

# Cairo University Faculty of Computers and Artificial Intelligence Midterm Exam



Date: 7/12/2020

Pages: 4

**Duration: 1 hour** 

**Department: Computer Science Course Name: Soft Computing** 

Course Code: CS464

Instructor(s): Sabah Sayed

Name: \_\_\_\_\_\_ ID: \_\_\_\_\_ Total Marks: /150

## Answer all questions

### **Question 1:** Genetic Algorithm [100 marks]

Assume we have the function  $f(x) = x^3 - 60 * x^2 + 900 * x + 100$  where x is constrained to [0 ... 63]. We want to maximize f(x) (the optimal is x=10). Using a binary representation, x can be represented using 6 binary digits.

a) Given the following four chromosomes give the values for x and f(x).

1 marks for each x 2 marks for each f(x)  $\Rightarrow$  12 marks

| 1 maris 101 cacin in 2 maris 101 cacin 1(ii) |               |                 |                   |
|----------------------------------------------|---------------|-----------------|-------------------|
| Chromosome                                   | Binary String | X               | f(x)              |
| $C_1$                                        | 011100        | <mark>28</mark> | 212               |
| $C_2$                                        | 001111        | 15              | 3475              |
| $C_3$                                        | 010111        | 23              | 1227              |
| $C_4$                                        | 000100        | 4               | <mark>2804</mark> |

b) Apply Roulette Wheel Selection, What is the selection probability for chromosomes in (a)?

2 marks for total f(x) 2.5 marks for each selection probability  $\rightarrow$  12 marks

| Chromosome | Binary String | f(x)        | selection probability |
|------------|---------------|-------------|-----------------------|
| $C_1$      | 011100        | 212         | 212/7718 = 0.027      |
| $C_2$      | 001111        | 3475        | 3475/7718 = 0.45      |
| $C_3$      | 010111        | 1227        | 1227/7718 = 0.158     |
| $C_4$      | 000100        | 2804        | 2804/7718 = 0.363     |
|            |               | Total: 7718 |                       |

c) Apply uniform crossover on C<sub>2</sub> and C<sub>4</sub> according to the template BAABAB.

Parent A(C2): 001111

Offspring A: 001110

 $\rightarrow$  5 marks

Parent B(C4): 000100

Offspring B: **0**00101

 $\rightarrow$  5 marks

d) Apply two points crossover on  $C_1$  and  $C_3$  where the crossover points are 1,4.

Parent A(C1): 0 111 00 Parent B(C3): 0 101 11 Offspring A: 010100 Offspring B: 011111  $\rightarrow$  5 marks  $\rightarrow$  5 marks

e) Show the population after applying the Generational replacement strategy, Has the overall fitness improved? Show how? → 21 marks

Yes improved

4 marks

1 marks for each binary string

1 marks for each X

1 marks for each current generation f(x)

5 marks for Total fitness or Avg fitness or Max fitness (it is enough to calculate the total fitness only or the max fitness only or the average fitness only)

| Chromosome | Binary String       | X               | <b>Current</b>                                        | Previous                                          |
|------------|---------------------|-----------------|-------------------------------------------------------|---------------------------------------------------|
|            |                     |                 | generation f(x)                                       | generation f(x)                                   |
| $C_1$      | <mark>010100</mark> | <mark>20</mark> | <mark>2100</mark>                                     | 212                                               |
| $C_2$      | 001110              | <mark>14</mark> | <mark>3684</mark>                                     | 3475                                              |
| $C_3$      | <mark>011111</mark> | 31              | <mark>131</mark>                                      | 1227                                              |
| $C_4$      | 000101              | <mark>5</mark>  | 3225                                                  | 2804                                              |
|            |                     |                 | Total: 9140<br>Avg fitness: 2285<br>Max fitness: 3684 | Total: 7718 Avg fitness: 1929.5 Max fitness: 3475 |

f) Assume the initial population was  $x=\{17, 21, 4, 28\}$ , Using one-point crossover, what is the probability of finding the optimal solution? Explain your reasons.  $\rightarrow$  15 marks

The probability is zero

5 marks

If we look at the values in binary we get

| X               | <b>Binary</b>       |  |
|-----------------|---------------------|--|
| <mark>17</mark> | <mark>010001</mark> |  |
| <mark>21</mark> | <mark>010101</mark> |  |
| <mark>4</mark>  | 000100              |  |
| <mark>28</mark> | 011100              |  |

We know that the optimal solution is x = 10 which, in binary is 001010. You can see that we need a 1 in positions 2 and 4 (counting from the). In the initial population there is no individual with a 1 in position 2. This means that no matter how many times we apply single point crossover we will never be able to find the optimal solution. (10 marks for the reason)

g) In the Island GA, One extra operator is added. What is this operator?

Mention the four properties should be specified in its policy? → 20 marks

Migration

4 marks

Migration policies specify: 4 marks for each point

- 1- A communications topology, which determines the migration paths between islands
- 2- A migration rate, which determines the frequency of migration
- 3- A selection mechanism, to decide which individuals will migrate
- 4- A replacement strategy, to decide which individual of the destination island will be replaced

#### **Question 2:** Genetic Programming [20 marks]

a) [10 marks] Write a basic flowchart for Genetic Programming.



- b) [10 marks] A program uses genetic programming for solving a problem where Function Set =  $\{+, -, /, *, \%\}$  and Terminal Set =  $\{X, Y, Z, Integers\}$ 
  - Show an example individual in the population.
     Or any individual using function and terminal sets elements



ii. What is the genotype space in this problem?  $\{+,-,/,*,\%,X,Y,Z,Integers\}$ 

5 marks

#### Question 3: Fuzzy Logic [30 marks]

Consider a problem with two input variables, **size** and **weight**, and one output variable, **quality**, with the following fuzzy sets:

**size**: small **S** {0, 0, 100}, large **L** {0, 100, 100} in range [0 .. 100]

**weight**: light  $G \{0, 0, 100\}$ , Heavy  $V \{0, 100, 100\}$  in range [0 ... 100]

**quality**: bad **B**  $\{0, 0, 5\}$ , medium **M**  $\{0, 5, 10\}$ , good **G**  $\{5, 10, 10\}$  in range [0 ... 10]

The rule base:

R1: if size is S and weight is G then quality is B R2: if size is S and weight is V then quality is M R3: if size is L and weight is G then quality is M R4: if size is L and weight is V then quality is G

Find the crisp value of quality given size= 20 and weight =25

#### **Step 1: Fuzzification: (total 10 marks)**



#### **weight = 2.5**

same fuzzy sets, so same line1 & line2 equations

Line1 eqn.: y = -x/100 + 1

substitute by weight =  $25 \rightarrow \mu_G$  (weight=25) = 0.75 [1 mark]

Line2 eqn.: y = x/100

substitute by weight =  $25 \rightarrow \mu_V$  (weight=25) = 0.25 [1 mark]

#### **Step 2: Inference:** [total 10 mark]

R1: if  $(0.8 \Lambda 0.75) \rightarrow 0.75$  [2 mark]  $\mu_B$  (quality) [0.5 mark] R2: if  $(0.8 \Lambda 0.25) \rightarrow 0.25$  [2 mark]  $\mu_m$ (quality) [0.5 mark] R3: if  $(0.2 \Lambda 0.75) \rightarrow 0.2$  [2 mark]  $\mu_m$ (quality) [0.5 mark] R4: if  $(0.2 \Lambda 0.25) \rightarrow 0.2$  [2 mark]  $\mu_{G}(quality)$  [0.5 mark]

**Step 3: Defuzzification: [total 10 mark]** 



[2 mark]

centroid(bad) = (0+0+5)/3 = 1.67 [1 mark] centroid(medium) = (0+5+10)/3 = 5 [1 mark] centroid(good) = (5+10+10)/3 = 8.33 [1 mark]

Note: it is also valid if student used the 0.2 only or 0.25 only for  $\mu_m$  in defuzzification step

 $Z^* = (0.75*1.67 + 0.25*5 + 0.2*5 + 0.2*8.33)/(0.75+0.25+0.2+0.2)$  [4 mark -> 1 mark for each term in numerator and I mark for denominator]

= 1.2525 + 1.25 + 1 + 1.666 / 1.4=  $3.69 \approx 3.7$  [1 mark]