17 Решите неравенство
$$\log_2^2 (16+6x-x^2)+10\log_{0.5} (16+6x-x^2)+24>0$$
.

Пусть $t = \log_2(16 + 6x - x^2)$, тогда неравенство примет вид:

$$t^2-10t+24>0$$
; $(t-4)(t-6)>0$,

откуда t < 4; t > 6.

При t < 4 получим: $\log_2 \left(16 + 6x - x^2\right) < 4$; $0 < 16 + 6x - x^2 < 16$; $0 < x^2 - 6x < 16$, откуда -2 < x < 0; 6 < x < 8.

При t > 6 получим: $\log_2(16+6x-x^2) > 6$; $16+6x-x^2 > 64$; $x^2-6x+48 < 0$; решений нет.

Решение исходного неравенства: -2 < x < 0; 6 < x < 8.

Ответ: (-2;0); (6;8).

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Обоснованно получен ответ, отличающийся от верного включением точек 0 и/или 6, ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

Решите неравенство
$$\frac{3 \lg^2 x - 8}{\lg^2 x - 4} \ge 2$$
.

Пусть $t = \lg x$, тогда неравенство примет вид:

$$\frac{3t^2-8}{t^2-4} \ge 2; \ \frac{t^2}{t^2-4} \ge 0,$$

откуда t < -2; t = 0; t > 2.

При t < -2 получим: $\lg x < -2$, откуда 0 < x < 0,01.

При t = 0 получим: $\lg x = 0$, откуда x = 1.

При t > 2 получим: $\lg x > 2$, откуда x > 100.

Решение исходного неравенства: 0 < x < 0.01; x = 1; x > 100.

OTBET: $(0;0,01); 1; (100;+\infty)$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Обоснованно получен ответ, отличающийся от верного исключением	
точки 1,	
или	1
получен неверный ответ из-за вычислительной ошибки, но при этом	
имеется верная последовательность всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	0
Максимальный балл	2

Решите неравенство
$$\frac{105}{\left(2^{4-x^2}-1\right)^2} - \frac{22}{2^{4-x^2}-1} + 1 \ge 0.$$

Пусть $t = 2^{4-x^2} - 1$, тогда неравенство примет вид:

$$\frac{t^2-22t+105}{t^2} \ge 0; \frac{(t-7)(t-15)}{t^2} \ge 0,$$

откуда t < 0; $0 < t \le 7$; $t \ge 15$.

При t < 0 получим: $2^{4-x^2} - 1 < 0$; $4-x^2 < 0$, откуда x < -2; x > 2.

При $0 < t \le 7$ получим: $0 < 2^{4-x^2} - 1 \le 7$; $0 < 4-x^2 \le 3$, откуда $-2 < x \le -1$; $1 \le x < 2$.

При $t \ge 15$ получим: $2^{4-x^2}-1 \ge 15$; $4-x^2 \ge 4$, откуда x=0.

Решение исходного неравенства: x < -2; $-2 < x \le -1$; x = 0; $1 \le x < 2$; x > 2.

OTBET: $(-\infty; -2); (-2; -1]; 0; [1; 2); (2; +\infty).$

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Обоснованно получен ответ, отличающийся от верного исключением точек -1, 0 и/или 1, ИЛИ	1
получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения	_
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

17 Решите неравенство $\lg^4 x - 4\lg^3 x + 5\lg^2 x - 2\lg x \ge 0$.

Решение.

Пусть $t = \lg x$, тогда неравенство примет вид:

$$t^4 - 4t^3 + 5t^2 - 2t \ge 0$$
; $t(t-1)^2(t-2) \ge 0$,

откуда $t \le 0$; t = 1; $t \ge 2$.

При $t \le 0$ получим: $\lg x \le 0$, откуда $0 < x \le 1$.

При t = 1 получим: $\lg x = 1$, откуда x = 10.

При $t \ge 2$ получим: $\lg x \ge 2$, откуда $x \ge 100$.

Решение исходного неравенства: $0 < x \le 1$; x = 10; $x \ge 100$.

Ответ: (0,1]; 10; $[100,+\infty)$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Обоснованно получен ответ, отличающийся от верного исключением точек 1, 10 и/или 100, ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

Решите неравенство
$$\frac{2}{3^x - 9} \ge \frac{8}{3^x - 3}$$
.

Пусть $t = 3^x$, тогда неравенство примет вид:

$$\frac{2}{t-9} \ge \frac{8}{t-3}; \frac{t-11}{(t-9)(t-3)} \le 0,$$

откуда t < 3; 9 < t ≤ 11.

При t < 3 получим: $3^x < 3$, откуда x < 1.

При $9 < t \le 11$ получим: $9 < 3^x \le 11$, откуда $2 < x \le \log_3 11$.

Решение исходного неравенства: x < 1; $2 < x \le \log_3 11$.

Ответ: (-∞;1); (2; log₃11].

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Обоснованно получен ответ, отличающийся от верного исключением точки $\log_3 \Pi$, ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения	Ī
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

Решите неравенство
$$\frac{31-5\cdot 2^x}{4^x-24\cdot 2^x+128} \ge 0,25$$
.

Пусть $t = 2^x$, тогда неравенство примет вид:

$$\frac{31-5t}{t^2-24t+128} \ge 0.25; \frac{t^2-4t+4}{t^2-24t+128} \le 0; \frac{(t-2)^2}{(t-8)(t-16)} \le 0,$$

откуда t = 2; 8 < t < 16.

При t = 2 получим: $2^x = 2$, откуда x = 1.

При 8 < t < 16 получим: $8 < 2^x < 16$, откуда 3 < x < 4.

Решение исходного неравенства: x = 1; 3 < x < 4.

Ответ: 1; (3; 4).

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Обоснованно получен ответ, отличающийся от верного исключением точки 1, ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

Решите неравенство $\left(\log_{2}^{2}x - 2\log_{2}x\right)^{2} < 11\log_{2}^{2}x - 22\log_{2}x - 24$.

Решение.

Пусть $t = \log_2 x$, тогда неравенство примет вид:

$$(t^2-2t)^2-11(t^2-2t)+24<0; (t^2-2t-3)(t^2-2t-8)<0; (t-3)(t+1)(t-4)(t+2)<0,$$

откуда -2 < t < -1; 3 < t < 4.

При
$$-2 < t < -1$$
 получим: $-2 < \log_2 x < -1$, откуда $\frac{1}{4} < x < \frac{1}{2}$.

При 3 < t < 4 получим: $3 < \log_2 x < 4$, откуда 8 < x < 16.

Решение исходного неравенства: $\frac{1}{4} < x < \frac{1}{2}$; 8 < x < 16.

Ответ:
$$\left(\frac{1}{4}, \frac{1}{2}\right)$$
; (8;16).

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Обоснованно получен ответ, отличающийся от верного включением граничных точек,	
или	1
получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2