Optimization and Computational Linear Algebra for Data Science Lecture 5: Matrices and orthogonality

Léo MIOLANE · leo.miolane@gmail.com September 29, 2019

Warning: This material is not meant to be lecture notes. It only gathers the main concepts and results from the lecture, without any additional explanation, motivation, examples, figures...

1 Gram-Schmidt orthogonalization method

The Gram-Schmidt process takes as input a linearly independent family (x_1, \ldots, x_k) of vectors of \mathbb{R}^n and produces as output an orthonormal basis (v_1, \ldots, v_k) of $\mathrm{Span}(x_1, \ldots, x_k)$. In particular in the case where (x_1, \ldots, x_k) is a basis of a subspace S, it gives us a way to construct an orthonormal basis (v_1, \ldots, v_k) of S.

The Gram-Schmidt process is iterative and constructs progressively families (v_1, \ldots, v_i) that verify:

 $\mathcal{H}_i: (v_1,\ldots,v_i)$ is an orthonormal family and $\operatorname{Span}(v_1,\ldots,v_i) = \operatorname{Span}(x_1,\ldots,x_i)$.

Construction of v_1 : We simply take $v_1 = x_1/\|x_1\|$ and \mathcal{H}_1 is obviously verified.

Construction of v_{i+1} from (v_1, \ldots, v_i) : Suppose that we already constructed (v_1, \ldots, v_i) that verifies \mathcal{H}_i . We first subtract to x_{i+1} its orthogonal projection on $\mathrm{Span}(v_1, \ldots, v_i)$:

$$\widetilde{v}_{i+1} \stackrel{\text{def}}{=} x_{i+1} - P_{\text{Span}(v_1,\dots,v_i)}(x_{i+1}) = x_{i+1} - \sum_{j=1}^{i} \langle v_j, x_{i+1} \rangle v_j.$$
(1)

By Corollary 4.1 from Lecture 4, we have $\tilde{v}_{i+1} = x_{i+1} - P_{\text{Span}(v_1,...,v_i)}(x_{i+1}) \perp \text{Span}(v_1,...,v_i)$. Consequently \tilde{v}_{i+1} is orthogonal to the vectors $v_1,...,v_i$. It remains to normalize \tilde{v}_{i+1} to obtain an orthonormal family:

$$v_{i+1} = \frac{\widetilde{v}_{i+1}}{\|\widetilde{v}_{i+1}\|}. (2)$$

Notice that $\widetilde{v}_{i+1} \neq 0$ because otherwise we would have that $x_{i+1} = P_{\operatorname{Span}(v_1, \dots, v_i)}(x_{i+1}) \in \operatorname{Span}(v_1, \dots, v_i) = \operatorname{Span}(x_1, \dots, x_i)$, which contradicts the linear independence of (x_1, \dots, x_{i+1}) .

We have seen that (v_1, \ldots, v_{i+1}) is orthonormal. The fact that $\operatorname{Span}(v_1, \ldots, v_{i+1}) = \operatorname{Span}(x_1, \ldots, x_{i+1})$ can be easily checked using \mathcal{H}_i and equations (1)-(2). We conclude that (v_1, \ldots, v_{i+1}) verifies \mathcal{H}_{i+1} .

Theorem 1.1 (Gram-Schmidt)

Let $(x_1, ..., x_k)$ be a linearly independent family of vectors of \mathbb{R}^n . The "Gram-Schmidt" procedure described above produces an orthonormal family $(v_1, ..., v_k)$ such that for all $i \in \{1, ..., k\}$,

$$\operatorname{Span}(x_1,\ldots,x_i)=\operatorname{Span}(v_1,\ldots,v_i).$$

Orthogonal matrices

Definition 2.1 (Orthogonal matrices)

A matrix $A \in \mathbb{R}^{n \times n}$ is called an orthogonal matrix if its columns are an orthonormal family (and therefore a basis of \mathbb{R}^n because it is a linearly independent family of size $n = \dim(\mathbb{R}^n)$).

Proposition 2.1

Let $A \in \mathbb{R}^{n \times n}$. The following points are equivalent:

- (i) A is orthogonal. (ii) $A^{\mathsf{T}}A = \mathrm{Id}_n$. (iii) $AA^{\mathsf{T}} = \mathrm{Id}_n$

In particular we get that the inverse of an orthogonal matrix A is A^{T} . We also get that if A is orthogonal then so is A^{T} : the lines of an orthogonal matrix are an orthonormal family of vectors.

Proof. We first show that (i) \Leftrightarrow (ii). We denote the columns of A by c_1, \ldots, c_n . For $i, j \in$ $\{1,\ldots,n\}$ we have

$$(A^{\mathsf{T}}A)_{i,j} = \langle c_i, c_j \rangle.$$

Consequently, $A^{\mathsf{T}}A = \mathrm{Id}_n$ if and only if (c_1, \ldots, c_n) is orthonormal. Now, by Proposition 2.2 from Lecture 2 we have

$$A^{\mathsf{T}}A = \mathrm{Id}_n \iff A \text{ is invertible with inverse } A^{\mathsf{T}} \iff AA^{\mathsf{T}} = \mathrm{Id}_n$$

which concludes the proof.

Example 2.1 (Rotation matrices in dimension 2). For $\theta \in \mathbb{R}$, the matrix

$$R_{\theta} \stackrel{\text{def}}{=} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

is orthogonal. The linear transformation $x \in \mathbb{R}^2 \mapsto R_{\theta}x$ is the rotation of center 0 and angle θ .

Proposition 2.2 (Orthogonal matrices preserve the dot product)

Let $A \in \mathbb{R}^{n \times n}$ be an orthogonal matrix. Then A preserves the dot product in the sense that for all $x, y \in \mathbb{R}^n$,

$$\langle Ax, Ay \rangle = \langle x, y \rangle.$$

In particular if we take x = y we see that A preserves the Euclidean norm: ||Ax|| = ||x||.

Proof. By Proposition 2.1 $A^{\mathsf{T}}A = \mathrm{Id}_n$, hence

$$\langle Ax, Ay \rangle = (Ax)^{\mathsf{T}} Ay = x^{\mathsf{T}} A^{\mathsf{T}} Ay = x^{\mathsf{T}} \mathrm{Id}_n y = x^{\mathsf{T}} y = \langle x, y \rangle.$$

