Computation

1 Programs

1.1 Logical Instructions

Define \mathcal{L} ; an ordered set of operations s_i

$$\mathcal{L} := \{s_1, s_2, ..., s_N\}$$

1.2 Memory

Define Memory \mathcal{M} ; a set of elements, magnitudes, or sets b_i

$$\mathcal{M} := \{b_1, b_2, ..., b_M\}$$

1.3 Program

Define Program; a set of logical instructions and memory

$$P := \{s_1, s_2, ..., s_N, b_1, b_2, ..., b_M\}$$

1.3.1 State Notation

Define State Notation; separating the final operation s_N and the first memory element b_1

$$P := \{s_1, s_2, ..., s_N, b_1, b_2, ..., b_M\}$$
$$= \{s_1, s_2, ..., s_N | b_1, b_2, ..., b_M\}$$

1.4 Boolean Programs

Define a boolean program; boolean programs can represent functions with inputs x_i , input set C, and boolean output y_o

$$X = \{x_1, ..., x_n, C\}; \quad C = \{u_1, u_2, ..., u_c\}$$

$$P = P[X] := \{s_1, s_2, ..., s_N \mid b_1, b_2, ..., b_M, y_o\} =$$

$$P[X] \to y_o \in \{\mathbb{T}, \mathbb{F}\}$$

1.5 Void Programs

Define a void program; a program with inputs x_i , input set C, and no output

$$X = \{x_1, ..., x_n, C\}$$

$$P = P[X] := \{s_1, s_2, ..., s_N \mid b_1, b_2, ..., b_M\}$$

1.6 Numerical Programs

Define a numerical program; a program with inputs x_i , input set C, and real, rational output y_o

$$X = \{x_1, ..., x_n, C\}$$

$$P = P[X] := \{s_1, s_2, ..., s_N \mid b_1, b_2, ..., b_M, y_o\} =$$

$$P[X] \to y_o \in \mathbb{Q} \ y_o \geqslant 0$$

1.7 System Programs

Define a system program; a program with inputs x_i , input set C, and real, output set Y_o

$$X = \{x_1, ..., x_n, C\}$$

$$P = P[X] := \{s_1, s_2, ..., s_N \mid b_1, b_2, ..., b_M, Y_o\} =$$

$$P[X] \rightarrow Y_o = \{y_1, y_2, ..., y_K\}$$

1.8 Mathematical Programs

Define a mathematical program; a program with inputs x_i , input set C and numerical output y_o

$$X = \{x_1, ..., x_n, C\}$$

$$P = P[X] := \{s_1, s_2, ..., s_N \mid b_1, b_2, ..., b_M, y_o\} =$$

$$P[X] \to y_o \in \mathbb{Q}$$

2 Problem Definition

Also denoted as a "Question"

$$X_i = \{x_1, ..., x_n\}$$
$$Q := f[X_i] = Y_o \subseteq \Omega \quad \forall X_i$$

2.1 Set of Questions

Define \mathbb{Q} ; the set of questions

$$\mathbb{Q} := \{Q_1, Q_2, \ldots\} :$$

$$Q_i = f[X_j] = Y_o \subseteq \Omega \ \forall X_j, i$$

2.2 Decision Questions / Decision Problems

2.2.1 Definition

Define decision problem; a function with inputs x_i and boolean output "answer" a_o

$$X_i = \{x_1, ..., x_n\}$$
$$D := f[X_i] = a_o \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_i$$

2.3 Numerical Questions / Numerical Problems

2.3.1 Definition

Define numerical problem; a function with inputs x_i and numerical output y_o

$$X_i = \{x_1, ..., x_n\}$$
$$Q := f[X_i] = y_0 \in \mathbb{R} \quad \forall X_i$$

2.4 System Questions / System Problems

2.4.1 Definition

Define system problem; a function with inputs x_i and outputs y_j

$$X_i = \{x_1, ..., x_n\}$$

 $Q := f[X_i] = Y_o = \{y_1, ..., y_m\} \quad \forall X_i$

3 General Solutions

3.1 Definition

Program P is a general solution s^+ to decision problem D if

- 1. P outputs answer a_o for all inputs $X_i \ \forall i$ and
- 2. $s^+[X_i]$ is a subset of $s^+[\hat{X}_i]$

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n}, x_{n+1}, C\}$$

$$D := f[X_{i}] \rightarrow a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$s^{+} = s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$P[X_{i}] = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\}$$

$$s^{+} = P[X_{i}] = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\} \quad \forall X_{i}$$

3.1.1 Property of No-op;

No-op; can be added to any solution S_i without modifying the output y_o or memory b_i

$$\begin{split} & ; := \varnothing \\ s^+ = \{s_1, s_2, ..., s_{O_T[n]}, b_1, b_2, ..., b_{O_S[n]}, y_o\} \\ \hat{s}^+ = \{s_1, s_2, ..., \ ; \ , ..., s_{O_T[n]+1}, \hat{b}_1, \hat{b}_2, ..., \hat{b}_{O_S[n]}, \hat{y}_o\} \\ & \hat{y}_o = y_o \ \, \forall k \end{split}$$

3.2 Definition of S^+

Define S^+ ; the set of solutions to decision problem D

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n}, x_{n+1}, C\}$$

$$D := f[X_{i}] \rightarrow a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$s_{j}^{+} = s_{j}^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$S^{+} := \{s_{j}^{+}, ...\} \quad \forall j$$

3.3 Definition of Solvable

Define solvable

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n}, x_{n+1}, C\}$$

$$D := f[X_{i}] \rightarrow a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$solvable := solvable[D] \rightarrow b_{o} \in \{\mathbb{T}, \mathbb{F}\} =$$

$$\exists P : (P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

4 The set of all Decision Problems \mathbb{D}

4.1 Definition

Define the set of decision problems \mathbb{D}

$$X_i = \{x_1, ..., x_n, C\}$$

$$D_j := f_j[X_i] \to a_o \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_i$$

$$\mathbb{D} := \{D_j, ...\} \quad \forall j$$

5 Instruction and Memory Notation

Define \mathcal{L} a set of logical operations Define \mathcal{M} a set of memory elements, magnitudes, and sets

$$X_{i} = \{x_{1}, ..., x_{n}, C\};$$

$$P[X_{i}] \rightarrow y_{o} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$\mathcal{L} := \{s_{1}, s_{2}, ..., s_{O_{T}[n]}\}$$

$$\mathcal{M} := \{b_{1}, b_{2}, ..., b_{O_{S}[n]}\}$$

$$P[X_{i}] = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

6 Complexity

6.1 Time Complexity of a Decision Problem $O_T[n]$

Define Time Complexity $O_T[n]$ of solution s^+ to Decision Problem D as the total number of logical operations

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$D := f[X_{i}] \rightarrow a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$= \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$O_{T}[n] := |\mathcal{L}| = N$$

6.2 Space Complexity $O_S[n]$

Define Space Complexity $O_S[n]$ of solution s^+ to Decision Problem D as the total number of memory elements

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$D := f[X_{i}] \rightarrow a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$= \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$O_{S}[n] := |\mathcal{M}| + |y_{o}|^{*} = M + 1$$

*It is convention to reserve one memory element for output y_o . Void programs do not require the y_o memory element for output

7 Definition of Complexity

Define Complexity O[n] as a vector of dimension V

$$\mathbf{O}[n] := \langle O_T[n], O_S[n], O_3[n], O_4[n], ..., O_V[n] \rangle$$

8 Simple Computational Complexity

The remainder of this document assumes simple computational complexity of dimension 2

8.1 Definition

Define simple computational complexity of dimension 2

$$\mathbf{O}[n] := \langle O_T[n], O_S[n] \rangle$$

8.2 Total Complexity

Define Total Complexity of solution s^+

$$O[n] := |s^{+}[X_n]| = |\{\mathcal{L}, \mathcal{M}, y_o\}|$$

= $|\mathcal{L}| + |\mathcal{M}| + |y_o| = N + M + 1$

8.3 Time Complexity

Restate definition of Time Complexity $O_T[n]$ of solution s^+

$$s^{+} = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$
$$O_{T}[n] := |\mathcal{L}| = N$$

8.4 Space Complexity

Restate definition of Time Complexity $O_S[n]$ of solution s^+

$$s^{+} = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$
$$O_{S}[n] := |\mathcal{M}| + |y_{o}| = M + 1$$

8.5 Total Complexity as a Function of Time and Space Complexity

$$O[n] := |s^{+}[X_n]| = |\{\mathcal{L}, \mathcal{M}, y_o\}|$$
$$= |\mathcal{L}| + |\mathcal{M}| + |y_o|$$
$$= O_T[n] + O_S[n]$$

8.6 $O_S[n] > 0^*$

Assuming Program is not void

8.6.1 **Proof**

Assume $O_S[n] = 0$

$$O_S[n] := |\mathcal{M}| + |y_o|$$

$$O_S[n] = 0 \Rightarrow \mathcal{M} = y_o = \emptyset$$

$$y_o = \emptyset; \ y_o \in \{\mathbb{T}, \mathbb{F}\} \text{ by definition of } s^+$$

 $O_S[n] = 0$ contradicts the definition of solution s^+ of a decision problem

 $O_S[n] \geqslant 0$ by definition of magnitude

$$\therefore O_S[n] > 0$$

8.7 $O_T[n] > 0^*$

Assuming Program is not void

8.7.1 **Proof**

Assume $O_T[n] = 0$

$$O_T[n] := |\mathcal{L}|$$

$$O_T[n] = 0 \Rightarrow y_o \notin \{\mathbb{T}, \mathbb{F}\}$$

$$y_o \notin \{\mathbb{T}, \mathbb{F}\}; \ y_o \in \{\mathbb{T}, \mathbb{F}\} \text{ by definition of } s^+$$

 $\therefore O_T[n] = 0$ contradicts the definition of solution s^+ of a decision problem

 $O_T[n] \geqslant 0$ by definition of magnitude

$$\therefore O_T[n] > 0$$

8.8
$$O[n] > 0^*$$

Assuming Program is not void

8.8.1 **Proof**

$$O[n] := O_T[n] + O_S[n]$$

$$O_T[n] > 0; \quad O_S[n] > 0$$

$$\therefore O[n] > 0$$

8.9 $O[n] > O_T[n] *$

Assuming Program is not void

8.9.1 **Proof**

$$O[n] := O_T[n] + O_S[n]$$
$$O_S[n] > 0$$
$$\therefore O[n] > O_T[n]$$

8.10 $O[n] > O_S[n]^*$

Assuming Program is not void

8.10.1 Proof

$$O[n] := O_T[n] + O_S[n]$$

$$O_T[n] > 0$$

$$\therefore O[n] > O_S[n]$$

8.11
$$O[n+1] \geqslant O[n]$$

8.11.1 Proof

$$X_i = \{x_1, ..., x_n, C\}; \quad \hat{X}_i = \{x_1, ..., x_{n+1}, C\}$$

$$O[n] = |s^+[X_i]|$$

$$O[n+1] = \hat{O}[n] = |s^+[\hat{X}_i]|$$

For general solutions s^+

$$s^{+}[\hat{X}_{i}] \supseteq s^{+}[X_{i}]$$

$$\Rightarrow |s^{+}[\hat{X}_{i}]| \geqslant |s^{+}[X_{i}]|$$

$$\therefore \hat{O}[n] = O[n+1] \geqslant O[n]$$

Computational Operators

- 9 No-op;
- 9.1 Define No-op;

Define void program No-op;

$$; [\varnothing] := \{s_{:} = \varnothing\} = \{\mathcal{L}\}\$$

9.2 Time Complexity of No-op

$$O_T[n] := |\mathcal{L}| = 1$$

9.3 Space Complexity of No-op

$$O_S[n] := |\mathcal{M}| = 0$$

9.4 Total Complexity of No-op

$$O[n] = O_T[n] + O_S[n] = 0$$

9.5 Property of No-op;

Prove No-op can be added to any Program P without modifying the output y_o or memory b_i

$$P = \{s_1, s_2, ..., s_{O_T[n]}, b_1, b_2, ..., b_{O_S[n]}, y_o\} = \{\mathcal{L}, \mathcal{M}, y_o\}$$

Let

$$P_{;} = \{s_{1}, s_{2}, ..., s_{j}, s_{;}, s_{j+1}, ..., s_{O_{T}[n]}, \hat{b}_{1}, \hat{b}_{2}, ..., \hat{b}_{O_{S}[n]}, \hat{y}_{o}\}$$

Suppose

$$\hat{y}_o \neq y_o$$

10 Inductive Functions

10.1 Inductive Function f_{n+1}

$$O[n] = O_T[n] + O_S[n]$$

$$O[n+1] = O_T[n+1] + O_S[n+1]$$

$$f_{n+1}[n] := O[n+1] - O[n]$$

10.2 Inductive Space and Time Formulas

$$f_{n+1}^{T}[n] := O_{T}[n+1] - O_{T}[n]$$

$$O_{T}[n+1] = O_{T}[n] + f_{n+1}^{T}[n]$$

$$f_{n+1}^{S}[n] := O_{S}[n+1] - O_{S}[n]$$

$$O_{S}[n+1] = O_{S}[n] + f_{n+1}^{S}[n]$$

10.3 Inductive Function Expressions

Relate $f_{n+1}[n]$ to equivalence functions

$$O[n] = O_T[n] + O_S[n]$$

$$O[n+1] = O_T[n+1] + O_S[n+1] = O[n] + f_{n+1}[n]$$

$$O_T[n] = O[n] - O_S[n]$$

$$O_S[n] = O[n] - O_T[n]$$

$$f_{n+1}[n] = O[n+1] - O[n]$$

$$f_{n+1}[n] = O_T[n+1] + O_S[n+1] - O[n]$$

$$f_{n+1}[n] = O_T[n+1] - O_T[n] + O_S[n+1] - O_S[n]$$

$$f_{n+1}[n] = O[n+1] - O_T[n] - O_S[n]$$

$$f_{n+1}[n] = f_{n+1}^T[n] + f_{n+1}^S[n]$$

10.4 Zero Order Space Inductive Function

Let
$$O_S[n] \sim n^0$$

 $f_{n+1}[n] = O_T[n+1] - O_T[n] + O_S[n+1] - O_S[n] = O_T[n+1] - O_T[n]$

11 Polynomial Complexity

11.1 Definition

Decision problem D with solution s^+ has polynomial total complexity O[n] if

$$\exists K, C, \lambda_1 ... \lambda_K :$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \quad \forall n$$

11.2 Polynomial Problems

Define \mathbb{P} , the set of Decision Problems that can be solved with Polynomial Complexity

$$\mathbb{P}:=\{D_1,D_2,\ldots\}:$$

$$\exists K,C,\lambda_1...\lambda_K:$$

$$O[n]=(\lambda_K n)^K+(\lambda_{K-1} n)^{K-1}...+\lambda_1 n+C \quad \forall n,D_i\in\mathbb{P}$$

11.3 Polynomial Order of Complexity

Solution s^+ with total complexity O[n] is said to be of order n^K

$$O[n] \sim n^K$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C \quad \forall n$$

11.4 Property of Polynomial Complexity 1

Solutions with polynomial complexity have convergent complexity

$$\lim_{n\to\infty} \frac{O[n+1]}{O[n]} = 1$$

11.4.1 Proof

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C$$

$$O[n+1] = (\lambda_K (n+1))^K + (\lambda_{K-1} (n+1))^{K-1} \dots + \lambda_1 (n+1) + C$$

$$= (\lambda_K n)^K + (\tilde{\lambda}_{K-1} n)^{K-1} \dots + \tilde{\lambda_1} n + \tilde{C}$$

$$\lim_{n \to \infty} \frac{O[n+1]}{O[n]}$$

$$= \lim_{n \to \infty} \frac{(\lambda_K n)^K + (\tilde{\lambda}_{K-1} n)^{K-1} \dots + \tilde{\lambda_1} n + \tilde{C}}{(\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C}$$

$$\begin{split} = \lim_{n \to \infty} & \frac{(\lambda_K n)^K}{(\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C} + \frac{(\tilde{\lambda}_{K-1} n)^{K-1}}{(\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C} + \dots + \\ & \frac{\tilde{\lambda}_1 n}{(\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C} + \frac{\tilde{C}}{(\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C} \\ & = 1 = \lim_{n \to \infty} \frac{O[n+1]}{O[n]} \end{split}$$

11.5 Property of Polynomial Complexity 2

$$\exists K, \hat{C}, \hat{\lambda}_1, ..., \hat{\lambda}_{K-1}:$$

$$O[n+1] - O[n] = f_{n+1}[n] = (\hat{\lambda}_{K-1}n)^{K-1}... + \hat{\lambda}_1 n + \hat{C} \quad \forall n$$

11.5.1 Proof

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C$$

$$O[n+1] = (\lambda_K (n+1))^K + (\lambda_{K-1} (n+1))^{K-1} \dots + \lambda_1 (n+1) + C$$

$$= (\lambda_K n)^K + (\tilde{\lambda}_{K-1} n)^{K-1} \dots + \tilde{\lambda}_1 n + \tilde{C}$$

$$O[n+1] - O[n] = ((\tilde{\lambda}_{K-1} - \lambda_{K-1}) n)^{K-1} \dots + (\tilde{\lambda}_1 - \lambda_1) n + (\tilde{C} - C)$$

$$O[n+1] - O[n] = (\hat{\lambda}_{K-1} n)^{K-1} \dots + \hat{\lambda}_1 n + \hat{C}$$

11.6 Property of Polynomial Complexity 3

$$limit_{n\to\infty} \frac{f_{n+1}[n]}{O[n]} = 0$$

11.6.1 **Proof**

$$limit_{n\to\infty} \frac{O[n+1]}{O[n]} = 1$$

$$limit_{n\to\infty} \frac{O[n] + f_{n+1}[n]}{O[n]} = 1$$

$$limit_{n\to\infty} \frac{O[n]}{O[n]} + \frac{f_{n+1}[n]}{O[n]} = 1$$

$$limit_{n\to\infty} 1 + \frac{f_{n+1}[n]}{O[n]} = 1$$

$$limit_{n\to\infty} \frac{f_{n+1}[n]}{O[n]} = 0$$

11.7 Total Polynomial Complexity Implies Time bounded Polynomial Complexity

$$D \in \mathbb{P} \Longrightarrow O_T[n] < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C$$

11.7.1 Proof

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C \ \forall n$$

$$O[n] := O_T[n] + O_S[n]; \ O_S[n] > 0$$

$$\therefore O_T[n] < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C \ \forall n$$

11.8 Total Polynomial Complexity Implies Space bounded Polynomial Complexity

$$D \in \mathbb{P} \Longrightarrow O_S[n] < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C$$

11.8.1 Proof

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \ \forall n$$

$$O[n] := O_T[n] + O_S[n]; \ O_T[n] > 0$$

$$\therefore O_S[n] < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \ \forall n$$

11.9 Polynomial Complexity in Space and Time Implies Polynomial Total Complexity

$$(O_S[n] == (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + \lambda_0)$$

$$\wedge$$

$$(O_T[n] == (\hat{\lambda}_M n)^M + (\hat{\lambda}_{M-1} n)^{M-1} \dots + \hat{\lambda}_1 n + \hat{\lambda}_0)$$

$$\Rightarrow D \in \mathbb{P}$$

11.9.1 Proof

$$O_S[n] = \lambda_K n^K + \lambda_{K-1} n^{K-1} + \dots + \lambda_1 n + \lambda_0$$

$$O_T[n] = \hat{\lambda}_M n^M + \hat{\lambda}_{M-1} n^{M-1} + \dots + \hat{\lambda}_1 n + \hat{\lambda}_0$$

$$O[n] = O_S[n] + O_T[n]$$

$$^*O[n] = (\hat{\lambda}_0 + \lambda_0) + n(\lambda_1 + \hat{\lambda}_1) + \dots + n^K (\lambda_K + \hat{\lambda}_K) + \hat{\lambda}_{K+1} n^{K+1} + \dots + \hat{\lambda}_M n^M$$

$$\therefore O[n] \text{ has polynomial total complexity by definition}$$

* Assume K < M, similar proof for K=M, K>M

12 Non-Polynomial Complexity

12.1 Definition

Decision problem \tilde{D} with solution s^+ has non-polynomial total complexity O[n] if

$$\sharp K, C, \lambda_1 ... \lambda_K :$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \quad \forall n$$

12.2 Non-Polynomial Problems

Define \mathcal{N} , the set of Decision Problems that cannot be solved with Polynomial Complexity

12.3 \mathbb{P} and \mathcal{N} are disjoint

$$\mathbb{P} \cap \mathcal{N} = \emptyset$$

12.3.1 Proof

Let $D \in \mathcal{N}$

$$\sharp K, C, \lambda_1 ... \lambda_K :$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \quad \forall n$$

Assume $D \in \mathbb{P}$

$$\exists K, C, \lambda_1 ... \lambda_K :$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \quad \forall n$$
Contradicts the definition of \mathcal{N}

$$\therefore D \in \mathcal{N} \Rightarrow D \notin \mathbb{P}$$

Let $D \in \mathbb{P}$

$$\exists K, C, \lambda_1 ... \lambda_K :$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \quad \forall n$$

Assume $D \in \mathcal{N}$

$$\sharp K, C, \lambda_1 ... \lambda_K :$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \quad \forall n$$
Contradicts the definition of \mathbb{P}

$$\therefore D \in \mathbb{P} \Rightarrow D \notin \mathcal{N}$$

$$D \in \mathcal{N} \Rightarrow D \notin \mathbb{P}; D \in \mathbb{P} \Rightarrow D \notin \mathcal{N}$$
$$\therefore \mathbb{P} \cap \mathcal{N} = \emptyset$$

13 Divergent Complexity

13.1 Defintion

Decision problem \hat{D} with solution s^+ has divergent total complexity O[n] if

$$\lim_{n\to\infty} \frac{O[n+1]}{O[n]}$$
 diverges

13.2 Divergent Problems

$$\hat{\mathcal{D}} := \{\hat{D}_1, \hat{D}_2, ...\} :$$

$$\lim_{n \to \infty} \frac{O[n+1]}{O[n]} \ diverges \ \forall s^+ \in S_i^+, \ \hat{D}_i \in \hat{\mathcal{D}}$$

13.3 The Set of Polynomial Solutions and the Set of Divergent Solutions are disjoint

$$\mathbb{P} \cap \hat{D} = \varnothing$$

13.4 Proof

Let $D \in \hat{\mathcal{D}}$

$$\lim_{n\to\infty} \frac{O[n+1]}{O[n]}$$
 diverges by definition

Assume $D \in \mathbb{P}$

$$\lim_{n\to\infty} \frac{O[n+1]}{O[n]} = 1$$

 $\lim_{n \to \infty} \frac{O[n+1]}{O[n]} = 1$ contradicts the definition of Divergent Problems

$$\therefore D \in \hat{\mathcal{D}} \Rightarrow D \notin \mathbb{P}$$

Let $D \in \mathbb{P}$

 $\lim_{n\to\infty} \frac{O[n+1]}{O[n]} = 1$ by property of Polynomial complexity

Assume $D \in \hat{D}$

$$\lim_{n\to\infty} \frac{O[n+1]}{O[n]}$$
 diverges

 $\lim_{n\to\infty}\frac{O[n+1]}{O[n]}$ diverges contradicts a property of Polynomial complexity

$$\therefore D \in \mathbb{P} \Rightarrow D \notin \hat{\mathcal{D}}$$

$$\therefore \mathbb{P} \cap \hat{\mathcal{D}} = \emptyset$$

14 Subfunctions

14.1 Restate the subfunction condition of general solutions

Recall the definition of general solution s^+

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$s^{+} = s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

The subfunction condition is one of two conditions for a general solution

$$P[\hat{X}_i] \supseteq P[X_i] \ \forall X_i, \hat{X}_i$$

14.2 Prove O[n] is a non-decreasing function

Consider solution s^+ with complexity O[n]

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$s^{+} = s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \to y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$= \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$O[n] := O_{T}[n] + O_{S}[n]$$

$$O_{T}[n] := |\mathcal{L}| = N$$

$$O_{S}[n] := |\mathcal{M}| + |y_{o}| = M + 1$$

O[n+1] denotes the total complexity for solution $s^+[\hat{X}_i]$

$$s^+[\hat{X}_i] = \hat{s}^+$$

Let

$$O[n+1] < O[n]$$

$$\Rightarrow \hat{N} + \hat{M} < N + M$$

$$\hat{s}^+ = \{s_1, s_2, ..., s_{\hat{N}} | b_1, b_2, ..., b_{\hat{M}}, y_o\}$$

$$\Rightarrow \hat{s}^+ \not \supseteq s^+$$

$$P[\hat{X}_i] \not\supseteq P[X_i] \quad \forall X_i, \hat{X}_i$$

 $\therefore O[n+1] < O[n]$ contradicts the definition of solution s^+ $O[n+1] \geqslant O[n]$

14.3 Definition of Subfunction

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$s^{+} = s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$= \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$Sub[X_{i}] := S = \{s_{j}, ... | b_{k}, ..., y_{o}\} :$$

$$s_{j}, b_{k} \in s^{+} \quad \forall s_{j}, b_{k} \in S$$

14.3.1 $s^+[X_i]$ is a subfunction of $s^+[\hat{X}_i]$

$$\begin{split} s^+ &= \{s_1, s_2, ..., s_N | b_1, b_2, ..., b_M, y_o\} = \{s_1, s_2, ..., s_{O_T[n]}, b_1, b_2, ..., b_{O_S[n]}, y_o\} \\ \hat{s}^+ &= \{s_1, s_2, ..., s_N, ..., s_{\hat{N}} | b_1, b_2, ..., b_M, ..., b_{\hat{M}}, y_o\}; \quad \hat{N} + \hat{M} \geqslant N + M \end{split}$$

By definition of solution

$$\hat{s}^+ = P[\hat{X}_i] \supseteq P[X_i] = s^+ \quad \forall X_i, \hat{X}_i$$

$$\Rightarrow s_i, b_k \in \hat{s}^+ \quad \forall s_i, b_k \in s^+$$

14.4 Subfunction Decomposition of Solutions

FIX Double check conditions!!! Solutions s^+ can be written as the union of subfunctions $Sub_k[X_i]$

$$\begin{split} X_i &= \{x_1, ..., x_n, C\}; \quad \hat{X}_i = \{x_1, ..., x_{n+1}, C\} \\ s^+ &= s^+[X_i] := P: \\ (P[X_i] \to y_o == a_o \quad \forall X_i) \quad \cap \quad (P[\hat{X}_i] \supseteq P[X_i] \quad \forall X_i, \hat{X}_i) \\ s^+ &= \{s_1, s_2, ..., s_N | b_1, b_2, ..., b_M, y_o\} = \{s_1, s_2, ..., s_{O_T[n]}, b_1, b_2, ..., b_{O_S[n]}, y_o\} \\ &= \{\mathcal{L}, \mathcal{M}, y_o\} \\ s^+ &= Sub_1[X_i] \cup Sub_2[X_i] \cup ... \cup Sub_z[X_i] \\ &= \{\mathcal{L}_1 | \mathcal{M}_1, y_o\} \cup \{\mathcal{L}_2 | \mathcal{M}_2, y_o\} \cup ... \cup \{\mathcal{L}_z | \mathcal{M}_z, y_o\} : \\ \mathcal{L}_j \cap \mathcal{L}_k = \varnothing \quad \forall j, k \neq j \\ s^+ &= \{s_1^1, ..., s_{N_1}^1 | b_1^1, ..., y_o\} \cup \{s_1^2, ..., s_{N_2}^2 | b_1^2, ..., y_o\} \cup ... \cup \{s_1^z, ..., s_{N_z}^z | b_1^z, ..., y_o\} : \\ \sum_{l=1}^z N_l = N = O_T[n] \end{split}$$

15 Subfunction Complexity

15.1 Disjoint Subfunction Operations

$$\mathcal{L}_i \cap \mathcal{L}_j = \emptyset \ \forall i, j \neq i$$

15.2 Shared Subfunction Memory

$$|\mathcal{M}_i \cap \mathcal{M}_j| \geqslant 0 \ \forall i, j \neq i$$

15.2.1 Time Complexity of Subfunctions

Subfunction time complexity is additive

$$s^{+} = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$Sub_{i}[X] := S_{i} = \{s_{j}, \dots | b_{k}, \dots, y_{o}\} :$$

$$s_{j}, b_{k} \in s^{+} \quad \forall s_{j}, b_{k} \in S_{i}$$

$$s^{+} = \{\mathcal{L}_{1} | \mathcal{M}_{1}, y_{o}\} \cup \{\mathcal{L}_{2} | \mathcal{M}_{2}, y_{o}\} \cup \dots \cup \{\mathcal{L}_{z} | \mathcal{M}_{z}, y_{o}\} :$$

$$\mathcal{L}_{i} \cap \mathcal{L}_{j} = \emptyset \quad \forall i, j \neq i$$

$$\mathcal{L} = \cup_{i=1}^{z} \mathcal{L}_{i}$$

$$\mathcal{L}_{i} \cap \mathcal{L}_{j} = \emptyset \ \forall i, j \neq i$$

$$O_{T}[n] = |\mathcal{L}| = N$$

$$O_{T}[n] = | \bigcup_{i=1}^{z} \mathcal{L}_{i} | = \sum_{i=1}^{z} |\mathcal{L}_{i}|^{*} = |\mathcal{L}_{1}| + |\mathcal{L}_{2}| + \dots + |\mathcal{L}_{z}|$$

$$= O_{T_{1}}[n] + O_{T_{2}}[n] + \dots + O_{T_{z}}[n] = N_{1} + N_{2} + \dots + N_{z}$$

*Due to the disjoint condition of subfunction operations $\mathcal{L}_i \cap \mathcal{L}_j = \emptyset \ \forall i, j \neq i$

15.2.2 Space Complexity of Subfunctions

Subfunctions can access the full memory \mathcal{M} with no added space complexity

$$s^{+} = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$Sub_{i}[X] := S_{i} = \{s_{j}, \dots | b_{k}, \dots, y_{o}\} :$$

$$s_{j}, b_{k} \in s^{+} \quad \forall s_{j}, b_{k} \in S_{i}$$

$$s^{+} = \{\mathcal{L}_{1} | \mathcal{M}_{1}, y_{o}\} \cup \{\mathcal{L}_{2} | \mathcal{M}_{2}, y_{o}\} \cup \dots \cup \{\mathcal{L}_{z} | \mathcal{M}_{z}, y_{o}\} :$$

$$\mathcal{L}_{i} \cap \mathcal{L}_{j} = \emptyset \quad \forall i, j \neq i$$

$$s^{+} = \{\mathcal{L}_{1} | \mathcal{M}, y_{o}\} \cup \{\mathcal{L}_{2} | \mathcal{M}, y_{o}\} \cup \dots \cup \{\mathcal{L}_{z} | \mathcal{M}, y_{o}\} :$$

$$\mathcal{L}_{i} \cap \mathcal{L}_{j} = \emptyset \quad \forall i, j \neq i$$

$$\mathcal{M} = \cup_{i=1}^{z} \mathcal{M}_{i} = \cup_{i=1}^{z} \mathcal{M}$$

$$O_{S}[n] = |\mathcal{M}| = M$$

$$O_{S}[n] = |\cup_{i=1}^{z} \mathcal{M}_{i}| = M$$

15.2.3 Shared State Notation

$$s^{+} = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$Sub_{i}[X] := S_{i} = \{s_{j}, ... | b_{k}, ..., y_{o}\} :$$

$$s_{j}, b_{k} \in s^{+} \quad \forall s_{j}, b_{k} \in S_{i}$$

$$s^{+} = \{\mathcal{L}_{1} | \mathcal{M}, y_{o}\} \cup \{\mathcal{L}_{2} | \mathcal{M}, y_{o}\} \cup ... \cup \{\mathcal{L}_{z} | \mathcal{M}, y_{o}\} :$$

$$\mathcal{L}_i \cap \mathcal{L}_j = \emptyset \ \forall i, j \neq i$$

16 Polynomial Solution Subfunction Properties

16.1 Restate Definition of Subfunction

$$X_{n} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$s^{+} = s^{+}[X_{n}] := P :$$

$$(P[X_{n}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{n}] \supseteq P[X_{n}] \quad \forall X_{n}, \hat{X}_{n})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$= \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$Sub[X_{n}] := S = \{s_{j}, ... | b_{k}, ..., y_{o}\} :$$

$$s_{j}, b_{k} \in s^{+} \quad \forall s_{j}, b_{k} \in S$$

16.2 Property of Polynomial Solution Subfunctions

Let

$$D \in \mathbb{P}$$

$$X_n = \{x_1, ..., x_n, C\}; \quad \hat{X}_n = \{x_1, ..., x_{n+1}, C\}$$

$$s^+ = s^+[X_n] := P :$$

$$(P[X_i] \to y_o == a_o \quad \forall X_n) \quad \cap \quad (P[\hat{X}_n] \supseteq P[X_n] \quad \forall X_n, \hat{X}_n)$$

$$\exists K, C, \lambda_1 ... \lambda_K \quad :$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \quad \forall n$$

$$s^+ = Sub_1[X_n] \cup Sub_2[X_n] \cup ... \cup Sub_z[X_n]$$

$$\lim_{n \to \infty} \frac{O[n+1]}{O[n]} = 1$$

$$= \lim_{n \to \infty} \frac{O^1_T[n+1] + O^2_T[n+1] + ... + O^2_T[n+1] + O_S[n]}{O^1_T[n] + O^2_T[n] + ... + O^2_T[n] + ... + O^2_T[n] + O_S[n]}$$

$$\lim_{n \to \infty} \frac{O^1_T[n] + O^2_T[n] + ... + O^2_T[n] + O_S[n]}{O^1_T[n] + O^2_T[n] + ... + O^2_T[n] + O_S[n]}$$

$$= limit_{n\to\infty} 1 + \frac{f_{T_{n+1}}^{1}[n] + f_{T_{n+1}}^{2}[n+1] + \dots + f_{T_{n+1}}^{z}[n] + f_{S_{n+1}}[n]}{O_{T}^{1}[n] + O_{T}^{2}[n] + \dots + O_{T}^{z}[n] + O_{S}[n]} = 1$$

$$\Rightarrow limit_{n\to\infty} \frac{f_{T_{n+1}}^{1}[n] + f_{T_{n+1}}^{2}[n+1] + \dots + f_{T_{n+1}}^{z}[n] + f_{S_{n+1}}[n]}{O_{T}^{1}[n] + O_{T}^{2}[n] + \dots + O_{T}^{z}[n] + O_{S}[n]} = 0^{*}$$

$$\Rightarrow limit_{n\to\infty} \frac{f_{T_{n+1}}^{i}[n] + f_{S_{n+1}}[n]}{O_{T}^{1}[n] + O_{T}^{2}[n] + \dots + O_{T}^{z}[n] + O_{S}[n]} = 0 \quad \forall i$$

$$limit_{n\to\infty} \frac{f_{n+1}^{i}[n]}{O[n]} = 0 \quad \forall i$$

16.3 Theorem of Polynomial Subfunctions

The Theorem of Polynomial Subfunctions states a solution has polynomial complexity if and only if all of its subfunctions have polynomial complexity

$$|s^{+}[X_{n}]| = O[n] = (\lambda_{K}n)^{K} + (\lambda_{K-1}n)^{K-1}... + \lambda_{1}n + C \quad \forall n$$

$$s^{+} = Sub_{1}[X_{n}] \cup Sub_{2}[X_{n}] \cup ... \cup Sub_{z}[X_{n}]$$

$$O[n] = (\lambda_{K}n)^{K} + (\lambda_{K-1}n)^{K-1}... + \lambda_{1}n + C \quad \forall n$$

$$\iff$$

$$|Sub_{i}[X_{n}]| = O_{i}[n] = (\hat{\lambda}_{M}n)^{M} + (\hat{\lambda}_{M-1}n)^{M-1} + ... + \hat{\lambda}_{1}n + C \quad \forall i, n$$

16.3.1 Forward Direction

Solution s^+ having polynomial complexity implies all of its subfunctions Sub_i have polynomial complexity

Let

$$|s^{+}[X_{n}]| = O[n] = (\lambda_{K}n)^{K} + (\lambda_{K-1}n)^{K-1}... + \lambda_{1}n + C \quad \forall n$$
$$O[n] = \sum_{i=1}^{z} O_{i}[n] = O_{1}[n] + O_{2}[n] + ... + O_{z}[n]$$

Since $O[n], O_i[n]$ is positive, non-decreasing

$$O_i[n] = (\hat{\lambda}_{M_i}n)^{M_i} + (\hat{\lambda}_{M_i-1}n)^{M_i-1}... + \hat{\lambda}_1n + C \quad M_i \leq K \quad \forall i, n$$

 $\Rightarrow Sub_i$ has polynomial complexity by definition of polynomial complexity

^{*} O[n] is a positive, non-decreasing function

16.3.2 Backward Direction

Every subfunction Sub_i having polynomial complexity implies solution s^+ has polynomial complexity

Let

$$\begin{split} O_{i}[n] &= (\hat{\lambda}_{M_{i}}n)^{M_{i}} + (\hat{\lambda}_{M_{i}-1}n)^{M_{i}-1} + \ldots + \hat{\lambda}_{1_{i}}n + \hat{\lambda}_{0_{i}} \quad \forall i, n \\ \\ O_{max}[n]^{*} &:= \tilde{O}[n] \in \{O_{1}[n], O_{2}[n], \ldots O_{z}[n]\} : \\ \\ \lim_{n \to \infty} \frac{\tilde{O}[n]}{\sum_{i=1}^{z} O_{i}[n]} &= c \neq 0 \\ \\ O_{max}[n] &= (\hat{\lambda}_{M_{max}}n)^{M_{max}} + (\hat{\lambda}_{M_{max}1}n)^{M_{max}-1} + \ldots + \hat{\lambda}_{1_{max}}n + \hat{\lambda}_{0_{max}} \quad \forall i, n \\ \\ O[n] &= \sum_{i=1}^{z} O_{i}[n] &= O_{1}[n] + O_{2}[n] + \ldots + O_{z}[n] \\ \\ &= (\tilde{\lambda}_{L}n)^{L} + (\tilde{\lambda}_{L-1}n)^{L-1} + \ldots + \tilde{\lambda}_{1}n + C \quad L = M_{max} \quad \forall n \end{split}$$

 \Rightarrow s⁺ has polynomial complexity by definition of polynomial complexity

^{*} O_{max} is not necessarily unique, but necessarily exists. See appendix for proof

17 Divergent Solution Subfunction Properties

17.1 Restate Definition of Subfunction

$$\begin{split} X_i &= \{x_1, ..., x_n, C\}; \quad \hat{X}_i = \{x_1, ..., x_{n+1}, C\} \\ s^+ &= s^+[X_i] := P: \\ (P[X_i] \to y_o == a_o \quad \forall X_i) \quad \cap \quad (P[\hat{X}_i] \supseteq P[X_i] \quad \forall X_i, \hat{X}_i) \\ s^+ &= \{s_1, s_2, ..., s_N | b_1, b_2, ..., b_M, y_o\} = \{s_1, s_2, ..., s_{O_T[n]}, b_1, b_2, ..., b_{O_S[n]}, y_o\} \\ &= \{\mathcal{L}, \mathcal{M}, y_o\} \\ \\ Sub[X_i] := S = \{s_j, ... | b_k, ..., y_o\}: \\ s_j, b_k \in s^+ \quad \forall s_j, b_k \in S \end{split}$$

17.2 Property of Divergent Subfunctions

Let

$$D \in \hat{\mathcal{D}}$$

$$X_n = \{x_1, ..., x_n\}; \ \hat{X}_n = \{x_1, ..., x_{n+1}\}$$

$$s^+ = s^+[X_n] := P :$$

$$(P[X_i] \to y_o == a_o \ \forall X_n) \cap (P[\hat{X}_n] \supseteq P[X_n] \ \forall \hat{X}_n : \hat{X}_n \supset X_n)$$

By Definition of Divergent Problem

$$\begin{split} & \nexists c: limit_{n \to \infty} \frac{O[n+1]}{O[n]} = c \\ &= limit_{n \to \infty} \frac{O_T^1[n+1] + O_T^2[n+1] + \ldots + O_T^z[n+1] + O_S[n+1]}{O_T^1[n] + O_T^2[n] + \ldots + O_T^z[n] + O_S[n]} \\ &= \\ limit_{n \to \infty} \frac{O_T^1[n] + O_T^2[n] + \ldots + O_T^z[n] + O_S[n] + f_{T_{n+1}}^1[n] + f_{T_{n+1}}^2[n+1] + \ldots + f_{T_{n+1}}^z[n] + f_{S_{n+1}}[n]}{O_T^1[n] + O_T^2[n] + \ldots + O_T^z[n] + O_S[n]} \\ &= limit_{n \to \infty} 1 + \frac{f_{T_{n+1}}^1[n] + f_{T_{n+1}}^2[n+1] + \ldots + f_{T_{n+1}}^z[n] + f_{S_{n+1}}[n]}{O_T^1[n] + O_T^2[n] + \ldots + O_T^z[n] + O_S[n]} \neq c \\ &\Rightarrow limit_{n \to \infty} \frac{f_{T_{n+1}}^1[n] + f_{T_{n+1}}^2[n+1] + \ldots + f_{T_{n+1}}^z[n] + f_{S_{n+1}}[n]}{O_T^1[n] + O_T^2[n] + \ldots + O_T^z[n] + O_S[n]} \neq c^* \end{split}$$

Prove

$$\exists i: limit_{n \to \infty} \frac{f_{T_{n+1}}^{i}[n] + f_{S_{n+1}}[n]}{O_{T}^{1}[n] + O_{T}^{2}[n] + \dots + O_{T}^{z}[n] + O_{S}[n]} \ diverges$$

* O[n] is a positive, non-decreasing function

17.3 Theorem of Divergent Subfunctions

The Theorem of Divergent Subfunctions states a solution is divergent if and only if at least one of its subfunctions are divergent.

$$\begin{array}{ccc} lim_{n\to\infty}\frac{O[n+1]}{O[n]} & diverges \\ & \Longleftrightarrow \\ \exists i: lim_{n\to\infty}\frac{O_i[n+1]}{O[n]} & diverges \end{array}$$

17.3.1 Forward Direction

See 18.2

17.3.2 Backward Direction

- 18 Solution Spaces
- 18.1 Definition of Solution Space

$$\mathbb{S} = \{c_1^+, c_2^+, ..., c_{C[n]}^+\}$$

$$s^+[X_n] = \vee_{c_i^+ \in \mathbb{S}} \ c_i^+$$

- 18.2 Existence, Uniqueness, etc.
- 18.3 Worst Case

19 Fundamental Theorem of Computation

The Fundamental Theorem of Computation relates the complexity of optimal solution to the number of candidate solutions in the Solution Space.

$$\mathbb{S} = \{c_1^+, c_2^+, ..., c_{C[n]}^+\}$$

$$s^+[X_n] = \vee_{c_i^+ \in \mathbb{S}} c_i^+$$

 $O_{opt}[n]$ has the same order as $\mathbf{C}[\mathbf{n}]$

- 19.1 Proof by Induction
- 19.2 Proof by Contradiction

- 20 Combination Notation
- 20.1 Set Definition
- 20.2 Numerical Definition
- 20.3 Properties
- 20.3.1 Binary Property of Combination
- 20.3.2 Subfunction Property of Combination

21 Sum to N Problem with 2 integers

21.1 State formal definition of Sum to N: $x_i + x_j == N$

$$X_{n} = \{x_{1}, ..., x_{n}\}$$

$$D := f[X_{i}, N] = a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$s^{+}[X_{n}] = P[X_{n}] :$$

$$(P[X_{i}] = y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[X_{n+1}] \supseteq P[X_{n}] \quad \forall X_{n+1})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\} = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$D = f[X_{i}] = \exists x_{j}, x_{k} \in X_{n} \quad j \neq k :$$

$$x_{j} + x_{k} == N$$

21.2 Express a formal solution : $O_S[n] \sim n^0$

$$\begin{split} s^+ &= \{s_1, s_2, ..., s_{O_T[n]}, b_1, b_2, ..., b_{O_S[n]}, y_o\} = \{\mathcal{L}, \mathcal{M}, y_o\} \\ s_1 &= y_o \leftarrow \mathbb{F}; \\ \forall i < n \ , \ n \geqslant j > i \\ s_2, s_3, s_8, s_9, ..., s_{3ij-4}, s_{3ij-3} ..., s_{3n(n-1)-4}, s_{3n(n-1)-3} = b_1 \leftarrow x_i + x_j \end{split}$$

$$s_{4}, s_{5}, s_{10}, s_{11}, \dots, s_{3ij-2}, s_{3ij-1}, \dots, s_{3n(n-1)-2}, s_{3n(n-1)-1} = b_{1} \leftarrow b_{1} == N$$

$$s_{6}, s_{7}, s_{12}, s_{13}, \dots, s_{3ij}, s_{3ij+1}, \dots, s_{3n(n-1)}, s_{3n(n-1)+1} = y_{o} \leftarrow y_{o} \lor b_{1}$$

$$s^{+} = \{y_{o} \leftarrow \mathbb{F}, y_{o} \leftarrow y_{o} \lor (x_{i} + x_{j} == N) \ \forall i, j > i \mid b_{1}, y_{o}\}$$

21.3 Prove s^+ satisfies the subfunction condition of solutions: $P[X_{n+1}] \supseteq P[X_n] \ \forall X_{n+1}$

$$X_{n} = \{x_{1}, x_{2}, ..., x_{n}\}; \quad X_{n+1} = \{x_{1}, x_{2}, ..., x_{n}, x_{n+1}\}$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\} = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$s^{+}_{n+1} = s^{+} \cup \hat{s}^{+}$$

$$s_{1} = y_{o} \leftarrow \mathbb{F};$$

$$\forall i < n , n \ge j > i$$

$$\begin{aligned} s_2, s_3, s_8, s_9, \dots, s_{3ij-4}, s_{3ij-3} \dots, s_{3n(n-1)-4}, s_{3n(n-1)-3} &= b_1 \leftarrow x_i + x_j \\ s_4, s_5, s_{10}, s_{11}, \dots, s_{3ij-2}, s_{3ij-1} \dots, s_{3n(n-1)-2}, s_{3n(n-1)-1} &= b_1 \leftarrow b_1 &== N \\ s_6, s_7, s_{12}, s_{13} \dots, s_{3ij}, s_{3ij+1} \dots, s_{3n(n-1)}, s_{3n(n-1)+1} &= y_o \leftarrow y_o \lor b_1 \end{aligned}$$

$$\forall k < n+1$$

$$s... = b_1 \leftarrow x_k + x_{n+1}$$

$$s... = b_1 \leftarrow b_1 == N$$

$$s... = y_0 \leftarrow y_0 \lor b_1$$

$$s^{+} = \{ y_{o} \leftarrow \mathbb{F}, y_{o} \leftarrow y_{o} \lor (x_{i} + x_{j} == N) \quad \forall i, j > i \mid b_{1}, y_{o} \}$$

$$\hat{s}^{+} = \{ y_{o} \leftarrow y_{o} \lor (x_{k} + x_{n+1} == N) \quad \forall k < n+1 \mid b_{1}, y_{o} \}$$

$$s^{+}_{n+1} = \{ y_{o} \leftarrow \mathbb{F}, y_{o} \leftarrow y_{o} \lor (x_{i} + x_{j} == N) \quad \forall i, j > i \mid b_{1}, y_{o} \} \quad \cup$$

$$\{ y_{o} \leftarrow y_{o} \lor (x_{k} + x_{n+1} == N) \quad \forall k < n+1 \mid b_{1}, y_{o} \}$$

$$s^{+}_{n+1} = s^{+} \cup \hat{s}^{+} = P[X_{n+1}] \supseteq P[X_{n}] = s^{+}$$

21.4 Determine $O[n], O_S[n], O_T[n], f_{n+1}[n], f_{n+1}^T[n], f_{n+1}^S[n]$ for the above solution

$$O_S[n] = |y_o| + |b_1| = 2$$

$$O_T[n] = 3n(n-1) + 1 = 3n(n-1) - 1 + O_S[n]$$

$$O[n] = 3n(n-1) + 3 = 3n^2 - 3n + 3$$

$$f_{n+1}^S[n] = 0$$

$$f_{n+1}^T[n] = 6n$$

$$f_{n+1}^S[n] = f_{n+1}^S[n] + f_{n+1}^T[n]$$

21.5 Verify
$$O[n+1] = O[n] + f_{n+1}[n]$$

$$O[n+1] = O[n] + \hat{O}[n]$$

$$3(n+1)^2 - 3(n+1) + 3 = 3n^2 - 3n + 3 + 6n$$

$$3n^2 + 6n + 3 - 3n - 3 + 3 = 3n^2 + 3n + 3$$

$$3n^2 + 3n + 3 = 3n^2 + 3n + 3$$

21.6 Show s^+ has Polynomial Complexity by the definition of Total Polynomial Complexity

$$O[n] = 3n^2 - 3n + 3$$

21.7 Show the limit $_{n\to\infty} \frac{O[n+1]}{O[n]}$ does not Diverge

$$\begin{split} limit_{n\to\infty} \frac{O[n+1]}{O[n]} &= \\ limit_{n\to\infty} \frac{3n^2 + 3n + 3}{3n^2 - 3n + 3} &= \\ limit_{n\to\infty} (\frac{3n^2 - 3n + 3}{3n^2 - 3n + 3} + \frac{6n}{3n^2 - 3n + 3}) &= \\ limit_{n\to\infty} (1 + \frac{6n}{3n^2 - 3n + 3}) &= 1 \end{split}$$

22 The Knapsack Problem

22.1 The Knapsack Problem

The Knapsack Problem is a famous problem in computer science which asks if objects can be stored in a knapsack. Typically the problem is designed with two constraints, weight and value. Given objects x_i , each with a respective weight w_i and value v_i , does there exist a combination of objects lighter than input weight W and more valuable than input value V?

22.2 Formal Definition

$$X_n = \{x_1, x_2, ..., x_n\} = \{\{w_1, v_1\}, \{w_2, v_2\}, ..., \{w_n, v_n\}\}\}$$

$$I = \{i_1, i_2, ..., i_n\} : i_l \in \{0, 1\} \ \forall i_l \in I$$

$$D := f[X_n, W, V] = a_o \in \{\mathbb{T}, \mathbb{F}\} = \exists I :$$

$$(\sum_{j=1}^n i_j w_j < W) \land (\sum_{j=1}^n i_j v_j \geqslant V)$$

22.3 Solve for C[n]

22.3.1 Expressing I as a binary number

$$I = \{i_1, i_2, ..., i_n\} : i_l \in \{0, 1\} \ \forall i_l \in I$$

Valid combinations of I

$$I_{valid} = \{\{0,0,0,...,0,0,1\},\{0,0,0,...,0,1,0\},\{0,0,0,...,0,1,1\},...,\{1,1,1,...,1,1,1\}\}\}$$

$$C[n] = |I_{valid}[n]| = 2^n - 1$$

22.3.2 Using a sum of combinations of inputs x_i

$$X_n = \{x_1, x_2, ..., x_n\} = \{\{w_1, v_1\}, \{w_2, v_2\}, ..., \{w_n, v_n\}\}\$$

Valid combinations of x_i

$$X_{valid}[n] =$$

$$\{x_1\} \cup \{x_2\} \cup \dots \cup \{x_n\} \cup \{x_1, x_2\} \cup \{x_1, x_3\} \cup \dots \cup \{x_{n-1}, x_n\} \cup \dots \cup \{x_1, x_2, \dots, x_n\}$$

$$= x_n C_1 \cup x_n C_2 \cup \dots \cup x_n C_n$$

$$C[n] = |X_{valid}[n]| = \sum_{j=1}^n {}_n C_j$$

22.3.3 Verify consistency

$$C[n] = |X_{valid}[n]| = |I_{valid}[n]|$$

$$= 2^{n} - 1 = \sum_{j=1}^{n} {}_{n}C_{j} = {}_{n}C_{1} + {}_{n}C_{2} + \dots + {}_{n}C_{n}$$

$$= 2^{n} - 1 = 2^{n} - 1$$

- 22.4 Express a solution s^+ of the Knapsack Problem
- 22.5 Prove s^+ satisfies the subfunction condition of solutions
- **22.6** Determine $O[n], O_T[n], O_S[n], f_{n+1}[n]$
- **22.7** Show $s^+ \notin \mathbb{P}$
- 22.8 Express the Solution Space $\mathbb S$ for The Knapsack Problem
- **22.9** Prove a lower bound for all solutions $s^+ \in S^+ := O_{lower}[n]$
- 22.10 Prove D has Divergent Complexity

Appendix

- 23 Existence of $O_{max}[n]$
- 23.1 Proof

Citations

- [1] chatgpt
- $[2] \ https://stackoverflow.com/questions/3518973/floating-point-exponentiation-without-power-function$
- $[3] \ https://stackoverflow.com/questions/27086195/linear-index-upper-triangular-matrix$
- $[4] \ http://www.math.uchicago.edu/\ may/VIGRE/VIGRE2011/REUPapers/Riffer-Reinert.pdf$