

Orcesis allica de robilio-de delsouglikada liecta dor la técnica de impresión 3D y el programa de modelado en 3D

Gloria Atencio Inga, Anna Lucía Cruzate Pachas, Renato Rupay Arce y Kevin Vila Jara ¹Taller de Proyectos I 2019-01, Ingeniería Biomédica PUCP-UPCH,

Motivación

La paraplejia se define como el déficit o pérdida de función motora y/o sensitiva en los segmentos torácicos, lumbares o sacros de la médula espinal, una lesión medular a nivel L5 y S1 tienen como consecuencia la pérdida de sensibilidad en extremidades inferiores y formación de pie equino el cual impide realizar la marcha.[1]

Sobre la base de la población mundial estimada en 2012, cada año entre 250.000 y 500.000 personas sufren una LME [2].

Objetivo

Desarrollar un prototipo de baja fidelidad que mantenga la estabilidad del tobillo y pie para que la paciente con una lesión medular a nivel L5 y S1 pueda realizar la marcha.

Requerimientos de diseño

Diseño

MATERIALES

- · Escáner 3D SENSE II
- · Impresora: MINGDA md 60
- Correas de velcros
- Tornillos de 1/8 de pulgada
- Barras de silicona
- MATERIALES DE

IMPRESIÓN:

-FILAMENTO FLEXFIL:

Densidad 50%

-FILAMENTO PET (Polietileno

Tereftalato) PLA

Densidad 100%

FIGURA 1: Ortesis Dynamic Lightcheap

Resultados y Discusión

	DYNAMIC LIGHTCHEAP		
ITEM	VALORACIÓN	COMENTARIOS	
Dimensiones	5	Están basadas en las medidas de cada usuario	
Peso	4		
Ajuste	4		
Seguridad	4		
Durabilidad		No se ha realizado los estudios necesarios para determinar la durabilidad del prototipo	
Facilidad de uso	5		
Comodidad	5		
Efectividad	5		
Total de satisfacción	4.57	No se toma en cuenta la durabilidad en el promedio de satisfacción	
ITEMS más importantes	(2) Peso, (6) Facilidad de uso y (7) Comodidad		

- El DAFO mantiene la estabilidad en el tobillo y permite la dorsiflexión del pie.
- rígido soporte mantiene el pie en 90° y los velcros agregados facilitan el ajuste del DAFO.
- Las siliconas y los tornillos permiten una marcha más natural.

Tabla 1: Evaluación de satisfacción de los usuarios de Quebec con tecnología de asistencia (QUEST) después de la aplicación del DAFO impreso en 3D

B. Proceso de diseño 3D

FIGURA 2: Escaneo 3D del pie de la paciente

FIGURA 3: Modelado 3D de la interfaz elástica en el software MeshMixer

Conclusiones y recomendaciones

A pesar de los resultados adversos durante la fabricación del prototipo, el resultado final cumple con los requerimientos de diseño acordados:

- -Se validó que la ortesis es dinámica y mantiene la posición del pie en 90°.
- -Nuestra paciente indicó que la ortesis es cómoda ,ligera y cumple su función satisfactoriamente.
- -Para trabajos futuros se contempla realizar estudios de soporte rígida en el softwaresistencia con los equipos necesarios y mejorar la MeshMixer comodidad de la ortesis.

EQUIPO 2 GRUPO 1

^{• [1]}DeVivo MJ, Fine PR, Maetz HM, Stover SL. Prevalence of spinal cord injury: a reestimation employing life table •

^[2]Organización Mundial de la Salud. (2013). International Perspectives on Spinal Cord Injury. Summary. 2014, de Swiss Reference 4 Paraplegic Research (SPF) Sitio web: https://apps.who.int/iris/bitstream/handle/10665/131504/ WHO NMH VIP 13.03