Ορισμός

- Οι Γενετικοί Αλγόριθμοι (ΓΑ) είναι μια οικογένεια αλγορίθμων / μέθοδων βελτιστοποίησης εμπνευσμένη από τη διαδικασία της φυσικής επιλογής.
- Στη φύση ομοειδείς οργανισμοί διασταυρώνονται για την παραγωγή απογόνων που θα είναι καλύτερα προσαρμοσμένοι στο περιβάλλον τους.
- Στους ΓΑ μια συνάρτηση παίζει το ρόλο του περιβάλλοντος και αρχικά τυχαίες λύσεις διασταυρώνονται για να παραχθούν σταδιακά καλύτερες λύσεις.

- Οι διάδοχες καταστάσεις παράγονται με το συνδυασμό δύο γονεϊκών καταστάσεων, και όχι με την τροποποίηση μιας μεμονωμένης κατάστασης.
- Αρχικός (τυχαίος) πληθυσμός.
- Στοχαστική επιλογή γονέων.
- Συνάρτηση καταλληλότητας(fitness function) = Ευρετική συνάρτηση που καθορίζει την πιθανότητα "επιβίωσης" και δημιουργίας απογόνων στην επόμενη γενιά.

Τελεστές

- Selection (Επιλογή):
 Επιλέγονται 2 άτομα από τον πληθυσμό
- Crossover (Διασταύρωση):
 Η "γονιδιακή" πληροφορία των δύο επιλεγμένων ατόμων συνδυάζεται παράγοντας νέα άτομα
- Mutation (Μετάλλαξη):
 Η γονιδιακή πληροφορία των νεοδημιουργημένων ατόμων αλλάζει με τυχαίο τρόπο με πολύ μικρή πιθανότητα

Παραλλαγές

- Οι καλύτερες λύσεις προκρίνονται αναλλοίωτες στην επόμενη γενιά
- Ο ρυθμός μετάλλαξης σταδιακά μειώνεται
- Η δισταύρωση γίνεται με πολλαπλά splits
- Η fitness function είναι μη γραμμική
- Το πλήθος των απογόνων σε κάθε διασταύρωση μεταβάλλεται
- Στον τρόπο κωδικοποίησης των λύσεων
- ... κλπ ...

Ορολογία

- individual, gene άτομο, γονίδιο, λύση
- genotype γενότυπος
- phenotype φαινότυπος
- population, pool πληθυσμός
- fitness function συνάρτηση καταλληλότητας
- evaluation function συνάρτηση εκτίμησης
- selection επιλογή
- crossover διασταύρωση
- mutation μετάλλαξη

Εφαρμογές ΓΑ

- Χρονοπρογραμματισμός αεροσκαφών
- Automated design
- Μετεωρολογία
- Κρυπτανάλυση
- Οικονομικά μοντέλα
- Ιατρική διάγνωση
- Protein folding

NP-hard problems

Για να λυθεί ένα πρόβλημα με ΓΑ θα πρέπει

- Να καθορίσουμε έναν τρόπο κωδικοποίησης πιθανών λύσεων σε μορφή string (DNA)
- Να μπορούμε να αποφασίσουμε πόσο καλές είναι τυχαίες (αυθαίρετες) λύσεις (fitness function)

ΟΜΩΣ...

 Ακόμα κι αν κάνουμε τα παραπάνω, δεν είναι όλα τα προβλήματα κατάλληλα για να επιλυθούν με ΓΑ

Προβλήματα κατάλληλα για επίλυση με ΓΑ

- Όταν τμήματα λύσεων μεταφέρουν πληροφορία χρήσιμη για τη βέλτιστη λύση
- Όταν η πληροφορία στο string έχει ομοιόμορφη βαρύτητα.

Χαρακτηριστικά ΓΑ

- Σπάνια είμαστε σίγουροι ότι έχουμε φτάσει στην απολύτως βέλτιστη λύση.
- Αποφασίζουμε αυθαίρετα πότε θα σταματήσει η αναζήτηση.
- Αν ο χρόνος πιέζει, μπορούμε να σταματήσουμε την αναζήτηση και να πάρουμε μια (κάπως) ικανοποιητική λύση.
- Μπορούμε στη συνέχεια να συνεχίσουμε την αναζήτηση από το σημείο που σταμάτησε.
- Παραλληλοποιούνται εύκολα.

Η Θεωρία των Σχημάτων (Schemata Theory)

- Schema: **********
- Instance: abcdefgxxxhijklm
- Τα σύμβολα στα σχήματα είναι συνεχόμενα: **xx** [NAI], x**** [OXI]
- Όταν η μέση τιμή της fitness function για όλα τα instances ενός σχήματος είναι μεγαλύτερη από τη μέση τιμή για όλον τον πληθυσμό, τότε το σχήμα αναπαράγεται στον νέο πληθυσμό.

$$P(H, t+1) \ge P(H, t) \frac{f(H, t)}{\bar{f}} \left[1 - p_c \frac{\Delta(H)}{L-1} (1 - P(H, t) \frac{f(H, t)}{\bar{f}}) \right] (1 - p_m)^{o(H)}$$

Κάθε σχήμα καθορίζει έναν υποχώρο πιθανών λύσεων. Οι πιθανοί υποχώροι συνδυάζονται (τομή) για να περιοριστεί το μέγεθός τους.

