Modèles et techniques en programmation parallèle hybride et multi-cœurs

Marc Tajchman

CEA - DEN/DM2S/STMF/LMES

November 24, 2017

Plan

Optimisation de la programmation séquentielle

Rappels de programmation parallèle Rappel des notions

Mémoire partagée

Mémoire distribuée

Programmation parallèle hybride

Examen

Optimisation de la programmation séquentielle (2 séances)

- Modèle d'architecture matérielle
- Localités spatiale et temporelle (optimisation de l'utilisation de la mémoire cache)
- ▶ Parallélisme à l'intérieur d'un cœur
- Exemples

Modèle d'architecture matérielle

Localité spatiale

Règle: autant que possible, utiliser des zones mémoires proches les unes des autres dans une séquence d'instructions

But: réduire la fréquence de transferts mémoire centrale - mémoire cache

Localité temporelle

Règle: autant que possible, pour une zone mémoire, les instructions qui l'utilisent doivent s'exécuter de façon rapprochée

But: réduire la fréquence de transferts mémoire centrale - mémoire cache

Rappels de programmation parallèle: notions

- ► mémoire distribuée
- ▶ mémoire partagée
- threads
- processus

Rappels de programmation parallèle: mémoire partagée

- ► Modèle d'architecture matérielle
- ► Principes d'optimisation
- ► Cas classique : OpenMP, pthreads
- ▶ Autres

Rappels de programmation parallèle: mémoire distribuée

- ► Modèle d'architecture matérielle
- ► Principes d'optimisation
- ▶ Cas classique : MPI
- Autres

Programmation parallèle hybride (4 séances)

- Coexistence
- Modèles d'hybridation
- ► Cas classique : MPI OpenMP
- Exemples
- ► Autres modèles (e.g. MPI+X, PGAS)

Examen (1 séance)