Semaine n° 25 : du 31 mars au 4 avril

Lundi 31 mars

• Cours à préparer : Chapitre XXV - Probabilités sur un univers fini

Les définitions des parties 1.1 et 1.2 sont à connaître parfaitement.

- Partie 1.1 : Expérience aléatoire, univers, événement ; événement impossible, événement certain ; événements incompatibles ; événements deux à deux incompatibles, mutuellement incompatibles.
 - Variable aléatoire, univers image; pour une variable aléatoire X, événement $(X \in A)$; si X est réelle, événements (X = x), $(X \le x)$, etc.
 - Système complet d'événements; système complet d'événements $(X=x)_{x\in X(\Omega)}$
- Partie 1.2 : Probabilité sur un univers fini, espace probabilisé fini; événement presque sûr, événement négligeable; probabilité uniforme; propriétés d'une probabilité; formule des probabilités totales; détermination par les images des événements élémentaires.
- Partie 1.3 : Probabilité conditionnelle ; si B est un événement de probabilité non nulle, P_B est une probabilité ; formule des probabilités composées, formule des probabilités totales ; formules de Bayes.
- Exercices à rendre en fin de TD (liste non exhaustive)
 - Feuille d'exercices n° 24 : exercices 2, 4, 5, 7, 8, 10, 11.

Mardi 1^{er} avril

- Cours à préparer : Chapitre XXV Probabilités sur un univers fini
 - Partie 1.4 : Couple d'événements indépendants; famille finie d'événements mutuellement indépendants.
- Exercices à corriger en classe
 - Feuille d'exercices n° 24 : exercices 6, 9.

Jeudi 3 avril

- Cours à préparer : Chapitre XXV Probabilités sur un univers fini
 - Partie 2.2 : Loi d'une variable aléaoire; image d'une variable aléatoire X par une application f, loi de f(X); loi conditionnelle.
 - Partie 2.4 : Loi uniforme; loi de Bernoulli; loi binomiale.
- Exercices à corriger en classe
 - Feuille d'exercices n° 24 : exercices 13, 14, 19, 21, 22.

Vendredi 4 avril

- \bullet Cours à préparer : Chapitre XXV Probabilités sur un univers fini
 - Partie 2.5 : Couple de variables aléatoires; loi conjointe, lois marginales.
 - $Partie\ 2.6$: Variables aléatoires indépendantes; lemme des coalitions; somme de n variables aléatoires mutuellement indépendantes de même loi de Bernoulli.

Échauffements

Mardi 1^{er} avril

• Cocher toutes les assertions vraies : \square Une application $f: \mathbb{R} \to \mathbb{R}$ est linéaire si et seulement s'il existe un réel a tel que f(x) = ax, pour tout $x \in \mathbb{R}$. \square Une application $f:\mathbb{R}^2\to\mathbb{R}^2$ est linéaire si et seulement s'il existe des réels a et b tels que f(x,y) = (ax, by), pour tout $(x,y) \in \mathbb{R}^2$. \square Une application $f:\mathbb{R}^2\to\mathbb{R}^2$ est linéaire si et seulement s'il existe des réels a,b,c et d tels que f(x,y) = (ax + by, cx + dy), pour tout $(x,y) \in \mathbb{R}^2$. \square Une application $f:\mathbb{R}^3\to\mathbb{R}^3$ est linéaire si et seulement s'il existe des réels a,b et c tels que f(x, y, z) = (ax, by, cz), pour tout $(x, y, z) \in \mathbb{R}^3$. • Cocher toutes les assertions vraies : Soit E et F deux \mathbb{R} -espaces vectoriels de dimensions finies et f une application linéaire de E dans F. On pose dim E = n et dim F = m. \square Si f est injective, alors $n \leq m$. \square Si f est surjective, alors $n \geq m$. \square Si $n \leq m$, alors f est injective. \square Si $n \ge m$, alors f est surjective. Jeudi 3 avril • Cocher toutes les assertions vraies : Soit l'espace vectoriel $E = \mathbb{R}^3$. On note $\mathcal{B} = (e_1, e_2, e_3)$ sa base canonique. Soit f l'endomorphisme de E défini par $\forall (x, y, z) \in E, f(x, y, z) = (x + 3z, 0, y - 2z)$ $\Box f(e_1) = e_1 + 3e_3, f(e_2) = 0, f(e_3) = e_2 - 2e_3.$ $\Box f(e_1) = e_1, f(e_2) = e_3, f(e_3) = 3e_1 - 2e_3.$ \square f est de rang 3 car E est de dimension 3. \Box f est de rang 2 car (e_1, e_3) est une base de Im f. \square Ker $f = \{0\}$. \square Ker f est de dimension 1 car dim Ker $f = \dim E - \operatorname{rg} f$. \square Ker f est un sous-espace vectoriel de Im f car dim Ker $f \leq \dim \operatorname{Im} f$. \square L'égalité « dim $E = \dim \operatorname{Ker} f + \dim \operatorname{Im} f$ » suffit pour affirmer que $\operatorname{Im} f$ et $\operatorname{Ker} f$ sont supplémentaires. \Box f est surjective. \Box f est injective. \bullet Cocher toutes les assertions vraies : Soit E un espace vectoriel et f un endomorphisme involutif de E, c.à.d. un endomorphisme non nul de E tel que $f^2 = Id$, où Id est l'identité de E. \Box f est bijective. \square Im $(Id + f) \cap$ Im(Id - f) = E. $\square E = \operatorname{Im}(Id + f) + \operatorname{Im}(Id - f).$ \square Im(Id + f) et Im(Id - f) ne sont pas supplémentaires dans E. Vendredi 4 avril • Soit $u: x \mapsto \frac{1}{x} \ln(x + \cos x)$ et $f: x \mapsto (x + \cos x)^{1/x}$. On note $\mathscr C$ la courbe représentative de f. \square Pour obtenir un $DL_2(0)$ de f, il suffit de prendre un $DL_2(0)$ de $\ln(x + \cos x)$. $\Box f(x) = e^{u(x)}$ donc, si $u(x) = \alpha + \beta x + \gamma x^2 + o(x^2)$ au voisinage de 0, alors : $f(x) = 1 + p(x) + \frac{p(x)^2}{2!} + o(x^2)$ où $p(x) = \alpha + \beta x + \gamma x^2$

$$\Box$$
 Le $DL_2(0)$ de f est : $f(x) = e\left[1 - x - \frac{4}{3}x^2\right] + o\left(x^2\right)$. \Box Du $DL_2(0)$ de f , on déduit un prolongement par continue $f(x)$

 \square Du $DL_2(0)$ de f, on déduit un prolongement par continuité de f en 0 en une fonction dérivable en 0, et un positionnement de \mathscr{C} au-dessus de sa tangente au point d'abscisse 0.