1.5. Най-голяма и най-малка стойност на функция

1) Локален екстремум на функция

Определение. Точката x_0 се нарича **вътрешна** за множеството M, ако съществува отворен интервал U на x_0 , който се съдържа в M, $U \subset M$.

Нека M=[a;b]. Всяка точка от отворения интервал (a;b) е вътрешна за M, докато точките a и b не са вътрешни.

Определение. Нека функцията f(x) е с дефиниционна област D и x_0 е вътрешна точка за D. Казваме, че f(x) има **локален максимум** в точката x_0 , ако съществува отворен интервал U на x_0 , съдържащ се в D, така че неравенството $f(x_0) \ge f(x)$ е изпълнено за всяко $x \in U$.

Означаваме
$$f_{\text{max}} = f(x_0)$$
.

Казваме, че f(x) има **локален минимум** в точката x_0 , ако съществува отворен интервал U на x_0 , съдържащ се в D, така че неравенството $f(x_0) \le f(x)$ е изпълнено за всяко $x \in U$.

Означаваме
$$f_{\min} = f(x_0)$$
.

Ако f(x) има локален максимум или локален минимум в точката x_0 , казваме, че f(x) има локален екстремум в тази точка.

Пример 1. Нека
$$f(x) = -x^2 + 6x - 8$$
.

Върхът на параболата е в точката $x_0 = 3$ и

$$f(x) \le f(3) = 1$$
 за всяко $x \in (-\infty; +\infty)$.

Следователно f(x) има локален максимум при x = 3 и $f_{max} = f(3) = 1$.

Твърдение.

Ако функцията f(x) е строго монотонна в интервал U, то f(x) няма локален екстремум в U.

Доказателство. Нека, за определеност, f(x) е строго растяща в U. Да допуснем, че f(x) има локален екстремум, например локален максимум, в точката x_0 от U. Това означава, че съществува отворен интервал $(p;q) \subset U$ на x_0 , такъв че

(1)
$$f(x) \le f(x_0)$$
, за всяко $x \in (p;q)$.

Нека $x_1 \in (p;q)$ и $x_0 < x_1$. Функцията f(x) е строго растяща $\Rightarrow f(x_0) < f(x_1)$, което противоречи с (1).

Останалите случаи се разглеждат аналогично. Следователно f(x) няма локален екстремум в $U. \blacktriangle$

Пример 2. Нека
$$f(x) = x^3$$
.

Тъй като $f'(x)=3x^2\geq 0$ и равенство има само при x=0, то x^3 е строго растяща в $(-\infty;+\infty)$ и според доказаното твърдение няма локални екстремуми. \blacktriangle

Теорема (Ферма – необходимо условие за съществуване на локален екстремум)

Ако функцията f(x) има локален екстремум в x_0 и е диференцируема в x_0 , то

$$f'(x_0) = 0$$
.

Доказателство. Нека f(x) има локален минимум в x_0 . Следователно съществува отворен интервал U на x_0 , така че $f(x_0) \le f(x)$ за всяко $x \in U$ или $f(x) - f(x_0) \ge 0$.

За диференчното частно имаме:

$$\frac{f(x) - f(x_0)}{x - x_0} = \begin{cases} \frac{f(x) - f(x_0)}{x - x_0} \leq 0, & \text{sa } x < x_0, (x - x_0 < 0) \\ \frac{f(x) - f(x_0)}{x - x_0} \geq 0, & \text{sa } x > x_0, (x - x_0 > 0) \end{cases}.$$

f(x) е диференцируема в x_0 , което означава, че лявата и дясната граница на диференчното частно съществуват и са равни на $f'(x_0)$, т.е:

$$\lim_{\substack{x \to x_0 \\ x < x_0}} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$
 и поради теоремата за граничен преход в

 $f(x) \le g(x)$ $\downarrow \qquad \qquad \downarrow$ $A \qquad B$ $\Rightarrow A \le B$

неравенства е изпълнено $f'(x_0) \le 0$ (1).

$$\lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$
 и отново поради теоремата за граничен преход в неравенства,

$$f'(x_0) \ge 0$$
 (2).

От (1) и (2) получаваме, че
$$f'(x_0) = 0$$
 .

Когато f(x) има локален максимум в x_0 , доказателството е аналогично. \blacktriangle

Геометрична интерпретация на теоремата на Ферма.

Нека f(x) е диференцируема в x_0 . Уравнението на допирателната към графиката ѝ в точката $(x_0,f(x_0))$ е $t:\ y=f'(x_0)(x-x_0)+f(x_0)$.

Нека сега f(x) има локален екстремум в x_0 , следователно $f'(x_0)=0$ и уравнението на допирателната е t: $y=f(x_0)$, което е уравнение на права, успоредна на оста Ox.

И така, ако функцията е диференцируема в точките на локален екстремум, то допирателната към графиката на функцията в тези точки е успоредна на оста Ox.

Коментар

– Теоремата на Ферма дава само необходимо условие една диференцируема функция да има локален екстремум. Това означава, че функцията f(x) може да има локален екстремум само в точките, които са корени на уравнението f'(x) = 0, (но може и да няма екстремуми в тези точки). Със сигурност може да се твърди, че в точките, които НЕ СА корени на уравнението f'(x) = 0, диференцируемата функция f(x) НЯМА екстремум.

- Теоремата на Ферма е само за диференцируема функция.
- Функцията може да има екстремум и без да е диференцируема.

Например f(x) = |x|. Както знаем, графиката на f(x) = |x| е показаната на чертежа и очевидно при x = 0 функцията има локален минимум. \blacktriangle

Определение. Вътрешна точка от дефиниционното множество на дадена функция, в която производната или е равна на нула, или не съществува, се нарича критична точка за функцията.

Да разгледаме още няколко примера.

- 1) f(x) е диференцируема в $x_0 = 0$, $f'(x_0) = 0$ и:
 - f(x) има екстремум в x_0 . Пример $f(x) = x^2$.
 - f(x) няма екстремум в x_0 . Пример $f(x) = x^3$.

- 2) f(x) не е диференцируема в $x_0 = 0$ и:
 - f(x) има екстремум в x_0 . Пример $f(x) = \sqrt[3]{x^2}$.
 - f(x) няма екстремум в x_0 . Пример $f(x) = \sqrt[3]{x}$.

Едно достатъчно условие за съществуване на екстремум дава следната теорема.

Теорема. (Критерий за локален екстремум)

Нека f(x) притежава производна в D, евентуално с изключение на точката x_0 (т.е. производната в x_0 може да не съществува).

Ако съществува отворен интервал (p,q) на x_0 , такъв че:

- 1) f'(x) > 0 за $x \in (p, x_0)$ и f'(x) < 0 за $x \in (x_0, q)$, то f(x) има локален максимум в x_0 ;
- 2) f'(x) < 0 за $x \in (p, x_0)$ и f'(x) > 0 за $x \in (x_0, q)$, то f(x) има локален минимум в x_0 ;
- 3) f'(x) > 0 за $x \in (p, x_0)$ и за $x \in (x_0, q)$ или f'(x) < 0 за $x \in (p, x_0)$ и за $x \in (x_0, q)$, то f(x) няма локален екстремум в x_0 .

Доказателство.

- 1) Нека f'(x) > 0 за $x \in (p, x_0)$
- $\Rightarrow f(x)$ е растяща в (p, x_0) и $f(x) < f(x_0)$.

Нека f'(x) < 0 за $x \in (x_0, q) \Rightarrow f(x)$ е намаляваща в (x_0, q) и $f(x) < f(x_0)$

Следователно f(x) има локален максимум в x_0 (според определението).

- 2) Аналогично се установява, че f(x) има локален минимум във втория случай на теоремата.
 - 3) Нека сега f'(x) > 0 за $x \in (p, x_0)$ и за $x \in (x_0, q)$.

3) Нека сега f(x) > 0 за $x \in (p, x_0)$ под $x \in (x_0, y_0)$ то $x \in (x_0, y_0)$ и f(x) Тогава f(x) расте в f(x) = f(x) за всяко f(x) = f(x) то показва, че f(x) = f(x) то показва f(x) = f(x) т функцията няма нито локален максимум, нито локален минимум в x_0 .

Аналогични са разсъжденията, когато f'(x) < 0 за $x \in (p, x_0)$ и f'(x) < 0 за $x \in (x_0, q)$. \blacktriangle

Ще формулираме още един критерий за екстремум с използване на втора производна.

Модул III. Практическа математика

Теорема. (Критерий за локален екстремум)

Нека функцията f(x) притежава втора производна в точката x_0 .

Ако $f'(x_0) = 0$ и $f''(x_0) > 0$, то f(x) има локален минимум в x_0 .

Ако $f'(x_0) = 0$ и $f''(x_0) < 0$, то f(x) има локален максимум в x_0 .

При решаване на задачи ще използваме следното практическо правило:

- а) Една функция f(x) може да има локален екстремум само в критична точка.
- б) Ако около критична точка x_0 производната f'(x) :
 - си сменя знака от + на –, то в x_0 има локален максимум, т.е. $f_{\rm max} = f(x_0)$;
 - си сменя знака от на +, то в x_0 има локален минимум, т.е. $f_{\min} = f(x_0)$;
 - не си сменя знака, то в x_0 няма локален екстремум.
- в) Ако $f'(x_0) = 0$ и съществува $f''(x_0)$, то:
 - при $f''(x_0) > 0$ f(x) има локален минимум в x_0 , т.е. $f_{\min} = f(x_0)$;
 - при $f''(x_0)\!<\!0$ f(x) има локален максимум в x_0 , т.е. $f_{\mathrm{max}}=f(x_0)$.
- г) Ако f(x) е строго монотонна в интервал U, то f(x) няма локален екстремум в $U. \blacktriangle$
- **1.** Да се намерят локалните екстремуми на функцията f(x).
 - a) $f(x) = 2x^3 6x^2 18x 5$;
 - 6) $f(x) = (x-2)^2(x+1)^3$.

Решение. а) Функцията е дефинирана и диференцируема за всяко x. Намираме производната и решаваме уравнението f'(x) = 0: $f': \frac{+}{-\infty} \frac{-}{-1} \frac{+}{3} \frac{+}{+\infty}$

$$f'(x) = 6x^2 - 12x - 18 = 6(x^2 - 2x - 3) = 0$$
, $x_1 = -1$, $x_2 = 3$.

Производната си сменя знака около точката $x_1=-1$ от + на -, следователно $f_{\max}=f(-1)=5$, а около точката $x_2=3$ си сменя знака от - на +, следователно $f_{\min}=f(3)=-59$.

Решение. б) Функцията е дефинирана и диференцируема за всяко x и:

$$f'(x_0) = 2(x-2)(x+1)^3 + 3(x-2)^2(x+1)^2 =$$

$$= (x-2)(x+1)^2(5x-4) = 0.$$

 $f': \frac{+}{-\infty} \frac{+}{-1} \frac{+}{\frac{4}{5}} \frac{-}{2} \frac{+}{+\infty}$

Корените на уравнението f'(x)=0 са $x_1=-1$, $x_2=\frac{4}{5}$ и $x_3=2$.

Около $x_1 = -1$ производната не си сменя знака \Rightarrow в $x_1 = -1$ f(x) няма локален екстремум.

Около $x_2 = \frac{4}{5}$ производната си сменя знака от + на $- \Rightarrow f_{\text{max}} = f\left(\frac{4}{5}\right) = \frac{4.3^8}{5^5}$.

Около $x_3=2$ производната си сменя знака от — на + $\Rightarrow f_{\min}=f(2)=0$. lacktriangle

- **2.** Да се намерят локалните екстремуми на функцията f(x) .
 - a) $f(x) = 2x^3 15x^2 + 36x + 1$;
 - 6) $f(x) = 3x^4 36x^3 + 156x^2 288x + 1$;
 - B) $f(x) = 3x^5 15x^3 60x + 1$.

Да се намерят локалните екстремуми на функцията f(x).

a)
$$f(x) = \frac{x^2 - 2x}{x + 1}$$
;

6)
$$f(x) = \sqrt{x^2 - 4}$$
;

a)
$$f(x) = \frac{x^2 - 2x}{x + 1}$$
;
 6) $f(x) = \sqrt{x^2 - 4}$;
 B) $f(x) = \sin 2x + x$, $x \in [0, \frac{\pi}{2}]$.

Решение. a) $f(x) = \frac{x^2 - 2x}{x + 1}$. f(x) е дефинирана и диференцируема в $(-\infty; -1) \cup (-1; +\infty)$.

$$f'(x) = \frac{(2x-2)(x+1)-(x^2-2x)}{(x+1)^2} = \frac{x^2+2x-2}{(x+1)^2} = \frac{(x+\sqrt{3}+1)(x-\sqrt{3}+1)}{(x+1)^2} = 0.$$
 Около точката

 $x_{_{\! 1}} = -\sqrt{3} - 1\,$ производната си сменя знака от + на $- \Rightarrow f_{\mathrm{max}} = f(-\sqrt{3} - 1) = -2\sqrt{3} - 4\,.$

Около точката $x_2 = \sqrt{3} - 1$ производната си сменя знака от - на $+ \Rightarrow f_{\min} = f(\sqrt{3} - 1) = 2\sqrt{3} - 4$. \blacktriangle

Решение. б)
$$f(x) = \sqrt{x^2 - 4}$$
.

Функцията е дефинирана и непрекъсната в $(-\infty; -2] \cup [2; +\infty)$ и диференцируема в $(-\infty;-2)\cup(2;+\infty)$.

 $f'(x) = \frac{x}{\sqrt{x^2 - 4}}$. Числителят се анулира в точката x = 0, която не принадлежи на

дефиниционното множество на функцията.

Следователно $f'(x) \neq 0 \Rightarrow функцията няма локални екстремуми. <math>\blacktriangle$

Решение. в) $f(x) = \sin 2x + x$. Функцията е дефинирана и диференцируема в $x \in [0, \frac{\pi}{2}]$.

$$f'(x) = 2\cos 2x + 1 = 0$$
, $\cos 2x = -\frac{1}{2}$, $x \in [0, \frac{\pi}{2}] \implies 2x \in [0, \pi] \implies 2x = \frac{2\pi}{3} \implies x = \frac{\pi}{3}$

Ще използваме втора производна, за да установим дали функцията има локален екстремум.

$$f''(x) = -4\sin 2x$$
 и $f''(\frac{\pi}{3}) = -4\sin \frac{2\pi}{3} = -4.\frac{\sqrt{3}}{2} < 0$.

$$\Rightarrow f(x)$$
 има локален максимум и $f_{\max} = f(\frac{\pi}{3}) = \sin\frac{2\pi}{3} + \frac{\pi}{3} = \frac{\sqrt{3}}{2} + \frac{\pi}{3}$. \blacktriangle

Да се намерят локалните екстремуми на функцията f(x) .

a)
$$f(x) = \frac{x^2 - 3x}{x + 1}$$
;

6)
$$f(x) = \sqrt{x^2 - 2}$$
;

Да се намерят интервалите на монотонност и локалните екстремуми на функцията f(x) .

a)
$$f(x) = \frac{x^2 - 2x - 2}{x^2 + 2x + 2}$$
;
 6) $f(x) = \frac{x^2 - 3x + 3}{x^2 - 3x + 2}$;
 8) $f(x) = \frac{x^2 - x - 2}{x^2 - 2x - 3}$.

6)
$$f(x) = \frac{x^2 - 3x + 3}{x^2 - 3x + 2}$$

B)
$$f(x) = \frac{x^2 - x - 2}{x^2 - 2x - 3}$$

2) Най-голяма и най-малка стойност на функция в краен и затворен интервал

Нека функцията f(x) е дефинирана и непрекъсната в краен и затворен интервал [a,b].

Досега изучавахме локалните екстремуми на функцията.

Сега ще разгледаме въпроса за намиране на найголямата и най-малката ѝ стойност в целия интервал [a,b].

Такива стойности съществуват според теоремата на Вайерщрас.

Преговор. Теорема на Вайерщрас. Ако една функция е дефинирана и непрекъсната в краен и затворен интервал, то тя достига в него найголямата и най-малката си стойност.

Най-голямата и най-малката стойност на f(x) в интервала [a,b] ще означаваме съответно $\max_{x \in [a,b]} f(x) \text{ u } \min_{x \in [a,b]} f(x).$

Модул III. Практическа математика

Най-голямата и най-малката стойност на една функция могат да се достигат или в локалните екстремуми, или в краищата на интервала. В задачи ще използваме следните практически правила.

I. f(x) е растяща или намаляваща в [a,b].

Тогава f(x) няма локални екстремуми в [a,b] и f(x) е растяща, то $\max f(x) = f(b)$ ако $\min f(x) = f(a)$; ako f(x)е намаляваща, $\max_{x \in [a,b]} f(x) = f(a) \text{ u } \min_{x \in [a,b]} f(x) = f(b).$

II. f(x) има единствена критична в (a,b) и в нея има локален екстремум.

Ако локалният екстремум $\max_{x} f(x) = f_{\max}, \quad \text{a} \quad \min_{x \in A} f(x)$ числата f(a) и f(b).

Аналогично се разсъждава при локален минимум.

III. f(x) има повече от един локален екстремум в [a,b].

Тогава $\max f(x)$ е най-голямото от числата:

локалните максимуми, f(a) и f(b), а $\min f(x)$ е най-малкото от числата: локалните минимуми, f(a) и

<u>Коментар</u>. Случаят III може да се използва и вместо случай I и случай II. ▲

Ще използваме следните означения: с $\max\{a,b,c\}$ ще означаваме най-голямото от числата a, b и c; с $\min\{a,b,c\}$ ще означаваме най-малкото от числата a,b и c.

Да се намери най-голямата и най-малката стойност на функцията f(x) = x + 3 в интервала [-1,3].

Решение.
$$f(x)$$
 е растяща в $[-1,3] \Rightarrow \max_{x \in [-1,3]} f(x) = f(3) = 6$ и $\min_{x \in [-1,3]} f(x) = f(-1) = 2$.

Да се намери най-голямата и най-малката стойност на функцията $f(x) = x^2 - 2x - 8$ във всеки от интервалите [-3,6], [2,6] и [-4,1].

Решение. При изследване на квадратна функция ще използваме свойствата на параболата. Върхът на параболата в този случай е локален минимум при x=1 и $f_{\min}=f(1)=-9$.

Нека x ∈ [-3,6].

В този интервал е върхът на параболата следователно $\min_{x \in [-3,6]} f(x) = f_{\min} = f(1) = -9$.

Пресмятаме f(-3) = 7 и $f(6) = 16 \Rightarrow \max_{x \in [-3,6]} f(x) = f(6) = 16$.

Нека $x \in [2,6]$.

В този интервал f(x) е растяща.

Пресмятаме f(2) = -8 и $f(6) = 16 \Rightarrow \max_{x \in [2,6]} f(x) = f(6) = 16$ и $\min_{x \in [2,6]} f(x) = f(2) = -8$.

Нека x ∈ [-4,1].

В този интервал функцията е намаляваща.

Пресмятаме f(-4) = 16 и $f(1) = -9 \Rightarrow \max_{x \in [-4,1]} f(x) = f(-4) = 16$ и $\min_{x \in [-4,1]} f(x) = f(1) = -9$. \blacktriangle

8. Да се намери най-голямата и най-малката стойност на функцията $f(x) = x^4 - 14x^2 - 24x + 50$ във всеки от интервалите [-3,4], [-2,4] и [1,4].

Решение. Намираме екстремумите на функцията.

$$f'(x) = 4x^3 - 28x - 24 = 4(x+1)(x+2)(x-3) = 0$$
, $x_1 = -2$, $x_2 = -1$, $x_3 = 3$

Получаваме:

$$f_{\min} = f(-2) = 58$$
; $f_{\max} = f(-1) = 61$; $f_{\min} = f(3) = -67$.
$$f': \frac{-}{-\infty} \frac{+}{-2} \frac{+}{-1} \frac{+}{3} \frac{+}{-\infty}$$
 Нека $x \in [-3;4]$.

В този интервал f(x) има три локални екстремума – един локален максимум и два локални минимума.

Намираме стойностите в краищата на интервала: f(-3) = 77 и f(4) = -14.

$$\max_{x \in [-3,4]} f(x) = \max\{61, 77, -14\} = 77, \quad \min_{x \in [-3,4]} f(x) = \min\{58, -67, 77, -14\} = -67.$$

Нека x ∈ [-2,4].

В този интервал f(x) има два локални екстремума – локален максимум и локален минимум съответно в точките -1 и 3.

Пресмятаме стойностите на функцията в краищата на интервала f(-2) = 58 и f(4) = -14.

Тогава

$$\max_{[-2;4]} f(x) = \max\{61, 58, -14\} = 61 = f_{\text{max}} = f(-1),$$

$$\min_{(-2:4]} f(x) = \min\{-67, 58, -14\} = -67 = f_{\min} = f(3).$$

Нека $x \in [1,4]$.

В отворения интервал (1,4) производната има единствен корен и в него f(x) има локален минимум. Следователно $\min_{[1,4]} f(x) = f_{\min} = f(3) = -67$.

Пресмятаме
$$f(x)$$
 в краищата на интервала $f(1) = 13$ и $f(4) = -14 \Rightarrow \max_{[1,4]} = f(1) = 13$.

- **9.** Да се намери най-голямата и най-малката стойност на функцията $f(x) = x^3 12x + 1$ в интервала [a;b]. В кои точки се достигат тези стойности?
 - a) [a,b] = [-3,3];
- 6) [a,b] = [-3,4];
- B) [a,b] = [-3,5].
- **10.** Да се намери най-голямата и най-малката стойност на функцията $f(x) = 6x^5 15x^4 70x^3 + 120x^2 + 360x 200$ в интервала [-2,3]. В кои точки се достигат тези стойности?

3) Най-голяма и най-малка стойност на функция в отворен или безкраен интервал

Ако разглеждаме една функция в отворен интервал (a,b) или в безкраен интервал, тя може да има най-малка и най-голяма стойност, но може и да няма.

Примери.

- **1)** Най-малката и най-голямата стойност на функцията $\sin x$, $x \in (-\infty, +\infty)$ са съответно -1 и 1. Записваме $\min_{(-\infty, +\infty)} \sin x = -1$ и $\max_{(-\infty, +\infty)} \sin x = 1$.
 - **2)** Функцията $\ln x$, $x \in (0, +\infty)$ няма нито най-малка, нито най-голяма стойност.
 - **3)** Функцията x^2 , $x \in (-\infty, +\infty)$ има най-малка стойност 0, но няма най-голяма стойност.

11. Да се намери най-малката стойност на функцията $f(x) = \frac{x^4}{4} + \frac{2x^3}{3} - \frac{x^2}{2} - 2x$.

Решение. Намираме локалните екстрмуми на f(x) : $f'(x) = (x+2)(x+1)(x-1) \Rightarrow f(x)$ има локални минимуми при x = -2 и x = 1 и локален максимум при x = -1 .

Тъй като $\lim_{x\to\pm\infty}f(x)=+\infty$, то най-малката стойност на f(x) ще се достига в някой от локалните ѝ минимуми: $f(-2)=\frac{2}{3}$, $f(1)=-\frac{19}{12}$ $\Rightarrow \min_{(-\infty,+\infty)}f(x)=-\frac{19}{12}$.

Ще формулираме едно твърдение, което ще използваме при решаване на задачи.

Твърдение. Нека f(x) е дефинирана и диференцируема в интервал (a,b) (който може да бъде и безкраен) и уравнението f'(x) = 0 има единствен корен $x_0 \in (a,b)$.

Ако f(x) има локален минимум в x_0 , то $\min_{x \in (a,b)} f(x) = f_{\min} = f(x_0)$.

Ако f(x) има локален максимум в x_0 , то $\max_{\mathbf{x} \in (a,b)} f(x) = f_{\max} = f(x_0)$.

12. Да се намери най-малката стойност на функцията $f(x) = \frac{1}{\sqrt{3x-2-x^2}}$.

Решение. Функцията е дефинирана и диференцируема при $x \in (1,2)$.

$$f'(x) = \frac{2x-3}{2\sqrt{(3x-2-x^2)^3}}$$
 . Определяме знака на числителя: $2x-3=0$, $x=\frac{3}{2}$.

Производната сменя знака си около точката $x=\frac{3}{2}$ от – на + $\Rightarrow f_{\min}=f\left(\frac{3}{2}\right)=2$.

Тогава f'(x)=0 има единствен корен в интервала (1,2) и f(x) има локален минимум и според твърдението $\min_{(1,2)} f(x) = f_{\min} = f\left(\frac{3}{2}\right) = 2$.

13. Да се намери най-голямата стойност на функцията $f(\alpha) = \sqrt{\sin^2 \alpha - \sin^3 \alpha}$ в интервала $(0, \frac{\pi}{2})$.

Решение. Тъй като $\sin^2\alpha-\sin^3\alpha=\sin^2\alpha(1-\sin\alpha)>0$, то $f(\alpha)$ е дефинирана за всяко α . Да означим $\phi(\alpha)=\sin^2\alpha-\sin^3\alpha$.

Тъй като функцията $y=\sqrt{x}$ е растяща в цялата си дефиниционната област, то $f(\alpha)$ и $\phi(\alpha)$ ще приемат най-голямата си стойност при едно и също число α . Ето защо ще изследваме функцията $\phi(\alpha)$.

 $\varphi'(\alpha) = 2\sin\alpha\cos\alpha - 3\sin^2\alpha\cos\alpha = \sin\alpha\cos\alpha(2 - 3\sin\alpha) = 0.$

В интервала $(0,\frac{\pi}{2})$ $\sin\alpha\neq 0$ и $\cos\alpha\neq 0$ \Rightarrow $\sin\alpha=\frac{2}{3}$ и $\phi'(\alpha)=0$ има единствен корен.

За да изследваме $\phi(\alpha)$ в критичната точка, за която $\sin\alpha=\frac{2}{3}$, ще използваме втора производна: $\phi''(\alpha)=2\cos^2\alpha-2\sin^2\alpha-6\sin\alpha\cos^2\alpha+3\sin^3\alpha$.

При $\sin\alpha=\frac{2}{3}$, $\cos^2\alpha=\frac{5}{9}$ и $\phi''(\alpha)=-\frac{10}{9}<0$ \Rightarrow при $\sin\alpha=\frac{2}{3}$ функцията $\phi(\alpha)$ има локален максимум, който е и най-голямата ѝ стойност в $(0,\frac{\pi}{2})$.

Това означава, че най-голямата стойност на $f(\alpha)$ се достига при $\sin \alpha = \frac{2}{3}$ и $\max_{(0,\frac{\pi}{2})} f(\alpha) = \sqrt{\frac{4}{9} - \frac{8}{27}} = \frac{2\sqrt{3}}{9} . \blacktriangle$

- **14.** Да се намери най-малката стойност на функцията $f(x) = \frac{1}{\sqrt{5-x^2}}$.
- **15.** Да се намери най-голямата стойност на функцията f(x).
 - a) $f(x) = \ln(3 x^2)$;

- 6) $f(x) = \ln(x + 2 x^2)$.
- **16.** Да се намери най-малката стойност на функцията f(x).

 - a) $f(x) = x \ln x$; 6) $f(x) = x \ln(x+1)$; B) $f(x) = 2x^2 \ln x$.
- 17. Да се намерят най-голямата и най-малката стойност функцията $f(x) = -\frac{x^5}{5} + \frac{3x^4}{2} - \frac{11x^3}{3} + 3x^2 + 1$ в интервала [a,b], ако:
 - a) [a,b] = [-1,1];
- 6) [a,b] = [0,2];
- B) [a,b]=[1,4].
- **18.** Да се намерят най-голямата и най-малката стойност на функцията $f(x) = x^4 3x^2 + 2x$ в интервала [a,b], ако:
 - a) [a,b] = [-2,-1];
- 6) [a,b] = [-1,1];
- B) [a,b] = [-1,2].
- **19.** Дадена е функцията $f(x) = \sqrt{x^2 + bx + 4}$. Да се изследват интервалите на монотонност и екстремумите, ако:
 - a) b = 3;

б) b = 4;

B) b = 5.

- **20.** Дадена е функцията f(x). Да се намери:
 - а) най-голямата стойност на f(x), ако $f(x) = \frac{1}{\sqrt{x^2 x + 2}}$;
 - б) най-малката стойност на f(x), ако $f(x) = \frac{1}{\sqrt{2x x^2}}$;
 - в) най-малката стойност на f(x), ако $f(x) = \frac{1}{\sqrt{-x^2 6x 5}}$;
 - г) най-голямата стойност на f(x) , ако $f(x) = \frac{1}{\sqrt{2\,r^2 4\,r + 3}}$.
- **21.** Да се намери най-голямата и най-малката стойност на функцията $f(x) = \sqrt{\sin^2 x + \cos x}$ в интервала $[0,\frac{\pi}{2}]$.
- 22. Да се определят интервалите на монотонност, най-голямата и най-малката стойност на функцията $f(x) = \frac{1}{\sqrt{2 + ax^2}}$ в интервала [-1,1], ако:
 - a) a = 1;

б) a = -1.