1.通讯协议

常用的指令例子可参考: 常用通信指令例子

指令是由十六进制编写,若不熟悉计算方法,可以参考:<u>使用计算器工具进行进制转换</u>, 关于负数和浮点数换算成十六进制,请搜索网上教程。

指令格式:

帧头	功能码	数据长度	参数	校验
0xAA 0x55	(uint8_t) Function	(uint8_t) Length	Data	(uint8_t) CRC

- 帧头: 连续收到 0xAA、0x55, 表示有数据包到达;
- 功能码:用于标明一个信息帧的用途;
- 数据长度:参数个数值;
- 参数:除功能指令以外需要补充的控制信息;
- 校验: 检验该数据是否正确,采用 CRC 校验方式, (CRC 计算 Function、Length、Data 的值,取低 8 位) (具体计算方法见拓展 2)。

1.1 用户主动给控制板发送数据部分

开发板上已有专门的 UART 转 USB 电路,只需用数据线将 UART3 口连接到上位机即可通信。

1、LED 灯控制: 指令名 PACKET_FUNC_LED, 数值 1

帧头	功能码	数据长度	参数	校验	
----	-----	------	----	----	--

0xAA 0x55 PACKET_FUNC_LED 7 参数 2: (uint16_t) 亮的时间(ms) CRC 参数 3: (uint16_t) 灭的时间(ms) 参数 4: (uint16_t) 循环次数	0xAA 0x55	PACKET_FUNC_LED	7	参数 3:	(uint16_t) 灭的时间(ms)	CRC
---	-----------	-----------------	---	-------	---------------------	-----

举例:

①控制 LED 灯闪烁 5 次, 每次亮 100ms 灭 100ms:

帧头	功能码	数据 长度	参数	校验
0xAA 0x55	PACKET_FUNC_LED	7	参数 1: 0x01 (1) 参数 2: 0x64 0x00 (100) 参数 3: 0x64 0x00 (100) 参数 4: 0x05 0x00 (5)	CRC

注意: 这里是小端模式,如 uint32_t 的 5(十进制)写为 $0x00\ 0x05$,小端模式是低位在前,所以发送数据时应该写为 $0x05\ 0x00$ 。

②控制 LED 灯闪烁 10 次,每次亮 500ms 灭 300ms:

帧头	功能码	数据 长度	参数	校验
0xAA 0x55	PACKET_FUNC_LED	7	参数 1: 0x01 (1) 参数 2: 0xF4 0x01 (500) 参数 3: 0x2C 0x01 (300) 参数 4: 0x0A 0x00 (10)	CRC

2、蜂鸣器控制: 指令名 PACKET_FUNC_BUZZER, 数值 2

帧头 功能码	数据长度	参数	校验
--------	------	----	----

0xAA 0x55 PACKET_FUNC_BUZZER	8	参数 2: 参数 3:	(uint16_t) 频率(Hz) (uint16_t) 响的时间(ms) (uint16_t) 不响的时间(ms) (uint16_t) 循环次数	CRC
------------------------------	---	----------------	--	-----

举例:

①控制蜂鸣器鸣响 5 次, 以 1400Hz 频率, 每次鸣 100ms 停 100ms:

帧头	功能码	数据 长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUZZER	8	参数 1: 0x78 0x05 (1400) 参数 2: 0x64 0x00 (100) 参数 3: 0x64 0x00 (100) 参数 4: 0x05 0x00 (5)	CRC

②控制蜂鸣器鸣响 10 次, 以 1000Hz 频率, 每次鸣 500ms 停 300ms:

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUZZER	8	参数 1: 0xE8 0x03 (1000) 参数 2: 0xF4 0x01 (500) 参数 3: 0x2C 0x01 (300) 参数 4: 0x0A 0x00 (10)	CRC

3、编码器电机控制: 指令名 PACKET_FUNC_MOTOR, 数值 3

(1) 单个电机控制运动

帧头 功能码 数	参数 校验
----------	----------

		长度		
0xAA 0x55	PACKET_FUNC_MOTOR	6	参数 1: (uint8_t) 0x00 (子命令) 参数 2: (uint8_t) motor_id 参数 3: (float) 速度值 (有正负)	CRC

(注意: 1.float 类型为 4 个字节 2.电机 id 从 0 开始,对应电机 1,往后以此类推)

举例:控制电机1以-1r/s速度转动:

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_MOTOR	6	参数 1: 0x00 参数 2: 0x00 参数 3: 0x00 0x00 0x80 0xBF (-1)	CRC

(2) 多个电机运动

帧头	功能码	数据 长度	参数	校验
0xAA 0x55	PACKET_FUNC_MOTOR	5N+2	参数 1: (uint8_t) 0x01 (子命令) 参数 2: (uint8_t) 电机数量 参数 3: (uint8_t) motor_id_1 参数 4: (float) speed_1 ・・・・・ 参数 2N+1: (uint8_t) motor_id_N 参数 2N+2: (float) speed_N (格式参考参数 3、4)	CRC

(注意: float 类型为 4 个字节)

举例:

控制电机 1 和电机 2 分别以 -1r/s、2r/s 的速度转动:

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_MOTOR	12	参数 1: 0x01 (子命令) 参数 2: 0x02 参数 3: 0x01 参数 4: 0x00 0x00 0x80 0xBF (-1) 参数 5: 0x02 参数 4: 0x00 0x00 0x00 0x40 (+2)	CRC

(3) 单个电机停止

帧头	功能码	数据 长度	参数	校验
0xAA 0x55	PACKET_FUNC_MOTOR	2	参数 1: (uint8_t) 0x02 (子命令) 参数 2: (uint8_t) motor_id	CRC

举例:

控制电机 1 停止:

帧头	功能码	数据 长度	参数	校验
0xAA 0x55	PACKET_FUNC_MOTOR	2	参数 1: 0x02 (子命令) 参数 2: 0x01	CRC

(4) 多个电机停止

帧头	功能码	数据 长度	参数	校验
----	-----	----------	----	----

0xAA 0x55	PACKET_FUNC_MOTOR	2	参数 1: 参数 2:	(uint8_t) 0x03 (子命令) (uint8_t) 电机掩码	CRC
-----------	-------------------	---	----------------	--	-----

举例:

控制电机 0 和电机 2 停止:

帧头	功能码	数据 长度	参数	校验
0xAA 0x55	PACKET_FUNC_MOTOR	2	参数 1: 0x03 (模式) 参数 2: 0x05 (二进制 00000101)	CRC

4、PWM 舵机控制: 指令名 PACKET_FUNC_PWM_SERVO, 数值 4

(1) 多个 PWM 舵机控制

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_PWM_SERVO	3N+4	参数 1: (uint8_t) 0x01 (子命令) 参数 2: (uint16_t) 运动时间(ms) 参数 3: (uint8_t) 舵机数量 参数 4: (uint8_t) servo_id_1 参数 5: (uint16_t) 脉冲宽度	CRC

举例: 控制舵机 1 和舵机 2 分别转到 90°、180°, 分别对应脉宽为 1500、2500, 用时 2s:

帧头	功能码	数据长度	参数	校验
----	-----	------	----	----

0xAA 0x55	PACKET_FUNC_PWM_SERVO	10	参数 1: 0x01 (子命令) 参数 2: 0xD0 0x07 (2000) 参数 3: 0x02 (需控制的舵机数量) 参数 4: 0x01 (1) 参数 5: 0xDC 0x05 (1500) 参数 6: 0x02 (2)	CRC
			参数 7: 0xC4 0x09(2500)	

(2) 单个 PWM 舵机控制

帧头	功能码	数据长度		参数	校验
0xAA 0x55	PACKET_FUNC_PWM_SERVO	6	参数 2: 参数 3:	(uint8_t) 0x03 (子命令) (uint16_t) 运动时间(ms) (uint8_t) servo_id (uint16_t) 脉冲宽度	CRC

脉冲宽度为[500,2500],对应的是[0°,180°]

举例:

控制舵机 1 通过 1s 旋转到 90°位置,其脉冲宽度为 1500:

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_PWM_SERVO	6	参数 1: 0x03 (子命令) 参数 2: 0xE8 0x03 (1000) 参数 3: 0x01 (1) 参数 4: 0xDC 0x05 (1500)	CRC

(3) 读取 PWM 舵机位置

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_PWM_SERVO	2	参数 1: (uint8_t) 0x05 (子命令) 参数 2: (uint8_t) servo_id	CRC

发送读取位置命令后,控制板会发送对应 ID 的 PWM 舵机的位置数据给上位机。

(4) 设置 PWM 舵机偏差

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_PWM_SERVO	3	参数 1: (uint8_t) 0x07 (子命令) 参数 2: (uint8_t) servo_id 参数 3: (uint8_t) 偏差参数 (转换为 int8_t 类型,有效范围为 -100~+100)	CRC

举例:

设置舵机 2 的偏差为+10:

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_PWM_SERVO	3	参数 1: 0x07 (子命令) 参数 2: 0x02 (2) 参数 3: 0x0A (10)	CRC

(5) 读取 PWM 舵机偏差

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_PWM_SERVO	2	参数 1: (uint8_t) 0x09 (子命令) 参数 2: (uint8_t) servo_id	CRC

发送读取位置命令后,控制板会发送对应 ID 的 PWM 舵机的偏差数据给上位机。

5、总线舵机控制: 指令名 PACKET_FUNC_BUS_SERVO, 数值 5

(1) 控制总线舵机转动

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	3N+4	参数 1: (uint8_t) 0x01 (子命令) 参数 2: (uint16_t) 运动时间(ms) 参数 3: (uint8_t) 舵机数量 参数 4: (uint8_t) servo_id_1 参数 5: (uint16_t) 脉冲宽度	CRC

举例:

控制总线舵机的 1 号、2 号舵机分别转到 200°、240°,对应的脉宽为 833、1000,用时 1s:

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	10	参数 1: 0x01 (子命令)	CRC

	参数 2: 0xE8 0x03(1000)	
	参数 3: 0x02 (2)	
	参数 4: 0x01 (1)	
	参数 5: 0x41 0x03 (833)	
	参数 4: 0x02 (2)	
	参数 5: 0xE8 0x03(1000)	

(2) 读取位置命令

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	2	参数 1: (uint8_t) 0x05 (子命令) 参数 2: (uint8_t) servo_id	CRC

发送读取位置命令后,控制板会发送对应 ID 的总线舵机的位置数据给上位机。

(3) 读取输入电压命令

ф	贞头	功能码	数据长度	参数	校验	
0xAA	0x55	PACKET_FUNC_BUS_SERVO	2	int8_t) 0x07 (子命令) int8_t) servo_id	CRC	

发送读取输入电压命令后,控制板会发送对应 ID 的总线舵机的输入电压数据给上位机。

(4) 读取温度命令

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	2	参数 1: (uint8_t) 0x09 (子命令) 参数 2: (uint8_t) servo_id	CRC

发送读取温度命令后,控制板会发送对应 ID 的总线舵机的温度数据给上位机。

(5) 电机掉电命令

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	2	参数 1: (uint8_t) 0x0B (子命令) 参数 2: (uint8_t) servo_id	CRC

发送卸载动力命令后,控制板会将对应 ID 的总线舵机的动力卸载。

(6) 电机上电命令

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	2	参数 1: (uint8_t) 0x0C (子命令) 参数 2: (uint8_t) servo_id	CRC

发送加载动力命令后,控制板会使对应 ID 的总线舵机加载动力。

(7) ID 写入命令

帧头	功能码	数据长度		参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	3	参数 2:	(uint8_t) 0x10 (子命令) (uint8_t) servo_id (uint8_t) save_id	CRC

发送 ID 写入命令后,控制板会改写对应 ID 的总线舵机的 ID 号。

(8) ID 读取命令

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	2	参数 1: (uint8_t) 0x12 (子命令) 参数 2: (uint8_t) 0xFE (查询广播)	CRC

发送 ID 读取命令后,控制板会将总线舵机的 ID 号上传给上位机。

注意: 这里的总线舵机只能有一个, 否则多个总线舵机同时返回数据会造成总线冲突。

(9) 偏差调整命令

帧头	功能码	数据长度		参数	校验
0xAA 0x5	5 PACKET_FUNC_BUS_SERVO	3	参数 2:	(uint8_t) 0x20 (子命令) (uint8_t) servo_id (uint8_t) 偏差调整值	CRC

发送偏差调整命令后,控制板会将对应 ID 的总线舵机的偏差值设置为参数 3 的值。

(10) 偏差读取命令

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	2	参数 1: (uint8_t) 0x22 (子命令) 参数 2: (uint8_t) servo_id	CRC

发送偏差读取命令后,控制板会读取对应 ID 的总线舵机的偏差值并上传上位机。

(11) 偏差保存命令

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	2	参数 1: (uint8_t) 0x24 (子命令) 参数 2: (uint8_t) servo_id	CRC

发送偏差保存命令后,控制板会使能对应 ID 的总线舵机保存其当前的偏差值。

(12) 位置限制设置命令

帧头	功能码	数据长度		参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	6	参数 2: 参数 3:	(uint8_t) 0x30 (子命令) (uint8_t) servo_id (uint16_t) 低限位 (uint16_t) 高限位	CRC

限位的数值范围在[0,1000]。

发送位置限制设置命令后,控制板会为对应 ID 的总线舵机设置限位参数。

(13) 位置限制读取命令

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	2	参数 1: (uint8_t) 0x32 (子命令) 参数 2: (uint8_t) servo_id	CRC

发送位置限制读取命令后,控制板会将对应 ID 的总线舵机的限位参数上传给上位机。

(14) 电压限制设置命令

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	6	参数 1: (uint8_t) 0x34 (子命令) 参数 2: (uint8_t) servo_id 参数 3: (uint16_t) 低限位 参数 4: (uint16_t) 高限位	CRC

电压低限位数值应大于4500, 电压高限位数值应小于14000。

发送电压限位设置命令后,控制板会设置对应 ID 的总线舵机的电压限位参数。

(15) 电压限制读取命令

帧头	功能码	数据长度	参数	校验	
0xAA 0x55	PACKET_FUNC_BUS_SERVO	2	参数 1: (uint8_t) 0x36 (子命令) 参数 2: (uint8_t) servo_id	CRC	

发送电压限位读取命令后,控制板会将对应 ID 的总线舵机的电压限位参数上传给上位机。

(16) 温度限制设置命令

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	3	参数 1: (uint8_t) 0x38 (子命令) 参数 2: (uint8_t) servo_id 参数 3: (uint8_t) 高温阈值	CRC

高温阈值参数值应该小于100。

发送温度限位设置命令后,控制板会设置对应 ID 的总线舵机的高温阈值参数。

(17) 温度限制读取命令

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	2	参数 1: (uint8_t) 0x3A (子命令) 参数 2: (uint8_t) servo_id	CRC

发送温度限位设置命令后,控制板会将对应 ID 的总线舵机的高温阈值参数上传给上位机。

1.2 控制板主动给用户发送数据部分

1、总线舵机数据上传: 指令名 PACKET_FUNC_BUS_SERVO, 数值 5

(1) 总线舵机位置上传

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	5	参数 1: (uint8_t) servo_id 参数 2: (uint8_t) 0x05 (子命令) 参数 3: (int8_t) 是否读取成功 (0: 成功; -1: 失败) 参数 4: (int16_t) 舵机位置	CRC

当接收到读命令后,读取相应舵机的位置参数,上传给上位机。

举例:

上传 5 号舵机的角度为 30°, 对应的脉冲宽度为 833:

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	5	参数 1: 0x05 (5) 参数 2: 0x05 (子命令) 参数 3: 0x00 (0) 参数 4: 0x41 0x03 (833)	CRC

(2) 总线舵机电压上传

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	5	参数 1: (uint8_t) servo_id 参数 2: (uint8_t) 0x07 (子命令) 参数 3: (int8_t) 是否读取成功 (0: 成功; -1: 失败) 参数 4: (uint16_t) 舵机电压	CRC

当接收到读命令后,读取相应舵机的电压参数,上传给上位机。

(3) 总线舵机温度上传

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	4	参数 1: (uint8_t) servo_id 参数 2: (uint8_t) 0x09 (子命令) 参数 3: (int8_t) 是否读取成功 (0: 成功; -1: 失败) 参数 4: (uint8_t) 舵机温度	CRC

当接收到读命令后,读取相应舵机的温度参数,上传给上位机。

(4) 总线舵机 ID 号上传

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	4	参数 1: (uint8_t) 0xFE(广播指令) 参数 2: (uint8_t) 0x12(子命令) 参数 3: (int8_t) 是否读取成功 (0: 成功; -1: 失败) 参数 4: (uint8_t) 读取到的 servo_id	CRC

当接收到读命令后,读取舵机的 ID 号,上传给上位机。

(5) 总线舵机偏差参数上传

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	4	参数 1: (uint8_t) 0xFE (之前的广播指令) 参数 2: (uint8_t) 0x22 (子命令) 参数 3: (int8_t) 是否读取成功 (0: 成功: -1: 失败) 参数 4: (uint8_t) 舵机偏差	CRC

当接收到读命令后,读取对应舵机的偏差参数,上传给上位机。

(6) 总线舵机位置限制参数上传

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	7	参数 1: (uint8_t) servo_id 参数 2: (uint8_t) 0x32 (子命令) 参数 3: (int8_t) 是否读取成功 (0: 成功; -1: 失败) 参数 4: (uint16_t) 低限位 参数 5: (uint16_t) 高限位	CRC

当接收到读命令后,读取对应舵机的位置限制参数,上传给上位机。

(7) 总线舵机电压限制参数上传

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	7	参数 1: (uint8_t) servo_id 参数 2: (uint8_t) 0x36 (子命令) 参数 3: (int8_t) 是否读取成功 (0: 成功; -1: 失败) 参数 4: (uint16_t) 低限位 参数 5: (uint16_t) 高限位	CRC

当接收到读命令后,读取对应舵机的电压限制参数,上传给上位机。

(8) 总线舵机温度限制参数上传

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_BUS_SERVO	4	参数 1: (uint8_t) servo_id 参数 2: (uint8_t) 0x3A (子命令) 参数 3: (int8_t) 是否读取成功 (0: 成功; -1: 失败) 参数 4: (uint8_t) 温度限制	CRC

当接收到读命令后, 读取对应舵机的温度限制参数, 上传给上位机。

2、上传按键消息: 指令名 PACKET_FUNC_KEY,数值 6

帧头	功能码	数据 长度	参数	校验
0xAA 0x55	PACKET_FUNC_KEY	2	参数 1: (uint8_t) button_id 参数 2: (uint8_t) 按键事件	CRC

部分按键事件回调值如下:

BUTTON_EVENT_PRESSED = 0x01, /* 按钮被按下 */

BUTTON_EVENT_LONGPRESS = 0x02, /* 按钮被长按 */

BUTTON_EVENT_CLICK = 0x20, /* 按钮被点击 */

BUTTON_EVENT_DOUBLE_CLICK = 0x40, /* 按钮被双击 */

举例:

发送按键 1 被按下的消息:

帧头 功能码	数据长度	参数	校验	
--------	------	----	----	--

0xAA 0x55	PACKET_FUNC_KEY	2	参数 1: 0x01 参数 2: 0x01	CRC
-----------	-----------------	---	--------------------------	-----

3、上传 IMU 数据: 指令名 PACKET_FUNC_IMU, 数值 7

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_IMU	24	参数 1: (float) accel_x 数据 参数 2: (float) accel_y 数据 参数 3: (float) accel_z 数据 参数 4: (float) gyro_x 数据 参数 5: (float) gyro_y 数据 参数 6: (float) gyro_z 数据	CRC

4、上传手柄数据: 指令名 PACKET_FUNC_GAMEPAD, 数值 8

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_IMU	7	参数 1: (uint16_t) 按键 参数 2: (uint8_t) hat 值 参数 3: (int8_t) 左摇杆 x 值 参数 4: (int8_t) 左摇杆 y 值 参数 5: (int8_t) 右摇杆 x 值 参数 6: (int8_t) 右摇杆 y 值	CRC

5、上传 SBUS 航模遥控器数据: 指令名 PACKET_FUNC_SBUS, 数值 9

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_SBUS	36	参数 1: (int16_t[16])16 个通道 值 参数 2: (uint8_t)ch17 参数 3: (uint8_t)ch18 参数 4: (uint8_t)signal_loss 参数 5: (uint8_t)fail_safe	CRC

航模的摇杆、拨钮总共16个通道的数据都在参数1中。

6、PWM 舵机控制: 指令名 PACKET_FUNC_PWM_SERVO, 数值 4

(1) PWM 舵机位置上传

帧头	功能码	数据 长度	参数	校验
0xAA 0x55	PACKET_FUNC_PWM_SERVO	4	参数 1: (uint8_t)servo_id 参数 2: (uint8_t)0x05 (子命令) 参数 3: (uint16_t)脉冲宽度	CRC

当接收到读命令后, 读取对应舵机的脉冲宽度, 上传给上位机。

(2) PWM 舵机偏差上传

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_PWM_SERVO	3	参数 1: (uint8_t)servo_id 参数 2: (uint8_t)0x05 (子命令) 参数 3: (int8_t)舵机偏差	CRC

当接收到读命令后, 读取对应舵机的脉冲宽度, 上传给上位机。

7、上传语音识别结果: 指令名 PACKET_FUNC_ASR, 数值 12

帧头	功能码	数据长度	参数	校验
0xAA 0x55	PACKET_FUNC_ASR	5	参数 1: (uint8_t)0xBB 参数 2: (uint8_t)0xCC 参数 3: (uint8_t) 参数 4: (uint8_t) 参数 5: (uint8_t)	CRC

常用的通信协议例子

准备:

打开串口助手,使用的 type-c 接入 UART2, 波特率是 1000000, 选择 HEX (16 进制发送)。

例子:

1. 控制蜂鸣器鸣响 5 次, 以 1400Hz 频率, 每次鸣 100ms 停 100ms:

AA 55 02 08 78 05 64 00 64 00 05 00 F0

2. 控制蜂鸣器鸣响 10 次, 以 1000Hz 频率, 每次鸣 500ms 停 300ms:

AA 55 02 08 E8 03 F4 01 2C 01 0A 00 8B

3. 控制 LED 灯闪烁 10 次,每次亮 500ms 灭 300ms:

AA 55 01 07 01 F4 01 2C 01 0A 00 04

4. 控制 LED 灯闪烁 5 次,每次亮 100ms 灭 100ms:

AA 55 01 07 01 64 00 64 00 05 00 37

5. 单个电机控制运动: 控制电机 1 以-1r/s 速度转动:

AA 55 03 06 00 01 00 00 80 BF DA

6. 控制电机 1 停止:

AA 55 03 02 02 01 08

7. 控制电机 1 和电机 2 分别以 -1r/s、2r/s 的速度转动:

AA 55 03 0C 01 02 01 00 00 80 BF 02 00 00 00 40 FB

8. 控制 0 号、2 号电机停止:

AA 55 03 02 03 05 AD

9. 控制舵机 1 和舵机 2 分别转到 90°、180°, 分别对应脉宽为 1500、2500, 用时 2s:

AA 55 04 0A 01 D0 07 02 01 DC 05 02 C4 09 C8

10. 控制 PWM 舵机 1 运动到 1000 位置:

AA 55 04 06 03 e8 03 01 e8 03 e4

11. 设置 PWM 舵机偏差: 设置舵机 2 的偏差为+10:

AA 55 03 03 07 02 0A 53

12. 控制总线舵机转动: 控制总线舵机的 1 号、2 号舵机分别转到 200°、240°,对应的脉 宽为 833、1000, 用时 1s:

AA 55 05 0A 01 E8 03 02 01 41 03 02 E8 03 9F

13. 控制总线舵机转动: 控制总线舵机的 1 号、2 号舵机都转到 0°,对应的脉宽为 0,用时 1s:

AA 55 05 0A 01 E8 03 02 01 00 00 02 00 00 D2

14. 控制 ID 为 1 的总线舵机掉电:

AA 55 05 02 0B 01 B3

15. 控制 ID 为 1 的总线舵机上电:

AA 55 05 02 0C 01 DD

16. 将 ID 为 1 的总线舵机 ID 号更改为 2:

AA 55 05 03 10 01 02 68

拓展 1一使用计算器工具进制转换

使用 win 系统的计算器进行进制转换

①: 打开《开始》,搜索《计算器》,打开计算器。

②:点击左上角的《打开导航》,选择《程序员》。

③: 有四种进制可选。选中其中一个进制,输入数值,另外三个进制数就会显示出来。

拓展 2-CRC 码的计算方法

1. 简介

我们在串口指令的校验,选择了 CRC-Maxim 算法。CRC8-Maxim 是一种循环冗余检查 (CRC)算法,用于数据完整性校验。CRC8-Maxim 是一种 8 位 CRC 算法,由 Maxim Integrated (现在是 Analog Devices 的一部分)提出。它用于检测数据传输或存储过程中的错误。

算法基本特点包括:

- ① 多项式: CRC8-Maxim 使用的是多项式 $x^8 + x^5 + x^4 + 1$,它在二进制中表示为 0x31。这个多项式定义了如何生成 CRC 值。
 - ② 初始化值:初始值通常为 0xFF。
 - ③ 输入数据处理:数据在计算 CRC 时会逐字节处理,每个字节都参与 CRC 计算。

- ④ 异或操作:计算过程中涉及到的关键操作是异或(XOR),这是 CRC 计算中的核心操作之一。
- ⑤ 输出反转: CRC8-Maxim 的计算结果在最终输出时通常需要进行位反转 (bitwise inversion)。

2. 操作流程及示例

我们在此处为您提供了两种计算 CRC8-Maxim 校验码的方法;

方法 1: 借助互联网的在线 CRC 计算器计算(下文有详细介绍)

方法 2: 代码实现计算(此处不展开)

推荐使用方法 1,若您需要进行批量化、自动化测试,也可以查看方法 2 的 CRC8 MAXIM.c 提供的 C 语言实现 DEMO,封装到您的脚本中。

步骤 1: 计算串口指令数据

我们先求取想要实现的指令的帧头、功能码、数据长度、参数信息。以"控制四路电机,以-1的速度转动"为例子:

帧头	功能码	数据 长度	参数	校验
0xAA 0x55	PACKET_FUNC_MOTOR	5N+2	参数 1: (uint8_t) 0x01 (子命令) 参数 2: (uint8_t) 电机数量 参数 3: (uint8_t) motor_id_1 参数 4: (float) speed_1 ・・・・・・ 参数 2N+1: (uint8_t) motor_id_N 参数 2N+2: (float) speed_N (格式参考参数 3、4)	CRC

功能码: PACKET_FUNC_MOTOR=0x03

数据长度: (参数的字节数) 我们要同时控制 4 路电机, N=4, 5N+2=22, 换算成十六

进制: 0x16

参数:参数1:0x01

参数 2: 0x04(四个电机)

参数 3: 0x00(第1个电机 id)

参数 4: 0x00 0x00 0x80 0xBF (-1)

参数 5: 0x01(第 2 个电机 id)

参数 6: 0x00 0x00 0x80 0xBF (-1)

参数 7: 0x02(第3个电机 id)

参数 8: 0x00 0x00 0x80 0xBF (-1)

参数 9: 0x03(第 4 个电机 id)

参数 10: 0x00 0x00 0x80 0xBF (-1)

最后, 帧尾的 CRC 校验码与功能码、数据长度、参数三部分的信息有关, 这就是我们需要校验的数据, 我们将其摘取出来进行下一步计算:

03 16 01 04 00 00 00 80 BF 01 00 00 80 BF 02 00 00 80 BF 03 00 00 80 BF

步骤 2: 计算 CRC 校验码

1) 您可以点击此处超链接访问 <u>CRC(循环冗余校验)在线计算 ip33.com</u>, 也可以浏览器访问网址: http://www.ip33.com/crc.html, 进入到在线 CRC 计算器。

2) 选择输入的编码格式为 HEX,将需要校验的数据粘贴在"需要校验的数据"输入框中,选择"参数模型"为"CRC-8/MAXIM",之后点击计算即可得到 CRC 校验码输出。

