

IMPLEMENTATION OF AGRICULTURE BASED ANIMAL REPELLENT SYSTEM USING DEEP LEARNING

A PROJECT REPORT

Submitted by

MAHESUWARAN.S 622019104036

JAYASURYA.S 622019104027

SANJAY KUMAR.R 622019104055

In the partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

in
COMPUTER SCIENCE AND ENGINEERING

PAAVAI COLLEGE OF ENGINEERING,
PACHAL
NAMAKKAL – 637018

ANNA UNIVERSITY: CHENNAI – 600 025 MAY-2023

ANNA UNIVERSITY: CHENNAI – 600025

BONAFIDE CERTIFICATE

Certificate that this project report "IMPLEMENTATION OF AGRICULTURE BASED ANIMAL REPELLENT SYSTEM USING DEEP LEARNING" is the Bonafide work of "S. MAHESUWARAN (622019104036), S. JAYASURYA (622019104027), SANJAY KUMAR.R (622019104055)" who carried out the project work under my supervision.

SIGNATURE			
Mr. R. MURUGESAN, M.E, (Ph.D.).,			
ASSISTANT PROFESSOR,			
SUPERVISOR,			
Department of CSE,			
Paavai College of Engineering.			
Certified that candidate was examined is the Anna university project viva-voice examination held on			

INTERNAL EXAMINER

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

We express our profound gratitude with pleasure to our most respected Chairman Shri. CA. N.V.Natrajan, B.Com, FCA. and also to our beloved Correspondent Smt. N.Mangai Natrajan, M.Sc., for giving motivation and providing all necessary facility for the successful completion of this project.

It is our privilege to thank our beloved **Director-Admin Dr.K.K.Ramasamy**, **M.E**, **Ph.D.**, and our Principal **Dr.A.Immanuvel**, **M.E**, **Ph.D.**, for their moral support and deeds in bringing out this project successfully.

We extend our gratefulness to **Mr.R. Murugesan**, **M.E., and (Ph.D.).** Associate Professor, Head of the Department. Department of Computer Science and Engineering, for his encouragement and constant support in successful completion of project.

We convey out thanks to **Mr.R.Murugesan**, **M.E**, (**Ph.D.**)., Assistant Professor, Department of Computer Science and Engineering, our supervisor for being more informative and providing suggestions regarding this project all the time.

We would like to express our science thanks and heartiest gratitude to our project coordinator **Mrs.B.M.Brinda.**, **M.E.**, her meticulous guidance and timely help during project work.

We express thanks to all our department staff members and friends for their encouragement and advice to do the project work with full interest and enthusiasm.

TABLE OF CONTENTS

CHAPTER NO	TITLE	PAGE NO
	ABSTRACT	vii
	PROBLEM STATEMENT	viii
	LIST OF FIGURES	ix
	LIST OF ABBREVIATION	xi
	LIST OF TABLES	xii
1	INTRODUCTION	1
	1.1 OVERVIEW	1
	1.2 SMART FARMING	2
	1.2.1 SMART FARMING TECHNOLOGIES	2
	1.3 PROBLEM IDENTIFIED	3
	1.3.1. SCOPE OF THE PROJECT	4
	1.4 OBJECTIVE	5
2	LITERATURE SURVEY	6
3	SYSTEM ANALYSIS	11
	3.1 EXISTING SYSTEM	11
	3.2 PROPOSED SYSTEM	15
4	SYSTEM SPECIFICATION	18

	4.1 HARDWARE SPECIFICATION	18
	4.2 SOFTWARE SPECIFICATION	18
5	SOFTWARE DESCRIPTION	19
	5.1 FRONT END	19
	5.2 BACK END	21
6	SYSTEM DESCRIPTION	24
	6.1. SYSTEM ARCHITECTURE	24
	6.2. DCNN MODEL	25
	6.3 DFD	26
	6.4 UML DIAGRAMS	27
	6.5 USECASE DIAGRAM	28
	6.6 ACTIVITY DIAGRAM	29
	6.7 SEQUENCE DIAGRAM	30
	6.8 COMPONENT DIAGRAM	31
	6.9. PROBLEM DESCRIPTION	32
7	PROJECT DESCRIPTION	33
	7.1. MODULES LIST	33
	7.1.1. MODULES DESCRIPTION	33
8	TESTING	46
	8.1 SYSTEM TESTING	46

	8.2 UNIT TESTING	46
9	SYSTEM IMPLEMENTATION	47
	9.1 RESULT AND DISCUSSION	47
10	CONCLUSION & FUTURE ENHANCEMENT	50
	10.1 CONCLUSION	50
	10.2 FUTURE ENHANCEMENTS	50
	APPENDICES AND SCREEN	
11	SHOTS	51
	11.1 SOURCE CODE	51
	11.2 SCREEN SHOTS	71
12	REFERENCES	76
13	CERTIFICATES	77
	13.1 CONFERENCE CERTIFICATE	77
	13.2 JOURNAL CERTIFICATE	79

ABSTRACT

Crop raiding by animals has become one of the most common human animal disputes as a result of human encroachment of wildlife habitats and deforestation. Wild animals can cause significant damage to agricultural crops and attack farmers working in the field. Farmers suffer huge crop loss due to crop raiding by wild animal like elephants, wild boar and deer. One of the main concerns of today's farmers is protecting crops from wild animals' attacks. There are different traditional approaches to address this problem which can be lethal (e.g., shooting, trapping) and non-lethal (e.g., scarecrow, chemical repellents, organic substances, mesh, or electric fences). Farmers has tried many ways for preventing animals raid from lighting fire crackers to maintain a watch on the field through the night but none of these were effective. Nevertheless, some of the traditional methods have environmental pollution effects on both humans and ungulates, while others are very expensive with high maintenance costs, with limited reliability and limited effectiveness. In this project, we develop a system that combines Computer Vision using DCNN for detecting and recognizing animal species, and specific ultrasound emission (i.e., different foreach species) for repelling them. The edge computing device activates the camera, and then executes its DCNN software to identify the target, and if an animal is detected, it sends back a message to the Animal Repelling Module including the type of ultrasound to be generated according to the category of the animal.

Keywords: Animal Recognition, Repellent, Artificial Intelligence, Edge Computing, Animal Detection, Deep Learning, DCNN.

PROBLEM STATEMENT

On the other hand, sporadic or widespread animal tracks carry a moderate risk, and a no-harvest buffer zone may need to be created around nearby crops. Widespread crop damage is a high risk and indicates significant evidence of contamination. Marking and avoiding harvest around high-risk areas of crop damage is a good strategy to reduce the potential for contamination. Widespread evidence of faucal contamination is very high risk and would justify marking the contaminated area and creating a no-harvest buffer zone around the area where significant faces was found. Existing methods like fencing can be an effective deterrent, but it may not be practical for larger farms; however, small portions of fencing may direct animals around high value or sensitive crops to other areas and electric fences are no longer efficient in solving such conflicts, to protect their crops from getting damaged because of animal intrusions, farmers have been using electric fences around their fields and areas where the fencing don't prove efficient, farmers prefer to stay up all night and guar their fields from animal intrusions

LIST OF FIGURE

Figure no	Figure Name	Page no
Figure no:1.1	Agriculture and ICT Innovation	1
Figure no:1.2	Smart Farming	2
Figure no:3.1	Wire and Plastic Fence	12
Figure no:3.2	Electric Fences	12
Figure no:3.3	Beehive Fence	13
Figure no:3.4	Ultrasonic Electric Animal Repellent	13
Figure no:3.5	CNN	15
Figure no:6.1	System Architecture	24
Figure no:6.2	DCNN Model	25
Figure no:6.3	Level 0 DFD	26
Figure no:6.4	Level 1 DFD	27
Figure no:6.5	Level 2 DFD	27
Figure no:6.6	Class Diagram	27
Figure no:6.7	Use Case Diagram	28
Figure no:6.8	Activity Diagram	29
Figure no:6.9	Sequence Diagram	30
Figure no:6.10	Deployment Diagram	31
Figure no:7.1	Model Accuracy	41
Figure no:7.2	Model Precision	42
Figure no:7.3	Model Recall	43
Figure no:7.4	Confusion Matrix – Training	44

Figure no: /.5	Confusion Matrix – Testing	44
Figure no:7.6	Loss Function	45
Figure no:9.1	Training and Validation accuracy and	48
	loss graph	70
Figure no:9.2	Accuracy of the joint CNN (Top-1 and	48
	Top-5) during training	.0
Figure no:9.3	Training and testing accuracy of the joint	49
	CNN (Top-5).	
Figure no:11.1	Admin login	72
Figure no:11.2	Training Phase	72
Figure no:11.3	Processing -Noise Filter	73
Figure no:11.4	Classification	73
Figure no:11.5	Farmer Registration	74
Figure no:11.6	Query by Image	74
Figure no:11.7	Training Monitoring	75
Figure no:11.8	Real Time Monitoring	75
Figure no:11.9	Animal Detected Information	76

LIST OF ABBREVIATION

ABBREVIATION

EXPANSION

CFI - Corporate Finance Institute

DFD - Data Flow Diagram

SVM - Support Vector Machines

DT - Decision Tree

SAS - Statistical Analysis Software

HBOS - Histogram based Outlier Score

CWI - Centrum Wiskunde & Informatics

CNN - Convolution Neural Network

LIST OF TABLES

TABLE	TABLE NAME	PAGE NO
Table no:7.1	Calculate Texture Features	38
Table no:9.1	Single Branch SVM	49
Table no:9.2	Joint CNN	49