Introduction to Cryptography – LMAT2450 Practical Lesson 7

Clément Hoffmann (clement.hoffmann@uclouvain.be) Yaobin Shen (yaobin.shen@uclouvain.be)

November 30, 2022

Exercise 1 (Commitment scheme) Define the bit-commitment scheme (Gen, Com, Open) with the following PPT algorithms:

- $Gen(1^n)$ sets pk as (G, R), where
 - G is a pseudo-random generator $\{0,1\}^n \longmapsto \{0,1\}^{3n}$
 - -R is a random 3n-bit string
- $Com_{pk}(b)$ with $b \in \{0,1\}$ provides (c,d) where:
 - -Y is a fresh random n-bit string
 - if b = 0, c = G(Y)
 - if b=1, $c=\mathsf{G}(Y)\oplus R$
 - -d=(b,Y)
- $\mathsf{Open}_{pk}(c,d)$ outputs b if it can recompute c from d and pk, or \bot otherwise
- 1. Assuming that pk is generated according to Gen, is this scheme perfectly hiding, only computationally hiding, or neither?
- 2. Same question for the binding property.
- 3. If the committer chooses R, does it change the hiding and binding properties?
- 4. If the opener chooses R, does it change the hiding and binding properties?

Exercise 2 (Hash with DL) Let (\mathbb{G}, \cdot) be a group in which the discrete logarithm is difficult, with $|\mathbb{G}| = q$. Let g be a generator of the group and h be a random element of the group ((g, h)) may be seen as the key of the hash function). Define the following hash function $H: \mathbb{Z}_q \times \mathbb{Z}_q \longmapsto \mathbb{G}$:

$$\mathsf{H}_{q,h}(\alpha,\beta) := g^{\alpha}h^{\beta}$$

Prove that if the DL is difficult, then, the hash function is collision resistant. For simplicity we assume that q is prime.

Exercise 3 (Commitment scheme and batching) By design secure public-key encryption schemes are perfectly binding commitment schemes (which are also computationally hiding, why?). Then, if perfect hiding property is not a concern, do commitment schemes really consist of a new useful cryptographic building block? This exercise aims to build a perfectly hiding commitment scheme which supports a *batching* property that encryption schemes cannot achieve.

Let (\mathbb{G},\cdot) be a group with $|\mathbb{G}| = q > 2^n$ and whose g is a generator. Let I denote the set of integers $\{1,\ldots,q\}$. Fix l random values $g_1,\ldots,g_l\in\mathbb{G}$ and define the commitment function $F:I^l\to\mathbb{G}$ by:

$$F(x_1,\ldots,x_l;r) = g^r g_1^{x_1} g_2^{x_2} \cdots g_l^{x_l}.$$

- 1. Describe formally the commitment scheme. Discuss its efficiency and its correctness.
- 2. Show that the scheme is computationally binding assuming that DL is intractable in G. That is, show that an adversary computing two openings of a commitment c for random $g, g_1, \ldots, g_l \in G$ can be used to compute discrete-log in G.

 Hint: given a pair $g, h \in G$ your goal is to find an $\alpha \in \mathbb{Z}_q$ such that $g^{\alpha} = h \mod p$.

 Choose $x_1, \ldots, x_l \in G$ so that two valid openings will reveal α .
- 3. Show that the scheme results in a perfectly hiding commitment on several messages.
- 4. Compare the size of the construction with respect to an encryption (viewed as a commitment) of all these messages.