リーマン面

大柴 寿浩

概要

北大の院試用レポート. 複素トーラス(楕円曲線)からリーマン球面(複素射影直線)への 正則射が 4 点で分岐する 2 重被覆であることを示すことが目的である.

記号

次の記号について断りなく用いることがある.

- 添字 : I を添字集合とする何らかの族 $(x_i)_{i\in I}$ を $(x_i)_i$ や (x_i) のように略記することがある.
- 位相空間 X に対し $\operatorname{Aut}_{\mathsf{Top}}(X) \coloneqq \{X \perp \mathcal{O} \in \mathbb{C} \mid X \in \mathcal{O} \in \mathbb{C} \}$ とかく.
- ガウス平面に含まれる, 点 α を中心とする半径 r の開円板を $D(\alpha;r) \coloneqq \{z \in \mathbf{C}; |z-\alpha| < r\}$ で表す.

1 リーマン面

1.1 複素多様体とリーマン面

 \mathbf{C}^n での座標が $z=(z^1,\ldots,z^n)$ であるとき、複素数空間 \mathbf{C}^n を \mathbf{C}^n_z とか $\mathbf{C}^n_{(z^1,\ldots,z^n)}$ とかく、 \mathcal{U} を \mathbf{C}^n の空でない開集合とする、このとき、 \mathcal{U} で定義された複素数値関数 f は標準座標を用いて $f(z)=f(z^1,\ldots,z^n)$ とかける、

f が U で正則であるとは, f(z) が U で連続であり,各変数 z^j $(j=1,\ldots,n)$ について正則であることをいう.

定義 1.1 (n 次元複素多様体,リーマン面). X を位相空間とする。 $(\varphi_i: U_i \to U_i)_{i \in I}$ を写像の族とする。このとき,対 $(X, (\varphi_i)_i)$ が次の条件 (1)–(4) をみたすとき,X を台集合とし $(\varphi_i)_i$ を座標近傍系とする n 次元複素多様体 (n-dimensional complex manifold) という。

- (1) X は空集合でなく、第2可算公理を満たす連結なハウスドルフ空間である.
- (2) すべての $i \in I$ に対して U_i は X の空でない開集合であり、 $(U_i)_i$ は X の開披覆である.
- (3) すべての $i \in I$ に対して, \mathcal{U}_i は $\mathbf{C}^n_{(z^1,\dots,z^n)}$ の空でない開集合であり $\varphi_i \colon \mathcal{U}_i \to \mathcal{U}_i$ は同相である.
- (4) 任意の $i \neq j \in I$ で $U_i \cap U_j \neq \emptyset$ をみたすものに対して $\mathcal{U}_{ij} \coloneqq \varphi_j(U_i \cap U_j) \subset \mathcal{U}_j$ とおくとき, $\varphi_{ij} \coloneqq \varphi_i \circ \varphi_j^{-1}|_{\mathcal{U}_{ij}} : \mathcal{U}_{ij} \to \mathcal{U}_{ji}$ は正則である.

とくに、1次元複素多様体をリーマン面 (Riemann surface) という.

例 1.2. 1. \mathbb{C}^n の領域 \mathcal{U} は $(\mathrm{id}_{\mathcal{U}}:\mathcal{U}\to\mathcal{U})$ を座標近傍系とする n 次元複素多様体である.

2. $X = (X, (\varphi_i : U_i \to U_i)_{i \in I})$ を n 次元複素多様体とし,U を X の領域とする。 $J \coloneqq \{i \in I; U \cap U_i \neq \emptyset\}$ とおく.U は $(\varphi_j|_{U \cap U_j})_{j \in J}$ を座標近傍系とする n 次元複素多様体になる.この多様体 U を開部分(複素)多様体という.

台空間がコンパクトなリーマン面をとくにコンパクトリーマン面とか閉リーマン面という. 例 1.2.2 のように, リーマン面 X の領域 U はリーマン面になる. この U を X の開リーマン面と

いう.

1.2 複素多様体とリーマン面の射

定義 1.3. X を n 次元複素多様体, Y を m 次元複素多様体とする. $f\colon X\to Y$ を X から Y への連続写像とする.

- 1. P を X の点とする. P, f(P) の近傍での f のある座標表示 $w_j = f_{ij}(z_i)$, あるいは $(w_j^1, \ldots, w_j^m) = \left(f_{ij}^1(z_i^1, \ldots, z_i^n), \ldots, f_{ij}^m(z_i^1, \ldots, z_i^n)\right)$ が $z_i(P) = (z_i^1(P), \ldots, z_i^n(P))$ で正則であるとき,f は P で正則であるという.
- 2. f がすべての点 $P \in X$ で正則であるとき f を正則写像 (holomorphic mapping) とか正則射 (holomorphism) という. また \mathbb{C} への正則写像を正則関数 (holomorphic function) という.

XとYがともにリーマン面であるとき,fをリーマン面の射 (morphism) ともいう.

 $3.\ U$ を X の空でない開集合とする. U 上の関数 f は U の各連結成分上正則であるとき U 上の正則関数という. ここで、複素多様体の領域は例 1.2.2 の方法で複素多様体とみなしている.

定義 1.4. X と Y を n 次元複素多様体とする. $f: X \to Y$ を正則写像とする. 正則写像 $g: Y \to X$ で $g \circ f = \mathrm{id}_X$ かつ $f \circ g = \mathrm{id}_Y$ をみたすものが存在するとき, f を双正則写像 (biholomorphic mapping) とか双正則射 (biholomorphism) という. X から Y への双正則写像が存在するとき, X と Y は同形 (isomorphic) とか双正則同値 (biholomorphically equivalent), またはたんに双正則 (biholomorphic) であるという.

2 リーマン球面

2.1 リーマン球面の定義

 \mathbf{C}^2 から原点 0 = (0,0) を除いた集合 $\mathbf{C}^2 - \{0\}$ の点 $(a_0, a_1), (b_0, b_1)$ に対し次の関係を考える.

$$(a_0, a_1) \sim (b_0, b_1) \Longleftrightarrow (a_0, a_1) = c \cdot (b_0, b_1)$$
 となる複素数 $c \neq 0$ が存在する. (2.1)

これは同値関係である. (a_0,a_1) の同値類 $\{c\cdot (a_0,a_1);c\in \mathbf{C}-\{0\}\}$ を $[a_0\colon a_1]$ とかく. 同値関係 \sim の定める商写像を用いて次の集合を定義する.

定義 2.1. $\mathbf{P}^1 \coloneqq (\mathbf{C}^2 - \{0\}) / \sim$ をリーマン球面 (Riemann sphere) という.

定義 2.2. 次の写像の組を考える. $\mathbf{C}^2 - \{0\} \xrightarrow{\underset{\mathrm{pr}_2 = X_1}{\longleftarrow}} \mathbf{C} ; (a_0, a_1) \mapsto a_0, a_1$. この組を $\mathbf{C}^2 - \{0\}$ の標準座標, \mathbf{P}^1 の同次座標という.

P¹ は商写像 π : **C** $² - {0} → ($ **C** $² - {0}) /~ による商位相により位相空間になる. この定義から <math>\pi$ の連続性が従う.

 \mathbf{P}^1 の位相空間としての性質を調べるために、次の部分集合を定義する.

$$U_0 = \{ [a_0 \colon a_1] \in \mathbf{P}^1; a_0 \neq 0 \}, \quad U_1 = \{ [a_0 \colon a_1] \in \mathbf{P}^1; a_1 \neq 0 \}.$$

このとき次が成り立つ.

$$U_0 \cup U_1 = \mathbf{P}^1, \tag{2.2}$$

$$U_0 \cap U_1 = \{ [a_0 \colon a_1] \in \mathbf{P}^1; a_0, a_1 \neq 0 \}$$

$$= U_0 - \{ [1 \colon 0] \}$$

$$= U_1 - \{ [0 \colon 1] \}.$$
(2.3)

補題 2.3. 1. 商写像 π : $\mathbf{C}^2 - \{0\} \rightarrow \left(\mathbf{C}^2 - \{0\}\right)/\sim$ は開写像である.

2. U_0 と U_1 は \mathbf{P}^1 の開集合であり,

$$\varphi_0 \colon U_0 \xrightarrow{\sim} \mathbf{C}; \ [a_0 \colon a_1] \mapsto a_1/a_0,$$

$$\varphi_1 \colon U_1 \xrightarrow{\sim} \mathbf{C}; \ [a_0 \colon a_1] \mapsto a_0/a_1$$

はともに同相写像である.

3. 任意の
$$A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}\in GL(2,{\bf C})$$
 は自己同相写像

$$p_A \colon \mathbf{P}^1 \xrightarrow{\sim} \mathbf{P}^1; \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} \mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix}$$

を引き起こす.

4. \mathbf{P}^1 は第2可算公理をみたす連結なコンパクトハウスドルフ空間である.

証明. 1. U を $\mathbf{C}^2-\{0\}$ の開集合とする. $\pi(U)$ が \mathbf{P}^1 の開集合であること,すなわち $\pi^{-1}(\pi(U))$ が $\mathbf{C}^2-\{0\}$ の開集合であることを示す. いま,任意の開集合 $U\subset\mathbf{C}^2-\{0\}$ に対し,複素数 $c\neq 0$ を用いて

$$cU = \{(ca_0, ca_1); (a_0, a_1) \in \mathbf{C}^2 - \{0\}\}$$

とおくと, cU は $\mathbb{C}^2 - \{0\}$ の開集合であり,

$$\pi^{-1}(\pi(U)) = \bigcup_{c \in \mathbf{C} - \{0\}} cU$$

なので、 $\pi^{-1}(\pi(U))$ は $\mathbb{C}^2 - \{0\}$ の開集合である.

2. まず U_0, U_1 が \mathbf{P}^1 の開集合であることを示す. $U_0 = \{[a_0: a_1]; a_0 \neq 0\}$ は $V_0 = \{(a_0, a_1); a_0 \neq 0\}$ の π による像であり, V_0 は $\mathbf{C}^2 - \{0\}$ の開集合であるから, U_0 は \mathbf{P}^1 の開集合である. 同様に U_1 も \mathbf{P}^1 の開集合である.

 $\varphi_0\colon U_0\to \mathbf{C}$ が連続であることを示す. V を \mathbf{C} の開集合とする. $V=\varphi_0\circ\pi(V_0)(=\widetilde{\varphi_0}(V_0)$ とおく)である. $\widetilde{\varphi_0}^{-1}(V)=\pi^{-1}\left(\varphi_0^{-1}(V)\right)$ は V_0 の開集合である. したがって,これは $\mathbf{C}^2-\{0\}$ の開集合であり,商位相の定義から $\varphi_0^{-1}(V)\subset U_0$ は開集合である.

 φ_0 が同相であることを示す、 ψ_0 : $\mathbf{C} \to U_0$ を $\psi_0(z) = [1:z]$ で定める、このとき $\psi_0 \circ \varphi_0([a_0:a_1]) = \psi_0(a_1/a_0) = [1:a_1/a_0] = [a_0:a_1]$ である、また $\varphi_0 \circ \psi_0(z) = \varphi_0([1:z]) = z/1 = z$. したがって、 $\psi_0 \circ \varphi_0 = \mathrm{id}_{U_0}$ かつ $\varphi_0 \circ \psi_0 = \mathrm{id}_{\mathbf{C}}$ であり、 $\psi_0 = \varphi_0^{-1}$ である、 $\psi_0 = \varphi_0^{-1}$ は自然な単射 $\mathbf{C} \hookrightarrow \mathbf{C}^2 - \{0\}$ と π の合成であり、これらは連続なので、その合成である ψ_0 も連続である、以上より φ_0 は同相である。

3. $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ を可逆な行列とする. A を自己同形 $\mathbf{C}^2 \to \mathbf{C}^2$ とみたとき,それを $\mathbf{C}^2 - \{0\}$ に 制限した $A|_{\mathbf{C}^2 - \{0\}}: \mathbf{C}^2 - \{0\} \to \mathbf{C}^2 - \{0\}$ は自己同相であり,逆写像は $A^{-1}|_{\mathbf{C}^2 - \{0\}}$ で与えられる. 一般に A(cx) = cAx なので,A から可逆な写像 p_A が不備なく定まり,逆写像は $p_{A^{-1}}$ で与えられる.

 p_A が連続であることを示す. V を \mathbf{P}^1 の開集合とする. 次の図式が可換であり, π と A は連続写像であるから, $\pi^{-1}\left(p_A^{-1}(V)\right)=A^{-1}\left(\pi^{-1}(V)\right)$ は $\mathbf{C}^2-\{0\}$ の開集合である.

$$\mathbf{C}^{2} - \{0\} \xrightarrow{A} \mathbf{C}^{2} - \{0\}$$

$$\downarrow^{\pi}$$

$$\mathbf{P}^{1} \xrightarrow{\mathcal{P}^{A}} \mathbf{P}^{1}$$

 ${f P}^1$ の商位相の定義より $\pi^{-1}(V)$ は ${f P}^1$ の開集合である.したがって p_A で連続である. p_A^{-1} が連続であることも同様である.

4. 第2可算公理をみたすこと:

$$\mathbf{Q}(\sqrt{-1}) = \{a + b\sqrt{-1}; a, b \in \mathbf{Q}\}\$$

に属する点 z と有理数 p に対し $U_p(z)$ を考えると $(U_p(z))_{p \in \mathbf{Q}, z \in \mathbf{C}}$ は \mathbf{C} の位相空間としての基底になる. したがって \mathbf{C} は第 2 可算公理をみたす. 直積集合 \mathbf{C}^2 も第 2 可算であるから,1 点を除いた $\mathbf{C}^2 - \{0\}$ もそうであり,これに全射 π を適用した \mathbf{P}^1 も第 2 可算公理をみたす.

連結かつコンパクトであること: $S^3=\{P=(a_0,a_1)\in {\bf C}^2; |a_0|^2+|a_1|^2=1\}\subset {\bf C}^2-\{0\}$ であり, ${\bf C}-\{0\}$ の相対位相により, S^3 は有界閉集合つまりコンパクト集合であり,連結である.全射連続写像 $\pi|_{S^3}:S^3\to {\bf P}^1$ により ${\bf P}^1$ は連結かつコンパクトである. $\pi|_{S^3}$ が全射であることは

$$[a_0 \colon a_1] = \left[\frac{a_0}{\sqrt{a_0^2 + a_1^2}} \colon \frac{a_1}{\sqrt{a_0^2 + a_1^2}} \right]$$

であることからしたがう.

ハウスドルフであること: $P \neq Q$ を \mathbf{P}^1 の点とする。 $p: GL(2, \mathbf{C}) \to \operatorname{Aut}_{\mathsf{Top}}(\mathbf{P}^1)$ は全射。したがって, $U_0 \subset \mathbf{P}^1$ から,任意の $p_A \in \operatorname{Aut}_{\mathsf{Top}}(U_0)$ に対し $A \in GL(2, \mathbf{C})$ が存在する。つまり $p_A(P), p_A(Q) \in U_0$ となる $A \in GL(2, \mathbf{C})$ が存在する。 $U_0 \cong \mathbf{C}$ であり \mathbf{C} はハウスドルフなので, $p_A(P)$ の開近傍 $U_P \succeq p_A(Q)$ の開近傍 U_Q で $U_P \cap U_Q = \emptyset$ をみたすものが存在する。 $U_P \succeq U_Q$

は $U_0\subset \mathbf{P}^1$ の開集合であり, p_A が同相なので $p_A^{-1}(U_P)$, $p_A^{-1}(U_Q)$ は \mathbf{P}^1 における P,Q の開近傍 で $p_A^{-1}(U_P)\cap p_A^{-1}(U_Q)=\varnothing$ をみたす.よって \mathbf{P}^1 はハウスドルフである.

2.2 貼りあわせ関数

補題 2.3.2 から φ_0 : $U_0 \xrightarrow{\sim} \mathbf{C}$, φ_1 : $U_1 \xrightarrow{\sim} \mathbf{C}$ である.ここで, $\varphi_0(U_0)$ の標準座標を w, $\varphi_1(U_1)$ の標準座標を z で表すことにする.定義 2.2 のようにかくと

$$z: \varphi_1(U_1) = \mathbf{C} \to \mathbf{C}; (a) \mapsto a$$

 $w: \varphi_0(U_0) = \mathbf{C} \to \mathbf{C}; (b) \mapsto b$

のようになる。複素数の一つ組に対し第一成分を対応させるということである。これによって点 (a) と座標値 z(a) を同一視し、点を単に z と書いたりする。ガウス平面 \mathbf{C} に、そこでの標準座標をつけて \mathbf{C}_z 、 \mathbf{C}_w のように表すと、 $\mathbf{C}_w \subset \mathbf{P}^1$ 、 $\mathbf{C}_z \subset \mathbf{P}^1$ とみなせる。z も w も 0 でないとき、 \mathbf{C}_z と \mathbf{C}_w の間には、

$$z = \frac{1}{w} \tag{2.4}$$

の関係がある. $z,w \neq 0$ は (2.3) より $[z:w] \in U_0 \cap U_1$ ということである. $[z:w] \in U_0 \cap U_1$ のとき z は w の正則関数になっている. $\varphi_0(U_0 \cap U_1) = \mathbf{C}_w - \{0\} = \mathbf{C}_w \cap \mathbf{C}_z = \mathbf{C}_z - \{0\} = \varphi_1(U_0 \cap U_1)$ なので,この正則関数を $\varphi_{10} : \mathbf{C}_w - \{0\} = \varphi_0(U_0 \cap U_1) \to \mathbf{C}_z - \{0\} = \varphi_1(U_0 \cap U_1)$ とかくことにすると,次の図式が可換になる.

$$U_0 \cap U_1 \xrightarrow{[1: w] = [z: 1]} U_0 \cap U_1$$

$$\downarrow^{\varphi_0^{-1}} \qquad \qquad \downarrow^{\varphi_1}$$

$$\mathbf{C}_w - \{0\} \xrightarrow{\varphi_{10}} \mathbf{C}_z - \{0\}$$

つまり, $\varphi_{10}=\varphi_1\circ\varphi_0^{-1}$ である.また, $\varphi_{01}=\varphi_0\circ\varphi_1^{-1}$: $\varphi_1(U_0\cap U_1)\to\varphi_0(U_0\cap U_1)$ も w=1/z として同様に定まる.これは正則であり φ_{10} の逆関数でもある. 以上から次が従う.

命題 2.4. リーマン球面 \mathbf{P}^1 は, \mathbf{P}^1 を台集合とし, $(\varphi_0\colon U_0\to\mathbf{C}_w,\varphi_1\colon U_1\to\mathbf{C}_z)$ を座標近傍系とするコンパクトリーマン面である.

証明. コンパクト性は補題 2.3.4 で示した. 定義 1.1 の (1)–(4) で n=1 としたものが成り立つことを示す.

- (1) 補題 2.3.4 からしたがう.
- $(2)(2.2) \ge (2.3)$ からしたがう.
- (3) 補題 2.3.2 からしたがう.

(4) 上で説明した.

ここでは2枚の被覆で座標近傍系を定めたが、以下断りなく極大座標近傍系を考える。

3 複素トーラス

3.1 複素トーラスの定義

 ω_1, ω_2 を \mathbf{R} 上一次独立な複素数とする. ω_1, ω_2 に対し、ガウス平面 \mathbf{C} の加法部分群 Ω を

$$\Omega := \{ n_1 \omega_1 + n_2 \omega_2; n_1, n_2 \in \mathbf{Z} \}$$

で定める. $E := \mathbf{C}/\Omega$ とおく. 商写像を $p: \mathbf{C} \to E$ とかく. また, $S := \{a\omega_1 + b\omega_2; 0 \le a, b < 1\}$ とおく. このとき, p は E と S の間の 1 対 1 対応を定める. 実際, $x = x_1\omega_1 + x_2\omega_2$, $y = y_1\omega_1 + y_2\omega_2 \in S$ とし, p(x) = p(y) とする. このとき, p(x-y) = [0], つまり, $x-y = n_1\omega_1 + n_2\omega_2$ となる整数 n_1 , n_2 が存在する. $0 \le x_1, x_2, y_1, y_2 < 1$ なので $n_1 = n_2 = 0$ となることが必要である. したがって, x = y となる. つまり p は単射である. p が全射であることは, 次の補題 3.1.1 から従う.

補題 **3.1.** 1. p は全射かつ連続な開写像である.

2. E は第2可算公理をみたす連結なコンパクトハウスドルフ空間である.

証明. 1. p は全射かつ連続であること: α を E の点とする. α に対し, $\alpha+0\omega_1+0\omega_2$ は $\alpha=p(\alpha+0\omega_1+0\omega_2)$ をみたす. p の連続性は商位相の定義より従う.

p が開写像であること: U を \mathbb{C} の空でない開集合とする.

$$p^{-1}(p(U)) = \bigcup_{\omega \in \Omega} (U + \omega)$$

であり, $U + \omega$ は ${\bf C}$ の開集合なので、その合併である $p^{-1}(p(U))$ も ${\bf C}$ の開集合である.したがって、p(U) は E の開集合である.

2. 第 2 可算であること:p が全射かつ連続な開写像なので, \mathbf{C} の位相空間としての基底の p による像は E の基底になる.実際, $x \in E$ とし,U を E における x の開近傍とする.このとき,p は全射なので $p^{-1}(x)$ は空でなく, $p^{-1}(U) \subset \mathbf{C}$ は p の連続性から $p^{-1}(x)$ の元たちの開近傍である. \mathbf{C} の基底の元 V で $p^{-1}(U)$ に含まれ, $p^{-1}(x)$ を含むものが存在する.この V に対し,p が連続な開写像であることから,p(V) は E の開集合であり, $x \in p(V) \subset U$ が成り立つ.よって, \mathbf{C} が第 2 可算であることから E も第 2 可算である.

連結かつコンパクトであること:S の閉包 \overline{S} は連結かつコンパクトである.また, $p(\overline{S})=E$ でもある.p の連続性によって,E は連結かつコンパクトである.

ハウスドルフであること: $P \neq Q$ を E の点とする. P, Q に対し, S の点 x, y で p(x) = P, p(y) = Q となるものが存在する. $x, y \in \partial S$ のとき、複素数 ε を適当にとって、 $x, y \in \operatorname{Int}(S + \varepsilon)$

となるようにできるので、x,y は S の内点としてよい。このとき、 $S \subset \mathbf{C}$ がハウスドルフであることから、実数 r>0 で、 $D(x;r),D(y;r)\subset S$ かつ $D(x;r)\cap D(y;r)=\varnothing$ をみたすものが存在する。この r に対し、 $P\in p(D(x;r))$ かつ $Q\in p(D(y;r))$ であり、 $p(D(x;r))\cap p(D(y;r))=\varnothing$ が成り立つ。

E の複素構造を定める。P を E の点とする。複素数 ε と P=p(x) となる点 $x\in \mathbf{C}$ と x の開近傍 \mathcal{U}_x で \mathcal{U}_x \subset $S+\varepsilon$ となるものが存在する。 $U_P:=p(\mathcal{U}_x)$ とおくと, U_P は P の E における開近傍である。 $p^{-1}(U_P)=\bigsqcup_{\omega\in\Omega}\mathcal{U}_x+\omega$ であり,任意の $\omega\in\Omega$ に対し, $p|_{\mathcal{U}_x+\omega}:\mathcal{U}_x+\omega\to U_P$ は同相写像である。 $p|_{\mathcal{U}_x}$ の逆写像を $\varphi_{P,x}:U_P\to\mathcal{U}_x$ とおく。このとき, $(\varphi_{P,x})_{P\in E,x\in p^{-1}(P)}$ は E の座標近傍系である。実際,P,Q を E の点とし, \mathbf{C} の点 x,y を P=p(x),Q=p(y) をみたすものとする。このとき, $\varphi_{Q,y}\circ\varphi_{P,x}^{-1}:\varphi_{P,x}(U_P\cap U_Q)\to\varphi_{Q,y}(U_P\cap U_Q)$ は x に何らかの $\omega\in\Omega$ を足して y に並行移動させる写像 $y=x+\omega$ なので正則である。

したがって,次が成り立つ.

命題 3.2. $\left(E,(\varphi_{P,x})_{P\in E,x\in p^{-1}(P)}\right)$ はコンパクトリーマン面である.

証明. (1) 補題 3.1.2 で示した.

(2) $E = \bigcup_{P \in E} U_P$ と補題 3.1.1 から従う.

コンパクトリーマン面 E を複素トーラスという.

3.2 楕円関数

3.1 節の記号を用いる.

定義 3.3. f を \mathbf{C} 上定義された有理形関数とする. f が ω_1 と ω_2 を周期とするとき, f は 2 重周 期 ω_1 と ω_2 をもつ楕円関数であるとか, Ω を周期とする楕円関数という.

補題 3.4. 商写像 $p: \mathbb{C} \to E$ の引き戻し $p^*: f \mapsto f \circ p$ は $\{E \perp D$ 有理形関数 $\}$ から $\{\Omega$ を周期とする $\mathbb{C} \perp D$ 有円関数 $\}$ への 1 対 1 対応を定める.

証明. f を E 上の有理形関数とする. p^*f は ${\bf C}$ 上の有理形関数である. p^*f の 2 重周期性を示す. $z\in {\bf C},\,\omega\in\Omega$ とする.

$$p^* f(z + \omega) = f(p(z + \omega)) = f(p(z)) = p^* f(z)$$

である.

 p^* が 1 対 1 対応となることを示す。 f,g を E 上の有理形関数で $p^*f=p^*g$ をみたすものとする。 p は全射なので, f(p(z))=g(p(z)) から f=g である。よって, p^* は単射である。

g を Ω を周期とする楕円関数とする. P を E の点とする. $\varphi_{P,x}\colon U_P\to \mathcal{U}_x$ に対し, f^P を $g|_{\mathcal{U}_x}$ を局所座標表示とする $U_P\subset E$ 上の有理形関数とする. g の 2 重周期性から, f^P は x の取り方

によらない. $Q \in E$ を $U_P \cap U_Q \neq \emptyset$ となる点とすると, $f^P\big|_{U_P \cap U_Q} = f^Q\big|_{U_P \cap U_Q}$ が成り立つ. $(f^P)_{P \in E}$ を貼り合わせることで,E 上の有理形関数 f が定まる. $(f|_{U_P} \coloneqq f^P)$ この f に対し, $p^*f = g$ が成り立つ.

定理 3.5.

$$\wp(u) := \sum_{\substack{\omega \in \Omega, \\ \omega \neq 0}} \left(\frac{1}{(u - \omega)^2} - \frac{1}{\omega} \right) \tag{3.1}$$

は Ω にのみ2位の極を持つ楕円関数である.

 $\wp(u)$ を Weierstrass の \wp 関数という.

証明. $\wp(u)$ が $\mathbf{C} - \Omega$ で正則であり, Ω では 2 位の極をもつこと: $M \ge 0$ を実数とする。 D(0; 2M) は \mathbf{C} のコンパクト集合であり, Ω は離散閉集合なので, $\Omega \cap D(0; 2M)$ は有限集合である.

$$\wp(z) = \left(\frac{1}{z^2} + \sum_{\substack{\omega \in \Omega - \{0\}, \\ |\omega| \le 2M}} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2}\right)\right) + \sum_{\substack{\omega \in \Omega - \{0\}, \\ |\omega| > 2M}} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2}\right)$$

と 2 つの和に分解する.第 1 項は有限和なので $\overline{D(0;M)}-\Omega$ で正則かつ $\overline{D(0;M)}\cap\Omega$ で 2 位の極をもつ有理形関数である.

第 2 項が $\overline{D(0;M)}$ で一様収束することを示す. z を $|z| \leq M$ をみたす複素数とする. $|\omega| > 2M \geq 2|z|$ である. したがって

$$\left|\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2}\right| = \frac{|z|}{|\omega|^2} \frac{|z-2\omega|}{|z-\omega|^2} = \frac{|z|}{|\omega|^3} \frac{|z/\omega-2|}{|z/\omega-1|^2} \le \frac{M|-1/2-2|}{|\omega|^3|1/2-1|^2} = \frac{10M}{|\omega|^3}$$

が成り立つ. ここで次の補題 $\frac{3.6}{0.00}$ を用いると $\sum_{\substack{\omega \in \Omega, \ |\omega| > 2M}} \frac{10M}{|\omega|^3}$ が収束することがわかる. したがって,

第2項も収束する.

補題 3.6. 実数 s>1 に対し $\sum_{\omega\in\Omega-\{0\}}\frac{1}{|\omega|^{2s}}$ は収束する.

補題の証明. $\varphi(x,y) := |x\omega_1 + y\omega_2|^2$ とおく. このとき,

$$\varphi(x,y) = (x\omega_1 + y\omega_2)\overline{(x\omega_1 + y\omega_2)}$$

$$= x^2|\omega_1|^2 + xy(\omega_2\overline{\omega_1} + \omega_1\overline{\omega_2}) + y^2|\omega_2|^2$$

$$= |\omega_1|^2x^2 + (\overline{\omega_1}\overline{\omega_2})(\omega_1\overline{\omega_2})xy + |\omega_2|^2y^2$$

$$= |\omega_1|^2x^2 + |\omega_1\overline{\omega_2}|^2xy + |\omega_2|^2y^2$$

となり、実数 a,b,c を用いて、 $ax^2+2bxy+cy^2$ とかける。すなわち、 $\varphi(x,y)$ は実係数 2 次形式であり、 ω_1 と ω_2 が独立であることから正定値である。2 次形式に対応する実対称行列は、実数の固有値を持つ。いま、 φ は正定値なので固有値を $0< m_1 \le m_2$ とおいてよい。実対称行列は直行行列を用いて対角化でき、任意の $x,y \in \mathbf{R}$ に対し、

$$m_1(x^2 + y^2) \le \varphi(x, y) \le m_2(x^2 + y^2)$$

4 2 重被覆

定理 **4.1.** \wp の定めるリーマン面の射 \wp : $E \to \mathbf{P}^1$; $\wp([z]) = [\wp(z):1]$ は 4 点 [0], $[\omega_0/2]$, $[\omega_1]$, $[(\omega_0 + \omega_1)/2]$ で分岐する 2 重被覆である.

証明. \wp は [0] にのみ 2 位の極をもつ E 上の有理形関数である.

参考文献

[Og02] 小木曽啓示, 代数曲線論, 朝倉書店, 2002.