COMPSCI 260 - Problem Set 3, Problem 1

Due: Fri 11 Oct 2019, 5pm

Name: Kyle Mitra NetID: km423

Statement of collaboration and resources used (put None if you worked entirely without collaboration or resources; otherwise cite carefully): Office Hours / StackOverflow

My solutions and comments for this problem are below.

a)
$$C = \frac{RL}{G}$$

b) The probability of not a specific location in the genome not being covered is

$$[1 - \frac{C}{R}]^R$$
 which simplifies to e^{-C}

From this probability, the expected number of unsequenced nucleotides is

c) The expected number of contigs is

$$R * e^{-C}$$

The expected length of each contain is

$$\frac{G * [1 - e^{(-C)}]}{R * e^{(-C)}}$$

d) See code

Simulation	Emperical Coverage	# Uncovered Nucleotides	# Contigs	Avg Length of Contigs
1	5.987	7186	90	33253.49
2	5.987	7127	97	30854.32
3	5.987	7088	89	33638.22
4	5.987	6199	101	29642.59
5	5.987	9435	113	26465.18
6	5.987	8086	82	36486.76
7	5.987	6420	97	30861.65
8	5.987	9134	96	31154.85
9	5.987	8361	91	32875.15
10	5.987	9984	116	25776
11	5.987	8762	113	26471.13
12	5.987	6575	97	30860.05
13	5.987	10566	108	27679.94
14	5.987	7913	93	32172.98
15	5.987	7072	96	31176.33
16	5.987	5497	94	31856.41
17	5.987	7582	106	28230.36
18	5.987	7862	102	29334.69
19	5.987	8718	111	26948.49
20	5.987	5938	85	35224.26
Average	5.987	7775.25	98.85	30548.1425

- f) The average values obtained from the 20 simulations is similar to the expected values obtained from the equations derived in parts (a), (b), and (c). The slight discrepancies between the numbers may be a result of an insufficient number of trials. Since there is large variation in some values between trials, many simulations would have to be run in order to get a value even closer to the expected value.
- g) Based on the previously derived equation for the expected number of unsequenced nucleotides is $(G^*e^(-C))$, we would expect about 1659253.11 unsequenced nucleotides. Based on the previously derived equation C = RL/G, the equation for R would be CG/L. Based on these values, we would require 3.75×10^7 reads.
- h) The total number of read comparisons the assembler will need to undertake is R * (R-1) or (3.75E7)*((3.75E7)-1)

i)
$$\frac{R*(R-1)}{50,000,000}$$
 seconds or $\frac{(3.75E7)*((3.75E7)-1)}{50,000,000}$

j) Using the formulas we previously determined above, we are able to calculate these values using the newly provided information from part g.

When the assembler is finished, there will be about 20,741 contigs.

The average length of a contig will be about 144,563 nucleotides.

Using the formula above, there are expected to be approximately 1659253 unsequenced nucleotides. If we divide this number by the number of contigs, we get that there should be approximately 80 unsequenced nucleotides between adjacent contigs.

k) Based on the set of values I computed in this subproblem, I believe that these numbers are reasonable. One of the striking things about this task is that relative simplicity of the formulas. Once deriving the formulas, they are easily used to solve a very complex problem. When initially faced with the task at hand, this problem seemed extremely daunting but simply derivations of formulas allow you to break down this large task into smaller feasible tasks which when brought together allow you to solve this problem.