Graph Theory and Optimization Computational Complexity (in brief)

Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

October 2018

- Time-complexity Hierarchy
- 2 3-SAT
- Hamiltonian path/cycle
- Vertex-disjoint paths
- Proper Coloring
- 6 Vertex-Cover
- Approximation algorithms
- Other NP-hard problems

Time-Complexity

very brief introduction

Decision Problem

Input: Instance /

Problem: does / satisfy Property \mathcal{P} ?

Output: $solution \in \{ Yes, No \}$

ex: Is graph G connected? Does G admit a s,d-flow of value > k?...

How to evaluate if:

- a Problem \(\textit{\textit{\textit{\textit{\textit{9}}}} is "difficult" or "easy"?
- an algorithm for solving \(\mathcal{P} \) is efficient or not?

(classical) Time-complexity of an algorithm \mathscr{A} for solving \mathscr{P}

Number of elementary operations of \mathscr{A} as a function of the size n of the running time in the worst case instance

COATI

Definitions of elementary operations and size depend on:

Context, Data Structure, Units of measure...

Time-Complexity very brief introduction

Assume that Algorithm \mathscr{A} has time-complexity f(N): in the worst case, \mathscr{A} executes f(N) operations on an instance of size N

For which size of instances is your problem feasible?

Assume 10¹⁰ operations (e.g., addition of 2 integers on 64 bits) per second (it is more than current desktops)

Complexity $f(N)$	maximum size N
$\Theta(N)$	10 ¹¹
$\Theta(N \log N)$	10 ¹⁰
$\Theta(N^2)$	4 · 10 ⁵
$\Theta(N^3)$	4600
$\Theta(N^4)$	560
$\Theta(2^N)$	36
$\Theta(N!)$	13

Table: Approximation of maximum size to obtain an answer in 10 seconds

Problems solvable by an algorithm with polynomial running time are "easy"

Some polynomial problems

Some examples you may know:

- Sorting *n* integers: $\Theta(n \log n)$ heap sort, merge sort
- Multiplying two $n \times n$ matrices: $O(n^{2.3728639})$ [Le Gall, 2014]
- Decide if *m*-edge graph is connected: O(m)BFS
- Compute a shortest path in *n*-node *m*-edge graph: $O(m + n \log n)$ [Dijkstra]
- Compute min. spanning tree in m-edge graph: $O(m \log m)$ [Kruskal...]
- max. flow and min. cut in *n*-node *m*-edge graph and max capacity c_{max} : $O(m \cdot n \cdot c_{max})$ [Ford-Fulkerson]
- Maximum matching in *n*-node graph: $O(n^4)$ [Edmonds 1965] $O(mn^2)$ [Micali, Vazirani, 1980]

All these problems can be solved in time **polynomial** in the size of the input ⇒ "generally", they are said "easy"

EXPTIME: set of the (decision) problems solvable in exponential-time P: set of the (decision) problems solvable in polynomial-time $P \subset EXPTIME$

Non-deterministic Polynomial (NP): problems that can be solved in polynomial-time by a Non-deterministic Türing machine $P \subseteq NP$ Equivalently, a solution can be checked in polynomial-time

NP-hard: problems that are as "difficult" as the "hardest" problems in NP Solving one of them in polynomial-time would prove that P = NP

3-SAT Hamiltonian path/cycle Vertex-disjoint paths Proper Coloring Vertex-Cover Approximation algorithms

Complexity Hierarchy (very informal and partial description)

NP-hard: problems that are as "difficult" as the "hardest" problems in *NP* NP-complete = NP-hard $\cap NP$

NP-hard problems: we do not know if they can be solved in polynomial-time Roughly, best existing (known) algorithms (generally) enumerate all possible solutions and take a best one

SAT Hamiltonian path/cycle Vertex-disjoint paths Proper Coloring Vertex-Cover Approximation algorithms

- Time-complexity Hierarchy
- 2 3-SAT
- 3 Hamiltonian path/cycle
- Vertex-disjoint paths
- Proper Coloring
- 6 Vertex-Cover
- Approximation algorithms
- Other NP-hard problems

B-SAT Hamiltonian path/cycle Vertex-disjoint paths Proper Coloring Vertex-Cover Approximation algorithms

Famous NP-complete problems

3-SAT

SAT = Satisfiability

3-SAT is NP-complete

Cook-Levin Theorem (1971)

3-SAT: Given 3-CNF formula $\Phi(v_1, \dots, v_n)$ on n Boolean variables \exists ? a Boolean assignment $a: \{v_1, \dots, v_n\} \to \{0, 1\}$ that satisfies Φ ?

3-CNF= Conjunctive Normal Form, i.e., conjunction of clauses, where a clause is a disjunction of 3 literals.

Ex:
$$\Phi(a,b,c,d,e) = (a \lor \bar{b} \lor c) \land (\bar{e} \lor b \lor \bar{c}) \land (\bar{a} \lor \bar{c} \lor e)$$

here, the assignment $(a,b,c,d,e) = (1,1,0,0,1)$ satisfies Φ .

example of algorithm for 3-SA

Try all the 2ⁿ possible assignments

Remarks: 3-SAT is the first problem to be proved NP-hard It is often used to prove that other problems are NP-hard.

3-SAT

SAT = Satisfiability

3-SAT is NP-complete

Cook-Levin Theorem (1971)

3-SAT: Given 3-CNF formula $\Phi(v_1, \dots, v_n)$ on n Boolean variables \exists ? a Boolean assignment $a: \{v_1, \dots, v_n\} \rightarrow \{0, 1\}$ that satisfies Φ ?

3-CNF= Conjunctive Normal Form, i.e., conjunction of clauses, where a clause is a disjunction of 3 literals.

Ex:
$$\Phi(a, b, c, d, e) = (a \lor \overline{b} \lor c) \land (\overline{e} \lor b \lor \overline{c}) \land (\overline{a} \lor \overline{c} \lor e)$$

here, the assignment $(a, b, c, d, e) = (1, 1, 0, 0, 1)$ satisfies Φ .

example of algorithm for 3-SAT

Try all the 2ⁿ possible assignments

Remarks: 3-SAT is the first problem to be proved NP-hard. It is often used to prove that other problems are NP-hard.

- Time-complexity Hierarchy
- 2 3-SAT
- Hamiltonian path/cycle
- Vertex-disjoint paths
- Proper Coloring
- 6 Vertex-Cover
- Approximation algorithms
- Other NP-hard problems

Famous NP-c problems Hamiltonian Path/Cycle

Hamiltonian Path: a spanning path P in a graph G Hamiltonian Cycle: a spanning cycle C in G

Hamiltonian Path/Cycle is NP-complete [Garey, Johnson]

Hamiltonian path/cycle: Given a graph G = (V, E) with n vertices,

 \exists ? an Hamiltonian path/cycle in *G*?

Application: Travelling Salesman Problem (TSP): want to visit all cities, minimizing the distance he has to cross

Exercice: show that the right graph has no Hamiltonian cycle.

Famous NP-c problems

Hamiltonian Path/Cycle

Hamiltonian Path: a spanning path P in a graph G Hamiltonian Cycle: a spanning cycle C in G

Hamiltonian Path/Cycle is NP-complete [Garey, Johnson]

Hamiltonian path/cycle: Given a graph G = (V, E) with n vertices,

 \exists ? an Hamiltonian path/cycle in *G*?

Ex of algorithm: Try all the n! orderings of the vertices

Hamiltonian Path/Cycle

Hamiltonian Path: a spanning path P in a graph G

Hamiltonian Cycle: a spanning cycle C in G

Hamiltonian Path/Cycle is NP-complete [Garey, Johnson]

Hamiltonian path/cycle: Given a graph G = (V, E) with n vertices,

 \exists ? an Hamiltonian path/cycle in *G*?

Ex of algorithm: Try all the n! orderings of the vertices

Longest path/cycle

Exercice: Let G = (V, E) be a graph and $k \in \mathbb{N}$

Prove that deciding if G has a path/cycle of length > k is NP-complete

Famous NP-c problems

Hamiltonian Path/Cycle

Hamiltonian Cycle: cycle that passes through each vertex (exactly once)

Remark: Problems that "look similar" may be "very different"

Tour≈ "cycle" where vertices may be repeated, but not edges. Eulerian Tour: Tour that passes through each edge (exactly once)

Euler (1736)

Exercice: Prove that deciding if *G* admits an Eulerian tour is in *P* hint: prove that G admits an Eulerian tour ⇔ each vertex has even degree

SAT Hamiltonian path/cycle Vertex-disjoint paths Proper Coloring Vertex-Cover Approximation algorithms

- Time-complexity Hierarchy
- 2 3-SAT
- 3 Hamiltonian path/cycle
- Vertex-disjoint paths
- Proper Coloring
- 6 Vertex-Cover
- Approximation algorithms
- Other NP-hard problems

Famous NP-c problems

Disjoint paths (multi-flow)

Exercice: Let G = (V, E) be a graph, $S, D \subseteq V, k \in \mathbb{N}$ Deciding if it exists k vertex-disjoint paths from S to D is in P hint: use flow algorithm

Exercice: Let G = (V, E) be a graph, $S, D \subseteq V, k \in \mathbb{N}$

Deciding if it exists k vertex-disjoint paths from S to D is in P

hint: use flow algorithm

Disjoint paths is NP-complete

[Garey, Johnson]

disjoint paths: Given G = (V, E), $\{s_1, \dots, s_k\} \subseteq V$ and $\{d_1, \dots, d_k\} \subseteq V$ $\exists ? (P_1, \dots, P_k)$ pairwise vertex-disjoint paths s.t. P_i path from s_i to d_i

2 disjoint paths from {s1,s2} to {d1,d2}

no 2 disjoint paths from s1 to d1 and from s2 to d2

Remark: can be solved in time f(k) polv(n). i.e., in P if k is fixed

COATI Graph Theory and applications 12/22

Disjoint paths (multi-flow)

Disjoint paths is NP-complete

[Garey, Johnson]

disjoint paths: Given $G = (V, E), \{s_1, \dots, s_k\} \subseteq V$ and $\{d_1, \dots, d_k\} \subseteq V$ \exists ? (P_1, \dots, P_k) pairwise vertex-disjoint paths s.t. P_i path from s_i to d_i

Remark: can be solved in time f(k)poly(n), i.e., in P if k is fixed [Robertson and Seymour, 1995]

- Time-complexity Hierarchy
- 2 3-SAT
- Hamiltonian path/cycle
- Vertex-disjoint paths
- Proper Coloring
- 6 Vertex-Cover
- Approximation algorithms
- Other NP-hard problems

Coloring

Let G = (V, E) be a graph

k-Proper coloring: $c: V \to \{1, \dots, k\}$ s.t. $c(u) \neq c(v)$ for all $\{u, v\} \in E$. color the vertices $s \le k$ colors) s.t. adjacent vertices receive \neq colors

 $\{u,v\} \in E$ iff transmissions of u and v overlap Vertices = antennas Color = frequency of transmission

Coloring

Let G = (V, E) be a graph

k-Proper coloring: $c: V \to \{1, \dots, k\}$ s.t. $c(u) \neq c(v)$ for all $\{u, v\} \in E$. color the vertices $s \ll k$ colors) s.t. adjacent vertices receive \neq colors

Vertices = antennas

 $\{u,v\} \in E$ iff transmissions of u and v overlap

Color = frequency of transmission

with the coloring in the example: if you live in orange zone ⇒ No WiFi!!

Coloring

Let G = (V, E) be a graph

k-Proper coloring: $c: V \to \{1, \dots, k\}$ s.t. $c(u) \neq c(v)$ for all $\{u, v\} \in E$. color the vertices $s \le k$ colors) s.t. adjacent vertices receive \neq colors

Unproper 3-coloring (red edges)

Proper 6-colorina

Proper 3-colorina

chromatic number $\chi(G)$: min. k such that G admits a k-Proper coloring.

Coloring

Let G = (V, E) be a graph

k-Proper coloring: $c: V \to \{1, \dots, k\}$ s.t. $c(u) \neq c(v)$ for all $\{u, v\} \in E$. color the vertices $s \le k$ colors) s.t. adjacent vertices receive \neq colors

Unproper 3-coloring (red edges)

Proper 6-colorina

Proper 3-colorina

chromatic number $\chi(G)$: min. k such that G admits a k-Proper coloring.

Exercice: Show that $\chi(G) \leq 2$ if and only if *G* is bipartite.

Coloring

Let G = (V, E) be a graph

k-Proper coloring: $c: V \to \{1, \dots, k\}$ s.t. $c(u) \neq c(v)$ for all $\{u, v\} \in E$. color the vertices $s \le k$ colors) s.t. adjacent vertices receive \neq colors

Unproper 3-coloring (red edges)

Proper 6-colorina

Proper 3-colorina

chromatic number $\chi(G)$: min. k such that G admits a k-Proper coloring.

Exercice: Show that $\chi(G) \leq 2$ if and only if *G* is bipartite.

Coloring is NP-complete

[Garey, Johnson]

chromatic number: Given G = (V, E) be a graph, $\chi(G) < 3?$ even if G is restricted to be a planar graph

- Time-complexity Hierarchy
- 2 3-SAT
- Hamiltonian path/cycle
- Vertex-disjoint paths
- Proper Coloring
- 6 Vertex-Cover
- Approximation algorithms
- Other NP-hard problems

Famous NP-complete problems Vertex Cover

Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$

set of vertices that "touch" every edge

Application: each street must be protected by a fire station

Famous NP-complete problems Vertex Cover

Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$

set of vertices that "touch" every edge

Problem: Min. number of fire stations to protect each street?

Famous NP-complete problems Vertex Cover

Let G = (V, E) be a graph

Vertex Cover: set $K \subseteq V$ such that $\forall e \in E, e \cap K \neq \emptyset$

set of vertices that "touch" every edge

Problem: Min. number of fire stations to protect each street?

Min Vertex Cover is NP-complete

[Garey, Johnson]

Vertex Cover: Given G = (V, E) be a graph, $k \in \mathbb{N}$,

 \exists ? $K \subseteq V$ a vertex cover of G such that $|K| \le k$?

COATI

- Time-complexity Hierarchy
- 2 3-SAT
- Hamiltonian path/cycle
- Vertex-disjoint paths
- Proper Coloring
- 6 Vertex-Cover
- Approximation algorithms
- Other NP-hard problems

NP-hard: No Polynomial-time algorithms known!!!

$$\kappa(G) = \min$$
. $vertex\ cover(G) = \max$. $matching(G) = \mu(G)$

NP-hard: No Polynomial-time algorithms known!!!

worst case complexity vs. practice

exponential-time algorithms may be efficient on practical instances

NP-hard: No Polynomial-time algorithms known!!!

worst case complexity vs. practice

exponential-time algorithms may be efficient on practical instances

Consider particular instances

Problem \mathcal{P} may be NP-complete in a set \mathcal{I} of instances but polynomial-time solvable in $\mathscr{I}' \subset \mathscr{I}$

Ex: for any bipartite graph G,

$$\kappa(G) = \min$$
 vertex cover $(G) = \max$ matching $(G) = \mu(G)$

NP-hard: No Polynomial-time algorithms known!!!

worst case complexity vs. practice

exponential-time algorithms may be efficient on practical instances

Consider particular instances

Problem \mathcal{P} may be NP-complete in a set \mathcal{I} of instances but polynomial-time solvable in $\mathscr{I}' \subset \mathscr{I}$

Ex: for any bipartite graph G,

$$\kappa(G) = min. \ vertex \ cover(G) = max. \ matching(G) = \mu(G)$$

c-Approximation algorithms \mathscr{A} : polynomial-time algorithm s.t.

for any instance I, \mathscr{A} returns a solution with value

for minimization problem: $OPT(I) \leq value(\mathscr{A}) \leq c \cdot OPT(I)$

for maximization problem: $OPT(I)/c \le value(\mathscr{A}) \le OPT(I)$

Exercice: Give a 2-approximation algorithm for Vertex-Cover hint: show that, for any graph G, $\mu(G) \leq \kappa(G) \leq 2\mu(G)$

SAT Hamiltonian path/cycle Vertex-disjoint paths Proper Coloring Vertex-Cover Approximation algorithms

- Time-complexity Hierarchy
- 2 3-SAT
- 3 Hamiltonian path/cycle
- Vertex-disjoint paths
- Proper Coloring
- 6 Vertex-Cover
- Approximation algorithms
- Other NP-hard problems

Some other famous NP-complete problems

Max. Independent set is NP-complete

Independent set: Given a graph $G = (V, E), k \in \mathbb{N}$, \exists ? stable set $S \subseteq V$ of size > k in G?

Min. Feedback Vertex Set (FVS) is NP-complete

FVS: Given a digraph $D = (V, A), k \in \mathbb{N}$,

 \exists ? $F \subseteq V$ such that $D \setminus F$ is acyclic?

Min. Set Cover is NP-complete

Set Cover: set *E*, family of subsets $\mathscr{S} = \{\mathscr{S}_1, \cdots, \mathscr{S}_\ell\} \subseteq 2^E$, $k \in \mathbb{N}$ $\exists ? \ Y \subseteq \mathscr{S}, \bigcup_{S \in Y} S = E, |\mathscr{S}| \leq k?$

Min. Hitting Set is NP-complete

Hitting Set: set E, family of subsets $\mathscr{S} = \{\mathscr{S}_1, \cdots, \mathscr{S}_\ell\} \subseteq 2^E$, $k \in \mathbb{N}$ \exists ? $H \subseteq E$, $H \cap \mathcal{S}_i$ for any $i < \ell$, |H| < k?

Partition is *weakly* NP-complete

Partition: Given set $X = \{x_1, \dots, x_n\}$ of integers,

 \exists ? partition (A, B) of X such that $\sum_{x \in A} x = \sum_{x \in B} x$?

Hamiltonian path/cycle Vertex-disjoint paths Proper Coloring Vertex-Cover Approximation algorithms

Summary: To be remembered

- P, NP, NP-hard, NP-complete
- 3-SAT, Hamiltonian path, Coloring, Vertex Cover, ...
- Approximation algorithm

