Southern University of Science and Technology Advanced Linear Algebra Spring 2023

MA109- Quiz #4

2023/03/19

${f Student\ Number:}$.									
1 Let V be a n -di	mensional vector space	try to construct '	$T \in \mathcal{L}(X)$	/) such tha	at $T^n =$	$I T^k$	$\neq I$	for a	a l'

Name:

1. Let V be a n-dimensional vector space, try to construct $T \in \mathcal{L}(V)$ such that $T^n = I$, $T^k \neq I$ for all $1 \leq k \leq n-1$, where I is identity operator on V.

Proof. Let v_1, v_2, \dots, v_n be a basis of V, we define $Tv_i = v_{i+1}, i = 1, 2, \dots, n-1, Tv_n = v_1$. Let $v \in V$, $v = a_1v_1 + \dots + a_nv_n$, then $Tv = a_1v_2 + a_2v_3 + \dots + a_{n-1}v_n + a_nv_1$.

It's easy to check $T \in \mathcal{L}(V)$, and $T^k v_i = \begin{cases} v_{i+k}, & \text{if } k \leq n-i, \\ v_{i+k-n}, & \text{if } k > n-i \end{cases}$, $1 \leq k \leq n-1$, so $T^k v_i \neq v_i$, $T^k \neq I$, for all $1 \leq k \leq n-1$.

And
$$T^n v_i = T(T^{n-1} v_i) = \begin{cases} Tv_n, & \text{if } i = 1, \\ Tv_{i-1}, & \text{if } i > 1 \end{cases}$$
, so $T^n v_i = v_i, i = 1, 2, \cdots, n$, thus $T^n = I$.

2. Suppose V is a n-dimensional vector space, $\mathcal{A} \in \mathcal{L}(V)$ satisfies $\mathcal{A}^2 = \mathcal{I}$. Prove that $V = \text{null } (\mathcal{A} + \mathcal{I}) \oplus \text{null } (\mathcal{A} - \mathcal{I})$.

Proof. Since $I = \frac{1}{2}(\mathcal{A} + \mathcal{I}) - \frac{1}{2}(\mathcal{A} - \mathcal{I})$, for all $v \in V$, we have $v = \mathcal{I}v = \frac{1}{2}(\mathcal{A} + \mathcal{I})v - \frac{1}{2}(\mathcal{A} - \mathcal{I})v$. Let $v_1 = -\frac{1}{2}(\mathcal{A} - \mathcal{I})v$, $v_2 = \frac{1}{2}(\mathcal{A} + \mathcal{I})v$, we can get $(\mathcal{A} + \mathcal{I})v_1 = -\frac{1}{2}(\mathcal{A}^2 - \mathcal{I})v = 0$, $(\mathcal{A} - \mathcal{I})v_2 = \frac{1}{2}(\mathcal{A}^2 - \mathcal{I})v = 0$, then $v_1 \in \text{null } (\mathcal{A} + \mathcal{I})$, $v_2 \in \text{null } (\mathcal{A} - \mathcal{I})$, so $V = \text{null } (\mathcal{A} + \mathcal{I}) + \text{null } (\mathcal{A} - \mathcal{I})$.

For any $u \in \text{null } (\mathcal{A} + \mathcal{I}) \cap \text{null } (\mathcal{A} - \mathcal{I})$, we have $\mathcal{A}u = -u$ and $\mathcal{A}u = u$, so u = 0. Therefore, $V = \text{null } (\mathcal{A} + \mathcal{I}) \oplus \text{null } (\mathcal{A} - \mathcal{I})$.