1/3/2019 7.1. Machine instructions

7.1 Machine instructions

Load, store, and add as 0s and 1s

A processor processes instructions in the form of 0's and 1's, each known as a **machine instruction**. In MIPS, each machine 32 bits. Some bits, called the **opcode** ("operation code"), encode a machine instruction's operations like load word, store wo machine instruction bits, each known as an **operand**, indicate what register, address, or literal values are involved in an instruction

Refer to the	e above assembly and machine instructions.
, 0	rs like \$t0 or \$t6 are encoded ow many bits?
3) Register O 00 O 01 O 01	1000
second O de	machine instruction, the field represents the estination register mediate ase address
•	ddi machine instruction, the ate is represented by how many

- 6) How many bits are used to denote that an instruction should perform an add?
 - **O** 6
 - O 12
- 7) In the add machine instruction, the second field is the destination register.
 - O True
 - O False

PARTICIPATION ACTIVITY

7.1.3: Translating an lw assembly instruction to a MIPS machine instruction.

Finish translating this assembly instruction to a machine instruction:

- 0000000000000000

1) a

Check

Show answer

2) b

Check **Show answer**

3) c

Check

Show answer

PARTI	ICIPATION /ITY	7.1.4: Translating an add assembly instruction to a MIPS machine instruction
add	l \$t6, \$t	g this assembly instruction to a machine instruction: , \$t4cd 00000e
1) a		
	Check	Show answer
2) b		
	Check	Show answer
3) c		
	Check	Show answer
4) d		
	Check	Show answer
5) e		

1/3/2019 7.1. Machine instructions

Check Show answer

MIPSzy machine instructions

The table below shows MIPSzy's register encodings. The subsequent table shows all of MIPSzy's machine instructions, wit blue, registers in orange, green, and red, immediate values in purple, and unused bits in grey.

Table 7.1.1: MIPSzy register encodings.

Name	\$zero	\$t0	\$t1	\$t2	\$t3	\$t4	\$t5	\$t6
Encoding	00000	01000	01001	01010	01011	01100	01101	01110

Table 7.1.2: MIPSzy machine instructions.

Assembly	Machine				
lw \$t0,0(\$t1)	100011 01001 01000 00000000000000000				
sw \$t0,0(\$t1)	101011 01001 01000 00000000000000000				
addi \$t0,\$t1,15	001000 01001 01000 0000000000001111				
add \$t0,\$t1,\$t2	000000 01001 01010 01000 00000 100000				
sub \$t0, \$t1, \$t2	000000 01001 01010 01000 00000 100010				
mult \$t1,\$t2	000100 01001 01010 00000 00000 011000				

7.1. Machine instructions

mflo \$t0	000000 00000 00000 01000 00000 010010				
beq \$t1, \$t2, BLabel	000100 01001 01010 00000000000000000000				
bne \$t1, \$t2, BLabel	000101 01001 01010 00000000000000000000				
slt \$t0,\$t1,\$t2	000000 01001 01010 01000 00000 101010				
j JLabel	000010 00000000000000000000000000000000				
jal JLabel	000011 0000000000000100000000101				
jr \$t1	000000 01001 00000 00000 00000 001000				

Assume BLabel becomes an immediate of 2, and JLabel 5. Creating immediates for branches/jumps is in another section. \$t0, \$t1, and \$t2 are used for registers. Other registers could be used. addi's immediate value is shown as 15. That value is arbitrary.

PARTICIPATION ACTIVITY

7.1.5: MIPSzy machine instructions.

- 1) Different MIPSzy instructions have different numbers of bits.
 - O True
 - O False
- 2) addi uses _____ bits for the immediate value.
 - 0
 - **O** 16

- 3) For a sub instruction, the first 6 bits are 000000, and the last 6 bits are _____.
 - **O** 100000
 - **O** 100010
- 4) add and sub make use of all 32 bits.
 - O True
 - O False
- 5) For an slt instruction, the first 6 bits are 000000, and the last 6 bits are _____.
 - O 101010
 - O00000
- 6) For a j instruction, the immediate is _____ bits.
 - **O** 26
 - **O** 32

PARTICIPATION ACTIVITY

7.1.6: Translating an addi instruction to a MIPS machine instruction.

Finish translating this assembly instruction to a machine instruction:

addi \$t3, \$t4, 7

__a___ b__ c__ 0000000000 ___d

1) a

Check Show answer

Executable files

Assembly instructions can be translated to machine instructions. An **executable file** contains the 0's and 1's of a program's instructions and can be loaded into an instruction memory and then executed (run). The 0's and 1's are placed into a processmemory, and the processor then executes each machine instruction.

sw \$t1,0(\$t6) 101011 01110 01001 0000000000000000 IM CPL 001000 00000 01110 ... 100011 01110 01000 ... 000000 01000 01000 ... 101011 01110 01001 ... **PARTICIPATION** 7.1.8: Executable files. **ACTIVITY** 1) An assembly program is placed into a processor's instruction memory. O True O False 2) An executable file is convenient for humans to read. O True O False 3) A processor executes each machine instruction one at a time (conceptually). O True O False Provide feedback on this section