Problem 1 (20 Points)

Prove or disprove that for any positive integer $n \ge 0$, $n^3 + 2n + 3$ is divisible by 3.

Problem 2 (20 Points)

Prove or disprove that for all $n \ge 1$

$$\sum_{i=1}^n i2^i \leq 2^{n+1}n.$$

$$P(n): \sum_{i=1}^{n} i2^{i} \le 2^{n+1} n. for \ n \ge 1$$

1. **Basis Step**: P(1) is true since $\sum_{i=1}^{1} (1)2^{i} = 2 \le 2^{2}1 = 4$, DONE

2. *Inductive Hypothesis*: Assume P(n) holds for any arbitrary integer $n \ge 1$.

3. *Will Prove*: $P(n) \rightarrow P(n+1)$

$$P(n): (1)(2)^1 + (2)(2)^2 + (3)(2)^3 + \dots + n(2)^n \le 2^{n+1}n$$

$$P(n+1): \sum_{i=1}^{n+1} i 2^i = \sum_{i=1}^n i 2^i + (n+1)2^{n+1} \le 2^{n+2}(n+1)$$

$$= (n-1)(2^{n+1}) + 2 + (n+1)2^{n+1} \le 2^{n+2}(n+1)$$

$$= 2^{n+1}(n-1+n+1) + 2 \le 2^{n+2}(n+1)$$

$$= 2^{n+1}(2n) + 2 \le 2^{n+2}(n+1)$$

$$= (2^{n+2})n + 2 \le (2^{n+2})n + 2^{n+2}$$

= $(2^{n+2})n + 2 \le (2^{n+2})n + 4(2^n)$

$$= (2^{n+2})n + 2 \le (2^{n+2})n + 4(2^n)$$

4. Therefore
$$\sum_{i=1}^{n} i2^{i} \leq 2^{n+1} n \text{ for } n \geq 1$$

Problem 3. (20 Points)

Let
$$H_n = \sum_{i=1}^n \frac{1}{i}$$

for any $n \ge 1$. Prove or disprove that for any $n \ge 1$ $H_{2n} \ge \frac{n}{4}$

- 1. **Basis Step**: n = 1 $\left(\frac{1}{2} + \frac{1}{1}\right) \ge \frac{1}{4}$, then P(1) holds, DONE
- 2. *Inductive Hypothesis*: Assume $H_{2k} \ge \frac{k}{4}$ holds for any arbitrary integer $k \ge 1$
- 3. Will Prove: $P(k) \rightarrow P(k+1)$

$$\begin{split} H_{2^{(k+1)}} &\geq \frac{k+1}{4} \\ \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{2^k} + \frac{1}{2^{k+1}} + \dots + \frac{1}{2^{k+1}} \geq \frac{k+1}{4} = \frac{k}{4} + \frac{1}{4} \\ H_{2^k} &+ \frac{1}{2^k+1} + \dots + \frac{1}{2^{k+1}} \geq \frac{k}{4} + \frac{1}{2^k+1} + \dots + \frac{1}{2^{k+1}} \\ \frac{k}{4} + \left(2^k * \left(\frac{1}{2^k+1}\right)\right) \geq \frac{k}{4} + \frac{1}{2^k+1} + \dots + \frac{1}{2^{k+1}} \\ \frac{k}{4} + \frac{1}{2} \geq \frac{k}{4} + \frac{1}{4} \end{split}$$

4. Therefore, by induction, we have proven that for any $n \ge 1$ $H_{2n} \ge \frac{n}{4}$

Problem 4. (20 Points)

Let
$$a_1 = 2$$
, $a_2 = 9$, and $a_n = 2_{a_{n-1}} + 3_{a_{n-2}} for n \ge 3$.

Prove or disprove that $a_n \leq 3^n$ for all positive integers n.

$$P(n)$$
: $a_n \le 3^n$ for all positive integers n

- 1. **Basis Step**: P(1) holds since $2 \le 3$
 - P(2) holds since $9 \le 9$
 - P(3) holds since $2(9) + 3(2) = 24 \le 27$, DONE
- 2. *Inductive Hypothesis*: Assume P(n) holds for any arbitrary positive integer n

Inductive Hypothesis

3. *Will Prove*: $P(n) \rightarrow P(n+1)$

$$P(n+1): a_{n+1} \le 3^{n+1}$$

 $a_{n+1} = 2a_n + 3a_{n-1}$

Suppose $a_n = 3^n$

$$a_{n+1} = 2(3^n) + (3(3^{n-1}))$$

= $2(3^n) + 3^n$

$$a_{n+1} = 3^n(2+1) = 3^{n+1}$$

If
$$a_n \le 3^n$$

 $a_{n+1} \le 2(3^n) + 3(3^{n-1})$

$$a_{n+1} \le 2(3^n) + 3(3^n)$$

 $a_{n+1} \le 2(3^n) + 3^n$

$$a_{n+1} \le 2(3^n) + 3^n$$
$$a_{n+1} \le 3^n (2+1)$$

$$a_{n+1} \le 3^{n+1}$$

4. Therefore, by induction, we have proven that $a_n \leq 3^n$

Problem 5. (20 Points)

Describe the most efficient algorithm to compute $5^{\log_2 m}$ where m is a nonnegative integer. Prove its correctness.

Algorithm:

```
Author: Abhishek Gunasekar
procedure power(x, m) {
    int n = log2(m)
    if (n == 0) {
        return 1;
    else if (n == 1) {
        return x;
    else if (n is even) {
        return power(x * x, n/2);
    else if (n is odd) {
        return x * power(x * x, (n -1) /2);
```

Proof of correctness:

P(n): for all nonnegative integers m, Power(5, m) correctly computes $5^{\log_2 m}$

The relationship between n and $\log_2 m$ is as follows:

If
$$n = \log_2 m$$
,
then $n + 1 = \log_2(m + m)$

$$then, n + 1 = \log_2(m + m)$$

1. **Basis Step**: if $m = 2 \to n = 1$, then $(x^2)^{\frac{1}{2}} = x$, which is true because $5^1 = 5$

2. *Inductive Hypothesis*: x = 5 in this case, so $power(x, n) = x^n = (x^2)^{\frac{n}{2}}$ if n is even; $x^n = x(x^2)^{\frac{n+1}{2}}$ if n is odd

3. *Will Prove*: $P(n) \rightarrow P(n+1)$

Case 1: If n is even, then (n + 1) is odd $P(n+1): x(x^2)^{\frac{(n+1)-1}{2}} = x(x^2)^{\frac{n}{2}}$ conclusion to arrive at

$$x^{n+1} = x * x^n = x(x^2)^{\frac{n}{2}}$$

By inductive hypothesis

Therefore, proved case 1 using induction

Case 2: If n is odd, then (n + 1) is even

$$P(n+1): (x^{2})^{\frac{(n+1)}{2}} \quad conclusion \text{ to arrive at}$$

$$x^{n+1} = x * x^{n}$$

$$= x * (x(x^{2})^{\frac{n-1}{2}})$$

$$= x^{2}((x^{2})^{\frac{n-1}{2}})$$

$$= (x^{2})^{\frac{n-1+2}{2}}$$

$$= (x^{2})^{\frac{n+1}{2}}$$

Therefore, proved case 2 using induction

4. **Therefore**, by strong induction, we have proven the correctness of the algorithm to get $5^{\log_2 m}$