Mål for opplæringen er at eleven skal kunne

- gjøre rede for definisjonen av bestemt integral som grense for en sum og ubestemt integral som antiderivert
- beregne integraler av de sentrale funksjonene ved antiderivasjon og ved hjelp av variabelskifte, ved delbrøkoppspalting med lineære nevnere og ved delvis integrasjon
- tolke det bestemte integralet i modeller av praktiske situasjoner og bruke det til å beregne arealer av plane områder og volumer av omdreiningslegemer

0.1 Bestemt og ubestemt integral

0.1.1 Bestemt integral

Tenk at vi kjører en bil med en fart som til enhver tid t er gitt av en funksjon v(t). Etter en tid t=b ønsker vi å vite lengden S vi har kjørt siden tiden t=a.

La oss først si at farten v er en konstant. Lengden vi har kjørt i tidsintervallet [a,b] må da være¹

$$S = v \cdot (b - a)$$

Figurativt blir dette arealet til firkanten som er avgrenset av t-aksen, linjene $t=a,\,t=b$ og grafen til v:

Figur 1

Men hvordan kan vi finne S hvis farten er varierende med tiden, som vist i $\mathit{figur}\ 2$?

Figur 2

 $^{^{1}}$ strekning = fart · tid

Én tilnærming er å plukke ut små intervaller hvor vi regner farten som konstant. Vi starter her med å dele grafen inn i tre like brede intervaller, som da får bredden $\Delta t = \frac{b-a}{3}$. Videre bruker vi v(t) i starten av hvert intervall som konstantfart, de tilhørende tidspunktene kaller vi $t_1 = a$, t_2 og t_3 . Vi kan nå anslå S som summen av tre strekninger s_1 , s_2 og s_3 reist med konstant fart:

$$S \approx s_1 + s_2 + s_3$$

$$\approx v(a)\Delta t + v(t_2)\Delta t + v(t_3)\Delta t$$

$$\approx (v(a) + v(t_2) + v(t_3))\Delta t$$

Grafisk har vi tilnærmet S ved å legge sammen arealet av de tre grønne søylene i figur 3:

Intuitivt vil vi tenke at jo mindre intervaller vi bruker, jo riktigere blir det å si at farten er konstant over intervallet, og at tilnærmingen da må bli bedre.

Figur 4: a) 10 intervaller b) 20 intervaller

Så hvorfor ikke lage uendelig mange, uendelig små¹ intervaller? Vi lar antall intervaller være gitt ved tallet n og lar $n \to \infty$. Vi får da at

$$S \approx \lim_{n \to \infty} (v(t_1) + v(t_2) + \dots + v(t_n)) \Delta t$$
$$\approx \lim_{n \to \infty} \sum_{i=1}^{n} v(t_i) \Delta t$$

hvor $t_i = a + (i-1)\Delta t$ og $\Delta t = \frac{b-a}{n}$ (legg merke til at $t_1 = a$). Faktisk kan det faktisk vises² at:

$$S = \lim_{n \to \infty} \sum_{i=1}^{n} v(t_i) \Delta t$$

I R2 kan vi se på dette som selveste definisjonen av det bestemte integralet³ av v over intervallet [a, b].

Bestemt integral I

Det bestemte integralet I av en funksjon f(x) over intervallet [a, b] er gitt som

$$I = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x \tag{0.1}$$

hvor $x_i = a + (i-1)\Delta x$ og $\Delta x = \frac{b-a}{n}$.

Eksempel

Finn det bestemte integralet av f(x) = x på intervallet $x \in [0, 4]$.

Svar:

Vi har her at $f(x_i) = x_i = (i-1)\Delta x$, hvor $\Delta x = \frac{4}{n}$. Setter vi dette inn i (0.1), får vi at

$$I = \lim_{n \to \infty} \sum_{i=1}^{n} (i-1) \left(\frac{4}{n}\right)^{2}$$

 $^{^1}$ Med "uendelig små" menes det at verdien går mot 0. Størrelser som går mot 0 kalles for *infinitesimale størrelser*.

²Se side 29 for en grundigere forklaring.

³Hvilke bokstaver vi bruker for å indikere størrelser, funksjoner og variabler er selvsagt helt vilkårlig. I oppsummeringen har vi valgt å bruke de mer klassiske bokstavene I, f og x istedenfor S, v og t.

$$= 4^{2} \lim_{n \to \infty} \frac{1}{n^{2}} \left(\frac{n(n+1)}{2} - n \right)$$

$$= 4^{2} \lim_{n \to \infty} \frac{1}{n^{2}} \left(\frac{n^{2} + n}{2} - n \right)$$

$$= 16\frac{1}{2}$$

$$= 8$$

Merk: I overgangen mellom første og andre linje i ligningen over har vi brukt summen av en aritmetisk rekke.

I kommende seksjoner skal vi finne integraler på en helt annen måte enn i eksempelet over. Læresetningen som sørger for dette er så viktig at den rett og slett kalles *Analysens fundamentalteorem*¹. Fordi teoremet gir oss en metode som omgår utregning av summer, lønner det seg å skrive integralet på en mer kompakt form²:

Bestemt integral II

Det bestemte integralet I av en funksjon f(x) over intervallet [a,b] skrives som

$$I = \int_{a}^{b} f(x) dx \tag{0.2}$$

0.1.2 Analysens fundamentalteorem

Tenk igjen at vi kjører med en hastighet gitt av funksjonen v(t), og at strekningen vi har kjørt nå er gitt ved funksjonen s(t). I R1 lærte vi at farten er den deriverte av strekningen, altså at:

$$s'(t) = v(t)$$

Når s er kjent kan vi enkelt finne den totale strekningen S vi har reist på intervallet $t \in [a, b]$:

$$S = s(b) - s(a)$$

¹Analyse i matematisk sammenheng kan, kort oppsummert, sies å være studien av funksjoner. Teorem er en læresetning som kan bevises.

²Man kan sammenligne dette med å erstatte grensesummen i (0.1) med \int_a^b , grenseintervallet med dx, og deretter fjerne alle indekser.

Men som vi har sett kan S også beskrives som et bestemt integral:

$$S = \int_{a}^{b} v(t) dt$$

Denne sammenhengen kan generaliseres til å gjelde for alle kontinuerlige funksjoner:

Analysens fundamentalteorem

Gitt en funksjon f(x) definert på intervallet [a, b]. Hvis F er en antiderivert til f, er

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a) \tag{0.3}$$

Eksempel

Gitt funksjonen $f(x) = e^{\sin x}$. Finn $\int_{0}^{\frac{\pi}{2}} f'(x) dx$.

Svar:

Siden f er en antiderivert til f'(x), må vi ha at

$$\int_{0}^{\frac{\pi}{2}} f'(x) dx = f\left(\frac{\pi}{2}\right) - f(0)$$
$$= e^{\sin\frac{\pi}{2}} - e^{\sin 0}$$
$$= e - 1$$

0.1.3 Ubestemte integral

Vi har hittil sett på det *bestemte* integralet, som har sitt navn fordi integralet er over et intervall der start- og sluttverdien er gitt. Det *ubestemte* integralet til en funksjon f(x) skriver vi derimot som

$$\int_{c}^{x} f(t) dt$$

Navnet ubestemt kommer av at c er en vilkårlig konstant og at x er en varierende verdi¹.

Hvis vi lar F være en antiderivert til f, har vi fra (0.3) at:

$$\int_{c}^{x} f(t) dt = F(x) - F(c)$$

Siden c er en konstant, må -F(c) også være det. Denne kalles in-tegrasjonskonstanten og omdøpes gjerne til C. Det er også vanlig å
forenkle skrivemåten til det ubestemte integralet ved å fjerne grensene
og bare skrive f(x) dx etter integraltegnet.

Ubestemt integral

Det ubestemte integralet av f(x) er gitt som

$$\int f(x) dx = F(x) + C \tag{0.4}$$

Hvor F er en antiderivert til f og C er en vilkårlig konstant.

Merk: Når ikke annet er nevnt, tar vi det heretter for gitt at størrelser skrevet som store bokstaver er vilkårlige konstanter som resultat av integrasjon.

Eksempel 1

Ved derivasjon vet vi at $(x^2)' = 2x$. Bruk dette til å å finne $\int 2x \, dx$.

Svar:

Fra derivasjonen ser vi at x^2 er en antiderivert til 2x. Vi kan dermed skrive

$$\int 2x \, dx = x^2 + C$$

¹Det kan kanskje se litt rart ut at vi har skrevet f(t) i integralet når vi snakker om f(x), men dette gjøres bare for å skille mellom de to varierende verdiene x og t. x kan være en hvilken som helst verdi, men for det ubestemte integralet ser vi på f for verdiene $t \in [a, x]$, altså f(t). Og da er det ikke x som varierer, men t, derav dt.

Eksempel 2

Ved derivasjon vet vi at $(x^2 + 3)' = 2x$. Bruk dette til å finne $\int 2x \, dx$.

Svar:

Fra derivasjonen ser vi at $x^2 + 3$ er en antiderivert til 2x. Vi kan dermed skrive

$$\int 2x \, dx = x^2 + 3 + C$$

Men siden C er en vilkårlig konstant, kan vi liksågodt lage oss en ny konstant D = C + 3, og får da at

$$\int 2x \, dx = x^2 + D$$

Merk: Siden integrasjonskonstanter er vilkårlige, kan vi tillate oss å komprimere flere konstanter til én. I utregningen over kunne vi skrevet C opp igen, underforstått at 3 var "trekt inn" i denne konstanten:

$$\int 2x \, dx = x^2 + 3 + C = x^2 + C$$

0.2 Integralregning

Å finne bestemte og ubestemte integraler er et stort og viktig felt innenfor matematikken. Analysens fundamentalteorem forteller oss at nøkkelen er å finne en antiderivert til funksjonen vi ønsker å integrere.

0.2.1 Integralet av utvalge funksjoner

Vi skal etterhvert se at å finne integraler ofte krever spesielle metoder, men noen grunnleggende relasjoner bør vi huske:

Ubestemte integraler

For konstantene k og C har vi at

$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx \qquad (0.5)$$

$$\int kf(x) dx = k \int f(x) dx \tag{0.6}$$

$$\int x^k dx = \frac{1}{k+1} x^{k+1} + C \qquad (k \neq -1)$$
 (0.7)

$$\int \sin(kx) \, dx = -\frac{1}{k} \cos(kx) + C \tag{0.8}$$

$$\int \cos(kx) \, dx = \frac{1}{k} \sin(kx) + C \tag{0.9}$$

$$\int e^{kx} \, dx = \frac{1}{k} e^{kx} + C \tag{0.10}$$

$$\int \frac{1}{\cos^2 x} \, dx = \tan x + C \tag{0.11}$$

$$\int \frac{1}{x+k} dx = \ln|x+k| + C \tag{0.12}$$

Eksempel 1

Finn det bestemte integralet $\int_{0}^{\frac{\pi}{4}} \frac{8}{1-\sin^2 x} dx$.

Svar:

Vi starter med å observere at $1 - \sin^2 x = \cos^2 x$. I tillegg vet vi fra (0.6) at konstanten 8 kan trekkes utenfor integralet. Vi kan derfor skrive integralet vårt som

$$8\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^2 x} \, dx$$

Fra (0.11) vet vi at $\tan x$ er en antiderivert til $\frac{1}{\cos^2 x}$. Når vi har funnet en antiderivert fører vi gjerne slik¹:

$$8\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^2 x} \, dx = 8 \left[\tan x \right]_{0}^{\frac{\pi}{4}}$$

$$= 8 \left[\tan \frac{\pi}{4} - \tan 0 \right]$$
$$= 8[1 - 0]$$
$$= 8$$

Merk: Bruken av klammeparantes er bare en annen måte å skrive (0.3) på.

Eksempel 2

Finn det ubestemte integralet $\int \left(\frac{1}{x^4} + \sqrt[3]{x}\right) dx$.

Svar:

Vi utnytter at $\frac{1}{x^4} = x^{-4}$ og at $\sqrt[3]{x} = x^{\frac{1}{3}}$. Ved (0.5) og (0.7) kan vi skrive:

$$\int \left(\frac{1}{x^4} + \sqrt[3]{x}\right) dx = \int \left(x^{-4} + x^{\frac{1}{3}}\right) dx$$
$$= \frac{1}{-4+1} x^{-4+1} + \frac{1}{\frac{1}{3}+1} x^{\frac{1}{3}+1} + C$$
$$= -\frac{1}{3} x^{-3} + \frac{3}{4} x^{\frac{4}{3}} + C$$

¹Forklar for deg selv hvorfor vi ikke trenger å ta hensyn til konstanten når vi skal finne et bestemt integral.

0.2.2 Bytte av variabel

Vi skal nå se på en metode som kalles $bytte\ av\ variabel^1$ (også kalt substutisjon). Med denne kan vi ofte forenkle integralregningen betraktelig.

Bytte av variabel

Gitt funksjonene f(x), u(x) og g(u). Hvis $\int f(x) dx$ kan skrives om til $\int g(u)u' dx$, kan integralet løses med u som variabel:

$$\int g(u)u' dx = \int g(u) du \qquad (0.13)$$

Eksempel 1

Finn det ubestemte integralet

$$\int 8x \sin\left(4x^2\right) \, dx$$

Svar:

Vi setter $u(x) = 4x^2$ og $g(u) = \sin u$. Dermed blir u' = 8x, og da er

$$\int 8x \sin(4x^2) dx = \int u'g(u) dx$$

$$= \int g(u) du$$

$$= \int \sin u du$$

$$= -\cos u + C$$

$$= -\cos(4x^2) + C$$

Merk: Når integralet vi skal finne er mhp. x, er det viktig at sluttuttrykket har x som eneste variabel.

¹Det er flere framgangsmåter for denne metoden. Den vi her presenterer er, etter forfatterens mening, den raskeste for integraler som er pensum i R2. For mer avanserte integraler bør man kjenne til framgangsmåten presentert i vedlegg ??.

Eksempel 2

Finn det bestemte integralet

$$\int\limits_{0}^{2} x^2 e^{2x^3} dx$$

Svar:

Vi setter $u(x) = 2x^3$ og $g(u) = e^u$, da blir $u' = 6x^2$. I integralet vi skal løse mangler vi altså faktoren 6 for å kunne anvende oss av (0.13). Men vi kan alltids gange integralet vårt med 1, skrevet som $\frac{6}{6}$. Da kan vi trekke 6-tallet vi ønsker inn i integralet, og la resten av brøken forbli utenfor:

$$\int_{0}^{2} x^{2} e^{2x^{3}} dx = \frac{6}{6} \int_{0}^{2} x^{2} e^{2x^{3}} dx$$
$$= \frac{1}{6} \int_{0}^{2} 6x^{2} e^{2x^{3}} dx$$

Nå ligger alt til rette for å bytte variabel:

$$\frac{1}{6} \int_{0}^{2} 6x^{2} e^{2x^{3}} dx = \frac{1}{6} \int_{0}^{2} u'g(u) dx$$

$$= \frac{1}{6} \int_{0}^{2} g(u) du$$

$$= \frac{1}{6} \int_{0}^{2} e^{u} du$$

$$= \frac{1}{6} [e^{u}]_{0}^{2}$$

$$= \frac{1}{6} [e^{2x^{3}}]_{0}^{2}$$

$$= \frac{1}{6} (e^{2} \cdot 2^{3} - e^{2 \cdot 0^{2}})$$

$$= \frac{1}{6} (e^{16} - 1)$$

Det finnes også en alternativ måte for å regne ut bestemte integral ved bytte av variabel, se vedlegg?? for denne.

Eksempel 3

Buelengden til grafen til en funksjon f(x) på intervallet [a,b] er gitt som

$$\int_{a}^{b} \sqrt{1 + (f')^2} \, dx \tag{I}$$

Finn lengden til funksjonen

$$f(x) = \frac{1}{3}x^{\frac{3}{2}}$$
 , $x \in [0, 5]$

Svar:

Vi har at

$$f' = \frac{1}{2}x^{\frac{1}{2}}$$

Og videre at

$$(f')^2 = \frac{1}{4}x$$

Det ubestemte integralet i (I) blir da

$$\int \sqrt{1 + \frac{1}{4}x} \, dx$$

Vi setter $u=1+\frac{1}{4}x$ og $g(u)=u^{\frac{1}{2}}.$ Da er $u'=\frac{1}{4}.$ Nå har vi at

$$\int \sqrt{1 + \frac{1}{4}x} \, dx = 4 \int u^{\frac{1}{2}} u' \, dx$$

$$= 4 \int u^{\frac{1}{2}} \, du$$

$$= \frac{8}{3} u^{\frac{3}{2}} + C$$

$$= \frac{8}{3} \left(1 + \frac{1}{4}x\right)^{\frac{3}{2}} + C$$

Altså er

$$\int\limits_{0}^{5} \sqrt{1+(f')^2} \, dx = \frac{8}{3} \left[\left(1+\frac{1}{4}x\right)^{\frac{3}{2}} \right]_{0}^{5}$$

$$= \frac{8}{3} \left(\left(1 + \frac{5}{4} \right)^{\frac{3}{2}} - 1 \right)$$

$$= \frac{8}{3} \left(\left(\frac{9}{4} \right)^{\frac{3}{2}} - 1 \right)$$

$$= \frac{8}{3} \left(\frac{27}{8} - 1 \right)$$

$$= \frac{19}{3}$$

Merk: En litt lettere utrekning kunne vi fått ved å observere at

$$\sqrt{1+\frac{1}{4}x} = \frac{1}{2}\sqrt{4+x}$$

Med denne omskrivingen kunne vi valgt substutisjonen u = 4 + x, og dermed fått at u' = 1.

0.2.3 Delvis integrasjon

Hvis vi ikke finner et passende bytte av variabel for å løse et integral, kan vi isteden prøve med *delvis integrasjon*. Vi starter med å utlede ligningen som legger grunnlaget for metoden.

Gitt produktet av to funksjoner u(x) og v(x), altså uv. Av produktergelen ved derivasjon (se (??)) har vi at

$$(uv)' = u'v + uv'$$

Videre integrerer¹ vi begge sider av ligningen over mhp. x:

$$\int (uv)' dx = \int (u'v + uv') dx$$
$$uv = \int (u'v + uv') dx$$
$$uv - \int u'v dx = \int uv' dx$$

 $^{^{1}}$ Når vi har flere ubestemte itegraler, trenger vi bare ta med integrasjonskonstanten for én av dem. Derfor er ikke konstanten fra integrasjonen av (uv)' tatt med.

Delvis integrasjon

For to funksjoner u(x) og v(x) har vi at

$$\int uv' dx = uv - \int u'v dx \tag{0.14}$$

Eksempel 1

Integrer funksjonen $f(x) = x \ln x$.

Svar:

Vi observerer at f(x) er sammensatt av x og $\ln x$. Trikset bak delvis integrasjon er å sette én av disse til å være funksjonen u(x) og den andre til å være den deriverte av v(x), altså v'(x). Da har vi en ligning som i (0.14) og kan (forhåpentligvis) bruke denne til å finne integralet vi søker.

Vi må integrere v' for å finne v og derivere u for å finne u'. Siden $\ln x$ er lett å derivere, men vanskelig å integrere, setter vi

$$u = \ln x$$
$$v' = x$$

Da må vi ha at¹

$$u' = \frac{1}{x}$$
$$v = \frac{1}{2}x^2$$

Altså kan vi skrive (rekkefølgen på v^\prime og u har selvsagt ingenting å si i (0.14))

$$\int x \ln x \, dx = \int v' u \, dx$$

$$= uv - \int u' v \, dx$$

$$= \ln x \cdot \frac{1}{2}x^2 - \int \frac{1}{x} \cdot \frac{1}{2}x^2 \, dx$$

$$= \frac{1}{2}x^2 \ln x - \int \frac{1}{2}x \, dx$$

$$= \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C$$

¹Hvorfor ikke $v = \frac{1}{2}x^2 + C$? Vi hadde jo da fått samme v'.

Hvis vi lar V betegne en antiderivert til v', kan vi skrive v=V+C. Av (0.14) har vi da at

$$\int uv' dx = u(V+C) - \int u'(V+C) dx$$

$$= u(V+C) - \int u'V dx - \int Cu' dx$$

$$= uV + Cu - \int u'V dx - Cu$$

$$= uV - \int u'V dx$$

Vi har endt opp med et uttrykk hvor C ikke lenger deltar. Vi får altså det samme svaret uansett hva verdien til C er, og da velger vi selvsagt fra starten av at C=0.

Eksempel 2

Integrer funksjonen $f(x) = \ln x$.

Svar:

Vi starter med å skrive $f(x) = \ln x \cdot 1$, og setter

$$u = \ln x$$
$$v' = 1$$

Vi får da at

$$u' = \frac{1}{x}$$
$$v = x$$

 $\int f dx$ finner vi nå ved delvis integrasjon:

$$\int \ln x \cdot 1 \, dx = \int uv' \, dx$$

$$= uv - \int u'v \, dx$$

$$= x \ln x - \int x \cdot \frac{1}{x} \, dx$$

$$= x \ln x - x + C$$

$$= x(\ln x - 1) + C$$

0.2.4 Delbrøksoppspaltning

Gitt integralet

$$\int \frac{4x+5}{(x+1)(x+2)} \, dx$$

Etter litt testing vil vi finne at både delvis integrasjon og bytte av variabel kommer til kort i vår søken etter en antiderivert. Hva vi heller kan gjøre, er å ta i bruk delbrøksoppspaltning.

Vi merker oss da at integranden¹ er en brøk med nevneren (x+1)(x+2). Dette betyr at den kan skrives som to separate brøker med (x+1) og (x+2) som nevnere:

$$\frac{4x+5}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2} \tag{0.15}$$

¹For $\int f(x) dx$ sier vi at f er integranden.

A og B er to konstanter, vår oppgave blir nå å bestemme verdien til disse.

Vi starter med å gange begge sider av (0.15) med fellesnevneren:

$$\frac{4x+5}{(x+1)(x+2)}(x+1)(x+2) = \left(\frac{A}{x+1} + \frac{B}{x+2}\right)(x+1)(x+2)$$
$$4x+5 = A(x+2) + B(x+1)$$

For det rette valget av A og B er uttrykkene over like for alle verdier av x. Når x = -1, har vi bare A som ukjent:

$$4 \cdot (-1) + 5 = A(-1+2) + B(-1+1)$$
$$1 = A$$

Og ved å sette x = -2, finner vi B:

$$4 \cdot (-2) + 5 = A(-2+2) + B(-2+1)$$
$$-3 = -B$$
$$3 = B$$

Nå kan vi altså skrive

$$\frac{4x+5}{(x+1)(x+2)} = \frac{1}{x+1} + \frac{3}{x+2}$$

Dette er to brøker vi kan å integrere 1 (se (0.12)):

$$\int \frac{4x+5}{(x+1)(x+2)} dx = \int \left(\frac{1}{x+1} + \frac{3}{x+2}\right) dx$$
$$= \ln|x+1| + 3\ln|x+2|$$

 $^{^1}Obs!$ I søken etter A og B valgte vi verdiene x=-1 og x=-2. I ligningene hvor vi satte inn disse verdiene var dette helt uskyldig, men i integralet må vi være observante. Vi får nemlig 0 i nevner hvis én av disse verdiene ligger i intervallet vi skal integere over. Er det snakk om et bestemt integral må vi derfor passe på at dette ikke er tilfelle.

Integrasjon ved delbrøksoppspaltning

For integraler på formen

$$\int \frac{a+bx+cx^2+\dots}{(x-d)(x-e)(x-f)\dots} dx$$

hvor a, b, c, \dots er konstanter, skriver vi om integranden til

$$\frac{A}{(x-d)} + \frac{B}{(x-e)} + \frac{C}{(x-f)} + \dots$$

og finner så de ukjente konstantene A, B, C, \dots

Eksempel 1

Finn det ubestemte integralet

$$\int \frac{3x^2 + 3x + 2}{x^3 - x} \, dx$$

Svar:

Vi starter med å faktorisere nevneren i integranden, og får at

$$\frac{3x^2 + 3x + 2}{x^3 - x} = \frac{3x^2 + 3x + 2}{x(x+1)(x-1)}$$

Denne brøken ønsker vi å skrive som

$$\frac{3x^2 + 3x + 2}{x(x+1)(x-1)} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x-1}$$

For å finne A, B og C, omskriver vi ligningen ved å gange med fellesnevneren x(x+1)(x-1):

$$3x^{2} + 3x + 2 = A(x+1)(x-1) + Bx(x-1) + Cx(x+1)$$

Ligningen må holde for alle verdier av x. Vi setter først x=0, og får at

$$2 = A \cdot (-1)$$
$$-2 = A$$

Videre setter vi x = -1:

$$3 \cdot (-1)^2 + 3(-1) + 2 = B \cdot (-1)(-1 - 1)$$

$$1 = B$$

Til slutt setter vi x = 1:

$$3 \cdot 1^2 + 3 \cdot 1 + 2 = C(1+1)$$
$$4 = C$$

Integralet vi skal finne kan vi derfor skrive som

$$\int \left(-\frac{2}{x} + \frac{1}{x+1} + \frac{4}{x-1} \right) dx = -2\ln|x| + \ln|x+1| + 4\ln|x-1| + D$$

Eksempel 2

Finn det ubestemte integralet

$$\int \frac{x^3 + 5x^2 + x - 4}{x^2 + x - 2} \, dx$$

Svar:

Hvis telleren har potenser av høyere orden¹ enn nevneren, må vi starte med en polynomdivisjon:

$$(x^{3} + 5x^{2} + x - 4) : (x^{2} + x - 2) = x + 4 + \frac{-x + 4}{x^{2} + x - 2}$$

$$- (x^{3} + x^{2} - 2x)$$

$$4x^{2} + 3x - 4$$

$$- (4x^{2} + 4x - 8)$$

$$- x + 4$$

Vi observerer videre at nevneren i brøken kan omskrives til (x-1)(x+2), for to konstanter A og B har vi altså at

$$\frac{A}{x-1} + \frac{B}{x+2} = \frac{-x+4}{x^2+x-2}$$
$$A(x+2) + B(x-1) = -x+4$$

Når x = -2, får vi at

$$B(-2-1) = -(-2) + 4$$
$$B = -2$$

Og når x = 1, er

$$A(1+2) = -1 + 4$$
$$A = 1$$

Integralet blir derfor

$$\int \left(x+4+\frac{1}{x-1}-\frac{2}{x+2}\right) dx = \frac{1}{2}x^2+4x+\ln|x-1|-2\ln|x+2|+C$$

0.3 Areal og volum

0.3.1 Avgrenset areal

Som antydet i delseksjon 0.1.1 er det en sterk sammenheng¹ mellom det bestemte integralet av en funksjon f(x) på intervallet [a,b] og arealet avgrenset av grafen til f, x-aksen og linjene x=a og x=b. Sistnevnte størrelse skal vi for enkelhetsskyld kalle arealet avgrenset av f for $x \in [a,b]$:

¹Her har telleren tre som høyeste orden, mens nevneren har to.

¹Se s. 29-31 for nærmere forklaring.

Integral som areal I

Gitt en kontinuerlig funksjon f(x) og to tall a og b der a < b.

Hvis $f \geq 0$ for $x \in [a,b]$, er arealet A avgrenset av f på dette intervallet gitt som

$$A = \int_{a}^{b} f \, dx$$

Hvis $f \leq 0$ for $x \in [a,b]$, er arealet A avgrenset av f på dette intervallet gitt som

$$A = -\int_{a}^{b} f \, dx$$

Areal avgrenset av to funksjoner

Noen ganger ønsker vi også å finne arealet avgrenset av to funksjoner. Da må vi sørge for at vi har tilstrekkelig med informasjon om disse før vi utfører integrasjonen:

Integral som areal II

Gitt to kontinuerlige funksjoner f(x) og g(x) og tre tall a, b og c der a < c < b.

Hvis f > g for $x \in [a, b]$, er arealet A avgrenset mellom f og g på dette intervallet gitt ved

$$A = \int_{a}^{b} (f - g) dx \qquad (0.16)$$

Hvis $f \ge g$ for $x \in [a,c]$ og $g \ge f$ for $x \in [c,b]$, er arealet A avgrenset mellom f og g for $x \in [a,b]$ gitt ved

$$A = \int_{a}^{c} (f - g) dx + \int_{c}^{b} (g - f) dx$$
 (0.17)

Eksempel

Gitt funksjonene $f(x) = \sin\left(\frac{\pi}{2}x\right)$ og g(x) = 2x - 1. Vi har da at $f \ge g$ for $x \le 1$ og at $g \ge f$ for $x \ge 1$. Finn arealet A avgrenset av f og g for $x \in [0, 2]$.

Svar:

Ut ifra informasjonen over er arealet gitt ved ligningen

$$A = \int_{0}^{1} (f - g) dx + \int_{1}^{2} (g - f) dx$$

Vi starter med å regne ut de to integralene hver for seg:

$$\int_{0}^{2} (f - g) dx = \left[-\frac{2}{\pi} \cos\left(\frac{\pi}{2}x\right) - (x^{2} - x) \right]_{0}^{1}$$

$$= -\left[\frac{2}{\pi} \cos\left(\frac{\pi}{2}x\right) + (x^{2} - x) \right]_{0}^{1}$$

$$= \frac{2}{\pi} \cos\left(\frac{\pi}{2} \cdot 1\right) + (1^{2} - 1)$$

$$-\left(\frac{2}{\pi} \cos\left(\frac{\pi}{2} \cdot 0\right) + (0^{2} - 0)\right)$$

$$= \frac{2}{\pi}$$

$$\int_{1}^{2} (g - f) dx = \left[(x^{2} - x) + \frac{2}{\pi} \cos\left(\frac{\pi}{2}x\right) \right]_{1}^{2}$$

$$= (2^{2} - 2) + \frac{2}{\pi} \cos\left(\frac{\pi}{2} \cdot 2\right)$$

$$-\left(-\frac{2}{\pi} \cos\left(\frac{\pi}{2} \cdot 1\right) - (1^{2} - 1)\right)$$

$$= 2 - \frac{2}{\pi}$$

Summen av disse to integralene er 2, som altså er arealet.

0.3.2 Volumet av en figur

Vi har sett hvordan integraler kan brukes til å finne arealer, men de kan også brukes til å finne volumer:

Integral som volum

Gitt en tredimensjonal figur plassert i et koordinatsystem, med endepunktene satt til verdiene a og b langs x-aksen.

La videre A(x) være tverrsnittsarealet av figuren for verdien x. Volumet V av figuren er da gitt som

$$V = \int_{a}^{b} A \, dx \tag{0.18}$$

Eksempel

Vis at volumet V av ei rett kjegle er gitt som

$$V = \frac{1}{3}\pi h r^2$$

hvor r er radiusen til grunnflata og h er høgden til kjegla.

Svar:

Vi plasserer kjegla inn i et koordinatsystem med høyden langs x-aksen og spissen plassert i origo.

Radiusen $r_t(x)$ kan beskrives som en rett linje med stigningstall $\frac{r}{h}$:

$$r_t(x) = \frac{r}{h}x$$

Arealet A(x) av tverrsnittet blir da

$$\begin{split} A(x) &= \pi r_t^2 \\ &= \pi \left(\frac{r}{h}\right)^2 x^2 \end{split}$$

Altså er volumet av kjegla gitt som

$$\int_{0}^{h} A dx = \int_{0}^{h} \pi \left(\frac{r}{h}\right)^{2} x^{2} dx$$

$$= \pi \frac{r^{2}}{h^{2}} \int_{0}^{h} x^{2} dx$$

$$= \pi \frac{r^{2}}{h^{2}} \left[\frac{1}{3}x^{3}\right]_{0}^{h}$$

$$= \frac{1}{3}\pi h r^{2}$$

0.3.3 Volum av omdreiningslegemer

Si vi har en funksjon f(x) gitt på intervallet [a, b], med en graf som vist i figur 5a. Tenk nå at vi dreier linjestykket 360° om x-aksen. Formen vi da har "skjært" ut, vist i figur 5b, er det vi kaller omdreiningslegemet til f(x) på intervallet [a, b].

Figur 5: a) Grafen til f. b) Omdreiningslegemet til f.

Tverrsnittet (langs x-aksen) til en slik figur er alltid sirkelformet, tverrsnittsarealet er derfor πr^2 , hvor r(x) er radiusen til tverrsnittet. Men siden radiusen tilsvarer høyden fra x-aksen opp til f, er r=f. Av (0.18) kan vi da skrive

$$V = \int_{a}^{b} A \, dx = \int_{a}^{b} \pi f^{2} \, dx = \pi \int_{a}^{b} f^{2} \, dx$$

Volum av omdreiningslegemer

Volumet V av omdreiningslegemet til f(x) på intervallet [a,b] er gitt som

$$V = \pi \int_{a}^{b} f^2 dx \tag{0.19}$$

Eksempel

Gitt funksjonen

$$f(x) = \sqrt{x}$$

finn volumet av omdreiningsleget til f på intervallet [1,3].

Svar:

Volumet vi søker er gitt som

$$\pi \int_{1}^{3} f^{2} dx = \pi \int_{1}^{3} (\sqrt{x})^{2} dx$$
$$= \pi \int_{1}^{3} x dx$$
$$= \pi \left[\frac{1}{2} x^{2} \right]_{1}^{3}$$
$$= \frac{\pi}{2} [9 - 1]$$
$$= 4\pi$$

Forklaringer

Bestemt integral

På side 2-5 brukte vi en funksjon v(t) som ga oss en hastighet for enhver tid t. Vi presenterte da integralet som en tilnærming av hvor langt man hadde beveget seg over et tidsintervall $t \in [a, b]$. Når vi nå skal studere integralet helt generelt, starter vi isteden med en geometrisk definisjon av integralet:

Gitt en funksjon f(x) som er positiv og kontinuerlig for alle $x \in [a, b]$. Integralet I tilsvarer arealet avgrenset av x-aksen, linjene x = a og x = b og grafen til f.

Figur 6: Integralet I tilsvarer det avgrensede arealet i grønt.

La oss ta utgangspunkt i funksjonen f(x), med en graf som vist i figur 6. Vårt mål er nå å finne I.

Vi starter med å splitte [a,b] inn i n mindre delintervaller, alle med bredden $\Delta x = \frac{b-a}{n}$. I tillegg lar vi x_i for $i \in \{1,2,\ldots,n\}$ betegne den x-verdien som er slik at $f(x_i)$ er den laveste verdien til f på delintervall nr. i.

Arealet avgrenset av delintervallet og f tilnærmer vi som $s_i = f(x_i)\Delta x$, da har vi at (se figur 7)

$$I \ge s_1 + s_2 + \dots + s_i$$

$$I \ge f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x$$

$$I \ge \sum_{i=1}^n f(x_i)\Delta x$$

Figur 7: Arealene av s_i markert som grønne søyler og arealene av c_i markert som blå søyler. Bredden til hver søyle er $\Delta x = \frac{b-a}{n}$ (her er n=4).

Videre må det finnes et tall $h_i \in [0, 1)$ som er slik at $f(x_i + h_i \Delta x)$ er den høyeste verdien til f på delintervallet. Vi lar c_i betegne arealet til søylen med Δx som bredde og $f(x_i + h_i \Delta x) - f(x_i)$ som høyde:

$$c_i = (f(x_i + h_i \Delta x) - f(x_i))\Delta x$$

Hvis vi legger til alle c_i i det første estimatet vårt, får vi en tilnærming som må være større eller lik det egentlige arealet. Derfor kan vi skrive

$$\sum_{i=1}^{n} f(x_i) \Delta x \le I \le \sum_{i=1}^{n} f(x_i) \Delta x + \sum_{i=1}^{n} c_i$$

Én av c-verdiene må være større eller lik alle andre c-verdier. Vi lar m betegne indeksen til nettopp denne c-verdien. Da må vi ha at

$$0 \le \sum_{i=1}^{n} c_i \le nc_m$$

Men når $n \to \infty$, går summen nc_m mot 0:

$$\lim_{n \to \infty} nc_m = \lim_{n \to \infty} n(f(x_m + h_m \Delta x) - f(x_m)) \Delta x$$

$$= \lim_{n \to \infty} n(f(x_m + h_m \Delta x) - f(x_m)) \frac{b - a}{n}$$

$$= \lim_{n \to \infty} (f(x_m + h_m \Delta x) - f(x_m))(b - a)$$

$$= \lim_{n \to \infty} (f(x_m) - f(x_m))(b - a)$$

$$= 0$$

Følgelig er $\lim_{x\to\infty}\sum_{i=1}^n c_i = 0$, og da er

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x \le I \le \lim_{n \to \infty} \left(\sum_{i=1}^{n} f(x_i) \Delta x + \sum_{i=1}^{n} c_i \right)$$
 (0.20)

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x \le I \le \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$
 (0.21)

$$I = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x \tag{0.22}$$

Det vi har kommet fram til nå er vel og bra, men skal vi regne ut et integral blir det slitsomt å inspisere f(x) på uendelig mange delintervaller for å finne de laveste funksjonsverdiene i hver av dem! Vi merker oss derfor at venstresiden i (0.20), i vårt tilfelle, representerer det kraftigste underestimatet av I, mens høyresiden er det kraftigste overestimatet. I (0.20)-(0.22) har vi vist at begge disse estimatene går mot I når $n \to \infty$, dette betyr at vi for andre valg av x_i på hvert intervall også kommer fram til ønsket resultat. Regneteknisk vil det ofte være lurt å velge $x_i = a + (i-1)\Delta x$ for $i \in \{1, 2, ..., n\}$, slik som i (0.1).

Integral som areal for negative funksjoner

Hva nå om vi isteden skulle finne arealet avgrenset av x-aksen, linjene x = a og x = b og grafen til g(x) = -f(x)?

Grafene til f og g er fullstendig symmetriske om x-aksen, dette må bety at arealet A de avgrenser på et intervall må være helt likt. Og vi vet at

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$
$$= \lim_{n \to \infty} \sum_{i=1}^{n} -g(x_i) \Delta x$$
$$= -\lim_{n \to \infty} \sum_{i=1}^{n} g(x_i) \Delta x$$

Av dette kan vi utvide den geometriske definisjonen av integralet:

Gitt en funksjon f(x) som er negativ og kontiunerlig for alle $x \in [a, b]$. Integralet I multiplisert med -1 tilsvarer arealet avgrenset av x-aksen, linjene x = a og x = b og grafen til f.

Analysens fundamentalteorem

Vi ønsker å vise at integralet I av en funksjon f(x) på intervallet [a,b] er gitt som

$$I = F(b) - F(a)$$

hvor F er en antiderivert til f. For å vise dette skal vi anvende oss av (0.1). Spesielt verdt å merke seg er at $x_1 = a$ og at $x_{n+1} = b$.

Fra tidligere vet vi at den deriverte av en funksjon f(x) er gitt som

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Med vår $\Delta x = \frac{b-a}{n}$ kan vi omskrive grensen:

$$f'(x) = \lim_{n \to \infty} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

La F(x) være en antiderivert til f(x), da er

$$F'(x) = f(x) = \lim_{n \to \infty} \frac{F(x + \Delta x) - F(x)}{\Delta x}$$

Vi erstatter f i (0.1) med uttrykket over, og får at

$$I = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{F(x_i + \Delta x) - F(x_i)}{\Delta x} \Delta x$$

Fordi $x_{i+1} = x_i + \Delta x$, har vi videre at

$$I = \lim_{n \to \infty} \sum_{i=1}^{n} (F(x_{i+1}) - F(x_i))$$

=
$$\lim_{n \to \infty} (F(x_2) - F(x_1) + F(x_3) - F(x_2) + \dots + F(x_{n+1}) - F(x_n))$$

Av dette legger vi merke til at alle $F(x_i)$ kansellerer hverandre, bortsett fra i endepunktene. Vi sitter altså igjen med summen

$$I = \lim_{n \to \infty} \left(-F(x_1) + F(x_{n+1}) \right)$$

= $F(b) - F(a)$

Integralet av utvalgte funksjoner

(0.5) og (0.6) følger direkte av (??) og (??).

Ut ifra definisjonen av det ubestemte integralet (se (0.4)) har vi at

$$\int f(x) \, dx = F(x) + C$$

hvis F' = f. For alle ubestemte integraler gitt i (0.7)-(0.11) kan dette sjekkes via enkle derivasjonoperasjoner og er derfor overlatt til leseren.

Bytte av variabel

Gitt en funksjon F(x) som vil anta samme verdier som G(u(x)):

$$F(x) = G(u) \tag{0.23}$$

La oss nå skrive F'(x) som f(x) og G'(u) som g(u). For to konstanter C og D må vi ha at

$$\int f(x) dx = F(x) + C$$
og
$$\int g(u) du = G(u) + D$$

Det må derfor finnes en konstant E som er slik at

$$\int f(x) \, dx + E = \int g(u) \, du$$

Men av kjerneregelen (??) har vi følgende relasjon:

$$f(x) = g(u)u'$$

Vi kan derfor skrive

$$\int g(u)u'\,dx + E = \int g(u)\,du$$

Når vi utfører integrasjonen på enten venstre eller høyre side, får vi en ny konstant som vi kan slå sammen med E. I praksis kan vi derfor utelate E, noe som er gjort i (0.13).

Volumet av geometrier

Vi setter geometrien vår inn i et koordinatsystem, og tar for gitt at vi har en funksjon A(x) som gir oss tverrsnittsarealet for alle gyldige x.

Figur 8: Volumet av geometrien (gul) tilnærmes ved summen av hver $A(x_i)\Delta x$ (blå).

Vi deler [a,b] inn i n delintervaller, der hvert intervall har lengden $\Delta x = \frac{b-a}{n}$ og startverdi $x_i = a + (i-1)\Delta x$ for $i \in \{1,2,\ldots,n\}$. Vi tilnærmer volumet til geometrien ved å legge sammen volumene på formen $A(x_i)\Delta x$. Når vi lar n gå mot uendelig vil summen gå mot volumet til gjenstanden¹, dette kan vi skrive som

$$V = \lim_{x \to \infty} (A(x_0)\Delta x + A(x_1)\Delta x + \dots + A(x_n)\Delta x)$$
$$= \lim_{x \to \infty} (A(x_0) + A(x_1) + \dots + A(x_n))\Delta x$$
$$= \lim_{x \to \infty} \sum_{i=1}^{n} A(x_i)\Delta x$$

Uttrykket over er analogt til definisjonen av det bestemte integralet fra ligning (0.1).

¹Argumentasjonen for denne påstanden blir identisk med den gitt i forklaringen for det bestemte integralet (se side 29).