ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА»

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА специалиста

ОПТИМИЗАЦИЯ ТРАНСПОРТНОГО ПОТОКА ПРИ ЗАДАННЫХ ПУНКТАХ ОТПРАВЛЕНИЯ И НАЗНАЧЕНИЯ ВСЕХ УЧАСТНИКОВ ДВИЖЕНИЯ

Выполнил студент 610 группы
Пехтерев Станислав Игоревич
1
подпись студента
Научин ій руудранитані :
Научный руководитель:
доктор физико-математических наук
Васенин Валерий Александрович
подпись научного руководителя

Москва 2022

Содержание

1	Введение	3
2	Постановка задачи	4
	2.1 Общая постановка задачи	4
	2.2 Постановка задачи в терминах модели движения	4
3	Модели движения	8
	3.1 Макроскопические модели	8
	3.2 Микроскопические модели	11
4	Равновесие транспортных потоков	12

Тема

1 Введение

2 Постановка задачи

Для начала поставим общую задачу оптимизации транспортного потока.

2.1 Общая постановка задачи

Пусть задан ориентированный граф G=(V,E), описывающий некоторую дорожную сеть. Предположим, что имеется n участников движения по этому графу. Каждый участник i имеет точки отправления $A_i \in V$ и точки прибытия $B_i \in V$. Пусть множество P_i есть множество всех простых путей из A_i в B_i . Пусть декартово произведение $P=\prod_{i=1}^n P_i$ есть множество всех возможных комбинаций путей участников. Элементы этого множества назовем комбинацией путей. Пусть известно, что при комбинации путей участников $\mathbf{p} \in P$ i-ый участник затрачивает $T_i(\mathbf{p}) \in \mathbb{R}$ времени на передвижение. Функции T_i назовем функциями временных затрат участника i. Некооперативным передвижение по ориентированному графу G назовем пятерку $F=(n,G,\{A_i\}_{i=1}^n,\{B_i\}_{i=1}^n,\{T_i\}_{i=1}^n)$. Предположим, что задана некоторая общая функция временных затрат $\Phi(\mathbf{p})=\phi(T_1(\mathbf{p}),\ldots,T_n(\mathbf{p}))$, определенная на множестве всех возможных комбинацией путей P и отображающая его в множество действительных чисел.

Для заданного некооперативного передвижения F и общей функцией временных затрат Φ необходимо найти такую комбинацию путей \mathbf{p}^* , что общая функция временных затрат минимальна на ней, то есть

$$\Phi(\mathbf{p}^*) = \min_{\mathbf{p} \in P} \Phi(\mathbf{p}). \tag{1}$$

Комбинацию путей \mathbf{p}^* будем называть *оптимальной*, а общие временные затраты $T(\mathbf{p}^*)$ *оптимальным общим временем передвижения участников*.

Другими словами мы хотим проложить маршруты всеми участниками дорожной сети так, чтобы некооперативное передвижения стало кооперативным посредством минимизации некоторой общей функции.

Далее будем считать, что каждый участник имеет одинаковый приоритет в вопросе выбора маршрута, то есть

$$\phi(T_1, \dots, T_n) = \sum_{i=1}^n T_i. \tag{2}$$

2.2 Постановка задачи в терминах модели движения

Сложность численного решения задачи поиска оптимальной комбинации путей во многом зависит от аналитического задания функций $T_i(\mathbf{p})$. Далее приведем ряд ограничений на функции $T_i(\mathbf{p})$ нашей задачи, которую собираемся исследовать.

Будем считать, что на временные затраты при проезде по пути \mathbf{p}_i в первую очередь влияют временные затраты на ребрах, составляющих маршрут \mathbf{p}_i . Поэтому без ограничения

общности считаем, что функции временных затрат есть суммарные временные затраты на каждом ребре этого пути.

$$T_i(\mathbf{p}) = \sum_{e \in E} \overline{\tau}_{e,i}(\mathbf{p}) = \sum_{e \in \mathbf{p}_i} \overline{\tau}_{e,i}(\mathbf{p}),$$

где функции $\overline{\tau}_{e,i}(\mathbf{p})$ есть временные затраты *i*-ого участника на ребре e при комбинации путей \mathbf{p} .

Будем рассматривать те некооперативные передвижения, в которых движение каждого участника можно промоделировать для каждой комбинации путей \mathbf{p} , то есть в каждый момент времени $t \in \mathbb{R}$ известно положение участника на дороге. Таким образом, будем считать, что для каждой комбинации путей \mathbf{p} и времени t известно присутствует ли участник i на ребре e, то есть известны функции

$$\theta_{e,i}(\mathbf{p},t) = \begin{cases} 1, & \text{если i-ый участник движется по ребру e в момент времени t,} \\ 0, & \text{иначе,} \end{cases}$$

где $\sum_{e \in E} \theta_{e,i}(\mathbf{p},t)$ принимает значение 1 пока участник не доедет до своей точки назначения B_i , и 0 после. Также будем считать, что достижение участником i вершины B_i наступает в момент $T_i(\mathbf{p})$, то есть

$$T_i(\mathbf{p}) = \sum_{e \in \mathbf{p}_i} \int_{0}^{T_i(\mathbf{p}) + \Delta t} \theta_{e,i}(\mathbf{p}, t) dt, \forall \Delta t > 0.$$
(3)

Будем считать, что передвижение каждого участника является непрерывным и последовательным относительно графа G. Другими словами участник не может резко повлятся и исчезать на несмежных ребрах, а также посещать пройденные ребра. Таким образом считаем, что функции $\theta_{e,i}(\mathbf{p},t)$ являются индикаторами некоторых интервалов $[t_{e,i}^{in}(\mathbf{p}),t_{e,i}^{out}(\mathbf{p})]$, которые описывают последовательное передвижение:

$$\begin{cases}
t_{e,i}^{in}(\mathbf{p}) \leq t_{e,i}^{out}(\mathbf{p}), i = 1, \dots, n, \\
t_{e,i}^{in}(\mathbf{p}) = t_{e,i}^{out}(\mathbf{p}) = 0, e \notin \mathbf{p}_{i}, i = 1, \dots, n, \\
\sum_{E_{1} = \{e \in E: e = (X_{1}, B)\}} t_{e,i}^{out}(\mathbf{p}) = \sum_{E_{2} = \{e \in E: e = (B, X_{2})\}} t_{e,i}^{in}(\mathbf{p}), B \in V, i = 1, \dots, n, E_{1} \neq \emptyset, E_{2} \neq \emptyset, \\
t_{e,i}^{in}(\mathbf{p}) = 0, i = 1, \dots, n, e = (A_{i}, X), X \in V.
\end{cases}$$

$$(4)$$

Тогда функция временных затрат (3) *i*-ого участника примет вид

$$T_i(\mathbf{p}) = \sum_{e \in F} t_{e,i}^{out}(\mathbf{p}) - t_{e,i}^{in}(\mathbf{p}). \tag{5}$$

Общая функция временных затрат в этом случае есть

$$\Phi(\mathbf{p}) = \sum_{i=1}^{n} \sum_{e \in E} t_{e,i}^{out}(\mathbf{p}) - t_{e,i}^{in}(\mathbf{p}).$$

$$(6)$$

Без ограничения общности считаем, что временные затраты участником i на ребре e ограничены некоторыми положительными константами $\overline{\tau}_{e,i}^{min}, \overline{\tau}_{e,i}^{max}$:

$$0 < \overline{\tau}_{e,i}^{min} \le t_{e,i}^{out}(\mathbf{p}) - t_{e,i}^{in}(\mathbf{p}) \le \overline{\tau}_{e,i}^{max}, e \in \mathbf{p}_i, i = 1, \dots, n, \tag{7}$$

Заметим, что задача оптимизации с целевой функцией (6) и ограничениями (4), (7) ставится в терминах задачи смешанного целочисленного линейного программирования с вещественными переменными $t_{e,i}^{in}, t_{e,i}^{out} \in \mathbb{R}_+$, отвечающими за моменты прохождения i-ым участником ребра e и булевыми переменными $I_{e,i} \in \{0,1\}$, отвечающими за проезд по ребру e участником i. Однако в данных ограничениях решение уже имеется — участник i передвигается по кратчайшему пути в графе G с весами $\overline{\tau}_{e,i}^{min}$. Это связано с тем, что в данной задаче оптимизации отсутвутют влияния участников друг на друга. Для того, чтобы учесть это влияние, для каждого участника i введем микроскопическую характеристику движения $v_i(\mathbf{p},t)$ — положительная, ограниченная функция, описывающую скорость участника.

Тогда, имеет место следующее ограничение

$$\int_{0}^{T_{i}(\mathbf{p})} \theta_{e,i}(\mathbf{p},t)v_{i}(\mathbf{p},t)dt = l_{e}, e \in \mathbf{p}_{i}, i = 1,\dots, n,$$
(8)

или,

$$\int_{\substack{iin\\e,j}}^{tout} v_i(\mathbf{p},t)dt = l_e, e \in \mathbf{p}_i, i = 1,\dots, n,$$
(9)

где l_e — длина ребра $e \in E$. Будем говорить, что уравнения (9) задают модель движения участников. Без ограничения общности считаем, что $\overline{\tau}_{e,i}^{min}, \overline{\tau}_{e,i}^{max}$ вычисляются в самом быстром и самом медленном варианте передвижения по ребру e участником i, а именно

$$\overline{\tau}_{e,i}^{min} = \frac{l_e}{\max_{\mathbf{p} \in Pt \in \mathbb{R}} (v_i(\mathbf{p}, t))}, \overline{\tau}_{e,i}^{max} = \frac{l_e}{\min_{\mathbf{p} \in Pt \in \mathbb{R}} (v_i(\mathbf{p}, t))}$$
(10)

Заметим, что $t_{e,i}^{in}, t_{e,i}^{out} \in \mathbb{R}_+$ - произвольные вещественные велечины, которые удовлетворяют ограничениям (4), (9).

Утверждение 2.1. Пусть выполняются ограничения (4), (9). Тогда $t_{e,i}^{out}(\mathbf{p})$ и $t_{e,i}^{in}(\mathbf{p})$ есть функции от комбинации путей $\mathbf{p} \in P$.

Доказательство. Пошагово найдем все $t_{e,i}^{out}(\mathbf{p})$ и $t_{e,i}^{in}(\mathbf{p}), e \in \mathbf{p}_i, i = 1, \dots, n$. Введем обозначения: $e_1(k), \dots, e_n(k) \in E, k \in \mathbb{N}$ - текущая последовательность ребер на шаге $k, x_i(k) \in [0, 1]$ - пройденная часть текущего ребра $e_i(k), t(k) \in \mathbb{R}$ - текущее время.

1. Положим $e_i(1)$ - первое ребро пути $\mathbf{p}_i, x_i(1) = 0, i = 1, \dots, n, t(1) = 0.$

2. Воспользуемся (9), чтобы найти ближайшее время t(k+1) для смены ребра некоторым участником i:

$$t(k+1) = \underset{\substack{i=1,\dots,n\\i-\text{ B HYTH}}}{\operatorname{argmin}} \int_{t(k)}^{t(k+1)} v_i(\mathbf{p}, t) dt = (1 - x_i(k)) l_e.$$

Из положительности функции $v_i(\mathbf{p},t)$ такой t(k+1) существует.

3. Далее обновим пройденную часть ребра для тех участников i, которые находятся в пути:

$$x_i(k+1) = x_i(k) + \frac{1}{l} \int_{t(k)}^{t(k+1)} v_i(\mathbf{p}, t) dt.$$

- 4. В случае если $x_i(k+1)=1$, положим $x_i(k+1)=0$. Если имеется в пути \mathbf{p}_i имеется следующее ребро за $e_i(k)$, то считаем, что $e_i(k+1)$ такое ребро. Иначе будем считать, что участник доехал до точки назначения.
- 5. Если все участники добрались до точек назначения, закончим алгоритм. Иначе повторим шаг 2.
- 6. С учетом ограничений (4) считаем, что для любых $e \in E$, которые не лежат в пути \mathbf{p}_i : $t_{e,i}^{out}(\mathbf{p}_i) = t_{e,i}^{in}(\mathbf{p}_i) = 0$.

Полученные значения времен t(k) есть $t_{e(k),i}^{out}(\mathbf{p}_i)$ и $t_{e(k+1),i}^{in}(\mathbf{p}_i)$ соответственно для тех i, что обновили обнулили свои $x_i(k+1)$ на шаге 4.

Алгоритм, описанный в утверждении (2.1) называется *моделированием движения*. Используя это утверждение, задача (1) с учетом введенных ограничений (4), (5), (7), (9) формулируется следующим образом:

Пусть задано некооперативное движение $F = (n, G, \{A_i\}_{i=1}^n, \{B_i\}_{i=1}^n, \{\sum_{e \in E} t_{e,i}^{out}(\mathbf{p}) - t_{e,i}^{in}(\mathbf{p})\}_{i=1}^n)$ и модель движения $v_i(\mathbf{p}, t)$, где функции $t_{e,i}^{in}(\mathbf{p}), t_{e,i}^{out}(\mathbf{p})$ удовлетворяют ограничениям (4), (9) с моделью движения $v_i(\mathbf{p}, t)$. Требуется найти такую комбинацию путей \mathbf{p} , что функция

$$\Phi(\mathbf{p}) = \sum_{i=1}^{n} \sum_{e \in E} t_{e,i}^{out}(\mathbf{p}) - t_{e,i}^{in}(\mathbf{p})$$

$$\tag{11}$$

минимальна.

Заметим, что в случае, когда условие (9) можно описать в терминах задачи удовлетворения ограничений, задача оптимизации (11) может быть описана в терминах смешанного целочисленного линейного программирование и, как следствие, может быть решена стандартным решателем.

3 Модели движения

Рассмотрим несколько видов моделей движений, которые в разной степени описывают влияние участников друг на друга.

3.1 Макроскопические модели

Предположим, что скорость участника зависит от некоторой общей для участников велечины. Например, от функции загруженности ребра

$$n_e(\mathbf{p}, t) = \sum_{i=1}^n \theta_{e,i}(\mathbf{p}, t),$$

значение которой в момент времени t соответствует количеству участников на ребре e в этот момент при комбинации путей \mathbf{p} . Предположим скорость участника зависит только от загруженности ребра, на котором он находится:

$$v_i(\mathbf{p},t) = \sum_{e \in E} \theta_{e,i}(\mathbf{p},t) v(n_e(\mathbf{p},t)), i = 1,\dots, n$$
(12)

П

Такую модель движения в дальнейшем будем называть макроскопической. Например, естествено расмотреть модель $v(n_e(\mathbf{p},t)) = \frac{v_{max}}{n_e(\mathbf{p},t)}$. В общем случае такая модель задается последовательностью значений $\{v(k)\}_{k=1}^n$.

Лемма 3.1. Пусть даны вещественные переменные a, b целочисленного программирования u известно, что существует константа M>0: |a|< M, |b|< M. Тогда можно добавить новую целочисленную переменную $\mathbf{1}(\{a< b\}) \in \{0,1\}$ такую, что

$$\mathbf{1}(\{a < b\}) = \begin{cases} 1, \ a < b, \\ 0, \ a \ge b. \end{cases}$$

Доказательство. Добавим в нашу задачу два неравенства:

$$2M(\mathbf{1}(\{a < b\}) - 1) < b - a \le 2M\mathbf{1}(\{a < b\})$$

Очевидная проверка показывает, что неравенство выполняется для любых a, b.

Утверждение 3.1. Пусть модель движения $v_i(p,t)$ макроскопическая. Тогда задача (11) есть задача смешанного целочисленного линейного программирования.

Доказательство. Докажем для случая n=2. Для случаев $n\geq 2$ доказательство аналогичное

Пусть имеется задача смешанного целочисленного линейного программирования (4) с переменными $t_{e,i}^{in}, t_{e,i}^{out}, I_{e,i}, e \in E, i = 1, 2$. Преобразуем условие (9) к каноническому виду задачи удовлетворения ограничений. Для удобства обозначим обоих участников индексами $i, j \in \{1, 2\}$.

$$\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)v_{i}(\mathbf{p},t)dt = \int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t) \sum_{e^{1} \in E} \theta_{e^{1},i}(\mathbf{p},t)v(n_{e^{1}}(\mathbf{p},t))dt =$$

$$\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)v(n_{e}(\mathbf{p},t))dt = \int_{n_{e}(\mathbf{p},t)=1} \theta_{e,i}(\mathbf{p},t)v(n_{e}(\mathbf{p},t))dt + \int_{n_{e}(\mathbf{p},t)=2} \theta_{e,i}(\mathbf{p},t)v(n_{e}(\mathbf{p},t))dt =$$

$$\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)v(1)dt + \int_{\theta_{e,i}(\mathbf{p},t)=1} \theta_{e,i}(\mathbf{p},t)v(2)dt =$$

$$\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)v(1)dt - \int_{\theta_{e,i}(\mathbf{p},t)=1} \theta_{e,i}(\mathbf{p},t)v(1)dt + \int_{\theta_{e,i}(\mathbf{p},t)=1} \theta_{e,i}(\mathbf{p},t)v(2)dt =$$

$$v(1)\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)dt + (v(2)-v(1))\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)\theta_{e,j}(\mathbf{p},t)dt = l_{e}, e \in \mathbf{p}_{i}$$

$$v(1)\overline{\tau}_{e,i}(\mathbf{p}) + (v(2)-v(1))\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)\theta_{e,j}(\mathbf{p},t)dt = l_{e}, e \in \mathbf{p}_{i}$$

Неизвестный интеграл - время совместного проезда участников на ребре e.

В переменных задачи смешанного целочисленного программирования получим:

$$v(1)(t_{e,i}^{out}-t_{e,i}^{in})+(v(2)-v(1))(t_{e,ij}^{out}-t_{e,ij}^{in})=l_eI_{e,i},$$

где новые переминые $t_{e,ij}^{in}$, $t_{e,ij}^{out}$ отвечают за начало и конец совместного проезда участников. Другими словами $[t_{e,ij}^{in}, t_{e,ij}^{out}] = [t_{e,i}^{in}, t_{e,i}^{out}] \cap [t_{e,j}^{in}, t_{e,j}^{out}]$. Просуммировав по всем ребрам $e \in E$, получим

$$v(1) \sum_{e \in E} (t_{e,i}^{out} - t_{e,i}^{in}) = \sum_{e \in E} l_e I_{e,i} - (v(2) - v(1)) \sum_{e \in E} (t_{e,ij}^{out} - t_{e,ij}^{in})$$

Заметим, что левая часть есть временные затраты участника i с коэффициентом v(1), поэтому задачу оптимизации можно переписать в виде

$$\frac{1}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} l_e I_{e,i} + \frac{v(1) - v(2)}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} (t_{e,ij}^{out} - t_{e,ij}^{in}) \to \min$$

Для завершения доказательства необходимо показать, что переменные $t_{e,ij}^{in}, t_{e,ij}^{out}$ описываются линейными ограничениями. Обозначим $\Delta t = t_{e,ij}^{out} - t_{e,ij}^{in}, \Delta t_1 = t_{e,i}^{out} - t_{e,i}^{in}, \Delta t_2 = t_{e,j}^{out} - t_{e,j}^{in}, \Delta t_3 = t_{e,i}^{out} - t_{e,j}^{in}, \Delta t_4 = t_{e,j}^{out} - t_{e,i}^{in}$

 $t_{e,j}^{out} - t_{e,j}^{in}, \Delta t_3 = t_{e,i}^{out} - t_{e,j}^{in}, \Delta t_4 = t_{e,j}^{out} - t_{e,i}^{in}$ Используя лемму 3.1, при $M = \max_{e \in E, k = i,j} \overline{\tau}_{e,k}^{max}$, добавим в задачу новые переменные $\mathbf{1}(\{\Delta t_k > \Delta t_l\}), k \neq l, k, l \in 1, 2, 3, 4$. Рассмотрим велечину $T_{max} = |E|M$. Добавим в случае $v(1) \geq v(2)$ нашу задачу следующие неравенства:

$$\Delta t \ge 0,$$

$$\Delta t \ge \Delta t_k - T_{max} \sum_{l \ne k} \mathbf{1}(\{\Delta t_k > \Delta t_l\}), k = 1, 2, 3, 4.$$

В случае v(1) < v(2) добавим те же ограничения с другим знаком неравенства. Тогда с учетом оптимизации переменная Δt есть длина отрезка $[t_{e,ij}^{in}, t_{e,ij}^{out}]$.

Следствие 3.1. Пусть модель движения $v_i(\pmb{p},t) = \sum\limits_{e \in E} \theta_{e,i}(\pmb{p},t) v(n_e(\pmb{p},t))$ макроскопическая и последовательность $v(n)>0, \forall n\in\mathbb{Z}_+$ убывает. Предположим, что оптимальное время движения в модели с постоянными скоростями v(1) есть \widetilde{T} . Тогда имеет место

$$\widetilde{T} \le T \le \frac{v(1)}{v(n)}\widetilde{T}.$$

Доказательство. Докажем каждое неравенство в отдельности

1. В модели, где все участники едут с постоянными скоростям движение происходит по кратчайшим путям. Тогда временные затраты есть $\widetilde{T}=\frac{1}{v(1)}\sum_{i=1}^n\sum_{e\in p_i}l_e$, где p_i - кратчайшие пути. На тех же путях задается самый худший случай макроскопической модели - все едут с минимальной скоростью, то есть $T = \frac{1}{v(n)} \sum_{i=1}^n \sum_{e \in n} l_e$. Тогда получим

$$T \le \frac{1}{v(n)} \sum_{i=1}^{n} \sum_{e \in p_i} l_e = \frac{v(1)}{v(n)} \widetilde{T}.$$

2. Проделывая аналогичне выкладки что и в доказательстве 3.1, можно получить, что функция оптимизация есть

$$\frac{1}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} l_e I_{e,i} + \sum_{k=2}^{n} \frac{v(1) - v(k)}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} \sum_{\substack{s_k \in 2^n \\ |s_k| = k}} \Delta t_{e,s_k} \to \min,$$

где переменные $\Delta t_{e,s_k}$ отвечают за время совместного движения участников (и только их) s_k по ребру e.

Тогда получим

$$T \ge \min\left(\frac{1}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} l_e I_{e,i}\right) + \min\left(\sum_{k=2}^{n} \frac{v(1) - v(k)}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} \sum_{\substack{s_k \in 2^n \\ |s_k| = k}} \Delta t_{e,s_k}\right) \ge \widetilde{T}.$$

Таким образом, мы получили класс моделей движения, для которых задача оптимизации транспортного потока может быть поставлена в терминах смешанного целочисленного линейного программирования. Однако такой класс моделей движения плохо описывает реальное движение участников. Так, например, модель не учитывает расстояние между участниками и их порядок на ребре.

10

3.2 Микроскопические модели

Микроскопическими называются модели, в которых явно исследуется движение каждого автомобиля. Выбор такой модели позволяет теоретически достичь более точного описания движения автомобилей по сравнению с макроскопической моделью, однако этот подход требует больших вычислительных ресурсов при практических применениях.

Для простоты рассмотрим однополосное бесконечное движение. Пусть $x_i(t) \in [0, +\infty)$ — координаты на полосе участника i. Предположим, что скорость участника ограничена некоторой общей велечиной v_{max} . Пусть в момент времени t = 0 выполняется $x_1(0) \le x_2(0) \le \cdots \le x_n(0)$.

Модель пропорциональной скорости

Рассмотрим пример, когда скорость машины пропорциональна расстоянию до следующей машины. Положим $d_i(t) = x_{i+1}(t) - x_i(t), i = 1, \ldots, n-1$. Без ограничения общности считаем, что $d_i(0) < D$, где D - характерное расстояние взаимодействия участников. Иначе рассмотрим подпоследовательности участников, для которых выполняется это условие.

Пусть модель движения есть

$$v_i(t) = \begin{cases} v_{max}, & i = n, \\ v_{max} \frac{d_i(t)}{D}, & i \neq n. \end{cases}$$
 (13)

Для поиска функций $x_i(t)$ достаточно рассмотреть систему дифференциальных уравнений

$$\dot{d}_i(t) = v_{i+1}(t) - v_i(t).$$

Решением такой системы является

$$d_{n-k}(\tau) = \sum_{l=0}^{k-1} \left(\frac{d_{n-k+l}(0) - D}{l!} \tau^l e^{-\tau} \right) + D,$$

где $\tau = \frac{v_{max}}{D}t$. Модель обладает тем свойством, что порядок участников постоянен и участники не покидают зону взаимодействия D.

Данная модель хорошо описывает реальное движение участников, однако ее практическое применение вызывает сложности, поскольку решение уравнения время, вычисляемое на шаге 2 процесса моделирования движения может быть найдено только приближенно.

Модель снижения скорости

Предположим, что существует некоторая велечина c_n , которая отвечает за последовательное снижение скорости участников относительно их порядка:

$$v_{n-k} = v_{max} - c_n k, \quad k = 0, \dots, n-1$$

Велечину c_n выберем из соображений, что $v_0 = \frac{v_{max}}{n}$. Тогда $c_n = \frac{v_{max}}{n}$. Если смоделировать данное движение на графе, то функция скоростей будут кусочно постоянными. Это связано с тем, при смене ребра некоторым участником меняется порядок и велечина $n_e(\mathbf{p}, t)$. Поэтому она не лучшим образом описывает реальное движение, однако проста в использовании.

4 Равновесие транспортных потоков

В этом разделе мы исследуем задачу поиска равновесия транспортных потоков как возможность поиска оптимального транспортного потока.

Hекооперативной игрой в нормальной форме назовем тройку $\Gamma = (n, \{S_i\}_{i=1}^n, \{H_i\}_{i=1}^n),$ где $n \in \mathbb{N}$ - количество участников игры, S_i - множество стратегий участника $i \in 1, \ldots, n,$ H_i - функция выйгрыша участника i, определенная на множестве ситуаций $S = \prod_{i=1}^n S_i$ и отображающая его в множество действительных чисел.

Равновесием Нэша некооперативной игрой в нормальной форме $\Gamma = (n, \{S_i\}_{i=1}^n, \{H_i\}_{i=1}^n)$ назовем такую стратегию $\mathbf{s}^* \in S$, если изменение своей стратегии с \mathbf{s}_i^* на любую $s_i \in S$ не выгодно ни одному игроку i, то есть

$$H_i(\mathbf{s}^*) \ge H_i((\mathbf{s}_1^*, \mathbf{s}_{i-1}^*, s_i, \mathbf{s}_{i+1}^*, \mathbf{s}_n^*)), \forall s_i \in S, i = 1, \dots, n.$$

Заметим, что в общем случае ничего нельзя сказать о существовании и единственности равновесия некооперативной игры.

Пусть $F = (n, G, \{A\}_{i=1}^n, \{B\}_{i=1}^n, \{T\}_{i=1}^n)$ есть некооперативное передвижение по графу G. Совершенным эгоизмом $\widetilde{\mathbf{p}}$ назовем равновесие Нэша некооперативной игры $\widetilde{\Gamma} = (n, \{P_i\}_{i=1}^n, \{T_i\}_{i=1}^n)$. Множество всех совершенных эгоизмов обозначим \widetilde{P} .

Понятие совершенного эгоизма является классическим определением равновесия в некооперативном передвижении. Однако, заметим, что такое равновесие в некооперативном передвижении по графу не всегда существует. Рассмотрим следующее некооперативное передвижение:

Для такого графа считаем, что выполнены следующие неравенства.

$$l2 < l3 < l1$$
,

l4 >