Classifying Buenos Aires Neighborhoods by Quality of Life

A Data Science project using clustering, PCA, and geospatial data

AUTHOR: IVAN OSIPOVPERSONAL DATA SCIENCE PORTFOLIO

LOCATION: BUENOS AIRES, ARGENTINA

21.04.2025

Introduction: Why Classify Neighborhoods?

- Buenos Aires is a diverse city with contrasting neighborhoods.
- Urban planning, resource allocation, and social programs benefit from zone-based analysis.
- Goal: Group neighborhoods into meaningful zones using open data and machine learning.

Data & Features: What Data Did We Use?

Data sources:

- BA Open Data Portal
- ► INDEC Population Census
- Slum and crime datasets

Features:

- Slum density, crime per 1000, green area %, hospitals per 1000, noise levels, schools per 1000, population density, etc.
- ≥ 24 features engineered → 10 principal components (PCA)
- Pipeline scheme:
 - ▶ Raw Data → Feature Engineering → PCA → Clustering

Methodology: From Raw Data to Feature selection.

- Standardization of features using StandardScaler to ensure fair comparison between features with different units and scales.
- Feature selection begins by computing the matrix of pairwise Pearson correlation coefficients between all standardized features. This allows us identify multicollinearity — features that are strongly correlated (> 0.9). Then drop one feature from each highly correlated pair.

Methodology: Principal Component Analysis

- Dimensionality reduction with PCA
 - Cumulative proportion of explained variance by each principal component
 - ► The number of components that explain at least 95% of the total variance in the dataset was selected.

Methodology: Optimal Number of Clusters

Elbow Method

We analyze the inertia to find the "elbow" point the value of k after which inertia decreases more slowly

Silhouette Method

We calculate the silhouette score for each k — a metric that measures how well each object lies within its cluster

Methodology: Final Clustering with KMeans (k = 6)

Based on the analysis of the Elbow and Silhouette methods, we decided to use k = 6 as the optimal number of clusters for KMeans.

In order to generalize and highlight key traits of each cluster, we compute and visualize the mean values of all features per cluster.

Visualizing the City: Labeled Clusters of Buenos Aires on the Map

- Here we are able to see a visual result of our clustering
- Map was created using matplotlib.pyplot of manually labeled clusters

Visualizing the City: Interactive Folium Map

- Final map includes clickable neighborhoods
- Popups show cluster label + selected indicators
- Fully interactive (Folium)
- <u>Link to the interactive map</u>

Conclusion & Future Work: What Did We Learn?

- Data-driven clustering reveals useful city zoning
- Socioeconomic and environmental variables align with perceived quality of life
- This approach can support urban planning, social research, and public communication
- ▶ The methodology is scalable and can be applied to other cities

Contact information

- ▶ LinkedIn
- GitHub
- Ivan.Osipov.job.mail@gmail.com

Ivan Osipov 23.04.2025