Matrix Calculus Note

Yi Jiang

August 11, 2021

1 Introductory Example

$$\frac{\partial f}{\partial x} = a \tag{1}$$

for multivariate, we have:

$$f(x) = \sum_{i} a_i x_i = a^T x$$

$$\frac{\partial f}{\partial x_k} = \frac{\partial (\sum_i a_i x_i)}{\partial x_k} = a_k$$

Then we organize n partial derivatives in the following way:

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = a \tag{2}$$

2 Derivation

2.1 Organization of Elements

For a scalar valued function f(x), the result of $\frac{\partial f}{\partial x}$ has the same size with x. That

$$\frac{\partial f}{\partial x} = \begin{bmatrix}
\frac{\partial f}{\partial x_{11}} & \frac{\partial f}{\partial x_{12}} & \cdots & \frac{\partial f}{\partial x_{1n}} \\
\frac{\partial f}{\partial x_{21}} & \frac{\partial f}{\partial x_{22}} & \cdots & \frac{\partial f}{\partial x_{2n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f}{\partial x_{m1}} & \frac{\partial f}{\partial x_{m2}} & \cdots & \frac{\partial f}{\partial x_{mn}}
\end{bmatrix}$$
(3)

By this definition, we have:

$$\frac{\partial f}{\partial x} = (\frac{\partial f}{\partial x})^T = a^T$$

2.2 Deal with Inner Product

For $f(x) = a^T x$, we have $\frac{\partial f}{\partial x} = a$.

2.3 Properties of Trace

Defintion 2. Trace
$$Tr[A] = \sum_i A_{ii} \frac{\partial Tr[A]}{\partial A} = I$$

Theorem 1 Matrix traces has the following properties.

1.
$$Tr[A^TB] = \sum_i \sum_j A_{ij}Bij$$

If there l's a multivariate scalar function $f(x)=\mathrm{Tr}[A^Tx],$ we have $\frac{\partial f}{\partial x}=A.$

2.4 Deal with Generalized Inner Product

2.5 Define Matrix Differential

$$\begin{split} \mathrm{d}\mathrm{Tr}[A] &= \mathrm{Tr}[\mathrm{d}A] \\ \mathrm{d}f &= \mathrm{Tr}\Big[(\tfrac{\partial f}{\partial x})^T dx\Big] \end{split}$$

2.6 Matrix Differential Properties

eg. 4. Given function $f(x) = x^T A x$, where A is square and x is a column vertor, we can compute:

eg. 5.
$$d(X^{-1}) = -X^{-1}dXX^{-1}$$
.

2.7 Schame of Handlding Scalar Function

2.8 Determinant