Instructor: Dr. Hanh Pham

Project Requirements:

Write a program in JAVA to implement a CPU scheduling algorithm (see the assignment table below). This program should read data about the processes from "input.data"(see the format below) and define the schedule data for a Gant chart in "output.data"(see the format below)

Format of "input.data":

```
10 (number of processes)
0 (if not RR nor preemptive, 1 for opposite) 2 (=quantum)
3 (arriving time for P1) 12(burst time) 2(priority)
...
0 (arriving time for P10) 7(burst time) 5(priority)
```

Format of "output.data":

```
0(start) 7(end) 10 (process #)
7(start) 21(end) 1(process #)
...
102(start) 115(end) 8(process #)
```

Format of the report:

- +Title page: student name, assigned scheduling method
- +Table of contents
- 1. Description of Scheduling algorithm (also give an example)
- 2. Description of Implementation (your program)
- 3. Experiments (run your program with 3 different input data sets, provide results, draw Gantt chat based on that, calculate average waiting time, and average response time for each set) => see MORE on 3rd page !!!
- 4. Conclusion
- 5. References

What to submit:

- 1) Report file in word format (named as "ID-LastName-FirstInitial.doc")
- 2) RAR folder which contains (named as "ID-LastName-FirstInitial.rar"):
 - Input.data
 - Output.data
 - Scheduler.class (executable code)
 - Scheduler.java (source code)

Where to submit:

http://cs.newpaltz.edu/~phamh/aos/sub/

Deadline: November 4th, 2015 (hard deadline, late work will not be graded !!!)

Assignments:

Please check at Blackboard for the assignment of your scheduling algorithm which could be one of the following:

Code	Scheduling Algorithms
1	SJF: Shortest Job First
2	PH: Priority High (higher number means higher priority)
3	PL: Priority Low (lower number means higher priority)
4	RR: Round Robin
5	pSJF: Preemptive Shortest Job First
6	pPH: Preemptive Priority High (higher number means higher priority)
7	pPL: Preemptive Priority Low (lower number means higher priority)

FX	A	M	ΡI	FS	•

In the REPORT:

...

3. EXPERIMENTS:

Experiment #1:

a) INPUT DATA:

"input.data"
4
11
085
1 4 1
294
3 5 3

<u>Process</u>	<u>Arrival Time</u>	Burst Time	<u>Priority</u>	
P_{1}	0	8	5	
P_2	1	4	1	
P_3	2	9	4	
P_4	3	5	3	

b) Gantt Chart (Your Assigned Schedule Algorithm: example Preemptive SJF)

	P ₁	P ₂	P ₄	P ₁		P ₃	
0	1		5 1	0	17		_ 26

c) Average waiting time

=
$$[P1(10-1) + P2(1-1) + P3(17-2) + P4(5-3)]/4 = 26/4 = 6.5$$

d) SHOULD-BE Output:

e) MY Output (produced by program):

"output.data"

1 1
5 2
10 4
0 17 1
7 26 3
5 2 10 4 0 17 1

My "output.data"

0 1 1
1 5 2
5 10 4
10 17 1
17 26 3

An example of how the scheduler can be built:

An example of how the scheduler would work:

P2	Asial Time 3	Bus7 12 7	Priority 2 5		"Imput. aata 2 12 3122 75 utput File:	"out pu	7. data" 7 2
FCF	S: P2	P1	19				
SJF LJF:	P2 P	P1 P1 P1 P1 P1 P1 P1 P1	7 2 3 Om	actiun timu	2 = 2	0 4 4 16 16 19	.dafa"
Preempti LJF	P2 (4)	P1(12)	-			OR 2 2 4 6 6 8 16 18	2 2 1 1 2 2