Data Mining

John Samuel CPE Lyon

Year: 2019-2020

Email: john(dot)samuel(at)cpe(dot)fr

Data Mining

Goals

- Lifecycle of data
- Data acquistion and storage
- Data extraction and integration
- Pre-treatment of data
- Data transformation
- ETL
- Data analysis
- Data visualisation

Lifecycle of Data

- 1. Data
- 2. Knowledge
- 3. Insights
- 4. Actions

Data Lifecycle

1.1. From Data to Knowledge

- 1. Data acquisition
- 2. Data Extraction
- 3. Data Cleaning
- 4. Data Transformation
- 5. Data analysis modeling
- 6. Data Storage
- 7. Analysis
- 8. Visualisation

Major steps of data analysis

1.1.1. Data Acquistion

1.1.2. ETL (Extraction Transformation and Loading)

- 1. Data Extraction
- 2. Data Cleaning
- 3. Data Transformation
- 4. Loading data to information stores

1.1.3. Data Analysis

1.1.3. Data analysis

1.1.4. Data Visualization

1.1.4. Data Visualization

2.1. Data acquisition

- 1. Surveys
 - Manual surveys
 - Online surveys
- 3. Sensors¹
 - o Temperature, pressure, humidity, rainfall
 - Acoustic, navigation
 - o Proximity, presence sensors
- 4. Social networks
- 5. Video surveillance cameras
- 6. Web
- 1. https://en.wikipedia.org/wiki/List of sensors

2.2. Data storage formats

- Binary and Textual Files
- CSV/TSV
- XML
- JSON
- Media (Images/Audio/Video)

2.2 Types of data stores

- 1. Structured data stores
 - Relational databases
 - Object-oriented databases
- 2. Unstructured data stores
 - Filesystems
 - Content-management systems
 - Document collections
- 3. Semi-structured data stores
 - Filesystems
 - NoSQL data stores

Paris is the capital of France. In 2015, its population was recorded as 2,206,488

Unstructured vs. Structured vs. Semi-structured

2.3.1. ACID Transactions¹

- Atomicity: Each transaction must be "all or nothing".
- Consistency: Any transaction must bring database from one valid state to another.
- **Isolation**: Both concurrent execution and sequential execution of transactions must bring the database to same state.
- **Durability**: Irrespective of power losses, crashes, a transaction once committed to the database must remain in that state.

1. https://en.wikipedia.org/wiki/ACID

2.3.1. ACID Transactions

- Ensure validity of databases even in case of errors, power failures
- Important in banking sector

2.3.2. Types of data stores

- Relational databases
- Object-oriented databases
- NoSQL (Not only SQL) data stores
- NewSQL

2.3.3. NoSQL

- Comprises consistency
- Focus on availability and speed

2.3.3. Types of NoSQL stores

- Column-oriented database
- Document-oriented database
- Key-value database
- Graph-oriented database

3.1. Data extraction techniques

- Data dumps
 - Downloading complete data dumps
 - Downloading selective data dumps
- Periodical polling of data feeds (e.g., blogs, news feeds)
- Data streams
 - Subscrbing to data streams (push notifications)

3.2. Query interfaces

- Query endpoints supporting declarative languages
 - ∘ SQL
 - SPARQL
- Automated Manual search (and filter) options

3.3. Crawlers for web pages

Web crawlers: navigating the entire using hyperlinks

3.4. Application Programming Interface (API)

- Web operations (CRUD) to manipulate externally managed resources
- Requires programmers to develop wrappers for web service integration

API (Inte

4.1 Data Cleaning: Types of Errors

- Syntactical errors
- Semantical errors
- Data coverage errors

4.1.1. Syntactical errors

- Lexical errors (e.g., user entered a string instead of a number)
- Data format errors (e.g, order of last name, first name)
- Irregular data errors (e.g., usage of different metrics)

4.1.2. Semantic errors

- Violation of integrity constraints
- Contradiction
- Duplication
- Invalid data (unable to detect despite presence of triggers and integrity constraints)

4.1.3. Coverage errors

- Missing values
- Missing data

4.2.1. Handling Syntactical errors

- Validation using schema (e.g., XSD, JSONP)
- Data transformation

4.2.2. Handling Semantic errors

• Duplicate elimination using techniques like specifying integrity constraints like functional dependencies

4.2.3. Handling Coverage errors

- Interpolation techniques
- External data sources

4.2.4. Administrators and handling errors

- User feedback
- Alerts and triggers

5. Data Transformation

5.1 Languages

- Template languages
- XSLT
- AWK
- Sed
- Programming languages like PERL

6.1. ETL (Extraction Transformation and Loading)

- 1. Data Extraction
- 2. Data Cleaning
- 3. Data Transformation
- 4. Loading data to information stores

6.2.1. Models for data analysis

- Multidimensional data analysis
 - Dimensions
 - Attributes
 - Levels
 - Hierarchies
 - Facts
 - Measures

6.2.1. Models for data analysis

- Multidimensional data analysis: Examples
 - Dimensions (e.g.Spatio-temporal dimensions, Product)
 - Attributes (e.g. Name, Manufactures etc.)
 - Levels (e.g., Day, Month, Quarter, Store, City, Country etc.)
 - Hierarchies (e.g., Day-Month-Quarter-Year, Store-City-Country etc.)
 - Facts
 - Measures (e.g., Number of products sold/unsold)

6.2.3. Star Schema

6.2.3. Data Cubes

- Data cubes for online analytical processing (OLAP)
- OLAP Cube operations
 - Slice
 - o Dice
 - o Drill up/down
 - Pivot

6.2.4. Snow Schema

6.2. ETL: From one data store to another

- From: Data sources
 - Internal or external databases
 - Web Services
- To: Data warehouses
 - Enterprise warehouses
 - Web warehouses

7. Data Analysis

Activities of data analysis

- 1. Retrieving values
- 2. Filter
- 3. Compute derived values
- 4. Find extremum
- 5. Sort
- 6. Determine range
- 7. Characterize distribution
- 8. Find analysis
- 9. Cluster
- 10. Correlate
- 11. Contextualization
- 1. https://en.wikipedia.org/wiki/Data_analysis

8.1. Data Visualization

- 1. Time-series
- 2. Ranking
- 3. Part-to-whole
- 4. Deviation
- 5. Sort
- 6. Frequency distribution
- 7. Correlation
- 8. Nominal comparison
- 9. Geographic or geospatial
- 1. https://en.wikipedia.org/wiki/Data_visualization

8.2. Data Visualization: Examples

- 1. Bar-chart (Nominal comparison)
- 2. Pie-chart (part-to-whole)
- 3. Histograms (frequency-distribution)
- 4. Scatter-plot (correlation)
- 5. Network
- 6. Line-chart (time-series)
- 7. Treemap
- 8. Gantt chart
- 9. Heatmap

Pie Chart

Programming Language Paradigms (Bubble Chart)

Timeline of Programming Languages (using Histropedia)

Influence Graph of Programming Languages

k Predominant colours

RGB Scatter plots (Comparison)

References

Colors

• Color Tool - Material Design

Images

• Wikimedia Commons