CORRIGÉ: Résultant de 2 polynômes (extrait de CCP MP 2009)

1. a) u est bien à valeurs dans F (considérer les degrés).

Soit (A, B), (C, D) deux éléments de E et λ , μ deux nombres complexes. Alors, vu que $\mathbb{C}[X]$ est une algèbre,

$$u(\lambda(A,B) + \mu(C,D)) = u((\lambda A + \mu C, \lambda B + \mu D))$$

$$= (\lambda A + \mu C)P + (\lambda B + \mu D)Q$$

$$= \lambda(AP + BQ) + \mu(CP + DQ)$$

$$= \lambda u(A,B) + \mu u(C,D)$$

donc u est linéaire.

b) Si u est surjective, le polynôme constant égal à 1 possède un antécédent pour u donc il existe $(A,B)\in E\subset \mathbb{C}[X]\times \mathbb{C}[X]$ tel que 1=AP+BQ.

Si P et Q avaient une racine commune α , on aurait alors $1 = A(\alpha)P(\alpha) + B(\alpha)Q(\alpha) = 0...$

Donc $\mid P$ et Q n'ont pas de racine commune.

c) Supposons que P et Q n'ont pas de racine commune et soit (A,B) appartenant à $\operatorname{Ker} u$. Alors AP=-BQ donc P divise BQ.

Si α est une racine de P d'ordre de multiplicité k, alors $(X - \alpha)^k$ divise P donc BQ, donc divise B puisque α n'est pas racine de Q. Cela est vrai pour toutes les racines de P donc, P étant scindé, P divise B. Or deg $B \leq p-1$ donc deg $B < \deg P$ d'où nécessairement B=0.

De même, Q divise A et $\deg A < \deg Q$ donc A = 0.

Le noyau de u est donc réduit au vecteur nul de E, donc l'application linéaire u est injective.

- d) On a de plus dim $E = \dim F = p + q$. Il y a donc équivalence entre u surjective et u injective. Donc P et Q n'ont pas de racine commune $\iff u$ bijective.
- **2. a)** Soit $(A, B) \in E$. $A \in \mathbb{C}_{q-1}[X]$ donc il existe des complexes a_0, \ldots, a_{q-1} tels que $A = \sum_{k=0}^{q-1} a_k X^k$. On

aura donc $(A,0) = \sum_{k=0}^{q-1} a_k(X^k, 0)$.

De même, $B \in \mathbb{C}_{p-1}[X]$ donc il existe des complexes b_0, \dots, b_{p-1} tels que $B = \sum_{k'=0}^{p-1} b_{k'} X^{k'}$. On aura

donc
$$(0,B) = \sum_{k'=0}^{p-1} b_{k'}(0,X^{k'}).$$

Finalement, $(A, B) = (A, 0) + (0, B) = \sum_{k=0}^{q-1} a_k(X^k, 0) + \sum_{k'=0}^{p-1} b_{k'}(0, X^{k'})$, donc \mathscr{B} est génératrice de E.

Il est facile de montrer, par des calculs similaires, que cette famille est libre.

 ${\mathscr B}$ est une base de E.

(Rem : cela est en fait un résultat du cours sur les espaces vectoriels produit...On pouvait aussi utiliser le fait que dim $E = \dim \mathbb{C}_{p-1}[X] + \dim \mathbb{C}_{q-1}[X] = p + q = \operatorname{card} \mathscr{B}$; cela était bien sûr plus rapide, mais j'ai ici refait la démonstration complète, qui permet justement de démontrer ce résultat sur les dimensions.)

b) Notons M la matrice de u par rapport aux bases \mathscr{B} et \mathscr{B}' et montrons que $M=M_{P,Q}$ (définie par l'énoncé). Remarquons que ces deux matrices sont carrées d'ordre p+q.

Soit $j \in [1,q]$, alors $u(X^{j-1},0) = X^{j-1}P = \sum_{k=0}^p a_k X^{j-1+k}$: donc la colonne numéro j de M est $^t(0,\cdots,0,a_0,a_1,\cdots,a_p,0,\cdots,0)$ (colonne commençant par j-1 zéros et se terminant par q-j zéros) qui est également la colonne numéro j de $M_{P,Q}$.

De même, si $j \in [\![1,p]\!]$, alors $u(0,X^{j-1})=X^{j-1}Q=\sum\limits_{k=0}^q b_k X^{j-1+k}$: donc la colonne numéro j+q de M est $^t(0,\cdots,0,b_0,b_1,\cdots,b_q,0,\cdots,0)$ (colonne commençant par j-1 zéros et se terminant par p-j zéros) qui est également la colonne numéro j+q de $M_{P,Q}$.

- c) D'après a), $\operatorname{Res}(P,Q) = \det M_{P,Q}$, donc $\operatorname{Res}(P,Q) \neq 0$ si et seulement si $M_{P,Q}$ est inversible, i.e si et seulement si u est bijective ce qui, d'après 1. équivaut au fait que P et Q n'ont pas de racine commune.
- 3. a) Rappelons qu'un nombre complexe a est racine multiple de P si et seulement si P(a) = P'(a) = 0. On en déduit que P admet une racine multiple si et seulement si les polynômes P et P' admettent une racine complexe commune ce qui équivaut d'après la question précédente à Res(P, P') = 0.

b) Si
$$P = X^3 + aX + b$$
, $P'(X) = 3X^2 + a$ d'où $Res(P, P') = \begin{vmatrix} b & 0 & a & 0 & 0 \\ a & b & 0 & a & 0 \\ 0 & a & 3 & 0 & a \\ 1 & 0 & 0 & 3 & 0 \\ 0 & 1 & 0 & 0 & 3 \end{vmatrix} = 27b^2 + 4a^3$

(on se ramène au calcul du déterminant d'une matrice triangulaire par blocs en effectuant les opérations

élémentaires $L_2 \leftarrow L_2 - \frac{a}{3}L_4$ et $L_3 \leftarrow L_3 - \frac{a}{3}L_5$)

Donc $X^3 + aX + b$ admet une racine multiple si et seulement si $4a^3 + 27b^2 = 0$.

4. a) Pour montrer que P et Q n'ont pas de racine commune, il suffit d'après 2.b) de vérifier que leur

b) Notons $u_{P,Q}$ l'application de $\mathbb{C}_2[X] \times \mathbb{C}_3[X]$ qui à (A,B) associe AP + BQ. $u_{P,Q}$ est bijective d'après ce qui précède, d'où l'existence et l'unicité de (A_0, B_0) .

Posons $A_0 = a_0 + a_1 X + a_2 X^2$ et $B_0 = b_0 + b_1 X + b_2 X^2 + b_3 X^3$. Alors,

$$A_0P + B_0Q = 1 \iff u_{P,Q}(A_0, B_0) = 1 \iff \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & -1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

En effectuant les opérations élémentaires suivantes :

 $L_4 \leftarrow L_4 - L_1, \, L_5 \leftarrow L_5 - L_1 - L_2, \, L_6 \leftarrow L_6 - L_2 - L_3, \, L_7 \leftarrow L_7 - L_3$ on obtient le système équivalent suivant :

$$\begin{cases} a_0 & + b_0 & = 1 \\ a_1 & -b_0 + b_1 & = 0 \\ a_2 & -b_1 + b_2 & = 0 \\ & -b_2 + b_3 = -1 \\ & -b_3 = -1 \\ & b_0 & = 0 \\ b_1 -b_2 + b_3 = 0 \end{cases}$$

qui admet pour unique solution : $(a_0, a_1, a_2, b_0, b_1, b_2, b_3) = (1, -1, -1, 0, 1, 2, 1)$ ce qui fournit la solution $(A_0, B_0) = (1 - X - X^2, X + 2X^2 + X^3)$

c) Dans ces conditions, AP + BQ = 1 équivaut à ou encore à $(A - A_0)P = (B_0 - B)Q$. Donc, si (A, B)est solution, Q divise $(A-A_0)Q$ et vu que P et Q n'ont pas de racine commune, on en déduit comme dans la question 1.c., que Q divise $A - A_0$. Il existe donc $R \in \mathbb{C}[X]$ tel que $A = A_0 + QR$; dans ces conditions $AP+BQ=A_0P+B_0Q$ équivaut à $PQR+QB=QB_0$ soit compte-tenu de l'intégrité de $\mathbb{C}[X]$ et du fait que $Q \neq 0$ à $B = B_0 - PR$.

La réciproque est immédiate : si $A = A_0 + QR$ et $B = B_0 - PR$, on a AP + BQ = 1.

Les solutions de AP+BQ=1 sont donc les couples de la forme AP+BQ=1 avec $B\in \mathbb{C}[X]$