Espacios de probabilidad

DFN 1 (Espacio de probabilidad). *Un espacio muestral es la terna* $(\Omega, \mathcal{F}, \mathbb{P})$ *donde*

- $\cdot \Omega$ es el espacio muestral. Un conjunto no-vacío
- \mathcal{F} es la σ -álgebra, una colección de subconjuntos de Ω que contiene a Ω, \varnothing y es cerrada bajo complementos, e intersecciones <u>contables</u>.
- · Una medida $\mathbb{P}: \mathcal{F} \to [0,1]$ con $\mathbb{P}(\emptyset) = 0$ y $\mathbb{P}(\Omega) = 1$, tal que \mathbb{P} es σ -aditiva.

Teorema 1 (Propiedades de \mathbb{P}): Si \mathbb{P} es una medida de probabilidad válida se cumple:

- 1. $\mathbb{P}(A) \geq 0 \quad \forall A \in \mathcal{F}$.
- 2. $\mathbb{P}(\Omega) = 1$.
- 3. Si $A_1, A_2, \dots \in \mathcal{F}$ con $A_i \cap A_j = \emptyset \ \forall i \neq j$, entonces $\mathbb{P}(\bigcup_i A_i) = \sum_i \mathbb{P}(A_i)$.

Las propiedades 1 a 3 se conocen como los axiomas de Kolmogorov.

- 4. Para cualquier $A \in \mathcal{F}$, $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$.
- 5. Si $A\subseteq B$ con $A,B\in\mathcal{F}\implies \mathbb{P}(B\setminus A)=\mathbb{P}(B)-\mathbb{P}(A).$
- 6. Si $A\subseteq B$ con $A,B\in\mathcal{F}\implies \mathbb{P}(A)\leq \mathbb{P}(B)$. Conocida como *monotonicidad*.
- 7. Para cualesquiera $A_1, A_2 \in \mathcal{F}$ se cumple $\mathbb{P}(A_1 \cup A_2) = \mathbb{P}(A_1) + \mathbb{P}(A_2) \mathbb{P}(A_1 \cap A_2)$. Conocido como inclusión exclusión.
- 8. Para cualquier familia $\{A_i\}_{i\in I}\in \mathcal{F}$ se cumple que $\mathbb{P}(\bigcup_i A_i)\leq \sum_i \mathbb{P}(A_i)$. Conocida como la desigualdad de Boole.

Cálculo de Probabilidades

Probabilidad condicional

El concepto de probabilidad condicional surge como una manera de medir probabilidades una vez que se ha reducido el espacio muestral.

DFN 2 (Probabilidad Condicional). Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de probabilidad y sean $A, B \in \mathcal{F}$ tal que $\mathbb{P}(B) > 0$. Entonces definimos

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Teorema 2: Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de probabilidad. Sea $B \in \mathcal{F}$ tal que $\mathbb{P}(B) > 0$. Sea $\mathbb{Q} : \mathcal{F} \to [0,1]$ definida como $\mathbb{Q}(A) := \mathbb{P}(A|B) = \frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}$. Entonces \mathbb{Q} es una medida válida de probabilidad sobre (Ω, \mathcal{F}) .

Teorema 3 (Probabilidad Total): Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de probabilidad. Sea $B_1, B_2, \ldots, B_n \in \mathcal{F}$ una partición de Ω . Entonces, para cualquier $A \in \mathcal{F}$, se satisface

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A|B) \cdot \mathbb{P}(B).$$

Teorema 4 (Teorema de Bayes): Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de probabilidad. Sea $B_1, B_2, \ldots, B_n \in \mathcal{F}$ una partición de Ω . Sea $A \in \mathcal{F}$ tal que $\mathbb{P}(A) > 0$. Entonces

$$\mathbb{P}(B_k|A) = \frac{\mathbb{P}(A|B_k) \cdot \mathbb{P}(B_k)}{\sum_{i=1}^n \mathbb{P}(A|B_i) \cdot \mathbb{P}(B_i)}.$$

DFN 3 (Eventos Independientes). Decimos que dos eventos $A, B \in \mathcal{F}$ son independientes si y solamente si $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$. En dado caso, denotamos que A y B son independientes como $A \perp B$.

Obs: La independencia de eventos es un caso muy particular. No se puede asumir que es la norma.

Teorema 5: Supongamos $A \perp B$ ($A, B \in \mathcal{F}$). Entonces se cumplen

- a) $A^c \perp B$.
- b) $A^c \perp B^c$.
- c) $A \perp B^c$.

Probabilidad condicional

Teorema 6 (Regla de la multiplicación): Sean $A_1,A_2,\ldots,A_n\in F$ cualesquiera tales que $\mathbb{P}(A_1\cap A_2\cap\cdots\cap A_n)>0$. Entonces

$$\mathbb{P}(\bigcap_{i=1}^{n} A_i) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 | A_1) \cdot \mathbb{P}(A_3 | A_1 \cap A_2) \cdots$$
$$\mathbb{P}(A_n | \bigcap_{i=1}^{n-1} A_n).$$

Variables Aleatorias

DFN 4 (Variable Aleatoria). Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de probabilidad. Se dice que $X:\Omega\to\mathbb{R}$ es una variable aleatoria (v.a) sobre el espacio si y solamente si

$$X^{-1}((-\infty, x]) = \{\omega \in \Omega \mid X(\omega) \le x\} \in \mathcal{F}.$$

La definición garantiza la permanencia en conjuntos medibles.

Las Variables Aleatorias se pueden clasificar en contínuas o discretas.

DFN 5 (Función de densidad de probabilidades). Asociada a toda v.a existe una función $f_X: \mathbb{R} \to [0,1]$ llamada función de densidad de probabilidades (f.d.p) dada por

$$f_X(x) := \mathbb{P}[\{\omega \in \Omega \mid X(\omega) = x\}].$$

Como azucar sintáctica podemos escribir lo anterior como

$$\mathbb{P}[\{\omega \in \Omega \mid X(\omega) = x\}] \stackrel{\text{not.}}{=\!=\!=\!=} \mathbb{P}[X = x].$$

Obs: Con el símbolo $\stackrel{\text{not.}}{=\!=\!=}$ señalamos que es una notación convencional, no una igualdad en el sentido riguroso.

DFN 6 (Soporte de la f.d.p). El conjunto $S \subseteq \mathbb{R}$ formado por los puntos con probabilidad no-cero es llamado el soporte de la función de densidad de probabilidades.

Variables Aleatorias

Teorema 7 (Propiedades de f_X): Sea f_X la f.d.p de X una variable aleatoria. Entonces

- 1. $f_X(x) \ge 0$ $x \in \mathbb{R}$.
- 2. (a) En el caso discreto: $\sum_{x \in \mathbb{R}} f_X(x) = 1$
 - (b) En el caso contínuo: $\int_{\mathbb{R}} f_X(x) = 1$.

DFN 7 (Función de distribución acumulada). Asociada a toda v.a se define una función $F_X : \mathbb{R} \to [0,1]$ llamada función de distribución acumulada (f.d.a) dada por

$$F_X(x) := \mathbb{P}[\{\omega \in \Omega \mid X(\omega) \le x\}].$$

Una vez más, abreviamos como

$$F_X(x) := \mathbb{P}[\{\omega \in \Omega \mid X(\omega) \le x\}] \xrightarrow{\text{not.}} \mathbb{P}[X \le x].$$

Obs: Vemos que

- $\cdot F_X(x) = \sum_{t \le x} f_X(t)$. En el caso discreto.
- $\cdot F_X(x) = \int_{-\infty}^x f_X(t) dt$. En el caso contínuo.

Teorema 8 (Propiedades de F_X): Sea F_X la f.d.a de una variable aleatoria. Entonces

- 1. F_X es monótona no-decreciente.
- 2. F_X es contínua con la derecha.
- 3. $\lim_{x \to -\infty} F_X(x) = 0 \& \lim_{x \to \infty} F_X(x) = 1$.

Características de una Variable Aleatoria

Estudiamos otras funciones asociadas a una v.a.

DFN 8 (Función de supervivencia). Se define la función de supervivencia de una v.a X como

$$S_X(x) := \mathbb{P}[\omega \in \Omega \mid X(\omega) > x].$$

Teorema 9 (Propiedades de S_X): La función de supervivencia S_X cumple

- 1. S_X es monótona no-creciente.
- 2. S_X es contínua por la derecha.
- 3. $S_X(0) = 1 \& \lim_{t \to \infty} S_X(t) = 0.$

Características de una Variable Aleatoria

DFN 9 (Función de riesgo). Si X es una variable aleatoria que modela el tiempo de falla de algún componente, definios la función o tasa de riesgo como

$$h_X(x) = \frac{f_X(x)}{S_X(x)}.$$

Mostramos las definiciones únicamente para el caso contínuo por brevedad.

DFN 10 (Esperanza). Sea X una v.a con f.d.f $f_X(x)$. Supongamos que $\sum_x |x| \cdot f_X(x)$ está acotada (en el caso discreto, la integral). Entonces, se define la esperanza de X como

$$\mathbb{E}[X] = \int_{\mathbb{R}} x \cdot f_X(x) \, dx$$

Teorema 10 (Ley del estadístico inconsciente): Sea X una variable aleatoria contínua, y $g:\mathbb{R}\to\mathbb{R}$ una función. Entonces

$$\mathbb{E}[g(X)] = \int_{\mathbb{R}} g(x) \cdot f_X(x) \, dx$$

DFN 11 (Varianza). Sea X una variable aleatoria con media μ . Entonces se define la varianza de X como

$$Var(X) = \mathbb{E}[(X - \mu)^2].$$

Teorema 11: $Var(X) = \mathbb{E}[X^2] - \mu^2$.

DFN 12 (*k*-ésimo momento de *X*). *Definimos el k-ésimo momento de la variable aleatoria X como*

$$\mathbb{E}\left[X^k\right] = \int_{\mathbb{R}} x^k \cdot f_X(x) \, dx$$

DFN 13 (k-ésimo centrado momento de X). Definimos el k-ésimo momento de la variable aleatoria X como

$$\mathbb{E}[(X-\mu)^k] = \int_{\mathbb{R}} (x-\mu)^k f_X(x)$$

Teorema 12 (Linealidad): Se cumple

- 1. $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b,$
- 2. $Var(aX + b) = a^2 Var(X)$.

Características de una Variable Aleatoria

DFN 14 (Funcion generadora de momentos). *Definimos la función generadora de momentos de la variable aleatoria X como*

$$M_X(t) = \mathbb{E}\left[e^{tX}\right]$$

Teorema 13: Sea X una v.a y sea M_X su función generadora de momentos. Entonces

$$\left. \frac{d^k}{dt^k} M_X(T) \right|_{t=0} = \mathbb{E}\left[x^k \right]$$

DFN 15 (Coeficiente de Asimetría). Se define el coef. de asimetría $\nu_3(X)$ como:

$$\nu_3(X) = \frac{\mathbb{E}[(X - \mu)^3]}{\mathbb{E}[(X - \mu)^2]^{3/2}}.$$

DFN 16 (Coeficiente de Kurtosis). *Se define el coef. de kurtosis* $\nu_3(X)$ *como:*

$$u_4(X) = \frac{\mathbb{E}[(X - \mu)^4]}{\mathbb{E}[(X - \mu)^2]^2}.$$

Distribución Uniforme Discreta

Decimos que una v.a X se distribuye uniforme discreta ($X \sim \text{unif}\{x_1, \dots, x_n\}$) si la probabilidad de que X tome cualquiera de los valores en $\{x_1, \dots, x_n\}$ es constante e igual a 1/n.

Su f.d.p es

$$f_X(x) = \frac{1}{n} \mathbb{1}_{\{x_1, \dots, x_n\}}(x)$$

su f.d.a es

$$F_X(x) = \begin{cases} 0 & \text{si } x < 1, \\ \frac{1}{n} & \text{si } 2 \le x < 3, \\ \frac{2}{n} & \text{si } 3 \le x < 4, \\ \vdots & & \\ \frac{n}{n} & \text{si } x \ge n. \end{cases}$$

Características:

$$\mathbb{E}[X] = \frac{1}{n} \sum_{i=1}^{n} x_i = \mu$$

$$\text{Var}[X] = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

$$M_X(t) = \frac{e^t (1 - e^{nt})}{n(1 - e^t)}.$$

Distribución Bernoulli

Decimos que X se distribuye Bernoulli ($X \sim \mathrm{Ber}(p)$) si modela un experimento con dos resultados: exito y fracaso con probabilidad p y 1-p respectivamente. Su f.d.p es

$$f_X(x) = p^x (1-p)^{1-x} \mathbb{1}_{\{0,1\}}(x)$$

su f.d.a es

$$F_X(x) = \begin{cases} 0 & \text{si } x < 0, \\ 1 - p & \text{si } 0 \le x < 1, \\ 1 & \text{si } x > 1. \end{cases}$$

Características:

$$\mathbb{E}[X] = p$$

$$Var[X] = p(1-p)$$

$$M_X(t) = (1-p)pe^t.$$

Distribución binomial

Decimos que X se distribuye binomial $(X \sim \text{bin}(n,p))$ si modela una serie de n ensayos independientes Bernoulli.

Su f.d.p es

$$f_X(x) = \binom{n}{x} p^x (1-p)^{n-x} \mathbb{1}_{\{0,1,\dots,n\}}(x)$$

su f.d.a no tiene una expresión reducida. Características:

$$\mathbb{E}[X] = np$$

$$Var[X] = np(1-p)$$

$$M_X(t) = (pe^t + (1-p))^n.$$

Distribución Geométrica

Decimos que X se distribuye binomial ($X\sim \mathrm{geo}(p)$) si modela una sucesión infinita ensayos independientes Bernoulli.

Su f.d.p es

$$f_X(x) = p(1-p)^{x-1} \mathbb{1}_{\{0,1,\dots\}}(x)$$

su f.d.a es

$$F_X(x) = \sum_{u \le x} f_X(u) \begin{cases} 0 & \text{si } x < 0, \\ 1 - (1 - p)^{k+1} & \text{si } k \le x < k + 1. \end{cases}$$

Características:

$$\mathbb{E}[X] = \frac{1-p}{p}$$

$$\operatorname{Var}[X] = \frac{1-p}{p^2}$$

$$M_X(t) = \frac{p}{1-(1-p)e^t}.$$

Distribución Binomial Negativa

Decimos que X se distribuye binomial negativa ($X \sim \min \operatorname{neg}(r,p)$) si modela el número de fracasos antes de obtener el r-ésimo éxito en una infinitos ensayos Bernoulli.

$$f_X(x) = \binom{r+x-1}{x} p^r (1-p)^x \mathbb{1}_{\{0,1,\dots\}}(x)$$

Distribución Binomial Negativa

Su f.d.a no tiene expresión reducida. Características:

$$\mathbb{E}[X] = \frac{r(1-p)}{p}$$

$$\operatorname{Var}[X] = \frac{r(1-p)}{p^2}$$

$$M_X(t) = \frac{p^r}{[1-(1-p)e^t]^r}$$

Distribución Hipergeométrica

Esta distribución modela la probabilidad de obtener un número particular de objetos en una muestra de tamaño n de N totales, con K de interés. Escribimos $X \sim \mathrm{hipergeo}(N,K,n)$.

Su f.d.p es

$$f_X(x) = \frac{\binom{K}{x} \binom{N-K}{n-x}}{\binom{N}{n}} \, \mathbb{1}_{\{0,1,\dots\}}(x)$$

Su f.d.a no tiene expresión reducida. Sus primeros dos momentos son

$$\mathbb{E}[X] = n\frac{K}{N},$$

$$Var[X] = n\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1}.$$

Distribución Poisson

Modela la el número de eventos que ocurren dentro de un intervalo de tiempo dado, conociendo la tasa media de ocurrencia λ . Escribimos $X \sim \text{Po}(\lambda)$ Su f.d.p es

$$f_X(x) = e^{-\lambda} \frac{\lambda^x}{x!} \, \mathbb{1}_{\{0,1,\dots\}}(x)$$

Características:

$$\mathbb{E}[X] = \lambda$$

$$Var[X] = \lambda$$

$$M_X(t) = e^{\lambda(e^t - 1)}.$$

Obs: Se puede aproximar una v.a $X \sim \text{bin}(n, p)$ mediante otra $Y \sim \text{Po}(\lambda)$ con $\lambda = np$.

Distribución Uniforme Contínua

Esta distribución modela un espacio equiprobable en el intervalo (a,b). Escribimos $X\sim \mathrm{unif}(a,b)$. Su f.d.p es

$$f_X(x) = \frac{1}{b-a} \mathbb{1}_{(a,b)}(x)$$

Su f.d.a es

$$F_X(x) = \begin{cases} 0 & \text{si } x \le a, \\ \frac{x-a}{b-a} & \text{si } a < x < b, \\ 1 & \text{si } x \ge b. \end{cases}$$

Características:

$$\mathbb{E}[X] = \frac{a+b}{2}$$

$$\operatorname{Var}[X] = \frac{(b-a)^2}{12}$$

$$M_X(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}.$$

Distribución Exponencial

Decimos $X\sim \exp(\lambda)$ con $\lambda>0$. Puede pensarse como la versión contínua de la distribución Poisson. Su f.d.p es

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{(0,\infty)}(x)$$

Su f.d.a es

$$F_X(x) = 1 - e^{-\lambda x} \mathbb{1}_{(0,\infty)}(x)$$

Características:

$$\mathbb{E}[X] = \frac{1}{\lambda}$$

$$Var[X] = \frac{1}{\lambda^2}$$

$$M_X(t) = \frac{\lambda}{\lambda - t}.$$

Distribución Gamma

Decimos $X \sim \operatorname{gamma}(\alpha,\lambda) \operatorname{con} \alpha > 0$, $\lambda > 0$. Su f.d.p es

$$f_X(x) = \frac{(\lambda x)^{\alpha - 1}}{\Gamma(\alpha)} \mathbb{1}_{(0, \infty)}(x)$$

con

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx$$

la función Gamma.

Su f.d.a no tiene expresión compacta.

Características:

$$\mathbb{E}[X] = \frac{\alpha}{\lambda}$$

$$Var[X] = \frac{\alpha}{\lambda^2}$$

$$M_X(t) = \left(\frac{\lambda}{\lambda - t}\right)^{\alpha}.$$

Distribución Beta

Decimos $X \sim \text{beta}(a, b)$. Su f.d.p es

$$f_X(x) = \frac{1}{B(a,b)} x^{a-1} \mathbb{1}_{(0,1)}(x)$$

con

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt$$

la función Beta.

Su f.d.a no tiene expresión compacta.

Características:

$$\mathbb{E}[X] = \frac{a}{a+b}$$

$$\operatorname{Var}[X] = \frac{ab}{(a+b+1)(a+b)^2}$$

$$M_X(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \frac{B(\alpha+k,\beta)}{B(\alpha,\beta)}$$

Distribución Weibull

Decimos $X \sim \text{Weibull}(\alpha, \lambda)$ Su f.d.p es

$$f_X(x) = \lambda \alpha (\lambda x)^{\alpha - 1} e^{-(\lambda \alpha)^a} \mathbb{1}_{(0,\infty)}(x)$$

Su f.d.a es

$$F_X(x) = 1 - e^{-(\lambda x)^a} \mathbb{1}_{(0,\infty)}(x)$$

Sus primeros dos momentos son

$$\mathbb{E}[X] = \frac{1}{\lambda} \Gamma\left(1 + \frac{1}{\lambda}\right),$$

$$\operatorname{Var}[X] = \frac{1}{\lambda^2} \left[\Gamma\left(1 + \frac{2}{\alpha}\right) - \Gamma^2\left(1 + \frac{1}{\alpha}\right)\right].$$

Distribución Normal

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Su f.d.a no tiene una forma compacta, y la integral que la describe no tiene forma cerrada.

Características:

$$\mathbb{E}[X] = \mu$$

$$Var[X] = \sigma^2$$

$$M_X(t) = e^{\mu t} e^{\frac{1}{2}\sigma^2 t^2}$$

Para la mayoría de los cálculos es necesario tener en cuenta lo siguiente:

Si $X \sim \mathrm{N}(\mu, \sigma^2)$, entonces $Z = \frac{X-\mu}{\sigma} \sim N(0,1)$. Por lo tanto, $\mathbb{P}[X \leq x] = \Phi\left(\frac{x-\mu}{\sigma}\right)$.

Donde

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} du.$$

Para una normal estándar se cumple:

$$\mathbb{E}[X] = 0$$

$$Var[X] = 1$$

$$M_X(t) = e^{\frac{1}{2}t^2}.$$