Kinova Jaco Arm Control via ROS Robot-Era Project

Johannes Liebrecht Sebastian Rockel

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

19. November 2012

Outline

- 1. Kinova Jaco Arm Overview
- 2. Kinova Jaco Arm Library
- 3. Jaco Arm ROS Stack
- 4. Open Motion Planning Library
- 5. Demo

Outline

- 1. Kinova Jaco Arm Overview
- 2. Kinova Jaco Arm Library
- 3. Jaco Arm ROS Stack
- 4. Open Motion Planning Library
- 5. Demo

Kinova Jaco Arm

- ▶ 6 degrees of freedom
- carbon fiber structure
- ▶ total weight: 5Kg
- reach: 90cm

Kinova Jaco Arm

University of Hamburg

- ► Maximum Load : 1.5kg at mid-range/1.0kg at end-range
- ► Maximum linear arm speed : 15cm/sec
- ▶ 3 fingers or 2 fingers utilization
- Finger force limited to 7N

Jaco Arm Rest Time

Weight \ distance from base	d < 0.45 m	0.45m < d < 0,7 m	0.7 < d < 0,9 m
250g	5 min : 0 min	4 min : 1 min	3 min : 2 min
500g	4 min : 1 min	2,5 min : 2,5 min	2 min : 3 min
1kg	2,5 min : 2,5 min	2 min : 3 min	1 min : 4 min
1,5kg	1 min : 4 min		

1 Kinova Jaco Arm Overview

Jaco Arm ROS

Working with Kinova Jaco Arm

- ▶ be aware of collusion with camera head
- ▶ home position/ retract position

2 Kinova Jaco Arm Library

Outline

- 2. Kinova Jaco Arm Library

Jaco Arm ROS

Jaco Arm Library

- powerful library(C#)
- documentation (Jaco_API Programming Guide)
- view dynamic-link library with MonoDevelop

MonoDevelop

Jaco Arm Library

- ▶ acceleration, velocity, force, joint temperature,....
- protection zones
- trajectories

Jaco Arm Library

2 Kinova Jaco Arm Library

3 Jaco Arm ROS Stack Jaco Arm RO

Outline

- 1. Kinova Jaco Arm Overview
- 2. Kinova Jaco Arm Library
- 3. Jaco Arm ROS Stack
- 4. Open Motion Planning Library
- 5. Demo

Kinova Jaco Arm ROS Stack

- unofficial ROS stack from Kinova
- no existing documentation
- ► C# code into C++ code

3 Jaco Arm ROS Stack

Jaco Arm ROS

Kinova Jaco Arm ROS Stack

- ► Jaco Node
- Jaco State Publisher(robot_state_publisher)

3 Jaco Arm ROS Stack

Jaco Arm ROS

Jaco_Node Subscriber Topics

- /jaco_node/cur_goal(geometry_msgs/PoseStamped)
- /hand_pose(geometry_msgs/PoseStamped)
- /joint_states(sensor_msgs/JointState)

University of Hamburg

Jaco_Node Subscriber Messages

Header header uint32 seq time stamp string frame_id string[] name float64[] position float64[] velocity float64[] effort

sensor_msgs/JointState

```
Header header
  uint32 seg
  time stamp
  string frame_id
Pose pose
  geometry_msgs/Point position
    float64 x
     float64 v
     float64 z
  geometry_msgs/Quaternion orientation
     float64 x
     float64 y
     float64 z
     float64 w
```

geometry_msgs/PoseStamped

句

Jaco_Node Publisher Topics/Messages

- /hand_goal(geometry_msgs/PoseStamped)
- /cmd_abs_finger(jaco_node/FingerPose)
- /cmd_abs_joint(jaco_node/JointPose)
- /cmd_rel_cart(geometry_msgs/Twist)

3 Jaco Arm ROS Stack

Jaco Arm ROS

Jaco_Node Publishers/Subscribers

- /.../follow_joint_trajectory/result
- /.../follow_joint_trajectory/feedback
- /.../follow_joint_trajectory/goal
- /.../follow_joint_trajectory/status
- /.../follow_joint_trajectory/cancel

Jaco_Node Joint Trajectory Messages

trajectory_msgs/JointTrajectory trajectory control_msgs/JointTolerance[] path_tolerance control_msgs/JointTolerance[] goal_tolerance duration goal_time_tolerance

control_msgs/

FollowJointTrajectoryGoal.msg

uint32 seq time stamp string frame_id string[] joint_names JointTrajectoryPoint[] points float641 positions

Header header

float64[] positions float64[] velocities float64[] accelerations duration time_from_start

trajectory_msgs/JointTrajectory.msg

句

3 Jaco Arm ROS Stack

Jaco Arm ROS

Kinova Jaco Arm ROS Stack

- fixing bugs(open his hand, hand_pose)
- ► integrate more functionality

Outline

- 1. Kinova Jaco Arm Overview
- 2. Kinova Jaco Arm Library
- 3. Jaco Arm ROS Stack
- 4. Open Motion Planning Library
- 5. Demo

卣

4 Open Motion Planning Library

The Open Motion Planning Library (OMPL)

- ▶ library of sampling-based motion planning algorithms
- ▶ integrated in ROS arm navigation stack (used on the PR2)
- ▶ integrated in (new) Movelt! project
- ▶ includes state-of-the-art motion planning algorithms
- no collision checking
- demo videos at http://ompl.kavrakilab.org/gallery.html
- tutorials on how to integrate OMPL at http: //www.ros.org/wiki/ompl_ros_interface/Tutorials

Movelt! - A Planning Framework

- ▶ includes kinematics, dynamics, collision checking, constraints evaluation, visualization ...
- centered around planning and execution motion plans for different robots
- ▶ Tools include: specification of motion plans, configuration and debugging tools, visualization, benchmarking
- Overview at http://moveit.ros.org

4 Open Motion Planning Library

Movelt! - A Planning Framework

句

5 Demo

I--- A--- BOS

Outline

- 1. Kinova Jaco Arm Overview
- 2. Kinova Jaco Arm Library
- 3. Jaco Arm ROS Stack
- 4. Open Motion Planning Library

卣

5. Demo

5 Demo Jaco Arm ROS

Demo

