# Multiplicative Updates & the Winnow Algorithm

Lecture 7

Machine Learning Fall 2015



#### Where are we?

- Still looking at linear classifiers
- Still looking at mistake-bound learning
- We have seen the Perceptron update rule
  - Receive an input  $(x_i, y_i)$
  - if  $\operatorname{sgn}(\mathbf{w}_{\mathsf{t}}^{\mathsf{T}} x_i) \neq y_i$ : Update  $\mathbf{w}_{\mathsf{t+1}} \leftarrow \mathbf{w}_{\mathsf{t}} + y_i x_i$
- The Perceptron update is an example of an additive weight update

#### This lecture

The Winnow Algorithm

Winnow mistake bound

Generalizations

#### This lecture

The Winnow Algorithm

Winnow mistake bound

Generalizations

## The setting

- Recall linear threshold units
  - Prediction = +1 if  $\mathbf{w}^{\mathsf{T}} \mathbf{x} \geq \theta$
  - Prediction = -1 if  $\mathbf{w}^\mathsf{T} x < \theta$
- The Perceptron mistake bound is  $(R/\gamma)^2$ 
  - For Boolean functions with n attributes,  $R^2 = n$ , so basically O(n)
- Motivating question:

Suppose we know that even though the number of attributes is n, the number of relevant attributes is k, which is much less than n Can we improve the mistake bound?

#### Learning when irrelevant attributes abound

#### Example

- Suppose we know that the true concept is a disjunction of only a small number of features
  - Say only  $x_{\scriptscriptstyle 1}$  and  $x_{\scriptscriptstyle 2}$  are relevant
- The elimination algorithm will work:
  - Start with h(x) =  $x_1 \lor x_2 \lor \cdots \lor x_{1024}$
  - Mistake on a negative example: Eliminate all attributes in the example from your hypothesis function h
    - Suppose we have an example  $x_{\rm 100}$  = 1,  $x_{\rm 301}$  = 1, label = -1
    - Simple update: just eliminate these two variables from the function
  - Will never make mistakes on a positive example. Why?
- Makes O(n) updates
- But we know that our function is a k-disjunction
  - And there are only  $C(n, k) \cdot 2^k \approx n^k 2^k$  k-disjunctions
  - The Halving algorithm will make k log(n) mistakes
  - Can we realize this bound with an efficient algorithm?

## Multiplicative updates

- Let's use linear classifiers with a different update rule
  - Perceptron will also make O(n) mistakes

 The idea: Weights should be promoted and demoted via multiplicative, rather than additive, updates

# The Winnow algorithm

Littlestone 1988

Given a training set D =  $\{(x, y)\}, x \in \Re^n, y \in \{-1, 1\}$ 

- 1. Initialize:  $\mathbf{w} = (1,1,1,1...,1) \in \Re^{n}$ ,  $\theta = n$
- 2. For each training example (x, y):
  - Predict  $y' = \operatorname{sgn}(\mathbf{w}^{\mathsf{T}}x \theta)$
  - If y = +1 and y' = -1 then:

Promotion • Update each weight  $\mathbf{w}_i \leftarrow 2\mathbf{w}_i$  only for those features  $x_i$  that are 1 Else if y = -1 and y' = +1 then:

Demotion

• Update each weight  $\mathbf{w}_{\mathsf{i}} \leftarrow \mathbf{w}_{\mathsf{i}}/2$  only for those features  $x_i$  that are 1

| Example            | Prediction                                     | Error? | Weights                    |
|--------------------|------------------------------------------------|--------|----------------------------|
| x=(1,1,1,,1), y=+1 | $\mathbf{w}^{\scriptscriptstyle{T}} x > 	heta$ | No     | $\mathbf{w} = (1,1,1,1,1)$ |

| Example            | Prediction                                        | Error? | Weights                    |
|--------------------|---------------------------------------------------|--------|----------------------------|
| x=(1,1,1,,1), y=+1 | $\mathbf{w}^{\scriptscriptstyle{T}} x \geq 	heta$ | No     | $\mathbf{w} = (1,1,1,1,1)$ |
| x=(0,0,0,,0), y=-1 | $\mathbf{w}^{T}x < 	heta$                         | No     | $\mathbf{w} = (1,1,1,1,1)$ |

$$f = x_1 \lor x_2 \lor x_{1023} \lor x_{1024}$$
 Initialize  $\theta = 1024$ ,  $\mathbf{w} = (1,1,1,1...,1)$ 

| Example                | Prediction                                        | Error? | Weights                    |
|------------------------|---------------------------------------------------|--------|----------------------------|
| x=(1,1,1,,1), y=+1     | $\mathbf{w}^{\scriptscriptstyle{T}} x \geq 	heta$ | No     | $\mathbf{w} = (1,1,1,1,1)$ |
| x=(0,0,0,,0), y=-1     | $\mathbf{w}^{T}x < \theta$                        | No     | $\mathbf{w} = (1,1,1,1,1)$ |
| x=(0,0,1,1,1,,0), y=-1 | $\mathbf{w}^{T}x < \theta$                        | No     | $\mathbf{w} = (1,1,1,1,1)$ |

No changes until there are mistakes

$$f = x_1 \lor x_2 \lor x_{1023} \lor x_{1024}$$
 Initialize  $\theta = 1024$ ,  $\mathbf{w} = (1,1,1,1...,1)$ 

| Example                | Prediction                                        | Error? | Weights                    |
|------------------------|---------------------------------------------------|--------|----------------------------|
| x=(1,1,1,,1), y=+1     | $\mathbf{w}^{\scriptscriptstyle{T}} x \geq 	heta$ | No     | $\mathbf{w} = (1,1,1,1,1)$ |
| x=(0,0,0,,0), y=-1     | $\mathbf{w}^{T}x < \theta$                        | No     | $\mathbf{w} = (1,1,1,1,1)$ |
| x=(0,0,1,1,1,,0), y=-1 | $\mathbf{w}^{T}x < \theta$                        | No     | $\mathbf{w} = (1,1,1,1,1)$ |
| x=(1,0,0,,0), y=+1     | $\mathbf{w}^{T}x < 	heta$                         | Yes    | $\mathbf{w} = (2,1,1,1,1)$ |

Promote x<sub>1</sub>

 $f = x_1 \lor x_2 \lor x_{1023} \lor x_{1024}$  Initialize  $\theta = 1024$ ,  $\mathbf{w} = (1,1,1,1...,1)$ 

| Example                | Prediction                                        | Error? | Weights                         |
|------------------------|---------------------------------------------------|--------|---------------------------------|
| x=(1,1,1,,1), y=+1     | $\mathbf{w}^{\scriptscriptstyle{T}} x \geq 	heta$ | No     | $\mathbf{w} = (1,1,1,1,1)$      |
| x=(0,0,0,,0), y=-1     | $\mathbf{w}^{T}x < \theta$                        | No     | $\mathbf{w} = (1,1,1,1,1)$      |
| x=(0,0,1,1,1,,0), y=-1 | $\mathbf{w}^{T}x < \theta$                        | No     | $\mathbf{w} = (1,1,1,1,1)$      |
| x=(1,0,0,,0), y=+1     | $\mathbf{w}^{T}x < \theta$                        | Yes    | $\mathbf{w} = (2,1,1,1,1)$      |
| x=(0,1,0,,0), y=+1     | $\mathbf{w}^{T}x < \theta$                        | Yes    | $\mathbf{w} = (2, 2, 1, 1,, 1)$ |

Promote x<sub>2</sub>

 $f = x_1 \lor x_2 \lor x_{1023} \lor x_{1024}$  Initialize  $\theta = 1024$ ,  $\mathbf{w} = (1,1,1,1...,1)$ 

| Example                | Prediction                                        | Error? | Weights                               |
|------------------------|---------------------------------------------------|--------|---------------------------------------|
| x=(1,1,1,,1), y=+1     | $\mathbf{w}^{\scriptscriptstyle{T}} x \geq 	heta$ | No     | $\mathbf{w} = (1,1,1,1,1)$            |
| x=(0,0,0,,0), y=-1     | $\mathbf{w}^{T}x < \theta$                        | No     | $\mathbf{w} = (1,1,1,1,1)$            |
| x=(0,0,1,1,1,,0), y=-1 | $\mathbf{w}^{T}x < \theta$                        | No     | $\mathbf{w} = (1,1,1,1,1)$            |
| x=(1,0,0,,0), y=+1     | $\mathbf{w}^{T}x < \theta$                        | Yes    | $\mathbf{w} = (2, 1, 1, 1, \dots, 1)$ |
| x=(0,1,0,,0), y=+1     | $\mathbf{w}^{T}x < \theta$                        | Yes    | $\mathbf{w} = (2, 2, 1, 1,, 1)$       |
| x=(1,1,1,,0), y=+1     | $\mathbf{w}^{T}x < \theta$                        | Yes    | w = (4,4,2,1,1)                       |

Promote  $x_1$ ,  $x_2$  and  $x_3$ 

 $f = x_1 \lor x_2 \lor x_{1023} \lor x_{1024}$  Initialize  $\theta = 1024$ ,  $\mathbf{w} = (1,1,1,1...,1)$ 

| Example                | Prediction                                             | Error? | Weights                         |
|------------------------|--------------------------------------------------------|--------|---------------------------------|
| x=(1,1,1,,1), y=+1     | $\mathbf{w}^{\scriptscriptstyle{T}} x \geq 	heta$      | No     | $\mathbf{w} = (1,1,1,1,1)$      |
| x=(0,0,0,,0), y=-1     | $\mathbf{w}^{T}x < \theta$                             | No     | $\mathbf{w} = (1,1,1,1,1)$      |
| x=(0,0,1,1,1,,0), y=-1 | $\mathbf{w}^{T}x < \theta$                             | No     | $\mathbf{w} = (1,1,1,1,1)$      |
| x=(1,0,0,,0), y=+1     | $\mathbf{w}^{\scriptscriptstyle T} x < \theta$         | Yes    | $\mathbf{w} = (2,1,1,1,1)$      |
| x=(0,1,0,,0), y=+1     | $\mathbf{w}^{\scriptscriptstyle \intercal} x < \theta$ | Yes    | $\mathbf{w} = (2, 2, 1, 1,, 1)$ |
| x=(1,1,1,,0), y=+1     | $\mathbf{w}^{T}x < \theta$                             | Yes    | w = (4,4,2,1,1)                 |
| x=(1,0,0,,1), y=+1     | $\mathbf{w}^{T}x < \theta$                             | Yes    | $\mathbf{w} = (8,4,2,1,2)$      |
| •••                    | •••                                                    | •••    | •••                             |

Suppose after many steps,  $\mathbf{w} = (512,256,512,512...,512)$ 

 $f = x_1 \lor x_2 \lor x_{1023} \lor x_{1024}$  Initialize  $\theta = 1024$ ,  $\mathbf{w} = (1,1,1,1...,1)$ 

| Example                | Prediction                                             | Error? | Weights                                            |
|------------------------|--------------------------------------------------------|--------|----------------------------------------------------|
| x=(1,1,1,,1), y=+1     | $\mathbf{w}^{\scriptscriptstyle{T}} x \geq 	heta$      | No     | $\mathbf{w} = (1,1,1,1,1)$                         |
| x=(0,0,0,,0), y=-1     | $\mathbf{w}^{\scriptscriptstyle \intercal} x < \theta$ | No     | $\mathbf{w} = (1,1,1,1,1)$                         |
| x=(0,0,1,1,1,,0), y=-1 | $\mathbf{w}^{\scriptscriptstyle \intercal} x < \theta$ | No     | $\mathbf{w} = (1,1,1,1,1)$                         |
| x=(1,0,0,,0), y=+1     | $\mathbf{w}^{T}x < \theta$                             | Yes    | $\mathbf{w} = (2,1,1,1,1)$                         |
| x=(0,1,0,,0), y=+1     | $\mathbf{w}^{\scriptscriptstyle \intercal} x < \theta$ | Yes    | $\mathbf{w} = (2, 2, 1, 1,, 1)$                    |
| x=(1,1,1,,0), y=+1     | $\mathbf{w}^{\scriptscriptstyle \intercal} x < \theta$ | Yes    | w = (4,4,2,1,1)                                    |
| x=(1,0,0,,1), y=+1     | $\mathbf{w}^{\scriptscriptstyle \intercal} x < \theta$ | Yes    | $\mathbf{w} = (8,4,2,1,2)$                         |
|                        | •••                                                    | •••    | •••                                                |
|                        |                                                        |        | $\mathbf{w} = (512, 256, 512, 512,, 512)$          |
| x=(0,0,1,1,,0), y=-1   | $\mathbf{w}^{\scriptscriptstyleT} x \geq 	heta$        | Yes    | <b>w</b> = (512,256, <b>256</b> , <b>256</b> ,512) |

Demote x<sub>3</sub> and x<sub>4</sub>

| Example                | Prediction                                        | Error? | Weights                                            |
|------------------------|---------------------------------------------------|--------|----------------------------------------------------|
| x=(1,1,1,,1), y=+1     | $\mathbf{w}^{\scriptscriptstyle{T}} x \geq 	heta$ | No     | $\mathbf{w} = (1,1,1,1,1)$                         |
| x=(0,0,0,,0), y=-1     | $\mathbf{w}^{T}x < \theta$                        | No     | $\mathbf{w} = (1,1,1,1,1)$                         |
| x=(0,0,1,1,1,,0), y=-1 | $\mathbf{w}^{T}x < \theta$                        | No     | $\mathbf{w} = (1,1,1,1,1)$                         |
| x=(1,0,0,,0), y=+1     | $\mathbf{w}^{T}x < \theta$                        | Yes    | $\mathbf{w} = (2,1,1,1,1)$                         |
| x=(0,1,0,,0), y=+1     | $\mathbf{w}^{T}x < \theta$                        | Yes    | $\mathbf{w} = (2, 2, 1, 1,, 1)$                    |
| x=(1,1,1,,0), y=+1     | $\mathbf{w}^{T}x < \theta$                        | Yes    | w = (4,4,2,1,1)                                    |
| x=(1,0,0,,1), y=+1     | $\mathbf{w}^{T}x < \theta$                        | Yes    | $\mathbf{w} = (8,4,2,1,2)$                         |
|                        | •••                                               | •••    |                                                    |
|                        |                                                   |        | w = (512,256,512,512,512)                          |
| x=(0,0,1,1,,0), y=-1   | $\mathbf{w}^{\scriptscriptstyle{T}} x \geq 	heta$ | Yes    | <b>w</b> = (512,256, <b>256</b> , <b>256</b> ,512) |
| x=(0,0,0,,1), y=+1     | $\mathbf{w}^{T}x < \theta$                        | Yes    | <b>w</b> = (512,256,256,256, <b>1024</b> )         |

 $f = x_1 \lor x_2 \lor x_{1023} \lor x_{1024}$  Initialize  $\theta = 1024$ ,  $\mathbf{w} = (1,1,1,1...,1)$ 

| Example                | Prediction                                             | Error? | Weights                                            |
|------------------------|--------------------------------------------------------|--------|----------------------------------------------------|
| x=(1,1,1,,1), y=+1     | $\mathbf{w}^{\scriptscriptstyle{T}} x \geq 	heta$      | No     | $\mathbf{w} = (1,1,1,1,1)$                         |
| x=(0,0,0,,0), y=-1     | $\mathbf{w}^{T}x < \theta$                             | No     | $\mathbf{w} = (1,1,1,1,1)$                         |
| x=(0,0,1,1,1,,0), y=-1 | $\mathbf{w}^{T}x < \theta$                             | No     | $\mathbf{w} = (1,1,1,1,1)$                         |
| x=(1,0,0,,0), y=+1     | $\mathbf{w}^{T}x < \theta$                             | Yes    | $\mathbf{w} = (2,1,1,1,1)$                         |
| x=(0,1,0,,0), y=+1     | $\mathbf{w}^{T}x < \theta$                             | Yes    | $\mathbf{w} = (2, 2, 1, 1,, 1)$                    |
| x=(1,1,1,,0), y=+1     | $\mathbf{w}^{T}x < \theta$                             | Yes    | <b>w</b> = (4,4,2,1,1)                             |
| x=(1,0,0,,1), y=+1     | $\mathbf{w}^{\scriptscriptstyle \intercal} x < \theta$ | Yes    | $\mathbf{w} = (8,4,2,1,2)$                         |
|                        | •••                                                    | •••    | •••                                                |
|                        |                                                        |        | $\mathbf{w} = (512, 256, 512, 512,, 512)$          |
| x=(0,0,1,1,,0), y=-1   | $\mathbf{w}^{\scriptscriptstyle{T}} x \geq 	heta$      | Yes    | <b>w</b> = (512,256, <b>256</b> , <b>256</b> ,512) |
| x=(0,0,0,,1), y=+1     | $\mathbf{w}^{T}x < \theta$                             | Yes    | <b>w</b> = (512,256,256,256, <b>1024</b> )         |

Eventually, the algorithm will converge to something like

w = (1024, 1024, 16, 2..., 1024, 1024)

### Detour: The multiplicative update

#### Widely used (and re-re-discovered) in various fields

- Winnow (and the Majority Weighted algorithm)
- We will see the AdaBoost algorithm
- Shows up in economics and game theory (from the 1950s)
- Computational Geometry
- Operations research
- Many more...

See: Sanjeev Arora, Elad Hazan and Satyen Kale, *The Multiplicative Weights Update Method: a Meta Algorithm and Applications,* for a survey

#### This lecture

The Winnow Algorithm

Winnow mistake bound

Generalizations

#### Winnow mistake bound

We will analyze the simple case of k-disjunctions

#### Theorem

The Winnow algorithm learns the class of k-disjunctions with n Boolean variables in the Mistake bound model, making O(k log n) mistakes.

#### Implications:

- 1. Recall: The Perceptron mistake bound is O(n), "throwing lots of features at the problem" can hurt learning
- 2. Winnow is *attribute efficient* because it only has a log dependency on n. Only a small penalty for trying out lots of features

Littlestone 1988

Given a training set D =  $\{(x, y)\}, x \in \Re^n, y \in \{-1, 1\}$ 

- 1. Initialize:  $\mathbf{w} = (1,1,1,1...,1) \in \Re^{n}, \theta = n$
- 2. For each training example (x, y):
  - Predict  $y' = \operatorname{sgn}(\mathbf{w}^{\mathsf{T}}x \theta)$
  - If y = +1 and y' = -1 then:
    - Update each weight  $\mathbf{w}_i \leftarrow 2\mathbf{w}_i$  only for those features  $x_i$  that are 1 Else if y = -1 and y' = +1 then:
      - Update each weight  $\mathbf{w}_{\scriptscriptstyle \parallel} \leftarrow \mathbf{w}_{\scriptscriptstyle \parallel}/2$  only for those features  $x_i$  that are 1

#### **Proof**

Theorem: Winnow will make at most O(k log n) mistakes with k-disjunctions

*Our target functions are k-disjunctions* 

#### Strategy

Total mistakes = mistakes on positive examples (m<sup>+</sup>)

+

mistakes on negative examples (m<sup>-</sup>)

Get mistake bound upper bounding each separately

## 1. Mistakes on positives

Theorem: Winnow will make at most O(k log n) mistakes with k-disjunctions

*Our target functions are k-disjunctions* 

- A mistake on a positive example will double the weights for at least one of the relevant attributes. Why?
  - Because a positive example will have at least one relevant attribute
- We initialized our weight vector with 1s and the threshold  $\theta$  is always fixed to n
- How many times can a relevant attribute get promoted (i.e. doubled)?
  - 1 + log(n) times. After that, it will cross  $\theta$

 $m^+$  = Number of mistakes on positive examples = k (1 + log(n))

#### 2. Mistakes on negatives

Theorem: Winnow will make at most O(k log n) mistakes with k-disjunctions

*Our target functions are k-disjunctions* 

Let  $TW_t$  = the sum of all weights at some step  $t = \sum w_i$ 

- a. Initially  $TW_t = n$ , and for all t,  $TW_t > 0$
- b. What happens to  $TW_t$  when there is a mistake on a positive example?  $TW_{t+1} < TW_t + n$  (Why?)
  - ⇒ Total increase because of mistakes on positives < m<sup>+</sup>n
- c. What happens to  $TW_t$  when there is a mistake on a negative example?  $TW_{t+1} < TW_t n/2$  (Why?)
  - ⇒ Total decrease because of mistakes on negatives < m⁻n/2</p>

Putting these together:  $0 < TW_t < n + m^+n - m^-n/2$ 

 $\Rightarrow$  m<sup>-</sup> = Number of mistakes on negative examples < 2(1 + m<sup>+</sup>)

#### 3. Mistake bound

Theorem: Winnow will make at most O(k log n) mistakes with k-disjunctions

*Our target functions are k-disjunctions* 

- What we know:
  - 1. Mistakes on positive examples =  $m^+ < k (1 + log(n))$
  - 2. Mistakes on negative examples =  $m^-$  < 2(1 +  $m^+$ )

Total number of mistakes =  $m^+ + m^-$ 

$$< m^+ + 2(1 + m^+)$$
  
= 2 + 3 k (1 + log(n))

Number of mistakes Winnow will make on k-disjunctions = O(k log n)

#### This lecture

The Winnow Algorithm

Winnow mistake bound

Generalizations

# What can Winnow represent?

The version we saw can only learn monotone functions

- Why?

Only multiplying and dividing the weights will never get us

any negative weights





#### **Balanced Winnow**

- Duplicate the variables
  - If  $x^{+}_{\ i}$  represents a Boolean variable, then, introduce a new variable  $x^{-}_{\ i}$  to denote its negation
  - That is, learn a monotone function over the 2n variables ( $w_i^+$  for each  $x_i^+$  and  $w_i^-$  for each  $x_i^-$ )
  - Effective weight vector is the difference of the two. That is, prediction is performed as:
    - Prediction = +1 if  $(\mathbf{w}^+ \mathbf{w}^-)^\mathsf{T} \mathbf{x} \ge \theta$ , else prediction = -1
  - Modify the update rule so that whenever  $w_i$  is promoted,  $w_i^-$  should be demoted and vice versa.
- Can learn any linear threshold unit
- Downsides of this approach?

#### **Balanced Winnow**

Given a training set D =  $\{(x, y)\}$ ,  $x \in \Re^n$ ,  $y \in \{-1,1\}$ 

- 1. Initialize:  $\mathbf{w}^+ = (1,1,1,1...,1), \mathbf{w}^- = (1,1,1,1...,1) \in \Re^{n}, \theta = n$
- 2. For each training example (x, y):
  - Predict  $y' = \operatorname{sgn}((\mathbf{w}^+ \mathbf{w}^-)^{\mathsf{T}} x \theta)$
  - If y = +1 and y' = -1 then:
    - Update weight  $\mathbf{w}^{\scriptscriptstyle{+}}_{\phantom{+}i} \leftarrow 2\mathbf{w}^{\scriptscriptstyle{+}}_{\phantom{+}i}$  only for those features  $x_i$  that are 1
    - Update weight  $\mathbf{w}_{\mathsf{i}} \leftarrow \mathbf{w}_{\mathsf{i}} / 2$  only for those features  $x_i$  that are 1

Else if y = -1 and y' = +1 then:

- Update weight  $\mathbf{w}^{\scriptscriptstyle{+}}_{\phantom{+}i} \leftarrow \mathbf{w}^{\scriptscriptstyle{+}}_{\phantom{+}i}/2$  only for those features  $x_i$  that are 1
- Update weight  $\mathbf{w}_{\mathsf{i}}^{\mathsf{-}} \leftarrow 2\mathbf{w}_{\mathsf{i}}^{\mathsf{-}}$  only for those features  $x_i$  that are 1

#### Perceptron and Winnow

- Both are:
  - Mistake bound algorithms
  - Learn linear threshold units
  - Are generally robust
- Which algorithm should you use??
  - Multiplicative algorithms: If you believe that the hidden target function is sparse
  - Additive algorithms: If you believe that your target function could be a dense vector
    - What if the target function is a dense vector but each example is sparse? (We will see additive algorithms that are designed for this regime)

## Summary: What Winnow so far?

- A multiplicative update algorithm
  - Learns a linear classifier when very few attributes are relevant
  - Mistake bound only weakly (logarithmically) depends on the number of attributes

- Robust to both classification and attribute noise
  - In general, instead of multiplying and dividing by 2, we could do so by  $(1 + \epsilon)$  for some small  $\epsilon$