

Can I joke on you?

Anicet Nougaret, Lena Ebner, Jens De Bock 6/11/2023

Overview

- 1. Goals & Concept
- 2. Research Question & Target group
- 3. Project description
- 4. Demo
- 5. Evaluation
- 6. Results
- 7. Conclusions

Goals & Concept

Goals

Making the user happy and entertained with good jokes.

Exploring the ability of a system to learn based on user's emotions and act on them in a positive reinforcement loop.

Concept

A robot that tells jokes to the user.
Able to detect the user's facial expressions, he learns to pick jokes the user seems to like.

Planning

Research Question & Target group

Research Question

Is a robot UI with recommender more fun to use than telling random jokes?

Variables

3 Variables

- Recommender is active or not (independent)
- Facial expressions (independent)
- User experience (dependent)

Target Group

English-speaking students

Why?

English: dataset of English jokes

Students: more accessible

Project Description

Parts of the project

Smile Detection

- Facial keypoints from MediaPipe
- Input to Convolution Neural Network
- 90% accuracy between non smile and smile
- Real world is however harder
- Search better and more explainable

Smile Detection

- No more usage of keypoints
- Use blendshapes to estimate laughing
- Can be used directly in the front-end
- 2 calibration phases
- Finetune and normalize output

Joke Dataset

- English dataset of jokes on internet -> embeddings -> UMAP -> clustering -> semantic categories
- Cleaning + keeping 26 categories

Joke Recommender

- similar to tabular
 Q-learning (Barto & Sutton, 1998)
- Fast convergence to pool of categories
- Good at filtering
- Tested in dedicated UI

	c = 1	c = 2		c = C
u = 1	$Q^{\star}(1,1)$	$Q^{\star}(1,2)$		$Q^{\star}(1,C)$
u = 2	$Q^{\star}(2,1)$	$Q^{\star}(2,2)$	***	$Q^{\star}(2,C)$
				·
u = U	$Q^{\star}(U,1)$	$Q^{\star}(U,2)$		$Q^{\star}(U,C)$

• 0.27382497525000005 <- santa, claus, ho, chimney, reindeer, year, sack, comes, once, christmas

Robot UI

- Create UI with Next.js using Three.js for rendering 3D Model
- Looking for an appropriate 3D Model, smiley, cute, with slight animations
- **TTS** Web API for telling jokes
- Automatic Logging of Smile Detection
- Implementing User Flow according Study Design
- Deployment
- Connecting UI with recommender and Smile Detection
 - **REST API** calls to recommender
 - directly doing smile detection in frontend with @mediapipetasks-vision

Demo

Evaluation

What we wanted to evaluate?

- 1. How well learns the recommender system
- 2. Smile detection accuracy
- 3. **User experience** differences

Participants

21 Participants

Study Procedure

Testing 2 times with each user

- with recommender (A)
- without recommender (B)

Remote

Interaction time 5-15 min

Fill out questionnaires 2x

Results

Smile Accuracy

- Categorical values vs numerical values
- Solution: map values to smile or no smile
- Result: non-significant difference
 - Overall accurate detection
- MSE: 13%

Using a recommender system or not

- Compare detected values from both experiments
- Result: non-significant difference
 - Recommender system does not have a big influence
- Reasons:
 - Recommender system based on themes
 - Dataset has a lot of flawed jokes

How well learns the recommender system

- Compare first part to second part
- Result: significant difference
 - Second part performs worse overall
 - 0.17% vs 0.23%
- Possible reasons:
 - Recommender system minimal influence
 - Tired towards the end
 - Similar jokes are not funny twice

User Experience Differences I

User Experience Differences II

Conclusions

Conclusions

Recommender does not lead to a happier user in our application in terms of smile detection

Longer interaction periods with application would help to get more accurate results, but interaction is also very **monotonous** (always the same)

Improvements needed for better results

- Cleaning the dataset would help a lot
- Using different recommendation approach (not just classes)

Conclusions II

Application was fun to build

Smile detection works well, but strongly depends on individual and calibration

UX differences indicate that an application with recommender enabled makes a **more intelligent, competent and fun impression** to user

Questions? Feedback?