#### Endogeneity, Instrumental Variables

Tan Hong Ming

National University of Singapore

2019

### Endogeneity

$$\mathbf{Y} = \alpha + \beta \mathbf{X} + \epsilon$$

Tan, H. M. (NUS) EndolV

### Endogeneity

$$\mathbf{Y} = \alpha + \beta \mathbf{X} + \epsilon$$

- X causes Y
- $\bullet$  causes Y
- $\bullet$  does not cause X
- Y does not cause X
- **5** Nothing which cause  $\epsilon$  also causes X

## Endogeneity

$$\mathbf{Y} = \alpha + \beta \mathbf{X} + \epsilon$$

- X causes Y
- $\bullet$  does not cause X
- Y does not cause X
- **1** Nothing which cause  $\epsilon$  also causes X

If X is correlated with  $\epsilon$ , X is said to be an endogenous explanatory variable.

## Common Types of Endogeneity

- Omitted variables
- Omitted variables  $Y = \alpha + \beta X + (\gamma \frac{1}{2}) + (0) = \alpha + \beta X + \epsilon$ Passurement arrest
- 2. Measurement error if it is not deservable, then
  - we observe  $X = X^* + \mu$
  - $Y = \alpha + \beta X^* + \nu = \alpha + \beta X \beta u + \nu = \alpha + \beta X + \epsilon$
- 3. Self-selection

  - E[∈|participation]
  - Participation is not determined randomly

    No longer period

    randomized control trial

4. • Simultaneity

• e.g. demand and supply

In played!!













Tan, H. M. (NUS) EndoIV 2019 7/19



$$Q = \alpha + \beta P + \epsilon \tag{D}$$

$$Q = \gamma + \delta P + \nu \tag{S}$$

- Q and P are jointly determined
- Shock cause demand curve to shift
- Due to equilibrium, price P will also change
- Correlation between P and  $\epsilon$



9/19

Tan, H. M. (NUS) EndolV 2019

#### Instrumental Variables

$$Y = \alpha + \beta X + \epsilon$$
, where  $Cov(X, \epsilon) \neq 0$  (1)

Suppose that we have an observable variable *z* that satisfies these two assumptions:

**1** 
$$z$$
 is uncorrelated with  $\epsilon$ :  $Cov(z,\epsilon)=0$  **2 6 Solution**

2 z is correlated with X: 
$$Cov(z, X) \neq 0$$

Then we call z an instrumental variable for X Pieton:  $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n$ 

• (1) is called the structural equation

unobaewable Can'l be leded malhemakically.

$$Cov(z, X) \neq 0$$

z is correlated with X can be tested:

$$X = \gamma + \delta z + \nu$$
 Reduced form equal (2)

- If  $\delta$  is significant, then we can be fairly confident that  $Cov(z, X) \neq 0$
- (2) is an example of a reduced form equation
  - write an endogenous variable in terms of exogenous variables

Tan, H. M. (NUS) EndoIV 2019 11/19

### Example: estimating the causal effect of skipping classes on final exam score

$$score = \beta_0 + \beta_1 skipped + u$$

- skipped might be correlated with other factors in u
  - more able, highly motivated students might miss fewer classes
- IV candidate: distance between living guarters and campus ▶ Bad weather, oversleeping, etc can cause students to miss classes
- ★  $skipped = \gamma_0 + \gamma_1 distance + \nu$ Is the sign of  $\gamma_1$  important? Tes ( check howestres )

  - Is distance uncorrelated with u?

La Could be (como be (V

### Multiple regression model

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + \dots + \beta_k z_{k-1} + u_1$$
 (3)

- $y_i$ : endogenous,  $z_i$ : exogenous
- z<sub>k</sub>: exogenous variable not in (3)

$$y_2 = \pi_0 + \pi_1 z_1 + \dots + \pi_{k-1} z_{k-1} + \pi_k z_k + v_1$$
 (4)  
Muchuol Equal

• we require  $\pi_k \neq 0$ 

Tan, H. M. (NUS) EndolV 2019 13/19

#### Two stage least squares

A simple example

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + u_1$$
 (structural)  
 $y_2 = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + v_1$  (reduced form)

• Think of reduced form as breaking y<sub>2</sub> into two parts:

$$\pi_0 + \pi_1 z_1 + \pi_2 z_2$$
 uncorrelated with  $u_1$ ,  $v_1$  correlated with  $u_1$ 

 (1st stage) Estimate the reduced form by OLS and obtain the fitted values:

$$\hat{y}_2 = \hat{\pi}_0 + \hat{\pi}_1 z_1 + \hat{\pi}_2 z_2$$

 (2nd stage) Estimate the structural equation using OLS and the fitted values

$$y_1 = \beta_0 + \beta_1 \hat{y}_2 + \beta_2 z_1 + u_1$$

Tan, H. M. (NUS) EndolV 2019 14/19

#### Intuition of 2SLS

- $\hat{y}_2$  is the estimate of  $y^* = \pi_0 + \pi_1 z_1 + \pi_2 z_2$
- $y^*$  is uncorrelated with  $u_1$
- 2SLS first "purges"  $y_2$  of its correlation with  $u_1$  before doing OLS
- Recall  $y_2 = y^* + v_1$

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + u_1$$
  
=  $\beta_0 + \beta_1 y^* + \beta_2 z_1 + u_1 + \beta_1 v_1$   
=  $\beta_0 + \beta_1 y^* + \beta_2 z_1 + \epsilon$ 

Tan, H. M. (NUS) EndoIV 2019 15/19

#### **Tests**

```
Weak Instruments Low correlation between z and y
            H_0: the IV is weak (reject)
 Hausman Test of endogeneity of y
            H_0: y is not endogenous (reject)
    Sargan Only if you have more IVs than y
            H_0: all IVs are exogenous (do not reject)
```

#### Simultaneous Equations

A simple example

Apply arwe; because 'p' is sow moterial to supply. 
$$q = \alpha_1 p + \beta_1 z_1 + u_1$$
 Both are 
$$q = \alpha_2 p + u_2$$
 Show a square (5) show that equal (6)

- q per capita milk consumption
- p average price per gallon
- $z_1$  price of cattle feed (exogenous to (5) and (6))

Which is the demand/supply curve? Which equation can be estimated?  $\rightarrow$  Jenard ( $\cdot$ :  $z_1$  con be used so IV)

Tan, H. M. (NUS) EndoIV 2019 17/19

#### Intuition





#### In general

$$y_1 = \beta_{10} + \alpha_1 y_2 + \beta_{11} z_{11} + \beta_{12} z_{12} + \dots + \beta_{1n} z_{1n} + u_1$$
 (7)

$$y_2 = \beta_{20} + \alpha_2 y_1 + \beta_{21} z_{21} + \beta_{22} z_{22} + \dots + \beta_{2m} z_{2m} + u_2$$
 (8)

- z<sub>i</sub>'s can overlap in the two equations
- What if all  $z_i$ 's are the same in both equations? What accounts
- What assumption do we need to identify both equations? \*\* Additional Control of the Control

Tan. H. M. (NUS) 2019 19/19