Einführung in die Geometrie und Topologie

Dozent Dr. Daniel Kasprowski

Mitschrift Maximilian Kessler

> Version 18. Mai 2021 13:11

Zusammenfassung

Bei folgenden Vorlesungsnotizen handelt es sich um (inoffizielle) Mitschriften zur 'Einführung in die Geometrie und Topologie', die im Sommersemester 2021 an der Universität Bonn gehalten wird. Ich garantiere weder für Korrektheit noch Vollständigkeit dieser Notizen, und bin dankbar für jegliche Art von Korrektur, sowohl inhaltlich, als auch Tippfehler.

Bemerkungen oder andere Umgebungen, die nicht zum eigentlichen Vorlesungsinhalt gehören, wurden mit einem * gekennzeichnet. Sie werden nach eigenem Ermessen hinzugefügt, um weitere Details oder evtl. mündliche Anmerkungen beizufügen. Insbesondere sind diese wohl besonders fehleranfällig, also verlasst euch nicht auf sie.

Manche Umgebungen sind mit einem [†] versehen. Das ist dann der Fall, wenn ihr Inhalt so, oder zumindest in sehr ähnlicher Form, in der Vorlesung vorkam (unter Umständen auch mündlich), ich aber die Umgebung der Aussage geändert habe. Das ist z.B. dann der Fall, wenn ich aus Aussagen, die einfach erwähnt werden, ein **Lemma**[†] mache, um sie hervorzuheben.

Weitere Informationen zu diesem Skriptum finden sich bei GitHub oder auf der Vorlesungshomepage.

Inhaltsverzeichnis

Übersicht der Vorlesungen		3
1	Zusammenhang, Wegzusammenhang	4
2	Lemma von Urysohn	8
3	Der Erweiterungssatz von Tietze	11
Stichwortverzeichnis		14

Übersicht der Vorlesungen

Vorlesung 1 (Di 11 Mai 2021 12:16)	
Zusammenhang, Wegzusammenhang. Bilder (weg-) zusammenhängender Räume. Lemma von Urysohn.	
Vorlesung 2 (Di 18 Mai 2021 12:20)	10

Vorlesung 1 Di 11 Mai 2021 12:16

1 Zusammenhang, Wegzusammenhang

Definition 1.1 (Zusammenhang). Ein topologischer Raum heißt **zusammenhängend**, wenn er sich <u>nicht</u> in zwei nichtleere, disjunkte, offene Teilmengen zerlegen lässt.

Lemma † (Offen-abgeschlossene-Mengen). Ein Raum ist zusammenhängend, wenn die leere Menge und der gesamte Raum die einzigen Teilmengen von X sind, die offen und abgeschlossen sind, d.h.

 $\sharp A \subseteq X, A \neq \emptyset, X : A \text{ offen und abgeschlossen.}$

Beweis*. Gibt es eine offene, abgeschlossene Menge $A \neq \emptyset, X$, so ist $X = A \sqcup A^c$ eine Zerlegung in offene, diesjunkte Mengen. Ist umgekehrt $X = U_1 \cup U_2$ mit U_1, U_2 offen, disjunkt und nichtleer, also auch nicht X, so sind U_1, U_2 beides offen abgeschlossene Mengen.

Bemerkung. X ist nicht zusammenhängend, genau dann, wenn $X \cong X_1 \coprod X_2$ eine disjunkte Vereinigung von 2 Räumen $X_1, X_2 \neq \emptyset$ ist.

Beispiel. 1) $\mathbb{R}\setminus\{0\} = (-\infty,0)\cup(0,\infty)$ und $(-\infty,0),(0,\infty)$ sind offen, disjunkt und nicht leer, also ist $\mathbb{R}\setminus\{0\}$ <u>nicht</u> zusammenhängend.

2) Betrachte $\mathbb{Q} \subseteq \mathbb{R}$ mit der Unterraumtopologie. Dann ist

$$\mathbb{Q} = (\mathbb{Q} \cap (-\infty, \sqrt{2})) \cup (\mathbb{Q} \cap (\sqrt{2}, \infty)).$$

eine Zerlegung in offene, disjunkte, nichtleere Mengen, also ist auch $\mathbb Q$ nicht zusammenhängend.

Bemerkung*. Es ist meistens einfacher, zu zeigen, dass ein Raum nicht zusammenhängend ist, die Gegenrichtung erweist sich als schwerer. Deswegen folgender

 ${\bf Satz}~{\bf 1.2}$ (Einheitsintervall). Das Intervall[0,1] ist zusammenhängend.

Beweis. Nimm gegenteilig an, dass [0,1] nicht zusammenhängend ist, schreibe also $[0,1]=A\cup B$ mit $A,B\neq\varnothing$, offen und disjunkt. OBdA sei $0\in A$. Wegen $B\neq\varnothing$ gibt es $t:=\inf B$. Da t abgeschlossen (weil A offen!), ist $t\in B$, also folgt $[0,t)\subseteq A$. Aber jede Umgebung von $t\in B$ schneidet [0,t), also $A,\ \ \ \ \ \ \$, weil $A\cap B=\varnothing$.

Definition[†] (Weg). Sei X ein topologischer Raum und $x, y \in X$. Ein **Weg** von x nach y ist eine stetige Funktion $w : [0,1] \to X$, sodass w(0) = x und w(1) = y.

Definition 1.3 (Wegzusammenhang). Ein topologischer Raum X heißt **wegzusammenhängend**, falls für je zwei Punkte $x, y \in X$ ein **Weg** von x nach y existiert.

Beispiel. 1) Die Mengen (a,b),[a,b),(a,b] und $\mathbb R$ sind alle wegzusammenhängend. Definiere hierzu

$$w: \left| \begin{array}{ccc} [0,1] & \longrightarrow & \mathbb{R} \\ t & \longmapsto & ty + (1-t)x \end{array} \right|$$

Als Verknüpfung stetiger Funktionen ist t stetig, und wir sehen leicht, dass $0 \mapsto x, 1 \mapsto y$.

- 2) $\mathbb{R}^n, n \ge 0$ ist wegzusammenhängend. Dazu betrachte vorherige Abbildung auf den einzelnen Komponenten
- 3) $\mathbb{R}^n \setminus \{0\}, n \ge 2$ ist wegzusammenhängend. Seien hierzu $x, y \in \mathbb{R}^n \setminus \{0\}.$

Fall 1: Die Strecke von x nach y liegt in $\mathbb{R}^n \setminus \{0\}$. Dann betrachten wir wieder die Abbildung aus 1) und sind fertig.

Fall 2: Die Strecke trifft die 0. Wähle dann einen dritten Punkt z, der nicht auf der Geraden durch x,y liegt. Dann gibt es einen Weg von x nach z und einen von z nach x, und die Vereinigung der beiden Wege ist dann ein Weg von x nach y.

Bemerkung*. Wir verwenden natürlich entscheidend, dass $ty + (1-t)x \in (a,b), [a,b), (a,b], \mathbb{R}$ für beliebige x,y, die auch in einer der Mengen liegen (Das ist Teil der Definition eines Weges!).

Bemerkung*. Ebenfalls kann man sich kurz Überlegen, dass die Vereinigung von zwei Wegen wieder ein Weg ist. Seien hierzu w_1, w_2 Wege von x nach y bzw. von y nach z. Dann definieren wir

$$w: \begin{vmatrix} [0,1] & \longrightarrow & X \\ x & \longmapsto & \begin{cases} w_1(2x) & 0 \leqslant x \leqslant \frac{1}{2} \\ w_2(2x-1) & \frac{1}{2} \leqslant x \leqslant 1 \end{cases}$$

so sehen wir leicht $w(0)=w_1(0)=x, w(1)=w_2(2\cdot 1-1)=w_2(1)=z,$ und w ist stetig, weil f auf $\left[0,\frac{1}{2}\right]$ und $\left[\frac{1}{2},1\right]$ stetig ist und bei $\frac{1}{2}$ beide Definitionen wegen $w_1(1)=y=w_2(0)=w_2(2\cdot \frac{1}{2}-1)$ übereinstimmen.

Lemma 1.4. Ist X wegzusammenhängend, so ist X zusammenhängend.

Warnung. Die Umkehrung von Lemma 1.4 gilt im Allgemenien nicht. Siehe hierzu Übungsblatt 5. Aufgabe 1.

Beweis von Lemma 1.4. Sei X wegzusammenhängend, und nimm gegenteilig an, dass $X=U_1\sqcup U_2$ mit $U_i\subseteq X$ offen und disjunkt. Sei $x_1\in U_1, x_2\in U_2$. Dann gibt es einen Weg w von x_1 nach x_2 , und wir erhalten

$$w^{-1}(U_1) \cup w^{-1}(U_2) = w^{-1}(U_1 \cup U_2) = [0, 1].$$

Allerdings sind $w^{-1}(U_i)$ offen (w ist stetig), disjunkt (U_1, U_2 sind disjunkt) und nicht leer ($0 \in w^{-1}(U_1)$, $1 \in w^{-1}(U_2)$), also ist [0,1] nicht zusammenhängend. $\not\subseteq$ mit Satz 1.2.

Korollar 1.5. \mathbb{R} und \mathbb{R}^2 sind nicht homöomorph.

Beweis. Nimm an, es gibt einen solchen Homöomorphismus

$$f: \left| \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ 0 & \longmapsto & f(0) \end{array} \right|$$

Dann induziert f auch einen Homöomorphismus $\mathbb{R}^2 \setminus \{0\} \cong \mathbb{R} \setminus \{f(0)\}$, allerdings ist $\mathbb{R}^2 \setminus \{0\}$ wegzusammenhängend, und $\mathbb{R} \setminus \{f(0)\}$ nicht, $f \in \mathbb{R}$.

Frage. Sind \mathbb{R}^n , \mathbb{R}^m wegzusammenhängend?

Antwort. Nein, das gilt natürlich genau dann, wenn n=m. Allerdings warten wir mit einem solchen Beweis bis zur algebrasichen Topologie. Siehe hierzu auch den Satz zur 'Invariance of domain' von Brouwer (den wir hier aber erstmal nicht behandeln).

Satz* (Invariance of domain). Es sei $U \subseteq \mathbb{R}^n$ offen und $f: U - > \mathbb{R}^n$ injektiv und stetig. Dann ist $f(U) \subseteq \mathbb{R}^n$ offen und f ist ein Homöomorphismus $f: U \cong f(U)$.

Korollar*. $\mathbb{R}^n \ncong \mathbb{R}^m$ für $n \neq m$.

Ein Versuch für einen ähnlichen Beweis wie $\mathbb{R} \not\cong \mathbb{R}^2$ scheitert, weil $\mathbb{R}^2 \setminus \{0\}$ und $\mathbb{R}^3 \setminus \{f(0)\}$ beide (weg)zusammenhängend sind. Man könnte nun Versuchen, eine Gerade oder einen Kreis von \mathbb{R}^2 zu entfernen, der entsprechende Raum ist dann unzusammenhängend. Es erscheint auch klar, dass $\mathbb{R}^3 \setminus f(\text{Kreis} / \text{Gerade})$, allerdings ist ein entsprechender Beweis verhältnismäßig schwer. Die algebraische Topologie wird es uns ermöglichen, das wesentlich einfacher einzusehen.

Bemerkung*. Die Frage, ob eine Schleife in \mathbb{R}^2 (ein stetiges, injektives Bild von \mathcal{S}^1 in \mathbb{R}^2) den Raum in zwei Teile zerteilt, ist auch schwerer als man denkt, hierzu vergleiche den

 $\mathbf{Satz^*}$ (Jordan'scher Kurvensatz). Es sei C eine Jordankurve in \mathbb{R}^2 , d.h. das Bild einer injektiven stetigen Abbildung $\varphi:S^1\to\mathbb{R}^2$. Dann besteht $\mathbb{R}^2\backslash C$ aus genau 2 Komponenten, eine davon ist beschränkt (die Innere), eine unbeschränkt (die Äußere)'

Der Beweis verwendet aber auch Methoden aus der algebraischen Geometrie.

Lemma 1.6 (Bilder von zusammenhängenden Räumen). Sei $f:X\to Y$ stetig und surjektiv.

- 1) Ist X wegzusammenhängend, so ist Y wegzusammenhängend.
- 2) Ist X zusammenhängend, so ist Y zusammenhängend.

Beweis. 1) Seien $y_1, y_2 \in Y$ beliebig. Da f surjektiv ist, finden wir $x_1, x_2 \in X$ mit $f(x_1) = y_1$, $f(x_2 = y_2)$. Nun finden wir wegen Wegzusammenhang von X einen Weg $w : [0, 1] \to X$ mit $w(0) = x_1$ und $w(1) = x_2$. Dann ist die Verknüpfung

$$f \circ w : \begin{vmatrix} [0,1] & \longrightarrow & Y \\ 0 & \longmapsto & f(x_1) = y_1 \\ 1 & \longmapsto & f(x_2) = y_2 \end{vmatrix}$$

ein Weg von y_1 nach y_2 , also ist Y wegzusammenhängend.

2) Nimm an, dass Y nicht zusammenhängend ist, also gibt es $U_1, U_2 \neq \emptyset$ offen und disjunkt mit $Y = U_1 \cup U_2$. Dann ist auch

$$X = f^{-1}(Y) = f^{-1}(U_1 \cup U_2) = f^{-1}(U_1) \cup f^{-1}(U_2).$$

und $f^{-1}(U_i)$ sind offen, disjunkt und nichtleer, weil f surjektiv ist. Also ist X nicht zusammenhängend, $\oint dx$.

Beispiel. Die Sphäre $S^n, n \geqslant 1$ ist wegzusammenhängend. Hierzu stellen wir fest, dass

$$\mathbb{R}^n \setminus \{0\} \cong S^{n-1} \times \mathbb{R} \xrightarrow{\text{Projektion}} S^{n-1}.$$

und wir wissen schon, dass $\mathbb{R}^n\backslash\left\{0\right\}$ wegzusammenhängend ist, also

auch S^{n-1} .

Bemerkung*. Der kanonische Isomorphismus ist erstmal $\mathbb{R}^n \setminus \{0\} \cong S^{n-1} \times \mathbb{R}$, indem wir $x \mapsto \left(\frac{x}{\|x\|_2}, \|x\|_2\right)$ abbilden. Allerdings ist $\mathbb{R} \cong (0, \infty)$, z.B. mit der Exponentialabbildung.

Beispiel[†] (Auf Nachfrage in der Vorlesungspause besprochen). Eine Teilmenge $X \subseteq \mathbb{R}^n$ heißt konvex, wenn für $x,y \in X$ auch die Verbindungsstrecke in X liegt, d.h. für $\lambda \in [0,1]$ ist auch $\lambda x + (1-\lambda)y \in X$. Eine Teilmenge heißt sternförmig, wenn es ein $x_0 \in X$ gibt, sodass für jedes $y \in X$ die Verbindungsstrecke von x_0 nach y in X liegt. Dann sehen wir, dass

 $X \text{ konvex} \Rightarrow X \text{ sternförmig} \Rightarrow X \text{wegzusammenhängend}.$

Die erste Implikation ist trivial, wähle $x_0 \in X$ beliebig, für die zweite bilden wir [0,1] einfach auf die Verbindungsstrecke von x_0 nach y ab, dann sind alle Punkte mit x_0 verbunden, und deren Hintereinanderschalten ergibt Wege von x nach y für x,y beliebig. Im Wesentlichen ist das das gleiche Argument, dass wir auch schon für die Intervalle in $\mathbb R$ benutzt haben.

2 Lemma von Urysohn

Bemerkung[†]. In der Vorlesung wurde auch folgendes angemerkt: Im gesamten nächsten Kapitel können wir für die Definition eines normalen Raums die Hausdorff-Eigenschaft fallen lassen. Alle Aussagen gelten weiterhin. Beachte aber, dass wir dann mit Urysohn nicht zwingend zwei Punkt trennen können, weil diese nicht zwingend abgeschlossen sind.

Satz 2.1 (Urysohn'sches Lemma). Sei X ein normaler topologischer Raum. Seien $A, B \subseteq X$ abegschlossen und disjunkt. Dann existiert eine stetige Abbildung $f: X \to [0, 1]$, sodass $f \mid_{A} \equiv 0$ und $f \mid_{B} \equiv 1$.

Lemma 2.2. Sei X ein topologischer Raum, sodass für jedes $r \in [0,1] \cap \mathbb{Q}$ offene $V_r \subseteq X$, sodass $r < r' \Rightarrow \overline{V_r} \subseteq V_{r'}$. Dann existiert eine stetige Abbildung $f: X \to [0,1]$, sodass f(x) = 0 für $x \in V_0$ und f(x) = 1 für $x \notin V_1$.

Beweis. Definiere

$$f: \left| \begin{array}{ccc} X & \longrightarrow & [0,1] \\ x & \longmapsto & \begin{cases} 1 & x \notin V_1 \\ \inf \left\{ r \mid x \in V_r \right\} & x \notin V_1 \end{cases} \right.$$

Die Eigenschaften $f\mid_{V_0}\equiv 0$ und $f\mid_{X\backslash V_i}\equiv 1$ sind sofort klar. Es bleibt zu zeigen, dass f stetig ist. Da

$$S := \{ [0, a) \mid a \in [0, 1] \} \cup \{ (a, 1] \mid a \in [0, 1] \}.$$

eine Subbasis der Topologie auf [0,1]ist, genügt es, Stetigkeit auf ${\mathcal S}$ zu prüfen. Sei

$$x \in f^{-1}([0, a)) \Leftrightarrow f(x) < a \leq 1$$

$$\Leftrightarrow \inf_{\varphi \mapsto f} \inf \{r \mid x \in V_r\} < a$$

$$\Leftrightarrow \exists r < a, r \in \mathbb{Q} : x \in V_r$$

$$\Leftrightarrow x \in \bigcup_{r \leq a} V_r$$

Für den zweiten Typ von Basielementen ist

$$x \in f^{-1}((a,1]) \Leftrightarrow \begin{cases} x \notin V_1 & \text{oder} \\ x \in V_1, a < f(x) = \inf\{r \mid x \in V_r\} \end{cases}$$

$$\Leftrightarrow \exists r' > a, r' \in \mathbb{Q}, x \notin V_{r'}$$

$$\stackrel{\overline{V_r \subseteq V_{r'}}}{\Leftrightarrow} \exists r \in \mathbb{Q}, a < r < r', x \notin \overline{V_r}$$

$$\Leftrightarrow x \in \bigcup_{x \in V_r} (X \setminus \overline{V_r})$$

also ist auch $f^{-1}((a,1])$ eine Vereinigung von offenen Mengen. Also ist f stetig, wie zu zeigen war.

Bemerkung*. Wir können uns die V_r wie eine Art 'Höhenprofil' oder 'Höhenlienien' vorstellen, die wir in unserem Raum gegeben haben.

Wir erinnern uns daran, dass wir gerade dabei waren, Satz 2.1 zu beweisen.

Vorlesung 2 Di 18 Mai 2021 12:20

Lemma 2.3. Sei X ein normaler Raum, $A\subseteq X$ abgeschlossen und $U\subseteq X$ offen mit $A\subseteq U$. Dann existiert $V\subseteq X$ offen mit

$$A\subseteq V\subseteq \overline{V}\subseteq U.$$

Abbildung 1: trennung von abgeschlossenen mengen durch offene in normalem Raum

Beweis. Wegen U offen ist $X \setminus U$ abgeschlossen. Wegen X normal gibt es V, V' offen mit $A \subseteq V$ und $(X \setminus U) \subseteq V'$ mit $V \cap V' = \emptyset$. Nun ist

$$A \subseteq V \subseteq X \backslash V' \subseteq U.$$

nach Definition des Abschlusses ist nun $A \subseteq V \subseteq \overline{V} \subseteq X \setminus V' \subseteq U$.

bessere abbildung

Beweis von Satz 2.1 (Urysohn'sches Lemma).

Ziel. $\forall r \in \mathbb{Q} \cap [0,1]$ konstruiere $V_r \subseteq X$ offen, sodass

- 1. $A \subseteq V_0$
- 2. $B \subseteq X \backslash V_1$
- 3. $r < r' \Rightarrow \overline{V_r} \subseteq V_{r'}$

Dies genügt, denn dann wissen wir mit Lemma 2.2, dass

$$\exists f: X \to [0, 1] \text{ stetig}$$

$$f(x) = 0 \quad \forall x \in V_0 \supseteq A$$

$$f(x) = 1 \quad \forall x \in X \backslash V_1 \supseteq B$$

Wähle hierzu eine Abzählung p_1, p_2, \ldots von $\mathbb{Q} \cap [0, 1]$, sodass $p_1 = 1$ und $p_2 = 0$. Definiere nun $\{V_r\}$ rekursiv, wobei wir auch induktiv die Invariante erhalten wollen, dass $r < r' \Rightarrow \overline{V_r} \subseteq V_{r'}$.

- $p_1 = 1$. Setze $V_1 := X \setminus B$ (offen, weil B abgeschlossen ist)
- $p_2 = 0$. Nach Lemma 2.3 mit A = A und $U = X \backslash B$ finden wir V_0 offen mit

$$A \subseteq V_0 \subseteq \overline{V}_0 \subseteq X \backslash B =: V_1.$$

• Sei $n \geq 3$, dann sind also $V_{p_1}, V_{p_2}, \ldots, V_{p_{n-1}}$ schon definiert. Es ist $\{p_1, p_2, \ldots, p_n\}$ wohlgeordnet, weil es sich um eine endliche Menge handelt, also gibt es unter ihnen einen direkten Vorgänger p_i von p_n , und einen direkten Nachfolger p_j von p_n .

Verwende nun Lemma 2.3 mit $A = \overline{V_{p_i}}$ und $U = V_{p_j}$, (hier ist wichtig, dass wegen $p_i < p_j$ beretis $\overline{V_{p_i}} \subseteq V_{p_j}$ gilt, sonst können wir das Lemma nicht anwenden.)

Also finden wir V mit $\overline{V_{p_i}} \subseteq V \subseteq \overline{V} \subseteq V_{p_j}$. Man prüft leicht, dass wir so auch die Invariante der Induktion erhalten haben.

Also haben wir wie gewünscht die V_i gefunden, und somit unsere Funktion.

Korollar 2.4 (Urysohn mit beliebigem Intervall). Sei X ein normaler Raum und seien $A,B\subseteq X$ disjunkt und abgeschlossen, sowie $a\leqslant b\in\mathbb{R}$ beliebig. Dann

$$\exists f: X \to [a, b]$$
$$f(A) = \{a\}$$
$$f(B) = \{b\}$$

Beweis. Verwende einen Homöomorphismus $[0,1] \rightarrow [a,b]$ und Satz 2.1.

Beweis ergänzen

3 Der Erweiterungssatz von Tietze

Wir sehen jetzt das Urysohn'sches Lemma in Action:

Satz 3.1 (Erweiterungssatz von Tietze). Sei X ein normaler Raum und $A\subseteq X$ abgeschlossen. Jede stetige Funktion $f:A\to [-1,1]$ lässt sich fortsetzen zu einer stetigen Funktion $\overline{f}:X\to [-1,1]$, d.h. $\overline{f}\mid_{A}\equiv f$.

Bemerkung. Das Urysohn'sche Lemma ist ein Spezialfall des Erweiterungssatz von Tietze:

Sei X normal und $B, C \subseteq X$ abgeschlossen, disjunkt. Dann betrachte

die Funktion

$$f: \left| \begin{array}{ccc} B \cup C & \longrightarrow & [-1,1] \\ B & \longmapsto & -1 \\ C & \longmapsto & 1 \end{array} \right|$$

Frage. Gibt es eine Fortsetzung $\overline{f}: X \to [-1, 1]$?

Für jede solche Fortsetzung muss auch $\overline{f}|_{B}=f$, also $\overline{f}(B)=-1$ und $\overline{f}(C)=1$ gelten, also genau das, was wir von Urysohn fordern. Allerdings sagt uns der Erweiterungssatz von Tietze genau, dass wir solche eine Fortsetzung finden.

Beweis von Satz 3.1 (Erweiterungssatz von Tietze.

 ${\bf Beweisstrategie.}$ Wir konstruieren eine Folge stetiger Funktionen

 $\{s_n: X \to [-1,1]\}_{n \ge 1}$, sodass

(i) $\{s_n\}$ konvergiert **gleichmäßig** gegen eine Funktion $s: X \to [-1, 1]$, d.h. für jedes $\varepsilon > 0$ existiert $N \in \mathbb{N}$, sodass

$$\forall \in X, n \geqslant N:$$
 $d(s_n(x), s(x)) < \varepsilon.$

Weil $\{s_n\}$ gleichmäßig konvergiert, ist s stetig (Übungsblatt 5, Aufgabe 3 (iv)).

(ii) $s \mid_A = f$

Dazu benötigen wir erstmal einige Lemmata, die wir im folgenden erarbeiten. \Box

Lemma 3.2. Sei X normal und $A \subseteq X$ abgeschlossen. Sei $\alpha: A \to [-r,r]$ für $r \in \mathbb{R}_{\geqslant 0}$ stetig. Dann existiert $g: X \to \left[-\frac{1}{3}r,\frac{1}{3}r\right]$ stetig mit $|\alpha(a)-g(a)|\leqslant \frac{2}{3}r$ für $a\in A$.

Beweis. Setze $B := \alpha^{-1}\left(\left[-r,-\frac{1}{3}r\right]\right)$ und $C := \alpha^{-1}\left(\left[\frac{1}{3}r,r\right]\right)$. Wegen α stetig sind B,C abgeschlossen, und sie sind auch disjunkt, weil die Intervalle disjunkt sind. Nach Urysohn mit beliebigem Intervall finden wir also eine stetige Funktion

$$g: X \to \left[-\frac{1}{3}r, \frac{1}{3}r \right]$$
$$g(B) = \left\{ -\frac{1}{3}r \right\}$$
$$g(C) = \left\{ \frac{1}{3}r \right\}$$

Bild fertig

Behauptung 1. g erfüllt die Bedingungen unseres Lemmas, d.h.

$$|\alpha(a) - g(a)| \le \frac{2}{3}r \quad \forall a \in A.$$

Unterbeweis. • Sei $a \in B$, Dann ist $\alpha(a) \in \left[-r, -\frac{1}{3}r\right]$ und $g(a) = -\frac{1}{3}r$, also gilt die Ungleichung.

- also gilt die Ungleichung.

 Sei $a \in C$. Dann ist $\alpha(a) \in \left[\frac{1}{3}r, r\right]$ und $g(a) = \frac{1}{3}r$, also, also gilt die Ungleichung.
- Ungleichung.

 Sei $a \in A \setminus (B \cup C)$. Dann ist $\alpha(a), g(a) \in \left[-\frac{1}{3}r, \frac{1}{3}r\right]$, und damit ist der Abstand auch höchstens $\frac{2}{3}r$.

Bemerkung*. In der Vorlesung kam die Frage auf, ob wir manche der gerade bewiesenen Resultate auch auf die Analysis übertragen können, indem wir z.B. den Fixpunktsatz von Banach anwenden.

darüber nachdenken

Stichwortverzeichnis

gleichmäßig, 12

Topologischer Raum zusammenhängend, 4

Weg, $\frac{5}{5}$ wegzusammenhängend, $\frac{5}{5}$