test-endpaper

GEOMETRY FORMULAS

A = area, S = lateral surface area, V = volume, h = height, B = area of base, r = radius, l = slant height, C = circumference, s = arc length

Parallelogram	Triangle	Trapezoid	Circle	Sector
$\begin{vmatrix} h \\ b \\ A = bh \end{vmatrix}$	$A = \frac{1}{2}bh$	$\begin{vmatrix} \leftarrow a \rightarrow \\ h \\ - b \rightarrow \end{vmatrix}$ $A = \frac{1}{2}(a+b)h$	$A = \pi r^2, C = 2\pi r$	$ \leftarrow r \rightarrow $ $A = \frac{1}{2}r^{2}\theta, s = r\theta$ $(\theta \text{ in radians})$
Right Circular Cylinder	Right Circular Cone	Any Cylinder or Prisr	m with Parallel Bases	Sphere
$V = \pi r^2 h, S = 2 \pi r h$	$V = \frac{1}{3}\pi r^2 h, S = \pi r l$	$ \begin{array}{c} $		$V = \frac{4}{3}\pi r^3, S = 4\pi r^2$

ALGEBRA FORMULAS

THE QUADRATIC FORMULA	THE BINOMIAL FORMULA
The solutions of the quadratic equation $ax^2 + bx + c = 0$ are	$(x+y)^n = x^n + nx^{n-1}y + \frac{n(n-1)}{1 \cdot 2}x^{n-2}y^2 + \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3}x^{n-3}y^3 + \dots + nxy^{n-1} + y^n$
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$(x-y)^n = x^n - nx^{n-1}y + \frac{n(n-1)}{1 \cdot 2}x^{n-2}y^2 - \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3}x^{n-3}y^3 + \dots \pm nxy^{n-1} \mp y^n$

TABLE OF INTEGRALS

BASIC FUNCTIONS

1.
$$\int u^n du = \frac{u^{n+1}}{n+1} + C$$
2.
$$\int \frac{du}{u} = \ln|u| + C$$
3.
$$\int e^u du = e^u + C$$

4.
$$\int \sin u \, du = -\cos u + C$$

5.
$$\int \cos u \, du = \sin u + C$$

6.
$$\int \tan u \, du = \ln|\sec u| + C$$

7.
$$\int \sin^{-1} u \, du = u \sin^{-1} u + \sqrt{1 - u^2} + C$$

8.
$$\int \cos^{-1} u \, du = u \cos^{-1} u - \sqrt{1 - u^2} + C$$

9.
$$\int \tan^{-1} u \, du = u \tan^{-1} u - \ln \sqrt{1 + u^2} + C$$

$$10. \int a^u \, du = \frac{a^u}{\ln a} + C$$

$$11. \int \ln u \, du = u \ln u - u + C$$

$$12. \int \cot u \, du = \ln|\sin u| + C$$

13.
$$\int \sec u \, du = \ln|\sec u + \tan u| + C$$
$$= \ln\left|\tan\left(\frac{1}{4}\pi + \frac{1}{2}u\right)\right| + C$$

14.
$$\int \csc u \, du = \ln|\csc u - \cot u| + C$$
$$= \ln|\tan \frac{1}{2}u| + C$$

15.
$$\int \cot^{-1} u \, du = u \cot^{-1} u + \ln \sqrt{1 + u^2} + C$$

16.
$$\int \sec^{-1} u \, du = u \sec^{-1} u - \ln|u + \sqrt{u^2 - 1}| + C$$

17.
$$\int \csc^{-1} u \, du = u \csc^{-1} u + \ln|u + \sqrt{u^2 - 1}| + C$$

RECIPROCALS OF BASIC FUNCTIONS

$$18. \int \frac{1}{1 \pm \sin u} du = \tan u \mp \sec u + C$$

$$19. \int \frac{1}{1 \pm \cos u} du = -\cot u \pm \csc u + C$$

20.
$$\int \frac{1}{1 \pm \tan u} du = \frac{1}{2} (u \pm \ln|\cos u \pm \sin u|) + C$$

test-endpaper

21.
$$\int \frac{1}{\sin u \cos u} du = \ln |\tan u| + C$$

22.
$$\int \frac{1}{1 \pm \cot u} du = \frac{1}{2} (u \mp \ln|\sin u \pm \cos u|) + C$$

$$23. \int \frac{1}{1 \pm \sec u} du = u + \cot u \mp \csc u + C$$

24.
$$\int \frac{1}{1 \pm \csc u} du = u - \tan u \pm \sec u + C$$

25.
$$\int \frac{1}{1+e^u} du = u - \ln(1 \pm e^u) + C$$

POWERS OF TRIGONOMETRIC FUNCTIONS

26.
$$\int \sin^2 u \, du = \frac{1}{2}u - \frac{1}{4}\sin 2u + C$$

27.
$$\int \cos^2 u \, du = \frac{1}{2}u + \frac{1}{4}\sin 2u + C$$

$$28. \int \tan^2 u \, du = \tan u - u + C$$

29.
$$\int \sin^n u \, du = -\frac{1}{n} \sin^{n-1} u \cos u + \frac{n-1}{n} \int \sin^{n-2} u \, du$$

29.
$$\int \sin^n u \, du = -\frac{1}{n} \sin^{n-1} u \cos u + \frac{n-1}{n} \int \sin^{n-2} u \, du$$
30.
$$\int \cos^n u \, du = \frac{1}{n} \cos^{n-1} u \sin u + \frac{n-1}{n} \int \cos^{n-2} u \, du$$

31.
$$\int \tan^n u \, du = \frac{1}{n-1} \tan^{n-1} u - \int \tan^{n-2} u \, du$$

32.
$$\int \cot^2 u \, du = -\cot u - u + C$$

$$33. \int \sec^2 u \, du = \tan u + C$$

$$34. \int \csc^2 u \, du = -\cot u + C$$

35.
$$\int \cot^n u \, du = -\frac{1}{n-1} \cot^{n-1} u - \int \cot^{n-2} u \, du$$

35.
$$\int \cot^n u \, du = -\frac{1}{n-1} \cot^{n-1} u - \int \cot^{n-2} u \, du$$
36.
$$\int \sec^n u \, du = \frac{1}{n-1} \sec^{n-2} u \tan u + \frac{n-2}{n-1} \int \sec^{n-2} u \, du$$

37.
$$\int \csc^n u \, du = -\frac{1}{n-1} \csc^{n-2} u \cot u + \frac{n-2}{n-1} \int \csc^{n-2} u \, du$$

PRODUCTS OF TRIGONOMETRIC FUNCTIONS

38.
$$\int \sin mu \sin nu \, du = -\frac{\sin(m+n)u}{2(m+n)} + \frac{\sin(m-n)u}{2(m-n)} + C$$
39.
$$\int \cos mu \cos nu \, du = \frac{\sin(m+n)u}{2(m+n)} + \frac{\sin(m-n)u}{2(m-n)} + C$$

39.
$$\int \cos mu \cos nu \, du = \frac{\sin(m+n)u}{2(m+n)} + \frac{\sin(m-n)u}{2(m-n)} + \frac{\sin(m-n)u}{2(m-n)} + \frac{\sin(m+n)u}{2(m-n)} + \frac{\sin(m$$

40.
$$\int \sin mu \cos nu \, du = -\frac{\cos(m+n)u}{2(m+n)} - \frac{\cos(m-n)u}{2(m-n)} + C$$

40.
$$\int \sin mu \cos nu \, du = -\frac{\cos(m+n)u}{2(m+n)} - \frac{\cos(m-n)u}{2(m-n)} + C$$
41.
$$\int \sin^m u \cos^n u \, du = -\frac{\sin^{m-1} u \cos^{n+1} u}{m+n} + \frac{m-1}{m+n} \int \sin^{m-2} u \cos^n u \, du$$

$$= \frac{\sin^{m+1} u \cos^{n-1} u}{m+n} + \frac{n-1}{m+n} \int \sin^m u \cos^{n-2} u \, du$$

PRODUCTS OF TRIGONOMETRIC AND EXPONENTIAL FUNCTIONS

42.
$$\int e^{au} \sin bu \, du = \frac{e^{au}}{a^2 + b^2} (a \sin bu - b \cos bu) + C$$

43.
$$\int e^{au} \cos bu \, du = \frac{e^{au}}{a^2 + b^2} (a \cos bu + b \sin bu) + C$$

POWERS OF *u* MULTIPLYING OR DIVIDING BASIC FUNCTIONS

$$44. \int u \sin u \, du = \sin u - u \cos u + C$$

$$45. \int u \cos u \, du = \cos u + u \sin u + C$$

46.
$$\int u^2 \sin u \, du = 2u \sin u + (2 - u^2) \cos u + C$$

47.
$$\int u^2 \cos u \, du = 2u \cos u + (u^2 - 2) \sin u + C$$

48.
$$\int u^n \sin u \, du = -u^n \cos u + n \int u^{n-1} \cos u \, du$$

49. $\int u^n \cos u \, du = u^n \sin u - n \int u^{n-1} \sin u \, du$

50.
$$\int u^n \ln u \, du = \frac{u^{n+1}}{(n+1)^2} [(n+1) \ln u - 1] + C$$

51.
$$\int ue^u \, du = e^u (u-1) + C$$

52.
$$\int u^n e^u \, du = u^n e^u - n \int u^{n-1} e^u \, du$$

53.
$$\int u^n a^u du = \frac{u^n a^u}{\ln a} - \frac{n}{\ln a} \int u^{n-1} a^u du + e^{-\frac{1}{2} \ln a} \int u^{n-1} a^u du$$

53.
$$\int u^{n} a^{u} du = \frac{u^{n} a^{u}}{\ln a} - \frac{n}{\ln a} \int u^{n-1} a^{u} du + C$$
54.
$$\int \frac{e^{u} du}{u^{n}} = -\frac{e^{u}}{(n-1)u^{n-1}} + \frac{1}{n-1} \int \frac{e^{u} du}{u^{n-1}}$$
55.
$$\int \frac{a^{u} du}{u^{n}} = -\frac{a^{u}}{(n-1)u^{n-1}} + \frac{\ln a}{n-1} \int \frac{a^{u} du}{u^{n-1}}$$

55.
$$\int \frac{a^u \, du}{u^n} = -\frac{a^u}{(n-1)u^{n-1}} + \frac{\ln a}{n-1} \int \frac{a^u \, du}{u^{n-1}}$$

$$56. \int \frac{du}{u \ln u} = \ln |\ln u| + C$$

POLYNOMIALS MULTIPLYING BASIC FUNCTIONS

57.
$$\int p(u)e^{au} du = \frac{1}{a}p(u)e^{au} - \frac{1}{a^2}p'(u)e^{au} + \frac{1}{a^3}p''(u)e^{au} - \cdots$$
 [signs alternate: $+ - + - \cdots$]

58.
$$\int p(u)\sin au \, du = -\frac{1}{a}p(u)\cos au + \frac{1}{a^2}p'(u)\sin au + \frac{1}{a^3}p''(u)\cos au - \cdots \quad \text{[signs alternate in pairs after first term: } + + - - + + - - \cdots \text{]}$$

59.
$$\int p(u) \cos au \, du = \frac{1}{a} p(u) \sin au + \frac{1}{a^2} p'(u) \cos au - \frac{1}{a^3} p''(u) \sin au - \cdots$$
 [signs alternate in pairs: $+ + - - + + - - \cdots$]