第3回情報数理セミナー @ 茨大、

Minimal compactification of the affine plane with nef cannonical divisors / C. 澤原文(埼玉大)

1 Intro. & Main results

Definition

X: normal compact analy. surface

U

7: irreducible closed curve

 $\mathbb{O}(X,\Gamma)$: minimal (analy.) cpt'n of \mathbb{C}^2 $\Leftrightarrow X \setminus \Gamma \sim \mathbb{C}^2$ bihol

② (X,P): minimal alg. cpt'n of \mathbb{C}^2 $\iff X \setminus P \simeq \mathbb{C}^2$ (alg. var.)

 $\mathfrak{G}(X, \mathcal{P})$: min. cpt'n of \mathbb{C}^2

Fact [Morrow' 73, Fujita '82]

 $\pi: V \longrightarrow X : min. resul.$

D: red exc. div. of T

 $C := \pi_*^{-1}(P)$

Then V: Sm. proj. rat. surf. (s.t.) V \ Supp (C+D) ~ C2 (alg. Var)

Example

 $IP^2 \supseteq \mathcal{L} : proj. line. \longrightarrow (IP^2, \mathcal{L}) : min. alg. cpt'n of <math>\mathbb{C}^2$.

Theorem [Remmont - van de Ven 60]

(X,P): min . cpt'n of C2 (s,t) X: Smooth.

Then $(X,P) = (IP^2, line)$

Fact

 $Cl(X) \otimes_{\mathbb{Z}} O = O[k_X]$ (kx: a commonic div. of X)

In particular, one of the following hold:

(i) $-k_x$: num. ample $\longrightarrow \kappa = -\infty$

 $(\Leftrightarrow (-k_x)^2 > 0 & (-k_x, B) > 0 \text{ for } \forall B : \text{closed curve on } X)$

- (ii) k_x : num. triv. $\longrightarrow \kappa = 0$ ($\Leftrightarrow k_x \equiv 0$)
- (iii) k_x : hum. ample $\longrightarrow \kappa > 0$ ($\kappa = 1$ or 2)

Remark

V: sm. proj. rat. surf.

Then the Kodaira dim of $V = \mathcal{K}(V)$ is $-\infty$.

Question

When does kx become nef?

Fig. (Kx·B)≥0 for ∀B: Curve on X

Theorem [Kojima - Takahashi 109]

(X, P): min. cpt'n of \mathbb{C}^2 . (S.t.) X has at most lc sing.

Then $X : projective (\longrightarrow X : alg.) & -kx : num. ample.$

Main result

(X,P): min. cpt'n of C2.

 $k_x : nef \implies X : non alg .$

(i) alg.	non-alg	(ii) alg.	non-alg.	(ìii) alg.	hon-alg.	
	X	X	×	X	×	高 lc sing
(E)	(?)	×	(≡)	X	(E)	lc 印悪い

2. Proof of Main real+

 (X,Γ) : min cpt'n of \mathbb{C}^2 . (s,t) X has sing's worse than lc sing's.

 $\pi: V \longrightarrow X$: min. resul.

 $D: \text{ red. exc. div. of } \pi, C:= \pi_*^{-1}(\Gamma)$.

Facts [Kojima '01], [Kojima - Takahashi '09]

① # Sing(X)
$$\leq 2$$

$$(S,t.) \cdot V \setminus Supp(C+D) \simeq F_m \setminus (M_mUF)$$

. The dual graph C+D is of the form

Fact

$$\Theta = \sum_{i} \Theta_{i} : irr. decomp.$$

Then
$$\exists i D^{\#} = \sum_{i} d_{i} D_{i}$$
: effective \mathbb{Q} -div. on $V \longrightarrow d_{i} \in \mathbb{Q}_{\geq 0}$.

(S.T.)
$$(D_i \cdot K_V + D^{\#}) = 0$$
 for $\forall D_i : irr. comp. of D$

Remark

$$\left(\left(\begin{array}{cc} \oplus \vdots & \oplus^2 \end{array} \right) \right)^{i\frac{\alpha}{2}} \left(\begin{array}{c} \vdots \\ \vdots \\ \vdots \end{array} \right) = \left(\begin{array}{cc} \vdots \\ \vdots \\ \vdots \\ \vdots \end{array} \right) = \left(\begin{array}{cc} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \right)$$

•
$$m_i := -(D_i)^2 \longrightarrow (D_i \cdot -k_v) = -(m_i-2)$$

$$\frac{2.1}{\text{Claim}} : \text{Case} : | k_x \equiv 0 \quad (\iff (k_x, \text{D}') = 0 \quad \text{for} \quad \forall \text{D}' : \text{divisor})$$

Note that
$$P_{a}(D^{\#}) := \frac{1}{2}(D^{\#} \cdot K_{x} + D^{\#}) + 1 = 1 > 0$$

By [Artin'62], Dan not be alg. contracted.

りが代数的に contraction できるためには、

∀Z: eff. Z-div. with supp(Z) = Supp(D)に対けてPa(Z)≤Oが必要条件.

 \longrightarrow X: non alg:

$$V = V_{\pi}(M_{in})$$

 $(F' \cdot D^{\sharp}) = \sum_{i} d_{i} (F' \cdot D_{i})$

Note
$$K_V + D^\# \equiv \pi^*(K_X) \equiv 0$$
.

$$d_1 = (F' \cdot D^{\#}) = (F' \cdot -k_{V}) = 2 \in \mathbb{Z}.$$

$$\cdot d_2 = (G \cdot D^{\#}) = (G \cdot -k_V) = m+1 \in \mathbb{Z}.$$

Lemma 1

 $\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\partial$

If do, d1, ---, dn & Z, then dn+1 & Z.

(proof)

$$m_0 := -(b_0)^2$$
.

Since $(\theta_0 \cdot k_V + \theta^{\#}) = 0$, $(k_0 - 2) - d_0 m_0 + d_1 + \cdots + d_n + d_{n+1} = 0$: $d_{n+1} \in \mathbb{Z}$.

$$I(*)$$
: intersection matrix of *

$$d(*) := det(-I(*)) \in \mathbb{Z}.$$

Lemma 2

$$gcd(d(A),d(B))=1.$$

(proof)

By [Fujita'82, §3],
$$d(A-QC) = d(E) = 1$$

(a)
$$(d(B)-b)+d(B)\cdot(-a)=1$$
.

$$d_1' + d_2' = (c \cdot D^{\#}) = (c \cdot - k_v) = 1$$

If # Sing(X) = 2, then it follows from ② & Cramer's formula that $d_1' \in \frac{1}{d(A)} \mathbb{Z}$, $d_2' \in \frac{1}{d(B)} \mathbb{Z}$.

$$\sim d_1' \in \frac{1}{d(A)} \mathbb{Z} \cap \frac{1}{d(B)} \mathbb{Z} = \mathbb{Z}.$$

Simillary d' \(Z \).

$$(\pi(B)=a \text{ cyclic quotient sing pt. } F') d_2'<1 \longrightarrow d_1'=1, d_2'=0.)$$

~> ③と同様の議論