7 Повні метричні простори

§7.1 Повнота, ізометрія і поповнення

Означення 7.1. Метричний простір називається **повним**, якщо в ньому будь-яка фундаментальна послідовність має границю.

Приклад 7.1

$$\left(\mathbb{R}^n, \sqrt{\sum_{i=1}^n (x_i - y_i)^2}\right).$$

Приклад 7.2

$$(C[a,b], \max_{t \in [a,b]} |x(t) - y(t)|).$$

Означення 7.2. Бієктивне відображення φ одного метричного простору (E_1, ρ_1) на інший (E_2, ρ_2) називається **ізометрією**, якщо

$$\forall x_1, x_2 \in E_1 : \rho_1(x_1, x_2) = \rho_2(\varphi(x_1), \varphi(x_2)).$$

Означення 7.3. Метричні простори, між якими існує ізометрія, називаються **ізометричними**.

Означення 7.4. Повний метричний простір $(\tilde{E}, \tilde{\rho})$ називається поповненням метричного простору (E, ρ) , якщо

- 1. $E \subset \tilde{E}$;
- 2. $\overline{E} = \tilde{E}$.

Теорема 7.1 (про поповнення метричного простору, Хаусдорф)

Будь-який метричний простір має поповнення, єдине з точністю до ізометрії, що залишає точки простору нерухомими.

Лема 7.1

Якщо фундаментальна послідовність містить збіжну підпослідовність, то сама послідовність збігається до тієї ж границі.

 \square оведення. Припустимо, що $\lim_{n_k \to \infty} \rho(x_{n_k}, x_0) = 0$, тобто

$$\forall \varepsilon > 0 \exists N_1(\varepsilon) > 0 : \forall n \geq N_1 : \rho(x_{n_k}, x_0) < \varepsilon.$$

За нерівністю трикутника

$$\rho(x_n, x) \le \rho(x_n, x_{n_k}) + \rho(x_{n_k}, x).$$

Оскільки послідовність $\{x_n\}_{n\in\mathbb{N}}$ є фундаментальною,

$$\forall \varepsilon > 0 \exists N_2(\varepsilon) > 0 : \forall n, m \ge N_2 : \rho(x_n, x_m) < \varepsilon.$$

Таким чином,

$$\forall \varepsilon > 0 \forall n, n_k \ge \max(N_1, N_2) : \rho(x_n, x_0) \le \rho(x_n, x_{n_k}) + \rho(x_{n_k}, x_0) < \varepsilon + \varepsilon = 2\varepsilon.$$

Лема 7.2

Будь-яка підпослідовність фундаментальної послідовності є фундаментальною.

Доведення. За нерівністю трикутника

$$\rho(x_{n_k}, x_{n_l}) \le \rho(x_{n_k}, x_n) + \rho(x_n, x_{n_l}).$$

Оскільки послідовність $\{x_n\}_{n\in\mathbb{N}}$ є фундаментальною,

$$\forall \varepsilon > 0 \exists N(\varepsilon) > 0 : \forall n, m \ge N : \rho(x_n, x_m) < \varepsilon.$$

Отже,

$$\forall \varepsilon > 0 \forall n, n_k, n_l \ge N : \rho(x_{n_k}, x_{n_l}) \le \rho(x_{n_k}, x_n) + \rho(x_n, x_{n_l}) < \varepsilon + \varepsilon = 2\varepsilon.$$

§7.2 Вкладені кулі і повнота

Теорема 7.2 (принцип вкладених куль)

Для того щоб метричний простір був повним, необхідно і достатнью, щоб у ньому будь-яка послідовність замкнених вкладених одна в одну куль, радіуси яких прямують до нуля, мала непорожній перетин.

Доведення. Необхідність. Нехай (X, ρ) — повний метричний простір, а $S_1^{\star}(x_1, r_1) \supset S_2^{\star}(x_2, r_2) \supset \ldots$ — вкладені одна в одну замкнені кулі.

Послідовність їх центрів є фундаментальною, оскільки

$$\rho(x_n, x_m) < r_n$$
 при $m > n$, а $r_n \to 0$ при $n \to \infty$.

Оскільки (X, ρ) — повний метричний простір, існує елемент $x = \lim_{n \to \infty} x_n, x \in X$. Покажемо, що x належить всім кулям $S_n^{\star}(x_n, r_n), n \in \mathbb{N}$, тобто $x \in \bigcap_{n=1}^{\infty} S_n^{\star}(x_n, r_n)$. Дійсно, оскільки $x = \lim_{n \to \infty} x_n$, то

$$\forall \varepsilon > 0 \exists N > 0 : \forall n \ge N : \rho(x_n, x) < \varepsilon.$$

Значить, в довільному околі точки x знайдеться нескінченна кількість точок із послідовності $\{x_n\}$, починаючи з деякого номера N. Оскільки кулі вкладені одна в одну, ці точки належать всім попереднім кулям $S_1^\star, S_2^\star, \ldots, S_{N-1}^\star$. Отже, для довільного n точка x є точкою дотику множини S_n^\star , тобто належить його замиканню. Оскільки кожна куля є замкненою, точка x належить всім S_n^\star . Це означає, що

$$x \in \bigcap_{n=1}^{\infty} S_n^{\star}.$$

Достатність. Покажемо, що якщо $\{x_n\}_{n\in\mathbb{N}}$ — фундаментальна послідовність, то вона має границю $x\in X$.

- 1. Оскільки послідовність $\{x_n\}_{n=1}^{\infty}$ є фундаментальною, то $\forall \varepsilon > 0 \exists n_1 > 0 \colon \forall n \geq n_1 \ \rho(x_n, x_{n_1}) < \varepsilon$. Поклавши $\varepsilon = \frac{1}{2}$, ми можемо вибрати точку x_{n_1} так, що $\rho(x_n, x_{n_1}) < \frac{1}{2}$ для довільного $n > n_1$. Зробимо точку x_{n_1} центром замкненої кулі радіуса $1 \colon S_1^{\star}(x_{n_1}, 1)$.
- 2. Оскільки підпослідовність $\{x_n\}_{n=n_1}^\infty$ є фундаментальною (за лемою 7.2), то поклавши $\varepsilon=\frac{1}{2^2}$, можна вибрати точку x_{n_2} х таку, що $\rho(x_n,x_{n_2})<\frac{1}{2^2}$ для довільного $n>n_2>n_1$. Зробимо точку x_{n_2} центром замкненої кулі радіуса $\frac{1}{2}$: $S_2^\star(x_{n_2},\frac{1}{2})$.

. . .

k. Нехай $x_{n_1}, x_{n_2}, \ldots, x_{n_{k-1}}$, де $n_1 < n_2 < \cdots < n_{k-1}$ уже вибрані. Тоді, оскільки підпослідовність $\{x_n\}_{n=n_{k-1}}^{\infty}$ є фундаментальною, покладемо $\varepsilon = \frac{1}{2^k}$ і виберемо точку x_{n_k} так, щоб виконувалися умови $\rho(x_n, x_{n_k}) < \frac{1}{2^k}$ для довільного $n \ge n_k > n_{k-1}$. Як і раніше, будемо вважати точку x_{n_k} центром замкненої кулі радіуса $\frac{1}{2^{k-1}}$: $S_k^{\star}(x_{n_k}, \frac{1}{2^{k-1}})$.

. . .

Продовжуючи цей процес, ми отримаємо послідовність замкнених куль, радіуси яких прямують до нуля. Покажемо, що ці кулі вкладаються одна в одну, тобто

$$S_{k+1}^{\star}(x_{n_{k+1}}, \frac{1}{2^k}) \subset S_k^{\star}(x_{n_k}, \frac{1}{2^{k-1}}).$$

Нехай точка $y \in S_{k+1}^{\star}(x_{n_{k+1}}, \frac{1}{2^k})$. Значить, $\rho(y, x_{n_{k+1}}) \leq \frac{1}{2^k}$. За нерівністю трикутника

$$\rho(y, x_{n_k}) \le \rho(y, x_{n_{k+1}}) + \rho(x_{n_{k+1}}, x_{n_k}).$$

Оскільки $n_{k+1} > n_k$, то $\rho(x_{n_{k+1}}, x_{n_k}) < \frac{1}{2^k}$. Значить,

$$\rho(y, x_{n_k}) \le \frac{1}{2^k} + \frac{1}{2^k} = \frac{2}{2^k} = \frac{1}{2^{k-1}}.$$

Інакше кажучи.

$$y \in S_k^{\star}(x_{n_k}, \frac{1}{2^{k-1}})$$

Таким чином, ми побудували послідовність вкладених одна в одну замкнених куль, радіуси яких прямують до нуля. За припущенням, в просторі (X, ρ) існує точка x, спільна для всіх таких куль: $x \in \bigcap_{k=1}^{\infty} S_k^{\star}(x_{n_k}, \frac{1}{2^{k-1}})$. Крім того, за побудовою, $\rho(x_n, x) = \frac{1}{2^{k-1}} \to 0$, коли $k \to \infty$. Таким чином, фундаментальна послідовність $\{x_n\}$ містить підпослідовність $\{x_{n_k}\}$, що збігається до деякої точки в просторі (X, ρ) . Із леми 7.1 випливає, що і вся послідовність $\{x_n\}$ прямує то тієї ж точки. Таким чином, простір (X, ρ) є повним.

Зауваження 7.1 — Покажемо, що умову $r_n \to 0$ зняти не можна. Розглянемо метричний простір (\mathbb{N}, ρ) , де

$$\rho(n,m) = \begin{cases} 1 + \frac{1}{n+m}, & n \neq m, \\ 0, & \text{ihakme.} \end{cases}$$

Визначимо послідовність замкнених куль з центрами в точках n і радіусом $1+\frac{1}{2n}$:

$$\overline{S}(n, 1 + \frac{1}{2n}) = \{m : \rho(n, m) \le 1 + \frac{1}{2n}\} = \{n, n + 1, \dots\}, \quad n = 1, 2, \dots$$

Ці кулі є вкладеними одна в одну і замкненими, простір є повним, але перетин куль є порожнім (яке б число ми не взяли, знайдеться нескінченна кількість куль, які лежать правіше цієї точки). Отже, необхідні умови в принципі вкладених куль не виконуються.

§7.3 Категорії множин

Означення 7.5. Підмножина M метричного простору (X, ρ) називається **множиною першої категорії**, якщо її можна подати у вигляді об'єднання не більш ніж зліченої кількості ніде не щільних множин.

Означення 7.6. Підмножина M метричного простору (X, ρ) називається **множиною другої категорії**, якщо вона не є множиною першої категорії.

Теорема 7.3 (теорема Бера про категорії)

Нехай (X, ρ) — непорожній повний метричний простір, тоді X є множиною другої категорії.

Доведення. Припустимо супротивне, тобто

$$X = \bigcup_{n=1}^{\infty} E_n,$$

і кожна множина E_n , $n=1,2,\ldots$ є ніде не щільною в X. Нехай S_0 — деяка замкнена куля радіуса 1.

Оскільки множина E_1 є ніде не щільною, існує замкнена куля S_1 , радіус якої менше $\frac{1}{2}$, така що

$$S_1 \subset S_0 \text{ i } S_1 \cap E_1 = \emptyset.$$

(Якщо існує куля радіуса більше $\frac{1}{2}$, що задовольняє таким умовам, то ми виберемо в ній кулю, радіуса менше $\frac{1}{2}$.)

Оскільки множина E_2 є ніде не щільною, існує замкнена куля S_2 , радіус якої менше $\frac{1}{2^2}$, така що

$$S_2 \subset S_1 \text{ i } S_2 \cap E_2 = \emptyset.$$

Продовжуючи цей процес, ми отримаємо послідовність вкладених одна в одну замкнених куль $\{S_n\}_{n\in\mathbb{N}}$, радіуси яких прямують до нуля. За принципом вкладених куль існує точка $x\in\bigcap_{n=1}^\infty S_n\cap X$. Оскільки за побудовою $S_n\cap E_n=\varnothing$, то $x\not\in E_n,\ \forall n=1,2,\ldots$ Значить, $x\not\in\bigcup_{n=1}^\infty E_n$. Це суперечить припущенню, що $X=\bigcup_{n=1}^\infty E_n$.

§7.4 Стискаючі відображення

Означення 7.7. Відображення $g:(X,\rho) \to (X,\rho)$ називається **стискаючим**, якщо існує таке число 0 < a < 1, що $\rho(g(x),g(y)) \le a\rho(x,y)$ для довільних $x,y \in X$.

Теорема 7.4

Будь-яке стискаюче відображення є неперервним.

Доведення. Нехай $x_n \to x$, а $g: X \to X$ є стискаючим відображенням. Тоді

$$0 \le \rho(g(x_n), g(x)) \le \alpha \rho(x_n, x) \to 0$$
 при $n \to \infty$.

Отже,

$$g(x_n) \to g(x)$$
, коли $x_n \to x$.

Теорема 7.5 (принцип стискаючих відображень Банаха)

Будь-яке стискаюче відображення повного метричного простору (X, ρ) в себе має лише одну нерухому точку, тобто $\exists ! x \in X \colon g(x) = x$.

Доведення. Нехай x_0 — деяка точка із X. Визначимо послідовність точок $\{x_n\}_{n\in\mathbb{N}}$ за таким правилом:

$$x_1 = g(x_0), \dots, x_n = g(x_{n-1}).$$

Покажемо, що ця послідовність є фундаментальною. Дійсно, якщо m>n, то

$$\rho(x_n, x_m) = \rho(g(x_{n-1}), g(x_{m-1})) \le \alpha \rho(x_{n-1}, x_{m-1}) \le \dots \le \alpha^n \rho(x_0, x_{m-n}) \le \alpha^n (\rho(x_0, x_1) + \rho(x_1, x_2) + \dots + \rho(x_{m-n-1}, x_{m-n}) \le \alpha^n \rho(x_0, x_1) (1 + \alpha + \alpha^2 + \dots + \alpha^{m-n-1}) \le \alpha^n \rho(x_0, x_1) \frac{1}{1-\alpha}.$$

Таким чином, оскільки $0 < \alpha < 1$,

$$\rho(x_n, x_m) \to 0, n \to \infty, m \to \infty, m > n.$$

Внаслідок повноти простору (X, ρ) в ньому існує границя послідовності $\{x_n\}$. Позначимо її через $x = \lim_{n \to \infty} x_n$.

Із теореми 7.3 випливає, що

$$g(x) = \lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} x_{n+1} = x.$$

Отже, нерухома точка існує.

Доведемо її єдиність. Якщо g(x) = x і g(y) = y, то $\rho(x, y) \le a\rho(x, y)$, тобто $\rho(x, y) = 0$. За аксіомою тотожності (невиродженості) це означає, що x = y.

Наслідок 7.1

Умову a < 1 не можна замінити на $a \le 1$.

Доведення. Якщо відображення $g:(X,\rho)\to (X,\rho)$ має властивість $\rho(g(x),g(y))\le \rho(x,y),\ \forall x,y\in X,\ x\neq y,$ то нерухомої точки може не бути. Дійсно, розглянемо простір $([1,\infty),|x-y|)$ і визначимо відображення $g(x)=x+\frac{1}{x}.$ Тоді $\rho(g(x),g(y))=|x+\frac{1}{x}-y-\frac{1}{y}|<|x-y|.$ Оскільки для жодного $x\in [1,\infty)$ $g(x)=x+\frac{1}{x}\neq x,$ нерухомої точки немає.

§7.5 Література

- [1] **Садовничий В. А.** Теория операторов. / В. А. Садовничий М.: Изд-во Моск. ун-та, 1986 (стр. 41–47).
- [2] **Колмогоров А. Н.** Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 66–75).