1 NP

• Berechnungsprobleme

- Sind alle Probleme in polynomieller Zeit lösbar? $(O(n^k))$
- Nein ⇒ Manche nur in superpolynomieller Zeit lösbar
- Polynomielle Probleme: "einfach"
- Superpolynomielle Probleme: "hart"

Klasse P

- Klasse aller Polynomialzeitprobleme
- Problem ist effizient lösbar gdw. es in polynomieller Zeit lösbar ist
- Gilt für Polynome beliebigen Grades (auch n^k)
- Zeitkomplexität n^k mit großem k bedenklich, jedoch fast nie notwendig
- -n beschreibt die Länge der Eingabe
- Beispiele: Binäre Addition, Kürzeste Wege, Sortieren,...

Klasse NP

- Enthält "einfach zu verifizierende" Probleme (polynomieller Zeit)
- Enthält Probleme mit "kurzem Beweis" (Länge polynomiell in Länge der Instanz)
- Also: Klasse aller Probleme, deren Lösung in Polynomialzeit verifizierbar ist
- Beispiele: Soduko, 3D-Matching,...
- Beispiel: Faktorisierungsproblem
 - * Jede nicht Primzahl kann eindeutig als Primzahlprodukt geschrieben werden
 - * $35 = 5 \cdot 7, 117 = 3 \cdot 3 \cdot 13,...$
 - * Faktorsieren auf klassischen Computern schwer
 - * $n \longrightarrow^{schwer} p, q$
 - * $n, p, q \longrightarrow^{leicht}$ ist $n = p \cdot q$?
- Rucksackproblem auch in polynomieller Laufzeit verifizierbar

- Hamilton-Kreis-Problem
 - * Hamiltonischer Kreis: Zyklus, der alle Knoten, aber nicht unbedingt alle Kanten enthält
 - * Entscheidungsalgorithmus listet alle möglichen Permutationen der Knoten aus G auf
 - * Prüfung bei jeder Permutation, ob es ein Hamiltonischer Kreis ist
 - * Laufzeit:
 - · Kodierung via Adjazenzmatrix: m Knoten \Rightarrow Matrix mit n=m x m Einträgen
 - · m! mögliche Permutationen der Knoten
 - $\Omega(m!) = \Omega(\sqrt{n}!) = \Omega(2^{\sqrt{n}})$
 - $\cdot \Rightarrow$ superpolynomielle Laufzeit (liegt **nie** in $O(n^k)$)
 - * Allerdings: Einfacher, wenn nur Beweis verifiziert werden muss
 - \Rightarrow Test, ob es sich um Permutation der Knoten handelt
 - ⇒ Test, ob alle angegebenen Kanten auf Kreis im Graphen existieren
 - \Rightarrow Verifikationsalgorithmus V mit quadratischer Laufzeit
 - * Verifikationsalgorithmus: V(x,y) = 1/0 (1, falls Kreis/ 0, falls nicht)
 - * Damit: Hamilton-Kreis \in NP

· Entscheidungsproblem vs Optimierungsproblem

- Optimierungsproblem: Lösung nimmt bestimmten Wert an
- Entscheidungsproblem: Binäre Antwort (Ja/Nein)
- Bei NP Betrachtung von Entscheidungsproblemen
- Optimierungsproblem oft in verwandtes Entscheidungsproblem umwandelbar
- Verwandtes Entscheidungsproblem: dem zu optimierenden Wert wird eine Schranke auferlegt

P versus NP

$$L \in P \longrightarrow L \in NP \longrightarrow P \subseteq NP$$

- Für viele wichtige Probleme ist jedoch unbekannt, ob sie in P (effizient) lösbar sind
- Unbekannt ob $P \neq NP$
- Intuitive Frage: Ist das Finden eines Beweises schwieriger als dessen Überprüfung?
 - \Rightarrow Ja, also $P \neq NP$ gilt
- In den letzten 50 Jahren kein Beweis für P = NP
- Eines der wichtigsten offenen Probleme der theoretischen Informatik
- Konsequenzen eines Beweises von P = NP:
 - * P = NP: dramatisch, vieles bisher schwieriges lösbar (Rucksack, Kryptographie)
 - * $P \neq NP$: nicht dramatisch, mgl. interessante Konsequenzen in Kryptographie

NP-Vollständigkeit

- Problem befindet sich in NP
- Problem ist so "schwer" wie jedes Problem in NP
- Beweis: Zeigen, dass kein effizienter Algorithmus existiert
- Werkzeug: Reduktionen (zum Vergleich verschiedener Probleme)
- NP-Härte/NP-Schwere:
 - * Klassifikation von Problemen als schwierig, trotz fehlender genauer Zuordnung
 - * Starke Indikatoren, dass Problem L nicht in P ist:
 - \cdot L ist mindestens so schwierig, wie alle anderen Probleme in NP
 - · Daraus folgt, dass L nur in P, wenn P = NP (unwahrscheinlich)

- Definitionen

- * Problem L ist **NP-schwer**, wenn $L' \leq_p L$ für alle $L' \in NP$
- * Problem L ist **NP-vollständig**, wenn L sowohl NP-schwer als auch in NP ist
- * z.B.: Hamilton-Kreis ist NP-vollständig

Reduktionen

- Reduktionsidee
 - * Betrachte Problem A, das wir in polynomieller Zeit lösen wollen
 - * Bereits bekannt: Problem B (in polynomieller Zeit lösbar)
 - * Benötigt wird Prozedur, die Instanzen der Probleme ineinander überführt
 - ⇒ Transformation benötigt polynomielle Zeit
 - \Rightarrow Antworten sind gleich

polynomieller Entscheidungsalgorithmus für AInstanz

Reduktionsalgorithmus β poly. Entscheidungsalgorithmus für Bnein nein

- Beispiel:

- * Intuitiv: Reduktion von A auf B, wenn Umformulierung möglich
 - ⇒ Jede Instanz A kann leicht in Instanz von B umformuliert werden
 - ⇒ Lösung der Instanz B liefert Lösung von Instanz A
- * Reduktion: Lösen von linearen Gleichungen auf quadratische Gleichnungen
 - · Lineare Gleichung $ax + b = 0 \Rightarrow x = \frac{-b}{a}$
 - · Quadratische Gleichung $ax^2 + bx + 0 = 0 \Rightarrow x = \frac{-b}{a}, x = 0$
 - · Quadratische Gleichung liefert also auch Lösung für lineare Gleichung
- Formale Definition:

A lässt sich auf B in **polynomieller Zeit reduzieren**, mit Schreibweise $A \leq_p B$, wenn eine in polynomieller Zeit berechenbare Funktion $f:\{0,1\}^* \to \{0,1\}^*$ existiert, sodass für alle $x \in \{0,1\}^*$ gilt: $x \in A$ genau dann, wenn $f(x) \in B$

Illustration der Polynomialzeitreduktion:

• Travelling-Salesman Problem

- Beschreibung
 - * Reisender plant Rundreise durch mehrere Städte
 - * Start und Ziel ist eine vorgegebene Stadt
 - * Jede Stadt nur einmal besucjhen
 - * Ziel: Minimale Reiselkosten

Eine optimale Route mit Kosten 7 verläuft von A \rightarrow D \rightarrow B \rightarrow C \rightarrow A

- Problem:
 - * Anzahl der Rundreisen (n-1)!
 - * Stark nach oben explodierende Zahlen
 - * Brute-Force für große n praktisch unmöglich
 - * Es existiert kein effizienter Algorithmus, der das TSP effizient löst
 - * TSP ist NP-vollständig
- Beweis NP-Vollständigkeit
 - * Zeigen: TSP gehört zu NP und TSP ist NP-schwer
- TSP gehört zu NP
 - * Gegeben: Instanz des Problems TSP, Folge der n Knoten der Tour (Zertifikat)
 - * Verifikationsalgorithmus überprüft, ob Folge jeden Knoten genau einmal enthält
 - * Außerdem Aufsummieren der Kantenkosten und überprüfen, ob diese maximal k ist
 - * Verifikation läuft in polynomieller Laufzeit ⇒ gehört zu NP

- TSP ist NP-schwer
 - * Wir zeigen $HAM KREIS \leq_p TSP$
 - * Start: Instanz von HAM KREIS mit G = (V, E)
 - * Konstruiere Instanz von TSP

$$\Rightarrow G' = (V, E') \text{ mit } E' = \{(i, j) : i, j \in V \text{ und } i \neq j\}$$

- * Definiere Kostenfunktion c(i,j)=0,
falls $(i,j)\in E$ / c(i,j)=1, falls $(i,j)\notin E$
- * Instanz von TSP ist < G', c, 0 > (Konstruktion in polynomieller Zeit) (0: Kosten von 0)
- * **Zeige jetzt:** G besitzt hamiltonischen Kreis \Leftrightarrow G' enthält Tour mit Kosten ≤ 0
- * \Rightarrow Graph G besitzt einen hamiltonischen Kreis h

Jede Kante von h gehört zu E und daher besitzt laut Kostenfunktion der Graph G' die Kosten 0.

Damit ist h eine Tour in G' mit den Kosten 0.

* \leftarrow Graph G besitzt eine Tour h' mit Kosten kleiner gleich 0

Die Kosten der Kanten in E' haben die Werte 0 und 1. Die Kosten der Tour betragen exakt 0 und jede Kante muss die Kosten 0 haben.

Damit hat h' nur Kanten von E.

Damit folgt, dass h' ein Hamiltonischer Kreis des Graphen ${\it G}$ ist.