

CHEMISTRY Chapter 2

ZONA EXTRANUCLEAR

MOTIVATING STRATEGY

ZONA EXTRANUCLEAR

Es la región energética donde se encuentran los electrones (nube electrónica o corteza atómica), está formada por niveles, subniveles y orbitales.

Zona Niveles de Subniveles de Electró extranuclear energía energía (r.e.e.n

Orbitales Electrónicos (r.e.e.m.p.e)

a) NIVELES DE ENERGÍA

Notación espectroscópica

Notación

cuántica

0 Aumenta la Ν M n= 1 um enta la n= 4 energía n= 5 n= 6

Nivel energético	K	ш	M	N	0	Р	Q	
n	1	2	3	4	5	6	7	

Niveles incompletos

2e- 8e- 18e- 32e- 32e- 18e- 8e-

1 4 9 16 16 9

n es el número cuántico principal y nos da la idea del tamaño y el volumen del orbital.

b) SUB NIVELES DE ENERGÍA:

Subnivel energético	S	р	d	f	g	
e	0	1	2	3	4	(n-1)

ORBITAL O REEMPE

LLENO (electrones apareados)

SEMILLENO (electrones desapareados)

Subnivel (I)	Orbitales	Número de orbitales	Capacidad máxima de electrones (e-)		
s (I = 0)	1	1	2		
p (l = 1)	$\frac{\uparrow\downarrow}{-1} \frac{\uparrow\downarrow}{0} \frac{\uparrow\downarrow}{+1}$	3	6		
d (I = 2)	$\frac{\uparrow\downarrow}{-2} \frac{\uparrow\downarrow}{-1} \frac{\uparrow\downarrow}{0} \frac{\uparrow\downarrow}{+1} \frac{\uparrow\downarrow}{+2}$	5	10		
f (I = 3)	$\frac{\uparrow\downarrow}{-3} \frac{\uparrow\downarrow}{-2} \frac{\uparrow\downarrow}{-1} \frac{\uparrow\downarrow}{0} \frac{\uparrow\downarrow}{+1} \frac{\uparrow\downarrow}{+2} \frac{\uparrow\downarrow}{+3}$	7	14		

CONFIGURACIÓN ELECTRÓNICA

NOTACION DE UN SUBNIVEL

$$\begin{cases} n=4 & n=5 \\ \ell=1 & 5d^8 \end{cases} \begin{cases} \ell=2 & \#e^{-}=8 \end{cases}$$

ENERGÍA RELATIVA

$$E_R = n + \ell$$

	n	l	E _R =n+ℓ
2s	2	0	2
4 p	4	1	5
3d	3	2	5
5 s	5	0	5

a) PRINCIPIO DE AUFBAU

Los electrones se distribuyen a partir de las regiones de menor energía ya que son las que tienen mayor estabilidad.

Nivel	K	L	M	N	0	P	Q
n	1	2	3	4	5	6	7
	s ² —	> S ²	7 S ²	7, 5 ²	7, 5 ²	7 S ²	₹ 5 ²
S u		be	p 6	₹ p 6	7 p8	7 06	→ p ⁶
b			d ¹⁰	d ¹⁰	d ¹⁰	√ d ¹⁰	d ¹⁰
n i				f ¹⁴	f ¹⁴	f ¹⁴	f ¹⁴
v					g ¹⁸	g ¹⁸	g ¹⁸
e						h ²²	h ²²
l							j ²⁶
#e ⁻	2	8	18	32	32	18	8

b) FORMA ABREVIADA (KERNEL)

La configuración electrónica abreviada se escribe colocando entre corchetes el gas noble inmediato anterior.

$$_{8}O: 1s^{2} 2s^{2} 2p^{4}$$
 [2He] $2s^{2} 2p^{4}$

15P:
$$1s^2 2s^2 2p^6 3s^2 3p^3$$
 [10Ne] $3s^2 3p^3$

$$_{30}$$
Zn : $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10}$ $[_{18}$ Ar] $4s^2 3d^{10}$

1. Determine el número de niveles que presenta un átomo cuyo número atómico es igual a 18.

Número de niveles = 3

2. Determine el número de electrones que se encuentran en los subniveles p, para el átomo de selenio (Z=34).

RESOLUCIÓN

 $_{34}^{Se}$: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^4$

Número de e subniveles p = 16

3. Determine el número de orbitales llenos y semillenos para la siguiente notación:

4. La configuración electrónica de un átomo presenta cuatro electrones en el tercer nivel. Determine el número atómico (Z) de dicho átomo.

RESOLUCIÓN

z E:
$$1s^2 2s^2 2p^6 3s^2 3p^2$$

3er. nivel

Número Atómico (Z) = 14

5. De la siguiente configuración electrónica:

4to. nivel

Indique la(s) proposición(es) correcta(s).

I. Está representado por cuatro niveles.

- II. Presenta tres subniveles.
- III. Presenta 7 electrones en el último nivel.
- IV. Todos los orbitales presentes están llenos

6. Si la configuración electrónica de un átomo culmina en 4s¹, determine el número atómico correspondiente.

7. Utilizando la forma abreviada (gases nobles), desarrolle la configuración electrónica para ₂₁Sc y luego escriba verdadero (V) o falso (F) según corresponda.

a. Su configuración electrónica [Ar]4s²3d¹

(V)

b. Presenta 4 niveles de energía.

c. Presenta un solo electrón en el último nivel.

21Sc: 1s² 2s² 2p⁶ 3s² 3p⁶43²3d¹

4to. nivel

8. La distribución electrónica del átomo de oxígeno es:

Luego se puede afirmar que:

- I. Posee 2 niveles energéticos y 5 subniveles energéticos.
- II. Posee 5 orbitales electrónicos de los cuales 2 están semillenos.
- III. Todos sus electrones están apareados.

