PSZT - Uczenie Maszynowe

Stawczyk Przemysław 293153, Piotr
 Zmyślony 268833 $\,$

Contents

1	Opis Preprocesingu i Modelowania								
	1.1 Analiza Zbioru danych								
	1.1.1 Brakujące dane								
	1.1.2 Zbalansowanie danych								
	1.2 Przepływ Danych								
	1.2.1 Wizualizacja Przepływu Danych								
2	Modele								
	2.1 Parametry Modeli								
3	Wyniki Eksperymentu								
	3.1 Wykresy								
	3.2 Interpretacja								

1 Opis Preprocesingu i Modelowania

1.1 Analiza Zbioru danych

1.1.1 Brakujące dane

Zaczęliśmy od analizy brakujących danych w wierszach. Jak widać w poniższych wynikach w większości zbiorów około połowa wierszy ma brakujące pola.

	rok 1	rok 2	rok 3	rok 4	rok 5
$dlugo\acute{s}\acute{c}$	7027	10173	10503	9792	5910
pełne wiersze	3194	4088	4885	4769	3031
brakujące dane	3833	6085	5618	5023	2879

Następnie przeprowadziliśmy analizę rozkładu brakujących danych w kolumnach i wierszach korzystając z biblioteki pythona missing no

Figure 1: rok 1

Figure 2: rok 2

Figure 3: rok 3

Figure 4: rok 4

Figure 5: rok 5

Jak widać większość brakujących danych jest w kolumnie X37. Kolumna X21 ma brakujące w niektórych ale nie wszystkich latach.

Trudno nam było ocenić jaki charakter mają braki w tych danych, czy są skorelowane w wartościami w innych kolumnach czy zupełnie losowe. Aby uniknąć utraty danych dla tych krotek które posiadają wartości w danych kolumnach zdecydowaliśmy się interpolować brakujące dane. W tym celu wybraliśmy 4 metody:

- 1. Wstawianie średniej w danej kolumnie (Jako punkt odniesienia)
- 2. K najbliższych krotek
- 3. Spodziewanej Maksymalizacji (Expected Maximalisation)
- 4. Algorytm MICE

1.1.2 Zbalansowanie danych

Dokonaliśmy analizy ile z poszczególnych rekordów należy do klas klasyfikacyjnych

Czy zbankrutowano:	rok 1	rok 2	$rok \ \beta$	rok 4	rok 5
Tak	6756	9773	10008	9277	5500
Nie	271	400	495	515	410
procent większości	3.857 %	3.932 %	4.713 %	5.259 %	6.937~%

Dane w zbiorach są mocno niezbalansowane dlatego zdecydowaliśmy się na interpolację korzystając z metody SMOTE (Synthetic Minority Over Sampling Technique)

1.2 Przepływ Danych

Po powyższej analizie zdecydowaliśmy o następującym przepływie oryginalnych danych do konstrukcji modeli.

Walidacji modeli planujemy dokonać korzystając K-krotnej walidacji krzyżowej.

1.2.1 Wizualizacja Przepływu Danych

Figure 6: Przepływ Danych

- 2 Modele
- 2.1 Parametry Modeli
- 3 Wyniki Eksperymentu
- 3.1 Wykresy
- 3.2 Interpretacja