Chapitre 8

Logique propositionnelle

Sommaire.

1	Formules propositionnelles. 1.1 Syntaxe	1
2	Formes normales. 2.1 Formes normales négatives	2
3	2.4 Forme normale disjonctive	

Les propositions marquées de \star sont au programme de colles.

Formules propositionnelles. 1

1.1 Syntaxe.

Définition 1: Logique propositionnelle.

Soit V un ensemble fini (ou dénombrable) de symboles appelés variables propositionnelles.

On définit inductivement l'ensemble des formules propositionnelles sur $\mathbb V$:

- \perp et \top sont des expressions logiques, Faux et Vrai respectivement.
- p est une variable propositionnelle de \mathbb{V} .
- À partir de φ et ψ deux formules, on peut construire :
 - $\begin{array}{ll} & (\varphi \wedge \psi) \text{ (conjonction).} \\ & (\varphi \vee \psi) \text{ (disjonction).} \\ & (\neg \varphi) \text{ (négation).} \end{array}$

Ici, φ et ψ désigneront toujours des formules.

Toute formule propositionnelle peut être représentée par un arbre : avec les variables propositionnelles en tant que feuilles, et les constructeurs en tant que noeuds internes.

1.2Sémantique.

Définition 2: Valuation.

Une valuation sur \mathbb{V} est une application $v : \mathbb{V} \to \{0, 1\}$.

On étend cette application aux formules propositionnelles :

Soient φ, ψ des formules propositionnelles. On définit inductivement $v(\varphi)$ tel que :

- $v(\bot) = 0$.
- $v(\top) = 1$.
- $v(\varphi) = v(\varphi) \text{ si } \varphi \in \mathbb{V}.$
- $v(\varphi \wedge \psi) = v(\varphi) \times v(\psi)$.
- $v(\varphi \lor \psi) = v(\varphi) + v(\psi) v(\varphi) \times v(\psi)$.
- $v(\neg \varphi) = 1 v(\varphi)$.

Ici, v désignera toujours une valuation.

Définition 3: Équivalence logique. *

Deux formules φ et ψ sont **sémantiquement équivalentes** si pour toute valuation v sur \mathbb{V} , $v(\varphi) = v(\psi)$. On note alors $\varphi \equiv \psi$. Ainsi, \equiv est une relation d'équivalence sur les formules.

Remarque: Dans la pratique, on compare les tables de vérité de φ et ψ .

Définition 4: Autres constructeurs.

Il existe des liens logiques qui s'expriment à partir de ceux de base :

- L'implication $\varphi \to \psi \equiv \neg \varphi \lor \psi$.
- L'équivalence $\varphi \leftrightarrow \psi \equiv \varphi \rightarrow \psi \land \psi \rightarrow \varphi$.
- Vrai : $\top \equiv \varphi \vee \neg \varphi$.
- Faux : $\perp \equiv \varphi \land \neg \varphi$.

Proposition 5: Lois de De Morgan. 🛨

Soient φ et ψ deux formules logiques. Alors :

- $\bullet \neg (\varphi \wedge \psi) \equiv \neg \varphi \vee \neg \psi.$
- $\bullet \neg (\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi.$

Preuve:

On le montre facilement en comparant les tables de vérités.

1.3 Satisfiabilité.

Définition 6: Modèles.

Soit φ une formule sur \mathbb{V} . Une valuation $v: \mathbb{V} \to \mathscr{B}$ est un **modèle** de φ si $v(\varphi) = 1$.

On note alors $v \models \varphi$.

On dit alors qu'une formule est satisfiable si elle admet un modèle.

Une formule φ pour laquelle toute valuation est un modèle est une tautologie, on note $\models \varphi$.

Si aucune valuation n'en est un modèle, φ est une antilogie, on note $\not\models \varphi$.

Définition 7: Conséquence logique.

Soient φ, ψ deux formules.

On dit que φ est en **conséquence logique** de ψ , et on note $\psi \models \varphi$ si tout modèle de ψ est modèle de φ . On étend cette notation à un ensemble Γ de formules, dans ce cas, on dit que φ est une **conséquence logique** de Γ si φ est en **conséquence logique** de toute formule de Γ .

Définition 8: Équisatisfiabilité

Deux formules φ et ψ sont **équisatisfiables** si φ est satisfiable si et seulement si ψ l'est.

2 Formes normales.

2.1 Formes normales négatives.

Définition 9: Littéral.

On appelle littéral une variable propositionnelle ou sa négation.

Définition 10: Construction. 🛨

Une formule est dite en forme normale négative (FNN) si ses négations ne s'appliquent qu'aux variables.

Pour une formule φ , on construit sa forme normale négative $nnF(\varphi)$ inductivement de la manière suivante :

- $nnF(\varphi) = \varphi$ si c'est un littéral.
- $\operatorname{nnF}(\neg\neg\varphi) = \operatorname{nnF}(\varphi)$
- $nnF(\varphi \wedge \psi) = nnF(\varphi) \wedge nnF(\psi)$
- $\operatorname{nnF}(\varphi \vee \psi) = \operatorname{nnF}(\varphi) \vee \operatorname{nnF}(\psi)$
- $\operatorname{nnF}(\neg(\varphi \lor \psi)) = \operatorname{nnF}(\neg\varphi) \land \operatorname{nnF}(\neg\psi)$
- $\operatorname{nnF}(\neg(\varphi \land \psi)) = \operatorname{nnF}(\neg\varphi) \lor \operatorname{nnF}(\neg\psi)$

Proposition 11: Existence. \star

Pour toute formule φ , $\mathrm{nnF}(\varphi)$ est sous forme normale négative et $\mathrm{nnF}(\varphi) \equiv \varphi$.

Preuve:

Par induction sur les formules propositionnelles.

Cas de base. Soit φ un littéral. $nnF(\varphi) = \varphi$ sous FNN et $nnF(\varphi) \equiv \varphi$.

Hérédité: Soient φ, ψ telles que la propriété soit vraie sur elles-mêmes et leurs négations.

Soit v une valuation de φ et ψ .

On a $nnF(\varphi \wedge \psi) = nnF(\varphi) \wedge nnF(\psi)$ donc c'est bien sous forme normale négative par hypothèse.

De plus, $v \models \text{nnF}(\varphi \land \psi) = \iff v \models \text{nnF}(\varphi) \land \text{nnF}(\psi) \iff v \models \varphi \text{ et } v \models \psi \iff v \models \varphi \land \psi.$

On a $nnF(\neg(\varphi \land \psi)) = nnF(\neg \varphi) \lor nnF(\neg \psi)$ donc c'est bien sous forme normale négative par hypothèse.

De plus, $v \models \mathrm{nnF}(\neg(\varphi \land \psi)) \Leftrightarrow v \models \mathrm{nnF}(\neg\varphi) \lor \mathrm{nnF}(\neg\psi) \Leftrightarrow v \models \neg\varphi \text{ ou } v \models \neg\psi \Leftrightarrow v \models \neg\varphi \lor \neg\psi \Leftrightarrow v \models \neg(\varphi \land \psi).$

Même raisonnement pour la disjonction.

Par théorème d'induction, c'est vrai pour toute formule φ .

2.2 Formes normales conjonctives.

Définition 12: Problème SAT.

Le problème SAT prend une formule en entrée et répond à la question : "Cette formule est-elle satisfiable ?".

Définition 13: Clause.

Une ${\bf clause}$ est une disjonction de littéraux.

Définition 14: Forme normale conjonctive. 🛨

Une formule est en forme normale conjonctive (FNC) si elle est une conjonction de clauses.

On définit inductivement la mise sous FNC de φ en $\mathrm{cnF}(\varphi)$ par :

- $\operatorname{cnF}(\varphi) = \varphi \operatorname{si} \varphi \operatorname{litt\'{e}ral}$.
- $\operatorname{cnF}(\varphi \vee \psi) = \varphi \vee \psi$ si φ, ψ littéraux.
- $\operatorname{cnF}(\varphi \wedge \psi) = \operatorname{cnF}(\varphi) \wedge \operatorname{cnF}(\psi)$.
- $\operatorname{cnF}(\varphi \vee (\psi \wedge \psi')) = \operatorname{cnF}(\varphi \vee \psi) \wedge \operatorname{cnF}(\varphi \wedge \psi').$
- $\operatorname{cnF}(\varphi \vee (\psi \vee \psi')) = \operatorname{cnF}(\varphi \vee \operatorname{cnF}(\psi \vee \psi')).$

Proposition 15

Si φ est une formule sous FNN, $\operatorname{cnF}(\varphi)$ est sous FNC et $\operatorname{cnF}(\varphi) \equiv \varphi$.

Preuve:

Même principe de preuve que pour la FNN.

Proposition 16

Si φ est sous FNN, on peut construire une FNC équisatisfiable à φ en temps linéaire.

Preuve:

La preuve existe dans le cours, elle est trop longue et horrible.

2.3 Algorithme de Quine

Définition 17: Substitution.

Soit φ une formule sur un esemble $\{p_1, ..., p_n\}$ et soient $\{\varphi_1, ..., \varphi_n\}$ des formules.

La substitution des φ_i aux p_i est la formule obtenue en remplaçant simultanément chaque p_i par φ_i .

On la note $\varphi[\varphi_1/p_i,...,\varphi_n/p_n]$.

La substitution se définit inductivement :

- $\varphi[\varphi_i/p_i] = \varphi_i \text{ si } \varphi = p_i.$
- $\varphi[\varphi_1/p_1,...,\varphi_n/p_n] = \neg \varphi'[...]$ si $\varphi = \neg \varphi'$.
- $\varphi[...] = \varphi_1[...] \wedge \varphi_2[...]$ si $\varphi = \varphi_1 \wedge \varphi_2$.
- $\varphi[...] = \varphi_1[...] \vee \varphi_2[...]$ si $\varphi = \varphi_1 \vee \varphi_2$.

Proposition 18

Une substitution dans une tautologie donne une tautologie.

Preuve:

Soit φ sur $\{p_1,...,p_n\}$ et $\{\varphi_1,...,\varphi_n\}$ des formules sur \mathbb{V} .

Soit v une valuation sur \mathbb{V} et ω sur $\{p_1,...,p_n\}$: $\omega(p_i)=v(\varphi_i)$.

Montrons que $\omega(\varphi) = v(\varphi[...])$.

Cas de base. Trivial si $\varphi = \top$ ou $\varphi = \bot$.

Si $\varphi = p_i$, alors $\varphi[...] = \varphi_i$ et $\omega(\varphi) = \omega(p_i) = v(\varphi_i)$.

Hérédité.

Si $\varphi = \neg \varphi', \ \omega(\varphi) = \omega(\neg \varphi') = \neg \omega(\varphi') = \neg v(\varphi'[...]) = v(\neg \varphi'[...]) = v(\varphi[...]).$

Si $\varphi = \varphi_1 \vee \varphi_2$, $\omega(\varphi) = \omega(\varphi_1 \vee \varphi_2) = \omega(\varphi_1) \vee \omega(\varphi_2) = v(\varphi_1[...]) \vee v(\varphi_2[...]) = v(\varphi_1[...]) \vee \varphi_2[...]) = v(\varphi)$.

De même pour la conjonction, avec φ_1, φ_2 vérifiant l'hypothèse.

Par principe d'induction structurelle, la propriété est vérifiée.

Supposons φ une tautologie. Soit v une valuation de la formule substituée., il existe ω telle que $\omega(\varphi) = v(\varphi[...])$.

Comme φ est tautologie, $w(\varphi) = 1$ donc $v(\varphi[...]) = 1$ donc $v \models \varphi[...]$, c'est une tautologie.

Définition 19: Algorithme de Quine.

Entrée: φ sous FNC.

Sortie: 1 si φ est satisfiable, 0 sinon.

- 1. Simplifier les clauses.
- 2. Si φ est une conjonction sur \varnothing , renvoyer 1.
- 3. Si φ contient \bot , renvoyer 0.
- 4. Choisir la prochaine variable p dans l'une des clauses :
 - Si Quine $(\varphi[\perp/p])$, renvoyer 1, sinon renvoyer Quine $(\varphi[\top/p])$.

Étape 1:

- \bullet Si la clause est \top , la supprimer.
- \bullet Tiers-exclu : les clauses contenant des littéraux opposés sont supprimées.
- \bullet Fusion : supprimer les doublons de littéraux.
- Si une clause en contient une autre, on la supprime.
- \bullet Si une clause contient $\bot,$ le supprimer.

Terminaison: Toutes les opérations s'effectuent en temps fini.

Il y a un nombre fini d'appels récursifs : variant d'appel donnée par le nombre de variables apparaissant dans la formule.

Correction: assurée par le tiers-exclu.

2.4 Forme normale disjonctive.

Définition 20: Conjonction élémentaire.

Une conjonction élémentaire est une formule sans disjonctions.

Définition 21: Forme normale disjonctive. *

Une formule est une **forme normale disjonctive (FND)** si c'est une disjonction de conjonctions élémentaires.

Pour passer de φ sous FNN à $\mathrm{dnF}(\varphi)$ sous FND, on procède par induction :

- $dnF(\varphi) = \varphi \text{ si } \varphi \text{ est littéral.}$
- $dnF(\varphi) = \varphi \text{ si } \varphi = l \wedge l' \text{ avec } l, l' \text{ littéraux.}$
- $\operatorname{dnF}(\varphi \vee \psi) = \operatorname{dnF}(\varphi) \vee \operatorname{dnF}(\psi)$.
- $\operatorname{dnF}(\varphi \wedge (\psi \vee \psi')) = \operatorname{dnF}(\varphi \wedge \psi) \vee \operatorname{dnF}(\varphi \wedge \psi').$
- $\operatorname{dnF}(\varphi \wedge (\psi \wedge \psi')) = \operatorname{dnF}(\varphi \wedge \operatorname{dnF}(\psi \wedge \psi')).$

Proposition 22

Si φ est sous FNN, $dnF(\varphi)$ est sous FND et $dnF(\varphi) \equiv \varphi$.

Preuve:

Pour tout modèle v de φ , on construit :

$$\varphi_v = \bigwedge_{p \in \mathbb{V}} l_p$$
 où $l_p = \begin{cases} p & \text{si } v(p) = 1 \\ \neg p & \text{sinon} \end{cases}$.

On pose alors ψ la disjonction des φ_v pour tout modèle v de φ .

On obtient alors ψ sous FND et $\psi \equiv \varphi$.

Définition 23

Une FND est complète si chaque variable est représentée une unique fois dans chaque conjonction élémentaire.

3 Logique des prédicats.

Définition 24

Pour chaque instance de logique du premier ordre, on introduit un ensemble de symboles:

- Une infinité de symboles de variables.
- Des symboles de constantes, éléments particuliers du domaine d'interprétation.
- Des symboles de fonctions, transforment les tuples d'éléments.
- Des symboles de prédicats, expriment des propriétés sur les éléments.

Exemple 25

Un groupe peut être décrit par:

- Constantes: e le neutre.
- Fonctions: le produit, l'inverse.
- Prédicat: l'égalité.

Familles des ensembles:

- Constantes: \varnothing
- Fonctions: \cup , \cap , \setminus
- Prédicats: \in , \subset , =.

Définition 26: Termes.

À partir des fonctions, des constantes et des variables, on définit inductivement les termes:

- Assertions: constantes et variables.
- Règles d'inférence: si f est une fonction d'arité n, et $t_1,...,t_n$ des termes, $f(t_1,...,t_n)$ est un terme.

Définition 27: Atomes.

Un **atome** (ou formule atomique) est l'application d'un prédicat n-aire à une suite de n termes.

Définition 28: Formules.

Les **formules** de la logique des prédicats sont construites inductivement:

- Assertions: atomes.
- Règles d'inférence: \land , \lor , \neg , \exists , \forall .

Exemple 29: Groupes abéliens.

Dans un groupe abélien, on voudrait que les formules suivantes soient vraies:

$$\forall x. \ x+0=x, \quad \forall x. \ \exists y. \ x+y=0, \quad \forall x. \ \forall y. \ x+y=y+x$$

Définition 30: Occurences.

Une occurence d'une variable x dans une formule F est une position de cette variable dans F. Une occurence de x est liée dans F si dans la branche qui aboutit à cette occurence on rencontre une quantification de x. Sinon elle est libre.

Exemple 31

Dans $\exists x. P(x,y), x$ est liée et y est libre.

Définition 32

Deux formules F et G sont α -équivalentes si on peut passer de l'une à l'autre en renommant des variables liées.