- chegg.com
- algorist.com

William
- algorist.com

Nelley $\sum_{i=1}^{k} \sum_{j=1}^{k} (i+1) = \sum_{i=1}^{k} (i+1) = i^{2} + i$ $= \frac{n(n+1)(2n+1)}{(2n+1)} + \frac{3n(n+1)}{4}$ $= \frac{n(n+1)}{(2n+1)} \left(\frac{2n+1+3}{2n+4}\right) = \frac{n(n+1)(n+2)}{3} = \frac{n^{3}+3n^{2}+2n}{3}$ $O(N) = N^{3}$

(a) $n^{2} \le n^{3}$ $n^{2} + 3n^{3} = 4n^{3}, n > 1$ $n^{2} + 3n^{3} = 0(n^{3})$ with c = 4, $n_{0} = 1$ Big-O of $f(n) = 0(n^{3})$ Given $f(n) = 3n^{2} + 3n^{3}$ $G \le cn^{2} \le 3n^{3} = 1$ $Cn^{2} \le 3n^{3} = 1$ $Cn^{2} \le 3n^{3} = 1$ Theta, Ω of $f(n) = \Omega$

3) ant 3 $\Theta(a^n)$ Once the threshold is reached, this becomes similar to the argument for $\infty = \infty + 1$, the addition of 1 to such a large number the 1 becomes virtually insignificant therefore the argument stands that the upper bound of anti-would yield $\Theta(a^n)$ at the middle bound.

(4) O(n²)

The algorithm beads to worst case efficiency when it runs for a long time if the audirected graph is connected linearly as per the given hoole.

*For example, if 'n' is the # of vertices then the algorithm runs 1+2+3+...n-1 times.

+ So, according to big-oh notation the running time of the algorithm leads to O(n²)