SUPPLEMENTARY: PROOFS FOR THEOREM 1,2 AND

A. Some Lemmas

In order to prove Theorem 3, we need to introduce the following Lemmas $1\sim 6$.

Lemma 1. (Lemma 1 in [25]): For nonnegative numbers a, b, c, d, x, y,

$$(ax+by)^{2} + (cx+dy)^{2} \le \left(\sqrt{a^{2}+c^{2}}x + (b+d)y\right)^{2}. (16)$$

Lemma 2. Consider the general CS model $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{E}$, $supp(\mathbf{X}) = T$ and |T| = s. Suppose S, $T_0 \subseteq \{1, 2, ..., n\}$, |S| = t. \mathbf{W}_{T_0} is constructed with diagonal entries indexed by T_0 being $\omega \geq 0$. Let $\tilde{\mathbf{X}}$ be the solution of the least squares problem $\arg\min_{\mathbf{Z}} \{\|\mathbf{Y} - \mathbf{A}\mathbf{Z}\|_2, supp(\mathbf{Z}) \subseteq S\}$. Let $s_1 := \min_{i,k} |\Lambda^k_{S_i} \cap supp(\mathbf{X}_{S_i})|$, $s_2 := \min_{i,k} |\Lambda^k_{S_i} \cap supp(\mathbf{X}_{S_i}) \cap \tilde{S}^k_{S_i}|$, $s_3 := \min_{i,k} |\Lambda^k_{S_i} \cap supp(\mathbf{X}_{S_i}) \cap \tilde{S}^k_{S_i} \setminus S^k_{S_i}|$ and $\eta = \min_{i \in \{1,2,...,r\}} \min_{j \in \{1,2,...,n\}} \|(\mathbf{X}_{S_i})_{j,:}\|_2 / \|\mathbf{X}_{S_i}\|_F$. Let $\nu_1 = (1 + \omega)/(1 + \eta\omega\sqrt{s_2})$ and $\nu_2 = (1 + \omega)/(1 + \eta\omega\sqrt{s_3})$, if $\delta_{3s} < 1$, then

$$\left\| \mathbf{W}_{T_0} (\mathbf{X} - \tilde{\mathbf{X}})_S \right\|_F \le \omega \delta_{s+t} \left\| \mathbf{X} - \tilde{\mathbf{X}} \right\|_F + \omega \sqrt{1 + \delta_t} \left\| \mathbf{E} \right\|_F$$
(17)

and

$$\left\| \mathbf{X} - \tilde{\mathbf{X}} \right\|_{F} \le \sqrt{\frac{1}{1 - \delta_{s+t}^{2}}} \left\| \mathbf{X}_{S^{c}} \right\|_{F} + \frac{\sqrt{1 + \delta_{t}}}{1 - \delta_{s+t}} \left\| \mathbf{E} \right\|_{F}.$$
 (18)

If t > s, define T_{∇} as the row-indices of the smallest t - s magnitude entries of $\tilde{\mathbf{X}}$ in S, we have

$$\|\mathbf{X}_{T_{\nabla}}\|_{F} \leq \sqrt{2}\nu_{2}\delta_{s+t} \|\mathbf{X} - \tilde{\mathbf{X}}\|_{F} + \nu_{2}\sqrt{2(1+\delta_{t})} \|\mathbf{E}\|_{F}.$$
(19)

• First, we give a upper bound of $\|\mathbf{X}_{T_{\nabla}}\|_{F}$, by Lemma 6, let $\mathbf{Z} = (\mathbf{W}_{T_{0}}\mathbf{X} - \mathbf{W}_{T_{0}}\tilde{\mathbf{X}})_{S}$, we have

$$\left\langle \mathbf{W}_{T_0}(\mathbf{X} - \tilde{\mathbf{X}}), \mathbf{A}^H \mathbf{A} (\mathbf{W}_{T_0} \mathbf{X} - \mathbf{W}_{T_0} \tilde{\mathbf{X}})_S \right\rangle + \left\langle \mathbf{W}_{T_0} \mathbf{E}, \mathbf{A} (\mathbf{W}_{T_0} \mathbf{X} - \mathbf{W}_{T_0} \tilde{\mathbf{X}})_S \right\rangle = 0. \quad (20)$$

Noticing that supp($\tilde{\mathbf{X}}$) $\subseteq S$, we have

$$\begin{aligned} & \left\| (\mathbf{W}_{T_0} \mathbf{X} - \mathbf{W}_{T_0} \tilde{\mathbf{X}})_S \right\|_F^2 \\ &= \left\langle \mathbf{W}_{T_0} (\mathbf{X} - \tilde{\mathbf{X}}), (\mathbf{W}_{T_0} \mathbf{X} - \mathbf{W}_{T_0} \tilde{\mathbf{X}})_S \right\rangle \\ &\stackrel{(20)}{=} \left\langle \mathbf{W}_{T_0} (\mathbf{X} - \tilde{\mathbf{X}}), (\mathbf{I}_L - \mathbf{A}^H \mathbf{A}) (\mathbf{X} - \tilde{\mathbf{X}})_S \right\rangle \\ &- \left\langle \mathbf{W}_{T_0} \mathbf{E}, \mathbf{A} (\mathbf{W}_{T_0} \mathbf{X} - \mathbf{W}_{T_0} \tilde{\mathbf{X}})_S \right\rangle \\ &\stackrel{(7)}{\leq} \omega \delta_{s+t} \left\| (\mathbf{W}_{T_0} \mathbf{X} - \mathbf{W}_{T_0} \tilde{\mathbf{X}})_S \right\|_F \left\| \mathbf{X} - \tilde{\mathbf{X}} \right\|_F \\ &+ \omega \left\| \mathbf{E} \right\|_F \sqrt{1 + \delta_t} \left\| \mathbf{W}_{T_0} (\mathbf{X} - \tilde{\mathbf{X}})_S \right\|_F. \end{aligned} (21)$$

Divide both sides by $\left\| (\mathbf{W}_{T_0}\mathbf{X} - \mathbf{W}_{T_0}\tilde{\mathbf{X}})_S \right\|_F$ to obtain (17).

• By expanding Lemma 2 in [25] to MMV model, we could get a relationship between $\|\mathbf{X} - \tilde{\mathbf{X}}\|_F$ and $\|\mathbf{X}_{S^c}\|_F$. We have

$$\left\| \mathbf{X} - \tilde{\mathbf{X}} \right\|_{F} \le \sqrt{\frac{1}{1 - \delta_{s+t}^{2}}} \left\| \mathbf{X}_{S^{c}} \right\|_{F}^{2} + \frac{\sqrt{1 + \delta_{t}}}{1 - \delta_{s+t}} \left\| \mathbf{E} \right\|_{F}.$$
 (22)

Finally, we established the relationship between X_{T_∇} and X - X̄. There exist a subset S' ⊆ S and S' ∩ T = ∅.
 Since T_∇ is defined by the set of indices of the t - s smallest row entries of X̄, we can conclude that

$$\left\|\tilde{\mathbf{X}}_{T_{\nabla}}\right\|_{F} + \left\|\mathbf{W}_{T_{0}}\tilde{\mathbf{X}}_{T_{\nabla}}\right\|_{F}$$

$$\leq \left\|\tilde{\mathbf{X}}_{S'}\right\|_{F} + \left\|\mathbf{W}_{T_{0}}\tilde{\mathbf{X}}_{S'}\right\|_{F}. \tag{23}$$

By eliminating the contribution from $T_{\nabla} \cap S'$ and noticing that $S' \cap T = \emptyset$, we have

$$\left\| \tilde{\mathbf{X}}_{T_{\nabla} \backslash S'} \right\|_{F} + \left\| \mathbf{W}_{T_{0}} \tilde{\mathbf{X}}_{T_{\nabla} \backslash S'} \right\|_{F}$$

$$\leq \left\| (\tilde{\mathbf{X}} - \mathbf{X})_{S' \backslash T_{\nabla}} \right\|_{F}$$

$$+ \left\| \mathbf{W}_{T_{0}} (\tilde{\mathbf{X}} - \mathbf{X})_{S' \backslash T_{\nabla}} \right\|_{F}. \tag{24}$$

For the left-hand side of (24), we have

$$\begin{aligned} & \left\| \tilde{\mathbf{X}}_{T_{\nabla} \setminus S'} \right\|_{F} + \left\| \mathbf{W}_{T_{0}} \tilde{\mathbf{X}}_{T_{\nabla} \setminus S'} \right\|_{F} \\ &= \left\| (\tilde{\mathbf{X}} - \mathbf{X} + \mathbf{X})_{T_{\nabla} \setminus S'} \right\|_{F} \\ &+ \left\| (\mathbf{W}_{T_{0}} (\tilde{\mathbf{X}} - \mathbf{X}) + \mathbf{W}_{T_{0}} \mathbf{X})_{T_{\nabla} \setminus S'} \right\|_{F} \\ &\geq \left\| \mathbf{X}_{T_{\nabla}} \right\|_{F} + \left\| \mathbf{W}_{T_{0}} \mathbf{X}_{T_{\nabla}} \right\|_{F} \\ &- \left\| (\tilde{\mathbf{X}} - \mathbf{X})_{T_{\nabla} \setminus S'} \right\|_{F} \\ &- \left\| \mathbf{W}_{T_{0}} (\tilde{\mathbf{X}} - \mathbf{X})_{T_{\nabla} \setminus S'} \right\|_{F}. \end{aligned} (26)$$

Combining (26) and (24), and noticing that

$$(T_{\nabla} \setminus S') \cap (S' \setminus T_{\nabla}) = \emptyset \tag{27}$$

$$(T_{\nabla} \setminus S') \cup (S' \setminus T_{\nabla}) \subseteq T, \tag{28}$$

we have

$$\|\mathbf{X}_{T_{\nabla}}\|_{F} + \|\mathbf{W}_{T_{0}}\mathbf{X}_{T_{\nabla}}\|_{F}$$

$$\leq \|(\tilde{\mathbf{X}} - \mathbf{X})_{T_{\nabla} \setminus S'}\|_{F} + \|(\mathbf{W}_{T_{0}}(\tilde{\mathbf{X}} - \mathbf{X}))_{T_{\nabla} \setminus S'}\|_{F}$$

$$+ \|(\tilde{\mathbf{X}} - \mathbf{X})_{S' \setminus T_{\nabla}}\|_{F} + \|(\mathbf{W}_{T_{0}}(\tilde{\mathbf{X}} - \mathbf{X}))_{S' \setminus T_{\nabla}}\|_{F}$$

$$\leq \sqrt{2} \|(\tilde{\mathbf{X}} - \mathbf{X})_{(S' \setminus T_{\nabla}) \cup (T_{\nabla} \setminus S')}\|_{F}$$

$$+ \sqrt{2} \|(\mathbf{W}_{T_{0}}(\tilde{\mathbf{X}} - \mathbf{X}))_{(S' \setminus T_{\nabla}) \cup (T_{\nabla} \setminus S')}\|_{F}$$

$$\leq \sqrt{2} \|(\tilde{\mathbf{X}} - \mathbf{X})_{S}\|_{F} + \sqrt{2} \|(\mathbf{W}_{T_{0}}(\tilde{\mathbf{X}} - \mathbf{X}))_{S}\|_{F}$$

$$\leq \sqrt{2} \|(\tilde{\mathbf{X}} - \mathbf{X})_{S}\|_{F} + \sqrt{2} \|(\mathbf{W}_{T_{0}}(\tilde{\mathbf{X}} - \mathbf{X}))_{S}\|_{F}$$

$$+ (1 + \omega)\sqrt{2(1 + \delta_{t})} \|\mathbf{E}\|_{F}. \tag{29}$$

Also, we can obtain the relationship between $\|\mathbf{W}_{T_0}\mathbf{X}_{T_{\nabla}}\|_F$ and $\|\mathbf{X}_{T_{\nabla}}\|_F$:

$$\eta \omega \sqrt{s_3} \| \mathbf{X}_{T_{\nabla}} \|_F \le \| \mathbf{W}_{T_0} \mathbf{X}_{T_{\nabla}} \|_F. \tag{30}$$

Combining (29) and (30), we have

$$\|\mathbf{X}_{T_{\nabla}}\|_{F} \leq \frac{\sqrt{2}(1+\omega)\delta_{s+t}}{1+\eta\omega\sqrt{s_{3}}} \|\mathbf{X} - \tilde{\mathbf{X}}\|_{F} + \frac{(1+\omega)\sqrt{2}(1+\delta_{t})}{1+\eta\omega\sqrt{s_{3}}} \|\mathbf{E}\|_{F}.$$
 (31)

Noting the definition of ν_2 , we complete the proof of Lemma 2.

Remark 2. When we consider the atom selection strategy of $\left\|\tilde{\mathbf{X}}_{T_{\nabla}} + \mathbf{W}_{T_0}\tilde{\mathbf{X}}_{T_{\nabla}}\right\|_F \le \left\|\tilde{\mathbf{X}}_{S'} + \mathbf{W}_{T_0}\tilde{\mathbf{X}}_{S'}\right\|_F$, we can also obtain another upper bound for $\left\|\mathbf{X}_{T_{\nabla}}\right\|_F$ in (19). In this case, we should allocate $2\left\|\mathbf{X}_{T_{\nabla}}\right\|_F$ to the left hand side of (25), we have

$$\|\mathbf{X}_{T_{\nabla}}\|_{F} \leq \sqrt{2}\nu_{3}\delta_{s+t} \|\mathbf{X} - \tilde{\mathbf{X}}\|_{F} + \nu_{4}\sqrt{2(1+\delta_{t})} \|\mathbf{E}\|_{F}.$$

$$(32)$$

where $\nu_3 = (1 - \omega + \omega \delta_{s+t} + \delta_{s+t})/(2\delta_{s+t})$ and $\nu_4 = (1 + \omega)/(2\delta_{s+t})$.

Lemma 3. In steps 4 and 5 of SI-SSP, we have

$$\|\mathbf{X}_{(\tilde{S}^k)^c}\|_F \le \sqrt{2}\nu_1 \delta_{3s} \|\mathbf{X} - \mathbf{X}^{k-1}\|_F + \nu_1 \sqrt{2(1+\delta_{3s})} \|\mathbf{E}\|_F.$$
(33)

Proof: From step 5 of SI-SSP, we have

$$\mathbf{X}_{S_i}^k = \underset{\boldsymbol{\Theta}: \text{supp}(\boldsymbol{\Theta}) = S_{S_i}^k}{\arg \min} \|\mathbf{Y}_{S_i} - \mathbf{A}\boldsymbol{\Theta}\|_F.$$
 (34)

From the step 4 of SI-SSP, let $\mathbf{X}^k = [\mathbf{X}_{S_1}^k, \cdots, \mathbf{X}_{S_r}^k]$, we have the following conclusion

$$\|(\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T}\|_{F}$$

$$\leq \|(\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S}\|_{F}.$$
(35)

By removing the same coordinates $T \cap \triangle S$, we can get

$$\|(\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus \Delta S}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus \Delta S}\|_{F}$$

$$\leq \|(\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus T}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus T}\|_{F}. \tag{36}$$

Because supp(\mathbf{X}) = T and supp(\mathbf{X}^{k-1}) = S^{k-1} ,

$$(\mathbf{X} - \mathbf{X}^{k-1})_{\Delta S \setminus (T \cup S^{k-1})} = 0. \tag{37}$$

For the right-hand of (36), we have

$$\begin{aligned} & \left\| (\mathbf{A}^H (\mathbf{Y} - \mathbf{A} \mathbf{X}^{k-1}))_{\Delta S \backslash T} \right\|_F \\ & + \left\| (\mathbf{W}_{T_0} \mathbf{A}^H (\mathbf{Y} - \mathbf{A} \mathbf{X}^{k-1}))_{\Delta S \backslash T} \right\|_F \end{aligned}$$

$$= \| (\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus (T \cup S^{k-1})} \|_{F}$$

$$+ \| (\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus (T \cup S^{k-1})} \|_{F}$$

$$= \| (\mathbf{A}^{H}(\mathbf{A}\mathbf{X} + \mathbf{E} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus (T \cup S^{k-1})} \|_{F}$$

$$+ \| (\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{A}\mathbf{X} + \mathbf{E} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus (T \cup S^{k-1})} \|_{F}$$

$$\leq \| ((\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{\Delta S \setminus T} \|_{F}$$

$$+ \| (\mathbf{A}^{H}\mathbf{E})_{\Delta S \setminus T} \|_{F}$$

$$+ \| (\mathbf{W}_{T_{0}}(\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{\Delta S \setminus T} \|_{F}$$

$$+ \| (\mathbf{W}_{T_{0}}\mathbf{A}^{H}\mathbf{E})_{\Delta S \setminus T} \|_{F}.$$
(38)

Note that $\tilde{S}^k = S^{k-1} \cup \Delta S$, we have

$$(\mathbf{X} - \mathbf{X}^{k-1})_{T \setminus \tilde{S}^k} = \mathbf{X}_{(\tilde{S}^k)^c}.$$
 (39)

For the left-side of (36), we have

$$\|(\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus \Delta S}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus \Delta S}\|_{F}$$

$$= \|(\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus (\Delta S \cup S^{k-1})}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus (\Delta S \cup S^{k-1})}\|_{F}$$

$$= \|(\mathbf{A}^{H}(\mathbf{A}\mathbf{X} + \mathbf{E} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus (\Delta S \cup S^{k-1})}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{A}\mathbf{X} + \mathbf{E} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus (\Delta S \cup S^{k-1})}\|_{F}$$

$$= \|((\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1})$$

$$+ \mathbf{A}^{H}\mathbf{E} + \mathbf{X})_{\Delta S \setminus (T \cup S^{k-1})}\|_{F}$$

$$+ \|\mathbf{W}_{T_{0}}(\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1})$$

$$+ \mathbf{W}_{T_{0}}\mathbf{A}^{H}\mathbf{E} + \mathbf{W}_{T_{0}}\mathbf{X})_{\underline{S}^{k}}\|_{F}$$

$$- \|((\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{\underline{S}^{k}}\|_{F}$$

$$- \|((\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{\underline{S}^{k}}\|_{F}$$

$$- \|(\mathbf{M}_{T_{0}}(\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{\underline{S}^{k}}\|_{F}$$

$$- \|(\mathbf{A}^{H}\mathbf{E})_{\underline{S}^{k}}\|_{F} - \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}\mathbf{E})_{\underline{S}^{k}}\|_{F}.$$
(41)

Combining (42) and (41), we have

$$\left\|\mathbf{X}_{(\tilde{S}^{k})^{c}}\right\|_{F} + \left\|(\mathbf{W}_{T_{0}}\mathbf{X})_{(\tilde{S}^{k})^{c}}\right\|_{F}$$

$$\leq \left\|((\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{T\setminus\tilde{S}^{k}}\right\|_{F}$$

$$+ \left\|(\mathbf{W}_{T_{0}}(\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{T\setminus\tilde{S}^{k}}\right\|_{F}$$

$$+ \left\|(\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{\Delta S\setminus T}\right\|_{F}$$

$$+ \left\|((\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{\Delta S\setminus T}\right\|_{F}$$

$$+ \left\|((\mathbf{A}^{H}\mathbf{E})_{T\setminus\tilde{S}^{k}}\right\|_{F} + \left\|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}\mathbf{E})_{T\setminus\tilde{S}^{k}}\right\|_{F}$$

$$+ \left\|(\mathbf{A}^{H}\mathbf{E})_{\Delta S\setminus T}\right\|_{F} + \left\|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}\mathbf{E})_{\Delta S\setminus T}\right\|_{F}$$

$$\leq \sqrt{2}\left\|((\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{T\cup\Delta S}\right\|_{F}$$

$$+ \sqrt{2}\left\|(\mathbf{W}_{T_{0}}(\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{T\cup\Delta S}\right\|_{F}$$

$$+ \sqrt{2}\left\|(\mathbf{A}^{H}\mathbf{E})_{T\cup\Delta S}\right\|_{F} + \sqrt{2}\left\|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}\mathbf{E})_{T\cup\Delta S}\right\|_{F}$$

$$\leq \sqrt{2}(1 + \omega)\delta_{3s}\left\|\mathbf{X} - \mathbf{X}^{k-1}\right\|_{F}$$

$$+ (1 + \omega)\sqrt{2(1 + \delta_{3s})}\left\|\mathbf{E}\right\|_{F}.$$
(42)

We can obtain the relationship between $\left\|\mathbf{X}_{(\tilde{S}^k)^c}\right\|_F$ $\left\|(\mathbf{W}_{T_0}\mathbf{X})_{(\tilde{S}^k)^c}\right\|_F$:

$$\eta \omega \sqrt{s_2} \left\| \mathbf{X}_{(\tilde{S}^k)^c} \right\|_F \le \left\| (\mathbf{W}_{T_0} \mathbf{X})_{(\tilde{S}^k)^c} \right\|_F. \tag{43}$$

Combining (42) and (43), we have

$$\left\| \mathbf{X}_{(\tilde{S}^{k})^{c}} \right\|_{F} \leq \frac{\sqrt{2}(1+\omega)\delta_{3s}}{1+\eta\omega\sqrt{s_{2}}} \left\| \mathbf{X} - \tilde{\mathbf{X}} \right\|_{F} + \frac{(1+\omega)\sqrt{2}(1+\delta_{2s})}{1+\eta\omega\sqrt{s_{2}}} \left\| \mathbf{E} \right\|_{F}.$$

$$(44)$$

Noting the definition of ν_1 , we complete the proof of Lemma 3.

Remark 3. When we consider the atom selection strategy in select step that

$$\left\| ((\mathbf{I}_{L} + \mathbf{W}_{T_{0}}) \mathbf{A}^{H} (\mathbf{Y} - \mathbf{A} \mathbf{X}^{k-1}))_{T} \right\|_{F}$$

$$\leq \left\| ((\mathbf{I}_{L} + \mathbf{W}_{T_{0}}) \mathbf{A}^{H} (\mathbf{Y} - \mathbf{A} \mathbf{X}^{k-1}))_{\Delta S} \right\|_{F}. \tag{45}$$

We can also obtain another upper bound for $\left\|\mathbf{X}_{\overline{\tilde{S}^k}}\right\|_F$ in (33). In this case, we should allocate $2\left\|\mathbf{X}_{\overline{\tilde{S}^k}}\right\|_F$ to the left hand side of (40), we have

$$\left\| \mathbf{X}_{\underline{\tilde{S}}^{k}} \right\|_{F} \leq \sqrt{2}\nu_{4}\delta_{3s} \left\| \mathbf{X} - \mathbf{X}^{k-1} \right\|_{F} + \nu_{4}\sqrt{2\left(1 + \delta_{3s}\right)} \left\| \mathbf{E} \right\|_{F}.$$

$$(46)$$

where $\nu_4 = (1 - \omega + \omega \delta_{3s} + \delta_{3s})/(2\delta_{3s})$ and $\nu_4 = (1 + \omega)/(2\delta_{3s})$. Based on conclusions (32) and (46), we know that the sensing matrix **A** obeys the RIP with

$$\delta_{3s} \le \sqrt{\frac{\nu_3 \sqrt{\nu_3^2 + 4\nu_4^2 - \nu_3^2 - 1}}{4\nu_3^2\nu_4^2 - 2\nu_3^2 - 1}}.$$
(47)

Lemma 4. Let $T_0 \subseteq \{1, 2, ..., n\}$, for two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, if $|supp(\mathbf{u}) \cup supp(\mathbf{v})| \leq t$,

$$\left|\left\langle \mathbf{u}, (\mathbf{W}_{T_0} - \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{A}) \mathbf{v} \right\rangle \right| \le \omega \delta_t \|\mathbf{u}\| \|\mathbf{v}\|;$$
 (48)

moreover, if $U \subseteq \{1, 2, ..., n\}$ and $|U \cup supp(\mathbf{v})| \leq t$, then

$$\left| (\mathbf{W}_{T_0} - \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{A}) \mathbf{v} \right| \le \omega \delta_t \| \mathbf{v} \| . \tag{49}$$

Proof: the RIC δ_s can be expressed as [25]

$$\delta_s = \max_{S \subseteq \{1, 2, \dots, N\}, |S| \le s} \|\mathbf{A}_S^* \mathbf{A}_S - \mathbf{I}\|_{2 \to 2},$$
 (50)

where

$$\|\mathbf{A}_{S}^{*}\mathbf{A}_{S} - \mathbf{I}\|_{2 \to 2} = \sup_{\mathbf{a} \in \mathbb{R}^{|S|} \setminus \{\mathbf{0}\}} \frac{\|(\mathbf{A}_{S}^{*}\mathbf{A}_{S} - \mathbf{I})\mathbf{a}\|_{2}}{\|\mathbf{a}\|_{2}}.$$
 (51)

Let $S = \operatorname{supp}(\mathbf{u}) \cup \operatorname{supp}(\mathbf{v})$, then $|S| \leq t$. Let $\mathbf{u}_{|S}, \mathbf{v}_{|S}$ denote respectively the S-dimensional sub-vectors of \mathbf{u} and

 ${f v}$ obtained by only keeping the components indexed by S. We have

$$\begin{aligned} & \left| \left\langle \mathbf{u}, \left(\mathbf{W}_{T_{0}} - \mathbf{W}_{T_{0}} \mathbf{A}^{H} \mathbf{A} \right) \mathbf{v} \right\rangle \right| \\ &= \left| \left\langle \mathbf{W}_{T_{0}} \mathbf{u}, \mathbf{v} \right\rangle - \left\langle \mathbf{A} \mathbf{W}_{T_{0}} \mathbf{u}, \mathbf{A} \mathbf{v} \right\rangle \right| \\ &= \left| \left\langle \mathbf{W}_{T_{0}} \mathbf{u}_{|T}, \left(\mathbf{I}_{L} - \mathbf{A}_{T}^{H} \mathbf{A}_{T} \right) \mathbf{v}_{|T} \right\rangle \right| \\ &\leq \left\| \mathbf{W}_{T_{0}} \mathbf{u}_{|T} \right\|_{2} \left\| \left(\mathbf{I}_{L} - \mathbf{A}_{T}^{H} \mathbf{A}_{T} \right) \mathbf{v}_{|T} \right\|_{2} \\ &\leq \left\| \mathbf{W}_{T_{0}} \mathbf{u}_{|T} \right\|_{2} \left\| \mathbf{I}_{L} - \mathbf{A}_{T}^{H} \mathbf{A}_{T} \right\|_{2 \to 2} \left\| \mathbf{v}_{|T} \right\|_{2} \\ &\leq \left\| \mathbf{w}_{\delta_{t}} \right\| \mathbf{u}_{|T} \right\|_{2} \left\| \mathbf{v}_{|T} \right\|_{2} \\ &= \omega \delta_{t} \|\mathbf{u}_{|T} \|_{2} \|\mathbf{v}_{|T} \|_{2} \\ &= \omega \delta_{t} \|\mathbf{u}_{|T} \|_{2} \|\mathbf{v}_{|T} \|_{2} \end{aligned}$$

moreover, we have

$$\begin{aligned} & \left\| \left(\left(\mathbf{W}_{T_0} - \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{A} \right) \mathbf{v} \right)_U \right\|_2^2 \\ &= \left\langle \left(\left(\mathbf{W}_{T_0} - \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{A} \right) \mathbf{v} \right)_U, \\ & \left(\mathbf{W}_{T_0} - \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{A} \right) \mathbf{v} \right\rangle \\ &\leq \delta_t \left\| \left(\left(\mathbf{W}_{T_0} - \mathbf{A}^H \mathbf{A} \right) \mathbf{v} \right)_U \right\|_2 \|\mathbf{v}\|_2 \end{aligned} (53)$$

which completes the proof of Lemma 4.

Lemma 5. For SMV model $\mathbf{y} = \mathbf{\Phi} \mathbf{x} + \mathbf{e}$, let $T_0 \subseteq \{1, 2, ..., n\}$, let $U \subseteq \{1, 2, ..., n\}$ and $|U \cap T_0| \leq u$, we have

$$\left\| (\mathbf{W}_{T_0} \mathbf{A}^H e)_U \right\|_2 \le \omega \delta_u \left\| e \right\|_2. \tag{54}$$

Proof: The lemma easily follows from the fact that

$$\| (\mathbf{W}_{T_0} \mathbf{A}^H \mathbf{e})_U \|_2^2$$

$$= \langle \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{e}, (\mathbf{W}_{T_0} \mathbf{A}^H \mathbf{e})_U \rangle$$

$$= \langle \mathbf{e}, \mathbf{W}_{T_0} \mathbf{A} ((\mathbf{A}^H \mathbf{e})_U) \rangle$$

$$\leq \| \mathbf{e} \|_2 \| \mathbf{W}_{T_0} \mathbf{A} ((\mathbf{A}^H \mathbf{e})_U) \|_2$$

$$\stackrel{(3)}{\leq} \| \mathbf{e}' \|_2 \omega \sqrt{1 + \delta_u} \| (\mathbf{A}^H \mathbf{e})_U \|_2.$$
(55)

Lemma 6. Consider MMV model $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{E}$, let $\tilde{\mathbf{X}}$ be the solution of the least squares problem $\arg\min_{\mathbf{Z}} \{ \|\mathbf{Y} - \mathbf{A}\mathbf{Z}\|_F, supp(\mathbf{Z}) \subseteq S \}$, then

$$\langle \mathbf{W}_{T_0} \mathbf{X} - \mathbf{W}_{T_0} \tilde{\mathbf{X}}, \mathbf{A}^H \mathbf{A} \mathbf{Z} \rangle + \omega \langle \mathbf{E}, \mathbf{A} \mathbf{Z} \rangle = 0$$
 (56)

Proof: Due to the orthogonality, the residue $\mathbf{Y} - \mathbf{A}\ddot{\mathbf{X}}$ is orthogonal to the space $\mathbf{A}\mathbf{Z}$, supp $(\mathbf{Z}) \subseteq S$. This means that for all $\mathbf{Z} \in \mathbb{R}$ with supp $(\mathbf{Z}) \subseteq S$,

$$\langle \mathbf{A}(\mathbf{Y} - \mathbf{A}\tilde{\mathbf{X}}), \mathbf{Z} \rangle = 0$$
 (57)

then, let \tilde{X}' be the solution of the least squares problem $\arg\min_{\mathbf{Z}} \{\|\mathbf{Y}' - \mathbf{A}\mathbf{Z}\|_F, \sup(\mathbf{Z}) \subseteq S\}$, where $\mathbf{Y}' = \frac{\mathbf{A}\mathbf{W}_{T_0}\mathbf{X}_{T_0}}{S} + \mathbf{E}$. We have

$$\tilde{X}' = \frac{\mathbf{W}_{T_0}\tilde{X}}{\omega}. (58)$$

Then, by (57), we have

$$0 = \left\langle \frac{\mathbf{A}\mathbf{W}_{T_0}\mathbf{X}_{T_0}}{\omega} + \mathbf{E} - \mathbf{A}\frac{\mathbf{W}_{T_0}\tilde{X}}{\omega}, \mathbf{A}\mathbf{Z} \right\rangle$$
$$= \left\langle \mathbf{W}_{T_0}\mathbf{X} - \mathbf{W}_{T_0}\tilde{\mathbf{X}}, \mathbf{A}^H \mathbf{A}\mathbf{Z} \right\rangle + \omega \left\langle \mathbf{E}, \mathbf{A}\mathbf{Z} \right\rangle. (59)$$

B. Proof of Theorem 1

Firstly, we assume that a multi-coset sampler has p channels, and the sampling rate of each channel is determined by the sampled signal sequence, which is in the form of

$$x_{c_i}[n] = x(LTn + \tau_i), \quad n = 0, 1, \cdots$$
 (60)

The average sampling rate of the p-channel is p times that of one channel. Note that when the sampling rate of the p-channel is greater than the Nyquist rate, we only need to operate the Nyquist frequency to sample, the actual sampling rate is in the form of

$$\min(\frac{p}{LT}, f_{\text{nyq}}). \tag{61}$$

The theoretical lower bound of the sampling rate is given in [17], which is directly determined by the true bandwidth of the signal:

$$\min(2\lambda(\mathcal{T}), f_{\text{nyq}}).$$
 (62)

In most cases, the subband bandwidth $\lambda(\mathcal{T})$ and the actual sampling rate does not exceed f_{nyq} (when not satisfied, the sampling rate is f_{nyq}). To ensure reconstruction performance, the parameter p is often not set too low (for instance, it's often chosen to be at least twice the sparsity level $\mathrm{supp}(\mathbf{X})$). It will be seen from above that the theoretical lower bound on the sampling rate is achieved only when $p/LT = pf_s \leq 2\lambda(\mathcal{T}) = 2N_{sig}B$. In other words, when $p = 2\mathrm{supp}(\mathbf{X})$ for the worst case of p, the condition for the actual sampling rate to meet the theoretical lower bound is $K \leq \frac{N_{sig}B}{f_s}$.

C. Proof of Theorem 2

Consider all blocks $\left\{\mathbf{X}^{U_1},\cdots,\mathbf{X}^{U_M}\right\}$ in \mathbf{X} , where there are consecutive corresponding frequency points of length B. For the case $B>f_s$ and each block occupies M rows in \mathbf{X} , the length of the frequency point in each $\bar{\mathbf{X}}^{U_i}$ meets

$$l = B - (M - 2)f_s < f_s. (63)$$

Because $l < f_s$, we know that the non-zero elements of an any sub-block (i.e. $\bar{\mathbf{X}}^{U_i}$) are distributed on both sides and do not intersect on the columns. Conside one block $\bar{\mathbf{X}}^{U_i}$, We let $r \to \infty$ and observe the change in $\bar{\mathbf{X}}^{U_i}$, $\bar{\mathbf{X}}^{U_i}$ gradually changes from an MMV form to an SMV form. In SMV, the sparsity of the signal is determined by the column in $\bar{\mathbf{X}}^{U_i}$ where it is located. It is observed that

$$lim_{r\to\infty,i,j} \operatorname{supp}(\bar{\mathbf{X}}^{U_i}_{:,j}) \le 1. \tag{64}$$

A more complex situation is when r is a finite value, assuming $r=r^\star$ is a finite value. In this case, the length of frequency point in each sub-matrix is $\frac{f_s}{r^\star}$. We use reduction to absurdity to prove the condition that the sparsity of each sub-matrix is less than N_{sig} . Assuming that there exists a sub-matrix $\bar{\mathbf{X}}_{S_i}$ with $\operatorname{supp}(\bar{\mathbf{X}}_{S_i}) > N_{sig}$. Also, the non-zero elements of an any sub-block of $\bar{\mathbf{X}}_{S_i}$ do not intersect on the

columns. \mathbf{X}_{S_i} must contain both non-zero elements on both

Thus, the sparsity of each column in $ar{\mathbf{X}}^{U_i}$ is less than N_{sig} .

sides of one block. From (63), we know that the length of any block of $\bar{\mathbf{X}}$ is less than f_s . We can draw a conclusion that

$$\frac{f_s}{r^*} > f_s - l = (M - 1)f_s - B.$$
 (65)

As can be seen, there exist a contradiction between (65) and Theorem 2, so the length of any column-partition sub-matrix non-zero elements in $\bar{\mathbf{X}}$ must be less or equal than f_s-l , which is equivalent to r satisfying

$$r \ge \lceil \frac{f_s}{(M-1)f_s - B} \rceil. \tag{66}$$