equivalently if $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$.	
 f is surjective if ∀y ∃x : f(x) = y. f is bijective if is both injective and surjective or equivalently if each y mapped to exactly one x. 1. The Real Numbers 1.1. Reals 	/ is
1.1.1. Comparison Definition 1.1.1 (Equality) $a = b \iff (\forall \varepsilon > 0 \Rightarrow a - b < \varepsilon)$ Theorem 1.1.2 (Triangle Inequalities)	
 (i) a + b ≤ a + b (ii) a - b ≤ a - c + c - b (iii) a - b ≥ a - b The reverse triangle inequality (iii) is seldom used. 1.1.2. Bounds Axiom 1.1.3 (Supremum Property or Axiom of Completeness) 	s)
Every bounded, non-empty set of real numbers has a least upper bound. i Note The same does not apply for the rationals. Definition 1.1.4 (Least Upper Bound)	nd.
Assume $s \in \mathbb{R}$ is an upper bound for a set $A \subseteq \mathbb{R}$. Then, $s = \sup A \iff \forall \varepsilon > 0 \; \exists a \in A : s - \varepsilon < a.$ 1.2. CARDINALITY Definition 1.2.1 (Cardinality) A has the same cardinality as B if there exists a bijective $f : A \to B$.	
Definition 1.2.2 (Countable/Uncountable) A is countable if $\mathbb{N} \sim A$. Otherwise, A is uncountable if there are infinite elements or finite if there are finite elements. Theorem 1.2.3 (Countability of \mathbb{Q} , \mathbb{R})	te
$\mathbb Q$ is countable. $Proof.$ Let $A_1=\{0\}$ and let $A_n=\{\pm p/q: p,q\in \mathbb N_+,\gcd(p,q)=1, p+q=n\}$ for all $n\geq 2.$ Each A_n is finite and every rational numbers appears in exactly one set. $\mathbb R \text{ is uncountable.}$	[
Proof. Cantor's diagonalization method. I is uncountable. Proof. $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$ where \mathbb{Q} is countable. Theorem 1.2.4 (Density of \mathbb{Q} in \mathbb{R}) (i) $\forall a < b \in \mathbb{R} \ \exists r \in \mathbb{Q} : a < r < b$	
(ii) $\forall y \in \mathbb{R} \ \exists (r_n) \in \mathbb{Q} : (r_n) \to y$ 1.3. Topology 1.3.1. Points Definition 1.3.1 (Limit Point) x is a $limit \ point$ of A if every $V_{\varepsilon}(x)$ intersects A at some point other	
than x . Theorem 1.3.2 (Sequential Limit Point) x is a limit point of A if $x = \lim a_n$ for some $(a_n) \subseteq A : a_n \neq x \ \forall n \in \mathbb{N}$ Theorem 1.3.3 (Nested Interval Property)	∢.
 The intervals R ⊇ I₁ ⊇ I₂ ⊇ I₃ ⊇ ··· all contain a point a = ⋂_{n=1}[∞] I_n. 1.3.2. Opened and Closed Sets Definition 1.3.4 (Open/Closed Set) A ⊆ R is open if ∀a ∈ A ∃V_ε(a) ⊆ A or equivalently if its complement closed. 	is
$A \subseteq \mathbb{R}$ is closed if it contains its limit points or equivalently if its complement is open. Theorem 1.3.5 (Clopen Sets) \mathbb{R} and \emptyset are clopen (both opened and closed). Theorem 1.3.6 (Unions/Intersections)	
The union of open (closed) sets is open (closed). The intersection of finitely many open (closed) sets is open (closed). 1.3.3. Compactness Definition 1.3.7 (Compact) A set K in a topological space is compact if every open cover has a finite set.	ite
subcover.	
Compactness is like a generalization of closed intervals. 1.4. SEQUENCES Definition 1.4.1 (Sequence) A sequence is a function whose domain is \mathbb{N} .	
Definition 1.4.2 (Convergence)	er
We write this $\lim_{n\to\infty}a_n=\lim a_n=a$ or $a_n\to a$. Example. Template of a typical convergence proof: (i) Let $\varepsilon>0$ be arbitrary. (ii) Propose an $N\in\mathbb{N}$ (found before writing the proof). (iii) Assume $n\geq N$. (iv) Show that $ a_n-a <\varepsilon$.	
Theorem 1.4.3 (Uniqueness of Limits) The limit of a sequence, if it exists, is unique. 1.4.1. Bounded Definition 1.4.4 (Bounded) A sequence is bounded if $\exists M > 0 : a_n < M \ \forall n \in \mathbb{N}$.	
Theorem 1.4.5 (Convergent/Monotone) Every convergent series is bounded. If a sequence is monotone and bounded it converges. Subsequences of a convergent series converge to the same limit.	
Theorem 1.4.6 (Bolzano-Weierstrass) Every bounded sequence contains a convergent subsequence. 1.4.2. Cauchy Definition 1.4.7 (Cauchy Sequence) A sequence (a_n) is a Cauchy sequence if	
$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : m, n \geq N \Longrightarrow a_n - a_m < \varepsilon.$ Theorem 1.4.8 (Cauchy Criterion) A sequence converges if and only if it is a Cauchy sequence. 1.5. SERIES	
Definition 1.5.1 (Infinite Series) Let $(a_j)_{j=0}^{\infty}$ and let $(s_n)_{n=0}^{\infty}$. The sum of the infinite series is defined a $\sum_{j=0}^{\infty} a_j = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{j=0}^n a_j.$! Caution	\mathbf{S}
Beware of treating infinite series like elementary algebra, e.g., by rearranging terms. Theorem 1.5.2 (Series Term Test) If $\sum_{k=1}^{\infty} a_k$ converges, then $a_k \to 0$.	
Theorem 1.5.3 (Cauchy Condensation Test) Let (a_n) be a decreasing sequence of non-negative real numbers. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges. Theorem 1.5.4 (Comparison Test) Let (a_k) and (b_k) satisfy $0 \le a_k \le b_k$. Then,	
(i) $\sum_{k=1}^{\infty} (a_k)$ converges if $\sum_{k=1}^{\infty} (b_k)$ converges. (ii) $\sum_{k=1}^{\infty} (b_k)$ diverges if $\sum_{k=1}^{\infty} (a_k)$ diverges. Theorem 1.5.5 (Alternating Series Test) Let (a_n) satisfy (i) $a_1 \geq a_2 \geq \cdots \geq a_n \geq a_{n+1} \geq \cdots$ and (ii) $(a_n) \to 0$.	
Then, $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges. 2. Real functions 2.1. Limits Theorem 2.1.1 (Function Limit)	
Given $f:A\to\mathbb{R}$ with the limit point c , (i) $\lim_{x\to c}f(x)=L$ is equivalent to (ii) if $\forall (x_n)\subseteq A: (x_n\neq c \text{ and } x_n\to c)$ it follows that $f(x_n)\to L$. (i) Note In the $\varepsilon\delta$ -definition of limits, the additional restriction that $0< x-a $	i
just a way to say $x \neq c$. Definition 2.1.2 (Infinite Limit) Given a limit point $c \in D_f$, we say that $\lim_{x \to c} f(x) = \infty$ if $\forall M \; \exists \delta > 0 : 0 < x - c < \delta \Longrightarrow f(x) \geq M$. 2.2. Continuity	
Theorem 2.2.1 (Continuity) The following are equivalent: (i) $f: A \to \mathbb{R}$ is continuous at $c \in \mathbb{R}$. (ii) $\forall \varepsilon > 0 \; \exists \delta > 0: x - c < \delta \Longrightarrow f(x) - f(c) < \varepsilon$, where $x \in A$. (iii) $\forall V_{\varepsilon}(f(c)) \; \exists V_{\delta}(c): x \in V_{\delta} \cap A \Longrightarrow f(x) \in V_{\varepsilon}$ (iv) $x_n \to c$, where $(x_n) \subseteq A$, implies $f(x_n) \to f(c)$.	
If c is a limit point of A : (v) $\lim_{x\to c} f(x) = f(c)$, also written $\lim_{h\to 0} f(c+h) - f(c) = 0$. Note that (ii) defines (i). Mostly (v) is used in practice. Theorem 2.2.2 (Isolated Continuity) All functions are continuous at isolated points.	
Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{I}$ is discontinuous everywhere. 2.2.1. Composition	
Theorem 2.2.4 (Composition) Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at A and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c . Theorem 2.2.5 (Composition Limit) If f is continuous at g and $\lim_{x \to c} g(x) = g$, then	c (
$\lim_{x\to c} f(g(x)) = f\left(\lim_{x\to c} g(x)\right) = f(y).$ 2.2.2. Results	e
 Theorem 2.2.7 (Weierstrass Extreme Value) If f is continuous on the compact set K, then f attains a maximum a a minimum value on K. 2.3. DERIVATIVES 2.3.1. Differentiation 	
	nd
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at c with $(g \circ f)'(c) = g'(f(c))f'(c).$	\mathbf{n} d
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at c with $ (g \circ f)'(c) = g'(f(c))f'(c). $ Theorem 2.3.2 (Basic Derivatives) $ \frac{\mathrm{d}}{\mathrm{d}x}(\arcsin x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x $ $ \frac{\mathrm{d}}{\mathrm{d}x}(\arccos x) = -\frac{1}{\sqrt{1-x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x $ $ \frac{\mathrm{d}}{\mathrm{d}x}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \frac{1}{\cos^2 x} $	nd
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at c with $ (g \circ f)'(c) = g'(f(c))f'(c). $ Theorem 2.3.2 (Basic Derivatives) $ \frac{\mathrm{d}}{\mathrm{d}x}(\arcsin x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$ $ \frac{\mathrm{d}}{\mathrm{d}x}(\arccos x) = -\frac{1}{\sqrt{1-x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$	
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at c with $(g \circ f)'(c) = g'(f(c))f'(c)$. Theorem 2.3.2 (Basic Derivatives) $\frac{\mathrm{d}}{\mathrm{d}x}(\arcsin x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$ $\frac{\mathrm{d}}{\mathrm{d}x}(\arccos x) = -\frac{1}{\sqrt{1-x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$ $\frac{\mathrm{d}}{\mathrm{d}x}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \frac{1}{\cos^2 x}$ $\frac{\mathrm{d}}{\mathrm{d}x}(\arccos x) = -\frac{1}{1+x^2} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$ $\frac{\mathrm{d}}{\mathrm{d}x}(x^a) = ax^{a-1} (a \neq 0) \qquad (f^{-1})'(y) = -\frac{1}{f'(x)} (f'(x) \neq 0)$ Theorem 2.3.3 (L'Hôpital's Rule)	
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at c with $(g \circ f)'(c) = g'(f(c))f'(c)$. Theorem 2.3.2 (Basic Derivatives) $\frac{\mathrm{d}}{\mathrm{d}x}(\arcsin x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$ $\frac{\mathrm{d}}{\mathrm{d}x}(\arccos x) = -\frac{1}{\sqrt{1-x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$ $\frac{\mathrm{d}}{\mathrm{d}x}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \frac{1}{\cos^2 x}$ $\frac{\mathrm{d}}{\mathrm{d}x}(\arccos x) = -\frac{1}{1+x^2} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$ $\frac{\mathrm{d}}{\mathrm{d}x}(x^a) = ax^{a-1} (a \neq 0) \qquad (f^{-1})'(y) = -\frac{1}{f'(x)} (f'(x) \neq 0)$ Theorem 2.3.3 (L'Hôpital's Rule) Let $f(x)$ and $g(x)$ be defined and, with the possible exception of at the limit point c , differentiable. If (i) $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = 0 \text{ or } \pm \infty$ and (ii) $g'(x) \neq 0$ for all $x \neq c$, then $\lim_{x\to c} \frac{f'(x)}{g'(x)} = L \implies \lim_{x\to c} \frac{f(x)}{g(x)} = L.$	
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at c with $(g \circ f)'(c) = g'(f(c))f'(c)$. Theorem 2.3.2 (Basic Derivatives) $\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\sin x) = \cos x$ $\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\cos x) = -\sin x$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = -\frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(x^a) = ax^{a-1} (a \neq 0) \qquad (f^{-1})'(y) = -\frac{1}{f'(x)} (f'(x) \neq 0)$ Theorem 2.3.3 (L'Hôpital's Rule) Let $f(x)$ and $g(x)$ be defined and, with the possible exception of at the limit point c , differentiable. If (i) $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0 \text{ or } \pm \infty$ and (ii) $g'(x) \neq 0$ for all $x \neq c$, then $\lim_{x \to c} \frac{f'(x)}{g'(x)} = L \implies \lim_{x \to c} \frac{f(x)}{g(x)} = L.$ Proof of the zero case. Assume the limits are zero. Let the functions be differentiable on the open interval (c, x) . Then, rewriting and applying Theorem 2.3.9 gives $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f(x) - f(c)}{g(x) - g(c)} = \lim_{x \to c} \frac{f'(p)}{g'(p)} = \lim_{p \to c} \frac{f'(p)}{g'(p)}$ for some p between c and x . Proof of the infinity case. The proof is too complicated. Limportant This is only an implication, not an equivalence, so there may exist so other solution if this method fails.	e
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at c with $(g \circ f)'(c) = g'(f(c))f'(c).$ Theorem 2.3.2 (Basic Derivatives) $\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\sin x) = \cos x$ $\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\cos x) = -\sin x$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(a^{2} - a^{2} - a^{2}) \qquad (f^{-1})'(y) = -\frac{1}{f'(x)} \qquad (f'(x) \neq 0)$ Theorem 2.3.3 (L'Hôpital's Rule) Let $f(x)$ and $g(x)$ be defined and, with the possible exception of at the limit point c , differentiable. If (i) $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0 \text{ or } \pm \infty$ and (ii) $g'(x) \neq 0$ for all $x \neq c$, then $\lim_{x \to c} \frac{f'(x)}{g'(x)} = L \implies \lim_{x \to c} \frac{f(x)}{g(x)} = L.$ Proof of the zero case. Assume the limits are zero. Let the functions be differentiable on the open interval (c, x) . Then, rewriting and applying Theorem 2.3.9 gives $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g(x) - g(c)} = \lim_{x \to c} \frac{f'(p)}{g'(p)} = \lim_{p \to c} \frac{f'(p)}{g'(p)}$ for some p between c and x . Proof of the infinity case. The proof is too complicated. Limportant This is only an implication, not an equivalence, so there may exist sor other solution if this method fails. 2.3.2. Function Character Theorem 2.3.4 (Fermat's or Interior Extremum) Let $f: (a,b) \to \mathbb{R}$ be differentiable at the local extremum $c \in (a,b)$. Then $f'(x) = 0$. However, note that a zero-derivative point may also be a stationary point of inflection.	e
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at c with $(g \circ f)'(c) = g'(f(c))f'(c)$. Theorem 2.3.2 (Basic Derivatives) $\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\sin x) = \cos x$ $\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\cos x) = -\sin x$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(x^2) = ax^{a-1} (a \neq 0) \qquad (f^{-1})'(y) = -\frac{1}{f'(x)} (f'(x) \neq 0)$ Theorem 2.3.3 (L'Hôpital's Rule) Let $f(x)$ and $g(x)$ be defined and, with the possible exception of at the limit point c , differentiable. If (i) $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = 0 \text{ or } \pm \infty$ and (ii) $g'(x) \neq 0$ for all $x \neq c$, then $\lim_{x\to c} \frac{f'(x)}{g'(x)} = L \implies \lim_{x\to c} \frac{f(x)}{g'(x)} = L.$ Proof of the zero case. Assume the limits are zero. Let the functions be differentiable on the open interval (c, x) . Then, rewriting and applying Theorem 2.3.9 gives $\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f(x) - f(c)}{g'(x)} = \lim_{x\to c} \frac{f'(y)}{g'(y)} = \lim_{y\to c} \frac{f'(y)}{g'(y)}$ for some p between c and x . Proof of the infinity case. The proof is too complicated. Li Important This is only an implication, not an equivalence, so there may exist sor other solution if this method fails. 2.3.2. Function Character Theorem 2.3.4 (Fermat's or Interior Extremum) Let $f: (a, b) \to \mathbb{R}$ be differentiable at the local extremum $c \in (a, b)$. Then $f'(x) = 0$. However, note that a zero-derivative point may also be a stationary point of inflection. Theorem 2.3.5 (Darboux's) If f is differentiable on $[a, b]$ and if y lies strictly between $f'(a)$ and $f'(b)$, then $\exists c \in (a, b)$ if $f'(c) = y$. In other words, if f is differentiable on an interval, then f' satisfies the Intermediate Value Property (IVP). Proof. Assume that $f'(a) < y < f'(b)$.	e E
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at c with $(g \circ f)'(c) = g'(f(c))f'(c)$. Theorem 2.3.2 (Basic Derivatives) $\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\sin x) = \cos x$ $\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\cos x) = -\sin x$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(x^a) = ax^{a-1} (a \neq 0) \qquad (f^{-1})'(y) = -\frac{1}{f'(x)} (f'(x) \neq 0)$ Theorem 2.3.3 (L'Hôpital's Rule) Let $f(x)$ and $g(x)$ be defined and, with the possible exception of at the limit point c , differentiable. If (i) $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = 0 \text{ or } \pm \infty$ and (ii) $g'(x) \neq 0$ for all $x \neq c$, then $\lim_{x\to c} \frac{f'(x)}{g'(x)} = L \implies \lim_{x\to c} \frac{f(x)}{g(x)} = L.$ Proof of the zero case. Assume the limits are zero. Let the functions be differentiable on the open interval (c, x) . Then, rewriting and applying Theorem 2.3.9 gives $\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f(x) - f(c)}{g(x) - g(c)} = \lim_{x\to c} \frac{f'(p)}{g'(p)} = \lim_{p\to c} \frac{f'(p)}{g'(p)}$ for some p between c and x . Proof of the infinity case. The proof is too complicated. Let $f(x) = 0$. Theorem 2.3.4 (Fermat's or Interior Extremum) Let $f: (a, b) \to \mathbb{R}$ be differentiable at the local extremum $c \in (a, b)$. Then $f'(x) = 0$. However, note that a zero-derivative point may also be a stationary point of inflection. Theorem 2.3.5 (Darboux's) If f is differentiable on a , b and if y lies strictly between $f'(a)$ and $f'(b)$, then $\exists c \in (a, b) : f'(c) = y$. In other words, if f is differentiable on an interval, then f' satisfies the Intermediate Value Property (IVP).	e
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at c with $(g \circ f)'(c) = g'(f(c))f'(c).$ Theorem 2.3.2 (Basic Derivatives) $\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\sin x) = \cos x$ $\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\cos x) = -\sin x$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(x^a) = ax^{a-1} (a \neq 0) \qquad (f^{-1})'(y) = -\frac{1}{f'(x)} (f'(x) \neq 0)$ Theorem 2.3.3 (L'Hôpital's Rule) Let $f(x)$ and $g(x)$ be defined and, with the possible exception of at the limit point c , differentiable. If (i) $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0$ or $\pm \infty$ and (ii) $g'(x) \neq 0$ for all $x \neq c$, then $\lim_{x \to c} \frac{f'(x)}{g(x)} = L \implies \lim_{x \to c} \frac{f(x)}{g(x)} = L.$ Proof of the zero case. Assume the limits are zero. Let the functions be differentiable on the open interval (c, x) . Then, rewriting and applying Theorem 2.3.9 gives $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} = \lim_{x \to c} \frac{f'(y)}{g'(y)}$ for some p between c and x . Proof of the infinity case. The proof is too complicated. L' Important This is only an implication, not an equivalence, so there may exist sor other solution if this method fails. 2.3.2. Function Character Theorem 2.3.4 (Fermat's or Interior Extremum) Let $f'(a, b) \to \mathbb{R}$ be differentiable at the local extremum $c \in (a, b)$. Then $f'(x) = 0$. However, note that a zero-derivative point may also be a stationary point of inflection. Theorem 2.3.5 (Darboux's) If f is differentiable on $[a, b]$ and if g lies strictly between $f'(a)$ and $f'(b)$, then $B \in (a, b)$: $f'(c) = y$. In other words, if f is differentiable on an interval, then f' satisfies the Intermediate Value Property (IVP). Proof. Assume that $f'(a) < y < f'(b)$. Let $g(x) = f(x) = y$ ax with $g'(x) = f'(x) - y$. Note that $f'(c) = y$ if $g'(c) =$	e e e e e e e e e e e e e e e e e e e
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g > f$ is differentiable at c with $(g \circ f)'(c) = g'(f(c))f'(c)$. Theorem 2.3.2 (Basic Derivatives) $\frac{d}{dx}(\arccos x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\sin x) = \cos x$ $\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\tan x) = -\sin x$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{x} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{x} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{x} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{x} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{x} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{x} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arctan x) = \frac{1}{x} \qquad \frac{f(x)}{(x)} = \frac{1}{x}$ $\frac{d}{dx}(\ln x) = \frac{1}{x} \qquad \frac{f(x)}{(x)} = \frac{1}{x}$ $\frac{f(x)}{(x)} = \frac{1}{x} \qquad \frac{f(x)}{(x)} = \frac{1}{x}$ $\frac{f(x)}{(x)} = \frac{1}{x} \qquad \frac{f'(x)}{(x)} = \frac{1}{x}$ $\frac{f'(x)}{(x)} = \frac{1}{x} \qquad \frac{f'(x)}{(x)} = \frac{1}{x} \qquad \frac{f'(x)}{(x)} = \frac{1}{x}$ $\frac{f'(x)}{(x)} = \frac{1}{x} \qquad \frac{f'(x)}{(x)} = \frac{1}{x} \qquad f'$	e e e e e e e e e e e e e e e e e e e
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at c with $(g \circ f)'(c) = g'(f(c))f'(c)$. Theorem 2.3.2 (Basic Derivatives) $\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\cos x) = \cos x$ $\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\cos x) = -\sin x$ $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\tan x) = \frac{1}{\cos^2 x}$ $\frac{d}{dx}(\arccos x) = -\frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arccos x) = -\frac{1}{1+x^2} \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$ $\frac{d}{dx}(\arcsin x) = \frac{1}{(f-1)'(y)} = -\frac{1}{f'(x)} (f'(x) \neq 0)$ Theorem 2.3.3 (L'Hôpital's Rule) Let $f(x)$ and $g(x)$ be defined and, with the possible exception of at the limit point c , differentiable. If (i) $\lim_{x\to c} f(x) = \lim_{x\to c} g'(x) = 0 \text{ or } \pm \infty \text{ and}$ $\lim_{x\to c} f'(x) = \lim_{x\to c} \frac{f(x)}{g(x)} = L \Rightarrow \lim_{x\to c} \frac{f(x)}{g(x)} = L$ Proof of the zero case. Assume the limits are zero. Let the functions be differentiable on the open interval (c, x) . Then, rewriting and applying Theorem 2.3.9 gives $\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f(x)-f(c)}{g(x)-g(c)} = \lim_{x\to c} \frac{f'(p)}{g'(p)} = \lim_{x\to c} \frac{f'(p)}{g'(p)}$ for some p between c and x . Proof of the infinity case. The proof is too complicated. ① Important This is only an implication, not an equivalence, so there may exist sor other solution if this method falls. 2.3.2. Function Character Theorem 2.3.4 (Fermat's or Interior Extremum) Let $f: (a, b) \to \mathbb{R}$ be differentiable at the local extremum $c \in (a, b)$. Then $f'(x) = 0$. However, note that a zero-derivative point may also be a stationary point of inflection. Theorem 2.3.5 (Darboux's) If f is differentiable on $f(a)$ and if $f'(b)$, then $f'(a) = 0$ in other words, if f is differentiable on an interval, then f' satisfies the intermediate Value Property (IVP). Proof. Assume that $f'(a) < g \in f'(b)$. Let $g(x) = f(x) - yx$ with $f'(x) = f'(x) - y$. Note that $f'(c) = y$ if $f''(c) = 0$ are a condimated function $f(x)$. Theorem 2.2.7 states tha	e e e e e e e e e e e e e e e e e e e
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at $c \in X$ and g is differentiable at $c \in X$ and $c \in X$	e e e e e e e e e e e e e e e e e e e
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at $c \in X$ and g is differentiable at $c \in X$ and	e e e e e e e e e e e e e e e e e e e
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to R.$ If f is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \neq f$ is differentiable at $c \in X$ and g is differentiable at $f(c) \in Y$, then $g \neq f$ is differentiable at $c \in X$ and g is differentiable at $c \in X$ and $c \in X$ an	e e e e e e e e e e e e e e e e e e e
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to R$. If f is differentiable at $c \in X$ and g is differentiable at $f \in X$ and g is differentiable at $c \in X$ and $c \in X$	e e cree
Theorem 2.3.1 (Chain Rule) [es $f: X \to Y$ and $g: X \to Y$. B. If f is differentiable at $c \in X$ and g is differentiable at $c \in X$ and $c \in $	e e cree
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to Z$. If f is differentiable at $c \in X$ and g is differentiable at $f \in X$ and $g \in Y$ and $g \in Y$ is differentiable at $c \in X$ and $g \in Y$ and $f \in Y$. The $f \in Y$ is the $f \in Y$ and $f \in$	e e cree
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to B$. If f is differentiable at $c \in X$ and g is differentiable at $c \in X$ and $c \in X$. Theorem 2.3.2 (Basic Derivatives) $\frac{d}{dx}(accin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(acc x) = -ainx x$ $\frac{d}{dx}(accin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(acc x) = -ainx x$ $\frac{d}{dx}(accin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(acc x) = -ainx x$ $\frac{d}{dx}(accin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(acc x) = -ainx x$ $\frac{d}{dx}(accin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(acc x) = -ainx x$ $\frac{d}{dx}(accin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(acc x) = -ainx x$ $\frac{d}{dx}(accin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(acc x) = -ainx x$ $\frac{d}{dx}(accin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(acc x) = -ainx x$ $\frac{d}{dx}(accin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(acc x) = -ainx x$ $\frac{d}{dx}(accin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(acc x) = -ainx x$ $\frac{d}{dx}(accin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(acc x) = -ainx x$ $\frac{d}{dx}(accin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(acc x) = -ainx x$ $\frac{d}{dx}(accin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(accin x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(acci$	e e cree
Theorem 2.3.1 (Chain Hable) Let $f: X \to Y$ and $g: Y \to S$. If f is differentiable at $c \in X$ and g is differentiable at $c \in X$ and f and f and f are f and f and f and f and f and f and f are f and f are f and f and f and f and f and f and f are f and f an	e e cree
Theorem 2.3.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to B$. If f indifferentiable $x_0 \in X$ and g in differentiable $x_1 \in Y$ is the f indifferentiable $x_1 \in Y$ is the differentiable $x_1 \in Y$. The f is differentiable $x_1 \in Y$ is differentiable $x_1 \in Y$. Theorem 2.3.2 (Basic Derivatives) $\frac{d}{d}(\max x) = 3.2.2$ $\frac{d}{d}(\max x) = \frac{1}{d} = \frac{1}{$	e e e e e e e e e e e e e e e e e e e
Theorem 2.3.1 (Chain Rule) Let $f: A : Y$ and $g: Y \to B$. If $f = differentiable at c \in X and g: a offerentiable at c \in X and c \in$	e e e e e e e e e e e e e e e e e e e
Theorem 2.3.1 (Chain Role) Let $f(x, Y, Y)$ and $g(Y) > 1.10$ by differentiable of $g(X)$ and $g(Y) > 1.10$ by $f(Y)$ by $f($	e e e e e e e e e e e e e e e e e e e
Theorem 2.3.1 (Chain Rule) Let $f: V: V$ and $g: V: W$ a	e e e e e e e e e e e e e e e e e e e
Theorem 2.3.4 (Chain Railly 1.4.4) In a graph of the control of $(x,y) = (x+y) = (x+y$	e e e e e e e e e e e e e e e e e e e
Theorem 2.5.4 (Chain Rule) Let $Y(A - Y)$ and $y(Y - Y)$ the life of differentiable at $x \in X$ and y is ellicomorbide at $x \in X$ and $y \in X$. Theorem 2.5.2 (Hade Devicutives) $\frac{1}{4x^2} (2x) (2x) = \frac{1}{4x^2} (2x) = \frac{1}{4x^2} (2x) (2x) = \frac{1}{4x^$	e e e e e e e e e e e e e e e e e e e
Theorem 2.2.1 (Chains Ratio) In a f. 2. See From your select of a differentiable of a will plus determinable of the Victor of a differentiable of a will plus determinable of the Victor of a differentiable of a will plus determinable of the Victor of a differentiable of a will be determined by the Victor of a differentiable of a will be determined by the Victor of the Victor o	e e e e e e e e e e e e e e e e e e e
Theorem 2.4.1 (Chain Rich) (a. f. 10.4.2.2.4.2.4.1) is a full contributed of $a \in A$ and	e e e e e e e e e e e e e e e e e e e