First Exam Theoretical Computer Science Graduate Center City University of New York 10 June 2003

Do three of the following four problems. Write each answer in a separate blue book.

- 1. Let $\Sigma = \{0, 1\}$ be a finite alphabet.
 - (a) Define regular language.
 - (b) Show the following language is regular over Σ : $L = \{w \mid w \text{ contains the substring } 1001\}$
 - (c) Define a Turing machine that accepts the language L above.
 - (d) Show the following language is not regular over Σ : $\{w \mid w = 0^m 1^n, m \ge n\}$
- 2. (a) State the Halting Problem.
 - (b) Prove the Halting Problem is Turing-Recognizable (i.e. recursively enumerable).
 - (c) Prove the Halting Problem is not decidable.
- 3. (a) State the Recursion Theorem.
 - (b) Prove the Recursion Theorem.
 - (c) Prove the following fixed point theorem: Let $t: \Sigma^* \to \Sigma^*$ be a computable function. Then there is a Turing machine F wherein $t(\langle F \rangle)$ describes a Turing machine equivalent to F.
- 4. For the following sets, state whether the set is decidable or Turing-recognizable (or both). Justify your answer.
 - (a) $E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$
 - (b) A set A, where $A \leq_m B$ and B is decidable.
 - (c) A set A, where $\bar{A} \leq_m A$ and \bar{A} is Turing-recognizable.
 - (d) $Th(\mathbf{N}, +)$
 - (e) $Th(\mathbf{N}, +, \times)$