Лабораторно-практическая работа

Тема: «Испытание однофазного трансформатора»

Цель работы: ознакомиться с режимами работы трансформатора.

Оборудование: трансформатор однофазный, амперметр, вольтметр, миллиамперметр, резистор, источник переменного тока, соединительные провода.

Порядок выполнения работы:

- 1. Ознакомиться с устройством и принцип действия однофазного трансформатора.
- 2. Собрать электрическую цепь для исследования режима холостого хода трансформатора:

3.Измерить ток холостого хода, снять характеристику холостого хода. Определить потери мощности в стали магнитопровода и коэффициент трансформации. Результаты измерений и вычислений занести в таблицу:

U ₁ , B	$\mathbf{I}_{\mathbf{x}\mathbf{x}},\mathbf{A}$	$\mathbf{E}_2 = \mathbf{U}_2, \mathbf{B}$	$\mathbf{P}_{\mathbf{x}\mathbf{x}},\mathbf{B}_{\mathbf{T}}$	n		
D_{1} U_{1} D_{2}						
$_{\Gamma \text{де}} P_{xx} =$	$=I_{xx}\cdot U_1, n=\frac{3}{L}$	$\overline{I_2}$				

4. Собрать электрическую цепь для исследования опыта короткого замыкания трансформатора по схеме:

5. Кл. 17 **о**_{ь напряжение и ток короткого замыкания, а также ток вторичной обмотки. Определите потери мощности в меди обмоток. Результаты измерений и вычислений занесите в таблицу:}

U_1 , B	$\mathbf{I_1}, \ \mathbf{A}$	I_{κ_3} , A	$\mathbf{P}_{\kappa_3},\mathrm{B}_{\mathrm{T}}$

При расчете принять примерно равными активную и полную мощности потребляемые трансформатором: $P_{\kappa^3} = I_1 \cdot U_1$

6. Собрать электрическую цепь для исследования работы трансформатора с нагрузкой по схеме:

7. Измерить ток и напряжение в первичной и вторичной цепи. Определить КПД трансформатора. Результаты измерений и вычислений занести в таблицу:

U_1 , B	I ₁ , A	U_2 , B	I ₂ , A	КПД, %

$$K\Pi I = \frac{U_2 \cdot I_2}{U_1 \cdot I_1} \cdot 100\%$$

- 8. Сделать вывод о проделанной работе.
- 9. Ответить на контрольные вопросы:

Контрольные вопросы

- 1. На каком явлении основан принцип действия трансформатора?
- 2. Почему КПД трансформатора меньше 100%?
- 3. Почему во втором опыте на первичную обмотку трансформатора подавалось пониженное напряжение?
 - 4. От чего зависит коэффициент трансформации?
 - 5. У какого вида трансформатора одна обмотка?