- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

12 gennaio 2009

	_			(Co	gnome)				_	_	 _	(Nome)			,	(N	umei	o di	mat	rice	ola)
	CC	DICE	: = 6	689°	194																		
		DICE	`	000	101																		
			<i>A</i>	4	В (7	D E	;															
1) ($\overline{)}$)($\overline{)}$																
2				$\leq \frac{1}{\sqrt{2}}$		$\frac{1}{\sqrt{2}}$																	
				\leq		$\frac{1}{2}$	$\frac{1}{2}$	\mathcal{A}															
3				<u> </u>	$\bigcup ($	<u>) (</u>																	
4) (\bigcirc () (\bigcirc																
5				<u> </u>	$\overline{\bigcirc}$	<u> </u>		7															
				\leq		$\frac{1}{2}$		\mathcal{H}															
6				<u>) (</u>	$\bigcup_{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline$	<u> </u>		4															
7				1	$\langle \ \rangle \ \langle \ \rangle$	1	$\overline{}$	\															

8 9

10

1. Data $f(x)=3(\log(3x))$. Allora f'(e) è uguale a A: N.A. B: $\log(3e)$ C: $\frac{3}{e}$ D: π E: e^3

2. Il limite

$$\lim_{x \to +\infty} \frac{\log(x^3 + \cos(x))}{3\log(x)}$$

vale

A: N.E. B: $+\infty$ C: 1 D: 0 E: N.A.

3. Modulo e argomento del numero complesso $z=i^{43}$ sono A: $(2,43\pi)$ B: N.A. C: $(1,3\pi/2)$ D: $(1,4\pi/3)$ E: $(2,2\pi/3)$

4. La retta tangente al grafico di $y(x) = \sin(2x)$ nel punto $x_0 = \pi/4$ vale A: $1 + 2x - \frac{\pi}{2}$ B: $1 + x + x^2$ C: N.A. D: 1 E: $1 + \sin(2x)(x - \pi/4)$

5. La funzione $f(x) = \begin{cases} 1 & \text{per } x < 0 \\ \cos(x) & \text{per } x \ge 0 \end{cases}$

A: è derivabile, ma non continua. B: è continua e derivabile. C: non è né continua né derivabile. D: N.A. E: è continua, ma non derivabile.

6. La serie a termini non-negativi

$$\sum_{n=41}^{\infty} \log \left(1 + \frac{1}{n^{\alpha}}\right)$$

converge per

A: $3 < \alpha < \pi$ B: N.A. C: $\alpha > 1$ D: $\alpha > 0$ E: $\alpha \ge 1$

7. Le soluzioni dell'equazione differenziale $x'(t) = \sin(t)$ sono

A:
$$t + c_1 e^t + c_2 \sin(t)$$
 B: N.E. C: $-\cos(t) + c$ D: $\sin(t) + e^t + c$ E: N.A.

8. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x) < 0\}$$

valgono

A:
$$\{-\infty, N.E., +\infty, N.E.\}$$
 B: N.A. C: $\{-\infty, N.E., 2\pi, 2\pi\}$ D: $\{0, 0, \pi, \pi\}$ E: $\{-\pi, -\pi, +\infty, N.E.\}$

9. L'integrale

$$\int_{-1}^{2} |x| \, dx$$

vale

A: N.A. B: $\sqrt{2}$ C: 3/2 D: 0 E: 5/2

10. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da f(x) = |x+1| è

A: surgettiva B: derivabile ovunque C: iniettiva D: N.A. E: monotona crescente

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

12 gennaio 2009

(Cognome)	(Nome)	(Numero di matricola)

A	В	С	D	Ε	

1	00000
2	00000
3	00000
4	00000
5	00000
6	00000
7	
8	00000
9	
10	0000

- 1. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da f(x) = |x+1| è
 A: surgettiva B: N.A. C: derivabile ovunque D: iniettiva E: monotona crescente
- 2. La serie a termini non-negativi

$$\sum_{n=41}^{\infty} \log \left(1 + \frac{1}{n^{\alpha}}\right)$$

converge per

A: $\alpha > 1$ B: $\alpha > 0$ C: $\alpha \ge 1$ D: N.A. E: $3 < \alpha < \pi$

3. La funzione
$$f(x) = \begin{cases} 1 & \text{per } x < 0 \\ \cos(x) & \text{per } x \ge 0 \end{cases}$$

A: è continua, ma non derivabile. B: N.A. C: è continua e derivabile. D: è derivabile, ma non continua. E: non è né continua né derivabile.

4. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x) < 0\}$$

valgono

$$\text{A:} \left\{-\infty, N.E., +\infty, N.E.\right\} \quad \text{B: N.A.} \quad \text{C:} \left\{-\pi, -\pi, +\infty, N.E.\right\} \quad \text{D:} \left\{0, 0, \pi, \pi\right\} \quad \text{E:} \left\{-\infty, N.E., 2\pi, 2\pi\right\} \quad \text{E:} \left\{-\infty, N.E., 2$$

5. La retta tangente al grafico di $y(x) = \sin(2x)$ nel punto $x_0 = \pi/4$ vale

A: 1 B:
$$1 + 2x - \frac{\pi}{2}$$
 C: $1 + \sin(2x)(x - \pi/4)$ D: N.A. E: $1 + x + x^2$

6. Le soluzioni dell'equazione differenziale $x'(t) = \sin(t)$ sono

A: N.E. B:
$$t + c_1 e^t + c_2 \sin(t)$$
 C: N.A. D: $\sin(t) + e^t + c$ E: $-\cos(t) + c$

7. L'integrale

$$\int_{-1}^{2} |x| \, dx$$

vale

A:
$$\sqrt{2}$$
 B: 5/2 C: 3/2 D: N.A. E: 0

8. Modulo e argomento del numero complesso $z=i^{43}$ sono

A:
$$(1, 4\pi/3)$$
 B: N.A. C: $(2, 2\pi/3)$ D: $(1, 3\pi/2)$ E: $(2, 43\pi)$

9. Data $f(x) = 3(\log(3x))$. Allora f'(e) è uguale a

A:
$$\pi$$
 B: e^3 C: $\frac{3}{6}$ D: $\log(3e)$ E: N.A.

10. Il limite

$$\lim_{x \to +\infty} \frac{\log(x^3 + \cos(x))}{3\log(x)}$$

vale

A: 1 B: 0 C:
$$+\infty$$
 D: N.A. E: N.E.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

12 gennaio 2009

(Cognome)	(Nome)	(Numero di matricola)

A B	C D	E
-----	-----	---

1	00000
2	00000
3	00000
4	00000
5	00000
6	00000
7	00000
8	
9	
10	00000

1. Le soluzioni dell'equazione differenziale $x'(t) = \sin(t)$ sono

A:
$$\sin(t) + e^t + c$$
 B: N.E. C: $-\cos(t) + c$ D: $t + c_1 e^t + c_2 \sin(t)$ E: N.A.

2. Modulo e argomento del numero complesso $z=i^{43}$ sono

A:
$$(1, 4\pi/3)$$
 B: $(1, 3\pi/2)$ C: $(2, 2\pi/3)$ D: $(2, 43\pi)$ E: N.A

3. La funzione
$$f(x) = \begin{cases} 1 & \text{per } x < 0 \\ \cos(x) & \text{per } x \ge 0 \end{cases}$$

A: è derivabile, ma non continua. B: N.A. C: non è né continua né derivabile. D: è continua e derivabile. E: è continua, ma non derivabile.

4. Data $f(x) = 3(\log(3x))$. Allora f'(e) è uguale a

A: N.A. B:
$$\pi$$
 C: $\frac{3}{e}$ D: $\log(3e)$ E: e^3

5. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x) < 0\}$$

valgono

$$\mathbf{A} \colon \{-\infty, N.E., +\infty, N.E.\} \quad \mathbf{B} \colon \{0, 0, \pi, \pi\} \quad \mathbf{C} \colon \{-\pi, -\pi, +\infty, N.E.\} \quad \mathbf{D} \colon \mathbf{N}.\mathbf{A}. \quad \mathbf{E} \colon \{-\infty, N.E., 2\pi, 2\pi\}$$

6. Il limite

$$\lim_{x \to +\infty} \frac{\log(x^3 + \cos(x))}{3\log(x)}$$

vale

A: 1 B: N.E. C: 0 D: N.A. E:
$$+\infty$$

7. La serie a termini non-negativi

$$\sum_{n=41}^{\infty} \log \left(1 + \frac{1}{n^{\alpha}}\right)$$

converge per

A:
$$\alpha > 0$$
 B: $3 < \alpha < \pi$ C: $\alpha \ge 1$ D: N.A. E: $\alpha > 1$

8. L'integrale

$$\int_{-1}^{2} |x| \, dx$$

vale

A:
$$5/2$$
 B: N.A. C: $\sqrt{2}$ D: 0 E: $3/2$

9. La retta tangente al grafico di $y(x) = \sin(2x)$ nel punto $x_0 = \pi/4$ vale

A:
$$1 + x + x^2$$
 B: N.A. C: 1 D: $1 + 2x - \frac{\pi}{2}$ E: $1 + \sin(2x)(x - \pi/4)$

10. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da f(x) = |x+1| è

A: monotona crescente B: surgettiva C: derivabile ovunque D: N.A. E: iniettiva

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

12 gennaio 2009

(Cognome)	(Nome)	(Numero di matricola)

A	В	\mathbf{C}	D	\mathbf{E}	
		_			

1	
2	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	

- 1. Data $f(x) = 3(\log(3x))$. Allora f'(e) è uguale a A: e^3 B: $\log(3e)$ C: $\frac{3}{e}$ D: N.A. E: π
- 2. Le soluzioni dell'equazione differenziale $x'(t) = \sin(t)$ sono

A: $\sin(t) + e^t + c$ B: $-\cos(t) + c$ C: N.A. D: N.E. E: $t + c_1 e^t + c_2 \sin(t)$

3. Modulo e argomento del numero complesso $z=i^{43}$ sono

A: $(2,43\pi)$ B: $(1,4\pi/3)$ C: N.A. D: $(2,2\pi/3)$ E: $(1,3\pi/2)$

4. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \sin(x) < 0\}$$

valgono

A: $\{-\infty, N.E., +\infty, N.E.\}$ B: $\{-\pi, -\pi, +\infty, N.E.\}$ C: $\{-\infty, N.E., 2\pi, 2\pi\}$ D: N.A. E: $\{0, 0, \pi, \pi\}$

5. Il limite

$$\lim_{x \to +\infty} \frac{\log(x^3 + \cos(x))}{3\log(x)}$$

vale

A: 1 B: $+\infty$ C: N.A. D: 0 E: N.E.

6. La funzione $f:\ \mathbb{R} \to \mathbb{R}$ definita da f(x) = |x+1| è

A: monotona crescente B: iniettiva C: derivabile ovunque D: surgettiva E: N.A.

7. L'integrale

$$\int_{-1}^{2} |x| \, dx$$

vale

A: N.A. B: 3/2 C: 0 D: 5/2 E: $\sqrt{2}$

8. La serie a termini non-negativi

$$\sum_{n=41}^{\infty} \log \left(1 + \frac{1}{n^{\alpha}}\right)$$

converge per

A: $3 < \alpha < \pi$ B: $\alpha \ge 1$ C: $\alpha > 1$ D: N.A. E: $\alpha > 0$

9. La retta tangente al grafico di $y(x) = \sin(2x)$ nel punto $x_0 = \pi/4$ vale

A: 1 B: $1 + \sin(2x)(x - \pi/4)$ C: N.A. D: $1 + x + x^2$ E: $1 + 2x - \frac{\pi}{2}$

10. La funzione $f(x) = \begin{cases} 1 & \text{per } x < 0 \\ \cos(x) & \text{per } x \ge 0 \end{cases}$

A: N.A. B: non è né continua né derivabile. C: è continua, ma non derivabile. D: è derivabile, ma non continua. E: è continua e derivabile.

12 gennaio 2009

(Cognome)													(No	me)			(Numero di matricola)					ola)				

A	В	С	D	\mathbf{E}	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

12 gennaio 2009

			(Co	ogno	me)				 			(No	me)			_	(N	ume	ro d	i ma	tric	ola)

A	В	С	D	\mathbf{E}

1	
2	$lackbox{0}$
3	
4	
5	
6	
7	
8	
9	
10	

12 gennaio 2009

			(Co	gno	me)						(No	me)			(N	ume	ro di	i ma	trico	la)

1	
2	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
3	
4	
5	
6	$lackbox{0}$
7	
8	$lackbox{0}$
9	
10	

12 gennaio 2009

			(Co	ogno	me)							(N	ome	e)				(N	ume	ro c	li m	atric	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

12 gennaio 2009

(Cognome)	(Nome)	(Numero di matricola)
,	, ,	,

1	
2	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	

1. Il numero di soluzioni dell'equazione complessa |z|=4 è

A: 2 B: 1 C: N.A. D: Infinite E: Nessuna

2. Inf, min, sup e max dell'insieme

$$A = \{\log(x^2), x > 1\}$$

valgono

A: $\{0, 0, +\infty, N.E.\}$ B: $\{0, N.E, +\infty, N.E.\}$ C: $\{0, N.E., e, N.E.\}$ D: N.A. E: $\{1, 1, +\infty, N.E.\}$

3. Il limite

$$\lim_{x\to 0^+} e^{\frac{\log(1+x^3)}{x}}$$

vale

A: 2 B: $+\infty$ C: N.A. D: 0 E: N.E.

4. La serie a termini non-negativi

$$\sum_{n=18}^{\infty} \left[1 - \cos\left(\frac{1}{n^{\alpha}}\right) \right]$$

converge per

A: $3 < \alpha < \pi$ B: $\alpha \ge 1$ C: $\alpha > 0$ D: $\alpha > 1/2$ E: N.A.

5. L'integrale

$$\int_{-1}^{1} |e^x| dx$$

vale

A: $|2 - e^{-1}|$ B: $e - \frac{1}{e}$ C: $e + \frac{1}{e}$ D: 0 E: N.A.

6. Data $f(x) = 2^{\log(2x)}$. Allora f'(1) è uguale a

A: $2\log(2)e$ B: $\log(2)2^{\log(2)}$ C: 1 D: N.E. E: N

7. Le soluzioni dell'equazione differenziale $x'(t) = e^t$ sono

A:
$$\frac{e^t + e^{-t}}{2} + c$$
 B: $\sin(t) + t + c$ C: $e^t + c$ D: N.A. E: $t^2/2 + \sin(t) + c$

8. La funzione $f(x) = \begin{cases} 1 & \text{per } x < 0 \\ e^x & \text{per } x \ge 0 \end{cases}$

A: è continua e derivabile. B: è continua, ma non derivabile. C: N.A. D: è derivabile, ma non continua. E: non è né continua né derivabile.

9. La retta tangente al grafico di $f(x) = \cos(3x)$ nel punto $x_0 = \pi/6$ vale:

A:
$$-3x + \pi/2$$
 B: $1/2$ C: N.A. D: $\frac{\pi}{2} + (x - \frac{\pi}{2})\cos(x)$ E: $\frac{\pi}{2} + x$

10. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = e^x$ è

A: zero almeno in un punto $\,$ B: non derivabile per x=-1 $\,$ C: sempre maggiore o uguale a 1 $\,$ D: monotona crescente $\,$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

12 gennaio 2009

(Cognome)	(Nome)	(Numero di matricola)

 $\mathrm{CODICE} = 484783$

1 2 3

A	В	С	D	E
	\bigcirc	\bigcirc	\bigcirc	
	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\overline{\bigcap}$	$\overline{\bigcap}$	$\overline{\bigcap}$	$\overline{\bigcirc}$

4	
5	00000
6	
7	
8	

9 0 0 0

- 1. Data $f(x) = 2^{\log(2x)}$. Allora f'(1) è uguale a A: N.E. B: $\log(2)2^{\log(2)}$ C: N.A. D: $2\log(2)$ e E: 1
- 2. Inf, min, sup e max dell'insieme

$$A = \{\log(x^2), x > 1\}$$

valgono

A: $\{0, N.E., e, N.E.\}$ B: N.A. C: $\{0, 0, +\infty, N.E.\}$ D: $\{0, N.E, +\infty, N.E.\}$ E: $\{1, 1, +\infty, N.E.\}$

3. Il numero di soluzioni dell'equazione complessa |z|=4è

A: N.A. B: Infinite C: 2 D: 1 E: Nessuna

4. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = e^x$ è

A: zero almeno in un punto B: N.A. C: non derivabile per x=-1 D: monotona crescente E: sempre maggiore o uguale a 1

5. L'integrale

$$\int_{-1}^{1} |e^x| dx$$

vale

A:
$$e + \frac{1}{e}$$
 B: N.A. C: 0 D: $|2 - e^{-1}|$ E: $e - \frac{1}{e}$

6. La serie a termini non-negativi

$$\sum_{n=18}^{\infty} \left[1 - \cos\left(\frac{1}{n^{\alpha}}\right) \right]$$

converge per

A: $\alpha \ge 1$ B: $\alpha > 0$ C: $\alpha > 1/2$ D: $3 < \alpha < \pi$ E: N.A.

7. La funzione
$$f(x) = \begin{cases} 1 & \text{per } x < 0 \\ e^x & \text{per } x \ge 0 \end{cases}$$

A: non è né continua né derivabile. B: è derivabile, ma non continua. C: è continua, ma non derivabile. D: N.A. E: è continua e derivabile.

8. Le soluzioni dell'equazione differenziale $x'(t) = e^t$ sono

A:
$$\frac{e^t + e^{-t}}{2} + c$$
 B: N.A. C: $\sin(t) + t + c$ D: $t^2/2 + \sin(t) + c$ E: $e^t + c$

9. Il limite

$$\lim_{x\to 0^+} e^{\frac{\log(1+x^3)}{x}}$$

vale

A: 0 B:
$$+\infty$$
 C: N.E. D: 2 E: N.A.

10. La retta tangente al grafico di $f(x) = \cos(3x)$ nel punto $x_0 = \pi/6$ vale:

A:
$$-3x + \pi/2$$
 B: $\frac{\pi}{2} + x$ C: $\frac{\pi}{2} + \left(x - \frac{\pi}{2}\right)\cos(x)$ D: N.A. E: $1/2$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

12 gennaio 2009

(Cognomo)	(Nome)	(Numero di matricola)
(Cognome)	(Nome)	(Numero di matricola)

 ${\rm CODICE} = 320728$

1	00000
2	
3	00000
4	00000
5	00000
6	00000
7	00000
8	
9	00000
10	00000

A B C D E

1. Inf, min, sup e max dell'insieme

$$A = \{\log(x^2), \ x > 1\}$$

valgono

A: N.A. B: $\{0, N.E, +\infty, N.E.\}$ C: $\{0, 0, +\infty, N.E.\}$ D: $\{1, 1, +\infty, N.E.\}$ E: $\{0, N.E., e, N.E.\}$

2. L'integrale

$$\int_{-1}^{1} |e^x| dx$$

vale

A:
$$e + \frac{1}{e}$$
 B: $|2 - e^{-1}|$ C: $e - \frac{1}{e}$ D: N.A. E: 0

3. Il numero di soluzioni dell'equazione complessa |z|=4 è

A: 1 B: Infinite C: 2 D: Nessuna E: N.A.

4. Le soluzioni dell'equazione differenziale $x'(t) = e^t$ sono

A:
$$\frac{e^t + e^{-t}}{2} + c$$
 B: $\sin(t) + t + c$ C: N.A. D: $e^t + c$ E: $t^2/2 + \sin(t) + c$

5. Il limite

$$\lim_{x \to 0^+} e^{\frac{\log(1+x^3)}{x}}$$

vale

A: N.E. B:
$$+\infty$$
 C: N.A. D: 0 E: 2

6. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = e^x$ è

A: monotona crescente B: zero almeno in un punto C: N.A. D: non derivabile per x=-1 E: sempre maggiore o uguale a 1

7. La funzione $f(x) = \begin{cases} 1 & \text{per } x < 0 \\ e^x & \text{per } x \ge 0 \end{cases}$

A: è derivabile, ma non continua. B: N.A. C: è continua, ma non derivabile. D: è continua e derivabile. E: non è né continua né derivabile.

8. La retta tangente al grafico di $f(x) = \cos(3x)$ nel punto $x_0 = \pi/6$ vale:

A:
$$\frac{\pi}{2} + x$$
 B: N.A. C: $-3x + \pi/2$ D: $1/2$ E: $\frac{\pi}{2} + (x - \frac{\pi}{2})\cos(x)$

9. La serie a termini non-negativi

$$\sum_{n=18}^{\infty} \left[1 - \cos\left(\frac{1}{n^{\alpha}}\right) \right]$$

converge per

A:
$$\alpha > 0$$
 B: $\alpha > 1/2$ C: $\alpha \ge 1$ D: N.A. E: $3 < \alpha < \pi$

10. Data $f(x) = 2^{\log(2x)}$. Allora f'(1) è uguale a

A: $2\log(2)e$ B: 1 C: N.A. D: N.E. E: $\log(2)2^{\log(2)}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

12 gennaio 2009

(Cognome)	(Nome)	(Numero di matricola)

A	В	\mathbf{C}	D	\mathbf{E}	
---	---	--------------	---	--------------	--

1	00000
2	00000
3	
4	
5	
6	
7	00000
8	
9	
10	0000

1. La serie a termini non-negativi

$$\sum_{n=18}^{\infty} \left[1 - \cos\left(\frac{1}{n^{\alpha}}\right) \right]$$

converge per

A:
$$3 < \alpha < \pi$$
 B: $\alpha \ge 1$ C: $\alpha > 0$ D: $\alpha > 1/2$ E: N.A.

2. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = e^x$ è

A: N.A. B: sempre maggiore o uguale a 1 C: non derivabile per x = -1 D: monotona crescente E: zero almeno in un punto

3. Inf, min, sup e max dell'insieme

$$A = {\log(x^2), x > 1}$$

valgono

A:
$$\{0, N.E., e, N.E.\}$$
 B: $\{0, 0, +\infty, N.E.\}$ C: $\{1, 1, +\infty, N.E.\}$ D: $\{0, N.E, +\infty, N.E.\}$ E: N.A.

4. La funzione
$$f(x) = \begin{cases} 1 & \text{per } x < 0 \\ e^x & \text{per } x \ge 0 \end{cases}$$

A: non è né continua né derivabile. B: è derivabile, ma non continua. C: è continua e derivabile. D: è continua, ma non derivabile. E: N.A.

5. L'integrale

$$\int_{-1}^{1} |\mathbf{e}^x| \, dx$$

vale

A: 0 B: N.A. C:
$$|2 - e^{-1}|$$
 D: $e - \frac{1}{e}$ E: $e + \frac{1}{e}$

6. Le soluzioni dell'equazione differenziale $x'(t) = e^t$ sono

A: N.A. B:
$$\frac{e^t + e^{-t}}{2} + c$$
 C: $e^t + c$ D: $t^2/2 + \sin(t) + c$ E: $\sin(t) + t + c$

7. Data $f(x) = 2^{\log(2x)}$. Allora f'(1) è uguale a

A:
$$\log(2)2^{\log(2)}$$
 B: N.E. C: 1 D: N.A. E: $2\log(2)$ e

8. Il numero di soluzioni dell'equazione complessa |z|=4 è

A: 2 B: 1 C: N.A. D: Nessuna E: Infinite

9. La retta tangente al grafico di $f(x) = \cos(3x)$ nel punto $x_0 = \pi/6$ vale:

A:
$$-3x + \pi/2$$
 B: N.A. C: $\frac{\pi}{2} + (x - \frac{\pi}{2})\cos(x)$ D: $\frac{\pi}{2} + x$ E: $1/2$

10. Il limite

$$\lim_{x\to 0^+} e^{\frac{\log(1+x^3)}{x}}$$

vale

A: N.E. B: N.A. C:
$$+\infty$$
 D: 2 E: 0

12 gennaio 2009

(Cognome)											(No	ome)				ume	i ma	trice	ola)				

 $\mathrm{CODICE} = 061132$

Α	В	С	D	\mathbf{E}	

1	
2	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
3	
4	
5	
6	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
7	
8	
9	
10	

12 gennaio 2009

(Cognome)													(No	me)			(N	lum	ero	di n	natı	ricol	.a)				

 $\mathrm{CODICE} = 484783$

A	В	\mathbf{C}	D	Ε	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

12 gennaio 2009

(Cognome)												(No	me)			(N	ume	ro di	i ma	trico	la)				

 ${\rm CODICE} = 320728$

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

12 gennaio 2009

(Cognome)												(No	me)			(N	ume	ro di	i ma	trico	la)				

 $\mathrm{CODICE} = 313718$

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

PARTE B

1. Studiare il numero di soluzioni, al variare di $\lambda \in \mathbb{R}^+$ della equazione

$$\log(\lambda x) = |x+1|, \qquad x > 0$$

2. Risolvere il problema di Cauchy

$$\begin{cases} y'(t) - y(t) = \sin(t) + t\cos(t) \\ y(0) = 0. \end{cases}$$

Quanto vale y'(0)?

3. Studiare la convergenza ed eventualmente calcolare l'integrale generalizzato

$$\int_{2}^{+\infty} \frac{x-1}{x^3 + x^2 + x + 1} \, dx.$$

4. Sia $f:[2,7/2]\to\mathbb{R}$ una funzione integrabile secondo Riemann tale che

$$\int_{2}^{7/2} f(x) \, dx = 3.$$

Dimostrare che esiste almeno un punto $x_0 \in [2,7/2]$ tale che $f(x_0) \ge \frac{7}{4}$.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2009

				(Cognome)		(Nome)		(Numero di	matricola)
		CO	DICE	=802272					
				A B C D E					
	1								
	2								
	3								
	4			00000					
	5			00000					
(6			0000					

7 8 9

10

1. Data $f(x) = \sin(\pi x)$. Allora f'(1/3) è uguale a

A: -1 B: N.A. C:
$$\frac{\pi}{3}$$
 D: $\frac{\sqrt{3}}{2}$ E: $\frac{\pi}{6}$

2. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log(x) \ge 1\}$$

valgono

A: N.A. B:
$$\{e, e, +\infty, N.E.\}$$
 C: $\{0, 0, +\infty, N.E.\}$ D: $\{1, 1., +\infty, N.E.\}$ E: $\{e, N.E., 1, 1\}$

3. La serie a termini non-negativi

$$\sum_{n=-1}^{\infty} \frac{1}{(n+3)(n+4)^{\alpha}}$$

converge per

A:
$$\alpha \ge 1$$
 B: $\alpha > 0$ C: $3 < \alpha < \pi$ D: $\alpha > 1$ E: N.A.

4. L'integrale

$$\int_{-1}^{3} |x^3| \, dx$$

vale

A: 20 B:
$$\frac{41}{2}$$
 C: $\frac{\sqrt{\pi}-1}{2}$ D: N.A. E: 0

5. Il limite

$$\lim_{x \to -\infty} \frac{x e^{2(x+1)}}{e^{3x}}$$

vale

A: 0 B:
$$-\infty$$
 C: 1 D: N.A. E: N.E.

6. La funzione $f(x) = \begin{cases} x^2 + x & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$

A: non è né continua né derivabile. B: è derivabile, ma non continua. C: è continua, ma non derivabile. D: N.A. E: è continua e derivabile.

7. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sin(|x|)$ è

A: sempre non negativa B: monotona crescente C: iniettiva D: N.A. E: surgettiva

8. Il polinomio di Taylor di grado 2 relativo al punto $x_0=0$ della funzione $f(x)=\mathrm{e}^{x^2}$ vale

A:
$$1 + ex + \frac{e^2}{2}x^2$$
 B: N.A. C: $1 + x + x^2$ D: $1 + x$ E: $1 + x^2$

9. Una primitiva della funzione $x(t) = t \sin(t)$ è

A:
$$\sin(t) - t\cos(t) + \sqrt{\pi}$$
 B: $\sin(t) + \log(\cos(t)) - 1$ C: $-\frac{t^2}{2}\cos(t)$ D: N.A. E: $\sin(t) + t\cos(t)$

10. Modulo e argomento del numero complesso $z=\frac{i}{2}-\frac{\sqrt{3}}{2}$ sono

A: N.A. B:
$$(2, 5\pi/3)$$
 C: $(1, 5\pi/6)$ D: $(1, 4\pi/3)$ E: $(1, -\pi/6)$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2009

(Cognome)	(Nome)	(Numero di matricola)

CODICE = 336252

A	В	С	D	\mathbf{E}
---	---	---	---	--------------

1	
2	0000
3	
4	
5	
6	
7	
8	
9	
10	

- 1. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sin(|x|)$ è

 A: monotona crescente B: sempre non negativa C: iniettiva D: surgettiva E: N.A.
- 2. Modulo e argomento del numero complesso $z=\frac{i}{2}-\frac{\sqrt{3}}{2}$ sono A: $(1,4\pi/3)$ B: $(1,-\pi/6)$ C: N.A. D: $(2,5\pi/3)$ E: $(1,5\pi/6)$
- 3. Il polinomio di Taylor di grado 2 relativo al punto $x_0 = 0$ della funzione $f(x) = e^{x^2}$ vale A: $1 + ex + \frac{e^2}{2}x^2$ B: $1 + x + x^2$ C: N.A. D: 1 + x E: $1 + x^2$
- 4. Una primitiva della funzione $x(t) = t \sin(t)$ è A: $\sin(t) + t \cos(t)$ B: $\sin(t) + \log(\cos(t)) 1$ C: N.A. D: $\sin(t) t \cos(t) + \sqrt{\pi}$ E: $-\frac{t^2}{2}\cos(t)$
- 5. Data $f(x) = \sin(\pi x)$. Allora f'(1/3) è uguale a A: -1 B: N.A. C: $\frac{\pi}{6}$ D: $\frac{\pi}{3}$ E: $\frac{\sqrt{3}}{2}$
- 6. L'integrale

$$\int_{-1}^{3} |x^3| \, dx$$

vale

A: 20 B:
$$\frac{41}{2}$$
 C: 0 D: N.A. E: $\frac{\sqrt{\pi}-1}{2}$

7. La serie a termini non-negativi

$$\sum_{n=-1}^{\infty} \frac{1}{(n+3)(n+4)^{\alpha}}$$

converge per

A:
$$3 < \alpha < \pi$$
 B: N.A. C: $\alpha > 1$ D: $\alpha \ge 1$ E: $\alpha > 0$

8. Inf, min, sup e max dell'insieme

$$A = \{ x \in \mathbb{R} : \log(x) \ge 1 \}$$

valgono

A:
$$\{e, N.E., 1, 1\}$$
 B: $\{0, 0, +\infty, N.E.\}$ C: $\{e, e, +\infty, N.E.\}$ D: $\{1, 1., +\infty, N.E.\}$ E N.A.

9. Il limite

$$\lim_{x \to -\infty} \frac{x e^{2(x+1)}}{e^{3x}}$$

vale

A: N.E. B: N.A. C: 0 D:
$$-\infty$$
 E: 1

10. La funzione
$$f(x) = \begin{cases} x^2 + x & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$$

A: non è né continua né derivabile. B: è continua, ma non derivabile. C: è continua e derivabile. D: è derivabile, ma non continua. E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2009

(Cogn	nome)	(Nome)	(Numero di matricola)

CODICE = 496934

Α	В	С	D	E	
\sim	\sim	\sim	\sim	\sim	

1	
2	0000
3	
4	
5	
6	
7	
8	
9	
10	0000

1. La funzione $f:\ \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sin(|x|)$ è

A: N.A. B: monotona crescente C: sempre non negativa D: surgettiva E: iniettiva

2. La serie a termini non-negativi

$$\sum_{n=-1}^{\infty} \frac{1}{(n+3)(n+4)^{\alpha}}$$

converge per

A: $\alpha > 0$ B: N.A. C: $\alpha > 1$ D: $3 < \alpha < \pi$ E: $\alpha \ge 1$

3. Modulo e argomento del numero complesso $z = \frac{i}{2} - \frac{\sqrt{3}}{2}$ sono A: $(1, 5\pi/6)$ B: $(1, 4\pi/3)$ C: $(1, -\pi/6)$ D: N.A. E: $(2, 5\pi/3)$

4. L'integrale

$$\int_{-1}^{3} |x^3| \, dx$$

vale

A: 20 B: N.A. C: 0 D: $\frac{41}{2}$ E: $\frac{\sqrt{\pi}-1}{2}$

5. Il limite

$$\lim_{x \to -\infty} \frac{x e^{2(x+1)}}{e^{3x}}$$

vale

A: 1 B: N.E. C: 0 D: $-\infty$ E: N.A.

6. Il polinomio di Taylor di grado 2 relativo al punto $x_0 = 0$ della funzione $f(x) = e^{x^2}$ vale

A: N.A. B: $1 + x^2$ C: $1 + ex + \frac{e^2}{2}x^2$ D: $1 + x + x^2$ E: 1 + x

7. La funzione $f(x) = \begin{cases} x^2 + x & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$

A: è continua, ma non derivabile. B: è derivabile, ma non continua. C: è continua e derivabile. D: N.A. E: non è né continua né derivabile.

8. Una primitiva della funzione $x(t) = t \sin(t)$ è

A: $\sin(t) + \log(\cos(t)) - 1$ B: $\sin(t) + t\cos(t)$ C: $\sin(t) - t\cos(t) + \sqrt{\pi}$ D: N.A. E: $-\frac{t^2}{2}\cos(t)$

9. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log(x) \ge 1\}$$

valgono

A: $\{0,0,+\infty,N.E.\}$ B: $\{{\bf e},N.E.,1,1\}$ C: $\{1,1.,+\infty,N.E.\}$ D: $\{{\bf e},{\bf e},+\infty,N.E.\}$ E: N.A.

10. Data $f(x) = \sin(\pi x)$. Allora f'(1/3) è uguale a

A: -1 B: $\frac{\pi}{3}$ C: $\frac{\sqrt{3}}{2}$ D: $\frac{\pi}{6}$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2009

(Cognome)	(Nome)	(Numero di matricola)

CODICE = 308945

Α	В	С	D	Е	

1	
2	0000
3	00000
4	00000
5	
6	
7	00000
8	00000
9	
10	0000

1. Data $f(x) = \sin(\pi x)$. Allora f'(1/3) è uguale a

A:
$$\frac{\pi}{6}$$
 B: -1 C: N.A. D: $\frac{\sqrt{3}}{2}$ E: $\frac{\pi}{3}$

2. Una primitiva della funzione $x(t) = t \sin(t)$ è

A:
$$\sin(t) + \log(\cos(t)) - 1$$
 B: $-\frac{t^2}{2}\cos(t)$ C: $\sin(t) + t\cos(t)$ D: $\sin(t) - t\cos(t) + \sqrt{\pi}$ E: N.A.

3. La funzione
$$f(x) = \begin{cases} x^2 + x & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$$

A: non è né continua né derivabile. B: è derivabile, ma non continua. C: è continua, ma non derivabile. D: è continua e derivabile. E: N.A.

4. Il polinomio di Taylor di grado 2 relativo al punto $x_0=0$ della funzione $f(x)=\mathrm{e}^{x^2}$ vale

A:
$$1 + x^2$$
 B: N.A. C: $1 + x$ D: $1 + x + x^2$ E: $1 + ex + \frac{e^2}{2}x^2$

5. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log(x) \ge 1\}$$

valgono

A:
$$\{e, N.E., 1, 1\}$$
 B: $\{e, e, +\infty, N.E.\}$ C: $\{0, 0, +\infty, N.E.\}$ D: $\{1, 1., +\infty, N.E.\}$ E N.A.

6. Modulo e argomento del numero complesso $z = \frac{i}{2} - \frac{\sqrt{3}}{2}$ sono

A:
$$(1, -\pi/6)$$
 B: $(1, 5\pi/6)$ C: N.A. D: $(2, 5\pi/3)$ E: $(1, 4\pi/3)$

7. L'integrale

$$\int_{-1}^{3} |x^3| \, dx$$

vale

A: 20 B:
$$\frac{\sqrt{\pi}-1}{2}$$
 C: N.A. D: 0 E: $\frac{41}{2}$

8. Il limite

$$\lim_{x \to -\infty} \frac{x e^{2(x+1)}}{e^{3x}}$$

vale

A: 0 B:
$$-\infty$$
 C: 1 D: N.A. E: N.E.

9. La serie a termini non-negativi

$$\sum_{n=-1}^{\infty} \frac{1}{(n+3)(n+4)^{\alpha}}$$

converge per

A:
$$\alpha \ge 1$$
 B: $\alpha > 0$ C: $\alpha > 1$ D: $3 < \alpha < \pi$ E: N.A.

10. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sin(|x|)$ è

A: monotona crescente B: surgettiva C: iniettiva D: sempre non negativa E: N.A.

29 gennaio 2009

			(Co	gnoi	me)						(No	me)			(Numero di matricola)				la)	

 $\mathrm{CODICE} = 802272$

A	В	С	D	\mathbf{E}	

1	
2	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	

29 gennaio 2009

			(Co	ogno	me)							(N	ome	e)				(N	ume	ro c	li m	atric	ola)

 ${\rm CODICE} = 336252$

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

29 gennaio 2009

			(Co	gnoi	me)						(No	me)			(N	ume	ro di	i ma	trico	la)

 ${\rm CODICE} = 496934$

A	В	С	D	Ε	
11	ט	\circ	ט	ш	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

29 gennaio 2009

			(Co	ogno	me)				 			(No	me)			_	(N	ume	ro d	i ma	trice	ola)

 $\mathrm{CODICE} = 308945$

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2009

				(Cognome)		(Nome)		(Numero di	matricola)
		CO	DICE	=802272					
				A B C D E					
	1								
	2								
	3								
	4			00000					
	5			00000					
(6			0000					

7 8 9

10

1. Data $f(x) = \sin(\pi x)$. Allora f'(1/3) è uguale a

A: -1 B: N.A. C:
$$\frac{\pi}{3}$$
 D: $\frac{\sqrt{3}}{2}$ E: $\frac{\pi}{6}$

2. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log(x) \ge 1\}$$

valgono

A: N.A. B:
$$\{e, e, +\infty, N.E.\}$$
 C: $\{0, 0, +\infty, N.E.\}$ D: $\{1, 1., +\infty, N.E.\}$ E: $\{e, N.E., 1, 1\}$

3. La serie a termini non-negativi

$$\sum_{n=-1}^{\infty} \frac{1}{(n+3)(n+4)^{\alpha}}$$

converge per

A:
$$\alpha \ge 1$$
 B: $\alpha > 0$ C: $3 < \alpha < \pi$ D: $\alpha > 1$ E: N.A.

4. L'integrale

$$\int_{-1}^{3} |x^3| \, dx$$

vale

A: 20 B:
$$\frac{41}{2}$$
 C: $\frac{\sqrt{\pi}-1}{2}$ D: N.A. E: 0

5. Il limite

$$\lim_{x \to -\infty} \frac{x e^{2(x+1)}}{e^{3x}}$$

vale

A: 0 B:
$$-\infty$$
 C: 1 D: N.A. E: N.E.

6. La funzione $f(x) = \begin{cases} x^2 + x & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$

A: non è né continua né derivabile. B: è derivabile, ma non continua. C: è continua, ma non derivabile. D: N.A. E: è continua e derivabile.

7. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sin(|x|)$ è

A: sempre non negativa B: monotona crescente C: iniettiva D: N.A. E: surgettiva

8. Il polinomio di Taylor di grado 2 relativo al punto $x_0=0$ della funzione $f(x)=\mathrm{e}^{x^2}$ vale

A:
$$1 + ex + \frac{e^2}{2}x^2$$
 B: N.A. C: $1 + x + x^2$ D: $1 + x$ E: $1 + x^2$

9. Una primitiva della funzione $x(t) = t \sin(t)$ è

A:
$$\sin(t) - t\cos(t) + \sqrt{\pi}$$
 B: $\sin(t) + \log(\cos(t)) - 1$ C: $-\frac{t^2}{2}\cos(t)$ D: N.A. E: $\sin(t) + t\cos(t)$

10. Modulo e argomento del numero complesso $z=\frac{i}{2}-\frac{\sqrt{3}}{2}$ sono

A: N.A. B:
$$(2, 5\pi/3)$$
 C: $(1, 5\pi/6)$ D: $(1, 4\pi/3)$ E: $(1, -\pi/6)$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2009

(Cognome)	(Nome)	(Numero di matricola)

CODICE = 336252

A	В	С	D	\mathbf{E}
---	---	---	---	--------------

1	
2	0000
3	
4	
5	
6	
7	
8	
9	
10	

- 1. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sin(|x|)$ è

 A: monotona crescente B: sempre non negativa C: iniettiva D: surgettiva E: N.A.
- 2. Modulo e argomento del numero complesso $z=\frac{i}{2}-\frac{\sqrt{3}}{2}$ sono A: $(1,4\pi/3)$ B: $(1,-\pi/6)$ C: N.A. D: $(2,5\pi/3)$ E: $(1,5\pi/6)$
- 3. Il polinomio di Taylor di grado 2 relativo al punto $x_0 = 0$ della funzione $f(x) = e^{x^2}$ vale A: $1 + ex + \frac{e^2}{2}x^2$ B: $1 + x + x^2$ C: N.A. D: 1 + x E: $1 + x^2$
- 4. Una primitiva della funzione $x(t) = t\sin(t)$ è A: $\sin(t) + t\cos(t)$ B: $\sin(t) + \log(\cos(t)) 1$ C: N.A. D: $\sin(t) t\cos(t) + \sqrt{\pi}$ E: $-\frac{t^2}{2}\cos(t)$
- 5. Data $f(x) = \sin(\pi x)$. Allora f'(1/3) è uguale a A: -1 B: N.A. C: $\frac{\pi}{6}$ D: $\frac{\pi}{3}$ E: $\frac{\sqrt{3}}{2}$
- 6. L'integrale

$$\int_{-1}^{3} |x^3| \, dx$$

vale

A: 20 B:
$$\frac{41}{2}$$
 C: 0 D: N.A. E: $\frac{\sqrt{\pi}-1}{2}$

7. La serie a termini non-negativi

$$\sum_{n=-1}^{\infty} \frac{1}{(n+3)(n+4)^{\alpha}}$$

converge per

A:
$$3 < \alpha < \pi$$
 B: N.A. C: $\alpha > 1$ D: $\alpha \ge 1$ E: $\alpha > 0$

8. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log(x) \ge 1\}$$

valgono

A:
$$\{e, N.E., 1, 1\}$$
 B: $\{0, 0, +\infty, N.E.\}$ C: $\{e, e, +\infty, N.E.\}$ D: $\{1, 1., +\infty, N.E.\}$ E: N.A.

9. Il limite

$$\lim_{x\to -\infty} \frac{x \operatorname{e}^{2(x+1)}}{\operatorname{e}^{3x}}$$

vale

A: N.E. B: N.A. C: 0 D:
$$-\infty$$
 E: 1

10. La funzione
$$f(x) = \begin{cases} x^2 + x & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$$

A: non è né continua né derivabile. B: è continua, ma non derivabile. C: è continua e derivabile. D: è derivabile, ma non continua. E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2009

(Cogn	nome)	(Nome)	(Numero di matricola)

CODICE = 496934

Α	В	С	D	E	
\sim	\sim	\sim	\sim	\sim	

1	
2	0000
3	
4	
5	
6	
7	
8	
9	
10	0000

1. La funzione $f:\ \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sin(|x|)$ è

A: N.A. B: monotona crescente C: sempre non negativa D: surgettiva E: iniettiva

2. La serie a termini non-negativi

$$\sum_{n=-1}^{\infty} \frac{1}{(n+3)(n+4)^{\alpha}}$$

converge per

A: $\alpha > 0$ B: N.A. C: $\alpha > 1$ D: $3 < \alpha < \pi$ E: $\alpha \ge 1$

3. Modulo e argomento del numero complesso $z = \frac{i}{2} - \frac{\sqrt{3}}{2}$ sono A: $(1, 5\pi/6)$ B: $(1, 4\pi/3)$ C: $(1, -\pi/6)$ D: N.A. E: $(2, 5\pi/3)$

4. L'integrale

$$\int_{-1}^{3} |x^3| \, dx$$

vale

A: 20 B: N.A. C: 0 D: $\frac{41}{2}$ E: $\frac{\sqrt{\pi}-1}{2}$

5. Il limite

$$\lim_{x \to -\infty} \frac{x e^{2(x+1)}}{e^{3x}}$$

vale

A: 1 B: N.E. C: 0 D: $-\infty$ E: N.A.

6. Il polinomio di Taylor di grado 2 relativo al punto $x_0 = 0$ della funzione $f(x) = e^{x^2}$ vale

A: N.A. B: $1 + x^2$ C: $1 + ex + \frac{e^2}{2}x^2$ D: $1 + x + x^2$ E: 1 + x

7. La funzione $f(x) = \begin{cases} x^2 + x & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$

A: è continua, ma non derivabile. B: è derivabile, ma non continua. C: è continua e derivabile. D: N.A. E: non è né continua né derivabile.

8. Una primitiva della funzione $x(t) = t \sin(t)$ è

A: $\sin(t) + \log(\cos(t)) - 1$ B: $\sin(t) + t\cos(t)$ C: $\sin(t) - t\cos(t) + \sqrt{\pi}$ D: N.A. E: $-\frac{t^2}{2}\cos(t)$

9. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log(x) \ge 1\}$$

valgono

A: $\{0,0,+\infty,N.E.\}$ B: $\{{\bf e},N.E.,1,1\}$ C: $\{1,1.,+\infty,N.E.\}$ D: $\{{\bf e},{\bf e},+\infty,N.E.\}$ E: N.A.

10. Data $f(x) = \sin(\pi x)$. Allora f'(1/3) è uguale a

A: -1 B: $\frac{\pi}{3}$ C: $\frac{\sqrt{3}}{2}$ D: $\frac{\pi}{6}$ E: N.A.

29 gennaio 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

29 gennaio 2009

(Cognome)	(Nome)	(Numero di matricola)

A	В	С	D	Е	

1	
2	0000
3	00000
4	00000
5	
6	
7	00000
8	00000
9	
10	0000

1. Data $f(x) = \sin(\pi x)$. Allora f'(1/3) è uguale a

A:
$$\frac{\pi}{6}$$
 B: -1 C: N.A. D: $\frac{\sqrt{3}}{2}$ E: $\frac{\pi}{3}$

2. Una primitiva della funzione $x(t) = t \sin(t)$ è

A:
$$\sin(t) + \log(\cos(t)) - 1$$
 B: $-\frac{t^2}{2}\cos(t)$ C: $\sin(t) + t\cos(t)$ D: $\sin(t) - t\cos(t) + \sqrt{\pi}$ E: N.A.

3. La funzione
$$f(x) = \begin{cases} x^2 + x & \text{per } x < 0 \\ \sin(x) & \text{per } x \ge 0 \end{cases}$$

A: non è né continua né derivabile. B: è derivabile, ma non continua. C: è continua, ma non derivabile. D: è continua e derivabile. E: N.A.

4. Il polinomio di Taylor di grado 2 relativo al punto $x_0=0$ della funzione $f(x)=\mathrm{e}^{x^2}$ vale

A:
$$1 + x^2$$
 B: N.A. C: $1 + x$ D: $1 + x + x^2$ E: $1 + ex + \frac{e^2}{2}x^2$

5. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log(x) \ge 1\}$$

valgono

A:
$$\{e, N.E., 1, 1\}$$
 B: $\{e, e, +\infty, N.E.\}$ C: $\{0, 0, +\infty, N.E.\}$ D: $\{1, 1., +\infty, N.E.\}$ E N.A.

6. Modulo e argomento del numero complesso $z = \frac{i}{2} - \frac{\sqrt{3}}{2}$ sono

A:
$$(1, -\pi/6)$$
 B: $(1, 5\pi/6)$ C: N.A. D: $(2, 5\pi/3)$ E: $(1, 4\pi/3)$

7. L'integrale

$$\int_{-1}^{3} |x^3| \, dx$$

vale

A: 20 B:
$$\frac{\sqrt{\pi}-1}{2}$$
 C: N.A. D: 0 E: $\frac{41}{2}$

8. Il limite

$$\lim_{x \to -\infty} \frac{x e^{2(x+1)}}{e^{3x}}$$

vale

A: 0 B:
$$-\infty$$
 C: 1 D: N.A. E: N.E.

9. La serie a termini non-negativi

$$\sum_{n=-1}^{\infty} \frac{1}{(n+3)(n+4)^{\alpha}}$$

converge per

A:
$$\alpha \ge 1$$
 B: $\alpha > 0$ C: $\alpha > 1$ D: $3 < \alpha < \pi$ E: N.A.

10. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sin(|x|)$ è

A: monotona crescente B: surgettiva C: iniettiva D: sempre non negativa E: N.A.

29 gennaio 2009

(Cognome)										(No	me)			(N	ume	ro di	i ma	trico	la)						

 $\mathrm{CODICE} = 802272$

A	В	С	D	\mathbf{E}	

1	
2	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	

29 gennaio 2009

			(Co	ogno	me)							(N	ome	e)				(N	ume	ro c	li m	atric	ola)

 ${\rm CODICE} = 336252$

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

29 gennaio 2009

(Cognome)										(No	me)			(N	ume	ro di	i ma	trico	la)						

 ${\rm CODICE} = 496934$

A	В	С	D	Ε	
11	ט	\circ	ט	ш	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

29 gennaio 2009

(Cognome)									 			(No	me)			_	(N	ume	ro d	i ma	tric	ola)						

 $\mathrm{CODICE} = 308945$

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

29 gennaio 2009

PARTE B

1. Determinare l'immagine della funzione

$$f(x) = (1+x) 2^{-1/x}, \qquad x \in [-1/8, +\infty[\setminus \{0\}.$$

2. Risolvere il problema di Cauchy

$$\begin{cases} y''(t) + 4y(t) = \sin(2t) \\ y(0) = 0. \\ y'(0) = 0 \end{cases}$$

Quanto vale y'''(0)?

3. Determinare per quali valori del parametro $x \geq 0$ la serie

$$\sum_{n=0}^{\infty} \left(\frac{x^2}{1+x} \right)^n$$

converge. Definita poi, per tali x la funzione $g(x) = \sum_{n=0}^{\infty} \left(\frac{x^2}{1+x}\right)^n$, calcolare g'(1).

4. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione derivabile per tutti gli $x \in \mathbb{R}$. La funzione

è sempre non derivabile almeno un qualche punto? Discutere sotto quali ipotesi per la f (non a segno costante) la funzione |f(x)| è derivabile in ogni punto $x \in \mathbb{R}$.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

19 febbraio 2009

(Cognome)										(N	ome)				ume	i ma	trice								

A	В	С	D	\mathbf{E}	

1	0000
2	
3	0000
4	0000
5	0000
6	
7	
8	
9	
10	0000

1. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : |\log(x)| \le 1\}$$

valgono

A: N.A. B: $\{0, N.E., e, N.E.\}$ C: $\{-1/e, -1/e, e, e.\}$ D: $\{0, N.E., +\infty, N.E.\}$ E: $\{1/e, N.E., 1, 1\}$

2. Se $z\in\mathbb{C}$ è tale che $z^2=i$ allora l'argomento di z è uguale a A: 1 o $\pi/2$ B: $\pi/4$ o $5\pi/4$ C: 0 o π D: N.A. E: 1 o $\pi/3$

3. Il limite

$$\lim_{x \to +\infty} x^2 \sin(1/x^2)$$

vale

A: 1 B: N.E. C: N.A. D: $-\infty$ E: 0

4. Data $f(x) = \log(\sin(x))$. Allora $f'(\pi/4)$ è uguale a

A: N.A. B: $\frac{\pi}{6}$ C: 0 D: -1 E: $\frac{\sqrt{3}}{2}$

5. Il polinomio di Taylor di grado 4 relativo al punto $x_0 = 0$ della funzione $f(x) = cos(x^2)$ vale

A: 1 + x B: $1 + \cos(x) \frac{x^4}{4!}$ C: $1 - \frac{x^2}{2}$ D: N.A. E: $1 - \frac{x^4}{2}$

6. La funzione

$$f(x) = \begin{cases} x^2 - a & \text{per } x < 0\\ \sin(bx) & \text{per } x \ge 0 \end{cases}$$

risulta continua e derivabile in $x_0 = 0$ scegliendo (a, b) uguali a

A: N.A. B: (0,1) C: $(1,\pi/2)$ D: $(-1,\pi)$ E: N.E.

7. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^3 - x^2$ è

A: N.A. B: surgettiva C: monotona crescente D: iniettiva E: sempre non negativa

8. Una primitiva della funzione $x(t) = \sin(t)\cos(t)$ è

A: N.A. B:
$$1 - \frac{\cos^2(t)}{2}$$
 C: $2 - \frac{t^2}{2}\cos(t)$ D: $1 + \sin(t) + (\cos(t))$ E: $\sin(2t)$

9. La serie geometrica

$$\sum_{n=0}^{\infty} (1+q)^n$$

converge per

A:
$$|q| < 2$$
 B: $|q| < 1$ C: $0 < q < 1$ D: N.A. E: $-2 < q < 0$

10. L'integrale

$$\int_{\pi/4}^{\pi/2} \cos(x) \, dx$$

vale

A: 0 B:
$$1 - \sqrt{2}/2$$
 C: $1 + \sqrt{2}/2$ D: $\frac{\sqrt{3}}{2}$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

19 febbraio 2009

(Cognome)								_			(No	me)			(N	ume	ro di	ma	trice	ola)						

1	00000
2	
3	
4	
5	
6	
7	
8	00000
9	
10	

- 1. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^3 x^2$ è

 A: surgettiva B: N.A. C: sempre non negativa D: monotona crescente E: iniettiva
- 2. Il polinomio di Taylor di grado 4 relativo al punto $x_0 = 0$ della funzione $f(x) = cos(x^2)$ vale A: $1 + cos(x) \frac{x^4}{4!}$ B: N.A. C: $1 \frac{x^2}{2}$ D: 1 + x E: $1 \frac{x^4}{2}$
- 3. Il limite

$$\lim_{x \to +\infty} x^2 \sin(1/x^2)$$

vale

A: $-\infty$ B: 0 C: N.A. D: N.E. E: 1

4. L'integrale

$$\int_{\pi/4}^{\pi/2} \cos(x) \, dx$$

vale

A:
$$1 - \sqrt{2}/2$$
 B: $1 + \sqrt{2}/2$ C: $\frac{\sqrt{3}}{2}$ D: N.A. E: 0

5. Data $f(x) = \log(\sin(x))$. Allora $f'(\pi/4)$ è uguale a

A:
$$\frac{\sqrt{3}}{2}$$
 B: -1 C: N.A. D: 0 E: $\frac{\pi}{6}$

6. La serie geometrica

$$\sum_{n=0}^{\infty} (1+q)^n$$

converge per

A: N.A. B:
$$-2 < q < 0$$
 C: $|q| < 1$ D: $0 < q < 1$ E: $|q| < 2$

- 7. Se $z \in \mathbb{C}$ è tale che $z^2 = i$ allora l'argomento di z è uguale a A: $\pi/4$ o $5\pi/4$ B: 1 o $\pi/3$ C: N.A. D: 0 o π E: 1 o $\pi/2$
- 8. Una primitiva della funzione $x(t) = \sin(t)\cos(t)$ è A: $\sin(2t)$ B: $1 \frac{\cos^2(t)}{2}$ C: $2 \frac{t^2}{2}\cos(t)$ D: N.A. E: $1 + \sin(t) + (\cos(t))$
- 9. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : |\log(x)| \le 1\}$$

valgono

A:
$$\{0, N.E., +\infty, N.E.\}$$
 B: $\{0, N.E., e, N.E.\}$ C: N.A. D: $\{1/e, N.E., 1, 1\}$ E: $\{-1/e, -1/e, e, e.\}$

10. La funzione

$$f(x) = \begin{cases} x^2 - a & \text{per } x < 0\\ \sin(bx) & \text{per } x \ge 0 \end{cases}$$

risulta continua e derivabile in $x_0 = 0$ scegliendo (a, b) uguali a

A:
$$(0,1)$$
 B: N.E. C: $(1,\pi/2)$ D: N.A. E: $(-1,\pi)$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

19 febbraio 2009

(Cognome)								_			(No	me)			(N	ume	ro di	ma	trice	ola)						

Α	В	С	D	\mathbf{E}	

1	0000
2	
3	0000
4	0000
5	0000
6	
7	
8	
9	
10	0000

1. Data $f(x) = \log(\sin(x))$. Allora $f'(\pi/4)$ è uguale a

A:
$$\frac{\sqrt{3}}{2}$$
 B: $\frac{\pi}{6}$ C: -1 D: N.A. E: 0

2. Se $z \in \mathbb{C}$ è tale che $z^2 = i$ allora l'argomento di z è uguale a

A:
$$1 \circ \pi/2$$
 B: $1 \circ \pi/3$ C: $0 \circ \pi$ D: N.A. E: $\pi/4 \circ 5\pi/4$

3. La serie geometrica

$$\sum_{n=0}^{\infty} (1+q)^n$$

converge per

A:
$$|q| < 1$$
 B: N.A. C: $|q| < 2$ D: $0 < q < 1$ E: $-2 < q < 0$

4. Il polinomio di Taylor di grado 4 relativo al punto $x_0 = 0$ della funzione $f(x) = cos(x^2)$ vale A: 1 + x B: $1 - \frac{x^2}{2}$ C: $1 + cos(x)\frac{x^4}{4!}$ D: N.A. E: $1 - \frac{x^4}{2}$

5. Una primitiva della funzione $x(t) = \sin(t)\cos(t)$ è

A:
$$1 - \frac{\cos^2(t)}{2}$$
 B: N.A. C: $\sin(2t)$ D: $1 + \sin(t) + (\cos(t))$ E: $2 - \frac{t^2}{2}\cos(t)$

6. La funzione

$$f(x) = \begin{cases} x^2 - a & \text{per } x < 0\\ \sin(bx) & \text{per } x \ge 0 \end{cases}$$

risulta continua e derivabile in $x_0 = 0$ scegliendo (a, b) uguali a

A: N.A. B:
$$(0,1)$$
 C: N.E. D: $(-1,\pi)$ E: $(1,\pi/2)$

7. L'integrale

$$\int_{\pi/4}^{\pi/2} \cos(x) \, dx$$

vale

A:
$$\frac{\sqrt{3}}{2}$$
 B: N.A. C: $1 - \sqrt{2}/2$ D: 0 E: $1 + \sqrt{2}/2$

8. La funzione $f:\ \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^3 - x^2$ è

A: surgettiva B: N.A. C: iniettiva D: sempre non negativa E: monotona crescente

9. Il limite

$$\lim_{x \to +\infty} x^2 \sin(1/x^2)$$

vale

A: 0 B:
$$-\infty$$
 C: N.A. D: N.E. E: 1

10. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : |\log(x)| \le 1\}$$

valgono

A:
$$\{-1/e, -1/e, e, e.\}$$
 B: $\{0, N.E., e, N.E.\}$ C: $\{1/e, N.E., 1, 1\}$ D: $\{0, N.E., +\infty, N.E.\}$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

19 febbraio 2009

(Cognome)											_			(No	me)			(N	ume	ro di	ma	trice	ola)				

A	В	С	D	\mathbf{E}	

1	00000
2	
3	
4	
5	
6	
7	
8	00000
9	
10	

1. Il limite

$$\lim_{x \to +\infty} x^2 \sin(1/x^2)$$

vale

A: N.E. B: 1 C: N.A. D: 0 E: $-\infty$

2. La serie geometrica

$$\sum_{n=0}^{\infty} (1+q)^n$$

converge per

A: |q| < 2 B: 0 < q < 1 C: |q| < 1 D: -2 < q < 0 E: N.A.

3. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^3 - x^2$ è

A: iniettiva B: monotona crescente C: surgettiva D: N.A. E: sempre non negativa

4. Se $z \in \mathbb{C}$ è tale che $z^2=i$ allora l'argomento di z è uguale a A: $\pi/4$ o $5\pi/4$ B: 1 o $\pi/3$ C: N.A. D: 0 o π E: 1 o $\pi/2$

5. La funzione

$$f(x) = \begin{cases} x^2 - a & \text{per } x < 0\\ \sin(bx) & \text{per } x \ge 0 \end{cases}$$

risulta continua e derivabile in $x_0 = 0$ scegliendo (a, b) uguali a

A: N.A. B: N.E. C: (0,1) D: $(1,\pi/2)$ E: $(-1,\pi)$

6. Il polinomio di Taylor di grado 4 relativo al punto $x_0=0$ della funzione $f(x)=\cos(x^2)$ vale A: $1+\cos(x)\frac{x^4}{4!}$ B: 1+x C: N.A. D: $1-\frac{x^2}{2}$ E: $1-\frac{x^4}{2}$

7. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : |\log(x)| \le 1\}$$

valgono

A:
$$\{-1/e, -1/e, e, e.\}$$
 B: $\{0, N.E., e, N.E.\}$ C: $\{0, N.E., +\infty, N.E.\}$ D: N.A. E: $\{1/e, N.E., 1, 1\}$

8. Data $f(x) = \log(\sin(x))$. Allora $f'(\pi/4)$ è uguale a

A: N.A. B: 0 C:
$$\frac{\pi}{6}$$
 D: -1 E: $\frac{\sqrt{3}}{2}$

9. Una primitiva della funzione $x(t) = \sin(t)\cos(t)$ è

A:
$$1 + \sin(t) + (\cos(t))$$
 B: $\sin(2t)$ C: N.A. D: $2 - \frac{t^2}{2}\cos(t)$ E: $1 - \frac{\cos^2(t)}{2}$

10. L'integrale

$$\int_{\pi/4}^{\pi/2} \cos(x) \, dx$$

vale

A: $\frac{\sqrt{3}}{2}$ B: 0 C: $1 - \sqrt{2}/2$ D: $1 + \sqrt{2}/2$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

19 febbraio 2009

(Cognome)													(No	me)			•	(N	ume	ro d	i ma	trice	ola)				

A	В	С	D	Ε	

1	
2	00000
3	
4	
5	
6	0000
7	00000
8	
9	
10	00000

1. Una primitiva della funzione $x(t) = \sin(t)\cos(t)$ è

A:
$$\sin(2t)$$
 B: N.A. C: $1 + \sin(t) + (\cos(t))$ D: $1 - \frac{\cos^2(t)}{2}$ E: $2 - \frac{t^2}{2}\cos(t)$

2. Il limite

$$\lim_{x \to +\infty} x^2 \sin(1/x^2)$$

vale

A: 1 B: N.E. C: 0 D: $-\infty$ E: N.A.

- 3. Se $z \in \mathbb{C}$ è tale che $z^2 = i$ allora l'argomento di z è uguale a A: $\pi/4$ o $5\pi/4$ B: 0 o π C: 1 o $\pi/2$ D: N.A. E: 1 o $\pi/3$
- 4. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^3 x^2$ è

 A: iniettiva B: sempre non negativa C: surgettiva D: monotona crescente E: N.A.
- 5. Il polinomio di Taylor di grado 4 relativo al punto $x_0 = 0$ della funzione $f(x) = cos(x^2)$ vale A: $1 \frac{x^2}{2}$ B: $1 + cos(x)\frac{x^4}{4!}$ C: $1 \frac{x^4}{2}$ D: N.A. E: 1 + x
- 6. Data $f(x) = \log(\sin(x))$. Allora $f'(\pi/4)$ è uguale a A: 0 B: N.A. C: -1 D: $\frac{\pi}{6}$ E: $\frac{\sqrt{3}}{2}$
- 7. La funzione

$$f(x) = \begin{cases} x^2 - a & \text{per } x < 0\\ \sin(bx) & \text{per } x \ge 0 \end{cases}$$

risulta continua e derivabile in $x_0 = 0$ scegliendo (a, b) uguali a

A: N.A. B:
$$(0,1)$$
 C: $(1,\pi/2)$ D: $(-1,\pi)$ E: N.E.

8. L'integrale

$$\int_{\pi/4}^{\pi/2} \cos(x) \, dx$$

vale

A: 0 B:
$$\frac{\sqrt{3}}{2}$$
 C: N.A. D: $1 + \sqrt{2}/2$ E: $1 - \sqrt{2}/2$

9. La serie geometrica

$$\sum_{n=0}^{\infty} (1+q)^n$$

converge per

A: N.A. B:
$$0 < q < 1$$
 C: $|q| < 1$ D: $|q| < 2$ E: $-2 < q < 0$

10. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : |\log(x)| \le 1\}$$

valgono

A:
$$\{0, N.E., +\infty, N.E.\}$$
 B: $\{0, N.E., e, N.E.\}$ C: N.A. D: $\{1/e, N.E., 1, 1\}$ E: $\{-1/e, -1/e, e, e.\}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

19 febbraio 2009

(Cognome)													(No	me)			(N	ume	ro d	i ma	trice	ola)			

 $\mathrm{CODICE} = 759754$

1	0000
2	
3	0000
4	0000
5	0000
6	
7	
8	
9	
10	0000

1. Il limite

$$\lim_{x \to +\infty} x^2 \sin(1/x^2)$$

vale

A: 1 B: $-\infty$ C: N.E. D: N.A. E: 0

2. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^3 - x^2$ è

A: iniettiva B: monotona crescente C: sempre non negativa D: surgettiva E: N.A.

3. Se $z \in \mathbb{C}$ è tale che $z^2 = i$ allora l'argomento di z è uguale a A: N.A. B: 0 o π C: $\pi/4$ o $5\pi/4$ D: 1 o $\pi/3$ E: 1 o $\pi/2$

4. La serie geometrica

$$\sum_{n=0}^{\infty} (1+q)^n$$

converge per

A: |q| < 2 B: |q| < 1 C: 0 < q < 1 D: N.A. E: -2 < q < 0

5. L'integrale

$$\int_{\pi/4}^{\pi/2} \cos(x) \, dx$$

vale

A: 0 B:
$$1 - \sqrt{2}/2$$
 C: $1 + \sqrt{2}/2$ D: $\frac{\sqrt{3}}{2}$ E: N.A.

6. Il polinomio di Taylor di grado 4 relativo al punto $x_0 = 0$ della funzione $f(x) = cos(x^2)$ vale A: $1 - \frac{x^4}{2}$ B: N.A. C: $1 + cos(x)\frac{x^4}{4!}$ D: 1 + x E: $1 - \frac{x^2}{2}$

7. La funzione

$$f(x) = \begin{cases} x^2 - a & \text{per } x < 0\\ \sin(bx) & \text{per } x \ge 0 \end{cases}$$

risulta continua e derivabile in $x_0 = 0$ scegliendo (a, b) uguali a

A: N.E. B: N.A. C: (0,1) D: $(-1,\pi)$ E: $(1,\pi/2)$

8. Data $f(x) = \log(\sin(x))$. Allora $f'(\pi/4)$ è uguale a A: $\frac{\pi}{6}$ B: -1 C: N.A. D: 0 E: $\frac{\sqrt{3}}{2}$

9. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : |\log(x)| \le 1\}$$

valgono

A:
$$\{1/e, N.E., 1, 1\}$$
 B: $\{-1/e, -1/e, e, e.\}$ C: $\{0, N.E., e, N.E.\}$ D: N.A. E: $\{0, N.E., +\infty, N.E.\}$

10. Una primitiva della funzione $x(t) = \sin(t)\cos(t)$ è

A:
$$1 + \sin(t) + (\cos(t))$$
 B: $1 - \frac{\cos^2(t)}{2}$ C: $\sin(2t)$ D: N.A. E: $2 - \frac{t^2}{2}\cos(t)$

19 febbraio 2009

((Cognome)	(Nome)	(Numero di matricola)

CODICE = 165593

A B C D E

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

19 febbraio 2009

																							L				
(Cognome)											_			(N	ome)			_		ume	i ma	trice	ola)				

CODICE = 313194

A B C D E

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

19 febbraio 2009

(Cognome)													(N	ome)				ume	i ma	trice					

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

19 febbraio 2009

																							L				
(Cognome)											_			(N	ome)			_		ume	i ma	trice	ola)				

CODICE = 118579

A B C D E

1	
2	
3	
4	
5	$lackbox{0}$
6	
7	
8	
9	
10	

19 febbraio 2009

(Cognome)	(Nome)	(Numero di matricola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

19 febbraio 2009

																							L				
(Cognome)											_			(N	ome)			_		ume	i ma	trice	ola)				

 $\mathrm{CODICE} = 759754$

A B C D E

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

19 febbraio 2009

PARTE B

1. Determinare l'immagine della funzione

$$f(x) = \arcsin\left(\frac{x^2 - 1}{x^2 + 1}\right)$$
 $x \ge 0$.

Studiare al variare di $\lambda \in \mathbb{R}$ il numero di soluzioni dell'equazione $f(x) = \lambda$.

2. Risolvere il problema di Cauchy

$$\begin{cases} y^{(IV)}(t) + y^{(III)}(t) = 1 + e^t \\ y(0) = 0. \\ y'(0) = 0 \\ y''(0) = 0 \\ y'''(0) = 0. \end{cases}$$

3. Studiare la convergenza dell'integrale

$$\int_{2}^{+\infty} \frac{1}{(x-1)(x^2+1)} \, dx$$

ed eventualmente calcolarne il valore.

4. Dimostrare che la somma di due funzioni crescenti (non necessariamente derivabili) è una funzione crescente. Cosa si può dire della differenza di due funzioni crescenti? tale differenza è una funzione monotona?

16 giugno 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

16 giugno 2009

(Cognome)																(No	me)			(Nu	ımer	o di	mat	trico	·la)	

 $\mathrm{CODICE} = 441380$

0000
0000
00000
00000
0000
00000

1. La serie a termini non-negativi

$$\sum_{n=3}^{\infty} \frac{\arctan(n)}{n^{\alpha}}$$

converge per

A: $\alpha \ge 1$ B: $\alpha > 0$ C: N.A. D: $\alpha > 1$ E: $3 < \alpha < \pi$

2. L'integrale

$$\left| \int_{-1}^{1} e^{|x|} dx \right|$$

vale

A:
$$2(1-e)$$
 B: $e + e^{-1}$ C: N.A. D: $2(e-1)$ E: $|e + e^{-1}|$

3. Una primitiva di $f(x) = \log(2x)$ è

A: $x - x \log(2x)$ B: $\log(3) + x \log(x) + (\log(2) - 1)x$ C: $x + x^2 \log(2x)$ D: N.A. N.E.

4. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : x^2 - 3x + 2 < 0\}$$

valgono

A:
$$\{-\infty, N.E., +\infty, N.E.\}$$
 B: N.A. C: $\{1, 1, 2, 2\}$ D: $\{1, N.E., 2, N.E.\}$ E: $\{0, 0, 1, 1\}$

5. Data $f(x) = 5^{\frac{x}{5}}$. Allora f'(5) è uguale a

A: N.A. B:
$$\log(5)$$
 C: 1 D: 0 E: N.E.

6. La parte reale del numero complesso $z = \frac{2-i}{3+i}$ è

A:
$$-\pi/4$$
 B: $1/4$ C: 0 D: $-1/2$ E: N.A.

7. La funzione $f: \mathbb{R}^+ \to \mathbb{R}$ definita da $f(x) = \log_2(x)$ è

A: sempre positiva B: sempre negativa C: limitata inferiormente D: N.A. E: iniettiva

8. Il polinomio di Taylor di grado 1 relativo al punto $x_0 = \sqrt{\pi}$ della funzione $y(x) = \sin(x^2)$

A:
$$2\pi - 2\sqrt{\pi}x$$
 B: $1 - 2\pi x$ C: $1 - 2\sqrt{\pi}x - x^2$ D: $(x - \pi/2)^2$ E: N.A.

A: $2\pi - 2\sqrt{\pi}x$ B: $1 - 2\pi x$ C: $1 - 2\sqrt{\pi}x - x^2$ D: $(x - \pi/2)^2$ E: N.A.

9. La funzione $f(x) = \begin{cases} \sin(x) & \text{per } x \ge 0 \\ \cos(x + \pi/2) & \text{per } x < 0 \end{cases}$

B: è continua e derivabile. C: non è né continua né derivabile. D: è continua, ma non derivabile. E: è derivabile, ma non continua.

10. Il limite

$$\lim_{x \to +\infty} x \left(\arctan(x) - \pi/2 \right)$$

vale

A: N.A. B: -1 C: $+\infty$ D: 0 E: N.E.

16 giugno 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

16 giugno 2009

(Cognome)	(Nome)	(Numero di matricola)

 $\mathrm{CODICE} = 460496$

Α	В	С	D	\mathbf{E}	

1	
2	0000
3	
4	
5	
6	
7	
8	
9	
10	0000

1. L'integrale

$$\left| \int_{-1}^{1} e^{|x|} dx \right|$$

vale

A: 2(e-1) B: N.A. C: $|e+e^{-1}|$ D: $e+e^{-1}$ E: 2(1-e)

2. La parte reale del numero complesso $z=\frac{2-i}{3+i}$ è

A: 0 B: -1/2 C: $-\pi/4$ D: N.A. E: 1/4

3. Il polinomio di Taylor di grado 1 relativo al punto $x_0 = \sqrt{\pi}$ della funzione $y(x) = \sin(x^2)$ vale

A: $1 - 2\pi x$ B: N.A. C: $2\pi - 2\sqrt{\pi}x$ D: $(x - \pi/2)^2$ E: $1 - 2\sqrt{\pi}x - x^2$

4. Una primitiva di $f(x) = \log(2x)$ è

A: $x + x^2 \log(2x)$ B: N.A. C: N.E. D: $x - x \log(2x)$ E: $\log(3) + x \log(x) + (\log(2) - 1)x$

5. Data $f(x) = 5^{\frac{x}{5}}$. Allora f'(5) è uguale a

A: 1 B: N.E. C: 0 D: log(5) E: N.A

6. La serie a termini non-negativi

$$\sum_{n=3}^{\infty} \frac{\arctan(n)}{n^{\alpha}}$$

converge per

A: $\alpha \ge 1$ B: N.A. C: $\alpha > 0$ D: $\alpha > 1$ E: $3 < \alpha < \pi$

7. La funzione $f(x) = \begin{cases} \sin(x) & \text{per } x \ge 0 \\ \cos(x + \pi/2) & \text{per } x < 0 \end{cases}$

A: N.A. B: non è né continua né derivabile. C: è derivabile, ma non continua. D: è continua, ma non derivabile. E: è continua e derivabile.

8. La funzione $f: \mathbb{R}^+ \to \mathbb{R}$ definita da $f(x) = \log_2(x)$ è

A: N.A. B: iniettiva C: sempre positiva D: sempre negativa E: limitata inferiormente

9. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : x^2 - 3x + 2 < 0\}$$

valgono

A: $\{-\infty, N.E., +\infty, N.E.\}$ B: $\{1, N.E., 2, N.E.\}$ C: N.A. D: $\{1, 1, 2, 2\}$ E: $\{0, 0, 1, 1\}$

10. Il limite

$$\lim_{x \to +\infty} x \left(\arctan(x) - \pi/2 \right)$$

vale

A: $+\infty$ B: N.A. C: N.E. D: -1 E: 0

16 giugno 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

16 giugno 2009

(Cognome)	(Nome)	(Numero di matricola)
, ,	, ,	`

Α	В	С	D	\mathbf{E}	

00000
00000
0000
0000
00000
00000
00000
00000

1. L'integrale

$$\left| \int_{-1}^{1} e^{|x|} dx \right|$$

vale

A: N.A. B: $|e + e^{-1}|$ C: $e + e^{-1}$ D: 2(e - 1) E: 2(1 - e)

2. La funzione $f: \mathbb{R}^+ \to \mathbb{R}$ definita da $f(x) = \log_2(x)$ è

A: limitata inferiormente B: sempre negativa C: sempre positiva D: N.A. E: iniettiva

3. Il polinomio di Taylor di grado 1 relativo al punto $x_0 = \sqrt{\pi}$ della funzione $y(x) = \sin(x^2)$

A: N.A. B: $1 - 2\pi x$ C: $(x - \pi/2)^2$ D: $1 - 2\sqrt{\pi}x - x^2$ E: $2\pi - 2\sqrt{\pi}x$

4. Una primitiva di $f(x) = \log(2x)$ è

A: N.E. B: $\log(3) + x \log(x) + (\log(2) - 1)x$ C: $x - x \log(2x)$ D: $x + x^2 \log(2x)$ E. N.A.

5. Il limite

$$\lim_{x \to +\infty} x \left(\arctan(x) - \pi/2\right)$$

vale

A: N.A. B: N.E. C: 0 D: -1 E: $+\infty$

6. Data $f(x) = 5^{\frac{x}{5}}$. Allora f'(5) è uguale a

A: 0 B: $\log(5)$ C: 1 D: N.A. E: N.E.

7. La serie a termini non-negativi

$$\sum_{n=2}^{\infty} \frac{\arctan(n)}{n^{\alpha}}$$

converge per

A: $\alpha > 0$ B: $\alpha > 1$ C: $\alpha \ge 1$ D: $3 < \alpha < \pi$ E: N.A.

8. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : x^2 - 3x + 2 < 0\}$$

valgono

 $\text{A: N.A.} \quad \text{B: } \{-\infty, N.E., +\infty, N.E.\} \quad \text{C: } \{1, 1, 2, 2\} \quad \text{D: } \{1, N.E., 2, N.E.\} \quad \text{E: } \{0, 0, 1, 1\}$

9. La funzione $f(x) = \begin{cases} \sin(x) & \text{per } x \ge 0 \\ \cos(x + \pi/2) & \text{per } x < 0 \end{cases}$

A: è derivabile, ma non continua. B: è continua e derivabile. C: non è né continua né derivabile. D: è continua, ma non derivabile. E: N.A.

10. La parte reale del numero complesso $z = \frac{2-i}{3+i}$ è

A: -1/2 B: N.A. C: 0 D: $-\pi/4$ E: 1/4

16 giugno 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

16 giugno 2009

				(Cogn	ome))								(No	me)				(Nı	ımeı	o di	mat	ricola)
	CC)DI(CE =	= 25	3614	12																			
											ı														
				A	E	3 (С	D	F	3															
1			Г			7/	$\overline{}$			\															
			-	$\frac{\searrow}{}$		$\frac{1}{2}$	\preceq	$\frac{\searrow}{\sim}$		<u>ノ</u>															
2				<u>_</u>) (<u>) (</u>	$\underline{\underline{\hspace{1em}}}$	<u>_</u>) (<u>) </u>															
3))())															

4

567

8 9

10

1. Il polinomio di Taylor di grado 1 relativo al punto $x_0 = \sqrt{\pi}$ della funzione $y(x) = \sin(x^2)$ vale

A: N.A. B:
$$1 - 2\sqrt{\pi}x - x^2$$
 C: $2\pi - 2\sqrt{\pi}x$ D: $1 - 2\pi x$ E: $(x - \pi/2)^2$

2. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : x^2 - 3x + 2 < 0\}$$

valgono

A:
$$\{1, 1, 2, 2\}$$
 B: $\{1, N.E., 2, N.E.\}$ C: $\{0, 0, 1, 1\}$ D: N.A. E: $\{-\infty, N.E., +\infty, N.E.\}$

3. La parte reale del numero complesso $z = \frac{2-i}{3+i}$ è

A: 0 B:
$$-1/2$$
 C: $1/4$ D: $-\pi/4$ E: N.A.

4. L'integrale

$$\left| \int_{-1}^{1} e^{|x|} dx \right|$$

vale

A:
$$e + e^{-1}$$
 B: $2(e - 1)$ C: $2(1 - e)$ D: N.A. E: $|e + e^{-1}|$

5. Una primitiva di $f(x) = \log(2x)$ è

A:
$$x + x^2 \log(2x)$$
 B: N.A. C: $x - x \log(2x)$ D: $\log(3) + x \log(x) + (\log(2) - 1)x$ E: N.E.

6. La funzione $f: \mathbb{R}^+ \to \mathbb{R}$ definita da $f(x) = \log_2(x)$ è

A: limitata inferiormente B: sempre negativa C: iniettiva D: N.A. E: sempre positiva

7. Data $f(x) = 5^{\frac{x}{5}}$. Allora f'(5) è uguale a

8. La funzione $f(x) = \begin{cases} \sin(x) & \text{per } x \ge 0 \\ \cos(x + \pi/2) & \text{per } x < 0 \end{cases}$

A: è continua, ma non derivabile. B: non è né continua né derivabile. C: è derivabile, ma non continua. D: è continua e derivabile. E: N.A.

9. La serie a termini non-negativi

$$\sum_{n=3}^{\infty} \frac{\arctan(n)}{n^{\alpha}}$$

converge per

A:
$$3 < \alpha < \pi$$
 B: N.A. C: $\alpha \ge 1$ D: $\alpha > 0$ E: $\alpha > 1$

10. Il limite

$$\lim_{x \to +\infty} x \left(\arctan(x) - \pi/2 \right)$$

vale

A: N.E. B: 0 C:
$$+\infty$$
 D: N.A. E: -1

16 giugno 2009

		(Co	ogno	me)				_			(N	ome)			_	(N	ume	ro d	i ma	trice	ola)

A	В	С	D	\mathbf{E}	
		_			

1	
2	
3	
4	
5	
6	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
7	
8	
9	
10	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

16 giugno 2009

			(Co	ogno	me)							(No	me)			_	(N	ume	ro d	i ma	trice	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

16 giugno 2009

(Cognome)							_			(N	ome)			_	(N	ume	ro d	i ma	trice	ola)							

 $\mathrm{CODICE} = 194332$

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

16 giugno 2009

(Cognome)										(1	Vom	e)			(N	um	ero	di n	atr	icola	a)							

A	В	С	D	\mathbf{E}	

1	
2	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	

16 giugno 2009

PARTE B

1. Studiare il numero di soluzioni, al variare di $\lambda \in \mathbb{R}$ della equazione

$$\lambda = \frac{1+|x|}{2+x}, \qquad x > 0.$$

2. Risolvere il problema di Cauchy

$$\begin{cases} y''(t) + y(t) = \sin(\pi t) \\ y(0) = 1 \\ y'(0) = 0. \end{cases}$$

Quanto vale y''(0)?

3. Studiare la convergenza ed eventualmente calcolare l'integrale generalizzato

$$\int_{2}^{+\infty} \frac{x}{(x-1)(x^2+9)} \, dx.$$

4. Dimostrare che nessun polinomio di grado dispari, strettamente maggiore di 1, è una funzione convessa.

Traccia di soluzione

1) Studiando la funzione

$$f(x) = \frac{1+|x|}{2+x} = \frac{1+x}{2+x}$$
, se $x > 0$.

si ricava subito che la derivata prima $f'(x)=(2+x)^{-2}$ è strettamente maggiore di zero. La funzione f è quindi strettamente monotona e la sua immagine è] $\inf_{x>0} f$, $\sup_{x>0} f = 1/2$, 2[. Pertanto per $1/2 < \lambda < 1$ c'è una soluzione, mentre per $\lambda \leq 1/2$ e $\lambda \geq 1$ non ci sono soluzioni.

2) L'equazione caratteristica ha come soluzioni $\lambda=\pm i$ e quindi l'equazione omogenea ha come soluzione

$$y_0(t) = c_1 \sin(t) + c_2 \cos(t)$$
.

Dato che non c'è risonanza una soluzione dellla non omogenea va cercata della forma

$$y_f(t) = c_1 \sin(\pi t) + c_2 \cos(\pi t).$$

Svolgendo i conti e imponendo le condizioni iniziali si trova

$$y(t) = \cos(t) + \frac{\pi \sin(t) - \sin(\pi t)}{-1 + \pi^2}$$

ed anche y''(0) = -1.

3) In questo caso osservando che

$$\frac{x}{(x-1)(x^2+9)} = \mathcal{O}(x^{-2})$$

l'integrale converge. Trattandosi di una funzione razionale, tramite la usuale fattorizzazione si trova che una primitiva è

$$\frac{1}{20} \left(6 \tan^{-1} \left(\frac{x}{3} \right) + 2 \log(x - 1) - \log \left(x^2 + 9 \right) \right)$$

e quindi

$$\int_{2}^{+\infty} \frac{x}{(x-1)(x^{2}+9)} dx = \lim_{b \to +\infty} \frac{1}{20} \left(6 \arctan\left(\frac{x}{3}\right) + 2\log(x-1) - \log\left(x^{2}+9\right) \right) \Big]_{2}^{b}$$
$$= \frac{1}{20} \left(3\pi - 6 \arctan\left(\frac{2}{3}\right) + \log(13) \right)$$

4) Se P(x) è un polinomio di grado dispari di grado strettamente maggiore di 1, allora la sua derivata seconda P''(x) è un polinomio di grado dispari di grado maggiore o uguale a 1. Pertanto

$$\lim_{x \to \pm \infty} P''(x) = \pm \infty \text{ oppure } \lim_{x \to \pm \infty} P''(x) = \mp \infty.$$

In entrambi i casi il teorema della permanenza del segnoci assicura l'esistenza di intervalli in cui la derivata seconda è negativa e quindi P non può essere convessa.

2 luglio 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

2 luglio 2009

(Cognome)	(Nome)	(Numero di matricola)

 $\mathrm{CODICE} = 514511$

A	В	\mathbf{C}	D	\mathbf{E}	
		_			

1	00000
2	
3	
4	
5	
6	
7	
8	
9	
10	0000

1. Inf, min, sup e max dell'insieme

$$A = \{x \in [0, 2\pi] : \sin(x) < \frac{1}{2}\}$$

valgono

A: N.A. B: $\{-\infty, N.E., +\infty, N.E.\}$ C: $\{\pi/6, N.E., 5\pi/6, N.E.\}$ D: $\{0, 0, 2\pi, 2\pi\}$ E: $\{0, 0, \pi/6, N.E.\}$

2. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x|(x^2 + 1)$ è

A: monotona crescente B: iniettiva C: surgettiva D: derivabile ovunque E: N.A

3. Una soluzione dell'equazione differenziale $y'(x) = \frac{1}{\sin(x)}$ è

A: $\frac{1}{\cos(x)}$ B: N.A. C: $e^x - \sin(x)$ D: $\log(\tan(x/2))$ E: N.E

4. La funzione $f(x) = \begin{cases} \sin\left(\frac{\pi e^x}{2}\right) & \text{per } x < 0 \\ & x & \text{per } x \ge 0 \end{cases}$

A: è continua e derivabile. B: è derivabile, ma non continua. C: non è né continua né derivabile. D: N.A. E: è continua, ma non derivabile.

5. Modulo e argomento del numero complesso $z=(\sqrt{2}i)^{13}$ sono

A: $(64\sqrt{2}, -\pi/2)$ B: N.A. C: $(2^{13/2}, -\pi/2)$ D: $(64\sqrt{2}, \pi/2)$ E: $(2^{13}, \pi/2)$

6. La retta tangente al grafico di $y(x) = \sin(3x)$ nel punto $x_0 = \pi/12$ vale

A: $1 + x + x^2$ B: N.A. C: $\frac{3(x - \frac{\pi}{12})}{\sqrt{2}} + \frac{1}{\sqrt{2}}$ D: $1 + 2x - \frac{\pi}{12}$ E: $1 + \sin(3x)(x - \pi/12)$

7. Data $f(x) = x^{e^x}$. Allora f'(1) è uguale a

A: $\log(3e)$ B: N.A. C: e^3 D: N.E. E: e^3

8. L'integrale

$$\int_{-1}^{1} |x| \, \mathrm{e}^x \, dx$$

vale

A: $\sqrt{e} + 1$ B: 2/e C: $\frac{2(e-1)}{e}$ D: N.A. E: 0

9. Il limite

$$\lim_{x \to 0} \frac{\log(e^{x^2})}{\sin^2(x)}$$

vale

A: N.A. B: 0 C: 1 D: $+\infty$ E: N.E.

10. La serie a termini non-negativi

$$\sum_{n=1}^{\infty} \sqrt[n]{2^{\alpha} n}$$

converge per

A: $3 < \alpha < \pi$ B: $\alpha \ge 1$ C: $\alpha > 1$ D: N.A. E: $\alpha > 0$

2 luglio 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

2 luglio 2009

la)
la

 $\mathrm{CODICE} = 863598$

A	В	С	D	E	

1	00000
2	00000
3	00000
4	0000
5	00000
6	00000
7	00000
8	0000
9	00000
10	0000

1. Data $f(x) = x^{e^x}$. Allora f'(1) è uguale a A: N.E. B: $\log(3e)$ C: e D: N.A. E: e^3

2. L'integrale

$$\int_{-1}^{1} |x| \, \mathrm{e}^x \, dx$$

vale

A: N.A. B: 2/e C: 0 D: $\sqrt{e} + 1$ E: $\frac{2(e-1)}{e}$

3. Modulo e argomento del numero complesso $z=(\sqrt{2}i)^{13}$ sono A: $(2^{13/2},-\pi/2)$ B: $(64\sqrt{2},\pi/2)$ C: N.A. D: $(2^{13},\pi/2)$ E: $(64\sqrt{2},-\pi/2)$

4. Il limite

$$\lim_{x \to 0} \frac{\log(e^{x^2})}{\sin^2(x)}$$

vale

A: 0 B: $+\infty$ C: N.A. D: 1 E: N.E.

5. Una soluzione dell'equazione differenziale $y'(x) = \frac{1}{\sin(x)}$ è

A: $e^x - \sin(x)$ B: $\frac{1}{\cos(x)}$ C: N.A. D: N.E. E: $\log(\tan(x/2))$

6. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x|(x^2 + 1)$ è

A: surgettiva B: derivabile ovunque C: iniettiva D: N.A. E: monotona crescente

7. Inf, min, sup e max dell'insieme

$$A = \{x \in [0, 2\pi] : \sin(x) < \frac{1}{2}\}$$

valgono

A: $\{0,0,\pi/6,N.E.\}$ B: N.A. C: $\{\pi/6,N.E.,5\pi/6,N.E.\}$ D: $\{-\infty,N.E.,+\infty,N.E.\}$ E: $\{0,0,2\pi,2\pi\}$

8. La serie a termini non-negativi

$$\sum_{n=1}^{\infty} \sqrt[n]{2^{\alpha} n}$$

converge per

A: $3 < \alpha < \pi$ B: N.A. C: $\alpha > 0$ D: $\alpha \ge 1$ E: $\alpha > 1$

9. La retta tangente al grafico di $y(x) = \sin(3x)$ nel punto $x_0 = \pi/12$ vale

A: $1 + \sin(3x)(x - \pi/12)$ B: N.A. C: $1 + 2x - \frac{\pi}{12}$ D: $1 + x + x^2$ E: $\frac{3(x - \frac{\pi}{12})}{\sqrt{2}} + \frac{1}{\sqrt{2}}$

10. La funzione $f(x) = \begin{cases} \sin\left(\frac{\pi e^x}{2}\right) & \text{per } x < 0 \\ x & \text{per } x \ge 0 \end{cases}$

A: non è né continua né derivabile. B: è continua e derivabile. C: è derivabile, ma non continua. D: è continua, ma non derivabile. E: N.A.

2 luglio 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

2 luglio 2009

(Cognome)	(Nome)	(Numero di matricola)

A	В	С	D	\mathbf{E}	
		_			

1	00000
2	00000
3	00000
4	
5	
6	
7	00000
8	
9	
10	0000

1. La serie a termini non-negativi

$$\sum_{n=1}^{\infty} \sqrt[n]{2^{\alpha} n}$$

converge per

A: $\alpha \ge 1$ B: $3 < \alpha < \pi$ C: $\alpha > 1$ D: $\alpha > 0$ E: N.A.

2. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x|(x^2 + 1)$ è

A: surgettiva B: iniettiva C: monotona crescente D: derivabile ovunque E: N.A.

3. L'integrale

$$\int_{-1}^{1} |x| e^x dx$$

vale

A: 2/e B: N.A. C: $\sqrt{e} + 1$ D: 0 E: $\frac{2(e-1)}{e}$

4. Il limite

$$\lim_{x \to 0} \frac{\log(e^{x^2})}{\sin^2(x)}$$

vale

A: 1 B: N.A. C: $+\infty$ D: N.E. E: 0

5. La funzione $f(x) = \begin{cases} \sin\left(\frac{\pi e^x}{2}\right) & \text{per } x < 0 \\ & x & \text{per } x \ge 0 \end{cases}$

A: non è né continua né derivabile. B: N.A. C: è continua e derivabile. D: è continua, ma non derivabile. E: è derivabile, ma non continua.

6. Inf, min, sup e max dell'insieme

$$A = \{x \in [0, 2\pi] : \sin(x) < \frac{1}{2}\}$$

valgono

A: $\{-\infty, N.E., +\infty, N.E.\}$ B: $\{0, 0, \pi/6, N.E.\}$ C: $\{\pi/6, N.E., 5\pi/6, N.E.\}$ D: $\{0, 0, 2\pi, 2\pi\}$ E: N.A.

7. Data $f(x) = x^{e^x}$. Allora f'(1) è uguale a

A: N.A. B: N.E. C: $\log(3e)$ D: e E: e^3

8. Modulo e argomento del numero complesso $z=(\sqrt{2}i)^{13}$ sono

A:
$$(64\sqrt{2}, \pi/2)$$
 B: $(2^{13/2}, -\pi/2)$ C: $(2^{13}, \pi/2)$ D: N.A. E: $(64\sqrt{2}, -\pi/2)$

9. La retta tangente al grafico di $y(x) = \sin(3x)$ nel punto $x_0 = \pi/12$ vale

A:
$$1 + 2x - \frac{\pi}{12}$$
 B: $\frac{3(x - \frac{\pi}{12})}{\sqrt{2}} + \frac{1}{\sqrt{2}}$ C: N.A. D: $1 + \sin(3x)(x - \pi/12)$ E: $1 + x + x^2$

10. Una soluzione dell'equazione differenziale $y'(x) = \frac{1}{\sin(x)}$ è

A: $\log(\tan(x/2))$ B: N.E. C: N.A. D: $e^x - \sin(x)$ E: $\frac{1}{\cos(x)}$

2 luglio 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

2 luglio 2009

(Cognome)	(Nome)	(Numero di matricola)
, ,	` '	,

A	В	С	D	\mathbf{E}	

00000
00000
0000
0000
0000
0000
00000
00000

1. La funzione $f(x)=\begin{cases} \sin\left(\frac{\pi\,\mathrm{e}^x}{2}\right) & \text{per } x<0 \\ & x & \text{per } x\geq0 \end{cases}$

A: è continua, ma non derivabile. B: N.A. C: è derivabile, ma non continua. D: non è né continua né derivabile. E: è continua e derivabile.

2. Modulo e argomento del numero complesso $z=(\sqrt{2}i)^{13}$ sono

A: $(64\sqrt{2}, \pi/2)$ B: $(2^{13}, \pi/2)$ C: $(2^{13/2}, -\pi/2)$ D: N.A. E: $(64\sqrt{2}, -\pi/2)$

3. Data $f(x) = x^{e^x}$. Allora f'(1) è uguale a

A: N.A. B: $\log(3e)$ C: e^3 D: N.E. E: e^3

4. Una soluzione dell'equazione differenziale $y'(x) = \frac{1}{\sin(x)}$ è

A: N.A. B: N.E. C: $\frac{1}{\cos(x)}$ D: $\log(\tan(x/2))$ E: $e^x - \sin(x)$

5. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x|(x^2 + 1)$ è

A: derivabile ovunque B: surgettiva C: iniettiva D: monotona crescente E: N.A.

6. La serie a termini non-negativi

$$\sum_{n=1}^{\infty} \sqrt[n]{2^{\alpha} n}$$

converge per

A: $3 < \alpha < \pi$ B: N.A. C: $\alpha \ge 1$ D: $\alpha > 0$ E: $\alpha > 1$

7. Inf, min, sup e max dell'insieme

$$A = \{x \in [0, 2\pi] : \sin(x) < \frac{1}{2}\}$$

valgono

A: $\{0, 0, \pi/6, N.E.\}$ B: $\{-\infty, N.E., +\infty, N.E.\}$ C: $\{0, 0, 2\pi, 2\pi\}$ D: N.A. E: $\{\pi/6, N.E., 5\pi/6, N.E.\}$

8. Il limite

$$\lim_{x \to 0} \frac{\log(e^{x^2})}{\sin^2(x)}$$

vale

 $A: +\infty$ B: N.E. C: 0 D: N.A. E: 1

9. La retta tangente al grafico di $y(x) = \sin(3x)$ nel punto $x_0 = \pi/12$ vale

A:
$$1 + x + x^2$$
 B: $1 + 2x - \frac{\pi}{12}$ C: N.A. D: $1 + \sin(3x)(x - \pi/12)$ E: $\frac{3(x - \frac{\pi}{12})}{\sqrt{2}} + \frac{1}{\sqrt{2}}$

10. L'integrale

$$\int_{-1}^{1} |x| e^{x} dx$$

vale

A: N.A. B: $\sqrt{e} + 1$ C: $\frac{2(e-1)}{e}$ D: 2/e E: 0

2 luglio 2009

		·	(Co	ogno	me)				_			(N	lom	ıe)			_	(N	ume	ero d	i ma	atric	ola)

A	В	С	D	Ε	
11	ט	\circ	ט	ш	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

2 luglio 2009

			(Co	gno	me)							(No	ome])			(N	ume	ro d	i ma	trice	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

2 luglio 2009

			(Co	ogno	me)							(No	me)			_	(N	ume	ro d	i ma	trice	ola)

 $\mathrm{CODICE} = 717572$

A B C D E

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

2 luglio 2009

(Cognome)														(No	me)			(N	ume	ro d	i ma	trice	ola)			

CODICE = 441542

A	В	С	D	Ε	
11	ט	\circ	ט	ш	

1	
2	$lackbox{0}$
3	
4	
5	
6	
7	
8	
9	
10	

2 luglio 2009

PARTE B

1. Studiare il numero di soluzioni, al variare di $\lambda \in \mathbb{R}$ della equazione

$$\lambda = x^3 - 2x^2 + x - 1, \qquad x \ge 0.$$

2. Risolvere il problema di Cauchy

$$\begin{cases} y''(t) - y'(t) = t + \cos(t) \\ y(0) = 0 \\ y'(0) = 0. \end{cases}$$

3. Studiare la convergenza ed eventualmente calcolare l'integrale generalizzato

$$\int_{-\infty}^{0} x^2 e^{x^3} dx.$$

4. Mostrare che per ogni $p \ge 1$ esiste una costante c(p) tale che

$$(1+x)^p \le c(p)(1+x^p) \qquad \forall \, x \ge 0$$

e calcolare quanto vale.

Traccia di soluzione

1) Studiando la funzione

$$f(x) = x^3 - 2x^2 + x - 1, \qquad x \ge 0$$

si ricava subito che la derivata prima $f'(x) = 3x^2 - 4x + 1$ è strettamente maggiore di zero per $0 \le <1/3$ e per x>1 e strettamente minore di zero per 1/3 < x < 1. Pertanto in $x_0=1/3$ (con $f(x_0)=-23/27$) si ha un massimo locale, mentre in $x_1=1$ ($f(x_1)=-1$) si ha un minimo locale (questo è il grafico approssimativo

visto che $\lim_{x\to +\infty} f(x)=+\infty$). Dallo studio si ricava che non ci sono soluzioni se $\lambda<-1$; Poi 2 soluzioni se $\lambda=-1$ e $\lambda=-23/27$, 3 soluzioni se $-1<\lambda<-23/27$ e una soluzione se $\lambda>-23/27$

2) L'equazione caratteristica ha come soluzioni $\lambda=0,1$ e quindi l'equazione omogenea ha come soluzione

$$y_0(t) = c_1 t + c_2 e^t.$$

Le soluzioni del problema non omogeneo vanno cercate della forma $y_{f_1} = t(at + b)$ e $y_{f_2} = c\cos(t) + d\sin(t)$ Svolgendo i calcoli e imponendo le condizioni iniziali si trova che la soluzione è

$$y(t) = \frac{1}{2} \left(-t^2 - 2t + 3e^t - \cos(t) - \sin(t) - 2 \right).$$

3) La funzione i questione è integrabile in senso generalizzato, perchè

$$\lim_{x \to -\infty} \frac{x^2 e^{x^3}}{x^{\alpha}} = 0 \qquad \forall \, \alpha > 0$$

Svolgendo i conti si trova facilmente (integrazione per sostiruzione)

$$\int_{-\infty}^{0} x^2 e^{x^3} dx = \frac{1}{3}.$$

4) La diseguaglianza è soddisfatta se si trova un numero c(p) tale che

$$\frac{(1+x)^p}{(1+x^p)} \le c(p) \qquad \forall \, x \ge 0.$$

osserviamo che per ogni $p\geq 1$ fissato , se $F(x)=\frac{(1+x)^p}{(1+x^p)}$ si ha

$$F(0) = 1 \qquad \lim_{x \to +\infty} F(x) = 1$$

e inoltre visto che

$$F'(x) = \frac{p(x+1)^{p-1}(1-x^{p-1})}{(1+x^p)^2}$$

la funzione F(x) assume massimo assoluto in x=1 e questo ancora per ogni $p\geq 1$. Pertanto

$$F(x) = \frac{(1+x)^p}{(1+x^p)} \le F(1) = 2^{p-1}$$

23 luglio 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognome)															(No	me)			(N ₁	umei	ro di	trico	la)	

CODICE = 371550

A	В	С	D	Ε	

1	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
2	0000
3	
4	
5	
6	
7	
8	
9	
10	0000

1. Inf, min, sup e max dell'insieme

$$A = \{ e^{-|x|}, \ x \in \mathbb{R} \}$$

valgono

A: N.A. B: $\{1,1,+\infty,N.E.\}$ C: $\{0,N.E.,+\infty,N.E.\}$ D: $\{0,N.E.,+\infty,N.E.\}$ E $\{1,1,e,e\}$

2. Il limite

$$\lim_{x \to +\infty} \frac{e^{x^2} e^{\log(x)}}{e^{x^3}}$$

vale

A: 0 B: N.E. C: N.A. D: e E: $+\infty$

3. Una soluzione dell'equazione differenziale $y'(x) = e^x - e^{-x}$ è A: N.A. B: $e^x - x$ C: x - 1 D: N.E. E: $e^x + e^{-x} + 2^4$

4. L'argomento di $z=\sqrt[3]{\pi^3i}$ è A: $\frac{\pi}{6}+\frac{2k\pi}{3}$ B: N.A. C: $\pi/2$ e $-\pi/2$ D: $\frac{3\pi}{2}+6k\pi$

11.6 + 3 12.11.11. 13.11. 13.11. 13.11. 13.11. 13.11. 13.11. 13.11. 13.11. 13.11. 13.11. 13.11. 13.11. 13.11. 13.11.

5. Sia $\alpha \in \mathbb{R}$, allora la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{1 + \alpha^2 n}{n^2}$$

converge per

A: $\alpha = 0$ B: $\alpha > 1$ C: $-1 < \alpha \le 1$ D: $\alpha \ne 1$ E: N.A.

6. Data $f(x) = \log(\pi x) - \log(x)$. Allora $f'(\pi)$ è uguale a A: e^{π} B: N.A. C: $\log(\pi)$ D: N.E. E: 0

7. Sia $f(x) = \frac{x}{|x|}$ per $x \neq 0$ e f(0) = 0, allora l'integrale

$$\int_{-1}^{2} f(x) \, dx$$

vale

A: N.E. B: N.A. C: -1 D: 1 E: 0

8. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^4 - x^2 + 1$ è

A: iniettiva B: surgettiva C: pari D: N.A. E: monotona crescente

9. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \pi/6$ vale

A: $3\cos(3x)(x-\pi/6)$ B: N.A. C: $-3\left(x-\frac{\pi}{6}\right)$ D: $1-3-\frac{\pi}{12}$ E: $1+2(x-\pi/6)$ $\int \frac{1}{x} - 1 \qquad \text{per } 0 < x < 1$

10. La funzione $f(x) = \begin{cases} \frac{1}{x} - 1 & \text{per } 0 < x < 1 \\ \log(x) & \text{per } x \ge 1 \end{cases}$ definita su $(0, +\infty)$

A: è continua, ma non derivabile. B: è derivabile, ma non continua. C: è continua e derivabile. D: non è né continua né derivabile. E: N.A.

23 luglio 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

 (Cognome)														(No	me)			_		ume	i ma	tric	ola)				

Α	В	\mathbf{C}	D	\mathbf{E}	
11	ט	\sim	רב		

1	00000
2	
3	
4	
5	
6	
7	
8	
9	
10	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$

- 1. Data $f(x) = \log(\pi x) \log(x)$. Allora $f'(\pi)$ è uguale a A: N.E. B: $\log(\pi)$ C: 0 D: e^{π} E: N.A.
- 2. Sia $f(x) = \frac{x}{|x|}$ per $x \neq 0$ e f(0) = 0,allora l'integrale

$$\int_{-1}^{2} f(x) \, dx$$

vale

A: -1 B: N.A. C: 1 D: 0 E: N.E.

3. Il limite

$$\lim_{x \to +\infty} \frac{\mathrm{e}^{x^2} \mathrm{e}^{\log(x)}}{\mathrm{e}^{x^3}}$$

vale

A: 0 B: $+\infty$ C: N.E. D: e E: N.A.

- 4. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^4 x^2 + 1$ è

 A: surgettiva B: pari C: monotona crescente D: iniettiva E: N.A.
- 5. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \pi/6$ vale A: $1 - 3 - \frac{\pi}{12}$ B: $1 + 2(x - \pi/6)$ C: $-3(x - \frac{\pi}{6})$ D: N.A. E: $3\cos(3x)(x - \pi/6)$
- 6. Una soluzione dell'equazione differenziale $y'(x) = e^x e^{-x}$ è A: $e^x x$ B: x 1 C: N.E. D: $e^x + e^{-x} + 2^4$ E: N.A.
- 7. Sia $\alpha \in \mathbb{R},$ allora la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{1 + \alpha^2 n}{n^2}$$

converge per

A: $\alpha \neq 1$ B: $\alpha = 0$ C: $\alpha > 1$ D: N.A. E: $-1 < \alpha \le 1$

8. La funzione $f(x) = \begin{cases} \frac{1}{x} - 1 & \text{per } 0 < x < 1 \\ \log(x) & \text{per } x \ge 1 \end{cases}$ definita su $(0, +\infty)$

A: è derivabile, ma non continua. B: N.A. C: è continua e derivabile. D: non è né continua né derivabile. E: è continua, ma non derivabile.

9. Inf, min, sup e max dell'insieme

$$A = \{ e^{-|x|}, \ x \in \mathbb{R} \}$$

valgono

A: $\{0, N.E., +\infty, N.E.\}$ B: $\{0, N.E., +\infty, N.E.\}$ C: $\{1, 1, +\infty, N.E.\}$ D: $\{1, 1, e, e\}$ E: N.A.

10. L'argomento di $z = \sqrt[3]{\pi^3 i}$ è

A:
$$\pi/2$$
 e $-\pi/2$ B: $\frac{\pi}{3}$ C: $\frac{\pi}{6} + \frac{2k\pi}{3}$ D: N.A. E: $\frac{3\pi}{2} + 6k\pi$

23 luglio 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognome)														(N	ome	e)				lum		ma	trice	ola)					

1	
2	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	00000

1. Inf, min, sup e max dell'insieme

$$A = \{ e^{-|x|}, x \in \mathbb{R} \}$$

valgono

A: $\{0, N.E., +\infty, N.E.\}$ B: $\{0, N.E., +\infty, N.E.\}$ C: $\{1, 1, e, e\}$ D: $\{1, 1, +\infty, N.E.\}$ E: N.A.

2. Il limite

$$\lim_{x \to +\infty} \frac{e^{x^2} e^{\log(x)}}{e^{x^3}}$$

vale

A: N.E. B: 0 C: $+\infty$ D: N.A. E: e

3. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \pi/6$ vale A: $3\cos(3x)(x - \pi/6)$ B: N.A. C: $1 - 3 - \frac{\pi}{12}$ D: $-3(x - \frac{\pi}{6})$ E: $1 + 2(x - \pi/6)$

4. L'argomento di $z = \sqrt[3]{\pi^3 i}$ è

A: N.A. B: $\frac{3\pi}{2} + 6k\pi$ C: $\frac{\pi}{3}$ D: $\pi/2$ e $-\pi/2$ E: $\frac{\pi}{6} + \frac{2k\pi}{3}$

5. La funzione $f(x) = \begin{cases} \frac{1}{x} - 1 & \text{per } 0 < x < 1 \\ \log(x) & \text{per } x \ge 1 \end{cases}$ definita su $(0, +\infty)$

A: N.A. B: è derivabile, ma non continua. C: è continua e derivabile. D: non è né continua né derivabile. E: è continua, ma non derivabile.

6. Una soluzione dell'equazione differenziale $y'(x) = e^x - e^{-x}$ è

A: N.A. B: $e^x - x$ C: $e^x + e^{-x} + 2^4$ D: N.E. E: x - 1

7. La funzione $f:\ \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^4 - x^2 + 1$ è

A: N.A. B: iniettiva C: monotona crescente D: pari E: surgettiva

8. Sia $f(x) = \frac{x}{|x|}$ per $x \neq 0$ e f(0) = 0, allora l'integrale

$$\int_{-1}^{2} f(x) \, dx$$

vale

A: 1 B: N.E. C: N.A. D: -1 E: 0

9. Sia $\alpha \in \mathbb{R}$, allora la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{1 + \alpha^2 n}{n^2}$$

converge per

A: $-1 < \alpha \le 1$ B: N.A. C: $\alpha > 1$ D: $\alpha \ne 1$ E: $\alpha = 0$

10. Data $f(x) = \log(\pi x) - \log(x)$. Allora $f'(\pi)$ è uguale a

A: N.E. B: N.A. C: 0 D: e^{π} E: $\log(\pi)$

23 luglio 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognor	ne)	(Nome)	(Numero di matricola)

CODICE = 529220

А В	С	D	\mathbf{E}	
-----	---	---	--------------	--

1	00000
2	
3	
4	
5	
6	
7	
8	
9	
10	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$

1. Una soluzione dell'equazione differenziale $y'(x) = e^x - e^{-x}$ è A: N.E. B: N.A. C: $e^x + e^{-x} + 2^4$ D: x - 1 E: $e^x - x$

2. Sia $\alpha \in \mathbb{R},$ allora la serie a termini non-negativi

$$\sum_{n=1}^{\infty} \frac{1 + \alpha^2 n}{n^2}$$

converge per

A: N.A. B: $\alpha > 1$ C: $-1 < \alpha \le 1$ D: $\alpha \ne 1$ E: $\alpha = 0$

3. Data $f(x) = \log(\pi x) - \log(x)$. Allora $f'(\pi)$ è uguale a

A: N.E. B: N.A. C: e^{π} D: $\log(\pi)$ E: 0

4. Il limite

$$\lim_{x\to +\infty} \frac{\mathrm{e}^{x^2}\mathrm{e}^{\log(x)}}{\mathrm{e}^{x^3}}$$

vale

A: N.E. B: 0 C: e D: N.A. E: $+\infty$

5. Inf, min, sup e max dell'insieme

$$A = \{ e^{-|x|}, x \in \mathbb{R} \}$$

valgono

A: $\{0, N.E., +\infty, N.E.\}$ B: $\{0, N.E., +\infty, N.E.\}$ C: $\{1, 1, e, e\}$ D: $\{1, 1, +\infty, N.E.\}$ E: N.A.

6. La funzione $f(x) = \begin{cases} \frac{1}{x} - 1 & \text{per } 0 < x < 1 \\ \log(x) & \text{per } x \ge 1 \end{cases}$ definita su $(0, +\infty)$

A: non è né continua né derivabile. B: è continua, ma non derivabile. C: è continua e derivabile. D: N.A. E: è derivabile, ma non continua.

7. La retta tangente al grafico di $y(x) = \cos(3x)$ nel punto $x_0 = \pi/6$ vale

A: N.A. B:
$$1 + 2(x - \pi/6)$$
 C: $-3(x - \frac{\pi}{6})$ D: $3\cos(3x)(x - \pi/6)$ E: $1 - 3 - \frac{\pi}{12}$

8. L'argomento di $z = \sqrt[3]{\pi^3 i}$ è

A:
$$\frac{3\pi}{2} + 6k\pi$$
 B: $\pi/2$ e $-\pi/2$ C: $\frac{\pi}{6} + \frac{2k\pi}{3}$ D: $\frac{\pi}{3}$ E: N.A.

9. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^4 - x^2 + 1$ è

A: iniettiva B: N.A. C: pari D: surgettiva E: monotona crescente

10. Sia $f(x) = \frac{x}{|x|}$ per $x \neq 0$ e f(0) = 0, allora l'integrale

$$\int_{-1}^{2} f(x) \, dx$$

vale

A: N.E. B: 1 C: 0 D: -1 E: N.A.

				ogno	ome)						(No	ome)			ume	ro d	i ma	trico	ola)

Α	В	\mathbf{C}	D	\mathbf{E}	
	_	_	_		

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

(Cognome)											(No	me)			(N ₁	umei	ro di	ma	trico	la)							

A	В	С	D	E	
	_	_	_		

1	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
2	
3	
4	
5	
6	
7	
8	
9	
10	

(Cognome)											(No	me)			(N ₁	umei	ro di	ma	trico	la)							

CODICE = 404333

1 2 3 4 5 6 7 8 9 10		
3 4	1	
4	2	
5 6 7 8 9	3	
6	4	
7	5	
8 0 0 0 0	6	
9	7	
	8	
10		

(Cognome)										(Nome)								(Numero di matricola)													

Α	В	С	D	Ε	

1	\bigcirc
2	
3	
4	
5	
6	
7	
8	
9	
10	

PARTE B

1. Studiare la funzione

$$f(x) = \frac{x}{\log(x)}, \qquad x \in (0,1) \cup (1, +\infty)$$

trovando eventuali massimi e minimi locali e assoluti e punti di flesso. Calcolare poi il numero di intersezioni con la funzione g(x)=x.

2. Risolvere il problema di Cauchy

$$\begin{cases} y''(t) + y(t) = \sin(t) + \cos(2t) \\ y(0) = 0 \\ y'(0) = 0. \end{cases}$$

3. Calcolare l'integrale

$$\int_{1}^{e} \frac{\log(x)}{x(\log(x)+1)} \, dx.$$

Sugg. usare integrazione per sostituzione

4. Sia h(x) una funzione continua assieme alle sue derivate prime e seconde e tale che h(0) = h(1) = e e $h'(1) = \pi$. Calcolare

$$\int_0^1 xh''(x) \, dx.$$

17 settembre 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognome)										(Nome)								(Numero di matricola)														

CODICE = 948313

Α	В	С	D	Ε	
11	ב	\sim			

1	00000
2	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$

1. Data $f(x) = \sin(\pi x)$. Allora f'(2/3) è uguale a

A:
$$\frac{\pi}{2}$$
 B: $-\frac{\pi}{2}$ C: -1 D: $\frac{\sqrt{3}}{2}$ E: N.A.

2. La serie a termini non-negativi

$$\sum_{n=-1}^{\infty} \frac{(n+3)}{(n+4)^{\alpha}}$$

converge per

A:
$$\alpha > 0$$
 B: N.A. C: $1 < \alpha \le 2$ D: $\alpha \ge 1$ E: $\alpha > 1$

3. L'integrale

$$\int_{-1}^{2} |-x^3| \, dx$$

vale

A: 0 B: N.A. C:
$$\frac{\pi^4 - 1}{4}$$
 D: $\frac{17}{4}$ E: $\frac{15}{4}$

4. Il polinomio di Taylor di grado 1 relativo al punto $x_0={\bf e}$ della funzione $f(x)={\bf e}^{x^2}$ vale

A:
$$e^{e^2} + 2e^{e^2x}(x - e)$$
 B: $e^{e^2} - e^{1+e^2}(x + e)$ C: N.A. D: $1 + x$ E: $e^{e^2} + 2e^{1+e^2}(x - e)$

5. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |\sin(x)|$ è

A: monotona crescente B: iniettiva C: sempre non negativa D: N.A. E: surgettiva

6. Modulo e argomento del numero complesso $\frac{1}{2}\left(1-i\sqrt{3}\right)$ sono

A: N.A. B:
$$(1, \pi/6)$$
 C: $(1, 4\pi/3)$ D: $(2, 5\pi/3)$ E: $(1, -\pi/3)$

7. Inf, min, sup e max dell'insieme

$$A = \{ x \in \mathbb{R} : \log(x) \ge e \}$$

valgono

$$A: \{e^{e}, e^{e}, +\infty, N.E.\} \quad B: \{0, N.E., e^{e}, e^{e}\} \quad C: N.A. \quad D: \{e, N.E., +\infty, N.E.\} \quad E: \{0, 0, +\infty, N.E.\}$$

8. Una primitiva della funzione $x(t) = te^{2t}$ è

A:
$$\sin(t) + i\cos(t)$$
 B: $\frac{1}{4}e^{2t}(2t-1) - \sqrt{\pi}$ C: $e^t(t-1)$ D: N.A. E: $\frac{t^2}{2}e^{t^2}$

9. Il limite

$$\lim_{z \to 0} \frac{\log(1+z^2)}{1 - \cos(z)}$$

vale

$$A: +\infty$$
 B: 0 C: N.A. D: N.E. E: 1

10. La funzione
$$f(x) = \begin{cases} x^2 - x - 1 & \text{per } x < 0 \\ -\sin(x) & \text{per } x \ge 0 \end{cases}$$

A: è derivabile, ma non continua. B: è continua, ma non derivabile. C: non è né continua né derivabile. D: N.A. E: è continua e derivabile.

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

17 settembre 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

			(Co	ogno	me)							(No	me)			_		ume	i ma	tric	ola)

Α	В	С	D	Ε	

1	00000
2	00000
3	00000
4	00000
5	0000
6	
7	
8	00000
9	
10	

1. L'integrale

$$\int_{-1}^{2} |-x^3| \, dx$$

vale

A: N.A. B: 0 C: $\frac{17}{4}$ D: $\frac{\pi^4 - 1}{4}$ E: $\frac{15}{4}$

- 2. Il polinomio di Taylor di grado 1 relativo al punto $x_0 = e$ della funzione $f(x) = e^{x^2}$ vale A: $e^{e^2} + 2e^{1+e^2}(x-e)$ B: 1+x C: $e^{e^2} e^{1+e^2}(x+e)$ D: N.A. E: $e^{e^2} + 2e^{e^2x}(x-e)$
- 3. Il limite

$$\lim_{z \to 0} \frac{\log(1+z^2)}{1 - \cos(z)}$$

vale

A: N.E. B: 1 C: $+\infty$ D: 0 E: N.A.

- 4. Data $f(x) = \sin(\pi x)$. Allora f'(2/3) è uguale a A: $\frac{\pi}{2}$ B: $\frac{\sqrt{3}}{2}$ C: $-\frac{\pi}{2}$ D: -1 E: N.A.
- 5. Modulo e argomento del numero complesso $\frac{1}{2}\left(1-i\sqrt{3}\right)$ sono A: $(1,\pi/6)$ B: $(1,-\pi/3)$ C: $(1,4\pi/3)$ D: N.A. E: $(2,5\pi/3)$
- 6. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |\sin(x)|$ è
- A: surgettiva B: monotona crescente C: sempre non negativa D: N.A. E: iniettiva
- 7. Una primitiva della funzione $x(t) = te^{2t}$ è

A:
$$\frac{1}{4}e^{2t}(2t-1) - \sqrt{\pi}$$
 B: $e^{t}(t-1)$ C: N.A. D: $\sin(t) + i\cos(t)$ E: $\frac{t^{2}}{2}e^{t^{2}}$

8. La funzione $f(x) = \begin{cases} x^2 - x - 1 & \text{per } x < 0 \\ -\sin(x) & \text{per } x \ge 0 \end{cases}$

A: N.A. B: è derivabile, ma non continua. C: è continua, ma non derivabile. D: non è né continua né derivabile. E: è continua e derivabile.

9. La serie a termini non-negativi

$$\sum_{n=-1}^{\infty} \frac{(n+3)}{(n+4)^{\alpha}}$$

converge per

A: $\alpha > 0$ B: $\alpha > 1$ C: $\alpha \ge 1$ D: N.A. E: $1 < \alpha \le 2$

10. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log(x) > e\}$$

valgono

A: $\{e, N.E., +\infty, N.E.\}$ B: $\{e^e, e^e, +\infty, N.E.\}$ C: N.A. D: $\{0, 0, +\infty, N.E.\}$ E: $\{0, N.E., e^e, e^e\}$

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

17 settembre 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

			(Co	gnor	me)						(No	me)			(Nı	ımeı	o di	trico	la)

CODICE = 481466

A	В	С	D	Е	

1	
2	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	0000

1. Data $f(x) = \sin(\pi x)$. Allora f'(2/3) è uguale a

A: N.A. B:
$$-1$$
 C: $\frac{\sqrt{3}}{2}$ D: $-\frac{\pi}{2}$ E: $\frac{\pi}{2}$

2. Il limite

$$\lim_{z \to 0} \frac{\log(1+z^2)}{1 - \cos(z)}$$

vale

A: 0 B: N.E. C: N.A. D:
$$+\infty$$
 E: 1

3. La serie a termini non-negativi

$$\sum_{n=-1}^{\infty} \frac{(n+3)}{(n+4)^{\alpha}}$$

converge per

A:
$$1 < \alpha \le 2$$
 B: $\alpha \ge 1$ C: $\alpha > 0$ D: $\alpha > 1$ E: N.A.

4. Una primitiva della funzione $x(t) = te^{2t}$ è

A:
$$\frac{1}{4}e^{2t}(2t-1) - \sqrt{\pi}$$
 B: N.A. C: $\frac{t^2}{2}e^{t^2}$ D: $e^t(t-1)$ E: $\sin(t) + i\cos(t)$

5. Inf, min, sup e max dell'insieme

$$A = \{ x \in \mathbb{R} : \log(x) \ge e \}$$

valgono

A:
$$\{e, N.E., +\infty, N.E.\}$$
 B: $\{0, 0, +\infty, N.E.\}$ C: $\{e^e, e^e, +\infty, N.E.\}$ D: N.A. E: $\{0, N.E., e^e, e^e\}$

6. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |\sin(x)|$ è

A: iniettiva B: N.A. C: surgettiva D: sempre non negativa E: monotona crescente

7. La funzione
$$f(x) = \begin{cases} x^2 - x - 1 & \text{per } x < 0 \\ -\sin(x) & \text{per } x \ge 0 \end{cases}$$

A: non è né continua né derivabile. B: è derivabile, ma non continua. C: è continua e derivabile. D: è continua, ma non derivabile. E: N.A.

8. Modulo e argomento del numero complesso $\frac{1}{2} (1 - i\sqrt{3})$ sono

A:
$$(1, \pi/6)$$
 B: $(1, -\pi/3)$ C: N.A. D: $(1, 4\pi/3)$ E: $(2, 5\pi/3)$

9. Il polinomio di Taylor di grado 1 relativo al punto $x_0 = e$ della funzione $f(x) = e^{x^2}$ vale

A:
$$1 + x$$
 B: N.A. C: $e^{e^2} - e^{1+e^2}(x+e)$ D: $e^{e^2} + 2e^{1+e^2}(x-e)$ E: $e^{e^2} + 2e^{e^2x}(x-e)$

10. L'integrale

$$\int_{-1}^{2} |-x^3| dx$$

vale

A:
$$\frac{\pi^4 - 1}{4}$$
 B: $\frac{17}{4}$ C: N.A. D: 0 E: $\frac{15}{4}$

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

17 settembre 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

			(Co	ogno	me)							(No	me)			_		ume	i ma	tric	ola)

Α	В	С	D	Ε	

1	00000
2	00000
3	0000
4	00000
5	00000
6	
7	
8	
9	
10	0000

1. Il limite

$$\lim_{z \to 0} \frac{\log(1+z^2)}{1 - \cos(z)}$$

vale

A: $+\infty$ B: 0 C: N.E. D: 1 E: N.A.

2. La funzione $f(x) = \begin{cases} x^2 - x - 1 & \text{per } x < 0 \\ -\sin(x) & \text{per } x \ge 0 \end{cases}$

A: non è né continua né derivabile. B: è continua, ma non derivabile. C: è continua e derivabile. D: è derivabile, ma non continua. E: N.A.

3. L'integrale

$$\int_{-1}^{2} |-x^3| \, dx$$

vale

A: $\frac{17}{4}$ B: N.A. C: $\frac{15}{4}$ D: $\frac{\pi^4 - 1}{4}$ E: 0

4. Data $f(x) = \sin(\pi x)$. Allora f'(2/3) è uguale a

A: -1 B: $-\frac{\pi}{2}$ C: $\frac{\sqrt{3}}{2}$ D: $\frac{\pi}{2}$ E: N.A.

5. Inf, min, sup e max dell'insieme

$$A = \{ x \in \mathbb{R} : \log(x) \ge e \}$$

valgono

A: $\{0, 0, +\infty, N.E.\}$ B: N.A. C: $\{e^e, e^e, +\infty, N.E.\}$ D: $\{e, N.E., +\infty, N.E.\}$ E: $\{0, N.E., e^e, e^e\}$

6. Modulo e argomento del numero complesso $\frac{1}{2}\left(1-i\sqrt{3}\right)$ sono

A: $(2, 5\pi/3)$ B: $(1, -\pi/3)$ C: $(1, 4\pi/3)$ D: N.A. E: $(1, \pi/6)$

7. La serie a termini non-negativi

$$\sum_{n=-1}^{\infty} \frac{(n+3)}{(n+4)^{\alpha}}$$

converge per

A: $\alpha > 0$ B: N.A. C: $1 < \alpha \le 2$ D: $\alpha > 1$ E: $\alpha \ge 1$

8. La funzione $f:\ \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |\sin(x)|$ è

A: iniettiva B: N.A. C: surgettiva D: monotona crescente E: sempre non negativa

9. Una primitiva della funzione $x(t) = te^{2t}$ è

A: N.A. B: $\frac{1}{4}e^{2t}(2t-1) - \sqrt{\pi}$ C: $\sin(t) + i\cos(t)$ D: $\frac{t^2}{2}e^{t^2}$ E: $e^t(t-1)$

10. Il polinomio di Taylor di grado 1 relativo al punto $x_0 = e$ della funzione $f(x) = e^{x^2}$ vale

A: $e^{e^2} - e^{1+e^2}(x+e)$ B: $e^{e^2} + 2e^{e^2}x(x-e)$ C: 1+x D: N.A. E: $e^{e^2} + 2e^{1+e^2}(x-e)$

			(Co	gnor	me)						(No	me)			(N ₁	umei	ro di	ma	trico	la)

Α	В	С	D	Ε	

1	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
2	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	

			(Co	gnor	ne)						(No	me)			(N ₁	ume	ro di	trico	la)

CODICE = 949137

Α	В	С	D	Ε	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

(Cognome)										(Nome)									(Nı	ımeı	ro di	ma	trico	la)							

CODICE = 481466

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

(Cognome)										(Nome)									(Nı	ımeı	ro di	ma	trico	la)							

Α	В	С	D	Ε	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

PARTE B

1. Studiare la funzione

$$f(x) = \begin{cases} x^2 + 1 & x < 0, \\ \cos(x) & 0 \le x < \frac{3\pi}{2}, \\ 3\pi - 2x & x \ge \frac{3\pi}{2}, \end{cases}$$

2. Risolvere il problema di Cauchy

$$\begin{cases} y'''(t) - 2y''(t) + y'(t) = e^t \\ y(0) = 0, \\ y'(0) = 0, \\ y''(0) = 0. \end{cases}$$

3. Calcolare l'integrale

$$\int_1^3 \frac{dx}{x^2(x+3)}.$$

4. Dimostrare che per ogni coppia di numeri reali a e b vale la diseguaglianza

$$|\sin(a) - \sin(b)| \le |a - b|.$$