2011-(03)mar-02: dag 13

Algebra

Grupper

Gruppdefinitionen Ändliga grupper, grupptabeller

Abelska grupper

Ekvationslösning i grupper

Grupptabeller är en latinsk kvadrat

Ordning

Ordningen för en grupp, |G|

Ordningen för ett gruppelement, o(g)

Cyklisk grupper, $G = \langle g \rangle$

Generatorer, genererande element

Övnings-KS 2

Vi börjar med "abstrakt algebra", mest om grupper.

Exempel:

Symmetrier för en liksidig triangel (det vill säga stela avbildningar som för över \triangle_i sig själv).

Alla symmetrier $G_{\triangle} = \{i, r, s, x, y, z\}$

$$y = xr$$
 "först r, sedan x"

$$ix = xi = x$$

Definition:

(G; *) är en grupp om

- G1) $\forall x, y \in G : x * y \in G$ "slutenhet"
- G2) $\forall x, y, z \in G : (x * y) * z = x * (y * z)$ "associativitet"
- G3) $\exists I \in G : \forall x \in G : I * x = x * I = x$ "identitetselement"
- G4) $\forall x \in G : \exists x^{-1} \in G : x * x^{-1} = x^{-1} * x = I$ "invers"

 $(G_{\triangle}; \cdot)$ är en grupp ty axiomen G1, ..., G4 är uppfyllda.

Symmetrigrupper för en liksidig triangel, G_△

		r				
i	i	r	S	х	У	z
r	r	s i y z x	i	Z	Х	У
S	S	i	r	У	Z	X
Х	х	У	Z	i	r	S
У	У	Z	X	S	i	r
Z	z	X	У	r	s	i

	i	r	r²	Х	xr	xr²
-	i r r ² x xr xr	r	r²	Х	xr	xr²
r	r	r²	i	xr²	х	xr
r²	r²	i	r	xr	xr²	Х
Х	х	xr	xr²	i	r	r²
r	xr	xr²	Х	r²	i	r
xr²	xr²	Х	xr	r	r²	i

$$r^3 = x^2 = i$$
$$rx = xr^2$$

Andra exempel på grupper:

Oändliga: $(\mathbb{Z}; +)$, $(\mathbb{Q}\setminus\{0\}; \cdot)$, $(GL(n; \mathbb{R}); \cdot)$

reella $n \times n$ -matriser med det $\neq 0$

Ändliga:
$$G_{\triangle}$$
, S_n , $(\mathbb{Z}_m; +)$, $(\mathbb{Z}_p \setminus \{0\}; \cdot)$, $\left\{x \in \mathbb{R} \mid -1 < x \; 1\}, \; x * y = \frac{x+y}{xy+1}\right\}$ p, primtal

En grupps struktur bestäms helt av grupptabellen.

Exempel:

I = 0 här. Inversen (under +) till 3: -3 = 2 ty 2+3 = 3+2 = 0.

Symmetrigruppen för en kvadrat, G_□

$$r^4 = x^2 = i$$

$$rx = xr^3$$

	i	r	r ²	r³	Х	xr	xr^2	xr³
i	i r r ² r ³ x xr xr ² xr ³	r	r ²	r³	Х	xr	xr ²	xr³
r	r	r^2	r^3	i	xr ³	X	xr	xr^2
r^2	r²	r^3	i	r	xr^2	xr ³	Х	xr
r^3	r³	i	r	r^2	xr	xr^2	xr³	X
Х	Х	xr	xr^2	xr³	i	r	r^2	r^3
xr	xr	xr^2	xr^3	X	r^3	i	r	r^2
xr ²	xr ²	xr ³	X	xr	r^2	r^3	i	r
xr³	xr³	X	xr	xr^2	r	r^2	r^3	i

Om det i en grupp (G; *) gäller att

$$a * b = b * a$$

för alla a, $b \in G$, kallas G abelsk eller kommutativ.

Exempel:

Abelska:

$$(\mathbb{Z}_m; +)$$
, $(\mathbb{R}_+; \cdot)$, $(\mathbb{Z}_p \setminus \{0\}; \cdot)$, $(\{e\}; *)$, $(\mathbb{R}^n; +)$, $(\mathbb{Z}; +)$

Icke-abelska:

$$G_{\triangle}$$
, G_{\square} , $(GL(n; \mathbb{R}); \cdot)$ $n \ge 2$

Exempel på allmän sats för grupper:

Om a, $b \in G$, G är grupp så har ax = b och ya = b entydig lösning, x, y.

Ty: Existens:

$$x=a^{-1}b$$
 är en lösning:
$$ax=a(a^{-1}b)\underset{G2}{\equiv}(aa^{-1})b\underset{G4}{\equiv}lb\underset{G3}{\equiv}b$$

Entydighet:

Om x är en lösning:

$$ax = b \Rightarrow a^{-1}(ax) = a^{-1}b \Rightarrow \{G2\} \Rightarrow (a^{-1}a)x = a^{-1}b \Rightarrow \{G4\} \Rightarrow$$

 $\Rightarrow Ix = a^{-1}b \Rightarrow \{G3\} \Rightarrow x = a^{-1}b$

Andra ekvationen på samma sätt:

$$y = ba^{-1}$$

Så grupptabeller är latinska kvadrater.

Satsen ger också att man alltid kan förkorta:

$$ax = ay \Rightarrow x = y \leftarrow xa = ya$$

Exempel:

$$G = \{e, a, b, c\}$$
 är en grupp (med ·) och $x^2 = e$ för alla $x \in G$.
4 olika

Finn dess grupptabell!

Identitetselement?
$$e^2 = e = eI \Rightarrow e = I$$
 Identitetselement.

G är abelsk

Allmän sats:

Om $|G| = p^2$ (p, primtal) så är G abelsk.

Ordningen för en grupp G: |G|

Ordningen för ett element $g \in G$: o(g),

det minsta > 0 sådant att $g^n=1$ (1 identitetselement), ∞ om inget sådant finns.

Exempel:

Sats:

Om $g \in G$, en grupp, och o(g) = m, $g^s = 1$ (identitetselement) $\Leftrightarrow m|s$.

Ty:

$$\Rightarrow$$
: Låt $g^s = 1$ och $s = qm+r$, $0 \le r < m$.
 $så\ 1 = g^s = (g^m)^q \cdot g^r = 1^q \cdot g^r = g^r$
 $så\ r = 0$ enligt defintionen av $o(g)$.

←: Klart.

Defintion:

En grupp, G, är cyklisk om det finns ett element $g \in G$ sådant att varje element i G är av formen g^n , något $n \in \mathbb{Z}$.

Ett sådant g kallas en generator, ett genererande element för G.

$$G = \langle g \rangle$$

Om
$$o(g) = m$$
:

$$G = \{1, g, g^2, g^3, ..., g^{m-1}\} \text{ ser ut som } (\mathbb{Z}_m; +).$$
 alla olika

Om
$$G = \langle g \rangle$$
 gäller $|G| = o(g)$

$$o(g) = \infty$$
:

$$G = \{..., g^{-2}, g^{-1}, 1, g, g^2, ...\} \quad \text{ser ut som } (\mathbb{Z}; +).$$

Exempel:

$$(\mathbb{Z}_{12}; +) = \langle 5 \rangle$$
 ty