# Lecture 4

Untyped Lambda Calculus as a model of computation

- Variables

- (functions =) abstractions

- application (= fr call)

e::= x | \( \lambda \text{x,e,} \) (e<sub>1.0</sub>e<sub>2</sub>)

vor

(atom)

(function)

(for call)

(x, e<sub>1</sub>)

size - number of

| e                         | (size e)                                        |
|---------------------------|-------------------------------------------------|
| $\langle e_1 e_2 \rangle$ | 1 + (size $e_1$ ) (size $e_1$ ) + (size $e_2$ ) |

# terme occurs in e'

. e occurs in e

· e occurs in \x.e, y
- e = x, ~

e occurs in e,

· e occurs in e, e, or - e occurs in e,, or - e occurs in ez

e is a subterm of e' if e occurs in e'.

Binding occurrence

binding occurrence of x scope of this binding

Bound occurrence of a variable

is bound if this occurrence is in some "subterm" \( \lambda \times \). E.

Free occurrence of a variable x
- an occurrence of variable x
in e which is neither

- a bound occurrence.

alosed 4

# Substitution

$$\begin{bmatrix} x := e_2 \end{bmatrix} e_1 \qquad \text{or} \quad \dot{e_1} \begin{bmatrix} e_2/x \end{bmatrix}$$

"Substitute ez for all free occurrences of x in e1"

(g) 
$$\lambda y, e_{ii}$$

$$\lambda z, \left( \left[ x := e_2 \right] \left( \left[ y := z \right] e_{ii} \right) \right)$$

$$y \neq x, & \\ y \in Gv e_2 \right)$$

$$2 \times \epsilon (fv e_{ii})$$

$$z \notin (fv e_{ii}) \neq \phi (fv e_2)$$

# Lemna

(c) 
$$x \in \mathcal{J}(q) \rightarrow \mathcal{J}(q) = (\mathcal{J}(q) \cup \mathcal{J}(q) - \{x\}$$

### Lemma

Let x, y, z be distinct variables

No vbl bound in e, are free in

z, ez, ez,

.. . . / . . . .

# Change of Bound Variables

Let  $\lambda x_i e_i$  occur in  $e_2$ Let  $y \notin (f v e_i)$ 

Let  $e_3 = e_2$  with subterm  $\lambda x, e_1$  replaced by  $\lambda y, ([x:=y]e_1)$ 

Bound variable x has been replaced by bound variable y (Scope is e,) We write  $e_2$  Da  $e_3$  iff  $e_3$  obtained from  $e_2$  by a

Series of D or more changes of

bound variables

Lenna

- (a)  $e_1 \triangleright_{\alpha} e_2 \rightarrow$  $(f_v e_1) = (f_v e_2)$
- (b) forall  $e_1$ ,
  forall variables  $x_1...x_n$ exists  $e_2$  s.t  $e_1 \nabla_x e_2$  and
  forall  $x_i$ ,  $x_i$  not bound in  $e_2$
- (c) Do is Reflexive Transitive Symmetric - CONGRUENCE

i write = instead of the

Lemma:

(a) 
$$z \notin (fv e_1) \rightarrow$$

$$\left[z := e_z\right] \left[x := z\right] e_1 = \left[x := e_z\right] e_1$$

# Substitution Lemma of $\equiv_{\alpha}$ $e_{1} \equiv_{\alpha} e_{1}' \longrightarrow$ $e_{2} \equiv_{\alpha} e_{2}' \longrightarrow$ $\left[x := e_{2}\right] e_{1} \equiv_{\alpha} \left[x := e_{2}'\right] e_{1}'$

= is a "pain" to deal with · Representations of λ-calc w/o bound variables - COMBINATORY LOGIC - De Bruijn Indices

Beta Reduction

B-redex (\lambda x, e,) ez

(β) ( \x p.) es \ \mathbb{\gamma}\_{10} \ [x:=e\_2] eq

Redex Contractum

Now allow this at any subtern position

B-REDUCTION RELATION DB

e,  $\nabla_{\beta}$  ez iff ez obtained from e, by a finite series of 0 or more  $\nabla_{\beta}$  and  $\equiv_{\alpha}$  steps.

Reflexive Transitive Closure of

B- NORMAL FORM

not contain any subtern that is a predex.

e has a B-nf ig e Pp e' for some B-nf e'.

Note: [is in B-nf] stronger.

Property than has a B-nf. B.

A -> B.

Note: Dis a "non-deterministic"

relation because a term may contain more than one redex

EXAMPLES (XX,Y) Z FIP Y

Let 
$$K = (\lambda x, \lambda y, x)$$
  

$$(K e_1)e_2) P_{1\beta} ([x:=e_1] \lambda y, x) e_2 O$$

$$=_{\chi} (\lambda w. e_1) e_2 w d(fv e_1)$$

$$P_{1\beta} [\omega := e_2]e_1$$

$$=_{\chi} e_1$$

Let 
$$\triangle \equiv \lambda \times (\times \times)$$
  
 $\triangle \triangle \square_{\beta} \triangle \triangle$ 

$$(Kz)$$
  $(Kz)$   $(Kz)$   $(Xz)$   $(Xz)$ 

z  $(\lambda w. z) \int (Kz) \int (\lambda w. z) \int (kz) \int (k$ 

· Given any term e, does it have a p-nf?

. If e has a B-nf, is that

· If e has a B-nf, do we have a Strategy for finding that B-nf.?

Lemma &-Congruence Lemma for DB

$$e_2 \equiv_{\alpha} e_2' \rightarrow$$

Substitution Lemma for 
$$P_{\alpha}$$

(a)
 $e_{1} \Rightarrow_{\beta} e_{2} \longrightarrow \times \notin (\text{fv } e_{1}) \longrightarrow \times \notin (\text{fv } e_{2})$ 

# Context and realex

Now all 4 rules captured by:

C[[\x.e\_i] e\_] De C[[x:=e\_i]e]

B-reducible: Can factor into CONTEXT C[] and New Y

Recall

Dp: 0 or more B-reductions (Dip)\*

[ Allow &- conversions

(renaming of bound variables freely whenever we wish).

### CONFLUENCE OF PB

CHURCH-ROSSER THM OF DB



B-nfs me UNIQUE (UPTO a-con)

e, and ez in prof, then

e, = e2.

e, and ez in prof, then

e, = e2.

. If e Dpe, eimB-nf and e Dpez then ez Dpe,.

Note: THIS DOES NOT MEAN EVERY EXPRESSION MUST TERMINATE IN A B-nf.

Recell

$$\Delta \equiv \lambda x.(x x)$$
  
Consider  $\Delta \equiv (\Delta \Delta)$ 

$$\triangle \Delta \equiv_{\mathbf{x}} (\lambda \times .(\times \times)) \Delta$$

$$P_{\mathbf{y}} [\times := \Delta] (\times \times)$$

$$\equiv_{\mathbf{x}} \Delta \Delta$$

: D \$ D ....

Recall example of

KZD - has a B-nf - also has an  $\infty$  reduction (non-terminating)

SO CONFLUENCE (CHURCH-ROSSER) ONLY
SAYS THAT IF AN EXPRESSION HAS A
B-Nf, THEN IT IS UNIQUE.

- BUT THERE MAY BE BOTH
  - . TERMINATING
  - · NON-TERMINATING PATHS
- · WHICH TO TAKE?
  - (x) IF THERE IS A TERMINATING
    PATH, THEN LEFTMOST
    OUTERMOST REDUCTION
    WILL TERMINATE.

( LAZY SAFER THAN EAGER)

Lemma

ملك شايد ما

The class of p-nfs to me smallest class s.t.

- all atoms are in p-nf.

- if eq...em are in p-nf.

and a is an atom, then

a eq...em is in p-nf.

- if e is in p-nf.

- if e is in p-nf.

E is in this class if e has no p-redex.

# A NOTLON OF EQUALITY

e = e' if for some  $e_0, e_1, \dots e_n$  we have:  $e = e_0$ ,  $e_n = e'$ and for each  $0 \le i \le n$   $e_i >_p e_{i+1}$   $e_i >_p e_i$ 



Substitution Lemma for = p

(a) 
$$e_2 =_{\beta} e_3 \longrightarrow$$

$$\left[ \times := e_2 \right] e_1 =_{\beta} \left[ \times := e_3 \right] e_1$$

(b) 
$$e_2 = \rho e_3 \longrightarrow$$
  
 $[x := e_1] e_2 = \rho [x := e_1] e_3$ 

## CHURCH-ROSSER THEOREM OF = B

If e = e' then

there exists e"s.t e ope" and e' ope"



Proof by induction on n Base case (n=0) e=e/

1.H: Assume if e = pe' by a sep of n  $(e = e_0, e_1 ... e_n = e')$  then exists e'' st  $e \neq p e''$  and  $e' \neq p e''$ 

Induction Step. Suppose e=pe' by a seq. of not e=eo, e,...en,en,e=e' by a where · ei pein or · eu, opein







STRATEGY FOR PROVING EQUALITY OF expression that have a B-nf.

· FIND THER B-nf.

· CHECK IF THESE ARE EQUAL [mol = 2)

then e1 = Bez

### COROLLARIES

- 1. If  $e_1 = \beta e_2$  and  $e_2$  is in  $\beta$ -nf then  $e_1$   $\nabla_{\beta} e_2$
- 2. If  $e_1 = p_2$ , then either
  - · e, and e, do not have any B-nf
  - · e, and ez have the same B-nfs.
- 3. If  $e_1 = e_2$  and  $e_1, e_2$  in  $\beta$ -ng then  $e_1 = e_2$
- 4. A term can be  $=_{\beta}$  to at most one  $\beta$ -nf modulo  $=_{\alpha}$ .
- 5. If x e, ... em = p y e, ... en then
  - · × = 7
  - · m = n
  - · e; = e; for all i e {1; m}

# Modelling the booleans

2 "values"

HOW do we show T & F

· Show that if T=F

then all expressions

are equal.

Suppose  $T = _{p}F$ then for all  $e_{1}, e_{2}$   $T e_{1} e_{2} = _{p}F e_{1}e_{2}$   $e_{1}$   $e_{2}$   $e_{3}$   $e_{4}$   $e_{4}$   $e_{5}$   $e_{4}$   $e_{5}$   $e_{5}$  $e_{5}$  \*

All terms are equal!
(Uscless theory).

Using T, F — need an "if — then & else &"

Define D \( \lambda \tab)

DTe1e2 = Te1e2 = e1

DF q e2 = F e, e2 = P e2

Can this be generalised to · Sets of cardinality or (n - a finite integer) · n-any case analysis. ?

Define 
$$P = \lambda a.\lambda b.\lambda t.(t a b)$$

$$P e_1 e_2 =_{\beta} \lambda t.(t e_1 e_2)$$

proj1 
$$\langle e_1, e_2 \rangle = e_1$$
 (f)  
proj2  $\langle e_1, e_2 \rangle = e_2$  (2)

Define

proj\_ = 
$$\lambda p. \left( p \left( \frac{\lambda x. \lambda y. \times}{} \right) \right)$$

$$\text{prij}_{2} = \lambda p. \left( p \left( \frac{\lambda \times \lambda y. y}{2} \right) \right) = 0$$

T. ....

Check (1) & 2) HOLD.

### EXERCISE

HOW CAN ONE GENERALISE TO &-tuples for any finite &?

# CHURCH NUMERALS

$$\bigcirc$$
 =  $\lambda f. \lambda x. x$ 

$$\underline{1} = \lambda f. \lambda x. (f x)$$

$$\underline{n} = \lambda f. \lambda x. \underbrace{f(f...(f.x))}_{n f.s.}$$

choose your atom for Succ

Note: ngy to



Succ  $\equiv \lambda n \cdot \lambda g \cdot \lambda y \cdot n g (g y)$ Succ  $\underline{m} = (\lambda n \cdot \lambda g \cdot \lambda y \cdot n g (g y)) \underline{m}$   $\lambda g \cdot \lambda y \cdot (\underline{m} g) (g y)$   $\lambda g \cdot \lambda y \cdot (\lambda f \cdot \lambda x \cdot (f^m x)) g (g y)$   $\lambda g \cdot \lambda y \cdot (\lambda x \cdot (g^m x)) \cdot (g y)$   $\lambda g \cdot \lambda y \cdot (\lambda x \cdot (g^m x)) \cdot (g y)$   $\lambda g \cdot \lambda y \cdot (g^m y)$   $\lambda g \cdot \lambda y \cdot (g^m y)$   $\lambda g \cdot \lambda y \cdot (g^m y)$  $\lambda g \cdot \lambda y \cdot (g^m y)$ 

How about Succ' = \lan. \langle g. \langle g (ng y)

add = \lambda m. \lambda n. \lambda h. \lambda z. \lambda m. h) \lambda n. \lambda m. \lambda m. n. \lambda m. \lambda m. n. \lambda m. \lambda m

.. 
$$\underline{m}h (\underline{n}hz) P_{\beta} h^{m}(\underline{h}^{n}z)$$
 $\underline{m}h (\underline{n}hz) P_{\beta} h^{m}(\underline{h}^{n}z)$ 
 $\underline{add} \underline{m} \underline{n} P_{\beta} \lambda h. \lambda z. \underline{m} h (\underline{n}hz)$ 
 $\underline{p}_{\beta} \lambda h. \lambda z. (\underline{h}^{m+n}z)$ 
 $\underline{p}_{\beta} \lambda h. \lambda z. (\underline{h}^{m+n}z)$ 

# Repeat m times

.. mult 
$$\underline{m} \underline{n} > \underline{\lambda} \underline{h} . \underline{\lambda} \underline{x} (\underline{h}^{m*n} \underline{x})$$

$$\triangle = \lambda \times (\times \times)$$

Consumes "energy" but reproduces itself.

### Now consider

$$V_f = \lambda x. f(x x)$$

$$Y_{\text{Curry}} = \lambda f.(Y_f Y_f)$$

e - arbitrary!

$$Y_{\text{Turing}} = ZZ$$

$$Z = \lambda_{Z}.\lambda_{X}.\times(ZZX)$$

Y e = 
$$ZZe$$
  
 $\exists (\lambda z. \lambda x. x(zzx))Ze$   
 $\Rightarrow_{\beta} (\lambda x. x(ZZx))e$   
 $\Rightarrow_{\beta} (\lambda x. x(ZZx))e$   
 $\Rightarrow_{\beta} (ZZe)$   
 $\Rightarrow_{\beta} (ZZe)$ 



Theorem (Fixed point)

There is a combinator Y such that

(a)  $Y \times =_{\beta} \times (Y \times)$ 

(b) Yx 1/2 × (Yx)

Note: Y is not unique Yang, Young ...

Thm: For any and n>,0
the equation

 $x y_1 \dots y_n = e$ Can be solved for xi.e., there is a term t s.t  $t y_1 \dots y_n = x$  x := t

Proof: 1 L 1 - Y/ han hundere)

Corollary: Every finite set of Simultaneous equations

is solvable for  $x_1...x_k$ .

Double fixed-point theorem

for any X, Y, there exist P,Q st XPQ = P

Proof. Thre exist  $X_1, X_2$  s.t  $X_i y_1 y_2 =_{\beta} y_i (X_1 y_1 y_2)(X_2 y_1 y_2)$ 

$$Q = X_2 X Y$$
.

# CHURCH-ROSSER THM OF DB



# STRONG DIAMOND



### WEAK DIAMOND





### CONFLUENCE



### STRONG DIAMOND

⇒ CONFLUENCE



- > WEAK DIAMOND 2

TILING ARGUMENT.



SPECIAL CASE K is an instance of \*/



# CAN'T USE "TILING" WITH WEAR DIAMOND



# RESIDUALS

The residuals of s w.r.t contracting (neducing) r are those Bredexes in e's.t

Case I r, s are non-overlapping
in e

neither r subterm of s

nor s subterm of r

s remains unchanged in

e Dp e'

so this occurrence of s in e'

the residual

Case 2 r = s (same occurrence)

: contracting r is contracting s

So no residual of s in e'

Case 8 r subterm of s but  $r \not\equiv s$ .  $s \equiv (\lambda x. e_1) e_2$   $r = subterm of e_1 - 3a$ or r subterm of  $e_2 - 3b$ 

(3.)  $e_1 \stackrel{[r]}{\triangleright_{l_p}} e_1'$  $: (\lambda x.e_1) e_2 \stackrel{[r]}{\triangleright_{l_p}} (\lambda x.e_1') e_2$ 

(3b) 
$$e_2 \stackrel{[r]}{\triangleright} e_2'$$

$$\therefore (\lambda_{X}.e_1) e_2 \stackrel{[r]}{\triangleright} (\lambda_{X}.e_1) e_2'$$
residual of s

(ase 4 s subterm of 
$$r = f$$

$$r = (\lambda x.e_1) e_2 \quad | \gamma_{ip} [x:=e_2] e_1$$

$$-s \quad \text{subterm of } e_1 \qquad (4a)$$

$$-s \quad \text{subterm of } e_2 \qquad (4b)$$

$$(4a) \quad s \quad \text{becomes one of}$$

$$[x:=e_2] s \qquad \qquad 3$$

or [x:= e2] [x:= 2]... [x:= 2m]s ) is a co

depending on # of times case(f)
employed in [x:=e2]e,

(46) Each copy of sing in

Minimal Complete Development (mcd)

Let T... To (n), 0) be some redexes in e

ri is called minimal if

no other ri subterm of ri

( forall rj, rj subterm of ri 

rj = ri
)

Define

e Dmed e'

as:

Pick a minimal ri in r... r. (w.log r in some ordering)

- get residuals  $r_2' \dots r_n'$  of  $r_2 \dots r_n$ 

Now repeat with any minimal 5

Repeat until NO residuals left.

Make as many  $\alpha$ -conversions

( Process is not unique)

- · In any non-empty set of redexes, always exists at least 1 minimal.
- . No redex, > mid is first = moves
- . Dip is a special case of Imal on a singleton set of redexes.
- . Non med's exist

 $(\lambda_{x.}(x y))(\lambda_{z.z})$   $\lambda_{z.z}$ 

· D<sub>mod</sub> is <u>not transitive</u>

no med to directly do 10-12

However

E1 Pmcd e1

E2 Pmcd e2

E1 e2 Pmcd e1'e2'

However

Lemma

St  $e_1$   $p_{med}$   $e_2$ and  $e_1 \equiv e_1'$ then  $e_1'$   $p_{med}$   $e_2$ 

Lemma
If e, mud e,

and e, mud e,

then [x:= e2] e Ducd [x:=g/] e/

Assume that bound variables in e, do not appear in x or in & Induction on e,

$$e_1 \equiv \lambda y. e_1$$

5. 
$$e_1 = (\lambda y.e_{ii})e_{i2}$$

. D<sub>mcd</sub> forms strong diamonds.

ريمي

$$e \equiv (\lambda_{\rm X}.e_{\rm I})e_{\rm 2}$$

Main Theorem's Proof

