

POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Aerospaziale

Costruzione di motori per aeromobili

Collegamenti Filettati – Esercizio 2

Docenti:

Daniele Botto

Christian Maria Firrone

Studenti:

Francesco Doronzo – s256693

Francesco Messina – s331702

Maria Laura Uva – s323835

OUTLINE

- ➤ OBIETTIVI E DATI DEL PROBLEMA
- > SCELTA DELLA VITE
- **MONTAGGIO**
- > CEDEVOLEZZE PEZZO/VITE
- > EFFETTO DELLA TEMPERATURA
- > VERIFICHE
- **CONCLUSIONI**

OBIETTIVI E DATI DEL PROBLEMA

Collegamento filettato tra due dischi di uno stadio di turbina di bassa pressione flangiati sull'albero.

- Dimensionamento del collegamento filettato:
 - Scelta della vite;
 - Numero di viti, Z.
- Rispetto dei vincoli:
 - Dimensione massima testa della vite = 14 mm;
 - Passo bullonatura $\geq 2.5 \cdot d_{fori}$.
- Diagramma di forzamento e confronto a temperature diverse.
- Verifica:
 - Statica;
 - A fatica;
 - A carico minimo.

 Potenza stadio 1:
 4433 kW

 Potenza stadio 2:
 5452 kW

 Ω di coppia max:
 11330 rpm

Forza aerodin. assiale: 10% F aerodin. tangenziale

 Materiale:
 INCONEL 718

 R_{P02}:
 950 MPa

 E (T amb):
 208 GPa

 E (400 °C)
 185 GPa

 E (530 °C)
 176 GPa

 Coefficiente utilizzo vite:
 0.8 R_{P02}

 $0.4 \div 0.5$ Coeff. attrito tra flange (µ): Coeff. attrito vite (μ_v) : $0.1 \div 0.2$ Coeff. sicurezza carico tangenziale (St): 1.5 1.6 Incertezza di serraggio α_A: 400-530 °C T temperatura di esercizio: 112 mm Raggio dei centri dei fori (rfori): Raggio del centro di pressione delle pale (rcp) 215 mm Spessore delle flange: 3.6 mm Lunghezza radiale delle flange 16 mm Dimensione massima testa della vite 14 mm

SCELTA DELLA VITE

- Calcolo forze tangenziali necessarie per trasmettere all'albero le coppie dei due stadi;
- Calcolo forza assiale totale necessaria per trasmettere per attrito la coppia massima;
- Scelta della vite rispettando i vincoli;
- Scelta del numero di viti rispettando i vincoli.

$$C_1 = \frac{S_t P_1}{\omega}$$
; $C_2 = \frac{S_t P_2}{\omega}$

$$F_{t1,aero} = \frac{C_1}{r_{CP,1}} = 26067 N$$

$$F_{t2,aero} = \frac{C_2}{r_{CP,2}} = 32059 N$$

$$F_{t,fori} = \frac{C}{r_{fori}}$$
; $F_{ax} = \frac{F_{t,fori}}{\mu_{flange}}$

$$F_{ax,min} = \max(F_{ax,1}, F_{ax,2}) = 153855 N$$

$$\begin{cases} d_w = d_T = 13 \ mm \le 14 \ mm \\ \frac{2\pi r_{fori}}{Z} = 22.7 \ mm \ge 2.5 \cdot d_{fori} = 22.5 \ mm \end{cases}$$

DATI VITE M8:

MONTAGGIO

d [mm]	d ₂ [mm]	d ₃ [mm]	A _{d3} [mm ²]	p [mm]
8	7.188	6.466	32.48	1.25

- Calcolo del carico assiale del singolo bullone necessario per garantire la trasmissione della coppia;
- Calcolo dello stato di tensione della vite al montaggio;
- Calcolo della coppia di serraggio che permette di realizzare la forza necessaria al montaggio

$$F_{Kerf} = \frac{F_{ax,min}}{Z} = 4963.05 N$$

$$k = \frac{\tau}{\sigma} = \frac{d_2}{2} \left(\frac{\mu_G}{\cos \beta'} + \frac{p}{\pi d_2} \right) \cdot \frac{1}{2d_3} = 0.38$$

$$\sigma_{M,max} = \frac{0.8R_{p0.2}}{\sqrt{1+3k^2}} = 634.94 \, MPa$$

$$M_A = \frac{d_2}{2} \left(\frac{\mu_G}{\cos \beta'} + \frac{p}{\pi d_2} + \frac{D_{k,m}}{d_2} \mu_K \right) \sigma_{M,max} A_{d_3} = 24003.68 N \cdot mm$$

CEDEVOLEZZE: VITE

- Il sistema considerato è quello vite + dado
- ❖ Il modulo elastico è quello dell'INCONEL 718 a temperatura ambiente: 208 GPa

Interamente filettata

$$l = 20 mm$$

TESTA:
$$l_{SK}=0.5\cdot d_{nom}=4~mm$$
 FILETTI MADREVITE: $l_M=0.4\cdot d_{nom}=3.2~mm$ FILETTI VITE $l_G=0.5\cdot d_{nom}=4~mm$ VITE NON AVVITATA: $l_{Gew}=3\cdot s_{flange}=10.8~mm$ $A_{SK}=A_M=50.26~mm^2$ $A_G=A_{Gew}=32.48~mm^2$

$$\delta_i = \frac{l_i}{E_i A_i}$$

$$\delta_S = \delta_{SK} + \delta_{Gew} + \delta_{GM} = 2.88 \cdot 10^{-6} \, mm/N$$

CEDEVOLEZZE: PEZZO

$$\tan \phi = 0.362 + 0.032 \cdot \ln \left(\frac{3s_{flange}}{2d_T} \right) + 0.153 \cdot \ln \left(\frac{D_A}{d_T} \right) = 0.3519$$

$$D_A = 16 \ mm$$

$$D_{A,lim} = d_T + 3 \cdot s_{flange} \cdot \tan \phi = 16.95 \ mm$$

$$d_T < D_A < D_{A,lim}$$

$$\delta_P = \frac{\frac{2}{d_{fori}\tan\phi}\ln\left(\frac{\left(d_T+d_{fori}\right)\left(D_A-d_{fori}\right)}{\left(d_T-d_{fori}\right)\left(D_A+d_{fori}\right)}\right) + \frac{4}{D_A^2-d_{fori}^2}\left(3\cdot s_{flange} - \frac{\left(D_A-d_T\right)}{\tan\phi}\right)}{\pi E_P}$$

$$\delta_P = 4.92 \cdot 10^{-7} \ mm/N$$

EFFETTO DELLA TEMPERATURA

Te	Temperatura ambiente					
δ_S	$2.88 \cdot 10^{-6} \ mm/N$					
δ_P	$4.92 \cdot 10^{-7} \ mm/N$					

	T = 400°C
δ_S	$3.24 \cdot 10^{-6} \ mm/N$
δ_P	$5.54 \cdot 10^{-7} \ mm/N$

	T = 530°C
δ_{S}	$3.40 \cdot 10^{-6} \ mm/N$
δ_P	$5.82 \cdot 10^{-7} \ mm/N$

VERIFICHE

CARICO MINIMO

$$F_{p,min} \geq F_{Kerf}$$

 $12729 N \ge 4963 N$

$$F_{ax1,aero} = 0.1 \cdot F_{t1,aero}$$

$$F_{ax2,aero} = 0.1 \cdot F_{t2,aero}$$

$$F_A = \frac{F_{ax1,aero} + F_{ax2,aero}}{Z} = 187.5 N$$

$$F_{p,min} = \frac{F_{M,max}}{\alpha} - \frac{\delta_s}{\delta_s + \delta_p} F_A = 12729 N$$

VERIFICA STATICA

$$\sigma_{SA} \le 0.1 \cdot R_{p0,2}$$

$$F_{SA} = \frac{\delta_P}{\delta_P + \delta_S} F_A = 24.04 N$$

$$\sigma_{SA} = \frac{F_{SA}}{A_{d3}} = 0.84 \, MPa$$

$$10\% R_{p,02} = 95 MPa$$

VERIFICA A FATICA

$$\sigma_a \le 0.9 \cdot \sigma_m$$

$$\sigma_a = \frac{\sigma_{SA}}{2} = 0.42 MPa$$

$$\sigma_m = \sigma_{M,max} + \frac{\sigma_{SA}}{2} = 635.36 MPa$$

$$\frac{\sigma_m}{R_{p02}} = 0.67$$

CONCLUSIONI

- Si è dimensionato un collegamento filettato tra due dischi di turbina flangiati sull'albero.
- La scelta delle viti (tipo e numero) è stata fatta per tentativi, tenendo conto del vincolo geometrico e della verifica a fatica.
- Il diagramma di forzamento cambia all'aumentare della temperatura. In particolare:
 - la pendenza del diagramma diminuisce, a causa della riduzione del modulo elastico;
 - Per una stessa forza applicata, si ha un allungamento maggiore → la curva si sposta verso valori di spostamento più alti;
 - Il sistema risulta complessivamente meno rigido.
- Il collegamento filettato dimensionato soddisfa tutte e tre le verifiche richieste (carico minimo, statica e a fatica).

POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Aerospaziale

Costruzione di motori per aeromobili

Solidi Assialsimmetrici – Esercizio 1

Docenti:

Daniele Botto

Christian Maria Firrone

Studenti:

Francesco Doronzo – s256693

Francesco Messina – s331702

Maria Laura Uva – s323835

OUTLINE

- ➤ OBIETTIVI E DATI DEL PROBLEMA
- > INTERFERENZE E TOLLERANZE
- > ANDAMENTO TENSIONI RADIALI E CIRCONFERENZIALI
- > CALCOLO TENSIONE EQUIVALENTE E SCELTA DEL MATERIALE
- > EFFETTI DOVUTI AD UN RISCALDAMENTO DI 30°C
- > CONCLUSIONI

OBIETTIVI E DATI DEL PROBLEMA

- Dimensionamento di un accoppiamento forzato albero-mozzo.
- Calcolo e verifica delle tensioni nell'albero e nella puleggia.
- Scelta della lega d'alluminio della puleggia.
- Valutazione dell'effetto del riscaldamento sull'accoppiamento.

$D_{m,i} = d_{a,e} [mm]$	$D_{m,e}$ $[mm]$	$D_p [mm]$	$L\left[mm ight]$
50	90	600	25

MATERIALI:

- PULEGGIA → Alluminio: $E = 7 \cdot 10^4 MPa$, $\nu = 0.3$, $\alpha^* = 23 \cdot 10^{-6} \, ^{\circ}C^{-1}$
- \circ ALBERO \rightarrow Acciaio: $E=2\cdot 10^5~MPa,~\nu=0.3,~\alpha^*=11\cdot 10^{-6}~^{\circ}C^{-1}$

PULEGGIA DI ALLUMINIO MONTATA SU UN ALBERO PIENO IN ACCIAIO

- \circ Rugosità: $R_a=R_m=4~\mu m$
- Coppia trasmessa: M = 150 Nm
- \circ Coefficiente d'attrito: f = 0.2
- O Qualità foro: H7
- O Qualità di lavorazione albero: 6

INTERFERENZE E TOLLERANZE

INTERFERENZA EFFETTIVA E NOMINALE

- \clubsuit Si calcola la tensione tangenziale al contatto $\to \tau = \frac{2 \cdot C \cdot M}{\pi \cdot L \cdot d^2} = 2.29 \, MPa$
- \clubsuit Si calcola la pressione di calettamento sapendo che $p_c = \frac{\tau}{\mu} = 11.46~MPa$
- ❖ Per il calcolo dell'interferenza effettiva è necessario conoscere i coefficienti di deformabilità e gli spostamenti di albero e mozzo:

$$\delta_{m,i}(D_c) = \frac{1}{E_m} \frac{(1+v_m) + (1-v_m) \frac{D_c^2}{D_{m,e}^2}}{1-\frac{D_c^2}{D_{m,e}^2}}$$

$$\delta_{a,e}(D_c) = \frac{1-v_a}{E_a}$$
(Ipotesi di albero **pieno**)

Per il calcolo dell'interferenza nominale si inverte la formula che la lega all'interferenza effettiva mediante le rugosità.

$$i = 2(|u_{a,e}| + |u_{m,i}|)$$

$$i_{eff} = p_c [\delta_{m,i}(D_c) + \delta_{a,e}(D_c)] D_c$$

$$i_{eff} = 19.95 \ \mu m$$

$$i_{nom} = i_{eff} + 2 \cdot 0.4 \left(R_a + R_m \right)$$

$$i_{nom} = 26.35 \ \mu m$$

INTERFERENZE E TOLLERANZE

TOLLERANZE ACCOPPIAMENTO

- Il sistema foro base ha tolleranza H7 $\rightarrow EI = 0 \ \mu m$; $ES = 25 \ \mu m$
- \clubsuit Si ricava lo scostamento inferiore minimo dell'albero $\to e_{i,min} = 51.4~\mu m$
- lacktriangledows Si trova in tabella una tolleranza per l'albero che abbia scostamento minimo maggiore o uguale a quello appena calcolato, considerando una qualità di lavorazione pari a blacktriangledows
- ❖ Si calcola la pressione massima al contatto: —

Nom	inal size									ı	Н	
	mm	1	2	3	4	5	6	7	8	9	10	11
Above	Up to and including						μm			Devia	ations	
10	18						+11 0	+18 0	+27 0	+43 0	+70 0	+11
18	30						+13	+21	+33 0	+52 0	+84 0	+13
30	50	+1.5 0	+2.5 0	+4 0	+7 0	+11 0	+16 0	+25 0	+39 0	+62 0	+100 0	+16 0
50	80						- 19 0	.30	+46 0	+74 0	+120 0	+19 0

Nominal size mm			t*		l	ı	x	
Above	Up to and	5	6	7	6	7	7	
Above and including				μm				
30	40	+59	+64	+73	+76	+85	+105	
30	40	+48	+48	+48	+60	+60	+80	
40 5	50	+65	+70	+79	+86	+95	+122	
40	30	+54	+54	+54	+70	+70	+97	

 $i_{eff,MAX} = 63.6 \, \mu m$

$$p_{MAX} = \frac{i_{eff,MAX}}{\left[\delta_{m,i}(D_c) + \delta_{a,e}(D_c)\right]D_c}$$

$$p_{MAX} = 36.5 MPa$$

ANDAMENTO TENSIONI RADIALI E CIRCONFERENZIALI

- \bullet L'albero è pieno $\rightarrow \sigma_r = \sigma_c = -p_c$
- Il mozzo è assimilabile ad un disco.
- Le tensioni si calcolano con le seguenti formule:

$$\sigma_r(D_{m,i}) = -p_{c,MAX} \frac{\frac{D_{m,i}^2}{D^2} - \frac{D_{m,i}^2}{D_{m,e}^2}}{1 - \frac{D_{m,i}^2}{D_{m,e}^2}}$$

$$\sigma_c(D_{m,i}) = p_{c,MAX} \frac{\frac{D_{m,i}^2}{D^2} + \frac{D_{m,i}^2}{D_{m,e}^2}}{1 - \frac{D_{m,i}^2}{D_{m,e}^2}}$$

Il punto più sollecitato è il raggio interno del disco (mozzo)

CALCOLO TENSIONE EQUIVALENTE E SCELTA DEL MATERIALE

La tensione equivalente di Tresca nel punto di progetto della puleggia (ossia il suo raggio interno) è pari a 106.7 MPa

			D	imensioni		Caratteristiche neccaniche							
Designazione	Tipo Stato di fisico semilavorato				Sezione	unit	rico rario rttura	Carico ur scostame proporz	nto dalla	A	Allungament A min %	to.	Durezz: Brinell
			s	đ	A max.	1	R in.	R _{p0,2}	(min.)	aminati	estrusi fuc/stamp	trafilati	HB min.
			mm	mm	mm ²	N/mm ²	kg/mm ²	N/mm ²	kg/mm ²				
P-AI Si 1 Mg Mn	Laminati	R	tutti	- 1	-	90	9	40	4	25	-	25	30
UNI 3571	e	ΤN	da 0,8 a 4	-	-	205	21	110	11	22	-	20	50
	trafilati	T A 14	da 0,8 a 4	-	-	235	24	135	14	20	-	18	70
		T A 16	da 0,8 a 4	-	-	295	30	245	25	11	-	10	90
		R	-	-	12000	110	11	60	6	-	20	-	30
	Estrusi	TA 14	-	-	12000	235	24	135	14	-	16	-	70
		T A 16	_		12000	315	32	265	27		10	_	90
	Fucinati e	T A 14	≤ 100	-	-	215	22	120	12	-	16	-	70
	stampati	T A 16	≤ 100	-	-	295	30	245	25	-	6	-	90
P-AI Mg 1 Si Cu	Laminati	K	tuttı	- 1	-	100	10	50	٥	16	-	15	30
UNI 6170	e	ΤN	da 0,8 a 6	-	-	205	21	110	11	15	-	13	50
	trafilati	T A 16	da 0,8 a 6	-	-	295	30	245	25	10	-	8	90
		R	-	-	12000	110	11	60	6	-	16	-	30
	Estrusi	ΤN	-	-	12000	175	18	110	11	-	16	-	50
		T A 16	-	-	12000	265	27	235	24	-	9	-	80
	Fucinati e stampati	T A 16	≤ 100	-	-	265	27	235	24	-	8	-	80
P-I Zn 5,8 Mg Cu	Laminati	R	≤ 20	-	-	185	19	90	9	9		9	50
UNI 3735	e trafilati	TΑ	da 0,5 a 20	-	-	520	53	445	45,5	6		6	145
	Estrusi	R	tutti	-	-	185	19	90	9	-	9	-	50
		1 TA	≤ 38	-	-	540	55	480	49	-	7	-	145
	Fucinati e stampati	ТА	-	-	11 000	500	51	425	43,5	-	7	-	145

Applicando Tresca la tensione circonferenziale è maggiore di quella radiale

$$\sigma_{eq} = \sigma_c - \sigma_r$$

* Per la scelta del materiale si deve entrare in tabella imponendo che $R_{p0.2} \geq 1.5 \; \sigma_{eq}$

$$\sigma_{MAX} = S \cdot \sigma_{eq} = 158.49 \, MPa$$

- La categoria scelta è quella dei fucinati e stampati, cioè quella che indica i processi produttivi tipici delle pulegge
- La scelta del materiale ricade su P-Al Si1 Mg Mn UNI 3571 (T A 16)

EFFETTI DOVUTI AD UN RISCALDAMENTO DI 30°C

CALCOLO NUOVE TOLLERANZE

Un riscaldamento uniforme di 30°C cambia i valori di spostamento di albero e mozzo. Il mozzo, avendo un coefficiente di dilatazione termica maggiore, si espande più dell'albero causando una diminuzione di interferenza.

$$u_{m,i_T} = D_{m,i} \cdot \alpha_m \cdot \Delta T$$

$$u_{a,e_T} = D_{a,e} \cdot \alpha_a \cdot \Delta T$$

$$\Delta i_T = u_{a,e_T} - u_{m,i_T} = -18 \,\mu m$$

- * L'accoppiamento adesso deve garantire un'interferenza nominale $i_{nom,T}=i_{nom}+\Delta i_T=26.25~\mu m+18\mu m=44.25~\mu m$
- Lo scostamento inferiore dell'albero ora è $ei_{min,T}=69.3~\mu m$, maggiore del valore trovato senza riscaldamento.
- È necessario cambiare la classe di tolleranza dell'albero; considerando sempre un sistema foro base H7 si sceglie la classe u6

	inal size mm		t*		l		х
Above	Up to and	5	6	7	6	7	7
Above	including			μ	m		
30	40	+59	+64	+73	+76	+85	+105
30	40	+48	+48	+48	+60	+60	+80
40	40 50		+70	+79	+86	+95	+122
40 50		+54	+54	+54	+70	+70	+97

EFFETTI DOVUTI AD UN RISCALDAMENTO DI 30°C

Con le nuove tolleranze la pressione massima aumenta e quindi è necessario valutare se la nuova tensione equivalente nel punto di progetto è gestibile dalla puleggia senza snervarsi:

$$\sigma_{eq,T} = 132.24 \, MPa$$

$$\sigma_{MAX,T} = S \cdot \sigma_{eq,T} = 198.4 MPa$$

Il materiale regge anche in questo caso, quindi non è necessario cambiarlo.

CONCLUSIONI

- È stato effettuato il dimensionamento di un accoppiamento albero-mozzo, valutandone le interferenze e le tensioni, a diverse temperature.
- In assenza di carico termico, per garantire la coppia di $150~N\cdot m$ (con coefficiente di sicurezza 1.5) è sufficiente un accoppiamento H7-t*6 e un'interferenza effettiva di circa $20~\mu m$.
- La scelta del materiale è stata fatta calcolando la tensione equivalente nel punto più sollecitato e scegliendo un materiale e un processo produttivo adeguati.
- Le tensioni radiale e circonferenziale nel mozzo hanno concavità opposte. La tensione assiale è nulla ovunque. Il punto più sollecitato è il raggio interno del disco.
- ❖ Quando soggetto a carico termico, il componente subisce una perdita di interferenza che necessita di un cambio delle tolleranze di lavorazione; in questo caso il nuovo accoppiamento è H7-u6.
- Con le nuove tolleranze cambia il valore dell'interferenza effettiva; si sono quindi ricalcolate le tensioni nel mozzo, e si è verificato che la lega scelta regga il carico anche in questo caso.

POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Aerospaziale

Costruzione di motori per aeromobili

Solidi Assialsimmetrici – Esercizio 2

Docenti:

Daniele Botto

Christian Maria Firrone

Studenti:

Francesco Doronzo - s256693

Francesco Messina - s331702

Maria Laura Uva - s323835

OUTLINE

- > OBIETTIVI E DATI DEL PROBLEMA
- > SUDDIVISIONE DEL DISCO IN SETTORI
- > METODO DI GRAMMEL
- > ANDAMENTO DELLE TENSIONI E DELLO SPOSTAMENTO
- > VELOCITÀ DI BURST
- > CONCLUSIONI

OBIETTIVI E DATI DEL PROBLEMA

- Calcolo, attraverso il metodo di Grammel e in funzione del raggio r del disco, degli andamenti di:
 - spostamento radiale u;
 - tensione radiale σ_r ;
 - tensione circonferenziale σ_c ;
 - tensione ideale σ_{id} .
- Singoli contributi dovuti a:
 - forza centrifuga dovuta a pale e slot;
 - carico di volume centrifugo del disco;
 - distribuzione di temperatura;
 - tutti i carichi agenti contemporaneamente.
- Calcolo della velocità di burst (criterio di Robinson)

!_!!!!!!!!!!!!	
velocità angolare n [giri/min]	3646
massa pala m_p [kg]	0.7369
massa slot $m_{\scriptscriptstyle S}$ [kg]	0.1205
raggio baricentro pala $z_p \ [\mathrm{m}]$	0.5263
raggio baricentro slot $z_{\scriptscriptstyle S}$ [m]	0.4040
numero di pale e di slot ($n_p=n_{\scriptscriptstyle S}$)	68

QUINTO STADIO DI UNA TURBINA DI BASSA PRESSIONE

DISCO: INCONEL 718 $(\rho = 8219.8 \, kg/m^3)$

SUDDIVISIONE DEL DISCO IN SETTORI

- Si suddivide il disco in 5 settori a spessore costante.
- Per ogni settore si calcola lo spessore equivalente:

$$b = \frac{b_i + b_e}{r_i + r_e} \left(r_i + \frac{r_e - r_i}{3} \cdot \frac{b_i + 2b_e}{b_i + b_e} \right)$$

Blocco	$b_i[m]$	$b_e[m]$	$r_i[m]$	$r_e[m]$	b [m]
1	0.022	0.022	0.2165	0.2386	0.022
2	0.022	0.0045	0.2386	0.2812	0.013
3	0.0045	0.0045	0.2812	0.3732	0.0045
4	0.0045	0.0484	0.3732	0.3887	0.0266
5	0.0484	0.0484	0.3887	0.397	0.0484

METODO DI GRAMMEL

- Per ogni blocco k-esimo si scrivono gli spostamenti radiali totali al raggio interno u_i e al raggio esterno u_e in funzione dei carichi per unità di linea ($n=\sigma\cdot b$)
- \diamond Si riscrivono le equazioni precedenti, scrivendo per ogni blocco gli spostamenti radiali u e i carichi per unità di linea n al bordo esterno in funzione di quelli al bordo interno.

$${u_e \brace n_e}_k = [T]_k {u_i \brace n_i}_k + \{V\}_k$$

- Le condizioni al contorno sono: $\begin{cases} (n_i)_1 = 0 \\ (n_e)_5 = \frac{F_c}{2\pi(r_e)_5} = \frac{N_p(m_p r_p + m_s r_s)\omega^2}{2\pi(r_e)_5} \end{cases}$

METODO DI GRAMMEL

- L'andamento di $(n_e)_5$ con $(u_i)_1$, cioè lo spostamento causato dalla tensione radiale σ_r , è lineare. Vengono prima valutati $(n_e)_5$ per $(u_i)_1 = 0$ m e per $(u_i)_1 = \frac{D_e}{1000}$; si traccia quindi la retta che passa per i 2 punti trovati e viene valutato il valore di $(u_i)_1$ per $(n_e)_5$ reale che è noto.
- ightharpoonup Valutato il valore di $(u_i)_1$ è quindi possibile inizializzare il metodo di Grammel poiché adesso sono noti i valori del vettore dei termini al raggio interno per il primo settore ed è possibile risolvere il sistema lineare ad esso associato:

CALCOLO DELLE TENSIONI

Si calcola la tensione radiale

$$\sigma_r = n_i \cdot b$$

Si calcola la tensione circonferenziale invertendo la relazione della relativa deformazione

$$\varepsilon_c = \frac{1}{E}(\sigma_c - v\sigma_r) + \alpha^* \Delta T$$

- Si calcola la tensione equivalente di von Mises, considerando che:
 - $\sigma_c = \sigma_1$ (tensione maggiore)
 - $\sigma_r = \sigma_3$ (tensione minore)
 - $\sigma_a = \sigma_2 = 0$ (nel disco la tensione assiale è nulla)

$$\sigma_{VM} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_3 - \sigma_2)^2 + (\sigma_3 - \sigma_1)^2}$$

ANDAMENTO DELLE TENSIONI

ANDAMENTO DELLO SPOSTAMENTO RADIALE

LEGENDA:

- Rosso Temperatura
- Verde Pale e slot
- Blu Disco
- Nero Totale

CRITERIO DI ROBINSON

- ullet Criterio semi-empirico: si suppone che la rottura del disco (burst) avvenga quando la tensione circonferenziale media $\sigma_{c,m}$ eguaglia la tensione di rottura R_m .
- lacktriangle La tensione di rottura R_m varia a causa del gradiente di temperatura; per tenerne conto, si considera il valore medio calcolato sulle diverse sezioni del disco.
- lacktriangle La tensione circonferenziale media $\sigma_{c,m}$ è valutata da:

$$F_c^k = 2(r_e - r_i) \frac{\sigma_c(r_e) \cdot b(r_e) + \sigma_c(r_i) \cdot b(r_i)}{2}$$

$$\sigma_{c,m} = \frac{\sum F_c^k}{\sum A^k}$$

$$A^{k} = 2(r_{e} - r_{i}) \frac{b(r_{e}) + b(r_{i})}{2}$$

La velocità di burst risulta essere quindi:

$$\omega_b = \omega \sqrt{\frac{R_m}{\sigma_{c,m}}} = 5899 \, rpm$$

CONCLUSIONI

- È stato implementato il metodo di Grammel per valutare numericamente gli spostamenti e le tensioni di un disco di turbina di bassa pressione a sezione variabile. In seguito si è calcolata la velocità di burst del disco con il criterio di Robinson.
- Il maggior contributo allo stress assiale e circonferenziale è dovuto alla forza centrifuga delle pale.
- Il settore maggiormente sollecitato è il numero III, che ha la minore sezione resistente.
- Il contributo del gradiente termico sulla tensione circonferenziale è negativo oltre un certo raggio, quindi la dilatazione termica ha un effetto alleviante.
- La tensione circonferenziale media dovuta alla temperatura è nulla a meno di approssimazioni dovute alla discretizzazione che portano ad avere $\sigma_{c,m}=10~\mathrm{Mpa}$, che è una piccola frazione dei contributi di disco e pale, rispettivamente 1.6% e 4.1%.
- Gli spostamenti dovuti al gradiente termico e alla conseguente dilatazione sono superiori di un ordine di grandezza rispetto a quelli dovuti al contributo del disco e delle pale e slot, il che comporta l'andamento quasi lineare degli spostamenti radiali complessivi.

POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Aerospaziale

Costruzione di motori per aeromobili

Contatti Hertziani

Docenti:

Daniele Botto

Christian Maria Firrone

Studenti:

Francesco Doronzo – s256693

Francesco Messina – s331702

Maria Laura Uva – s323835

OUTLINE

- ➤ OBIETTIVI E DATI DEL PROBLEMA
- > SCELTA CLASSE DI GIOCO
- **ACCOSTAMENTI**
- > MASSIMO CARICO RADIALE
- > CONCLUSIONI

OBIETTIVI E DATI DEL PROBLEMA

- Cuscinetto a rulli cilindrici a una corona (z = 24, numero di rulli)
- ❖ Il cuscinetto è montato con forzamento su un albero cavo e soggetto ad un riscaldamento disuniforme tra anello interno ed esterno → perdita di gioco radiale.

Obiettivi:

- Scegliere la classe di gioco radiale del cuscinetto in modo da garantire la presenza di gioco radiale tra corpi volventi e piste;
- Diagrammare il carico sul rullo più sollecitato, la pressione Hertziana massima e il carico radiale in funzione dell'accostamento radiale;
- Ricavare il massimo carico radiale per la pressione di contatto massima e per lo snervamento.

MATERIALE:

 \circ Acciaio: $E=2\cdot 10^5~MPa,~~ \nu=0.3,
ho~=7800 rac{kg}{m^3}$, $lpha^*=12\cdot 10^{-6} \circ {
m C}^{-1}$

DATI	
Diametro nominale esterno (D)	1 <i>5</i> 0 mm
Diametro pista interna (d_i)	113 mm
Diametro pista esterna (d_e)	137 mm
Diametro rullo (d_r)	12 mm
Diametro nominale foro (d)	100 mm
Ingombro assiale (B)	19 mm
Lunghezza efficace rullo (l_r)	13.6 mm
Velocità di rotazione (ω)	8000 rpm

SCELTA CLASSE DI GIOCO

- La perdita di gioco totale è la somma delle perdite per forzamento e carico termico
- La perdita di gioco totale deve essere minore del gioco minimo previsto nella classe scelta
- \clubsuit La classe scelta, dal catalogo SKF, è quella **C4** (105 μm , 140 μm).

Diametro foro d		Gioco interno radiale C2 Normale		ile	C3		C4		C5		
oltre	fino a	min	max	min	max	min	max	min	max	min	max
mm		μm									
-	24	0	25	20	45	35	60	50	75	65	90
24	30	0	25	20	45	35	60	50	75	70	95
30	40	5	30	25	50	45	70	60	85	80	105
40	50	5	35	30	60	50	80	70	100	95	125
50	65	10	40	40	70	60	90	80	110	110	140
65	80	10	45	40	75	65	100	90	125	130	165
80	100	15	50	50	85	75	110	105	140	155	190
100	120	15	55	50	90	85	125	125	165	180	220
120	140	15	60	60	105	100	145	145	190	200	245

CARICO SU RULLO PIÙ SOLLECITATO

L'anello interno ruota ad alta velocità, pertanto si considera la forza centrifuga applicata dai rulli sull'anello esterno.

$$v_{R} = \frac{r_{i} + r_{e}}{2}$$

$$v_{R} = \frac{\omega r_{i}}{2}$$

$$\omega_{R} = \frac{v_{R}}{r_{R}}$$

$$\omega_{R} = \frac{v_{R}}{r_{R}}$$

$v_R[m/s]$	23.67
$r_R[m]$	0.063
$m_r [kg]$	0.012
$\omega_R [rad/s]$	378.67
$\delta_{oc} \left[\mu m\right]$	0.0635

$$F_c = m_r r_R \omega_R^2 = 110.68 N$$

- I rulli sono cilindrici quindi $n = \frac{10}{9} = 1.11$
- Si considerano i seguenti parametri utili al calcolo della forza sul rullo più sollecitato:

$$K_e = K_i = \left(\frac{B^{0.8}}{3.84 \cdot 10^{-5}}\right)^n$$

$$\delta_{oc} = \left(\frac{F_c}{K_e}\right)^{\frac{1}{n}}$$

CARICO SU RULLO PIÙ SOLLECITATO

lacktriangle Per il rullo in presa con angolo ψ vale la seguente relazione:

$$\left(\frac{F_{\psi}}{K_i}\right)^{\frac{1}{n}} + \left(\frac{F_{\psi} + F_c}{K_e}\right)^{\frac{1}{n}} = \delta_r \cos \psi - \frac{1}{2}g$$

lacktriangle L'accostamento radiale δ_r vale:

$$\delta_r = \frac{\frac{1}{2}g + \delta_{oc}}{\cos \psi_{max}}$$

 \clubsuit Il rullo più sollecitato è quello per cui $\psi_i=0^\circ$, pertanto, il carico F_0 che agisce sullo stesso viene valutato risolvendo la seguente equazione non lineare:

$$\left(\frac{F_0}{K_i}\right)^{\frac{1}{n}} + \left(\frac{F_0 + F_c}{K_e}\right)^{\frac{1}{n}} = \delta_r - \frac{1}{2}g$$

z_r	1	3	5	7	9	11
ψ_{max} [°]	0	15	30	45	60	75
$\delta_r [\mu m]$	1.06	1.10	1.23	1.50	2.13	4.11
$F_0[N]$	0	32.4	157.3	456	1193	3796

CARICO RADIALE

La forza radiale totale agente sul cuscinetto è data dalla sommatoria delle componenti radiali di tutte le forze applicate dai rulli in presa:

$$F_r = \sum_{\psi = -\psi_{max}}^{\psi = \psi_{max}} F_{\psi} \cos \psi = F_0 \sum_{\psi = -\psi_{max}}^{\psi = \psi_{max}} \left(\frac{\cos \psi - \cos \psi_{max}}{1 - \cos \psi_{max}} \right)^n \cos \psi$$

$$F_r = \frac{F_0 \cdot z}{2\pi} \int_{-\psi_{max}}^{\psi_{max}} \left(\frac{\cos \psi - \cos \psi_{max}}{1 - \cos \psi_{max}} \right)^n \cos \psi \, d\psi = F_0 \cdot z \cdot J_s$$

 \bullet Dove J_S è l'integrale di Stribeck, ma nel caso di $g \neq 0$ e nei valori tipici del gioco nei cuscinetti la relazione viene così approssimata:

1—1 I M =	31 M — 11
F —	$F_0 \cdot z$
$F_r =$	5

z_r	$F_r[N]$
1	0
3	155.5
5	755
7	2189
9	5728
11	18220

PRESSIONE HERTZIANA MASSIMA

Sui due anelli agiscono carichi differenti poiché sull'anello esterno agisce anche la forza centrifuga pertanto:

$$F^{(i)} = F_0$$

$$F^{(e)} = F_0 + F_c$$

❖ Nel caso di contatto cilindro-cilindro la pressione massima
Hertziana è funzione delle curvature dei due anelli ed è data da:

$$p_{max}^{(i/e)} = \frac{2F^{(i/e)}}{\pi l_r b^{(i/e)}}$$

z_r	1	3	5	7	9	11
p_{max}^{i} [MPa]	0	123.93	273.1	465	752.3	1342
$p_{max}^{(e)}$ [MPa]	208	236.5	323.7	470.8	714.2	1236

$$\begin{cases} \alpha_X = \frac{1}{d_r} \\ \beta_X = \pm \frac{1}{d_{i/e}} \end{cases}$$

$$b^{(i/e)} = \sqrt{\frac{4F^{(i/e)}}{\pi l_r} \cdot \frac{1}{\left(\alpha_X + \beta_X^{(i/e)}\right)} \cdot \left(\frac{1 - \nu^2}{E}\right)}$$

MASSIMO CARICO RADIALE

- Il massimo carico radiale è stato valutato per via grafica tenendo in considerazione:
 - o la pressione di contatto limite pari a 1200 MPa
 - o la condizione di incipiente snervamento, che avviene in profondità quando $p_{max}\cong \frac{R_{p_{0.2}}}{0.6}=2000~MPa$

$$|F_{r,1200}| = 15.2 \text{ kN}$$

- Nel caso considerato, ovvero quello di gioco minimo, le pressioni sugli anelli interni ed esterni non causano incipiente snervamento in profondità.
- * Nel caso di gioco massimo, con g = g_{max} Δg = 37 μm , si arriva a incipiente snervamento con una forza radiale pari a:

 $\left| F_{r,2000} = 42.2 \text{ kN} \right|$

CONCLUSIONI

- Sono stati valutati gli accostamenti radiali, le forze e le conseguenti pressioni agenti sugli anelli così da determinare i massimi carichi radiali.
- Poiché il rullo opera ad alta velocità ed è presente del gioco, si genera una forza centrifuga per cui, anche in assenza di carico radiale, sull'anello esterno la pressione non è nulla neanche nel caso

di un solo rullo in contatto.

- La pressione limite di contatto nel caso di gioco minimo viene raggiunta per valori di carico radiale nel caso del massimo numero di rulli in presa considerato.
- La condizione di incipiente snervamento viene raggiunta solo nel caso di gioco massimo a causa dei maggiori valori di accostamenti radiali.

