Algorithms HW

4. Let

$$1 \to N \to G \xrightarrow{\pi} H \to 1$$

be an extension of groups. Show that there is a homomorphism

$$\rho \colon H \to \mathrm{Out}(N)$$

sending an element $h \in H$ to the outer automorphism of N given by conjugation by any $\tilde{h} \in G$ such that $\pi(\tilde{h}) = h$. In the particular case that $G = N \rtimes_{\theta} H$ is the semidirect product of H by N via θ , show that ρ is equal to the composition

$$H \xrightarrow{\theta} \operatorname{Aut}(N) \to \operatorname{Out}(N)$$
.

Firstly, we will show that ρ is a well defined map $H \to Out(N)$. Let $h \in H$ and $\tilde{h}_1, \tilde{h}_2 \in G$ such that $\pi(\tilde{h}_1) = \pi(\tilde{h}_2) = h$. We have $\rho(\tilde{h}_1) = f := (n \mapsto \tilde{h}_1 n \tilde{h}_1^{-1})$ and $\rho(\tilde{h}_2) = g := (n \mapsto \tilde{h}_2 n \tilde{h}_2^{-1})$. Note that these are indeed automorphisms of N, as in the previous homework we showed that conjugation by a fixed element is an automorphism. If we show that $\rho(\tilde{h}_1)$ and $\rho(\tilde{h}_2)$ lie in the same coset of Inn(N) then ρ is well-defined. (Note: I believe this map is not well defined as a map $H \to Aut(N)$).

Recall that two elements g,h of a group lie in the same coset of a normal subgroup N if $g^{-1}h \in N$. For our automorphisms f,g we have $g^{-1} = (n \mapsto \tilde{h}_2^{-1}n\tilde{h}_2)$. And so we have $(g^{-1} \circ f)(n) = \tilde{h}_2^{-1}\tilde{h}_1n\tilde{h}_1^{-1}\tilde{h}_2$. Recall that $N \subseteq G$ and so is closed under conjugation by definition. In particular then $\tilde{h}_1n\tilde{h}_1^{-1} \in N$ and $\tilde{h}_2^{-1}(\tilde{h}_1n\tilde{h}_1^{-1})\tilde{h}_2 \in N$ since $\tilde{h}_1,\tilde{h}_2 \in G$. Thus f,g have the same image in Out(N) and so ρ is well defined with respect to the choice of \tilde{h} .

Next we show that ρ is a group homomorphism. Let $h_1, h_2 \in H$ and $\tilde{h}_1, \tilde{h}_2 \in G$ such that $\pi(\tilde{h}_1) = h_1$ and $\pi(\tilde{h}_2) = h_2$. Moreover, since π is a group homomorphism we have $\pi(\tilde{h}_1\tilde{h}_2) = \tilde{h}_1\tilde{h}_2$. Following a similar, calculation to last week's homework, consider the

following

$$\rho(h_1 h_2) = \gamma_{\tilde{h}_1 \tilde{h}_2} = (n \mapsto \tilde{h}_1 \tilde{h}_2 n (\tilde{h}_1 \tilde{h}_2)^{-1})
= (n \mapsto \tilde{h}_1 \tilde{h}_2 n \tilde{h}_2^{-1} \tilde{h}_1^{-1})
= \gamma_{\tilde{h}_1} \circ \gamma_{\tilde{h}_2}
= \rho(h_1) \rho(h_2).$$

Thus, the given ρ is indeed a group homomorphism.