

DROID-SLAM: Deep Visual SLAM for Monocular, Stereo, and RGB-D Cameras

Authors: Zachary Teed, Jia Deng (Princeton University)

Witold Pacholarz

The Evolution of Motion Estimation and Real-time 3D Reconstruction

Technical University of Munich

Munich, 25 January 2022

Differentiable Recurrent Optimization-Inspired Design

Differentiable Recurrent Optimization-Inspired Design

3 sensor modalities 4 datasets

Differentiable Recurrent Optimization-Inspired Design

- 3 sensor modalities
 - 4 datasets

SOTA in each case

Differentiable Recurrent Optimization-Inspired Design

Source: www.theatlantic.com

Agenda

- 1. Introduction
- 2. Overview
- 3. Comparison with similar DL-based methods
- 4. Method description
- 5. Experiments and results
- 6. Personal comments
- 7. Summary
- 8. Discussion

Main idea

- Builds upon the neural network-based model for optical flow estimation called RAFT "RAFT: Recurrent All-Pairs Field Transforms for Optical Flow"; Zachary Teed, Jia Deng; 2020
- Leverages a Dense Bundle
 Adjustment layer to get updated poses and depth
- End-to-end differentiable approach, bundle adjustment used during training

Optical flow estimation

- Optical flow relates to apparent 2D motion observable between consecutive camera frames
- The Lucas & Kanade and Horn & Schunk methods are well-known traditional approaches for flow etimation. However, they are mostly limited to small deformations (Source: Computer Vision 2; D. Cremers; 2021)

v – optical flow vector

Key aspects

- Optimizes pixel-wise geometric reprojection error
- There is no preprocessing step to detect and match features
- Uses a frame graph to encode the co-visibility between frames
- Performs global bundle adjustment for the entire history of keyframes, assuring loop closure

Comparison with similar DL-based approaches

BA-Net

- Optimizes photometric reprojection error
- Optimizes on few coefficients
- Limited SLAM performance

"BA-Net: Dense Bundle Adjustment Network";

Chengzhou Tang, Ping Tan; 2019

DeepFactors

- Jointly optimizes pose and depth
- Optimizes parameters of a learned depth basis
- Capable of loop closure

"DeepFactors: Real-Time Probabilistic Dense Monocular SLAM";

J. Czarnowski at al.; 2020

Sequential update operators

- Mechanism in Recurrent Neural Networks involving gates
- Good for long-term dependencies as it helps avoid vanishing gradients
- ConvGRU leverages convolutions

Sequential update operators

- Mechanism in Recurrent Neural Networks involving gates
- Good for long-term dependencies as it helps avoid vanishing gradients
- ConvGRU leverages convolutions

Context and feature encoder

Correlation pyramid

 4D correlation volume is computed as a dot product of all pairs of vectors of extracted features from two images

$$\mathbf{C}(g_{\theta}(I_1), g_{\theta}(I_2)) \in \mathbb{R}^{H \times W \times H \times W}$$

- Average pooling is performed over last 2 dimensions
- Result: 4-level correlation pyramid

$$\mathbf{C}^k$$
 $H \times W \times H/2^k \times W/2^k$

Context and feature encoder

Correlation Lookup

- ullet Use current optical flow p_{ij} and correlation pyramid
- ullet Map each pixel in I_i to its estimated correspondence in I_j
- Local grid around x'

$$\mathcal{N}(\mathbf{x}')_r = {\mathbf{x}' + \mathbf{dx} \mid \mathbf{dx} \in \mathbb{Z}^2, ||\mathbf{dx}||_1 \le r}$$

Lookups performed on each level of the correlation pyramid

$$\mathcal{N}(\mathbf{x}'/2^k)_r$$

- Larger context at lower levels
- Concatenate values from each level into a single feature map

Frame i

Context and feature encoder

Visualizations

Dense Bundle Adjustment layer (DBA)

- Pose and pixelwise depth updates
- Mahalanobis distance weighting error terms

$$\mathbf{E}(\mathbf{G}', \mathbf{d}') = \sum_{(i,j)\in\mathcal{E}} \left\| \mathbf{p}_{ij}^* - \Pi_c(\mathbf{G}'_{ij} \circ \Pi_c^{-1}(\mathbf{p}_i, \mathbf{d}'_i)) \right\|_{\Sigma_{ij}}^2$$

$$\Sigma_{ij} = \operatorname{diag} \mathbf{w}_{ij}$$

- Gauss-Newton algorithm
- Schur complement to get the updates

$$\mathbf{G}^{(k+1)} = \operatorname{Exp}(\Delta \boldsymbol{\xi}^{(k)}) \circ \mathbf{G}^{(k)}, \qquad \mathbf{d}^{(k+1)} = \Delta \mathbf{d}^{(k)} + \mathbf{d}^{(k)}$$

Backpropagation through the layer during training

Network supervision

- Network loss is a composition of flow loss and pose loss
- Flow loss is calculated for adjacent frames in the form of the average L2 distance between two correspondence fields
- The pose loss is the distance between the predicted and ground truth poses

$$\mathcal{L}_{pose} = \sum_{i} || \operatorname{Log}_{SE3} (\mathbf{T}_{i}^{-1} \cdot \mathbf{G}_{i}) ||_{2}$$

SLAM System

GPU 1

Initialization:

- Set of 12 frames
- Edges between 5 consecutive keyframes
- Run several iterations of the update operator

Frontend:

- Take in new frames
- Extract features
- Compute flow
- Select keyframes
- Perform local bundle adjustment

GPU 2

Backend:

- Global bundle adjustment over the whole history of keyframes
- Loop closure

Absolute Trajectory Error on TartanAir

- TartanAir is a synthetic dataset
- Robustness (no failures) and significantly lowered accuracy

Monocular	MH000	MH001	MH002	MH003	MH004	MH005	MH006	MH007	Avg
ORB-SLAM [31]	1.30	0.04	2.37	2.45	X	X	21.47	2.73	-
DeepV2D [48]	6.15	2.12	4.54	3.89	2.71	11.55	5.53	3.76	5.03
TartanVO [54]	4.88	0.26	2.00	0.94	1.07	3.10	1.00	2.04	1.92
Ours	0.08	0.05	0.04	0.02	0.01	1.31	0.30	0.07	0.24

Table 1: Results on the TartanAir monocular benchmark.

Stereo	SH000	SH001	SH002	SH003	SH004	SH005	SH006	SH007	Avg
ORB-SLAM2 [32]	0.05	6.67	X	X	X	X	0.10	X	-
TartanVO [54]	2.52	1.61	3.65	0.29	3.36	4.74	3.72	3.06	2.87
Ours	0.03	0.05	0.04	0.01	0.11	0.20	0.05	0.01	0.06

Table 2: Results on the TartanAir stereo benchmark.

REMARK: for all the evaluations presented on this and the following slides the network was trained only on monocular TartanAir

TartanAir Camera Trajectories

Evauation on TUM-RGBD and ETH-3D SLAM

TUM-RGBD

 Challenging dataset for monocular approaches because of heavy rotation, motion blur, rolling shutter

	360	desk	desk2	floor	plant	room	rpy	teddy	xyz	avg
ORB-SLAM2 [32]	X	0.071	X	0.023	X	X	X	X	0.010	-
ORB-SLAM3 [5]	X	0.017	0.210	X	0.034	X	X	X	0.009	-
DeepTAM ¹ [60]	0.111	0.053	0.103	0.206	0.064	0.239	0.093	0.144	0.036	0.116
TartanVO ² [54]	0.178	0.125	0.122	0.349	0.297	0.333	0.049	0.339	0.062	0.206
DeepV2D [48]	0.243	0.166	0.379	1.653	0.203	0.246	0.105	0.316	0.064	0.375
DeepV2D (TartanAir)	0.182	0.652	0.633	0.579	0.582	0.776	0.053	0.602	0.150	0.468
DeepFactors [9]	0.159	0.170	0.253	0.169	0.305	0.364	0.043	0.601	0.035	0.233
Ours	0.111	0.018	0.042	0.021	0.016	0.049	0.026	0.048	0.012	0.038

ETH3D-SLAM

Successfully tracks
 30/32 sequences.

Ablation study

Impact of global context

• The study confirms that global context is a valuable factor for the system performance

Influence of input data and global bundle adjustment

 It can be observed that the model profits both from stereo data and global bundle adjustment

Personal comments / possible improvements

Issue 1

- Due to large resource requirements, the model is trained on low-resolution video which may result in low-quality reconstruction
- Because of the system being computation-heavy, it is not able to run in real-time on TartanAir

Possible solution: test sparser frame associations in the frame graph to reduce computations and allow higher-resolution data

Issue 2

 Accuracy could be improved for the cases in which loop closure is not performed (visible drift on TartanAir trajectories)

Possible solution: it was shown that stereo video w/o BA led to higher accuracy than monocular video with BA – this could serve as the starting point (e.g. virtual stereo term as in DVSO)

Personal comments continued

I am particularly impressed by the generalization capabilities of the DROID-SLAM as it outperforms well-established SLAM models on all the tested modalities by a large margin despite of having been trained just on

monocular video.

Summary

- DROID-SLAM is currently the state-of-the-art deep learning-based Visual SLAM approach for monocular, stereo and RGB-D data
- Uses end-to end differentiable architecture
- Iteratively estimates optical flow and computes dense bundle adjustment to update poses and depth
- Performs global bundle adjustment to refine results and assure loop closure

Main advantages

High accuracy

 Significantly reduced error on top benchmarks

High robustness

More succesfully tracked datasets

Strong generalization

 After training on a monocular dataset, it generalizes to stereo and RGB-D data

Bibliography

- "DROID-SLAM: Deep Visual SLAM for Monocular, Stereo, and RGB-D Cameras"; Z. Teed, J. Deng; 2021
- "RAFT: Recurrent All-Pairs Field Transforms for Optical Flow"; Z. Teed, J. Deng; 2020
- "BA-Net: Dense Bundle Adjustment Network"; Chengzhou Tang, Ping Tan; 2019
- "DeepFactors: Real-Time Probabilistic Dense Monocular SLAM"; J. Czarnowski at al.; 2020
- "Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry"; N. Yang at al.; 2018
- Computer Vision 2 slides; D. Cremers; 2021
- https://github.com/princeton-vl/DROID-SLAM (demo)
- <u>www.towardsdatascience.com</u> (GRU architecture)
- www.theatlantic.com (DROID photo)

Extension (for potential questions)

Gated Recurrent Unit

Gated Recurrent Unit

- mechanism in Recurrent Neural Networks involving gates
- update gate and reset gate
- good for long-term dependencies
- helps avoid vanishing gradients

$$z_t = \sigma(W^{(z)}x_t + U^{(z)}h_{t-1})$$

$$r_t = \sigma(W^{(r)}x_t + U^{(r)}h_{t-1})$$

$$h_t' = \tanh(Wx_t + r_t \odot Uh_{t-1})$$

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot h_t'$$

Convolutional GRU

Gated Recurrent Unit

- mechanism in Recurrent Neural Networks involving gates
- update gate and reset gate
- good for long-term dependencies
- helps avoid vanishing gradients

$$z_{t} = \sigma(\operatorname{Conv}_{3x3}([h_{t-1}, x_{t}], W_{z}))$$

$$r_{t} = \sigma(\operatorname{Conv}_{3x3}([h_{t-1}, x_{t}], W_{r}))$$

$$\tilde{h}_{t} = \tanh(\operatorname{Conv}_{3x3}([r_{t} \odot h_{t-1}, x_{t}], W_{h}))$$

$$h_{t} = (1 - z_{t}) \odot h_{t-1} + z_{t} \odot \tilde{h}_{t}$$

Feature and context encoder

