5 Introduction to Sequential Logic

In digital circuits, **sequential logic** allows systems to store and use previous information, responding to past states as well as current inputs. This differs from **combinational logic**, which operates purely based on current inputs.

Key Concepts

- Sequential Circuits: Depend on both present inputs and past outputs, using feedback for memory.
- Flip-Flops: Basic memory elements in sequential circuits, each storing one bit of information.
- Applications: Registers, counters, memory units, and finite state machines (FSMs), are all built from flip-flops, making them foundational in digital systems.

6 SR (Set-Reset) Flip-Flop

The **SR** flip-flop stores a single bit of data with two main inputs, **Set** (S) and **Reset** (R), and two outputs, Q and \overline{Q} , which are complementary.

6.1 Circuit and Operation

The SR flip-flop is often constructed with two cross-coupled NAND gates as shown in Figure 1.

Figure 1: SR Flip-Flop Circuit

6.2 Truth Table

The operation of the SR flip-flop can be described by the truth table:

S	R	Q	\overline{Q}
0	0	Hold	Hold
0	1	0	1
1	0	1	0
1	1	Invalid	Invalid

Key Points:

• Hold State: When S=0 and R=0, the output holds the previous state.

• Set State: S = 1, R = 0 sets Q = 1.

• Reset State: S = 0, R = 1 sets Q = 0.

• Invalid State: S=1 and R=1 create an invalid condition, to be avoided.

Example

• Try this: If Q = 0 initially, and S = 1, R = 0, what is the new value of Q?

• Solution: Q = 1 since the set input is activated.

7 JK Flip-Flop

The **JK** flip-flop improves on the SR flip-flop by resolving the invalid state. It has two inputs, \mathbf{J} and \mathbf{K} , similar to Set and Reset, but the flip-flop toggles its output when both are high.

7.1 Truth Table

The JK flip-flop operates according to the following truth table:

J	K	Q_{next}		
0	0	Q		
0	1	0		
1	0	1		
1	1	\overline{Q}		

Explanation:

• J = 0, K = 0: The output Q retains its state.

• J = 0, K = 1: Resets the output to 0.

• J = 1, K = 0: Sets the output to 1.

• J=1, K=1: Toggles Q to the opposite of its current state.

Example

- Try this: For an initial state of Q = 0, with inputs J = 1 and K = 1, what will Q be after one clock pulse?
- Solution: Q = 1, as the JK flip-flop toggles.

8 D (Data) Flip-Flop

The **D** flip-flop is designed for a single data input D, with a clock input CLK. The output Q simply follows D at each clock edge.

$$Q_{\text{next}} = D$$

Example

- Try this: Assume a D flip-flop with D=1 at the next clock edge. If Q starts at 0, what will be the value of Q after the clock pulse?
- Solution: Q=1, since the D flip-flop directly reflects D at the clock edge.

9 Edge-Triggered Flip-Flops

Edge-triggered flip-flops change state only on a clock edge—rising (0 to 1) or falling (1 to 0). This allows precise timing control essential for synchronized operations.

9.1 Positive and Negative Edge Triggering

- Positive-edge Triggered: Activates on the rising clock edge.
- Negative-edge Triggered: Activates on the falling clock edge.

Figure 2: Positive-edge Triggered D Flip-Flop Timing Diagram

Example

- Try this: In a positive-edge triggered D flip-flop, if D switches from 0 to 1 at the rising clock edge, what will Q be?
- Solution: Q = 1, matching D at the clock edge.

10 Applications of Flip-Flops

Flip-flops are essential in various digital applications:

- Registers: Collections of flip-flops store multiple bits.
- Counters: Use flip-flops to count pulses and create frequency dividers.
- Memory Elements: Form basic building blocks of memory storage.