ABSTRACT

1. INTRODUCTION

2. METHOD

2.1. 3D Weak lensing

Assuming a flat universe, the lensing convergence at redshift plane z_s is

$$\kappa(\vec{\theta}, \chi_s) = \frac{3H_0^2 \Omega_M}{2c^2} \int_0^{\chi_s} d\chi_l \frac{\chi_l \chi_{sl}}{\chi_s} (1 + z_l) \delta(\chi_l \vec{\theta}, \chi_l), (1)$$

where c is the speed of light, z_l is the redshift evaluated at comoving distance χ_l . H_0 and Ω_M are the Hubble parameter and matter density parameter at redshift equals zero, respectively. $\delta(\vec{r}) = \rho(\vec{r})/\bar{\rho} - 1$ is the matter fluctuation.

The convergence field at redshift (κ) can be related to the shear field (γ) at the same redshift plane via a 2D convolution

$$\gamma(\vec{\theta}, \chi_s) = \frac{1}{\pi} \int d^2 \theta' D(\vec{\theta} - \vec{\theta}') \kappa(\vec{\theta}', \chi_s), \qquad (2)$$

where

$$D(\vec{\theta}) = \frac{1}{(\theta_1 - i\theta_2)^2}. (3)$$

The shear field (γ) is pixelized into N_{zs} tomographic bins $\gamma^1,...,\gamma^{N_{zs}}$ of size $N_{ys}\times N_{xs}$ where N_{ys} and N_{xs} are the number of pixels on the 2D transverse Cartesian coordinates. Similarly, the density contrast field (δ) to be reconstructed is also binned into $N_{zl}\times N_{yl}\times N_{xl}$ pixels. The discrete shear field and the discrete density contrast field can be viewed as finite size vectors γ_{μ} and δ_{α} . The measured shear is related to the matter density contrast by a 2D transverse convolution (equation (2)) and a 1D line-of-sight convolution (equation (1)), which can be expressed in a matrix notation

$$\gamma_{\mu} = \mathbf{P}_{\mu\nu} \mathbf{Q}_{\nu\alpha} \delta_{\alpha} + \epsilon_{\mu}, \tag{4}$$

where $\mathbf{P}_{\mu\nu}$ represents the transverse convolution and $\mathbf{Q}_{\nu\alpha}$ represents the line-of-sight convolution and ϵ_{μ} represents measurement noise including the contributions of shape noise and pixel noise.

2.2. Sparsity

2.3. Wavelets

3. APPLICATION

3.1. Mock shape catalog

3.2. HSC shape catalog

4. SUMMARY