Recurrent Neural Networks

10/10 points (100.00%)

测验, 10 个问题

✔ 恭喜! 您通过了!

下一项

1/1 分

1

Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

$$x^{(i) < j >}$$

正确

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

$$()$$
 $x^{(j) < i > }$

$$()$$
 $x^{< j > (i)}$

1/1 分

2.

Consider this RNN:

This specific type of architecture is appropriate when:

 $T_x = T_v$

正确

Recurrent Neural Networks

10/10 points (100.00%)

测验, 10 个问题

$$\bigcap T_x > T_y$$

$$T_x = 1$$

1/1 分

3.

To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

Speech recognition (input an audio clip and output a transcript)

未选择的是正确的

Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

正确

Correct!

Image classification (input an image and output a label)

未选择的是正确的

Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

正确

Recurrent Neural Networks

10/10 points (100.00%)

测验, 10 个问题

1/1 分

4.

You are training this RNN language model.

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- $igcap ext{Estimating } P(y^{<1>},y^{<2>},\ldots,y^{< t-1>})$
- $igcap ext{Estimating } P(y^{< t>})$

正确

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

 $igcap ext{Estimating } P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \dots, y^{< t>})$

1/1 分

5.

You have finished training a language model RNN and are using it to sample random sentences, as follows:

Recurrent Neural Networks

10/10 points (100.00%)

测验, 10 个问题

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.

正确

Yes!

1/1 分

6.

You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?

Vanishing gradient problem.

Exploding gradient problem.

正确

ReLU activation function g(.) used to compute g(z), where z is too large.

Recurrent Neural Networks

10/10 points (100.00%)

测验, 10 个问题

1/1 分

7.

Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{< t>}$. What is the dimension of Γ_u at each time step?

1

100

Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.

300

10000

1/1 分

8.

Here're the update equations for the GRU.

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t - 1>}$$

$$a^{} = c^{}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much

Recurrent Neural Networks

10/10 points (100.00%)

测验, 10 个问题

Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

正确

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$.

1/1 分

9.

Here are the equations for the GRU and the LSTM:

GRU	LSTM
$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$	$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$
$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$	$\Gamma_u = \sigma(W_u[a^{< t-1>},x^{< t>}] + b_u)$
$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$	$\Gamma_f = \sigma(W_f[a^{< t-1>},x^{< t>}] + b_f)$
$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$	$\Gamma_o = \sigma(W_o[a^{< t-1>},x^{< t>}] + b_o)$
$a^{< t>} = c^{< t>}$	$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$
	$a^{< t>} = \Gamma_o * c^{< t>}$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

$$\Gamma_u$$
 and $1-\Gamma_u$

正确

Yes, correct!

- \bigcap Γ_u and Γ_r
- \bigcap $1-\Gamma_u$ and Γ_u
- \bigcap Γ_r and Γ_u

1/1 分

Recurrent Neural Networks

10/10 points (100.00%)

测验, 10 个问题

You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\dots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\dots,y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

	Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
	Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
	Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< 1>},\dots,x^{< t>}$, but not on $x^{< t+1>},\dots,x^{< 365>}$
正确 Yes!	

Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$,

and not other days' weather.