On an Article by Celledoni et al.

Pascal Leroy (phl)

2019-09-20

This document provides clarifications, corrections, and accuracy improvements to the formulæ presented in [CFSZo8]. It follows the notation and conventions of that paper.

Preamble

We remind the reader of the derivation formulæ for the Jacobian elliptic functions ([OLBC10], section 22.13(i)):

$$\begin{cases} \frac{d}{du} \operatorname{sn} u &= \operatorname{cn} u \operatorname{dn} u \\ \frac{d}{du} \operatorname{cn} u &= -\operatorname{sn} u \operatorname{dn} u \\ \frac{d}{du} \operatorname{dn} u &= -k^2 \operatorname{sn} u \operatorname{cn} u \end{cases}$$

The equations of motion

We start by writing equation (1) of [CFSZo8] in coordinates. The coordinates of m and I are defined by:

$$m \coloneqq \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix}$$

and:

$$I \coloneqq \begin{pmatrix} I_1 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & I_3 \end{pmatrix}$$

Euler's equation $\dot{m} = m \wedge (I^{-1}m)$ can be written in coordinates:

$$\dot{\boldsymbol{m}} = \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} \wedge \begin{pmatrix} m_1/I_1 \\ m_2/I_2 \\ m_3/I_3 \end{pmatrix}$$

thus:

$$\begin{cases} \dot{m}_1 &= m_2 m_3 (1/I_3 - 1/I_2) \\ \dot{m}_2 &= m_3 m_1 (1/I_1 - 1/I_3) \\ \dot{m}_3 &= m_1 m_2 (1/I_2 - 1/I_1) \end{cases}$$
 (1)

Solution of Euler's equation, case (i)

The case (i) of the solution of Euler's equation in section 2.2 of [CFSZo8] is:

$$\boldsymbol{m}_{t} = \begin{pmatrix} \sigma B_{13} \operatorname{dn}(\lambda t - \nu, k) \\ -B_{21} \operatorname{sn}(\lambda t - \nu, k) \\ B_{31} \operatorname{cn}(\lambda t - \nu, k) \end{pmatrix}$$

If we derive this expression with respect to t, inject in into (1), and eliminate the elliptic functions we obtain:

$$\begin{cases}
-\sigma \lambda k^{2} B_{13} &= -B_{21} B_{31} (1/I_{3} - 1/I_{2}) \\
-\lambda B_{21} &= \sigma B_{13} B_{31} (1/I_{1} - 1/I_{3}) \\
-\lambda B_{31} &= -\sigma B_{13} B_{21} (1/I_{2} - 1/I_{1})
\end{cases}$$
(2)

The last equation of (2) yields the following value for λ :

$$\lambda = \sigma \frac{B_{13}B_{21}}{B_{31}} \frac{I_1 - I_2}{I_1 I_2} = \sigma \sqrt{\frac{I_1 \Delta_3}{I_{13}} \frac{I_2 \Delta_1}{I_{21}} \frac{I_{31}}{I_3 \Delta_1}} \frac{I_1 - I_2}{I_1 I_2} = \sigma \sqrt{\frac{\Delta_3}{I_{21} I_1 I_2 I_3}} (I_1 - I_2) = -\sigma \sqrt{\frac{\Delta_3 I_{21}}{I_1 I_2 I_3}} = -\sigma \lambda_3$$

The sign change when moving I_1-I_2 under the radical is necessary because $I_1-I_2<0$. It is straightforward to check that this value of λ also satisfies the other equations of (2). Note that it differs in sign from the one given by [CFSZo8]: the sign error is visible in that it does not yield the proper precession direction.

References

- [CFSZo8] E. Celledoni, F. Fassò, N. Säfström, and A. Zanna. "The exact computation of the free rigid body motion and its use in splitting methods". In: *SIAM J. Scientific Computing* 30 (May 2008), pp. 2084–2112.
- [OLBC10] F. Olver, D. Lozier, R. Boisvert, and C. Clark. NIST Handbook of Mathematical Functions. Cambridge University Press, 2010.