

Contents

0.1	Studio preliminare e descrizione della procedura	2
0.2	Progettazione del Passa-Basso corrispondente	3
0.3	Realizzazione del Passa-Banda	7
0.4	Conclusioni	8

0.1 Studio preliminare e descrizione della procedura

La richiesta del progetto è di realizzare un filtro **Passa-Banda** Chebyshev di tipo 1 del 7° ordine con le seguenti frequenze di taglio

$$f_1 = 26.5 MHz \tag{1}$$

$$f_2 = 27.5 \ MHz$$
 (2)

Dai valori assegnati ricaviamo le seguenti informazioni sul filtro

1. Larghezza di banda passante

$$\Delta f_{1,2} = f_2 - f_1 = 1.00 \ MHz \tag{3}$$

2. Frequenza di media geometrica

$$f_{mid} = \sqrt{f_1 \cdot f_2} \simeq 27.0 \ MHz \tag{4}$$

3. Larghezza di banda relativa

$$\Delta f_{rel} = \frac{\Delta f_{1,2}}{f_{mid}} \simeq 0.04 \tag{5}$$

La progettazione e simulazione del filtro, fatta utilizzando SIMetrix, si snoda nei seguenti passaggi:

- 1. Progettazione di un filtro Passa-Basso normalizzato del 7° ordine
- 2. Denormalizzazione alla frequenza di taglio $f_c=1.00~MHz$ e al carico di uscita di 50 Ω (corrispondente all'ampiezza di banda del **Passa-Banda** desiderato), con simulazione per verificare il corretto funzionamento
- 3. Trasformazione in **Passa-Banda** di quest'ultimo con opportuno cambio di variabile e conseguente simulazione

0.2 Progettazione del Passa-Basso corrispondente

Realizzare un filtro passivo di ordine n Passa-Basso di Chebyshev significa volere una funzione di trasferimento normalizzata in frequenza tale che

$$|H_{LP}^{(n)}(j\omega)|^2 = \frac{H_0^2}{1 + \epsilon^2 \cdot C_n^2(\omega)}$$
 (6)

Dove

$$\omega = 2\pi f \tag{7}$$

Le grandezze che caratterizzano il filtro sono dunque

1. L'amplificazione massima di banda passante H_0 , normalizzando rispetto alla quale si ottiene

$$|N_{LP}^{(n)}(j\omega)|^2 = \frac{|H_{LP}^{(n)}(j\omega)|^2}{H_0^2} = \frac{1}{1 + \epsilon^2 \cdot C_n^2(\omega)}$$
(8)

Nel caso di filtri passivi questo valore non può superare 1, che corrisponde al caso ideale in assenza di perdite.

2. Il fattore di ripple ϵ , il cui contributo all'ampiezza massima in banda passante k_p viene descritto dalla seguente relazione

$$k_p = 20 \cdot \log_{10}(\sqrt{1 + \epsilon^2}) \left[dB \right] \tag{9}$$

Per questa esperienza si è scelto $\epsilon = 1$, che restituisce

$$k_p = 20 \cdot \log_{10}(\sqrt{2}) = 3 [dB]$$
 (10)

Questo valore si sposa bene con il valore della funzione di trasferimento tale in corrispondenza della pulsazione di taglio in $\omega_T = 1$, dove

$$|N_{LP}^{(n)}(j\omega_T)| = \frac{1}{\sqrt{2}} \tag{11}$$

Che corrisponde ad un'attenuazione di 3 [dB] rispetto all'ampiezza massima, permettendoci così di prendere la pulsazione di taglio come pulsazione di limite della banda passante.

3. Il **polinomio di Chebyshev** $C_n(\omega)$, di ordine n corrispondente a quello del filtro voluto. Tali polinomi sono definiti come

$$C_n(\omega) = \begin{cases} \cos(n \cdot \arccos(\omega)) & \omega \in [0, 1] \\ \cosh(n \cdot \operatorname{arccosh}(\omega)) & \omega \ge 1 \end{cases}$$
 (12)

Nel nostro caso abbiamo bisogno di un polinomio del 6° ordine, che, consultando le tavole dei polinomi, risulta essere

$$C_7(\omega) = 64\omega^7 - 112\omega^5 + 56\omega^3 - 7\omega \tag{13}$$

In base a quanto detto finora possiamo scrivere un primo abbozzo della funzione di trasferimento del filtro come

$$|N_{LP}^{(7)}(j\omega)|^2 = \frac{1}{1 + (64\omega^7 - 112\omega^5 + 56\omega^3 - 7\omega)^2}$$
(14)

Possiamo quindi procedere al calcolo dei poli.

Per i filtri Chebyshev si parte dalle seguenti espressioni

$$p_k = \sigma_k + j\omega_k \tag{15}$$

$$\sigma_k = -\sin(u_k) \cdot \sinh(v) \tag{16}$$

$$\omega_k = +\cos(u_k) \cdot \cosh(v) \tag{17}$$

$$u_k = \frac{2k-1}{2n} \cdot \pi \tag{18}$$

$$v = \frac{1}{n} \cdot \operatorname{arcsinh}\left(\frac{1}{\epsilon}\right) \tag{19}$$

Nel nostro caso, dove abbiamo posto n=7 e $\epsilon=1$ avremo

$$u_1 = \frac{\pi}{14} \tag{20}$$

$$u_2 = \frac{3}{14} \cdot \pi \tag{21}$$

$$u_3 = \frac{5}{14} \cdot \pi \tag{22}$$

$$u_4 = \frac{\pi}{2} \tag{23}$$

$$u_5 = \frac{9}{14} \cdot \pi \tag{24}$$

$$u_6 = \frac{11}{14} \cdot \pi \tag{25}$$

$$u_7 = \frac{13}{14} \cdot \pi \tag{26}$$

$$v = 0.1259 (27)$$

Da questi valori, tramite uno script in python creato ad hoc si è ottenuto

$$\begin{cases} \sigma_1 &= -\sin\left(\frac{\pi}{14}\right) \cdot \sinh\left(0.1259\right) \\ \omega_1 &= +\cos\left(\frac{\pi}{14}\right) \cdot \cosh\left(0.1259\right) \end{cases} \to p_1 = -0.02809 + j \cdot 0.9827 \tag{28}$$

$$\begin{cases} \sigma_2 &= -\sin\left(\frac{3}{14} \cdot \pi\right) \cdot \sinh\left(0.1259\right) \\ \omega_2 &= +\cos\left(\frac{3}{14} \cdot \pi\right) \cdot \cosh\left(0.1259\right) \end{cases} \to p_2 = -0.07871 + j \cdot 0.7880 \tag{29}$$

$$\begin{cases}
\sigma_3 = -\sin\left(\frac{\pi}{2}\right) \cdot \sinh\left(0.1259\right) \\
\omega_3 = +\cos\left(\frac{\pi}{2}\right) \cdot \cosh\left(0.1259\right)
\end{cases} \rightarrow p_3 = -0.1137 + j \cdot 0.4373 \tag{30}$$

$$\begin{cases}
\sigma_4 = -\sin\left(\frac{9}{14} \cdot \pi\right) \cdot \sinh\left(0.1259\right) \\
\omega_4 = +\cos\left(\frac{9}{14} \cdot \pi\right) \cdot \cosh\left(0.1259\right)
\end{cases} \rightarrow p_4 = -0.1262 \tag{31}$$

$$\begin{cases}
\sigma_5 = -\sin\left(\frac{9}{14} \cdot \pi\right) \cdot \sinh\left(0.1259\right) \\
\omega_5 = +\cos\left(\frac{9}{14} \cdot \pi\right) \cdot \cosh\left(0.1259\right)
\end{cases} \rightarrow p_5 = -0.11374 - j \cdot 0.4373 \tag{32}$$

$$\begin{cases} \sigma_6 &= -\sin\left(\frac{11}{14} \cdot \pi\right) \cdot \sinh\left(0.1259\right) \\ \omega_6 &= +\cos\left(\frac{11}{14} \cdot \pi\right) \cdot \cosh\left(0.1259\right) \end{cases} \to p_6 = -0.078711 - j \cdot 0.7880$$
 (33)

$$\begin{cases}
\sigma_7 &= -\sin\left(\frac{13}{14} \cdot \pi\right) \cdot \sinh\left(0.1259\right) \\
\omega_7 &= +\cos\left(\frac{13}{14} \cdot \pi\right) \cdot \cosh\left(0.1259\right)
\end{cases} \rightarrow p_7 = -0.02809 - j \cdot 0.9827 \tag{34}$$

Abbiamo quindi 7 poli disposti lungo un ellisse, di cui 6 simmetrici rispetto all'asse reale, come ci si aspetta dai filtri Chebyshev

Figure 1: Poli del filtro

La presenza di sette poli si traduce nella progettazione circuitale in sette componenti passive reattive. In questo caso si è optato per una configurazione a scala con quattro condensatori e tre induttori.

Il calcolo dei valori per le componenti è passato per la consultazione della tavola di Chebyshev per ripple a 3 dB.

N	g_1	g_2	g_3	g_4	g_5	g_6	g ₇	g_8
1	1.9953	1.00						
2	3.1013	0.5339	5.8095					
3	3.3487	0.7117	3.3487	1				
4	3.4389	0.7483	4.3471	0.5920	5.8095			
5	3.4817	0.7618	4.5381	0.7618	3.4817	1		
6	3.5045	0.7685	4.6061	0.7929	4.4641	0.6033	5.8095	
7	3.5182	0.7723	4.6386	0.8039	4.6386	0.7723	3.5182	1

Figure 2: Tabella delle impedenze normalizzate per filtri Chebyshev con ripple da 3 dB

Dalla tabella, facendo corrispondere i valori per le capacità ai termini dispari e quelli per le induttanze a quelli pari, e sapendo che l'ultimo termine riguarda il carico si sono ottenuti i seguenti valori per il filtro normalizzato

C_2	L_2	C_3	L_3	C_4	L_4	C_1	Z_{out}
3.5182	0.7723	4.6386	0.8039	4.6386	0.7723	3.5182	1.0000

Questi valori sono stati poi denormalizzati per adeguarsi alla nostra frequenza taglio $f_c = 1 MHz$ e al carico di nostro interesse di $Z_0 = 50~\Omega$ tramite le seguenti relazioni

$$C_{i} = \frac{C_{i_{norm}}}{Z_{0} \cdot 2\pi \cdot f_{c}}$$

$$L_{i} = \frac{L_{i_{norm}} \cdot Z_{0}}{2\pi \cdot f_{c}}$$
(35)

$$L_i = \frac{L_{i_{norm}} \cdot Z_0}{2\pi \cdot f_c} \tag{36}$$

$$R_o = g_8 \cdot Z_0 \tag{37}$$

Facendo uso di un altro script in python anch'esso scritto per l'evenienza si sono così ottenuti i seguenti valori

$C_2[nF]$	$L_2 \left[\mu H \right]$	$C_3[nF]$	$L_3 [\mu H]$	$C_4 [nF]$	$L_4 [\mu H]$	$C_1[nF]$	$Z_{out} [\Omega]$
11.199	6.1458	14.765	6.3972	14.765	6.1458	11.199	50.000

Figure 3: Passa-Basso risultante

Il filtro così progettato risponde alle aspettative, infatti come vediamo dai diagrammi di Bode, alla frequenza 1 MHz si ha un valore del rapporto ingresso-uscita di circa 0.7, che corrisponde ad un'attenuazione di circa 3 dB, ovvero l'attenuazione che ci si aspetta alla frequenza di taglio, e la massima ampiezza picco-picco è di circa 1.5, o, convertendo in Decibel, 3.5 dB, abbastanza vicino al valore ideale.

Sono anche evidenti i 5 picchi previsti da un filtro del settimo ordine.

Figure 4: Diagrammi di Bode del filtro Passa-Basso

Realizzazione del Passa-Banda 0.3

Matematicamente, la trasformazione da Passa-Basso a Passa-Banda prevede il seguente cambio di variabili

$$s = p + \frac{1}{p} = \frac{p^2 + 1}{p} \quad ; \quad p \in \mathbb{C}$$
 (38)

$$p = \frac{s}{2} \pm \sqrt{\left(\frac{s}{2}\right)^2 - 1} \tag{39}$$

$$s = \sigma \pm j\omega \tag{40}$$

$$p = u + jv \tag{41}$$

Essendo noi interessati all'analisi in frequenza possiamo restringere le variabili al caso puramente immaginario

$$s = \pm j\omega \tag{42}$$

$$p = +jv (43)$$

Ottenendo così

$$v_{1,2} = \frac{\omega}{2} \pm \sqrt{\left(\frac{\omega}{2}\right)^2 + 1} \tag{44}$$

Dove v_1 e v_2 sono le **frequenze di taglio** del nuovo filtro **Passa-Banda**. Questo cambio di variabile nella progettazione del filtro si traduce in

- 1. mettere in serie agli induttori del Passa-Basso dei condensatori
- 2. mettere in parallelo ai condensatori del Passa-Basso degli induttori

I valori di queste nuove componenti si calcolano tramite le seguenti relazioni:

$$L_{k_{//}} = \frac{\Delta f_{rel} \cdot Z_0}{2\pi \cdot f_{mid} \cdot C_{k_{more}}} \tag{45}$$

$$L_{k_{//}} = \frac{\Delta f_{rel} \cdot Z_0}{2\pi \cdot f_{mid} \cdot C_{k_{norm}}}$$

$$C_{k_{serie}} = \frac{\Delta f_{rel}}{2\pi \cdot f_{mid} \cdot L_{k_{norm}} \cdot Z_0}$$
(45)

Abbiamo definito Δf_{rel} e f_{mid} nel primo paragrafo di questo testo, e i valori normalizzati sono gli stessi delle equazioni (35)-(42) di pag. 6.

Sempre tramite custom script in python si sono ottenuti i seguenti valori:

$$L_{1//} = 3.10 \ nH \tag{47}$$

$$L_{2_{II}} = 2.35 \ nH \tag{48}$$

$$L_{3//} = 2.35 \ nH \tag{49}$$

$$L_{4//} = 3.10 \ nH \tag{50}$$

$$C_{1_{serie}} = 5.65 \ pF \tag{51}$$

$$C_{2_{serie}} = 5.43 \ pF \tag{52}$$

$$C_{3_{serie}} = 5.65 \ pF \tag{53}$$

Si è quindi raddoppiato il numero di componenti, con quattro nuovi induttori e tre nuovi condensatori, portandoci ad avere la seguente configurazione:

Figure 5: Passa-Banda

Di seguito sono riportati i diagrammi di Bode del filtro, la cui risposta soddisfa i parametri di progettazione.

Figure 6: Diagrammi di Bode del Passa-Banda

Abbiamo infatti alle frequenze di taglio usate per la progettazione un valore del rapporto ingresso-uscita di circa 0.7, ovvero circa $\frac{1}{\sqrt{2}}$, mentre l'ampiezza di ripple è analoga al Passa-Basso progettato in precedenza, intorno ai 3.5 dB.

0.4 Conclusioni

In questo breve lavoro è stata presentata la progettazione di un filtro **Passa-Banda** del 7° ordine di Chebyshev tipo 1, con frequenze di taglio 26.5~MHz e 27.5~MHz. Salvo inevitabili approssimazioni numeriche del software di simulazione il risultato è sostanzialmente in accordo con le previsioni teoriche.