Reducción de Dimensionalidad

Aprendizaje Automático INF-393 II-2018

Ricardo Ñanculef

UTFSM Campus San Joaquín

Table of contents

- 1. Introducción
- 2. Análisis de Componentes Principales (PCA)
- 3. Análisis de Discriminantes Lineales (LDA)

Introducción

Objetivo

Reducción de Dimensionalidad Dada una representación de los datos como vectores $\mathbb{X} \subset \mathbb{R}^d$, se busca diseñar una función de la forma $\phi: \mathbb{R}^d \to \mathbb{R}^k$ con $k \ll d$, tal que $\phi(\mathbb{X})$ preserve propiedades de \mathbb{X} que consideramos relevantes.

- 1. Esencialmente, se busca obtener una representación $\mathbb{Z} = \phi(\mathbb{X})$ con menos atributos, que permita:
 - 1.1 reducir el costo computacional de procesar esos datos (e.g. entrenar un modelo con ellos).
 - 1.2 reducir el riesgo de overfitting, mejorando la capacidad predictiva de un modelo que se quiere aprender a partir de ejemplos.
 - 1.3 reducir el impacto de la maldición de la dimensionalidad.

Estructura de los Datos

• Nuestro objetivo de "preservar las propiedades de \mathbb{X} " será más fácil de alcanzar si los datos se organizan "naturalmente" como una variedad de \mathbb{R}^k con $k \ll d$, es decir forman una estructura de menor dimensionalidad que la sugiere su representación como vectores en \mathbb{R}^d .

Objetivo

• Un método de reducción de dimensionalidad puede verse entonces como un método para "descubrir" esa variedad o construir una variedad que aproxima la estructura general de los datos.

4

Análisis de Componentes

Principales (PCA)

Elecciones Fundamentales

Forma de la Función ϕ . PCA implementa una función $\phi: \mathbb{R}^d \to \mathbb{R}^k$ como un mapa lineal de la forma $\phi(x) = Px$, donde $P \in \mathbb{R}^{kd}$.

Criterio de Optimalidad. Se busca que la nueva representación preserve la varianza de las observaciones. Concretamente, se busca resolver el siguiente problema de optimización

$$\arg\max_{P} \frac{\mathbb{E}_{\mathbf{x}} \|P\mathbf{x} - P\mathbb{E}[\mathbf{x}]\|^{2}}{\mathbb{E} \|\mathbf{x} - \mathbb{E}[\mathbf{x}]\|^{2}} = \arg\max_{P} \mathbb{E} \|P\mathbf{x} - \mathbb{E}[P\mathbf{x}]\|^{2}. \tag{1}$$

• Si z = Px, $\mathbb{E}[z] = P\mathbb{E}[x]$. Por lo tanto, el objetivo anterior consiste en maximizar la varianza total del embedding, i.e., $\mathbb{E} \|z - \mathbb{E}[z]\|^2$.

Elecciones Fundamentales

• Notemos que si k=1, $Px=p^Tx$ para algún $p\in\mathbb{R}^d$. ¿Cuál de las dos elecciones expuestas más abajo preserva mejor la varianza original de las observaciones (puntos grises)?

Elecciones Fundamentales

• Notemos que si k=2, $z=Px=(z_1,z_2)^T$, con $z_1=p_1^Tx$ y $z_2=p_2^Tx$ para ciertos $p_1,p_2\in\mathbb{R}^d$ (filas de P). De hecho, en el problema de más abajo, las dos elecciones expuestas preservan completamente la varianza original de las observaciones.

Observaciones Preliminares

• Notemos primero que el problema se puede simplificar asumiendo que $m = \mathbb{E}[x] = 0$ (basta centrar x). Debemos resolver

$$\max_{P} \mathbb{E} \|Px\|^2. \tag{2}$$

• Deberíamos notar ahora que el problema planteado es degenerado. En efecto, si $P_1=2P_2$, $\|P_1x\|^2>\|P_2x\|^2$. Es decir,

$$\max_{P} \mathbb{E} \|Px\|^2 = \infty. \tag{3}$$

• Para concentrarnos en elegir las direcciones correctas p_1, p_2, \ldots, p_k (filas de P), necesitamos restringir su norma:

$$\max_{P} \mathbb{E} \|Px\|^2 \text{ s.t. } \|p_i\|^2 = \operatorname{cte} \forall i.$$
 (4)

Para resolver

$$\mathcal{P}_1: \max_P \mathbb{E} \|Px\|^2 \text{ s.t. } \|p_i\|^2 = \operatorname{cte} \forall i,$$
 (5)

podemos considerar la Lagrangiana

$$\mathcal{L}(P,\lambda) = \mathbb{E} \|Px\|^2 - \sum_{i} \lambda_i \left(\|p_i\|^2 - \mathsf{cte} \right). \tag{6}$$

• (KKT) Si P^* es la solución de \mathcal{P}_1 , debe existir λ^* tal que

$$\frac{\partial \mathcal{L}(P^*, \lambda^*)}{\partial P} = 0. \tag{7}$$

La Lagrangiana se puede escribir como

$$\mathcal{L}(P,\lambda) = \mathbb{E} \|Px\|^2 - \sum_{i} \lambda_i (\|p_i\|^2 - \text{cte})$$

$$= \mathbb{E} (Px)^T (Px) - \sum_{i} \lambda_i (p_i^T p_i - \text{cte})$$

$$= \mathbb{E} \operatorname{tr}(x^T P^T Px) - \operatorname{tr}(\Lambda (P^T P - \text{cte} I))$$

$$= \mathbb{E} \operatorname{tr}(Pxx^T P^T) - \operatorname{tr}(\Lambda P^T P - \text{cte} \Lambda)$$

$$= \operatorname{tr}(P\Sigma P^T) - \operatorname{tr}(P\Lambda P^T) - \text{cte}',$$
(8)

con $\Sigma = \mathbb{E}(xx^T)$. La última igualdad la obtenemos de la invarianza cíclica de la traza. Recordando algunas otras (hermosas) propiedades de la traza

$$\frac{\partial \operatorname{tr}(ABA^TC)}{\partial A} = CAB + C^T AB^T, \tag{9}$$

obtenemos,

$$\frac{\partial \text{tr}(P\Sigma P^{T})}{\partial A} = P\Sigma + P\Sigma^{T} = 2P\Sigma$$

$$\frac{\partial \text{tr}(P\Lambda P^{T})}{\partial A} = P\Lambda + P\Lambda^{T} = 2P\Lambda.$$
(10)

• La condición de optimalidad es entonces,

$$P\Sigma = P\Lambda \iff \Sigma P^T = \Lambda P^T \tag{11}$$

$$\Leftrightarrow \; \Sigma p_i = \lambda_i p_i \, \forall i \,, \tag{12}$$

es decir, $\{p_i\}_{i=1}^k$ es un conjunto de vectores propios de la matriz Σ con valores propios $\{\lambda_i\}_{i=1}^k$.

• Reemplazando en la f.o de \mathcal{P}_1 obtenemos

$$g(P) = \operatorname{tr}(P\Sigma P^{T}) = \operatorname{tr}(P\Lambda P^{T}) = \operatorname{tr}(P\Lambda P^{T}) = \operatorname{tr}(\Lambda P^{T}P)$$
(13)

ullet Como los vectores propios de la matriz Σ son ortogonales, obtenemos

$$g(P) = tr(\Lambda) = cte \sum_{i=1}^{k} \lambda_i$$
 (14)

• Ahora, como queremos maximizar la f.o. g(P), se sigue que debemos elegir los vectores propios $\{p_i\}_{i=1}^k$ de Σ con valores propios $\{\lambda_i\}_{i=1}^k$ lo más grandes posible. Estos vectores propios definen las direcciones principales de los datos.

Direcciones Principales

PCA

• Algoritmo:

- 1. Estimar $\Sigma = \mathbb{E}(xx^T)$.
- 2. Calcular de descomposición de valores propios de Σ , $\Sigma = U\Lambda U^T$.
- 3. Ordenar las columnas de U en modo creciente según Λ_{ii} .
- 4. $P = U_{1:k}^T$ (donde $U_{1:k}$ es la matriz U truncada a sus primeras k columnas).

Cómo estimar $\Sigma = \mathbb{E}(xx^T)$?

• Si tenemos un conjunto de ejemplos $\{x^{(\ell)}\}_{\ell=1}^n$ (no necesitamos etiquetas), y los datos están centrados, podemos estimar Σ como:

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} x^{(\ell)} x^{(\ell)T}$$
(15)

• Si los datos no están centrados, calculamos $\bar{x} = \frac{1}{n-1} \sum_{i=1}^{n} x^{(\ell)}$ y luego podemos estimar Σ como:

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} \left(x^{(\ell)} - \bar{x} \right) \left(x^{(\ell)} - \bar{x} \right)^{T}$$
 (16)

Análisis de Discriminantes

Lineales (LDA)

Problema de PCA

• En un problema de clasificación, debiésemos estar interesados en preservar la separación original de las clases, en vez de preservar la varianza total.

• Idea: Separar la varianza en una componente intra-clases y una componente inter-clases.

varianza total =
$$\mathbb{E}_{x} (x - m)^{T} (x - m)$$

varianza inter = $\mathbb{E}_{y} (m_{y} - m)^{T} (m_{y} - m)$
varianza intra = $\mathbb{E}_{y} \mathbb{E}_{x|y} (x - m_{y})^{T} (x - m_{y})$. (17)

con $m = \mathbb{E}x$, $m_y = \mathbb{E}_{x|y}$.

• Notemos que

$$\mathbb{E}_{y}\mathbb{E}_{x|y}(x-m_{y})^{T}(x-m_{y}) = \mathbb{E}_{y}\mathbb{E}_{x|y}x^{T}x - m_{y}^{T}x - x^{T}m_{y} + m_{y}^{T}m_{y}$$

$$= \mathbb{E}_{y}\mathbb{E}_{x|y}x^{T}x - 2\mathbb{E}_{y}\mathbb{E}_{x|y}m_{y}^{T}x + \mathbb{E}_{y}\mathbb{E}_{x|y}m_{y}^{T}m_{y}$$

$$= \mathbb{E}_{x}x^{T}x - 2\mathbb{E}_{y}m_{y}^{T}m_{y} + \mathbb{E}_{y}m_{y}^{T}m_{y}$$

$$= \mathbb{E}_{x}(x^{T}x) - \mathbb{E}_{y}(m_{y}^{T}m_{y}).$$
(18)

• Si tenemos que $m = \mathbb{E}x = \mathbb{E}_y \mathbb{E}_{x|y} x = \mathbb{E}_y m_y = 0$. Por lo tanto,

$$\mathbb{E}_{x}\left(x^{T}x\right) = \mathbb{E}_{x}\left(x - m\right)^{T}(x - m) = \text{varianza total}$$

$$\mathbb{E}_{y}\left(m_{y}^{T}m_{y}\right) = \mathbb{E}_{y}\left(m_{y} - m\right)^{T}(m_{y} - m) = \text{varianza inter} \tag{19}$$

Por lo tanto,

varianza intra = varianza total – varianza inter (20)
$$\Leftrightarrow$$
 varianza total = varianza intra + varianza inter .

Forma de la Función ϕ . LDA implementa la función $\phi: \mathbb{R}^d \to \mathbb{R}^k$ igual que PCA, es decir, como un mapa lineal de la forma $\phi(x) = Px$, donde $P \in \mathbb{R}^{kd}$.

Criterio de Optimalidad. Se busca que la nueva representación maximice la varianza inter (separación entre las clases) y minimice la varianza intra después de la proyección (concretamente, el denominado "cuociente de Rayleigh"):

$$\max_{P} \left(\frac{\text{varianza inter}}{\text{varianza intra}} \right) \text{ s.t. } \|p_i\|^2 = \text{cte} \, \forall i \,,$$

Criterio de Optimalidad. Se busca que la nueva representación maximice la varianza inter (separación entre las clases) y minimice la varianza intra después de la proyección:

Criterio de Optimalidad:

$$\max_{P} \left(\frac{\text{varianza inter}}{\text{varianza intra}} \right) = \frac{\mathbb{E}_{y} \, m_{y}^{T} P^{T} P m_{y}}{\mathbb{E}_{y} \mathbb{E}_{x|y} \left(x - m_{y} \right)^{T} P^{T} P \left(x - m_{y} \right)}$$
(21)
s.t. $\|p_{i}\|^{2} = \text{cte} \, \forall i$,

• Notemos que si definimos $\tilde{m}_y = \mathbb{E}_{x|y} Px$ y $\tilde{m} = \mathbb{E}_x Px$, tenemos

$$\begin{split} \tilde{m}_y &= \mathbb{E}_{x|y} P x = P \, \mathbb{E}_{x|y} x = P m_y \\ \tilde{m} &= \mathbb{E}_x P x = P \, \mathbb{E}_x x = P m \,, \end{split}$$

por lo que efectivamente los términos de la f.o. en (21) corresponden a las varianzas después de la proyección. Por ejemplo,

$$\mathbb{E}_{y} \left(\tilde{m}_{y} - \tilde{m} \right)^{T} \left(\tilde{m}_{y} - \tilde{m} \right) = \mathbb{E}_{y} \; m_{y}^{T} P^{T} P m_{y} \,.$$

• Ahora, si notamos que la f.o. (21) es de forma escalar, podemos escribir (21) de manera más conveniente ...

$$\max_{P} \left(\frac{\text{varianza inter}}{\text{varianza intra}} \right) = \frac{\mathbb{E}_{y} \operatorname{tr} \left(m_{y}^{T} P^{T} P m_{y} \right)}{\mathbb{E}_{y} \mathbb{E}_{x|y} \operatorname{tr} \left((x - m_{y})^{T} P^{T} P (x - m_{y}) \right)}$$
s.t. $\|p_{i}\|^{2} = \operatorname{cte} \forall i$,

Aprovechando las propiedades de la traza y la linealidad del valor esperado, obtenemos ...

$$\max_{P} \frac{\operatorname{tr}\left(P \,\mathbb{E}_{y}\left(m_{y} m_{y}^{T}\right) P^{T}\right)}{\operatorname{tr}\left(P \,\mathbb{E}_{y} \mathbb{E}_{x|y}\left((x - m_{y})(x - m_{y})^{T}\right) P^{T}\right)} \quad \text{s.t. } \|p_{i}\|^{2} = \operatorname{cte} \forall i, \qquad (23)$$

que se toma la forma clásica ...

$$\max_{P} \frac{\operatorname{tr}\left(P \sum_{B} P^{T}\right)}{\operatorname{tr}\left(P \sum_{I} P^{T}\right)} \quad \text{s.t. } \|p_{i}\|^{2} = \operatorname{cte} \forall i,$$
(24)

• Los nuevos términos involucrados se denominan:

$$\Sigma_B = \mathbb{E}_y(m_y m_y^T) = \text{matriz de covarianza inter} \quad (25)$$

$$\Sigma_I = \mathbb{E}_y \mathbb{E}_{x|y} \left((x - m_y)(x - m_y)^T \right) = \text{matriz de covarianza intra}$$

• Para resolver este problema, resulta útil hacer la transformación $\tilde{P} = P \Sigma_I^{1/2}$ o bien $P = \tilde{P} \Sigma_I^{-1/2}$. Esto reduce el problema a

$$\max_{\tilde{P}} \frac{\operatorname{tr}\left(\tilde{P} \sum_{l}^{-1/2} \sum_{B} \sum_{l}^{-1/2} \tilde{P}^{T}\right)}{\operatorname{tr}\left(\tilde{P} \tilde{P}^{T}\right)} \quad \text{s.t. } \|\tilde{p}_{i}\|^{2} = \operatorname{cte} \forall i,$$
 (26)

o más simple aún,

$$\max_{\tilde{P}} \operatorname{tr} \left(\tilde{P} \, \Sigma_{I}^{-1/2} \Sigma_{B} \Sigma_{I}^{-1/2} \tilde{P}^{T} \right) \quad \text{s.t. } \|\tilde{p}_{i}\|^{2} = \operatorname{cte} \forall i \,, \tag{27}$$

• Escribiendo la Lagrangiana y usando las condiciones de KKT, obtenemos que P debe satisfacer la siguiente ecuación

$$\Sigma_I^{-1/2} \Sigma_B \Sigma_I^{-1/2} \tilde{P} = \Lambda \tilde{P} \tag{28}$$

(con Λ una matriz diagonal), que muestra que las filas de \tilde{P} deben corresponder a vectores propios de la matriz $\Sigma_I^{-1/2}\Sigma_B\Sigma_I^{-1/2}$. Esto implica, en particular, que las filas de \tilde{P} son ortogonales.

Reemplazando la condición en la f.o. notamos que

$$\operatorname{tr}\left(\tilde{P}\Sigma_{I}^{-1/2}\Sigma_{B}\Sigma_{I}^{-1/2}\tilde{P}^{T}\right) = \operatorname{tr}\left(\tilde{P}\Lambda\tilde{P}^{T}\right) = \operatorname{tr}\left(\Lambda\tilde{P}^{T}\tilde{P}\right)$$

$$= \sum_{i=1}^{k} \lambda_{i} \|\tilde{p}_{i}\|^{2} = \operatorname{cte}\sum_{i=1}^{k} \lambda_{i},$$
(29)

es decir, si queremos maximizar la f.o. de LDA conviene elegir los k vectores propios de la matriz $\Sigma_I^{-1/2}\Sigma_B\Sigma_I^{-1/2}$ que corresponden a los valores propios más grandes.

- Algoritmo:
 - 1. Estimar la matriz de covarianza intra $\Sigma_B = \mathbb{E}_y(m_y m_y^T)$.
 - 2. Estimar la matriz de covarianza inter $\Sigma_I = \mathbb{E}_y \mathbb{E}_{x|y} \left((x m_y)(x m_y)^T \right).$
 - 3. Calcular la matriz $M = \Sigma_I^{-1/2} \Sigma_B \Sigma_I^{-1/2}$.
 - 4. Calcular de descomposición de valores propios de M, $M = U\Lambda U^T$.
 - 5. Ordenar las columnas de U en modo creciente según Λ_{ii} .
 - 6. $P = U_{1:k}^T \Sigma_I^{-1/2}$ (donde $U_{1:k}$ es la matriz U truncada a sus primeras k columnas).