Genetische Statistik

Präsenzübung 12: Mendelische Randomosierung

Dr. Janne Pott (janne.pott@uni-leipzig.de)

February 01, 2022

Fragen

Gibt es Fragen zu

- Vorlesung?
- Übung?
- Seminar?

Plan heute

Mendelische Randomisierung

Vergleich RCT vs MR

Abbildung 1: Vergleich RCT vs. MR. RCT: Wenn die beiden Arme balanciert waren bezüglich aller relevanten Confounder U ist jede Änderung in Y verursacht durch die Änderung in X. MR: Erzeuge Placebo-Gruppe mit Patienten mit dem Risikoallele.

Gerichteter azyklischer Graph (DAG)

Abbildung 2: Gerichteter azyklischer Graph der Mendelschen Randomisierung. Es gibt drei Bedingungen bei einer MR.

Ausgangslage

Genomweit signifikante SNPs G zu einem Risikofaktor X

Frage: gibt es einen kausalen Effekt von X auf eine Krankheit Y?

- Methode 1: Ratio-Methode (vgl Vorlesung)
- Methode 2: 2-Stage-Least-Square-Methode (2SLS)
- Methode 3: Inverse-Variance-Weighted-Methode (IVW)

Ergebnis Ratio-Methode

	g1	g2	g3	g4
by	-0.0086	0.2566	0.2778	0.1719
byse	0.0875	0.1325	0.1316	0.1265
bx	0.1357	0.4938	0.3476	0.0679
bxse	0.0676	0.1015	0.1015	0.0980
beta.ratio	-0.0630	0.5195	0.7994	2.5322
se.ratio.st	0.6452	0.2683	0.3787	1.8641
se.ratio.nd	0.6460	0.2888	0.4448	4.1031
pval.st	0.9222	0.0528	0.0348	0.1743
pval.nd	0.9223	0.0720	0.0723	0.5371
fstat	4.0280	23.6566	11.7322	0.4799
maf	0.3015	0.1010	0.1030	0.1115

Ergebnis Ratio-Methode Zusammenfassung

- g_2 hat höchste Präzision (kleinster Standardfehler), bedingt durch starke Assoziation mit X
- g_3 liefert einen signifikanten kausalen Schätzer (unter Verwendung von SE_1)
- positiver kausaler Effekt, obwohl die Korrelation negativ war; möglich durch starken Confounder-Einfluss

Ergebnis 2SLS-Methode

	g1	g2	g3	g4	all
beta.2SLS	-0.0630	0.5195	0.7994	2.5322	0.5708
se.2SLS	0.6452	0.2683	0.3787	1.8641	0.2017
pval.2SLS	0.9222	0.0531	0.0350	0.1747	0.0047
beta.IVreg	-0.0630	0.5195	0.7994	2.5322	0.5708
se.IVreg	0.6429	0.2993	0.4652	4.2629	0.2292
pval.IVreg	0.9219	0.0829	0.0861	0.5526	0.0129

	g1	g2	g3	g4
beta.ratio	-0.0630	0.5195	0.7994	2.5322
se.ratio.st	0.6452	0.2683	0.3787	1.8641
se.ratio.nd	0.6460	0.2888	0.4448	4.1031
pval.st	0.9222	0.0528	0.0348	0.1743
pval.nd	0.9223	0.0720	0.0723	0.5371

Ergebnis 2SLS-Methode Zusammenfassung

- Zwei Stufen einzeln (2SLS) vs zusammen (ivreg):
 - gleiche kausale Schätzer
 - unterschiedliche SEs
 - Grund: ivreg berücksichtigt die Unsicherheit der ersten Stufe
- Vergleich Ratio 2SLS:
 - gleiche kausale Schätzer
 - SE.st identisch zu 2SLS
 - SE.nd ähnlich zu ivreg
 - Grund: Delta-Methode, 2. Term beinhaltet auch den SE von der ersten Stufe $(X \sim G)$

Ergebnis IVW-Methode

Tabelle 4: Main methods implemented in MendelianRandomization package

	all.func	all.meta1	all.meta2
beta.IVW	0.5675	0.5675	0.5266
se.IVW	0.2060	0.2060	0.2265
pval.IVW	0.0059	0.0059	0.0201

Method	Estimate	Std Error	P-value
Simple median	0.6594	0.4841	0.1732
Weighted median	0.5848	0.2813	0.0377
IVW	0.5675	0.2060	0.0059
MR-Egger	0.5538	0.4043	0.1708
(intercept)	0.0046	0.1119	0.9671

Ergebnis IVW-Methode - Plot

Ergebnis IVW-Methode - Plot (mehrere Methoden)

Ergebnis IVW-Methode Zusammenfassung

- IVW == FEM der Ratio-Methode mit SE.st
- Vorteil meta: man kann die Heterogenität beurteilen (Cochrans Q)
- Es gibt viele Methoden, mehrere Varianten zu kombinieren.
- Pflicht: Beurteilung des Scatterplots (falls kein Q vorhanden)
- Empfehlung 1: teste alle Hauptmethoden, um ein Gefühl für die Pleitropie & Heterogenität zu bekommen.
- Empfehlung 2: Sensitivitätsanalysen durchführen (einschränken auf biologisch sinnvolle Varianten; stärkste Outlier weglassen; o.ä.)

Zusammenfassung

- MR einfach nutzbar mit Genotypdaten oder Summary Statistics
- Bedingung 1 muss gezeigt werden, Bedingung 2 & 3 sollte man plausibilisieren können
- Bei mehreren Instrumenten: LD check (paarweise $r^2 < 0.1$, notfalls Korrektur mittels LD-Matrix)
- Funktioniert auch bei binären Y ($X \sim G$ nur in Kontrollen bzgl. Y bestimmen)