Curs 5

Cuprins

Logica propoziţională PL

- 2 PL Deducție naturala
 - PL Deductie naturala: Corectitudinea
 - PL Deducție naturală: Completitudinea (opțional)

- ☐ O propoziție este un enunț care poate fi adevărat (1) sau fals (0).
- □ Propozițiile sunt notate simbolic $(\varphi, \psi, \chi, \cdots)$ și sunt combinate cu ajutorul conectorilor logici $(\neg, \rightarrow, \lor, \land, \leftrightarrow)$.

- □ O propozitie este un enunt care poate fi adevărat (1) sau fals (0).
- □ Propozițiile sunt notate simbolic $(\varphi, \psi, \chi, \cdots)$ și sunt combinate cu ajutorul conectorilor logici $(\neg, \rightarrow, \lor, \land, \leftrightarrow)$.

Example

Fie φ propozitia:

$$(stark \land \neg dead) \rightarrow (sansa \lor arya \lor bran)$$

- □ O propozitie este un enunt care poate fi adevărat (1) sau fals (0).
- □ Propozițiile sunt notate simbolic $(\varphi, \psi, \chi, \cdots)$ și sunt combinate cu ajutorul conectorilor logici $(\neg, \rightarrow, \lor, \land, \leftrightarrow)$.

Example

Fie φ propozitia:

$$(stark \land \neg dead) \rightarrow (sansa \lor arya \lor bran)$$

Cine este $\neg \varphi$?

- □ O propozitie este un enunt care poate fi adevărat (1) sau fals (0).
- □ Propozițiile sunt notate simbolic $(\varphi, \psi, \chi, \cdots)$ și sunt combinate cu ajutorul conectorilor logici $(\neg, \rightarrow, \lor, \land, \leftrightarrow)$.

Example

Fie φ propozitia:

$$(stark \land \neg dead) \rightarrow (sansa \lor arya \lor bran)$$

Cine este $\neg \varphi$? Propozitia $\neg \varphi$ este:

$$stark \land \neg dead \land \neg sansa \land \neg arya \land \neg bran$$

```
    □ Limbajul PL
    □ variabile propoziționale: Var = {p, q, v, ...}
    □ conectori logici: ¬ (unar), →, ∧, ∨, ↔ (binari)
    □ Formulele PL
    var ::= p | q | v | ...
    form ::= var | (¬form) | form ∧ form | form ∨ form | form → form | form ↔ form
```

```
    □ Limbajul PL
    □ variabile propoziționale: Var = {p, q, v, ...}
    □ conectori logici: ¬ (unar), →, ∧, ∨, ↔ (binari)
    □ Formulele PL
    var ::= p | q | v | ...
    form ::= var | (¬form) | form ∧ form | form ∨ form | form → form | form ↔ form
```

Example

- Nu sunt formule: $v_1 \neg \rightarrow (v_2), \neg v_1 v_2$
- Sunt formule: $((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2))$

```
    □ Limbajul PL
    □ variabile propoziționale: Var = {p, q, v, ...}
    □ conectori logici: ¬ (unar), →, ∧, ∨, ↔ (binari)
    □ Formulele PL
    var ::= p | q | v | ...
    form ::= var | (¬form) | form ∧ form | form ∨ form | form → form | form ↔ form
```

Example

- Nu sunt formule: $v_1 \neg \rightarrow (v_2)$, $\neg v_1 v_2$
- Sunt formule: $((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2))$
- □ Notăm cu Form multimea formulelor.

- Limbajul PL
 - \square variabile propoziționale: $Var = \{p, q, v, ...\}$
 - \square conectori logici: \neg (unar), \rightarrow , \land , \lor , \leftrightarrow (binari)
- □ Formulele PL

$$var ::= p | q | v | ...$$

 $form ::= var | (\neg form) | form \land form | form \lor form$
 $| form \rightarrow form | form \leftrightarrow form$

- Conectorii sunt împărțiți în conectori de bază și conectori derivații (în functie de formalism).
- □ Legături între conectori:

$$\begin{array}{lll}
\varphi \lor \psi & := & \neg \varphi \to \psi \\
\varphi \land \psi & := & \neg (\varphi \to \neg \psi) \\
\varphi \leftrightarrow \psi & := & (\varphi \to \psi) \land (\psi \to \varphi)
\end{array}$$

Sintaxa și semantica

Un sistem logic are două componente:

□ Sintaxa

□ Semantica

Sintaxa si semantica

Un sistem logic are două componente:

- □ Sintaxa
 - notiuni sintactice: demonstratie, teoremă
 - \square notăm prin $\vdash \varphi$ faptul că φ este teoremă
 - \square notăm prin $\Gamma \vdash \varphi$ faptul că formula φ este demonstrabilă din mulțimea de formule Γ
- □ Semantica

Sintaxa și semantica

Un sistem logic are două componente:

□ Sintaxa		axa
		noțiuni sintactice: demonstrație, teoremă notăm prin $\vdash \varphi$ faptul că φ este teoremă notăm prin $\Gamma \vdash \varphi$ faptul că formula φ este demonstrabilă din mulțimea de formule Γ
	Sen	nantica
		noțiuni semantice: adevăr, model, tautologie (formulă universal adevărată)
		notăm prin $\models \varphi$ faptul că φ este tautologie
		notăm prin $\Gamma \models \varphi$ faptul că formula φ este adevărată atunci când toate formulele din mulțimea Γ sunt adevărate

Example

Formalizati următorul rationament:

If winter is coming and Ned is not alive then Robb is lord of Winterfell. Winter is coming. Rob is not lord of Winterfell. Then Ned is alive.

Example

Formalizati următorul rationament:

If winter is coming and Ned is not alive then Robb is lord of Winterfell. Winter is coming. Rob is not lord of Winterfell. Then Ned is alive.

O posibilă formalizare este următoarea:

p = winter is coming

q = Ned is alive

r =Robb is lord of Winterfel

Example

Formalizati următorul rationament:

If winter is coming and Ned is not alive then Robb is lord of Winterfell. Winter is coming. Rob is not lord of Winterfell. Then Ned is alive.

O posibilă formalizare este următoarea:

p = winter is coming

q = Ned is alive

r = Robb is lord of Winterfel

$$\{(p \land \neg q) \to r, p, \neg r\} \models q$$

Mulțimea valorilor de adevăr este {0, 1} pe care considerăm următoarele operatii:

$$\begin{array}{c|c} x & \neg x \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

$$\begin{array}{c|ccccc} x & y & x \to y \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

$$x \lor y := max\{x, y\}$$

$$x \wedge y := min\{x, y\}$$

 \square o funcție $e: Var \rightarrow \{0, 1\}$ se numește evaluare (interpretare)

- \square o funcție $e: Var \rightarrow \{0, 1\}$ se numește evaluare (interpretare)
- □ pentru orice evaluare $e: Var \rightarrow \{0, 1\}$ există o unică funcție $e^+: Form \rightarrow \{0, 1\}$ care verifică următoarele proprietăți:

 - \square $e^+(\neg \varphi) = \neg e^+(\varphi)$

 - lacksquare $e^+(arphi \lor \psi) = e^+(arphi) \lor e^+(\psi)$

oricare ar fi $v \in Var i \varphi, \psi \in Form.$

- \square o functie $e: Var \rightarrow \{0, 1\}$ se numeste evaluare (interpretare)
- □ pentru orice evaluare e: Var → {0,1} există o unică funcție e⁺: Form → {0,1} care verifică următoarele proprietăți:

 - \Box $e^+(\neg\varphi) = \neg e^+(\varphi)$
 - \square $e^+(\varphi \rightarrow \psi) = e^+(\varphi) \rightarrow e^+(\psi)$

oricare ar fi $v \in Var i \varphi, \psi \in Form.$

Example

Dacă
$$e(p) = 0$$
 și $e(q) = 1$ atunci

$$e^{+}(p \lor (p \to q)) = e^{+}(p) \lor e^{+}(p \to q) = e(p) \lor (e(p) \to e(q)) = 1$$

Considerăm $\Gamma \cup \{\varphi\} \subseteq Form$.

□ O evaluare $e: Var \rightarrow \{0, 1\}$ este model al formulei φ dacă $e^+(\varphi) = 1$. Evaluarea e este model al lui Γ dacă $e^+(\Gamma) = \{1\}$, i.e. $e^+(\gamma) = 1$ oricare $\gamma \in \Gamma$.

- □ O evaluare $e: Var \rightarrow \{0, 1\}$ este model al formulei φ dacă $e^+(\varphi) = 1$. Evaluarea e este model al lui Γ dacă $e^+(\Gamma) = \{1\}$, i.e. $e^+(\gamma) = 1$ oricare $\gamma \in \Gamma$.
- \square O formulă φ este satisfiabilă dacă are un model. O mulțime Γ de formule este satisfiabilă dacă are un model.

- □ O evaluare $e: Var \to \{0, 1\}$ este model al formulei φ dacă $e^+(\varphi) = 1$. Evaluarea e este model al lui Γ dacă $e^+(\Gamma) = \{1\}$, i.e. $e^+(\gamma) = 1$ oricare $\gamma \in \Gamma$.
- \square O formulă φ este satisfiabilă dacă are un model. O mulțime Γ de formule este satisfiabilă dacă are un model.
- □ O formulă φ este tautologie (validă, universal adevarată) dacă $e^+(\varphi) = 1$ pentru orice evaluare $e : Var \rightarrow \{0, 1\}$. Notăm prin $\models \varphi$ faptul că φ este o tautologie.

- □ O evaluare $e: Var \rightarrow \{0, 1\}$ este model al formulei φ dacă $e^+(\varphi) = 1$. Evaluarea e este model al lui Γ dacă $e^+(\Gamma) = \{1\}$, i.e. $e^+(\gamma) = 1$ oricare $\gamma \in \Gamma$.
- \square O formulă φ este satisfiabilă dacă are un model. O mulțime Γ de formule este satisfiabilă dacă are un model.
- □ O formulă φ este tautologie (validă, universal adevarată) dacă $e^+(\varphi) = 1$ pentru orice evaluare $e : Var \rightarrow \{0, 1\}$. Notăm prin $\models \varphi$ faptul că φ este o tautologie.
- □ O formulă φ este Γ-tautologie (consecință semantică a lui Γ) dacă orice model al lui Γ este și model pentru φ , i.e. $e^+(\Gamma) = \{1\}$ implică $e^+(\varphi) = 1$ pentru orice evaluare $e : Var \to \{0, 1\}$. Notăm prin $\Gamma \models \varphi$ faptul că φ este o Γ-tautologie.

Cum verificăm că o formulă este tautologie: $\models \varphi$?

- \square Fie v_1, \ldots, v_n variabilele care apar în φ .
- \square Cele 2^n evaluări posibile e_1, \ldots, e_{2^n} pot fi scrise într-un tabel:

Cum verificăm că o formulă este tautologie: $\models \varphi$?

- \square Fie v_1, \ldots, v_n variabilele care apar în φ .
- \square Cele 2^n evaluări posibile e_1, \ldots, e_{2^n} pot fi scrise într-un tabel:

Fiecare evaluare corespunde unei linii din tabel!

Cum verificăm că o formulă este tautologie: $\models \varphi$?

- \square Fie v_1, \ldots, v_n variabilele care apar în φ .
- \square Cele 2^n evaluări posibile e_1, \ldots, e_{2^n} pot fi scrise într-un tabel:

Fiecare evaluare corespunde unei linii din tabel!

 $\square \models arphi$ dacă și numai dacă $e_1^+(arphi) = \dots = e_{2^n}^+(arphi) = 1$

☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.

- ☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.
- ☐ În cazul în care formula conțin *n* variabile, tabelul de adevăr are 2ⁿ rânduri. Această metodă este atât de costisitoare computațional, încât este irealizabilă. (Timp exponential)

- ☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.
- În cazul în care formula conțin n variabile, tabelul de adevăr are 2ⁿ rânduri. Această metodă este atât de costisitoare computațional, încât este irealizabilă. (Timp exponențial)
- □ Problemă deschisă de un milion de dolari:

Este posibil să decidem problema consecinței logice în cazul propozițional printr-un algoritm care să funcționeze în timp polinomial?

- ☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.
- În cazul în care formula conțin n variabile, tabelul de adevăr are 2ⁿ rânduri. Această metodă este atât de costisitoare computațional, încât este irealizabilă. (Timp exponential)
- Problemă deschisă de un milion de dolari:

Este posibil să decidem problema consecinței logice în cazul propozițional printr-un algoritm care să funcționeze în timp polinomial?

□ Echivalent, este adevărată P = NP? (Institutul de Matematica Clay – Millennium Prize Problems)

- ☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.
- În cazul în care formula conțin n variabile, tabelul de adevăr are 2ⁿ rânduri. Această metodă este atât de costisitoare computațional, încât este irealizabilă. (Timp exponential)
- Problemă deschisă de un milion de dolari:

Este posibil să decidem problema consecinței logice în cazul propozițional printr-un algoritm care să funcționeze în timp polinomial?

- □ Echivalent, este adevărată P = NP? (Institutul de Matematica Clay Millennium Prize Problems)
- □ SAT este problema satisfiabilității în calculul propozițional clasic. SAT-solverele sunt bazate pe metode sintactice.

Sintaxa PL

Sisteme deductive pentru calculul propozițional clasic:

- □ Sistemul Hilbert
- □ Rezoluţie
- □ Deducția naturală
- □ Sistemul Gentzen

Sistemul Hilbert

 \square Oricare ar fi φ , ψ , $\chi \in Form$ următoarele formule sunt axiome:

(A1)
$$\varphi \to (\psi \to \varphi)$$

(A2) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
(A3) $(\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$.

lacktriangleq Regula de deducție **este** modus ponens: $\frac{arphi, \ arphi o \psi}{\psi}$ MP

- \square Oricare ar fi φ , ψ , $\chi \in Form$ următoarele formule sunt axiome:
 - (A1) $\varphi \to (\psi \to \varphi)$
 - (A2) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
 - (A3) $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$.
- \square Regula de deducție **este** modus ponens: $\frac{\varphi, \ \varphi \to \psi}{\psi}_{\mathsf{MP}}$
- □ O demonstrație pentru φ este o secvență de formule $\gamma_1, \ldots, \gamma_n$ astfel încât $\gamma_n = \varphi$ și, pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele conditii este satisfăcută:
 - \square γ_i este axiomă,
 - $\ \ \ \gamma_i$ se obține din formulele anterioare prin MP: există j, k < i astfel încât $\gamma_i = \gamma_k \rightarrow \gamma_i$

- \square Oricare ar fi φ , ψ , $\chi \in Form$ următoarele formule sunt axiome:
 - (A1) $\varphi \to (\psi \to \varphi)$
 - (A2) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
 - (A3) $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$.
- \square Regula de deducție **este** modus ponens: $\frac{\varphi, \ \varphi \to \psi}{\psi}_{\mathsf{MP}}$
- O demonstrație pentru φ este o secvență de formule $\gamma_1, \ldots, \gamma_n$ astfel încât $\gamma_n = \varphi$ și, pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele conditii este satisfăcută:
 - \square γ_i este axiomă,
 - $\ \ \ \ \gamma_i$ se obține din formulele anterioare prin MP: există j, k < i astfel încât $\gamma_i = \gamma_k \rightarrow \gamma_i$
- □ O formulă φ este teoremă dacă are o demonstrație. Notăm prin $\vdash \varphi$ faptul că φ este teoremă.

(A1)
$$\varphi \to (\psi \to \varphi)$$

(A2)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(A3)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$
.

Regula de deducție este modus ponens: $\frac{\varphi, \ \varphi \to \psi}{\psi}_{\mathbf{MP}}$

Example

Fie φ si ψ formule în logica propozițională. Să se arate sintactic că

$$\vdash \varphi \to \varphi.$$

(A1)
$$\varphi \to (\psi \to \varphi)$$

(A2)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(A3)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$
.

Regula de deducție este modus ponens: $\frac{\varphi, \ \varphi \to \psi}{\psi}_{\mathbf{MP}}$

Example

Fie φ si ψ formule în logica propozițională. Să se arate sintactic că

$$\vdash \varphi \rightarrow \varphi$$
.

Avem următoarea demonstrație:

$$(1) \quad \varphi \to ((\varphi \to \varphi) \to \varphi) \tag{A1}$$

(2)
$$(\varphi \to ((\varphi \to \varphi) \to \varphi)) \to ((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi))$$
 (A2)

$$(3) \quad (\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi) \tag{MP}$$

$$(4) \quad (\varphi \to (\varphi \to \varphi)) \tag{A1}$$

$$(5) \quad (\varphi \to \varphi \tag{MP})$$

 \square Oricare ar fi φ , ψ , $\chi \in Form$ următoarele formule sunt axiome:

$$\begin{array}{ll} (\mathsf{A1}) & \varphi \to (\psi \to \varphi) \\ (\mathsf{A2}) & (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)) \\ (\mathsf{A3}) & (\neg \psi \to \neg \varphi) \to (\varphi \to \psi). \end{array}$$

lacksquare Regula de deducție **este** modus ponens: $\frac{arphi, \ arphi o \psi}{\psi}_{\mathbf{MP}}$ MP

Teorema de completitudine

Teoremele și tautologiile coincid, i.e. pentru orice $\varphi \in Form$ avem

$$dash arphi$$
 dacă și numai dacă $\models arphi$

- (⇒) Corectitudine
- (⇐) Completitudine

PL - Deducție naturala

☐ În deducția naturală deducem (demonstrăm) formule din alte formule folosind reguli de deducție.

¹M. Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge University Press New York, 2004.

- ☐ În deducția naturală deducem (demonstrăm) formule din alte formule folosind reguli de deducție.
- □ Numim secvent o expresie de forma

$$\varphi_1,\ldots,\varphi_n \vdash \psi$$

Formulele $\varphi_1, \ldots, \varphi_n$ se numesc premise, iar ψ se numeste concluzie.

¹M. Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge University Press New York, 2004.

- ☐ În deducția naturală deducem (demonstrăm) formule din alte formule folosind reguli de deductie.
- □ Numim secvent o expresie de forma

$$\varphi_1,\ldots,\varphi_n \vdash \psi$$

Formulele $\varphi_1, \ldots, \varphi_n$ se numesc premise, iar ψ se numeste concluzie.

Un secvent este valid dacă există o demonstrație folosind regulile de deductie.

¹M. Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge University Press New York, 2004.

- În deducția naturală deducem (demonstrăm) formule din alte formule folosind reguli de deductie.
- □ Numim secvent o expresie de forma

$$\varphi_1,\ldots,\varphi_n \vdash \psi$$

Formulele $\varphi_1, \dots, \varphi_n$ se numesc premise, iar ψ se numeste concluzie.

- Un secvent este valid dacă există o demonstrație folosind regulile de deductie.
- □ O teoremă este o formulă ψ astfel încât $\vdash \psi$ (adică ψ poate fi demonstrată din mulțimea vidă de ipoteze).

¹M. Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge University Press New York, 2004.

- ☐ În deducția naturală deducem (demonstrăm) formule din alte formule folosind reguli de deductie.
- □ Numim secvent o expresie de forma

$$\varphi_1,\ldots,\varphi_n \vdash \psi$$

Formulele $\varphi_1, \ldots, \varphi_n$ se numesc premise, iar ψ se numeste concluzie.

- Un secvent este valid dacă există o demonstrație folosind regulile de deductie.
- O teoremă este o formulă ψ astfel încât ⊢ ψ (adică ψ poate fi demonstrată din multimea vidă de ipoteze).
- Pentru fiecare conector logic vom avea reguli de introducere şi reguli de eliminare.

¹M. Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge University Press New York, 2004.

□ Intuitiv, a demonstra $\varphi \land \psi$ revine la a demonstra φ și ψ . Obținem astfel regula

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \ (\land i)$$

Eticheta $(\land i)$ înseamnă \land -introducere deoarece \land este introdus în concluzie.

□ Intuitiv, a demonstra $\varphi \land \psi$ revine la a demonstra φ și ψ . Obținem astfel regula

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \ (\land i)$$

Eticheta $(\land i)$ înseamnă \land -introducere deoarece \land este introdus în concluzie.

☐ Regulile pentru ∧- eliminare sunt:

$$\frac{\varphi \wedge \psi}{\varphi} \ (\land e_1) \qquad \frac{\varphi \wedge \psi}{\psi} \ (\land e_2)$$

Example

Demonstrați că secventul $p \land q, r \vdash q \land r$ este valid.

Example

Demonstrați că secventul $p \land q, r \vdash q \land r$ este valid.

Putem scrie demonstratia ca un arbore

$$\frac{\frac{p \wedge q}{q} (\wedge e_2) \quad r}{q \wedge r} (\wedge i)$$

Example

Demonstrați că secventul $p \land q, r \vdash q \land r$ este valid.

Putem scrie demonstratia ca un arbore

$$\frac{\frac{p \wedge q}{q} (\wedge e_2) \quad r}{q \wedge r} (\wedge i)$$

sau putem scrie demonstrația într-un mod liniar astfel:

$$\begin{array}{ccc} 1 & p \wedge q & \textit{premisa} \\ 2 & r & \textit{premisa} \end{array}$$

Example

Demonstrați că secventul $p \land q, r \vdash q \land r$ este valid.

Putem scrie demonstratia ca un arbore

$$\frac{\frac{p \wedge q}{q} (\wedge e_2) \quad r}{q \wedge r} (\wedge i)$$

sau putem scrie demonstrația într-un mod liniar astfel:

$$\begin{array}{cccc} 1 & p \wedge q & \textit{premisa} \\ 2 & r & \textit{premisa} \\ 3 & q & (\wedge e_2), 1 \end{array}$$

Example

Demonstrați că secventul $p \land q, r \vdash q \land r$ este valid.

Putem scrie demonstrația ca un arbore

$$\frac{\frac{p \wedge q}{q} (\wedge e_2) \quad r}{q \wedge r} (\wedge i)$$

sau putem scrie demonstratia într-un mod liniar astfel:

$$\begin{array}{cccc} 1 & p \wedge q & premisa \\ 2 & r & premisa \\ 3 & q & (\wedge e_2),1 \\ 4 & q \wedge r & (\wedge i),3,2 \end{array}$$

□ Regulile ¬¬-introducere şi ¬¬-eliminare sunt:

$$\frac{\neg \neg \varphi}{\varphi} (\neg \neg e) \qquad \frac{\varphi}{\neg \neg \varphi} (\neg \neg i)$$

□ Regulile ¬¬-introducere şi ¬¬-eliminare sunt:

$$\frac{\neg \neg \varphi}{\varphi} (\neg \neg e) \qquad \frac{\varphi}{\neg \neg \varphi} (\neg \neg i)$$

Example

Demonstrați că secventul $\neg\neg(q \land r) \vdash \neg\neg r$ este valid.

□ Regulile ¬¬-introducere şi ¬¬-eliminare sunt:

$$\frac{\neg \neg \varphi}{\varphi} (\neg \neg e) \qquad \frac{\varphi}{\neg \neg \varphi} (\neg \neg i)$$

Example

Demonstrați că secventul $\neg\neg(q \land r) \vdash \neg\neg r$ este valid.

$$\begin{array}{lll} 1 & \neg\neg(q\wedge r) & \textit{premisa} \\ 2 & q\wedge r & (\neg\neg\textit{ei}).1 \\ 3 & r & (\land\textit{e}_2).2 \end{array}$$

□ Regulile ¬¬-introducere şi ¬¬-eliminare sunt:

$$\frac{\neg \neg \varphi}{\varphi} (\neg \neg e) \qquad \frac{\varphi}{\neg \neg \varphi} (\neg \neg i)$$

Example

Demonstrați că secventul $\neg\neg(q \land r) \vdash \neg\neg r$ este valid.

1
$$\neg\neg(q \land r)$$
 premisa
2 $q \land r$ $(\neg\neg ei),1$
3 r $(\land e_2),2$
4 $\neg\neg r$ $(\neg\neg i),3$

Regulile pentru implicație: →-eliminare

□ Regula de →-eliminare o stiţi deja:

Regulile pentru implicație: →-eliminare

□ Regula de →-eliminare o stiţi deja: este modus ponens:

$$\frac{\varphi \qquad \varphi \to \psi}{\psi} \ (\to e)$$

Regulile pentru implicație: →-introducere

□ Intuitiv, a demonstra $\varphi \to \psi$ revine la a demonstra ψ în ipoteza φ , i.e. presupunem temporar φ și demonstrăm ψ .

Regulile pentru implicație: →-introducere

□ Intuitiv, a demonstra $\varphi \to \psi$ revine la a demonstra ψ în ipoteza φ , i.e. presupunem temporar φ și demonstrăm ψ . Acest lucru se reprezintă astfel:

Regulile pentru implicație: →-introducere

□ Intuitiv, a demonstra $\varphi \to \psi$ revine la a demonstra ψ în ipoteza φ , i.e. presupunem temporar φ și demonstrăm ψ . Acest lucru se reprezintă astfel:

- □ Cutia (chenarul) are rostul de a marca scopul ipotezei φ : numai deductiile din interiorul cutiei pot folosi φ .
- □ În momentul în care am obținut ψ , închidem cutia și deducem $\varphi \to \psi$ în afara cutiei.
- O ipoteză nu poate fi folosită în afara scopului său.

Example

Demonstrați teorema $\vdash (p \land q) \rightarrow p$

Example

Demonstrați teorema $\vdash (p \land q) \rightarrow p$

Vom considera $p \land q$ ca ipoteză temporară

$$p \wedge q$$

Example

Demonstrați teorema $\vdash (p \land q) \rightarrow p$

Vom considera $p \land q$ ca ipoteză temporară

$$\frac{p \wedge q}{p} (\wedge e_1)$$

Example

Demonstrați teorema $\vdash (p \land q) \rightarrow p$

Vom considera $p \wedge q$ ca ipoteză temporară

$$\frac{p \wedge q}{p} \ (\wedge e_1)$$

Example

Demonstrați teorema $\vdash (p \land q) \rightarrow p$

Vom considera $p \wedge q$ ca ipoteză temporară

$$\frac{\boxed{\frac{p \wedge q}{p} \ (\wedge e_1)}}{p \wedge q \to p} \ (\to i)$$

Example

Demonstrați teorema $\vdash (p \land q) \rightarrow p$

Putem scrie demonstrația într-un mod liniar în felul următor:

1 $p \wedge q$ ipoteza

Example

Demonstrați teorema $\vdash (p \land q) \rightarrow p$

Putem scrie demonstrația într-un mod liniar în felul următor:

$$\begin{array}{cccc} 1 & p \wedge q & ipoteza \\ 2 & p & (\wedge e_1), 1 \end{array}$$

Example

Demonstrați teorema $\vdash (p \land q) \rightarrow p$

Putem scrie demonstrația într-un mod liniar în felul următor:

$$\begin{array}{c|cccc} 1 & & p \wedge q & & ipoteza \\ 2 & & p & & (\wedge e_1), 1 \\ 3 & & p \wedge q \rightarrow p & & (\rightarrow i), 1-2 \end{array}$$

Example

Demonstrați teorema $\vdash p \rightarrow p$

Example

Demonstrați teorema $\vdash p \rightarrow p$

$$\begin{array}{ccc}
1 & p & ipoteza \\
2 & p \rightarrow p & (\rightarrow i), 1
\end{array}$$

Example

Demonstrați teorema $\vdash (p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$

Example

Demonstrați teorema $\vdash (p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$

$p \rightarrow q$	ipoteza
$q \rightarrow r$	ipoteza
p	ipoteza

Demonstrați teorema $\vdash (p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$

 $p \rightarrow q$

5

$q \rightarrow r$	ipoteza
р	ipoteza
q	(→e),1,3
r	(→e),2,4

ipoteza

Demonstrați teorema $\vdash (p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$

$p \rightarrow q$	ipoteza
$q \rightarrow r$	ipoteza
р	ipoteza
q	(→e),1,3
r	(→e),2,4
$p \rightarrow r$	(→i),3–5

Demonstrați teorema $\vdash (p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$

4 5

$p \rightarrow q$	ipoteza
$q \rightarrow r$	ipoteza
р	ipoteza
	(→e),1,3
r	(→e),2,4
$p \rightarrow r$	(→i),3–5
$(q \to r) \to (p \to r)$	(→ <i>i</i>),2−6

Demonstrați teorema $\vdash (p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$

5 6

$p \rightarrow q$	ipoteza	
$q \rightarrow r$	ipoteza]
p	ipoteza	
	(→e),1,3	
r	(→e),2,4	
$p \rightarrow r$	$(\rightarrow i)$,3–5	
$(q \to r) \to (p \to r)$	(→i),2–6	Ī
$(p \to q) \to ((q \to r) \to (p \to r))$	(→i),1–7	

□ O cutie marchează scopul unei ipoteze temporare, ce poate fi folosită pentru a demonstra formulele din interiorul cutiei.

- □ O cutie marchează scopul unei ipoteze temporare, ce poate fi folosită pentru a demonstra formulele din interiorul cutiei.
- Cutiile pot fi incluse una în alta; se pot deschide cutii noi după închiderea celor vechi.

- O cutie marchează scopul unei ipoteze temporare, ce poate fi folosită pentru a demonstra formulele din interiorul cutiei.
- Cutille pot fi incluse una în alta; se pot deschide cutii noi după închiderea celor vechi.
- ☐ Linia care urmează după închiderea unei cutii trebuie să conțină concluzia regulii pentru care a fost utilizată cutia.

- □ O cutie marchează scopul unei ipoteze temporare, ce poate fi folosită pentru a demonstra formulele din interiorul cutiei.
- Cutiile pot fi incluse una în alta; se pot deschide cutii noi după închiderea celor vechi.
- Linia care urmează după închiderea unei cutii trebuie să conțină concluzia regulii pentru care a fost utilizată cutia.
- ☐ Într-un punct al unei demonstrații se pot folosi formulele care au apărut anterior, cu exceptia celor din interiorul cutiilor închise.

- La un pas al unei demonstrații poate fi copiată orice formulă demonstrată anterior.
- ☐ La un pas al unei demonstrații nu pot fi copiate formule din interiorul cutiilor care sunt închise în acel moment.

- La un pas al unei demonstrații poate fi copiată orice formulă demonstrată anterior.
- □ La un pas al unei demonstrații nu pot fi copiate formule din interiorul cutiilor care sunt închise în acel moment.

Example

Demonstrați teorema $\vdash p \rightarrow (q \rightarrow p)$

- La un pas al unei demonstrații poate fi copiată orice formulă demonstrată anterior.
- ☐ La un pas al unei demonstrații nu pot fi copiate formule din interiorul cutiilor care sunt închise în acel moment.

Example

Demonstrați teorema $\vdash p \rightarrow (q \rightarrow p)$

	р	ipoteza
	q	ipoteza

- □ La un pas al unei demonstrații poate fi copiată orice formulă demonstrată anterior.
- □ La un pas al unei demonstrații nu pot fi copiate formule din interiorul cutiilor care sunt închise în acel moment.

Example

Demonstrați teorema $\vdash p \rightarrow (q \rightarrow p)$

р	ipoteza
q	ipoteza
p	copiere 1

- La un pas al unei demonstrații poate fi copiată orice formulă demonstrată anterior.
- ☐ La un pas al unei demonstrații nu pot fi copiate formule din interiorul cutiilor care sunt închise în acel moment.

Example

Demonstrați teorema $\vdash p \rightarrow (q \rightarrow p)$

р	ipoteza
q	ipoteza
p	copiere 1
$q \rightarrow p$	(<i>→i</i>),2−3

- La un pas al unei demonstratii poate fi copiată orice formulă demonstrată anterior.
- □ La un pas al unei demonstraţii nu pot fi copiate formule din interiorul cutiilor care sunt închise în acel moment.

Demonstrați teorema $\vdash p \rightarrow (q \rightarrow p)$

р	ipoteza
q	ipoteza
р	copiere 1
$q \rightarrow$	<i>p</i> (→ <i>i</i>),2−3
$n \rightarrow$	$(a \rightarrow b)$ (3)1.4

р	ipoteza
q	ipoteza
р	copiere 1
$q \rightarrow p$	(→i),2−3
$p \rightarrow (c$	$(\rightarrow i)$, $(\rightarrow i)$, $1-4$

Regulile pentru disjuncție: V-introducere

□ Intuitiv, a demonstra $\varphi \lor \psi$ revine la a demonstra φ sau ψ . În consecință, regulile de \lor -introducere sunt

$$\frac{\varphi}{\varphi \vee \psi} \, (\vee i_1) \quad \frac{\psi}{\varphi \vee \psi} \, (\vee i_2)$$

Regulile pentru disjuncție: V-introducere

□ Intuitiv, a demonstra $\varphi \lor \psi$ revine la a demonstra φ sau ψ . În consecință, regulile de \lor -introducere sunt

$$\frac{\varphi}{\varphi \vee \psi} \, (\vee i_1) \qquad \frac{\psi}{\varphi \vee \psi} \, (\vee i_2)$$

Example

Demonstrați că secventul $q \rightarrow r \vdash q \rightarrow (r \lor p)$ este valid.

Regulile pentru disjuncție: V-introducere

□ Intuitiv, a demonstra $\varphi \lor \psi$ revine la a demonstra φ sau ψ . În consecință, regulile de \lor -introducere sunt

$$\frac{\varphi}{\varphi \vee \psi} \, (\vee i_1) \qquad \frac{\psi}{\varphi \vee \psi} \, (\vee i_2)$$

Example

Demonstrați că secventul $q \rightarrow r \vdash q \rightarrow (r \lor p)$ este valid.

1	$q \rightarrow r$	premisa
2	q	ipoteza
3	r	(→e),1,2
4	$r \lor p$	(∨ <i>i</i> ₁),3
5	$q \rightarrow (r \lor p)$	(→i),2-4

Regulile pentru disjuncție: V-eliminare

- □ Cum procedăm pentru a demonstra χ știind $\varphi \lor \psi$?
 - Trebuie să analizăm două cazuri:
 - lacktriangle presupunem arphi și demonstrăm χ
 - \square presupunem ψ și demonstrăm χ

Astfel, dacă am demonstrat $\varphi \lor \psi$ putem să deducem χ deoarece cazurile de mai sus acoperă toate situațiile posibile.

Regulile pentru disjuncție: ∨-eliminare

- □ Cum procedăm pentru a demonstra χ știind $\varphi \lor \psi$? Trebuie să analizăm două cazuri:
 - \square presupunem φ și demonstrăm χ
 - \square presupunem ψ și demonstrăm χ

Astfel, dacă am demonstrat $\varphi \lor \psi$ putem să deducem χ deoarece cazurile de mai sus acoperă toate situațiile posibile.

□ Regula ∨-eliminare reflectă aceast argument:

Regulile pentru disjuncție

Example

Demonstrați că secventul $q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$ este valid.

1	$q \rightarrow r$	premisa
2	p∨q	ipoteza
3	p	ipoteza
4	p∨r	(∨ <i>i</i> ₁),3
		_
5	q	ipoteza
6	r	(→e),1,5
7	p∨r	(∨i₂),6
8	p∨r	(ve),2,3-4,5-7
9	$p \lor q \to p \lor r$	(→i),2-8

□ Pentru orice φ , formulele $\varphi \land \neg \varphi$ și $\neg \varphi \land \varphi$ se numesc contradicții. O contradicție arbitrară va fi notată \bot .

- □ Pentru orice φ , formulele $\varphi \land \neg \varphi$ și $\neg \varphi \land \varphi$ se numesc contradicții. O contradicție arbitrară va fi notată \bot .
- ☐ Faptul că dintr-o contradicție se poate deduce orice este reprezentat printr-o regulă specială:

$$\frac{\perp}{\varphi}$$
 (±e)

- □ Pentru orice φ , formulele $\varphi \land \neg \varphi$ și $\neg \varphi \land \varphi$ se numesc contradicții. O contradicție arbitrară va fi notată \bot .
- ☐ Faptul că dintr-o contradicție se poate deduce orice este reprezentat printr-o regulă specială:

$$\frac{\perp}{\varphi}$$
 (ie)

□ Regulile de ¬ -eliminare şi ¬ -introducere sunt:

$$\frac{arphi}{arphi}$$
 $\frac{arphi}{arphi}$ $\frac{arphi}{arphi}$ $\frac{arphi}{arphi}$ $\frac{arphi}{arphi}$

Example

Demonstrați că secventul $p \rightarrow \neg p \vdash \neg p$ este valid.

1	$p \rightarrow \neg p$	premisa
2	р	ipoteza
3	$\neg p$	(→e),1,2
4	T	(¬e),2,3
5	$\neg p$	(¬i),2-4

Regulile DN

36/55

Reguli derivate

☐ Următoarele reguli pot fi derivate din regulile deducției naturale:

$$\frac{\varphi \to \psi \quad \neg \psi}{\neg \varphi} \text{ MT} \qquad \qquad \frac{\vdots}{\bot} \\ \frac{\bot}{\varphi} \text{ RAA} \qquad \qquad \frac{}{\varphi \vee \neg \varphi} \text{ TNI}$$

Deducția naturală DN

- □ este un sistem deductiv corect și complet pentru logica clasică,
- stabileste reguli de deducție pentru fiecare operator logic,
- o demonstrație se construiește prin aplicarea succesivă a regulilor de deductie,
- în demonstrații putem folosi ipoteze temporare, scopul acestora fiind bine delimitat.

PL - Deducție naturala: Corectitudine:

Teoremă

Deducția naturală este corectă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \vdash \varphi$$
 este valid atunci $\varphi_1, \ldots, \varphi_n \models \varphi$

oricare ar fi $n \ge 0$ și formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Teoremă

Deductia naturală este corectă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \vdash \varphi$$
 este valid atunci $\varphi_1, \ldots, \varphi_n \models \varphi$

oricare ar fi $n \ge 0$ și formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Demonstrație

Din ipoteză știm că există o demonstrație pentru φ din ipotezele $\varphi_1, \ldots, \varphi_n$ folosind regulile deducției naturale.

Teoremă

Deductia naturală este corectă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \vdash \varphi$$
 este valid atunci $\varphi_1, \ldots, \varphi_n \models \varphi$

oricare ar fi $n \ge 0$ și formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Demonstrație

Din ipoteză știm că există o demonstrație pentru φ din ipotezele $\varphi_1, \ldots, \varphi_n$ folosind regulile deducției naturale.

Fie *k* numărul de linii dintr-o demonstrație în forma liniară.

Teoremă

Deductia naturală este corectă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \vdash \varphi$$
 este valid atunci $\varphi_1, \ldots, \varphi_n \models \varphi$

oricare ar fi $n \ge 0$ și formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Demonstrație

Din ipoteză știm că există o demonstrație pentru φ din ipotezele $\varphi_1, \ldots, \varphi_n$ folosind regulile deducției naturale.

Fie k numărul de linii dintr-o demonstrație în forma liniară. Prin inducție după $k \geq 1$ vom arăta că

oricare ar fi $n \ge 0$ și $\varphi_1, \dots, \varphi_n, \varphi$ formule, dacă $\varphi_1, \dots, \varphi_n \vdash \varphi$ are o demonstrație de lungime $k \ge 1$ atunci $\varphi_1, \dots, \varphi_n \models \varphi$,

(orice secvent care are o demonstrație de lungime *k* este corect).

Demonstratie (cont.)

Atenție! Facem inducție după lungimea demonstrației, numărul de premise este arbitrar.

Demonstrație (cont.)

Atenție! Facem inducție după lungimea demonstrației, numărul de premise este arbitrar. Cazul k=1. În acest caz demonstrația este

1 φ premisa

ceea ce înseamnă că secventul inițial este $\varphi \vdash \varphi$.

Este evident că $\varphi \models \varphi$

Demonstrație (cont.)

Cazul de inducție. Vom presupune că:

oricare ar fi $\varphi_1, \dots, \varphi_n, \varphi$, dacă $\varphi_1, \dots, \varphi_n \vdash \varphi$ are o demonstrație de lungime < k atunci $\varphi_1, \dots, \varphi_n \models \varphi$

și vom demonstra că proprietatea este adevărată pentru secvenți cu demonstratii de lungime k.

Demonstrație (cont.)

Cazul de inducție. Vom presupune că:

oricare ar fi $\varphi_1, \dots, \varphi_n, \varphi$, dacă $\varphi_1, \dots, \varphi_n \vdash \varphi$ are o demonstrație de lungime < k atunci $\varphi_1, \dots, \varphi_n \models \varphi$

și vom demonstra că proprietatea este adevărată pentru secvenți cu demonstrații de lungime k.

Fie (R) ultima regulă care se aplică în demonstratie, adică

$$\begin{array}{cccc} 1 & & \varphi_1 & & \textit{premisa} \\ & & \vdots & & \\ n & & \varphi_n & & \textit{premisa} \\ & & \vdots & & \\ k & & \varphi & & (\textit{R}) \end{array}$$

Demonstrație (cont.)

Presupunem că ultima regulă a fost (Ai). Aceasta înseamnă că

$$\varphi=\psi\wedge\chi$$

Demonstratie (cont.)

Presupunem că ultima regulă a fost (Ai). Aceasta înseamnă că

$$\varphi=\psi\wedge\chi$$

Demonstratie (cont.)

Presupunem că ultima regulă a fost (Ai). Aceasta înseamnă că

$$\varphi = \psi \wedge \chi$$

1 φ_1 premisa Se observă că secvenții $\varphi_1, \dots, \varphi_n \vdash \psi$ și $\varphi_1, \dots, \varphi_n \vdash \chi$ au demonstrații de lungime < k. $k_1 \quad \psi$ \vdots $k_2 \quad \chi$ $k \quad \psi \land \chi \quad (\land i)k_1, k_2$

Demonstrație (cont.)

Presupunem că ultima regulă a fost (Ai). Aceasta înseamnă că

$$\varphi=\psi\wedge\chi$$

		, ,	<i>/</i> (
1	$arphi_1$ pi	remisa	Se observă că s	secvenții
	:		$\varphi_1,\ldots,\varphi_n \vdash \psi$	și
n	$arphi_n$ pi	remisa	$\varphi_1,\ldots,\varphi_n \vdash \chi$ au demonstrații	de lungime < k.
k	:		Din ipoteza de in	nductie rezultă
k_1	ψ		$\varphi_1,\ldots,\varphi_n\models\psi$,
	:		$\varphi_1,\ldots,\varphi_n\models\chi$,
k_2	X		717 77111 70	
k	$\psi \wedge \chi$ (\wedge	i)k ₁ ,k ₂		

Demonstratie (cont.)

Presupunem că ultima regulă a fost (Ai). Aceasta înseamnă că

$$\varphi=\psi\wedge\chi$$

1
$$\varphi_1$$
 premisa Se observă că secvenții $\varphi_1, \dots, \varphi_n \vdash \psi$ și $\varphi_1, \dots, \varphi_n \vdash \chi$ au demonstrații de lungime $< k$.

1 k_1 ψ Din ipoteza de inducție rezultă $\varphi_1, \dots, \varphi_n \models \psi$ și $\varphi_1, \dots, \varphi_n \models \psi$ și $\varphi_1, \dots, \varphi_n \models \chi$ deci $\varphi_1, \dots, \varphi_n \models \psi \land \chi$

Demonstratie (cont.)

Presupunem că ultima regulă a fost $(\rightarrow i)$. Aceasta înseamnă că

$$\varphi = \psi \to \chi$$

și ca în demonstrație există o cutie.

Demonstratie (cont.)

Presupunem că ultima regulă a fost (→i). Aceasta înseamnă că

$$\varphi = \psi \to \chi$$

și ca în demonstrație există o cutie.

Demonstratie (cont.)

Presupunem că ultima regulă a fost (→i). Aceasta înseamnă că

$$\varphi = \psi \to \chi$$

și ca în demonstrație există o cutie.

Se observă că

$$\varphi_1,\ldots,\varphi_n,\psi \vdash \chi$$

are demonstrația de lungime < k.

Demonstratie (cont.)

Presupunem că ultima regulă a fost (→i). Aceasta înseamnă că

$$\varphi = \psi \to \chi$$

si ca în demonstratie există o cutie.

Se observă că

$$\varphi_1,\ldots,\varphi_n,\psi \vdash \chi$$

are demonstrația de lungime < k.

Din ipoteza de inducție rezultă

$$\varphi_1,\ldots,\varphi_n,\psi\models\chi\quad (*)$$

Demonstrație (cont.)

Putem acum să demonstrăm că $\varphi_1, \dots, \varphi_n, \models \varphi$.

Demonstrație (cont.)

Putem acum să demonstrăm că $\varphi_1, \ldots, \varphi_n, \models \varphi$.

Fie $e: Var \to \{0, 1\}$ o evaluare astfel încât $e^+(\varphi_1) = \cdots = e^+(\varphi_n) = 1$. Vrem să arătăm că $e^+(\varphi) = 1$.

Deoarece $\varphi = \psi \rightarrow \chi$ considerăm două cazuri.

Dacă $e^+(\psi) = 0$ atunci $e^+(\varphi) = 0 \rightarrow e^+(\chi) = 1$.

Demonstrație (cont.)

Putem acum să demonstrăm că $\varphi_1, \ldots, \varphi_n \models \varphi$.

Fie $e: Var \to \{0, 1\}$ o evaluare astfel încât $e^+(\varphi_1) = \cdots = e^+(\varphi_n) = 1$. Vrem să arătăm că $e^+(\varphi) = 1$.

Deoarece $\varphi = \psi \rightarrow \chi$ considerăm două cazuri.

Dacă $e^+(\psi)=0$ atunci $e^+(\varphi)=0 o e^+(\chi)=1$.

Dacă $e^+(\psi) = 1$ atunci e^+ este un model pentru formulele $\varphi_1, \dots, \varphi_n, \psi$.

Din (*) rezultă ca $e^+(\chi) = 1$, deci $e^+(\varphi) = 1 \rightarrow 1 = 1$.

Demonstrație (cont.)

Putem acum să demonstrăm că $\varphi_1, \ldots, \varphi_n \models \varphi$.

Fie $e: Var \to \{0, 1\}$ o evaluare astfel încât $e^+(\varphi_1) = \cdots = e^+(\varphi_n) = 1$. Vrem să arătăm că $e^+(\varphi) = 1$.

Deoarece $\varphi = \psi \rightarrow \chi$ considerăm două cazuri.

Dacă $e^+(\psi)=0$ atunci $e^+(\varphi)=0 o e^+(\chi)=1$.

Dacă $e^+(\psi) = 1$ atunci e^+ este un model pentru formulele $\varphi_1, \dots, \varphi_n, \psi$. Din (*) rezultă ca $e^+(\chi) = 1$, deci $e^+(\varphi) = 1 \to 1 = 1$.

Am demonstrat că regula (→i) este corectă.

Demonstrație (cont.)

Putem acum să demonstrăm că $\varphi_1, \ldots, \varphi_n \models \varphi$.

Fie $e: Var \to \{0, 1\}$ o evaluare astfel încât $e^+(\varphi_1) = \cdots = e^+(\varphi_n) = 1$. Vrem să arătăm că $e^+(\varphi) = 1$.

Deoarece $\varphi = \psi \rightarrow \chi$ considerăm două cazuri.

Dacă $\mathrm{e}^+(\psi)=0$ atunci $\mathrm{e}^+(\varphi)=0 o \mathrm{e}^+(\chi)=1$.

Dacă $e^+(\psi)=1$ atunci e^+ este un model pentru formulele $\varphi_1,\ldots,\varphi_n,\psi$. Din (*) rezultă ca $e^+(\chi)=1$, deci $e^+(\varphi)=1\to 1=1$.

Am demonstrat că regula (→i) este corectă.

Pentru a finaliza demonstrația trebuie sa arătăm că fiecare din celelalte reguli ale deducției naturale este corectă.

PL - Deducție naturală: Completitudinea (opțional)

Completitudinea DN (opțional)

Teoremă

Deducția naturală este completă, i.e.

dacă $\varphi_1, \ldots, \varphi_n \models \varphi$ atunci $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid

oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Notații

Pentru a demonstra ca DN este completă pentru PL facem urmatoarele notații:

Notații

Pentru a demonstra ca DN este completă pentru PL facem urmatoarele notatii:

□ Fie $e: Var \rightarrow \{0, 1\}$ evaluare. Pentru orice $v \in Var$ definim

$$v^e := \left\{ egin{array}{ll} v & ext{dacă } e(v) = 1 \
eg v & ext{dacă } e(v) = 0 \end{array}
ight.$$

Completitudinea DN - rezultate ajutătoare

Propozitia 1

Fie φ este o formulă și $Var(\varphi) = \{v_1, \dots, v_n\}$. Pentru orice evaluare $e: Var \to \{0, 1\}$ sunt adevarate:

- \Box $e^+(\varphi) = 1$ implica $\{v_1^e, \dots, v_n^e\} \vdash \varphi$ este valid,
- \Box $e^+(\varphi) = 0$ implica $\{v_1^e, \dots, v_n^e\} \vdash \neg \varphi$ este valid.

Completitudinea DN - rezultate ajutătoare

Propozitia 1

Fie φ este o formulă și $Var(\varphi) = \{v_1, \dots, v_n\}$. Pentru orice evaluare $e: Var \to \{0, 1\}$ sunt adevarate:

- \Box $e^+(\varphi) = 1$ implica $\{v_1^e, \dots, v_n^e\} \vdash \varphi$ este valid,
- \Box $e^+(\varphi) = 0$ implica $\{v_1^e, \dots, v_n^e\} \vdash \neg \varphi$ este valid.

Propozitia 2

Oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$, daca $\varphi_1, \ldots, \varphi_n \models \varphi$ atunci $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\cdots \rightarrow (\varphi_n \rightarrow \varphi) \cdots))$.

Completitudinea DN - rezultate ajutătoare

Propozitia 1

Fie φ este o formulă si $Var(\varphi) = \{v_1, \dots, v_n\}$. Pentru orice evaluare $e: Var \to \{0, 1\}$ sunt adevarate:

- \Box $e^+(\varphi) = 1$ implica $\{v_1^e, \dots, v_n^e\} \vdash \varphi$ este valid,
- \Box $e^+(\varphi) = 0$ implica $\{v_1^e, \dots, v_n^e\} \vdash \neg \varphi$ este valid.

Propozitia 2

Oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$, daca $\varphi_1, \ldots, \varphi_n \models \varphi$ atunci $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\cdots \rightarrow (\varphi_n \rightarrow \varphi) \cdots))$.

Propozitia 3

Oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$, dacă $\vdash \varphi_1 \to (\varphi_2 \to (\cdots \to (\varphi_n \to \varphi) \cdots))$ este valid, atunci $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid.

Teoremă

Deducția naturală este completă, i.e.

dacă $\varphi_1, \ldots, \varphi_n \models \varphi$ atunci $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid

oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Teoremă

Deducția naturală este completă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \models \varphi$$
 atunci $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid

oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Demonstratie

Pasul 1. Daca $\models \varphi$ atunci $\vdash \varphi$ este valid.

Teoremă

Deducția naturală este completă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \models \varphi$$
 atunci $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid

oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Demonstratie

Pasul 1. Daca $\models \varphi$ atunci $\vdash \varphi$ este valid.

Pasul 2. Presupunem ca $\varphi_1, \ldots, \varphi_n \models \varphi$.

Teoremă

Deducția naturală este completă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \models \varphi$$
 atunci $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid

oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Demonstratie

Pasul 1. Daca $\models \varphi$ atunci $\vdash \varphi$ este valid.

Pasul 2. Presupunem ca $\varphi_1, \ldots, \varphi_n \models \varphi$.

Din Propozitia 2 deducem ca $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\cdots \rightarrow (\varphi_n \rightarrow \varphi) \cdots))$.

Teoremă

Deducția naturală este completă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \models \varphi$$
 atunci $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid

oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Demonstratie

Pasul 1. Daca $\models \varphi$ atunci $\vdash \varphi$ este valid.

Pasul 2. Presupunem ca $\varphi_1, \ldots, \varphi_n \models \varphi$.

Din Propozitia 2 deducem ca $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\cdots \rightarrow (\varphi_n \rightarrow \varphi) \cdots))$.

Aplicand Pasul 1 obtinem ca $\vdash \varphi_1 \to (\varphi_2 \to (\cdots \to (\varphi_n \to \varphi) \cdots))$ este valid.

Teoremă

Deducția naturală este completă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \models \varphi$$
 atunci $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid

oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Demonstratie

Pasul 1. Daca $\models \varphi$ atunci $\vdash \varphi$ este valid.

Pasul 2. Presupunem ca $\varphi_1, \ldots, \varphi_n \models \varphi$.

Din Propozitia 2 deducem ca $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\cdots \rightarrow (\varphi_n \rightarrow \varphi) \cdots))$.

Aplicand Pasul 1 obtinem ca $\vdash \varphi_1 \to (\varphi_2 \to (\cdots \to (\varphi_n \to \varphi) \cdots))$ este valid. In consecinta $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid din Propozitia 3.

Demonstratie (cont.)

În continuare demonstram Pasul 1.

Fie φ o tautologie, i.e. $\models \varphi$, astfel incat $Var(\varphi) = \{p_1, \dots, p_n\}$.

Demonstratie (cont.)

În continuare demonstram Pasul 1.

Fie φ o tautologie, i.e. $\models \varphi$, astfel incat $Var(\varphi) = \{p_1, \dots, p_n\}$.

Oricare ar fi $e: Var \to \{0, 1\}$ stim ca $e^+(\varphi) = 1$ deci, din Propozitia 1, rezulta ca secventul $\{p_1^e, \dots, p_n^e\} \vdash \varphi$ este valid.

Demonstratie (cont.)

În continuare demonstram Pasul 1.

Fie φ o tautologie, i.e. $\models \varphi$, astfel incat $Var(\varphi) = \{p_1, \dots, p_n\}$.

Oricare ar fi $e: Var \to \{0, 1\}$ stim ca $e^+(\varphi) = 1$ deci, din Propozitia 1, rezulta ca secventul $\{p_1^e, \dots, p_n^e\} \vdash \varphi$ este valid.

Deoarece exista 2^n evaluari, i.e., tabelul de adevar are 2^n linii, obtinem 2^n demonstratii pentru φ , fiecare din aceste demonstratii avand n premise.

Demonstratie (cont.)

În continuare demonstram Pasul 1.

Fie φ o tautologie, i.e. $\models \varphi$, astfel incat $Var(\varphi) = \{p_1, \dots, p_n\}$.

Oricare ar fi $e: Var \to \{0, 1\}$ stim ca $e^+(\varphi) = 1$ deci, din Propozitia 1, rezulta ca secventul $\{p_1^e, \dots, p_n^e\} \vdash \varphi$ este valid.

Deoarece exista 2^n evaluari, i.e., tabelul de adevar are 2^n linii, obtinem 2^n demonstratii pentru φ , fiecare din aceste demonstratii avand n premise.

Vom arata in continuare, pe un exemplu simplu, cum se pot combina aceste 2^n demonstratii cu premise pentru a obtine o demonstratie fara premise pentru φ .

Demonstratie (cont.)

Consideram $\models \varphi$ si n = 2, i.e. $Var(\varphi) = \{p_1, p_2\}$.

De exemplu, puteti considera $\varphi = p_1 \wedge p_2 \rightarrow p_1$

Demonstratie (cont.)

Consideram $\models \varphi$ si n = 2, i.e. $Var(\varphi) = \{p_1, p_2\}$.

De exemplu, puteti considera $\varphi = p_1 \wedge p_2 \rightarrow p_1$

Din Propozitia 1 stim ca urmatorii secventi sunt valizi:

$$p_1, p_2 \vdash \varphi$$

$$p_1, \neg p_2 \vdash \varphi$$

$$\neg p_1, p_2 \vdash \varphi$$

$$\neg p_1, \neg p_2 \vdash \varphi$$

Demonstratie (cont.)

Consideram $\models \varphi$ si n = 2, i.e. $Var(\varphi) = \{p_1, p_2\}$.

De exemplu, puteti considera $\varphi = p_1 \wedge p_2 \rightarrow p_1$

Din Propozitia 1 stim ca urmatorii secventi sunt valizi:

$$\begin{array}{ccc}
p_1, p_2 & \vdash \varphi \\
p_1, \neg p_2 & \vdash \varphi \\
\neg p_1, p_2 & \vdash \varphi \\
\neg p_1, \neg p_2 & \vdash \varphi
\end{array}$$

deci exista demonstratiile:

$$p_1$$
 ipoteza p_2 ipoteza \vdots φ

$$p_1$$
 ipoteza $\neg p_2$ ipoteza \vdots

$$\neg p_1$$
 ipoteza p_2 ipoteza \vdots φ

$$\neg p_1$$
 ipoteza $\neg p_2$ ipoteza \vdots φ

Demonstratie (cont.)

Combinam cele patru demonstratii astfel:

Demonstratie (cont.)

Combinam cele patru demonstratii astfel:

$$\begin{array}{c|cccc} p_1 \lor \neg p_1 & TND \\ \hline p_1 & ipoteza & \hline \neg p_1 & ipoteza \\ \end{array}$$

Demonstratie (cont.)

Combinam cele patru demonstratii astfel:

$$\begin{array}{|c|c|c|c|}\hline p_1 & & ipoteza \\\hline p_1 & & ipoteza \\\hline p_2 \lor \neg p_2 & & TND \\\hline p_2 & ipoteza & \hline \neg p_2 & ipoteza \\\hline \end{array}$$

	IND
$\neg p_1$	ipoteza
$p_2 \vee \neg p_2$	TND
p ₂ ipoteza	¬p₂ ipoteza

TND

<u>Dem</u>onstratie (cont.)

Combinam cele patru demonstratii astfel:

Demonstratie (cont.)

Combinam cele patru demonstratii astfel:

Demonstratie (cont.)

Combinam cele patru demonstratii astfel:

Am obtinut o demonstratie pentru φ fara ipoteze.

Deductia naturala DN

- □ este un sistem deductiv corect si complet pentru logica clasica,
- stabileste reguli de deductie pentru fiecare operator logic,
- o demonstratie se construieste prin aplicarea succesiva a regulilor de deductie.
- in demonstratii putem folosi ipoteze temporare, scopul acestora fiind bine delimitat.

Pe săptămâna viitoare!