Exploratory Data Analysis

```
# Libraries Imported
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('bmh')
# To display multiple outputs in a cell
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
from sklearn.preprocessing import StandardScaler
print("Libraries Imported")
    Libraries Imported
Double-click (or enter) to edit
# Importing Dataset in the Environment
data = pd.read_csv('2020_Competition_Training (1).csv', index_col=None, na_values=['N/
print("Data Imported")
    Data Imported
# Generalized Information of the Dataset.
df = data
df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 65468 entries, 0 to 65467
    Columns: 826 entries, person_id_syn to submcc_rsk_chol_ind
    dtypes: float64(756), int64(48), object(22)
    memory usage: 412.6+ MB
# Glimpse of top 5 entires of the dataset.
df.head()
```

₽		person_id_syn	transportation_issues	<pre>src_platform_cd</pre>	sex_cd	est_&
	0	0002MOb79ST17bLYAe46elc2	0	EM	F	
	1	0004cMOS6bTLf34Y7Alca8f3	0	EM	F	
	2	000536M903ST98LaYaeA29la	1	EM	F	
	3	0009bM09SfTLYe77A51I4ac3	0	EM	М	
	4	000M70eS66bTL8bY89Aa16le	0	EM	М	

5 rows × 826 columns

Glimpse of last 5 entires of the dataset.
df.tail()

₽		person_id_syn	transportation_issues	<pre>src_platform_cd</pre>	sex_cd	е
	65463	eMO26ST3c1L00bdfY42d90Al	0	EM	М	
	65464	eM0279419S86bTcL4YAel436	0	EM	М	
	65465	eMO27S065aTLde71Ye89fAfl	0	EM	М	
	65466	eMO2S6b0TL3Ydbef99Alcc25	0	EM	F	
	65467	eMO2STLd74Y5A002fl6c7129	1	EM	М	

5 rows × 826 columns

Columns in the Dataset.
df.columns

The dimension of the Dataset is 69572 observations with 826 variables. df.shape

[→ (65468, 826)

```
# Checking the NULL (missing values) columns from the dataset.

df columns[df isnull() anv()]
https://colab.research.google.com/drive/19Zhi6oZHRI3ykkxl6ot6sFQfWMz4RC2d#scrollTo=sC4L1YF OMF2&printMode=true
```

```
ar.comminafar.manatt().ana()]
```

Checking missing values are present or not
df.isnull().values.any()

r.→ True

Summary of the dataset
df.describe(include='all')

₽	person_id_syn	transportation_issues	src_platform_cd	sex_cd	
count	65468	65468.000000	65468	65468	6
unique	65468	NaN	2	2	
top	M06006dOSTa0462c2L5YA9fI	NaN	EM	F	
freq	1	NaN	47030	38670	
mean	NaN	0.146850	NaN	NaN	
std	NaN	0.353959	NaN	NaN	
min	NaN	0.000000	NaN	NaN	
25%	NaN	0.000000	NaN	NaN	
50%	NaN	0.000000	NaN	NaN	
75%	NaN	0.000000	NaN	NaN	
max	NaN	1.000000	NaN	NaN	

11 rows × 826 columns

Counting number of missing values
countofnulls = df.isnull().sum().sum()
countofnulls

₽

```
483304
# Counting total elements in the dataset
totalelements = df.count().sum()
totalelements
    53593264
Г→
# There are total 0.9% missing values in the dataset
percentageofnulls=(countofnulls/totalelements) * 100
percentageofnulls
   0.9017998978379074
# Checking any duplicates observations in the dataset
duplicateRowsDF = df[df.duplicated()]
print("Duplicate Rows except first occurrence based on all columns are :")
print(duplicateRowsDF)
    Duplicate Rows except first occurrence based on all columns are :
    Empty DataFrame
    Columns: [person_id_syn, transportation_issues, src_platform_cd, sex_cd, est_age
    Index: []
    [0 rows x 826 columns]
# Finding the unique values in transportation_issues variables
# 0 - Having no transportation issues
# 1 - Having transportation issues
pd.unique(df.transportation_issues)
r→ array([0, 1])
# Correlation values
df.corr(method='pearson')
Г⇒
```

	transportation_issues	est_age	smoker_current_ind	smoker_fo
transportation_issues	1.000000	-0.183735	0.098336	
est_age	-0.183735	1.000000	-0.170288	
smoker_current_ind	0.098336	-0.170288	1.000000	
smoker_former_ind	-0.015190	0.065703	-0.162310	
cci_score	-0.010585	0.408138	0.033061	

Visulaizing the correlation
corr = df.corr(method='pearson')
sns.heatmap(corr, mask=np.zeros_like(corr, dtype=np.bool), cmap=sns.diverging_palette

plt.title('Gender Statistics w.r.t. Transportation Issues')

Text(0.5, 1.0, 'Gender Statistics w.r.t. Transportation Issues')

Gender Statistics w.r.t. Transportation Issues

Information about zipcodes and their respective transportation issues.
pd.crosstab(df.zip_cd,df.transportation_issues)

 \Box

<> <seaborn.axisgrid.FacetGrid at 0x7fb9d28e1240>Text(0.5, 1.0, 'Disability Statist')

plt.title('Disability Statistics w.r.t. Transportation Issues')

```
# Extracting columns with Float datatype.

df_float = df.select_dtypes(include=[np.float])

df_float.head

Γ→
```

```
<bound method NDFrame.head of</pre>
                                            cci_score betos_d1c_pmpm_ct ... submcc_r
               3.0
                                                                     0.0
                                      0.0
1
               1.0
                                                                     0.0
                                      0.0
                                                                                              1
2
               3.0
                                      0.0
                                                                     0.0
                                                                                              1
3
               3.0
                                      0.0
                                                                     0.0
                                                                                              1
4
               3.0
                                      0.0
                                                                     0.0
                                                                                              1
                                      . . .
                                                                      . . .
. . .
                . . .
65463
               4.0
                                      0.0
                                                                     0.0
                                                                                              1
65464
               7.0
                                      0.0
                                                                     0.0
                                                                                              1
65465
               4.0
                                      0.0
                                                                     0.0
                                                                                              1
CE 400
               c 0
                                                                     ^ ^
```

Fill missing values with median column values of float
df_float_impute = df_float.fillna(df_float.median())

Checking if the imputations of missing value is implemented correctly.
df_float_impute.isnull().values.any()

r, False

Extracting columns with Integer datatype.

```
df_int64 = df.select_dtypes(include=[np.int64])
```

df int64.head

₽	<pre><bound method="" ndframe.head<="" pre=""></bound></pre>	of	transportation_issues	 cmsd2_sns_gener
	Θ	0	 1	
	1	0	 Θ	
	2	1	 1	
	3	0	 Θ	
	4	0	 0	
	65463	0	 1	
	65464	0	 Θ	
	65465	0	 Θ	
	65466	0	 Θ	
	65467	1	 Θ	

[65468 rows x 48 columns]>

Fill missing values with median column values of interger datatype.

```
df_int64_impute = df_int64.fillna(df_int64.median())
```

Checking if the imputations of missing value is implemented correctly.
df_int64_impute.isnull().values.any()

False

[#] Extracting columns with Object datatype.

df_dummies.head

С→

```
df_object = df.select_dtypes(include=[np.object])
# Eliminating the Person_ID column from the Dataframe.
df_object = df_object.drop('person_id_syn', axis=1)
df_object.head
    <bound method NDFrame.head of</pre>
                                            src_platform_cd sex_cd lang_spoken_cd
                                                                                       ... Z
                                                                    other
                          EM
                                                 ENG
                                                      . . .
                                                           other
                                                                              other
    1
                          ΕM
                                  F
                                                ENG
                                                           other
                                                                    other
                                                                              other
     2
                          \mathsf{EM}
                                  F
                                                 ENG
                                                                    other
                                                                              other
                                                           other
     3
                          EM
                                                 ENG
                                                           other
                                                                    other
                                                                              other
                                  Μ
     4
                          EM
                                                 ENG
                                                           other
                                                                    other
                                                                              other
                                  Μ
                                                 . . .
                                                              . . .
                                                                       . . .
    65463
                         EM
                                  Μ
                                                 ENG
                                                      . . .
                                                           other
                                                                    other
                                                                              other
    65464
                          EΜ
                                                 ENG
                                                            other
                                                                    other
                                                                              other
                                  Μ
                                                      . . .
    65465
                          \mathsf{EM}
                                  Μ
                                                 ENG
                                                           other
                                                                    other
                                                                              other
    65466
                         ΕM
                                  F
                                                 ENG
                                                            33004
                                                                      011
                                                                                 FL
    65467
                                                ENG
                                                                      NaN
                                                                                NaN
                         EM
                                  Μ
                                                              NaN
     [65468 rows x 21 columns]>
# Fill missing values with most common element from column values of object datatype.
df_object_commonImpute = df_object.apply(lambda df_object: df_object.fillna(df_object
# Checking if the imputations of missing value is implemented correctly.
df_object_commonImpute.isnull().values.any()
Гэ
    False
# Factorizing the Catagorical Variables.
df_dummies = df_object_commonImpute.apply(lambda x: pd.factorize(x)[0])
```

```
<bound method NDFrame.head of</pre>
                                                                                                   src platform cd sex cd lang spoken cd
                                                                                                                                                     0
#df_dummies = pd.get_dummies(df_object_commonImpute, drop_first=True)
#df dummies.shape
# List of your dataframes to concat them together.
pdList = [df_dummies, df_int64_impute, df_float_impute]
new_df = pd.concat(pdList, axis=1)
new_df.isnull().values.any()
        False
 Гэ
           | 05408 TOWS X ZI COLUMNS | >
# Checking the Dimension of Combined dataset.
new_df.shape
         (65468, 825)
# Splitting the dataset into train and validation sets
# Training set- 80% of original dataset
# Validation set- 20% of original dataset.
from sklearn.model_selection import train_test_split
X = new_df.drop ('transportation_issues', axis=1)
Y = new_df['transportation_issues']
X_train, X_Valid, Y_train, Y_Valid = train_test_split( X, Y, test_size=0.2, random_statest_split( X, Y, Y, test_s
print('X Training Dataset Shape: ', X_train.shape)
print('Y Training Dataset Shape: : ', Y_train.shape)
print('X Validation Dataset Shape: ', X_Valid.shape)
print('Y Validation Dataset Shape: : ', Y_Valid.shape)
        X Training Dataset Shape: (52374, 824)
          Y Training Dataset Shape: : (52374,)
          X Validation Dataset Shape:
                                                                                (13094, 824)
          Y Validation Dataset Shape: : (13094,)
# The first TRIAL Model training using Logistic Regression.
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix
model = LogisticRegression(solver='liblinear', random_state=0)
model.fit(X_train, Y_train)
 С→
```

```
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                        intercept_scaling=1, l1_ratio=None, max_iter=100,
                        multi class='auto', n iobs=None, penaltv='12',
# Looking at the Confusion Matrix for the training Dataset.
# Here we could see the model gives accuracy of 85.4%.
confusion_matrix(Y_train, model.predict(X_train))
   array([[44329,
                     354],
                     391]])
           [ 7300,
# Evaluating the model with Validation Dataset.
Y_predict = model.predict(X_Valid)
# Looking at the Confusion Matrix for the Validation Dataset.
# Here we could see the model gives accuracy of 85.3% on validation Dataset.
confusion_matrix(Y_Valid, model.predict(X_Valid))
r→ array([[11090,
                      81],
           [ 1842,
                      81]])
```

Classification result with respect to Validation Dataset and checking the modelling print(classification_report(Y_Valid, Y_predict))

₽		precision	recall	f1-score	support
	0	0.86	0.99	0.92	11171
	1	0.50	0.04	0.08	1923
accur	асу			0.85	13094
macro	avg	0.68	0.52	0.50	13094
weighted	avg	0.81	0.85	0.80	13094

Things to be done:

- 1. Converting Catagorical attributes into dummy variables.
- 2. Apply Feature selection techniques.
- 3. Balancing the dataset.
- 4. Normalization of the dataset.