Лекция. Функция. График функции. Свойства функции.

1. Функции. Переменная y называется ϕ ункцией переменной x, если каждому допустимому значению x соответствует определенное значение y.

Символически функциональная зависимость между переменной y (функцией) и переменной x (аргументом) записывается с помощью равенства y = f(x), где f означает совокупность действий, которые надо произвести над x, чтобы получить y.

Числовое значение функции, соответствующее данному числовому значению аргумента, называется **частным значением** этой функции. Например, функция y = f(x) при x = a принимает значение y = f(a).

Областью определения (существования) функции называется множество всех действительных значений аргумента, при которых она может иметь действительное значение.

Например, для функции y = x областью определения является множество всех действительных чисел \mathbb{R} ; для функции $y = \frac{1}{x}$ областью определения является множество \mathbb{R} кроме x = 0.

Например

Найти область определен<u>ия фун</u>кций:

1)
$$y = \sqrt{x} + \sqrt{x-1}$$
; 2) $y = \sqrt{\frac{3x-2}{2x+6}}$.

Решение

- 1) Областью определения данной функции является общая часть областей определения каждого из слагаемых. Для первого слагаемого x > 0, для второго x > 1. Областью определения функции служит промежуток x > 1.
- 2) Функция определена для всех значений x, удовлетворяющих неравенству $\frac{3x-2}{2x+6} \ge 0$. Таким образом,

$$\left(\frac{3x-2}{2x+6} \ge 0\right) \Leftrightarrow \begin{bmatrix} x \ge \frac{2}{3}, \\ x > -3, \\ x \le \frac{2}{3}, \\ x < -3. \end{bmatrix} \Leftrightarrow \begin{bmatrix} x \ge \frac{2}{3}, \\ x < -3. \end{bmatrix}$$

На рис. 2.1 показаны области определения данной функции.

Множеством значений функции называется множество всех действительных значений функции у, которые она может принимать.

Например, множеством значений функции y = x + 1 является множество \mathbb{R} , множеством значений функции $y = x^2 + 1$ является множество действительных чисел, бо́льших или равных единицы.

Для задания функции необходимо и достаточно задать закон соответствия, по которому для каждого значения аргумента можно указать единственное значение функции и ее область определения.

Функция может быть задана аналитически (формулой), таблицей, графиком или каким-либо другим способом.

Аналитический способ – это способ задания функции с помощью формулы.

Например, формула y = x -2 показывает, как с помощью значения аргумента x вычислить соответствующее ему значение функции y.

Табличный способ – это способ задания функции с помощью таблицы со значениями.

Например, если измерять температуру воздуха каждый час в течении суток, то каждому часу (t) будет соответствовать определённая температура (T). Такое соответствие можно записать в виде таблицы:

<i>t</i> (ч)	0	1	2	3	4	5	6	7	8	9	10	11
T (°)	14	14	14,5	14,5	15	15	16	16	16	16,5	16,5	17
<i>t</i> (ч)	12	13	14	15	16	17	18	19	20	21	22	23
T (°)	18	20	22	24	24,5	24,5	24	23	21	20	18	16

Следовательно, T функция от t-T(t), определённая с помощью множества целых чисел от 0 до 24 и заданная таблицей. Соответствие между величинами двух переменных задаётся в данном случае не формулой, а таблицей.

Графический способ – это способ задания функции с помощью графика. В этом случае аргумент является абсциссой точки, а значение функции, соответствующее данному аргументу, ординатой.

Графики позволяют быстро находить значение функции по значению аргумента и наоборот – значение аргумента по значению функции. Например, рассмотрим уже готовый график функции:

Чтобы узнать, какое значение функции будет соответствовать аргументу x = 1, надо провести из соответствующей точки оси абсцисс (оси x) перпендикуляр на график. Ордината точки пересечения перпендикуляра с графиком (точки M) и будет соответствующим значением функции. Поэтому, так как точка M имеет координаты (1; 2), то запись этих значений в виде функции будет выглядеть так: y(1) = 2.

График функции — это геометрическое место точек плоскости, абсциссы (x) и ординаты (y) которых связаны указанной функцией, или линия, состоящая из точек плоскости с координатами (x, f(x)).

2. Четные и нечетные функции. Функция y = f(x) называется **четной**, если при всех значениях x в области определения этой функции при изменении знака аргумента на противоположный значение функции не изменяется, т. е. f(-x) = f(x). Например, парабола $y = x^2$ является четной функцией, так как $(-x)^2 = x^2$. График четной функции *симметричен относительно оси Оу*.

Функция y = f(x) называется **нечетной**, если при всех значениях x в области определения этой функции при изменении знака аргумента на противоположный функция изменяется только по знаку, т. е. f(-x) = -f(x). Например, функция $y = x^3$ — нечетная, так как $(-x)^3 = -x^3$. График нечетной функции симметричен относительно начала координат.

Свойством четности или нечетности обладает не всякая функция. Например, функция $f(x) = x^2 + x^3$ не является ни четной, ни нечетной: $f(-x) = (-x)^2 + (-x)^3 = x^2 - x^3$; $x^2 - x^3 \neq x^2 + x^3$ и $x^2 - x^3 \neq -(x^2 - x^3)$.

Пример 2.2

Исследовать на четность и нечетность функции, определенную на всей числовой оси:

1)
$$y = \frac{3x^4 - 2x^2}{x^2 + 1}$$
; 2) $y = \frac{x^3 - x}{3x^2 + 4}$; 3) $y = \frac{x^3 + 1}{4x^2 + 3}$.

Решение

Подставляем на место аргумента (-x):

1)
$$\frac{3(-x)^4 - 2(-x)^2}{(-x)^2 + 1} = \frac{3x^4 - 2x^2}{x^2 + 1}$$
 — функция четная;

2)
$$\frac{(-x)^3 - (-x)}{3(-x)^2 + 4} = \frac{-x^3 + x}{3x^2 + 4} = -\frac{x^3 - x}{3x^2 + 4}$$
 — функция нечетная;

3)
$$\frac{(-x)^3+1}{4(-x)^2+3} = \frac{-x^3+1}{4x^2+3}$$
 — функция не является ни четной, ни нечетной.

Рассмотрим некоторые задачи.

- **1.** Дана функция $f(x) = x^3 2x^2 + x 1$. Найти f(0), f(1), f(-1), f(2).
- \circ Чтобы вычислить значение f(0), надо в данную функцию вместо аргумента x подставить его значение x=0. Имеем $f(0)=0^3-2\cdot 0^2+0-1=-1$. Аналогично получим f(1)=-1, f(-1)=-5, f(2)=1.
 - 2. Найти области определения функций:

1)
$$y = x^2$$
; 2) $y = \frac{1}{x}$; 3) $y = \frac{1}{2x - 6}$; 4) $y = \frac{1}{x^2 - 5x + 6}$.

- \circ 1) Здесь на x не накладывается никаких ограничений, поэтому функция $y=x^2$ определена на множестве $\mathbb R$.
- 2) Если x = 0, то y не имеет числового значения (на нуль делить нельзя). Для всех значений (кроме нуля) y принимает действительные значения, поэтому областью определения служит вся числовая ось, кроме точки x = 0.
- 3) Функция определена для всех значений x, кроме тех, при которых знаменатель дроби обращается в нуль. Решив уравнение 2x 6 = 0, найдем его корень x = 3. Таким образом, область определения D(y) есть вся числовая ось, кроме точки x = 3.
- 4) Функция определена для всех значений аргумента, кроме тех, при которых знаменатель обращается в нуль. Решив уравнение $x^2 5x + 6 = 0$, найдем его корни: $x_1 = 2$ и $x_2 = 3$. Следовательно, область определения D(y) вся числовая ось, кроме точек x = 2 и x = 3.

Найти области определения функций:

1)
$$y = \sqrt{x}$$
; 2) $y = \sqrt{2x-4}$; 3) $y = \sqrt{x} + \sqrt{x-1}$; 4) $y = \sqrt{\frac{3x-2}{2x+6}}$.

- 0 1) Квадратные корни определены для неотрицательных чисел. Поэтому функция $v = \sqrt{x}$ определена для всех значений x, удовлетворяющих неравенству $x \ge 0$, т. е. $0 \le D(y) < \infty$.
 - 2) Решив неравенство $2x 4 \ge 0$, получим $x \ge 2$, т. е. $2 \le D(y) < \infty$.
- 3) Найдем область определения каждого из слагаемых; общая часть этих областей и будет областью определения данной функции. Для первого слагаемого x > 0, а для второго x > 1. Тогда областью определения суммы $\sqrt{x} + \sqrt{x-1}$ служит промежуток $1 \le D(y) < \infty$.
- 4) Функция определена для всех значений х, удовлетворяющих неравенству $\frac{3x-2}{2x+6} \ge 0$. Таким образом,

$$\left(\frac{3x-2}{2x+6} \ge 0\right) \Leftrightarrow \begin{bmatrix} x \ge 2/3, \\ x > -3, \\ x \le 2/3, \\ x < -3. \end{bmatrix} \Leftrightarrow \begin{bmatrix} x \ge 2/3, \\ x < -3. \end{bmatrix}$$

Следовательно, областью определения функции является совокупность проме-

жутков:
$$D(y) = \begin{bmatrix} x < -3, \\ x \ge 2/3. \end{bmatrix}$$

Задачи для самостоятельного решения.

- **4.** 1) Дана функция $F(x) = x^4 x^3 + 2x^2 + 4$. Найдите F(0), F(-1) и F(2).
- 2) Дана функция $s(t) = t^2 6t + 8$. Найдите s(0), s(-1) и s(2).
- **5.** 1) Дана функция $f(x) = x^4 x^2 + 1$. Покажите, что f(1) = f(-1).
- 2) Дана функция $f(x) = x^4 + x^2 + 5$. Покажите, что f(2) = f(-2).
- **6.** 1) Дана функция $f(x) = x^3 + x$. Покажите, что f(1) = -f(-1).
- 2) Дана функция $f(x) = x^5 + x^3$. Покажите, что f(2) = -f(-2).

Найдите области определения функций:

7. 1)
$$y = x^2$$
; 2) $y = x^2 - 1$; 3) $y = x^3 + 1$.

8. 1)
$$y = \frac{1}{4x - 2}$$
; 2) $y = \frac{x + 2}{2x - 8}$; 3) $y = \frac{x^2 - 4}{x + 2}$.

Домашнее задание:

Глава 7 «Графики и функции», занятие 1 «Обзор общих понятий», стр учебник Башмаков М.И. Математика: алгебра 122-126 математического анализа, геометрия: учеб. для студ. учреждений сред.проф.

образования/ М.И. Башмаков. — 4-е изд., стер. — М. : ИЦ «Академия», 2017, - 256 с.

В случае отсутствия печатного издания, Вы можете обратиться к Электронно-библиотечной системе.

Список использованных интернет-ресурсов:

- 1. https://urait.ru/
- 2. https://www.resolventa.ru/
- 3. https://egemaximum.ru/
- 4. https://infourok.ru/videouroki