Topology-Aware Segmentation Using Discrete Morse Theory

Xiaoling Hu, Yusu Wang, Li Fuxin, Dimitris Samaras, Chao Chen

Importance of correct topology for image segmentation

- Existing methods optimize w.r.t. per-pixel accuracy
- Topological errors:
 - broken connection, missing components
- Structural errors damage downstream analysis

Why Discrete Morse Theory

- Fix topological errors with persistent homology:
 - [Hu et al. NeurIPS'19] Topological loss by matching persistence diagram

Not efficient enough!

Summary of Contributions

- Our contributions:
 - DMT loss: capturing the critical structures of the training data
 - DMT-based loss function for end-to-end training of neural networks
 - Efficiency: converging faster than topological loss

DMT Loss

- loss function train the model to be topology-preserving
 - Identity the critical structures instead of critical points

Overview of the proposed method

Morse theory

Gradient:
$$\nabla f(x) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_d}\right]^T$$

Critical Points (minimum, maximum, saddle): $\nabla f(x) = 0$

Persistence-based structure pruning

Ground Truth

Improperly pruned structures

Properly pruned structures

Approximation

Approximate $S_2(\epsilon)$ by $\widehat{S_2}(\epsilon)$ using spanning tree:

Qualitative Results

Quantitative Results for 2D datatest

• Per-pixel error, DICE score, Betti number error, Adjusted Rand Index, Variation of Information

Method	Accuracy	DICE	ARI	VOI	Betti Error			
ISBI13								
DIVE	0.9642 ± 0.0018	0.9658 ± 0.0020	0.6923 ± 0.0134	2.790 ± 0.025	3.875 ± 0.326			
U-Net	0.9631 ± 0.0024	0.9649 ± 0.0057	0.7031 ± 0.0256	2.583 ± 0.078	3.463 ± 0.435			
Mosin.	0.9578 ± 0.0029	0.9623 ± 0.0047	0.7483 ± 0.0367	1.534 ± 0.063	2.952 ± 0.379			
TopoLoss	0.9569 ± 0.0031	0.9689 ± 0.0026	0.8064 ± 0.0112	1.436 ± 0.008	1.253 ± 0.172			
DMT	0.9625 ± 0.0027	$\bf 0.9712 \pm 0.0047$	0.8289 ± 0.0189	$\boldsymbol{1.176 \pm 0.052}$	1.102 ± 0.203			
CREMI								
DIVE	0.9498 ± 0.0029	0.9542 ± 0.0037	0.6532 ± 0.0247	2.513 ± 0.047	4.378 ± 0.152			
U-Net	0.9468 ± 0.0048	0.9523 ± 0.0049	0.6723 ± 0.0312	2.346 ± 0.105	3.016 ± 0.253			
Mosin.	0.9467 ± 0.0058	0.9489 ± 0.0053	0.7853 ± 0.0281	1.623 ± 0.083	1.973 ± 0.310			
TopoLoss	0.9456 ± 0.0053	0.9596 ± 0.0029	0.8083 ± 0.0104	1.462 ± 0.028	1.113 ± 0.224			
DMT	0.9475 ± 0.0031	0.9653 ± 0.0019	0.8203 ± 0.0147	$\textbf{1.089} \pm \textbf{0.061}$	$\textbf{0.982} \pm \textbf{0.179}$			
CrackTree								
DIVE	0.9854 ± 0.0052	0.6530 ± 0.0017	0.8634 ± 0.0376	1.570 ± 0.078	1.576 ± 0.287			
U-Net	0.9821 ± 0.0097	0.6491 ± 0.0029	0.8749 ± 0.0421	1.625 ± 0.104	1.785 ± 0.303			
Mosin.	0.9833 ± 0.0067	0.6527 ± 0.0010	0.8897 ± 0.0201	1.113 ± 0.057	1.045 ± 0.214			
TopoLoss	0.9826 ± 0.0084	0.6732 ± 0.0041	0.9291 ± 0.0123	0.997 ± 0.011	0.672 ± 0.176			
DMT	0.9842 ± 0.0041	0.6811 ± 0.0047	0.9307 ± 0.0172	$\textbf{0.901} \pm \textbf{0.081}$	0.518 ± 0.189			
Road								
DIVE	0.9734 ± 0.0077	0.6743 ± 0.0051	0.8201 ± 0.0128	2.368 ± 0.203	3.598 ± 0.783			
U-Net	0.9786 ± 0.0052	0.6612 ± 0.0016	0.8189 ± 0.0097	2.249 ± 0.175	3.439 ± 0.621			
Mosin.	0.9754 ± 0.0043	0.6673 ± 0.0044	0.8456 ± 0.0174	1.457 ± 0.096	2.781 ± 0.237			
TopoLoss	0.9728 ± 0.0063	0.6903 ± 0.0038	0.8671 ± 0.0068	1.234 ± 0.037	$\textbf{1.275} \pm \textbf{0.192}$			
DMT	0.9744 ± 0.0049	0.7056 ± 0.0022	0.8819 ± 0.0104	$\textbf{1.092} \pm \textbf{0.129}$	$\textbf{0.995} \pm \textbf{0.301}$			

Quantitative Results for 3D datatest

• Per-pixel error, DICE score, Betti number error, Adjusted Rand Index, Variation of Information

Method	Accuracy	DICE	ARI	VOI	Betti Error		
ISBI13							
3D DIVE	0.9723 ± 0.0021	0.9681 ± 0.0043	0.8719 ± 0.0189	1.208 ± 0.149	2.375 ± 0.419		
3D U-Net	0.9746 ± 0.0025	0.9701 ± 0.0012	$\bf 0.8956 \pm 0.0391$	1.123 ± 0.091	1.954 ± 0.585		
MALA	0.9701 ± 0.0018	0.9699 ± 0.0013	0.8945 ± 0.0481	0.901 ± 0.106	1.103 ± 0.207		
3D TopoLoss	0.9689 ± 0.0031	0.9752 ± 0.0045	0.9043 ± 0.0283	0.792 ± 0.086	0.972 ± 0.245		
DMT	0.9701 ± 0.0026	0.9803 ± 0.0019	$\textbf{0.9149} \pm \textbf{0.0217}$	$\textbf{0.634} \pm \textbf{0.086}$	$\textbf{0.812} \pm \textbf{0.134}$		
CREMI							
3D DIVE	0.9503 ± 0.0061	0.9641 ± 0.0011	0.8514 ± 0.0387	1.219 ± 0.103	2.674 ± 0.473		
3D U-Net	0.9547 ± 0.0038	0.9618 ± 0.0026	0.8322 ± 0.0315	1.416 ± 0.097	2.313 ± 0.501		
MALA	0.9472 ± 0.0027	0.9583 ± 0.0023	0.8713 ± 0.0286	1.109 ± 0.093	1.114 ± 0.309		
3D TopoLoss	0.9523 ± 0.0043	0.9672 ± 0.0010	0.8726 ± 0.0194	1.044 ± 0.128	1.076 ± 0.206		
DMT	0.9529 ± 0.0031	0.9731 ± 0.0045	$\bf 0.9013 \pm 0.0202$	$\textbf{0.891} \pm \textbf{0.099}$	$\textbf{0.726} \pm \textbf{0.187}$		
3Dircadb							
3D DIVE	0.9618 ± 0.0054	0.6097 ± 0.0034	/	/	4.571 ± 0.505		
3D U-Net	0.9632 ± 0.0009	0.5898 ± 0.0025	/	/	4.131 ± 0.483		
MALA	0.9546 ± 0.0033	0.5719 ± 0.0043	/	/	2.982 ± 0.105		
3D TopoLoss	0.9561 ± 0.0019	0.6138 ± 0.0029	/	/	2.245 ± 0.255		
DMT	0.9587 ± 0.0023	$\textbf{0.6257} \pm \textbf{0.0021}$	1	/	1.415 ± 0.305		

Comparison with reweighted cross entropy loss

Input Image

Ground Truth

Likelihood map

Pixels identified by reweighted CE

Highlighted Structures by DMT

Method	Accuracy	Betti Error
DMT	0.9475	0.982
Reweighted CE	0.9481	2.753

Conclusions

- DMT loss identifies critical structures that are relevant to image topology and fixes them once at a time.
- Could be incorporated into any segmentation backbones to train the model to be topology-preserving.
- Works for both 2D and 3D images with rich structures.

Thank you for your attention!

Contact: Xiaoling Hu xiaolhu@cs.stonybrook.edu

Website: https://www3.cs.stonybrook.edu/~xiaolhu/

