BIOSTAT 650 Project

Jaehoon Kim (Group 19)

2024-11-17

```
df = NHANES
```

Initial data exploration of covariates that had a relation to SexAge were difficult to perform via a correlation plot due to many covariates being factors.

```
covariates = c("SexAge", "Gender", "HHIncome", "Education", "PhysActive", "SameSex", "AlcoholYear", "RegularMa
sapply(df[, covariates], is.factor)
##
                       Gender
                                   HHIncome
                                                Education
                                                             PhysActive
                                                                              SameSex
         SexAge
                                                                                 TRUE
##
          FALSE
                         TRUE
                                       TRUE
                                                     TRUE
                                                                   TRUE
##
    AlcoholYear RegularMarij
                                  HardDrugs
          FALSE
                                       TRUE
#M = cor(df[, covariates])
#corrplot(M, method = 'number')
```

Performing several multiple linear regressions, we found two models of interest after some exploratory data analysis with different covariates for which statistical significance persisted even after controlling for some social demographic covariates. Preliminary analysis suggest that hard drug use and regular marijuana is associated on average 1-2 years earlier first sexual activity. Thus, drug use may be associated with higher frequency of sexual activity.

```
model <- lm(SexAge ~ SmokeNow, df)
summary(model)</pre>
```

```
##
## Call:
  lm(formula = SexAge ~ SmokeNow, data = df)
##
## Residuals:
##
     Min
             1Q Median
                           3Q
                                 Max
## -7.872 -1.872 0.070
                       1.128 21.128
##
##
  Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.8724
                           0.0880 191.722 < 2e-16 ***
## SmokeNowYes -0.9424
                           0.1241
                                  -7.596 4.35e-14 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.047 on 2411 degrees of freedom
     (7587 observations deleted due to missingness)
## Multiple R-squared: 0.02337,
                                   Adjusted R-squared:
## F-statistic: 57.69 on 1 and 2411 DF, p-value: 4.352e-14
```

```
model <- lm(SexAge ~ AlcoholYear, df)</pre>
summary(model)
##
## Call:
## lm(formula = SexAge ~ AlcoholYear, data = df)
##
## Residuals:
##
                1Q Median
      Min
                                3Q
                                       Max
## -8.2924 -2.2326 -0.2855 1.7076 26.7105
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 17.2923935 0.0603297 286.632
                                             <2e-16 ***
## AlcoholYear -0.0005747 0.0004852 -1.185
                                                0.236
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.424 on 5032 degrees of freedom
     (4966 observations deleted due to missingness)
## Multiple R-squared: 0.0002788, Adjusted R-squared: 8.014e-05
## F-statistic: 1.403 on 1 and 5032 DF, p-value: 0.2362
model <- lm(SexAge ~ RegularMarij+HardDrugs+RegularMarij*HardDrugs, df)</pre>
summary(model)
##
## Call:
## lm(formula = SexAge ~ RegularMarij + HardDrugs + RegularMarij *
       HardDrugs, data = df)
##
## Residuals:
##
                1Q Median
       Min
                                3Q
                                       Max
## -9.0399 -2.0399 -0.3123 1.1842 28.9601
##
## Coefficients:
##
                                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                18.03995
                                           0.06268 287.823 < 2e-16 ***
## RegularMarijYes
                                -2.22420
                                            0.14750 -15.080 < 2e-16 ***
## HardDrugsYes
                                -1.72766
                                           0.20925 -8.256 < 2e-16 ***
## RegularMarijYes:HardDrugsYes 1.44824
                                           0.28116 5.151 2.7e-07 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.464 on 4712 degrees of freedom
     (5284 observations deleted due to missingness)
## Multiple R-squared: 0.08977,
                                   Adjusted R-squared: 0.08919
## F-statistic: 154.9 on 3 and 4712 DF, p-value: < 2.2e-16
model |>
 tbl_regression(intercept = TRUE, show_single_row = c(RegularMarij, HardDrugs))|>
  as_gt() |>
  gt::tab_header(title = "SexAge MLR")
```

SexAge MLR

Characteristic	Beta	95% CI ¹	p-value
(Intercept)	18	18, 18	< 0.001
RegularMarij	-2.2	-2.5, -1.9	< 0.001
HardDrugs	-1.7	-2.1, -1.3	< 0.001
RegularMarij * HardDrugs			
Yes * Yes	1.4	0.90, 2.0	< 0.001

model <- lm(SexNumPartnLife ~ RegularMarij+HardDrugs+RegularMarij*HardDrugs, df)</pre>

¹CI = Confidence Interval

as_gt() |>

gt::tab_header(title = "SexNumPartnLife MLR")

```
summary(model)
##
## Call:
## lm(formula = SexNumPartnLife ~ RegularMarij + HardDrugs + RegularMarij *
##
      HardDrugs, data = df)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                           -0.41 1991.59
           -8.41 -5.41
##
   -37.59
## Coefficients:
                               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                 8.4060
                                            1.0513 7.996 1.59e-15 ***
## RegularMarijYes
                                14.8056
                                            2.5393
                                                     5.831 5.88e-09 ***
## HardDrugsYes
                                            3.6078
                                                     3.761 0.000171 ***
                                13.5674
## RegularMarijYes:HardDrugsYes
                                0.8151
                                            4.8573
                                                     0.168 0.866740
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 59.88 on 4897 degrees of freedom
    (5099 observations deleted due to missingness)
## Multiple R-squared: 0.03038,
                                   Adjusted R-squared: 0.02978
## F-statistic: 51.14 on 3 and 4897 DF, p-value: < 2.2e-16
model |>
 tbl_regression(intercept = TRUE, show_single_row = c(RegularMarij, HardDrugs))|>
```

SexNumPartnLife MLR

Characteristic	Beta	95% CI ¹	p-value
(Intercept)	8.4	6.3, 10	< 0.001
RegularMarij	15	9.8, 20	< 0.001
HardDrugs	14	6.5, 21	< 0.001
RegularMarij * HardDrugs			
Yes * Yes	0.82	-8.7, 10	0.9

¹CI = Confidence Interval

SexAge is has a good distribution but SexNumPartnLife has extreme skenwness and is discrete count data. This requires a Poisson regression which is out side the scopre of this course. Created new variable using the duration, since first sexual activity where (Age - SexAge) since Age >= SexAge, and dividing by the number of sexual partners in life to see frequency of sexual activity. New variable was log transformed due to extreme skewness that violated normality assumption, which could be checked by QQPlot.

Due to extreme skewness, we tried to find some observations that had implausible reported data that could been a typo or non serious answer. For instance, observations 8576 and 3416 reported to have had a first sexual activity at 9 with 360 and 500 sexual partners in life, respectively. Observations 4579 and 4580 reported to have had a first sexual activity at 10 and both reportedly had 700 sexual partners in life. Observations 4579 and 4580 reported to have had a first sexual activity at 10 and both reportedly had 700 sexual partners in life. We removed these outliers.

hist(df\$SexAge, main= "First Age at which Sexual Activity Occured")

First Age at which Sexual Activity Occured

hist(df\$SexNumPartYear, main =)

Histogram of df\$SexNumPartYear

hist(df\$SexNumPartnLife)

Histogram of df\$SexNumPartnLife


```
#Show observations for which SexAge > Age, None
df[which(df$SexAge > df$Age), ]
## # A tibble: 0 x 76
## # i 76 variables: ID <int>, SurveyYr <fct>, Gender <fct>, Age <int>,
      AgeDecade <fct>, AgeMonths <int>, Race1 <fct>, Race3 <fct>,
## #
      Education <fct>, MaritalStatus <fct>, HHIncome <fct>, HHIncomeMid <int>,
      Poverty <dbl>, HomeRooms <int>, HomeOwn <fct>, Work <fct>, Weight <dbl>,
## #
## #
      Length <dbl>, HeadCirc <dbl>, Height <dbl>, BMI <dbl>,
       BMICatUnder20yrs <fct>, BMI_WHO <fct>, Pulse <int>, BPSysAve <int>,
## #
## #
      BPDiaAve <int>, BPSys1 <int>, BPDia1 <int>, BPSys2 <int>, BPDia2 <int>, ...
#Show observations with more than 40 sexual partners during lifetime
boxplot(df$SexNumPartnLife, main = "Number of sexual partners dist. before outlier removal")
```

Number of sexual partners dist. before outlier removal


```
df[which(df$SexNumPartnLife > 40), c("Age", "SexAge", "SexNumPartnLife")]
## # A tibble: 318 x 3
##
        Age SexAge SexNumPartnLife
##
      <int> <int>
                              <int>
##
   1
         54
                                100
                12
##
    2
         56
                20
                                 90
##
    3
         36
                16
                                 45
         47
                                 45
##
    4
                19
##
                                288
    5
         61
                15
##
    6
         61
                15
                                288
##
    7
         61
                15
                                288
         42
                18
##
    8
                                 65
##
    9
         42
                18
                                 65
                                 50
## 10
                15
## # i 308 more rows
#Remove observations with more than 40 sexual partners during lifetime
df = df[-which(df$SexNumPartnLife > 40),]
boxplot(df$SexNumPartnLife, main = "Number of sexual partners dist. after outlier removal")
```

Number of sexual partners dist. after outlier removal


```
#Before log transformation
df = mutate(df, AvgSexFreq = SexNumPartnLife/(Age-SexAge))
hist(df$AvgSexFreq, main = "AvgSexFreq Before log transformation")
```

AvgSexFreq Before log transformation


```
#After log transformation
df = mutate(df, AvgSexFreq = log(SexNumPartnLife/(Age-SexAge)))
hist(df$AvgSexFreq, main = "AvgSexFreq After log transformation")
```

AvgSexFreq After log transformation


```
tbl_summary(df, by = HardDrugs,
    statistic = list(
    all_continuous() ~ "{mean} ({sd})",
    all_categorical() ~ "{n} / {N} ({p}%)"
    ))
```

4234 missing rows in the "HardDrugs" column have been removed.

Characteristic	No N = 4.538^1	Yes $N = 910^{1}$
ID	61,879 (5,889)	62,174 (5,956)
SurveyYr		
2009_10	2,286 / 4538 (50%)	442 / 910 (49%)
2011_12	2,252 / 4538 (50%)	468 / 910 (51%)
Gender		, , ,
female	2,365 / 4538 (52%)	362 / 910 (40%)
male	2,173 / 4538 (48%)	548 / 910 (60%)
Age	42 (15)	43 (13)
AgeDecade		
0-9	0 / 4538 (0%)	0 / 910 (0%)
10-19	207 / 4538 (4.6%)	22 / 910 (2.4%)
20-29	984 / 4538 (22%)	156 / 910 (17%)
30-39	926 / 4538 (20%)	146 / 910 (16%)
40-49	895 / 4538 (20%)	246 / 910 (27%)

50-59 60-69 70+	821 / 4538 (18%) 705 / 4538 (16%) 0 / 4538 (0%)	270 / 910 (30%) 70 / 910 (7.7%) 0 / 910 (0%)
AgeMonths	507 (175)	497 (144)
Unknown	$2,\!252$	468
Race1	EOO / 4EOO (1107)	75 / 010 (0.907)
Black	508 / 4538 (11%)	75 / 910 (8.2%)
Hispanic Mexican	285 / 4538 (6.3%)	25 / 910 (2.7%)
	439 / 4538 (9.7%)	66 / 910 (7.3%)
White Other	2,938 / 4538 (65%) 368 / 4538 (8.1%)	696 / 910 (76%) 48 / 910 (5.3%)
Race3	300 / 4330 (0.170)	40 / 910 (0.3/0)
Asian	140 / 2252 (6.2%)	9 / 468 (1.9%)
Black	261 / 2252 (0.2%)	29 / 468 (6.2%)
Hispanic	150 / 2252 (6.7%)	11 / 468 (2.4%)
Mexican	207 / 2252 (9.2%)	28 / 468 (6.0%)
White	1,445 / 2252 (64%)	369 / 468 (79%)
Other	49 / 2252 (2.2%)	22 / 468 (4.7%)
Unknown	2,286	442
Education	,	
8th Grade	197 / 4322 (4.6%)	17 / 888 (1.9%)
9 - 11th Grade	428 / 4322 (9.9%)	142 / 888 (16%)
High School	866 / 4322 (20%)	199 / 888 (22%)
Some College	1,356 / 4322 (31%)	338 / 888 (38%)
College Grad	1,475 / 4322 (34%)	192 / 888 (22%)
Unknown	216	22
MaritalStatus		
Divorced	373 / 4330 (8.6%)	134 / 887 (15%)
LivePartner	333 / 4330 (7.7%)	130 / 887 (15%)
Married	2,489 / 4330 (57%)	394 / 887 (44%)
NeverMarried	912 / 4330 (21%)	180 / 887 (20%)
Separated	110 / 4330 (2.5%)	
Widowed	113 / 4330 (2.6%)	17 / 887 (1.9%)
Unknown	208	23
HHIncome	0.4 / 40.4 = (4 = (4)	
0-4999	64 / 4217 (1.5%)	21 / 850 (2.5%)
5000-9999	84 / 4217 (2.0%)	21 / 850 (2.5%)
10000-14999	225 / 4217 (5.3%)	45 / 850 (5.3%)
15000-19999	190 / 4217 (4.5%)	52 / 850 (6.1%)
20000-24999 25000-34999	231 / 4217 (5.5%) 384 / 4217 (9.1%)	42 / 850 (4.9%) 103 / 850 (12%)
35000-34999	388 / 4217 (9.1%)	66 / 850 (7.8%)
45000-54999	365 / 4217 (9.2%)	80 / 850 (9.4%)
55000-64999	327 / 4217 (7.8%)	51 / 850 (6.0%)
65000-74999	273 / 4217 (6.5%)	59 / 850 (6.9%)
00000 14000	210 / 1211 (0.070)	33 / 333 (0.370)

	(1007)	04 (070 (4404)
75000-99999	551 / 4217 (13%)	91 / 850 (11%)
more 99999	1,135 / 4217 (27%)	
Unknown	321	60
HHIncomeMid	61,147 (32,344)	58,129 (33,116)
Unknown	321	60
Poverty	3.06(1.67)	2.82(1.69)
Unknown	275	58
HomeRooms	6(2)	6(2)
Unknown	25	5
HomeOwn		
Own	3,016 / 4513 (67%)	522 / 905 (58%)
Rent	1,401 / 4513 (31%)	357 / 905 (39%)
Other	96 / 4513 (2.1%)	26 / 905 (2.9%)
Unknown	25	5
Work		
Looking	178 / 4537 (3.9%)	73 / 910 (8.0%)
NotWorking	1,214 / 4537 (27%)	238 / 910 (26%)
Working	3,145 / 4537 (69%)	599 / 910 (66%)
Unknown	1	0
Weight	83 (22)	84 (20)
Unknown	29	1
Length	NA (NA)	NA (NA)
Unknown	4,538	910
HeadCirc	NA (NA)	NA (NA)
Unknown	4,538	910
Height	,	172 (9)
Unknown	169 (10) 21	172(9)
BMI		
	29 (7)	28 (6)
Unknown	29	1
BMICatUnder20yrs	15 / 109 (1507)	0 / 7 (00/)
UnderWeight	15 / 103 (15%)	0 / 7 (0%)
NormWeight	54 / 103 (52%)	7 / 7 (100%)
OverWeight	10 / 103 (9.7%)	0 / 7 (0%)
Obese	24 / 103 (23%)	0 / 7 (0%)
Unknown	4,435	903
BMI_WHO	00 / 1100 (0.004)	0 / 00 / (1 004)
12.0_18.5	92 / 4492 (2.0%)	9 / 904 (1.0%)
18.5_to_24.9	1,306 / 4492 (29%)	277 / 904 (31%)
25.0_to_29.9	1,444 / 4492 (32%)	311 / 904 (34%)
30.0_plus	1,650 / 4492 (37%)	307 / 904 (34%)
Unknown	46	6
Pulse	73 (12)	72 (11)
Unknown	68	13
BPSysAve	118 (15)	$120 \ (16)$
Unknown	73	15

BPDiaAve	70 (12)	72 (11)
Unknown	73	15
BPSys1	119 (15)	120 (16)
Unknown	227	39
BPDia1	71 (12)	73 (11)
Unknown	227	39
BPSys2	119 (15)	120 (17)
Unknown	168	19
BPDia2	70 (12)	73 (11)
Unknown	168	19
BPSys3	118 (15)	120 (16)
Unknown	153	19
BPDia3	70 (12)	72 (12)
Unknown	$1\overline{53}$	19
Testosterone	215(228)	245 (250)
Unknown	2,423	470
DirectChol	1.36(0.41)	1.38(0.42)
Unknown	188	26
TotChol	5.04 (1.04)	5.25(1.15)
Unknown	188	26
UrineVol1	126 (94)	133 (94)
Unknown	14	1
UrineFlow1	1.07(0.98)	1.07(1.04)
Unknown	240	56
UrineVol2	131 (94)	114 (81)
Unknown	3,802	800
UrineFlow2	1.23(1.13)	1.10 (1.14)
Unknown	3,804	800
Diabetes	342 / 4536 (7.5%)	75 / 910 (8.2%)
Unknown	2	0
DiabetesAge	46 (13)	43 (13)
Unknown	4,261	852
HealthGen	1,201	002
Excellent	575 / 4538 (13%)	72 / 904 (8.0%)
Vgood	1,531 / 4538 (34%)	281 / 904 (31%)
Good	1,771 / 4538 (39%)	384 / 904 (42%)
Fair	568 / 4538 (13%)	
Poor	93 / 4538 (2.0%)	26 / 904 (2.9%)
Unknown	0	6
DaysPhysHlthBad	3 (7)	4 (8)
Unknown	0	6
DaysMentHlthBad Unknown	4 (8)	6 (9) 6
	1	U
LittleInterest	2 542 / 4526 (7007)	612 / 000 (600/)
None	3,542 / 4536 (78%)	613 / 899 (68%)

0 1	- 11 / 1700 (1007)	100 / 000 (0104)
Several	741 / 4536 (16%)	186 / 899 (21%)
Most	253 / 4536 (5.6%)	100 / 899 (11%)
Unknown	2	11
Depressed		
None	3,673 / 4538 (81%)	599 / 904 (66%)
Several	626 / 4538 (14%)	208 / 904 (23%)
Most	239 / 4538 (5.3%)	97 / 904 (11%)
Unknown	0	6
	2 (2)	· ·
nPregnancies	3 (2)	3(2)
Unknown	2,763	614
nBabies	2(1)	2(1)
Unknown	2,885	644
Age1stBaby	23 (5)	23(5)
Unknown	$3,\!269$	729
SleepHrsNight	$7^{'}(1)$	7 (1)
Unknown	6	5
SleepTrouble	1,028 / 4538 (23%)	365 / 910 (40%)
-	. ,	
PhysActive	2,617 / 4538 (58%)	462 / 910 (51%)
PhysActiveDays		
1	279 / 2388 (12%)	43 / 424 (10%)
2	419 / 2388 (18%)	90 / 424 (21%)
3	577 / 2388 (24%)	109 / 424 (26%)
4	296 / 2388 (12%)	62 / 424 (15%)
5	403 / 2388 (17%)	72 / 424 (17%)
6	127 / 2388 (5.3%)	13 / 424 (3.1%)
7	287 / 2388 (12%)	35 / 424 (8.3%)
Unknown		486
	2,150	400
TVHrsDay	10 / 00 7 / (0.007)	10 / 100 (0 104)
0_hrs	46 / 2251 (2.0%)	
0_to_1_hr	318 / 2251 (14%)	55 / 468 (12%)
1_hr	416 / 2251 (18%)	85 / 468 (18%)
2_hr	582 / 2251 (26%)	128 / 468 (27%)
3 _hr	391 / 2251 (17%)	75 / 468 (16%)
4 _hr	232 / 2251 (10%)	40 / 468 (8.5%)
$More_4$ _hr	266 / 2251 (12%)	69 / 468 (15%)
Unknown	2,287	442
	2,201	442
CompHrsDay	277 / 2272 (170/)	01 / 400 (1007)
0_hrs	375 / 2252 (17%)	91 / 468 (19%)
0_to_1_hr	$609 \ / \ 2252 \ (27\%)$	167 / 468 (36%)
1_hr	533 / 2252 (24%)	94 / 468 (20%)
2 _hr	306 / 2252 (14%)	48 / 468 (10%)
3_hr	166 / 2252 (7.4%)	27 / 468 (5.8%)
4_hr	109 / 2252 (4.8%)	14 / 468 (3.0%)
$\overline{\mathrm{More}}$ 4_hr	154 / 2252 (6.8%)	27 / 468 (5.8%)
Unknown	2,286	442
O IIIXIIO W II	2,200	774

TVHrsDayChild	NA (NA)	NA (NA)
Unknown	4,538	910
CompHrsDayChild	NA (NA)	NA (NA)
Unknown	4,538	910
Alcohol12PlusYr	3,454 / 4436 (78%)	847 / 890 (95%)
Unknown	102	20
AlcoholDay	3(3)	4(3)
Unknown	1,160	142
AlcoholYear	66 (95)	103 (112)
Unknown	$5\dot{6}\dot{6}$	26
SmokeNow	722 / 1519 (48%)	374 / 686 (55%)
Unknown	3,019	224
Smoke100	1,519 / 4331 (35%)	686 / 888 (77%)
Unknown	207	22
Smoke100n		
Non-Smoker	2,812 / 4331 (65%)	202 / 888 (23%)
Smoker	1,519 / 4331 (35%)	686 / 888 (77%)
Unknown	207	22
SmokeAge	18 (4)	17 (5)
Unknown	3,077	251
Marijuana	1,847 / 3828 (48%)	809 / 840 (96%)
Unknown	710	70
AgeFirstMarij	18 (4)	16 (4)
Unknown	2,692	101
RegularMarij	617 / 3828 (16%)	569 / 840 (68%)
Unknown	710	70
AgeRegMarij	18 (4)	18 (5)
Unknown	3,921	341
SexEver	4,306 / 4528 (95%)	910 / 910 (100%)
Unknown	10	0
SexAge	18 (4)	16(3)
Unknown	236	0
SexNumPartnLife	7 (7)	14 (10)
Unknown	44	4
SexNumPartYear	1 (2)	1 (2)
Unknown	724	70
SameSex	204 / 4529 (4.5%)	168 / 910 (18%)
Unknown	9	0
SexOrientation		
Bisexual	70 / 3745 (1.9%)	42 / 827 (5.1%)
Heterosexual	3,625 / 3745 (97%)	758 / 827 (92%)
Homosexual	50 / 3745 (1.3%)	27 / 827 (3.3%)
Unknown	793	83
PregnantNow		
Yes	59 / 1198 (4.9%)	1 / 155 (0.6%)

```
      No
      1,114 / 1198 (93%)
      154 / 155 (99%)

      Unknown
      25 / 1198 (2.1%)
      0 / 155 (0%)

      Unknown
      3,340
      755

      AvgSexFreq
      NA (NA)
      -Inf (NA)

      Unknown
      269
      4
```

$$AvgSexFreq = \log\left(\frac{SexNumPartnLife}{Age - SexAge}\right)$$

```
#Remove negative infinity from numerator(NumPartnLife) or Age-SexAge being 0 for and change to zero.
obs = df[is.infinite(df$AvgSexFreq),]
obs[, c("Age", "SexAge", "SexNumPartnLife")]
```

```
## # A tibble: 50 x 3
##
        Age SexAge SexNumPartnLife
##
      <int>
             <int>
                               <int>
##
         29
                 29
    1
                                   1
##
   2
         29
         29
##
    3
                 29
                                   1
##
    4
         29
                 29
##
   5
         52
                 19
##
   6
         28
                16
         23
                 23
##
    7
                                   1
         18
##
    8
                 18
                                   1
##
   9
         26
                 26
                                   1
## 10
         24
                 14
## # i 40 more rows
```

df\$AvgSexFreq[is.infinite(df\$AvgSexFreq)] = 0
#unique(df\$AvgSexFreq)

model <- lm(AvgSexFreq ~ SmokeNow+AlcoholYear+RegularMarij+HardDrugs+RegularMarij*HardDrugs+Age+Gender+
summary(model)</pre>

```
##
## lm(formula = AvgSexFreq ~ SmokeNow + AlcoholYear + RegularMarij +
##
       HardDrugs + RegularMarij * HardDrugs + Age + Gender + HHIncome +
##
       Education + BMI + DiabetesAge + Depressed + LittleInterest +
##
       PhysActive + SameSex, data = df)
##
## Residuals:
##
                  1Q
                      Median
  -0.70378 -0.19899 -0.01532 0.11520 0.91187
##
## Coefficients:
                                Estimate Std. Error t value Pr(>|t|)
                                           1.366427 -1.498 0.144672
## (Intercept)
                                -2.046433
## SmokeNowYes
                               -0.081948
                                           0.366994 -0.223 0.824820
                                0.001392
## AlcoholYear
                                          0.001289
                                                     1.080 0.288895
## RegularMarijYes
                               -0.491636
                                          0.255418 -1.925 0.063780 .
                                          0.429427 3.103 0.004152 **
## HardDrugsYes
                                1.332538
```

¹Mean (SD); n / N (%)

```
## Age
                                -0.005915
                                            0.021050 -0.281 0.780634
## Gendermale
                                 0.879161
                                            0.210608
                                                       4.174 0.000236 ***
## HHIncome 5000-9999
                                 0.776899
                                            0.486066
                                                       1.598 0.120448
## HHIncome10000-14999
                                                       0.658 0.515709
                                 0.363545
                                            0.552703
## HHIncome15000-19999
                                 0.402849
                                            0.661642
                                                       0.609 0.547199
## HHIncome20000-24999
                                 0.323434
                                            0.485667
                                                       0.666 0.510526
## HHIncome25000-34999
                                 0.478661
                                            0.457666
                                                       1.046 0.303974
## HHIncome35000-44999
                                 0.535294
                                            0.418417
                                                       1.279 0.210587
## HHIncome45000-54999
                                 1.602928
                                            0.747565
                                                       2.144 0.040240 *
## HHIncome55000-64999
                                -0.090747
                                            0.451143 -0.201 0.841940
## HHIncome65000-74999
                                0.967943
                                            0.411045
                                                       2.355 0.025269 *
## HHIncome75000-99999
                                -0.713722
                                            0.488594
                                                      -1.461 0.154475
## HHIncomemore 99999
                                -0.033470
                                            0.455944 -0.073 0.941968
## Education9 - 11th Grade
                                 0.095578
                                            0.506340
                                                      0.189 0.851550
## EducationHigh School
                                 0.554184
                                            0.479747
                                                       1.155 0.257144
## EducationSome College
                                 0.343311
                                            0.456860
                                                       0.751 0.458232
## EducationCollege Grad
                                            0.534455
                                                      -2.067 0.047505 *
                                -1.104466
## BMI
                                 0.005673
                                            0.018508
                                                       0.306 0.761351
## DiabetesAge
                                -0.001027
                                            0.011525 -0.089 0.929550
## DepressedSeveral
                                 0.589864
                                            0.324888
                                                       1.816 0.079441
## DepressedMost
                                 0.089268
                                            0.394015
                                                      0.227 0.822303
## LittleInterestSeveral
                                            0.289344 -1.520 0.138960
                                -0.439828
## LittleInterestMost
                                            0.385088 -1.582 0.124191
                                -0.609118
## PhysActiveYes
                                                       0.112 0.911748
                                 0.040494
                                            0.362289
## SameSexYes
                                -0.065757
                                            0.481588 -0.137 0.892306
## RegularMarijYes:HardDrugsYes -1.367908
                                            0.556269 -2.459 0.019916 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4629 on 30 degrees of freedom
     (9621 observations deleted due to missingness)
## Multiple R-squared: 0.832, Adjusted R-squared: 0.6641
## F-statistic: 4.954 on 30 and 30 DF, p-value: 1.706e-05
  tbl_regression(intercept = TRUE, show_single_row = c(RegularMarij, HardDrugs, Gender, PhysActive, SameS
  as_gt() |>
  gt::tab header(title = "Full model")
```

Full model

Characteristic	Beta	95% CI ¹	p-value
(Intercept)	-2.0	-4.8, 0.74	0.14
SmokeNow			
No			
Yes	-0.08	-0.83, 0.67	0.8
AlcoholYear	0.00	0.00, 0.00	0.3
RegularMarij	-0.49	-1.0, 0.03	0.064
HardDrugs	1.3	0.46, 2.2	0.004
Age	-0.01	-0.05, 0.04	0.8
Gender	0.88	0.45, 1.3	< 0.001
HHIncome			

0-4999	_		
5000-9999	0.78	-0.22, 1.8	0.12
10000-14999	0.36	-0.77, 1.5	0.5
15000-19999	0.40	-0.95, 1.8	0.5
20000-24999	0.32	-0.67, 1.3	0.5
25000-34999	0.48	-0.46, 1.4	0.3
35000-44999	0.54	-0.32, 1.4	0.2
45000-54999	1.6	0.08, 3.1	0.040
55000-64999	-0.09	-1.0, 0.83	0.8
65000-74999	0.97	0.13, 1.8	0.025
75000-99999	-0.71	-1.7, 0.28	0.2
more 99999	-0.03	-0.96, 0.90	> 0.9
Education			
8th Grade			
9 - 11th Grade	0.10	-0.94, 1.1	0.9
High School	0.55	-0.43, 1.5	0.3
Some College	0.34	-0.59, 1.3	0.5
College Grad	-1.1	-2.2, -0.01	0.048
BMI	0.01	-0.03, 0.04	0.8
DiabetesAge	0.00	-0.02, 0.02	> 0.9
Depressed			
None			
Several	0.59	-0.07, 1.3	0.079
Most	0.09	-0.72, 0.89	0.8
LittleInterest			
None			
Several	-0.44	-1.0, 0.15	0.14
Most	-0.61	-1.4, 0.18	0.12
PhysActive	0.04	-0.70, 0.78	> 0.9
SameSex	-0.07	-1.0, 0.92	0.9
RegularMarij * HardDrugs			
Yes * Yes	-1.4	-2.5, -0.23	0.020

 1 CI = Confidence Interval

RegularMarij

Using the sequential sum of squares we tested for each block of covariates at a significance level 0.001.

1 1.2551 1.2551 5.8574 0.021777 *

```
1 1.6838 1.6838 7.8579 0.008784 **
## HardDrugs
                       1 8.4943 8.4943 39.6406 6.113e-07 ***
## Age
## Gender
                       1 3.1811 3.1811 14.8454 0.000571 ***
## HHIncome
                      11 7.4549 0.6777 3.1628 0.005990 **
                        4 3.1691 0.7923 3.6973 0.014586 *
## Education
## BMI
                       1 0.0581 0.0581 0.2713 0.606307
                   1 0.0287 0.0287 0.1341 0.716830
## DiabetesAge
                        2 2.8144 1.4072 6.5671 0.004310 **
## Depressed
## LittleInterest
                     2 0.8567 0.4283 1.9990 0.153115
## PhysActive
                        1 0.0878 0.0878 0.4097 0.526967
## SameSex
                        1 0.0067 0.0067 0.0312 0.860945
## RegularMarij:HardDrugs 1 1.2958 1.2958 6.0471 0.019916 *
## Residuals
                       30 6.4285 0.2143
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
SSY = sum(aov$"Sum Sq")
SSQ = aov$"Sum Sq"
MSE = aov$"Mean Sq"[16]
ss1 = sum(SSQ[c(1:4, 15)])
print(ss1)
## [1] 5.691796
fstat1 = ss1/5/MSE
pval1 = 1-pf(q = fstat1, df1 = 5, df2 = n-16)
print(c(fstat1, pval1))
## [1] 5.312440703 0.006065241
ss2 = sum(SSQ[5:8])
print(ss2)
## [1] 22.29934
fstat2 = ss2/4/MSE
pval2 = 1-pf(q = fstat2, df1 = 4, df2 = n-16)
print(c(fstat2, pval2))
## [1] 2.601638e+01 2.363474e-06
ss3 = sum(SSQ[9:14])
print(ss3)
## [1] 3.852443
fstat3 = ss3/5/MSE
pval3 = 1-pf(q = fstat3, df1 = 5, df2 = n-16)
print(c(fstat3, pval3))
## [1] 3.59568007 0.02665494
ss4 = sum(SSQ[14])
print(ss4)
## [1] 0.006689209
fstat4 = ss3/1/MSE
pval4 = 1-pf(q = fstat4, df1 = 1, df2 = n-16)
```

```
print(c(fstat4, pval4))
```

[1] 1.797840e+01 8.238241e-04

- (i) $\beta_{substance} = (\beta_{SmokeNow}, \beta_{AlcoholYear}, \beta_{RegularMarij}, \beta_{HardDrugs}, \beta_{RegularMarij*HardDrugs})^T$
- (ii) $\boldsymbol{\beta}_{Demo} = (\beta_{Age}, \beta_{Gender}, \beta_{HHIncome}, \beta_{Education})^T$
- (iii) $\beta_{Health} = (\beta_{BMI}, \beta_{DiabetesAges}, \beta_{Depressed}, \beta_{LittleInterest}, \beta_{PhysActive})^T$
- (iv) $\beta_{SameSex} = (\beta_{SameSex})^T$

Step	Tested Var.	SS(Num.)	SS(Denom.)	Test Stat.	Dist.	p-value	Decision	Stopping Rule	Decision
I	$oldsymbol{eta}_{Substanc}$	ee13.88444	26.9329	5.155204576	$F_{5,14}$	0.00126214	6Reject	Do not	Collect
II	$oldsymbol{eta}_{Demo}$	55.61473	26.9329	25.81174	$F_{4,14}$	6.872507e- 10	Reject	Do not stop	Collect
III	$oldsymbol{eta}_{Health}$	5.687399	26.9329	2.11169493	$F_{5,14}$	0.08788892	Fail to Reject	Stop	Not Collect
IV	$oldsymbol{eta}_{SameSex}$, 0.0017084	986.9329	10.55847467	$F_{1,14}$	0.00260712	5	NA	NA

Final model

$$AvgSexFreq = X_{Substance} \beta_{Substance} + X_{Demo} \beta_{Demo} + \epsilon, \epsilon \sim N(\mathbf{0}, \sigma^2 I)$$

```
library(ggplot2)
library(tidyr)
#Add new column based on missingness
covariates = c("AvgSexFreq", "SmokeNow","AlcoholYear", "RegularMarij", "HardDrugs", "Age", "Gender","HH
sum(complete.cases(df[, covariates]))

## [1] 1639
df$missingness <- ifelse(complete.cases(df[, covariates]), "Not Missing", "Missing")

tbl_summary(df[,c("Age", "Gender", "HHIncome", "Education", "MaritalStatus", "missingness")], by = miss
    statistic = list(
        all_continuous() ~ "{mean} ({sd})",
        all_categorical() ~ "{n} / {N} ({p}%)"
    ))</pre>
```

Characteristic	$Missing N = 8,043^{1}$	Not Missing $N = 1,639^1$
Age	36 (24)	41 (11)
Gender		
female	4,235 / 8043 (53%)	730 / 1639 (45%)
male	3,808 / 8043 (47%)	$909 \ / \ 1639 \ (55\%)$
HHIncome		
0-4999	152 / 7266 (2.1%)	36 / 1639 (2.2%)
5000-9999	204 / 7266 (2.8%)	36 / 1639 (2.2%)
10000-14999	$425 \ / \ 7266 \ (5.8\%)$	99 / 1639 (6.0%)
15000-19999	410 / 7266 (5.6%)	98 / 1639 (6.0%)
20000-24999	469 / 7266 (6.5%)	117 / 1639 (7.1%)
25000 - 34999	$757 \ / \ 7266 \ (10\%)$	165 / 1639 (10%)

35000-44999	709 / 7266 (9.8%)	133 / 1639 (8.1%)
45000-54999	611 / 7266 (8.4%)	154 / 1639 (9.4%)
55000-64999	483 / 7266 (6.6%)	125 / 1639 (7.6%)
65000-74999	407 / 7266 (5.6%)	107 / 1639 (6.5%)
75000-99999	841 / 7266 (12%)	204 / 1639 (12%)
more 99999	1,798 / 7266 (25%)	365 / 1639 (22%)
Unknown	777	0
Education		
8th Grade	372 / 5267 (7.1%)	64 / 1639 (3.9%)
9 - 11th Grade	554 / 5267 (11%)	277 / 1639 (17%)
High School	$1,044 \ / \ 5267 \ (20\%)$	399 / 1639 (24%)
Some College	1,612 / 5267 (31%)	541 / 1639 (33%)
College Grad	$1,685 \ / \ 5267 \ (32\%)$	358 / 1639 (22%)
Unknown	2,776	0
MaritalStatus		
Divorced	453 / 5279 (8.6%)	191 / 1637 (12%)
LivePartner	273 / 5279 (5.2%)	247 / 1637 (15%)
Married	3,022 / 5279 (57%)	798 / 1637 (49%)
NeverMarried	970 / 5279 (18%)	335 / 1637 (20%)
Separated	134 / 5279 (2.5%)	45 / 1637 (2.7%)
Widowed	$427 \ / \ 5279 \ (8.1\%)$	21 / 1637 (1.3%)
Unknown	2,764	2

 $^{^{1}}$ Mean (SD); n / N (%)

```
missingness_comparison = glm(as.factor(missingness)~Age+Gender+HHIncome+Education+MaritalStatus, family
missingness_comparison |>
    tbl_regression(intercept = TRUE)|>
    as_gt() |>
    gt::tab_header(title = "Missingness Comparison")
```

Missingness Comparison

Characteristic	$\log(\mathrm{OR})^{1}$	95% CI ¹	p-value
(Intercept)	0.50	-0.09, 1.1	0.092
Age	-0.03	-0.04, -0.03	< 0.001
Gender			
female			
male	0.38	0.26, 0.50	< 0.001
HHIncome			
0-4999			
5000-9999	-0.30	-0.89, 0.29	0.3
10000-14999	-0.17	-0.66, 0.32	0.5
15000-19999	-0.11	-0.60, 0.39	0.7
20000-24999	0.09	-0.39, 0.58	0.7
25000-34999	-0.29	-0.75, 0.18	0.2

35000-44999	-0.43	-0.89, 0.05	0.077
45000-54999	-0.04	-0.51, 0.44	0.9
55000-64999	0.03	-0.44, 0.52	0.9
65000-74999	0.07	-0.41, 0.57	0.8
75000-99999	0.07	-0.39, 0.54	0.8
more 99999	-0.02	-0.46, 0.44	>0.9
Education	0.02	0.10, 0.11	<i>y</i> 0.0
8th Grade			
9 - 11th Grade	0.89	0.57, 1.2	< 0.001
		,	
High School	0.53	0.22, 0.85	0.001
Some College	0.29	-0.02, 0.61	0.072
College Grad	-0.17	-0.49, 0.17	0.3
MaritalStatus			
Divorced			
LivePartner	0.43	0.16, 0.70	0.002
Married	-0.61	-0.81, -0.40	< 0.001
NeverMarried	-0.86	-1.1, -0.62	< 0.001
Separated	-0.42	-0.83, -0.02	0.043
Widowed	-1.6	-2.1, -1.1	< 0.001

¹OR = Odds Ratio, CI = Confidence Interval

```
#for{}
#pdf export
```

Missingness for occurs for those aged below 20 because they are not recorded for some covariates. Why missingness for those aged above 60 occurs is unclear.

```
library(gridExtra)
```

```
## Warning: package 'gridExtra' was built under R version 4.4.2
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
p1 = ggplot(data = df, mapping=aes(x=Age, fill=as.factor(missingness)))+
  geom_bar(stat="count")+
  scale_fill_manual(values = c("gray", "red"))
p2 = ggplot(data = df, mapping=aes(x=Gender, fill=as.factor(missingness)))+
  geom_bar(stat="count")+
  scale_fill_manual(values = c("gray", "red"))
p3 = ggplot(data = df, mapping=aes(x=Education, fill=as.factor(missingness)))+
  geom_bar(stat="count")+
  scale_x_discrete(labels = c("<8th", "9-11th", "HS", "Some College", "College Grad" ))+</pre>
  scale_fill_manual(values = c("gray", "red"))
p4 = ggplot(data = df, mapping=aes(x=MaritalStatus, fill=as.factor(missingness)))+
  geom_bar(stat="count")+
  scale_fill_manual(values = c("gray", "red"))
```

```
p5 = ggplot(data = df, mapping=aes(x=HHIncome, fill=as.factor(missingness)))+
  geom_bar(stat="count")+
   scale_x_discrete(labels = c(1,2,3,4,5,6,7,8,9, 10, 11, 12, "NA")) +
  scale_fill_manual(values = c("gray", "red"))
grid.arrange(p1,p2,p3,p4,p5, nrow=5)
                                                                            as.iautui (111155111911<del>0</del>55)
                                                                                Missing
                                                                                Not Missing
                        20
                                       40
                                                     60
                                                                    80
                                      Age
                                                                            as.factor(missingness)
                                                                                Missing
                                                                                Not Missing
                       female
                                                     male
                                     Gender
                                                                            as.factor(missingness)
   2000 -
1000 -
                                                                                Missing
                                                                                Not Missing
                                  HS
                                       Some Colle@ollege Grad
                                                                ΝA
             <8th
                      9-11th
                                   Education
                                                                            as.factor(missingness)
                                                                                Missing
                                                                                Not Missing
                                                                 ΝA
          DivorcedLivePartner MarriedNeverMarriedeparated Widowed
                                 MaritalStatus
                                                                            as.factor(missingness)
                                                                                Missing
                                                                                Not Missing
                                                      10
                                                          11
                                                               . 12 NA
                                   HHIncome
```

m1 = lm(AvgSexFreq ~ SmokeNow+AlcoholYear+RegularMarij+HardDrugs+RegularMarij*HardDrugs+Age+Gender+HHIn
summary(m1)

```
##
## Call:
## lm(formula = AvgSexFreq ~ SmokeNow + AlcoholYear + RegularMarij +
##
       HardDrugs + RegularMarij * HardDrugs + Age + Gender + HHIncome +
##
       Education, data = df)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
  -2.5442 -0.4806
                   0.0178 0.5349
                                     2.2544
##
## Coefficients:
##
                                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                  0.4989789
                                            0.1776065
                                                         2.809 0.00502 **
## SmokeNowYes
                                  0.1232020
                                             0.0403154
                                                         3.056 0.00228 **
## AlcoholYear
                                  0.0009830
                                             0.0001831
                                                         5.367 9.15e-08 ***
## RegularMarijYes
                                            0.0490751
                                                         8.002 2.32e-15 ***
                                  0.3926936
```

```
-0.0498245 0.0017127 -29.091 < 2e-16 ***
## Age
                                       5.076 4.30e-07 ***
## Gendermale
                        0.1939702 0.0382140
## HHIncome 5000-9999
                        0.3091670 0.1775244
                                         1.742 0.08178 .
## HHIncome10000-14999
                        0.2968935 0.1462576
                                         2.030 0.04253 *
## HHIncome15000-19999
                                        0.978 0.32808
                        0.1435646 0.1467499
## HHIncome20000-24999
                        0.1097613 0.1435960
                                        0.764 0.44475
## HHIncome25000-34999
                                         0.270 0.78741
                        0.0373360 0.1384265
## HHIncome35000-44999
                        0.0618094 0.1416846
                                         0.436 0.66272
## HHIncome45000-54999
                        0.0783545 0.1399578
                                         0.560 0.57566
## HHIncome55000-64999
                        0.2258547 0.1425091
                                         1.585 0.11320
## HHIncome65000-74999
                                        -0.624 0.53250
                       -0.0910084 0.1457700
## HHIncome75000-99999
                       -0.0161207 0.1369970
                                        -0.118 0.90634
## HHIncomemore 99999
                       -0.0498470 0.1334491
                                        -0.374 0.70880
## Education9 - 11th Grade
                       0.0460313 0.1053077
                                         0.437 0.66209
## EducationHigh School
                       -0.0380138 0.1023653
                                        -0.371 0.71042
## EducationSome College
                       -0.0188031 0.1014977
                                        -0.185 0.85305
## EducationCollege Grad
                        0.0585822 0.1069348
                                         0.548 0.58388
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7493 on 1616 degrees of freedom
   (8043 observations deleted due to missingness)
## Multiple R-squared: 0.4388, Adjusted R-squared: 0.4312
## F-statistic: 57.44 on 22 and 1616 DF, p-value: < 2.2e-16
#Perform GLH to collapse the income categories
car::linearHypothesis(model=m1,hypothesis.matrix=Contrast.T)
##
## Linear hypothesis test:
##
##
## Model 1: restricted model
## Model 2: AvgSexFreq ~ SmokeNow + AlcoholYear + RegularMarij + HardDrugs +
##
     RegularMarij * HardDrugs + Age + Gender + HHIncome + Education
##
##
   Res.Df
          RSS Df Sum of Sq
                           F Pr(>F)
     1626 919.65
## 2
     1616 907.29 10
                  12.361 2.2017 0.01551 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

0.5239528 0.0675210

7.760 1.50e-14 ***

HardDrugsYes

```
m1 = lm(AvgSexFreq ~ SmokeNow+AlcoholYear+RegularMarij+HardDrugs+RegularMarij*HardDrugs+Age+Gender+segm
summary(m1)
##
## Call:
## lm(formula = AvgSexFreq ~ SmokeNow + AlcoholYear + RegularMarij +
       HardDrugs + RegularMarij * HardDrugs + Age + Gender + segmentincome +
       Education, data = df)
##
##
## Residuals:
                  1Q
                      Median
## -2.47836 -0.49235 0.01859 0.53738
                                       2.48544
##
## Coefficients:
##
                                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                0.6042138 0.1228635
                                                       4.918 9.64e-07 ***
## SmokeNowYes
                                0.1529443 0.0397066
                                                       3.852 0.000122 ***
## AlcoholYear
                                0.0009325 0.0001815
                                                       5.137 3.12e-07 ***
## RegularMarijYes
                                0.3838283 0.0491256
                                                       7.813 9.93e-15 ***
                                                       7.605 4.80e-14 ***
## HardDrugsYes
                                0.5086340 0.0668837
## Age
                               -0.0502942  0.0016930  -29.707  < 2e-16 ***
## Gendermale
                                                     4.910 1.00e-06 ***
                                0.1875971 0.0382049
## segmentincomeLow
                                0.2417697 0.0790067
                                                       3.060 0.002249 **
## Education9 - 11th Grade
                                0.0136409 0.1047108
                                                       0.130 0.896367
## EducationHigh School
                               -0.0710857 0.1018240 -0.698 0.485200
## EducationSome College
                               -0.0797806 0.1000099
                                                      -0.798 0.425145
## EducationCollege Grad
                               -0.0107724 0.1041574 -0.103 0.917639
## RegularMarijYes:HardDrugsYes -0.3165513 0.0860656 -3.678 0.000243 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7523 on 1626 degrees of freedom
     (8043 observations deleted due to missingness)
## Multiple R-squared: 0.4308, Adjusted R-squared: 0.4266
## F-statistic: 102.6 on 12 and 1626 DF, p-value: < 2.2e-16
m1|>
  tbl_regression(intercept = TRUE, show_single_row = c(SmokeNow, RegularMarij, HardDrugs, Gender, segmen
  as_gt() |>
 gt::tab_header(title = "AvgSexFreq MLR")
```

df = df |> mutate(segmentincome = ifelse(HHIncome == "5000-9999" | HHIncome == "10000-14999", "Low", "H

AvgSexFreq MLR

Characteristic	Beta	95% CI ¹	p-value
(Intercept)	0.60	0.36, 0.85	< 0.001
$\operatorname{SmokeNow}$	0.15	0.08, 0.23	< 0.001
AlcoholYear	0.00	0.00, 0.00	< 0.001
RegularMarij	0.38	0.29, 0.48	< 0.001
HardDrugs	0.51	0.38, 0.64	< 0.001
Age	-0.05	-0.05, -0.05	< 0.001
Gender	0.19	0.11, 0.26	< 0.001

segmentincome	0.24	0.09, 0.40	0.002
Education			
8th Grade			
9 - 11th Grade	0.01	-0.19, 0.22	0.9
High School	-0.07	-0.27, 0.13	0.5
Some College	-0.08	-0.28, 0.12	0.4
College Grad	-0.01	-0.22, 0.19	> 0.9
RegularMarij * HardDrugs			
Yes * Yes	-0.32	-0.49, -0.15	< 0.001

 $^{1}\mathrm{CI}=\mathrm{Confidence}$ Interval

```
m1.res = m1$residuals
car::qqPlot(m1.res)
```


7919 147 ## 1354 33

car::avPlots(m1)

Added-Variable Plots

Order of the second of

EducationSome College | others

EducationCollege Grad | others

RegularMarijYes:HardDrugsYes | others

car::residualPlots(m1, type="response")

```
Response residuals
Response residuals
                                                                             Response residuals
                                                                                            No
              No
                                                     100
                                                           200
                                                                 300
                                                                                                       Yes
                         Yes
                SmokeNow
                                                                                             RegularMarij
                                                       AlcoholYear
                                       Response residuals
Response residuals
                                                                              Response residuals
                                                                                  \alpha
     ۲
                                                                                  ۲
              No
                         Yes
                                               20
                                                     30
                                                                 50
                                                                      60
                                                                                          female
                                                                                                      male
                HardDrugs
                                                                                               Gender
                                                          Age
Response residuals
                                       Response residuals
                                                                             Response residuals
     0
              High
                         Low
                                               8th Grade
                                                          Some College
                                                                                     -2.5
                                                                                            -1.5
                                                                                                   -0.5
                                                                                                           0.5
              segmentincome
                                                       Education
                                                                                             Fitted values
                      Test stat Pr(>|Test stat|)
##
## SmokeNow
## AlcoholYear
                        -0.5797
                                              0.56219
## RegularMarij
## HardDrugs
## Age
                          1.7910
                                              0.07347 .
## Gender
## segmentincome
## Education
                        -1.0680
## Tukey test
                                              0.28553
##
## Signif. codes:
                        0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::durbinWatsonTest(m1)
     lag Autocorrelation D-W Statistic p-value
##
##
                  0.4029405
                                     1.190102
     Alternative hypothesis: rho != 0
#Use a non interactive model to check for collinearity
nonintmodel <- lm(AvgSexFreq ~ SmokeNow+AlcoholYear+RegularMarij+Age+Gender+segmentincome+Education, df
car::vif(nonintmodel,type = 'predictor')
## GVIFs computed for predictors
##
                           GVIF Df GVIF<sup>(1/(2*Df))</sup> Interacts With
                      1.129942 1
```

1.062987

1.050476

SmokeNow

AlcoholYear

1.103500 1

```
## RegularMarij 1.024763 1
                                    1.012306
## Age
                 1.079130 1
                                    1.038812
## Gender
                 1.035586 1
                                    1.017638
## segmentincome 1.025706 1
                                    1.012772
## Education
                1.195547 4
                                    1.022577
##
                                                                      Other Predictors
## SmokeNow
                      AlcoholYear, RegularMarij, Age, Gender, segmentincome, Education
                         SmokeNow, RegularMarij, Age, Gender, segmentincome, Education
## AlcoholYear
## RegularMarij
                          SmokeNow, AlcoholYear, Age, Gender, segmentincome, Education
                 SmokeNow, AlcoholYear, RegularMarij, Gender, segmentincome, Education
## Age
## Gender
                    SmokeNow, AlcoholYear, RegularMarij, Age, segmentincome, Education
## segmentincome
                           SmokeNow, AlcoholYear, RegularMarij, Age, Gender, Education
## Education
                       SmokeNow, AlcoholYear, RegularMarij, Age, Gender, segmentincome
model.deffits=dffits(m1)
model.CD = cooks.distance(m1)
model.deffits[which.max(model.deffits)]
##
       7919
## 0.4463536
model.CD[which.max(model.CD)]
        7919
## 0.01523016
n = nrow(df)
p = m1$rank
plot(m1, which = 4)
abline(h=4/n,lty=2)
```


Im(AvgSexFreq ~ SmokeNow + AlcoholYear + RegularMarij + HardDrugs + Regular

```
df[c(3240, 7919, 8682),]
## # A tibble: 3 x 79
                             Age AgeDecade AgeMonths Race1
##
        ID SurveyYr Gender
                                                              Race3
                                                                      Education
##
     <int> <fct>
                    <fct>
                           <int> <fct>
                                               <int> <fct>
                                                              <fct>
                                                                      <fct>
                              34 " 30-39"
## 1 58706 2009_10
                                                                      College Grad
                    male
                                                  415 Mexican <NA>
                              43 " 40-49"
## 2 68401 2011_12 male
                                                   NA Mexican Mexican 8th Grade
                              36 " 30-39"
## 3 69888 2011_12 male
                                                   NA White
                                                              White
                                                                      Some College
## # i 70 more variables: MaritalStatus <fct>, HHIncome <fct>, HHIncomeMid <int>,
       Poverty <dbl>, HomeRooms <int>, HomeOwn <fct>, Work <fct>, Weight <dbl>,
       Length <dbl>, HeadCirc <dbl>, Height <dbl>, BMI <dbl>,
## #
## #
       BMICatUnder20yrs <fct>, BMI_WHO <fct>, Pulse <int>, BPSysAve <int>,
       BPDiaAve <int>, BPSys1 <int>, BPDia1 <int>, BPSys2 <int>, BPDia2 <int>,
## #
       BPSys3 <int>, BPDia3 <int>, Testosterone <dbl>, DirectChol <dbl>,
## #
       TotChol <dbl>, UrineVol1 <int>, UrineFlow1 <dbl>, UrineVol2 <int>, ...
## #
ols_plot_resid_lev(m1)
```

Outlier and Leverage Diagnostics for AvgSexFreq

df[c(1354, 1618),]

```
## # A tibble: 2 x 79
##
        ID SurveyYr Gender
                            Age AgeDecade AgeMonths Race1 Race3 Education
##
     <int> <fct>
                   <fct> <int> <fct>
                                           <int> <fct> <fct> <fct>
                              27 " 20-29"
## 1 54520 2009_10 male
                                                326 White <NA> High School
                              17 " 10-19"
## 2 55096 2009_10 female
                                                210 White <NA> <NA>
## # i 70 more variables: MaritalStatus <fct>, HHIncome <fct>, HHIncomeMid <int>,
      Poverty <dbl>, HomeRooms <int>, HomeOwn <fct>, Work <fct>, Weight <dbl>,
      Length <dbl>, HeadCirc <dbl>, Height <dbl>, BMI <dbl>,
      BMICatUnder20yrs <fct>, BMI_WHO <fct>, Pulse <int>, BPSysAve <int>,
## #
      BPDiaAve <int>, BPSys1 <int>, BPDia1 <int>, BPSys2 <int>, BPDia2 <int>,
## #
## #
       BPSys3 <int>, BPDia3 <int>, Testosterone <dbl>, DirectChol <dbl>,
       TotChol <dbl>, UrineVol1 <int>, UrineFlow1 <dbl>, UrineVol2 <int>, ...
```

Coefficient Interpretation is as follows:

df2 = df[-c(7919),]

##

$$\frac{f(x+1)}{f(x)} - 1 = (e^{\beta_1} - 1) * 100$$

```
m2 = lm(AvgSexFreq ~ SmokeNow+AlcoholYear+RegularMarij+HardDrugs+RegularMarij*HardDrugs+Age+Gender+segm
summary(m1)
##
## Call:
```

HardDrugs + RegularMarij * HardDrugs + Age + Gender + segmentincome +

lm(formula = AvgSexFreq ~ SmokeNow + AlcoholYear + RegularMarij +

```
Education, data = df)
##
##
## Residuals:
##
       Min
                1Q
                     Median
                                 3Q
                                         Max
##
  -2.47836 -0.49235 0.01859 0.53738
##
## Coefficients:
##
                               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                               0.6042138 0.1228635
                                                  4.918 9.64e-07 ***
## SmokeNowYes
                              0.1529443 0.0397066
                                                   3.852 0.000122 ***
## AlcoholYear
                              0.0009325 0.0001815
                                                   5.137 3.12e-07 ***
## RegularMarijYes
                              0.3838283 0.0491256
                                                    7.813 9.93e-15 ***
## HardDrugsYes
                              0.5086340 0.0668837
                                                    7.605 4.80e-14 ***
                              ## Age
## Gendermale
                              0.1875971 0.0382049
                                                    4.910 1.00e-06 ***
## segmentincomeLow
                              0.2417697 0.0790067
                                                    3.060 0.002249 **
## Education9 - 11th Grade
                              0.0136409 0.1047108
                                                    0.130 0.896367
## EducationHigh School
                              -0.0710857 0.1018240
                                                   -0.698 0.485200
## EducationSome College
                              -0.0797806 0.1000099
                                                   -0.798 0.425145
## EducationCollege Grad
                              -0.0107724 0.1041574
                                                   -0.103 0.917639
## RegularMarijYes:HardDrugsYes -0.3165513 0.0860656
                                                  -3.678 0.000243 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7523 on 1626 degrees of freedom
     (8043 observations deleted due to missingness)
## Multiple R-squared: 0.4308, Adjusted R-squared:
## F-statistic: 102.6 on 12 and 1626 DF, p-value: < 2.2e-16
summary(m2)
##
## Call:
  lm(formula = AvgSexFreq ~ SmokeNow + AlcoholYear + RegularMarij +
##
      HardDrugs + RegularMarij * HardDrugs + Age + Gender + segmentincome +
      Education, data = df2)
##
##
## Residuals:
##
                     Median
                10
                                 30
                                         Max
  -2.48179 -0.49274 0.01562 0.54035 1.83234
##
## Coefficients:
##
                                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                              0.5633778 0.1230881
                                                   4.577 5.07e-06 ***
## SmokeNowYes
                              0.1567232 0.0395990
                                                    3.958 7.89e-05 ***
                              ## AlcoholYear
## RegularMarijYes
                              0.3865065 0.0489791
                                                    7.891 5.45e-15 ***
## HardDrugsYes
                              0.5106993 0.0666782
                                                    7.659 3.19e-14 ***
## Age
                              -0.0503187
                                         0.0016877 -29.814 < 2e-16 ***
## Gendermale
                                                    4.860 1.29e-06 ***
                              0.1851264 0.0380930
                                                    3.072 0.002160 **
## segmentincomeLow
                              0.2419673 0.0787606
## Education9 - 11th Grade
                              0.0524570 0.1050282
                                                    0.499 0.617525
## EducationHigh School
                              -0.0323726 0.1021649
                                                   -0.317 0.751386
## EducationSome College
```

0.278 0.781200

0.0290340 0.1045132

EducationCollege Grad

```
## RegularMarijYes:HardDrugsYes -0.3185743 0.0857996 -3.713 0.000212 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7499 on 1625 degrees of freedom
     (8043 observations deleted due to missingness)
## Multiple R-squared: 0.4332, Adjusted R-squared: 0.4291
## F-statistic: 103.5 on 12 and 1625 DF, p-value: < 2.2e-16
100*(abs(coef(m1)-coef(m2)))/coef(m1)
                    (Intercept)
                                                  SmokeNowYes
##
                     6.75853945
##
                                                   2.47078537
##
                    AlcoholYear
                                              RegularMarijYes
##
                     0.73530672
                                                   0.69774687
##
                   HardDrugsYes
                                                          Age
##
                     0.40605571
                                                  -0.04875762
##
                     Gendermale
                                             segmentincomeLow
                     1.31700599
##
                                                   0.08173055
##
        Education9 - 11th Grade
                                        EducationHigh School
                   284.55599155
                                                 -54.45968206
##
##
          EducationSome College
                                        EducationCollege Grad
                   -48.84401287
                                                -369.52142736
##
  RegularMarijYes:HardDrugsYes
##
                    -0.63905527
m2 = lm(AvgSexFreq ~ SmokeNow+AlcoholYear+RegularMarij+HardDrugs+RegularMarij*HardDrugs+Age+Gender+segm
m2.res = m2$residuals
car::qqPlot(m2.res)
```


147 2912 ## 33 520