Variables						
Types of Variables						
Types	Category	Remarks Examples				
Nominal	Categorical	No Order Race, Gender				
Ordinal	Categorical	Ordered	Ratings			
Discrete	Quantitative	Numbers with fixed difference	Number of, Set of integers			
Continuous	Quantitative	Forms intervals	Age, Height, Weight			
Quantitative -	→ Categorical C	ordinal: Ordered rar	iges of values			
Variable Role:	s (Response / Ex	(planatory)				
Daananaa	Variable on which comparisons are made					
Response	Alt (LRM): Dependent, Target, Output					
	Any variable the response might depend on					
Explanatory	Alt (LRM): Regressor, Independent, Predictor, Input,					
	Covariate	Covariate				
If Explanatory is Categorical, groups are compared.						
If unable to id	If unable to identify roles of variables, explore association.					
Lurking / Cont	founding Variab	les				
Lurking	Unobserved & influential, potential confounding					
	Observed but correlated with another explanatory					
Confounding	variable ie unable to determine which variable is causing					
	a change in response; Undifferentiable					
Basis of Lurking /Confounding Variables: Correlation does not imply causation						

Relative Frequencies		
Proportion (of X) Observations (of X) / Total Observations		
Percentage (of X) Proportion (of X) × 100%		

Studies & Sample Survey		
Study Types (Observational / Experimental)		
	The variables are observed for sampled subjects,	
Observational	without anything done to them	
	Easier to conduct	
	Conducted by assigning subjects to certain	
	experimental treatments and then observing the	
Experimental	outcome on the response variable	
	Able to control for lurking variables	
	May be unethical, impractical, or costly	
Steps of a Sample Survey		
	A study that asks questions/take measurements of the	
Description	subjects in a sample drawn from the population	
	randomly	
Step 1	Identify the Population	
	Compile a list of subjects in the population from which	
Step 2	the sample will be taken ie Sampling Frame, ideally lists	
	all subjects in population	
Step 3	Specify a method for selecting subjects from the	
oteh 2	sampling frame ie Sampling Design	
Step 4	Collect Data	

Random Samp	oling			
	Good sampling designs employ randomization ie chance			
Premise	over convenience			
	Each sample of size <i>n</i> has the same chance of being			
Description	selecte	ed from a sampling frame		
Step 1	Subjec	ts in sampling frame are numbered		
Step 2	Genera	te a set of <i>n</i> random numbers		
Ctom 2	Subjec	ts with numbers in the set of <i>n</i> numbers are picked		
Step 3	to be a	Simple Random Sample		
Other Random	n Sampl	es: Clustered / Stratified		
Biases in Sam	ple Surv	reys		
Sampling Bias		A result of sampling design step, or sampling		
Sampung bias	1	frame step		
Non-Sampling	Response / Non-Response Bias. Not a result of			
Non-Sampling	3 Dias	sampling design.		
	Sampling Bias: Under Coverage, Non-Random Sample			
Response Bias	s: Subje	ct wrong response, Misleading questions		
Non-Response	e Bias: 0	Cannot be reached, Refuse to participate		
Large Sample	Size do	es not guarantee an Unbiased sample!		
Poor alternativ	Poor alternative Surveys to Sample Surveys			
Convenience	Convenience Sample selected based on ease of access			
Volunteer	olunteer Subjects are encouraged to participate			
Elements of go	Elements of good Experimental Studies			
Control	Control A group without treatment for comparison			
Randomizatio	Randomization Random assignment of treatment			
Blind Subjects are unaware of treatment or placebo				
Double Blind	Bot	Both Subjects and Administrators are unaware of		
Double Billiu	treatment or placebo.			
Role of Rando	mizatio	n in Experimental Studies		
Eliminate Bias	that ma	ay appear if we assign subjects by hand		
Balance group	s on lur	king variables that we know affects response / that		
may be unknown to us				

Numerical Summaries		
Center	Mean: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	
Conto	Median: 50 th quantile	
Center	$Y = bX + a \to \overline{Y} = b\overline{X} + a$	
(Notes)	Outliers: Mean is sensitive, Median is robust	
(Notes)	Skewed: Median, Not Skewed: Mean	
	Range: [min, max]	
Variability	Variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$	
	Standard Deviation: $s = \sqrt{s^2}$	
Variability	$Y = bX + a \rightarrow s_Y^2 = b^2 s_X^2, s_Y = b s_X$	
(Notes)	\sim 68% in $\bar{X} \pm s$, \sim 95% in $\bar{X} \pm 2s$, \sim 99.7% in $\bar{X} \pm 3s$	
(Notes)	Works only in unimodal symmetric models.	
IQR	Range of $(q_{0.25}, q_{0.75})$ or (Q_1, Q_3)	
Quantile	$ q_p$: $100p$ -th quantile ie $100p$ percent fall below q_p	
Quartile	Q_1, Q_2, Q_3 : $q_{0.25}, q_{0.5}, q_{0.75}$ / lower, median, upper	
Use	Range: Always	
Cases	Variance and sd: Approximately bell-shaped	

IQR: Not bell-shaped		
Five-Number Summary		Includes $q_0, q_{0.25}, q_{0.5}, q_{0.75}, q_1$ Good indicator of center and variability
Outliers	$X_{outlier}$: $< Q_1 - 1.5 \times IQR \text{ or } > Q_3 + 1.5 \times IQR$	

Probability Topic				
Sample Space	Set of all possible outcomes			
Event	Subset of sample	spac	ce	
Event (A & B)	Union $(A \cap B)$: B	elong	to either or b	oth Events
Combination	Intersection $(A \cup B)$: Belong to both Events			
Complement	Exclusive of Ever	ıt, Sul	oset of all not	in Event
Probability	Probability Proportion of times an Event occurs			
Suppose events A	, B and C are in sa	mple	space S	
number of outcomes in A				
r (A)	$=\frac{1}{\text{total number of}}$	of pos	sible outcom	es in S
$P(A) \ge 0$ P	$P(A) \ge 0$ $P(S) = 1$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$			
$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C)$				
	$+ P(A \cap B \cap C)$			
$A \& B$ are independent $\equiv (P(A \cap B) = P(A)P(B)) \lor (P(A B) = P(A))$				
$P(A B) = \frac{P(A \cap B)}{P(B)}$, where $P(B) > 0$ $P(B A) = \frac{P(B) \times P(A B)}{P(A)}$				
$P(A B) = \frac{P(B)}{P(B)}$, where $P(B) > 0$ $P(B A) = \frac{P(A)}{P(A)}$				
Sensitivity $P(+ D)$ Specificity $P(- D^c)$				$P(- D^c)$
Prevalence $P(D)$				
$P(A) = \sum_{i=1}^{n} P(A \cap B_i)$, where $B_1, B_2,, B_n$ partitions S				
$P(B_i A) = \frac{P(A B_i)P(B_i)}{\sum_{i=1}^{n} P(A B_i)P(B_i)}, \text{ where } B_1, B_2,, B_n \text{ partitions S}$				

Random Variables			
Definition	Measurement of the outcome of an experiment		
Probability	Specifies possible values of a random variable and		
Distribution	their probabilities		
Discrete Random	Variables		
Definition	Takes on a set of separate values		
Probability Distribution	Assigns a probability $p_{\rm X}$ to each possible values of X		
Annotation notes	Uppercase letters: Denotes the random variable Lowercase letters: Denotes the value it takes on		
Mean	$\mu = \sum_{x} x p_{x}, E(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_{i}) = \mu$		
Variance	$\sigma^{2} = \sum_{x} (x - \mu)^{2} p_{x}, Var(\bar{X}) = \frac{1}{n^{2}} \sum_{i=1}^{n} \sigma^{2} = \frac{\sigma^{2}}{n}$		
Continuous Rande	om Variables		
Mean	$\mu = \int x f(x) dx$ Quantile $P(X \le q_p) = p$		
Variance	$\sigma^2 = \int (x - \mu)^2 f(x) dx$		
Binomial Distribut	Binomial Distribution $(X \sim Bin(n, p))$		
	n trials, either success or failure		
Definition	Each trial has the same probability of success p		
	The <i>n</i> trials are independent		
Bernoulli	Bin(1,p), a binomial distribution with only 1 trial		
Probability of <i>x</i> successes	$P(X = x) = C_x^n p^x (1 - p)^{n - x}$		

Mean of X	E(X) = np Variance $Var(X) = np(1-p)$			
Poisson Distribution with parameter λ				
Definition	Follows $P(X = k) = \frac{e^{-\mu}\mu^k}{k!}, k = 0,1,2,$			
	Where e is approximately 2.71828, λ is the expected			
	no. events per time unit and $\mu = \lambda t$ is the number of			
	events over time period t.			
	A Binomial distribution with large <i>n</i> and small <i>p</i> can be			
Binomial	accurately approximated by a Poisson distribution			
Estimation	with parameter $\mu = np$			
Mean of X	$Bin(large n,small p) \approx Pois(np/t)$ $\mu = np$ Variance $Var(X) = np(1-p) \approx np$			
	$\mu = np$ Variance $Var(X) = np(1-p) \approx np$ On (Gaussian Distribution / $X \sim N(\mu, \sigma^2)$)			
Normal Distribution	Symmetric, bell-shaped / unimodal, and			
Definition	characterized by its mean μ and its variance σ^2			
If $d > 0$ $P(V)$				
	$Y \leq \mu - d = P(X \geq \mu + d)$ $q_{1-p} = 2\mu - q_p$ σ_X^2 and $Y \sim N(\mu_Y, \sigma_Y^2)$,			
Add Constant	$X + a \sim N(a + \mu_X, \sigma_X^2)$			
Add Normal	$X + u \sim N(u + \mu_X, \sigma_X)$ $X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$			
	$X + Y \cdot N(\mu_X + \mu_Y, \sigma_X + \sigma_Y)$ $X_1 + X_2 + \dots + X_n = \sim N(n\mu, n\sigma^2)$			
Multiply Normal	Where $X_1, X_2,, X_n$ are independently identically			
Variable	distributed (IID) $N(\mu, \sigma^2)$.			
General Linear Transform	$aX + bY \sim N(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2)$			
Standardize	$Z = \frac{X - \mu}{\sigma} \sim N(0,1), \text{ where } X \sim N(\mu, \sigma^2)$			
Normal	Then Z is the Z-score of X			
	The Binomial distribution with a moderately large <i>n</i>			
	and p not close to 0 or 1, then $Bin(n, p)$ tends to be			
Binomial	symmetric and well approximated by normal			
Estimation	distribution $N(np, np(1-p))$, where $np(1-p) \ge 5$			
	$Bin(\text{moderately large } n, p \approx 0.5 \pm 0.2) \approx$			
	$N(np, np(1-p))$, where $np(1-p) \ge 5$			
t-Distribution with	, and the second			
t-score $\frac{\bar{X}-\mu}{s/\sqrt{r}}$	$\frac{1}{2} \sim t_{n-1}$; @ $n \ge 30$, $t_{n-1} \approx z$, $\frac{1}{\sqrt{n}} t_{n-1,1-\alpha/2} \approx q_{1-\alpha/2}$			

Sampling Distribution		
Quantitative Sampling Distribution Sample Mean, $\bar{X} \to \mu$		
$Bin(1,p)$ Sampling Distribution Sample Proportion, $\hat{p} \rightarrow p$		
Central Limit Theorem		
Suppose IID $X_1, X_2,, X_n$, and $n \ge 30$, then $\bar{X} \sim N(\mu, \sigma^2/n)$		

Confidence Interval				
Point Estimate	Single best guess number for population parameter			
	Sample proportion: \hat{p} , Sample mean: $ar{X}$			
Interval	An interval of numbers within which the parameter value			
Estimate	is believed to fall			
Estimates	$\bar{X} \approx \mu$	$s^2 \approx \sigma^2$	$s \approx \sigma$	$X_{(0.5)} \approx q_{0.5}$
General Form	noint estimate + margin of err			
of CI	Where margin of error measure how accurate the point			
OI CI	estimate is lik	ely to be in esti	mating a par	ameter

CI level α	$\hat{p} \pm q_{1-\alpha/2} imes \sigma$ or $\bar{X} \pm t_{n-1,1-\alpha/2} imes rac{s}{\sqrt{n}}$
Interpret CI	$(1-lpha) imes 100\%$ confident that $\hat{p}/ar{X}$ falls in CI level $lpha$
CI Width	$2 imes q_{1-lpha/2} imes \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$ or $2 imes t_{n-1,1-lpha/2} imes rac{s}{\sqrt{n}}$

Hypothesis Test			
A statement about a population, usually claiming th			
Hypothesis	parameter takes a particular numerical value or falls in a		
Definition	certain range of values.		
Significance	Denoted as α		
Level	A number such that we reject H_0 when p -value $\leq \alpha$		
	Check Assumptions:		
Step 1	Random sample data, Normal Distribution		
	Stop if assumptions not fulfilled		
	Null Hypothesis: parameter takes a value ie H_0 : $v = v_0$		
Step 2	Alternative Hypothesis: parameter falls in some other		
	range of values ie $H_1: v \neq v_0 / v < v_0 / v > v_0$		
C+ 0	Test statistic: score of the sample against H_0		
Step 3	Null Distribution: Distribution of test statistic under H_0		
a	p-value: probability of sample against null distribution		
Step 4	Small p-value is strong evidence against H_0		
Step 5	If p -value $\leq \alpha$, reject H_0 , otherwise, do not reject H_0		
Type I Error	Reject H_0 when it is true AKA false positive		
Type II Error	Do not reject H_0 when it is false AKA false negative		
Test Power	$1 - \beta$, where β is the probability of Type II Error		
Independence &			
Independent	Observations in one sample implies nothing in another		
Sample	sample		
Dependent	Two groups/samples comprise the same set of		
Sample	subject/individuals, hence related samples		
	mples, Equal Variance (Two sample <i>t</i> -test)		
пиоропион си	Quantitative response variable for both groups		
	Two samples are independent		
Assumptions	Population distribution of each group is approximately		
7.000	normal, especially for $n \le 30$		
	Both population variances are the same		
	Null Hypothesis: Two samples are from two populations		
	with the same variance ie H_0 : $\mu_x - \mu_y = 0$		
Variance Test	Alternative Hypothesis:		
	ie $H_1: \mu_x - \mu_y \neq 0/\mu_x - \mu_y < 0/\mu_x - \mu_y > 0$		
	Let $X \sim N(\bar{X}, s_X^2)$ of size $n_1, Y \sim N(\bar{Y}, s_Y^2)$ of size n_Y		
Supposition	Since both population equal variance, let σ^2 be that		
Pooled $(n_V - 1)s_V^2 + (n_V - 1)s_V^2$			
Variance	Since both population equal variance, let σ^2 be that. $\sigma^2 = s_p^2 = \frac{(n_x - 1)s_x^2 + (n_Y - 1)s_Y^2}{n_x + n_Y - 2}$ $T = \frac{(\bar{X} - \bar{Y}) - 0}{se} \text{ where } se = s_p \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}$		
variance	$n_X + n_Y - 2$		
Test Statistic	$T = (\bar{X} - \bar{Y}) - 0$ where $\alpha = 0$ 1 1		
	$r = \frac{1}{se}$ where $se = s_p / \frac{1}{n_x} + \frac{1}{n_y}$		
	Under H_0 , T follows t -distribution $df = (n_X + n_Y - 1)$		
	$H_1: \mu_x - \mu_y \neq 0$, Two tail probability from $t_{n_x + n_y - 2}$		
p-value	H_1 : $\mu_x - \mu_y > 0$, Right area of T from $t_{n_X + n_Y - 2}$		
7	$H_1: \mu_x - \mu_y > 0$, High talea of T from $t_{n_X+n_Y-2}$ $H_1: \mu_x - \mu_y < 0$, Left area of T from $t_{n_X+n_Y-2}$		
	$\mu_1 \cdot \mu_X = \mu_Y = 0$, Left alea of 7 from $\nu_{n_X + n_Y - 2}$		

Conclusion	Interpret p-value		
Independent Sa	Independent Samples, Unequal Variance (Welch Test)		
Assumptions	Same as Independent Samples, Equal Variance, except test of equal variance is significant ie reject H_0 : $\mu_x - \mu_y = 0$		
Test Statistic	$T = \frac{(\bar{X} - \bar{Y}) - 0}{se} \text{ where } se = s_p \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}$ Under H_0 , T follows t -distribution df		
df Calculation	$df = \frac{\left(\frac{S_X^2}{n_X} + \frac{S_Y^2}{n_Y}\right)^2}{\left(\frac{S_X^2}{n_X}\right)^2 + \left(\frac{S_Y^2}{n_Y}\right)^2}$ $df = \frac{\left(\frac{(n_X - 1)(n_Y - 1)}{n_X - 1} + \frac{S_X^2}{n_Y} + \frac{S_Y^2}{n_Y}\right)}{\left(\frac{S_X^2}{n_X - 1} + \frac{S_X^2}{n_Y} + \frac{S_X^2}{n_Y}\right)}, c_Y = 1 - c_X$		
Dependent Samples (Dependent t-test for paired samples)			
Premise	Every observation in a sample has a matched value in		
	other sample, hence we compare the mean of		
1 IGIIIISC	differences of matched observations with 0, then we		
	use one sample <i>t</i> -test		

Lineau Dadonasia		
Linear Regressio		
Regression	A regression of response Y on the regressor X	
	Mathematical relationship between the mean of Y and	
	different values of X.	
Linear	$Y = \beta_0 + \beta_1 X + \epsilon$, ϵ is a random variable with variance	
Regression	σ^2 , β_0 is Y-intercept, β_1 is slope of line	
Negression	$Y \sim N(\beta_0 + \beta_1 X, \sigma^2)$, where σ^2 is constant	
Indicator Terms	$I(X = value) = \begin{cases} 1, & X = value \\ 0, & X \neq value \end{cases}$	
Interaction	If $Cor(X_1, X_2)$ is high or X_1 and X_2 are associated, we	
Terms	can have interaction term $(X_1 * X_2)$ as a regressor	
"Linear"	Linearity in the parameters	
OLS Estimation	Ordinary Least Square Estimation	
OLS ESUMATION	Minimises sum of squared residuals, e_i 's: $e_i = Y_i - \widehat{Y}_i$	
t test	Test significance of one regressor (or one coefficient)	
F test	Test significance of the whole model	
t-test for β		
Step 1	Check assumptions	
	H_0 : $\beta = 0$ or H_0 :regressor X is no significant	
Step 2	H_1 : $\beta \neq 0$ or H_1 :regressor X is significant	
	*One-sided tests are also possible	
Step 3	$t = \hat{\beta}/SE(\hat{\beta})$, null distribution of t is t_{n-2}	
Step 4	Derive p-value found from R output	
Step 5	Conclude whether the slope β is significantly different	
	from 0 at a pre-specified α-level	
F-tests in a Linea	r Model	
	H_0 : all the coefficients, except intercept, are zero	
Hypothesises	H_1 : at least one of the coefficients, except intercept,	
	are nonzero	

Fixes	Linear assumption violated: Transform Regressor	
rixes	Variance not constant: Transform Target	
Standardized Residual	$SR = \frac{Y - \hat{Y}}{SE(Y - \hat{Y})}$	
Checks for Linea	r Model Assumptions	
Assumptions of LRM $Y \sim X$	Random Data Relationship between X and Y is linear Error term $\epsilon \sim N(0, \sigma^2)$, homoscedasticity = constant σ	
Constant σ ²	Histogram and QQ plot of SR are normal	
Normality	Plot of SR against \hat{Y} and SR versus X: points scatter randomly about 0, within the interval (-3, 3)	
Outlier	Outlier Points: $ SR > 3$	
Influential	Influential Points: cook. distance > 1	
Linear Model Inte	erpretations	
Coefficient of determination \mathbb{R}^2	Proportion of total variation of the response that is explained by the model, falls between 0 and 1. Bigger R^2 means better goodness of fit of the model, however, more variables will increase R^2	
Adjusted R^2 R^2_{adj}	$R^2 \qquad \qquad R_{adj}^2 = 1 - \frac{(1-R^2)(n-1)}{n-k-1}$ Where k is the number of regressors in the model	
$Cor(X,Y)\&R^2$	$\sqrt{R^2} = Cor(X, Y) $	

Tables		
Frequency Tables		
Data Types	Column: Categorical Data	
	Entries: Quantitative	
Summary (To	Modal Category	
Include)	Relative Frequency	
Contingency Table		
Data Types	Column / Row: Categorical	
	Entries: Quantitative	
Summary	Modal Category	
(To Include)	Relative Frequency	

Plots			
Bar Plots	Bar Plots		
Description	Display vertical bars for each category, with height		
	proportional to their frequencies.		
Data Types	X-axis: Categorical		
	Y-axis: Continuous Quantitative		
Summary (To include)	+ Frequency Tables Summary		
	Mention groups of high/low proportions		
	Any trends with ordinal categories.		
Clustered / Stacked for comparing 2 categorical variables.			
Histogram			
Description	Uses bars to portray frequencies of possible outcomes		
	(equal range) of a quantitative variable.		
Data Types	X-axis: Quantitative → Ordinal Categorical		
	Y-axis: Continuous Quantitative		
Summary	Clusters, Gaps, Deviations, Suspected Outliers		

	I	
(To include)	Mounds: Unimodal, Bimodal, Multimodal	
	Skew: Symmetric, Left-Skew, Right-Skew	
Remarks (Skews)	Longer = Thicker = Heavier	
	Shorter = Thinner = Lighter	
(SKEWS)	Histogram is skewed towards the longer tail.	
Boxplot		
Description	Visual Representation of Five-Numbers Summary	
D-4- T	X-axis: Categorical	
Data Types	Y-axis: Quantitative	
	Box: Lower Bound, Line, Upper Bound: Q_1, Q_2, Q_3	
Summary	Whiskers: Lower Whisker, Upper Whisker: $Q_1 - 1.5 \times$	
(To include)	sd , $Q_3 + 1.5 \times sd$	
	Outliers: Points beyond the whiskers	
5 1	Useful for identifying potential outliers	
Remarks	Indicator of skewness if unimodal	
Scatterplot		
Description	Comparison of 2 quantitative variables.	
Data Types	X-axis & Y-axis: Quantitative	
Summary (To include)	Correlation: $r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{Y_i - \bar{Y}}{s_Y} \right)$	
Remarks	Useful for identifying potential outliers	
Remarks	Indicator of skewness if unimodal	
QQ-plot		
Description	To check normality by plotting standardized sample	
Description	quantiles against theoretical quantiles of a $N(0,1)$	
Data Types	X-axis & Y-axis: Quantitative	
Summary (To	Tail above/below Line: Shorter/Longer than Normal	
Include)	Normality	
	If the points follow a straight line, there is evidence that	
Remarks	the data came from a normal distribution	

Useful R Codes		
	read.csv	, show_col_types=, sep=, header=
lman aut D-t-		, row.names=, check.rows=,
Import Data	data.frame	check.names=, fix.empty.names=,
		stringAsFactors=
	length	, <- value
	ifelse	test, yes, no
	names	, <- value
	rownames	, do.NULL=, prefix=, <- value
	columnnames	, do.NULL=, prefix=, <- value
	df[x,y]/df\$x	Filter list(names)/number, can -
Data Write/	df\$out	Get outliers
Data	df\$group	Get outliers in each group
Read	df\$names	Get names
	which	pred(df)
	cor	Get correlation
	COI	object, maxsum=, digits=,
	summary	
	annly.	quantile.type=,=
	apply	X, margin, FUN,, simplify=
	toblo	, exclude=, useNA=, dnn=,
Tables	table	deparse.level=, x=, row.names=,
	nron toblo	responseName=
	prop.table	, margin=
	plot	, type=p/l/b/c/o/h/s/S/n, main=, sub=,
		xlab=, ylab=, asp=, col=, legend.text=
	bornlot	beside=, legend.text=, density=, col=,
	barplot	main=, xlab=, ylab=, xlim=, ylim=, xpd=,
		formula=, data=, subset=, na.action=
	pie	, labels=, clockwise=, init.angle=,
		angle=, col=, main=
Dista		, breaks=, freq=, probability=, include.lowest=, right=, col=, main=,
Plots	hist	
		xlab=, ylab=, xlim=, ylim=, axes=, labels=
	boxplot.stats	x, coef=, do.conf=, do.out=
	υσχρισι.διαίδ	x, data=, subset, xlab=, ylab=, ann=,
	boxplot	col=
	abline	a=, b=, h=, v=, reg=, coef=, untf=
		, ylim=,
	qqnorm	, datax=, distribution=
	rbinom	n, prob, size=
	dbinom	+ * * * * * * * * * * * * * * * * * * *
Evaluate Distribution		x, prob, size=, log=
	pbinom	q, prob, size=, lower.tail=, log.p=
	qbinom	p, prob, size, lower.tail=, log.p=
	rpois	n, lambda
	dpois	x, lambda, log=
	ppois ·	q, lambda, lower.tail=, log.p=
	qpois	p, lambda, lower.tail=, log.p=
	rnorm	n, mean=, sd=
	dnorm	x, mean=, sd=, log=
	pnorm	q, mean=, sd=, lower.tail=, log.p=

	qnorm	p, mean=, sd=, lower.tail=, log.p=
	sample	x, size, replace=, prob=
	replicate	n, expr
Tests	t.test	x, y=, alternative=, mu=, paired=, var.equal=, conf.level=
	var.test	x, y, ratio=, alternative=, conf.level=
LRM	lm	Formula, data, subset=, weights=,
		na.action=, method=, x=, y=, qr=,
	summary.lm	
	predict.lm	
	lm\$res	Get list of residuals
	rstandard	
	cook.distance	
	predict	, newdata=, na.action=