1 PCB设计基本工艺要求

1.1 PCB 制造基本工艺及目前的制造水平*

PCB 设计最好不要超越目前厂家批量生产时所能达到的技术水平,否则无法加工或成本过高。

1.1.1 层压多层板工艺

层压多层板工艺是目前广泛使用的多层板制造技术,它是用减成法制作电路层,通过层压一机械钻孔一化学沉铜一镀铜等工艺使各层电路实现互连,最后涂敷阻焊剂、喷锡、丝印字符完成多层 PCB 的制造。目前国内主要厂家的工艺水平如表 3 所列。

技术指标			批量生产工艺水平		
1		基板类型	FR-4 (Tg=140°C)		
			FR-5 (Tg=170°C)		
2		最大层数	24		
3	一般	最大铜厚 外层 3 0Z/Ft ²			
	指标	内层	3 OZ/Ft ²		
4		最小铜厚 外层	1/3 0Z/Ft ²		
		内层	1/2 0Z/Ft ²		
5		最大 PCB 尺寸	500mm(20'') x 860mm(34'')		
6		最小线宽/线距 外层	0.1mm(4mil)/0.1mm(4mil)		
		内层	0.075mm(3mil)/0.075mm(3mil)		
7		最小钻孔孔径	0.25mm(10mil)		
8		最小金属化孔径	0.2mm(8mil)		
9	加工	最小焊盘环宽 导通孔 0.127mm(5mil)			
	能力	元件孔	0.2mm(8mil)		
10		阻焊桥最小宽度	0.1mm(4mil)		
11		最小槽宽	≥1mm(40mil)		
12		字符最小线宽	0.127mm(5mil)		
13		负片效果的电源、地层隔离盘环宽	≥0.3mm(12mil)		
14		层与层图形的重合度	\pm 0.127mm(5mil)		
15		图形对孔位精度	\pm 0.127mm(5mil)		
16	精度	图形对板边精度	$\pm exttt{0.254mm} exttt{(10mil)}$		
17	指标	孔位对孔位精度(可理解为孔基准孔)	\pm 0.127mm(5mil)		
18		孔位对板边精度	± 0.254 mm(10mil)		
19		铣外形公差	±0.1mm(4mil)		
20	ㅁㅗ	翘曲度 双面板/多层板	<1.0%/<0.5%。		
21	尺寸	成品板厚度公差 板厚>0.8mm	±10%		
	指标	板厚≤0.8mm	$\pm exttt{0.08mm} exttt{(3mil)}$		

表3 层压多层板国内制造水平

1.1.2 BUM (积层法多层板) 工艺*

BUM 板(Build-up multilayer PCB),是以传统工艺制造刚性核心内层,并在一面或双面再积层上更高密度互连的一层或两层,最多为四层,见图 1 所示。BUM 板的最大特点是其积层很薄、线宽线间距和导通孔径很小、互连密度很高,因而可用于芯片级高密度封装,设计准则见表 4。

对于 1+C+1,很多家公司均可量产。2+C+2 很少能量产,设计此类型的 PCB 时应与厂家联系,了解其生产工艺情况。

图 1 BUM 板结构示意图

设计要素	标准型	精细型I		精细型Ⅱ	精细型Ⅲ			
积层介电层厚(d1)			40-75					
外层基铜厚度(c1)			9-18					
线宽/线距	100/100	75/75	75/75		50/50	30/30		
内层铜箔厚度			35					
微盲孔孔径(v)	300	200	150		100	50		
微盲孔连接盘(c)	500	400	300		200	75		
微盲孔底连接盘(t)	500	400	300		200	75		
微盲孔电 <mark>镀</mark> 厚度			>12.7					
微盲孔孔深/孔径比			<0.7:1					
	用于 n 层与 n-2 层		用于 n 层与 n-1 层					
应用说明	一般含	安装 Flip chip、MCM、BGA、CSP 的基板						
	IVH(inner	1/0 间距 1/0 间距		距	>500 引脚	>1000 引脚		
	via hole)	0.8mm	0.5mm					
	的基板							
注: 精细型Ⅱ和精细型Ⅲ,目前工艺上还不十分成熟,暂时不要选。								

1.2 尺寸范围*

从生产角度考虑,理想的尺寸范围是"宽(200 mm~250 mm)×长(250 mm~350 mm)"。 对 PCB 长边尺寸小于 125mm、或短边小于 100mm 的 PCB, 采用拼板的方式, 使之转换为 符合生产要求的理想尺寸,以便插件和焊接。

1.3 外形***

- a) 对波峰焊, PCB 的外形必须是矩形的(四角为 R=1 mm~2 mm 圆角更好,但不做严格 要求)。偏离这种形状会引起 PCB 传送不稳、插件时翻板和波峰焊时熔融焊料汲起等问题。 因此,设计时应考虑采用工艺拼板的方式将不规则形状的 PCB 转换为矩形形状,特别是角部 缺口一定要补齐,如图 2 (a) 所示,否则要专门为此设计工装。
- b) 对纯 SMT 板,允许有缺口,但缺口尺寸须小于所在边长度的 1/3,应该确保 PCB 在链 条上传送平稳,如图 2(b)所示。

(a) 工艺拼板示意图

(b) 允许缺口尺寸

图 2 PCB 外形

c)对于金手指的设计要求见图 3 所示,除了插入边按要求设计倒角外,插板两侧边也应该设计($1\sim1.5$)× 45° 的倒角或 $R1\sim R1.5$ 的圆角,以利于插入。

图 3 金手指倒角的设计

1.4 传送方向的选择**

从减少焊接时 PCB 的变形,对不作拼版的 PCB,一般将其长边方向作为传送方向;对于拼版也应将长边方向作为传送方向。对于短边与长边之比大于 80%的 PCB,可以用短边传送。

1.5 传送边***

作为 PCB 的传送边的两边应分别留出≥3.5mm(138mil)的宽度,传送边正反面在离边 3.5 mm(138 mil)的范围内不能有任何元器件或焊点;能否布线视 PCB 的安装方式而定,导槽安装的 PCB 一般经常插拔不要布线,其他方式安装的 PCB 可以布线。

- 1.6 光学定位符号(又称 MARK 点)***
- 1.6.1 要布设光学定位基准符号的场合
- a) 在有贴片元器件的 PCB 面上,必须<mark>在板的四角部位选设 3</mark> 个光学定位基准符号,以 对 PCB 整板定位。 对于拼版,每块小板上对角处至少有两个。
- b) 引线中心距≤0.5 mm (20 mil) 的 QFP 以及中心距≤0.8 mm (31 mil) 的 BGA 等器件,应在通过该元件中心点对角线附近的对角设置光学定位基准符号,以便对其精确定位。

如果上述几个器件比较靠近(<100mm),可以把它们看作一个整体,在其对角位置设计两个光学定位基准符号。

c) 如果是双面都有贴装元器件,则每一面都应该有光学定位基准符号。

1.6.2 光学定位基准符号的位置

光学定位基准符号的中心应离边 5mm 以上,如图 4 所示。

1.6.3 光学定位基准符号的尺寸及设计要求

光学定位基准符号设计成Φ1 mm (40 mi I)的圆形图形,一般为 PCB 上覆铜箔腐蚀图形。 考虑到材料颜色与环境的反差,留出比光学定位基准符号大 1 mm (40 mi I)的无阻焊区, 也不允许有任何字符,见图 5。

同一板上的光学定位基准符号其内层背景要相同,即三个基准符号下有无铜箔应一致。 周围 10mm 无布线的孤立光学定位符号应设计一个内径为 3mm 环宽 1mm 的保护圈。

特别注意,光学定位基准符号必须赋予坐标值(当作元件设计),不允许在 PCB 设计完后以一个符号的形式加上去。

图 5 光学定位基准符号设计要求

1.7 定位孔***

每一块 PCB 应在其角部位置设计至少三个定位孔,以便在线测试和 PCB 本身加工时进行定位。关于定位孔位置及尺寸要求,详见 Q/ZX 04.100.3。

如果作拼板,可以把拼板也看作一块 PCB,整个拼板只要有三个定位孔即可。

1.8 挡条边*

对需要进行波峰焊的宽度超过 200 mm (784 mil) 的板,除与用户板类似的装有欧式插座的板外,一般非送边也应该留出≥3.5mm(138mil)宽度的边;在 B 面 (焊接面)上,距挡条边 8mm 范围内不能有元件或焊点,以便装挡条。

如果元器件较多,安装面积不够,可以将元器件安装到边,但必须另加上工艺挡条边(通过拼板方式)。

1.9 孔金属化问题*

定位孔、非接地安装孔,一般均应设计成非金属化孔。