Unified Socio-Mythic Calculus (USMC) Specification

1 Universe and State

Definition 1 (Nodes, types, qualities, energies). Let $\Omega = \{N_i\}$ be a finite set of nodes with

$$N_i = (\text{Name}_i, T_i, Q_i, E_i),$$

where T_i tags domain (e.g. mythic character/place/idea or social object/config), $Q_i \in \{-1, +1\}$ encodes wound/gift or stress/content polarity, and $E_i \in \mathbb{R}$ encodes magnitude or salience.

Definition 2 (Story/experience graph with suspended set). At discrete time t, define

$$G_t = (\Omega, E_t, S_t),$$

where $E_t \subseteq \Omega \times \Omega$ are active bonds (edges), and $S_t \subseteq \Omega \times \Omega$ are suspended ties captured by the naught operator $(\widehat{0})$. Apairmay be active, suspended, or absent.

2 Primitive Operators

Definition 3 (Pointwise operators on pairs (i, j)). For each ordered pair (i, j), define

$$\hat{A}_{ij} \in \{\widehat{+}, \ \widehat{-}, \ \widehat{0}\}:$$

- Connect $\widehat{+}_{ij}$: add (i,j) to E_t ; remove from S_t .
- $Disconnect \widehat{-}_{ij}$: remove (i, j) from both E_t and S_t .
- Naught $\widehat{0}_{ij}$: move (i,j) to S_t (deliberate non-action that preserves potential).

3 Composite Transform as Guarded Naught

Definition 4 (Motif and boundary). Let $M \subseteq G_t$ be a motif (subgraph). Let ∂M denote the set of pairs on the boundary of M relevant for suspension.

Definition 5 (Guarded transform). Define the transform operator on motif M by

$$\hat{\tau}_M := \prod_{\substack{(i,j) \in \partial M \\ create \ conserved \ gap}} \widehat{0}_{ij} \quad \circ \quad \underbrace{\mathsf{Wait} \big[\, g_M(G) \, \big]}_{\textit{fire at threshold}} \quad \circ \quad \underbrace{\mathsf{Rewire}_M}_{\textit{relabeled nodes/edges}}.$$

Here, the guard function $g_M(G)$ encodes a phase threshold; when satisfied, Rewire_M may add/remove edges and relabel qualities/energies within M.

4 Effects, Value, and Objective

Definition 6 (Pair effect and totals). For any prospective or active pair (i, j), define pair effect

$$\Phi_{ij} = (Q_i E_i) + (Q_j E_j).$$

Define total realized effect

$$\Phi_{\text{total}}(G_t) = \sum_{e_{ij} \in E_t} \Phi_{ij}.$$

Definition 7 (Order and Freewill). Let

$$O(G_t) = \Phi_{\text{total}}(G_t) - \lambda \cdot \text{Complexity}(G_t), \qquad F(G_t) = \sum_{e_{ij} \notin E_t} |\Phi_{ij}|.$$

Optionally decompose $F = F_{\text{susp}} + F_{\text{abs}}$ with F_{susp} summing pairs in S_t .

Definition 8 (Target objective (singularity)). With weights $\alpha, \beta > 0$, define

$$G^* = \arg \max_{G_t} \left[\alpha O(G_t) + \beta F(G_t) \right].$$

5 Threshold Guards

Two families of guards are common; either can be used alone or in concert.

- Counting/structure guard (mythic): fire when an event count or structural criterion reaches a narrative threshold $k = T_n$.
- Value/ratio guard (social): fire when a criterion indicates readiness or safety, e.g. a tension—content ratio crossing an ε -band, or a prescribed gain condition $\Delta O \geq 0$.

6 Dynamics and Policy

Definition 9 (Step dynamics). At each step,

$$G_{t+1} = \hat{A} G_t, \qquad \hat{A} \in \{\hat{+}, \ \hat{-}, \ \hat{0}, \ \hat{\tau}\}.$$

A policy selects \hat{A} to ascend the objective $\alpha O + \beta F$, while any use of $\hat{\tau}$ must satisfy its guard.

Definition 10 (Operator statistics). Track operator rates r_+, r_-, r_0, r_τ and guard triggers to localize phase changes in the process.

7 Minimal Worked Example

Consider nodes

$$N_h = (\text{Hero, Char}, +1, E_h), \quad N_s = (\text{Sword, Artifact}, -1, E_s),$$

and motif $M = \{h, s\}$.

- (1) Naught. Apply $\widehat{0}_{hs}$: move pair (h,s) to S_t (tension held, potential conserved).
- (2) Guard. After thresholds/ratios satisfy $g_M(G)$, the transform may fire.
- (3) Transform. Apply $\hat{\tau}_M$ with relabeling $Q_s: -1 \to +1$ and bond $\hat{+}_{hs}$. The change in pair effect is

$$\Delta \Phi = [(+1 \cdot E_h) + (+1 \cdot E_s)] - [(+1 \cdot E_h) + (-1 \cdot E_s)] = 2E_s.$$

Thus O increases (modulo the complexity term), and F decreases for that pair as potential becomes realized.

8 Assumptions and Notes

- $Q \in \{-1, +1\}$ is a coarse polarity; refinements (e.g. continuous valence or multi-axes qualities) are admissible with minor algebraic changes.
- Complexity (G) penalizes gratuitous structure; any monotone measure (e.g. description length or sparsity loss) can be used.
- Guards can be domain-tuned (ritual time windows, consensus thresholds, safety checks) without altering the operator algebra.

Appendix A: Symbol \leftrightarrow Term Map

Symbol	Interpretation
$\overline{\Omega}$	Entities (mythic roles, social objects)
E_t	Active bonds / realized ties
S_t	Suspended ties via naught (held potential)
Q_i	Polarity: wound/gift or stress/content
E_i	Salience/strength/charge
$\widehat{+}, \widehat{-}, \widehat{0}$	Connect, Disconnect, Naught
$\hat{ au}$	Guarded transform (naught \rightarrow threshold \rightarrow rewire)
Φ_{ij}	Pair effect contribution
O,F	Order (realized, minus complexity) and Freewill (unrealized potential)
$g_M(G)$	Threshold function (counting/structure or value/ratio)
G^*	Target configuration maximizing $\alpha O + \beta F$

Appendix B: Operator Table

Op	Name	Precondition	Effect on (E_t, S_t)
$\widehat{+}_{ij}$	Connect Disconnect	pair (i, j) exists	$(i,j): S_t \setminus \{(i,j)\}, \ E_t \cup \{(i,j)\}$
$\hat{-}_{ij}$	Disconnect	pair (i,j) exists	$(i,j): E_t \setminus \{(i,j)\}, \ S_t \setminus \{(i,j)\}$
$\widehat{0}_{ij}$	Naught (Suspend)	pair (i, j) exists	$(i,j): E_t \setminus \{(i,j)\}, \ S_t \cup \{(i,j)\}$
$\hat{ au}_M$	Transform (Guarded)	$g_M(G)$ true	Rewire edges/labels within M