Convolutional Neural Networks (2)

Geena Kim

Dealing with images

An image is a multi-dimension array

What is Convolution

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

filter

Image

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

$$\left(\begin{bmatrix} a & b & c \\ d & e & f \\ a & h & i \end{bmatrix} * \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}\right) [2, 2]$$

$$=(i\cdot 1)+(h\cdot 2)+(g\cdot 3)+(f\cdot 4)+(e\cdot 5)+(d\cdot 6)+(c\cdot 7)+(b\cdot 8)+(a\cdot 9)$$

Convolutional Layer- hyper parameters

• Filter size (3x3, 5x5,

Padding

Number of filters

Stride

** Parameters and Hyper parameters are different!
Parameters = Weights to be optimized.

Hyperparameters = design parameters you can control

Why CNN?

- Images have big pixels!
- Fully-connected neural network would have too many parameters!
- Translational invariance in images

Deep convolutional neural network Architectures

Typical CNN architecture

Max pooling operation

What does the deep convolutional layers do?

arXiv:1311.2901v3

What do the multiple convolution layers do?

Modern CNN

LeNet 5 (1998)

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Natural Images Dataset

SUN, 131K

[Xiao et al. '10]

LabelMe, 37K

[Russell et al. '07]

PASCAL VOC, 30K

[Everingham et al. '06-'12]

Caltech101, 9K

[Fei-Fei, Fergus, Perona, '03]

- * Massive size
- * High resolution
- * High quality annotation
- * Ontology

Carnivore

- Canine
 - Dog
 - Working Dog
 - Husky
- * Free

Credit: Fei-Fei Li

Deep Learning's performance

Most successful CNN models from ImageNet

ResNet (2015)

Convolutional Neural Network

VGGNet

VGGNet

Input	Conv	Conv	Pool	Conv	Conv	Pool	Conv	Conv	Conv	Pool	Conv	Conv	Conv	Pool	Conv	Conv	Conv	Pool	FC	FC	FC	Softmax
-------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	----	----	----	---------

		ConvNet C	onfiguration									
A	A-LRN	В	Е									
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight							
layers	layers	layers	layers	layers	layers							
input (224×224 RGB image)												
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64							
	LRN	conv3-64	conv3-64	conv3-64	conv3-64							
	maxpool											
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128							
		conv3-128	conv3-128	conv3-128	conv3-128							
			pool									
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256							
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256							
			conv1-256	conv3-256	conv3-256							
					conv3-256							
			pool									
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512							
			conv1-512	conv3-512	conv3-512							
					conv3-512							
12 121	111 121 1		pool	10 10 E 10 E								
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512							
			conv1-512	conv3-512	conv3-512							
			1.0		conv3-512							
			pool									
			4096									
			4096									
		0.000	1000									
		soft	-max									

https://arxiv.org/abs/1409.1556

GoogLeNet

(b) Inception module with dimensionality reduction

https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf

ResNet

ResNet

Figure 2. Residual learning: a building block.

ResNet

Architecture summary

- If the data is bigger and complex, deep network is beneficial
- Improve computational efficiency while keeping the same depth
- e.g. small filter size, 1x1 filter compression
- Designs to have a better gradient propagation (avoid vanishing or exploding gradients)

Design Choices or Training

Key Tuning Parameters in Training

- Optimization method
- •Learning rate, momentum, etc
- Number of epochs
- Regularization

Monitoring Overfitting in Training

Dataset split
Train / Validation / Test

Diagram credit: Fei-Fei Li

Monitoring Overfitting in Training

SGD tuning parameters

```
tf.keras.optimizers.SGD(
    learning_rate=0.01, momentum=0.0, nesterov=False, name='SGD', **kwargs)
```

Popular options to tweak

- learning_rate: the base learning rate
- momentum
- decay
- nestrov
- (advanced) callback

SGD with learning rate alone is slow to converge

Adding a momentum (moving average of a weight) can make it faster

$$\mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \nabla_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} L(\mathbf{f}(\mathbf{x}^{(i)}; \boldsymbol{\theta}), \mathbf{y}^{(i)}) \right),$$

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \mathbf{v}.$

^{**} see what happens when the gradient is 0 (on plateau)

Learning rate scheduling using decay

For iteration k (epoch)

$$\epsilon_k = (1 - \alpha)\epsilon_0 + \alpha\epsilon_{\tau} \qquad \alpha = \frac{k}{\tau}$$

^{**} In the algorithm pseudocode k is for step (each mini batch), and decay learning rate by step, but normally we decrease learning rate each epoch

Advanced optimization

RMSprop

Variant of Adadelta RMSprop takes a moving average when it calculate the RMS of the gradient

$$E[g^{2}]_{t} = 0.9E[g^{2}]_{t-1} + 0.1g_{t}^{2}$$
$$\theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{E[g^{2}]_{t} + \epsilon}}g_{t}$$

An overview of gradient descent optimization algorithms https://arxiv.org/pdf/1609.04747.pdf

Advanced optimization

Adaptive Moment Estimation (Adam)

Mimics momentum for gradient and gradient-squared

mt and vt are estimates of the first moment (the mean) and the second moment (the uncentered variance) of the gradients

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$
$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

Optimization: Momentum

Ways to reduce overfitting

Dropout

(b) After applying dropout.

 \otimes

 \otimes

 \otimes

Batch normalization

Practical Tips for CNN

Optimization

- Learning rate (0.01~0.0001)
- Optimization method: Adam or RMSProp

Architecture

- ReLU/PReLU for hidden layers, Sigmoid/Softmax/Tanh/PReLU for the output layer
- 3x3 filters
- [Conv-Conv-MaxPool]_n structure

Regularization

- L2 regularization
- Dropouts
- Batch Normalization

Transfer Learning

How long it takes to train on a large dataset?

Transfer learning

- As fixed feature extractor: remove the output layer, weights frozen
- Fine-tuning the CNN: also let weights updated
- Use part of layers

Transfer Learning

When should I use a pre-trained network?

- New dataset is small and similar to original dataset (X)
- New dataset is large and similar to the original dataset (O)
- New dataset is small but very different from the original dataset (X)
- New dataset is large and very different from the original dataset (O)

Various models pre-trained on ImageNet

Keras https://keras.io/applications/