计算机组成原理 (第五讲-2)

厦门大学信息学院软件工程系 曾文华 2021年4月16日

第5章 输入输出系统

- 5.1 概述
- 5.2 外部设备
- 5.3 I/O接口
- 5.4 程序查询方式
- 5.5 程序中断方式
- 5.6 DMA方式

5.6 DMA 方式

- 一、DMA方式的特点
- 二、DMA接口的功能和组成
- 三、DMA 的工作过程
- 四、DMA接口的类型

Direct Memory Access 直接存储器访问

一、DMA方式的特点

1. DMA 和程序中断两种方式的数据通路

DMA方式 时 I/O 设 备与主存 直接传输, 不需要经 过 CPU, 而是由 DMA接口 **(DMA**控 制器 —— DMAC) 管理

2. DMA 与主存交换数据的三种方式

(1) 停止 CPU 访问主存

控制简单

CPU 处于不工作状态或保持状态 未充分发挥 CPU 对主存的利用率

(2) 周期挪用(或周期窃取)

DMA 访问主存有三种可能

- CPU 此时不访存
- CPU 正在访存:要等待存取周期结束,CPU让出总线占有权
- CPU 与 DMA 同时请求访存: DMA优先于CPU

此时 CPU 将总线控制权让给 DMA

(3) DMA 与 CPU 交替访问

不需要 申请建立和归还 总线的使用权

- 二、DMA接口的功能和组成
 - 1. DMA接口功能(DMA控制器——DMAC)
 - (1) 向 CPU 申请 DMA 传送
 - (2) 处理总线 控制权的转交
 - (3) 管理系统总线、控制数据传送
 - (4) 确定 数据传送的 首地址和长度 修正 传送过程中的数据 地址 和 长度
 - (5) DMA 传送结束时,给出操作完成信号

AR: 主存地址寄存器

HRQ: Hold ReQuest

HLDA: HoLD Acknowledge

DACK: DMA ACKnowledge

三、DMA 的工作过程

1. DMA 传送过程

预处理、数据传送、后处理

(1) 预处理

通过几条输入输出指令预置如下信息:

• 通知 DMA 控制逻辑传送方向(入/出)

DAR: Device Address Register

- 设备地址 → DMA 的 DAR (I/O地址)
- 主存地址 → DMA 的 AR

传送字数 —→ DMA 的 WC

DAR: 外部设备地址寄存器

AR: 主存地址寄存器

WC: 字计数器

(2) DMA 传送过程示意

CPU 预处理:主存起始地址 → **DMA**设备地址 → **DMA**传送数据个数 → **DMA**启动设备

数据传送:

继续执行主程序 同时完成一批数据传送

后处理:

中断服务程序 做 DMA 结束处理

继续执行主程序

DMA方 式是以 数据块 为单位 传送的, 以周期 挪用 (周期 窃取) 换数据

(3) 数据传送过程(输入)

(3) 数据传送过程(输入)

外设的数据送数据缓 冲寄存器BR中(输入)

(4) 数据传送过程(输出)

当数据缓冲寄存器 (4) 数据传送过程(输出) BR为空 地址线⑤ 中断请求 **HRQ HLDA** 4 3 +1 **DMA** 溢出信号 中 控 主 断 制 +1 **CPU** 机 逻 构 辑 存 **DAR** DMA接口; 6 2 **DREQ** 设备 **DACK**

(5) 后处理

- 校验送入主存的数是否正确
- 是否继续用 DMA
- 测试传送过程是否正确,如有错则转诊断程序

后处理操作由中断服务程序完成

DMA 与主存交换数据的三种方式:

- (1) 停止 CPU 访问主存
- (2) 周期挪用(或周期窃取)
- (3) DMA 与 CPU 交替访问

器多少时间?

解:传输率为9600bps,则每秒传输9600bps/8bit=1200个 字符(字节)

采用DMA方式需要1200个存取周期,考虑到400个字符(字节)
 需中断处理(后处理)一次,DMA方式占用时间:

存取周期为100ns

 $100 \text{ns} \times 1200 + 5 \mu \text{s} \times (1200/400) = 135 \mu \text{s}$

(DMA方式:需要3批次,每批次传输400个字节)

若采用中断方式的占用时间: 1200X5μs=6000μs

每处理一次中断需**5**µs

■ 6000/135=44.44倍(DMA方式的效率是中断方式的44.44倍)

 例5.4:假设磁盘采用DMA方式与主机交换信息,其 传输速率为2MBps,而且DMA的预处理需1000个时 钟周期,DMA完成传送后处理中断需500个时钟周期。 如果平均传输的数据长度为4KB,试问在磁盘工作时, 50MHz的处理器需用多少时间比率进行DMA辅助操 作(预处理和后处理)

- 解:传输速率为2MBps,平均传输的数据长度为4KB,则每秒要执行500次DMA操作(2MBps/4KB=500次)
- DMA的预处理需1000个时钟周期,DMA完成传送后处理中断需500个时钟周期,则每秒所需的DMA辅助操作为:500次DMA操作X(1000时钟周期+500时钟周期)=750000时钟周期
- 主频为50MHz,则时钟周期为50X1000000
- DMA辅助操作占用的时间比率为: 750000/(50X1000000)=1.5%

查询方式(例5.1)的时间比率是105%

2. DMA 接口与系统的连接方式

(1) 具有公共请求线的 DMA 请求

有点像第3章的"总线判优控制 -> 集中式 -> 链式查询方式"

(2) 独立的 DMA 请求

有点像第3章的"总线判优控制 -> 集中式 -> 独立请求方式"

3. DMA 方式与程序中断方式的比较

四、DMA接口的类型

2. 多路型 在物理上连接多个设备 在逻辑上 允许连接 多个 设备同时工作 (1) 链式多路型 设备 设备 设备 **DMA CPU** 主存 接口 DMAC (2) 独立请求多路型 设备 设备 设备 **DMA CPU** 主存 接口 DMAC

附录5A: ASCII码

- American Standard Code for Information Interchange: 美国信息交换标准代码
- 7位、128个字符(表5-2)
 - 32个通用控制字符
 - 10个数字(0-9,对应的ASCII码为30H-39H)
 - 52个英文大小写字母(A-Z,对应的ASCII码为41H-5AH, a-z对应的ASCII码为61H-7AH)
 - 34个专用符号

表 5.2 ASCII 码 $b_7b_6b_5b_4b_3b_2b_1$

		4X -	Abçıı	15 07 06 05 17	1030201			
$b_7b_6b_5$ $b_4b_3b_2b_1$	000	001	610	011	100	101	110	111
0000	NUL	DLE	SP	0	@	Р		Р
0 0 0 1	SOH	pcı	į	1	A	Q	ä	9
0010	STX	DC2	"	2	В	R	ь	r
0011	ETX	DC3	#	3	С	\mathbf{s}	e	s
0100	EOT	DC4	\$	4	D	T '	d	t
0 1 0 1	ENQ	N'AK	%	5	E	П	e	u
0110	ACK	SYN	&	6	F	v	f	v
0 1 1 1	BEL	ЕТВ	,	7	G	w	g	w
1000	BS	CAN	(8	H	X	h	x
1001	HT	EM).	9	ı	Y	i	у
1010	LF	SUB	*	:	1	z	j	2.
1011	VT	ESC	+	;	K	Ľ	k	{
1 0 0	FF	FS	,	<	L	/	1	I
1101	CR	GS	_	<u>'</u> =	M	່	m	
1110	so	RS		>	N	↑	n	~
1 1 1 1	SI	vs	/	?	0		0	DEL
注:								
NUL 空行		VT	纵口	可制表		SYN	同步空转	

迕:					
NUL	空行	VT	纵向制表	SYN	同步空转
SOH	标题开始	тF	改换格式	ETB	信息组传送结束
STX	文件开始	$\mathbf{c}\mathbf{r}$	回车	CAN	作废
ETX	文件结束	so	移出	EM	记录媒体结束
EOT	传送结束	SI	移入	SUB	代替
ENQ	询问	DEL	删除	ĘSC	脱窩
ACK	回答	DC1	设备控制!	FS -	字段分隔
BEL.	报警	DC2	设备控制 2	GS	字组分隔
LF	换行	NAK	否定回答		

ASCII码扩展字符

ASO	CII码	\	ASO	CII码		ASO	CII码		ASO	CII码	
十进制		字符	十进制		字符	十进制		字符	十进制		字符
128	80	ς	160	A0	á	192	C0	L	224	E0	α
129	81	ü	161	A1	í	193	C1	T	225	E1	ß
130	82	é	162	A2	ó	194	C2	T	226	E2	Y
131	83	â	163	A3	ú	195	C3	Ħ	227	E3	π
132	84	ä	164	A4	ñ	196	C4	<u> </u>	228	E4	Σ
133	85	à	165	A5	Ñ	197	C5	+	229	E5	σ
134	86	å	166	Аб	a	198	C6	F	230	E6	μ
135	87	Ç	167	A7	0	199	C7		231	E7	T
136	88	ê	168	A8	خ	200	C8	L	232	E8	ф
137	89	ë	169	A9	г	201	C9	F	233	E9	Θ
138	8A	è	170	AA	7	202	CA	<u>i</u>	234	EΑ	Ω
139	8B	ï	171	AB	1/2	203	CB	T	235	EB	δ
140	8C	î	172	AC	1/4	204	CC	⊩	236	EC	œ
141	8D	ì	173	AD	i	205	CD	=	237	ED	ф
142	8E	Ä	174	AE	«	206	CE	#	238	EE	€
143	8F	Å	175	AF	>>	207	CF		239	EF	Ω
144	90	É	176	B0		208	D0	Ш	240	F0	≡
145	91	æ	177	B1	難	209	D1	₹	241	F1	<u>±</u>
146	92	Æ	178	B2		210	D2	Т	242	F2	≥ .
147	93	ô	179	В3		211	D3		243	F3	≤
148	94	ö	180	B4	\mathbb{H}	212	D4	F	244	F4	ſ
149	95	ò	181	B5	4	213	D5	F	245	F5	J
150	96	û	182	Вб	\mathbb{H}	214	D6	Г	246	F6	÷
151	97	ù	183	B7	П	215	D7	#	247	F7	×
152	98	ÿ	184	B8	٦	216	D8	+	248	F8	۰
153	99	Ö	185	B9	4	217	D9	Т	249	F9	•
154	9A	Ü	186	BA		218	DA		250	FA	•
155	9B		187	BB	٦	219	DB		251	FB	\checkmark
156	9C	£	188	BC	1	220	DC		252	FC	n
157	9D	¥	189	BD	Ш	221	DD		253	FD	2
158	9E	Pts	190	BE]	222	DE		254	FE	
159	9F	f	191	BF	7	223	DF	, C	255	FF	

附录5B: BCD 码

- Binary Coded Decimal: 二-十进制编码
- 也称:8421码
- 0000 (0) \ 0001 (1) \ 0010 (2) \ 0011 (3) \ 0100 (4) \ 0101 (5) \ 0110 (6) \ 0111 (7) \ 1000 (8) \ 1001 (9)
- 十进制=25
- 二进制= 0010 0101 十进制 = 37 BCD = 0011 0111
- BCD=0100 1001

十进制 = 49

BCD = 0010 0101 二进制 = 0001 1001

二进制= 0011 0001

表 5.3 8421 码与十进制数对照表

十进制数	8421 码	8421 奇校验码	8421 偶校验码
0	0 0 0	. 10000	00000
1	0001	00001	1 0 0 0 1
2	0 0 1 0	0 1 0 0 0	10010
3	0011	10011	00011
4	0 1 0 0	00100	10100
5	0101	10101	00101
6	0110	10110	0 0 1 1 0
7	0111	00111	1 0 1 1 1
8	1000	01000	1 1000
9	1 0 0 1	11001	01001

附录5C: 奇偶校验码

- 奇校验: ASCII(7位)+校验位(1位)
 - 39H: 0111001 -> 1 0111001
 - 43H: 1000011 -> 0 1000011

- 偶校验: ASCII(7位)+校验位(1位)
 - 39H: 0111001 -> 0 0111001
 - 43H: 1000011 -> 1 1000011

- I/O系统(输入输出系统)=I/O接口+I/O设备(输入输出设备)
- I/O 设备编址方式:
 - (1) 统一编址
 - (2) 不统一编址
- I/O设备与主机之间的联络方式:

教材P160-161

- (1) 立即响应方式
- (2) 异步工作采用应答信号联络(异步并行,异步串行)
- (3) 同步工作采用同步时标联络
- I/O设备与主机信息传送的控制方式(常用的是前3种):
 - 1.程序查询方式
 - 2.程序中断方式

- 4.I/O通道方式
- 5.I/O处理机方式

■ 3. DMA 方式

教材P161-165

■ I/O接口的功能和组成

I/O接口的功能

选址功能 传送命令的功能 传送数据的功能 反映设备状态的功能

I/O 接口的基本组成

4

本章小结

■ I/O接口的类型

1. 按数据 传送方式 分类

并行接口 Intel 8255

串行接口 Intel 8251、8250

2. 按功能 选择的灵活性 分类

可编程接口 Intel 8255、Intel 8251

不可编程接口 Intel 8212 ←

通用并行接口 数据输入锁存器

3. 按 通用性 分类

专用接口

通用接口 Intel 8255、Intel 8251

Intel 8279 \ Intel 8275

可编程 CRT控制

4. 按数据传送的 控制方式 分类

中断接口 Intel 8259

DMA接口 Intel 8257、8237

■ 程序查询方式的接口电路

■ 程序中断方式

■ INTR: 中断请求信号(I/O送给CPU的)

■ INTP: 中断优先级信号(排队器的输出)

■ INTA: 中断响应信号(CPU送给I/O的)

■ EINT: 中断允许信号(由中断指令控制,开中断指令EI使EINT=1,关)中断指令DI使EINT=0)

■ MASK: 中断屏蔽信号(MASK=0,表示没有屏蔽; MASK=1,表示有屏蔽)

- 向量地址(中断向量地址,中断向量)
- 入口地址(中断服务程序入口地址,中断服务程序首地址)

D: 完成触发器

B: 工作触发器

■ 程序中断方式接口电路的基本组成

■ 中断处理过程

- 1. 中断请求: INTR=1
- 2. 中断判优:排队器的INTP=1
- 3. 中断响应: CPU允许中断,则INTA=1, 产生中断向量地址,形成中断服务地址
- 4. 中断服务: 如完成数据的输入
- 5. 中断返回:通过**IRET**指令,返回到原程序的断点处

中断处理过程细分的化为10步 (书上P198-199)

自下而上由4部分构成: 图5.35、图5.37、图5.38、图5.39

- CPU响应中断的条件和时间:
 - 条件: CPU中的EINT(中断允许触发器)为"1"。注: EINT可以通过 开中断指令(STI)置"1",关中断指令(CLI)置"0"。
 - 时间:在每条指令执行阶段的结束时刻,CPU向I/O接口发中断查询信号,以获取I/O的中断请求(INTR)。

■ 中断服务程序的流程

(1) 保护现场

全程序断点的保护 中断隐指令完成

\ 寄存器内容的保护 进栈指令PUSH

(2) 中断服务 对不同的 I/O 设备具有不同内容的设备服务

(3) 恢复现场 出栈指令POP

(4) 中断返回 中断返回指令IRET

■ 单重中断、多重中断 (中断嵌套)

- DMA 与主存交换数据的三种方式
 - (1) 停止 CPU 访问主存
 - (2) 周期挪用(或周期窃取)
 - (3) DMA 与 CPU 交替访问
- DMA 接口的功能
 - (1) 向 CPU 申请 DMA 传送
 - (2) 处理总线 控制权的转交
 - (3) 管理 系统总线、控制 数据传送
 - (4) 确定 数据传送的 首地址和长度 修正 传送过程中的数据 地址 和 长度
 - (5) DMA 传送结束时,给出操作完成信号

■ DMA 接口的组成

DREQ: 外设向DMAC发出的DMA请求信号
 HRQ: DMAC向CPU发出的总线请求信号

HLDA: CPU向DMAC发出的总线响应信号

DACK: DMAC向外设发出的DMA应答信号

■ DMA 传送过程: 预处理、数据传送、后处理

(1) 预处理

通过几条输入输出指令预置如下信息

- 通知 DMA 控制逻辑传送方向(入/出)
- •设备地址 → DMA 的 DAR (I/O地址)
- · 主存地址 → DMA 的 AR
- ·传送字数 → DMA 的 WC

(3) 后处理

校验送入主存的数是否正确

是否继续用 DMA

测试传送过程是否正确, 如有错则转诊断程序

由中断服务程序完成

DMA数据传送细分的化为10步 (书上P207-208)

- DMA 接口与系统的连接方式:
 - (1) 具有公共请求线的 DMA 请求
 - (2) 独立的 DMA 请求

- DMA 接口的类型:
 - 1. 选择型
 - 2. 多路型
 - (1) 链式多路型
 - (2)独立请求多路型

2. 多路型

■ DMA方式与中断方式的比较:

■ 查询方式、中断方式、DMA方式的CPU工作效率比较:

第9次作业——习题(P210-212)

- **5.27**
- **5.28**
- **5.31**
- **5.33**

关于作业的提交

- **1**周内必须提交(上传到学院的FTP服务器上),否则认为是迟交作业;如果期末仍然没有提交,则认为是未提交作业
 - 作业完成情况成绩=第1次作业提交情况*第1次作业评分+第2次作业提交情况*第2次作业评分+……+第N次作业提交情况*第N次作业评分
 - 作业评分: A(好)、B(中)、C(差)三挡
 - 作业提交情况:按时提交(1.0)、迟交(0.5)、未提交(0.0)
- 请采用电子版的格式(Word文档)上传到FTP服务器上,文件 名取"学号+姓名+第X次作业.doc"
 - 例如: 11920192203642+袁佳哲+第8次作业.doc
- 第9次作业提交的截止日期为:2021年4月23日晚上24点

Thanks