Differentialgleichungen

October 20, 2013

1 Phänomenologie

1.1 Die logarithmische Spirale

16.10.13

Welche differenzierbaren und regulären Kurven in \mathbb{R}^2 schneiden alle Geraden durch den Ursprung stets unter dem gleichen Winkel $\alpha \notin \{0, \pi\}$? Dies impliziert strenge Monotonie im Argument von $\gamma(t)$, $\gamma(t) = r(t)(\cos t \sin t)^T$. Der Winkel zwischen $\gamma(t)$ und $\dot{\gamma}(t)$ ist

$$\frac{\langle \gamma(t), \dot{\gamma}(t) \rangle}{|\gamma(t)| \cdot |\dot{\gamma}(t)|} = \cos \alpha \Leftrightarrow \frac{\dot{r}(t)}{\sqrt{r^2 + \dot{r}^2}} = \cos \alpha$$

mit $\dot{\gamma}(t) = \dot{r}(t)(\cos t \sin t)^T + r(t)(-\sin t \cos t)$ und $\langle \gamma, \dot{\gamma} \rangle = r\dot{r}$. Spezialfall: $\cos \alpha = 0 \implies \dot{r} \equiv 0$.

Nehmen wir an, dass $\cos \alpha \neq 0$, d.h. in allen anderen Fällen $\dot{r}(t) = \alpha r(t)$ mit $a = \tan \alpha$, dann erhalten wir eine lineare gewöhnliche Differentialgleichung erster Ordnung.

Theorem 1. Es sei $a \in \mathbb{C}$ und $x : [\alpha, \beta] \to \mathbb{C}$ eine differenzierbare Funktion mit $\dot{x}(t) = ax(t)$ für alle $t \in [\alpha, \beta]$. Dann gibt es eine Konstante $c \in \mathbb{C}$ mit $x(t) = c \cdot e^{at}$, $t \in \mathbb{R}$.

0

Hinweise zum 1. Übungblatt

18.10.13

Sei $f:V\to\mathbb{R}$ differenzierbar mit V endlich-dimensionaler, normierter, reeller Vektorraum, $V=\mathbb{R}^{n\times n}$. Dann ist die Ableitung von f ausgewertet in x $Df(x):V\to\mathbb{R},h\mapsto Df(x)\cdot h$. $Df(x)\cdot h$ ist die Richtungsableitung von f ausgewertet in x in Richtung h. Dann ist $Df:V\to d(V,\mathbb{R}),x\mapsto Df(x)$.

$$Df(x) \cdot h = \frac{d}{d\varepsilon} f(x + \varepsilon h)|_{\varepsilon = 0}.$$

Example 1. Sei $g: \mathbb{R}^n \to \mathbb{R}, [x_1,...,x_n]^T = x \mapsto g(x)$. Dann ist $\frac{\partial}{\partial x_i}g(x) = Dg(x) \cdot [0\ 0\ ...\ 1\ ...\ 0\ 0] =$

 \triangle

1.2 Das *n*-Körperproblem

Es seien n Körper (Massepunkte) $k_1, ..., k_n$ im \mathbb{R}^3 gegeben. Die Körper haben die Massen $m_1, ..., m_n$. Die Gravitationskraft, die die $k_i, i \neq j$ auf k_j ausüben ist gegeben durch $-\sum_{h\neq j} g m_j m_k \frac{x_j(t) - x_k(t)}{|x_j(t) - x_k(t)|^3}$. Wir erhalten n Gleichungen der Form

$$m_j x_j'' = -\sum_{h \neq j} g m_j m_k \frac{x_j(t) - x_k(t)}{|x_j(t) - x_k(t)|^3}$$
 (1)

für j=1,...,n. Im Fall n=2 und k_1 immer im Ursprung des \mathbb{R}^3 , d.h. $x_1(t)\equiv 0$ erhalten wir mit $x(t):=x_2(t)$ die Gleichung

$$x''(t) = -gm_1 \frac{x(t)}{|x(t)|^3}. (2)$$

1.3 Räuber-Beute-Modell

Sei x(t) die größe der Beutepopulation, sei y(t) die Größte der Räuberpopulation, jeweils zur Zeit t. Wir modellieren x'=ax mit $0 < a \in \mathbb{R}$ für den Fall von null Räubern. Für mehr als null Räuber ist die Anzahl der Aufeinandertreffen zwischen Beute und Räuber ist proportional zu $x(t) \cdot y(t)$. Daher x'=ax-bxy mit $0 < b \in \mathbb{R}$. Weiterhin modellieren wir y'=-cy+dxy. Zusammen erhalten wir

$$x' = ax - bxy, \ y' = -cy + dxy. \tag{3}$$

Nun wird gefischt. Das heißt, die Anzahl der Räuber- und Beutefische reduziert sich gleichmäßig proportional zu ihrer Population, d.h. die Abnahme der Zahl der Räuber ist εy und die der Beutefische entsprechend εx mit $\varepsilon > 0$. Wir erhalten das neue, verfeinerte Modell

$$x' = (a - \varepsilon)x - bxy, \ y' = -(c + \varepsilon)y + dxy. \tag{4}$$

Kann 4 erklären, warum eine Reduzierung des Fischfangs ε sich wesentlich günstiger auf die Räuberfische als auf Beutefische auswirken kann? Sei $\varepsilon < a$ (moderates Fischen). Lösungen dieser Gleichung sind

- $x(t) \equiv y(t) \equiv 0$
- Ansatz: $x'(t) \equiv y'(t) \equiv 0$, d.h. x bzw. y sind konstant. Wir erhalten $(a \varepsilon)x(t) bx(t)y(t) = 0$ und $-(c + \varepsilon)y(t) + dx(t)y(t) = 0$. Durch Umformung erhalten wir $x(t)y(t) = \frac{a-\varepsilon}{b}x(t)$ bzw. $x(t)y(t) = \frac{c+\varepsilon}{d}y(t)$. Damit ergibt sich $y(t) = \frac{a-\varepsilon}{b}$ und $x(t) = \frac{c+\varepsilon}{d}$ als zweite konstante Lösung. Diese Lösung beschreibt ein natürliches Gleichgewicht der beiden Populationen. Den Punkt $(\frac{c+\varepsilon}{d}, \frac{a-\varepsilon}{b}) \in \mathbb{R}^2$ nennen wir einen stationären Punkt von 4. Weitere konstante Lösungen existieren nicht.

¹konfuse Begründung hier einfügen ...

• Aus 4 folgern wir $\frac{x'}{x} = (a - \varepsilon) - by$ und $\frac{y'}{y} = -(c + \varepsilon) + dx$. Wir multiplizieren mit $\frac{y'}{y}$ bzw. $\frac{x'}{x}$ und setzen dann gleich. Es ergibt sich $(-(c+\varepsilon)+dx)\frac{x'}{x}-((a-\varepsilon)-by)\frac{y'}{y}=0$. Den Ausdruck $\frac{x'}{x}$ nennt man auch die logarithmische Ableitung, da $\frac{d}{dx}\log x(t) = \frac{x'}{x}$. Wir können daher schreiben $\frac{d}{dt}(-(c+\varepsilon)\log x + dx - (a-\varepsilon)\log y + by) = 0$. Wir definieren $H(x,y) := -(c+\varepsilon)\log x + dx - (a-\varepsilon)\log y + by$. Also ist H(x(t),y(t)) konstant. Das heißt, jede Lösungskurve $t\mapsto (x(t),y(t))$ liegt auf einer Niveaumenge der Funktion H(x(t),y(t)). Solch eine Funktion H nennt man ein erstes Integral des Systems 4.