Regular Expression

#As discussed earlier that a* generates Λ, a, aa, aaa, ... and a⁺ generates a, aa, aaa, aaaa, ..., so the language $L_1 = \{\Lambda, a, aa, aaa, ...\}$ and $L_2 = \{a, aa, aaa, aaaa, ...\}$ can simply be expressed by a* and a+, respectively. a* and a* are called the regular expressions (RE) for L_1 and L_2 respectively. **Note:** a^+ , aa^* and a^*a generate L_2 .

Defining Languages (continued)...

Method (Regular Expressions)

- Consider the language $L=\{\Lambda, x, xx, xxx,...\}$ of strings, defined over $\Sigma=\{x\}$.
 - We can write this language as the Kleene star closure of alphabet Σ or $L=\Sigma^*=\{x\}^*$
 - this language can also be expressed by the regular expression \mathbf{x}^* .
- Similarly the language $L=\{x, xx, xxx,....\}$, defined over $\Sigma=\{x\}$, can be expressed by the regular expression x^+ .

- Now consider another language L, consisting of all possible strings, defined over $\Sigma = \{a, b\}$. This language can also be expressed by the regular expression $(a + b)^*$.
- Now consider another language L, of strings having exactly double a, defined over $\Sigma = \{a, b\}$, then it's regular expression may be

b*aab*

Now consider another language L, of even length, defined over $\Sigma = \{a, b\}$, then it's regular expression may be

$$((a+b)(a+b))^*$$

Now consider another language L, of odd length, defined over $\Sigma = \{a, b\}$, then it's regular expression may be

$$(a+b)((a+b)(a+b))^*$$
 or $((a+b)(a+b))^*$

Remark

It may be noted that a language may be expressed by more than one regular expressions, while given a regular expression there exist a unique language generated by that regular expression.

#Example:

- Consider the language, defined over $\Sigma = \{a, b\}$ of words having at least one a, may be expressed by a regular expression $(a+b)^*a(a+b)^*$.
- Consider the language, defined over $\Sigma = \{a, b\}$ of words having at least one a and one b, may be expressed by a regular expression

$$(a+b)^*a(a+b)^*b(a+b)^*+ (a+b)^*b(a+b)^*a(a+b)^*$$
.

- Consider the language, defined over Σ={a, b}, of words starting with double a and ending in double b then its regular expression may be aa(a+b)*bb
- \triangle Consider the language, defined over $\Sigma=\{a, b\}$ of words starting with a and ending in b OR starting with b and ending in a, then its regular expression may be $a(a+b)^*b+b(a+b)^*a$

TASK

- Consider the language, defined over $\Sigma=\{a, b\}$ of **words beginning with a**, then its regular expression may be $a(a+b)^*$
- Consider the language, defined over $\Sigma=\{a, b\}$ of words beginning and ending in same letter, then its regular expression may be $\Lambda + a(a+b)^*a+b(a+b)^*b$

TASK

- Consider the language, defined over
 - Σ ={a, b} of **words ending in b**, then its regular expression may be $(a+b)^*b$.
- Consider the language, defined over
 - Σ ={a, b} of **words not ending in a**, then its regular expression may be $(a+b)^*b + \Lambda$. It is to be noted that this language may also be expressed by $((a+b)^*b)^*$.

Task

Determine the RE of the language, defined over $\Sigma = \{a, b\}$ of words beginning with a.

Solution:

The required RE may be a(a+b)*

Determine the RE of the language, defined over $\Sigma=\{a, b\}$ of words beginning with and ending in same letter.

Solution:

The required RE may be $(a+b)+a(a+b)^*a+b(a+b)^*b$

Task Continued ...

Determine the RE of the language, defined over $\Sigma = \{a, b\}$ of **words ending in b.**

Solution:

The required RE may be $(a+b)^*b$.

Determine the RE of the language, defined over Σ ={a, b} of words not ending in a.

Solution: The required RE may be $(a+b)^*b + \Lambda \text{ Or } ((a+b)^*b)^*$