32-Bit MCU HR8P506

Datasheet

□Brief

☑Datasheet

□Specification

SHANGHAI EASTSOFT MICROELECTRONICS CO., LTD.

2017. 12.08

Preliminary 1/341

Application Notes

Power On/Off Sequence

Eastsoft MCUs are designed with separate power pins. If a MCU is applied in a system which has multiple power supplies, the MCU should be powered on first or at the same time together with other devices involved in the system. Conversely, the MCU should be powered off after all other devices are powered off. Reversed steps may cause excessive voltage or current on the MCU internal components, which is very likely to cause malfunction and weaken components performances. For details, please refer to the datasheet.

Reset

Eastsoft MCUs provide an internal power-on reset circuit, which could possibly be invalid in different fast/slow power on/off systems. To ensure a proper reset function, the following resets are recommended: external reset, brown-out reset, watchdog reset, etc. The triode reset or the RC reset is recommended when the external reset circuit is used; otherwise, it is suggested to connect the reset pin to power supply with a resistor or to use other protection circuits if necessary. For details, please refer to the datasheet.

Clock

Eastsoft MCUs offer internal and external clock sources. The internal clock frequency may experience a variation due to unstable temperature or voltage, which may affect the accuracy of the clock source. When a ceramic or crystal oscillator circuit is used as an external clock source, it is suggested to enable the oscillator start-up timer. When a RC oscillator circuit is used, it is suggested to take account of the capacitor matching and resistor matching. When an external active oscillator or external clock input is used, consider to input a high-voltage or low-voltage. For details, please refer to the datasheet

Initialization

For different application systems, it is necessary to initialize registers, memories and function modules, especially the multiplexed I/O pins, in order to avoid the unknown status of I/O pins when MCU is powered on.

Pins

Eastsoft MCUs are designed with wide-range input voltage. It is suggested that the input high-level voltage should be higher than V_{IHMIN}, the input low-level voltage should be lower than V_{ILMAX}. To avoid the noise entering into MCU, the input voltage should not be set between V_{IHMIN} and V_{ILMAX}. The unused I/O pins are suggested to be set to input mode, and should be connected to VDD via pull-up resistors or to GND via pull-down resistors. Alternatively, set unused pins to output mode with fixed voltage and leave them floating. How to handle unused pins varies from application to application and it is important to follow the specific application specification and instructions.

ESD Protection

Eastsoft MCUs have industrial ESD standard protection circuit. It is suggested to take proper protection measures depending on application/storage environment to prevent MCUs from static electricity. Special attention should be paid to the humidity of application environment. Do not use the insulators which could cause static electricity. Use anti-static-electricity container/shields or conductive materials to store and transport the MCUs. Ground all the testing tools, measuring tools, including the workbench. Use anti-static-electricity belts or gloves, and do not touch the MCU with fingers directly.

EFT Protection

Eastsoft MCUs have industrial EFT standard protection circuit.. When MCUs are used in PCB systems, the related design requests should be satisfied, including wiring of VDD or GND (i.e. separation of digital/analog power supply,

single-point/multi-point grounding and so on), protection circuits for reset pins, decoupling capacitors between VDD and GND, separate processing of high/low frequency circuits, selection of single-layer/multi-layer board and so on.

Development Environment

Eastsoft MCUs have a complete software/hardware development environment with protected intellectual property..

When using the development tools, such as assembler, compiler, burner and firmware emulator of Shanghai Eastsoft IC Co, Ltd. or by the appointed third party, please follow the related specifications and instructions.

Note: For any questions arising from product development, please contact us through the sales department or other ways.

Ordering Information

Part Number	FLASH	RAM	I/O	Timer	RTC	UART/ EUART	SPI	I2C	ADC	LCDC/LEDC	LVD	Package	
HR8P506FHLQ			46						12bit×16	8COM X 28SEG		LQFP48	
HR8P506FHLP	36KB			42	40 hit V 4					12bit×12	8COM X 24SEG		LQFP44
HR8P506FHLK		8KB	30	16-bit X 4, 32-bit X 1	1	3	2	1	12bit×10	8COM X 13SEG	√	LQFP32	
HR8P506FHNK			30	32-DIL A T					12bit×10	8COM X 13SEG		QFN32	
HR8P506FHSH			26						12bit×11	8COM X 10SEG		SOP28	

Address: 5th Floor, Building2A, Tianhua Information Science and Technology Park,

No.299 Longcao Road, Shanghai, P.R.CHINA

Zip Code: 200235

E-mail :support@essemi.com

Tel :+86-21-60910333

Fax :+86-21-60914991

Website : http://www.essemi.com/

Copyright ©

SHANGHAI EASTSOFT MICROELECTRONICS CO., LTD. ALL RIGHTS RESERVED.

The information in this document is believed to be accurate in all respects based on the existing data provided by Shanghai Eastsoft Microelectronics Co., Ltd. The examples in this document are subject to correct use and standard operations. Please take full considerations of external conditions when using the examples. Shanghai Eastsoft Microelectronics Co., Ltd makes no warranty, representations or guarantee regarding the suitability, fitness or completeness for these applications. Shanghai Eastsoft Microelectronics Co., Ltd does not bear any legal responsibility for any risk or consequence arising from the use of the information. Shanghai Eastsoft Microelectronics Co., Ltd reserves the rights to make modifications without further notice. For the latest information, please contact us using the above contact information.

Revision History

Date	Change
2017-12-8	Initial version, based on HR8P506_Datasheet_C_v1.5

Note: Should you have any questions, please refer to the corresponding version of the HR8P506_Datasheet_C.

Contents

Chapter1	Introduction	16
1. 1	Overview	16
1. 2	Application Fields	20
1. 3	Block Diagram	20
1. 4	Pin Diagrams	21
1.	4. 1 LQFP48	21
1.	4. 2 LQFP44	22
1.	4. 3 LQFP32	23
1.	4. 4 QFN32	24
1.	4. 5 SOP28	25
1. 5	Pin Descriptions	25
1.	5. 1 Pin Descriptions	25
1.	5. 2 Pin Multiplexing	27
Chapter2	System Control and Operations	29
2. 1	System Control and Protection	29
2.	1. 1 Overview	29
2.	1. 2 Special Function Register	29
2. 2	System Power	30
2.	2. 1 Block Diagram	30
2.	2. 2 Power Supply	30
2. 3	System Resets	30
2.	3. 1 Overview	30
2.	3. 2 Block Diagram	30
2.	3. 3 Reset Timing Diagram	31
2.	3. 4 External Reset MRSTN Reference	31
2.	3. 5 Special Function Register	32
2. 4	Low Voltage Detection LVD	34
2.	4. 1 Overview	34
2.	4. 2 Special Function Register	34
2. 5	Low Power Mode	36
2.	5. 1 Overview	36
2.	5. 2 Normal Sleep Mode	36
2.	5. 3 Deep Sleep Mode	36
2.	5. 4 Wake-up	
2.	5. 5 Flash Memory Wait Function	37
2.	5. 6 Special Function Register	39
2. 6	System Clock	
2.	6. 1 Overview	40
2.	6. 2 Block Diagram	41
2.	6. 3 Clock Source	41
	2. 6. 3. 1 External Clock XTAL	
	2. 6. 3. 2 Internal High Speed Clock HRC	
	Č .	

	2. 6.	. 3. 3 Internal Low Speed Clock LRC	42
	2. 6.	. 3. 4 Phase Locked Loop PLL	43
	2. 6.	. 3. 5 External Clock Check Management CCM	44
	2. 6.	. 3. 6 Clock Filter CLKFLT	45
	2. 6.	. 3. 7 Device Status in Sleep Mode	45
	2. 6.	. 3. 8 Normal Sleep Mode	45
	2. 6.	. 3. 9 Deep Sleep Mode	46
	2. 6. 4	Special Function Registers	46
	2. 6. 5	System Clock Application Notes	54
	2. 6.	. 5. 1 External clock XTAL	54
	2. 6.	. 5. 2 Internal High Speed Clock HRC	55
	2. 6.	. 5. 3 Internal Low Speed Clock LRC	55
	2. 6.	. 5. 4 Phase Locked Loop PLL	56
	2. 6.	. 5. 5 Clock Filter CLKFLT	57
	2. 7 Inter	rrupts and Exceptions Handler	59
	2. 7. 1	Interrupts and Exceptions	59
	2. 7. 2	Interrupt and Exception Vector Allocation	61
	2. 7. 3	Interrupt Vector Table Re-map	61
	2. 7. 4	Special Function Registers	62
	2. 8 Syst	tem Control Block (SCB)	72
	2. 8. 1	Overview	72
	2. 8. 2	Special Function Registers	72
	2. 9 Sys	Tick Timer	76
	2. 9. 1	Overview	76
	2. 9. 2	Special Function Registers	77
	2. 10 Soft	tware Configuration Word	79
	2. 11 Syn	chronization Control for T16N/T32N	80
	2. 11. 1	Overview	80
	2. 11. 2	Special Function Registers	80
Ch	apter3 Men	nory	82
	3. 1 Men	mory Map	82
	3. 2 Flas	sh Memory	82
	3. 2. 1	Configuration Word	82
	3. 2. 2	Flash Program Memory	86
	3. 2. 3	In-Application Programming IAP	86
	3. 2.	. 3. 1 Overview	86
	3. 2.	. 3. 2 IAP Operations	86
	3. 2.	. 3. 3 IAP ROM	89
	3. 2. 4	Special Function Registers	90
	3. 3 Data	a Memory (SRAM)	94
	3. 3. 1	SRAM Map	94
	3. 3. 2	SRAM Bit Banding	94
	3. 4 Peri	ipheral Registers	95
	3. 4. 1	Peripheral Registers Map	95

3	3. 4. 2	Peripheral Bit Banding	95
3	3. 4. 3	List of System Control Unit (SCU) Registers	96
3	3. 4. 4	List of GPIO Registers	96
3	3. 4. 5	List of IAP Registers	98
3	3. 4. 6	List of ADC Registers	98
3	3. 4. 7	List of RTC Registers	98
3	3. 4. 8	List of LCDC Registers	99
3	3. 4. 9	List of LEDC Registers	99
3	3. 4. 10	List of WDT Registers	100
3	3. 4. 11	List of T16N0/T16N1/T16N2/T16N3 Registers	100
3	3. 4. 12	List of T32N0 Registers	101
3	3. 4. 13	List of UART0/UART1 Registers	101
3	3. 4. 14	List of EUART0 Registers	102
3	3. 4. 15	List of SPI0/ SPI1 Registers	102
3	3. 4. 16	List of I2C0 Registers	103
3. 5	Co	re Registers	103
3	3. 5. 1	List of SysTick Timer Registers	103
3	3. 5. 2	List of Nested Vectored Interrupt Controller Registers (NVIC)	103
3	3. 5. 3	List of System Control Block (SCB) Registers	104
Chapter4	Ge	neral Purpose IOs (GPIO)	105
4. 1	Ov	erview	105
4. 2	Blo	ock Diagram	106
4. 3	Ex	ternal Port Interrupt	106
4. 4	Ex	ternal Key Interrupt	107
4. 5	Bu	zz Output	108
4. 6	Sp	ecial Function Registers	109
Chapter5	Pe	ripherals	136
5. 1	Tin	ner/Counter	136
5	5. 1. 1	16-bit Timer/Counter T16N	136
	5.	1. 1. 1 Overview	136
	5.	1. 1. 2 Block Diagram	137
	5.	1. 1. 3 T16N Timer/Counter	137
	5.	1. 1. 4 T16N Input Capture Mode	139
	5.	1. 1. 5 T16N Output PWM Mode	140
	5.	1. 1. 6 Special Function Registers	144
	5.	1. 1. 7 T16N Application Notes	157
5	5. 1. 2	32-bit Timer/Counter T32N (T32N0)	158
	5.	1. 2. 1 Overview	158
	5.	1. 2. 2 Block Diagram	158
	5.	1. 2. 3 T32N Timer/Counter	158
	5.	1. 2. 4 T32N Input Capture Mode	160
	5.	1. 2. 5 T32N Output PWM Mode	161
	5.	1. 2. 6 Special Function Registers	163
	5.	1. 2. 7 T32N Application Notes	171

5. 2 Uni	versal Asynchronous Receiver Transmitter	172
5. 2. 1	Overview	172
5. 2. 2	Block Diagram	173
5. 2. 3	Data Format	173
5. 2. 4	Asynchronous Transmitter	174
5. 2. 5	Asynchronous Receiver	176
5. 2. 6	UART Transmit Modulation	179
5. 2. 7	UART Infrared Wake-up	179
5. 2. 8	UART Port Polarity	179
5. 2. 9	UART Auto Baud Rate Detection	179
5. 2. 10	UART Idle Frame Detection	181
5. 2. 11	UART Transmission and Reception Halt	182
5. 2. 12	Special Function Registers	182
5. 2. 13	UART Application Notes	201
5. 3 Enh	nanced Universal Asynchronous Receiver Transmitter	202
5. 3. 1	Overview	202
5. 3. 2	Block Diagram	202
5. 3. 3	EUART Port Multiplexing	202
5. 3. 4	Normal UART Mode	203
5. 3. 5	Asynchronous Receiver and Transmitter in 7816 Mode	203
5. 3. 6	Data Format in 7816 Mode	204
5. 3. 7	Auto Re-transmission in 7816 Mode	205
5. 3. 8	Auto Re-reception in 7816 Mode	205
5. 3. 9	Special Function Registers	206
5. 3. 10	EUART Application Notes	217
5. 4 Ser	rial Peripheral Interface SPI (SPI0 /SPI1)	218
5. 4. 1	Overview	218
5. 4. 2	Block Diagram	218
5. 4. 3	SPI Communication Mode	218
5. 4. 4	SPI Data Format	219
5. 4. 5	SPI Data Width	220
5. 4. 6	SPI Synchronous Transmitter	220
5. 4. 7	SPI Synchronous Receiver	221
5. 4. 8	SPI Communication Control	222
5. 4. 9	SPI Receive Delay	223
5. 4. 10	SPI Transmit Interval between Data Frames	223
5. 4. 11	Special Function Registers	224
	SPI Application Notes	
	er-integrated Circuit Interface (I2C0)	
5. 5. 1	Overview	
5. 5. 2	Block Diagram	
5. 5. 3	I2C Bus Basic Principle	
5. 5	5. 3. 1 I2C Communication Protocol	
5. 5	5. 3. 2 I2C Data Transfer	

5. 5. 5 I2C Time-based Timer and 16x Sampler. 236 5. 5. 6 I2C Transmitter 236 5. 5. 7 I2C Receiver 237 5. 5. 8 I2C Communication Control 238 5. 5. 8. 1 I2C Start Bit 236 5. 5. 8. 2 I2C Stop bit 238 5. 5. 8. 3 I2C ACK Delay 235 5. 5. 8. 4 I2C Transmit Interval between Data Frames 238 5. 5. 8. 5 I2C Clock Stretching 240 5. 5. 8. 5 I2C Auto NACK Transmission 244 5. 5. 9 Special Function Registers 241 5. 5. 10 I2C Application Notes 255 5. 6. 1 Overview 251 5. 6. 2 Block Diagram 251 5. 6. 2 Block Diagram 251 5. 6. 3 ADC Basic Configuration 252 5. 6. 4 ADC High Precision Reference Voltage 251 5. 6. 5 ADC Conversion Description 252 5. 6. 6 Auto Conversion and Compare Function 252 5. 7 Real Time Clock (RTC) 264 5. 7. 1 <td< th=""><th>5. 5. 4</th><th>I2C Port Configuration</th><th>234</th></td<>	5. 5. 4	I2C Port Configuration	234
5. 5. 7 I2C Receiver 237 5. 5. 8 I2C Communication Control 238 5. 5. 8. 1 I2C Start Bit 236 5. 5. 8. 2 I2C Stop bit 238 5. 5. 8. 3 I2C ACK Delay 238 5. 5. 8. 4 I2C Transmit Interval between Data Frames 238 5. 5. 8. 5 I2C Clock Stretching 240 5. 5. 9 Special Function Registers 241 5. 5. 9 Special Function Registers 241 5. 5. 10 I2C Application Notes 250 5. 6 Analog-to-Digital Converter (ADC) 251 5. 6. 1 Overview 251 5. 6. 2 Block Diagram 251 5. 6. 3 ADC Basic Configuration 251 5. 6. 4 ADC High Precision Reference Voltage 251 5. 6. 5 ADC Conversion Description 252 5. 6. 6 Auto Conversion and Compare Function 254 5. 7 Special Function Registers 255 5. 7 Real Time Clock (RTC) 264 5. 7. 2 RTC Write Protection 264 5. 7. 3	5. 5. 5	I2C Time-based Timer and 16x Sampler	235
5. 5. 8. 1 I2C Start Bit 236 5. 5. 8. 1 I2C Start Bit 236 5. 5. 8. 2 I2C Stop bit 235 5. 5. 8. 3 I2C ACK Delay 235 5. 5. 8. 4 I2C Transmit Interval between Data Frames 236 5. 5. 8. 5 I2C Clock Stretching 240 5. 5. 8. 6 I2C Auto NACK Transmission 244 5. 5. 9 Special Function Registers 241 5. 5. 10 I2C Application Notes 250 5. 6. 1 Overview 251 5. 6. 2 Block Diagram 251 5. 6. 3 ADC Basic Configuration 251 5. 6. 4 ADC High Precision Reference Voltage 251 5. 6. 5 ADC Conversion Description 252 5. 6. 6 Auto Conversion and Compare Function 254 5. 7 Real Time Clock (RTC) 264 5. 7. 1 Overview 264 5. 7. 2 RTC Write Protection 264 5. 7. 3 Time and Date Setting 264 5. 7. 4 RTC Interrupt Sources 266 5. 7. 6 Special Function Registers 266 5. 7. 6 Special Function Registers 267 5. 8. 1 Overview 275 5. 8. 2 Block Diagram 276 5. 8. 3 LCD Basic	5. 5. 6	I2C Transmitter	236
5. 5. 8. 1 12C Stop bit	5. 5. 7	I2C Receiver	237
5. 5. 8. 2 I2C Stop bit	5. 5. 8	I2C Communication Control	238
5. 5. 8. 3 IZC ACK Delay 238 5. 5. 8. 4 IZC Transmit Interval between Data Frames 238 5. 5. 8. 5 IZC Clock Stretching 240 5. 5. 8. 6 IZC Auto NACK Transmission 240 5. 5. 9 Special Function Registers 241 5. 5. 10 IZC Application Notes 250 5. 6 Analog-to-Digital Converter (ADC) 251 5. 6. 1 Overview 251 5. 6. 2 Block Diagram 251 5. 6. 3 ADC Basic Configuration 251 5. 6. 4 ADC High Precision Reference Voltage 251 5. 6. 5 ADC Conversion Description 252 5. 6. 6 Auto Conversion and Compare Function 254 5. 6. 7 Special Function Registers 255 5. 7 Real Time Clock (RTC) 264 5. 7. 1 Overview 264 5. 7. 2 RTC Write Protection 264 5. 7. 3 Time and Date Setting 264 5. 7. 4 RTC Interrupt Sources 266 5. 8 Liquid Crystal Display Controller (LCDC) 275	5.	5. 8. 1 I2C Start Bit	238
5. 5. 8. 4 IZC Transmit Interval between Data Frames 236 5. 5. 8. 5 IZC Clock Stretching	5.	5. 8. 2 I2C Stop bit	238
5. 5. 8. 6 I2C Auto NACK Transmission 240 5. 5. 8. 6 I2C Auto NACK Transmission 240 5. 5. 9 Special Function Registers 241 5. 5. 10 I2C Application Notes 250 5. 6 Analog-to-Digital Converter (ADC) 251 5. 6. 1 Overview 251 5. 6. 2 Block Diagram 251 5. 6. 3 ADC Basic Configuration 251 5. 6. 4 ADC High Precision Reference Voltage 251 5. 6. 5 ADC Conversion Description 252 5. 6. 6 Auto Conversion and Compare Function 252 5. 6. 7 Special Function Registers 255 5. 7 Real Time Clock (RTC) 264 5. 7. 1 Overview 264 5. 7. 2 RTC Write Protection 264 5. 7. 3 Time and Date Setting 264 5. 7. 5 RTC Timer 266 5. 7. 6 Special Function Registers 266 5. 8 Liquid Crystal Display Controller (LCDC) 275 5. 8. 1 Overview 275 5. 8. 2 B	5.	5. 8. 3 I2C ACK Delay	239
5. 5. 8. 6 12C Auto NACK Transmission 240 5. 5. 9 Special Function Registers 241 5. 5. 10 12C Application Notes 250 5. 6 Analog-to-Digital Converter (ADC) 251 5. 6. 1 Overview 251 5. 6. 1 Overview 251 5. 6. 2 Block Diagram 251 5. 6. 3 ADC Basic Configuration 251 5. 6. 4 ADC High Precision Reference Voltage 251 5. 6. 5 ADC Conversion Description 252 5. 6. 6 Auto Conversion and Compare Function 254 5. 6. 7 Special Function Registers 255 5. 7 Real Time Clock (RTC) 264 5. 7. 1 Overview 264 5. 7. 2 RTC Write Protection 264 5. 7. 3 Time and Date Setting 264 5. 7. 4 RTC Interrupt Sources 266 5. 7. 5 RTC Timer 266 5. 7. 6 Special Function Registers 267 5. 8. 1 Overview 275 5. 8. 2 Block Diagram 275	5.	5. 8. 4 I2C Transmit Interval between Data Frames	239
5. 5. 9 Special Function Registers 241 5. 5. 10 I2C Application Notes 250 5. 6 Analog-to-Digital Converter (ADC) 251 5. 6. 1 Overview 251 5. 6. 2 Block Diagram 251 5. 6. 2 Block Diagram 251 5. 6. 3 ADC Basic Configuration 251 5. 6. 4 ADC High Precision Reference Voltage 251 5. 6. 5 ADC Conversion Description 252 5. 6. 6 Auto Conversion and Compare Function 254 5. 6. 7 Special Function Registers 255 5. 7 Real Time Clock (RTC) 264 5. 7. 1 Overview 264 5. 7. 2 RTC Write Protection 264 5. 7. 3 Time and Date Setting 264 5. 7. 4 RTC Interrupt Sources 266 5. 7. 5 RTC Timer 266 5. 7. 6 Special Function Registers 267 5. 8. 1 Overview 275 5. 8. 2 Block Diagram 275 5. 8. 3 LCD Basic Settings 276 </td <td>5.</td> <td>5. 8. 5 I2C Clock Stretching</td> <td>240</td>	5.	5. 8. 5 I2C Clock Stretching	240
5. 5. 10 I2C Application Notes 250 5. 6 Analog-to-Digital Converter (ADC) 251 5. 6. 1 Overview 251 5. 6. 2 Block Diagram 251 5. 6. 3 ADC Basic Configuration 251 5. 6. 4 ADC High Precision Reference Voltage 251 5. 6. 5 ADC Conversion Description 252 5. 6. 6 Auto Conversion and Compare Function 254 5. 6. 7 Special Function Registers 255 5. 7 Real Time Clock (RTC) 264 5. 7. 1 Overview 264 5. 7. 2 RTC Write Protection 264 5. 7. 3 Time and Date Setting 264 5. 7. 4 RTC Interrupt Sources 266 5. 7. 5 RTC Timer 266 5. 7. 6 Special Function Registers 267 5. 8 Liquid Crystal Display Controller (LCDC) 275 5. 8. 1 Overview 276 5. 8. 2 Block Diagram 275 5. 8. 3 LCD Basic Settings 275 5. 8. 4 LCD Pixel Mapping Table 276 5. 8. 5 LCD Pixel Mapping Table 276 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 5. 8. 10 Special Function Regi	5.	5. 8. 6 I2C Auto NACK Transmission	240
5. 6 Analog-to-Digital Converter (ADC). 251 5. 6. 1 Overview	5. 5. 9	Special Function Registers	241
5. 6. 1 Overview 251 5. 6. 2 Block Diagram 251 5. 6. 3 ADC Basic Configuration 251 5. 6. 4 ADC High Precision Reference Voltage 251 5. 6. 5 ADC Conversion Description 252 5. 6. 6 Auto Conversion and Compare Function 254 5. 6. 7 Special Function Registers 255 5. 7 Real Time Clock (RTC) 264 5. 7. 1 Overview 264 5. 7. 2 RTC Write Protection 264 5. 7. 3 Time and Date Setting 264 5. 7. 4 RTC Interrupt Sources 266 5. 7. 5 RTC Timer 266 5. 7. 6 Special Function Registers 267 5. 8 Liquid Crystal Display Controller (LCDC) 275 5. 8. 1 Overview 275 5. 8. 2 Block Diagram 276 5. 8. 3 LCD Basic Settings 276 5. 8. 4 LCD Bias Selection 276 5. 8. 5 LCD Pixel Mapping Table 276 5. 8. 6 LCDC Clock Sources 277	5. 5. 10) I2C Application Notes	250
5. 6. 2 Block Diagram	5. 6 Ar	nalog-to-Digital Converter (ADC)	251
5. 6. 3 ADC Basic Configuration 251 5. 6. 4 ADC High Precision Reference Voltage 251 5. 6. 5 ADC Conversion Description 252 5. 6. 6 Auto Conversion and Compare Function 254 5. 6. 7 Special Function Registers 255 5. 7 Real Time Clock (RTC) 264 5. 7. 1 Overview 264 5. 7. 2 RTC Write Protection 264 5. 7. 3 Time and Date Setting 264 5. 7. 4 RTC Interrupt Sources 266 5. 7. 5 RTC Timer 266 5. 7. 6 Special Function Registers 267 5. 8 Liquid Crystal Display Controller (LCDC) 275 5. 8. 1 Overview 275 5. 8. 2 Block Diagram 275 5. 8. 3 LCD Basic Settings 276 5. 8. 4 LCD Bias Selection 276 5. 8. 5 LCD Clock Sources 277 5. 8. 6 LCDC Clock Sources 277 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 </td <td>5. 6. 1</td> <td>Overview</td> <td>251</td>	5. 6. 1	Overview	251
5. 6. 4 ADC High Precision Reference Voltage 251 5. 6. 5 ADC Conversion Description 252 5. 6. 6 Auto Conversion and Compare Function 254 5. 6. 7 Special Function Registers 255 5. 7 Real Time Clock (RTC) 264 5. 7. 1 Overview 264 5. 7. 2 RTC Write Protection 264 5. 7. 3 Time and Date Setting 264 5. 7. 4 RTC Interrupt Sources 266 5. 7. 5 RTC Timer 266 5. 7. 6 Special Function Registers 267 5. 8 Liquid Crystal Display Controller (LCDC) 275 5. 8. 1 Overview 275 5. 8. 2 Block Diagram 275 5. 8. 3 LCD Basic Settings 275 5. 8. 4 LCD Bias Selection 275 5. 8. 5 LCD Fixel Mapping Table 276 5. 8. 6 LCDC Clock Sources 277 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 276 5. 8. 10 Special Function Registers	5. 6. 2	Block Diagram	251
5. 6. 5 ADC Conversion Description 252 5. 6. 6 Auto Conversion and Compare Function 254 5. 6. 7 Special Function Registers 255 5. 7 Real Time Clock (RTC) 264 5. 7. 1 Overview 264 5. 7. 2 RTC Write Protection 264 5. 7. 3 Time and Date Setting 264 5. 7. 4 RTC Interrupt Sources 266 5. 7. 5 RTC Timer 266 5. 7. 6 Special Function Registers 267 5. 8 Liquid Crystal Display Controller (LCDC) 275 5. 8. 1 Overview 275 5. 8. 2 Block Diagram 275 5. 8. 3 LCD Basic Settings 275 5. 8. 4 LCD Bias Selection 275 5. 8. 5 LCD Pixel Mapping Table 276 5. 8. 6 LCDC Clock Sources 277 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 276 5. 9 LED Display Controller (LEDC) 286 5. 9 LED Display Controller (LEDC) 286 <td>5. 6. 3</td> <td>ADC Basic Configuration</td> <td>251</td>	5. 6. 3	ADC Basic Configuration	251
5. 6. 6 Auto Conversion and Compare Function 254 5. 6. 7 Special Function Registers 255 5. 7 Real Time Clock (RTC) 264 5. 7. 1 Overview 264 5. 7. 2 RTC Write Protection 264 5. 7. 3 Time and Date Setting 264 5. 7. 4 RTC Interrupt Sources 266 5. 7. 5 RTC Timer 266 5. 7. 6 Special Function Registers 267 5. 8 Liquid Crystal Display Controller (LCDC) 275 5. 8. 1 Overview 275 5. 8. 2 Block Diagram 275 5. 8. 3 LCD Bias Settings 275 5. 8. 4 LCD Bias Selection 275 5. 8. 5 LCD Pixel Mapping Table 276 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 5. 8. 9 LCD Low Power Mode 278 5. 9 LED Display Controller (LEDC) 285 5. 9 LED Display Controller (LEDC) 285 5. 9 Block Diagram 285	5. 6. 4	ADC High Precision Reference Voltage	251
5. 6. 7 Special Function Registers 255 5. 7 Real Time Clock (RTC) 264 5. 7. 1 Overview 264 5. 7. 2 RTC Write Protection 264 5. 7. 3 Time and Date Setting 264 5. 7. 4 RTC Interrupt Sources 266 5. 7. 5 RTC Timer 266 5. 7. 6 Special Function Registers 267 5. 8 Liquid Crystal Display Controller (LCDC) 275 5. 8. 1 Overview 275 5. 8. 2 Block Diagram 275 5. 8. 3 LCD Basic Settings 275 5. 8. 4 LCD Bias Selection 275 5. 8. 5 LCD Pixel Mapping Table 276 5. 8. 6 LCDC Clock Sources 277 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 5. 8. 9 LCD Low Power Mode 278 5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3	5. 6. 5	ADC Conversion Description	252
5. 7 Real Time Clock (RTC) 264 5. 7. 1 Overview 264 5. 7. 2 RTC Write Protection 264 5. 7. 3 Time and Date Setting 264 5. 7. 4 RTC Interrupt Sources 266 5. 7. 5 RTC Timer 266 5. 7. 6 Special Function Registers 267 5. 8 Liquid Crystal Display Controller (LCDC) 275 5. 8. 1 Overview 275 5. 8. 2 Block Diagram 275 5. 8. 3 LCD Basic Settings 275 5. 8. 4 LCD Bias Selection 275 5. 8. 5 LCD Pixel Mapping Table 276 5. 8. 6 LCDC Clock Sources 277 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 5. 8. 9 LCD Low Power Mode 278 5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 6. 6	Auto Conversion and Compare Function	254
5. 7. 1 Overview 264 5. 7. 2 RTC Write Protection 264 5. 7. 3 Time and Date Setting 264 5. 7. 4 RTC Interrupt Sources 266 5. 7. 5 RTC Timer 266 5. 7. 6 Special Function Registers 267 5. 8 Liquid Crystal Display Controller (LCDC) 275 5. 8. 1 Overview 275 5. 8. 2 Block Diagram 275 5. 8. 3 LCD Basic Settings 275 5. 8. 4 LCD Bias Selection 275 5. 8. 5 LCD Pixel Mapping Table 276 5. 8. 6 LCDC Clock Sources 277 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 5. 8. 9 LCD Low Power Mode 278 5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 6. 7	Special Function Registers	255
5. 7. 2 RTC Write Protection 264 5. 7. 3 Time and Date Setting 264 5. 7. 4 RTC Interrupt Sources 266 5. 7. 5 RTC Timer 266 5. 7. 6 Special Function Registers 267 5. 8 Liquid Crystal Display Controller (LCDC) 275 5. 8. 1 Overview 275 5. 8. 2 Block Diagram 275 5. 8. 3 LCD Basic Settings 275 5. 8. 4 LCD Bias Selection 275 5. 8. 5 LCD Pixel Mapping Table 276 5. 8. 6 LCDC Clock Sources 277 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 5. 8. 9 LCD Low Power Mode 278 5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 7 Re	eal Time Clock (RTC)	264
5. 7. 3 Time and Date Setting 264 5. 7. 4 RTC Interrupt Sources 266 5. 7. 5 RTC Timer 266 5. 7. 6 Special Function Registers 267 5. 8 Liquid Crystal Display Controller (LCDC) 275 5. 8. 1 Overview 275 5. 8. 2 Block Diagram 275 5. 8. 3 LCD Basic Settings 275 5. 8. 4 LCD Bias Selection 275 5. 8. 5 LCD Pixel Mapping Table 276 5. 8. 6 LCDC Clock Sources 277 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 5. 8. 9 LCD Low Power Mode 278 5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 7. 1	Overview	264
5. 7. 4 RTC Interrupt Sources 266 5. 7. 5 RTC Timer 266 5. 7. 6 Special Function Registers 267 5. 8 Liquid Crystal Display Controller (LCDC) 275 5. 8. 1 Overview 275 5. 8. 2 Block Diagram 275 5. 8. 3 LCD Basic Settings 275 5. 8. 4 LCD Bias Selection 275 5. 8. 5 LCD Pixel Mapping Table 276 5. 8. 6 LCDC Clock Sources 277 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 5. 8. 9 LCD Low Power Mode 278 5. 8. 10 Special Function Registers 278 5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 7. 2	RTC Write Protection	264
5. 7. 5 RTC Timer 266 5. 7. 6 Special Function Registers 267 5. 8 Liquid Crystal Display Controller (LCDC) 275 5. 8. 1 Overview 275 5. 8. 2 Block Diagram 275 5. 8. 3 LCD Basic Settings 275 5. 8. 4 LCD Bias Selection 275 5. 8. 5 LCD Pixel Mapping Table 276 5. 8. 6 LCDC Clock Sources 277 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 5. 8. 9 LCD Low Power Mode 278 5. 8. 10 Special Function Registers 279 5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 7. 3	Time and Date Setting	264
5. 7. 6 Special Function Registers 267 5. 8 Liquid Crystal Display Controller (LCDC) 275 5. 8. 1 Overview 275 5. 8. 2 Block Diagram 275 5. 8. 3 LCD Basic Settings 275 5. 8. 4 LCD Bias Selection 275 5. 8. 5 LCD Pixel Mapping Table 276 5. 8. 6 LCDC Clock Sources 277 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 5. 8. 9 LCD Low Power Mode 278 5. 9 LED Display Controller (LEDC) 285 5. 9 LED Display Controller (LEDC) 285 5. 9 2 Block Diagram 285 5. 9 3 LEDC Basic Settings 285	5. 7. 4	RTC Interrupt Sources	266
5. 8 Liquid Crystal Display Controller (LCDC) 275 5. 8. 1 Overview 275 5. 8. 2 Block Diagram 275 5. 8. 3 LCD Basic Settings 275 5. 8. 4 LCD Bias Selection 275 5. 8. 5 LCD Pixel Mapping Table 276 5. 8. 6 LCDC Clock Sources 277 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 5. 8. 9 LCD Low Power Mode 278 5. 8. 10 Special Function Registers 279 5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 7. 5	RTC Timer	266
5. 8. 1 Overview 275 5. 8. 2 Block Diagram 275 5. 8. 3 LCD Basic Settings 275 5. 8. 4 LCD Bias Selection 275 5. 8. 5 LCD Pixel Mapping Table 276 5. 8. 6 LCDC Clock Sources 277 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 5. 8. 9 LCD Low Power Mode 278 5. 8. 10 Special Function Registers 279 5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 7. 6	Special Function Registers	267
5. 8. 2 Block Diagram	5. 8 Lic	quid Crystal Display Controller (LCDC)	275
5. 8. 3 LCD Basic Settings 275 5. 8. 4 LCD Bias Selection 275 5. 8. 5 LCD Pixel Mapping Table 276 5. 8. 6 LCDC Clock Sources 277 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 5. 8. 9 LCD Low Power Mode 278 5. 8. 10 Special Function Registers 279 5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 8. 1	Overview	275
5. 8. 4 LCD Bias Selection 275 5. 8. 5 LCD Pixel Mapping Table 276 5. 8. 6 LCDC Clock Sources 277 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 5. 8. 9 LCD Low Power Mode 278 5. 8. 10 Special Function Registers 279 5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 8. 2	Block Diagram	275
5. 8. 5 LCD Pixel Mapping Table 276 5. 8. 6 LCDC Clock Sources 277 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 5. 8. 9 LCD Low Power Mode 278 5. 8. 10 Special Function Registers 279 5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 8. 3	LCD Basic Settings	275
5. 8. 6 LCDC Clock Sources 277 5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 5. 8. 9 LCD Low Power Mode 278 5. 8. 10 Special Function Registers 279 5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 8. 4	LCD Bias Selection	275
5. 8. 7 LCD Frame Frequency 277 5. 8. 8 LCD Twinkling 277 5. 8. 9 LCD Low Power Mode 278 5. 8. 10 Special Function Registers 279 5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 8. 5	LCD Pixel Mapping Table	276
5. 8. 8 LCD Twinkling 277 5. 8. 9 LCD Low Power Mode 278 5. 8. 10 Special Function Registers 279 5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 8. 6	LCDC Clock Sources	277
5. 8. 9 LCD Low Power Mode 278 5. 8. 10 Special Function Registers 279 5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 8. 7	LCD Frame Frequency	277
5. 8. 10 Special Function Registers 279 5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 8. 8	LCD Twinkling	277
5. 9 LED Display Controller (LEDC) 285 5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 8. 9	LCD Low Power Mode	278
5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285	5. 8. 10	Special Function Registers	279
5. 9. 1 Overview 285 5. 9. 2 Block Diagram 285 5. 9. 3 LEDC Basic Settings 285			
5. 9. 3 LEDC Basic Settings285		• •	
5	5. 9. 2	Block Diagram	285
	5. 9. 3	LEDC Basic Settings	285
	5. 9. 4	-	

5. 9. 5 LEDC Clock Sources	286
5. 9. 6 LEDC Operating Diagram	286
5. 9. 7 Special Function Registers	286
5. 10 Watchdog Timer (WDT)	289
5. 10. 1 Overview	289
5. 10. 2 Special Function Registers	290
Chapter6 Packaging Information	293
6. 1 LQFP 48-pin Package Drawing	293
6. 2 LQFP 44-pin Package Drawing	294
6. 3 LQFP 32-pin Package Drawing	295
6. 4 QFN 32-pin Package Drawing	296
6. 5 SOP 28-pin Package Drawing	297
Appendix1 Cortex-M0 Core	298
Appendix1. 1 Cortex-M0 Instruction Set	298
Appendix1. 2 Cortex-M0 Core Register	300
Appendix1. 2. 1 General Register R0~R12	300
Appendix1. 2. 2 Stack Pointer Register SP	(R13)300
Appendix1. 2. 3 Link Register LR (R14)	301
Appendix1. 2. 4 Program Counter PC (R15	5)301
Appendix1. 2. 5 Combined Program Status	Register xPSR301
Appendix1. 2. 6 Exception /Interrupt Mask	Register PRIMASK303
Appendix1. 2. 7 CONTROL Register	303
Appendix2 Electrical Characteristics	304
Appendix2. 1 Parameter Characteristics	304
Appendix2. 1. 1 Operating Conditions	304
Appendix2. 1. 2 Parameter Measurement.	305
Appendix2. 1. 3 Power Consumption Char	acteristics305
Appendix2. 1. 4 I/O Ports Characteristics .	308
Appendix2. 1. 5 System Clock Characteris	tics309
Appendix2. 1. 6 Functional Module Charac	teristics309
Appendix2. 2 Characteristics Graphs	314
Appendix2. 2. 1 Power Consumption Char	acteristics314
Appendix2. 2. 2 I/O Port Input Characterist	ics316
Appendix2. 2. 3 I/O Port Output Characteris	tics (Normal Drive, PA6~PA13 Excluded) .318
Appendix2. 2. 4 I/O Port Output Character	stics (High Drive, PA6~PA13 Excluded) .321
Appendix2. 2. 5 I/O Port Output Character	stics (Normal Drive, PA6~PA13)324
Appendix2. 2. 6 I/O Port Output Character	stics (High Drive, PA6~PA13)326
Appendix3 Programming and Debug Interfac	e330
Appendix3. 1 Overview	330
Appendix3. 2 ISP Interface	330
Appendix3. 2. 1 Communication Protocol.	330
Appendix3. 2. 2 Operation Flowchart	331
Appendix3. 3 SWD Interface	331
Appendix3. 3. 1 Overview	331

Appendix3. 3. 2 SWD Characteristics			332
Appendix4	LCI	Drive Waveforms	333
Appendix4	. 1	Overview	333
Appendix4	2	Drive Waveforms	333

List of Figures

Figure 1-1	HR8P506 Block Diagram	20
Figure 1-2	LQFP48 Top View	21
Figure 1-3	LQFP44 Top View	22
Figure 1-4	LQFP32 Top View	23
Figure 1-5	QFN32 Top View	24
Figure 1-6	SOP28 Top View	25
Figure 2-1	System Power Block Diagram	30
Figure 2-2	System Reset Block Diagram	30
Figure 2-3	Power-on Reset Timing Diagram	31
Figure 2-4	BOR Reset Timing Diagram	31
Figure 2-5	MRSTN Reset Reference Circuit 1	31
Figure 2-6	MRSTN Reset Reference Circuit 2	32
Figure 2-7	System Clock Block Diagram	41
Figure 2-8	XTAL Circuit	42
Figure 2-9	SysTick Timer Block Diagram	76
Figure 3-1	Memory Map	82
Figure 3-2	IAP Operation Request Flowchart	87
Figure 3-3	IAP Full Erase Flowchart	87
Figure 3-4	IAP Page Erase Flowchart	88
Figure 3-5	IAP Programming Flowchart	89
Figure 3-6	SRAM Map	94
Figure 3-7	Peripheral Registers Map	95
Figure 4-1	IO Port Block Diagram	.106
Figure 4-2	External Port PINT0 Interrupt Block Diagram	.106
Figure 4-3	External Key KINT0 Interrupt Block Diagram	.107
Figure 4-4	High Level Modulated Buzz Output Waveform	.109
Figure 4-5	Low Level Modulated Buzz Output Waveform	.109
Figure 5-1	T16N0 Block Diagram	.137
Figure 5-2	T16N0 Counter Match Diagram	.139
Figure 5-3	T16N0 Capture Function Diagram	.140
Figure 5-4	T16N0 PWM Modulation in Independent Mode	.142
Figure 5-5	T16N0 PWM Modulation in Complementary Mode	.143
Figure 5-6	T32N0 Block Diagram	.158
Figure 5-7	T32N0 Counter Match Diagram	.160
Figure 5-8	T32N0 Capture Diagram	.161
Figure 5-9	T32N0 Output PWM Diagram	.163
Figure 5-10	UART Block Diagram	.173
Figure 5-11	UART 7-bit Data Format	. 173
Figure 5-12	UART 8-bit Data Format	.173
Figure 5-13	UART 9-bit Data Format	.174
Figure 5-14	UART0 Transmit Data Flow	. 175
Figure 5-15	Flowchart of UART0 Data Transmission	.176
Figure 5-16	UART0 Receive Data Flow	.177

Figure 5-17	Flowchart of UART0 Data Reception	178
Figure 5-18	High Level Modulated TX0 Output	179
Figure 5-19	Low Level Modulated TX0 Output	179
Figure 5-20	Timing Diagram of Auto Baud Rate Detection	181
Figure 5-21	Timing Diagram of Auto Baud Rate Detection Error	181
Figure 5-22	Timing Diagram of Idle Frame Detection	182
Figure 5-23	EUART0 Block Diagram	202
Figure 5-24	EUART Transmit Data Flow in 7816	204
Figure 5-25	EUART Receive Data Flow in 7816	204
Figure 5-26	SPI0 Block Diagram	218
Figure 5-27	Transmit on a rising edge and receive on a falling edge	219
Figure 5-28	Transmit on a falling edge and receive on a rising edge	219
Figure 5-29	Receive on a rising edge and transmit on a falling edge	220
Figure 5-30	Receive on a falling edge and transmit on a rising edge	220
Figure 5-31	SPI Data Transmission Diagram	221
Figure 5-32	SPI Data Reception Diagram	221
Figure 5-33	SPI Receive Delay Waveforms	223
Figure 5-34	I2C Block Diagram	232
Figure 5-35	I2C Bus Communication Protocol Diagram	233
Figure 5-36	Master Writing to Slave	234
Figure 5-37	Master Reading from Slave	234
Figure 5-38	Open-drain Output Diagram	235
Figure 5-39	Waveforms of SDA0 and SCL0 Signal	236
Figure 5-40	I2C Data Transmission Diagram	236
Figure 5-41	I2C Data Reception Diagram	237
Figure 5-42	I2C Start Bit Waveform	238
Figure 5-43	I2C Auto-call Waveform	238
Figure 5-44	I2C Stop Bit Waveform	239
Figure 5-45	ACK Delay Waveform	239
Figure 5-46	I2C Transmit Interval between Data Frames	240
Figure 5-47	I2C Clock Stretching	240
Figure 5-48	ADC Block Diagram	251
Figure 5-49	ADC Conversion Timing Diagram (SMPS = 0, sampling controlled by sof	tware) 252
Figure 5-50	ADC Conversion Timing Diagram (SMPS = 1, sampling controlled by har	dware)253
Figure 5-51	LCD Driver Block Diagram	275
Figure 5-52	1/4 VDD External Bias Voltage Reference Circuit	276
Figure 5-53	Fast Charging Discharging Diagram	278
Figure 5-54	LEDC Driver Module Block Diagram	285
Figure 5-55	LEDC Operating Diagram	286

List of Tables

Table 1-1	Pin Descriptions	26
Table 1-2	Pin Multiplexing	28
Table 2-1	Operating Status of Clocks in Low Power Mode	36
Table 2-2	Operation Description of Exception/Interrupt Priority	59
Table 2-3	List of Exceptions/Interrupts	60
Table 2-4	List of IRQ Allocation	61
Table 4-1	PINT Selection Table	107
Table 4-2	KINT Selection Table	108
Table 5-1	Timing of Different Parameters	235
Table 5-2	Recommended Setting	252
Table 5-3	12/24 Hour Format Mapping	266
Table 5-4	LCDC External Bias Voltage Input Configuration	276
Table 5-5	LCDC Pixel Mapping Table	277
Table 5-6	Common Multiplex Configuration	280
Table 5-7	LEDC Pixel Mapping Table	285

Chapter1 Introduction

1. 1 Overview

The HR8P506 series is a highly integrated MCU product with 32-bit ARM Contex-M0 CPU core. It is designed with rich peripherals, including 16/32-bit Timers/Counters, UART modules with infrared modulation function, 7816 protocol compatible communication interfaces, SPI and I2C modules, RTC module, LCD driver with display-off and twinkling capability, 12-bit ADC and LVD module etc.

Operating Conditions

- ♦ Voltage range: 2.2V ~ 5.5V
- ♦ Temperature range: -40 ~ 85°C (industrial)
- ♦ Frequency range: 32KHz~48MHz
- Operating current: Ivdd = 3.5mA (@internal HRC 16MHz, typical)
- Standby current: Ivdd = 5uA (@room temperature, typical)

Packages

- ♦ LQFP48 (46x I/Os)
- ♦ LQFP44 (42x I/Os)
- ♦ LQFP32/QFN32 (30x I/Os)
- ♦ SOP28 (26x I/Os)

Power Supply

- System power input VDD, applicable to application systems with operating voltage 5V or 3.3V
- ♦ Low power LVD available to monitor VDD during brown-out and power-on. Capable to generate brown-out interrupt or power-on interrupt.

Resets

- ♦ Power-on Reset POR
- ♦ Brown-out Reset BOR
- ♦ External resets

◆ Clocks

- ♦ External crystal oscillator with low-speed 32KHz and high-speed 1~20MHz options, can be configured as system clock source.
- ♦ Internal 16MHz RC oscillator (HRC) with ±2% factory calibration accuracy over full temperature and voltage range, can be configured as system clock source.
- Internal 32KHz RC oscillator (LRC) clocking WDT, can be configured as system clock source.
- ◇ PLL frequency multiplier with selectable clock sources, up to 48MHz, can be configured as system clock source.

◆ Core

- ♦ Embedded ARM Cortex-M0 32-bit processor core
- ♦ SWD serial debug interface with 2 watchpoints and 4 breakpoints
- Two pairs of SWD debug interfaces selected with the DEBUG_S bit of the configuration word
- Built-in vectored interrupt controller NVIC
- Wake-up interrupt controller WIC
- ♦ NVIC contains one non-maskable interrupt
- ♦ Built-in system timer SysTick

Hardware Watchdog

- ♦ Selectable clock sources
- ♦ Capable to wake-up CPU from low power mode
- ♦ Interrupt or reset on overflow

Memories

- 36K Bytes Flash Memory
 - In-system programming ISP
 - Two pairs of ISP interfaces selectable, automatically recognized by hardware
 - Supports IAP programming, and part of Flash can be used for data storage
 - Flash programming code encryption
- ♦ 8K Bytes SRAM
 - Bit-banding available in SRAM space

♦ I/O Ports

- ♦ Up to 46 bidirectional I/O ports
 - Port A(PA0~PA31)
 - Port B(PB0~PB13)
- ♦ 8 external interrupt inputs with configurable triggering. Each I/O port can be used as an external interrupt input source.
- ♦ 1 key interrupt input with configurable triggering. Each I/O port can be used as a key interrupt input source.

Timers/Counters

- T16N0: 16-bit timer/counter with a prescaler, supports capture input and PWM output
- T16N1:16-bit timer/counter with a prescaler, supports capture input and PWM output
- T16N2: 16-bit timer/counter with a prescaler, supports capture input and PWM output y
- T16N3: 16-bit timer/counter with a prescaler, supports capture input and PWM output

- T32N0: 32-bit timer/counter with a prescaler, supports capture input and PWM output
- ♦ RTC: one real time clock

UART

- ♦ Two UART communication interfaces available, UART0 and UART1
- ♦ Full and half duplex
- Configurable baud rate
- ♦ 8-level transmit and receive buffers
- ♦ 7/8/9-bit data length
- Odd/even parity check with automatic hardware determined parity bit
- Idle frame detection
- Receive framing error, overrun, odd/even parity error flags
- ♦ Transmit and receive interrupts
- PWM output with programmable duty cycle
- Receive port with infrared wake-up capability
- UART ports with configurable input/output mode

♦ EUART

- ♦ Single EUART communication interface available, EUART0
- ♦ Compatible with UART, can be configured as UART
- ♦ Asynchronous half duplex receive/transmit (in 7816 mode)
- ♦ 8-bit data and 1-bit parity (in 7816 mode)
- ♦ Automatic re-transmit and re-receive mode (in 7816 mode)
- ♦ Configurable internal clock output (in 7816 mode)
- ♦ Dual-channel communication available (in 7816 mode)

♦ 12C

- ♦ Single I2C communication interface available, I2C0
- ♦ Master and slave modes
- Standard I2C bus protocol, up to 400K bits/s
- 7-bit addressing
- Data order with MSB first
- Receive and transmit interrupts
- SCL/SDA port with push-pull/open drain. Internal weak pull-up or external pull-up resistors must be enabled in open drain mode.
- SCL with clock stretching

◆ SPI

Two SPI communication interfaces available, SPI0 and SPI1

- ♦ Master and slave mode
- 4 data formats available
- ♦ 4-level receive and transmit buffers
- Receive and transmit interrupts

◆ ADC

- ♦ 12-bit conversion result and 11-bit effective resolution.
- ♦ 16 analog input channels
- ♦ Multiple reference voltage sources
- ♦ Supports interrupt
- ♦ Auto conversion and compare
- Timed ADC conversion trigger

◆ LCDC

- ♦ Up to 8 COMs x 28SEGs
- Clock source options: LRC divided by 4, LOSC divided by 4 and PCLK divided by 4096
- Grayscale adjustment
- ♦ Twinkling with configurable frequency
- ♦ Two types of LCD driver waveforms
- ♦ Internal bias voltage adjustable

◆ LEDC

- ♦ 1~ 8 pieces of 8-segment common cathode LED
- Clock source options: LRC divided by 4, LOSC divided by 4 and PCLK divided by 4096

◆ RTC

- ♦ Only reset by POR. Supports program write protection. Immune to system interference.
- ♦ Clock source: external 32.768KHz crystal oscillator for high precision requirement
- High accuracy digital calibration
- Two calibration accuracies: ±1.5ppm (or ±0.5ppm) in calibration range ±384ppm (or ±128ppm)
- Time (seconds, minutes, hours) and calendar (days, weeks, months and years), BCD format.
- 5 programmable timer interrupts
- 2 programmable calendar alarms
- ♦ Single configurable clock output
- Auto leap year recognition till year 2099

- ♦ 12-hour or 24 –hour format
- ♦ Low consumption: operating current =0.5µA (typ) @ VDD=5.0V

1. 2 Applications

The MCU is ideal for home appliances, small home appliances, industrial control instruments and other applications.

1.3 Block Diagram

Figure 1-1 HR8P506 Block Diagram

1.4 Pin Diagrams

1. 4. 1 LQFP48

Figure 1-2 LQFP48 Top View

1. 4. 2 LQFP44

Figure 1-3 LQFP44 Top View

1. 4. 3 LQFP32

Figure 1-4 LQFP32 Top View

1. 4. 4 QFN32

Figure 1-5 QFN32 Top View

Note: For QFN32 packaging, the bottom pad should be soldered to ground. As shown in the figure above, the dotted area should be connected to VSS.

1. 4. 5 SOP28

Figure 1-6 SOP28 Top View

Note1: The program/debug interface has a combination of 5 wires: VDD wire, GND wire, MRSTN wire, ISCK wire and ISDA wire. The default function of MRSTN is reset which needs to be programmed/ debugged through the 5-wire interface. When the MRSTN pin is configured as a GPIO, the MRSTN wire must be disconnected during debug.

Note2: It is recommended that the PA6 pin set to output mode and its voltage should not be higher than VDD or lower than VSS, which might cause irregular behavior of the device.

1.5 Pin Descriptions

1. 5. 1 Pin Descriptions

Pin Name	Input Type	Output Type	A/D	Description
PA0~PA31	CMOS	CMOS	D	General-purpose I/O
PB0~PB13	CMOS	CMOS	D	General-purpose I/O
ISCK0/1	CMOS	_	D	Programming/debug serial clock port
ISDA0/1	CMOS	CMOS	D	Programming/debug serial data port
AIN0~AIN15	_	_	Α	ADC analog channels 0~15
TX0~TX1	_	CMOS	D	UART0~UART1 transmit output ports
RX0~RX1	CMOS	_	D	UART0~UART1 receive input ports
E0TX0/1	_	CMOS	D	EUART0 transmit output port

Pin Name	Input Type	Output Type	A/D	Description	
E0RX0/1	CMOS		D	EUART0 receive input port	
E0CK0/1	_	CMOS	D	EUART0 internal clock output port	
E0IO0/1	CMOS	CMOS	D	EUART0 data input/output port	
SCK0~SCK1	CMOS	CMOS	D	SPI0~SPI1 clock input/output ports	
NSS0~NSS1	CMOS	_	D	SPI0~SPI1 chip-select port	
MISO0~MISO1	CMOS	CMOS	D	SPI0~SPI1 master input/slave output ports	
MOSI0~MOSI1	CMOS	CMOS	D	SPI0~SPI1 master output/slave input ports	
SCL0	CMOS	CMOS	D	I2C clock input/output port	
SDA0	CMOS	CMOS	D	I2C data input/output port	
SEG0~SEG27	_	_	Α	LCD Segment ports	
COM0~COM7	_	_	Α	LCD Common ports	
LCD_V1~LCDV4	_	_	Α	LCD external bias voltage input port	
T16N0_0, T16N0_1 T16N1_0, T16N1_1 T16N2_0, T16N2_1 T16N3_0, T16N3_1	CMOS	CMOS	D	T16N0/T16N1/T16N2/T16N3 external clock input/ capture input/ PWM output port	
T32N0_0, T32N0_1	CMOS	CMOS	D	T32N0 external clock input/ capture input/ PWM output port	
T16N_BK0 T16N_BK1 T16N_BK2 T16N_BK3	CMOS	_	D	T16N0/T16N1/T16N2/T16N3 break input port (only one active at a time)	
LVD_IN	_	_	Α	LVD analog input channel	
AVREFP	_	_	Α	ADC external positive reference voltage	
AVREFN	_	_	Α	ADC external negative reference voltage	
MRSTN	CMOS	_	D	Main reset, active low	
OSC1I	_	_	Α	Estamal angula a cillatan a cut 4	
OSC1O	_	_	Α	External crystal oscillator port 1	
OSC2I	_	_	Α	External entitle acilleter set 0	
OSC2O	_	_	Α	External crystal oscillator port 2	
VDD	_	_	Р	Power supply	
VSS		_	Р	Ground	

Table 1-1 Pin Descriptions

- 1. A = Analog port, D = Digital port and P = Power supply/Ground
- 2. The T16N0_0 represents three different functions of T16N0, which are T16N0CK0/ T16N0IN0/ T16N0OUT0. Similarly, unless otherwise stated, T16N0_1/ T16N1_0/ T16N1_1/ T16N2_0/ T16N2_1/ T16N3_0/ T16N3_1 and T32N0_0/ T32N0_1 represent their respective functions.

1. 5. 2 Pin Multiplexing

Pin Name (FUN0(D))	FUN1(D)	FUN2(D)	FUN3(D)	FUN4(A)	FUN5(A)
PB0	T32N0_0	RXD1	T16N3_0	_	SEG18
PB1	T32N0_1	TXD1	T16N3_1	_	SEG19
PB2	T16N0_0	NSS0	SCL0	_	SEG20
PB3	T16N0_1	SCK0	SDA0	_	SEG21
PB4	E0RX0/E0IO0	MISO0	_	_	SEG22
PB5	E0TX0/E0CK0	MOSI0	_	AIN0	SEG23
PB6	E0RX1/E0IO1	_	_	AIN1	SEG24
PB7	E0TX1/E0CK1	_	_	AIN2	SEG25
PB8/OSC2I	_	_	T32N0_0	AIN3	SEG26
PB9/OSC2O	_	_	T32N0_1	AIN4	SEG27
PB10/OSC1I	_	_	_	_	_
PB11/ OSC1O	_	_	_	_	_
PB12/MRSTN	_	_	_	_	_
PB13	T16N1_0	BUZ	_	AIN5	_
PA0	T16N1_1	_	BUZ	AVREFN/	_
PA1	BUZ	_	_	AVREFP/	_
PA2	T16N_BK0	T32N0_0	NSS1	AIN8	LCD_V1
PA3	T16N_BK1	T32N0_1	SCK1	AIN9	LCD_V2
PA4	SCL0	_	MISO1	AIN10	LCD_V3
PA5	SDA0	_	MOSI1	AIN11	LCD_V4
PA6	_	T16N0_0	_	AIN12/ LVD_IN	СОМ7
PA7	_	T16N0_1	_	AIN13	COM6
PA8	RXD1	T16N1_0	_	AIN14	COM5
PA9	TXD1	T16N1_1	CLKO0	AIN15	COM4
PA10	T16N2_0	T16N3_0	NSS0	_	COM3
PA11	T16N2_1	T16N3_1	SCK0	_	COM2
PA12	_	E0RX0/E0IO0	MISO0	_	COM1
PA13	_	E0TX0/E0CK0	MOSI0	_	COM0
PA14	NSS0	T16N2_0		_	SEG0
PA15	SCK0	T16N2_1		_	SEG1
PA16	MISO0	_	_	_	SEG2
PA17	MOSI0			_	SEG3
PA18	T16N3_0	SCL0	_	_	SEG4
PA19	T16N3_1	SDA0		_	SEG5

Pin Name (FUN0(D))	FUN1(D)	FUN2(D)	FUN3(D)	FUN4(A)	FUN5(A)
PA20	_	CLKO1	T16N0_0	_	SEG6
PA21	_	RTCO	T16N0_1	_	SEG7
PA22	RXD0	_	_	_	SEG8
PA23	TXD0	_	_	_	SEG9
PA24	MOSI1	RXD0	T16N1_0	_	SEG10
PA25	MISO1	TXD0	T16N1_1	_	SEG11
PA26	SCK1	T16N_BK2_B	RXD0	_	SEG12
PA27	NSS1	T16N_BK3_B	TXD0	_	SEG13
PA28	_	NSS1	T16N2_0	_	SEG14
PA29	_	SCK1	T16N2_1	_	SEG15
PA30	_	MISO1	RXD1	_	SEG16
PA31	_	MOSI1	TXD1	_	SEG17

Table 1-2 Pin Multiplexing

- 1. FUN0(D)/FUN1(D)/ FUN2(D)/FUN3(D) denotes a digital port and FUN4(A)/ FUN5(A) denotes an analog port.
- 2. FUN4(A)/ FUN5(A) is an analog port. No need to be configured through the control register.
- 3. GPIO_PAFUNC/GPIO_PBFUNC.
- 4. Two pairs of programming/debug interfaces are available. One pair is ISCK0 (PA0) and ISDA0 (PA1), and the other is ISCK1 (PA14) and ISDA1 (PA15).

Chapter2 System Control and Operations

2. 1 System Control and Protection

2. 1. 1 Overview

Accessing the system control register can affect the operating status of the device. In order to prevent the irregular behavior of the device, the system configuration protection register is provided. Before modifying the system control unit, disable the write protection first and enable it again following the completion of modification.

See section 3.4.3 System Control Unit (SCU) for the register list and base address.

2. 1. 2 Special Function Register

Syste	System Configuration Protection Register (SCU_PROT)														
Offset	Offset address: 00 _H														
Reset values: 00000000_00000000_000000001 _B															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	rved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	rved														PROT

_	– bit31-1 \	W	When writing 0x55AA6996 to SCU_PROT<31:0>, the PROT bit is 0;
			When writing other values, the PROT is 1.
		R/W	SCU Write Protection bit
PROT	bit0		0: Write protection disabled
			1: Write protection enabled

- 1. Only writing 0x55AA6996 (in word) to the register SCU_PROT can disable write protection. Other than that will enable write protection.
- The following registers are under protection of the register SCU_PROT: SCU_NMICON, SCU_PWRC, SCU_FAULTFLAG, SCU_FLASHWAIT, SCU_SOFTCFG, SCU_LVDCON, SCU_CCM, SCU_PLLLKCON, SCU_TIMEREN, SCU_TIMERDIS, SCU_SCLKEN0, SCU_SCLKEN1, SCU_PCLKEN, SCU_WAKEUPTIME and SCU_TBLREMAPEN.

2. 2 System Power

2. 2. 1 Block Diagram

Figure 2-1 System Power Block Diagram

2. 2. 2 Power Supply

The power supply VDD supplies to GPIO ports, ADC module and LCDC driver. The output of the internal LDO supplies to the digital logic, Flash memory and SRAM. VSS is the reference ground.

2. 3 System Resets

2. 3. 1 Overview

- Power-on Reset POR
- ♦ Brown-out Reset BOR
- ♦ External Reset MRSTN
- ♦ Watchdog Overflow Reset
- ♦ Cortex-M0 Debug Interface Software Reset

2. 3. 2 Block Diagram

Figure 2-2 System Reset Block Diagram

Notes

1. For 140ms power-on timer, when the MRSTN pin is multiplexed with GPIO function or after the BOR has occurred, the power-up timer remain enabled regardless of the CFG_PWRTEB bit.

Preliminary 30/341

2. When the voltage has been stabilized after power-on, if an external reset, WDT overflow reset or software reset occurred, the device would immediately exit the reset state once the reset condition expires, and then it would resume normal operation, regardless of all timers in Figure 2-2.

2. 3. 3 Reset Timing Diagram

Figure 2-3 Power-on Reset Timing Diagram

Figure 2-4 BOR Reset Timing Diagram

2. 3. 4 External Reset MRSTN Reference

Figure 2-5 MRSTN Reset Reference Circuit 1

- 1. Figure above shows the RC reset circuit, where $47K\Omega \le R1 \le 100K\Omega$, C1= $(0.1\mu F)$, R2 is a current limiting resistor and $0.1K\Omega \le R2 \le 1K\Omega$.
- 2. When the MRSTN pin is used for external reset, there is an internal integrated weak pull-up resistor of $45K\Omega$, and R1 can be omitted.

Figure 2-6 MRSTN Reset Reference Circuit 2

Notes

- 1. Figure above shows the PNP reset circuit, the voltage divided by R1 (2KΩ) and R2 (10KΩ) is used as a base input; the emitter connects to VDD. One end of the collector connects to ground through R3 (20KΩ), the other connects to ground through R4 (1KΩ) and C1 (0.1µF). The ungrounded end of C1 is used as an input to MRSTN pin
- 2. When the MRSTN pin is used for external reset, there is an internal integrated weak pull-up resistor of $45K\Omega$, and the R1 can be omitted.

2. 3. 5 Special Function Register

Reset	Reset Register (SCU_PWRC)														
Offset	Offset Address: 08 _H														
Reset	Value: 0	000000	00_000	00000	0000	00000_	XXXXXXX E	3							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reser	ved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved					CFG_	POR_L	SOFT_	MR	WDTR	BOR	PORRST	POR	POR		
	Reserved					RST	OST	RSTF	STF	STF	F	F	RCF	F	

_	bit31-9	_	_
CFG_RST	bit8	R/W	Configuration word read flag bit (don't care, for internal test only) 0:Configuration word not read 1:Configuration word has been read
POR_LOST	bit7	R/W	POR lost flag bit (for internal test only, see note 2) 0:No POR lost 1:POR lost
SOFT_RSTF	bit6	R/W	Software reset flag bit 0: No software reset

Preliminary 32/341

			1: Software reset occurred
			MRSTN reset flag bit
MRSTF	bit5	R/W	0: No MRSTN reset
			1: MRSTN reset occurred
			WDT reset flag bit
WDTRSTF	bit4	R/W	0: No WDT reset
			1: WDT reset occurred
			BOR flag bit
BORF	bit3	R/W	0: No BOR
			1: BOR occurred
		R/W	PORRST flag bit (for internal test only, see
PORRSTF	bit2		note 2)
TORROTT	DILZ		0: No PORRST
			1: PORRST occurred
			PORRC reset flag bit
PORRCF	bit1	R/W	0: No PORRC reset
			1: PORRC reset occurred
			POR flag bit (don't care, for internal test
PORF	bit0	R/W	only)
I OIN	Dito	IT/VV	0: No POR
			1: POR occurred

- 1. The PORRCF may become invalid due to the abnormal power supply.
- 2. The user must first clear the PORRSTF bit after power-on, or else the bit 3, 4, 5 and 6 would not be set even if the corresponding reset event has occurred.
- 3. Prior to writing to the SCU_PWRC register, configure the SCU_PROT register to disable the write protection.

2. 4 Low Voltage Detection LVD

2. 4. 1 Overview

The embedded low voltage detection LVD module monitors the VDD and the LVD_IN analog channel voltage. When the LVD_IN analog channel is monitored, the voltage threshold is 1.2V. The trigger can take place during brown-out and power-on. The LVD interrupt flag is set after triggering. An LVD interrupt request is generated when the LVD interrupt is enabled. During normal and deep sleep, an LVD interrupt can wake up the device.

2. 4. 2 Special Function Register

2. 4.	_	2 Special Function Register													
Low Vo	Low Voltage Detection Control Register (SCU_LVDCON)														
Offset a	Offset address:28 _H														
Reset v	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserv	ed														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LVDO	Rese	rved	IFS<	2:0>		IE	IF	VS<3	3:0>			Rese	rved	FLTEN	EN

_	bit31-16	_	_
			LVD output status bit
LVDO	bit15	R	0: The detected voltage > voltage threshold
			1: The detected voltage < voltage threshold
_	bit14-13	_	_
			These bits select the way in which the LVD
			interrupt flag is set
			000:LVDO rising edge
IFS<2:0>	bit12-10	R/W	001:LVDO falling edge
			010:LVDO high level
			011:LVDO low level
			1xx:LVDO rising edge and falling edge
			LVD interrupt enable bit
IE	bit9	R/W	0: Disable
			1: Enable
			LVD interrupt flag bit
			0: No LVD trigger event
			1:LVD trigger event occurred
l IF	bit8	R/W	In edge-triggered mode, clear the flag by writing
IF	DIIO	FK/VV	1.
			In level-triggered mode, the flag is read-only and
			it is automatically cleared when the triggering
			level disappears.

Preliminary 34/341

			LVD voltage select bits
			0000:2.0V
			0001:2.1V
			0010:2.2V
			0011:2.4V
			0100:2.6V
VC -2.0-	h:+7 /	DAM	0101:2.8V
VS<3:0>	bit7-4	R/W	0110:3.0V
			0111:3.6V
			1000:4.0V
			1001:4.6V
			1010:2.3V
			1011, 1100, 1101, 1110: Reserved
			1111: Detects LVD_IN, voltage threshold is 1.2V
_	bit3-2	_	_
			LVD filter enable bit
FLTEN	bit1	R/W	0: Disable
			1: Enable
			LVD enable bit
EN	bit0	R/W	0: Disable
			1: Enable

- 1. Prior to writing to the SCU_LVDCON register, configure the SCU_PROT register to disable write protection.
- 2. Based on the actual power supply and environment, as well as the application system requirement, determine whether to enable the filter FLTEN. When the FLTEN is enabled, it will filter out the power supply jitter but it also reduces the sensitivity of the LVD circuit to the power supply fluctuation.

2. 5 Low Power Mode

2. 5. 1 Overview

When configuring the peripheral clock control register SCU_PCLKEN, individually disable the clock of each peripheral module to minimize the power consumption

The device can enter sleep mode through WFI instruction. The SLEEPDEEP bit of the SCB_SCR register selects the normal sleep mode or deep sleep mode.

After entering sleep mode, all I/Os maintain the status they had before entering sleep. To reduce the power consumption, all I/Os should stay high or low. Meanwhile, keep the input floating pins high/low through pull-up/ pull-down to avoid leakage current caused by the floating pins.

After entering sleep mode, the operating status of clocks is tabulated as below.

Clock source	Normal Sleep	Deep Sleep
XTAL	Enabled (if XTAL_EN =1)	Enabled (if XTAL_EN=1 and MOSC_EN =1)
HRC	Enabled (if HRC_EN =1)	Enabled (if HRC_EN =1 and MOSC_EN =1)
LRC	Enabled	Enabled

Table 2-1 Operating Status of Clocks in Low Power Mode

2. 5. 2 Normal Sleep Mode

In normal sleep mode, the core clock stops and the instruction execution is aborted. Resets or interrupts can wake up the device from normal sleep mode.

Sleep mode is entered by the following steps:

- 1) Set the SLEEPDEEP bit =0
- 2) Execute the wait-for-interrupt WFI instruction to enter normal sleep mode.

In normal sleep mode, the peripherals continue running and can produce interrupts for the core processor to resume operation. No accessing to the memory, related controllers and internal bus in normal sleep mode.

In normal sleep mode, the status of the core processor and the content of the registers, peripheral registers and internal SRAM are maintained, as well as the logic level on the ports.

2. 5. 3 Deep Sleep Mode

In Deep Sleep mode, the core clock stops and the instruction execution is aborted. Resets and interrupts can wake up the device from Deep Sleep mode.

Deep sleep mode is entered by the following steps:

1) Set the SLEEPDEEP bit =1

2) Execute the wait-for-interrupt WFI instruction to enter deep sleep mode.

In deep sleep mode, the peripheral clock PCLK stops, consequently the peripheral modules clocked from the PCLK will stop running. Other peripheral module clocked from the internal low-speed clock LRC or external XTAL will continue operating. No accessing to the memory, related controllers and internal bus in deep sleep mode.

In deep sleep mode, the status of the core processor and the content of the registers, peripheral registers and internal SRAM are maintained, as well as the logic level on the ports.

Prior to entering deep sleep mode, determine whether to disable the XTAL, PLL, HRC and clock filter CLKFTL via the clock control bit MOSC_EN of the system wake-up time control register SCU_WAKEUPTIME. If disable the clock mode (MOSC_EN=0), it can reduce the consumption in deep sleep mode, however, it also increases the time spent on wake-up.

2. 5. 4 Wake-up

The following events can wake up the device from the sleep mode, and then execute the next instruction or the interrupt service routine (ISR). If the device wakes up by an interrupt and the interrupt is enabled, then it will execute the ISR once waken.

- Wake-up from normal sleep
 - All interrupts
 - Device resets
- Wake-up from deep sleep
 - External interrupt port PINT
 - External interrupt key KINT
 - RTC interrupt
 - LVD interrupt
 - WDT interrupt (clocked from LRC)
 - ADC interrupt (clocked from LRC)
 - Device resets

2. 5. 5 Wake-up Time

Wake-up time from deep sleep mode consists of the system clock start-up time and the internal LDO voltage settling time. In deep sleep mode, the specific wake-up time depends on the system clock source and if the system clock is enabled or not.

The start-up time of the internal HRC clock is around 80us and the external clock XTAL 16MHz is about 5ms. For the XTAL 32KHz clock, the start-up time is around 1.2 seconds.

The internal LDO voltage settling time is configured by software as Tpclk*WAKEUPTIME (where Tpclk is the system clock period, WAKEUPTIME is the wake up time control bits WAKEUPTIME<11:0>). It is recommended that the LDO settling time > 40us, otherwise the device might exhibit irregular behavior after wake-up.

Example: if the internal HRC is used as the system clock

When MOSC EN=0, the minimum wake-up time from deep sleep is 80us+40us=120us.

When MOSC_EN=0, the minimum wake-up time from deep sleep is 40us.

For normal sleep mode, the wake-up time is independent from MOSC_EN and WAKEUPTIME. As long as a wake-up event occurs, the device will immediately wake up from normal sleep and start running programs.

2. 5. 6 Flash Memory Wait Function

Frequent access to the Flash memory will increase the power consumption. Reducing the system clock frequency can make the access to the Flash memory less frequent, thereby lowering down the power consumption. However, it will also reduce the operating speed of the peripherals.

The Flash memory is designed with additional wait function, lowering the frequency to fetch the instruction or data without reducing the system clock frequency. Flash memory supports the accessing frequency up to 24MHz. If the system clock frequency is beyond 24MHz, it also requires the Flash memory to set the wait time. Otherwise, it will result in Flash access error.

Configure the ACCT<3:0> bits of the SCU_FLASHWAIT register to set the desired wait-time on accessing Flash.

If ACCT<3:0>=0, the system clock frequency can be up to 24MHz.

If ACCT<3:0>=1, the system clock frequency can be up to 40MHz.

If ACCT<3:0>=2~F, the system clock frequency can be up to 48MHz.

According to the above, if the 32MHz derived from PLL frequency multiplier is selected as system clock, the ACCT<3:0> cannot be 0, and it requires a minimum of 2 clock cycles to successfully access the Flash memory. If the 48MHz derived from PLL frequency multiplier is selected as system clock, the ACCT<3:0> cannot be 0 or 1, and it requires a minimum of 3 clock cycles to successfully access the Flash memory. Therefore, prior to switching the system clock to 32MHz or 48MHz, the ACCT<3:0> needs to be configured first to select a proper access time. Otherwise, it may result in error in executing the instruction.

2. 5. 7 Special Function Register

Flash	Flash Access Wait Register (SCU_FLASHWAIT)														
Offse	Offset address:20 _H														
Rese	Reset value:00000000_00000000_0000000010 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Res	served						ACC ⁻	Γ<3:0>		

_	bit31-4	_	_
ACCT<3:0>	bit3-0	R/W	Flash access wait-time select bits 0:1xTclk to complete Flash read 1:2xTclk 2:3xTclk F:16xTclk

Notes

- Configure the SCU_PROT register to disable write protection prior to writing to the SCU_FLASHWAIT register.
- 2. TCLK = System clock cycle

39/341

2. 6 System Clock

2. 6. 1 Overview

Four clock source options are available.

- External clock source with two mode options. High-speed mode HS/XT (HOSC, 1~20MHz) and low-speed mode LP (LOSC, 32KHz). 2 sets of pins available to connect external crystal oscillator
- ♦ Internal high frequency RC clock source HRC: 16MHz
- ♦ Internal low frequency RC clock source LRC: about 32KHz
- ♦ Internal integrated phase locked loop PLL: input frequency 32KHz or 4MHz (4MHz is the automatically obtained by HRC dividing by 4); output frequency 32MHz or 48MHz
- System clock supports frequency division 1~128.
- ♦ 2 sets of I/O ports available to output system clock frequency
- PLL lost lock detection. Automatically switch to the clock source before PLL was used and generate an interrupt.
- Supports system clock filtering to improve the stability of system operation.

The following content describes how to select each clock source as system clock.

- Selecting the external XTAL as system clock: program the configuration word to select the pins to connect the crystal and select the HS/XT mode or LP mode. Set CLK_SEL=10 of the SCU_SCLKEN0 register, set the XTAL_EN =1 of the SCU_SCLKEN register, and clear the PLL_EN bit of the SCU_SCLKEN1 register.
- 2) Selecting the internal 16MHz HRC as system clock: program the configuration word to select the internal 16MHz clock. Set CLK_SEL=00 of the SCU_SCLKEN0 register, and clear the PLL_EN bit of the SCU_SCLKEN1.
- 3) Selecting the internal 32KHz LRC as system clock: set CLK_SEL=01 of the SCU_SCLKEN0 register, and clear the PLL_EN bit of the SCU_SCLKEN1.
- 4) Selecting the internal PLL frequency multiplier as system clock: set CLK_SEL=00 of the SCU_SCLKEN register, configure the PLL_REF_SEL bits to select the PLL input clock source, configure the PLL_48M_SEL bits to select the PLL output clock frequency, and set PLL_EN=1.

2. 6. 2 Block Diagram

Figure 2-7 System Clock Block Diagram

2. 6. 3 Clock Source

2. 6. 3. 1 External Clock XTAL

PB8 and PB9 or PB10 and PB11 can be selected by the configuration word, to connect the external oscillator. Once the external oscillator module is enabled (XTAL_EN =1), the corresponding I/O ports are used as analog ports, and the digital input/output function is disabled.

Two modes are available for the external clock source, the high-speed mode HS/XT (or called HOSC, 1~20MHz) and low-speed mode LP (or called LOSC, 32KHz), programmed by the configuration word. A 32.768KHz crystal oscillator is recommended for the low-speed LP mode, a 5~20MHz crystal for the HS mode, and the 1~4MHz crystal for the XT mode.

When using the external oscillator, matching capacitors are required to connect externally as below.

Figure 2-8 XTAL Circuit

Note

- 1. Rs is optional.
- C1 and C2 are matching capacitors and their capacitances are determined depending on the crystal used.
 For reference, the capacitance range is 10~20pF. 15pf is recommended if 1~20MHz crystal is used and 12pf is recommended if the 32.768KHz is used.

The internal high-speed clock HRC is the default system clock after power-on, and the external clock XTAL can be switched to by software. See the related example for details. If MOSC_EN=0 and the device enters deep sleep, the XTAL will be automatically off and it will be automatically on after wake-up. If MOSC_EN=1 and the device enters deep sleep, the XTAL will remain active.

If the XTAL is used as system clock, during normal operation, disabling the XTAL (XTAL_EN=0) is not recommended, because the system clock will automatically be switched to the internal LRC.

The XTAL_LP bit can be configured to select the power consumption mode; however, this is only valid when the XTAL is in low speed LP mode. After the external oscillator has been stabilized (XTAL_RDY=1), the user can configure the XTAL for low power mode to lower down the consumption. When the external oscillator is in HS mode, it will stay in the high power consumption mode and cannot be configured to low power mode.

2. 6. 3. 2 Internal High Speed Clock HRC

The internal high-speed clock 16MHZ HRC has the frequency accuracy ±2% over full temperature range. The HRC is the system clock by default after power-on and it can be disabled by the HRC_EN bit.

When the HRC is operating as system clock, it is not recommended to disable it (HRC_EN=0) or else the system clock will automatically be switched to internal LRC.

When HRC_EN=1, if MOSC_EN=0 and the device enters deep sleep, the HRC clock will automatically be disabled and will automatically be enabled after wake-up. If MOSC_EN=1 and the device enters deep sleep, the HRC will not be disabled.

2. 6. 3. 3 Internal Low Speed Clock LRC

The device has an internal low speed 32KHz clock LRC, which keeps operating all the

time and cannot be disabled. The frequency accuracy of the LRC clock is ±40% over full temperature. The main system, WDT, LCDC, LEDC and RTC module can be clocked by the internal LRC. For those module requiring high frequency accuracy, the LRC is not recommended.

2. 6. 3. 4 Phase Locked Loop PLL

The input clock of PLL can be the XTAL (32.768KHz, 4MHz, 8MHz and16MHz), HRC (16MHz), and LRC (32KHz).

During PLL operation, the PLL_REF_SEL<2:0> selects the input clock source; meanwhile, the selected clock source (HRC, LRC or XTAL) must be configured properly. The PLL_48M_SEL bit selects the frequency multiplication factor to output the desired frequency. See the detailed description below:

When PLL_REF_SEL<2:0>=000/001, it is disabled.

When PLL_REF_SEL<2:0> =010, the HRC must be configured to 16MHz via the configuration word, and the input clock source of the PLL is the 16MHz HRC divided by 4. When PLL_48M_SEL=0, the frequency multiplication factor is 8, and the output frequency of PLL is 32MHz. When PLL_48M_SEL=1, the frequency multiplication factor is 12, and the output frequency of PLL is 48MHz.

When PLL_REF_SEL<2:0> =011, the input clock source of the PLL is the 32KHz LRC. When PLL_48M_SEL=0, the frequency multiplication factor is 1024, and the output frequency of PLL is 32.768MHz. When PLL_48M_SEL=1, the frequency multiplication factor is 1536, and the output frequency of PLL is 49.152MHz.

When PLL_REF_SEL<2:0> =100, the XTAL must be configured as XT mode and externally connect to a 4MHz oscillator, and the input clock source of the PLL is the 4MHz XTAL. When PLL_48M_SEL=0, the frequency multiplication factor is 8, and the output frequency of PLL is 32MHz. When PLL_48M_SEL=1, the frequency multiplication factor is 12, and the output frequency of PLL is 48MHz.

When PLL_REF_SEL<2:0> =101, the XTAL must be configured to HS mode and externally connect to an 8MHz oscillator, and the input clock source of the PLL is the 8MHz XTAL divided by 2. When PLL_48M_SEL=0, the frequency multiplication factor is 8, and the output frequency of PLL is 32MHz. When PLL_48M_SEL=1, the frequency multiplication factor is 12, and the output frequency of PLL is 48MHz.

When PLL_REF_SEL<2:0> =110, the XTAL must be configured to HS mode and externally connect to a 16MHz oscillator, and the input clock source of the PLL is the 16MHz XTAL divided by 4. When PLL_48M_SEL=0, the frequency multiplication factor is 8, and the output frequency of PLL is 32MHz. When PLL_48M_SEL=1, the frequency multiplication factor is 12, and the output frequency of PLL is 48MHz.

When PLL_REF_SEL<2:0> =111, the XTAL must be configured to LP mode and externally connect to a 32.768KHz oscillator, and the input clock source of the PLL is the 32KHz XTAL. When PLL_48M_SEL=0, the frequency multiplication factor is 1024,

and the output frequency of PLL is 32.768MHz. When PLL_48M_SEL=1, the frequency multiplication factor is 1536, and the output frequency of PLL is 49.152MHz.

When operating with the PLL module, the PLL module must be enabled after the input clock source has been stabilized. See PLL example for details.

If PLL_EN =1, when MOSC_EN=0 and the device enters deep sleep, the PLL will automatically be disabled and will be enabled again after wake-up. When MOSC_EN=1 and the device enters deep sleep, the PLL will not be off.

The PLL module supports lock interrupt or lost lock interrupt, selected by the LK_IFS<2:0>. When LK_IFS<2:0> =000 or 010, an interrupt will be generated on a successful PLL lock. When LK_IFS<2:0> =001 or 011, an interrupt will be generated on a failed PLL lock. When LK_IFS<2:0> =100, 101, 110 or 111, an interrupt can be generated no matter the PLL succeeded in locking or failed to lock.

During PLL operation, it is not recommended to bypass the PLL lock signal. If PLL_BYLOCK=0, when the PLL clock lost lock, the system will automatically switch to the original clock source used before PLL (determined by CLK_SEL). If PLL_BYLOCK =1, when the PLL clock lost lock, the system will remain clocked by the PLL, which might cause irregular behavior of the device.

Two I/O ports are available to output the clock, where the CLKO0 port is dedicated to directly outputting the high frequency while the CLKO1 port is dedicated to outputting the high frequency divided by 512. The corresponding GPIO_PAFUNC/GPIO_PBFUNC register must be configured to enable the output clock function on the pin. When the high frequency clock is being output directly, enable the high current drive on the associated pin to avoid waveform distortion.

2. 6. 3. 5 External Clock Check Management CCM

The following conditions must exist to enable the external clock check management CCM which is able to detect the clock-off state.

- 1) The CCM enable bit EN of the SCU_CCM register must be set, and it defaults to be enabled.
- 2) The external clock must be selected as system clock by writing CLK_SEL<1:0>=10 of the SCU_SCLKEN0 register. Note that, in the case that the external clock is selected as the input clock source for the PLL, if either condition of the above is not true, the external CCM will not work.

During the CCM operation, if the external clock is found off, the system clock will automatically be switched to LRC clock and the corresponding interrupt flag will be set at the same time. It is worth mentioning that when MOSC_EN=0, the device will enter deep sleep mode, and the external clock source will be disabled, which causes the external clock to stop oscillating. In this case, the external oscillator off FLAG will not be set. Following the interrupt, switch the system clock to either LRC or HRC by writing the CLK SEL<1:0> bits. If the PLL is used, the PLL module needs to be disabled too

(PLL_MUX=0, PLL_EN=0). After the clock-off issue is resolved, the external clock must be enabled again by software. See the CCM interrupt service routine for details.

External clock check management interrupt service routine

```
INT_CCM PROC
PUSH {LR}
LDR
          R0, =SCU_SCLKEN0
LDR
          R1, [R0]
LDR
          R2, = 0XFFFFFFD ; Switch the system clock to LRC
ADDS
         R1, R1, R2
LDR
          R0, =SCU_SCLKEN1
LDR
          R1, [R0]
LDR
          R2, = 0XFFFFFFFE
                             ; Disable external clock oscillator
ADDS
          R1, R1, R2
```

2. 6. 3. 6 Clock Filter CLKFLT

The HR8P506 supports system clock filtering before frequency division.

Upon enabling the system clock filtering, the CLKFLT_EN bit of the SCU_WAKEUPTIME register must be set and select the filtered system clock by writing CLKFLT_BY≠0x55 of the SCU_SCLKEN0.

Upon disabling the clock filter, bypass the CLKFKT first by writing CLKFLT_BY=0x55, and then write the CLKFLT_EN=0. See the clock filter example for details.

In the case of CLKFLT_EN=1, when MOSC_EN=0 and deep sleep mode is entered, the CLKFLT will automatically be disabled, and again automatically enabled after wake up. When MOSC_EN=1 and deep sleep mode is entered, the CLKFLT will not be disabled.

When the system clock is the PLL output 48MHz, you need to set CLKFLT_BY<7:0>=0x55 to bypass the clock filter. When the system clock is one of other clock sources, you need to set CLKFLT_BY<7:0>=0x00 (or other values rather than 0x55).

To ensure the reliability of the system operation, disabling the CLKFLT is not recommended except the system clock is 48MHz output by PLL.

2. 6. 3. 7 Device Status in Sleep Mode

In sleep mode, the status of the core processor, the content of the registers, peripheral registers and SRAM, and the port levels will remain the same with what they were before entering sleep mode.

2. 6. 3. 8 Normal Sleep Mode

In normal sleep mode, the core clock stops running, and the peripheral clock PCLK

and the device clock source continue to run.

2. 6. 3. 9 Deep Sleep Mode

In deep sleep mode, both the core clock and peripheral clock PCLK stop running.

- 1) When MOSC_EN=0, the XTAL, HRC, PLL and CLKFLT are all disabled except for LRC. The peripherals clocked from the LRC will continue operating. However, if the peripherals are clocked from other clock source, they will stop running (the asynchronous wake-up function is still active). Following wake-up, the XTAL, HRC, PLL and CLKFLT will resume operating.
- 2) When MOSC_EN=1, the clock source, PLL and CLKFLT continue operating. The peripherals clocked from LRC and XTAL will continue running. However, if the peripherals are clocked from PLCK or other divided clocks, they will stop running (the asynchronous wake-up function is still active).

2. 6. 4 Special Function Registers

2. 0		- Opeolar i unotion registers													
Syste	System Clock Enable Register 0(SCU_SCLKEN0)														
Offset	Offset address:40 _H														
Reset	Reset value:00000000_00000000_0000000000000000000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Rese	rved		CLKO	JT1_SEL<1:0>	CLKC	OUT0_SEL<1:0>				С	LKFLT_	BY<7:0>		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	SY	SCLK_	DIV		Reserved	PLL_MUX		Reserved					XTAL_LP	CLK_S	SEL<1:0>

_	bit 31-28	_	_
CLKOUT1_SEL<1:0>	bit27-26	R/W	CLKO1 pin output select bits 00: Clock output disabled 01: System clock output (divided by 512) 10: LRC clock output 11: HRC clock output (divided by 512)
CLKOUT0_SEL<1:0>	bit 25-24	R/W	CLKO0 pin output select bits 00: Clock output disabled 01: System clock output 10: LRC clock output 11: HRC output
CLKFLT_BY<7:0>	bit 23-16	R/W	CLKFLT bypass enable bits 8'h55: Bypassing CLKFLT enabled Other: Bypassing CLKFLT disabled CLKFLT is the system clock filter. To ensure the stability of the system, bypassing the CLKFLT is not recommended.

_	bit15	_	_
SYSCLK_DIV<2:0>	bit14-12	R/W	System clock postscaler ratio select bits 000:1:1 001:1:2 010:1:4 011:1:8 100:1:16 101:1:32 110:1:64 111:1:128
_	bit11-9	_	_
PLL_MUX	bit8	R/W	System clock select bit 0: Original clock(selected by CLK_SEL) 1: PLL clock
_	bit7-3	_	_
XTAL_LP	bit2	_	Power mode select bit in external low-speed mode 0: Low power (fixed to 0 via software) 1: High power (for test only)
CLK_SEL<1:0>	bit1-0	R/W	Original clock source select bits 00: 16MHz HRC 01: 32KHz LRC 10: XTAL clock (HS, XT or LP selected by CFG_OSCMD) 11: 16MHz HRC

- 1. Prior to writing to the SCU_SCLKEN0 register, configure the SCU_PROT register to disable the write protection.
- Upon selecting 32MHz or 48MHz PLL clock as the system clock, configure the ACCT<3:0> of the SCU_FLASHWAIT register to select the proper Flash read time, then switch to 32MHz or 48MHz or else it may result in error in instruction execution. See Flash Memory Wait Function for more details.
- 3. The XTAL_LP bit can be written only after the XTAL_EN bit of the SCU_SCLKEN1 register is enabled.
- 4. When the configuration word sets the external oscillator to HS and XT mode, the XTAL_LP software configuration is invalid and the external oscillator is always in high power mode. When the external oscillator is set to LP mode, XTAL_LP must be set to 0 to enable the external clock to operate in low power mode.

System Clock Enable Register1(SCU_SCLKEN1)

Offset address:44_H

13

15

Reset value:00000000_00000010_000000000_00000010_B

31 30 29 28 20 17 27 26 25 24 23 22 21 19 18 16 PLL_RDY HRC_RDY XTAL_RDY Reserved

12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved PLL_BYLOCK PLL_EN PLL_48M_SEL PLL_REF_SEL<2:0> Reserved HRC_EN XTAL_EN

_	bit 31-19	_	_
			PLL clock ready flag bit
PLL_RDY	bit18	R	0: Not stabilized
			1: Stabilized
			Internal high speed HRC ready flag bit
HRC_RDY	bit17	R	0: Not stabilized
			1: Stabilized
			External oscillator ready flag bit
XTAL_RDY	bit16	R	0: Not stabilized
ATAL_RUT	DILTO	K	1: Stabilized
			This flag is only active when XTAL_EN=1
_	bit15-14	_	_
			PLL lock bypass enable bit
PLL_BYLOCK	bit13	R/W	0: Disabled
			1: Enabled
		R/W	PLL enable bit
			0: Disabled
PLL_EN	bit12		1: Enabled (ensure the stability of the clock source
			selected by PLL_REF_SEL clock source before
			enabling the PLL)
			PLL output clock select bit
PLL_48M_SEL	bit11	R/W	0: Output 32MHz clock
			1: Output 48MHz clock
			PLL input clock source select bit
			000: Disabled
			001: Disabled
			010: Internal HRC clock (about 16MHz)
PLL_REF_SEL<2:0>	bit10-8	R/W	011: Internal LRC clock (about 32KHz)
			100: External 4MHz clock
			101: External 8MHz clock
			110: External 16MHz clock
			111: External 32KHz clock
_	bit7-2	_	_
HRC_EN	bit1	R/W	Internal high speed HRC enable bit

			0: Disabled 1: Enabled
			External oscillator enable bit
XTAL_EN	bit0	R/W	0: Disabled
			1: Enabled

- 1. Prior to writing to the SCU_SCLKEN1 register, configure the SCU_PROT register to disable the write protection.
- 2. If the low speed LP mode is selected for the XTAL clock with the configuration word CFG_OSCMD, prior to setting the XTAL_EN to enable the external oscillator, set XTAL_LP=0 by software to put the LP oscillator in low power mode.
- If the LP mode needs to be selected for the external XTAL clock by the configuration word CFG_OSCMD, first set the XTAL_EN=1, then set XTAL_LP=0 of the SCU_SCLKEN0 to put the LP oscillator in low power mode.

Peripheral Clock Enable Register (SCU_PCLKEN)

Offset address:48_H

Reset value:00010011_00010011_00011111_11110111_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserve	4	I2C0_	Rese	rved	SPI1_EN	SPI0_EN		Reserved		EUART0	Res	served	UART1_	UART0_
			EN	11000		0.11_2.1	0. 10_211				_EN	1100		EN	EN
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserve	d	T32N 0_EN	T16N3_ EN	T16N2 _EN	T16N1_E N	T16N0_E N	WDT_E	LCD_E N	RTC_E N	ADC_E N	Res Erve d	IAP_E N	GPIO_EN	SCU_EN

_	bit 31-29	_	_
			I2C0 clock enable bit
I2C0_EN	bit28	R/W	0: Disabled
			1: Enabled
_	bit 27-26	_	_
			SPI1 clock enable bit
SPI1_EN	bit 25	R/W	0: Disabled
			1: Enabled
			SPI0 clock enable bit
SPI0_EN	bit 24	R/W	0: Disabled
			1: Enabled
_	bit 23-21	_	_
			EUART0 clock enable bit
EUART0_EN	bit 20	R/W	0: Disabled
			1: Enabled

Preliminary 49/341

_	bit 19-18	_	_
			UART1 clock enable bit
UART1_EN	bit 17	R/W	0: Disabled
			1: Enabled
			UART0 clock enable bit
UART0_EN	bit 16	R/W	0: Disabled
			1: Enabled
_	bit 15-13	_	_
			T32N0 clock enable bit
T32N0_EN	bit 12	R/W	0: Disabled
			1: Enabled
			T16N3 clock enable bit
T16N3_EN	bit 11	R/W	0: Disabled
			1: Enabled
			T16N2 clock enable bit
T16N2_EN	bit 10	R/W	0: Disabled
			1: Enabled
			T16N1 clock enable bit
T16N1_EN	bit 9	R/W	0: Disabled
			1: Enabled
			T16N0 clock enable bit
T16N0_EN	bit 8	R/W	0: Disabled
			1: Enabled
			WDT clock enable bit
WDT_EN	bit 7	R/W	0: Disabled
			1: Enabled
			LCDC clock enable bit
LCD_EN	bit 6	R/W	0: Disabled
			1: Enabled
			RTC clock enable bit
RTC_EN	bit 5	R/W	0: Disabled
			1: Enabled
			ADC clock enable bit
ADC_EN	bit 4	R/W	0: Disabled
			1: Enabled
	bit 3	_	_
			FLASH_IAP clock enable bit
IAP_EN	bit 2	R/W	0: Disabled
			1: Enabled
			GPIO clock enable bit
GPIO_EN	bit 1	R/W	0: Disabled
			1: Enabled
SCU_EN	bit 0	R/W	SCU clock enable bit

	0: Disabled
	1: Enabled

- Prior to writing to the SCU_PCLKEN register, configure the SCU_PROT register to disable the write protection.
- 2. Prior to enabling the clock for any peripheral, first enable the SCU clock by setting the SCU_EN in the SCU_PCLKEN register.

For example: configuring WDT clock

LDR R0, =SCU_PCLKEN

LDR R1, =0X00000001

STR R1, [R0] ; enable SCU clock

LDR R1, =0X00000081

STR R1, [R0] ; enable SCU and WDT clock

3. When the WDT clock enable bit is 0 (WDT_EN=0), any read or write to the WDT module is prohibited.

However, the WDT counter keeps running and the watchdog timer is still active.

System Wake-up Time Control Register (SCU_WAKEUPTIME)

Offset address:4CH

Reset value:00000000_00000000_00110011_111111111B 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Reserved LDOLP_VOSEL<2:0> 15 14 13 12 11 10 0

-	FLASHPW_PD	CLKFLT_EN	MOSC_EN	WAKEUPTIME<11:0>

_	bit31-19	_	_
LDOLP_VOSEL<2:0>	bit18-16	W/R	LDO output voltage select bits in deep sleep 000: 1.5V 100: 1.4V (recommended) Others: For test only, do not set.
_	bit15	_	_
FLASHPW_PD	bit14	W/R	Flash power control in sleep mode 0: On 1: Off (for test only. It is prohibited to off the Flash power in practical use)
CLKFLT_EN	bit13	R/W	System clock filter enable bit 0: Disabled 1: Enabled To ensure the stability of the system, during normal operation, the CLKFLT must stay enabled. During DEEP SLEEP, the CLKFLT can be disabled to reduce the power consumption.

Preliminary

51/341

	bit12	R/W	Clock control during deep sleep
			0: HRC, PLL, XTAL and CLKFLT auto disabled
MOSC_EN			during deep sleep
			1: HRC, PLL, XTAL and CLKFLT auto enabled
			during deep sleep
WAKEUPTIME<11:0>	bit11-0	R/W	Wake-up time control
			T _{PCLK} * WAKEUPTIME

- 1. Prior to writing to the SCU_WAKEUP register, configure the SCU_PROT register to disable the write protection.
- 2. The LDOLP_VOSEL<2:0> bits need to be fixed to 100 by software during chip initialization, to reduce the power consumption in deep sleep mode.
- 3. The FLASHPW_PD bit needs to be fixed to 0 by software. It is prohibited to write the bit to1 or else it may cause irregular behavior of the device.
- 4. During deep sleep mode, when MOSC_EN =1, the HRC, PLL, XTAL and CLKFLT can be enabled with their individual enable bit HRC_EN, PLL_EN, XTAL_EN and CLKFLT_EN set.
- 5. The WAKEUPTIME<11:0> bits are used to set the wait time for the disabled HRC, PLL and XTAL to resume operating after waking up from deep sleep mode. Usually, the wait time is maintained by default, and it can be adjusted based on the actual operating status of the application system. During deep sleep, if the HRC, PLL and XTAL remain enabled, then the wait time can be set to 0.

External Clock Check Management Register (SCU_CCM)

Rese	Reset value:00000000_00000000_000000001 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved								FLAG							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved					IF		IFS<2:0)>	ΙE		Reserve	ed	EN		

_	bit31-17	_	_
			External oscillator off flag bit
FLAG	bit16	R	0: external oscillator keeps running
			1: external oscillator stopped
_	bit15-9	_	_
	bit8	R/W	CCM interrupt flag bit
			0: CCM trigger event not occurred
l IF			1: CCM trigger event occurred
IF			In edge-triggered mode, clear the flag by writing 1.
			In level-triggered mode, the flag is read-only, and it will
			be automatically cleared when the triggering level

Preliminary 52/341

			disappears.
IFS<2:0>	bit7-5	R/W	CCM interrupt trigger mode select bits 000: CCM FLAG rising edge triggers the interrupt and the oscillator stops. 001: CCM FLAG falling edge triggers the interrupt and the oscillator resumes. 010: CCM FLAG high level triggers the interrupt and the oscillator stops. 011:CCM FLAG low level triggers the interrupt and the oscillator resumes 1xx:CCM FLAG change (rising or falling edge) triggers the interrupt
IE	bit 4	R/W	External clock interrupt enable bit 0: Disabled 1: Enabled
_	bit3-1	_	_
EN	bit0	R/W	External clock check enable bit 0: Disabled 1: Enabled

Note: Prior to writing to the SCU_CCM register, configure the SCU_PROT register to disable write protection.

PLL Lock Interrupt Control Register (SCU_PLLLKCON)

Offset address:30_H

Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved							LK_FLAG							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Reserve	ed			IF	Reserved	LI	<_IFS<2	2:0>		Reserve	ed	ΙE

_	bit31-17	_	_
		R	PLL lock flag bit
LK_FLAG	bit16	IX	0:PLL not locked
			1:PLL locked
_	bit15-9	_	_
	bit8		PLL interrupt flag bit
		R/W	0: PLL lock flag trigger event not occurred
			1: PLL lock flag trigger event occurred
IF			In edge-triggered mode, clear the flag by writing 1.
			In level-triggered mode, the flag is read-only, and it
			will be automatically cleared when the triggering level
			disappears.

Preliminary 53/341

_	bit7	_	_
LK_IFS<2:0>	bit6-4	R/W	PLL lock interrupt trigger mode select bits 000: PLL lock flag rising edge triggers the interrupt and the locking is successful. 001: PLL lock flag falling edge triggers the interrupt and the lock fails. 010: PLL lock flag high level triggers the interrupt and the locking is successful. 011: PLL lock flag low level triggers the interrupt and the locking fails. 1xx: PLL lock flag change (rising or falling edge) triggers the interrupt.
_	bit3-1	_	_
IE	bit0	R/W	PLL lock interrupt enable bit 0: Disabled 1: Enabled

Note: Configure the SCU_PROT register to disable write protection prior to writing to the SCU_PLLLKCON register.

2. 6. 5 System Clock Application Notes

For the operations below, the system protection register SCU_PROT has been disabled and the SCU clock CLKEN SCU bit has been enabled.

2. 6. 5. 1 External Clock XTAL

Using external clock XTAL:

```
SWITCH XTAL PROC
PUSH
        {LR}
LDR
        R0, =SCU_SCLKEN1
LDR
        R1, [R0]
LDR
        R2, =0X01
ORRS
        R1, R1, R2
STR
                                   ; Enable XTAL_EN
        R1, [R0]
WAIT XTAL FLAG
LDR
        R0, =SCU_SCLKEN1
LDR
        R1, [R0]
LDR
        R2, =0X010000
TST
        R1, R2
BEQ
        WAIT_XTAL_FLAG
                                   ; Wait for XTAL_RDY
```

LDR R0, =SCU_SCLKEN0

[;] If the external low speed LP clock is used as system clock and works in the low power mode, the setting is as follows.

LDR R1, =0X02

STRB R1, [R0] ;Configure the low speed LP clock in

;low power mode

POP {PC}

ALIGN LTORG ENDP

2. 6. 5. 2 Internal High Speed Clock HRC

Using the internal high speed clock HRC:

SWITCH_HRC PROC

PUSH {LR}

LDR R0, =SCU_SCLKEN1

LDR R1, [R0] LDR R2, =0X02 ORRS R1, R1, R2

STR R1, [R0] ; Enable HRC_EN

WAIT_HRC_FLAG

LDR R0, =SCU_SCLKEN1

LDR R1, [R0]

LDR R2, =0X020000

TST R1, R2

BEQ WAIT_HRC_FLAG ; Wait for HRC_RDY

LDR R0,=SCU_SCLKEN0

LDRB R1,[R0]
LDR R2, =0XFC
ANDS R1, R1, R2

STRB R1, [R0] ; Select HRC as system clock

POP {PC}

ALIGN LTORG ENDP

2. 6. 5. 3 Internal Low Speed Clock LRC

Using the internal low speed clock LRC:

SWITCH_LRC PROC

PUSH {LR}

LDR R0,=SCU_SCLKEN0

LDRB R1,[R0]
LDR R2, =0XFC
ANDS R1, R1, R2
LDR R2,=0X01
ORRS R1,R1,R2

Preliminary 55/341

STRB R1, [R0] ; Select LRC as system clock

POP {PC}

ALIGN LTORG ENDP

2. 6. 5. 4 Phase Locked Loop PLL

Prior to using PLL, first enable the PLL input clock source and wait for the clock source to be stabilized.

Example: input external 16MHz clock to the PLL and output 48MHz

SWITCH_XTAL16M_PLL48M PROC

PUSH {LR}

LDR R0, =SCU_SCLKEN1

LDR R1, [R0] LDR R2, =0X01 ORRS R1, R1, R2

STR R1, [R0] ; Enable XTAL_EN. Note that the

; external oscillator must be of 16MHz

WAIT_XTAL_FLAG

LDR R0, =SCU_SCLKEN1

LDR R1, [R0]

LDR R2, =0X010000

TST R1, R2

BEQ WAIT_XTAL_FLAG ; Wait for XTAL_RDY

LDR R0,=SCU_SCLKEN1

LDR R1,=0X1E ;Select the input clock source to the PLL STRB R1,[R0,#0X01] ; Not bypass the PLL lock signal and

; enable PLL module

WAIT_PLL_FLAG

LDR R0, =SCU_SCLKEN1

LDR R1, [R0]

LDR R2, =0X040000

TST R1, R2

BEQ WAIT_PLL_FLAG ; Wait for PLL_RDY

LDR R0, =SCU_SCLKEN0

LDR R1, [R0] LDR R2, =0X0100

ORRS R1, R1, R2

STR R1, [R0] ; Select PLL multiplier as system clock

POP {PC}

ALIGN

LTORG

ENDP

; Select the original clock as system clock

To disable PLL:

POWER_OFF_PLL PROC

PUSH {LR}

LDR R0, =SCU_SCLKEN0

LDRB R1, [R0, #0X01]

LDR R2, =0XFE

ANDS R1, R1, R2

STRB R1, [R0, #0X01]

LDR R0, =SCU_SCLKEN1

LDRB R1, [R0, #0X01] LDR R2, =0X0F

ANDO DA DA DA

ANDS R1, R1, R2

STRB R1, [R0, #0X01] ; Disable the PLL module

POP {PC}

ALIGN

LTORG

ENDP

2. 6. 5. 5 Clock Filter CLKFLT

Using CLKFLT:

POWER_ON_CFT PROC

PUSH {LR}

LDR R0, =SCU_WAKEUPTIME

LDRB R1, [R0, #0X01]

LDR R2, =0X02

ORRS R1, R1, R2

STRB R1, [R0, #0X01] ; Enable CLKFLT_EN

LDR R0, =SCU_SCLKEN0

LDRB R1, =0X55

STRB R1, [R0, #0X02] ; Select the filtered clock as system clock

POP {PC}

ALIGN

LTORG

ENDP

To disable CLKFLT:

POWER_OFF_CFT PROC

PUSH {LR}

LDR R0, =SCU_SCLKEN0

LDRB R1, =0X00

STRB R1, [R0, #0X02] ; Select the un-filtered clock as system clock

LDR R0, =SCU_WAKEUPTIME

LDRB R1, [R0, #0X01]

Preliminary ______ 57/341

LDR R2, =0XFD

ANDS R1, R1, R2

STRB R1, [R0, #0X01] ; Disable CLKFLT_EN

POP {PC}

ALIGN LTORG

ENDP

2. 7 Interrupts and Exceptions Handler

2. 7. 1 Interrupts and Exceptions

In the Cortex-M0 processor, the built-in NVIC (Nested Vectored Interrupt Controller) supports the following:

- ♦ Interrupt nesting
- ♦ Interrupt vectors
- Opposite the priority of th
- Maskable interrupts.

For Cortex-M0 core, exceptions are events that cause changes in program flow control outside a normal code sequence, and interrupts is one kind of exceptions. To make it easier to understand, this document defines the core interrupts as exceptions and peripheral interrupts as interrupts.

The table below describes the operations of exceptions/interrupt priority.

Operation	Description					
	Condition: a higher priority exception/interrupt occurs during ISR execution or thread mode					
Preempt	Result : if currently in thread mode, a pending interrupt will be generated. If during ISR execution, the interrupt nesting will be generated, and the processor will automatically save the operating status and perform pushing.					
Tail	Condition: Following the completion of the current ISR execution, a higher priority exception/interrupt occurs during returning.					
Chaining	Result : skip the popping process to handle the new exception/interrupt					
Deture	Condition: Following the completion of the current ISR execution, no higher priority exception/interrupt occurs during returning.					
Return	Result : perform the popping process and restore the status of the processor it had before entering ISR					
	Condition: Following the beginning of the current ISR execution, a higher					
Late Arrival	priority exception/interrupt occurs during storing. Result : the processor switches to handle the higher priority exception/interrupt first					

Table 2-2 Operation Description of Exception/Interrupt Priority

Note: ISR - Interrupt Service Routine

Exception Number	Туре	Priority	Descriptions
0	N/A	N/A	No exception
1	Reset	-3 (Highest)	Reset
2	NMI	-2	Nonmaskable interrupt (from external interrupt input)
3	Hard Fault	-1	All disabled Faults will be upgraded to Hard Fault
4~10	Reserved	NA	_
11	SVC	Programmable	Supervisor call via SVC instruction
12~13	Reserved	NA	_
14	PendSV	Programmable	Pending request for system service
15	SysTick	Programmable	System tick timer
16	IRQ0	Programmable	Peripheral interrupt 0
17	IRQ1	Programmable	Peripheral interrupt 1
47	IRQ31	Programmable	Peripheral interrupt 31

Table 2-3 List of Exceptions/Interrupts

The Cortex-M0 supports the following exceptions/interrupts:

NMI interrupts, Hard Fault, SVC exception, PendSV exception, SysTick exception and 32 interrupt requests IRQ0~IRQ31.

Hard Fault, SVC exception, PendSV exception and SysTick exception are core exceptions which are controlled by Cortex-M0 while NMI interrupts and 32 IRQs are controlled by the configuration word.

Although Cortex-M0 does not support the NMI enable bit, the chip provides the enable bit NMIEN to avoid generating NMI interrupt source before completion of power-on initialization. The enable bit can be set (NMIEN=1) after the NMI interrupt source configuration is completed.

The Cortex-M0 offers 32 individual IRQ enable bits. The IRQs can be enabled and disabled independently by configuring the interrupt control registers NVIC_ISER and NVIC_ICER.

Configuring the priority control registers NVIC_PR0~NVIC_PR7 can set the priority level of IRQ0~IRQ31. If several IRQs are generated concurrently, the highest priority IRQ will be first responded. If the IRQs have the same priority level, the IRQ having the lowest number, according to the interrupt vector table, will be responded first. For example, if IRQ0 and IRQ1 have the same priority level and are asserted at the same time, IRQ0 will be first responded.

2. 7. 2 Interrupt and Exception Vector Allocation

Vector Number	Туре	Function	Descriptions
0~15	Exception	_	Cortex-M0 internal exceptions, including NMI
16	IRQ0	PINT0 interrupt	External port interrupt 0
17	IRQ1	PINT1 interrupt	External port interrupt 1
18	IRQ2	PINT2 interrupt	External port interrupt 2
19	IRQ3	PINT3 interrupt	External port interrupt 3
20	IRQ4	PINT4 interrupt	External port interrupt 4
21	IRQ5	PINT5 interrupt	External port interrupt 5
22	IRQ6	PINT6 interrupt	External port interrupt 6
23	IRQ7	PINT7 interrupt	External port interrupt 7
24	IRQ8	T16N0 interrupt	16-bit timer/counter 0 interrupt
25	IRQ9	T16N1 interrupt	16-bit timer/counter 1 interrupt
26	IRQ10	T16N2 interrupt	16-bit timer/counter 2 interrupt
27	IRQ11	T16N3 interrupt	16-bit timer/counter 3 interrupt
28	IRQ12	T32N0 interrupt	32-bit timer/counter 0 interrupt
29	IRQ13	Reserved	Reserved
30	IRQ14	Reserved	Reserved
31	IRQ15	Reserved	Reserved
32	IRQ16	WDT interrupt	Watchdog interrupt
33	IRQ17	RTC interrupt	Real time clock interrupt
34	IRQ18	KINT interrupt	External key input interrupt
35	IRQ19	ADC interrupt	Analog to digital conversion interrupt
36	IRQ20	Reserved	Reserved
37	IRQ21	LVD interrupt	Low voltage detection interrupt
38	IRQ22	PLLLK interrupt	PLL lost lock interrupt
39	IRQ23	UART0 interrupt	UART0 interrupt
40	IRQ24	UART1 interrupt	UART1 interrupt
41	IRQ25	EUART0 interrupt	EUART0 interrupt
42	IRQ26	Reserved	Reserved
43	IRQ27	SPI0 interrupt	SPI0 interrupt
44	IRQ28	SPI1 interrupt	SPI1 interrupt
45	IRQ29	I2C0 interrupt	I2C0 interrupt
46	IRQ30	Reserved	Reserved
47	IRQ31	CCM interrupt	External oscillator stop interrupt

Table 2-4 List of IRQ Allocation

2. 7. 3 Interrupt Vector Table Re-map

The Cortex-M0 itself does not support the interrupt vector table re-map. However, in HR8P506, there are two special registers, which are interrupt vector table re-map enable register and interrupt vector offset register, supporting the interrupt vector table re-map.

See Flash In-Application Programming (IAP) for more details.

2. 7. 4 Special Function Registers

Nonr	naskabl	e Interru	ıpt Con	trol Regi	ster(SC	U_NMIC	ON)								
Offse	t addres	s:04 _H													
Rese	t value:0	0000000	00000	000_000	00000_	0000000	0 _B								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	eserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Re	served					NMIC	CS<4:0>				NMIEN
	_	-		bit31	-6	_	_								
							NN	/II sele	ect bit	s					
							00	000:IF	RQ0						

_	bit31-6	_	_
			NMI select bits
			00000:IRQ0
NMICS<4:0>	bit5-1	R/W	00001:IRQ1
			11111:IRQ31
			NMI enable bit
NMIEN	bit0	R/W	0: Disabled
			1: Enabled

Note: Prior to writing to the SCU_NMICON register, configure the SCU_PROT register to disable write protection.

Interrupt Vector Table Re-map Enable Register (SCU_TBLREMAPEN)															
Offse	Offset address:60 _H														
Rese	Reset value:00000000_00000000_000000000B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserv	ed							EN

_	bit31-1	_	_
EN	bit0	R/W	Interrupt vector table re-map enable bit 0: The interrupt table is located in Flash memory and occupies a space of size of 192 bytes from the address "0". It currently supports 48 interrupt vectors. 1: The interrupt table has a size of 192 bytes with the starting address specified by the interrupt vector table offset register

Preliminary 62/341

Note: Prior to writing to the SCU_TBLREMAPEN register, configure the SCU_PROT register to disable write protection.

Offset address:64 _H											
Reset value:00100000_00000000_0000000000 _B											
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16											
0											
_											

TBLOFF<31:0>	bit31-0	R/W	Interrupt vector table offset address This register stores the starting address of the re-mapped interrupt vector table and is valid only with the interrupt vector table re-map enable register being set.
			The upper 24 bits TBLOFF<31:8> are both readable and writable. However, the lower 8 bits TBLOFF<7:0> is read-only, read as zero.

Note: To select the starting address, first acquire the total number of vectors, and then increase the number to make it to the power of 2. Say, given 32 interrupt and 16 exceptions, the total number of vectors 32+16=48, which needs to be increased to $2^4=64$. In addition, the address must be divisible by 64x4=256; therefore, the legal starting address can be 0x000, 0x100 and 0x200 etc.

Hard Fault Flag Register (SCU_FAULTFLAG)

Offset address:0C_H

Rese	Reset value:00000000_00000000_0000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved												FLAG2	FLAG1	FLAG0

_	bit31-3	_	_
FLAG2	bit2	R/W	Hard fault 2 flag bit 0: No write operation occurred in exception area 1: Write operation occurred in exception area (automatically set to 1 by hardware, cleared by software writing 1)

Preliminary 63/341

FLAG1	bit1	R/W	Hard fault 1 flag bit 0: No instruction fetch occurred in exception area 1: Instruction fetch occurred in exception area (automatically set to 1 by hardware, cleared by software writing 1)
FLAG0	bit0	R/W	Hard fault 0 flag bit 0: No empty instruction code was read 1: Empty instruction code was read (automatically set to 1 by hardware, cleared by software writing 1)

- 1. Reading an empty instruction code means that the value read is FFFFFFF_H by the Cortex-M0 reading the instruction in Flash program memory.
- 2. Upon clearing the hard fault flags, configure the SCU_PROT register to disable write protection.

For the NVIC register list and base address, see section 3.5.2

IRQ0	~31 Inte	rrupt Set	Enab	le Register	(NVI	C_ISER)									
Offse	t address	s:00 _H													
Rese	t value:0	0000000_	00000	0000_00000	0000_	00000000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SETEN	NA<31:16	S>						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							SETE	NA<15:0	>						
SE	SETENA<31:0> bit31-0			R/W	0: I 1: I	Set enterruph nterruph nterruph able th	ot set o	disable enable	ed	st by	softwa	are wr	iting1.		

Note: For each IRQ enable bit of the NVIC_ISER register, write 1 to enable the interrupt request while writing 0 has no effect. When reading the IRQ set enable bit, 1 indicates the interrupt set is enabled while 0 indicates the interrupt set is disabled.

Writing 0 to the bit has no effect.

IRQ0	IRQ0~31 Interrupt Clear Enable Register (NVIC_ICER)														
Offse	Offset address:80 _H														
Rese	Reset value:00000000_00000000_000000000B														
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														
							CLREN	IA <31:10	ô>						
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
	CLRENA <15:0>														

Preliminary 64/341

			IRQ clear enable bit
			0: Interrupt clear disabled
CLRENA<31:0>	bit31-0	R/W	1: Interrupt clear enabled
			Disable the interrupt request by software writing1.
			Writing 0 has no effect.

Note: For each IRQ disable bit of the NVIC_ICER register, write 1 to disable the interrupt request while writing 0 has no effect. When reading the IRQ clear enable bit, 1 indicates the interrupt clear is enabled while 0 indicates the interrupt clear is disabled.

IRQ0	~31 Inte	rrupt Pe	nding S	et Regis	ter(NVIC	C_ISPR)									
Offse	t address	s:100 _H													
Rese	t value:0	0000000	_000000	000_000	00000_0	0000000) _B								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SETPE	ND <31:1	16>						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

			IRQ pending set bit
			0: No interrupt is pended
SETPEND<31:0>	bit31-0	R/W	1: Interrupt is pended
			Pend the interrupt by software writing1. Writing 0
			has no effect

SETPEND <15:0>

Note: For each IRQ pending bit of the NVIC_ISPR register, write 1 to pend the interrupt while writing 0 has no effect. When reading the IRQ pending bit, 1 indicates that the interrupt is in pending status while 0 indicates the interrupt is not pended.

IRQ0~31 Interrupt Pending Clear Register (NVIC_ICPR) Offset address:180_H CLRPEND <31:16> CLRPEND <15:0>

			IRQ pending clear bit
CLRPEND<31:0>	bit31-0	R/W	0: No interrupt is pended
			1: Interrupt is pended

Preliminary 65/341

	Clear pending by software wring 1. Writing 0 has no
	effect.

Note: For each IRQ pending clear bit of the NVIC_ICPR register, write 1 to clear interrupt pending while writing 0 has no effect. When reading the IRQ pending clear bit, 1 indicates that the interrupt is pended while 0 indicates the interrupt is not pended.

IRQ0~3 Priority Control Register (NVIC_PR0)

Offset address:300_H

Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PRI_3	3<1:0>		Reserved				PRI_	PRI_2<1:0> Reserved			served				
15	14	13	12	12 11 10 9 8 7 6 5 4 3 2				1	0						
PRI_	RI_1<1:0> Reserved			PRI_	0<1:0>			Res	served						

PRI_3<1:0>	bit31-30	R/W	IRQ3 priority bit 00: Highest priority 11: Lowest priority
_	bit29-24	_	_
PRI_2<1:0>	bit23-22	R/W	IRQ2 priority bit 00: Highest priority 11: Lowest priority
_	bit21-16	_	_
PRI_1<1:0>	bit15-14	R/W	IRQ1 priority bit 00: Highest priority 11: Lowest priority
_	bit13-8	_	_
PRI_0<1:0>	bit7-6	R/W	IRQ0 priority bit 00: Highest priority 11: Lowest priority
_	bit5-0	_	_

IRQ4~7 Priority Control Register (NVIC_PR1)

Offset address:304_H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 PRI_7<1:0> PRI_6<1:0> Reserved Reserved 15 14 13 12 11 10 6 2 PRI_5<1:0> Reserved PRI_4<1:0> Reserved

Preliminary 66/341

PRI_7<1:0>	bit31-30	R/W	IRQ7 priority bit 00: Highest priority 11: Lowest priority
_	bit29-24	_	_
PRI_6<1:0>	bit23-22	R/W	IRQ6 priority bit 00: Highest priority 11: Lowest priority
_	bit21-16	_	_
PRI_5<1:0>	bit15-14	R/W	IRQ5 priority bit 00: Highest priority 11: Lowest priority
_	bit13-8	_	_
PRI_4<1:0>	bit7-6	R/W	IRQ4 priority bit 00: Highest priority 11: Lowest priority
_	bit5-0	_	_

IRQ8~11 Priority Control Register (NVIC_PR2)

Offset address:308_H

D	Peset value:00000000 00000000 00000000													
Reset value:00000000_00000000_000000000B														
31	30	29	29 28 27 26 25 24 23 22 21 20 19 18										17	16
PRI_	11<1:0>	1<1:0> Reserved				PRI_	PRI_10<1:0> Reserved							
15	14	13 12 11 10 9 8					7	6	5 4 3 2 1 0				0	
PRI_9	PRI_9<1:0> Reserved			PRI_	8<1:0>	Reserved								

			IRQ11 priority bit
PRI_11<1:0>	bit31-30	R/W	00: Highest priority
			11: Lowest priority
_	bit29-24	_	_
			IRQ10 priority bit
PRI_10<1:0>	bit23-22	R/W	00: Highest priority
			11: Lowest priority
_	bit21-16	_	_
			IRQ9 priority bit
PRI_9<1:0>	bit15-14	R/W	00: Highest priority
			11: Lowest priority
_	bit13-8	_	_
			IRQ8 priority bit
PRI_8<1:0>	bit7-6	R/W	00: Highest priority
			11: Lowest priority
_	bit5-0	_	_

Preliminary 67/341

	IRQ12~15 Priority	Control Register	(NVIC_PR3)
--	-------------------	------------------	------------

Offset address:30C $_{\mbox{\scriptsize H}}$

Reset value:00000000_	_00000000	_00000000	_00000000B
-----------------------	-----------	-----------	------------

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
PRI_	15<1:0>			Res	served			PRI_	14<1:0>			Res	served	t		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
PRI_	13<1:0>			Res	served			PRI_	12<1:0>)> Reserved						

1			
PRI_15<1:0>	bit31-30	R/W	IRQ15 priority bit 00: Highest priority 11: Lowest priority
_	bit29-24	_	_
PRI_14<1:0>	bit23-22	R/W	IRQ14 priority bit 00: Highest priority 11: Lowest priority
_	bit21-16	_	_
PRI_13<1:0>	bit15-14	R/W	IRQ13 priority bit 00: Highest priority 11: Lowest priority
_	bit13-8	_	_
PRI_12<1:0>	bit7-6	R/W	IRQ12 priority bit 00: Highest priority 11: Lowest priority
_	bit5-0	_	_

IRQ16~19 Priority Control Register (NVIC_PR4)

Offset address:310_H

Reset value:00000000_00000000_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PRI_	19<1:0>	Reserved						PRI_	PRI_18<1:0> Reserved						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PRI_	PRI_17<1:0> Reserved						PRI_	16<1:0>			Re	served			

PRI_19<1:0>	bit31-30	R/W	IRQ19 priority bit 00: Highest priority 11: Lowest priority
_	bit29-24	-	_
PRI_18<1:0>	bit23-22	R/W	IRQ18 priority bit

			00: Highest priority 11: Lowest priority
_	bit21-16	_	_
PRI_17<1:0>	bit15-14	R/W	IRQ17 priority bit 00: Highest priority 11: Lowest priority
_	bit13-8	_	_
PRI_16<1:0>	bit7-6	R/W	IRQ16 priority bit 00: Highest priority 11: Lowest priority
_	bit5-0	_	_

IRQ20~23 Priority Control Register (NVIC_PR5)

Offse	t address	:314 _H													
Rese	Reset value:00000000_00000000_0000000000 _B														
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														16
PRI_	23<1:0>			Res	served			PRI_	PRI_22<1:0> Reserved						
15	15 14 13 12 11 10 9 8					7	6	5	4	3	2	1	0		
PRI_	21<1:0>	:0> Reserved PRI_20<1:0> Reserved													

	1		
			IRQ23 priority bit
PRI_23<1:0>	bit31-30	R/W	00: Highest priority
			11: Lowest priority
_	bit29-24	_	_
			IRQ22 priority bit
PRI_22<1:0>	bit23-22	R/W	00: Highest priority
			11: Lowest priority
_	bit21-16	_	_
			IRQ21 priority bit
PRI_21<1:0>	bit15-14	R/W	00: Highest priority
			11: Lowest priority
_	bit13-8	_	_
			IRQ20 priority bit
PRI_20<1:0>	bit7-6	R/W	00: Highest priority
			11: Lowest priority
_	bit5-0	_	_

IRQ24~27 Priority	/ Control Register	(NVIC_PR6)
-------------------	--------------------	------------

Offset address:318_H

Reset value:00000000_00000000_00000000_000000000B

31 30 28 19 29 27 26 25 24 23 22 21 20 18 17 16 PRI_27<1:0> PRI_26<1:0> Reserved Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRI_25<1:0> Reserved PRI_24<1:0> Reserved

			IRQ27 priority bit
PRI_27<1:0>	bit31-30	R/W	00: Highest priority
			11: Lowest priority
_	bit29-24	_	_
			IRQ26 priority bit
PRI_26<1:0>	bit23-22	R/W	00: Highest priority
			11: Lowest priority
_	bit21-16	_	_
			IRQ25 priority bit
PRI_25<1:0>	bit15-14	R/W	00: Highest priority
			11: Lowest priority
_	bit13-8	_	_
			IRQ24 priority bit
PRI_24<1:0>	bit7-6	R/W	00: Highest priority
			11: Lowest priority
_	bit5-0	_	_

IRQ28~31 Priority Control Register (NVIC_PR7)

Offset address:31C_H

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	PRI_3	1<1:0>			Res	served			PRI_3	30<1:0>			Res	served		
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PRI_29<1:0> Reserved							PRI_2	28<1:0>			Res	served			

PRI_31<1:0>	bit31-30	R/W	IRQ31 priority bit 00: Highest priority 11: Lowest priority
_	bit29-24	_	_
PRI_30<1:0>	bit23-22	R/W	IRQ30 priority bit 00: Highest priority

Preliminary 70/341

			11: Lowest priority
_	bit21-16	_	_
			IRQ29 priority bit
PRI_29<1:0>	bit15-14	R/W	00: Highest priority
			11: Lowest priority
_	bit13-8	_	_
			IRQ28 priority bit
PRI_28<1:0>	bit7-6	R/W	00: Highest priority
			11: Lowest priority
_	bit5-0	_	_

2. 8 System Control Block (SCB)

2. 8. 1 Overview

The system control block SCB provides the status information of the core system implementation and controls operation of the core system.

See section 3.5.3 List of System Control Block (SCB) for details.

2. 8. 2 Special Function Registers

SCB_	SCB_CPUID Register (SCB_CPUID)														
Offse	Offset address:00 _H														
Rese	Reset value:01000001_00001100_11000010_00000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		II	MPLEME	NTER<	7:0>				VARI	ANT<3:0:	>		CONS	TANT<3:	0>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PARTNO<11:0>												REVIS	SION<3:0	 >

IMPLEMENTER<7:0>	bit31-24	R	Implementer code 0x41, ARM
VARIANT<3:0>	bit23-20	R	Variant R=0x0, as the primary number in the numbering format for the rnpn version
CONSTANT<3:0>	bit19-16	R	Constant 0xC, ARMv6-M
PARTNO<11:0>	bit15-4	R	Part number 0xC20, Cortex-M0
REVISION<3:0>	bit3-0	R	Revision P=0x0, as the secondary number in the numbering format for the rnpn version

Interrupt Control and Status Register (SCB_ICSR) Offset address:04_H 31 30 16 29 28 27 26 25 24 23 22 21 20 19 18 17 NMIPENDSET PENDSTCLR ISRPENDDING PENDSTSET VECTPENDING<5:4> Reserved Reserved 15 12 10 8 7 6 0 14 13 11 3 2 5 VECTPENDING<3:0> Reserved VECTACTIVE<5:0> Pend NMI interrupt set bit **NMIPENDSET** R/W bit31 0: No effect

Preliminary 72/341

			1: Write 1 to pend NMI
_	bit30-27		_
			Pend SysTick exception set bit
PENDSTSET	bit26	R/W	0:No effect
			1: Write 1 to pend SysTick exception
			Pend SysTick exception clear bit
PENDSTCLR	bit25	W	0: No effect
			1: Write 1 to clear SysTick exception
_	bit24-23	_	_
			Interrupt pending flag bit
ISRPENDDING	bit22	R	0: No pended interrupt
			1: Interrupt pended
_	bit21-18	_	_
			These bits indicate the vector number of the
			highest priority pending exception/ interrupt
VECTPENDING	bit17-12	R	0x0: No exception/ interrupt is currently pended.
			Others: The exception number of the highest priority
			pending exception/ interrupt
_	bit11-6	_	_
			These bits indicate the vector number of the
			currently served exception/interrupt
VECTACTIVE	bit5-0	R	0x0: Thread mode
			Others: The vector number of the currently served
			exception/interrupt

Application Interrupt and Reset Control Register (SCB_AIRCR) Offset address:0C_H Reset value:11111010_00000101_00000000_000000000B VECTKEY<15:0>

15	14	13	12	11	10	9	8	7	6	5	4	3 2	1	0
ENDIANNEGO					_		لده،					SYSRESET	VECTCLR	Decembed
ENDIANNESS					K	eser\	/ea					REQ	ACTIVE	Reserved

VECTKEY<15:0>	bit31-16	W	Register access key. Write 0x05FA to these bits. Other values would be ignored.
ENDIANNESS	bit15	R	System endianness 0: Little endian 1: Big endian
_	bit14-3	_	_

Preliminary 73/341

SYSRESETREQ	bit2	W	System reset request 0: No effect 1: Write 1 to request a system reset, and the bit is automatically cleared following the reset.
VECTCLRACTIVE	bit1	W	Exception/Interrupt clear bit This bit can only be written as 0. Writing 1 would cause Hard Fault.
_	bit0	_	_

Note: The SCB_AIRCR register can only be accessed in word, and the upper half-word can only be written as 0x05FA. Otherwise, the write operation would be ignored.

Syst	tem Co	ntrol F	Registe	r (SCB	_SCR)										
Offse	et addre	ess:10⊦	4												
Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	20	19	18	17	16				
15	14	13	12	11	10	9	8	4	3	2	1	0			
	Reserved											Rese rved	SLEEPDE EP	SLEEPON EXIT	Res erve d

_	bit31-5	_	_
SEVONPEND	bit4	R/W	Send event on pend bit 0: When set to 0, this feature is disabled. 1: When set to 1, an event is generated for each new pending of an interrupt. This can be used to wake up the processor.
_	bit3		_
SLEEPDEEP	bit2	R/W	Processor deep sleep and sleep mode select bit 0: Normal sleep mode 1: Deep sleep mode
SLEEPONEXIT	bit1	R/W	Sleep-on-exit enable bit 0: When set to 0, this feature is disabled. 1: When set to 1, enter sleep mode automatically on exiting an ISR and returning to thread mode.
_	bit0		_

																	_
			Contro	l Regist	ter (SCI	3_CC	R)										
	t addres																
Rese	t value:(000000	00_000	_000000	000000	10_00	001000 _B										
31	30	29	28	27	26	25		24	23	22	2	1 20	19		18	17	16
								R	eserved								
15	14	13	12	11	10	9		8	7	6	5	4	3		2	1	0
		Res	erved			STI	KALIGN			Reserv	ed .		UNA	LIGN_TRP		Reserv	ed
_				bit31	1-10		_		_								
STK	(ALIG	N		bit9			R		Doubl	e w	ord/	exce	ption	stackir	ng	align	ment
<u> </u>				Dito			1		oehav	ior is	alw	ays use	ed. Al	ways rea	d as	1.	
_				bit8-	4		_		_								
											•	•	-	ut an una	_		
UNA	ALIGN	I_TR	Р	bit3			R		•	s cau	uses	s a faul	t exce	eption. A	lway	/s rea	ıd as
									1.								
_				bit2-	0		—										
Syste	em Han	dler Pr	iority F	Register	2(SCB	_SHP	R2)										
Offse	t addres	s:1C _H															
Rese	t value:(000000	00_000	000000_	000000	00_00	000000 _B	i									
31	30		29	28	27	26	5 25	;	24	23	22	21	20	19	18	17	16
PRI_	11<1:0>									Reser	ved						
15	14		13	12	11	10	9			7	6	5	4	3	2	1	0
								R	eserved								
						1		1									
Р	'RI_11	<1:0	>		31-30		R/W	SV	Call (exce	ptic	on num	ber 1	1) priorit	ty se	etup k	oits
	_	_		bit	29-0		_	_									
_		_				_		_			_				_		
Syste	em Han	dler Pr	iority F	Register	3 (SCE	_SHF	PR3)										
Offse	t addres	s:20 _H															
Rese	t value:0	000000	00_000	_000000	000000	00_00	000000 _B										
31	30	29	28	3 2	7	26	25	24	23	22	2	21 2	20	19 18	1	17	16
PRI_	15<1:0>				Reserv	/ed			PRI	_14<1:	0>			Reserved			

PRI_15<1:0>	bit31-30	R/W	SysTick (exception number15) priority bits
_	bit29-24	_	_
PRI_14<1:0>	bit23-22	R/W	PendSV (exception number 14) priority bits
_	bit21-0	_	_

Reserved

Preliminary 75/341

2. 9 SysTick Timer

2. 9. 1 Overview

- 24-bit down counter for operating system, automatically reload value when reaching 0
- ♦ Able to generate SysTick exception at regular interval to allow multiple tasks to run at different time slots in embedded operating system; or allow a task to be executed at regular interval in non-embedded operating system
- Also can be used as a regular timer
- ♦ The priority of the SysTick exception is set by the PRI_15<1:0> of the SHPR3 register.
- Pend the SysTick exception by setting the PENDSTSET bit of the SCB_ICSR register
- ♦ Operating clock options: HCLK or HCLK divided by 3

The SysTick timer is a down counter, and its reload value can be set by the SYST_RVR register. After reaching 0, the COUNTFLAG will be set, and the SysTick will reload the value in SYST_RVR. The SysTick will stop counting if debugging stops. During counting, if the SYST_RVR register is set to 0, the SysTick will stop after reaching 0.

Figure 2-9 SysTick Timer Block Diagram

The current counter value of the SysTick can be obtained by reading the SYST_CVR register. Any write operation to the SYST_CVR register will cause the register itself and the COUNTFLAG to be cleared, but it will not trigger any SysTick exception.

The word-oriented operation is required when accessing the SysTick register. The following describes how to configure the SysTick counter.

- Configure the reload value register SYST RVR
- 2) Clear the current value register SYST_CVR
- 3) Configure the control and status register SYST_CSR

See section 3.5.1 List of SysTick Register for more details.

2. 9. 2 Special Function Registers

Sys	SysTick Control and Status Register (SYST_CSR)																		
Offs	Offset address:10 _H																		
Res	leset value:00000000_00000000_000000000 _B																		
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16																		
								F	Reser	ved								COUNTFLAG	
15 14 13 12 11 10 9 8 7 6 5 4 3												2			1		0		
	Reserved												(CLKSOURCE TICKINT		ENABLE			

_	bit31-17	_	_						
COUNTFLAG	bit16	R	Counter flag 0: 0 not reached 1: Set to 1 when the SysTick reaches 0 Clear the flag by either reading this register o writing the SYST_CVR register						
_	bit15-3	_	_						
CLKSOURCE	bit2	R/W	SysTick clock source select bit 0: reference clock 1: core clock						
TICKINT	bit1	R/W	SysTick interrupt enable bit 0: No SysTick exception is generated when the SysTick counts down to 0. 1: When this bit is set, the SysTick exception is generated when the SysTick counts down to 0.						
ENABLE	bit0	R/W	SysTick counter enable bit 0: Disabled 1: Enabled						

Notes

- 1. The core clock is the HCLK of which the clock frequency is the same as the system clock frequency.
- 2. The reference clock is the core clock divided by 3, FHCLK/3.

SysTick Reload Value Register (SYST_RVR) Offset address:14_H Reserved RELOAD<23:16> RELOAD<15:0>

Preliminary 77/341

_	bit31-24		_
			SysTick counter reload value
RELOAD<23:0>	bit23-0	bit23-0 R/W The range is 0x00_0001~0xFF_F	The range is 0x00_0001~0xFF_FFFF. If it is 0, the
			SysTick does not count.

SysTick Current Value Register (SYST_CVR)

Offset address:18_H

		111																
Rese	Reset value:00000000_11111111_11111111111111111111																	
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16																	
	Reserved									CURRENT <23:16>								
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																	

CURRENT<15:0>

_	bit31-24		_
			SysTick counter current value
CUDDENT 2020	bit23-0	R/W	On read returns the current value of the SysTick
CURRENT<23:0>	DI123-0	I R/VV	counter. Write to the register with any value to clear
			the register and the COUNTFLAG.

SysTick Calibration Register (SYST_CALIB)

Offset address:1C $_{\mbox{\scriptsize H}}$

Reset value:01000000_00000010_10001011_00001010_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
NOREF	SKEW			Res	served						TENMS	<23:16>	•		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TENMS<	:15:0>							

			Reference clock flag bit
NOREF	h:t04	В	0: External reference clock is not available but
NOREF	bit31	R	internal reference clock F _{HCLK/} 3 is available.
			1: External reference clock is available.
			TENMS calibration value check bit
SKEW	bit30	R	0: The TENMS calibration value is accurate.
			1: The TENMS calibration value is not accurate.
_	bit29-24	_	_
			SysTick Calibration value
TENMS<23:0>	bit23-0	R/W	If the bits read as 0, it indicates that the
			calibration value is unknown.

Note: This product only provides the internal reference clock, F_{HCLK} 3.

2. 10 Software Configuration Word

When the CFG_BORV<1:0> of the configuration word is 11, the BOR threshold voltage can be selected via the SCU_SOFTCFG register. When the power supply goes lower than the threshold voltage specified by the BORV<3:0> bits, a BOR reset will be generated.

Syste	ystem Software Configuration Register (SCU_SOFTCFG)														
Offse	ffset address:24 _H														
Rese	t value:0	0000000	_000000	000_000	00000_0	0000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved BORV<3:0>														

_	bit31-4	_	_
			BOR threshold voltage select bits (valid only
			when CFG_BORV=11)
			0000:1.7V
			0001:2.0V
		0010:2.1V	
		0011:2.2V	
	0100:2.3V	0100:2.3V	
		bit3-0 R/W	0101:2.4V
BORV<3:0>	hit2 0		0110:2.5V
DON V < 3.0>	Dit3-0		0111:2.6V
			1000:2.8V
			1001:3.0V
			1010:3.1V
			1011:3.3V
			1100:3.6V
			1101:3.7V
			1110:4.0V
			1111:4.3V

Note: Prior to writing the SCU_SOFTCFG register, configure the SCU_PROT register to disable write protection.

2. 11 Synchronization Control for T16N/T32N

2. 11. 1 Overview

The SCU_TIMEREN and SCU_TIMERDI register allow several T16N/T32N timers to be enabled or disabled at the same time. For other applications, the EN bit of T16N_CON0 or T32N_CON0 can be individually configured to enable or disable the timer. Note that, the priority level of the SCU_TIMEREN and SCU_TIMERDIS is higher than that of the EN bit of the T16N_CON0 and T32N_CON0. Moreover, the SCU_TIMEREN register has the higher priority than that of the SCU_TIMERDIS register.

2. 11. 2 Special Function Registers

		_	Opo				.009	- · · · · · · · · · · · · · · · · · · ·							
Tim	er Ena	able F	Regist	ter (S	CU_TI	MERE	EN)								
Offs	et ado	lress:	34 _H												
Res	et valu	ie:000	00000_	000000	000_000	00000	_00000000B								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									ı	Reser	ved				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		R	eserv	ed			T32N0EN		Res	erved		T16N3EN	T16N2EN	T16N1EN	T16N0EN

_	Bit31-9	_	_
			T32N0 enable bit
T32N0EN	bit8	R/W	0:-
			1: Enabled
_	bit7-4	_	_
			T16N3 enable bit
T16N3EN	bit3	R/W	0:-
			1: Enabled
			T16N2 enable bit
T16N2EN	bit2	R/W	0:—
			1: Enabled
			T16N1 enable bit
T16N1EN	bit1	R/W	0:-
			1: Enabled
			T16N0 enable bit
T16N0EN	bit0	R/W	0:-
			1: Enabled

Notes

- 1. For each bit of the SCU_TIMEREN register, write 1 to enable the timer and the bit will be automatically cleared by hardware. Writing 0 to those bits has no effect.
- 2. Prior to writing to the SCU_TIMEREN register, configure the SCU_PROT register to disable write protection.

Preliminary 80/341

Reserved

T32N0DIS

Tim	ner Disable Register (SCU_TIMERDIS)														
Offs	et ado	ress:	38 _H												
Res	et valı	ie:000	00000	0_000	00000	0_000	00000_00	0000000 _B							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									Re	eserve	ed				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Reserved

T16N3DIS

T16N2DIS

T16N1DIS

T16N0DIS

_	bit31-9	_	_
			T32N0 disable bit
T32N0DIS	bit8	R/W	0:-
			1: Disabled
_	bit7-4	_	-
			T16N3 disable bit
T16N3DIS	bit3	R/W	0:-
			1: Disabled
			T16N2 disable bit
T16N2DIS	bit2	R/W	0:-
			1: Disabled
			T16N1 disable bit
T16N1DIS	bit1	R/W	0:-
			1: Disabled
			T16N0 disable bit
T16N0DIS	bit0	R/W	0:-
			1: Disabled

Notes

- 1. For each bit of the SCU_TIMERDIS register, write 1 to disable the timer and the bit will be automatically cleared by hardware. Writing 0 to those bits has no effect.
- 2. Prior to writing to the SCU_TIMERDIS register, configure the SCU_PROT register to disable write protection

Chapter3 Memory

3. 1 Internal Memory Map

The internal memory resource contains the program memory, data memory, peripheral registers and core registers. Figure 3-1 shows the mapping of each region and reflects the details of the region of core registers.

Figure 3-1 Internal Memory Map

3. 2 Flash Memory

3. 2. 1 Information Region FLASH

The information region FLASH in the chip is divided into two partitions: INFO0 and INFO1.

- ♦ The INFO0 information region is used to store the chip configuration words CFG_WORD0, CFG_WORD1, CFG_WORD2
 - Programmer readable/writable
- The INFO1 information region contains 96 bits chip unique identifier UID
 - The chip unique identification code UID has been fixed at factory and cannot be changed. The program is read-only

3. 2. 1. 1 Configuration Word

The configuration word is located at the information region of the Flash memory, and the user can configure it through ISP programming. All the function configurations are

accomplished together by the configuration word and function related registers. The configuration word is used for the external XTAL operating mode selection, WDT enabling and BOR threshold voltage selection etc.

Name		CFG_WORD0
Address		00100004 _H
-	bit4-0	-
		XTAL oscillator pin select bit
CFG_OSC_PIN	bit5	0: PB8 and PB9
		1: PB10 and PB11(default)
		Internal HRC clock frequency select bit
INTOSC_SEL	bit6	0:16MHz (default)
		1: Others (for internal test only, prohibited to set to 1)
		140ms power-on time enable bit
		0:Enabled (default)
CEC DWDTED	bit7	1:Disabled
CFG_PWRTEB	DIL	This bit is valid only when the MRSTN pin is used for
		external reset (CFG_MRSTN≠00). It is recommended to
		enable the bit.
		BOR threshold voltage select bits
		00:3.7V
CFG_BORV	bit 9-8	01:2.5V
CI G_BORV		10:2.1V
		11:1.7V (default, the BOR threshold voltage can be
		selected via the SCU_SOFTCFG register)
-	bit10	-
		MRSTN pin multiplexing configuration
CFG_MRSTN	bit 12-11	00:GPIO
		Other: MRSTN function (default)
		SWD debug pin select bit
DEBUG_S	bit13	0:PA14 and PA15 are selected as debug pins.
		1:PA0 and PA1 are selected as debug pins (default)
		SWD debug mode enable bit
		0x: Disabled
CFG_DEBUG	bit 15-14	10: Enabled (default). The pins selected by the DEBUG_S
0.0_52200		bit are forced to be the SWD ports, and the user has no
		control for the selected pins.
		11: Disabled

Notes

The CFG_PWRTEB is valid only when the MRSTN pin is used for external reset (CFG_MRSTN≠00). It is
recommended to enable the bit (CFG_PWRTEB=0). Only when the device is required to quickly enter into
operating mode after power on, and the power supply is stable and reliable, can the CFG_PWRTEB bit be
disabled.

- 2. The $45K\Omega$ weak pull-up resistor is built-in for the MRSTN pin being used for external reset.
- 3. When the MRSTN is used as a GPIO, or after a BOR has occurred, the power-on time 140ms is fixed to be enabled, and is independent from the CFG_PWRTEB.
- 4. When performing encryption programming on Flash, the CFG_DEBUG must be disabled. Otherwise, the encryption has no effect, and the programming tool would prompt an error message.

WDTINTEN	Name		CFG_WORD1
Watchdog enable bit 0: Disabled (Default) 1: Enabled (The WDT clock source is the fixed internal LRC clock) Watchdog interrupt enable bit (valid only when CFG_WDTEN=1) 0: Disabled (default) 1: Enabled - bit 4-3 - WDT reload value select bit after power on (valid only when CFG_WDTEN=1) 000:0x0000_0200 (WDT overflow time around 16ms) 001:0x0000_1000 (WDT overflow time around 128ms) 010:0x0000_4000 (WDT overflow time around 128ms) 010:0x0000_8000 (WDT overflow time around 15lms) 100:0x0000_8000 (WDT overflow time around 1s) 101:0x0001_0000 (WDT overflow time around 2s) 110:0x0002_0000 (WDT overflow time around 4s) 111:0x0004_0000 (WDT overflow time around 8s) (default) Flash memory location write protection control bit 00000: memory locations (0000_0000H~0000_07FFH) are write-protected. 00001: memory locations (0000_0000H~0000_17FFH) are write-protected. 00010: memory locations (0000_0000H~0000_17FFH) are write-protected. 00011: memory locations (0000_0000H~0000_17FFH) are write-protected. 00011: memory locations (0000_0000H~0000_17FFH) are write-protected. 00011: memory locations (0000_0000H~0000_17FFH) are write-protected.	Address		0010000С _Н
Dit 2 Disabled (Default) 1: Enabled (The WDT clock source is the fixed internal LRC clock) Watchdog interrupt enable bit (valid only when CFG_WDTEN=1) O: Disabled (default) 1: Enabled Dit 4-3 -	-	bit 0	-
WDTINTEN	CFG_WDTEN	bit1	0: Disabled (Default) 1: Enabled (The WDT clock source is the fixed internal LRC
WDT reload value select bit after power on (valid only when CFG_WDTEN=1) 000:0x0000_0200 (WDT overflow time around 16ms) 001:0x0000_0400 (WDT overflow time around 32ms) 010:0x0000_1000 (WDT overflow time around 128ms) 011:0x0000_4000 (WDT overflow time around 512ms) 100:0x0000_8000 (WDT overflow time around 1s) 101:0x0001_0000 (WDT overflow time around 2s) 110:0x0002_0000 (WDT overflow time around 4s) 111:0x0004_0000 (WDT overflow time around 8s) (default) Flash memory location write protection control bit 00000: memory locations (0000_0000H~0000_07FFH) are write-protected. 00001: memory locations (0000_0000H~0000_17FFH) are write-protected. 00010: memory locations (0000_0000H~0000_17FFH) are write-protected. 00011: memory locations (0000_0000H~0000_17FFH) are write-protected.	WDTINTEN	bit 2	CFG_WDTEN=1) 0: Disabled (default)
When CFG_WDTEN=1) 000:0x0000_0200 (WDT overflow time around 16ms) 001:0x0000_0400 (WDT overflow time around 32ms) 010:0x0000_1000 (WDT overflow time around 128ms) 011:0x0000_4000 (WDT overflow time around 512ms) 100:0x0000_8000 (WDT overflow time around 1s) 101:0x0001_0000 (WDT overflow time around 2s) 110:0x0002_0000 (WDT overflow time around 4s) 111:0x0004_0000 (WDT overflow time around 8s) (default) Flash memory location write protection control bit 00000: memory locations (0000_0000H~0000_07FFH) are write-protected. 00001: memory locations (0000_0000H~0000_17FFH) are write-protected. 00010: memory locations (0000_0000H~0000_17FFH) are write-protected. 00011: memory locations (0000_0000H~0000_17FFH) are write-protected. 00011: memory locations (0000_0000H~0000_17FFH) are write-protected.	-	bit 4-3	-
### Double of the control of the con	WDTRL	bit7-5	000:0x0000_0200 (WDT overflow time around 16ms) 001:0x0000_0400 (WDT overflow time around 32ms) 010:0x0000_1000 (WDT overflow time around 128ms) 011:0x0000_4000 (WDT overflow time around 512ms) 100:0x0000_8000 (WDT overflow time around 1s) 101:0x0001_0000 (WDT overflow time around 2s) 110:0x0002_0000 (WDT overflow time around 4s) 111:0x0004_0000 (WDT overflow time around 8s) (default)
	FWPS	bit12-8	00000: memory locations (0000_0000 _H ~0000_07FF _H) are write-protected. 00001: memory locations (0000_0000 _H ~0000_0FFF _H) are write-protected. 00010: memory locations (0000_0000 _H ~0000_17FF _H) are write-protected. 00011: memory locations (0000_0000 _H ~0000_1FFF _H) are write-protected. 10000: memory locations (0000_0000 _H ~0000_87FF _H) are write-protected. 1xxx1: memory locations (0000_0000 _H ~0000_8FFF _H) are
	FWPEB	bit13	Flash IAP write-protected area enable bit

		0: Enabled 1: Disabled (default)
-	bit15-14	-

Notes

- 1. After enabling the write-protected area, the memory locations in this area do not support IAP erase and programming.
- 2. In SWD mode, the WDT needs to be disabled. Otherwise, the WDT would keep counting and cause an overflow reset, which might lead to an irregular debugging behavior.

Name		CFG_WORD2							
Address		00100010 _H							
-	bit7-0	bit7-0 -							
CFG_OSCMD	bit15-8	XTAL oscillator operating mode select bits 0x2C: high-speed HS mode (5~20MHz) (default) 0x48: high-speed XT mode (1~4MHz) 0xF0: Low-speed LP mode (32KHz)							

3. 2. 1. 2 Unique Identification Code UID

96 bits UID is located at the information region INFO1 of the Flash memory in byte, which include 12 bytes and is readable by software. UID11~UID0 bytes description is as below.

	Unique Id	entification Code (UID11~UID0)
Address	001001D7 _H	(UID11) ~ 001001D0 _H (UID4), 001001C6 _H (UID3),
/ ldulc33	001001C4 _H	(UID2) ~ 001001C2 _H (UID0)
UID11	Bits 95~88	UID11, byte address is 001001D7 _H
UID10	Bits 87~80	UID10, byte address is 001001D6 _H
UID9	Bits 79~72	UID9, byte address is 001001D5 _H
UID8	Bits 71~64	UID8, byte address is 001001D4 _H
UID7	Bits 63~56	UID7, byte address is 001001D3 _H
UID6	Bits 55~48	UID6, byte address is 001001D2 _H
UID5	Bits 47~40	UID5, byte address is 001001D1 _H
UID4	Bits 39~32	UID4, byte address is 001001D0 _H
UID3	Bits 31~24	UID3, byte address is 001001C6 _H
UID2	Bits 23~16	UID2, byte address is 001001C4 _H
UID1	Bits 15~8	UID1, byte address is 001001C3 _H
UID0	Bits 7~0	UID0, byte address is 001001C2 _H

3. 2. 2 Flash Program Memory

The 36KB Flash memory contains 36 pages and each page has 1K bytes, and the range is $0000_0000_H\sim0000_8FFF_H$. The Flash supports at least 100K erase/write cycles and more than 10 years data retention.

Programming and page erase can be performed to the Flash memory through IAP. Programming one word takes about 20us and one page erasing takes about 2ms.

Programming, erase and read operation to the Flash are available in SWD mode. The SWD mode can be configured by the CFG_DEBUG and DEBUG_S of the configuration word CFG_WORD0.

3. 2. 3 In-Application Programming IAP

IAP (In-application Programming) capability is supported in Flash memory. With the write-protected area enabled, the memory location in the write-protected area does not support IAP erase or programming. The FWPEB bit of the CFG_WORD1 enables the write-protected area in Flash and the FWPS bits select the desired range of memory locations which require write protection.

3. 2. 3. 1 Overview

- Supports Flash data protection. Prior to IAP, disable the write-protection for the associated registers.
- ♦ Supports Flash erase all (only in SWD mode) and page erase.
- ♦ Word programming, each word containing 4 bytes
- During IAP operation, the global interrupt can be disabled. And it can also be enabled by copying the interrupt vector table and ISR to SRAM, and configuring the interrupt vector table re-mapping enable register SCU_TBLREMAPEN and interrupt vector table offset register SCU_TBLOFF to call the ISR in SRAM
- Upon IAP operation, IAP will automatically be locked up and enter the Flash protection state. And it needs to be unlocked when performing the next IAP operation.
- ♦ IAP code needs to be copied to and executed in SRAM. The result checking of the erase and programming to Flash is also done in the IAP code.
- ♦ The built-in ROM is available and can be called in IAP code, to reduce the IAP code size in SRAM.

3. 2. 3. 2 IAP Operations

- The IAP operation flow is as follows:
 - Set the FLASH_REQ =1 via the IAP control register and poll the FLASH_ACK until it is 1.
 - Proceed with the corresponding IAP operation, including Flash erase all, page erase and programming.
 - On the completion of the IAP operation, clear the FLASH_REQ, and poll the FLASH_ACK until it is 0.

Figure 3-2 IAP Operation Request Flowchart

♦ IAP Erase All

The IAP erase all operation is only active in debug mode (the bit15 of CFG_WORD0 (0010_0004H) is 1).

Figure 3-3 IAP Erase All Flowchart

Preliminary 87/341

♦ IAP Page Erase

The address of the target page can be set by the IAPPA register. When the erasing is done, the IAPPA is increased by 1.

Figure 3-4 IAP Page Erase Flowchart

IAP Programming

The address of the target memory location can be set by the IAPCA. The IAPCA will be automatically added by 1 after the target memory location is programmed. If words programming on consecutive memory addresses is used, there is no need to modify the IAPCA register. Because the IAPCA is only capable of addressing the memory location on the current page, the IAPCA needs to be re-written to specify the address when programming crossing pages.

Figure 3-5 IAP Programming Flowchart

3. 2. 3. 3 IAP ROM

The built-in ROM is available and can be called in IAP code, to reduce the IAP code size in SRAM.

Page erase, word program and words program are supported in ROM, and each operation is accomplished by the following function.

- Page Erase Function (IAP_PageErase)
 - Entry address: stored at 0x10000004
 - Parameter input:R0- the first address of the page to be erased
 - Parameter output:R0- function execution status (R0=1 succeeded, R0=0 failed)
- Word Program Function (IAP_WordProgram)
 - Entry address: stored at 0x10000008
 - Parameter input: R0- Flash address to be programmed, R1- data to be programmed
 - Parameter output: R0- function execution status (R0=1 succeeded, R0=0 failed)
- Words Program Function (IAP_WordsProgram)
 - Entry address: stored at 0x10000000
 - Parameter input: R0- the first Flash address to be programmed, R1- the first address of data to be programmed in SRAM, R2- the length of data to be programmed, R3-whether or not to perform page erase when programming the first address of a page (if R3= non-zero, perform an erase operation; if R3=0, do not erase)

Preliminary 89/341

- Parameter output: R0- function execution status (R0=1 succeeded, R0=0 failed) The word program function and words program function flowchart can be referred to Figure 3-5. For word program function, 'continue to program next address' can be ignored.

3. 2. 4 Special Function Registers

IAP (Jnlock R	Register	(IAP_UL	.)												
Offse	t addres	s:10 _H														
Rese	t value:0	0000000	_000000	000_000	00000_0	0000000 _B										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
							UL	<31:16>								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
							UI	_<15:0>								
	UL<	:31:0>		bit	bit31-0		, I	IAP unlock: write 0x0000_00A5 to unlock IAP IAP lock: any of the following operations can lock IAP - Write other values to lock IAP - Write to IAP trigger register IAP_TRIG to cause IAP automatically to be locked - Write a reserved address to lock IAP - IAP will be locked up following a software								

Notes

- 1. After IAP has been locked up, the IAP_CON, IAP_ADDR, IAP_DATA and IAP_TRIG registers are write-protected.
- 2. Reserved addresses are those undefined addresses in 40000800_H~40000BFF_H.

IAP	Contro	l Regi	ster (IAI	P_C0	N)													
Offse	et addre	ess:00 _l	+															
Rese	et value	:00000	0000_00	0000	00_000	00000_	_00000	000 _B										
31	30	29	28	27	26	25	24	23		22	21	20	19	18	17	16		
									Rese	rved								
15	14	13	12	11	10	9	8	7		6	5	4	3	2	1	0		
			Rese	rved				FLA	SH_FAIL		FLASH_ACK	FLASH_REQ	Rese	erved	RST	EN		
		_			bit31	-8												
F	FLAS	H_F	AIL		bit7	,	R	2	IAP accessing Flash fail flag bit 0: protected region not accessed by IAP									

Preliminary 90/341

			1: IAP has accessed the protected region and failed.
_	bit6	R/W	_
			Flash ACK
FLASH_ACK	bit5	R	0: IAP accessing not allowed
			1: IAP accessing Flash allowed
			IAP accessing Flash request
FLASH_REQ	bit4	R/W	0: No request
			1:IAP requests to access Flash
_	bit3-2	_	_
			IAP software reset
RST	bit1	W	0: Always read as 0
			1: Reset
			IAP enable bit
EN	bit0	R/W	0: Disabled
			1: Enabled

Note: Prior to writing to the IAP_CON register, set the IAP_UL register to unlock the IAP and remove the write-protection.

IAP Address Register (IAP_ADDR)

Offset address:04_H

Reset value:00000000_00000000_000000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved										IFREN	IFREN Rese			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IAPPA<5:0>						IAPCA<7:0>							Re	served

	bit31-21		_
			IAP information region enable bit
IFREN	bit20	R/W	0: IAP operation on Flash information region disabled
			1: IAP operation on Flash information region enabled
_	bit19-16	_	_
			IAP page address(erase mode)
			1) 0x00~0x23: total of 36 pages with corresponding
IAPPA<5:0>	bit15-10	R/W	address range 0x0000_0000~0x0000_8FFF
			2) IAPPA is invalid on an operation on Flash information
			region
			IAP address
			1) In erase mode, an address is not valid.
IAPCA<7:0>	bit9-2	R/W	2) In programming mode
			- During an operation on non Flash information region,
			the IAPCA<7:0> is the corresponding address being

Preliminary 91/341

			programmed of the current page. Each page contains 256 addresses and each address has 4 bytes. The address must be erased before programming to it. - During an operation on Flash information region, only IAPCA [5:0] is valid. The information region contains 64 addresses and each address has 4 bytes.
_	bit1-0	_	_

Notes

- 1. Prior to writing to the IAP_ADDR register, set the IAP_UL register to unlock the IAP and remove the write-protection.
- 2. On completion of page erase, the IAPPA will automatically be added by 1.
- 3. On completion of address programming, the IAPCA will automatically be added by 1. Since the IAPCA only performs the addressing on the current page, the IAPCA needs to be rewritten to specify the next page address when programming crossing the pages.

IAP Data Register (IAP_DATA)

Offset address:08_H

Rese	Reset value:00000000_00000000_000000000B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	DATA<31:16>														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DATA<15:0>															

DATA<31:0> bit31-0 R/W IAP data	DATA<31:0>	bit31-0	R/W	IAP data
---------------------------------	------------	---------	-----	----------

Note: Prior to writing to the IAP_DATA register, set the IAP_UL register to unlock the IAP and remove the write-protection.

Trigger Register (IAP_TRIG)

Offset address:0C_H

Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TRIG<31:16>															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TRIG<15:0>														

			IAP operation instruction (After the register is
TRIG<31:0>	bit31-0	R/W	written, the IAP will be relocked up)
			0x0000_51AE: Erase all (only for SWD)

Preliminary 92/341

Reserved

0x0000_5EA1: Page erase (An erase all operation must be performed before erasing the information region. Otherwise, it is invalid) 0x0000_5DA2: Programming Others: No operation (On completion of IAP
operation, hardware will alter the register to no operation.)

Note: Prior to writing to the IAP_TRIG register, set the IAP_UL register to unlock the IAP and remove the write-protection.

IAP	AP Status Register (IAP_STA)															
Offs	Offset address:14 _H															
Res	Reset value:00000000_00000000_000000000 _B															
31	30	29	28	27	26	25	24	23	22	21	20	19		18	17	16
	Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	:	2	1	0

TIMEOUT_ERR

PROG_END

ERASE_END

BSY

_	bit31-4	_	_
TIMEOUT_ERR	bit3	R/W	IAP time-out error flag bit 0: This flag can be cleared by writing 0, triggering IAP_TRIG, or IAP software reset. 1: Automatically set by hardware when an IAP operation has timed out
PROG_END	bit2	R/W	IAP programming end flag bit 0: This flag can be cleared by writing 0, triggering IAP_TRIG, or IAP software reset. 1: Automatically set by hardware when the current address programming has completed.
ERASE_END	bit1	R/W	IAP page erase end flag bit 0: This flag can be cleared by writing 0, triggering IAP_TRIG, or IAP software reset. 1: Automatically set by hardware when the current page has been erased
BSY	bit0	R	IAP busy bit 0: Idle. The IAP software reset can clear the bit. 1: An IAP operation is in progress.

Note: When the TIMEOUT_ERR bit of the IAP_STA register is 1, hardware will automatically clear the EN bit of the IAP_CON register.

Preliminary 93/341

3. 3 Data Memory (SRAM)

The integrated 8KB data memory SRAM has the address range 2000_0000H~2000_1FFFH.

3. 3. 1 SRAM Map

Figure 3-6 SRAM Map

3. 3. 2 SRAM Bit Banding

Bit banding is available in SRAM, and a bit can be written and read using load and store instructions. With bit banding, besides from the space with the starting address 0x2000_0000, the SRAM can also be accessed by a bit from the bit-band region with the starting address 0x2200 0000.

The bit-band region maps each word in an alias region to a bit in the bit-band region. Accessing a word in the alias region has the same effect as accessing the targeted bit in the bit-band region.

The following example shows how to map bit N ($0 \le N \le 7$) of the byte located at SRAM address A to the alias region,

AliasAddress_A_N = $0x2200_0000 + (A - 0x2000_0000) \times 32 + N \times 4$

3. 4 Peripheral Registers

3. 4. 1 Peripheral Registers Map

Figure 3-7 Peripheral Registers Map

Note: Reserved regions are read-only, and read as 00000000_H.

3. 4. 2 Peripheral Registers Bit Banding

Bit banding is available in peripheral registers, and a bit can be written and read using load and store instructions. With bit banding, besides from the space with the starting address 0x4000_0000, the peripheral registers can also be accessed by a bit from the bit-band region with the starting address 0x4200_0000.

The bit-band region maps each word in an alias region to a bit in the bit-band region. Accessing a word in the alias region has the same effect as accessing the targeted bit in

Preliminary 95/341

the bit-band region.

The following example shows how to map bit N ($0 \le N \le 7$) of a peripheral register located at address A to the alias region,

AliasAddress_A_N = $0x4200_{-}0000 + (A - 0x4000_{-}0000) \times 32 + N \times 4$

The GPIO port registers, GPIO_PADATABSR, GPIO_PADATABCR, GPIO_PADATABR, GPIO_PADIRBSR, GPIO_PADIRBSR, GPIO_PADIRBSR, GPIO_PBDATABSR, GPIO_PBDATABSR, GPIO_PBDATABCR, GPIO_PBDIRBSR, GPIO_PBDIRBCR and GPIO_PBDIRBRR, are used to implement the bit operation of GPIO port data registers and direction control registers, and bit banding is not supported by these registers. Apart from these registers, other peripheral registers are all with bit banding feature.

3. 4. 3 List of System Control Unit (SCU) Registers

System Control Unit (SCU)						
Register Name	Offset Address	Descriptions				
SCU base address:4000_0	000 _H					
SCU_PROT	0000 _H	System configuration protection register				
SCU_NMICON	0004 _H	Non-maskable interrupt control register				
SCU_PWRC	0008 _H	Reset register				
SCU_FAULTFLAG	000C _H	Hard fault flag register				
SCU_FLASHWAIT	0020 _H	Flash access wait register				
SCU_SOFTCFG	0024 _H	System software configuration register				
SCU_LVDCON	0028 _H	LVD control register				
SCU_CCM	002C _H	External clock check management register				
SCU_PLLLKCON	0030 _H	PLL lock interrupt control register				
SCU_TIMEREN	0034 _H	Timer enable register				
SCU_TIMERDIS	0038 _H	Timer disable register				
SCU_SCLKEN0	0040 _H	System clock enable register0				
SCU_SCLKEN1	0044 _H	System clock enable register1				
SCU_PCLKEN	0048 _H	Peripheral clock enable register				
SCU_WAKEUPTIME	004C _H	System wake-up time control register				
SCU_TBLREMAPEN	0060 _H	Interrupt vector table re-map enable register				
SCU_TBLOFF	0064 _H	Interrupt vector table offset register				

3. 4. 4 List of GPIO Registers

GPIO Registers						
Register Name	Offset Address	Description				
GPIO base address:4000_0400 _H						
GPIO_PAPORT	0000 _H	PA port status register				
GPIO_PADATA	0004 _H	PA output data register				
GPIO_PADATABSR	0008 _H	PA output data bit set register				

Preliminary 96/341

GPIO Registers		
Register Name	Offset Address	Description
GPIO_PADATABCR	000C _H	PA output data bit clear register
GPIO_PADATABRR	0010 _H	PA output data bit invert register
GPIO_PADIR	0014 _H	PA direction register
GPIO_PADIRBSR	0018 _H	PA direction bit set register
GPIO_PADIRBCR	001C _H	PA direction bit clear register
GPIO_PADIRBRR	0020 _H	PA direction bit invert register
GPIO_PAFUNC0	0024 _H	PA[7:0] function select register
GPIO_PAFUNC1	0028 _H	PA[15:8] function select register
GPIO_PAFUNC2	002С _н	PA[23:16] function select register
GPIO_PAFUNC3	0030 _H	PA[31:24] function select register
GPIO_PAINEB	0034 _H	PA input enable register
GPIO_PAODE	0038 _H	PA open-drain enable register
GPIO_PAPUE	003С _н	PA weak pull-up enable register
GPIO_PAPDE	0040 _H	PA weak pull-down enable register
GPIO_PADS	0044 _H	PA drive strength control register
GPIO_PBPORT	0080 _H	PB port status register
GPIO_PBDATA	0084 _H	PB output data register
GPIO_PBDATABSR	0088 _H	PB output data bit set register
GPIO_PBDATABCR	008С _н	PB output data bit clear register
GPIO_PBDATABRR	0090 _H	PB output data bit invert register
GPIO_PBDIR	0094 _H	PB direction register
GPIO_PBDIRBSR	0098 _H	PB direction bit set register
GPIO_PBDIRBCR	009С _н	PB direction bit clear register
GPIO_PBDIRBRR	00A0 _H	PB direction bit invert register
GPIO_PBFUNC0	00A4 _H	PB[7:0] function select register
GPIO_PBFUNC1	00A8 _H	PB[13:8] function select register
GPIO_PBINEB	00B4 _H	PB input enable register
GPIO_PBODE	00B8 _H	PB open-drain enable register
GPIO_PBPUE	00BC _H	PB weak pull-up enable register
GPIO_PBPDE	00C0 _H	PB weak pull-down enable register
GPIO_PBDS	00C4 _H	PB drive strength control register
GPIO_PINTIE	0300 _H	PINT interrupt enable register
GPIO_PINTIF	0304 _H	PINT interrupt flag register
GPIO_PINTSEL	0308 _H	PINT interrupt source select register
GPIO_PINTCFG	030C _H	PINT interrupt configuration register
GPIO_KINTIE	0310 _H	KINT interrupt enable register
GPIO_KINTIF	0314 _H	KINT interrupt flag register
GPIO_KINTSEL	0318 _H	KINT interrupt source select register
GPIO_KINTCFG	031C _H	KINT interrupt configuration register
GPIO_IOINTFLTS	0330 _H	Port interrupt 20ns filter select register
GPIO_TMRFLTSEL	0340 _H	TMR input port 20ns filter select register

GPIO Registers					
Register Name	Offset Address	Description			
GPIO_SPIFLTSEL	0344 _H	SPI input port 20ns filter select register			
GPIO_TXPWM	0380 _H	PWM register			
GPIO_BUZC	0384 _H	Buzz counter register			

3. 4. 5 List of IAP Registers

IAP Registers							
Register Name	Offset Address	Descriptions					
IAP base address:4000_080	IAP base address:4000_0800 _H						
IAP_CON	0000 _H	IAP control register					
IAP_ADDR	0004 _H	IAP address register					
IAP_DATA	0008 _H	IAP data register					
IAP_TRIG	000С _н	IAP trigger register					
IAP_UL	0010 _H	IAP unlock register					
IAP_STA	0014 _H	IAP status register					

3. 4. 6 List of ADC Registers

ADC Registers						
Register Name	Offset Address	Description				
ADC base address:4000_1	000 _H					
ADC_DR	0000 _H	ADC result register				
ADC_CON0	0004 _H	ADC control register0				
ADC_CON1	0008 _H	ADC control register1				
ADC_CHS	000C _H	ADC channel select register				
ADC_IE	0010 _H	ADC interrupt enable register				
ADC_IF	0014 _H	ADC interrupt flag register				
ADC ACPC	0028 _н	ADC auto conversion Compare control				
ADC_ACPC	0026 _H	register				
ADC ACPCMP	0030 _H	ADC auto conversion compare threshold				
ADC_ACFONIF	0030 _H	register				
ADC_ACPMEAN	0034 _H	ADC mean register				
ADC_VREFCON	0040 _H	ADC voltage reference control register				

3. 4. 7 List of RTC Registers

RTC Registers						
Register Name	Offset Address	Description				
RTC base address:4000_1400 _H						
RTC_CON	0000 _H	RTC control register				
RTC_CAL	0004 _H	RTC calibration register				
RTC_WA	0008 _H	RTC week alarm register				

RTC Registers						
Register Name	Offset Address	Description				
RTC_DA	000C _H	RTC day alarm register				
RTC_HMS	0010 _H	RTC hour minute second register				
RTC_YMDW	0014 _H	RTC year month day week register				
RTC_IE	0018 _H	RTC interrupt enable register				
RTC_IF	001C _H	RTC interrupt flag register				
RTC_WP	0020 _H	RTC write-protection register				

3. 4. 8 List of LCDC Registers

LCD Registers					
Register Name	Offset Address	Description			
LCD:4000_1800 _H					
LCD_CON0	0000 _H	LCD control register0			
LCD_TWI	0004 _H	LCD twinkle register			
LCD_SEL	0008 _H	LCD segment enable register <27:0>			
LCD_CON1	0010 _H	LCD control register1			
LCD_D0	0020 _H	LCD data register0			
LCD_D1	0024 _H	LCD data register1			
LCD_D2	0028 _H	LCD data register2			
LCD_D3	002С _н	LCD data register3			
LCD_D4	0030 _H	LCD data register4			
LCD_D5	0034 _H	LCD data register5			
LCD_D6	0038 _H	LCD data register 6			

Note: The registers LCD_CON0 and LED_CON0, LCD_SEL and LED_SEL, LCD_CON1 and LED_CON1, LCD_D0 and LED_D0, and LCD_D1 and LED_D1 of the LCD and LED module share the same addresses.

3. 4. 9 List of LEDC Registers

LED Registers			
Register Name	Offset Address	Description	
LED base address:4000_1800 _H			
LED_CON0	0000 _H	LED control register0	
LED_SEL	0008 _H	LED segment enable register<27:0>	
LED_CON1	0010 _H	LED control register1	
LED_D0	0020 _H	LED data register0	
LED_D1	0024 _H	LED data register1	

Note: The registers LCD_CON0 and LED_CON0, LCD_SEL and LED_SEL, LCD_CON1 and LED_CON1, LCD_D0 and LED_D0, and LCD_D1 and LED_D1 of the LCD and LED module share the same addresses.

3. 4. 10 List of WDT Registers

WDT Registers		
Register Name	Offset Address	Description
WDT base address:4000_10	000н	
WDT_LOAD	0000 _H	WDT reload value register
WDT_VALUE	0004 _H	WDT current value register
WDT_CON	0008 _H	WDT control register
WDT_INTCLR	000С _н	WDT interrupt flag clear register
WDT_RIS	0010 _H	WDT interrupt flag register
WDT_LOCK	0100 _H	WDT lock register
WDT_ITCR	0300 _H	WDT test register, for test only
WDT_ITOP	0304 _H	WDT test register, for test only

Note: The WDT_ITCR and WDT_ITOP registers are for test only, and users are prohibited to write to them. Otherwise, it would lead to irregular behavior of the device.

3. 4. 11 List of T16N0/T16N1/T16N2/T16N3 Registers

T16N Registers				
Register Name	Offset Address Description			
T16N0 base address:4000	_2000 _H			
T16N1 base address:4000	_2400 _H			
T16N2 base address:4000	_2800 _H			
T16N3 base address:4000	_2C00 _H			
T16N_CNT0	0000 _H	T16N counter register0		
T16N_CNT1	0004 _H	T16N counter register1		
T16N_PRECNT	0008 _H	T16N prescaler counter register		
T16N_PREMAT	000C _H	T16N prescaler counter match register		
T16N_CON0	0010 _H	T16N control register0		
T16N_CON1	0014 _H	T16N control register1		
T16N_CON2	0018 _H	T16N control register2		
T16N_IE	0020 _H	T16N interrupt enable register		
T16N_IF	0024 _H	T16N interrupt flag register		
T16N_PDZ	0028 _H	T16N PWM dead zone register		
T16N_PTR	002С _н	T16N PWM trigger ADC register		
T16N_MAT0	0030 _H	T16N counter match register0		
T16N_MAT1	0034 _H	T16N counter match register1		
T16N_MAT2	0038 _H	T16N counter match register2		
T16N_MAT3	003С _н	T16N counter match register3		
T16N_TOP0	0040 _H	T16NCNT0 top value register0		
T16N_TOP1	0044 _H	T16NCNT1 top value register1		

Preliminary 100/341

3. 4. 12 List of T32N0 Registers

T32N Registers			
Register Name	Offset Address	Description	
T32N0 base address:4000_	4000 _H		
T32N_CNT	0000 _H	T32N counter register	
T32N_CON0	0004 _H	T32N control register0	
T32N_CON1	0008 _H	T32N control register1	
T32N_PRECNT	0010 _H	T32N prescaler counter register	
T32N_PREMAT	0014 _H	T32N prescaler counter match register	
T32N_IE	0018 _H	T32N interrupt enable register	
T32N_IF	001С _н	T32N interrupt flag register	
T32N_MAT0	0020 _H	T32N counter match register0	
T32N_MAT1	0024 _H	T32N counter match register1	
T32N_MAT2	0028 _H	T32N counter match register2	
T32N_MAT3	002С _н	T32N counter match register3	

3. 4. 13 List of UART0/UART1 Registers

UART Registers				
Register Name	Offset Address Description			
UART0 base address:400	0_6000 _Н			
UART1 base address:400	0_6400 _H			
UART_CON0	0000 _H	UART control register0		
UART_CON1	0004 _H	UART control register1		
UART_BRR	0010 _H	UART baud rate register		
UART_STA	0014 _H	UART status register		
UART_IE	0018 _H	UART interrupt enable register		
UART_IF	001C _H	UART interrupt flag register		
UART_TBW	0020 _H	UART transmit data write register		
UART_RBR	0024 _H	UART receive data read register		
UART_TB0	0040 _H	UART transmit buffer register0		
UART_TB1	0044 _H	UART transmit buffer register1		
UART_TB2	0048 _H	UART transmit buffer register2		
UART_TB3	004C _H	UART transmit buffer register3		
UART_TB4	0050 _н	UART transmit buffer register4		
UART_TB5	0054 _Н	UART transmit buffer register5		
UART_TB6	0058 _н	UART transmit buffer register6		
UART_TB7	005С _н	UART transmit buffer register7		
UART_RB0	0060 _н	UART receive buffer register0		
UART_RB1	0064 _H	UART receive buffer register1		
UART_RB2	0068 _H	UART receive buffer register2		
UART_RB3	006C _H	UART receive buffer register3		
UART_RB4	0070 _H	UART receive buffer register4		

UART Registers		
Register Name	Offset Address	Description
UART_RB5	0074 _H	UART receive buffer register5
UART_RB6	0078 _H	UART receive buffer register6
UART_RB7	007С _н	UART receive buffer register7

3. 4. 14 List of EUART0 Registers

EUART Registers		
Register Name	Offset Address	Description
EUART0 base address:4	000_7000 _н	
EUART_CON0	0000 _H	EUART control register0
EUART_CON1	0004 _H	EUART control register1
EUART_CON2	0008 _H	EUART control register2
EUART_BRR	0010 _H	EUART baud rate register
EUART_IE	0018 _H	EUART interrupt enable register
EUART_IF	001C _H	EUART interrupt flag register
EUART_TBW	0020 _H	EUART transmit data write register
EUART_RBR	0024 _H	EUART receive data read register
EUART_TB01	0040 _H	EUART transmit buffer register0/1
EUART_TB23	0044 _H	EUART transmit buffer register2/3
EUART_RB01	0048 _H	EUART receive buffer register0/1
EUART_RB23	004C _H	EUART receive buffer register2/3

3. 4. 15 List of SPI0/ SPI1 Registers

SPI Registers			
Register Name	Offset Address	Description	
SPI0 base address:4000	O_8000 _H		
SPI1 base address:4000	0_8400 _H		
SPI_CON	0000 _H	SPI control register	
SPI_TBW	0008 _H	SPI transmit data write register	
SPI_RBR	000C _H	SPI receive data read register	
SPI_IE	0010 _H	SPI interrupt enable register	
SPI_IF	0014 _H	SPI interrupt flag register	
SPI_TB	0018 _H	SPI transmit buffer register	
SPI_RB	001C _H	SPI receive buffer register	
SPI_STA	0020 _H	SPI status register	
SPI_CKS	0024 _H	SPI baud rate register	

3. 4. 16 List of I2C0 Registers

I2C Registers		
Register Name	Offset Address	Description
I2C0 base addres	s:4000_9000 _H	
I2C_CON	0000 _H	I2C control register
I2C_MOD	0004 _H	I2C operating mode register
I2C_IE	0008 _H	I2C interrupt enable register
I2C_IF	000C _H	I2C interrupt flag register
I2C_TBW	0010 _H	I2C transmit data write register
I2C_RBR	0014 _H	I2C receive data read register
I2C_TB	0018 _H	I2C transmit buffer register
I2C_RB	001C _H	I2C receive buffer register
I2C_STA	0020 _H	I2C status register

3. 5 Core Registers

3. 5. 1 List of SysTick Timer Registers

SysTick Registers			
Register Name	Offset Address	Description	
SYSTICK base ad	SYSTICK base address:E000_E000 _H		
SYST_CSR	0010 _H	SysTick control/status register	
SYST_RVR	0014 _H	SysTick reload value register	
SYST_CVR	0018 _H	SysTick current value register	
SYST_CALIB	001C _H	SysTick calibration value register	

3. 5. 2 List of Nested Vectored Interrupt Controller Registers (NVIC)

Nested Vectored Controller Register (NVIC)			
Register Name	Offset Address	Description	
NVIC base addre	ss:E000_E100 _H		
NVIC_ISER	0000 _H	IRQ0~31 interrupt set enable register	
NVIC_ICER	0080 _H	IRQ0~31 interrupt clear enable register	
NVIC_ISPR	0100 _H	IRQ0~31 interrupt set pending register	
NVIC_ICPR	0180 _H	IRQ0~31 interrupt clear pending register	
NVIC_PR0	0300 _H	IRQ0~3 priority control register	
NVIC_PR1	0304 _H	IRQ4~7 priority control register	
NVIC_PR2	0308 _H	IRQ8~11 priority control register	
NVIC_PR3	030C _H	IRQ12~15 priority control register	
NVIC_PR4	0310 _H	IRQ16~19 priority control register	
NVIC_PR5	0314 _H	IRQ20~23 priority control register	
NVIC_PR6	0318 _H	IRQ24~27 priority control register	
NVIC_PR7	031С _н	IRQ28~31 priority control register	

Preliminary 103/341

3. 5. 3 List of System Control Block (SCB) Registers

System Control Block (SCB)			
Register Name	Offset Address	Description	
SCB base address:E0	00_ED00 _H		
SCB_CPUID	0000 _H	SCB_CPUID register	
SCB_ICSR	0004 _H	Interrupt control and status register	
SCB_AIRCR	000C _H	Application interrupt and control register	
SCB_SCR	0010 _H	System control register	
SCB_CCR	0014 _H	Configuration and control register	
SCB_SHPR2	001С _н	System handler priority register2	
SCB_SHPR3	0020 _H	System handler priority register3	

Chapter4 General Purpose IOs (GPIO)

4. 1 Overview

There are two groups of GPIOs available, total up to 46 I/O pins.

All I/Os are CMOS Schmitt inputs and CMOS drive outputs with configurable open-drain feature, and the multiplexing and operating modes of each I/O are configured by port function register GPIO_PAFUNC/GPIO_PBFUNC.

When an I/O port is configured for digital mode, its output mode is controlled by the port direction control register GPIO_PADIR/ GPIO_PBDIR and the input mode is controlled by the corresponding input control register GPIO_PAINEB/ GPIO_PBINEB. When an I/O port is in output mode, its port level is determined by the port data register GPIO_PADATA/ GPIO_PBDATA, where 1 indicates high level and 0 indicates low level. When an I/O port is in input mode, its port level can be acquired by reading the corresponding port status register GPIO_PAPORT/ GPIO_PBPORT.

Bitwise operation is supported for port output levels. Setting a bit of the GPIO output set register GPIO_PADATABSR/ GPIO_PBDATABSR to 1 allows the corresponding GPIO to output high level. Setting a bit of the GPIO output clear register GPIO_PADATABCR / GPIO_PBDATABCR to 1 allows the corresponding GPIO to output low level. Setting a bit of the GPIO output invert register GPIO_PADATABRR/ GPIO_PBDATABRR to 1 allows the corresponding GPIO to invert the output.

Bitwise operation is also supported for port direction control. When a bit of the GPIO direction set register GPIO_PADIRBSR/ GPIO_PBDIRBSR is 1, the corresponding GPIO works in input mode. When a bit of the GPIO direction clear register GPIO_PADIRBCR/ GPIO_PBDIRBCR is 1, the corresponding GPIO works in output mode. When a bit of the GPIO direction bit invert register GPIO_PADIRBRR/ GPIO_PBDIRBRR is 1, the direction of the corresponding GPIO is reversed.

When an I/O is configured for the peripheral function, its output mode is still configured by the port direction control register GPIO_PADIR/ GPIO_PBDIR and input mode by the corresponding GPIO_PAINEB/ GPIO_PBINEB register.

Each I/O port is designed with open-drain feature, which is enabled by the corresponding port open-drain enable register GPIO_PAODE/ GPIO_PBODE.

Each I/O port can be individually configured for weak pull-up or weak pull-down, respectively enabled by the corresponding GPIO_PAPUE/ GPIO_PBPUE and GPIO_PAPDE/ GPIO_PBPDE registers. Note that the weak pull-up and pull-down function cannot be enabled at the same time.

The port drive strength control register GPIO_PADS/ GPIO_PBDS selects the drive capability, high drive and normal drive, for each I/O port. The PA6~PA13 ports can be multiplexed with the COM7~COM0 of LCDC/LEDC modules, and they have much stronger drive capability when they are configured as high drive I/Os. See Appendix2 Electrical

Characteristics for details.

4. 2 Block Diagram

Figure 4-1 IO Port Block Diagram

4. 3 External Port Interrupt

All ports have external interrupt capability. All the interrupts are divided into 8 groups and each group corresponds to one IRQ. The PINT7CFG~PINT0CFG bit of the GPIO_PINTCFG register configures the trigger event for each external interrupt. If the high level or low level is configured as a trigger event, the interrupt flag can only be cleared by writing 1 to the corresponding bit of the GPIO_PINTIF register after the triggering level has been toggled.

The input mask enable bit PMASK of the GPIO_PINTIE register can mask the external interrupt input. If the interrupt input source is masked, the corresponding interrupt will not occur and the flag will not be set.

The external interrupt enable bit PINTIE of the GPIO_PINTIE register enables an interrupt request for each external interrupt flag PINTIF.

Figure 4-2 External Port PINTO Interrupt Block Diagram

The figure above shows an example of the PINT0 interrupt circuit, with 6 external interrupt sources respectively from PA0, PA8, PA16, PA24, PB0 and PB8. The table below lists the external interrupt sources for PINT0~PINT7.

PINT	SEL0	SEL1	SEL2	SEL3	SEL4	SEL5
PINT0	PA0	PA8	PA16	PA24	PB0	PB8
PINT1	PA1	PA9	PA17	PA25	PB1	PB9
PINT2	PA2	PA10	PA18	PA26	PB2	PB10
PINT3	PA3	PA11	PA19	PA27	PB3	PB11
PINT4	PA4	PA12	PA20	PA28	PB4	PB12
PINT5	PA5	PA13	PA21	PA29	PB5	PB13
PINT6	PA6	PA14	PA22	PA30	PB6	-
PINT7	PA7	PA15	PA23	PA31	PB7	-

Table 4-1 PINT Selection Table

4. 4 External Key Interrupt

The device offers one external key interrupt KINT with eight key inputs KINT0~KINT7. Any key input can trigger the key interrupt. A key input source can be selected from one of the 6 I/O ports.

The input mask enable bit KMASK can mask the input source KINT. When the KMASK bit is enabled, the corresponding flag KINTIF will remain unchanged regardless of the status of the KINT_IN. The interrupt configuration register GPIO_KINTCFG selects the valid triggering edge or level for each KINT.

The key interrupt enable bit KINTIE enables an interrupt request for each key interrupt flag KINTIF.

The key interrupt configuration bit KINT7CFG~KINT0CFG of the GPIO_KINTCFG register configures the trigger event for each input source. When switching the trigger event, first mask the input source to avoid unnecessary interrupts. Alternatively, disable the key interrupt and enable it again after the switching has been done and the interrupt flag has been cleared.

Figure 4-3 External Key KINT0 Interrupt Block Diagram

The figure above shows an example of the KINT0 interrupt circuit, with 6 external interrupt sources respectively from PA0, PA8, PA16, PA24, PB0 and PB8. The table below lists the external interrupt sources for KINT0~KINT7.

KINT	SEL0	SEL1	SEL2	SEL3	SEL4	SEL5
KINT0	PA0	PA8	PA16	PA24	PB0	PB8
KINT1	PA1	PA9	PA17	PA25	PB1	PB9
KINT2	PA2	PA10	PA18	PA26	PB2	PB10
KINT3	PA3	PA11	PA19	PA27	PB3	PB11
KINT4	PA4	PA12	PA20	PA28	PB4	PB12
KINT5	PA5	PA13	PA21	PA29	PB5	PB13
KINT6	PA6	PA14	PA22	PA30	PB6	-
KINT7	PA7	PA15	PA23	PA31	PB7	-

Table 4-2 KINT Selection Table

4. 5 Buzz Output

Buzz output is used for audio devices such as buzzer.

The control register GPIO_BUZC is used to enable the buzz and set the desired frequency of the output signal. The frequency of a buzz signal is expressed as

$$F_{BUZ} = \frac{Fpclk}{2 \times (BUZ \quad LOAD + 1)}$$

The GPIO_PAFUNC0 and GPIO_PBFUNC1 registers select a port, PA0, PA1 or PB13, for the buzz signal to output to.

A buzz output of fixed frequency can also be modulated to a TXPWM0 signal by TXD0 signal output from the UART0, or modulated to a TXPWM1 signal by E0TX0 signal output from the EUART0, and sent to the corresponding output port. The control bit TX0PLV and TX1PLV can select a high level modulation or low level modulation.

When the TX0PS control bits = 11, the TXPWM0 signal can be output to TXD0, T16N0OUT0, T16N0OUT1 or BUZ pin, selected by the TX0_S3~TX0_S0 of the GPIO_TXPWM register.

When the TX1PS control bit = 11, the TXPWM1 signal can be output to E0TX0, T16N1OUT0, T16N1OUT1 or BUZ pin, selected by the TX1_S3~ TX1_S1 of the GPIO_TXPWM register.

Figure 4-4 High Level Modulated Buzz Output Waveform

Figure 4-5 Low Level Modulated Buzz Output Waveform

4. 6 Special Function Registers

PA Port Status Register (GPIO_PAPORT) Offset address:00 _H Reset value:xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx											
· · · · · · · · · · · · · · · · · · ·											
Reset value:xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx											
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17	16										
PORT<31:16>											
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0										
PORT<15:0>											
PA port level											
PORT<31:0> bit 31-0 R 0: Low											
1: High											
PA Output Data Register (GPIO_PADATA)											
Offset address:04 _H											
Reset value:00000000_00000000_000000000 _B											
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17	16										
DATA<31:16>											
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0										
DATA<15:0>											

Preliminary 109/341

			PA output data
DATA<31:0>	bit 31-0	R/W	0: Output low
			1: Output high

PA Output Data Bit Set Register (GPIO_PADATABSR)

Offset address:08_H

DATABSR<31:16> DATABSR<15:0>

			PA output data bit set
DATABSR<31:0>	bit 31-0	W	0: Stay unchanged
			1: Output high level on the corresponding pin

PA Output Data Bit Clear Register (GPIO_PADATABCR)

Offset address: 0CH

DATABCR <31:16> DATABCR <15:0>

			PA output data bit clear
DATABCR<31:0>	bit 31-0	W	0: Stay unchanged
			1: Output low level on the corresponding pin

PA Output Data Bit Invert Register (GPIO_PADATABRR)

Offset address: 10_{H}

DATABRR <31:16>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATABRR <15:0>

			PA output data bit invert
DATABRR<31:0>	bit 31-0	W	0: Stay unchanged
			1: Invert the output on the corresponding pin

PA Dir	ection	Regist	er (GPIC	PADIR)

Offse	Offset address: 14 _H														
Rese	Reset value:11111111_1111111_11111111111111111111														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DIR	<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DIR <15:0>														

			PA direction control bit
		R/W	0: Output
			1: Non-output (If the corresponding bit of
DID -24-0	h:t0 24 0		GPIO_PAINEB is 0, it is used as digital input. If the
DIR<31:0>	bit0 31-0		analog channel needs to be enabled, the
			corresponding bit of GPIO_PAINEB and
			GPIO_PADIR must be 1 to disable the digital
			input/output function.)

PA Direction Bit Set Register (GPIO_PADIRBSR)

Offset address: 18_H

Rese	Reset value:xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	DIRBSR<31:16>														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DIRBSR<15:0>														

			PA direction bit set
DIRBSR<31:0>	bit 31-0	W	0: The GPIO_PADIR value stays unchanged
			1: Set the corresponding bit of GPIO_PADIR to 1

PA Direc	ction B	it Clear	Regis	ter(GPIO_	PADIRE	BCR)										
Offset ad																
Reset va	alue:xxx	xxxxx_x	xxxxx	(X_XXXXX	xx_xxxx	xxxx _B										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
DIRBCR<31:16>																
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
							DIRBC	R<15	5:0>							
							1									
					_				ction bit							
DIRE	3CR<	31:0>		bit 31-	0	W			GPIO_P/			•		•		
							1: S	et ti	ne corres	spond	ing bit	of GP	IO_PA	DIR to	0	
PA Direc	ction B	it Invert	Regis	ter (GPIC	PADIR	BRR)_										
Offset ac			rtegis	iter (Or ic	_I ADIN	ыкку										
			xxxxx	(X_XXXXXX	xx _xxxx	XXXX _B										
31	30	29	28	27	26	25	24	23		21	20	19	18	17	16	
DIRBRR<31:16>																
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
							DIRBR	R<15	5:0>							
									41 11							
							PA direction bit invert 0: The GPIO_PADIR value stays unchanged						and			
DIRE	3RR<	31:0>		bit 31-	0	W		1: Set 1 to invert the corresponding bit of								
								GPIO_PADIR								
			l		Į.											
PA[7:0]	Function	on Selec	t Reg	ister (GPI	O_PAFL	JNC0)										
Offset ad	ddress:	24 _H														
Reset va	alue:000	_000000	00000	000_0000	0000_00	000000	D _B									
31	30	29	28	27	26	25	24	23	3 22	21	20	19	18	17	16	
Reser	ved	PA7	<1:0>	Res	erved	P/	\6<1:0>		Reserved	PA	5<1:0>	Re	served	PA	4<1:0>	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Reser	ved	PA3	<1:0>	Res	erved	P/	\2<1:0>		Reserved	PA	1<1:0>	Re	served	PA	0<1:0>	
				-		-				-		<u>-</u>		-		
				bit	31-30				_							
				510	2.00				PA7 fu	nctio	n sele	ct bits	<u> </u>			
									00:FUN0							
F	PA7<1:0>			bit	29-28		R/M	/	01:FUN1							
									10:FUN	\ 2						

11:FUN3

_	bit27-26	_	_
PA6<1:0>	bit25-24	R/W	PA6 function select bits
			00~11:FUN0~FUN3
_	bit23-22		_
PA5<1:0>	bit21-20	DAV	PA5 function select bits
PA5<1:0>	DIL2 1-20	R/W	00~11:FUN0~FUN3
_	bit19-18		_
PA4<1:0>	bit17-16	R/W	PA4 function select bits
PA4<1.0>	DIL17-16	K/VV	00~11:FUN0~FUN3
_	bit15-14	_	_
DA 2 -41-0-	bit13-12	R/W	PA3 function select bits
PA3<1:0>			00~11:FUN0~FUN3
_	bit11-10	_	_
DAO 4:0	h:10 0	DAA	PA2 function select bits
PA2<1:0>	bit9-8	R/W	00~11:FUN0~FUN3
_	bit7-6	_	_
PA1<1:0>	bit5 4	R/W	PA1 function select bits
PA 1<1:0>	bit5-4	I IK/VV	00~11:FUN0~FUN3
_	bit3-2	_	_
DA0 41:05	hit1 O	DAM	PA0 function select bits
PA0<1:0>	bit1-0	R/W	00~11:FUN0~FUN3

PA[15:8] Function Select Register (GPIO_PAFUNC1)

Offset address:28_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved		PA15<1:0>		Reserved		PA14<1:0>		Reserved		PA13<1:0>		Reserved		PA12<1:0>	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	Reserved		PA11<1:0> Reserved		PA1	PA10<1:0> Rese		served	PA9<1:0>		Reserved		PA8<1:0>		

_	bit31-30		_
			PA15 function select bits
	00:FUN	00:FUN0	
PA15<1:0>	bit29-28	R/W	01:FUN1
	10:FUN2	10:FUN2	
			11:FUN3
_	bit27-26		_
DA44.410	h:+0E 04	DAV	PA14 function select bits
PA14<1:0>	bit25-24	R/W	00~11:FUN0~FUN3
_	bit23-22	_	_

PA13<1:0>	bit21-20	R/W	PA13 function select bits 00~11:FUN0~FUN3
_	bit19-18		_
PA12<1:0>	bit17-16	R/W	PA12 function select bits 00~11:FUN0~FUN3
_	bit15-14	_	_
PA11<1:0>	bit13-12	R/W	PA11 function select bits 00~11:FUN0~FUN3
_	bit11-10	_	_
PA10<1:0>	bit9-8	R/W	PA10 function select bits 00~11:FUN0~FUN3
_	bit7-6	_	_
PA9<1:0>	bit5-4	R/W	PA9 function select bits 00~11:FUN0~FUN3
	bit3-2	_	_
PA8<1:0>	bit1-0	R/W	PA8 function select bits 00~11:FUN0~FUN3

PA[23:16] Function Select Register (GPIO_PAFUNC2)

Offset address:2C_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved		PA23<1:0>		Reserved		PA22<1:0>		Reserved		PA21<1:0>		Reserved		PA20<1:0>	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	Reserved PA19<1:0>		Res	served	PA18<1:0>		Reserved		PA17<1:0>		Reserved		PA16<1:0>		

_	bit31-30	_	_
			PA23 function select bits
			00:FUN0
PA23<1:0>	bit29-28	R/W	01:FUN1
			10:FUN2
			11:FUN3
_	bit27-26	_	_
PA22<1:0>	bit25-24	R/W	PA22 function select bits
PA22<1.0>	DI125-24	IK/VV	00~11:FUN0~FUN3
_	bit23-22	_	_
PA21<1:0>	hit21 20	DAM	PA21 function select bits
FAZI<1.0>	bit21-20	R/W	00~11:FUN0~FUN3
_	bit19-18	_	_
PA20<1:0>	bit17-16	R/W	PA20 function select bits

Preliminary 114/341

			00~11:FUN0~FUN3
_	bit15-14		
PA19<1:0>	bit13-12	R/W	PA19 function select bits 00~11:FUN0~FUN3
_	bit11-10	_	_
PA18<1:0>	bit9-8	R/W	PA18 function select bits 00~11:FUN0~FUN3
_	bit7-6	_	_
PA17<1:0>	bit5-4	R/W	PA17 function select bits 00~11:FUN0~FUN3
_	bit3-2	_	_
PA16<1:0>	bit1-0	R/W	PA16 function select bits 00~11:FUN0~FUN3

PA[31:24] Function Select Register (GPIO_PAFUNC3)

Offset address:30_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved		PA31<1:0> Reserve		served	PA30<1:0>		Reserved		PA29<1:0>		Reserved		PA28<1:0>		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved		PA2	A27<1:0> Reserved		PA26<1:0> Reserved		PA25<1:0>		Reserved		PA24<1:0>				

_	bit31-30		_
PA31<1:0>	bit29-28	R/W	PA31 function select bits 00:FUN0 01:FUN1 10:FUN2 11:FUN3
_	bit27-26		_
PA30<1:0>	bit25-24	R/W	PA30 function select bits 00~11:FUN0~FUN3
_	bit23-22		
PA29<1:0>	bit21-20	R/W	PA29 function select bits 00~11:FUN0~FUN3
	bit19-18	_	_
PA28<1:0>	bit17-16	R/W	PA28 function select bits 00~11:FUN0~FUN3
	bit15-14	_	_
PA27<1:0>	bit13-12	R/W	PA27 function select bits 00~11:FUN0~FUN3

_	bit11-10	_	_
PA26<1:0>	bit9-8	R/W	PA26 function select bits 00~11:FUN0~FUN3
_	bit7-6	_	—
PA25<1:0>	bit5-4	R/W	PA25 function select bits 00~11:FUN0~FUN3
_	bit3-2	_	_
PA24<1:0>	bit1-0	R/W	PA24 function select bits 00~11:FUN0~FUN3

Notes

- Only one from PA2/PA3/PA27/PA26 can be configured as a break signal for PWM output, and their priority level is PA2>PA3>PA27>PA26. For example, if PA3 is already a break signal, PA27 and PA26 cannot be configured as break signals.
- 2. The GPIO_PAFUNC register selects the input or output for digital function only. To enable the analog function, the corresponding bit of GPIO_PADIR and GPIO_PAINEB must be set to 1 to disable the digital input/output.

PA Input Enable Register GPIO_PAINEB)

Offset address:34_H

Rese	Reset value:00000000_00000000_000000000 _B													
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16													
	INEB<31:16>													
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													
	INEB<15:0>													

			Digital input enable bit
INEB<31:0>	bit31-0	R/W	0: Enabled
			1: Disabled

PA Open-drain Enable Register (GPIO_PAODE)

Offset address:38_H

Rese	Reset value:00000000_00000000_000000000 _B													
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16													
	ODE<31:16>													
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													
	ODE<15:0>													

Preliminary 116/341

ODE<31:0> bit31-0 R/W	Port output open-drain enable bit 0: Open-drain is disabled, and the port is in push-pull mode. 1: Open-drain is enabled
-----------------------	--

PA W	PA Weak Pull-up Enable Register (GPIO_PAPUE)														
Offse	Offset address:3C _H														
Rese	et value:0	0000000	_0000	0000_0000	_00000	00000000 _B	ŀ								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PUE	<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PUE	<15:0>							
_															
							We	ak pul	l-up e	nable	bit				
	PUE<	31:0>		bit31-	0	R/W	0: Disabled								
							1: Enabled								

PA Weak Pull-down Enable Register (GPIO_PAPDE)

Offset address:40_H

01100	t dddi oot	5. TO _H													
Reset	t value:0	0000000	_000000	000_000	00000_0	0000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PDE	<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PDE	<15:0>							

			Weak pull-down enable bit
PDE<31:0>	bit31-0	R/W	0: Disabled
			1: Enabled

PA Drive Strength Control Register (GPIO_PADS)

Offset address:44_H

Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DS <	<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DS	<15:0>							

Preliminary 117/341

	DS<3	1:0>		bit31-	0	R/W	Output driven strength select bit O: Normal current driven 1: High current driven								
PB P	ort Statu	s Regist	er (GP	IO_PBPO	RT)										
Offse	et address	::80 _H													
Rese	t value:00	000000_	_00000	000_00xx	xxxx_	XXXXXXXXB									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	served	T							Γ<13:0>						
		1													
				bit31-1	4	_	_								
							РВ	port l	evel						
F	ORT<	13:0>		bit13-	0	R	0: L	.OW							
							1: F	ligh							
P.D. 6			, (0)			_	_	_	_	_	_	_	_	_	_
	output Da et address		ter (G	PIO_PBD#	AIA)										
			00000	0000 0000	0000	.00000000 _B									
11000	value.e.		_00000			ОССОСОСОВ									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Re	served							DATA	\<13:0>						
	_			bit31-1	4	_	_								
								outpu							
	DATA<	13:0>		bit13-	0	R/W		Output							
							1: C	Output	high l	evel					
			et Regi	ster (GPI0	D_PBI	DATABSR)									
	t address		vvvv	xx_xxxxxx	vv	VVVV-									
Vese	r value.X)		~^^XXXX	^^_^XXXXX	^v _xx	~~~~¥¥B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Re	served							DATAB	SR<13:0)>					
-															

_	bit31-14	_	_
DATABSR<13:0>	bit13-0	W	PB output data bit set 0: Stay unchanged 1: Output high level the on the corresponding him
DATABOR<13:0>	DIC13-0	VV	Stay unchanged Coutput high level the on the correspond

РВ	Output Data Bit Clear Register (GPIO_PBDATABCR)
Offs	et address:8C _H

Deset velvenesses venesses venesses venesses

Rese	t value:x	XXXXXXX_	XXXXXXX	x_xxxxx	XXX_XXXX	(XXXX _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	served		DATABCR<13:0>												

_	bit31-14	_	_
			PB output data bit clear
DATABCR<13:0>	bit13-0	W	0: Stay unchanged
			1: Output low level on the corresponding pin

PB Output Data Bit Invert Register (GPIO_PBDATABRR)

Offset address:90_H

		11													
Rese	t value:x	xxxxxxx_	xxxxxx	x_xxxxx	xxxxx	(XXXX _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	served DATABRR<13:0>														

_	bit31-14	_	_
DATABRR<13:0>	bit13-0	oit13-0 W	PB output data bit invert 0: Stay unchanged
			Invert the output on the corresponding pin

PB Direction Register (GPIO_PBDIR)

Offset addrss:94_H

Rese	Reset value:11111111_1111111_1111111111 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	served	DIR<13:0>													

Preliminary 119/341

_	bit31-14	_	_
DIR<13:0>	bit13-0	R/W	PB direction control bit 0: Output 1: Non-output (If the corresponding bit of GPIO_PBINEB is 0, it is used as digital input. If the analog channel needs to be enabled, the corresponding bit of GPIO_PBINEB and GPIO_PBDIR must be 1 to disable the digital input/output function.)

PB D	PB Direction Bit Set Register (GPIO_PBDIRBSR)															
Offse	Offset address:98 _H															
Rese	Reset value:xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
							Re	served								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Re	served							DIRBSR<13:0>								
	_			bit31-	14	_	_									
							РВ	direc	tion b	it set						
DI	RBSR	<13:0>	>	bit13-	-0	W	0: 7	he GF	PIO_P	BDIR	value	stays ι	unchai	nged		
							1: 5	Set the	corre	spond	ing bit	of GP	IO_PE	BDIR t	o 1	

PB D	PB Direction Bit Clear Register (GPIO_PBDIRBCR)														
Offse	Offset address:9C _H														
Rese	t value:x	xxxxxxx_	xxxxxx	x_xxxxx	xxxxx	(XXXX _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	Reserved DIRBCR<13:0>														

_	bit31-14	_	_
			PB direction bit clear
DIRBCR<13:0>	bit13-0	W	0: The GPIO_PBDIR value stays unchanged
			1: Set the corresponding bit of GPIO_PBDIR to 0

Preliminary 120/341

	PB Direction	Bit Invert	Register ((GPIO_I	PBDIRBRR)
--	--------------	------------	------------	---------	-----------

Offset address:A0_H

Reserved Reserved DIRBRR<13:0>

_	bit31-14	_	_
			PB direction bit invert
DIRBRR<13:0>	bit13-0	W	0: The GPIO_PBDIR value stays unchanged
			1: Invert the corresponding bit of GPIO_PBDIR

PB[7:0] Function Select Register(GPIO_PBFUNC0)

Offset address:A4_H

Reset value:00000000_00000000_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res	served	PB7	7<1:0>	Res	served	PB	6<1:0>	Res	served	PB:	5<1:0>	Res	served	PB4	1<1:0>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	served	PB3	3<1:0>	Res	served	PB:	2<1:0>	Res	served	РВ	<1:0>	Res	served	PB	0<1:0>

_	bit31-30		_
			PB7 function select bits
			00:FUN0
PB7<1:0>	bit29-28	R/W	01:FUN1
			10:FUN2
			11:FUN3
_	bit27-26	_	_
PB6<1:0>	h:t0E 04	R/W	PB6 function select bits
PD0<1.0>	bit25-24	I IK/VV	00~11:FUN0~FUN3
_	bit23-22	_	_
PB5<1:0>	bit21-20	R/W	PB5 function select bits
PD3<1.0>	DIL2 1-20	I IK/VV	00~11:FUN0~FUN3
_	bit19-18	_	_
PB4<1:0>	hi+17 16	R/W	PB4 function select bits
PD4<1.0>	bit17-16	I K/VV	00~11:FUN0~FUN3
_	bit15-14	_	_
PB3<1:0>	bit13-12	R/W	PB3 function select bits
PD3<1.0>	DIL13-12	FX/VV	00~11:FUN0~FUN3

Preliminary 121/341

_	bit11-10	_	_			
PB2<1:0>	bit9-8	PB2 function select bits				
1 52 (1.0)	Dito 0	10,00	00~11:FUN0~FUN3			
_	bit7-6	_	_			
PB1<1:0>	bit5-4	R/W	PB1 function select bits			
PDI<1.0>	มเอ-4	K/VV	00~11:FUN0~FUN3			
_	bit3-2	_	_			
DB0 -1-0-	hit1 O	DAM	PB0 function select bits			
PB0<1:0>	bit1-0	R/W	00~11:FUN0~FUN3			

PB[15:8] Function Select Register (GPIO_PBFUNC1)

Offse	ffset address:A8 _H														
Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved									PB1	3<1:0>	Re	served	PB1	2<1:0>	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	served	PB1	1<1:0>	Re	served	PB1	0<1:0>	Re	served	PB	9<1:0>	Re	served	PB	8<1:0>

_	bit31-22		_
PB13<1:0>	bit21-20 R/W		PB13 function select bits 00:FUN0 01:FUN1 10:FUN2 11:FUN3
_	bit19-18	_	_
PB12<1:0>	bit17-16	R/W	PB12 function select bits 00~11:FUN0~FUN3
_	bit15-14	_	_
PB11<1:0>	bit13-12	R/W	PB11 function select bits 00~11:FUN0~FUN3
_	bit11-10	_	_
PB10<1:0>	bit9-8	R/W	PB10 function select bits 00~11:FUN0~FUN3
_	bit7-6	_	_
PB9<1:0>	bit5-4	R/W	PB9 function select bits 00~11:FUN0~FUN3
	bit3-2		_
PB8<1:0>	bit1-0	R/W	PB8 function select bits 00~11:FUN0~FUN3

Note: The GPIO_PBFUNC register selects the input or output for digital function only. To enable the analog function, the corresponding bit of GPIO_PBDIR and GPIO_PBINEB must be set to 1 to disable the digital input/output.

PB Ir	nput Enal	ble Regi	ster (G	PIO_PBI	NEB)										
Offse	t address	:B4 _H													
Rese	t value:00	000000	_00000	000_0000	00000_	.00000000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								served							
							- 101								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Re	served							INE	3<13:0>						
	_			bit31-1	14	_	_								
							_		put er	nable	bit				
I	NEB<1	3:0>		bit13-	0	R/W		nable							
1: Disabled															
			e Regis	ster (GPIC	D_PBC	DDE)									
	t address														
Rese	t value:00	0000000	_00000	0000_0000	00000_	.00000000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
4-	4.4	40	40	44	40	•	•	_		-		•			•
15	14	13 	12	11	10	9	8	7	6	5	4	3	2	1	0
Ke	served							ODE	<13:0>						
				bit31-1	1.4	_	Τ								
				-ו כווט	14			nut o	non d	rain a	nabla	hit			
								-	-		nable oled, ai		nort is	e in	
(ODE<1	3:0>		bit13-	0	R/W		-	mode		neu, ai	iu iiie	portis) II I	
									drain is		led				
					ļ					0.100					
PB W	/eak Pull	-up Ena	ble <u>Re</u>	gister (GF	PIO_PE	BPUE)									
	t address														
			00000	000 0000	00000	.00000000B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Re	served							PUE	N<13:0>						
	1001/100														

_	bit31-14	_	_
			Weak pull-up enable bit
PUEN<13:0>	bit13-0	R/W	0: Disabled
			1: Enabled

Note: If the MRSTN pin is used for external reset function, there is an internal integrated weak pull-up resister of $45K\Omega$, and it is not controlled by the weak pull-up enable register.

PB W	/eak Pul	l-down E	Enable	Register (GPIO_	_PBPDE)									
Offse	t address	s:C0 _H													
Rese	t value:0	0000000	_00000	0000_0000	0000_	.00000000	3								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Re	served							PDE	N<13:0>						
	_			bit31-1	4	_	_								
							We	ak pu	II-dow	n ena	ble bi	t			
Р	DEN<	:13:0>		bit13-0	0	R/W	0: [Disable	ed						
							1: E	Enable	ed						

PB Drive Strength Control	Register (GPIO_PBDS)
---------------------------	----------------------

Offset address:C4_µ

Offse	Offset address:C4 _H														
Reset	Reset value:00000000_00000000_0000000000000000000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	served		DS<13:0>												

_	bit31-14	_	_
			Output driven strength select bit
DS<13:0>	bit13-0	R/W	0:Normal current driven
			1:High current driven

Preliminary 124/341

PINT	PINT Interrupt Enable Register (GPIO_PINTIE)														
Offse	Offset address:00 _H														
Rese	t value:0	0000000	_000000	000_000	00000_0	0000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			PMAS	SK<7:0>							PINT	TE<7:0>			

_	bit31-16	_	_
			PINT interrupt source mask bit
PMASK<7:0>	bit15-8	R/W	0:Not masked
			1:Masked
			PINT enable bit
PINTIE<7:0>	bit7-0	R/W	0: Disabled
			1: Enabled

PINT Interrupt Flag Register (GPIO_PINTIF)

Offset address:04_H

Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Res	served							PINT	TF<7:0>			

_	bit 31-8	_	_
			GPIO external interrupt flag bit
			0: No interrupt occurred
PINTIF<7:0>	bit7-0	R/W	1: Interrupt occurred
			Clear the flag by software writing 1, and writing 0
			has no effect.

Note: For each flag bit of the GPIO_PINTIF register, they have to be cleared by software writing1, and writing 0 has no effect. When reading, 1 indicates that an interrupt has occurred.

PINT0~7 Interrupt Source Select Register (GPIO_PINTSEL)

Offset address:08_H

Reset value:00000000_00000000_000000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved	PIN ⁻	T7SEL	<2:0>	Reserved	PIN	T6SEL	<2:0>	Reserved	PIN	T5SEL	<2:0>	Reserved	PIN	T4SEL	<2:0>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	PIN.	T3SEL-	<2:0>	Reserved	PIN	T2SEL-	<2:0>	Reserved	PIN	T1SEL	<2:0>	Reserved	PIN	TOSEL	<2:0>

_	bit31	_	_
			PINT7 input select bits
PINT7SEL<2:0>	bit30-28	R/W	000~101: SEL0~SEL5
			Others: SEL0
_	bit27	_	_
			PINT6 input select bits
PINT6SEL<2:0>	bit26-24	R/W	000~101: SEL0~SEL5
			Others: SEL0
_	bit23	_	_
			PINT5 input select bits
PINT5SEL<2:0>	bit22-20	R/W	000~101: SEL0~SEL5
			Others: SEL0
_	bit19	_	_
			PINT4 input select bits
PINT4SEL<2:0>	bit18-16	R/W	000~101: SEL0~SEL5
			Others: SEL0
_	bit15	_	_
			PINT3 input select bits
PINT3SEL<2:0>	bit14-12	R/W	000~101: SEL0~SEL5
			Others: SEL0
_	bit11	_	_
			PINT2 input select bits
PINT2SEL<2:0>	bit10-8	R/W	000~101: SEL0~SEL5
			Others: SEL0
_	bit7		_
			PINT1 input select bits
PINT1SEL<2:0>	bit6-4	R/W	000~101: SEL0~SEL5
			Others: SEL0
_	bit3	_	_
			PINT0 input select bits
PINT0SEL<2:0>	bit2-0	R/W	000~101: SEL0~SEL5
			Others: SEL0

PINT Interrupt Configuration Register (GPIO_PINTCFG)

Offset address:0C_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved	PIN	Γ7CFG	<2:0>	Reserved	PIN ⁻	T6CFG	<2:0>	Reserved	PIN	T5CFG	<2:0>	Reserved	PIN	T4CFG	<2:0>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	PIN	Г3CFG	<2:0>	Reserved	PIN ⁻	T2CFG	<2:0>	Reserved	PIN	T1CFG	<2:0>	Reserved	PIN	T0CFG	<2:0>

	I	1	
	bit31		_
DINITZOEO 2010	h:+20 20	R/W	PINT7 configuration bits
PINT7CFG<2:0>	bit30-28	K/VV	See GPIO_PINTCFG for details
_	bit27	_	_
DINITOOFO OO	1.300.04	D 44/	PINT6 configuration bits
PINT6CFG<2:0>	bit26-24	R/W	See GPIO_PINTCFG for details
_	bit23	_	_
500			PINT5 configuration bits
PINT5CFG<2:0>	bit22-20	R/W	See GPIO_PINTCFG for details
_	bit19	_	_
			PINT4 configuration bits
PINT4CFG<2:0>	bit18-16	R/W	See GPIO_PINTCFG for details
_	bit15	_	_
			PINT3 configuration bits
PINT3CFG<2:0>	bit14-12	R/W	See GPIO_PINTCFG for details
_	bit11	_	_
			PINT2 configuration bits
PINT2CFG<2:0>	bit10-8	R/W	See GPIO_PINTCFG for details
	bit7	_	_
	Ditt'		PINT1 configuration bits
PINT1CFG<2:0>	bit6-4	R/W	_
			See GPIO_PINTCFG for details
_	bit3	_	_
PINT0CFG<2:0>	bit2-0	R/W	PINT0 configuration bits
FIINTUCFG<2.0>	DILZ-U	IT./VV	See GPIO_PINTCFG for details

Register Name	GPIO_PINT	GPIO_PINTCFG							
PINTCFG<2:0>	bit 2-0	R/W	Port interrupt trigger event select bits 000: Rising edg 001: Falling edge 010: High level 011: Low level 1xx: Both rising and falling edge						

Offset	Offset address:10 _H														
Reset	value:0	0000000	_000000	000_1111	1111_00	000000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			KMA	SK<7:0>							KINT	TE<7:0>			

	bit31-16	_	_
			KIN key input mask bit
KMASK<7:0>	bit15-8	R/W	0: Not masked
			1: Masked
			KINT interrupt enable bit
KINTIE<7:0>	bit7-0	R/W	0: Disabled
			1: Enabled

KINT Interrupt Flag Register (GPIO_KINTIF)

Offset address:14_H

Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved										KINT	TF<7:0>			

_	bit 31-8	_	_
			GPIO key interrupt flag bit
			0: No interrupt occurred
KINTIF<7:0>	bit7-0	R/W	1: Interrupt occurred
			Clear the flag bit by software writing 1, and writing
			Ohas no effect.

Note: For each flag bit of the GPIO_KINTIF register, they have to be cleared by software writing1, and writing 0 has no effect. When reading, 1 indicates that an interrupt has occurred.

KINT0~7 Interrupt Source Select Register (GPIO_KINTSEL)

Offset address:18_H

Reset value:00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved	KIN	Γ7SEL<	<2:0>	Reserved	KIN'	T6SEL-	<2:0>	Reserved	KIN'	T5SEL-	<2:0>	Reserved	KIN	T4SEL	<2:0>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	KIN	Γ3SEL<	<2:0>	Reserved	KIN	T2SEL-	<2:0>	Reserved	KIN'	T1SEL-	<2:0>	Reserved	KIN	T0SEL-	<2:0>

_	bit31	_	_
			KINT7 input select bits
KINT7SEL<2:0>	bit30-28	R/W	000~101: SEL0~SEL5
			Others: SEL0
_	bit27	_	_
			KINT6 input select bits
KINT6SEL<2:0>	bit26-24	R/W	000~101: SEL0~SEL5
			Others: SEL0
_	bit23	_	_
			KINT5 input select bits
KINT5SEL<2:0>	bit22-20	R/W	000~101: SEL0~SEL5
			Others: SEL0
_	bit19	_	_
			KINT4 input select bits
KINT4SEL<2:0>	bit18-16	R/W	000~101: SEL0~SEL5
			Others: SEL0
-	bit15	_	_
			KINT3 input select bits
KINT3SEL<2:0>	bit14-12	R/W	000~101: SEL0~SEL5
			Others: SEL0
_	bit11	_	_
			KINT2 input select bits
KINT2SEL<2:0>	bit10-8	R/W	000~101: SEL0~SEL5
			Others: SEL0
_	bit7	_	_
			KINT1 input select bits
KINT1SEL<2:0>	bit6-4	R/W	000~101: SEL0~SEL5
			Others: SEL0
_	bit3	_	
			KINT0 input select bits
KINT0SEL<2:0>	bit2-0	R/W	000~101: SEL0~SEL5
			Others: SEL0

KINT Interrupt Configuration Register (GPIO_KINTCFG)

Offset address:1C_H

Reset value:00000000_00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved	KINT	7CFG	<2:0>	Reserved	KIN'	T6CFG	<2:0>	Reserved	KIN'	T5CFG	<2:0>	Reserved	KIN	T4CFG	<2:0>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	KINT	Γ3CFG∙	<2:0>	Reserved	KIN'	T2CFG	<2:0>	Reserved	KIN'	T1CFG	<2:0>	Reserved	KIN'	T0CFG	<2:0>

	I		
_	bit31		_
KINT7CFG<2:0>	bit30-28	R/W	KINT7 configuration bits
KIN17CFG<2.0>	DII30-20	K/VV	See GPIO_KINTCFG for details
_	bit27	_	_
KINT6CFG<2:0>	h:400 04	R/W	KINT6 configuration bits
KINTOCFG<2:0>	bit26-24	K/VV	See GPIO_KINTCFG for details
_	bit23	_	_
1/INITEGEO 0 0	1.00.00	D 44/	KINT5 configuration bits
KINT5CFG<2:0>	bit22-20	R/W	See GPIO_KINTCFG for details
_	bit19	_	_
140174070 000	1.110.10	D 444	KINT4 configuration bits
KINT4CFG<2:0>	bit18-16	R/W	See GPIO_KINTCFG for details
_	bit15	_	_
IVINITAGEO O O	1:44.40	D 44/	KINT3 configuration bits
KINT3CFG<2:0>	bit14-12	R/W	See GPIO_KINTCFG for details
_	bit11	_	_
IVINITOOFO OO	1:40.0	D 44/	KINT2 configuration bits
KINT2CFG<2:0>	bit10-8	R/W	See GPIO_KINTCFG for details
_	bit7	_	_
IZINITA OFO 0:0	h:40 4	D ^^/	KINT1 configuration bits
KINT1CFG<2:0>	bit6-4	R/W	See GPIO_KINTCFG for details
_	bit3	_	_
KINTOOFO 2020	F:40 0	DAM	KINT0 configuration bits
KINT0CFG<2:0>	bit2-0	R/W	See GPIO_KINTCFG for details

Register Name	GPIO_KINT	GPIO_KINTCFG							
GPIO_KINTCFG	bit 2-0	R/W	Key interrupt trigger event select bits 000: Rising edge 001: Falling edge 010: High level 011: Low level 1xx: Both rising and falling edge						

11

Reserved

10

Port	Port Interrupt 20ns Filter Select Register (GPIO_IOINTFLTS)														
Offse	Offset address:30 _H														
Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							

_	bit31-8	_	_
			20ns filter select bits
FLT_S<7:0>	bit7-0	R/W	0: Used to filter the PINT interrupt source
			1. Used to filter the KINT interrupt source

6

FLT_S<7:0>

TMR 20ns Filter Select Register (GPIO_TMRFLTSEL)

15

14

13

Offse	fset address:40 _H														
Rese	Reset value:00000000_00000000_0000000000000000000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	FLT3_SEL<3:0> FLT2_SEL<3:0>							FLT1_	SEL<3:0	>		FLT0_	SEL<3:0	×	

_	bit31-16	_	_					
			TMR FLT3 select bits					
			0000: TMR_FLT3 used by T16N0_0					
			0001: TMR_FLT3 used by T16N0_1					
			0010: TMR_FLT3 used by T16N1_0					
			0011: TMR_FLT3 used by T16N1_1					
FLT3_SEL<3:0>	bit15-12	R/W	0100: TMR_FLT3 used by T16N2_0					
FLIS_SEL<3.0>	01(15-12	R/VV	0101: TMR_FLT3 used by T16N2_1					
			0110: TMR_FLT3 used by T16N3_0					
			0111: TMR_FLT3 used by T16N3_1					
			1000: TMR_FLT3 used by T32N0_0					
			1001: TMR_FLT3 used by T32N0_1					
			Others: Reserved					
			TMR FLT2 select bits					
			0000: TMR_FLT2 used by T16N0_0					
FLT2_SEL<3:0>	hi+11 0	D AA/	0001: TMR_FLT2 used by T16N0_1					
1 L12_3LL<3.0>	bit11-8	R/W	0010: TMR_FLT2 used by T16N1_0					
			0011: TMR_FLT2 used by T16N1_1					
			0100: TMR_FLT2 used by T16N2_0					

Preliminary 131/341

FLT1_SEL<3:0> bit7-4 FLT1_SEL<3:0> bit3-0 FLT0_SEL<3:0> bit3-0 FLT0_SEL<3:0> bit3-0 FLT0_SEL<3:0> bit3-0 FLT0_SEL<3:0> bit3-0 FLT0_SEL<3:0> Bit3-0 Bit3-1 Bit3-1 Bit3-1 Bit4-1 Bit4-1 Bit4-12 used by T16N2_1 Bit4-12 used by T16N2_1 Bit4-12 used by T16N2_1 Bit4-12 used by T16N2_1 Bit4-14 Bit4-12 used by T16N2_0 Bit4-14 Bit5-12 used by T16N2_0 Bit5-14 Bit5-14 Bit5-14 Bit5-15 used by T16N2_0 Bit5-15 used by T16N2_1 Bit5-16 used by T16N2_0 Bit5-16 used by T16N2_0 Bit5-16 used by T16N0_0 Bit5-17 Bit5-17 used by T16N0_0 Bit5-18 used by T16N0_0 Bit5-19 used by T16N0_1 Bit5-19 used by T16N3_1 Bit5-19 used by T32N0_0 Bit5-19 used by T32N0_0 Bit5-19 used by T32N0_0 Bit5-19 used by T32N0_0 Bit5-19 used by T32N0_1 Bit5-19 used by T32N0			1	
FLT1_SEL<3:0> bit7-4 Bit3-0 FLT0_SEL<3:0> Bit3-0 FLT0_SEL<3:0> Bit3-0 FLT0_SEL<3:0> Bit3-0 FLT0_SEL<3:0> Bit3-0 Bit3				
1000: TMR_FLT2 used by T32N0_0 1001: TMR_FLT2 used by T32N0_1 Others: Reserved				0110: TMR_FLT2 used by T16N3_0
1001: TMR_FLT2 used by T32N0_1				0111: TMR_FLT2 used by T16N3_1
Others: Reserved				1000: TMR_FLT2 used by T32N0_0
FLT1_SEL<3:0> bit7-4 bit7-4 FLT1_SEL<3:0> FLT1_SEL<3:0> FLT1_SEL<3:0> bit7-4 FLT1_SEL<3:0> FLT1_SEL<3:0> FLT1_SEL<3:0> FLT1_SEL<3:0> FLT1_SEL<3:0> FLT1_SEL<3:0> FLT2_SEL<3:0> FLT1_SEL<3:0> FLT2_SEL<3:0> FLT2_SEL<3:0> FLT3_SELS_3:0> FLT3_SELS_3:0 FLT3_SELS_3:0> FLT3_SELS_3:0 FLT3_SELS_5:0 FLT3_SE				1001: TMR_FLT2 used by T32N0_1
FLT1_SEL<3:0> bit7-4				Others: Reserved
FLT1_SEL<3:0> bit7-4 bit7-4 R/W Double to the process of the				TMR FLT1 select bits
FLT1_SEL<3:0> bit7-4 bit7-4 R/W 0010: TMR_FLT1 used by T16N1_0				0000: TMR_FLT1 used by T16N0_0
FLT1_SEL<3:0> bit7-4 BWW 0011: TMR_FLT1 used by T16N1_1 0100: TMR_FLT1 used by T16N2_0 0101: TMR_FLT1 used by T16N2_1 0110: TMR_FLT1 used by T16N3_0 0111: TMR_FLT1 used by T16N3_1 1000: TMR_FLT1 used by T32N0_0 1001: TMR_FLT1 used by T32N0_1 Others: Reserved TMR FLT0 select bits 0000: TMR_FLT0 used by T16N0_0 0001: TMR_FLT0 used by T16N0_1 0010: TMR_FLT0 used by T16N1_0 0011: TMR_FLT0 used by T16N1_1 0100: TMR_FLT0 used by T16N2_0 0101: TMR_FLT0 used by T16N3_0 0111: TMR_FLT0 used by T16N3_1 1000: TMR_FLT0 used by T32N0_0 1001: TMR_FLT0 used by T32N0_1				0001: TMR_FLT1 used by T16N0_1
FLT1_SEL<3:0> bit7-4 Bit7-1 used by T16N2_0 Bit7-4 Bit7-4 Bit7-4 Bit7-1 used by T16N2_0 Bit7-4 Bit7-4 Bit7-1 used by T16N2_0 Bit7-4 Bit7-4 Bit7-4 Bit7-4 Bit7-4 Bit7-1 used by T16N2_0 Bit7-4 Bit7-4 Bit7-4 Bit7-4 Bit7-4 Bit7-4 Bit7-4 Bit7-4 Bit7-1 used by T16N2_0 Bit7-4				0010: TMR_FLT1 used by T16N1_0
FLT1_SEL<3:0> bit7-4 R/W 0101: TMR_FLT1 used by T16N2_1 0110: TMR_FLT1 used by T16N3_0 0111: TMR_FLT1 used by T16N3_1 1000: TMR_FLT1 used by T32N0_0 1001: TMR_FLT1 used by T32N0_1 Others: Reserved TMR FLT0 select bits 0000: TMR_FLT0 used by T16N0_0 0001: TMR_FLT0 used by T16N0_1 0010: TMR_FLT0 used by T16N1_0 0011: TMR_FLT0 used by T16N1_1 0100: TMR_FLT0 used by T16N2_0 0101: TMR_FLT0 used by T16N3_0 0111: TMR_FLT0 used by T16N3_1 1000: TMR_FLT0 used by T32N0_0 1001: TMR_FLT0 used by T32N0_0 1001: TMR_FLT0 used by T32N0_1				0011: TMR_FLT1 used by T16N1_1
0101: TMR_FLT1 used by T16N2_1 0110: TMR_FLT1 used by T16N3_0 0111: TMR_FLT1 used by T16N3_1 1000: TMR_FLT1 used by T32N0_0 1001: TMR_FLT1 used by T32N0_1 Others: Reserved TMR FLT0 select bits 0000: TMR_FLT0 used by T16N0_0 0001: TMR_FLT0 used by T16N0_1 0010: TMR_FLT0 used by T16N1_0 0011: TMR_FLT0 used by T16N1_1 0100: TMR_FLT0 used by T16N2_0 0101: TMR_FLT0 used by T16N2_1 0110: TMR_FLT0 used by T16N3_0 0111: TMR_FLT0 used by T16N3_1 1000: TMR_FLT0 used by T32N0_0 1001: TMR_FLT0 used by T32N0_0 1001: TMR_FLT0 used by T32N0_1	ELT1 CEL 20:05	hit7 1	D AA/	0100: TMR_FLT1 used by T16N2_0
## Dita-0 Dita-1: TMR_FLT1 used by T16N3_1	FLIT_SEL<3.0>	DI(1-4	I IN/VV	0101: TMR_FLT1 used by T16N2_1
## 1000: TMR_FLT1 used by T32N0_0 1001: TMR_FLT1 used by T32N0_1 Others: Reserved ### TMR FLT0 select bits ### 0000: TMR_FLT0 used by T16N0_0 0001: TMR_FLT0 used by T16N0_1 0010: TMR_FLT0 used by T16N1_0 0011: TMR_FLT0 used by T16N1_1 0100: TMR_FLT0 used by T16N2_0 0101: TMR_FLT0 used by T16N2_1 0110: TMR_FLT0 used by T16N3_0 0111: TMR_FLT0 used by T16N3_1 1000: TMR_FLT0 used by T32N0_0 1001: TMR_FLT0 used by T32N0_0 1001: TMR_FLT0 used by T32N0_1				0110: TMR_FLT1 used by T16N3_0
1001: TMR_FLT1 used by T32N0_1				0111: TMR_FLT1 used by T16N3_1
Others: Reserved TMR FLT0 select bits 0000: TMR_FLT0 used by T16N0_0 0001: TMR_FLT0 used by T16N0_1 0010: TMR_FLT0 used by T16N1_0 0011: TMR_FLT0 used by T16N1_1 0100: TMR_FLT0 used by T16N2_0 0101: TMR_FLT0 used by T16N2_1 0110: TMR_FLT0 used by T16N3_0 0111: TMR_FLT0 used by T16N3_1 1000: TMR_FLT0 used by T32N0_0 1001: TMR_FLT0 used by T32N0_1				1000: TMR_FLT1 used by T32N0_0
FLT0_SEL<3:0> bit3-0 bit3-0 TMR FLT0 select bits 0000: TMR_FLT0 used by T16N0_0 0001: TMR_FLT0 used by T16N1_0 0010: TMR_FLT0 used by T16N1_1 0100: TMR_FLT0 used by T16N2_0 0101: TMR_FLT0 used by T16N2_1 0110: TMR_FLT0 used by T16N3_0 0111: TMR_FLT0 used by T16N3_1 1000: TMR_FLT0 used by T32N0_0 1001: TMR_FLT0 used by T32N0_1				1001: TMR_FLT1 used by T32N0_1
FLTO_SEL<3:0> bit3-0 color: TMR_FLT0 used by T16N0_0 color: TMR_FLT0 used by T16N1_1 color: TMR_FLT0 used by T16N2_0 color: TMR_FLT0 used by T16N2_1 color: TMR_FLT0 used by T16N3_0 color: TMR_FLT0 used by T16N3_1 color: TMR_FLT0 used by T32N0_0 color: TMR_FLT0 used by T32N0_0 color: TMR_FLT0 used by T32N0_1				Others: Reserved
FLT0_SEL<3:0> bit3-0 bit3-0 bit3-0 bit3-0 bit3-0 bit3-0 bit3-0 bit3-0 bit3-0 bit3-0 bit3-0 bit3-0 bit3-0 bit3-0 color TMR_FLT0 used by T16N0_1 color TMR_FLT0 used by T16N1_1 color TMR_FLT0 used by T16N2_0 color TMR_FLT0 used by T16N3_1 color TMR_FLT0 used by T16N3_1 color TMR_FLT0 used by T32N0_0 color TMR_FLT0 used by T32N0_1				TMR FLT0 select bits
FLT0_SEL<3:0> bit3-0				0000: TMR_FLT0 used by T16N0_0
FLT0_SEL<3:0> bit3-0 bit3-0 R/W 0011: TMR_FLT0 used by T16N1_1 0100: TMR_FLT0 used by T16N2_0 0101: TMR_FLT0 used by T16N3_1 0110: TMR_FLT0 used by T16N3_1 1000: TMR_FLT0 used by T32N0_0 1001: TMR_FLT0 used by T32N0_1				0001: TMR_FLT0 used by T16N0_1
FLT0_SEL<3:0> bit3-0				0010: TMR_FLT0 used by T16N1_0
PLT0_SEL<3:0> bit3-0				0011: TMR_FLT0 used by T16N1_1
0101: TMR_FLT0 used by T16N2_1 0110: TMR_FLT0 used by T16N3_0 0111: TMR_FLT0 used by T16N3_1 1000: TMR_FLT0 used by T32N0_0 1001: TMR_FLT0 used by T32N0_1	ELTO SEL 2005	hita n	DAM	0100: TMR_FLT0 used by T16N2_0
0111: TMR_FLT0 used by T16N3_1 1000: TMR_FLT0 used by T32N0_0 1001: TMR_FLT0 used by T32N0_1	FLIU_SEL<3.0>	มเจ-บ	R/VV	0101: TMR_FLT0 used by T16N2_1
1000: TMR_FLT0 used by T32N0_0 1001: TMR_FLT0 used by T32N0_1				0110: TMR_FLT0 used by T16N3_0
1001: TMR_FLT0 used by T32N0_1				0111: TMR_FLT0 used by T16N3_1
				1000: TMR_FLT0 used by T32N0_0
Others: Reserved				1001: TMR_FLT0 used by T32N0_1
				Others: Reserved

SPI 2	SPI 20ns Filter Select Register (GPIO_SPIFLTSEL)														
Offse	Offset address:44 _H														
Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					R	eserved							FLT_S	SEL<3:0:	>
	_	-		bit31	-4										
FLT_SEL<3:0> bit3-0 R/W SPI Filter									selec	t bits					

Preliminary 132/341

	1: The filter is assigned to SPI1
	0: The filter is assigned to SPI0

PWM Register (

Offset address:80_H

|--|

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

Reserved

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TX1 _S3	TX1 _S2	TX1 _S1	TX1 _S0	Reserved	TX1 PLV	TX1 1:0>		TX0 _S3	TX0 _S2	TX0 _S1	TX0_ S0	Reserved	TX0PL V	TX0P\$	S<1:0>

_	bit31-16		T_						
	01131-10		TYPMMA - 4- 4						
			= 0, where the TXPWM0 is not enabled and output to BUZ pin) 0: Normal BUZ pin 1: TXPWM1 output is enabled and output to the BUZ pin. TXPWM1 output pin enable 0: Normal T16N1OUT1 pin 1: TXPWM1 output is enabled and output to the T16N1OUT1 pin TXPWM1 output pin enable 0: Normal T16N1OUT0 pin 1: TXPWM1 output is enabled and output to the T16N1OUT0 pin TXPWM1 output pin enable 0: Normal E0TX0 pin 1: TXPWM1 output is enabled and output to the E0TX0 pin						
TX1_S3	bit15	R/W	. ,						
_			O: Normal BUZ pin 1: TXPWM1 output is enabled and output to the BUZ pin. TXPWM1 output pin enable O: Normal T16N1OUT1 pin 1: TXPWM1 output is enabled and output to the T16N1OUT1 pin TXPWM1 output pin enable O: Normal T16N1OUT0 pin 1: TXPWM1 output is enabled and output to the T16N1OUT0 pin TXPWM1 output pin enable O: Normal E0TX0 pin 1: TXPWM1 output is enabled and output to the E0TX0 pin						
			 = 0, where the TXPWM0 is not enabled and output to BUZ pin) 0: Normal BUZ pin 1: TXPWM1 output is enabled and output to the BUZ pin. TXPWM1 output pin enable 0: Normal T16N1OUT1 pin 1: TXPWM1 output is enabled and output to the T16N1OUT1 pin TXPWM1 output pin enable 0: Normal T16N1OUT0 pin 1: TXPWM1 output is enabled and output to the T16N1OUT0 pin TXPWM1 output pin enable 0: Normal E0TX0 pin 1: TXPWM1output is enabled and output to the E0TX0 pin 						
			BUZ pin.						
			TXPWM1 output pin enable						
TX1_S2	bit14	R/W	0: Normal T16N1OUT1 pin						
171_52	DIC14	11/00	1: TXPWM1 output is enabled and output to the						
			= 0, where the TXPWM0 is not enabled an output to BUZ pin) 0: Normal BUZ pin 1: TXPWM1 output is enabled and output to the BUZ pin. TXPWM1 output pin enable 0: Normal T16N1OUT1 pin 1: TXPWM1 output is enabled and output to the T16N1OUT1 pin TXPWM1 output pin enable 0: Normal T16N1OUT0 pin 1: TXPWM1 output is enabled and output to the T16N1OUT0 pin TXPWM1 output pin enable 0: Normal E0TX0 pin 1: TXPWM1 output is enabled and output to the E0TX0 pin 1: TXPWM1 modulation level select bit 0: Low level (perform hardware OR operation of E0TX0 and the signal selected by TX1PS)						
			TXPWM1 output pin enable						
TV4 C4	h:440	R/W	0: Normal T16N1OUT0 pin						
TX1_S1	bit13	K/VV	1: TXPWM1 output is enabled and output to the						
			T16N1OUT0 pin						
			TXPWM1 output pin enable						
TV4 00	h:440	D 44/	0: Normal E0TX0 pin						
TX1_S0	bit12	R/W	1: TXPWM1output is enabled and output to the						
			E0TX0 pin						
_	bit11	_	_						
			TXPWM1 modulation level select bit						
			0: Low level (perform hardware OR operation on						
TX1PLV	bit10	R/W	= 0, where the TXPWM0 is not enabled and output to BUZ pin) 0: Normal BUZ pin 1: TXPWM1 output is enabled and output to the BUZ pin. TXPWM1 output pin enable 0: Normal T16N1OUT1 pin 1: TXPWM1 output is enabled and output to the T16N1OUT1 pin TXPWM1 output pin enable 0: Normal T16N1OUT0 pin 1: TXPWM1 output is enabled and output to the T16N1OUT0 pin TXPWM1 output pin enable 0: Normal E0TX0 pin 1: TXPWM1 output is enabled and output to the E0TX0 pin						
			1: High level (perform hardware AND operation on						
			E0TX0 and the signal selected by TX1PS)						
TV4DC :4:0	F:40 0	DAA	TXPWM1 modulation signal select bit						
TX1PS<1:0>	bit9-8	R/W	00: Modulation disabled						

			_						
			01: T16N1OUT0 signal						
			10: T16N1OUT1 signal						
			11: BUZ output signal						
			TXPWM0 output pin enable						
TX0_S3	bit7	R/W	0: Normal BUZ pin						
170_55	DILI		1: TXPWM0 output is enabled and output to the						
			BUZ pin						
			TXPWM0 output pin enable						
TV0 C2	bit6	R/W	0: Normal T16N0OUT1 pin						
TX0_S2	DILO	R/VV	1: TXPWM0 output is enabled and output to the						
			T16N0OUT1 pin						
	bit5	R/W	TXPWM0 output pin enable						
TX0_S1			0: Normal T16N0OUT0 pin						
170_31			1: TXPWM0 output is enabled and output to the						
			T16N0OUT0 pin						
			TXPWM0 output pin enable						
TX0 S0	bit4	R/W	0: Normal TX0 pin						
170_30			1: TXPWM0 output is enabled and output to the						
			TXD0 pin						
_	bit3		_						
		R/W	TXPWM0 modulation level select bit						
	bit2		0: Low level (perform hardware OR operation on						
TX0PLV			TX0 and the signal selected by TX0PS)						
			1: High level (perform hardware AND operation on						
			TX0 and the signal selected by TX0PS)						
		R/W	TXPWM0 modulation signal select bit						
			00: Modulation disabled						
TX0PS<1:0>	bit1-0		01: T16N0OUT0 signal						
			10: T16N0OUT1 signal						
			11: BUZ output signal						

BUZ Control Register GPIO_BUZC)															
Offset address:84 _H															
Reset value:00000000_00000000_000000000 _B															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved							BUZ_LOAD<19:8>								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BUZ_LOAD<7:0>											Reserv	ed			BUZEN
															-

Preliminary 134/341

BUZ load value

bit27-8

R/W

BUZ_LOAD<19:0>

			BUZ signal frequency calculation:
			$F_{BUZ} = \frac{Fpclk}{2 \times (BUZ _LOAD + 1)}$
_	bit7-1	_	_
			BUZ enable bit
BUZEN	bit0	R/W	0: Disabled
			1: Enabled

Chapter5 Peripherals

5. 1 Timer/Counter

5. 1. 1 16-bit Timer/Counter T16N

In this section, T16N0 is introduced and described in detail. Other timers/counters T16N1/T16N2/T16N3 are identical with T16N0.

5. 1. 1. 1 Overview

- 1x 8-bit configurable prescaler, a prescaled clock is used as a counter clock for T16N_CNT0/1 timer/counter
 - ♦ Prescaler clock source options: PCLK or T16N0CK0/T16N0CK1
 - ♦ Initial value of prescaler counter set by the T16N_PRECNT register
 - Prescaler ratio set by the T16N_PREMAT register
- ◆ 2x16-bit configurable timer/counter registers T16N_CNT0/T16N_CNT1
 - T16N_CNT1 only available in independent PWM mode, or used to trigger ADC conversion
- 2x16-bit top value registers T16N_TOP0/T16N_TOP1

 - ♦ In PWM mode, if the ADC trigger function is enabled, a trigger signal is generated to activate the AD conversion when T16N_CNT0/ T16N_CNT1 reach their top value.

◆ Timer/Counter mode

- - Interrupt
 - T16N_CNT0 operating modes: hold, clear and continue to count
 - Operations on T16N0OUT0/T16N0OUT1 port: hold, clear, set and toggle
- Input capture mode
 - Configurable capture edge
 - Selectable capture times
- Output PWM mode
 - Configure match registers and output polarity of the ports to obtain PWM output
 - ♦ ADC conversion triggered by the following
 - A match between MAT0, MAT1, MAT2, MAT3, TOP0 and T16_CNT0
 - A match between TOP1 and T16N_CNT1
 - Three configurable modes for 2 channels of PWM
 - Independent mode: T16N0OUT0 and T16N0OUT1 output distinct PWM

waveforms

- Synchronous mode: T16N0OUT0 and T16N0OUT1 output identical PWM waveforms
- Complementary mode: T16N0OUT0 and T16N0OUT1 output complementary PWM waveforms with programmable dead-zone time.
- ♦ Break control
 - Any signal on PA2 (T16N_BK0), PA3 (T16N_BK1), PA26 (T16N_BK2) or PA27 (T16N_BK3) can be used as an external break signal, selected by GPIO_PAFUNC register, and its active level is configurable.
 - Configurable break output level

5. 1. 1. 2 Block Diagram

Figure 5-1 T16N0 Block Diagram

5. 1. 1. 3 T16N Timer/Counter

When the MOD<1:0> bits of the T16N_CON0 register is 00 or 01, the T16N works in timer/counter mode.

When the EN bit of the T16N_CON0 register is set, T16N is enabled and the counter register T16N_CNT0/T16N_CNT1 starts to increment from the initial value.

The CS<1:0> bits of the T16N_CON0 register select the counter clock source. When the internal clock PCLK is selected, T16N works in timer mode. When the external clock input T16N0CK0/T16N0CK1 is selected, T16N works in counter mode.

The SYNC bit of the T16N_CON0 register can be configured to synchronize the external clock T16N0CK0/T16N0CK1 with the internal clock PCLK. When synchronized, T16N works in synchronous counter mode. Otherwise, it works in asynchronous counter mode. In synchronous counter mode, the pulse width of the high/low level of the T16N0CK0/T16N0CK1 input must be greater than 2 PCLK clock cycles.

The counter can be configured to count at rising edge, falling edge or both rising and falling edges by the EDGE<1:0> bits of the T16N_CON0 register. Counting at both

rising and falling edge is only active in synchronous counter mode.

The MAT0S/ MAT1S/ MAT2S/ MAT3S<1:0> bits of the T16N_CON0 register select the operation of the T16N_CNT0/ T16N_CNT1 register after a match has occurred.

MAT0S/ MAT1S/ MAT2S/ MAT3S<1:0>=00: when the counter value of the T16N_CNT0/ T16N_CNT1 matches the T16N_MAT0/ T16N_MAT1/ T16N_MAT2/ T16N_MAT3, it will continue to count and no interrupt will be generated. When reaching 0xFFFF, an overflow will occur and an interrupt will be generated, and it will restart from 0x0000.

MAT0S/ MAT1S/ MAT2S/ MAT3S<1:0>=01: when the counter value of the T16N_CNT0/ T16N_CNT1 matches the T16N_MAT0/ T16N_MAT1/ T16N_MAT2/ T16N_MAT3, the counter value will be held until the next prescaled counter clock arrives. Meanwhile, the counter will stop counting and an interrupt will be generated.

MAT0S/ MAT1S/ MAT2S/ MAT3S<1:0>=10: when the counter value of the T16N_CNT0/ T16N_CNT1 matches the T16N_MAT0/ T16N_MAT1/ T16N_MAT2/ T16N_MAT3, the counter value will be cleared on the arrival of the next prescaled counter clock. Meanwhile, an interrupt will be generated and the counter will restart counting.

MAT0S/ MAT1S/ MAT2S/ MAT3S<1:0>=11: when the counter value of the T16N_CNT0/ T16N_CNT1 matches the T16N_MAT0/ T16N_MAT1/ T16N_MAT2/ T16N_MAT3, it will continue to count up and an interrupt will be generated on the arrival of the next prescaled counter clock. When reaching 0xFFFF, an overflow will occur and an interrupt will be generated, and it will restart from 0x0000.

For different match values T16N_MAT0/ T16N_MAT1/ T16N_MAT2/ T16N_MAT3, when the counter value matches one of them, the corresponding interrupt will be generated. Following an interrupt, the T16N continues to count up, if the match interrupt flag has not been read in time, it is possible to read several valid match interrupt flags at the same time.

If the counter value T16N_CNT0/ 16N_CNT1 matches T16N_MAT0/ T16N_MAT1/ T16N_MAT2/ T16N_MAT3, when MOE0=1 of the T16N_CON2 register, the T16N0OUT0 will be toggled; when MOE1=1, the T16N0OUT1 will be toggled. The T16N0OUT0 and T16N0OUT1 can be enabled at the same time.

Example: When the counter value of the T16N_CNT0 register matches the T16N_MAT0/ T16N_MAT1/ T16N_MAT2/ T16N_MAT3, any of the following operations can be carried out.

If T16N_MAT0<15:0>=0x0002 and MAT0S<1:0>=00 of the T16N_CON0, it will continue to count up and no interrupt will be generated.

If T16N_MAT1<15:0>=0x0004 and MAT1S<1:0>=11 of theT16N_CON0, it will continue to count and generate an interrupt.

If T16N_MAT2<15:0>=0x0006 and MAT2S<1:0>=10 of the T16N_CON0, the counter

value will be cleared, an interrupt will be generated and the counter will restart counting.

When the prescaler ratio is set to 1:1, the internal PCLK is used. Figure below shows the counter match diagram.

Figure 5-2 T16N0 Counter Match Diagram

Note: All match registers T16N_MAT are available to T16N_CNT0. However, when the counter is configured for capture mode (MOD=0x2), only T16N_MAT0 and T16N_MAT1 are available to T16N_CNT0. For T16N_CNT1, only T16N_MAT2 and T16N_MAT3 can be used.

5. 1. 1. 4 T16N Input Capture Mode

T16N works in capture mode by writing the MOD<1:0>=10 of the T16N_CON0 register. The T16N_CNT1 register is not available in capture mode.

In capture mode, writing CS<1:0>=00 in the T16N_CON0 register allows the T16N_CNT0 to use the PCLK as a counter clock. And when MAT0S/ MAT1S/ MAT2S/ MAT3S<1:0>=00, it does not affect the operation of T16N_CNT0.

The following content describes the status detection of the T16N0IN0 and T16N0IN1 port.

When a capture event occurs on the T16N0IN0 port, load the current content of T16N_CNT0 and T16N_PRECNT to T16N_MAT0 and T16N_MAT2 respectively, and an interrupt CAP0IF occurs. The T16N_CNT0 and T16N_PRECNT can be cleared on a CAP0IF interrupt by enabling the CAPL0 of the T16N_CON1 register. If the CAPL0 is disabled, the counter continues to increment.

When a capture event occurs on the T16N0IN1 port, load the current content of T16N_CNT0 and T16N_PRECNT to T16N_MAT1 and T16N_MAT3 respectively, and an interrupt CAP1IF occurs. The T16N_CNT0 and T16N_PRECNT can be cleared on a CAP1IF interrupt by enabling the CAPL1 of the T16N_CON1 register. If the CAPL1 is disabled, the counter continues to increment.

If there has not been any capture event detected by the time when T16N_CNT0 overflows, the T16N_CNT0 will be cleared and restart counting.

The CAPPE and CAPNE bits of the T16N_CON1 register are used to select capture events on the T16N0IN0 and T16N0IN1 ports.

Write the CAPPE bit to 1 to select rising edge.

Write the CAPNE bit to 1 to select falling edge.

Write the CAPPE and CAPNE bit to 1 to select both rising and falling edges.

The T16N0IN0 port can be enabled as a capture input by setting the CAPIS0 bit of the T16N_CON1 register; the T16N0IN1 port can also be enabled as a capture input by setting the CAPIS1 bit. Both ports can be enabled at the same time.

The number of times of a capture can be configured by the CAPT<3:0> bits of the T16N_CON1 register.

The configuration below shows how to capture both rising and falling edges 8 times on the T16N0IN0 with prescaler ratio 1:1.

In T16N_CON0 register, write MOD<1:0>=10, CS<1:0>=00 and MAT0S<1:0>=00.

In T16N_CON1 register, write CAPPE=1, CAPNE=1, CAPIS=1 and CAPT<3:0>=0111.

Figure 5-3 T16N0 Capture Function Diagram

In capture mode, the prescaler counter will not be cleared when altering the T16N_PREMAT register. Therefore, the first capture can be started from a non-zero prescaler counter value. When a capture event occurs, the interrupt flag must be cleared by software, and the captured value in T16N_MAT0/ T16N_MAT1/ T16N_MAT2/ T16N_MAT3 register must be read in time. Otherwise, the old captured value will be overwritten by the new captured value when the next capture occurs.

5. 1. 1. 5 T16N Output PWM Mode

The T16N works in PWM mode by writing MOD<1:0>=11 in the T16N CON0 register.

In PWM mode, writing CS<1:0>=00 of the T16N_CON0 register allows the T16N_CNT0/ T16N_CNT1 to use the internal PCLK as a counter clock.

The T16N0OUT0 port can be enabled by setting the MOE0 bit of the T16N_CON2 register. After enabling, a compare can be performed between T16N_MAT0/T16N_MAT1 and T16N_CNT0. The T16N0OUT1 port can be enabled by setting the MOE1 bit of the T16N_CON2 register. After enabling, a compare can be performed between T16N_MAT2/T16N_MAT3 and T16N_CNT0 or T16N_CNT1 (only in independent PWM mode).

Configure the MOM0/ MOM1/ MOM2/ MOM3<1:0> bits to select one of the operations, hold, clear, set and toggle, on the T16N0OUT0/ T16N0OUT1 port when a match occurs.

2 channels of PWM can be configured for independent mode, synchronous mode and complementary mode by setting the PWMMOD<1:0> bits of the T16N_CON2 register.

In independent mode, the T16N0OUT0 and T16N0OUT1 port output distinct PWM waveforms, where the T16N0OUT0 is dependent on the match between T16N_CNT0 and T16N_MAT0/ T16N_MAT1 while the T16N0OUT1 is dependent on the match between T16N_CNT1 and T16N_MAT2/ T16N_MAT3.

In synchronous mode, the T16N0OUT0 and T16N0OUT1 output identical PWM waveforms. Both T16N0OUT0 and T16N0OUT1 are dependent on the match between T16N_CNT0 and T16N_MAT0/ T16N_MAT1. In this case, no need to configure the T16N_CNT1.

In complementary mode, the T16N0OUT0 and T16N0OUT1 output the PWM waveforms that are complementary to each other with a programmable dead-zone time. Both T16N0OUT0 and T16N0OUT1 are dependent on the match between T16N_CNT0 and T16N_MAT0/ T16N_MAT1. The PWM period is determined by the T16N_TOP0, which is T16N_TOP0 + 1. In this case, no need to configure the T16N CNT1.

ADC conversion can be activated in PWM mode. When a match between T16N_MAT0/T16N_MAT1/T16N_MAT2/T16N_MAT3, T16N_TOP0 and T16N_CNT0, or a match between T16N_TOP1 and the T16N_CNT1 occurs, a trigger signal can be generated to trigger the ADC.

The following shows two examples for independent mode and complementary mode.

1) In independent mode, 2 channels of distinct double-edge PWM waveforms are generated on T16N0OUT0 and T16N0OUT1.

In the T16N_CON2 register,

Write MOE0=1 and MOE1=1 to enable both T16N0OUT0 and T16N0OUT1 ports

Write MOM0<1:0>=10 (matched with T16N_MAT0), the T16N0OUT0 outputs high level.

Write MOM1<1:0>=01 (matched with T16N_MAT1), the T16N0OUT0 outputs low level.

Write MOM2<1:0>=10 (matched with T16N_MAT2), the T16N0OUT1 outputs high

level.

Write MOM3<1:0>=01 (matched with T16N_MAT3), the T16N0OUT1 outputs low level.

Write PWMMOD<1:0>=00, the T16N is in independent mode.

In the T16N_CON0 register,

Write MOD<1:0>=11 to select the PWM output mode

Write MATOS<1:0>=11, the T16N_CNT0 keeps counting and generates an interrupt.

Write MAT1S<1:0>=11, the T16N_CNT0 keeps counting and generates an interrupt.

Write MAT2S<1:0>=11, the T16N_CNT1 keeps counting and generates an interrupt.

Write MAT3S<1:0>=10, the T16N_CNT1 is cleared and generates an interrupt.

In other registers,

Write T16N_MAT0 = 0x0002, T16N_MAT1 = 0x0004, T16N_MAT2 = 0x0006 and T16N_MAT3 = 0x0008.

Set a proper value to T16N_TOP0/ T16N_TOP1.

Figure 5-4 T16N0 PWM Modulation in Independent Mode

Note: The match event of T16N_MAT0 has higher priority than the one of T16N_MAT1. If a same value is set to T16N_MAT0 and T16N_MAT1, the output level of T16N0OUT0 is depends on MOM0 only.

The match event of T16N_MAT2 has higher priority than the one of T16N_MAT3. If a same value is set to T16N_MAT2 and T16N_MAT3, the output level of T16N0OUT1 is depends on MOM2 only.

2) In complementary mode, with PCLK=48MHz, two 24MHz PWM waveforms generated on the T16N0OUT0 and T16N0OUT1 ports are complementary to each other.

In the T16N_CON2 register,

Write MOE0=1 and MOE1=1 to enable both T16N0OUT0 and T16N0OUT1 ports.

Write MOM0<1:0>=10 (matched with T16N_MAT0), the T16N0OUT0 outputs high while the T16N0OUT1 outputs low.

Preliminary 142/341

Write MOM1<1:0>=01 (matched with T16N_MAT1), the T16N0OUT0 outputs low while the T16N0OUT1 outputs high.

Write PWMMOD<1:0>=11 to select the complementary mode.

Write PWMDZE=0 to disable the dead-zone time.

In the T16N_CON0 register,

Write MOD<1:0>=11 and MAT0S<1:0>=11, the T16N_CNT0 keeps counting and generates an interrupt.

Write MAT1S<1:0>=11, the T16N_CNT0 keeps counting and generates an interrupt.

In other registers,

Write T16N_MAT0 = 0x0000, T16N_MAT1 = 0x0001 and T16N_TOP0=0x0001.

Write T16N_PREMAT=0, no prescaling is to be carried out.

Figure 5-5 T16N0 PWM Modulation in Complementary Mode

3) In complementary mode with dead-zone, with PCLK=48MHz, PWM waveforms generated on the T16N0OUT0 and T16N0OUT1 ports are complementary with dead-zone to each other.

In the T16N_CON2 register,

Write MOE0=1 and MOE1=1 to enable both T16N0OUT0 and T16N0OUT1 ports.

Write MOM0<1:0>=10 (matched with T16N_MAT0), the T16N0OUT0 outputs high while the T16N0OUT1 outputs low.

Write MOM1<1:0>=01 (matched with T16N_MAT1), the T16N0OUT0 outputs low while the T16N0OUT1 outputs high.

Write PWMMOD<1:0>=11 to select the complementary mode.

Write PWMDZE=1 to enable the dead-zone time.

In the T16N_CON0 register,

Write MOD<1:0>=11 and MAT0S<1:0>=11, the T16N_CNT0 keeps counting and generates an interrupt.

Write MAT1S<1:0>=11, the T16N_CNT0 keeps counting and generates an interrupt.

In other registers,

T16N_MAT0, T16N_MAT1 and T16N_TOP0 register set the appropriate value to confige the PWM period, duty, etc.; T16N_PREMAT can be set to a small value, such as 0, which the prescaler ratio is 0, dead-zone time and PWM duty ratio have higher accuracy.

As a comparison, the PWM complementary output waveforms without dead-zone time and with dead-zone time are given respectively. It should be noted that the dead-zone time will compress the high level widths of T16N0OUT0 and T16N0OUT1.

Figure 5-6 T16N0 PWM Modulation in Complementary Mode with dead-zone

5. 1. 1. 6 Special Function Registers

T16N	T16N Counter Register0 (T16N_CNT0)														
Offse	Offset address:00 _H														
Rese	Reset value:00000000_00000000_000000000 _B														
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1													16		
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNT0<15:0>															
_ bit31-16															
CNT0<15:0> bit 15-0 R/W							T16N_CNT0 counter value								

Note: All match registers T16N_MAT are available to T16N_CNT0. However, when the counter is configured for capture mode (MOD=0x2), only T16N_MAT0 and T16N_MAT1 are available to T16N_CNT0. For T16N_CNT1, only T16N_MAT2 and T16N_MAT3 can be used.

Preliminary 144/341

T16N	l Counte	r Regist	er1 (T16N	CNT1)										
	et address				<u>, </u>										
Rese	et value:0	0000000	_0000000	0_0000	00000_00	000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								1<15:0>							
<u> </u>															
		_		bit3	31-16	_		_							
	CNT	1<15:0)>	bit	15-0	R/	W	T16N	_CNT	1 cou	nter va	alue			
T16N	T16N Prescaler Counter Register (T16N_PRECNT)														
Offse	Offset address:08 _H														
Rese	Reset value:00000000_00000000_000000000B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese					1				:NT<7:0>		•	
	bit31-8														
	PREC	NT<7:	0>	bi	t7-0	R/	W	T16N	preso	caler c	ounter	value)		
				•		•									
T16N	l Prescal	er Coun	ter Match	Regist	ter (T16N	_PREM	IAT)								
Offse	et address	s:0C _H													
Rese	et value:0	0000000	_0000000	0_0000	00000_00	000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese					1				1AT<7:0>		•	
	IVESCIACA														
_ bit31-8 _								_							
								Pres	caler	ratio s	elect	bits			
								00:1:	1						
						01:1:									
	PREM	IAT<7:	0>	bi	t7-0	R/	W	02:1:	3						
									OF F						
								FE:1:							
							FF:1:	230							

Preliminary 145/341

T16N Control Register0(T16N_CON0)

Offset address:10_H

31 30 29 28 27 23 22 21 20 19 18 17 16 26 25 24

Reserved ASYWEN

15 14 13 12 10 8 6 3 EDGE<1:0> SYNC ΕN MAT3S<1:0> MAT2S<1:0> MAT1S<1:0> MAT0S<1:0> MOD<1:0> CS<1:0>

_	bit 31~17	_	_
ASYWEN	bit 16	R/W	In synchronous counter mode, counter write enable bit 0: Writing T16N_CNT1 is enabled. In synchronous counter mode, timer mode and PWM mode, writing T16N_CNT0 and T16N_PRECNT is enabled (in asynchronous mode, do not write T16N_CNT0 or T16N_PRECNT when ASYWEN=0) 1: Writing T16N_CNT1 is disabled. In synchronous counter mode, timer mode and PWM mode, writing T16N_CNT0 and T16N_PRECNT is disabled. In asynchronous mode, writing T16N_CNT0 and T16N_PRECNT and T16N_PRECNT is enabled.
MAT3S<1:0>	bit 15~14	R/W	Operation select bits following a match between T16N_CNT0/ T16N_CNT1 and T16N_MAT3 00: T16N_CNT0/ T16N_CNT1 keeps counting and no interrupt is generated. 01: T16N_CNT0/ T16N_CNT1 holds and generates an interrupt. 10: T16N_CNT0/ T16N_CNT1 is cleared and restarts counting, and generates an interrupt. 11: T16N_CNT0/ T16N_CNT1 keeps counting and generates an interrupt.
MAT2S<1:0>	bit 13~12	R/W	Operation select bits following a match between T16N_CNT0/ T16N_CNT1 and T16N_MAT2 O0: T16N_CNT0/ T16N_CNT1 keeps counting and no interrupt is generated. O1: T16N_CNT0/ T16N_CNT1 holds and generates an interrupt. 10: T16N_CNT0/ T16N_CNT1 is cleared and restarts counting, and generates an interrupt. 11: T16N_CNT0/ T16N_CNT1 keeps counting and generates an interrupt.

etween
errupt is
ıpt.
ing, and
υ ,
ates an
etween
errupt is
pt.
ng, and
ates an
ous
ous
is not
hronous
Hiorious
CK1 is
er is in
of the
K clock
.ix Glock

			T16N enable bit
EN	bit 0	R/W	0: Disabled
			1: Enabled

Note: The PCLK is the internal clock for peripheral modules, and its frequency is the same with the system clock frequency.

T16	T16N Control Register1(T16N_CON1)														
Offse	Offset address:14 _H														
Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								F	Reserv	ed					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Res	erved			CAPL1	CAPL0		CAP	Γ<3:0>		CAPIS1	CAPIS0	CAPNE	CAPPE

_	bit31-10	_	_
CAPL1	bit9	R/W	Reload counter enable bit on capture input 1 0:Disabled
			1:Enabled
			Reload counter enable bit on capture input 0
CAPL0	bit8	R/W	0: Disabled
			1: Enabled
			Capture times select bits
			0: Capture once and reload
CAPT<3:0>	bit7-4	R/W	1: Capture twice and reload
O/11 1 (0.02	Ditt'	10,00	2: Capture thrice and reload
			F: Capture 16 times and reload
			Capture input source T16N0IN1 enable bit
CAPIS1	bit3	R/W	0: Disabled
			1: Enabled
			Capture input source T16N0IN0 enable bit
CAPIS0	bit2	R/W	0: Disabled
			1: Enabled
			Capture falling edge enable bit
CAPNE	bit1	R/W	0: Disabled
			1: Enabled
			Capture rising edge enable bit
CAPPE	bit0	R/W	0: Disabled
			1: Enabled

T16N Control Register 2 (T16N_CON2)

Offset address:18_H

|--|

3	1	30	29	28	27	26		24	23	22	21	20	19	18	17	16
	Reserved							PWMBK	PWMB	PWMB	Reserved		PWMBK	PWMBK	PWMBK	PWMBK
	reserved							F	KP1	KP0		Neserved	L1	L0	E1	E0
1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
N	ИΟМ	3<1:	MON	Л2<1:	MOI	M1<1	MC	NAO 4.0	Reserv	PWMD	DW	MMOD 4.0	DOI 4	DOI 0	MOE4	MOEO
	0>	>	()>	:0	0>	IVIC	OM0<1:0>	ed	ZE	PWMMOD<1:0>		POL1	POL0	MOE1	MOE0

_	31-25	_	_
			PWM break event flag bit
			0: No break event occurred
PWMBKF	bit24	R/W	1: A break event occurred and the PWM ports
FVVIVIDICE	DILZ4	IN/VV	outputs the break level.
			This flag bit is cleared by software writing 1. The
			PWM port resumes normal output after clearing.
			PWM channel 1 break polarity select bit
PWMBKP1	bit23	R/W	0: Active high
			1: Active low
			PWM channel 0 break polarity select bit
PWMBKP0	bit22	R/W	0: Active high
			1: Active low
_	bit21-20	_	_
			PWM channel 1 break output select bit
		R/W	When POL1=0
	bit19		0: Output low
PWMBKL1			1: Output high
			When POL1=1
			0: Output high
			1: Output low
			PWM channel 0 break output select bit
			When POL0=0
			0: Output low
PWMBKL0	bit18	R/W	1: Output high
			When POL0=1
			0: Output high
			1: Output low
			PWM channel 1 break enable bit
PWMBKE1	bit17	R/W	0: Disabled
			1: Enabled

DIAMADICE	1.74.0	D 447	PWM channel 0 break enable bit
PWMBKE0	bit16	R/W	0: Disabled
			1: Enabled
			Operation select bits following a match with
			T16N_MAT3 on T16N0OUT1
MOM3<1:0>	bit15-14	R/W	00: Hold
		,	01: Clear
			10: Set
			11: Toggle
			Operation select bits following a match with
			T16N_MAT2 on T16N0OUT1
MOM2<1:0>	bit13-12	R/W	00: Hold
WOWE T.O	5110 12	17,77	01: Clear
			10: Set
			11: Toggle
			Operation select bits following a match with
			T16N_MAT1 on T16N0OUT0
MOM1<1:0>	bit11-10	R/W	00: Hold
IVIOIVITCT.03	DILTT-10	R/VV	01: Clear
			10: Set
			11: Toggle
		R/W	Operation select bits following a match with
			T16N_MAT0 on T16N0OUT0
MOM0<1:0>	bit9-8		00: Hold
IVIOIVIU<1:0>			01: Clear
			10: Set
			11: Toggle
_	bit7	_	_
			Dead zone enable bit in PWM complementary
D\A/B 4D.7E	F.10	D 447	mode
PWMDZE	bit6	R/W	0: Disabled
			1: Enabled
			PWM mode select bits
DV444405 : 5	1.0= .	5 ***	0x: Independent mode
PWMMOD<1:0>	bit5-4	R/W	10: Synchronous mode
			11: Complementary mode
			T16N0OUT1 output polarity select bit
POL1	bit3	R/W	0: Positive
			1: Negative
			T16N0OUT0 output polarity select bit
POL0	bit2	R/W	0: Positive
. 525	5112	1.777	1: Negative
			T16N0OUT1 enable bit
MOE1	bit1	R/W	0: Disabled
			บ. บเจลมเซน

			1: Enabled
			T16N0OUT0 enable bit
MOE0	bit0	R/W	0: Disabled
			1: Enabled

Note1: A break signal is selected from PA2/PA3/PA27/PA26 via GPIO_PAFUNC register, and only one can be selected at a time.

Note2: When break is enabled, if PWMBKF flag is 1, the MOE bit of the corresponding output is automatically cleared by hardware. After the flag bit is cleared, the MOE bit needs to be set to1 again by software for PWM ports to resume outputting.

T16N Interrupt Enable Register (T16N_IE)

Reserved

PBK1IE

PBK0IE

CAP1IE

Offs	Offset address:20 _H														
Res	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

CAP0IE

TOP1IE

TOP0IE

MAT3IE

MAT2IE

MAT1IE

MAT0IE

	1::04.40		
_	bit31-10	_	_
			Break interrupt enable bit on PWM channel 1
PBK1IE	bit9	R/W	0: Disabled
			1: Enabled
			Break interrupt enable bit on PWM channel 0
PBK0IE	bit8	R/W	0: Disabled
			1: Enabled
			Capture interrupt enable bit on input port
	h:47	R/W	T16N0IN1
CAP1IE	bit7		0: Disabled
			1: Enabled
		R/W	Capture interrupt enable bit on input port
CADOLE	h:40		T16N0IN0
CAP0IE	bit6		0: Disabled
			1: Enabled
			Interrupt enable bit on T16N_CNT1 matching
TODAIC	L:45	DAV	TOP1
TOP1IE	bit5	R/W	0:Disabled
			1:Enabled
			Interrupt enable bit on T16N_CNT0 matching
TOP0IE	bit4	R/W	TOP0
			0:Disabled

Preliminary 151/341

			1:Enabled
			MAT3 interrupt enable bit
MAT3IE	bit3	R/W	0:Disabled
			1:Enabled
			MAT2 interrupt enable bit
MAT2IE	bit2	R/W	0:Disabled
			1:Enabled
		R/W	MAT1 interrupt enable bit
MAT1IE	bit1		0:Disabled
			1:Enabled
			MAT0 interrupt enable bit
MAT0IE	bit0	R/W	0:Disabled
			1:Enabled

T16	T16N Interrupt Flag Register (T16N_IF)														
Offs	Offset address:24 _H														
Res	et valu	e:000	00000_	_00000	0000_	00000000_	_00000000	Ов							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								Re	served						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved PRK1IE PRK0IE CAP1IE CAP0IE TOP1IE TOP0IE MAT3IE MAT2IE MAT1IE MAT0IE														

_	bit31-10	_	_
PBK1IF	bit9	R/W	Break interrupt flag bit on PWM channel 1 0: No break interrupt occurred 1: An interrupt occurred on channel 1 This flag bit is cleared by software writing 1, writing 0 has no effect.
PBK0IF	bit8	R/W	Break interrupt flag bit on PWM channel 0 0: No break interrupt occurred 1: An interrupt occurred on channel 0 This flag bit is cleared by software writing 1, writing 0 has no effect.
CAP1IF	bit7	R/W	Capture interrupt flag bit on capture input port 1 0: Capture failed on input port 1 1: Capture succeeded on input port 1 This flag bit is cleared by software writing 1, writing 0 has no effect.
CAP0IF	bit6	R/W	Capture interrupt flag bit on capture input port 0

			0: Capture failed on input port 0 1: Capture succeeded on input port 0
			This flag bit is cleared by software writing 1, writing 0 has no effect.
TOP1IF	bit5	R/W	Interrupt flag bit on T16N_CNT1 matching TOP1 0: Not matched 1: Matched This flag bit is cleared by software writing 1,
TOP0IF	bit4	R/W	writing 0 has no effect. Interrupt flag bit on T16N_CNT0 matching TOP0 0: Not matched 1: Matched This flag bit is cleared by software writing 1, writing 0 has no effect.
MAT3IF	bit3	R/W	MAT3 interrupt flag bit 0: The counter value did not match MAT3 1: The counter value matched MAT3 This flag bit is cleared by software writing 1, writing 0 has no effect.
MAT2IF	bit2	R/W	MAT2 interrupt flag bit 0: The counter value did not match MAT2 1: The counter value matched MAT2 This flag bit is cleared by software writing 1, writing 0 has no effect.
MAT1IF bit1 R/W		R/W	MAT1 interrupt flag bit 0: The counter value did not match MAT1 1: The counter value matched MAT1 This flag bit is cleared by software writing 1, writing 0 has no effect.
MATOIF	bit0	R/W	MAT0 interrupt flag bit 0: The counter value did not match MAT0 1: The counter value matched MAT0 This flag bit is cleared by software writing 1, writing 0 has no effect.

Notes

- In timer, counter, capture and PWM mode, the T16N_CNT0 can always be compared to T16N_MAT0/ T16N_MAT1/ T16N_MAT2/ T16N_MAT3. However, in PWM mode, if independent mode is configured, the T16N_CNT0 can only be compared with T16N_MAT0 and T16N_MAT1 while the T16N_CNT1 is compared with T16N_MAT2 andT16N_MAT3.
- 2. When T16N interrupt is disabled, the corresponding interrupt flag will be set if an interrupt is triggered, however, no interrupt request will be generated.

- 3. For all interrupt flag bits of T16N_IF register, they can be cleared by software writing 1 and writing 0 has no effect. When they are being read, 1 indicates that an interrupt has occurred.
- 4. When break in enabled (PWMBKE0 or PWMBKE1=1), the interrupt flag bit PBK0IF or PBK1IF of T16N_IF register will only be set when a break event has occurred.

PWM Dead Zone Register	(T16N	PD7)
I Will bead Zolle Register		

Offset address:28

Olise	Dirset address:26 _H														
Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved						PDZ<7:0>								

_	bit31-8	_	_
PDZ<7:0>	bit7-0	R/W	PWM dead zone time select bits 0x00: 1x counter clock cycle 0x01: 2x counter clock cycles 0xFF: 256x counter clock cycles

PWM Trigger Register (T16N_PTR)

Offset address:2C_H

Res	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved				P1TOP1	P1MAT3T	P1MAT2	Rese	P0TOP0T	P0MAT1TRE	P0MAT0TR	Rese

TRE

RE

TRE

RE

_	bit31-8		_
			TOP1 trigger enable bit on PWM channel 1
P1TOP1TRE	bit7	R/W	0: Disabled
			1: Enabled to trigger ADC converter
		R/W	MAT3 trigger enable bit on PWM channel 1
P1MAT3TRE	bit6		0: Disabled
			1: Enabled to trigger ADC converter
DAMATOTOE	bitE	DAM	MAT2 trigger enable bit on PWM channel 1
P1MAT2TRE	bit5	R/W	0: Disabled

Preliminary 154/341

Е

rved

			1: Enabled to trigger ADC converter
_	bit4	_	
			TOP0 trigger enable bit on PWM channel 0
P0TOP0TRE	bit3	R/W	0: Disabled
			1: Enabled to trigger ADC converter
			MAT1 trigger enable bit on PWM channel 0
P0MAT1TRE	bit2	R/W	0: Disabled
			1: Enabled to trigger ADC converter
			MAT0 trigger enable bit on PWM channel 0
P0MAT0TRE	bit1	R/W	0: Disabled
			1: Enabled to trigger ADC converter
_	bit0	_	_

Match Register	

Offset address:30_H

Rese	Reset value:00000000_00000000_11111111_1111111 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	MAT0<15:0>														

_	bit31-16	_	_
MAT0<15:0>	bit15-0	R/W	T16N match value 0

T16N Counter Match Register1 (T16N_MAT1)

Offset address:34_H

Reserved MAT1<15:0>

_	bit31-16		_
MAT1<15:0>	bit15-0	R/W	T16N match value 1

Preliminary 155/341

T16N	l Counte	r Match	Register	2 (T16N	I_MAT2)										
Offse	t addres	s:38 _H													
Rese	t value:0	0000000	_0000000	00_1111	1111_111	11111 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							MAT	2<15:0>							
		_		bit	31-16	-	_	_							
	MAT	2<15:0)>	bit	15-0	R	/W	T16N	l matc	h valu	e2				
						•									
T16N	l Counte	r Match	Register	3 (T16N	I_MAT3)										
Offse	t addres	s:3C _H													
Rese	t value:0	0000000	_0000000	00_1111	1111_111	11111 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

_	bit31-16	_	_
MAT3<15:0>	bit15-0	R/W	T16N match value3

MAT3<15:0>

T16N_CNT0 Top Value Register0 (T16N_TOP0)

Offset address:40_H

Reserved TOP0<15:0>

_	bit31-16		_
TOP0<15:0>	bit15-0	R/W	T16N_CNT0 top value 0

T16N	T16N_CNT1 Top Value Register1 (T16N_TOP1)														
Offse	Offset address:44 _H														
Rese	t value:0	0000000	_0000000	0_1111	1111_111	11111 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TOP	1<15:0>							
		_		bit	31-16	-	_	_							
	TOP	1<15:0)>	bi	t15-0	R	W	T16N	CNT	1 top	value	1	•	•	

5. 1. 1. 7 T16N Application Notes

There are four 16-bit timers/counters are available, which are T16N0, T16N1, T16N2 and T16N3.

5. 1. 2 32-bit Timer/Counter T32N (T32N0)

5. 1. 2. 1 Overview

- ◆ 1x 8-bit configurable prescaler, the prescaled clock is used for timer/counter T32N_CNT
 - ♦ Prescaler clock source options: PCLK or T32N0CK0/T32N0CK1
 - ♦ Initial value of prescaler counter set by the T32N_PRECNT register
 - ♦ Prescaler ratio set by the T32N_PREMAT register
- ◆ 1x 32-bit configurable timer/counter register T32N_CNT
- ◆ Timer/Counter mode
 - - Interrupt
 - T32N_CNT operating modes: hold, clear and continue to count
 - Operations on T32N0OUT0/T32N0OUT1 port: hold, clear, set and toggle
 - ♦ Input capture mode
 - Configurable capture edge
 - Selectable capture times
 - ♦ Output PWM mode

5. 1. 2. 2 Block Diagram

Figure 5-7 T32N0 Block Diagram

5. 1. 2. 3 T32N Timer/Counter

When the MOD<1:0> bits of the T32N_CON0 register is 00 or 01, the T32N works in timer/counter mode.

When the EN bit of the T32N_CON0 register is set, T32N is enabled and the counter register T32N_CNT starts to increment from the initial value.

The CS<1:0> bits of the T32N_CON0 register select the counter clock source. When the internal clock PCLK is selected, T32N works in timer mode. When the external clock input T32N0CK0/T32N0CK1 is selected, T16N works in counter mode.

The SYNC bit of the T32N_CON0 register can be configured to synchronize the external clock T32N0CK0/T32N0CK1 with the internal clock PCLK. When synchronized, T32N works in synchronous counter mode. Otherwise, it works in asynchronous counter mode. In synchronous counter mode, the pulse width of the high/low level of the T32N0CK0/T32N0CK1 input must be greater than 2 PCLK clock cycles.

The counter can be configured to count at rising edge, falling edge or both rising and falling edges by the EDGE<1:0> bits of the T32N_CON0 register. Counting at both rising and falling edge is only active in synchronous counter mode.

The MAT0S/ MAT1S/ MAT2S/ MAT3S<1:0> bits of the T32N_CON0 register select an operation of the T32N_CNT register following a match.

MAT0S/ MAT1S/ MAT2S/ MAT3S<1:0>=00: when the counter value of the T32N_CNT matches the T32N_MAT0/ T32N_MAT1/T32N_MAT2/T32N_MAT3, it will continue to count and no interrupt will be generated. When reaching 0xFFFFFFF, an overflow will occur and an interrupt will be generated, and it will restart from 0x00000000.

MAT0S/ MAT1S/ MAT2S/ MAT3S<1:0>=01: when the counter value of the T32N_CNT matches the T32N_MAT0/ T32N_MAT1/T32N_MAT2/T32N_MAT3, the counter value will be held until the next prescaled counter clock arrives. Meanwhile, the counter will stop counting and an interrupt will be generated.

MAT0S/ MAT1S/ MAT2S/ MAT3S<1:0>=10: when the counter value of the T32N_CNT matches the T32N_MAT0/ T32N_MAT1/T32N_MAT2/T32N_MAT3, the counter value will be cleared on the arrival of the next prescaled counter clock. Meanwhile, an interrupt will be generated and the counter will restart counting.

MAT0S/ MAT1S/ MAT2S/ MAT3S<1:0>=11: when the counter value of the T32N_CNT matches the T32N_MAT0/ T32N_MAT1/T32N_MAT2/T32N_MAT3, it will continue to count up and an interrupt will be generated on the arrival of the next prescaled counter clock. When reaching 0xFFFFFFFF, an overflow will occur and an interrupt will be generated, and it will restart from 0x000000000.

For different match values T32N_MAT0/ T32N_MAT1/T32N_MAT2/T32N_MAT3, when the counter value matches one of them, the corresponding interrupt will be generated. Following an interrupt, the T32N continues to count up, if the match interrupt flag has not been read in time, it is possible to read several valid match interrupt flags at the same time.

When MOE=1, If the counter value of the T32N_CNT register matches T32N_MAT0/T32N_MAT1/T32N_MAT2/T32N_MAT3, the T32N0OUT0 will be toggled.

Example: When the counter value of the T32N_CNT register matches the T32N_MAT0/ T32N_MAT1/ T32N_MAT2/ T32N_MAT3, any of the following operations can be carried out.

In T32N CON0 register,

If MAT0<31:0>=0x00000002 and MAT0S<1:0>=00, it will continue to count up and no interrupt will be generated.

If MAT1<31:0>=0x00000004 and MAT1S<1:0>=11, it will continue to count and generate an interrupt.

If MAT2<31:0>=0x00000006and MAT2S<1:0>=10, the counter value will be cleared, an interrupt will be generated and the counter will restart counting.

When the prescaler ratio is set to 1:1, the internal PCLK is used. Figure below shows the counter match diagram.

Figure 5-8 T32N0 Counter Match Diagram

5. 1. 2. 4 T32N Input Capture Mode

T32N works in capture mode by writing the MOD<1:0>=10 of the T32N_CON0 register.

In capture mode, writing CS<1:0>=00 in the T32N_CON0 register allows the T32N_CNT to use the PCLK as a counter clock. And when MAT0S/ MAT1S/ MAT2S/ MAT3S<1:0>=00, it does not affect the operation of T32N_CNT.

The following content describes the status detection of the T32N0IN0 and T32N0IN1 port.

When a capture event occurs on the T32N0IN0 port, load the current content of T32N_CNT0 and T32N_PRECNT to T32N_MAT0 and T32N_MAT2 respectively, and an interrupt CAP0IF occurs. The T32N_CNT and T32N_PRECNT can be cleared on a CAP0IF interrupt by enabling the CAPL0 of the T32N_CON1 register. If the CAPL0 is disabled, the counter continues to count up.

When a capture event occurs on the T32N0IN1 port, load the current content of T32N_CNT and T32N_PRECNT to T32N_MAT1 and T32N_MAT3 respectively, and an interrupt CAP1IF occurs. The T32N_CNT and T32N_PRECNT can be cleared on a CAP1IF interrupt by enabling the CAPL1 of the T32N_CON1 register. If the CAPL1 is disabled, the counter continues to count up.

If there has not been any capture event detected by the time when T32N_CNT overflows, the T32N_CNT will be cleared and restart counting.

The CAPPE and CAPNE bits of the T32N_CON1 register are used to select capture events on the T32N0IN0 and T32N0IN1 ports: rising edge, falling edge or both rising and falling edge.

The T32N0IN0 port can be enabled as a capture input by setting the CAPIS0 bit of the T32N_CON1 register; the T32N0IN1 port can also be enabled as a capture input by setting the CAPIS1 bit. Both ports can be enabled at the same time.

The number of times of a capture can be configured by the CAPT<3:0> bits of the T32N_CON1 register.

When MOE0=1, if a capture event occurs on T32N0IN0 port, the output T32N0OUT0 will be toggled.

When MOE1=1, if a capture event occurs on T32N0IN1 port, the output T32N0OUT1 will be toggled.

The configuration below shows how to capture both rising and falling edges 8 times on the T32N0IN0 with prescaler ratio 1:1

In T32N_CON0 register,

Write MOD<1:0>=10, CS<1:0>=00 and MAT0S<1:0>=00.

In T32N_CON1 register,

Write CAPPE=1, CAPNE=1, CAPIS=1 and CAPT<3:0>=0111.

Figure 5-9 T32N0 Capture Diagram

In capture mode, the prescaler counter will not be cleared when altering the T32N_PREMAT register. Therefore, the first capture can be started from a non-zero prescaler counter value. When a capture event occurs, the interrupt flag must be cleared by software, and the captured value in T32N_MAT0/ T32N_MAT1/ T32N_MAT2/ T32N_MAT3 register must be read in time. Otherwise, the old captured value will be overwritten by the new captured value when the next capture occurs.

5. 1. 2. 5 T32N Output PWM Mode

The T32N works in PWM mode by writing MOD<1:0>=11 in the T32N_CON0 register.

In PWM mode, writing CS<1:0>=00 of the T32N_CON0 register allows the T32N_CNT

to use the internal PCLK as a counter clock.

The T32N0OUT0 port can be enabled by setting the MOE0 bit of the T32N_CON1 register. After enabling, a compare can be performed between T32N_MAT0/T32N_MAT1 and T32N_CNT. The T32N0OUT1 port can be enabled by setting the MOE1 bit of the T32N_CON1 register. After enabling, a compare can be performed between T32N_MAT2/T32N_MAT3 and T32N_CNT.

Configure the MOM0/ MOM1/ MOM2/ MOM3<1:0> bits to select one of the operations, hold, clear, set and toggle, on the T32N0OUT0/ T32N0OUT1 port when a match occurs.

The following configuration shows double-edge PWM waveforms generated on T32N0OUT0 and T32N0OUT1 ports.

In the T32N_CON1 register,

Write MOE0=1 and MOE1=1 to enable both T32N0OUT0 and T32N0OUT1 ports

Write MOM0<1:0>=10, the T32N0OUT0 outputs high.

Write MOM1<1:0>=01, the T32N0OUT0 outputs low.

Write MOM2<1:0>=10, the T32N0OUT1 outputs high.

Write MOM3<1:0>=01, the T32N0OUT1 outputs low.

Write MAT0 = 0x00000002 and MAT1 = 0x00000004.

Write MAT2 = 0x00000006 and MAT3 = 0x00000008.

In the T32N_CON0 register,

Write MOD<1:0>=11 to select the PWM mode

Write MAT0S<1:0>=11, the T32N_CNT keeps counting and generates an interrupt.

Write MAT1S<1:0>=11, the T32N_CNT keeps counting and generates an interrupt.

Write MAT2S<1:0>=11, the T32N_CNT keeps counting and generates an interrupt.

Write MAT3S<1:0>=10, the T32N_CNT is cleared and generates an interrupt.

Figure 5-10 T32N0 Output PWM Diagram

Note: The match event of T32N_MAT0 has higher priority than the one of T32N_MAT1. If a same value is set to T32N_MAT0 and T32N_MAT1, the output level of T32N0OUT0 is depends on MOM0 only.

The match event of T32N_MAT2 has higher priority than the one of T32N_MAT3. If a same value is set to T32N_MAT2 and T32N_MAT3, the output level of T32N0OUT1 is depends on MOM2 only.

5. 1. 2. 6 Special Function Registers

T32N	Counte	r Regist	er (T32N	LCNT)											
Offse	t address	s:00 _H													
Rese	t value:0	0000000	_0000000	000_000	00000_0	0000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNT<31:16>															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CN	Γ<15:0>							
	CNT	<31:0	>	bi	t 31-0	R	2/W	T321	N cour	nter va	lue				

T32N	T32N Control Register0 (T32N_CON0)															
Offse	Offset address:04 _H															
Rese	et value:00	000000	0_000000	0000_000	00000_00	000000	В									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Reserved													ASY	NCWREN		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
MAT	3S<1:0>	MAT	T2S<1:0>	MAT1	IS<1:0>	MAT0	S<1:0>	MOI	D<1:0>	EDG	E<1:0>	SYNC	CS-	<1:0>		EN
_ bit31-17																
,	CVNC		__	h:4	40	D/M	, In	syr	chro	nous	cou	nter mo	ode,	cou	nter	write

Preliminary 163/341

enable bit

bit16

R/W

ASYNC_WREN

			0: Writing to T32N_CNT and T32N_PRECNT is disabled. (To avoid a write error to the counter,
			users are not suggested to write 0 to this bit) 1: Writing to T32N_CNT and T32N_PRECNT is enabled
			Operation select bits following a match between
			T32N_CNT and T32N_MAT3
			00:T32N_CNT keeps counting and no interrupt is
			generated.
MAT3S<1:0>	bit15-14	R/W	01:T32N_CNT holds and generates an interrupt.
			10:T32N_CNT is cleared and restarts counting, and
			generates an interrupt.
			11:T32N_CNT keeps counting and generates an
			interrupt.
			Operation select bits following a match between
			T32N_CNT and T32N_MAT2
			00:T32N_CNT keeps counting and no interrupt is
			generated.
MAT2S<1:0>	bit13-12	R/W	01:T32N_CNT holds and generates an interrupt.
			10:T32N_CNT is cleared and restarts counting, and
			generates an interrupt.
			11:T32N_CNT keeps counting and generates an
			interrupt.
			Operation select bits following a match between
			T32N_CNT and T32N_MAT1
			00:T32N_CNT keeps counting and no interrupt is
NAT40 4 0	1.1144.46	D 444	generated.
MAT1S<1:0>	bit11-10	R/W	01:T32N_CNT holds and generates an interrupt.
			10:T32N_CNT is cleared and restarts counting, and
			generates an interrupt.
			11:T32N_CNT keeps counting and generates an
			interrupt.
			Operation select bits following a match between
			T32N_CNT and T32N_MAT0
			00:T32N_CNT keeps counting and no interrupt is generated.
MAT0S<1:0>	bit9-8	R/W	01:T32N_CNT holds and generates an interrupt.
IVIATUSCI.U2	มเล-6	17/77	10:T32N_CNT holds and generates an interrupt. 10:T32N_CNT is cleared and restarts counting, and
			generates an interrupt.
			11:T32N_CNT keeps counting and generates an
			interrupt.
			Operating mode select bits
MOD<1:0>	bit7-6	R/W	00: Timer/counter mode
WIOD (1.07	Sitt =0	1 1/ V V	01: Timer/counter mode
_			

			10: Capture mode
			11: PWM mode
EDGE<1:0>	bit5-4	R/W	External clock counter edge select bits 00:Rising edge 01:Falling edge 10:Both rising and falling edges (for synchronous counter mode only) 11:Both rising and falling edges (for synchronous counter mode only)
SYNC	bit3	R/W	External clock synchronize bit 0: The external clock T32N0CK0/ T32N0CK1 is not synchronized, and the counter is in asynchronous mode. 1: The external clock T32N0CK0/ T32N0CK1 is synchronized with the PCLK, and the counter is in synchronous mode. The high and low level of the external clock must stay a minimum of 2 PCLK clock cycles.
CS<1:0>	bit2-1	R/W	T32N counter clock source select bits 00: Internal clock PCLK 01: External clock T32N0CK0 input 10: External clock T32N0CK1 input 11: Internal clock PCLK
EN	bit0	R/W	T32N enable bit 0: Disabled 1: Enabled

T32N	T32N Control Register1(T32N_CON1)														
Offse	Offset address:08 _H														
Rese	et value:0	000000	00_0000	0000_0	0000000	_000000000) _B								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MOM	13<1:0>	MOM	12<1:0>	MOM	11<1:0>	MOM	0<1:0>				Reser	ved		MOE1	MOE0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Res	served			CAPL1	CAPL0		CAP	Γ<3:0>		CAPIS1	CAPIS0	CAPNE	CAPPE

			Operation select bits following a match with T32N_MAT3 on T32N0OUT1
MOM3<1:0>	bit31-30	R/W	00: Hold
			01: Clear
			10: Set
			11: Toggle

Preliminary 165/341

	1									
			Operation select bits following a match with							
			T32N_MAT2 on T32N0OUT1							
MOM2<1:0>	bit29-28	R/W	00: Hold							
			01: Clear							
			10: Set							
			11: Toggle							
			Operation select bits following a match with							
	bit27-26		T32N_MAT1 on T32N0OUT0							
MOM1<1:0>		R/W	00: Hold							
10101011<1.02	DILZ1-20	1 X/ V V	01: Clear							
			10: Set							
			11: Toggle							
			Operation select bits following a match with							
			T32N_MAT0 on T32N0OUT0							
MOMO :4:0	h:t05 04	D 444	00: Hold							
MOM0<1:0>	bit25-24	R/W	01: Clear							
			10: Set							
			11: Toggle							
_	bit23-18	_	_							
			Output port T32N0OUT1 enable bit							
MOE1	bit17	R/W	0: Disabled							
			1: Enabled							
			Output port T32N0OUT0 enable bit							
MOE0	bit16	R/W	0: Disabled							
520			1: Enabled							
_	bit15-10	_	_							
	510.10		Reload counter enable bit on capture input 1							
CAPL1	bit9	R/W	0:Disabled							
O/ALLI	Dita	1 \/ V V	1:Enabled							
CAPL0	bit8	R/W	Reload counter enable bit on capture input 0 0:Disabled							
CAPLU	טונס	r\/ V V	1:Enabled							
			Capture simes select bits							
			0: Capture once and reload							
CAPT<3:0>	bit7-4	R/W	1: Capture twice and reload							
			2: Capture thrice and reload							
			F: Capture 16 times and reload							
			Capture input port T32N0IN1 enable bit							
CAPIS1	bit3	R/W	0: Disabled							
			1: Enabled							
			Capture input port T32N0IN0 enable bit							
CAPIS0	bit2	R/W	0: Disabled							
			1: Enabled							

CAPNE	bit1	R/W	Capture falling edge enable bit 0: Disabled 1: Enabled
CAPPE	bit0	R/W	Capture rising edge enable bit 0: Disabled 1: Enabled

T32N	l Presca	ler Cour	iter Regis	ter (T3	2N_PRE	CNT)									
Offse	t addres	s:10 _H													
Rese	t value:0	0000000	_00000000	00_000	00000_0	0000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							PREC	NT<7:0	>		
		_		bit	t31-8	-	_	_							
	PREC	NT<7	:0>	b	it7-0	R	/W	T32N	l preso	caler c	ounte	r value)		

T32N	Presca	ler Coun	ter Matc	h Regis	ter (T32	N_PREM	/IAT)								
Offse	t address	s:14 _H													
Rese	t value:0	0000000	_000000	000_000	00000_0	0000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•		Res	served	•					•	PREM	1AT<7:0:	>		•

_	bit31-8	1	
PREMAT<7:0>	bit7-0	R/W	Prescaler ratio select bits 00:1:1 01:1:2 02:1:3 FE:1:255 FF:1:256

Preliminary 167/341

T32N Interrupt Enable Register (T32N_IE)

Offset address:18_H

Reset value:00000000_00000000_000000000_B

31 30 29 28 27 25 22 20 19 18 17 16 26 24 23 21

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CAP1IE CAP0IE IE MAT3IE MAT2IE MAT1IE MAT0IE

_	bit31-7	_	_
CAP1IE	bit6	R/W	Capture interrupt enable bit on input port T32N0IN1 0:Disabled 1:Enabled
CAP0IE	bit5	R/W	Capture interrupt enable bit on input port T32N0IN0 0:Disabled 1:Enabled
IE	bit4	R/W	Match 0xFFFFFFFF interrupt enable bit 0:Disabled 1:Enabled
MAT3IE	bit3	R/W	MAT3 interrupt enable bit 0:Disabled 1:Enabled
MAT2IE	bit2	R/W	MAT2 interrupt enable bit 0:Disabled 1:Enabled
MAT1IE	bit1	R/W	MAT1 interrupt enable bit 0:Disabled 1:Enabled
MATOIE	bit0	R/W	MAT0 interrupt enable bit 0:Disabled 1:Enabled

T32N Interrupt Flag Register (T32N_IF)

Offset address:1C_H

Reset value:00000000_00000000_000000000_B

31 30 29 28 27 25 23 22 20 19 18 17 16 26 24 21

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CAP1IF CAP0IF IF MAT3IF MAT2IF MAT1IF MAT0IF

_	bit31-7	_	_						
	טונט ו־ו		Capture interrupt flag hit on capture input part						
			Capture interrupt flag bit on capture input port						
		R/W	1						
CAP1IF	bit6		0: Capture failed on input port 1						
			1: Capture succeeded on input port 1						
			This flag bit is cleared by software writing 1,						
			writing 0 has no effect.						
			Capture interrupt flag bit on capture input port						
CAP0IF	bit5	R/W	0: Capture failed on input port 1						
			1: Capture succeeded on input port 1						
			This flag bit is cleared by software writing 1,						
			writing 0 has no effect.						
			Match 0xFFFFFFFF interrupt flag bit						
			0: The counter value did not match 0xFFFFFFF						
IF	bit4	R/W	1: The counter value matched 0xFFFFFFF						
			This flag bit is cleared by software writing 1,						
			writing 0 has no effect.						
			MAT3 interrupt flag bit						
			0: The counter value did not match MAT3						
MAT3IF	bit3	R/W	1:The counter value matched MAT3						
			This flag bit is cleared by software writing 1,						
			writing 0 has no effect.						
			MAT2 interrupt flag bit						
			0: The counter value did not match MAT2						
MAT2IF	bit2	R/W	1: The counter value matched MAT2						
			This flag bit is cleared by software writing 1,						
			writing 0 has no effect.						
			MAT1 interrupt flag bit						
			0: The counter value did not match MAT1						
MAT1IF	bit1	R/W	1: The counter value matched MAT1						
			This flag bit is cleared by software writing 1,						
			writing 0 has no effect.						
MATOIF	bit0	R/W	MAT0 interrupt flag bit						

0: The counter value did not match MAT0
1: The counter value matched MAT0
This flag bit is cleared by software writing 1,
writing 0 has no effect.

Notes

- 1. In timer, counter, capture and PWM mode, the T32N_CNT can always be compared to the T32N_MAT0/ T32N_MAT1/ T32N_MAT2/ T32N_MAT3.
- 2. When T32N interrupts are disabled, the corresponding interrupt flag will be set if an interrupt is triggered, however, no interrupt request will be generated.
- 3. For all interrupt flag bits of T32N_IF register, they can be cleared by software writing 1 and writing 0 has no effect. When they are being read, 1 indicates that an interrupt has occurred.

T32N	l Counte	r Match	Registe	r 0 (T32l	N_MAT0)										
Offse	t addres	s:20 _H													
Rese	t value:1	1111111_	_11111111	1_111111	11_11111	111 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MAT	0<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							MAT	0<15:0>							
MAT0<31:0> bit31-0 R/W T32N match value 0															

T32N	l Counte	r Match	Registe	r 1 (T32i	N_MAT1)										
Offse	t address	s:24 _H													
Rese	t value:1	1111111_	_111111111	_111111	11_11111	111 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MAT	1<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							MAT	T1<15:0>							
	MAT	1<31:0)>	bit	31-0	R	/W	T32N	I matc	h valu	e 1				

Preliminary 170/341

T32N	Counte	r Match	Register 2	2(T32N	I_MAT2)										
Offse	t addres	s:28 _H													
Rese	t value:1	1111111_	_111111111_	111111	11_11111	111 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MAT	2<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							MAT	2<15:0>							
	MAT	2<31:0)>	bi	t31-0	R	/W	T32N	l matc	h valu	e 2				
				1		•									
T32N	Counte	r Match	Register :	3(T32N	I_MAT3)										
Offse	t addres	s:2C _H													
Rese	t value:1	1111111_	_111111111_	111111	11_11111	111 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MAT	3<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							MAT	3<15:0>							
	MAT:	3<31:0)>	bit	31-0	R.	/W	T32N	l matc	h valu	e 3				

5. 1. 2. 7 T32N Application Notes

The device offers one 32-bit timer/counter T32N0.

5. 2 Universal Asynchronous Receiver Transmitter

The device provides two identical UARTs, and this section uses UART0 as an example.

5. 2. 1 Overview

- ♦ Asynchronous communication
- Built-in baud rate generator: 12-bit integer and 4-bit fraction
- Compatible with RS-232/RS-442/RS-485 interfaces
- ♦ Full and half duplex communications
- ♦ Asynchronous receiver
 - Independent receive shift register
 - Automatic baud rate detection by hardware
 - 8-level receive buffer
 - 7-bit, 8-bit and 9-bit data length options with configurable odd/even parity check
 - Automatic parity bit detection by hardware
 - Idle frame detection
 - FIFO interrupts: byte full interrupt, half-word full interrupt, word full interrupt and full interrupt
 - Receive error interrupts: receive FIFO overrun error, parity error and framing error
- ♦ Asynchronous transmitter
 - Independent transmit shift register
 - 8-level transmit FIFO
 - 7-bit, 8-bit and 9-bit data length options with configurable odd/even parity check
 - 1 or 2 stop bits
 - Automatic generation of parity bit (odd or even) by hardware
 - FIFO interrupts: byte empty interrupt, half-word empty interrupt, word empty interrupt and empty interrupt
 - Transmit FIFO write error interrupt
- ♦ PWM output with configurable duty cycle
- ♦ Configurable polarity for UART inputs and outputs
- ♦ Infrared wake-up capability on UART receive ports

5. 2. 2 Block Diagram

Figure 5-11 UART Block Diagram

5. 2. 3 Data Format

In UART communication, each frame consists of 1 start bit, 7 (8 or 9) data bits, parity bit and stop bit(s). TXMOD<3:0> bits and RXMOD<3:0> bits of UART_CON0 register select the transmit data format and receive data format, respectively. TXFS bit selects 1 stop bit or 2 stop bits. When receiving, only the first stop bit is checked. A framing error interrupt flag is set if the stop bit is not high. The communication pins are in high state when there is no data transfer.

Figures below show formats of 7-bit, 8-bit and 9-bit data frames.

Figure 5-12 UART 7-bit Data Format

Figure 5-13 UART 8-bit Data Format

Figure 5-14 UART 9-bit Data Format

During data transmission and reception, the least significant bit LSB bit is always sent and received first. Write a data to be transmitted to UART_TBW register and read a received data from UART_RBR register.

5. 2. 4 Asynchronous Transmitter

When transmitting data, the start bit and stop bit are automatically generated by the hardware circuit. All that the user needs to do is to configure the corresponding functions on the associated I/O pins: set the baud rate by configuring the BCS<2:0> bits of UART_CON0 register and UART_BRR register; select the transmit data format by configuring the TXMOD<3:0> bits of UART_CON0 register; select the number of stop bit by configuring the TXFS bit; set the TXEN to enable the transmitter and write the data to be transmitted into the UART_TBW register to start the data transmission in asynchronous mode. If the data format involves odd/even parity bit, the hardware circuit will generate a parity bit depending on the data bits and will automatically sent it after data.

The TXP bit of UART_CON0 register selects the polarity of the transmit port. When the positive polarity is selected, the data output from the transmit port is non-inverted; when the negative polarity is selected, the transmit data will be inverted. For example, when the transmit data is 1, it will be inverted to 0 on the transmit port.

The 8-level transmit buffers TB0~TB7 and one transmit shift register are available to accomplish the continuous data transmission and up to 9 frames of data can be written and sent. The TXFS bit of the UART_CON0 register can select the transmission interval between two frames. The transmit buffer register TB0~TB7 are read-only and can only be written via the UART_TBW register.

The transmit buffer write register UART_TBW is a virtual register and has no physical address. When writing to the address of this register, it actually writes the data into a transmit buffer TB0~TB7, and then the data is shifted to the transmit shift register and finally sent via the transmit port TX0.

The transmit buffer write register UART_TBW can be written in byte, half-word and word.

For 7-bit and 8-bit data formats, when the UART_TBW register is written in byte, the transmit data will be written into TB7; when the UART_TBW register is written in half-word, the transmit data will be written into TB7 and TB6 with the low byte stored in TB6; when the UART_TBW register is written in word, the transmit data will be written

into TB7, TB6, TB5 an TB4 with the lowest byte stored in TB4.

For 9-bit data format, the UART_TBW register can only be written either in half-word or word and the transmit data is all written into TB7.

Figure below shows the flow of data transmission.

Figure 5-15 UART0 Transmit Data Flow

When transmit buffers TB0~TB7 have been written, the corresponding full flag bits TBFF0~TBFF7 of the UART_TB0~UART_TB7 register will be set automatically by hardware. After the data has been shifted to the next buffer or the transmit shift register, the flag bits will be automatically cleared by hardware. If flag bit TBFF7 of the TB7 is set (full), it indicates that all the 8-level transmit buffers and the transmit shift register are full. At this point, if the user continues to write a new data to the UART_TBW, the write overrun interrupt flag bit TBWOIF will be set, the new data written is invalid and the data in the buffers are maintained. When accessed in byte but the byte written is not the low byte, or when accessed in half word but the half word written is the low half word, the transmit buffer write error interrupt flag will be set, the new data written is invalid and the data in the buffers are maintained.

During transmission, the transmit status bit TXBUSY will be set to 1. When all the 8-level buffer registers and the transmit shift register are empty, the transmission complete interrupt flag bit TCIF of the UART_IF register will be set, and the TXBUSY bit will be cleared, indicating a completion of the current data transmission.

The TBIM<1:0> bits select the interrupt mode for the transmit buffer empty interrupt.

Write TBIM<1:0> = 00 to select the byte empty interrupt. When the TB7 is empty, the transmit buffer empty interrupt flag bit TBIF of the UART_IF register will be set.

Write TBIM<1:0> = 01 to select the half-word empty interrupt. When both TB7 and TB6 are empty, the transmit buffer empty interrupt flag bit TBIF of the UART_IF register will be set.

Write TBIM<1:0> = 10 to select the word empty interrupt. When TB7, TB6, TB5 and TB4 are empty, the transmit buffer empty interrupt flag bit TBIF of the UART_IF register will be set.

Write TBIM<1:0> = 11 to select the empty interrupt. When all the TB7 ~ TB0 are empty, the transmit buffer empty interrupt flag bit TBIF of the UART IF register will be set.

The TBCLR bit of the UART_CON0 register can clear all the data of the transmit buffers, meanwhile the flags TBFF0~TBFF7 of the UART_TB0~UART_TB7 register can also be cleared. The cleared data of the transmit buffers will not be sent, however, the data of the shift register will still be sent.

The TRST bit of the UART_CON0 register can reset the transmitter by software.

Following a reset, the data transmission will be disabled (TXEN=0); the related interrupt enable bits of the UART_IE will also be disabled (TBIE=0 and TBWEIE=0); the related interrupt flag bits will be reset to their default values (TBIF=1 and TBWEIF=0); the transmit busy bit TXBUSY will be cleared and each transmit buffer flag bits TBFF0~TBFF7 will also be cleared.

The flowchart of the data transmission is shown as follows.

Figure 5-16 Flowchart of UART0 Data Transmission

5. 2. 5 Asynchronous Receiver

When receiving data, configure the corresponding functions on the associated I/O pins: set the baud rate by configuring the BCS<2:0> bits of UART_CON1 register and UART_BRR register; select the receive data format by configuring the RXMOD<3:0> bits and set the RXEN to enable the receiver to start data reception in asynchronous mode. If the data format involves odd/even parity bit, the hardware circuit will automatically check the parity. The parity error flag bit PEIF will be set if the detected parity bit is incorrect. If the first stop bit received is not at high level, the framing error flag bit FEIF of the UART_IF register will be set.

Preliminary 176/341

The RXP bit of UART_CON0 register selects the polarity of the receive port. When the positive polarity is selected, the received data on the receive port is non-inverted; when the negative polarity is selected, the received data will be inverted. For example, when the received data is 1, it will be inverted to 0 on the receive port.

The 8-level receive buffers RB0~RB7 and one receive shift register are available to accomplish continuous data reception. A read operation can proceed after up to 9 frames of data are received. Reading the receive buffer read register UART_RBR can obtain the received data and can also clear the corresponding full flag bit RBFF0~RBFF7 of the UART_RB0~ UART_RB7 register. Alternatively, reading the receive buffer register RB0~RB7 can obtain the received data too but it will not clear the corresponding flag bit RBFF0~RBFF7.

The receive buffer read register UART_RBR is a virtual register and has no physical address. When reading this register, it actually reads the data of a receive buffer RB0~RB7.

The receive buffer read register UART_RBR can be read in byte, half-word and word.

For 7-bit and 8-bit data formats, when the UART_RBR register is read in byte, it actually reads the data of RB0; when the UART_RBR register is read in half-word, it actually reads the data of RB0 and RB1 with the low byte stored in RB0; when the UART_RBR register is read in word, it actually reads the data of RB0, RB1, RB2 an RB3 concurrently with the lowest byte stored in RB0.

For 9-bit data format, the UART_RBR register can only be read either in half-word or word and the received data is all read from RB0.

Figure below shows the flow of data reception

Figure 5-17 UARTO Receive Data Flow

When the data of a receive buffer has been shifted to the next buffer, the corresponding receive full flag bit will be cleared.

When all the 8-level receive buffers and one receive shift register are full, if another start bit is received, the receive overrun interrupt flag bit ROIF will be set, meanwhile, no more new data will be accepted and the current data of the buffers are maintained.

When all the 8-level receive buffers and one receive shift register are empty, the receive busy flag bit RXBUSY will be cleared, indicating there is no data reception.

The RBIM<1:0> bits select the interrupt mode for the receive buffer full interrupt.

Write RBIM<1:0> = 00 to select the byte full interrupt. When the RB0 is full, the receive buffer full interrupt flag bit RBIF of the UART_IF register will be set.

Write RBIM<1:0> = 01 to select the half-word full interrupt. When both RB0 and RB1 are

full, the receive buffer full interrupt flag bit RBIF of the UART_IF register will be set.

Write RBIM<1:0> = 10 to select the word full interrupt. When RB0, RB1, RB2 and RB3 are full, the receive buffer full interrupt flag bit RBIF of the UART_IF register will be set.

Write RBIM<1:0> = 11 to select the full interrupt. When all the RB0 \sim RB7 are full, the receive buffer full interrupt flag bit RBIF of the UART_IF register will be set.

The RBCLR bit of the UART_CON0 register can clear all the receive buffers, meanwhile the full flag bits RBFF0~RBFF7 can also be cleared. Those data that is already in receiving process will not be affected.

The RRST bit of the UART_CON0 register can reset the receiver by software. Following a reset, the data reception will be disabled (RXEN=0); the related interrupt enable bits of the UART_IE will also be disabled (RBIE=0, ROIE=0, FEIE=0 and PEIE=0); the related interrupt flag bits will be reset to their default values (RBIF=0, ROIF=0, FEIF=0 and PEIF=0); the receive busy bit RXBUSY will be cleared; each receive buffer full flag bits RBFF0~RBFF7 will also be cleared, as well as the receive buffer error flag bits: framing error and parity error (FE0~FE7=0, PE0~ PE0=0)

The flowchart of the data reception is shown as follows.

Figure 5-18 Flowchart of UART0 Data Reception

Preliminary 178/341

5. 2. 6 UART Transmit Modulation

In modulation mode, a PWM signal source generated by T16N or a BUZ signal modulates the signal transmitted by UART, and the modulated signal is then output from the transmit port TX0. Configure the TX0PS bits to select the PWM signal. The TX0PLV bit of the GPIO_TXPWM register selects the level to be modulated on the transmit port TX0. Configure the TX0_S0, TX0_S1, TX0_S2 and TX0_S3 to enable the modulation output port.

A PWM signal source used for UART modulation is provided by T16N or BUZ. Configure the TX0PS bits to select the PWM source to modulate the TX0 output.

Figure 5-19 High Level Modulated TX0 Output

Figure 5-20 Low Level Modulated TX0 Output

5. 2. 7 UART Infrared Wake-up

The UART receive ports are designed with infrared wake-up function, which is accomplished by software by enabling the external port interrupt PINT on the UART receive ports. For the detailed operations for interrupts and wake-up, see the related sections on external port interrupt, normal sleep mode and wake-up mode.

5. 2. 8 UART Port Polarity

The TXP and RXP bits of the UART_CON0 register controls the polarity of the transmit port TX0 and receive port RX0, respectively. When the positive is selected, the transferred data will not be inverted on UART ports; when the negative is selected, the transferred data will be inverted on UART ports.

5. 2. 9 UART Auto Baud Rate Detection

On receiving data, set the BDEN bit of the UART_CON0 register to enable the automatic baud rate detection, and configure the BDM<1:0> bits to select the desired detection mode.

In the UART_CON1 register,

Write BDM<1:0>=00 to select Mode 1. In Mode 1, the received data flow needs to begin with 1 in binary (that is to say the lowest bit of the received data is 1B), and UART detects the baud rate of the start bit.

Write BDM<1:0>=01 to select Mode 2. In Mode 2, the received data flow needs to begin with 10 in binary (that is to say the lowest 2 bits of the received data are 01B), and UART detects the baud rate of the start bit and the first data bit.

Write BDM<1:0>=10 to select Mode 3. In Mode 3, the received data flow needs to begin with 1111_1110 in binary (that is to say the first frame of the received data is $7F_H$), and UART detects the baud rate of the start bit and the first 7 data bits.

Write BDM<1:0>=11 to select Mode 4. In Mode 4, the received data flow needs to begin with 1010_1010 in binary (that is to say the first frame of the received data is 55H), and UART detects the baud rate of the start bit and the first 7 data bits.

Following completion of the baud rate detection, the BDEN bit will be automatically cleared by hardware and the auto baud rate detection function will be disabled. If the detection is successful, the baud rate register UART_BRR will be updated, and the frame will be written into the receive buffer for users to read. If the detection times out, the baud detection error interrupt flag BDEIF in the UART_IF register will be set, consequently, the baud rate register will not be updated and the new data will not be written into the receive buffer.

In the case that the 7-bit data format is used or the parity bit after 7 data bits is not a fixed 0, Mode 3 or Mode 4 will not be applicable; instead, Mode 1 or Mode 2 must be selected. For other data formats, as long as it meets the requirement for any of the modes, the suitable mode can be configured.

The baud rate detection is not affected by the initial baud rate setting. However, a proper prescaled baud clock must be selected by the BCS<2:0> bits based on the specific application.

Figure 5-21 Timing Diagram of Auto Baud Rate Detection

Figure 5-22 Timing Diagram of Auto Baud Rate Detection Error

5. 2. 10 UART Idle Frame Detection

On receiving data, set the IDEN bit of the UART_CON0 register to enable the idle frame detection function, and configure the IDM<1:0> bits of the UART_CON1 to select the detection mode.

Write IDM<1:0> = 00 to detect 10 continuous idle bits of the received frames.

Write IDM<1:0> = 01 to detect 11 continuous idle bits of the received frames.

Write IDM<1:0> = 10 to detect 12 continuous idle bits of the received frames.

Write IDM<1:0> = 11 to detect 13 continuous idle bits of the received frames.

When an idle frame has been detected, the receive idle frame interrupt flag bit IDIF bit will be set. The idle frame detection will only be triggered after hardware receiving the data. When the idle frame detection is enabled, if the receive line stays idle, it will not

affect the idle frame interrupt flag bit.

Figure 5-23 Timing Diagram of Idle Frame Detection

5. 2. 11 UART Transmission and Reception Halt

Enabling the TXI bit can halt the data transmission. The TX0 port will be at idle level and the data of the transmit buffers will remain unchanged. If the transmission is currently on-going, the transmission will be halted after the current transmission is done.

Enabling the RXI bit can halt the data reception, and the data of the receive buffers will remain unchanged. If the reception is currently in process, then the current frame will be discarded. The parity check and the idle frame detection will not be affected after the data reception is halted.

5. 2. 12 Special Function Registers

UAF	JART Control Register 0(UART_CON0)														
Offs	Offset address:00 _H														
Res	eset value:00000000_00000000_0000000000 _B														
31	1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														
	Rese	rved	RXP	F	RXMO	D<3:0	>	Res	erved	IDEN	BDEN	RXI	RBCLR	RRST	RXEN
15	14	13	12	11 10 9 8 7 6 5 4 3 2 1 0											
Res	erved	TXFS	TXP		TXMOD<3:0> Reserved TXI TBCLR TRST TX							TXEN			

_	bit31-29		_
			Receive port polarity select bit
RXP	bit28	R/W	0: Positive (non-inverted)
			1: Negative (inverted)
			Receive mode select bits
		R/W	0000: 8-bit data
RXMOD<3:0>	bit27-24		0010: 9-bit data
KAWOD<3.0>	DIL27-24		0100: 7-bit data
			1000: 8-bit data + even parity bit
			1001: 8-bit data + odd parity bit

Preliminary 182/341

			1010: 8-bit data + 0 (fixed)
			1011: 8-bit data +1 (fixed)
			1100: 7-bit data + even parity bit
			1101: 7-bit data + odd parity bit
			1110: 7-bit data + 0(fixed)
			1111: 7-bit data + 1(fixed)
			Others: Not used
_	bit23-22	_	_
			Idle frame detection enable bit
IDEN	bit21	R/W	0: Disabled
			1: Enabled
			Auto baud rate detection enable bit
BDEN	bit20	R/W	0: Disabled
			1: Enabled
			Reception halt enable bit
RXI	bit19	R/W	0: Disabled
			1: Enabled
			Receive buffer clear bit
RBCLR	bit18	W	0: Always read as 0
			1: Clear receive buffers
			Receiver software reset bit
RRST	bit17	W	0: Always read as 0
			1: Software reset
			Receiver enable bit
RXEN	bit16	R/W	0: Disabled
			1: Enabled
_	bit15-14	_	_
			Transmit frame stop bit select bit
TXFS	bit13	R/W	0:1 stop bit
			1:2 stop bits
			Transmit port polarity select bit
TXP	bit12	R/W	0: Positive (non-inverted)
			1: Negative (inverted)
			Transmit mode select bits
			0000: 8-bit data
			0010: 9-bit data
			0100: 7-bit data
			1000: 8-bit data + even parity bit
TXMOD<3:0>	bit11-8	R/W	1001: 8-bit data + odd parity bit
			1010: 8-bit data + 0 (fixed)
			1011: 8-bit data + 1 (fixed)
			1100: 7-bit data + even parity bit
			1101: 7-bit data + odd parity bit
			1110: 7-bit data + 0 (fixed)
			1110.1 bit data 1 0 (linou)

			1111:7 hit data + 1 (fived)
			1111:7 -bit data + 1 (fixed)
			Others: Not used
_	bit7-4		_
			Transmission halt enable bit
TXI	bit3	R/W	0: Disabled
			1: Enabled
			Transmit buffer clear bit
TBCLR	bit2	W	0: Always read as 0
			1: Clear transmit buffers
			Transmitter software reset bit
TRST	bit1	W	0: Always read as 0
			1:Software reset
			Transmitter enable bit
TXEN	bit0	R/W	0: Disabled
			1: Enabled

UART	Control	Register 1	(UART	CON1)

Offse	t address	ddress:04 _H													
Reset	t value:00	000000	_0000000	000_0000000	0000	0000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Rese	rved							IDM<	1:0>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	served	BDN	Л<1:0>	Reserved	Reserved BCS<2:0> Reserved RBIM<1:0> Reserved TBIM<1:0							M<1:0>			

_	bit31-18	_	_
			Idle frame detection mode select bits
			00: 10 consecutive idle bits
IDM<1:0>	bit17-16	R/W	01: 11 consecutive idle bits
			10: 12 consecutive idle bits
			11: 13 consecutive idle bits
_	bit15-14	_	_
			Auto baud rate detection mode select bits
			00: Mode 1
BDM<1:0>	bit13-12	R/W	01: Mode 2
			10: Mode 3
			11: Mode 4
_	bit11		_
			Baud rate clock select bits
BCS<2:0>	bit10-8	R/W	000: Baud rate clock disabled
DU3<2.U>	טונוט-ס	IT/VV	001: PCLK
			010: PCLK/2

Preliminary 184/341

			011: PCLK/4
			1xx: PCLK/8
_	bit7-6	_	_
			Receive buffer interrupt mode select bits
			00: Byte full interrupt (more than 1 byte in the receive buffers)
RBIM<1:0>	bit5-4	R/W	01: Half-word full interrupt (more than 2 bytes in the receive buffers)
			10: Word full interrupt (more than 4 bytes in the
			receive buffers)
			11: Full interrupt (all buffers full)
_	bit3-2	_	_
			Transmit buffer interrupt mode select bits
			00: Byte empty interrupt (more than 1 byte is empty
			in the transmit buffers)
TDIM 44.05	b:+1 0	DAA	01: Half-word empty interrupt (more than 2 bytes
TBIM<1:0>	bit1-0	R/W	are empty in the transmit buffers)
			10: Word empty interrupt (more than 4 bytes are
			empty in the transmit buffers)
			11: Empty interrupt (all buffers empty)

Notes

- 1. Following is the mode description of the BDM bits of the UART_CON1 register.
 - Mode 1: if the data stream starts with 1B (the lowest bit of the received data is 1B), check the baud rate of the start bit.
 - Mode 2: if the data stream starts with 10B (the lowest 2 bits of the received data is 10B), check the baud rate of the start bit and the first data bit.
 - Mode 3: if the data stream starts with 1111_1110B (the received data is 7FH), check the baud rate of the start bit and the first 7 data bits.
 - Mode 4: if the data stream starts with 1010_1010B (the received data is 55H), check the baud rate of the start bit and the first 7 data bits.
- 2. If the received data is in 7-bit data format or the parity bit is not fixed to 0, mode 3 and mode 4 will not be applicable, and mode 1 and mode 2 must be selected. For other data formats, all modes are applicable.

UART Baud Rate Register (UART_BRR)

Offset address:10H

01100	t dddi co	5.10H													
Rese	t value:0	0000000	_000000	000_000	00000_0	0000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					BRIN	IT<11:0>	i						BRFI	RA<3:0>	

_	bit31-16	_	_
BRINT<11:0>	bit15-4	R/W	Baud rate integer bits
BRFRA<3:0>	bit3-0	R/W	Baud rate fraction bits

Notes

- The UART_BRR register contains the frequency division rate of the UART baud rate (BRRDIV), which is a 16-bit unsigned value, 12-bits integer and 4-bit fraction. Examples: given 0x0104 (260 in decimal), then BRRDIV=260/16=16.25; given 0x0156 (342 in decimal), then BRRDIV=342/16=21.375.
- 2. If the value in the UART_BRR register is less than 1.0, then BRRDIV =1.0.
- 3. The baud rate of UART is expressed as

$$BAUD = \frac{Fpclk}{16 \times n \times BRRDIV}$$

Where Fpclk is the system clock frequency, n is the baud prescaler ratio determined by BCS<2:0> of the

UART_CON1 register

BCS<2:0>=001: n = 1

BCS<2:0>=010: n = 2

BCS<2:0>=011: n = 4

BCS<2:0>=1xx: n = 8

UART Status Register (UART_STA)

Offset address:14_H

Reset value:00000000_00000000_00000001_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	Reserved					PER3	FER3	PER2	FER2	PER1	FER1	PER0	FER0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	erved	RXBUSY	RBOV		RBPTI	R<3:0:	>	Rese	erved	TXBUSY	TBOV		TBPT	R<3:0>	

_	bit31-24	_	_
			Parity error of current BYTE3
PER3	bit23	R	0: No error
			1: An error occurred
FER3	bit22	R	Framing error of current BYTE3

Preliminary

			0: No error						
			1: An error occurred						
			Parity error of current BYTE2						
PER2	bit21	R	0: No error						
1 2112	DILE I	1	1: An error occurred						
			Framing error of current BYTE2						
FER2	bit20	R	0: No error						
1 2112	DILLO		1: An error occurred						
			Parity error of current BYTE1						
PER1	bit19	R	0: No error						
. =			1: An error occurred						
			Framing error of current BYTE1						
FER1	bit18	R	0: No error						
			1: An error occurred						
			Parity error of current BYTE0						
PER0	bit17	R	0: No error						
-			1: An error occurred						
			Framing error of current BYTE0						
FER0	bit16	R	0: No error						
			1: An error occurred						
_	bit15-14		_						
			Receiver busy bit						
RXBUSY	bit13	R	0: Idle						
			1: Busy						
	bit12		Receive buffer overrun bit						
RBOV		R	0: No overrun						
			1: An overrun occurred						
			Receive buffer pointer which points to the						
			remaining bytes of received data						
RBPTR<3:0>	bit11-8	R	0000:0 byte						
			1000:8 bytes						
_	bit7-6	_	-						
			Transmitter busy bit						
TXBUSY	bit5	R	0: Idle						
			1: Busy						
			Transmit buffer overrun bit						
TBOV	bit4	R	0: No overrun						
			1: An overrun occurred						
			Transmit buffer pointer which points to the current						
TBPTR<3:0>	bit3-0	D	byte of transmit data						
IDFIR<0.U>	มแจ-บ	R	0000:0 byte						

	1000:8 hytos
	1000:8 bytes

UART Interrupt Enable Register (UART_IE)

Offset address:18_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res	served	RBROIE	RBREIE	BDEIE	PEIE	FEIE	ROIE			Res	erved			IDIE	RBIE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved				TBWOIE	TBWEIE	Reserved				TCIE	TBIE			

I			T
_	bit31-30		_
			Receive buffer read overrun interrupt enable bit
RBROIE	bit29	R/W	0: Disabled
			1: Enabled
			Receive buffer read error interrupt enable bit
RBREIE	bit28	R/W	0: Disabled
			1: Enabled
			Baud rate detection error interrupt enable bit
BDEIE	bit27	R/W	0: Disabled
			1: Enabled
			Receive parity error interrupt enable bit
PEIE	bit26	R/W	0: Disabled
			1: Enabled
			Receive framing error interrupt enable bit
FEIE	bit25	R/W	0: Disabled
			1: Enabled
			Receive overrun interrupt enable bit
ROIE	bit24	R/W	0: Disabled
			1: Enabled
_	bit23-18	_	_
			Receive idle frame interrupt enable bit
IDIE	bit17	R/W	0: Disabled
			1: Enabled
			Receive buffer full interrupt enable bit
RBIE	bit16	R/W	0: Disabled
			1: Enabled
_	bit15-10	_	_
			Transmit buffer write overrun interrupt enable bit
TBWOIE	bit9	R/W	0: Disabled
			1: Enabled
T D\4:=:=	1.1.5	5	Transmit buffer write error interrupt enable bit
TBWEIE	bit8	R/W	0: Disabled

Copyright © Shanghai Eastsoft Microelectronics Co., Ltd.

188/341

			1: Enabled
	bit7-2	_	_
			Transmission complete interrupt enable bit
TCIE	bit1	R/W	0: Disabled
			1: Enabled
		R/W	Transmit buffer empty interrupt enable bit
TBIE	bit0		0: Disabled
			1: Enabled

UART Interrupt Flag Register (UART_IF)

Offset address:1C_H

Reset value:00000000_00000000_000000001_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res	erved	RBROIF	RBREIF	BDEIF	PEIF	FEIF	ROIF			Res	erved			IDIF	RBIF
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved			TBWOIF	TBWEIF	Reserved					TCIF	TBIF			

_	bit31-30	_	_
RBROIF	bit29	R/W	Receive buffer read overrun interrupt flag bit 0: No overrun 1: An overrun occurred This flag bit is cleared by software writing 1 and writing 0 has no effect.
RBREIF	bit28	R/W	Receive buffer read error interrupt flag bit 0: No read error 1: A read error occurred This flag bit is cleared by software writing 1 and writing 0 has no effect.
BDEIF	bit27	R/W	Baud rate detection error interrupt flag bit 0: No error 1: An error detected This flag bit is cleared by software writing 1 and writing 0 has no effect.
PEIF	bit26	R/W	Receive parity error interrupt flag bit 0: No parity error 1: A parity error occurred This flag bit is cleared by software writing 1 and writing 0 has no effect.
FEIF	bit25	R/W	Receive framing error interrupt flag bit 0: No framing error

			1
			1: A framing error occurred This flag bit is cleared by software writing 1 and writing
			This flag bit is cleared by software writing 1 and writing 0 has no effect.
			Receive overrun interrupt flag bit
			0: No overrun
ROIF	bit24	R/W	1: An overrun occurred
			This flag bit is cleared by software writing 1 and writing
			0 has no effect.
_	bit23-18	_	
			Receive idle frame interrupt flag bit
			0: No idle frame received
IDIF	bit17	R/W	1: An idle frame received
			This flag bit is cleared by software writing 1 and writing
			0 has no effect.
			Receive buffer full interrupt flag bit
55:5	1.046		0: Not full
RBIF	bit16	R	1: Full (any of the four conditions, selected by RBIM, is
			true)
	hi+4F 40		Read the UART_RBR register to clear this flag bit
	bit15-10	_	
			Transmit buffer write overrun flag bit
TBWOIF	bit9	R/W	0: No overrup occurred
I DVV OIF	DIT9	17/44	1: An overrun occurred This flag bit is cleared by software writing 1 and writing
			This flag bit is cleared by software writing 1 and writing 0 has no effect.
		 	Transmit buffer write error interrupt flag bit
			0: No write error
TBWEIF	bit8	R/W	1: A write error occurred
			This flag bit is cleared by software writing 1 and writing
			0 has no effect.
	bit7-2		
			Transmission complete interrupt flag bit
			0: No completed
TCIF	bit1	R/W	1: Completed
			This flag bit is cleared by software writing 1 and writing
			0 has no effect.
			Transmit buffer empty interrupt flag bit
			0: Not empty
TBIF	bit0	R	1: Empty (any of the four conditions, selected by
			TBIM, is true)
			Read the UART_TBW register to clear this flag bit

- 1. When the UART interrupts are disabled, the corresponding interrupt flag will be set if an interrupt is triggered, however, no interrupt request will be generated.
- 2. For each interrupt flag in the UART_IF register, they can be cleared by software writing 1 and writing 0 has no effect. When reading, 1 indicates that the corresponding interrupt has occurred.

Offse	t addres	s:20 _H													
		•••	XX_XXX	(XXXXX_	XXXXX	XXX_XXX	(XXXXX	В							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TBW	<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TBW	/<15:0>							
	TBW<	31:0>		bit31	-0	W	W	r ite tra rite in b	oyte: w	vrite to		Γ_TBV			

				write transmit data				
TD\\\ -21:0>	bit31-0	W	Write in byte: write to UART_TBW<7:0>					
	TBW<31:0>	DII31-0	VV	Write in half-word: write to UART_TBW<15:0>				
				Write in word: write to UART_TBW<31:0>				

UART Receive	Data Read	Register(UART_RBR)	
				١

Offset address:24_H

Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RBR	<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RBF	R<15:0>							

RBR<31:0>	bit31-0	R	Read receive data Read in byte: read from UART_RBR<7:0> Read in half-word: read from UART_RBR<15:0> Read in word: read from UART_RBR<31:0>
			Read in word: read from UART_RBR<31:0>

UAR'	ART Transmit Buffer Register 0 (UART_TB0)														
Offse	Offset address:40 _H														
Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	erved							
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Re	served	TBFF0	TP0		Reserve	ed				•	TB0<8:	0>			

_	bit31-14	_	_
			Transmit buffer 0 full flag bit
TBFF0	bit13	R	0: Empty
			1: Full
			Transmit parity bit
TP0	bit12	R	The parity bit corresponds to the data in transmit
			buffer 0.
_	bit11-9	_	_
TB0<8:0>	bit8-0	R	Transmit buffer 0 data

UART Transmit Buffer Register 1 (UART_TB1)

Offset address:44_H

Offse	Iset address:44 _H														
Rese	eset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	served	TBFF1	TP1		Reserve	ed					TB1<8:	O>			
IVE:	Reserved IBFF1 IF1 Reserved									101<0.	J>				

_	bit31-14	_	_
			Transmit buffer 1 full flag bit
TBFF1	bit13	R	0: Empty
			1: Full
			Transmit parity bit
TP1	bit12	R	The parity bit corresponds to the data in transmit
			buffer 1.
_	bit11-9	_	_
TB1<8:0>	bit8-0	R	Transmit buffer 1 data

Preliminary 192/341

UAR	ART Transmit Buffer Register 2 (UART_TB2)													
Offse	Offset address:48 _H													
Rese	Reset value:00000000_00000000_000000000 _B													
31	11 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16													
							Res	erved						
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													
Res	served	TBFF2	TP2		Reserve	ed					TB2<8:	0>		

_	bit31-14	_	_
			Transmit buffer 2 full flag bit
TBFF2	bit13	R	0: Empty
			1: Full
			Transmit parity bit
TP2	bit12	R	The parity bit corresponds to the data in transmit
			buffer 2.
_	bit11-9	_	_
TB2<8:0>	bit8-0	R	Transmit buffer 2 data

UART Transmit Buffer Register 3 (UART_TB3)

Offse	t address	ddress:4C _H													
Rese	set value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	rved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	served	TBFF3	TP3		Reserve	ed					TB3<8:0	0>			

_	bit31-14		_
			Transmit buffer 3 full flag bit
TBFF3	bit13	R	0: Empty
			1: Full
			Transmit parity bit
TP3	bit12	R	The parity bit corresponds to the data in transmit
			buffer 3
_	bit11-9	_	_
TB3<8:0>	bit8-0	R	Transmit buffer 3 data

Preliminary 193/341

UAR	ART Transmit Buffer Register 4 (UART_TB4)														
Offse	et address	::50 _H													
Rese	et value:00	0000000_0	0000000	_00000	000_000	000000 _B									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Re	served	TBFF4	TP4		Reserve	ed					TB4<8:	0>			·

_	bit31-14	_	_
			Transmit buffer 4 full flag bit
TBFF4	bit13	R	0: Empty
			1: Full
			Transmit parity bit
TP4	bit12	R	The parity bit corresponds to the data in transmit
			buffer 4
_	bit11-9	_	_
TB4<8:0>	bit8-0	R	Transmit buffer 4 data

UART Transmit Buffer Register 5 (UART_TB5)

Offse	Offset address:54 _H														
Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	served	TBFF5	TP5	Reserved						TB5<8:	0>				

_	bit31-14	_	_
			Transmit buffer 5 full flag bit
TBFF5	bit13	R	0: Empty
			1: Full
			Transmit parity bit
TP5	bit12	R	The parity bit corresponds to the data in transmit
			buffer 5
_	bit11-9	_	_
TB5<8:0>	bit8-0	R	Transmit buffer 5 data

Preliminary 194/341

UAR	UART Transmit Buffer Register 6 (UART_TB6)														
Offse	Offset address:58 _H														
Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	served	TBFF6	TP6		Rese	rved					TB6<8:	0>			
bit31-14 															
Transmit buffer 6 full flag bit					•										

_	bit31-14	_	_
			Transmit buffer 6 full flag bit
TBFF6	bit13	R	0: Empty
			1: Full
			Transmit parity bit
TP6	bit12	R	The parity bit corresponds to the data in transmit
			buffer 6
_	bit11-9	_	_
TB6<8:0>	bit8-0	R	Transmit buffer 6 data

UART Transmit Buffer Register 7 (UART_TB7)

Offset address:5C_H

Reset value:00000000_00000000_00000000_000000000B Reserved Reserved TBFF7 TP7 Reserved TB7<8:0>

_	bit31-14	_	_
			Transmit buffer 7 full flag bit
TBFF7	bit13	R	0: Empty
			1: Full
			Transmit parity bit
TP7	bit12	R	The parity bit corresponds to the data in transmit
			buffer 7
_	bit11-9	_	_
TB7<8:0>	bit8-0	R	Transmit buffer 7 data

Preliminary 195/341

HARTS !	D // D		- DDAL
UART Receiv	e Butter Rea	ister v (UAR i	KB0)

Offset address:60_H

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PE0 FE0 RBFF0 RP0 Reserved RB0<8:0>

_	bit31-16	_	_
			Receive buffer 0 parity error flag bit
PE0	bit15	R	0: No error
			1: Error occurred
			Receive buffer 0 framing error flag bit
FE0	bit14	R	0: No error
			1: Error occurred
			Receive buffer 0 full flag
RBFF0	bit13	R	0: Empty
			1: Full
			Received parity bit
RP0	bit12	R	The corresponding parity bit received in receive buffer
			0
_	bit11-9	_	_
RB0<8:0>	bit8-0	R	Receive buffer 0 data

UART Receive Buffer Register 1 (UART_RB1)

Offset address:64_H

Reserved

PE1 FE1 RBFF1 RP1 RB1<8:0> Reserved

_	bit31-16	_	_
			Receive buffer 1 parity error flag bit
PE1	bit15	R	0: No error
			1: Error occurred
			Receive buffer 1 framing error flag bit
FE1	bit14	R	0: No error
			1: Error occurred

Preliminary 196/341

RBFF1	bit13	R	Receive buffer 1 full flag 0: Empty 1: Full
RP1	bit12	R	Received parity bit The corresponding parity bit received in receive buffer 1
_	bit11-9	_	_
RB1<8:0>	bit8-0	R	Receive buffer 1 data

UART Receive Buffer Register 2 (UART_RB2)

Offset address:68_H

Reset value:00000000_00000000_000000000_B

Reserved

PE2 FE2 RBFF2 RP2 Reserved RB2<8:0>

_	bit31-16	_	<u></u>
			Receive buffer 2 parity error flag bit
PE2	bit15	R	0: No error
			1: Error occurred
			Receive buffer 2 framing error flag bit
FE2	bit14	R	0: No error
			1: Error occurred
			Receive buffer 2 full flag
RBFF2	bit13	R	0: Empty
			1: Full
			Received parity bit
RP2	bit12	R	The corresponding parity bit received in receive buffer
			2
_	bit11-9	_	_
RB2<8:0>	bit8-0	R	Receive buffer 2 data

	- 44 - 1	
TIART Pacaiva	Buffer Register	3 /IIADT DB3\
UAIL NECEIVE	Dulle Vealore	3 IOAN I ND3)

Offset address:6C_H

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PE3 FE3 RBFF3 RP3 Reserved RB3<8:0>

_	bit31-16	_	_
			Receive buffer 3 parity error flag bit
PE3	bit15	R	0: No error
			1: Error occurred
			Receive buffer 3 framing error flag bit
FE3	bit14	R	0: No error
			1: Error occurred
			Receive buffer 3 full flag
RBFF3	bit13	R	0: Empty
			1: Full
			Received parity bit
RP3	bit12	R	The corresponding parity bit received in receive buffer
			3
_	bit11-9	_	_
RB3<8:0>	bit8-0	R	Receive buffer 3 data

UART Receive Buffer Register 4 (UART_RB4)

Offset address:70_H

Reserved

PE4 FE4 RBFF4 RP4 RB4<8:0> Reserved

_	bit31-16	_	_
			Receive buffer 4 parity error flag bit
PE4	bit15	R	0: No error
			1: Error occurred
			Receive buffer 4 framing error flag bit
FE4	bit14	R	0: No error
			1: Error occurred

Preliminary 198/341

RBFF4	bit13	R	Receive buffer 4 full flag 0: Empty 1: Full
RP4	bit12	R	Received parity bit The corresponding parity bit received in receive buffer 4
_	bit11-9	_	_
RB4<8:0>	bit8-0	R	Receive buffer 4 data

UART Receive Buffer Register 5 (UART_RB5)

Offset address:74_H

Reset value:00000000_00000000_000000000_B

Reserved

PE5 FE5 RBFF5 RP5 Reserved RB5<8:0>

_	bit31-16		_
			Receive buffer 5 parity error flag bit
PE5	bit15	R	0: No error
			1: Error occurred
			Receive buffer 5 framing error flag bit
FE5	bit14	R	0: No error
			1: Error occurred
			Receive buffer 5 full flag
RBFF5	bit13	R	0: Empty
			1: Full
			Received parity bit
RP5	bit12	R	The corresponding parity bit received in receive buffer
			5
_	bit11-9		_
RB5<8:0>	bit8-0	R	Receive buffer 5 data

UART Receive Buffer Register	6 (UART_RB6)
------------------------------	--------------

Offset address:78_H

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PE6 FE6 RBFF6 RP6 Reserved RB6<8:0>

_	bit31-16	_	_
			Receive buffer 6 parity error flag bit
PE6	bit15	R	0: No error
			1: Error occurred
			Receive buffer 6 framing error flag bit
FE6	bit14	R	0: No error
			1: Error occurred
			Receive buffer 6 full flag bit
RBFF6	bit13	R	0: Empty
			1: Full
			Received parity bit
RP6	bit12	R	The corresponding parity bit received in receive buffer
			6
_	bit11-9	_	_
RB6<8:0>	bit8-0	R	Receive buffer 6 data

UART Receive Buffer Register 7 (UART_RB7)

Offset address:7C_H

Reset value:00000000_00000000_00000000_00000000B

Reserved

PE7 FE7 RBFF7 RP7 RB7<8:0> Reserved

_	bit31-16		
			Receive buffer 7 parity error flag bit
PE7	bit15	R	0: No error
			1: Error occurred
			Receive buffer 7 framing error flag bit
FE7	bit14	R	0: No error
			1: Error occurred
RBFF7	bit13	R	Receive buffer 7 full flag bit

Preliminary 200/341

			0: Empty
			1: Full
			Received parity bit
RP7	bit12	R	The corresponding parity bit received in receive buffer
			7
_	bit11-9	_	_
RB7<8:0>	bit8-0	R	Receive buffer 7 data

5. 2. 13 UART Application Notes

The device offers two universal asynchronous receivers transmitters, UART0 and UART1.

The modulating signal from UART transmitter is modulated by a PWM signal generated by T16N or BUZ, and the modulated signal is output via TX0/TX1 port. For the PWM signal itself, whether it is output from T16N0OUT0, T16N0OUT1 or BUZ port has nothing to do with the modulation. That is to say, even if those ports are not multiplexed, the PWM signal can still modulate the output signal on TX0 and TX1 after proper configurations.

5. 3 Enhanced Universal Asynchronous Receiver Transmitter

5. 3. 1 Overview

- ♦ Can be configured as normal UART and compatible with all UART functions
- ♦ Supports 7816 mode and 7816 communication protocol
- ♦ Asynchronous receiver and transmitter
- ♦ Half duplex mode
- ♦ 8-bit data, 1 parity bit
- ♦ Auto re-transmission and re-reception
- Configurable internal clock output
- ♦ Configurable dual-channel communication

5. 3. 2 Block Diagram

Figure 5-24 EUART0 Block Diagram

5. 3. 3 EUART Port Multiplexing

EUART Multiplexed Port	Normal UART Mode	7816 Mode
E0TX0/E0CK0	E0TX0	E0CK0
E0TX1/E0CK1	E0TX1	E0CK1
E0RX0/E0IO0	E0RX0	E0IO0
E0RX1/E0IO1	E0RX1	E0IO1

Configure the corresponding I/O ports for the EUART function.

In the EUART_CON2 register,

Write MOD =0 to select the normal UART mode, and the E0TX0/ E0TX1 and E0RX0/ E0RX1 function are selected for the ports.

Write MOD =1 to select the 7816 mode, and the E0CK0/ E0CK1 and E0IO0/ E0IO1 function are selected for the ports.

The EUART module has two independent internal clock output ports: E0CK0 and E0CK1. Setting the CK0E/ CK1E bit can enable the clock port E0CK0/ E0CK1 to output the internal clock. The CKS<1:0> bits select the desired clock source.

The EUART module has two data pins (E0IO0 and E0IO1), and they can realize dual-channel communication by using the time division multiplexing technique. Select the desired the E0IO0/ E0IO1pin by the CHS.

5. 3. 4 Normal UART Mode

When the EUART module is configured as a normal UART, it supports all UART functions except for PWM modulation. Users can refer to the related sections for details on normal UART mode.

5. 3. 5 Asynchronous Receiver and Transmitter in 7816 Mode

The 7816 mode works in half-duplex mode. In this mode, the RXEN and TXEN bits of the EUART_CON0 register are invalid. Instead, the receiver and transmitter are enabled by the I/O direction control bit IOC of the EUART_CON2 register. The IOC bit also transmits or receives the ACK signal and controls the input and output state of the E0IO0/ E0IO1 port.

When IOC = 1, the EUART transmits data and receives ACK signals. The data transmission format begins with one start bit, followed by 8 data bits (LSB first) and ends with one parity bit. It also receives ACK signals. When two continuous data frames are being sent back to back, the time interval between the two frames must be larger than certain time, which is called Guard Time. The ETUS<7:0> bits of the EUART_CON2 register select the desired guard time. An ACK signal will be received after each frame is sent. Reading the RNACK bit of the EUART_CON2 register can determine whether an ACK signal is received or not. An ACK signal is a high level signal while a NACK signal is a low level signal. If the ACK signal is not received within the guard time, the NACK interrupt flag bit RNAIF will be set.

When IOC = 0, the EUART receives data and transmits ACK signals. The reception starts with the start bit, data bits (8-bit, LSB first) followed by the parity bit. If the received parity bit is correct, an ACK signal will then be sent. If not, an NACK signal will be sent. An ACK signal is a high level signal while a NACK signal is a low level signal. The TNAS<1:0> bits select the pulse width of NACK signals.

Configure the PS bit to select the odd or even parity check. On transmission, hardware will automatically generate and send an odd or even parity bit based on the data to be transmitted. On reception, hardware will perform the parity check based on the received data. If the parity check fails, the parity error interrupt flag bit PEIF of the EUART_IF register will be set.

4 transmit buffers: TB0, TB1, TB2 and TB3, and one transmit shift register are available. All buffer registers are read-only, and they can only be written via the EUART_TBW register.

Figure below shows the flow of data transmission.

Figure 5-25 EUART Transmit Data Flow in 7816

4 receive buffers: RB0, RB1, RB2 and RB3, and one receive shift register are available. The received data can be obtained by reading the EUART_RBR register.

Figure below shows the flow of data reception.

Figure 5-26 EUART Receive Data Flow in 7816

The ERST bit of the EUART_CON2 register is used to reset the 7816 module by software. Following an software reset, the data transfer will be disabled (TXEN=0 and RXEN=0); all associated interrupts will be disabled (TBIE=0, TBWEIE=0, RBIE=0, ROIE=0, FEIE=0, PEIE=0 and RNAIE=0); the related interrupt flag bits will be set to their default values (TBIF=1, BWEIF=0, RBIF=0, ROIF=0, FEIF=0, PEIF=0 and RNAIF=0); the busy flags will be cleared (TXBUSY=0 and RXBUSY=0); all transmit buffer empty flags will be set (TBEF0~TBEF3=1); all receive buffer full flags will be cleared (RBFF0~RBFF3=0); and error flags of all receive buffers will be cleared (FE0~FE3=0 and PE0~PE3=0).

5. 3. 6 Data Format in 7816 Mode

In 7816 mode, a data frame consists of an 8-bit data and 1 odd or even parity bit. Two data conventions are available, direct convention and inverse convention.

When DAS = 0 of the EUART_CON2 register, the direct convention is selected. The data written into the EUART_TBW register is identical with the actual data to be transmitted.

For example, write 0x50 into the EUART_TBW register in byte, clock it to the transmit shift register as 0x50 and generate a corresponding parity bit. The data sequence transmitted from the E0IO0/ E0IO port will be 0 (start bit) + 00001010 + parity bit. Similarly, if the data received from the E0IO0/E0IO1 port is 0x50, the actual data obtained by reading the EUART_RBR register is also 0x50.

When DAS = 1 of the EUART_CON2 register, the inverse convention is selected, where the data order is reversed and the data bit is in inverted polarity.

For example, write 0x50 (01010000 in binary) into the EUART_TBW register in byte. Reverse the data order to obtain 00001010, and invert the data bits to obtain 11110101 (0xF5), which will then be clocked to the transmit shift register. The corresponding parity bit will be generated based on 0xF5. The data sequence transmitted from the E0IO0/E0IO1 port will be 0 (start bit) + 10101111 + parity bit. Similarly, if the data received at the E0IO0/E0IO1 port is 0xF5, the actual data obtained by reading the EUART_RBR register is 0x50.

5. 3. 7 Auto Re-transmission in 7816 Mode

Auto re-transmission is supported in 7816 mode.

Write ARTE = 0 of the EUART_CON2 register to disable the auto-retransmission. When an NACK (ACK =0) is received, the NACK interrupt flag RNAIF will be set, as well as the RNACK (RNAIF =1, RNACK =1). After that, the next data frame will continue to be sent, and the RNACK will get updated accordingly, but the RNAIF will stay at 1 until the EUART is reset by software or the flag bit is cleared by software.

Here shows an example if the auto re-transmission is disabled during data transfer. Given that the transmit shift register holds the data 0x55 and the transmit buffer TB3 holds the data 0xAA, if the data 0x55 is successfully transmitted and an ACK is received, then the NACK interrupt flag RNAIF = 0 and RNACK = 0. In this case, the transmitter will go on to transmit 0xAA, and RNAIF and RNACK will get updated accordingly. If the transmitter fails to send 0x55 and an ACK is not received, then RNAIF=1, RNACK=1, and 0xAA will continue to be sent anyway. In this case, the RNACK will get updated accordingly but the RNAIF will stay at 1 no matter the 0xAA transmission succeeds or fails.

Write ARTE =1 of the EUART_CON2 register to enable the auto re-transmission. When an NACK is received, the previous data frame will be automatically re-transmitted, which will affect the RNACK but not the interrupt flag RNAIF. Configure ARTS<1:0> bits can select the number of times of re-transmission. During data re-transmission, when an ACK is received, the data re-transmission will be terminated. If the data transmission still fails by the time when it has reached the upper limit of re-transmission times, the current data and the following data transmission will be terminated, the auto re-transmission error interrupt flag ARTEIF will be set and the transmit busy flag TXBUSY will be cleared.

Here shows an example if the auto re-transmission is enabled during data transfer. Given that the transmit shift register holds the data 0x55, the transmit buffer TB3 holds the data 0xAA, and the number of times of re-transmission is 2, if the transmitter fails to send 0x55, then the transmit shift register still holds the data 0x55, the transmit buffer TB3 holds the data 0xAA, RNAIF=1, RNACK=1, ARTEIF=0 and TXBUSY=1. Thus, the data 0x55 will be re-transmitted for the first time. If an ACK is received, then RNACK =0, RNAIF =1, ARTEIF=0, TXBUSY=1, and the transmitter will proceed with the data 0xAA. If an NACK is received instead, then RNACK =1, RNAIF =1, ARTEIF=0, TXBUSY=1, and 0x55 will be re-transmitted for the second time. If the second attempt still fails, the data transmission will be terminated, RNACK =1, RNAIF =1, ARTEIF =1, TXBUSY =0, and the transmitter will not proceed with 0xAA.

5. 3. 8 Auto Re-reception in 7816 Mode

The auto re-reception is supported in 7816 mode.

In the EUART_CON2 register, write ARRE =0 to disable the auto re-reception function. An ACK will be sent within the guard time no matter the received parity bit is correct or not.

Write ARRE = 1 to enable the auto re-reception function. A NACK will be sent within the guard time if the received parity bit is incorrect. If the transmitter is able to re-transmit, the previous data frame will be sent after receiving the NACK.

5. 3. 9 Special Function Registers

EUART Control Register 0(EUART_CON0) Offset address :00_H 31 28 27 26 25 24 23 22 21 20 19 18 17 16 Reserved **RXP** RXMOD<3:0> Reserved **RBCLR RRST RXEN** 15 14 13 12 11 10 6 5 3 0 TXFS Reserved TXP **TBCLR** TRST TXEN TXMOD<3:0> Reserved

	1.110.1.55		
_	bit31-29	_	_
			Receive port polarity select bit
RXP	bit28	R/W	0: Positive (non-inverted)
			1: Negative (inverted)
			Receive mode select bits
			0000: 8-bit data
			0010: 9-bit data
			0100: 7-bit data
			1000: 8-bit + even parity bit
			1001: 8-bit + odd parity bit
RXMOD<3:0>	bit27-24	R/W	1010: 8-bit + 0 (fixed)
			1011: 8-bit + 1 (fixed)
			1100: 7-bit + even parity bit
			1101: 7-bit + odd parity bit
			1110: 7-bit + 0 (fixed)
			1111: 7-bit + 1 (fixed)
			Others: Not used
_	bit23-19	_	_
	5.125 15		Receive buffer clear bit
RBCLR	bit18	W	0: Always read as 0
ROOLK	Bit 10	•	1: Clear receive buffer
			Receiver software reset bit
RRST	bit17	W	
KKSI	DILIT	VV	0: Always read as 0
			1: Software reset
D./.T.	1.240	D ***	Receive enable bit
RXEN	bit16	R/W	0: Disabled
			1: Enabled
_	bit15-14	_	_
TXFS	bit13	R/W	Transmit frame stop bit select

Preliminary 206/341

			0: 1 stop bit 1: 2 stop bits
TXP	bit12	R/W	Transmit port polarity select bit 0: Positive (non-inverted) 1: Negative (inverted)
TXMOD<3:0>	bit11-8	R/W	Transmit mode select bits 0000: 8-bit data 0010: 9-bit data 0100: 7-bit data 1000: 8-bit + even parity bit 1001: 8-bit + odd parity bit 1010: 8-bit + 0 (fixed) 1011: 8-bit + 1 (fixed) 1100: 7-bit + even parity bit 1101: 7-bit + odd parity bit 1111: 7-bit + 1 (fixed) Others: Not used
_	bit7-3	_	_
TBCLR	bit2	W	Transmit buffer clear bit 0: Always read as 0 1: Clear transmit buffer
TRST	bit1	W	Transmitter software reset bit 0: Always read as 0 1: Software reset
TXEN	bit0	R/W	Transmit enable bit 0: Disabled 1: Enabled

EUA	EUART Control Register 1 (EUART_CON1)														
Offse	Offset address:04 _H														
Reset value:00000000_00000000_000000000 _B															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Reserved									RXBUSY	' TXBUSY
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserve	ed			BCS<2:0	S<2:0>		served	RBI	M <1:0>	Re	served	ТВІ	M<1:0>
	_		b	it31-18	3	_	_								
							Rec	eiver	busy	bit					
	RXBU	SY	Y bit17		R	0: ld	lle								
				1· Busy											

			Transmitter busy bit				
TXBUSY	bit16	R	0: Idle				
			1: Busy				
_	bit15-11		_				
			Baud rate clock select bits				
			000: Baud rate clock disabled				
BCS<2:0>	bit10-8	R/W	001: PCLK				
BC3<2.0>	DILTU-0	I IX/VV	010: PCLK/2				
			011: PCLK/4				
			1xx: PCLK/8				
_	bit7-6	_	_				
			Receive buffer full interrupt mode select bits				
			00: Byte full interrupt (buffers contain more than one				
RBIM <1:0>	bit5-4	R/W	byte)				
KDIIVI < 1.0>	DIIJ-4	K/VV	01: Half-word full interrupt (buffers contain more than				
			two bytes)				
			1x: Full interrupt (all buffers are full)				
_	bit3-2		_				
			Transmit buffer empty interrupt mode select bits				
			00: Byte empty interrupt (more than one byte is empty in				
TBIM<1:0>	bit1-0	R/W	buffers)				
I DIIVI< 1.U>	טונו-ט	I IK/VV	01: Half-word empty interrupt (more than two bytes are				
			empty in buffers)				
			1x: Empty interrupt (all buffers are empty)				

FUART	Control	Register 2	(ELIART	CONSI
	COLLEGE	INCOMISION E		CONL

Offset address:08_H

Reset value:00000000_00000000_00000000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res	Reserved TXFEND RNACK Reserved		BGTE	BGTE ETUS<7:0>											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	<1:0>	ARTS	<1:0>	TNA	S<1:0>	ARRE	ARTE	PS	DAS	IOC	CHS	CK1E	CK0E	ERST	MOD

_	bit31-30	_	_
			Transmit end flag bit
TXFEND	bit29	R/W	0: Not completed
			1: Completed
			Receive NACK bit
RNACK	bit28	R/W	0: Not received
			1: Received
_	Bit27-25	_	_

Preliminary 208/341

			Data blook guard time anable bit (22ETII)
BGTE	bit24	R/W	Data block guard time enable bit (22ETU) 0: Disabled
BGTE	UILZ4	17/1/	1: Enabled
			ETU guard time select bit
			0: 2x ETU
ETUS<7:0>	bit23-16	R/W	1: 3x ETU
L100<1.0>	טונבט־וט	R/VV	
			 255: 257x ETU
			ECK output clock source select bit
			00: UBC
CKS<1:0>	bit15-14	R/W	01: UBC/2
			10: UBC/4
			11: UBC/8
			Auto retransmission times select bits
			00: Once
ARTS<1:0>	hit12 12	R/W	01: Twice
AK15<1:0>	bit13-12		10: Thrice
			11: Keep re-transmitting until the data
			transmission is successful
			Transmit NACK pulse width select bits
TNAS<1:0>	bit11-10	R/W	00:1x ETU
110.0<1.0>		13/00	01:1.5x ETU
			1x: 2x ETU
		R/W	Auto re-reception enable bit
ARRE	bit9		0: Disabled
			1: Enabled
4575	1.22	5.44	Auto re-transmission enable bit
ARTE	bit8	R/W	0: Disabled
			1: Enabled
50	L:47	D 444	Parity check select bit
PS	bit7	R/W	0: Odd parity check
			1: Even parity check
DAS	bit6	R/W	Data format select bit 0: Direct convention
DAO	טונט	r./ VV	1: Inverse convention
IOC	bit5	R/W	EIO port direction control bit 0: receive data, transmit ACK
100	Dito	17/77	1: transmit data, receive ACK
			EIO communication channel select bit
CHS	bit4	R/W	0: E0IO0 port
	Dit	K/VV	1: E0IO1 port
			ECK1 port enable bit
CK1E	bit3	R/W	0: Disabled
0.00	Dito	1,7,7,7	1: Enabled
			=

			ECK0 port enable bit
CK0E	bit2	R/W	0: Disabled
			1: Enabled
			EUART module software reset bit
ERST	bit1	W	0: Always read as 0
			1: Software reset
			EUART mode select bit
MOD	bit0	R/W	0: Normal UART mode
			1: 7816 mode

Note: UBC is a prescaled baud rate clock, selected by BCS<2:0>.

EUART Baud Rate Register (EUART_BRR)

Offset address:10_H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved BRR<10:0>

_	bit31-11	_	_
BRR<10:0>	bit10-0	R/W	Baud rate configuration bits

Note: The baud rate calculations for EUART are as follows:

When BCS<2:0>=001, Fpclk/((BRR+1)*16).

When BCS<2:0>=010, Fpclk/((BRR+1)*32).

When BCS<2:0>=011, Fpclk/((BRR+1)*64).

When BCS<2:0>=1xx, Fpclk/((BRR+1)*128).

EUART Interrupt Enable Register (EUART_IE)

Offset address:18_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Rese	rved	RBREIE	Reserved	PEIE	FEIE	ROIE				Reser	ved			RBIE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	erved	RNAIE	ARTEIE	R	eserved		TBWEIE			Res	erved			TCIE	TBIE

_	bit31-29	_	_
RBREIE	bit28	R/W	Receive buffer read error interrupt enable bit

Preliminary 210/341

			0: Disabled		
			1: Enabled		
_	bit27		_		
			Receive parity error interrupt enable bit		
PEIE	bit26	R/W	0: Disabled		
			1: Enabled		
			Receive framing error interrupt enable bit		
FEIE	bit25	R/W	0: Disabled		
			1: Enabled		
			Receive overrun interrupt enable bit		
ROIE	bit24	R/W	0: Disabled		
			1: Enabled		
_	bit23-17	_	_		
			Receive buffer full interrupt enable bit		
RBIE	bit16	R/W	0: Disabled		
			1: Enabled		
_	bit15-14	_	_		
		R/W	Receive NACK interrupt enable bit		
RNAIE	bit13		0: Disabled		
			1: Enabled		
			Auto re-transmission error interrupt enable bit		
ARTEIE	bit12	R/W	0: Disabled		
			1: Enabled		
_	bit11-9	_	_		
			Transmit buffer write error interrupt enable bit		
TBWEIE	bit8	R/W	0: Disabled		
			1: Enabled		
_	bit7-2	_	_		
			Transmit complete interrupt enable bit		
TCIE	bit1	R/W	0: Disabled		
			1: Enabled		
			Transmit buffer empty interrupt enable bit		
TBIE	bit0	R/W	0: Disabled		
			1: Enabled		

EUART Interrupt Flag Register (EUART_IF)

Offset address:1C_H

Reset value:00000000_00000000_000000001_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Rese	rved	RBREIF	Reserved	PEIF	FEIF	ROIF				Reser	ved			RBIF
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	erved	RNAIF	ARTEIF	R	eserved		TBWEIF			Res	erved			TCIF	TBIF

	bit31-29		_
RBREIF	bit28	R/W	Receive buffer read error interrupt flag bit 0: No read error occurred 1: Read error occurred Clear this bit by software writing 1 and writing 0 has no effect.
_	bit27	_	_
PEIF	bit26	R/W	Receive parity error interrupt flag bit 0: No parity error occurred 1: Parity error occurred Clear this bit by software writing 1 and writing 0 has no effect.
FEIF	bit25	R/W	Receive framing error interrupt flag bit 0: No framing error occurred 1: Framing error occurred Clear this bit by software writing 1 and writing 0 has no effect.
ROIF	bit24	R/W	Receive overrun interrupt flag bit 0: No overrun occurred 1: Overrun occurred Clear this bit by software writing 1 and writing 0 has no effect.
	bit23-17	_	_
RBIF	bit16	R	Receive buffer full interrupt flag bit 0: Not full 1: Full (depends on the interrupt mode selected by RBIM) Clear this bit by reading the EUART_RBR register
_	bit15-14	<u> </u>	_
RNAIF	bit13	R/W	Receive NACK interrupt flag bit 0: NACK not received 1: NACK received Clear this bit by software writing 1 and writing 0

			has no effect.
ARTEIF	bit12	R/W	Auto re-transmission error interrupt flag 0: No re-transmission error occurred 1: Re-transmission error occurred Clear this bit by software writing 1 and writing 0 has no effect.
_	bit11-9		_
TBWEIF	bit8	R/W	Transmit buffer write error interrupt flag 0: No write error occurred 1: Write error occurred Clear this bit by software writing 1and writing 0 has no effect.
_	bit7-2	_	_
TCIF	bit1	R/W	Transmit complete interrupt flag bit 0: Not completed 1: Completed Clear this bit by software writing 1and writing 0 has no effect.
TBIF	bit0	R	Transmit buffer empty interrupt flag bit 0: Not empty 1: Empty (depends on the interrupt mode selected by TBIM) Clear this bit by writing the EUART_TBW register

Notes

- 1. When EUART interrupts are disabled, the corresponding interrupt flag will be set if an interrupt is triggered, however, no interrupt request will be generated.
- 2. For all interrupt flag bits in the EUART_IF register, writing 1 will clear the corresponding flag, and writing 0 has no effect. When reading, 1 indicates that the corresponding interrupt has occurred.

EUART Transmit Data Write Register (EUART_TBW) Offset address:20_H 28 24 23 TBW<31:16> 15 14 13 12 10 11 TBW<15:0> Write transmit buffer TBW<31:0> bit31-0 W Write in byte: write to TBW<7:0>

	Write in half-word: write to TBW<15:0>
	Write in word: write to TBW<31:0>

EUART Receive Data Read Register (EUART_RBR)

Offset address:24_H

01100	· aaai oo	J In													
Rese	Reset value:00000000_00000000_0000000000000000000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RBR	<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

RBR<15:0>

			Read receive buffer
DDD 421.05	bit31-0	В	Read in byte: read from RBR<7:0>
RBR<31:0>	DII31-0	R	Read in half-word: read from RBR<15:0>
			Read in word: read from RBR<31:0>

EUAR Transmit Buffer Register 0/1 (EUART_TB01)

Offset address:40_H

Reset value:00100000_00000000_00100000_00000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res	served	TBEF1	TP1		Reserve	ed					TB1<8:0	0>			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	Reserved TBEF0 TP0 Reserved						TB0<8:0	0>							

_	bit31-30	_	_
TBEF1	bit29	R	Transmit buffer 1 empty flag bit 0: Full 1: Empty
TP1	bit28	R	Transmit parity bit The parity bit corresponds to the data in transmit buffer 1.
_	bit27-25		_
TB1<8:0>	bit24-16	R	Transmit buffer 1 data
_	bit15-14	_	_
TBEF0	bit13	R	Transmit buffer 0 empty flag bit 0: Full 1: Empty
TP0	bit12	R	Transmit parity bit

Preliminary 214/341

			The parity bit corresponds to the data in transmit buffer 0.
_	bit11-9	_	_
TB0<8:0>	bit8-0	R	Transmit buffer 0 data

EUART Transmit Buffer Register 2/3 (EUART_TB23)

Offset address:44_H

Reset value:00100000_00000000_00100000_00000000 _B
, 116361 Value.00100000_00000000_00100000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res	erved	TBEF3	TP3		Reserve	ed					TB3<8:0)>			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	erved	TBEF2	TP2		Reserved						TB2<8:0)>			

	I		I
_	bit31-30	_	_
			Transmit buffer 3 empty flag bit
TBEF3	bit29	R	0: Full
			1: Empty
			Transmit parity bit
TP3	bit28	R	The parity bit corresponds to the data in transmit
			buffer 3.
_	bit27-25	_	_
TB3<8:0>	bit24-16	R	Transmit buffer 3 data
_	bit15-14	_	_
			Transmit buffer 2 empty flag bit
TBEF2	bit13	R	0: Full
			1: Empty
			Transmit parity bit
TP2	bit12	R	The parity bit corresponds to the data in transmit
			buffer 2.
_	bit11-9	_	_
TB2<8:0>	bit8-0	R	Transmit buffer 2 data

EUART Receive Buffer Register 0/1 (EUART_RB01)

Offset address:48_H

Reset value:00000000_00000000_000000000_B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PE1	FE1	RBFF1	RP1		Reserve	ed					RB1<8:0)>			

13	14	13	12	11	10	9	0	,	Ü	3	4	3	 '	U
PE0	FE0	RBFF0	RP0		Reserve						RB0<8:	Λ \		

			Receive buffer 1 parity error flag bit
PE1	bit31	R	0: No error occurred
			1: Error occurred
			Receive buffer 1 framing error flag bit
FE1	bit30	R	0: No error occurred
			1: Error occurred
			Receive buffer 1 full flag bit
RBFF1	bit29	R	0: Empty
			1: Full
DD4	h:400	0	Received parity bit
RP1	bit28	R	The corresponding parity bit received in receive buffer 1
_	bit27-25	_	_
RB1<8:0>	bit24-16	R	Receive buffer 1 data
			Receive buffer 0 parity error flag bit
PE0	bit15	R	0: No error occurred
			1: Error occurred
			Receive buffer 0 framing error flag bit
FE0	bit14	R	0: No error occurred
			1: Error occurred
			Receive buffer 0 full flag bit
RBFF0	bit13	R	0: Empty
			1: Full
RP0	hit10	В	Received parity bit
KPU	bit12	R	The corresponding parity bit received in receive buffer 0
	bit11-9		_
RB0<8:0>	bit8-0	R	Receive buffer 0 data

EUART Receive Buffer Register 2/3 (EUART_RB23) Offset address:4C _H 31 30 27 26 25 23 22 21 17 16 29 28 24 20 19 18 PE3 FE3 RBFF3 RP3 Reserved RB3<8:0> 15 13 12 11 7 PE2 FE2 RBFF2 RP2 RB2<8:0> Reserved

			Receive buffer 3 parity error flag bit
PE3	bit31	R	0: No error occurred
			1: Error occurred
			Receive buffer 3 framing error flag bit
FE3	bit30	R	0: No error occurred
			1: Error occurred
			Receive buffer 3 full flag bit
RBFF3	bit29	R	0: Empty
			1: Full
DD2	F:400	Б	Received parity bit
RP3	bit28	R	The corresponding parity bit received in receive buffer 3
_	bit27-25	_	_
RB3<8:0>	bit24-16	R	Receive buffer 3 data
			Receive buffer 2 parity error flag bit
PE2	bit15	R	0: No error occurred
			1: Error occurred
			Receive buffer 2 framing error flag bit
FE2	bit14	R	0: No error occurred
			1: Error occurred
			Receive buffer 2 full flag bit
RBFF2	bit13	R	0: Empty
			1: Full
DDO	F:440	Б	Received parity bit
RP2	bit12	R	The corresponding parity bit received in receive buffer 2
_	bit11-9	_	_
RB2<8:0>	bit8-0	R	Receive buffer 2 data

5. 3. 10 EUART Application Notes

The device offers one enhanced universal asynchronous receiver transmitter EUART0.

5. 4 Serial Peripheral Interface SPI (SPI0 /SPI1)

The device provides two identical SPIs, and this section uses SPI0 as an example.

5. 4. 1 Overview

- Master and slave mode
- 4 data format options
- ♦ Configurable clock rate in master mode
- Multiple frame width options: 1bit through 8 bits
- 4-level transmit buffers and 4-level receive buffers
- Transmit buffer empty interrupt flag and receive buffer full interrupt
- Receive overrun interrupt, transmit data write error interrupt, and transmit data error interrupt (slave mode only)
- ♦ Chip-select interrupt in slave mode, idle interrupt in master mode
- ♦ Receive delay in master mode
- ♦ Transmit interval in master mode

5. 4. 2 Block Diagram

Figure 5-27 SPI0 Block Diagram

5. 4. 3 SPI Communication Mode

The SPI module supports both master mode and slave mode, selected by the MS bit of the SPI_CON register.

SCK0: the serial clock pin

NSS0: the chip select pin to select a slave device (in slave mode)

MOSI0: Master output/ slave input pin MISO0: Master input/ slave output pin

In master mode, any I/O pin can be used as a chip-select pin.

SPI Port	Master Mode	Slave Mode
SCK0	Support	Support
MOSI0	Support	Support
MISO0	Support	Support
NSS0	_	Support

Preliminary 218/341

5. 4. 4 SPI Data Format

The DFS bits of the SPI_CON register selects the data format. The data is transmitted and received with the MSB first. If the SPI transmits the data first and receives data later, the output pin MOSI0 (or MISO0) will send the MSB of the data on the first edge of SCK0. On the contrary, the output pin MOSI0 (or MISO0) will send the MSB before the first edge of SCK0.

Figures below show the data clock timing diagrams in slave mode

DFS<1:0> = 00: transmit on a rising edge (first), receive on a falling edge (later)

Figure 5-28 Transmit on a rising edge and receive on a falling edge

DFS<1:0> = 01, transmit on a falling edge (first), receive on a rising edge (later)

Figure 5-29 Transmit on a falling edge and receive on a rising edge

DFS<1:0> = 10, receive on a rising edge (first), transmit on a falling edge (later)

Figure 5-30 Receive on a rising edge and transmit on a falling edge

DFS<1:0> = 11, receive on a falling edge (first), transmit on a rising edge (later)

Figure 5-31 Receive on a falling edge and transmit on a rising edge

5. 4. 5 SPI Data Width

The DW<2:0> bits of the SPI_CON register configure the data width with options from 1 bit through 8 bits.

The SPI module supports synchronous transmitter/ receiver with capacity of 4 bytes. The transmit/receive buffer employs byte-alignment, and each buffer stores one frame of data. The transmitter or receiver can store 4+1 frames of data. The data in the buffer is right-aligned. The +1 frame is stored in shift register.

5. 4. 6 SPI Synchronous Transmitter

The synchronous transmitter offers 4 transmit buffers (TB0, TB1, TB2 and TB3) and 1 transmit shift register, which is able to accomplish the continuous data transmission, and up to 5 frames can be written and transmitted. The transmit buffers TB0~TB3 are read-only, and can be written via the transmit buffer write register SPI_TBW.

The SPI_TBW register is a virtual address location and has no physical address. When written, the data is actually written into the transmit buffer. After that, the data is shifted to the transmit shift register and then transmitted via the MOSI0 pin (or MISO0).

The data can be written in byte, half-word and word.

When the SPI_TBW is written in byte, the data is stored in TB0. When written in half-word, the data is stored in TB0 and TB1 with low byte in TB1. When written in word, the data is stored in TB0, TB1, TB2 and TB3 with the lowest byte in TB3.

Data transmission in master mode is shown below.

Figure 5-32 SPI Data Transmission Diagram

The transmit buffer interrupt can be configured for different modes by the TBIM bits of the SPI_IE register.

Write TBIM<1:0> =00 to select the byte empty interrupt. The interrupt flag TBIF of the SPI_IF register will be set if the TB0 is empty.

Write TBIM<1:0> =01 to select the half-word empty interrupt. The interrupt flag TBIF of the SPI_IF register will be set if TB0 and TB1 are both empty.

Write TBIM<1:0> =10 to select the word empty interrupt. The interrupt flag TBIF of the SPI_IF register will be set if TB0, TB1, TB2 and TB3 are all empty.

The transmit buffer write error interrupt is supported. The write error interrupt flag TBWEIF will be set if a write access error occurs.

5. 4. 7 SPI Synchronous Receiver

The synchronous receiver offers 4 receive buffers (RB0, RB1, RB2 and RB3) and 1 receive shift register, which is able to realize the continuous data reception, and up to 5 frames can be received in serial.

Reading the receive buffer register SPI_RBR can obtain the received data, and can also clear the corresponding receive buffer full flag RBFF0~RBFF3. Alternatively, reading the receive buffer RB0~RB3 can also obtain the received data, but will not clear the corresponding flag RBFF0~RBFF3.

The SPI_RBR register is a virtual address location and has no physical address. When read, it is actually reading the receive buffer RB0~RB3.

The data can be read in byte, half-word and word.

When the SPI_RBR is read in byte, it reads the data received in RB0. When read in half-word, it reads the data received in RB0 and RB1 with low byte in RB0. When read in word, it reads the data received in RB0, RB1, RB2 and RB3 with the lowest byte in RB0.

Data reception in master mode is shown below.

Figure 5-33 SPI Data Reception Diagram

The synchronous receiver operates in the following sequence

When receive buffers are all empty, the receive shift register shifts the data to RB0 one by one.

When RB1, RB2 and RB3 are empty, the receive shift register shifts the data to RB1.

When RB2 and RB3 are empty, the receive shift register shifts the data to RB2.

When RB3 is empty, the receive shift register shifts the data to RB3.

When the data of a receive buffer has been shifted to the next buffer, the corresponding flag RBFF0~RBFF3 will be cleared.

When the four receive buffers and 1 receive shift register are full, if more data is arriving, the receive overrun interrupt flag will be set, no new data will be accepted, and the data in the buffers will be maintained.

The receive buffer interrupt can be configured for different modes by the RBIM bits of the SPI_IE register.

Write RBIM<1:0> =00 to select the byte full interrupt. The interrupt flag RBIF of the SPI_IF register will be set if the RB0 is full.

Write RBIM<1:0> =01 to select the half-word full interrupt. The interrupt flag RBIF of the SPI_IF register will be set if RB0 and RB1 are both full.

Write RBIM<1:0> =10 to select the word full interrupt. The interrupt flag RBIF of the SPI_IF register will be set if RB0, RB1, RB2 and RB3 are full.

5. 4. 8 SPI Communication Control

The SPI module can be configured in master mode and slave mode. When configured in master mode, configure the SPI_CKS to set the clock rate, and determine whether to enable the receive delay and transmit interval. When configured in slave mode, the clock rate is issued by the master. Configure the EN and REN of the SPI_CON register to enable the data transmission and reception. Write the data to be transmitted to the SPI_TBW to start transmission, and read the SPI_RBR to obtain the received data.

In master mode, the master device will enter idle state after all the data of the transmit buffers and transmit shift register have been sent out. The IDLE flag of the SPI_STA register will be set, as well as the idle interrupt flag IDIF in the SPI_IF register.

In slave mode, if the slave device receives a serial clock from a master, and the transmit buffers and transmit shift register are all empty, the transmit error interrupt flag TEIF will be set.

In slave mode, the chip-select interrupt is enabled by the NSSIE bit of the SPI_IE register.

The SPI module can be reset by software by configuring the RST bit of the SPI_CON register. Following a software reset, the data transfer is disabled EN =0; the associated interrupts are disabled TBIE=0, TBWEIE=0, RBIE=0, TEIE=0, ROIE=0, IDIE=0 and NSSIE=0; the corresponding interrupt flags are reset to their default values TBIF=1,

TBWEIF=0, RBIF=0, TEIF=0, ROIF=0, IDIF=0 and NSSIF=0; the idle flag is set IDLE=1; all transmit buffer empty flags are set TBEF0~TBEF3 =1; and all receive buffer full flags are cleared RBFF0~RBFF3=0.

5. 4. 9 SPI Receive Delay

During data transfer, the data transmission and reception are synchronized by using the rising/falling edge. In normal communication, the data transmitted by a slave is supposed to arrive at the master receive port within half a clock period, otherwise, it would cause data lost.

In master mode, it is design with the receive delay capability, which can be enabled by the DRE bit of the SPI_CON register. Once enabled, a master can delay another half a clock cycle to receive the data on the next clock edge, which results to a maximum delay close to 1 clock cycle from a slave transmit port to a master receive port

Example: Write DFS<1:0> =00 to transmit on a rising edge (first) and receive on a falling edge (later).

Figure 5-34 SPI Receive Delay Waveforms

5. 4. 10 SPI Transmit Interval between Data Frames

Configure the TME bit of the SPI_CON register to enable the transmit interval. The number of interval cycles is selected by the TMP bits. When the transmit interval is enabled, the transmitter will wait for a preset interval after the completion of each data transmission then proceed with the next data frame.

5. 4. 11 Special Function Registers

SPI Cont	SPI Control Register (SPI_CON)														
Offset ad	Offset address:00 _H														
Reset val	Reset value:00000111_00000000_00000000_00000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RXCLR	TXCLR	R	eserve	d		DW<2:0>			TMP<5:0>						TME

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		F	Reserve	ed				DF	S<1:0>	DRE	Reserved	REN	MS	RST	EN

	1	1	_
			SPI receive buffer clear bit
RXCLR	bit31	W	0: No effect
			1: Clear receive buffer
			SPI transmit buffer clear bit
TXCLR	bit30	W	0: No effect
			1: Clear transmit buffer
_	bit29-27		_
DW<2:0>	bit26-24	R/W	SPI data width (1~8 bits)
DVV<2.0>	DI(20-24	17/77	One frame consists DW<2:0> +1 bit
			SPI transmit interval between data frames
TMP<5:0>	bit23-18	R/W	(master mode only)
			See details in Note 1
			SPI transmit interval status bit (master mode
TMC	b:#4.7	R	only)
TMS	bit17	I K	0: Non transmit interval state
			1: During transmit interval state
		R/W	SPI transmit interval enable bit (master mode
T.4F	bit16		only)
TME			0: Disabled
			1: Enabled
_	bit15-8	_	_
			SPI data format select bits
			00: Transmit on rising edge (first), receive on
			falling edge (later)
			01: Transmit on falling edge (first), receive on
DFS<1:0>	bit7-6	R/W	rising edge (later)
			10: Receive on rising edge (first), transmit on
			falling edge (later)
			11: Receive on falling edge (first), transmit on
			rising edge (later)
			SPI receive delay enable bit (master mode
DRE	bit5	R/W	only)
			0: Disabled
L		ı	1

			1: Enabled
	bit4	_	_
			SPI receive enable bit
REN	bit3	R/W	0: Disabled
INLIN	Dito	K/VV	1: Enabled (EN needs to be enabled at the same
			time)
			SPI mode select bit
MS	bit2	R/W	0: Master mode
			1: Slave mode
			SPI software reset bit
DOT	h:44	101	0: Always read as 0
RST	bit1	W	1: Software reset. Automatically cleared by
			software.
			SPI transmit enable bit
EN	bit0	R/W	0: Disabled
			1: Enabled, data transmit function is enabled only.

Notes

- The transmit interval calculation is expressed as follows.
 TSCK * (1 + TMP), which suggests the interval can be from 1~ 64x TSCK
- 2. Due to the fact that different data formats require different initial voltage levels (see the waveforms in the corresponding section), if the initial values of the SPI ports are undetermined, select the data format first and the port initial values will be automatically configured. After that, enable the transmitter and receiver by setting EN and REN, which in this case requires two separate write operations to the SPI_CON register; otherwise it would cause a communication error.

SPI Transmit Data Write Register (SPI_TBW) Offset address:08_H TBW<31:16> TBW<15:0>

			Write transmit buffer
TBW<31:0>	bit31-0	W	Write in byte: write to TBW<7:0>
1000<31.0>	DIGI-U VV	VV	Write in half-word: write to TBW<15:0>
			Write in word: write to TBW<31:0>

Preliminary 225/341

Offse	t addres	s:0C _H													
Rese	t value:0	0000000	_000000	000_000	00000_0	0000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RBR	<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RBF	R<15:0>							

			Read receive data
RBR<31:0>	Read in half-word: read from R	Read in byte: read from RBR<7:0>	
KDK<31.0>		Read in half-word: read from RBR<15:0>	
			Read in word: read from RBR<31:0>

SPI Interrupt Enable Register (SPI_IE)
--

Offs	et add	ress:1	0 _H												
Res	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23 2	22 2	1	20	19	18	17	16
								R	eserved						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved		RBIN	/l<1:0>	TBIN	1<1:0>	Reserved	TBWEIE	NSSIE	IDIE	ROIE	TEIE	RBIE	TBIE

	1	1	
_	bit31-12	_	_
RBIM<1:0>	bit11-10	R/W	SPI receive buffer full interrupt mode select bits 00: An interrupt occurs if RB0 is full 01: An interrupt occurs if RB0 and RB1 are both full 10: An interrupt occurs if RB0, RB1, RB2 and RB3 are full 11: Reserved
TBIM<1:0>	bit9-8	R/W	SPI transmit buffer empty interrupt mode select bits 00: An interrupt occurs if TB0 is empty 01: An interrupt occurs if TB0 and TB1 are both empty 10: An interrupt occurs if TB0, TB1, TB2 and TB3 are empty 11: Reserved
_	bit7	_	_
TBWEIE	bit6	R/W	SPI transmit data write error interrupt enable

Preliminary 226/341

			bit
			0: Disabled
			1: Enabled
			SPI chip-select change interrupt enable bit
NSSIE	bit5	R/W	(slave mode only)
NOOIL	Dito	17/77	0: Disabled
			1: Enabled
			SPI idle interrupt enable bit (master mode
IDIE	bit4	R/W	only)
IDIL	Dit	17/77	0: Disabled
			1: Enabled
			SPI receive overrun interrupt enable bit
ROIE	bit3	R/W	0: Disabled
			1: Enabled
			SPI transmit error interrupt enable bit (slave
TEIE	bit2	R/W	mode only)
1 - 1 - 1	DILZ	17,77	0: Disabled
			1: Enabled
			SPI receive buffer full interrupt enable bit
RBIE	bit1	R/W	0: Disabled
			1: Enabled
			SPI transmit buffer empty interrupt enable bit
TBIE	bit0	R/W	0: Disabled
			1: Enabled

SPI	SPI Interrupt Flag Register (SPI_IF)															
Offs	Offset address:14 _H															
Res	et valu	e:0000	0000_	_00000	0000_0	00000	00_000	00001 _B								
31	30	29	28	27	26	25	24	23	22		21	20	19	18	17	16
									Re	eserved						
15	14	13	12	11	10	9	8	7	6		5	4	3	2	1	0
				Rese	rved				-	TBWEIF	NSSIF	IDIF	ROIF	TEIF	RBIF	TBIF

_	bit31-7	_	_
TBWEIF	bit6	R/W	 SPI transmit buffer write error interrupt flag bit 0: No write error. 1: Write error occurred. Following access errors may happen. When written in word, not all buffers are empty.

Preliminary 227/341

			 When written in half-word, more than 2 buffers are not empty. When written in byte, all buffers are full. Write SPI_TBW<31:16> with a half-word Write SPI_TBW<31:8> with a word Clear this bit by software writing 1 and writing 0 has no effect.
NSSIF	bit5	R/W	Chip-select change interrupt flag bit (slave mode only) 0: Chip-select signal not changed 1: Chip-select signal changed Clear this bit by software writing 1 and writing 0 has no effect.
IDIF	bit4	R/W	Idle interrupt flag bit (master mode only) 0: Not entered idle state 1: Entered idle state Clear this bit by software writing 1 and writing 0 has no effect. Alternatively, write the SPI_TBW register to clear the flag.
ROIF	bit3	R/W	SPI receive overrun interrupt flag bit 0: No overrun 1:Overrun occurred Clear this bit by software writing 1 and writing 0 has no effect.
TEIF	bit2	R/W	SPI transmit error interrupt flag bit (slave mode only) 0: No error 1: Error occurred: a slave receives a clock from a master while the transmit buffers and shift register are all empty. Clear this bit by software writing 1 and writing 0 has no effect.
RBIF	bit1	R	SPI receive buffer full interrupt flag bit Read the SPI_RBR register to clear the flag.
TBIF	bit0	R	SPI transmit buffer empty interrupt flag bit Write the SPI_TBW register to clear the flag.

Notes

- 1. When SPI interrupts are disabled, the corresponding interrupt flag will be set if an interrupt is triggered, however, no interrupt request will be generated..
- 2. For each interrupt flag in the SPI_IF register, they can be cleared by software writing 1 and writing 0 has no effect. When reading, 1 indicates that the corresponding interrupt has occurred.

SPI Tr	ansmit																
Offset	address	::18 _H															
Reset	value:00	00000	00_000	0000_0000	00000_0	000000 _E	3										
31	30	29	28	27	26	25	24	23	3 22	21		20	19	18	17		16
			Т	B3<7:0>								TB2<	<7:0>				
								<u> </u>									
15	14	13	12	11	10	9	8	7	6	5		4	3	2	1	(0
			- 1	B1<7:0>								180<	<7:0>				
	TB:	3<7:0)>		bit31-	24		R	Transı	nit bu	ffer :	3 data	<u> </u>				
		2<7:(bit23-			R	Transı								
		1<7:0			bit15			R	Transı								
	TB)<7:(0>		bit7-	0		R	Transı	nit bu	ffer () data	 а				
Offset																	
	address		20, 0000	0000 0000	20000 0	2000000											
			00_000	0000_0000	00000_0	000000 _E	3										
Reset			28	27	26	0000000 _E	24	23	3 22	21		20	19	18	17		16
Reset	value:00	000000	28					23	3 22	21			19 <7:0>	18	17		16
Reset	value:00	000000	28	27				23	3 22 6	21				18	17		16
Reset	value:00	29	28 R 12	27 B3<7:0>	26	25	24					RB2	<7:0>				
31 15	30 14	29	28 R 12	27 B3<7:0> 11 B1<7:0>	10	9	8	7	6	5		RB2- 4 RB0-	<7:0>				
31 15	30 14 RB3<	29	28 R 12	27 B3<7:0> 11 B1<7:0> bit31	10	25 9	8	7 Rece	6 eive bu	5 ffer 3	data	RB2-4 RB0-	<7:0>				
Reset 31 15	30 14 RB3<	29 13 7:0>	28 R 12	27 B3<7:0> 11 B1<7:0> bit31 bit23	26 10 -24 -16	25 9	8	7 Reco	6 eive bu	5 ffer 3 ffer 2	data	RB2-	<7:0>				
Reset 31 15	30 14 RB3 <rb2<rb1<< td=""><td>29 13 7:0> 7:0></td><td>28 R 12</td><td>27 B3<7:0> 11 B1<7:0> bit31 bit23 bit15</td><td>26 10 -24 -16 5-8</td><td>9 R</td><td>8</td><td>Reco</td><td>6 eive bu eive bu</td><td>ffer 3 ffer 2 ffer 1</td><td>data data data</td><td>RB2-4 4 RB0-</td><td><7:0></td><td></td><td></td><td></td><td></td></rb2<rb1<<>	29 13 7:0> 7:0>	28 R 12	27 B3<7:0> 11 B1<7:0> bit31 bit23 bit15	26 10 -24 -16 5-8	9 R	8	Reco	6 eive bu eive bu	ffer 3 ffer 2 ffer 1	data data data	RB2-4 4 RB0-	<7:0>				
Reset 31 15	30 14 RB3<	29 13 7:0> 7:0>	28 R 12	27 B3<7:0> 11 B1<7:0> bit31 bit23	26 10 -24 -16 5-8	25 9	8	Reco	6 eive bu	ffer 3 ffer 2 ffer 1	data data data	RB2-4 4 RB0-	<7:0>				
Reset 31 15	30 14 RB3 <rb2<rb1<< td=""><td>29 13 7:0> 7:0></td><td>28 R 12</td><td>27 B3<7:0> 11 B1<7:0> bit31 bit23 bit15</td><td>26 10 -24 -16 5-8</td><td>9 R</td><td>8</td><td>Reco</td><td>6 eive bu eive bu</td><td>ffer 3 ffer 2 ffer 1</td><td>data data data</td><td>RB2-4 4 RB0-</td><td><7:0></td><td></td><td></td><td></td><td></td></rb2<rb1<<>	29 13 7:0> 7:0>	28 R 12	27 B3<7:0> 11 B1<7:0> bit31 bit23 bit15	26 10 -24 -16 5-8	9 R	8	Reco	6 eive bu eive bu	ffer 3 ffer 2 ffer 1	data data data	RB2-4 4 RB0-	<7:0>				
Reset 31 15	30 14 RB3< RB2< RB1< RB0<	29 13 7:0> 7:0> 7:0>	28 R 12	27 B3<7:0> 11 B1<7:0> bit31 bit23 bit15 bit7	26 10 -24 -16 5-8	9 R	8	Reco	6 eive bu eive bu	ffer 3 ffer 2 ffer 1	data data data	RB2-4 4 RB0-	<7:0>				
Reset 31 15 F F SPI St Offset	30 14 RB3< RB2< RB1< RB0< address	29 13 13 7:0> 7:0> 7:0> 7:0> 7:0>	28 R 12 R	27 B3<7:0> 11 B1<7:0> bit31 bit23 bit15 bit7	-24 -16 5-8 -0	9 R R R	8	Reco	6 eive bu eive bu	ffer 3 ffer 2 ffer 1	data data data	RB2-4 4 RB0-	<7:0>				
Reset 31 15 F F SPI St Offset	30 14 RB3< RB2< RB1< RB0< address	29 13 13 7:0> 7:0> 7:0> 7:0> 7:0>	28 R 12 R	27 B3<7:0> 11 B1<7:0> bit31 bit23 bit15 bit7	-24 -16 5-8 -0	9 R R R	8	Reco	6 eive bu eive bu	ffer 3 ffer 2 ffer 1	data data data	RB2-4 4 RB0-	<7:0>				
Reset 31 15 F F SPI St Offset Reset	30 14 RB3< RB2< RB1< RB0< address	13 13 17:0> 7:0> 7:0> 29 13	28 R 12 R	27 B3<7:0> 11 B1<7:0> bit31 bit23 bit15 bit7	-24 -16 5-8 -0	9 R R R	8	Reco	6 eive bu eive bu	ffer 3 ffer 2 ffer 1	data data data	RB2-4 4 RB0-	<7:0>				0
Reset 31 15 F F SPI St Offset Reset	value:00 30 14 RB3<7 RB2<7 RB1<7 RB0<7	13 13 17:0> 7:0> 7:0> 29 13	28 R 12 R 12 R 00_0000	27 B3<7:0> 11 B1<7:0> bit31 bit23 bit15 bit7	26 10 -24 -16 5-8 -0	9 RRRRR	8	Reco Reco Reco	eive bu eive bu eive bu	ffer 3 ffer 2 ffer 1 ffer 0	data data data data	RB2-	3 3 <7:0>	2	1		16
Reset 31 15 F F SPI St Offset	value:00 30 14 RB3<7 RB2<7 RB1<7 RB0<7	13 13 7:0> 7:0> 7:0> 9 13 13	28 R 12 R 12 R 00_0000	27 B3<7:0> 11 B1<7:0> bit31 bit23 bit15 bit7	26 10 -24 -16 5-8 -0	9 RRRRR	8 Res	Reco Reco Reco	eive bu eive bu eive bu	ffer 3 ffer 2 ffer 1 ffer 0	data data data data	RB2-	3 3 <7:0>	2	1		

_	bit31-17	_	_
IDLE	bit16	R	SPI idle flag bit (master mode only)
			0: Not idle

			1: Idle
			RB3 full flag bit
RBFF3	bit15	R	0: Empty
			1: Full
			RB2 full flag bit
RBFF2	bit14	R	0: Empty
			1: Full
			RB1 full flag bit
RBFF1	bit13	R	0: Empty
			1: Full
			RB0 full flag bit
RBFF0	bit12	R	0: Empty
			1: Full
			TB3 empty flag bit
TBEF3	bit11	R	0: Full
			1: Empty
			TB2 empty flag bit
TBEF2	bit10	R	0: Full
			1: Empty
			TB1 empty flag bit
TBEF1	bit9	R	0: Full
			1: Empty
			TB0 empty flag bit
TBEF0	bit8	R	0: Full
			1: Empty
			SPI chip-select flag bit (slave mode only)
NSS	bit7	R	0: Selected
			1: Not selected
_	bit6-0	_	_

SPI Baud Rate Register (SPI_CKS)

Offset address:24_H

Rese	t value:0	0000000	0_00000	000_000	000000_0	0000100	OB .								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reser	ved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

_	bit31-8	_	_
			SPI baud rate select bits (master mode only)
CKS<7:0>	bit7-0	R/W	SPI baud rate calculations
			When CKS<7:0> = $0x00$: F_{PCLK}

Preliminary 230/341

Reserved

CKS<7:0>

	When CKS<7:0> = $0x01 \sim 0xFF$: $F_{PCLK}/(CKS * 2)$
	1 WHEH CROS(1.02 = 0X01~0X11.1 PCIK/(CRO 2)

5. 4. 12 SPI Application Notes

Two synchronous serial interfaces are available, SPI0 and SPI1.

To ensure proper communications, the following configurations must be observed.

- When a filter is used on the SPI ports, the SPI clock frequency must be less than 20Mz. To ensure of the stability of the communication, enabling the port filter is recommended.
- 2) The following relations exist between SPI data width and the CKS configuration.

When the frame width is $5\sim8$ bits, CKS >= 0;

When the frame width is $2\sim4$ bits, CKS >= 1;

When the frame width is 1 bit, CKS > 2.

3) Due to that different data formats require different initial voltage levels (see the waveforms in the corresponding section), if the initial values of the SPI ports are undetermined, select the data format first and the port initial values will be automatically configured. After that, enable the transmitter and receiver by setting EN and REN, which in this case requires two separate write operations to the SPI_CON register.

5. 5 Inter-integrated Circuit Interface (I2C0)

5. 5. 1 Overview

- Single master mode
 - Auto repeated call function
 - Auto Stop bit transmission
 - ACK delay
 - Transmit interval between data frames
 - Software triggered Start bit
 - Software triggered Stop bit
 - Software triggered data reception with configurable receive mode
- ♦ Slave mode
 - 7-bit slave address
 - Slave address match interrupt flag
 - Receive stop bit interrupt flag
 - Auto clock stretching
 - Auto NACK transmission
- ♦ 4-level transmit buffers and 4-level receive buffers
- ♦ Configurable push-pull output or open drain output on both SCL0 and SDA0 pins
- ♦ Configurable samplers (speed:16X) available on both SCL0 and SDA0 pins
- ♦ Transmit buffer empty interrupt and receive buffer full interrupt
- Start bit interrupt and stop bit interrupt
- ♦ Receive overrun interrupt and transmit data write error interrupt

5. 5. 2 Block Diagram

Figure 5-35 I2C Block Diagram

5. 5. 3 I2C Bus Basic Principle

5. 5. 3. 1 I2C Communication Protocol

Figure 5-36 I2C Bus Communication Protocol Diagram

The following protocol must be strictly observed in I2C communication.

A master device initiates a communication by sending a start bit to control the bus and a stop bit to release the bus.

The bus has multi-master capability (prior to that, each master must support multi-master arbitration mechanism) and at least 1 slave. Each slave must have an independent and unique address.

The master sends a start bit, followed by a slave address and a read/write bit.

The read/write bit R/\overline{W} (also called direction bit) is to notify the slave the direction of the data transfer. 0 indicates the master is writing data to the slave while 1 indicates the master is reading data from the slave.

I2C communication protocol supports the acknowledge mechanism. A receiver must respond with an ACK signal or NACK signal after a data byte (including the slave address) is transmitted by a transmitter, thereby, the transmitter will act accordingly.

If the SCL of both master and slave device are open drain and the master supports SCL wait request, the slave can stretch the SCL when it is at low level, allowing the master to wait for the slave until the slave releases the SCL.

The MSB is always sent first.

During I2C communication, the level of the SDA changes only when the clock line SCL is held low, and remains unchanged when the SCL is held high. If the SDA changes while the SCL is high, a start bit or a stop bit will be triggered, where a high to low transition triggers a start bit and a low to high transition triggers a stop bit.

5. 5. 3. 2 I2C Data Transfer

The data transfer format is determined by the specific design specification of a slave device. The following format introduced is the most commonly used.

Figure 5-37 Master Writing to Slave

Figure 5-38 Master Reading from Slave

5. 5. 4 I2C Port Configuration

The SCL0 and SDA0 pins are both designed with push-pull output and open-drain output, controlled by SCLOD and SDAOD of the I2C_CON register.

The push-pull output is a standard output of I/O ports. When the output data is 0 and 1, the level on the port is also 0 and 1.

For push-pull output mode, a port level collision might exist. For example, master device outputs 0 and slave device outputs 1; this is where a collision takes place which makes the port status undetermined.

Open-drain output is the standard mode of I2C bus protocol, which can avoid the

collision issue. The figure below shows the open-drain output design.

Figure 5-39 Open-drain Output Diagram

The high level of open-drain output is sourced from the pull-up resistors on the I2C bus while the low level is determined by a master together with a slave. Either a master or slave can pull down the bus level to 0. However, only when both the master and slave release the bus can the bus level be pulled up to 1.

5. 5. 5 I2C Time-based Timer and 16x Sampler

Both SCL0 and SDA0 pins support a sampler (speed: 16X). Configure the SCLSE bit of the I2C_CON register can enable the samplers on both pins. The counter clock period of the I2C time-based timer is the sampling period of the 16X sampler.

In master mode, the I2C time-based timer also generates the baud rate for data transfer.

If a 16X sampler is used or a master mode is configured, the time-based timer must be enabled by the TJE bit of the I2C_CON register. The TJP bits select a desired period of the time-based timer.

In master mode, the timing of different parameters is tabulated as below.

Parameter	Symbol	With 16X sampler enabled	With 16X sampler disabled
Start/restart bit set up time	Tsu:S	> Tosc x (TJP+1) x 12	Tosc x (TJP+1) x 8
Start/restart bit hold time	THD:S	> Tosc x (TJP+1) x 12	Tosc x (TJP+1) x 8
Stop bit set up time	Tsu:P	> Tosc x (TJP+1) x 12	Tosc x (TJP+1) x 8
Stop bit hold time	THD:P	> Tosc x (TJP+1) x 12	Tosc x (TJP+1) x 8
Data/ACK bit set up time	Tsu:DA	> Tosc x (TJP+1) x 4	Tosc x (TJP+1) x 4
Data/ACK bit hold time	THD:DA	> Tosc x (TJP+1) x 8	Tosc x (TJP+1) x 4
Clock high time	Thigh	Tosc x (TJP+1) x 12	Tosc x (TJP+1) x 8
Clock low time	TLOW	Tosc x (TJP+1) x 12	Tosc x (TJP+1) x 8

Table 5-1 Timing of Different Parameters

Figure 5-40 Waveforms of SDA0 and SCL0 Signal

After 16X samplers are enabled, they start to sample the signal on the I2C bus. The signal is unstable at first because of the pull-up resistor. Only when the signal becomes stable will the output of the sampler be stable. Consequently, the baud rate could decrease within that duration and the decrement depends on the transition time from low to high.

In master mode, the baud rate calculation is as follows (Fosc is the system clock)

With 16X samplers enabled: F_{SCL}=Fosc / ((TJP+1) x 24)

With 16X samplers disabled: F_{SCL} =Fosc / ((TJP+1) x 16)

5. 5. 6 I2C Transmitter

The I2C transmitter offers 4 transmit buffers (TB0, TB1, TB2 and TB3) and 1 transmit shift register, which is able to realize the continuous data transmission, and up to 5 frames can be written and transmitted. The transmit buffers TB0~TB3 are read-only, and can be written via the transmit buffer write register I2C_TBW.

The I2C_TBW register is a virtual address location and has no physical address. When written, the data is actually written into a transmit buffer. After that, the data is shifted to the transmit shift register and then transmitted via the SDA0 pin.

The data can be written in byte, half-word and word.

When the I2C_TBW is written in byte, the data is stored in TB0. When written in half-word, the data is stored in TB0 and TB1 with low byte in TB1. When written in word, the data is stored in TB0, TB1, TB2 and TB3 with the lowest byte in TB3.

Data transmission is shown below.

Figure 5-41 I2C Data Transmission Diagram

The transmit buffer interrupt can be configured for different modes by the TBIM bits of the I2C IE register.

Write TBIM<1:0> = 00 to select the byte empty interrupt. The interrupt flag TBIF of the $I2C_IF$ register will be set if the TB0 is empty.

Write TBIM<1:0> = 01 to select the half-word empty interrupt. The interrupt flag TBIF of the I2C_IF register will be set if TB0 and TB1 are both empty.

Write TBIM<1:0> =10 to select the word empty interrupt. The interrupt flag TBIF of the I2C_IF register will be set if TB0, TB1, TB2 and TB3 are empty.

The transmit buffer write error interrupt is supported. The write error interrupt flag TBWEIF will be set if a write access error occurs.

5. 5. 7 I2C Receiver

The I2C receiver offers 4 receive buffers (RB0, RB1, RB2 and RB3) and 1 receive shift register, which is able to realize the continuous data reception, and up to 5 frames can be received in serial. Reading the receive buffer read register I2C_RBR can obtain the received data, and can also clear the corresponding receive buffer full flag of the I2C_STA register. Alternatively, reading the receive buffer RB0~RB3 can also obtain the received data, but will not clear the corresponding flag RBFF0~RBFF3.

The I2C_RBR register is a virtual address location and has no physical address. When read, it is actually reading the receive buffer RB0~RB3.

The data can be read in byte, half-word and word.

When the I2C_RBR is read in byte, it reads the data received in RB0. When read in half-word, it reads the data received in RB0 and RB1 with low byte in RB0. When read in word, it reads the data received in RB0, RB1, RB2 and RB3 with the lowest byte in RB0.

Data reception is shown below

Figure 5-42 I2C Data Reception Diagram

When the data of a receive buffer has been shifted to the next buffer, the corresponding full flag will be cleared.

When the four receive buffers and 1 receive shift register are full, if more data is arriving, the receive overrun interrupt flag ROIF will be set, no new data will be accepted.

The receive buffer interrupt can be configured for different modes by the RBIM bits of the I2C_IE register.

Write RBIM<1:0> = 00 to select the byte full interrupt. The interrupt flag RBIF of the $I2C_IF$ register will be set if the RB0 is full.

Write RBIM<1:0> = 01 to select the half-word full interrupt. The interrupt flag RBIF of the I2C_IF register will be set if RB0 and RB1 are both full.

Write RBIM<1:0> = 10 to select the word full interrupt. The interrupt flag RBIF of the I2C_IF register will be set if RB0, RB1, RB2 and RB3 are full.

5. 5. 8 I2C Communication Control

The I2C module can be reset by software by configuring the RST bit of the I2C_CON register. Following a software reset, the data transfer is disabled EN =0; the associated interrupts are disabled SRIE=0, SPIE=0, TBIE=0, TBWEIE=0, RBIE=0, TEIE=0, ROIE=0, and NAIE=0; the corresponding interrupt flags are reset to their default values SRIF=0, SPIF=0, TBIF=1, TBWEIF=0, RBIF=0, TEIF=0, ROIF=0 and NAIF=0; the idle flag is set IDLE=1; all transmit buffer empty flags are set TBEF0~TBEF3 =1; and all receive buffer full flags are cleared RBFF0~RBFF3= 0.

5. 5. 8. 1 I2C Start Bit

The SRT bit can trigger a start bit to start or restart a data transfer.

Figure 5-43 I2C Start Bit Waveform

In master mode, an auto-call function is available. Set the SRAE bit of the I2C_MOD register can enable the auto-call function. A master is able to automatically determine an "address ACK" signal. If a NACK is received, a start bit is transmitted automatically to restart the call operation and keep calling until an ACK is received. Please make sure that the slave address do exist, otherwise the master will restart and keep calling.

Example: A write wait time exists when the EEPROM is being written via I2C. If the device is called by a master while the EEPROM is performing programming, a NACK will be received. Two approaches can address this issue. One is to set a call interval by master, calling the device after its EEPROM completes writing. The other is to start the auto-call function, keep calling the device until an ACK is received.

Figure 5-44 I2C Auto-call Waveform

5. 5. 8. 2 I2C Stop Bit

The SPT bit of the I2C_MOD register can trigger a stop bit to terminate the current data transfer.

Preliminary 238/341

Figure 5-45 I2C Stop Bit Waveform

In master mode, a stop bit can be automatically transmitted. Set the SPAE bit of the I2C_MOD register to enable the stop bit auto-transmission. After transmitting a NACK or receiving a NACK, a stop bit is automatically transmitted to terminate the unsuccessful data transfer. The stop bit auto-transmission has a lower priority than the auto-call function.

5. 5. 8. 3 I2C ACK Delay

In master mode, the ACK delay function is available. Set the ADE bit of the I2C_MOD register to enable the ACK delay function, and the ADLY bits select the delay time. When the function is enabled, a master is able to delay an ACK transmission.

When a slave is not able to receive or transmit an ACK at a normal baud rate, the master can enable the ACK delay function, and select the delay time depending on the specific design specification of the slave.

Example: when ADLY<2:0> = 001 of the I2C_MOD register, the delay time is $1x T_{SCL0}$. See the corresponding waveform below.

Figure 5-46 I2C ACK Delay Waveform

5. 5. 8. 4 I2C Transmit Interval between Data Frames

In master mode, configure the TIS bits of the I2C_MOD register to enable and select the transmit intervals. Once enabled, the next data frame will be delayed for the set interval after receiving an ACK of the current data frame.

When a slave is not able to read the received data in time, or is not yet ready to transmit the data, a transmit interval can be set depending on the specific design specification.

Example: write TIS<3:0> = 0001 to select a transmit interval of 1x T_{SCLO} .

Preliminary 239/341

Figure 5-47 I2C Transmit Interval between Data Frames

5. 5. 8. 5 I2C Clock Stretching

In slave mode, the clock stretching capability is available, and it can be enabled by setting the CSE bit of the I2C_MOD register.

In addition, the SCL0 pin must be configured for open-drain output by the SCLOD bit of the I2C_CON register, which allows the slave device to hold the clock line until it is ready to continue communicating with the master device.

Usually, the clock line SCL0 is completely controlled by a master device. However, when a slave device is not ready to continue communicating, it can delay the transfer through clock stretching, by forcing the clock line low when it is at low level (cannot not force it low when it is at high level) and releasing the clock line when the slave device is ready.

Figure 5-48 I2C Clock Stretching

With the clock stretching enabled, when the slave device receives its call address and a read bit, if transmit buffers and the transmit shift register are empty, the clock line will automatically be stretched low. When the slave device receives its call address and a write bit, if receive buffers and the receive shift register are full, the clock line will automatically be stretched low.

5. 5. 8. 6 I2C Auto NACK Transmission

In slave mode, it is featured with the auto NACK transmission, enabled by the ANAE bit of the I2C_MOD register. Enabling the auto NACK transmission will not force the slave device to control the clock line. Besides, the auto NACK transmission can be used in both push-pull output and open-drain output mode for SCL0 pin.

With the auto NACK transmission enabled, when the slave device receives its call

address and a read bit, if transmit buffers and the transmit shift register are empty, a NACK will automatically be transmitted. When the slave device receives its call address and a write bit, if receive buffers and the receive shift register are full, a NACK will automatically be transmitted, notifying the master device to restart the communication.

5. 5. 9 Special Function Registers

I2C	Contr	ol Re	gister	(I2C_	CON)										
Offs	et add	ress:C	00 _H												
Res	et valu	ie:000	00000	_0000	00000	_11111	111_0	0000000)в						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved							SA<6:0>				RW
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			TJP	<7:0>				TJE	Reserved	SDASE	SCLSE	SDAOD	SCLOD	RST	EN

_	bit31-24	_	_
SA<6:0>	bit23-17	R/W	Slave address Master mode: automatically send the slave address after start/restart bit is triggered Slave mode: used to compare and match after receiving start/restart bit
RW	bit16	R/W	I2C read write bit 0: Write 1: Read In master mode: this bit is readable and writable. It will be automatically sent after the start/restart bit is triggered. In slave mode, this bit is read-only. After the matched slave address, this bit will be updated automatically by hardware according to the received RW bit.
TJP<7:0>	bit15-8	R/W	I2C time-based timer period select bit 00~FF: 1~256 TPCLK
TJE	bit7	R/W	12C time-based timer enable bit 0: Disabled 1: Enabled
	bit6		_
SDASE	bit5	R/W	SDA 16X sampler enable bit 0: Disabled 1: Enabled
SCLSE	bit4	R/W	SCL 16X sampler enable bit 0: Disabled

			1: Enabled
			SDA output mode select bit
SDAOD	bit3	R/W	0: Push-pull output
			1: Open-drain output
			SCL output mode select bit
SCLOD	bit2 R/W	R/W	0: Push-pull output
		1: Open-drain output	
			I2C software reset bit
RST	bit1	W	0: Always read as 0
KSI	DILI		1: Software reset, cleared by hardware
			automatically
			I2C enable bit
EN	bit0	R/W	0: Disabled
			1: Enabled

1000					
וס מכו	perating	Mode	Registe	ar (12C	MODI

Offset address:04_H

0113	ci ada	1000.0	¬⊓												
Res	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved TAS					Rese	rved	BLD	RDT	SPT	SRT				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TIS<	<3:0>		ADE	P	\DLY<	2:0>	SPAE	SRAE	ANAE	CSE		RDM<2:0>	>	MS

_	bit31-25	_	_
TAS	bit24	R/W	12C transmit ACK bit (slave mode only) 0: Transmit ACK 1: Transmit NACK
	bit23-20	_	_
BLD	bit19	R/W	I2C bus release control bit (for master only) 0: No effect 1: When SDA port level is high, the SCL transmits 8 clock cycles. The start and stop bit needs to be configured together to release the clock and data line.
RDT	bit18	R/W	I2C receive data trigger bit (for master only) 0: No effect 1: Issue the clock and start data reception. Data format is configured by RDM<2:0>
SPT	bit17	R/W	I2C stop bit trigger bit (for master mode

			
			only)
			0: No effect
			1: Trigger a stop bit
			I2C start bit trigger bit (for master mode
			only)
SRT	bit16	R/W	0: No effect
			1:Trigger a start bit and set the start bit
			transmission complete interrupt flag
			I2C transmit interval select bits (for master
TIC -2-0	b::45 40	D 44/	mode only)
TIS<3:0>	bit15-12	R/W	0000: Disabled
			0001~1111: 1~15x I2C clock cycles
			I2C ACK delay enable bit (for master
			mode only)
ADE	bit11	R/W	0: Disabled
			1: Enabled
			I2C ACK delay time select bit (for master
			mode only)
			000: 0.5x I2C clock cycle
			001: 1x I2C clock cycles
		R/W	010: 1.5x I2C clock cycles
ADLY<2:0>	bit10-8		011: 2 x I2C clock cycles
			100: 2.5x I2C clock cycles
			- I
			101: 3x I2C clock cycles
			110: 3.5x I2C clock cycles
			111: 4 x I2C clock cycles
			I2C stop bit auto-transmission enable bit
			(for master mode only)
SPAE	bit7	R/W	0: Disabled
			1: Enabled (automatically send the stop bit
			after transmitting or receiving a NACK. It has
			a lower priority than SRAE)
			I2C auto-call enable bit (for master mode
			only)
SRAE	bit6	R/W	0: Disabled
		1 37 V V	1: Enabled (if a NACK is received after
			sending the call address, the master device
			will restart calling.)
			I2C auto NACK transmission enable bit
ANAE	bit5	R/W	(for slave mode only)
ANAL	DitS	17/77	0: Disabled
			1: Enabled
CCE	h:+4	D AA/	I2C clock stretching enable bit (for slave
CSE	bit4	R/W	mode only)
			,,

			0: Disabled		
			1: Enabled		
			I2C receive mode select bit (for master		
			only)		
			000: Receive 1 byte then send ACK		
	RDM<2:0> bit3-1 R		001: Receive 1 byte then send NACK		
			010: Continuously receive 2 bytes and send		
			ACK for each byte		
			011: Continuously receive 2 byte, send ACK		
PDM~2:0~	hit3-1	ÐΛΛ	for byte 1 and NACK for byte 2		
INDIVINZ.02	Dito-1	1 (/ V V	100: Continuously receive 4 bytes, and send		
			ACK for each byte		
			101: Continuously receive 4 bytes, and send		
			ACK for first 3 bytes, NACK for the byte 4.		
			110: Continuously receive data bytes, and		
			send ACK for each byte		
			111: Send NACK after completing the current		
			data byte reception		
			I2C mode select bit		
MS	bit0	R/W	0: Master mode		
			1: Slave mode		

I2C Interrupt Enable Register (I2C	IE)
------------------------------------	-----

Offset address:08_H

Offs	Offset address:08 _H														
Res	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	eserve	ed	TIDLEIE	RBIM	l<1:0>	TBIM	<1:0>	TBWEIE	NAIE	ROIE	TEIE	RBIE	TBIE	SPIE	SRIE

_	bit31-13	_	_
			I2C transmit idle interrupt enable bit
TIDLEIE	TIDLEIE bit12 R/	R/W	0: Disabled
			1: Enabled
	DLEIE bit12 R/W 0: Disabled 1: Enabled I2C receive buffer full interrupt mod bits 00: Byte full interrupt 01: Half-word full interrupt 10: Word full interrupt 11: Reserved		I2C receive buffer full interrupt mode select
			bits
DDIM -1-0-		DAM	00: Byte full interrupt
KDIIVI< 1.0>		01: Half-word full interrupt	
			10: Word full interrupt
			11: Reserved
TBIM<1:0>	bit9-8	R/W	I2C transmit buffer empty interrupt mode

Preliminary 244/341

			select bits
			00: Byte empty interrupt
			01: Half-word empty interrupt
			10: Word empty interrupt
			11: Reserved
			I2C transmit data write error interrupt enable
	–	544	bit
TBWEIE	bit7	R/W	0: Disabled
			1: Enabled
			I2C NACK interrupt enable bit
NAIE	bit6	R/W	0: Disabled
			1: Enabled
			I2C receive overrun interrupt enable bit
ROIE	bit5	R/W	0: Disabled
			1: Enabled
			I2C transmit error interrupt enable bit
TEIE	bit4	R/W	0: Disabled
			1: Enabled
			I2C receive buffer full interrupt enable bit
RBIE	bit3	R/W	0: Disabled
			1: Enabled
			I2C transmit buffer empty interrupt enable bit
TBIE	bit2	R/W	0: Disabled
			1: Enabled
			I2C stop bit interrupt enable bit
SPIE	bit1	R/W	0: Disabled
			1: Enabled
			I2C start bit interrupt enable bit
SRIE	bit0	R/W	0: Disabled
			1: Enabled

I2C	Interr	upt F	lag Register	(I2C_II	F)										
Offs	Offset address:0C _H														
Res	et valu	ue:000	000000_0000	00000_0	0000000	0_0000	0100 _B								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Re	Reserved TIDLEIF Reserved		TBWEIF	NAIF	ROIF	TEIF	RBIF	TBIF	SPIF	SRIF					

_	bit31-13	1	_
TIDLEIF	bit12	R/W	I2C transmit idle interrupt flag bit

			0: No idle interrupt
			1:Idle interrupt occurred
			Clear this bit by software writing 1, and writing 0 has no effect.
	bit11-8		
	DICTIO		I2C transmit buffer write error interrupt flag bit
			0: No write error
			1: Write error occurred.
			The following errors may happen.
			- When written in word, not all buffers are empty.
TBWEIF	bit7	R/W	- When written in half-word, more than 2 buffers are not
	Diti		empty.
			- When written in byte, all buffers are full.
			- Write I2C_TBW<31:16> with a half-word
			- Write I2C_TBW<31:8> with a word
			Clear this bit by software writing 1 and writing 0 has no effect.
			I2C NACK interrupt flag bit
			0: No NACK interrupt
NAIF	bit6	R/W	1: NACK interrupt occurred
			When a NACK is received or transmitted, the NAIF will be set.
			Clear this bit by software writing 1 and writing 0 has no effect.
			I2C receive overrun interrupt flag bit
		R/W	0: No overrun
ROIF	bit5		1: Overrun occurred
			Clear this bit by software writing 1 and writing 0 has no effect.
			I2C transmit error interrupt flag bit
			0: No transmit error.
	1.774	D 44/	1: Transmit error occurred. A clock is received from a master
TEIF	bit4	R/W	while the transmit buffers and transmit shift register are all
			empty.
			Clear this bit by software writing 1 and writing 0 has no effect.
			I2C receive buffer full interrupt flag bit
RBIF	bit3	R	0: Not full
KDIF	DILO	K	1: Full
			Clear this bit by reading the I2C_RBR register.
			I2C transmit buffer empty interrupt flag bit
TBIF	bit2	R	0: Not empty
וטור	DILZ		1:Empty
			Clear this bit by writing the I2C_TBW register.
			I2C stop bit interrupt flag bit
		R/W	0: No stop bit received/transmitted
SPIF	bit1		1: Stop bit received/transmitted
	Diti		In master mode: the flag bit will be set after transmitting a stop
			bit.
			In slave mode: the flag bit will be set after receiving a stop bit

			Clear this bit by software writing 1 and writing 0 has no effect.
SRIF	bit0	R/W	I2C start bit interrupt flag bit 0: No start bit interrupt 1: Start bit interrupt occurred In master mode: if the auto-call is disabled, the flag bit will be set after transmitting start bit and address bits and receiving ACK/NACK. If the auto-call is enabled, the flag bit will be set after transmitting start bit and address bits and receiving ACK. In slave mode: the flag bit will be set after receiving start bit and matched address bit, and sending ACK. Clear this bit by software writing 1 and writing 0 has no effect.

Note: For each interrupt flag in the I2C_IF register, they can be cleared by software writing 1 and writing 0 has no effect. When reading, 1 indicates that the corresponding interrupt has occurred.

	I2C Transmit Data Write Register (I2C_TBW)									
Offset address:10 _H										
Reset value:00000000_00000000_000000000 _B										
21 20	19	18	17	16						
TBW<31:16>										
5 4	3	2	1	0						
1										
Write in byte: write data to TBW<7:0>										
Write in half-word: write data o TBW<15:0>										
Write in word: write data to TBW<31:0>										
1	ata to TE	ata to TBW<7:	ata to TBW<7:0>	ata to TBW<7:0> rite data o TBW<15:0>						

I2C R	I2C Receive Data Read Register (I2C_RBR)														
Offse	Offset address:14 _H														
Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RBR<	<31:16>														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RBR<	<15:0>														

Preliminary 247/341

RBR<31:0>		R	Read receive data				
	bit31-0		Read in byte: read from RBR<7:0>				
KDK<31.0>	טונט ו-ט		Read in half-word: read from RBR<15:0>				
			Read in word: read from RBR<31:0>				

I2C T	ransmit	Buffer F	Register	(I2C_TB	5)										
Offse	Offset address:18 _H														
Reset	t value:0	0000000	_0000000	000_00	00000_0	0000000	Эв								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			TB	3<7:0>					TB2<7:0>						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			TB	1<7:0>				TB0<7:0>							
TB3<7:0> bit31-24 R Transmit buffer 3 data															
	TB2<7:0> bit23-16 R Transmit buffer 2 data														

TB3<7:0>	bit31-24	R	Transmit buffer 3 data
TB2<7:0>	bit23-16	R	Transmit buffer 2 data
TB1<7:0>	bit15-8	R	Transmit buffer 1 data
TB0<7:0>	bit7-0	R	Transmit buffer 0 data

I2C Receive Buffer Register (I2C_RB)

Offset address:1C_H

Rese	eset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RB3<7:0>							RB2<7:0>								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RB1<7:0>									RB	0<7:0>					

RB3<7:0>	bit31-24	R	Receive buffer 3 data
RB2<7:0>	bit23-16	R	Receive buffer 2 data
RB1<7:0>	bit15-8	R	Receive buffer 1 data
RB0<7:0>	bit7-0	R	Receive buffer 0 data

Preliminary 248/341

I2C Status Register (I2C_STA)

Offset address:20_H

Reset value:00000000_00000010_00001111_00000000_B

31 30 29 28 27 26 25 23 22 21 20 19 17 16 24 18 Reserved IDLE ACK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RBFF3 RBFF2 RBFF1 RBFF0 TBEF3 TBEF2 TBEF1 TBEF0 Reserved

_	bit31-18	_	_
			I2C idle flag bit
IDLE	bit17	R	0: Not idle
			1: Idle
			I2C ACK bit
ACK	bit16	R	0: ACK
			1:NACK
			RB3 full flag bit
RBFF3	bit15	R	0: Empty
			1: Full
			RB2 full flag bit
RBFF2	bit14	R	0: Empty
			1: Full
			RB1 full flag bit
RBFF1	bit13	R	0: Empty
			1: Full
			RB0 full flag bit
RBFF0	bit12	R	0: Empty
			1: Full
			TB3 empty flag bit
TBEF3	bit11	R	0: Full
			1: Empty
			TB2 empty flag bit
TBEF2	bit10	R	0: Full
			1: Empty
			TB1 empty flag bit
TBEF1	bit9	R	0: Full
			1: Empty
			TB0 empty flag bit
TBEF0	bit8	R	0: Full
			1: Empty
_	bit7-0	_	_

5. 5. 10 I2C Application Notes

The chip provides one serial communication controller I2C0.

For I2C continuous data transmission, if the transmit idle interrupt flag TIDLEIF is used to trigger an interrupt and start the data transmission, take note of the following.

- In master mode, after setting the memory address in the main program, the transmit idle interrupt flag TIDLEIF will be set to 1 and will then trigger an interrupt. During the interrupt service routine, write the data into I2C_TBW and start data transmission.
- 2) In slave mode, write the first data of the desired memory address to the I2C_TBW. After the master sending a read bit, the TIDLEIF bit will be set and will then trigger the interrupt. The received data will be read during the interrupt service routine. The master must send a stop bit after reading data. Otherwise, it might cause an transmit error if another read operation needs to be started right away.

The TBIM bit of the I2C_IE register has influence on the TIDLEIF. When transmitting in byte or half-word, it is better to write TBIM =10, or else it might cause multiple byte empty interrupts. If the TBIM = 00 or TBIM = 01, all the 4 transmit buffers must be written with data, or else it might also cause multiple byte empty interrupts or half-word empty interrupts.

The advantage of using the TIDLEIF is that the continuous data transmission can be accomplished only by clearing the TIDLEIF bit when the TIDLEIE bit is enabled and valid.

5. 6 Analog-to-Digital Converter (ADC)

5. 6. 1 Overview

- ♦ 12-bit conversion result with 11-bit effective resolution
- ♦ Sampling rate up to 125ksps (kilo-samples per second)
- ♦ 16 analog input channels
- ADC interrupt, able to wake up from sleep mode (only when clocked by the LRC clock)
- ♦ Configurable positive and negative reference voltage
- ♦ Configurable conversion clock
- Auto conversion and compare function

5. 6. 2 Block Diagram

Figure 5-49 ADC Block Diagram

5. 6. 3 ADC Basic Configuration

Configure a port to an ADC analog input channel in the following way:

Configure the GPIO_PAINEB/GPIO_PBINEB register to disable digital input mode of the port. Configure the GPIO_PADIR/ GPIO_PBDIR register to disable digital output mode of the port.

Configure the CHS<4:0> bits of the ADC_CHS register to select the desired ADC channel.

To ensure of the proper operation of the ADC, the VREF_EN and IREF_EN bits of the ADC_VREFCON register, the EN of the ADC_CON0 register and the VCMBUF_EN bit of the ADC_CON1 register must be enabled.

5. 6. 4 ADC High Precision Reference Voltage

The ADC module provides one internal 1.8V or 2.6V high precision reference source. The VREF_EN and IREF_EN bits must be enabled for ADC operation.

5. 6. 5 ADC Conversion Description

Configure the CHS<4:0> bits of the ADC_CHS register to select an analog channel; configure the CLKS bits of the ADC_CON1 register to select an operating clock source; configure the CLKDIV<2:0> bits to select a clock source prescaler ratio and configure the VREFP<1:0> to select a positive reference voltage and the VREFN to select a negative reference voltage. When the VREFP<1:0> = 01, the VRBUF_EN bit must be enabled. Set the EN bit of the ADC_CON0 register to enable the ADC. Lastly, configure the TRIG bit to start a conversion. Once the conversion is complete, the TRIG bit will automatically be cleared by hardware.

Each time when a conversion is complete, the interrupt flag IF of the ADC_IF register will be set, which needs to be cleared by software. To start the next conversion, the TRIG bit needs to be re-configured.

The sampling time can be controlled by hardware (by default) or software. The fastest sampling time is one ADC clock cycle (depending on the actual application condition and the ADC clock source). The conversion time takes 14 ADC clock cycles if the conversion resolution is 12 bits. When VDD is used as a reference voltage, the fastest sampling rate is 125Ksps, which outputs 125K high precision conversion results per second. A proper ADC clock can be produced by configuring the CLKS and CLKDIV bits of the ADC_CON1 register.

The recommended setting is tabulated as below when the system clock is used as the ADC clock source and internal VREFP is used as the reference voltage.

System clock	ADC clock frequency division	ADC resolution	Conversion rate
48MHz	32	10.5 bits	93.75Ksps
32MHz	8	9 bits	250Ksps
32MHz	32	12 bits	62.5Ksps

Table 5-2 Recommended Setting

Figure 5-50 ADC Conversion Timing Diagram (SMPS = 0, sampling controlled by software)

Preliminary 252/341

Figure 5-51 ADC Conversion Timing Diagram (SMPS = 1, sampling controlled by hardware)

- 1. Tog>0
- 2. The conversion clock period Tadclk can be configured for different frequencies by the CLKS and CLKDIV<2:0> of the ADC_CON1 register.

Start a single AD conversion

. a single A	D CONTENSION	
LDR	R0, = ADC_VREFCON	; Enable VREF_EN and IREF_EN and ; select 2.6V
LDR	R1, =0X07	
STR	R1, [R0]	
LDR	R0, =ADC_CON1	; Select PCLK/32 as the ADC clock source ; Select VREF 2.6V as positive reference ; Enable VREF BUF and select hardware ; controlled sampling time ; Enable VCM BUF in high speed mode ; Enable ADC high speed mode
LDR	R1, =0X03005905	, <u> </u>
STR	R1, [R0]	
LDR	R0, =ADC_CHS	; Select AIN3
LDR STR	R1, =0X03 R1 [R0]	
	• •	; Enable ADC
	. –	,
STR		
LDR	·	; Start A/D conversion
LDR	R1, =0X03	•
STR	R1, [R0]	
WAIT4IF		
LDR	R0, =ADC_IF	; Wait for ADC interrupt
LDR	R1, =0X01	·
	LDR STR LDR LDR	LDR R1, =0X07 STR R1, [R0] LDR R0, =ADC_CON1 LDR R1, =0X03005905 STR R1, [R0] LDR R0, =ADC_CHS LDR R1, =0X03 STR R1, [R0] LDR R0, =ADC_CON0 LDR R1, =0X01 STR R1, [R0] LDR R0, =ADC_CON0 LDR R1, =0X01 STR R1, [R0] LDR R0, =ADC_CON0 LDR R1, =0X03 STR R1, [R0] LDR R0, =ADC_CON0 LDR R1, =0X03 STR R1, [R0] WAIT4IF LDR R0, =ADC_IF

TST R0, R1 BEQ WAIT4IF

STR R1, [R0] ; Clear ADC interrupt

LDR R0, =ADC_CON0 ; Disable ADC

LDR R1, =0X00 STR R1, [R0]

5. 6. 6 Auto Conversion and Compare Function

The ADC module is featured with an auto conversion and compare function, allowing the ADC to automatically complete multiple conversions and calculate the mean value. The mean value is then compared with a threshold value to generate a corresponding interrupt. The mean value and the conversion result are both readable.

When the ACP_EN bit of the ADC_CON0 register is 1, write the TRIG bit to 1 to start conversion and compare in continuous mode; use the hardware, which is fixed, to control the sampling time and writing the SMPS to 0 has no effect. Prior to that, complete the following configurations first:

Set the ST bits of the ADC_CON1 register to configure the sampling time. It is recommended to have the sampling time > 1us.

Configure the TIMES of the ADC_ACPC register to select the number of conversion times within each overflow time.

Configure the OVFL_TIMES to set the overflow time for auto-conversion and compare. After an overflow occurs, the mean value of the conversion results will automatically be calculated and saved in the ADC_ACPMEAN register. If the EN bit of the ADC_CON0 register is disabled, the hardware will automatically clear the overflow counter and ADC_ACPMEAN register. If the overflow time has expired while the maximum number of conversion times has not reached (selected by TIMES<1:0>), the next cycle of overflow time will not be counted until all the required conversions are completed.

Configure the CLKS of the ADC_ACPC register to select the clock source (PCLK or LRC (32KHz) divided by 256) for the overflow counter. If the ADC is required to convert and compare during normal sleep or deep sleep, before entering sleep, the LRC divided by 256 needs to be selected as the counter clock source, and the CLKS needs to select the LRC as the clock source.

Set the CMP_MIN bit of the ADC_ACPCMP register to a low threshold value. If the MEAN_DATA of the ADC_ACPMEAN register is less than or equal to this low threshold value, the interrupt flag ACPMINIF will be set to 1.

Set the CMP_MAX bit of the ADC_ACPCMP register to a high threshold value. If the MEAN_DATA of the ADC_ACPMEAN register is greater than or equal to this high threshold value, the interrupt flag ACPMAXIF will be set to 1.

Start a single auto AD conversion

LDR R0, = ADC VREFCON ; Enable VREF EN and IREF EN and

; select 2.6V

LDR R1, =0X07 STR R1, [R0]

LDR R0, =ADC CON1 ; Select PCLK/32 as the ADC clock source

; Select VREF 2.6V as positive reference ; Enable VREF BUF and select hardware

; controlled sampling time

; Enable VCM BUF in high speed mode

; Enable ADC high speed mode

LDR R1, =0X03005905

STR R1, [R0]

LDR R0, =ADC_CHS ; Select AIN3

LDR R1, =0X03 STR R1, [R0]

LDR ADC_IE, =0X07

LDR ADC_ACPCMP, =0X00010001 ;Set automatic high/low threshod values

LDR ADC_ACPC, =0x0013001F ; ACP operating clock LRC

; Automatically convert 8 times within ;overflow duration which is 32x Tacp

LDR R0, =ADC_CON0 ; Enable ADC and enable auto conversion

; and compare function

LDR R1, =0X05

STR R1, [R0]

LDR R0, =ADC_CON0 ; Start AD conversion

LDR R1, =0X07 STR R1, [R0]

.

5. 6. 7 Special Function Registers

ADC Voltage Reference Control Register (ADC_VREFCON)

Offset address:40_H

Reset value:00000000_00000000_000000000B

31 30 29 28 27 26 25 24 23 22 20 19 18 17 21 16 Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved IREF_EN VREF_SEL VREF_EN

_	bit31-3	_	_
			IREF enable bit
IREF_EN	bit2	R/W	0: Disabled
			1: Enabled
VREF_SEL	bit1	R/W	Internal VREFP voltage select

Preliminary 255/341

			bit
			0: 1.8V
			1: 2.6V
			Internal VREFP enable bit
VREF_EN	bit0	R/W	0: Disabled
			1: Enabled

DR<11:0>

- For proper AD conversion, the VREF_EN and IREF_EN bits are enabled.
- The bits 31-3 of the ADC_VREFCON register are reserved for test. The user is required to write 0, otherwise, it might lead to irregular behavior of ADC.

ADC Result Register (ADC_DR) Offset address:00_H Reserved Reserved DR<11:0> bit31-12 bit11-0

R

ADC	DC Control Register 0 (ADC_CON0)														
Offse	Offset address:04 _H														
Rese	t value:0	0000000	0_00000	000_000	00000_0	0000000	Ов								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							F	Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved ACP_EN TRIG								TRIG	EN					

AD conversion result

_	bit31-3	_	_
			Auto-conversion compare function enable bit
ACP_EN	bit2	R/W	0: Disabled
			1: Enabled
			AD conversion trigger bit
TRIG	bit1	R/W	0: AD conversion not triggered, or AD conversion
			completed (cleared by hardware with high priority)

Preliminary 256/341

			1: Set this bit to 1 to start conversion. If SMPS is 0, writing TRIG has no effect (controlled by hardware based on SMPON software sampling and ADC conversion progress), and it cannot be read as the conversion complete flag.
EN	bit0	R/W	AD conversion enable bit (when ACP_EN is 1, this bit is invalid) 0: Disabled 1: Enabled

- 1. The TRIG bit can only be written to 1 by software and will be cleared automatically by hardware.
- 2. When the SMPON is off, the TRIG bit and the IF bit of the ADC_IF register both can be considered as conversion complete flags. When the SMPON is on, only the IF bit can be considered as the conversion complete flag. It is suggested to determine the completion of conversion by checking the IF bit no matter the SMPON is on or off.

ADC Control Register 1(ADC_CON1)

Offset address:08_H

Reset value:00000000_00000100_00010000_000000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		I	Reserved			VCMBUF_HS	VCMBUF_EN	ı	Reserve	ed		S	T<4:0>		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	HSEN	SMPON	SMPS	VRBUF_EN	VREFN	VREFI	P<1:0>		Res	erved		CLKS	CLI	KDIV<2	2:0>

	bit31-26		_
			ADC common mode voltage VCM BUF
VCMDUE HO	bit25	R/W	high speed enable bit
VCMBUF_HS	DILZS	IT/VV	0: Reserved for test only
			1: Enabled
			ADC common mode voltage VCM BUF
VOMBLIE EN	bit24	R/W	enable bit
VCMBUF_EN			0: Disabled
			1: Enabled
_	bit23-21	_	_
			AD sampling time select bits (valid
ST<4:0>	bit20-16	R/W	when controlled by hardware)
			Sampling time :ST*2 + 1Tadclk
_	bit15	_	_

Preliminary 257/341

			AD commencion annual control bit				
	1 244	D 44/	AD conversion speed control bit				
HSEN	bit14	R/W	0: Reserved for test only				
			1: High speed				
			AD sampling software control bit				
SMPON	bit13	R/W	(invalid when ACP_EN = 1)				
SIMPON	DILIS	IK/VV	0: AD sampling off				
			1: AD sampling on				
			AD sampling mode select bit (fixed to				
			1 when ACP EN =1)				
SMPS	bit12	R/W	0: Software control				
			1: Hardware control				
			VREF BUF enable bit				
VDDUE EN	P:144	DAA					
VRBUF_EN	bit11	R/W	0: Disabled				
			1: Enabled				
			Negative reference voltage select bit				
VREFN	bit10	R/W	0: Internal GND VSS				
			1: External reference voltage AVREFN				
			Positive reference voltage select bit				
	bit9-8		00: VDD				
			01: Internal reference voltage VREFP				
			(2.6V or 1.8V) with the AVREFP pin used				
			as a normal I/O.				
			10: Internal reference voltage VREFP				
VREFP<1:0>		R/W	(2.6V or 1.8V) with the AVREFP pin				
VICEIT (1.0)	5113-0	17/ / /	outputting internal reference voltage				
			VREF				
			11: External reference voltage AVREFP,				
			which should be no more than VDD and				
			no less than 1.3V. In SWD mode, AVREP				
			cannot be used.				
_	bit7-4	_	_				
			Clock source select bit				
CLKS	bit3	R/W	0: PCLK				
			1: LRC(32KHz)				
			Clock source division rate select bits				
			000 = 1:1				
			001 = 1:2				
			010 = 1:4				
CLKDIV<2:0>	bit2-0	R/W	011 = 1:8				
OLINDIV \Z.U/	DILE-U	1 1/ 7 7	100 = 1:16				
			101 = 1:32				
			110 = 1:64				
			111 = 1:256				

- 1. The VRBUF_EN bit must be set to 1 when the internal reference voltage VREF (2.6V or 1.8V) selected as the ADC positive reference voltage.
- 2. During ADC operation, the VCMBUF_HS, VCMBUF_EN and HSEN must set to 1.
- 3. When VDD (VREFP = 00) or the external reference voltage (VREFP = 11) are used as the reference voltage, the maximum conversion clock frequency is 2MHz. When the internal reference voltage is used ((VREFP = 01 or 10), the maximum conversion clock frequency is 1MHz.
- 4. When the external reference is used, the voltage cannot be less than 1.3V, otherwise, it might lead to irregular behavior of ADC.

ADC	ADC Channel Select Register (ADC_CHS)														
Offse	Offset address:0C _H														
Rese	Reset value:00000000_00000000_00000001_00000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
	Reserved VDD5_FLAG_EN Reserved CHS<4:0>														
							•								

_	bit31-9	_	_
VDD5_FLAG_EN	bit8	R/W	VDD detection enable bit 1: Enable VDD detection (for internal test only and must not be set to 1 during application) 0: Disable VDD detection (should be set to 1 during application)
_	bit7-5	_	_
CHS<4:0>	bit4-0	R/W	Analog channel select bits 00000: Channel 0 (AIN0) 00001: Channel 1 (AIN1) 00010: Channel 2 (AIN2) 00011: Channel 3 (AIN3) 00100: Channel 4 (AIN4) 00101: Channel 5 (AIN5) 00110: Channel 6 (AIN6) 00111: Channel 7 (AIN7) 01000: Channel 8 (AIN8) 01001: Channel 9 (AIN9) 01010: Channel 10 (AIN10) 01011: Channel 11 (AIN11) 01100: Channel 12 (AIN12)

Preliminary 259/341

01101: Channel 13 (AIN13)
01110: Channel 14 (AIN14)
01111: Channel 15 (AIN15)
Others: No channel connected

ADC Interrupt Enable Register (ADC_IE)

Offse	et addre	ss:10 _H													
Rese	et value:	:000000	000_000	00000	_000000	00_00	000000	В							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								F	Reserve	d					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Res	erved						ACPOVIE	ACPMAXIE	ACPMINIE	IE

_	bit31-4	_	_
			ADC overflow interrupt enable bit
ACPOVIE	bit3		0: Disabled
			1: Enabled
			Interrupt enable bit (mean value higher than
ACPMAXIE	bit2	R/W	the high threshold)
ACFIVIANIL	DILZ	IX/VV	0: Disabled
			1: Enabled
			Interrupt enable bit (mean value lower
ACPMINIE	bit1	D AA/	than the low threshold)
ACFIVIINIE	DILI	R/W	0: Disabled
			1: Enabled
			ADC interrupt enable bit
IE	bit0	R/W	0: Disabled
			1: Enabled

ADC Interrupt Flag Register (ADC_IF)

Offset address:14_H

Olise	et addre	55.14 _H													
Rese	et value:	:000000	000_000	000000	_000000	000_000	000000	В							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								F	Reserve	d					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Res	erved						ACPOVIF	ACPMAXIF	ACPMINIF	IF

Preliminary 260/341

_	bit31-4	_	_
			Overflow interrupt flag bit
			0: The overflow time has not reached
ACPOVIF	bit3	R/W	1: The overflow time has reached (set to 1 by
ACFOVII	טונט	IX/VV	hardware and cleared by software)
			This bit is cleared by software writing 1 and
			writing 0 has no effect.
			Interrupt flag bit (mean value higher than
			the high threshold)
			0: Mean value is less than the high threshold value
ACPMAXIF	bit2	R/W	1: Mean value is greater than or equal to the
			high threshold value. (set to 1 by hardware
			and cleared by software)
			This bit is cleared by software writing 1 and
			writing 0 has no effect.
			Interrupt flag bit (mean value lower than
			the low threshold)
			0: Mean value is higher than the low threshold
			value
ACPMINIF	bit1	R/W	1: Mean value is less than or equal to the low
			threshold value (set to 1 by hardware and
			cleared by software)
			This bit is cleared by software writing 1 and
			writing 0 has no effect.
			ADC interrupt flag bit
			0: Conversion in progress
IF	bit0	R/W	1:Conversion completed (set to 1 by hardware
	bitU	R/W	and cleared by software)
			This bit is cleared by software writing 1 and
			writing 0 has no effect.

- 1. When ADC interrupts are disabled, the corresponding flag will be set if an interrupt is triggered, but no interrupt request will be generated.
- 2. For all interrupt flag bits of ADC_IF register, they can be cleared by software writing 1 and writing 0 has no effect. When they are being read, 1 indicates that an interrupt has occurred.

ADC Auto Conversion Compare Control Register (ADC_ACPC)

Offset address:28_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Reserve	ed					CLKS			TIMI	ES<1:0>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Reserved OVFL_TIME<11:0>

_	bit31-21	_	_
CLKS	bit20	R/W	Overflow counter clock source select bit 0: Fpclk/256 (PCLK divided by 256) 1: Flrc/256 (LRC divided by 256)
_	bit19-18	_	_
TIMES<1:0>	bit17-16	R/W	Conversion times select bits (within the duration select by OVFL_TIME) 00: Once 01: Twice 10: Four times 11: Eight times
_	bit15-12	_	_
OVFL_TIME<11:0>	bit11-0	R/W	Overflow time select bits, configurable range is 0~9C3 _H and counter clock period is Tacp. 0: 1 xTacp 1: 2 x Tacp 2: 3 x Tacp 9C3 _H : 2500 x Tacp Tacp is the clock source period of ACP overflow counter select by the CLKS.

Note: The overflow time selected by the OVFL_TIME bits must be greater than one cycle of sampling time and conversion time.

ADC Auto Conversion Compare Threshold Register (ADC_ACPCMP)

Offset address:30_H

Reset value:00001111_11111111_00000000_00000000B

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved CMP_MAX<11:0>															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Res	served							CMP_I	MIN<11:0)>				

Preliminary 262/341

_	bit31-28	_	_
CMP_MAX<11:0>	bit 27-16	R/W	High threshold value
_	bit15-12	_	_
CMP_MIN<11:0>	bit 11-0	R/W	Low threshold value

ADC	Mean R	egister (ADC_AC	PMEA	N)										
Offse	et addres	s:34 _H													
Rese	et value:0	0000000	_0000000	00_00	000000_0	0000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Re	served							MEAN_[DATA <11	:0>				
		_			bit31	I-12	_	_							
ľ	MEAN	_DATA	\<11:0>	•	bit 1	1-0	R	М	ean va	alue o	f the c	onve	rsion	result	s

5. 7 Real Time Clock (RTC)

5. 7. 1 Overview

- Only reset by POR, supports program write protection and immune to system interference.
- Clock sources: use the external 32.768KHz crystal oscillator for high-precision requirement; use the internal LRC clock for low-precision requirement; use PCLK or PCLK divided for 256 for the RTC being used as a normal counter
- ♦ High-precision digital calibration
- ♦ Time with seconds, minutes, hours; calendar with days, weeks, months and years, in BCD format.
- ♦ 5 programmable timer interrupts
- 2 programmable calendar alarms
- ♦ 1 configurable clock output
- ♦ Auto leap year recognition till year 2099
- 12-hour or 24 –hour format
- ♦ Low consumption: operating current =0.5µA (typ.) @ VDD=5.0V

5. 7. 2 RTC Write Protection

The RTC write protection register RTC_WP is used to protect other RTC associated registers from writing by mistakes (the RTC WP register itself excluded).

The RTC_WP register is a virtual register. Prior to writing to those RTC associated registers, the write protection needs to be removed by writing 0x55AAAA55 to the RTC_WP register. Writing other values to the RTC_WP register will enable write protection. Any write operation will be ignored when those registers are write protected.

Read the RTC_WP register to determine whether the RTC module is under write protection. When read as 0x55AAAA55, the RTC is not write protected and write operations can be performed onto the registers. When read as 0x00000000, the RTC module is currently under write protection. 0x55AAAA55 and 0x00000000 are the only two possible readouts.

5. 7. 3 Time and Date Setting

A RTC time counter is accessed through buffers and cannot be directly read or written because the APB clock and the RTC time counter are not synchronous. The RTC_HMS and RTC_YMDW registers are buffers for reading and writing a RTC time counter. How to read a time counter is described in following procedures.

- 1) Write the write/read bit TMWR = 0 to select the read operation
- 2) Write the write/read trigger bit TMUP = 1 to trigger a read operation

3) After reading, the value of the time counter will be read to the RTC_HMS and RTC_YMDW registers, and the TMUP bit will be automatically cleared.

How to write a time counter is described in following procedures (after a reset or the last read/write operation is completed)

- 1) Configure the HSWI bit to select 12hr or 24hr format
- 2) Write a value (s) to the RTC_HMS and/or RTC_YMDW register
- 3) Write TMWR = 1 to select the write operation
- 4) Write TMUP = 1 to trigger a write operation
- 5) After writing, the updated values in the RTC_HMS and RTC_YMDW will be written into the time counter, and the TMUP bit will be automatically cleared.

Notes

- 1. Writing a time counter is to write the updated values of the RTC_HMS and/or RTC_YMDW register to the corresponding time counter after a reset or a read operation. Other time counters those are not updated are not affected by a write operation.
- 2. When the TMUP bit is 1, the current write operation can be aborted by clearing the TMWR bit. The result of the aborted write operation is undetermined.

The time and date registers employ the BCD coding. The second counter counts from 00 to 59, and when it completes one cycle, it transitions from 59 to 00. The minute counter also works the same way as the second counter. The hour counter counts depending on the format selected. When the 12hr format is selected, after one cycle, it transitions from PM11 to AM12 or AM11 to PM 12. When the 24hr format is selected, after one cycle, it transitions from 23 to 00.

The week day counter is a cyclic shift register. During setup, the corresponding week day is set to 1, and others are set to 0.

The day counter transitions to the next month by adding one to the last day of the current month.

January, March, May, July, August, October and December: 1 to 31

April, June, September and November: 1 to 30

February: 1 to 28 (normal year), 1 to 29 (leap year)

The month counter counts from 1 to 12 and transitions to 1 after one cycle.

The year counter counts from 00 to 99 (00, 04, 08, ..., 92 and 96 are leap years). After reaching 99, it will no longer transition to 00.

The 12/24hr mapping table is as follows:

24Hr Format	12Hr Format	24Hr Format	12Hr Format
00	12 (AM12)	12	32 (PM12)
01	01 (AM1)	13	21 (PM1)
02	02 (AM2)	14	22 (PM2)
03	03 (AM3)	15	23 (PM3)
04	04 (AM4)	16	24 (PM4)
05	05 (AM5)	17	25 (PM5)
06	06 (AM6)	18	26 (PM6)
07	07 (AM7)	19	27 (PM7)
08	08 (AM8)	20	28 (PM8)
09	09 (AM9)	21	29 (PM9)
10	10 (AM10)	22	30 (PM10)
11	11 (AM11)	23	31 (PM11)

Table 5-3 12/24 Hour Format Mapping

5. 7. 4 RTC Interrupt Sources

There are 7 interrupt sources available for the RTC module.

- ♦ Week alarm interrupt WAFG
- Day alarm interrupt DAFG
- 5 periodic interrupts: month interrupt, day interrupt, hour interrupt, minute interrupt and second interrupt

Each interrupt source has an independent enable bit, which affects the generation of the interrupt request (IRQ) but do not affect the interrupt flag. Even the corresponding interrupt is disabled; the flag bit can still be polled. In the case that multiple interrupts are enabled, each interrupt can generate the IRQ by an OR operation. The IRQ will only be removed after all interrupt flags are cleared.

5. 7. 5 RTC Timer

If an application system requires high precision in RTC timer, the external 32.768KHz crystal oscillator is used as the RTC clock source. In this case, the external clock pins OSCxI and OSCxO are connected with the 32.768KHz crystal oscillator. In addition, the corresponding configuration word and control registers are configured as follows:

- 1) Configure the XTAL as a low speed oscillator through the CFG_OSCMD
- Select the system clock source by the CLK_SEL<1:0> bits of the SCU_SCLKEN0 register
- Write XTAL_EN = 1 of the SCU_SCLKEN1 register to enable the external clock oscillator
- 4) Write CLKS<1:0> = 00 of the RTC_CON register to select the external 32.768KHz oscillator as the system clock source.

In deep sleep mode, if the external 32.768KHz oscillator is required to clock the RTC, then the MOSC_EN of the SCU_WAKEUPTIME register must be written to 1 to allow the

XTAL clock to operate during deep sleep.

If an application system does not require high precision RTC, the internal LRC clock (about 32KHz) can be used as the clock source.

5. 7. 6 Special Function Registers

RTC	Write Pr	otection	Regist	er (RTC_	WP)										
Offse	et addres	s:20 _H													
Rese	et value:0	0000000	_000000	000_000	0_0000_0	0000000 _E	3								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							WP	<31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							WP	<15:0>							
	WP<3	:1:0>		hit31-	·0	R/W	0x5	_	AA55:	Write			•	ected. e perfo	ormed

Note: The RTC_CON, RTC_CAL, RTC_WA, RTC_DA, RTC_HMS, RTC_YMDW, RTC_IE and RTC_IF registers are under protection of the RTC_WP register.

protection.

Writing other values can also enable write

RTC Control Register (RTC_CON)

Offset address:00_H

	Reset value:00000000_00000000_00001000_10000000 _B														
	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved PON XST CLKS<1:0> Reserved HSWI TMWR TMUP														

_	bit31-8	_	_
PON	bit7	R/W	RTC power on reset flag bit (cleared by software) 0: Normal RTC operation 1: RTC power on reset detected (must be cleared by software, only then the RTC starts working)
XST	bit6	R	Oscillator stop flag bit 0:Oscillator continues to work 1:Oscillator stopped

Preliminary 267/341

CLKS<1:0>	bit5-4	R/W	RTC clock source select bit (must be configured before writing time data) 00: 32.768 KHz oscillator clock source (high RTC precision) 01: LRC clock (low RTC precision) 10: PCLK/256 (RTC used as a normal counter) 11: PCLK (RTC used as a normal counter)
_	bit3	_	_
HSWI	bit2	R/W	12/24 hour format select bit (must be configured before writing time data)0: 12 hour format1: 24 hour format
TMWR	bit1	R/W	Timer counter write read select bit 0: Read operation 1: Write operation
TMUP	bit0	R/W	Time counter write read trigger bit (only can be written to 1 and automatically cleared on the completion of a read or write operation) 0: Write or read operation has been completed. 1: Write or read operation is in progress

- 1. The RTC module will stay in reset state after a power on reset. Only when the PON bit is cleared will the RTC enter operating mode.
- 2. To ensure of high precision, writing the CLKS bits to 00 is recommended, to select the external 32.768KHz crystal oscillator. For an application requiring low precision, the LRC clock source can be applied. Only when the RTC is used as a normal timer will the CLKS bits set to 10 or 11.

RTC Calibration Register (RTC_CAL) Offset address:04_H Reset value:00000000_00000000_00000000_00000000B 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Reserved 14 12 10 8 7 3 11 CLKC COCR<2:0> DEV CALF<7:0> Reserved bit31-13 RTC output port enable bit 0: Disabled

Preliminary 268/341

R/W

bit12

CLKC

1: Enabled (The port needs to be multiplexed

with RTCO for RTC output)

COCR<2:0>	bit11-9	R/W	RTC output frequency select bits 000: 32KHz 001: 1024Hz 010: 32Hz 011: 1Hz 100: Output 1Hz clock after calibration 111~101: Reserved
DEV	bit8	R/W	Calibration select bit 0: Calibrate every 20 seconds (calibration takes place on 00, 20 and 40 seconds) 1: Calibrate every 60 seconds (calibration takes place on 00 second)
CALF<7:0>	bit7-0	R/W	RTC calibration value

- 1. If CALF<6:1> = 000000, then the calibration value increases or decreases to 0.
 - If CALF<7> = 0, then the calibration value increases by $((CALF<6:0>) 1) \times 2$.
 - If CALF<7> =1, then the calibration value decreases by $((\sim CALF<6:0>) + 1) \times 2$.
- 2. If DEV = 0, the calibration time step is 3.051ppm in the range -384ppm ~ 384 ppm, and the calibration accuracy is up to ± 1.5 ppm.
 - If DEV = 1, the calibration time step is 1.017ppm in the range -128ppm \sim 128ppm, and the calibration accuracy is up to \pm 0.5ppm.

RT	C Wee	k Alar	m Regist	ter (RT	C_WA)										
Offs	set ad	dress:0)8 _H												
Res	set val	ue:xxx	xxxxx_xx	XXXXXX_	_xxxxxxxx	_xxxxx	ххх _В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				R	Reserved							WW<6:	0>		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	erved			V	VH<5:0>			Reserved	Reserved WM<6:0>						
		_			bit31-23	3	_								
	W\	N<6:	0>		bit22~1	6	R/W	ww ww ww ww	<5>: <4>: <3>: <2>: <1>:	Saturd Friday Thursd Wedne Tuesda Monda Sunda	alarm lay ala esday a ay alar ay alarr	bit rm bit alarm b m bit n bit	oit		

Preliminary 269/341

bit15-14

WH<5:0>	bit13~8	R/W	WH<5>: 24 hr format:20 hours bit 12hr format:1 presents PM, 0 presents AM WH<4>: 10 hours bit WH<3>: 8 hours bit WH<2>: 4 hours bit WH<1>: 2 hours bit WH<0>: 1 hour bit
	bit7		_
WM<6:0>	bit6~0	R/W	WM<6>: 40 minutes bit WM<5>: 20 minutes bit WM<4>: 10 minutes bit WM<3>: 8 minutes bit WM<2>: 4 minutes bit WM<1>: 2 minutes bit WM<0>: 1 minute bit

RTC	Day	Alarm	Registe	er (RTC_	DA)										
Offs	et add	dress:0	Сн												
Res	et val	ue:xxx	(XXXX_X	xxxxxx_	xxxxxxx	_xxxxxx	×ΧΒ								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved			D	H<5:0>			Reserved DM<6:0>							

_	bit31-14	_	_
DH<5:0>	bit13~8	R/W	DH<5>: 24 hr format:20 hours bit 12hr format:1 presents PM, 0 presents AM DH<4>: 10 hours bit DH<3>: 8 hours bit DH<2>: 4 hours bit DH<1>: 2 hours bit DH<0>: 1 hour bit
_	bit7	_	_
DM<6:0>	bit6~0	R/W	DM<6>: 40 minutes bit DM<5>: 20 minutes bit DM<4>: 10 minutes bit DM<3>: 8 minutes bit DM<2>: 4 minutes bit DM<1>: 2 minutes bit DM<0>: 1 minute bit

Preliminary 270/341

RTC Hour Minute Second Register (RTC_HMS) Offset address:10_H HOUR<5:0> Reserved MIN<6:0> Reserved Reserved SEC<6:0>

_	bit31-22	_	_
HOUR<5:0>	bit21~16	R/W	HOUR<5>: 24 hr format:20 hours bit 12hr format:1 presents PM, 0 presents AM HOUR<4>: 10 hours bit HOUR<3>: 8 hours bit HOUR<2>: 4 hours bit HOUR<1>: 2 hours bit HOUR<0>: 1 hour bit
_	bit15	_	_
MIN<6:0>	bit14~8	R/W	MIN<6>: 40 minutes bit MIN<5>: 20 minutes bit MIN<4>: 10 minutes bit MIN<3>: 8 minutes bit MIN<2>: 4 minutes bit MIN<1>: 2 minutes bit MIN<0>: 1 minute bit
_	bit7	_	_
SEC<6:0>	bit6~0	R/W	SEC<6>: 40 seconds bit SEC<5>: 20 seconds bit SEC<4>: 10 seconds bit SEC<3>: 8 seconds bit SEC<2>: 4 seconds bit SEC<1>: 2 seconds bit SEC<1>: 1 second bit

RTC Year Month Day Week Register (RTC_YMDW) Offset address:14_H YEAR<7:0> MON<4:0> Reserved Rese rved Reserved DAY<5:0> WEEK<6:0>

YEAR<7:0>	bit31~24	R/W	YEAR<7>: 80 years bit YEAR<6>: 40 years bit YEAR<5>: 20 years bit YEAR<4>: 10 years bit YEAR<3>: 8 years bit YEAR<2>: 4 years bit YEAR<1>: 2 years bit YEAR<0>: 1 year bit
	bit23-21	_	_
MON<4:0>	bit20~16	R/W	MON<4>: 10 months bit MON<3>: 8 months bit MON<2>: 4 months bit MON<1>: 2 months bit MON<0>: 1 month bit
_	bit15-14	_	_
DAY<5:0>	bit13~8	R/W	DAY<5>: 20 days bit DAY<4>: 10 days bit DAY<3>: 8 days bit DAY<2>: 4 days bit DAY<1>: 2 days bit DAY<0>: 1 day bit
_	bit7	_	_
WEEK<6:0>	bit6~0	R/W	WEEK<6>: Saturday bit WEEK<5>: Friday bit WEEK<4>: Thursday bit WEEK<3>: Wednesday bit WEEK<2>: Tuesday bit WEEK<1>: Monday bit WEEK<0>: Sunday bit

Oliset address. To-	Offset	address:1	8н
---------------------	--------	-----------	----

0113	oct auc	11033.	IOH												
Res	et val	ne:000	00000	0_000	00000	0_00000000	_10000000) _B							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									Rese	erved					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			WALE	DALE	R	eserve	ed	MONIE	DAYIE	HORIE	MINIE	SCDIE

_	bit31-10	_	_
			Week alarm enable bit
WALE	bit9	R/W	0: Disabled
			1: Enabled
			Day alarm enable bit
DALE	bit8	R/W	0: Disabled
			1: Enabled
_	bit7-5	_	_
			Month interrupt enable bit
MONIE	bit4	R/W	0: Disabled
			1: Enabled
			Day interrupt enable bit
DAYIE	bit3	R/W	0: Disabled
			1: Enabled
			Hour interrupt enable bit
HORIE	bit2	R/W	0: Disabled
			1: Enabled
			Minute interrupt enable bit
MINIE	bit1	R/W	0: Disabled
			1: Enabled
			Second interrupt enable bit
SCDIE	bit0	R/W	0: Disabled
			1: Enabled

RTC Interrupt Flag Register (RTC_IF)

Offset address:1C_H

Res	Reset value:00000000_00000000_00000000_100000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			WAFG	DAFG	R	eserve	ed	MONIF	DAYIF	HORIF	MINIF	SCDIF
					h	it31-10	_		_						

273/341

			Week alarm flag bit
			0: Week alarm event did not occur
WAFG	bit9	R/W	1: Week alarm event occurred
			Clear the flag bit by software writing 1, and writing
			0 has no effect.
			Day alarm flag bit
			0: Day alarm event did not occur
DAFG	bit8	R/W	1: Day alarm event occurred
			Clear the flag bit by software writing 1, and writing
			0 has no effect.
_	bit7-5	_	_
			Month interrupt flag bit (interrupt occurs on 00hr
			00min 00sec on the first day in a month)
1401115	1.77.4	D 44/	0: No month interrupt
MONIF	bit4	R/W	1: Month interrupt occurred
			Clear the flag bit by software writing 1, and writing
			0 has no effect.
			Day interrupt flag bit (interrupt period is every
		R/W	day)
			0: No day interrupt
DAYIF	bit3		1: Day interrupt occurred
			Clear the flag bit by software writing 1, and writing
			0 has no effect.
			Hour interrupt flag bit (interrupt period is every
			hour)
			0: No hour interrupt
HORIF	bit2	R/W	1: Hour interrupt occurred
			Clear the flag bit by software writing 1, and writing
			0 has no effect.
			Minute interrupt flag bit (interrupt period is every
			minute)
			0: No minute interrupt
MINIF	bit1	R/W	1: Minute interrupt occurred
			Clear the flag bit by software writing 1, and writing
			0 has no effect.
			Second interrupt flag bit (interrupt period is
			every second)
			0: No second interrupt
SCDIF	bit0	R/W	1: Second interrupt occurred
			Clear the flag bit by software writing 1, and writing
			0 has no effect.
		<u> </u>	

Note: For all interrupt flags of the RTC_IF register, only writing 1 to them can clear the flags and writing 0 has no effect. When reading, 1 indicates that the corresponding interrupt has occurred.

5. 8 Liquid Crystal Display Controller (LCDC)

5. 8. 1 Overview

- ♦ 8COM x 28SEG
- Grayscale adjustment
- ♦ Configurable twinkling frequency
- ♦ Adjustable internal bias resistor
- ♦ 3 clock source options

5. 8. 2 Block Diagram

Figure 5-52 LCD Driver Block Diagram

5. 8. 3 LCD Basic Settings

Configure the LCDC drive module in the following procedure:

- 1) Configure the SEL bit of the LCD_CON1 register to select the LCD driver
- 2) Configure the LCDC operating clock
- 3) Configure the LCDC port: configure the COMS<2:0> bits of the LCD_CON0 register to select the common; configure the SEG<27:0> bits of the LCD_SEL register to enable the segment and select bias mode; configure the GPIO_PAINEB/GPIO_PBINEB register to disable the corresponding digital inputs and configure the GPIO_PADIR/GPIO_PBDIR register to disable the corresponding digital outputs.
- 4) Initialize the pixel data register LCD_D0~LCD_D6.
- 5) Enable the LCDC drive module

5. 8. 4 LCD Bias Selection

There are internal bias voltage and external bias voltage for selection.

When VLCDEN = 0 of the LCD_CON0 register, the internal bias voltage is selected, and the internal reference source is the VDD. The following bias types are available.

♦ 1/2 Bias (3 voltage levels :VSS,1/2 VBIAS and VBIAS)

- ♦ 1/3 Bias (4 voltage levels:VSS,1/3 VBIAS, 2/3 VBIAS and VBIAS)
- ♦ 1/4 Bias (5 voltage levels: VSS, 1/4 VBIAS, 2/4 VBIAS, 3/4 VBIAS and VBIAS)

The user only needs to select the desired bias type, and the bias voltage will automatically be generated by the internal circuit.

When VLCDEN = 1 of the LCD_CON0 register, the external bias voltage is selected. The external bias voltage is input from PA2~PA5 which are required to be in analog mode. The resistor network of the external bias voltage has to match the bias type selected by the BIAS<1:0>. Table 5-4 shows the input configuration of the external bias voltage on PA2~PA5.

	1/2 Bias	1/3 Bias	1/4 Bias
VLCD1(PA2)	1/2 VDD	1/3 VDD	1/4 VDD
VLCD2(PA3)	1/2 VDD	2/3 VDD	2/4 VDD
VLCD3(PA4)	VDD	VDD	3/4 VDD
VLCD4(PA5)	_	_	VDD

Table 5-4 LCDC External Bias Voltage Input Configuration

Figure 5-53 1/4 VDD External Bias Voltage Reference Circuit

5. 8. 5 LCD Pixel Mapping Table

COM7	СОМ6	COM5	COM4	СОМЗ	COM2	COM1	СОМО	
D6[31]	D6[30]	D6[29]	D6[28]	D6[27]	D6[26]	D6[25]	D6[24]	SEG27
D6[23]	D6[22]	D6[21]	D6[20]	D6[19]	D6[18]	D6[17]	D6[16]	SEG26
D6[15]	D6[14]	D6[13]	D6[12]	D6[11]	D6[10]	D6[9]	D6[8]	SEG25
D6[7]	D6[6]	D6[5]	D6[4]	D6[3]	D6[2]	D6[1]	D6[0]	SEG24
D5[31]	D5[30]	D5[29]	D5[28]	D5[27]	D5[26]	D5[25]	D5[24]	SEG23
D5[23]	D5[22]	D5[21]	D5[20]	D5[19]	D5[18]	D5[17]	D5[16]	SEG22
D5[15]	D5[14]	D5[13]	D5[12]	D5[11]	D5[10]	D5[9]	D5[8]	SEG21
D5[7]	D5[6]	D5[5]	D5[4]	D5[3]	D5[2]	D5[1]	D5[0]	SEG20
D4[31]	D4[30]	D4[29]	D4[28]	D4[27]	D4[26]	D4[25]	D4[24]	SEG19
D4[23]	D4[22]	D4[21]	D4[20]	D4[19]	D4[18]	D4[17]	D4[16]	SEG18

Preliminary 276/341

COM7	COM6	COM5	COM4	COM3	COM2	COM1	COM0	
D4[15]	D4[14]	D4[13]	D4[12]	D4[11]	D4[10]	D4[9]	D4[8]	SEG17
D4[7]	D4[6]	D4[5]	D4[4]	D4[3]	D4[2]	D4[1]	D4[0]	SEG16
D3[31]	D3[30]	D3[29]	D3[28]	D3[27]	D3[26]	D3[25]	D3[24]	SEG15
D3[23]	D3[22]	D3[21]	D3[20]	D3[19]	D3[18]	D3[17]	D3[16]	SEG14
D3[15]	D3[14]	D3[13]	D3[12]	D3[11]	D3[10]	D3[9]	D3[8]	SEG13
D3[7]	D3[6]	D3[5]	D3[4]	D3[3]	D3[2]	D3[1]	D3[0]	SEG12
D2[31]	D2[30]	D2[29]	D2[28]	D2[27]	D2[26]	D2[25]	D2[24]	SEG11
D2[23]	D2[22]	D2[21]	D2[20]	D2[19]	D2[18]	D2[17]	D2[16]	SEG10
D2[15]	D2[14]	D2[13]	D2[12]	D2[11]	D2[10]	D2[9]	D2[8]	SEG9
D2[7]	D2[6]	D2[5]	D2[4]	D2[3]	D2[2]	D2[1]	D2[0]	SEG8
D1[31]	D1[30]	D1[29]	D1[28]	D1[27]	D1[26]	D1[25]	D1[24]	SEG7
D1[23]	D1[22]	D1[21]	D1[20]	D1[19]	D1[18]	D1[17]	D1[16]	SEG6
D1[15]	D1[14]	D1[13]	D1[12]	D1[11]	D1[10]	D1[9]	D1[8]	SEG5
D1[7]	D1[6]	D1[5]	D1[4]	D1[3]	D1[2]	D1[1]	D1[0]	SEG4
D0[31]	D0[30]	D0[29]	D0[28]	D0[27]	D0[26]	D0[25]	D0[24]	SEG3
D0[23]	D0[22]	D0[21]	D0[20]	D0[19]	D0[18]	D0[17]	D0[16]	SEG2
D0[15]	D0[14]	D0[13]	D0[12]	D0[11]	D0[10]	D0[9]	D0[8]	SEG1
D0[7]	D0[6]	D0[5]	D0[4]	D0[3]	D0[2]	D0[1]	D0[0]	SEG0

Table 5-5 LCDC Pixel Mapping Table

5. 8. 6 LCDC Clock Sources

The LCDC module has three clock source options.

- ♦ LRC clock divided by 4: active during normal sleep and deep sleep
- LOSC clock divided by 4: active during normal sleep and deep sleep
- ♦ PCLK clock divided by 4096: inactive during normal sleep and deep sleep

The PRS<5:0> bits of the LCD_CON0 register select the prescaler ratio of the LCD operating clock.

5. 8. 7 LCD Frame Frequency

Below shows the frame frequency calculations.

COMS<2:0> = 001: frame frequency = clock source $/(1 \times 4 \times (PRS<5:0>+1))$

COMS<2:0> = 010: frame frequency = clock source $/(1 \times 6 \times (PRS<5:0>+1))$

COMS<2:0> = 011: frame frequency = clock source $/(1 \times 8 \times (PRS<5:0>+1))$

COMS<2:0> = 10x: frame frequency = clock source $/(2 \times 2 \times (PRS<5:0>+1))$

COMS<2:0> = 11x: frame frequency = clock source $/(1 \times 3 \times (PRS<5:0>+1))$

5. 8. 8 LCD Twinkling

Set the FLIK bit of the LCD_CON0 register to enable the LCD twinkling function. The

twinkling on and off time can be configured through the LCD_TWI register. Prior to enabling the twinkling function, configure the LCD_TWI register first.

5. 8. 9 LCD Low Power Mode

The RS<2:0> bits of the LCD_CON0 register control the value of the internal bias resistor. Reducing the resistance of the bias resistor gives better display effect but leads to more power consumption. In order to reduce the power consumption while maintaining the display effect, the LCD module offers the automatic internal bias resistor switching, which allows the user to select the proper bias resistor based on the actual display effect. The RT<2:0> bits of the LCD_CON0 register control the switching time. Only when the LCD is configured in switching mode, the RT<2:0> bits are valid.

The BVS<3:0> bits of the LCD_CON0 register control the grayscale of the LCD. The higher the grayscale voltage, the better the display effect but more the power consumption. The user can set the desired the grayscale based on the actual display effect and power requirement.

Figure 5-54 Fast Charging Discharging Diagram

Preliminary 278/341

5. 8. 10 Special Function Registers

LCD	LCD Control Register 0(LCD_CON0)														
Offset address:00 _H															
Reset value:11110000_00000000_0000000000B															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	BVS	<3:0>					Reser	/ed		PRS<5:0>					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RT<2:0> RS<2:0> BIAS<1:0> CLK_SEL<1:0>						WFS	FLIK	VLCDEN	C	COMS<2	::0>				

			LCD bias voltage bits (reference source VDD)
			0000: $V_{BIAS} = VDD/2$
			0001: $V_{BIAS} = VDDx (16/30)$
			0010: $V_{BIAS} = VDDx (17/30)$
			0011: $V_{BIAS} = VDDx (18/30)$
			0100: V _{BIAS} = VDD x (19/30)
			0101: $V_{BIAS} = VDD \times (20/30)$
			0110: $V_{BIAS} = VDD \times (21/30)$
BVS<3:0>	bit31-28	R/W	0111: V _{BIAS} = VDD× (22/30)
			1000: V _{BIAS} = VDD× (23/30)
			1001: V _{BIAS} = VDD× (24/30)
			1010: V _{BIAS} = VDD× (25/30)
			1011: V _{BIAS} = VDD x (26/30)
			1100: V _{BIAS} = VDD× (27/30)
			1101: V _{BIAS} = VDD× (28/30)
			1110: V _{BIAS} = VDD× (29/30)
			1111: V _{BIAS} = VDD
_	bit27-22	_	
			LCDC clock source prescaler ratio select bits
			000000 = 1:1
			000001 = 1:2
PRS<5:0>	bit21-16	R/W	
			000010 = 1.3
			000010 = 1:3
			 111111 = 1:64
			111111 = 1:64 LCDC 60kΩ resistor hold time select bits
			111111 = 1:64 LCDC 60kΩ resistor hold time select bits 000: 1/4 COM cycle
RT~2·0~	hit15-12	P///	111111 = 1:64 LCDC 60kΩ resistor hold time select bits 000: 1/4 COM cycle 001: 1/8 COM cycle
RT<2:0>	bit15-13	R/W	111111 = 1:64 LCDC 60kΩ resistor hold time select bits 000: 1/4 COM cycle 001: 1/8 COM cycle 010: 1/16 COM cycle
RT<2:0>	bit15-13	R/W	111111 = 1:64 LCDC 60kΩ resistor hold time select bits 000: 1/4 COM cycle 001: 1/8 COM cycle 010: 1/16 COM cycle 011: 1/32 COM cycle
RT<2:0>	bit15-13	R/W	111111 = 1:64 LCDC 60kΩ resistor hold time select bits 000: 1/4 COM cycle 001: 1/8 COM cycle 010: 1/16 COM cycle 011: 1/32 COM cycle 100: 1/64 COM cycle
RT<2:0>	bit15-13	R/W	111111 = 1:64 LCDC 60kΩ resistor hold time select bits 000: 1/4 COM cycle 001: 1/8 COM cycle 010: 1/16 COM cycle 011: 1/32 COM cycle 100: 1/64 COM cycle Others: Reserved
RT<2:0> RS<2:0>	bit15-13	R/W	111111 = 1:64 LCDC 60kΩ resistor hold time select bits 000: 1/4 COM cycle 001: 1/8 COM cycle 010: 1/16 COM cycle 011: 1/32 COM cycle 100: 1/64 COM cycle

			001: 900KΩ (in 1/3 and 1/4 BIAS), 600KΩ (in 1/2 BIAS) 01x: 60KΩ (in 1/3 and 1/4 BIAS), 40KΩ (1/2 BIAS) 100: Auto switching between 60KΩ and 225KΩ (in 1/3 and 1/4 BIAS); auto switching between 40KΩ and 150KΩ (in 1/2 BIAS) 101: Auto switching between 60KΩ and 900KΩ (in 1/3 and 1/4 BIAS); auto switching between 40KΩ and 600KΩ(in 1/2
			BIAS) Others: Reserved
			LCDC bias type select bits
DIA 0 4 0	1.40.0	D 44/	00: 1/2 Bias
BIAS<1:0>	bit9-8	R/W	01: 1/3 Bias
			10: Reserved
			11: 1/4 Bias
			LCDC clock source select bits
			00: LRC clock divided by 4 (internal 32KHz clock)
CLK_SEL<1:0>	bit7-6	R/W	01: LOSC clock divided by 4 (external 32KHz clock)
			10: PCLK clock divided by 4096
			11: Reserved
			LCD drive wave type select bit
			0: Type A waveform (the phase changes within each
WFS	bit5	R/W	common type)
			1: Type B waveform (the phase changes on each frame
			boundary)
			LCD twinkling enable bit
FLIK	bit4	R/W	0: Disabled
			1: Enabled
			External bias voltage enable bit
VLCDEN	bit3	R/W	0: Disabled
			1: Enabled
COMS<2:0>	bit2-0	R/W	Common select bits (see table below)

COMS<2:0>	COM Multiplex	Max. Pixel
11X	1/3 (COM2~COM0)	84
10X	1/2 (COM1~COM0)	56
011	1/8 (COM7~COM0)	224
010	1/6 (COM5~COM0)	168
001	1/4 (COM3~COM0)	112
000	_	_

Table 5-6 Common Multiplex Configuration

LCD	LCD Twinkle Register (LCD_TWI)														
Offse	Offset address:04 _H														
Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			TOF	F<7:0>							TOI	N<7:0>			
	_	I	bit31-16	_	_										
тоі	I TOFF<7:0> bit15-8 R/W					LCD off duration (TOFF+1) x 0.25 seconds									
то	N<7:0	>	bit7-0	R/W	_	LCD on duration (TON+1) x 0.25 seconds									

LCD Segment Enable Register	(LCD	_SEL)
-----------------------------	------	-------

Offset address:08_H

Rese	t value:0	0000000	_000000	000_000	00000_0	0000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	rved			SEG	EG<27:16>										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SEG<	<15:0>														

_	bit31-28		_
			LCD segment enable bit
SEG<27:0>	bit27-0	R/W	0: Disabled
			1: Enabled

LCD Control Register 1 (LCD_CON1)

Offset address:10_H

Rese	et value	:00000	000_00	000000	0_000	0000_0	000000)0 _B							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	erved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved										RST	Rese	erved	SEL	EN

_	bit31-5	_	_
RST	bit4	W	LCDC module software reset bit

Preliminary 281/341

			0: Always read as 0 1: Software reset
_	bit3-2	_	_
			LCDC/LEDC driver select bit
SEL	bit1	R/W	0: Select LCD driver (Disable LED driver)
			1: Disable LCD driver (Select LED driver)
			LCDC module enable bit
EN	bit0	R/W	0: Disabled
			1: Enabled

Note: Following a LCDC software reset, the LCDC module will be disabled (EN=0).

LCD	Data Re	gister 0(LCD_D0))											
Offse	t address	s:20 _H													
Rese	t value:0	0000000	_000000	000_000	00000_0	0000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							D0<	:31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							D0-	<15:0>							

			Pixel on bit
D0<31:0>	bit31-0	R/W	0: Pixel off (clear)
			1: Pixel on (dark)

LCD Data Register 1 (LCD_D1)

Offset address:24_H

Rese	t value:0	0000000	_000000	000_000	00000_0	0000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							D1<	:31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							D1	<15:0>							

			Pixel on bit
D1<31:0>	bit31-0	R/W	0: Pixel off (clear)
			1: Pixel on (dark)

Preliminary 282/341

LCD	Data Re	gister 2	(LCD_D	2)											
Offse	t addres	s:28 _H													
Rese	t value:0	0000000	0_000000	000_0	_0000000_	_00000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
D2<3	31:16>														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D2<1	5:0>														
D)2<31:	0>	bit31	-0	R/W	O: Pixe 1: Pixe	el off (clear)							
	Data Re		(LCD_D	3)											
			0,00000	000 00	2000000	_00000000									
				, o o _ o ·											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							D3<	:31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							D3	<15:0>							
				-		1									
D)3<31:	0>	bit31	-0	R/W	0: Pixe 1: Pixe	el off (clear)							
LCD	Data Re	gister 4	(LCD_D	4)											
Offse	et addres	s:30 _H													
Rese	t value:0	0000000	0_000000	000_0	0000000_	_00000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							D4<	:31:16>							

			Pixel on bit
D4<31:0>	bit31-0	R/W	0: Pixel off (clear)
			1: Pixel on (dark)

D4<15:0>

Preliminary 283/341

itogioto	1 3 (LC	D_D5)												
dress:34 _H														
ne:00000	000_00	00000	0_0000	0000_00	000000 _f	3								
0 29	9 2	28	27	26	25	24	23	22	21	20	19	18	17	16
>														
4 13	3 1	12	11	10	9	8	7	6	5	4	3	2	1	0
(ue:00000 0 29 >	29 2	ue:00000000_0000000 0 29 28 > 4 13 12	ue:00000000_00000000_0000 0 29 28 27 > 4 13 12 11	ue:00000000_00000000_0000000000000000000	ue:00000000_00000000_0000000000000000000	ue:00000000_0000000_00000000000000000000	ue:00000000_00000000_0000000000000000000	Lue:00000000_0000000_00000000000000000000	ue:00000000_0000000_00000000000000000000	ue:00000000_0000000_00000000000000000000	LUE:000000000_00000000_000000000000000000	Jue:00000000_0000000_00000000000000000000	Jue:00000000_0000000_00000000000000000000

			Pixel on bit
D5<31:0>	bit31-0	R/W	0: Pixel off (clear)
			1: Pixel on (dark)

LCD Data Register 6 (LCD_D6)

Offse	t address	s:38 _H													
Rese	t value:0	0000000	_000000	000_000	00000_0	0000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							D6<	:31:16>							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							D6	<15:0>							

			Pixel on bit
D6<31:0>	bit31-0	R/W	0: Pixel off (clear)
			1: Pixel on (dark)

5. 9 LED Display Controller (LEDC)

5. 9. 1 Overview

- ♦ 1~ 8 pieces of 8-segment common cathode LED
- ♦ 3 clock source options

5. 9. 2 Block Diagram

Figure 5-55 LEDC Driver Module Block Diagram

5. 9. 3 LEDC Basic Settings

Configure the LED driver module in the following procedures.

- 1) Configure the SEL of the LED_CON1 register to select the LED driver.
- 2) Configure the LED operating clock.
- 3) Configure the MUX bits to select the number of commons of the LED
- 4) Configure the GPIO_PAFUNC/ GPIO_PBFUNC as normal I/Os, and LED ports as outputs; set the COM to have high current drive; enable the common and segment function of the ports with COM<7:0> and SEG<7:0> of the LED_SEL register.
- 5) Initialize the LEDC data register LED_D0~LED_D1.
- 6) Enable the LEDC driver module.

5. 9. 4 LEDC Pixel Mapping Table

SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	
D1 [31]	D1 [30]	D1 [29]	D1 [28]	D1 [27]	D1 [26]	D1 [25]	D1 [24]	COM7
D1 [23]	D1 [22]	D1 [21]	D1 [20]	D1 [19]	D1 [18]	D1 [17]	D1 [16]	COM6
D1 [15]	D1 [14]	D1 [13]	D1 [12]	D1 [11]	D1 [10]	D1 [9]	D1 [8]	COM5
D1 [7]	D1 [6]	D1 [5]	D1 [4]	D1 [3]	D1 [2]	D1 [1]	D1 [0]	COM4
D0 [31]	D0 [30]	D0 [29]	D0 [28]	D0 [27]	D0 [26]	D0 [25]	D0 [24]	COM3
D0 [23]	D0 [22]	D0 [21]	D0 [20]	D0 [19]	D0 [18]	D0 [17]	D0 [16]	COM2
D0 [15]	D0 [14]	D0 [13]	D0 [12]	D0 [11]	D0 [10]	D0 [9]	D0 [8]	COM1
D0 [7]	D0 [6]	D0 [5]	D0 [4]	D0 [3]	D0 [2]	D0[1]	D0[0]	СОМ0

Table 5-7 LEDC Pixel Mapping Table

5. 9. 5 LEDC Clock Sources

The LED module has 3 clock source options.

- ♦ LRC clock divided by 4: active during sleep
- ♦ LOSC clock divided by 4: active during sleep
- ♦ PCLK clock divided by 4096: inactive during sleep

The PRS<5:0> bits of the LED_CON0 register select the prescaler ratio of the LED operating clock.

5. 9. 6 LEDC Operating Diagram

Figure 5-56 LEDC Operating Diagram

5. 9. 7 Special Function Registers

LED (Control	Register	r 0 (LED	_CON0)											
Offset	Offset address:00 _H														
Reset	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Re	eserved							PRS	S<5:0>		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved									SEL<1:0>		Reserv	ed		MUX<2	:0>

PRS<5:0> bit21-16 R/W	_	bit31-22	_	_
000010 = 1.3	PRS<5:0>	bit21-16	R/W	000000 = 1:1

Preliminary 286/341

			111111 = 1:64
_	bit15-8	_	_
			LEDC clock source select bits
			00: LRC clock divided by 4 (internal 32KHz clock)
CLK_SEL<1:0>	bit7-6	R/W	01: LOSC clock divided by 4 (external 32KHz clock)
			10 :PCLK clock divided by 4096
			11: Reserved
_	bit5-3	_	
			COM multiplex select bits
			000: COM0 multiplex
			001: COM0~COM1 multiplex
			010: COM0~COM2 multiplex
MUX<2:0>	bit2-0	R/W	011: COM0~COM3 multiplex
			100: COM0~COM4 multiplex
			101: COM0~COM5 multiplex
			110: COM0~COM6 multiplex
			111: COM0~COM7 multiplex

LED Seament	Enable	Desistan	/I ED CELV
		E4(510) E4(51)	

Offse	t address	s:08 _H													
Rese	t value:0	0000000	_0000000	000_000	00000_0	0000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SEG<15:8>										COI	M<7:0>			

_	bit31-16	_	
			LED segment enable bits
SEG<7:0>	bit15-8	R/W	0: Disabled
			1: Enabled
			LED common enable bits
COM<7:0>	bit7-0	R/W	0: Disabled
			1: Enabled

LED Control Register 1 (LED_CON1)

Offset address:10_H

Rese	teset value:00000000_00000000_0000000000000000000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									Reser	ved					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				ļ	Reserve	ed					RST	Res	erved	SEL	EN

Preliminary 287/341

_	bit31-5	_	_
			LEDC driver module software reset bit
RST	bit4	W	0: Always read as 0
			1: Software reset
_	bit3-2	_	_
			LEDC/LCDC driver select bit
SEL	bit1	R/W	0: Disable LEDC driver (select LCDC driver)
			1: Select LEDC driver (disable LCDC driver)
			LEDC drive module enable bit
EN	bit0	R/W	0: Disabled
			1: Enabled

	Register		

Offset	t address	s:20 _H													
Reset	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	D0<31:16>														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	D0<15:0>														

			Pixel on bit
D0<31:0>	bit31-0	R/W	0: Pixel off (clear)
			1: Pixel on (dark)

LED Data Register 1 (LED_D1)

Offset address:24_H

Rese	Reset value:00000000_00000000_000000000B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	D1<31:16>														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	D1<15:0>														

			Pixel on bit
D1<31:0>	bit31-0	R/W	0: Pixel off (clear)
			1: Pixel on (dark)

Preliminary 288/341

5. 10 Watchdog Timer (WDT)

5. 10. 1 Overview

When CFG_WDTEN is 1 of the CFG_WORD1, the hardware watchdog is enabled, and the WDT_LOAD register cannot be configured by software. The WDT starts counting right after power on reset using internal 32KHz LRC clock as the counter clock. The WDT loads the value which is 1/4 of the corresponding value selected by the WDTRL of the CFG_WORD1 register, and counts down. When the counter counts down to 0, the window counter will be increased by 1, and the counter will reload the value before the next arriving clock and continue to count down. When the window counter reaches 2 (the accumulated WDT counter value is half of the WDTRL value), a WDT interrupt will occur. Before the window counter reaches 4 (the accumulated WDT counter value is equal to the WDTRL value), if there has been no feeding during the corresponding feed window, a reset signal will be generated. The WDT_LOCK register is readable and writable, the WDT_INTCLR is write-only, and other WDT associated registers are read-only. The value obtained by reading the WDT_LOAD register is the reload value selected by WDTRL. Reading the WDT_CON register will return 0x0000_000F.

When CFG_WDTEN is 0 of the CFG_WORD1, the hardware watchdog is disabled. However, the WDT still can be enabled by software. And the WDT_LOAD register is also software configurable. When the WDT is enabled by software (WDTEN=1 of the WDT_CON register), the WDT will load 1/4 of the value in the WDT_LOAD register, and starts to count down. When the counter value reaches 0, the window counter will be increased by 1, and will again reload the 1/4 value of the WDT_LOAD register before the next arriving clock and continue to count down. When the window counter reaches 2 (the accumulated WDT counter value is half of the WDT_LOAD value), an WDT interrupt will occur. Before the window counter reaches 4 (the accumulated WDT counter value is equal to the WDT_LOAD value), if there has been no feeding during the corresponding feed window, a reset signal will be generated. Select a counter clock source by configuring the CLKS and write the WDT_LOAD register with a reload value. Read the WDT_VALUE register to obtain the current counter value. When writing the WDT_LOAD register, the WDT_VALUE register will be cleared.

The WDT module supports write-protection. Write WDT_LOCK = 0x1ACCE551 to remove the protection in order to write those protected registers; otherwise those registers cannot be written.

Notes

- 1. In SWD mode, the WDT needs to be disabled. Otherwise, the WDT will keep counting during debug, resulting in a reset caused by an overflow, which thereby leads to an irregular debugging behavior
- 2. When deep sleep mode is entered and WDT is enabled, a WDT reset cannot wake up the system. Thus, the WDT interrupt must also be enabled to wake up the system.

5. 10. 2 Special Function Registers

WDT	Reload '	Value R	egister (WDT_L	DAD)										
Offset	t address	s:00 _H													
Reset value:11111111_1111111_11111111111 _B															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LOAD)<31:16>														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LOAD	0<15:0>														

			WDT reload value
LOAD<31:0>	bit31-0	W	0x0000_0001~0xFFFF_FFFF.
			If the value is 0, the WDT does not count.

WDT Current Value Register (WDT_VALUE)

Offset address:04_H

Reset	Reset value:11111111_1111111_11111111 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
31	30	29	20	21	20	20	24	23	22	21	20	19	10	17	10
							VALUI	E<31:16	>						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							\/\\	E<15:0>							
							VALO	E< 13.0>							

VALUE<31:0>	bit31-0	R	WDT current counter value
			When read, the WDT returns the current counter value.

WDT Control Register (WDT_CON)

Offset address:08_H

Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Res	served						CLKS	RSTEN	IE	EN

_	bit31-4	_	_
			WDT counter clock select bit
CLKS	bit3	R/W	0: PCLK
			1: LRC clock(about 32KHz)
RSTEN	bit2	R/W	WDT reset enable bit

Preliminary 290/341

_			
			0: Disabled
			1: Enabled. A reset will be generated when the counter value
			reaches 0.
			WDT interrupt enable bit
IE	P:14	DAA	0: Disabled
IE	bit1	R/W	1: Enabled. The interrupt flag will be set when the counter value
			reaches 0.
			WDT enable bit
EN	bit0	R/W	0: Disabled
			1: Enabled

Note: The bits of the WDT_CON are valid only when $CFG_WDTEN = 0$ of the CFG_WORD1 .

WDT	Interrup	t Clear I	Register	(WDT_I	NTCLR)										
Offse	t address	s:0C _H													
Rese	t value:0	0000000	_000000	000_000	00000_0	0000000	В								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
INTC	LR<31:1	6>													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
INTC	LR<15:0	>													

INTCLR<31:0>	bit31-0	W	WDT interrupt clear bit Any write operations to the WDT_INTCLR register will clear
INTCLR<31:0>	มเงา-บ	VV	all WDT interrupt flags, and the counter will reload the value of the WDT_LOAD register and continue to count down.

WDT Interrupt Flag Register (WDT_RIS)

Offset address:10_H

Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (0
	Reserved														WDTIF

_	bit31-1	_	_
			WDT interrupt flag bit
			0: No interrupt occurred
WDTIF	bit0	R	1: An interrupt occurred when the WDT counter reaches 0.
			Writing the WDT_INTCLR register to clear the WDT interrupt
			flag.

Preliminary 291/341

WDT	WDT Lock Register (WDT_LOCK)														
Offse	Offset address:00 _H														
Rese	Reset value:00000000_00000000_000000000 _B														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	eserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserv	ed							LOCK

	h:t04 4	W	When writing 0x1ACCE551 to the WDT_LOCK<31:0>, the lock
_	bit31-1	VV	bit will be 0. Otherwise, the lock bit is 1.
			WDT register lock bit
			0: WDT registers are not locked.
LOCK	bit0	R/W	1: WDT registers are locked for protection.
LOCK	DILU		Write 0x1ACCE551 to the WDT_LOCK register to unlock the
			WDT registers. Write other values to the WDT_LOCK register
			to lock WDT registers for protection.

Notes

- 1. The WDT_LOCK register has 32 bits and is write-only, and only the LOCK bit is readable. The register must be accessed in word.
- 2. The WDT_LOCK register locks the WDT_LOAD, WDT_CON and WDT_INTCLR register for protection.

Chapter6 Packaging Information

6. 1 LQFP 48-pin Package Drawing

Cymphal		(mm)			(inch)	
Symbol	MIN	NOM	MAX	MIN	NOM	MAX
Α	_	_	1.60	_	_	0.063
A1	0.05	_	0.15	0.002	_	0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
c1	0.09	_	0.20	0.003	_	0.008
D	8.80	9.00	9.20	0.346	0.354	0.362
D1	6.90	7.00	7.10	0.271	0.275	0.279
Е	8.80	9.00	9.20	0.346	0.354	0.362
E1	6.90	7.00	7.10	0.271	0.275	0.279
b	0.17	0.22	0.27	0.006	0.008	0.011
е	0.40	0.50	0.60	0.016	0.02	0.024
L	0.45	0.60	0.75	0.018	0.024	0.029
L1	0.85	0.95	1.05	0.033	0.037	0.041
L2	_	0.25 BSC		_	0.010 BSC	_
θ	0°	3.5°	7°	0°	3.5°	7°

6. 2 LQFP 44-pin Package Drawing

Cymhal		(mm)			(inch)	
Symbol	MIN	NOM	MAX	MIN	NOM	MAX
А	1.45	1.55	1.65	0.057	0.061	0.065
A1	0.015	_	0.21	0.0005	_	0.0083
A2	1.30	1.40	1.50	0.050	0.055	0.060
c1	_	0.127	_	_	0.005	_
D	11.75	12.52	13.30	0.462	0.493	0.524
D1	9.85	9.95	10.05	0.388	0.392	0.396
Е	11.75	12.52	13.30	0.462	0.493	0.524
E1	9.85	9.95	10.05	0.388	0.392	0.396
b	0.25	0.30	0.35	0.009	0.012	0.014
е	_	0.8	_		0.032	_
L	0.42	-	0.72	0.016		0.029
L1	0.95	1.32	1.70	0.037	0.052	0.067
θ	0	-	10°	0		10°

6. 3 LQFP 32-pin Package Drawing

Symbol		(mm)		(inch)			
Syllibol	MIN	NOM	MAX	MIN	NOM	MAX	
А	_	_	1.60	_	_	0.063	
A1	0.05	_	0.15	0.002		0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
A3	0.59	0.64	0.69	0.023	0.025	0.027	
c1	_	0.127		_	0.005	_	
D	8.80	9.00	9.20	0.346	0.354	0.362	
D1	6.90	7.00	7.10	0.272	0.276	0.280	
Е	8.80	9.00	9.20	0.346	0.354	0.362	
E1	6.90	7.00	7.10	0.272	0.276	0.280	
b	0.32	_	0.43	0.013	_	0.017	
е	_	0.80 BSC		_	0.031	_	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1	_	1.00 REF	_	_	0.039 REF	_	
L2	_	0.25 BSC	_	_	0.010 BSC	_	
θ	0°	3.5°	7°	0°	3.5°	7°	

6. 4 QFN 32-pin Package Drawing

Cumbal		(mm)		(inch)			
Symbol	MIN	NOM	MAX	MIN	NOM	MAX	
А	0.700	0.800	0.900	0.028	0.031	0.035	
A1	0.000	_	0.050	0.000	_	0.002	
А3		0.203REF.			0.008REF.		
D	4.924	_	5.076	0.194	_	0.200	
Е	4.924	_	5.076	0.194	_	0.200	
D1	3.300	_	3.500	0.130	_	0.138	
E1	3.300	_	3.500	0.130	_	0.138	
k		0.200MIN.			0.008MIN.		
b	0.180	_	0.300	0.007	_	0.012	
е		0.500TYP.			0.020TYP.		
L	0.324	_	0.476	0.013	_	0.019	

6. 5 SOP 28-pin Package Drawing

Cymbol		(mm)		(inch)			
Symbol	MIN	NOM	MAX	MIN	NOM	MAX	
Α	2.30	2.50	2.70	0.090	0.098	0.107	
A1	0.10	0.20	0.30	0.003	0.007	0.012	
A2	2.10	2.30	2.50	0.082	0.090	0.099	
D	17.89	18.09	18.29	0.704	0.712	0.721	
Е	10.10	10.30	10.50	0.397	0.405	0.414	
E1	7.30	7.50	7.70	0.287	0.295	0.304	
b	_	0.40	_	_	0.016	_	
е	_	1.27	_	_	0.05	_	
L	0.75	0.85	0.95	0.029	0.033	0.038	
θ	0°	_	8°	0°		8°	

Appendix1 Cortex-M0 Core

Appendix1. 1 Cortex-M0 Instruction Set

The Cortex-M0 instruction set has 56 basic instructions, 50 of them are 16-bit instructions and 6 of them are 32-bit instructions. Many of the instructions can extend their mnemonics to achieve different functions.

32-bit instructions are BL, DSB, DMB, ISB, MRS and MSR.

Syntax description:

- < >: any operand inside the bracket can be the operand of the instruction
 Example <Rm | #imm>: the operand can be register Rm, or immediate #imm
- 2) { }: any operand or symbol inside the bracket is optional

Example MOV $\{S\}$: the mnemonic can be MOV or MOVS, the latter affects the condition flags

Example {Rd,}: the destination Rd is optional depending on the instruction used.

Mnemonic	Operand	Description	Affected Flag Bits
ADR	Rd,Label	Put the address of Label to a register	-
LDR	Rt,Label	Load Rt with word from memory	-
LDR	Rt,[Rn, <rm #imm="" ="">]</rm>	Load Rt with word from memory	-
LDRB	Rt,[Rn, <rm #imm="" ="">]</rm>	Load Rt with byte from memory	-
LDRH	Rt,[Rn, <rm #imm="" ="">]</rm>	Load Rt with half word from memory	-
LDRSB	Rt,[Rn,Rm]	Load Rt with byte from memory (signed extend)	-
LDRSH	Rt,[Rn,Rm]	Load Rt with half word from memory (signed extend)	-
LDM	Rn{!},reglist	Load multiple registers from memory. Rn gets updated by address increment	-
STR	Rt,[Rn, <rm #imm="" ="">]</rm>	Write word to memory	-
STRB	Rt,[Rn, <rm #imm="" ="">]</rm>	Write byte to memory	-
STRH	Rt,[Rn, <rm #imm="" ="">]</rm>	Write half word to memory	-
STM	Rn!,reglist	Store multiple registers to memory. Rn gets updated by address increment	-
PUSH	Reglist	Store register to stack	-
POP	Reglist	Read register to stack	-
MOV{S}	Rd, <rm #imm="" =""></rm>	Move register Rd= <rm #imm="" =""></rm>	N,Z or -
MVNS	Rd,Rm	Logical bitwise NOT. Rd=NOT(Rm)	N,Z
MRS	Rd,spec_reg	Move special register into register, Rd=spec_reg	-

MSR Spec_reg,Rm Move register into special register, spec_reg=Rm N.Z,C,V or spec_reg=Rm N.Z,C,V or .Z,C,V or .Z,C,V ADD(S) {Rd,}Rn,Rm Add with carrier N.Z,C,V or .Z,C,V	Mnemonic	Operan	d	Description	Affected Flag Bits
ADCS (Rd,)Rn,Rm Add with carrier N,Z,C,V ADD(S) {Rd,}Rn,Rm Add registers N,Z,C,V or RSBS (Rd,)Rn,#0 Reverse subtract (negative), Rd = 0-Rn N,Z,C,V or SBCS {Rd,}Rn,Rm Subtract with borrow, Rd = Rn-Rm-C N,Z,C,V or SUB(S) {Rt,}Rn,Rm Subtract N,Z,C,V or ANDS {Rd,}Rn,Rm Logica AND,Rd = Rn&Rm N,Z ORRS {Rd,}Rn,Rm Logical Exclusive OR, Rd = Rn^Rm N,Z EORS {Rd,}Rn,Rm Logical Exclusive OR, Rd = Rn^Rm N,Z EORS {Rd,}Rn,Rm Logical Exclusive OR, Rd = Rn^Rm N,Z EORS {Rd,}Rn,Rm Logical bitwise clear N,Z ASRS {Rd,Rd,Rn,Rm Arithmetic shift right N,Z,C LSLS {Rd,RR,R,Rm #imm> Logical shift right N,Z,C LSSS {Rd,RR,R,Rm #imm> Compare N,Z,C,V CMP {Rd,RRm Rimm> Compare N,Z,C,V CMN RR,Rm Multiply N,Z <td>MSR</td> <td colspan="2">Spec_reg,Rm</td> <td></td> <td>N,Z,C,V or</td>	MSR	Spec_reg,Rm			N,Z,C,V or
ADD{S} (Rd,)Rn, <rm #imm="" =""> Add registers N,Z,C,V or SBCS (Rd,)Rn,#0 Reverse subtract (negative), Rd = 0-Rn N,Z,C,V or SBCS (Rd,)Rn,Rm Subtract with borrow, Rd = Rn-Rm-C N,Z,C,V or SUB(S) (Rt,)Rn,Rm Subtract Subtract N,Z,C,V or SUB(S) (Rt,)Rn,Rm Logica ND,Rd = Rn&Rm N,Z N,Z,C,V or SUB(S) (Rd,)Rn,Rm Logical DA,Rd = Rn,Rm N,Z N,Z N,Z N,Z N,Z Subtract Subtract N,Z Subtract Subtract N,Z Subtract Subtract Subtract Subtract Subtract Subtract N,Z Subtract Subtr</rm>	ADCS	{Rd,}Rn,F	Rm	 	N,Z,C,V
SBCS {Rd,}Rn,Rm Subtract with borrow, Rd = Rn-Rm-C N,Z,C,V or SUB{S} (Rt,)Rn, <rm #imm="" =""> Subtract N,Z,C,V or SUB{S} (Rt,)Rn,<rm #imm="" =""> Subtract N,Z,C,V or SUB{R} (Rd,)Rn,Rm Logic AND,Rd = Rn&Rm N,Z ORRS (Rd,)Rn,Rm Logical OR, Rd = Rn Rm N,Z BICS (Rd,)Rn,Rm Logical Exclusive OR, Rd = Rn^Rm N,Z BICS (Rd,)Rn,Rm Logical bitwise clear N,Z ASRS (Rd,)Rn,<rm #imm="" =""> Logical bitwise clear N,Z ASRS (Rd,)Rn,<rm #imm="" =""> Arithmetic shift right N,Z,C LSLS (Rd,)Rn,<rm #imm="" =""> Logical shift left N,Z,C LSLS (Rd,)Rn,Rm Rotate right N,Z,C CMP (Rn,)-Rm #imm> Compare N,Z,C,V CMN Rn,Rm Compare N,Z,C,V CMN Rn,Rm Dyte order reverse N,Z,C,V MULS Rd,Rn,Rm Multiply N,Z REV Rd,Rm Byte order reverse with lower half word RR-RVH Rd,Rm Byte order reverse with lower half word, then signed extend lower half word ata SYTH Rd,Rm Extend lower half word in a word data UXTH Rd,Rm Extend lower half word in a word data TST Rd,Rm Extend lower half word in a word data TST Rd,Rm Extend lower half word in a word data Signed extend lower</rm></rm></rm></rm></rm>	ADD{S}			Add registers	
SUB(S) (Rt,)Rn, <rm #imm="" =""> Subtract</rm>	RSBS	{Rd,}Rn,#	# 0	Reverse subtract (negative), Rd = 0-Rn	N,Z,C,V
SUB(S) {Rt,}Rn, <rrm #imm="" =""> Subtract ANDS {Rd,}Rn,Rm Logic AND,Rd = Rn&Rm N,Z EORS {Rd,}Rn,Rm Logical DR, Rd = Rn Rm N,Z EORS {Rd,}Rn,Rm Logical Exclusive OR, Rd = Rn^Rm N,Z BICS {Rd,}Rn,Rm Logical bitwise clear N,Z ASRS {Rd,}Rn,<rm #imm="" =""> Logical bitwise clear N,Z ASRS {Rd,}Rn,<rm #imm="" =""> Logical shift right N,Z,C LSLS {Rd,}Rn,Rm Logical shift right N,Z,C LSRS {Rd,}Rn,Rm Multiply N,Z,C RORS {Rd,}Rn,Rm Rotate right N,Z,C CMP {Rn,}<rm #imm="" =""> Compare N,Z,C,V CMN Rn,Rm Compare negative N,Z,C,V MULS Rd,Rn,Rm Multiply N,Z REV Rd,Rm Byte order reverse - REV16 Rd,Rm Byte order reverse with half word - REVSH Rd,Rm Signed extend lower half word, then signed extend result - SXTB Rd,Rm Extend lower half word in a word data - SXTH Rd,Rm Extend lower half word in a word data - UXTB Rd,Rm Extend lower half word in a word data - UXTB Rd,Rm Extend lower half word in a word data - UXTH Rd,Rm Extend lower half word in a word data - TST Rd,Rm Test (bitwise AND) N,Z B{cond} Label Branch to an address pointed by Label and link - BX Rm Branch to address in register with exchange - BLX Rm Branch to address in register and link with exchange - </rm></rm></rm></rrm>	SBCS	{Rd,}Rn,F	₹m	Subtract with borrow, Rd = Rn–Rm–C	N,Z,C,V
ORRS {Rd.}Rn,Rm Logical OR, Rd = Rn Rm N,Z EORS {Rd.}Rn,Rm Logical Exclusive OR, Rd = Rn^Rm N,Z BICS {Rd.}Rn,Rm Logical bitwise clear N,Z ASRS {Rd.}Rn, <rm #imm="" =""> Arithmetic shift right N,Z,C LSLS {Rd.}Rn,<rm #imm="" =""> Logical shift left N,Z,C LSRS {Rd.}Rn,<rm #imm="" =""> Logical shift right N,Z,C LSRS {Rd.}Rn,Rm #imm> Logical shift right N,Z,C RORS {Rd.}Rn,Rm #imm> Compare negative N,Z,C,V CMP {Rn.}-Rm #imm> Compare negative N,Z,C,V CMN Rn,Rm #imm> Compare negative N,Z,C,V MULS Rd,Rn,Rm Multiply N,Z REV Rd,Rm Byte order reverse - REV16 Rd,Rm Byte order reverse with half word - REVSH Rd,Rm Signed extend lowest byte in a word data - SXTB Rd,Rm Extend lowest byte in a word data - UXTB Rd,Rm <td< td=""><td>SUB{S}</td><td>{Rt,}Rn,<rm td="" <=""><td>#imm></td><td>Subtract</td><td>N,Z,C,V or</td></rm></td></td<></rm></rm></rm>	SUB{S}	{Rt,}Rn, <rm td="" <=""><td>#imm></td><td>Subtract</td><td>N,Z,C,V or</td></rm>	#imm>	Subtract	N,Z,C,V or
EORS {Rd.}Rn,Rm Logical Exclusive OR, Rd = Rn^Rm N,Z BICS {Rd.}Rn,Rm Logical bitwise clear N,Z ASRS {Rd.}Rn, <mm #imm="" =""> Arithmetic shift right N,Z,C LSLS {Rd.}Rn,<mm #imm="" =""> Logical shift left N,Z,C LSLS {Rd.}Rn,<mm #imm="" =""> Logical shift left N,Z,C LSRS {Rd.}Rn,Rm #imm> Logical shift right N,Z,C RORS {Rd.}Rn,Rm Rotate right N,Z,C RORS {Rd.}Rn,Rm Rotate right N,Z,C CMP {Rn.}<mm #imm="" =""> Compare N,Z,C,V CMN Rn,Rm Compare negative N,Z,C,V MULS Rd,Rn,Rm Multiply N,Z REV Rd,Rm Byte order reverse - REV16 Rd,Rm Byte order reverse with half word - REVSH Rd,Rm Signed extend result SXTB Rd,Rm Signed extend lower half word in a word data - SXTH Rd,Rm Extend lower half word in a word data - UXTB Rd,Rm Extend lower half word in a word data - UXTB Rd,Rm Extend lower half word in a word data - TST Rd,Rm Test (bitwise AND) N,Z B{cond} Label Branch to an address pointed by Label and link Branch to an address in register with exchange BLX Rm Branch to address in register and link with exchange CPSID i Set PRIMASK.PM=1, disable interrupt - </mm></mm></mm></mm>	ANDS	{Rd,}Rn,F	₹m	Logic AND,Rd = Rn&Rm	N,Z
BICS (Rd.)Rn,Rm Logical bitwise clear N,Z ASRS (Rd.)Rn, <rm #imm="" =""> Arithmetic shift right N,Z,C LSLS (Rd.)Rn,<rm #imm="" =""> Logical shift left N,Z,C LSRS (Rd.)Rn,<rm #imm="" =""> Logical shift left N,Z,C LSRS (Rd.)Rn,Rm #imm> Logical shift right N,Z,C RORS (Rd.)Rn,Rm Rotate right N,Z,C RORS (Rd.)Rn,Rm Rotate right N,Z,C CMP (Rn.)<rm #imm="" =""> Compare N,Z,C,V CMN Rn,Rm Compare negative N,Z,C,V MULS Rd,Rn,Rm Multiply N,Z REV Rd,Rm Byte order reverse with half word - REV16 Rd,Rm Byte order reverse with lower half word, then signed extend lowest byte in a word data - SXTB Rd,Rm Signed extend lower half word in a word data SXTH Rd,Rm Extend lower half word in a word data UXTB Rd,Rm Extend lower half word in a word data UXTH Rd,Rm Extend lower half word in a word data UXTH Rd,Rm Test (bitwise AND) N,Z B{cond} Label Branch to an address pointed by Label and link BX Rm Branch to address in register with exchange CPSID Set PRIMASK.PM=1, disable interrupt </rm></rm></rm></rm>	ORRS	{Rd,}Rn,F	₹m	Logical OR, Rd = Rn Rm	N,Z
ASRS {Rd,}Rn, <rm #imm="" =""> Arithmetic shift right</rm>	EORS	{Rd,}Rn,F	₹m	Logical Exclusive OR, Rd = Rn^Rm	N,Z
LSLS {Rd,}Rn, <rm #imm="" =""> Logical shift left N,Z,C LSRS {Rd,}Rn,<rm #imm="" =""> Logical shift right N,Z,C RORS {Rd,}Rn,Rm Rotate right N,Z,C CMP {Rn,}<rm #imm="" =""> Compare N,Z,C,V CMN Rn,Rm Compare negative N,Z,C,V MULS Rd,Rm Byte order reverse REV Rd,Rm Byte order reverse with half word REVSH Rd,Rm Signed extend lower half word, then signed extend lower half word data SXTB Rd,Rm Signed extend lower half word in a word data UXTB Rd,Rm Extend lower half word in a word data UXTH Rd,Rm Extend lower half word in a word data TST Rd,Rm Test (bitwise AND) N,Z B(cond) Label Branch to an address pointed by Label and link BX Rm Branch to address in register with exchange CPSID i Set PRIMASK.PM=1, disable interrupt -</rm></rm></rm>	BICS	{Rd,}Rn,F	₹m	Logical bitwise clear	N,Z
LSRS {Rd,}Rn, <rm #imm="" =""> Logical shift right N,Z,C RORS {Rd,}Rn,Rm Rotate right N,Z,C CMP {Rn,}<rm #imm="" =""> Compare N,Z,C,V CMN Rn,Rm Compare negative N,Z,C,V MULS Rd,Rn,Rm Multiply N,Z REV Rd,Rm Byte order reverse REV16 Rd,Rm Byte order reverse with half word REVSH Rd,Rm Signed extend lowest byte in a word data SXTB Rd,Rm Extend lower half word in a word data SXTH Rd,Rm Extend lower half word in a word data UXTB Rd,Rm Extend lower half word in a word data TST Rd,Rm Test (bitwise AND) N,Z B{cond} Label Conditional) branch to an address pointed by Label and link BX Rm Branch to address in register with exchange CPSID i Set PRIMASK.PM=1, disable interrupt</rm></rm>	ASRS	{Rd,}Rn, <rm td="" <=""><td>#imm></td><td>Arithmetic shift right</td><td>N,Z,C</td></rm>	#imm>	Arithmetic shift right	N,Z,C
RORS {Rd,}Rn,Rm Rotate right N,Z,C CMP {Rn,} <rm #imm="" =""> Compare N,Z,C,V CMN Rn,Rm Compare negative N,Z,C,V MULS Rd,Rn,Rm Multiply N,Z REV Rd,Rm Byte order reverse - REV16 Rd,Rm Byte order reverse with half word - REVSH Rd,Rm Signed extend lowest byte in a word data - SXTB Rd,Rm Extend lower half word in a word data - UXTB Rd,Rm Extend lower half word in a word data - TST Rd,Rm Extend lower half word in a word data - TST Rd,Rm Test (bitwise AND) N,Z B{cond} Label Branch to an address pointed by Label and link BX Rm Branch to address in register with exchange CPSID i Set PRIMASK.PM=1, disable interrupt -</rm>	LSLS	{Rd,}Rn, <rm td="" <=""><td>#imm></td><td>Logical shift left</td><td>N,Z,C</td></rm>	#imm>	Logical shift left	N,Z,C
CMP {Rn,} <rm #imm="" =""> Compare</rm>	LSRS	{Rd,}Rn, <rm td="" <=""><td>#imm></td><td>Logical shift right</td><td>N,Z,C</td></rm>	#imm>	Logical shift right	N,Z,C
CMN Rn,Rm Compare negative N,Z,C,V MULS Rd,Rn,Rm Multiply N,Z REV Rd,Rm Byte order reverse - REV16 Rd,Rm Byte order reverse with half word - REVSH Rd,Rm Byte order reverse with lower half word - REVSH Rd,Rm Byte order reverse with lower half word - SXTB Rd,Rm Signed extend lower half word in a word data - SXTH Rd,Rm Extend lower half word in a word data - UXTB Rd,Rm Extend lower half word in a word data - UXTH Rd,Rm Extend lower half word in a word data - TST Rd,Rm Test (bitwise AND) N,Z B{cond} Label (Conditional) branch to an address pointed by Label and link - BL Label Branch to address in register with exchange - BLX Rm Branch to address in register and link with exchange - CPSID i Set PRIMASK.PM=1, disable interrupt -	RORS	{Rd,}Rn,F	₹m	Rotate right	N,Z,C
MULS Rd,Rn,Rm Multiply N,Z REV Rd,Rm Byte order reverse - REV16 Rd,Rm Byte order reverse with half word - REVSH Rd,Rm Byte order reverse with lower half word, then signed extend result - SXTB Rd,Rm Signed extend lowest byte in a word data - SXTH Rd,Rm Signed extend lower half word in a word data - UXTB Rd,Rm Extend lower half word in a word data - UXTH Rd,Rm Extend lower half word in a word data - TST Rd,Rm Test (bitwise AND) N,Z B{cond} Label (Conditional) branch to an address pointed by Label and link - BL Label Branch to an address pointed by Label and link - BX Rm Branch to address in register with exchange - BLX Rm Branch to address in register and link with exchange - CPSID i Set PRIMASK.PM=1, disable interrupt -	CMP	{Rn,} <rm #<="" td="" =""><td>imm></td><td>Compare</td><td>N,Z,C,V</td></rm>	imm>	Compare	N,Z,C,V
REV Rd,Rm Byte order reverse	CMN	Rn,Rm		Compare negative	N,Z,C,V
REV16 Rd,Rm Byte order reverse with half word REVSH Rd,Rm Byte order reverse with lower half word, then signed extend result SXTB Rd,Rm Signed extend lowest byte in a word data SXTH Rd,Rm Signed extend lower half word in a word data UXTB Rd,Rm Extend lowest byte in a word data UXTH Rd,Rm Extend lower half word in a word data TST Rd,Rm Test (bitwise AND) N,Z B{cond} Label (Conditional) branch to an address pointed by Label and link BX Rm Branch to an address in register with exchange BLX Rm Branch to address in register and link with exchange CPSID i Set PRIMASK.PM=1, disable interrupt -	MULS	Rd,Rn,R	m	Multiply	N,Z
REVSH Rd,Rm Byte order reverse with lower half word, then signed extend result SXTB Rd,Rm Signed extend lowest byte in a word data SXTH Rd,Rm Signed extend lower half word in a word data SXTH Rd,Rm Extend lower half word in a word data UXTB Rd,Rm Extend lower half word in a word data TST Rd,Rm Extend lower half word in a word data TST Rd,Rm Test (bitwise AND) (Conditional) branch to an address pointed by Label and link BL Label Branch to an address pointed by Label and link Rm Branch to address in register with exchange BLX Rm Branch to address in register and link with exchange CPSID i Set PRIMASK.PM=1, disable interrupt -	REV	Rd,Rm		Byte order reverse	-
REVSH Rd,Rm then signed extend result SXTB Rd,Rm Signed extend lowest byte in a word data SXTH Rd,Rm Signed extend lower half word in a word data UXTB Rd,Rm Extend lowest byte in a word data UXTH Rd,Rm Extend lower half word in a word data TST Rd,Rm Test (bitwise AND) N,Z B{cond} Label (Conditional) branch to an address pointed by Label and link BL Label Branch to an address pointed by Label and link BX Rm Branch to address in register with exchange BLX Rm Branch to address in register and link with exchange CPSID i Set PRIMASK.PM=1, disable interrupt -	REV16	Rd,Rm		Byte order reverse with half word	-
SXTB Rd,Rm Signed extend lowest byte in a word data SXTH Rd,Rm Signed extend lower half word in a word data UXTB Rd,Rm Extend lowest byte in a word data UXTH Rd,Rm Extend lower half word in a word data TST Rd,Rm Test (bitwise AND) N,Z B{cond} Label (Conditional) branch to an address pointed by Label BL Label Branch to an address pointed by Label and link BX Rm Branch to address in register with exchange BLX Rm Branch to address in register and link with exchange CPSID i Set PRIMASK.PM=1, disable interrupt -	REVSH	Rd,Rm		1 -	-
SXTH Rd,Rm Signed extend lower half word in a word data UXTB Rd,Rm Extend lowest byte in a word data - UXTH Rd,Rm Extend lower half word in a word data - TST Rd,Rm Test (bitwise AND) N,Z (Conditional) branch to an address pointed by Label BL BL Branch to an address pointed by Label and link Branch to address in register with exchange Branch to address in register and link with exchange Branch to address in register and link with exchange CPSID i Set PRIMASK.PM=1, disable interrupt	SXTB	Rd Rm		<u> </u>	_
UXTB Rd,Rm Extend lowest byte in a word data - UXTH Rd,Rm Extend lower half word in a word data - TST Rd,Rm Test (bitwise AND) N,Z B{cond} Label (Conditional) branch to an address pointed by Label Branch to an address pointed by Label and link - BX Rm Branch to address in register with exchange BLX Rm Branch to address in register and link with exchange CPSID i Set PRIMASK.PM=1, disable interrupt -		·		Signed extend lower half word in a word	-
UXTH Rd,Rm Extend lower half word in a word data - TST Rd,Rm Test (bitwise AND) N,Z B{cond} Label (Conditional) branch to an address pointed by Label BL Label Branch to an address pointed by Label and link BX Rm Branch to address in register with exchange BLX Rm Branch to address in register and link with exchange CPSID i Set PRIMASK.PM=1, disable interrupt -		-			
TST Rd,Rm Test (bitwise AND) N,Z B{cond} Label (Conditional) branch to an address pointed by Label BL Label Branch to an address pointed by Label and link BX Rm Branch to address in register with exchange BLX Rm Branch to address in register and link with exchange CPSID i Set PRIMASK.PM=1, disable interrupt -	-			•	-
B{cond} Label (Conditional) branch to an address pointed by Label BL Label Branch to an address pointed by Label and link BX Rm Branch to address in register with exchange BLX Rm Branch to address in register and link with exchange CPSID i Set PRIMASK.PM=1, disable interrupt -		•			
Blacond Label Pointed by Lab	TST	Rd,Rm		,	N,Z
BL Label and link BX Rm Branch to address in register with exchange BLX Rm Branch to address in register and link with exchange CPSID i Set PRIMASK.PM=1, disable interrupt -	B{cond}	Label		, ,	-
BLX Rm exchange BLX Rm Branch to address in register and link with exchange CPSID i Set PRIMASK.PM=1, disable interrupt -	BL	Label			-
CPSID i Set PRIMASK.PM=1, disable interrupt -	вх	Rm			-
CPSID i Set PRIMASK.PM=1, disable interrupt -	BLX	Rm			-
CPSIE i Clear PRIMASK.PM=0, enable interrupt -	CPSID	i			-
	CPSIE	i		Clear PRIMASK.PM=0, enable interrupt	-

Mnemonic	Operand	Description	Affected Flag Bits
SVC	#imm	Supervisor call	-
DMB	-	Data memory barrier	-
DSB	-	Data synchronization barrier	-
ISB	-	Instruction synchronization barrier	-
SEV	-	Send event	-
WFE	-	Wait for event	-
WFI	-	Wait for interrupt	-
BKPT	#imm	Software breakpoint	-
NOP	-	No operation	-

Appendix1. 2Cortex-M0 Core Register

Appendix1. 2. 1 General Register R0~R12

Registers R0~R12 are 32-bit registers for general use.

Appendix1. 2. 2 Stack Pointer Register SP (R13)

MSP and PSP are two stack pointers in Cortex-M0 core, and cannot used at the same time. In thread mode, the stack pointer selection is determined by the SPSEL bit of the CONTROL register. The two stack pointers can be accessed using R13 or SP, as well as using the MRS/MSR instruction.

Preliminary 300/341

Main stack pointer (MSP): or SP_main, is the default stack pointer after reset, and it is used when running exception handlers/interrupt service routine.

Process stack pointer (PSP): or SP_process, can only be used in thread mode when not handling exceptions or interrupts.

The lowest two bits of the stack are always 0 because the stack is in word-alignment.

In many applications, the system can completely rely on the MSP and it is the default stack pointer for PUSH and POP.

Stack memory is a memory usage mechanism that allows the system memory to be used as temporary data storage that behaves as a first-in, last-out buffer. It is usually used before and after exception handler/ISR, to store and restore the key registers.

Appendix1. 2. 3 Link Register LR (R14)

LR or R14 is the link register, used for storing the return address of a subroutine or function call. For instance, when executing the BL instruction, the address of the next upcoming instruction will be saved to LR.

Appendix 1. 2. 4 Program Counter PC (R15)

R15 is the program counter PC. When reading PC, the returned value is the current instruction address plus four; this is caused by the pipeline nature of the design.

Writing to R15 will cause a branch to take place (but unlike a function call, the LR does not get updated), and the new written data is the destination of the branch. Instruction addresses in the Cortex-M0 processor must be aligned to half-word address, which means the LSB of the PC is always 0. However, when attempting to write PC or carry out a branch, the LSB of the PC should be set to 1. This is to indicate that the branch target is a Thumb program region. Otherwise, it can imply trying to switch the processor to ARM state, which is not supported and will cause a fault exception.

Appendix1. 2. 5 Combined Program Status Register xPSR

The combined program status register xPSR provides information about program execution and it consists of three program status registers: application PSR (APSR), interrupt PSR (IPSR) and execution PSR (IPSR).

The three status registers can be accessed individually or at the same time via the MRS/MSR instruction. The register name IAPSR indicates an composition of the IPSR and APSR; the register EAPSR indicates an composition of the EPSR and APSR; the register IEPSR indicates an composition the IPSR and EPSR; and the register XPSR indicates an composition of the three status registers.

	31	30	29	28	27:25	24	23:6	5:0
xPSR	×	Z	C	٧	Reserved	T	Reserved	Exception Number
APSR	Z	Z	c	V			Reserved	
IPSR						Reserved		Exception Number
EPSR		R	eser	ved		T	Reserved	

The following describes each status bit of the APSR

N: negative flag bit.

When the result is negative, then N=1. Otherwise, N=0

Z: zero flag.

When the result is 0, then Z=1. Otherwise, Z=0. If a compare instruction is executed, then Z=1 if the values are the same.

C: Carry or borrow flag bit

If an addition instruction is executed and an overflow occurred (result ≥232), then C=1. Otherwise, C=0.

If a subtract instruction is executed and no borrow (result≥0), then C =1. Otherwise, C=0.

If a rotate shift instruction is executed, the C flag bit is determined by the bit being shifted to it.

V: Overflow flag bit

For an addition between two negative values, an overflow occurred when the result is positive (bit<31>=0), then V=1. Otherwise, V=0.

For an addition between two positive values, an overflow occurred when the result is negative (bit<31>=1), then V=1. Otherwise, V=0.

For a negative value subtracting a positive value, an overflow occurred when the result is positive (bit<31>=0), then V=1. Otherwise, V=0.

For a positive value subtracting a negative value, an overflow occurred when the result is negative (bit<31>=1) then V=1. Otherwise, V=0.

The IPSR contains the current executing exception number/ISR number. If IPSR<5:0> = 0, it indicates it is now in thread mode, which means no exception/interrupt is being served.

The T-bit of the ESPR indicates that the processor is in the thumb state. On the

Cortex-M0 processor, this bit is normally set to 1 because the Cortex-M0 only supports the thumb state. If this bit is cleared, a hard fault exception will be generated. Reading the EPSR using MSR instruction returns a zero. A write to the EPSR using MSR instruction will be ignored.

Appendix1. 2. 6 Exception /Interrupt Mask Register PRIMASK

The PRIMASK register is a 1-bit-wide interrupt mask register, as shown below.

When PM=1, it blocks all interrupts apart from the non-maskable interrupt (NMI) and the hard fault exception. When PM = 0, it has no influence on the processor serving the exceptions/interrupts.

The PRIMASK register can be accessed using MSR and MRS instructions, as well as using the CPSID and CPSIE instructions.

Appendix1. 2. 7 CONTROL Register

The CONTROL register can be used to select a stack pointer in thread mode.

When SPSEL = 0, the MSP (SP_main) is selected as the stack pointer. When SPSEL = 1, the PSP (SP_process) is used.

During running of an exception handler/ISR, only the MSP is used (SPSEL = 0) and the CONTROL register is read as 0. The CONTROL register can only be changed in thread mode or via the exception/ISR entrance and return mechanism. In thread mode, configure the SPSEL to select the stack pointer.

The two stack pointers can be accessed using the MRS/MSR instruction. After changing the SPSEL bit, an ISB instruction is required to execute, which makes sure that the next instructions will only be executed after the new stack point takes effect.

Appendix2 Electrical Characteristics

Appendix2. 1 Parameter Characteristics

Appendix 2. 1. 1 Operating Conditions

Absolute Maximum Ratings

Parameter	Symbol	Condition	Range	Unit
Power supply	VDD	VSS=0V	-0.3 ~ 7.5	V
Input voltage	V _{IN}	VSS=0V	-0.3 ~ VDD + 0.3	V
Output voltage	V _{OUT}	VSS=0V	-0.3 ~ VDD + 0.3	V
Max input current on VDD pin	I _{MAXVDD}	VDD=5.0V,25°C	100	mA
Max output current on VSS pin	I _{MAXVSS}	VDD=5.0V,25°C	120	mA
Storage temperature	T _{STG}	_	-55 ~ 125	$^{\circ}$

Notes

- 1. Stresses above listed under "Absolute Maximum Ratings" may cause permanent damages to the device.
- 2. The device is only guaranteed to operate normally within the specified operating conditions, as shown below.

Operating Conditions

Parameter	Symbol	Condition	Min	Max	Unit
Operating temperature	T _{OPR}	_	-40	85	${\mathbb C}$
Operating voltage	VDD	_	2.2	5.5	V
AHB frequency	F _{HCLK}	_	0	48	MHz
APB frequency	F _{PCLK}	_	0	48	MHz

Operating Voltage for Functional Modules

Parameter	Symbol	Operating Temperature	VDD	Remark
ADC operating	V_{ADC}	-40 ~ 85°C	2.2~5.5V	The positive reference voltage is VDD or internal VREFP 1.8V
voltage			2.8~5.5V	The positive reference voltage is the internal VREFP 2.6V
LCD operating voltage	V _{LCD}	-40 ~ 85℃	2.2~5.5V	-

Appendix 2. 1. 2 Parameter Measurement

Power consumption measurement

Circuit Connection for Power Consumption Measurement

Output Voltage Measurement on I/O pins

Circuit Connection for Output Voltage Measurement

Appendix2. 1. 3 Power Consumption Characteristics

Power consumption parameters

Parameter	Symbol	Min.	Тур.	Max.	Unit	Operating Conditions
Power supply	VDD	2.2	_	5.5	V	-40℃ ~85℃
Static current	I _{DD}	_	300	_	μA	$25 ^{\circ}\text{C}$, power on reset, VDD = 5V, all I/Os input low, MRSTN=0
Current in deep sleep mode	I _{PD1}	_	5	_	μΑ	25 °C ,VDD = 5V, BOR enabled ,WDT disabled, RTC disabled, all I/Os output fixed, no load
Current in normal sleep mode	I _{PD2}	_	1.2	_	mA	25 °C ,VDD = 5V, BOR enabled, WDT disabled, RTC disabled, all I/Os output fixed, no load, internal 16MHz RC as system clock
	I _{PD3}	_	1.4	_	mA	25 °C ,VDD = 5V, BOR enabled, WDT disabled, RTC disabled, all I/Os

Preliminary 305/341

Parameter	Symbol	Min.	Тур.	Max.	Unit	Operating Conditions
						output fixed, no load, external 16MHz HS as
						system clock
Current in normal	I _{OP1}	_	3.5		mA	25 °C ,VDD = 5V, BOR enabled ,WDT enabled, peripherals running, all I/Os output fixed, no load, clock pin used in 7816 mode as normal I/O and no clock output, ADC using internal VREFP as reference voltage, internal 16MHz RC as system clock
operating mode	I _{OP2}	_	4.3	_	mA	25 °C ,VDD = 5V,BOR enabled, WDT enabled, peripherals running, all I/Os output fixed, no load, clock pin used in 7816 mode as normal I/O and no clock output, ADC using internal VREFP as reference voltage, external 16MHz HS as system clock

◆ Power Consumption Parameters for Functional Modules

Parameter	Symbol	Min.	Тур.	Max.	Unit	Operating Condition
External XTAL 16MHz current	I _{XTAL}		1.0	_	mA	25℃,VDD = 5V
Internal high-speed HRC current	I _{HRC}	_	0.2	_	mA	25℃,VDD = 5V
BOR current	I _{BOR}	_	0.3	_	μΑ	25°C,VDD = 5V
LVD current	I _{LVD}	_	0.3	_	μΑ	25°C,VDD = 5V
WDT current	I _{WDT}	_	0.2	_	μΑ	25°C,VDD = 5V
ADC current	I _{ADC1}	_	850	_	μΑ	25 °C ,VDD = 5V,ADC conversion clock 500KHz, internal VREFP as

Parameter	Symbol	Min.	Тур.	Max.	Unit	Operating Condition
						positive reference voltage
	I _{ADC2}		350	_	μA	25 °C ,VDD = 5V,ADC conversion clock 500KHz, VDD as positive reference voltage
VREFP current	I _{VREFP}	_	500	_	μA	25℃,VDD = 5V
LCDC current	I _{LCDC}	_	25	_	μА	25°C,VDD = 5V,1/4 bias, frame frequency 64Hz, internal bias resistor 60K and 900K (auto-switched), hold time 1/4 COM period for 60K resister, no external LCD screen connected
RTC current	I _{RTC}	_	0.5	_	μA	25°C,VDD = 5V, external 32.768KHz oscillator as RTC clock source for high precision requirement
T16N current	I _{T16N}	_	80	_	μA	25 °C ,VDD = 5V, timer mode, counter clock 16MHz
T32N current	I _{T32N}	_	80	_	μА	25 °C ,VDD = 5V, timer mode, counter clock 16MHz
UART current	I _{UART}	_	100	_	μA	25°C,VDD = 5V, baud rate 9600bps
EUART current	I _{EUART}	_	100	_	μA	25°C,VDD = 5V, baud rate 9600bps
SPI current	I _{SPI}	_	50	_	μA	25 °C ,VDD = 5V, master mode, baud rate 1MHz, transmit interval 32 clock cycles
I2C current	I _{I2C}	_	50	_	μΑ	25 °C ,VDD = 5V, master mode, baud rate 400KHz, transmit interval 15 clock cycles
FLASH programming	I _{PROG}			4	mA	-40~85°C,VDD = 5V

Parameter	Symbol	Min.	Тур.	Max.	Unit	Operating Condition
current						
FLASH erase current	I _{ERAS}	_	_	4	mA	

Appendix2. 1. 4 I/O Ports Characteristics

Input Port Characteristics

Operating temperature	Operating temperature range:-40℃ ~ 85℃									
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions				
Input high voltage	V_{IH1}	0.8VDD	_	VDD	V					
Input low voltage	V_{IL1}	VSS	-	0.2VDD	٧					
Input high voltage on MRSTN pin	V_{IH}	0.8VDD		VDD	٧	2.2V≤VDD≤5.5V				
Input low voltage on MRSTN pin	V_{IL}	VSS	_	0.2VDD	V					
Hysteresis voltage	V_{HYST}	_	8.0	_	V	VDD = 5.0V				
Input leakage current	I _{IL}	_		1	μΑ	VDD = 5.0V (pin at high-impedance)				
Weak pull-up resistor	R_{WPU}	35	45	60	kΩ	VDD = 5.0V Vpin = VSS				
Weak pull-down resistor	R_{WPD}	25	35	50	kΩ	VDD = 5.0V Vpin = VDD				

◆ Output Ports (PA0~PA5, PA14~PA31,PB0~PB13) Characteristics

Operating temperature range:-40°C ~ 85°C									
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions			
Output high voltage (normal drive)	I _{OH1}	-5.0	_	_	m۸	VDD = 5.0V V _{OH} = 4.6V			
Output high voltage (high drive)	I _{OH2}	-8.0	_	_	mA				
Output low voltage (normal drive)	I _{OL1}	6	_	_	m ^	VDD = 5.0V V _{OL} = 0.4V			
Output low voltage (high drive)	I _{OL2}	10	_	_	mA				

◆ Output Ports (PA6~PA13) Characteristics

Operating temperature range::-40℃ ~ 85℃									
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions			
Output high voltage (normal drive)	I _{OH1}	-3.5	_	_	mA	VDD = 5.0V V _{OH} = 4.6V			
Output high voltage (high drive)	I _{OH2}	-4.5	_	_	IIIA				
Output low voltage (normal drive)	I _{OL1}	10	_	_	A	VDD = 5.0V V _{OL} = 0.4V			
Output low voltage (high drive)	I _{OL2}	40	_	_	mA				

Appendix2. 1. 5 System Clock Characteristics

System Clock Specification

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
System clock	F _{osc}	_	_	48M	Hz	
frequency	000					
System clock	-	20.8			no	
period	T_{OSC}	20.0	_	_	ns	
Machine cycle	T _{inst}	41.6	_	_	ns	
External clock						2.2V≤VDD≤5.5V
high time and low	T_{OSL}, T_{OSH}	20	_	_	ns	2.2 1 2 1 0 0 2 3.3 1
time						
External clock						
rising time and	T_{OSR} , T_{OSF}	_	_	8	ns	
falling time						

Appendix2. 1. 6 Functional Module Characteristics

◆ ADC

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Resolution	RES	_	_	12	bit	
Reference voltage range	V _{ADVREF}	1.8	_	VDD	V	
Analog voltage input range	V _{IN}	VSS	_	V _{ADVREF}	٧	See notes
Input capacitance	C _{IN}	_	40	_	pF	See notes
Analog channel input resistance (recommended)	R _{IN}	_	_	10k	Ω	

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
AD conversion clock	T _{AD1}	1	_	_	μs	
period	T _{AD2}	0.5	_	_	μs	
AD conversion time (sampling time excluded)	T _{CONV}	_	14	_	T _{AD}	
Differential Non linearity	DNL	_	±1	±2	LSB	40°C 05°C
Offset	V _{OFFSET}	_	2	4	LSB	-40℃~85℃

Notes:

- 1. These parameters are design specification but not tested. The design condition is -40 $^{\circ}$ C ~85 $^{\circ}$ C.
- 2. T_{AD1} is the conversion clock period when the internal VREFP is used as reference voltage. T_{AD2} is the conversion clock period when the VDD or external AVREFP is used as reference voltage.

◆ ADC Conversion Clock Source Selection

Clock	System clock operating frequency (Hz) (VREFP = 01or 10, internal VREFP used as positive reference voltage)							
Source	48M	4M						
FPCLK	Not recommended	Not recommended	Not recommended	Not recommended				
FPCLK /2	Not recommended	Not recommended	Not recommended	Not recommended				
FPCLK /4	Not recommended	Not recommended	Not recommended	T _{ADCLK} = 1us				
FPCLK /8	Not recommended	Not recommended	Not recommended	T _{ADCLK} = 2us				
FPCLK /16	Not recommended	Not recommended	T _{ADCLK} = 1us	T _{ADCLK} = 4us				
FPCLK /32	Not recommended	T _{ADCLK} = 1us	T _{ADCLK} = 2us	T _{ADCLK} = 8us				
FPCLK /64	$T_{ADCLK} = 1.3us$	$T_{ADCLK} = 2us$	T _{ADCLK} = 4us	T _{ADCLK} = 16us				
FPCLK /256	$T_{ADCLK} = 5.3us$	$T_{ADCLK} = 8us$	T _{ADCLK} = 16us	T _{ADCLK} = 64us				
FLRC	T _{ADCLK} = 31us	T _{ADCLK} = 31us	T _{ADCLK} = 31us	T _{ADCLK} = 31us				

Clock	System clock operating frequency (Hz) (VREFP=00 or 11, VDD or external AVREFP used as positive reference volta							
Source	48M	32M	16M	4M				
FPCLK	Not recommended	Not recommended	Not recommended	Not recommended				
FPCLK /2	Not recommended	Not recommended	Not recommended	T _{ADCLK} = 0.5us				
FPCLK /4	Not recommended	Not recommended	Not recommended	$T_{ADCLK} = 1us$				
FPCLK /8	Not recommended	Not recommended	T _{ADCLK} = 0.5us	$T_{ADCLK} = 2us$				
FPCLK /16	Not recommended	$T_{ADCLK} = 0.5us$	T _{ADCLK} = 1us	$T_{ADCLK} = 4us$				
FPCLK /32	$T_{ADCLK} = 0.67us$	T _{ADCLK} = 1us	T _{ADCLK} = 2us	$T_{ADCLK} = 8us$				
FPCLK /64	$T_{ADCLK} = 1.3us$	T _{ADCLK} = 2us	T _{ADCLK} = 4us	T _{ADCLK} = 16us				
FPCLK /256	$T_{ADCLK} = 5.3us$	T _{ADCLK} = 8us	T _{ADCLK} = 16us	$T_{ADCLK} = 64us$				
FLRC	T _{ADCLK} = 31us	T _{ADCLK} = 31us	T _{ADCLK} = 31us	$T_{ADCLK} = 31us$				

Preliminary 310/341

ADC Internal Reference Voltage Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Internal reference	V_{REF1}	1.782	1.8	1.818	\/	25℃,VDD=5V
voltage VREF	V_{REF2}	2.574	2.6	2.626	V	25 C, VDD=5V

◆ Internal Clock Source Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
HRC clock	F _{HRC}	15.84	16	16.16	MHz	25℃, VDD=2.2V~5.5V
frequency	FHRC	15.68	16	16.32	MHz	-40℃~85℃, VDD=2.2V~5.5V
HRC start-up time	T _{HRC}	_	30	_	us	See note
LRC clock	Е	28.8	32	35.2	KHz	25℃, VDD=2.2V~5.5V
frequency	F _{LRC}	12.8	32	51.2	KHz	-40℃~85℃, VDD=2.2V~5.5V
LRC start-up time	T _{LRC}	_	800	_	us	See note

Note: T_{HRC} and T_{LRC} are design specifications only but not tested. The design condition is -40 $^{\circ}$ C ~85 $^{\circ}$ C.

◆ PLL Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Clock	PLL input clock frequency	F _{PLLI1}	25	32	38	KHz	40 0E%
Source	PLL multiplier output	F _{PLLO1}	25.6	32.768	38.912	MHz	-40~85℃
32KHz	clock frequency	F _{PLLO2}	38.4	49.152	58.368	IVIITZ	
	PLL lock time	T _{LOCK1}	1	300	500	us	See note
Clock	PLL input clock frequency	F _{PLLI2}	3.2	4	4.8	MHz	
Source	Source PLL multiplier output		25.6	32	38.4	MHz	-40~85°C
4MHz			38.4	48	57.6	IVII⊤Z	
	PLL lock time	T _{LOCK2}	_	150	300	ms	

BOR Characteristics 1 (BOR voltage is configured by CFG_BORV bits of CFG_WORD0 configuration word)

CFG_BORV<1:0>	Min.	Тур.	Max.	Unit	Test Conditions
00	3.6	3.7	3.8	V	
01	2.4	2.5	2.6	V	40.05%
10	2.0	2.1	2.2	V	-40~85℃
11		_	_	V	

Note: When CFG_BORV<1:0> = 11, the BOR voltage is configured by the BORV<3:0> of the SCU_SOFTCFG. See the particular register for details.

◆ BOR Characteristics 2 (BOR voltage is configured by BORV bits of SCU_SOFTCFG register)

BORV<3:0>	Min.	Тур.	Max.	Unit	Test Conditions
0000	1.65	1.7	2.15	V	
0001	1.9	2.0	2.15	V	
0010	2.0	2.1	2.2	V	
0011	2.1	2.2	2.3	V	
0100	2.2	2.3	2.4	V	
0101	2.3	2.4	2.5	V	
0110	2.4	2.5	2.6	V	
0111	2.5	2.6	2.7	V	40.05℃
1000	2.7	2.8	2.9	V	-40~85℃
1001	2.9	3.0	3.1	V	
1010	3.0	3.1	3.2	V	
1011	3.2	3.3	3.4	V	
1100	3.5	3.6	3.7	V	
1101	3.6	3.7	3.8	V	
1110	3.9	4.0	4.1	V	
1111	4.2	4.3	4.4	V	

LVD Characteristics

LVD_VS<3:0>		Min.	Тур.	Max.	Unit	Test Conditions
LVDO set to	0000	1.9	2.0	2.1	V	
1 when VDD	0001	2.0	2.1	2.2	V	
Drops	0010	2.1	2.2	2.3	V	-40~85℃
	0011	2.3	2.4	2.5	V	
	0100	2.5	2.6	2.7	V	

LVD_VS<3:0>		Min.	Тур.	Max.	Unit	Test Conditions
	0101	2.7	2.8	2.9	V	
	0110	2.9	3.0	3.1	V	
	0111	3.5	3.6	3.7	V	
	1000	3.9	4.0	4.1	V	
	1001	4.5	4.6	4.7	V	
	1010	2.2	2.3	2.4	V	
LVD hystere	esis	_	_	40	80	-40~85℃

Appendix2. 2Characteristics Graphs

All the graphs below are provided for design reference only and have not been tested for mass production yet. Some data in part of the graphs are beyond specification and the MCU is guaranteed to operate normally only within the specified range.

Appendix2. 2. 1 Power Consumption Characteristics

♦ I_{PD1} vs. VDD (WDT and BOR enabled, RTC disabled, fixed I/O output, no load)

◆ I_{PD2} vs. VDD (WDT and BOR enabled, RTC disabled, fixed I/O output, no load, internal HRC 16MHz as system clock)

◆ I_{OP1} vs. VDD (WDT and BOR enabled, peripherals running, fixed I/O output, no load, 7816 clock pin used as normal I/O and no clock output, internal VREFP used as positive reference voltage, internal HRC 16MHz as system clock)

◆ I_{OP2} vs. VDD (WDT and BOR enabled, peripherals running, fixed I/O output, no load, 7816 clock pin used as normal I/O and no clock output, internal VREFP used as positive reference voltage, room temperature 25°C)

Note: When the PLL 48MHz is used as the system clock, the PLL input clock source is the internal HRC clock.

Appendix2. 2. 2 I/O Port Input Characteristics

◆ I/O port input characteristic graph (25°C)

Notes

- VIHth is the upper threshold voltage of the Schmitt window; an input greater than the upper threshold is considered high.
- 2. VILth is the lower threshold voltage of the Schmitt window; an input less than the lower threshold is considered low.
- 3. A Schmitt window has an upper boundary VIHth and lower boundary VILth. Any value inside the window is undermined; it can be high or low.

♦ V_{ILMAX} vs. VDD

♦ V_{IHMIN} vs. VDD

lacktriangle R_{wpu} vs. VDD

♦ R_{wpd} vs. VDD

Preliminary 317/341

Appendix2. 2. 3 I/O Port Output Characteristics (Normal Drive, PA6~PA13 Excluded)

♦ I_{OH} vs. V_{OH} @ VDD = 2.5V (normal drive)

♦ I_{OL} vs. V_{OL} @ VDD = 2.5V (normal drive)

♦ I_{OH} vs. V_{OH} @ VDD = 3.5V (normal drive)

♦ I_{OL} vs. V_{OL} @ VDD = 3.5V (normal drive)

♦ I_{OH} vs. V_{OH} @ VDD = 5.0V (normal drive)

♦ I_{OL} vs. V_{OL} @ VDD = 5.0V (normal drive)

♦ I_{OH} vs. V_{OH} @ VDD = 5.5V (normal drive)

Preliminary 320/341

◆ I_{OL} vs. V_{OL} @ VDD = 5.5V (normal drive)

Appendix2. 2. 4 I/O Port Output Characteristics (High Drive, PA6~PA13 Excluded)

• I_{OH} vs. V_{OH} @ VDD = 2.5V (high drive)

♦ I_{OL} vs. V_{OL} @ VDD = 2.5V(high drive)

Preliminary 321/341

• I_{OH} vs. V_{OH} @ VDD = 3.5V (high drive)

♦ I_{OL} vs. V_{OL} @ VDD = 3.5V (high drive)

• I_{OH} vs. V_{OH} @ VDD = 5.0V (high drive)

Preliminary 322/341

♦ I_{OL} vs. V_{OL} @ VDD = 5.0V (high drive)

◆ I_{OH} vs. V_{OH} @ VDD = 5.5V (high drive)

• I_{OL} vs. V_{OL} @ VDD = 5.5V (high drive)

Preliminary 323/341

Appendix2. 2. 5 I/O Port Output Characteristics (Normal Drive, PA6~PA13)

♦ I_{OH} vs. V_{OH} @ VDD = 2.5V (normal drive)

♦ I_{OL} vs. V_{OL} @ VDD = 2.5V (normal drive)

♦ I_{OH} vs. V_{OH} @ VDD = 3.5V (normal drive)

Preliminary 324/341

♦ I_{OL} vs. V_{OL} @ VDD = 3.5V (normal drive)

♦ I_{OH} vs. V_{OH} @ VDD = 5.0V (normal drive)

♦ I_{OL} vs. V_{OL} @ VDD = 5.0V (normal drive)

Preliminary 325/341

♦ I_{OH} vs. V_{OH} @ VDD = 5.5V (normal drive)

◆ I_{OL} vs. V_{OL} @ VDD = 5.5V (normal drive)

Appendix2. 2. 6 I/O Port Output Characteristics (High Drive, PA6~PA13)

♦ I_{OH} vs. V_{OH} @ VDD = 2.5V (high drive)

Preliminary 326/341

• I_{OL} vs. V_{OL} @ VDD = 2.5V (high drive)

♦ I_{OH} vs. V_{OH} @ VDD = 3.5V (high drive)

$lack I_{OL}$ vs. V_{OL} @ VDD = 3.5V (high drive)

• I_{OH} vs. V_{OH} @ VDD = 5.0V (high drive)

• I_{OL} vs. V_{OL} @ VDD = 5.0V (high drive)

 \bullet I_{OH} vs. V_{OH} @ VDD = 5.5V (high drive)

Preliminary 328/341

♦ I_{OL} vs. V_{OL} @ VDD = 5.5V (high drive)

Appendix3 Programming and Debug Interface

Appendix3. 1 Overview

The integrated ISP (In-system programming) interface and SWD (Serial Wire Debug) interface are provided for easy debug of application programs and actual systems. With the company authorized ISP programmer, the SWD debugger is able to perform the in system programming, simulation and debugging.

The ISP and SWD share the 5-wire interface, including VDD, VSS, MRSTN, ISCK and ISDA.

Appendix3. 2ISP Interface

Appendix3. 2. 1 Communication Protocol

The ISP interface protocol adopts the 2-wire half-duplex technique. Each message packet contains N data bits, start bit and stop bit. The programmer is a master device and initiates the ISCK clock, and the chip is a slave device.

There are two sets of pins for ISP interface selection, PA0:PA1 and PA14:PA15. When one set it selected, the other will automatically be disabled.

Appendix3. 2. 2 Operation Flowchart

Appendix3. 3SWD Interface

Appendix3. 3. 1 Overview

SWD is the built-in serial debug interface in Cortex-M0, and is compatible with the ARM CoreSight technique. The chip needs to power up again after downloading the debug program using the SWD debug (debug mode needs to be enabled by configuring the CFG_DEBUG). The SWDIO (multiplexed with ISDA) and SWCLK (multiplexed with ISCK) pins can be used.

SWCLK: Serial clock input pin, providing SWD clock

SWDIO: Serial data input/output pin

Two sets of SWD pins, PA0:PA1 and PA14:PA15, are controlled by the DEBUG_S of the CFG_WORD0 together with the CFG_DEBUG.

When the CFG_DEBUG =10, the debug mode is enabled, PA0:PA1 and PA14:PA15 are forced to be SWD pins, and are not available for other peripherals. If DEBUG_S = 0, PA14:PA15 are selected. If DEBUG_S = 1, PA0:PA1 are selected.

Appendix3. 3. 2 SWD Characteristics

Two debug approaches are available, intrusive debugging and non-intrusive debugging.

Intrusive debugging

- ♦ Halt
- Single stepping of program execution
- ♦ Hardware breakpoints (up to 4 hardware breakpoints)
- ♦ Software breakpoints (BKPT instruction)
- ♦ Alter PC value
- Data watchpoints DWT
- ♦ Data Watchpoint and Trace: only watchpoint is supported; Trace is not supported
- ♦ Internal registers and RAM read and write accessible
- Vector catch (Reset and Hard Fault exception included)

Non-intrusive debugging

♦ Program counter PC sampling

Appendix4 LCD Drive Waveforms

Appendix4. 1 Overview

To generate LCD waveforms, the net AC voltage across the dark pixel should be maximized and the net AC voltage across the clear pixel should be minimized. And the net DC voltage across any pixel should be zero. The COM signal represents the time slice for each common while the SEG contains the pixel data.

The pixel signal (COM-SEG) will not have DC component and it can take only one of the two RMS values. The higher RMS value will generate a dark pixel while the lower RMS value will generate a clear pixel. With the growing number of commons, the difference between the two RMS values will decrease, and this difference represents the maximum contrast that the display can have.

There are two LCD waveforms available, Type A and Type B. In Type A waveform, the phase changes within each common type, whereas in Type B waveforms, the phase changes on each frame boundary. Therefore, Type A waveform maintains 0V DC over a single frame while Type B waveform requires two frames.

Appendix4. 2Drive Waveforms

Type A Waveform in 1/2 Mux and 1/3 Bias Drive

◆ Type B Waveform in 1/2 Mux and 1/3 Bias Drive

◆ Type A Waveform in 1/3 Mux and 1/3 Bias Drive

◆ Type B Waveform in 1/3 Mux and 1/3 Bias Drive

◆ Type A Waveform in 1/4 Mux and 1/3 Bias Drive

◆ Type B Waveform in 1/4 Mux and 1/3 Bias Drive

◆ Type A Waveform in 1/6 Mux and 1/3 Bias Drive

◆ Type A Waveform in 1/6 Mux and 1/4 Bias Drive

◆ Type A Waveform in 1/6 Mux and 1/4 Bias Drive

◆ Type B Waveform in 1/8 Mux and 1/4 Bias Drive

