Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Ciência da Computação

GMTP: Distribuição de Mídias Ao Vivo através de uma Rede de Favores Constituída entre Roteadores

Leandro Melo de Sales

Tese de Doutorado submetida à Coordenação do Curso de Pós-Graduação em Ciência da Computação da Universidade Federal de Campina Grande - Campus I como parte dos requisitos necessários para obtenção do grau de Doutor em Ciências, domínio da Ciência da Computação.

Área de Concentração: Ciência da Computação

Linha de Pesquisa: Redes de Computadores e Sistemas Distribuídos

Angelo Perkusich e Hyggo Almeida (Orientadores)

Campina Grande, Paraíba, Brasil ©Leandro Melo de Sales, 03/03/2014

Resumo

TBD

Abstract

TBD

Conteúdo

1	Aná	lise de l	Desempenho do GMTP	1
	1.1	Metod	ologia	1
		1.1.1	Objetivo e hipótese	2
		1.1.2	Topologia de rede	3
		1.1.3	Definição de Variáveis	3
		1.1.4	População e amostras	5
		1.1.5	Tratamentos	6
		1.1.6	Instrumentação	7
		1.1.7	Formato mídia	7
	1.2	Result	ados e Discussões	7
		1.2.1	Resultados	8
		1.2.2	Discussões	8
	1.3	Sumár	io do Capítulo	8

Capítulo 1

Análise de Desempenho do GMTP

Como apresentou-se no Capítulo ??, o objetivo deste trabalho compreende três grandes fases: 1) revisão das técnicas e propostas para distribuição de mídias ao vivo; 2) descrever o protocolo GMTP e suas funcionalidades; e 3) a avaliação do referido protocolo para distribuição de mídias ao vivo. Nos Capítulos ?? e ??, contemplou-se a fase 1; no Capítulo ??, a fase 2 e, neste capítulo, concentram-se as discussões na fase 3.

O cerne desta fase foi avaliar o protocolo GMTP frente às propostas Denacast/CoolS-treaming [1, 2] e o CCN-TV [3]. Considerou-se dois principais critérios de seleção dessas propostas, em comparação ao GMTP: similaridade arquitetural e os recursos disponíveis para distribuição de um fluxo de dados ao vivo. Tratam-se de duas propostas que consideram a maior parte dos recursos considerados no estado da prática e da arte para distribuição de mídias ao vivo, sendo trabalhos referenciados na literatura e acessíveis para estudos comparativos.

O restante deste capítulo esta organizado da seguinte forma: na Seção 1.1, apresenta-se a metodologia de avaliação. Na Seção 1.2, discutem-se os resultados da avaliação. E, por fim, na Seção 1.3, sumariza-se este capítulo.

1.1 Metodologia

Para realizar a comparação entre protocolos supracitados, definiu-se a modalidade de avaiação experimental em um ambiente de simulação de rede que proporcionou a construção de um cenário de rede para este fim. Através da definição de fatores (variáveis independentes), 1.1 Metodologia 2

mediu-se e analisou-se as principais métricas (variáveis dependentes) que determinam a experiência do usuário ao assistir a um evento através de um sistema de distribuição de mídias ao vivo. Dessa forma, possibilitou-se aprofundar o comportamento do GMTP em relação ao estado da arte/prática, estudando-o em diferentes configurações de rede a fim de determinar suas vantagens, limites e os impactos que seus recursos podem gerar tanto sobre os nós quanto sobre a rede.

Sendo assim, a seguir, apresentam-se detalhes do projeto experimental executado, organizado em objetivo e hipótese, instrumentação, topologia de rede, variáveis independentes e dependentes, fatores, população e amostras, formato da mídia utilizada e os tratamentos.

1.1.1 Objetivo e hipótese

O objetivo do experimento foi avaliar o desempenho do GMTP com vistas à hipótese enunciada de que a constituição de uma rede de favores entre roteadores que interceptam, realizam cache temporário e compartilham pacotes de dados tanto em modo *multicast* (em redes locais) quanto em modo unicast (entre redes distintas), auxiliados por um algoritmo para controle de congestionamento assistido pela rede, resulta em uma melhor distribuição dos fluxos de mídias ao vivo.

Para refutar ou não esta hipótese, fracionou-a em duas etapas, com os protocolos estudados sendo as unidades experimentais e aplicando-se os tratamentos ao GMTP em confronto tanto com o Denacast/CoolStreaming e quanto com o CCN-TV, isoladamente. Em cada etapa, definiu-se uma hipótese nula (H_0) e uma hipótese alternativa (H_A) , da seguinte forma:

1. GMTP vs. Denacast/CoolStreaming:

- H_0 : a eficácia do GMTP e a do Denacast/CoolStreaming é igual, considerandose as métricas que determinam a qualidade de serviço para distribuição de mídias ao vivo.
- H_A: a eficácia do GMTP e do Denacast/CoolStreaming é diferente, considerando-se as métricas que determinam a qualidade de serviço para distribuição de mídias ao vivo.

2. GMTP vs. CCN/TV:

1.1 Metodologia 3

• H_0 : a eficácia do GMTP e do CCN-TV é igual, considerando-se as métricas que

determinam a qualidade de serviço para distribuição de mídias ao vivo.

• H_A : a eficácia do GMTP e do CCN-TV é diferente considerando-se as métricas

que determinam a qualidade de serviço para distribuição de mídias ao vivo.

Sendo assim, a meta do estudo foi refutar a hipótese H_0 nas duas etapas, obtendo assim

forte evidência de que H_1 é verdadeira.

1.1.2 Topologia de rede

Com esse norte, primeiramente definiu-se a topologia da rede. Como ilustra-se na Figura 1.1,

simulou-se o backbone da rede GEANT¹. Atualmente, a GEANT interconecta 10.000 insti-

tuições europeias de pesquisa e educação e 50 milhões de usuários, composta por 41 roteado-

res conectados por meio de canais de transmissão com capacidades que variam entre 1 Gbps

e 100 Gbps. No caso da simulação, utilizou-se apenas 10 % da capacidade de transmissão

original da rede, a fim de gerar pontos de super utilização de acordo com a quantidade de

nós clientes interessados em receber um fluxo de dados multimídia.

1.1.3 Definição de Variáveis

As variáveis foram definidas em 3 categorias: independentes, fatores e independentes.

Variáveis independentes:

Na Tabela 1.1, apresentam-se as variáveis independentes utilizadas nos experimentos, com

base na topologia da rede apresentada anteriormente.

Fatores:

Na Tabela 1.2, apresentam-se fatores consideradas nos experimentos, os quais seus valores

foram variados de um tratamento de experimento para outro.

¹Rede GEANT: http://www.geant.net/.

Figura 1.1: Backbone da rede GEANT.

Tabela 1.1: Tabela das variáveis independentes utilizados nos experimentos.

Parâmetros	Valores
Tipo da mídia ¹	MPEG4 Part I
Número de nós roteadores (backbone)	41
Tempo de simulação de cada ensaio	900 s
Largura de banda das LANs	100 <i>Mbps</i>
Atraso das LANs	$\leq 1 ms$
Largura de banda da WAN ²	10 % da capacidade total do canal
Tamanho do buffer do roteador	8 s (por mídia)
Tamanho máximo do datagrama	1500 Bytes (OverSim) e 4096 Bytes (CCNSim)
Taxa de upload dos nós ³	512 Kbps, 1 Mbps, 2 Mbps (Heterogênea)
Dinâmica da rede $(churn)^4$	RandomChurn

¹ Para mais detalhes, consultar Seção 1.1.7.

Variáveis dependentes:

As principais métricas para medir um sistema de distribuição de mídias ao vivo podem ser organizadas em três categorias [4], apresentadas a seguir.

² Por exemplo, nos canais ilustrados na cor preta da Figura 1.1, utilizou-se 10 *Gbps* em vez de 100 *Gbps*.

 $^{^3}$ Alocaram-se valores aleatórios com base em distribuição uniforme.

⁴ RandomChurn: a cada intervalo de 3 s, um número $n \in [0,1]$ foi gerado. Dependendo do valor de n, um nó foi adicionado ou removido com uma probabilidade p a cada ensaio. Utilizou-se p=0.6, ou seja, os nós foram adicionados com uma probabilidade de 70 % e removidos com uma probabilidade de 30 %.

1.1 Metodologia 5

TD 1 1 1 A	7D 1 1	1 (• ,	. 1 1		• ,
Inhala I /	Tabala (doc t	Otorac	concideradae	noca	vnarimantae
$1aD\nabla 1a + . \angle$.		1051	aioics	COHSIUCIAGAS	1105 6	experimentos.
100001001.				• • • • • • • • • • • • • • • • • • • •		p •

Fatores	Valores
Número de nós clientes ¹	500; 1500; 15.000; 30.000; 60.000; 80.000
Número de nós servidores	1, 3, 7
Suporte da rede ao protocolo ²	Borda, Parcial e Total

Os pedidos de conexão originados pelos nós clientes teve início nos primeiros 100 s de cada ensaio.

- 1. Qualidade de serviço à aplicação: avaliam-se o atraso para iniciar a reprodução de uma mídia ao vivo após o primeiro pedido (ST); o índice de continuidade (IC); e o nível de distorção (qualidade) do conteúdo recebido em comparação ao conteúdo original (DI). A variável IC é determinada com base na quantidade de interrupções e o tempo de cada interrupção. Sendo assim, determinou-se que IC = (QI + TI) / (QI + TI×2), onde QI é a quantidade total de interrupções e TI é o tempo total de todas as interrupções. Definiu-se um peso maior para o tempo de interrupções se comparado à quantidade de interrupções, pois uma interrupção longa na reprodução da mídia é pior do que várias interrupções curtas.
- 2. Escalabilidade do sistema: avalia-se a quantidade de nós simultâneos que foram capazes de receber o fluxo de dados da mídia transmitida com um nível de distorção máximo (ES). Nesse caso, mediu-se o nível de contribuição das redes CDN e P2P separadamente, que corresponde à quantidade de fluxos transmitidos pelos servidores (QS) da CDN e pelos nós da rede P2P (QP).
- 3. *Sobrecarga de controle:* avalia-se a quantidade de pacotes de controle (PC) transmitidos por um protocolo durante o tempo de simulação (contagem dos pacotes que não transportam dados da mídia), mas considera-se 0,5 cada pacote de *piggyback*.

Com base nessas métricas, determinou-se as variáveis dependentes, como apresentam-se na Tabela 1.3.

1.1.4 População e amostras

Constituiu-se a população por dados coletados durante a execução dos ensaios referentes às variáveis dependentes apresentadas na Tabela 1.3, com granularidade das amostras em

² Apenas no confronto GMTP vs. CCN-TV. *Borda*: suporte apenas nos roteadores conectados na borda da rede. *Parcial*: suporte em 50 % dos roteadores da rede. *Total*: suporte em todos os roteadores da rede.

1.1 Metodologia 6

Tabela 1.3: Tabela das	variáveis dependentes	(respostas) considerac	las nos experimentos.

Variáveis dependentes	Símbolo
Atraso de inicialização do fluxo	ST
Índice do continuidade (%)	IC
Distorção do vídeo (%)	DI
Número de clientes com recepção acima de $X\%^1$ da mídia	ES
Número de conexões ao servidor	QS
Número de conexões entre clientes	QP
Número de pacotes de controle	PC

¹ As faixas dos valores de X são 0–20%, 21–40%, 41–60%, 61–80%, 91–100%.

segundos. O tempo de duração de cada ensaio foi de 900 s, portanto coletou-se 900 amostras para cada variável dependente em um determinado tratamento.

1.1.5 Tratamentos

Como base na combinação sem repetição dos fatores definidos na Tabela 1.2, definiu-se os tratamentos, considerando-se as unidades experimentais o GMTP, o Denacast/CoolStreaming e o CCN-TV, comparados em confrontos dois-a-dois, fixando-se o GMTP, com execuções independentes (não simultâneas). Sendo assim, para o confronto GMTP vs. Denacast/CoolStreaming, definiram-se 18 tratamentos, ao passo que para o confronto GMTP vs. CCN-TV definiram-se 54 tratamentos.

Com relação a execução de cada tratamento, estabeleceu-se a execução de 50 ensaios iniciais e calculou-se as medianas μ das amostras correspondentes às variáveis dependentes apresentadas na Tabela 1.3. Em seguida, a fim de obter um nível de confiança de $95\,\%$ das medidas obtidas entre os confrontos considerados, calculou-se a inequação de proporcionalidade 1.1, com $\mu_2 > \mu_1$, utilizada para determinar o tamanho das amostras a fim de comparar duas alternativas [5]. Como nesse estudo consideraram-se 7 variáveis dependentes (Tabela 1.3), determinou-se $n=max(n_{ST},n_{IC},n_{DI},n_{ES},n_{QS},n_{QP},n_{PC})$, sendo cada tratamento repetido n+1 vezes.

$$\mu_1 - 1.96\sqrt{\frac{0,995\mu_1}{n}} \le \mu_2 + 1.96\sqrt{\frac{0,995\mu_2}{n}}, \mu_2 > \mu_1$$
 (1.1)

1.1.6 Instrumentação

Com relação à instrumentação, utilizou-se OMNet++ [6, 7], um arcabouço para construção de simuladores de rede. Nesse contexto, utilizaram-se dois simuladores: o OverSim [8] e o CCN-Sim [9]. No OverSim, utilizaram-se as implementações do sistema Denacast/CoolStreaming [10] e a do GMTP [11] (implementado no contexto deste trabalho), ao passo que no CCN-Sim, utilizou-se a implementação do CCN-TV [12].

1.1.7 Formato mídia

Na Tabela 1.4, apresentam-se as propriedades da mídia utilizada no experimento [13].

Propriedades Valores

Tabela 1.4: Tabela das propriedades da mídia transmitida.

Codec do vídeo MPEG4 Part I Mídia sintetizada Star Wars IV Número de quadros 25 fps Número de quadros em GoP 12 Média VBR 512 *Kbps*

Dessa forma, com base na metodologia apresentada nesta seção, coletaram-se as amostras para as variáveis dependentes e realizou-se uma análise dos dados para verificar a veracidade ou não das hipóteses levantadas. A seguir, apresentam-se os resultados e discussões no tocante ao desempenho dos sistemas estudados.

Resultados e Discussões 1.2

Nesta seção, apresentam-se os resultados e discussões dos confrontos GMTP vs. Denacast/-CoolStreaming e GMTP vs. CCN-TV. Note que a metodologia empregada para obter as medições para as variáveis dependentes assegura uma análise e discussão dos resultados apenas sobre o desempenho do GMTP em relação aos dois sistemas oponentes considerados, porém não se assegura nenhuma análise comparativa/conclusiva entre o Denacast/CoolStreaming e o CCN-TV.

1.2.1 Resultados

Na Tabela 1.5

Na Tabela 1.6

Tentar usar a ideia de destacar algumas linhas e comentá-las

1.2.2 Discussões

- Gráficos: * Número de nós clientes x Qualidade da mídia * Número de nós clientes x Atraso de inicialização * Protocolo x Conexões servidor x Conexões entre clientes * Número de nós clientes x Protocolo x Pacotes de controle * Protocolos x Média geométrica (Pensar num gráfico que relacione a média geométrica de todos as variáveis dependentes com os fatores) * Algum gráfico guarda-chuva?

Em um contexto geral, comparando em um único número para cada protocolo, fazer um gráfico de barras, usar média geométrica, ou seja:

Dizer que o GMTP tem um melhor desempenho porque a seleção de nós considera a capacidade do canal

O GMTP borda é melhor ligeiramente melhor que o Denacast

Melhorar o capítulo do GMTP em duas coisas: cabeçalho genérico e a parte de seleção dos melhores caminhos com base na capacidade atual do canal (o problema que pode ocorrer é de flash-crowd)

MANTER O PPSP/Swift? Se sim, rever o que o nazareno colocou sobre isso...

CCN-TV 6550523

Olhar os gráficos desse artigo

cite 6607500 cite 6386696

1.3 Sumário do Capítulo

A interoperabilidade é uma medição arquitetural, explicar isso. Como medir a quantidade de aplicações de distribuição de mídias ao vivo diferentes e a quantidade de eventos iguais sendo transmitidos

Tabela 1.5: Sumário dos valores obtidos para as variáveis dependentes em cada tratamento do confronto GMTP vs. Denacast/CoolStreaming.

Trat. #	Atraso de inicialização (s)	Índice do continuidade (%)	Distorção do vídeo (%)	Conexões ao servidor	Conexões entre clientes	Pacotes de controle	n	
	999,99	999, 99	99,99	99.999,99	99.999, 99	99.999, 99		
1	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
2	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999, 99	000	
2	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
3	999, 99	999,99	99,99	99.999,99	99.999, 99	99.999, 99	999	
3	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
4	999, 99	999,99	99,99	99.999,99	99.999, 99	99.999, 99	999	
4	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
	999, 99	999, 99	99,99	99.999,99	99.999,99	99.999, 99	000	
5	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
(999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999, 99	000	
6	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
7	999, 99	999,99	99,99	99.999,99	99.999, 99	99.999, 99	999	
,	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
8	999, 99	999,99	99,99	99.999,99	99.999, 99	99.999, 99	999	
ð	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
9	999, 99	999,99	99,99	99.999,99	99.999, 99	99.999, 99	000	
y	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	

	Tabela 1.5 – continuação da página anterior									
Trat.	Atraso de	Índice do	Distorção do	Conexões ao	Conexões entre	Pacotes de				
#	inicialização (s)	continuidade (%)	vídeo (%)	servidor	clientes	controle	n			
10	999, 99	999, 99	99,99	99.999,99	99.999,99	99.999,99	999			
10	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999			
11	999, 99	999, 99	99,99	99.999,99	99.999,99	99.999, 99	000			
11	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999			
10	999, 99	999,99	99,99	99.999,99	99.999,99	99.999, 99	000			
12	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999			
12	999, 99	999,99	99,99	99.999,99	99.999,99	99.999, 99	000			
13	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999			
1.4	999, 99	999,99	99,99	99.999,99	99.999,99	99.999, 99	000			
14	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999			
1.5	999, 99	999,99	99,99	99.999,99	99.999,99	99.999, 99	000			
15	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999			
16	999, 99	999,99	99,99	99.999,99	99.999,99	99.999, 99	000			
16	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999			
15	999, 99	999,99	99,99	99.999,99	99.999,99	99.999, 99	000			
17	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999			
10	999, 99	999,99	99,99	99.999,99	99.999,99	99.999, 99	000			
18	(000 00 000 00)	(000 00 000 00)	(00,00,00,00)	(00,000,00,00,000,00)	(00,000,00,00,000,00)	(00,000,00,00,000,00)	999			

(99, 99 - 99, 99) (99.999, 99 - 99.999, 99) (99.999, 99 - 99.999, 99) (99.999, 99 - 99.999, 99)

(999, 99 - 999, 99)

(999, 99 - 999, 99)

Tabela 1.5 – continuação da página anterior

Tabela 1.6: Sumário dos valores obtidos para as variáveis dependentes em cada tratamento do confronto GMTP vs. CCN-TV.

Trat.	Atraso de	Índice do	Distorção do	Conexões ao	Conexões entre	Pacotes de		
#	inicialização (s)	continuidade (%)	vídeo (%)	servidor	clientes	controle	n	
-	999,99	999,99	99, 99	99.999, 99	99.999,99	99.999, 99	999	
1	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
2	999,99	999, 99	99,99	99.999,99	99.999,99	99.999,99	000	
2	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
2	999,99	999, 99	99,99	99.999,99	99.999,99	99.999,99	000	
3	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
4	999,99	999, 99	99,99	99.999,99	99.999,99	99.999,99	000	
4	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
-	999,99	999, 99	99,99	99.999,99	99.999,99	99.999,99	000	
5	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
(999, 99	999, 99	99,99	99.999,99	99.999,99	99.999, 99	999	
6	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)		
7	999,99	999, 99	99,99	99.999,99	99.999,99	99.999,99	000	
/	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
0	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999, 99	000	
8	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
0	999, 99	999, 99	99,99	99.999,99	99.999,99	99.999,99	000	
9	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	

Tabela 1.6	– continuação da página ant	terior
orção do	Conexões ao	

Trat.	Atraso de	Índice do	Distorção do	Conexões ao	Conexões entre	Pacotes de		
#	inicialização (s)	continuidade (%)	vídeo (%)	servidor	clientes	controle	n	
10	999, 99	999, 99	99, 99	99.999,99	99.999, 99	99.999, 99	999	
10	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
11	999, 99	999, 99	99, 99	99.999, 99	99.999, 99	99.999, 99	999	
11	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
12	999, 99	999, 99	99, 99	99.999, 99	99.999, 99	99.999, 99	999	
12	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
12	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999, 99		
13	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
14	999, 99	999, 99	99,99	99.999,99	99.999,99	99.999, 99	999	
14	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
15	999, 99	999, 99	99,99	99.999,99	99.999,99	99.999, 99	999	
15	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
16	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999, 99	999	
10	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
17	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999, 99	999	
17	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
18	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999, 99	999	
10	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
19	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999, 99	999	
	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	

Tabela 1.6 – continuação da página anterior									
Trat.	Atraso de	Índice do	Distorção do	Conexões ao	Conexões entre	Pacotes de	-		
#	inicialização (s)	continuidade (%)	vídeo (%)	servidor	clientes	controle	n		
20	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999,99	999		
	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999		
21	999, 99	999,99	99,99	99.999,99	99.999, 99	99.999,99	000		
21	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999		
22	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999,99	000		
22	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999		
23	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999,99			
23	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999		
24	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999,99	000		
24	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999		
25	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999,99	000		
25	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999		
26	999,99	999, 99	99,99	99.999,99	99.999, 99	99.999,99	000		
26	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999		
27	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999,99	000		
27	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999		
28	999, 99	999, 99	99,99	99.999,99	99.999,99	99.999,99	000		
28	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999		
29	999,99	999, 99	99,99	99.999,99	99.999, 99	99.999, 99	999		
29	$(000 \ 00 - 000 \ 00)$	(000 00 000 00)	(00 00 00 00)	(00,000,00,00,000,00)	(00,000,00,00,000,00)	(00,000,00,00,000,00)	999		

(99.999, 99 - 99.999, 99)

(99.999, 99 - 99.999, 99)

(999, 99 - 999, 99)

(999, 99 - 999, 99)

(99, 99 - 99, 99)

(99.999, 99 - 99.999, 99)

			tabela 1.6 – continuação da pagina anterior				
ıt.	Atraso de	Índice do	Distorção do	Conexões ao	Conex		
	inicialização (s)	continuidade (%)	vídeo (%)	servidor	cli		
	999, 99	999, 99	99, 99	99,999,99	99.		

Trat.	Atraso de	Índice do	Distorção do	Conexões ao	Conexões entre	Pacotes de	n	
#	inicialização (s)	continuidade (%)	vídeo (%)	servidor	clientes	controle	n	
30	999, 99	999, 99	99,99	99.999,99	99.999,99	99.999, 99	000	
30	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
31	999, 99	999, 99	99,99	99.999,99	99.999,99	99.999, 99	999	
31	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)		
32	999, 99	999, 99	99,99	99.999,99	99.999,99	99.999, 99	999	
34	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
33	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999, 99	999	
33	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)		
34	999, 99	999, 99	99, 99	99.999,99	99.999, 99	99.999, 99	999	
	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
35	999, 99	999, 99	99, 99	99.999, 99	99.999, 99	99.999, 99	999	
	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)		
36	999, 99	999, 99	99, 99	99.999, 99	99.999, 99	99.999, 99	999	
	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)		
37	999, 99	999, 99	99, 99	99.999, 99	99.999, 99	99.999, 99	999	
	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
38	999, 99	999, 99	99, 99	99.999, 99	99.999, 99	99.999, 99	999	
	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
39	999, 99	999, 99	99, 99	99.999,99	99.999, 99	99.999, 99	999	
39	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	

Tabela 1.6 – continuação da página anterior								
Trat.	Atraso de	Índice do	Distorção do	Conexões ao	Conexões entre	Pacotes de		
#	inicialização (s)	continuidade (%)	vídeo (%)	servidor	clientes	controle	n	
40	999, 99	999, 99	99,99	99.999,99	99.999,99	99.999, 99	999	
40	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
41	999, 99	999, 99	99,99	99.999,99	99.999,99	99.999, 99	000	
41	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
42	999, 99	999, 99	99,99	99.999,99	99.999,99	99.999, 99	999	
42	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)		
43	999, 99	999, 99	99,99	99.999,99	99.999,99	99.999, 99	999	
43	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)		
44	999, 99	999, 99	99,99	99.999,99	99.999,99	99.999, 99	000	
44	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
45	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999, 99	999	
45	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)		
46	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999, 99	999	
40	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
47	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999,99	000	
4/	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
40	999, 99	999, 99	99,99	99.999,99	99.999,99	99.999,99	000	
48	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99,99-99,99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
40	999, 99	999, 99	99,99	99.999,99	99.999,99	99.999,99	999	
49	i e	I	l	I	1		uuu	

(99.999, 99 - 99.999, 99)

(99.999, 99 - 99.999, 99)

(999, 99 - 999, 99)

(999, 99 - 999, 99)

(99, 99 - 99, 99)

999

(99.999, 99 - 99.999, 99)

Tabela 1.6	– continuação	da	página an	terior

Trat.	Atraso de	Índice do	Distorção do	Conexões ao	Conexões entre	Pacotes de		
#	inicialização (s)	continuidade (%)	vídeo (%)	servidor	clientes	controle	n	
	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999, 99	000	
50	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
51	999, 99	999, 99	99, 99	99.999,99	99.999, 99	99.999, 99	999	
	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
52	999, 99	999, 99	99, 99	99.999, 99	99.999, 99	99.999, 99	999	
54	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
53	999, 99	999,99	99, 99	99.999, 99	99.999, 99	99.999, 99	999	
	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	
54	999, 99	999, 99	99,99	99.999,99	99.999, 99	99.999, 99	999	
54	(999, 99 - 999, 99)	(999, 99 - 999, 99)	(99, 99 - 99, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	(99.999, 99 - 99.999, 99)	999	

Bibliografia

- [1] Anahita Fellah Jahromi. Temporal Scalable Live Video Streaming over Hybrid CDN-P2P Architecture. *International Journal of Computer Applications*, 46(17):14–20, May 2012. Published by Foundation of Computer Science, New York, USA.
- [2] S. M Y Seyyedi and B. Akbari. Hybrid cdn-p2p architectures for live video streaming: Comparative study of connected and unconnected meshes. In *Computer Networks and Distributed Systems (CNDS)*, 2011 International Symposium on, pages 175–180, Feb 2011.
- [3] V. Ciancaglini, G. Piro, R. Loti, L.A. Grieco, and L. Liquori. CCN-TV: A Data-centric Approach to Real-Time Video Services. In *Advanced Information Networking and Applications Workshops (WAINA)*, 2013 27th International Conference on, pages 982–989, March 2013.
- [4] Z. Chen, H. Yin, C. Lin, Y. Chen, and M. Feng. Towards a Universal Friendly Peer-to-Peer Media Streaming: Metrics, Analysis and Explorations. *Communications, IET*, 3(12):1919–1933, 12 2009.
- [5] Raj Jan. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling. John Wiley & Sons, Inc, 1 edition, 3 1991.
- [6] He Xu, Suo ping Wang, Ru chuan Wang, and Ping Tan. A Survey of Peer-to-Peer Simulators and Simulation Technology. *Journal of Convergence Information Technology*, 6(5):260–272, 5 2011.
- [7] Andras Varga. OMNeT++: Extensible, Modular, Component-based C++ Simulation

BIBLIOGRAFIA 18

- Library and Framework for Building Network Simulators, 3 2014. http://www.omnetpp.org/. Último acesso: 25 de Março de 2014.
- [8] Stephan Krause Ingmar Baumgart, Bernhard Heep. OverSim: the Overlay Simulation Framework, 3 2014. http://www.oversim.org/. Último acesso: 25 de Março de 2014.
- [9] Giuseppe Rossini, Raffele Chiocchetti, Andrea Araldo, and Dario Rossi. CCN-Sim: Scalable Chunk-level Simulator of Content Centric Networks (CCN), 3 2014. http://perso.telecom-paristech.fr/~drossi/index.php? n=Software.CcnSim. Último acesso: 25 de Março de 2014.
- [10] S. M Y Seyyedi and B. Akbari. Denacast: A P2P/CDN Video Streaming System in OverSim, 3 2014. http://www.denacast.org/. Último acesso: 25 de Março de 2014.
- [11] Leandro Melo de Sales. Global Media Transmission Protocol (GMTP), 3 2014. http://www.gmtp-protocol.org/. Último acesso: 25 de Março de 2014.
- [12] Vincenzo Ciancaglini, Giuseppe Piro, Riccardo Loti, Luigi Alfredo Griecoy, and Luigi Liquori. CCN-TV: Data-Centric Approach to Real-Time Video Services, 3 2014. http://telematics.poliba.it/index.php/en/ccn-tv.Último acesso: 25 de Março de 2014.
- [13] F. H P Fitzek and M. Reisslein. MPEG-4 and H.263 Video Traces for Network Performance Evaluation. *Network, IEEE*, 15(6):40–54, 11 2001.