Multivariate Analysis Canonical Correlation Analysis

Shaobo Jin

Department of Mathematics

Intended Learning Outcome

Through this chapter, you should be able to

- perform canonical correlation analysis,
- 2 perform partial least squares regression.

Motivation

- PCA performs dimension reduction for one set of p variables, while extracting as much information as possible.
- Now suppose that we have a $p \times 1$ vector of variables $\boldsymbol{X}^{(1)}$, and a $q \times 1$ vector of variables $\boldsymbol{X}^{(2)}$, measured on the same individual. We want to summarize the relationships between two vectors.
 - e.g., you have p variables $(\mathbf{X}^{(1)})$ to measure an individual's motivations for watching online videos, and q variables $(\mathbf{X}^{(2)})$ to measure how the individual access the online videos.
 - pq pairwise scatter plots.
 - Canonical correlation analysis (CCA) focuses on linear combinations of variables such that much fewer plots are needed.

Task

Let $X^{(1)}$ be a $p \times 1$ random vector, and $X^{(2)}$ be a $q \times 1$ random vector. We assume $p \leq q$ with loss of generality. Let

$$m{X} = egin{bmatrix} m{X}^{(1)} \ m{X}^{(2)} \end{bmatrix},$$

where

$$\mathbb{E}\left(oldsymbol{X}
ight) = egin{bmatrix} oldsymbol{\mu}^{(1)} \ oldsymbol{\mu}^{(2)} \end{bmatrix}, & \operatorname{cov}\left(oldsymbol{X}
ight) = oldsymbol{\Sigma} = egin{bmatrix} oldsymbol{\Sigma}_{12} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{12}^T & oldsymbol{\Sigma}_{22} \end{bmatrix}.$$

The main task of CCA is to find linear combinations

$$U = \boldsymbol{a}^T \boldsymbol{X}^{(1)}, \qquad V = \boldsymbol{b}^T \boldsymbol{X}^{(2)},$$

such that corr(U, V) is maximized.

Correlation Coefficient

By Result 4.2,

$$cov \left(\begin{bmatrix} U \\ V \end{bmatrix} \right) = cov \left(\begin{bmatrix} \boldsymbol{a}^T & \mathbf{0} \\ \mathbf{0} & \boldsymbol{b}^T \end{bmatrix} \begin{bmatrix} \boldsymbol{X}^{(1)} \\ \boldsymbol{X}^{(2)} \end{bmatrix} \right) \\
= \begin{bmatrix} \boldsymbol{a}^T & \mathbf{0} \\ \mathbf{0} & \boldsymbol{b}^T \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{12}^T & \boldsymbol{\Sigma}_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{a} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{b} \end{bmatrix} \\
= \begin{bmatrix} \boldsymbol{a}^T \boldsymbol{\Sigma}_{11} \boldsymbol{a} & \boldsymbol{a}^T \boldsymbol{\Sigma}_{12} \boldsymbol{b} \\ \boldsymbol{b}^T \boldsymbol{\Sigma}_{12}^T \boldsymbol{a} & \boldsymbol{b}^T \boldsymbol{\Sigma}_{22} \boldsymbol{b} \end{bmatrix}.$$

We shall seek coefficient vectors \boldsymbol{a} and \boldsymbol{b} such that

$$corr (U, V) = \frac{\boldsymbol{a}^T \boldsymbol{\Sigma}_{12} \boldsymbol{b}}{\sqrt{\boldsymbol{a}^T \boldsymbol{\Sigma}_{11} \boldsymbol{a}} \sqrt{\boldsymbol{b}^T \boldsymbol{\Sigma}_{22} \boldsymbol{b}}}$$

is as large as possible.

Restriction

Note that

$$corr (U, V) = \frac{\boldsymbol{a}^{T} \boldsymbol{\Sigma}_{12} \boldsymbol{b}}{\sqrt{\boldsymbol{a}^{T} \boldsymbol{\Sigma}_{11} \boldsymbol{a}} \sqrt{\boldsymbol{b}^{T} \boldsymbol{\Sigma}_{22} \boldsymbol{b}}}$$

$$s = \frac{(c\boldsymbol{a})^{T} \boldsymbol{\Sigma}_{12} (c\boldsymbol{b})}{\sqrt{(c\boldsymbol{a})^{T} \boldsymbol{\Sigma}_{11} (c\boldsymbol{a})} \sqrt{(c\boldsymbol{b})^{T} \boldsymbol{\Sigma}_{22} (c\boldsymbol{b})}}.$$

Hence, we need to set the scales of a and b. One option is

$$a^T \Sigma_{11} a = 1,$$

 $b^T \Sigma_{22} b = 1.$

Canonical Variates

- The first canonical variate pair is the pair of linear combinations U_1 and V_1 having unit variances which maximizes the correlation $\operatorname{corr}(U_1, V_1)$ (first canonical correlation).
- The second canonical variate pair is the pair of linear combinations U_2 and V_2 having unit variances which maximizes the correlation $\operatorname{corr}(U_2, V_2)$ (second canonical correlation) among all choices that are uncorrelated with the first pair of canonical variables.
- **3** The kth canonical variate pair is the pair of linear combinations U_k and V_k having unit variances which maximizes the correlation $\operatorname{corr}(U_k, V_k)$ (kth canonical correlation) among all choices that are uncorrelated with the previous k-1 pairs of canonical variables.

A Useful Lemma

Lemma

If λ is an eigenvalue of AB with corresponding eigenvector x, i.e.,

$$ABx = \lambda x.$$

Then, λ is an eigenvalue of $\boldsymbol{B}\boldsymbol{A}$ with corresponding eigenvector $\boldsymbol{B}\boldsymbol{x}$, since

$$BABx = \lambda Bx$$
.

Find Canonical Variates

Result 10.1

Suppose $p \leq q$ and let the random vectors $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$ have a full rank covariance matrix Σ . Then the kth canonical correlation is ρ_k^* , and the kth canonical variate pair is attained by

$$U_k = \left(\boldsymbol{\Sigma}_{11}^{-1/2} \boldsymbol{e}_k\right)^T \boldsymbol{X}^{(1)},$$

 $V_k = \left(\boldsymbol{\Sigma}_{22}^{-1/2} \boldsymbol{f}_k\right)^T \boldsymbol{X}^{(2)}.$

Here $\rho_1^{*2} \geq \rho_2^{*2} \geq \cdots \geq \rho_p^{*2}$ are the eigenvalues of $\boldsymbol{\Sigma}_{11}^{-1/2} \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{11}^T \boldsymbol{\Sigma}_{11}^{-1/2}$, and \boldsymbol{e}_k are the associated eigenvectors. Each \boldsymbol{f}_k is proportional to $\boldsymbol{\Sigma}_{22}^{-1/2} \boldsymbol{\Sigma}_{12}^T \boldsymbol{\Sigma}_{11}^{-1/2} \boldsymbol{e}_k$.

Unit Variance and Zero Correlation

The canonical variates have the properties

$$\text{var}(U_k) = \text{var}(V_k) = 1,$$
 $\text{cov}(U_k, U_\ell) = 0, \quad k \neq \ell,$
 $\text{cov}(V_k, V_\ell) = 0, \quad k \neq \ell,$
 $\text{cov}(U_k, V_\ell) = 0, \quad k \neq \ell.$

for all $k, \ell = 1, 2, ..., p$.

If we apply PCA to $\boldsymbol{X}^{(1)}$ and $\boldsymbol{X}^{(2)}$ separately, then we only have

$$cov (U_k, U_\ell) = 0, \quad k \neq \ell,$$

$$cov (V_k, V_\ell) = 0, \quad k \neq \ell.$$

Scale Invariant: Canonical Correlation

Suppose that we change the scale as $Z^{(1)} = C_1 X^{(1)} + d_1$ and $Z^{(2)} = C_2 X^{(2)} + d_2$, where C_1 and C_2 are invertible. Then,

$$\operatorname{cov}\left(\begin{bmatrix}\boldsymbol{Z}^{(1)}\\\boldsymbol{Z}^{(2)}\end{bmatrix}\right) \ = \ \begin{bmatrix}\boldsymbol{C}_1\boldsymbol{\Sigma}_{11}\boldsymbol{C}_1^T & & \boldsymbol{C}_1\boldsymbol{\Sigma}_{12}\boldsymbol{C}_2^T\\\boldsymbol{C}_2\boldsymbol{\Sigma}_{12}^T\boldsymbol{C}_1^T & & \boldsymbol{C}_2\boldsymbol{\Sigma}_{22}\boldsymbol{C}_2^T\end{bmatrix}.$$

The kth canonical correlation is r_k^* , the eigenvalues of

$$\begin{aligned} & \left(\boldsymbol{C}_{1}\boldsymbol{\Sigma}_{11}\boldsymbol{C}_{1}^{T} \right)^{-1/2}\boldsymbol{C}_{1}\boldsymbol{\Sigma}_{12}\boldsymbol{C}_{2}^{T} \left(\boldsymbol{C}_{2}\boldsymbol{\Sigma}_{22}\boldsymbol{C}_{2}^{T} \right)^{-1} \left(\boldsymbol{C}_{1}\boldsymbol{\Sigma}_{12}\boldsymbol{C}_{2}^{T} \right)^{T} \left(\boldsymbol{C}_{1}\boldsymbol{\Sigma}_{11}\boldsymbol{C}_{1}^{T} \right)^{-1/2} \\ &= & \left(\boldsymbol{C}_{1}\boldsymbol{\Sigma}_{11}\boldsymbol{C}_{1}^{T} \right)^{-1/2}\boldsymbol{C}_{1}\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{12}^{T}\boldsymbol{C}_{1}^{T} \left(\boldsymbol{C}_{1}\boldsymbol{\Sigma}_{11}\boldsymbol{C}_{1}^{T} \right)^{-1/2}. \end{aligned}$$

They are the same as the nonzero eigenvalues of

$$\boldsymbol{\Sigma}_{11}^{-1/2}\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{12}^T\boldsymbol{\Sigma}_{11}^{-1/2}.$$

Scale Invariant: Coefficient Vector

Let $e_k^{(Z)}$ satisfies

$$\left(\boldsymbol{C}_{1}\boldsymbol{\Sigma}_{11}\boldsymbol{C}_{1}^{T}\right)^{-1/2}\boldsymbol{C}_{1}\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{12}^{T}\boldsymbol{C}_{1}^{T}\left(\boldsymbol{C}_{1}\boldsymbol{\Sigma}_{11}\boldsymbol{C}_{1}^{T}\right)^{-1/2} \hspace{2mm} = \hspace{2mm} \rho_{k}^{*}\boldsymbol{e}_{k}^{(Z)}.$$

Then,

$$\begin{split} &\left(C_{1}\boldsymbol{\Sigma}_{11}C_{1}^{T}\right)^{-1}C_{1}\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{12}C_{1}^{T}\left(C_{1}\boldsymbol{\Sigma}_{11}C_{1}^{T}\right)^{-1/2}\boldsymbol{e}_{k}^{(Z)} &=& \rho_{k}^{*}\left(C_{1}\boldsymbol{\Sigma}_{11}C_{1}^{T}\right)^{-1/2}\boldsymbol{e}_{k}^{(Z)} \\ \Rightarrow &\left(C_{1}^{T}\right)^{-1}\boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{12}C_{1}^{T}\left(C_{1}\boldsymbol{\Sigma}_{11}C_{1}^{T}\right)^{-1/2}\boldsymbol{e}_{k}^{(Z)} &=& \rho_{k}^{*}\left(C_{1}\boldsymbol{\Sigma}_{11}C_{1}^{T}\right)^{-1/2}\boldsymbol{e}_{k}^{(Z)} \\ \Rightarrow &\boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{12}\times\boldsymbol{C}_{1}^{T}\left(C_{1}\boldsymbol{\Sigma}_{11}C_{1}^{T}\right)^{-1/2}\boldsymbol{e}_{k}^{(Z)} &=& \rho_{k}^{*}C_{1}^{T}\left(C_{1}\boldsymbol{\Sigma}_{11}C_{1}^{T}\right)^{-1/2}\boldsymbol{e}_{k}^{(Z)} \end{split}$$

This means that

$$m{\Sigma}_{11}^{-1/2}m{e}_k = m{C}_1^Tm{\left(C_1m{\Sigma}_{11}m{C}_1^T
ight)}^{-1/2}m{e}_k^{(Z)}.$$

Canonical Correlation As Correlation Bound

Note that

$$\left|\operatorname{cor}\left(X_i^{(1)}, X_j^{(j)}\right)\right| \ \leq \ \max_{\boldsymbol{a}, \boldsymbol{b}} \left|\operatorname{corr}\left(\boldsymbol{a}^T \boldsymbol{X}^{(1)}, \boldsymbol{b}^T \boldsymbol{X}^{(2)}\right)\right| = \rho_1^*.$$

Hence, the first canonical correlation is no lower than the absolute value of the correlation between any $X_i^{(1)}$ and $X_j^{(j)}$.

Proportion of Explained Variance

In fact,

$$\max_{b} \operatorname{corr} \left(U_{k}, \boldsymbol{b}^{T} \boldsymbol{X}^{(2)} \right) = \rho_{k}^{*},$$

$$\max_{a} \operatorname{corr} \left(\boldsymbol{a}^{T} \boldsymbol{X}^{(1)}, V_{k} \right) = \rho_{k}^{*},$$

for any k.

The kth squared canonical correlation ρ_k^{*2} is

- the proportion of the variance of canonical variate U_k explained by the set $X^{(2)}$,
- the proportion of the variance of canonical variate V_k explained by the set $X^{(1)}$.

Hence, ρ_k^{*2} is the shared variance between $\boldsymbol{X}^{(1)}$ and $\boldsymbol{X}^{(2)}$.

Sample Canonical Variate Pair

A random sample of n observations is assembled into the $n \times (p+q)$ data matrix $\mathbf{X} = \begin{bmatrix} \mathbf{X}^{(1)} & \mathbf{X}^{(2)} \end{bmatrix}$.

- The first sample canonical variate pair is the pair of linear combinations \hat{U}_1 and \hat{V}_1 having unit variances which maximizes the sample correlation $r_{\hat{U}_1,\hat{V}_1}$.
- ② The second sample canonical variate pair is the pair of linear combinations \hat{U}_2 and \hat{V}_2 having unit variances which maximizes the sample correlation $r_{\hat{U}_2,\hat{V}_2}$ among all choices that are uncorrelated with the first sample canonical variate pair.
- The kth sample canonical variate pair is the pair of linear combinations Û_k and Ŷ_k having unit variances which maximizes the sample correlation r_{Û_k}, Ŷ_k among all choices that are uncorrelated with the previous k − 1 sample canonical variate pairs.

Sample Correlation

Let

$$oldsymbol{S} = egin{bmatrix} oldsymbol{S}_{11} & oldsymbol{S}_{12} \ oldsymbol{S}_{12}^T & oldsymbol{S}_{22} \end{bmatrix}$$

be the sample covariance matrix of X. The sample correlation between $a^T X^{(1)}$ and $b^T X^{(2)}$ is

$$rac{oldsymbol{a}^Toldsymbol{S}_{12}oldsymbol{b}}{\sqrt{oldsymbol{a}^Toldsymbol{S}_{11}oldsymbol{a}}\sqrt{oldsymbol{b}^Toldsymbol{S}_{22}oldsymbol{b}}}.$$

The population correlation is

$$rac{oldsymbol{a}^Toldsymbol{\Sigma}_{12}oldsymbol{b}}{\sqrt{oldsymbol{a}^Toldsymbol{\Sigma}_{11}oldsymbol{a}}\sqrt{oldsymbol{b}^Toldsymbol{\Sigma}_{22}oldsymbol{b}}}.$$

Find Sample Canonical Variate Pair

Result 10.2

Let $\hat{\rho}_1^{\hat{*}2} \geq \hat{\rho}_2^{\hat{*}2} \geq \cdots \geq \hat{\rho}_p^{\hat{*}2}$ be the eigenvalues of $S_{11}^{-1/2}S_{12}S_{22}^{-1}S_{12}^TS_{11}^{-1/2}$ with corresponding eiegnvectors $\hat{e}_1, ..., \hat{e}_p$, where $p \leq q$. Let $\hat{f}_1, ..., \hat{f}_p$ be the eigenvectors of $S_{22}^{-1/2}S_{12}^TS_{11}^{-1}S_{12}S_{22}^{-1/2}$ where the first p eigenvectors may be obtained from $\hat{f}_k = \hat{\rho}_k^{\hat{*}} S_{22}^{-1/2}S_{12}^TS_{11}^{-1}\hat{e}_k$, k = 1, 2, ..., p. Then the kth sample canonical variate pair is

$$\hat{U}_k = \left(m{S}_{11}^{-1/2} \hat{m{e}}_k
ight)^T m{x}^{(1)}, \qquad \hat{V}_k = \left(m{S}_{22}^{-1/2} \hat{m{f}}_k
ight)^T m{x}^{(2)}.$$

The kth sample canonical correlation is $\hat{\rho_k}$.

Unit Variance and Zero Correlation

The sample canonical variates have the properties

$$\begin{array}{rcl} S_{\hat{U}_k} & = & S_{\hat{V}_k} = 1, \\ \\ r_{\hat{U}_k, \hat{U}_\ell} & = & 0, & k \neq \ell, \\ \\ r_{\hat{V}_k, \hat{V}_\ell} & = & 0, & k \neq \ell, \\ \\ r_{\hat{U}_k, \hat{V}_\ell} & = & 0, & k \neq \ell, \end{array}$$

for all $k, \ell = 1, 2, ..., p$. If we apply PCA to $\boldsymbol{X}^{(1)}$ and $\boldsymbol{X}^{(2)}$ separately, then we only have

$$\begin{array}{lll} r_{\hat{U}_k,\hat{U}_\ell} & = & 0, & k \neq \ell, \\ r_{\hat{V}_k,\hat{V}_\ell} & = & 0, & k \neq \ell. \end{array}$$

Special Case: p = 1

Consider a special case where p = 1. We denote $Y = X^{(1)}$ and $Z = X^{(2)}$. The matrix $S_{11}^{-1/2} S_{12} S_{22}^{-1} S_{12}^T S_{11}^{-1/2}$ reduces to a scalar with eigenvalue itself and eigenvector 1. Then, the canonical variate pair is attained by

$$V = \left(\mathbf{S}_{22}^{-1/2} \mathbf{f} \right)^{T} \mathbf{Z} = \left(\mathbf{S}_{22}^{-1/2} \times |\rho^{*}| \, \mathbf{S}_{22}^{-1/2} \mathbf{S}_{12}^{T} \mathbf{S}_{11}^{-1/2} \hat{e} \right)^{T} \mathbf{Z}$$
$$= S_{11}^{-1} \sqrt{\mathbf{S}_{12} \mathbf{S}_{22}^{-1} \mathbf{S}_{12}^{T}} \mathbf{S}_{12} \mathbf{S}_{22}^{-1} \mathbf{Z},$$

where
$$\hat{\rho}^{*2} = S_{11}^{-1/2} \mathbf{S}_{12} \mathbf{S}_{22}^{-1} \mathbf{S}_{12}^T S_{11}^{-1/2} = S_{11}^{-1} \mathbf{S}_{12} \mathbf{S}_{22}^{-1} \mathbf{S}_{12}^T$$
 and $\hat{e} = 1$.

If we apply classic linear regression (regress Y on \mathbb{Z}), the OLS fitted model is

$$\hat{Y} = \underbrace{\boldsymbol{y}^T \boldsymbol{Z}_D (\boldsymbol{Z}_D^T \boldsymbol{Z}_D)^{-1}}_{\propto \boldsymbol{S}_{22}^{-1}} \boldsymbol{Z},$$

where \mathbf{Z}_D is the demeaned data matrix of \mathbf{Z} and \mathbf{y} is the demeaned response vector of Y.

CCA Versus Regression: Seemingly Different

```
## Canonical Correlation Analysis
CC \leftarrow cc(X = as.matrix(Data[, "Y"]),
        Y = as.matrix(Data[, c("Z1", "Z2", "Z3")]))
CC$ycoef
## [,1]
## Z1 0.6444941
## Z2 0.3009713
## Z3 0.3615434
## Classic Linear Regression
LM \leftarrow lm(Y \sim Z1 + Z2 + Z3, data = Data)
coef(LM)
## (Intercept)
                        Z1
                                    Z2
                                                Z3
##
  0.1486136 0.2558822 0.1194941 0.1435429
```

More Outputs of Linear Regression

```
summary(LM)
##
## Call:
## lm(formula = Y \sim Z1 + Z2 + Z3, data = Data)
##
## Residuals:
      Min 1Q Median 3Q
##
                                      Max
## -2.30639 -0.61481 0.05427 0.56709 1.90861
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.14861 0.09000 1.651 0.1019
     0.25588 0.09957 2.570 0.0117 *
## 7.1
## Z2 0.11949 0.09509 1.257 0.2119
## 7.3
           0.14354 0.09993 1.436 0.1541
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8756 on 96 degrees of freedom
## Multiple R-squared: 0.1749, Adjusted R-squared: 0.1492
## F-statistic: 6.785 on 3 and 96 DF, p-value: 0.0003378
```

Almost Same Thing

```
## Just Scaling
c(CC$ycoef / coef(LM)[-1])
## [1] 2.518714 2.518714 2.518714
## Canonical Correlation is related
c(CC$cor ^ 2, summary(LM)$r.squared)
## [1] 0.1749436 0.1749436
```

Alternative to Multivariate Multiple Regression

Suppose that we have p response variables and q covariates that we can use to model the response variable.

- One approach is to use multivariate multiple regression (Chapter 7).
- An alternative approach is partial least squares regression (PLS regression).

A little history:

- Karl Gustav Jöreskog popularized factor analysis. He had professorship at Uppsala 1971–2000.
- Herman Wold developed PLS regression. He had professorship at Uppsala 1942–1970.
- Jöreskog was a student of Wold at Uppsala.

Maximize Covariance

PLS regression is an alternative to multivariate multiple regression if

- n is relatively small comparing to p or q,
- correlation between covariates are high (multicollinearity).

Suppose that we have demeaned the p response variables and q covariates, such that the sample mean of each variable is 0. We want to find linear combinations $T = \boldsymbol{a}^T \boldsymbol{X}$ and $U = \boldsymbol{b}^T \boldsymbol{Y}$ such that the covariance between T_k and U is maximized. That is,

$$\max_{a,b} \operatorname{cov} \left(\boldsymbol{a}^T \boldsymbol{X}, \boldsymbol{b}^T \boldsymbol{Y} \right)$$

s.t. $\boldsymbol{a}^T \boldsymbol{a} = \boldsymbol{b}^T \boldsymbol{b} = 1$.

This is similar to the objective of CCA.

Eigenvalue and Eigenvector

Since the variables are demeaned, the sample covariance matrix between $X_{n\times q}$ and $Y_{n\times p}$ can be computed by $n^{-1}X^TY$ or $(n-1)^{-1}X^TY$. Then,

$$\max_{a,b} \boldsymbol{a}^T \boldsymbol{X}^T \boldsymbol{Y} \boldsymbol{b}$$
 s.t. $\boldsymbol{a}^T \boldsymbol{a} = \boldsymbol{b}^T \boldsymbol{b} = 1$.

Hence, \boldsymbol{a} is the eigenvector of $\boldsymbol{X}^T\boldsymbol{Y}\boldsymbol{Y}^T\boldsymbol{X}$ corresponding to the largest eigenvalue, and $\boldsymbol{b} \propto \boldsymbol{Y}^T\boldsymbol{X}\boldsymbol{a}$.

- We regress X on t = Xa, a $n \times 1$ vector. The OLS estimator of regression coefficients is $\hat{\beta} = (t^T t)^{-1} t^T X$.
- **2** We regress Y also on t. The OLS estimator of regression coefficients is $\hat{\gamma} = (t^T t)^{-1} t^T Y$.

PLS Regression

From the regression model of Y on t, our fitted model for a new value t_0 satisfies

$$\hat{\boldsymbol{y}} = \hat{\boldsymbol{\gamma}} t_0.$$

Since $t_0 = \boldsymbol{a}^T \boldsymbol{x}_0$, then

$$\hat{\boldsymbol{y}} = \hat{\boldsymbol{\gamma}} \boldsymbol{a}^T \boldsymbol{x}_0,$$

which is the PLS regression of y on x.

More Components

So far we have only used one pair of linear combinations. Similar to CCA, we can extract more components.

• When we regress X on t = Xa, the residual matrix is

$$E_X = X - t (t^T t)^{-1} t^T X.$$

• We regress Y also on t, the residual matrix is

$$E_Y = Y - t(t^Tt)^{-1}t^TY.$$

• We treat E_X and E_Y as X and Y respectively in a new iteration of PLS regression.