Chapter 6

Brian Huang

December 4, 2023

6.7 Least-Squares Problem

Definition

If A is m*n matrix and b is in R^m , a least-squares problem of Ax = b is an \hat{x} in R^n such that

$$||b - A\hat{x}|| \le ||b - Ax||$$

for all x in \mathbb{R}^n .

Theorem 13

The set of least squares solutions of Ax = b coincides with the non-empty set of solutions of the equations: $A^TAx = A^Tb$

Theorem 14

Let A be an n * n matrix. TFAE:

- a. the equation Ax = b has a unique least-squares solution for each b in \mathbb{R}^n .
- b. The columns of A are linearly independent.
- c. The Matrix A^TA is invertible.

When these statements are true, the least-squares solution \hat{x} is given by:

$$\hat{x} = (A^T A)^{-1} A^T b$$

Theorem 15

Given an m * n matrix A with linearly indepedent columns, let A = QR be a QR factorization of A as in Theorem 12. Then for each b in R^n , the equation Ax = b has a unique least-squares solution given by:

$$\hat{x} = R^{-1}Q^Tb$$

Conclusion

In summary, The least squares solution aims to find the smallest ||b - Ax||. To find it we use the equation from **Theorem 14** to find \hat{x} which is the least squares solutions.

You can also use QR factorization to find the least squares solution as well. This time, use **Theorem 15** to find the least squares solution. However, the equation from **Theorem 14** still works regardless.