Sistemas de Comunicación Digital

INF2010

Clase 10: Modulación Pasabanda Multinivel

 Con este método, las entradas digitales con más de 2 niveles de modulación son admitidas a la entrada del transmisor.

Para un DAC de 2 bits (ℓ =2), M=2 ℓ =2 ℓ =4 y la velocidad de símbolos es D=R/ ℓ = ℓ 2R y el bit rate es R=1/T_b bits/s.

- QPSK (Quadrature Phase Shift Keying) y MPSK (M-ary Phase Shift Keying)
- Para un transmisor donde la entrada es M=4 niveles, entonces a la salida se generan 4 puntos que corresponden a la modulante compleja:

$$g(t) = A_c e^{j\theta(t)}$$

 Por ejemplo, si los valores a la salida del DAC son -3, -1, +1 y +3V, entonces esto corresponderá a las fases 0°,90°,180° y 270°.

 Este ejemplo corresponde a una implementación del MPSK con 4 puntos, llamada QPSK.

 También puede generarse MPSK usando dos portadoras en cuadratura moduladas por las componentes x e y de la envolvente compleja:

$$g(t) = A_c e^{j\theta(t)} = x(t) + jy(t)$$

Donde los valores permitidos de x e y son:

$$x_i = A_c \cos \theta_i$$
$$y_i = A_c \sin \theta_i$$

 Para los valores permitidos de ángulo θ_i, i=1,2,...M para una señal MPSK.

QAM (Quadrature Amplitude Modulation)

- QAM (Quadrature Amplitude Modulation)
- En general, no tienen la restricción de tener puntos sobre un círculo, sino que pueden ocupar puntos con distinto radio.
- La señal QAM general es:

$$s(t) = x(t)\cos w_c t - y(t)\sin w_c t$$

Donde:

$$g(t) = x(t) + jy(t) = R(t)e^{j\theta(t)}$$

Por ejemplo, para M=16:

Constelación QAM de 16 símbolos (cuatro niveles por dimensión).

- En este ejemplo, se establece la relación de coordenadas polares (R_i,θ_i) a cartesianas (x_i, y_i).
- En este caso, x_i e y_i pueden tener 4 niveles por dimensión, y hacen falta 2 conversores DAC y moduladores balanceados.

Las señales en x e y serían:

$$x(t) = \sum_{n} x_{n} h_{1} \left(t - \frac{n}{D} \right)$$

$$y(t) = \sum_{n} y_{n} h_{1} \left(t - \frac{n}{D} \right)$$

Donde D=R/ℓ y el símbolo está centrado en t=nT_s =n/D.

 T_s : Tiempo [s] para enviar un símbolo, $h_1(t)$: forma de pulso utilizado para cada símbolo.

 h₁(t) es la forma del pulso utilizada en la modulación, donde si no hay restricciones de ancho de banda, será rectangular.

 En algunas aplicaciones, se agrega un offset (corrimiento) de T_s/2=1/2D segundos, entre x e y:

$$y(t) = \sum_{n} y_{n} h_{1} \left(t - \frac{n}{D} - \frac{1}{2D} \right)$$

- Así se genera OQPSK, (offset-QPSK) que es QAM con offset cuando M=4.
- Y el espectro de potencia eş:

$$P_g(f) = K \left(\frac{\sin \pi f \, l \, T_b}{\pi f \, l \, T_b} \right)^2$$

Con $K=C\ell T_b$ y $M=2_\ell$ es el número de puntos de la constelación

y C la varianza de la señal.

• Que se puede graficar como:

DRD - Sistemas de Comunicación Digital

El ancho de banda desde un nulo al siguiente es:

$$B_T = \frac{2R}{l}$$

Y la eficiencia espectral para QAM es de:

$$\eta = \frac{R}{B_T} = \frac{l}{2} \frac{bits/s}{Hertz}$$

 Osea, para una señal QAM con M=16, la eficiencia espectral es de η=2 bits/s por Hz.

- Si ahora queremos transmitir la señal en un canal de banda limitada, el pulso rectangular no se va a poder utilizar.
- En efecto, debemos minimizar el ISI.
- Para esto, usamos un pulso tipo coseno realzado con rolloff r:

$$B = \frac{1}{2} \left(1 + r \right) D$$

Sabemos además (del estudio de AM) que el ancho de banda de transmisión está relacionado con el ancho de banda de modulación por: B_⊤=2B.

Entonces, el ancho de banda total para QAM es:

$$B_T = \left(\frac{1+R}{l}\right)R$$

• Como M= 2^{ℓ} , entonces $\ell = \log_2(M)$ que se puede escribir como:

$$l = \frac{\ln{(M)}}{\ln{(2)}}$$

 Y finalmente la eficiencia espectral de una modulación QAM con pulso de coseno realzado queda:

$$\eta = \frac{R}{B_T} = \frac{\ln(M)}{(1+r)\ln(2)} \frac{bit/s}{Hertz}$$

 Y si tenemos un ancho de banda limitado, podemos saber cuantos símbolos por segundo se pueden transmitir con QAM.

TABLA 5–8 EFICIENCIA ESPECTRAL PARA SEÑALIZACIÓN QAM CON FORMACIÓN DE PULSO DE COSENO REALZADO (use M=4 para señalización QPSK, OQPSK y $\pi/4$ QPSK)

Número de niveles, M (símbolos)	Tamaño del DAC, ℓ (bits)	$\eta = \frac{R}{B_T} \left(\frac{\text{bit/s}}{\text{Hz}} \right)$					
		r = 0.0	r = 0.1	r = 0.25	r = 0.5	r = 0.75	r = 1.0
2	1	1.00	0.909	0.800	0.667	0.571	0.500
4	2	2.00	1.82	1.60	1.33	1.14	1.00
8	3	3.00	2.73	2.40	2.00	1.71	1.50
16	4	4.00	3.64	3.20	2.67	2.29	2.00
32	5	5.00	4.55	4.0	3.33	2.86	2.50

- Finalmente, la máxima cantidad de símbolos va a estar dada por la relación señal a ruido del canal.
- Entonces η < η_{m a x}
- Donde:

$$\eta_{max} = \log_2\left(1 + \frac{S}{N}\right)$$