1 Lecture Review

1.1 Similar Matrices

1. Two $n \times n$ matrices A and B are similar if there exists an invertible matrix X so that

$$A = XBX^{-1}.$$

- 2. A is similar to itself.
- 3. If A and B are similar and B and C are similar, then A and C are similar.

1.2 Symmetric Matrices

1. Every real symmetric matrix S can be diagonalized

$$S = Q\Lambda Q^{-1}$$

where Q is orthogonal.

2. A real symmetric S has n real eigenvalues and n orthonormal eigenvectors.

1.3 Systems of Differential Equations

- 1. If $A\mathbf{x} = \lambda \mathbf{x}$, then $u(t) = e^{\lambda t}\mathbf{x}$ solves $\frac{d\mathbf{u}}{dt} = A\mathbf{u}$.
- 2. If $A = X\Lambda X^{-1}$ is an eigendecomposition, then

$$e^{At} = I + At + \dots + (At)^n / n! + \dots = Xe^{\Lambda t}X^{-1}.$$

2 Problems

1. True or false, explain:

- (a) If A and B are similar, then A I and B I are similar.
- (b) There is a matrix $A \neq I$ which is similar to the identity.
- (c) If $A = X\Lambda_A X^{-1}$ and $B = X\Lambda_B X^{-1}$ where Λ_A, Λ_B are diagonal, then AB = BA.
- (d) If $A^3 = 0$, then the eigenvalues of A must be 0.
- (e) A matrix with real eigenvalues and n linearly independent eigenvectors is symmetric.
- (f) A matrix with real eigenvalues and n orthonormal eigenvectors is symmetric.
- (g) The inverse of an invertible symmetric matrix is symmetric.
- (h) The eigenvector matrix Q of a symmetric matrix is symmetric.

Solution.

(a) True. We have $A = XBX^{-1}$. Then

$$A - I = XBX^{-1} - I = XBX^{-1} - XX^{-1} = X(B - I)X^{-1}.$$

(b) False. If A is similar to the identity, then

$$A = XIX^{-1} = XX^{-1} = I.$$

(c) True. Recall that diagonal matrices commute, so $\Lambda_A \Lambda_B = \Lambda_B \Lambda_A$. We have

$$AB = X\Lambda_A X^{-1} X\Lambda_B X^{-1} = X\Lambda_A \Lambda_B X^{-1} = X\Lambda_B \Lambda_A X^{-1} = X\Lambda_B X^{-1} X\Lambda_A X^{-1} = BA.$$

(d) True. If $\lambda \neq 0$ is an eigenvalue of A, then we have an eigenvector \boldsymbol{x} of A with eigenvalue λ . This implies

$$A^3 \mathbf{x} = \lambda^3 \mathbf{x} \neq 0.$$

(e) False. For example,

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

has eigenvalues 1 and 0 and is therefore diagonalizable. Thus A has 2 real eigenvalues and 2 linearly independent eigenvectors, but is not symmetric.

(f) True. If S is a matrix with real eigenvalues and n orthonormal eigenvectors, then we can diagonalize $S = X\Lambda X^{-1}$ where the columns of X are orthonormal. This means X is orthogonal so that $X^{-1} = X^T$. Then

$$S^T = (X\Lambda X^T)^T = X\Lambda^T X^T = X\Lambda X^T = S.$$

- (g) True. If $S = Q\Lambda Q^{-1}$ is symmetric and invertible, then $S^{-1} = Q\Lambda^{-1}Q^{-1}$ is also symmetric since it is diagonalizable with orthogonal eigenvector matrix (note Λ^- is diagonal).
- (h) False. An orthogonal matrix Q need not be symmetric, for example

$$Q = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

However, $Q\Lambda Q^{-1}$ is symmetric for any Q orthogonal and Λ diagonal.

2. Suppose A is symmetric. Explain how the diagonalization $Q\Lambda Q^{-1}$ of A can be used to produce a full form SVD $U\Sigma V^T$ of A.

Solution. If A is symmetric with diagonalization $Q\Lambda Q^{-1}=Q\Lambda Q^T$ where Q is orthogonal, then we can get an SVD $U\Sigma V^T$ by taking (1) Q=U, (2) the diagonal entries of Σ are the absolute value of the diagonal entries of Λ :

$$\Sigma = \begin{pmatrix} |\lambda_1| & 0 & \cdots & 0 \\ 0 & |\lambda_2| & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & |\lambda_n| \end{pmatrix}, \quad \text{where} \quad \Lambda = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

(3) V is obtained by taking Q and changing the sign of the ith column for each $1 \le i \le n$ if $\lambda_i < 0$ and otherwise keeping it the same. (Check the third point with specific examples if you are unsure that this works).

3. Suppose A is $n \times n$ symmetric and B is $m \times n$. Show that BAB^T is symmetric.

Solution. We have

$$(BAB^T)^T = (B^T)^T A^T B^T = BA^T B^T = BAB^T$$

where the last equality follows from A being symmetric. Thus BAB^T is symmetric.

4. If A is upper triangular with distinct diagonal entries, is it diagonalizable	4.	If A is un	pper triangul	ar with distinct	t diagonal	entries.	is it	diagonalizabl	e?
--	----	--------------	---------------	------------------	------------	----------	-------	---------------	----

Solution. Yes. The diagonal entries of an upper triangular matrix are the eigenvalues of the matrix. Thus if the diagonal entries of A are distinct, then A has n distinct eigenvalues. This implies A is diagonalizable.

5. Suppose A is an $n \times n$ upper triangular matrix. Show that if A is diagonalizable with n orthonormal eigenvectors, then A is a diagonal matrix.

Solution. If A is diagonalizable with n orthonormal eigenvectors, then we may write $A = Q\Lambda Q^{-1}$ where Q is orthogonal. Then A is symmetric. But a matrix that is both symmetric and upper triangular matrix must be diagonal. Therefore A is diagonal.

6. If A is $m \times n$ is $A^T A$ symmetric? If so what are the eigenvalues of $A^T A$ in terms of the (full form) SVD of A? What are the eigenvectors? How about AA^T ?

Solution. Let $U\Sigma V^T$ be the full form SVD of A. Then

$$A^TA = (U\Sigma V^T)^T(U\Sigma V^T) = V\Sigma^T U^T U\Sigma V^T = V\Sigma^T \Sigma V^T$$

where $\Sigma^T\Sigma$ is a diagonal with squared singular values along the diagonal and possibly 0 (depending on the rank of A and the size of V) – these are the eigenvalues of A^TA . The eigenvectors are given by the columns of V.

For AA^T , we have similarly

$$AA^T = U\Sigma\Sigma^T U^T.$$

7. Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Find e^{At} using the fact that $A^2 = A^3 = \cdots = 0$. How might you compute e^{Bt} for $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Solution. We have the formula

$$e^{At} = I + At + \frac{1}{2}(At)^2 + \frac{1}{3!}A^3 + \cdots$$

Since $A^2 = A^3 = \cdots = 0$, we have

$$e^{At} = I + At = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}.$$

For B, we can notice that

$$B^3 = 0.$$

Then

$$e^{Bt} = I + Bt + \frac{(Bt)^2}{2} = \begin{pmatrix} 1 & t & t^2/2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}.$$

8. Explain why $e^{\operatorname{tr} A} = \det e^A$ (Note that $e^{\operatorname{tr} A}$ is a number and e^A is a matrix). You may assume A is diagonalizable.

Solution. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Then

$$\operatorname{tr} A = \lambda_1 + \dots + \lambda_n, \quad \det A = \lambda_1 \dots \lambda_n.$$

Since A is diagonalizable, we can write $A = X\Lambda X^{-1}$ and $e^A = Xe^\Lambda X^{-1}$. Then

$$e^{\operatorname{tr} A} = e^{\lambda_1 + \dots + \lambda_n} = e^{\lambda_1} \dots e^{\lambda_n} = \det e^A.$$

Spring 18.06 Week 9 April 30, 2019

9. Let
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
.

- (a) Find the eigenvalues of A.
- (b) Find the eigenvectors. What can be said about the eigenvectors of different eigenvalues of A and how this connects to $A = A^T$.
- (c) Find two linearly independent solutions to $\frac{d\mathbf{u}}{dt} = A\mathbf{u}$.

Solution.

(a) We have

$$\det(A - \lambda I) = (1 - \lambda)^{2} - 4 = \lambda^{2} - 2\lambda - 3.$$

Thus the eigenvalues are -1, 3.

(b) To find the eigenvector corresponding to 3, we solve

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 3 \begin{pmatrix} x \\ y \end{pmatrix}.$$

A solution satisfies

$$x + 2y = 3x$$
, $2x + y = 3y$.

Setting x = 1, we get y = 1. Thus $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector of A corresponding to the eigenvalue 3.

Similarly, we can find that $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ is an eigenvector of A corresponding to the eigenvalue -1.

Note that these eigenvalues are orthogonal to one another. This is because A is symmetric. Indeed, if we normalize the eigenvectors then our eigenvector matrix is

$$Q = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}$$

which is orthogonal, and

$$A = Q\Lambda Q^{-1}$$
, where $\Lambda = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$.

(c) We have solutions

$$\mathbf{u}_1(t) = e^{3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \mathbf{u}_2(t) = e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

which are linearly independent.