

Redes Neurais Artificiais

(Prof. Ivan Nunes da Silva)

EPC-7

Nome: Luiz Gustavo Caobianco

A verificação da presença de radiação em determinados compostos nucleares pode ser feita por intermédio da análise da concentração de duas variáveis definidas por x_1 e x_2 . A partir de 50 situações conhecidas, resolveu-se então treinar uma \pmb{RBF} para a execução da tarefa de classificação de padrões neste processo, cuja topologia está ilustrada na figura seguinte.

A padronização para a saída, a qual representa a presença ou ausência de sinais de radiação, ficou definida da seguinte forma:

Status de Radiação	Saída (y)		
Presença	1		
Ausência	-1		

Utilizando os dados de treinamento apresentados no Apêndice, execute o treinamento de uma RBF (2 entradas e 1 saída) que possa classificar, em função apenas dos valores medidos de x_1 e x_2 , se determinado composto possui radiação. Para tanto, faça as seguintes atividades:

1. Execute o treinamento da camada escondida por meio do algoritmo de clusterização "*k-means*" (vizinhos mais próximos). Em se tratando de um problema de classificação de padrões, compute os centros dos dois clusters levando-se em consideração apenas aqueles padrões com presença de radiação. Após o treinamento, forneça os valores das coordenadas do centro de cada cluster e sua respectiva variância.

Cluster	Centro	Variância
1	{0.164833, 0.612116}	0.029805
2	{0.398969, 0.157130}	0.038459

- 2. Após o treinamento da camada intermediária execute o treinamento da camada de saída usando a regra delta generalizada. Utilize uma taxa de aprendizado $\eta=0.01$ e precisão de $\epsilon=10^{-7}$. No final da convergência forneça os valores dos pesos referentes ao neurônio da camada de saída.
- 3. Dado que o problema se configura como um típico processo de classificação de padrões, implemente a rotina que faz o pós-processamento das saídas fornecidas pela rede (números reais) para números inteiros.
- 4. Faça a validação da rede aplicando o conjunto de teste fornecido na tabela abaixo. Forneça a taxa de acerto (%) entre os valores desejados e os valores fornecidos pela rede (após o pós-processamento) em relação a todas as amostras de teste.

processumento) em relação a todas as amostras de teste.						
Amostra79	X_1	<i>X</i> ₂	d	у	$y^{ m pós}$	
1	0.8705	0.9329	-1	-0.231	-1	
2	0.0388	0.2703	1	-0.05644	-1	
3	0.8236	0.4458	-1	-0.2300	-1	
4	0.7075	0.1502	1	-0.2309	-1	
5	0.9587	0.8663	-1	-0.2320	-1	
6	0.6115	0.9365	-1	-0.2150	-1	
7	0.3534	0.3646	1	0.05601	1	
8	0.3268	0.2766	1	-0.0705	-1	
9	0.6129	0.4518	-1	-0.1832	-1	
10	0.9948	0.4962	-1	-0.2320	-1	
Taxa de Acerto (%): 70%						

5. Se for o caso, explique quais estratégias se pode adotar para tentar aumentar a taxa de acerto desta *RBF*.

Abaixo, podemos ver a fronteira de separacao entre as duas classes fornecidas para este experimento. Em vermelho, estão as amostras classificadas com -1 no conjunto de treinamento fornecido no anexo. Em preto, as amostras classificadas com 1 no conjunto de treinamento fornecido no anexo.

Os pontos verdes são as duas centróides encontradas pelo algoritmo *k-means*.

É possível ver que, para uma separação em agrupamento radial com apenas dois centros, a disposição espacial destes dados não é ideal. A rede poderia apresentar um desempenho melhor caso mais núcleos fossem adicionados.

Figura 1 - Gráfico dos pontos de entrada fornecidos no conjunto de treinamento.