# МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

#### ОТЧЕТ

Рубежной контроль 1 по курсу «Методы машинного обучения»

Вариант 4

| . I орбовцова К.М.<br>ФИО | ИСПОЛНИТЕЛЬ    |
|---------------------------|----------------|
|                           | группа ИУ5-24М |
| подпись                   |                |
| "2020 г.                  | II<br>-        |
| ТЕЛЬ: Гапнюк Ю.Е.<br>ФИО  | ПРЕПОДАВА      |
| подпись                   |                |
| "2020 г.                  | II -           |

Москва – 2020

### Горбовцова Ксения, ИУ5-24М

## РК №1 по курсу ММО

```
In [40]:
        import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         import matplotlib.mlab as mlab
         import matplotlib
         plt.style.use('ggplot')
         from matplotlib.pyplot import figure
         %matplotlib inline
         matplotlib.rcParams['figure.figsize'] = (12,8)
        filename = "toy dataset.csv"
In [41]:
In [42]: data = pd.read csv(filename)
In [43]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 150000 entries, 0 to 149999
         Data columns (total 6 columns):
         Number
                    150000 non-null int64
         City
                    150000 non-null int64
                    150000 non-null int64
         Gender
                    150000 non-null int64
         Aae
         Income
                    150000 non-null float64
                    150000 non-null int64
         Illness
         dtypes: float64(1), int64(5)
         memory usage: 6.9 MB
```

In [44]: data.describe()

Out[44]:

|       | Number        | City          | Gender        | Age           | Income        | II        |
|-------|---------------|---------------|---------------|---------------|---------------|-----------|
| count | 150000.000000 | 150000.000000 | 150000.000000 | 150000.000000 | 150000.000000 | 150000.00 |
| mean  | 75000.500000  | 2.309627      | 0.441333      | 44.950200     | 91252.798273  | 0.0       |
| std   | 43301.414527  | 2.034138      | 0.496548      | 11.572486     | 24989.500948  | 0.2       |
| min   | 1.000000      | 0.000000      | 0.000000      | 25.000000     | -654.000000   | 0.0       |
| 25%   | 37500.750000  | 1.000000      | 0.000000      | 35.000000     | 80867.750000  | 0.0       |
| 50%   | 75000.500000  | 2.000000      | 0.000000      | 45.000000     | 93655.000000  | 0.00      |
| 75%   | 112500.250000 | 3.000000      | 1.000000      | 55.000000     | 104519.000000 | 0.0       |
| max   | 150000.000000 | 7.000000      | 1.000000      | 65.000000     | 177157.000000 | 1.00      |

In [45]: data.corr()

#### Out[45]:

|         | Number    | City      | Gender    | Age       | Income    | Illness   |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|
| Number  | 1.000000  | 0.911749  | -0.001272 | -0.003448 | 0.410460  | 0.003138  |
| City    | 0.911749  | 1.000000  | -0.002404 | -0.005615 | 0.234937  | 0.002156  |
| Gender  | -0.001272 | -0.002404 | 1.000000  | 0.003653  | -0.198888 | -0.001297 |
| Age     | -0.003448 | -0.005615 | 0.003653  | 1.000000  | -0.001318 | 0.001811  |
| Income  | 0.410460  | 0.234937  | -0.198888 | -0.001318 | 1.000000  | 0.000298  |
| Illness | 0.003138  | 0.002156  | -0.001297 | 0.001811  | 0.000298  | 1.000000  |

In [46]: data.hist()



In [47]: f,ax = plt.subplots(figsize=(5, 5))
 sns.heatmap(data.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax)
 plt.show()



In [52]: sns.jointplot(x='Illness', y='Age', data=data)
sns.jointplot(x='City', y='Income', data=data)

Out[52]: <seaborn.axisgrid.JointGrid at 0x1a241f8630>





In [53]: sns.boxplot(x=data["City"], y=data["Income"])

Out[53]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a2274c048>



In [61]: sns.jointplot(x='Gender', y='Income', data=data)

Out[61]: <seaborn.axisgrid.JointGrid at 0x1a263ed748>



In [62]: sns.boxplot(x=data["Gender"], y=data["Income"])

Out[62]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a26f3ca90>



In [63]: sns.boxplot(x=data["Income"])

Out[63]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a27fea710>



In [64]: fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['Income'])

Out[64]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a273b87f0>



In [66]: sns.violinplot(x=data["Income"])

Out[66]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a280cd978>



По данным датасета нельзя постороить каких-либо точных предсказаний.

| In [ ]: |  |
|---------|--|
|         |  |