Sistemas de numeração posicionais e conversão de bases

Yuri Kaszubowski Lopes Éverlin Fighera Costa Marques	
UDESC	
YKL e EFCM (UDESC) Sistemas de numeração	1/11
Bases ■ Estamos acostumados a trabalhar com a base 10 ► Algarismos válidos são 0, 1, 2,, 9	Anotações
 O conjunto de algarismos válidos é dado de acordo com a base que estamos trabalhando Base 2: 0, 1 	
► Base 8: 0, 1, 2,, 7 ► Base 16: 0, 1, 2,, 9, A, B,, F ► Base 5: 0, 1, 2, 3, 4	
Dase 3. 0, 1, 2, 3, 4	
YKL e EFCM (UDESC) Sistemas de numeração	2/11

Anotações

Bases

- $\bullet\,$ De maneira geral, dada uma base β qualquer, quais são os algarismos válidos para essa base?
 - ▶ 0, 1, ..., *β* − 1
- Precisamos saber a base que estamos trabalhando para obter o valor de um número
- As bases serão representadas como subscritos nos números.

 - ► 11₂ == 3₁₀ ► 11₁₀ == B₁₆
- Caso a base seja omitida, assumiremos a base 10
- Em linguagens de programação:
 - ▶ 0b1001: Base 2 ou binária

 - 047: Base 8 ou octal
 12: Base 10 ou decimal
 - ▶ 0x12: Base 16 ou hexadecimal

Anotações			

Algarismos mais e menos significativos

- Qual o algarismo que tem o "maior impacto" no número 291?
 - O número mais a esquerda é o mais significativo
 O número mais a direita é o menos significativo

 - O dígito menos significativo está na posição 0, o valor a sua esquerda na posição 1, o próximo na posição 2, . . . ► Notação posicional

Anotações

Forma polinomial

- Dados os números e suas bases, podemos então os escrever em suas formas polinomiais
- $291_{10} = 2 \times 10^2 + 9 \times 10^1 + 1 \times 10^0$
- Mostre a forma polinomial de 1330₁₀
- $\bullet \ 1330_{10} = 1 \times 10^3 + 3 \times 10^2 + 3 \times 10^1 + 0 \times 10^0$
- $\bullet\,$ De maneira geral, um número inteiro em uma base $\beta,$ representado por $a_{j}a_{j-1} \dots a_{2}a_{1}a_{0}$, onde $0 \le a_{k} \le (\beta - 1)$ para $k = 0, \dots, j$
- Pode ser escrito na forma polinomial: $a_j \times \beta^j + a_{j-1} \times \beta^{j-1} + a_2 \times \beta^2 + a_1 \times \beta^1 + a_0 \times \beta^0$
- \bullet Através da forma polinomial podemos transformar de uma base β qualquer para decimal.
- $\bullet \ 10110_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$
- $10110_2 = 1 \times 16 + 0 \times 8 + 1 \times 4 + 1 \times 2 + +0 \times 1$
- $10110_2 = 16 + 0 + 4 + 2 + 0 = 22_{10}$

Anotações

Forma polinomial

- E como fica para 243,51₁₀?
- \bullet 243,51₁₀ = 2 × 10² + 4 × 10¹ + 3 × 10⁰ + 5 × 10⁻¹ + 1 × 10⁻²

Anotações		
-		

Exercício

- Converta os seguintes números para a base decimal. Faça os exercícios "passo a passo", mostrando seus polinômios e resultado final.

 - 1₂
 1000₂
 1101101₂
 10₈
 736₈
 11,01₂
 5,47₈

VV	١.	EFCM	-/HE	Eer

Anotações

Decimal para outras bases

- \bullet Para a conversão de decimal para uma base β qualquer, realizamos sucessivas divisões inteiras por β
- ullet Tomamos o resto das divisões como o algarismo na base eta, onde o resto da última divisão é o algarismo mais significativo
- Exemplo de conversão do número 23₁₀ para binário (base 2).

Anotações		

Exercício

- Converta os seguintes números da base decimal para as bases 2 (binária) e 8 (octal)
 - 251₁₀
 128₁₀
 143₁₀
 73₁₀
- Converta para base decimal

 - 0, 101₂
 111,001₂
 1001,010101₂
 74,754₈
- Escreva um programa em uma linguagem de sua preferência para converter valores inteiros da base 10 para uma base especificada pelo usuário.

notações			

Referências

- TOCCI, R.J.; WIDMER, N.S. Sistemas digitais: princípios e aplicações. 11a ed, Prentice-Hall, 2011.
- RUGGIERO, M.; LOPES, V. da R. Cálculo numérico: aspectos teóricos e computacionais. Makron Books do Brasil, 1996.
- NULL, L.; LOBUR, J. Princípios Básicos de Arquitetura e Organização de Computadores. 2014. Bookman, 2009. ISBN 9788577807666.

Anotações			
	Anotações		
Anotações	3		
Anotações			
	Anotações		

Anotações