Devoir à la maison n°20

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

1 On sait que $|\sin'| = |\cos| \le 1$ donc sin est 1-lipschitzienne sur \mathbb{R} . Notamment, pour tout $t \in \mathbb{R}_+$,

$$|\sin t| = |\sin(t) - \sin(0)| \le 1 \cdot |t - 0| = t$$

Soit $x \in \mathbb{R}_+^*$.

Pour tout $t \in \mathbb{R}_+$, $|e^{-tx}\sin(t)| \le e^{-tx}$ et $|e^{-tx}\cos(t)| \le e^{-tx}$. Or $t \mapsto e^{-tx}$ est intégrable sur \mathbb{R}_+ donc $t \mapsto e^{-tx}\sin(t)$ et $t \mapsto e^{-tx}\sin(t)$ également. On en déduit que G(x) et G(x) sont bien définies. D'après la question précédente,

$$\forall t \in \mathbb{R}_+^*, \left| \frac{\sin t}{t} e^{-tx} \right| \le e^{-tx}$$

donc F(x) est définie pour les mêmes raisons que précédemment.

Les fonctions F, G et H sont bien définies sur \mathbb{R}_+^* .

3 Par inégalité triangulaire,

$$\forall x \in \mathbb{R}_+^*, |F(x)| \le \int_0^{+\infty} \left| \frac{\sin(t)}{t} \right| e^{-tx} dt \le \int_0^{+\infty} e^{-tx} dt = \frac{1}{x}$$

On en déduit que $\lim_{x \to +\infty} F(x) = 0$ grâce au théorème des gendarmes.

REMARQUE. On aurait pu utiliser le théorème de convergence dominée.

4 Posons

$$\forall (x,t) \in (\mathbb{R}_+^*)^2, \ f(x,t) = \frac{\sin(t)}{t} e^{-xt}$$

Alors:

- pour tout $x \in \mathbb{R}_+^*$, l'application $t \mapsto f(x,t)$ est continue par morceaux et intégrable sur \mathbb{R}_+^* d'après la question 2;
- pour tout $t \in \mathbb{R}_+^*$, l'application $x \mapsto f(x,t)$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* , et pour tout $(x,t) \in (\mathbb{R}_+^*)^2$:

$$\frac{\partial f}{\partial x}(x,t) = -e^{-xt}\sin(t);$$

- pour tout $x \in \mathbb{R}_+^*$, l'application $t \mapsto \frac{\partial f}{\partial x}(x,t) = -e^{-xt}\sin(t)$ est continue par morceaux sur \mathbb{R}_+^* ;
- pour tout $a \in \mathbb{R}_+^*$, tout $x \in [a, +\infty[$ et tout $t \in \mathbb{R}_+^*$,

$$\left|\frac{\partial f}{\partial x}(x,t)\right| = |\sin(t)|e^{-xt}| \le e^{-at}$$

et l'application $t \mapsto e^{-at}$ est intégrable sur $]0, +\infty[$ car a > 0.

On en déduit que F est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et

$$\forall x \in \mathbb{R}_+^*, \ F'(x) = -\int_0^{+\infty} \sin(t)e^{-xt} \ dt = -G(x)$$

© Laurent Garcin MP Dumont d'Urville

Soit $x \in \mathbb{R}_+^*$.

$$H(x) + iG(x) = \int_0^{+\infty} e^{-tx} (\cos(t) + i\sin(t)) dt = \int_0^{+\infty} e^{(i-x)t} dt = \left[\frac{e^{(i-x)t}}{i-x} \right]_0^{+\infty} = \frac{1}{x-i} = \frac{x}{x^2+1} + \frac{i}{x^2+1}$$

En identifiant partie réelle et imaginaire,

$$H(x) = \frac{x}{x^2 + 1}$$
 et $G(x) = \frac{1}{x^2 + 1}$

Soit $\alpha \in \mathbb{R}_+^*$. Via le changement de variable linéaire $u = \alpha t$, on obtient

$$\int_0^{+\infty} e^{-tx} \cos(\alpha t) dt = \frac{1}{\alpha} \int_0^{+\infty} e^{-\frac{x}{\alpha}u} \cos(u) du = \frac{1}{\alpha} H\left(\frac{x}{\alpha}\right) = \frac{x}{x^2 + \alpha^2}$$

Remarque. Ce chanegemnt de variable justifie a posteriori la convergence de l'intégrale $\int_0^{+\infty} e^{-tx} \cos(\alpha t) dt$.

6 D'après les questions 4 et 5,

$$\forall x \in \mathbb{R}_+^*, \ F'(x) = -\frac{1}{x^2 + 1}$$

Il existe donc $C \in \mathbb{R}$ telle que

$$\forall x \in \mathbb{R}_+^*, \ F(x) = C - \arctan(x)$$

Or, d'après la question 3, $\lim_{x \to +\infty} F(x) = 0$. On en déduit que

$$C = \lim_{+\infty} \arctan = \frac{\pi}{2}$$

Finalement,

$$\forall x \in \mathbb{R}_+^*, \ F(x) = \frac{\pi}{2} - \arctan(x)$$

Notamment, $F(1) = \frac{\pi}{4}$.

7 Soit $t \in \mathbb{R}$. Posons

$$\forall n \in \mathbb{N}, \ u_n = 2^n \sin(t/2^n) \prod_{k=1}^n \cos\left(\frac{t}{2^k}\right)$$

Alors, pour tout $n \in \mathbb{N}$,

$$u_{n+1} = 2^{n+1} \sin(t/2^{n+1}) \prod_{k=1}^{n+1} \cos\left(\frac{t}{2^k}\right)$$

$$= 2^{n+1} \sin(t/2^{n+1}) \cos(t/2^{n+1}) \prod_{k=1}^{n} \cos\left(\frac{t}{2^k}\right)$$

$$= 2^n \sin(2t/2^{n+1}) \prod_{k=1}^{n} \cos\left(\frac{t}{2^k}\right)$$

$$= 2^n \sin(t/2^n) \prod_{k=1}^{n} \cos\left(\frac{t}{2^k}\right)$$

$$= u_n$$

La suite (u_n) est donc constante de sorte que $u_n = u_0 = \sin(t)$ pour tout $n \in \mathbb{N}$. Notamment, pour tout $n \in \mathbb{R}$,

$$2^n \sin(t/2^n) \prod_{k=1}^n \cos\left(\frac{t}{2^k}\right) = \sin(t)$$

Soit t > 0. Notons \mathcal{P}_n l'égalité de l'énoncé. \mathcal{P}_1 est clairement vraie. Supposons \mathcal{P}_n vraie pour un certain $n \in \mathbb{N}^*$. Alors

$$\begin{split} \prod_{k=1}^{n+1} \cos\left(\frac{t}{2^k}\right) &= \frac{1}{2^{n-1}} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2k-1}{2^n}t\right) \cos\left(\frac{t}{2^{n+1}}\right) \\ &= \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \left[\cos\left(\frac{2k-1}{2^n}t + \frac{t}{2^{n+1}}\right) + \cos\left(\frac{2k-1}{2^n}t - \frac{t}{2^{n+1}}\right)\right] \\ &= \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{4k-1}{2^{n+1}}t\right) + \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{4k-3}{2^{n+1}}t\right) \\ &= \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k)-1}{2^{n+1}}t\right) + \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) \\ &= \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k)-1}{2^{n+1}}t\right) + \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) \\ &= \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) + \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) \\ &= \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) + \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) \\ &= \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) + \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) \\ &= \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) + \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) \\ &= \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) + \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) \\ &= \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) + \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) \\ &= \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) + \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) \\ &= \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) + \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) \\ &= \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) + \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) \\ &= \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) + \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) \\ &= \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) + \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) \\ &= \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) + \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) \\ &= \frac{1}{2^n} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2\times(2k-1)}{2^{n+1}}t\right) + \frac{1}{2^n} \sum_{k=1}^{2^{$$

© Laurent Garcin MP Dumont d'Urville

Puisque

$$[\![1,2^n]\!] = \{2k,\ k \in [\![1,2^{n-1}]\!]\} \sqcup \{2k-1,\ k \in [\![1,2^{n-1}]\!]\}$$

On en déduit que

$$\prod_{k=1}^{n+1} \cos\left(\frac{t}{2^k}\right) = \frac{1}{2^n} \sum_{k=1}^{2^n} \cos\left(\frac{2k-1}{2^{n+1}}t\right)$$

Ainsi \mathcal{P}_{n+1} est vraie. On conclut par récurrence

9 D'après les questions précédentes, pour tout $t \in \mathbb{N}$,

$$2^{n}\sin(t/2^{n}) \times \frac{1}{2^{n-1}} \sum_{k=1}^{2^{n}} \cos\left(\frac{2k-1}{2^{n}}t\right) = \sin(t)$$

Fixons, t > 0. Pour n suffisamment grand, $\frac{t}{2^n} \in]0, \pi[$ de sorte que $\sin(t/2^n) > 0$ puis

$$\frac{1}{2^{n-1}} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2k-1}{2^n}t\right) = \frac{\sin(t)}{2^n \sin(t/2^n)}$$

Or $\sin(u) \underset{u\to 0}{\sim} u$ donc $\lim_{n\to +\infty} 2^n \sin(t/2^n) = t$. Ainsi

$$\lim_{n \to +\infty} \frac{1}{2^{n-1}} \sum_{k=1}^{2^{n-1}} \cos\left(\frac{2k-1}{2^n}t\right) = \frac{\sin t}{t}$$

10 Fixons x > 0. On va appliquer le théorème de convergence dominée à la suite (f_n) .

- Pour tout $n \in \mathbb{N}^*$, f_n est continue par morceaux sur \mathbb{R}_+^* .
- La suite (f_n) converge simplement vers la fonction $f: t \mapsto \frac{\sin t}{t} e^{-tx}$ sur \mathbb{R}_+^* .
- f est continue par morceaux sur \mathbb{R}_+^* .
- Pour tout $n \in \mathbb{N}^*$ et tout $t \in \mathbb{R}_+^*$, on obtient par inégalité triangulaire

$$|f_n(t)| \le \frac{1}{2^{n-1}} \sum_{k=1}^{2^{n-1}} \left| \cos \left(\frac{2k-1}{2^n t} \right) \right| e^{-tx} \le \frac{1}{2^{n-1}} \sum_{k=1}^{2^{n-1}} e^{-tx} = e^{-tx}$$

et $t \mapsto e^{-tx}$ est intégrable sur \mathbb{R}_+^* car x > 0.

On en déduit que

$$\lim_{n \to +\infty} \int_0^{+\infty} f_n(t) dt = \int_0^{+\infty} \frac{\sin t}{t} e^{-tx} dt = F(x)$$

Soit $n \in \mathbb{N}^*$. Pour tout $k \in [1, 2^{n-1}]$, $g_k : t \mapsto \cos\left(\frac{2k-1}{2^n}t\right)e^{-tx}$ est intégrable sur \mathbb{R}_+^* puisque $|g_k(t)| \le e^{-tx}$ pour tout $t \in \mathbb{R}_+^*$. On peut donc affirmer par linéarité de l'intégrale que :

$$\int_0^{+\infty} f_n(t) dt = \frac{1}{2^{n-1}} \sum_{k=1}^{2^{n-1}} \int_0^{+\infty} g_k(t) dt = \frac{1}{2^{n-1}} \sum_{k=1}^{2^{n-1}} \int_0^{+\infty} \cos\left(\frac{2k-1}{2^n}t\right) e^{-tx} dt$$

ce qui permet de conclure.

11 D'après la question 6, $F(1) = \frac{\pi}{4}$. Donc, d'après la question précédente :

$$\frac{\pi}{4} = \lim_{n \to +\infty} \frac{1}{2^{n-1}} \sum_{k=1}^{2^{n-1}} \int_{0}^{+\infty} \cos\left(\frac{2k-1}{2^n}t\right) e^{-t} dt$$

D'après la question **5** appliquée à x = 1 et $\alpha = \frac{2k-1}{2^n}$, on obtient :

$$\int_0^{+\infty} \cos\left(\frac{2k-1}{2^n}t\right) e^{-t} dt = \frac{1}{1 + \left(\frac{2k}{2n}\right)^2} = \frac{2^{2n}}{(2k-1)^2 + 2^{2n}}$$

puis

$$\frac{\pi}{4} = \lim_{n \to +\infty} 2^{n+1} \sum_{k=1}^{2^{n-1}} \frac{1}{(2k-1)^2 + 2^{2n}}$$

© Laurent Garcin MP Dumont d'Urville

12 Posons $f(t) = \frac{1}{t^2 + 1}$ pour $t \in [0, 1]$. Alors, pour tout $n \in \mathbb{N}^*$:

$$2^{n+1} \sum_{k=1}^{2^{n-1}} \frac{1}{4k^2 + 2^{2n}} = 2^{n+1} \sum_{k=1}^{2^{n-1}} \frac{1}{2^{2n}} \cdot \frac{1}{\frac{k^2}{2^{2n-2}} + 1} = \frac{1}{2^{n-1}} \sum_{k=1}^{2^{n-1}} \frac{1}{\left(\frac{k}{2^{n-1}}\right)^2 + 1} = \frac{1}{2^{n-1}} \sum_{k=1}^{2^{n-1}} f\left(\frac{k}{2^{n-1}}\right)$$

D'après le théorème sur les sommes de Riemann, comme f est continue sur [0,1],

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_{0}^{1} f(t) dt$$

On en déduit également que

$$\frac{1}{2^{n-1}} \sum_{k=1}^{2^{n-1}} f\left(\frac{k}{2^{n-1}}\right) = \int_0^1 f(t) \, dt = \frac{\pi}{4}$$

13 Soit $k \in [1, 2^{n-1}]$. On a :

$$\left| \frac{1}{4k^2 + 2^{2n}} - \frac{1}{(2k-1)^2 + 2^{2n}} \right| = \left| \frac{((2k-1)^2 + 2^{2n}) - (4k^2 + 2^{2n})}{(4k^2 + 2^{2n})((2k-1)^2 + 2^{2n})} \right|$$

$$= \frac{|-4k+1|}{(4k^2 + 2^{2n})((2k-1)^2 + 2^{2n})}$$

$$\leq \frac{4k+1}{(4k^2 + 2^{2n})((2k-1)^2 + 2^{2n})}.$$

Or $4k + 1 \le 4 \times 2^{n-1} + 1$ et $(2k - 1)^2 \ge 1$ donc

$$\left| \frac{1}{4k^2 + 2^{2n}} - \frac{1}{(2k-1)^2 + 2^{2n}} \right| \le \frac{4 \times 2^{n-1} + 1}{1 + 2^{2n}} \times \frac{1}{4k^2 + 2^{2n}}$$

Soit $n \in \mathbb{N}^*$. Par inégalité triangulaire et à l'aide de la question précéde,

$$\left| 2^{n+1} \sum_{k=1}^{2^{n-1}} \left(\frac{1}{4k^2 + 2^{2n}} - \frac{1}{(2k-1)^2 + 2^{2n}} \right) \right| \le 2^{n+1} \sum_{k=1}^{2^{n-1}} \left| \frac{1}{4k^2 + 2^{2n}} - \frac{1}{(2k-1)^2 + 2^{2n}} \right|$$

$$\le 2^{n+1} \sum_{k=1}^{2^{n-1}} \frac{4 \cdot 2^{n-1} + 1}{(4k^2 + 2^{2n})(1 + 2^{2n})}$$

$$= \frac{(4 \cdot 2^{n-1} + 1)}{1 + 2^{2n}} \cdot 2^{n+1} \sum_{k=1}^{2^{n-1}} \frac{1}{4k^2 + 2^{2n}}.$$

D'après la question 12,

$$\lim_{n \to +\infty} 2^{n+1} \sum_{k=1}^{2^{n-1}} \frac{1}{4k^2 + 2^{2n}} = \frac{\pi}{4}$$

De plus,

$$\frac{\left(4\cdot 2^{n-1}+1\right)}{1+2^{2n}} \underset{n \to +\infty}{\sim} \frac{2^{n+1}}{2^{2n}} = \frac{1}{2^{n-1}}$$

donc $\lim_{n \to +\infty} \frac{(4 \cdot 2^{n-1} + 1)}{1 + 2^{2n}} = 0$ puis

$$\lim_{n \to +\infty} \frac{\left(4 \cdot 2^{n-1} + 1\right)}{1 + 2^{2n}} \cdot 2^{n+1} \sum_{k=1}^{2^{n-1}} \frac{1}{4k^2 + 2^{2n}} = 0$$

On en déduit, avec le théorème des gendarmes, que :

$$\lim_{n \to +\infty} 2^{n+1} \sum_{k=1}^{2^{n-1}} \left(\frac{1}{4k^2 + 2^{2n}} - \frac{1}{(2k-1)^2 + 2^{2n}} \right) = 0$$

Or on sait d'après la question 12 que

$$\lim_{n \to +\infty} 2^{n+1} \sum_{k=1}^{2^{n-1}} \frac{1}{4k^2 + 2^{2n}}$$

On retrouve donc le fait que

$$\lim_{n \to +\infty} 2^{n+1} \sum_{k=1}^{2^{n-1}} \frac{1}{(2k-1)^2 + 2^{2n}} = \frac{\pi}{4}$$