Prosjekt i molekylar dynamik

Mia Synnøve Frivik usikkert

Oppgave 1

a)

Figure 1:

ser på formelen for Lennard-Jones potensialet $U(r)=4\varepsilon((\frac{\sigma}{r})^{12}-(\frac{\sigma}{r})^6)$. Hvis $r<\sigma$, vil r^{12} bli mindre enn r^6 noe som fører til at $(\frac{\sigma}{r})^{12}>(\frac{\sigma}{r})^6$. Det medfører at U(r) blir positivt og at det er den frastøttende kraften som dominerer. Hvis $r>\sigma$, vil r^{12} bli større enn r^6 , altså vil $(\frac{\sigma}{r})^{12}<(\frac{\sigma}{r}^6)$. Det betyr at U(r) blir negativt og det er da den tilltrekkende kraften som dominerer. I punkt r_0 (se Figur 1) vil den frastøttende kraften og den tiltrekkende kraften være like og er da i likevekt. Dette punktet er karakterisert som det punktet hvor den potensielle energien er lavest.

La oss nå se på hva som skjer med to argon-atomer som ligger i en avstand 1.5σ fra hverandre som ilustrert i figur 2

Figure 2: Feil fordi det egentlig skulle være sigma 0.95 på denne siden

Hvis atomene starter med en avstand 1.5σ vil avstande være stor nokk til at den tiltrekkende kraften og den frastøttende kraften nullerhverandre ut og atomene står nesten stille. Derimot kan man se at når avstanden er på 0.95σ vil atomet ha nok energi til å unnslippe potensialbrønnen.

1b) (i)

Figure 3: Kreftene som virker på atom i

(ii)

$$F = -\frac{\partial u}{\partial r}$$

(ii)

$$U(r) = 4\epsilon((\frac{\sigma}{r})^{1}2 - (\frac{\sigma}{r})^{6})$$

vet at $\vec{F} = -\frac{dU}{d\vec{r}} \cdot \frac{\vec{r}}{|\vec{r}|}$, man må gange med enhetsvektoren fordi kraften har en retning det har ikke potensiell energi.

så for å utlede ligningen for akselerasjon ser vi først på ligningen for et atom:

$$\begin{split} F &= (4\epsilon((\frac{\sigma}{r})^12 - (\frac{\sigma}{r})^6))' \\ &= -4\epsilon(-12\frac{\sigma^12}{r^13} - (-6)\frac{\sigma^6}{r^7}) \cdot \frac{\vec{r}}{|\vec{r}|} \\ &= -4\epsilon(-12\frac{\sigma^12}{r \cdot r^12} + 6\frac{\sigma^6}{r \cdot r^6}) \cdot \frac{\vec{r}}{|\vec{r}|} \\ &= -4\epsilon(\frac{1}{r}(-12(\frac{\sigma}{r})^12 + 6(\frac{\sigma}{r})^6)) \cdot \frac{\vec{r}}{r} \\ &= -4\epsilon(-6(2(\frac{\sigma}{r})^12 - (\frac{\sigma}{r})^6)) \cdot \frac{\vec{r}}{r^2} \\ &= 24\epsilon(2(\frac{\sigma}{r})^12 - (\frac{\sigma}{r})^6) \cdot \frac{\vec{r}}{r^2} \end{split}$$

Setter inn $r = |\vec{r_i} - \vec{r_j}|$:

$$F = 24\epsilon (2(\frac{\sigma}{|\vec{r_i} - \vec{r_j}|})^{1} - (\frac{\sigma}{|\vec{r_i} - \vec{r_j}|})^{6}) \cdot \frac{\vec{r_i} - \vec{r_j}}{|\vec{r_i} - \vec{r_j}|^{2}}$$

Siden likningen beskriver bevegelsen til atomet kommer summetegnet fra at man må legge sammen posisjonen til atomet ved forskjellige tider slik at vi kan beskrive bevegelsen