Московский государственный технический университет им. Н.Э. Баумана Факультет «Специальное машиностроение»

Кафедра «Автономные информационные и управляющие системы»

Лабораторная работа №1

по дисциплине

«ОСНОВЫ ТЕОРИИ ЦЕПЕЙ»

Переходные процессы в линейных электрических цепях первого порядка

Вариант № 6

Выполнил ст. группы РЛ-41 Филимонов С.В.

Фамилия И.О.

Проверил Копейкин Р.Е.

Оценка в баллах

Цель и задачи работы:

- моделировать переходные процессы в линейных электрических цепях при наличии одного накопителя энергии в среде Microcap;
- -установить влияние параметров исследуемой цепи на характер переходного процесса;
- -исследовать и измерить параметры быстропротекающих периодических несинусоидальных токов и напряжений.

Подготовительное задание

1.1. Какова причина возникновения переходных процессов?

Под действием периодических или постоянных ЭДС и токов переходные процессы в электрических цепях возникают при включении и выключении (коммутации) цепи или изменении одного или нескольких её параметров.

1.2. Как формулируются законы коммутации?

• Первому закону коммутации.

Ток на индуктивном элементе изменяется только непрерывным образом: ток до начала коммутации равен току после коммутации и совпадает с током в момент коммутации:

$$i_L(0_-) = i_L(0_+) = i_L(0).$$

• Второй закон коммутации.

Напряжение на ёмкостном элементе изменяется только непрерывным образом: напряжение до начала коммутации равно напряжению после неё и совпадает с напряжением в момент коммутации:

$$u_C(0_-) = u_C(0_+) = u_C(0)$$
.

1.3. Какой характер имеет переходный процесс с одним накопителем энергии?

Если в электрической цепи включён один накопитель энергии (L- или С- элемент), то результирующее дифференциальное уравнение имеет первый порядок.

1.4. Что называется постоянной времени переходного процесса?

$$i(t) = \frac{U}{R} - \frac{U}{R}e^{-\frac{R}{L}t} = \frac{U}{R} 1 - e^{-\frac{R}{L}t} = \frac{U}{R} 1 - e^{-\frac{t}{\tau}}$$

где τ - постоянная времени электрической цепи, соответствует времени, в течение которого свободная составляющая тока в цепи изменяется в е = 2,71 раза по сравнению со своим исходным значением.

Для RL- и RC-цепей, по параметрам, указанным в табл. 5.1, определить постоянные времени τ . Рассчитать длительности импульса, паузы и частоты следования импульсов, считая, что t_u = t_n = 5τ , $T=t_u+t_n$, f=1/T. Рассчитанные параметры импульсов занести в табл. 5.2 (расчетные), значения τ - в табл. 5.3 в графу «Первый». Используя результаты расчёта и данные табл. 5.1, построить в масштабе графики токов и напряжений, аналогичные изображенным на рис. 5.2 и 5.3.

RCцепь:

U= 10 B; R=1000 Ом; C=3000 пФ
$$\tau = RC = 1000*3000*10^{-12} = 3*10^{-6} = 3 \text{ мкс};$$

$$t_{\text{ii}} = t_{\text{ii}} = 5\tau = 5*3*10^{-6} = 5*3*10^{-6} = 15 \text{ мкс};$$

$$T = t_{\text{ii}} + t_{\text{ii}} = 2*15 \text{ мкс} = 30 \text{ мкс};$$

$$f = 1/T = 1/30*10^{-6} = 0.33*10^{6} \Gamma \text{II} = 0.033 \text{М} \Gamma \text{II}$$

RLцепь:

U=10B; R=200 Ом; L=900 мк
$$\Gamma$$
н
 τ =L/R=(900*10⁻⁶)/200=4,5 мкс;
 $t_{\rm H}$ = $t_{\rm H}$ =5 τ =5*4,5 мкс=22,5 мкс;
 $T=t_{\rm H}+t_{\rm H}$ =2*22,5мкс=45 мкс;
 $f=1/T$ =1/45*10⁻⁶=0,022*10⁶ Γ H= 0,022 М Γ H

Параметры импульсов

Цепь	Параметры	f, Гц	U, B	Длительность, мкс		
	импульсов			T	tи	tп
RL	Расчётные	0,022*106	10	45 мкс	22,5 мкс	22,5 мкс
	Измеренные	0,022*106	10	45 мкс	22,5 мкс	22,5 мкс
RC	Расчётные	0,033*106	10	30 мкс	15 мкс	15 мкс
	Измеренные	0,033*106	10	30 мкс	15 мкс	15 мкс

Таблица 5.2 Опытные и расчётные данные исследования переходных процессов

Цепь	Номер	Парам	Параметры цепи Постоянная времени			Номер		
	опыта	мкс				осциллограммы		
		R,	L,	c,	Расчёт	Опыт		
		Ом	мкГн	мкФ	τ	τ_1	τ_2	
RL	Первый	200	600	-	4,5	4,43	4,605	1
	Второй	100	600	-	9	8,768	8,95	2
RC	Первый	1000	-	3	3	3	3,1	3
	Второй	2000	-	3	6	5,1	6	4

Таблица 5.3

Опыт RL:

Схема 1.

Осциллограмма 1.

Схема 2.

Осциллограмма 2.

Опыт RC:

Схема 3.

Осциллограмма 3.

Схема 4.

Осциллограмма 4.

Контрольные вопросы

1. Что называют начальными условиями и какие бывают виды начальных условий?

Начальными условиями называются мгновенные значения отдельных токов и напряжений, а также их первых, вторых и т.д. производных в начале переходного процесса, т.е. в момент коммутации при t=0.

Начальные условия делятся на 2 вида: независимые и зависимые.

К независимым начальным условиям относятся токи в катушках iL(0) и напряжения на конденсаторах uC(0). Независимые начальные условия определяются законами коммутации, они не могут измениться скачкообразно и не зависят от вида коммутации. Их значения определяются из расчета схемы цепи в установившемся докоммутационном режиме на момент коммутации t=0. К зависимым начальным условиям относятся значения всех остальных токов и

К зависимым начальным условиям относятся значения всех остальных токов и напряжений, а так же значения производных от всех переменных в момент

коммутации при t=0. Зависимые начальные условия могут изменяться скачкообразно, их значения зависят от вида и места коммутации. Зависимые начальные условия определяются на момент коммутации t=0 из системы дифференциальных уравнений (уравнений Кирхгофа), составленных для схемы в состоянии после коммутации, путем подстановки в них найденных ранее независимых начальных условий.

Начальные условия используются при расчете переходных процессов любым методом.

2. Что называют установившимся режимом и переходным процессом в электрической цепи?

Переходный процесс в электрической цепи — это электромагнитный процесс, возникающий в электрической цепи при переходе от одного установившегося (принужденного) режима к другому.

Установившимся (принужденным) называется режим работы электрической цепи, при котором напряжение и токи цепи в течение длительного времени остаются неизменными. Такой режим в электрической цепи устанавливается при длительном действии источников постоянной или переменной ЭДС при неизменных параметрах этой цепи R, L и C.

3. Сформулировать законы коммутации. Выполняются ли они для резистивных цепей?

Первый закон коммутации можно сформулировать следующим образом: ток в индуктивной катушке до коммутации равен току в момент, наступивший сразу после коммутации, т. е. iL(0-) = iL(0+) Второй закон коммутации можно сформулировать следующим образом: напряжение на конденсаторе не может измениться скачком, т.е. uC(0-) = uC(0+)

Для резистивных цепей законы коммутации не выполняются.

4. Что определяет порядок дифференциальных уравнений, описывающихэлектрические цепи с реактивными элементами?

Для расчётов переходных процессов в электрических цепях применяют законы токопрохождения: Ома, токов и напряжений Кирхгофа. На основе этих законов получают уравнение относительно тока (для последо вательного включения) или напряжения (для параллельного включения) элементов в исследуемой электрической цепи. Результирующее уравне ние представляет собой интегродифференциальное уравнение, которое может быть сведено к дифференциальному уравнению. Если в электриче ской цепи включён один накопитель энергии (L- или С-элемент), то результирующее дифференциальное уравнение имеет первый поря док. Соответственно для двух накопителей получается дифференци альное уравнение второго порядка. Для п реактивных элементов поря док уравнения будет равен п.

5. Какая составляющая переходных процессов имеет апериодический вид? Свободная составляющая переходных процессов имеет апериодический вид.

6. От чего зависит длительность переходного процесса?

Теоретически переходный процесс длится бесконечно долго. Практически переходный процесс заканчивается через (3–5) ф. Постоянная времени ф – это время, в течение которого свободные составляющие уменьшаются в е раз.

Для RC-цепи 1-го порядка $t=RC \Rightarrow$ длительность зависит от ёмкости и сопротивления.

Для RL-цепи 1-го порядка $t=L/R \Rightarrow$ длительность зависит от индуктивности и сопротивления.

7. В течение какого промежутка времени практически заканчивается переходный процесс в электрической цепи?

Практически переходный процесс заканчивается через (3–5) ф. Постоянная времени ф – это время, в течение которого свободные составляющие уменьшаются в е раз.

8. Определить постоянную времени электрической цепи по экспериментальным зависимостям тока и напряжения при переходном процессе. Чему равна ее величина на временных зависимостях переходных тока и напряжения?

Для нахождения τ часто пользуются графоаналитическим методом — величина отрезка, ограниченного точкой пересечения касательной зависимости i (t) св , построенной в любой точке T этой зависимости, и проекцией точки T на ось абсцисс численно равна τ .Очевидно, что чем больше величина τ , тем меньше скорость протекания переходного процесса.

9. Можно ли по осциллограммам переходных процессов определить параметры электрической цепи?

Да, можно. Постоянной времени можно дать геометрическую интерпретацию: ф — это величина подкасательной к любой точке экспоненты. Поэтому можно определить постоянную времени по известному графику изменения свободной составляющей и неизвестных параметрах схемы.

10. Назвать устройства, в которых используются явления, возникающие при переходных процессах в электрических цепях.

Переходные процессы широко используются в электронной и импульсной технике для генерирования синусоидальных электрических колебаний (генераторы типа RC и LC) и получения электрических колебаний специальной формы (генераторы прямоугольных, пилообразных и других колебаний).

Вывод.

В ходе лабораторной работы путём моделирования я RC и RL цепей в среде Micro-сар опытным путём были подтверждены основные зависимости переходных процессов, экспериментально определены постоянные времени переходных процессов в этих цепях, а также проверено выполнение законов коммутации.