RECOMMENDE RSYSTEMS

What are recommender systems?

RECOMMENDER SYSTEMS

A recommendation system aims to match users to products/items/brand/etc that they likely haven't experienced yet.

This rating is produced by analyzing other user/ item ratings (and sometimes item characteristics) to provide personalized recommendations to users.

Customers who bought this item also bought

ORELLY

Visa McRisone

Python Data Science
Handbook: Essential Tools
for Working with Data

Jake VanderPlas

The Prime 23
Paperback
\$45.47 \(\text{prime} \)

Hands-On Machine
Learning with Scikit-Learn
and TensorFlow:...

Aurélien Géron

49

#1 Best Seller (in
Computer Neural Networks
Paperback
\$31.57 \rightarrow prime

Scientists: 50 Essential
Concepts

Peter Bruce

The fraction 10
Paperback

\$32.72 \(\text{prime} \)

Andreas C. Müller & Sarah Guido

\$40.75 \rightarrow prime

People You May Know

Add people you know as friends and connect with public profiles you like.

Lala Lalabs Add as friend

Brian Crecente Add as friend

Ashcraft
Add as friend

justin bieber Add as friend

Camile Gozon Add as friend

Karla ×
Danielle
Beger
Add as friend

Taylor -Alison Swifty Add as friend

Adam Rifkin
Add as friend

Luke × Plunkett Add as friend

EXAMPLES OF RECOMMENDER SYSTEMS - ACTIVITY

Spend 15 minutes finding as many examples of recommender systems as you can, then share your two favorites with the class while the instructor writes them on the board.

Different types of recommender systems

NON-PERSONALIZED

Non-personalized recommender systems recommend items without using any user information. Therefore, every user will receive the same recommendations. One example would include recommending the most popular products.

CONTENT

In **content-based filtering**, items are mapped into a feature space, and recommendations depend on *item characteristics*.

CONTENT

Content-based filtering begins by mapping each item into a feature space. Both users and items are represented by vectors in this space.

Item vectors measure the degree to which the item is described by each feature, and user vectors measure a user's preferences for each feature.

CONTENT

Ratings are generated by taking **dot products** of user & item vectors.

CONTENT - EXAMPLE

features = (big box office, kid friendly, famous actors)

Items (movies)

Finding Nemo = (5, 5, 2)

Mission Impossible = (3, -5, 5)

Jiro Dreams of Sushi (-4, -5, -5)

Prediction

$$5*-3 + 5*2 + 2*-2 = -9$$

$$3*-3 + -5*2 + 5*-2 = -29$$

User

(-3, 2, -2)

COLLABORATIVE

Collaborative filtering refers to a family of methods for predicting ratings where instead of thinking about users and items in terms of a feature space, we are *only* interested in the existing user-item ratings themselves.

In this case, our dataset is a *ratings matrix* whose columns correspond to items, and whose rows correspond to users.

COLLABORATIVE

The user-item matrix will almost always be very sparse

COLLABORATIVE

There are two types of collaborative filtering:

- User-to-user, where we find similar users based on ratings and recommend items from those users
- Item-to-item, where we find similar items based on ratings and recommend the most similar items

PROS AND CONS

	Pros	Cons
Non-personalized	Doesn't require any user-dataNo cold-start issuesEasy to build and maintain	No personalizationRecommendations are obvious
Content	No cold-start issuesRecommendations are transparent	 Requires feature selection and/or engineering Tend to recommend non-surprising items
Collaborative	 Doesn't require feature selection and/or engineering Can capture non-quantifiable qualities Provides serendipitous recommendations 	 Suffers from a ramp-up problem Can be computationally intensive

HYBRID

Different recommender systems have different pros and cons. Combining multiple types of recommender systems can create better recommendations.

Hybrid Recommendations

Other considerations

THE COLD-START PROBLEM

The cold start problem arises because we've been relying only on ratings data, or on explicit feedback from users.

Until users rate several items, we don't know anything about their preferences!

We can get around this by enhancing our recommendations using implicit feedback, which may include things like item browsing behavior, search patterns, purchase history, etc.

THE COLD-START PROBLEM

While explicit feedback (ratings, likes, purchases) leads to high quality ratings, the data is sparse and cold starts are problematic.

Meanwhile implicit feedback (browsing behavior, etc.) leads to less accurate ratings, but the data is much more dense (and less invasive to collect).

EVALUATING RECOMMENDER SYSTEMS

There are two main ways to evaluate recommender systems:

- Offline, where the recommender is evaluated using crossvalidation. A training dataset is used to build the system, and then the system is used to predict item ratings in the test set. An error metric is then calculated.
- Online, where systems are compared using A/B testing and metrics such as click through rate (CTR) or conversion rate (CR) are measured.

Jupyter Notebook Examples