Simulation diskreter Prozesse: Simulation(?)

R. Grünert 17. März 2021

1 Simulation

Zufallsvariablen Y Funktion hInputs $\vec{x} = (x_1, ..., x_n) \rightarrow$ Zufallsvektor, Verteilung von x ist meist bekannt

Aus Y (Output) lassen sich dann statistische Kenngrößen, wie Mittelwert, Standardabweichung, etc. ermitteln.

2 Zufallszahlen mit Matlab

Mit Matlab soll das Gesetz der großen Zahlen überprüft werden. Es wird zum Vergleich eine Normalverteilung über die Funktion

$$F(x) =$$

generiert und grafisch ausgegeben.

Danach wird eine Gleichverteilung mit dem *rand*-Befehl erzeugt und in einem Histogramm dargestellt. Diese Gleichverteilung ist nur gut für eine große Anzahl an zufälligen Werten.

Nun werden mehrere Gleichverteilungen überlagert mithilfe eines Averaging-Verfahrens über eine einfache for-Schleife.

Beispiel: Viele gleichverteilte Rauschprozesse überlagern sich \to Normalverteilung. ROT: Bei mehr als 30 Überlagerungen kann man Tests auf Normalverteilungen anwenden.

3

4 Zustand eines diskreten dynamischen Systems

Zustandsänderungen nur zu diskreten Zeitpunkten möglich (innerhalb eines vorgegebenen Zeitrasters).

BILD EINFÜGEN

Zustand: Ist die Menge der pronzipiell möglichen Zustände kontinueierlich, hat das System einen kontinuierlichen Zustandsraum. Sonst: Diskreter oder endlicher Zustandsraum.

5 Ereignisse und Aktivitäten

 \rightarrow (sprunghafte) Änderung eines Systems. \rightarrow Änderung ist ein Ereignis (event). Der Systemzustand ändert sich nur, wenn ein bestimmtes Ereignis (Zustandsänderung) stattfindet.

Ereignis: ist ein Geschehen, das keine *Realzeit* (Simulationszeit) in Anspruch nimmt (in der betrachteten Zeitebene), aber *Rechenzeit* beansprucht!

Simulationszeit: Die bei der Simulation eines Modells im Rechner durch die Software abgebildete Realzeit.

Ein Ereignis tritt in einem Zeitpunkt ein. Diesem Zeitpunkt kann man das Ereignis zuordnen \rightarrow Zeitstempel des Ereignisses.

Bei der Simulation eines Modells im Rechner durch die Software abgebildete Realzeit wird als Simulationszeit bezeichnet.

Aktivitiät (activity): Ein Vorgang, der zwischen einem Anfangsereignis und einem später folgenden Endereignis abläuft.

Die Aktivität beansprucht **Realzeit** ()da Zeitdauer vergeht). Sie ändert den Zustand eines Systems nicht.

Rechenzeit: Zeitaufwand für die Ausführung eines Simulationsprogramms.

Ereignisse benötigen *Rechenzeit* (Zustand wird geändert, Neuberechnung des Systemzustands).

Aktivität: Keine Änderung des Zustandes (keine Rechenleistung erforderlich, Zeiten werden nur zugeordnet).

	Realzeit==Simulationszeit	Rechenzeit
Ereignisse	Nein	Ja
Aktivitäten	m Ja	Nein

Aktivitäten sind deterministisch, falls ihre Dauern vorgegeben sind. Sie sind stochastisch, wenn das Ender der Aktivität vom Zufall abhängt.

Fahrt Auto von A nach B: stochastische Aktivität (abhängig von Wetter, Verkehrsdichte(t), ...)

Transport Werkstück auf Fließband mit v = const.: deterministische Aktivität

6 Nebenläufigkeit von Aktivitäten

Aktivitäten können zumindest teilweise gleichzeitig stattfinden \rightarrow parallele Aktivitäten.

Besteht kein kausaler Zusammenhang, d.h. die Aktivitäten beeinflussen sich nicht gegenseitig, spricht man von **nebenläufigen Aktivitäten** (können parallel sein (immer nebenläufig) oder sequentiell).

7 Abhängige und unabhängige Ereignisse

Kausale Abhängigkeit

Abhängiges Ereignis (conditional event): Wenn sein Eintrittszeitpunkt vom Eintreffen eines anderen Ereignisses abhängt (das im gleichen Zeitpunkt stattfindet). Sonst: unabhängiges Ereignis (unconditional event).

8 Prozesse

Prozesse: Ein Prozess ist ein **dynamisches System**, das mit einer **Ablauflogik** ausgestattet ist. Die Ablauflogik bestimmt die Menge der möglichen Verläufe der Prozessinstanzen. Spielt dabei der Zufall eine Rolle → stochastischer Prozess.

Kreuzung: Ablauflogik: Rechts vor Links.

