EE2000 Logic Circuit Design

Lecture 9 – Sequential Logic Circuit Design

Design a Mealy machine to detect the sequence "111" (Overlapping)

In other words,

Design a system with one input x and one output z such that z = 1 if x has been 1 for at least three consecutive clock times.

x	0	1	1	0	1	1	1	0	1	1	1	1	1	0
Z	0	0	0	0	0	0	1	0	0	0	1	1	1	0

x	0	1	1	0	1	1	1	0	1	1	1	1	1	0
Z	0	0	0	0	0	0	1	0	0	0	1	1	1	0

STEP 1: Determine what needs to be stored in memory and how to store them.

A: input is '0' *if next input is 0, remains at A else B

B: one '1' is detected *if next input is 0, back to A else C

C: two '1's are detected

* if next input is 0, back to A and output '0', else remains at C and output '1'

STEP 2: Work out the State Diagram

A: Input is '0' *if next input is 0, remains at A else B

B: one '1' is detected *if next input is 0, back to A else C

C: two '1's are detected

* if next input is 0, back to A and output '0', else remains at C and output '1'

STEP 3: Work out the analysis table with assigned FFs

3 states \rightarrow 2 FFs (We use D-FFs in this example)

Present	Input	Next	stage	
State (Q_1Q_2)	X	$\boldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	Output Z
A (0 0)	0			
A (0 0)	1			
B (0 1)	0			
B (0 1)	1			
(10)	Χ			
C (1 1)	0			
C (1 1)	1			

Assign State A:

 $Q_1 \rightarrow 0$ and $Q_2 \rightarrow 0$ etc

STEP 4: Work out D_1 and D_2

Present	Input	Next	State	
State (Q_1Q_2)	X	$\boldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	Output Z
A (0 0)	0	0	0	0
A (0 0)	1	0	1	0
B (0 1)	0	0	0	0
B (0 1)	1	1	1	0
(10)	Х	х	Х	x
C (1 1)	0	0	0	0
C (1 1)	1	1	1	1

STEP 5: Work out *z*

Present	Input	Next	State	
State (Q_1Q_2)	X	$oldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	Output Z
A (0 0)	0	0	0	0
A (0 0)	1	0	1	0
B (0 1)	0	0	0	0
B (0 1)	1	1	1	0
(10)	Х	х	X	x
C (1 1)	0	0	0	0
C (1 1)	1	1	1	1

$$z = xQ_1$$

STEP 6: Draw the sequential logic circuits

$$D_1 = xQ_2$$

$$D_2 = x$$

$$z = xQ_1$$

Use T FFs to design a Mealy machine to detect the sequence "111" (Overlapping)

Present State	Innut V	Next	State	Flip-	Flops	Output 7
(Q_1Q_2)	Input X	$oldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	T_1	T_2	Output Z
A (0 0)	0	0	0	0	0	0
A (0 0)	1	0	1	0	1	0
B (O 1)	0	0	0	0	1	0
B (O 1)	1	1	1	1	0	0
(10)	x	х	Х	х	х	х
C (1 1)	0	0	0	1	1	0
C (1 1)	1	1	1	0	0	1

T	Q_{t+1}	$\overline{Q_{t+1}}$	State
0	Q_t	$\overline{Q_t}$	Hold
1	$\overline{Q_t}$	Q_t	Toggle

Present State	Inner t V	Flip-Flops		
(Q_1Q_2)	Input X	T_1	T_2	
A (0 0)	0	0	0	
A (0 0)	1	0	1	
B (O 1)	0	0	1	
B (O 1)	1	1	0	
(10)	х	х	х	
C (1 1)	0	1	1	
C (1 1)	1	0	0	

$$T_1 = xQ_1'Q_2 + x'Q_1$$
 $T_2 = xQ_2' + x'Q_2 = x \oplus Q_2$ $z = xQ_1$

Use JK FFs to design a Mealy machine to detect the sequence "111" (Overlapping)

Present State	Input	Next State		Flip-Flops				Output <i>Z</i>
(Q_1Q_2)	X	$oldsymbol{Q}_1^*$	$\boldsymbol{Q_2^*}$	J_1	K_1	J_2	K_2	
A (0 0)	0	0	0					0
A (0 0)	1	0	1					0
B (0 1)	0	0	0					0
B (0 1)	1	1	1					0
(10)	х	х	X					x
C (1 1)	0	0	0					0
C (1 1)	1	1	1					1

Present	Input	Flip-Flops					
State (Q_1Q_2)	X	J_1	K_1	J_2	K_2		
A (0 0)	0						
A (0 0)	1						
B (0 1)	0						
B (0 1)	1						
(10)	Х						
C (1 1)	0						
C (1 1)	1						

Present	Input	Flip-Flops					
State (Q_1Q_2)	X	J_1	K_1	J_2	K_2		
A (0 0)	0						
A (0 0)	1						
B (0 1)	0						
B (0 1)	1						
(10)	Х						
C (1 1)	0						
C (1 1)	1						

Mealy vs Moore Machines

Mealy machine

Present	Input X				
State	0	1			
Α	A/0	B/0			
В	A/0	C/0			
С	A/0	C/1			

Moore machine

Present State	Inp	ut X	Present
	0	1	Output Z
А	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

Moore machine

- Typically more states, more complex logic circuits

Mealy machine

+ Typically fewer states, simpler logic circuits

Example (Timing Diagram)

Exercise (Timing Diagram)

 $z = xQ_1$

Mealy vs Moore Machines

Observation

- Moore: Output changes occur only after clk edge
- Mealy: Output changes occur whenever input changes
- Mealy: Faster response but glitch might occurs

Mealy vs Moore Machines

Mealy machine	Moore machine
Output depends on inputs and present state	Output depends only on present state
Typically fewer states, simpler logic circuits	Typically more states, more complex logic circuits
React faster to inputs	React one clock cycle later
Asynchronous	Synchronous
Glitches might present	No glitch

Better solution?
Synchronous Mealy machine

Design a Moore machine to detect the sequence "11" or "000" (Overlapping)

In other words,

Design a system with one input x and one output z such that z = 1 if x has been 1 for at least two consecutive clock times or 0 for at least three consecutive clock times.

х	0	0	0	0	1	0	1	1	0	0	1	1	1	0
Z		?	?	1	1	0	0	0	1	0	0	0	1	1

x	0	0	0	0	1	0	1	1	0	0	1	1	1	0
Z	?	?	?	1	1	0	0	0	1	0	0	0	1	1

(Hint: 5 states)

Design a Mealy machine to detect the sequence "00110" (No overlapping)

In other words,

Design a system with one input x and one output z such that z = 1 if x has been 0 for two consecutive clock times, follows by two 1's and then a 0.

x	0	0	1	1	0	0	1	1	0	0	1	1	0	1
Z	0	0	0	0	1	0	0	0	0	0	0	0	1	0

x	0	0	1	1	0	0	1	1	0	0	1	1	0	1
Z	0	0	0	0	1	0	0	0	0	0	0	0	1	0

(Hint: 5 states)

State Minimization

- No of FFs

 No of states
- Combinational logic complexity

 No of states
- More FFs, more complex logic circuits → higher COST!
- Solution: Aims to remove redundant states

State Minimization

Direct observation
 Identify same output combinations and same state

	0	1		0	1			0	1
Α	A/0	E/1	Α	A/0	E/1		Α	A/0	E/1
В	E/1	C/0	В	E/1	C/0		В	E/1	C/0
С	A/1	D/1	С	A/1	D/1		С	A/1	D/1
D	F/0	G/1	D	F/0	G/1	_	D	F/0	G/1
Ε	B/1	C/0	Ε	B/1	C/0		Ε	B/1	C/0
F	F/0	E/1	F	F/0	E/1		F	F/0	E/1
G	A/1	D/1	G	A/1	D/1		G	A/1	D/1

	0	1
Α	A/0	E/1
В	E/1	C/0
С	A/1	D/1
D	F/0	G/1
Ε	B/1	C/0
F	F/0	E/1
G	A/1	D/1

Partitioning Method

	0	1
Α	A/0	E/1
В	E/1	C/0
С	A/1	D/1
D	F/0	G/1
Ε	B/1	C/0
F	F/0	E/1
G	A/1	D/1

 Separate states with different outputs to different partitions

$$P_0 = (A B C D E F G)$$

A, D and F have outputs (0 1); B and E have outputs (1 0); C and G have outputs (1 1)

$$P_1 = (A D F)(B E)(C G)$$

Partitioning Method

Р		0	1
	Α	A/0	E/1
1	D	F/0	G/1
	F	F/0	E/1
_	В	E/1	C/0
2	Ε	B/1	C/0
	С	A/1	D/1
3	G	A/1	D/1

$$P_1 = (A D F)(B E)(C G)$$

 Next check the next state of each state in each partition

$$- A(0) \rightarrow A (P1) \quad A(1) \rightarrow E (P2)$$

$$- D(0) \rightarrow F (P1) D(1) \rightarrow G (P3)$$

$$- F(0) \rightarrow F (P1) \quad F(1) \rightarrow E (P2)$$

∴ A and F same partitions; D is different

$$P_2 = (A F)(D)(B E)(C G)$$

Partitioning Method

Р		0	1
1	Α	A/0	E/1
1	F	F/0	E/1
2	В	E/1	C/0
	Ε	B/1	C/0
3	С	A/1	D/1
3	G	A/1	D/1
4	D	F/0	G/1

$$P_2 = (A F)(D)(B E)(C G)$$

This is the final with no more changes!

	1	J
A=F	A/0	B/1
B=E	B/1	C/0
C=G	A/1	D/1
D	A/0	C/1

Present State	Input X		Present
	0	1	Output Z
А	I	С	0
В	В	I	0
С	С	G	0
D	I	С	1
E	D	Е	1
F	I	С	1
G	E	F	1
н	Н	Α	0
I	Α	С	0

Reduce the state table using partitioning method

$$P_0 = (A B C D E F G H I)$$

Group states based on same output

Present State	Input X		Present
	0	1	Output Z

$$P_1 =$$

Present State	Input X		Present
	0	1	Output Z

$$P_2 =$$

Present State	Input X		Present
	0	1	Output Z

$$P_3 =$$

Present State	Input X		Present
	0	1	Output Z

$$P_3 =$$

VHDL for Finite State Machine

Seq. Present State and Next State Logic

Example


```
entity seqckt is
port (         x: in std_logic; -- FSM input
               z: out std_logic; -- FSM output
               clk: in std_logic ); -- clock
end seqckt;
```

Output Logic


```
architecture behave of seqckt is
  type states is (A,B,C); -- symbolic state names (enumerate)
  signal state: states; --state variable
Begin
-- Output Logic
z \le 1' when ((state = B) and (x = 1')) --all conditions
           or ((state = C) and (x = '1')) --for which z = 1
         else '0';
                                           --otherwise z = 0
```

Next State Logic

```
process (clk) - Present & next states logic
 begin
    if rising edge(clk) then -- clock edge
      case state is
        when A =  if (x = '0') then
                     state <= A;
                 else
                     state \leq B; -- x = '1'
                 end if:
        when B \Rightarrow if (x=0) then
                     state <= A;
                 else
                     state \leftarrow C; -- x = 1'
                 end if;
        when C => if (x=0)' then
                     state <= C;
                 else
                     state \leftarrow A; -- x = 1'
                 end if;
      end case;
    end if;
end process;
end behave;
```


Lab Session 4

- Implement a simple finite-state machine with a good coding style
- Implement two buttons to control the state change of the FSM
- Display the state transition with the LEDs on the BASYS3 board


```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC STD.ALL;
entity fsm is
Port (
clk: in STD LOGIC;
rst: in STD LOGIC;
ctrlButton: in STD_LOGIC;
led: out STD LOGIC VECTOR (7 DOWNTO 0)
);
end fsm;
```

Inputs

- clock signal (clk)
- Master reset button (rst)
- Control button (ctrlButton)

Output

8 LEDS for 8 states

Key Debouncing

When pressing a key or switch, its internal spring may cause the contact point to vibrate for a short period of time, causing a series of "ON" and "OFF" state before settling down

Inputs

- clock signal (clk)
- Master reset button (rst)
- Control button (ctrlButton)

Output

8 LEDS for 8 states

```
Constant TIME 10ms: integer := 1000000;
  Signal key counter: integer range 0 to 1000001;
  Signal btnDetection: boolean;
                                        When control button is pushed, key counter
  begin
                                        will set to 0. Then, the timer will start counting
    Key detection: process (clk) begin
                                        and if the stable time reach to TIME_10ms,
     if rising edge(clk) then
                                        btnDetection sets to true for that cycle.
      if (ctrlButton='1') then
        key counter \leq 0;
     elsif (ctrlButton='0') and (key_counter <= TIME_10MS) then
        key counter <= key counter +1;
        end if; end if;
end process;
btnDetection <= (key counter = TIME 10ms);
```

Internal signals

- data types: states
- present_state
- next_state

Architecture Behavioral of fsm is

```
type states is (zero, one, two, three, four, five, six, seven); signal present_state, next_state: states;
```


The sequential logic of our FSM is very simple. Every time the *btnDetection* is true, the FSM will jump to the next state. We define a type called *states* enumerating all possible states. Then we define two signals present_state and next_state which are both *states* type. Every time the btnDetection is true, the value of next_state will be provided to present_state (meaning the state jumps to the next state). The assignment of next_state will be introduced in the next section

```
state_transition: process (rst, clk)

begin

if (rst='1') then

--Write your code here to describe state transition.

elsif (rising_edge(clk) and btnDetection = true ) then

--Write your code here to describe state transition.

end if;

end process;
```

present_state	LED Output
zero	00000001
one	00000010
two	00000100

three	00001000
four	00010000
five	00100000
six	01000000
seven	10000000

The corresponding VHDL template and you can complete the following code.

```
decoder: process (present_state)
begin
case present_state is
--Write your code here to assign LED and next_state
end case;
end process;
end Behavioral;
```