The Domain Name System

lwhsu (2020-2023, CC-BY) ? (?-2019)

國立陽明交通大學資工系資訊中心

History of DNS

- What and Why is DNS?
 - IP is difficult to memorize, and IPv6 makes it worse
 - Domain Name ↔ IP Address(es)
- Before DNS
 - ARPANET
 - HOSTS.txt contains all the hosts' information (/etc/hosts)
 - Maintained by SRI's Network Information Center
 - Register \rightarrow Distribute DB
 - Problems: Not scalable!
 - Traffic and Load
 - Name Collision
 - Consistency
- Domain Name System
 - Administration decentralization
 - Paul Mockapetris (University of Southern California)
 - \blacksquare RFC 882, 883 (1983) \rightarrow 1034, 1035 (1987)

DNS Specification

- Tree architecture "domain" and "subdomain"
 - Divided into categories
 - Solves name collision
- Distributed database
 - o Each site maintains a segment of the DB
 - Each site opens its information via network
- Client-Server architecture
 - Name servers provide information (Name Server)
 - Clients make queries to server (Resolver)

The DNS Namespace – (1)

- Domain name is
 - A inverted tree (Rooted tree)
 - Root with label '.'
 - Root with label " (Null)
- Domain and subdomain
 - Each domain has a "domain name" to identify its position in database
 - domain: nycu.edu.tw
 - subdomain: cs.nycu.edu.tw

The DNS Namespace – (2)

The DNS Namespace – (3)

- Domain level
 - Top-level / First level
 - Direct child of "root"
 - Maintained by ICANN (Internet Corporation for Assigned Names and Numbers)
 - Second-level
 - Child of a Top-level domain
- Domain name limitations (RFC1035: 2.3.4 "Size limits")
 - Up to 63-octets in each label
 - Up to 255-octets in a full domain name
 - 253 visible characters and 2 length bytes
 - What is the real maximum length of a DNS name?
 - https://devblogs.microsoft.com/oldnewthing/20120412-00/?p=7873

The DNS Namespace – (4)

• gTLDs (generic Top-Level Domains)

• com: commercial organization, such as <u>ibm.com</u>

• edu: educational organization, such as <u>purdue.edu</u>

• gov: government organization, such as <u>nasa.gov</u>

• mil: military organization, such as <u>navy.mil</u>

• net: network infrastructure providing organization,

such as hinet.net

org: noncommercial organization, such as <u>x.org</u>

• int: International organization, such as <u>nato.int</u>

The DNS Namespace – (5)

• New gTLDs launched in year 2000:

o aero: for air-transport industry

o biz: for business

o coop: for cooperatives

o info: for all uses

o museum: for museum

o name: for individuals

o pro: for professionals

o xxx: for adult entertainment industry (sTLD, s stands for sponsored)

■ On March 18st, 2011

https://www.iana.org/domains/root/db

The DNS Namespace – (6)

- Other than US, ccTLD (country code TLD)
 - o ISO 3166, but just based on
 - Taiwan => tw
 - Japan \Rightarrow jp
 - United States => us
 - United Kingdom => uk (ISO3166 is GB)
 - European Union => eu
 - Follow or not follow US-like scheme
 - US-like scheme example
 - edu.tw, com.tw, gov.tw
 - Other scheme
 - ac.jp, co.jp

How DNS Works – DNS Delegation

- Administration delegation
 - Each domain can delegate responsibility to subdomain
 - Specify name servers of subdomain

How DNS Works – DNS query process

- Recursive query process
 - Ex: query <u>lair.cs.colorado.edu</u> => <u>vangogh.cs.berkeley.edu</u>,
 name server "ns.cs.colorado.edu" has no cache data

DNS Delegation – Administered Zone

- Zone
 - Autonomously administered piece of namespace
 - Once the subdomain becomes a zone, it is independent to its parent
 - Even parent contains NS's A record

DNS Delegation – Administered Zone

- Two kinds of zone files
 - Forward Zone files
 - Hostname-to-Address mapping
 - Ex:
 - <u>bsd1.cs.nctu.edu.tw.</u> IN A 140.113.235.131
 - Reverse Zone files
 - Address-to-Hostname mapping
 - Ex:
 - 131.235.113.140.in-addr.arpa. IN PTR bsd1.cs.nctu.edu.tw.

The Name Server Taxonomy (1)

- Categories of name servers
 - Based on the source of name server's data
 - Authoritative: official representative of a zone (master/slave)
 - Master: get zone data from disk
 - Slave: copy zone data from master
 - Nonauthoritative: answer a query from cache
 - caching: caches data from previous queries
 - Based on the type of answers handed out
 - Recursive: do query for you until it return an answer or error
 - Nonrecursive: refer you to the authoritative server
 - Based on the query path
 - Forwarder: performs queries on behalf of many clients with large cache
 - Caching: performs queries as a recursive name server

The Name Server Taxonomy (2)

- Non-recursive referral
 - Hierarchical and longest known domain referral with cache data of other zone's name servers' addresses
 - \circ Ex:
 - Query lair.cs.colorado.edu from a nonrecursive server
 - Whether cache has
 - IP of lair.cs.colorado.edu
 - Name servers of cs.colorado.edu
 - Name servers of colorado.edu
 - Name servers of edu
 - Name servers of root ("")
 - The resolver libraries do not understand referrals mostly. They expect the local name server to be recursive

The Name Server Taxonomy (3)

- Caching
 - Positive cache (Long TTL)
 - Negative cache (Short TTL)
 - No host or domain matches the name queried
 - The type of data requested does not exist for this host
 - The server to ask is not responding
 - The server is unreachable of network problem
- Negative cache
 - o 60% DNS queries are failed
 - To reduce the load of root servers, the authoritative negative answers must be cached

The Name Server Taxonomy (4)

Caching and forwarding DNS servers

The Name Server Taxonomy (5)

- How to arrange your DNS servers?
 - o Ex:

The Name Server Taxonomy (6)

- Root name servers
 - In named.root file of BIND
 - https://www.iana.org/domains/root/files

	3600000	IN	NS	A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET.	3600000		A	198.41.0.4
A.ROOT-SERVERS.NET.	3600000		AAAA	2001:503:ba3e::2:30
	3600000		NS	B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET.	3600000		A	199.9.14.201
B.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:200::b
	3600000		NS	C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET.	3600000		A	192.33.4.12
C.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:2::c
	3600000		NS	D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET.	3600000		A	199.7.91.13
D.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:2d::d
	3600000		NS	E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET.	3600000		A	192.203.230.10
E.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:a8::e
	3600000		NS	F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET.	3600000		A	192.5.5.241
F.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:2f::f
	3600000		NS	G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET.	3600000		A	192.112.36.4
G.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:12::d0d
	3600000		NS	H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET.	3600000		A	198.97.190.53
H.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:1::53

DNS Client Configurations

- /etc/resolv.conf
 - o nameserver
 - o domain
 - o search
 - o resolver(5), resolverconf(8)
- /etc/hosts
 - o Format: IP FQDN Aliases
 - 0 C:\Windows\system32\drivers\etc\hosts
 - \circ hosts(5)
- /etc/nsswitch.conf
 - o hosts: files (nis) (ldap) dns
 - o nsswitch.conf(5)

DNS Client Commands – host

• \$ host nasa.cs.nctu.edu.tw nasa.cs.nctu.edu.tw has address 140.113.17.32

\$ host 140.113.17.32
 32.17.113.140.in-addr.arpa domain name pointer nasa.cs.nctu.edu.tw.

DNS Client Commands – nslookup

• \$ nslookup nasa.cs.nctu.edu.tw

Server: 140.113.235.1

Address: 140.113.235.1#53

Name: nasa.cs.nctu.edu.tw

Address: 140.113.17.32

• \$ nslookup 140.113.17.225

Server: 140.113.235.1

Address: 140.113.235.1#53

32.17.113.140.in-addr.arpa name =

nasa.cs.nctu.edu.tw.

DNS Client Commands – dig (1)

• \$ dig nasa.cs.nctu.edu.tw

```
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 47883
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3
;; QUESTION SECTION:
;nasa.cs.nctu.edu.tw.
                              IN
;; ANSWER SECTION:
nasa.cs.nctu.edu.tw. 3600
                              IN A 140.113.17.32
```

DNS Client Commands – dig (2)

• \$ dig -x 140.113.17.32

```
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5514
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;32.17.113.140.in-addr.arpa. IN PTR

;; ANSWER SECTION:
32.17.113.140.in-addr.arpa. 86400 IN PTR nasa.cs.nctu.edu.tw.
......</pre>
```

DNS Client Commands – drill

- Drop-in replacement of dig in unbound
- \$ drill -D www.cs.nctu.edu.tw

```
;; ->>HEADER<<- opcode: QUERY, rcode: NOERROR, id: 36215
;; flags: qr rd ra ad ; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;; www.cs.nctu.edu.tw. IN
;; ANSWER SECTION:
www.cs.nctu.edu.tw. 60
                              IN A 140.113.235.48
www.cs.nctu.edu.tw. 60
                              IN
                                     RRSIG A 7 5 60 20220403192028
20220304183459 36008 cs.nctu.edu.tw.
vX731iLKKL5rhUhF2hre211aNy/6bQxst2k75o218h59j8xJ3kM9UqNm385tyTe2Rb223ScsR
SAOws4EMCs/CvVzFTfXe28wrA4jxVUCENpUByq7AInr3hrtUFdFdLRPwA16Vkzj950Yf+DtkC
rZzORGf12FxU48wsmYTAJswnM=
```

DNS Security

- DNSSEC
 - Provide
 - Origin authentication of DNS data
 - Data integrity
 - Authenticated denial of existence
 - Not provide
 - Confidentiality
 - Availability
 - \$\dig +\dnssec bsd1.cs.nctu.edu.tw

```
;; ANSWER SECTION:
bsd1.cs.nctu.edu.tw. 3600 IN A 140.113.235.131
bsd1.cs.nctu.edu.tw. 3600 IN RRSIG A 7 5 3600 ...
```

DNS Security (c.)

- DNS over TLS (DoT)
- DNS over HTTPS (DoH)
- DNS Amplification Attack
 - http://www.cc.ntu.edu.tw/chinese/epaper/0028/20140320_2808.html

DNS Server Software

- BIND https://www.isc.org/bind/
 - Complete DNS Server solution
- NSD https://www.nlnetlabs.nl/projects/nsd/about/
 - Authoritative DNS Server
 - No recursion, No caching
 - DNSSEC
- Unbound https://www.nlnetlabs.nl/projects/unbound/about/
 - Local resolver
 - Validating, Recursive, Caching
 - DoH, DoT
- https://en.wikipedia.org/wiki/Comparison_of_DNS_server_software

Misc.

- Internationalized Domain Name (IDN)
 - o Punycode
 - A representation of Unicode with ASCII
 - .台灣 <-> .xn--kpry57d
 - https://en.wikipedia.org/wiki/Punycode
- Public & cloud services
 - Hurricane Electric Free DNS Hosting
 - https://dns.he.net/
 - AWS Route53
 - https://aws.amazon.com/route53/
- GeoDNS
 - Different DNS answers based on client's geographical location

Misc. (c.)

- DNS for fun
 - https://www.dns.toys/
- DNS Key Value Storage
 - https://dnskv.com/
- Tunnel
 - net/iodine
- Config
- FOSDEM 2023: Bizarre and Unusual Uses of DNS
 - Rule 53: If you can think of it, someone's done it in the DNS
 - https://fosdem.org/2023/schedule/event/dns_bizarre_and_unusual_uses_of dns/