

Visão geral

Aula 04

Hugo Silva

1 Offilias

Simplificaç algébrica

Mapa de Karnaug

XOR e XNO

Paridad

Cls e famílias de Cls

.. .

Circuitos aritmético

Aula 04 - Circuitos lógicos combinacionais, circuitos lógicos MSI e circuitos aritméticos

Hugo Vinícius Leão e Silva

 $\verb|hugovlsilva@gmail.com|, \verb|hugo.vinicius.16@gmail.com|, \verb|hugovinicius@ifg.edu.br|| \\$

Instituto Federal de Educação, Ciência e Tecnologia de Goiás Campus Anápolis Curso de Bacharelado em Ciência da Computação

10 de setembro de 2021

Visão geral

Aula 04

Hugo Silva

Form

algébrica

Karnaugh

XOR e XNO

Paridade

CIs e famílias de CIs

Muy Demu

Circuitos aritméticos 1 Formas

2 Simplificação algébrica de circuitos lógicos

3 Mapa de Karnaugh

4 XOR e XNOR

5 Gerador/verificador de paridade

6 Cls e famílias de Cls

7 Codificadores/decodificadores (CODECs) e conversores

8 Multiplexador/demultiplexador

9 Circuitos aritméticos

Formas: soma-de-produtos e produto-de-somas

Aula 04

Hugo Silva

Formas

Simplificaçã algébrica

VOD VNO

7.01. 07...0

Paridad₁

de Cls

conversores

Mux-Demu

Circuitos aritmético

- Circuitos combinacionais →a saída do circuito está em função da combinação das entradas;
- Para simplificá-los, eles devem estar representados usando:
 - Soma-de-produtos:

$$ABC + \overline{A}\overline{B}\overline{C}$$

 $AB + \overline{A}B\overline{C} + \overline{C}\overline{D} + D$
 $ABC + \overline{A}B + C\overline{D} + EF + GK + H\overline{L}$

Produto-de-somas:

$$(A + \overline{B} + C)(A + C)$$

$$(A + \overline{B})(\overline{C} + D)F$$

$$(A + C)(B + \overline{D})(\overline{B} + C(A + \overline{D} + \overline{E}))$$

Simplificação algébrica de circuitos lógicos

Aula 04

Hugo Silva

Form

Simplificação algébrica

rtamaagn

Paridad

Cls e famílias de Cls

conversores

Mux-De

Circuitos aritméticos

Simplifique:

$$X = ABC + A\overline{B}\,\overline{A}\,\overline{C}$$

$$= ABC + A\overline{B}\,(\overline{A} + \overline{C})$$

$$= ABC + A\overline{B}\,(A + C)$$

$$= ABC + A\overline{B}A + A\overline{B}C$$

$$= ABC + A\overline{B} + A\overline{B}C \quad \text{(soma-de-produtos)}$$

$$= AC(B + \overline{B}) + A\overline{B}$$

$$= AC(1) + A\overline{B}$$

$$= AC + A\overline{B}$$

$$= A(C + \overline{B}) \quad \text{(produto-de-somas)}$$

Exemplos 4-2 a 4-6 (pp. 100-101)

Mapa de Karnaugh

Aula 04

Hugo Silva

Formas

Simplificaç algébrica

Mapa de Karnaugh

XOR e XNO

Paridade

Cls e famílias de Cls

Mux-Demi

Circuitos

- É um método gráfico para simplificar circuitos;
- Aplicabilidade prática para circuitos de até seis entradas;
- O mapa K relaciona as entradas e a saída do circuito:
 - Cada linha da tabela verdade corresponde a um quadrado no mapa K;
 - Os quadrados adjacentes diferem entre si apenas por uma variável;
 - A partir do mapa K preenchido com 0's e 1's, monta-se a expressão na forma de soma-de-produtos para o circuito.

Mapa de Karnaugh

Aula 04

Hugo Silva

Forma

Simplificaça algébrica

Mapa de Karnaugh

XOR e XNC

Paridad

Cls e famílias de Cls

CODECs e

Mux-Demu

Circuitos aritmético Tabela: Montagem do mapa K para um circuito de duas variáveis

Qual é a expressão algébrica para o circuito?

Mapa de Karnaugh - agrupando pares

Aula 04

Hugo Silva

Form

Simplificaçã

Mapa de Karnaugh

XOR e XNO

Paridade

Cls e famílias

CODECs e

Mux-Demu

Circuitos aritméticos

A	В	С	Х			
0	0	0	$1 \rightarrow \overline{A} \overline{B} \overline{C}$			
0	0	1	1 → $\overline{A}\overline{B}C$		C	С
0	1	0	1 →ĀB C	$\overline{A}\overline{B}$	1	1
0	1	1	0	$\overline{A}B$	1	0
1	0	0	0	AΒ	1	0
1	0	1	0	$A\overline{B}$	0	0
1	1	0	1 <i>→AB</i> <u>C</u>	1	'	
1	1	1	0			

Qual é a expressão algébrica para o circuito? Pares de 1's adjacentes \to elimina-se a variável acompanhada do seu complemento.

Figs. 4-12(a, b, c, d)

Mapa de Karnaugh - agrupando quartetos

Aula 04

Hugo Silva

Forma

Simplificaçã

Mapa de Karnaugh

XOR e XNO

Paridad

de Cls

М. . В. . . .

Circuitos aritméticos

		\overline{C}	C	
	$\overline{A}\overline{B}$	1	0	
	$\overline{A}B$	1	0	
	AB	1	0	
	$A\overline{B}$	1	0	
	\overline{CD}	CD	CD	$C\overline{D}$
$\overline{\overline{A}\overline{B}}$	0 O	<u>C</u> D	CD 1	<i>CD</i> 0
$\overline{\overline{A}}\overline{B}$ $\overline{A}B$		<i>CD</i> 1 1	1 1	
	0	1	1	0

Qual é a expressão algébrica para o circuito? Quartetos de 1's adjacentes \rightarrow eliminam-se as duas variáveis acompanhadas do seu complemento.

Figs. 4-13(a, b, c, d, e)

Mapa de Karnaugh - agrupando octetos

Aula 04

Mapa de Karnaugh

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	1	1	1	1
$\overline{A}\overline{B}$ $\overline{A}B$	0	0	0	0
AΒ	0	0	0	0
$A\overline{B}$	1	1	1	1

Qual é a expressão algébrica para o circuito? Quartetos de 1's adjacentes → eliminam-se as três variáveis acompanhadas do seu complemento.

Figs. 4-14(a, b, c, d)

Mapa de Karnaugh - Exercícios práticos

Aula 04

Hugo Silva

Forma

Simplificaç algébrica

Mapa de Karnaugh

XOR e XNC

Paridad

Cls e famílias de Cls

conversore

Circuitos

	$\overline{C}\overline{D}$	СD	CD	$C\overline{D}$	
$\overline{A}\overline{B}$	0	0	0	1	
$\overline{A}B$	0	0	0	0	
AB	1	1	0	0	
$A\overline{B}$	1	1	1	0	
	\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$	
$\overline{A}\overline{B}$	0	0	0	1	
$\overline{A}B$	0	1	1	0	
AΒ	0	1	1	0	
$A\overline{B}$	0	1	1	0	
	\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$	
$\overline{A}\overline{B}$	0	0	1	0	
$\overline{A}B$	1	1	1	1	
AΒ	1	1	0	0	
$A\overline{B}$	0	0	0	0	

Mapa de Karnaugh - Exercícios práticos

Aula 04

Hugo Silva

Formas

Simplificaçã

Mapa de Karnaugh

XOR e XNO

Paridad

Cls e famílias

de CIs

.. _

Circuitos

	\overline{CD}	C D	CD	$C\overline{D}$			$\overline{C}\overline{D}$	C D	CD	$C\overline{D}$
$\overline{A}\overline{B}$	0	1	0	0	, ,	\overline{B}	0	1	0	0
$\overline{A}B$	0	1	1	1	\overline{A}	В	0	1	1	1
AB	1	1	1	0	Α	В	0	0	0	1
$A\overline{B}$	0	0	1	0	Α	\overline{B}	1	1	0	1
,	•		_		T	C	•			
			-	$\overline{A}\overline{B}$	1	1				
				$\overline{A}B$	1	1				
				AB	0	0				
				$A\overline{B}$	0	1				

Porta lógica XOR

Aula 04

Hugo Silva

Forma

Simplificação

Mapa de Karnaugh

XOR e XNOR

Paridade

Cls e famílias de Cls

conversores

Circuitos

■ XOR → Exclusive-OR/OU-exclusivo;

■ É representada pelo símbolo ⊕;

■ $A \oplus B = B \oplus A$ (associatividade);

■ $A \oplus (B \oplus C) = (A \oplus B) \oplus C$ (comutatividade);

 É possível fazer XOR de mais de duas entradas cascateando as portas;

 \blacksquare X = 1 sempre que a quantidade de 1's for ímpar.

Como é a tabela-verdade de $X = A \oplus B \oplus C$? E o seu circuito?

Porta lógica XOR

Aula 04

Hugo Silva

Forma

algébrica

Karnaug

XOR e XNOR

Paridad₀

de Cls

CODECs e

Mux-Demu:

Circuitos aritméticos

Figura: Implementação da porta XOR

Qual é a expressão algébrica para este circuito? E para $X = A \oplus B \oplus C$?

Porta lógica XNOR

Aula 04

Hugo Silva

Forma

Simplificaç algébrica

Mapa de Karnaugh

XOR e XNOR

Paridad |

Cls e famílias de Cls

conversores

Mux-Dem

Circuitos aritmético ■ XOR → Exclusive-NOR/função coincidência;

- É representada pelo símbolo ⊙;
- \blacksquare X = 1 sempre que a quantidade de 1's for par.

		$X = \overline{A \oplus B} = A \odot B$
0	0	1
0	0 1 0 1	0
1	0	0
1	1	1

Porta lógica XNOR

Aula 04

Hugo Silva

Forma

algébrica

Karnaugh

XOR e XNOR

Paridad₀

de Cls

М. Б.

Circuitos aritmético:

Figura: Implementação da porta XNOR

Exemplos 4-16 e 4-17 (Pg. 116-Tocci) Qual é a expressão algébrica para este circuito? E para $X = A \odot B \odot C$?

Exercício XOR e XNOR

Aula 04

Hugo Silva

Forma

Simplificaçã

Mapa de

XOR e XNOR

Davidad

Cls e famílias

CODECs e

Mux-Demu:

Circuitos aritméticos

Paridade

Aula 04

Hugo Silva

Formas

Simplificaçã algébrica

Ŭ

NOIL E XIVE

Paridade

Cls e família de Cls

20117213012

Circuitos

Conta-se a quantidade de 1's. A palavra resultante deve ter quantidade ímpar ou par de 1's.

A	В	С	D	Paridade	ímpar	Paridade par
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

Gerador/verificador de paridade

Aula 04

Hugo Silva

Form

Simplificaçã algébrica

7.01. 07...0

Paridade

de Cls

Mux-Demux

Circuitos aritméticos Exemplo de um codificador utilizando paridade par para uma palavra de quatro bits:

Gerador/verificador de paridade

Aula 04

Hugo Silva

Form

Simplificação algébrica

7.0....

Paridade

de CIs

Mux-Demu

Circuitos aritméticos Exemplo de um verificador de paridade par para uma palavra de quatro bits:

 $E = 0 - n\tilde{a}o-erro$

E = 1 - erro

É possível saber qual bit está errado?

Circuitos Integrados (CIs) e família de CIs

Aula 04

Hugo Silva

Forma

Simplificaçã algébrica

rvariiaugii

ranuaue

CIs e famílias de CIs

conversores

Circuitos aritméticos ■ Lógica discreta vs. lógica de circuitos integrados (Cls);

- Cls são compostos por resistores, diodos, transístores em um(a) única(o) pastilha/pedaço (aka chip) de silício encapsulada(o) em um substrato de plástico ou cerâmica com os pinos;
- Existem diversos tipos de encapsulamento, exemplos: DIP (dual in-line package), PGA (pin grid array) [ZIF – zero insection force], BGA (ball grid array) e LGA (Land Grid Array) [FC – flip chip].

Circuitos Integrados (CIs) e família de CIs

Aula 04

Hugo Silva

Form

Simplificaçã algébrica

Mapa de Karnaug

XOR e XNO

Paridad

Cls e famílias de Cls

Muy Domu

Circuitos aritméticos Níveis de integração de circuitos:

Nível de integração	N° de portas lógicas
SSI (Small scale integration)	n < 12
MSI (Medium scale integration)	$12 \le n \le 99$
LSI (Large scale integration)	$100 \le n \le 9.999$
VLSI (Very large scale integration)	$10.000 \le n \le 99.999$
ULSI (Ultra large scale integration)	$100.000 \le n \le 999.999$
GSI (Giga scale integration)	$n \ge 1.000.000$

- **TTL** (*Transistor-Transistor Logic*) utiliza transístores bipolares e é usada em CIs SSI e MSI
- CMOS (Complementary Metal-Oxide Semiconductor) utiliza transístores de efeito de campo (MOSFET) e é utilizada em Cls LSI ou maiores

Circuitos Integrados (CIs) e família de CIs

Aula 04

Hugo Silva

Forma

algébrica

Mapa de Karnaug

XOR e XNC

Paridad

Cls e famílias de Cls

conversores

Mux-De

Circuitos aritmético Cuidado ao combinar chips TTL e CMOS no mesmo circuito!

Códigos

Aula 04

Hugo Silva

Forma

Simplificaçã algébrica

Karnaugn

AUR e ANUI

Paridad₁

Cls e famílias de Cls

CODECs e conversores

IVIUX DCI

Circuitos aritmético

- **Códigos** são conjuntos organizados de símbolos/sinais apropriados para determinada aplicação:
 - Canal códigos detectores ou corretores de erro;
 - Fonte criptografia e compressão de dados;
 - Linha nível elétrico para cada um dos símbolos do código.
- Exemplos: ASCII, Unicode, BCD, EBCDIC, RGB, Gray etc;

CC Códigos – Código Gray

Aula 04

CODECs e conversores

Decimal	Binário	Código Gray
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Códigos – Código Gray

Aula 04

Hugo Silva

Formas

Simplificaç algébrica

Karnaugh

XOR e XNO

Paridad

Cls e famílias de Cls

CODECs e conversores

Mux-Dem

Circuitos aritmético

- Código utilizado em MODEMs (moduladores/demoduladores) "analógicos";
- Muda apenas um bit de um símbolo para outro muito semelhante ao Mapa de Karnaugh:

	00	01	11	10
00	0	7	8	15
01	1	6	9	14
11	2	5	10	13
10	3	4	11	12

Códigos - Código 2 entre 5

Aula 04

Hugo Silva

Forma

Simplificaçã algébrica

Karnaugh

XOR e XNC

Paridad

Cls e famílias de Cls

CODECs e conversores

Circuitos

 Sempre há dois bits '1' em uma palavra de cinco bits – codificação menos eficiente;

 Usado na telefonia e facilita a detecção de erro (paridade par) e, em alguns casos, a decodificação.

Decimal	Código 2 entre 5
0	00011
1	00101
2	00110
3	01001
4	01010
5	01100
6	10001
7	10010
8	10100
9	11000

Codificadores, decodificadores (CODECs) e conversores de código

Aula 04

Hugo Silva

Forma

Simplificaçã algébrica

Mapa de Karnaugh

XOR e XNC

Paridad

Cls e famílias de Cls

CODECs e conversores

Circuitos aritméticos ■ **Decodificador** (*decoder*) – recebe e detecta uma sequência específica de *N* bits e ativa uma <u>e apenas uma</u> das 2^N saídas:

Figura: Decodificador $N \times M$

Atenção: Há decodificadores Ativa-ALTO e Ativa-BAIXO!

Codificadores, decodificadores (CODECs) e conversores de código

Aula 04

Hugo Silva

Forma

algébrica

Karnaugh

XOR e XIVI

Paridad

Cls e famílias de Cls

Mux Demu

Circuitos

Codificador (encoder) faz o contrário – uma
 e apenas uma das 2^N entradas é ativada, gerando a sequência de N bits correspondente:

Figura: Codificador $N \times M$

E se mais de uma entrada estiver ativada, qual a saída? A solução é o codificador de prioridades.

Codificadores, decodificadores (CODECs) e conversores de código

Aula 04

Hugo Silv

Form

Simplificaçã algébrica

VOR - VNOI

Paridade

de Cls

Mux-Demus

Circuitos aritméticos Exemplo de aplicação para decoders:

Gerar sinais de temporização ou sequenciamento de operações

Exemplo de aplicação para encoders:

 Codificador de interruptores/chaves/botões (switches) – teclado

Conversores de código – converte a representação dos dados de um formato para outro. *Decoders* só ativam uma saída. Conversores, não necessariamente.

Codificadores e decodificadores (CODECs)

Aula 04

Hugo Silva

Forma

Simplificaçã algébrica

Paridade

Cls e famílias de Cls

CODECs e conversores

Circuitos aritméticos

Exemplos de codecs ou conversores:

- Binário ←→ ASCII.
- \blacksquare BCD \longleftrightarrow Decimal
- BCD ←→ Display de sete segmentos
- Código Gray ←→ Binário
- ASCII ←→ EBCDIC
- et cetera

Uso de um decodificador binário \longrightarrow ASCII 01010100 01100101 01110011 01110100 01100101 T e s t e

Decoder ativa-alto 3×8 genérico – aka decodificador binário para octal (bin2oct)

Aula 04

Hugo Silva

Forma

Simplificação algébrica

Mapa d Karnau

XOR e XNO

Paridad₁

Cls e famílias de Cls

CODECs e conversores

Mux-Demu

Circuitos aritméticos

С	В	Α	O_0	O_1	O_2	O_3	O ₄	O ₅	O_6	O ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Como montar o circuito a partir da tabela?

- Sabe-se que tem 3 entradas (A, B e C) e $2^3 = 8$ saídas (O_0 a O_7);
- Monta-se o Mapa K para cada coluna da saída, simplificando o circuito;
- Realizam-se as ligações.

Decoder ativa-alto 3×8 genérico – aka decodificador binário para octal (bin2oct)

Aula 04

Hugo Silva

Forma

Simplificaçã

Mapa d Karnau

XOR e XNO

Paridad

Cls e famíli de Cls

CODECs e

Mux-Demu

Circuitos aritmético

Encoder ativa-alto 3×8 genérico — aka codificador octal para binário (oct2bin)

Aula 04

Hugo Silv

Forma

Simplificaçã

Mapa c Karnau

XOR e XNC

Paridade

Cls e famílias de Cls

CODECs e conversores

Circuitos aritméticos

I_0	I_1	l ₂	I ₃	I ₄	15	I 6	17	C	В	Α
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Como montar o circuito a partir da tabela?

Somando as entradas em que a saída é verdadeira:

$$C = I_4 + I_5 + I_6 + I_7.$$

Qual o circuito para o codificador oct2bin?

Decoder BCD para decimal (bcd2dec)

Aula 04

Hugo Silva

Forma

Simplificação algébrica

Mapa de Karnaug

AUR e ANU

Paridade

de CIs

CODECs e conversores

Mux-Demu

Circuitos aritméticos Tabela: Código BCD (Binary-Coded Decimal)

Dec	BCD (DCBA)						
0	0000						
1	0001						
2	0010						
3	0011						
4	0100						
5	0101						
6	0110						
7	0111						
8	1000						
9	1001						

 $2^4 = 16$ mas o BCD codifica apenas 10 símbolos diferentes

Decoder Octal para Binário (oct2bin)

Aula 04

Hugo Silva

Forma

Simplificação algébrica

Mapa de Karnaug

XOR e XNO

Paridad

Cls e famílias de Cls

CODECs e conversores

Mux-Demu

Circuitos aritméticos

D	C	В	A	O_0	O_1	O_2	O_3	O ₄	O ₅	O_6	07	08	O ₉
0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0	0	0
0	0	1	1	0	0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	0	0	0	0	1	0	0	0
0	1	1	1	0	0	0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	0	0	0	0	0	1
1	0	1	0										
1	0	1	1										
1	1	0	0										
1	1	0	1										
1	1	1	0										
_1	1	1	1										

Qual o circuito para o decodificador bcd2dec? Vou fazer apenas as duas primeiras colunas

Conversor/driver BCD para display de sete segmentos

Aula 04

Hugo Silva

Formas

Simplifica algébrica

Mapa d Karnau

XOR e XNO

Paridad

Cls e famílias de Cls

CODECs e conversores

Mux-Demu:

Circuitos aritmético

Figura: Layout básico da ligação do driver

Conversor/driver BCD para display de sete segmentos

Aula 04

Hugo Silva

Forma

algébric

Mapa d Karnau

XOR e XNC

Paridad

Cls e família de Cls

Mux Domin

Circuitos

w	X	Υ	Z	а	b	С	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	x	x	х	x	x	x	x
1	0	1	1	x	x	х	x	x	x	x
1	1	0	0	x	x	x	x	x	x	x
1	1	0	1	x	x	х	x	x	x	x
1	1	1	0	x	х	Х	x	x	x	x
_1	1	1	1	x	x	x	х	x	х	x

 $x \rightarrow Don't$ care. Qual o circuito? Vou fazer apenas as duas primeiras colunas.

Conversor Gray para binário (gray2bin)

Aula 04

Hugo Silva

Earma

Simplificaç

Mapa d Karnau

XOR e XNO

Paridad₁

Cls e famílias de Cls

CODECs e conversores

Circuitos

Binário	Código Gray		
0000	0000		
0001	0001		
0010	0011		
0011	0010		
0100	0110		
0101	0111		
0110	0101		
0111	0100		
1000	1100		
1001	1101		
1010	1111		
1011	1110		
1100	1010		
1101	1011		
1110	1001		
1111	1000		

Aula 04

Hugo Silva

Forma

Simplificação algébrica

VOD VNO

7.01. 07...0

Paridade

de Cls

Mux-Demux

Circuitos

■ Multiplexador (mux ou multiplexer) → circuito seletor/chaveador de dados;

- Apenas um dos diversos sinais de entrada são transferidos para a saída do multiplexador, de acordo com o seletor;
- O demultiplexador (demux ou demultiplexer) redireciona o sinal de entrada para uma saída específica de acordo com o seletor.

Aula 04

Hugo Silva

Forma

algébrica

Paridade

de Cls

Mux-Demux

Circuitos aritmético Diagrama de um multiplexador de quatro entradas:

Aula 04

Hugo Silva

Forma

algébrica

Karnaug

XOR e XNO

Paridad

de Cls

CODECs e

Mux-Demux

Circuitos aritmético Diagrama de um demultiplexador de quatro saídas:

Aula 04

Hugo Silva

Forma

algébrica

Karnaug

XOR e XNC

Paridad

de Cls

Mux-Demux

Circuitos aritmético: Associação de dois MUXes de quatro entradas e um MUX de duas entradas para formar um de oito entradas:

Aula 04

Hugo Silva

Form

Simplifica algébrica

Mapa de Karnaugh

XOR e XNO

Paridade

CIs e famílias de CIs

CODECs e conversores

Mux-Demux

Circuitos aritméticos

Aplicações:

- Roteamento de dados para compartilhamento de circuitos lógicos – economia de energia, conexões, componentes, tamanho da placa de circuito impresso (PCB)
- Conversão de transmissão serial para paralela;
- Conversão de transmissão paralela para serial (UART);
- Sequenciar operações controlar um processo industrial através do sequenciamento de operações;
- Implementar circuitos combinacionais para reproduzir diretamente uma tabela-verdade desejada (FPGA).

Aula 04

Hugo Silva

Forma

Simplifica algébrica

Mapa de Karnaug

XOR e XNO

Paridad

Cls e famílias de Cls

CODECs e

Mux-Demux

Circuitos aritmético

Exemplo de roteamento de dados:

Aula 04

Hugo Silva

Form

algébrica

Mapa de Karnaugh

XOR e XNC

Paridad

Cls e famílias de Cls

CODECs e

Mux-Demux

Circuitos aritmético:

Exemplo de UART – *Universal Asynchronous Receiver/Transmitter*

Aula 04

Hugo Silva

Forma

algébrica

VOD VNO

Paridade

Cls e famílias de Cls

Conversores

Circuitos aritméticos São a base da <u>Unidade Lógico-Aritmética</u>, que opera sobre dados binários em registrador

- Basicamente há dois tipos de somadores binários:
 - Paralelo/completo;
 - Meio somador (half adder);
- Antes, devemos recapitular soma binária:

Meio somador

Aula 04

Hugo Silva

Formas

Simplificaçã algébrica

Mapa de Karnaug

XOR e XNO

Paridad

Cls e famílias de Cls

conversores

Circuitos aritméticos

Figura: Diagrama básico de um meio somador

Somador completo

Aula 04

Circuitos aritméticos

Α	В	S	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Qual o circuito?

Somador completo

Aula 04

Hugo Silva

Formas

Simplificaçi

Mapa de Karnaug

XOR e XNO

Paridad

CIs e famílias de CIs

conversores

Mux-Demux

Circuitos aritméticos

Figura: Diagrama básico de um somador completo

A diferença para o *half adder* é que existe uma entrada para *carry*.

Somador completo

Aula 04

Circuitos aritméticos

Α	В	C _{in}	S	C_{out}
0	0	0		
0	0	1		
0	1			
0 0 0 0 1	1	0 1		
1	0	0		
1	0	0 1		
1	1	0		
1	1	1		

Qual o circuito?

Aula 04

Hugo Silva

Forma

Simplificação algébrica

algébrica

XOR e XNO

D. Maria

Cls e famílias

de Cls

Mux-Demux

Circuitos aritméticos Figura: Diagrama básico de um somador paralelo completo de 4 bits – ligação em cascata

Problema? Propagação do sinal de *carry*! Uma solução: *carry* antecipado.

Aula 04

Hugo Silva

Formas

Simplifica algébrica

Mapa de Karnaug

XOR e XNO

Paridad |

Cls e famílias de Cls

CODECs e

Mux-Demu

Circuitos aritméticos

Figura: Diagrama básico do 74HC283 – somador paralelo integrado de 4 bits

Como fazer um somador de oito bits usando o 74HC283?

Aula 04

Hugo Silva

Forma

Simplificaç algébrica

Karnaugh

XOR e XNO

Paridade

Cls e famílias de Cls

conversores

Mux-Demi

Circuitos aritméticos

- E como fazer um subtrator?
- Como a gente aprendeu a subtrair números em binário?
- Desafio: como seria um circuito somador/subtrator?

Material

Aula 04

Hugo Silva

Forma

Simplificaçã algébrica

Karnaugh

XOR e XNOI

Paridade

Cls e famílias de Cls

CODECs e

Mux-Demi

Circuitos aritméticos Seções utilizadas do livro (11ª edição!):

- **4**-1; 4-2; 4-3; 4-4; 4-5; 4-6; 4-7; 4-9.
- 9-1; 9-2; 9-3; 9-4; 9-6; 9-7; 9-8; 9-11.
- 6-9; 6-10; 6-11; 6-12; 6-13; 6-14; 6-15.