Algebraic Topology II - Assignment 1

Matteo Durante, s2303760, Leiden University

7th March 2019

Exercise 4

We want to prove that we have a long exact sequence of the following form:

$$\cdots \to H^n(X) \xrightarrow{(i_U^*, i_V^*)} H^n(U) \oplus H^n(V) \xrightarrow{j_U^* - j_V^*} H^n(U \cap V) \xrightarrow{\sigma_{X,V} \delta_{U,U \cap V}} H^{n+1}(X) \to \cdots$$

Consider the following commutative diagram, where the two rows are given by the long exact sequences of the pairs (X, V) and $(U, U \cap V)$, the chain homomorphism is induced by the inclusions and, considered the closed subset of X given by $W = X \setminus U \subset V$, since $H^n(X, V) \cong H^n(X \setminus W, V \setminus V)$ $W)\cong H^n(U,U\cap V)$ by excision, the map $H^n(X,V)\to H^n(U,U\cap V)$ is the identity:

$$\cdots \longrightarrow H^n(X,V) \xrightarrow{\sigma_{X,V}} H^n(X) \xrightarrow{i_V^*} H^n(V) \xrightarrow{\delta_{X,V}} H^{n+1}(X,V) \longrightarrow \cdots$$

$$\parallel \qquad \qquad \downarrow_{i_U^*} \qquad \qquad \downarrow_{j_V^*} \qquad \qquad \parallel \qquad \qquad \downarrow_{U,U\cap V}$$

$$\cdots \longrightarrow H^n(U,U\cap V) \xrightarrow{\sigma_{U,U\cap V}} H^n(U) \xrightarrow{j_U^*} H^n(U\cap V) \xrightarrow{\delta_{U,U\cap V}} H^{n+1}(U,U\cap V) \longrightarrow \cdots$$

Let $x \in H^n(X)$ be sent to (0,0) in the Mayer-Vietoris sequence. Since the image under i_x^* is 0, by exactness there is a $x' \in H^n(X, V) = H^n(U, U \cap V)$ s.t. $\sigma_{X,V}(x') = x$ and therefore $i_U^* \sigma_{X,V}(x') = \sigma_{U,U \cap V}(x') = 0$, hence again by exactness we have a $u' \in H^{n-1}(U \cap V)$ s.t. $\delta_{U,U \cap V}(u') = x'$, thus $\sigma_{X,V}\delta_{U,U\cap V}(u') = \sigma_{X,V}(x') = x.$

On the other hand, by commutativity, $(i_U^*, i_V^*)\sigma_{X,V}\delta_{U,U\cap V} = (i_U^*\sigma_{X,V}\delta_{U,U\cap V}, i_V^*\sigma_{X,V}\delta_{U,U\cap V}) =$ $(\sigma_{U,U\cap V}\delta_{U,U\cap V},0\delta_{U,U\cap V})=(0,0)$. We have proved the exactness at $H^n(X)$ for every n.

Let now $(u,v) \in H^n(U) \oplus H^n(V)$ be mapped to 0. By exactness, $\delta_{U,U\cap V}j_U^*(u) = 0$, thus by commutativity $\delta_{X,V}(v) = \delta_{U,U\cap V}j_V^*(v) = \delta_{U,U\cap V}j_U^*(u) = 0$. It follows that exists $x \in H^n(X)$ s.t.

 $i_V^*(x) = v$. Let $i_U^*(x) = u'$. We have that $j_U^*(u') = j_U^*i_U^*(x) = j_V^*i_V^*(x) = j_V^*(v) = j_U^*(u)$, hence $j_U^*(u-u') = 0$ and by exactness there is a $u'' \in H^n(U, U \cap V)$ s.t. $\sigma_{U,U\cap V}(u'') = u - u'$. Consider now in $H^n(X)$ the element $x + \sigma_{X,V}(u'')$. We see that $i_U^*(x + \sigma_{X,V}(u'')) = i_U^*(x) + i_U^*\sigma_{X,V}(u'') = u' + \sigma_{U,U\cap V}(u'') = u' + (u - u') = u$ and $i_V^*(x + \sigma_{X,V}(u'')) = i_V^*(x) + i_V^*\sigma_{X,V}(u'') = u'$ v + 0 = v, hence (u, v) lies in the image of (i_U^*, i_V^*) .

By commutativity and exactness, $(j_U^* - j_V^*)(i_U^*, i_V^*) = j_U^* i_U^* - j_V^* i_V^* = 0$, thus we have proved the exactness at $H^n(U) \oplus H^n(V)$.

Let now $u \in H^n(U \cap V)$ be mapped to 0 under $\sigma_{X,V}\delta_{U,U\cap V}$. This implies that $\delta_{U,U\cap V}(u)$ lies in $\ker(\sigma_{X,V})$, hence there is an element $v \in H^n(V)$ and a $u' = j_V^*(v)$ s.t. $\delta_{U,U\cap V}(u') =$ $\delta_{U,U\cap V}j_V^*(v) = \delta_{X,V}(v) = \delta_{U,U\cap V}(u)$, i.e. $\delta_{U,U\cap V}(u-u') = 0$. By exactness, we have a $u'' \in$ $H^n(U)$ s.t. $j_U^*(u'') = u - u'$ and, considering now $(u'', -v) \in H^n(U) \oplus H^n(V)$, we have that $(j_U^* - j_V^*)(u'', -v) = j_U^*(u'') - j_V^*(-v) = (u - u') - (-u') = u$.

On the other hand, $\sigma_{X,V}\delta_{U,U\cap V}(j_U^*-j_V^*) = \sigma_{X,V}\delta_{U,U\cap V}j_U^*-\sigma_{X,V}\delta_{U,U\cap V}j_V^* = \sigma_{X,V}0-\sigma_{X,V}\delta_{X,V} = 0$ by commutativity and exactness. We have now proved the thesis.

Exercise 5

(a) First of all, consider the homomorphism of rings $(\mathbb{Z}/2\mathbb{Z})[y] \xrightarrow{f} (\mathbb{Z}/2\mathbb{Z})[x]/(x^2-1)$ s.t. $y \mapsto x+1$. It is clearly surjective as $y-1 \mapsto x$ and, since $\ker(f) = (y^2)$, $(\mathbb{Z}/2\mathbb{Z})[y]/(y^2) \cong (\mathbb{Z}/2\mathbb{Z})[x]/(x^2-1)$. Considering this isomorphism, we view $\mathbb{Z}/2\mathbb{Z}$ as a $(\mathbb{Z}/2\mathbb{Z})[y]/(y^2)$ -module, where y acts as x-1 and hence 0. From now on we will denote $(\mathbb{Z}/2\mathbb{Z})[y]/(y^2)$ as A thanks to the isomorphism.

Consider the following short exact sequence:

$$0 \to \mathbb{Z}/2\mathbb{Z} \xrightarrow{\phi} (\mathbb{Z}/2\mathbb{Z})[y]/(y^2) \to \mathbb{Z}/2\mathbb{Z} \to 0$$

where the first A-module homomorphism sends 1 to y, the second one 1 to 1 and y to 0. Applying the $\operatorname{Ext}_A^n(-,\mathbb{Z}/2\mathbb{Z})$ functor, we get the following long exact sequence:

$$0 \to \operatorname{Hom}_A(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \to \operatorname{Hom}_A(A, \mathbb{Z}/2\mathbb{Z}) \to \operatorname{Hom}_A(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \to \\ \to \operatorname{Ext}_A^1(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \to \operatorname{Ext}_A^1(A, \mathbb{Z}/2\mathbb{Z}) \to \operatorname{Ext}_A^1(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \to \cdots$$

We know that $\operatorname{Ext}_A^0(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \cong \operatorname{Hom}_A(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$ and $\operatorname{Hom}_A(A, \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$. Since A is a free A-module, $\operatorname{Ext}_A^n(A, \mathbb{Z}/2\mathbb{Z}) = 0$ for all n > 0, thus we have:

$$\mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to \operatorname{Ext}_A^1(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \to 0$$
$$0 \to \operatorname{Ext}_A^n(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \to \operatorname{Ext}_A^{n+1}(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \to 0 \text{ if } n > 1$$

From the last exact sequence, it follows that $\operatorname{Ext}_A^n(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z}) \cong \operatorname{Ext}_A^1(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z})$ for every n > 1, while from the previous one $\operatorname{Ext}_A^1(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z}) \cong \operatorname{coker}(\mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z})$.

Now, an element of $\operatorname{Hom}_A(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z})$ is defined by the image of the unit, hence for any element of $\operatorname{Hom}_A(A, \mathbb{Z}/2\mathbb{Z})$ we only have to check where the unit of $\mathbb{Z}/2\mathbb{Z}$ is sent by it of $\operatorname{Hom}_A(A, \mathbb{Z}/2\mathbb{Z})$ precomposed with the ϕ . Remember that the unit of $\mathbb{Z}/2\mathbb{Z}$ is sent to y. We have then that, for any element $f \in A$, $\phi^*(f)(1) = f(\phi(1)) = f(y) = y \cdot f(1) = 0$, thus ϕ^* is the zero-homomorphism and $\operatorname{Ext}_A^1(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$.

(b) First of all, consider the ring epimorphism $R[y] \to A$ s.t. $y \mapsto x+1$. Its kernel is given by (y(y-2)), hence we get an isomorphism $R[y]/(y(y-2)) \cong A$, which turns R into a R[y]/(y(y-2))-module where y acts as x+1, i.e. as 2. From now on, thanks to this isomorphism, we will call A the ring R[y]/(y(y-2)).

Consider the following short exact sequences:

$$0 \to R' \xrightarrow{g} A \xrightarrow{f} R \to 0$$
$$0 \to R \xrightarrow{g'} A \xrightarrow{f'} R' \to 0$$

Here, g is given by $r \mapsto r(y-2)$, f by $r \mapsto r$, $y \mapsto 2$ and R' is the A-module whose underlying abelian group is R and s.t. y acts on it as 0.

On the other hand, g' is given by $r \mapsto ry$, f' by $r \mapsto r$, $y \mapsto 0$.

It is straightforward to check that all of these are A-module homomorphisms and the chains are short exact sequences.

Let now $\phi := gf'$, $\psi := g'f$. By composing these chains, we get the following free resolution of R:

$$\cdots \to A \xrightarrow{\phi} A \xrightarrow{\psi} A \xrightarrow{\phi} A \xrightarrow{f} R \to 0$$

Now we apply the functor $\operatorname{Hom}_A(-,R)$:

$$0 \to \operatorname{Hom}_A(R,R) \xrightarrow{f^*} \operatorname{Hom}_A(A,R) \xrightarrow{\phi^*} \operatorname{Hom}_A(A,R) \xrightarrow{\psi^*} \operatorname{Hom}_A(A,R) \xrightarrow{\phi^*} \operatorname{Hom}_A(A,R) \to \cdots$$

Thanks to the isomorphism $\operatorname{Hom}_A(A,R) \cong R$, $f \mapsto f(1)$, we will identify each element of this group with the element of R the unit is mapped to.

Furthermore, we see that $\operatorname{Ext}_A^n(R,R) \cong \ker(\psi^*)/\operatorname{Im}(\phi^*)$ if n is odd and $\operatorname{Ext}_A^n(R,R) \cong \ker(\phi^*)/\operatorname{Im}(\psi^*)$ if n is even and > 0. Clearly, $\operatorname{Ext}_A^0(R,R) \cong \ker(\phi^*)$.

Let $h \in \operatorname{Hom}_A(A,R)$ and notice that $\phi^*(h)(1) = h(\phi(1)) = h(g(f'(1))) = h(g(1)) = h(y-2) = (y-2) \cdot h(1) = 0$. It follows that ϕ^* is a zero-homomorphism and $\ker(\phi^*) \cong R$, hence $\operatorname{Ext}_A^0(R,R) \cong R$.

Let now $h \in Hom_A(A, R)$. We have that $\psi^*(h)(1) = h(\psi(1)) = h(g'(f(1))) = h(g'(1)) = h(y) = y \cdot h(1) = 2h(1)$ and, since h(1) can be mapped anywhere, $Im(\psi^*) \cong 2R$, thus $Ext^n(R, R) \cong R/2R$ for n even and > 0.

By the same reasoning, the elements of $\ker(\psi^*)$ are those s.t. 2h(1) = 0, i.e. $\ker(\psi^*) \cong \operatorname{Tor}_2(R)$ and therefore $\operatorname{Ext}_A^n(R,R) \cong \operatorname{Tor}_2(R)$ for n odd.