ZPM - FER

sustav u ravnini.Pravac.

Koordinatni sustav t ravnini

Krivulje drugo

reda

Flinsa

Enpsa

4. tjedan Analitička geometrija.

ZPM - FER

17. rujna 2016.

Sadržaj

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav u ravnini Pravac

Krivulje drugo reda

Kružnica Elipsa Hiperbola 1 Koordinatni sustav u ravnini.Pravac.

- Koordinatni sustav u ravnini
- Pravac
- 2 Krivulje drugog reda
 - Kružnica
 - Elipsa
 - Hiperbola
 - Parabola

Pravokutni ili Kartezijev koordinatni sustav u ravnini

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac. Koordinatni sustav u ravnini Pravac

Krivulje drugog reda

reda Kružnica Elipsa Hiperbola Parabola Pravac x je os apscisa Pravac y je os ordinata

O(0,0) - ishodište pravokutnog koordinatnog sustava

Svaka točka u ravnini određena je pripadnim vrijednostima apscise i ordinate. Npr. Za točku A(3,2) je $x_A = 3, y_A = 2$.

ZPM - FER

Koordinatni sustav u ravnini.Pravac. Koordinatni sustav u ravnini

Krivulje drugo reda

Kružnica Elipsa

Hiperbola

Primjer 1

Skicirajte skup točaka T(x,y) ravnine za koje vrijedi:

$$y \le -|x-1|$$

$$-3 \le y \le 1$$

ZPM - FER

Koordinatni sustav u ravnini.Pravac. Koordinatni sustav u ravnini ^{Pravac}

Krivulje drugo reda Kružnica

Kružnica Elipsa Hiperbola

Primjer 1

Skicirajte skup točaka T(x, y) ravnine za koje vrijedi:

$$y \le -|x-1|$$
$$-3 < y < 1$$

Rješenje.

Prvo nacrtamo pravce:

$$y = \left\{ \begin{array}{ll} -x+1, & x \ge 1 \\ x-1, & x \le 1 \end{array} \right.$$

Sada je rješenje nejednakosti $y \le -|x-1|$ područje ravnine ispod oba pravca.

Nastavak rješenja.

Rješenje nejednakosti $-3 \le y \le 1$ je dio ravnine između pravaca y=1 i y=-3.

Presjek ta dva dijela ravnine je trokut na slici.

Udaljenost točaka u ravnini

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac. Koordinatni sustav u ravnini

Krivulje drugo eda

Kružnica

Elipsa

Hiperbola

Udaljenost dviju točaka $A(x_1, y_1)$ i $B(x_2, y_2)$

$$d(A,B) = |AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Udaljenost točaka u ravnini

Elementarna matematika

Koordinatni sustav u

Udaljenost dviju točaka $A(x_1, y_1)$ i $B(x_2, y_2)$

$$d(A,B) = |AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Primjer 2

Točka u prvom kvadrantu A(x,5) jednako je udaljena od osi apscisa i od točke B(3,2). Odredite x.

ZPM - FER

Koordinatni sustav u ravnini.Pravac. Koordinatni sustav u ravnini Pravac

Krivulje drugo reda

Kružnica Elipsa Hiperbola Parabola

Rješenje.

$$d(A,B) = 5 \Leftrightarrow \sqrt{(x-3)^2 + (5-2^2)} = 5$$

Kvadriranjem imamo

$$x^2 - 6x + 9 + 9 = 25$$

$$x^2 - 6x - 7 = 0$$

Odavde slijedi $x_1 = -1$ i $x_2 = 7$.

Dakle, A(7,5) je tražena točka u prvom kvadrantu.

Polovište dužine

Elementarna matematika

Koordinatni sustav u

Polovište dužine \overline{AB} , $A(x_1, y_1)$ i $B(x_2, y_2)$

Koordinate točke C koja je polovište dužine \overline{AB} glase:

$$x_C = \frac{x_1 + x_2}{2} \quad y_C = \frac{y_1 + y_2}{2}$$

ZPM - FER

Koordinatni sustav u ravnini.Pravac. Koordinatni sustav u ravnini Pravac

Krivulje drugo reda

Kružnica Elipsa Hiperbola

Primjer 3

Točka C simetrična je slika točke A s obzirom na točku B, a točka D simetrična je slika točke B s obzirom na C. Ako je A(-1,3), C(3,-3), odredite točku D!

ZPM - FER

Koordinatni sustav u ravnini.Pravac. Koordinatni sustav u ravnini Pravac

Krivulje drugo reda

Kružnica Elipsa Hiperbola Parabola

Primjer 3

Točka C simetrična je slika točke A s obzirom na točku B, a točka D simetrična je slika točke B s obzirom na C. Ako je A(-1,3), C(3,-3), odredite točku D! **Rješenje.**

Točka B je polovište dužine \overline{AC} , pa lagano slijedi

$$x_B = \frac{-1+3}{2} = 1$$
 $y_B = \frac{3+(-3)}{2} = 0$

Dakle, dobivamo B(1,0). Točka D je simetrična slika od B s obzirom na C, dakle imamo

$$3 = \frac{x_D + 1}{2}$$
 $-3 = \frac{y_D + 0}{2}$

Odavde dobivamo točku D(5, -6).

Jednadžbe pravca

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav u ravnini Pravac

Krivulje drugo

reda

Elipsa Hiperbola ■ Implicitni oblik jednadžbe pravca

$$Ax + By + C = 0$$

gdje je
$$A^2 + B^2 \neq 0$$
, $A, B, C \in \mathbb{R}$

Jednadžbe pravca

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav ravnini Pravac

Krivulje drugo

reda Kružnica Elipsa Hiperbola ■ Implicitni oblik jednadžbe pravca

$$Ax + By + C = 0$$

gdje je
$$A^2 + B^2 \neq 0$$
, $A, B, C \in \mathbb{R}$

■ Eksplicitni oblik jednadžbe pravca

$$y = kx + l$$

pri čemu je k koeficijent smjera pravca, a l odsječak pravca na osi ordinata. Vrijedi $k = \operatorname{tg} \varphi$ gdje je φ kut koji pravac zatvara s pozitivnim dijelom osi apscisa.

Kružnica Elipsa Hiperbola ■ Segmentni oblik jednadžbe pravca

$$\frac{x}{m} + \frac{y}{n} = 1$$

gdje je A(m,0) točka presjeka pravca s osi apscisa B(0,n) je točka presjeka pravca s osi ordinata.

■ Segmentni oblik jednadžbe pravca

$$\frac{x}{m} + \frac{y}{n} = 1$$

gdje je A(m,0) točka presjeka pravca s osi apscisa B(0,n) je točka presjeka pravca s osi ordinata.

Napomena

Pravci oblika $y = l, l \in \mathbb{R}$ su paralelni s osi x.

Pravci oblika $x = c, c \in \mathbb{R}$ su paralelni s osi y.

Primjer 4

Odredi segmentni oblik jednadžbe pravca 2x + 5y + 7 = 0.

Primjer 4

Odredi segmentni oblik jednadžbe pravca 2x + 5y + 7 = 0. **Rješenje.**

$$2x + 5y = -7 \cdot \left(-\frac{1}{7} \right)$$
$$\left(-\frac{2}{7} \right) x + \left(-\frac{5}{7} \right) y = 1$$
$$\frac{x}{-\frac{7}{2}} + \frac{y}{-\frac{7}{5}} = 1$$

Točke $A(-\frac{7}{2},0)$ i $B(0,-\frac{7}{5})$ su točke presjeka s x i y osi.

Primjer 5

Odredite površinu trokuta kojeg pravac 2x - 3y + 6 = 0 zatvara s koordinatnim osima.

Prayac

Primier 5

Odredite površinu trokuta kojeg pravac 2x - 3y + 6 = 0 zatvara s koordinatnim osima.

Rješenje. Prvo trebamo naći segmentni oblik pravca kako bi našli točke u kojima pravac siječe obje osi. Iz

$$2x - 3y = -6 \mid \cdot -\frac{1}{6}$$

slijedi segmentni oblik pravca

$$\frac{x}{-3} + \frac{y}{2} = 1.$$

Točka sjecišta s osi x je A(-3,0), a s osi y je B(0,2). Traženi trokut je pravokutan s katetama 2 i 3 te je površina jednaka $P = \frac{3.2}{2} = 3$.

Pravac kroz jednu točku

Elementarna matematika

Jednadžba pravca kroz točku (x_1, y_1) s koeficijentom smjera k

$$y - y_1 = k(x - x_1)$$

Pravac kroz jednu točku

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav ravnini Pravac

Krivulje drugo reda

Kružnica Elipsa Hiperbola Jednadžba pravca kroz točku (x_1, y_1) s koeficijentom smjera k

$$y - y_1 = k(x - x_1)$$

Primjer 6

Odredi jednadžbu pravca koji s pozitivnim dijelom osi apscisa zatvara kut od $\frac{\pi}{4}$ i prolazi točkom A(3,2).

Pravac kroz jednu točku

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravao Koordinatni sustav ravnini Pravac

Krivulje drug reda ^{Kružnica}

Kružnica Elipsa Hiperbola Parabola Jednadžba pravca kroz točku (x_1, y_1) s koeficijentom smjera k

$$y - y_1 = k(x - x_1)$$

Primjer 6

Odredi jednadžbu pravca koji s pozitivnim dijelom osi apscisa zatvara kut od $\frac{\pi}{4}$ i prolazi točkom A(3,2). **Rješenje.** Koeficijent smjera ovoga pravca je $k=\operatorname{tg} \phi=\operatorname{tg} \frac{\pi}{4}=1$. Dakle, jednadžba pravca je

$$y-2=1\cdot(x-3)$$
 odnosno $y=x-1$.

Pravac kroz dvije točke

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav u ravnini Pravac

Krivulje drugo; reda

Kružnica Elipsa

Hiperbola Parabola Jednadžba pravca kroz dvije točke $A(x_1, y_1)$ i $B(x_2, y_2)$

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

Primijetimo da je koeficijent smjera u ovom slučaju jednak

$$k = \frac{y_2 - y_1}{x_2 - x_1}.$$

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav u ravnini Pravac

Krivulje drug reda

Kružnica Elipsa

Hiperbola

Primjer 7

Odredite nepoznate koordinate točaka E(x, -3) i F(-1, y), ako one pripadaju pravcu AB, gdje je A(-3, 4) i B(5, 0).

Primjer 7

Odredite nepoznate koordinate točaka E(x, -3) i F(-1, y), ako one pripadaju pravcu AB, gdje je A(-3, 4) i B(5, 0).

Rješenje.

$$tg\varphi = k = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 4}{5 + 3}$$

Jednadžba pravca AB je

$$y-4 = -\frac{1}{2}(x+3)$$
 odnosno $y = -\frac{1}{2}x + \frac{5}{2}$.

Uvrštavanjem ordinate točke E u jednadžbu pravca AB dobivamo apscisu točke E, $x_E = 11$. Slično, uvrštavanjem apscise točke F u jednadžbu pravca AB dobivamo ordinatu točke F, $y_F = 3$.

Kut između pravaca

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac. Koordinatni sustav u ravnini Pravac

Krivulje drugo

Kružnica Elipsa Hiperbola Parabola Kut između 2 pravca $y = k_1x + l_1$ i $y = k_2x + l_2$ definira se kao manji kut kojeg zatvaraju dani pravci, tj. $\varphi \in \left[0, \frac{\pi}{2}\right]$. Računamo ga iz izraza

$$\operatorname{tg} \varphi = \left| \frac{k_2 - k_1}{1 + k_1 k_2} \right|$$

Kut između pravaca

Elementarna matematika

Kut između 2 pravca $y = k_1 x + l_1 i y = k_2 x + l_2$ definira se kao manji kut kojeg

zatvaraju dani pravci, tj.
$$\varphi \in \left[0, \frac{\pi}{2}\right]$$
.

Računamo ga iz izraza

$$tg\boldsymbol{\varphi} = \left| \frac{k_2 - k_1}{1 + k_1 k_2} \right|$$

Paralelni i okomiti pravci

Pravci su paralelni $\Leftrightarrow \varphi = 0$ odnosno $k_1 = k_2$ Pravci su okomiti $\Leftrightarrow \varphi = \frac{\pi}{2}$ odnosno $k_2 = -\frac{1}{k_1}$.

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav u ravnini Pravac

Krivulje drugo reda

Kružnica Elipsa

Hiperbola

Primjer 8

Točkom T(2,-1) položite pravac koji s pravcem 2x+3y+6=0 zatvara kut od 45°

Primjer 8

Točkom T(2,-1) položite pravac koji s pravcem 2x + 3y + 6 = 0 zatvara kut od 45° **Rješenje.**

Jednadžba danog pravca u eksplicitnom obliku je $y=-\frac{2}{3}x-3$. Tražimo koeficijent smjera pravca koji prolazi točkom T(2,-1). Pravci zatvaraju kut od 45° dakle vrijedi

$$tg\varphi = 1 = \left| \frac{-\frac{2}{3} - k_1}{1 - \frac{2}{3}k_1} \right|$$

Odavde dobivamo dva rješenja $k_{11} = -5$, $k_{12} = \frac{1}{5}$. Traženi pravci su

$$p_1...y + 1 = -5(x-2)$$
 $p_2...y + 1 = \frac{1}{5}(x-2)$

Udaljenost točke od pravca

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav u ravnini Pravac

Krivulje drugo reda

Kružnica Elipsa Hiperbola

Udaljenost točke od pravca

Udaljenost točke (x_0, y_0) od pravca Ax + By + C = 0 računamo po formuli

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

Udaljenost točke od pravca

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav u ravnini Pravac

Krivulje drugo reda

Kružnica Elipsa Hiperbola

Udaljenost točke od pravca

Udaljenost točke (x_0, y_0) od pravca Ax + By + C = 0 računamo po formuli

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

Primjer 9

Kolika je udaljenost pravca $y = -\frac{4}{3}x + 6$ od tjemena parabole $y = x^2 - 4x + 14$.

Udaljenost točke od pravca

Elementarna matematika

ZPM - FER

sustav u
ravnini.Pravac
Koordinatni sustav u
ravnini
Pravac

Krivulje drug reda Kružnica

Udaljenost točke od pravca

Udaljenost točke (x_0, y_0) od pravca Ax + By + C = 0 računamo po formuli

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

Primjer 9

Kolika je udaljenost pravca $y = -\frac{4}{3}x + 6$ od tjemena parabole $y = x^2 - 4x + 14$. **Rješenje.**

Parabolu možemo zapisati u obliku $y - 10 = (x - 2)^2$ te je tjeme T(2, 10). Udaljenost točke T(2, 10) od pravca 4x + 3y - 18 = 0 je

$$d = \frac{|4 \cdot 2 + 3 \cdot 10 - 18|}{\sqrt{16 + 9}} = 4.$$

Zadatak

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav t ravnini Pravac

Krivulje drugo reda

Kružnica Elipsa

Zadatak 1

Zadan je trokut s vrhovima A(-1,3), B(3,1), i C(0,3). Odredite jednadžbu pravca na kojem leži težišnica iz vrha C.

Zadatak

Elementarna matematika

Zadatak 1

Zadan je trokut s vrhovima A(-1,3), B(3,1), i C(0,3). Odredite jednadžbu pravca na kojem leži težišnica iz vrha C.

Rješenje.

Prisjetimo se da težišnica spaja vrh trokuta i polovište suprotne stranice tome vrhu. Dakle, tražena težišnica spaja vrh C i polovište dužine AB. Označimo sa D polovište dužine AB. Iz formule za polovište dužine lako dobivamo:

$$D(1,2)$$
.

Jednadžba pravca kroz C(0,3) i D(1,2) je

$$x + y = 0$$
.

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav t ravnini

Pravac

Krivulje drugo eda

Kružnica Flinca

Enpsa

Parabola

Zadatak 2

Odredite površinu trokuta sa vrhovima A(1,1), B(4,2) i C(3,4).

ZPM - FEF

Koordinatni sustav u ravnini.Prava Koordinatni sustav ravnini Pravac

Krivulje drug reda Kružnica

Zadatak 2

Odredite površinu trokuta sa vrhovima A(1,1), B(4,2) i C(3,4).

Rješenje

Zadatak se može riješiti na više načina. Npr. može se skicirati trokut u Kartezijevom sustavu, gledati pravokutnik koji sadrži dani trokut i pomalo oduzimati male pravokutne trokute. Postoji i formula za površinu trokuta zadanog s tri vrha.

No, možemo gledati duljinu dužine \overline{AB} koja je jednaka $\sqrt{10}$ i pravac kroz A i B koji ima jednadžbu x-3y+2=0. Tada je visina na stranicu \overline{AB} ustvari jednaka udaljenosti točke C od tog pravca odnosno $v_c = \frac{|x_c - 3y_c + 2|}{\sqrt{10}} = \frac{7}{\sqrt{10}}$. Tražena površina je

Elementarna matematika

$$P = \frac{|\overline{AB}| \cdot v_c}{2} = \frac{7}{2}.$$

Jednadžba kružnice

Elementarna matematika

Toordinatni ustav u uvnini.Pravac.

Pravac

Krivulje drugo reda

Kružnica

Hiperbola Parabola Kružnica je zadana svojim središtem S(p,q) i polumjerom r. Pri tome je r = d(S,T), gdje je T proizvoljna točka na kružnici, a d = 2r je dijametar kružnice.

Jednadžba kružnice

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac. Koordinatni sustav u ravnini Pravac

Krivulje drugo reda

Kružnica

Hiperbola

Hiperbola Parabola Kružnica je zadana svojim središtem S(p,q) i polumjerom r. Pri tome je r = d(S,T), gdje je T proizvoljna točka na kružnici, a d = 2r je dijametar kružnice.

Jednadžba kružnice sa središtem S(p,q) i radijusom r

$$(x-p)^2 + (y-q)^2 = r^2$$

Jednadžba kružnice

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac. Koordinatni sustav u ravnini Pravac

Krivulje drugo reda

Kružnica

Hiperbola

Kružnica je zadana svojim središtem S(p,q) i polumjerom r. Pri tome je r = d(S,T), gdje je T proizvoljna točka na kružnici, a d = 2r je dijametar kružnice.

Jednadžba kružnice sa središtem S(p,q) i radijusom r

$$(x-p)^2 + (y-q)^2 = r^2$$

Jednadžba kružnice sa središtem u ishodištu glasi

$$x^2 + y^2 = r^2.$$

Opći oblik jednadžbe kružnice

$$Ax^2 + Ay^2 + Dx + Ey + F = 0.$$

Primjer 10

Odredite središte i radijus kružnice s općim oblikom $x^2 + y^2 - 4x + 6y - 3 = 0.$

ZPM - FEF

Koordinatni sustav u ravnini.Pravac Koordinatni sustav i ravnini Pravac

Krivulje drug reda Kružnica ^{Elipsa} Hiperbola

Opći oblik jednadžbe kružnice

$$Ax^2 + Ay^2 + Dx + Ey + F = 0.$$

Primjer 10

Odredite središte i radijus kružnice s općim oblikom $x^2 + v^2 - 4x + 6v - 3 = 0$.

Rješenje. Koristimo svođenje na potpuni kvadrat po *x* i *y*: $x^2 - 4x + 4 - 4 = (x - 2)^2 - 4$ i $y^2 + 6y + 9 - 9 = (y + 3)^2 - 9$.

Ubacimo dobiveno u jednadžbu i dobijemo

$$x^{2} - 4x + y^{3} + 6y - 3 = (x - 2)^{2} - 4 + (y + 3)^{2} - 9 - 3 = 0$$

23 / 46

odnosno $(x-2)^2 + (y+3)^2 = 16$. Dakle, središte je S(2,-3) i r = 4.

Pravac i kružnica

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav u ravnini Pravac

Krivulje drugo reda

Kružnica Elipsa Hiperbola

Odnos pravca i kružnice

- Pravac i kružnica se ne sijeku.
- Presjek pravca i kružnice je jedna točka tj. pravac je tangenta kružnice.
- Presjek pravca i kružnice su dvije točke tj. pravac je sekanta kružnice.

Presjek pravca i kružnice

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav i ravnini Pravac

eda Kružnica Elipsa Presjek pravca i kružnice su točke koje dobijemo kao rješenja sustava

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

y = kx + l.

Sustav rješavamo supstitucijom odnosno tako da y = kx + l uvrstimo u jednadžbu kružnice i dobijemo kvadratnu jednadžbu. Tada obzirom na diskriminantu jednadžbe imamo 3 slučaja:

- $D = 0 \Rightarrow 1$ točka presjeka
- $D > 0 \Rightarrow 2$ točke presjeka
- $D < 0 \Rightarrow$ nema presjeka

Kružnica i pravac -primjer

Primjer 11

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav u ravnini Pravac

Krivulje drugo reda

Kružnica

Hiperbol

Zadana je kružnica $(x-1)^2 + (y-2)^2 = (m-1)^2$, $m \ne 1$ te pravac x-y+m+2=0. Za koje vrijednosti parametra m pravac ne siječe kružnicu, za koje vrijednosti ju siječe u jednoj točki, a za koje u dvije točke?

Kružnica i pravac -primjer

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Prava Koordinatni sustav ravnini Pravac

Krivulje drugo reda Kražnica

Kružnica Elipsa Hiperbola Parabola

Primjer 11

Zadana je kružnica $(x-1)^2 + (y-2)^2 = (m-1)^2$, $m \ne 1$ te pravac x-y+m+2=0. Za koje vrijednosti parametra m pravac ne siječe kružnicu, za koje vrijednosti ju siječe u jednoj točki, a za koje u dvije točke?

Rješenje.

Supstituciju y = x + m + 2 uvrstimo u jednadžbu kružnice. Sređivanjem dobivamo kvadratnu jednadžbu

$$x^2 + (m-1)x + m = 0.$$

Diskriminanta ove kvadratne jednadžbe je

$$D = (m-1)^2 - 4m = m^2 - 6m + 1.$$

Nastavak rješenja.

- Kvadratna jednadžba ima jedno rješenje u slučaju da je D = 0 tj. $m^2 6m + 1 = 0$. Odavde slijedi da su tada $m_1 = 3 2\sqrt{2}$ i $m_2 = 3 + 2\sqrt{2}$. U tom slučaju pravac je tangenta na danu kružnicu.
- Za $m \in \langle -\infty, m_1 \rangle \cup \langle m_2, \infty \rangle$ je D > 0 te jednadžba ima 2 rješenja i pravac je sekanta kružnice.
- Za $m \in \langle m_1, m_2 \rangle$, $m \neq 1$ je D < 0 te pravac ne siječe i ne dira kružnicu.

Tangenta i normala na kružnicu

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravao Koordinatni sustav ravnini Pravac

rivulje drug eda

Kružnica

Flines

Hiperbola

Tangenta u točki $T(x_1,y_1)$ je pravac koji dodiruje kružnicu u toj točki.

Tangenta i normala na kružnicu

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav ravnini Pravac

Krivulje drugo eda

Kružnica Elipsa

Hiperbola Parabola Tangenta u točki $T(x_1,y_1)$ je pravac koji dodiruje kružnicu u toj točki.

Normala u $T(x_1, y_1)$ je pravac okomit na tangentu u toj točki koji prolazi kroz središte S(p,q).

Jednadžbe

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac. Koordinatni sustav u ravnini

Krivulje drug reda

Kružnica

Elipsa

Pambola

Jednadžba normale na kružnicu u točki $T(x_1, y_1)$

$$n \dots y - q = \frac{y_1 - q}{x_1 - p}(x - p)$$

Jednadžbe

Elementarna matematika

Kružnica

Jednadžba normale na kružnicu u točki $T(x_1, y_1)$

$$n \dots y - q = \frac{y_1 - q}{x_1 - p}(x - p)$$

Jednadžba tangente na kružnicu u točki $T(x_1, y_1)$

$$t \dots y - y_1 = -\frac{x_1 - p}{y_1 - q}(x - x_1)$$

Primjer 12

Odredi jednadžbe onih tangenata kružnice $x^2 + y^2 = 9$ koje su usporedne s pravcem 3x - 4y + 8 = 0. Odredi i normale u dobivenim točkama.

Primjer 12

Odredi jednadžbe onih tangenata kružnice $x^2 + y^2 = 9$ koje su usporedne s pravcem 3x - 4y + 8 = 0. Odredi i normale u dobivenim točkama.

Rješenje.

Označimo sa $T(x_1,y_1)$ točku na kružnici kroz koju prolaze tražene tangente. Koeficijent smjera zadanog pravca je $\frac{3}{4}$ pa je to i koeficijent tangente. Dakle, tangenta je oblika

$$y = \frac{3}{4}x + l,$$

gdje još trebamo naći koeficijent l.

Nastavak rješenja.

Točka $T_1(x_1,y_1)$ je na kružnici i zadovoljava njenu jednadžbu. Sada ubacimo supstituciju $y_1 = \frac{3}{4}x_1 + l$ u jednadžbu kružnice te dobijemo

$$\frac{25}{16}x_1^2 + \frac{3}{2}x_1l + l^2 - 9 = 0.$$

Ova jednadžba treba imati jedinstveno rješenje jer tangenta dira kružnicu u jednoj točki. Iz uvjeta D=0 slijedi

$$l=\pm\frac{15}{4}.$$

Tražene tangente su 3x - 4y + 15 = 0 i 3x - 4y - 15 = 0. Normala je $y = -\frac{4}{3}x$.

ZPM - FER

Koordinatni sustav u ravnini.Pravac. Koordinatni sustav u ravnini Pravac

Krivulje drugo eda

Kružnica

Hiperbola

n i

Primjer 13

Kolika je površina dijela ravnine koje je određeno sustavom nejednadžbi

$$x^2 + y^2 \le 4$$
; $|x| - y \ge 0$?

ZPM - FEF

Koordinatni sustav u ravnini.Pravac Koordinatni sustav t ravnini Pravac

Krivulje drugo eda

Kružnica Elipsa Hiperbola

Primjer 13

Kolika je površina dijela ravnine koje je određeno sustavom nejednadžbi

$$x^2 + y^2 \le 4$$
; $|x| - y \ge 0$?

Rješenje.

Rješenje prve nejednakosti je unutrašnjost kruga, a rješenje druge je ispod grafa funkcije y = |x|. Tražena površina je

$$P = \frac{3}{4}r^2\pi = 3\pi.$$

Kružnica nije funkcija

Elementarna matematika

Kružnica

Npr. pogledajmo kružnicu $x^2 + y^2 = 1$.

Kružnica nije funkcija

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav u ravnini Pravac

Krivulje drugo reda

Kružnica

Elipsa Hiperbola

Parabola

Npr. pogledajmo kružnicu $x^2 + y^2 = 1$.

Jednadžbom ove kružnice implicitno su zadane dvije funkcije i to

- $f_1(x) = \sqrt{1 x^2}$ (lijeva slika)

ZPM - FER

Koordinatni sustav u ravnini.Pravac. Koordinatni sustav u ravnini Pravac

Krivulje druge reda

Kružnica Elipsa

Hiperbola Parabola Za općenitu kružnicu danu jednadžbom

$$(x-p)^2 + (y-q)^2 = r^2$$

je:

- **g** gornja polukružnica: $f_1(c) = q + \sqrt{r^2 (x-p)^2}$
- donja polukružnica: $f_2(x) = q \sqrt{r^2 (x-p)^2}$

Primjer 14

Zadana je kružnica $(x+1)^2 + (y-2)^2 = 1$. Odredite jednadžbu donje polukružnice.

Primjer 14

Zadana je kružnica $(x+1)^2 + (y-2)^2 = 1$. Odredite jednadžbu donje polukružnice.

Rješenje.

$$(x+1)^{2} + (y-2)^{2} = 1.$$
$$(y-2)^{2} = 1 - (x+1)^{2}$$
$$y-2 = \pm \sqrt{1 - (x+1)^{2}}$$

Donja polukružnica ima negativni predznak tj. $v - 2 = -\sqrt{1 - (x + 1)^2}$ te slijedi

$$y = 2 - \sqrt{1 - (x+1)^2}.$$

ZPM - FER

Koordinatni sustav u ravnini.Pravac. Koordinatni sustav u ravnini

Krivulje drugo eda

Kružnica

T715----

Hiperbola

Primjer 15

Skiciraj graf sjedeće funkcije $y = -2 + \sqrt{4 - x^2}$.

17. rujna 2016.

Primjer 15

Skiciraj graf sjedeće funkcije $y = -2 + \sqrt{4 - x^2}$. **Rješenje.**

$$y = -2 + \sqrt{4 - x^2}$$
$$y + 2 = \sqrt{4 - x^2}$$

Prije kvadriranja primijetimo da je desna strana jednakosti pozitivna, pa slijedi da je $y+2 \ge 0$. Sada kvadriranjem dobijemo $(y+2)^2=4-x^2$ odnosno kružnicu

$$x^2 + (y+2)^2 = 4$$
.

Nastavak rješenja.

Dakle, zbog uvjeta $y \ge -2$, vidimo da je $y = -2 + \sqrt{4 - x^2}$ ustvari graf gornje polukružnice od $x^2 + (y+2)^2 = 4$.

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav u ravnini Pravac

Krivulje drug eda

Kružnica

Elinsa

Hiperbola

Primjer 16

Koliko rješenja ima jednadžba $2x + 1 - \sqrt{4 - x^2} = 0$ u skupu realnih brojeva?

ZPM - FEF

Koordinatni sustav u ravnini.Pravac Koordinatni sustav u ravnini Pravac

Krivulje drugi reda **Kružnica** ^{Elipsa}

Primjer 16

Koliko rješenja ima jednadžba $2x + 1 - \sqrt{4 - x^2} = 0$ u skupu realnih brojeva?

Rješenje.

Jednadžbu ćemo riješiti grafički. Zapišimo je kao

$$2x + 1 = \sqrt{4 - x^2}.$$

Lijeva strana je pravac y = 2x + 1, a desna strana je gornja polukružnica kružnice $x^2 + y^2 = 4$. Jasno je da je rješenje ove jednadžbe presjek pravca i dane polukružnice, a to je jedna točka.

Elipsa

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac. Koordinatni sustav u ravnini Pravac

Krivulje drugo

Vražnica

Elipsa

Hiperbola

Jednadžba elipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

- \blacksquare a, b = poluosi elipse
- fokusi elipse : $F(\pm e, 0)$, $e^2 = a^2 b^2$.

Elipsa

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac. Koordinatni sustav u ravnini Pravac

Krivulje drugo reda

Kružnica

Elipsa Hiperbola Jednadžba elipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

- \blacksquare a, b =poluosi elipse
- fokusi elipse : $F(\pm e, 0)$, $e^2 = a^2 b^2$.

Pomaknuta elipsa sa središtem u S(p,q)

$$\frac{(x-p)^2}{a^2} + \frac{(y-q)^2}{b^2} = 1$$

ZPM - FER

Koordinatni sustav u ravnini.Pravac. Koordinatni sustav u ravnini Pravac

> rivulje drugo da

Kružnica

Hiperbola

Primjer 17

Odredite malu i veliku poluos elipse $x^2 - 4x + 4y^2 + 16y + 16 = 0$.

Primjer 17

Odredite malu i veliku poluos elipse $x^2 - 4x + 4y^2 + 16y + 16 = 0$. **Rješenje.**

Ovaj problem se rješava slično kao kod jednadžbe kružnice odnosno svođenjem na potpuni kvadrat. Dakle, imamo $(x^2-4x+4)+(4y^2+16y+16)-4-16+16=0$ odnosno $(x-2)^2+4(y+2)^2=4$. Sada dijelimo s 4 i dobivamo

$$\frac{(x-2)^2}{4} + \frac{(y+2)^2}{1} = 1$$

te je a = 2 i b = 1.

Hiperbola

Elementarna matematika

ZPM - FER

Koordinatni sustav u cavnini.Pravac. Koordinatni sustav u ravnini Pravac

Krivulje drugo reda

Kružnica Elipsa

Hiperbola

Jednadžba hiperbole

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,$$

- \blacksquare a, b =poluosi hiperbole
- fokusi hiperbole = $F(\pm e, 0)$, $e^2 = a^2 + b^2$
- **a** asimptote hiperbole su pravci $y = \frac{b}{a}x$, $y = -\frac{b}{a}x$

Hiperbola

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav u ravnini Pravac

Krivulje drugo reda

Kružnica Elipsa

Hiperbola

Jednadžba hiperbole

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,$$

- \blacksquare a, b =poluosi hiperbole
- fokusi hiperbole = $F(\pm e, 0)$, $e^2 = a^2 + b^2$
- **a** asimptote hiperbole su pravci $y = \frac{b}{a}x$, $y = -\frac{b}{a}x$

Pomaknuta hiperbola sa središtem u S(p,q)

$$\frac{(x-p)^2}{a^2} - \frac{(y-q)^2}{b^2} = 1$$

Hiperbola

Primjer 18

Odredite kut pod kojim se sijeku asimptote hiperbole $x^2 - 3y^2 = 9$.

Primjer 18

Odredite kut pod kojim se sijeku asimptote hiperbole $x^2 - 3y^2 = 9$. **Rješenje.**

Hiperbola glasi $\frac{x^2}{9} - \frac{y^2}{3} = 1$ te su a = 3 i $b = \sqrt{3}$. Dakle, asimptote su pravci $y = \pm \frac{\sqrt{3}}{3}x$. Koristeći formulu za kut između dva pravca dobivamo

$$\operatorname{tg}\boldsymbol{\varphi} = \frac{k_2 - k_1}{1 + k_1 k_2} = \frac{\frac{2\sqrt{3}}{3}}{1 - \frac{1}{3}} = \sqrt{3}$$

te je $\varphi = \frac{\pi}{3}$.

Parabola

Elementarna matematika

ZPM - FER

Koordinatni sustav u ravnini.Pravad Koordinatni sustav ravnini Pravac

Krivulje drugo reda ^{Kružnica}

Elipsa Hiperbola

Parabola

Jednadžba parabole

$$y^2 = 2px.$$

Točka $F(\frac{p}{2},0)$ naziva se fokus parabole.

Jednadžba pomaknute parabole s tjemenom u T(a,b)

$$(y-b)^2 = 2p(x-a).$$

Analogno kao kod kružnice funkcija $y=b+\sqrt{2p(x-a)}$ predstavlja gornji dio parabole, a funkcija $y=b-\sqrt{2p(x-a)}$ donji dio parabole.

ZPM - FER

Koordinatni sustav u ravnini.Pravac Koordinatni sustav u ravnini Pravac

krivulje drugo eda

Kružnica

Hiperbols

Parabola

Primjer 19

Odredite jednadžbu tangente na parabolu $y^2 = 9x$ koja je paralelna s pravcem 3x + 2y - 4 = 0.

Primjer 19

Odredite jednadžbu tangente na parabolu $y^2 = 9x$ koja je paralelna s pravcem 3x + 2y - 4 = 0.

Rješenje.

Eksplicitni oblik jednadžbe ovog pravca je $y = -\frac{3}{2}x + 2$. Tangenta je paralelna s pravcem pa je njezin koeficijent smjera $k_t = -\frac{3}{2}$. Dakle, tangenta je oblika $y = -\frac{3}{2}x + l$. Tangenta siječe parabolu u jednoj točki pa moramo naći l tako da jednadžba

$$\left(-\frac{3}{2}x+l\right)^2 = 9x$$

Nastavak rješenja.

odnosno jednadžba

$$9x^2 - 12x(l+3) + 4l^2 = 0$$

ima samo jedno rješenje x. To je u slučaju kada je diskriminanta ove kvadratne jednadžbe jednaka 0. Dakle

$$D = (-12(l+3))^2 - 16 \cdot 9l^2 = 0$$

odnosno $l = -\frac{3}{2}$. Tražena tangenta je 3x + 2y + 3 = 0.

Literatura

Elementarna matematika

ZPM - FEF

Koordinatni sustav u ravnini.Pravac Koordinatni sustav ravnini Pravac

Krivulje drugo reda

Elipsa Hiperbola

Parabola

Branimir Dakić, Neven Elezović: Matematika u 24 lekcije, Element 2010.

Matko Ferić (ZPM), Repetitorij elementarne matematike, Element 2014.

Materijale pripremila: doc.dr.sc. Ana Žgaljić Keko