Упражнение 1. Пусть $H, K \lhd G$ — две нормальные подгруппы в G. Докажите, что тогда коммутатор любых двух элементов из H и K принадлежит пересечению $H \cap K$.

Решение.

Лемма 1. $(ab)^{-1} = b^{-1}a^{-1}$

Proof.
$$(ab)(b^{-1}a^{-1}) = e$$

 $\triangleleft h \in H, k \in K$

$$[h, k] = hk(kh)^{-1} = \underbrace{h \underbrace{kh^{-1}k^{-1}}_{\in H}}^{\in K}$$

[k,h] аналогично.

Упражнение 2. Показать, что коммутант [H,K] двух нормальных подгрупп $H,K\lhd G$ есть подгруппа в пересечении $[H,K]\subset H\cap K$. Всегда ли $[H,K]=H\cap K$?

Решение. Т.к. коммутатор любых двух элементов H и K принадлежит и H, и K, то по замкнутости H и K произведение коммутаторов также принадлежит и H и K. Кроме того, $1=[1,1]\in [H,K]$, следовательно, $[H,K]\subset H\cap K$, т.к. это [H,K] это в точности все коммутаторы вида $[hk],h\in H,k\in K$.

[H,K] не всегда $=H\cap K$, например если G абелева, то $[H,K]=\{e\}$, но очевидно не для каждых H и K выполнено $H\cap K=\{e\}$, например для H=K=G.

Упражнение 3. Пусть H, K — две произвольные подгруппы. Рассмотреть отображение $\psi: H \times K \to HK$:

$$\psi(h,k) = hk$$

Найти $\psi^{-1}(x) = \{(h,k) \mid \psi(h,k) = x\}$ в явном виде. Получить из этого, что:

$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|}$$

Решение. Пусть $h_1k_1 = x$ и $h_2k_2 = x$.

$$x^{-1} = k_2^{-1} h_2^{-1}$$

$$e = xx^{-1} = h_1 k_1 k_2^{-1} h_2^{-1}$$

$$h_2 h_1^{-1} = k_1 k_2^{-1}$$

M3*37y2019 6.11.2021

Т.к.
$$h_2h_1^{-1} \in H, k_1k_2^{-1} \in K, k_1k_2^{-1} = h_2h_1^{-1} =: a \in K \cap H.$$
 Тогда:

$$h_2 = ih_1 \Rightarrow h_1 = i^{-1}h_2$$
 $k_1 = ik_2$

И, следовательно, любое (h_1, k_1) : $h_1k_1 = x$ записывается в виде $(i^{-1}h_2, ik_2)$, где h_2, k_2 — произвольное решение уравнения hk = x. Таким образом:

$$\psi^{-1}(x) = \{ (i^{-1}h_2, ik_2) \mid i \in K \cap H \} \Rightarrow |\psi^{-1}(x)| = |K \cap H|$$
$$|H| \cdot |K| = \sum_{x \in HK} |\psi^{-1}(x)| = |HK| \cdot |H \cap K|$$

Упражнение 4. Показать, что среди 5 подгрупп порядков 483, 1309, 3059, 2783, 3451 есть хотя бы две абелевы.

Решение. Разложим размеры групп на простые делители.

n	$p_1^{a_1} \dots p_n^{a_n}$
483	$3 \cdot 7 \cdot 23$
1309	$7 \cdot 11 \cdot 17$
3059	$7\cdot 19\cdot 23$
2783	$11^2 \cdot 23$
3451	$7 \cdot 11 \cdot 29$

Группу размера 2783 больше рассматривать не будем. Размеры всех остальных групп разбиваются на простые числа в первой степени, следовательно, по первой теореме Силова у каждой группы есть силовские p-подгруппы порядка каждого такого простого числа. Кроме того, они циклические.

Утверждение.
$$G\cong H\times K\Leftrightarrow egin{cases} G=HK\\ H\cap K=\{e\}\\ H,K\vartriangleleft G \end{cases}$$
 , аналогично для большего числа

Найдём все такие группы, что их силовские подгруппы H, K, L нормальны, тогда

$$|HKL| = \frac{|H| \cdot |K| \cdot |L|}{|H \cap K \cap L|} = |G|$$

и, следовательно, каждому элементу g можно взаимно-однозначно сопоставить элемент из HKL, т.е. $G\cong HKL$ и по утверждению $G\cong H\times K\times L$, а прямое произведение является абелевой группой.

M3*37y2019 6.11.2021

Из соображений предыдущего домашнего задания для нормальности силовской p_i -подгруппы \mathcal{P}_{p_i} достаточно, чтобы $p_i \not\equiv 1 \mod p_j \ \forall j$.

				1309							
3	0	3	3	7	0	7	7	7	0	7	7
7	1			11	4	0	11	19	5	0	19
				17	3	6	0	23	2	4	0

Дальше нет смысла перебирать, т.к. для групп размера 1309 и 3059 искомое доказано. $\ \square$

M3*37y2019 6.11.2021