

Introduction to Deep Learning

Sarthak Harne

Revisiting Linear Regression

Linear Regression (Multivariate) looks like this:

$$y = \theta^T x$$
 where $\theta = (\theta_n, ..., \theta_1, \theta_0)$ and $x = (x_n, ..., x_1, x_0)$

This can also be denoted pictorially by a 'neuron' as:

Revisiting Linear Regression - Neuron

The weights are a property of the neuron. For n inputs (including bias), there will be n weights which can be represented as a vector θ

The idea is to add more weights/parameters to learn more complex patterns from the data.

This can be done via adding more layers.

 y_i^l is the output of the ith neuron in the lth layer

Adding more layers

Having a multi-layer setup with no non linearity will just give us another linear output.

This is because adding two linear functions just gives us another linear function

Why do we need Non-Linearity?

Linear functions
will not give us
decision
boundaries
which are
suitable for
distributions like
these

Non-Linearity in a Neuron

We introduce nonlinearity using 'activation functions'.

These are nonlinear functions which are applied on the output of the linear part of the neuron.

Now the sums across different layers becomes non linear.

Activation Functions

These are simple nonlinear functions like:

- ReLU
- Tanh
- Sigmoid

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

$$tanh(x) = \frac{exp(x) - exp(-x)}{exp(x) + exp(-x)}$$

$$\sigma(x) = \frac{1}{1 + exp(-x)}$$

Neural Networks

When we stack these layers we get what is a 'Feed Forward Network' (FFN) and a layer with these neurons is known as a 'Linear Layer'

Neural Networks - Notation

For the layer L, neuron i∈[1, ..., n] and input k∈[1, ...,m], the weights are given as

$$w_i^L = (_1w_i^L, ..., w_i^L, ..., w_i^L)$$

This can be combined together as

$$W^{L} = \begin{bmatrix} \leftarrow (w_{1}^{L})^{T} \rightarrow \\ \cdot \\ \cdot \\ \leftarrow (w_{n}^{L})^{T} \rightarrow \end{bmatrix}$$

Neural Networks - Notation

For the layer L, neuron $i \in [1, ..., n]$ and input $k \in [1, ..., m]$

The inputs are given as

$$x_i^{L-1} = (x_i^{L-1}, ..., x_i^{L-1}, ..., x_i^{L-1})$$

The linear output is given as

$$z^{L} = (z_{1}^{L}, ..., z_{i}^{L}, ..., z_{n}^{L})$$

The activation output is given as

$$a^L = f(z^L)$$

Where f is the activation function

Neural Networks - Notation

For the layer L, neuron i∈[1, ..., n] and input k∈[1, ...,m]. The final equations are:

$$z^L = W^L x^{L-1}$$

$$a^L = f(z^L)$$
 Input for the next layer — $x^L = a^L$

These are called the forward pass equations

https://www.databricks.com/glo ssary/neural-network

Neural Networks - Forward Pass

The equations are used to 'propagate' the input to get the output.

Generally, in the final layer, no activation is applied. So, the output becomes (here, L is the final layer number)

$$y = W^L x^{L-1}$$

Neural Networks - Forward Pass

The equations are used to 'propagate' the input to get the output.

Generally, in the final layer, no activation is applied. So, the output becomes (here, L is the final layer number)

$$y = W^L x^{L-1}$$

Neural Networks - Backpropagation

The basic weight update equation

is:
$$W = W - \alpha \frac{\partial L}{\partial W}$$

The main issue with neural networks is calculating the derivative $\frac{\partial L}{\partial W}$

$$\frac{\partial l}{\partial W^{L}} = \frac{\partial l}{\partial a^{L}} \frac{\partial a^{L}}{\partial W^{L}} \\
= \frac{\partial l}{\partial a^{L}} \frac{\partial a^{L}}{\partial f} \frac{\partial f}{\partial W^{L}} \\
= \frac{\partial l}{\partial a^{L}} \frac{\partial a^{L}}{\partial f} \frac{\partial f}{\partial z^{l}} \frac{z^{L}}{\partial W^{L}}$$

$$L = l(y_{true}, y_{pred})$$

$$z^{L} = W^{L}x^{L-1}$$

$$a^{L} = f(z^{L})$$

$$x^{L} = a^{L}$$

Image:

Neural Networks - Backpropagation

$$\frac{\partial l}{\partial W^{L}} = \frac{\partial l}{\partial a^{L}} \frac{\partial a^{L}}{\partial W^{L}}
= \frac{\partial l}{\partial a^{L}} \frac{\partial a^{L}}{\partial f} \frac{\partial f}{\partial W^{L}} \qquad L = l(y_{true}, y_{pred})
= \frac{\partial l}{\partial a^{L}} \frac{\partial a^{L}}{\partial f} \frac{\partial f}{\partial z^{l}} \frac{z^{L}}{\partial W^{L}} \qquad z^{L} = W^{L} x^{L-1}
= \frac{\partial l}{\partial a^{L}} \frac{\partial a^{L}}{\partial f} \frac{\partial f}{\partial z^{l}} \frac{z^{L}}{\partial W^{L}} \qquad a^{L} = f(z^{L})$$

Parts of this function can be computed during the forward pass, which can make the backpropagation more efficient

$$L = l(y_{true}, y_{pred})$$

$$z^{L} = W^{L}x^{L-1}$$

$$a^{L} = f(z^{L})$$

$$x^{L} = a^{L}$$

Image:

Neural Networks - Visualization

Source: https://playground.tensorflow.org/

PyTorch Tutorial

Kaggle Notebook: https://www.kaggle.com/code/sarthakharne/pytorch-mnist-example