PCT/US00/26442

SEQUENCE LISTING

<110> E.I. du Pont de Nemours and Company <120> Genes Encoding Sterol Delta-14 Reductase in Plants <130> BB1395 PCT <140> <141> <150> 60/156,820 <151> 1999-09-30 <160> 10 <170> Microsoft Office 95 <210> 1 <211> 427 <212> DNA <213> Glycine max <220> <221> unsure <222> (360) <400> 1 gtgatgatgg agtcacacgt ggatctaggt tttctccttc aagctctcac tccatcttgg aactccgttc ctttgcttgt ggggttcttc acttacttgg ccgttgctgg atccattctc 120 cctggaaaac ttgttcctgg cgttgcacta ctcgatggaa ctcgtctaca ctattgctgc 180 aatggtctgc tctcgcttct tctgttggtt gcacttctcg ggatcggtgc caagatgggt 240 tttgtgtctc ccactgccat atcaaacaga ggacttgagc tgctgtccac aacttttgcc 300 ttcagttttc ttgtaaccct gatattgcat ttttccgggt gcaagtcaca aagtaaaggn 360 tcatcactaa agcctcatct cagtgggaac ctgatacacg attggtggtt tgggaataca 420 actaaaa <210> 2 <211> 126 <212> PRT <213> Glycine max <400> 2 Leu Gln Ala Leu Thr Pro Ser Trp Asn Ser Val Pro Leu Leu Val Gly Phe Phe Thr Tyr Leu Ala Val Ala Gly Ser Ile Leu Pro Gly Lys Leu Val Pro Gly Val Ala Leu Leu Asp Gly Thr Arg Leu His Tyr Cys Cys Asn Gly Leu Leu Ser Leu Leu Leu Val Ala Leu Leu Gly Ile Gly 50 55 Ala Lys Met Gly Phe Val Ser Pro Thr Ala Ile Ser Asn Arg Gly Leu

75

70

WO 01/23539 PCT/US00/26442

Glu Leu Leu Ser Thr Thr Phe Ala Phe Ser Phe Leu Val Thr Leu Ile 85 90 95

Leu His Phe Ser Gly Cys Lys Ser Gln Ser Lys Gly Ser Ser Leu Lys 100 105 110

Pro His Leu Ser Gly Asn Leu Ile His Asp Trp Trp Phe Gly 115 120 125

- <210> 3
- <211> 1631
- <212> DNA
- <213> Glycine max

<400> 3

```
ccgcgttgga atttgcccat ctaaaacctc aatcttttac tgaaaagtct caactttgaa
                                                                    60
ctcactcgaa gtgatgatgg agtcacacgt ggatctaggt tttctccttc aagctctcac
                                                                   120
tocatcttgg aactccgttc ctttgcttgt ggggttcttc acttacttgg ccgttgctgg
                                                                   180
                                                                   240
atccattctc cctggaaaac ttgttcctgg cgttgcacta ctcgatggaa ctcgtctaca
ctattqctqc aatqqtctqc tctcqcttct tctgttggtt gcacttctcg ggatcggtgc
                                                                   300
                                                                   360
caagatgggt tttgtgtctc ccactgccat atcagacaga ggacttgagc tgctgtccac
                                                                   420
aacttttgcc ttcagttttc ttgtaaccct gatattgcat ttttccggtt gcaagtcaca
aagtaaaggt tcatcactaa agcctcatct cagtggaaac ctgatacacg attggtggtt
                                                                   480
tggtatacaa ctaaatccac agttcatggg tatcgacctc aaatttttct ttgttagagc
                                                                   540
tggaatgatg ggatggctac ttatcaattt atctattctt atgaagagca ttcaagatgg
                                                                   600
tactttgagc cagtcaatga ttctctacca gctattctgt gcactataca tcctggacta
                                                                   660
ttttgtacat gaagagtaca tgacatccac ctgggacata attgcagaga gactgggctt
                                                                   720
catgitggtc titggagatt tagtgiggat tcctttctct ticagcatac agggatggtg
                                                                   780
qctcttgatg aacagtgtgg agttaacacc agctgccatt gtagctaatt gctttgtgtt
cctgattgga tacatggtat ttcgaggagc aaacaagcaa aagcatgtgt tcaaaaagaa
tccaaaggct cctatctggg gtaagcctcc aaaagtcatt ggtggaaagc tacttgcttc
tggttattgg ggtattgcta gacactgtaa ttacctaggg gatttgatgc ttgctctctc 1020
ctttagctta ccatgtggga taagttcacc aattccatac ttctatccaa tttatcttct 1080
tattctqtta atctqqaqaq agagaaggga tgaagctcgt tgcgccgaga agtatagaga 1140
gatatgggcc gagtatcgta aacttgttcc atggagaata ttgccttacg tttattagga 1200
tgaaaaaaa aagggcttca ccatgaattc ttcatcttgc cgatgttatt aagcacttcg 1260
atgtaaattg gttcttgttc ttgtggtttc aatcttggat cttttcttat tgagccatgt 1320
agctgcagga gagtgtttcg agggatttat cttaccatct atatttgtgt atcattatgc 1380
tgcagcctgc aggccttcat ttttcaatgg ccaactcttt ttgacttgtt ctatttgttt 1440
ttagatgaga atttcatggt caaagctcct aggcttaaaa aaacagtgtc atgttctatg 1500
ggaagtgcag gaagcaattc ggggactgca ggaagcaatt gcctttacat tgatatgctc 1560
aatggtactt taggcccttt aatgttcttg cttttcattt gtgagttatt attggcccca 1620
                                                                  1631
tttcatttgc a
```

- <210> 4
- <211> 374
- <212> PRT
- <213> Glycine max

<400> 4

- Met Met Glu Ser His Val Asp Leu Gly Phe Leu Leu Gln Ala Leu Thr 1 5 10 15
- Pro Ser Trp Asn Ser Val Pro Leu Leu Val Gly Phe Phe Thr Tyr Leu 20 25 30
- Ala Val Ala Gly Ser Ile Leu Pro Gly Lys Leu Val Pro Gly Val Ala 35 40 45

PCT/US00/26442

WO 01/23539

Leu	Leu 50	Asp	Gly	Thr	Arg	Leu 55	His	Tyr	Cys	Cys	Asn 60	Gly	Leu	Leu	Ser
Leu 65	Leu	Leu	Leu	Val	Ala 70	Leu	Leu	Gly	Ile	Gly 75	Ala	Lys	Met	Gly	Phe 80
Val	Ser	Pro	Thr	Ala 85	Ile	Ser	Asp	Arg	Gly 90	Leu	Glu	Leu	Leu	Ser 95	Thr
Thr	Phe	Ala	Phe 100	Ser	Phe	Leu	Val	Thr 105	Leu	Ile	Leu	His	Phe 110	Ser	Gly
Суѕ	Lys	Ser 115	Gln	Ser	Lys	Gly	Ser 120	Ser	Leu	Lys	Pro	His 125	Leu	Ser	Gly
Asn	Leu 130	Ile	His	Asp	Trp	Trp 135	Phe	Gly	Ile	Gln	Leu 140	Asn	Pro	Gln	Phe
Met 145	Gly	Ile	Asp	Leu	Lys 150	Phe	Phe	Phe	Val	Arg 155	Ala	Gly	Met	Met	Gly 160
Trp	Leu	Leu	Ile	Asn 165	Leu	Ser	Ile	Leu	Met 170	Lys	Ser	Ile	Gln	Asp 175	Gly
Thr	Leu	Ser	Gln 180	Ser	Met	Ile	Leu	Tyr 185	Gln	Leu	Phe	Cys	Ala 190	Leu	Tyr
Ile	Leu	Asp 195		Phe	Val	His	Glu 200	Glu	Tyr	Met	Thr	Ser 205	Thr	Trp	Asp
Ile	Ile 210		Glu	Arg	Leu	Gly 215	Phe	Met	Leu	Val	Phe 220	Gly	Asp	Leu	Val
Trp 225		Pro	Phe	Ser	Phe 230	Ser	Ile	Gln	Gly	Trp 235	Trp	Leu	Leu	Met	Asn 240
Ser	Val	Glu	Leu	Thr 245	Pro	Ala	Ala	Ile	Val 250		Asn	Cys	Phe	Val 255	Phe
Leu	Ile	Gly	туr 260		Val	Phe	Arg	Gly 265		Asn	Lys	Gln	Lys 270	His	Val
Phe	. Lys	Lys 275		Pro	Lys	Ala	Pro 280		Trp	Gly	Lys	Pro 285	Pro	Lys	Val
Ile	Gly 290		/ Lys	Leu	ı Leu	Ala 295		Gly	Tyr	Trp	Gly 300		Ala	Arg	His
Cys 305		туг	. Leu	ı Gly	Asp 310		Met	Leu	Ala	Leu 315		Phe	Ser	Leu	Pro 320
Cys	s Gly	/ Ile	e Ser	Ser 325	r Pro) Ile	e Pro	Tyr	Phe 330		Pro	Ile	Tyr	Leu 335	Leu
Ile	e Lei	ı Leı	۱۱ د 340		o Arg	g Glu	a Arg	345	Asp	Glu	a Ala	Arg	Cys 350	Ala	Glu
Ly	з Ту	r Arc		ı Ile	e Trp	Ala	a Glu 360		Arg	J Lys	Leu	Val 365	Pro	Trp	Arg

Ile Leu Pro Tyr Val Tyr 370

<210> 5 <211> 667 <212> DNA

<213> Zea mays

<210> 6 <211> 140 <212> PRT <213> Zea mays

<400> 6
Pro Arg Val Arg Lys Asn Lys Val Glu Leu Ser Leu Leu Ser Gly Leu

Ala Asn Leu Cys Ile Phe Leu Ile Gly Tyr Leu Val Phe Arg Gly Ala 20 25 30

Asn Lys Gln Lys His Val Phe Lys Lys Asp Pro Lys Ala Pro Ile Trp

Gly Lys Pro Pro Lys Val Val Gly Gly Lys Leu Leu Ala Ser Gly Tyr 50 55 60

Trp Gly Ile Ala Arg His Cys Asn Tyr Leu Gly Asp Leu Leu Leu Ala 65 70 75 80

Leu Ser Phe Ser Leu Pro Cys Gly Val Ser Ser Val Val Pro Tyr Phe 85 90 95

Tyr Pro Thr Tyr Leu Leu Ile Leu Leu Val Leu Arg Glu Arg Arg Asp 100 105 110

Glu Ala Arg Cys Ser Gln Lys Tyr Arg Glu Ile Trp Ala Glu Tyr Cys 115 120 125

Lys Leu Val Pro Trp Arg Ile Leu Pro Tyr Val Tyr 130 135 140

120

180 240

300

360

420

480

540

600

660 720

780 840

900

WO 01/23539 PCT/US00/26442

<210> 7 <211> 1364 <212> DNA <213> Glycine max <400> 7 ttcggcacga gtaaaacctc aatcttttac tgaaaagtct caactttgaa ctcactcgaa gtgatgatgg agtcacacgt ggatctaggt tttctccttc aagctctcac tccatcttgg aactccgttc ctttgcttgt ggggttcttc acttacttgg ccgttgctgg atccattctc cctqqaaaac ttqttcctqq cqttqcacta ctcqatqqaa ctcqtctaca ctattqctqc aatggtctgc tctcgcttct tctgttggtt gcacttctcg ggatcggtgc caagatgggt tttgtgtctc ccactgccat atcagacaga ggacttgagc tgctgtccac aacttttgcc ttcagttttc ttgtaaccct gatattgcat ttttccggtt gcaagtcaca aagtaaaggt tcatcactaa agcctcatct cagtggaaac ctgatacacg attggtggtt tggtatacaa ctaaatccac agttcatggg tatcgacctc aaagctggaa tgatgggatg gctacttatc aatttatcta ttcttatgaa gagcattcaa gatggtactt tgagccagtc aatgattctc taccagctat tctgtgcact atacatcctg gactattttg tacatgaaga gtacatgaca tccacctqqq acataattqc agagagactq ggcttcatqt tggtctttgg agatttagtq tqqattcctt tctctttcaq catacaqqqa tqqtqqctct tqatqaacaq tqtqqaqtta acaccagctq ccattqtaqc taattqcttt qtqttcctqa ttqgatacat ggtatttcga qqaqcaaaca aqcaaaaqca tqtqttcaaa aagaatccaa aggctcctat ctggggtaag cctccaaaag tcattggtgg aaagctactt gcttctggtt attggggtat tgctagacac tgtaattacc taggggattt gatgcttgct ctctccttta gcttaccatg tgggataagt 1020 tcaccaattc catacttcta tccaatttat cttcttattc tgttaatctg gagagagaga 1080 acqqatqaag ctcgttgcgc cgagaagtat agagagatat gggccgagta tcgtaaactt 1140 qttccatqqa qaatattgcc ttacgtttat taggatgaaa aaaaaaaggg cttcaccatg 1200 aattcttcat cttgccgatg ttattaagca cttcgatgta aattggttct tgttcttgtg 1260 qtttcaatct tqqatctttt cttattqagc catgtagctg caggagagtg tttcgaggga 1320 tttatcttac catctatatt tgtgtaaaaa aaaaaaaaa aaaa <210> 8 <211> 369 <212> PRT <213> Glycine max <400> 8 Met Met Glu Ser His Val Asp Leu Gly Phe Leu Leu Gln Ala Leu Thr 10 Pro Ser Trp Asn Ser Val Pro Leu Leu Val Gly Phe Phe Thr Tyr Leu 20 Ala Val Ala Gly Ser Ile Leu Pro Gly Lys Leu Val Pro Gly Val Ala 40 Leu Leu Asp Gly Thr Arg Leu His Tyr Cys Cys Asn Gly Leu Leu Ser 55 Leu Leu Leu Val Ala Leu Leu Gly Ile Gly Ala Lys Met Gly Phe Val Ser Pro Thr Ala Ile Ser Asp Arg Gly Leu Glu Leu Leu Ser Thr Thr Phe Ala Phe Ser Phe Leu Val Thr Leu Ile Leu His Phe Ser Gly 105 Cys Lys Ser Gln Ser Lys Gly Ser Ser Leu Lys Pro His Leu Ser Gly

120

loos et locisor

WO 01/23539 PCT/US00/26442

Asn Leu Ile His Asp Trp Trp Phe Gly Ile Gln Leu Asn Pro Gln Phe 130 135 140

Met Gly Ile Asp Leu Lys Ala Gly Met Met Gly Trp Leu Leu Ile Asn 145 150 155 160

Leu Ser Ile Leu Met Lys Ser Ile Gln Asp Gly Thr Leu Ser Gln Ser 165 . 170 . 175

Met Ile Leu Tyr Gln Leu Phe Cys Ala Leu Tyr Ile Leu Asp Tyr Phe 180 185 190

Val His Glu Glu Tyr Met Thr Ser Thr Trp Asp Ile Ile Ala Glu Arg 195 200 205

Leu Gly Phe Met Leu Val Phe Gly Asp Leu Val Trp Ile Pro Phe Ser 210 215 220

Phe Ser Ile Gln Gly Trp Trp Leu Leu Met Asn Ser Val Glu Leu Thr 225 230 235 240

Pro Ala Ala Ile Val Ala As
n Cys Phe Val Phe Leu Ile Gly Tyr Met 245 250255

Val Phe Arg Gly Ala Asn Lys Gln Lys His Val Phe Lys Lys Asn Pro 260 265 270

Lys Ala Pro Ile Trp Gly Lys Pro Pro Lys Val Ile Gly Gly Lys Leu 275 280 285

Leu Ala Ser Gly Tyr Trp Gly Ile Ala Arg His Cys Asn Tyr Leu Gly 290 295 300

Asp Leu Met Leu Ala Leu Ser Phe Ser Leu Pro Cys Gly Ile Ser Ser 305 310 315 320

Pro Ile Pro Tyr Phe Tyr Pro Ile Tyr Leu Leu Ile Leu Leu Ile Trp 325 330 335

Arg Glu Arg Thr Asp Glu Ala Arg Cys Ala Glu Lys Tyr Arg Glu Ile 340 345 350

Trp Ala Glu Tyr Arg Lys Leu Val Pro Trp Arg Ile Leu Pro Tyr Val 355 360 365

Tyr 369

<210> 9

<211> 430

<212> PRT

<213> Ascobolus immersus

<400> 9

Met Gly Gly Lys Asp Tyr Glu Phe Gly Gly Pro Ile Gly Thr Gly Val 1 5 10 15

Leu Met Leu Ile Leu Pro Pro Ile Ser His Tyr Leu His Phe Leu Ile 20 25 30

IDDAYET DEISUE

PCT/US00/26442

WO 01/23539

Thr	Pro	Arg 35	Gly	Ala	Pro	Pro	Pro 40	Glu	Phe	Trp	Ser	Ala 45	Pro	Leu	Glu
Thr	Leu 50	Lys	Ser	Val	Thr	Pro 55	Thr	Phe	Ser	Ser	Leu 60	Phe	Ser	Leu	His
Ala 65	Thr	Leu	Ala	Val	Ala 70	Ala	Tyr	Tyr	Leu	Leu 75	Leu	Val	Ala	Leu	Met 80
Tyr	Val	Leu	Pro	Ala 85	Glu	Ile	Ala	Glu	Gly 90	Val	Val	Leu	Lys	Asp 95	Gly
Ser	Arg	Leu	Lys 100	Tyr	Arg	Cys	Asn	Ala 105	Phe	Thr	Thr	Phe	Leu 110	Val	Phe
Phe	Thr	Phe 115	Leu	Gly	Thr	Met	Thr 120	Val	Leu	Glu	Gly	Pro 125	Thr	Trp	Trp
Phe	Trp 130	Ser	Tyr	Leu	Thr	Asp 135	Asn	Phe	Ala	Gln	Leu 140	Gln	Ser	Ala	Ser
Ile 145	Val	Phe	Ser	Tyr	Ala 150	Met	Ser	Leu	Trp	Val 155	Tyr	Ile	Arg	Ser	Tyr 160
Arg	Pro	Met	Pro	Lys 165	Gly	Lys	Glu	Val	Ile 170	Leu	Ser	Pro	Val	Gly 175	Phe
Lys	Gly	Asn	His 180	Ile	His	Asp	Phe	Trp 185	Met	Gly	Arg	Glu	Leu 190	Asn	Pro
Arg	Ile	Gly 195	Glu	Trp	Leu	Asp	lle 200	Lys	Gln	Leu	His	Glu 205	Leu	Arg	Pro
Gly	Leu 210	Met	Gly	Trp	Ile	Leu 215	Phe	Asn	Leu	Ala	Trp 220	Thr	Val	Lys	Gln
Tyr 225		Thr	His	Gly	Phe 230	Val	Ser	Asp	Ser	Ile 235	Val	Leu	Val	Asn	Leu 240
Phe	Glu	Thr	Trp	Tyr 245	Val	Val	Asp	Ala	Leu 250	Trp	Asn	Glu	Ser	Lys 255	Val
Leu	Thr	Thr	Met 260		Ile	Thr	Thr	Asp 265	Gly	Leu	Gly	Val	Met 270	Leu	Leu
Phe	Gly	Asn 275		Val	Trp	Val	Pro 280		Met	Tyr	Cys	Leu 285	Gln	Ala	Arg
Tyr	Leu 290		Ser	Phe	Pro	Val 295		Leu	Gly	Leu	Leu 300	Gly	Ile	Ala	Gly
Val 305		Ala	. Val	Gln	Phe 310		Gly	Tyr	Ala	Ile 315		Arg	Gly	Ala	Asn 320
Asn	Gln	Lys	. Asn	Ala 325		Arg	Thr	Asn	Pro 330		Asp	Pro	Ala	Val 335	Ser
His	Leu	Lys	Phe 340		Thr	Thr	Lys	Ser 345		Ser	Lys	Leu	Leu 350	Ile	Ser

Gly Trp Trp Gly Val Ala Arg His Val Asn Tyr Phe Gly Asp Trp Ile 355 360 365

Met Ala Trp Ser Tyr Cys Leu Thr Thr Gly Phe Asn Thr Pro Leu Thr 370 375 380

Tyr Phe Tyr Val Ile Tyr Phe Gly Ile Leu Leu His Arg Asp Arg 385 390 395 400

Arg Asp Glu Ala Lys Cys Arg Glu Lys Tyr Gly Lys Asp Trp Asp Arg 405 410 415

Tyr Cys Lys Val Val Lys Trp Arg Ile Ile Pro Gly Ile Tyr 420 425 430

<210> 10

<211> 365

<212> PRT

<213> Arabidopsis thaliana

<400> 10

Met Asp Leu Gly Val Leu Leu Pro Ser Leu Gln Ser Val Tyr Val Leu 1 5 10 15

Val Phe Tyr Phe Val Tyr Leu Ala Val Ala Gly Glu Ile Leu Pro Gly 20 25 30

Lys Val Ile Arg Gly Val Leu Leu Ser Asp Gly Ser Gln Leu Arg Tyr 35 40 45

Arg Cys Asn Gly Leu Leu Ala Leu Ile Leu Leu Val Ala Ile Leu Gly 50 55 60

Ile Cys Ala Lys Leu Gly Ile Val Ser Pro Leu Val Val Ala Asp Arg 65 70 75 80

Gly Leu Glu Leu Leu Ser Ala Thr Phe Ile Phe Cys Val Leu Val Thr 85 90 95

Leu Ala Leu Tyr Val Thr Gly Arg Ser Ser Ser Asn Lys Gly Ser Ser 100 105 110

Leu Lys Pro His Val Ser Gly Asn Leu Val His Asp Trp Trp Phe Gly 115 120 125

Ile Gln Leu Asn Pro Gln Phe Met Ser Ile Asp Leu Lys Phe Phe 130 135 140

Val Arg Ala Gly Met Met Gly Trp Leu Leu Ile Asn Leu Ser Ile Leu 145 150 155 160

Ala Lys Ser Val Gln Asp Gly Ser Leu Ser Gln Ser Met Ile Leu Tyr 165 170 175

Gln Ile Phe Cys Ala Leu Tyr Ile Leu Asp Tyr Phe Val His Glu Glu 180 185 190

iddo ster ideigde

Tyr	Met	Thr 195	Ser	Thr	Trp	Asp	Ile 200	Ile	Ala	Glu	Arg	Leu 205	Gly	Phe	Met
Leu	Val 210	Phe	Gly	Asp	Leu	Leu 215	Trp	Ile	Pro	Phe	Thr 220	Phe	Ser	Ile	Gln
Gly 225	Trp	Trp	Leu	Leu	His 230	Asn	Lys	Val	Glu	Leu 235	Thr	Val	Pro	Ala	Ile 240
Val	Val	Asn	Cys	Leu 245	Val	Phe	Leu	Ile	Gly 250	Tyr	Met	Val	Phe	Arg 255	Gly
Ala	Asn	Lys	Gln 260	Lys	His	Ile	Phe	Lys 265	Lys	Asn	Pro	Lys	Thr 270	Pro	Ile
Trp	Gly	Lys 275	Pro	Pro	Val	Val	Val 280	Gly	Gly	Lys	Leu	Leu 285	Val	Ser	Gly
Tyr	Trp 290	Gly	Ile	Ala	Arg	His 295	Cys	Asn	Tyr	Leu	Gly 300	Asp	Leu	Met	Leu
Ala 305	Leu	Ser	Phe	Ser	Leu 310	Pro	Cys	Gly	Ile	Ser 315	Ser	Pro	Val	Pro	Tyr 320
Phe	Tyr	Pro	Ile	Tyr 325	Leu	Leu	Ile	Leu	Leu 330	Ile	Trp	Arg	Glu	Arg 335	Arg
Asp	Glu	Val	Arg 340	Cys	Ala	Glu	Lys	Tyr 345	Lys	Glu	Ile	Trp	Ala 350	Glu	Tyr
Leu	Arg	Leu 355	Val	Pro	Trp	Arg	Ile 360	Leu	Pro	Tyr	Val	Tyr 365			

WO 01/23539