Homework5

Due: 05/4/2022 Devika Chandriani A13405666

QL	The data	gwen nas	6 features:	I1- I6		
$\hat{\alpha}$	I,	I ₂ I ₃		<u> </u>		
	1 0			D		
	2 0	1 1	(0	1 Apric	ori algoritm foila	os the logic
	3 1	0 0	0		an itemset is not	· ·
	4 1	1 1	0 0		f his swosets a	· ·
	5 6	0 0		•	110 5-655	· O WATE JACK
	6 1	0 0	1 0 1			
	7 0		1 1 1			
	a .		6 10			
	0 1					
			1 0 0)		
	0	1 1	0 0 1			
火	K=1					
•	Item Set	Support (count ternset support			Support Count
	J,	5			ξ I2, I33	
	I ₂	3	m in th	us, all llems had	E Iz. Is?	3
	T ₃		the n	hunumum treshold		3
	14 14	5		ree transactions	F In, I6?	3
	Is	4	K		1	
	<u>I</u> 6	4				
	-6			* Fr	om 6C2 pairs o	f two the ones
A	(k=3)		above had the minimum			
	llemset Support		nt/mn+			
	EI3, Is, Is		1		Way or C	-, 0
	U-3,15116	>			•	
71				→ 1hor	refore, we got 4	MakiMal

* This Hemis below the minimum frequent sets in level 2 when k=2 trephad count so this is an whose maximal support count is 3. empty table

Pick one maximal set and check if it's surper are association rules with frequency
$$\geq 0.3$$
 and confidence ≥ 0.6

If z , T_3 confidence $T_2 \rightarrow T_3 = \frac{30pport count}{50pport count}$ (T_3) $\times 100$

Support count (T_4) $\times 100$

Support count (T_5) $\times 100$

Support count (T_5) $\times 100$

Support count (T_5) $\times 100$

Support count (T_6) $\times 100$

Support count

b) 1) d's condutional pattern base: {a,b:1} {a,b,c:1} {a,c:1} {b:1}

Thus can be found by taking note of all items which are above a along with d's support count in that branch

a) d's condutional FP tree :
$$\{a:3, b:2, c:2\}$$

```
03
     L3 = < {2} {3} {4} >
                                   < {25} {3} >
                                                    < {25} {3} >
           < {3} {4} {5} >
                                                    < {3} {4} {\$} >
           < {1} {2} {3} >
                                                    < {1} {2} {\{\{\{\{\}}\}\} >
                                                    < {1} {25} >
           < {1} {25} >
           < {1} {5} {3} >
                                                    < {1} {5} {$\$} >
           < {5} {34} >
                                                    < {5} {34} >
   < {X} {3} {4}>:<{2} {3} {4}>
                                      < {\\} {25}>: < {2} {3} {\\}>
                                                    < {25} {3} >
                    < {25} {3} >
                                                    < {3} {4} {$} >
                    < {3} {4} {$} >
                                                    < {1} {2} {3} >
                   < {1} {2} {$} >
                                                    < {1} {2 $} >
                   < {1} {2 $} >
                                                    < {1} {5} {$} >
                   < {1} {5} {$} >
                                                    < {5} {3¾} >
                    < {5} {3 \} >
                   < {2} {3} {\\pm\} >
   < { \& 5 \} { 3 \} > :
                                    < {25} {$} >
                                                   < {25} {3} >
                   < {3} {4} {5} >
                                                   < {3} {4} {5} >
                   < {1} {2} {\$} >
                                                   < {1} {2} {$} >
                   < {1} {2 5} >
                                                   < {1} {2 5} >
                   < {1} {5} {$} >
                                                   < {1} {5} {3} >
                   < {5} {3 <del>\</del>} > •
                                                   < {5} {34} > /
   < {X} {4} {5}>: < {2} {3} {4}>
                                     < {25} {3} >
                                                   < {25} {3} >
                   < {3} {4} {$} >
                                                    < {3} {4} {5} >
                   < {1} {2} {$} >
                                                    < {1} {2} {\$} >
                   < {1} {2 \{3}} >
                                                   < {1} {25} >
                   < {1} {5} {$} >
                                                    < {1} {5} {3} >
                   < {5} {34}>
                                                    < {5} {3 4} >
```

```
Therefore, length 4 candidates Ly
                                    < {2} {3} {4} {5} >
                                     < {25} {34} >
                                     < {1} {2} {3} {4} >
                                     < {1} {25} {3} >
                                     < {1} {5} {34} >
Remove 1:
< {2} {3} {4} {5} >: < {\( \) {3} {4} {5} >
                                           < {3} {4} {5} >
                    < {2} {\%} {4} {5} >
                                           < {2} {4} {5} >
                    < {2} {3} {4} {5} >
                                           < {2} {3} {5} >
                    < {2} {3} {4} {$} >
                                           <{2}{3}{4}>
< {25} {34} >: < {\25} {34} >
                                            < {5} {34} >
                < {2 5} {34} >
                                            < {2} {34} >
                < {25} {34} >
                                            < {25} {4} >
                < {25} {34} >
                                            < {25} {3} >
< {2} {3} {4} >
                    < {1} {2} {3} {4} >
                                           < {1} {3} {4} >
                    < {1} {2} {3} {4} >
                                          <sup>7</sup><{1}{2}{4}>
                    <{1}{2}{3}{\\}>
                                           < {1} {2} {3} >
< {1} {25} {3} >:
                     < (1) {25} {3} >
                                           < {25} {3} >
                     < {1} {\25} {3} >
                                           < {1} {5} {3} >
                     < {1} {2 §} {3} >
                                           < {1} {2} {3} >
                     < {1} {25} {3}>
                                           < {1} {25} >
< {1} {5} {34} >:
                   < (1) {5} {34} >
                                            < {5} {34} >
                   < {1} {\$} {34} >
                                            < {1} {34} >
                   < {1} {5} {84} >
                                            < {1} {5} {4} >
                   <{1}{5}{34}>
                                            < {1} {5} {3} >
< {2} {3} {4} >
                                             Leck to see if the following
< {25} {3} >
                                               have support from La
 <{3}{4}{5}>
 < {1} {2} {3} >
                                \therefore Therefore L_{y} = <\{1\}\{25\}\{3\}>
 < {1} {25} >
< {1} {5} {3} >
 < {5} {34} >
```

ay Given the time Series:

36 22

29

ચ

43

39

 $X = [39 \ 44 \ 43 \ 39 \ 46 \ 38 \ 39 \ 43]$ $Y = [37 \ 44 \ 41 \ 44 \ 39 \ 39 \ 39 \ 40]$

local cost function is given by: $C(x_1, y_1) = d(x_1, y_1) = |x_1, y_1|$

example:

a(39,37) = 2

B 8 B 9

12

-> optimal waiping

path

* Calculate DTW distance between x and y and optimal warping path

17 16 12 12

13 13 8 38 27 16 Ol 12 26 10 10 7 12 12 12 46 n 5 9 5 5 5 17 8 34 6 13 3 4 5 9 13 17 43 90 9 2 44 5 5 10 15 19 18 39 2 7 14 14 14 14 13 39 37 44 41 44 39 39 40

Time Series Y

: The DTW distance between X & Y = 11