Canonical PDEs	Dynamics	Data	Results discovered by S^3 d	MSE-STD
FitzHugh-Nagumo		<i>U</i> ^{512×401} : 10000	$u_t = 1.0023u_{xx} - 0.1991u + 1.2004u^2$ $-1.0031u^3 - 1.0005w$ $w_t = 0.001999u - 0.000993w$	0.2649%±0.2462%
$u_t = u_{xx} - 0.2u + 1.2u^2$ $-u^3 - w$ $w_t = 0.002u - 0.001w$		18000 27000	$\begin{aligned} u_t &= 1.0025 u_{xx} - 0.1981 u + 1.1762 u^2 \\ &- 0.9499 u^3 - 0.9920 w \\ w_t &= 0.001952 u - 0.001004 w \end{aligned}$	1.6795%±1.6690%
Klein-Gordon		$U^{101 \times 1001}$: 10000	$u_{tt} = 0.9994u_{xx} - 0.9995u - 0.9998u^3$	0.0426%±0.0220%
$u_{tt} = u_{xx} - u - u^3$		15500	$u_{tt} = 0.9987u_{xx} - 0.9833u - 1.0303u^3$	1.6100%±1.4513%
Fisher's equation		$U^{201 \times 1000}$: 10000	$u_t = 0.0997u_{xx} + 0.9998u - 1.0002u^2$	0.0960%±0.1342%
$u_t = 0.1u_{xx} + u - u^2$		10000	$u_t = 0.0971u_{xx} + 1.0053u - 1.0079u^2$	1.4104%±1.3007%
Kuramoto-Sivashinsky		$U^{2048\times1001}$: 14203	$u_t = -1.0000u_{xx} - 1.0000uu_x - 1.0000u_{xxxx}$	0.0022%±0.0010%
$u_t = -u_{xx} - uu_x - u_{xxxx}$	dissife	59210	$u_t = -0.9214u_{xx} - 0.9095uu_x - 0.9238u_{xxxx}$	8.1781 %±0.7678%
Navier-Stokes		$U^{100 \times 100 \times 1001}$: 10000	$w_t = 0.0100w_{xx} + 0.0100w_{yy} - 1.0068uw_x$ $-0.9987vw_y$	0.3700%±0.2305%
$w_t = 0.01 w_{xx} + 0.01 w_{yy} - u w_x - v w_y$		20000	$w_t = 0.0100w_{xx} + 0.0097w_{yy} - 1.0051uw_x - 1.0013vw_y$	0.9447%±1.3498%
Korteweg-de Vries		$U^{256 \times 1301}$: 10000	$u_t = -0.000484u_{xxx} - 0.999247uu_x$	0.0855%±0.0145%
$u_t = -0.000484u_{xxx} - uu_x$		18750	$u_t = -0.000483u_{xxx} - 0.982950uu_x$	0.9982%±0.9995%
Sine-Gordon equation		$U^{512 \times 256}$: 10	$u_{tt} = 0.9999u_{xx} - 0.9987\sin(u)$	0.0706%±0.0895%
$u_{tt} = u_{xx} - \sin(u)$		50	$u_{tt} = 0.9920u_{xx} - 0.9982\sin(u)$	0.4874%±0.4407%
Nonlinear Schrödinger equation		<i>U</i> ^{512×501} : 10000	$u_t = -3.3333iu + 3.3333i u ^2u + 0.3000iu_{xx} \label{eq:ut}$	0.0011%±0.0007%
$u_t = -\frac{10}{3}iu + \frac{10}{3}i u ^2u + 0.3iu_{xx}$		10000	$u_t = -3.3187iu + 3.2947i u ^2u + 0.3013iu_{xx}$	0.6775% <u>+</u> 0.4162%
Burgers' equation		$U^{256 \times 101}$: 2000	$u_t = 0.1000u_{xx} - 0.9999uu_x$	0.0051%±0.0054%
$u_t = 0.1u_{xx} - uu_x$		5000	$u_t = 0.1001u_{xx} - 1.0010uu_x$	0.0760%±0.0366%
Quantum Harmonic Oscillator		U ^{512 ×401} : 2000	$u_t = 0.5001iu_{xx} - 0.9999i\frac{x^2}{2}u$	0.0117% <u>+</u> 0.0055%
$u_t = 0.5iu_{xx} - i\frac{x^2}{2}u$		2000	$u_t = 0.4996iu_{xx} - 1.0005i\frac{x^2}{2}u$	0.0685%±0.0273%
_				