SZTUCZNE UKŁADY NEUROPODOBNE

r. akademicki 2021/2022, s. letni

prof. dr hab. Wiesław Andrzej Kamiński

wykład I: 28 lutego 2021 r.

- 1. Mózg homo sapiens sapiens
- 2. Neurony: struktura i podział
- 3. Neurony: podstawowe procesy przetwarzania informacji
- 4. Mózg: konekcjonizm/funkcjonalizm
- 5. Sztuczna inteligencja- sztuczne układy neuropodobne

Mózg homo sapiens najbardziej złożony układ Wszechświata (?) 100 miliardów neuronów 1 000 000 miliardów synaps

Rodzaje neuronów w mózgu (zróżnicowanie morfologiczne, hipoteza neuronalna)

Neuron wyizolowany

 prawo jednokierunkowego przewodnictwa (od dendrytów do aksonu: przewodnictwo ortodromowe

w warunkach fizjologicznych przewodzenie ortodromowe uwarunkowane obecnością synaps (jednokierunkowych)

przewodnictwo synaptyczne

rodzaje synaps:

- elektryczna

 (potencjał czynnościowy przekazywany bezpośrednio)
- chemiczna
 (pośredniczy mediator/neuroprzekaźnik)

Uwaga:

- (i) W synapsie elektrycznej pobudzenie jest przekazywane bezpośrednio między strukturą presynaptyczną a postsynaptyczną (pole elektryczne)
- (ii) W synapsie chemicznej pobudzenie skutkuje egzocytotycznym wydzielaniem neurotransmitera przez strukturę presynaptyczną, który jest z kolei wchłaniany endocytotycznie przez strukturę postsynaptyczną.

synapsa chemiczna

```
szczelina synaptyczna: ok. 20 nm
opóźnienie synaptyczne – ok. 0,5 ms ("wolna)
neurotransmitery:
```

glutaminian, GABA, acetylocholina, noradrenalina, dopamina, serotonina

synapsa elektryczna:

szczelina synaptyczna: < 2 nm

"bardzo szybkie"

synapsy: akso-dendrytyczne, akso-aksonalne, akso-somatyczne, dendrytyczno-dendrytyczne

Synapsy: nerwowo-efektorowe (nerwowo-mięśniowe, nerwowo-gruczołowe)

- transport bierny (dyfuzja):
- strumienie I i II
- transport czynny (pompy jonowe):
- strumienie oznaczone III

Pompa jonowa:

zapewnia transport przez błonę komórkową neuronu
np. 3 jonów Na+ do otoczenia neuronu (port)
oraz 2 jonów K+ do wnętrza neuronu (antyport)

Potencjał czynnościowy neuronu

- zasady "wszystko albo nic"
- stała amplituda: około 120 mV
- przenoszony jest na dalsze odległości bez dekrementu
- składa się z potencjału iglicowego i potencjałów następczych:
 - iglica -0.4 ms,
 - wczesny potencjał następczy -10-15 ms,
 - późny potencjał następczy -70-100 ms.
 - •razem 8—120 ms
- powstaje najczęściej we wzgórku aksonu (najwyższa gęstość kanałów sodowych)
- w warunkach fizjologicznych większość komórek nerwowych "pracuje" z częstotliwością (1-100) Hz, ale może sięgać 1kH

- a wstępna depolaryzacja: otwarcie kanałów sodowych i ich napływ do wnętrza; b otwarte kanały potasowe i wypływ na zewnątrz K⁺;
- c zamykanie kanałów Na+ i osiągnięcie maksymalnej wartości potencjału;
- d-e wypływ K⁺ przez otwarte kanały spadek potencjału aż do osiągnięcia wartości spoczynkowej, kanały K⁺ są zamykane, kanały Na⁺ sodowe resetowane;
- f K⁺ dyfundują na zewnątrz neuronu przejściowy potencjał następczy. a-c faza depolaryzacji, d-f faza repolaryzacji (łącznie z hiperpolaryzacją)

stan komórki	rozkład jonów		ładunek wnętrza
	strona wewnętrzna	strona zewnętrzna	(mV)
potencjał spoczynkowy	K+	Na+	- 90
depolaryzacja	K+ Na +	K+ Na+	+ 30
repolaryzacja	Na+	K+	- 90
potencjał spoczynkowy	K+	Na+	- 90

(depolaryzacja i repolaryzacja wchodzą w skład potencjału czynnościowego)

 Na^{+}

Sztuczne układy neuropodobne

- modelowanie neuronów
 - symulacje (modele matematyczne/fizyczne) (in computo)
 - modele sprzętowe (in silico)
- o modelowanie układów neuronalnych
 - sztuczne sieci neuronowe (in computo, in silico)

