Propositions of solutions for Analysis I by Terence Tao

Frédéric Santos

May 4, 2020

1. Introduction

No exercises in this chapter.

2. The natural numbers

EXERCISE 2.2.1. — Prove that the addition is associative, i.e. that for any natural numbers a, b, c, we have (a + b) + c = a + (b + c).

Let's use induction on c while keeping a and b fixed.

- Base case for c = 0: let's prove that (a + b) + 0 = a + (b + 0). The left hand side is equal to (a + b) according to Lemma 2.2.3. For the right hand side, if we apply the same lemma to the (b + 0) part, we get a + (b + 0) = a + b. Both sides are equal to a + b, and the base case is thus done.
- Now let's suppose inductively that (a + b) + c = a + (b + c): we have to prove that (a + b) + c + + = a + (b + c + +). Using Lemma 2.2.3 on the right hand side leads to a + (b + c) + +. Now consider the left hand side. Using still the same lemma, we get (a + b) + c + + = ((a + b) + c) + +. By the inductive hypothesis, this is also equal to (a + (b + c)) + +. And, using the lemma 2.2.3 again, this also leads to a + b + c + +. Therefore, both sides are equal to a + b + c + +, and we have closed the induction.

EXERCISE 2.2.2. — Let a be a positive number. Prove that there exists exactly one natural number b such that b++=a.

Let's use induction on a.

- Base case for a = 1: we know that b = 0 matches this property, since 0 ++ = 1 by Definition 2.1.3. Furthermore, there is only one solution. Suppose that is another natural number b such that b ++ = 1. Then, we would have b ++ = 0 ++, which would imply b = 0 by Axiom 2.4. The base case is demonstrated.
- Let's suppose inductively that there is exactly one natural number b such that b+=a. We have to prove that there is exactly one natural number b' such that b'+=a++. By the induction hypothesis, and taking b'=b++, we have b'++=(b++)++=a++. So there exists a solution, with b'=b++=a. Uniqueness is given by Axiom 2.4.: if b'++=a++, then we necessarily have b'=a.

EXERCISE 2.2.3. — Let a, b, c be natural numbers. Prove the following properties of order for natural numbers:

- (a) Reflexivity: $a \ge a$. This is true since a = 0 + a by Definition 2.2.1. By commutativity of addition, we can also write a = a + 0. So there is indeed a natural number n (with n = 0) such that a = a + n, i.e. $a \ge a$.
- (b) Transitivity: if $a \ge b$ and $b \ge c$, then $a \ge c$. From the part $a \ge b$, there exists a natural number n such that a = b + n according to Definition 2.2.11. A similar consideration for the part $b \ge c$ leads to b = c + m, m being a natural number. Combining together those two equalities, we can write a = b + n = (c + m) + n = c + (m + n) by associativity (see Exercise 2.2.1). Then, n + m being a natural number¹, the transitivity is demonstrated.
- (c) Anti-symmetry: if $a \ge b$ and $b \ge a$, then a = b. From the part $a \ge b$, there exists a natural number n such that a = b + n. Similarly, there exists a natural number m such that b = a + m. Combining those two equalities leads to a = b + n = (a + m) + n = a + (m + n). By cancellation law (Proposition 2.2.6), we can conclude that 0 = m + n. According to Corollary 2.2.9, this leads to m = n = 0. Therefore, both m and n are null, meaning that a = b + 0 = b.
- (d) Preservation of order: $a \ge b$ iff $a+c \ge b+c$. First, let's prove that $a+c \ge b+c \Longrightarrow a \ge b$. If $a+c \ge b+c$, there exists a natural number n such that a+c = b+c+n. By cancellation law (Proposition 2.2.6)², we conclude that a = b+n, i.e. $a \ge b$, thus demonstrating the first implication. Conversely, let's suppose that $a \ge b$. There exists a natural number m such that a = b+m. Therefore, a+c = b+m+c for any natural number c. Still by associativity and commutativity, we can rewrite this as a+c = (b+c)+m, i.e. $a+c \ge b+c$.
- (e) a < b iff $a++ \le b$. First, let's prove that $a++ \le b \Longrightarrow a < b$. By definition of ordering, there exists a natural number n such that b = (a++) + n. By definition of addition, we can re-write: b = (a+++n)++. Then, by commutativity and yet again by definition of addition, b = (n+a++)++=(n++)+(a++). Thus, there exists a natural number n++ such that b = n+++a, which means that $b \ge a$. But we still have to prove that $a \ne b$. Let's suppose that a = b: in this case, by cancellation law, we would have n++=0, which is impossible according to Axiom 2.3 (0 is not the successor of any natural number). Thus, $a \ne b$ et $b \ge a$: we have showed that a < b.

Conversely, let's prove that $a < b \Longrightarrow a ++ \le b$. Starting from that strict inequality, there exists a *positive*³ natural number n such that b = a + n. By Lemma 2.2.10, since n is positive, it has one unique antecessor m, so that n can be written m ++. Thus, b = a + (m++) = (a+m) ++ = (m+a) ++ = m + (a++) = (a++) + m. And, m being a natural number, this corresponds to the statement $b \ge a$.

(f) a < b iff b = a + d for some positive number d. First, let's prove the first implication, $a < b \implies b = a + d$ with $d \ne 0$. Since a < b, we have in particular $a \le b$, and

¹This is a trivial induction from the definition of addition.

 $^{^2}$ And also associativity and commutativity that we do not detail explicitly here.

³We make use here of the statement (f) demonstrated below. There is no circularity here, since proving (f) will not make use of (e).

there exists a natural number d such that b=a+d. For the sake of contradiction, let's suppose that d=0. We would have b=a, which would contradict the condition $a \neq b$ of the strict inequality. Thus, d is a positive number, which demonstrates the left-to-right implication.

Conversely, let's suppose that b = a + d, with $d \neq 0$. This expression gives immediately $a \leq b$. But if a = b, by cancellation law, this would lead to 0 = d, a contradiction with the fact that d is a positive number. Thus, $a \neq b$ and $a \leq b$, which demonstrates a < b.

Exercise 2.2.4. — Demonstrate three lemmas used to prove to trichotomy or order for natural numbers.

- (a) Show that we have $0 \le b$ for any natural number b. This is obvious since, by definition of addition, 0 + b = b for any natural number b. This is precisely the definition of $0 \le b$.
- (b) Show that if a > b, then a + + > b. If a > b, then a = b + d, d being a positive natural number. Let's recall that a + + = a + 1. Thus, a + + = a + 1 = b + d + 1 = b + (d + 1) by associativity of addition. Furthermore, d+1 is a positive natural number (by Proposition 2.2.8). Thus, a + + > b.
- (c) Show that if a = b, then a ++ > b. Once again, let's use the fact that a ++ = a + 1. Thus, a ++ = a + 1 = b + 1, and 1 is a positive natural number. This is the definition of a ++ > b.