Project 2 Report

Lawrence Ouyang

December 1, 2015

1 User Guide

Included with this project are the following two MATLAB files:

- project2main.m
- ConjugateGradientPDE_2D.m

project2main.m is a script which solves exactly what the specs are asking for, that is:

- 1. Solves the equation $-u_{xx} u_{yy} + e^{x+y}u = 1$ for N = 32, 64, 128, 256, 512.
- 2. Plots the five graphs, one for each N.
- 3. Examines the relationship between N and the number of iterations required to obtain the solution.

 $\underline{ConjugateGradientPDE_2D.m}$ is the function that solves the equation

$$-u_{xx} - u_{yy} + q(x,y)u = r(x,y)$$

It has the following input variables in respective order:

- q_xy: Function q(x, y) of the equation
- r_xy: Function r(x, y) of the equation
- N: Size of parition of domain
- TOL: Threshold value for relative residual
- Iteration: Maximum number of iterations until program terminates

And the following outputs in respective order:

- u: Solution matrix of size $(N-1) \times (N-1)$.
- $\bullet\,$ k: Number of iterations required to obtain u.

2 Solutions

The plots of the graphs are shown below and on the next pages:

The table below shows how many iterations each N needed:

N	32	64	128	256	512
k	71	143	294	597	1208

3 Discussion

An obvious relationship can be seen just by examining the table in the solutions section. As N increases, the number of iterations k also increases, approximately at the same rate as N. Below is the Logarithmic Scaled graph of k and N and describes an increasing linear slope:

