知能機械設計演習 Practicum in Intelligent Machine Design

MATLAB/Simulinkの基礎2 MATLAB/Simulink Basics Tutorial 2

生命体工学研究科 人間知能システム工学専攻 s-yasukawa@brain.kyutech.ac.jp 安川 真輔 Shinsuke Yasukawa

Outline

Simulinkの基礎

Simulinkを用いたマニピュレータ制御

Stateflowの基礎

About Simulink

MATLABとSimulinkの関係は?

MATLAB

- ・対話型プログラミング環境
- ・高度な科学技術計算向け関数
- ・様々なデータ可視化
- ・C, java, .NET, Python などの言語との容易な接続

Simulink

- ・ブロック線図モデリング
- ・豊富なブロックライブラリ
- ・統合シミュレーション環境

Stateflow

-Simulinkの基礎-

Simulinkの基礎

Simulinkの操作法

- ・Simulinkライブラリ
- ・ 基本機能の確認
- ・ブロックの配置
- ・結線の方法
- ・ブロックのコピー
- ・ブロック及びラインの削除
- ・シミュレーションの実行

例: electric circuit model simulation (1/2)

RL並列回路 Step response コイル*L*に流れる電流*i*_i

$$R_1(i_L + i_{R2}) + R_2 i_{R2} = E$$

$$L\frac{\mathrm{d}i_L}{\mathrm{d}t} = R_2 i_{R2}$$

$$\frac{\mathrm{d}i_L}{\mathrm{d}t} = \frac{1}{L} \frac{R_2}{R_1 + R_2} (E - R_1 i_L)$$

$$i_R = \frac{E}{R_1 + R_2} - \frac{R_1}{R_1 + R_2} i_L$$

$$E=5$$
 $R_1=2$
 $R_2=0.5$
 $L=1$

ラプラス変換

$$sI_L = (1/L)(R_2/(R_1 + R_2))(E - R_1I_L)$$

$$I_R = (E/(R_1 + R_2)) - (R_1/(R_1 + R_2))I_L$$

例: electric circuit model simulation (2/2)

例:spring-scale with weights (1/2)

- ・2つのバネで垂直に釣り下がったおもり
- ・下方へx0だけずらして、手を放す

$$m\ddot{x} = mg - k_1 x - k_2 x - c\dot{x}$$

$$\ddot{x} = -\frac{(k_1 + k_2)}{m} x - \frac{c}{m} \dot{x} + g$$

$$s^2X = -((k_1+k_2)/m)X - (c/m)sX + g$$

$$c=0.2,$$
 $k_1=k_2=10,$
 $m=2,$
 $x_0=1$

シミュレーション時間:0~20

例: Mass-Spring-Damper System(1/2)

Step response

$$\ddot{x} = \frac{1}{m}(f - c\dot{x} - kx)$$

m:滑車の質量

k:バネ係数

```
c=1,
k=10,
m=1,
f=1,
T=1:0.001:7;
シミュレーション時間: 0-10sec
[t
y]=sim('MassSpringDamper',[0 T
10])
Plot(t,y)
```


Subsystem, MATLAB function & S-function

system

MATLAB Function, S-function

Simulinkによる マニピュレータ制御

1リンクのロボットマニピュレータの位置制御

- 1. マニピュレータの位置目標の軌道関数(参照軌道)の計算
 - ・マニピュレータの動作を定める 時系列の軌跡関数の計算
- 2. マニピュレータの機構系・電気系のモデリング(マルチドメインモデリング)
 - ・プラント 機構のリンクと減速機, DCモータ
- 3. 制御系設計
 - ・制御器 制御測としてPID制御を採用
- 4. 制御系性能評価
 - ・PID制御の性能の評価

制御対象(プラント)とマニピュレータの動作仕様(1/2)

[プラントの構成]

- ○剛体のマニピュレータ
 - ・リンク&DCモータ&減速機

Oリンクについて

- ・回転部はz軸回りの回転の1自由度
- ·xy平面を水平に動作する.
- ・z軸の負方向に働く重力の影響は無視
- ・1つの剛体であり、長方形。
- ・リンクの回転部にはモータと減速機と角度センサがつく.
- ・リンクの回転部における粘性力は考慮.

[マニピュレータの動作仕様]

・位置,速度,加速度が連続性を保持するように軌道関数を設計する.

制御対象(プラント)とマニピュレータの動作仕様(2/2)

[プラントのパラメータ]

A. リンク

特件	記号	値	備考
材質	_	アルミニウム	リンクの密度は
長さ	/ 1	0.2[m]	$r_o = 2690 [\text{kg/m}^3]$
幅	W_1	0.01[m]	慣性モーメントは
高さ	h_1	0.004[m]	右図の座標系の
質量	m_1	0.0215[kg]	各座標周りの値
慣性モーメント	I_{xxg1}	7.1973e-005[kg·m²]	
	$I_{ m yyg1}$	2.0873e-007[kg·m²]	
	$I_{\sf zzg1}$	7.1762e-005[kg·m²]	
リンクの端から 重心までの長さ	r_1	0.1[m]	
粘性係数	C ₁	0.0001[N·s/rad]	リンクの回転部の 粘性係数

B. DCモータと減速機

特性	記号	値	備考
電機子(回転子)抵抗	R_{a}	10[Ω]	_
電機子インダクタンス	La	4.4e-3[H]	_
トルク定数	K_{t}	0.05[Nm/A]	_
逆起定数	Ke	0.05[Vs/rad]	K _t =K _e が成立する
ロータの慣性モーメント	J	1e-5[kg·m²]	_
粘性トルク係数	B _m	1e-6[N·s/rad]	_
特性	記号	値	備考
ギア比	N		モータ側歯車の歯数/負荷側歯車 の歯数=1/N
伝達効率	Е	0.7	

慣性モーメント (角加速のしにくさ)

リンクの質量

$$m_1 = r_0 \times l_1 \times w_1 \times h_1$$

$$I_{xxg1} = \frac{1}{12} m_1 (w_1^2 + h_1^2)$$

$$I_{yyg1} = \frac{1}{12} m_1 (l_1^2 + h_1^2)$$

$$I_{zzg1} = \frac{1}{12} m_1 (l_1^2 + w_1^2)$$

位置目標の軌道関数(参照軌道)計算(1/3)

〇軌道関数作成

参照軌道の軌道関数の設計 $\eta(t) = \theta^*$

$$\eta(0) = \eta_0 \qquad \dot{\eta}(0) = \dot{\eta}_0 \qquad \ddot{\eta}(0) = \ddot{\eta}_0
\eta(t_f) = \eta_f \qquad \dot{\eta}(t_f) = \dot{\eta}_f \qquad \ddot{\eta}(t_f) = \ddot{\eta}_f$$

上記の境界条件を満たす最低次数の関数

$$\eta(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5
\dot{\eta}(t) = a_1 + 2a_2 t + 3a_3 t^2 + 4a_4 t^3 + 5a_5 t^4
\ddot{\eta}(t) = 2a_2 t + 6a_3 t^2 + 12a_4 t^2 + 20a_5 t^3$$

$$\begin{bmatrix} \eta(0) \\ \dot{\eta}(0) \\ \ddot{\eta}(0) \\ \dot{\eta}(t_f) \\ \dot{\eta}(t_f) \\ \ddot{\eta}(t_f) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 1 & t_f & t_f^2 & t_f^3 & t_f^4 & t_f^5 \\ 0 & 1 & 2t_f & 3t_f^2 & 4t_f^3 & 5t_f^4 \\ 0 & 0 & 2 & 6t_f & 12t_f^2 & 20t_f^3 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}$$

$$\eta = Ka$$
 $a = K^{-1}\eta$

→Symbolic Math Toolboxによるスクリプト syms(シンボリック変数の宣言)

Symbolic_sample1.m

$$\Rightarrow a_0 = \eta_0 \quad a_1 = \dot{\eta}_0 \quad a_2 = \frac{1}{2} \ddot{\eta}_0$$

$$a_3 = \frac{1}{2t_f^3} \{ (-3\ddot{\eta}_0 + \ddot{\eta}_f) t_f^2 + (-12\dot{\eta}_0 - 8\dot{\eta}_f) t_f - 20\eta_0 + 20\eta_f \}$$

$$a_4 = \frac{1}{2t_f^4} \{ (3\ddot{\eta}_0 - 2\ddot{\eta}_f) t_f^2 + (16\dot{\eta}_0 + 14\dot{\eta}_f) t_f + 30\eta_0 - 30\eta_f \}$$

$$a_5 = \frac{1}{2t_f^5} \{ (-\ddot{\eta}_0 + \ddot{\eta}_f) t_f^2 + (-6\dot{\eta}_0 - 6\dot{\eta}_f) t_f - 12\eta_0 + 12\eta_f \}$$

位置目標の軌道関数(参照軌道)計算(2/3)

A. 加速区間(0≤t≤2Δ)

$$t_0 = 0, t_f = 2\Delta, \dot{\eta}_0 = 0, \ddot{\eta}_0 = 0, \eta_f = \Delta\pi, \dot{\eta}_f = \pi$$

Symbolic_sample2.m

$$\eta(t): \theta^*(t) = \frac{\pi}{4\Delta^2} t^3 - \frac{\pi}{16\Delta^3} t^4$$

B. 等速区間(2Δ≤t≤2.5-2Δ)

傾き π , 切片 $\Delta\pi$ の直線になるので

$$\eta(t): \theta^*(t) = \Delta \pi + \pi(t - 2\Delta)$$

C. 減速区間(2.5-2Δ≤t≤2.5)

$$t_0 = 2$$
, $t_f = 2.5$, $\eta_0 = 2\pi - \Delta \pi$, $\dot{\eta}_0 = \pi$, $\ddot{\eta}_0 = 0$, $\eta_f = 2\pi$, $\dot{\eta}_f = 0$, $\ddot{\eta}_f = 0$

Symbolic_sample3.m

$$\eta(t): \ \theta^*(t) = 2\pi - \Delta\pi + \pi(t-2) - \frac{\pi}{4\Delta^2}(t-2)^3 - \frac{\pi}{16\Delta^3}(t-2)^4$$

位置目標の軌道関数(参照軌道)計算(3/3)

プラントモデリング-機構系-(1/3)

〇ラグランジュ法について

$$\begin{split} \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} + \frac{\partial D}{\partial \dot{q}_i} &= u_i \\ L &= T - U \qquad U \\ \text{は} \dot{q}_i \, \text{の頃に依存しない} \\ \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} + \frac{\partial D}{\partial \dot{q}_i} &= u_i \end{split}$$

・損失エネルギーD(リンク回転部の粘性摩擦を考慮)

$$D = \frac{1}{2} \sum_{i} c_i \dot{q}_i^2 \qquad c_i$$
:粘性摩擦係数

- •手順
- (1) システムの一般化座標 $q_i(i=1,\ldots,n)$ 、一般化力 u_i を設定する
- (2) システムの運動エネルギー*T*、損失エネルギー*D*、ポテンシャルエネルギー*U*を計算する.
- (3) (2)の計算結果を順次微分し、式に代入

〇ラグランジュ法によるリンクの数式モデル導出

- ・リンクの運動エネルギー
- ・モータ・ギアの質量, 慣性の影響は無視
- ・固定座標系(0), リンクに固定した座標系(1)

$${}^{(0)}X = \begin{bmatrix} {}^{(0)}x \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{0}x \\ {}^{0}y \\ {}^{0}z \\ 1 \end{bmatrix} \quad {}^{(1)}X = \begin{bmatrix} {}^{(1)}x \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{1}x \\ {}^{1}y \\ {}^{1}z \\ 1 \end{bmatrix}$$

・座標系(0)から(1)への変換の同次変換行列表示

$$A_1 = \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 & 0 & 0\\ \sin\theta_1 & \cos\theta_1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

プラントモデリング-機構系-(2/3)

リンク1の重心点

Symbolic sample4.m

$$P_{g1} = A_1 \begin{bmatrix} r_1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$P_{g1} = A_1 \begin{bmatrix} r_1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \qquad P_{g1} = \begin{bmatrix} \cos\theta_1 r_1 \\ \sin\theta_1 r_1 \\ 0 \\ 1 \end{bmatrix}$$

重心の固定座標系に関する 並進速度ベクトル V_{a1} (時間微分)

Symbolic_sample5.m

$$V_{g1} = \begin{bmatrix} -r_1 sin\theta_1 \dot{\theta}_1 \\ r_1 cos\theta_1 \dot{\theta}_1 \\ 0 \end{bmatrix}$$

(1)からみた角速度ベクトル $^{1}\omega$

$$\hat{z}_1: z_1$$
軸方向の
単位ベクトル
 $\hat{\theta}_1: z_1$ 軸を軸
とした角速度

リンクの運動エネルギーk1

$$k_1 = \frac{1}{2} m_1 v_{g1}^T v_{g1} + \frac{1}{2} \omega^T I_{zzg1}^T \omega$$

並進運動エネルギー 回転運動エネルギー

$$k_{1} = \frac{1}{2} m_{1} \begin{bmatrix} -r_{1} sin\theta_{1} \dot{\theta}_{1} \\ r_{1} cos\theta_{1} \dot{\theta}_{1} \\ 0 \end{bmatrix}^{T} \begin{bmatrix} -r_{1} sin\theta_{1} \dot{\theta}_{1} \\ r_{1} cos\theta_{1} \dot{\theta}_{1} \\ 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 \\ 0 \\ \dot{\theta} \end{bmatrix}^{T} I_{zzg1} \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix}$$

全エネルギー (ポテンシャルエネルギー0→ラグランジュ関数L)

$$T = k_1 = \frac{1}{2} m_1 r_1^2 \dot{\theta}_1^2 + \frac{1}{2} I_{zzg1} \dot{\theta}_1^2$$
 Symbolic_sample6.m

粘性摩擦を考慮して

$$\frac{\partial D}{\partial \dot{q}_i} = \partial \left(\frac{1}{2} \sum c_i \, \dot{q}_i^2 \right) / \partial \dot{q}_i$$

運動方程式の各項の計算(一般化力 $u_1 = \tau_1$ 、一般化座標 $q_1 = \theta_1$)

$$\begin{split} \frac{\partial L}{\partial \dot{\theta}_1} &= m_1 r_1^2 \dot{\theta}_1 + I_{zzg1} \dot{\theta}_1 & \frac{\partial L}{\partial \theta_1} = 0 & \text{粘性摩擦の項} \\ \frac{d}{d} \left(\frac{\partial L}{\partial \dot{\theta}} \right) &= m_1 r_1^2 \ddot{\theta}_1 + I_{zzg1} \ddot{\theta}_1 & \frac{\partial D}{\partial \dot{\theta}} &= \frac{\partial \left(\frac{1}{2} c_1 \dot{\theta}_1^2 \right)}{\partial \dot{\theta}_1} = c_1 \dot{\theta}_1 \end{split}$$

リンクの数式モデル

$$(m_1 r_1^2 + I_{zzq1}) \ddot{\theta} + c_1 \dot{\theta}_1 = \tau_1$$

プラントモデリング-機構系-(3/3)

OSimulink上でのモデル作成

○初期化パラメータの記述

```
%機構系パラメータ
l1 = 0.2;%リンク1の長さ[m]
w1 = 0.01;%リンク1の幅[m]
h1 = 0.004;%リンク1の高さ[m]
r1 = 0.1;%リンク1の端点から重心までの長さ[m]
ro = 2.69*1e-3*1e6%リンク1の材料密度[Kg*m^(-3)]
m1 = l1*w1*h1*ro%リンク1の質量[Kg]
Izzg1 = (1/12)*m1*(w1^2+l1^2)%リンク1の慣性モーメント zz[kg*m^2]
Ixxg1 = (1/12)*m1*(w1^2+h1^2)%リンク1の慣性モーメント xx[kg*m^2]
Iyyg1 = (1/12)*m1*(l1^2+h1^2)%リンク1の慣性モーメント yy[kg*m^2]
c1 = 0.001;%リンク1の粘性係数[N*s/rad]
```

プラントモデリング-電気系-(1/2)

ODCモータの動特性モデリング

(時間によって変化する過渡応答)

モータの生成トルク T_e モータの電機子電流 i_a

$$T_e = K_t i_a \ (K_t :$$
トルク定数)

 \Box -タの慣性 $J[kg \cdot m^2]$

粘性摩擦 $B_m[\mathbf{N} \cdot \mathbf{m} \cdot \mathbf{s}]$

実際負荷側に与えられるトルクT

$$T = T_e - \left(J\ddot{\theta} + B_m\dot{\theta}\right)$$

入力電圧

$$v = R_e i_a + L_a \frac{di_a}{dt} + K_e \frac{d\theta}{dt}$$

〇減速機(ギア)の静特性モデリング

(時間によって変化しない定常応答)

歯車1の歯数 n_1 $N = n_2/n_1$ 歯車2の歯数 n_2

ラプラス変換後, $i_a(s)$ について整理すると

$$i_a(s) = \frac{1}{(L_a s + R_a)} v(s) - \frac{K_e s}{(L_a s + R_a)} \theta(s)$$

比例係数(伝達効率) E

$$au_2 = (n_2/n_1)(au_1 - c au_1) = N \cdot (1-c) \cdot au_1 = N \cdot E \cdot au_1$$
 $au_1 = N \cdot au_2$

摩擦トルク

を考慮

プラントモデリング-電気系-(2/2)

OSimulink上でのモデル作成

○初期化パラメータの記述

%電気系パラメータ

Ra = 10;%電機子抵抗[Ω]

La = 4.4e-3;%電機子インダクタンス[H]

Kt = 0.05;%トルク定数[N*m/A]

Ke = Kt;%逆起電力定数[V*s/rad]

J = 1e-5;%電機子の慣性モーメント[kg*m^2]

Bm = 1e-6;% 電機子の粘性トルク係数[N*s/rad]

%減速機パラメータ

N = 100;%ギア比[-]

E = 0.7;%伝達効率[-]

PID制御器のモデリング(1/2)

○制御系の構造

・PID制御則を採用

参照軌道 $\theta^*(t)$ に角度センサ値 $\theta(t)$ を追従制御する

- 1.偏差 $\theta^*(t) \theta(t)$ から計算された電圧vが、上下限リミットを介してDCモータに入力.
- 2. DCモータ電圧Vとモータの電機子の回転角度 $N\theta(t)$ を入力として電機子電流 i_a を計算し、それをモータ出力トルク τ に換算
- 3.モータの出力するトルクは機械系動特性として ロータの慣性と粘性摩擦を考慮する. モータ出力トルク τ はギアを介して間接駆動トルク $NE\tau$ に変換.
- 4. この間接駆動トルクがリンクに入力されて θ が出力される.

OPID制御

$$u(t) = k_p(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de(t)}{dt})$$

$$U(s) = k_p \left(1 + \frac{1}{T_i s} + T_d s \right) E(s)$$

$$U(s)/E(s) = k_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$

PID制御器のモデリング(2/2)

OSimulink上でのモデル作成

○初期化パラメータの記述

%PID制御パラメータ Kp =100;%比例ゲイン Ti =0.1;%積分時間 Td =3;%微分時間 eta=0.1;%近似微分パラメータη

モデルの統合と実行

- 1. 初期化スクリプトの実行
- 2. Simulinkモデルの実行
- 3. スコープの表示
- 4. プロット関数で軌跡描画

Reporting assignment 2

・1リンクのロボットマニピュレータの位置制御のSimulinkモデルを完成させて, 0.1s周期でサンプリングしたマニピュレータの軌跡を描画すること. 結果の描画には加速区間、等速区間、減速区間で色分けするなど工夫すること.

6/4(火)の授業開始までにメールで提出すること s-yasukawa@brain.kyutech.ac.jp

Stateflowの基礎

Stateflowの基礎(1/4)

例. Stateflowによる自動販売機(vending machine)の論理設計

50円, 100円の2種類に硬貨を受け付け, 150円の商品1種類を販売する自動販売機の設計

·input: {なし,50円投入,100円投入}

・output: {なし, 商品排出, おつり50円排出,

商品とおつり50円排出}

·state: {累積金額0円,累積金額50円,

累積金額100円}

Stateflowの基礎(2/4)

Stateflowの基礎(3/4)

Stateflow: input port/output port Model Explorer

Simulink: Sample rate

Stateflowの基礎(4/4)

その他の話題

C-MEX

MEX-function

https://www.mathworks.com/help/matlab/write-cc-mex-files.html

Reporting assignment 3

- ・ロボットの動作モードを二つの音で変更できるようにしたい.
- ・ここでコンコンと机をたたく音, もしくは口笛でモードが変更できるようにする.
- ・そのための以下の仕様のステートマシンを開発せよ.

(After lecture, I inform reporting assignments with E-mail in English)F

モード0(出力:0)

机をたたく音が聞こえたらモード1へ

口笛が聞こえたらモード2へ

モード1(出力:1)

20秒後, モード1へ

モード2(出力:2)

20秒後, モード0へ

URL: https://github.com/syasukawa/PIMDst/02

にある音声データ1, 2, 3もしくは

を使ってテストせよ.