# **Evaluating ML Predictions**

Expert Testimony

# Classification

#### Classification

- Predicting a categorical variable is classification.
- Examples: customer churn, loan default, having a disease, winner-takes all election.
- We cannot use RMSE, correlation or  $R^2$ .

# Contingency table

Recall **contingency table** of two categorical variables.

|          | W.   | Total   |    |
|----------|------|---------|----|
| Pavement | rain | no rain |    |
| wet      | 8    | 4       | 12 |
| dry      | 0    | 18      | 18 |
| Total    | 8    | 22      | 30 |

 $n_{ij} \colon$  number of observations ("cases", "records") when  $\mathsf{row} \! = i$  and  $\mathsf{column} \! = j$ 

### Confusion matrix

The **confusion matrix** is the contingency table of predicted vs actual category.

|            | A         | Total        |    |
|------------|-----------|--------------|----|
| Predicted  | does rain | doesn't rain |    |
| will rain  | 8         | 4            | 12 |
| won't rain | 0         | 18           | 18 |
| Total      | 8         | 22           | 30 |

### Goodness of fit

- **Accuracy** is the fraction of correctly predicted cases = (8+18)/30.
- But now we can also explore the direction of our error.

|           | Actual   |          |  |
|-----------|----------|----------|--|
| Predicted | positive | negative |  |
| positive  | TP       | FP       |  |
| negative  | FN       | TN       |  |

#### Good ratios

■ Sensitivity: probability of positive "test" given "disease"

$$= \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

■ **Specificity**: probability of negative "test" given "healthy"

$$=\frac{TN}{TN+FP}$$

- **Recall** = true positive rate = sensitivity
- **Precision**: probability of "disease" given positive "test"

$$=\frac{TP}{TP+FP}$$

# Contigency table

| bedroom count |        |        |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------|--------|
|               | 0      | 1      | 2      | 3      | 4      | 5      | 6      |
| low quality   | 28.57  | 44.44  | 52.48  | 51.19  | 48.47  | 57.45  | 57.14  |
| high quality  | 71.43  | 55.56  | 47.52  | 48.81  | 51.53  | 42.55  | 42.86  |
| Total         | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |

## Confusion matrix

| Self reported | Fact | High | Low | All  |
|---------------|------|------|-----|------|
| High          |      | 290  | 228 | 518  |
| Low           |      | 202  | 280 | 482  |
| All           |      | 492  | 508 | 1000 |

# Contrast different goodness of fit measures

# Sensitivity and specificity



## Sensitivity and specificity

How many relevant items are selected? e.g. How many sick people are correctly identified as having the condition.

Sensitivity=

How many negative selected elements are truly negative? e.g. How many healthy people are identified as not having the condition.



### Bad ratios

- False positive rate, Type-I error
- False negative rate, Type-II error

## The ROC curve

#### The trade-off

- You want to watch both types of errors. Otherwise it's easy to create a perfect prediction. How?
- Often we are trading off senstivity with specificity.
- Plot both on a graph (note the inverse scale) = ROC curve ("Receiver operating characteristic")

### Different models



### Different Parametrization of the Same Model



#### The area under the curve

A model often predicts an entire curve. An overall measure of performance is the **area under the curve** (AUC).

### **Properties**

- Bounded between 0 and 1, higher means better fit.
- Symmetric in two types of error.
- Random chance (useless model): AUC = 0.5.

## Contrast different goodness of fit measures

- Understand correlation, RMSE, R<sup>2</sup>, AUC and confusion matrix.
- Relate type-I and type-II errors.

# Discuss when ML improves decision making

| Problem              | Diagnostic        | Improvements                     |
|----------------------|-------------------|----------------------------------|
| Noisy prediction     | Goodness of fit   | Better (more) data, better model |
| Overfitting          | Cross validation  | Simpler model                    |
| Concept drift        | Bad performance   | Retrain model?                   |
| Covariate shift      | Balance tests     | Retrain model?                   |
| Wrong target metric  | Insufficient lift | Select better metric             |
| Non-actionable model | Now what?         | Good questions first             |
| Expensive deployment | \$\$\$            | Simpler data, model              |

# Jargon busting

### Regression

RMSE, correlation,  $\mathbb{R}^2$ 

#### Classification

confusion table, accuracy, false positive, false negative, sensitivity = recall, specificity, precision, type-I and II error, ROC, AUC