National University of Computer & Emerging Sciences

Lab Manual CS461: Artificial Intelligence Lab

Course Instructor	Dr. Hafeez-Ur-Rehman	
Lab Instructor	Muhammad Hamza	
Semester	Spring 2022	

Machine Learning

Machine Learning

Machine learning is subtype of Artificial Intelligence.

"[Machine Learning is the] field of study that gives computers the ability to learn without being explicitly programmed."

"A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E." — Tom Mitchell, Carnegie Mellon University

ML solves problems that cannot be solved by numerical means alone.

Supervised machine learning

The program is "trained" on a pre-defined set of "training examples" with given class labels, which then facilitate its ability to reach an accurate conclusion when given new data.

Supervised machine learning is reliable.

Examples:

- 1. Logistic Regression (Output is discrete e-g 0 or 1)
- 2. Linear Regression (Output is continuous e-g 2.34, 122)
- 3. Decision Trees
- 4. K Nearest Neighbors (KNN)
- 5. Support Vector Machines (SVMs)

Unsupervised machine learning

The program is given a bunch of data and must find patterns and relationships therein.

• Unsupervised machine learning is quick.

Examples:

- 1. Clustering
- 2. Autoencoders
- 3. GANs
- 4. Dimensionality reduction

Supervised Learning (Classification)

K-Nearest Neighbor Algorithm: Numerical Example of K Nearest Neighbor Algorithm

Here is step by step on how to compute K-nearest neighbors KNN algorithm:

- 1. Determine parameter K = number of nearest neighbors. "K" should be an Odd, it helps in picking majority votes. If K=4 => 2 rows have label '0" and 2 rows have label "1", so it is very difficult to pick majority label.
- 2. Calculate the distance between the query-instance and all the training samples
- 3. Sort the distance and determine nearest neighbors based on the K-th minimum distance
- 4. Gather the Y (labels) of only nearest neighbors. Use simple majority of the Y (labels) of nearest neighbors as the prediction value of the guery instance

Lab # 12

We have data from the questionnaires survey (to ask people opinion) and objective testing with two attributes (acid durability and strength) to classify whether a special paper tissue is good or not. Here is four training samples.

Rows = Instances = Records = Training Examples

Columns = Features = Attributes

Column Y = Output Variable = Classification Label (could be binary/multi-class)

Euclidian distance measure is used in this example

X1 = Acid Durability	X2 = Strength	Y = Classification
7	7	Bad
7	4	Bad
3	4	Good
1	4	Good

Now the factory produces a new paper tissue that pass laboratory test with X1 = 3 and X2 = 7. Without another expensive survey, can we guess what the classification of this new tissue is?

- 1. Determine parameter K = number of nearest neighbors; Suppose use K = 3
- 2. Calculate the distance between the query-instance and all the training samples
 - a. Coordinate of query instance is (3, 7), instead of calculating the distance we compute square distance which is faster to calculate (without square root)

X1 = Acid Durability	X2 = Strength	Euclidian Distance with query (3,7)
7	7	$(7-3)^2 + (7-7)^2 = 16$
7	4	$(7-3)^2 + (4-7)^2 = 25$
3	4	$(3-3)^2 + (4-7)^2 = 9$
1	4	$(1-3)^2 + (4-7)^2 = 13$

3. Sort the distance and determine nearest neighbors based on the K-th minimum distance

X1 = Acid	X2 =	Euclidian Distance with query	Rank Min.	Included
Durability	Strength	(3,7)	Distance	
7	7	$(7-3)^2 + (7-7)^2 = 16$	3	Yes
7	4	$(7-3)^2 + (4-7)^2 = 25$	4	No
3	4	$(3-3)^2 + (4-7)^2 = 9$	1	Yes
1	4	$(1-3)^2 + (4-7)^2 = 13$	2	Yes

4. Gather the category of the nearest neighbors. Notice in the second-row last column that the category of nearest neighbor (Y) is not included because the rank of this data is more than 3 (=K).

X1 = Acid	X2 =	Euclidian Distance with	Rank Min.	Included	Y = Label
Durability	Strength	query (3,7)	Distance		
7	7	$(7-3)^2 + (7-7)^2 = 16$	3	Yes	Bad
7	4	$(7-3)^2 + (4-7)^2 = 25$	4	No	-
3	4	$(3-3)^2 + (4-7)^2 = 9$	1	Yes	Good
1	4	$(1-3)^2 + (4-7)^2 = 13$	2	Yes	Good

5. Use simple majority of the category of nearest neighbors as the prediction value of the query instance. We have 2 good and 1 bad, since 2 > 1, then we conclude that a new paper tissue that pass laboratory test with X1 = 3 and X2 = 7 is included in Good category.

Advantages

- K-NN is simple:
- K-NN has no assumptions:
- K-NN is a non-parametric algorithm which means there are assumptions to be met to implement K-NN. Parametric models like linear regression have lots of assumptions to be met by data before it can be implemented which is not the case with K-NN.
- No Training Step
- Very easy to implement for multi-class problem
- Variety of distance criteria to be choose from: K-NN algorithm gives user the flexibility to choose distance while building K-NN model.
 - ✓ Euclidean Distance
 - √ Hamming Distance
 - ✓ Manhattan Distance
 - ✓ Minkowski Distance

Disadvantages

- Only works for numerical data
- . K-NN is a slow algorithm
- Curse of Dimensionality: For high dimensional data, it's a bad choice.
- K-NN needs homogeneous features
- Optimal number of neighbors
- Imbalanced data causes problems
- · Cannot handle outlier
- Missing Value treatment

Task

- a. Download the dataset from **Google classroom** folder i.e. fruit_data_with_colors.
- b. Remove the features having text/categorical values.
- c. Fill the missing values by mean value of each column separately, if any.
- d. Select the value of "K" as any even number and observe the difference i.e., 4,6,8 etc.
- e. Implement KNN algorithm using python from scratch, you can only use Numpy or Pandas.
- f. Use first 50 rows as training samples and remaining 10 rows for Testing to predict their labels?