$CSC~282 - Fall~2016 \\ \texttt{http://www.cs.rochester.edu/~stefanko/Teaching/16CS282/}$

am	ie:
NII.	
or P	eledge (following http://www.rochester.edu/college/honesty/policy.html#pled
Γ	I affirm that I will not give or receive any unauthorized help on this exam, and that
	all work will be my own.

problem 1		
problem 2		
problem 3		
TOTAL		

do not write on this page

- 1. (40 POINTS) We have n items arranged in a line. The i-th item has weight w_i and value v_i . Assume that the weights are positive integers and the values are positive reals. We also have a weight limit L (where L is an integer). We want to select a subset of the items that maximizes the total value and satisfies the following two conditions:
 - \bullet the total weight of the elements in the subset is at most L, and
 - no three consecutive items are selected.

We will solve the problem using dynamic programming. Let $T[i, \ell]$ be the maximum total value of a subset of the first i items that satisfies the following two conditions:

- the total weight of the elements in the subset is at most ℓ , and
- no three consecutive items are selected.

Give an expression (or a piece of code) to compute the value of $T[i, \ell]$ from smaller subproblems. Clearly explain your expression (for each formula explain what type of optimal solution does it correspond to).

2. (40 POINTS) We are given n numbers a_1, \ldots, a_n and another number L. We want to find the length of the shortest increasing subsequence¹ of a_1, \ldots, a_n whose sum is at least L. For example, if the input is 1, 2, 4, 10, 11, 7, 8, 10 and L = 28 then the answer is 4 (e.g., take the subsequence 4, 7, 8, 10). We are going to solve the problem using dynamic programming. Let T[i, j] be the maximum sum of an increasing subsequence of a_1, \ldots, a_i that ends with a_i and has length j (if a_1, \ldots, a_i contains no increasing subsequence that ends with a_i and has length j we let $T[i, j] = -\infty$). (After the table is

Give an expression (or a piece of code) to compute the value of T[i, j] from smaller subproblems. Clearly explain your expression.

computed we will find the smallest j such that for some $i \in \{1, ..., n\}$ we have $T[i, j] \ge L$.)

¹A subsequence of a sequence a_1, \ldots, a_n is a sequence $a_{i_1}, a_{i_2}, \ldots, a_{i_\ell}$ where $\ell \in \{0, \ldots, n\}$ and $1 \le i_1 < i_2 < \cdots < i_\ell \le n$.

3. (40 POINTS) A **shuffle** of two strings A[1..n] and B[1..m] is formed by interspersing the characters into a new string, keeping the characters of A and B in the same order (for example, 'several' is a shuffle of 'seal' and 'evr'). We are given 3 strings A[1..n], B[1..m], C[1..p]. We want to check whether there exists a shuffle of A[1..n] and B[1..m] that is a subsequence of C[1..p]. We will solve the problem using dynamic programming. Let T[i, j, k] = true if and only if there exists a shuffle of A[1..i] and B[1..i] that is a subsequence of C[1..k]. Give an expression (or a piece of code) to compute the value of T[i, j, k] from smaller subproblems. Clearly explain your expression.

A subsequence of a string C[1..p] = C[1]C[2]...C[p] is a string $C[i_1]C[i_2]...,C[i_\ell]$ where $\ell \in \{0,...,p\}$ and $1 \le i_1 < i_2 < \cdots < i_\ell \le p$.