Einführung in die Computergrafik

Aufgabenblatt 1

Aufgabe 1. Kreuzprodukt.

(4 Punkte)

Gegeben seien die Vektoren $x=\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix},\,y=\begin{pmatrix}y_1\\y_2\\y_3\end{pmatrix},\,z=\begin{pmatrix}z_1\\z_2\\z_3\end{pmatrix}\in\mathbb{R}^3.$ Zeigen Sie:

- (a) $x \times y = -y \times x$.
- (b) x und y sind genau dann linear abhängig, wenn $x \times y = 0$ ist.
- (c) $\langle x, x \times y \rangle = \langle y, x \times y \rangle = 0$.

Aufgabe 2. Basisdarstellung und Basiswechsel.

(4 Punkte)

Gegeben seien die Basen

$$B_1 := \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix}, \begin{pmatrix} 0 \\ -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix} \right\}, \ B_2 := \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}, \begin{pmatrix} 0 \\ -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix} \right\}$$

des \mathbb{R}^3 und $v = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

- (a) Zeigen Sie, dass B_2 eine Orthonormalbasis ist.
- (b) Berechnen Sie $\theta_{B_1}(v)$ und $\theta_{B_2}(v)$.
- (c) Bestimmen Sie die Basiswechselmatrix $M_{B_1}^{B_2}$.

Aufgabe 3. Affine Basis und affiner Basiswechsel.

(2 Punkte)

Gegeben seien die affine Basen (p_1, B_1) und (p_2, B_2) des \mathbb{A}^3 mit B_1 , B_2 aus Aufgabe 2 und $p_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $p_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Weiterhin sei $p = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}$ gegeben bezüglich der affinen Basis (p_1, B_1) . Drücken Sie p bezüglich der Basis (p_2, B_2) aus.

Aufgabe 4. Skalarprodukt, Norm und Gram-Schmidt.

(4 Punkte)

(a) Seien $v_1, v_2 \in \mathbb{R}^n$ und $||v_1|| = 1$ ein normierter Vektor. Zeigen Sie, dass

$$w := v_2 - \langle v_1, v_2 \rangle v_1$$

senkrecht auf v_1 steht.

(b) Zeigen Sie: Sind $u, v \in \mathbb{R}^n$ und steht u senkrecht auf v, so ist

$$||u+v||^2 = ||u||^2 + ||v||^2$$
.