Analyse et Conception des Systèmes

Introduction

Processus de développement logiciel

Développement en cascade

Développement itératif

Livraison finale

Développement itératif

Modèle de développement en cascade

Processus unifié

Les activités du projet

Elles sont identiques quelque soit le modèle:

Cascade, incrémental....

Analyse et Conception

Objectifs de l'analyse :

- Étude du métier du client
- Étude des besoins des utilisateurs
- Reformulation du cahier des charges sous une forme exploitable en conception

Objectifs de la conception :

- Définition de l'architecture logicielle
- Définition du comportement de l'application

Analyse et Conception

Analyse:

Processus consistant à se familiariser avec le domaine dans lequel le système sera intégré: Contexte, Utilisateurs, Contraintes, Coûts, performance, etc.

Conception:

Processus par lequel diverses techniques et principes sont appliqués dans le but de définir un système avec un niveau de détail suffisant pour permettre sa réalisation physique.

Activités du projet

Les activités du projet

Les activités du projet

- ETUDE PRÉALABLE : ANALYSE DU CONTEXTE
- ANALYSE ET SPÉCIFICATION DES BESOINS Fonctionnalités du système d'information
- ANALYSE DU PROBLÈME OU MÉTIER OU SYSTÈME
 - Étude de <u>la logique</u> du système informatique (= Indépendamment des technologies)
 - Modélisation <u>métier</u> (vue logique)
- CONCEPTION DE LA SOLUTION
 - Décisions technologiques
 - Affinement de la vue logique
 - Implémentation (Algorithmes, diagramme de composants)
 - Déploiement (Diagramme de déploiement)

Analyse

Etude préalable

On souhaite construire un système informatique pour répondre à un besoin

- Qui a ce besoin?
- Quel est ce besoin (à un niveau stratégique)?
- Est-il justifié?
- Activités principales du contexte étudié
- Bilan gains-coûts estimés

On modélise <u>le périmètre</u> du projet et son <u>contexte</u> : <u>Analyse du contexte</u>

Analyse des besoins

Exprimer les fonctionnalités demandées (selon la vision du client)

+

autres besoins non fonctionnels BNF (performance, sécurité, flexibilité...)

Analyse du problème ou métier ou système

Analyse du problème

Conception de la solution

- Prendre en compte la technologie
- Conception structurelle et dynamique.

Ne jamais concevoir avant d'analyser

Conception de la solution

Conception architecturale

Modéliser l'architecture technique ou physique (structurer le logiciel) La visibilité entre les paquetages est limitée.

Conception de la solution

Conception détaillée

Que fait le système informatique?

- Comportement des objets
- Demandes de service

Activités du projet: Modélisation

- Toutes ces activités du projet ont une part de modélisation.
- <u>- La modélisation</u> est au centre de la démarche d'Analyse et de Conception.
- La modélisation intervient tout au long du processus de développement, comme un outil de description et de communication entre les acteurs.

La notion de modèle

- Un <u>modèle</u> est une représentation abstraite et non-ambiguë de la réalité dans <u>un langage donné</u>.
- Une maquette, un plan, une photo, un organigramme sont des modèles.
- Les modèles servent à :
 - <u>Communiquer</u> : vérifier que l'analyste <u>a bien compris</u> les besoins des utilisateurs grâce à des modèles du problème (modèles d'analyse),
 - <u>Préparer la réalisation</u> : grâce à des modèles de la solution (modèles de conception).

La modélisation

- □La modélisation d'une manière générale permet de faciliter la communication entre humains.
- □Un modèle est une abstraction de la réalité.
- ☐ Il doit faciliter la compréhension du phénomène ou système étudié: <u>il réduit la complexité</u>.
- □ Il doit permettre de simuler le phénomène ou système étudié: il reproduit ses comportements.

La modélisation

- La modélisation est finalement une activité de projection :
 - d'un sujet réel,
 - sur le plan d'un langage de modélisation,
 - selon un angle de considération résultant <u>de l'utilisation</u> <u>attendue du modèle</u>,
 - pour obtenir une vision abstraite, partielle et formalisée du sujet : le modèle.

Principe de la modélisation

Un modèle...

But? Lecteurs? Notation?

La réalité?

Autant de modèles que de buts, de lecteurs, de notations ... de modélisateurs.

Modèle pour touriste

Modèle pour technicien

même réalité

Historique: Approches de modélisation

Approche fonctionnelle (SADT)

- ▶ 1960 fin 1970
- l'important c'est les traitements
- Séparation nette des données et traitements

Approche systémique (Merise)

- (années 80)
- Approche conceptuelle globale du système
- Basée sur la recherche d'éléments pertinents du système: données, actions, évènements.

Emergence des méthodes objet

- ▶ 1980 début 1990 : premières génération
- Plus de 50 méthodes objets (dont OMT, OOSE)
- L'important c'est l'objet
- Objet = données + traitements
- Langage de modélisation orienté objet: UML

Approches de modélisation: Approche fonctionnelle

La fonction donne la forme du système

Approches de modélisation: Approche objet

- Les activités « orientées-objet » reposent, comme leur nom l'indique, sur le concept d'objet.
- Dans ce contexte, l'objet constitue la brique élémentaire à partir de laquelle ces activités se construisent. Dans une activité « orientée-objet », tout est objet.
- Un objet est donc une <u>entité identifiée</u> qui possède un <u>comportement propre</u> (des fonctions spécifiques) dépendant de son <u>état interne</u> et avec laquelle on peut <u>interagir</u> (échange de messages).

Approches de modélisation: Approche objet

Chaque module représente un objet du domaine de l'application.

Les objets sont des entités autonomes qui collaborent afin de réaliser un projet global

Approches de modélisation

La fonction est réalisée par des objets collaborants

Approche objet

- En fait, deux avantages prépondérants sont mis en général en avant lorsque l'on choisit une approche objet :
 - La modularité: Par construction, étant donné que l'on conçoit des classes.
 - La réutilisabilité
 - La maintenance de chaque classe est en soi plus simple à réaliser que celle d'un logiciel unique traitant toutes les données d'un système.
 - Il importe bien entendu dans l'approche objet de construire son système en veillant à minimiser le nombre de relations entre classes.

Approche objet

- Au-delà de ces deux avantages majeurs et compte tenu de la plus grande modularité dans la construction d'une application à l'aide d'objets, la maintenance élémentaire de chaque classe est en soi plus simple à réaliser que celle d'un logiciel unique traitant toutes les données d'un système.
- Il importe bien entendu dans l'approche objet de construire son système en veillant à minimiser le nombre de relations entre classes.

UML

- ▶ UML est une notation, pas une méthode
- UML est un langage de modélisation objet
- UML convient pour toutes les méthodes objet
- UML est un standard

UML est la notation pour documenter les modèles objets

UML

UML 2

3 Axes de modélisation d'un système

Statique (ce que le système EST)

- diagramme de classes
- diagramme d'objets
- diagramme de composants
- diagramme de déploiement

Dynamique (comment le système

EVOLUE)

- diagramme de séquence
- diagramme de communication
- diagramme d'états-transitions
- diagramme d'activités

Fonctionnel (ce que le système FAIT)

• diagramme de cas d'utilisation

Définitions: Normes et Standards

☐ Ces deux termes sont souvent utilisés l'un à la place de l'autre alors qu'ils relèvent d'instances fort différentes.
□Cette confusion est essentiellement liée au fait qu'en anglais, il n'existe qu'un seul mot, le terme "standard" pour désigner les deux concepts.
Norme
 □ Les normes sont des ensembles de règles approuvées par des instances officielles (un organisme, national ou international) en charge de la normalisation: □ ISO, AFNOR, INNORPI, etc.
☐ Elles offrent une certaine garantie de stabilité et de pérennité.

Normes et Standards

Standards

- sont définis par des groupes qui n'ont pas de mandats officiels des gouvernements.
- Ces groupes peuvent être :
 - Industriel ou commerciaux : par exemple PostScript ou PDF sont des standards de fait qui sont définis par la société Adobe,
 - Groupe d'experts:
 - □ le W3C (World Wide Web Consortium)
 - □ le consortium Unicode.
 - □ OMG (Object Management Group),
- Un standard est aussi un procédé ou un service qui est largement répandu.

Diapositive 41

A1 Admin; 14/10/2014

International Organization for Standardization (ISO)

- Créé en 1946
- I 18 pays, siège à Genève
- La Tunisie représentée par l'INNORPI (Institut National de la Normalisation et de la Propriété Industrielle)
- La France représentée par l'AFNOR (Association Française de NORmalisation)
 l'organisation officielle en charge des normes en France.
- Couvre tous les secteurs à l'exception de l'électricité et de l'électronique
- Plus de 10000 normes

Chapitre 2:

Diagramme comportementaux:

Diagramme de cas d'utilisation

Les activités du projet

- Etude préalable : Analyse du contexte
- Analyse et spécification des besoins
- Analyse du problème ou métier ou système
- Conception de la solution

UML 2

Diagramme des cas d'utilisation

Permet de définir les limites du système et ses relations avec l'environnement.

Utilisé pour modéliser les exigences (besoins) du client.

Concepts de base: Cas d'utilisation

- Les cas d'utilisation constituent un moyen de <u>recueillir</u> et de <u>décrire</u> les besoins des acteurs du système.
- Ils peuvent être aussi utilisés ensuite comme moyen d'organisation du développement du logiciel:
 - structuration et le déroulement de la conception et des tests logiciels.

Objectifs: Cas d'utilisation

- Capturer le comportement désiré du système,
- Servir d'entente entre les différents intervenants (développeurs, utilisateurs et experts) sur les fonctions disponibles et sur la façon d'interagir avec le système.
- Spécifier ce que le système fait (fonctions), mais pas comment il le fait.

Exemple: Cas d'utilisation

Cas d'utilisation

- ▶ Un cas d'utilisation (use case) décrit:
 - Une fonctionnalité du système suivant le point de vue de l'utilisateur.
 - Les interactions entre les acteurs et le système,
 - Un comportement attendu du système du point de vue d'un ou de plusieurs acteurs,
 - Un service rendu par le système.

Cas d'utilisation: Scénario

- Un cas d'utilisation = Ensemble de « chemins d'exécution » possibles
- Un scénario = Un chemin particulier d'exécution
- Un scénario = Instance de cas d'utilisation
- **Exemple:**
- Cas d'utilisation : Acheter un objet sur internet
- Mais il peut y avoir des scénarios tels que:
 - échec lors du paiement
 - Article non disponible

Cas d'utilisation

La représentation d'un cas d'utilisation met en jeu trois concepts :

- ▶ l'acteur,
- ▶ le cas d'utilisation,
- l'interaction entre l'acteur et le cas d'utilisation.

Diagramme de cas d'utilisation

- ▶ Un diagramme de cas d'utilisation :
 - décrit
 - les acteurs
 - les cas d'utilisation

- le système
- contient
 - des descriptions textuelles

UML: Diagramme De Cas D'utilisation

Le système

- Le système est un ensemble de cas d'utilisation
- Le système ne comprend pas les acteurs.

Cas d'utilisation

Use Case :

Ensemble de <u>séquences d'actions</u> réalisées par le système et qui produisent un résultat intéressant pour un acteur particulier.

Acteurs

▶ UML n'emploie pas le terme d'<u>utilisateur</u> mais d'<u>acteur</u>.

Le terme acteur ne désigne pas seulement des utilisateurs humains mais également les autres systèmes (machines, programmes, ...)

Acteurs

▶ Un acteur est un rôle joué par <u>une entité externe</u> qui est en interaction avec le système (échange de l'information en entrée et/ou en sortie):

- des utilisateurs humains,
- matériels,
- logiciels.

Acteur

- Est représenté par:
 - ▶ Un petit bonhomme (stick man) avec son nom dessous ou
 - Par un rectangle contenant le mot-clé << actor>> avec son nom dessous ou
 - Par un mélange de ces 2 représentations.

<actor>>
Nom de l'acteur

XNom de l'acteur

UML : diagramme de cas d'utilisation

Acteurs vs Personnes:

Ne pas confondre acteur et personne utilisant le système :

- · Une même personne peut jouer plusieurs rôles,
- · Plusieurs personnes peuvent jouer un même rôle,
- Un acteur n'est pas forcément une personne physique.