×

Линейные модели: статистический взгляд

7/7 баллов получено (100%)

Тест пройден!

Вернуться к неделе 3

Баллов: 1 / 1

1

При комплексном обследовании нескольких тысяч человек по измерявшимся показателям (включая пульс, давление, ЭКГ и т.д.) оценивался риск возникновения сердечного заболевания. Ста пациентам с самым высоким риском была предложена оздоровительная программа, включающая диету, упражнения и приём профилактических препаратов. Через несколько месяцев после окончания программы пациенты снова прошли диспансеризацию; средний оцениваемый риск возникновения сердечного заболевания существенно уменьшился.

Что можно сказать об эффективности оздоровительной программы?

- Программа явно эффективна риск уменьшился, значит, пациенты стали здоровее!
- Данных недостаточно: поскольку были выбраны пациенты с наибольшим риском, измеренный эффект может объясняться регрессией к среднему. Для оценки эффективности программы нужно использовать контрольную группу пациентов с таким же высоким риском, для которых программа не проводилась, и сравнить изменения в двух группах.

Правильный ответ

2.

Из 15 клиентов банка, которым менеджер предложил подключить автоплатёж, четверо согласились. Подключение услуги — бинарный признак, который можно описать распределением Бернулли. Запишите функцию правдоподобия $L(X^n,p)$ для такой выборки и посчитайте её значение, если истинная вероятность подключения услуги p=0.2. Запишите ответ с пятью знаками после десятичной точки.

Правильный ответ

$$L(X^n,p) = \prod_{i=1}^n p[X_i=1](1-p)[X_i=0] = p^4 \cdot (1-p)^{11},$$

$$L(X^n, 0.2) = 0.2^4 0.8^{11} \approx 0.00014.$$

Баллов: 1 / 1

3

По выборке из предыдущей задачи найдите оценку максимального правдоподобия для параметра p. Запишите ответ с тремя знаками после десятичной точки.

Правильный ответ

В данном случае
$$\hat{p}_{\scriptscriptstyle ext{OMII}} = ar{X}_n = rac{4}{15} pprox 0.267.$$

Баллов: 1 / 1

4.

Выберите верные утверждения о регрессии, получаемой методом наименьших квадратов.

Если шум описывается нормальным распределением с нулевым средним и постоянной дисперсией, метод наименьших квадратов даёт оценку максимального правдоподобия.

Правильный ответ		
	Получаемая оценка приближает условную по x медиану отклика $y.$	
Прав	вильный ответ	
Прав	Если шум описывается лапласовским распределением с нулевым средним и постоянной дисперсией, метод наименьших квадратов даёт оценку максимального правдоподобия.	
	Получаемая оценка приближает условное по \boldsymbol{x} матожидание отклика \boldsymbol{y} .	
Правильный ответ		
5 . Какие и моделе	Баллов: 1 /1 из приведённых ниже средств помогают от переобучения линейных ей?	
	Регуляризаторы.	
Правильный ответ		
	Упрощение модели.	
прав	ильный ответ	
	Увеличение количества данных.	
Правильный ответ		
	Использование средней абсолютной ошибки вместо	

среднеквадратичной.

Правильный ответ		
Прав	Усложнение модели. ильный ответ	
~	Баллов: 1 /1	
-	ите верные утверждения о регрессии, получаемой методом ньших квадратов с L_1/L_2 регуляризаторами.	
	Оба типа регуляризаторов уменьшают по модулю веса признаков, но ${\cal L}_2$ некоторые ещё и обнуляет.	
Правильный ответ Наоборот, обнуляет веса только L_1 -регуляризатор.		
	Из-за регуляризаторов оценки коэффициентов модели получаются смещённые.	
Правильный ответ		
	Константное слагаемое не должно входить в регуляризатор.	
Правильный ответ		
	Регуляризаторы увеличивают дисперсию оценок коэффициентов регрессионной модели.	
Прав	ильный ответ	
	Регуляризация подходит только для линейной регрессии, к сожалению, в задачах остальных типов её использовать нельзя.	
Правильный ответ Обратный пример — логистическая регрессия.		

	TIVINEVINDE WODE IV. CLALVICTURECKVINI BSTTAL COULSELA		
	При использовании L_2 -регуляризатора в МНК решение можно		
_	найти аналитически, а с L_1 -регуляризатором — только численно.		
Правильный ответ			
Прав	WITHOUT OF BET		
	Da-1		
	Регуляризаторы позволяют бороться с переобучением модели.		
Прав	ильный ответ		
	Баллов: 1		
	/1		
7.			
Выбері	ите верные утверждения о логистической регрессии.		
Выссрі	ите верные утверищении о погноти теской регрессии.		
	Оценка параметров модели делается минимизацией кросс-		
	энтропии.		
	энтропии.		
Прав	ильный ответ		
Мин	имизация кросс-энтропии — то же самое, что максимизация		
прав	вдоподобия.		
	Логистическая регрессия позволяет построить линейную модель		
_	вероятности $P(y=1 X)$		
	вильный ответ		
Лине	ейная модель строится для логита $\lnrac{P(y=1 X)}{P(y=0 X)}$		
	P(y=0 X)		
Ш	При настройке моделей могут возникать проблемы, если классы		
	линейно разделимы в пространстве признаков.		
Прав	ильный ответ		
В таком случае $\ w\ o\infty$			
וטו			
	_		
Ш	Функция, минимизируемая при настройке параметров модели,		
	невыпуклая, у неё много локальных экстремумов, поэтому		
	задача всегда имеет много решений.		

Правильный ответ

Такая проблема возникает только в случае, если матрица X вырождена.

