

Tutorial on QuantumFlow: A Co-Design Framework of Neural Network and Quantum Circuit towards Quantum Advantage

Session 2: Design of QuantumFlow and Hands-On Examples

Weiwen Jiang, Ph.D.

Assistant Professor

Electrical and Computer Engineering

George Mason University wjiang8@gmu.edu https://jqub.ece.gmu.edu

What's the complexity? Quantum Advantage?

Classical computer with 1 MAC

Time: O(N)

Space (Comp. Res.): *0*(1)

 $Time \times Space: O(N)$

Classical computer with N MAC

Time: O(1)

Space (Comp. Res.): O(N)

Time \times Space: O(N)

Time-Space Complexity in Quantum computer

Time: Circuit Length

Space (Comp. Res.): Qubits

Time \times Space (T - S): Qubits \times Circuit Length

• Given that T-S complexity on classical computer is O(N), Quantum Advantage is achieved if T-S complexity on Quantum can be O(ploylogN) or lower. ----- Exponential Speedup!

What's the Goals?

Input features	Number of Qubits	Number of Gates
U(x)	O(log N)	0 (?)
U(W)	O(log N)	0 (?)
U(N)	0(1)	O(log N)

n: input data number

Potential Quantum Advantage

What's the Goals?

Goal 1: Correctly Implement!

Goal 2: Efficiently Implement!

$$O = \delta \left(\sum_{i \in [0,N)} x_i \times W_i \right)$$

where δ is a quadratic function

Classical Computing:

Complexity of O(N)

Quantum Computing:

Can we reduce complexity to

O(ploylogN), say $O(log^2n)$?

Goal 3: Scale-Up!

Agenda – Session 2: QuantumFlow

- General Framework for Quantum-Based Neural Network Accelerator
 - Data Preparation and Encoding
 - Colab Hands-On (2): From Classical Data to Quantum Data
 - Quantum Circuit Design
 - Colab Hands-On (3): A Quantum Neuron
- Co-Design toward Quantum Advantage
 - Challenges?
 - Feedforward Neural Network
 - Colab Hands-On (4): End-to-End Neural Network on MNIST
 - Optimization for Quantum Neuron
 - Colab Hands-On (5): QuantumFlow
 - Results

Neural Network Accelerator Design on Classical Hardware

Neural Network Accelerator Design from Classical to Quantum Computing

- (1) Data Pre-Processing (*PreP*)
- (2) HW Acceleration
- (3) Data Post-Processing (*PostP*)
- (1) Data Pre-Processing (*PreP*)
- (2) HW/Quantum Acceleration
- (2.1) U_p Quantum-State-Preparation
- (2.2) U_N Quantum Neural Computation
- (2.3) M Measurement
- (3) Data Post-Processing (PostP)

 $PreP + U_P + U_N + M + PostP$

Post-Processing

- Can we encode an arbitrary number into quantum computer? Is it efficient?
- Yes / No

No, because it uses too many qubits!

This encoding is similar to classical bits, where each qubit is regarded as a binary number!

1-to-N mapping! (Boolean Function)

- Can we encode an arbitrary number into quantum computer? Is it efficient?
- Yes / No

No, because it uses too many qubits!

This encoding is similar to classical bits, where each qubit is regarded as a binary number!

1-to-N mapping! (Boolean Function)

- Can we take use of superposition of qubits to encode data? Is this solution perfect?
- Yes / No

- **No,** (1) data needs in the range of [0,1]! (2) same complexity O(1) as classical
- 1-to-1 mapping! (Angle Encoding)

- Can we encode an arbitrary number into quantum computer? Is it efficient?
- Yes / No

No, because it uses too many qubits!

This encoding is similar to classical bits, where each qubit is regarded as a binary number!

1-to-N mapping! (Boolean Function)

- Can we take use of superposition of qubits to encode data? Is this solution perfect?
- Yes / No

No, (1) data needs in the range of [0,1]!
(2) same complexity O(1) as classical

1-to-1 mapping! (Angle Encoding)

- Can we take use of entanglement of qubits to encode data? Is this solution perfect?
- Yes / No

No, (1) sum of the square of data need to be 1 (2) may have high cost to encode dataN-to-logN mapping! (Amplitude Encoding)

Encoding: 1-to-N v.s. 1-to-1 v.s. N-to-logN

Data Encoding	# of Qubit (C v.s. Q)	Data Limitation	Encoding Complexity
1-to-N	O(N) v.s. O(N ²)	Almost No!	Low
1-to-1	O(N) v.s. O(N)	[0,+1]	Low
N-to-logN	O(N) v.s. O(logN)	[-1,+1] and $\sum x^2 = 1$	High

George Mason University

- Can we encode an arbitrary number into quantum computer? Is it efficient?
- Yes / No

No, because it uses too many qubits!

This encoding is similar to classical bits, where each qubit is regarded as a binary number!

1-to-N mapping! (Boolean Function)

- Can we take use of superposition of qubits to encode data? Is this solution perfect?
- Yes / No

- No, (1) data needs in the range of [0,1]!
 (2) same complexity O(1) as classical

 1-to-1 mapping! (Angle Encoding)
- Can we take use of entanglement of qubits to encode data? Is this solution perfect?
- Yes / No

- No, (1) sum of the square of data need to be 1 (2) may have high cost to encode data
- n-to-logn mapping! (Amplitude Encoding)

$PreP + U_P + U_N + M + PostP$: Data Pre-Processing

- Given: (1) 28×28 image, (2) the number of qubits to encode data (say Q=4 qubits in the example)
- **Do:** (1) downsampling from 28×28 to $2^Q = 16 = 4 \times 4$; (2) converting data to be the state vector in a unitary matrix
- Output: A unitary matrix, $M_{16\times16}$

	Step 2: Formulate Unitary Matrix	0.0275	0.2941	0.2118	[0.0039
Unitary matrix:		0.0667			
	Applying SVD method	0.0588	0.5216	0.3176	0.0863
	(See Listing 1 in ASP-DAC SS Paper)	0.0039]	0.1725	0.3608	[0.1137

[SS] W. Jiang, et al. When Machine Learning Meets Quantum Computers: A Case Study, ASP-DAC'21

$PreP + U_P + U_N + M + PostP --- Data Encoding / Quantum State Preparation$

- Given: The unitary matrix provided by PreP, M_{16×16}
- Do: Quantum-State-Preparation, encoding data to qubits
- Verification: Check the amplitude of states are consistent with the data in the unitary matrix, $M_{16\times16}$

Let's use a 2-qubit system as an example to encode a matrix $M_{4\times4}$

$$\begin{bmatrix} 0.3 & 0.5 \\ 0.7 & 0.9 \end{bmatrix} \xrightarrow{PreP} \begin{cases} \begin{array}{c} \textbf{O.2343} & X & X & X \\ \textbf{O.3904} & X & X & X \\ \textbf{O.5466} & X & X & X \\ \textbf{O.7028} & X & X & X \\ \end{array} \end{cases} \xrightarrow{U_P} \begin{vmatrix} \textbf{O} \rangle \\ |\textbf{O} \rangle \qquad \text{input}$$

State Transition:

data_matrix |00>

IBM Qiskit Implementation:

```
inp = QuantumRegister(4, "in_qubit")
circ = QuantumCircuit(inp)
iniG = UnitaryGate(data_matrix, label="input")
circ.append(iniG, inp[0:4])
```

Hands-On Tutorial (1) $PreP + U_P$

Agenda – Session 2: QuantumFlow

- General Framework for Quantum-Based Neural Network Accelerator
 - Data Preparation and Encoding
 - Colab Hands-On (2): From Classical Data to Quantum Data
 - Quantum Circuit Design
 - Colab Hands-On (3): A Quantum Neuron
- Co-Design toward Quantum Advantage
 - Challenges?
 - Feedforward Neural Network
 - Colab Hands-On (4): End-to-End Neural Network on MNIST
 - Optimization for Quantum Neuron
 - Colab Hands-On (5): QuantumFlow
 - Results

- **Given:** (1) A circuit with encoded input data x; (2) the trained binary weights w for one neural computation, which will be associated to each data.
- **Do:** Place quantum gates on the qubits, such that it performs $\frac{(x*w)^2}{\|x\|}$.
- Verification: Whether the output data of quantum circuit and the output computed using torch on classical computer are the same.

Target:
$$O = \left[\frac{\sum_{i}(x_i \times w_i)}{\sqrt{\|x\|}}\right]^2$$

Step 1: $m_i = x_i \times w_i$

- Target: $O = \left[\frac{\sum_i (x_i \times w_i)}{\sqrt{\|x\|}}\right]^2$ Assumption 1: Parameters/weights (W₀ --- W_N) are binary weight, either +1 or -1
 - Assumption 2: The weight $W_0 = +1$, otherwise we can use -w (quadratic func.)

Step 2:
$$n = \left[\frac{\sum_{i}(m_i)}{\sqrt{\|x\|}}\right]$$

Step 3: $0 = n^2$

Step 1: $m_i = x_i \times w_i$

EX: 4 input data on 2 qubits

$$w = \begin{bmatrix} +1 \\ +1 \\ +1 \\ -1 \end{bmatrix} \qquad q_1 \qquad \qquad \text{input}$$

Input

|00⟩ |01⟩ |10⟩

|11>

Output

CZ

Step 1: $m_i = x_i \times w_i$

EX: 4 input data on 2 qubits

$$w = \begin{bmatrix} +1 \\ +1 \\ +1 \\ -1 \end{bmatrix} \quad q_0 \quad \text{input} \quad Z$$

$$w = \begin{bmatrix} +1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \quad q_0 \quad \text{input} \quad Z$$

$$\text{input} \quad \text{input}$$

$$\mathbf{G1} \quad \mathbf{G2} \quad \mathbf{G3}$$

Input

Output

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} a_0 & |00\rangle \\ a_1 & |01\rangle \\ a_2 & |10\rangle \\ a_3 & |11\rangle \end{bmatrix} - \rightarrow \begin{bmatrix} a_0 & |00\rangle \\ -a_1 & |01\rangle \\ a_2 & |10\rangle \\ a_3 & |11\rangle \end{bmatrix}$$

$$G3 \times (G2 \times (G1 \times |q_0q_1\rangle)) = (G3 \times G2 \times G1) \times |q_0q_1\rangle = (X \otimes I) \times CZ \times (X \otimes I)$$

Step 1: $m_i = x_i \times w_i$

EX: 4 input data on 2 qubits

$$w = \begin{bmatrix} +1 \\ +1 \\ +1 \\ -1 \end{bmatrix} \quad q_0 \quad -1 \quad \text{input} \quad Z$$

$$w = \begin{bmatrix} +1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad q_1 \qquad \text{input} \qquad X \qquad X$$

$$w = \begin{bmatrix} +1 \\ +1 \\ -1 \\ +1 \end{bmatrix} \quad q_0 \quad \text{input} \quad X \quad Z \quad X$$

Input

Output

 $|00\rangle$

|01>

|10>

|11>

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} a_0 & |00\rangle \\ a_1 & |01\rangle \\ a_2 & |10\rangle \\ a_3 & |11\rangle \end{bmatrix} \longrightarrow \begin{bmatrix} a_0 \\ a_1 \\ -a_2 \\ a_3 \end{bmatrix}$$

$$(I \otimes X) \times CZ \times (I \otimes X)$$

Step 1: $m_i = x_i \times w_i$

EX: 4 input data on 2 qubits

$$w = \begin{bmatrix} +1 \\ +1 \\ +1 \\ -1 \end{bmatrix} \quad q_0 \quad - \quad \text{input} \quad \boxed{Z}$$

$$w = \begin{bmatrix} +1 \\ +1 \\ -1 \\ +1 \end{bmatrix} \quad q_0 \quad -1 \quad \text{input} \quad X \quad Z \quad X \quad -1$$

$$w = \begin{bmatrix} +1 \\ +1 \\ +1 \\ -1 \end{bmatrix} \text{ or } \begin{bmatrix} +1 \\ +1 \\ -1 \\ -1 \end{bmatrix} \text{ or } \begin{bmatrix} +1 \\ -1 \\ -1 \\ -1 \end{bmatrix} \text{ or } \begin{bmatrix} +1 \\ +1 \\ -1 \\ +1 \end{bmatrix} \text{ or } \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix} \text{ or } \begin{bmatrix} +1 \\ -1 \\ +1 \end{bmatrix}$$

Flip the sign of $|11\rangle$

$$q_0 \longrightarrow Q$$
 $q_1 - Z$

Flip the sign of $|01\rangle$

$$q_0$$
 Z q_1 Q_1

Flip the sign of $|10\rangle$

Step 1: $m_i = x_i \times w_i$

EX: 8 input data on 3 qubits

Flip the sign of |111>

Step 1: $m_i = x_i \times w_i$

EX: 16 input data on 4 qubits

Flip the sign of $|1111\rangle$

Step 2:
$$n = \left[\frac{\sum_{i}(m_i)}{\sqrt{||x||}}\right]$$

 $H^{\otimes 2}$

Input

Output

a_0	m_0	00>
a_1	m_1	01>
$-a_2$	m_2	10>
$-a_3$	m_3	11>

$\sum_{i} (m_i) / \sqrt{\ x\ }$	00>
Do not care 1	01>
Do not care 2	10>
Do not care 3	11>

$PreP + U_P + U_N + M + PostP$ -- Neural Computation (Step 3) & Measurement

Input

$\sum_{i} (m_i) / \sqrt{\ x\ }$	000>
0	001>
Do not care 1	010>
0	011>
Do not care 2	100>
0	101>
Do not care 3	110>
0	111)

$X^{\otimes 2}$

Do not care 3	000}
0	001>
Do not care 2	010>
0	011>
Do not care 1	100>
0	101>
$\sum_{i} (m_i) / \sqrt{\ x\ }$	110>
0	111}

CCX

Do not care	000}
0	001}
Do not care	010}
0	011⟩
Do not care	100⟩
0	101⟩
0	110}
$\sum_{i} (m_i) / \sqrt{\ x\ }$	111)

Output

$$P\{O = |1\rangle\} = P\{|001\rangle\} + P\{|011\rangle\} + P\{|101\rangle\} + P\{|111\rangle\} = \left[\frac{\sum_{i}(m_{i})}{\sqrt{\|x\|}}\right]^{2}$$

Hands-On Tutorial (2) $PreP + U_P + U_N$

Agenda – Session 2: QuantumFlow

- General Framework for Quantum-Based Neural Network Accelerator
 - Data Preparation and Encoding
 - Colab Hands-On (2): From Classical Data to Quantum Data
 - Quantum Circuit Design
 - Colab Hands-On (3): A Quantum Neuron
- Co-Design toward Quantum Advantage
 - Challenges?
 - Feedforward Neural Network
 - Colab Hands-On (4): End-to-End Neural Network on MNIST
 - Optimization for Quantum Neuron
 - Colab Hands-On (5): QuantumFlow
 - Results

Challenge 1: Non-linearity is Needed, But Difficult in Quantum Circuit

Challenge 2: Quantum-Classical Interface is Expensive

Ref [1]

Table 2 Complexity of each step in hybrid quantum-classical computing for deep neural network with U-LYR.

Complexity	State-preparation	Computation	Measurement
Depth (T)	$O(d \cdot \sqrt{n})$	$O(d \cdot \log^2 n)$	O(d)
Qubits (S)	O(n)	$O(n \cdot \log n)$	$O(n \cdot \log n)$
Cost (TS)	$O(d \cdot n^{\frac{3}{2}})$ $O(d \cdot n^{\frac{3}{2}})$ dominate	$O(d \cdot n \cdot \log^3 n)$	$O(d \cdot n \cdot \log n)$
Total (TS)	$O(d \cdot n^{\frac{3}{2}})$ dominate		

Challenge 3: High Complexity in the Previous Design

Cost Complexity

Classical Computing			
	No Parallelism	Full Parallelism	
Time (T)	O(<i>N</i>)	O(1)	
Space (S)	O(1)	O(<i>N</i>)	
Cost (TS)	O(<i>N</i>)	O(<i>N</i>)	

Quantum Computing			
	Previous Design	Optimization	
Circuit Depth (T)	O(<i>N</i>)	???	
Qubits (S)	$O(\log N)$	O(N)	
Cost (TS)	$O(N \cdot \log N)$	target $O(ploylog N)$	

Agenda – Session 2: QuantumFlow

- General Framework for Quantum-Based Neural Network Accelerator
 - Data Preparation and Encoding
 - Colab Hands-On (2): From Classical Data to Quantum Data
 - Quantum Circuit Design
 - Colab Hands-On (3): A Quantum Neuron

Co-Design toward Quantum Advantage

- Challenges?
- Feedforward Neural Network
- Colab Hands-On (4): End-to-End Neural Network on MNIST
- Optimization for Quantum Neuron
- Colab Hands-On (5): QuantumFlow
- Results

Co-Design Framework

Design Direction 1: NN → **Quantum Circuit**

Design Direction 2: Quantum Circuit → NN

Design Direction 3: NN → **Quantum Circuit**

N numbers are encoded to N qubits

Apply Our Framework to Address Challenges 1 & 2 (non-linear & Q-C comm.)

- (1) Data Pre-Processing (*PreP*)
- (2) HW/Quantum Acceleration
- (2.1) rvU_p Quantum-State-Preparation
- (2.2) *rvU_N* Quantum Neural Computation
- (2.3) M Measurement
- (3) Data Post-Processing (*PostP*)

rvU_P --- Data Encoding / Quantum State Preparation

- **Given:** A vector of input data, ranging from [0,1] (do scaling in *PreP* if range out of [0,1])
- **Do:** Applying rotation gate to encode each data to one qubits
- Output: A quantum circuit, where the probability of each qubit to be $|1\rangle$ is the same as the corresponding input data

Determination of θ_i :

$$\theta_i = 2 \times \arcsin(\sqrt{x_i})$$

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + (\cos\phi + i\cdot\sin\phi)\cdot\sin\frac{\theta}{2}|1\rangle$$

rvU_N --- Neural Computation

- **Given:** (1) A circuit with encoded input data x; (2) the trained binary weights w for one neural computation, which will be associated to each data.
- **Do:** Place quantum gates on qubits, such that it performs $\frac{(x*w)^2}{\|x\|^2}$, where x are random variables

Target:
$$O = \left[\frac{\sum_{i}(x_i \times w_i)}{\|x\|}\right]^2$$

- Target: $O = \left[\frac{\sum_i (x_i \times w_i)}{\|x\|}\right]^2$ Assumption 1: Parameters/weights (W₀ --- W_N) are binary weight, either +1 or -1 Assumption 2: The weight $W_0 = +1$, otherwise we can use -w (quadratic func.)

Step 1:
$$m_i = x_i \times w_i$$

Step 2:
$$n = \left\lceil \frac{\sum_{i} (m_i)}{\|x\|} \right\rceil$$

Step 3:
$$O = n^2$$

rvU_N --- Neural Computation: Step 1

Step 1: $m_i = x_i \times w_i$

EX: 4 input data on 4 qubits

rvU_N --- Neural Computation: Step 2

Step 2:
$$n = \left[\frac{\sum_{i}(m_i)}{\|x\|}\right]$$

EX: 2 input data on 2 qubits

r.v.	-1 (1))	+1 (0))
m_0	p_0	q_0
m_1	p_1	q_1

r.v.	-1	0	+1
n	p_0p_1	$p_0 q_1 + p_1 q_0$	q_0q_1

____Input

000>
001>
010>
011>
100⟩
101>
110>
111)

IIH+CZs

$\sqrt{q_0q_1}/\sqrt{2}$	000}
$\sqrt{q_0q_1}/\sqrt{2}$	001>
$-\sqrt{q_0p_1}/\sqrt{2}$	010}
$\sqrt{q_0p_1}/\sqrt{2}$	011>
$\sqrt{p_0q_1}/\sqrt{2}$	100>
$-\sqrt{p_0q_1}/\sqrt{2}$	101>
$-\sqrt{p_0p_1}/\sqrt{2}$	110>
$-\sqrt{p_0p_1}/\sqrt{2}$	111)

IIH

$\sqrt{q_0q_1}$	000}
	100>
0	001>
	101>
0	010>
	110>
$-\sqrt{p_0p_1}$	011>
	111)

rvU_N --- Neural Computation: Step 3

Classical:

$$E(0) = E(n^2)$$

= 0 × (p₀q₁ + p₁q₀) + 1 × (q₀q₁+p₀p₁)

Step 3:
$$0 = n^2$$

r.v.	-1	0	+1
n	p_0p_1	$p_0 q_1 + p_1 q_0$	q_0q_1

r.v.	0	+1
n^2	$p_0q_1 + p_1q_0$	$q_0q_1 + p_0p_1$

EX: 2 input data on 2 qubits

Input

$\sqrt{q_0q_1}$	000
	001>
0	010}
	011>
0	100>
	101>
$-\sqrt{p_0p_1}$	110>
	111}

IIX

	000}
$\sqrt{q_0q_1}$	001>
	010}
0	011>
	100⟩
0	101⟩
	110⟩
$\boxed{-\sqrt{p_0p_1}}$	111)

Quantum:

$$P(E = |1\rangle)$$
= $\sqrt{q_1 q_0}^2 + (-\sqrt{p_1 p_0})^2$
= $q_0 q_1 + p_0 p_1$

rvU_N --- Neural Computation

	$ 1\rangle$	$ 0\rangle$
	-1	+1
\mathbf{X}_{0}	\mathbf{p}_0	q_0
\mathbf{x}_{1}	\mathbf{p}_1	q_1
:		
X _{m-1}	p _{m-1}	q_{m-1}

у	-1	$\frac{-m+2}{m}$	$0 \cdots \frac{m-2}{m}$	1
	$\prod p_i$	$p_{m-1}p_1q_0$	$\boldsymbol{q}_{m\text{-}1\dots}\boldsymbol{q}_1\boldsymbol{p}_0$	$\Pi \textbf{q}_{i}$
		$p_{m-1}^{+}q_{1}p_{0}$	$q_{m-1} p_1 q_0$	
		+ :	+ :	
		$q_{m-1}p_{1}p_{0}$	$p_{m-1}q_{1}q_{0}$	

y ²	0	$\left(\frac{\text{m-2}}{\text{m}}\right)^2$	1
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

m-k Encoder	Amplitude									
States	S_0	S_1	S_2	S_3						
$ 000\rangle\otimes 00\rangle$	$\sqrt{q_{m-1}q_{m-2}q_0}$	$\sqrt{q_{m-1}q_{m-2}q_{0}}$	$\sqrt{q_{m-1}q_{m-2}q_{0}}$	$\sqrt{q_{m-1}q_{m-2}q_0}$						
000⟩⊗ 01⟩		$\frac{1}{2^{k/2}} \stackrel{\forall q_{m-1} q_{m-2} q_0}{\cdots}$	$\frac{1}{2^{k/2}} \stackrel{\forall q_{m-1} q_{m-2} q_0}{\cdots}$	xxxxxxxxx						
000⟩⊗ 11⟩	0	$\sqrt{q_{m-1}q_{k-1}q_0}$	$\sqrt{q_{m-1}q_{m-2}q_0}$	xxxxxxxxx						
001>\otimes 00>	$\sqrt{q_{m-1}q_{m-2}p_0}$	$\sqrt{q_{m-1}q_{m-2}p_0}$	$\sqrt{q_{m-1}q_{m-2}p_0}$	$(m-2)/m \sqrt{q_{m-1}q_{m-2}p_0}$						
001⟩⊗ 01⟩		$\frac{1}{2^{k/2}} \stackrel{\forall q_{m-1}q_{m-2}p_0}{\cdots}$	$\frac{1}{2^{k/2}} - \sqrt{q_{m-1}} q_{m-2} p_0$	XXXXXXXXXX 						
001⟩⊗ 11⟩	0	$\sqrt{q_{m-1}q_{m-2}p_0}$	$\sqrt{q_{m-1}q_{m-2}p_0}$	xxxxxxxxx						
•••	•••	•••	•••	•••						
111⟩⊗ 00⟩	$\sqrt{p_{m-1}p_{m-2}p_0}$	$\sqrt{p_{m-1}q_{m-2}q_0}$	$\sqrt{p_{m-1}q_{m-2}q_0}$	$\left \frac{(2-m)}{m} \sqrt{q_{m-1}q_{m-2}p_0} \right $						
111⟩⊗ 01⟩		$\frac{1}{2^{k/2}} \stackrel{\forall p_{m-1} q_{m-2} q_0}{\cdots}$	$\frac{1}{2^{k/2}} - \sqrt{p_{m-1}q_{m-2}q_0}$	XXXXXXXXX						
 111⟩⊗ 11⟩	0	$\sqrt{p_{m-1}q_{m-2}q_0}$	$-\sqrt{p_{m-1}q_{m-2}q_0}$	xxxxxxxxx						

Implementing Feedforward Net w/ Non-Linearity, w/o Measurement!

Hands-On Tutorial (3) $PreP+U_P+U_N+M+PostP$ (MNIST)

Agenda – Session 2: QuantumFlow

- General Framework for Quantum-Based Neural Network Accelerator
 - Data Preparation and Encoding
 - Colab Hands-On (2): From Classical Data to Quantum Data
 - Quantum Circuit Design
 - Colab Hands-On (3): A Quantum Neuron

Co-Design toward Quantum Advantage

- Challenges?
- Feedforward Neural Network
- Colab Hands-On (4): End-to-End Neural Network on MNIST
- Optimization for Quantum Neuron
- Colab Hands-On (5): QuantumFlow
- Results

Challenge 3: High Complexity in the Previous Design

Cost Complexity

Classical Computing								
No Parallelism Full Parallelism								
Time (T)	O(<i>N</i>)	O(1)						
Space (S)	O(1)	O(<i>N</i>)						
Cost (TS)	O(<i>N</i>)	O(<i>N</i>)						

Quantum Computing								
Previous Design Optimization								
Circuit Depth (T)	O(<i>N</i>)	???						
Qubits (S)	O(log N)	O(N)						
Cost (TS)	$O(N \cdot \log N)$	target $O(ploylog N)$						

QuantumFlow: Taking NN Property to Design QC

 $[0, 0.59, 0, 0, 0, 0.07, 0, 0, 0.66, 0.33, 0.33, 0, 0, 0, 0]^{T}$

$$(v_o; v_{x1}; v_{x2}; ...; v_{xn}) \times \begin{pmatrix} 1 \\ 0 \\ ... \\ 0 \end{pmatrix} = (v_0)$$

 $S1 = [0, 0.59, 0, 0, 0, 0.07, 0, 0, 0.66, 0.33, 0.33, 0, 0, 0, 0]^T$

S1 -> S2:

$$W = [+1, -1, +1, +1, -1, -1, +1, +1, +1, -1, -1, +1, +1, -1, +1, +1]^{T}$$

$$|0000> |0001> |0010> |0011> |0100> |0101> |0110> |0111> |1000> |1001> |1010> |1011> |1100> |1111> |1110> |1111> |1$$

$$S2 = [0, -0.59, 0, 0, -0, -0.07, 0, 0, 0, -0.66, -0.33, 0.33, 0, -0, 0, 0]^T$$

Implementation 1 (example in Quirk):

Implementation 2:

[ref] Tacchino, F., et al., 2019. An artificial neuron implemented on an actual quantum processor. npj Quantum Information, 5(1), pp.1-8.

QuantumFlow: Taking NN Property to Design QC

Property from NN

- The weight order is not necessary to be fixed, which can be adjusted
 if the order of inputs are adjusted accordingly
- Benefit: No need to require the positions of sign flip are exactly the same with the weights; instead, only need the number of signs are the same.


```
S1 = [0, 0.59, 0, 0, 0, 0.07, 0, 0, 0.66, 0.33, 0.33, 0, 0, 0, 0]^T
ori
+ - + + -
S1' = [0, 0.59, 0, 0.33, 0.33, 0.07, 0, 0, 0.66, 0, 0, 0, 0, 0, 0]^T
```

QuantumFlow: Taking NN Property to Design QC

Algorithm 4: QF-Map: weight mapping algorithm

```
Input: (1) An integer R \in (0, 2^{k-1}]; (2) number of qbits k;
Output: A set of applied gate G
void recursive(G,R,k){
     if (R < 2^{k-2}){
          recursive(G,R,k-1); // Case 1 in the third step
     else if (R == 2^{k-1}){
          G.append(PG_{2k-1}); // Case 2 in the third step
          return;
     }else{
          G.append(PG_{2^{k-1}});
          recursive(G, 2^{k-1} - R, k-1); // Case 3 in the third step
// Entry of weight mapping algorithm
set main(R,k){
     Initialize empty set G;
     recursive(G,R,k);
     return G
```

Used gates and Costs

Gates	Cost
Z	1
CZ	1
C^2Z	3
C^3Z	5
C ⁴ Z	6
•••	
C^kZ	2k-1

Worst case: all gates

 $O(k^2)$

Hands-On Tutorial (4) $PreP + U_P + Optimized\ U_N + M + PostP\ (MNIST)$

Agenda – Session 2: QuantumFlow

- General Framework for Quantum-Based Neural Network Accelerator
 - Data Preparation and Encoding
 - Colab Hands-On (2): From Classical Data to Quantum Data
 - Quantum Circuit Design
 - Colab Hands-On (3): A Quantum Neuron
- Co-Design toward Quantum Advantage
 - Challenges?
 - Feedforward Neural Network
 - Colab Hands-On (4): End-to-End Neural Network on MNIST
 - Optimization for Quantum Neuron
 - Colab Hands-On (5): QuantumFlow
 - Results

QuantumFlow Results

[ref] Tacchino, F., et al., 2019. An artificial neuron implemented on an actual quantum processor. npj Quantum Information, 5(1), pp.1-8.

Hands-On Tutorial (5) Comparison

QuantumFlow Achieves Over 10X Cost Reduction

	Structure		MLP(C)		FFNN(Q)			QF-hNet(Q)						
Dataset	In	L1	L2	L1	L2	Tot.	L1	L2	Tot.	Red.	L1	L2	Tot.	Red.
{1,5}	16	4	2				80	38	118	1.27×	74	38	112	1.34×
{3,6}	16	4	2	122	1.0	1.50	96	38	134	1.12 ×	58	38	96	1.56 ×
{3,8}	16	4	2	132	18	150	76	34	110	1.36 ×	58	34	92	1.63 ×
{3,9}	16	4	2				98	42	140	$\textbf{1.07} \times$	68	42	110	1.36 ×
$\{0,3,6\}$	16	8	3	264	51	315	173	175	348	$\textbf{0.91} \times$	106	175	281	1.12 ×
{1,3,6}	16	8	3	204	31	313	209	161	370	$\textbf{0.85} \times$	139	161	300	1.05 ×
$\{0,3,6,9\}$	64	16	4	2064	132	2196	1893	572	2465	$\textbf{0.89} \times$	434	572	1006	2.18 ×
$\{0,1,3,6,9\}$	64	16	5	2064	165	2220	1809	645	2454	$\textbf{0.91} \times$	437	645	1082	2.06 ×
$\{0,1,2,3,4\}$	64	16	5	2004	103	<i>LLL</i> 9	1677	669	2346	0.95 ×	445	669	1114	2.00 ×
{0,1,3,6,9}*	256	8	5	4104	85	4189	5030	251	5281	0.79 ×	135	251	386	10.85×

^{*:} Model with 16×16 resolution input for dataset $\{0,1,3,6,9\}$ to test scalability, whose accuracy is 94.09%, which is higher than 8×8 input with accuracy of 92.62%.

[ref of FFNN] Tacchino, F., et al., 2019. Quantum implementation of an artificial feed-forward neural network. *arXiv* preprint *arXiv*:1912.12486.

QF-Nets Achieve the Best Accuracy on MNIST

			w/o BN			w/ BN					
Dataset	binMLP(C)	FFNN(Q)	MLP(C)	QF-pNet	QF-hNet	binMLP(C)	FFNN(Q)	MLP(C)	QF-pNet	QF-hNet	
1,5	61.47%	61.47%	69.12%	69.12%	90.33%	55.99%	55.99%	85.30%	84.56%	96.60%	
3,6	72.76%	72.76%	94.21%	91.67%	97.21%	72.76%	72.76%	96.29%	96.39%	97.66%	
3,8	58.27%	58.27%	82.36%	82.36%	89.77%	58.37%	58.07%	86.74%	86.90%	87.20%	
3,9	56.71%	56.51%	68.65%	68.30%	95.49%	56.91%	56.71%	80.63%	78.65%	95.59%	
0,3,6	46.85%	51.63%	49.90%	59.87%	89.65%	50.68%	50.68%	75.37%	78.70%	90.40%	
1,3,6	60.04%	59.97%	53.69%	53.69%	94.68%	59.59%	59.59%	86.76%	86.50%	92.30%	
0,3,6,9	72.68%	72.33%	84.28%	87.36%	92.85%	69.95%	68.89%	82.89%	76.78%	93.63%	
0,1,3,6,9	50.00%	51.10%	49.00%	43.24%	87.96%	60.96%	69.46%	70.19%	71.56%	92.62%	
0,1,2,3,4	46.96%	50.01%	49.06%	52.95%	83.95%	64.51%	69.66%	71.82%	72.99%	90.27%	

[ref of FFNN] Tacchino, F., et al., 2019. Quantum implementation of an artificial feed-forward neural network. arXiv preprint arXiv:1912.12486.

On Actual IBM "ibmq_essex" Quantum Processor

wjiang8@gmu.edu

George Mason University

4400 University Drive Fairfax, Virginia 22030

Tel: (703)993-1000