aod-lab-lista4

Marcin Zubrzycki

January 2025

Algorytm Edmondsa-Karpa

Opis struktury grafu

Rozważany graf jest hiperkostką $H_k, k \in \{1,...,16\}$, czyli grafem którego zbiorem wierzchołków jest zbiór liczb $\{0,...,2^k-1\}$. Wierzchołki połączone są ze sobą tylko jeśli zapis binarny ich indeksów rózni się na dokładnie jednej pozycji krawędzią skierowaną z wierzchołka o mniejszej liczbie jedynek do tego z większą. Pojemności przyjmowane przez krawędzie są losowane jednostajnie z przedziału $\{1,...,2^l\}$, gdzie l równe jest największej z czterech wartości: ilość zer lub ilość jedynek z dowolnego spośród dwóch zamieszanych wierzchołków.

Opis Algorytmu

Algorytm Edmondsa-Karpa służy do znajdowania maksymalnego przepływu w sieci przepływowej. Implementuje on metodę Forda-Fulkersona, w której wybór ścieżki powiększającej jest dokonywany za pomocą metody Breadth-First-Search. Po znalezieniu najkrótszej ścieżki puszczamy przepływ tą ściężką i szukamy kolejnej ścieżki w następnej iteracji, aż zapełnią się wszystkie drogi od źródła.

Algorithm 1 Edmonds-Karp

```
Require: Graf przepływowy G=(V,E), przepustowości c(u,v), źródło s, ujście t
```

Ensure: Maksymalny przepływ od s do t

- 1: Inicjalizuj przepływ $f(u,v) \leftarrow 0$ dla każdej krawędzi $(u,v) \in E$.
- 2: **while** istnieje w grafie rezydualnym ścieżka P z s do t znaleziona za pomocą BFS do
- 3: Wyznacz minimalną rezydualną przepustowość cf_{min} na ścieżce P, tj. cf_{min} = $\min_{(u,v)\in P} (c(u,v) f(u,v))$.
- 4: for all krawędzi (u,v) należących do ścieżki P do
- 5: $f(u,v) \leftarrow f(u,v) + \mathrm{cf}_{\min}$
- 6: $f(v,u) \leftarrow f(v,u) \mathrm{cf_{min}}$ (aktualizacja przepływu rewersyjnego)
- 7: end for
- 8: end while
- 9: **return** f (wielkość maksymalnego przepływu to $\sum_{v \in V} f(s,v))$