Detection and Mitigation of Corrupted Information in Distributed Model Predictive Control Based on Resource Allocation

R. A. Nogueira R. Bourdais H. Guéguen {rafael-accacio.nogueira, romain.bourdais, herve.gueguen} at centralesupelec.fr

AUT Department IETR — CentraleSupélec

5th International Conference on Control and Fault-Tolerant Systems, 2021

https://git.io/JEFGW

Smart City

- Energy Distribution System
- Traffic management
- Heat distribution
- Water distribution

Smart City

- Energy Distribution System
- Traffic management
- Heat distribution
- Water distribution

Smart City

- Energy Distribution System
- Traffic management
- Heat distribution
- Water distribution

Smart City

- Energy Distribution System
- Traffic management
- Heat distribution
- Water distribution

- Geographically distributed
- Coupled by constraints (energy)
- Optimization objectives
 - Energy
 - User satisfaction
 - . . .
- Solution → Model Predictive Control

- Geographically distributed
- Coupled by constraints (energy)
- Optimization objectives
 - Energy
 - User satisfaction
 - . . .
- ullet Solution o Model Predictive Control

- Geographically distributed
- Coupled by constraints (energy)
- Optimization objectives
 - Energy
 - User satisfaction
 - ..
- Solution → Model Predictive Control

- Geographically distributed
- Coupled by constraints (energy)
- Optimization objectives
 - Energy
 - User satisfaction
 - . . .
- Solution \rightarrow Model Predictive Control

optimize
$$u(k:k+N_p-1|k)$$
subject to
$$\begin{aligned} & J(\boldsymbol{x}(k),\boldsymbol{u}(k)) \\ & \boldsymbol{x}(\xi+1) = f(\boldsymbol{x}(\xi),\boldsymbol{u}(\xi)) \\ & g_i(\boldsymbol{x}(\xi),\boldsymbol{u}(\xi)) \leq 0 \\ & h_j(\boldsymbol{x}(\xi),\boldsymbol{u}(\xi)) = 0 \end{aligned} \end{aligned} \begin{cases} \forall \xi \in \{1,\ldots,N_p\} \\ \forall i \in \{1,\ldots,m\} \\ \forall j \in \{1,\ldots,p\} \end{cases}$$

optimize
$$u(k:k+N_p-1|k)$$
subject to
$$\begin{cases} \mathbf{J}(\mathbf{x}(k), \mathbf{u}(k)) \\ \mathbf{x}(\xi+1) = f(\mathbf{x}(\xi), \mathbf{u}(\xi)) \\ g_i(\mathbf{x}(\xi), \mathbf{u}(\xi)) \le 0 \\ h_j(\mathbf{x}(\xi), \mathbf{u}(\xi)) = 0 \end{cases} \forall \xi \in \{1, \dots, N_p\}$$

$$\forall i \in \{1, \dots, m\}$$

$$\forall j \in \{1, \dots, p\}$$

optimize
$$u(k:k+N_p-1|k)$$
subject to
$$\begin{aligned} & J(\boldsymbol{x}(k),\boldsymbol{u}(k)) \\ & \boldsymbol{x}(\xi+1) = f(\boldsymbol{x}(\xi),\boldsymbol{u}(\xi)) \\ & g_i(\boldsymbol{x}(\xi),\boldsymbol{u}(\xi)) \leq 0 \\ & h_j(\boldsymbol{x}(\xi),\boldsymbol{u}(\xi)) = 0 \end{aligned} \end{aligned} \begin{cases} \forall \xi \in \{1,\ldots,N_p\} \\ \forall i \in \{1,\ldots,m\} \\ \forall j \in \{1,\ldots,p\} \end{cases}$$

optimize
$$u(k:k+N_p-1|k)$$
subject to
$$\begin{cases} \boldsymbol{x}(\boldsymbol{\xi}+\boldsymbol{1}) = \boldsymbol{f}(\boldsymbol{x}(\boldsymbol{\xi}),\boldsymbol{u}(\boldsymbol{\xi})) \\ g_i(\boldsymbol{x}(\boldsymbol{\xi}),\boldsymbol{u}(\boldsymbol{\xi})) \leq 0 \\ h_j(\boldsymbol{x}(\boldsymbol{\xi}),\boldsymbol{u}(\boldsymbol{\xi})) = 0 \end{cases} \forall \boldsymbol{\xi} \in \{1,\ldots,N_p\}$$

optimize
$$u(k:k+N_p-1|k)$$

$$subject to$$

$$x(\xi+1) = f(x(\xi), u(\xi))$$

$$g_i(x(\xi), u(\xi)) \le 0$$

$$h_j(x(\xi), u(\xi)) = 0$$

$$\forall \xi \in \{1, \dots, N_p\}$$

$$\forall i \in \{1, \dots, m\}$$

$$\forall j \in \{1, \dots, p\}$$

$$\begin{array}{ll} \underset{\boldsymbol{u}(k:k+N_p-1|k)}{\text{minimize}} & \sum_{j=1}^{N_p} \|\boldsymbol{v}(k+j|k)\|_Q^2 + \|\boldsymbol{u}(k+j-1|k)\|_R^2 \\ \text{subject to} & \boldsymbol{x}(\xi+1) = f(\boldsymbol{x}(\xi),\boldsymbol{u}(\xi)) \\ & g_i(\boldsymbol{x}(\xi),\boldsymbol{u}(\xi)) \leq 0 \\ & h_j(\boldsymbol{x}(\xi),\boldsymbol{u}(\xi)) = 0 \end{array} \right\} \stackrel{\forall \xi \in \{1,\ldots,N_p\}}{\forall i \in \{1,\ldots,p\}}$$

Find optimal control sequence

Find optimal control sequence, apply first element

Find optimal control sequence, apply first element, rinse repeat

Find optimal control sequence, apply first element, rinse repeat ightarrow Receding Horizon

- ullet Problem: Complexity depends on N_p, m, p and sizes of $oldsymbol{x}$ and $oldsymbol{u}$
- Solution: Divide and Conquer

MPC

- Problem: Complexity depends on N_p, m, p and sizes of x and u
- Solution: Divide and Conquer

$$\underbrace{\frac{J_G(k)}{J_i(k)}}_{U_i(k:k+N_p-1|k)} = \underbrace{\sum_{i=1}^{M} \sum_{j=1}^{N_p} \|\boldsymbol{v}_i(k+j|k)\|_{Q_i}^2 + \|\boldsymbol{u}_i(k+j-1|k)\|_{R_i}^2}_{Subject to} \times \underbrace{\boldsymbol{x}_i(k+1) = A_i\boldsymbol{x}_i(k) + B_i\boldsymbol{u}_i(k)}_{\sum_{i=1}^{M} \Gamma_i\boldsymbol{u}_i(k) = \boldsymbol{u}_{\max}} \forall i \in \{1,\dots,M\}$$

$$J_{i}^{\star}(\boldsymbol{\theta}_{i}(k)) = \underset{\boldsymbol{u}_{i}(k:k+N_{p}-1|k)}{\operatorname{minimize}} J_{i}(k)$$
s.t. $\boldsymbol{x}_{i}(k+1) = A_{i}\boldsymbol{x}_{i}(k) + B_{i}\boldsymbol{u}_{i}(k)$

$$\Gamma_{i}\boldsymbol{u}_{i}(k) = \boldsymbol{\theta}_{i}(k) : \boldsymbol{\lambda}_{i}(k)$$

$$\forall i \in \{1, \dots, M\}$$

$$\forall j \in \{1, \dots, N_{p}\}$$

$$J^* = \underset{\boldsymbol{\theta}(k:k+N_p-1|k)}{\text{minimize}} \sum_{i=1}^{M} J_i^*(\boldsymbol{\theta}_i(k))$$

s.t. $\sum_{i=1}^{M} \boldsymbol{\theta}_i(k) = \boldsymbol{u}_{\text{max}}$

$$J_i^{\star}(\boldsymbol{\theta}_i(k)) = \underset{\boldsymbol{u}_i(k:k+N_p-1|k)}{\operatorname{minimize}} J_i(k)$$
 s.t.
$$\boldsymbol{x}_i(k+1) = A_i \boldsymbol{x}_i(k) + B_i \boldsymbol{u}_i(k)$$

$$\forall i \in \{1, \dots, M\}$$

$$\forall j \in \{1, \dots, N_p\}$$

$$\boldsymbol{\theta}_i^{(p+1)} = \boldsymbol{\theta}_i^{(p)} + \rho \left(\boldsymbol{\lambda}_i^{\star}(\boldsymbol{\theta}_i^{(p)}) - \frac{1}{M} \sum_{j=1}^{M} \boldsymbol{\lambda}_j^{\star}(\boldsymbol{\theta}_j^{(p)}) \right)$$

$$J_{i}^{\star}(\boldsymbol{\theta}_{i}(k)) = \underset{\boldsymbol{u}_{i}(k:k+N_{p-1}|k)}{\operatorname{minimize}} J_{i}(k)$$
s.t. $\boldsymbol{x}_{i}(k+1) = A_{i}\boldsymbol{x}_{i}(k) + B_{i}\boldsymbol{u}_{i}(k)$

$$\Gamma_{i}\boldsymbol{u}_{i}(k) = \boldsymbol{\theta}_{i}(k) : \boldsymbol{\lambda}_{i}(k)$$

$$\forall i \in \{1, \dots, M\}$$

$$\boldsymbol{\theta}_i^{(p+1)} = \boldsymbol{\theta}_i^{(p)} + \rho \left(\boldsymbol{\lambda}_i^{\star}(\boldsymbol{\theta}_i^{(p)}) - \frac{1}{M} \sum_{j=1}^{M} \boldsymbol{\lambda}_j^{\star}(\boldsymbol{\theta}_j^{(p)}) \right)$$

Figure 1: Quantity decomposition based DMPC

Figure 1: Quantity decomposition based DMPC

Figure 1: Quantity decomposition based DMPC

Figure 1: Quantity decomposition based DMPC

Figure 1: Quantity decomposition based DMPC

Figure 1: Quantity decomposition based DMPC

Figure 1: Quantity decomposition based DMPC

What if agents send a non-agreed λ_i ?

Outline

- Vulnerabilities in distributed MPC based on Resource Allocation Attacks Consequences
- Securing the DMPC
 Analysis of Subproblems
 Detection Mechanism
 Mitigation Mechanism
 Complete Mechanism
- 3 Results

Outline

- Vulnerabilities in distributed MPC based on Resource Allocation Attacks Consequences
- Securing the DMPC
 Analysis of Subproblems
 Detection Mechanism
 Mitigation Mechanism
 Complete Mechanism
- 3 Results

How can a non-cooperative agent attack?

- ullet $oldsymbol{\lambda}_i$ is the only interface with coordination
- Non-cooperative agent sends $\tilde{oldsymbol{\lambda}}_i = \gamma_i(oldsymbol{\lambda}_i)$

How can a non-cooperative agent attack?

- λ_i is the only interface with coordination
- ullet Non-cooperative agent sends $ilde{oldsymbol{\lambda}}_i = \gamma_i(oldsymbol{\lambda}_i)$

- Agent 1 is non-cooperative
- It uses $\tilde{\lambda}_1 = \gamma_1(\lambda_1) = \tau_1 I \lambda_1$

- Agent 1 is non-cooperative
- It uses $\tilde{\boldsymbol{\lambda}}_1 = \gamma_1(\boldsymbol{\lambda}_1) = \tau_1 I \boldsymbol{\lambda}_1$

- Agent 1 is non-cooperative
- It uses $\tilde{\boldsymbol{\lambda}}_1 = \gamma_1(\boldsymbol{\lambda}_1) = \tau_1 I \boldsymbol{\lambda}_1$

- Agent 1 is non-cooperative
- It uses $\tilde{\boldsymbol{\lambda}}_1 = \gamma_1(\boldsymbol{\lambda}_1) = \tau_1 I \boldsymbol{\lambda}_1$

- Agent 1 is non-cooperative
- It uses $\tilde{\boldsymbol{\lambda}}_1 = \gamma_1(\boldsymbol{\lambda}_1) = \tau_1 I \boldsymbol{\lambda}_1$

Make Titles Informative.

Outline

- Vulnerabilities in distributed MPC based on Resource Allocation Attacks
 Consequences
- Securing the DMPC
 Analysis of Subproblems
 Detection Mechanism
 Mitigation Mechanism
 Complete Mechanism
- 3 Results

$$\underbrace{\frac{J_i(k)}{\mathbf{u}_i(k:k+N_p-1|k)}}_{\mathbf{u}_i(k:k+N_p-1|k)} \underbrace{\sum_{j=1}^{N_p} \|\mathbf{v}_i(k+j|k)\|_{Q_i}^2 + \|\mathbf{u}_i(k+j-1|k)\|_{R_i}^2}_{\text{S.t.}}$$
s.t.
$$\underbrace{\mathbf{x}_i(\xi+1) = A_i\mathbf{x}_i(\xi) + B_i\mathbf{u}_i(\xi)}_{\Gamma_i\mathbf{u}_i(\xi) = \boldsymbol{\theta}_i(\xi) : \boldsymbol{\lambda}_i(\xi)} \forall \xi \in \{1, \dots, N_p\}$$

minimize
$$\frac{J_i(\boldsymbol{\theta}_i)}{\frac{1}{2}\boldsymbol{U}_i(k)^T H_i \boldsymbol{U}_i(k) + \boldsymbol{f}_i(k)^T \boldsymbol{U}_i(k)}$$
s.t. $\Theta_i \boldsymbol{U}_i(k) = \boldsymbol{\theta}_i : \boldsymbol{\lambda}_i$

minimize
$$\frac{J_i(\boldsymbol{\theta}_i)}{\frac{1}{2}\boldsymbol{U}_i(k)^T\boldsymbol{H}_i\boldsymbol{U}_i(k) + \boldsymbol{f}_i(k)^T\boldsymbol{U}_i(k)}$$
s.t. $\Theta_i\boldsymbol{U}_i(k) = \boldsymbol{\theta}_i: \boldsymbol{\lambda}_i$

minimize
$$\frac{J_i(\boldsymbol{\theta}_i)}{\frac{1}{2}\boldsymbol{U}_i(k)^T H_i \boldsymbol{U}_i(k) + \boldsymbol{f_i(k)}^T \boldsymbol{U}_i(k)}$$
s.t.
$$\Theta_i \boldsymbol{U}_i(k) = \boldsymbol{\theta}_i : \boldsymbol{\lambda}_i$$

minimize
$$\frac{J_{i}(\boldsymbol{\theta}_{i})}{\frac{1}{2}\boldsymbol{U}_{i}(k)^{T}H_{i}\boldsymbol{U}_{i}(k) + \boldsymbol{f}_{i}(k)^{T}\boldsymbol{U}_{i}(k)}$$
s.t.
$$\Theta_{i}\boldsymbol{U}_{i}(k) = \boldsymbol{\theta}_{i}: \boldsymbol{\lambda}_{i}$$

$$\begin{aligned} & \underbrace{\frac{J_i(\boldsymbol{\theta}_i)}{2} \boldsymbol{U}_i(k)}^{} & \underbrace{\frac{1}{2} \boldsymbol{U}_i(k)^T H_i \boldsymbol{U}_i(k) + \boldsymbol{f}_i(k)^T \boldsymbol{U}_i(k)}_{\text{S.t.}} \\ & \text{S.t.} & \boldsymbol{\Theta}_i \boldsymbol{U}_i(k) = \boldsymbol{\theta}_i : \boldsymbol{\lambda}_i \\ & \boldsymbol{\lambda}_i = -P_i \boldsymbol{\theta}_i - \boldsymbol{s}_i(k) \end{aligned}$$
 where $P_i = \left(\boldsymbol{\Theta}_i H_i^{-1} \boldsymbol{\Theta}_i^{\mathrm{T}}\right)^{-1}$ and $\boldsymbol{s}_i(k) = P_i \boldsymbol{\Theta}_i H_i^{-1} \boldsymbol{f}_i(k)$

$$\begin{aligned} & \underset{\boldsymbol{U}_{i}(k)}{\text{minimize}} & & \overbrace{\frac{1}{2}\boldsymbol{U}_{i}(k)^{T}H_{i}\boldsymbol{U}_{i}(k) + \boldsymbol{f}_{i}(k)^{T}\boldsymbol{U}_{i}(k)} \\ & \text{s.t.} & & \boldsymbol{\Theta}_{i}\boldsymbol{U}_{i}(k) = \boldsymbol{\theta}_{i}:\boldsymbol{\lambda}_{i} \\ & & \boldsymbol{\lambda}_{i} = -\underline{\boldsymbol{P}_{i}}\boldsymbol{\theta}_{i} - \boldsymbol{s}_{i}(k) \\ & \text{where } \underline{\boldsymbol{P}_{i}} = \left(\boldsymbol{\Theta}_{i}\boldsymbol{H}_{i}^{-1}\boldsymbol{\Theta}_{i}^{\mathrm{T}}\right)^{-1} \text{ and } \boldsymbol{s}_{i}(k) = P_{i}\boldsymbol{\Theta}_{i}\boldsymbol{H}_{i}^{-1}\boldsymbol{f}_{i}(k) \end{aligned}$$

$$\begin{aligned} & \underset{\boldsymbol{U}_{i}(k)}{\text{minimize}} & & \overbrace{\frac{1}{2}\boldsymbol{U}_{i}(k)^{T}H_{i}\boldsymbol{U}_{i}(k) + \boldsymbol{f}_{i}(k)^{T}\boldsymbol{U}_{i}(k)} \\ & \text{s.t.} & & \boldsymbol{\Theta}_{i}\boldsymbol{U}_{i}(k) = \boldsymbol{\theta}_{i}:\boldsymbol{\lambda}_{i} \\ & & \boldsymbol{\lambda}_{i} = -P_{i}\boldsymbol{\theta}_{i} - \boldsymbol{s}_{i}(k) \\ \end{aligned}$$
 where $P_{i} = \left(\boldsymbol{\Theta}_{i}\boldsymbol{H}_{i}^{-1}\boldsymbol{\Theta}_{i}^{\mathrm{T}}\right)^{-1}$ and $\boldsymbol{s}_{i}(k) = P_{i}\boldsymbol{\Theta}_{i}\boldsymbol{H}_{i}^{-1}\boldsymbol{f}_{i}(k)$

Assumption

We know nominal \bar{P}_i

Assumption

Attacker chooses
$$ilde{m{\lambda}}_i = \gamma_i(m{\lambda}_i) = T_i(k)m{\lambda}_i o -T_i(k)P_im{ heta}_i - T_i(k)m{s}_i(k)$$

• We can estimate \hat{P}_i and $\hat{\tilde{s}}_i(k)$ such as:

$$\widetilde{\boldsymbol{\lambda}}_i = \gamma_i(\boldsymbol{\lambda}_i(\boldsymbol{\theta}_i)) = -\widehat{\tilde{P}}_i(k)\boldsymbol{\theta}_i - \widehat{\tilde{\boldsymbol{s}}}_i(k)$$

• If
$$\widehat{\tilde{P}}_i(k) \neq \bar{P}_i \to \mathsf{Attack}$$

CentraleSupélec

¹ Ising Recursive Least Squares

Assumption

We know nominal \bar{P}_i

Assumption

Attacker chooses
$$\tilde{\boldsymbol{\lambda}}_i = \gamma_i(\boldsymbol{\lambda}_i) = T_i(k)\boldsymbol{\lambda}_i \to -T_i(k)P_i\boldsymbol{\theta}_i - T_i(k)\boldsymbol{s}_i(k)$$

• We can estimate \hat{P}_i and $\hat{s}_i(k)$ such as:

$$\widetilde{\boldsymbol{\lambda}}_i = \gamma_i(\boldsymbol{\lambda}_i(\boldsymbol{\theta}_i)) = -\widehat{\widetilde{P}}_i(k)\boldsymbol{\theta}_i - \widehat{\widetilde{\boldsymbol{s}}}_i(k)$$

• If
$$\widehat{\tilde{P}}_i(k) \neq \bar{P}_i \to \mathsf{Attack}$$

CentraleSupélec

Assumption

We know nominal \bar{P}_i

Assumption

Attacker chooses
$$\tilde{\boldsymbol{\lambda}}_i = \gamma_i(\boldsymbol{\lambda}_i) = T_i(k)\boldsymbol{\lambda}_i \to -T_i(k)P_i\boldsymbol{\theta}_i - T_i(k)\boldsymbol{s}_i(k)$$

• We can estimate \hat{P}_i and $\hat{\tilde{s}}_i(k)$ such as:

$$\widetilde{\boldsymbol{\lambda}}_i = \gamma_i(\boldsymbol{\lambda}_i(\boldsymbol{\theta}_i)) = -\widehat{\tilde{P}}_i(k)\boldsymbol{\theta}_i - \widehat{\tilde{\boldsymbol{s}}}_i(k)$$

• If
$$\widehat{\tilde{P}}_i(k) \neq \bar{P}_i \to \mathsf{Attack}$$

¹Using Recursive Least Squares

Assumption

We know nominal \bar{P}_i

Assumption

Attacker chooses
$$\tilde{\boldsymbol{\lambda}}_i = \gamma_i(\boldsymbol{\lambda}_i) = T_i(k)\boldsymbol{\lambda}_i \to -T_i(k)P_i\boldsymbol{\theta}_i - T_i(k)\boldsymbol{s}_i(k)$$

• We can estimate \hat{P}_i and $\hat{\tilde{s}}_i(k)$ such as:

$$\widetilde{\boldsymbol{\lambda}}_i = \gamma_i(\boldsymbol{\lambda}_i(\boldsymbol{\theta}_i)) = -\widehat{\tilde{P}}_i(k)\boldsymbol{\theta}_i - \widehat{\tilde{\boldsymbol{s}}}_i(k)$$

• If
$$\widehat{\tilde{P}}_i(k) \neq \bar{P}_i \to \mathsf{Attack}$$

¹Using Recursive Least Squares

- ullet We estimate \hat{P}_i and $\widehat{ ilde{s}}_i(k)$ simultaneously using Recursive Least Squares
- Problem: Estimation during negotiation fails
 - Consecutive λ_i^p and θ_i^p are linearly dependent \to low input excitation
- Solution: Send sequence of random values of θ_i until estimates converge

- ullet We estimate \hat{P}_i and $\hat{ ilde{s}}_i(k)$ simultaneously using Recursive Least Squares
- Problem: Estimation during negotiation fails
 - Consecutive λ_i^p and θ_i^p are linearly dependent \to low input excitation
- Solution: Send sequence of random values of θ_i until estimates converge

- ullet We estimate \hat{P}_i and $\hat{ ilde{s}}_i(k)$ simultaneously using Recursive Least Squares
- Problem: Estimation during negotiation fails
 - Consecutive λ_i^p and θ_i^p are linearly dependent o low input excitation
- Solution: Send sequence of random values of θ_i until estimates converge

- ullet We estimate \hat{P}_i and $\hat{ ilde{s}}_i(k)$ simultaneously using Recursive Least Squares
- Problem: Estimation during negotiation fails
 - Consecutive λ_i^p and θ_i^p are linearly dependent o low input excitation
- Solution: Send sequence of random values of θ_i until estimates converge

- Error $E_i(k) = \|\widehat{\tilde{P}}_i(k) \bar{P}_i\|_F$
- ullet Create threshold ϵ_P
- Indicator $d_i \in \{0,1\}$ detects the attack in agent i.
- $d_i = 1$ if $E_i(k) > \epsilon_P$, 0 otherwise

- Error $E_i(k) = \|\widehat{\tilde{P}}_i(k) \bar{P}_i\|_F$
- ullet Create threshold ϵ_P
- Indicator $d_i \in \{0,1\}$ detects the attack in agent i.
- $d_i = 1$ if $E_i(k) > \epsilon_P$, 0 otherwise

- Error $E_i(k) = \|\widehat{\tilde{P}}_i(k) \bar{P}_i\|_F$
- ullet Create threshold ϵ_P
- Indicator $d_i \in \{0,1\}$ detects the attack in agent i.
- $d_i = 1$ if $E_i(k) > \epsilon_P$, 0 otherwise

- Error $E_i(k) = \|\widehat{\tilde{P}}_i(k) \bar{P}_i\|_F$
- ullet Create threshold ϵ_P
- Indicator $d_i \in \{0,1\}$ detects the attack in agent i.
- $d_i = 1$ if $E_i(k) > \epsilon_P$, 0 otherwise

• Main idea: Reconstruct λ_i and use in negotiation

Assumption

We suppose $\tilde{\lambda}_i = \mathbf{0}$ only if $\lambda_i = \mathbf{0}$, which implies $T_i(k)$ invertible

• Estimate the inverse of $T_i(k)$

$$\widehat{T_i(k)^{-1}} = \bar{P}_i \widehat{\tilde{P}}_i(k)^{-1}$$

$$\lambda_{i \text{rec}} = \widehat{T_i(k)^{-1}} \tilde{\lambda}_i = -\bar{P}_i \theta_i - \widehat{T_i(k)^{-1}} \hat{\tilde{s}}_i(k)$$

• Main idea: Reconstruct λ_i and use in negotiation

Assumption

We suppose $\tilde{\lambda}_i = 0$ only if $\lambda_i = 0$, which implies $T_i(k)$ invertible.

• Estimate the inverse of $T_i(k)$

$$\widehat{T_i(k)^{-1}} = \bar{P}_i \widehat{\tilde{P}}_i(k)^{-1}$$

$$\lambda_{irec} = \widehat{T_i(k)^{-1}} \tilde{\lambda}_i = -\bar{P}_i \theta_i - \widehat{T_i(k)^{-1}} \hat{\tilde{s}}_i(k)$$

• Main idea: Reconstruct λ_i and use in negotiation

Assumption

We suppose $\tilde{\lambda}_i = \mathbf{0}$ only if $\lambda_i = \mathbf{0}$, which implies $T_i(k)$ invertible.

• Estimate the inverse of $T_i(k)$

$$\widehat{T_i(k)^{-1}} = \bar{P}_i\widehat{\tilde{P}}_i(k)^{-1}$$

$$\lambda_{irec} = \widehat{T_i(k)^{-1}} \tilde{\lambda}_i = -\bar{P}_i \theta_i - \widehat{T_i(k)^{-1}} \hat{\tilde{s}}_i(k)$$

• Main idea: Reconstruct λ_i and use in negotiation

Assumption

We suppose $\tilde{\lambda}_i = 0$ only if $\lambda_i = 0$, which implies $T_i(k)$ invertible.

• Estimate the inverse of $T_i(k)$

$$\widehat{T_i(k)^{-1}} = \bar{P}_i \widehat{\tilde{P}}_i(k)^{-1}$$

$$\lambda_{i \text{rec}} = \widehat{T_i(k)^{-1}} \tilde{\lambda}_i = -\bar{P}_i \theta_i - \widehat{T_i(k)^{-1}} \hat{\tilde{s}}_i(k)$$

Complete Mechanism

Two phases:

- Detect which agents are non-cooperative
- **2** Reconstruct λ_i and use in negotiation

Secure DMPC

Figure 2: Secure DMPC

Secure DMPC

Figure 2: Secure DMPC

Figure 2: Secure DMPC

Figure 2: Secure DMPC

Figure 2: Secure DMPC

Figure 2: Secure DMPC

Figure 2: Secure DMPC

Figure 2: Secure DMPC

Figure 2: Secure DMPC

Figure 2: Secure DMPC

Figure 2: Secure DMPC

Figure 2: Secure DMPC

Outline

- Vulnerabilities in distributed MPC based on Resource Allocation Attacks
 Consequences
- Securing the DMPC
 Analysis of Subproblems
 Detection Mechanism
 Mitigation Mechanism
 Complete Mechanism
- 3 Results

Example

Temperature Control of 4 Distinct Rooms Under Power Scarcity

- 4 distinct rooms modeled using 3R-2C
- Initial temperature under 20°C
- ullet Not enough power to achieve setpoint $\left(\sum_{i=1}^4 oldsymbol{u}_i(k) \leq 4 \mathrm{kW}
 ight)$
- Simulated for a period of 5h
- ZOH $T_s = 0.25 h$

Results

Temporal

- Nominal
- S Selflish behavior
- C selfish behavior with Correction

Results

Table 1: Comparison of costs J_i^N and J_G^N

Agent	Nominal	Selfish	Selfish + correction
1	103	64	104
II	73	91	73
Ш	100	123	101
IV	132	154	131
Global	408	442	409

- Resource allocation based DMPC is vulnerable to attacks.
- Sub-problems' structure has time invariant parameters.
- Attacks can be detected using these parameters.
- 4 Effects can be mitigated.

- Outlook
 - Inequality Constraints yield Hybrid behavior
 - Non-linear attack model

- Resource allocation based DMPC is vulnerable to attacks.
- Sub-problems' structure has time invariant parameters.
- Attacks can be detected using these parameters.
- 4 Effects can be mitigated.

- Outlook
 - Inequality Constraints yield Hybrid behavior
 - Non-linear attack model

- Resource allocation based DMPC is vulnerable to attacks.
- Sub-problems' structure has time invariant parameters.
- Attacks can be detected using these parameters.
- 4 Effects can be mitigated.

- Outlook
 - Inequality Constraints yield Hybrid behavior
 - Non-linear attack model

- Resource allocation based DMPC is vulnerable to attacks.
- Sub-problems' structure has time invariant parameters.
- 3 Attacks can be detected using these parameters.
- 4 Effects can be mitigated.

- Outlook
 - Inequality Constraints yield Hybrid behavior
 - Non-linear attack model

- Resource allocation based DMPC is vulnerable to attacks.
- Sub-problems' structure has time invariant parameters.
- 3 Attacks can be detected using these parameters.
- 4 Effects can be mitigated.

- Outlook
 - Inequality Constraints yield Hybrid behavior
 - Non-linear attack model

- Resource allocation based DMPC is vulnerable to attacks.
- Sub-problems' structure has time invariant parameters.
- 3 Attacks can be detected using these parameters.
- 4 Effects can be mitigated.

- Outlook
 - Inequality Constraints yield Hybrid behavior
 - Non-linear attack model

- Resource allocation based DMPC is vulnerable to attacks.
- Sub-problems' structure has time invariant parameters.
- 3 Attacks can be detected using these parameters.
- 4 Effects can be mitigated.

- Outlook
 - Inequality Constraints yield Hybrid behavior
 - Non-linear attack mode

- Resource allocation based DMPC is vulnerable to attacks.
- Sub-problems' structure has time invariant parameters.
- 3 Attacks can be detected using these parameters.
- 4 Effects can be mitigated.

- Outlook
 - Inequality Constraints yield Hybrid behavior
 - Non-linear attack model

For Further Reading I

J. M. Maestre, R. R. Negenborn et al. Distributed Model Predictive Control made easy. Springer, 2014, vol. 69.

P. Velarde, J. M. Maestre, H. Ishii, and R. R. Negenborn. "Scenario-based defense mechanism for distributed model predictive control." 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, Dec 2017, pp. 6171–6176.

Questions?

 ${\it Repository } \\ {\it https://github.com/Accacio/SysTol-21}$

Contact rafael-accacio.nogueira@centralesupelec.fr

