Semaine du 17/03 - Colle MP2I v.hanecart@orange.fr

I Questions de cours

1 - Énoncer et démontrer la formule de Taylor-Young.

Donner le développement limité à l'ordre n au voisinage de 0 des fonctions $x \longmapsto \operatorname{ch}(x)$ et $x \longmapsto \frac{1}{1+x}$.

2 - Quel est le cardinal d'une union disjointe? Démontrer ce résultat.

Donner le développement limité à l'ordre n au voisinage de 0 des fonctions $x \longmapsto e^x$ et $x \longmapsto \ln(1+x)$.

3 - Énoncer et démontrer la proposition sur les applications entre ensembles finis de même cardinal.

Donner le développement limité à l'ordre n au voisinage de 0 des fonctions $x \longmapsto \sin(x)$ et $x \longmapsto (1+x)^{\alpha}$.

II Exercices axés sur les développements limités

Exercice 1:

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = \begin{cases} \frac{x}{\sinh(x)} & \text{si } x \neq 0\\ 1 & \text{sinon} \end{cases}$$

- 1 Montrer que la fonction f est dérivable en 0 et préciser f'(0).
- 2 Justifier que f est de classe C^1 sur $\mathbb{R}\setminus\{0\}$ et préciser f'(x) pour $x\neq 0$.
- 3 La fonction f est-elle de classe C^1 sur \mathbb{R} ?

Exercice 2:

Soit f la fonction définie sur \mathbb{R}^+ par :

$$f(x) = \begin{cases} \frac{1}{x} - \frac{1}{\ln(1+x)} & \text{si } x > 0\\ -\frac{1}{2} & \text{sinon} \end{cases}$$

- 1 Montrer que la fonction f est continue sur \mathbb{R}^+ .
- 2 Calculer f'(x) pour $x \neq 0$.
- 3 Montrer que f^\prime admet une limite réelle en 0. Que peut-on en conclure ?

Exercice 3:

- 1 Déterminer le développement limité de la fonction Arctan à l'ordre 4 en 1.
- 2 En déduire l'allure de sa courbe représentative au voisinage du point d'abscisse $1.\,$

Exercice 4:

On considère la fonction f définie de \mathbb{R}_+^* dans \mathbb{R} par $f(x) = x^{1+\frac{1}{x}}$.

- 1 Montrer que $f(x) \underset{+\infty}{\sim} x$.
- 2 Déterminer un développement asymptotique à trois termes de f.
- 3 Le graphe de la fonction f admet-il une asymptote oblique en $+\infty$?

III Exercices sur le dénombrement et les polynômes

Exercice 5:

Soient (G, *) un groupe et H une partie finie non vide de G stable par *.

1 - On fixe x dans H.

Montrer que l'application $f_x: H \longrightarrow H$ définie par $f_x(y) = x * y$ réalise une bijection de H sur H.

2 - En déduire que l'élément neutre e_G appartient à H, puis que H est un sous-groupe de G.

Exercice 6:

Soient $k \in \mathbb{R}$ et $P = X^3 - X^2 + k$.

- 1 Déterminer une condition nécessaire et suffisante sur k pour que P ait une racine multiple.
- 2 Donner le tableau de variations de la fonction polynôme $x \mapsto P(x)$ sur \mathbb{R} .
- 3 Déterminer une condition nécessaire et suffisante sur k pour que P ait trois racines réelles distinctes.
- 4 Déterminer une condition nécessaire et suffisante sur k pour que P soit scindé sur $\mathbb{R}[X].$

Exercice 7:

Que dire d'un polynôme P tel que l'image par P de tout rationnel soit un rationnel ?