PATENT ABSTRACTS OF JAPAN

(11) Publication number: 06017727 A

(43) Date of publication of application: 25.01.94

(51) Int. CI

F02N 11/00

B60K 6/00

B60K 8/00

F02B 61/00

(21) Application number: 04200261

(71) Applicant:

AQUEOUS RES:KK

(22) Date of filing: 02.07.92

(72) Inventor:

YAMAGUCHI KOZO

(54) HYBRID TYPE VEHICLE

(57) Abstract:

PURPOSE: To provide a hybrid type automobile which is capable of shockless and stable operation when starting an engine during single operation of a motor

CONSTITUTION: To start an engine, when engine rotational frequency NE₁ becomes NE₁ after a clutch ON signal being outputted at time t₁, motor torque command value IM becomes IM₁ from IM₀. When engine rotational frequency becomes engine starting rotational frequency NE3, 500rpm, for example, an ON signal of ignition, etc., is supplied to an engine controller, so that the engine is started. However, because motor torque current is IM₁, a shock due to a drop of output torque in the output shaft is prevented. When rotational frquency NE becomes NE2-ANE2, dynamical friction coefficient of a clutch IM_{1} . Then, when rotational frequency NE becomes NE2, the clutch C is judged to be engaged, so that IM is returned IMo value before engine starting.

COPYRIGHT: (C)1994,JPO&Japio

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-17727

(43)公開日 平成6年(1994)1月25日

(51) Int.Cl. ⁵	識別記号	庁内整理番号	FΙ	技術表示簡別
F 0 2 N 11/00	G	8614-3G		
B60K 6/00				
8/00				
F 0 2 B 61/00	D	7541-3G		
		8521-3D	B 6 0 K	9/00 Z
			:	審査請求 未請求 請求項の数2(全 11 頁)
(21)出願番号	特顯平4-200261		(71)出願人	591261509
				株式会社エクォス・リサーチ
(22)出願日	平成4年(1992)7月	2日		東京都千代田区外神田 2丁目19番12号
			(72)発明者	山口 幸蔵
				東京都千代田区外神田 2 丁目19番12号 株
				式会社エクォス・リサーチ内
			(74)代理人	弁理士 川井 隆 (外1名)
			÷	

(54) 【発明の名称】 ハイブリッド型車両

(57)【要約】

【目的】 モータ単独走行中にエンジンの始動する場合、ショックのない安定した走行が可能なハイブリッド型自動車を提供する。

【構成】 エンジン11を始動するため、時刻t1 にクラッチON信号を出力した後、エンジン11の回転数N m が N m 1 になると、モータトルク指令値 I m を I m m から I m にする。そして、例えば500 r p m の エンジン始 動回転数 N m 3 になると、エンジンコントローラ42に対してイグニッション等のON信号を供給する。これによりエンジン11が始動するが、モータトルク電流は I m 1 にされているので、出力軸16の出力トルクの落ち込みによるショックが防止される。更に、回転数 N m が N m m 2 になると、クラッチCの動序擦係数が大きくなるので、 I m 1 から I m 2 になると、クラッチCの係合終了と判断し、 I m を、エンジン始動開始前の値 I m n に戻す。

1

【特許請求の範囲】

【請求項1】 電気モータと内燃機関を備え、少なくとも一方の駆動力によって走行するハイブリッド型車両において、

前記内燃機関と走行輪とを連結するクラッチと、前記電気モータのみによる走行と少なくとも内燃機関に

前記電気モータのみによる走行と少なくとも内燃機関による駆動を伴う走行を選択する選択手段と、

この選択手段により、電極モータのみによる走行から内 燃機関の駆動を伴う走行が選択された場合、前記クラッ チを接続して内燃機関を始動する内燃機関始動手段と、 前記クラッチを接続する場合、前記電気モータの発生ト ルクを大きくするように補正するトルク補正手段とを具 備することを特徴とするハイブリッド型車両。

【請求項2】 前記クラッチの接続の程度を検出する検出手段を備え、前記トルク補正手段は、前記検出手段の出力信号に対応したトルクを補正することを特徴とする請求項1記載のハイブリット型車両。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、例えばエンジンとモー 20 夕とを備えたハイブリッド型車両に係り、詳細には、エンジンの始動がスムーズに行われるハイブリッド型車両に関する。

[0002]

【従来の技術】近年、地球の環境に対する関心が高まり、大気汚染による自然環境の破壊や温暖化、騒音による居住空間の悪化の防止といった社会的要請が高まっている。これに伴って、排気の原因となるエンジン等の内燃機関を駆動源とせず、クリーンな電力を駆動源として車両を駆動させる電気自動車が注目されている。この電 30 気自動車は、大容量の駆動用電源を備えており、この駆動用電源から供給される電力によって電気モータを回転させ、車両の駆動力とするものである。そして、アクセルの踏み込み量やプレーキの踏み込み量等の運転者による操作量から、要求されているトルク値を算出し、そのトルク値に対応した電流を電気モータに供給し、運転者の要求に応じた適切な走行を実現する。

【0003】ところが、この電気自動車は駆動用電源を必要とし、その充電に長時間を要すると共に、駆動用電源を充電するための設備も必ずしも十分には存在してい40ないのが現実である。そこで、燃料の供給が容易な従来のエンジンと、エネルギーとしてクリーンなモータとを組み合わせたハイブリッド型車両も開発されている。このハイブリッド型車両では、エンジンとモータとをクラッチ等で接続することにより、走行速度や、走行地域等の各種条件に応じ、駆動源としてのモータとエンジンを適宜切り換えて使用するようになっている(USP4,533,011、特開昭56-132102)。例えば、内燃機関によると排ガスが多くなる低速走行時にはモータ単独走行とし、高速走行時にはモータ単独走行とし、高速走行時にはモータ、エンジン50

両者の走行又はエンジン単独走行とするようになっている。

[0004]

【発明が解決しようとする課題】図10は、従来のハイ ブリッド型車両において、車両走行用のモータで走行 中、エンジンと車両走行用モータとをクラッチで接続し てエンジンを始動する時の動作を表したものであり、 (a) はクラッチの切り換えタイミングを、(b) はエ ンジン(E/G)の回転数Ng を、(c)は出力トルク 10 をそれぞれ表している。従来のハイブリッド型車両の場 合、例えばモータ単独走行からエンジン単独走行に切り 換える場合、時刻tiにおいて上記クラッチのON信号 が出力されると、アクチュエータ作動時間 At 秒の後に クラッチの接続に伴いエンジンの回転数Ne が上昇を開 始する。ここで、図10(c)に示すように、ハイブリ ッド型車両の出力トルクに注目すると、クラッチの接続 開始と同時にエンジンのフリクションとイナーシャによ って出力トルクの落ち込みが発生する(エンジンプレー キがかかる)という問題がある。

【0005】そして、この出力トルクの落ち込みは、図11に示すように、クラッチの相対回転数ΔN(=Nε2-Nε)が0に近づくとクラッチの動摩擦係数(μd)が静摩擦係数(μs)に近づいて大きくなるために、クラッチの係合が終了する直前において一層増大するという問題もある。なお、クラッチの相対回転数が0、すなわちNε=Nε2となってクラッチの係合が終了した段階で出力トルクは再び安定する。このように、従来のハイブリッド型車両では、モータ単独走行中に、クラッチを接続してエンジンを始動した時点で、トルク落ち込みにけるショックが発生し、安定した走行感を損なう原因となっていた。

【0006】そこで、本発明の目的はこのような課題を解決するためになされたもので、クラッチを接続してエンジンを始動する場合においてショックのない安定した走行が可能なハイブリッド型車両を提供することにある。

[0007]

【課題を解決するための手段】請求項1記載の発明では、電気モータと内燃機関を備え、少なくとも一方の駆動力によって走行するハイブリッド型車両において、前記内燃機関と走行輪とを連結するクラッチと、前記電気モータのみによる走行と少なくとも内燃機関による駆動を伴う走行を選択する選択手段と、この選択手段により、電極モータのみによる走行から内燃機関の駆動を伴う走行が選択された場合、前記クラッチを接続して内燃機関を始動する内燃機関始動手段と、前記クラッチを接続する場合、前記電気モータの発生トルクを大きくするように補正するトルク補正手段とをハイブリッド型車両に具備させて、前記目的を達成する。請求項2記載の発明では、請求項1記載のハイブリッド型車両において、

3

クラッチの接続の程度を検出する検出手段を具備させ、 前記トルク補正手段は前記検出手段の出力信号に対応し たトルクを補正する。

[0008]

【作用】すなわち、電気モータのみによる走行から内燃機関の駆動を伴う走行が選択された場合、内燃機関を始動するクラッチを接続する。このときにトルク補正手段によって電気モータの発生トルクを大きくするように補正する。これによって、クラッチを接続しても車両の駆動トルクの落ち込みが防止される。

[0009]

【実施例】以下本発明のハイブリッド型車両における好適な実施例について、図1から図9を参照して詳細に説明する。図1はハイブリッド型車両の概略の構成と回路を表したものである。このハイブリッド型車両は、第2駆動手段としてのエンジン11を備えている。このエンジン11の出力輸12は、エンジン11の回転を受けて変速して回転を出力するトランスミッション13に接続されている。このトランスミッション13の出力輸14は、第1駆動手段としてのモータ15のロータ入力側に20固定されている。モータ15は、ステータおよびロータからなり、図示しない電源から供給される駆動電流によって回転駆動するようになっている。

【0010】このモータ15のロータ出力側は出力軸16の一端が接続され、この出力軸16の他端は、デファレンシャル装置17に接続されている。このデファレンシャル装置17の出力は、駆動軸18を介して駆動輪19に伝達されるようになっている。このように、モータ15のロータは、トランスミッション13の出力軸14 およびモータの出力軸16に固定されて一体的に回動す30 る。従って、トランスミッション13から出力される回転、およびモータ15から出力される回転のいずれも出力軸16、デファレンシャル装置17、駆動軸18を介して駆動輪19に伝達されるようになっている。なお、モータ15又はトランスミッション13からの回転が伝達される駆動輪19は、前輪および後輪のいずれでも、双方でもよい。また、モータ15とトランスミッション13が前後別々の車輪についていてもよい。

【0011】トランスミッション13は、シングルプラネタリ式のプラネタリギヤユニット22、クラッチC、 40プレーキBおよびワンウェイクラッチFを備えている。プラネタリギヤユニット22は、リングギヤR、ピニオンP、キャリヤCRおよびサンギヤSから構成されている。そして、エンジン11の出力軸12とキャリヤCR が接続され、エンジン11の回転がキャリヤCRに入力されるようになっており、リングギヤRと出力軸14が接続され、リングギヤRからトランスミッション13の回転が出力されるようになっている。また、サンギヤSとキャリヤCR間にはワンウェイクラッチFおよびクラッチCが接続されている。また、サンギヤSとハイブリ 50

ッド型車両のケース23間にはサンギヤSを選択的に係合させるプレーキBが接続されている。

【0012】トランスミッション13では、1速(1st)時にプレーキBが開放されると共にクラッチCが係合されると、プラネタリギヤユニット22は直結状態になり、エンジン11の回転数と同じ回転数の回転が出力軸14に出力される。また、2速(2nd)時にプレーキBが係合されると共にクラッチCが開放されると、サンギヤSが固定され、ワンウェイクラッチFをフリーにしながらキャリヤCRが回転し、プラネタリヤギヤユニット22はオーバドライブ状態になる。その結果、リングギヤRから増速された回転が出力軸14に出力される。なお、ワンウェイクラッチFおよびクラッチCは、リングギヤR、キャリヤSRおよびサンギヤSの任意の2要素間に配置してもよい。

【0013】このような構成のハイブリッド型車両による走行は、モータ15単独の駆動力で走行する第1 走行モード、エンジン11単独の駆動力で走行する第1 I 走行モード、および、エンジン11とモータ15との双方の駆動力で走行する第1 I I 走行モードの、3つの走行モードが走行条件によって自動的に選択されるようになっている。モータ15のみで走行する第1走行モードでは、プレーキBとクラッチCを開放して、モータ15に駆動電流を供給すると共にエンジン11を停止させる。この時、リングギヤRはモータ15のロータと共に回転するが、ワンウェイクラッチFがフリーになり、サンギヤSが逆方向に空転するので、エンジン11の停止状態が維持される。

【0014】一方、エンジン11のみで走行する第II 走行モードでは、モータ15への駆動電流の供給を停止 し、クラッチC又はプレーキBを係合してエンジン11 のみを駆動する。さらに、エンジン11とモータ15と の双方で走行する第IIIモードでは、クラッチC又は プレーキBを係合して、モータ15に駆動電流を供給す ると共に、エンジン11を駆動する。これによって、出 力軸16には、エンジン11とモータ15の双方の出力 の和が出力軸16に出力されることとなる。

【0015】ハイブリッド型車両は、このような各走行モードにおける各部を駆動制御するための制御部30を備えている。制御部30は、各種制御を行うCPU(中央処理装置)31を備えており、このCPU31にはデータバス等のパスライン32を介してROM(リード・オンリ・メモリ)33、RAM(ランダム・アクセス・メモリ)34、出力1/F(インターフェース)部35、入力1/F部36がそれぞれ接続されている。ROM33には、入力1/F部36から入力される各種信号に基づいてCPU31が走行状態等を判断し、各部を適切に制御するための各種プログラムやデータが格納されている。また、このROM33には、本実施例により特に制御される、モータ15単独運転状態からエンジン1

10 する。

5

1を始動する場合の、モータトルク制御動作を行うための各種プログラムやデータも格納されている。RAM34は、ROM33に格納されたプログラムやデータに従ってCPU31が処理を行うためのワーキングメモリであり、入力I/F部36から入力された各種信号や、出力I/F部35から出力した制御信号を一時的に記憶する。

【0016】出力I/F部35には、クラッチCの係合と開放を制御するクラッチコントローラ41、ブレーキBの係合と開放を制御するブレーキコントローラ44、 10スロットル・バルブの開度を調整するエンジンコントローラ42、モータ15の出力を制御するモータコントローラ43が、それぞれ接続されている。一方、入力I/F部36には、エンジン出力軸11の回転数、すなわちクラッチ入力側の回転数を検出する第1回転センサ45、トランスミッション出力軸14の回転数、すなわちクラッチ出力側の回転数を検出する第2回転センサ46、モータ出力軸16の回転数を検出する事建センサ47、アクセルの開度を検出するアクセルセンサ48、および、ブレーキペダルの踏み込み量を検出するブレーキ 20センサ49が、それぞれ接続されている。

【0017】次に、このように構成されたハイブリッド 型車両の駆動制御動作について説明する。

①メイン動作

図2は、ROM33に格納されたプログラムに従って、 CPU31によって制御されるメインルーチンの動作を 表したものである。CPU31は、まず初期設定(ステップ11)の後、モータ指令値を計算する(ステップ1 2)。

【0018】図3は、ステップ12において行われるモ 30 ータ指令値の計算動作(a)、およびトルク指令値を決定するマップ(b)を表したもので、動作を行うためのプログラムとマップはROM33に格納されている。この図3(a)に示すように、まずCPU31は、アクセルセンサ48、プレーキセンサ49および車速センサ47から、それぞれアクセル開度、プレーキ踏み込み量および車速を読み込み(ステップ121、122、123)、RAM34に格納する。そして、CPU31は、RAM34に格納したこれらの各値から、図3(b)に示す車速ートルク指令値マップをアクセスし、現在の車 40速に対するトルク指令値を決定する(ステップ124)。

【0019】図2のステップ12においてトルク指令値が決定されると、CPU31は、この決定したトルク指令値をモータ指令値としてモータコントローラ43に供給する(ステップ13)。そして、RAM34に格納した車速およびアクセル開度から、ハイブリッド型車両の走行モードを決定する(ステップ14)。図4は、ハイブリッド型車両の車速、アクセル開度と走行モードの関係を表したマップで、そのデータはROM33に格納さ50

れている。この実施例のハイブリッド型車両では、第1 走行モードから第1 1 1 モードのいずれかの走行モード が、車速およびスロットル開度によって選択されるよう になっている。この図4において、走行モードが変わる 速度およびアクセル開度は、大きくなる場合には実線 で、小さくなる場合には点線で示されている。この図4 のマップおよび車速等から決定された走行モードが、モータ単独で駆動する第1走行モードの場合(ステップ1 5;1)、ステップ12に戻ってモータ単独走行を継続

【0020】一方、エンジン単独で駆動する第II走行モードである場合、エンジン11を起動する(ステップ16)。このエンジン11の起動時に、②トルク制御動作で後述するモータ15のトルク制御が行われる。CPU31は、エンジン始動後に、エンジン11に対する指令値を計算する(ステップ17)。すなわち、CPU31は、図5に示すように、アクセルセンサ48で検出されるアクセル開度を読み込み(ステップ171)、スロットル開度をこのアクセル開度とする(ステップ172)。このスロットル開度がエンジンコントローラ42に指令され、エンジンコントローラ42では指令された開度にスロットル・バルブを調整する(ステップ18)。

【0021】そしてCPU31は、ステップ14と同様 にして、車速、アクセル開度等からハイブリッド型車両 の走行モードを決定する(ステップ19)。決定された 走行モードが走行モード I I の場合 (ステップ20; I 1)、ステップ17からステップ19までの動作を繰り 返す。一方、走行モード I の場合 (ステップ20: I)、モータ単独走行に切り換えるためにエンジン11 を停止し(ステップ21)、ステップ12に移行する。 【0022】ステップ15における走行モードが111 の場合、すなわち、モータ単独走行からエンジン11と モータ15双方による走行に移行する場合(ステップ1 5; III)、②トルク制御で動作する後述のエンジン 始動を行う (ステップ22)。 CPU31は、ステップ 22でエンジンを始動した後、又は、エンジン単独走行 から走行モード I I I に移行する場合 (ステップ20; III)、エンジン11とモータ15の指令値を計算す る (ステップ23)。

【0023】図6は、エンジン11とモータ15の指令 値を算出するためのもので、(a)はその算出動作を、

- (b) はトルク指令値を算出するためのマップを、
- (c) はスロットル開度を算出するためのマップを、それぞれ表したものである。この(a) の動作を行うプログラム、および(b)、(c) のマップは、ROM33に格納されている。図6(a)に示すように、CPU31は、まずアクセルセンサ48で検出されるアクセル開度を読み込む(ステップ231)、と共に、車速センサ47で検出される車速を検出し(ステップ232)、両

者をRAM34に格納する。

【0024】そして、CPU31は、検出した車速とア クセル開度とからモータトルク指令値を図6 (b) のマ ップに従って計算し、RAM34に格納する(ステップ 233)。さらに、アクセル開度からスロットル開度を 図6 (c) のマップに従って計算し、RAM34に格納 する (ステップ234)。 CPU31は、RAMに格納 した、スロットル開度をモータコントローラ43に指令 する (ステップ24) と共に、モータトルク指令値をモ ータコントローラ43に指令する(ステップ25)。そ 10 の後、ステップ19に移行して走行モードを決定し、決 定したモードによる走行を継続する。

【0025】②トルク制御

次に、図2におけるステップ16およびステップ22の エンジン始動動作で行われるトルク制御について説明す る。図7は、エンジン始動時における第1のモータトル ク制御の動作を表したものであり、図8はエンジン始動 時のタイムチャートを表したものである。いま、エンジ ンの始動を開始する前は、図8に示すように、クラッチ コントローラ41に供給されるクラッチ信号がOFFで 20 あり(a)、第1回転センサ45で検出されるエンジン 11の回転するN_z がO (rpm) であり(b)、イン ジェクション (INJ) 信号がOFFであり (c)、モ ータトルク指令値 🗓 がステップ12で計算されたトル ク指令値 Inoであるものとする。

【0026】この状態で、モード1から、モード11又 はモード111が選択され、エンジン11を始動する場 合、CPU31は、図7 (a) に示すようにクラッチ信 号をONに切り換え、クラッチON信号をクラッチコン トローラ41に供給する(ステップ161)。その後、 CPU31は、第1回転センサ45で検出されるエンジ ン11の回転数Ng (図8 (b)) を継続的に監視す る。そして、エンジン11の回転数N: が0 (rpm) からN に以上になったことを検知すると (ステップ16 2:Y)、CPU31は、クラッチCの係合が開始した ものと認識し、図8(d)に示すように、Inoであった モータトルク指令値 I レ を I 11 とし (ステップ16 3)、モータトルク制御を開始する。なお、モータトル ク指令値 I 』を I いにするタイミングとしては、タイマ によって時刻t1のクラッチ信号ONから時間Δtの後 40 に行うようにしてもよい。

【0027】エンジン11の回転数N_kが、例えば、5 00 [rpm] のエンジン始動回転数Nea以上になった ことを検知すると (ステップ164;Y) 、CPU31 は、エンジンコントローラ42に対してINJのON信 号を供給する(ステップ165)。これによってエンジ ン11は始動するが、このモータトルク指令値は 1 m に 確保されていため、出力軸16の出力トルクの落ち込み によるショックが防止される。

ΔN₂2以上になったことを検知すると(ステップ16 6)、CPU31はクラッチC係合の終了段階であると 認識する。ここで、Ngzは第2回転センサ46で検出さ れるクラッチ出力回転数であり、AN12は定数である。 このクラッチC係合の終了段階では、図11で示したよ うに、クラッチの相対回転数 AN (=Nt2-Nt) が O に近づくと、クラッチの動摩擦係数 (μd) が静摩擦係 数 (μ s) に近づいて大きくなるので、Ιπιとなってい るモータトルク指令値 I を更に大きくし、 I 112とする (ステップ167)。

【0029】そして、エンジン11の回転数Ng がNg2 になったことを検知すると (ステップ168)、CPU 31は、クラッチCの係合が終了したものと判断して、 モータトルク指令値 Ix を、エンジン始動開始前の値 I xoに戻して(ステップ169)、リターンする。

【0030】図9は、図2に示すステップ16、22の 動作で行われる第2のモータトルク制御動作のタイムチ ャートを表したものである。この第2のモータトルク制 御では、エンジン11の回転数Ng がNg3からNg2-Δ Ni2までの間、モータトルク指令値 I v を Iviよりも低 い「」。とするものである。第1のモータトルク制御で は、INJ信号ONでエンジン11が始動することによ って、エンジン11によるトルクが発生し、合成された 出力軸16のトルクが僅かに上昇する。このトルクの上 昇がモータトルク指令値 Imを Imaよりも低い Imaとす ることによって防止され、よりスムーズな運転が可能と なる。

【0031】以上説明した第1および第2のモータトル ク制御では、モータトルク指令値 I wi、 I wz、 I wa の値 を一定値としたが、本発明では、これに制限されるもの ではなく、例えば、エンジン11の回転数N: の変化率 に応じて変化させるようにしてもよい。また、以上説明 した実施例では、ハイブリッド型車両の構成として、図 1に示すようなトランスミッション13の構成を採用し たが、本発明ではこの構成に限定されるものではなく、 他の構成のトランスミッションとしてもよく、また、単 に湿式のクラッチによってエンジン11の出力軸12と モータ15のロータ軸とを接続する構成としてもよい。 また、実施例ではクラッチ出力回転数を第2回転センサ 46で検出する構成としたが、本発明では、車速センサ 47を兼用してもよい。

【0032】ところで、上記回転数検出手段は、クラッ チCの接続によるトルクの落ち込みの大きさを算出する ためにクラッチの係合の程度を検出するために用いてい る。この代わりに、例えば、クラッチの係合油圧を油圧 センサ等により検出して、検出油圧に基づきクラッチの 係合の程度を検出してもよい。また、クラッチの係合の 程度を検出し、これに基づくモータトルク制御を行うの ではなく、次のような手段を用いてもよい。例えば、上

【0028】更に、エンジン11の回転数NgがNgラー 50 記エンジンとモータを接続するクラッチの後(車輪側)

9

[0033]

【発明の効果】本発明によれば、電気モータのみによる 走行から内燃機関の駆動を伴う走行が選択され、内燃機 関を始動するクラッチを接続する場合に、電気モータの 発生トルクを大きくするように補正するトルク補正手段 を備えているので、上記クラッチを接続しても車両の駆 動トルクの落ち込みが防止され、安定した走行が可能と なる。

【図面の簡単な説明】

【図1】本発明の一実施例におけるハイブリッド型車両の概略の構成と回路を示図である。

【図2】同上、ハイブリッド型車両で制御されるメイン ルーチン動作のフローチャートである。

【図3】同上、メインルーチン動作におけるモータ指令 値の計算動作のフローチャート(a)と、モータ指令値 を決定するマップ(b)を示す図である。

【図4】同上、ハイブリッド型車両の車速、アクセル開 度と走行モードの関係を示す説明図である。

【図5】同上、メインルーチン動作におけるエンジン指 30 令値計算動作のフローチャートである。

【図6】同上、メインルーチン動作におけるエンジン指令値とモータ指令値の算出動作(a)、トルク指令値を算出するためのマップ(b)、スロットル開度を算出するためのマップ(c)を示す図である。

10

【図7】同上、メインルーチン動作における、エンジン 始動時の第1のモータトルク制御動作を示すフローチャ ートである。

【図8】同上、図7に対応するタイムチャートである。

【図9】同上、第2のモータトルク制御動作のタイムチャートである。

【図10】従来のハイブリッド型車両によるエンジン始 動動作のタイムチャートである。

【図11】クラッチの相対回転数と摩擦係数との関係を示す説明図である。

【図5】

【符号の説明】

- 11 エンジン
- 13 トランスミッション
- 15 モータ
- 30 制御部
- 20 31 CPU
 - 33 ROM
 - 34 RAM
 - 41 クラッチコントローラ
 - 42 エンジンコントローラ
 - 43 モータコントローラ
 - 45 第1回転センサ
 - 46 第2回転センサ
 - 47 車速センサ
 - 48 アクセルセンサ
 - 49 ブレーキセンサ
 - C クラッチ

[図3]

 E/G指令値計算

 + トルクク 値

 S171

 Fクセル開度読込

 スロットル開度

 =アクセル開度

 リターン

 ブレーキ階込量

S121 アクセル開度読込
S122 プレーキ階込量 読 込
(a) S123 車 連 読 込
S124 トルク指令値決定

【図2】

[図6]

[図8]

