}$ de cuatro enteros positivos distintos, denotamos $s_4 = a_1 + a_2 + a_3 + a_4$. Sea n_4 el número de pares (i, j) con $1 \le i < j \le 4$ para los cuales $a_i + a_j$ divide a s_4 . Encuentra todos los conjuntos A de cuatro enteros positivos distintos para los cuales se alcanza el máximo valor de n_4 .
- 5. (Chinese Mathematical Olympiad 2003) Determina el tamaño máximo del conjunto S tal que:
 - ullet Todos los elementos de S son números naturales no mayores a 100.
 - Para cualesquiera dos elementos a, b en S, existe $c \in S$ tal que (a, c) = (b, c) = 1.
 - Para cualesquiera dos elementos $a, b \in S$, existe $d \in S$ tal que (a, d) > 1, (b, d) > 1.
- 6. (Olimpiada de Moscú) Demuestra que si $\frac{2^n-2}{n}$ es un entero, entonces $\frac{2^{2^n-1}-2}{2^n-1}$ también es un entero.

Entrenamiento Final Teoría de Números Día 2 Olimpiada Mexicana de Matemáticas en Gto. 19 de agosto de 2019

Fuente: Capítulo 2:Introducción a la Teoría de Números de Niven, Zuckerman, Montgomery

1. Órdenes

Definición .1. Sean m un entero positivo y a cualquier entero tal que (m, a) = 1. Sea h el menor entero positivo tal que $a^h \equiv 1 \pmod{m}$. Decimos que el orden de a módulo m es h, o que a pertenece al exponente h módulo m.

Lema .2. Si a tiene orden h módulo m, entonces los enteros positivos k tales que $a^k \equiv 1$ (mód m) son precisamente para los cuales $h \mid k$.

Corolario .3. Si (a, m) = 1, entonces el orden de a módulo m divide a $\phi(m)$.

Lema .4. Si a tiene orden h módulo m, entonces a^k tiene orden h/(h,k).

Lema .5. Si a tiene orden $h(\mod m)$, b tiene orden $k(\mod m)$, y si (h, k) = 1, entonces ab tiene orden $hk(\mod m)$.

1.1. Problemas

- 1. Sea p un primo impar, demuestra que a pertenece al exponente 2 módulo p si y solo si $a \equiv -1 \pmod{p}$.
- 2. Si h es el orden de a(m od m), prueba que no hay dos elementos de $a, a^2, ..., a^h$ que sean congruentes módulo m.
- 3. Supón que $a \in \mathbb{Z}$ tiene orden $h(\mod p)$, muestra que el inverso multiplicativo de a módulo p también tiene orden $h(\mod p)$.

2. Raíces Primitivas

Definición .6. Si g tiene orden $\phi(m)$ (mód m), entonces g es llamada raíz primitiva módulo m

Lema .7. Sean p y q números primos, y supón que $q^{\alpha} \mid (p-1)$, donde $\alpha \geq 1$. Entonces existen precisamente $q^{\alpha} - q^{\alpha-1}$ clases de residuos $a \pmod{p}$ de orden q^{α} .

Teorema .8. Si p es primo entonces existen $\phi(p-1)$ raíces primitivas módulo p.

Definición .9. Si (a, p) = 1 y $x^n \equiv a \pmod{p}$ tiene solución, entonces a es llamado residuo n-potencia módulo p. (n-th power residue)

Entrenamiento Final Teoría de Números Día 2 Olimpiada Mexicana de Matemáticas en Gto. 19 de agosto de 2019

Teorema .10. Si p es un número primo y(a, p) = 1, entonces la congruencia $x^n \equiv a \pmod{p}$ tiene (n, p - 1) soluciones o no soluciones dependiendo si

$$a^{(p-1)/(n,p-1)} \equiv 1 \pmod{p}$$

o no.

Corolario .11. Criterio de Euler Si p es un número primo impar y (a, p) = 1, entonces $x^2 \equiv a \pmod{p}$ tiene dos o ninguna solución dependiendo si $a^{(p-1)/2} \equiv 1$ o $\equiv -1 \pmod{p}$.

Teorema .12. Si p es primo entonces existen $\phi(\phi(p^2)) = (p-1)\phi(p-1)$ raíces primitivas módulo p^2 .

Teorema .13. Existe una raíz primitiva módulo m si y solo si $m = 1, 2, 4, p^{\alpha}, 2p^{\alpha}$, donde p es un primo impar.

2.1. Problemas

- 1. *Demuestra que si p es un primo y g es una raíz primitiva módulo p^2 , entonces g es raíz primitiva módulo p^{α} para $\alpha = 3, 4, 5, \ldots$
- 2. Determina el número de soluciones de la congruencia $x^4 \equiv 61 \pmod{117}$.
- 3. Muestra que $3^8 \equiv -1 \pmod{17}$. Explica por qué esto implica que 3 es una raíz primitiva de 17.
- 4. Demuestra que si p es primo, (a, p) = 1 y (n, p 1) = 1, entonces $x^n \equiv a \pmod{p}$ tiene exáctamente una solución.
- 5. Sean $a, \hat{a} \in \mathbb{Z}$ tales que $a\hat{a} \equiv 1 \pmod{p}$, para algún primo p. Supón que g es una raíz primitiva (mód p), y que $a \equiv g^i \pmod{p}$, $0 \le i < p-1$. Muestra que $\hat{a} \equiv g^{p-1-i} \pmod{p}$.
- 6. Sean m, n enteros positivos. Muestra que $(2^m 1, 2^n + 1) = 1$ si y solo si es impar.
- 7. Muestra que si $p \mid \phi(m)$ y $p \not\mid m$ entonces existe al menos un factor primo q de m tal que $q1(\mod p)$.
- 8. Supón que (a, p) = 1 y que p es un primo tal que $p \equiv 2 \pmod{3}$. Muestra que la congruencia $x^3 \equiv a \pmod{p}$ tiene una única solución $x \equiv a^{(2p-1)/3}$.