Digital Signal and Image Processing

- Audio classification
- Image classification
- Image retrieval

Alberto Usai, 886731 Geralda Nushi, 873269 Tommaso Redaelli, 830442

Corso di Digital Signal and Image Preprocessing Università Milano Bicocca - A.A. 2022/20223

Audio classification

- 1. Dataset
- 2. Classic machine learning
- 3. Deep learning methods
- 4. Evaluation and conclusion

Dataset

GTZAN Dataset – Music Genre Classification

Number of classes: Audio structure: Provided features: 10 { "rock", "jazz", "blues", "disco" } length: 30 sec | rate: 22050 { "chroma", }

Labels distr.

Classic ML methods

SVM on:

- MFCC
- MEL
- CHROMA
- MEL + CHROMA

Deep learning methods 1/3

CNN ON CHROMA SPECTROGRAM

	Train	Val	Test
Acc.	0.7501	0.6513	0.6612
Loss	1.0320	1.3605	1.5576

CNN ON CHROMA SPECTROGRAM

	Train	Val	Test
Acc.	0.3714	0.2862	0.2863
Loss	1.9355	2.1075	2.2351

Resnet 50

Deep learning methods 2/3

ResNet50 ON CHROMA SPECTROGRAM

	Train	Val	Test
Acc.	0.9469	0.8200	0.9527
Loss	0.2778	0.6968	0.7838

ResNet50 ON CHROMA SPECTROGRAM

	Train	Val	Test
Acc.	0.6853	0.5938	0.5505
Loss	1.0467	1.3730	1.7829

Deep learning methods 3/3

Possible improvements

Features		n - <i>P</i>	Different parameters (hop_length, n_mel, n_chroma, n_mfcc) Audio augmentation techniques Harmonic and Percussive spectrogram
CNN Networks	-		Use of MFCC spectrograms Different freezed layers in resnet50
Double Input Network			Optimization of Data Generator Use of Mel + MFCC spectrograms

Image classification

- 1. Dataset
- 2. CNN transfer-learning and fine-tuning
- 3. Ensemble models

4. Evaluation and conclusion

Dataset

YIKES! Spiders – 15 Species Classification Dataset

Numero di classi: Struttura immagini: 15 { "Hobo Spider", "Black Widow", } 224 x 224 x 3

Labels distr.

Resnet 50

Results

Resnet50

	Train	Val
Acc.	0.9432	0.8971
Loss	0.3969	0.5613

Resnet50 with fine-tune

	Train	Val
Acc.	0.9519	0.8725
Loss	0.3380	0.5605

EfficientNetV2B3

Results

EfficientNetV2B3

	Train	Val
Acc.	0.8951	0.8627
Loss	0.5005	0.5661

EfficientNetV2B3 with fine-tune

	Train	Val
Acc.	0.9705	0.9559
Loss	0.2503	0.3742

Xception net

Results

Xception

	Train	Val
Acc.	0.9656	0.9216
Loss	0.3819	0.4922

Xception with fine-tune

	Train	Val
Acc.	0.9814	0.9369
Loss	0.1968	0.3869

Evaluation

	Resnet 50 (*)	EfficientNetV2B3	Xception net
Accuracy	0.9071	0.9425	0.9292
Loss	0.4670	0.3415	0.3227

Ensemble model

Evaluation

Classification report

	precision	recall	f1-score	support
0	0.71	0.71	0.71	14
1	0.82	1.00	0.90	14
2	1.00	1.00	1.00	17
3	1.00	1.00	1.00	11
4	1.00	1.00	1.00	13
5	0.88	0.88	0.88	17
6	1.00	1.00	1.00	19
7	1.00	0.75	0.86	16
8	0.94	1.00	0.97	16
9	1.00	1.00	1.00	13
10	0.93	1.00	0.96	13
11	1.00	0.94	0.97	18
12	1.00	1.00	1.00	16
13	1.00	1.00	1.00	16
14	1.00	1.00	1.00	13
accuracy			0.95	226
macro avg	0.95	0.95	0.95	226
weighted avg	0.95	0.95	0.95	226

Confusion matrix

Possible improvements

Image retrieval

- 1. Dataset
- 2. SIFT matches
- 3. CNN features
- 4. Siamese Net
- 5. VLAD descriptors
- 6. Evaluation and conclusion

Dataset

AmsterTime – A Visual Place Recognition Benchmark Dataset for Severe Domain Shift

Struttura dataset: Tipo immagini:

1239 Pairs of old and new image for the same place Various, both RGB and grayscale

SIFT descriptors

Sorting matches metrics:

- 1. By number of matches
- 2. By sum of matches' similarity
- 3. By avg of matches' similarity

CNN features

Siamese Net

VLAD descriptors [https://arxiv.org/pdf/1808.05022.pdf]

Evaluation

<u>Method</u>	<u>Top-1 acc.</u>	<u>Тор-3 асс.</u>	<u>Top-5 acc.</u>	<u>Top-10 acc.</u>	Тор-30 асс.	Тор-50 асс.
SIFT [Metric 1]	2.5 %	5.25 %	6.5 %	11.0 %	23.5 %	29.25 %
CNN	1.25 %	2.75 %	3.25 %	6.5 %	15.5 %	20.25 %
Loc CNN	1.75 %	4.25 %	5.25 %	8.5 %	19.5 %	27.5 %
Siamese Net	0.25 %	1.0 %	1.5 %	2.5 %	8.0 %	13.75 %
VLAD	4.5 %	10.25 %	13.0 %	20.0 %	34.5 %	42.75 %

Possible improvements

SIFT matches —————	Different KP matcherDifferent image comparison techDifferent distance sorting metric	-
CNN features —————	Different networksDifferent freezed layers	
Siamese Net	- Different features distance metri	CS
VLAD descriptors —	Different K + cluster evaluationDifferent cluster methodsUse localized-features representation	ation