Tables d'un analyseur LR(0)

Un analyseur LR(0) est défini par 2 tables :

- la table des successeurs;
- la table des actions.

Table des actions LR(0)

Indique quelle action effectuer :

- ▶ dans un état $q \in Q$;
- ▶ si $x \in V_T \cup \{\#\}$ est sous la tête de lecture.

$$Q \times (V_T \cup \{\#\}) \rightarrow$$
 ensemble d'actions

Une action peut être :

- la lecture du terminal x (decale);
- ▶ la réduction par une production p (red par p);
- l'acceptation (acc).

Exemple, table des actions

	E_1	E_2	E_3	E_4	E_5	E_6	E ₇	E ₈	E_9	E ₁₀	E_{11}	E ₁₂
а	d	е	d	red	е	red	red	е	red	red	red	red
				$A \rightarrow b$		${\sf A} o {\sf aBb}$	B o aB		$S \rightarrow AD$	$D o\epsilon$	S o B	$B \rightarrow c$
b	d	е	d	red	d	red	red	е	red	red	red	red
				$A \rightarrow b$		${\sf A} o {\sf aBb}$	B o aB		$S \rightarrow AD$	$D o\epsilon$	S o B	$B \rightarrow c$
С	d	е	d	red	е	red	red	е	red	red	red	red
				$A \rightarrow b$		${\sf A} o {\sf aBb}$	B o aB		$S \rightarrow AD$	$D o \epsilon$	S o B	$B \rightarrow c$
е	е	е	е	red	е	red	red	d	red	red	red	red
				$A \rightarrow b$		${\sf A} o {\sf aBb}$	B o aB		$S \rightarrow AD$	$D o \epsilon$	S o B	$B \rightarrow c$
#	е	а	е	red	е	red	red	е	red	red	red	red
				$A \rightarrow b$		${\sf A} o {\sf aBb}$	B o aB		$S \rightarrow AD$	$D o \epsilon$	$S \rightarrow B$	$B \rightarrow c$

a : acceptation, d : décale, e : erreur, red : réduction par p

Table des actions, remplissage

```
Pour tout a \in V_T et q \in Q:
si q contient un item de la forme [X \to \cdots \bullet a \dots]
alors mettre decale dans la case (q,a)
```

Pour tout $q \in Q$, $Q \neq q_f$:

- ▶ si q contient un item terminal de la forme $[X \to \alpha \bullet]$;
- ▶ alors, pour tout $a \in V_T \cup \{\#\}$, mettre réduction $X \to \alpha$ dans la case (q, a).

Mettre acceptation dans la case $(q_f, \#)$.

Mettre erreur dans les cases encore vides.

Table des actions, remarque

Pour un automate LR(0), cas dégénéré pour le remplissage de la table par une réduction.

k=0 : aucun symbole de prédiction (pas de *Premier*, *Suivant*).

Une réduction est effectuée quelque soit la tête de lecture.

⇒ colonnes remplies de la même réduction.

Le cas général est : pour tout $a \in V_T \cup \{\#\}$ et $q \in Q$:

- ▶ si q contient un item terminal de la forme $X \to \alpha \bullet$ et que la réduction peut se faire avec a sous la tête de lecture;
- ▶ alors, mettre réduction $X \to \alpha$ dans la case (q, a).

Caractérisation d'une grammaire LR(0)

Une grammaire est LR(0) si sa table des actions contient pour chaque case :

- une seule action
- ou erreur.

Exemple, table des actions et conflits

Ε

$$\begin{bmatrix} A \to b \bullet \end{bmatrix} \\ \begin{bmatrix} B \to b \bullet \end{bmatrix}$$

Ε

$$[A \to \bullet b]$$
$$[B \to c \bullet]$$

	Е	
С	$red\; A \to b$	
	$red\; B \to b$	
b	$red\; A \to b$	
	$red\ B\to b$	

	Е	
С	$red\; B \to c$	
b	$red\; B \to c$	
	decale	

Quand une grammaire n'est pas LR(0)

C'est peut-être à cause du 0.

On peut essayer une analyse LR(1): beaucoup plus puissante.

C'est plus facile d'expliquer d'abord les grammaires SLR(1) : Simple LR(1).

Exemple

Soit la grammaire $S' \to S$, $S \to a \mid \epsilon$.

Conflit shift/reduce dans l'état initial (lire a, réduire par $S \to \epsilon$) :

$$S' \to \bullet S$$

$$S \to \bullet a$$

$$S \to \bullet$$

Mais si la tête de lecture est :

- ▶ dans {a}, alors lire a;
- ▶ dans $\{\#\}$ = Suivant(S) alors réduire par $S \rightarrow \epsilon$.

Un automate SLR(1) exploite cette information.