Comparison of primary glioblastoma Single-cell and Tissue RNA-seq co-expression networks - Submission to PLOS Journals

Brian Arand², Raghu Machiraju^{1, 2}, Kun Huang^{1, 2}

- 1 Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, The United States of America
- 2 Department of Computer Science and Engineering, The Ohio State University, Columbus, Ohio, The United States of America

Abstract

This work offers an initial glimpse at the potential of single-cell co-expression network module enrichment analysis. We run two primary glioblastoma transcriptome datasets, one single-celled and one bulk tissue sample, through analogous co-expression module analysis pipelines. We find that stringent filtering at multiple stages of the single-celled pipleine is vital to control for the noisy nature of single-celled data. We compare our resulting networks both at the ontology enriched module level and at the gene-level and find that the two pipelines produce comparable results for many expected modules. More interestingly, we find that single-celled lack modules with a strong signal for extracellular biological process ontologies like extracellular matrix organization and cellular adhesion.

Introduction

The isolation of individual cells' transcriptome profiles has been largely a theoretical concept to bioinformaticians. And accordingly, transcriptomic inquiry has been limited to those questions regarding tissues, potentially composed of a heterogeneous hodgepodge of cellular types, subtypes, and states. But with the advent of Single-Cell RNA sequencing (RNASeq) technology, comes the potential for refined resolution in transcriptomic datasets. And expectedly, recent publications suggest a peaking interest in this new landscape of informatics. It has been shown that many bioinformatics techniques that were developed for bulk-cell tissue samples can be effectively applied to single-cellular datasets. However, co-expression network analysis has largely been an unexplored area of analysis in regards to single-cell RNASeq data. To fill this gap, we leverage this new technology to construct and analyze gene co-expression networks for primary glioblastoma single-cell samples. Glioblastoma is widely known to be a heterogeneous cancer, making it a prime candidate for single-cellular inquiries. For instance, we hypothesized that the averaging of single-cells' profiles within a tissue sample may mask or otherwise confound downstream gene correlations based analysis. Correlation between two genes may exist across tissue samples purely due to changing proportion of cellular subtypes within those samples. However, a single-cellular perspective, of the same tumors may theoretically filter out those artificial tissue-level correlations. And so correlation based analyses, like co-expression network analysis,

11

12

13

15

17

19

PLOS 1/12

require study. In our work, we begin this journey by looking at network mining, module detection, and gene enrichment analysis at both the single-cell and bulk cell (tissue sample) levels. The final goal of this work is to shed light on the convoluted intricacies of inter-cellular genomic landscape of glioblastoma tissue from a single-cellular perspective.

25

Materials and Methods

We analyzed two glioma datasets: GSE57872, the data presented in Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma [1], and GSE48865, the data presented in RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas [2]. GSE57872 consists of single-cell samples whereas GSE48865 consists of more-traditional, bulk samples. From here on, GSE57872 and GSE48865 samples will be referred to as 'single-cell' and 'bulk' samples respectively. After preprocessing each dataset independently (details explained in following sections), we step each dataset through a coexpression-network analysis workflow. An overview of this workflow is shown in Fig. 1. Details of and rational for data set dependent variations of this workflow are explained in the sections to follow.

Figure 1. Network comparison workflow. Note that there is no partition nor aggregation step in the bulk RNASeq pipeline. Moreover, note that edges of the constructed bulk co-expression network are filtered to achieve the closest network density possible to that realized in the Single-Cell pipeline.

Single-Cell Data Single-Cell RNASeq Samples

In this section, we discuss the handling of the GSE57872, single-cell data. This data set is comprised of normalized gene expression values for 5,948 genes for 430 single-cell

PLOS 2/12

samples selected by flow cytometry cell sorting and micromanipulation from 5 different primary glioblastomas labeled: MGH26, MGH28, MGH29, MGH30, and MGH31. Patel et al sequenced the cells using SMARTseq protocol [3]. Alignment to hg19 was performed with Bowtie (version 1.1.1) [4] and the authors calculated TPM (transcripts per million) values using RSEM (version 1.2.3) [5]. The final reported values were log-transformed and mean-shifted per gene. More formally, let x_{si} be the TPM enrichment value for the i^{th} gene of sample s. And let N_t be the sample size of tumor t, then the analogous, final reported value, y_{si} , would be:

41

47

Single-Cell Coexpression Network Construction Parameter Space Analysis

Figure 2. Parameterization space analysis. A comparison of module statistics (a) number of modules output (b) distribution statistics of module size in gene count for modules output in one run of CODENSE. Values of the selected parameterization are highlighted in yellow.

$$y_i = \frac{\sum_s \log_2(x_{si} + 1)}{N_t} \tag{1}$$

$$y_{si} = \sum_{s} \log_2(x_{si} + 1) - y_i \tag{2}$$

0.0.1 Network Construction

In our analysis, single-cell samples were grouped by tumor of origin, t. For each group, a gene-by-gene Spearman's rank correlation matrix was calculated:

PLOS 3/12

Figure 3. Parameterization space starry night map. Here we display the exhaustive gene-set by gene-set enrichment profiles for those modules output by 5 different runs of CODENSE for different values of the minimum density threshold d. The color of each square encodes the size of some gene set A, some gene set B, and the size of $A \cap B$ relative to $A \cup B$. These three values are encoded into the red, blue, and green channels of the square respectively. Thus, the whiter a square is the more similar A and B are. Furthermore, a Fisher's exact test was performed for significant enrichment per gene set pair. Placement of a small, white token indicates significant overlap between A and B. Note that the central diagonal is all white. Which makes sense because this is the comparison of all sets with themselves. This diagonal pattern is most stable when comparing the selected characterization d=0.6 with each of it's neighboring parameterizations than between other neighboring steps shown above

$$P_t = \begin{bmatrix} \rho_{11t} & \dots & \rho_{1kt} \\ \vdots & \ddots & \vdots \\ \rho_{k1t} & \dots & \rho_{kkt}i \end{bmatrix}$$
 (3)

Where ρ_{ijt} is the Spearman's correlation between the i^{th} and j^{th} gene of tumor t. Co-expression matrices were then created by filtering at the same Spearman's rank threshold, c, to produce binary matrices, B_t , per tumor.

$$B_t = \begin{bmatrix} b_{11t} & \dots & b_{1kt} \\ \vdots & \ddots & \vdots \\ b_{k1t} & \dots & b_{kkt}i \end{bmatrix}, b_{ijt} = \{ \begin{array}{cc} 1, & |\rho_{ijt}| \ge c \\ 0, & o.w. \end{array}$$
 (4)

This is analogous to cutting a co-expression network at a given edge threshold. After analyzing the distribution of resulting networks' densities 2 we settled on a threshold of

PLOS 4/12

0.3 with an associated frequency network density of 0.04. We point out that this threshold is low, but we argue that it is a necessary trade-off given the distribution of correlations. It is expected to see such non-concordant data, because current single-cell RNASeq technology is known to produce noisy data (need a reference for this regarding per amplification of single cell).

The binary matrices were then aggregated into a single frequency matrix, F. This aggregation is performed in an attempt to attenuate patient-specific signals and focus, rather, on glioblastoma-specific patterns of gene co-expression.

$$F = \begin{bmatrix} \Box \sum_{t} b_{11t} & \dots & \sum_{t} b_{1kt} \\ \vdots & \ddots & \vdots \\ \sum_{t} b_{k1t} & \dots & \sum_{t} b_{kkt} \end{bmatrix}$$
 (5)

57

61

81

0.0.2 Module Detection

It is this matrix F that is fed into the CODENSE software to be converted into a summary network, S, and then mined for high-density modules [6].

$$S = (V, E)$$
, where $v_i, v_j \in V$ and $(v_i, v_j) \in E \leftrightarrow f_{ij} \ge e$ (6)

Frequency threshold threshold e was set to be 3 meaning that in order for a given edge representing a gene-gene correlation to appear in the final summary network S, that same pair of genes had to appear in a majority of the individual B_t networks.

CODENSE then reported the modules that meet some minimum density threshold, d. At the suggestion of the CODENSE authors and after analyzing the effect perturbing d has on the number and size of the resulting modules, we chose a minimum density threshold of 0.6. We wanted to maximize d to ensure dense modules to ensure their biological significance. Note that in Fig. 2, heightened values of d can drastically affect the output number and size of modules. Our selection of d=0.6 marks the upper limit of where this non-robust behavior starts in our selected parameter space sampling resolution. At the selected parameterization, CODENSE reported 21 dense, first-order modules. These relatively high thresholds guarantee that our resulting modules will be dense and therefore will capture only the strongest signals found in the data.

CODENSE Parameterization Validation

We make a considerable effort to ensure that the resulting modules output by CODENCE at the selected parameterization are robust to change withing the algorithm's parameterization space. Fig. 2 shows that the size and number of output modules are relatively stable at the selected values for e, c, and d (highlighted in yellow). Furthermore, 3 is a custom visualization we developed to compare set-by-set co-enrichment. The central diagonal is visualized all in white, indicating that the sets compared with themselves are all did not change the gene membership of the sets much.

0.1 Bulk Cell Samples

Our bulk cell sample control comes from GEO accession GSE48865. 274 glioma tissue samples make up this dataset, of which, 59 were identified as primary, stage-4 glioblastoma tissue samples. We filtered out any reads from the 59 samples with more than 10% of its nucleotides designated as unknown bases, and any read with more than 50% of its bases having Sanger phred+33 quality scores less than 5. After filtering, we retained 1,388,064,773 reads in total.

Each filtered sample was then aligned to hg19 transcriptome (GRCh37) using bow-tie (version 1.1.1 with default parameters provided by RSEM) and TPM values per

PLOS 5/12

gene were estimated using RSEM (version 1.2.3). 73% of the reads were aligned successfully either uniquely or multi-mapped. TPM values were adjusted again as in equation 2. Genes were then filtered to retain only those that were highly expressed across the 59 samples. The i^{th} gene was filtered out if $y_i \le 4.5$. We retained 6,932 genes after filtering, 3,927 of which had also been retained in the analogous steps of the single-cell workflow as illustrated in Fig. ??.

0.1.1 Network Construction and Module Detection

Again, as in equation 3, Spearman's Rank correlation was calculated for all genes pair-wise. The Spearman's Rank threshold, c, from equation 4, was set to 0.02 so as to achieve the same density as the single-cell network. No further network aggregation step was required for this data set.

Modules were also found using the CODENSE algorithm using the same parameterization used in the single-cell workflow described above.

0.2 Enrichment

Module sets derived from both the single-cell network and bulk tissue sample network were then ontology enriched. Modules were enriched for all terms in Gene Ontology Consortium's biological process (BP), cellular component (CC), and molecular function (MF) human ontologies using the David Bioinformatics Resources (version 6.7) Functional Annotation Tool [7]. The most significant (in terms of bonferroni adjusted p-value) ontology per category was reported for each module.

Results

Using the parameters described above, our workflow produced 21 modules for the single-cell data and 48 modules for the bulk data set. A breakdown of these modules labeled with their most significant biological process ontology, cellular component ontology, and molecular function ontology is shown for the single-cell data in fig. 4 and for the bulk data in fig. 5.

We compared these output module sets at the module-level and the gene-level. At the module-level, we find that the single-celled modules are enriched for translational elongation, and many other expected cell cycle and cellular process ontologies such as nuclear division, glycolysis, oxidative phosphorylation, protien folding, and DNA replication. Likewise, we find expected enriched ontologies reported by the bulk pipeline—namely: translational elongation, cell cycle, extracellular matrix organization, antigen processing, immune response, RNA splicing, and others.

Make note that one of the most significantly enriched ontolodies reported for the bulk modules was extracellular matrix organization. Single-cell modules did not enrich for this specific ontology.

We then profiled the two lists of output ontology enriched modules to find both consensus and differing ontologies between the two data sets. When using exact equality to define the intersection between the two sets of ontologies, we find that only two ontologies were identified by both single-cell and bulk pipelines. To get a better understanding of the similarities of the pipelines' output, we report what we will be calling 'contextual ontologies' in the intersection. We aim to summaries ontologies reported by both pipelines by seeking close common ancestors within the GO hierarchical database of ontologies. More concretely, a contextual ontology is the root of the shortest possible subtree with height no greater than 2 that connects at least one ontology that was reported by the single-cell pipeline with at least one ontology that

PLOS 6/12

Module				Enriched S		Modu	ıle		Enriched Subset										
	ID Gene Count			Top Ontology	Gene Count	%	PValue	Bonferroni	ID	Gene Count				Top Ontology	Gene Count	%	PValue	Bonferroni	
		_	BP	transport	14	21.88	1.30E-02	1.00E+00				7	BP	response to DNA damage stimulus	3	27.27	1.34E-02	9.65E-01	
20	76	۲.	cc	NONE	-				5	11	≺	0	CC	nuclear lumen	5	45.45	5.95E-03	2.45E-01	
			MF	Ras GTPase activator activity	3	4.69	2.87E-02	9.96E-01			l		MF	NONE	-	-			
		- [BP	translational elongation	42	85.71	7.82E-90	3.09E-87			7	1	BP	anti-apoptosis	3	27.27	7.13E-03	8.78E-01	
3	49	۲.	CC	ribosome	42	85.71	5.28E-75	2.74E-73	6	11	≺	0	CC	extracellular region	6	54.55	2.60E-03	1.77E-01	
		ᆫ	MF	structural constituent of ribosome	40	81.63	5.20E-73	3.22E-71			Ų	_ ^	MF	protein binding	9	81.82	3.31E-02	7.73E-01	
		Γ	BP	NONE	-	-						7	BP	nervous system development	4	36.36	2.70E-02	9.99E-01	
12	42	≺	cc	NONE	-	-			9	11	≺		CC	microtubule	3	27.27	1.21E-02	5.31E-01	
		l	MF	NONE							l		MF	protein binding	7	63.64	9.18E-02	9.96E-01	
		~	BP	cellular component biogenesis	5	21.74	5.54E-03	9.05E-01				1	BP	translational elongation	5	55.56	1.69E-07	4.56E-05	
13	26	7	cc	NONE					16	10	≺	0	CC	cytosolic ribosome	5	55.56	4.30E-08	2.71E-06	
		- l	MF	NONE	-	-	-						MF	structural constituent of ribosome	5	55.56	9.88E-07	5.34E-05	
		~	BP	nuclear division	15	57.69	1.25E-19	4.99E-17			ſ		BP	protein folding	4	50.00	6.54E-05	1.53E-02	
15	26	J	cc	spindle	11	42.31	1.07E-15	1.01E-13	4	9	≺	0	CC	endoplasmic reticulum lumen	6	75.00	5.90E-11	4.19E-09	
		1	MF	ATP binding	11	42.31	6.26E-05	6.43E-03			l	1	MF	unfolded protein binding	4	50.00	1.46E-05	1.11E-03	
		\rightarrow	BP	glycolysis	3	23.08	4.80E-04	2.08E-01			7	7	BP	response to organic substance	6	75.00	6.61E-06	1.63E-03	
10	14	Ų	CC	extracellular region part	5	38.46	4.41E-03	3.04E-01	8	8	⊣	0	CC	synaptosome	2	25.00	2.64E-02	6.29E-01	
		1	MF	protein binding	10	76.92	1.96E-02	8.62E-01			l	٠١.	MF	protein dimerization activity	3	37.50	2.38E-02	7.21E-01	
		7	BP	nervous system development	6	50.00	4.89E-04	2.64E-01			ď	7	BP	DNA replication	4	50.00	8.07E-05	1.30E-02	
7	13	7	cc	cell fraction	4	33.33	3.44E-02	8.90E-01	19	8	≺	0	CC	nucleoplasm	4	50.00	2.99E-03	1.44E-01	
		-1	MF	transporter activity	6	50.00	8.66E-04	1.14E-01			Ų	_ ^	MF	ATP binding	4	50.00	2.40E-02	8.64E-01	
		7	BP	regulation of Ras protein signal transduction	2	20.00	5.82E-02	1.00E+00			ſ	- E	BP	response to inorganic substance	3	37.50	2.04E-03	2.06E-01	
11	12	J	cc	NONE	-	-	-		21	8	≺		CC	cytoplasm	4	50.00	9.74E-02	9.83E-01	
11	12	٦.	MF	ATPase activity, coupled to transmembrane	2	20.00	2.85E-02	9.12E-01	- ⊢				MF	copper ion binding	4	50.00	3.13E-06	1.34E-04	
			_	movement of substances						_	ſ		BP	cellular amino acid metabolic process	2	33.33	3.18E-02	9.02E-01	
		_ (BP	oxidative phosphorylation	4	36.36	3.76E-05	7.56E-03	14	7	า		CC	NONE		-		-	
1	11	Ų	CC	mitochondrial inner membrane	6	54.55	5.94E-07	3.92E-05					MF BP	NONE		-			
-	**	1	ME	hydrogen ion transmembrane transporter	4	36.36	1.66E-05	8.80E-04	17	7	ſ	- 1 '		anatomical structure development	4	57.14	7.48E-02	1.00E+00	
				activity		30.30	1.002-03	0.002-04	11/	/	า		CC MF	cell fraction NONE	3	42.86	4.03E-02	8.82E-01	
		$^{\circ}$	BP	glycolysis	4	36.36	1.91E-06	4.36E-04			->	- 1"				_	_	-	
2	11	۲	СС	NONE	-	-	-	-		_		E	BP ^a	entigen processing and presentation of peptide antigen	3	50.00	3.78E-05	9.07E-03	
		_	MF	NONE	-		-		18	7	1	0	CC	MHC class I protein complex	2	33.33	8.77E-03	3.39E-01	
											Į	. 1	MF	MHC class I receptor activity	2	33.33	5.60E-03	1.78E-01	

Figure 4. Single-cell network module ontology enrichment. A list of the modules output from the CODENSE algorithm ordered by module size, each enriched for BP, CC, and MC ontologies. Row color denotes a certain statistical significance as demarcated in the figure legend.

was reported by the bulk pipeline. These contextual ontologies, along with both the differing and consensus ontologies are reported in fig. 6.

A gene-level comparison of the resulting modules of the two data sets is also provided in fig. 7. We find 3 or 4 groups of modules within the bulk output that are co-enriched for each other. Meaning that a given subgroup of modules share a significant number of genes with each other. We hypothesis that this co-enrichment occurred as a result of the specific parameterization used to construct and mine the network for modules. By either raising the correlation threshold, c, or raising the minimum module density threshold, d, these co-enriched modules may fuse into a larger module. We further hypothesis, by taking cues from the ontology enrichment of the co-enriched modules, that the resulting larger modules would likely enrich for immune response, metabolic processes, and extracellular matrix ontologies.

At the gene level, we find significant co-enrichment between the module outputs of the two pipelines; 5 pairs of which are of interest. The breakdown of these 5 co-enrichments can be found in fig. 8.

Discussion

Our analysis illustrates the potential of single-cell co-expression network module enrichment analysis as a potential tool for biological inquiry. We find that, when taking the contextual approach to comparing the sets of reported ontologies, most of the more significantly enriched ontologies reported by the bulk data were related to those reported by single-celled data. Furthermore, when taking a more refined, gene-level approach to this comparison a handful of modules are still in agreement.

Between the module and gene-level comparisons of the two workflows' outputs, we are confident that the single-cell data is picking up on the same biological signals as the traditional bulk cell pipeline. But, there were also noticable differences. Single-celled data innately lacks extracellular signals and this is evident in our analysis by the absence of extracellular matrix organization and cellular adhesion ontologies and genes from the single-celled output. This may be of particular interest to studies that are specifically

PLOS 7/12

N	lodule		L	Enriched :	Subse	t			N	1odule	_	Enriched	Subse	t		
ID	ID Gene Count			Top Ontology	Gene Count	%	PValue	Bonferroni	ID	Gene Count		Top Ontology	Gene Count	%	PValue	Bonferroni
24	51	. {		immune response lysosome lgG binding	18 8 3	34.62 15.38 5.77	8.50E-12 3.50E-06 2.08E-04	7.91E-09 4.55E-04 4.08E-02	7	10 -	۲ <mark>۱</mark> ۰	BP antigen processing and presentation CC MHC class protein complex MF MHC class receptor activity	5 3 2	62.50 37.50 25.00	3.84E-08 6.24E-05 7.83E-03	6.33E-06 3.55E-03 3.61E-01
37	48	₹	BP CC	immune response receptor complex signal transducer activity	14 5	29.79 10.64 34.04	5.57E-08 3.18E-04 4.02E-04	3.63E-05 3.98E-02 6.87E-02	30	10 -	ŁΙ	BP NONE CC synaptic vesicle membrane MF ATPase activity, coupled to transmembrane	2	2.27 3.41	1.15E-02 1.05E-03	6.17E-01 6.52E-02
34	46	{	BP CC	response to external stimulus lytic vacuole cysteine-type endoprotidase activity	14 12	31.11 26.67	1.04E-06 6.83E-12 4.16E-05	7.68E-04 1.09E-09 6.97E-03	41	10 -	7	BP regulation of microtubule depolymerization CC protein complex MF microtubule binding	5	22.22 55.56 22.22	6.78E-03 1.62E-02 2.82E-02	7.42E-01 6.64E-01 7.98E-01
1	34	₹	BP CC	cell cycle nucleus	21 27	63.64 81.82	3.07E-19 7.73E-10	1.58E-16 8.11E-08	47	10 -	7	BP cellular component organization CC basal lamina MF carbohydrate binding	6 2	66.67 22.22 33.33	2.64E-03 8.52E-03 1.39E-02	3.71E-01 4.60E-01 6.30E-01
22	34	{	BP CC	extracellular matrix organization proteinaceous extracellular matrix	12 19	36.36 57.58	3.87E-17 2.90E-23	1.79E-14 4.20E-21	6	9 -	{	BP generation of precursor metabolites and CC respiratory chain	5	62.50 50.00	7.87E-06 3.48E-06	2.20E-03 2.22E-04
23	31	7	BP CC	extracellular matrix structural constituent immune response plasma membrane	13 12 18	39.39 40.00 60.00	6.50E-20 1.39E-08 3.18E-05	7.48E-18 7.17E-06 3.55E-03	16	9 -	7	MF NADH dehydrogenase (quinone) activity BP regulation of cell differentiation CC membrane raft	3 2	37.50 37.50 25.00	1.17E-04 1.66E-02 5.27E-02	9.98E-01 9.79E-01
23	31	}	MF	molecular transducer activity collagen fibril organization extracellular matrix	10	33.33 20.83	5.81E-03 6.80E-08	5.39E-01 3.51E-05	10		\mathbf{H}	MF NONE BP NONE		-	2.23E-02	
46	26	1	MF	platelet-derived growth factor binding	5	45.83 20.83	1.80E-11 1.09E-09	2.39E-09 1.29E-07	19	9 -	Ų,	CC cytoplasmic membrane-bounded vesicle MF NONE	3	37.50		7.48E-01
26	24	₹	CC MF	response to external stimulus extracellular region kininogen binding	12 11 2	52.17 47.83 8.70	1.53E-08 5.61E-05 4.35E-03	9.49E-06 5.60E-03 4.45E-01	20	9 -	{ :	BP cellular carbohydrate metabolic process CC cytoplasmic part MF NONE	3 6	37.50 75.00	1.44E-02 3.21E-02	9.81E-01 8.28E-01
4	21	{	BP CC MF	translational elongation ribosome structural constituent of ribosome	16 16 16	80.00 80.00 80.00	3.54E-32 7.43E-27 3.35E-28	8.46E-30 3.56E-25 1.51E-26	27	9 -		BP macromolecule metabolic process CC NONE MF ATP binding	4 - 4	50.00	6.62E-02 - 1.48E-02	1.00E+00 6.47E-01
39	17	$\{$	CC MF	anatomical structure morphogenesis basal lamina protein binding	9 3 14	56.25 18.75 87.50	2.28E-06 1.12E-04 8.42E-03	1.14E-03 1.12E-02 5.56E-01	44	9 -	$\langle $	BP vesicle-mediated transport CC cytoplasmic part MF small GTPase binding	4 7 2	50.00 87.50 25.00	1.23E-03 4.37E-03 4.58E-02	2.68E-01 3.02E-01 9.84E-01
43	16	{	CC MF	cell adhesion proteinaceous extracellular matrix extracellular matrix structural constituent	7 4 3	46.67 26.67 20.00	1.85E-05 2.49E-03 2.78E-03	5.13E-03 2.38E-01 1.99E-01	8	8 -	ł١	BP cellular amino acid metabolic process CC NONE WF catalytic activity	2 - 5	28.57 - 71.43	7.75E-02 - 5.03E-02	1.00E+00 - 9.77E-01
10	15	₹	BP CC	NONE NONE	:	-	2.766-03	1.590-01	9	8 -	}	BP cellular amino acid metabolic process CC NONE	3	42.86	2.47E-03	2.55E-01
21	15	7	BP CC	NONE establishment of localization in cell endoplasmic reticulum	6 9	42.86 64.29	1.55E-04 1.68E-07	2.91E-02 1.36E-05	12	8 -		MF catalytic activity BP cellular amino acid metabolic process CC mitochondrion	2 3	71.43 28.57 42.86	5.03E-02 7.75E-02 5.82E-02	9.52E-01 9.99E-01 9.65E-01
18	13	₹	MF BP CC	isomerase activity response to external stimulus plasma membrane	3 6 6	21.43 50.00 50.00	3.29E-03 1.14E-04 3.97E-02	2.59E-01 5.31E-02 9.28E-01	14	8 -	$^{\circ}$	MF NONE BP cellular component organization CC NONE	4	57.14	7.26E-02	1.00E+00
38	13	}	MF BP	anion transmembrane transporter activity antgen processing and presentation of peptide or polysaccharide antigen via MMC class 8	9	75.00	9.30E-02 1.60E-20	1.00E+00 4.37E-18 1.94F-16	15	8 -	Ì	MF NONE BP cellular amino acid metabolic process	2	33.33	7.75E-02	1.00E+00
		}	CC MF BP	MHC class II protein complex MHC class II receptor activity NONE	8 7	66.67 58.33	3.65E-18 7.46E-16	4.66E-14			}	CC perinuclear region of cytoplasm MF NONE BP RNA metabolic process	2 - 5	71.43	8.73E-02 - 2.61E-04	9.94E-01 - 3.56E-02
11	12	Z	CC MF BP	membrane part NONE synaptic transmission	7	27.27	5.87E-02 - 8.70E-03	9.11E-01 - 8.59E-01	28	8 -	}	CC nuclear lumen MF catalytic activity BP regulation of developmental process	4 6 4	57.14 85.71 57.14	1.22E-02 2.04E-02 1.01E-03	3.42E-01 7.95E-01 1.70E-01
13	12	1	CC MF	compact myelin structural constituent of myelin sheath	2	18.18 18.18	2.26E-03 2.97E-03	1.35E-01 1.81E-01	31	8 -	<u>ĺ</u> ,	CC basement membrane MF extracellular matrix structural constituent	3	42.86 42.86	3.52E-04 4.71E-04	1.53E-02 2.60E-02
17	12	{	CC MF	nitrogen compound metabolic process macromolecular complex transcription activator activity	9 8 5	81.82 72.73 45.45	1.80E-04 7.94E-05 5.99E-05	4.60E-02 5.62E-03 5.67E-03	32	8 -	ΚĿ	BP regulation of multicellular organismal CC plasma membrane MF protein complex binding	3 5 3	42.86 71.43 42.86	5.52E-02 3.13E-02 2.42E-03	1.00E+00 8.56E-01 1.52E-01
25	12	{	CC MF	immune system process membrane raft enzyme binding	6 3 3	54.55 27.27 27.27	3.26E-05 3.44E-03 2.90E-02	1.30E-02 1.98E-01 9.27E-01	33	8 -	ا ∖	BP NONE CC lysosome WF hydrolase activity, hydrolyzing O-glycosyl	- 4 2	57.14 28.57	4.47E-05 3.07E-02	1.87E-03 7.83E-01
2	11	{	BP CC MF	RNA splicing ribonucleoprotein complex RNA binding	6 7 7	60.00 70.00 70.00	3.75E-07 8.65E-08 8.27E-07	4.84E-05 4.06E-06 4.38E-05	35	8 -	₹⊪	BP antigen processing and presentation of CC MHC class II protein complex MF MHC class II receptor activity	5 4 4	71.43 57.14 57.14	3.70E-10 1.09E-07 3.34E-08	1.07E-07 5.75E-06 2.00E-06
3	11	1	BP	RNA metabolic process intracellular membrane-bounded organelle	5	50.00	5.76E-04 2.01E-03	1.11E-01 9.94E-02	36	8 -		BP carboxylic acid metabolic process CC cytoplasm	3 6	42.86 85.71	1.43E-02 7.62E-02	8.94E-01 9.33E-01
29	11	}	MF BP CC	RNA binding cell fate commitment NONE	3	30.00	6.48E-02 1.96E-03	9.78E-01 3.41E-01	42	8 -	7	MF NONE BP G-protein coupled receptor protein signaling CC plasma membrane	3 6	42.86 85.71	5.38E-02 3.62E-03	1.00E+00 1.66E-01
40	11	}	MF BP CC	transcription regulator activity response to biotic stimulus endoplasmic reticulum lumen	3	40.00 30.00 30.00	2.56E-02 1.85E-02 8.79E-04	8.24E-01 9.96E-01 7.12E-02	45	8 -	}	MF receptor activity BP NONE CC cytoplasm	5 - 6	71.43	9.77E-04 7.62E-02	7.52E-02 9.79E-01
5	10	}	MF BP CC	enzyme inhibitor activity NONE NONE	3	30.00	1.05E-02	6.77E-01	48	8 -	١	MF calmodulin binding BP cell motion CC actin cytoskeleton	2 3	28.57 42.86 42.86	4.54E-02 1.55E-02 4.09E-03	9.15E-01 8.29E-01 1.61E-01
	10	J	MF	NONE NONE			- 1	-:	48	•		MF actin binding	3	42.86 42.86	6.54E-03	2.16E-01

Figure 5. Bulk network module ontology enrichment. A list of the modules output from the CODENSE algorithm ordered by module size, each enriched for BP, CC, and MC ontologies. Row color denotes a certain statistical significance as demarcated in the figure legend.

interested in intracellular environments rather than entire microenvironments.

Further comparisons and contrast may indeed be possible. Conservative filtering in the single-celled pipline may be limiting the results in this work. Accounting for noise in single-celled data could strengthen the claims possible in co-expression module enrichment comparisons in the future.

171

173

174

175

References

- Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344(6190):1396-1401. Available from: http://www.sciencemag.org/content/344/6190/1396.abstract.
- 2. Bao ZS, Chen HM, Yang MY, Zhang CB, Yu K, Ye WL, et al. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas. Genome Research. 2014 Aug;24(11):1765-1773. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216918/.
- 3. Ramskold D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells.

PLOS 8/12

- Nat Biotech. 2012 Aug;30(8):777-782. Available from: http://dx.doi.org/10.1038/nbt.2282.
- 4. Langmead B, Trapnell C, Pop M, Salzberg S. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology. 2009;10(3):R25. Available from: http://genomebiology.com/2009/10/3/R25.
- Li B, Dewey C. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323. Available from: http://www.biomedcentral.com/1471-2105/12/323.
- 6. Hu H, Yan X, Huang Y, Han J, Zhou XJ. Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics. 2005;21(suppl 1):i213-i221. Available from: http://bioinformatics.oxfordjournals.org/content/21/suppl_1/i213.abstract.
- 7. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols. 2008 Dec;4(1):44-57. Available from: http://dx.doi.org/10.1038/nprot.2008.211.

PLOS 9/12

Figure 6. Enriched module comparison

PLOS 10/12

Figure 7. Gene-level starry map comparison of output modules. A small white box is placed in all module by module comparison that achieved a Fisher's exact significance of less than or equal to 0.05.

PLOS 11/12

Bonferroni	4.99046E-17	1.01E-13	6.43E-03	1.585-16	8.11E-08	1.90E-02	3.09E-87	2.74E-73	3.22E-71	8.46E-30	3.56E-25	1.51E-26	1.53E-02	4.19E-09	1.11E-03	9.96E-01	7.12E-02	6.77E-01	3.09E-87	2.74E-73	3.22E-71				9.07E-03	3.39E-01	1.78E-01	6.33E-06	3.61E-01					
PValue	1.2476E-19	1.06759E-15	6.26055E-05	3.06719E-19	7,72832E-10	0.000136382	7.81991E-90	\$227654E-75	5.19883E-73	3.54033E-32	7.425945-27	3.34645E-28	6.5377E-05	5.903515-11	1.46063E-05	0.018540391	0.000878763	0.010497711	7.81991E-90	S.2765AE-75	5.198835-73				3.78032E-05	0.008770777	0.005601304	3.8373E-08	0.007833546					
Gene Count	15	=	11	77	77	12	45	45	40	16	16	16	4	9	4	m	e	ю	45	42	40				3	7	2	n 1	2					
Top Ontology	nuclear division	spindle	F ATP binding	cell cycle	uncleus	F ATP binding	p translational elongation	ribosome	F structural constituent of ribosome	p translational elongation	ribosome	F structural constituent of ribosome	p protein folding	c endoplasmic reticulum lumen	F unfolded protein binding	response to biotic stimulus	en	F enzyme inhibitor activity	translational elongation	ribosome	F structural constituent of ribosome	NONE		F NONE	antigen proce			anti	MHC class protein complex					
_	# S				Σ	da	8	<u></u>	a a	8	Σ	J BP	ខ	Σ Λ	e E	S	Σ	e e	8	7	e e	8	≥	BB	8 8		B S M							
Genes	Genes		Amen's Alles, and an experiment of the state		ACIN1, C12orf29, EEF1A1, GN82L1, NPM1, RPL3, FAU, RPL7, RPL8, RPL9P9, RPL10,	RP123, RP115, RP117, RP119, RP121, RP123, RP123A, RP124, RP126, RP127, RP127A, RP127A, RP127A, RP127A, RP127A, RP124, RP1	NYLY, R. POS, R.P. B. POSZT, R. POSZTA, R. POSZTA, S. POSZTA, S. POSZTA, R. P	ARCTI, ADDI, GAGS, RPLIS, RPLI			AASOHPPT, ABCB6, CALR, HSPAS, DNAJB11, HYOU1, MIR36S2, POIA6, PPIB			AATE, ABCEL, ANXAZ, CALB, CHPF2, HSPAS, MANF, PDIA4, PLOD3, TUBALC		ACINI, CIZORIZO, EEFIAI, GNBZII, NPMI, RPIS, FAU, RPIZ, RPIS, RPUSP9, RPIJO,	RPLZ8, RPLZ9, RPL30, RPL31, RPL32, RPL34, RPL35, RPL354, RPL35, RPL374, RPL71, RPL711, RPL7	NYLYK, RYSS, NYSK, NYSY, NYSYS, NYSYS, NYSYS, NYSYS, NYSYS, RYSKI, RYSZ, RYSZ, RYSZ, RYSZ, RYSZ, RYSZ, SNOROŚS, SNOROŚSA		AASS, ABC87, RPL13APS, RPL18, RPS15, RPS16, RPS19, RPS5, RPS9			AARSD1, AASS, CD74, HLA-8, HLA-A, HLA-C, IF16		AACC ABOND DAME OF A ILL A A ILL A A ILL AACO DOWNED TABLE	ANGS, ABLAZ, BATH, TAPPS, TRAPS, TAPPS, TORIOS, 1911.								
Gene Count		56			34			49		21					11			49			10			7			10		:					
QI		15			1		3			4			4			40			3			5			18			7		ļ.				
Net	la)	əjBi	uis		Bulk		IF	ə Ə-əlât	4IS	BUIK			llə D-əlgni Z			ВШК			lla D-algni 2			Bulk			lə Ə-əlgni		!!S	ılk	ng					
Consensus Ontology	gnibnid 9TA						translational elongation, same surts, amosodin emosodin fo translations					endoplasmic reticulum namul					uə			∀/	/N						antig proces							
Fisher's Score (Intersection upper bound)	1.83E-11								1.10E-14					0.000254	100000					4 26F-06					4.14E-07									
Intersection	Intersection COKI, COKI, AMOZII, TPA2, LUSEZT TPA2, LUSEZT								RPLIG, RPLI7, RPL24, RPL27,	RPL31, RPL34, RPL37A, RPS15A, RPS27, RPS27A					CALR, HSPAS						RPSS, RPS15, RPS16, RPS19						HLA-B, HLA-A, HLA-C	H.A-8, H.A-A, H.A-C						
Int. Count	∞									3					,	J					4						m	n						
Int. ID									ć	7					٣	י					4	+					7							

Figure 8. Interesting significant Gene-Level module comparisons. This is a detailed look at 5 significant module co-enrichments between the bulk and single-cell output.

PLOS 12/12