体育经济分析: 原理与应用

单元2: 职业体育联盟

周正卿

O7 July 2023

引言

课程进度

- 生产者理论
 - 厂商长\短期供给曲线
 - 市场长\短期供给曲线
- 今天: 职业体育联盟
 - 垄断

商业价值与垄断

职业体育联盟垄断来源

MLB的国家联盟是美国最古老的职业体育联盟,成立于1876年,被后来联盟一直相仿的最初的2个基本原则是职业联盟垄断势力的最初来源:

- 1. 成员俱乐部对其主场拥有专属权 → "领地权"在赛事产品市场的卖方垄断;
- 2. 储备系统(reserve system)将球员约束在成员俱乐部,不能随意转会 → 在劳动力市场中构成买方垄断

结果是:

职业联盟作为合资公司制定赛事规则,每支球队(特许经营权)被授权在一定地域内垄断于赛事和球员。

领地权

领地权 → 独占与独买

在领地范围内:

- 在球赛市场上, 职业俱乐部是唯一或者是少数几家法定经营者;
- 在球员市场上, 职业俱乐部是唯一或者是少数几家法定购买者。

简单的情况下,我们暂且先考虑只有一家的球队的**独占(monopoly)** 和 **独买 monopsony**

● 这里的独占有时**并非简单指一家**厂商,若是厂商对产品的**定价权**有相当的支配能力,那么就符合独占厂商。eg:小岛麦当劳

独占厂商的均衡

独占厂商的需求函数

- 独占厂商的市场需求曲线并非水平,而是**整个市场**的需求曲线
- $x = p_x(x), x'(p_x) < 0$ 和 $p_x = p_x(x), p_x' < 0$ 前者代表需求函数(自变量是门票销售量或比赛数量),后者代表反需求函数(自变量是第X场比赛的价格)
- 球队总收益为 $TR(x)=p_xx o MR=rac{dTR}{dx}=p_x+xrac{dp_x}{dx}$
- 厂商依据MR=MC决策, $p_x + x \frac{dp_x}{dx} = MC$
- AR为 $p_x(x) \rightarrow$ 就是市场(厂商)需求曲线
- 那么MR该如何描述? 假设需求函数为线性 $P_x=a-bx$ \rightarrow $TR(x)=P_x\times x=ax-bx^2$ \rightarrow MR=a-2bx

独占厂商的需求函数

独占厂商的需求曲线表示: **厂商可以用提高销量的办法提高市场价格**,也可以用增加销量的办法来压低市场价格

价格变动的两种效应

 $\pi(x) = xP_x - TC(x)$,但 P_x 与 x 反方向运动,那么 乘积如何?

价格效应 是指产品价格下降,**已有**消费者支付更少了

产出效应 是指产品价格下降,会<mark>新增加</mark>消费者购买产品

产出效应 > 价格效应 ⇒ 厂商降价导致 总收益增加

价格变动的两种效应

 $\pi(x) = xP_x - TC(x)$,但 P_x 与 x 反方向运动,那么 乘积如何?

价格效应 是指产品价格下降,**已有**消费者支付更少了

产出效应 是指产品价格下降,会<mark>新增加</mark>消费者购买产品

产出效应 = **价格效应** ⇒ 厂商降价导致 总收益不变

价格变动的两种效应

 $\pi(x) = xP_x - TC(x)$,但 P_x 与 x 反方向运动,那么 乘积如何?

价格效应 是指产品价格下降,**已有**消费者支付更少了

产出效应 是指产品价格下降,会<mark>新增加</mark>消费者购买产品

产出效应 < 价格效应 ⇒ 厂商降价导致 总收益减少

独占厂商根据MR=MC确定产量

$$MR=rac{dTR}{dx}=p_x+xrac{dp_x}{dx}$$

当
$$p_x = a - bx$$
 时, $TR(x) = ax - bx^2 \rightarrow MR = a - 2bx$

根据两种效应的比较得知, 独占厂商的MR可以为正也 可以为负

独占厂商根据MR=MC确定产量

独占厂商如何实现利润最大化? (思考:为什么MC是这个形状)

A: 2个步骤

- **第1步:** 在 MR = MC 处 将产量配给到 Q_M.
- **第2步:** 根据需求决定价格 P_M.

独占厂商没有供给曲

- 对于完全竞争厂商来说,价格是外生变量。但对于独占厂商来说,价格是**内生变量**,即 它可以同时决定价格和产量(回忆)
- 反需求函数 $p_x = p_x(x)$; 总收益 $TR = p_x(x) \cdot x$; 已知市场需求弹性: $\varepsilon_d = -\frac{dx}{dp_x} \frac{p_x}{x}$ (其中 $\varepsilon_d > 0$); 边际收益:

$$egin{align} MR(x) &= rac{dTR(x)}{dx} = p_x + xrac{dp_x}{dx} \ &= p_x + p_x \cdot rac{x}{p_x}rac{dp_x}{dx} \ &= p_x(1 - rac{1}{arepsilon_d}) \ \end{aligned}$$

- 由于MR=MC且MC>0(为什么?),上式隐含 $\varepsilon_d > 1$ (为什么不能 $\varepsilon_d \leq 1$) → **独占厂商 必然生产在需求富有弹性的时候**
- 在完全竞争厂商中 $p_x=MC$ \rightarrow 边际成本线就是供给曲线;独占厂商(或只要在市场上有一点定价权的厂商),由于需求(价格)弹性 $\varepsilon_d<\infty$ \rightarrow 该厂商就不再有供给函数 17 / 45

MR的更多理解

• $MR(x) = p_x(x) + \underbrace{x \cdot p'(x)}_{negtive} = MC(x)$ 所以有 $p_x(x) > MC(x)$,因此独占厂商定价始终

大于边际成本

- 进一步可知在完全竞争市场的均衡时有 $p(x^*) = MC(x^*)$, 因此 $p^m > p^*$ 并且 $x^m < x^*$
- MR公式由两部分组成:独占厂商多生产1单位能夠多得这1单位的收益(边际单位的价格);但是为了多销售这1单位,之前的所有销售量(即所谓的超边际单位 inframarginal units)都只能以更低价格卖出。前者是直接效应(正),后者是间接效应(负)

从最大化一阶条件到二阶条件

• 已知 $p_x(x) + p'_x(x)x - MC(x) \le 0$ 再对 x 全微分, 得到:

$$\underbrace{p_x'(x) + p_x'(x) + p_x''(x)x}_{\frac{dMR}{dx}} - \frac{dMC}{dx} \leq 0$$

- $\bullet \quad \frac{dMR}{dx} \le \frac{dMC}{dx}$
- 由于MR曲线是递减的,MC曲线是弱增加的,所以二阶条件对于所有的x是满足的
- 思考:假如采用凸技术且存在递增规模收益,如果MC曲线在x处下降,会发生什么?
- MR和MC曲线的斜率都会下降。在均衡处,MR曲线必须比MC曲线更陡峭

勒纳指数 Lerner index

- 1934年经济学家勒纳就出了一个衡量厂商在市场上独占力的指数
- $L = \frac{p_x MC}{p_x} = \frac{1}{\varepsilon_d}$
- $MR(x) = p_x(1 \frac{1}{arepsilon_d})$ 和 MR=MC
- 勒纳指数可以改写为: $p_x = \frac{MC(x)}{1-\frac{1}{\epsilon_d}} \to$ 独占厂商定价遵循**逆弹性价格法则**(Inverse Elasticity Pricing Rule , IEPR)

完全竞争与独占的比较

完全竞争与独占的比较

完全竞争市场

- 1. 许多厂商
- 2. 没有厂商能够赚取长期经济利润.
- 3. 每个厂商都是价格接受者
 - → 没有市场势力!
- 4. 每个厂商都生产有效率的产量

独占

- 1. 唯一厂商.
- 2. 独占厂商能够赚取长期经济利润.
- 3. 独占厂商价格制定者
 - → 显著的市场势力!
- 4. 独占厂商生产无效率的产量
 - $\longrightarrow P > MC$

独占的福利损失

独占和福利结果

无效率

独占厂商未能实现市场总盈 余的最大化

• $Q_M < Q_C \Longrightarrow$ 无谓损失 (deadweight loss)

独占和福利结果

无效率

独占厂商未能实现市场总盈 余的最大化

• $Q_M < Q_C \Longrightarrow$ 无谓损失 (deadweight loss)

独占厂商减少了消费者的盈 余

独占和福利结果

消费者可选择的变少了

垄断者没有激励去竞争客户

• 结果: 产品线更少 + 产品质量较低

• 例子: 奥运产品特许经营

更大的损害

寻租 rent seeking

- 经济学家William J. Baumol 1982年提出了一个经济概念:直接非生产性逐利活动 (Directly Unproductive Profit-seeking activities, DUP)
- 指的是那些无助于提高生产力或经济增长,但为了增加利润而进行的经济活动
- DUP活动常见包括了**寻租、游说以及其他合法或非法的尝试**,普遍存在于受到**政府干预** 的市场中(价格管制或进口限额)
- DUP表明虽然一些经济活动可能会产生经济效益,但对整体经济可能是浪费或是有害 → 真正的损失可能是大于无谓损失的

联盟的规模控制

城市(人口/百万)	MLB	NBA	NFL	NHL	MLS	WNBA
纽约(18.9)	2	2	2	3	2	1
洛杉矶(12.8)	2	2	2	1	1	1
芝加哥(9.5)	2	1	1	1	1	1
达拉斯(6.4)	1	1	1	1	1	1
费城(6.0)	1	1	1	1	1	0
休斯顿(6.0)	1	1	1	0	1	0
华盛顿(5.6)	1	1	1	1	1	1
迈阿密(5.6)	1	1	1	1	0	0
亚特兰大(5.3)	1	1	1	0	1	1
波士顿(4.6)	1	1	1	1	1	0

- 联盟决定了球队所能去城市
- 联盟会严格限制球队数量
 - 新球队加入要缴纳"入场费",因为联盟的共享收入会分给更多成员
 - 降低现有成员与所在城市的谈判权(威胁搬迁作为谈判筹码)。
- 十个最大的都市区中的每一个都有几家职业特许经营公司
- NY,11 > LA,9 > CHI,7

讨论1: 联盟为什么会限制规模?

进入障碍 entry barrier

1.控制了生产必备的生产要素或生产技术

• 如NCAA, 几乎是最重要的球员晋升职业通道

2.资本融资困难

● 后期的融资困难 → 投资方认为有风险,不会轻易发放贷款

3.经济规模门槛

- 前期需要巨大的固定资产,但进入后边际成本较低
 - → 随着时间的推移,有"大吃小"的趋势
- 如早期大都会区的私人球场 → 运营成本开支

进入障碍 entry barrier

4.政府特许授权

- 政府发放许可**寻求**行业垄断;**理由是** 追求规模经济或减少竞争带来的负外部性
- 如联盟进入、烟草公司等

5.专利和版权法保护

- 政府允许厂商在某段时间内独家销售某种特定商品或服务的权利
- 权衡取舍 短期牺牲福利 v.s. 竞标激励 (赢家通吃)
- 如赛事转播权、疫苗等

练习(10'): 术语解释

- Licensing
- Franchising
- Exclusive right

https://www.wallstreetmojo.com/licensing-vs-franchising/

问题:三者之间的区别是什么?

讨论2: 列举体育行业中的垄断现象

• 每个同学提一条

应用: 为什么真实票价没有那么高?

门票的价格决定

- 当球队收取100元的价格时,它会产生等于面积 BCG 的无谓损失。消费者剩余从竞争定价下的 ACE 下降到 ABF
- MC在哪里?
- MR与横轴相交的位置来决策。回忆**独占厂商在富有弹性的需求曲线出生产**。当MC=0时,也有MR=0,这意味着需求弹性必然为1,因 此**B点处于单位需求弹性位置**

门票的非弹性需求

Author	Sport	Estimated Elasticity	
Demmert (1973)	MLB	93	
Noll (1974)	MLB	14	
Siegfried & Eisenberg (1980)	Minor League Baseball	25	
Bird (1982)	English Soccer	20	
Scully (1989)	MLB	61	
Coffin (1996)	MLB	11 to68	
Fort and Quirk (1996)	MLB	14 to36	
Depken (2001)	NFL	58	
Garcia & Rodriguez (2002)	Spanish Soccer	3 to 9	
Hadley & Poitras (2002)	MLB	21	
Winfree, McCluskey, Mittelhammer, & Fort (2003)	MLB	06	

NOTE: MLB = Major League Baseball; NFL = National Football League.

门票的非弹性需求

- 经验证据显示门票价格低于普遍认知的利润最大化的价格,而且是非弹性的
- 原因1: 球队依然是利润最大化目标,只是不仅仅依靠门票收入,而是可以在多种收入 选择下进行选择(El-Hodir and Quirk,1974; Heilmann and Wendling,1976);Zimbalist(1992)认为门票收入可能与特许权收益(concession revenues)
- 原因2:球迷是忠诚的,因此有成瘾或者习惯性(addictive or habitual)消费,在一个动态模型中,在长期利润最大化目标下,短期球队可以将MR设置在MC以下(Ahn and Lee, 2003)
- 原因3: 球队是体育人(sportsman), 因此不是利润最大化而是效用(utility)最大化 (DeGennaro, 2003; Ferguson, Stewart, Jones, & Dressay, 1991; Sloane, 1971) → 问题是效用是难以进行实证检验的

门票的非弹性需求

通过周边商品变向抬高票价

- Berri 和 Krautmann(2016)发现,若是以球迷成本指数(Fan Cost Index,FCI)来计算门票价格,要高出实际门票价格
- FCI计算的是一家4口所持有的平均门票价格,再家两杯啤酒,四瓶软饮料,四个热狗, 停车位和两顶帽子
- 作者以2004年MLB为例,联盟的平均FCI为155.52美元,而平均票价为19.82美元。因此,边际特许权收益为: 19.82美元乘以4(=79.28美元),再从155.52美元中减去(=76.24美元);然后再除以4(=19.06美元)来计算
- 以2016年为例, NFL的平均票价约为93美元, 但FCI高于500美元
- 2021年,NFL平均票价107.5美元,+2.5 pct /较2020年;FCI高达568.18美元,+2.8 pct /较2020年
- 球队牺牲了一些上座率的收入,但它从特许经营中获得的利润足以弥补这一损失

$$ullet$$
 $TR=R^{Gates}(x)+R^{Concessions}(x)+R^{Revenue_Sharing}+R^{Broadcast}$; $TC=m+c\cdot x$

- $x = a bp_x$
- $R^{Gates} = \left[\frac{a}{b}x \frac{1}{b}x^2\right] \rightarrow MR^{Gates} = \left[\frac{a}{b} \frac{2}{b}x\right]$
- $R^{Concessions} = g \cdot x \rightarrow MR^{Concessions} = g$
- $MR^{Gates} + MR^{Concessions} = MC$

• 假如没有特许权销售时,
$$MR^{Gates}=[\frac{a}{b}-\frac{2}{b}x]=MC=c$$
 \Rightarrow $p_x^{Gates}=[\frac{a}{2}-\frac{bc}{2}]$ $p_x^{Gates}=[\frac{a}{2b}+\frac{c}{2}]$

• 假如考虑特许权销售后, $MR^{Concessions}=(c-g)$ \Rightarrow $x^*=[\frac{a}{2}-\frac{bc}{2}]+\frac{bg}{2}=x^{Gates}+\frac{bg}{2}$ $p_x^*=[\frac{a}{2b}+\frac{c}{2}]-\frac{g}{2}=p_x^{Gates}-\frac{g}{2}$

● 箭头左边强调了作者的观点。如果c<g,那么门票价格在MR<0时决定,因此会观察到无 弹性的票价。如果c=0,同样MR是负数,得到了利润最大模型的变体。**意味着收入最大 化的所有者会将票价设定在需求的无弹性范围内(而不是单位弹性)**

Season Beginning	MLB			NFL		
	\hat{g}	P^*	p^T/p^*	ĝ	P^*	p^T/p^*
1992	16.29	12.50	1.65	17.98	36.51	1.25
1993	16.92	12.55	1.67	18.90	36.90	1.26
1994	16.98	13.33	1.64	17.93	38.78	1.23
1995	16.72	13.13	1.64	19.90	41.16	1.24
1996	17.16	13.44	1.64	19.44	42.46	1.23
1997	16.75	14.39	1.58	19.97	46.10	1.22
1998	17.28	15.63	1.55	20.96	48.23	1.22
1999	17.27	16.78	1.51	21.24	50.37	1.21
2000	17.64	18.19	1.48	22.32	53.41	1.21
2001	18.44	18.57	1.50	23.36	49.99	1.23
2002	18.66	18.96	1.49	23.40	51.83	1.23
2003	19.11	19.34	1.49	22.88	53.87	1.21
2004	19.06	19.82	1.48	25.66	54.75	1.23
Average	\$17.56	15.90	1.56	\$21.07	46.49	1.23

多工厂的职业联盟

- Neal(1964): 职业联盟是一种多工厂独占(multiplant monopolist)
 - 每个球队在行政区域内是独占的,可以单独出售的门票(联盟是可分割的)
 - 整个联盟在国家范围内是联合独占的
- 由于每个球队的工厂(球队)的生产技术不完全相同,那么联盟的边际成本该如何确定?
- 假设 x_1, x_2 分别是第1家和第2家球队的比赛数量,联盟一共要完成100单位比赛,在联盟的总体需求函数不变的前提下,因此边际收益已经确定
- 初始时 $x_1 = 50, x_2 = 50, x = x_1 + x_2 = 100$,但此时 $MC_1 = 8 > MC_2 = 3$,那么联 盟集体决策可以让第1家球队减少1单位产生进而节省8元成本,而增加第2家球队增加1单位产出只需投入3元,因此只要将x产量由第1家转移到第2家生产就可以节省5元成本,而保持总产量不变
- 下一阶段 $x_1 = 49, x_2 = 51, x = x_1 + x_2 = 100$,但此时 $MC_1 > MC_2$ 时,仍然可以采取之前的方式,维持总产量
- 一直到 $MR = MC_1 = MC_2$

多工厂的职业联盟

