Maß 1, Übung 1

March 2, 2020

1 Aufgabe 4

Lemma 1. Wenn $\forall i \in \{1, ..., n\} : \mathfrak{T}_i$ ist ein Sigmaring über Ω , dann ist auch

$$\mathfrak{T} := \left\{ \bigcap_{i=1}^{n} A_i \mid \forall i \in \{1, \dots, n\} : A_i \in \mathfrak{T}_i \right\}$$

ein Sigmaring.

Beweis. Wir wissen bereits aus dem Grill-Skriputm von Satz 2.4, dass die Aussage für den Fall n=2 gültig ist. Nun können wir

$$\mathfrak{T} = \left\{ A_n \cap B_{n-1} \mid A_n \in \mathfrak{T}_n \wedge B_{n-1} \in \left\{ \bigcap_{i=1}^{n-1} A_i \mid \forall i \in \{1, \dots, n\} : A_i \in \mathfrak{T}_i \right\} \right\}$$

schreiben und eralten mit Induktion sofort unsere Aussage.

2 Aufgabe 5

Lemma 2. Wenn $\mathfrak S$ eine Sigmaalgebra über der Grundmenge Ω ist und $C\subseteq \Omega$ dann ist

$$\mathfrak{A}_{\sigma}(\mathfrak{S} \cup \{C\}) = \{(A \cap C) \cup (B \cap C^C) \mid A, B \in \mathfrak{S}\}\$$

Beweis. Zuerst definieren wir eine gute Menge

$$M := \{ U \subseteq \Omega \mid \exists A, B \in \mathfrak{S} : U = (A \cap C) \cup (B \cap C^C) \}.$$

Wir wollen nun $M \supseteq \mathfrak{A}_{\sigma}(\mathfrak{S} \cup \{C\})$ zeigen. Dafür wählen wir zuerst $U \in \mathfrak{S} \cup \{C\}$ beliebig. Nun gibt es ein $V \in \mathfrak{S} : U = V \cup C$ und es gilt

$$(\Omega \cap C) \cup (V \cap C^C) = C \cup (V \cap C^C) = (C \cup V) \cap (C \cup C^C)$$
$$= (C \cup V) \cap \Omega = U.$$

Man erkennt also, dass $U \in M$ ist und damit $\mathfrak{S} \cup \{C\} \subseteq M$. Nun wollen wir noch zeigen, dass M eine σ -Algebra ist. Dafür sei zuerst bemerkt, dass $\Omega = (\Omega \cap C) \cup (\Omega \cap C^C) \in M$. Wählen wir als nächstes $U = (U_1 \cap C) \cup (U_2 \cap C^C) \in M$ beliegbig, wobei mit $U_1, U_2 \in \mathfrak{S}$ natürlich auch $U_1^C, U_2^C \in \mathfrak{S}$, so ist auch

$$U^{C} = ((U_{1} \cap C) \cup (U_{2} \cap C^{C}))^{C} = (U_{1}^{C} \cup C^{C}) \cap (U_{2}^{C} \cup C)$$
$$= (U_{1}^{C} \cap U_{2}^{C}) \cup (U_{1}^{C} \cap C) \cup (U_{2}^{C} \cap C^{C}) \cup (C \cap C^{C})$$
$$= (U_{1}^{C} \cap C) \cup (U_{2}^{C} \cap C^{C}) \in M.$$

Wählen wir zuletzt noch eine Folge $\forall n \in \mathbb{N} : (U_n) \in M$, wobei $\forall n \in \mathbb{N} : U_n = (U_{n_1} \cap C) \cup (U_{n_2} \cap C^C)$ mit $U_{n_1}, U_{n_2} \in \mathfrak{S}$, so ist

$$\bigcup_{n \in \mathbb{N}} U_n = \bigcup_{n \in \mathbb{N}} ((U_{n_1} \cap C) \cup (U_{n_2} \cap C^C))$$

$$= \left(\left(\bigcup_{n \in \mathbb{N}} U_{n_1} \right) \cap C \right) \cup \left(\left(\bigcup_{n \in \mathbb{N}} U_{n_2} \right) \cap C^C \right) \in M,$$

weil natürlich $\bigcup_{n\in\mathbb{N}}U_{n_1}, \bigcup_{n\in\mathbb{N}}U_{n_2}\in\mathfrak{S}$. Nun haben wir nachgewiesen, dass M eine σ -Algebra ist, also muss $\mathfrak{A}_{\sigma}(\mathfrak{S}\cup\{C\})\subseteq M$ gelten. Damit haben wir auch schon die erste Teilmengeninklusion unseres Lemmas, nämlich $\mathfrak{A}_{\sigma}(\mathfrak{S}\cup\{C\})\subseteq\{(A\cap C)\cup(B\cap C^C)\mid A,B\in\mathfrak{S}\}$, gezeigt.

Sind $A, B \in \mathfrak{S}$, dann ist die Menge $(A \cap C) \cup (B \cap C^C) \in \mathfrak{A}_{\sigma}(\mathfrak{S} \cup \{C\})$, weil $A, B, C \in \mathfrak{S} \cup \{C\}$ und damit auch $C^C \in \mathfrak{A}_{\sigma}(\mathfrak{S} \cup \{C\})$. Folglich gilt $M \subseteq \mathfrak{A}_{\sigma}(\mathfrak{S} \cup \{C\})$.

3 Aufgabe 6

Lemma 3. Es gelten folgende Aussagen:

- (a) Wenn \Re ein Ring ist, dann ist $\mathfrak{A}(\Re) = \{A \subset \Omega \mid A \in \Re \vee A^C \in \Re\}.$
- (b) Wenn \Re ein σ -Ring ist, dann ist $\mathfrak{A}(\Re)$ eine σ -Algerba.

Beweis. Um (a) zu beweisen weist man nach, dass $M:=\{A\subset\Omega\mid A\in\Re\vee A^C\in\Re\}$ eine Algebra ist.

Für den Beweis von (b) weist man dann nach, dass M eine σ -Algebra ist. \square

4 Aufgabe 7

Lemma 4. Wenn $(\mathfrak{R}_n)_{n\in\mathbb{N}}$ eine nichtfallende Folge von Ringen über derselben Grundmenge Ω ist, dann ist auch $\mathfrak{R} := \bigcup_{n\in\mathbb{N}} \mathfrak{R}_n$ ein Ring. Die analoge Aussage für σ -Ringe gilt im Allgemeinen nicht.

Beweis. Um den ersten Teil zu beweisen muss man einfach nachrechnen, dass $\mathfrak R$ ein Ring ist.

Für den zweiten Teil definieren wir eine Folge von σ -Ringen $\mathfrak{R}_n := 2^{\{1,\dots,n\}}$, wobei $\mathfrak{R} := \bigcup_{n \in \mathbb{N}} \mathfrak{R}_n$ sein soll. Nun ist $\forall n \in \mathbb{N} : \{n\} \in \mathfrak{R}$, aber $\bigcup_{n \in \mathbb{N}} \{n\} \notin \mathfrak{R}$, womit \mathfrak{R} kein σ -Ring sein kann.