R para Data Science

Solução dos exercícios

To Shao Yong (邵雍), for sharing a secret joy with simple words;

月到天心处,风来水面时。 一般清意味,料得少人知。

and

To Hongzhi Zhengjue (宏智禅师), for sharing the peace of an ending life with simple words.

梦幻空华,六十七年;白鸟淹没,秋水连天。

Conteúdo

Pr	efácio		vii
Pr	efácio		vii
	Pend	lências	vii
I	Exp	olorar	1
1	Visu	alização de dados com ggplot2	3
	1.1	Introdução	3
	1.2	Primeiros passos	3
	1.3	Mapeamentos estéticos	8
	1.4	Problemas comuns	15
	1.5	Facetas	15
	1.6	Objetos geométricos	21
	1.7	Transformações estatísticas	27
	1.8	Ajustes de posição	33
	1.9	Sistemas de coordenadas	37
	1.10	A gramática em camadas de gráficos	39
2	Flux	o de trabalho: o básico	41
	2.1	O básico de programação	41
	2.2	O que há em um nome?	41
	2.3	Chamando funções	41

iv			Contents		
3	Transformação de dados com _{dplyr}				
	3.1	Introdução	45		
	3.2	Filtrar linhas com filter()	45		
	3.3	Comparações	45		
	3.4	Ordenar linhas com arrange()	51		
	3.5	Selecionar colunas com select()	52		
	3.6	Adicionar novas variáveis com mutate()	53		
	3.7	Resumos agrupados com summarize()	54		
	3.8	Mudanças agrupadas (e filtros)	55		
4		o de trabalho: scripts	57		
5	Anál	lise exploratória de dados	59		
6	Flux	o de trabalho: projetos	61		
II	Wı	rangle	63		
7	Tibb	les com tibble	65		
8	Impo	ortando dados com readr	67		
9	Arru	imando dados com tidyr	69		
10	Dado	os relacionais com dplyr	71		
11	Strin	ngs com stringr	73		
12	Fato	res com forcats	75		
13	Data	as e horas com lubridate	77		
III	Pı	rogramar	79		
14	Pipe	S COM magrittr	81		
15	Funç	ções	83		

Cor	Contents			
16	Vetores	85		
17	Iteração com purrr	87		
18	(PART) Modelar	89		
19	O básico de modelos com modelr	91		
20	Construção de modelos	93		
21	Muitos modelos com purrr e broom	95		
IV	Comunicar	97		
22	R Markdown	99		
23	Gráficos para comunicação com ggplot2	101		
24	Formatos R Markdown	103		
25	Fluxo de trabalho de R Markdown	105		

Prefácio

Esta página serviu para estudo e prática com o pacote R Bookdown e contém a solução encontrada por mim para os exercícios propostos no livro R para Data Sciente, de Hadley Wickham e Garret Grolemund, publicado no Brasil em 2019 pela Alta Books Editora [Wickham and Grolemund, 2019].

Por se tratar de um produto construído durante o processo de aprendizagem, o conteúdo pode conter erros, tanto no texto em si, como na lógica utilizada para solução dos exercícios.

Dúvidas ou sugestões de melhoria podem ser encaminhadas para o e-mail jeidsan. pereira@gmail.com¹.

Pendências

- No PDF, o prefácio está sendo exibido duas vezes no sumário;
- Exercício 1.7.4;
- Exercício 2.3.3;

.

¹mailto:jeidsan.pereira@gmail.com

Parte I

Explorar

1

Visualização de dados com ggplot2

Para a correta execução dos códigos desse capítulo, utilizaremos algumas configurações específicas.

Inicialmente, precisaremos carregar o pacote nycflights13, que contém os dados de todos os voos da cidade de Nova York em 2013.

```
library(nycflights13)
library(gridExtra)

##
## Attaching package: 'gridExtra'

## The following object is masked from 'package:dplyr':
##
## combine
```

1.1 Introdução

Não temos exercícios nesta seção.

1.2 Primeiros passos

Exercício 1.2.1

Execute ggplot(data=mpg);. O que você vê?

Solução.

```
ggplot(data=mpg) +
  tema
```

É exibido um quadro em branco. Este quadro contém o sistema de coordenadas sobre o qual serão desenhados os grpaficos que pretendemos exibir.

Exercício 1.2.2

Quantas linhas existem em mtcars? Quantas colunas? Solução.

```
dim(mtcars)
## [1] 32 11
```

R.: Existem 32 linhas e 11 colunas.

Exercício 1.2.3

O que a variável dry descreve?

Solução. Executamos o comando ?mpg no console no R e a página de ajuda foi aberta. Nela encontramos o significado de cada variável do conjunto de dados.

A variável descreve o tipo de tração dos carros analisados, onde f significa tração dianteira, r significa tração traseira e 4 significa tração nas quatro rodas.

Exercício 1.2.4

Faça um gráfico de dispersão de hwy *versus* cyl. *Solução*.

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = hwy, y = cyl)) +
  tema
```


Exercício 1.2.5

O que acontece se você fizer um gráfico de dispersão de class $\it versus \, drv$? Por que esse gráfico não é útil?

Solução.

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = drv, y = class)) +
  tema
```


Apesar de serem exibidos dados no gráfico, nenhuma informação substancial é extraída, uma vez que o tipo de tração não está (a princípio) relacionado com a categoria do carro. Outro fator que torno o gráfico pouco informativo é que há, por exemplo, diversas SUVs com tração nas 4 rodas, contudo os valores ficam sobrepostos no gráfico, não dando dimensão do quanto de dados temos.

Abaixo seguem duas opções de como trazer mais informação ao gráfico:

• a primeira opção adiciona um ruído aos dados (position = jitter ou geom_jitter()) de modo que não haja sobreposição;

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = drv, y = class), position = "jitter") +
   tema
```


• a segunda opção, bem mais avançada, adiciona uma estética de size considerando a quantidade de registros.

```
mpg %>%
  group_by(class, drv) %>%
  summarize(count = n()) %>%
  ggplot(mapping = aes(x = drv, y = class, size = count)) +
      geom_point() +
      tema
```

```
## `summarise()` has grouped output by 'class'. You can override using the ## `.groups` argument.
```


1.3 Mapeamentos estéticos

Exercício 1.3.1

O que há de errado com este código? Por que os pontos não estão azuis?

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy, color = "blue")) +
  tema
```


Solução. Ao invés de atribuir uma cor aos elementos de geom_point, o atributo color foi passado como uma estética. O gráfico deveria ser construído da seguinte maneira:

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy), color = "blue") +
  tema
```


Exercício 1.3.2

Quais variáveis em $_{mpg}$ são categóricas? Quais variáveis são contínuas? Como você pode ver essa informação quando executa $_{mpg}$?

Solução. Usando ?mpg vemos que as variáveis categóricas são: manufacturer, model, trans, drv, fl e class. As variáveis contínuas são: displ, cty, hwy.

Exercício 1.3.3

Mapeie uma variável contínua para color, size e shape. Como essas estéticas se comportam de maneira diferente para variáveis categóricas e contínuas? *Solução*.

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = displ, y = hwy, color = displ)) +
   tema
```



```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = displ, y = hwy, size = displ)) +
   tema
```



```
ggplot(data = mpg) +
    geom_point(mapping = aes(x = displ, y = hwy, shape = displ)) +
    tema

## Error in `geom_point()`:
## ! Problem while computing aesthetics.
## i Error occurred in the 1st layer.
## Caused by error in `scale_f()`:
## ! A continuous variable cannot be mapped to the shape aesthetic
## i choose a different aesthetic or use `scale_shape_binned()`
```

Quando possível, a biblioteca *ggplot* apesenta a estética em um gradiente, como em color e size. Porém, nem sempre isso é possível, como vemos em shape, que só pode ser utilizada com variáveis discretas ou categóricas.

Exercício 1.3.4

O que acontece se você mapear a mesma variável a várias estéticas? *Solução*.

```
ggplot(data = mpg) +
    geom_point(mapping = aes(x = displ, y = hwy, size = class, color = class, shape = class)) +
    tema

## Warning: Using size for a discrete variable is not advised.

## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 7. Consider
## specifying shapes manually if you must have them.

## Warning: Removed 62 rows containing missing values (`geom_point()`).
```


Os valores da variável serão representados de modo a atender todas as estéticas simultaneamente, por exemplo, no gráfico acima é dada uma cor, um formato e um tamanho específicos para cada classe de veículo. Os veículos de dois lugares são exibidos como um disco rosa pequeno.

Exercício 1.3.5

O que a estética stroke faz? com que formas ela trabalha? Solução.

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy, stroke = displ)) +
  tema
```


A estética stroke controla a espessura do ponto ou elemento a ser representado.

Exercício 1.3.6

O que acontece se você mapear uma estética a algo diferente de um nome de variável, como aes(color = displ < 5)?

Solução.

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = displ, y = hwy, color = displ < 5)) +
   tema</pre>
```

15

A expressão é avaliada para cada um dos valores da variável e o resultado é utilizado para plotagem da estética no gráfico.

1.4 Problemas comuns

Não temos exercícios nessa seção.

1.5 Facetas

Exercício 1.5.1

O que acontece se você criar facetas em uma variável contínua? *Solução*.

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = displ, y = hwy)) +
   facet_wrap(. ~ displ) +
   tema
```


O ggplot se encarrega de dividir o conjunto em classes e toma o ponto médio de cada classe para realizar a quebra em facetas.

Exercício 1.5.2

O que significam as célula em branco em um gráfico com facet_grid(drv ~ cyl)? Como elas se relacionam a este gráfico?

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  facet_grid(drv ~ cyl) +
  tema
```

1.5 Facetas

Solução. Significa que para aquela combinação de variáveis, não há nenhum valor observado. Por exemplo, não há nenhum veículo com 5 cilindros e tração nas quatro rodas.

Exercício 1.5.3

Que gráficos o código a seguir faz? O que . faz?

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  facet_grid(drv ~ .) +
  tema
```



```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  facet_grid(. ~ cyl) +
  tema
```

1.5 Facetas

 $Solu\~{q}\~{a}$ o. São gerados os gráficos de dispersão segregados pelas variáveis drv e cyl, respectivamente. O . indica que não queremos considerar nenhuma segrega $\~{q}$ ão naquela dimensão do grid (linha ou coluna).

Exercício 1.5.4

Pegue o primeiro gráfico em facetas dessa seção.

```
ggplot(data = mpg) +
   geom_point(data = transform(mpg, class = NULL), mapping = aes(x = displ, y = hwy), color = "gray80") +
   geom_point(mapping = aes(x = displ, y = hwy)) +
   facet_wrap(~ class, nrow = 2) +
   tema
```


Quais são as vantagens de usar facetas, em vez de estética de cor? Quais são as desvantagens? Como o equilíbrio poderia mudar se você tivesse um conjunto de dados maior?

Solução. A principal vantagem no uso de facetas é que fica mais fácil analisar os dados quando eles estão separados em seu próprio contexto, contudo visualizá-los assim dificulta a comparação entre grupos.

Exercício 1.5.5

Leia ?facet_wrap. O que nrow faz? o que ncol faz? Quais outras opções controlam o layout de paineis individuais? Por que facet_grid() não tem variáveis nrowe ncol? Solução.

?facet_wrap

Os atributos ncol e nrow são utilizados pelo facet_wrap para determinar o número de colunas ou linhas (respectivamente) nas quais serão distribuídos os gráficos segregados. Esses atributos não figuram em facet_grid pelo fato deste já organizar as facetas retangularmente.

Exercício 1.5.6

Ao usar facet_grid() você normalmente deveria colocar a variável com níveis mais singulares nas colunas. Por quê?

Solução. Para melhor aproveitamento do espaço em tela.

1.6 Objetos geométricos

Exercício 1.6.1

Que *geom* você usaria para desenhar um gráfico de linha? Um diagrama de caixas (*boxplot*)? Um histograma? Um gráfico de área?

Solução.

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
    geom_line() +
    tema
```



```
ggplot(data = mpg) +
geom_boxplot(mapping = aes(y = hwy, x = class)) +
tema
```



```
ggplot(data = mpg, mapping = aes(x = hwy)) +
   geom_histogram() +
   tema
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
ggplot(data = economics, mapping = aes(x = date, y = unemploy)) +
    geom_area() +
    tema
```


Podem ser utilizados, respectivamente as geoms: line, boxplot, histogram e area.

Exercício 1.6.2

Execute este código em sua cabeça e preveja como será o resultado. Depois execute o código no R e confira suas previsões:

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = drv)) +
    geom_point() +
    geom_smooth(se = FALSE) +
    tema
```

```
## geom_smooth() using method = 'loess' and formula = 'y ~ x'
```


Solução. O gráfico bateu com a expectativa.

Exercício 1.6.3

O que o show.legend = FALSE faz? O que acontece se você removê-lo? Por que você acha que usei isso anteriormente no capítulo?

Solução.

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = drv)) +
    geom_point(show.legend = FALSE) +
    geom_smooth(se = FALSE, show.legend = FALSE) +
    tema
```

`geom_smooth()` using method = 'loess' and formula = 'y \sim x'

Ele indica que, para a camada à qual se aplica, não serão geradas as legendas de identificação.

Exercício 1.6.4

O que o argumento se para geom_smooth faz? Solução.

?geom_smooth

Esse argumento indica se o intervalo de confiança utilizado no processo de suavização da linha deve ou não ser exibido no gráfico.

Exercício 1.6.5

Esses dois gráficos serão diferentes? Por quê/por que não?

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
    geom_point() +
    geom_smooth() +
    tema

ggplot() +
    geom_point(data = mpg, mapping = aes(x = displ, y = hwy)) +
    geom_smooth(data = mpg, mapping = aes(x = displ, y = hwy)) +
    tema
```

Solução. Os gráficos serão iguais. Ao informar os parâmetros data e mapping na função ggplot essas atributos serão considerados como globais, sendo utilizado em todos as camadas do gráfico, a menos que alguma das camadas os sobrescreva. No segundo gráfico, não são definidos parâmetros globais, porém, o mesmo parâmetro é passado para ambas as camadas, sendo assim, a única diferença é o código estar duplicado.

Exercício 1.6.6

Recrie o código R necessário para gerar os seguintes gráficos:

Solução.

```
a <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
        geom_point() +
        geom_smooth(se = FALSE) +
b \leftarrow ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
        geom_point() +
        geom_smooth(mapping = aes(group = drv), se = FALSE) +
c \leftarrow ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = drv)) +
        geom_point() +
        geom_smooth(se = FALSE) +
        tema
d <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +</pre>
        geom_point(mapping = aes(color = drv)) +
        geom_smooth(se = FALSE) +
        tema
e <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
        geom_point(mapping = aes(color = drv)) +
        geom_smooth(mapping = aes(linetype = drv), se = FALSE) +
        tema
f \leftarrow ggplot(data = mpg, mapping = aes(x = displ, y = hwy, fill = drv)) +
        geom_point(color = "white", shape = 21, size = 3, stroke = 2) +
        tema
```

1.7 Transformações estatísticas

Exercício 1.7.1

Qual é o geom padrão associado ao stat_summary()? Como você poderia reescrever o gráfico anterior usando essa função geom, em vez da função stat? Solução.

```
?stat_summary
```

```
ggplot(data = diamonds) +
    stat_summary(
        mapping = aes(x = cut, y = depth),
        fun.min = min,
        fun.max = max,
        fun = median
) +
    tema
```


A geom associada é a geom_pointrange e o gráfico poderia ser reescrito da seguinte maneira.

Exercício 1.7.2

O que geom_col() faz? Qual é a diferença entre ele e geom_bar()? Solução.

```
ggplot(data = diamonds, mapping = aes(x = cut)) +
   geom_bar() +
   tema
```


Enquanto no geom_bar a altura das barras representa uma transformação estatística relacionada às observações (como count, por exemplo), no geom_col podemos exibir o acumulado (soma) de uma variável para cada categoria exibida.

Exercício 1.7.3

A maioria dos geoms e stats vem em pares, que são quase sempre usados juntos. Leia a documentação e faça uma lista de todos os pares. O que eles têm em comum? *Solução*.

#	Geom	Stat
01	Blank	Identity
02	Curve	Identity
03	Segment	Identity
04	Path	Identity
05	Line	Identity
06	Step	Identity
07	Poligon	Identity
08	Raster	Identity
09	Rect	Identity
10	Tile	Identity
11	Ribbon	Identity
12	Area	Identity
13	Align	?
14	ABLine	?
15	HLine	?
16	Density	Density
17	DotPlot	?
18	Freqpoly	Bin
19	Histogram	Bin
20	Col	Identity
21	Bar	Count
22	Label	Identity
23	Text	<u>Identity</u>
24	Jitter	<u>Identity</u>
25	Point	Identity
26	Quantile	Quantile
27	Rug	Identity
28	Boxplot	Boxplot
29	Violin	YDensity
30	Count	Sum
31	Bin 2D	Bin 2D
32	Density 2D	Density 2D

#	Geom	Stat
33	Hex	Bin Hex
34	Cross Bar	Identity
35	Error Bar	Identity
36	Line Range	Identity
37	Point Range	Identity
38	Map	Identity
39	Contour	Contour
40	Contour Filled	Contour Filled

Exercício 1.7.4

Quais variáveis stat_smooth() calcula? Quais parâmetros controlam seu comportamento?

Solução.

?stat_smooth

Exercício 1.7.5

Em nosso gráfico de barra de *proportion*, precisamos configurar group = 1. Por quê? Em outras palavras, qual é o problema com esses dois gráficos?

```
ggplot(data = diamonds) +
   geom_bar(mapping = aes(x = cut, y = after_stat(prop), group = 1)) +
   tema
```


Solução.

Quando estamos trabalhando com proporções (ou estátisticas em geral), é importante destacar para o ggplot qual agrupamento ele deve considerar, caso contrário ele irá considerar um único grupo e dará uma impressão incorreta ao gráfico. No primeiro exemplo, foi utilizado group = 1 (e, na verdade, poderia ser qualquer valor) apenas para indicar que deveria ser realizado um agrupamento.

1.8 Ajustes de posição

Exercício 1.8.1

Qual é o problema com este gráfico? Como você poderia melhorá-lo?

```
ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
   geom_point() +
   tema
```


Solução. Há pontos sobrepostos. Uma melhoria poderia ser usar geom_jitter em lugar de geom_point.

```
ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
    geom_jitter() +
    tema
```


Exercício 1.8.2

Quais parâmetros para geom_jitter controlam a quantidade de oscilação? Solução. Conforme a documentação disposta em ?geom_jitter, são utilizados os parâmetros width e height.

Exercício 1.8.3

Compare o contraste entre $geom_jitter\ e\ geom_count.$ Solução.

Para contornar o problema da sobreposição de pontos, <code>geom_jitter</code> adiciona um pequeno ruído aleatório aos dados, enquanto o <code>geom_count</code> contabiliza os pontos sobrepostos e altera o tamanho dos pontos conforme a quantidade.

Exercício 1.8.4

Qual é o ajuste de posição padrão para geom_boxplot()? Crie uma visualização do conjunto de dados mpg que demonstre isso.

Solução. Conforme pode ser visto em ?geom_boxplot, a position padrão é a dodge2.

```
ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +
   geom_boxplot() +
   tema
```


1.9 Sistemas de coordenadas

Exercício 1.9.1

Transforme um gráfico de barras empilhadas em um gráfico de pizza usando co-ord_polar().

Solução.

```
ggplot(data = diamonds, mapping = aes(x = cut, fill = cut)) +
    geom_bar(show.legend = FALSE, width = 1) +
    coord_polar() +
    labs(x = NULL, y = NULL) +
    theme(aspect.ratio = 1) +
    tema
```


Exercício 1.9.2

O que labs () faz? Leia a documentação.

Solução. Usando o comando ?labs, vimos que esta função é utilizada para definir labels do gráfico, como título, subtítulo, títulos de eixos, etc.

Exercício 1.9.3

Qual é a diferença entre coord_quickmap() e coord_map()?

Solução. Usando o comando ?coord_map, notamos que a diferença é que enquanto coord_map() não preserva linhas retas, sendo assim, mais custoso computacionalmente, o coord_quickmap() o faz.

Exercício 1.9.4

O que o gráfico a seguir lhe diz sobre a relação entre mpg de cidade e estrada? Por que coord_fixed() é importante? O que geom_abline() faz?

```
ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
  geom_point() +
  geom_abline() +
  coord_fixed(ratio = 1, xlim = c(5, 45), ylim = c(5, 45)) +
  tema
```


Solução. O gráfico mostra a relação entre a eficiência na cidade e na estrada. O coord_fixed() força que seja mantida uma proporção entre os eixos x e y, isto é, garante que uma unidade no eixo y corresponda a um número determinado de unidades no eixo x. A razão padrão é 1. Já o geom_abline() define uma linha de referência diagonal ao gráfico, no nosso caso, a linha é a reta dada por y-x=0.

1.10 A gramática em camadas de gráficos

Não temos exercícios nesta seção.

Fluxo de trabalho: o básico

2.1 O básico de programação

Não temos exercícios nesta seção.

2.2 O que há em um nome?

Não temos exercícios nesta seção.

2.3 Chamando funções

Exercício 2.3.1

Por que esse código não funciona?

```
my_variable <- 10
my_varIable</pre>
```

Solução. Foi atribuído um valor à variável my_variable, contudo depois tentou-se utilizar essa variável, porém a escrita está incorreta e o R não reconheceu a variável. O R diferencia letras maiúsculas e minúsculas, isto é, as variáveis my_variable e my_variable são distintas.

Exercício 2.3.2

Ajuste cada um dos seguintes comandos de R para que executem corretamente.

```
library(tidyverse)

ggplot(dota = mpg) +
     geom_point(mapping = aes(x = displ, y = hwy))

filter(mpg, cyl = 8)
filter(diamond, carat > 3)

Solução.
```

```
library(tidyverse)

ggplot(data = mpg) +
    geom_point(mapping = aes(x = displ, y = hwy))
```



```
filter(mpg, cyl == 8)
```

```
3 chevrolet
                   c1500 sub~
                                5.3 2008
                                              8 auto∼ r
                                                                      15 e
   4 chevrolet
                   c1500 sub~
                                5.3 2008
                                                                14
                                                                      20 r
                                              8 auto∼ r
                                                                               suv
   5 chevrolet
                   c1500 sub~
                                     1999
                                              8 auto~ r
                                                                               suv
   6 chevrolet
                                                                      17 r
                   c1500 sub~
                                6
                                     2008
                                              8 auto~ r
                                                               12
                                                                               suv
   7 chevrolet
                  corvette
                               5.7
                                    1999
                                             8 manu~ r
                                                                    26 p
                                                                             2sea~
   8 chevrolet
                  corvette
                               5.7
                                    1999
                                             8 auto~ r
                                                              15
                                                                    23 p
                                                                             2sea~
   9 chevrolet
                               6.2
                                    2008
                                                                    26 p
                  corvette
                                             8 manu~ r
                                                              16
                                                                             2sea~
                                                                    25 p
## 10 chevrolet
                               6.2 2008
                                             8 auto~ r
                                                              15
                   corvette
                                                                             2sea~
  # i 60 more rows
```

```
filter(diamonds, carat > 3)
```

```
# A tibble: 32 x 10
     carat cut
                   color clarity depth table price
                   <ord> <ord>
                                 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
     <dbl> <ord>
                                  62.7
   1 3.01 Premium I
                         Ι1
                                          58
                                              8040
                                                   9.1
                                                          8.97
      3.11 Fair
                                  65.9
                                              9823
                                                   9.15
                                                         9.02
     3.01 Premium F
                         Ι1
                                  62.2
                                             9925
                                                   9.24
                                                         9.13
      3.05 Premium E
                                  60.9
                                          58 10453
                                                   9.26
                                                         9.25
                                  65.2
                                                   9.11 9.02
      3.02 Fair
                         Ι1
                                          56 10577
      3.01 Fair
                                  56.1
                                                   9.54
                                  67.1
                                          53 11668
     3.65 Fair
                         Ι1
                                                   9.53 9.48
      3.24 Premium H
                                  62.1
                                          58 12300
                                                   9.44
                                                         9.4
      3.22 Ideal
                         Т1
                                  62.6
                                          55 12545 9.49 9.42 5.92
  10 3.5 Ideal
                                  62.8
                                          57 12587 9.65 9.59 6.03
## # i 22 more rows
```

Exercício 2.3.3

Pressione Alt-Shift-K. O que acontece? Como você pode chegar ao mesmo resultado usando os menus?

Transformação de dados com aplyr

3.1 Introdução

Não temos exercícios nesta seção.

3.2 Filtrar linhas com filter()

Não temos exercícios nesta seção.

3.3 Comparações

Exercício 3.3.1

Encontre todos os voos que:

- a. Tiveram um atraso de duas horas ou mais na chegada.
- b. Foram para Houston (IAH ou HOU).
- c. Foram operados pela United, American ou Delta.
- d. Partiram em julho, agosto e setembro.
- e. Chegaram com mais de duas horas de atraso, mas não saíram atrasados.
- f. Atrasaram pelo menos uma hora, mas compensaram mais de 30 minutos durante o trajeto.
- g. Saíram entre meia-noite e 6h (incluindo esses horários).

Solução.

a. Tiveram um atraso de duas horas ou mais na chegada.

```
filter(flights, arr_delay >= 120)
  # A tibble: 10,200 x 19
      year month
                    day dep_time sched_dep_time dep_delay arr_time sched_arr_time
      <int> <int>
                            <int>
                                           <int>
                                                     <dbl>
                                                               <int>
                                                       101
                                                                                830
##
      2013
                             811
                                             630
                                                                1047
       2013
                1
                      1
                             848
                                            1835
                                                        853
                                                                1001
                                                                               1950
      2013
                             957
                                             733
                                                        144
                1
                      1
                                                                1056
                                                                                853
       2013
                            1114
                                             900
                                                        134
                                                                1447
                                                                               1222
      2013
                1
                      1
                            1505
                                            1310
                                                       115
                                                                1638
                                                                               1431
                            1525
                                            1340
      2013
                                                        105
                                                                1831
                                                                               1626
      2013
                            1549
                                            1445
                                                        64
                                                                1912
                                                                               1656
       2013
                            1558
                                            1359
                                                        119
                                                                1718
                                                                               1515
   9
      2013
                            1732
                                            1630
                                                        62
                                                                2028
                                                                               1825
   10
      2013
                1
                      1
                            1803
                                            1620
                                                        103
                                                                2008
                                                                               1750
     i 10,190 more rows
    i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
       tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
##
       hour <dbl>, minute <dbl>, time_hour <dttm>
```

b. Foram para Houston (IAH ou HOU).

hour <dbl>, minute <dbl>, time_hour <dttm>

filter(flights, dest %in% c("IAH", "HOU"))

```
# A tibble: 9,313 x 19
      year month
                    day dep_time sched_dep_time dep_delay arr_time sched_arr_time
      <int> <int> <int>
                            <int>
                                            <int>
                                                                <int>
                                                                                <int>
      2013
                              517
                                              515
                                                                  830
                                                                                  819
       2013
                              533
                                              529
                                                           4
                                                                  850
                                                                                  830
       2013
                      1
                              623
                                              627
                                                          -4
                                                                  933
                                                                                  932
      2013
                1
                      1
                              728
                                              732
                                                          -4
                                                                 1041
                                                                                 1038
       2013
                       1
                              739
                                              739
                                                           0
                                                                 1104
                                                                                  1038
##
    6
       2013
                              908
                                              908
                                                           0
                                                                 1228
                1
                      1
                                                                                 1219
       2013
                             1028
                                             1026
                                                           2
                                                                 1350
                                                                                 1339
##
       2013
                             1044
                                             1045
                                                          -1
                                                                 1352
                                                                                 1351
       2013
                             1114
                                              900
                                                         134
                                                                  1447
                                                                                 1222
                             1205
                                             1200
                                                                                 1505
##
  10
       2013
                1
                                                                 1503
    i 9,303 more rows
     i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
```

tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,

3.3 Comparações 47

c. Foram operados pela United, American ou Delta.

```
filter(flights, carrier %in% c("AA", "DL", "UA"))
## # A tibble: 139,504 x 19
      year month
                   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
      <int> <int> <int>
                           <int>
                                           <int>
                                                     <dbl>
                                                              <int>
   1 2013
                             517
                                             515
                                                                 830
                                                                                819
      2013
                             533
                                             529
                                                                 850
                                                                                830
      2013
                                                         2
                1
                      1
                             542
                                             540
                                                                 923
                                                                                850
      2013
                                             600
                                                         -6
                                                                                837
                1
                             554
                                                                 812
      2013
                      1
                             554
                                             558
                                                        -4
                                                                 740
                                                                                728
      2013
                1
                             558
                                             600
                                                         -2
                                                                 753
                                                                                745
                                             600
      2013
                             558
                                                        -2
                                                                 924
                                                                                917
       2013
                             558
                                             600
                                                         -2
                                                                 923
                                                                                937
      2013
                              559
                                             600
                                                        -1
                                                                 941
                                                                                910
  10
      2013
                1
                      1
                             559
                                             600
                                                                 854
                                                                                902
                                                         -1
   # i 139,494 more rows
    i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
       tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
       hour <dbl>, minute <dbl>, time_hour <dttm>
```

d. Partiram em julho, agosto e setembro.

filter(flights, month %in% c(7, 8, 9))

```
## # A tibble: 86,326 x 19
       year month
                    day dep_time sched_dep_time dep_delay arr_time sched_arr_time
      <int> <int> <int>
                            <int>
                                            <int>
                                                       <dbl>
                                                                <int>
                                                                                <int>
      2013
                                             2029
                                                         212
                                                                  236
                                                                                 2359
       2013
                7
                      1
                                2
                                             2359
                                                          3
                                                                  344
                                                                                  344
       2013
                               29
                                             2245
                                                         104
                                                                  151
                                                                                    1
      2013
                                             2130
                                                         193
                                                                                   14
                      1
                               43
                                                                  322
       2013
                               44
                                             2150
                                                         174
                                                                  300
                                                                                  100
      2013
                                             2051
                                                        235
                                                                  304
                                                                                 2358
                7
                      1
                               46
       2013
                                             2001
                                                         287
                                                                  308
                                                                                 2305
      2013
                      1
                                             2155
                               58
                                                         183
                                                                  335
                                                                                   43
                                             2146
                                                         194
                                                                  327
                                                                                   30
                                             2245
                                                                                  135
      2013
                              100
                                                         135
                                                                  337
## # i 86,316 more rows
```

```
## # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## hour <dbl>, minute <dbl>, time_hour <dttm>
```

e. Chegaram com mais de duas horas de atraso, mas não saíram atrasados.

```
filter(flights, dep_delay <= 0, arr_delay > 120)
## # A tibble: 29 x 19
                   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##
      <int> <int> <int>
                           <int>
                                          <int>
                                                     <dbl>
                                                              <int>
                                                                             <int>
     2013
                            1419
                                           1420
                                                       -1
                                                              1754
                                                                              1550
      2013
              10
                      7
                            1350
                                           1350
                                                        0
                                                              1736
                                                                              1526
      2013
                            1357
                                           1359
                                                       -2
                                                              1858
                                                                              1654
                                                       -3
                                                                              1056
      2013
                             657
                                            700
                                                              1258
              10
                     16
      2013
                                            700
                                                              1329
                                                                              1015
               11
                      1
                             658
      2013
                     18
                            1844
                                           1847
                                                       -3
                                                                              2219
                                                               39
      2013
                     17
                            1635
                                           1640
                                                        -5
                                                              2049
                                                                              1845
      2013
                     18
                             558
                                            600
                                                        -2
                                                              1149
                                                                               850
      2013
                     18
                             655
                                            700
                                                        -5
                                                              1213
                                                                               950
## 10 2013
                5
                     22
                            1827
                                           1830
                                                               2217
                                                                              2010
                                                        -3
  # i 19 more rows
  # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
       tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
       hour <dbl>, minute <dbl>, time_hour <dttm>
```

f. Atrasaram pelo menos uma hora, mas compensaram mais de 30 minutos durante o trajeto.

```
## # A tibble: 2,074 x 19
                   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
      year month
     <int> <int> <int>
                          <int>
                                         <int>
                                                   <dbl>
                                                            <int>
                                                                           <int>
   1 2013
                           1716
                                          1545
                                                      91
                                                             2140
                                                                            2039
      2013
                     1
                           2205
                                          1720
                                                     285
                                                               46
                                                                            2040
   3 2013
               1
                     1
                           2326
                                          2130
                                                     116
                                                             131
                                                                              18
   4 2013
               1
                     3
                           1503
                                          1221
                                                     162
                                                             1803
                                                                            1555
   5 2013
               1
                     3
                           1821
                                          1530
                                                     171
                                                             2131
                                                                            1910
```

filter(flights, dep_delay >= 60 & dep_delay - arr_delay >= 30)

tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,

g. Saíram entre meia-noite e 6h (incluindo esses horários).

hour <dbl>, minute <dbl>, time_hour <dttm>

```
filter(flights, dep_time >= 0, dep_time <= 600)</pre>
   # A tibble: 9,344 x 19
      year month
                    day dep_time sched_dep_time dep_delay arr_time sched_arr_time
                            <int>
                                            <int>
                                                       <dbl>
                                                                <int>
                                                                                <int>
      <int> <int> <int>
      2013
                      1
                              517
                                              515
                                                                  830
                                                                                  819
                                              529
       2013
                              533
                                                                  850
                                                                                  830
       2013
                       1
                              542
                                              540
                                                           2
                                                                  923
                                                                                  850
       2013
                              544
                                              545
                                                          -1
                                                                 1004
                                                                                 1022
       2013
                                                          -6
                      1
                              554
                                              600
                                                                  812
                                                                                  837
       2013
                1
                       1
                              554
                                              558
                                                          -4
                                                                  740
                                                                                  728
                                                          -5
       2013
                              555
                                              600
                                                                  913
                                                                                  854
       2013
                1
                      1
                              557
                                              600
                                                          -3
                                                                  709
                                                                                  723
       2013
                              557
                                              600
                                                          -3
                                                                  838
                                                                                  846
                                              600
                                                                  753
                                                                                  745
  10
      2013
                              558
                                                          -2
                1
   # i 9,334 more rows
   # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
       tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
       hour <dbl>, minute <dbl>, time_hour <dttm>
```

Exercício 3.3.2

Outro ajudante da filtragem do **dplyr** é between(). O que ele faz? Você consegue utilizá-lo para simplificar o código necessário para responder os desafios anteriores?

Solução. O between recebe três parâmetros e verifica se o primeiro está entre o segundo e o terceiro.

```
filter(flights, between(dep_time, 0, 600))
## # A tibble: 9,344 x 19
                  day dep_time sched_dep_time dep_delay arr_time sched_arr_time
      year month
                                        <int>
                                                  <dbl>
     <int> <int> <int>
                          <int>
                                                          <int>
                                                                          <int>
                                          515
                                                     2
                                                                            819
     2013
                            517
                                                             830
                     1
                                          529
                                                      4
   2 2013
               1
                     1
                            533
                                                             850
                                                                            830
      2013
                            542
                                          540
                                                      2
                                                             923
                                                                            850
               1
                     1
      2013
               1
                     1
                            544
                                           545
                                                      -1
                                                            1004
                                                                           1022
      2013
               1
                     1
                            554
                                           600
                                                      -6
                                                             812
                                                                            837
      2013
                     1
                            554
                                           558
                                                     -4
                                                             740
                                                                            728
      2013
                            555
                                          600
               1
                     1
                                                      -5
                                                             913
                                                                            854
      2013
                            557
                                           600
                                                      -3
                                                             709
                                                                            723
      2013
                     1
                            557
                                           600
                                                      -3
                                                             838
                                                                            846
                                           600
                                                             753
                                                                            745
  # i 9,334 more rows
    i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
      tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
      hour <dbl>, minute <dbl>, time_hour <dttm>
```

Exercício 3.3.3

Quantos voos têm um $_{\text{dep_time}}$ faltante? Que outras variáveis estão faltando? O que essas linhas podem representar?

Solução.

```
count(flights, is.na(dep_time))

## # A tibble: 2 x 2
## `is.na(dep_time)` n
## <lgl> <int>
## 1 FALSE 328521
## 2 TRUE 8255
```

```
summary(is.na(flights))
```

```
## year month day dep_time
## Mode :logical Mode :logical Mode :logical Mode :logical
```

##	FALSE:336776	FALSE:336776	FALSE:336776	FALSE:328521
##				TRUE :8255
##	sched_dep_time	dep_delay	arr_time	sched_arr_time
##	Mode :logical	Mode :logical	Mode :logical	Mode :logical
##	FALSE:336776	FALSE:328521	FALSE:328063	FALSE:336776
##		TRUE :8255	TRUE :8713	
##	arr_delay	carrier	flight	tailnum
##	Mode :logical	Mode :logical	Mode :logical	Mode :logical
##	FALSE:327346	FALSE:336776	FALSE:336776	FALSE:334264
##	TRUE :9430			TRUE :2512
##	origin	dest	air_time	distance
##	Mode :logical	Mode :logical	Mode :logical	Mode :logical
##	FALSE:336776	FALSE:336776	FALSE:327346	FALSE:336776
##			TRUE :9430	
##	hour	minute	time_hour	
##	Mode :logical	Mode :logical	Mode :logical	
##	FALSE:336776	FALSE:336776	FALSE:336776	
##				

São 8255 voos com dep_time faltante, o que pode indicar voos cancelados. As seguintes colunas também possuem dados faltantes: dep_delay, arr_time, arr_delay, tailnum e air_time.

Exercício 3.3.4

Por que NA ^ 0 não é um valor faltante? Por que NA | TRUE não é um valor faltante? Por que FALSE & NA não é um valor faltante? Você consegue descobrir a regra geral? (NA * 0 é um contraexemplo complicado!)

Solução. NA ^ 0 resulta em um, pois qualquer número real satisfaz essa mesma condição. A regra geral parece ser que, ao avaliar a expressão, sempre que o valor que NA representaria for indiferente para o resultado da expressão, então será retornado um valor diferente de NA.

3.4 Ordenar linhas com arrange()

Exercício 3.4.1

X

Exercício 3.4.2

X

Solução. x

Exercício 3.4.3

X

Solução. x

Exercício 3.4.4

X

Solução. x

3.5 Selecionar colunas com select()

Exercício 3.5.1

X

Solução. x

Exercício 3.5.2

X

Solução. x

Exercício 3.5.3

X

Solução. x

Exercício 3.5.4

X

Solução. x

3.6 Adicionar novas variáveis com mutate()

Exercício 3.6.1

X

Solução. x

Exercício 3.6.2

X

Solução. x

Exercício 3.6.3

X

Solução. x

Exercício 3.6.4

X

Solução. x

Exercício 3.6.5

X

Solução. x

Exercício 3.6.6

X

3.7 Resumos agrupados com summarize()

Exercício 3.7.1

X

Solução. x

Exercício 3.7.2

X

Solução. x

Exercício 3.7.3

X

Solução. x

Exercício 3.7.4

х

Solução. x

Exercício 3.7.5

Х

Solução. x

Exercício 3.7.6

X

Solução. x

Exercício 3.7.7

X

3.8 Mudanças agrupadas (e filtros)

Exercício 3.8.1

X

Solução. x

Exercício 3.8.2

X

Solução. x

Exercício 3.8.3

X

Solução. x

Exercício 3.8.4

X

Solução. x

Exercício 3.8.5

v

Solução. x

Exercício 3.8.6

X

Solução. x

Exercício 3.8.7

X

Fluxo de trabalho: scripts

5

Análise exploratória de dados

Fluxo de trabalho: projetos

Parte II

Wrangle

Tibbles com tibble

Importando dados com readr

Arrumando dados com tidyr

Dados relacionais com aplyr

Strings com stringr

Fatores com forcats

Datas e horas com lubridate

Parte III

Programar

Pipes com magrittr

Funções

Vetores

Iteração com purrr

(PART) Modelar

O básico de modelos com model r

Construção de modelos

Muitos modelos com purrr e broom

Parte IV

Comunicar

R Markdown

Gráficos para comunicação com ggplot2

Formatos R Markdown

Fluxo de trabalho de R Markdown

Bibliografia

Hadley Wickham and Garrett Grolemund. *R para Data Science*. Alta Books, Rio de Janeiro, 2019.