Assignment 3

October 12, 2023

1 2.15

By the chain rule, we have

$$I(X_1; X_2, ..., X_n) = \sum_{i=2}^n I(X_1; X_i | X_2, X_3, ..., X_{i-1})$$

= $I(X_1; X_2) + I(X_1; X_3 | X_2) + ... + I(X_1; X_n | X_2, ..., X_{n-1})$

For $X_1 \to X_2 \to ... \to X_n$, by the Markov property, X_i and X_j with j - i > 1 are independent when given X_p with $p \in (i, j)$. Therefore, we have

$$I(X_1; X_2, ..., X_n) = I(X_1; X_2) + I(X_1; X_3 | X_2) + ... + I(X_1; X_n | X_2, ..., X_{n-1})$$

= $I(X_1; X_2)$

2 2.16

1. By the data processing inequality, we have

$$I(X_1; X_3) \le I(X_1; X_2)$$

= $H(X_2) - H(X_2|X_1)$
 $\le H(X_2)$

Since $H(X_2) \le \log |X_2| = \log k$, we have $I(X_1; X_3) \le \log k$.

2. From the above, we know that $I(X_1; X_3) \le \log k$. For k = 1, we have $I(X_1; X_3) \le 0$. Since $I(X_1; X_3) \ge 0$, we have $I(X_1; X_3) = 0$, i.e., X_1 and X_3 are independent.

3 2.32

1. From the table, we can see that Pr[X = 1, Y = a] is the greatest among Pr[X = x, Y = a] for $x \in \{1, 2, 3\}$, and so are the Pr[X = 2, Y = b] and Pr[X = 3, Y = c]. Therefore, the minimum probability of error estimator is like below

$$\hat{X}(Y) = \begin{cases} 1, & y = a \\ 2, & y = b \\ 3, & y = c \end{cases}$$

and the associated $P_e = Pr[\hat{X} \neq X] = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$.

2. By Fano's inequality, we have

$$P_e \ge \frac{H(X|Y) - 1}{\log |\mathcal{X}| - 1}$$

We have

$$H(X|Y) = \sum_{y \in \mathcal{Y}} Pr[Y = y]H(X|Y = y)$$
$$= Pr[Y = a]H(X|Y = a) + Pr[Y = b]H(X|Y = b) + Pr[Y = c]H(X|Y = c)$$

Since

$$H(X|Y=a) = H(X|Y=b) = H(X|Y=c) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{4}\log\frac{1}{4} - \frac{1}{4}\log\frac{1}{4} = \frac{3}{2}\log2$$

we have

$$H(X|Y) = \frac{3}{2}\log 2(Pr[Y=a] + Pr[Y=b] + Pr[Y=c]) = \frac{3}{2}\log 2$$

Therefore, we have

$$P_e \ge \frac{H(X|Y) - 1}{\log |\mathcal{X}| - 1} = \frac{\frac{3}{2}\log 2 - 1}{\log 2} = \frac{1}{2}$$

So the P_e we calculated before matches well with Fano's inequality.

4 2.34

By the data processing inequality, we have

$$I(X_0; X_{n-1}) \ge I(X_0; X_n)$$

Since $I(X_1; X_2) = H(X_1) - H(X_1|X_2)$, we have

$$H(X_0) - H(X_0|X_{n-1}) \ge H(X_0) - H(X_0|X_n)$$

 $\Longrightarrow H(X_0|X_{n-1}) \le H(X_0|X_n)$

Therefore, $H(X_0|X_n)$ is non-decreasing with n.