FILTERS IN TOPOLOGY

1. Introduction

In these short notes we study filters of subsets with their applications to topological spaces. Filters were introduced in [Cartan, 1937] as an effective tool in studying general topological spaces. Here we recapitulate some of Cartan's results. In particular, we give a concise proof of Tychonoff's theorem on compact spaces. For introduction to topological spaces we refer to [Monygham, 2024].

2. FILTERS

Definition 2.1. Let X be a set and let \mathcal{F} be a nonempty family of subsets of X. Assume that the following assertions hold.

- (1) \mathcal{F} is closed under finite intersections.
- **(2)** If F_1 and F_2 are subsets of X such that $F_1 \in \mathcal{F}$ and $F_1 \subseteq F_2$, then $F_2 \in \mathcal{F}$.

Then \mathcal{F} is a *filter* on X.

We note the following fact.

Fact 2.2. Let X be a set and let $\{\mathcal{F}_i\}_{i\in I}$ be a family of filters on X. Then

$$\bigcap_{i\in I}\mathcal{F}_i$$

is a filter on X.

Proof. Left for the reader as an exercise.

Definition 2.3. Let *X* be a set and let \mathcal{F} be a filter on *X*. Assume that $\emptyset \notin \mathcal{F}$. Then \mathcal{F} is *proper*.

Filters are functorial as it is displayed in the following notion.

Definition 2.4. Let \mathcal{F} be a filter on a set X and let $f: X \to Y$ be a map of sets. Then a filter

$$f(\mathcal{F}) = \{ Z \subseteq Y \mid \text{ there exists } F \in \mathcal{F} \text{ such that } f(F) \subseteq Z \}$$

on Y is the *image* of \mathcal{F} under f.

Let us note the following result.

Fact 2.5. Let \mathcal{F} be a filter on a set X and let $f: X \to Y$ be a map of sets. If \mathcal{F} is proper, then $f(\mathcal{F})$ is proper.

Proof. Left for the reader as an exercise.

Now we introduce the notion of ultrafilter and prove its properties.

Definition 2.6. Let X be a set and let \mathcal{F} be a proper filter on X. Suppose that \mathcal{F} is maximal with respect to inclusion among proper filters on X. Then \mathcal{F} is an *ultrafilter* on X.

Proposition 2.7. Let X be a set and let \mathcal{F} be a proper filter on X. The following assertions are equivalent.

- (i) \mathcal{F} is an ultrafilter on X.
- **(ii)** For each subset F of X either $F \in \mathcal{F}$ or $X \setminus F \in \mathcal{F}$.

Proof. Assume that \mathcal{F} is an ultrafilter and let F be a subset of X. Suppose that $F \notin \mathcal{F}$. Then the smallest filter containing $\{F\} \cup \mathcal{F}$, which exists according to Fact 2.2, is not a proper filter. This implies that there exists $F' \in \mathcal{F}$ such that $F \cap F' = \emptyset$. Since $F' \subseteq X \setminus F$ and \mathcal{F} is a filter, we derive that $X \setminus F \in \mathcal{F}$. This proves that (i) \Rightarrow (ii).

Suppose that for each subset F of X either $F \in \mathcal{F}$ or $X \setminus F \in \mathcal{F}$. Consider a filter $\tilde{\mathcal{F}}$ such that $\mathcal{F} \subsetneq \tilde{\mathcal{F}}$. If $F \in \tilde{\mathcal{F}} \setminus \mathcal{F}$, then $X \setminus F \in \mathcal{F}$ and hence $\emptyset = F \cap (X \setminus F) \in \tilde{\mathcal{F}}$. This implies that $\tilde{\mathcal{F}}$ is not a proper filter. Thus \mathcal{F} is an ultrafilter on X. This completes the proof of (ii) \Rightarrow (i).

Corollary 2.8. Let $f: X \to Y$ be a map of sets and let \mathcal{F} be an ultrafilter of subsets of X. Then $f(\mathcal{F})$ is an ultrafilter.

Proof. Filter $f(\mathcal{F})$ is proper according to Fact 2.5. Fix a subset F of Y. By Proposition 2.7 either $f^{-1}(F) \in \mathcal{F}$ or $f^{-1}(Y \setminus F) \in \mathcal{F}$. Thus either $F \in f(\mathcal{F})$ or $Y \setminus F \in f(\mathcal{F})$. Proposition 2.7 implies that $f(\mathcal{F})$ is an ultrafilter.

The following result uses axiom of choice.

Proposition 2.9. Let X be a set and let \mathcal{F} be a proper filter on X. Then there exists an ultrafilter $\tilde{\mathcal{F}}$ on X such that $\mathcal{F} \subseteq \tilde{\mathcal{F}}$.

Proof. Consider the family

$$\mathbf{F} = \{ \mathcal{G} \mid \mathcal{G} \text{ is a proper filter on } X \text{ and } \mathcal{F} \subseteq \mathcal{G} \}$$

Note that **F** is nonempty because $\mathcal{F} \in \mathbf{F}$. The inclusion of filters introduces partial order on **F** and if $L \subseteq \mathbf{F}$ is a linearly ordered subset, then

is a proper filter. Hence each chain in (\mathbf{F}, \subseteq) admits an upper bound. Zorn's lemma implies that (\mathbf{F}, \subseteq) has a maximal element $\tilde{\mathcal{F}}$. Clearly $\tilde{\mathcal{F}}$ is an ultrafilter on X and $\mathcal{F} \subseteq \tilde{\mathcal{F}}$.

3. FILTERS AND CONVERGENCE IN TOPOLOGICAL SPACES

Definition 3.1. Let X be a topological space and let \mathcal{F} be a proper filter on X. Consider a point x in X. Suppose that for every open neighborhood U of x we have $U \in \mathcal{F}$. Then \mathcal{F} converges to x in X.

Proposition 3.2. Let X, Y be topological spaces and let $f: X \to Y$ be a map of sets. Let x be a point in X. Then the following assertions are equivalent.

- (i) f is continuous at x.
- (ii) If \mathcal{F} is a proper filter on X convergent to x, then $f(\mathcal{F})$ converges to f(x).
- (iii) If \mathcal{F} is an ultrafilter on X convergent to x, then $f(\mathcal{F})$ converges to f(x).

Proof. Suppose that f is a continuous at x. Fix a proper filter \mathcal{F} on X convergent to x. Fix an open neighborhood V of f(x) in Y. Since f is continuous at x, there exists an open neighborhood U of x such that $f(U) \subseteq V$. Note that $U \in \mathcal{F}$ and hence $V \in f(\mathcal{F})$. Since V is arbitrary open neighborhood of f(x) in Y, we derive that $f(\mathcal{F})$ converges to f(x) in Y. This proves the implication (i) \Rightarrow (ii).

The implication (ii) \Rightarrow (iii) follows from definition of an ultrafilter.

Suppose now that (iii) holds. Consider an open neighborhood V of f(x) in Y. Assume that for every open neighborhood U of x in X the set $U \setminus f^{-1}(V)$ is nonempty. Let \mathcal{F} be a filter generated by all sets of the form $U \setminus f^{-1}(V)$ where U is an open neighborhood of x. Then \mathcal{F} is a proper filter on X. Next by Proposition 2.9 there exists an ultrafilter $\tilde{\mathcal{F}}$ on X which contains \mathcal{F} . Since \mathcal{F}

converges to x in X, we derive that $\tilde{\mathcal{F}}$ converges to x in X. Thus $f(\tilde{\mathcal{F}})$ converges to f(x) in Y. Note that

$$f\left(X\setminus f^{-1}(V)\right)\in f(\tilde{\mathcal{F}})$$

This implies that $Y \setminus V \in f(\tilde{\mathcal{F}})$ and hence $V \notin f(\tilde{\mathcal{F}})$. It follows that the filter $f(\tilde{\mathcal{F}})$ cannot converge to f(x) in Y. We arrive at contradiction. This means that there exists an open neighborhood U of X in X such that $U \subseteq f^{-1}(V)$. This proves that Y is continuous at Y. We infer (iii) Y ii). Y

Definition 3.3. Let X be a topological space and let \mathcal{F} be a proper filter on X. Consider a point x in X. Suppose that for every open neighborhood U of x and every $F \in \mathcal{F}$ we have $F \cap U \neq \emptyset$. Then x is an *accumulation point* of \mathcal{F} .

Theorem 3.4. Let X be a topological space. Then the following assertions are equivalent.

- (i) Each ultrafilter on X is convergent to some point of X.
- (ii) Each proper filter on X admits an accumulation point.
- (iii) *X* is a quasi-compact topological space.

Proof. Suppose that (i) holds. Let \mathcal{F} be a proper filter on X. By Proposition 2.9 there exists an ultrafilter $\tilde{\mathcal{F}}$ that contains \mathcal{F} . By assumption $\tilde{\mathcal{F}}$ is convergent to some point x of X. Then x is an accumulation point of \mathcal{F} . Hence (i) \Rightarrow (ii).

Assume that (ii). Pick a centered family \mathcal{F} of closed subsets of X. Define

$$\tilde{\mathcal{F}} = \{ F \mid F \text{ contains some finite intersection of sets in } \mathcal{F} \}$$

Then $\tilde{\mathcal{F}}$ is a proper filter on X. By assumption $\tilde{\mathcal{F}}$ admits an accumulation point – say $x \in X$. Pick now $F \in \mathcal{F}$. Then for every open neighborhood U of x we have $U \cap F \neq \emptyset$. Since F is closed in X, we derive that $x \in F$. Thus x is contained in the intersection of \mathcal{F} . This implies that X is quasi-compact. This completes the proof of (ii) \Rightarrow (iii).

Assume that X is quasi-compact and suppose that \mathcal{F} is an ultrafilter on X. Suppose that \mathcal{F} is not convergent. Then for every $x \in X$ there exists open neighborhood U_x of x in X such that $U_x \notin \mathcal{F}$. Since X is quasi-compact, we deduce that there exist $n \in \mathbb{N}_+$ and $x_1, ..., x_n \in X$ such that

$$X = \bigcup_{i=1}^{n} U_{x_i}$$

According to Proposition 2.7 we derive that $X \setminus U_x \in \mathcal{F}$ for every $x \in X$. Hence

$$\bigcap_{i=1}^n (X \setminus U_{x_i}) \in \mathcal{F}$$

On the other hand we have

$$\bigcap_{i=1}^{n} (X \setminus U_{x_i}) = X \setminus \bigcup_{i=1}^{n} U_{x_i} = \emptyset$$

This is contradiction. Thus the implication (iii) \Rightarrow (i) holds.

4. TYCHONOFF'S THEOREM

The following result is a celebrated theorem due to Tychonoff.

Theorem 4.1. Let $\{X_i\}_{i\in I}$ be a family of quasi-compact topological spaces. Then the product

$$\prod_{i\in I}X_i$$

is quasi-compact.

Proof. We denote $\prod_{i \in I} X_i$ by X. For each i in I we denote by $pr_i : X \to X_i$ the canonical projection onto i-th factor. Suppose that X_i is quasi-compact for every $i \in I$. Pick an ultrafilter \mathcal{F} on X. Fix i in I. According to Corollary 2.8 the filter $pr_i(\mathcal{F})$ is an ultrafilter. Since X_i is quasi-compact, we derive that $pr_i(\mathcal{F})$ is convergent to some point $x_i \in X_i$. Let x be a point of X such that $pr_i(x) = x_i$ for each $i \in I$. Fix finite subset $\{i_1, ..., i_n\} \subseteq I$. Consider open neighborhood U_j of x_{i_j} . Then $U_{i_j} \in pr_{i_j}(\mathcal{F})$ for each j and hence $pr_{i_j}^{-1}(U_{i_j}) \in \mathcal{F}$ for each j. Since \mathcal{F} is a filter, we derive that

$$\prod_{j=1}^n U_{i_j} \times \prod_{i \in I \setminus \{i_1, \dots, i_n\}} X_i = \bigcap_{j=1}^n pr_{i_j}^{-1}(U_{i_j}) \in \mathcal{F}$$

This implies that \mathcal{F} is convergent to x in X. Thus every ultrafilter in X is convergent and hence Theorem 3.4 shows that X is quasi-compact.

Theorem 4.2. Let $\{X_i\}_{i\in I}$ be a family of nonempty topological spaces. If the product

$$\prod_{i\in I} X_i$$

is quasi-compact, then X_i is quasi-compact for every $i \in I$.

Proof. We denote $\prod_{i \in I} X_i$ by X. For each i in I we denote by $pr_i : X \to X_i$ the canonical projection onto i-th factor. Assume that X is quasi-compact. Since $X_i \neq \emptyset$ for every $i \in I$, we derive that $pr_i : X \to X_i$ is a continuous and surjective map for every $i \in I$. Hence for each $i \in I$ space X_i is quasi-compact as an image of a quasi-compact space under continuous map.

5. EXTENSIONS OF CONTINUOUS MAPS

Definition 5.1. Let X be a topological space. Suppose that for every $x \in X$ and every closed subset F of X does not containing x there exist disjoint open subsets U and V such that $x \in U$ and $F \subseteq V$. Then X is *regular*.

Corollary 5.2. Each completely regular space is regular.

We can apply filters to prove the following interesting and useful result. For this we introduce the following notion.

Definition 5.3. Let X be a topological space and let Z be a dense subspace of X. Fix a point x in X. Then a family

$${F \subseteq Z \mid U \cap Z \subseteq F \text{ for some open neighborhood } U \text{ of } x}$$

is the *trace* on Z of the neighborhood filter of x.

Fact 5.4. Let X be a topological space and let Z be a dense subspace of X. Then the trace on Z of the neighborhood filter of x is a proper filter on Z for every $x \in X$.

Proof. Left for the reader.

Theorem 5.5. Let X and Y be topological spaces and let Z be a dense subspace of X. Suppose that Y is regular and $f: Z \to Y$ is a continuous map. Let \mathcal{F}_x the trace of the neighborhood filter of x on Z for each $x \in X$. Consider the following assertions.

- (i) There exists a continuous map $\tilde{f}: X \to Y$ extending f.
- (ii) $f(\mathcal{F}_x)$ is convergent in Y for every $x \in X$.

Then (i) \Rightarrow (ii) and if Y is regular, then (ii) \Rightarrow (i) holds.

For the proof we need the following result.

Lemma 5.5.1. Let X and Y be topological spaces and let Z be a dense subspace of X. Suppose $f: Z \to Y$ is a continuous map. Let U be an open subset of X and let $x \in U$ be a point such that $f(\mathcal{F}_x)$ is convergent in Y. Then $f(\mathcal{F}_x)$ converges to a point of $\mathbf{cl}(f(U \cap Z))$.

Proof of the lemma. Suppose that $f(\mathcal{F}_x)$ converges to $y \in Y$. Let V be an open neighborhood of y in Y. Then $V \in f(\mathcal{F}_x)$ and hence $f^{-1}(V) \in \mathcal{F}_x$. Since $U \cap Z \in \mathcal{F}_x$ and \mathcal{F}_x is a proper filter by Fact 5.4, we derive that $f^{-1}(V) \cap (U \cap Z)$ is nonempty. Thus $V \cap f(U \cap Z)$ is nonempty. This proves that y is in the closure of $f(U \cap Z)$.

Proof of the theorem. Suppose that there exists a continuous extension $\tilde{f}: X \to Y$ of f. Let $\tilde{\mathcal{F}}_x$ be the filter on X generated by \mathcal{F}_x for each $x \in X$. Then $\tilde{\mathcal{F}}_x$ is convergent to x. Hence $\tilde{f}(\tilde{\mathcal{F}}_x)$ is convergent to $\tilde{f}(x)$ in Y. Since $f(\mathcal{F}_x) = \tilde{f}(\tilde{\mathcal{F}}_x)$, we deduce that $f(\mathcal{F}_x)$ is convergent to $\tilde{f}(x)$ in Y. This completes the proof of (i) \Rightarrow (ii).

Now suppose that Y is regular and $f(\mathcal{F}_x)$ is convergent in Y for every $x \in X$. We define $\tilde{f}(x)$ as a limit in Y of $f(\mathcal{F}_x)$ for all $x \in X \setminus Z$ and $\tilde{f}(z) = f(z)$ for each $z \in Z$. It follows that $\tilde{f}: X \to Y$ is an extension of f such that $\tilde{f}(x)$ is a limit in Y of $f(\mathcal{F}_x)$ for all $x \in X$. It suffices to check that \tilde{f} is continuous. Pick x in X and let Y be an arbitrary open neighborhood of $\tilde{f}(x)$ in Y. Since Y is regular, there exists an open neighborhood Y of Y in Y such that Y of Y in Y such that Y is an arbitrary open neighborhood Y of Y in Y such that Y is an arbitrary open neighborhood Y in Y such that Y is an arbitrary open neighborhood Y of Y is a such that Y is regular, there exists open neighborhood Y is a such that Y is regular. It is negligible to Y is regular, there exists open neighborhood Y is such that Y is regular. It is negligible to Y is regular, there exists open neighborhood Y is such that Y is regular.

$$\tilde{f}(U) \subseteq \mathbf{cl}(f(U \cap Z)) \subseteq \mathbf{cl}(W) \subseteq V$$

This shows that \tilde{f} is continuous. We infer that (ii) \Rightarrow (i).

REFERENCES

[Cartan, 1937] Cartan, H. (1937). Théorie des filtres. CR Acad. Sci. Paris, 205:595–598. [Monygham, 2024] Monygham (2024). Topological spaces. github repository: "Monygham/Pedo-mellon-a-minno".