P48.

4. (1) $f(x_1, x_2, x_3, x_4) = (x_1 x_2 + x_3 x_4)(x_1 x_3 + x_2 x_4)(x_1 x_4 + x_2 x_3)$ $= x_1^3 x_2 x_3 x_4 + x_1^2 x_2^2 x_3^2 + x_1^2 x_2^2 x_4^2 + x_1 x_2^3 x_3 x_4$ $+ x_1^2 x_3^2 x_4^2 + x_1 x_2 x_3^2 x_4 + x_1 x_2 x_3 x_4^3 + x_2^2 x_3^2 x_4^2$ $= x_1^3 x_2 x_3 x_4 + x_1^2 x_1^2 x_2^2 + x_1^2 x_2^2 x_4^2 + x_1^2 x_3^2 x_4^2$ $= x_1^3 x_2 x_3 x_4 + x_1^2 x_1^2 x_2^2 + x_1^2 x_3^2 x_4^2 + x_2^2 x_3^2 x_4^2$ $= (x_1^2 + x_2^2 + x_3^2 + x_4^2)(x_1 x_2 x_3 x_4)$ $+ x_1^2 x_2^2 x_3^2 + x_1^2 x_2^2 x_4^2 + x_1^2 x_3^2 x_4^2 + x_2^2 x_3^2 x_4^2$ $= (x_1^2 + x_2^2 + x_3^2 + x_4^2)(x_1 x_2 x_3 x_4)$ $+ x_1^2 x_2^2 x_3^2 + x_1^2 x_2^2 x_4^2 + x_1^2 x_3^2 x_4^2 + x_2^2 x_3^2 x_4^2$ $= (x_1^2 + x_2^2 + x_3^2 + x_4^2)(x_1 x_2 x_3 x_4)$ $+ x_1^2 x_2^2 x_3^2 + x_1^2 x_2^2 x_4^2 + x_1^2 x_3^2 x_4^2 + x_2^2 x_3^2 x_4^2$ $= (x_1^2 + x_2^2 + x_3^2 + x_4^2)(x_1 x_2 x_3 x_4)$ $+ x_1^2 x_2^2 x_3^2 + x_1^2 x_2^2 x_4^2 + x_2^2 x_3^2 x_4^2$ $= (x_1^2 + x_2^2 + x_3^2 + x_4^2)(x_1 x_2 x_3 x_4)$ $+ x_1^2 x_2^2 x_4^2 + x_3^2 x_4^2 + x_2^2 x_3^2 x_4^2$ $= (x_1^2 + x_2^2 + x_3^2 x_4 + x_1^2 x_2^2 x_4^2 + x_2^2 x_3^2 x_4^2 + x_2^2 x_3^2 x_4^2$ $= (x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_1^2 x_2^2 x_4^2 + x_2^2 x_3^2 x_4^2$ $= (x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_1^2 x_2^2 x_4^2 + x_2^2 x_3^2 x_4^2 + x_2^2 x_3^2 x_4^2$ $= (x_1^2 + x_2^2 + x_3^2 + x_1^2 x_2^2 x_4^2 + x_2^2 x_3^2 x_4^2 + x$

7.3上服: 元五 4个极, 处, 处, 处, 及, 及. \$ d3+ d4=0. $-\frac{\alpha_1}{m} = \alpha_{11} \alpha_{21} + \alpha_3 + \alpha_4 = d_1 + d_2$ Az = didet dids + a, dy + drds + drdy + dz dy - 13 = 2, 2, 2, + 2, d, d, d, t d, d, d, d, t d, d, d, d, t ay - didadzdy az = 21 dat dz dq $-\frac{\alpha_1}{m_0} = \lambda_1 \lambda_2 \alpha_4 + \lambda_1 \lambda_2 \alpha_4$ a, 2 a, = 00 > (d, + d,) 2 2, d, d, dy an az = and (d, d, dy + drd, dy) a, an as = 0,3 (2, +dr) (d, d, +d, dx) (2, dxdy+drd, dy) (2,+d~) d, d~d, dx = (d,2+1d,d~+d~2) d, d~d,d,dq (d, d, dy + d, d, d, d,) = d, 2 dy (d, 2 + 2 d, d, + d, 2) m2 ax + avay = (an + 2 x) 2 (2, 2 x + 23 24) 23 24 = (d, +d,)(d, d, +d, dy)(d, d, d, d, + d, d, d, dy) = a1 azaz 1 2p aray + a0 az 2 - arazaz =0. 沙多性精油

表 aray+onazz-onazaz=o. Busk no to. $\left(\frac{\alpha_1}{\alpha_0}\right)^2 \frac{\alpha_2}{\alpha_0} + \left(\frac{\alpha_1}{\alpha_0}\right)^2 - \frac{\alpha_1}{\alpha_0} \cdot \frac{\alpha_1}{\alpha_0} - \frac{\alpha_2}{\alpha_0} = 0$ 流面个极力,处,处,处,处 $+ drd_3d_4)^2 = (d_1+d_1+d_3+d_4)(d_1d_1+d_1d_3+d_1d_4)$ + 2nd; + 2ndy + d; dy) (ddd) + 2, drdy + d, d; dy + 2nd; dy) |d, 2+ d, 4 d3 + d4 + 2(d, d, t d, d, + | 2/2/2 + 2/2/24 + + d3 d4) d1 d2d3 d4) = (d1+d2+ d3+d4) (d1 d2+ ---+ d3 d4) (d1d2d3+---) مرامر مرامر مرامر مرامر مرامر مرامر مرامر مرامر مرامر عرامر = (كمرا) (كمامر) (كمامر) 2, dosdyrd + 2 a 2 d 2 d 2 = (2d, d 2) (2) d 2 d 2 + d 2 d 2 d 4 + 2, 2, 2, + 2, 2, 24 + 22 23 24 + 2, 22 23 + 2, 23 24 + 2, 23 24 + 2122 dy + 21 dz 24 + 22 24)

これから、みょけこれでかっている。ころはからみょけこれであるみょうこれであるからしまってるであるからからしまってもであるからからしまってるであるからからしまってるであるからしまってる。してるからしまってる。してるからしまってる。してるからしまってる。これにはならしないからしたいけとがないといる。これにはないしまってる。

9.
$$v_1$$
. $F_x v_y = f_y^2 - b_x y + 5x^2 - ib$
 $G_x v_y = y^2 - b_x + ||y| + 2x^2 - x - 4$
 $R_y (f_1 g) = 0$
 $f_y =$

$$= \begin{vmatrix} 0 & 5-x & -5x^{2}+5x+4 & 0 \\ 0 & 0 & 5-x & -5x^{2}+5x+4 \\ 1 & -1x+1 \end{vmatrix} 2x^{2}-x-4 = 0 \\ 0 & 1 & -1x+1 \end{vmatrix} 2x^{2}-x-4 = 0 \\ = \begin{vmatrix} 5-x & -5x^{2}+5x+4 & 0 \\ 0 & 5-x & -5x^{2}+5x+4 \end{vmatrix} \\ = \begin{vmatrix} -6x^{2}+9x+9 & (2x^{2}-x-4)(x+4) \\ 1 & -1x+1 \end{vmatrix} 2x^{2}-x-4 = 0 \\ = \begin{vmatrix} 32x^{4}-96x^{3}+32x^{2}+96x-64 \\ = 32(x^{4}-3x^{3}+x^{2}+3x-2) \\ = 32(x-1)^{2}(x+1)(x-2) \\ = 32(x-1)^{2}(x+1)(x-2) \\ = 32(x-1)^{2}(x+1)(x-2) \\ = 32(x-1)^{2}(x+1)(x-2) \\ = 32(x^{4}-3x^{3}+x^{2}+3x-2) \\ = 32(x^{4}-3x^{4}+3x-2) \\ = 32(x^{4$$

方程组份解内 (1,-1), (-1,1), (2,2).

$$|7| \qquad \begin{cases} \lambda = \frac{2(t+1)}{t^2+1} \\ y = \frac{t^2}{2t-1} \end{cases}$$

$$\begin{aligned} (+^{2}+|) &\times = \lambda(t+1) \\ +^{2} &= \frac{2}{x}(t+1) - | \\ +^$$

$$y = \frac{\frac{(x(y-1)+v)^{2}}{4(xy-1)^{2}}}{\frac{xy-x+v}{xy-1}} = \frac{x^{2}(y^{2}-yy+1)+4x(y-1)+4y}{4(3-x)(xy-1)}$$

$$= \frac{x^{2}(y^{2}-yy+1)+4x(y-1)+4y}{4(3-x)(xy-1)}$$

$$= \frac{x^{2}(y^{2}-yy+1)+4x(y-1)+4y}{12xy-4x^{2}y+4xy-4x+4}$$

$$= \frac{x^{2}(y^{2}-yy+1)+4x(y-1)+4y}{12xy-4x^{2}y-12+4y}$$

 $1 \frac{1}{2} \frac{1}{2}$