The 3rd Universal Cup Stage 11: Sumiyosi, October 5-6, 2024

Problem L. Construction of Town

Time limit: 2 seconds

Memory limit: 1024 megabytes

You are given a non-decreasing sequence of positive integers $X = (X_1, X_2, \dots, X_{N-1})$ of length N-1.

Define the cost of a simple connected undirected graph G with N vertices and M edges as $\sum_{i=1}^{N} \sum_{j=i+1}^{N} X_{d(i,j)}$. Here, d(i,j) is defined as the minimum number of edges one must traverse to move from vertex i to vertex j in G.

Construct one simple connected undirected graph G with N vertices and M edges that minimizes the cost.

Constraints

- $2 \le N \le 100$
- $N-1 \le M \le \frac{N(N-1)}{2}$
- $1 \le X_1 \le X_2 \le \dots \le X_{N-1} \le 10^9$

Input

The input is given in the following format from standard input:

N M

$$X_1 X_2 \ldots X_{N-1}$$

Output

When the *i*-th edge in the graph connects vertex A_i and vertex B_i , output M lines as follows:

 $A_1 B_1$

 $A_2 B_2$

:

 $A_M B_M$

Examples

standard input	standard output
3 2	1 2
4 5	1 3
4 6	1 2
12 34 56	1 3
	1 4
	2 3
	2 4
	3 4

Note

For the first sample case:

In this output, the cost is $X_{d(1,2)} + X_{d(1,3)} + X_{d(2,3)} = X_1 + X_1 + X_2 = 13$.

Since there is no undirected graph with 3 vertices and 2 edges whose cost is 12 or less, this output is correct.