CHAPTER 10 MOLECULAR GEOMETRY AND CHEMICAL BONDING THEORY

Dr. Yuan Dan

10. Molecular Geometry and Chemical Bonding Theory

10. Molecular Geometry and Chemical Bonding Theory

isomers

$$C = C$$
 $C = C$
 $C = C$

$$C = C$$
 $C = C$
 $C = C$
 $C = C$

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

Molecular geometry: the general shape of a molecule, as determined by the relative positions of the atomic nuclei.

valence-shell electron-pair repulsion (VSEPR)
model: predicts the shapes of molecules and ions
by assuming that the valence-shell electron pairs
are arranged about each atom so that electron
pairs are kept as far away from one another as
possible, thus minimizing electron-pair repulsions.

VSEPR model

VSEPR model

VSEPR model

Two Electron Pairs (Linear Arrangement)

Total	Electron Pair Bonding		Arrangement of Pairs		cular netry	E	Example
2	2	0	Linear	Linear AX ₂	——	BeF ₂	F—Be—F

• Three Electron Pairs (Trigonal Planar

Arrangement)

...:F: :F:B:F:

 Three Electron Pairs (Trigonal Planar Arrangement)

arrangement of electron pairs

molecular geometry

 Four Electron Pairs (Tetrahedral Arrangement)

CH₄ NH₃ H₂O Molecular geometry: tetrahedral trigonal pyramidal bent

 Four Electron Pairs (Tetrahedral Arrangement)

- Steps in the Prediction of Geometry by the VSEPR Model
- 1. Write the electron-dot formula from the molecular formula
- Determine the number of electron pairs around the central atom

- Steps in the Prediction of Geometry by the VSEPR Model
- Determine the arrangement of these electron pairs about the central atom
- 4. Obtain the molecular geometry from the directions of the bonding pairs for this arrangement

P379 Example 10.1

Predict the geometry of the following molecules or ions, using the VSEPR method: a. $BeCl_2$; b. NO_2^{-1} ; c. $SiCl_4$.

linear bent tetrahedral

Bond Angles and the Effect of Lone Pairs
 A lone pair tends to require

Bond Angles and the Effect of Lone Pairs
 Multiple bonds require more space than single
 bonds because of the greater number of electrons

 Five Electron Pairs (Trigonal Bipyramidal Arrangement)
 axial directions

Five vertexes

Bond angles not the same

equatorial directions

Six Electron Pairs (Octahedral Arrangement)

Six Electron Pairs (Octahedral Arrangement)

Six Electron Pairs (Octahedral Arrangement)

Square planar AX_4 F XeF_4 F XeF_4 F F F

P383 Example 10.2

What do you expect for the geometry of tellurium tetrachloride, TeCl₄? seesaw

• dipole moment: a quantitative measure of the degree of charge separation in a molecule δ^+ δ^-

H-C1

polar molecules: molecules having a dipole moment

 relate the presence or absence of a dipole moment in a molecule to its molecular geometry

$$\delta^{-} 2\delta^{+} \delta^{-} \longleftrightarrow O = C = O$$

Dipole is a vector quantity. It has both magnitude and direction.

Table 10.1	le 10.1 Relationship Between Molecular Geometry and Dipole Moment				
Formula		Molecular Geometry	Dipole Moment*		
AX		Linear	Can be nonzero		
AX_2		Linear	Zero		
		Bent	Can be nonzero		
AX_3		Trigonal planar	Zero		
		Trigonal pyramidal	Can be nonzero		
		T-shaped	Can be nonzero		
AX_4		Tetrahedral	Zero		
		Square planar	Zero		
		Seesaw	Can be nonzero		
AX_5		Trigonal bipyramidal	Zero		
		Square pyramidal	Can be nonzero		
AX_6		Octahedral	Zero		

^{*}All X atoms are assumed to be identical.

P387 Example 10.3

Each of the following molecules has a nonzero dipole moment. Select the molecular geometry that is consistent with this information. Explain your reasoning.

- a. SO₂ linear, bent
- b. PH₃ trigonal planar, trigonal pyramidal

Effect of Polarity on Molecular Properties

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

Boiling point

60°C

Polarity

polar

non-polar

48 °C

Basic Theory

a bond forms between two atoms when:

(1) Two orbitals overlap;

the greater the overlap, the greater the bond strength

(2) The total number of electrons in both orbitals is no more than two.

Basic Theory

Basic Theory

Orbitals bond in the directions in which they protrude or point, to obtain maximum overlap.

34

Hybrid Orbitals

2s

Energy

C atom (ground state)

C atom (promoted)

 Hybrid Orbitals: orbitals used to describe bonding that are obtained by taking combinations of atomic orbitals of the isolated atoms

• sp³ Hybrid Orbitals

Hybrid Orbitals

• Hybrid Orbitals sp | 一十八个轨道

The number of hybrid orbitals formed always equals the number of atomic orbitals used.

Table 10.2 Kinds of Hybrid Orbitals					
Hybrid Orbitals	Geometric Arrangement	Number of Orbitals	Example		
sp	Linear	2	Be in BeF ₂		
sp^2	Trigonal planar	3	B in BF ₃		
sp^3	Tetrahedral	4	C in CH ₄		

Hybrid Orbitals

Trigonal planar arrangement: sp^2 hybrid orbitals

Tetrahedral arrangement: sp^3 hybrid orbitals

Hybrid Orbitals

Example:

P393 Example 10.4

Describe the bonding in H₂O according to valence bond theory. Assume that the molecular geometry is the same as given by

the VSEPR model.

P393 Example 10.5

Describe the bonding in XeF₄ using hybrid

orbitals.

 One hybrid orbital is needed for each bond (whether a single or a multiple bond) and for each lone pair.

$$2p$$
 \bigcirc \bigcirc

Energy

C atom (hybridized)

has an electron distribution above and below the bond axis

Bonding in ethylene

Bonding in acetylene

C atom

Two π bonds

P397 Example 10.6

Describe the bonding on a given N atom in dinitrogen difluoride, N_2F_2 , using valence bond theory.

sp² hybridization

geometric, or cis-trans, isomers

$$Cl$$
 Cl Cl H $C=C$ H C

cis-1,2-Dichloroethene trans-1,2-Dichloroethene

not easily interconverted

In comparison: one compound

 Molecular orbital theory: a theory of the electronic structure of molecules in terms of molecular orbitals, which may spread over several atoms or the entire molecule

Bonding and Antibonding Orbitals

Bonding and Antibonding Orbitals

好级

• Bond Order: the number of bonds that exist between two atoms

Bond order =
$$\frac{1}{2}(n_b - n_a)$$

For H₂

Bond order =
$$\frac{1}{2}(2 - 0) = 1$$

- Factors That Determine Orbital Interaction
- For the interaction to be strong, the energies of the two orbitals must be approximately equal and the overlap must be large.

Factors That Determine Orbital Interaction

Li atom Li2 molecule Li atom

homonuclear diatomic molecules e.g., H₂, O₂

heteronuclear diatomic molecules e.g., NO, CO

Different ways in which 2p orbitals can interact

overlap along their axes

Different ways in which 2p orbitals can interact

Molecule

Atom

• N₂

Atom

P404 Example 10.7

Give the orbital diagram of the O_2 molecule. Is the molecular substance diamagnetic or paramagnetic? What is the electron configuration? What is the bond order of O_2 ?

$$KK(\sigma_{2s})^2(\sigma_{2s}^*)^2(\pi_{2p})^4(\sigma_{2p})^2(\pi_{2p}^*)^2$$

Bond order =
$$\frac{1}{2}(8 - 4) = 2$$

P405 Example 10.8

Write the orbital diagram for nitrogen monoxide (nitric oxide), NO. What is the bond order of NO?

Bond order =
$$\frac{1}{2}(8 - 3) = \frac{5}{2}$$

TABLE 10.3		Theoretical Bond Orders and Experimental Data for the Second-Period Homonuclear Diatomic Molecules			
Molecule	Bond Order	Bond Length (pm)	Bond Dissociation Energy (kJ/mol)	Magnetic Character	
Li ₂	1	267	110	Diamagnetic	
Be_2	0	*	*	*	
B_2	1	159	290	Paramagnetic	
C_2	2	124	602	Diamagnetic	
N_2	3 V	110	942	Diamagnetic	
O_2	2	121	494	Paramagnetic	
F_2	1	142	155	Diamagnetic	
Ne ₂	0	*	*	*	

The symbol * means that no stable molecule has been observed.

10.7 Molecular Orbitals and Delocalized Bonding

 Molecular orbital theory describes the bonding in terms of a single electron configuration.

10.7 Molecular Orbitals and Delocalized Bonding

 Molecular orbital theory describes the bonding in terms of a single electron configuration.

