Contents

1	Line	ear Equation	3
	1.1	Fields	3
	1.2	Matrices	4

Chapter 1

Linear Equation

1.1 Fields

The set \mathbb{F} together with two operation +, addition, and ·, multiplication, that satisfy the follwings is called a **field**. For all $x, y, z \in \mathbb{F}$

1. Addition and multiplication are *commutative*

$$x + y = y + x \qquad \qquad x \cdot y = y \cdot x$$

2. Addition and multiplication are associative

$$x + (y + z) = (x + y) + z \qquad x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

3. Multiplication distributes over addition

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

- 4. There exists an element 0, zero, in \mathbb{F} such that x + 0 = x.
- 5. There exists an element 1 , one, in \mathbb{F} such that $x \cdot 1 = x$.
- 6. For each element $x \in \mathbb{F}$ there corresponds a unique element $y \in \mathbb{F}$ such that x + y = 0. y is commonly denoted as -x.
- 7. For each non-zero element $x \in \mathbb{F}$ there corresponds a unique element $y \in \mathbb{F}$ such that $x \cdot y = 1$. y is commonly denoted as x^{-1} or $\frac{1}{x}$.
- 8. \mathbb{F} is closed under addition and multiplication.

$$x + y \in \mathbb{F}$$
 $x \cdot y \in \mathbb{F}$

Definition (Characteristics): Let n be the least number such that

$$\underbrace{1+1+\ldots 1}_{n}=0\tag{1.1}$$

then n is the **characteristics** of \mathbb{F} . If for a field there exists no such n, then its characteristics is 0.

Theorem 1.1. If \mathbb{F} is a finite field, then the number of elements of \mathbb{F} must be in form of p^k where p is a prime number and $k \in \mathbb{N}$. Also fro every number in such form there exists a unique \mathbb{F} with p^k elements.

If \mathbb{F} is a field then the set of all polynomials with the coefficients in \mathbb{F} is denoted by $\mathbb{F}[x]$, that is

$$\mathbb{F}[x] = \left\{ \sum_{i=0}^{n} a_i x^i \mid a_i \in \mathbb{F} \,\forall i, \ n \in \mathbb{N} \right\}$$

Cleary $\mathbb{F}[x]$ does not have a multiplicative inverse for some of its non-zero elements. Define $\mathbb{F}(x)$ as follow

$$\mathbb{F}(x) = \left\{ \frac{f(x)}{g(x)} \mid f(x), g(x) \in \mathbb{F}[x], \ g(x) \neq 0 \right\}$$

which is a field. Also, note that $\mathbb{F} \subset \mathbb{F}[x] \subset \mathbb{F}(x)$.

1.2 Matrices

Let us denote the set of all metrices of size $m \times n$ with elements in \mathbb{F} by $\mathcal{M}_{m \times n}(\mathbb{F})$ and if m = n then it is equivalently denoted as $\mathcal{M}_n(\mathbb{F})$.

Matrix $A \in \mathcal{M}_n(\mathbb{F})$ is said to be **invertiable** or **singular** if there exists a matrix $B \in \mathcal{M}_n(\mathbb{F})$ such that $AB = BA = \mathbb{I}_n$.

Consider the following system of linear equations:

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + a_{1n}x_n = y_1 \\
a_{21}x_1 + a_{22}x_2 + a_{2n}x_n = y_2 \\
\vdots \\
a_{m1}x_1 + a_{n2}x_2 + a_{mn}x_n = y_m
\end{cases}$$
(1.2)

with all $a_{ij} \in \mathbb{F}$. Then if $c_k \in F$, k = 1, ..., n:

$$(c_1a_{11} + c_2a_{21} + \dots + c_ma_{m1})x_1 + \dots + (c_1a_{1n} + c_2a_{2n} + \dots + c_ma_{mn})x_n = c_1y_1 + \dots + c_my_m$$

is **linear combination** of the Equation (1.2).

Definition (Equaivalent Systems): Two systems are considered equivalent if each equation in one system is a linear combination of the other system.

Proposition 1.2. Equivalent systems of linear equations have exactly the same solution.

The linear system, Equation (1.2), can be represent in form of matrices AX = Y where $A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \\ a_{n1} & \dots & a_{mn} \end{bmatrix} \in \mathcal{M}_{m \times n}(\mathbb{F})$ and $X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, Y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$ then the solutions of Equation (1.2) are exactly the same as AX - Y