

MA212 : ANALYSE - INTÉGRALES MULTIPLES DEVOIR MAISON N° 2

A.U.: 2020-2021 **Prof.** H. El-Otmany

Règlement : Devoir à rendre le lundi 14 juin 2021.

Exercice n°1 Étudier et tarcer la courbe polaire définie par $\rho(\theta) = 1 - 2\cos\theta$.

Exercice n°2 Pour les 1-formes différentielles suivantes, trouver le domaine de définiton, déterminer si elles sont fermées ? exactes ? si oui, préciser leur primitive.

$$\omega_1 = \frac{ydx + xdy}{1 + x^2y^2}, \quad \omega_2 = (x^2 + y^2)dx + 2xydy, \quad \omega_2 = yz^2dx + (xz^2 + z)dy + (2xyz + 2z + y)dz.$$

Exercice n°3 On considère la forme différentielle ω sur \mathbb{R}^3 définie par : $\omega(x, y, z) = z dx - y dy + x dz$.

- 1. Calculer l'intégrale curviligne de ω le long de l'arc d'hélice $\gamma(t) = (\cos t, \sin t, t)$ avec $t \in [0, 2\pi]$.
- 2. Montrer que la forme ω est fermée.
- 3. Montrer que la forme ω est exacte et déterminer une primitive.
- 4. Calculer l'intégrale curviligne de ω le long du circuit formé par l'hélice allant de A(1,0,0) vers $B(1,0,2\pi)$.

Exercice n°4 Soit *D* le disque d'équation cartésienne $x^2 + y^2 \le 1$. En utilisant le théorème de Green-Riemann, calculer les intégrales doubles suivants :

$$\int \int_D xy^2 dx dy, \qquad \int \int_D x^2 y^2 dx dy$$

Exercice n°5

- 1. Calculer l'aire du tronc de cône C d'équation $x^2 + y^2 = z^2$ délimité par les valeurs $0 \le z \le 3$.
- 2. En utilisant la formule de Gauss-Ostrogradski, calculer le volume du solide délimité par le tronc de cône C et par le disque d'équation $x^2 + y^2 = 9$ à hauteur z = 3.
- 3. À l'aide du Théorème de Stokes, calculer le flux du champs vectoriel $V(x,y,z)=(xz,yz,-z^2)$ sortant à travers la portion de paraboloide Γ d'équation cartésienne $x^2+y^2=z^2$, $0 \le z \le 1$.