第二章

插值方法

— Newton 插值

为什么 Newton 插值

Lagrange 插值简单易用,但若要增加一个节点时,全部基 函数 $l_k(x)$ 都需重新计算,很不方便!

解决办法 更换基函数

设计一个可以逐次生成插值多项式的算法。即

$$p_{n+1}(x) = p_n(x) + u_{n+1}(x)$$

其中 $p_{n+1}(x)$ 和 $p_n(x)$ 分别为 n+1 次和 n 次插值多项式

可行方案: Newton 插值

新的基函数

设插值节点: x_0, \ldots, x_n , Newton 插值采用的基函数为:

$$\omega_0(x) = 1$$
 $\omega_1(x) = x - x_0$
 $\omega_2(x) = (x - x_0)(x - x_1)$
....
 $\omega_n(x) = (x - x_0)(x - x_1) \cdots (x - x_{n-1})$

• 优点: 当增加一个节点 x_{n+1} 时,只需加上基函数 $\omega_{n+1} = (x-x_0)(x-x_1)\cdots(x-x_{n-1})(x-x_n)$

Newton 插值

• 此时 f(x) 的 n 次插值多项式为

$$p_n(x) = a_0 \omega_0(x) + a_1 \omega_1(x) + a_2 \omega_2(x) + \dots + a_n \omega_n(x)$$

需要解决的问题

① 怎样确定系数 a_0, \ldots, a_n ?

工具:差商(均差)

② 如何从 $p_n(x)$ 得到 $p_{n+1}(x)$?

内容提要

- 差商与 Newton 插值
 - 差商(均差)及其计算方法
 - Newton 插值公式
 - 差分与等距 Newton 插值

什么是差商

设函数 f(x), 节点 x_0, \ldots, x_n

$$f[x_i, x_j, x_k] = \frac{f[x_j, x_k] - f[x_i, x_j]}{x_k - x_i}$$

 $\rightarrow f(x)$ 关于点 x_i, x_j, x_k 的 | 二阶差商

差商的一般定义

差商的性质

● 差商可以表示为函数值的线性组合:用归纳法可以证明

$$f[x_0, x_1, \dots, x_k] = \sum_{j=0}^k \frac{f(x_j)}{(x_j - x_0) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_k)}$$
$$= \sum_{j=0}^k \frac{f(x_j)}{\omega_{k+1}'(x_j)}$$

差商与节点的排序无关,即差商具有对称性

$$f[x_0, x_1, \dots, x_k] = f[x_{i_0}, x_{i_1}, \dots, x_{i_k}]$$

其中 i_0, i_1, \ldots, i_k 是 $0, 1, \ldots, k$ 的一个任意排列

● 差商的等价定义: (某些教材上的所采用的定义)

$$f[x_0, x_1, ..., x_k] = \frac{f[x_0, ..., x_{k-2}, x_k] - f[x_0, ..., x_{k-1}]}{x_k - x_{k-1}}$$

差商的性质

● k 阶差商与 k 阶导数之间的关系: 若 f(x) 在 [a,b] 上具有 k 阶导数,则至少存在一点 $\xi \in (a,b)$,使得

$$f[x_0, x_1, \dots, x_k] = \frac{f^{(k)}(\xi)}{k!}$$
 is in its interpretable in its interpretable in the proof of the

差商表

如何巧妙地计算差商

差商表

差商表

x_i	$f(x_i)$	一阶	二阶差商	三阶差商	•••	n 阶差商
		差商				
x_0	$f(x_0)$					
x_1	$f(x_1)$	$f[x_0,x_1]$				
x_2	$f(x_2)$	$f[x_1, x_2]$	$f[x_0, x_1, x_2]$			
x_3	$f(x_3)$	$f[x_2,x_3]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$		
•	•	•	•	:	•••	
X_n	$f(x_n)$	$f[x_{n-1},x_n]$	$\int \left[f[x_{n-2}, x_{n-1}, x_n] \right]$	$f[x_{n-3}, x_{n-2}, x_{n-1}, x_n]$	•••	$f[x_0, x_1,, x_n]$

差商举例

例: 已知y = f(x)的函数值表,试计算其各阶差商

i	0	1	2	3
x_i	-2	-1	1	2
$f(x_i)$	5	3	17	21

d_d.m

<u>demo 2 2.m</u>

解:差商表如下

X_i	$f(x_i)$	一阶差商	二阶差商	三阶差商
-2	5			
-1	3	-2		
1	17	7	3	
2	21	4	-1	-1

Newton 插值公式

由差商的定义可得

$$f(x) = f(x_0) + (x - x_0)f[x, x_0] \qquad 1$$

$$f[x, x_0] = f[x_0, x_1] + (x - x_1)f[x, x_0, x_1] \qquad 2$$

$$\dots \qquad 2$$

$$f[x, x_0, \dots, x_{n-1}] = f[x_0, \dots, x_n] + (x - x_n) f[x, x_0, \dots, x_n] \cdots$$

$$1 + (x - x_0) \times 2 + \dots + (x - x_0) \dots (x - x_{n-1}) \times (n-1)$$

$$f(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + ...$$

$$+ f[x_0, ..., x_n](x - x_0)...(x - x_{n-1})$$

$$+ f[x, x_0, ..., x_n](x - x_0)...(x - x_{n-1})(x - x_n)$$

$$R_n(x)$$

$$|N_n(x)|$$
 + $f(x, x_0, ..., x_n)$

Newton 插值公式

$$f(x) = N_n(x) + R_n(x)$$

$$N_n(x) = a_0 \omega_0(x) + a_1 \omega_1(x) + a_2 \omega_2(x) + \dots + a_n \omega_n(x)$$

$$R_n(x) = f[x, x_0, ..., x_n]\omega_{n+1}(x)$$

其中
$$a_0 = f(x_0), a_i = f[x_0, \dots, x_i], i = 1, 2, \dots, n$$

重要性质: $N_n(x_i) = f(x_i)$, i = 0, 1, 2, ..., n

 $N_n(x)$ 是 f(x) 的 n 次插值多项式

Newton VS Lagrange

f(x) 在 x_0, x_1, \dots, x_n 上的 n 次插值多项式是唯一的!

$$N_n(x) \equiv L_n(x)$$

且余项相同

$$f[x, x_0, \dots, x_n] \prod_{i=0}^n (x - x_i) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x - x_i)$$

$$f[x, x_0, ..., x_n] = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \qquad f[x_0, ..., x_k] = \frac{f^{(k)}(\xi)}{k!}$$

$$f[x_0, \dots, x_k] = \frac{f^{(k)}(\xi)}{k!}$$

插值举例

例: 已知函数 $y = \ln x$ 的函数值如下

X	0.4	0.5	0.6	0.7	0.8
lnx	-0.9163	-0.6931	-0.5108	-0.3567	-0.2231

试分别用 Newton 线性和抛物线插值计算 $\ln 0.54$ 的近似值

解: 取节点 0.5, 0.6, 0.4 作差商表

$$N_1(x) = -0.6931 + 1.8230(x-0.5)$$

$$N_1(0.54) = -0.6202$$

x_i	$f(x_i)$	一阶差商	二阶差商
0.5	-0.6931		
0.6	-0.5108	1.8230	
0.4	-0.9163	2.0275	-2.0450

$$N_2(x) = -0.6931 + 1.8230(x-0.5) - 2.0450(x-0.5)(x-0.6)$$

$$N_2(0.54) = -0.6153$$

demo 2 3.m

注: 只需使用差商表对角线上的值

Newton 插值

可以看出,当增加一个节点时,牛顿插值公式只需在原来的基础上增加一项,前面的计算结果仍然可以使用。与拉格朗日插值相比,牛顿插值具有灵活增加节点的优点!

注: 增加插值节点时,须排 在已有插值节点的后面!

向前差分

• 在实际应用中,通常采用等距节点:

$$x_i = x_0 + i h$$
, $i = 1, 2, ..., n$

h>0,称为步长

此时,可以使用差分来简化 Newton插值公式

▶ 向前差分(教材上简称为差分)

$$\Delta f_i = f(x_i + h) - f(x_i)$$

 \longrightarrow 定义为 f(x) 在 x_i 处步长为 h 的 一阶差分

高阶差分

▶ 高阶差分

$$\Delta^{1} f_{i} = f(x_{i} + h) - f(x_{i}) = f_{i+1} - f_{i}$$

$$\Delta^{2} f_{i} = \Delta(\Delta f_{i}) = \Delta f_{i+1} - \Delta f_{i}$$

$$\vdots$$

二阶差分

$$\Delta^{n} f_{i} = \Delta(\Delta^{n-1} f_{i}) = \Delta^{n-1} f_{i+1} - \Delta^{n-1} f_{i}$$
 n 阶差分

规定
$$\Delta^0 f_i = f(x_i)$$

差分与差商之间的关系

$$f[x_0, x_1] = \frac{f_1 - f_0}{x_1 - x_0} = \frac{\Delta f_0}{h}$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{1}{2} \frac{\Delta^2 f_0}{h^2}$$

$$f[x_k, x_{k+1}, x_{k+2}] = \frac{1}{2} \frac{\Delta^2 f_k}{h^2}$$

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0} = \frac{1}{3!} \frac{\Delta^3 f_0}{h^3}$$

$$f[x_0, x_1, \dots, x_m] = \frac{1}{m!} \frac{\Delta^m f_0}{h^m} \qquad m = 1, 2, 3, \dots$$

$$m = 1, 2, 3, \dots$$

差分表

差分表

x_i	$f(x_i)$	一阶	二阶	三阶	•••	n 阶
		差分	差分	差分		差分
x_0	$f(x_0)$ —	$\Rightarrow \Delta f_0$	$\Rightarrow \Delta^2 f_0$	$\Rightarrow \Delta^3 f_0$	•••	$\Rightarrow \Delta^n f_0$
x_1	$f(x_1)$	Δf_1	$\Delta^2 f_1$	$\Delta^3 f_1$		
:	•			•	•••	
x_{n-3}	$f(x_{n-3})$	Δf_{n-3}	$\Delta^2 f_{n-3}$	$\Delta^3 f_{n-3}$		
x_{n-2}	$f(x_{n-2})$	Δf_{n-2}	$\Delta^2 f_{n-2}$			
x_{n-1}	$f(x_{n-1})$	Δf_{n-1}	,			
x_n	$f(x_n)$,				

Newton 插值只需使用差分表第一行

等距牛顿插值

$$N_{n}(x) = a_{0}\omega_{0}(x) + a_{1}\omega_{1}(x) + a_{2}\omega_{2}(x) + \dots + a_{n}\omega_{n}(x)$$

$$a_{k} = f[x_{0}, x_{1}, \dots, x_{k}] = \frac{\Delta^{k} f_{0}}{k! h^{k}}$$

牛顿向前插值公式

用向前差分表示的等距牛顿插值公式

设
$$x = x_0 + th$$
 则

$$N_n(x) = N_n(x_0 + th)$$

$$= f_0 + \frac{t}{1!} \Delta f_0 + \frac{t(t-1)}{2!} \Delta^2 f_0 + \dots + \frac{t(t-1)\cdots(t-n+1)}{n!} \Delta^n f_0$$

$$R_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} t(t-1)...(t-n)h^{n+1}, \quad \xi_x \in (x_0, x_n)$$

插值举例

例: 已知 $f(x) = \cos x$ 在等距节点 0, 0.1, 0.2, 0.3, 0.4, 0.5 处的函数值,试用 4 次 Newton 前插公式计算 f(0.048) 的近似值,并估计误差。

解: 取节点 x=0,0.1,0.2,0.3,0.4,做差分表

X_i	$f(x_i)$	Δf	$\Delta^2 f$	$\Delta^3 f$	$\Delta^4 f$
0.0	1.00000	-0.00500	-0.00993	-0.00013	-0.00012
0.1	0.99500	-0.01493	-0.00980	-0.00025	
0.2	0.98007	-0.02473	-0.00955		
0.3	0.95534	-0.03428			
0.4	0.92106				

插值举例

$$N_4(0.048) = 1.00000 + 0.48*(-0.00500) + \cdots = 0.99884$$

$$|R_4(0.048)| \le t(t-1) (t-2) (t-3) (t-4)h^5 M_5 / 5!$$

 $\le 1.09212 \times 10^{-7}$

demo 2 4.m