```
Shun/#33:4 (@shun4midx)
5-6-25 (WEEK 12)
THEOREM (ABFL'S RULE)
 let f: (a, b) - R be C' and q: (a, b) - R be C.
 Suppose (i) f(x) >0 when x >b
                    (::1 7M>0, s.t. 15% 9(t)dt (EM for xe(a,b)
Then, Stafftight converges
Prof
 We want to check that Cauchy's criterion is satisfied.
Let 200, by (i), we may And Acla, b), s.t. If(+) ( & Vtc(A,b)
Let G be a primitive of g, G(x)= Ja g(+) dt Vxe(A,b)
 ⇒ It follows from (i) that (6(x)(≤M for some fixed M uniformly in x∈(a,b)
Let x,y ( [A, b) with x <y, We have $2 f(t)g(t)dt = (f(t) b(t)) } - $2 f(t) 6(t) dt = f(y) 6(y) - f(x) b(x) - $2 f(t) b(t)
Notice, . If(y)6(y)1 < 5M
                       · 1f(x)6(x)1 < EM
                       · | [ ] = f ( t) | G( t) | dt | S | S | 1 f ( t) | 1 G( t) | dt | S | S | 1 f ( t) | dt | = - M | S | f ( t) | dt | = M ( f(x) - f (y) ) S E M
.. In anduson, []?flftyle)del < SEM for x,y e(A,b) with x sy. o
EXAMPLE
Fix x>0. Then, the fillowing integrals converge. In state to (by Abel's rule). Also, this means in ext conv too.
EXAMPLE
Let f: (1, +\infty) \longrightarrow 0, g: (1, +\infty) \longrightarrow 0

x \longmapsto G_{x}^{i} + \frac{1}{x}
  · flx/~g(x) wha x > +00
  · Jo f'conv
           .. In a does not conv (since otherwise In (alt)- fit) of: It dt conv -x)
LAPLACE'S METHOD
THEOREM
Let -=> sacbs+=> and g,h: (a,b) -= R be C'.

Suppose (i) x --> g(x)enbe) .3 integrable on (a,b) onv. not just conv.
                      (ii) ] ce(a,b), sit. (a) h is increasing on (a,c) and decreasing on (c,b) with h"(c) <0
                                                                   (b) q(c) #0
Then, when >>too, we have stagle this ~ \- \frac{27}{-24mco q(c)e 2h(c)}
PROOF SKETCH
By Taylor expansion, h(x) \approx h(c) - \frac{1}{4} \left[ -h''(c) (x-c)^2 \right]

Then, \int_{a}^{b} g(x) e^{2h(x)} dx \approx \int_{c-\epsilon}^{c+\epsilon} e^{2h(x)(x+\epsilon)^2} dx = g(c) e^{2h(c)} \int_{c-\epsilon}^{c+\epsilon} e^{\frac{1}{4}h''(c)(x-\epsilon)^2} dx

Let y = \sqrt{3}(x-c), then = g(c) e^{2h(c)} = \frac{1}{4} \int_{c-\epsilon}^{c+\epsilon} e^{-\frac{1}{4}h''(c)} dx = \frac{1}{
Remark: These two """ are not reproces and require explanation, hence why this I a "proof sketch" rather than a "proof"
APPLICATION (STIRLING'S FORMULA)
Recall for (1x1=50 tx-1e-t dt, x>0, (1(nt1)=n! VnEN
[(n+1)= so the td(= so entrited
let tens, = 500 nen mins)-us ds = noti 500 en (ms-s) ds
Define h:(0,+\infty)\longrightarrow \mathbb{R}
                              s -s Aus-s
```

0 1 00 h/(5) + -

h is I on (0,1), 2 on (1,+00), and h"(1)=-1<0

By Laplace's method, we find Jooen (ms-s) ds notes for =- no != [(n+1) notes 1271 (2) no 1

SEQUENCES AND SERIES OF FUNCTIONS

NOTATION

 $P(A,M):=\{f:A\rightarrow M \text{ functions}\}$ $B(A,M):=\{f:A\rightarrow M \text{ bounded functions}\}$

NOTIONS OF CONVERGENCE

SEQUENCES OF FUNCTIONS

DEFINITION

Let (fn)nzi be a sequence of functions from A to M, that is, they are dements of F(A,M)

- · Let 16F(A,M), we say (fulno, converges printwise to f if VxFA, 3 fn(x) (m,d)
- · We say (finly) converges printwise if TIFF(A,M), s.t. (finly) converges pointwise to f
- · Let BSA be a subset. We say (In)har converges pointwise on B if ((In)|B)nzi converges pointwise

EXAMPLE

For n21, let fn: (0,1) --- R

x ----> x'n

The sequence of functions (fn) non converges pointwise to 15:19 on [0,1]

REMARK

(1) If for miss of printwise, than f is unique (but depends on d)

12) If (M,d)=(W, 11.11) it a finite-dimensional normed vector space, and fi -> f pointure, the limit does not depend on the norm

(3) Some properties are preserved by pointwise convergence: Inequity, product, inequality, monoticity, etc

(4) Analytic proporties (continuity, differentiability, integrability, etc) may Not be preserved

DEFINITION

Let (fn)man be a sequence of function) from A to M

· let feF(A,M), we say (in)no converges unfinally to f: \VE>0, 3N(E)>0, 1.t. Vn2N, xeA, d[in(x),f(x)] (E

· We say (fn) non converges uniformly if If (F(A,M), s.t. (fn) non converges uniformly to f

· We say (fn)nz, converges uniformly on BSA : f ((fn)18)nz, converges uniformly

REMARK

Let's write the positivise convergence using quantifiers.

We say fa-of pontwic if VE>O, 3 N(x, E)>O, s.t. Vn>N, d(la(x), f(x)) SE

This means that uniform convergence > pointwise convergence. In particular, the uniform limit is unique.

PROPOSITION (CAUCHY'S CRITERION)

Suppose (M,d) 3 complete. Let (folior be a sequence of functions from A to M. Than, for the functionally if 4870, 3N>0, 8t. You, 02N, 4xfA, d(folio), for(x)) < E

COROLLARY

Shun/美利海(@shun4midx)

If (fin)man converges uniformly to f, it converges pointwise to f.

REMARK

To show that funt funty, we start by proving the pointwise convergence, then check that this convergence is uniterm

DEFINITION

- Let us equip B(A,M) with the following distance: $\forall f,g \in B(A,M)$, $d_{\infty}(f,g) = d_{\infty},A(f,g) := \sum_{i=1}^{n} d(f(x),g(x))$ If $f_{n} \in B(A,M)$ and $f_{n} \to f$ uniformly \iff $d_{\infty}(f_{n},f) \xrightarrow{m_{\infty}} D$
- Let (W, 11-11) be a normed vector space. Let us equip B(A, W) with the following norm, V feB(A, W), Ilfillow = liftlow, a: septilifix)11, called the norm of uniform convegence. In f uniformly (> Ilfn-fill man = 0

PROPOSITION

Let (W, 11-11) be a Banach space. Then, B(A, W) is also a Banach space

Pnd

Let (In)nz, be a Cauchy sequence in B(A, W). We want to check that (fi)nz, converges on (B(A, W), (1.11...)

- · let xEA, Note that (fn(x)) nzi is a Cauchy sequence in W, so it converges to a limit we call flx)
- · (heck that feBU, w). First, a Cauchy sequence is bounded, so litallos < M for some M>O uniformly in a

For xEA, f(x)= fin(x), so ||f(x)||= lim ||fn(x)|| < M. This means that feb(4, W)

· Check that In >f in (B(A, W), (1-1100). Let EDO, take NOO, s.t. 11th-Inloos & Vm, n >N

NSN 32 Home (Ifux)-f(x) II: him (Ifu(x)-fm(x)) I SE VN>N. This means, (Ifn-fllow SE Vn>N