Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2018 EC3CO02/EI3CO02 Linear Integrated Circuit & Applications

Programme: B.Tech. Branch/Specialisation: EC/EI

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1 i. The output of a particular Op-amp increases 8V in 12µs. The slew 1 rate is (a) 90 V/ μ s (b) 0.67 V/ μ s (c) 1.5 V/ μ s (d) None of these The purpose of level shifter in Op-amp internal circuit is to 1 (a) Adjust DC voltage (b) Increase impedance (c) Provide high gain (d) Decrease input resistance A certain non-inverting amplifier has R_i of 1 k Ω and R_f of 100 1 $k\Omega$. The closed-loop voltage gain is (a) 100,000 (b) 1000 (c) 101 (d) 100 Find the output voltage of the log-amplifier 1 (a) $V_O = -(kT) \times \ln(V_i/V_{ref})$ (b) $V_O = -(kT/q) \times ln(V_i/V_{ref})$ (c) $V_O = -(kT/q) \times \ln(V_{ref}/V_i)$ (d) $V_O = (kT/q) \times \ln(V_i/V_{ref})$ Why inductors are not preferred for audio frequency? 1 (a) Large and heavy (b) High power dissipation (c) High input impedance (d) None of these Which filter type is called a flat-flat filter? 1 (a) Cauer filter (b) Butterworth filter (c) Chebyshev filter (d) Band – reject filter The clipping level in op-amp is determined by 1 (a) AC supply voltage (b) Control voltage (c) Reference voltage (d) Input voltage

P.T.O.

	viii. An astable multivibrator requires:					
		(a) Balanced time constants (b) A p	pair of matched transistors			
		(c) No input signal (d) Dua	l J-K flip flops			
ix.		The switching regulators can operate	in	1		
		(a) Step up (b) Step	down			
		(c) Polarity inverting (d) All	of these			
	х.	Voltage regulation requires		1		
		(a) Only line regulation. (b) On	nly load regulation.			
		(c) Load and line regulation. (d) A	constant load			
Q.2	i.	What is an operational amplifier? circuits of op-amp.	Give examples of linear	2		
	ii.	Write six difference between Ideal an	d practical op-amp.	3		
	iii.	Derive expression for voltage gain, input impedance and output 5				
		impedance of Dual input balanced output differential amplifier.				
OR	iv. (a) Write advantages of IC Technology.					
		(b) Define –		3		
		(I) CMRR				
		(II) Gain - Bandwidth Product				
		(III) Input offset voltage				
Q.3	i.	(a) Op-amp is used mostly as an integration (a) Explain why?	grator than a differentiator.	4		
		(b) Draw circuit diagram and output circuit.	waveform of a comparator			
	ii.	What is an instrumentation amplifier and derive expression of output volt	_	6		
ΩD	:::	amplifier.	it Davive evenession for	_		
OR	iii.	Draw Wien bridge oscillator circu oscillating frequency and required vapplication.	-	6		
Q.4	i.	What is Notch filter? Draw its circuit	diagram.	2		
. .	ii.	Why do we use all pass filters? D derive its expression of gain and phas	raw its circuit diagram and	3		

	iii.	What are the advantages of active filters? How can you realize a low pass and high pass filter using op-amp? Derive their expression of gain.	5
OR	iv	Draw the circuit diagram and frequency response of first order band pass filter. Design a band pass filter with following specifications: $F_L = 200 \text{Hz}, F_H = 1 \text{KHz} \text{ and pass band gain} = 4.$ Assume capacitor $C = 0.05 \mu F$.	5
		Assume capacitor C= 0.05µ1.	
Q.5		Attempt any two:	
	i.	Explain the working of monostable mode of 555 timer. Draw its circuit diagram and waveforms also derive the expression for the time period of pulse generated.	5
	ii.	Draw and explain Peak detector circuit and sample and hold circuit with output waveform. Also write its limitation.	5
	iii.	Draw and explain Schmitt trigger circuit with output waveform. Also explain hysteresis voltage plot with diagram.	5
Q.6	i.	What are the advantages of IC voltage regulators?	2
	ii.	Define the terms:	3
		(a) Line regulation(b) Load Regulation(c) Ripple Rejection	
	iii.	Explain the operation of a dual tracking voltage regulator using op-amp.	5
OR	iv.	Explain the operation of a step up and step down switching regulator with a block diagram.	5

Sample Scheme of Marking EI3CO02/EC3CO02

Q.1	i.	The output of a particular Op-amp increases 8V in 12μs. The slew rate is (b) 0.67 V/μs			
ii.	ii.	The purpose of level shifter in Op-amp internal circuit is to	1		
		(a) Adjust DC voltage			
	iii.	A certain noninverting amplifier has R_i of 1 $k\Omega$ and R_f of 100 $k\Omega.$	1		
		The closed-loop voltage gain is (c) 101			
	iv.	Find the output voltage of the log-amplifier (b) $V_O = -(kT/q) \times ln(V_i/V_{ref})$	1		
	v.	Why inductors are not preferred for audio frequency? (a) Large and heavy			
	vi.	Which filter type is called a flat-flat filter? (b) Butterworth filter	1		
	vii.	The clipping level in op-amp is determined by (c) Reference voltage			
viii. ix.	viii.	An astable multivibrator requires: (c) No input signal The switching regulators can operate in (d) All of these			
	ix.				
	х.	Voltage regulation requires (c) Load and line regulation.	1		
Q.2	i.	An operational amplifier -1 mark	2		
	ii.	Examples of linear circuits of op-amp -1 mark One difference between Ideal and practical op-amp - 0.5 mark 0.5*6=3 marks			
	iii.	Ac equivalent diagram of Dual input balanced output differential amplifier -1 mark Derivation of expression for voltage gain -2 marks Input impedance -1 marks	5		
OR	iv.	Output impedance - 1 marks (a) Advantages of IC Technology(at least 4) - 2 marks	5		

		(b) (I) CMRR	- 1 mark	
		(II) Gain - Bandwidth Product	- 1 mark	
		(III) Input offset voltage	- 1 mark	
Q.3	i.	(a) Explanation	- 2 mark	4
		(b) Circuit diagram	- 1 marks	
		Output waveform	- 1 mark	
	ii.	Definition	- 1 mark	6
		Circuit diagram	- 2 marks	
		Derivation for expression of output voltage	- 3 marks	
OR	iii.	Wien bridge oscillator circuit diagram	- 1 mark	6
		Derivation for expression for oscillating frequency	- 2 marks	
		Voltage gain	- 2 marks	
		Application	- 1 mark	
Q.4	i.	Notch filter	- 1 marks	2
		Circuit diagram	- 1 marks	
	ii.	Uses of all pass filter	- 1 mark	3
		Circuit diagram	- 1 mark	
		Derivation of expression of gain and phase differen	nce - 1 mark	
	iii.	Advantages of active filters	- 1 mark	5
		Realization of a low pass and high pass filter using	op-amp	
			- 2 marks	
		Derivation of expression of gain	- 2 marks	
OR	iv	Circuit diagram	- 1 mark	5
		Frequency response	- 1 mark	
		Design	- 3 marks	
Q.5	i.	Working of monostable mode of 555 timer	- 2 marks	5
		Circuit diagram	-1 mark	
		Waveforms	-1 mark	
		Expression for the time period of pulse	-1 mark	
	ii.	Peak detector circuit : Diagram	- 1mark	5
		Explanation	- 1 mark	
		Output waveform	- 0.5 mark	
		Sample and hold circuit: Diagram	- 1 mark	

			Explanation Output waveform	- 1 mark - 0.5 mark	
OR	iii.	Schmitt trigger circuit diag	•	- 1 mark	5
		Output waveform		- 1 mark	
		Explanation		- 2 marks	
		Explanation & Diagram of	of hysteresis voltage plot	- 1 mark	
Q.6	i.	Advantages of IC voltage	regulators(atleast 4)	-2 marks	2
Q .0	ii.	(I) Line regulation	regulators (attends)	- 1 mark	3
	11.	(II) Load Regulation		-1 mark	
		(III) Ripple Rejection		-1 mark	
	iii.	Diagram		- 2 marks	5
		Operation		- 3 marks	
OR	iv.	Step up : Diagram		- 1 mark	5
		Operation		- 1.5 marks	
		Step down: Diagram		- 1 mark	
		Operation -		1.5 marks	
