Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 6: Complementi di algebra lineare

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2021-2022

In questa lezione

▶ Altri fatti utili su matrici

▶ Forma canonica di Jordan

▶ Comandi Matlab[®]

Calcolo determinante e inversa

1. Sia $F \in \mathbb{R}^{n \times n}$, per ogni $i = 1, \dots, n$ $(j = 1, \dots, n)$, si ha

$$\det(F) = \sum_{j=1}^{n} (-1)^{i+j} F_{ij} \det(F_{i-,j-}), \ \left(\det(F) = \sum_{i=1}^{n} (-1)^{i+j} F_{ij} \det(F_{i-,j-}) \right)$$

dove $F_{i-,j-}$ è la matrice ottenuta cancellando la riga i e la colonna j di F.

2. Una matrice $F \in \mathbb{R}^{n \times n}$ è detta invertibile se esiste una matrice $H \in \mathbb{R}^{n \times n}$ tale che FH = HF = I, dove I è la matrice identità; $F^{-1} = H$ è detta inversa di F. F è invertibile se e solo se $\det(F) \neq 0$. La matrice inversa F^{-1} si può calcolare come

$$F^{-1} = \frac{\operatorname{adj}(F)}{\det(F)},$$

dove adj(F) è la matrice aggiunta di F, $[adj(F)]_{ii} = (-1)^{i+j} det(F_{i-.i-})$.

G. Baggio Lez. 6: Richiami di algebra lineare 9 Marzo 2022

Matrici triangolari (a blocchi)

1. Una matrice $F \in \mathbb{R}^{n \times n}$ si dice triangolare superiore (inferiore) se è della forma

$$F = \begin{bmatrix} \star & \star & \cdots & \star \\ 0 & \star & \cdots & \star \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \star \end{bmatrix} \quad \left(F = \begin{bmatrix} \star & 0 & \cdots & 0 \\ \star & \star & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \star & \cdots & \star & \star \end{bmatrix} \right).$$

Gli autovalori di una matrice triangolare F sono gli elementi sulla diagonale. L'inversa di una matrice triangolare F (quando esiste) è ancora triangolare e i suoi elementi sulla diagonale soddisfano $[F^{-1}]_{ii} = 1/F_{ii}$.

Matrici triangolari (a blocchi)

2. Una matrice $F \in \mathbb{R}^{n \times n}$ si dice triangolare superiore (inferiore) a blocchi se

$$F = \begin{bmatrix} \frac{\star}{0} & \star & \cdots & \star \\ 0 & \star & \cdots & \star \\ \vdots & \ddots & \ddots & \vdots \\ \hline 0 & \cdots & 0 & \star \end{bmatrix} \quad \left(F = \begin{bmatrix} \frac{\star}{0} & 0 & \cdots & 0 \\ \star & \star & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \star & \cdots & \star & \star \end{bmatrix} \right),$$

dove gli " \star " sulla diagonale sono matrici quadrate di dimensioni anche diverse tra loro. Gli autovalori di una matrice triangolare a blocchi F sono l'unione degli autovalori dei blocchi sulla diagonale. L'inversa di una matrice triangolare F a blocchi (quando esiste) è ancora triangolare a blocchi con blocchi diagonali di F^{-1} pari alle inverse dei blocchi diagonali di F.

Esempio: determinante e matrice inversa

$$F = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \quad \det(F)? \ F^{-1}?$$

$$\det(F)=2 \implies F$$
 invertibile, $F^{-1}=\begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1/2 & -1/2 \\ -1 & 0 & 1 \end{bmatrix}$

G. Baggio

Forma di Jordan: idea generale

$$F \in \mathbb{R}^{n imes n}$$
 con autovalori $\{\lambda_i\}_{i=1}^k$

$$u_i = \mathsf{molteplicita}$$
 algebrica λ_i

$$g_i = \mathsf{molteplicita}$$
 geometrica λ_i

Caso 1:
$$\nu_i = g_i$$
 per ogni $i \implies F$ diagonalizzabile \checkmark

Caso 2: Esiste i tale che
$$\nu_i > g_i \implies F$$
 non diagonalizzabile \times

Forma di Jordan: teorema

Teorema: Siano $\{\lambda_i\}_{i=1}^k$ gli autovalori di $F \in \mathbb{R}^{n \times n}$. Esiste una $T \in \mathbb{R}^{n \times n}$ tale che

$$F_{J} \triangleq T^{-1}FT = \begin{bmatrix} \frac{J_{\lambda_{1}} & 0 & \cdots & 0}{0 & J_{\lambda_{2}} & \ddots & \vdots} \\ \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_{k}} \end{bmatrix}, J_{\lambda_{i}} = \begin{bmatrix} \frac{J_{\lambda_{i},1} & 0 & \cdots & 0}{0 & J_{\lambda_{i},2} & \ddots & \vdots} \\ \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_{i},g_{i}} \end{bmatrix}, J_{\lambda_{i}j} = \begin{bmatrix} \lambda_{i} & 1 & \cdots & 0 \\ 0 & \lambda_{i} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \lambda_{i} \end{bmatrix} \in \mathbb{R}^{r_{ij} \times r_{ij}}.$$

Inoltre F_J è unica a meno di permutazioni dei blocchi $\{J_{\lambda_i}\}$ e miniblocchi $\{J_{\lambda_{i,i}}\}$.

 $F_I =$ forma canonica di Jordan di F

Forma di Jordan: osservazioni

- ${f 1.}$ Esiste una procedura algoritmica per il calcolo della trasformazione ${f T}$
- **2.** Dim. blocco J_{λ_i} associato a $\lambda_i =$ molteplicità algebrica ν_i
- **3.** # miniblocchi $\{J_{\lambda_i,j}\}$ associati a λ_i = molteplicità geometrica g_i
- **4.** In generale, per determinare F_J non è sufficiente conoscere gli autovalori $\{\lambda_i\}$ e i valori di $\{\nu_i\}$, $\{g_i\}$, ma bisogna anche conoscere i valori di $\{r_{ij}\}$!
- **5.** Se $\nu_i \leq 3 \ \forall i$, è possibile calcolare F_J conoscendo solo $\{\lambda_i\}$, $\{\nu_i\}$, $\{g_i\}$!

Forma di Jordan: esempi

1.
$$F = \begin{bmatrix} 3 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \implies \lambda_1 = 2, \ \nu_1 = 3, \ g_1 = 2 \implies F_J = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

2.
$$F = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & \alpha \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
, $\alpha = 0, 1 \implies \lambda_1 = 1$, $\nu_1 = 4$, $g_1 = 2$ $\implies F_J = \begin{cases} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, $\alpha = 0$ $\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, $\alpha = 1$

Comandi Matlab® – Matrici

```
calcola autovalori della matrice F:
eig(F)
                                    calcola matrice V con autovettori di F e ma-
[V,D] = eig(F)
                                    trice diagonale D con autovalori corrispondenti;
det(F)
                                    calcola determinante di F:
null(F)
                                    calcola base (ortonormale) di \ker F;
orth(F)
                                    calcola base (ortonormale) di im F;
rank(F)
                                    calcola rango di F;
inv(F)
                                    calcola inversa di F:
                                    calcola forma di Jordan di F (matrice J) e ma-
[T,J] = jordan(F)
                                    trice di cambio base di Jordan (matrice T)
                                    (N.B. richiede Symbolic Math Toolbox);
```