Vector Space of Functions.

Problem 1. A set F consists of functions $f(x) = ae^x + be^{-x}$ where $a, b \in \mathbb{R}$. Given a function $f(x) = ae^x + be^{-x}$, we define the vector $V_f = \binom{a}{b} \in \mathbb{R}^2$.

- (1) Is F a vector space? Provide two different basis.
- (2) $Does \{\sinh x, \cosh x\} \ span \ F$?
- (3) What is $V_{f'}$ of $f \in F$?
- (4) Find a matrix A satisfying $AV_f = V_{f'}$ for all $f \in F$.
- (5) Show that $A^2 = I$, and check $\frac{d^2}{dx^2} f(x) = f(x)$.

Problem 2. A set F consists of functions f(x) = axy + bx + c where $a, b, c \in \mathbb{R}$. Given a function g(x) = axy + bx + cy + d, we define the vector $V_q = (a b c d)^T \in \mathbb{R}^4$.

- (1) What is the dimension of F?
- (2) Does $\{V_f : f \in F\}$ span \mathbb{R}^4 ?
- (3) What are $V_{\partial_y f}$ and $V_{\partial_x f}$ of $f \in F$? Are they belong to F?
- (4) Find a matrix A satisfying $AV_f = V_{\partial_y f}$ for all $f \in F$.
- (5) What is the null space of the operator ∂_y in F?

Dimension and Rank.

Problem 3. A matrix is $m \times n$ and has rank r. What are the relations of m, n, r?

- (1) If Ax = b has no solution for some b.
- (2) If Ax = b has exactly one solution for some b.
- (3) If Ax = b has infinitely many solutions for some b.
- (4) If Ax = b has at least one solution for every b.
- (5) If Ax = b has exactly one solution for every b.

Proof. (1) m > r. Since $col(A) \neq \mathbb{R}^m$ and $col(A) \subset \mathbb{R}^m$, we have

$$r = \dim(\operatorname{col}(A)) < \dim(\mathbb{R}^m) = m.$$

(2) n = r. If $\text{null}(A) \neq 0$, then Ax = b can not have only one solution. Hence,

$$n - r = \dim(\text{null}(A)) = 0.$$

(3) n = r. If null(A) = 0, then Ax = b can have at most one solution. Hence,

$$n - r = \dim(\text{null}(A)) > 0.$$

(4) m = r. Given any $b \in \mathbb{R}^m$, there exists at least one solution $x \in \mathbb{R}^m$ solving Ax = b. Namely $b \in \operatorname{col}(A)$, and thus $\mathbb{R}^m \subset \operatorname{col}(A)$. Since $\operatorname{col}(A) \subset \mathbb{R}^m$, we conclude $\operatorname{col}(A) = \mathbb{R}^m$.

$$r = \dim(\operatorname{col}(A)) = \dim(\mathbb{R}^m) = m.$$

(5) m=n=r. The result in (2) implies n=r, and the result in (4) yields m=r.

Problem 4. What is the rank of the matrix

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}?$$

 \mathcal{M} is the set of 2×2 matrices, and this is a 4-dimensional vector space. Given any $B \in \mathcal{M}$, the multiplication AB belongs to \mathcal{M} again. Provide a basis of \mathcal{M} , and find a matrix represent the operation $B \to AB$. What is the rank of the operation?