

JAPAN PATENT OFFICE

This is to certify that the annexed is a true copy of the following application as filed with this Office.

Date of Application: January 31, 2003

Application Number: JP 2003-023428

Applicant(s): CANON KABUSHIKI KAISHA

Dated this 14th day of January 2004

Commissioner,
Japan Patent Office

Yasuo IMAI (Seal)

Certificate Issuance No. 2003-3111186

BEST AVAILABLE COPY

\mathbf{H} JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて る事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed ith this Office.

出願年月日 Date of Application:

2003年 1月31日

願 Application Number:

特願2003-023428

ST. 10/C]:

[JP2003-023428]

plicant(s):

Applient: Yasuyuku Ishii, ed al.
applient: Yasuyuku Ishii, ed al.
applient: 10/765,856
applient: 1/21/04

CERTIFIED COPY OF PRIORITY DOCUMENT

特許庁長官 Commissioner, Japan Patent Office 2004年 1月14日

【書類名】 特許願 【整理番号】 260446 平成16年 1月23日 【提出日】 【あて先】 特許庁長官 殿 G03G 21/00 345 【国際特許分類】 G03G 21/10 【発明者】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社 内 【住所又は居所】 石井 保之 【氏名】 【発明者】 【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社 内 小柳 雅人 【氏名】 【特許出願人】 【識別番号】 000001007 【氏名又は名称】 キヤノン株式会社 御手洗 富士夫 【代表者】 【代理人】 【識別番号】 100085006 【弁理士】 【氏名又は名称】 世良 和信 【電話番号】 03-5643-1611 【選任した代理人】 【識別番号】 100100549 【弁理士】 【氏名又は名称】 川口 嘉之 【選任した代理人】 【識別番号】 100106622 【弁理士】 【氏名又は名称】 和久田 純一 【先の出願に基づく優先権主張】

【出願番号】 特願2003-23428 【出願日】 平成15年1月31日

【先の出願に基づく優先権主張】

【出願番号】 特願2003-155216 【出願日】 平成15年 5月30日

【手数料の表示】

【予納台帳番号】 066073 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【包括委任状番号】 0011612

【書類名】特許請求の範囲

【請求項1】

画像形成装置に用いられる電子写真感光体に残留する現像剤を除去するためのクリーニングブレードにおいて、

前記電子写真感光体との当接部において、絶縁性微粒子と導電性微粒子とを有する潤滑剤が塗布されており、前記絶縁性微粒子の体積基準のD50における粒径は0.2~1.0 μ mの範囲にあり、前記導電性微粒子の体積基準でのD50における粒径は0.4~4.0 μ mの範囲にある、ここで、D50とは粒度分布において小さい粒径側からの体積の積算が50%に到達する時点のことである、ことを特徴とするクリーニングブレード。

【請求項2】

前記絶縁性微粒子は、シリコーン樹脂微粉末であることを特徴とする請求項1記載のクリーニングブレード。

【請求項3】

前記導電性微粒子は、還元処理型酸化スズであることを特徴とする請求項1又は2記載のクリーニングブレード。

【請求項4】

前記導電性微粒子は、疎水化処理されていることを特徴とする請求項1乃至3のいずれかに記載のクリーニングブレード。

【請求項5】

前記導電性微粒子の体積基準のD50における粒径は、前記絶縁性微粒子の体積基準のD50における粒径よりも大きい範囲にあることを特徴とする請求項1乃至4のいずれかに記載のクリーニングブレード。

【請求項6】

前記絶縁性微粒子の体積基準のD50における粒径は $0.6\sim0.8\mu$ mの範囲にあり、前記導電性微粒子の体積基準でのD50における粒径は $1.0\sim2.0\mu$ mの範囲にあることを特徴とする請求項1乃至5のいずれかに記載のクリーニングブレード。

【請求項7】

前記導電性微粒子の体積抵抗率は、 $10^5\Omega$ c m以下であり、前記導電性微粒子の添加量は、前記潤滑剤の総重量の $20\%\sim80\%$ であることを特徴とする請求項1乃至6のいずれかに記載のクリーニングブレード。

【請求項8】

前記導電性微粒子の添加量は 前記潤滑剤の総重量の20%~50%であることを特徴とする請求項7記載のクリーニングブレード。

【請求項9】

画像形成装置に用いられるクリーニング装置において、

前記電子写真感光体に残留する現像剤を除去するためのクリーニングブレードであって、前記電子写真感光体との当接部において、絶縁性微粒子と導電性微粒子とを有する潤滑剤が塗布されており、前記絶縁性微粒子の体積基準でのD50における粒径は0.2~1.0 μ mの範囲にあり、前記導電性微粒子の体積基準でのD50における粒径は0.4~4.0 μ mの範囲にあるクリーニングブレードを有する、ここで、D50とは粒度分布において小さい粒径側からの体積の積算が50%に到達する時点のことであることを特徴とするクリーニング装置。

【請求項10】

前記絶縁性微粒子は、シリコーン樹脂微粉末であることを特徴とする請求項9記載のクリーニング装置。

【請求項11】

前記導電性微粒子は、還元処理型酸化スズであることを特徴とする請求項9又は10記載のクリーニング装置。

【請求項12】

前記導電性微粒子は、疎水化処理されていることを特徴とする請求項9乃至11のいず 出証特2004-3068642 れかに記載のクリーニング装置。

【請求項13】

前記導電性微粒子の体積基準のD50における粒径は、前記絶縁性微粒子の体積基準のD50における粒径よりも大きい範囲にあることを特徴とする請求項9乃至12のいずれかに記載のクリーニング装置。

【請求項14】

前記絶縁性微粒子の体積基準でのD 5 0 における粒径は 0 . 6 ~ 0 . 8 μ mの範囲にあり、前記導電性微粒子の体積基準でのD 5 0 における粒径は 1 . 0 ~ 2 . 0 μ mの範囲にあることを特徴とする請求項 9 乃至 1 3 のいずれかに記載のクリーニング装置。

【請求項15】

前記導電性微粒子の体積抵抗率は、 $10^5\Omega$ cm以下であり前記導電性微粒子の添加量は、前記潤滑剤の総重量の $20\%\sim80\%$ であることを特徴とする請求項9乃至14のいずれかに記載のクリーニング装置。

【請求項16】

前記導電性微粒子の添加量は、前記潤滑剤の総重量の20%~50%であることを特徴とする請求項15記載のクリーニング装置。

【請求項17】

画像形成装置本体に装着可能なプロセスカートリッジにおいて、

電子写真感光体と、

前記電子写真感光体に作用する帯電手段と、

前記電子写真感光体に残留する現像剤を除去するためのクリーニングブレードであって、前記電子写真感光体との当接部において、絶縁性微粒子と導電性微粒子とを有する潤滑剤が塗布されており、前記絶縁性微粒子の体積基準でのD50における粒径は0.2~1.0 μ mの範囲にあり、前記導電性微粒子の体積基準でのD50における粒径は0.4~4.0 μ mの範囲にあるクリーニングブレードと、ここで、D50とは粒度分布において小さい粒径側からの体積の積算が50%に到達する時点のことである、

とを有することを特徴とするプロセスカートリッジ。

【請求項18】

前記絶縁性微粒子は、シリコーン樹脂微粉末であることを特徴とする請求項17記載の プロセスカートリッジ。

【請求項19】

前記導電性微粒子は、還元処理型酸化スズであることを特徴とする請求項17又は18 記載のプロセスカートリッジ。

【請求項20】

前記導電性微粒子は、疎水化処理されていることを特徴とする請求項17乃至19のいずれかに記載のプロセスカートリッジ。

【請求項21】

前記導電性微粒子の体積基準のD50における粒径は、前記絶縁性微粒子の体積基準のD50における粒径よりも大きい範囲にあることを特徴とする請求項17乃至20のいずれかに記載のプロセスカートリッジ。

【請求項22】

前記絶縁性微粒子の体積基準でのD50における粒径は $0.6\sim0.8\mu$ mの範囲にあり、前記導電性微粒子の体積基準でのD50における粒径は $1.0\sim2.0\mu$ mの範囲にあることを特徴とする請求項17万至21のいずれかに記載のプロセスカートリッジ。

【請求項23】

前記導電性微粒子の体積抵抗率は、 $10^5\Omega$ cm以下であり、前記導電性微粒子の添加量は、前記潤滑剤の総重量の $20\%\sim80\%$ であることを特徴とする請求項17乃至22のいずれかに記載のプロセスカートリッジ。

【請求項24】

前記導電性徴粒子の添加量は、前記潤滑剤の総重量の20%~50%であることを特徴

とする請求項23記載のプロセスカートリッジ。

【請求項25】

記録媒体に画像を形成するための画像形成装置において、

- (i)前記電子写真感光体に残留する現像剤を除去するためのクリーニングブレードであって、前記電子写真感光体との当接部において、絶縁性微粒子と導電性微粒子とを有する潤滑剤が塗布されており、前記絶縁性微粒子の体積基準でのD50における粒径は0.2~1.0 μ mの範囲にあり、前記導電性微粒子の体積基準でのD50における粒径は0.4~4.0 μ mの範囲にあるクリーニングブレードを有するクリーニング装置と、ここで、D50とは粒度分布において小さい粒径側からの体積の積算が50%に到達する時点のことである、
 - (ii)前記記録媒体を搬送するための搬送手段と、 を有することを特徴とする画像形成装置。

【請求項26】

記録媒体に画像を形成する画像形成装置において、

- (i)前記プロセスカートリッジを取り外し可能に装着する装着部と、
- (ii) 前記装着部に装着されたプロセスカートリッジであって、電子写真感光体と、前記電子写真感光体に作用する帯電手段と、前記電子写真感光体に残留する現像剤を除去するためのクリーニングブレードであって、前記電子写真感光体との当接部において、絶縁性微粒子と導電性微粒子とを有する潤滑剤が塗布されており、前記絶縁性微粒子の体積基準でのD50における粒径は0.2~1.0 μ mの範囲にあり、前記導電性微粒子の体積基準でのD50における粒径は0.4~4.0 μ mの範囲にあるクリーニングブレードと、を有するプロセスカートリッジと、ここで、D50とは粒度分布において小さい粒径側からの体積の積算が50%に到達する時点のことである、
- (iii)前記記録媒体を搬送するための搬送手段と、を有することを特徴とする画像形成装置。

【書類名】明細書

【発明の名称】画像形成装置、前記画像形成装置に用いられるプロセスカートリッジ、クリーニング装置及びクリーニングブレード

【技術分野】

[0001]

本発明は、画像形成装置、前記画像形成装置に用いられるプロセスカートリッジ、クリーニング装置及びクリーニングブレードに関するものである。

[00002]

ここで、画像形成装置とは、電子写真画像形成プロセスを用いて記録媒体に画像を形成するものであり、例えば、電子写真複写機、電子写真プリンタ(例えば、レーザビームプリンタ、LEDプリンタ等)、ファクシミリ装置およびワードプロセッサ等が含まれる。

[0003]

また、プロセスカートリッジとは、電子写真感光体と電子写真感光体をクリーニングするクリーニング装置とを一体的にカートリッジ化して画像形成装置本体に対して着脱可能とするものをいう。

[0004]

また、クリーニング装置とは、電子写真感光体に残留する現像剤を除去するクリーニングブレードと、前記クリーニングブレードによって除去した現像剤を収納する現像収納部とを有するものをいう。

【背景技術】

[0005]

近年、導電ローラ接触帯電方式が実用化されている。これは、低圧プロセスで大きな電源を必要としない上、帯電装置に清掃手段を格別必要としない等のメリットが実証されている。

[0006]

この接触帯電方式は、導電性の帯電部材を被帯電体に当接させ電圧を印加することによって帯電部材と被帯電体との間のギャップで放電を行わせ、必要とされる帯電電位を被帯電上に得るものである。

[0007]

接触帯電方式としては、帯電電位に相当する直流電圧に交流電圧を重畳したものを印加することによって帯電の均一化を行うAC帯電方式、帯電電位に放電開始電圧を加えた直流電圧を印加することによって帯電の均一化を行うDC帯電方式がある。

[0008]

次に従来のクリーニング装置について説明する。従来、電子写真画像形成装置のクリーニング装置としては、クリーニングローラを感光体に当接回転させることによって、またはクリーニングブレードとしてのクリーニングブレードを当接させることによって、転写されなかった残留トナー(現像剤)をかきとり、感光体から残留トナーを除去することが一般的である。

[0009]

特に、プロセスカートリッジ式の構成をとる電子写真画像形成装置では構成が簡単、コストが安い等の利点からウレタンゴム製のクリーニングブレードを感光体の移動方向に対し、カウンター方向に加圧当接させることが多い。

$[0\ 0\ 1\ 0]$

しかしながら、クリーニングブレードを用いた場合、クリーニングブレードと感光体が 摺動する際に摩擦力が大きくなると、クリーニングブレードが裏返ってしまう、所謂ブレードめくれが発生する。

$[0\ 0\ 1\ 1]$

トナーがクリーニングブレードのエッジに存在している状態ではトナーが潤滑剤の役割をするためにめくれが発生することは少ないが、本体、あるいはプロセスカートリッジの使用初期ではトナーがエッジにないためブレードめくれの発生頻度が高くなる。

[0012]

このため従来では、使用初期状態に、クリーニングブレードのエッジに粉体を塗布する ことによって初期の感光体とクリーニングブレードの摩擦を軽減する手法がとられてきた

[0013]

この粉体としては、めくれ防止に有効な粒径であり、また、塗布の際に溶剤に分散しやすく耐溶剤性に優れている等の特徴を有している必要がある。そのため、絶縁性微粒子であるシリコーン樹脂微粉末の粉体(GE東芝シリコーン社製 商品名:トスパール)が主に用いられる。シリコーン樹脂微粉末は粒子径が $0.2\sim1.0\mu$ mである。

[0014]

このシリコーン樹脂微粉末をクリーニングブレードのエッジに塗布する際の溶剤としては分散性、塗布性が良いHFE(ハイドロフルオロエーテル)を用いている。シリコーン樹脂微粉末はHFEに溶解しないことからクリーニングブレード塗布剤として広く用いられている(特許文献1参照)。

【特許文献1】特開平7-92876号公報

【発明の開示】

【発明が解決しようとする課題】

[0015]

しかし、前述した接触帯電方式の帯電装置を用いて、感光体に当接するクリーニングブレードとしてのクリーニングブレードにシリコーン樹脂微粉末を塗布する場合には、接触帯電部材は電子写真画像形成装置の構成上、クリーニングブレードよりも感光体の移動方向で下流側に配置される必要がある。

[0016]

そのため、クリーニングブレードをすり抜けた、あるいは過剰に塗布されたクリーニングブレード上のシリコーン樹脂微粉末が感光体上に付着し、下流の接触帯電部材に付着する問題があった。

【課題を解決するための手段】

$[0\ 0\ 1\ 7]$

本発明はこのような問題を解決するためになされたもので、その目的は、電子写真感光体が移動することによってクリーニングブレードがめくれるのを防止することができる、クリーニングブレード、クリーニング装置、プロセスカートリッジ、及び、それらを用いた画像形成装置を提供することにある。

[0018]

また、本発明の他の目的は、クリーニングブレードと、クリーニングブレードと電子写真感光体との当接部に塗布された絶縁性微粒子との密着性を向上させた、クリーニングブレード、クリーニング装置、プロセスカートリッジ、及び、それらを用いた画像形成装量を提供することにある。

[0019]

また、本発明の他の目的は、クリーニング部材と、クリーニング部材と電子写真感光体との当接部に塗布された絶縁性微粒子が電子写真感光体に付着することによって、帯電手段によって電子写真感光体を十分に帯電できなくなるのを防止するができる、クリーニングブレード、クリーニング装置、プロセスカートリッジ、及び、それらを用いた画像形成装置を提供することにある。

【発明の効果】

[0020]

本発明においては、電子写真感光体が移動することによって、クリーニングブレードがめくれるのを防止することができる。また、クリーニングブレードにおける電子写真感光体との当接部に塗布された絶縁性粒子が電子写真感光体に付着することによって、帯電ローラによって電子写真感光体を十分に帯電できなくするのを防止することができる。さらに、クリーニングブレードにおける、電子写真感光体との当接部に塗布された絶縁性粒子

3/

との密着性を向上させることができる。

【発明を実施するための最良の形態】

[0021]

以下に図面を参照して、この発明の好適な実施の形態を例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。

[0022]

図1は本実施形態の画像形成装置の断面図である。図1を用いて本実施形態の画像形成装置の全体構成を説明する。

[0023]

図1において、感光ドラム1 (ϕ 30mm) は、矢印A方向に1rpsで回転する。感光ドラム1は直流電圧-1150Vに印加された帯電手段としての帯電ローラ2によって一様に暗部電位-600Vに帯電される。

[0024]

そして、露光手段としてのレーザスキャナ5から導かれるレーザ光で感光ドラム1に静電潜像を書き込む。レーザスキャナ5から導かれるレーザ光は、レーザ光が全面露光した場合-150Vになるようにレーザパワーが調整されている。

[0025]

レーザスキャナ5は画像形成装置に入力される、またはテストパターンのような装置本体内部で作成される画像信号に応じてON/OFF制御されたレーザ光を感光ドラム1に 照射し感光ドラム1上に静電潜像を形成するものである。

[0026]

このようにして形成された静電潜像を感光ドラム1に対して近接配置された現像手段としての現像装置9によってトナー10で現像し、トナー像として可視化する。なお、本実施形態では、レーザ光で露光した露光部にトナー像を形成するいわゆる反転現像を行っている。

[0027]

可視化された感光ドラム1上のトナー像は、転写手段としての転写ローラ6によって記録媒体8に転写される。

[0028]

そして、トナー像が転写された記録媒体は、下流の定着手段としての定着装置7で定着される。

[0029]

ここで、転写されずに感光ドラム1上に残存した転写残トナーはクリーニング装置4のクリーニングブレードとしてのクリーニングブレード3により掻き取られ、クリーニング装置4内に収納される。そして、クリーニングされた感光ドラム1は上述の画像形成プロセスを繰り返す。ここで用いているクリーニングブレード3はその先端が矩形であって、根元側が先端よりも厚みを増している。

[0030]

なお、本実施形態では、先に述べた感光ドラム1、帯電ローラ2、現像装置9及びクリーニング装置4の各要素を一体にしたプロセスカートリッジ方式を用いている。そして、プロセスカートリッジ20として構成され、画像形成装置に対し着脱可能である。

[0031]

このプロセスカートリッジ方式を採用しているため、画像形成装置のメンテナンスが容易となる。すなわち、現像装置 9 内のトナーが無くなる際に、使用耐久する感光ドラム 1 や帯電ローラ 2 を一緒に交換することができる。さらに、クリーニング装置 4 に溜まった転写残トナーも同時に廃棄できる。このため、画像形成装置についてユーザはプロセスカートリッジ 2 0 の交換を行うことだけで、様々な処理を同時に一括して行うことができ、メンテナンスが容易となり、継続して良好な画像を得ることができるのである。

[0032]

また、プロセスカートリッジ方式であることからクリーニングブレード3として図2のようなウレタンゴム製チップブレードを用いて構成を簡単に、またコストを低減することに成功している。

[0033]

ここで、クリーニングブレード3についてさらに詳細に説明する。

[0034]

クリーニングブレード3の設定は、図3に示すように感光ドラム1に対する当接角が24°で、感光ドラム1に対する侵入量は0.7mmであり、この時のクリーニングブレード3の線圧は35gf/cmになっている。

[0035]

このような設定を取ることにより、通紙中にクリーニング不良、ブレードめくれの発生 を防ぐことが可能になっている。

[0036]

一般的に、通紙中はトナー10がクリーニングブレード3のエッジ部に介在し、潤滑剤の役割を果たすためブレードめくれが発生することは少ない。しかしながらトナー10が介在しない使用初期においては、クリーニングブレード3と感光ドラム1との摩擦係数が大きいため、ブレードめくれが発生する確率が高くなる。

[0037]

そこで、本実施形態では、感光ドラム1とクリーニングブレード3との当接部に絶縁性 微粒子であるシリコーン樹脂微粉末(GE東芝シリコーン社製 商品名:トスパール)と 導電性微粒子である金属化合物微粒子を混合したものを潤滑剤11として塗布している。

[0038]

本実施形態における金属化合物微粒子としては、例えば、銅、金、銀、アルミニウム、ニッケルなどの金属微粉末;酸化亜鉛、酸化チタン、酸化スズ、酸化アルミニウム、酸化インジウム、酸化ケイ素、酸化マグネシウム、酸化バリウム、酸化モリブデン、酸化鉄、酸化タングステンなどの金属酸化物;硫化モリブデン、硫化カドミウム、チタン酸カリウムなどの金属化合物、あるいはこれらの複合酸化物などの導電性微粉末が使用できる。

[0039]

これらの中でも、酸化亜鉛、酸化スズ及び酸化チタンから選ばれる少なくとも一種の酸化物を含有していることが、金属化合物微粒子の体積抵抗率を低く設定できるという点で好ましい。

[0040]

また、金属化合物微粒子の抵抗値(体積抵抗率)を制御する等の目的で、アンチモン、アルミニウムなどの元素を含有させた金属酸化物の微粒子、導電性材料を表面に有する微粒子なども金属化合物微粒子として使用できる。例えば、アルミニウム元素を含有する酸化亜鉛微粒子、アンチモン元素を含有する酸化スズ微粒子などである。

[0041]

そこで本実施形態では、還元処理型酸化スズを金属化合物微粒子として用いることがより好ましい。なぜならば、還元処理型酸化スズは抵抗制御を行うことができるからである

[0042]

このように、絶縁性微粒子であるシリコーン樹脂微粉末(GE東芝シリコーン社製 商品名:トスパール)と導電性微粒子である金属化合物微粒子を混合した潤滑剤11を用いる。そして、この潤滑剤11によってクリーニングブレード3のめくれを防止すると共に、クリーニングブレード3と塗布剤の密着力を向上することが可能となる。

[0 0 4 3]

本実施形態では、潤滑剤 1 1 として具体的にトスパールと還元処理型酸化スズを用いている。この場合について以下に説明する。

[0044]

トスパールは体積基準のメジアン径(D 5 0) 0 . 2 ~ 1 . 0 μ m、還元処理型酸化スズは体積基準のメジアン径(D 5 0) 0 . 4 ~ 4 . 0 μ mである。

[0045]

トスパール、金属化合物微粒子のD10、D50、D90は以下のようにして測定する

[0046]

レーザ回折式粒度分布測定装置「LS-230型」(コールター社製)にリキッドモジュールを取り付けて0.04~2000 μ mの粒径を測定範囲とし、得られる体積基準の粒度分布により粒子のD10、D50、D90を算出する。測定は、メタノール10mlに粒子を約10mg加え、超音波分散機で2分間分散した後、測定時間90秒間、測定回数1回の条件で測定を行う。ここで、D10とは粒度分布において低粒径側から積算が10%に到達時の粒径であり、D50は積算50%の粒径、D90は積算90%の粒径である。

[0047]

クリーニングブレード3への潤滑剤11の塗布方法はHFEにトスパールと還元処理型酸化スズを混合し総量で重量比5%分散させたものを図2に示すようにクリーニングブレード3のエッジに約2mm幅で塗布した。すなわち、クリーニングブレード3の先端であって、平行に対向する平坦部X・Y及び両平坦部X・Yと垂直に接続する側部Zに塗布する。

[0048]

[0049]

また、還元処理型酸化スズのような金属化合物微粒子に適正な表面処理を施して使用することは、溶剤(HFE)に良好に分散させる上から好ましい。金属化合物微粒子に対する適正な表面処理の代表例としては、疎水化処理がある。疎水化処理の処理剤としてはシラン化合物であると撥水性が高く最も好ましい。

[0050]

実験で用いた電子写真方式の画像形成装置はプロセススピード94mm/secであり、前述した図1に示されるような構成になっている。

[0051]

ここでは、感光ドラム1として直径30mmのOPCドラムを用いる。これに対して直径12mmの帯電ローラ2をバネにより総加圧9.8Nで加圧して感光ドラム1に接触させ、感光ドラム1に対して従動回転させる。帯電ローラ2には目的とする感光体電位Vdに相当する-600Vにするため直流電圧-1150Vを印加する。

[0052]

潤滑剤11のトスパールと還元処理型酸化スズの混合比について以下に説明する。

[0053]

図 4 に示した通り、 10^5 Ω c m以下の還元処理型酸化スズの添加量を潤滑剤 11 の総量の 20 \sim 80 %(重量)であると、クリーニングブレード 3 と潤滑剤 11 の密着力を向上させかつブレードめくれを防止することができる。

[0054]

密着性低下の要因は塗布後の潤滑剤11の凝集である。凝集することによりクリーニングブレード3上でだまになり、クリーニングブレード3より剥がれる。特に塗布後72時間までは凝集が進みその後一定となる。

[0055]

そのため、還元処理型酸化スズをトスパールと混合することで塗布後の静電的凝集を防止し密着性が向上する。従って、本実験も塗布後72時間に100枚連続通紙を行い、クリーニングブレード3からの潤滑剤11の剥がれ状態を確認した。

[0056]

還元処理型酸化スズの添加量を $50\sim80\%$ (重量)においては画像上問題ないレベルであるが微量な剥がれが認められる。この点から還元処理型酸化スズの添加量が $20\sim80\%$ (重量)であれば実使用上問題ないが、潤滑剤11の剥がれ特性の面では $20\sim50\%$ (重量)が更に良い。

[0057]

 $10^5 \Omega c m$ 以下の還元処理型酸化スズの添加量:トスパールも重量比= 4:6 の場合の塗布後 72 時間時の粒度分布を図 6 に示し、トスパールのみを塗布した場合の塗布後 72 時間時の粒度分布を図 5 に示す。測定方法はレーザ回折式粒度分布測定装置「LS-2 30 型」(コールター社製)にリキッドモジュールを取り付けて、 $0.04 \sim 2000$ μ mの粒径を測定範囲とし、得られる体積基準の粒度分布を測定する。

[0058]

体積基準の粒度分布の測定は、HFE10mlにクリーニングブレード3から剥がした 潤滑剤11を約10mg加え、超音波分散機「US-I型」(株式会社エヌエヌディ製)で2分間分散した後、測定時間90秒間、測定回数1回の条件で行った。 $10^5\Omega cm以下の還元処理型酸化スズとトスパールを分散させた潤滑剤11において静電的凝集がないことが確認された。$

[0059]

 $10^5~\Omega$ c m以下の還元処理型酸化スズとトスパールを分散させた潤滑剤 110010 は $0.39\sim0.45~\mu$ m であり、D 50 は $0.51\sim0.58~\mu$ m であり、D 90 は $0.67\sim0.77~\mu$ m である。

[0060]

還元処理型酸化スズの体積抵抗率について以下に説明する。

[0061]

粒子の体積抵抗率の測定は以下のようにして行う。

[0062]

円筒形の金属製セルに試料を充填し、試料に接するように上下に電極を配し、上部電極には荷重 6 8 6 k P a (7 k g f / c m^2) を加える。この状態で電極間に電圧 V を印加し、その時に流れる電流 I (a) から本発明の抵抗(体積抵抗率 R V)を測定する。この時電極面積を S (c m^2) 、試料厚みをM (c m) とすると、

 $RV(\Omega cm) = 100V \times S(cm^2) / I(a) / M(cm)$ である。

[0063]

本実施形態では、電極と試料の接触面積 2. 26 c m 2 とし、電圧 V = 100 V で測定した。

[0064]

図 7 に示した通り、 $1\ 0^6\ \Omega\ c\ m$ 以上の還元処理型酸化スズにおいては密着力の向上が見られず、密着力向上に低抵抗化は必須と言える。

[0065]

したがって、図4、図7から分かるように還元処理型酸化スズとしては10⁵ Ω c m以 出証特2004-3068642 下が最適である。

【図面の簡単な説明】

- [0066]
 - 【図1】実施形態に係る画像形成装置の概略断面図である。
 - 【図2】実施形態に係るクリーニングブレードの説明図である。
- 【図3】実施形態に係るクリーニングブレードの感光ドラムへの摺擦状態を示す説明 図である。
- 【図4】実施形態に係る本発明の抵抗値が $10^5\Omega$ cm以下の還元処理型酸化スズ混合時の潤滑剤の密着性とブレードめくれの関係を示す表である。
- 【図5】トスパールのみを塗布した場合の塗布後72時間時の粒度分布を示す図である。
- 【図 6 】 1 0 5 Ω c m以下の還元処理型酸化スズの添加量:トスパールが重量比= 4 : 6 の場合の塗布後 7 2 時間時の粒度分布を示す図である。
- 【図7】実施形態に係る本発明と比較する体積抵抗率が10⁶Ωcm以上の還元処理型酸化スズ混合時の潤滑剤の密着性とブレードめくれの関係を示す表である。

【符号の説明】

[0067]

- 1 感光ドラム
- 2 帯電ローラ
- 3 クリーニングブレード
- 4 クリーニング装置
- 5 レーザスキャナ
- 6 転写ローラ
- 7 定着装置
- 8 記録媒体
- 9 現像装置
- 10 トナー
- 11 潤滑剤
- 20 プロセスカートリッジ

【書類名】図面 【図1】

【図2】

【図3】

【図4】

10⁵Ωcm以下の還元処理型酸化スズの場合

トスパール(wt%)	酸化スズ(wt%)	潤滑剤の密着性	ブレードめくれ
100	0	×	0
90	10	×	0
80	20	0	0
70	30	0	0
60	40	0	0
50	50	0	0
40	60	0	0
30	70	0	0
20	80	0	0
10	90	0	×
0	100	0	×

【図5】

6/

【図6】

【図7】

10⁶Ωcm以上の還元処理型酸化スズの場合

トスパール(wt%)	酸化スズ(wt%)	潤滑剤の密着性	ブレードめくれ
100	0	×	0
90	10	×	0
80	20	×	0
70	30	×	0
60	40	×	0
50	50	×	0
40	60	Δ	0
30	70	Δ	0
20	80	Δ	0
10	90	Δ	×
0_	100	Δ	×

【要約】

【課題】 クリーニング部材と絶縁性微粒子との密着力を向上させることにより、クリーニング部材から脱落した絶縁性微粒子が帯電手段に付着して像担持体表面を均一に帯電することができなくなることを防止して、良好な画像品質を維持する。

【解決手段】 クリーニングブレード3には感光ドラム1との当接部にシリコーン樹脂微粉末と金属化合物微粒子とからなる潤滑剤11が塗布されている。これにより、クリーニングブレード3と潤滑剤11の密着性を向上することができる。

【選択図】 図2

認定・付加情報

特許出願の番号 特願2004-015603

受付番号 50400113542

書類名 特許願

担当官 第二担当上席 0091

作成日 平成16年 1月28日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000001007

【住所又は居所】 東京都大田区下丸子3丁目30番2号

【氏名又は名称】 キヤノン株式会社

【代理人】 申請人

【識別番号】 100085006

【住所又は居所】 東京都中央区東日本橋3丁目4番10号 アクロ

ポリス21ビル6階 秀和特許事務所

【氏名又は名称】 世良 和信

【選任した代理人】

【識別番号】 100100549

【住所又は居所】 東京都中央区東日本橋3丁目4番10号 アクロ

ポリス21ビル6階 秀和特許事務所

【氏名又は名称】 川口 嘉之

【選任した代理人】

【識別番号】 100106622

【住所又は居所】 東京都中央区東日本橋3丁目4番10号 アクロ

ポリス21ビル6階 秀和特許事務所

【氏名又は名称】 和久田 純一

特願2004-015603

出願人履歴情報

識別番号

[000001007]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住所

東京都大田区下丸子3丁目30番2号

氏 名 キヤノン株式会社