ROB311 Quiz 2

Hanhee Lee

February 5, 2025

Contents

	Probability Review				
	1.1	1.1 Bayesian Network			
		1.1.1	Junction	2	
		1.1.2	Causal Chain	2	
		1.1.3	Common Cause	2	
		1.1.4	Common Effect	2	

Probabilistic Inference Problems

1 Probability Review

1.1 Bayesian Network

Definition: Vertices represent random variables and edges represent dependencies between variables.

1.1.1 Junction

Definition: A **junction** consists of three vertices, X_1 , X_2 , and X_3 , connected by two edges, e_1 and e_2 :

- Both arrows pointing in one direction
- Both arrows pointing in opposite directions
- One arrow pointing in each direction

Warning: Want to look for causal relationships. Arrows, what's causing what, what's influencing what.

1.1.2 Causal Chain

Definition: A causal chain is a junction of the following form:

- X_1 and X_2 are dependent. X_2 is dependent on X_1 . Vice versa. From a causal perspective, X_1 is influencing X_2 . Subtle difference, just be $X_1 \to X_2$.
- X_2 and X_3 are dependent.
- X_1 and X_3 are dependent.
 - Given X_2 , X_1 and X_3 are independent. Why? X_2 's door closes when you know X_2 , so X_1 and X_3 are independent.

Warning: X_1 is influeincing X_2 and X_2 is influencing X_3 .

1.1.3 Common Cause

Definition: A common cause is a junction of the form:

Notes:

- X_1 and X_3 are dependent.
 - Given X_2 , X_1 and X_3 are independent. Why? X_2 whether you smoke or not, X_1 whether you have yellow teeth, X_3 whether you have lung cancer, if you don't know X_2 , if they have yellow teeth, then they might smoke, then they might have lung cancer. If you know X_2 , yellow teeth and lung cancer are independent b/c you already know if they smoke or not, and yellow teeth implies smoke,

1.1.4 Common Effect

Definition: A common effect is a junction of the form:

Notes:

- X_1 and X_3 are independent.
- Given X_2 or any of X_2 's descendents, X_1 and X_3 are dependent.

Warning: Just b/c you don't know something about the middle variable, then it can be independent

Example: X_2 Grass being wet, X_1 raining, and X_3 sprinkler being on.

- If you know the grass is wet, you know that either the sprinkler is on or it's raining.
 - If it didn't have the sprinkler on, then it must have rained.
 - If it didn't rain, then the sprinkler must have been on.
 - So this means that X_1 and X_3 are dependent given X_2 .
- If you don't know the grass is wet, then X_1 and X_3 are independent b/c you don't know if it rained or the sprinkler was on.

Example:

- 1. Given: Caveman is deciding whether to go hunt for meat. He must take into account several factors:
 - Weather
 - Possibility of over-exertion
 - Possibility encountering lion

These factors can result in Cavemen's death. His decision will ultimately depend on the **chances** of his death.

- 2. Binary Variables:
 - $W = \{Sun, Rainy\}$: Weather
 - H: Whether the Cavemen goes hunting or not.
 - \bullet L: Whether the Cavemen encounters a lion or not.
 - T: Whether the Cavement is tired or not.
 - \bullet D: Whether the Cavemen dies or not
- 3. **Problem:** Cavemen must decide whether to go hunting or not.
 - He must consider the conditional probabilities (i.e. dependence) of each event.

Warning: Have to be discrete.

Example:

1. Given: Bayesian network.

Figure 1

- 2. **Problem:** A and E are
 - ullet independent if $\mathcal{K}=$
 - ullet not necessarily independent for $\mathcal{K}=$

Process:

1.

Example: Bayesian Inference

- 1. Given:
- 2. Problem:

Process:

1. Given:

Figure 2

Example: Inference via Sampling

- 1. Given:
- 2. Problem: