hw3.md 3/19/2022

DP-elimination

Matouš Mařík

One of the preprocessing steps can be to eliminate some of the variables using so-called DP-elimination (or DP-resolution). In particular, assume we have a CNF φ and a variable x which we want to eliminate. Denote

Namely, $\phi 0$ consists of the clauses containing negative literal $\neg x$, $\phi 1$ consists of the clauses containing positive literal x, ϕr contains the rest of the clauses. Let us now define

```
\phi dp = \{Res(C0, C1) \mid C0 \in \phi0, C1 \in \phi1\}
```

where Res(C0, C1) denotes the clauses originating from C0 and C1 by resolution. Show that ϕ is equisatisfiable with $\phi' = \phi r \wedge \phi dp$.

Splnitelná $arphi \implies$ splnitelná arphi'

- nechť α je nějaké úplné ohodnocení φ , které jí splňuje tedy je jejím (úplným modelem) ... $\alpha \models \varphi$
- potom určitě $\alpha \models \varphi_r$, neboť jsou to původní klauzule z φ
- stačí ukázat, že i $\alpha \models \varphi_{dv}$
 - \circ každou klauzuli $C_r \in arphi_{dp}$ lze přímo odvodit rezolucí z arphi, tedy $arphi dash C_r$
 - \circ každý model formule je modelem i rezolucí odvozených klauzulí, tedy $arphi \models C_r$
 - \circ z toho plyne že $\alpha \models \varphi_{dp}$

Splnitelná $arphi' \Longrightarrow \mathsf{splnitelná}\, arphi$

- jsou splnitelné $arphi_r \wedge arphi_{dp}$, je třeba dokázat, že z toho vyplývá, že jsou splnitelné $arphi_0 \wedge arphi_1$
- lpha' je úplný model splňující arphi', který neobsahuje proměnnou x
- nechť C_n je jakákoliv z klauzulí $C_0\setminus \{\neg x\}$ (kde $C_0\in \varphi_0$ ze zadání), nebo z klauzulí $C_1\setminus \{x\}$ (kde $C_1\in \varphi_1$ ze zadání), která není modelem α' splněna
 - $\circ~$ pro zbytek bodů BÚNO nechť $C_n \in arphi_0$
- ullet protože $lpha'\modelsarphi'\implieslpha'\modelsarphi_{dp}$, pak $\mathrm{Res}(C_n,C_1)$ jsou modelem splněny pro všechny $C_1\inarphi_1$
- protože $\alpha' \nvDash C_n$, pak musí platit $\alpha' \models C_1 \setminus \{x\}$ a to pro všechny takové klauzule, z čehož vyplývá, že platí $\alpha' \models \varphi_1$
- model α který vznikne rozšířením modelu α' tak, že $\alpha(x)=0$ splňuje φ
 - $\circ \;\;$ protože model lpha obsahující eg x splní všechny klauzule z $arphi_0$