İ.T.Ü. Elektrik-Elektronik Fakültesi Bilgisayar Mühendisliği Bölümü

LOJİK DEVRELER LABORATUVARI DENEY RAPORU

Deney No :8

Deney Adı :Ardışıl Devre Tasarımı

Deney Tarihi :12.04.10

Grup :2

Deneyi Yapanlar : Aykut Akın

Levend Mehmet Mert Suat Alkan Aldan

Deneyi Yaptıran Araştırma Görevlisi:Selda Kuruoğlu A)Amaç: Deneyde ardışıl devrelerin, sonlu durum makinesi modeline göre çözümlenmeleri ve gerçeklenmeleri incelenecektir.

B)Devre Çizimleri ve Sonuçlar:

Deney 8.1:

1)Flip flopları süren fonksiyonların ifadeleri belirlenir.

$$D_1=Q_1'+Q_2$$

 $D_2=X.Q_2'$

 $\Omega_{*}^{+} \Omega_{*}^{+}$

2)Sonraki durumlar hesaplanır.

$$Q_1^+ = D_1 = Q_1' + Q_2$$

 $Q_2^+ = D_2 = X.Q_2'$

3)Durum geçiş tablosu oluşturulur.

<u>Q2</u> <u>Q1</u>		
$Q_2 Q_1 \backslash X$	0	1
00	01	11
01	00	10
10	01	01

01

01

Tabloyu daha anlaşılır hale getirmek için durum kodlarına simgeler karşı düşürülür.

00:A S:şimdiki durum

11

01:B S⁺:sonraki durum

10:C

11:D

S\X	0	1
A	В	D
В	A	C
C	В	В
D	В	В

4)Çıkış fonksiyonu Z'nin ifadesi belirlenir.

$$Z = Q_2' + Q_1$$

5)Durum çıkış tablosu oluşturulur.

 S^+,Z

~ ,		
S\X	0	1
A	B,1	D,1
В	A,1	C,0
C	B,1	B,1
D	B,1	B,1

Son olarak durum diyagramı çizilir.

Deney 8.2:

Sayıcının üreteceği her sayı bir durum olarak kabul edilir ve sayıcının davranışına göre durum diyagramı çizilir.

Sayıcının durum tablosu oluşturulur.

$Q_1^+ Q_0^+$		
$Q_1 Q_0 \setminus X$	0	1
00	01	10
01	10	00
11	I	I
10	00	01

Sayıcı D flip flopları ile tasarlanması:

$\mathbf{D_1}$		
$Q_1 Q_0 \backslash X$	0	1
00	0	1
01	1	0
11	I	I
10	0	0

 $D_{1=} Q_0.X'+Q_1'.Q_0'.X$

$\mathbf{D_0}$		
$Q_1 Q_0 \backslash X$	0	1
00	1	0
01	0	0
11	I	I
10	0	1

$$D_0 = Q_1.X + Q_1'.Q_0'.X'$$

Devrenin belirsiz durumu 11 durumudur. Q_1 =1 ve Q_0 =1 olursa D_1 =X' ve D_0 =X olur.X=0 ise 10 durumuna geçilir, X=1 ise 01 durumuna geçilir.Sayıcı istenilen düzenden çıkar.

Deney 8.3:

İlk olarak sayıcının CLR girişine 0 verilir ve sayıcı sıfırlanır. Sonra sayıcının veri girişine 0000 verilir ve LD girişi 1 yapılarak bu değer sayıcıya yüklenir. Daha sonra ENABLE T ve ENABLE P izin girişlerinin her ikisi de 1 yapılarak sayma işlemi başlatılır. Sayıcı bu durumda iken 4 bitlik olduğu için 0 dan 15 e kadar sayar.0-9 arası sayma işlemi yapmak için sayıcının CLR girişine öyle bir devre bağlanmalıdır ki 1010 a yani 10 a gelindiği zaman başa dönülsün.

Sayıcının CLR girişine (D.B)' fonksiyonunu bağlanırsa 1010 a gelindiğinde CLR=(1.1)'=0 olur ve sayıcı başa döner.Diğer değerler için CLR=1 olduğundan sayıcı tekrar 9 a kadar sayar sonra 0 a döner.

Raporda istenilenler kısmında verilen sayıcının tasarımı:

Anlatılan sayıcının durum diyagramı çizilir.

Durum tablosu oluşturulur.

$Q_2^{\dagger}Q_1^{\dagger}Q_0^{\dagger}$ $Q_2Q_1Q_0$	0 1
000	001 010
001	010 011
010	011 100
011	100 101
100	101 000
101	000 001
110	ØØØ ØØØ
111	<u> </u>

Durum tablosu Karnough diyagramı olarak düzenlenir.

$Q_2^+Q_1^+Q_0^+$	V			
$Q_2Q_1Q_0$	X 00	01	11	10
00	001	010	011	010
01	011	100	101	100
11	ØØØ	øøø	ØØØ	ØØØ
10	101	000	001	000

T flip flopunun geçiş tablosuna baklılarak yapılan geçişlerde T nin alması gereken değerler belirlenir.

T filp flopları kullanılarak tasarım yapılır.

T₂ için:

<i>2</i> ,				
T ₂	V			
$Q_2Q_1^{Q_0}$	[×] 00	01	11	10
00'	0	0	0	0
01	0	1	1	1
11	Ø	Ø	Ø	Ø
10	0	1	1	1

$$T_2'=Q_0'.X'+Q_2'.Q_1'$$
 ise $T_2=(Q_0+X).(Q_2+Q_1)$

T₁ için:

T ₁	V			
Q_2Q_1	X ₀₀	01	11	10
00'	0	1	1	1
01	0	1		1)
11	Ø	Ø	Ø	Ø
10	0	0	0	0

$$T_1 = Q_2'.X + Q_2'.Q_0$$

T₀ için:

T ₀					
Q ₂ Q ₂ X ₀₀ 01 11 10_					
00	1	0	0	1	
01	1	0	0	1	
11	Ø	Ø	Ø	Ø	
10	1	0	0	1	

$$T_0=X'$$

Devre çizilir:

Belirsiz durumlar için devrenin davranışı:

110 için:

 $T_2=X$

 $T_1=0$

 $\overline{T_0} = X'$

X=1 olursa sayıcı 100 durumuna geçer, X=0 olursa sayıcı 001 durumuna geçer.

111 için:

 $T_2=1$

 $T_1=0$

 $T_0=X'$

X=1 olursa sayıcı 100 durumuna geçer, X=0 olursa sayıcı 101 durumuna geçer.