Image embedding in pseudorandom latent space

Master thesis defence - LM Computer Science

Leonardo Monchieri 12/12/2024

Supervisor: Prof. Simone Milani Co-supervisor: Dott. Daniele Mari

> Introduction

- > Latent codes
- > Datasets
- > Training and optimization
- > Analysis and results
- > Conclusion

Data Embedding

Introduction

Embedding: transformation from a data representation **A** to a data representation **B**

- Data security: encryption
- Data manipulation: context related representations
- Data transfer
- Data store

compression

Introduction

GAN

Inverse GAN

- > Introduction
- > Latent codes
- > Datasets
- > Training and optimization
- > Analysis and results
- > Conclusion

Pseudorandom functions

Latent codes

6/33

A function $F:S \rightarrow Y$, where S is the seed space and Y the output space, is a pseudorandom function(PRF) if:

- Efficiently computable: there is an polynomial time algorithm that given a seed s ∈ S can compute F(s),
- Pseudorandom: for any polynomial-time adversary, it is computationally infeasible to distinguish between the function F and a random function f:X→Y.

Extra requirement

• Invertibility: exist an inverse function $F^{-1}:Y\to S$ that given an output $y\in Y$ return the seed $s\in S$ that generated it.

Leonardo Monchieri 12/12/2024

Hénon map

$$x_{n+1} = 1 - ax_n^2 + bx_{n-1}$$

Logistic map

$$x_{n+1} = rx_n(1 - x_n)$$

Tent map

$$x_{n+1} = \mu \min(x_n, 1 - x_n)$$

Linear Congruential Generator(LCG)

$$x_{n+1} = (ax_n + c) \mod m$$

Leonardo Monchieri 12/12/2024

7/33

Sequences correlation

- Cosine similarity: measures the cosine of the angle between two non-zero vectors, quantifying how similar they are regardless of magnitude.
- Pearson correlation coefficient(PCC): measures the linear relationship between two variables, reflecting how changes in one predict changes in the other.

Randomness

- Kolmogorov-Smirnov test (KS): compares the cumulative distributions of the sequences with a reference distribution to assess whether they differ significantly.
- Wald-Wolfowitz runs test (run test): evaluates the randomness of a sequence by analyzing the arrangement of runs (consecutive similar elements) in the data.

Leonardo Monchieri 12/12/2024 8/33

Results

Latent codes

Distribution/PRF	Cosine similarity	PCC	KS Test	Run Test
Uniform distribution	-2.09e-07	-2.13e-07	0.505868	-0.019535
Gaussian distribution	5.28e-03	1.43e-06	0.185694	0.011459
Hénon map	1.27e-03	7.32e-05	0.364905	0.484668
Logistic map	7.97e-03	2.52e-05	0.198464	4.326132
Tent map	8.43e-03	1.30e-05	0.144591	2.495715
LCG	-1.46e-05	-1.38e-05	0.504770	-0.004743

Leonardo Monchieri 12/12/2024 9/33

- > Introduction
- > Latent codes
- > Datasets
- > Training and optimization
- > Analysis and results
- > Conclusion

Datasets

MNIST dataset

- Handwritten digits
- 28x28 pixels images
- 70.000 images
- 10 classes

Anime faces dataset

- Anime character faces
- 64x64 pixels images
- 63.632 images
- No classes

Leonardo Monchieri 12/12/2024 11/33

- > Introduction
- > Latent codes
- > Datasets
- > Training and optimization
- > Analysis and results
- > Conclusion

MNIST training process Training and optimization

GAN scores

Inverse generator loss

- 200 epochs for GAN and 200 epochs for inverse Generator
- sequences of 25 symbols

Generalization

- GAN 2 steps: each epoch has two steps, one with sequences from a uniform distribution and one with LCG sequences.
- GAN LCG + noise: addition of sequences from a uniform distribution to the LCG sequences.

Leonardo Monchieri 12/12/2024 13/33

Anime training process

Training and optimization

GAN(5101) scores

Inverse generator(5101) loss

- 200 epochs for GAN and 200 epochs for inverse Generator
- Sequences of 100 symbols

Parameters exploration

- GAN(5101): a=1733, c=1627 and m=5101
- *GAN(29282)*: a=1255, c=6173 and m=29282
- *GAN(524287*): a=283471, c=35899, m=524287

Leonardo Monchieri 12/12/2024 14/33

Seed search

Training and optimization


```
1: Input: z \in \mathbb{Z}^{n \times d} {Sequences generated by the IG}
                      2: Parameters: \epsilon {Size of the nearby}
                      3: Output: seeds = [s_1, ..., s_n] s.t. \forall s_i \in s, s_i \in [0, m]_{\mathbb{N}} {Seeds of the sequences}
                      4: Initialize seeds \in \mathbb{Z}^{n \times 1} with zeros
                      5: denorm_z \leftarrow Denormalize(z) {return z from range[-1,1] to [0,m]}
     Latent
                      6: denorm\_seeds \leftarrow denorm\_z[: 0] [get first element of each de-normalized
denormalization
                         sequence}
                      7: for i = 0 to len(denorm\ seeds) - 1 do
                            error \leftarrow \infty
                          for t = s[i] - \epsilon to s[i] + \epsilon do
                              if t < 0 \lor t > m then
                             Continue
                              end if
                     12:
 Neighborhood
                              gen\_seq \leftarrow LCG\_sequence(t)
                     13:
      search
                              error_i \leftarrow \ell_{MSE}(z[i], gen\_seq)
                     14:
                              if error_i < error then
                     15:
                                 seed_i = t
                     16:
                              end if
                     17:
                            end for
                    18:
                           seeds[i] \leftarrow seed_i
 Optimal seeds
                    20: end for
   collection
                    21: return seeds
```

Training and optimization

16/33

Latent code (LCG or Uniform) as linear composition of LCG:

$$\dot{z} = w_1 LCG(s_1) + w_2 LCG(s_2) + \dots + w_n LCG(s_n)$$

Iterative compute vectors *s* and *w* as follow:

$$w_{i} = \min(z_{i-1} \otimes LCG_{map}),$$

$$s_{i} = \underset{s}{argmin}(z_{i-1} \otimes LCG(s)),$$

$$z_{i} = z_{i-1} - w_{i}LCG(s_{i}).$$

Three composition levels taken into account: 5, 10 and 20.

- > Introduction
- > Latent codes
- > Datasets
- > Training and optimization
- > Analysis and results
- > Conclusion

- Mean Square Error (MSE): allow us to understand how much of the original data has been lost in the embedding operation.
- Structural Similarity Index Metrics (SSIM): to capture the reconstruction quality, focusing on preserving structural details and perceived sharpness in the generated images.
- Fréchet Inception Distance (FID): to assess the similarity in distribution between generated images and real images, focusing on capturing both high-level feature alignment and overall image quality.

Synthetic dataset and Test dataset

Leonardo Monchieri 12/12/2024 18/33

Synthetic Dataset

Training type	MSE (latent)	MSE (img)	SSIM	FID
Inverse GAN	0.012189	0.041274	0.776580	32.721333
Inverse GAN LCG+noise	0.014229	0.033165	0.808409	30.506159
Inverse GAN 2 steps	0.015392	0.038858	0.800476	31.874275

Leonardo Monchieri 12/12/2024 19/33

Synthetic Dataset reconstruction samples

60840-2153 3005303 60661701 057/345 C64985020 686153337 400170003 44450/17

Original samples

GAN 2 steps (reconstructed)

20/33

Test Dataset

Training type	MSE (img)	SSIM	FID
Inverse GAN	0.280662	0.547575	24.431034
Inverse GAN LCG+noise	0.264190	0.558244	24.653860
Inverse GAN 2 steps	0.274251	0.551294	23.280581
Autoencoder	0.193280	0.549797	135.027039

Leonardo Monchieri 12/12/2024

Test Dataset reconstruction samples

Original samples

Autoencoder (reconstructed)

Classification test

Cross-entropy: measures the difference between the predicted probability distribution and the true label distribution.

Method	CE metric	
Inverse GAN	4.022841	
Inverse GAN LCG+Noise	3.766780	
Inverse GAN 2 steps	3.624026	
Autoencoder	3.646455	

Leonardo Monchieri 12/12/2024 23/33

Synthetic Dataset

Training type	MSE (latent)	MSE (img)	SSIM	FID
Inverse GAN(5101)	0.001819	0.001403	0.9681	17.2624
Inverse GAN(29282)	0.011398	0.006256	0.8759	29.8182
Inverse GAN(524287)	0.056614	0.010546	0.8153	34.5797

Leonardo Monchieri 12/12/2024 24/33

Synthetic Dataset reconstruction samples

Original samples

GAN 5101 (reconstructed)

Leonardo Monchieri 12/12/2024 25/33

Test Dataset

Training type	MSE (img)	SSIM	FID
Inverse GAN(5101)	0.091134	0.146485	131.553131
Inverse GAN(29282)	0.096304	0.144632	108.923164
Inverse GAN(524287)	0.0855831	0.162683	114.904045
Autoencoder	0.043306	0.258801	324.929474

Leonardo Monchieri 12/12/2024 26/33

Test Dataset reconstruction samples

Original samples

GAN 524287 (reconstructed)

Autoencoder (reconstructed)

Noise composition test

Synthetic dataset

Test dataset

Compression	MSE (img)	SSIM	FID
Uniform 5	0.050898	0.383645	40.323863
Uniform 10	0.032227	0.536680	39.302006
Uniform 20	0.015579	0.710165	33.472889
LCG 5	0.065070	0.264013	27.386955
LCG 10	0.045012	0.404454	26.318813
LCG 20	0.021814	0.647998	23.057238

Compression	MSE (img)	SSIM	FID
Uniform 5	0.056232	0.246840	115.374329
Uniform 10	0.043571	0.300170	114.668144
Uniform 20	0.035309	0.354097	113.415405
LCG 5	0.069271	0.195917	163.398407
LCG 10	0.124997	0.106405	163.898788
LCG 20	0.124159	0.105760	163.612579

Leonardo Monchieri 12/12/2024 28/33

Autoencoders comparison

Architectures	MSE (img)	SSIM	FID
AE(7)	0.033821	0.364243	311.198334
AE(14)	0.028392	0.435497	285.047241
AE(28)	0.025243	0.494204	249.512772
Uniform 20	0.035309	0.354097	113.415405

12/12/2024 29/33

Test Dataset reconstruction samples

Original samples

Uniform 20 (reconstructed)

Autoencoder 28 (reconstructed)

- > Introduction
- > Latent codes
- > Datasets
- > Training and optimization
- > Analysis and results
- > Conclusion

Conclusion

Recap

- Novel approach in the image embedding context
- LCG latent codes for high compression ratio
- Inverse GAN architecture to control the latent
- Optimization algorithms to find optimal embedding
- Low bit-rate with generated datasets or high prior datasets
- Poor results with heterogeneous datasets

Further work

- Seed search and noise composition optimization
- Style GAN architecture
- Different Pseudorandom functions

12/12/2024 Leonardo Monchieri 32/33

Thank you for the attention

questions?