

DEFINIÇÃO	2
EQUAÇÃO REDUZIDA	2
EQUAÇÃO GERAL DA CIRCUNFERÊNCIA	3
RECONHECIMENTO	3
POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA	12
POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA	17
PROBLEMAS DE TANGENCIA	20
POSIÇÃO RELATIVA ENTRE DUAS CIRCUNFERÊNCIAS	23
RESPOSTAS	28
REFERÊNCIA BIBLIOGRÁFICA	30

No final das séries de exercícios podem aparecer sugestões de atividades complementares. Estas sugestões referem-se a exercícios do livro "Matemática" de Manoel Paiva fornecido pelo FNDE e adotado pelo IFMG – Campus Ouro Preto durante o triênio 2015-2017.

Todos os exercícios sugeridos nesta apostila se referem ao volume 3.

DEFINIÇÃO

Circunferência é um conjunto de pontos do plano equidistantes de um ponto fixo chamado CENTRO. A distância do centro a qualquer ponto da circunferência é denominada RAIO. Uma circunferência está bem determinada quando são conhecidos seu centro e raio.

Consideremos a circunferência λ de centro no ponto C(a, b) e raio r como na figura abaixo:

Um ponto P(x, y) pertence a λ se, e somente se, a distância PC é igual ao raio r.

$$P \in \lambda \Leftrightarrow D_{PC} = r$$

EQUAÇÃO REDUZIDA

Chama-se equação da circunferência aquela que é satisfeita por todo ponto P(x, y) pertencente à curva. Como foi destacado acima, $P \in \lambda$ se verificar a condição $D_{PC} = r$, assim, temos que:

$$P \in \lambda \Leftrightarrow D_{PC} = r$$

Como $D_{PC} = \sqrt{(x-a)^2 + (y-b)^2}$, desta forma, podemos escrever que:

$$\sqrt{\left(x-a\right)^2+\left(y-b\right)^2}=r$$

ou

$$(x-a)^2+(y-b)^2=r^2$$

EXEMPIOS

Ex.1: Escrever a equação da circunferência de centro no ponto (5, 3) e raio 7.

Resolução:

Substituindo a, b e r na expressão $(x-a)^2 + (y-b)^2 = r^2$, temos que a equação procurada é $(x-5)^2 + (y-3)^2 = 49$.

Ex.2: Qual a equação da circunferência de centro na origem e raio 4?

Resolução:

A partir do enunciado, temos a = 0, b = 0 e r = 4 e, substituindo na expressão dada, encontramos $x^2 + y^2 = 16$.

Em sentido contrário, quando encontramos uma equação na forma $(x-a)^2+(y-b)^2=r^2$ com $r^2>0$ já podemos afirmar que descreve uma circunferência de centro em C(a, b) e raio r

Exemplos

Ex.1: Identificar o centro e o raio da circunferência de equação $(x-2)^2 + (y+4)^2 = 25$.

Resolução:

Comparando a equação dada com aquela apresentada acima, temos que a = 2, b = -4 e r = 5, logo o centro é o ponto C(2, -4) e raio 5.

Ex.2: Qual o centro e o raio da circunferência que é apresentada pela equação $x^2 + (y-4)^2 = 13$?

Resolução:

Podemos reescrever a equação por $(x-0)^2 + (y-4)^2 = 13$, assim, o centro é o ponto C(0, 4) e o raio é $\sqrt{13}$.

EQUAÇÃO GERAL DA CIRCUNFERÊNCIA

O desenvolvimento da equação reduzida, nos leva à equação geral da circunferência, acompanhe:

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$

$$x^{2} - 2ax + a^{2} + y^{2} - 2by + b^{2} - r^{2} = 0$$

$$x^{2} + y^{2} - 2ax - 2by + \underbrace{a^{2} + b^{2} - r^{2}}_{k} = 0$$

$$x^2 + y^2 - 2ax - 2by + k = 0$$

EXEMPIOS

Ex.: Escrever a equação geral da circunferência de centro no ponto C(1, -3) e raio 4.

Resolução:

$$k = a^2 + b^2 - r^2 = 1^2 + (-3)^2 - 4^2 = \dots = -6$$

$$x^{2} + y^{2} - 2ax - 2by + k = 0$$

$$x^{2} + y^{2} - 2 \cdot 1 \cdot x - 2 \cdot (-3) \cdot y + (-6) = 0$$

$$x^{2} + y^{2} - 2x + 6y - 6 = 0$$

RECONHECIMENTO

É essencial saber reconhecer quando uma equação do 2º grau, dada em termos de x e y, representa uma circunferência.

Vamos partir da equação $Ax^2 + By^2 + Cxy + Dx + Ey + F = 0$ que, a partir de agora, trataremos por E1.

Dividindo todos os termos de E1 por A, obtemos a equação abaixo que denominaremos E2:

$$x^{2} + \frac{B}{A}y^{2} + \frac{C}{A}xy + \frac{D}{A}x + \frac{E}{A}y + \frac{F}{A} = 0$$

Vamos agora comparar E2, termo a termo, com a equação geral apresentada na página anterior:

$$x^2 + y^2 - 2ax - 2by + k = 0$$

$$x^{2} + \frac{B}{A}y^{2} + \frac{C}{A}xy + \frac{D}{A}x + \frac{E}{A}y + \frac{F}{A} = 0$$

Podemos concluir que:

1.
$$\frac{B}{A} = 1 \rightarrow A = B \neq 0$$

$$2. \quad \frac{C}{A} = 0 \rightarrow C = 0$$

3.
$$\frac{D}{A} = -2a \rightarrow a = -\frac{D}{2A}$$

4.
$$\frac{E}{A} = -2b \rightarrow b = -\frac{E}{2A}$$

5.
$$\frac{F}{A} = k \rightarrow \frac{F}{A} = a^{2} + b^{2} - r^{2} \rightarrow$$

$$\Rightarrow \frac{F}{A} = \left(-\frac{D}{2A}\right)^{2} + \left(-\frac{E}{2A}\right)^{2} - r^{2} \rightarrow$$

$$\Rightarrow r^{2} = \frac{D^{2}}{4A^{2}} + \frac{E^{2}}{4A^{2}} - \frac{F}{A} \rightarrow$$

$$\Rightarrow r^{2} = \frac{D^{2} + E^{2} - 4AF}{4A^{2}}$$

como r é um número real positivo, então $r^2 > 0$, então:

$$\frac{D^2 + E^2 - 4AF}{4A^2} > 0$$

E, resumindo, são três as condições para que E1 represente uma circunferência:

I.
$$A = B \neq 0$$

II.
$$C=0$$

III.
$$\frac{D^2 + E^2 - 4AF}{4A^2} > 0$$

Satisfeitas estas três condições, temos que a equação $Ax^2 + By^2 + Cxy + Dx + Ey + F = 0$ representa uma circunferência de centro

$$C\left(-\frac{D}{2A}, -\frac{E}{2A}\right)$$
 e raio $\frac{\sqrt{D^2 + E^2 - 4AF}}{2|A|}$.

OBSERVAÇÕES

 Se uma das três condições citadas acima não for satisfeita, a equação representa um lugar geométrico diferente de uma circunferência ou até mesmo um conjunto vazio.

b. Quando a equação da circunferência apresenta coeficientes unitários para x² e y², (A = B = 1), o centro e o raio da circunferência podem ser encontrados a partir de:

$$a = -\frac{D}{2}$$
, $b = -\frac{E}{2}$ e
 $r = \sqrt{a^2 + b^2 - k}$

- c. Se os coeficientes de x² e y² não forem unitários, podemos dividir todos os coeficientes da equação da circunferência por A, assim obteremos uma equação onde tais coeficientes serão iguais a 1.
- d. Outro processo rápido de encontrar o centro e o raio de uma circunferência, consiste em escrever a equação na forma reduzida $(x-a)^2 + (y-b)^2 = r^2$ e, por uma comparação simples, extraímos as informações que caracterizam centro e raio.

EXEMPIOS

Ex.1: Dentre as equações a seguir, destaque aquelas que representam e aquelas que não representam uma circunferência e justifique aquelas que não representam:

A
$$x^2 + 3y^2 - 5x - 7y - 1 = 0$$

B
$$x^2 + y^2 + xy - 4x - 6y - 9 = 0$$

C
$$3x^2 + 3y^2 + 4x - 6y + 15 = 0$$

D
$$x^2 + y^2 - 2x - 2y + 2 = 0$$

$$E 2x^2 + 2y^2 - 4x - 6y - 3 = 0$$

Resolução:

A não representa uma circunferência pois os coeficientes de x^2 e y^2 são diferentes.

B não representa uma circunferência pois o coeficiente de xy é diferente de zero.

C não representa uma circunferência pois $D^2 + E^2 - 4AF =$ = $4^2 + (-6)^2 - 4 \cdot 3 \cdot 15 = -128 < 0$

D não representa uma circunferência pois $D^2 + E^2 - 4AF = = (-2)^2 + (-2)^2 - 4 \cdot 1 \cdot 2 = 0$. Desta forma, o raio seria nulo.

E representa uma circunferência pois $A = B = 2 \neq 0$, C = 0 pelo fato de não aparecer o termo xy e, por fim, $D^2 + E^2 - 4AF = \left(-4\right)^2 + \left(-6\right)^2 - 4 \cdot 2 \cdot \left(-3\right) = 16 + 36 + 24 = 76 > 0$.

Ex.2: Achar o centro e o raio da circunferência de equação $x^2 + y^2 - 6x + 4y - 13 = 0$.

Resolução:

Este problema pode ser resolvido por métodos diferentes. Vamos destacar dois destes métodos:

Método 1

Uma das formas de encontrar as coordenadas do centro e o raio consiste em completar os quadrados e escrever a equação na forma reduzida extraindo, daí, as informações pedidas, acompanhe na próxima página:

$$x^{2} + y^{2} - 6x + 4y - 13 = 0$$

$$x^{2} - 6x + y^{2} + 4y = 13$$

$$x^{2} - 6x + y^{2} + 4y + 13 + y^{2} + 4y + 13 + y^{2} + 4y + 4 = 13 + y + 4$$

$$(x^{2} - 6x + y + y^{2} + 4y + 4 + y^{2} + 4y + 4) = 25$$

$$(x - 3)^{3} + (y + 2) = 5^{2}$$
6

Na linha 2 isolamos o termo independente.

Na linha 3 criamos os espaços que usaremos para de completar os quadrados.

Na linha 4 foram completados os quadrados dividindo os coeficientes de x e y por 2 e elevando o resultado ao quadrado. Estes valores foram somados em ambos os membros da equação.

Na linha 5 destacamos, entre parênteses os dois trinômios quadrados perfeitos obtidos.

Por fim, na linha 6 fatoramos os dois trinômios com o objetivo de obter uma forma reduzida da equação da circunferência.

Daí, podemos afirmar que a circunferência dada tem centro no ponto C(3, -2) e raio 5.

Método 2

Vamos comparar a equação dada com uma equação geral de circunferência com coeficientes de x^2 e y^2 iguais a 1, acompanhe;

$$x^2 + y^2 - 6x + 4y - 13 = 0$$

$$x^2 + y^2 - 2ax - 2by + k = 0$$

Comparando termo a termo as duas equações, temos que:

$$-2a = -6 \rightarrow a = 3$$

$$-2b = 4 \rightarrow b = -2$$

$$k = -13$$

$$k = a^{2} + b^{2} - r^{2}$$

$$-13 = a^{2} + b^{2} - r^{2}$$

$$-13 = 3^{2} + (-2)^{2} - r^{2}$$

$$r^{2} = 13 + 9 + 4$$

$$r^{2} = 25$$

$$r = 5$$

Daí, mais uma vez, concluímos que *a circunferência dada tem centro no ponto C(3, -2) e raio 5.*

OBSERVAÇÃO: Por mais que esta segunda resolução pareça mais fácil e mais rápida, devemos considerar que este método demanda decorar uma fórmula. De qualquer forma, ficam as duas opções.

Ex.3: Obter centro e raio da circunferência descrita por $4x^2 + 4y^2 - 4x - 12y + 6 = 0$.

Resolução:

Vamos resolver tal como fizemos no primeiro método do exemplo anterior porém vamos, antes, dividir toda a equação por 4 a fim de tornar os coeficientes de x² e y² iguais a 1.

$$4x^{2} + 4y^{2} - 4x - 12y + 6 = 0$$

$$x^{2} + y^{2} - x - 3y + \frac{3}{2} = 0$$

$$x^{2} - x + y^{2} - 3y = -\frac{3}{2}$$

$$x^{2} - x + y^{2} - 3y + y = -\frac{3}{2} + y + y$$

$$x^{2} - x + \frac{1}{4} + y^{2} - 3y + \frac{9}{4} = -\frac{3}{2} + \frac{1}{4} + \frac{9}{4}$$

$$\left(x^{2} - x + \frac{1}{4}\right) + \left(y^{2} - 3y + \frac{9}{4}\right) = 1$$

$$\left(x - \frac{1}{2}\right)^{2} + \left(y - \frac{3}{2}\right)^{2} = 1^{2}$$

Assim, podemos afirmar que a circunferência tem centro em $C\left(\frac{1}{2},\frac{3}{2}\right)$ e raio 1.

OBSERVAÇÃO: assim como no exemplo anterior, este também pode ser resolvido de duas maneiras distintas tomando o cuidado, entretanto, para o fato de os coeficientes de x2 e y2 serem diferentes de 1. Neste caso, ainda é recomendável simplificar a equação.

01) Determinar a equação da circunferência de centro e raio indicados em cada item:

a)
$$C(0,0) e r = 3$$

b)
$$C(2,0) e r = 4$$

c)
$$C(-1, -2)$$
 e $r = 5$

d)
$$C(2, 4) e r = 1$$

e)
$$C(0, -3) e r = 2$$

f)
$$C(\frac{1}{2}, \frac{3}{2})$$
 e $r = 4$

02) Qual a equação da circunferência que passa pelo ponto P(5, 5) e tem centro no ponto C(1, 2)?

b)
$$x^2 + y^2 - 8x + 7 = 0$$

03) Determinar o centro e o raio de cada uma das circunferências apresentadas a seguir:

a)
$$x^2 + y^2 - 6x + 4y - 12 = 0$$

c)
$$x^2 + y^2 + 8y + 6x = 0$$

d)
$$2x^2 + 2y^2 + 8x - 6y = 0$$

04) Achar a equação da reta que passa pelo centro da circunferência $(x-3)^2 + (y-2)^2 = 8$ e é perpendicular à reta x : x - y - 16 = 0.

e)
$$3x^2 + 3y^2 - 6x + 12y + 14 = 0$$

- 05) Determinar o centro e o raio da circunferência de equação $4x^2 + 4y^2 12x 12y 7 = 0$.
- 07) Um quadrado tem vértices consecutivos nos pontos A(5, 0) e B(-1, 0). Escreva a equação da circunferência circunscrita a este quadrado.

06) Dada a circunferência de equação $x^2 + y^2 - mx - ny + p = 0$, determine a relação entre m, n e p a fim de que a circunferência tangencie os eixos.

08) Qual a equação da circunferência que passa pelos pontos A(2, 4), B(11, 7) e D(7, 9).

09) O ponto P(3, b) pertence à circunferência de centro em C(0, 3) e raio 5. Calcule o valor da coordenada b.

10) Qual o comprimento do lado do triângulo eqüilátero inscrito na circunferência $x^2 + y^2 + 2x - 10y + 10 = 0$?

ATIVIDADES COMPLEMENTARES

Pág. 90 – Exercícios R1 a R5 Pág. 95 – Exercícios 11 a 17

POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA

Dados um ponto $P(x_0, y_0)$ e uma circunferência $\lambda : (x-a)^2 + (y-b)^2 = r^2$, vamos determinar a posição relativa entre $P \in \lambda$.

Vamos calcular a distância de P até C e comparar com o raio e, assim, temos três casos:

1º caso: P é exterior a λ.

Isso ocorre se, e somente se:

$$D_{PC} > r$$

Isto é

$$(x_0 - a)^2 + (y_0 - b)^2 > r^2$$

Ou, anda melhor:

$$(x_0 - a)^2 + (y_0 - b)^2 - r^2 > 0$$

 2° caso: P pertence a λ .

Isso ocorre se, e somente se:

$$D_{PC} = r$$

$$(x_0 - a)^2 + (y_0 - b)^2 = r^2$$

$$(x_0 - a)^2 + (y_0 - b)^2 - r^2 = 0$$

 3° caso: P pertence a λ .

Isso ocorre se, e somente se:

$$D_{PC} < r$$

$$(x_0 - a)^2 + (y_0 - b)^2 < r^2$$

$$(x_0 - a)^2 + (y_0 - b)^2 - r^2 < 0$$

Podemos resumir esta teoria com a seguinte ideia: dada a circunferência λ : $x^2 + y^2 - 2ax - 2by + k = 0$ onde $k = a^2 + b^2 - r^2$, seja f(x, y) o polinômio do primeiro membro, isto é:

$$f(x,y) = x^2 + y^2 - 2ax - 2by + a^2 + b^2 - r^2$$

Quando é dado $P(x_0, y_0)$, cuja posição em relação a λ queremos determinar, substituímos (x_0, y_0) em f, ou seja, calculamos

$$f(x_0, y_0) = x_0^2 + y_0^2 - 2ax_0 - 2by_0 + a^2 + b^2 - r^2$$

então, conforme acabamos de estudar,

$$f(x_0, y_0) > 0 \Leftrightarrow P \text{ \'e exterior a}$$

 λ .
 $f(x_0, y_0) = 0 \Leftrightarrow P \text{ pertence a } \lambda$.
 $f(x_0, y_0) < 0 \Leftrightarrow P \text{ \'e interior a } \lambda$.

EXEMPIOS

Ex.1: Qual a posição do ponto P(2, 3) em relação à circunferência λ : $x^2 + y^2 - 4x = 0$?

Resolução:

Temos

$$P(x,y) = x^2 + y^2 - 4x$$

então,

$$P(2,3) = 2^2 + 3^2 - 4 \cdot 2 = 4 + 9 - 8 = 5$$

Como P(2,3) > 0, P é exterior a λ .

Ex.2: Qual a posição do ponto P(0, 0) em relação à circunferência λ : $x^2 + y^2 - \sqrt{3}x + \sqrt{2}y = 0$?

Resolução:

Sendo

$$P(x,y) = x^2 + y^2 - \sqrt{3}x + \sqrt{2}y$$
, vamos fazer $P(0,0)$.

$$P(0,0) = 0^2 + 0^2 - \sqrt{3} \cdot 0 + \sqrt{2} \cdot 0 = 0$$

Como P(0,0) = 0, P pertence a λ .

Ex.3: Qual a posição do ponto P(0, 1) em relação à circunferência $\lambda: 2x^2 + 2v^2 + 5x + v - 11 = 0$?

Resolução:

Á partir de

$$P(x,y) = 2x^2 + 2y^2 + 5x + y - 11$$
, vamos fazer $P(0,1)$.

$$P(0,1) = 2 \cdot 0^2 + 2 \cdot 1^2 + 5 \cdot 0 + 1 - 11 =$$

= 0 + 2 + 0 + 1 - 11 = -8

Como P(0,1) = -8, $\underline{P \in interior \ a \ \lambda}$.

OBSERVAÇÃO:

Note que substituir P(x0, y0) na função f(x, y) é muito mais simples do que calcular a distância PC e comparar com o raio uma vez que obter C e r é uma operação trabalhosa principalmente se a equação da circunferência apresentar coeficientes fracionários ou irracionais.

11) Determinar a posição do ponto P em relação à circunferência I em cada item abaixo:

a) P(2, 1) e
$$\lambda$$
: $2x^2 + 2y^2 - 9 = 0$

b) P(-4, -5) e
$$\lambda$$
: $x^2 + y^2 + 2x + 2y - 2 = 0$

c) P(0, 0) e
$$\lambda$$
: $x^2 + y^2 - \sqrt{3}x + \pi y - 1 = 0$

12) Determinar P de modo que o ponto A(7, 9) seja exterior à circunferência $x^2 + y^2 - 2x - 2y - p = 0$. (A resolução desta questão pode ser encontrada na seção RESPOSTAS)

13) Interprete graficamente a solução de cada uma das inequações do 2º grau a seguir:

a)
$$x^2 + y^2 \le 9$$

b)
$$x^2 + y^2 \ge 4$$

c)
$$x^2 + y^2 + 2x + 2y - 7 \le 0$$

d)
$$x^2 + y^2 - 2x - 2y + 1 > 0$$

14) Resolver o sistema $\begin{cases} x^2 + y^2 \le 9 \\ x^2 + y^2 \ge 4 \end{cases}$

(A resolução desta questão pode ser encontrada na secção RESPOSTAS)

15) Resolva o sistema de inequações

$$\begin{cases} x^2+y^2 \leq 9 \\ x+y=3 \end{cases} . \text{ (A resolução desta questão pode ser}$$

encontrada na seção RESPOSTAS)

16) Resolver os seguintes sistemas de inequações do segundo grau:

a)
$$\begin{cases} x^2 + y^2 \le 9 \\ x^2 + y^2 \ge 1 \end{cases}$$

b)
$$\begin{cases} x^2 + y^2 \le 4 \\ (x-1)^2 + y^2 \ge 4 \end{cases}$$

c)
$$\begin{cases} x^2 + y^2 \le 25 \\ x^2 + y^2 - 12x + 20 \ge 0 \end{cases}$$

$$d) \begin{cases} x^2 + y^2 \le 1 \\ x + y \ge 1 \end{cases}$$

POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA

Seja λ uma circunferência de centro no ponto C(a,b) e raio r. Existem, no plano, retas que cortam a circunferência em dois pontos, retas que tocam a circunferência em um único ponto e retas que não interceptam λ em ponto algum.

Estas retas são chamadas, respectivamente, de SECANTES, TANGENTES e EXTERNAS À CIRCUNFERÊNCIA.

Observe a figura:

 $\mathbf{e} \cap \lambda = \phi$ e é exterior à circunferência λ

 $t \cap \lambda = T$ t é tangente à circunferência λ

$$S \cap \lambda = \{S_1, S_2\}$$

s é secante à circunferência λ

Considerando a circunferência λ : $x^2 + y^2 - 2ax - 2by + k = 0$ e a reta dada por r: Ax + By + C = 0, a solução do sistema a seguir determina a posição da reta r em relação à circunferência λ .

S:
$$\begin{cases} \lambda : x^2 + y^2 - 2ax - 2by + k = 0 \\ Ax + By + C = 0 \end{cases}$$

- Se S tem duas soluções distintas, r é secante à λ.
- Se S tem solução única, r é tangente à λ.
- Se S não admite soluções reais, então r é exterior à circunferência λ.

EXEMPIOS

Ex.: Qual a posição relativa entre a circunferência $(x-3)^2 + (y-4)^2 = 25$ e a reta 3x - y = 0?

Resolução:

Devemos resolver o sistema $\begin{cases} (x-3)^2 + (y-4)^2 = 25 \\ 3x - y = 0 \end{cases}$

Resolvendo-o, encontramos como solução os pares ordenados (0, 0) e (3, 9). Como o sistema admite duas soluções distintas, concluímos que a reta é secante à circunferência.

OBSERVAÇÃO

Existe um método alternativo de determinar a posição relativa entre uma circunferência e uma reta. Este método consiste em encontrar a distância entre o centro da circunferência e a reta e, em seguida comparar esta distância com o raio, assim:

$$d_{Cs} < r \Leftrightarrow s \text{ \'e sec ante a } \lambda$$

 $d_{Ct} = r \Leftrightarrow t \text{ \'e tan gente a } \lambda$
 $d_{Ce} > r \Leftrightarrow e \text{ \'e exterior a } \lambda$

Utilize a figura da segunda coluna da página anterior para interpretar estas informações.

Na apostila anterior, aprendemos a calcular a distância entre ponto e reta.

Exercícios

17) Calcular a distância do centro da circunferência $x^2 + y^2 + 5x - 7y - 1 = 0$ e a reta 4x + 3y = 0.

- 18) Qual a posição relativa entre a reta r: 4x+3y=0 e a circunferência $x^2+y^2+5x-7y-1=0$?
- 20) Determinar os pontos P e Q onde a circunferência $x^2 + y^2 + 4x + 6y = 0$ encontra a reta 3x + 2y + 12 = 0.

- 19) Qual a posição do eixo das abscissas em relação à circunferência $x^2 + y^2 5x + 4y + 4 = 0$.
- 21) Quais as equações das retas paralelas ao eixo das abscissas tangentes à circunferência $(x-1)^2 + (y-2)^2 = 9$?

22) Qual o comprimento da corda que a reta 7x - 24y - 4 = 0 determina na circunferência $x^2 + y^2 - 2x + 6y - 15 = 0$?

23) Escrever a equação da circunferência de centro no ponto (5, 4) e tangente à reta 3x - 3y + 14 = 0.

PROBLEMAS DE TANGENCIA

Vamos ver, por meio de exemplos, dois problemas clássicos de tangencia entre reta e circunferência.

1º problema: Determinar duas retas com inclinação dada e tangentes à uma circunferência.

Ex.: Determinar as retas tangentes à circunferência $x^2 + y^2 - 4x - 2y - 4 = 0$ que formam um ângulo de 45° com o eixo Ox.

Resolução

Em princípio, vamos determinar o centro e o raio da circunferência:

$$a = \frac{-(-4)}{2} = 2$$
 e $b = \frac{-(-2)}{2} = 1$
 $r = \sqrt{a^2 + b^2 - k} = \sqrt{2^2 + 1^2 - (-4)} = 3$

Como as tangentes formam 45 com o eixo horizontal, podemos afirmar que possuem m = 1.

Além disso, distam 3 unidades do centro C(2, 1). Temos então, que as retas tangentes possuem equação t: y = x + n ou t: x - y + n = 0. Daí,

$$D_{Ct} = 3$$

$$\frac{|1 \cdot 2 - 1 \cdot 1 + n|}{\sqrt{1^2 + 1^2}} = 3$$

$$|n + 1| = 3\sqrt{2}$$

$$n + 1 = \pm 3\sqrt{2}$$

$$n = -1 \pm 3\sqrt{2}$$

Assim, as retas tangentes são:

$$t_1: x-y-1+3\sqrt{2}=0$$

 $t_2: x-y-1-3\sqrt{2}=0$

2º problema: Determinar as equações das duas retas que passam por um ponto dado tangentes à uma circunferência.

Ex.: Determinar as equações das retas tangentes à circunferência $(x+1)^2 + (y-2)^2 = 4$ traçadas a partir do ponto P(-5, -6).

Resolução:

Como a equação da circunferência foi apresentada na forma reduzida, podemos afirmar, sem maiores dificuldades, que seu centro é o ponto C(-1, 2) e o raio é 2.

Observe a ilustração:

Antes de tudo, devemos nos certificar que o problema tem solução, e isso acontece somente se P não for interior à circunferência. A ilustração acima nos mostra isso mas a solução gráfica não é suficiente, vamos, então, calcular a distância PC:

$$D_{PC} = \sqrt{(-5+1)^2 + (-6-2)^2} = ... = 4\sqrt{5} > 2$$

logo P é externo e o problema tem duas soluções que são as retas t da ilustração.

De t, podemos dizer que:

$$m = \frac{y - (-6)}{x - (-5)} \rightarrow \dots \rightarrow mx - y + 5m - 6 = 0$$

Mas também sabemos que t dista 2 unidades de C(-1, 2), assim:

$$2 = \frac{\left| m \cdot (-1) - 2 + 5m - 6 \right|}{\sqrt{m^2 + (-1)^2}}$$
$$2\sqrt{m^2 + 1} = |4m - 8|$$

$$(4m-8)^{2} = (2\sqrt{m^{2}+1})^{2}$$

$$16m^{2} - 64m + 64 = 4m^{2} + 4$$

$$12m^{2} - 64m + 60 = 0$$

$$3m^{2} - 16m + 15 = 0$$

$$m = \frac{16 \pm \sqrt{19}}{3}$$

logo, as equações procuradas serão encontradas substituindo $m=\frac{16\pm\sqrt{19}}{3}$ em mx-y+5m-6=0 e, assim,

$$t_1 = \frac{16 + \sqrt{19}}{3} \cdot x - y + 5 \cdot \frac{16 + \sqrt{19}}{3} - 6 = 0$$
$$t_2 = \frac{16 - \sqrt{19}}{3} \cdot x - y + 5 \cdot \frac{16 - \sqrt{19}}{3} - 6 = 0$$

- 24) Obter as equações das tangentes à circunferência $x^2 + (y-3)^2 = 36$ que sejam paralelas à reta 3x y + 1 = 0.
- 25) Determine as equações das retas tangentes à circunferência $x^2 + y^2 = 1$ que passam pelo ponto $P(\sqrt{2}, 0)$.

POSIÇÃO RELATIVA ENTRE DUAS CIRCUNFERÊNCIAS

A posição relativa entre duas circunferências será determinada comparando a distância entre seus centros com a soma ou subtração do comprimento de seus raios.

Veja os 6 casos:

$$d > r_1 + r_2$$

pois

$$d = C_1 P_1 + P_1 P_2 + P_2 C_2 > r_1 + r_2$$

Circunferências exteriores

2º caso:

$$d=r_1+r_2$$

pois

$$d = C_1 P_1 + P_2 C_2 = r_1 + r_2$$

Circunferências tangentes exteriormente

3º caso:

$$d = |r_1 - r_2|$$

pois

$$d = C_1 P - PC_2$$

Circunferências tangentes interiormente

4º caso:

pois

$$d = C_1P_1 + P_2C_2 - P_1P_2 < r_1 + r_2$$

$$r_1 r_2 > 0$$

$$d = C_1P_1 + P_1C_2 > r_1 - r_2$$

$$r_1 > 0$$

Circunferências secantes

5º caso:

$$0 \le d < |r_1 - r_2|$$

pois

$$d = C_1 P_1 - C_2 P_2 - P_1 P_2 < r_1 - r_2$$

Circunferência de menor raio é interior à outra

6º caso:

Circunferências concêntrias

Ex.: Qual a posição relativa entre as circunferências $\lambda_1 : x^2 + y^2 = 49$ e $\lambda_2 : x^2 + y^2 - 6x - 8y - 11 = 0$?

Resolução:

Temos:

$$\lambda_{1} \rightarrow centro \ C_{1}(0,0) \ e \ raio \ r_{1} = 7$$

$$\lambda_{2} \rightarrow centro \ C_{2}(3,4) \ e \ raio \ r_{2} = 6$$

$$d_{C_{1}C_{2}} = \sqrt{(0-3)^{2} + (0-4)^{2}} = 5$$

Comparando a soma dos raios: $C_1C_2 = 5$ e $r_1 + r_2 = 13$ e daí concluímos que λ_1 e λ_2 não podem ser exteriores nem tangente exteriormente.

Comparando a diferença dos raios: $C_1C_2 = 5$ e $r_1 - r_2 = 1$ e, consequentemente λ_1 e λ_2 não podem ser concêntricas, uma interior a outra nem tangentes interiormente.

Por exclusão, $\lambda_{\rm l}$ e $\lambda_{\rm 2}$ são secantes.

Você deve ter atenção pois este é o caso que exige mais cuidados pois são necessárias duas comparações: $C_1C_2 < r_1 + r_2$ e $C_1C_2 > r_1 - r_2$. Nos demais casos, ao comparar C_1C_2 com $r_1 + r_2$ ou com $r_1 - r_2$, já podemos tirar conclusões.

26) Qual a posição relativa entre λ_1 e λ_2 em cada caso a seguir?

a)
$$\lambda_1 : x^2 + y^2 = 36 \text{ e}$$

$$\lambda_2 : x^2 + y^2 - 6x - 8y + 21 = 0$$

b)
$$\lambda_1: 2x^2 + 2y^2 - 4x = 0$$
 e
 $\lambda_2: x^2 + y^2 - 2x - 3 = 0$

c)
$$\lambda_1 : x^2 + y^2 - 8 = 0$$
 e
 $\lambda_2 : x^2 + y^2 + 6x + 6y + 17 = 0$

d)
$$\lambda_1 : x^2 + y^2 + 8x - 6y = 0$$
 e
 $\lambda_2 : x^2 + y^2 - 2x = 0$

e)
$$\lambda_1 : x^2 + y^2 = 49$$
 e
 $\lambda_2 : x^2 + y^2 - 6x - 8y + 21 = 0$

27) Obter a intersecção entre as circunferências $\lambda_1 : x^2 + y^2 = 100$ e $\lambda_2 : x^2 + y^2 - 12x - 12y + 68 = 0$.

RESPOSTAS

01) a)
$$x^2 + y^2 = 9$$

b)
$$(x-2)^2 + y^2 = 16$$

c)
$$(x+1)^2 + (y+2)^2 = 25$$

d)
$$(x-2)^2 + (y-4)^2 = 1$$

e)
$$x^2 + (y+3)^2 = 4$$

f)
$$\left(x-\frac{1}{2}\right)^2 + \left(y-\frac{3}{2}\right)^2 = 1$$

02)
$$(x-1)^2 + (y-2)^2 = 25$$

03) a)
$$C(3,-2)$$
 e $r=5$

b)
$$C(4,0)$$
 e $r=3$

c)
$$C(-3, -4)$$
 e $r = 5$

d)
$$C\left(2,\frac{3}{2}\right)$$
 e $r=\frac{5}{2}$

e)
$$C(1, -2)$$
 e $r = \frac{\sqrt{3}}{3}$

04)
$$x + y - 5 = 0$$

05)
$$C\left(\frac{3}{2}, -\frac{3}{2}\right) e r = \frac{5}{2}$$

06)
$$|m| = |n| \neq 0 \text{ e } m^2 = 4p$$

07)
$$(x-2)^2 + (y\pm 3)^2 = 18$$

08)
$$x^2 + v^2 - 14x - 8v + 40 = 0$$

10)
$$4\sqrt{3}$$

- b) exterior
- c) interior

12) Resolução Fazendo $f(x,y) = x^2 + y^2 - 2x - 2y - p$, devemos ter f(7,9) > 0, assim, $f(7,9) = 7^2 + 9^2 - 2 \cdot 7 - 2 \cdot 9 - p$ f(7,9) = 98 - p 98 - p > 0Portanto p < 98.

Por outro lado, uma condição para a existência da circunferência é que $D^2 + E^2 - 4AF > 0$, e, assim, $4 + 4 + 4p > 0 \Leftrightarrow p > -2$

Fazendo a intersecção entre as duas condições, temos a solução. Portanto:

$$-2$$

14) Resolução:

Note que as duas inequações que formam o sistema são as mesmas dos itens a) e b) da questão anterior e a solução é a intersecção dos dois conjuntos, assim, a solução está apresentada abaixo:

Em outras palavras, a solução é uma coroa circular com uma unidade de largura.

15) A solução da primeira inequação, nós já conhecemos:

Vamos agora destacar a solução da segunda inequação:

Agora, fazendo a intersecção entre as duas soluções, encontramos o conjunto de pontos procurado, portando, a solução do sistema de inequações é

16) a)

b)

C)

- 17) $\frac{1}{10}$
- 18) r é secante à circunferência.
- 19) O eixo Ox é secante à circunferência.
- **20)** P(-4, 0) e Q(0, -6)
- **21)** y = 5 ou y = -1
- **22)** 8
- **23)** $(x-5)^2 + (y-4)^2 = 16$
- **24)** $3x-y+3\pm 6\sqrt{10}=0$
- **25)** $x-y-\sqrt{2}=0$ e $x+y-\sqrt{2}=0$

- **26)** a) secantes
 - b) concêntricas
 - c) exteriores
 - d) secantes
 - e) Tangentes interiormente
- **27)** (1, 2) e (3, 4)

REFERÊNCIA BIBLIOGRÁFICA

DANTE, Luiz Roberto; Matemática, Volume dois. São Paulo, Atica, 2005.

IEZZI, Gelson e outros; Fundamentos da Matemática Elementar, Volume 4. São Paulo, Atual, 5ª edição, 1977.

Links para os vídeos sugeridos:

Pág. 06 http://vidigal.ouropreto.ifmg.edu.br/equac ao-geral-da-circunferencia/

Pág. 13 http://vidigal.ouropreto.ifmg.edu.br/posic ao-relativa-entre-ponto-e-circunferencia/