1 裂项技巧

$$\frac{dx^2 + ex + f}{(x-a)(x-b)(x-c)} \, \mathbb{E}_{x \to a} \, + k = \lim_{x \to a} \frac{dx^2 + ex + f}{(x-b)(x-c)}$$
本质是等价无穷大

2 特殊级数求导结果

$$B_0 \frac{1}{1-x}$$
 $B_1 (\frac{x}{1-x})'$ $B_2 (\frac{x^2}{1-x})''$... $B_k (\frac{x^m}{1-x})^{(k)}$ $g(x) \int g(x) dx \int g(x) dx \int g(x) dx \int g(x) dx \int g(x) dx$ 交叉相乘 $g(x) \int g(x) dx \int g(x) dx$

其中 $0 \le m \le k$

$$abla : \frac{d^4}{d x^4} \left(\frac{x^4}{1-x} \right) = \frac{24}{\left(1-x\right)^5}, \quad \frac{d^4}{d x^4} \left(\frac{x^3}{1-x} \right) = \frac{24}{\left(1-x\right)^5}$$

$$B_0 \frac{1}{1+x}$$
 $B_1(\frac{x}{1+x})'$ $B_2(\frac{x^2}{1+x})''$... $B_k(\frac{x^m}{1+x})^{(k)}$

$$B_0 \frac{0!}{(1+x)^1}$$
 $B_1 \frac{1!}{(1+x)^2}$ $B_2 \frac{2!}{(1+x)^3}$... $B_k \frac{(-1)^{m+k} k!}{(1+x)^{k+1}}$

其中 $0 \le m \le k$

3 泰勒展开求 n 阶导系数

x = 0处:

$$f^{(n)}(0) \to f(x) = \sum_{k=0}^{\infty} a_k x^k$$
 $f^{(n)}(0) = n! a_n$

$x = x_0$ 处:

$$f^{(n)}(x_0) \to f(x) = \sum_{k=0}^{\infty} b_k (x - x_0)^k$$
 $f^{(n)}(x_0) = n!b_n$

4 数学归纳法

4.1 方法一

验证 n=1 时命题正确;假设 n=k 时命题成立;验证 n=k+1 时命题正确

4.2 方法二

验证 n=1 时命题正确,假设 n < k 时命题正确,证明 n=k 时命题正确

5 表格法计算多项式原函数展开