Erasmus School of Economics

MOOC Econometrics

Lecture 1.2 on Simple Regression:
Representation

Philip Hans Franses

Erasmus University Rotterdam

Ezafus

Two histograms of sales

- Eafins

Lecture 1.2, Slide 3 of 9, Erasmus School of Economics

Scatter diagram of sales against price

Ezafus,

Lecture 1.2, Slide 2 of 9, Erasmus School of Economics

Simple regression: conditional mean

- y_i Normally Identically Distributed with mean μ and variance σ^2 : $y_i \sim \textit{NID}(\mu, \sigma^2)$
- Expected value: $E(y_i) = \mu$ Variance: $E(y_i - \mu)^2 = \sigma^2$
- Sample estimates: $\hat{\mu} = \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ (see Building Blocks) $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i \bar{y})^2$
- Simple regression: replace unconditional mean $E(y_i) = \mu$ by conditional mean $E(y_i) = \alpha + \beta x_i$

Ezafus,

Simple regression equation

• Unconditional prediction with $y_i \sim N(\mu, \sigma^2)$: $E(y_i) = \mu$

• Conditional prediction with
$$y_i \sim N(\alpha + \beta x_i, \sigma^2)$$
: $E(y_i) = \alpha + \beta x_i$

• An alternative format is:
$$y_i = \alpha + \beta x_i + \varepsilon_i$$

 $\varepsilon_i \sim N(0, \sigma^2)$

• If x_i is fixed (non-random), $\varepsilon_i \sim N(0, \sigma^2)$, and $y_i = \alpha + \beta x_i + \varepsilon_i$, then y_i has mean $\alpha + \beta x_i$ and variance σ^2 . (see Building Blocks)

Lecture 1.2, Slide 5 of 9, Erasmus School of Economics

Absolute and relative changes

Test

Retail store A has a sales level of 150 units and store B of 250 units. The two store managers start an advertising campaign, after which store A sells 225 units and store B sells 400.

Which store has the largest relative increase in sales?

- Answer: Relative change for A: $\frac{225-150}{150}=0.5$ Relative change for B: $\frac{400-250}{250}=0.6 \leftarrow \text{largest}$
- If current level x increases by dx, then relative increase is $\frac{dx}{x}$

Ezafus,

Prediction

• Consider again scatter plot of sales and price:

Test

Predict sales for a price of 50, and also for a price of 58.

- Answer: Fit straight line to the observed data.
- Price = $50 \rightarrow \text{Sales} \approx 99$; Price = $58 \rightarrow \text{Sales} \approx 85$.

Lecture 1.2, Slide 6 of 9, Erasmus School of Economics

Elasticity

- For $y = \alpha + \beta x$, the slope (marginal effect) is $\beta = \frac{dy}{dx}$
- Definition of elasticity: $\frac{dy/y}{dx/x}$ So: relative change in y divided by relative change in x
- Elasticity in $y = \alpha + \beta x$: elasticity = $\frac{dy/y}{dx/x} = \frac{dy}{dx} \times \frac{x}{y} = \beta \times \frac{x}{y}$
- Fact: elasticity in $\log(y) = \alpha + \beta \log(x)$ is equal to β .

Ezafus,

TRAINING EXERCISE 1.2

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Erafus

Lecture 1.2, Slide 9 of 9, Erasmus School of Economics