Zero-Shot Knowledge Distillation in Deep Networks

Gaurav Kumar Nayak * 1 Konda Reddy Mopuri * 2 Vaisakh Shaj * 3 R. Venkatesh Babu ¹ Anirban Chakraborty ¹

ICML 2019

Cite: 77

2021.06.16 임진혁

On Index

- 1. Introduction
- 2. Proposed Approach
- 3. Experiments

Limitation of KD(Knowledge Distillation)

KD is very usefully used in many fields There is a limitation that there is no original data.

In such cases only trained model is available without training data

- Medical diagnosis, that patients' privacy prohibits distribution
- Commercial products with deployed models
- Cost from annotating data
- Proprietary data (JFT-300M, SFC.)

Data-free Knowledge Distillation (Zero Shot)

with no data samples and no extracted prior information

So there should be "Transfer Set" instead of "original data"

Knowledge Extraction with No Observable Data(Nips 2019)

(a) MNIST
$$(z = 0)$$
.

$$\mathcal{D} = \left\{ \operatorname{argmax}_{\hat{x}} p(\hat{x} | \hat{y}, \hat{z}) \mid \hat{y} \sim \hat{p}_{y}(y) \text{ and } \hat{z} \sim p_{z}(z) \right\}$$

Zero-Shot Knowledge Distillation (ICML 2019)

Make Train Data Distribution from Teacher's parameter

Conventional knowledge distillation

Data-free knowledge distillation (Zero-shot knowledge distillation)

Zero-Shot Knowledge Distillation (ICML 2019)

Make Train Data Distribution from Teacher's parameter

Conventional knowledge distillation

Data-free knowledge distillation (Zero-shot knowledge distillation)

Zero-Shot Knowledge Distillation (ICML 2019)

Using Class Similarity Matrix

Figure 1. Class similarity matrix computed for the *Teacher* model trained over CIFAR-10 dataset. Note that the class labels are mentioned and the learned similarities are meaningful.

Knowledge Distillation (Baseline)

$$L = \sum_{(x,y) \in \mathbb{D}} L_{KD}(S(x,\theta_S,\tau),T(x,\theta_T,\tau)) + \lambda L_{CE}(\hat{y}_S,y)$$

Knowledge Distillation (Baseline)

Knowledge Distillation (Baseline)

ZSKD

model output space of the *Teacher* model.

- Model(동사) output space of the Teacher model
- s~p(s): Random Vector that represents the softmax outputs of the Teacher using Dirichlet distribution

ZSKD

X 없이 y_pred를 만든다고 생각하면 된다. (이 경우에는 softmax output) y_pred는 Dirichlet distribution에서 Sampling한 값이 될 것이다.

$$\bar{x_i}^k = \underset{x}{\operatorname{argmin}} L_{CE}(\boldsymbol{y}_i^k, T(x, \theta_T, \tau))$$

Dirichlet Distribution(디리클레 분포)

model output space of the Teacher model.

- 분포를 추정하는 방법은 크게 2가지 (Parametric, Nonparametric)
- Paramaetric
 - 모수를 가정(평균,분산)
 - 데이터가 적어도 모수 분포를 잘 가정하면 좋은 추정이 된다.
 - 예시: 가우시안 분포 /이항 분포/ 베타 분포/ 다변량 분포/ 디리클레 분포 (다변량 , 연속형)
- Nonparametric
 - 모수를 가정하지 않음
 - 데이터가 많을 수록 좋은 추정이 가능

Dirichlet Distribution(디리클레 분포)

model output space of the *Teacher* model.

- αk에 대하여 k개의 연속형 확률변수에 대응되는 k개의 continous values을 사용하여 분포 표현
- 확률 정의에 따라 해당 continuous random variables은 0보다는 크고 합하면 1이 된다.
- LDA에 쓰이는 바로 그 분포
- k=3일 때, 2차원으로 시각화

값이 1보다 클수록 다양한 차원으로 퍼진다.

Dirichlet Distribution(디리클레 분포)

Dirichlet distributions

$$f(x_1,\cdots,x_k;lpha_1,\cdots,lpha_k)=rac{1}{\mathrm{B}(lpha)}\prod_{i=1}^k x_i^{lpha_i-1}$$

$$\mathrm{B}(lpha) = rac{\prod_{i=1}^k \Gamma(lpha_i)}{\Gammaig(\sum_{i=1}^k lpha_iig)} \; ext{(Γis gamma function)}$$

영제야 이게 베타 분포의 관점에서 볼 때, 다항분포를 Control 하는 효과를 가진 분포라는데 무슨 뜻인지 모르겠어 **시바**

ZSKD

P(s)
Dirichlet distribution

Softmax output s^k of class k

$$Dir(K, lpha^k)$$
 ,

 $k \in 1 \cdots K$ is the class index,

 $\,K\,$ is the dimension of the output probability vector

 $lpha^k$ is the concentration parameter $oldsymbol{c}$

$$\boldsymbol{\alpha}^k = [\alpha_1^k, \alpha_2^k, \dots, \alpha_K^k]$$

of the distribution modelling class k

It should reflect the similarities across softmax vector

ZSKD- Class similarity Matrix

Matrix is consist of the weights connecting the final (softmax) W

C(i,j) denotes the visual similarity between the categories **i** and **j** in [0,1].

$$C(i, j) = \frac{\boldsymbol{w}_i^T \boldsymbol{w}_j}{\|\boldsymbol{w}_i\| \|\boldsymbol{w}_j\|}$$

(a) Representing weights in the final and pre-final layers

(b) Class similarity matrix computed for the Teacher model trained over CIFAR-10 dataset

ZSKD Process

$$\bar{x_i}^k = \underset{x}{\operatorname{argmin}} L_{CE}(\boldsymbol{y_i}^k, T(x, \theta_T, \tau))$$

N softmax vectors corresponding to class k sampled from $Dir(K, \alpha k)$ distribution.

Knoledge Distill with S

$$\theta_S = \underset{\theta_S}{\operatorname{argmin}} \sum_{\bar{x} \in \bar{X}} L_{KD}(T(\bar{x}, \theta_T, \tau), S(\bar{x}, \theta_S, \tau))$$

Algorithm 1 Zero-Shot Knowledge Distillation

```
Input: Teacher model T
               N: number of DIs crafted per category,
               [\beta_1, \beta_2, ..., \beta_B]: B scaling factors,
               \tau: Temperature for distillation
    Output: Learned Student model S(\theta_S),
                 \bar{X}: Data Impressions
 1 Obtain K: number of categories from T
 2 Compute the class similarity matrix
     C = [\mathbf{c}_1^T, \mathbf{c}_2^T, \dots, \mathbf{c}_K^T] as in eq. (2)
 \mathbf{x} \ \bar{X} \leftarrow \emptyset
 4 for k=1:K do
         Set the concentration parameter \alpha^k = \mathbf{c}_k
         for b=1:B do
               for n=1: |N/B| do
                    Sample \mathbf{y}_n^k \sim Dir(K, \beta_b \times \boldsymbol{\alpha}^k)
                    Initialize \bar{x}_n^k to random noise and craft \bar{x}_n^k =
                      \operatorname{argmin} L_{CE}(\boldsymbol{y}_{n}^{k}, T(x, \theta_{T}, \tau))
                   \bar{X} \leftarrow \bar{X} \cup \bar{x}_n^k
10
              end
11
12
         end
13 end
14 Transfer the Teacher's knowledge to Student using the DIs
     via \theta_S = \underset{\theta_S}{\operatorname{argmin}} \sum_{\bar{x} \in \bar{X}} L_{KD}(T(\bar{x}, \theta_T, \tau), S(\bar{x}, \theta_S, \tau))
```

ZSKD Process

- Step 1: Train the Teacher network with cifar 10
- Step 2: Extract final layer weights from the Pretrained Teacher Network
- Step 3: Compute and save the Class Similarity for scales of 1.0 and 0.1
- Step 4: Generate the Data Impressions (DI's)
- Step 5: Train the Student network with generated DI's

Algorithm 1 Zero-Shot Knowledge Distillation

```
Input: Teacher model T
               N: number of DIs crafted per category,
               [\beta_1, \beta_2, ..., \beta_B]: B scaling factors,
               \tau: Temperature for distillation
    Output: Learned Student model S(\theta_S),
                 \bar{X}: Data Impressions
 1 Obtain K: number of categories from T
 2 Compute the class similarity matrix
     C = [\mathbf{c}_1^T, \mathbf{c}_2^T, \dots, \mathbf{c}_K^T] as in eq. (2)
 \mathbf{x} \ \bar{X} \leftarrow \emptyset
 4 for k=1:K do
         Set the concentration parameter \alpha^k = \mathbf{c}_k
         for b=1:B do
              for n=1: |N/B| do
                    Sample \mathbf{y}_n^k \sim Dir(K, \beta_b \times \boldsymbol{\alpha}^k)
                    Initialize \bar{x}_n^k to random noise and craft \bar{x}_n^k =
                      \operatorname{argmin} L_{CE}(\boldsymbol{y}_n^k, T(x, \theta_T, \tau))
                    \bar{X} \leftarrow \bar{X} \cup \bar{x}_n^k
10
               end
11
         end
12
13 end
14 Transfer the Teacher's knowledge to Student using the DIs
     via \theta_S = \underset{\theta_S}{\operatorname{argmin}} \sum_{\bar{x} \in \bar{X}} L_{KD}(T(\bar{x}, \theta_T, \tau), S(\bar{x}, \theta_S, \tau))
```

3 Experiments

감사합니다 죄송합니다.

