Project 1 FYS-STK4155

(Dated: September 20, 2023)

I. INTRODUCTION

Machine learning is a powerfull tool usfull in many fields of reasarche. One illustration of its utility is its application to terrain data analysis. Through the creation of terrain models from real data of a specific geographic area, one can effectively anticipate high-risk avalanche zones, potentially leading to life-saving interventions. This methods can extends to addressing concerns related to floods, which has become a hot topic this past month (maby write somthing abou Hans). It can also help in aiding with spatial planning challenges. which is usefull in big citys all over the world.

It is fair to say machine learning possesses immense potential to contribute to the solutions of complex and relevant challenges in our modern society, encompassing climate-related issues, urban planning, and life-saving endeavors.

The aim of this report is to study three different regression methods, ordinary least squares (OLS), Ridge and LASSO and see how these method compare to eachother when applied to different data sets. First we are going to look at the Franke function. When plotted between 0 and 1 this function looks like a mountain and a valley, which is a perfect starting point when we later want to apply these methods on digital terrain data taken from https://earthexplorer.usgs.gov/.

II. THEORY

A. Ordinary least squares (OLS)

B. Ridge

C. LASSO

D. Bias-variance trade-off and resampling techniques

III. METHOD

In the first part of this project a function called Franke function was used as the data analysed. The Franke func-

tion is given by the following equation:

$$\begin{split} f(x,y) &= \frac{3}{4} \exp\left(-\frac{(9x-2)^2}{4} - \frac{(9y-2)^2}{4}\right) \\ &+ \frac{3}{4} \exp\left(-\frac{(9x+1)^2}{49} - \frac{(9y+1)}{10}\right) \\ &+ \frac{1}{2} \exp\left(-\frac{(9x-7)^2}{4} - \frac{(9y-3)^2}{4}\right) \\ &- \frac{1}{5} \exp\left(-(9x-4)^2 - (9y-7)^2\right) \end{split}$$

Figure 1. A plot of the Franke function

This function was fitted with the OLS method, were a polynomial with degree 5 was used to create the design matrix. Since the design matrix in this case was noninvertible, singular value decomposition was used to create the β -values needed to create a model of the dataset. The mean square error and the R2 score was calculated for both the testing and training datasets.

Next Ridge regression was used on the Franke function, to see if this method have a better fit than what was obtained with OLS. Diffrent values for λ was used to obtain the best fit as possible.

IV. RESULTS

V. DISCUSSION

VI. CONCLUSION

REFERENCES

- Reference 1

- Reference 2

Appendix A: Mean values and variances calculations

The main regression method used in this report is the ordinary least squares method. This appensix shows the calculations for some of the equations used to produce the results shiwn in this report.

We have assumed that our data can be described by the continous function f(x), and an error term $\epsilon N(0, \sigma^2)$. If we approximate the function with the solution derived from a model $\tilde{y} = X\beta$ the data can be described with $y = X\beta + \epsilon$. The expectation value

$$\mathbb{E}(\boldsymbol{y}) = \mathbb{E}(X\boldsymbol{\beta} + \boldsymbol{\epsilon})$$

$$= \mathbb{E}(X\boldsymbol{\beta}) + \mathbb{E}(\boldsymbol{\epsilon}) \qquad \text{where the expected value } \boldsymbol{\epsilon} = 0$$

$$\mathbb{E}(y_i) = \sum_{j=0}^{P-1} X_{i,j} \beta_j \qquad \text{for the each element}$$

$$= X_{i,*} \beta_i \qquad \text{where } * \text{replace the sum over index } i$$

The variance for the element y_i can be found by

$$V(y_{i}) = \mathbb{E}[(y_{i} - \mathbb{E}(y_{i}))^{2}]$$

$$= \mathbb{E}(y_{i}^{2}) - (\mathbb{E}(y_{i})^{2})$$

$$= \mathbb{E}((X_{i,*}\beta_{i} + \epsilon_{i})^{2}) - (X_{i,*}\beta_{i})^{2}$$

$$= \mathbb{E}((X_{i,*}\beta_{i})^{2} + 2\epsilon_{i}X_{i,*}\beta_{i} + \epsilon^{2}) - (X_{i,*}\beta_{i})^{2}$$

$$= \mathbb{E}((X_{i,*}\beta_{i})^{2}) + \mathbb{E}(2\epsilon_{i}X_{i,*}\beta_{i}) + \mathbb{E}(\epsilon^{2}) - (X_{i,*}\beta_{i})^{2}$$

$$= (X_{i,*}\beta_{i})^{2} + \mathbb{E}(\epsilon^{2}) - (X_{i,*}\beta_{i})^{2}$$

$$= \mathbb{E}(\epsilon^{2}) = \sigma^{2}$$

The expression for the optimal parameter

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

We find the expected value of $\hat{\beta}$

$$\begin{split} \mathbb{E}(\hat{\boldsymbol{\beta}}) &= \mathbb{E}((\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y}) \\ &= (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\mathbb{E}(\boldsymbol{y}) & \text{using that } \boldsymbol{X} \text{ is a non-stochastic variable} \\ &= (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{\beta} & \text{using } \mathbb{E}(\boldsymbol{y}) = \boldsymbol{X}\boldsymbol{\beta} \\ &= \boldsymbol{\beta} \end{split}$$

we can find the variance by

$$\begin{split} \mathbb{V}(\hat{\boldsymbol{\beta}}) &= \mathbb{E}\big[(\hat{\boldsymbol{\beta}} - \mathbb{E}(\hat{\boldsymbol{\beta}}))^2\big] \\ &= \mathbb{E}(\hat{\boldsymbol{\beta}}\hat{\boldsymbol{\beta}}^T) - \mathbb{E}(\hat{\boldsymbol{\beta}})^2 \\ &= \mathbb{E}(((\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y})((\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y})^T) - \hat{\boldsymbol{\beta}}\hat{\boldsymbol{\beta}}^T \\ &= \mathbb{E}((\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y}\boldsymbol{y}^T\boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}) - \hat{\boldsymbol{\beta}}\hat{\boldsymbol{\beta}}^T \\ &= (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\mathbb{E}(\boldsymbol{y}\boldsymbol{y}^T)\boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1} - \hat{\boldsymbol{\beta}}\hat{\boldsymbol{\beta}}^T \\ &= (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T(\boldsymbol{X}\boldsymbol{\beta}\boldsymbol{\beta}^T\boldsymbol{X}^T + \sigma^2)\boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1} - \hat{\boldsymbol{\beta}}\hat{\boldsymbol{\beta}}^T \\ &= \boldsymbol{\beta}\boldsymbol{\beta}^T + \sigma^2((\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}) - \hat{\boldsymbol{\beta}}\hat{\boldsymbol{\beta}}^T \\ &= \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1} \end{split}$$

Appendix B: Bias-variance trade-off