

Frecuencia de terremotos en la región de Chiayi-Tainan, Taiwán. Análisis de Cadenas de Markov

Pavel Santiago Hernández Hernández Licenciatura en Matemáticas

Asesor: Dr. Yofre Hernan García Gómez

Universidad Autonoma De Chiapas

02 de ab. 2025

Indice

- 1. Introducción
- 2. Conceptos
 - Procesos Estocásticos
 - Cadenas de Markov
 - Chapman-Kolmogórov
 - Matriz ergódica
- 3. Formulación
- 4. Análisis
 - Matrices de Transición
 - Matriz ergódica de terremotos
- 5. Interpretaciones
- 6. Conclusiones
- 7. Referencias

Introducción

El artículo "Estimates of earthquake recurrences in the Chiayi—Tainan area, Taiwan", publicado en 2002, aborda un tema de gran relevancia para la sismología y la gestión de riesgos naturales: la estimación de la recurrencia de terremotos en una región altamente sísmica del suroeste de Taiwán.

- Ley de Gutenburg Richter.
- Cadenas de Markov
- Tiene como objetivo estudiar los periodos de retorno para los terremotos de distinta escala.
- Se calcula a partir de la amplitud de las ondas sísmicas registradas en un sismógrafo.

Escala de Richter

- Es una escala logarítmica utilizada para medir la magnitud de un terremoto.
- Desarrollada en 1935 por Charles
 F. Richter y Beno Gutenberg.
- Cada incremento de 1 unidad en la escala representa una liberación de energía ~ 32 veces mayor.
- Se calcula a partir de la amplitud de las ondas sísmicas registradas en un sismógrafo.

Magnitud (Richter)	Energía Liberada
2.0	
2.0	\sim 1 kg
3.0	\sim 30 kg \sim 1 tonelada
4.0	\sim 1 tonelada \sim 30 toneladas
5.0	00 00
6.0	\sim 1,000 toneladas
7.0	\sim 30,000 toneladas

Conceptos

Proceso estocástico

Es una colección de variables aleatorias que evolucionan en el tiempo o en el espacio, y que describen un sistema que cambia de manera probabilística. Es un modelo matemático que representa fenómenos aleatorios que se desarrollan a lo largo de un parámetro.

$$\{X_t\}_{t\in\mathcal{T}}$$

Donde X_t es una v.a. que representa el estado del sistema en el instante t, T es el conjunto de índices.

4日 1 4日 1 4日 1 4日 1 日 990

Pavel Hernández (UNACH-FCFM)

Cadenas de Markov

Es un proceso estocástico $\{X_n\}_{n\in\mathcal{T}}$, que cumple

$$P(X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1}, \dots, X_0 = x_0) = P(X_{n+1} = x_{n+1} | X_n = x_n)$$

Una cadena de Markov posee las siguientes características principales.

- Propiedad de Markov.
- Espacio de estados.
 - Estados recurrentes.
 - Estados transitorios.
 - Estados absorbentes.
- Probabilidades de transición.

4日 × 4日 × 4 三 ト 4 三 ト 9 9 0 0

Figura 1 – Diagrama de estados con probabilidades de transición.

9/22

Relación de Chapman-Kolmogórov

De acuerdo a la relación de Chapman–Kolmogorov sugiere que la matriz de transición $P_{n\times n}$, tiene la característica de

$$P^s = P^{s-1} \cdot P$$

Para un estado recurrente, $p_{jj}^{(s)}$ denota la probabilidad de comenzar en el estado j y regresar al estado j en el tiempo s. Según el teorema del límite para cadenas de Markov, si j es aperiódico, es decir, un estado que se repite en un ciclo no constante, entonces

$$\lim_{s \to \infty} p_{jj}^{(s)} = \frac{1}{u_j},$$

donde u_k es su periodo medio de retorno.

Pavel Hernández (UNACH-FCFM)

Definición

Una matriz de transición P es ergódica si la cadena de Markov asociada es irreducible y aperiódica.

Algunas caracteristicas y propiedades son:

- **E**xiste un vector π tal que $\pi P = \pi$, llamado vector de distribución estacionaria.
- Modelación de sistemas con equilibrio a largo plazo.
- Garantiza que, independientemente del estado inicial, el sistema converge a una distribución única estable

Formulación

- Analiza la periodicidad de terremotos en la región de Chiayi-Tainan, Taiwán, utilizando Cadenas de Markov.
- Revelan un patrón significativo en la recurrencia de terremotos.
- Demuestran que las cadenas de Markov son una herramienta efectiva para modelar el comportamiento sísmico.
- Son útiles para la evaluación del riesgo sísmico en la región.

Se categorizarón los siguientes cinturones sísmicos:

- Zona sísmica occidental (WSZ).
- Sona sísmica oriental (ESZ).
- Zona sísmica noreste (NSZ).

La zona de estudio cuenta con doce fallas activas.

Los terremotos se cuantifican con la escala de magnitud local de Richter, representada como M_L . En este estudio se prepararon dos conjuntos de datos:

- $M_L \ge 4$ con 283 eventos de 1990 a 1995.
- $M_I > 2$ con 3816 eventos de 1973 a 1995.

Si la ocurrencia de un terremoto está estrechamente relacionada con la replica anterior, se puede aplicar una cadena de Markov especificada con una transición de un paso para estudiar la periodicidad sísmica y obtener las aproximaciones de las probabilidades de transición.

02 de ab. 2025

Matrices de transición

Periodo 1973-1995									
Ma		Matriz de probabilidad							
	de tra	nsicio	ón			hacia	adel	ante	
	M_2	M_3	M_4	M_5		M_2	M_3	M_4	M_5
M_2	2217	548	52	8]	M_2	0.785	0.194	0.018	0.003
M_3	539	293	42	3	M_3	0.615	0.334	0.048	0.003
M_4	59	36	7	1	M_4	0.578	0.353	0.069	0.000
M_5	10	0	1	0	M_5	0.909	0.000	0.091	0.000

15 / 22

Periodo 1990-1995

Matriz de frecuencia						Matriz de probabilidad					
de transición						de transición hacia adelante					
	M_4	$M_4 M_5 M_6$		M_7		M_4	M_5	M_6	M_7		
M_4	「177	37	3	[0	M_4	0.816	0.170	0.014	0.000		
M_5	35	13	5	1	M_5	0.648	0.240	0.093	0.019		
M_6	4	3	1	1	M_6	0.445	0.333	0.111	0.111		
M_7	1	0	1	0	M_7	0.500	0.000	0.500	0.000		

Después de multiplicar 15 veces la matriz de probabilidad de transición hacia adelante, todos los elementos retienen valores constantes hasta la sexta cifra decimal, lo que lleva a una matriz de estado ergódico.

Matriz ergódica.

Periodo 1990-1995						Periodo 1973-1995				
	M_4	M_5	M_6	M_7		M_2	M_3	M_4	M_5	
M_4	0.769	0.188	0.036	0.007	M_2	[0.740	0.230	0.027	0.003	
M_5	0.769	0.188	0.036	0.007	M_3	0.740	0.230	0.027	0.003	
M_6	0.769	0.188	0.036	0.007	M_4	0.740	0.230	0.027	0.003	
M_7	0.769	0.188	0.036	0.007	M_5	0.740	0.230	0.027	0.003	

Interpretaciones

La distribución estacionaria que se encontró mediante simulaciones está dada por

$$\pi = (0.740, 0.230, 0.027, 0.003).$$

Los terremotos de magnitud M_2 o superior tienden a ocurrir en esta región aproximadamente una vez cada cuatro meses. Si ocurre un terremoto de magnitud M_5 , los investigadores desearían saber cuánto tiempo pasará antes de que ocurra otro terremoto de magnitud M_5 . El número esperado de transiciones de la cadena de Markov entre terremotos de magnitud M_5 es

$$\frac{1}{\pi_{M_5}} = \frac{1}{0.003} = 333.$$

Si los terremotos ocurren, en promedio, cada cuatro meses, entonces, según el modelo, tomará aproximadamente $333 \times (4/12) = 111$ meses antes de que ocurra otro terremoto de magnitud M_5 .

Pavel Hernández (UNACH-FCFM)

Conclusiones

- Un terremoto de magnitud 6.9 se regristró a 85 kilómetros al este del distrito de Yujing, en la isla de Taiwán (2022).
- Las cadenas de Markov aún se emplean en sismología para modelar recurrencia.
- El terremoto de Hualien (2024, M 7.4) ocurrió fuera de Chiayi-Tainan, un aspecto no capturado por el modelo original.

Trabajo a futuro

Un estudio reciente de Lin et al. (2023) sobre la falla de Chishan combinó cadenas de Markov con modelos físicos, logrando una precisión del 85% en predicciones de recurrencia para $M \geq 5$. La ecuación de Langevin describe la dinámica de un sistema con fuerzas deterministas y estocásticas. Se utiliza para modelar el proceso de fricción durante la ruptura de un terremoto.

$$\frac{dv(t)}{dt} = -\gamma v(t) + \Gamma(t) + F_{\text{ext}},$$

donde

- dv(t) es la velocidad del deslizamiento.
- $lue{\gamma}$ es el coeficiente de fricción.
- $\Gamma(t)$ es el ruido.
- F_{ext} es la fuerza externa.

Referencias

- 1 Introduction to Stochastic Process with R. Robert P. Dobrow
- 2 Estimates of earthquake recurrences in the Chiayi-Tainan area, Taiwan. Heng Tsai. National Changhua University of Education · Department of geography.
- 3 https://rpubs.com/bracruz/CH-Final

