

2.3 放大电路的分析方法

放大电路特点: (1) 交直流量共存,交流驼载在直流上

(2) 晶体管具有非线性特性

分析方法: (1) 直流和交流工作状态分开分析

(2) 图解法

(3) 合理近似、采用线性等效模型

直流通路与交流通路

直流等效电路与交流等效电路

图解法:输入输出特性

动态 $A_{\rm u}$ 、 $R_{\rm i}$ 、 $R_{\rm o}$

静态工作点

动态 A_{u} 、失真、 U_{om}

2.3 放大电路的分析方法

一、直流通路与交流通路

二、图解法

三、等效电路法

一、直流通路与交流通路

将直流电源与输入信号对电路的作用分开考虑。

1. 直流通路(DC circuit)

仅在直流电源作用下直流电流流经的通路($u_i=0$)。

画直流通路原则:

- ① 信号源 $u_i = 0$ (或 $u_s = 0$)
- ② 电容视为开路电感视为短路

2. 交流通路(AC circuit)

输入信号作用下交流信号流经的通路。

画交流通路原则:

- ① 直流电压源相当于短路 (理想电源,无内阻)
- ② 耦合电容(较大电容)视为短路

讨论1: 利用交、直流通路理解放大电路的组成原则

- ▶ 静态时晶体管工作在放大区、有合适的Q点 从直流通路分析
- 保证交流信号的有效传输 从交流通路分析

例:以下电路能否正常放大输入信号? 若不能,如何改正电路?

讨论2:估算静态工作点—利用直流通路和直流模型 $R_{\rm h}\uparrow$,晶体管工作状态? $R_{\rm c}\uparrow$,晶体管工作状态?

静态时设 $U_{\rm BEQ} \approx 0.7 {
m V}$

1)由输入回路求 I_{BO}

$$I_{\mathrm{BQ}} = (V_{\mathrm{CC}} - U_{\mathrm{BEQ}}) / R_{\mathrm{b}}$$

- 2) $I_{\text{CQ}} \approx \beta I_{\text{BQ}}$ $I_{\text{EQ}} = I_{\text{BQ}} + I_{\text{CQ}} \approx (1 + \beta)I_{\text{BQ}}$
- 3)由输出回路求 U_{CEQ}

$$U_{\text{CEQ}} = V_{\text{CC}} - I_{\text{CQ}} \cdot R_{\text{c}} \approx V_{\text{CC}} - \beta I_{\text{BQ}} \cdot R_{\text{c}}$$

估算的前提条件是晶体管处于放大状态!

二、图解法(Graphical Analysis)

在已知晶体管的输入、输出特性以及电路中其它元器件参数时,利用作图的方法来分析放大电路。

- ▶ 分析Q点
- \rightarrow 分析大信号的 A_u 、失真情况
- ightharpoonup 分析最大不失真输出电压 $U_{
 m om}$

二、图解法(Graphical Analysis)

讨论3:分析阻容耦合带负载电路的最大不失真输出电压 $U_{\rm om}$

> 分析静态工作点

分析交流输出信号

a. 画交流通路

$$u_{\rm ce} = -i_{\rm c} \times (R_{\rm c} // R_{\rm L}) R_{\rm L}'$$

$$u_{\rm CE} = V_{\rm CC}' - i_{\rm C} * R_{\rm L}'$$

$$R_{
m L}' = R_{
m c} // R_{
m L}$$
 $V_{
m CC}' = U_{
m CEO} + I_{
m CO} imes R_{
m L}'$

b. 在输出特性上作交流负载线

- 过*Q*点
- · 斜率为 -1/R_L'

信号变化所遵循的轨迹

ightharpoonup 求最大不失真输出电压 $U_{
m om}$

$$U_{
m om}$$
 $i_{
m CC}$
 $V'_{
m CC}/R'_{
m L}$
 $V_{
m CC}/R_{
m c}$
 $V_{
m CC}/R_{
m c}$
 $V_{
m CC}/R_{
m c}$

$$I_{\mathrm{CQ}}$$

$$U_{\text{om}} = \frac{\min[(V_{\text{CC}}' - U_{\text{CEQ}}), \ (U_{\text{CEQ}} - U_{\text{CES}})]}{\sqrt{2}}$$

$$U_{\text{om}} = \frac{\min[I_{\text{CQ}} * R_{\text{L}}', (U_{\text{CEQ}} - U_{\text{CES}})]}{\sqrt{2}}$$

$$U_{
m CES}$$
 $U_{
m CEQ}$ $V_{
m CC}$ $V_{
m CC}$

- 问题: 1)为使 U_{om} 达到最大,应如何设置Q点? Q点应位于交流负载线的中点!
 - 2) 若为直接耦合,则交流与直流负载线有何关系?

讨论4: 已知 $U_{\rm BEO} \approx 0.7 { m V}$

- 1)在输出特性上确定Q点: I_{BO} 、 I_{CO} 、 U_{CEO} ;
- 2) 当 $R_{\rm b}$ 减小时Q点如何变化;
- 3) 空载时,以上两种情况哪种更容易出现失真?何种失真?
- 4)带负载求 U_{om} ,并分析为使 U_{om} 达到最大,应如何调节 R_{b} 。

4) 带负载求 U_{om} ,并分析为使 U_{om} i_c/mA 达到最大,应如何调节 $R_{\rm h}$ 过 Q_1 点作交流负载线

$$R_{\rm L}' = R_{\rm c} // R_{\rm L} = 1.5 \text{k}\Omega$$
 $I_{\rm CQ} \approx 2 \text{mA}$
 $V_{\rm CC}' = U_{\rm CEQ} + I_{\rm CQ} * R_{\rm L}' = 9 \text{V}$ $U_{\rm CEQ} \approx 6 \text{V}$

$$I_{\rm CQ} \approx 2 \, {\rm mA}^{-2}$$
 $U_{\rm CEQ} \approx 6 \, {\rm V}^{-1}$

$$U_{\rm om} = \frac{\min[I_{\rm CQ} \times R_{\rm L}', \ (U_{\rm CEQ} - U_{\rm CES})]}{\sqrt{2}}$$

$$U_{\rm om} = \sqrt[3]{\sqrt{2}} \approx 2.1 {
m V}$$

减小R,使Q点位于 交流负载线中点

$$V_{
m CC}$$
'- $U_{
m CEQ}$ = $U_{
m CEQ}$ - $U_{
m CES}$ 即: $I_{
m CO}$ * $R_{
m L}$ '= $U_{
m CEO}$ - $U_{
m CES}$

二、图解法(Graphical Analysis)

- ▶ 分析Q点
- ▶ 分析大信号的⁄4"、失真情况
- ightharpoonup 分析最大不失真输出电压 $U_{
 m om}$

优点:能比较直观、全面地反映晶体管的工作情况;

缺点: ①不方便, 晶体管特性曲线不易得到;

②当输入信号较小或者频率较高时不准确,只适用于信号幅度较大、变化较慢的信号(中低频大幅值信号)。

三、等效电路法

晶体管的微变等效模型

当放大电路的输入信号u_i很小时,可以认为晶体管在静态工作点附近工作时,其特性曲线在小范围内近似为线性的。

1. 晶体管共射h参数等效模型(h parameter equivalent circuit)

▶ h参数的推导

微变是在Q点附近变化

$$\mathbf{d}u_{\mathrm{BE}} = \frac{\partial u_{\mathrm{BE}}}{\partial i_{\mathrm{B}}}\Big|_{U_{\mathrm{CE}}} \times \mathbf{d}i_{\mathrm{B}} + \frac{\partial u_{\mathrm{BE}}}{\partial u_{\mathrm{CE}}}\Big|_{I_{\mathrm{B}}} \times \mathbf{d}u_{\mathrm{CE}}$$

$$\mathbf{d}i_{\mathrm{C}} = \frac{\partial i_{\mathrm{C}}}{\partial i_{\mathrm{B}}} \bigg|_{U_{\mathrm{CE}}} \times \mathbf{d}i_{\mathrm{B}} + \frac{\partial i_{\mathrm{C}}}{\partial u_{\mathrm{CE}}} \bigg|_{I_{\mathrm{B}}} \times \mathbf{d}u_{\mathrm{CE}}$$

取变化量

$$\dot{\boldsymbol{U}}_{be} = \frac{\partial u_{BE}}{\partial i_{B}} \Big|_{U_{CEQ}} \times \dot{\boldsymbol{I}}_{b} + \frac{\partial u_{BE}}{\partial u_{CE}} \Big|_{I_{BQ}} \times \dot{\boldsymbol{U}}_{ce}$$

$$\dot{\boldsymbol{I}}_{c} = \frac{\partial i_{C}}{\partial i_{B}} \Big|_{U_{CEQ}} \times \dot{\boldsymbol{I}}_{b} + \frac{\partial i_{C}}{\partial u_{CE}} \Big|_{I_{BQ}} \times \dot{\boldsymbol{U}}_{ce}$$

• h参数等效模型

正弦向量

• h参数的物理意义

$$h_{11} = \frac{\partial u_{\text{BE}}}{\partial i_{\text{B}}} \Big|_{U_{\text{CE}}} \quad h_{12} = \frac{\partial u_{\text{BE}}}{\partial u_{\text{CE}}} \Big|_{I_{\text{B}}}$$

h₁₁=发射 结电阻r_{be}

*h*₁₂=内反 馈系数 ≈0

$$h_{21} = \frac{\partial i_{\mathrm{C}}}{\partial i_{\mathrm{B}}}\Big|_{U_{\mathrm{CE}}} \quad h_{22} = \frac{\partial i_{\mathrm{C}}}{\partial u_{\mathrm{CE}}}\Big|_{I_{\mathrm{B}}}$$

*h*₂₁=电流放 大倍数*β*

 h_{22} =c-e间 电导= $1/r_{ce}$ $\approx I_{CO}/V_{A}$ · 简化的h参数等效模型

估算 $r_{\rm be}$:

/_{bb},:基区体电阻,一般由制造工艺决定, 为几十 Ω ~几百 Ω ;

r_o: 发射区体电阻,也与制造工艺有关, 通常很小,为几个 Ω ;

r_{b'e'}: 发射结电阻。

发射结电阻
$$r_{b'e'} = \frac{U_T}{I_{EQ}}$$

$$r_{be} = \frac{\dot{U}_{be}}{\dot{I}_{b}} \approx \frac{\dot{U}_{bb'} + \dot{U}_{b'e'}}{\dot{I}_{b}} = \frac{\dot{U}_{bb'}}{\dot{I}_{b}} + \frac{\dot{I}_{e} r_{b'e'}}{\dot{I}_{b}}$$

$$r_{\rm be} \approx r_{\rm bb'} + (1+\beta) \frac{U_{\rm T}}{I_{\rm EQ}}$$
 Q点影响 $r_{\rm be}$!

2.4 单管放大电路的三种基本接法

三种基本接法: 共射 共集 共基

共射(CE, Common-emitter): 以e为输入回路和输出回路的公共端,用来实现 i_R 对 i_C 的控制。

共集(CC, Common-collector):

以c为公共端的接法,用来实现 i_B 对 i_E 的控制。

共基(CB, Common-base):

以b为公共端的接法,用来实现 i_E 对 i_C (或 i_C 对 i_E)的控制。

注意: 三种接法都是从交流通路中定义的,即输入回路和输出回路是指交流通路中的。

一、基本共射放大电路分析 ① 求Q点: $I_{BO} = \frac{V_{BB} - U_{BEQ}}{r}$

1. 基本共射放大电路

• 画交流等效电路 (AC Equivalent Circuit)

h参数等效模型

- →交流通路中的晶体管
- →交流等效电路

直流通路 $I_{CQ} \approx \beta I_{BQ} \approx I_{EO}$ $U_{\text{CEO}} = V_{\text{CC}} - I_{\text{CO}} R_{\text{c}}$

- ② 动态: $\bar{\chi}A_{\mu}$ 、 R_{i} 、 R_{i}
 - 画交流通路

