

Arm is the architecture of choice for the Internet of Things

About Arm

The architects of global possibilities

- + Founded in 1990
- + HQ in Cambridge UK with global offices across Asia, Europe and US
- + Acquired by Softbank Group Corp. in 2016

\$1.8B
in FY17 revenue

125B+

Arm-based chips shipped to d and counting

٠

70% of the world's population uses Arm technology

1,000+

Partner ecosystem

90%

of wearables powered by Arm-based SoCs

>95%

of world's smartphones are based on Arm

Create a Vibrant Applications Ecosystem

Supports a world class IOT journey/experience across sectors

The Cost of Security Inaction is Significant

- 1 Symantec Internet Security Threat Report 2018
- 2 Kaspersky Labs, New Trends in the World of IoT Threats 2018
- 3 Annual Cyber Crime Report, Cyber Security Ventures 2019

PSA Certified

Independent evaluation scheme -> PSACertified.org

Developed by

 PSA Certified provides three progressive levels of assurance and robustness (Level 1, 2, 3)

Based on PSA-RoT

PSA Functional API Certified
 enables ecosystem software
 compatibility to PSA standards,
 independent of hardware platforms

Secure all stages of device life-cycle

Any Device - IoT Device Classes

A landscape of multiple verticals, wide range of use cases and wide variety of devices

Getting Started — It's easy www.pelion.com

- Pelion Device Management Free Tier enables you to gain free hands-on experience with the Pelion Device Management platform.
 - Free Tier main offering:
 - 100 registered devices, 200 updates per month, 300k transactions per month
- Connect to Pelion Device Management in four simple steps
 - STEP 1: Import the example application to the Mbed Online Compiler
 - STEP 2: Give the application access to your Pelion Device Management account
 - STEP 3: Put the application on your device
 - STEP 4: See the device resources in Pelion Device Management Portal
- Update your device in four simple steps
 - STEP 1: Make changes to the example application in the Online Compiler
 - STEP 2: Publish your changed application as a firmware update
 - STEP 3: Apply the firmware update to the device with a campaign from the Device Management Portal
 - STEP 4: See the updated device in the Device Management Portal

150 DEVELOPMENT BOARDS!!

Select your Mbed Enabled board

Join / Select from MBED OS Devices Community

https://www.mbed.com/built-with-mbed/

LoRa IoT Solution Starter

Summary

- Connectivity: LoRa
- MCU: Arm Cortex M4 @ 80MHz
- Memory:256KB Flash, 64KB RAM
- Silicon vendor...

Industrial Monitoring Service

Summary

- Connectivity: LoRa
- MCU: Arm Cortex M3 @ 96MHz
- o Memory:512KB Flash, 128KB RAM
- Silicon vendor...

Read more

Smart door locks

Summary

- o Connectivity: WiFi/NB-IoT
- MCU: Arm Cortex M4 @ 160MHz
- Memory: 32Mbit Flash, 288KB RAM
- o Silicon

SOLARIS

Solar Charge Controller

Summary

- o Connectivity: None
- MCU: Arm Cortex M3, 72MHz
- Memory: 128KB Flash, 20KB RAM
- Silicon vendor...

Air Quality Sensors

Summary

- o Connectivity: WiFi
- MCU: Arm Cortex M+ @ 20MHz
- Memory:64KB Flash, 8KB SRAM
- Silicon vendor...

Read more

@PURRMETRIX

Indoor Environment Monitoring

Summary

- o Connectivity: Ethernet and 433MHz
- MCU: Arm Cortex M3, 96MHz
- o Memory: 512KB Flash, 32KB RAM...

Dood more

CARTESIAM.AI

Predictive Industrial Maintenance

Summary

- Connectivity: LoRa
- MCU: Arm Cortex M3 @ 48MHz
- Memory:128KB Flash, 16KB RAM
- Silicon vendor...

Read more

ZBOROWSKI AUTOMOTIVE

Automotive Dashboard

Summary

- · Connectivity: CAN
- MCU: Arm Cortex M4 @ 80MHz
- Memory:1MB Flash, 128KB RAM
- Silicon vendor...

Read more

withthearid

District Heating Leak Detector

- o Connectivity: GPRS/NB-IoT
- MCU: Arm Cortex M4+FPU @
- Memory:1MB Flash, 196KB RAM... Read more

Smart Agriculture

Grain Dryer

Summary

- · Connectivity: Ethernet
- o MCU: Arm Cortex M4, 180MHz
- Memory: 2MB Flash, 256+4KB KB RAM...

Read more

Embedded

Multisensor Industrial **Asset Monitor**

Summary

- Connectivity: LoRa, NFC, BTLE, CAT M1. NB-IoT
- MCU: Arm Cortex M4F, 64MHz
- Memory: 1MB...

Read more

MEON

Smart Street Lighting

Summary

- Connectivity: NB-IoT
- MCU: Arm Cortex M4 @ 180MHz
- o Memory: 2MB Flash, 256KB SRAM
- Silicon vendor...

Read more

Section Aims

Aims of this section

Connect a device to Pelion Device Management

Pre-requisites

Pre-requisites

- You will be need to
- Have a GitHub account, and git 1.9.5 or above installed
- Have GNU Arm Embedded compiler for Cortex-M installed
 - https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
 - Officially supported version: 6-2017-q1-update
- have the Mbed CLI and supporting tools installed
 - https://os.mbed.com/docs/mbed-os/v5.14/tools/installation-and-setup.html
 - If you are working in a Linux VM with Python 3.6 or above and pip installed, just install with 'pip install mbed-cli'

Pre-requisites (cont.)

- have a Pelion Portal account
 - so that you have an account that the device can register to
 - so that you can see your registered device in the Portal
 - if you haven't get the free-tier account, you can get it here:
 - https://os.mbed.com/pelion-free-tier/
 - Keyword: Pelion Quick Connect
- have a serial port program. We suggest
 - CoolTerm for Mac
 - PuTTY or TeraTerm for Windows
- If you are using Windows 10, you will need to install the serial port driver for DAPLink
 - http://os.mbed.com/media/downloads/drivers/mbedWinSerial 16466.exe
 - Keyword: DAPLink driver

Instructions

Overview

- In this section on you will
- import the example Mbed OS program that includes Device Management Client
- download "developer mode" certificates from the portal, and create firmware update credentials
- build the example program using those certificates
- program the device
- the device will connect to Pelion Device Management
 - you will be able to follow the progress on the serial port

Get the code

- Get the Pelion Device Management Client Example
 - Mbed-CLI
 - mbed import https://github.com/ARMmbed/mbed-cloud-client-example (HTTP)
 mbed import git@github.com:ARMmbed/mbed-cloud-client-example.git (SSH)
 - Git+Mbed-CLI:
 - git clone https://github.com/ARMmbed/mbed-cloud-client-example (HTTP)
 git clone git@github.com:ARMmbed/mbed-cloud-client-example.git (SSH)
 - cd mbed-cloud-client-example
 - If you are compiling in Windows, please rename this folder to a shorter name, such as PDMC_App
 - mbed deploy
 - Check release version
 - mbed releases
 - Update to a specific version
 - mbed update 4.0.0
 - Pelion DM Example 4.1.0 was released last Friday

Download Developer Certificate

- Login to https://portal.mbedcloud.com/
- Navigate to "Device Identity -> Certificates"

- Click on "New Certificate" on the topright of the page
- Then click on "Create a developer certificate"

Download Developer Certificate (cont.)

Name the certificate and click on "Create certificate"

- Click on the download icon to download the certificate C file
- File name:
 mbed cloud dev credentials c

 Replace this file with the one stored under mbed-cloud-client-example

Configuration for your board

- Master configuration file is mbed_app.json
 - mbed-OS has defaults for every targets
 - target_overrides specifies default values for all boards
 - You need to configure the Wi-Fi credentials here
 - <target name> tags specifies default values for a specific board

Our Reference Target

- Our reference target for this Makerthon is DISCO_L475AG_IOT01A
 - Modify the value of 'led-pinname' to "LED4"
 - Add the following section:

```
"DISCO L475VG IOT01A":
    "target.macros add"
                                                : ["MBEDTLS USER CONFIG FILE=\"mbedTLSConfig mbedOS.h\""],
    "target.network-default-interface-type"
                                                : "tools/mbed-bootloader-disco 1475vg iot0la-internal qspif-kvstore.bin"
    "target.bootloader img"
    "target.header offset"
                                                : "0x11000",
    "target.app offset'
                                                : "0x11400",
    "target.components add"
                                                : ["QSPIF", "WIFI ISM43362"],
    "bootloader-size"
                                                : "(36*1024)",
    "ism43362.read-thread-stack-size"
                                                : 1024.
    "mbed-client-pal.pal-max-frag-len"
   "mbed-client.sn-coap-max-blockwise-payload-size": 256,
                                                 : "ARM UCP FLASHIAP BLOCKDEVICE"
   "mbed-cloud-client.update-storage"
                                                "TDB INTERNAL"
   "storage.storage type"
   "storage tdb internal.internal base address": "(MBED ROM START + MBED BOOTLOADER SIZE)",
   "storage tdb internal.internal size"
                                                "(2*16*1024)"
    "update-client.application-details"
                                                : "(MBED CONF STORAGE FILESYSTEM INTERNAL BASE ADDRESS + MBED CONF STORAGE FILESYSTEM RBP INTERNAL SIZE)"
    "update-client.bootloader-details"
                                                 : "0x800882c",
    "update-client.firmware-header-version"
                                                : "2"
                                                : "(MBED CONF STORAGE FILESYSTEM EXTERNAL BASE ADDRESS + MBED CONF STORAGE FILESYSTEM EXTERNAL SIZE)",
    "update-client.storage-address"
    "update-client.storage-locations"
                                                : "((MBED ROM START + MBED ROM SIZE - APPLICATION ADDR) * MBED CONF UPDATE CLIENT STORAGE LOCATIONS)",
    "update-client.storage-size"
   "cellular.debug-at"
                                                : false,
                                                : false
   "cellular.use-apn-lookup"
```


Our Reference Target

- Our reference target for this Makerthon is DISCO_L475AG_IOT01A
 - Here is the config:
 - https://github.com/soleilplanet/ASEAN_2019
 - file name: mbed_app_l475vg.json

Our Reference Target

Device Capabilities

- 64-Mbit Quad-SPI (Macronix) Flash memory
- Bluetooth® V4.1 module (SPBTLE-RF)
- Sub-GHz (868 or 915 MHz) low-power-programmable RF module (SPSGRF-868 == CDSCDE 045)
- Wi-Fi® module Inventek ISM43362-M3G-L44 (802.11 b/g/n compliant)
- Dynamic NFC tag based on M24SR with its printed NFC antenna
- 2 digital omnidirectional microphones (MP34DT01)
- Capacitive digital sensor for relative humidity and temperature (HTS221)
- High-performance 3-axis magnetometer (LIS3MDL)
- 3D accelerometer and 3D gyroscope (LSM6DSL)
- 260-1260 hPa absolute digital output barometer (LPS22HB)
- Time-of-Flight and gesture-detection sensor (VL53L0X)
- 2 push-buttons (user and reset)
- USB OTG FS with Micro-AB connector
- Expansion connectors:
 - Arduino™ Uno V3
 - PMOD
- Flexible power-supply options: ST LINK USB VBUS or external sources

Configuring WiFi

Method 1:

Edit mbed_app.json

```
"nsapi.default-wifi-security" : "WPA_WPA2",
```

- "nsapi.default-wifi-ssid" : "\"SSID"",
- "nsapi.default-wifi-password" : "\"Password\""
- However, editing this file will force you do a clean build

Method 2:

- Find mbed-os/features/netsocket/NetworkInterfaceDefaults.cpp
- In function WiFiInterface::set_default_parameters(), edit this line:
 - set_credentials(MBED_CONF_NSAPI_DEFAULT_WIFI_SSID, MBED_CONF_NSAPI_DEFAULT_WIFI_PASSWORD, SECURITY);
 - set_credentials("SSID","Password", SECURITY);
- MBED_CONF_NSAPI_DEFAULT_WIFI_SSID is the "nsapi.default-wifi-ssid" you specified in mbed_app.json
- •2019MBED_CONF_NSAPI_DEFAULT_WIFI_PASSWORD is the "nsapi.default-wifi-password" you specified in mbed app.ison

Configuring WiFi (cont.)

- SSID:
 - 5Gzone_01
 - 5Gzone_02
 - 5Gzone_03
 - 5Gzone_04
- Password
 - @Celcom5G
- Security
 - WPA2-Personal

Build the code

- Now we build the Pelion DM example
 - Navigate to the root folder (mbed-cloud-client-example)
 - mbed target DISCO_L475VG_IOT01A
 - mbed toolchain GCC_ARM
 - mbed compile
- The built binary will be located at:
 - BUILD/DISCO_L475VG_IOT01A/GCC_ARM/mbed-cloud-client-example.bin
- You may list all possible configurations with this command:
 - mbed compile --config

Flash the binary

- Connect your board with USB cable
- A "DAPLink" or "DIS_L4IOT" device will appear in your system as a mass storage device
- Drag and drop the binary file (mbed-cloud-client-example.bin) to the device

You will see something Boot loader

```
No Update image
[DBG ] Active firmware up-to-date
booting...

Start Device Management Client
Using hardcoded Root of Trust, not suitable for production use.
Starting developer flow
Application ready. Build at: Nov 26 2019 19:43:18
Hbed OS version 5.14.1
Hcc_platform_interface_connect()
Connecting with interface: HiFi
NSAPI_STATUS_CONNECTING
NSAPI_STATUS_GLOBAL_UP
IP: 192.168.1.27
Network initialized, registering...
Client registered
Endpoint Name: 016eaaddcceb0000000000100198b9b
Device Id: 016eaaddcceb0000000000100198b9b
```


On the Portal

On the Portal - Resources

Webapp – Getting Resource Values

- API URL: https://api.us-east-1.mbedcloud.com
- API Key:
 - You may obtain your API key on the portal, "Access management -> API keys -> New API key"
- REST APIs
 - https://www.pelion.com/docs/device-management/current/service-api-references/device-management-connect.html
 - Or Google with 'Pelion connect service API', it's the first link

- 1. <u>Device Directory API</u>: Stores device information and allows device management.
- 2. <u>Connect API</u>: Allows web applications to communicate with devices.
- 3. Connect Statistics API: Provides statistics about services through defined counters.
- 4. <u>Update Service API</u>: Manages device firmware updates.
- 5. <u>Account Management API</u>: Manages accounts and users, creates API keys, and uploads trusted certificates.
- 6. <u>Bootstrap API</u>: Allows web applications to control the device bootstrapping process.
- 7. Enrollment API: Allows users to claim ownership of a device that is not yet assigned to an account.
- 8. <u>Customer's third party CA API</u>: Defines a third-party bootstrap certificate provider.
- 9. <u>Certificate enrollment API</u>: Allows management of certificate renewal on devices.
- 10. Billing API: Allows users to retrieve billing reports and service package details.
- For this event, #1 #4 might be frequently used

Device Directory API: Stores device information and allows device management.

- DeviceDirectoryDevices
 - You may list all devices, get device info or update device info with this set of APIs
- DeviceDirectoryEvents
 - You may list all device events or retrieve an event on a specific device
- DeviceDirectoryFilterQueries
 - This API set is about getting device status, such as life time, device creation time, registration status, etc.
- DeviceDirectoryGroups
 - This API set allows you to manage devices in groups

Connect API: Allows web applications to communicate with devices.

- DeviceRequests
 - This API set allows you to get resource values
- Notifications
 - This API set allows you to setup notifications from the device to the webapp
- Subscriptions
 - This API set allows you to manage resource subscriptions

Connect Statistics API: Provides statistics about services through defined counters.

- Statistics
 - GET /v3/metrics
 - This API group only have the API above, and it gives you account-specific statistics

Update Service API: Manages device firmware updates.

- DeviceUpdateCampaigns
 - This API set allows you to manage update campaigns
- DeviceUpdateFirmwareImages
 - This API set allows you to manage images which are about to be pushed to the devices in update campaigns
- DeviceUpdateFirmwareManifests
 - · This API set allows you manage manifest files which has the signature of the firmware images along with other image info

Adding Resources (Device)

- Adding resources with Pelion Device Management Client
 - First, declare a M2MResource object
 - M2MResource* int_resource;
 - Use the Pelion DM Client instance
 - Already defined in the example:
 - SimpleM2MClient mbedClient;
- Resource path follows OMA object registry
 - http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
 - Resource path format: <Object ID>/<Instance ID>/<Resource ID>
 - For example
 - http://www.openmobilealliance.org/tech/profiles/lwm2m/3304.xml
 - object ID 3304 is reserved for Humidity
 - Resource ID 5700 is mandatory to object ID 3304, and its type must be float, indicating humidity sensor value
 - So, 3304/0/5700 indicates the value of the 1st humidity sensor on the device, 3304/1/5700 indicates the value of the 2nd humidity sensor on the device

Adding Resources (Device) cont.

- Add resource to Pelin DM Client instance
 - Definition:
 - M2MResource* add_cloud_resource(uint16_t object_id, uint16_t instance_id, uint16_t resource_id, const char *resource_type,
 M2MResourceInstance::ResourceType data_type,
 M2MBase::Operation allowed, const char *value, bool observable, void *cb, void *message status cb) {
 - Example:

```
int_resource = mbedClient.add_cloud_resource(15000, 0, 5501, "int_test_resource",
M2MResourceInstance::INTEGER,M2MBase::GET_ALLOWED, 0, true, NULL, (void*)notification_status_callback);
```

Path for this resource will be: 15000/0/5501, where object ID 15000 is not yet registered in OMA

Adding Resources (Device) cont.

- Add resource to Pelin DM Client instance
 - Definition:
 - Data type supported: STRING, INTEGER, FLOAT, BOOLEAN, OPAQUE, TIME, OBJLINK
 - Operation supported:
 - NOT ALLOWED
 - GET ALLOWED, PUT ALLOWED, POST ALLOWED, DELETE ALLOWED
 - GET_PUT_ALLOWED, GET_POST_ALLOWED, PUT_POST_ALLOWED, GET_DELETE_ALLOWED, PUT_DELETE_ALLOWED, POST_DELETE_ALLOWED
 - GET PUT POST ALLOWED, GET PUT DELETE ALLOWED, POST DELETE ALLOWED, GET POST DELETE ALLOWED, PUT POST DELETE ALLOWED, GET PUT POST DELETE ALLOWED
 - observable: whether the webapp can subscribe value of this resource
 - cb: callback function for operations
 - message status cb: status notification callback function (e.g. notification of resource being subscribed)
- Now the resource has been added to the mbedClient instance
 - Then you may give it an initial value:
 - int_resource->set_value(0);

Debug traces

- Sometimes we need to know more about what's going on underneath
 - mbed-trace is an internal logging system that logs everything inside the OS
 - "mbed-trace.enable": [null, true]
 - null to disable mbed-trace logs
 - true to enable mbed-trace logs
 - "trace-level": define trace level
 - TRACE_LEVEL_ERROR
 - TRACE_LEVEL_WARN
 - TRACE_LEVEL_INFOTRACE_LEVEL_DEBUG

For questions regarding Pelion development, you may contact:

Alvin Lee

alvin.lee@arm.com

Thank You Danke Merci 谢谢 ありがとう Gracias Kiitos 감사합니다 धन्यवाद

תודה