2.3 Сходимости случайных величин.

Пререквизиты

Леммы Борелля-Кантелли

1-я

Пусть есть последовательность (необязательно независимых) событий $\{A_i\}_{i=1}^{\infty}$

Обозначим событие $A = \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_i$ Пусть ряд сходится $\sum_{i=1}^{\infty} P(A_i) < \infty$

Tогда P(A)=0

2-я

Пусть есть последовательность совместно независимых событий $\{A_i\}_{i=1}^{\infty}$ Обозначим событие $A=\bigcap_{n=1}^{\infty}\bigcup_{i=n}^{\infty}A_i$ Пусть ряд расходится $\sum_{i=1}^{\infty}P(A_i)\to\infty$

Tогда P(A) = 1

Сходимости

Почти наверное

$$\xi_n \stackrel{\text{\tiny II.H.}}{\to} \xi$$

Если

$$P(\{\omega \in \Omega : \xi_n(\omega) \underset{n \to \infty}{\longrightarrow} \xi(\omega)\}) = 1$$

или

$$P(\{\omega \in \Omega : \xi_n(\omega) \underset{n \to \infty}{\not\to} \xi(\omega)\}) = 0$$

или эквивалентно

$$\forall \varepsilon > 0 : P(\{\omega \in \Omega : \sup_{k > n} |\xi_k(\omega) - \xi(\omega)| > \varepsilon\}) \underset{n \to \infty}{\longrightarrow} 0$$

По вероятности

$$\xi_n \stackrel{\mathbb{P}}{\to} \xi$$

Если

$$\forall \varepsilon > 0 : P(\{\omega \in \Omega : |\xi_n(\omega) - \xi(\omega)| > \varepsilon\}) \underset{n \to \infty}{\longrightarrow} 0$$

Усиленный Закон больших чисел

Говорят, что последовательность случайных величин (возможно разнораспределенных) $\{\xi_i\}_{i=1}^{\infty}$ с конечными первыми моментами удовлетворяет закону больших чисел (ЗБЧ), если

$$\frac{\sum_{i=1}^{n} \xi_i}{n} - \frac{\sum_{i=1}^{n} \mathbb{E}\xi_i}{n} \stackrel{\mathbb{P}}{\to} 0$$

2.3 Сходимости случайных величин.

Практика

- 1. Точка путешествует по целым числам. Каждый раз она шагает на 1, с вероятностью p вправо, с вероятностью 1-p влево. Докажите, что при $p\neq \frac{1}{2}$ вероятность того, что она вернется в исходное положение бесконечное число раз равна 0.
- 2. Пусть $\xi_n \to \xi$ п.н и g(x) непрерывная функция. Докажите, что $g(\xi_n) \to g(\xi)$ п.н.
- 3. Пусть $(\xi_n \xi)^2 \to 0$ п.н. Доказать, что $\xi_n \to \xi$ п.н.
- 4. Пусть $\xi_n \stackrel{\mathbb{P}}{\to} \xi$ и g(x) непрерывная, дифференцируемая и монотонно возрастающая функция. Докажите, что $g(\xi_n) \stackrel{\mathbb{P}}{\to} g(\xi)$.
- 5. Пусть ξ_n принимает значения $2^n, -2^n$ и 0 с вероятностями $2^{-(2n+1)}, 2^{-(2n+1)}$ и $1-2^{-2n}$ соответственно. Докажите, что для ξ_n выполняется ЗБЧ.

Домашка

- 1. (2) Точка путешествует по целым числам. Каждый раз она шагает на 1, с вероятностью p вправо, с вероятностью 1-p влево. Докажите, что при $p=\frac{1}{2}$ вероятность того, что она вернется в исходное положение бесконечное число раз равна 1.
- 2. Пусть $\xi_n \stackrel{\text{п.н.}}{\to} 1$ и $\mu_n \stackrel{\text{п.н.}}{\to} 1$. Тогда
 - (a) $(1)\xi_n + \mu_n \stackrel{\text{п.н.}}{\to} 2$
 - (b) $(1)\xi_n\mu_n \stackrel{\text{\tiny II.H.}}{\rightarrow} 1$
- 3. (2) Пусть ξ_n последовательность независимых и равномерно распределенных на [0,1] случайных величин. Найдите распределение случайной величины $m_n = \min(\xi_1, \ldots, \xi_n)$. Докажите, что m_n стремится почти наверное к 0
- 4. (1) Пусть ξ_n принимает значения n, -n и 0 с вероятностями $\frac{1}{2n^2}, \frac{1}{2n^2}$ и $1 \frac{1}{n^2}$. Выполнен ли для этой последовательности закон больших чисел?
- 5. (1) Пусть $\xi_n \stackrel{\text{п.н.}}{\to} 1$ и $\mu_n \stackrel{\text{п.н.}}{\to} 1$. Тогда $\frac{1}{\xi_n + \mu_n} \stackrel{\mathbb{P}}{\to} \frac{1}{2}$
- 6. (Теорема Пойа) (2) Точка начинает путешествие по целочисленной решетке в \mathbb{R}^2 с одинаковыми вероятностями пойти в любое направление. Докажите что с вероятностью 1, точка когда-нибудь вернется в начальную точку.
- 7. (2) Докажите, что для \mathbb{R}^3 предыдущее утверждение неверно.