Complex Analysis Qualifying Exam Notes

D. Zack Garza

Tuesday 18th August, 2020

Contents

1	Useful Techniques	2
2	Definitions	2
3	Theorems 3.1 Basics 3.2 Holomorphic and Entire Functions 3.2.1 Key Theorems 3.2.2 Others	4 4 4 5
	3.3 Series and Analytic Functions	6 7
4	Residues	7
5	Conformal Maps 5.1 Plane to Disc	9 9 10
6	Schwarz Reflection	10
7	7.1 Singularities	10 10 10
8	Linear Fractional Transformations	11
9	9.0.1 Fundamental Theorem of Algebra: Argument Principle	12 12 12 12 13
10		13

1 Useful Techniques

Showing a function is constant:

- Write f = u + iv and use Cauchy-Riemann to show $u_x, u_y = 0$, etc.
- Show that f is entire and bounded.

Showing a function is zero: Show f is entire, bounded, and $\lim_{z \to \infty} f(z) = 0$.

Things to know well:

- Estimates for derivatives, mean value theorem
- Cauchy's Theorem
- Cauchy's Integral Formula
- Cauchy's Inequality
- Morera's Theorem
- The Schwarz Reflection Principle
- Maximum Modulus Principle
- The Schwarz Lemma
- Liouville's Theorem
- Casorati-Weierstrass Theorem
- Rouché's Theorem
- Properties of linear fractional transformations
- Automorphisms of \mathbb{D} , \mathbb{C} , \mathbb{CP}^1 .

Computing Arguments: Arg(z/w) = Arg(z) - Arg(w).

2 Definitions

Definition 2.0.1 (Analytic).

A function $f: \Omega \longrightarrow \mathbb{C}$ is analytic at $z_0 \in \Omega$ iff there exists a power series $g(z) = \sum a_n (z - z_0)^n$ with radius of convergence R > 0 and a neighborhood $U \ni z_0$ such that f(z) = g(z) on U.

Definition 2.0.2 (Holomorphic).

A function $f: \mathbb{C} \longrightarrow \mathbb{C}$ is holomorphic at z_0 if the following limit converges:

$$\lim_{h \to 0} \frac{1}{h} (f(z_0 + h) - f(z_0)) := f'(z_0).$$

Examples:

- $f(z) = \frac{1}{z}$ is holomorphic on $\mathbb{C} \setminus \{0\}$.
- $f(z) = \bar{z}$ is not holomorphic, since $\frac{\bar{h}}{h}$ does not converge (but is real differentiable).

Definition 2.0.3 (Entire).

A function that is holomorphic on \mathbb{C} is said to be *entire*.

Definition 2.0.4 (Meromorphic).

A function $f:\Omega\longrightarrow\mathbb{C}$ is meromorphic iff there exists a sequence $\{z_n\}$ such that

- $\{z_n\}$ has no limit points in Ω .
- f is holomorphic in $\Omega \setminus \{z_n\}$.
- f has poles at the points $\{z_n\}$.

If f is either holomorphic or has a pole at $z = \infty$ is said to be meromorphic on \mathbb{CP}^1 .

Definition 2.0.5 (Harmonic).

A real function of two variables u(x,y) is harmonic iff its Laplacian vanishes:

$$\Delta u := \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u = 0.$$

Definition 2.0.6 (Cauchy-Riemann Equations).

$$u_x = v_y$$
 and $u_y = -v_x$
 $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$

Definition 2.0.7 (Principal Part and Residue).

In a Laurent series $f(z) := \sum_{n \in \mathbb{Z}} c_n (z - z_0)^n$, the principal part of f at z_0 consists of terms with negative degree:

$$P_f(z) := \sum_{n=1}^{\infty} c_{-n} (z - z_0)^{-n}.$$

The residue of f at z_0 is the coefficient c_{-1} .

Definition 2.0.8 (Removable Singularities).

If z_0 is a singularity of f and there exists a g such that f(z) = g(z) for all z in some deleted neighborhood $U \setminus \{z_0\}$, then z_0 is a removable singularity of f.

Definition 2.0.9 (Pole Terminology).

A pole z_0 of a meromorphic function f(z) is a zero of $g(z) := \frac{1}{f(z)}$. If there exists an n such that

$$\lim_{z \to z_0} (z - z_0)^n f(z)$$

is holomorphic and nonzero in a neighborhood of z_0 , then the minimal such n is the *order* of the pole. A pole of order 1 is said to be a *simple pole*.

The pole z_0 is isolated iff there exists a neighborhood of z_0 containing no other poles of f.

Definition 2.0.10 (Essential Singularity).

A singularity z_0 is essential iff it is neither removable nor a pole.

Equivalently, a Laurent series expansion about z_0 has a principal part with infinitely many terms.

3 Theorems

3.1 Basics

Theorem 3.1 (Green's Theorem).

If $\Omega \subseteq \mathbb{C}$ is bounded with $\partial\Omega$ piecewise smooth and $f,g \in C^1(\overline{\Omega})$, then

$$\int_{\partial\Omega} f \, dx + g \, dy = \iint_{\Omega} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dA.$$

Theorem 3.2(Summation by Parts).

Define the forward difference operator $\Delta f_k = f_{k+1} - f_k$, then

$$\sum_{k=m}^{n} f_k \Delta g_k + \sum_{k=m}^{n-1} g_{k+1} \Delta f_k = f_n g_{n+1} - f_m g_m$$

Note: compare to $\int_a^b f \, dg + \int_a^b g \, df = f(b)g(b) - f(a)g(a)$.

3.2 Holomorphic and Entire Functions

3.2.1 Key Theorems

Theorem 3.3 (Cauchy's Theorem).

If f is holomorphic on Ω , then

$$\int_{\partial\Omega} f(z) \, dz = 0.$$

Slogan: closed path integrals of holomorphic functions vanish.

Theorem 3.4 (Morera's Theorem).

If f is continuous on a domain Ω and $\int_T f = 0$ for every triangle $T \subset \Omega$, then f is holomorphic.

Slogan: if every integral along a triangle vanishes, implies holomorphic.

Theorem 3.5(Liouville's Theorem).

If f is entire and bounded, f is constant.

Theorem 3.6 (Cauchy Integral Formula).

Suppose f is holomorphic on Ω , then

$$f(z) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{f(\xi)}{\xi - z} d\xi$$

and

$$\frac{\partial^n f}{\partial z^n}(z) = \frac{n!}{2\pi i} \int_{\partial \Omega} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi.$$

3.2.2 Others

Theorem 3.7 (Holomorphic functions have harmonic components).

If f(z) = u(x, y) + iv(x, y), then u, v are harmonic.

Theorem 3.8 (Holomorphic functions are continuous.).

f is holomorphic at z_0 iff there exists an $a \in \mathbb{C}$ such that

$$f(z_0 + h) - f(z_0) - ah = h\psi(h), \quad \psi(h) \stackrel{h \longrightarrow 0}{\longrightarrow} 0.$$

In this case, $a = f'(z_0)$.

Proposition 3.9 (Cauchy-Riemann implies holomorphic).

If f = u + iv with $u, v \in C^1(\mathbb{R})$ satisfying the Cauchy-Riemann equations on Ω , then f is holomorphic on Ω and $f'(z) = \frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right) f$.

Proposition 3.10 (Polar Cauchy-Riemann equations).

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}$

Proof.

Concepts Used:

- See walkthrough here.
- See problem set 1.
- Take derivative along two paths, along a ray with constant angle θ_0 and along a circular arc of constant radius r_0 .
- Then equate real and imaginary parts.

Theorem 3.11 (Open Mapping).

Any holomorphic non-constant map is an open map.

3.3 Series and Analytic Functions

Proposition 3.12 (Power Series are Smooth).

Any power series is smooth and its derivatives can be obtained using term-by-term differentiation.

Proposition 3.13 (Uniform Convergence of Series).

A series of functions $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly iff

$$\lim_{n \to \infty} \left\| \sum_{k \ge n} f_k \right\|_{\infty} = 0.$$

Theorem 3.14 (Weierstrass M-Test).

If $\{f_n\}$ with $f_n: \Omega \longrightarrow \mathbb{C}$ and there exists a sequence $\{M_n\}$ with $\|f_n\|_{\infty} \leq M_n$ and $\sum_{n \in \mathbb{N}} M_n < \infty$,

then $f(x) := \sum_{n \in \mathbb{N}} f_n(x)$ converges absolutely and uniformly on Ω .

Moreover, if the f_n are continuous, by the uniform limit theorem, f is again continuous.

Proposition 3.15 (Exponential is uniformly convergent in discs).

 $f(z) = e^z$ is uniformly convergent in any disc in \mathbb{C} .

Proof.

Apply the estimate

$$|e^z| \le \sum \frac{|z|^n}{n!} = e^{|z|}.$$

Now by the M-test,

$$|z| \le R < \infty \implies \left| \sum \frac{z^n}{n!} \right| \le e^R < \infty.$$

Proposition 3.16 (Checking radius of convergence).

For a power series $f(z) = \sum a_n z^n$, define R by

$$\frac{1}{R} := \limsup |a_n|^{\frac{1}{n}}.$$

Then f converges absolutely on |z| < R and diverges on |z| > R.

THEOREMS

6

Theorem 3.17 (Maximum Modulus).

If f is holomorphic and nonconstant on an open region Ω , then |f| can not attain a maximum on Ω .

If Ω is bounded and f is continuous on $\overline{\Omega}$, then $\max |f|$ occurs on $\partial\Omega$.

Conversely, if f attains a local maximum at $z_0 \in \Omega$, then f is constant on Ω .

3.4 Others

Theorem 3.18 (Casorati-Weierstrass).

If f is holomorphic on $\Omega \setminus \{z_0\}$ where z_0 is an essential singularity, then for every $V \subset \Omega \setminus \{z_0\}$, f(V) is dense in \mathbb{C} .

The image of a disc punctured at an essential singularity is dense in \mathbb{C} .

Theorem 3.19 (Little Picard).

Todo

Theorem 3.20 (Continuation Principle / Identity Theorem).

If f is holomorphic on a bounded connected domain Ω and there exists a sequence $\{z_i\}$ with a limit point in Ω such that $f(z_i) = 0$, then $f \equiv 0$ on Ω .

Two functions agreeing on a set with a limit point are equal on a domain.

Corollary 3.21.

The ring of holomorphic functions on a domain in \mathbb{C} has no zero divisors.

Find the proof!

Proof.

4 Residues

Theorem 4.1 (Cauchy's Inequality).

For $z_o \in D_R(z_0) \subset \Omega$, we have

$$\left| f^{(n)}(z_0) \right| \le \frac{n!}{2\pi} \int_0^{2\pi} \frac{\|f\|_{\infty}}{R^{n+1}} R \, d\theta = \frac{n! \|f\|_{\infty}}{R^n},$$

where $||f||_{\infty} := \sup_{z \in C_R} |f(z)|$.

Slogan: the *n*th Taylor coefficient of an analytic function is at most $\sup_{|z|=R} |f|/R^n$.

771

Proof.

- Given $z_0 \in \Omega$, pick the largest disc $D_R(z_0) \subset \Omega$ and let $C_R = \partial D_R$.
- Then apply the integral formula.

Theorem 4.2 (The Residue Theorem).

If f is holomorphic on an open set Ω containing a curve γ and its interior γ° , except for finitely many poles $\{z_k\}_{k=1}^N \subset \gamma^{\circ}$. Then

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{N} \operatorname{Res}_{z_k} f.$$

Proposition 4.3 (For simple poles).

If z_0 is a simple pole of f, then

$$\operatorname{Res}_{z_0} f = \lim_{z \to z_0} (z - z_0) f(z).$$

Example: Let $f(z) = \frac{1}{1+z^2}$, then $Res(i, f) = \frac{1}{2i}$.

Proposition 4.4(For higher order poles).

If f has a pole z_0 of order n, then

$$\operatorname{Res}_{z=z_0} f = \lim_{z \to z_0} \frac{1}{(n-1)!} \left(\frac{\partial}{\partial z}\right)^{n-1} (z-z_0)^n f(z).$$

5 Conformal Maps

Notation:

- $S \coloneqq \left\{ x + iy \mid x \in \mathbb{R}, \ 0 < y < \pi \right\}.$ \mathbb{D} the disc
- If the upper half plane
- $X_{\frac{1}{2}}$: a "half" version of X.

Theorem 5.1 (Classification of Conformal Maps).

There are 8 major types of conformal maps:

Type/Domains	Formula
Translation/Dilation/Rotation	$z\mapsto e^{i heta}(cz+h)$
Sectors to sectors	$z \mapsto z^n \\ 1+z$
$\mathbb{D}_{\frac{1}{2}} \longrightarrow \mathbb{H}_{\frac{1}{2}}$, the first quadrant	$z\mapsto rac{1+z}{1-z}$
$\mathbb{H} \longrightarrow S$	$z \mapsto \log(z)$

$$\begin{array}{c} \mathbb{D}_{\frac{1}{2}} \longrightarrow S_{\frac{1}{2}} & z \mapsto \log(z) \\ S_{\frac{1}{2}} \longrightarrow \mathbb{D}_{\frac{1}{2}} & z \mapsto e^{iz} \\ \mathbb{D}_{\frac{1}{2}} \longrightarrow \mathbb{H} & z \mapsto \frac{1}{2} \left(z + \frac{1}{z}\right) \\ S_{\frac{1}{2}} \longrightarrow \mathbb{H} & z \mapsto \sin(z) \end{array}$$

Conformal maps $\mathbb{D} \longrightarrow \mathbb{D}$ have the form

$$g(z) = \lambda \frac{1-a}{1-\bar{a}z}, \quad |a| < 1, \quad |\lambda| = 1.$$

5.1 Plane to Disc

$$\varphi : \mathbb{H} \longrightarrow \mathbb{D}$$

$$\varphi(z) = \frac{z - i}{z + i} \qquad f^{-1}(z) = i \left(\frac{1 + w}{1 - w}\right).$$

5.2 Sector to Disc

For $S_{\alpha} := \{z \in \mathbb{C} \mid 0 < \arg(z) < \alpha\}$ an open sector for α some angle, first map the sector to the half-plane:

$$g: S_{\alpha} \longrightarrow \mathbb{H}$$
$$g(z) = z^{\frac{\pi}{\alpha}}.$$

Then compose with a map $\mathbb{H} \longrightarrow \mathbb{D}$:

$$f: S_{\alpha} \longrightarrow \mathbb{D}$$

$$f(z) = (\varphi \circ g)(z) = \frac{z^{\frac{\pi}{\alpha}} - i}{z^{\frac{\pi}{\alpha}} + i}.$$

5.3 Strip to Disc

- Map to horizontal strip by rotation $z \mapsto \lambda z$.
- Map horizontal strip to sector by $z \mapsto e^z$
- Map sector to \mathbb{H} by $z \mapsto z^{\frac{\pi}{\alpha}}$.
- Map $\mathbb{H} \longrightarrow \mathbb{D}$.

Theorem 5.2 (Riemann Mapping).

If Ω is simply connected, nonempty, and not \mathbb{C} , then for every $z_0 \in \Omega$ there exists a unique conformal map $F: \Omega \longrightarrow \mathbb{D}$ such that $F(z_0) = 0$ and $F'(z_0) > 0$.

Thus any two such sets Ω_1, Ω_2 are conformally equivalent.

6 Schwarz Reflection

Theorem 6.1(Schwarz Reflection).

If f is continuous and holomorphic on \mathbb{H}^+ and real-valued on \mathbb{R} , then the extension defined by $F(z) = \overline{f(\overline{z})}$ for $z \in \mathbb{H}^-$ is a well-defined holomorphic function on \mathbb{C} .

Remark 1.

 $\mathbb{H}^+, \mathbb{H}^-$ can be replaced with any region symmetric about a line segment $L \subseteq \mathbb{R}$.

7 Zeros and Poles

7.1 Singularities

Theorem 7.1 (Riemann's Removable Singularity Theorem).

If f is holomorphic on Ω except possibly at z_0 and f is bounded on $\Omega \setminus \{z_0\}$, then z_0 is a removable singularity.

7.2 Counting Zeros

Theorem 7.2 (Argument Principle).

For f meromorphic in γ° , if f has no poles and is nonvanishing on γ then

$$\Delta_{\gamma} \arg f(z) = \int_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi (Z_f - P_f),$$

where Z_f and P_f are the number of zeros and poles respectively enclosed by γ , counted with multiplicity.

Theorem 7.3 (Rouché's Theorem).

If f, g are analytic on a domain Ω with finitely many zeros in Ω and $\gamma \subset \Omega$ is a closed curve surrounding each point exactly once, where |g| < |f| on γ , then f and f + g have the same number of zeros.

Alternatively:

Suppose f = g + h with $g \neq 0, \infty$ on γ with |g| > |h| on γ . Then

$$\Delta_{\gamma} \arg(f) = \Delta_{\gamma} \arg(h)$$
 and $Z_f - P_f = Z_g - P_g$.

Example 7.1. • Take $P(z) = z^4 + 6z + 3$.

- On |z| < 2:
 - Set $f(z) = z^4$ and g(z) = 6z + 3, then $|g(z)| \le 6|z| + 3 = 15 < 16 = |f(z)|$.
 - So P has 4 zeros here.
- On |z| < 1:
 - Set f(z) = 6z and $g(z) = z^4 + 3$.
 - Check $|g(z)| \le |z|^4 + 3 = 4 < 6 = |f(z)|$.
 - So P has 1 zero here.

Example 7.2. • Claim: the equation $\alpha z e^z = 1$ where $|\alpha| > e$ has exactly one solution in \mathbb{D} .

- Set $f(z) = \alpha z$ and $g(z) = e^{-z}$.
- Estimate at |z| = 1 we have $|g| = |e^{-z}| = e^{-\Re(z)} \le e^1 < |\alpha| = |f(z)|$
- f has one zero at $z_0 = 0$, thus so does f + g.

8 Linear Fractional Transformations

Definition 8.0.1 (Linear Fractional Transformation).

A map of the following form is a linear fractional transformation:

$$T(z) = \frac{az+b}{cz+d},$$

where the denominator is assumed to not be a multiple of the numerator.

These have inverses given by

$$T^{-1}(w) = \frac{dw - b}{-cw + a}.$$

Theorem 8.1 (Cayley Transform).

The fractional linear transformation given by $F(z) = \frac{i-z}{i+z}$ maps $\mathbb{D} \longrightarrow \mathbb{H}$ with inverse

$$G(w) = i\frac{1-w}{1+w}.$$

Theorem 8.2 (Schwarz Lemma).

If $f: \mathbb{D} \longrightarrow \mathbb{D}$ is holomorphic with f(0) = 0, then

- 1. $|f(z)| \le |z|$ for all $z \in \mathbb{D}$
- 2. $|f'(0)| \leq 1$.

Moreover, if $|f(z_0)| = |z_0|$ for any $z_0 \in \mathbb{D}$ or |f'(0)| = 1, then f is a rotation

9 Appendix: Proofs of the Fundamental Theorem of Algebra

9.0.1 Fundamental Theorem of Algebra: Argument Principle

- Let $P(z) = a_n z^n + \cdots + a_0$ and g(z) = P'(z)/P(z), note P is holomorphic
- Since lim _{|z|→∞} P(z) = ∞, there exist an R > 0 such that P has no roots in {|z| ≥ R}.
 Apply the argument principle:

$$N(0) = \frac{1}{2\pi i} \oint_{|\xi|=R} g(\xi) d\xi.$$

- Check that $\lim_{|z\longrightarrow\infty|}zg(z)=n,$ so g has a simple pole at ∞
- Then g has a Laurent series $\frac{n}{z} + \frac{c_2}{z^2} + \cdots$ Integrate term-by-term to get N(0) = n.

9.0.2 Fundamental Theorem of Algebra: Rouche's Theorem

- Let $P(z) = a_n z^n + \cdots + a_0$
- Set $f(z) = a_n z^n$ and $g(z) = P(z) f(z) = a_{n-1} z^{n-1} + \dots + a_0$, so f + g = P. Choose $R > \max\left(\frac{|a_{n-1}| + \dots + |a_0|}{|a_n|}, 1\right)$, then

$$\begin{split} |g(z)| &\coloneqq |a_{n-1}z^{n-1} + \dots + a_1z + a_0| \\ &\le |a_{n-1}z^{n-1}| + \dots + |a_1z| + |a_0| \quad \text{by the triangle inequality} \\ &= |a_{n-1}| \cdot |z^{n-1}| + \dots + |a_1| \cdot |z| + |a_0| \\ &= |a_{n-1}| \cdot R^{n-1} + \dots + |a_1|R + |a_0| \\ &\le |a_{n-1}| \cdot R^{n-1} + |a_{n-2}| \cdot R^{n-1} + \dots + |a_1| \cdot R^{n-1} + |a_0| \cdot R^{n-1} \quad \text{since } R > 1 \implies R^{a+b} \ge R^a \\ &= R^{n-1} \left(|a_{n-1}| + |a_{n-2}| + \dots + |a_1| + |a_0| \right) \\ &\le R^{n-1} \left(|a_n| \cdot R \right) \quad \text{by choice of } R \\ &= R^n |a_n| \\ &= |a_n z^n| \\ &\coloneqq |f(z)| \end{split}$$

• Then $a_n z^n$ has n zeros in |z| < R, so f + g also has n zeros.

9.0.3 Fundamental Theorem of Algebra: Liouville's Theorem

- Suppose p is nonconstant and has no roots, then $\frac{1}{n}$ is entire
- Write $g(z) := \frac{p(z)}{z^n} = a_n \left(\frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n} \right)$
- Outside a disc
 - Note $\lim_{z \to \infty} = 0$ for the parenthesized terms, so there exists an R large enough such that $|g(z)| \ge \frac{1}{2} |a_n|$

– Then
$$|p(z)| \ge \frac{R^n}{2} |a_n|$$
 implies $\frac{1}{p}$ is bounded in $|z| > R$

- Inside a disc:
 - p is continuous with no roots so p is bounded below on |z| < R.
 - -p is continuous on a compact set and thus achieves a min A
 - Set $B = \min(A, \frac{R^n}{2} |a_n|)$, then $p \ge B$ on |z| < R.
- Thus p is bounded below everywhere and thus $\frac{1}{n}$ is bounded above everywhere, thus bounded.
- Thus $\frac{1}{n}$ is constant, forcing p to be constant.

9.0.4 Fundamental Theorem of Algebra: Open Mapping Theorem

- p induces a continuous map $\mathbb{CP}^1 \longrightarrow \mathbb{CP}^1$
- The continuous image of compact space is compact;
- Since the codomain is Hausdorff space, the image is closed.
- p is holomorphic and non-constant, so by the Open Mapping Theorem, the image is open.
- Thus the image is clopen in \mathbb{CP}^1 .
- The image is nonempty, since $p(1) = \sum a_i \in \mathbb{C}$
- \mathbb{CP}^1 is connected
- But the only nonempty clopen subset of a connected space is the entire space.
- So p is surjective, and $p^{-1}(0)$ is nonempty.
- So p has a root.

10 Appendix

$$dz = dx + i dy$$

$$d\bar{z} = dx - i dy$$

$$f_z = f_x = i^{-1} f_y$$

$$\int_0^{2\pi} e^{i\ell x} dx = \begin{cases} 2\pi & (\ell = 0) \\ 0 & (\ell \neq 0) \end{cases}.$$

10.1 Misc Prerequisites

Standard forms of conic sections:

- Circle: $x^2 + y^2 = r^2$ Ellipse: $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$
- Hyperbola: $\left(\frac{x}{a}\right)^2 \left(\frac{y}{b}\right)^2 = 1$
 - Rectangular Hyperbola: $xy = \frac{c^2}{2}$.
- Parabola: $-4ax + y^2 = 0$.

Mnemonic: Write $f(x,y) = Ax^2 + Bxy + Cy^2 + \cdots$, then consider the discriminant $\Delta =$

- $\Delta < 0 \iff \text{ellipse}$ $-\Delta < 0$ and $A = C, B = 0 \iff \text{circle}$
- $\Delta = 0 \iff \text{parabola}$
- $\Delta > 0 \iff \text{hyperbola}$

Completing the square:

$$x^{2} - bx = (x - s)^{2} - s^{2}$$
 where $s = \frac{b}{2}$
 $x^{2} + bx = (x + s)^{2} - s^{2}$ where $s = \frac{b}{2}$.

Useful Properties

- $\Re(z) = \frac{1}{2}(z + \bar{z}) \text{ and } \Im(z) = \frac{1}{2i}(z \bar{z}).$ $z\bar{z} = |z|^2$

• Exponential forms of cosine and sine:

$$-\cos(\theta) = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$$

$$-\sin(\theta) = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right).$$

Useful Series

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$\log(z) = \sum_{j=0}^{\infty} (-1)^{j} \frac{(z-a)^{j}}{j} \frac{\partial}{\partial z} \sum_{j=0}^{\infty} a_{j} z^{j}$$

$$= \sum_{j=0}^{\infty} a_{j+1} z^{j}$$

The sum of the interior angles of an *n*-gon is $(n-2)\pi$, where each angle is $\frac{n-2}{\pi}\pi$.

Basics

- Show that $\frac{1}{z}\sum_{k=1}^{\infty}\frac{z^k}{k}$ converges on $S^1\setminus\{1\}$ using summation by parts.
- Show that any power series is continuous on its domain of convergence.
- Show that a uniform limit of continuous functions is continuous.

??

- Show that if f is holomorphic on \mathbb{D} then f has a power series expansion that converges uniformly on every compact $K \subset \mathbb{D}$.
- Show that any holomorphic function f can be uniformly approximated by polynomials.
- Show that if f is holomorphic on a connected region Ω and $f' \equiv 0$ on Ω , then f is constant on Ω .
- Show that if |f| = 0 on $\partial \Omega$ then either f is constant or f has a zero in Ω .
- Show that if $\{f_n\}$ is a sequence of holomorphic functions converging uniformly to a function f on every compact subset of Ω , then f is holomorphic on Ω and $\{f'_n\}$ converges uniformly to f' on every such compact subset.
- Show that if each f_n is holomorphic on Ω and $F := \sum f_n$ converges uniformly on every compact subset of Ω , then F is holomorphic.
- Show that if f is once complex differentiable at each point of Ω , then f is holomorphic.