Hint_Quantitative Trade Model with Variable Markups

Preference

- ullet Consider N countries, indexed by $i=1,\dots,N$ countries, with labor $\left(L_i
 ight)_{i=1}^N$
- The representative consumer in country n has the Kimball's preference over a continuum of varieties:

$$\int_{\omega\in\Omega_n}H\left(rac{q_n(\omega)}{Q_n}
ight)\!d\omega=1$$

- Q_n is the aggregate quantity consumed
- Function H(.) is strictly increasing, strictly concave, and satisfies H(1) = 1.

$$ullet$$
 CES: $H(x)=x^{rac{\sigma-1}{\sigma}}$ for $\sigma>1\Rightarrow Q_n=\left(\int_{\omega\in\Omega_n}q_n(\omega)^{rac{\sigma-1}{\sigma}}d\omega
ight)^{rac{\sigma}{\sigma-1}}$

• The inverse demand function of variety ω in country n:

$$rac{p_n(\omega)}{P_n} = H'\left(rac{q_n(\omega)}{Q_n}
ight) D_n$$

- Demand index: $D_n \equiv \left[\int_{\omega \in \Omega_n} H'\left(rac{q_n(\omega)}{Q_n}
 ight) rac{q_n(\omega)}{Q_n} d\omega
 ight]^{-1}$
- Price index: $P_n = \int_{\omega \in \Omega_n} p_n(\omega) rac{q_n(\omega)}{Q_n} d\omega = \int_{\omega \in \Omega_n} p_n(\omega) H^{'-1}\left(rac{p_n(\omega)}{P_n} rac{1}{D_n}
 ight) d\omega$
- Please derive D_n and P_n under CES
- Klenow and Willis (2016):

$$H(x) = 1 + (\sigma - 1) \exp\left(rac{1}{arepsilon}
ight) arepsilon^{rac{\sigma}{arepsilon} - 1} \left[\Gamma\left(rac{\sigma}{arepsilon}, rac{1}{arepsilon}
ight) - \Gamma\left(rac{\sigma}{arepsilon}, rac{x^{rac{arepsilon}{\sigma}}}{arepsilon}
ight)
ight]$$

- $\Gamma(s,x)$ denotes the upper incomplete Gamma function: $\Gamma(s,x):=\int_x^\infty t^{s-1}e^{-t}dt$
- $\sigma > 1$; $\varepsilon \geq 0$
- F.O.C.: $H'(x) = \frac{\sigma-1}{\sigma} \exp\left(\frac{1-x^{\frac{\varepsilon}{\sigma}}}{\varepsilon}\right)$
- CES: $\varepsilon=0\Rightarrow H\left(x
 ight)=x^{\frac{\sigma-1}{\sigma}}$

Technology

- Each variety ω is produced by a firm using labor under monopolistic competition
- To serve destination market n, firm needs to pay a fixed marketing cost $F_n>0$ in units of labor in n
- Exporting from country i to n incurs an iceberg trade cost $au_{in} \geq 1$ with $au_{ii} = 1$
- Before entry, each potential firm in country i pays a fixed entry cost f^e in units of labor in i

• After paying the fixed entry cost f^e , firm ω in country i draws its productivity $\varphi_i(\omega)$ from a Pareto distribution:

$$\Pr\left(\varphi_i(\omega) \leq \varphi\right) = 1 - T_i \varphi^{-\theta}$$

with support $arphi \geq T_i^{rac{1}{ heta}}$

Intenstive Margin of International Trade

- Transform productivity distribution into cost distribution:
 - The effective cost of firm ω from country i serving in country n: $c_{in}(\omega) \equiv \frac{w_i \tau_{in}}{\varphi_i(\omega)}$
 - The CDF of $c_{in}(\omega)$:

$$G_{in}(c) \equiv \Pr\left(c_{in}(\omega) \leq c
ight) = ar{T}_{in}^{ heta}c^{ heta}, \quad c \leq rac{1}{ar{T}_{in}}, \quad ar{T}_{in} \equiv T_i^{rac{1}{ heta}}(w_i au_{in})^{-1}$$

where $1/\bar{T}_{in}$ is the fundamental cost upper bound of entry of international trade from i to n

• Suppose that firm ω from country i serves market n. Then it decides quantity $q_{in}(\omega)$ to maximize its operating profit at market n:

$$ilde{\pi}_{in}(\omega) = \max_{q_{in}(\omega) \geq 0} \left[H'\left(rac{q_{in}(\omega)}{Q_n}
ight) D_n P_n - c_{in}(\omega)
ight] q_{in}(\omega)$$

• Solution under Klenow and Willis: Let $s_{in}(\omega)\equiv \frac{q_{in}(\omega)}{Q_n}$ be the relative output. Then the optimal pricing:

$$p_{in}\left(\omega
ight)=\mu\left(s_{in}(\omega)
ight)c_{in}(\omega),\quad \mu\left(s_{in}(\omega)
ight)\equivrac{\sigma s_{in}(\omega)^{-rac{arepsilon}{\sigma}}}{\sigma s_{in}(\omega)^{-rac{arepsilon}{\sigma}}-1}$$

where markup $\mu\left(s_{in}(\omega)
ight)$ is increasing with $s_{in}(\omega)$ if arepsilon>0

Extensive Margin of International Trade

• Let $X_n \equiv P_n Q_n$ be the aggregate expenditure in country n. Then the operating profit of firm ω from country i in country n:

$$ilde{\pi}_{in}(\omega) = rac{s_{in}(\omega)^{rac{arepsilon}{\sigma}}}{\sigma} rac{\sigma - 1}{\sigma} \mathrm{exp}\left(rac{1 - s_{in}(\omega)^{rac{arepsilon}{\sigma}}}{arepsilon}
ight) s_{in}(\omega) D_n X_n$$

- $s_{in}(\omega)$ summarizes firm ω 's performance in market n: connect it with $c_{in}(\omega)$
 - Inverse demand function: $p_{in}(\omega) = H'(s_{in}(\omega))D_nP_n = rac{\sigma-1}{\sigma} \exp\left(rac{1-s_{in}(\omega)^{rac{arepsilon}{\sigma}}}{arepsilon}
 ight)D_nP_n$
 - Optimal pricing: $p_{in}\left(\omega
 ight)=rac{\sigma s_{in}\left(\omega
 ight)^{-rac{arepsilon}{\sigma}}}{\sigma s_{in}\left(\omega
 ight)^{-rac{arepsilon}{\sigma}}-1}c_{in}\left(\omega
 ight)$
 - · Combining these two equations leads to

$$rac{\sigma}{\sigma-s_{in}(\omega)^{rac{arepsilon}{\sigma}}}c_{in}(\omega)=rac{\sigma-1}{\sigma}\mathrm{exp}\left(rac{1-s_{in}(\omega)^{rac{arepsilon}{\sigma}}}{arepsilon}
ight)\!D_{n}P_{n}$$

- Therefore, $s_{in}(\omega)$ can be expressed as a function of $c_{in}(\omega)$: $s_{in}(\omega) = s_n(c_{in}(\omega))$
- Firm ω from country i will serve market n if and only if $\tilde{\pi}(\omega) \geq w_n F_n$, or equivalently

$$rac{s_n(c_{in}(\omega))^{rac{arepsilon}{\sigma}}}{\sigma}rac{\sigma-1}{\sigma}\mathrm{exp}\left(rac{1-s_n(c_{in}(\omega))^{rac{arepsilon}{\sigma}}}{arepsilon}
ight)\!s_n(c_{in}(\omega))D_nX_n\geq w_nF_n$$

• The cost cut-off of entering into trade from i to n satisfies:

$$rac{s_n(c_n^*)^{rac{arepsilon}{\sigma}}}{\sigma}rac{\sigma-1}{\sigma}\mathrm{exp}\left(rac{1-s_n(c_n^*)^{rac{arepsilon}{\sigma}}}{arepsilon}
ight)\!s_n(c_n^*)D_nX_n=w_nF_n$$

• To ensure that for any pair (i,n) there are firms that do not operate, we assume that F_n is sufficiently large so that

$$c_n^* < \min\left\{rac{1}{ar{T}_{in}}, rac{\sigma-1}{\sigma} \mathrm{exp}\left(rac{1}{arepsilon}
ight) D_n P_n
ight\}, \quad orall (i,n)$$

Aggregation

• Let M_i be the mass of firms in country i. Let X_{in} be the value of exports from i to n. Then

$$\lambda_{in} \equiv rac{X_{in}}{X_n} = rac{M_iar{T}_{in}^ heta}{\sum_{k=1}^N M_kar{T}_{kn}^ heta}$$

• Let Π_{in} be the aggregate operating profit from trade value X_{in} :

$$rac{\Pi_{in}}{X_{in}} = \eta_n \equiv rac{\int_0^{c_n^*} rac{s_n(c)rac{arepsilon}{\sigma}}{\sigma} rac{\sigma-1}{\sigma} \mathrm{exp}\left[rac{1-s_n(c)rac{arepsilon}{\sigma}}{arepsilon}
ight] s_n(c)c^{ heta-1}dc}{\int_0^{c_n^*} rac{\sigma-1}{\sigma} \mathrm{exp}\left[rac{1-s_n(c)rac{arepsilon}{\sigma}}{arepsilon}
ight] s_n(c)c^{ heta-1}dc}$$

• Price index: $P_n = \sum_{i=1}^N M_i \int_0^{c_n^*} p_{in}(c) s_{in}(c) dG_{in}(c)$. Therefore,

$$P_n = \sum_{i=1}^N
u_{in}^P M_i ar{T}_{in}^{ heta}, \quad
u_{in}^P \equiv \left[heta \int_0^{c_n^*} rac{\sigma}{\sigma - s_n(c)^{rac{arepsilon}{\sigma}}} c s_n(c) c^{ heta - 1} dc
ight]$$

• Finally, by the definition of H(.), we have

$$\sum_{i=1}^{N}M_{i}ar{T}_{in}^{ heta} heta\int_{0}^{c_{n}^{st}}H\left(s(c)
ight)\!c^{ heta-1}dc=1$$

Equilibrium

Equilibrium consists of $(w_i, M_i, P_i, D_i, c_i^*)_{i=1}^N$ such that:

• (w_i) is determined by labor market clearing:

$$w_i L_i = \underbrace{\sum_{n=1}^{N} (1 - \eta_n) \lambda_{in} X_n}_{\text{production wage income}} + \underbrace{w_i F_i(c_i^*)^{\theta} \sum_{k=1}^{N} M_k \bar{T}_{ki}^{\theta}}_{\text{fixed marketing cost}} + \underbrace{\sum_{n=1}^{N} \left[\eta_n \lambda_{in} X_n - w_n F_n(c_n^*)^{\theta} M_i \bar{T}_{in}^{\theta} \right]}_{\text{net profit}}$$

• Firm mass M_i is determined by the free-entry condition:

$$M_i w_i f^e = \sum_{n=1}^N \left[\eta_n \lambda_{in} X_n - w_n F_n(c_n^*)^{ heta} M_i ar{T}_{in}^{ heta}
ight]$$

- Total expenditure in country i: $X_i = w_i L_i$
- Price index:

$$P_n = \sum_{i=1}^N
u_{in}^P M_i ar{T}_{in}^ heta, \quad
u_{in}^P \equiv \left[heta \int_0^{c_n^*} rac{\sigma}{\sigma - s_n(c)^rac{arepsilon}{\sigma}} c s_n(c) c^{ heta - 1} dc
ight]$$

• (c_n^*, D_n) are jointly determined by:

$$rac{s_n(c_n^*)^{rac{arepsilon}{\sigma}}}{\sigma}rac{\sigma-1}{\sigma}\mathrm{exp}\left(rac{1-s_n(c_n^*)^{rac{arepsilon}{\sigma}}}{arepsilon}
ight)\!s_n(c_n^*)D_nX_n=w_nF_n$$

and

$$\sum_{i=1}^{N}M_{i}ar{T}_{in}^{ heta} heta\int_{0}^{c_{n}^{st}}H\left(s(c)
ight)\!c^{ heta-1}dc=1$$

Algorithm

- Draw J numbers from the uniform distribution U[0,1], sorting them as $u_1 < u_2 < \ldots < u_J$
- Initial guess $(w_i, M_i, P_i, D_i)_{i=1}^N$
- Compute the cutoff of $s_{in}(\omega)$ below which firms will not serve the market n by solving the nonlinear equation:

$$rac{\left(s_{n}^{*}
ight)^{rac{arepsilon}{\sigma}}}{\sigma}rac{\sigma-1}{\sigma}\mathrm{exp}\left(rac{1-\left(s_{n}^{*}
ight)^{rac{arepsilon}{\sigma}}}{arepsilon}
ight)\!s_{n}^{*}D_{n}X_{n}=w_{n}F_{n}$$

Obtain the cost cut-off:

$$c_n^* = rac{\sigma - (s_n^*)^{rac{arepsilon}{\sigma}}}{\sigma} rac{\sigma - 1}{\sigma} \mathrm{exp}\left(rac{1 - (s_n^*)^{rac{arepsilon}{\sigma}}}{arepsilon}
ight) D_n P_n$$

- Compute $ar{T}_{in}\equiv T_i^{rac{1}{ heta}}{(w_i au_{in})}^{-1}$ and $\lambda_{in}=rac{M_iar{T}_{in}^{ heta}}{\sum_{k=1}^NM_kar{T}_{kn}^{ heta}}$
- Let $c_n^j = u_j c_n^*$ be the simulated cost for firm j. Then compute the corresponding s_n^j by solving the following nonlinear equation:

$$rac{\sigma}{\sigma-\left(s_{n}^{j}
ight)^{rac{arepsilon}{\sigma}}}c_{n}^{j}=rac{\sigma-1}{\sigma}\mathrm{exp}\left(rac{1-\left(s_{n}^{j}
ight)^{rac{arepsilon}{\sigma}}}{arepsilon}
ight)D_{n}P_{n}$$

Monte Carlo integration: Compute

$$\eta_n = rac{\sum_{j=1}^{J} rac{\left(s_n^j
ight)^{rac{arepsilon}{\sigma}}}{\sigma} \mathrm{exp}\left[rac{1-\left(s_n^j
ight)^{rac{arepsilon}{\sigma}}}{arepsilon}
ight] s_n^j {\left(c_n^j
ight)}^{ heta-1}}{\sum_{j=1}^{J} \mathrm{exp}\left[rac{1-\left(s_n^j
ight)^{rac{arepsilon}{\sigma}}}{arepsilon}
ight] s_n^j {\left(c_n^j
ight)}^{ heta-1}}$$

Monte Carlo integration: Compute

$$u_n^P = rac{c_n^*}{J} \sum_{j=1}^J rac{ heta \sigma}{\sigma - \left(s_n^j
ight)^{rac{arepsilon}{\sigma}}} s_n^j ig(c_n^jig)^ heta$$

Update D_n by

$$D_n = D_n imes \left[\sum_{i=1}^N M_i ar{T}_{in}^{ heta} rac{c_n^*}{J} heta \sum_{j=1}^J H\left(s_n^j
ight) \left(c_n^j
ight)^{ heta-1}
ight]^{rac{1}{1+ heta}}$$

• Update w_i by

$$w_i L_i = \sum_{n=1}^{N} \left(1 - \eta_n
ight) \! \lambda_{in} X_n + w_i F_i(c_i^*)^ heta \sum_{k=1}^{N} M_k ar{T}_{ki}^ heta + \sum_{n=1}^{N} \left[\eta_n \lambda_{in} X_n - w_n F_n(c_n^*)^ heta M_i ar{T}_{in}^ heta
ight]$$

Update M_i by

$$M_i w_i f^e = \sum_{n=1}^N \left[\eta_n \lambda_{in} X_n - w_n F_n(c_n^*)^ heta M_i ar{T}_{in}^ heta
ight]$$

Update P_n by

$$P_n = \left[(P_n)^{- heta-1}
u_n^P \sum_{i=1}^N M_i ar{T}_{in}^ heta
ight]^{-rac{1}{ heta}}$$

- Iterate until convergence
- Verify whether $c_n^* < \min\left\{ \frac{1}{\bar{T}_{in}}, \frac{\sigma-1}{\sigma} \exp\left(\frac{1}{arepsilon}\right) D_n P_n
 ight\}, \quad orall (i,n)$

Welfare and Aggregate Markup

- Welfare: $U_i = \frac{w_i}{P_i}$
- Aggregate markup: as suggested by Edmond et al. (2019), we compute a salesweighted harmonic average:

$$ar{\mu}_n^D \equiv \left[heta\left(\sum_{i=1}^N M_i ar{T}_{in}^ heta
ight)\int_0^{c_n^*} \left(rac{\sigma}{\sigma-s_n(c)^rac{arepsilon}{\sigma}}
ight)^{-1}rac{p_n(c)}{P_n}s_n(c)c^{ heta-1}dc
ight]^{-1} = \left[rac{ heta}{
u_n^P}\int_0^{c_n^*}s_n(c)c^{ heta}dc
ight]^{-1}$$

CES case

- D_n will be constant
- Aggregate fixed marketing cost, $w_i F_i(c_i^*)^\theta M_k \bar{T}_{ki}^\theta$, will be a constant share of trade value X_{ki} (you need to derive that share)
- Solve for the CES equilibrium (w_i,M_i,P_i) and utilize it as the initial guess for the non-CES case