Experiment 3 Shashwat Sha
60004220126
BE comps (22
Aim: Discrete convolution (inear & circular)
Theory: Convolution is a mathematical operation the
describes the two way signal combine.
-> Linear convolution.
This combine two signals to form a new signal
considering the total length of both Signals,
The discrete vireas convolution of two signar & (r
n(n) is given by - y(n) = 2 x(k) . h(n-k)
Circulas convolution
Orcular convolution treats signal is be they are period
corapping around when they exceed a certain length
The Jornala US similar to linear convolution by
includes modulo operation to handle periodicity
To range pour dicity
y(n) = x(n) x(n)
Corelision - By applying those neutrols, we observed
how linear convolution extends the length .
output Signal while the circular convolution wro
the signal due to periodicity, producing a result
same length as 1/p Seavences.
FOR EDUCATIONAL USE

NAME: Shashwat Shah SAP ID: 60004220126

DIV/BATCH:C22 DATE: 26/08/24

DIGITAL SIGNAL PROCESSING (DSP) EXPERIMENT 03

```
CODE:
x = [1 \ 2 \ 3 \ 5]:
y = [1 \ 1];
linear_c = conv(x,y);
xpad = [x zeros(1,6-length(x))];
ypad = [y zeros(1.6-length(y))];
subplot(2,1,1) stem(linear_c,'filled')
ylim([0 11])
title('Linear Convolution')
x1 = [1 \ 2 \ 0 \ -3];
x1pad = [x1 zeros(1,6-length(x1))]; x2pad = [x2
zeros(1,6-length(x2))];
circular_c = ifft(fft(x1pad).*fft(x2pad));
subplot(2,1,2) stem(circular_c,'filled')
ylim([-10 11]) title('Circular
Convolution')
```

OUTPUT:

