Assignment -4

Assignment Date	20 October 2022
Student Name	JASWANTH N
Student Roll Number	111519106054
Maximum Marks	2 Marks

1.Spam dataset downloaded

from:- https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset?resource=download

2. Required libararies are imported

```
import numby as no
import pandas as pd
import keras
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model selection import train test split
from sklearn.preprocessing import LabelEncoder
from keras.models import Model
from keras.lavers import LSTM, Activation, Dense, Dropout, Input, Embedding
from keras.optimizers import RMSprop
from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence
from keras.utils import to categorical
from keras.callbacks import EarlyStopping
#from keras.preprocessing.sequence import pad sequences
%matplotlib inline
```

3. Read dataset and pre processing

```
In [2]:
    df = pd.read_csv('spam.csv',delimiter=',',encoding='latin-1')
    df.head()
```

Out[2]:		v1	v2	Unnamed: 2	Unnamed: 3	Unnamed: 4		
	0	ham	Go until jurong point, crazy Available only	NaN	NaN	NaN		
	1	ham	Ok lar Joking wif u oni	NaN	NaN	NaN		
	2	spam	Free entry in 2 a wkly comp to win FA Cup fina	NaN	NaN	NaN		
	3	ham	U dun say so early hor U c already then say	NaN	NaN	NaN		
	4	ham	Nah I don't think he goes to usf, he lives aro	NaN	NaN	NaN		
[3]:	drop the unnecessary columns with Nan values df.drop(['Unnamed: 2', 'Unnamed: 4'],axis=1,inplace=True)							
[4]:	df	.shap	e					
ut[4]:	(55	72, 2)					
n [5]:	sn pl	s.cou t.xla	he ham and spam messages to understan ntplot(df.v1) bel('Label') le('Number of ham and spam messages')		ibution			
	e o	nly v	al/lib/python3.7/dist-packages/seabor alid positional argument will be `dat Warning					
Out[5]:			, 1.0, 'Number of ham and spam messag	ges')				


```
In [6]:
         X = df \cdot v2
         Y = df.v1
          #label encoding for Y
          le = LabelEncoder()
         Y = le.fit_transform(Y)
         Y = Y.reshape(-1,1)
         Train-test split
```

In [7]: #split into train and test sets X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.20) In [18]:

tok = Tokenizer(num_words=max_words)

sequences = tok.texts_to_sequences(X_train)

sequences matrix = keras.utils.pad sequences(sequences,maxlen=max len)

max words = 1000 $max_len = 150$

tok.fit_on_texts(X_train)

5.Add layers

```
inputs = Input(name='inputs',shape=[max_len])
layer = Embedding(max_words,50,input_length=max_len)(inputs)
layer = LSTM(64)(layer)
layer = Dense(256,name='FC1')(layer)
layer = Activation('relu')(layer)
layer = Dropout(0.5)(layer)
layer = Dense(1,name='out_layer')(layer)
layer = Activation('sigmoid')(layer)
model = Model(inputs=inputs,outputs=layer)
```

6.compile the model

```
model.summary()
model.compile(loss='binary_crossentropy',optimizer=RMSprop(),metrics=['accuracy'])

Model: "model"
```

Layer (type)	Output Shape	Param #
inputs (InputLayer)	[(None, 150)]	0
embedding (Embedding)	(None, 150, 50)	50000
lstm (LSTM)	(None, 64)	29440
FC1 (Dense)	(None, 256)	16640
activation (Activation)	(None, 256)	0
dropout (Dropout)	(None, 256)	0
out_layer (Dense)	(None, 1)	257
activation_1 (Activation)	(None, 1)	0
Total params: 96,337 Trainable params: 96,337 Non-trainable params: 0		

7.fit the model

28/28 [============] - 4s 153ms/step - loss: 0.0957 - accuracy: 0.9767 - val loss: 0.0468 - val accuracy: 0.9821

Out[21]: <keras.callbacks.History at 0x7fec903e8390>

8. Save the model

```
In [25]: model.save('spam_lstm_model.h5')
```

9.test the model

```
In [26]:
         #processing test data
          test sequences = tok.texts to sequences(X test)
          test_sequences_matrix = keras.utils.pad_sequences(test_sequences,maxlen=max_len)
In [27]:
          #evaluation of our model
          accr = model.evaluate(test_sequences_matrix,Y_test)
          print('Test set\n Loss: {:0.3f}\n Accuracy: {:0.3f}\.format(accr[0],accr[1]))
         35/35 [=========== ] - 0s 14ms/step - loss: 0.0816 - accuracy: 0.9776
         Test set
           Loss: 0.082
          Accuracy: 0.978
```