

Universidade Federal de Santa Catarina

Centro Tecnológico

Departamento de Informática e Estatística Curso de Graduação em Ciências da Computação

Sistemas Digitais

INE 5406

Aula 15-T

4. Projeto de Sistemas Digitais no Nível RT. Estudo de caso e Exploração do Espaço de Soluções: multiplicador por somas sucessivas (sol.2- máx. desempenho) e multiplicador por somas e deslocamentos (sol.3).

Prof. José Luís Güntzel guntzel@inf.ufsc.br

www.inf.ufsc.br/~guntzel/ine5406/ine5406.html

Projeto do BO Visando Máximo Desempenho

Exemplo 1: Projetar um BO para o SD que implementa o algoritmo abaixo, assumindo que:

- O SD possua duas entradas de dados
- O SD precisa ter alto desempenho
- Não há restrição quanto ao custo


```
início
  pronto ← 0;
  A ← entA;
  B ← entB;
  P ← 0;
  Se B ≠ 0 então
  Enquanto A ≠ 0 faça
  início
  P ← P + B;
  A ← A − 1;
  fim
  mult ← P;
  pronto ← 1;
fim
```

Projeto do BO Visando Máximo Desempenho

Solução 2: Reestruturando o Algoritmo para máximo desempenho


```
início
  pronto ← 0;
  A ← entA;
  B ← entB;
  P ← 0;
  Se B ≠ 0 então
  Enquanto A ≠ 0 faça
  início
  P ← P + B;
  A ← A − 1;
  fim
  mult ← P;
  pronto ← 1;
fim
```

 Para aumentar o desempenho, tentaremos realizar mais de uma operação por ciclo de relógio (i.e., exploraremos o paralelismo existente no algoritmo)

Projeto do BO Visando Máximo Desempenho

Solução 2: Unidades Funcionais (UFs) Necessárias

- As operações "+" e "-" serão realizadas no mesmo ciclo de relógio (em um único passo)
- Logo, necessitaremos de um somador e um subtrator

Projeto do BO Visando Máximo Desempenho

Solução 2: Registradores

Análise do tempo de vida das variáveis:

	1	2	3	4
A		X	X	
В		X	X	
P		X	X	X
	4			

as variáveis A, B e P são escritas na borda de relógio que encerra o passo 1 e dá início ao passo 2

São necessários 3 registradores (A, B e P".

Projeto do BO Visando Máximo Desempenho

Fluxograma e FSMD equivalente

Projeto do BO Visando Máximo Desempenho

Estimativa do Custo do BO da Solução 2

Custo do BO 2	Custo
1 Somador	24n
1 Subtrator	26n
1 Mux 2:1	4n
2 Registradores com carga paralela controlada	2x22n=44n
1 Registrador com carga paralela controlada e reset assíncrono	26n
Total	124n

Estimativa de custo para o BC:

- Número de estados: 4 ou 5
- Número de sinais de controle = 5

Estimativa do Desempenho do BO da Solução 2

Se n = 4 bits:

- Maior inteiro sem sinal: 15 (⇒1111)
- Pior caso: A=15, B≠0
- Sequência de execução: S1, 15x(S2,S3), S2, S4 = 33 ciclos de relógio
- BO 1= 48 ciclos

Generalizando para n bits:

- Maior inteiro sem sinal: 2ⁿ-1
- Pior caso: A= 2ⁿ-1, B≠0
- Sequência de execução: S1, (2ⁿ-1)x (S2,S3), S2,S4 = 2x(2ⁿ-1)+3 =~ 2ⁿ⁺¹ ciclos de relógio
- BO 1 = ~ 3x 2ⁿ ciclos de relógio

Comparação Solução 1 x Solução 2

Quesito	BO 1	BO 2
Característica	Custo mínimo	Máximo desempenho
Custo do BO (nº de transistores)	112n	124n
Tempo de Execução (nº de ciclos de relógio)	~ 3x 2 ⁿ	~ 2x 2 ⁿ
Impacto no BC nº de estados nº de sinais de controle	6 9 (4)	5 5 (?)

A exploração do paralelismo inerente ao algoritmo resultou em:

- Redução do número de passos de execução (redução do número de estados). No caso estudado, a aceleração foi de 1,5x.
- Maior custo do BO. No caso estudado, +10%.
- Menor número de sinais de controle necessários (indício de redução do custo do BC)

INE/CTC/UFSC Sistemas Digitais - semestre 2010/2

Projeto do BC para a Solução 2

Diagrama de Estados (Assumindo Moore)

Projeto do BC para a Solução 2

Tabela de Transição de Estados (Assumindo Moore)

Estado		Próx.		
atual	início	BZ	AZ	Estado
S0	0	-	-	S0
	1	-	-	S1
S1	-	1	1	S2
S2	-	0	0	S3
	-	0	1	S4
	-	1	0	S4
	-	1	1	S4
S3	_	_	-	S2
S4	_	_	1	S0

Projeto do BC para a Solução 2

Tabela de Saídas (Assumindo Moore)

Projeto do BC para a Solução 2

Tabela de Saídas (Assumindo Moore)

Estado	Reg	. P	Reg	Reg. A		saída
	RstP	CP	mA	CA	CB	pronto
S0	0	0	1	0	0	1
S1	1	0	1	1	1	0
S2	0	0	-	0	0	0
S3	0	1	0	1	0	0
S4	0	0	-	0	0	1
*						
			· I .			
		•	1 sina	al		
RstP = mA = CB CA 4 sinais						
CP pronto						

Exploração Algorítmica

O desempenho do algoritmo utilizado nas soluções 1 e 2 é dependente da ordem em que os operandos são tomados...

- Considerando a solução 2 e n=4 bits:
 - A=1 e B=15 (1x15) executa em **4** passos
 - A=15 e B=1 (15x1) executa em **33** passos
- Solução: projetar outro algoritmo, tentando explorar características inerentes ao problema a ser resolvido...
- Exigência: necessário conhecer detalhadamente o problema a ser resolvido

INE/CTC/UFSC
Sistemas Digitais - semestre 2010/2

Slide 15T.15

Exploração Algorítmica

Com Decimais

Multiplicação de Inteiros (Binários) Sem Sinal

Exemplos Numéricos:

9 multiplicando x 11 multiplicador + 9 produtos parciais 99 resultado

Exploração Algorítmica

Multiplicação de Inteiros Binários Sem Sinal: o algoritmo de somas e deslocamentos

Explorando as características do problema:

- Gerar *n* produtos parciais
- Somar *n* produtos parciais
- n = número de bits do multiplicador (logo, tempo de execução independe dos dados, exceto quando operando =0)

Exploração Algorítmica

Multiplicação de Inteiros Binários Sem Sinal: o algoritmo de somas e deslocamentos

- Problema: somador capaz de somar n operandos de uma vez é demasiado caro
- Solução: realizar n-1 passos de soma. As somas parciais são armazenadas em uma variável acumuladora.

X	1001	multiplicando _multiplicador _
+	1001	Produto 1 AC
+	1001 1001 -	AC Produto2
+	11011	AC Produto3
+	011011	AC Produto4
	1100011	AC=resultado

Exploração Algorítmica

Multiplicação de Inteiros Binários Sem Sinal: o algoritmo de somas e deslocamentos

- A recebe o multiplicador, B o multiplicando
- P armazena as somas parciais. Usa um registrador com 2n bits, dividido em parte alta (PH) e parte baixa (PL), cada uma com n bits (não ocorrerá overflow)
- A(0) é o bit menos significativo de A
- "P >>1" significa deslocar o conteúdo de P um bit para a direita (normalmente, injetando um "0" pela esquerda)

Exploração Algorítmica

Teste de Mesa do Algoritmo de Multiplicação por Somas e Deslocamentos

	A	В	PH	PL
1	1011	1001	0000	0000
3.1				
4.1				
3.2				
4.2				
4.3				
3.4				
4.4				

Obs: no teste acima, o passo 2 foi omitido por falta de espaço.

Exploração Algorítmica

Teste de Mesa do Algoritmo de Multiplicação por Somas e Deslocamentos

	A	В	PH	PL
1	1011	1001	0000	0000
3.1	1	1	1001	0000
4.1	0101	1	0100	1000
3.2	1	1	1101	1000
4.2	0010	1	0110	1100
4.3	0001	1	0011	0110
3.4	1	1	1100	0110
4.4	0000	_	0110	0011

Exploração Algorítmica

Problema com esta solução: e se o ou os bits mais significativos de "A" fossem "0"? Exemplo.

	A	В	PH	PL
1	0011	1001	0000	0000
3.1	-	1	1001	0000
4.1	0001	ı	0100	1000
3.2	1	1	1101	1000
4.2	0000	1	0110	1100
4.3				
4.4				

Neste ponto A=0. Porém, "P" ainda deveria ser deslocado para a direita mais duas vezes...

Solução: usar um contador-decrementador, ao invés de testar se A(0)=1.

Exploração Algorítmica

Multiplicação de Inteiros Binários Sem Sinal: o algoritmo de somas e deslocamentos, versão corrigida

- A recebe o multiplicador, B o multiplicando
- P armazena as somas parciais. Usa um registrador com 2n bits, dividido em parte alta (PH) e parte baixa (PL), cada uma com n bits (não ocorrerá overflow)
- A variável cont é inicializada com uma constante que representa o número de bits do operando multiplicador (n, neste caso)

Exploração Algorítmica

	A	В	PH	PL	cont
1	0011	1001	0000	0000	100
4.1	1	1	1001	0000	100
5.1	0001	1	0100	1000	011
4.2	1	1	1101	1000	011
5.2	0000	1	0110	1100	010
5.3	0000	-	0011	0110	001
5.4	0000	-	0001	1011	000

Agora a resposta está correta! $3 \times 9 = 27$

Obs: no teste acima, os passos 2 e 3 foram omitidos por falta de espaço.

INE/CTC/UFSC Sistemas Digitais - semestre 2010/2 Prof. José Luís Güntzel

Projeto do BO 3

Solução 3: Somas e Deslocamentos

Análise do tempo de vida das variáveis:

	1	2	3	4	5	6
A		X	X	X	X	
В		X	X	X	X	
P		X	X	Х	X	X
cont		X	X	X	X	

as variáveis A, B, P e cont são escritas na borda de relógio que encerra o passo 1 e dá início ao passo 2

São necessários 4 registradores (A, B, P e count).

Projeto do BO 3

Solução 3: Somas e Deslocamentos

Unidades Funcionais (UFs) Necessárias

- Para a adição "PH+B" usaremos um somador
- Para os deslocamentos à direita, adotaremos registradores de deslocamento (para P e A)
- "cont" será implementado por um registrador-decrementador com carga paralela, para que possa ser inicializado com a constante n.

Projeto do BO 3

Sistemas Digitais - semestre 2010/2

Projeto do BO 3

Estimativa do Custo do BO da Solução 3

Custo do BO 3	Custo
1 Somador	24n
1 Registrador com carga paralela controlada (B)	22n
1 Registrador de deslocamento com carga paralela controlada (A)	26n
1 Registrador de deslocamento com carga paralela controlada e reset assíncrono	30n
1 Registrador de deslocamento com reset assíncrono	26n
1 registrador contador- decrementador	24x(1+log ₂ n)
Total	128n + 24x(1+log ₂ n)

Estimativa de custo para o BC:

- Número de estados: 6 ou 7
- Número de sinais de controle = 8

INE/CTC/UFSC
Sistemas Digitais - semestre 2010/2

mult

Slide 15T.29

Prof. José Luís Güntzel

Estimativa do Desempenho do BO da Solução 3

Slide 15T.30

Se n = 4 bits:

- Maior inteiro sem sinal: 15 (⇒1111)
- Pior caso: A≠15, B≠0
- Sequência de execução: 1, 2,
 4x(3,4,5), 3, 6 = 16 passos (16 ciclos de relógio)
- BO 1= 48 ciclos, BO 2= 33 ciclos

Generalizando para *n* bits:

- Maior inteiro sem sinal: 2ⁿ-1
- Pior caso: A≠0, B≠0
- Sequência de execução: 1, 2, nx(3,4,5),3,6
 = 3n+4 passos (=~ 3n ciclos de relógio)
- BO 1 = ~ 3x 2ⁿ ciclos de relógio, BO 2 =~ 2x 2ⁿ ciclos de relógio

INE/CTC/UFSC
Sistemas Digitais - semestre 2010/2

Prof. José Luís Güntzel

Comparação Solução 1 x Solução 2 x Solução 3

Quesito	BO 1	BO 2	BO 3
Característica	Custo mínimo	Máximo desempenho	Algoritmo otimizado
Custo do BO (nº de transistores)	112n	124n	128n + 24x(1+log ₂ n)
Tempo de Execução (nº de ciclos de relógio)	~ 3x 2 ⁿ	~ 2x 2 ⁿ	~ 3n
Impacto no BC nº de estados nº de sinais de controle	6 9 (4)	5 5 (?)	7 8
n=8: Custo do BO	896	992	1.120
n=16: Custo do BO	1.792	1.984	2.168
n= 8: nº de ciclos de relógio	768	512	24
n=16: nº de ciclos de relógio	196.608	131.072	48

Comparação Solução 1 x Solução 2 x Solução 3 Algumas Conclusões

- Alterações nos níveis mais abstratos do projeto tendem a ter maior impacto nos quesitos de custo, desempenho, consumo de energia, testabilidade, robustez etc.
- O número de estados pode ser considerado como indicativo grosseiro do custo de implementação da FSM, mas a estimativa mais precisa do custo só é obtida após a otimização da FSM.
- O número de estados não pode ser considerado como indicativo do desempenho do sistema digital como um todo.
- Para se analisar o desempenho do sistema digital é preciso analisar o algoritmo que está sendo implementado (levando em conta os casos extremos).

Projeto do BC para a Solução 3

Prof. José Luís Güntzel

Multiplicação com Circuito Combinacional

O Multiplicador Matricial

- É uma implementação direta do esquema ao lado
- Cada bit dos produtos parciais é gerado por meio de um "E" lógico

Multiplicação com Circuito Combinacional

Multiplicação com Circuito Combinacional

O Multiplicador Matricial Pipeline

- Passo 1: todos os produtos parciais são gerados
- Passo 2: os produtos parciais são somados de dois em dois
- Passo 3: os resultados do passo anterior são somados de dois em dois
- •

Multiplicação com Circuito Combinacional

O Multiplicador Matricial Pipeline

Sistemas Digitais - semestre 2010/2

Slide 15T.37

Prof. José Luís Güntzel