数值最优化方法大作业

21231024 曹致瑾

一、实验代码说明

该实验的全部代码由 matlab2016b 编写,对代码文件中各函数与脚本的说明如下表所示:

表一 各函数与脚本的说明

农			
脚本/函数名称	脚本/函数功能		
get_problem.m	脚本,加载所需要求解的问题函数及其初值		
10	函数,利用 wolf 准则进行线搜索,		
wolf.m	返回满足 wolf 准则的线搜索步长		
C 1 1C	函数,利用强 wolf 准则进行线搜索,		
powerful_wolf.m	返回满足强 wolf 准则的线搜索步长		
-11	函数,利用 gll 准则进行线搜索,		
gll.m	返回满足 gll 准则的线搜索步长		
aill maximum commention m	函数,对当前 x 的 hesse 矩阵进行 gill-murry 修正,		
gill_murry_correction.m	返回 gill_murry 修正后的当前点的 hesse 矩阵		
	阻尼 newton 主函数,		
	对其决定求解的参数说明如下:		
	problem 的值为 more-testing 中的问题序号		
	line_search_method 的值赋 1,进行 wolf 线搜索		
	line_search_method 的值赋 2, 进行强 wolf 线搜索		
dominad navytan m	line_search_method 的值赋 3, 进行 gll 线搜索		
damped_newton.m	use_gm_correction 的值为 1,进行 gill-murry 修正		
	use_gm_correction的值为 0,不进行 gill-murry 修正		
	epsilon = 10^(-8)为迭代精度参数		
	flag 为算法终止标志,为 1 则终止迭代跳出循环		
	k 为迭代次数		
	x(:, k)为第 k 次迭代中函数自变量值		
hybrid_newton.m	混合 newton 主函数,参数同上		

二、单调线搜索与非单调线搜索的比较

2.1问题(2)——Freudenstein and Roth function

2.1.1问题描述

(a)
$$n = 2, m = 3$$

(b)
$$f_1(x) = -13 + x_1 + ((5 - x_2)x_2 - 2)x_2$$

 $f_2(x) = -29 + x_1 + ((x_2 + 1)x_2 - 14)x_2$

(c)
$$x_0 = (0.5, -2)$$

(d)
$$f = 0$$
 at (5,4)
 $f = 48.9842$ at (11.41...,-0.8968)

2.1.2实验环境设置

强wolfe搜索准则参数: alpha = 1;%初始步长

index = 0.6; %缩减步长系数

rho = 0.0001; %wolfe算法参数

sigma = 0.9; %wolfe算法参数

gll搜索参数: alpha = 1;%初始步长

index = 0.6; %缩减步长系数

rho = 0.0001; %gll算法参数

终止条件: $|f(k+1)-f(k)| < \varepsilon$, $||g(k)|| < \varepsilon$, $\varepsilon = 10^{-8}$

2.1.3数值结果

线搜索方法	强wolfe	gll(m=5)	gll(m=10)	gll(m=15)
求得x*值	(11.4128,-0.8968)	(11.4128,-0.8968)	(11.4128,-0.8968)	(11.4128,-0.8968)
f(x*)	48.9843	48.9843	48.9843	48.9843
迭代次数	31	31	31	31
函数调用次数	124	269	389	484
程序运行状况说明	收敛到局部极小 值点	收敛点局部极小 值点	收敛到局部极小 值点	收敛点局部极小 值点

2.1.4结果分析

在两种方法都能对问题进行求解的情况下,用强wolfe准则进行线搜索求解问题的迭代次数与函数调用次数小于gll准则。而在都是使用gll准则的情况下,m值越大,求解问题的迭代次数与函数调用次数就越大。

2.2问题(21)——Extended Rosenbrock function

2.2.1问题描述

(a)
$$n$$
 variable but even, $m = n$

(b)
$$f_{2i-1}(x) = 10(x_{2i}-x^2_{2i-1})$$

 $f_{2i}(x) = 1-x_{2i-1}$

(c)
$$x_0 = (\xi_j)$$
 where $\xi_{2j-1} = -1.2, \xi_{2j} = 1$

(d)
$$f = 0$$
 at $(1,...,1)$

2.2.2实验环境设置

强wolfe搜索准则参数: alpha = 3;%初始步长

index = 0.5; %缩减步长系数

rho = 0.0001; %wolfe算法参数

sigma = 0.9; %wolfe算法参数

gll搜索参数: alpha = 3;%初始步长

index = 0.5; %缩减步长系数

rho = 0.0001; %gll算法参数

终止条件: $|f(k+1)-f(k)| < \varepsilon$, $||g(k)|| < \varepsilon$, $\varepsilon = 10^{-8}$

2.2.3数值结果

线搜索方法	强wolfe	gll(m=5)	gll(m=10)	gll(m=15)
求得x*值	/	(1,,1)	(1,,1)	(1,,1)
f(x*)	/	6.5260e-21	3.7421e-20	3.4483e-22
迭代次数	/	71	83	101

函数调用次数	/	650	1145	1847
程序运行状况说明	当迭代至xt点 处,无法找到 满足强wolfe 准则的步长, 求解失败	收敛到全局极小 值点	收敛到全局极小 值点	收敛到全局极小 值点

(注: 此处的xt为 (-1.0990, 1.2458, -1.0990, 1.2458, -1.0990, 1.2458, -1.0990, 1.2458, -1.0990, 1.2458))

2.2.4结果分析

一般而言,gll准则相比强wolfe准则更有可能求解成功,因为强wolfe准则比gll准则条件更严苛,所以强wolfe准则更有可能出现找不到满足条件的线搜索步长的情况,此时迭代便无法进行,造成求解失败。

同时,该算例也可说明2.1中结论,在都是使用gll准则的情况下,m值越大, 求解问题的迭代次数与函数调用次数就越大。

2.3问题(32)——Linear function-full rank

2.3.1问题描述

(a)
$$n$$
 variable, $m \ge n$
(b) $f_i(x) = x_i - \frac{2}{m} \left(\sum_{j=1}^n x_j \right) - 1$, $1 \le i \le n$
 $f_i(x) = -\frac{2}{m} \left(\sum_{j=1}^n x_j \right) - 1$, $n \le i \le m$
(c) $x_0 = (1,...,1)$
(d) $f = m - n$ at $(-1,...,-1)$

2.3.2实验环境设置

强wolfe搜索准则参数: alpha = 1;%初始步长

index = 0.6; %缩减步长系数

rho = 0.0001; %wolfe算法参数

sigma = 0.9; %wolfe算法参数

gll搜索参数: alpha = 1;%初始步长

index = 0.6; %缩减步长系数 rho = 0.0001; %gll算法参数

终止条件: $|f(k+1)-f(k)|<\varepsilon$, $||g(k)||<\varepsilon$, $\varepsilon=10^{-8}$

2.3.3数值结果

(1) n = 3, m = 4时数值结果

线搜索方法	强wolfe	gll(m=5)	gll(m=10)	gll(m=15)
求得x*值	(-1,-1,-1)	(-1,-1,-1)	(-1,-1,-1)	(-1,-1,-1)
f(x*)	1	1	1	1
迭代次数	24	24	24	24
函数调用次数	96	206	291	351
程序运行状况说明	收敛到全局极 小值点	收敛到全局极小 值点	收敛到全局极小 值点	收敛到全局极小 值点

(2) n = 6, m = 12时数值结果

线搜索方法	强wolfe	gll(m=5)	gll(m=10)	gll(m=15)
求得x*值	(-1,1)	(-1,1)	(-1,1)	(-1,1)
f(x*)	6	6	6	6
迭代次数	24	24	24	24
函数调用次数	96	206	191	351
程序运行状况说明	收敛到全局极 小值点	收敛到全局极小 值点	收敛到全局极小 值点	收敛到全局极小 值点

(3) n=10, m=10时数值结果

线搜索方法	强wolfe	gll(m=5)	gll(m=10)	gll(m=15)
求得x*值	(-1,1)	(-1,1)	(-1,1)	(-1,1)
f(x*)	3.1691e-18	3.1691e-18	3.1691e-18	3.1691e-18

迭代次数	24	24	24	24
函数调用次数	96	206	191	351
程序运行状况说明	收敛到全局极 小值点	收敛到全局极小 值点	收敛到全局极小 值点	收敛到全局极小 值点

(4) n = 10, m = 15时数值结果

线搜索方法	强wolfe	gll(m=5)	gll(m=10)	gll(m=15)
求得x*值	(-1,1)	(-1,1)	(-1,1)	(-1,1)
f(x*)	5	5	5	5
迭代次数	24	24	24	24
函数调用次数	96	206	191	351
程序运行状况说明	收敛到全局极 小值点	收敛到全局极小 值点	收敛到全局极小 值点	收敛到全局极小 值点

(5) n = 20, m = 26时数值结果

线搜索方法	强wolfe	gll(m=5)	gll(m=10)	gll(m=15)
求得x*值	(-1,1)	(-1,1)	(-1,1)	(-1,1)
f(x*)	6	6	6	6
迭代次数	25	25	25	25
函数调用次数	100	215	305	370
程序运行状况说明	收敛到全局极 小值点	收敛到全局极小 值点	收敛到全局极小 值点	收敛到全局极小 值点

2.3.4结果分析

这组函数的实验结果令人惊讶,对于选定的m、n,迭代的收敛点列在强wolfe、gll (m=5, m=10, m=15)的情况下实际上是完全相同的,而迭代次数因为gll需要计算先前点的函数值有不同。对于这个结果,我推测应该是这组函数的性质比

较好,以至于每个点都恰好在第一个步长下就满足了线搜索指标(在强wolfe、 $gll\ (m=5,\ m=10,\ m=15)$ 下都是这样),因此最终收敛到终止点的点列完全相同。

三、两种 Newton 型方法有效性的比较

- 3.1问题(4)——Brown badly scaled function
- 3.1.1问题描述

(a)
$$n = 2, m = 3$$

(b)
$$f_1(x) = x_1 - 10^6$$

 $f_2(x) = x_2 - 2 \cdot 10^{-6}$
 $f_3(x) = x_1x_2 - 2$

(c)
$$x_0 = (1,1)$$

(d)
$$f = 0$$
 at $(10^6, 2 \cdot 10^{-6})$

3.1.2实验环境设置

强wolfe搜索准则参数: alpha = 1;%初始步长

index = 0.6; %缩减步长系数

rho = 0.0001; %wolfe算法参数

sigma = 0.9; %wolfe算法参数

Gill-murry修正参数: u = 1e-16%机器精度

终止条件: $|f(k+1)-f(k)| < \varepsilon$, $||g(k)|| < \varepsilon$, $\varepsilon = 10^{-8}$

3.1.3数值结果

线搜索方法	阻尼Newton法	Gill-murry修正Newton法
求得x*值	/	1.0e+06 * (1.0000, 0.0000)
f(x*)	/	2.5714e-30
迭代次数	/	48
函数调用次数	/	334
程序运行状况说明	当迭代至xt点处,无法找到满足 强wolfe准则的步长,求解失败	收敛到全局极小值点

(注: 此处的xt为1.0e+05*(3.0000, 0.0000))

3.1.4结果分析

对阻尼Newton法的点xt进行分析,此处g'*d的值为8.2001e+11,显然,该方向不为下降方向,因此在这一方向上难以找到满足强wolfe准则的alpha。而Gill-murry修正牛顿法对不正定的矩阵进行了修正,使得求得的迭代方向d更可能为下降方向,解决了这一问题。

3.2问题(5)——Beale function

3.2.1问题描述

(a)
$$n=2$$
, $m=3$
(b) $f_i(x) = y_i - x_1(1-x_1^i)$,
where $y_1 = 1.5$, $y_2 = 2.25$, $y_3 = 2.625$
(c) $x_0 = (1,1)$
(d) $f = 0$ at $(3, 0.5)$

3.2.2实验环境设置

强wolfe搜索准则参数: alpha = 1;%初始步长

index = 0.6; %缩减步长系数

rho = 0.0001; %wolfe算法参数

sigma = 0.9; %wolfe算法参数

Gill-murry修正参数: u = 1e-16%机器精度

终止条件: $|f(k+1)-f(k)| < \varepsilon$, $||g(k)|| < \varepsilon$, $\varepsilon = 10^{-8}$

3.2.3数值结果

线搜索方法	阻尼Newton法	Gill-murry修正Newton法
求得x*值	(0.0000, 1.0000)	(3.0000, 0.5000)
f(x*)	14.2031	1.8588e-18
迭代次数	25	23
函数调用次数	100	232

收敛点处hesse矩阵为

程序运行状况说明

 $\begin{bmatrix} 0 & 27.75 \\ 27.75 & 0 \end{bmatrix}$

收敛到全局极小值点

矩阵特征值有正有负,说明收敛到鞍点,此时函数值为14.2031

3.2.4结果分析

阻尼Newton法无法保证hesse矩阵的正定性,可能会造成结果收敛到鞍点的情况,而Gill-murry修正牛顿法对不正定的矩阵进行了修正,使得函数更有可能收敛到全局最小值。

3.3问题(26)——Trigonometric function

3.3.1问题描述

(a) n variable, $m \ge n$

(b)
$$f_i(x) = n - \sum_{j=1}^n \cos x_j + i(1 - \cos x_i) - \sin x_i$$

(c)
$$x_0 = (1/n,...,1/n)$$

$$(d) f = 0$$

3.3.2实验环境设置

强wolfe搜索准则参数: alpha = 1;%初始步长

index = 0.6; %缩减步长系数

rho = 0.0001; %wolfe算法参数

sigma = 0.9; %wolfe算法参数

gll搜索参数: alpha = 1;%初始步长

index = 0.5; %缩减步长系数

rho = 0.0001; %gll算法参数

Gill-murry修正参数: u = 1e-16%机器精度

终止条件: $|f(k+1)-f(k)| < \varepsilon$, $||g(k)|| < \varepsilon$, $\varepsilon = 10^{-8}$

3.3.3数值结果

(1) n = 2, m = 2时数值结果

线搜索方法	阻尼Newton法	Gill-murry修正Newton法
求得x*值	/	(0.2431, 0.6127)
f(x*)	/	2.0316e-17
迭代次数	/	19
函数调用次数	/	214
程序运行状况说明	当迭代至xt点处,无法找到满足 强wolfe准则的步长,求解失败	收敛到全局极小值点

(注:此处的xt为(0.5788,0.5095),此时g'*d=0.0043>0,说明迭代方向不是下降方向)

(2) n = 3, m = 3时数值结果

由于强wolfe搜索易出现失败,这里换成m=5的gll搜索进行对比

线搜索方法	阻尼Newton法	Gill-murry修正Newton法
求得x*值	/	(0.1387, 0.1524, 0.4678)
f(x*)	/	1.1537e-17
迭代次数	/	25
函数调用次数	/	266
程序运行状况说明	当迭代至xt点处,无法找到满足 强wolfe准则的步长,求解失败	收敛到全局极小值点

(注:此处的xt为(0.3333,0.3333),此时g'*d=0.1433>0,说明迭代方向不是下降方向)

(3) n = 4, m = 4时数值结果

由于强wolfe搜索易出现失败,这里换成m=5的gll搜索进行对比

线搜索方法	阻尼Newton法	Gill-murry修正Newton法
求得x*值	(0.1455, 0.1602,	(0.0892, 0.0941,

	0.4250, 0.2168)	0.1003, 0.3809)
f(x*)	3.0282e-04	1.6659e-17
迭代次数	29	26
函数调用次数	252	275
程序运行状况说明	收敛点处hesse矩阵为 1.1229	收敛到全局极小值点

(4) n=8, m=8时数值结果

由于强wolfe搜索易出现失败,这里换成m=5的gll搜索进行对比

线搜索方法	阻尼Newton法	Gill-murry修正Newton法
求得x*值	/	/
f(x*)	/	/
迭代次数	/	/
函数调用次数	/	/
程序运行状况说明	当迭代至xt1点处,无法找到满足 强wolfe准则的步长,求解失败	当迭代至xt2点处,无法找到满足强wolfe准则的步长,求解失败

(注:此处的xt1为(0.125,…,0.125),此时g'*d=0.0729>0,说明迭代方向不是下降方向,此处的xt2为(0.1104,0.1026,0.0723,0.1194,0.1085,0.1308,0.1269,0.1258)此时 g'*d=-1.4450e+13>0,迭代方向是下降方向,但由于线搜索的限制仍没找到满足的步长)

(5) n = 10, m = 10时数值结果

线搜索方法	阻尼Newton法	Gill-murry修正Newton法
求得x*值	/	/
f(x*)	/	/

迭代次数	/	/
函数调用次数	/	/
程序运行状况说明	当迭代至xt1点处,无法找到满足 强wolfe准则的步长,求解失败	当迭代至xt2点处,无法找到满足强wolfe准则的步长,求解失败

(注:此处的xt1为(0.0749,0.0779,0.0816,0.2535,0.0919,0.0996,0.1079,0.1102,0.1050,0.0990),此时g'*d=1.4314e-05>0,说明迭代方向不是下降方向,此处的xt2为(0.1,…,0.1),此时g'*d=2.3438e+13>0,说明迭代方向不是下降方向)

3.3.4结果分析

该实验中的前三组同样可以说明实验 3.1 中结论。同时,后两组实验可说明,即使使用了 Gill-murry 修正,在未结合负曲率算法等的情况下,仍然无法保证由 newton 方法求得的方向 d 一定为下降方向。并且,该算法在遇到接近奇异点时由于求逆可能出现误差,也会对求得的方向 d 造成影响