

OBSERVATIONS -

- 1) Mazeimum power (Pmaze) = 0.31443 W
- 2) Area of the solar panel = 0.324 m²
- 3> Intensity of the light (I.) = 597.13 W/m2
- 4) Power of the bulb = 75 Watt.
- 5} Distance between solar panel and bulb = 10cm.

Intensity	Resistance	Voltmeter Reading	Ammeter Reading
	(ohm)	(V)	(mA)
	10	1.57	122.6

DETERMINATION		OF	EFFICIENCY	
OF	SOLAR	CELL		

To explore solar cells as renewable energy sources and test their efficiency in converting solar radiation to electrical power.

APPARATUS REQUIRED ->

Solar cell, voltmeter milliammeter a dial-type resistance boxe, keys, illuminating lamps, connecting wires etc.

Efficiency of solar cell (n) = Pmax × 100
AI.

where,

Pmase = Maseimum power - Imp x Vmp (Watt)

= Area of the solar panel

I. = Intensity of the light

= Power of the bulb/4111d2

d = Distance between solar panel and bulb

	22	2.83	122.1
	47.	3.62	74.1
	56	3.63	63.3
Maæimum	68	3.84	55.2
	82	3.90	45.5
	100	3.98	36.2
	160	3.94	26 2
	180	3.96	21 · 6

CALCULATIONS ----

1) Maæimum Power =
$$Imp \times Vmp$$

= $(94 \times 10^{-3}) \times 3.345$
= 0.094×3.345 = $0.31443 W$

Intensity of light
$$(I_o) = \frac{Power of bulb}{4\pi d^2}$$

$$= \frac{75}{4 \times 3 \cdot 14 \times (10 \times 10^{-2})^2}$$

$$= \frac{75}{0.1256} = 597.13 \text{ W/m}^2$$

3) Area of solar panel (A) =
$$7.2 \times 4.5$$

= 32.4×10^{-2} = 0.324 m^2

4) Efficiency of solar cell
$$(\eta) = \frac{P_{\text{maxe}}}{AI_{\circ}} \times 100$$

$$= \frac{0.31443}{0.324 \times 597.13} \times 100$$

$$= 0.1625 \times 100 = 16.25\%$$

Expt. No	Page No.
	•
DECULT	
RESULT ==>	40.05.01
The efficiency of the solar panel is: r	
Teacher's Signature	

