An Analysis of Probabilistic Factors in Association of Tennis Professionals Winners

Final Project

Name: Rares Finatan

Student Number: 685688202

Course: IST 687

Term: Fall/Winter 2022

Abstract and Project Overview

An Analysis of Probabilistic Factors in Association of Tennis Professionals

- This study aims to identify the highest-contributing attributes of an Association of Tennis Professionals (ATP) winner's performance for the years 2000 to 2022.
- The study is aimed at tennis fans and sports betting enthusiasts looking to gain an understanding of a player's performance from a list of 589 ATPregistered players across 54,276 matches.

• The study will attempt to engineer features for modelling pertaining to player matchups, environmental scenarios, and tournament-specific performance.

Data and Methodology

- 1. Hypothesis writing and initial problem framing
- 2. Data collection and data imports
- 3. Data exploration
- 4. Data cleansing and feature selection

Sixing a first of the said of

A DABATAGE MENTERS TO THE POST OF THE CONTROL OF THE POST OF THE P

- 5. Feature engineering
- 6. Model(s) creation
- 7. Model(s) evaluation
- 8. Conclusions

Preliminary Data Analysis Summary statistics, data distribution

- Removing attributes with high NA%
- Removing highly correlated attributes
- Removing NAs and zero observations where imputation not possible
- Context-specific cleansing (COVID-19)

A LANGURANT SERVICE SERVICE CONTROL CONTROL CONTROL SERVICE CONTROL CO

Preliminary Data Analysis Summary statistics, data distribution

THE PARTIES OF THE PARTIES OF THE PARTIES AND THE SECOND OF THE PARTIES OF THE PA

Preliminary Data Analysis Summary statistics, data distribution

A TABATABENTAL MARIONAL TO ARTICLAS TO SELECTION OF THE PROPERTY OF THE PROPER

Prelimary Data Analysis

Summary statistics, data distribution

A DARAGE STEP TO SOL FOR SOL OF POLICIES OF POLICIES OF SOL FOR SOL OF POLICIES OF SOL SOL FOR SOL FOR SOL OF SOL

Data Exploration Elementary Dimensionality Reduction

Data Exploration Elementary Dimensionality Reduction

THE PROPERTY OF THE PROPERTY OF THE COUNTY OF THE STATE O

Feature Engineering Newly Created Attributes

- Head-to-Head record for player pairings
- % Win on Surface
- % Win at Tournament Stage (Round)
- % Win at Tournament Level (Challenger, Grand Slam, etc.)
- % Win at Specific Tournament
 - % Win at Tournament Stage * % Win at Tournament Level

Data Splitting 70% Train, 30% Test

test <- merged_df[-train_idx,]</pre>

```
#Set the seed for reproducibility
set.seed(123)
#Set target variable as factor
merged_df$result <- as.factor(merged_df$result)</pre>
#Split the data into a training set (70%) and a testing set (30%)
train_idx <- createDataPartition(merged_df$result, p = 0.7, list =</pre>
FALSE)
train <- merged_df[train_idx, ]</pre>
```

A DARAGE STEP TO SOL FOR SOL OF POLICIES OF POLICIES OF SOL FOR SOL OF POLICIES OF SOL SOL FOR SOL FOR SOL OF SOL

Model Building Random Forest, Default Settings

A LAMBARIA STATE OF THE PARTY OF THE COLOR OF THE STATE OF THE PARTY OF THE STATE OF THE PARTY O

Model Building

Random Forest, Grid-Search Optimized Settings

Marie Control of the Control of the

medizite d'implique à comme de la comme

- Hyperparameters part of the grid search:
 - mtry: the number of variables randomly sampled as candidates at each split
 - min.node.size: the minimum number of observations at a terminal node
 - num.trees: number of trees in the forest

```
hyper_grid <- expand.grid(
 mtry = floor(n_features * c(.15, .25, .35)),
 min.node.size = c(1, 3, 5),
 num.trees = n_{features} * c(5, 10, 15)
for(i in seq_len(nrow(hyper_grid))) {
rf_ranger_opt <- ranger(
   formula
                   = result ~ .,
   data
                   = train,
   num.trees
                   = n_features * 10,
                   = hyper_grid$mtry[i],
   mtry
                   = hyper_grid$min.node.size[i],
   min.node.size
                   = FALSE,
   verbose
                   = 123,
   seed
   respect.unordered.factors = 'order',
```

Model Building Random Forest, Grid-Search Optimized Settings

Tide Andries Signification of the passion in a principal section in a principal signification of the passion is the significant of the significant

Model Building

Random Forest, Manual and Truncated

- Manual random forest: manual adjustment to grid-search optimized hyperparameters
- Truncated: manual adjustment to grid-search optimized hyperparameters, but with truncated attributes based off the manual random forest
 - Removed low-gini importance attributes from the manual model, \$tourney_level

Model Evaluation Random Forest (4 Variants), Naive Bayes

Model	OOB Error	RMSE	Accuracy_Train	Accuracy_Test
Random Forest - Manually Optimized	0.3033	0.5507	0.6967	0.7211
Random Forest – Grid Search Optimized	0.3115	0.5581	0.6885	0.7148
Random Forest – Default	0.3021	0.5496	0.6979	0.7136
Random Forest - Truncated Features	0.3195	0.5652	0.6805	0.7043
Naive Bayes Classifier	NA	NA	0.4311	0.3378

TO DEFENDE OF THE CONTRACTION OF

Model Evaluation Random Forest (4 Variants), Naive Bayes

A LANGUER STEP TO SOL TO SOL TO SOLD AND STATE STATE SOLD AND SOLD

Project Summary

Changes Since Update #3

- Issues and Challenges:
 - R struggling to compute larger data sets and data objects as they accrue within local memory
 - XGBoost not as friendly in R due to xgb.matrix data type requirement
 - Grid-search exceptionally computationally expensive for randomforest package, and ranger package

- What to do differently next time?
 - Time-series sampling instead of simple stratified sampling
 - Reduce classification levels to increase model accuracy