HW5

chaofan tao

March 2019

Contents

1	Problem 1	2
2	Problem 2	2
3	Problem 3	3

1 Problem 1

First prove the base case. When n=1, 1 = 1², the statement holds. Then assume the statement holds for n=k, namely $\sum_{1}^{k}(2n-1)=k^2, k\geq 1$. When n=k+1, $\sum_{1}^{k+1}(2n-1)=\sum_{1}^{k}(2n-1)+2k+1=k^2+2k+1=(k+1)^2$ By induction, the statement is TRUE Q.E.D.

2 Problem 2

First consider the base cases. When n=1, n= F_1 ; when n=2, n= F_3 , when n=3, n= F_4

Assume the statement holds $\forall n \leq k, k \geq 3$

When n=k+1, if there is a fibonacci number F_p that is equal to n, n = F_p . Else, there must be a $0 < F_t < n < F_{t+1}$. Let m = n- F_t . Since the statement holds $\forall n \leq k$ and m < n, m could be expressed as the sum of distinctive non-consecutive Fibonacci numbers $\implies n = F_t + m$

Meanwhile, F_{t-1} is not in m since $m = n - F_t < F_{t+1} - F_t = F_{t-1} \implies$ n could be represented as the sum of distinctive non-consecutive Fibonacci numbers.

By induction, the statement is true Q.E.D.

3 Problem 3

We prove it using induction. We first prove the base case. When n=1, i=j=k=1, we do not need to cut the cake at all, which means the minimum cut is 1-1=0. The statement holds.

Then we assume that for all $n \leq k, k \geq 1$, the statement holds. When n=k+1, we let the longest edge be i, and divide the rectangle into 2 smaller rectangles, Denote them as R_1, R_2 . Since the rectangle has integer sides, the volumes r_1 and r_2 of R_1 and R_2 are smaller than n \implies it took $r_1 - 1 + r_2 - 1$ in total to cut the two slices.

Since $r_1 + r_2 = n$, and it took 1 cut to divide the rectangle into 2 pieces, so in total is n - 1 cuts.

By induction, the statement holds.

Q.E.D.