Determine $|\mathcal{P}(\mathcal{P}(\{\phi,\tau\}))|$.

Roshan Poudel

Instituto Politécnico de Bragança, Bragança, Portugal

Subset

Set A is a subset of set B iff each element of set A is also an element of set B. If set A is a subset of set B then we write as $A \subset B$.

- If each element of set A is also an element of set B and B may be equal to A, then set A is an **improper subset** of set B.
 - For example: $A = \{1, 2, 3, 4, 5\}$ and $B = \{1, 2, 3, 4, 5\}$ then $A \subseteq B$ and $B \subseteq A$.
- ② If each element of set A is also element of set B but set B is not equal to set A then Set A is **proper subset** of set B.

For example:
$$A = \{2,3,4\}$$
 and $B = \{1,2,3,4,5\}$ then $A \subset B$ but $A \not\subset B$

Properties of Subset

Properties

- \bigcirc A set with n elements has 2^n subsets.
- 2 Every set is subset of itself.
- **3** Empty set (\emptyset) is subset of every set.
- ullet t A=B if and only if $A\subseteq B$ and $B\subseteq A$.
- A is a subset of B if and only if their intersection is equal to A, that is,

$$A \subseteq B \iff (A \cap B) = A$$

Set A is a subset of B if and only if their union is equal to B, that is,

$$A \subseteq B \iff (A \cup B) = B$$

Example

What are the subsets of set $A = \{x, y, z\}$?

- Ø
- $\bullet \{x\}$
- {*y*}
- {z}
- $\{x, y\}$
- \bullet $\{x,z\}$
- \bullet $\{y,z\}$
- $\{x, y, z\}$

Notice, there are 8 subsets of set A which is also the result of $= 2^{|A|} = 2^3 = 8$

Superset

A set A is a superset of another set B if all elements of the set B are elements of the set A. The notation for superset is $A \supset B$.

Properties

- $A \supset \emptyset$.
- Since every set is a subset of itself, then every set is also a superset of itself.

Power Set

The set of all subsets of a set A is called the power set of A. The power set of A is denoted with the symbol $\mathcal{P}(A)$.

Example

If A is the set $\{1,2,3\}$, then what is $\mathcal{P}(A)$?

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$$

Determine $|\mathcal{P}(\mathcal{P}(\{\phi,\tau\}))|$

As we know, for any set A, $|\mathcal{P}(A)|=2^{|A|}$. In this case, $|\{\phi,\tau\}|=2$ Therefore,

$$|\{\phi,\tau\}|=2$$
 Therefore,

$$|\mathcal{P}(\{\phi, \tau\})| = 2^2 = 4$$

 $|\mathcal{P}(\mathcal{P}(\{\phi, \tau\}))| = 2^4 = 16$

So,
$$|\mathcal{P}(\mathcal{P}(\{\phi,\tau\}))| = 16$$
.