Dynamic Programming

Dr. Prapong Prechaprapranwong

Dynamic Programming planning

a technique for solving problems with overlapping subproblem by recurrence

overlap

For example: Fibonacci number F(n) = F(n-1) + F(n-2) for n > 1 where F(0) = 0, F(1) = 1

Most Dynamic programming applications deal with optimization problems

- Basic examples
- Knapsack problem
- Warshall's and Floyd's algorithms

Example: Coin-Row Problem

Rules:

- Row of 6 coins whose values are 5, 1, 2, 10, 6, 2
- Pick up the maximum amount of money
- No two adjacent coins can be picked up.

Solve:

let F(n) be the maximum amount that can be picked up from the row of n coins There are 2 groups:

- 1) groups of coin that include the last coin $n \rightarrow c_n + F(n-2)$
- 2) groups of coin that not include the last coin $n \rightarrow F(n-1)$

$$F(i) = \max\{c_i + F(i-2), F(i-1)\}, \quad 2 \leq i \leq n$$

$$F(0) = 0, \quad F(1) = c_1$$

ALGORITHM CoinRow(C[1..n])

```
//Applies formula (8.3) bottom up to find the maximum amount of money //that can be picked up from a coin row without picking two adjacent coins //Input: Array C[1..n] of positive integers indicating the coin values //Output: The maximum amount of money that can be picked up F[0] \leftarrow 0; F[1] \leftarrow C[1] Time complexity \Theta(n) F[i] \leftarrow \max(C[i] + F[i-2], F[i-1]) Space complexity \Theta(n) return F[n]
```

Solve: Coin-Row Problem

$$F(i) = \max\{c_i + F(i-2), F(i-1)\}, \quad 2 \leq i \leq n$$

$$F(0) = 0, \quad F(1) = c_1$$

i	0	1	2	3	4	5	6
C_i							
F(i)							

Example: Coin Collecting Problem

Rules:

- Coins are placed in the cells of an n x m board, no more than 1 coin per cell
- start from upper left cell and end at the bottom right cell
- can move only right or down direction in each step
- find maximum coin and a path to collect the coins

Solve:

- Let F(i,j) be the largest amount of coins that can collect and bring to cell (i,j)
 - (i,j) only reachable from left or above.
 - Largest # coins brought to these cells : F(i,j-1) and F(i-1,j)

• Therefore, F(i,j) satisfies the following formula:

$$F(i,j) = \max\{F(i-1,j), F(i,j-1)\} + c_{ij}, \quad 1 \leq i \leq n, \ 1 \leq j \leq m$$

$$F(0,j)=0, \quad 1\leq j\leq m \quad \text{ row 0 brings no coin}$$

$$F(i,0)=0, \quad 1\leq i\leq n \quad {\rm column}\ {\rm 0}\ {\rm brings}\ {\rm no}\ {\rm coin}$$

$$c_{ij} = \begin{cases} 1 & \text{coin in cell } (i,j) \\ 0 & \text{no coin in cell } (i,j) \end{cases}$$

• Fill in $n \times m$ table of F(i,j) values either row-by-row or column-by-column.

ALGORITHM RobotCoinCollection(C[1..n, 1..m])//Applies dynamic programming to compute the largest number of //coins a robot can collect on an $n \times m$ board by starting at (1, 1)//and moving right and down from upper left to down right corner //Input: Matrix C[1..n, 1..m] whose elements are equal to 1 and 0 //for cells with and without a coin, respectively //Output: Largest number of coins the robot can bring to cell (n, m) $F[1, 1] \leftarrow C[1, 1];$ for $j \leftarrow 2$ to m do $F[1, j] \leftarrow F[1, j - 1] + C[1, j]$ for $i \leftarrow 2$ to n do Time complexity $\Theta(nm)$ $F[i, 1] \leftarrow F[i - 1, 1] + C[i, 1]$ Space complexity Θ(nm) for $j \leftarrow 2$ to m do $F[i, j] \leftarrow \max(F[i-1, j], F[i, j-1]) + C[i, j]$

return F[n, m]

For i = 1,

$$F(1,1) = c_{11} = 0$$

$$F(1, j) = \max\{F(0,j), F(1,j-1)\} + c_{ij}$$

$$= F(1,j-1) + c_{ij}, 2 <= j <= m$$

$$F(i, 1) = \max\{F(i-1, 1), F(i,0)\} + c_{ij}$$

 $= F(i-1,1)+c_{ij}, 2 <= i <= n$

Solve: Coin Collection Problem

0	0	0	0	1	1

For **i** = 2

0	0	0	0		1
0	1	1	2	2	2

For i = 3

0	0	0	0		1
0	1	1	2	2	2
0	1	1	3	3	4

For i = 4

0	0	0	0	1	1
0	1	1	2	2	2
0	1	1	3	3	4
0	1	2	3	3	5

For i = 5

Max Coins = 5 [▶]

Practice I) Find the maximum collected coins

Concept - Dynamic Programming

- Dynamic Programming = Dynamic Planning
- Technique to solve problems with <u>overlapping subproblems</u>
 - Subproblems typically arise from recurrence relation of the problem solution and subproblem solutions
 - Subproblem is solved as a multistage decision process only once and results recorded in a table like space-time trade-off design = Memoization, Tabulation

Knapsack Problem

Given n items of know weight w_1 , w_2 ,..., w_n and values v_1 , v_2 , ..., v_n and a knapsack of capacity W

✓ find the most value subset of the items that fit in to the knapsack

Step to solve (Brute force & exhaustive search approach)

- 1. Generating all possible subset of the items
- 2. Calculate all weight of those subset in knapsack
- 3. find the most value subset

- The first i items (1,2,...,i) $1 \le i \le n$ with weights $w_1, w_2,..., w_i$ and values $v_1, v_2,..., v_i$ and knapsack capacity j, $1 \le j \le W$
- let F(i,j) = the optimal value obtained from a subset of first i items that fit into the knapsack of capacity W

"the value of the most valuable subset of the first i items that fit the knapsack of capacity j"

divide all the subset of the first *i* times that fit the knapsack of capacity *j* into 2 categories

1) do not include the *i*th item

the value of an optional subset is F(i-1,j)

the value of the first i-1 items

2) include the *i*th item

the value of an optional subset is $v_i + \underline{F(i-1,j-w_i)}$

Weight before including item ith

$$F(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \max\{\frac{F(i-1,j), v_i + F(i-1,j-w_i)}{F(i-1,j)}\} & \text{if } j - w_i \ge 0 \\ \frac{F(i-1,j)}{F(i-1,j)} & \text{if } j - w_i < 0 \end{cases}$$

Objective: find F(n, W), the maximal value of a subset of the n given items that fit into the knapsack of capacity W

Objective: find F(n,W), the maximal value of a subset of the n given items that fit into the knapsack of capacity W

Example Knapsack Problem with dynamic programming approach

item	weight	value
1	2	\$12
2	1	\$10
3	3	\$20
4	2	\$15

capacity W = 5

$w_1 = 2 v_1 = 12$
$w_2 = 1$ $v_2 = 10$
$w_3 = 3$, $v_3 = 20$
$w_4 = 2$, $v_4 = 15$

i	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	O				
2	0					
3	0					
4	0					

canacity i

$$F(i,j) = \begin{cases} 0 & if \ i = 0 \ or \ j = 0 \\ \max\{F(i-1,j), v_i + F(i-1,j-w_i)\} & if \ j - w_i \ge 0 \\ F(i-1,j) & if \ j - w_i < 0 \end{cases}$$

Example Knapsack Problem with dynamic programming approach

item	weight	value
1	2	\$12
2	1	\$10
3	3	\$20
4	2	\$15

capacity W = 5

$w_1 = 2, v_1 = 3$	12
$w_2 = 1, v_2 = 1$	10
$w_3 = 3$, $v_3 = 3$	20
$w_4 = 2, v_4 = 3$	15

	capacity j						
i	0	1	2	3	4	5	
0	0	0	0	0	0	0	
1	0	0	12	12	12	12	
2	0	10	12	22	22	22	
3	0	10	12	22	30	32	
4	0	10	15	25	30	37	

canacity i

$$F(i,j) = \begin{cases} 0 & if \ i = 0 \ or \ j = 0 \\ \max\{F(i-1,j), v_i + F(i-1,j-w_i)\} & if \ j - w_i \ge 0 \\ F(i-1,j) & if \ j - w_i < 0 \end{cases}$$

Example Knapsack Problem with dynamic programming approach

item	weight	value
1	2	\$12
2	1	\$10
3	3	\$20
4	2	\$15

capacity W = 5

$w_1 = 2, v_1 = 3$	12
$w_2 = 1, v_2 = 1$	10
$w_3 = 3$, $v_3 = 3$	20
$w_4 = 2, v_4 = 3$	15

capacity						
i	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	10	12	22	22	22
3	0	10	12	22	30	32
4	0	10	15	25	30	37

canacity i

$$F(i,j) = \begin{cases} 0 & if \ i = 0 \ or \ j = 0 \\ \max\{F(i-1,j), v_i + F(i-1,j-w_i)\} & if \ j - w_i \ge 0 \\ F(i-1,j) & if \ j - w_i < 0 \end{cases}$$

Practice II) Knapsack Problem with dynamic programming approach (20 minutes)

item	weight	value
1	3	\$25
2	2	\$20
3	1	\$15
4	4	\$40
5	5	\$50

w_1 =3, v_1 = 25
w_2 =2, v_2 = 20
w_3 =1, v_3 = 15
w ₄ =4, v ₄ = 40
w_5 =5, v_4 = 50

	capacity j							
i	0	1	2	3	4	5	6	
0	0	0	0	0	0	0	0	
1	0							
2	0							
3	0							
4	0							
5	0							

capacity W = 6

Warshall's and Floyd's Algorithms

- Warshall's algorithm
- Floyd's algorithm

directed path from the ith vertex to the jth vertex

- > transitive closure of a directed graph
- → all-pairs shortest path

Both method start from an Adjacency Matrix

if the i^{th} vertex connects to the j^{th} vertex then A_{ij} is 1 otherwise is 0

Warshall's algorithm

- Examples of Transitive closure application
 - Dependency of spreadsheet cells
 - Data flow in software design
- Depth-first-search or Breadth-first-search can be used to generate a transitive closure of a digraph.
 - Perform a traversal at ith vertex and fill in columns in the ith row
 - Ex: Try DFS starting at vertex a

However too many times of traversal for every vertex as a starting points and must transverse the same graph many times

Warshall's algorithm

Rules for applying Warshall's algorithm

If r_{ii} is 1 in $\mathbf{R}^{(k-1)}$, it remains 1 in $\mathbf{R}^{(k)}$

If r_{ij} is 0 in $\mathbf{R}^{(k-1)}$, it changes to 1 in $\mathbf{R}^{(k)}$ if and only if r_{ik} and r_{kj} in $\mathbf{R}^{(k-1)}$ are both 1.

a b c d

a
$$\begin{bmatrix} \mathbf{1} & 1 & \mathbf{1} & 1 \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & 1 \end{bmatrix}$$

R⁽⁴⁾ = b to a $\begin{bmatrix} \mathbf{1} & 1 & \mathbf{1} & 1 \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & 1 \\ 0 & 0 & 0 & 0 \\ d & 1 & 1 & 1 \end{bmatrix}$

```
ALGORITHM Warshall (A[1..n, 1..n])
 //Wallshall's algorithm for computing the transitive closure
 //Input: The adjacency matrix A of a digraph with n vertices
 //Output: The transitive closure of the digraph
 R^{(0)} \leftarrow A
 for k \leftarrow 1 to n do
                                             O(n^3)
    for i \leftarrow 1 to n do
         for j \leftarrow 1 to n do
              R^{(k)}[i,j] \leftarrow R^{(k-1)}[i,j] or (R^{(k-1)}[i,k] and R^{(k-1)}[k,j])
  return R<sup>(n)</sup>
```

Practice III) Apply Warshall's algorithm to find the transitive closure of the digraph defined by the following adjacency matrix and draw the graph (10 minutes)

- applicable to both undirected and directed weighted graph
- consider a positive weighted connected graph W
- Find the shortest paths from each vertex to all the others.
- Example of application
 - precompute distances for motion planning in computer games
- Different from <u>Dijkstra's algorithm</u> (single source shortest path)
- Distance matrix D contains the shortest path length from ith vertex to jth vertex

$$\begin{bmatrix} a & 2 & b \\ 2 & b \end{bmatrix} \qquad \begin{bmatrix} 0 & \infty & 3 & \infty \\ 2 & 0 & 5 & 1 \end{bmatrix}$$

Floyd's algorithm

$$D^{(0)} = 0$$

$$D^{(0)} = \begin{bmatrix} 0 & \infty & 3 & \infty \\ 2 & 0 & \infty & \infty \\ c & 0 & \infty & \infty \end{bmatrix}$$

$$\begin{bmatrix} 0 & \infty & 3 & \infty \\ 2 & 0 & \infty & \infty \\ 0 & 0 & 0 \end{bmatrix}$$

all self loop back = 0

Rules for applying Floyd's algorithm:

$$d_{ij}^{(k)} = \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\} \text{ for } k \geq 1, d_{ij}^{(0)} = w_{ij}$$

		a	b	C	d
	a	0	10	3	4
$D^{(3)} =$	b	2	0	5	6
via vertex c	С	9	7	0	1
	d	6	16	9	0

```
ALGORITHM Floyd (W[1..n, 1..n])
 //Floyd's algorithm for the all-pairs shortest-paths problem
 //Input: The weight matrix W of a graph with no negative-length cycle
 //Output: The distance matrix of the shortest path's lengths
 for k \leftarrow 1 to n do
     for k \leftarrow 1 to n do
        for j ← 1 to n do
             D[i,j] \leftarrow min\{D[i,j], D[i,k] + D[k,j]\}
  return D
```

Practice IV) Solve the all-pair shortest path problem for the digraph with this weight matrix and draw this graph (20 minutes)

$$\begin{bmatrix} 0 & 3 & \infty & 2 & 6 \\ 5 & 0 & 4 & 2 & \infty \\ \infty & \infty & 0 & 5 & \infty \\ \infty & \infty & 1 & 0 & 4 \\ 5 & \infty & \infty & \infty & 0 \end{bmatrix}$$

Summary

- Dynamic programming solves problems whose final solution
 - expressed as recurrent relation of subproblem solutions
 - involved a multi-stage decision process
- Subproblem solutions stored and retrieved for later uses.
- Sample problems solved by dynamic programming
 - Simple ones like Coin-row and Coin-collection problems.
 - Integer version of the knapsack problem.
 - Transitive closure and all-pair shortest path problems.

Assignment: Research and Learning more about memoization and tabulation (using python's decoration)