1. Probability path p_t s.t. $p_0 = p$, $p_1 = q$.

2. Find a velocity u_t that generate: $X_t \sim p_t$.

3. Train a model u_t^{θ} .

4. Sample $X_1 \sim p_1$ using the trained model u_t^{θ} .

Discrete Flow Matching Recipe

90

p

*y*₁

t = 0.000

t = 0.000

Discrete Flow Matching Recipe

t = 0.000

- 1. Probability path p_t s.t. $p_0 = p$, $p_1 = q$.
- 2. Find a velocity u_t that generate: $X_t \sim p_t$.
- 3. Train a model u_t^{θ} .
- 4. Sample $X_1 \sim p_1$ using the trained model u_t^{θ} .

Goal

Find kinetic optimal velocities for arbitrary path.