Applied Digital Logic Design

BOOLEAN LAWS

T1: Commutative Law

(a)
$$A + B = B + A$$

(b) $A B = B A$

T2: Associative Law

(a)
$$(A + B) + C = A + (B + C)$$

(b) $(A B) C = A (B C)$

T3: Distributive Law

(a)
$$A (B + C) = A B + A C$$

(b) $A + (B C) = (A + B) (A + C)$

T4: Identity Law

(a)
$$A + A = A$$

(b) $A A = A$

T5: Negation Law

(a)
$$(\overline{A}) = \overline{A}$$

(b)
$$(\overline{A}) = A$$

T6: Redundancy Law

(a)
$$A + A B = A$$

(b)
$$A (A + B) = A$$

T7:

(a)
$$0 + A = A$$

(b)
$$1 A = A$$

(c)
$$1 + A = 1$$

(d)
$$0A = 0$$

T8:

(a)
$$\overline{A} + A = I$$

(b)
$$\overline{A} A = 0$$

(a)
$$A + \overline{A} B = A + B$$

(b)
$$A(\overline{A} + B) = AB$$

T10: De Morgan's Theorem

(a)
$$(\overline{A+B}) = \overline{A} \ \overline{B}$$

(b)
$$(\overline{A}\overline{B}) = \overline{A} + \overline{B}$$

UNIVERSIAL LOGIC GATES: SIGNOFICNCE

Normal	Universal	Additional	
NOT	NAND	XOR	
AND	NOR	XNOR	
OR			

□ NOT : 2 transistors (PMOS top and NMOS bottom)

(R-C circuit) at Input "0": PMOS ON, charge "C" i.e. output to "1", at Input "1": NMOS ON, discharge "C" i.e. output to "0",

☐ Input-output transfer characteristics

Output delay with input: speed limitation

OR: realization with NAND or NOR

Area: NOR < NAND

Dynamic Power: NOR < NAND

Delay (Speed): NAND>NOR

TARGET:

- > Area & Power Minimization
- > Speed Maximization
- > Logic optimization (No of gate minimization

- NOT/AND /OR: realization with NAND or NOR: Universal
- NOT, NAND and NOR: CMOS realization with help of De Morgan's Theorem
- Example : NAND($\overrightarrow{A}.\overrightarrow{B}$) $\sim \overrightarrow{A}.+\overrightarrow{B}$: 4 transistors

NMOS section (Bottom) = A.B

PMOS section (Top) = \overrightarrow{A} .+ \overrightarrow{B}

NOR($(\overrightarrow{A} + \overrightarrow{B})$)~ $\overrightarrow{A}.\overrightarrow{B}$: 4 transistors

NMOS section (Bottom) = A+B

PMOS section (Top) = $\overrightarrow{A}.\overrightarrow{B}$

OR and AND: 6 transistors, 4 nos NOR/NAND and 2 nos NOT

NAND & NOR: CMOS (PMOS mobility < NMOS Mobilty)

Area: Same

Dynamic Power: NOR < NAND

Delay (Speed): NAND>NOR

Function: Optimization and logic realization

$$Y = \overline{(A + \overline{B})(\overline{B + C})}$$

$$= A + C$$

AND and Then OR (SOP), with "1" OR and Then AND (POS) with "0"

K-maps rule

☐Minimize Boolean expressions of 3, 4 variables very easily using K-map algebra theorems.	without using any Boolear
K-map can take two forms Sum of Product (SOP) and Product of Sum (For of problem.	POS) according to the need
☐K-map is table like representation but it gives more information than TR K-map with 0's and 1's then solve it by making groups.	RUTH TABLE. We fill grid of

Steps to solve expression using K-map-

- Select K-map according to the number of variables.
- Identify minterms or maxterms as given in problem.
- For SOP put 1's in blocks of K-map respective to the minterms (0's elsewhere).
- For POS put 0's in blocks of K-map respective to the maxterms(1's elsewhere).
- Make rectangular groups containing total terms in power of two like 2,4,8 ..(except 1) and try to cover as many elements as you can in one group.
- From the groups made in step 5 find the product terms and sum them up for SOP form.

K-maps rule

□Few Link: http://www.ee.surrey.ac.uk/Projects/Labview/minimisation/karrules. html □http://www.ee.ic.ac.uk/pcheung/teaching/ee1 digital/Lecture5-Karnaugh%20Map.pdf □https://www.seas.upenn.edu/~cit595/cit595s10/lectures/kmap.pdf □http://www.pitt.edu/~kmram/0132/lectures/karnaugh-maps.pdf ☐ Tutorial with solved question: TA send soon

TA: List

		Phone	Area	Assign TA/Students (As per SI no please refer the student list)	
1	RASHI DUTT	ee16resch11014@iith.ac.in	879001 9514	VLSI	1-37
2	LISA SARKAR	EE16RESCH11011@iith.ac.in	910028 3763	VLSI	38-74
3	Uma Maheswari G	EE19MTECH01009@iith.ac.in	997056 6593	PEPS	1-24
4	Venkatesh Vayyavuru	ee19mtech01010@iith.ac.in	829782 1983	CSP	25-48
5					49-74
6	INDRANIL BHATTACHARJEE	ee16resch11009@iith.ac.in	918275 5954	VLSI	75-111
7	DINESH GUPTA	EE16RESCH11007@iith.ac.in	779987 7407	VLSI	111-147
8	Ruchir	EE19MTECH01006@iith.ac.in	991974 9222	VLSI	75-98
9	Vyshnavi Vangari	ee19mtech11024@iith.ac.in	833092 3207	CSP	99122
10					123-147