A Deep CNN-Prophet based Drought Early Warning System using Dam Images and Climate Data

Musila	Cynthia	Kato	le
--------	---------	------	----

134653

Supervisor name: Deperias Kerre

Submitted in Partial Fulfillment of the Requirements of the Bachelor of Science in Informatics and Computer Science at Strathmore University

School of Computing and Engineering Sciences

Strathmore University, Nairobi, Kenya

January 2024

Declaration

I, Musila Cynthia Katole, hereby declare that this concept submitted for the award of a degree in Bachelor of Science in Informatics and Computer Science, is my own original work and has not been submitted to any other institution of higher learning. I further declare that all sources cited or quoted are indicated and acknowledged by means of a comprehensive list of references.

Supervisor Student

Name: Deperias Kerre Name: Cynthia Musila

Signature:

Signature: Cynthia Katole Musila

Date: 07/01/2024 Date: 07/01/2024

Abstract

Droughts pose a significant global challenge, impacting society and the environment. Low precipitation, crop damage, and water scarcity are among the consequences of drought. Both natural factors, such as reduced rainfall and climate variability, and human activities, including ineffective water management and climate change, contribute to the occurrence and severity of droughts. Current methods for detecting and monitoring droughts, such as satellite remote sensing, hydrological monitoring, rainfall monitoring, and drought indices, have limitations that hinder their effectiveness. Spatial and temporal resolution issues, restricted coverage, and delays in data availability are some of the challenges these approaches face. To address these limitations, this research proposes an innovative IT solution for drought detection using images of natural dams and climate data specifically temperature and humidity integrated with neural networks and a time series analysis algorithm. By harnessing advanced Artificial intelligence technologies and using high-resolution images, the proposed system aims to improve the accuracy early hydrological drought detection. The application will develop a monitoring system integrating AI algorithms and time series analysis integrated with the CRISP-DM development methodology based on some drought instances. By analyzing real-time data and utilizing neural networks, the system can identify patterns and indicators of drought more accurately and promptly. This will enable proactive measures and prompt response to mitigate the impacts of droughts. In conclusion, the proposed IT solution offered a novel approach to address the challenges of drought detection and monitoring. By leveraging AI and imagery, the system has the potential to revolutionize drought monitoring, providing more accurate and timely information for proactive decision-making and effective mitigation strategies.

Keywords: Drought detection, Localized monitoring, Dams, Neural networks, AI, Early warning system.

Table of Contents

CHAPTER 1 INTRODUCTION	10
1.1 BACKGROUND OF THE STUDY	10
1.2 Problem statement	11
1.3 Research objectives	12
1.3.1 General objective	12
1.3.2 Specific objectives	12
1.4 Research questions	12
1.5 JUSTIFICATION OF THE RESEARCH.	12
1.6 RESEARCH SCOPE AND LIMITATIONS	13
CHAPTER 2 LITERATURE REVIEW	14
2.1 Introduction	14
2.2 Types of Droughts	14
2.3 Causes of hydrological drought	15
2.4 CHALLENGES POSED BY DROUGHT	16
2.5 CHALLENGES IN DROUGHT DETECTION	17
2.6 METHODS USED IN HYDROLOGICAL DROUGHT DETECTION	18
2.7 STAGES OF HYDROLOGICAL DROUGHT	18
2.8 RELATIONSHIP BETWEEN HYDROLOGICAL DROUGHT AND DAMS	20
2.9 Hydrological drought threshold determination	20
2.10 RELATIONSHIP BETWEEN DROUGHT AND TEMPERATURE	21
2.11 RELATIONSHIP BETWEEN DROUGHT AND HUMIDITY	21
2.12 Current drought detection systems	22
2.12.1 DroughtCast: A Machine Learning Forecast of the United States Drought	
Monitor	22
2.12.2 Runoff Forecasting Using Machine-Learning Methods: Case Study in the	
Middle Reaches of Xijiang River	22
2.12.3 Climate-informed monthly runoff prediction model using machine learning and	
feature importance analysis	23
2.13 CONCEPTUAL FRAMEWORK	24

CHAPTER 3 RESEARCH METHODOLOGY	
3.1 Introduction	25
3.2 Research Design	25
3.3 Model Development	25
3.3.1 Data Collection	25
3.3.2 Development of the model	26
3.3.3 Validation of the model	26
3.4 System Development Methodology	26
3.5 SYSTEM DEVELOPMENT TOOLS AND TECHNIQUES	27
3.5.1 Visual Studio Code	27
3.5.2 Google Colab	27
3.5.3 Streamlit	27
3.5.4 Flask	27
3.5.5 Ethical Considerations	27
CHAPTER 4 SYSTEM ANALYSIS AND DESIGN	28
4.1 Introduction	28
4.2 System Requirements	28
4.2.1 Functional Requirements	28
4.2.2 Non-Functional Requirements	29
4.3 System Narrative	30
4.4 System Analysis Diagrams	30
4.4.1 Use Case Diagram	31
4.4.2 System Sequence Diagram	32
4.5 System Design Diagrams	32
4.5.1 Class Diagram	33
4.5.2 System Architecture	33
CHAPTER 5 SYSTEM IMPLEMENTATION AND TESTING	35
5.1 Introduction	35
5.2 DESCRIPTION OF THE IMPLEMENTATION ENVIRONMENT	35
5.2.1 Hardware Specifications	35

5.2.2 Software Specifications	36
5.3 DESCRIPTION OF THE DATASET	36
5.3.1 Classification model	36
5.3.2 Time Series Analysis Model	38
5.4 Data Preprocessing	39
5.4.1 Classification model	39
5.4.2 Time Series Analysis model	40
5.5 DESCRIPTION OF TRAINING	42
5.5.1 Classification model	42
5.5.2 Time Series Analysis model	44
5.6 DESCRIPTION OF TESTING AND EVALUATION	44
5.6.1 Classification model	44
5.6.2 Time Series Analysis model	45
5.7 System Testing Paradigms	46
5.7.1 Black Box Testing	47
5.7.2 White Box Testing	47
5.8 Testing Results	47
CHAPTER 6 CONCLUSIONS, RECOMMENDATIONS AND FUTURE	E WORKS50
6.1 Conclusion	50
6.2 Recommendations	50
6.3 Future works	51
BIBLIOGRAPHY	52
GANTT CHART	55

List of Figures

FIGURE 2-1: HYDROLOGICAL THREASHOLD DETERMINATION	20
FIGURE 2-2: CONCEPTUAL FRAMEWORK	24
FIGURE 3-1: CRISP-DM METHODOLOGY	26
Figure 4-1: Use case diagram	31
FIGURE 4-2: SYSTEM SEQUENCE DIAGRAM	32
FIGURE 4-3: CLASS DIAGRAM	33
FIGURE 4-4: SYSTEM ARCHITECTURE	34
FIGURE 5-1: SAO PAULO STUDY REGION	37
FIGURE 5-2: CLASSIFICATION IMAGE DESCRIPTION	38
FIGURE 5-3: TIME SERIES DATA SNIPPET	39
FIGURE 5-4: CLASSIFICATION PREPROCESSING	40
FIGURE 5-5: PRODUCT(FORECAST_VALUE) FUNCTION	41
FIGURE 5-6: API FUNCTION	41
FIGURE 5-7: DATE FORMAT CONVERSION	42
FIGURE 5-8: RENAME COLUMNS FUNCTION.	42
FIGURE 5-9: TRAINING CLASSIFICATION MODEL	43
Figure 5-10: Training results	43
FIGURE 5-11: PROPHET INSTANCE	44
FIGURE 5-12: CLASSIFICATION EVALUATION	44
FIGURE 5-13: CONFUSION MATRIX	45
FIGURE 5-14: FORECAST(BLUE) WITH CLASSIFICATION DATA(BLACK)	46
FIGURE 5-15: SIX MONTHS FORECAST.	46