

## HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY FACULTY OF TRANSPORTATION ENGINEERING

Department of Automotive Engineering



# CAPSTONE PROJECT: DESIGN A CALIBRATION EQUIPMENT FOR TOYOTA PRIUS 2006 STEERING TORQUE SENSOR

Student: Bui Phuoc Vinh - ID: 2053584

Instructor: Ph.D. Ngo Dac Viet, Ph.D. Tran Dang Long

**Technical** 

require-

ments

Circuit

Mechanical

frame

STM32

program

General

layout

design

Technical

design

Acceptance<sub>4</sub>

Evaluate the

equipment

Test the

frame and

circuit board

Creating the model,

calibrating the sensor,

programming

V-model of the project



#### of torque applied to the sensor, then display the digital value in the GUI.

- **☐** Key problems: - Design a mechanical frame for mounting the EPS assy.
- Design a circuit board to process the signal before inputting it to STM32 Microcontroller.
- Convert the sensor's electrical signal to digital signal using the ADC in STM32 and process the digital signal.

- Fast response of processed signal (<1ms); - Accuracy of estimated torque  $\approx$  90%.

#### ☐ Technical requirements: General layout of the calibration equipment for Toyota Prius 2006 steering torque sensor II. CIRCUIT DESIGN TRQG OUT-Torque OUT+ TRQV 12V to 8V sensor's STM32CubeMonitor VOUT connector TRQ1 step Current GUI in Laptop down to Voltage LM358:A i module converter (2) module VOUT GND IN+ **STM32F411VET6** 12V Signal 3V-limited Microcontroller Signal output<sup>(\*)</sup> **b**uffer Moving 12V to 5V

ADC(\*\*)

GND

PA1

average

filter(\*\*

Wiring diagram of Pre-ADC circuit

3V-limited

output

OUT+

OUT-

step down

module (3)









Equivalent torque:  $T_{eq} = mgd$ In which,  $g = 9.80665 (ms^{-2})$ d = 0.2 (m)*m* is the mass of the water bottle (kg) that can be adjusted.

**Linear** correlation between signal voltage (V) and applied torque on the steering wheel (Nm): T = 10.9225U - 20.3983

| 4.75                                                                              | 9.32       | 7.49 | 2.70                    | 2.82             | 1.02      |
|-----------------------------------------------------------------------------------|------------|------|-------------------------|------------------|-----------|
| 5                                                                                 | 9.81       | 7.60 | 2.74                    | 2.72             | 1.09      |
| 10.00<br>8.00<br>6.00<br>4.00<br>2.00<br>0.00<br>-2.00<br>-4.00<br>-6.00<br>-8.00 | Voltage    |      |                         | s. Steering toro |           |
| -10.00<br>0.7                                                                     | 75 1.00 1. |      | 75 2.00 :<br>oltage (V) | 2.25 2.50 2      | 2.75 3.00 |

**Applied** 

torque

2.06

9.81

-7.94

-4.81

Measurement table data

I (mA)

5.21

5.34

5.46

Weight Torque

0.25

(Nm)

0.00

0.49

0.98

Right side (CW) Left side (CCW)

1.88

2.66

I (mA)

5.21

5.07

4.96

2.94

Evaluation table data

torque

2.07

9.38

-7.9

-4.78

-7.07

Displayed Relative

error

0.07%

0.51%

4.53%

0.55%

0.53%

0.13%

 $\mathbf{U}(V)$ 

1.88

1.83

### V. RESULTS

Voltage-signal processing circuit

\*3V-limited output: this is to prevent

the signal from exceeding 3V when go

to PA1 for protecting the STM32.



Testing the complete equipment

Torque\_Filtered (Nm) Response of moving average filter



|                              | -0.69         | -0.62                      | 9.68% |  |  |  |  |
|------------------------------|---------------|----------------------------|-------|--|--|--|--|
|                              | 7.06          | 6.89                       | 2.42% |  |  |  |  |
| <b>Note:</b> A negative sign |               |                            |       |  |  |  |  |
| 12                           | indicates a   | ates applied torque in the |       |  |  |  |  |
|                              | CCW direction |                            |       |  |  |  |  |

Displaying the values in real-time with 10kHz sampling frequency.

# VI. CONCLUSION AND FUTURE WORK

- The results of the project meet the proposed technical and content requirements.
- □ Design a EPS controller using STM32 microcontroller.

# VII. ACKNOWLEDGMENT

This research is funded by the Office for International Study Programs (OISP), Ho Chi Minh City University of Technology (HCMUT), VNUHCM under grant number SVOISPLV-2023-KTGT-123. We acknowledge the support of time and facilities from HCMUT, VNUHCM for this study.