# 跨容器多子网问题

# 背景介绍

在部署NS3大规模网络时,可能会遇到跨容器多子网问题,即每个容器中包含多个子网,且多个容器相连接,共同构建起一个大规模网络。

若按照传统设置,则会遇到不同容器间子网无法通信的问题,为解决这一问题,本文档提出以下解决方案。经测试,能够实现NS3大规模网络中的跨容器多子网通信。

# 解决方案

注: 部分内容被隐去, 重要思路均保留。

# Step 1

用 Dummy Node 来做 TapBridge



### 从 10.1.1.10 ping

| 目的 IP     | 是否 ping 通 |
|-----------|-----------|
| 10.1.2.1  | 通         |
| 10.1.10.2 | 通         |
| 10.1.10.1 | 不通        |

| 目的 IP      | 是否 ping 通 |
|------------|-----------|
| 10.1.10.10 | 不通        |

**分析**: ping 10.1.10.1 的包能到 10.1.2.1 这个端口,但不到 10.1.10.2 这个端口。

尝试:尝试注释掉静态路由

结果: 注释静态路由不改变 ping 结果

但 ping 10.1.10.10 时,能收到网桥对 ARP 的回答(该 ARP 包在 10.1.10.2 可见,但在 10.1.2.1 不可见)

| 00:00:00_00:00:0a | Broadcast         | ARP                                                          | 64 Who has 10.1.10.1? Tell 10.1.10.2                                    |
|-------------------|-------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|
| 00:00:00_00:00:0a | Broadcast         | ARP                                                          | 64 Who has 10.1.10.10? Tell 10.1.10.2                                   |
| 36:19:4d:11:a7:d1 | 00:00:00_00:00:0a | ARP                                                          | 64 10.1.10.10 is at 36:19:4d:11:a7:d1                                   |
| 10.1.1.10         | 10.1.10.10        | ICMP                                                         | 102 Echo (ping) request id=0x0018, seq=1/256, ttl=61 (no respon         |
|                   |                   |                                                              |                                                                         |
|                   |                   |                                                              |                                                                         |
|                   | 36:19:4d:11:a7:d1 | 00:00:00_00:00:0a Broadcast 36:19:4d:11:a7:d1 00:00:00:00:0a | 00:00:00_00:00:0a Broadcast ARP<br>36:19:4d:11:a7:d1 00:00:00:00:0a ARP |

```
1: br_test: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DO
N group default qlen 1000
link/ether 36:19:4d:11:a7:d1 brd ff:ff:ff:ff
inet 10.1.10.10/24 scope global br_test
```

从网桥 ping 10.1.10.2 能通,但 ping 10.1.10.1 和 10.1.2.1 都不通

**分析**: 10.1.10.1 是因为它是 ghost node 没有协议栈, 10.1.2.1 是因为它不同子网, bridge 的 ARP 找不到它, 所以不会发包?

给网桥添加路由试试:

```
sudo ip route add 10.1.1.0/24 via 10.1.10.2 dev br_test
sudo ip route add 10.1.2.0/24 via 10.1.10.2 dev br_test
sudo ip route add 10.1.3.0/24 via 10.1.10.2 dev br_test
```

**结果**:现在从 ns3\_left 可以 ping 通网桥,且从网桥可以 ping 通 ns3\_test\_left 的任意内部节点

继续往右侧配置尝试

### Step 2

左侧到网桥已通,完善右侧配置



**结果**:从 ns3\_right ping 10.1.5.1、10.1.10.4 通; ping 10.1.10.3、10.1.10.10 不通。从网桥 ping 10.1.5.1 也不通

#### 同样给网桥添加路由

```
sudo ip route add 10.1.5.0/24 via 10.1.10.4 dev br_test
sudo ip route add 10.1.6.0/24 via 10.1.10.4 dev br_test
sudo ip route add 10.1.7.0/24 via 10.1.10.4 dev br_test
```

**结果**:现在从 ns3\_right 可以 ping 通网桥,且从网桥可以 ping 通 ns3\_test\_right 的任意内部节点

## Step 3

现在从两侧容器到网桥均可通,但两侧容器尚不互通

尝试:给 rootnodes.Get(0)添加路由信息

10.1.5.0/24->10.1.10.4 interface2

**结果**:不通

分析: 抓包发现, 在 10.1.5.2 能看到 reply 包。可能还是因为不知道怎么回

去

尝试:对称调整右侧路由

结果:

从左侧容器 ping

| 目的 IP     | 是否 ping 通 |
|-----------|-----------|
| 10.1.5.1  | 通         |
| 10.1.10.4 | 通         |
| 10.1.5.2  | 不通        |

尝试: 给 10.1.5.2 添加路由

10.1.1.0/24->10.1.5.1 interface1

结果: 从左侧容器可以 ping 通 10.1.5.2

结论: 进一步完善路由应该有效

# Step 4

进一步完善路由后,从左侧容器 ping

| 目的 IP     | 是否 ping 通 |
|-----------|-----------|
| 10.1.6.3  | 通         |
| 10.1.6.2  | 不通        |
| 10.1.6.10 | 通         |

### 从右侧容器 ping

| 目的 IP     | 是否 ping 通 |
|-----------|-----------|
| 10.1.1.10 | 通         |
| 10.1.1.2  | 不通        |
| 10.1.1.5  | 通         |
| 10.1.2.3  | 通         |
| 10.1.2.2  | 不通        |

尝试: 给 10.1.6.2 添加路由 test

### 10.1.1.0/24->10.1.6.3 interface1

结果: 现在从左侧容器可以 ping 通 10.1.6.2

推测: 节点好像都需要特别配置路由才能 ping 通

**尝试**:给 10.1.7.1 添加路由

**结果**:能够 ping 通 10.1.7.1