Principal Component Analysis TOTAL POINTS 1. Consider the following 2D dataset: 1 point 1 point

Which of the following figures correspond to possible values that PCA may return for $u^{(1)}$ (the first eigenvector / first principal component)? Check all that apply (you may have to check more than one figure).

-0.6

-0.8 L

2.	Which of the following is a reasonable way to select the number of principal components k ?	
	(Recall that n is the dimensionality of the input data and m is the number of input examples.)	
	lacktriangledown Choose k to be the largest value so that at least 99% of the variance is retained	
	Use the elbow method.	
	\bigcirc Choose k to be 99% of m (i.e., $k=0.99*m$, rounded to the nearest integer).	
	\bigcirc Choose k to be the smallest value so that at least 99% of the variance is retained.	
3.	Suppose someone tells you that they ran PCA in such a way that "95% of the variance was retained." What is an equivalent 1 point statement to this?	
	$\bigcirc \ rac{1}{m} rac{\sum_{i=1}^{m} x^{(i)} - x_{ijpmi}^{(i)} ^2}{\sum_{i=1}^{m} x^{(i)} ^2} \ge 0.95$	
	$igcite{rac{1}{n}\sum_{i=1}^{m}\ x_i^{(i)}\ ^2}{rac{1}{n}\sum_{i=1}^{m}\ x_i^{(i)}-y_{appen}^{(i)}\ ^2}\geq 0.95$	
	$\bigcirc \ rac{1}{m} \sum_{j=1}^n rac{\ x^{(j)} - x_{j,porn}^2\ ^2}{m} \geq 0.05$	

2 Question: Will be the option 4 (smallest value)

4.	. Which of the following statements are true? Check all that apply.	1 point
	$igspace$ Given an input $x\in\mathbb{R}^n$, PCA compresses it to a lower-dimensional vector $z\in\mathbb{R}^k$.	
	PCA can be used only to reduce the dimensionality of data by 1 (such as 3D to 2D, or 2D to 1D).	
	Feature scaling is not useful for PCA, since the eigenvector calculation (such as using Octave's <pre>svd(Sigma)</pre> routine) takes care of this automatically.	
	If the input features are on very different scales, it is a good idea to perform feature scaling before applying PCA.	
5.	. Which of the following are recommended applications of PCA? Select all that apply.	1 point
	✓ Data visualization: Reduce data to 2D (or 3D) so that it can be plotted.	
	✓ Data compression: Reduce the dimension of your data, so that it takes up less memory / disk space.	
	Preventing overfitting: Reduce the number of features (in a supervised learning problem), so that there are fewer parameters to learn.	
	☐ To get more features to feed into a learning algorithm.	