## PL 2

## Probabilidades e Variáveis Aleatórias

## 2.1 Probabilidade condicional, independência

Responda às seguintes questões através de simulações em Matlab e sempre que for pedido compare os resultados obtidos com os valores teóricos:

- 1. Considere famílias com filhos em que a probabilidade de nascimento de rapazes é igual à de nascimento de raparigas:
  - (a) Obtenha por simulação uma estimativa da probabilidade do acontecimento "ter pelo menos um filho rapaz" em famílias com 2 filhos.
  - (b) Determine o valor teórico do acontecimento da alínea anterior e compare-o com a estimativa obtida por simulação. Os valores são iguais? Porquê?
  - (c) Suponha que para uma família com 2 filhos escolhida ao acaso, sabemos que um dos filhos é rapaz. Qual a probabilidade do outro filho ser também rapaz? Determine o valor teórico desta probabilidade e estime a mesma probabilidade por simulação.
  - (d) Sabendo que o primeiro filho de uma família com 2 filhos é rapaz, determine por simulação a probabilidade do segundo filho ser rapaz. O que se pode concluir do resultado obtido relativamente à independência de acontecimentos?
  - (e) Considere uma família com 5 filhos. Sabendo que pelo menos um dos filhos é rapaz, obtenha por simulação uma estimativa para a probabilidade de um dos outros (e apenas um) ser também rapaz.
  - (f) Repita a alínea (e), mas estimando a probabilidade de pelo menos um dos outros ser também rapaz.
- 2. Considere o seguinte "jogo": lançamento com os olhos vendados de n dardos, um de cada vez, para m alvos, garantindo-se que cada dardo atinge sempre um alvo (e apenas 1).
  - (a) Estime por simulação a probabilidade de nenhum alvo ter sido atingido mais do que uma vez quando n = 20 dardos e m = 100 alvos.
  - (b) Estime por simulação a probabilidade de pelo menos 1 alvo ter sido atingido 2 ou mais vezes quando n = 20 dardos e m = 100 alvos.
  - (c) Considere os valores de m = 1000 e m = 100000 alvos. Para cada um destes valores, faça as simulações necessárias para desenhar um gráfico (usando a função plot do Matlab) da probabilidade da alinea (b) em função do número de dardos n. Considere n de 10 a 100 com incrementos de 10. Os 2 gráficos devem ser sub-gráficos de uma mesma figura (use a instrução subplot do Matlab). Compare os resultados dos 2 casos e retire conclusões.
  - (d) Considere o valor de n=100 dardos. Faça as simulações necessárias para desenhar um gráfico da probabilidade da alínea (b) em função dos valores de m=200, 500, 1000, 2000, 5000, 10000, 20000, 50000 e 100000 alvos. O que conclui dos resultados obtidos?
- 3. Considere um array de tamanho T que serve de base à implementação de uma memória associativa (por exemplo em Java). Assuma que a função de *hash* devolve um valor entre 0 e T-1 com todos os valores igualmente prováveis.

- (a) Determine por simulação a probabilidade de haver pelo menos uma colisão (pelo menos 2 keys mapeadas pela função de hash para a mesma posição do array) se forem introduzidas 10 keys num array de tamanho T=1000.
- (b) Faça um gráfico da probabilidade da alínea (a) (estimada por simulação) em função do número de keys para todos os valores relevantes num array de tamanho T = 1000.
- (c) Para um número de *keys* igual a 50, represente graficamente a variação da probabilidade (estimada por simulação) de não haver nenhuma colisão em função do tamanho T do array (assuma os tamanhos T de 100 até 1000 com incrementos de 100).
- 4. Considere uma festa em que está presente um determinado número n de pessoas.
  - (a) Qual deve ser o menor valor de *n* para o qual a probabilidade de duas ou mais pessoas terem a mesma data de aniversário (mês e dia) é superior a 0,5 (assuma que um ano tem sempre 365 dias)?
  - (b) Qual deve ser o valor de n para que a probabilidade da alínea anterior passe a ser superior a 0,9?
- 5. Considere um dado de seis faces numeradas de 1 a 6 lançado 2 vezes. Assuma que o dado é equilibrado (mesma probabilidade para todas as faces ficarem para cima). Considere os acontecimentos seguintes: "A a soma dos dois valores é igual a 9", "B o segundo valor é par", "C pelo menos um dos valores é igual a 5" e "D nenhum dos valores é igual a 1".
  - (a) Estime por simulação a probabilidade da cada um dos 4 acontecimentos.
  - (b) Determine teoricamente se os acontecimentos A e B são independentes.
  - (c) Determine teoricamente se os acontecimentos C e D são independentes.
- 6. Considere uma linguagem com apenas 3 palavras {"um", "dois", "três"} e que permite sequências de 2 palavras. Considere que todas as sequências são equiprováveis e que as duas palavras de uma sequências podem ser iguais. As respostas às questões seguintes devem ser baseadas nos valores teóricos.
  - (a) Qual a probabilidade da sequência "um dois"?
  - (b) Qual a probabilidade de "um" aparecer pelo menos uma vez numa sequência?
  - (c) Qual a probabilidade de ocorrer "um" ou "dois" numa sequência?
  - (d) Qual o valor de P["sequência incluir a palavra um" | "sequência inclui palavra dois"]?
- 7. Considere que uma empresa tem 3 programadores (André, Bruno e Carlos) e que a probabilidade de um programa de cada um deles ter problemas ("bugs") e o número de programas desenvolvidos assumem os valores apresentados na tabela seguinte.

| Programador | Prob("erro num programa") | programas |
|-------------|---------------------------|-----------|
| André       | 0.01                      | 20        |
| Bruno       | 0.05                      | 30        |
| Carlos      | 0.001                     | 50        |

- O Diretor da empresa seleciona de forma aleatória um dos 100 programas produzidos pelos seus 3 programadores e descobre que este contém um erro sério.
- (a) Qual é a probabilidade de o programa ser do Carlos?
- (b) De quem é mais provável ser o programa?

## A completar ...