Estruturas de Concreto III - Resumo

@ivansnpmaster

September 15, 2018

1 Introdução à pilares

Em estruturas de edifícios, os pilares são elementos verticais que tem a função primária de transmitir as **ações verticais** gravitacionais e de serviço e as **orizontais** (**vento**) às fundações, além de conferirem **estabilidade global** ao edifício. Os pilares usuais dos edifícios apresentam um comportamento de flexo-compressão, sendo as forças normais preponderantes. Em edifícios de concreto armado, as seções dos pilares são geralmente **retangulares**.

Pilares de seção **quadrada** ou **circular** também podem ser considerados em projetos estruturais de edifícios. Em virtude do tipo de material (concreto) e da solicitação preponderantemente de força de compressão, os pilares apresentam **rupturas frágeis**. A **ruína** de uma seção transversal de **um único pilar** pode ocasionar o **colapso** progressivo dos demais pavimentos.

As disposições dos pilares na planta de forma de um edifício são importantes, pois, junto com as vigas, formam pórticos que proporcionam rigidez e estabilidade global ao edifício.

Os pialres são peças estruturais que precisam ser projetadas **cuidadosamente** em termos de resistência, estabilidade e durabilidade, sempre respeitando as diretrizes e recomendações das **normas técnicas**.

O dimensionamento dos pilares é feito em função dos esforços externos solicitantes de cálculo, que compreendem as forças normais (N_d) e os momentos

2 Agressividade do ambiente

Está relacionada às **ações físicas** e **químicas** que atuam sobre as estruturas de concreto, independentemente das **ações mecânicas**, das variações térmicas, da retração e outras previstas no dimensionamento das estruturas.

Nos projetos das estruturas, a agressividade ambiental deve ser classificada de acordo com a Tabela 6.1 da ABNT NBR 6118 e pode ser avaliada segundo as condições de exposição da estrutura ou de suas partes. Conhecendo o ambiente em que a estrutura será construída, o projetista estrutural pode considerar uma condição de agressividade maior que a tabela.

Conforme a NBR 6118 - item 7.4: A durabilidade das estruturas é altamente dependente das características do concreto e da espessura e qualidade do concreto de cobrimento da armadura.

Ensaios comprobatórios de desempenho da durabilidade da estrutura frente ao tipo e classe de agressividade prevista em projeto devem estabelecer os parâmetros mínimos a serem atendidos. Na falta destes e devido à existência de uma forte correspondência entre a relação água/cimento e a resistência do concreto e sua durabilidade, permite-se que sejam adotados os requisitos mínimos da tabela abaixo:

Tabela 1: Tabela 7.1 da NBR 6118.

Consents	Classe d	Classe de Agressividade Ambiental (CAA)					
Concreto	I	II	III	IV			
Relação a/c	≤ 0,65	≤ 0,6	≤ 0,55	≤ 0.45			
Classe de concreto	≥ C20	≥ C25	≥ C30	≥ C40			

3 Solicitações normais

Os pilares podem estar submetidos à forças normais e momentos fletores, gerando compressão simples e flexão composta.

• Compressão simples: Também chamada de compressão centrada ou compresão uniforme, é caracterizada pela aplicação da força normal (N_d) no centro geométrico da seção transversal do pilar.

Figura 1: Solicitação normal acontecendo no centro geométrico da seção transversal do pilar.

- Flexão composta: Ocorre força normal e momento fletor sobre o pilar. Há dois casos:
 - Flexão composta normal (ou reta): Existe a força normal e um momento fletor em uma direção, sendo:

$$M1_{dx} = e1_x \cdot N_d \tag{1}$$

Figura 2: Solicitação normal acontecendo fora do centro geométrico da seção transversal do pilar, em apenas uma direção.

 Flexão composta oblíqua: Existe força normal e dois momentos fletores, sendo:

$$M1_{dx} = e1_x \cdot N_d$$

$$M1_{dy} = e1_y \cdot N_d \tag{2}$$

Figura 3: Solicitação normal acontecendo fora do centro geométrico da seção transversal do pilar, em duas direções.

4 Carga sobre pilares

Durante o desenvolvimento e desenho da planta de fôrma é necessário definir as dimensões dos pilares, antes mesmo que se conheçam os esforços solici-

tantes atuantes. Alguns processos podem ser utilizados para fixação das dimensões dos pilares, entre eles, a **experiência** do engenheiro. Outro processo simples que auxilia na fixação das dimensões do pilar é a estimativa da carga vertical no pilar pela sua área de influência, ou seja, a carga que estiver na laje dentro da área de influência do pilar "caminhará" até o pilar.

No entanto, é necessário ter um valor que represente a carga total por metro quadrado de laje, levando-se em conta todos os carregamentos **permanentes** e **variáveis**. Para edifícios com fins residenciais e de escritórios, pode-se estimar a carga total de 8 a $10 \ kN/m^2$ ou $800 \ a \ 1000 \ kgf/m^2$ para pisos e $600 \ a \ 800 \ kgf/m^2$ para cobertura. Edifícios com outros fins podem ter **cargas superiores** e edifícios onde a ação do **vento** é significativa, a carga por metro quadrado deve ser majorada.

Lembrando que essa carga de piso é em **um andar**. A cada andar para baixo esses valores vão sendo **agregados**. É importante salientar que a carga estimada serve apenas para o pré-dimensionamento da seção transversal dos pilares. O dimensionamento final deve ser obrigatoriamente feito com os **esforços reais** calculados em função das cargas das vigas e lajes sobre o pilar, e com a atuação das forças do vento e outras que existirem.

Figura 4: Considerações de distâncias para obtenção da área de influência de cada pilar em um pavimento.

A carga do pilar pode ser obtida atraves da fórmula:

$$N_k = [(q+g) \cdot A_{inf} \cdot n] + (A_{inf} \cdot g_{cobertura})$$
(3)

Onde N_k é a carga do pilar em kgf, A_{inf} é a área de influência do pilar em m^2 , q é a carga de utilização do ambiente em kgf/m^2 , g é a carga do peso próprio em kgf/m^2 e n é o número de pavimentos acima da seção analisada.

A carga do pilar também pode ser obtida quando se tem os cálculos de força cortante das vigas, as quais já receberam as cargas das lajes.

5 Efeitos de 1ª e 2ª ordem

As estruturas de concreto armado devem ser projetadas, construídas e utilizadas de modo que, sob condições ambientais previstas e respeitadas as condições de manutenção preventiva especificadas no projeto, conservem sua **segurança**, **estabilidade** e **aparência aceitável**, sem exigir medidas extras de manutenção e reparo.

Há duas formas de se analisar estruturalmente uma edificação:

- Análise linear;
- Análise não-linear.

Se fosse feita uma análise puramente linear, o **deslocamento** resultante seria **proporcional** ao acréscimo de carga.

A resposta da estrutura em termos de deslocamentos teria um comportamento **linear** à medida que o carregamento fosse aplicado.

Por outro lado, se fosse efetuada uma análise não-linear, o deslocamento resultante **não seria proporcional** ao acréscimo de carga. E mais, provavelmente seria **maior** que o encontrado na análise linear.

Pode-se dizer que uma **análise não-linear** é um cálculo no qual a resposta da estrutura, seja em deslocamentos, esforços ou tensões, possui um comportamento **desproporcional** à medida que um carregamento é aplicado.

Os fatores que tornam as análises não-lineares importantes no projeto estrutural de edifícios de concreto armado são:

- O concreto armado é um material que possui um comportamento **essencialmente** não-linear;
- Pelas análises não-lineares, é possível simular o comportamento de um edifício de concreto armado de forma muito mais **realista**;
- Os elementos estruturais estão cada vez mais **esbeltos**, de tal forma que as **não-linearidades**, em muitos casos, passam a ser **preponderantes**.

Dois fatores que geram o comportamento não-linear de uma estrutura à medida que o carregamento é aplicado:

- Não-linearidade física: Alteração das propriedades dos materiais que compõem a estrutura;
- Não-linearidade geométrica: Alteração da geometria da estrutura.

6 Não-linearidade física

O material é linear quando obedece à Lei de Hooke, ou seja, quando a tensão é proporcional à deformação ($\sigma = E \cdot \epsilon$). Considerando-se uma estrutura de concreto armado, a não-linearidade física resulta da resposta não-linear do **aço** e do **concreto**.

Além do comportamento não-linear dos materiais, existe um outro fator que é preponderante na análise de edifícios: a **fissuração**. Por causa da baixa resistência do concreto à tração, é comum o surgimento de fissuras à medida que o carregamento é aplicado à estrutura.

A NBR 6118 - item 15.3: "Princípios básicos de cálculo" é bem clara: a não-linearidade física, presente nas estruturas de concreto armado, deve ser obrigatoriamente considerada.

7 Não-linearidade geométrica

Ocorre em razão de mudanças na **geometria** dos elementos estruturais à medida que um carregamento é aplicado à estrutura.

Para que a influência da não-linearidade geométrica na análise de uma estrutura seja compreendida, é necessário entender o que são os **efeitos de segunda** ordem.

A condição de equilíbrio sempre foi considerada na configuração geométrica inicial da estrutura, isto é, na sua posição não-deformada. Esta análise se chama Análise de primeira ordem e os seus efeitos (deslocamentos e esforços resultantes) são chamados de Efeitos de primeira ordem.

Ao admitir o equilíbrio na configuração **indeformada**, passa-se a se fazer uma aproximação. Porém, na realidade, o equilíbrio de uma estrutura se dá **sempre** numa configuração **deformada**.

A análise do equilíbrio de uma estrutura na sua posição deformada é denominada de **Análise de segunda ordem** e os seus efeitos são chamados de **Efeitos de segunda ordem**.

A análise de 1^a ordem é uma aproximação que pode ser perfeitamente utilizada pelo fato de os efeitos de 2^a ordem, em muitos casos, **serem desprezíveis** (quando não apresentam acréscimo superior a 10% nas solicitações em relação aos efeitos de 1^a ordem).

No entanto, existem certas situações em que os efeitos de 2ª ordem necessitam, obrigatoriamente, serem considerados, tais como:

• Análise da estabilidade global;

• Cálculo dos esforços para dimensionamento dos pilares.

Figura 5: Efeitos de 1ª ordem à esquerda e Efeitos de 2ª ordem à direita.

8 Estruturas de nós fixos ou móveis

A estabilidade global de uma estrutura se dá quando menores forem os efeitos de 2ª ordem. Para criar condições de cálculo, as estruturas são definidas de nós fixos ou nós móveis.

- Estruturas de nós fixos: Na verdade não são fixos, mas deslocáveis, mas os deslocamentos horizontais são muito pequenos e, por consequência, os efeitos globais de 2ª ordem são desprezíveis (<10%). Nessas estruturas, basta considerar os efeitos locais de 2ª ordem;
- Estruturas de nós móveis: Aquelas em que os deslocamentos horizontais não são pequenos, exigindo cálculo dos efeito globais de 2ª ordem.

Assim:

- Nós fixos: Não há necessidade de se calcular efeitos globais de 2ª ordem;
- Nós móveis: Há necessidade de se calcular.

9 Coeficiente γ_z

O coeficiente γ_z é um parâmetro que avalia a **estabilidade global** de uma estrutura de concreto armado de forma simples e eficiente.

Também é capaz de **estimar** os esforços globais de **2**^a **ordem** por uma **simples majoração** dos esforços de **1**^a **ordem** dos **esforços horizontais**. Valores coerentes para esse coeficiente são números um pouco maiores que 1. Porém, valores superiores a 1,2 devem ser evitados, já que as diferenças começam a ficar muito altas.

Valores entre 1,15 e 1,2 começam a aparecer diferenças de 3% contra a segurança. Acima disso, aumentam para mais de 5%.

De acordo com a NBR 6118, o limite para o coeficiente é 1,3 e, acima disso, a etrutura é **instável e impraticável**.

- Nós fixos: $\gamma_z \leqslant 1,1 \to \text{Não}$ calcula efeitos globais de 2ª ordem para carga horizontal;
- Nós móveis: $1,1<\gamma_z\leqslant 1,3\to \text{Calcular}$ os efeitos.

Este método é válido para edifícios acima de 4 andares. Abaixo disso, não se deve majorar as cargas horizontais com γ_z .

O coeficiente γ_z é:

$$\gamma_z = \frac{1}{1 - \frac{\Delta M_{total,d}}{M_{1,total,d}}} \tag{4}$$

Onde $\Delta M_{total,d}$ é a soma dos produtos de todas as forças verticais atuantes na etrutura com seus valores de cálculo pelos deslocamentos horizontais de seus respectivos pontos de aplicação, sendo:

$$\Delta M_{total,d} = P_d \cdot d_{horiz} \tag{5}$$

 P_d é a soma de todas as cargas verticais (g e q) multiplicada pela majoração do concreto, já d_{horiz} é o deslocamento horizontal devido à carga horizontal

(obtido no FTOOL).

$$M_{1,total,d} = \sum_{i=1}^{n} F_{d,i} \cdot H_i \tag{6}$$

Figura 6: $M_{1,total,d}$ identificado na estrutura.

Com isso, é possível verificar o deslocamento horizontal máximo permitido pela NBR 6118 - tabela 13.3. No topo é H/1700 e entre pavimentos é $H_{pisos}/850$, adotando-se coeficiente de pressão dinâmica do vento para cálculo do estado limite $\psi_1=0,30$.

Exercício: Verificar o deslocamento horizontal (global e local) da estrutura abaixo em relação aos limites impostos pela NBR 6118 através do coeficiente γ_z , considerando somente a primeira combinação do ELU, sabendo-se que:

- Edifício com térreo + 6 pavimentos;
- Altura entre pisos de 3 m;
- Carga acidental no andar-tipo de 191,52 kN;
- Carga acidental na cobertura de $63,84 \ kN$;
- Carga permanente no andar-tipo de 1380,48 kN;
- Carga permanente na cobertura de $732,576 \ kN$;
- Pilares de (12x40) cm;
- Quatro pilares na face do vento.

Nota: As unidades de carga descritas acima representam as reações de apoio das vigas nos pilares.

Dada a quantidade de valores para manuseio, recomenda-se para o leitor utilizar alguma planilha eletrônica para faciltar a compreensão. O primeiro passo é colocar as seguintes cargas no pórtico do presente exercício, atentando-se ao fato de que os valores de carga de vento (H_v) devem ser divididos pela quantidade de pilares na face do vento (4).

Tabela 2: Valores de cota (z) e valores de carga de vento (H_v) para o presente exercício.

z (m)	$H_v(kN)$
3	19,255
6	22,740
9	25,065
12	26,857
15	28,333
18	29,602
21	15,358

Monta-se o pórtico no FTOOL e coloca-se 1/4 da carga de H_v em cada pilar, de modo a ficar como segue:

Figura 7: Esquematização do exercício proposto e distribuição das cargas horizontais.

Neste exercício, o vento é considerado como efeito secundário, portanto, deve ser minorado por um coeficiente ψ_0 , que no presente exercício equivale a 0,6 (valor para pressão dinâmica do vento para estruturas em geral, vide tabela 11.2 da NBR 6118).

Todo o exercício objetiva o encontro de γ_z para verificar a estabilidade global do edifício e qual tipo de nó está presente na estrutura, com ele pode-se verificar se será necessário considerar os efeitos de 2ª ordem. Os parâmetros de γ_z são $M_{1,total,d}$ e $\Delta M_{total,d}$, que são a carga horizontal final e a carga vertical, respectivamente.

O próximo passo é preencher a seguinte tabela:

Tabela 3: Tabela a ser preenchida para facilitar o cálculo de γ_z .

Andar	$F_d minorada$	$M_{1,total,d}$	P_d	d_{horiz}	$d_{horiz} \ minorada$	$\Delta M_{total,d}$
	(kN)	$(kN \cdot cm)$	(kN)	(cm) (FTOOL)	(cm)	$(kN \cdot cm)$
1						
2						
3						
4						
5						
6						
7						
Total						

Onde $F_{d,minorada}$ é a carga de vento minorada (já que o respectivo efeito é considerado secundário; é a minoração de H_v), $M_{1,total,d}$ é o momento fletor que a carga horizontal causa na estrutura, Pd é a carga vertical atuante na estrutura (g+q) unitária de cada andar, d_{horiz} é o deslocamento horizontal causado pela carga horizontal (obtido no FTOOL), d_{horiz} minorada é o deslocamento horizontal causado pela carga horizontal minorada (novamente, o efeito dos ventos está sendo considerado como secundário no exercício) e $\Delta M_{total,d}$ é o momento fletor gerado pelo deslocamento horizontal causado pelas cargas verticais. O 7º pavimento é a cobertura.

Calcula-se $F_{d,minorada}$ pela equação:

$$F_{d,minorada} = 1, 4 \cdot \psi_0 \cdot H_v \tag{7}$$

Por exemplo, para o 1º e 2º andar, respectivamente:

$$F_{d,minorada} = 1, 4 \cdot 0, 6 \cdot 19, 255 \ kN = 16, 1742 \ kN$$

 $F_{d,minorada} = 1, 4 \cdot 0, 6 \cdot 22, 740 \; kN = 19, 1016 \; kN$

Preenchendo a respectiva coluna na Tabela 3, tem-se:

Andar	$F_d \ minorado$	$M_{1,total,d}$	P_d	d_{horiz}	$d_{horiz}\ minorada$	$\Delta M_{total,d}$
	(kN)	$(kN \cdot cm)$	(kN)	(cm) (FTOOL)	(cm)	$(kN \cdot cm)$
1	16,1742					
2	19,1016					
3	21,0546					
4	22,5599					
5	23,7997					
6	24,8657					
7	12,9007					
Total						

Agora, pode-se calcular o momento fletor $(M_{1,total,d})$ causado por cada força horizontal $(F_{d,minorada})$ em relação à base do edifício. Para o 1º e 2º andar, tem-se, respectivamente:

$$M_{1,total,d} = F_{d,minorada} \cdot z = 16,1742 \ kN \cdot 300 \ cm = 4852,26 \ kN \cdot cm$$

 $M_{1,total,d} = F_{d,minorada} \cdot z = 19,1016 \ kN \cdot 600 \ cm = 11460,96 \ kN \cdot cm$

Note que a cota (z) é a altura que o respectivo pavimento está da base. Preenchendo a respectiva coluna na Tabela 3, tem-se:

Andar	F_d minorada	$M_{1,total,d}$	P_d	d_{horiz}	$d_{horiz}\ minorada$	$\Delta M_{total,d}$
	(kN)	$(kN \cdot cm)$	(kN)	(cm) (FTOOL)	(cm)	$(kN \cdot cm)$
1	16,1742	4852,26				
2	19,1016	11460,96				
3	21,0546	18949,14				
4	$22,\!5599$	27071,88				
5	23,7997	35699,55				
6	24,8657	44758,26				
7	12,9007	27091,47				
Total		169883,53				

A carga vertical P_d é a mesma para todos os pavimentos tipo, sendo:

$$P_d = g + q = 1, 4 \cdot 1380, 48 \ kN + 1, 4 \cdot 191, 52 \ kN = 2200, 8 \ kN$$

A carga vertical P_d para a cobertura é:

$$P_d = g + q = 1, 4 \cdot 732, 576 \ kN + 1, 4 \cdot 63, 84 \ kN = 1114, 9824 \ kN$$

Preenchendo a respectiva coluna na Tabela 3, tem-se:

Andar	$F_d minorada$	$M_{1,total,d}$	P_d	d_{horiz}	$d_{horiz} \ minorada$	$\Delta M_{total,d}$
	(kN)	$(kN \cdot cm)$	(kN)	(cm) (FTOOL)	(cm)	$(kN \cdot cm)$
1	16,1742	4852,26	2200,800			
2	19,1016	11460,96	2200,800			
3	21,0546	18949,14	2200,800			
4	22,5599	27071,88	2200,800			
5	23,7997	35699,55	2200,800			
6	24,8657	44758,26	2200,800			
7	12,9007	27091,47	1114,9824			
Total		169883,53				

O valor de d_{horiz} é obtido através do software livre FTOOL. Preenchendo a respectiva coluna na Tabela 3, tem-se:

Andar	F_d minorada	$M_{1,total,d}$	P_d	d_{horiz}	$d_{horiz} \ minorada$	$\Delta M_{total,d}$
	(kN)	$(kN \cdot cm)$	(kN)	(cm) (FTOOL)	(cm)	$(kN \cdot cm)$
1	16,1742	4852,26	2200,800	0,3228		
2	19,1016	11460,96	2200,800	0,7735		
3	21,0546	18949,14	2200,800	1,1816		
4	22,5599	27071,88	2200,800	1,5184		
5	23,7997	35699,55	2200,800	1,7743		
6	24,8657	44758,26	2200,800	1,9440		
7	12,9007	27091,47	1114,9824	2,0326		
Total		169883,53				

O valor contido na tabela de d_{horiz} foi obtido no FTOOL a partir da carga H_v (não minorada). Para obtermos $d_{horiz,minorada}$, deve-se minorar d_{horiz} pelos mesmos fatores utilizados para minorar H_v . Para o 1º e 2º andar, tem-se:

$$d_{horiz,minorada} = 1, 4 \cdot \psi_0 \cdot d_{horiz} = 1, 4 \cdot 0, 6 \cdot 0, 3228 \ cm = 0, 2712 \ cm$$

 $d_{horiz,minorada} = 1, 4 \cdot \psi_0 \cdot d_{horiz} = 1, 4 \cdot 0, 6 \cdot 0, 7735 \ cm = 0,6497 \ cm$

Preenchendo a	. 1100	naatiro	acluna	70.0	Tabala	9	tom and
r reenchendo a	ı res	ресича	coruna	па	rabeia	υ,	tem-se.

Andar	$F_d \ minorada$	$M_{1,total,d}$	P_d	d_{horiz}	$d_{horiz} \ minorada$	$\Delta M_{total,d}$
	(kN)	$(kN \cdot cm)$	(kN)	(cm) (FTOOL)	(cm)	$(kN \cdot cm)$
1	16,1742	4852,26	2200,800	0,3228	0,2712	
2	19,1016	11460,96	2200,800	0,7735	0,6497	
3	21,0546	18949,14	2200,800	1,1816	0,9925	
4	22,5599	27071,88	2200,800	1,5184	1,2755	
5	23,7997	35699,55	2200,800	1,7743	1,4904	
6	24,8657	44758,26	2200,800	1,9440	1,6330	
7	12,9007	27091,47	1114,9824	2,0326	1,7074	
Total		169883,53				

A última coluna da tabela, $\Delta M_{total,d}$, que é o momento fletor causado pela carga vertical vezes a excentricidade causada pela carga horizontal, é, para o 1° e 2° andar, respectivamente:

$$\Delta M_{total,d} = P_d \cdot d_{horiz,minorada} = 2200,800 \ kN \cdot 0,2712 \ cm = 596,7513 \ kN \cdot cm$$

$$\Delta M_{total,d} = P_d \cdot d_{horiz,minorada} = 2200,800~kN \cdot 0,6497~cm = 1429,9478~kN \cdot cm$$

Preenchendo a respectiva coluna na Tabela 3, tem-se:

	$F_d minorada$	$M_{1,total,d}$	P_d	d_{horiz}	$d_{horiz} \ minorada$	$\Delta M_{total,d}$
	(kN)	$(kN \cdot cm)$	(kN)	(cm) (FTOOL)	(cm)	$(kN \cdot cm)$
1	16,1742	4852,26	2200,800	0,3228	0,2712	596,7513
2	19,1016	11460,96	2200,800	0,7735	0,6497	1429,9478
3	21,0546	18949,14	2200,800	1,1816	0,9925	2184,3908
4	22,5599	27071,88	2200,800	1,5184	1,2755	2807,0236
5	23,7997	$35699,\!55$	2200,800	1,7743	1,4904	3280,0987
6	24,8657	$44758,\!26$	2200,800	1,9440	1,6330	3593,8184
7	12,9007	27091,47	1114,9824	2,0326	1,7074	1903,6990
Total		169883,53				15795,7296

Agora, pode-se calcular o valor de γ_z para verificarmos o tipo de nó presente na estrutura.

$$\gamma_z = \frac{1}{1 - \frac{\Delta M_{total,d}}{M_{1,total,d}}} = \frac{1}{1 - \frac{15795,7296 \ kN}{169883,53 \ kN}} \approx 1,1025$$

Portanto, o tipo de nó é móvel $(1, 1 < \gamma_z \le 1, 3)$. Nós móveis obriga a definição dos efeitos de 2ª ordem para as cargas horizontais. Para isso, a NBR 6118 permite majorar a carga de vento com a equação:

$$H_{v2} = H_v \cdot 0,95 \cdot \gamma_z \tag{8}$$

Onde H_{v2} é a nova carga de vento majorada em kN, H_v é a carga de vento nos nós da estrutura em kN e γ_z é o coeficiente de estabilidade global (adimensional).

Essa nova carga horizontal $(H_{v2}/4)$ deve ser colocada no lugar da antiga $(H_v/4)$ no FTOOL objetivando encontrar novos deslocamentos horizontais. Pode-se, então, montar a seguinte tabela para facilitar os cálculos:

Tabela 4: Tabela a ser preenchida para verificação de deslocamento horizontal em nós móveis.

\mathbf{Z}	H_{v2}	$\frac{H_{v2}}{4}$	$d_{horiz,2}$	$d_{horiz,2} \cdot \psi_1$	$\Delta_{desloc,2}$
(m)	(kN)	(kN)	FTOOL (cm)	(cm)	(cm)
3	20,1674	5,0419	0,3448		
6	23,8176	5,9544	0,8263		
9	26,2527	6,5632	1,2622		
12	28,1296	7,0324	1,6221		
15	29,6756	7,4189	1,8954		
18	31,0047	7,7512	2,0767		
21	16,0857	4,0214	2,1713		

O coeficiente ψ_1 na penúltima coluna é o valor de pressão dinâmica do vento nas estruturas em geral (0,3). O valor do produto $(d_{horiz,2} \cdot \psi_1)$ diz respeito ao **deslocamento global** da estrutura. O valor de $\Delta_{desloc,2}$ diz respeito a variação de deslocamento entre um pavimento e o logo abaixo, ou seja, o **deslocamento local**. O referido produto para o 6º pavimento e cobertura são, respectivamente:

$$d_{horiz} \cdot \psi_1 = 2,0767 \cdot 0, 3 = 0,6230 \ cm$$

$$d_{horiz} \cdot \psi_1 = 2,1713 \cdot 0,3 = 0,6513 \ cm$$

O valor de deslocamento local de cada pavimento deve ser obtido da seguinte forma:

$$\Delta_{desloc,2_i} = (d_{horiz} \cdot \psi_1)_i - (d_{horiz} \cdot \psi_1)_{i-1}$$
(9)

O valor de $\Delta_{desloc,2}$ para a cobertura é, portanto:

$$\Delta_{desloc,2} = 0,6513 - 0,6230 = 0,0283 \ cm$$

Completanto a Tabela 4, tem-se:

\mathbf{z}	$H_v \cdot 0,95 \cdot \gamma_z$	$\frac{H_{v2}}{4}$	$d_{horiz,2}$	$d_{horiz,2} \cdot \phi_1$	$\Delta desloc2$
(m)	(kN)	(kN)	FTOOL (cm)	(cm)	(cm)
3	20,1674	5,0419	0,3448	0,10344	0,1034
6	23,8176	5,9544	0,8263	0,24789	0,1445
9	26,2527	6,5632	1,2622	0,37866	0,1308
12	28,1296	7,0324	1,6221	0,48663	0,1080
15	$29,\!6756$	7,4189	1,8954	0,56862	0,0820
18	31,0047	7,7512	2,0767	0,62301	0,0544
21	16,0857	4,0214	2,1713	0,65139	0,0283

Nota: Alguns valores podem ficar bem próximos, já que foram feitos em planilha eletrônica. O importante é entender o processo lógico por trás do método.

Por fim, verifica-se se os deslocamentos estão dentro do aceitável pela NBR 6118, que são:

- Para o topo: H/1700, onde H é a cota da cobertura (verificação global);
- Para entre pisos: $H_{pisos}/850$, onde H_{pisos} é a altura piso a piso (verificação local).

Para o topo, tem-se:

$$H/1700 = 2100 \ cm/1700 \approx 1,2553 \ cm > 0,6513 \ cm \ (OK)$$

Para o entre pisos, checa-se com o maior valor de $\Delta_{desloc,2}$ presente na Tabela 4. Tem-se:

$$H_{pisos}/850 = 300 \ cm/850 \approx 0,3529 \ cm > 0,1445 \ cm \ (OK)$$

Os deslocamentos global e local atendem às exigencias da NBR 6118.

10 Pilar intermediário, de extremidade e de canto

A classificação de pilares tem como objetivo considerar as diferentes situações de projeto e de cálculo, em relação aos esforços solicitantes em que cada um desses pilares se enquadra.

• Pilar intermediário: Estão submetidos preponderantemente às forças axiais de compressão, pois os módulos dos momentos fletores são de pequena intensidade em relação às ações verticais apenas. Portanto, na situação de projeto, admite-se o pilar intermediário submetido a uma compressão centrada, isto é, a excentricidade inicial é considerada igual a zero para o dimensionamento das áreas das armaduras;

Figura 8: Vista em planta de um pilar intermediário.

• Pilar de extremidade: Ficam posicionados nas bordas das edificações, sendo também chamados de laterais ou de borda. O termo "pilar de extremidade" advém do fato do pilar ser extremo para uma viga, aquela que não tem continuidade sobre o pilar. Além de estarem submetidos às forças normais de compressão, também estão sujeitos à ação de momentos transmitidos pelas vigas que têm suas extremidades externas nesses pilares. Portanto, na situação

de projeto, admite-se o pilar de extremidade submetido à flexão normal composta, considerando-se excentricidade inicial segundo uma das coordenadas locais da seção tranversal do pilar;

Figura 9: Vista em planta de um pilar de extremidade.

• Pilar de canto: Além da força normal de compressão atuante, consideram-se os momentos transmitidos pelas vigas, cujos planos médios são perpendiculares às faces dos pilares, e são interrompidas nas bordas do pilar. Na situação de projeto, considera-se o pilar de canto submetido à flexão obliqua composta, com excentricidades iniciais segundo os eixos coordenados locais.

Figura 10: Vista em planta de um pilar de canto.

11 Pré-dimensionamento da seção do pilar

Para definição da seção de cada tipo de pilar, utiliza-se o **pilar do térreo**, que é o que recebe maior carga entre todos os pilares e mantém-se essa seção até o último andar.

Sabendo-se as cargas acima do pilar (variável e permanente), N_d será o valor da reação de apoio com as majorações necessárias. Se as cargas forem pré-

dimensionadas, é possível também pré-dimensionar a seção dos pilares em função do tipo de pilar e para aço CA-50.

• Pilar intermediário:

$$A_c = \frac{N_d}{0.5 \cdot f_{ck} + 0.4} \tag{10}$$

• Pilar de extremidade e pilar de canto:

$$A_c = \frac{1, 5 \cdot N_d}{0, 5 \cdot f_{ck} + 0, 4} \tag{11}$$

Onde A_c é a área da seção transversal do pilar, N_d é a força normal de cálculo e f_{ck} é a resistência característica do concreto à compressão.

Lembrando: Sem ter a seção do pilar ainda definida, N_d é calculada apenas com a majoração do concreto:

$$N_d = \gamma_f \cdot N_k = 1, 4 \cdot N_k \tag{12}$$

Sabendo-se a área de concreto, devemos consultar a NBR 6118 para saber a área mínima a ser utilizada e também a medida mínima da menor dimensão do pilar.

Item 13.2.3 - A seção transversal de pilares e pilar-paredes maciços, qualquer que seja sua forma, não pode apresentar dimensão menor que 19 cm. Em casos especiais, permite-se considerações de dimensões entre 19 e 14 cm, desde que se multipliquem os esforços solicitantes de cálculo a serem considerados no dimensionamento por um coeficiente adicional γ_n , de acordo com o indicado na tabela 13.1 e seção 11 da norma. Em qualquer caso, **não se permite** pilar com seção transversal de área inferior a 360 cm².

*inserir tabela

A maior dimensão da seção do pilar deve ser sempre em **múltiplos de** $\mathbf{5}\ cm$.

Sabendo-se o valor de γ_n , pode-se calcular o valor de N_d :

$$N_d = \gamma_n \cdot \gamma_f \cdot N_k \tag{13}$$

Exercício: Pré-dimensionar a seção de um pilar intermediário, sabendose que: Aço CA-50; Concreto C25 ($f_{ck}=25~MPa=250~kgf/cm^2$); $\gamma_f=1,4;$ q=14051,52~kgf e g=144529,92~kgf.

Calcular $b=16\ cm$ e depois $b=19\ cm$. Lembre-se que não queremos pilar-parede (onde $h=5\cdot b$).

Para o pilar com b = 16 cm, tem-se:

$$A_c = \frac{N_d}{0, 5 \cdot f_{ck} + 0, 4} = \frac{1, 4 \cdot 1, 15 \cdot (14051, 52 + 144529, 92)}{0, 5 \cdot 250 + 0, 4} \approx 2036,0137 \text{ cm}^2$$

Com essa área, checa-se se não é um pilar parede (limite de 5 · $b=5\cdot 16\ cm=80\ cm$):

$$h = \frac{A_c}{b} = \frac{2036,0137 \text{ cm}^2}{16 \text{ cm}} \approx 127,2508 \text{ cm} \approx 130 \text{ cm}$$

O valor de h ultra passou o limite e, dessa forma, o pilar é considerado pilar-pare de.

Para o pilar com b = 19 cm, tem-se:

$$A_c = \frac{N_d}{0, 5 \cdot f_{ck} + 0, 4} = \frac{1, 4 \cdot (14051, 52 + 144529, 92)}{0, 5 \cdot 250 + 0, 4} \approx 1770, 4466 \text{ cm}^2$$

$$h = \frac{A_c}{b} = \frac{1770, 4466 \text{ cm}^2}{19 \text{ cm}} \approx 93, 1814 \text{ cm} \approx 95 \text{ cm}$$

O valor de h está dentro do limite $(5 \cdot b = 5 \cdot 19 \ cm = 95 \ cm)$ e não é considerado pilar-parede.

Exercício: Admitindo-se um pilar intermediário com uma carga axial de 40000~kgf; aço CA-50; concreto C25 e $\gamma_f=1,4$ e sabendo-se que o lado maior da seção do pilar é **duas vezes** o lado menor, qual o valor unitário arredondado para cada lado da seção desse pilar?

$$A_{c1} = \frac{N_d}{0, 5 \cdot f_{ck} + 0, 4} = \frac{1, 4 \cdot 40000}{0, 5 \cdot 250 + 0, 4} \approx 446,5709 \text{ cm}^2$$
$$A_{c1} = b \cdot (2 \cdot b)$$
$$b = \sqrt{\frac{446,5709 \text{ cm}^2}{2}} \approx 14,9427 \text{ cm} \approx 15 \text{ cm}$$

A área de concreto foi pré-dimensionada sem o γ_n (que depende do menor lado do pilar). No caso de 15 cm, seria de $\gamma_n = 1, 20$. É necessário recalcular o valor de área de concreto com esse coeficiente.

$$A_{c2} = \frac{N_d}{0, 5 \cdot f_{ck} + 0, 4} = \frac{1, 4 \cdot 1, 20 \cdot 40000}{0, 5 \cdot 250 + 0, 4} \approx 535, 8851 \text{ cm}^2$$
$$b = \sqrt{\frac{535, 8851 \text{ cm}^2}{2}} \approx 16,3689 \text{ cm} \approx 17 \text{ cm}$$

Por mais que o lado de 17 cm tenha outro γ_n , ele é menor que o γ_n de 15 cm e assim sendo, não é necessário pré-dimensionar a área de concreto novamente. O pilar terá um b=17 cm e h=34 $cm\approx 35$ cm (arredondando de 5 em 5 cm para facilitar a execução).

12 Comprimento equivalente

O parâmetro L_e é o comprimento equivalente, que depende da composição da estrutura, como abaixo:

Figura 11: Comprimento equivalente de um pilar.

$$L_e \leqslant \begin{cases} L_0 + h \\ L \end{cases} \tag{14}$$

Onde L_0 é a distância entre faces internas dos elementos estruturais, supostos horizontais, que vinculam o pilar, ou seja, a distância do topo da viga inferior à base da viga superior; h é a dimensão da seção transversal do pilar, medida no plano da estrutura em estudo (eixo x e y); e L é a distância entre os eixos dos elementos estruturais aos quais o pilar está vinculado (distância do eixo da viga inferior ao eixo da viga superior).

Exercício: Definir o comprimento equivalente do pilar abaixo para as direções x e y, considerando a seguinte figura para um pilar P1(35x60):

Figura 12: Configuração de um pilar genérico P1.

$$L_{e, x} \leqslant \left\{ egin{aligned} L_0 + h &= (560 - 52) + 60 = 568 \ cm \ \\ L &= \mathbf{560 \ cm} \end{aligned}
ight.$$
 $L_{e, y} \leqslant \left\{ egin{aligned} L_0 + h &= (560 - 62) + 35 = \mathbf{533 \ cm} \\ L &= 560 \ cm \end{aligned}
ight.$

13 Comprimento de flambagem

A deflexão lateral produzida por uma carga sobre um pilar compõe o processo conhecido como **flambagem por flexão**. Ela ocorrerá sempre em torno do eixo de menor momento de inércia de sua seção transversal, pois gerará o maior índice de esbeltez.

Para calcular o índice de esbeltez é necessário o comprimento de flambagem, que é dado de acordo com o tipo de vinculação na base e no topo do pilar.

Figura 13: Comprimento de flambagem para diferentes pilares.

Porém, a NBR 6118, item 15.8.2 diz: Caso seja pilar engastado e livre no topo, o valor de $L_e=2\cdot L$. Nos demais casos, adotar o comprimento equivalente calculado anteriormente pela Equação (14).

Figura 14: Comprimento de flambagem de um pilar engastado na base e livre no topo.

14 Índice de esbeltez

Segundo Leonhardt Euler, o fator mais importante que determina a carga crítica nos elementos comprimidos é a **esbeltez**. Em função dela, conclui-se que, quanto mais esbelto for o elemento estrutural, menor será sua carga crítica.

A determinação do parâmetro **esbeltez** (λ) de um elemento estrutural é função do seu momento de inércia (I) de sua seção transversal, que é determinado em função de sua espessura. A propriedade da seção transversal que é usada na determinação da carga crítica é o **raio de giração da seção transversal** (i), que é relativo ao **momento de inércia**.

$$i = \sqrt{\frac{I}{A}} \tag{15}$$

Onde i é o raio de giração da seção geométrica da peça, sem considerar a presença da armadura; I é o momento de inércia da seção transversal do pilar em relação ao eixo x ou y; e A é a área da seção transversal do pilar.

O momento de inércia indica a dificuldade de uma peça girar no eixo escolhido.

Para um pilar em pé em relação à visão em planta:

Figura 15: Exemplo de seção transversal (retangular) para cálculo do momento de inércia.

Na direção x (a base será sempre a face onde o eixo está olhando). Por exemplo, um pilar P1 (20x70):

$$I_x = \frac{b \cdot h^3}{12} = \frac{70 \cdot 20^3}{12} \approx 46666,6667 \text{ cm}^4$$

E na direção y:

$$I_y = \frac{b \cdot h^3}{12} = \frac{20 \cdot 70^3}{12} \approx 571666,6667 \text{ cm}^4$$

Ou seja, é muito mais difícil rotacionar no eixo y.

O Índice de Esbeltez (λ) depende do raio de giração e do comprimento de flambagem e possui limites com a finalidade de evitar a grande flexibilidade de peças excessivamente esbeltas.

$$\lambda = \frac{L_e}{i} \leqslant 200 \tag{16}$$

Para uma seção retangular, o Índice de Esbeltez pode ser definido por:

$$\lambda = \frac{\sqrt{12} \cdot L_e}{h} \leqslant 200 \tag{17}$$

Já que:

$$i = \sqrt{\frac{I}{A}} = \sqrt{\frac{\frac{b \cdot h^3}{12}}{b \cdot h}} = \sqrt{\frac{h^2}{12}} = \frac{h}{\sqrt{12}}$$
 (18)

A NBR 6118 não admite, em nenhum caso, pilares com λ superior a 200 para edificações. O valor de λ deve ser calculado tanto na direção x quanto na direção y.

Para o cálculo do Índice de Esbeltez, a altura e a base da seção transversal do pilar deve ser padronizada, seguindo as **direções de visão adotadas anteriormente**.

Figura 16: Visualização de h_x e h_y para pilares retangulares, sempre paralelo ao eixo analisado.

O cálculo nas duas direções ficará da seguinte forma:

$$\lambda_x = \frac{\sqrt{12} \cdot L_e}{h_x} \tag{19}$$

$$\lambda_y = \frac{\sqrt{12} \cdot L_e}{h_y} \tag{20}$$

Exercício: Calcular o Índice de Esbeltez de um pilar (25x65) e um pilar (80x25) nas duas direções (x e y). Considerar $L_{ex} = L_{ey} = 2,9$ m

P1 (25x65):

$$\lambda_x = \frac{\sqrt{12} \cdot L_{ex}}{h_x} = \frac{\sqrt{12} \cdot 2, 9}{0, 25} \approx 40, 1830$$
$$\lambda_y = \frac{\sqrt{12} \cdot L_{ey}}{h_y} = \frac{\sqrt{12} \cdot 2, 9}{0, 65} \approx 15, 4552$$

P2 (80x25):

$$\lambda_x = \frac{\sqrt{12} \cdot L_{ex}}{h_x} = \frac{\sqrt{12} \cdot 2, 9}{0, 8} \approx 12,5573$$

$$\lambda_y = \frac{\sqrt{12} \cdot L_{ey}}{h_x} = \frac{\sqrt{12} \cdot 2, 9}{0, 25} \approx 40,1830$$

Exercício: Utilizando a planta abaixo (fora de escala), calcular o Índice de Esbeltez nas duas direções para o pilar 4. Considerar 4,6 m entre pisos.

Figura 17: Planta do pilar 4 e vigas adjacentes.

Para a direção x, tem-se:

$$L_{e, x} \leqslant \begin{cases} L_0 + h = (460 - 52) + 70 = 478 \ cm \\ L = 460 \ cm \end{cases}$$

$$\lambda_x = \frac{\sqrt{12} \cdot L_{e, x}}{h_x} = \frac{\sqrt{12} \cdot 460 \ cm}{25 \ cm} \approx 63,7394$$

Para a direção y, tem-se:

$$L_{e, y} \leqslant \begin{cases} L_0 + h = (460 - 62) + 25 = 423 \text{ cm} \\ L = 460 \text{ cm} \end{cases}$$

$$\lambda_y = \frac{\sqrt{12} \cdot L_{e, y}}{h_y} = \frac{\sqrt{12} \cdot 423 \ cm}{70 \ cm} \approx 20,9330$$

15 Pilar curto, médio, semi-esbelto e esbelto

A determinação do tipo de pilar em relação ao seu Índice de Esbeltez é dada por:

- Curto ($\lambda \leqslant 35$): Onde os efeitos locais de 2ª ordem podem ser desprezados;
- Médio (35 $< \lambda \le 90$): Onde os efeitos locais de 2ª ordem precisam ser obrigatoriamente considerados;
- Semi-esbelto ou medianamente esbelto (90 < λ ≤ 140): Onde os efeitos de 2ª
 ordem e fluência do concreto precisam ser obrigatoriamente considerados;
- Esbelto (140 $< \lambda \le 200$): Onde os efeitos locais de 2ª ordem e fluência do concreto precisam ser obrigatoriamente considerados e necessita de processos exatos de cálculo.

16 Momento fletor mínimo

Nas estruturas reticuladas usuais, admite-se que o efeito das imperfeições locais esteja atendido se for respeitado o valor de **momento fletor mínimo**.

O momento fletor mínimo é dado pela seguinte equação:

$$M_{1d, min} = N_d \cdot (1, 5 + 0, 03 \cdot h) \tag{21}$$

Onde N_d é a força normal de cálculo e h é a altura da seção transversal na direção considerada (em **centímetros**).

Essa equação tem como função aplicar uma **excentricidade mínima** a qualquer estrutura, de forma a atender as **imperfeições geométricas** executivas e a **incerteza** do **ponto exato** de aplicação das reações das vigas sobre os pilares.

Sendo assim, a excentricidade mínima é dada por:

$$e_{1d, min} = 1, 5 + 0, 03 \cdot h \tag{22}$$

A Equação (21) também pode ser apresentada da seguinte forma:

$$M_{1d, min} = N_d \cdot e_{1d, min} \tag{23}$$

Exercício: Calcular o momento fletor mínimo e as excentricidades nas duas direções e informar o tipo de pilar de acordo com seu Índice de Esbeltez, sabendo-se que: $N_k = 785, 7 \ kN$, pilar (50x17) e $L_{ex} = L_{ey} = 2, 8 \ m$.

Figura 18: Seção transversal de um pilar (50x17).

Como N_d depende da menor espessura do pilar, tem-se:

$$N_d = \gamma_f \cdot \gamma_n \cdot N_k = 1, 4 \cdot 1, 1 \cdot 785, 7 \ kN = 1209, 9780 \ kN$$

Para a direção x:

$$e_{1d, \min x} = 1, 5 + 0, 03 \cdot h_x = 1, 5 + 0, 03 \cdot 50 = 3 cm$$

$$M_{1d, \min x} = N_d \cdot e_{1d, \min x} = 1209, 978 \ kN \cdot 3 \ cm = 3629, 9340 \ kN \cdot cm$$

$$\lambda_x = \frac{\sqrt{12} \cdot L_{ex}}{h_x} = \frac{\sqrt{12} \cdot 2, 8}{0, 5} \approx 19,3989$$

Para a direção y:

$$e_{1d, \min y} = 1, 5 + 0, 03 \cdot h_y = 1, 5 + 0, 03 \cdot 17 = 2, 01 cm$$

$$M_{1d, \min y} = N_d \cdot e_{1d, \min y} = 1209, 978 \ kN \cdot 2, 01 \ cm = 2432, 0557 \ kN \cdot cm$$

$$\lambda_y = \frac{\sqrt{12} \cdot L_{ey}}{h_y} = \frac{\sqrt{12} \cdot 2, 8}{0, 17} \approx 57, 0557$$

Portanto, na classificação de acordo com o Índice de Esbeltez, o pilar pertence ao pior caso das duas direções ($\lambda_y=57,0557$). É um pilar médio.