Finite Elements lab assignments

Martijn Papendrecht: 4369971

February 19, 2018

Contents

1	1D Assignment															3							
	1.1	Theory																					3
	1.2	Modelling																					3
2	2D	Assignme	\mathbf{ats}																				8
	2.1	Assignmen	ıt 1.																				8

1 1D Assignment

1.1 Theory

Starting with the differential equation and boundary conditions

$$-D\frac{d^2u}{dx^2} + \lambda u = f(x),$$

$$-D\frac{du}{dx}(0) = 0, -D\frac{du}{dx}(1) = 0$$
(1)

we can derive the weak formulation.

$$\int_{0}^{1} \left[-D \frac{d^{2}u}{dx^{2}} + \lambda u \right] \phi dx = \int_{0}^{1} f(x)\phi dx$$

$$\int_{0}^{1} -D \left(\frac{d}{dx} \left(\frac{du}{dx} \phi \right) - \frac{d\phi}{dx} \frac{du}{dx} \right) + \lambda u \phi = \int_{0}^{1} f(x)\phi dx$$

$$-D \int_{0}^{1} \frac{d}{dx} \left(\frac{du}{dx} \phi \right) dx + \int_{0}^{1} D \frac{d\phi}{dx} \frac{du}{dx} + \lambda u \phi dx = \int_{0}^{1} f(x)\phi dx$$

$$\int_{0}^{1} D \frac{d\phi}{dx} \frac{du}{dx} + \lambda u \phi dx = \int_{0}^{1} f(x)\phi dx$$

$$(2)$$

Here ϕ is the test function satisfying the smoothness requirements. The boundary conditions are already containted in this weak formulation.

We can derive the Galerkin formulation by substitution $\phi = \phi_i$ and $u \approx u^N = \sum_{j=1}^N c_j \phi_j$ in eq. (2).

$$\int_0^1 D \frac{d\phi_i}{dx} \frac{d}{dx} \left(\sum_{j=1}^N c_j \phi_j \right) + \lambda \left(\sum_{j=1}^N c_j \phi_j \right) \phi_i dx = \int_0^1 f(x) \phi_i dx$$

$$\sum_{j=1}^N c_j \int_0^1 D \frac{d\phi_i}{dx} \frac{d\phi_j}{dx} + \lambda \phi_i \phi_j dx = \int_0^1 f(x) \phi_i dx$$
(3)

And finally we can write in the form $S\vec{u} = \vec{f}$ where

$$S_{ij} = \int_0^1 D \frac{d\phi_i}{dx} \frac{d\phi_j}{dx} + \lambda \phi_i \phi_j dx \tag{4}$$

$$f_i = \int_0^1 f(x)\phi_i dx \tag{5}$$

1.2 Modelling

All figures are made using Matlab. The code is available at Github ¹. In these figures the elements aren't equally spaced as prescribed in the assignment. Every element has an additional random offset of $\pm \frac{1}{2n}$. This has been done to test the code without the assumption of equally spaced vertices.

 $^{^{1}\ \}mathtt{https://github.com/MPapendrecht/FiniteElements.git}$

The figures below show the results for different number of vertices n. $\lambda=1$ and D=1 and the function f(x)=1

The solution is as expected very close to the analytical solution, and clearly satisfies the boundary conditions.

The figures below show the results for different number of vertices n as well. The same parameters are used, however the function $f(x) = \sin(20x)$.

The solution with n=10 shows the boundary conditions aren't satisfied properly because the amount of vertices is too small. The other solutions satisfy the boundary conditions much better. Increasing n further doesn't seem to make the function improve much more, which can be seen in the figure below.

- 2 2D Assignments
- 2.1 Assignment 1