CLASS

Cosmological Linear Anisotropy Solving System

Markus Mosbech Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University

Les Karellis, France, 17-30Aug 2025

Visit https://lesgourg.github.io/class_public/class.html for more info!

class in Les Karellis

What to expect in this first lecture:

Basics: Why use class?

• Usage: Installation

Usage: Python Interface

• Usage: Samplers

Basics: Existing Species
Basics: Module Overview

We will learn how to use class and which models can be run with it.

17-30.08.2025

What is an Einstein-Boltzmann solver?

Often just called a *Boltzmann code* for brevity, a typical Boltzmann code will:

- Solve coupled Einstein and Boltzmann equations.
- Generally work at linear level in perturbation theory.
- Compute global (Background+Themodynamic) quantities and perturbations.

$$\underbrace{\frac{\mathrm{d}f}{\mathrm{d}\lambda} = RT_{\mu\nu}}_{\text{Einstein-equation}} \qquad \underbrace{\frac{\mathrm{d}f}{\mathrm{d}\lambda} = C[f]}_{\text{Boltzmann-equation}} \tag{1}$$

Modern Boltzmann codes offer:

• History of the universe at the global level (H(z), $\rho_i(z)$, etc.)

Modern Boltzmann codes offer:

- History of the universe at the global level (H(z), $\rho_i(z)$, etc.)
- Thermal history of the universe $(T_b(z), x_e, \tau, \text{etc.})$

Modern Boltzmann codes offer:

- History of the universe at the global level $(H(z), \rho_i(z), \text{ etc.})$
- Thermal history of the universe ($T_h(z)$, x_e , τ , etc.)
- Evolution of (linear) perturbations (δ_i , θ_i , ψ , ϕ , etc.)

Modern Boltzmann codes offer:

- History of the universe at the global level $(H(z), \rho_i(z),$ etc.)
- Thermal history of the universe ($T_h(z)$, x_e , τ , etc.)
- Evolution of (linear) perturbations (δ_i , θ_i , ψ , ϕ , etc.)
- Fourier space transfer functions (T(k))

Modern Boltzmann codes offer:

- History of the universe at the global level $(H(z), \rho_i(z), \text{ etc.})$
- Thermal history of the universe $(T_h(z), x_e, \tau, \text{ etc.})$
- Evolution of (linear) perturbations (δ_i , θ_i , ψ , ϕ , etc.)
- Fourier space transfer functions (T(k))
- CMB spectra, both lensed and unlensed $(C_\ell^{TT}, C_\ell^{TE}, C_\ell^{EE}, C_\ell^{BB})$

Modern Boltzmann codes offer:

- History of the universe at the global level $(H(z), \rho_i(z), \text{ etc.})$
- Thermal history of the universe ($T_h(z)$, x_e , τ , etc.)
- Evolution of (linear) perturbations (δ_i , θ_i , ψ , ϕ , etc.)
- Fourier space transfer functions (T(k))
- CMB spectra, both lensed and unlensed $(C_\ell^{TT}, C_\ell^{TE}, C_\ell^{EE}, C_\ell^{BB})$
- Linear matter power spectrum, galaxy counts, cosmic shear $(\xi^{\pm}, C_{\ell}^{dd}, P_{\text{lin}}(k))$

Modern Boltzmann codes offer:

- History of the universe at the global level $(H(z), \rho_i(z), \text{ etc.})$
- Thermal history of the universe ($T_h(z)$, x_e , τ , etc.)
- Evolution of (linear) perturbations (δ_i , θ_i , ψ , ϕ , etc.)
- Fourier space transfer functions (T(k))
- CMB spectra, both lensed and unlensed $(C_\ell^{TT}, C_\ell^{TE}, C_\ell^{EE}, C_\ell^{BB})$
- Linear matter power spectrum, galaxy counts, cosmic shear $(\xi^\pm, \mathcal{C}_\ell^{dd}, \mathcal{P}_{\mathrm{lin}}(k))$
- Emulated non-linear power spectra

4/9

Modern Boltzmann codes offer:

- History of the universe at the global level $(H(z), \rho_i(z), \text{ etc.})$
- Thermal history of the universe ($T_h(z)$, x_e , τ , etc.)
- Evolution of (linear) perturbations (δ_i , θ_i , ψ , ϕ , etc.)
- Fourier space transfer functions (T(k))
- CMB spectra, both lensed and unlensed $(C_\ell^{TT}, C_\ell^{TE}, C_\ell^{EE}, C_\ell^{BB})$
- Linear matter power spectrum, galaxy counts, cosmic shear $(\xi^\pm, \mathcal{C}^{dd}_\ell, \mathcal{P}_{\mathrm{lin}}(k))$
- Emulated non-linear power spectra
- CMB spectral distortions

Modern Boltzmann codes offer:

- History of the universe at the global level $(H(z), \rho_i(z), \text{ etc.})$
- Thermal history of the universe ($T_h(z)$, x_e , τ , etc.)
- Evolution of (linear) perturbations (δ_i , θ_i , ψ , ϕ , etc.)
- Fourier space transfer functions (T(k))
- CMB spectra, both lensed and unlensed $(C_\ell^{TT}, C_\ell^{TE}, C_\ell^{EE}, C_\ell^{BB})$
- Linear matter power spectrum, galaxy counts, cosmic shear $(\xi^\pm, \mathcal{C}^{dd}_\ell, \mathcal{P}_{\mathrm{lin}}(k))$
- Emulated non-linear power spectra
- CMB spectral distortions

All computed in a matter of seconds!

17-30.08.2025

This has several use cases:

- Analysis of CMB experiments
- Analysis of LSS experiments
- Initial conditions for non-linear simulations (*N*-body, etc.)
- Consistent treatment of background/thermodynamic evolution

All easy to to with class!

Fast execution \Rightarrow ideal for use in an MCMC pipeline.

5/9

17-30.08.2025 M. Mosbech

Why use class?

class is:

- Accurate: class & camb cross-check each other
- Versatile: Interfaces with MontePython, Cobaya, Cosmosis, Procoli, CosmoPower, OLÉ, CONNECT, and others!
- Comprehensive: Computes a wide range of cosmological observables for a large selection of models beyond ΛCDM.
- Modular and well-documented: ReadTheDocs page and Doxygen documentation, thoroughly commented source code, easy to modify

All strong arguments to use class!

Installing class

Using class

If you have no intention of modifying source code:

> pip install classy

And the class wrapper will be ready to use in your Python environment.

This is the easiest way to install.

Modifying class

If you wish to modify source code:

- > git clone git@github.com: lesgourg/class_public. git class
- > cd class/
- > make clean; make -j

The wrapper can be used in your Python environment, and the binary executable can be called from the terminal.

1 Basic information and links:

- 1 Basic information and links:
 - in the historical class webpage http://class-code.net

- 1 Basic information and links:
 - in the historical class webpage http://class-code.net
 - in the pdf manual in doc/manual/CLASS_MANUAL.pdf

- 1 Basic information and links:
 - in the historical class webpage http://class-code.net
 - in the pdf manual in doc/manual/CLASS_MANUAL.pdf
 - the online documentation page (from the previous page, or from https://github.com/lesgourg/class_public/wiki, click on the link online html documentation)
 - First three subsections:
 - Installation instructions
 - References to many papers for the physics
 - General overview (architecture, input/output, general principles)

8/9

- 1 Basic information and links:
 - in the historical class webpage http://class-code.net
 - in the pdf manual in doc/manual/CLASS_MANUAL.pdf
 - the online documentation page (from the previous page, or from https://github.com/lesgourg/class_public/wiki, click on the link online html documentation)
 - First three subsections:
 - Installation instructions
 - References to many papers for the physics
 - General overview (architecture, input/output, general principles)
- 2 More advanced:
 - Old course notes from previous years on https://schoeneberg.github.io/ under "Resources"
 - several detailed courses on Julien's course webpage https://lesgourg.github.io/courses.html, especially the courses from Tokyo and NYC
 - Full auto-generated documentation with dependence tree.

The code structure