AI1072: Machine learning, exercise sheet 8

A general remark: the object w.r.t. which a derivative is taken in TF can, but need not be tf. Variable instances.

A scalar-scalar function in TF

Let
$$f(x) = \sum_{i=1}^{4} x^{i}$$
.

- Let $f(x) = \sum_{i=1}^{4} x^i$. a) Use TF to compute f(0), f(1) and f(2)
- b) Use TF to compute $f'(x)|_{x=-1}$
- c) Use TF to compute $(f'(x)|_{x=-1})^2$

A vector-scalar function in TF

Let
$$f(\vec{x}) = \sum_{i=1}^{3} x_i^3$$
.

- Let $f(\vec{x}) = \sum_{i=1}^{3} x_i^3$. a) Implement this function in TF and compute its output for the inputs $\vec{x}_1 =$ $(1,2,3)^T$ and $\vec{x}_2=(2,0,2)^T$. Hint: use a tf function to compute the sum!
- **b)** Use TF to compute and display the value of $\vec{\nabla} f$, evaluated for $\vec{x} = \vec{x}_1$ **c)** Use TF to compute and display the value of $\frac{\partial f}{\partial x_1}$, evaluated for $\vec{x} = \vec{x}_2$

Vector-vector chain rule in TF

Suppose we have a matrix $W=\begin{pmatrix}1&2\\-1&1\\0&1\end{pmatrix}$, a function $f(\vec{x})=W\vec{x}$ and a

function $g(\vec{x}) = \sum_i x_i$.

- a) Implement the composite function $h = f(g(\vec{x}))$ in TF and compute its output
- for the inputs $\vec{x}_1 = (1,2)^T$ and $\vec{x}_2 = (2,0)^T$. **b)** Use TF to compute the vector $\frac{\partial h}{\partial x_i}$ for $\vec{x} = \vec{x}_1$ **c)** Use TF to compute the vector $\frac{\partial h}{\partial W_{ij}}$ for $\vec{x} = \vec{x}_1$