Profesor: Felipe Osorio

1. Sea X_1, \ldots, X_n una muestra aleatoria de tamaño n desde la variable aleatoria X con función de densidad

$$f(x;\theta) = \frac{(x+1)}{\theta(\theta+1)} \exp(-x/\theta), \qquad x > 0, \ \theta > 0.$$

Encuentre estimadores a) ML y b) de momentos para θ .

Puede ser útil: Recuerde que

$$\int_0^\infty x^{a-1} e^{-x/s} \, \mathrm{d}x = s^a \, \Gamma(a).$$

2. Sea X_1, \ldots, X_n muestra aleatoria desde la densidad

$$f(x;\theta) = \theta \exp(-\theta x), \qquad x > 0$$

Obtenga intervalos de confianza asintóticos del $100(1-\alpha)\%$ para **a**) θ y, **b**) $\lambda = 1/\theta$.

3. Un ingeniero civil hace pruebas con la resistencia a la compresión de bloques de concreto. Para ello examina 12 especímenes obteniendo una media de 2260 psi y una desviación estándar de 36 psi. Pruebe la hipótesis $\mu=2270$ psi contra la alternativa $\mu\neq2270$ psi. Use $\alpha=0.05$.

Puede ser útil: considerar alguno de los siguientes valores cuantiles,

$$z_{0.950} = 1.6449,$$
 $t_{0.950}(11) = 1.7959,$ $\chi^2_{0.950}(11) = 19.6751,$ $z_{0.975} = 1.9600,$ $t_{0.975}(11) = 2.2010,$ $\chi^2_{0.975}(11) = 21.9201.$

4. Para modelar valores extremos se ha sugerido la distribución Gumbell con densidad

$$f(x) = e^{-(x-\theta)} \exp[-e^{-(x-\theta)}], \quad x \in \mathbb{R}, \theta > 0.$$

Obtenga el estimador de momentos de θ .

Sugerencia: Obtener la MGF de X y note que $-\Gamma'(1) = \gamma \approx 0.577216$ es la constante de Euler, donde

$$\Gamma(a) = \int_0^\infty u^{a-1} e^{-u} du, \quad a > 0.$$

denota la función Gama.

- 5. Considere variables aleatorias independientes X_1, \ldots, X_n y Y_1, \ldots, Y_n desde una distribución $N(\mu, \sigma^2)$ y $N(\mu, \lambda \sigma^2)$, respectivamente, donde μ es conocido.
 - a) Suponga que $\sigma^2>0$ es conocido. Obtenga el MLE de $\lambda>0.$
 - **b)** Asuma que ámbos σ^2 y λ son desconocidos. Obtenga el MLE de $\boldsymbol{\theta} = (\sigma^2, \lambda)^{\top}$.

6. Sea X_1,\dots,X_n muestra aleatoria de tamaño n desde una distribución $\mathsf{Poi}(\lambda)$ con función de densidad

$$f(x; \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}, \qquad x \in \{0, 1, \dots\}, \lambda > 0.$$

Considere el conjunto de datos

$$x = \{2, 0, 1, 0, 1, 1, 0, 1, 0, 2\}.$$

Obtenga un intervalo de confianza asintótico del $100(1-\alpha)\%$ para λ con $\alpha=0.05$.

Puede ser útil: considere alguno de los siguientes valores cuantiles,

$$z_{0.975} = 1.96,$$
 $t_{0.975}(9) = 2.26,$ $Poi_{0.975}(0.8) = 3.00.$

7. Suponga que X_1, \ldots, X_n representa una muestra aleatoria desde $\mathsf{U}(a,b)$ donde a y b son parámetros desconocidos con a < b. Obtenga los estimadores de momentos de a y b.

Recuerde que: Si $X \sim U(a, b)$. Entonces,

$$f(x; a, b) = \frac{1}{b-a}, \qquad x \in [a, b].$$

Además puede ser útil: $b^3 - a^3 = (b - a)(a^2 + ab + b^2)$.