05 Neural Networks Layer- BackPropagation

How do we train this complex NN? What is Backpropagation?

- In order to update the parameters, we need to find their gradients. For this, we
 use the Backpropagation algorithm, where we traverse from right to left in the
 NN.
- It is based on the concept of chain rule of differentiation.

Gradient of w_{11}^3

 W^{3}_{11}

We'll encounter a_1^3 while going from loss towards

Therefore gradient: $\frac{\partial L}{\partial w_{11}^3} = \frac{\partial L}{\partial a_1^3} \cdot \frac{\partial a_1^3}{\partial z_1^3} \cdot \frac{\partial z_1^3}{\partial w_{11}^3}$

Gradient of w²₁₁

We'll encounter a_1^3 and a_1^2 while going from loss towards w_{11}^2

Therefore gradient:

$$\frac{\partial L}{\partial w_{11}^3} = \frac{\partial L}{\partial a_1^3} \cdot \frac{\partial a_1^3}{\partial z_1^3} \cdot \frac{\partial z_1^3}{\partial a_1^2} \cdot \frac{\partial a_1^2}{\partial z_1^2} \cdot \frac{\partial z_1^2}{\partial w_{11}^2}$$

Gradient of w 1₁₁

There are 2 possible paths to reach w 1₁₁

Path-1 : L ->
$$a_1^3$$
 -> a_1^2 -> a_1^1 -> w_{11}^1

Path-2 : L ->
$$a_1^3$$
 -> a_2^2 -> a_1^1 -> w_{11}^1

We need to combine the derivatives from path 1 and 2 by adding them up.

Therefore gradient:

$$\frac{\partial L}{\partial w_{11}^{1}} = \frac{\partial L}{\partial a_{1}^{3}} \cdot \frac{\partial a_{1}^{3}}{\partial z_{1}^{3}} \cdot \frac{\partial z_{1}^{3}}{\partial a_{1}^{2}} \cdot \frac{\partial z_{1}^{2}}{\partial z_{1}^{2}} \cdot \frac{\partial z_{1}^{2}}{\partial a_{1}^{1}} \cdot \frac{\partial a_{1}^{1}}{\partial z_{1}^{1}} \cdot \frac{\partial z_{1}^{1}}{\partial w_{11}^{1}} + \frac{\partial L}{\partial a_{1}^{3}} \cdot \frac{\partial a_{1}^{3}}{\partial z_{2}^{3}} \cdot \frac{\partial z_{2}^{2}}{\partial a_{1}^{2}} \cdot \frac{\partial z_{2}^{2}}{\partial a_{1}^{2}} \cdot \frac{\partial a_{1}^{1}}{\partial z_{1}^{1}} \cdot \frac{\partial z_{1}^{1}}{\partial w_{11}^{1}}$$

What are the different activation functions?

- Sigmoid function
- Hyperbolic tan function: $\frac{e^z e^{-z}}{e^z + e^{-z}}$
- ReLu: ReLu(z) = max(z, 0)
- Leaky ReLu: $Leaky ReLu(z) = max(z, \alpha z)$; α is a small gradient that we add

What is the vanishing gradient problem?

- The downside of both sigmoid and tanh is that their gradient is ~0, for most of the values of z
- This hampers the gradient descent process, as the calculated gradients become very small.
- For eg Suppose we wish to update weight $w_{_{_{11}}}^{^{1}}$. its gradient is calculated as:

$$\frac{\partial L}{\partial w_{11}^1} = \frac{\partial L}{\partial a_1^3} \Big[\frac{\partial a_1^3}{\partial a_{21}^2}, \ \frac{\partial a_{11}^2}{\partial a_{11}^1}, \ \frac{\partial a_{11}^1}{\partial w_{11}^1} + \frac{\partial a_1^3}{\partial a_{21}^2}, \ \frac{\partial a_{21}^2}{\partial a_{12}^2}, \ \frac{\partial a_{12}^2}{\partial w_{11}^1} \Big]$$

- So, the product of these terms inside the bracket will become very small.
- In fact, as the number of layers in the NN increase, this product will become smaller and smaller.

Backprop for MLP

$$dZ^2 = \frac{\partial L}{\partial Z^2} = \frac{\partial L}{\partial A^2} \cdot \frac{\partial A^2}{\partial Z^2}$$

$$dZ^2 = \frac{\partial L}{\partial n} \cdot \frac{\partial p}{\partial z^2} = p_i - I(i == k)$$

• Calculating dW²

$$dW^2 = \frac{\partial L}{\partial w^2} = \frac{\partial L}{\partial A^2} \cdot \frac{\partial A^2}{\partial z^2} \cdot \frac{\partial Z^2}{\partial w^2}$$

$$dW^2 = dZ^2. \frac{\partial Z^2}{\partial W^2}$$

$$dW^2 = dZ^2$$
. A^1

Calculating db²

$$db^{2} = \frac{\partial L}{\partial b^{2}} = \frac{\partial L}{\partial A^{2}} \cdot \frac{\partial A^{2}}{\partial z^{2}} \cdot \frac{\partial Z^{2}}{\partial b^{2}}$$

$$db^2 = dZ^2 \cdot \frac{\partial Z^2}{\partial b^2} = dZ^2$$

Calculating dA¹

$$dA^{1} = \frac{\partial L}{\partial A^{1}} = \frac{\partial L}{\partial A^{2}} \cdot \frac{\partial A^{2}}{\partial Z^{2}} \cdot \frac{\partial Z^{2}}{\partial A^{1}}$$

$$dA^1 = dZ^2. \frac{\partial Z^2}{\partial A^1} = dZ^2. W^2$$

Calculating dZ¹

$$dZ^{1} = \frac{\partial L}{\partial Z^{1}} = \frac{\partial L}{\partial A^{2}} \cdot \frac{\partial A^{2}}{\partial Z^{2}} \cdot \frac{\partial Z^{2}}{\partial A^{1}} \cdot \frac{\partial A^{1}}{\partial Z^{1}}$$

$$dZ^1 = dA^1 \cdot \frac{\partial A^1}{\partial Z^1}$$

$$dZ^{1} = dA^{1} \cdot \frac{\partial A^{1}}{\partial Z^{1}}$$

$$dZ^{1} = dA^{1} \cdot \frac{\partial A^{1}}{\partial Z^{1}}$$

$$\frac{\Delta L}{\Delta Z_{1}} = \Delta A_{1} \cdot \frac{\Delta A_{1}}{\Delta Z_{1}}$$
Can be C or C

$$= \left\{ \begin{array}{ccc} \partial A_1 \times O & \text{if } & Z_1 \leq O \\ \partial A_1 \times I & \text{if } & Z_2 > O \end{array} \right\}$$

Calculating dW¹

$$dW^{1} = \frac{\partial L}{\partial W^{1}} = \frac{\partial L}{\partial A^{2}} \cdot \frac{\partial A^{2}}{\partial Z^{2}} \cdot \frac{\partial Z^{2}}{\partial A^{1}} \cdot \frac{\partial A^{1}}{\partial Z^{1}} \cdot \frac{\partial Z^{1}}{\partial W^{1}}$$

$$dW^1 = dZ^1 \frac{\partial Z^1}{\partial W^1} = dZ^1.X$$

Calculating db¹

$$db^{1} = \frac{\partial L}{\partial b^{1}} = \frac{\partial L}{\partial A^{2}} \cdot \frac{\partial A^{2}}{\partial Z^{2}} \cdot \frac{\partial Z^{2}}{\partial A^{1}} \cdot \frac{\partial A^{1}}{\partial Z^{1}} \cdot \frac{\partial Z^{1}}{\partial b^{1}}$$

$$db^{1} = dZ^{1}.\frac{\partial Z^{1}}{\partial b^{1}} = dZ^{1}.1 = dZ^{1}$$

Summarizing forward and backward prop for MLP

While performing forward prop,

- we store/cache the value of Z_j,W_j,b_j to use them during back prop

Can we use Neural Networks for the Regression task?

- Yes, if the activation function for the output layer is a linear function, then NN will do regression.
- The activations for intermediate layers still need to be non-linear, otherwise, NN will not be able to map complex relationships.