

DELight's Approach to tackle Low-Energy Excess (LEE)

L. Hauswald on behalf of the DELight Collaboration

Direct search experiment for Light Dark Matter with Superfluid Helium (DELight)

- Search for DM in the sub-100 MeV mass range with a detection threshold <20 eV
- Superfluid helium-4 as target material:
 - sensitive to low DM masses
 - radiopure and compact low-background target
 - three independent and distinguishable signal channels

Lena Hauswald – Low Energy Excess Conference 2025

Direct search experiment for Light Dark Matter with **Superfluid Helium (DELight)**

Lena Hauswald – Low Energy Excess Conference 2025

3

Quasiparticle detection

- Typical QP energies ≥ 0.8 meV
- Signal gain: Difference between evaporation and adsorption energy
- Dependent on absorber properties:
 - Silicon: ~ 10x;
 - Sapphire: ~ 20x

Quasiparticle detection

Direct search experiment for Light Dark Matter with Superfluid Helium (DELight)

Lena Hauswald – Low Energy Excess Conference 2025

Direct search experiment for Light Dark Matter with Superfluid Helium (DELight)

Direct search experiment for Light Dark Matter with Superfluid Helium (DELight)

Detector specifications:

- High detection efficiency → large-scale wafer calorimeters covering entire surface of the helium cell
- Excellent energy and time resolution

Detector signal upon photon absorption

Lena Hauswald – Low Energy Excess Conference 2025

Detector signal upon photon absorption

Athermal phonon detector

- Energy deposition
- Interface scattering
- Cooper pair
- ↑ Phonons
- Anharmonic scattering
- Isotopic impurity
- Quasiparticle (i.e. electron)
- Thermalized electron system

Creation of athermal phonons

Cooper pair breaking; Quasiparticles (QPs) creation

Thermalization through electron-electron interactions within temperature sensor

Athermal phonon detector

***** Energy deposition

Interface scattering

Advantages:

- Fast signal rise time
- Realisation of big absorbers

$$C_{\text{tot}} = C_{\text{sens}} + C_{\text{ph,coll}} + C_{\text{ph}}$$

Challenges:

- Phonon collection time
- QP loss

Absorber Absorber

Creation of athermal phonons

Cooper pair breaking; Quasiparticles (QPs) creation

Thermalization through electron-electron interactions

Low Energy Excess

- Unknown singles in the eV energy range
- Rate increases towards lower energy
- Possible / verified causes:
 - Excess quasiparticle population
 - Stress:
 - Surface stress (different thin film) properties)
 - Detection support stress (mechanical stress)

Lena Hauswald – Low Energy Excess Conference 2025

- Sensor stress (thin films)
- Defect states

Baxter et al., Low-Energy Backgrounds n Solid-State Phonon and Charge Detectors, arXiv:2503.08859v1 (2025)

15

Target advantages

Superfluid → no interface stress between target and absorber

Lena Hauswald – Low Energy Excess Conference 2025

- "LEE-free" target
- High recoil energy
- Several signal channels

Lena Hauswald – Low Energy Excess Conference 2025

17

Lena Hauswald – Low Energy Excess Conference 2025

18

Lena Hauswald – Low Energy Excess Conference 2025

Institute of Micro- and Nanoelectronic Systems

Quasiparticle detection:

- Typical QP energies ≥ 0.8 meV
- Adsorption gain:
 - Silicon 10x
 - Sapphire 20x

Detecting burst of He atoms

Support structure for "old detectors"

Full-surface gluing with GE varnish

Clamping

Baxter *et al.*, Low-Energy Backgrounds n Solid-State Phonon and Charge Detectors, arXiv:2503.08859v1 (2025)

- Challenges:
 - Well-defined thermal connection
 - Supressing mechanical vibrations
 - Fixation of the wafer (for bonding, etc.)

Lena Hauswald – Low Energy Excess Conference 2025

Reducing holding stress

26

- Challenges:
 - Well-defined thermal connection
 - Supressing mechanical vibrations
 - Fixation of the wafer (for bonding, etc.)
 - Reducing holding stress
- → Gravity loaded detector holding

Lena Hauswald – Low Energy Excess Conference 2025

27

Absorber on gold stems (PrimA-LTD Project)

Excess quasiparticle population

Vue-des-Alpes

Sanford (scaled)

LNGS

- Vibration, environmental radioactivity, IR radiation
- Cosmic rays:

- Road tunnel (Neuchâtel and La Chaux-de-Fonds Switzerland)
- 230 m rocks equivalent to 600 m water
- Cosmic neutron flux reduced to zero
- Decrease of muon flux ~ 2000
- Gamma background surounding rocks and concrete

Lena Hauswald – Low Energy Excess Conference 2025

Summary

Superfluid helium as target material

- No interface stress
- Several signal channels

Possible sources of LEEs

- Cosmic rays
- Holding stress

Gravity loaded detector holding