Estructuras Discretas

Introducción y Recursión

Rafael Reyes

Universidad Nacional Autónoma de México Facultad de Ciencias

30 de enero de 2023

Recursión

- La recursividad o recursión es la forma en la cual se especifica un proceso basado en su propia definición.
- Un problema que pueda ser definido en función de su tamaño, sea este N, pueda ser dividido en instancias más pequeñas (< N) del mismo problema y se conozca la solución explícita a las instancias más simples.

Conjuntos recursivos

Para ejemplificar vamos a centrarnos en las matrioskas.

- Cada muñeca contiene dentro otra matrioska más pequeña.
- A su vez esta muñeca más pequeña contiene dentro otra matrioska aun más pequeña.
- Así sucesivamente hasta llegar a la muñeca más pequeña que ya no se puede abrir y, por lo tanto, no contiene ninguna muñeca.

Rafael Reyes (UNAM) Recursión 30 de enero de 2023

3/15

Conjuntos definidos recursivamente

Los conjuntos definidos recursivamente deben de contener las siguientes características:

- Caso Base que es el conjunto inicial de elementos que se definen de forma directa y son elementos atómicos y los más pequeños del conjunto.
- Caso Recursivo que corresponde a las reglas que definen nuevos elementos utilizando la misma definición que se está dando. Para ello utilizamos funciones constructoras que generen los elementos.
- Caso de Exclusión indica que el conjunto no contiene nada más que aquello especificado por las dos reglas anteriores.

Ejemplo

Matrioskas

Para definir el ejemplo de las Matrioskas de manera recursiva haremos lo siguiente:

- Caso Base Una muñeca de madera la cual no se puede abrir y la denotamos por *Mati* es una Matrioska.
- Caso Recursivo Si *M* es una Matrioska entonces *Cont M* es una Matrioska. Donde *Cont* es la función constructora que mete la Matrioska *M* dentro de otra muñeca de madera hueca y más grande.
- Caso de Exclusión Sólo son Matrioskas los elementos formados por las reglas anteriores.

Sucesiones definidas recursivamente

Las fórmulas recursivas nos dan la siguiente información:

- El primer término de la sucesión.
- La regla del patrón para obtener cualquier término a partir de un término anterior.

Por ejemplo:

$$\begin{cases} S_1 = 5 \\ S_n = S_{n-1} + 3 \end{cases}$$

Obteniendo los siguientes términos: {5,8,11,14,...}

S_n	$= S_{n-1} + 3$		
S_1			= 5
S_2	$= S_1 + 3$	= 5 + 3	= 8
S_3	$= S_2 + 3$	= 8 + 3	= 11
S_4	$= S_3 + 3$	= 11 + 3	= 14

¿Qué sucede cuando no tenemos la fórmula explícita y sólo tenemos los elementos de la sucesión? ¿Cómo encontrar la fórmula explícita?

Formulas recursivas para sucesiones

Si nosotros tenemos la sucesión

$$\{5, 8, 11, 14, 17, 20, \ldots\}$$

¿Cómo encontrar la fórmula recursiva que genera todos los elementos de la sucesión?

Considera la sucesión $\{5, 8, 11, ...\}$ el primer término es 5 y la diferencia entre el primer término y el segundo es 3; lo mismo que entre el segundo término y el tercero.

Entonces podemos obtener cualquier término de la sucesión al tomar el primer término, 5 y sumarle la diferencia común, 3 repetidamente. Veamos ahora los siguientes cálculos:

n	<i>n</i> -ésimo término	
1		= 5
2	$\underbrace{5}_{S_1}$ +3	= 8
3	$\underbrace{(5+3)}_{S_2} + 3$	= 11
4	$\underbrace{((5+3)+3)}_{S_3} + 3$	= 14
5	$\underbrace{(((5+3)+3)+3)}_{S_4} + 3$	= 17

Es en este momento donde nos damos cuenta que la sucesión concuerda y a partir de aquí obtenemos la fórmula recursiva ya que podemos observar que el término anterior más 3 nos da el nuevo elemento de la sucesión.

$$S_1 = 5$$
$$S_n = S_{n-1} + 3$$

Ejemplo

Considere la siguiente sucesión y encuentre una función recurisiva que la genere.

$$\{1,4,9,16,25,36,49,64,81,\ldots\}$$

Lo primero que debemos hacer es encontrar la diferencia entre los términos

Término	Diferencia
$S_1 = 1$	_
$S_2 = 4$	3
$S_3 = 9$	5
$S_4 = 16$	7
$S_5 = 25$	9
$S_6 = 36$	11

n			S_n
1			= 1
2	$S_1 + 3$	$= S_1 + 2 * 2 - 1$	= 1 + 3 = 4
3	$S_2 + 5$	$= S_2 + 2 * 3 - 1$	=4+5=9
4	$S_3 + 7$	$= S_3 + 2 * 4 - 1$	= 9 + 7 = 16
5	$S_4 + 9$	$= S_4 + 2 * 5 - 1$	= 16 + 9 = 25
6	$S_5 + 11$	$= S_5 + 2 * 6 - 1$	= 25 + 11 = 36

En conclusión podemos generar una definición recursiva a partir de la tabla anterior como:

$$\begin{cases} S_1 = 1 \\ S_n = S_{n-1} + 2 * n - 1 \end{cases}$$

n-ésimo término de una función recursiva

Por ejemplo si tenemos la siguiente función recursiva y queremos encontrar el término \mathcal{S}_6

$$S_1 = -6$$

$$S_n = 2 * (S_{n-1}) - 6$$

$$S_{6} = 2 * (S_{5}) - 6$$

$$= 2 * (2 * (S_{4}) - 6) - 6$$

$$= 2 * (2 * (2 * (S_{3}) - 6) - 6) - 6$$

$$= 2 * (2 * (2 * (2 * (S_{2}) - 6) - 6) - 6) - 6$$

$$= 2 * (2 * (2 * (2 * (2 * (S_{1}) - 6) - 6) - 6) - 6) - 6$$

$$= 2 * (2 * (2 * (2 * (2 * (2 * (C_{3}) - 6) - 6) - 6) - 6) - 6) - 6$$

Ejemplo

Si tenemos la siguiente función recursiva y queremos encontrar el término S_5

$$S_1 = -4$$

 $S_2 = 3$
 $S_n = 2(S_{n-1}) + 3(S_{n-2}) + 7$

$$S_{5} = 2S_{4} + 3S_{3} + 7$$

$$= 2(2S_{3} + 3S_{2} + 7) + 3S_{3} + 7$$

$$= 2(2(2S_{2} + 3S_{1} + 7) + 3S_{2} + 7) + 3(2S_{2} + 3S_{1} + 7)$$

$$= 2(2(2(3) + 3S_{1} + 7) + 3(3) + 7) + 3(2(3) + 3S_{1} + 7)$$

$$= 2(2(2(3) + 3(-4) + 7) + 3(3) + 7) + 3(2(3) + 3(-4) + 7)$$

$$= 46$$

Recursión

Identificar los elementos que conforman a la recursión:

- Caso Base.
- Caso Recursivo.
- Caso de Exclusión (opcional).

Ejemplos

Determinar cuáles de las siguientes funciones son recursivas:

$$S_n = n(n+1)/2$$

$$S_1 = 1, S_n = n^2$$

$$S_1 = 0$$
, $S_2 = 1$, $S_n = S_{n-1} + S_{n-2}$

$$S_1 = 1, S_n = n + 2$$

$$S_1 = 1$$
, $S_n = S_{n-1} + 2$

Función NO recursiva

$$S_1 = 1$$
, $S_n = n^2$
 $f(n) = n^2$
 $f(1) = 1$
 $f(2) = 2^2 = 4$
 $f(3) = 3^2 = 9$
 $f(11) = 11^2 = 121$