MDI 341

Introduction aux modèles graphiques - Partie II: Modèles de Markov Cachés

Mars 2017

Laurence Likforman-Sulem
Telecom ParisTech/IDS
likforman@telecom-paristech.fr

Plan

- Modèles de Markov Cachés
 - discrets/continus
 - modèle génératif
 - décodage Viterbi, Baum-Welch
 - apprentissage

Laurence Likforman-Telecom ParisTech

HMMs (Hidden Markov Models)

- analyse de séquences
 - parole, écriture, texte
- applications
 - reconnaissance de la parole
 - □ reconnaissance de l'écriture
 - reconnaissance d'objets, de visages dans les videos,...
 - Natural Language Processing (NLP): étiquetage grammatical
 - tagging
 - corrections orthographiques

THE→ TGE

Laurence Likforman-Telecom ParisTech

modèle de Markov caché : cas particulier de DBN

- HMM: Hidden Markov Model
- structure d'arbre
- 1 variable d'état + 1 variable d'observation à chaque instant t

 $(Q_{\scriptscriptstyle t})_{\scriptscriptstyle 1 \le t \le T}$: variables d'état (cachées)

 $(O_{t})_{1 \leq t \leq T}$: variables d'observation (observées) générées par les états

topologie du modèle: ergodique / gauche droite

□ modèle ergodique (sans contrainte)

A=
$$\begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$$

□ modèle gauche droite (contrainte: transitions $i \rightarrow j \ge i$)

$$A = \begin{bmatrix} 0.4 & 0.6 & 0 \\ 0 & 0.8 & 0.2 \\ 0 & 0 & 1 \end{bmatrix}$$

5

Modèles de Markov Cachés

- une classe de forme
 - modèle λ
- combinaison de 2 processus stochastiques
 - un observé
 - un caché
- on n'observe pas la séquence d'états

$$q = q_1 q_2 ... q_T$$

 on observe la séquence d'observations

$$0=0_1 \ 0_2 \dots 0_T$$

 les observations sont générées (émises) par les états

Laurence Likforman-Telecom ParisTech

Processus stochastiques

- variables d'états indexées par temps discret
 - □ q_t prend ses valeurs dans {1,2,Q} (nombre fini d'états)
 - évolution: probabilités de transition (chaîne Markov stationnaire ordre 1)
- variables d'observations
 - discrètes ou continues
 - évolution: émission par les états

Laurence Likforman Telecom ParisTech

HMMs discrets

- ensemble de Q états discrets {1,2,..Q}
- ensemble de N symboles discrets
 - $\ \ \, | \ \, \{s_1,\,s_2,\,s_3,\,....s_N\,\} \rightarrow \{1,2,3,..,N\}$

1

- on observe o=o₁ o₂ o_t...o_T
 - \circ 0 = $s_8 s_3 s_{13} s_6 s_8 s_5 s_{10} s_1$
 - o = 8 3 13 6 8 5 10 1
- o correspond à séquence d'états (cachés)
 - $q=q_1 q_2 q_1...q_T$
 - q=1122233

Q=3, N=16,

HMMs discrets

- HMM λ discret est défini par
 - π vecteur probabilités initiales
 - A: matrice transition
 - B : matrice des probabilités d'observation des symboles (dans les états)

$$\pi = (\pi_1, \pi_2, ... \pi_0)$$
 $\pi_i = P(q_1 = i)$

$$\pi = (\pi_1, \pi_2, ..., \pi_Q) \quad \pi_i = P(q_1 = i)$$

$$A = \{a_{ij}\} = P(q_t = j | q_{t-1} = i)$$

$$B = \{b_{ki}\} = P(o_t = s_k | q_t = i)$$

$$B = \{b_{ki}\} = P(o_t = s_k | q_t = i)$$

Laurence Likforman-Telecom ParisTech

modèles de Markov cachés continus

- HMM λ continu défini par :
- π vecteur de probabilités initiales
- A: matrice de transition entre états
- b_i(o_t) : densité de probabilité des observations dans état i, i=1,..Q
- → gaussienne ou mélange gaussiennes

L. Likforman - Telecom ParisTech

modèle d'observations Gaussien

observation continue scalaire

$$P(o_t \ / \ q_t = i, \ \lambda) = rac{1}{\sqrt{2\pi}\sigma_i} \ \exp{-rac{(o_t - \mu_i)^2}{2\sigma_i^2}}$$

modèle: inclut μi et σi , i=1,2,3

Laurence Likforman-Telecom ParisTech

11

mélange de gaussiennes

$$b_i(o_t) = \sum_{k=1}^{M} c_{ik} \mathcal{N}(o_t; \Sigma_{ik}, \mu_{ik}) \quad \forall i = 1, ...Q.$$

observations continues (scalaires ou vectorielles)

c_{ik}: poids de la kième loi gausssienne du mélange de M gaussiennes, associée à l'état i

modèle λ : inclut c_{ik} , μ_{ik} et Σ_{ik} , $i{=}1,2,3$ et $k{=}1,..M$

L. Likforman - Telecom ParisTech

hypothèses fondamentales

 indépendance des observations conditionnellement aux états

 chaîne de Markov stationnaire (transitions entre états)

$$P(q_1, q_2, ..., q_T) = P(q_1)P(q_2/q_1)P(q_3/q_2) P(q_T/q_{T-1})$$

Laurence Likforman-Telecom ParisTech

13

hypothèses fondamentales

 probabilité jointe pour une séquence d'observations et un chemin d'états

$$\begin{split} P(o_{1},..o_{t}...o_{T},q_{1}...q_{t}...q_{T} \, \big| \, \lambda) &= \pi_{q_{1}}b_{q_{1}}(o_{1}) \prod_{t=2}^{T} a_{q_{t-1},q_{t}} \, P(o_{t} \, \big| q_{t}, \lambda) \\ &= \pi_{q_{1}}b_{q_{1}}(o_{1}) \prod_{t=2}^{T} a_{q_{t-1},q_{t}} \, b_{q_{t}}(o_{t}) \\ &= P(o_{1},..o_{t}...o_{T} \, \big| q_{1}...q_{t}...q_{T}, \lambda) P(q_{1}...q_{t}...q_{T}) \end{split}$$

Laurence Likforman-Telecom ParisTech

MODELE GENERATIF

15

générer une séquence d'observations

- générer la séquence d'états q1,....qT, puis générer la séquence observations à partir de chaque état
- ou générer q1 puis o1 (q1→ o1); générer q2 à partir de q1 (q1→ q2), puis o2 (q2→ o2), etc...

L. Likforman - Telecom ParisTech

étape 2 : générer les observations (discrètes)

- séquence états
 - □ q1= 1; q₂= 1; q₃= 1; q₄= 2; q₅=2; q₆=3;......
- générer l'observation à t=4
 - $\begin{array}{ccc} & q_4=2; \\ & \rightarrow o_4=3 & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$

b₂(2)

 $b_2(3)$ $b_2(4)$ $b_2(5)$

générer une séquence d'états: mini-TD

- □ générer séquence d'états de longueur T
- on donne

- on tire les nombres aléatoires suivants:
- u1 = 0.92 (q1) u2 = 0.31
- □ *u*3= 0.1 *u*4=0.4
- □ u5=0.01

Laurence Likforman-Telecom ParisTech

DÉCODAGE

21

HMM pour la reconnaissance des formes

- lacktriangle chaque classe m est modélisée par un modèle HMM λ_m
- pour une séquence d'observations o=o₁,...o_T extraite d'une forme, calcul de la vraisemblance:

$$P(o_1,..o_t...o_T | \lambda_m)$$

• attribution de la forme à la classe \widehat{m} telle que:

$$\hat{m} = \arg\max_{m} P(o_1, ...o_t, ...o_T | \lambda_m)$$

Laurence Likforman-Telecom ParisTech

HMM pour étiquetage morpho-syntaxique

- observations: suite de mots
 - « Bob mange la pomme »
- états cachés (à trouver par Viterbi)
 - 'nom propre' 'verbe' déterminant' 'nom'
- modèle
 - probabilités de transitions entre éléments grammaticaux, bi-grams (tags)
 - probabilités d'observer les mots pour un élément grammatical donné (tag)
 - □ P(« le » I verbe), P(« le » I pronom) etc....

Laurence Likforman-Telecom ParisTech

23

algorithme de décodage de Viterbi

- calcul de la vraisemblance
- séquence observation o=o₁,...o_T

$$P(o \mid \lambda) = \sum_{q} P(o, q \mid \lambda)$$

 au lieu de sommer sur toutes les séquences d'états, recherche de la séquence optimale :

$$\hat{q} = \arg\max_{q} P(q, o | \lambda)$$

puis estimer la vraisemblance par :

$$P(o \mid \lambda) \approx P(o, \hat{q} \mid \lambda)$$

Laurence Likforman-Telecom Paris Tech

algorithme de Viterbi (décodage)

 $\delta_t(i)$: proba. (jointe) meilleure séquence partielle d'états aboutissant à l'état i au temps t et correspondant à la séquence partielle d'observations o₁...o_t.

$$\delta_{t}(i) = \max_{q_{1}q_{2}...q_{t}} P(q_{1}q_{2}...q_{t} = i, o_{1}o_{2}...o_{t} | \lambda)$$

récurrence

$$\begin{split} &P(q_{1}q_{2}...q_{t}=i,q_{t+1}=j,o_{1}o_{2}...o_{t}o_{t+1}\big|\lambda)\\ &=P(o_{t+1},q_{t+1}=j\big|o_{1}...o_{t},q_{1}..q_{t-1}q_{t}=i,\lambda)P(o_{1}...o_{t},q_{1}..q_{t-1}q_{t}=i\big|\lambda)\\ &=P(o_{t+1}\big|q_{t+1}=j,\lambda)P(q_{t+1}=j\big|q_{t}=i,\lambda)P(o_{1}...o_{t},q_{1}..q_{t-1}q_{t}=i\big|\lambda)\\ &\max_{q|q^{2}...q^{t}}P(q_{1}q_{2}...q_{t}=i,q_{t+1}=j,o_{1}o_{2}...o_{t}o_{t+1}\big|\lambda)=\max_{i}b_{j}(o_{t+1})a_{ij}\delta_{t}(i) \end{split}$$

$$\delta_{t+1}(j) = \max_{i} b_{j}(o_{t+1}) a_{ij} \delta_{t}(i) = b_{j}(o_{t+1}) \max_{i} a_{ij} \delta_{t}(i)$$

$$P(o,\hat{q}) = \max_{j} \delta_{T}(j)$$
 Laurence Likforman-Telecom Paris Tech

algorithme de décodage de Viterbi

1ere colonne: Initialisation

$$\delta_1(i) = P(q_1 = i, o_1) = b_i(o_1)\pi_i$$
 $i = 1,...Q$

colonnes 2 à T : récursion

$$\delta_{t+1}(j) = b_j(o_{t+1}) \max_i a_{ij} \delta_t(i)$$
 $t = 1,...T - 1, j = 1,...Q$

$$\begin{split} & \delta_{t+1}(j) = b_j(o_{t+1}) \max_i a_{ij} \delta_t(i) & t = 1, \dots T-1, j = 1, \dots Q \\ & \varphi_{t+1}(j) = \arg\max_i a_{ij} \delta_t(i) & \text{sauvegarde meilleur chemin (état précédent)} \\ & \bullet & terminaison \\ & P(o, \hat{q}) = \max_j \delta_T(j) \end{split}$$

$$P(o,\hat{q}) = \max_{j} \delta_{T}(j)$$

$$\hat{q}_{\scriptscriptstyle T} = \arg\max_{\scriptscriptstyle j} \delta_{\scriptscriptstyle T}(j)$$

backtrack

$$\hat{q}_{T} = \arg \max_{j} \delta_{T}(j)$$

$$\hat{q}_{t} = \varphi(\hat{q}_{t+1}) \qquad t = T - 1, T - 2, \dots 1$$

Laurence Likforman-Telecom ParisTech

variables forward-backward

$$P(o \mid \lambda) = \sum_{i} P(o, q_{t} = i \mid \lambda)$$

$$P(o, q_{t} = i \mid \lambda) = P(o_{1}...o_{t}, q_{t} = i, o_{t+1}...o_{t} \mid \lambda)$$

$$= P(o_{t+1}...o_{t} \mid o_{1}...o_{t}, q_{t} = i, \lambda)P(o_{1}...o_{t}, q_{t} = i \mid \lambda)$$

$$= \underbrace{P(o_{t+1}...o_{t} \mid q_{t} = i, \lambda)P(o_{1}...o_{t}, q_{t} = i \mid \lambda)}_{\beta_{t}(i)} \underbrace{P(o_{1}...o_{t}, q_{t} = i \mid \lambda)}_{\alpha_{t}(i)}$$

= $\beta_{\iota}(i)\alpha_{\iota}(i)$ $\beta_{\iota}(i)$: variable backward (analogue à λ) $\alpha_{\iota}(i)$: variable forward (analogue à π)

Laurence Likforman-Telecom ParisTech

29

algorithme de décodage forward-backward

- calcul exact de la vraisemblance P(o| modele): Baum-Welch
- basé sur les variables forward et/ou backward

$$\alpha_{1}(j) = b_{j}(o_{1})\pi_{j}$$

$$\alpha_{t+1}(j) = b_{j}(o_{t+1})\sum_{i=1}^{Q} \alpha_{t}(i)a_{ij}$$

$$P(o|\lambda) = \sum_{j=1}^{Q} \alpha_{T}(j)$$

Laurence Likforman-Telecom ParisTech

algorithme de décodage forward-backward

- calcul exact de la vraisemblance P(o| modele): Baum-Welch
- basé sur les variables forward et/ou backward

 $\beta_T(i) = 1$ $\beta_t(i) = \sum_{j=1}^{Q} a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$ $P(O|\lambda) = \sum_{j=1}^{Q} \beta_j(j) \pi_j b_j(j)$

Laurence Likforman-Telecom ParisTech

31

ESTIMATION DE PARAMETRES

Apprentissage en données complètes

- pour chaque modèle λ, estimer les paramètres
- base d'apprentissage
 - □ L séquences d'observation o(l), I=1....L
 - + séquences d'états associées
- séquence o=o₁....o_T associée à séquence d'états q=q₁....q_T

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} 1_{\{q_t=i, q_{t+1}=j\}}}{\sum_{t=1}^{T-1} 1_{\{q_t=i\}}} \quad \hat{b}_i(s_k) = \frac{\sum_{t=1}^{T} 1_{\{o_t=s_k, q_t=i\}}}{\sum_{t=1}^{T} 1_{\{q_t=i\}}}$$

33

Apprentissage en données complètes

sur la base d'apprentissage totale

$$\hat{a}_{ij} = \frac{\sum_{l=1}^{L} \sum_{t=1}^{T(l)-1} 1_{\{q_{t}^{(l)}=i, q_{t+1}^{(l)}=j\}}}{\sum_{l=1}^{L} \sum_{t=1}^{T(l)-1} 1_{\{q_{t}^{(l)}=i\}}}$$

$$\hat{b}_{i}(s_{k}) = \frac{\sum_{l=1}^{L} \sum_{t=1}^{T(l)} 1_{\{o_{t}^{(l)}=s_{k}, q_{t}^{(l)}=i\}}}{\sum_{l=1}^{L} \sum_{t=1}^{T(l)} 1_{\{q_{t}^{(l)}=i\}}}$$

Laurence Likforman-Telecom ParisTech

apprentissage données complètes

HMM continu, gaussienne mono-variee,

$$\widehat{\mu_i} = \frac{\sum_{l=1}^{L} \sum_{t=1}^{T^{(l)}} o_t^{(l)} \, \mathbb{1}_{q_t^{(l)} = i}}{\sum_{l=1}^{L} \sum_{t=1}^{T^{(l)}} \mathbb{1}_{q_t^{(l)} = i}}$$

$$\widehat{\left(\sigma_{i}\right)^{2}} = \frac{\sum_{l=1}^{L} \sum_{t=1}^{T^{(l)}} \left(o_{t}^{(l)} - \widehat{\mu_{i}}\right)^{2} \mathbb{1}_{q_{t}^{(l)} = i}}{\sum_{l=1}^{L} \sum_{t=1}^{T^{(l)}} \mathbb{1}_{q_{t}^{(l)} = i}}$$

35

Apprentissage en données incomplètes

- estimer les paramètres, modèle λ
- on a une base d'apprentissage
 - □ L séquences d'observation o(l), l=1...L
- pas connaissance des états cachés
 - plus difficile
- algorithme apprentissage
 - Baum-Welch
 - Viterbi

Laurence Likforman-Telecom ParisTech

apprentissage Viterbi

- apprentissage en données incomplètes
- décodage par Viterbi
 - → séquence états optimale
 - → on se ramène au cas « données complètes »

Laurence Likforman-Telecom ParisTech

37

conclusion

- modèles de Markov Cachés
 - apprentissage cas discret et données complètes
 - décodage de Viterbi
 - lien entre réseaux bayésiens dynamiques et HMMs
- données incomplètes
 algorithme EM (Viterbi, Baum-Welch)

Laurence Likforman-Telecom ParisTech

références

- M. Sigelle, Bases de la Reconnaissance des Formes: Chaînes de Markov et Modèles de Markov Cachés, chapitre 7, Polycopié Telecom ParisTech, 2012.
- L. Likforman-Sulem, E. Barney Smith, Reconnaissance des Formes: théorie et pratique sous matlab, Ellipses, TechnoSup, 2013.
- L. Rabiner, A tutorial on Hidden Markov Models and selected applications in Speech Recognition, proc. of the IEEE, 1989.

Laurence Likforman-Telecom Paris Tech