Assignment 3

Policy: You may discuss problems with others, but all written work submitted must be your own. You may not copy nor solicit solutions, complete or partial, from any source.

- 1. (a) Find all the elements of \mathbb{Z}_{22}^* .
 - (b) Find the permutation (reordering) of the elements of \mathbb{Z}_{22}^* resulting from the function $x \to x^3 \mod 22$.
- 2. Consider the group Z_{23}^* , and its subgroup $G_{11} = \{x^2 \mod p : x \in Z_{23}^*\}$. Any non-identity element, such as $g = 4(=2^2)$, is a generator of this group. Show this is the case for g = 4 by finding $4^1, 4^2, 4^3, \ldots, 4^{11} \mod 23$ in that order.
- 3. Describe a polynomial-time procedure that finds a "safe" prime (aka Sophie Germain prime) $p \in \tilde{\Pi}_n$ that fails with negligible probability. Use the assumption that there is a constant C such that for all n, $\tilde{\Pi}_n \geq \frac{2^n}{Cn^2}$.
- 4. Suppose we know that $x^{13} \equiv 3 \mod 77$.
 - (a) Find $\Phi(77)$.
 - (b) Use the Euclidean algorithm to find $d = 13^{-1} \mod \Phi(77)$.
 - (c) Use d and the fast exponentiation procedure to find $x \mod 77$. Feel free to use computation to help with the multiplications/divisions, but otherwise show your work.
- 5. Let N = pq where p and q are distinct primes.
 - (a) Show how to solve for p and q with the knowledge of N and $\phi(N)$.
 - (b) Use this method to factor N = 477709 with the knowledge that $\phi(N) = 476316$.
- 6. Prove Theorem 57.2 in the text.