Сума на подпространства.

Нека V е линейно пространство над поле F, а $V_1 \leq V$ и $V_2 \leq V$ са негови подрпостранства. Знаем, че $V_1 \cap V_2 \leq V$. В общия случай обаче обединението $V_1 \cup V_2$ не е подпространство на V.

Cума на подпространствата V_1 и V_2 е множество, което дефинираме по следния начин:

$$V_1 + V_2 = \{v \in V | v = v_1 + v_2 \text{ за някой } v_1 \in V_1, v_2 \in V_2\}.$$

Оказва се, че сумата на подпространства $V_1 + V_2$ също е подпространство на V. Наистина, нека $v, v' \in V_1 + V_2$. По дефиниция това означава, че $\exists v_1 \in V_1, v_2 \in V_2 : v = v_1 + v_2$ и $\exists v_1' \in V_1, v_2' \in V_2 : v' = v_1' + v_2'$. За произволни числа от полето на скаларите $\lambda, \mu \in F$ имаме:

$$\lambda v + \mu v' = \underbrace{(\lambda v_1 + \mu v_1')}_{\in V_1} + \underbrace{(\lambda v_2 + \mu v_2')}_{\in V_2}$$

и следователно $V_1 + V_2 \le V$.

За $\forall v \in V_1$ може да запишем $v = \underbrace{v}_{\in V_1} + \underbrace{o}_{\in V_2}$, откъдето става ясно, че $V_1 \subseteq V_1 + V_2$. По аналогичен път се вижда и че $V_2 \subseteq V_1 + V_2$.

Теорема. Нека V_1, V_2 са крайномерни пространства. Тогава $V_1 \cap V_2$ и $V_1 + V_2$ също са крайномерни и е в сила, че $\dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2)$.

Доказателство. Нека $\dim V_1 = k, \dim V_2 = l$. Т.к. $V_1 \cap V_2 \leq V_1$, а V_1 е крайномерно, то и $V_1 \cap V_2$ също е крайномерно. Нека означим $\dim(V_1 \cap V_2) = r$. Нека $a_1, \ldots a_r$ е базис на $V_1 \cap V_2$ (при предположение, че $V_1 \cap V_2 \neq \{o\}$). Тогава съществуват вектори $b_{r+1}, \ldots, b_k \in V_1$, такива че $a_1, \ldots, a_r, b_{r+1}, \ldots, b_n$ е базис на V_1 . От аналогични съображения, твърдим, че съществуват

вектори $c_{r+1}, \ldots, c_l \in V_2$, такива че $a_1, \ldots, a_r, c_{r+1}, \ldots, c_l$ е базис на V_2 . Векторите

$$(*)$$
 $a_1, \ldots, a_r, b_{r+1}, \ldots, b_k, c_{r+1}, \ldots, c_l$

са k+l-r на брой. Очевдино векторите $(*) \in V_1 + V_2$. Също така е ясно и че $V_1 + V_2 = \ell(*)$. Ще докажем, че векторите (*) са линейно независими. Да допуснем противното, т.е. че съществуват някакви числа $\lambda_i, \mu_i, \nu_p \in F, i = \overline{1,r}; j = \overline{r+1,k}; p = \overline{r+1,l}$, такива че

$$\underbrace{\lambda_1 a_1 + \dots + \lambda_r a_r}_{=a \in V_1 \cap V_2} + \underbrace{\mu_{r+1} b_{r+1} + \dots + \mu_k b_k}_{=b \in V_1} + \underbrace{\nu_{r+1} c_{r+1} + \dots + \nu_l c_l}_{=c \in V_2} = o.$$

Записано накратко имаме, че a+b+c=o. Тогава $\underbrace{b}_{\in V_1}=\underbrace{-a}_{\in V_1\cap V_2}\underbrace{-c}_{\in V_2}$.

Така $b \in V_1 \cap V_2$ и в този случай b е линейна комбинация на векторите от базиса a_1, \ldots, a_r . Нека $b = \alpha_1 a_1 + \cdots + \alpha_r a_r$, $\alpha_i \in F$. Изваждайки едното представяне на b от другото, получаваме

$$\alpha_1 a_1 + \dots + \alpha_r a_r - \mu_{r+1} b_{r+1} - \dots - \mu_k b_k = 0.$$

Но векторите $a_1, \ldots, a_r, b_{r+1}, \ldots, b_k$ са линейно независими и следователно $\alpha_1 = \cdots = \alpha_r = \mu_{r+1} = \cdots = \mu_k = 0$. Така за векторите (*) остана

$$\lambda_1 a_1 + \dots + \lambda_r a_r + \nu_{r+1} c_{r+1} + \dots + \nu_l c_l = 0,$$

но те също са линейно независими и оттам $\lambda_1 = \cdots = \lambda_r = \nu_{r+1} = \cdots = \nu_l = 0$. Това означава, че векторите (*) са линейно независими, а освен това и че са базис на пространството $V_1 + V_2$. Сега вече можем да запишем

$$\dim(V_1 + V_2) = k + l - r = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2).$$

Казваме, че пространството V е *директна сума* на V_1 и V_2 , ако за $\forall v \in V \exists$ единствени $v_1 \in V_1, v_2 \in V_2 : v = v_1 + v_2$. Означаваме $V = V_1 \oplus V_2$.

Твърдение 1.
$$V = V_1 \oplus V_2 \Leftrightarrow 1)V = V_1 + V_2 \ u \ 2)V_1 \cap V_2 = \{o\}.$$

 \mathcal{A} оказателство. \Rightarrow) Нека $V=V_1\oplus V_2$. Очевидно 1) е изпълнено. Нека $v\in V_1\cap V_2$. Тогава $v=\underbrace{v}_{\in V_1}+\underbrace{o}_{\in V_2}=\underbrace{o}_{\in V_1}+\underbrace{v}_{\in V_2}$ и от единствеността

на представянето следва, че v=o. С това $V_1\cap V_2=\{o\}$ и 2) също е изпълнено.

 \Leftarrow) нека са изпълнени 1) и 2). От 1) следва, че за произволно $v \in V \exists$ вектори $v_1 \in V_1, v_2 \in V_2: v = v_1 + v_2$. Да допуснем, че още $v = v_1' + v_2'$ за някакви други вектори $v_1' \in V_1, v_2' \in V_2$. Тогава $v_1 + v_2 = v_1' + v_2'$ или еквивалентно $v_1 - v_1' = v_2' - v_2$. От 2) следва, че $v_1 - v_1' = v_2' - v_2 \in V_2$

 $V_1 \cap V_2 = \{o\}$, т.е. $v_1 - v_1' = o$ и $v_2' - v_2 = o$, което е еквивалентно на $v_1 = v_1'$ и $v_2 = v_2'$. С това доказваме, че представянето на всеки вектор от V е единствено и $V = V_1 \oplus V_2$.

Твърдение 2. Нека $\dim V < \infty$ и $V = V_1 + V_2$. Тогава $V = V_1 \oplus V_2 \Leftrightarrow \dim V_1 + \dim V_2 = \dim V$.

Доказателство. $V = V_1 \oplus V_2 \Leftrightarrow V_1 \cap V_2 = \{o\} \Leftrightarrow \dim(V_1 \cap V_2) = 0 \Leftrightarrow \dim V = \dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2) = \dim V_1 + \dim V_2$. \square

Ще отбележим, че дефинициите за сума и директна сума на подпространства, както и Твърдение 1 се обобщават по ествествен начин за произволен краен брой подпространства.