OPTIMIZATION (SI 416) – LECTURE 6

Harsha Hutridurga

IIT Bombay

RECAP: LINE SEARCH ALGORITHMS

 \clubsuit Start with a point $x^{(0)} \in \mathbb{R}^n$ and a direction $p^{(0)} \in \mathbb{R}^n$ such that

$$\left\langle \nabla f(x^{(0)}), p^{(0)} \right\rangle < 0$$

i.e. $p^{(0)}$ is a descent direction at the point $x^{(0)}$

 \clubsuit Find the next iterate $x^{(1)}$ along the line $x^{(0)} + \alpha p^{(0)}$ with $\alpha > 0$ such that

$$f(x^{(1)}) \le f(x^{(0)})$$

- ♣ General principle of line search algorithms:
 - At the current iterate $x^{(n)}$, choose a descent direction $p^{(n)}$, i.e.

$$\left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle < 0$$

▶ Pick the next iterate $x^{(n+1)}$ along the line $x^{(n)} + \alpha p^{(n)}$ with $\alpha > 0$ such that

$$f(x^{(n+1)}) \le f(x^{(n)})$$

RECAP: LINE SEARCH ALGORITHMS

- ♣ We saw an example (Lecture 5) which demonstrated that this approach may not succeed always
- \clubsuit The root cause for this behaviour stems from the choice of step lengths α_n in each iteration step
- Here we encounter certain sufficient decrease conditions to avoid such scenarios

WOLFE CONDITIONS

 \clubsuit Recall: While at the point $x^{(n)}$, the search direction $p^{(n)}$ is said to be a descent direction if

$$\left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle < 0$$

Definition (Wolfe conditions)

For a descent direction $p^{(n)}$ at the point $x^{(n)}$, the step length α_n is said to satisfy the WOLFE CONDITIONS if

$$f(x^{(n)} + \alpha_n p^{(n)}) \le f(x^{(n)}) + c_1 \alpha_n \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle$$

$$\left\langle \nabla f(x^{(n)} + \alpha_n p^{(n)}), p^{(n)} \right\rangle \ge c_2 \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle$$

for some constants

$$0 < c_1 < c_2 < 1$$

WOLFE CONDITIONS (CONTD.)

- \clubsuit Let $p^{(n)}$ be a descent direction at the point $x^{(n)}$
- \bullet Consider the function $\varphi:[0,\infty)\to\mathbb{R}$ defined as follows:

$$\varphi(\alpha) := f(x^{(n)} + \alpha p^{(n)}) \quad \text{for } \alpha \in [0, \infty).$$

♣ Note that

$$\varphi'(0) = \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle < 0$$

 \clubsuit Let $c_1 \in (0,1)$ and take a linear function $\psi : [0,\infty) \to \mathbb{R}$ defined as

$$\psi(\alpha) := f(x^{(n)}) + c_1 \alpha \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle \quad \text{for } \alpha \in [0, \infty)$$

Note that
$$\psi'(\alpha) = c_1 \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle = c_1 \varphi'(0)$$

- \clubsuit As $c_1 \in (0,1)$, we have $\varphi(\alpha) \leq \psi(\alpha)$ for small enough α
- ♣ The first condition in the Wolfe conditions is referred to as the SUFFICIENT DECREASE condition

WOLFE CONDITIONS (CONTD.)

- \bullet We have seen that sufficient decrease condition is satisfied by any α_n as long as it is small
- ♣ To ensure that sufficient progress is made in each iteration step, a second condition is imposed:

$$\left\langle \nabla f(x^{(n)} + \alpha_n p^{(n)}), p^{(n)} \right\rangle \ge c_2 \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle$$

 \clubsuit Written in terms of the function φ defined earlier, it reads

$$\varphi'(\alpha_n) \ge c_2 \varphi'(0)$$

STEP LENGTHS SATISFYING WOLFE CONDITIONS

♣ Is it possible to find step lengths satisfying Wolfe conditions?

Lemma

Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable.

Let $p^{(n)}$ be a descent direction at $x^{(n)}$.

Let $M \in \mathbb{R}$ be such that

$$f(x^{(n)} + \alpha p^{(n)}) \ge M$$
 for all $\alpha \ge 0$.

If $0 < c_1 < c_2 < 1$, then there exist interval of step lengths satisfying the Wolfe conditions:

$$f(x^{(n)} + \alpha_n p^{(n)}) \le f(x^{(n)}) + c_1 \alpha_n \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle$$

$$\left\langle \nabla f(x^{(n)} + \alpha_n p^{(n)}), p^{(n)} \right\rangle \ge c_2 \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle$$

FIRST WOLFE CONDITION

 \clubsuit Consider the functions $\varphi, \psi : [0, \infty) \to \mathbb{R}$ defined as

$$\varphi(\alpha) := f(x^{(n)} + \alpha p^{(n)}) \qquad \text{for } \alpha \in [0, \infty),$$

$$\psi(\alpha) := f(x^{(n)}) + c_1 \alpha \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle \qquad \text{for } \alpha \in [0, \infty),$$

where $0 < c_1 < 1$.

- \clubsuit Note that $\varphi'(0) < 0$ and $\psi'(\alpha) = c_1 \varphi'(0) < 0$
- \clubsuit Hence it follows that there exists a $\alpha_* > 0$ such that

$$\varphi(\alpha) \le \psi(\alpha)$$
 for $\alpha \in [0, \alpha_*]$

 \clubsuit i.e. the graph of φ falls below the line ψ in $[0, \alpha_*]$

SECOND WOLFE CONDITION

. Consider the function $\varphi:[0,\infty)\to\mathbb{R}$ from before

$$\varphi(\alpha) := f(x^{(n)} + \alpha p^{(n)})$$
 for $\alpha \in [0, \infty)$,

• Second Wolfe condition reads as follows:

$$\left\langle \nabla f(x^{(n)} + \alpha_n p^{(n)}), p^{(n)} \right\rangle \ge c_2 \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle$$

 \clubsuit i.e. slope of φ at α_n is greater than a multiple of its initial slope:

$$\varphi'(\alpha_n) \ge c_2 \varphi'(0)$$
 for some $c_2 \in (c_1, 1)$

• Note that $c_2 > c_1$ guarantees that $x^{(n+1)}$ is not too close to $x^{(n)}$

SECOND WOLFE CONDITION - GRAPHICAL ILLUSTRATION

♣ Is it possible to find step lengths satisfying Wolfe conditions?

Lemma

Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable.

Let $p^{(n)}$ be a descent direction at $x^{(n)}$.

Let $M \in \mathbb{R}$ be such that

$$f(x^{(n)} + \alpha p^{(n)}) \ge M$$
 for all $\alpha \ge 0$.

If $0 < c_1 < c_2 < 1$, then there exist interval of step lengths satisfying the Wolfe conditions:

$$f(x^{(n)} + \alpha_n p^{(n)}) \le f(x^{(n)}) + c_1 \alpha_n \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle$$

$$\left\langle \nabla f(x^{(n)} + \alpha_n p^{(n)}), p^{(n)} \right\rangle \ge c_2 \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle$$

STEP LENGTHS SATISFYING WOLFE CONDITIONS (CONTD.)

 \clubsuit Consider the functions $\varphi, \psi : [0, \infty) \to \mathbb{R}$ defined earlier:

$$\varphi(\alpha) := f(x^{(n)} + \alpha p^{(n)}) \qquad \text{for } \alpha \in [0, \infty),$$

$$\psi(\alpha) := f(x^{(n)}) + c_1 \alpha \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle \qquad \text{for } \alpha \in [0, \infty),$$

- \clubsuit It is given that $\varphi(\alpha) \geq M$ for all $\alpha \geq 0$
- As $c_1 > 0$ and as $\langle \nabla f(x^{(n)}), p^{(n)} \rangle < 0$, it follows that ψ is unbounded below
- Note that $\varphi(0) = \psi(0) = f(x^{(n)})$
- \clubsuit Hence the graph of ψ must intersect the graph of φ at least once
- Arr Let $\alpha' > 0$ be the smallest such that

$$\varphi(\alpha') = \psi(\alpha')$$
 and $\varphi(\alpha) < \psi(\alpha) \quad \forall \alpha \in (0, \alpha')$

♣ This is the first of the Wolfe conditions

STEP LENGTHS SATISFYING WOLFE CONDITIONS (CONTD.)

 \bullet We saw that there exists a $\alpha' > 0$ such that

$$f(x^{(n)} + \alpha' p^{(n)}) = f(x^{(n)}) + c_1 \alpha' \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle$$

 \clubsuit Employing Taylor's theorem we have for some $\alpha'' \in (0, \alpha')$

$$f(x^{(n)} + \alpha' p^{(n)}) = f(x^{(n)}) + \alpha' \left\langle \nabla f(x^{(n)} + \alpha'' p^{(n)}), p^{(n)} \right\rangle$$

& Comparing the above two equalities, we deduce

$$c_1 \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle = \left\langle \nabla f(x^{(n)} + \alpha'' p^{(n)}), p^{(n)} \right\rangle$$

 $As c_1 < c_2$ and as $\langle \nabla f(x^{(n)}), p^{(n)} \rangle < 0$, it follows that

$$\left\langle \nabla f(x^{(n)} + \alpha'' p^{(n)}), p^{(n)} \right\rangle > c_2 \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle$$

♣ This is the second of the Wolfe conditions

STEP LENGTHS SATISFYING WOLFE CONDITIONS (CONTD.)

- \clubsuit We showed the first inequality (strict) holds true for all $\alpha \in (0, \alpha')$
- \clubsuit Further, the second inequality (strict) holds true for an $\alpha'' \in (0, \alpha')$
- \clubsuit As f is continuously differentiable, both the inequalities hold true for all α in an interval around α''
- ♣ There is a stronger version of the Wolfe conditions:

$$f(x^{(n)} + \alpha_n p^{(n)}) \le f(x^{(n)}) + c_1 \alpha_n \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle$$

$$\left| \left\langle \nabla f(x^{(n)} + \alpha_n p^{(n)}), p^{(n)} \right\rangle \right| \le c_2 \left| \left\langle \nabla f(x^{(n)}), p^{(n)} \right\rangle \right|$$

for some $0 < c_1 < c_2 < 1$

- Observe that the first condition is the same as before
- \clubsuit The second condition makes sure that slope of φ isn't too positive
- ♣ If the step lengths in a line search algorithm satisfy the Wolfe conditions, then to what limit the sequence generated converges?

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a once continuously differentiable function such that f(x) > M for all $x \in \mathbb{R}^n$. Let $x^{(0)}$ be starting point of the algorithm:

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$$
 for $k = 0, 1, 2, ...$

Here $p^{(k)}$ is the descent direction at the point $x^{(k)}$. Suppose the step lengths α_k satisfy the Wolfe conditions. Consider the set $\Lambda := \{ x \in \mathbb{R}^n \text{ such that } f(x) \le f(x^{(0)}) \}.$

Further suppose that f is β -smooth in an open set $\Omega \supset \Lambda$, i.e.

$$\|\nabla f(x) - \nabla f(y)\| \le \beta \|x - y\|$$
 for all $x, y \in \Omega$.

Then

$$\sum_{k=0}^{\infty} \left(\cos^2 \theta_k\right) \left\| \nabla f(x^{(k)}) \right\|^2 < \infty \quad \text{ with } \quad \cos \theta_k := \frac{-\left\langle \nabla f(x^{(k)}), p^{(k)} \right\rangle}{\left\| \nabla f(x^{(k)}) \right\| \, \left\| p^{(k)} \right\|}$$

CONVERGENCE - FEW COMMENTS

- ♣ Function being bounded below is not too restrictive as minimization pb for unbounded function (from below) is ill-defined
- Note that

$$\sum_{k=0}^{\infty} \left(\cos^2 \theta_k\right) \left\| \nabla f(x^{(k)}) \right\|^2 < \infty \implies \lim_{k \to \infty} \left(\cos^2 \theta_k\right) \left\| \nabla f(x^{(k)}) \right\|^2 = 0$$

\$\rightarrow\$ Suppose we choose the descent directions such that

$$\cos \theta_k > \delta > 0$$
 for all k

♣ Then it follows that

$$\lim_{k \to \infty} \left\| \nabla f(x^{(k)}) \right\|^2 = 0$$

- ♣ Hence the iterates converge to a stationary point
- ♣ It doesn't guarantee that the iterates converge to a minimizer

PROOF OF CONVERGENCE

Recall the second Wolfe condition:

$$\left\langle \nabla f(x^{(k)} + \alpha_k p^{(k)}), p^{(k)} \right\rangle \ge c_2 \left\langle \nabla f(x^{(k)}), p^{(k)} \right\rangle$$

♣ Hence it follows that

$$\left\langle \nabla f(x^{(k+1)}) - \nabla f(x^{(k)}), p^{(k)} \right\rangle \ge \left(c_2 - 1\right) \left\langle \nabla f(x^{(k)}), p^{(k)} \right\rangle$$

A Note that Cauchy-Schwarz inequality says

$$\left\langle \nabla f(x^{(k+1)}) - \nabla f(x^{(k)}), p^{(k)} \right\rangle \le \left\| \nabla f(x^{(k+1)}) - \nabla f(x^{(k)}) \right\| \left\| p^{(k)} \right\|$$

$$\le \beta \alpha_k \left\| p^{(k)} \right\|^2$$

thanks to the β -smoothness assumption on f

PROOF OF CONVERGENCE (CONTD.)

A Putting it all together, we obtain

$$\beta \alpha_k \left\| p^{(k)} \right\|^2 \ge \left(c_2 - 1 \right) \left\langle \nabla f(x^{(k)}), p^{(k)} \right\rangle$$

A Hence we deduce

$$-\alpha_k \le \frac{\left(1 - c_2\right)}{\beta} \frac{\left\langle \nabla f(x^{(k)}), p^{(k)} \right\rangle}{\left\| p^{(k)} \right\|^2}$$

Recall the first Wolfe condition:

$$f(x^{(k)} + \alpha_k p^{(k)}) \le f(x^{(k)}) + c_1 \alpha_k \left\langle \nabla f(x^{(k)}), p^{(k)} \right\rangle$$

ightharpoonup Using the above bound on $-\alpha_k$, we deduce

$$f(x^{(k+1)}) \le f(x^{(k)}) - \frac{c_1(1-c_2)}{\beta} \frac{\left|\left\langle \nabla f(x^{(k)}), p^{(k)} \right\rangle\right|^2}{\left\|p^{(k)}\right\|^2}$$

PROOF OF CONVERGENCE (CONTD.)

 \clubsuit Recall that the angle between $p^{(k)}$ and $-\nabla f(x^{(k)})$ satisfies

$$\cos \theta_k := \frac{-\left\langle \nabla f(x^{(k)}), p^{(k)} \right\rangle}{\left\| \nabla f(x^{(k)}) \right\| \left\| p^{(k)} \right\|}$$

- \clubsuit Define a positive constant $C := \frac{c_1(1-c_2)}{\beta}$
- & We have thus shown that

$$f(x^{(k+1)}) \le f(x^{(k)}) - C(\cos^2 \theta_k) \|\nabla f(x^{(k)})\|^2$$
 for $k = 0, 1, 2, ...$

Above recurrence inequality leads to

$$f(x^{(k)}) \le f(x^{(0)}) - C \sum_{\ell=0}^{k-1} (\cos^2 \theta_{\ell}) \|\nabla f(x^{(\ell)})\|^2$$
 for $k = 0, 1, 2, ...$

PROOF OF CONVERGENCE (CONTD.)

 \clubsuit Recall that we have assumed that f is bounded below. Hence

$$f(x^{(k)}) \ge M \implies -f(x^{(k)}) \le -M$$
$$\implies f(x^{(0)}) - f(x^{(k)}) \le f(x^{(0)}) - M$$

Recall that we had derived the inequality

$$C\sum_{\ell=0}^{k-1} \left(\cos^2 \theta_{\ell}\right) \left\| \nabla f(x^{(\ell)}) \right\|^2 \le f(x^{(0)}) - f(x^{(k)})$$

 \clubsuit Now letting $k \to \infty$ and using the boundedness property from above, we deduce

$$\lim_{k \to \infty} \sum_{\ell=0}^{k} \left(\cos^2 \theta_{\ell}\right) \left\| \nabla f(x^{(\ell)}) \right\|^2 < \infty$$

A PARTICULAR EXAMPLE

- \clubsuit Take A to be a $n \times n$ symmetric positive definite matrix
- \bullet Take $b \in \mathbb{R}^n$
- \clubsuit Consider the function $f: \mathbb{R}^n \to \mathbb{R}$ defined as follows

$$f(x) := \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle$$
 for $x \in \mathbb{R}^n$.

 \clubsuit Recall that f is convex and its gradient

$$\nabla f(x) = Ax - b$$

- \clubsuit Hence the unique minimizer x_* of f solves the system Ax = b
- \clubsuit Employing steepest descent for this objective functions amounts to taking $-\nabla f(x^{(k)})$ as the descent direction
- \clubsuit Here, we can indeed find the best step length α_k that minimizes

$$f(x^{(k)} - \alpha \nabla f(x^{(k)}))$$

 \clubsuit Consider the function $\varphi:[0,\infty)\to\mathbb{R}$ defined as

$$\varphi(\alpha) := f(x^{(k)} - \alpha \nabla f(x^{(k)})) \quad \text{for } \alpha \in [0, \infty)$$

Note that

$$\varphi(\alpha) = \frac{1}{2} \left\langle A(x^{(k)} - \alpha \nabla f(x^{(k)})), x^{(k)} - \alpha \nabla f(x^{(k)}) \right\rangle$$

$$- \left\langle b, x^{(k)} - \alpha \nabla f(x^{(k)}) \right\rangle$$

$$= \frac{1}{2} \left\langle Ax^{(k)}, x^{(k)} \right\rangle - \alpha \left\langle Ax^{(k)}, \nabla f(x^{(k)}) \right\rangle$$

$$+ \frac{\alpha^2}{2} \left\langle A\nabla f(x^{(k)}), \nabla f(x^{(k)}) \right\rangle - \left\langle b, x^{(k)} \right\rangle + \alpha \left\langle b, \nabla f(x^{(k)}) \right\rangle$$

$$= \frac{1}{2} \left\langle Ax^{(k)}, x^{(k)} \right\rangle - \alpha \left\langle \nabla f(x^{(k)}), \nabla f(x^{(k)}) \right\rangle$$

$$+ \frac{\alpha^2}{2} \left\langle A\nabla f(x^{(k)}), \nabla f(x^{(k)}) \right\rangle - \left\langle b, x^{(k)} \right\rangle$$

Hence we have

$$\varphi'(\alpha) = -\left\langle \nabla f(x^{(k)}), \nabla f(x^{(k)}) \right\rangle + \alpha \left\langle A \nabla f(x^{(k)}), \nabla f(x^{(k)}) \right\rangle$$

 \clubsuit Thus the best step length α_k is given by

$$\alpha_k = \frac{\left\| \nabla f(x^{(k)}) \right\|^2}{\left\langle A \nabla f(x^{(k)}), \nabla f(x^{(k)}) \right\rangle}$$

- A This approach is called EXACT LINE SEARCH approach
- ♣ Hence the steepest descent algorithm takes the form

$$x^{(k+1)} = x^{(k)} - \frac{\|\nabla f(x^{(k)})\|^2}{\langle A\nabla f(x^{(k)}), \nabla f(x^{(k)})\rangle} \nabla f(x^{(k)})$$

 \clubsuit Fact: For any symmetric positive definite matrix A, the following is a norm on \mathbb{R}^n

$$||x||_A := \sqrt{\langle Ax, x \rangle}$$
 for $x \in \mathbb{R}^n$

- \clubsuit Consider the quadratic function f defined earlier using A and b
- ♣ We claim that

$$\frac{1}{2} \|x - x_*\|_A^2 = f(x) - f(x_*) \quad \text{for } x \in \mathbb{R}^n,$$

where $Ax_* = b$.

♣ Note that

$$f(x) - f(x_*) = \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle - \frac{1}{2} \langle Ax_*, x_* \rangle + \langle b, x_* \rangle$$
$$= \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle + \frac{1}{2} \langle b, x_* \rangle$$

♣ Note further that

$$\begin{split} \frac{1}{2} \left\| x - x_* \right\|_A^2 &= \frac{1}{2} \left\langle Ax - Ax_*, x - x_* \right\rangle \\ &= \frac{1}{2} \left\langle Ax, x \right\rangle - \left\langle Ax_*, x \right\rangle + \frac{1}{2} \left\langle Ax_*, x_* \right\rangle \\ &= \frac{1}{2} \left\langle Ax, x \right\rangle - - \left\langle b, x \right\rangle + \frac{1}{2} \left\langle b, x_* \right\rangle \end{split}$$

- A We have thus proved the claim
- Further note that

$$\nabla f(x) = Ax - b = Ax - Ax_* \implies A^{-1}\nabla f(x) = x - x_*$$

♣ Hence it follows that

$$||x - x_*||_A^2 = \langle AA^{-1}\nabla f(x), A^{-1}\nabla f(x)\rangle$$
$$= \langle \nabla f(x), A^{-1}\nabla f(x)\rangle$$

Proposition

Let $f: \mathbb{R}^n \to \mathbb{R}$ be the following quadratic function

$$f(x) := \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle$$
 for $x \in \mathbb{R}^n$,

where A is symmetric positive definite and $b \in \mathbb{R}^n$.

Consider the steepest descent algorithm with exact line searches:

$$x^{(k+1)} = x^{(k)} - \alpha_k \nabla f(x^{(k)})$$
 for $k = 0, 1, 2, ...$

where the step length α_k defined earlier. Then, for k = 0, 1, 2, ...

$$\frac{\left\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}_*\right\|_A^2}{\left\|\boldsymbol{x}^{(k)} - \boldsymbol{x}_*\right\|_A^2} = \left\{1 - \frac{\left\|\nabla f(\boldsymbol{x}^{(k)})\right\|^4}{\left\langle A\nabla f(\boldsymbol{x}^{(k)}), \nabla f(\boldsymbol{x}^{(k)})\right\rangle \left\langle \nabla f(\boldsymbol{x}), A^{-1}\nabla f(\boldsymbol{x})\right\rangle}\right\}$$

♣ Note that

$$\|x^{(k+1)} - x_*\|_A^2 = \left\langle A(x^{(k)} - x_*), x^{(k)} - x_* \right\rangle - 2\alpha_k \left\langle A(x^{(k)} - x_*), \nabla f(x^{(k)}) \right\rangle + \alpha_k^2 \left\langle A\nabla f(x^{(k)}), \nabla f(x^{(k)}) \right\rangle$$

Using the earlier observation that $A(x-x_*) = \nabla f(x)$, we get

$$\|x^{(k+1)} - x_*\|_A^2 = \|x^{(k)} - x_*\|_A^2 - 2\alpha_k \|\nabla f(x^{(k)})\|^2 + \alpha_k^2 \langle A\nabla f(x^{(k)}), \nabla f(x^{(k)}) \rangle$$

 \clubsuit The result follows from using the definition of α_k and the following observation from earlier:

$$||x - x_*||_A^2 = \langle \nabla f(x), A^{-1} \nabla f(x) \rangle$$

A MORE REFINED STATEMENT

 $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ are the strictly positive eigenvalues of A, then

$$\|x^{(k+1)} - x_*\|_A^2 \le \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}\right)^2 \|x^{(k)} - x_*\|_A^2$$

END OF LECTURE 6 THANK YOU FOR YOUR ATTENTION