What to do about Sensor Values that are Nonlinear

Rhine/Pilla
Interactive Robotics 91.120

Raw Sensor Data

Specified Operating Range:

- > 2D120X: 4 30 cm
- > GPD2D12: 10 80 cm
- As your distance changes, the sensor reading does not change proportionally.
- You may find this trend to be useful and capitalize on it in your code (i.e., do nothing)
- On the other hand, you might want a more linear result (50% change input = 50% change in output)

How to make output linear?

- > Optimally, if sensor is d = 22 cm from the target
 - Sensor would return a value of 22
 - Alternatively, return a value of K*22 (K is a constant of proportionality) (e.g. K=10 could give you a reading in mm)
- In reality, our sensor returns some other values, S(d) ("Sensor reading is a function of distance")
- Mathematically if we find the inverse function, F(x),
 - we could use the sensor values, S(d), as the inputs to F(x)
 - From algebra, F(S(d)) = ___???__ if F and S are inverses of each other? Could also use other operations (e.g. multiply F & S)
 - How do you find inverse given raw data? Regression?
- Constraint: must use simple algebra
 - WinAVR/CM only allows simple integer math

Here's what I tried....

K, a, b, and c are constants used to fit the curve above.

Assumptions:

- Only focus on part of curve inside specified operation range
- Curve could be exponential or logarithmic. Math is too advanced for WinAVR/CM!
- Curve could be hyperbolic this math uses simple operations. Perhaps the form of S(d) is...

$$S(d) = \frac{k}{ad+b} + c$$

If so, the inverse, F(s), would take the form...

$$F(S) = \frac{k - b(S - c)}{a(S - c)}$$

Or you could also try multiplying S(x) by F(x) = ax + b to make a linear output S(x)
 * F(X) = Kx

Here are the test fit hyperbolas...

$$S(d) = \frac{k}{ad+b} + c$$

k, a, b, and c are constants used to fit the curve above.

	Test Fit Hyperbola Constants:	
	GP2D12	2D120X
a	3	3
b	8	5
C	0	-20
k	18500	9500

And here is the final result...F(S(d))

$$F(S) = \frac{k - b(S - c)}{a(S - c)}$$

	Test Fit Hyperbola Constants:	
	GP2D12	2D120X
a	3	3
b	8	5
C	0 -	-20
k	18500	9500