Workshop SeqBio 2013 Montpellier, November 25-26 2013

Disentangling homeologous contigs in allotetraploid assembly: application to durum wheat

V. Ranwez, Y. Holtz, G. Sarah, M. Ardisson, S. Santoni, S. Glémin, M. Tavaud, J. David

Domestication and diversity

Domestication & selection drastically reduces diversity

Genetic diversity estimated through polymorphism π (10⁻³) (Adapted from Haudry 2008 phD)

Domestication and diversity

- Genetic diversity is important for future selection:
- Pre-breeding project: reintroducing diversity
 - Crossing elites and core collection of *T. turgidum* (wild & domesticated)
 - Controlling outcrossing via a male sterility gene (ms gene)
 - Improving the population via a soft selection (eliminating the weakest)
- After 17 generations
 - ⇒ High phenotypic diversity
- Linking genotype & phenotype
 - ⇒ Search for SNPs

- DATA
 - ⇒RNAseq for 106 accessions (>4 selfing generations)

Durum Wheat Genome: a complex history

Table of content

1/ SNP calling and polyploidy

2/ How to disentangle homeo-genomes?

3/ Homeo-Splitter Validation

Polyploidy induces chimeric contigs

Diploidy

Transcripts of Gene 1

Contig of Gene 1

Polyploidy

Transcripts of Gene 1
Genome A

Transcripts of Gene 1
Genome B

Chimeric Contig of Gene 1

chimeric contigs interfere with SNP calling

Chimeric Contig of Gene 1

SNP calling despite polyploidy

- Excess of predicted SNPs
 - ⇒ How to avoid this problem?
 - 1. By detecting erroneous SNPs
 - Excess of heterozygotes at those sites (but removes true SNPs)
- 2. By disentangling Homeologous gene copies
 - ⇒ Implicitly: mapping on diploid relatives
 - Explicitly: splitting problematic contigs

Table of content

1/ SNP calling and polyploidy

2/ How to disentangle homeo-genomes?

3/ Homeo-Splitter Validation

Durum Wheat Genome: a complex history

Implicit disentangling: mapping on diploid relatives

- Strategy
 - 1. Sequencing and assembling contigs of diploids relatives
 - 2. Mapping *T. durum* reads on those contigs
- Advantage:
 - ⇒ Avoid confusion when contigs are available for both relatives
- Limits:
 - No advantage if the gene is available for only one relative
 - Diploids are only relatives, a strict mapping cannot be used

Explicit disentangling: model

Likelihood of CT?

→ Associated expression ratio

 r_{1CT} in A1: (9/12 + 8/10)/2 = 0.76

 r_{2CT} in A2: $(3/13 + 3/5)/2 \sim 0.415$

→ Probability for one site:

$$P(9C \mid 12 \, reads, r_{1CT}) = \binom{12}{9} r_{1CT}^{9} (1 - r_{1CT})^{3}$$

→ Likelihood of CT:

$$Lk(D \mid CT) = \prod_{Ai} P(D_{Ai} \mid r_{iCT})$$

→ Probability for one accession:

$$P(D_{A1} | r_{1CT}) = P(9C | 12 reads, r_{1CT}) * P(8T | 10 reads, r_{1CT})$$

Explicit disentangling: validation

 Once the most likely pattern (e.g. CT) is found the contig sequence is split into two new contigs

Contig_{|k1} = ACTTTCCTACTGGCAACAGTAACG

- Strategy
- 1. Assemble *T. durum* reads (and create associated mapping)
- 2. For each contig with an excess of heterozygosity
 - 1. Search for likely homeologous contigs within those reads
 - 2. Replace current contig by the two predicted homeologous ones
- 3. Map *T. durum* reads on this new set of contigs
- 4. Use standard SNP calling on this mapping

Explicit disentangling: overview

Advantages:

- Avoid most of the confusion caused by homeologous genes
- No need to have diploid relatives (except for validation)

Current limits:

- ⇒ Slower than mapping on diploid relatives (two mappings)
- ⇒ Less effective if homeologous genes are similarly expressed

Table of content

1/ SNP calling and polyploidy

2/ How to disentangle homeo-genomes?

3/ Homeo-Splitter Validation

Explicit disentangling: validation

- Validation using diploids relatives
 - > Focusing on 3709 Contigoria for which we found
 - 1 homologous Urartu contig: Contigura
 - 1 homologous Speltoides contig: Contig_{Spe}
 - 0 or 1 other homologous Contigoria
 - ⇒3083 contigs with at least one questionable site

New contigs in 967 cases, if the method works they should be more similar to Contig_{Ura} and Contig_{Spe}

Explicit disentangling: validation

Validation: $diffSym=(Sim_{lk1,U} + Sim_{lk2,S}) - (Sim_{O,U} + Sim_{O,S})$

Significant improvement:

- ⇒ paired t-test: p-value < 2.2e-16
- ⇒ Average diffSym 0.43

Validation using FIS

Polyploidy should not be ignored during SNP calling

Mapping on diploid relatives helps but is insufficient

Explicitly disentangling homeologous contigs seems to be a very promising solution

Current Pipeline

Transcripts of the EPO population

About 2 billions reads for 106 accessions

Assembling

Consensus Assembly

70000 Contigs (with Chimeric)

Mapping + HoméoSplitter

New Consensus Assembly

80000 clean Contigs

Mapping + SNP Calling

About 90000 SNPS!

Disentangling homeologous contigs in allotetraploid assembly: application to durum wheat.

V Ranwez, Y Holtz, G Sarah, M Ardisson, S Santoni, S Glémin, M Tavaud-Pirra. BMC Bioinformatics 14 (Suppl 15), S15 (RECOMB-CG 2013 special issue)

http://bioweb.supagro.inra.fr/homeoSplitter/

Thank you for your attention

Our reads on *Krasileva et al 2013 de novo contigs*

Our reads on Krasileva et al 2013 de novo contigs split by their phasing

Our reads on Krasileva et al 2013 de novo contigs split by HomeoSplitter

$$F_{is} = 1 - \frac{H_{obs}}{H_e}$$