

Postupci povećanja termičkog stupnja djelovanja u termoelektranama s parnim turbinama

Rankineov kružni proces, stupnjevi djelovanja realnih procesa, postupci povećanja termičkog stupnja djelovanja termoelektrana s parnim turbinama

Energijske tehnologije FER 2008.

Gdje smo:

- 1. Organizacija i sadržaj predmeta
- 2. Uvodna razmatranja
- 3. O energiji
- 4. Energetske pretvorbe i procesi u termoelektranama
- 5. Energetske pretvorbe i procesi u hidroelektranama
- 6. Energetske pretvorbe i procesi u nuklearnim el.
- 7. Energija Sunca
- 8. Energija vjetra
- 9. Geotermalna energija
- 10. Biomasa
- 11. Gorivne ćelije i ostale neposredne pretvorbe
- 12. Potrošnja električne energije
- 13. Prijenos i distribucija električne energije
- 14. Skladištenje energije
- 15. Energija, okoliš i održivi razvoj

Sadržaj

Neprovedivost Carnotovog kružnog procesa Postupci povećanja termičkog stupnja djelovanja

- proces sa suhom parom
- proces s pregrijanom parom
- proces s međupregrijanjem pare
- proces sa zagrijavanjem kondenzata
- utjecaj tlaka i temperature svježe pare
- > kombinirana proizvodnja pare i električne energije

Neprovedivost Carnotovog kružnog procesa

Energijske tehnologije: Postupci povećanja termičkog stupnja djelovanja

4

h,s – dijagram Rankineovog kružnog procesa

Sadržaj pare x (sadržaj vlage 1-x)

$$x = \frac{m''}{m' + m''}$$

$$V = m'v' + m''v''$$

$$m = m' + m''$$

$$v = \frac{V}{m} = \frac{m'}{m' + m''} v' + \frac{m''}{m' + m''} v''$$

$$\frac{v-v'}{v''-v'} = \frac{x}{1} = \frac{a}{a+b}$$

$$v = (1 - x)v' + xv'' = v' + x(v'' - v')$$
 $u = u' + x(u'' - u')$

$$h = h' + x(h'' - h')$$

$$\mathbf{u} = \mathbf{u}' + \mathbf{x}(\mathbf{u}'' - \mathbf{u}')$$

$$S = S' + X(S'' - S')$$

Shematski prikaz kružnog procesa u kondenzacijskoj termoelektrani

Povratljivi kružni proces u kondenzacijskoj termoelektrani

Realni kružni proces u kondenzacijskoj termoelektrani

Odlučujući utjecaj na stupanj djelovanja termoelektrane ima termički stupanj djelovanja, koji je normalno i najmanji, pa je razumljivo nastojanje da se termički stupanj djelovanja poboljša (poveća).

Proces sa suhom parom

Povećanje sadržaja vlage na kraju ekspanzije uzrokovano povišenjem tlaka suhe pare

Proces s pregrijanom parom

Proces s međupregrijanjem pare

Proces sa zagrijavanjem kondenzata

$$\mathbf{a} \bullet (\mathbf{h}_{D1} - \mathbf{h}_{B1}) = 1 \bullet (\mathbf{h}_{B1} - \mathbf{h}_{A}) \quad 1 \bullet (\mathbf{h}_{D} - \mathbf{h}_{E}) + \mathbf{a} \bullet (\mathbf{h}_{D} - \mathbf{h}_{D1})$$

Nazivnik možemo proširiti s h_A i a h_{D1}, pa dobivamo

$$h_D$$
 - h_A - $(h_{B1}$ - $h_A)$ + $a[(h_D$ - $h_{D1})$ + $(h_{D1}$ - $h_{B1})]$

Uvaživši relaciju
$$\mathbf{a} \cdot (\mathbf{h}_{D1} - \mathbf{h}_{B1}) = 1 \cdot (\mathbf{h}_{B1} - \mathbf{h}_{A})$$

$$\eta_{\textit{ter}} = \frac{h_{D} - h_{E} + a(h_{D} - h_{D1})}{h_{D} - h_{A} + a(h_{D} - h_{D1})}$$

Utjecaj tlaka i temperature svježe pare

Utjecaj tlaka i temperature svježe pare

Kombinirana proizvodnja pare i električne energije

$$D = \frac{\dot{Q}'_p}{h_{D1} - h_A} [kg/h]$$

$$P_{pr} = D(h_{\overline{D}} - h_{\overline{D}1}) [kW]$$

$$\dot{Q}'_{tr} = \dot{Q}'_{p} + P_{pr}$$

$$\dot{Q}'_{tr} = \dot{Q}'_{p} + P_{pr}$$
 $\dot{Q}'_{dov} = D(h_{D} - h_{A})[kJ/h]$

$$\eta_{1} = \frac{\dot{Q'}_{p} + P_{tr}}{\dot{Q'}_{dov}} = \frac{\left(h_{D1} - h_{A}\right) + \left(h_{D} - h_{D1}\right)}{h_{D} - h_{A}}$$

Odvojena proizvodnja pare i električne energije

$$D_{p} = \frac{\dot{Q}^{"}_{p}}{h_{D1} - h_{A}} \left[kg / h \right] \qquad D_{e} = \frac{P_{tr}}{h_{D} - h_{E}} \left[kg / h \right] \qquad \dot{Q}^{"}_{dov} = D_{p} \left(h_{D1} - h_{A} \right) + D_{e} \left(h_{D} - h_{A} \right)$$

$$\eta_2 = \frac{D_p(h_{D1} - h_A) + D_e(h_D - h_E)}{D_p(h_{D1} - h_A) + D_e(h_D - h_A)}$$

Usporedba stupnjeva djelovanja

$$\begin{split} \mathbf{P}_{\text{pr}} &= \mathbf{P}_{\text{tr}} \ \mathbf{i} \ \ \dot{Q'}_{p} = \dot{Q''}_{p} \qquad D_{e} \big(h_{D} - h_{E} \big) = P_{tr} = P_{pr} = D \big(h_{D} - h_{D1} \big) \\ \\ \mathbf{D}_{p} &= \mathbf{D} \qquad \qquad \eta_{2} = \frac{\big(h_{D1} - h_{A} \big) + \big(h_{D} - h_{D1} \big)}{\big(h_{D1} - h_{A} \big) + \frac{D_{e}}{D} \big(h_{D} - h_{A} \big)} \qquad \mathbf{D}_{e} \big(\mathbf{h}_{D} - \mathbf{h}_{E} \big) = \mathbf{D} \big(\mathbf{h}_{D} - \mathbf{h}_{D1} \big) \end{split}$$

$$P_{tr} = D_e(h_D - h_E)$$
 $D_e = \frac{P_{tr}}{h_D - h_E}$ $P_{tr} = P_{pr}$ $D = \frac{P_{pr}}{h_D - h_{D1}}$

$$\eta_{D} - h_{E} \qquad h_{D} - h_{D1}$$

$$\eta_{2} = \frac{(h_{D1} - h_{A}) + (h_{D} - h_{D1})}{(h_{D1} - h_{A}) + \frac{h_{D} - h_{D1}}{h_{D} - h_{E}}(h_{D} - h_{A})}$$

$$\frac{\eta_{1}}{\eta_{2}} = \frac{h_{D1} - h_{A}}{h_{D} - h_{A}} + \frac{h_{D} - h_{D1}}{h_{D} - h_{E}}$$

$$2008. \qquad \text{Energijske tehnologije: Postupci povećanja termičkog stupnja djelovanja} \qquad 18$$

Usporedba stupnjeva djelovanja

$$\frac{\eta_1}{\eta_2} = \frac{h_{D1} - h_A}{h_D - h_A} + \frac{h_D - h_{D1}}{h_D - h_E}$$

- h_{D1} ovisi o potrebama parnih potrošača
- vrijednosti su h_D, h_E i h_A određene izvedbom termoelektrane
- h_{D1} se kreće u granicama h_D i h_E
- za sve $h_{D1} < h_{D}$ stupanj je djelovanja η_{1} veći od η_{2} jer je $\eta_{1}/\eta_{2} > 1$

Različite sheme spoja

Različite sheme spoja

Različite sheme spoja

Odredite maksimalni mehanički rad koji možemo dobiti iz 1 m³ vakuuma. Tlak je okolice 100 kPa, a temperatura 300 K.
Rj.

Budući da vakuum ne sadrži masu, m = 0, to je U = mu = 0, S = ms = 0, dobivamo:

$$\begin{split} Eks_{vakuuma} &= W_{maxvakuuma} = U - U_{ok} - T_{ok}(S - S_{ok})_s + p_{ok}(V - V_{ok}) = \\ &= [0 - 300 \cdot 0 + 100 \cdot (1 - 0)] \ kJ = 100 \ kJ \end{split}$$

V_{ok} = 0: u stanju je okolice volumen vakuuma jednak nuli Objašnjenje: da bi se ostvario vakuum, pumpa za vakuum troši eksergiju (mehanički rad). Vakuum je dakle produkt obavljanja rada. Energija je neuništiva, taj mehanički rad (eksergija) ostaje pohranjen u vakuumu; vakuum posjeduje eksergiju ili "radnu sposobnost".

lkg vode, početne temperature 25°C, zagrijava se adijabatski, izložen utjecaju konstantnog tlaka okolice, električnom grijalicom na 90°C. Odredite energetski i eksergetski stupanj djelovanja procesa.

Rj.

$$q_{12} = u_2 - u_1 + w_{12}$$
 [J/kg]; $q_{12} = 0$ (adijabatski sustav), $u_2 - u_1 = -w_{12}$ $w_{12} = w_{el.en} + p_{ok}(v_2 - v_1)$ ($p_{ok}(v_2 - v_1) = w_{po}$ rad je potiskivanja okolice zbog promjene volumena vode koja se zagrijava)

$$\begin{split} w_{12} &= \text{-} (w_{\text{el.en}} + w_{\text{po}}) = u_2 - u_1 \ (m = 1 kg) \\ w_{\text{el.en}} &= u_2 - u_1 + w_{\text{po}} = u_2 - u_1 + p_{\text{ok}} (v_2 - v_1) = u_2 + p_{\text{ok}} v_2 - (u_1 + p_{\text{ok}} v_1) = \\ &= u_2 + p_2 v_2 - (u_1 + p_1 v_1) = h_2 - h_1 \ (p_{\text{ok}} = p_1 = p_2) \end{split}$$

Iz tablica dobivamo:

$$u_1 = 105 \text{ kJ/kg}, h_1 = 105 \text{ kJ/kg}$$

 $u_2 = 377 \text{ kJ/kg}, h_2 = 377 \text{ kJ/kg}$

(očito, promjena je volumena vode toliko mala zbog zagrijavanja od 25 do 90°C da je mehanički rad potiskivanja okolice zanemarive veličine)

Dobivamo:

$$-W_{el.en} = 272 \text{ kJ/kg}$$
; $-W_{el.en} = 272 \text{ kJ (m = 1kg)}$

Energetski je stupanj djelovanja dakle:

$$\eta_t = \frac{\check{z}eljeni \cdot oblik \cdot energije \cdot (izlaz)}{potrebiti \cdot oblik \cdot energije \cdot (ulaz)} = \frac{h_2 - h_1}{-w_{el.en}} \cdot 100\% = \frac{272}{272} \cdot 100\% = 100\%$$

Dakle je energetski stupanj djelovanja, stupanj djelovanja definiran na osnovi 1. glavnog stavka termodinamike jednak 1, 100%.

Eksergetski (eksergijski) stupanj djelovanja definiran je kao omjer eksergije dobiveni iz procesa i eksergije dovedene u proces:

$$\varsigma = \frac{izlazna \cdot eksegija}{ulazna \cdot eksergija}$$

eksergija_{zagrijane vode} =
$$h_2 - h_1 - T_{ok}(s_2 - s_1)$$
 [J/kg]

Iz tablica dobivamo ($p_1 = p_2 = p_{ok}$): $s_1 = 0,367 \text{ kJ/kgK}$; $s_2 = 1,193 \text{ kJ/kgK}$,

pa je eksergija zagrijane vode:

eksergija_{zagrijane vode} =
$$377 - 105 - 300(1,193 - 0.367) = 24,2 \text{ kJ/kg}$$

Eksergetski je stupanj djelovanja dakle jednak

$$\varsigma = \frac{24,2}{272}100\% = 8,9\%$$

(272 → električna je energija eksergija)

Dakle se, u ovom slučaju, preko 90% dovedene eksergije pretvara u anergiju u procesu pretvorbe u unutrašnju kaloričku energiju. Očito, zagrijavanje električnom energijom (eksergijom) energetski je (eksergetski) nepovoljan proces.

Ukratko

Govorili smo o Rankineovom kružnom procesu, procesu koji se, zbog nemogućnosti provođenja Carnotovog kružnog procesa, odvija u termoelektranama s parnim turbinama.

Opisali smo realne procese u termoelektrani i definirali pokazatelje takvih procesa: stupnjeve djelovanja.

Budući da je među njima najvažniji, i ujedno najlošiji (najmanji), termički stupanj djelovanja, predstavili smo procese njegovog povećanja.