

# 视觉同步定位与地图构建

吴毅红,中国科学院大学,2020春季



官方微博: http://weibo.com/u/5146164852



### SLAM 起源

同步定位与地图构建:

Simultaneous Localization and Mapping, SLAM, Concurrent Mapping and Localization, CML

SLAM问题最早由Randall C. Smith 和Peter Cheeseman等于80年代提出:

• R.C. Smith and Peter Cheeseman. On the representation and estimation of spatial uncertainty. The International Journal of Robotics Research 5.4 (1986): 56-68.

并于1995 International Symposium on Robotics Research中正式命名:

• H. Durrant-Whyte, D. Rye, and E. Nebot. Localisation of automatic guided vehicles. The 7th International Symposium on Robotics Research (1995): 613–625.



机器人SLAM问题主要研究机器人在未知环境中,从一个位置出发,如何利用自身传感器对环境进行观测,同时建立环境地图,并确定自己在地图中的位置。SLAM技术具有重要的理论价值和应用价值,被许多学者认为是移动机器人实现真正自主的关键,甚至称其为自主移动机器人界的"圣杯(Holy Grail)"!



### 视觉SLAM分类





### Marker SLAM

通常的marker SLAM,是设计一些特殊的标志物,提取图像特征,进行空间点与图像点的匹配,利用PnP来进行定位。







### 无需匹配的marker SLAM





### 学习 SLAM

- 1. K. Tateno, F. Tombari, et al. CNN-SLAM: Real-time Dense Monocular SLAM with Learned Depth Prediction. CVPR 2017.
- 2. B. Ummenhofer, H. Z. Zhou, et al. DeMoN: Depth and Motion Network for Learning Monocular Stereo. CVPR 2017.
- 3. T. H. Zhou, M. Brown, N. Snavely, D.G. Lowe. Unsupervised Learning of Depth and Ego-Motion from video. CVPR 2017.
- 4. Michael Bloesch, Jan Czarnowski, Ronald Clark, et al. CodeSLAM Learning a Compact, Optimisable Representation for Dense Visual SLAM. CVPR 2018. (Honorable Mention)
- 5. Chaplot, D.S., Gandhi, D., Gupta, S., Gupta, A. and Salakhutdinov, R., 2020. Learning To Explore Using Active Neural SLAM. In International Conference on Learning Representations. 2020.(Winner of the <a href="CVPR 2019 Habitat">CVPR 2019 Habitat</a>
  <a href="Navigation Challenge">Navigation Challenge</a>) (<a href="https://github.com/devendrachaplot/Neural-SLAM">https://github.com/devendrachaplot/Neural-SLAM</a>)



# 拓扑SLAM

- J. Vallvé, J. Solà, J. Andrade-Cetto. Graph SLAM Sparsification with Populated Topologies Using Factor Descent Optimization. IEEE Robotics and Automation Letters, 2018.
- N. Sünderhauf and P. Protzel. Switchable Constraints for Robust Pose Graph SLAM. IROS, pp. 1879-1884, 2012.
- Y. Latif, C. Cadena, J. Neira. Robust Graph SLAM Back-Ends: A Comparative Analysis. IROS, 2014.

### 几何SLAM



- •滤波SLAM
- 关键帧SLAM

- H. Strasdat, J. M. M. Montiel, and A. J. Davison. Real-time monocular SLAM: Why filter? 2010 IEEE International Conference on Robotics and Automation, 2010, pp. 2657–2664.
- R. Mur-Artal, J. M. M. Montiel, and J. D. Tard & ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE T-RO, vol. 31, no. 5, pp. 1147–1163, Oct. 2015

**Andrew Davison** 

MonoSLAM, 2006 首次实现单目实时 SLAM



PTAM, 2007

### 基本关键概念

- EKF
- SFM
- Keyframe
- Bundle adjustment
- Loop closure detection

• G. Klein and D. W. Murray. Parallel tracking and mapping for small AR workspaces. In *Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR)*, 2007.

• E. Eade and T. Drummond. Monocular SLAM as a graph of coalesced observations. In *Proceedings of the International Conference on Computer Vision (ICCV)*, 2007.

 we can conclude that filter-based SLAM frameworks might be beneficial if a small processing budget is available, but that BA optimization is superior elsewhere.

 These results are shown to be remarkably independent of the particular motion and scene setting.

# ORB-SLAM: A Versatile and Accurate Monocular SLAM System

### 基本关键概念:

- fast 角点
- ·ORB 描述子
- 基本矩阵
- 平面homography
- Graph
- Covisibility graph
- Bundle adjustment
- Loop closure detection



#### **ORB-SLAM: Real-Time Monocular SLAM**





### **Automatic Map Initialization**

#### Model Selection

Homography

(Planar, Low Parallax)

**Fundamental Matrix** 

(General)



### **Keyframe Selection**

# **Survival of the Fittest KeyFrame Selection**

Fast Keyframe Insertion (no distance threshold)

Culling of redundant Keyframes



### Relocalization

Bag of wordsORB descriptors

|                       | ORB-SLAM | PTAM | RGBD-SLAM | LSD-SLAM |
|-----------------------|----------|------|-----------|----------|
| fr1_xyz               | 0.90     | 1.15 | 1.34      | 9.00     |
| fr2_xyz               | 0.30     | 0.20 | 1.42      | 2.15     |
| fr1_floor             | 2.99     |      | 3.51      | 38.07    |
| fr1_desk              | 1.69     |      | 2.52      | 10.65    |
| fr2_360<br>_kidnap    | 3.81     | 2.63 | 100.5     |          |
| fr2_desk              | 0.88     |      | 3.94      | 4.57     |
| fr3_long<br>_office   | 3.45     |      | -         | 38.53    |
| fr3_nstr_<br>tex_near | 1.39     | 2.74 | -         | 7.54     |
| fr3_str_<br>tex_far   | 0.77     | 0.93 | -         | 7.95     |
| fr3_str_<br>tex_near  | 1.58     | 1.04 | -         |          |
| fr2_desk<br>_person   | 0.63     |      | 2.00      | 31.73    |
| fr3_sit_<br>xyz       | 0.79     | 0.83 | -         | 7.73     |
| fr3_sit_<br>_halfsph  | 1.34     |      | -         | 5.87     |
| fr3_walk<br>_xyz      | 1.24     |      | -         | 12.44    |
| fr3_walk<br>_halfsph  | 1.74     |      | -         |          |



#### **TUM RGB-D Benchmark**

### RMSE (cm)

RGB-D SLAM results taken from the benchmark website



### 课后作业

### 了解四足机器人

• 综述

https://mp.weixin.qq.com/s/kVbjZdw6t9wymCd84oXbpA

• 国内外四足机器人团队

https://mp.weixin.qq.com/s/oTELx9nJLDEnqAvdTquhjA

# 谢

谢

yhwu@nlpr.ia.ac.cn http://vision.ia.ac.cn/



模式识别国家重点实验室宣传小组 模识识别国家重点实验室综合办公室 2014年10月31日 制作