2 SHQ1 & & 6'. \$3, [,QMMUDFH' RFXP HQMDMRQ

Version History

VCISIOITI	version i listory				
版本	日期	修改	变更摘要	sdk 版本	
1. 0. 0	2020/1/10	王新华	Initial version	1. 0. 0	
1. 0. 1	2020/3/16	王洋	Optimized version	1. 0. 1	
2. 0. 0	2020/4/7	左文平	修订接口,添加 python 接口	2. 0. 0	
			1:添加支持 ² 个模型接口 sdk_net2_init () 以及		
3. 0. 0	2020/10/14	左文平	对应的结构体·	3. 0. 1	
			2: meta 数据格式增加了 64字节。	0.0.1	
			3:移除了读取红外数据和深度数据接口。		

-: & & 6'. ,QMMUDFH'HVFUSWRQ

The interface files are primarily contained in 3 files: VGNK, FDP HUD&WOK, and) S &RQYHUW

'HYLFH, QLWDOJ, DWRQ5HODWNG, QWMU DFHV

/ RDG' HYLFH) LLP Z DUH

Interface Name	Interface Parameters	Description	
(RDGB1Z	const char* bootExe	Path to USB boot program	
	FRQWFKDU ILLP Z DUH	Path to firmware file	

([DPSOH

load_fw("./moviUsbBoot", "./fw/flicRefApp.mvcmd");

Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Automatically loads device firmware, device boots, host (PC) opens USB device.

* HW&RQQHFWHG 8 6% .QIRUP DWLRQ

Interface Name		Interface Parameters	Description	
	get usb version()	void	N/A	

([DP SOH

version = get_usb_version();

Returns:30 if USB 3.0, 20 if USB 2.0

' HVFUSWRQ

Returns USB Version Information (Port and USB Cable) connected to the device.

,QLMDOD,LQJ\$,&DPHUD3DUDPHMMUV

, , , , , , , , , , , , , , , , , , , ,	1		
Interface Name	Interface Parameters	Description	
sdk_init()	vscRecvCb cb	Callback	
	void* param	Callback function parameters	
	const char *blob_path	Path to Al Model (.blob)	
	CameraInfo *cam	Camera Configuration Parameters (See	
		below)	
	int cam_Len	Camera Configuration Structure Length	

There are two ways to get media and metadata. 1: Passively obtained through callback function, 2: Actively obtained through read_XXX_data() without setting the callback function and callback parameters.

```
([DP S0H
cam info=ncc.CameraInfo()
cam info.inputFormat=ncc.IMG FORMAT BGR PLANAR
cam info.stdValue=1
cam info.isOutputYUV=1
cam info.isOutputH26X=1
cam info.isOutputJPEG=1
cam info.imageWidth = cameraCfg.camWidth
cam info.imageHeight = cameraCfg.camHeight
cam info.startX
                 = 0
                 = 0
cam info.startY
cam info.endX
                  = cameraCfg.camWidth
cam info.endY
                  = cameraCfg.camHeight
cam info.inputDimWidth =0
cam info.inputDimHeight =0
ncc.SetMeanValue(cam info,0.0,0.0,0.0)
ret = ncc.sdk init(None, None, "./blob/face-detection-retail-0004-fp16.blob",cam info,
struct.calcsize("13I4f"))
print("xlink init ret=%d " % ret)
if (ret<0):
       return
```

' HVFUSWRQ

Specifies the Al Vision model file and calculation parameters, initializes the device algorithm model, camera function switch selection, sets the video encoding parameters (if the function switch is turned on). Video output is controlled by camera_video_out().

1.4 ,QLWDOQLLQJ\$,&DPHUD PRGHV3DUDPHWHUV

Interface Name	Interface Parameters	Description
sdk_net2_init()	vscRecvCb cb	Callback

void* param	Callback function parameters
const char *blob1_path	AI Mode 1 file(blob)
Network1Par* par1	Model param
int par1_Len	Paraml length
const char *blob2_path	AI Mode 2 file(blob)
Network2Par* par2	Mode2 param
int par2_Len	Param2 length

There are two ways to get media and metadata. 1: Passively obtained through callback function, 2: Actively obtained through read XXX data() without setting the callback function and callback parameters.

' HVFUSWRQ

Specifies the 2 Al Vision model files and calculation parameters, initializes the device algorithm model, camera function switch selection, sets the video encoding parameters (if the function switch is turned on). Video output is controlled by camera_video_out().

* HWO HWDGDWD 6 LI, H

Interface Name	Interface Parameters	Description
get meta size()	void	N/A

([DP SOH Omitted

Returns: Size of the CNN calculation result's metadata.

' HVFUSWRQ

Turn off the camera, reload the model, and call before changing the model.it only support one Al mode net now.

5 HP RYH6'.

Interface Name	Interface Parameters	Description
sdk_uninit()	void	N/A

([DP SOH

sdk_uninit();

Returns: N/A

' HVFUSWRQ

Turn off the camera, reload the model, and call before changing the model.

* HW6' . 9 HUMRQ, QIRUP DWRQ

Interface Name	Interface Parameters	Description
get sdk version()	char* version	Version Information

([DP SOH char version[100]; get_sdk_version(version);

Returns:void

' HVFUSWRQ

Gets SDK version information.

9 LGHR 6 WHDP LQJ 5 HODWMG, QWMU DFHV

Interface Name	Parameters	Description
read_yuv_data()	char* pbuf	Receive Buffer
	int * size	Input and output parameters. Input is the size of the input
		buffer , output is the size of the returned video data.
	int blocked	0: If there is no data, return immediately.
		1: Wait until data is read to return.

([DPS0H

read_yuv_data(data_yuv,&size,1)

Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Gets a YUV data stream from the device. Content: struct frameSpecOut+YUV (NV12).

* HW+ RU+ ' DMD

Interface Name	Parameters	Description
read_26x_data() char* pbuf Receive Buffer		Receive Buffer
	int * size	Input and output parameters. Input is the size of the input
		buffer , output is the size of the returned video data.
	int blocked	0: If there is no data, return immediately.
		1: Wait until data is read to return.

([DP SOH

read_26x_data(data_26x,&size,1)

Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Gets a H.264 or H.265 data stream from the device. Content: struct frameSpecOut+H26X data.

* HW 3 (* GDMD)

Interface Name	Parameters	Description
read_jpg_data() char* pbuf Receive Buffer		Receive Buffer
	int * size	Input and output parameters. Input is the size of the input
		buffer area, output is the size of the returned video data.
	int blocked	0: If there is no data, return immediately.
		1: Wait until data is read to return.

([DP SOH

read_jpg_data(yuv420p,&size,1)

Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Gets a JPEG data stream from the device. Content: struct frameSpecOut+MJPEG data.

* HWWKHRXWSXWRI WKH\$, 1 HWZ RUN DOJRULWKP

Interface Name	Parameters	Description
read_meta_data()	char* pbuf	Receive Buffer
	int * size	Input and output parameters. Input is the size of the input
		buffer area, output is the size of the returned video data.

int blocked	0: If there is no data, return immediately.
	1: Wait until data is read to return.

([DPSOH

read_meta_data(data_meta,&size,1)

Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Get the number of operations from the device's Al Network.Content: struct frameSpecOut+Al data.and Al data format is below:

& DP HUD & RQW/RO5 HOD/MG, QVMU DFHV

2 EWDLQ & DP HUD 0 RGX (DH, QIRUP DMLRQ

Interface Name	Parameters	Description
camera_control_get_features()	SensorModesConfig *	Device information structure
		pointer

([DP SOH

SensorModesConfig cameraCfg;

camera_control_get_features(&cameraCfg);

Returns:0 if successful, -1 otherwise

cameraCfg.moduleName: Camera Module Name

cameraCfg.camWidth: Image Width cameraCfg.camHeight: Image Height cameraCfg.camFps: Camera Frame Rate

cameraCfg.AFmode: Autofocus (1 if supported, 0 otherwise) cameraCfg.maxEXP: Maximum exposure time in microsecond (µs)

cameraCfg.minGain: *Minimum Gain Multiplier* cameraCfg.maxGain: *Maximum Gain Multiplier*

Description:

Obtain information about the mode of the camera (获取相机可见光模组模式信息). Some cameras will support multiple video modes, which can be selected through camera_select_sensor().

6 HOHFWO RGXOHTV: RUNLQJ O RGH

Interface Name	Parameters	Description
camera_select_sensor()	int sensorid	camera_control_get_features()
		obtains the array of information of
		supported camera modes.
		sensorid is the serial number of
		the array.

```
([DPSOH
```

camera_select_sensor(0);

Returns: 0 if successful, -1 otherwise

' HVFUSWRQ

Sets the working mode of the camera's visible light module.

& RQWRO&DP HUD¶V 9 LGHR 2 XVSXVV

Interface Name	Parameters	Description
camera_video_out()	int video_type	YUV Data output mode
	camera_ctrl_VIDEO_out mode	Disabled, Single (For photos),
		Continuous

```
typedef enum
{
    VIDEO_OUT_DISABLE, /* Output Disabled */
    VIDEO_OUT_SINGLE, /* Single Output */
    VIDEO_OUT_CONTINUOUS, /* Continuous Output */
}camera_ctrl_video_out;

( [ DP SOH camera_video_out(YUV420p,VIDEO_OUT_CONTINUOUS);
```

Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Sets the device to output video data. This works for YUV420p, H26X, JPEG. H26X does not support single output.

6 HW&DP HUD¶V) RFXV 0 RGH

Interface Name	Parameters	Description
camera_control_af_mode()	camera_ctrl_af_mode af_mode	CAMERA_CONTROLAF_MOD E_OFF :Manual Focus CAMERA_CONTROLAF_MOD E_AUTO:Automatic Focus

([DP S0H

camera_control_af_mode(CAMERA_CONTROL__AF_MODE_OFF);
Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Sets the camera to manual focus. Using camera_control_get_features() one can check if the camera supports manual focusing (cameraCfg.AFmode). If not supported, the setting is invalid and the camera defaults to automatic.

6 HW&DP HUD¶V / HQV ' LVMDQFH

Interface Name	Parameters	Description
camera_control_lens_move()	uint32_t lens_position	Range of distances (1-100)

([DPS0H

camera_control_lens_move(10);

Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Used when focusing manually, greater value is a greater distance.

7UJJHU6LQJØH) RFXV

,		
Interface Name	Parameters	Description
I IIIIGHACG NAIHG	i Falallicicis	Describion

camera control focus trigger()	void	N/A
04111014_00114101_10040_4119901()	10.0	IN//

([DPS0H

camera_control_focus_trigger();

Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Focuses the camera once

6 HW&DP HUD¶V ([SRVXUH 0 RGH

Interface Name	Parameters	Description
camera_control_ae_mode()	camera_ctrl_ae_mode flash_mode	Manual or Automatic

([DP SOH

camera_control_ae_mode(CAMERA_CONTROL__AE_AUTO__FLASH_MODE__AUTO);

Returns: 0 if successful, -1 otherwise

' HVFUSWRQ

Sets exposure mode.

6HW [SRVXUH7LPH

Interface Name	Parameters	Description
camera_control_ae_set_exp()	uint32_t exp_compensation	Exposure duration in microsecond
		(µs) range (1-1 / fps)

([DPSOH

camera_control_ae_set_exp(20000);

Returns: 0 if successful, -1 otherwise

' HVFUSWRQ

Sets the exposure time for the manual exposure mode.

6 HW&DP HUD* DLQ

Interface Name	Parameters	Description
camera control ae set gain ()	uint32_t iso_val	Gain value

([DP SOH

camera_control_ae_set_gain(100);

Returns: 0 if successful, -1 otherwise

' HVFUSWRQ

Sets the gain in manual exposure mode. Min/max gain values can be retrieved through *camera_control_get_features()* and set manually.

6 HW&DP HUD: KLVM %DODQFH 0 RGH

Interface Name		Parameters	Description
	interrace ivallie	Parameters	Description
	camera_control_awb_mode()	camera_ctrl_awb_mode	Manual or Auto
		awb mode	

([DPS0H

camera_control_awb_mode(CAMERA_CONTROL__AWB_MODE__AUTO);

Returns: 0 if successful, -1 otherwise

' HVFUSWRQ

Sets camera to automatic white balance mode.

) ORDW& RQYHUVLRQ

Interface Name	Parameters	Description
f16Tof32()	unsigned int x	16-bit Data

(DP SOH

Float f=f16Tof32(100);

Returns: Float

' HVFUSWRQ

Converts 16-bit short data to a floating point number. Used for metadata calculations and analysis.

\equiv 3\WKRQ6'.,QMMUDFH'RFXPHQMMMRQ

Starting from version 2.0.X onwards, the API will support Python. The SDK Interface can be found in the openncc.py file. To use the module, import it using: import openncc as ncc

'HYLFH, QLANDON, DANRQ 5 HODAMG, QAMULDFHV

* HW6' . 9 HUMRQ

Interface Name	Parameters	Description
get_sdk_version()	void	N/A

([DPS0H

print("get usb %d sdk versin %s" % (ncc.get_usb_version() ,ncc.get_sdk_version()))
Returns:SDK Version

' HVFUSWRQ

Gets the SDK version.

* HW9 HUVLRQ RI & RQQHFWHG 8 6 % ' HYLFH

Interface Name	Parameters	Description
get_usb_version()	void	N/A

([DPS0H

print("get usb %d sdk versin %s" % (ncc.get_usb_version() ,ncc.get_sdk_version()))
Returns:30 if USB 3.0, 20 if USB 2.0

' HVFUSWRQ

Returns USB Version Information (Port and USB Cable) connected to the device

/ RDG' HYLFH) LUP Z DUH

Interface Name	Parameters	Description
(RDGBIZ	bootExe	
		Path to USB boot program
	ILLP Z DUH	
		Path to firmware file

([DPSOH

res = ncc.load_fw("./moviUsbBoot","fw/flicRefApp.mvcmd") if res<0:

printf('load firmware error!')
sys.exit(1)
Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Automatically loads device firmware, device boots, host (PC) opens USB device.

,QLVLDQ1, LQJ & DP HUD 3 DUDP HVMUV

Interface Name	Parameters	Description
sdk_init()	vscRecvCb cb	Callback
	param	Callback function parameters
	blob_path	Path to Al Model (.blob)
	cam	Camera Configuration Parameters
		(See below)
	Cam_len	Camera configuration structure
		length

There are two ways to get Media and Metadata. 1: Passively obtained through callback function, 2: Actively obtained through read_XXX_data() without setting the callback function and callback parameters.

```
([DPSOH
cam_info=ncc.CameraInfo()
cam_info.inputFormat=ncc.IMG_FORMAT_BGR_PLANAR
cam info.stdValue=1
cam info.isOutputYUV=1
cam info.isOutputH26X=1
cam info.isOutputJPEG=1
cam info.imageWidth = cameraCfg.camWidth
cam_info.imageHeight = cameraCfg.camHeight
cam info.startX
cam_info.startY
cam info.endX
                  = cameraCfg.camWidth
cam info.endY
                  = cameraCfg.camHeight
cam info.inputDimWidth =0
cam info.inputDimHeight =0
ncc.SetMeanValue(cam_info,0.0,0.0,0.0)
ret = ncc.sdk init(None, None, "./blob/face-detection-retail-0004-fp16.blob",cam info, struct.calcsize("13l4f"))
print("xlink init ret=%d " % ret)
if (ret<0):
       return
```

' HVFUSWRQ

Specifies the Al Vision model file and calculation parameters, initializes the device algorithm model, camera function switch selection, sets the video encoding parameters (if the function switch is turned on). Video output is controlled by camera_video_out().

1.4 ,QUMDQLIQU\$, & DPHUD PRGHV3 DUDPHMHUV

Interface Name	Interface Parameters	Description
sdk_net2_init()	vscRecvCb cb	Callback
	void* param	Callback function parameters
	const char *blob_path	AI Mode 1 file(blob)
	Network1Par* par1	Model param
	int parl_Len	Paraml length
	const char *blob2_path	AI Mode 2 file(blob)
	Network2Par* par2	Mode2 param
	int par2_Len	Param2 length

There are two ways to get media and metadata. 1: Passively obtained through callback function, 2: Actively

obtained through read XXX data() without setting the callback function and callback parameters.

```
([DPSOH
```

char *blob = "./blob/vehicle-license-plate-detection-barrier-0106/vehicle-license-plate-detection-barrier-0106.blob";

char *blob2 = "./blob/license-plate-recognition-barrier-0001/license-plate-recognition-barrier-0001.blob";

' HVFUSWRQ

Specifies the 2 Al Vision model files and calculation parameters, initializes the device algorithm model, camera function switch selection, sets the video encoding parameters (if the function switch is turned on). Video output is controlled by camera_video_out().

QLWDOQLLQJ&DPHUDZLWK \$,3DUDPHWHUV

Interface Name	Parameters	Description
sdk_init()	vscRecvCb cb	Callback
	param	Callback function parameters
	Blob1_path	Path to Al Model (.blob)
	Par1	Mode1 param
	Par1_len	Paraml length
	blob2_path	

There are two ways to get Media and Metadata. 1: Passively obtained through callback function, 2: Actively obtained through read_XXX_data() without setting the callback function and callback parameters.

```
([DPSOH
cam info=ncc.CameraInfo()
cam info.inputFormat=ncc.IMG FORMAT BGR PLANAR
cam info.stdValue=1
cam info.isOutputYUV=1
cam_info.isOutputH26X=1
cam info.isOutputJPEG=1
cam info.imageWidth = cameraCfg.camWidth
cam_info.imageHeight = cameraCfg.camHeight
cam info.startX
                 = 0
cam info.startY
                 = 0
cam info.endX
                 = cameraCfg.camWidth
                 = cameraCfg.camHeight
cam info.endY
cam info.inputDimWidth =0
cam info.inputDimHeight =0
ncc.SetMeanValue(cam info,0.0,0.0,0.0)
```

ret = ncc.sdk_init(None, None, "./blob/face-detection-retail-0004-fp16.blob",cam_info, struct.calcsize("13I4f"))

```
print("xlink_init ret=%d " % ret)
if (ret<0):
    return</pre>
```

' HVFUSWRQ

Specifies the Al Vision model file and calculation parameters, initializes the device algorithm model, camera function switch selection, sets the video encoding parameters (if the function switch is turned on). Video output is controlled by camera_video_out().

JHWPHMD/GDMD/VIJH

Interface Name	Parameters	Description
get_meta_size()	void	N/A

([DPSOH

```
metasize=ncc.get_meta_size()
print("xlink init ret= %d" % (metasize))
```

Returns:meta data size

' HVFUSWRQ

Turn off the camera, reload the model, and call before changing the model.only support one AI mode now.

8 QLQLVMD001, H6'.

Interface Name	Parameters	Description	
sdk_uninit()	void	N/A	

([DP SOH

sdk_uninit();

Returns:N/A

' HVFUSWRQ

Turn off the camera, reload the model, and call before changing the model.

9 LGHR 6 WHDP LQJ 5 HODWMG, QWMU DFHV

Interface Name	Parameters	Description
GetYuvData()	yuvbuf	Bytearray receive buffer

([DPS0H

metasize=ncc.get_meta_size()
offset=struct.calcsize(media_head)
yuvsize=cameraCfg.camWidth*cameraCfg.camHeight*2
yuvbuf = bytearray(yuvsize+offset)
metabuf = bytearray(metasize+offset)
size = ncc.GetYuvData(yuvbuf)

Returns:Size of the YUV data.

' HVFUSWRQ

Gets a YUV data stream from the device. Content: struct frameSpecOut+YUV(NV12) data.

* HW+ RU+ ' DMD

Interface Name	Parameters	Description
GetH26xData()	databuf	Bytearray receive buffer

([DPS0H

Same as 2.1.

' HVFUSWRQ

Gets a H.264 or H.265 data stream from the device. Content: struct frameSpecOut+H26X data.

* HW 3 (* GDMD)

Interface Name	Parameters	Description
GetJpegData()	databuf	Bytearray receive buffer

([DPS0H

Same as 2.1

' HVFUSWRQ

Gets a JPEG data stream from the device. Content: struct frameSpecOut+MJPEG data.

2.4 Ge he e l f he AI Ne k infe ence (获取设备 AI 网络数据运算结果?)

Interface Name	Parameters	Description
GetMetaData()	databuf	Bytearray receive buffer

([DPSOH

Same as 2.1

' HVFUSWRQ

Get the number of operations from the device's Al Network.Content: struct frameSpecOut+Al data..and Al data format is below:

& DP HUD & RQWIROS HODWIG, QWHU DFHV

2 EVIDIQ & DP HUD 0 RGX (DH, QI RUP DMLRQ

Interface Name	Parameters	Description
CameraSensor Class	GetFirstSensor (), GetNextSensor	
	()	

([DPS0H

sensors=ncc.CameraSensor()

sensor1 = ncc.SensorModesConfig()

if sensors.GetFirstSensor(sensor1)==0:

print("camera: %s, %dX%d@%dfps, AFmode:%d,

maxEXP:%dus,gain[%d, %d]\n" % (

sensor1.moduleName, sensor1.camWidth, sensor1.camHeight, sensor1.camFps, sensor1.AFmode, sensor1.maxEXP, sensor1.minGain, sensor1.maxGain))

sensor2 = ncc.SensorModesConfig()

while sensors.GetNextSensor(sensor2)==0:

print("camera: %s, %dX%d@%dfps, AFmode:%d,

maxEXP:%dus,gain[%d, %d]\n" % (

sensor2.moduleName, sensor2.camWidth, sensor2.camHeight, sensor2.camFps, sensor2.AFmode, sensor2.maxEXP, sensor2.minGain, sensor2.maxGain))

' HVFUSWRQ

Obtains information about the mode of the camera (获取相机可见光模组模式信息). Some cameras will support multiple video modes, which can be selected through camera_select_sensor().

6 HONFWO RGXONTV: RUNLQU O RGH

Interface Name	Parameters	Description
camera_select_sensor()	sensorid	comerc central set feetures()
		camera_control_get_features() obtains the array of information of
		supported camera modes. sensorid is the serial number of
		the array.

([DP SOH

ncc.camera_select_sensor(0)

Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Sets the working mode of the camera's visible light module.

& ROWROMH & DP HUDTY 9 LGHR 2 XVSXVV

Interface Name	Parameters	Description
camera_video_out()	video_type	Video data type
	out mode	Disabled, Single (For photos), or
		Continuous

([DPS0H

ncc.camera_video_out(ncc.YUV420p,ncc.VIDEO_OUT_CONTINUOUS)

Returns:0 if successfuk, -1 otherwise

' HVFUSWRQ

Sets the device to output video data. This works for YUV420p, H26X, JPEG. H26X does not support single output.

6 HM&DP HUD¶V) RFXV 0 RGH

Interface Name	Parameters	Description
camera_control_af_mode()	camera_ctrl_af_mode af_mode	CAMERA_CONTROLAF_MOD E_OFF: Manual Focus CAMERA_CONTROLAF_MOD E_AUTO:Automatic Focus

([DPS0H

ncc.camera_control_af_mode(ncc.CAMERA_CONTROL_AF_MODE_AUTO);

Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Sets the camera to manual focus. Using camera_control_get_features() one can check if the camera supports manual focusing (cameraCfg.AFmode). If not supported, the setting is invalid and the camera defaults to automatic focusing.

6 HWWKH & DP HUD¶V / HQV ' LVMDQFH

Interface Name	Parameters	Description
camera_control_lens_move()	lens_position	Range of distances (1-100)

([DP SOH

ncc.camera_control_lens_move(10);

Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Used when focusing manually, greater value is a greater distance.

7UJJHU6LQJØI) RFXV

Interface Name	Parameters	Description
camera_control_focus_trigger()	void	N/A

([DP SOH

camera_control_focus_trigger();

Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Focuses the camera once.

6 HW&DP HUD¶V ([SRVXUH 0 RGH

Interface Name	Parameters	Description
camera_control_ae_mode()	camera_ctrl_ae_mode	Manual or Automatic
	flash_mode	

([DPS0H

ncc.camera_control_ae_mode(ncc.CAMERA_CONTROL__AE_AUTO__FLASH_MODE__AUTO);

Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Sets exposure mode.

6HW(| SRVXUH7LP H

Interface Name	Parameters	Description
camera_control_ae_set_exp()	exp_compensation	Exposure duration in microsecond
		(μs) range (1-1 / fps)

([DP SOH

ncc.camera_control_ae_set_exp(20000);

Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Sets the exposure time for the manual exposure mode.

6HW&DPHLD*DLQ

Interface Name	Parameters	Description
----------------	------------	-------------

camera control ae set gain ()	iso val	Gain value
camera control ac set gam	·	

([DPS0H

ncc.camera_control_lens_move(100);

Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Sets the gain in manual exposure mode. Min/max gain values can be retrieved through camera_control_get_features() and set manually.

6 HW&DP HUD: KLVM %DODQFH 0 RGH

Interface Name	Parameters	Description
camera_control_awb_mode()	camera_ctrl_awb_mode	Manual or Automatic
	awb mode	

([DP SOH

ncc.camera_control_awb_mode(ncc.CAMERA_CONTROL__AWB_MODE__AUTO); Returns:0 if successful, -1 otherwise

' HVFUSWRQ

Sets camera to automatic white balance mode.

) ORDW& RQYHUVLRQ

Interface Name	Parameters	Description
f16Tof32()	х	16-bit Data

([DPSOH

f=f16Tof32(100);

Returns:Float

' HVFUSWRQ

Converts 16-bit short data to a floating point number. Used for metadata calculations and analysis.