VI - Espaces vectoriels

I - Systèmes d'équations linéaires

Définition 1 - Système linéaire

Soient $(a_{1,1}, \ldots, a_{1,p}, \ldots, a_{n,1}, \ldots, a_{n,p}, b_1, \ldots, b_n)$ des réels. Le système (\mathcal{S})

$$(\mathscr{S}) \begin{cases} a_{1,1}x_1 + \dots + a_{1,p}x_p &= b_1 \\ a_{2,1}x_1 + \dots + a_{2,p}x_p &= b_2 \\ \vdots &= \vdots \\ a_{n,1}x_1 + \dots + a_{n,p}x_p &= b_n \end{cases}$$

est un système linéaire d'inconnues x_1, \ldots, x_p .

- Un p-uplet (x_1, \ldots, x_n) est solution de (\mathcal{S}) s'il est solution de chacune des lignes du système.
- Deux systèmes sont dits équivalents s'ils ont le même ensemble de solutions.

Exemple 1

Les systèmes suivants sont des systèmes d'équations linéaires :

$$\begin{cases}
2x + 3y + z = 0 \\
x + 5y + 2z = 1
\end{cases}$$

$$\begin{cases}
2x + 3y = 1 \\
2x + y = 3 \\
x + 5y = 2
\end{cases}$$

$$\begin{cases} 2x + 3y = 1 \\ 2x + y = 3 \end{cases}$$

Définition 2 - Opérations élémentaires

Nous noterons L_1, \ldots, L_n les lignes du système et appellerons opérations élémentaires sur les lignes du système les transformations suivantes:

- Pour $i \neq j$, l'échange des lignes L_i et L_j , symbolisé par
- Pour $\alpha \neq 0$, la multiplication de la ligne L_i par α , symbolisée par $L_i \leftarrow \alpha L_i$.
- Pour $i \neq j$ et $\beta \in \mathbb{R}$, l'ajout à L_i de la ligne L_j multipliée par β , symbolisé par $L_i \leftarrow L_i + \beta L_i$.

Théorème 1

Le système obtenu par application d'opérations élémentaires sur les lignes est équivalent au système initial.

Principe de l'algorithme du pivot de Gauss : On utilise les opérations élémentaires pour transformer le système en un système échelonné, c'està-dire dans lequel le nombre d'inconnues décroît strictement quand on passe d'une ligne à la suivante.

Algorithme:

- On cherche une ligne où le coefficient α de x_1 est non nul et simple. Notons cette ligne L_{i0} .
- On échange les lignes 1 et $i_0, L_1 \leftrightarrow L_{i_0}$.
- \bullet On utilise la nouvelle ligne L_1 pour éliminer les occurrences de x_1 dans les lignes suivantes, c'est la ligne pivot. Par exemple, si à la ligne L_2 le coefficient de x_1 est a, on effectue $L_2 \leftarrow \alpha L_2 - aL_1$.
- On reprend ensuite les étapes de l'algorithme en travaillant sur toutes les lignes sauf la première de manière à éliminer x_2 ...
- Enfin, on exprime les solutions en fonction des variables libres.

Définition 3 - Rang d'un système linéaire

Le rang du système est le nombre d'équations non triviales du système échelonné.

Chapitre VI - Espaces vectoriels D 2

Théorème 2 - Ensemble de solutions

Soit S l'ensemble des solutions du système (\mathcal{S}) .

- Soit $S = \emptyset$, les équations sont *incompatibles*.
- \bullet Soit S est un singleton, le rang est alors égal au nombre d'inconnues.
- Soit S est infini, le rang est alors strictement inférieur au nombre d'inconnues.

Exemple 2 - Résolution de système

Résolvons le système suivant avec l'algorithme du pivot de Gauss:

$$(\mathscr{S}) \begin{cases} 2x + 3y + z &= 7 \\ x - y + 2z &= -3 \\ 3x + y - z &= 6 \end{cases}$$

 $(x,y,z) \in \mathbb{R}^3$ est solution de (\mathscr{S})

$$(x, y, z) \in \mathbb{R}^{3} \text{ est solution de } (\mathcal{S})$$

$$\Leftrightarrow \begin{cases} x - y + 2z &= -3 & L_{1} \leftrightarrow L_{2} \\ 2x + 3y + z &= 7 \\ 3x + y - z &= 6 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - y + 2z &= -3 \\ 5y - 3z &= 13 & L_{2} \leftarrow L_{2} - 2L_{1} \\ 4y - 7z &= 15 & L_{3} \leftarrow L_{3} - 3L_{1} \end{cases}$$

$$\Leftrightarrow \begin{cases} x - y + 2z &= -3 \\ 5y - 3z &= 13 \\ -23z &= 23 & L_{3} \leftarrow 5L_{3} - 4L_{2} \end{cases}$$
Legget here (\mathcal{S}) recorded were verified as all

Le système (\mathscr{S}) possède une unique solution. L'ensemble des solutions est

$$\{(1,2,-1)\}$$
.

Exercice 1. Résoudre les systèmes suivants :

1.
$$\begin{cases} x+y = 2 \\ x-2y = 5 \end{cases}$$

II - Espaces vectoriels

On note $\overrightarrow{0_n} = (0, \dots, 0) \in \mathbb{R}^n$. Les lettres n et p désignent des entiers naturels non nuls.

Définition 4 - L'espace vectoriel \mathbb{R}^n

On définit sur \mathbb{R}^n une addition et une multiplication par un réel de la manière suivante :

Addition. Si $(x_1, \ldots, x_n) \in \mathbb{R}^n$ et $(y_1, \ldots, y_n) \in \mathbb{R}^n$,

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n).$$

Multiplication par un réel. Si $(x_1, \ldots, x_n) \in \mathbb{R}^n$ et $\alpha \in \mathbb{R}$,

$$\alpha \cdot (x_1, \dots, x_n) = (\alpha x_1, \dots, \alpha x_n).$$

Exemple 3 - Cas où n=2, 3

• Si n = 2.

$$(1,2) + (3,4) = (4,6)$$

 $(1,5) + (-1,0) = (0,5)$
 $3 \cdot (4,2) = (12,6)$

• Si n = 3.

$$(1,-1,2) + (4,5,-5) = (5,4,-3)$$

 $(1,0,-1) + (3,1,2) = (4,1,1)$
 $2 \cdot (4,1,-2) = (8,2,-4)$

Proposition 1 - Structure d'espace vectoriel

- Propriétés de l'addition. Soit x, y, z des vecteurs de \mathbb{R}^n .
 - \star Associativité : x + (y + z) = (x + y) + z.
 - * Élément neutre : $x + \overrightarrow{0_n} = \overrightarrow{0_n} + x = x$.
 - * Existence d'un opposé : $x+(-1)\cdot x=(-1)\cdot x+x=\overrightarrow{0}_n$.
 - \star Commutativité : x + y = y + x.

Chapitre VI - Espaces vectoriels D 2

• Propriétés de la multiplication par un réel. Soit $x, y \in \mathbb{R}^n$ et $\alpha, \beta \in \mathbb{R}$.

$$\alpha \cdot (\beta \cdot x) = (\alpha \beta) \cdot x \mid (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$$
$$1 \cdot x = x \quad \alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$$

 \mathbb{R}^n est un espace vectoriel. Les éléments de \mathbb{R}^n sont des vecteurs.

III - Familles de vecteurs

Dans tout ce chapitre, p désigne un entier naturel non nul.

III.1 - Sous-espace vectoriel

Définition 5 - Sous-espace vectoriel

Une parție A de \mathbb{R}^n est un $sous\text{-}espace\ vectoriel$ si

- $\overrightarrow{0_n} \in A$,
- pour tout $x, y \in An$ et $\alpha, \beta \in \mathbb{R}, \alpha x + \beta y \in A$.

Exemple 4 - Exemple de sous-espaces vectoriels

- \mathbb{R}^n est un sous-espace vectoriel de \mathbb{R}^n .
- $\left\{\overrightarrow{0_n}\right\}$ est un sous-espace vectoriel de \mathbb{R}^n .
- Géométriquement,
 - \star les droites sont des sous-espaces vectoriels de \mathbb{R}^2 .
 - \star les droites sont des sous-espaces vectoriels de \mathbb{R}^3 .
 - \star les plans sont des sous-espaces vectoriels de \mathbb{R}^3 .

Exercice 2.

- **1.** On note $F = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0 \text{ et } 2x + 3y + 5z = 0\}$. Montrer que F est un sous-espace vectoriel de \mathbb{R}^3 .
- **2.** On note $\mathscr{F} = \{(x,y,z) \in \mathbb{R}^3 \; ; \; x+y+z=1 \text{ et } 2x+3y+5z=3\}.$ Montrer que \mathscr{F} n'est pas un sous-espace vectoriel de \mathbb{R}^3 .

Définition 6 - Combinaison linéaire

Soit (x_1, \ldots, x_p) une famille de vecteurs de \mathbb{R}^n .

- si $\alpha_1, \ldots, \alpha_p \in \mathbb{R}$, le vecteur $\alpha_1 x_1 + \cdots + \alpha_p x_p$ est une combinaison linéaire des vecteurs (x_1, \ldots, x_p) .
- L'ensemble des combinaisons linéaires de (x_1, \ldots, x_p) est noté :

$$\operatorname{Vect}\{x_1,\ldots,x_p\} = \left\{\sum_{i=1}^p \alpha_i x_i, \, \alpha_1,\ldots,\alpha_p \in \mathbb{R}\right\}.$$

Proposition 2

Soit (x_1, \ldots, x_p) une famille de vecteurs de \mathbb{R}^n . Alors, Vect $\{x_1, \ldots, x_p\}$ est un sous-espace vectoriel de \mathbb{R}^n .

Exemple 5 - Un peu de géométrie

- $D = \text{Vect}\{(1,2)\} = \{\alpha(1,2), \alpha \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^2 .
- $D = \text{Vect}\{(1,0)\} = \{\alpha(1,0), \alpha \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^2 .
- $D = \text{Vect}\{(1,0,1)\} = \{\alpha(1,0,1), \alpha \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^3 .
- $P = \text{Vect}\{(1,0,0), (0,0,1)\} = \{(\alpha,0,\beta), \alpha, \beta \in \mathbb{R}\} \text{ est un plan de } \mathbb{R}^3.$

Exemple 6 - Équation cartésienne \rightarrow Combinaison linéaire

Soit $F = \{(x, y, z) \in \mathbb{R}^3 ; x + y + z = 0 \text{ et } 2x + 3y + 5z = 0\}$. Écrivons F comme un ensemble de combinaisons linéaires.

Chapitre VI - Espaces vectoriels D 2

$$(x,y,z) \in F \Leftrightarrow \begin{cases} x+y+z &= 0\\ 2x+3y+5z &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x+y+z &= 0\\ y+3z &= 0 \end{cases} \Leftrightarrow \exists \lambda \in \mathbb{R} ; \begin{cases} x &= 2\lambda\\ y &= -3\lambda.\\ z &= \lambda \end{cases}$$

Ainsi.

$$F = \{\lambda \cdot (2, -3, 1), \lambda \in \mathbb{R}\} = \text{Vect}\{(2, -3, 1)\}.$$

Exemple 7 - Combinaison linéaire \rightarrow Équation cartésienne

Soit $F = \text{Vect}\{(1,2,3), (1,0,1), (2,2,4)\}.$

Déterminons une équation cartésienne de F.

 $(x,y,z) \in F$ si et seulement s'il existe $(\lambda,\mu,\nu) \in \mathbb{R}^3$ tel que $(x, y, z) = \lambda(1, 2, 3) + \mu(1, 0, 1) + \nu(2, 2, 4)$

si et seulement si le système suivant admet une solution :

$$\begin{cases} \lambda + \mu + 2\nu &= x \\ 2\lambda + 2\nu &= y \\ 3\lambda + \mu + 4\nu &= z \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda + \mu + 2\nu &= x \\ -2\mu - 2\nu &= y - 2x \leftarrow L_2 \leftarrow L_2 - 2L_1 \\ -2\mu - 2\nu &= z - 3x \leftarrow L_3 \leftarrow L_3 - 3L_1 \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda + \mu + 2\nu &= x \\ -2\mu - 2\nu &= y - 2x \\ 0 &= x - 2y + z \leftarrow L_3 \leftarrow L_3 - L_2 \end{cases}$$
Airging two description do F via two forestion contains.

Ainsi, une description de F via une équation cartésienne est

$$\{(x, y, z) \in \mathbb{R}^3 ; x - 2y + z = 0\}.$$

Proposition 3 - S

it (x_1,\ldots,x_n) une famille de vecteurs de \mathbb{R}^n , $(\alpha_2,\ldots,\alpha_n)\in\mathbb{R}^p$ et $\alpha_1 \neq 0$. Alors,

- Vect $\{x_1, \dots, x_p\}$ = Vect $\{\alpha_1 x_1 + \sum_{i=2}^p \alpha_i x_i, x_2, \dots, x_p\}$. Si $x_p \in \text{Vect}\{x_1, \dots, x_{p-1}\}$, alors Vect $\{x_1, \dots, x_p\}$ =
- $Vect \{x_1, \ldots, x_{n-1}\}.$

III.2 - Bases

Dans cette partie, (x_1, \ldots, x_p) désigne une famille de vecteurs de \mathbb{R}^n .

Définition 7 - Famille libre

La famille (x_1, \ldots, x_p) est *libre* si, pour tout $\alpha_1, \ldots, \alpha_p \in \mathbb{R}$,

$$\sum_{i=1}^{p} \alpha_i x_i = \overrightarrow{0_n} \implies \forall \ i \in [1, p], \ \alpha_i = 0.$$

La famille (x_1, \ldots, x_n) est une famille de vecteurs linéairement indépendants.

Exemple 8

La famille ((1,2),(3,4)) est une famille libre de \mathbb{R}^2 . En effet, soit $\alpha, \beta \in \mathbb{R}$ tel que $\alpha(1,2) + \beta(3,4) = (0,0)$. Alors,

$$(\alpha + 3\beta, 2\alpha + 4\beta) = (0, 0)$$

De même,

$$\begin{cases} \alpha + 3\beta &= 0 \\ 2\alpha + 4\beta &= 0 \end{cases} \Leftrightarrow \begin{cases} \alpha + 3\beta &= 0 \\ -2\beta &= 0 \end{cases} \Leftrightarrow \begin{cases} \alpha &= 0 \\ \beta &= 0 \end{cases}$$

Exercice 3. Montrer que ((1,2,-1),(2,1,1)) est une famille libre de \mathbb{R}^3 .

Chapitre VI - Espaces vectoriels D 2

Définition 8 - Famille génératrice

Soit F un sous-espace vectoriel de \mathbb{R}^n . La famille (x_1, \ldots, x_p) est une famille *génératrice* de F si, pour tout $x \in F$, il existe $\alpha_1, \ldots, \alpha_p \in \mathbb{R}$ tels que $x = \sum_{i=1}^p \alpha_i x_i$.

Exercice 4. Montrer que ((1,0),(0,1)) est une famille génératrice de \mathbb{R}^2 .

Définition 9 - Base

Soit F un sous-espace vectoriel de \mathbb{R}^n . La famille (x_1, \ldots, x_p) est une base de F si elle est génératrice et que ses vecteurs sont linéairement indépendants.

Exemple 9 - Bases canoniques

- ((1,0),(0,1)) est une base de \mathbb{R}^2 .
- ((1,0,0),(0,1,0),(0,0,1)) est une base de \mathbb{R}^3 .

Proposition 4 - Dimension

Soit F un sous-espace vectoriel de \mathbb{R}^n . Si (x_1, \ldots, x_p) et (y_1, \ldots, y_q) sont des bases de F, alors p = q. L'entier p est la dimension de l'espace vectoriel F, noté dim F. Par convention, dim $\left\{\overrightarrow{0_n}\right\} = 0$.

Exercice 5.

- 1. Déterminer la dimension de \mathbb{R}^2 , de \mathbb{R}^3 .
- **2.** Déterminer la dimension de $\{(x,y,z) \in \mathbb{R}^3 ; x+2y+z=0\}$.

Proposition 5 - Caractérisation des bases

Soit F un sous-espace vectoriel de dimension q de \mathbb{R}^n et (x_1, \ldots, x_p) une famille de vecteurs de F. Il y a équivalence entre : (i). (x_1, \ldots, x_p) est une base de F.

- (ii). (x_1, \ldots, x_p) est une famille de vecteurs linéairement indépendants et p = q.
- (iii). (x_1, \ldots, x_p) est une famille génératrice de F et p = q.

Exercice 6. Montrer que ((1,2,3),(1,0,1),(0,1,-1)) est une base de \mathbb{R}^3 .

Théorème 3 - Théorème de la base incomplète

Soit F un sous-espace vectoriel de \mathbb{R}^n et (x_1, \ldots, x_p) une famille libre de F. Il existe une famille (y_{p+1}, \ldots, y_q) telle que $(x_1, \ldots, x_p, y_{p+1}, \ldots, y_q)$ soit une base de F.

Définition 10 - Coordonnées

Soit F un sous-espace vectoriel de \mathbb{R}^n , (x_1, \ldots, x_p) une base de F et $x \in F$. Il existe un unique $(\lambda_1, \ldots, \lambda_p) \in \mathbb{R}^p$ tel que $x = \sum_{i=1}^p \lambda_i x_i$.

Exemple 10 - Calcul de coordonnées

Déterminons les coordonnées de (3,1,2) dans la base ((1,2,3),(1,0,1),(0,1,-1)).

Il existe $(\lambda, \mu, \nu) \in \mathbb{R}^3$ tel que

$$(3,2,1) = \lambda(1,2,3) + \mu(1,0,1) + \nu(0,1,-1)$$

$$(3,2,1) = 0 \cdot (1,2,3) + 3 \cdot (1,0,1) + 2 \cdot (0,1,-1).$$