Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 0653 CALIBRATION DATE: 13-Mar-18 SBE 16 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

i = 1.04201724e-003j = -1.88515410e-005

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (kHz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
22.0000	0.0000	0.0000	2.88512	0.0000	0.00000
0.9999	34.8743	2.98044	8.44267	2.98036	-0.00008
4.5000	34.8543	3.28796	8.81715	3.28801	0.00006
15.0000	34.8122	4.27116	9.91824	4.27123	0.00007
18.5000	34.8032	4.61682	10.27688	4.61686	0.00004
24.0000	34.7931	5.17556	10.83106	5.17546	-0.00009
29.0000	34.7866	5.69800	11.32447	5.69792	-0.00008
32.5000	34.7814	6.07059	11.66356	6.07068	0.00009

f = Instrument Output (kHz)

 $t = temperature \; (^{\circ}C); \quad p = pressure \; (decibars); \quad \delta = CTcor; \quad \epsilon = CPcor;$

Conductivity (S/m) = (g + h * f^2 + i * f^3 + j * f^4) /10 (1 + δ * t + ϵ * p)

Residual (Siemens/meter) = instrument conductivity - bath conductivity

