Ein Plattenkondensator...

 ...wird geladen, sodass die Spannung U anliegt und die Ladung Q einer Platte misst. Der Plattenabstand d wird variiert:

• Messreihe 3: d = 0,5 cm

U in kV	1	2	3	4	5
Q in μC	42	81	118	165	199
Q/U in $n \frac{V}{C}$					

U in kV	1	2	3	4	5
Q in μC	78	134	226	311	380
Q/U in $n \frac{v}{c}$					

U in kV	1	2	3	4	5
Q in μC	152	310	455	624	758
Q/U in $n \frac{v}{c}$					

Geben Sie an, welcher
Zusammenhang zwischen der Spannung und der Ladung besteht.

Die elektrische Kapazität C – 1. Formel

• Die elektrische Kapazität C ist ein Maß dafür, wie viel Ladung Q man bei einer bestimmten Spannung U auf einen Kondensator geben kann:

$$C = \frac{Q}{U}$$

Berechnen Sie die Ladung, die auf einem Kondensator gespeichert ist, wenn dieser eine Kapazität von 15 pF besitzt und dort eine Spannung von 12 V anliegt.

Geben Sie die Anzahl der Elektronen **an**, die diese Ladung ausmachen.

$$[C] = 1\frac{C}{V} = 1 F (Farad)$$

Bei implantierbaren Defibrillatoren liegen die Kapazitäten der Kondensatoren bei etwa 100 bis 170 μF. Sie arbeiten mit Spannungen von zirka 650 bis 800 V und einer Schockenergie von 30 J bei einer Batteriespannung von zirka 3,5 V.

2. Formel für die Kapazität im Plattenkondensator

• Herleitung über die Flächenladungsdichte σ im Plattenkondensator:

$$\sigma = \varepsilon_0 \cdot \underline{E} = \varepsilon_0 \cdot \frac{\underline{U}}{\underline{d}} \rightarrow \underline{U} = d \frac{\sigma}{\varepsilon_0}$$

• Mit
$$\sigma = \frac{Q}{A}$$
 folgt für $C = \frac{Q}{U}$:
$$C = \frac{Q}{U} = \frac{\sigma A}{d \frac{\sigma}{\varepsilon_0}} \rightarrow C = \varepsilon_0 \frac{A}{d}$$

... die Kapazität ist also rein von geometrischen Größen (Fläche A und Abstand d) eines Plattenkondensators abhängig!

Berechnen Sie die Kapazität eines Plattenkondensators, dessen runde Platten den Durchmesser 40 cm haben und dabei 5 cm auseinanderliegen.

→ Dielektrikum

sation. Feldlinien sind schematisch gezeichnet.

- Plattenkondensator, der mit Spannungsquelle aufgeladen wird, dann aber von dieser getrennt wird → Q ist konstant
- Erklärung für angepasste Formel:
 - Die Elektronen richten sich innerhalb des Materials aus → Verschiebungspolarisation
 - Dadurch entsteht ein E-Feld innerhalb des Materials, dass dem äußeren Feld des Plattenkondensators entgegengerichtet ist → Abschwächung des E-Feldes
 - Da $E = \frac{U}{d}$ gilt, muss bei festen Plattenabstand d die Spannung U absinken
 - Da $C = \frac{Q}{H}$ gilt, muss die Kapazität C bei konstanter Ladung Q zunehmen
 - Bei $C = \varepsilon_0 \frac{A}{d}$ ist keine Änderung der Kapazität C nachzuvollziehen, daher muss eine Materialkonstante eingeführt werden:

 ϵ_r — die relative Permittivität

Übertragen Sie die Tabelle im Buch S.28 T2.