目录

第	一部分 条件概率	2				
1	"条件概率"的意思	2				
2	条件概率的性质	3				
	2.1 性质: $P(A $ 条件 $B) >= 0$					
	2.2 性质: $P(\Omega $ 条件 $B) = 1$					
	2.3 性质: $P(A_1 \cup A_2 \mid B) = P(A_1 \mid B) + P(A_2 \mid B) - P(A_1A_2 \mid B) \dots \dots$	3				
	2.4 性质: $P(A B) = 1 - P(\overline{A} B)$	3				
	2.5 性质: 可列可加性: 若 $A_1, A_2, A_n,$ 是 "互不相容"的事件, 则有: $P(\sum_{i=1}^{\infty} A_i B)$ =	=				
	$\sum_{i=1}^{\infty} P(A_i B) \leftarrow$ 即: "和的概率", 等于"概率的和"	3				
3	"条件概率"的乘法公式: $P(\mathbf{\hat{n}} \mathbf{f}) = P(\mathbf{f}) \cdot P(\mathbf{\hat{n}} \mathbf{f}) = P(\mathbf{\hat{n}}) \cdot P(\mathbf{f} \mathbf{\hat{n}})$	4				
4	传染病模型					
5	全概率					

文件名

第一部分 条件概率

1 "条件概率"的意思

条件概率是: 有 A, B 两个事件, 和样本空间 Ω . 其中 P(B) > 0, 则, 在 B 已经发生的条件下, A 发生的概率, 就叫做 A 对 B 的 "条件概率". 记作: P(A| 条件 B), 读作 "在 B 发生的条件下, A 发生的概率".

即,条件概率公式是:
$$P(A|A|B) = \frac{\overline{(A \cap B)^{HB}} \cdot AB \mid \text{同时发生} \mid}{E \mid B \mid B \mid} = \frac{\overline{(A \cap B)^{HB}} \cdot AB \mid \text{同时发生} \mid}{E \mid B \mid} = \frac{n_{AB}}{n_{B}}$$

还可写成:
$$P\left(A \mid$$
 条件 $B\right) = \frac{P\left(A \cap B\right)}{P\left(B\right)} = \frac{\frac{n_{AB}}{n}}{\frac{n_{B}}{n}} = \frac{n_{AB}}{n_{B}}$

这块交集, 就是在B发生的前提下, A发生的概率

如上图所示, 注意: 概率是个比值, 所以你光有分子那块的交集值, 是没用的, 它还需要与另一个数 (分母) 去比.

上面公式中, P(AB) 的计算公式是什么呢?

- 如果事件 A, 和事件 B 是相互独立的, 则 $P(AB) = P(A) \cdot P(B)$
- 如果事件 A, 和事件 B 不相互独立, 则只能用 "条件概率" 公式, 来求 P(AB), 即: $P(AB) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$

注意: "条件概率", 和"分步骤法"的区别:

- 分步骤法: 前后每一步骤的事件是相互独立的, 彼此没有条件关系. 比如, 第一步你结婚, 第二步我结婚. 我们这两件事发生的概率互不影响.
- 条件概率: 前面的事件, 有可能会 (但并不一定) 影响到后面事件的发生概率. 即前后事件之间并不互相独立.

会影响的例子:比如一共有 100 个上岸机会,则第一步你上岸的成功概率,会影响到第二步我上岸的成功概率.(你若成功,留给我的名额数量就会更少.)

2 条件概率的性质

彼此独立的例子: 比如在你回国的条件下, 我出门的概率. 两者发生的概率毫无关系. 你回不回国, 跟我会出不出门没半毛钱关系.

3

例

有 6 个球, 各有编号. 我们先定义下这些事件:

- B: 取到偶数编号的球

- A₁: 取到 1 号球

- A2: 取到 2 号球

- A₅: 取到大于 4 号的球

则:

$$ext{P(A}_1) = \overbrace{rac{C_1^1}{C_6^1}}^{ ext{19}$ + $rac{1}{6}$} = rac{1}{6} = 0.166667$$

$$- \ P \left(A_1 | B
ight) = rac{ E \ B \ \$$$
件里面,取到 $A_1 ($ 即 $1 \ 5$ 球 $) = rac{0}{C_3^1} = 0$

-
$$P(A_2|B) = \frac{C_1^3}{C_6^3} = \frac{1}{3}$$

$$- \, \mathrm{P} \, (\mathrm{A}_5 | \mathrm{B}) = rac{\mathrm{e} \, \, \mathrm{B} \, \, \mathrm{\$eh} \, \mathrm{Hein}, \, \mathrm{n} \, \mathrm{n} \, \mathrm{n} \, \mathrm{Th} \, \mathrm{Feh} \, \mathrm{Hein}}{\mathrm{B:} \, \, \mathrm{n} \, \mathrm{n} \, \mathrm{m} \, \mathrm{Mes}} = rac{1}{3}$$

2 条件概率的性质

2.1 性质: P(A|条件B) >= 0

2.2 性质: $P(\Omega |$ 条件B) = 1

 $P(\Omega \mid B)=1$

- 2.3 性质: $P(A_1 \cup A_2 | B) = P(A_1 | B) + P(A_2 | B) P(A_1 A_2 | B)$
- 2.4 性质: $P(A | B) = 1 P(\overline{A} | B)$
- **2.5** 性质: 可列可加性: 若 $A_1, A_2, ...A_n, ...$ 是 "互不相容"的事件, 则有: $P(\sum_{i=1}^{\infty} A_i | B) = \sum_{i=1}^{\infty} P(A_i | B) \leftarrow$ 即: "和的概率", 等于"概率的和"

3 "条件概率"的乘法公式:

$$P(\mathbf{前}\mathbf{后}) = P(\mathbf{后}) \cdot P(\mathbf{前}|\mathbf{后}) = P(\mathbf{前}) \cdot P(\mathbf{后}|\mathbf{前})$$

推导过程:

因为
$$\begin{cases} P(A|B) = \frac{P(AB)}{P(B)} \rightarrow \mathbb{P} \ P(AB) = \underbrace{P(B) \cdot P(A|B)}_{\text{乘法, 是交集} \cap \text{的概念}} & \text{①} \\ \\ P(B|A) = \frac{P(AB)}{P(A)} \rightarrow \mathbb{P} \ P(AB) = \underbrace{P(A) \cdot P(B|A)}_{\text{乘法, 是交集} \cap \text{的概念}} & \text{②} \end{cases}$$

①和②,就是"乘法公式". 即 $P(AB) = P(B) \cdot P(A|B) = P(A) \cdot P(B|A)$ 其中 P(A) > 0, P(B) > 0

后面的条件.

同理, 多个事件的乘法公式就是:

→
$$P(ABC) = P(A) \cdot P(B|A) \cdot P(C|BA)$$
↑ 上面 "从右往左" 看, 就是按 A,B,C 的顺序

 $P(A_1A_2\cdots A_n) = P(A_1)\cdot P(A_2A_1)\cdot P(A_3A_2A_1)\cdot \dots\cdot P(A_n \mid A_{n-1} \mid A_{n-1} \mid A_{n-1} \mid A_n \mid A_$

例

有 100 件产品, 次品率 =10%, 即有 10 件次品. 做不放回抽样, 问: 第 3 次才取到合格品的概率是?

我们先令:

- A₁ 表示第 1 次取, 就取到了合格品
- A₂ 表示第 2 次取, 取到了合格品
- A₃ 表示第 3 次取, 取到了合格品

那么第3次才取到合格品,就是:

$$\begin{split} P(A_1A_2A_3) &= P(A_1) & \cdot P(A_2 \mid A_1) & \cdot P(A_3 \mid A_2A_1) \\ & \hat{\pi}_{1}$$

$$\hat{\pi}_{2}$$

$$\hat{\pi}_{3}$$

$$\hat{\pi}_{2}$$

$$\hat{\pi}_{3}$$

$$\hat{\pi}_{4}$$

$$\hat{\pi}_{3}$$

$$\hat{\pi}_{4}$$

$$\hat{\pi}_{5}$$

$$= \frac{C_{10}^{1}}{C_{100}^{1}} \cdot \frac{C_{9}^{1}}{C_{99}^{1}} \cdot$$

$$= \frac{10}{100} \cdot \frac{9}{99} \cdot \frac{90}{98} = 0.00834879$$

例

某产品:

- 甲公司占 60% 市场份额, 且其产品合格率是 90%
- 乙公司占 40% 市场份额, 且其产品合格率是 80%

我们先定义下这些事件:

- J: 表示产品是甲的
- J: 表示产品是乙的
- Q (qualified):表示产品是"合格"的
- $-\overline{\mathbf{Q}}$:表示产品是"不合格"的

问, 你买一个产品, 是甲公司的, 并且是合格的概率是?

$$P\left(JQ\right) = \underbrace{P\left(J\right)}_{=0.6} \cdot \underbrace{P\left(Q \mid J\right)}_{\text{Phohka}=0.9} = 0.54$$

问, 你买一个产品, 是乙公司的, 并且是合格的概率是?

$$P\left(\overline{J}Q\right) = \underbrace{P\left(\overline{J}\right)}_{=0.4} \cdot \underbrace{P\left(Q \mid \overline{J}\right)}_{\text{Z}\$\text{#FhhAk}=0.8} = 0.32$$

4 传染病模型 6

例

抽签, 共10签, 其中有4个为"成功上岸"的好签. 甲乙丙三人, 按顺序依次去抽, 不放 □.

我们先设定事件:

- A: 表示甲抽到"成功"
- B: 表示乙抽到"成功"
- C: 表示丙抽到"成功"

问, (1) 甲抽到 "成功" 的概率?
$$P(A) = \frac{C_{4 \text{ yr} \pm}^1}{C_{10 \text{ fr}}^1} = \frac{4}{10} = 0.4$$

(2) 甲乙都抽到"成功"的概率?

$$P\left(AB
ight) = \underbrace{P\left(A
ight)}_{\begin{subarray}{c} \mathbb{R} 1 \mathbb{B}: $\mathbb{P}(A)$ \end{subarray}}_{\begin{subarray}{c} \mathbb{R} 2 \mathbb{B}: \mathbb{R} and \mathbb{R} in $\mathbb$$

甲先抽掉一张好签 乙就只能从剩下的 3 张好签中来抽了

$$= \frac{\overbrace{C^{1}_{4\cancel{\cancel{4}\cancel{\cancel{5}}\cancel{\cancel{5}}}}}^{1}}{C^{1}_{10\cancel{\cancel{5}}}} \cdot \frac{\overbrace{C^{1}_{4\cancel{\cancel{4}\cancel{\cancel{5}}\cancel{5}}-1}}^{1}}{C^{1}_{10\cancel{\cancel{5}}-1}}} = \frac{4}{10} \cdot \frac{3}{9} = 0.133333$$

(3) 甲失败, 乙成功的概率?

$$P\left(\overline{A}B\right) = \underbrace{P\left(\overline{A}\right)}_{\text{\sharp 1 $\sharp :$ Π-$\$, Z-$\#, $$ A}} \cdot \underbrace{P\left(B\mid\overline{A}\right)}_{\text{\sharp 2 $\sharp :$ E-Π-$\$, Z-$\#, Z-Π, Z-Π,$$

甲先从共 6 张坏签中取1 乙从共 4 张好签中取1

$$= \frac{\overbrace{C_{6^{1/3}}^{1}}^{1}}{C_{10^{2/3}}^{1}} \cdot \frac{\overbrace{C_{4^{1/3}}^{1}}^{1}}{C_{10^{2/3}-1}^{1}} = \frac{6}{10} \cdot \frac{4}{9} = 0.266667$$

(4) 甲乙丙都抽到"成功"的概率?

$$P(ABC) = \underbrace{P(A)}_{\text{\hat{g} 1 $\mathcal{b}:$ Π£ КиЈу}} \cdot \underbrace{P(B|A)}_{\text{\hat{g} 2 $\mathcal{b}:$ \hat{e} $\Pi$$ \hat{e} $\hat{e$$

传染病模型

有红球 a 个, 黑球 b 个. 你从中取出一个球, 看到其颜色后, 把它放回, 并同时再放入 c 个与你 看到的颜色相同的球.问:连续3次都是取出红球的概率? 先设定事件:

 $-A_1$:表示你第 1 次,取出的是红球 - A₂:表示你第 1 次,取出的是红球

- A3: 表示你第 3 次, 取出的是红球

5 全概率公式 7

$$P(A_1A_2A_3) = \underbrace{P(A_1)}_{\text{$\hat{\pi}$-$/$E}:} \cdot \underbrace{P(A_2 \mid A_1)}_{\text{$\hat{\pi}$-$/$E}:} \cdot \underbrace{P(A_3 \mid A_2A_1)}_{\text{$\hat{\pi}$-$/$E}:} \cdot \underbrace{P(A_3 \mid A_2A_1)}_{\text{$\hat{\pi}$-$/$E}:} \cdot \underbrace{P(A_3 \mid A_2A_1)}_{\text{$\hat{\pi}$-$/$E}:}$$

$$=\frac{C_{a\underline{\zeta}}^{1}}{C_{a\underline{\zeta}_{1}+b\underline{m}}^{1}}\cdot\frac{C_{a\underline{\zeta}_{1}+c\underline{\zeta}_{1}}^{1}}{C_{a\underline{\zeta}_{1}+b\underline{m}+c\underline{\zeta}_{1}}^{1}}\cdot\frac{C_{a\underline{\zeta}_{1}+c\underline{\zeta}_{1}}^{1}}{C_{a\underline{\zeta}_{1}+b\underline{m}+c\underline{\zeta}_{1}}^{1}}\cdot\frac{C_{a\underline{\zeta}_{1}+c\underline{\zeta}_{1}}^{1}}{C_{a\underline{\zeta}_{1}+b\underline{m}+c\underline{\zeta}_{1}}^{1}}$$
因为是"放回抽样"。

上面可以看出:

- 当 c 红 = 0 时, 就是正常的"放回抽样".
- 当 c 红 = -1 时, 就是 "不放回抽样". 即把之前步骤中取到的球, 拿走了, 不放回总体中.
- 当 c 红 >0 时, 就是本例的"传染病模型".

5 全概率公式

全概率公式 Total Probability Theorem:

如果 $A_1, A_2, ..., A_n$ 构成一个 "完备事件组", 即: (1) 这些事件两两互不相容, (2) 其 "和"(或 "并集") 为全集 Ω , (3) $P(A_i) > 0$.

则有:
$$\sum_{i=1}^{n} \ \left[P\left(A_{i} \right) \cdot P\left(B | A_{i} \right) \right] = P\left(B \right)$$

即有:
$$P(B) = P(A_1) \cdot P(B|A_1) + P(A_2) \cdot P(B|A_2) + ... + P(A_n) \cdot P(B|A_n)$$

Total Probability Theorem 全概率公式

5 全概率公式

例

一个工厂,有4条生产线,情况如下:

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							
	生产线 1	生产线 2	生产线 3	生产线 4			
产量	15%	20%	30%	35%			
不合格率	0.05	0.04	0.03	0.02			

问: 从该工厂的产品中, 任取一件, 是"不合格品"的概率?

我们先设定事件:

 $-A_1$:表示是生产线 1 中的产品 $-A_2$:表示是生产线 2 中的产品 $-A_3$:表示是生产线 3 中的产品 $-A_4$:表示是生产线 4 中的产品

- B:表示是次品

那么, 你任取一件为不合格的概率, 不就是整个工厂总的不合格概率么?! 即 =P(B)

$$\begin{split} P\left(B\right) &= \underbrace{\overbrace{P\left(A_{1}\right)}^{\text{£} \text{H}} \cdot \overbrace{P\left(B|A_{1}\right)}^{\text{E}} \cdot \underbrace{P\left(B|A_{1}\right)}_{\text{E}} + P\left(A_{2}\right) \cdot P\left(B|A_{2}\right)}_{\text{f} \text{1 $\$$} \text{4 $\rlap{$E$}} \text{$2$ $\rlap{$E$}} \text{$4$ $\rlap{$$