Aritmética computacional - Aula 4

Nicolas Chagas Souza

01/08/2022

Algoritmo de Divisão

Uma divisão é formada por dividendo (K), divisor (D), quociente (Q) e resto (R). Para implementar o algoritmo de divisão, a seguinte ideia será utilizada:

- Subtrair o divisor do MSB do dividendo, averiguar o sinal do resultado dessa divisão. Caso o sinal seja ≥ 0, teremos que o MSB do quociente será 1. Caso contrário, o MSB do quociente será zero.
- Repetir o passo anterior, fazendo o shift à direita do dividendo.

```
Divisor(D) = 64 bits
Resto(R) = 64 bits
Quociente(Q) = 32 bits
```

Algoritmo

```
    Passo 1: R = K; contador = 1;
    Passo 2: R = R - D
    Passo 3: Desloque Q à esquerda.

            Se R ≥ 0, Q[0] = 1;
            Se R < 0, restaure o valor original de R (R += D).</li>

    Passo 4: Desloque D à direita.
    Passo 5: Se contador < 33; contador++ e volte ao Passo 2.</li>
```

Instruções no MIPS

Para efetuar divisões utiliza-se as intruções div; divu para divisão com e sem sinal, respectivamente.

Sintaxe:

```
div reg1, reg2divu reg1, reg2
```

Após a divisão o resto fica armazenado no registrador hi e o quociente no lo. Para recuperar os valores desses registradores utiliza-se as instruções move from (mfhi; mflo)

• Sintaxe:

```
- mfhi reg1 # reg1 = hi
- mflo reg1 # reg1 = lo
```

O resto sempre possui o mesmo sinal do dividendo. Por exemplo, em $7 \div (-3) = -2$, temos resto 1 e em $-7 \div 3 = -2$, resto -1.

Exemplo do Algoritmo

Exemplo do algoritmo de divisão, com registradores de 4 bits: 0111 $\div\,0010$

- Divisor (8 bits) \rightarrow 0100 **0000**
- Resto (8 bits) \rightarrow **0000** 0111

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	1: Rem = Rem - Div	0000	0010 0000	①110 0111
	2b: Rem $< 0 \Rightarrow +Div$, sll Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
2	1: Rem = Rem - Div	0000	0001 0000	①111 0111
	2b: Rem $< 0 \Rightarrow +Div$, sll Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
3	1: Rem = Rem - Div	0000	0000 1000	①111 1111
	2b: Rem $< 0 \Rightarrow +Div$, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
4	1: Rem = Rem - Div	0000	0000 0100	0000 0011
	2a: Rem $\geq 0 \implies$ sll Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
5	1: Rem = Rem - Div	0001	0000 0010	0000 0001
	2a: Rem $\geq 0 \implies$ sll Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001