Summary of Generalized Partial Credit Model

July 18, 2018

1 Checking Assumptions

Table 1: Goodness of fit statistics related to the test of unidimensionality in the GPCM-based instrument for measuring gains in the skill/knowledge of participants in the second empirical study

data	df	chisq	AGFI	TLI	CFI	DETECT	ASSI	RATIO
Pre-test	9	8.908	0.970	1.003	1.000	126.482	0.2	0.712
Post-test	5	7.052	0.931	0.813	0.907	79.021	0.4	0.515

df: degree of freedom; AGFI: Adjusted Goodness of Fit Index; CFI: Comparative Fit Index; TLI: Tucker-Lewis

Index;

Table 2: Item residual correlation statistics related to the test of local independence in the GPCM-based instrument for measuring gains in the skill/knowledge of participants in the second empirical study

data	max.chisq	maxaQ3	MADaQ3	SRMSR	p.value
Pre-test	336.290	0.399	0.132	0.349	0.051
Post-test	77.018	0.303	0.136	0.309	0.397

aQ3: adjusted correlation of item residuals; maxaQ3: maximum aQ3; MADaQ3: Median Absolute Deviation of aQ3;

Table 3: Test of monotonicity in the GPCM-based instrument for measuring gains in the skill/knowledge of participants in the second empirical study

data	ItemH	ac	vi	vi/ac	maxvi	sum	sum/ac	zmax	zsig	crit
Pre-test.Un3	0.63	0	0		0	0		0	0	0
Pre-test.Ap2a	0.41	0	0		0	0		0	0	0
Pre-test.Ap2b	0.60	14	0	0	0	0	0	0	0	0
Pre-test.An3a	0.65	12	0	0	0	0	0	0	0	0
Pre-test.An3b	0.59	0	0		0	0		0	0	0
Pre-test.P2s1	0.42	0	0		0	0		0	0	0
Post-test.ApB1	0.79	0	0		0	0		0	0	0
Post-test.ApB2	0.46	8	0	0	0	0	0	0	0	0

Table 3: (continued)

data	ItemH	ac	vi	vi/ac	maxvi	sum	sum/ac	zmax	zsig	crit
Post-test.AnC1	0.23	0	0		0	0		0	0	0
Post-test.AnC2	0.29	14	0	0	0	0	0	0	0	0
Post-test.PCs3	0.17	3	0	0	0	0	0	0	0	0

 $vi: numer of \ violations; \ vi/ac: \ proportion \ of \ active \ pairs; \ maxvi: \ maximum \ violations; \ sum: \ sum \ of \ all \ violations; \\ zmax: \ maximum \ z-value; \ zsig: \ number \ of \ significant \ z-values; \ crit: \ Critical \ value \ violations; \\ zmax: \ maximum \ z-value; \ zsig: \ number \ of \ significant \ z-values; \ crit: \ Critical \ value \ violations; \\ zmax: \ maximum \ z-value; \ zsig: \ number \ of \ significant \ z-values; \ crit: \ Critical \ value \ violations; \\ zmax: \ maximum \ z-value; \ zsig: \ number \ of \ significant \ z-values; \ crit: \ Critical \ value \ violations; \\ zmax: \ maximum \ z-value; \ zsig: \ number \ of \ significant \ z-values; \ crit: \ Critical \ value \ violations; \ violations \ violations; \ violations \ violations; \ violations \ violations; \ violations \ violations \ violations \ violations; \ violations \ violations; \ violations \ vio$

2 Estimating Item Parameters

Table 4: Estimated parameters in the GPCM-based instrument for measuring the Pre-test $\,$

estimated	An3a	An3b	Ap2a	Ap2b	P2s1	Un3
xsi.item	-0.079	-0.010	-1.966	-0.013	-22.124	-0.058
B.Cat0	0.000	0.000	0.000	0.000	0.000	0.000
B.Cat1	1.000	1.000	1.000	1.000	1.000	1.000
B.Cat2	2.000	2.000	0.000	2.000	2.000	2.000
B.Cat3	3.000	3.000	0.000	3.000	0.000	3.000
B.Cat4	4.000	4.000	0.000	4.000	0.000	4.000
B.Cat5	5.000	5.000	0.000	5.000	0.000	5.000
B.Cat6	6.000	6.000	0.000	6.000	0.000	6.000
B.Cat7	7.000	7.000	0.000	7.000	0.000	7.000
B.Cat8	8.000	8.000	0.000	8.000	0.000	8.000
B.Cat9	9.000	9.000	0.000	9.000	0.000	9.000
B.Cat10	10.000	10.000	0.000	10.000	0.000	10.000
B.Cat11	11.000	11.000	0.000	11.000	0.000	11.000
B.Cat12	12.000	12.000	0.000	12.000	0.000	12.000
B.Cat13	13.000	0.000	0.000	13.000	0.000	13.000
B.Cat14	14.000	0.000	0.000	14.000	0.000	14.000
B.Cat15	15.000	0.000	0.000	0.000	0.000	15.000
B.Cat16	16.000	0.000	0.000	0.000	0.000	16.000
B.Cat17	0.000	0.000	0.000	0.000	0.000	17.000
B.Cat18	0.000	0.000	0.000	0.000	0.000	18.000
B.Cat19	0.000	0.000	0.000	0.000	0.000	19.000
B.Cat20	0.000	0.000	0.000	0.000	0.000	20.000
B.Cat21	0.000	0.000	0.000	0.000	0.000	21.000
B.Cat22	0.000	0.000	0.000	0.000	0.000	22.000
B.Cat23	0.000	0.000	0.000	0.000	0.000	23.000
B.Cat24	0.000	0.000	0.000	0.000	0.000	24.000
B.Cat25	0.000	0.000	0.000	0.000	0.000	25.000
B.Cat26	0.000	0.000	0.000	0.000	0.000	26.000
B.Cat27	0.000	0.000	0.000	0.000	0.000	27.000
B.Cat28	0.000	0.000	0.000	0.000	0.000	28.000
B.Cat29	0.000	0.000	0.000	0.000	0.000	29.000
B.Cat30	0.000	0.000	0.000	0.000	0.000	30.000
B.Cat31	0.000	0.000	0.000	0.000	0.000	31.000
B.Cat32	0.000	0.000	0.000	0.000	0.000	32.000
B.Cat33	0.000	0.000	0.000	0.000	0.000	33.000
B.Cat34	0.000	0.000	0.000	0.000	0.000	34.000
B.Cat35	0.000	0.000	0.000	0.000	0.000	35.000
B.Cat36	0.000	0.000	0.000	0.000	0.000	36.000
B.Cat37	0.000	0.000	0.000	0.000	0.000	37.000
B.Cat38	0.000	0.000	0.000	0.000	0.000	38.000

Table 4: (continued)

estimated	An3a	An3b	$_{ m Ap2a}$	Ap2b	P2s1	Un3
B.Cat39	0.000	0.000	0.000	0.000	0.000	39.000
B.Cat40	0.000	0.000	0.000	0.000	0.000	40.000
AXsi.Cat0	0.000	0.000	0.000	0.000	0.000	0.000
AXsi.Cat1	-5.616	-7.424	1.966	-6.053	44.471	-5.448
AXsi.Cat2	-5.666	-8.141		-7.940	44.248	-7.656
AXsi.Cat3	-0.287	-7.619		-8.724		-8.036
AXsi.Cat4	0.813	-2.717		-8.077		-7.771
AXsi.Cat5	-4.826	0.127		-6.069		-5.950
AXsi.Cat6	-5.910	-0.762		0.123		-1.000
AXsi.Cat7	-4.711	-7.448		-1.682		-1.025
AXsi.Cat8	1.180	-9.296		-6.004		-4.663
AXsi.Cat9	-4.363	-9.859		-7.451		-0.310
AXsi.Cat10	-4.494	-9.344		-7.985		-0.321
AXsi.Cat11	-0.709	-7.386		-7.488		-4.996
AXsi.Cat12	1.019	0.126		-6.370		-6.747
AXsi.Cat13	-4.583			-2.806		-7.436
AXsi.Cat14	-4.845			0.186		-7.448
AXsi.Cat15	-1.408					-6.499
AXsi.Cat16	1.265					-4.881
AXsi.Cat17						-0.865
AXsi.Cat18						0.981
AXsi.Cat19						-0.262
AXsi.Cat20						-4.141
AXsi.Cat21						-5.534
AXsi.Cat22						-6.731
AXsi.Cat23						-7.145
AXsi.Cat24						-7.113
AXsi.Cat25						-6.642
AXsi.Cat26						-5.970
AXsi.Cat27						-4.529
AXsi.Cat28						-1.038
AXsi.Cat29						0.694
AXsi.Cat30						0.459
AXsi.Cat31						-3.326
AXsi.Cat32						-5.734
AXsi.Cat33						-6.869
AXsi.Cat34						-7.189
AXsi.Cat35						-7.135
AXsi.Cat36						-6.650
AXsi.Cat37						-6.214

Table 4: (continued)

estimated	An3a	An3b	Ap2a	Ap2b	P2s1	Un3
AXsi.Cat38						-4.356
AXsi.Cat39						-0.379
AXsi.Cat40						2.319
max.Outfit	1.008	1.000	1.000	1.005	1.000	0.613
max.Infit	1.008	1.000	1.000	1.005	1.000	0.613

Table 5: Estimated parameters in the GPCM-based instrument for measuring the Post-test $\,$

estimated	AnC1	AnC2	ApB1	ApB2	PCs3
xsi.item	-0.119	-0.133	-2.175	-0.106	-15.226
B.Cat0	0.000	0.000	0.000	0.000	0.000
B.Cat1	1.000	1.000	1.000	1.000	1.000
B.Cat2	2.000	2.000	0.000	2.000	2.000
B.Cat3	3.000	3.000	0.000	3.000	3.000
B.Cat4	4.000	4.000	0.000	4.000	4.000
B.Cat5	5.000	5.000	0.000	5.000	0.000
B.Cat6	6.000	6.000	0.000	6.000	0.000
B.Cat7	7.000	7.000	0.000	7.000	0.000
B.Cat8	8.000	8.000	0.000	8.000	0.000
B.Cat9	9.000	9.000	0.000	9.000	0.000
B.Cat10	10.000	10.000	0.000	10.000	0.000
B.Cat11	11.000	11.000	0.000	11.000	0.000
B.Cat12	12.000	12.000	0.000	12.000	0.000
B.Cat13	13.000	13.000	0.000	13.000	0.000
B.Cat14	14.000	14.000	0.000	14.000	0.000
B.Cat15	15.000	15.000	0.000	0.000	0.000
B.Cat16	16.000	16.000	0.000	0.000	0.000
B.Cat17	17.000	17.000	0.000	0.000	0.000
B.Cat18	18.000	18.000	0.000	0.000	0.000
AXsi.Cat0	0.000	0.000	0.000	0.000	0.000
AXsi.Cat1	-5.378	-6.301	2.175	-5.704	61.918
AXsi.Cat2	-0.701	-7.422		-5.752	61.311
AXsi.Cat3	-5.803	-6.199		-1.807	61.466
AXsi.Cat4	-5.661	1.386		-1.808	60.906
AXsi.Cat5	0.696	1.792		-4.963	
AXsi.Cat6	0.918	2.194		0.613	
AXsi.Cat7	-4.952	-3.722		-0.407	
AXsi.Cat8	-6.102	-5.093		-5.151	
AXsi.Cat9	-5.226	-5.264		-7.286	
AXsi.Cat10	-0.701	-3.726		-8.101	
AXsi.Cat11	0.700	2.074		-8.113	
AXsi.Cat12	1.951	2.299		-7.278	
AXsi.Cat13	-4.933	-3.907		-5.135	
AXsi.Cat14	-6.289	-5.710		1.478	
AXsi.Cat15	-5.946	-6.251			
AXsi.Cat16	-4.969	-5.876			
AXsi.Cat17	-0.702	-3.951			
AXsi.Cat18	2.149	2.392			
max.Outfit	1.007	1.000	1.000	1.009	1.000

Table 5: (continued)

estimated	AnC1	AnC2	ApB1	$_{ m ApB2}$	PCs3
max.Infit	1.007	1.000	1.000	1.009	1.000

3 Latent Trait Estimates

Table 6: Latent trait estimates and person model fit of the GPCM-based instrument for measuring gains in the skill/knowledge of participants in the second empirical study

Post-test.Infit	0.736	0.850	0.250	0.388	0.207	1.270	0.757	0.185	0.299	0.240	1.131	0.190	0.728	0.114	0.480	0.046	0.237	0.747	0.183	0.123	0.698	0.180	1.711	0.636	0.305	0.356	0.970	0.265	0.810	0.708	0.882	0.485	0.594	0.904	0.765	0.177	0.271
Post-test.Outfit	2.199	2.807	0.360	0.413	0.163	1.031	0.594	0.177	0.259	0.243	1.157	0.142	0.530	0.117	0.401	0.054	0.216	0.475	0.237	0.302	0.631	1.676	1.146	0.585	1.201	0.493	909.0	0.202	0.634	0.545	0.664	0.531	0.373	0.638	0.657	0.172	0.236
Post-test.error	0.135	0.116	0.301	0.114	0.207	0.109	0.110	0.117	0.113	0.112	0.120	0.222	0.119	0.109	0.110	0.116	0.117	0.109	0.120	0.108	0.108	0.129	0.118	0.108	0.257	0.129	0.108	0.138	0.109	0.110	0.119	0.109	0.138	0.120	0.117	0.119	0.141
Post-test.theta	-0.236	-0.153	0.411	-0.141	0.286	-0.028	-0.098	0.047	0.024	-0.119	0.069	0.300	-0.165	-0.038	-0.018	-0.153	0.047	-0.099	690.0	-0.029	-0.029	-0.218	0.057	-0.049	-0.584	0.109	-0.049	0.139	-0.019	-0.018	0.059	-0.019	0.139	0.069	-0.153	0.059	0.144
Pre-test.Infit	806.0	0.356	0.424	0.879	0.489	0.406	0.700	0.778	0.347	0.784	0.393	0.498	0.201	0.681	0.196	0.165	0.333	0.382	0.097	0.568	0.123	0.222	0.655	1.299	0.301	0.632	0.225	0.257	0.063	0.380	0.467	0.269	0.271	0.155	0.392	0.061	0.190
Pre-test.Outfit	1.001	0.628	0.575	2.530	0.499	0.300	0.600	0.529	0.834	0.616	0.492	0.418	0.344	0.673	0.301	1.485	0.702	1.455	0.347	0.589	0.218	0.388	0.762	2.116	0.366	0.595	0.549	0.335	0.249	0.369	0.436	0.273	0.488	0.239	902.0	0.150	0.353
Pre-test.error	0.067	0.060	0.082	0.077	0.118	0.068	990.0	0.063	0.061	0.112	0.082	0.121	0.065	0.067	0.205	0.068	0.063	990.0	0.062	0.068	0.182	0.065	0.072	0.065	0.108	0.111	0.069	0.151	0.062	0.069	0.103	0.075	090.0	0.242	0.063	0.062	0.077
Pre-test.theta	600.0	-0.040	0.053	-0.119	0.141	0.012	0.002	-0.007	-0.020	-0.204	0.053	0.148	-0.013	0.00	0.307	-0.093	-0.010	0.002	-0.063	0.012	-0.350	-0.082	0.025	-0.078	-0.195	0.126	0.016	0.216	-0.063	0.016	0.105	0.035	-0.033	0.358	-0.011	-0.062	-0.119
	10169	10170	10172	10174	10175	10176	10178	10179	10181	10183	10184	10185	10186	10187	10188	10189	10190	10192	10196	10197	10198	10200	10201	10202	10203	10204	10206	10208	10210	10212	10213	10214	10215	10217	10218	10219	10220

Table 6: (continued)

st.theta	Pre-test.error	Pre-test.Outfit	Pre-test.Infit	Post-test.theta	Post-test.error	Post-test.Outfit	Post-test.Infit
-0.119	2200	0.832	0.905	-0.253	0.140	1.873	0.237
0.035	0.075	0.354	0.282	-0.009	0.109	1.109	0.894
-0.051	0.061	0.787	0.328	0.144	0.141	0.236	0.271

Table 6: (continued)

	Pre-test.theta	Pre-test.error	Pre-test.Outfit	Pre-test.Infit	Post-test.theta	Post-test.error	Post-test.Outfit	Post-test.Infit
227		0.061	1.654	0.122	0.023	0.112	0.768	0.870
228		0.063	1.958	0.321	-0.130	0.113	1.394	1.609
230		0.074	0.185	0.292	0.139	0.138	0.530	0.746
10231	0.216	0.151	0.335	0.257	0.250	0.186	0.489	0.322
232		0.077	0.245	0.518	-0.049	0.108	0.730	0.877
237		990.0	1.148	2.103	0.300	0.222	0.142	0.190
238		0.061	1.840	0.381	0.036	0.115	0.674	0.874
240		090.0	0.968	1.356	-0.088	0.109	0.326	0.220