Caça ao Tesouro

Nome do arquivo fonte: tesouro.c, tesouro.cpp, tesouro.pas, tesouro.java, ou tesouro.py

Capitão Tornado é um pirata muito cruel que faz qualquer coisa por dinheiro. Há alguns dias, o capitão soube da existência de um tesouro numa ilha deserta, e agora tenta determinar sua posição.

A ilha pode ser vista como um quadriculado $N \times N$ de terra cuja posição (0,0) está a sudoeste, a posição (N-1,0) está a sudoeste, a posição (0,N-1) está a noroeste e a posição (N-1,N-1) está a nordeste. Em alguma posição desse quadriculado está o tesouro.

Uma curiosidade importante é a perna de pau que o capitão possui. Ela impede que o capitão se locomova em direções que não a horizontal ou a vertical: para ir da posição (1,1) para a posição (3,2), por exemplo, o capitão é obrigado a gastar três passos. É claro que o capitão sempre escolhe, dentro de suas limitações, um caminho com o menor número de passos possível. Chamamos esse modo de andar de passos de capitão. Um exemplo de caminho por passos de capitão entre (1,1) e (3,2) é ilustrado na figura a seguir.

Como em toda boa caça ao tesouro, o capitão não conhece a posição onde o tesouro se encontra: ele possui um mapa que corresponde à geografia da ilha. Em algumas posições desse mapa, existem pistas escritas. Cada pista consiste em um número D, que indica a menor distância em passos de capitão entre a posição em que a pista se encontra e a do tesouro.

			П		2		
	X		П	X?	1	X?	
			П		2		
3		4	П		3		

Observe que, dependendo da disposição das pistas, a posição do tesouro pode estar determinada de maneira única ou não. Na figura acima e à esquerda, as duas pistas são suficientes para se saber, com certeza, onde está o tesouro; na figura à direita, as quatro pistas dadas ainda possibilitam que tanto a posição (0,2) quanto a (2,2) guardem o tesouro. Nesse último caso, não se pode determinar, com certeza, qual é a localização do tesouro.

Dadas as pistas que o capitão possui, sua tarefa é determinar se as pistas fornecem a localização exata do tesouro e, caso positivo, qual ela é.

Entrada

A primeira linha contém dois inteiros positivos N e K, onde N é a dimensão do quadriculado e K é o número de pistas no mapa que o capitão possui.

Cada uma das próximas K linhas contêm três inteiros X, Y e D, informando que existe uma pista na posição (X,Y) contendo o número D. Essa pista indica que o tesouro encontra-se a D passos de capitão da posição da pista.

É garantido que, com essas pistas, existe ao menos uma localização possível para o tesouro. Além disso, o mapa não contém duas pistas na mesma posição.

Saída

Se as pistas forem suficientes para determinar com certeza a localização do tesouro, seu programa deve imprimir uma única linha com dois inteiros, X e Y, indicando que o tesouro encontra-se na posição (X,Y).

Caso contrário, seu programa deve imprimir uma única linha com dois inteiros iguais a -1, como nos exemplos de saída a seguir.

Restrições

- $\bullet \ 2 \leq N \leq 100$
- $1 \le K \le 100$

Exemplos

Entrada	Saída
4 2	1 2
0 0 3	
3 0 4	

Entrada	Saída	
4 4	-1 -1	
1 0 3		
1 1 2		
1 2 1		
1 3 2		

Entrada	Saída
3 3	0 2
0 0 2	
1 1 2	
2 0 4	