Lab 8

Gaining Early Insights from Textual Data

```
In [ ]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import re
        import nltk
        from nltk.corpus import stopwords
        from nltk.stem import WordNetLemmatizer
        from nltk.tokenize import word_tokenize
        from sklearn.feature_extraction.text import CountVectorizer
        from sklearn.feature_extraction.text import TfidfVectorizer
        from sklearn.pipeline import Pipeline
        from sklearn.preprocessing import FunctionTransformer
        # suppress warnings
        import warnings
        warnings.filterwarnings('ignore')
       C:\Users\naumh\AppData\Local\Temp\ipykernel 25272\3073577173.py:1: DeprecationWarning:
       Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),
       (to allow more performant data types, such as the Arrow string type, and better interoperability with other librarie
       s)
       but was not found to be installed on your system.
       If this would cause problems for you,
       please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466
         import pandas as pd
```

Introducing the Dataset

```
In []: # Load some data from UN debates
df = pd.read_csv('https://github.com/blueprints-for-text-analytics-python/blueprints-text/raw/master/data/un-general-
# take a sample of 1000 rows for faster processing
df = df.sample(1000, random_state=42)
df.head()
```

text	position	speaker	country_name	country	year	session		Out[]:
On behalf of our Government and\nin my capacit	South Africa Thabo Mibeki President Mr Tula Da When I first \ haddresse		ZAF	1999	54	4456		
When I first \naddressed the Assembly from thi			Brazil	BRA	2006	61	5603	
This\nsession is taking place at a time when	Minister for Foreign Affairs	Abdelaziz Belkhadem	Algeria	DZA	2001	56	4685	
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	NaN	Quintana	Nicaragua	NIC	1978	33	1055	
Allow me at the outset to\ncongratulate the P	Minister for Foreign Affairs	Anatoliy M. Zlenko	Ukraine	UKR	2001	56	4812	

Calculating Summary Statistics for Columns

```
In []: # create a new column with the length of the text
df['length'] = df['text'].str.len()

# Describe gives summarry statistics (can pass in list-like of dtypes for filtering)
# use the transpose to get a better visual view
df.describe(include='all').T
```

Out[]:		count	unique	top	freq	mean	std	min	25%	50%	75%	max
	session	1000.0	NaN	NaN	NaN	48.95	12.888895	25.0	38.0	50.0	60.0	70.0
	year	1000.0	NaN	NaN	NaN	1993.95	12.888895	1970.0	1983.0	1995.0	2005.0	2015.0
	country	1000	195	GHA	14	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	country_name	1000	195	Ghana	14	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	speaker	998	946	Haile Weldensae	4	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	position	576	32	Minister for Foreign Affairs	226	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	text	1000	1000	On behalf of our Government and\nin my capacit	1	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	length	1000.0	NaN	NaN	NaN	18274.424	7618.119264	3534.0	12426.5	16727.5	23001.25	54633.0

In []: # use describe(include='0') to describe the object (in this case string) columns
 df.describe(include='0').T

Out[]:		count	unique	top	freq
	country	1000	195	GHA	14
	country_name	1000	195	Ghana	14
	speaker	998	946	Haile Weldensae	4
	position	576	32	Minister for Foreign Affairs	226
	text	1000	1000	On behalf of our Government and\nin my capacit	1

Out[]:		count	mean	std	min	25%	50%	75%	max
	session	1000.0	48.950	12.888895	25.0	38.0	50.0	60.00	70.0
	year	1000.0	1993.950	12.888895	1970.0	1983.0	1995.0	2005.00	2015.0
	length	1000.0	18274.424	7618.119264	3534.0	12426.5	16727.5	23001.25	54633.0

Checking for Missing Data

```
In [ ]: # find the number of na values in each column
        df.isna().sum()
Out[]: session
        year
        country
        country_name
         speaker
         position
                        424
        text
        length
        dtype: int64
In []: # fill the na values in the speaker column with 'unknown'
        df['speaker'].fillna('unknown', inplace=True)
In [ ]: # find the number of speakers that contain the subword 'Bush'
        df[df['speaker'].str.contains('Bush')]['speaker'].value_counts()
Out[]: speaker
        Mr. George W Bush
        George Bush
        Name: count, dtype: int64
```

Visualizing Developments over Time

```
In [ ]: # Group by year and count the number of unique countries
countries_per_year = df.groupby('year')['country'].nunique()
```

```
# Plot the number of countries per year
countries_per_year.plot(kind='line')

# Setting the titles and labels
plt.title('Number of Countries per Year')
plt.xlabel('Year')
plt.ylabel('Number of Countries')
```

Out[]: Text(0, 0.5, 'Number of Countries')

Number of Countries per Year


```
In [ ]: # Can use groupby objects to take advantage of built in aggregation function
df.groupby('year').agg({'length': 'mean'}).plot(title="Avg. Speech Length")
```

Out[]: <Axes: title={'center': 'Avg. Speech Length'}, xlabel='year'>

Building a Simple Text Preprocessing Pipeline

Tokenization with Regular Expressions

```
In [ ]: import regex as re

def tokenize(text):
    return re.findall(r'[\w-]*\p{L}[\w-]*', text)

text = "Let's defeat SARS-CoV-2 together in 2020!"
```

```
tokens = tokenize(text)
print("|".join(tokens))
```

Let|s|defeat|SARS-CoV-2|together|in

Let's break down the regular expression $[\w-]\p{L}[\w-]$:

[\w-]*: This segment is looking for zero or more (*) occurrences of a "word" character (\w) or a hyphen (-). A "word" character in regex terms includes the set of [a-zA-Z0-9_]. So it will match any alphanumeric (letters and numbers) and underscore characters, as well as hyphens, in any quantity—including none.

\p{L}: This segment stands for any kind of letter from any language. \p{} is a Unicode property escape, and L stands for letter. It will match a single character that is a letter.

[\w-]*: This is the same as the first segment. It's looking for zero or more word characters or hyphens.

So, put all together, [\w-]\p{L}[\w-] will match any string that has at least one letter (from any language) that can be surrounded by any number (including zero) of alphanumeric characters, underscores, or hyphens. This pattern allows the letter to appear anywhere within the string.

```
In [ ]: def lower_text(text):
    return text.lower()
```

Removing Stop Words

```
In [ ]: import nltk
    nltk.download('stopwords')

stopwords = set(nltk.corpus.stopwords.words('english'))

include_stopwords = {'dear', 'regards', 'must', 'would', 'also'}
    exclude_stopwords = {'against'}

stopwords |= include_stopwords
    stopwords -= exclude_stopwords
```

Processing a Pipeline with one Line of Code

```
In [ ]: to lower transformer = FunctionTransformer(lower text)
        tokenizer transformer = FunctionTransformer(tokenize)
        remove_stop_transformer = FunctionTransformer(remove stop)
        # Build the pipeline
        pipeline sk = Pipeline([
            ('lower_text', to_lower_transformer),
            ('tokenizer', tokenizer transformer),
            ('remove stop', remove stop transformer)
        ])
        # Now you can fit and transform text with the pipeline
        prepared_text = pipeline_sk.fit_transform('This is a sample text')
        print(prepared_text)
       ['sample', 'text']
In [ ]: # We can now tokenize the text in our dataset using a single line of code
        df['tokens'] = df['text'].apply(pipeline sk.fit transform)
        df['num tokens'] = df['tokens'].map(len)
        df.head()
```

Out[]:		session	year	country	country_name	speaker	position	text	length	toke
	4456	54	1999	ZAF	South Africa	Thabo Mbeki	President	On behalf of our Government and\nin my capacit	14384	[beh governme capac chair, nc ali
	5603	61	2006	BRA	Brazil	Mr. Lula Da Silva	President	When I first \naddressed the Assembly from thi	12120	[fii addressi assemk rostru stresse
	4685	56	2001	DZA	Algeria	Abdelaziz Belkhadem	Minister for Foreign Affairs	This\nsession is taking place at a time when	13995	[session taking, plastime, ne internation
	1055	33	1978	NIC	Nicaragua	Quintana	NaN	$\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n$	13973	[pleasu conv beha governme behal
	4812	56	2001	UKR	Ukraine	Anatoliy M. Zlenko	Minister for Foreign Affairs	Allow me at the outset to\ncongratulate the P	11672	[allc outs congratula preside gene
	4									•

Creating Word Clouds

```
In []: from wordcloud import WordCloud

# Compute TF-IDF values
vectorizer = TfidfVectorizer(stop_words='english')
tfidf_matrix = vectorizer.fit_transform(df['text'])
feature_names = vectorizer.get_feature_names_out()
```

```
# Compute total TF-IDF weights for each term in a more memory-efficient way
weights = tfidf_matrix.sum(axis=0).A1

# Build a dictionary where keys are terms and values are weights
tfidf_dict = dict(zip(feature_names, weights))

# Create and display the word cloud
wordcloud = WordCloud().generate_from_frequencies(tfidf_dict)

plt.figure()
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.show()
```


Filtering our word clouds

```
In [ ]: from wordcloud import WordCloud

# Compute TF-IDF values
vectorizer = TfidfVectorizer(stop_words='english')

# We can do some filtering here on what text we pass in
tfidf_matrix = vectorizer.fit_transform(df.loc[(df['year'] == 2000) & (df['country'] == 'USA'))['text'])
```

```
feature_names = vectorizer.get_feature_names_out()
# Compute total TF-IDF weights for each term in a more memory-efficient way
weights = tfidf_matrix.sum(axis=0).A1
# Build a dictionary where keys are terms and values are weights
tfidf_dict = dict(zip(feature_names, weights))
# We can filter out the popular terms from our dictionary like so
sorted_tfidf = sorted(tfidf_dict.items(), key=lambda x:x[1], reverse=True)
# There are more efficient ways to do this by filtering first but here our data set is small so it's fine
remove\_top = 20
converted_dict = dict(sorted_tfidf[remove_top:])
# Create and display the word cloud
wordcloud = WordCloud().generate_from_frequencies(converted_dict)
plt.figure()
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.show()
```


Creating Frequency Timelines

```
In [ ]: # The Counter function takes an iterable (like a list or a string) as an argument and returns
        # a dictionary-like object where the keys are the unique elements in the iterable,
        # and the values are their respective counts.
        # The elements in the iterable can be any hashable Python object.
        from collections import Counter
        tokens = tokenize("She likes my cats and my cats like my sofa.")
        counter = Counter(tokens)
        print(counter)
       Counter({'my': 3, 'cats': 2, 'She': 1, 'likes': 1, 'and': 1, 'like': 1, 'sofa': 1})
In [ ]: # We want to count the occurrences of certain keywords
        def count_keywords(tokens, keywords):
            # Here we are taking advantage of list comprehensions
            tokens = [t for t in tokens if t in keywords]
            counter = Counter(tokens)
            return [counter.get(k, 0) for k in keywords]
In [ ]: # This is a helper function that we can use to create a df using our count keywords function
        def count keywords by(df, by, keywords, column='tokens'):
            df = df.reset index(drop=True) # if the supplied dataframe has gaps in the index
            freq matrix = df[column].apply(count keywords, keywords=keywords)
            freq df = pd.DataFrame.from records(freq matrix, columns=keywords)
            freq df[by] = df[by] # copy the grouping column(s)
            return freq df.groupby(by=by).sum().sort values(by)
        keywords = ['nuclear', 'terrorism', 'climate', 'freedom', 'war']
        freq_df = count_keywords_by(df, by='year', keywords=keywords)
In [ ]: freq_df.plot(kind='line', figsize=(8, 3))
```

Out[]: <Axes: xlabel='year'>

3/15/24, 2:40 PM

Student Section

Create a filtered word cloud for Canadian (CAN) speeches from 2006 where you remove the top 10 words

```
In []: from wordcloud import WordCloud

# Compute TF-IDF values
vectorizer = TfidfVectorizer(stop_words='english')

# We can do some filtering here on what text we pass in
tfidf_matrix = vectorizer.fit_transform(df.loc[(df['year'] == 2006) & (df['country'] == 'CAN')]['text'])

feature_names = vectorizer.get_feature_names_out()

# Compute total TF-IDF weights for each term in a more memory-efficient way
weights = tfidf_matrix.sum(axis=0).A1

# Build a dictionary where keys are terms and values are weights
tfidf_dict = dict(zip(feature_names, weights))
```

```
# We can filter out the popular terms from our dictionary like so
sorted_tfidf = sorted(tfidf_dict.items(), key=lambda x:x[1], reverse=True)

# There are more efficient ways to do this by filtering first but here our data set is small so it's fine
remove_top = 20
converted_dict = dict(sorted_tfidf[remove_top:])

# Create and display the word cloud
wordcloud = WordCloud().generate_from_frequencies(converted_dict)

plt.figure()
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.show()
```


Create a frequency timeline for the following keywords = ['war', 'peace', 'military', 'civilian']

```
In [ ]: from collections import Counter

keywords = ['war','peace','military','civilian']
freq_df = count_keywords_by(df, by='year', keywords=keywords)
freq_df.plot(kind='line', figsize=(8, 3))
```

Out[]: <Axes: xlabel='year'>

