Email training, N3 Level 3, September 27-October 3

Problem 3.1. Find all positive integers n such that the products of its digits is equal $n^2 - 10n - 22$.

Problem 3.2. Prove there exist infinitely many positive integers divisible by 2021 and each of them containing the same number of digits $0, 1, \ldots, 9$.

Problem 3.3. Find all values of a for which the equation $x^3 + ax^2 + 56x - 4 = 0$ has 3 roots forming consecutive terms of a geometric progression.

Problem 3.4. Let $f(x) = \frac{9^x}{9^x+3}$. Evaluate the sum

$$\sum_{k=0}^{2021} f\left(\frac{k}{2021}\right).$$

Problem 3.5. One cuts a grid of size 8×8 by a straight line. Find the maximal possible number of cells that are cut by the line.

Problem 3.6. In the cells of the grid 10×10 are written positive integers, all of them less than 11. It is known that the sum of 2 numbers written in the cells having common vertex is a prime number. Prove that there are 17 cells containing the same number.

Problem 3.7. Given a non-isosceles acute angled triangle $\triangle ABC$ where O is the midpoint of BC. Let the circle with diameter BC, intersects AB, AC at D, E respectively. Let the angle bisectors of $\angle A$ and $\angle DOE$ intersect at P. If the circumcircles of $\triangle BPD$ and $\triangle CPE$ intersect at P and Q, show that Q lies on BC.

Solution submission deadline October 3, 2021 Submit single PDF file in filename format L3_YOURNAME_week3.pdf submission email imo20etraining@gmail.com