

TEMA NR. 9pagina 1ALGEBRĂ VECTORIALĂ

①

Fie vectorii $\vec{a} = 2\vec{i} + 3\vec{j}$, $\vec{b} = 3\vec{i} + 5\vec{j}$ și $\vec{c} = -\vec{i} + 3\vec{j}$.

Înțeles că valori ale lui $\lambda \in \mathbb{R}$ vectorii de mai jos sunt coliniari:

$$1) \vec{p} = \vec{a} + \lambda \vec{b}, \quad \vec{q} = \vec{a} + 2\vec{c};$$

$$2) \vec{p} = \vec{a} + \lambda \vec{b}, \quad \vec{q} = \vec{c};$$

$$3) \vec{p} = \vec{a} - \lambda \vec{b}, \quad \vec{q} = \vec{a} + \lambda \vec{c}$$

Răspuns. 1) $\lambda = -\frac{3}{2}$; 2) $\lambda = -\frac{9}{14}$; 3) $\lambda = 0, \lambda = \frac{5}{7}$.

②

In toate cazurile de mai jos se cunosc unghiiile α, β, γ pe care vectorul \vec{a} le face cu versorii $\vec{i}, \vec{j}, \vec{k}$ a reperului $R = \{O, \vec{i}, \vec{j}, \vec{k}\}$, precum și norma (lungimea) vectorului \vec{a} .

Se determină coordonatele carteziene ale vectorului \vec{a} .

$$1) \alpha = \frac{\pi}{3}, \beta = \frac{\pi}{4}, \gamma = \frac{\pi}{3}, \|\vec{a}\| = 4;$$

$$2) \alpha = \frac{3\pi}{4}, \beta = \frac{\pi}{3}, \gamma = \frac{\pi}{3}, \|\vec{a}\| = 8;$$

$$3) \alpha = \frac{2\pi}{3}, \beta = \frac{\pi}{4}, \gamma = \frac{2\pi}{3}, \|\vec{a}\| = 2;$$

$$4) \alpha = \frac{2\pi}{3}, \beta = \frac{\pi}{3}, \gamma = \frac{\pi}{4}, \|\vec{a}\| = 6.$$

Indicatie. Scriem $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$. Înmulțind scalar această egalitate cu versorul \vec{i} al axei Ox , obținem $\vec{a} \cdot \vec{i} = a_1$. Dar $\vec{a} \cdot \vec{i} = \|\vec{a}\| \cdot \|\vec{i}\| \cos(\vec{a}, \vec{i}) = \|\vec{a}\| \cos \alpha$. Prin urmare, $a_1 = \|\vec{a}\| \cos \alpha$. Analog

TEMA NR. 9

pagina 2

$\alpha_2 = \|\vec{a}\| \cos \beta$ și $\alpha_3 = \|\vec{a}\| \cos \gamma$. Rezultatele stabilite arată că, pentru un vector $\vec{a} \in V_3$, coordonatele carteziene sunt mărimile algebrice ale proiecțiilor ortogonale ale vectorului \vec{a} pe respectiv cele trei axe de coordonate ale reperului R , adică Ox , Oy și Oz .

- Răspuns.
- 1) $\vec{a} = 2\vec{i} + 2\sqrt{2}\vec{j} + 2\vec{k}$;
 - 2) $\vec{a} = -4\sqrt{2}\vec{i} + 4\vec{j} + 4\vec{k}$;
 - 3) $\vec{a} = -\vec{i} + \sqrt{2}\vec{j} - \vec{k}$;
 - 4) $\vec{a} = -3\vec{i} + 3\vec{j} + 3\sqrt{2}\vec{k}$.

(3) Se stie că: $\|\vec{a}\| = 2$; $\|\vec{b}\| = 5$; $\star(\vec{a}, \vec{b}) = \frac{\pi}{3}$.

Să se calculeze:

$$\vec{a} \cdot \vec{b}; \quad \|\vec{a}\|^2; \quad \|\vec{b}\|^2; \quad (\vec{a} + \vec{b})^2; \quad (2\vec{a} - 3\vec{b})(3\vec{a} + 4\vec{b}).$$

Răspuns. $\vec{a} \cdot \vec{b} = 5$; $\|\vec{a}\|^2 = \vec{a} \cdot \vec{a} = \vec{a}^2 = 4$; $\vec{b}^2 = 25$
 $(\vec{a} + \vec{b})^2 = \|\vec{a} + \vec{b}\|^2 = 39$; $(2\vec{a} - 3\vec{b}) \cdot (3\vec{a} + 4\vec{b}) = -281$.

(4) Să se găsească unghiul vectorilor $\vec{a} = 2\vec{e}_1 - \vec{e}_2 + 2\vec{e}_3$
și $\vec{b} = 4\vec{e}_1 + \vec{e}_2 - 3\vec{e}_3$ stând că $\|\vec{e}_1\| = 1$, $\|\vec{e}_2\| = 2$,
 $\|\vec{e}_3\| = 3$, $\star(\vec{e}_1, \vec{e}_2) = \star(\vec{e}_1, \vec{e}_3) = \frac{\pi}{3}$, și $\star(\vec{e}_2, \vec{e}_3) = \frac{\pi}{2}$.

Răspuns. $\cos \star(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \cdot \|\vec{b}\|} = -\frac{49}{2\sqrt{13}\sqrt{73}}$.

(5). Să se găsească ~~████████~~ proiecție $\text{pr}_{\vec{b}} \vec{a}$ (proiecția vectorului \vec{a} pe direcția vectorului \vec{b}) și $\text{pr}_{\vec{a}} \vec{b}$, dacă:

TEMA NR. 9

pagina 3

- ⑥ 1) $\vec{a} = 2\vec{i} + \vec{j}$, $\vec{b} = \vec{i} + 2\vec{j}$;
 2) $\vec{a} = 2\vec{i} - \vec{j}$, $\vec{b} = \vec{i} + 2\vec{j}$;
 3) $\vec{a} = 4\vec{i} - 3\vec{j} + 2\vec{k}$, $\vec{b} = \vec{i} + \vec{j} + \vec{k}$;
 4) $\vec{a} = -4\vec{i} + \vec{j} - 4\vec{k}$, $\vec{b} = 2\vec{i} + 2\vec{j} + \vec{k}$.

Indicatie. Se tine cont de faptul că cele două proiecții ortogonale sunt: $\text{pr}_{\vec{v}} \vec{a} = \frac{\vec{a} \cdot \vec{v}}{\|\vec{v}\|} \vec{v}$
 $\text{pr}_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|} \vec{a}$.

- Răspuns. 1) $\text{pr}_{\vec{v}} \vec{a} = \frac{3\sqrt{2}}{2}$, $\text{pr}_{\vec{a}} \vec{b} = \frac{3\sqrt{5}}{5}$;
 2) $\text{pr}_{\vec{v}} \vec{a} = 0$, $\text{pr}_{\vec{a}} \vec{b} = 0$;
 3) $\text{pr}_{\vec{v}} \vec{a} = \sqrt{3}$, $\text{pr}_{\vec{a}} \vec{b} = \frac{3\sqrt{29}}{29}$
 4) $\text{pr}_{\vec{v}} \vec{a} = -\frac{10}{3}$, $\text{pr}_{\vec{a}} \vec{b} = -\frac{10\sqrt{33}}{33}$.

- ⑦ Să se găsească vectorul \vec{x} , colinear cu vectorul $\vec{a} = (1, 1, -2)$ și îndeplinind condiția $\vec{x} \cdot \vec{a} = 3$.

Indicatie. Se ia $\vec{x} = \lambda \vec{a}$. Rezultă $\lambda = \pm \frac{1}{2}$

Răspuns. $\vec{x} = \pm \left(\frac{1}{2} \vec{i} + \frac{1}{2} \vec{j} - \vec{k} \right)$.

- ⑧ Se dau vectorii $\vec{a} = (1, 2, -3)$, $\vec{b} = (5, 1, 2)$ și $\vec{c} = (-3, 0, 1)$. Să se găsească vectorul \vec{x} care îndeplinește condițiile: $\vec{a} \cdot \vec{x} = 4$; $\vec{b} \cdot \vec{x} = 5$; $\vec{c} \cdot \vec{x} = 2$.

Răspuns. $\vec{x} = -\frac{4}{15} \vec{i} + \frac{59}{15} \vec{j} + \frac{6}{5} \vec{k}$.

TEMA NR. 9
pagina 4

(9) Se dau vectorii \vec{a} și \vec{b} cu $\|\vec{a}\| = 3$, $\|\vec{b}\| = 5$, $(\vec{a}, \vec{b}) = \frac{\pi}{3}$. Să se găsească: $\|\vec{a} \times \vec{b}\|$; $\|(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})\|$; $\|(3\vec{a} + \vec{b}) \times (\vec{a} - 3\vec{b})\|$.

Indicatie. Se aplică relația $\|\vec{a} \times \vec{b}\| = \|\vec{a}\| \cdot \|\vec{b}\| \cdot \sin(\vec{a}, \vec{b})$.

Răspuns. $\|\vec{a} \times \vec{b}\| = \frac{15\sqrt{3}}{2}$; $\|(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})\| = 15\sqrt{3}$; și $(3\vec{a} + \vec{b}) \times (\vec{a} - 3\vec{b}) = 75\sqrt{3}$.

(10) Să se calculeze aria triunghiului construit cu vectorii $\vec{p} = \vec{a} - 2\vec{b}$, și $\vec{q} = 3\vec{a} + 2\vec{b}$ cunoscând că $\|\vec{a}\| = \|\vec{b}\| = 6$ și $(\vec{a}, \vec{b}) = \frac{\pi}{4}$.

Răspuns. $A = 72\sqrt{2}$ ($A = \frac{1}{2} \|\vec{p} \times \vec{q}\|$).

(11) Să se găsească $\vec{a} \times \vec{b}$ dacă:

1) $\vec{a} = \vec{i} + 2\vec{j}$, $\vec{b} = 3\vec{k}$;

2) $\vec{a} = \vec{i} + 2\vec{j} - 2\vec{k}$, $\vec{b} = 7\vec{i} + 4\vec{j} + 6\vec{k}$;

3) $\vec{a} = \vec{j} + 2\vec{k}$, $\vec{b} = 2\vec{i} + 3\vec{k}$;

4) $\vec{a} = 8\vec{i} + 6\vec{j} + 4\vec{k}$, $\vec{b} = \vec{i} + 2\vec{j} - 2\vec{k}$.

Răspuns. 1) $\vec{a} \times \vec{b} = 6\vec{i} - 3\vec{j}$;

2) $\vec{a} \times \vec{b} = 20\vec{i} - 20\vec{j} - 10\vec{k}$;

3) $\vec{a} \times \vec{b} = 3\vec{i} + 4\vec{j} - 2\vec{k}$;

4) $\vec{a} \times \vec{b} = -20\vec{i} + 20\vec{j} + 10\vec{k}$

(12) Calculați înălțimile paralelogramului ABCD construit pe vectorii $\vec{AB} = 6\vec{i} + 2\vec{k}$ și $\vec{AC} = \frac{3}{2}\vec{i} + 2\vec{j} + \vec{k}$.

Dreptunghi. $h_1 = 13\sqrt{10}/20$ m. $h_2 = 26/\sqrt{20}$ m.

TEMA NR. 9

pagina 5

- (13) Să se găsească vectorul \vec{x} ortogonal pe vectorii $\vec{a} = (2, 3, -1)$ și $\vec{b} = (1, -1, 3)$ și care îndeplinește condiția $\vec{x} \cdot (2\vec{i} - 3\vec{j} + 4\vec{k}) = 50$

Răspuns. $\vec{x} = \frac{50}{17} (8\vec{i} - 7\vec{j} - 5\vec{k}).$

- (14) Să se demonstreze identitatea lui Lagrange $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = \vec{a}^2 \cdot \vec{b}^2$

Indicatie. Se ține cont de faptul că:

$$\begin{aligned} (\vec{a} \times \vec{b})^2 &= (\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) = \|\vec{a} \times \vec{b}\|^2 = \left(\|\vec{a}\| \cdot \|\vec{b}\| \sin \varphi \right)^2 = \\ &= \|\vec{a}\|^2 \|\vec{b}\|^2 \sin^2 \varphi = \vec{a}^2 \vec{b}^2 \sin^2 \varphi; \\ (\vec{a} \cdot \vec{b})^2 &= (\|\vec{a}\| \cdot \|\vec{b}\| \cos \varphi)^2 = \|\vec{a}\|^2 \cdot \|\vec{b}\|^2 \cos^2 \varphi = \vec{a}^2 \vec{b}^2 \cos^2 \varphi. \end{aligned}$$

- (15) Se dau punctele $A(1, -1, 1)$, $B(1, 2, 3)$ și $C(0, 1, -1)$.

Să se găsească volumul paralelipipedului construit pe \vec{OA} , \vec{OB} , \vec{OC} ca muchii.

Răspuns. $\text{Vol} = |(\vec{OA}, \vec{OB}, \vec{OC})| = \left| \begin{vmatrix} 1 & -1 & 1 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{vmatrix} \right| = 1 - 5 = 5.$

- (16) Cercetați dacă următoarele triplete de vectori formează baze în V_3 . Ai prezați ce orientare au:

- 1) $\vec{a} = (1, 2, 1)$, $\vec{b} = (1, 2, -1)$, $\vec{c} = (8, 6, 4)$;
- 2) $\vec{a} = (1, 2, 3)$, $\vec{b} = (3, 1, 2)$, $\vec{c} = (2, 3, 1)$;
- 3) $\vec{a} = (13, 12, 11)$, $\vec{b} = (24, 23, 22)$, $\vec{c} = (35, 34, 33)$;
- 4) $\vec{a} = (1, 3, 5)$, $\vec{b} = (2, 4, 6)$, $\vec{c} = (8, 9, 7)$.

Răspuns. 2) și 4) baze la fel orientate ca $\{\vec{i}, \vec{j}, \vec{k}\}$
1) baza contrar orientată; 2) nu formează bază.

TEMA NR. 9

pagina 6

- (17) Pentru ce valoare a lui $\alpha \in \mathbb{R}$ punctele $A(-1, 1, 1)$, $B(1, 0, 2)$, $C(1, 1, -1)$ și $D(2, 3, \alpha)$ sunt coplanare.

Indicatie. Punctele sunt coplanare dacă vectorii \vec{AB} , \vec{AC} , \vec{AD} sunt linial dependenți (coplanari), deci produsul lor mixt trebuie să fie zero.

Răspuns. $\alpha = -8$.

- (18) Demonstrați că

$$\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = \vec{0},$$

pentru orice $\vec{a}, \vec{b}, \vec{c} \in V_3$ (identitatea lui Jacobi).

Indicatie. Se folosește expresia jacobiei produs vectorial: $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$.

- (19) Fie $\vec{OA} = \vec{i} + \vec{j}$, $\vec{OB} = \vec{j} + \vec{k}$, $\vec{OC} = \vec{i} + \vec{j} + \vec{k}$. Calculați volumul tetraedrului $OABC$, precum și lungimea înălțimii din O .

Răspuns. $Vol = \frac{1}{6}$; $S_{ABC} = \frac{1}{2}$; $\vec{OH} = 1$.

- (20) Calculați lungimea înălțimii AD a triunghiului ABC de vârfuri $A(1, 3, 1)$, $B(3, 1, 5)$, $C(-1, 0, 2)$.

Răspuns. $S_{ABC} = \frac{1}{2} \|\vec{AB} \times \vec{AC}\| = 5\sqrt{3}$; $AD = \frac{5\sqrt{78}}{13}$.