3주차(1/3)

인공뉴론의 동작원리

파이썬으로배우는기계학습

한동대학교 김영섭교수

- 학습 목표
 - 인공뉴론의 동작 원리를 이해한다.
 - AND게이트 뉴론을 구현한다.
- 학습 내용
 - 인공뉴론의 동작 원리
 - AND 게이트 뉴론의 구현
 - AND 게이트 뉴론의 시각화

- $y = w_1 x_1$
- y = ax

- $y = w_1 x_1$
- y = ax

- $y = w_1 x_1$
- y = ax
- $a \rightarrow$ 기울기, $w_1 \rightarrow$ 가중치 weights

• 순입력(net input):

- 순입력(net input): $w_1x_1 + w_2x_2$
- 임계값(threshold): θ
- 활성화(activated): > θ

$$y = \begin{cases} 0 & \text{if } (w_1 x_1 + w_2 x_2 <= \theta) \\ 1 & \text{if } (w_1 x_1 + w_2 x_2 > \theta) \end{cases}$$
 (1)

- 순입력(net input): $w_1x_1 + w_2x_2$
- 임계값(threshold): θ
- 활성화(activated): > θ

인공뉴론의 동작 원리 – 가중치를 구하는 것

인공뉴론의 동작 원리 – 가중치를 구하는 것

가중치(Weights)

■ 편향(bias)

$$y = \begin{cases} 0 & \text{if } (w_1 x_1 + w_2 x_2 <= \theta) \\ 1 & \text{if } (w_1 x_1 + w_2 x_2 > \theta) \end{cases}$$
 (1)

$$y = \begin{cases} 0 & \text{if } (b + w_1 x_1 + w_2 x_2 <= 0) \\ 1 & \text{if } (b + w_1 x_1 + w_2 x_2 > 0) \end{cases}$$
 (2)

■ 편향(bias)

$$y = \begin{cases} 0 & \text{if } (w_1 x_1 + w_2 x_2 <= \theta) \\ 1 & \text{if } (w_1 x_1 + w_2 x_2 > \theta) \end{cases}$$
 (1)

$$y = \begin{cases} 0 & \text{if } (b + w_1 x_1 + w_2 x_2 <= 0) \\ 1 & \text{if } (b + w_1 x_1 + w_2 x_2 > 0) \end{cases}$$
(2)

편향(bias)

■ 편향(bias)

$$y = \begin{cases} 0 & \text{if } (w_1 x_1 + w_2 x_2 <= \theta) \\ 1 & \text{if } (w_1 x_1 + w_2 x_2 > \theta) \end{cases}$$
 (1)

$$y = \begin{cases} 0 & \text{if } (b + w_1 x_1 + w_2 x_2 <= 0) \\ 1 & \text{if } (b + w_1 x_1 + w_2 x_2 > 0) \end{cases} (2)$$

예제 1:

- 학습을 통해 가중치 \mathbf{w} 가 학습되었고, 임계값 θ 와 입력값 x_1, x_2 가 주어졌다 고 가정합시다. 뉴런이 활성화될지 판단하십시오.
 - $\mathbf{w} = (w_1, w_2) = (0.6, 0.3)$
 - $\theta = 0.5$
 - $(x_1, x_2) = (0, 1)$

- 예제 1:
 - 학습을 통해 가중치 \mathbf{w} 가 학습되었고, 임계값 θ 와 입력값 x_1, x_2 가 주어졌다 고 가정합시다. 뉴런이 활성화될지 판단하십시오.
 - $\mathbf{w} = (w_1, w_2) = (0.6, 0.3)$
 - $\theta = 0.5$
 - \bullet $(x_1, x_2) = (0, 1)$
 - (1) 활성화 된다
 - (2) 활성화되지 않는다

- 예제 1:
 - 학습을 통해 가중치 \mathbf{w} 가 학습되었고, 임계값 θ 와 입력값 x_1, x_2 가 주어졌다 고 가정합시다. 뉴런이 활성화될지 판단하십시오.
 - $\mathbf{w} = (w_1, w_2) = (0.6, 0.3)$
 - $\theta = 0.5$
 - \bullet $(x_1, x_2) = (0, 1)$
 - (1) 활성화 된다
 - (2) 활성화되지 않는다

 $net input = w_1 x_1 + w_2 x_2$

예제 1:

- 학습을 통해 가중치 \mathbf{w} 가 학습되었고, 임계값 θ 와 입력값 x_1, x_2 가 주어졌다 고 가정합시다. 뉴런이 활성화될지 판단하십시오.
 - $\mathbf{w} = (w_1, w_2) = (0.6, 0.3)$
 - $\theta = 0.5$
 - $(x_1, x_2) = (0, 1)$
- (1) 활성화 된다
- (2) 활성화되지 않는다

net input

=
$$w_1x_1 + w_2x_2$$

= $0.6 \times 0 + 0.3 \times 1$
= $0.3 < \theta$

- 예제 1:
 - 학습을 통해 가중치 \mathbf{w} 가 학습되었고, 임계값 θ 와 입력값 x_1, x_2 가 주어졌다 고 가정합시다. 뉴런이 활성화될지 판단하십시오.
 - $\mathbf{w} = (w_1, w_2) = (0.6, 0.3)$
 - $\theta = 0.5$
 - \bullet $(x_1, x_2) = (0, 1)$
 - (1) 활성화 된다 ✓ (2) 활성화되지 않는다

net input

=
$$w_1x_1 + w_2x_2$$

= $0.6 \times 0 + 0.3 \times 1$
= $0.3 < \theta$

AN[) 진	리표
x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1
1	1	1

ANI) 진	리표_
x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

$$y = \begin{cases} 0 & \text{if } (b + w_1 x_1 + w_2 x_2 <= 0) \\ 1 & \text{if } (b + w_1 x_1 + w_2 x_2 > 0) \end{cases}$$
(2)

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

$$y = \begin{cases} 0 & \text{if } (b + w_1 x_1 + w_2 x_2 <= 0) \\ 1 & \text{if } (b + w_1 x_1 + w_2 x_2 > 0) \end{cases}$$
(2)

• 예제:

AND	진리	표
-----	----	---

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

$$y = \begin{cases} 0 & \text{if } (b + w_1 x_1 + w_2 x_2 <= 0) \\ 1 & \text{if } (b + w_1 x_1 + w_2 x_2 > 0) \end{cases}$$
(2)

• 예제:

AND 게이트 뉴론을 만들고자 합니다. 수식 (2)를 만족시키는 아래의 가중치, 편향의 조합 중에서 AND 게이트를 수행 하는 조합을 찾아보세요.

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

(2)
$$(w_1, w_2) = (0.5, 0.5), b = -0.3$$

(3)
$$(w_1, w_2) = (0.5, 0.5), b = 0.2$$

$$y = \begin{cases} 0 & \text{if } (b + w_1 x_1 + w_2 x_2 <= 0) \\ 1 & \text{if } (b + w_1 x_1 + w_2 x_2 > 0) \end{cases}$$
(2)

• 예제:

AND 게이트 뉴론을 만들고자 합니다. 수식 (2)를 만족시키는 아래의 가중치, 편향의 조합 중에서 AND 게이트를 수행 하는 조합을 찾아보세요.

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

(2)
$$(w_1, w_2) = (0.5, 0.5), b = -0.3$$

(3)
$$(w_1, w_2) = (0.5, 0.5), b = 0.2$$

$$y = \begin{cases} 0 & \text{if } (b + w_1 x_1 + w_2 x_2 <= 0) \\ 1 & \text{if } (b + w_1 x_1 + w_2 x_2 > 0) \end{cases}$$
(2)

• 예제:

AND 게이트 뉴론을 만들고자 합니다. 수식 (2)를 만족시키는 아래의 가중치, 편향의 조합 중에서 AND 게이트를 수행 하는 조합을 찾아보세요.

• 예제 답과 풀이: (1)

$$-.7 + .5 \times 0 + .5 \times 0 = -.7 < 0 \rightarrow 0$$

 $-.7 + .5 \times 1 + .5 \times 0 = -.2 < 0 \rightarrow 0$
 $-.7 + .5 \times 0 + .5 \times 1 = -.2 < 0 \rightarrow 0$
 $-.7 + .5 \times 1 + .5 \times 1 = .3 > 0 \rightarrow 1$

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

(2)
$$(w_1, w_2) = (0.5, 0.5), b = -0.3$$

(3)
$$(w_1, w_2) = (0.5, 0.5), b = 0.2$$

AND	진근	丑
/ \l \ \ \	_	

y	x_2	x_1
0	0	0
0	1	0
0	0	1
1	1	1

$$y = \begin{cases} 0 & \text{if } (b + w_1 x_1 + w_2 x_2 <= 0) \\ 1 & \text{if } (b + w_1 x_1 + w_2 x_2 > 0) \end{cases}$$
 (2)

• 예제:

AND 게이트 뉴론을 만들고자 합니다. 수식 (2)를 만족시키는 아래의 가중치, 편향의 조합 중에서 AND 게이트를 수행 하는 조합을 찾아보세요.

예제 답과 풀이: (1)

$$-.7 + .5 \times 0 + .5 \times 0 = -.7 < 0 \rightarrow \mathbf{0}$$

 $-.7 + .5 \times 1 + .5 \times 0 = -.2 < 0 \rightarrow \mathbf{0}$
 $-.7 + .5 \times 0 + .5 \times 1 = -.2 < 0 \rightarrow \mathbf{0}$
 $-.7 + .5 \times 1 + .5 \times 1 = .3 > 0 \rightarrow \mathbf{1}$

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

(2)
$$(w_1, w_2) = (0.5, 0.5), b = -0.3$$

(3)
$$(w_1, w_2) = (0.5, 0.5), b = 0.2$$

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \quad w_0 = b$$

$$x_1 \quad w_1 \quad \Sigma \quad y$$

$$x_2 \quad x_2 \quad x_3 \quad x_4 \quad x_4 \quad x_5 \quad x_6 \quad$$

- 1. AND(x1, x2)
- 2. AND(x0, x1, x2)
- 3. AND(1, x1, x2)

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

- 1. AND(x1, x2)
- 2. AND(x0, x1, x2)
- 3. AND(1, x1, x2)

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \qquad w_0 = b$$

$$x_1 \qquad w_1 \qquad \Sigma \qquad y$$

$$x_2 \qquad x_2 \qquad x_3 \qquad x_4 \qquad x_4 \qquad x_5 \qquad x_6 \qquad$$

```
def AND(x1, x2):
```

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \quad w_0 = b$$

$$x_1 \quad w_1 \quad \Sigma \quad y$$

$$x_2 \quad w_2 \quad x_3 \quad w_4 \quad x_4 \quad x_5 \quad x_6 \quad$$

def AND(x1, x2):

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \quad w_0 = b$$

$$x_1 \quad w_1 \quad \Sigma \quad y$$

$$x_2 \quad x_2 \quad x_3 \quad x_4 \quad x_4 \quad x_5 \quad x_6 \quad$$

```
def AND(x1, x2):
    x = np.array([1, x1, x2]) # input
```

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \quad w_0 = b$$

$$x_1 \quad w_1 \quad \Sigma \quad y$$

$$x_2 \quad w_2 \quad x_3 \quad w_4 \quad x_4 \quad x_5 \quad x_6 \quad$$

```
def AND(x1, x2):
    x = np.array([1, x1, x2]) # input
    w = np.array([-0.7, 0.5, 0.5]) # bias + weight
```

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \qquad w_0 = b$$

$$x_1 \qquad w_1 \qquad \Sigma \qquad y$$

$$x_2 \qquad x_2 \qquad x_3 \qquad x_4 \qquad x_4 \qquad x_5 \qquad x_6 \qquad$$

```
def AND(x1, x2):
    x = np.array([1, x1, x2])  # input
    w = np.array([-0.7, 0.5, 0.5])  # bias + weight
    return
```

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \qquad w_0 = b$$

$$x_1 \qquad w_1 \qquad \Sigma \qquad y$$

$$x_2 \qquad x_2 \qquad x_3 \qquad x_4 \qquad x_4 \qquad x_5 \qquad x_6 \qquad$$

```
def AND(x1, x2):
    x = np.array([1, x1, x2])  # input
    w = np.array([-0.7, 0.5, 0.5])  # bias + weight
    return np.dot(w, x)
```

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \qquad w_0 = b$$

$$x_1 \qquad w_1 \qquad \Sigma \qquad y$$

$$x_2 \qquad x_2 \qquad x_3 \qquad x_4 \qquad x_4 \qquad x_5 \qquad x_6 \qquad$$

```
def AND(x1, x2):
    x = np.array([1, x1, x2])  # input
    w = np.array([-0.7, 0.5, 0.5])  # bias + weight
    return np.dot(w, x) > 0
```

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \qquad w_0 = b$$

$$x_1 \qquad w_1 \qquad \Sigma$$

$$x_2 \qquad x_2 \qquad x_3 \qquad x_4 \qquad x_4 \qquad x_5 \qquad x_6 \qquad x_6$$

```
def AND(x1, x2):
    x = np.array([1, x1, x2])  # input
    w = np.array([-0.7, 0.5, 0.5])  # bias + weight
    return int(np.dot(w, x) > 0)
```

```
def AND(x1, x2):
    x = np.array([1, x1, x2])  # input
    w = np.array([-0.7, 0.5, 0.5])  # bias + weight
    return int(np.dot(w, x) > 0)
```

```
print("AND(0, 0) = ", AND(0, 0))
print("AND(0, 1) = ", AND(0, 1))
print("AND(1, 0) = ", AND(1, 0))
print("AND(1, 1) = ", AND(1, 1))

AND(0, 0) = 0
AND(0, 1) = 0
AND(1, 0) = 0
AND(1, 1) = 1
```

```
def AND(x1, x2):
    x = np.array([1, x1, x2])  # input
    w = np.array([-0.7, 0.5, 0.5])  # bias + weight
    return int(np.dot(w, x) > 0)
```

$$AND(x_1, x_2) \begin{cases} -0.7 + 0.5x_1 + 0.5x_2 <= 0 \\ -0.7 + 0.5x_1 + 0.5x_2 > 0 \end{cases}$$
(3)

$$y = ax + b$$

$$AND(x_1, x_2) \begin{cases} -0.7 + 0.5x_1 + 0.5x_2 <= 0 \\ -0.7 + 0.5x_1 + 0.5x_2 > 0 \end{cases}$$
(3)

$$y = ax + b$$

$$-0.7 + 0.5x_1 + 0.5x_2 = 0$$

$$x_2 = -\frac{0.5}{0.5}x_1 + \frac{0.7}{0.5}$$

$$x_2 = -x_1 + 1.4$$
(4)

$$-0.7 + 0.5x_1 + 0.5x_2 = 0$$

$$x_2 = -\frac{0.5}{0.5}x_1 + \frac{0.7}{0.5}$$

$$x_2 = -x_1 + 1.4$$
 (4)

$$-0.7 + 0.5x_1 + 0.5x_2 = 0$$

$$x_2 = -\frac{0.5}{0.5}x_1 + \frac{0.7}{0.5}$$

$$x_2 = -x_1 + 1.4$$
(4)

- 분류(Classification)
- 분류기(Classifier)

$$x_2 = -\frac{0.5}{0.5}x_1 + \frac{0.7}{0.5}$$

$$x_2 = -x_1 + 1.4$$
(4)

인공뉴론의 동작 원리

- 학습 정리;
 - 인공뉴론의 동작 원리의 이해
 - AND게이트 뉴론의 구현과 시각화

- 차시 예고
 - **3-2** 미분

3주차(1/3)

인공뉴론의 동작 원리

파이썬으로배우는기계학습

한동대학교 김영섭교수

여러분 곁에 항상 열려 있는 K-MOOC 강의실에서 만나 뵙기를 바랍니다.