#### **Row Reduction and Echelon Form (Online Lecture 2)**

A rectangular matrix is in **echelon form** (or **row echelon form**) if it has the following three properties:

- 1. All nonzero rows are above any rows of all zeros.
- 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is in **reduced echelon form** (or **reduced row echelon form**):

- **4.** The leading entry in each nonzero row is 1.
- **5.** Each leading 1 is the only nonzero entry in its column.

### **Examples**

c. 
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad d. \quad \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 2 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$

#### Rank of a Matrix

No of nonzero rows in echelon form of the matrix is called rank of the matrix and it is denoted as Rank(A).

- 1- Null matrix have all the rows as zero rows so Rank of null matrix is zero
- 2- Identity matrix of order 3,  $I_3$ , (is in echelon form and) have 3 nonzero rows to Rank( $I_3$ )= 3.

$$I_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow Echelon form$$

$$Rank (I_3) = 3$$

$$Rank (A) = 0$$

#### **Existence and Uniqueness Theorem**

## Existence

$$X_1, X_2, X_3, \dots, X_n$$



A linear system in  $\underline{n}$  variables having  $\underline{m}$  equations in matrix form can be written as

Coefficient with very very very 
$$A_{\overline{m \times n}} x_{\overline{n \times 1}} = b_{\overline{m \times 1}}$$

The linear system is

- 1- Consistent if and only if  $Rank(A) = Rank(A_d)$
- 2- Inconsistent if and only if  $Rank(A) \neq Rank(A_d)$



where  $A_d$  represent the augmented matrix of the linear system.

## **Uniqueness**

Further, the solution is unique if and only if

 $Rank(A)=Rank(A_d)=No of variables of the system (n in this case)$ 



**Example 1** Determine the existence and uniqueness of the solution of the system whose augmented matrix is reduced to the form

Solution The augmented matrix of the system is

$$\begin{bmatrix}
1 & 6 & 2 & -5 & -2 & -4 \\
0 & 0 & 2 & -8 & -1 & 3 \\
0 & 0 & 0 & 0 & 1 & 7
\end{bmatrix}$$
Solution The augmented matrix of the system is

$$\begin{bmatrix}
X_1 & X_2 & X_3 & X_4 & X_5 & X_$$

# **Example 2** Determine the existence and uniqueness of the solutions to the system