Homework 7

Walker Bagley

April 14, 2023

1.	(a)	<i>Proof.</i> Assume there is a TM R , which decides whether an input TM M attempts to move its head past the left end of the tape on input string w . Let S be a "universal decider" that implements R to decide A_{TM} . $S = \text{on input } \langle M, r \rangle$:
		i. Convert $\langle M, r \rangle$ into a program P ii. Run R on P
		iii. If R accepts, then accept and if R rejects, then reject
		So we have a universal decider S , which we know cannot exist, so it is undecidable whether M attempts to move its head past the left end of the tape on input string w .
	(b)	<i>Proof.</i> Consider a Turing machine R that decides whether on input w to TM M , whether or not the head of M moves past the right end of w . Refer to the following implementation of R :
		i. Start R with the input string w
		ii. Move the head to the end of w and append a special symbol, call it #
		iii. Move the head back to the start of w iv. Simulate the rules of M
		v. If the head of R reads $\#$ at any point during the simulation, then accept
		vi. If the simulation runs through without reading #, then reject
2.	(a)	<i>Proof.</i> Consider a Turing machine R that decides L_2 . Refer to the following implementation of R on input $\langle M, \langle M \rangle \rangle$:
		i. If C is the TM that decides whether a TM is 10-compliant, simulate C
		ii. If C rejects, then reject
		iii. If C accepts, move the head of R to the start of $\langle M \rangle$
		iv. Simulate M on the remainder of the input string v. If M accepts, then reject
		vi. If M rejects, then accept
	(b)	<i>Proof.</i> Suppose our TM R from part (a) decides L_2 . Then R should be able to decide if $\langle R \rangle$ is in L_2 , so let's run R on the input $\langle R, \langle R \rangle \rangle$. In the first three steps of R , we run into two cases: i. If R is not 10-compliant then we are done
		ii. If R is 10-compliant, then we move to the next three steps of R .
		Again, we have two cases, either R accepts $\langle R \rangle$ or it doesn't. However, if R accepts $\langle R \rangle$, then it
		rejects $\langle R \rangle$ and if it rejects $\langle R \rangle$, then it accepts $\langle R \rangle$. Here we have a contradiction, so we know that R cannot be 10-compliant since R decides L_2 .

 $\langle R \rangle$ causes a contradiction since R cannot both accept and reject the same input.

(c) Steps 5 and 6 reverse the acceptance/rejection of M, which when paired with an input of R and

- 3. (a) *Proof.* Let the property P described by Rice's theorem be recognizing Σ^* . Then we can see that P is nontrivial because a TM could recognize some language $L \neq \Sigma^*$ or it could recognize Σ^* , so it is neither always true nor always false. Then by Rice's theorem, it is undecidable that a TM recognizes Σ^* .
 - (b) *Proof.* Both conditions of Rice's theorem are necessary:
 - i. If P is trivial, that is, P is always false or P is always true, then we can construct a TM M that decides P quite easily:
 - T. If P is always true, then on any input to M, accept.
 - F. If P is always false, then on any input to M, reject.
 - ii. An example of a property of TM's that is decidable is the example of 10-compliance from question (2). Indeed, it is decidable whether a TM is 10-compliant.

2