全国信息学奥林匹克联赛 (NOIP2007) 复赛

提高组

题目一览

题目名称	统计数字	字符串的展开	矩阵取数游戏	树网的核
代号	count	expand	game	core
输入文件	count.in	expand.in	game.in	core.in
输出文件	count.out	expand.out	game.out	core.out
时限	1秒	1秒	1秒	1秒

(2007年11月17日3小时完成)

说明:

- 1. 文件名(程序名和输入输出文件名)必须使用小写
- 2. C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 全国统一评测时采用的机器参考配置为:CPU 2.0GHz,内存 256M。

1. 统计数字

(count.pas/c/cpp)

【问题描述】

某次科研调查时得到了n个自然数,每个数均不超过 $15000000000(1.5*10^9)$ 。已知不相同的数不超过10000个,现在需要统计这些自然数各自出现的次数,并按照自然数从小到大的顺序输出统计结果。

【输入】

输入文件 count. in 包含 n+1 行:

第1行是整数n,表示自然数的个数。

第2~n+1行每行一个自然数。

【输出】

输出文件 count.out 包含 m 行(m 为 n 个自然数中不相同数的个数),按照自然数从小到大的顺序输出。每行输出两个整数,分别是自然数和该数出现的次数,其间用一个空格隔开。

【输入输出样例】

count.in	count.out
8	2 3
2	4 2
4	5 1
2	100 2
4	
5	
100	
2	
100	

【限制】

40%的数据满足:1<=*n*<=1000 80%的数据满足:1<=*n*<=50000

100%的数据满足:1<=n<=200000,每个数均不超过1500000000 (1.5*10°)

2. 字符串的展开

(expand.pas/c/cpp)

【问题描述】

在初赛普及组的"阅读程序写结果"的问题中,我们曾给出一个字符串展开的例子:如果在输入的字符串中,含有类似于"d-h"或"4-8"的子串,我们就把它当作一种简写,输出时,用连续递增的字母或数字串替代其中的减号,即,将上面两个子串分别输出为"defgh"和"45678"。在本题中,我们通过增加一些参数的设置,使字符串的展开更为灵活。具体约定如下:

- (1) 遇到下面的情况需要做字符串的展开:在输入的字符串中,出现了减号"-",减号两侧同 为小写字母或同为数字,且按照 ASCII 码的顺序,减号右边的字符严格大于左边的字符。
 - (2) 参数 p1:展开方式。p1=1时,对于字母子串,填充小写字母;p1=2时,对于字母子串,

填充大写字母。这两种情况下数字子串的填充方式相同。p1=3 时,不论是字母子串还是数字子串,都用与要填充的字母个数相同的星号"*"来填充。

- (3) 参数 p2:填充字符的重复个数。p2=k 表示同一个字符要连续填充 k 个。例如,当 p2=3 时,子串"d-h"应扩展为"deeefffgggh"。减号两侧的字符不变。
- (4) 参数 p3:是否改为逆序:p3=1 表示维持原有顺序,p3=2 表示采用逆序输出,注意这时仍然不包括减号两端的字符。例如当 p1=1、p2=2、p3=2 时,子串"d-h"应扩展为"dggffeeh"。
- (5) 如果减号右边的字符恰好是左边字符的后继,只删除中间的减号,例如:"d-e"应输出为"de","3-4"应输出为"34"。如果减号右边的字符按照 ASCII 码的顺序小于或等于左边字符,输出时,要保留中间的减号,例如:"d-d"应输出为"d-d","3-1"应输出为"3-1"。

【输入】

输入文件 expand. in 包括两行:

第1行为用空格隔开的3个正整数,依次表示参数p1,p2,p3。

第2行为一行字符串,仅由数字、小写字母和减号"-"组成。行首和行末均无空格。

【输出】

输出文件 expand.out 只有一行,为展开后的字符串。

【输入输出样例1】

expand.in	expand.out
1 2 1	abcsttuuvvw1234556677889s-4zz
abcs-w1234-9s-4zz	

【输入输出样例2】

expand.in	expand.out
2 3 2	aCCCBBBd-d
a-d-d	

【输入输出样例3】

expand.in	expand.out
3 4 2	dijkstra2********6
di-jkstra2-6	

【限制】

40%的数据满足:字符串长度不超过5

100%的数据满足:1<=p1<=3,1<=p2<=8,1<=p3<=2。字符串长度不超过100

3. 矩阵取数游戏

(game.pas/c/cpp)

【问题描述】

帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的 n*m 的矩阵,矩阵中的每个元素 a_{ij} 均为非负整数。游戏规则如下:

- 1. 每次取数时须从每行各取走一个元素,共n个。m次后取完矩阵所有元素;
- 2. 每次取走的各个元素只能是该元素所在行的行首或行尾;
- 3. 每次取数都有一个得分值,为每行取数的得分之和,**每行取数的得分 = 被取走的元素值*2** i ,其中 i 表示第 i 次取数(从 1 开始编号);
- 游戏结束总得分为 m 次取数得分之和。
 帅帅想请你帮忙写一个程序,对于任意矩阵,可以求出取数后的最大得分。

【输入】

输入文件 game. in 包括 n+1 行:

第1行为两个用空格隔开的整数n和m。

第 $2 \sim n+1$ 行为 n*m 矩阵,其中每行有 m 个用单个空格隔开的非负整数。

【输出】

输出文件 game.out 仅包含1行,为一个整数,即输入矩阵取数后的最大得分。

【输入输出样例1】

game.in	game.out
2 3	82
1 2 3	
3 4 2	

【输入输出样例1解释】

第1次:第1行取行首元素,第2行取行尾元素,本次得分为1*21+2*21=6

第 2 次: 两行均取行首元素,本次得分为 2*2²+3*2²=20 第 3 次: 得分为 3*2³+4*2³=56。总得分为 6+20+56=82

【输入输出样例2】

game.in	game.out
1 4	122
4 5 0 5	

【输入输出样例3】

game.in	game.out
2 10	316994
96 56 54 46 86 12 23 88 80 43	
16 95 18 29 30 53 88 83 64 67	

【限制】

60%的数据满足:1<=n, m<=30, 答案不超过10¹⁶

100%的数据满足:1<=n, m<=80, 0<=a_{ii}<=1000

4. 树网的核

(core.pas/c/cpp)

【问题描述】

设 T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称 T 为树网(treenetwork),其中 V, E 分别表示结点与边的集合,W 表示各边长度的集合,并设 T 有 n 个结点。

路径:树网中任何两结点 a, b 都存在唯一的一条简单路径,用 d(a,b)表示以 a, b 为端点的路径的长度,它是该路径上各边长度之和。我们称 d(a,b)为 a, b 两结点间的距离。

一点V到一条路径P的距离为该点与P上的最近的结点的距离:

 $d(v, P) = \min\{d(v, u), u\}$ 为路径 P 上的结点 \}。

树网的直径:树网中最长的路径称为树网的直径。对于给定的树网 *T*,直径不一定是唯一的,但可以证明:各直径的中点(不一定恰好是某个结点,可能在某条边的内部)是唯一的,我们称该点为树网的中心。

偏心距 ECC(F): 树网 T 中距路径 F 最远的结点到路径 F 的距离,即 $ECC(F) = \max\{d(v,F), v \in V\}$ 。

任务:对于给定的树网 T=(V, E, W)和非负整数 s,求一个路径 F,它是某直径上的一段路径(该路径两端均为树网中的结点),其长度不超过 s(可以等于 s),使偏心距 ECC(F)最小。我们称这个路径为树网 T=(V, E, W)的核 (Core)。必要时,F 可以退化为某个结点。一般来说,在上述定义下,核不一定只有一个,但最小偏心距是唯一的。

下面的图给出了树网的一个实例。图中,A-B与A-C是两条直径,长度均为 20。点 W 是树网的中心,EF 边的长度为 5。如果指定 s=11,则树网的核为路径 DEFG(也可以取为路径 DEF),偏心距为 8。如果指定 s=0(或 s=1、s=2),则树网的核为结点 F,偏心距为 12。

【输入】

输入文件 core. in 包含 n 行:

第 1 行,两个正整数 n 和 s,中间用一个空格隔开。其中 n 为树网结点的个数,s 为树网的核的长度的上界。设结点编号依次为 1, 2, ..., n。

从第 2 行到第 n 行,每行给出 3 个用空格隔开的正整数,依次表示每一条边的两个端点编号和长度。例如,"2 4 7"表示连接结点 2 与 4 的边的长度为 7。

所给的数据都是正确的,不必检验。

【输出】

输出文件 core.out 只有一个非负整数,为指定意义下的最小偏心距。

【输入输出样例1】

core.in	core.out
5 2	5
1 2 5	
2 3 2	
2 4 4	
2 5 3	

【输入输出样例2】

core.in	core.out
8 6	5
1 3 2	
2 3 2	
3 4 6	
4 5 3	
4 6 4	
4 7 2	
7 8 3	

【限制】

40%的数据满足:5<=n<=15 70%的数据满足:5<=n<=80

100%的数据满足:5<=n<=300,0<=s<=1000。边长度为不超过1000的正整数