The following is a complete listing of all claims in the application, with an indication of the status of each:

Listing of claims:

1. (previously presented) A method of forming a field effect transistor (FET), 1 2 comprising: 3 providing a substrate; 4 forming a layer on the substrate, the layer having exposed vertical side 5 surfaces on opposite sides of the layer, the layer being able to support epitaxial 6 growth on said side surfaces; 7 forming an epitaxial channel on each of the exposed vertical side 8 surfaces of the layer, the channel having an exposed first vertical sidewall 9 opposite the vertical side surface of the layer; 10 removing a channel on a first vertical side surface of the layer and then 11 removing the layer, thereby exposing a second vertical sidewall of the channel 12 formed on the second vertical side of the layer; 13 forming a second channel in place of said removed channel; and 14 forming a gate adjacent to at least one of the sidewalls of the channel 15 and the second channel, there being a gate dielectric between each channel and 16 the gate. 1 2-13. (canceled) 14. (currently amended) A method for forming a double gated field effect 1 2 transistor (FET), comprising the steps of: 3 forming on a substrate a first and a second epitaxially grown channels, 4 said channels having being grown horizontally from the vertical side surfaces

BUR9-1999-0300US1 Amendment dated 05/22/2006 09/691,353 01240162aa Reply to office action mailed 02/23/2006

5	of semiconductor regions, said regions extending up from the substrate and
6	being centered between said channels, wherein said second channel is grown
7	following removal of a first of said semiconductor regions region centered
8	between said channels upon one of whose opposite vertical sides said first
9	channel was grown ;
10	etching areas within a silicon layer to form a source and a drain,
11	wherein a side surface of the source and the drain contact opposing end
12	surfaces of the first and second epitaxially grown channels; and
13	forming a gate that contacts a top surface and two side surfaces of the
14	first and second epitaxially grown channels and a top surface of the substrate.
	\cdot
1	15. (currently amended) The method as recited in claim 14, wherein the
2	forming step comprises the steps of:
3	forming said first and a second of said semiconductor lines regions,
4	each end of the silicon lines semiconductor regions contacting an end of the
5	source and the drain;
6	forming an etch stop layer on an exposed side surface of each of the
7	first and second semiconductor lines regions;
8	epitaxially growing said first and second semiconductor layers
9	channels on each respective etch stop layer;
10	etching away the first and second semiconductor lines regions and the
11	etch stop layers;
12	filling areas surrounding the first and second epitaxially grown
13	semiconductor layers channels and between the source and the drain with an
14	oxide fill; and
15	etching a portion of the oxide fill to form an area that defines a gate,
16	wherein the area that defines the gate is substantially centered between and
17	substantially parallel to the source and the drain.

1	16. (original) The method as recited in claim 15, further comprising the steps
2	of:
3	etching the oxide fill between the gate the source to expose the first
4	and second epitaxially grown silicon layers; and
5	etching the oxide fill between the gate and the drain to expose the first
6	and second epitaxially grown silicon layers.
1	17. (original) The method as recited in claim 16, further comprising the step
2	of forming an oxide on the first and second epitaxially grown silicon layers.
1	18. (original) The method as recited in claim 17, wherein the oxide is silicon
2	dioxide.
1	19. (previously presented) The method as recited in claim 14, further
2	comprising the steps of:
3	implanting a portion of the epitaxially grown silicon layers between
4	the gate and the source; and
5	implanting a portion of the epitaxially grown silicon layers between
6	the gate and the drain.
1	20. (previously presented) The method as recited in claim 19, wherein the
2	implanting step is in the range of 10 to 45 degrees relative to a vector
3	perpendicular to a top surface of the epitaxially grown silicon layers.
1	21. (previously presented) The method as recited in claim 20, wherein the
2	implants are done in a series at approximately 90 degrees relative to each
3	other.

BUR9-1999-0300US1 Amendment dated 05/22/2006 09/691,353 01240162aa Reply to office action mailed 02/23/2006

l	22. (original) The method as recited in claim 14, further comprising the step
2	of forming a contact on each of the gate, the source and the drain.
1	23. (original) The method as recited in claim 14, wherein the gate material is
2	polysilicon.
1	24. (previously presented) A method of forming an FET, comprising:
2	forming on a substrate a first semiconductor layer having first and
3	second ends and a central region that is thinner than said first and second ends,
4	said central region having first and second side surfaces extending upward
5	from said substrate, said semiconductor layer being able to support epitaxial
6	growth on said first and second side surfaces;
7	epitaxially growing a semiconductor channel region on at least one of
8	said first and second side surfaces of said central region of said first
. 9	semiconductor layer, a first side of said channel being exposed;
10	removing said central region of said first semiconductor layer, thereby
11	exposing a second side of said channel;
12	forming a dielectric layer on exposed surfaces of said semiconductor
13	channel region; and
14	forming a gate electrode on said dielectric layer.
1	25. (previously presented) The method of claim 24, wherein said
2	semiconductor channel region is formed of a combination of Group IV
3	elements.
1	26. (previously presented) The method of claim 24, wherein said
2	semiconductor channel region is formed of an alloy of silicon and a Group IV
3	element.

BUR9-1999-0300US1 Amendment dated 05/22/2006 09/691,353 01240162aa Reply to office action mailed 02/23/2006

1	27. (previously presented) The method of claim 24, wherein said
2	semiconductor channel region is formed of a material selected from the group
3	consisting of silicon, silicon-germanium, and silicon-germanium-carbon.
1	28. (previously presented) The method of claim 27, wherein said step of
2	removing said first semiconductor layer does not appreciably remove said
3	semiconductor channel region.
1	29. (previously presented) The method of claim 28, wherein an etch stop is
2	epitaxially grown between said first semiconductor layer and said
3	semiconductor channel region.
1	30 (previously presented) The method of claim 24, wherein said gate
2	electrode is formed of a material selected from the group consisting of
3	polysilicon, silicon-germanium, refractory metals, Ir, Al, Ru, Pt, and titanium
4	nitride.