Sgkit is awesome

This manuscript (<u>permalink</u>) was automatically generated from <u>tomwhite/manubot-test@aa933ae</u> on January 23, 2023.

Authors

- Tom White

 $\mathsf{TWC} \cdot \mathsf{Funded} \; \mathsf{by} \; \mathsf{Grant} \; \mathsf{XXXXXXXX} \\$

- Jane Roe [™]

Department of Something, University of Whatever; Department of Whatever, University of Something

☑ — Correspondence possible via <u>GitHub Issues</u> or email to Jane Roe <jane.roe@whatever.edu>.

Abstract

Popgen

Audience

[TODO]

Overview of sgkit's API methods

Sgkit provides a number of methods for computing statistics in population genetics. Before running the methods, the dataset is usually divided into windows along the genome, using the window_by_* functions, which tell sgkit to produce per-window statistics. For example, window_by_position creates windows that are a fixed number of base pairs, while window_by_interval creates windows corresponding to arbitrary user-defined intervals.

It's common in population genetics to group samples into populations, which in sgkit are referred to as *cohorts*. There are two types of statistics: one-way statistics where there is a single statistic for each cohort, and multi-way statistics where there is a statistic between each pair, triple, etc of cohorts. [TODO: do we need to say how cohorts are defined?]

The methods for one-way statistics include diversity for computing mean genetic diversity, Tajimas_D for computing Tajima's D, and Garud_H for computing the H1, H12, H123 and H2/H1 statistics defined in [1].

The methods for multi-way statistics include divergence and Fst for computing mean genetic divergence and F[ST] (respectively) between pairs of cohorts, and pbs for computing the population branching statistic between cohort triples.

Example

We converted phased Ag1000G hypotype data in Zarr format [2] to sgkit's Zarr format using the read_scikit_allel_vcfzarr function. The data contained 1,164 samples at 39,604,636 sites, and was [TODO] MB on disk before conversion, and Y MB after conversion to sgkit's Zarr format. Data for the X chromosome was discarded since it was not available for all samples. The conversion took [TODO] minutes Y seconds, including a postprocessing rechunk step to ensure that the data was suitably chunked for the subsequent analysis.

References

1. Recent Selective Sweeps in North American Drosophila melanogaster Show Signatures of Soft Sweeps

Nandita R Garud, Philipp W Messer, Erkan O Buzbas, Dmitri A Petrov *PLOS Genetics* (2015-02-23) https://doi.org/f67qcv

DOI: 10.1371/journal.pgen.1005004 · PMID: 25706129 · PMCID: PMC4338236

2. **Ag1000G phase 2 AR1 data release.**

The Anopheles gambiae 1000 Genomes Consortium

MalariaGEN (2017) https://www.malariagen.net/data/ag1000g-phase-2-ar1