

Genomic runs and resampled predictive models as alternative/complement to GWAS

Filippo Biscarini

(Biostatistician, bioinformatician, quantitative geneticist)

CNR-IBBA, Milan (Italy)

Genomic runs

Runs of homozygosity (ROH)

- stretches of homozygous SNP genotypes
- autozygosity (IBD vs IBS)

ROH-based approaches for association studies

- ROH may be used to localize mutations
- Mainly, recessive mutations (not lethal)
- Homozygosity (ROH) patterns are:
 - different in cases vs controls (> homozygosity in cases)
 - different around the mutation compared to the rest of the genome (> homozygosity around the mutation)

Perinatal mortality calves – BTA4 (Pollot 2012)

Reproductive diseases Holsteins – BTA15 (Biscarini et al. 2015)

genomic runs - "ROHet"

Runs of heterozygosity

FECUND

- Similar concept to ROHom
- ROHet, though, scan the genome for stretches of contiguous heterozygous SNP genotypes
- May be used for:
 - Balancing selection
 - Negative selection
 - Introgression
 - Hypervariable regions
 - 0 ...

genomic runs - "ROHet"

ROHet in Chillingham cattle (Williams et al 2015)

FECUND

genomic runs - "ROHet"

ROHet in Chillingham and deleterious haplotypes

Table 2 Chromosomal regions implicated as harbouring detrimental haplotypes in dairy cattle and heterozygosity and polymorphism of each as they occur in the Chillingham genome.

Haplotype ¹	Breed	BTA	Start Mb	End Mb	Heterozygosity ²	Polymorphic
HH4	Holstein	1	1.28		0.300	33.3
BHP/JHP	Brown Swiss	1	1.71	1.99	0.172	19.4
HHD	Holstein	1	69.76		0.056	7.0
HH2	Holstein	1	94.86	96.55	0.063	22.0
HHB	Holstein	1	145.12		0.029	4.7
62.7	Jersey	2	116.04	121.05	0.117	12.7
HDR	Holstein	3	9.48		0.004	5.2
HHC	Holstein	3	43.41		0.014	20.0
BHW	Brown Swiss	4	49.62	49.74	0.008	11.7
HH1	Holstein	5	63.15		0.017	9.5
175.5	Holstein	7	3.12	9.57	0.129	18.6
BH1	Brown Swiss	7	42.81	47.00	0.080	29.8
186.139	Jersey	7	58.26	62.98	0.454	51.5
HH3	Holstein	8	95.41		0.089	33.7
HH5	Holstein	9	92.35	93.91	0.065	9.8
BHD	Brown Swiss	11	14.74		0.056	21.8
JH1	Jersey	15	15.71		0.078	12.3
369.1	Holstein	15	71.98	76.13	0.114	18.2
ннм	Holstein	15	77.66	77.70	0.004	7.7
AH1	Ayrshire	17	65.92		0.030	4.1
HBR/HHR	Holstein	18	14.75	14.76	0.074	25.0
BH2	Brown Swiss	19	10.62	11.73	0.039	14.0
нно	Holstein	21	21.18	21.19	0.118	14.3
BHM	Brown Swiss	24	62.12	62.16	0.122	16.6
JH2	Jersey	26	8.81	9.41	0.005	4.2

¹From Cole *et al.* (2015) (http://www.aipl.arsusda.gov/reference/recessive_haplotypes_ARR-G3.html).

²Mean Heterozygosity of region in Chillingham.

- on CRAN
- two methods
 - sliding windows
 - window-less
- output files (runs per individual, per chromosome)
- pots
 - plot runs
 - plot stacked runs
 - plot n. of times SNP are in runs

Resampled predictive models

resampled predictive models

- models for genomic predictions typically run hundreds of times
 - ☐a. cross-validation schemes
 - □b. resampling the training set
- from **resampled replicates** of the predictive model, most relevant predictors can be extracted
- some methods operate directly such variable selection (e.g.
 Lasso-penalized models)

resampled predictive models

- each replicate of the predictive model (e.g. 1000) → different subset of relevant SNPs
- 1000 subsets of relevant SNPs
- SNP frequency (in the 1000 subsets of predictors) against SNP position along the genome → detecting associated variants!
- the accuracy of prediction is relevant!

prediction of haplotype carriers

BH2 haplotype on BTA19 associated with stillbirth and reduced cow fertility in Brown Swiss cattle

- 3645 Brown Swiss bulls & cows (513 carriers), 1512 SNPs on BTA19 (from 50K SNP chip), 211 SNP (from 7K SNP chip)
- LDA: linear discriminant analysis
- Decreasing subsets of SNPs
- 10-fold cross-validation x 100 times

[Biffani et al. 2015 Genet Sel Evol]

prediction of haplotype carriers

resampling-based mutation mapping

TUBD1 mutation in Brown Swiss cattle

- BH2: Braunvieh haplotype 2, on BTA19 associated with high peri- and postnatal calf losses in Braunvieh cattle
- missense mutation in the gene **TUBD1** (recessive)
- homozygous calves are underweight at birth and suffer from recurrent respiratory diseases
- ultrastructural abnormalities of cilia in the respiratory tract

prediction of mutation carriers

TUBD1 mutation behind the BH2 haplotype on BTA19 Missense mutation → microtubular defects in airway cilia

- → chronic respiratory disease
- → stillbirth, perinatal mortality in calves

[Schwarzenbacher et al. 2016 BMC Genomics]

Predict directly mutation carriers rather than haplotype carriers!

Haplotype-mutation concordance is 99% though Not so in other cases (e.g. CVM)

prediction of mutation carriers

392 Brown Swiss and **3116 Fleckvieh** cows and bulls, **1512 SNPs** on BTA19 (from 50K SNP chip)

Five classification methods:

- . KNN
- Lasso-penalized LR
- SVM-Linear kernel
- SVM-Radial kernel
- MAG (Multi Allelic Gene prediction) [haplotype-based method]

10-fold cross-validation x 100 times

[Biscarini et al. 2016 BMC Genomics]

prediction of mutation carriers: accuracy

Courses

NEXT COURSE

Deep learning for biologists

