

Conception of a complete OFDM communication channel

Statistical channel model

Each tap is composed by bunches of waves:

$$h_i(n) = \sum_k h_i(n, k)$$

where

- $h(n,k) = a_k e^{j\Phi_k}$
- $\Phi_k = \phi_k \vec{\beta}_k \vec{r}_i$

- ϕ_k is a random value with uniform distribution between 0 and 2π
- a_k is the amplitude of the wave

Virtual Multi-antenna receiver

$$h_i(n) = \sum_k a_k e^{j(\phi_k - \vec{\beta}_k \vec{r}_i)}$$

- ϕ_k depends on the IO's
- \vec{r}_i is the position of the antenna
- $\vec{\beta}_k$ defines the direction of arrival of the wave

$$\vec{\beta}_k = \frac{2\pi}{\lambda} \left(\sin(\theta_k) \cos(\varphi_k) \vec{1}_x + \sin(\theta_k) \sin(\varphi_k) \vec{1}_y + \cos(\theta_k) \vec{1}_z \right)$$

The room didn't changed

- The IO's and the direction of arrival are the same
- Equivalent to a multi-antenna receiver

Estimate the direction of arrival

$$h_i(n) = \sum_k a_k e^{j(\phi_k - \vec{\beta}_k \vec{r}_i)}$$

- ϕ_k depends on the IO's
- Phase rotation in the local area due to propagation $\vec{\beta}_k \vec{r}_i$

Beamforming equation:

$$a_n(\theta, \varphi) = \frac{\sum_i h_i(n) B_i^*(\theta, \varphi)}{\sum_i |B_i(\theta, \varphi)|^2}$$

where

•
$$B_i(\theta, \varphi) = e^{-j\vec{\beta}_{(\theta, \varphi)}\vec{r}_i}$$

•
$$\vec{\beta}_{(\theta,\varphi)} = \frac{2\pi}{\lambda} \left(\sin(\theta) \cos(\varphi) \vec{1}_x + \sin(\theta) \sin(\varphi) \vec{1}_y + \cos(\theta) \vec{1}_z \right)$$

Estimate the direction of arrival

•
$$h_i(n) = \sum_k a_k e^{j(\phi_k - \overrightarrow{\beta}_k \overrightarrow{r}_i)}$$

$$B_i(\theta,\varphi) = e^{-j\vec{\beta}_{(\theta,\varphi)}\vec{r}_i}$$

$$a_n(\theta, \varphi) = \frac{\sum_i h_i(n) B_i^*(\theta, \varphi)}{\sum_i |B_i(\theta, \varphi)|^2}$$

- $B_i(\theta, \varphi)$ specifies how the phase of a wave evolves in function of its position for a direction of arrival (θ, φ)
- $a_n(\theta, \varphi)$ evaluates if one of the waves $a_k e^{j\phi_k}$ comes from the direction (θ, φ)

Interpretation of $a_n(\theta, \phi)$

Tip: Only consider the most important direction for the interpretation

Increase the threshold in the findLocalMaxima function

Parameters of the beamforming

- $\theta \in [0; \pi]$
- $\varphi \in [-\pi;\pi]$
- $X, Z \in [0:9]; Y \in [9:-1:0]$
- Antenna's are spaced 2cm apart

Build a new channel model

$$h_i(n) = \sum_k a_k e^{j(\phi_k - \vec{\beta}_k \vec{r}_i)}$$

$$a_n(\theta, \varphi) = \frac{\sum_i h_i(n) B_i^*(\theta, \varphi)}{\sum_i |B_i(\theta, \varphi)|^2}$$

$$B_i(\theta,\varphi) = e^{-j\vec{\beta}_k \vec{r}_i}$$

- ϕ_i is a random phase
- $\vec{\beta}_i \vec{r}_i$ specifies the position of the antenna

• Stochastic model because ϕ_i is random (position of the IO's)

Objective (1)

Explain the beamforming method

 Evaluate the angular spectrum for the LOS and NLOS scenario for the 20 MHz channel

Build a new channel model based on the beamforming

Statistical channel model

Each tap is composed by bunches of waves:

$$\tilde{h}_i(n) = \sum_{(\theta, \varphi)} a_n(\theta, \varphi) e^{j(\phi_{(\theta, \varphi)} - \overrightarrow{\beta}_{(\theta, \varphi)} \overrightarrow{r}_i)}$$

- $\phi_{(\theta,\varphi)}$ is a random value with uniform distribution between 0 and 2π
- $a_n(\theta, \varphi)$ is evaluated with the beamforming
- For each realization, we have new $\phi_{(\theta,\varphi)}$

Spatial correlation

Spatial Correlation (along z-axis):
$$R(\Delta z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(u) e^{ju\Delta z} du$$

Angular Spectrum S(u) ($u = \beta \cos \theta$):

$$2\pi S(u)\delta(u-u') \equiv \mathcal{E}[a(u)a^*(u')]$$

+ Uncorrelated Scattering assumption:

$$S(u) = \sum_{i=1}^{N_u} 2\pi |a(u_i)|^2 \delta(u - u_i)$$

Objective

- Evaluate the spatial correlation of the channel model you built in LOS and NLOS for each direction X, Y and Z separately, in narrowband and wideband.
- Compare to Clarke's Model