

Evaluation of Neonatal Brain Tissue Development Using Diffusion MRI

(An Introduction To Python-based Medical Image Analysis)

Kylie Xu, Sara Hernandez, Erjun Zhang, Benjamin De Leener

Dawson College
Neuropoly Lab, Polytechnique Montreal
CHU Sainte-Justine Research Center

August 15th, 2023
CHU Saint-Justine Summer Internship Conference (2023)

Introduction

Infant development

- Brain volume growth¹
- Preterm infants are at a higher risk of developing neurological conditions²
- > dMRI is useful to understanding brain tissue growth

Introduction

Diffusion MRI

- Non-invasive imaging technique¹
- > Helps us understand white matter integrity in infants²
- ➤ Predicts the diffusivity direction along the white matter fiber tracks²

Problem

➤ Little Python resources exist for beginners to access diffusivity in brain tissues

Goal

Learn Python coding

Write DTI reconstruction code with Python

Understanding the brain development in infants

Democratize the knowledge

Hypothesis

 Baby development could be characterized by a difference in diffusion MRI (DTI metrics)

What we expect

- > Brain fibers in neonatal will mature over time and increase in anisotropic diffusion (FA value).
- > AD, RD and MD metrics will decrease with gestational age

Data acquisition

- ➤ Online dataset (dHCP)
- ➤ 45 participants (9 groups)
- ➤ Scanned from 34 to 42 weeks*

- ➤ Diffusion MRI (dMRI)
- ➤ Scanned post-birth

- ➤ Preterm babies (< 37 weeks*): 22
- ➤ Term babies (≥ 37 weeks*): 23

Diffusion-Weighted Images (DWIs)

Diffusion Tensor Imaging reconstruction

Region of interests (ROIs)

- Cortical gray matter
- White Matter
- Deep gray matter

Results

DTI reconstruction

^{10 &}quot;

Results

DTI reconstruction

sub-CC00063AN06, 35.1 weeks (birth age), 35.7 weeks (scan age) sub-CC00586XX18, 40.1 weeks (birth age), 40.2 weeks (scan age)

Results

- Lower AD, RD and MD in white matter (WM), gray matter (GM) and deep GM
- Decrease in water content
- ➢ GM & WM development
- Higher FA value in deep GM and WM
- Increase of myelin sheet
- Largest change in the white matter

Conclusion

- dMRI can be used to access the brain tissue development
- > Tracking infant development
- Younger babies have higher brain diffusivity compared to older babies
- Older babies have higher anisotropic diffusion characterized by an increase in myelination

Future work

- Different ROIs
- Larger dataset
- Predicting neurological conditions of infants

SCAN ME to get access to our PDF report

SCAN ME to get access to our experiment

Acknowledgements

Erjun Zhang, Ph.D candidate

Dr. Benjamin De Leener, Ph.D

Dr. Gregory A. Lodygensky, MD

Michelle Poulin

Dr. Hélène Nadeau, Ph.D

Dr. Sylvia Cox, Ph.D

Dawson

--- COLLEGE

References

- 1. Batalle, D. *et al.* Different patterns of cortical maturation before and after 38 weeks demonstrated by dMRI. *Neuroimage* **185**, 764–775 (2019).
- 2. Counsell, S. J. *et al.* Specific relations between neurodev. abilities and WM microstructure in children born preterm. *Brain* **131**, 3201–3208 (2008).
- 3. Hans, S. MRI made easy. Schering Aktientgesellschaft (1990).
- 4. Knickmeyer, R. C. *et al.* A structural MRI study of human brain development (0 to 2 years). *Journal of neuroscience* **28**, 12176–12182 (2008).
- 5. Mueller, B. A., Lim, K. O., Hemmy, L. & Camchong, J. Diffusion MRI and its role in neuropsychology. *Neuropsychology review* **25,** 250–271 (2015).
- 6. Dutta, S. S. Diffusion tensor imaging explained. Oct. 2018. https://www.news-medical.net/health/Diffusion-Tensor-Imaging-(DTI)-Explained.aspx;.

THANK YOU

