${\bf Robotique\ industrielle} \\ {\bf TD\ n°3: Modélisation\ g\'{e}om\'{e}trique\ inverse} \\$

Exercice 1. Modèle géométrique inverse d'un robot SCARA

Le but de l'exercice est de calculer le modèle géométrique inverse du robot série 4 axes RRPR décrit dans le TD précédent. On cherche donc à exprimer q_1 , q_2 , q_3 et q_4 en fonction d'une position et d'une orientation désirées. La position désirée est définie par les coordonnées P_x , P_y et P_z du point P. L'orientation désirée est définie par l'angle de lacet α .

1.a. Calculer q_1 , q_2 , q_3 et q_4 en fonction de P_x , P_y , P_z et de l'angle α à l'aide de la méthode trigonométrique.

G. Laurent Page 1 sur 2

Exercice 2. Modèle géométrique inverse d'un robot anthropomorphe

Soit le robot série 6 axes RRRRR décrit par la figure ci-dessous. Ce robot est complétement tendu à la verticale quand les coordonnées articulaires sont nulles. Le but de l'exercice est de calculer le modèle géométrique inverse du robot. On cherche donc à exprimer q_1 , q_2 , q_3 , q_4 , q_5 et q_6 en fonction d'une position et d'une orientation désirées. La position désirée est définie par les coordonnées E_x , E_y et E_z du point E. L'orientation désirée est définie par les angles nautiques α , β et γ . Le point P désigne le centre du poignet sphérique.

On s'intéresse pour commencer au porteur.

2.a. Calculez q_1 , q_2 et q_3 en fonction de P_x , P_y , P_z à l'aide de la méthode trigonométrique ou de la méthode de Paul.

2.b. Calculez P_x , P_y et P_z en fonction de P_x , P_y , P_z , α , β et γ .

On s'intéresse maintenant au poignet.

- 2.c. Calculez ${}^{3}\mathbf{M}_{6}$ en fonction de q_{4} , q_{5} et q_{6} (MGD du poignet).
- 2.d. Calculez q_4 , q_5 et q_6 en fonction de q_1 , q_2 , q_3 , α , β , γ par identification des termes des matrices.

G. Laurent Page 2 sur 2