Reinforcement Learning Homework 1 - Annotations

Damian Valle, Martin Schuck

November 11, 2020

Machine Replacement

Solution by backwards induction

The problem can be solved by backwards induction. In general, the solution is given by the equation

$$u_k = \max_{a_k} [r_k(s, a) + P(a)J_{k+1}].$$

With the given transition probabilities P(replace) and P(broken), $\theta = 0.5$, a replacement reward of -8 and a cost reward of -6, this can be written as

$$u_k = \max_{a_k} \left(\begin{pmatrix} 0.5u_{k+1}(1) + 0.5u_{k+1}(2) \\ 0.5u_{k+1}(1) + 0.5u_{k+1}(2) - 3 \\ u_{k+1}(3) - 6 \end{pmatrix}, \begin{pmatrix} -8 + u_{k+1}(1) \\ -8 + u_{k+1}(1) \\ -8 + u_{k+1}(1) \end{pmatrix} \right).$$

The expected rewards and optimal actions are then given as follows for a time horizon T=2:

	T=0	T=1	T=2
u_k	$\begin{pmatrix} -\frac{3}{2} \\ -\frac{15}{2} \\ -8 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -3 \\ -6 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
a_k	$\begin{pmatrix} c \\ c \\ r \end{pmatrix}$	$\begin{pmatrix} c \\ c \\ c \end{pmatrix}$	$\begin{pmatrix} c \\ c \\ c \end{pmatrix}$

with "c" standing for "continue" and "r" for "replace".

Optimal stopping

a) Modelling the problem

A naive way to model the problem such that the rewards become stationary is to simply include the number of tosses into the state. We therefore have $S = (\{1,...,T\} \times \{1,...,T\} \cup \emptyset)$, with (t,n) denoting the number of throws and heads, and \emptyset as the state after stopping the experiment. We therefore have $T^2 + 1$ states. The action space is given as $\{c,s\}$, c standing for continuing and s for stopping. The list of non-null transitions is as follows:

- $P(\emptyset|\emptyset,x)=1$
- $P(\emptyset|(t,n),s)=1$
- $P(\emptyset|(T,n),x)=1$
- P((t+1,n)|(t,n),c) = 0.5
- P((t+1, n+1)|(t, n), c) = 0.5

and the reward is zero for all states, except $r((t,n),s) = \frac{n}{t}$. The Bellman equation in this case can be written as

$$V(s) = \max_{a} \left\{ r(s), \sum_{j \in S} P(j|s,a) * V(j) \right\} = \max_{a} \left\{ r(t,n), \frac{V((t+1,n)) + V((t+1,n+1))}{2} \right\}$$

b) Induction proof

Intuitively, proposition A is correct. In order to prove the statement, we can show that it holds for V_T and make a backwards induction. In the case of V_T , we have $V_T(T,n) = \max_a \{r(T,n)\} = \frac{n}{T}$. The inequality $V_T(n+1) \geq V_T(n)$ therefore holds, since $\frac{n+1}{T} > \frac{n}{T}$. For the general case V_t , we have

$$\max_{a} \left\{ r(t, n+1), \frac{V_{t+1}(n+2) + V_{t+1}(n+1)}{2} \right\} \ge \max_{a} \left\{ r(t, n), \frac{V_{t+1}(n+1) + V_{t+1}(n)}{2} \right\}.$$

In case $r(t,n) > \frac{V_{t+1}(n+1) + V_{t+1}(n)}{2}$, the reward is the maximum and the inequality is obviously correct, since r(t,n+1) > r(t,n). If not, then the inequality is also correct, since we have that

$$\frac{V_{t+1}(n+2) + V_{t+1}(n+1)}{2} \ge \frac{V_{t+1}(n+1) + V_{t+1}(n)}{2}$$
$$V_{t+1}(n+2) \ge V_{t+1}(n).$$

The correctness of the last inequality is established by backwards induction, since for all times ξ t, the inequality is assumed to hold.

d) Off-policy RL

Reinforcement learning relies on the exploration of the state space, both for on- and off-policy algorithms. Since option B) does not explore this space by only ever trying a single action, it is unsuitable for RL. We therefore have to choose behaviour policy A.