

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-091894

(43) Date of publication of application: 06.04.2001

(51)Int.CI.

G02B 27/18 G02F 1/13357 G03B 21/00 G09F 9/00

(21)Application number: 11-266459

(71)Applicant: MINOLTA CO LTD

(22)Date of filing:

21.09.1999

(72)Inventor: HAYASHI KOTARO

(54) DISPLAY OPTICAL DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a display optical device with high resolution having a constitution with good efficiency even on a display panel whose pixel pitch is small. SOLUTION: As to this display optical device which is provided with an illumination optical system separating light from a light source in different directions by each specified wavelength area, shifting the separated light as illuminating light in a consecutive state or in a fine pitch state, and illuminating the display panel, and which illuminates plural pixels adjacent to each other on the display panel with the light of the same color in the illuminating light having the three colors of RGB mutually and plurally arranged; the illuminating optical system is provided with a mask plate having an aperture part controlling a light source picture, and a color resolving optical system separating the light from the light source in the different directions by each specified wavelength area behind the mask plate.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-91894 (P2001-91894A)

(43)公開日 平成13年4月6日(2001.4.6)

(51) Int.Cl. ⁷		識別記号	FΙ		テーマコード(参考)	
G 0 2 B	27/18		G 0 2 B	27/18	Z	2H091
G 0 2 F	1/13357		G 0 3 B	21/00	D	5 G 4 3 5
G 0 3 B	21/00		G09F	9/00	3 1 3	
G09F	9/00	3 1 3	G 0 2 F	1/1335	530	

審査請求 未請求 請求項の数7 OL (全 24 頁)

(21)出願番号 特願平11-266459

(22)出顧日 平成11年9月21日(1999.9.21)

(71)出願人 000006079

ミノルタ株式会社

大阪府大阪市中央区安土町二丁目3番13号

大阪国際ビル

(72)発明者 林 宏太郎

大阪市中央区安土町二丁目3番13号 大阪

国際ピル ミノルタ株式会社内

(74)代理人 100085501

弁理士 佐野 静夫

最終頁に続く

(54) 【発明の名称】 表示光学装置

(57)【要約】

【課題】画素ピッチが細かい表示パネルにおいても、効率の良い構成が可能な、高解像度の表示光学装置を提供する。

【解決手段】光源からの光を所定の波長領域毎に異なった方向に分離し、その分離された照明光としての光を連続的に或いは微小ピッチでシフトして、表示パネルに照明する照明光学系を備え、前記照明光はRGB3色の光が交互に複数配列され、各同一色の光が前記表示パネルの隣合った複数個の画案を照明する表示光学装置において、前記照明光学系は、光源像を規制する開口部を有するマスク板を備え、そのマスク板以降に光源からの光を所定の波長領域毎に異なった方向に分離する色分解光学系を設けた構成とする。

【特許請求の範囲】

【請求項1】 光源からの光を所定の波長領域毎に異な った方向に分離し、該分離された照明光としての光を連 続的に或いは微小ピッチでシフトして、表示パネルに照 明する照明光学系を備え、前記照明光はRGB3色の光 が交互に複数配列され、各同一色の光が前記表示パネル の隣合った複数個の画素を照明する表示光学装置におい

前記照明光学系は、光源像を規制する開口部を有するマ スク板を備え、該マスク板以降に光源からの光を所定の 波長領域毎に異なった方向に分離する色分解光学系を設 けた事を特徴とする表示光学装置。

【請求項2】 前記開口部は複数である事を特徴とする 請求項1に記載の表示光学装置。

【請求項3】 前記照明光学系は、レンズアレイより成 るインテグレータを備え、前記開口部が該レンズアレイ の各セルの開口幅を規制するように前記マスク板を配置 した事を特徴とする請求項1又は請求項2に記載の表示 光学装置。

【請求項4】 前記各セルの開口幅は、該各セルの全幅 20 の3分の1以下である事を特徴とする請求項3に記載の 表示光学装置。

【請求項5】 前記各セルの開口幅は、前記レンズアレ イの周辺に近いほど狭くなる事を特徴とする請求項3又 は請求項4に記載の表示光学装置。

【請求項6】 前記マスク板の開口部に濃度フィルター を用いた事を特徴とする請求項1~請求項5のいずれか に記載の表示光学装置。

【請求項7】 前記マスク板の開口部の幅を調節可能と した事を特徴とする請求項1~請求項5のいずれかに記 30 載の表示光学装置。

【発明の詳細な説明】

[0.001]

【発明の属する技術分野】本発明は、反射型表示パネル の画像を投影する表示光学装置に関するものである。

[0002]

【従来の技術】従来より、映像を表示する方法の一つと して、例えば投影型の表示光学装置が知られている。こ のような表示光学装置においては、反射型液晶表示パネ ル等の、いわゆる反射型表示パネルが最近では主に用い 40 られている。そして、このような反射型表示パネル上の 光学像を、効率よく均一に照明するために、照明光学系 が用いられており、また、照明光学系からの照明光を反 射型表示パネルへと導くために、反射型表示パネル直前 に配置したマイクロレンズアレイ等が用いられている。

【0003】具体的には、例えば反射型表示パネルをい わゆる単板として、画素毎にR用、G用、B用を順次並 べたものを用い、照明光を予めRGBに色分割したもの を、角度をRGB毎に変えて1絵素(1絵素とは表示パ ネル上のRGB3画素を1組としたもの)或いは複数絵 50 く、収差等が生じて良好な照明ができない。

素ずつマイクロレンズアレイ上の各マイクロレンズに入 射させ、それぞれ反射型表示パネルのR用、G用、B用 の画素に集光するようにしている。

【0004】図22は、従来の一例であるマイクロレン ズアレイと表示パネルとの関係を模式的に示す図であ る。これは、特開平4-60538号公報に記載されて いる如く、単板方式で表示パネルに透過型液晶を用いた プロジェクター光学系に採用されているものである。こ こでは表示パネル16を単板とし、画素毎にR用、G 用、B用を順次並べており、後述する光源1からの光9 を予めRGBに色分割したものを、角度をRGB毎に変 えて1絵素ずつマイクロレンズアレイ61の各マイクロ レンズ61aに入射させ、それぞれ表示パネル16のR 用、G用、B用の画素に集光するようにしている。これ により、効率の良い照明を行う事ができる。尚、同図の マイクロレンズアレイ61及び表示パネル16の左右 は、図示を省略している。

【0005】図23は、特開平9-318904号公報 に記載されている、従来の他の例であるマイクロレンズ アレイと表示パネルとの関係を模式的に示す図である。 同図に示すように、ここではマイクロレンズアレイ62 のマイクロレンズ62a一つ当たり、光源1からの光9 をRGB3つではなくRGBRGB…の順の複数絵素の 光束にして入射させ、それぞれ表示パネル16のR用, G用、B用の画素に集光するようにしている。尚、同図 のマイクロレンズアレイ62及び表示パネル16の左右 は、図示を省略している。

【0006】尚、このようなRGB順に並んだ画素を持 つ表示パネルにおいては、いわゆる単板方式でありなが ら、画素数を増やす事なくいわゆる3板方式と同等の解 像度のカラー表示を行える事が望ましい。このため、従 来より、RGBが順にずれるよう、3サイクルを時間的 に重ね合わせる、いわゆる色画素時分割方式が行われて いる。

[0007]

【発明が解決しようとする課題】しかしながら、上記図 22で示した従来の一例のような構成では、表示パネル として用いられる最近の液晶表示パネルは画素ピッチが 細かいため、効率の良い構成とするためには、マイクロ レンズ61aと表示パネル16の各画素との間隔が非常 に短くなり、現実には構成不可能となる。具体的には、 最近の液晶表示パネルは、高画素化のため画素ピッチが $10~20\mu$ mとなっている。

【0008】従来の一例のマイクロレンズアレイ61の ように、表示パネル16の各画素をRGBそれぞれ1つ の光束で照明する場合、マイクロレンズ61aと表示パ ネル16の各画素との間は、100μm以下の距離とな り、実質的にこれらの作成が不可能である。たとえ実際 に作成できたとしても、マイクロレンズの曲率が大き

-2-

【0009】これらの問題を解決するために、上記図23で示した従来の他の例が有効であるが、このような構成においては、色分割された光束の間隔は、ここでは図示しないレンズアレイによる1段のインテグレータにより予め設定されるため、画面中央に対する周辺等の、大きなスパンでの照明ムラをなくすためには、レンズアレイは相当細かく分割しなければならず、例えば分割の粗い長辺方向でも、4~7分割以上は必要となる。この場合、逆にマイクロレンズ62aと表示パネル16の各画素が大きく離れてしまい、マイクロレンズ62a個々の10下ナンバーが回折限界以下の暗さとなるため、うまく集光しない。

【0010】具体的には、レンズアレイによるインテグレータにより、予め光源1からの光9をRGBRGB…の光東に分けた場合、マイクロレンズ62aと表示パネル16の各画素との間は、500~800μm程度と大きくなるが、各マイクロレンズ62aのFナンバーはF20以上となり、回折による結像のボケ量(1.22×波長λ×Fナンバー)が十数ミクロンとなって、画素ピッチと同等になってしまう。このとき、それぞれ細かく分割したRGBの光束は、実質的には画素面上で各画素からはみ出してしまい、色純度の低下や効率の大幅なダウンを引き起こす。

【0011】また、一般的にも、1 絵素当たりに一つのマイクロレンズを持つマイクロレンズアレイを表示パネル直前に置いた場合、マイクロレンズアレイのFナンバーが暗く、画素に結像するよりも回折で像がボケる方が大きくなり、返って非効率となる。そして、複数絵素当たりに一つのマイクロレンズを持つマイクロレンズアレイの場合(特開平9-318904号公報に記載された 30実施例は殆どこれである)、近接する絵素間に寄与する光源像が異なるため、光源像の明るさの差が、隣合う絵素間といった小さいスパンでの照明ムラを発生する。

【0012】本発明は、画素ピッチが細かい表示パネルにおいても、効率の良い構成が可能な、高解像度の表示 光学装置を提供する事を目的とする。

[0013]

【課題を解決するための手段】上記目的を達成するために、本発明では、光源からの光を所定の波長領域毎に異なった方向に分離し、その分離された照明光としての光 40を連続的に或いは微小ピッチでシフトして、表示パネルに照明する照明光学系を備え、前記照明光はRGB3色の光が交互に複数配列され、各同一色の光が前記表示パネルの隣合った複数個の画素を照明する表示光学装置において、前記照明光学系は、光源像を規制する開口部を有するマスク板を備え、そのマスク板以降に光源からの光を所定の波長領域毎に異なった方向に分離する色分解光学系を設けた請求項1の構成とする。

【0014】また、前記開口部は複数である請求項1に記載の請求項2の構成とする。

【0015】また、前記照明光学系は、レンズアレイより成るインテグレータを備え、前記開口部がそのレンズアレイの各セルの開口幅を規制するように前記マスク板を配置した請求項1又は請求項2に記載の請求項3の構成とする。

【0016】また、前記各セルの開口幅は、その各セルの全幅の3分の1以下である請求項3に記載の請求項4の構成とする。

【0017】また、前記各セルの開口幅は、前記レンズアレイの周辺に近いほど狭くなる請求項3又は請求項4 に記載の請求項5の構成とする。

【0018】また、前記マスク板の開口部に濃度フィルターを用いた請求項1~請求項5のいずれかに記載の請求項6の構成とする。

【0019】また、前記マスク板の開口部の幅を調節可能とした請求項1~請求項5のいずれかに記載の請求項7の構成とする。

[0020]

【発明の実施の形態】以下、本発明の実施の形態について、図面を参照しながら説明する。図1は、本発明の第1の実施形態の表示光学装置を模式的に示す構成図である。各部の配置は本来3次元的なものであるが、理解を助けるために、平面状に記載している。同図において、1は光源であり、2は光源1を取り囲むように配置されるリフレクターである。また、7はリフレクター2の光の射出口2aを覆うように配置され、光源1及びリフレクター2からの光に含まれる紫外線及び赤外線をカットするUV1Rカットフィルターである。

【0021】UVIRカットフィルター7の後方(図の下方)には、R(赤),G(緑),B(青)それぞれの波長領域の光を反射するダイクロイックミラーRm,Gm,Bmがそれぞれ異なった傾きで配置されている。そして、光軸LでUVIRカットフィルター7を透過してきた光9が、Rm,Gm,Bmそれぞれのダイクロイックミラーで反射され、それぞれ異なった角度の光軸LR,LG,L8で後方(図の右方)に配置された第1レンズアレイ4に到達するようにしている。尚、ダイクロイックミラーBmは全反射ミラーでも良い。また、光9のダイクロイックミラーによる反射光は、図示を省略している。

【0022】第1レンズアレイ4の後方には、少し離れて第2レンズアレイ6、その直後に重ね合わせレンズ8が配置されている。尚、ここでは図示しないが、第1レンズアレイ4は、格子状に組み合わされた各セルを有しており、第2レンズアレイ6は、第1レンズアレイ4とは別の格子状に組み合わされた各セルを有している。また、第1レンズアレイ4は、複屈折回折格子を有しており、第2レンズアレイ6の各セルの短辺方向に、光源1及びリフレクター2からの光9の偏光分離を行う。第1レンズアレイ4、第2レンズアレイ6を通じて偏光変換

が行われ、光源1及びリフレクター2からの光9は特定 の偏光に揃えられて出てくる。この構成を偏光変換装置 と呼ぶ。これらの詳細な関係については後述する。

【0023】また、第2レンズアレイ6とその直後の重 ね合わせレンズ8により、後述する表示パネルに、第1 レンズアレイ4の各セルの像が重なり合うようにしてい る。そして、重ね合わせレンズ8の直後の照明光学系1 3により、表示パネルをテレセントリック照明する。 尚、重ね合わせレンズ8は、第2レンズアレイ6と一体 に成形されていても良い。以上の第1レンズアレイ4か 10 ら重ね合わせレンズ8までを、インテグレータ光学系 I と呼び、光軸をLaとする。

【0024】また、照明光学系13の後方には、TIR プリズム22が配置されている。TIRプリズム22 は、それぞれ三角柱状をしたガラス等より成る大小のプ リズム22b,22aの或面同士が向かい合った構成と なっている。プリズム22bは、入射面22ba、射出 面を兼ねた全反射面22bb,及び入射出面22bcを 有し、プリズム22aは、入射面22aa及び射出面2 2 a b を有している。互いに向かい合った全反射面22 bbと入射面22aaとの間隔は、数μm~数十μmと なっている。

【0025】照明光学系13を透過した、光源1及びリ フレクター2からの光9は、まず、プリズム22bに対 して、光軸Laに沿って、直前のコンデンサーレンズ2 3を経て、入射面22baに入射する。そして、全反射 面22bbに臨界角を超える入射角で入射する事によっ て、光9はその殆どが反射され、入射出面22bcより 射出し、表示パネル16に向かう。その直前には、所定 の偏光に対してマイクロレンズ効果をもたらす複屈折マ 30 イクロシリンダーレンズアレイ 1 5 a が配置されてい る。以上説明した構成を、照明光学装置の一例とする。

【0026】表示パネル16はDMDで構成されてお り、ここに照明された光9を、画素毎に表示情報に応じ てONの状態のマイクロミラー或いはOFFの状態のマ イクロミラーで反射する。このとき、ONの反射光は、 複屈折マイクロシリンダーレンズアレイ15aを経て、 入射出面22bcに入射してプリズム22bに戻る。

【0027】そして、全反射面22bbに臨界角以内の 入射角で入射してここを透過し、更に入射面22aaに 40 入射して、プリズム22aを透過して射出面22abよ り射出し、光軸しbに沿って投影光である光21として 投影光学系24に到る。この投影光学系24により、表 示パネル16の表示情報が図示しないスクリーンに投影 される。尚、光21は図示を省略している。一方、OF Fの反射光は、プリズム22b, 22aを透過しても、 最終的に投影光学系24に到らない方向へと射出する。 以上説明した投影光学系とスクリーンの構成を、投影光 学装置の一例とする。

【0028】この、ONの反射光である光21の光軸し

bは、本実施形態では後述するように、表示パネル16 の表面に対して垂直とはならない構成であるので、投影 光学系24は共軸系ではない非軸投影光学系とする必要 がある。この非軸投影光学系の具体例としては、例えば 特開平9-179064号公報の実施例4に記載されて いる様なものが提案されている。

【0029】図2は、本発明の第1の実施形態の表示光 学装置の主要部分を拡大して示す模式図であり、同図 (a) は全体図、同図(b) は上記インテグレータ光学 系部分の側面図である。図1での説明と同様にして、光 軸Lに沿って入射してきた光9が、Rm, Gm, Bmそれ ぞれのダイクロイックミラーで反射され、それぞれ異な った角度の光軸 LR, LG, LBで後方(図の下方)に配 置された第1レンズアレイ4に到達する。尚、同図 (a) では光9は図示を省略している。

【0030】第1レンズアレイ4の後方には、少し離れ て第2レンズアレイ6、その直後に重ね合わせレンズ8 が配置されている。第1レンズアレイ4は、格子状に組 み合わされた各セル4aを有しており、第2レンズアレ イ6は、第1レンズアレイ4とは別の格子状に組み合わ された各セル6aを有している。RGBで異なる方向か ら第1レンズアレイ4に到達した光9は、その個々のセ ル4 a 毎に、その後方に少し離れて配置された第2レン ズアレイ6の個々のセル6a上に結像する。このとき、 RGBで光の方向が異なるため、RGBそれぞれの光源 像ができる。それぞれの位置にはほぼ各色がきている が、色純度を上げるため、RGBのカラーフィルターが 設けてある。このカラーフィルターによる光量のロスは 少ない。

【0031】また、第1レンズアレイ4は、図2(b) に示すように、複屈折回折格子を有しており、第2レン ズアレイ6の各セルの短辺方向に、光9の偏光分離を行 う。ここでは第1レンズアレイ4、第2レンズアレイ6 を通じて偏光変換が行われ、光9は特定の偏光に揃えら れて出てくる。この偏光変換の原理を同図(b)で改め て説明する。まず、光りは無偏光の光束で、インテグレ ータ光学系【に入射する。インテグレータ光学系【は、 光束の進む順に、第1レンズアレイ4、1/2波長板 5、第2レンズアレイ6、重ね合わせレンズ8より成 る。第1レンズアレイ4は、ガラス等より成る基板4b 上にブレーズ形状の複屈折回折格子4cが形成され、更 にそのブレーズ形状部に接する部分に複屈折光学材料4 dが充填されて、ガラス板4eで封印されている。

【0032】複屈折光学材料4dは、偏光方向の異なる 光線に対しては異なる屈折率を示し、本例では、紙面に ・沿った偏光面を有する光線し1に対する屈折率と、紙面 に垂直な偏光面を有する光線し2に対する屈折率とが異 なっている。また複屈折回折格子4cの形状は直進する 光を偏向する形状である。ここで、紙面に沿った偏光面 50 を有する光線し1に対する屈折率と、基板材料の屈折率

とを等しくする事により、紙面に沿った偏光面を有する 光線L1は、実線で示されるように複屈折回折格子4 c が存在しない場合と等価に進行し、紙面に垂直な偏光面 を有する光線L2は、一点鎖線で示されるように複屈折 回折格子4 c が存在する状態で進行するので、偏向を受 ける事になる。

【0033】一方、第1レンズアレイ4は入射する光9 を空間分割し、第2レンズアレイ6上で結像させる。紙 面に沿った偏光面を有する光線し1は直進して結像し、 紙面に垂直な偏光面を有する光線し2は偏向を受けて結 像する。従って、紙面に沿った偏光面を有する光線し1 と、紙面に垂直な偏光面を有する光線 L 2 とは空間的に 異なる位置で結像する事になる。そこで第2レンズアレ イ6光源側近傍に、前記いずれかの偏光面を有する光束 の結像している空間に1/2波長板5を配置する事によ り、いずれか一方の偏光面を有する光束に揃える事が可 能となる。

【0034】ここでは光線L2に対して1/2波長板5 を用いている。従って、インテグレータ光学系Iから は、全て紙面に対して平行な偏光面に揃えられた偏光 が、照明光として射出する事になる。尚、複屈折光学材 料は、例えば液晶材料を所定の方向に配向処理する事等 により得られる。また、紫外線等の照射を受けると硬化 する液晶材料が知られているので、そのような液晶材料 を用いて上記配向処理後に紫外線照射等を施すようにし ても良い。

【0035】続いて、同図(a)に戻って説明すると、 第2レンズアレイ6とその直後の重ね合わせレンズ8に より、表示パネル16に、第1レンズアレイ4の各セル の像が重なり合うようにしている。そして、重ね合わせ 30 レンズ8の直後の照明光学系13により、表示パネル1 6をテレセントリック照明する。ここで、図1でも示し たように、表示パネル16の直前には、複屈折材料によ り構成される複屈折マイクロシリンダーレンズアレイ1 5 a が配置されている。

【0036】そして、上記ダイクロイックミラーと第 1, 第2レンズアレイによってRGBに色分解された光 9は、照明光学系13及びTIRプリズム22を経て、 この複屈折マイクロシリンダーレンズアレイ15aの各 マイクロシリンダーレンズ15aaによって、各色毎に 表示パネル16の数個の画素16bをそれぞれ照明す る。尚、マイクロシリンダーレンズ15aaの代わりに 回折レンズとしても良い。同図の複屈折マイクロシリン ダーレンズアレイ15a及び表示パネル16の左右は、 図示を省略している。尚、これらの間には1/4波長板 10が配置されているが、これについては後述する。

【0037】本実施形態では、複屈折マイクロシリンダ ーレンズアレイ15aと表示パネル16との間隔が2m m~3mmとなっており、表示パネル16のDMDの画 マイクロシリンダーレンズアレイ15aを配置するスペ ースが充分ある。また、図2 (a) においては、1色当 たり4画素を照明する構成となっているが、実際には、 保護ガラス16aの厚さが2mm程度であれば、1色当 たり6~10画素を照明する構成とし、複屈折マイクロ シリンダーレンズアレイ15aの配置スペースを確保す る必要がある。

【0038】このようにして、マイクロシリンダーレン ズアレイをDMD素子面から2~3mm離す事で、数画 素毎にRGB各色の領域となる照明を行うが、本実施形 態では、更に複屈折マイクロシリンダーレンズアレイ1 5 a を、同図或いは図1の矢印Awで示すように、その 表面に沿って1フレーム内に微細ピッチで或いは連続的 に駆動し、画素上の照明光を移動している。そして、こ れに連動した画素表示を行う事で、全画面において良好 なカラー表示を行う事ができる。詳しくは後述する、こ の場合、図1に示すように、複屈折マイクロシリンダー レンズアレイ15aの代わりに、照明光学系13の一部 のレンズを矢印Bwで示すように光軸Laに垂直に駆動 20 するか、照明光学系13内にミラーを設けてこれを回転 駆動する等の構成としても良い。

【0039】図3は、複屈折マイクロシリンダーレンズ アレイの材料構成を示す模式図である。本実施形態で は、表示パネル16として反射型表示パネルであるDM Dを用いているので、この場合、表示パネル16直前の 複屈折マイクロシリンダーレンズアレイ15a (断面が レンズ形のレンチキュラータイプ)には、表示パネル1 6へ入射する光9 (照明光, 実線で示す) と表示パネル 16の各画素16bから反射した光21(投影光,二点 鎖線で示す) との両方が通過する事となる。表示パネル 16へ入射する光9は、前述のように作用するが、反射 した光21は、このままでは複屈折マイクロシリンダー レンズアレイ15aにより光線が乱され、画質が劣化す る。

【0040】これに対処するため、本実施形態では、複 屈折マイクロシリンダーレンズアレイ15aを、等方性 の光学材料と複屈折特性を持つ光学材料とで構成し、さ らに、複屈折マイクロシリンダーレンズアレイ15aと 表示パネル16との間に、1/4波長板10を配置して いる。同図において、表示パネル16へ入射する光9 は、或特定の偏光面、例えば紙面に沿った偏光面を持 ち、表示パネル16で反射した光の内、映像の表示に有 効な光21は、偏光面が回転していて、例えば紙面に垂 直な偏光面を持つ。これは、これらの光が合わせて1/ 4波長板10を往復通過する際に、1/2波長板として の働きを受ける事によるものである。

【0041】そこで、複屈折マイクロシリンダーレンズ アレイ15aを構成する、マイクロシリンダーレンズl 5 a a より上側にある等方性の光学材料の屈折率をNと 累16bを保護する保護ガラス16aの外側に、複屈折 50 し、マイクロシリンダーレンズ15aaより下側にある

複屈折材料の、光9の偏光面に対する屈折率をNe、光21の偏光面に対する屈折率をNoとする。このとき、N=Noとする事により、複屈折マイクロシリンダーレンズアレイ15aは、光9に対してはマイクロシリンダーレンズアレイとして働き、光21に対しては単なる透明平板となる。これにより、反射型表示パネルを用いても、光21の画質を劣化させる事がなくなる。

【0042】ところで、このような複屈折マイクロシリンダーレンズアレイを、TIRプリズム22と表示パネル16との間に配置するのではなく、図1で示したコンデンサーレンズ23とTIRプリズム22との間に、マイクロシリンダーレンズアレイとして配置する方法がある。これによれば、表示パネル16との距離が充分確保できる上に、このマイクロシリンダーレンズアレイを照明光のみが通過するだけとなり、図3で説明したような、投影光が乱される問題が生じないようになるので、インテグレータ光学系1で偏光変換する必要がなくなり、マイクロシリンダーレンズアレイにおける複屈折効果も不要となる。このとき、マイクロシリンダーレンズアレイとDMDパネルが大きく離れるので、1色当たり数十画素を照明する構成となる。

【0043】図4、図5は、上述した画素上の照明光を移動する事によりカラー表示を行う原理を説明する図である。ここで、図4は、表示パネル上の位置と照明光との関係を示しており、横軸に位置、縦軸に照明光の強度を取っている。また、図5(a)~(c)は、各画素における時間と照明光との関係を示しており、横軸に時間、縦軸に照明光の強度を取っている。そして、同図(d)は、マイクロシリンダーレンズアレイの移動の様子を示しており、横軸に時間、縦軸にマイクロシリンダ 30ーレンズアレイの移動量を取っている。これは、上述した照明光学系の移動量の場合もある。

【0044】まず、図4において、上記表示パネル16の各画素16bの内、或一つの画素を選択し、これに番号1を付する。そして、ここから順に右側の画素へと1つずつ整数番号を付して行く。ここで、上記複屈折マイクロシリンダーレンズアレイ15a(或いは照明光学系13)を駆動する事により、各色の照明領域が、矢印Cwで示すように右側へと一斉に移動する。R,G,B各色の照明領域は、それぞれ破線、実線、点線で示すように、例えば楕円の上半分に近い形の強度分布を持つと仮定している。尚、同図では1色の照明領域に対する画素数は4となっているが、勿論これに限定されるものではない。

【0045】今、番号1の画素に注目すると、図5 (a)に示すように、ここで白表示を行うときは、実線 Tで示すようにON表示時間を連続的なものとし、R. G. B全ての色を表示すれば良い。次に、番号7の画素 に注目すると、同図(b)に示すように、ここで中程度 の明るさの青紫表示を行うときは、実線T1. T2で示 50

すように、それぞれRの照明領域の周辺部(強度が弱い), Bの照明領域の中央部(強度が強い)により照明されるときにおいて、それぞれ短時間及び長時間ON表示すれば良い。

【0046】さらに、番号10の画素に注目すると、同図(c)に示すように、ここで中程度の明るさの緑表示を行うときは、実線T3で示すように、Gの照明領域の周辺から中心にかけて照明される時間だけON表示すれば良い。以上のようにして、各色の照明領域に対応する表示時間を分割し、その分割された時間を組み合わせる事により、各画素における色合いと階調表現を行う。ここでは表示時間を4分割した例を挙げているが、これに限定されるわけでは勿論無く、更に細かく分割する事により、より微妙な表示を行う事ができる。

【0047】ちなみに、いわゆるフルカラー表示を行う場合は、255階調の表示が必要である。従来は、表示の階調を表現するには、一様な照明光の間にONにする時間を255段階でデジタル制御していた。しかし、本実施形態のように、照明領域内で強度分布が変化する場合は、各色の照明領域に対応する表示時間を255分割までする必要はなく、比較的粗く分割された表示時間を組み合わせる事で、同レベルのフルカラー表示を行う事が可能である。

【0048】最後に、同図(d)に示すように、本例では複屈折マイクロシリンダーレンズアレイ15aを、矢印Dwで示す1フレームの時間を一周期として、微小ピッチで或いは連続的に駆動するが、その中には、元の位置に戻すための、矢印Ewで示すブランク時間が必要であり、その間だけは表示は行わない構成となっている。尚、これまで説明した画素上の照明光を移動する事によりカラー表示を行う構成は、表示パネルに必ずしもDMDを使用する必要はなく、例えば強誘電液晶等のON,OFF切換の応答性の良い素子を使用しても良い。

【0049】図6は、本発明の第2の実施形態の表示光学装置を模式的に示す構成図である。各部の配置は本来3次元的なものであるが、理解を助けるために、平面状に記載している。本実施形態は、上記図1で示した第1の実施形態の構成とほぼ同じであるが、ここでは複屈折マイクロシリンダーレンズアレイを駆動するのではなく、投影光学系24を構成する投影レンズ24aを矢印Fwで示すように光軸しちに垂直に、1フレーム内に1画素ピッチで(或いは連続的に)駆動し、スクリーン20上の投影光を1画素単位で移動している。そして、これに連動した画素表示を行う事で、全画面において良好なカラー表示を行う事ができる。

【0050】図7、図8は、上述したスクリーン上の投影光を移動する事によりカラー表示を行う原理を説明する図である。ここで、図7は、スクリーン上の位置と投影光との関係を経時変化を踏まえて示しており、 横軸に位置、縦軸に時間を取っている。また、図8(a)~

(c) は、各画素に対応したスクリーン上の位置におけ る時間と投影光との関係を示しており、横軸に時間、縦 軸に投影光の強度を取っている。そして、同図(d) は、投影レンズの移動の様子を示しており、横軸に時 間、縦軸に投影レンズの移動量を取っている。

【0051】まず、図7において、上記表示パネル16 の各画素に対応したスクリーン20上に投影された画素 の内、或一つの画素を選択し、これに番号1を付する。 そして、ここから順に右側の画素へと1つずつ整数番号 を付して行く。尚、説明の便宜上、付する番号は1から 10 14までとする。このとき、各色の照明領域は、同図に それぞれ点線, 破線, 実線で示すように、B, R, Gの 順に4画素ずつに対応しているものとする。勿論これに 限定されるものではない。ここで、上記投影レンズ24 a を駆動する事により、各色の照明領域及びそれに対応 する画素が、同図 (a) ~ (c) で示すように、スクリ ーン上で右側へと1 画素ずつ移動する。実際は更に続い て移動して行く。

【0052】図8においては、B. R. G各色の照明領 域は、それぞれ点線、破線、実線で示すように、例えば 20 楕円の上半分に近い形の強度分布を持つと仮定してい る。今、図7に示すスクリーン上の位置 a に注目する と、図8 (a) に示すように、ここで白表示を行うとき は、各画素を実線で示すように、全ての画素をONと し、B, R, G全ての色を表示すれば良い。

【0053】次に、図7に示すスクリーン上の位置bに 注目すると、図8(b)に示すように、ここで中程度の 明るさの青紫表示を行うときは、該当する画素を実線で 示すように、それぞれRの照明領域の周辺部(強度が弱 い) における例えば番号8の画素、並びにBの照明領域 30 の中央部(強度が強い)における番号2及び3の画素を ONとする。そして、その他の画素を破線で示すように OFFとすれば良い。

【0054】さらに、図7に示すスクリーン上の位置 c に注目すると、同図(c)に示すように、ここで中程度 の明るさの緑表示を行うときは、該当する画素を実線で 示すように、Gの照明領域の周辺から中心にかけての、 例えば番号11及び12の画素をONとする。そして、 その他の画素を破線で示すようにOFFとすれば良い。 以上のようにして、各色の照明領域に対応する各画素を 40 組み合わせる事により、スクリーン上の各位置における 色合いと階調表現を行う。ここでは画素の大きさに基づ いて表示時間の分割が決まるが、各画素のON時間を更 に細かく刻む事により、より微妙な表示を行う事ができ る。即ち、各画素の時間分割と各照明領域の画素数との 積で階調表示する。

【0055】最後に、図8 (d) に示すように、本例で は投影レンズ24aを、矢印Dwで示す1フレームの時 間を一周期として、1 画素ピッチで(或いは連続的に)

駆動して、最後に元に戻る構成とする事により、ブラン ク時間を不要としている。但し、この駆動方法に限定さ れるわけではなく、上記図5 (d) で示した方法を使用 しても良いし、上記第1の実施形態で照明光を移動する 構成において、図8 (d) で示した方法を使用しても良 い。尚、これまで説明したスクリーン上の投影光を移動 する事によりカラー表示を行う構成は、表示パネルに必 ずしもDMDを使用する必要はなく、例えば強誘電液晶 等のON、OFF切換の応答性の良い素子を使用しても 良い。

【0056】以下に説明する図9~図11は、TIRプ リズム付近の構成を模式的に示す斜視図である。尚、表 示パネル16の所定の短辺をc、長辺をdとしている。 まず、図9は、従来の構成を示している。同図に示すよ うに、ここでは図示しない上記インテグレーターより、 表示パネル16の短辺 c に対するアジマス角45度で、 光軸Laに沿ってTIRプリズム22に到達した照明光 としての光9は、プリズム22bの入射面22baに入 射する。そして、全反射面22bbで反射され、入射出 面22bcより射出し、表示パネル16に向かう。その 直前には、複屈折マイクロシリンダーレンズアレイ15 a が配置されている。尚、アジマス角の基準は長辺とし ても良い。

【0057】表示パネル16のONの状態の各画素16 bからの反射光 (ONの反射光) は、複屈折マイクロシ リンダーレンズアレイ15aを経て、入射出面22bc に入射してプリズム22bに戻り、全反射面22bbを 透過する。更に入射面22aaに入射して、プリズム2 2 a を透過し、射出面 2 2 a b より投影光である光 2 1 として、光軸Lbに沿って射出し、図示しない投影光学 系に到る。一方、表示パネル16のOFFの状態の各画 素16bからの反射光(OFFの反射光)は、ONの反 射光と同様にしてプリズムを透過するが、最終的に光軸 Lcに沿って投影光学系から外れた方向へと射出する。 【0058】次に、図10は、第1の実施形態における 構成を示している。同図に示すように、ここでは図示し ない上記インテグレータIより、表示パネル16の短辺 cに対するアジマス角略O度で、光軸Laに沿ってTI Rプリズム22に到達した照明光としての光9は、プリ ズム22bの入射面22baに入射する。そして、全反 射面22bbで反射され、入射出面22bcより射出 し、表示パネル16に向かう。以下、図9における説明 と同様である。

【0059】さらに、図11は、第2の実施形態におけ る構成を示している。同図に示すように、ここでは図示 しない上記インテグレーターより、表示パネル16の短 辺cに対するアジマス角約148度で、光軸Laに沿っ てTIRプリズム22に到達した照明光としての光9 は、プリズム22bの入射面22baに入射する、そし 駆動するが、ここでは1フレームの中間時点で逆方向に 50 て、全反射面22bbで反射され、入射出面22bcよ

り射出し、表示パネル16に向かう。その直前には、複 屈折マイクロシリンダーレンズアレイ15aが配置され ている。

【0060】表示パネル16のONの状態の各画素16bからの反射光(ONの反射光)は、複屈折マイクロシリンダーレンズアレイ15aを経て、入射出面22bcに入射してプリズム22bに戻り、全反射面22bbを透過する。更に入射面22abより投影光である光21として、光軸Lbに沿って射出し、図示しない投影光学系に到る。一方、表示パネル16のOFFの状態の各面素16bからの反射光(OFFの反射光)は、ONの反射光と同様にしてプリズム22bに戻るが、全反射面22bbで反射され、最終的に光軸Ldに沿って照明側へと戻される。

【0061】このような構成とするのは、以下の理由による。即ち、DMDにおいては、照明光はOFFの状態のマイクロミラーにより、投影光学系から外れた方向に反射されるが、実際にはこのOFFの光もTIRプリズムを透過するので、その一部の光が投影光学系に到達し、スクリーンにフレアとして現れる。

【0062】具体的に説明すると、図1と同様にしてTIRプリズム付近の構成を模式的に示す図12において、照明光としての光9は、プリズム22bに対して、光軸Laに沿って、直前のコンデンサーレンズ23を経て、入射面22baに入射する。そして、全反射面22bbに臨界角を超える入射角で入射する事によって、光9はその殆どが反射され、入射出面22bcより射出し、表示パネル16に向かう。その直前には、所定の偏光に対してマイクロレンズ効果をもたらす複屈折マイクロシリンダーレンズアレイ15aが配置されている。

【0063】表示パネル16はDMDで構成されており、ここに照明された光9を、画素毎に表示情報に応じてONの状態のマイクロミラー或いはOFFの状態のマイクロミラーで反射する。このとき、ONの反射光は、複屈折マイクロシリンダーレンズアレイ15aを経て、入射出面22bcに入射してプリズム22bに戻る。そして、全反射面22bbに臨界角以内の入射角で入射してここを透過し、更に入射面22abより射出し、光軸してこを透過して射出面22abより射出し、光軸した沿って投影光である光21として投影光学系24に到る。この投影光学系24により、表示パネル16の表示情報が図示しないスクリーンに投影される。

【0064】一方、OFFの反射光は、プリズム22b,22aを透過しても、最終的に投影光学系24に到らない方向へと光軸してに沿って射出するが、その一部の光が投影光学系24の特にコバの部分に到達し、スクリーンにフレアとして現れてしまう。これを防止するために、図11のような、OFFの反射光を完全に遮断する構成が取られる。

14

【0065】以下に説明する図13~図15は、照明光と投影光の角度関係を示す図であり、それぞれ上記図9~図11の構成に対応している。各図においては、表示パネル16を基準とした、これに対する照明光の入射角及び投影光の反射角を、その角度に比例する半径の同心円で示している。また、表示パネル16の短辺c方向を同心円の中心〇を通る横軸で示して、この右方向をアジマス角0度とし、長辺d方向を同じく同心円の中心〇を通る縦軸で示して、この上方向をアジマス角90度としている。

【0066】また、図中の破線による丸51は、TIRプリズム22へ入射する照明光の光束の角度範囲を示し、点線による丸52は、表示パネル16へ入射する照明光の光束の角度範囲を示している。そして、実線による丸53は、表示パネル16から射出するONの反射光(投影光)の光束の角度範囲を示し、一点鎖線による丸54は、表示パネル16から射出するOFFの反射光の光束の角度範囲を示している。各丸は、Fナンバーが3の場合の光束範囲を示している。さらに、実線による弧55は、TIRプリズムの全反射面で反射或いは透過する角度範囲の境界を示しており、斜線で示す側が透過領域である。

【0067】まず、図13は、上記従来の構成における 照明光と投影光の角度範囲を示している。同図におい て、丸51で示すTIRプリズム22へ入射する照明光 のアジマス角は45度、表示パネル16に対する入射角 は約105度となっている。また、丸52で示す表示パ ネル16へ入射する照明光のアジマス角は45度、入射 角は20度となっている。そして、丸53で示す表示パ ネル16から射出するONの反射光(投影光)の反射角 は0度となっている。さらに、丸54で示す表示パネル 16から射出するOFFの反射光のアジマス角は225 度、反射角は40度となっている。

【0068】また、弧55で示すTIRプリズム22のアジマス角は45度、全反射面の表示パネル16に対する傾きは30.5度である。同図に示すように、従来の構成では、丸52で示す表示パネル16へ入射する照明光と、丸53で示す表示パネル16から射出するONの反射光(投影光)とが密接しており、弧55で示すTIRプリズム22によって辛うじて分離されている状態であるので、ここではFナンバーの小さい、明るいレンズを用いる事はできない。

【0069】次に、図14は、上記第1の実施形態の構成における照明光と投影光の角度範囲を示している。同図において、丸51で示すTIRプリズム22へ入射する照明光のアジマス角は0度、表示パネル16に対する入射角は100度足らずとなっている。また、丸52で示す表示パネル16へ入射する照明光のアジマス角は約30度、入射角は30度足らずとなっている。そして、丸53で示す表示パネル16から射出するONの反射光

(投影光)のアジマス角は180度、反射角は約10度となっている。さらに、丸54で示す表示パネル16から射出するOFFの反射光のアジマス角は210度余り、反射角は45度余りとなっている。

【0070】また、弧55で示すTIRプリズム22のアジマス角は-12度、全反射面の表示パネル16に対する傾きは34度である。同図に示すように、第1の実施形態では、丸52で示す表示パネル16へ入射する照明光と、丸53で示す表示パネル16から射出するONの反射光(投影光)は、それぞれF3の範囲に対して余 10裕があり、ここではFナンバーの小さい、更に明るいレンズを用いる事ができる。また、TIRプリズム22へ入射する照明光は、表示パネル16の短辺cに沿った方向から入射させるため、TIRプリズム22を薄く構成する事ができる。また投影光学系24のレンズバックを短くする事ができる。

【0071】このようにして、投影光を表示パネルの垂直方向から若干短辺に沿った方向に傾け、更に非軸投影光学系を用いる事で、Fナンバーを稼ぐ事ができる。また、TIRプリズムの構成方法によって、照明光をほぼ 20 短辺方向と一致させる事により、TIRプリズムの小型化が可能となり、照明光学系の構成が簡単となる。

【0072】一般に、表示パネルの各画素を形成するDMDのマイクロミラーの、(表示パネル短辺に対する)アジマス角45度,傾き10度の構成に対し、表示パネルへ入射する照明光がアジマス角15度~40度,入射角17度~45度の範囲内にあると、TIRプリズムへ入射する照明光が表示パネルの短辺に沿った方向(アジマス角0度)から照明されるように構成しても、Fナンバー3以上の明るさを確保する事ができる。このときの30TIRプリズムのアジマス角は-11度~-13度とする事により、TIRプリズムへ入射する照明光はアジマス角は0度近傍となる。

【0073】これに対し、表示パネルへ入射する照明光がアジマス角40度以上,入射角17度以下のときは、Fナンバー4程度しか確保する事ができない。また、アジマス角15度以下,入射角45度以上のときは、表示パネルから射出するONの反射光(投影光)の反射角が30度以上となり、投影光学系に非軸光学系を用いたとしても、収差補正が難しくなる。即ちここでは、投影光 40学系は、表示パネル表面の法線方向に対し、3~30度の角度範囲内に主光線を持つような構成とすれば良い。結論として、DMDのマイクロミラーのアジマス角をゆ(マイクロミラーが回動する回動軸に垂直な面と表示パネルの短辺との成す角)、ミラーの傾きを θ としたとき、表示パネルへ入射する照明光のアジマス角は0.33 Φ ~0.9 Φ 、入射角は Φ 1.7 Φ ~4.5 θ 2とすれば良い。

【0074】最後に、図15は、上記第2の実施形態の構成における照明光と投影光の角度範囲を示している。

同図において、丸51で示すTIRプリズム22へ入射する照明光のアジマス角は約148度、表示パネル16に対する入射角は90度足らずとなっている。また、丸52で示す表示パネル16へ入射する照明光のアジマス角は90度、入射角は15度足らずとなっている。そして、丸53で示す表示パネル16から射出するONの反

射光(投影光)のアジマス角は0度、反射角は15度足らずとなっている。さらに、丸54で示す表示パネル16から射出するOFFの反射光のアジマス角は240度余り、反射角は30度余りとなっている。

【0075】また、弧55で示すTIRプリズム22のアジマス角は155度、全反射面の表示パネル16に対する傾きは43.5度である。同図に示すように、第2の実施形態では、丸52で示す表示パネル16から射出するのNの反射光(投影光)とが密接しており、弧55で示すTIRプリズム22によって辛うじて分離されている状態であるので、ここではFナンバーの小さい、明るいレンズを用いる事はできない。また、TIRプリズム22へ入射する照明光は、表示パネル16の短辺cに沿った方向から入射させる事ができないので、TIRプリズムの小型化を図る事はできない。

【0076】けれども本実施形態では、丸54で示す表示パネル16から射出するOFFの反射光を、TIRプリズム22の全反射面の反射領域に持ってくる事ができるので、OFFの反射光をTIRプリズム22で全反射させ、通過しないようにする事ができる。これにより、OFFの反射光が投影光学系に到達する事がなくなり、スクリーン上のフレアを防止する事ができる。結論として、マイクロミラーのアジマス角を Φ 、ミラーの傾きを θ としたとき、表示パネルへ入射する照明光のアジマス角は 1.8Φ ~ 3Φ 、入射角は 1θ ~ 2θ とすれば良い

【0077】ここで、アジマス角1.8中以下,入射角1 伊以下のときは、OFFの反射光をTIRプリズムで全反射させる条件において、Fナンバー4より暗い値しか確保する事ができない。また、アジマス角3 中以上,入射角2 伊以上のときは、表示パネルから射出するONの反射光(投影光)の反射角が30度以上となり、投影光学系に非軸光学系を用いたとしても、収差補正が難しくなる。即ちここでは、投影光学系は、表示パネル表面の法線方向に対し、10~30度の角度範囲内に主光線を持つような構成とすれば良い。

【0078】ところで、上記第1、第2の実施形態の如く、1つのマイクロ(シリンダー)レンズのピッチが画素ピッチより非常に大きい場合、電気的な制御上、マイクロレンズのピッチ=画素ピッチ×8の倍数とするのが良い。デジタル処理においては8bitをデータ最小単位として扱う事が多い。図2等より分かるように、マイクロレンズのピッチ毎に、同位相の照明がなされるの

で、この条件から外れると、デジタル制御が難しい。 【0079】図16は、本発明の第3の実施形態の表示 光学装置を模式的に示す構成図である。同図において、 1は光源であり、2は光源1を取り囲むように配置され るリフレクターである。また、7はリフレクター2の光 の射出口2 a を覆うように配置され、光源1及びリフレ クター2からの光に含まれる紫外線及び赤外線をカット するUVIRカットフィルターである。 UVIRカット フィルター7の後方(図の右方)には、順に複屈折回折 格子3、第1レンズアレイ4、少し離れて第2レンズア レイ6、その直後に重ね合わせレンズ8が配置されてい

【0080】ここでは図示しないが、第1レンズアレイ 4は、格子状に組み合わされた各セルを有しており、第 2レンズアレイ6は、第1レンズアレイ4とは異なる方 向に区切った長方形の格子状に組み合わされた各セルを 有している。複屈折回折格子3は、第2レンズアレイ6 の各セルの長辺方向に、光源1及びリフレクター2から の光9の偏光分離を行う。複屈折回折格子3、第1レン ズアレイ4、第2レンズアレイ6を通じて偏光変換が行 われ、光源1及びリフレクター2からの光9は特定の偏 光に揃えられて出てくる。この構成を偏光変換装置と呼 ぶ。これらの詳細な関係については後述する。

【0081】また、第2レンズアレイ6とその直後の重 ね合わせレンズ8により、重ね合わせレンズ8の後述す る焦点位置近傍に、第1レンズアレイ4の各セルの像が 重なり合うようにしている。尚、重ね合わせレンズ8 は、第2レンズアレイ6と一体に成形されていても良 い。また、複屈折回折格子3の代わりに、第1レンズア レイ4と第2レンズアレイ6との間に複屈折プリズムア 30 レイ等を配置したものもある。以上の第1レンズアレイ 4から重ね合わせレンズ8までを、インテグレータ光学 系と呼び、光軸をしとする。この、重ね合わせレンズ8 の焦点位置に表示パネル16が配置されている。

【0082】そして、重ね合わせレンズ8と表示パネル 16との間には、まず、R(赤), G(緑), B(青) それぞれの波長領域の光を反射する色分離装置としての ダイクロイックミラーRm, Gm, Bmがそれぞれ異なっ た傾きで配置され、ダイクロイックミラーの後方(図の 上方)には、PBS(偏光ビームスプリッター)プリズ 40 ム14が配置されている。このとき、光軸しで重ね合わ せレンズ8を透過してきた光9が、Rm, Gm, Bmそれ ぞれのダイクロイックミラーで反射され、それぞれ異な った角度の光軸 LR、LG、LBでPBSプリズム14、 ひいては表示パネル16に到達するようにしている。 尚、ダイクロイックミラーBmは全反射ミラーでも良 い。また、光9のダイクロイックミラーによる反射光 は、図示を省略している。

【0083】このPBSプリズム14は、S偏光を反射 して、P偏光を透過する性質を持つ。一方、光源1及び 50 光源1及びリフレクター2からの光9は、複屈折回折格

リフレクター2からの光9は、上述した偏光変換によっ て、PBSプリズム14に対してほぼS偏光に揃えられ て入射する。そのため、PBSプリズム14によって、 光9はその殆どが反射され、図の左方の表示パネル16 に向かう。

【0084】表示パネル16の直前には、複屈折マイク ロレンズアレイ15が配置されている。このマイクロレ ンズアレイはマイクロシリンダーレンズアレイ(断面が レンズ形のレンチキュラータイプ) としても良い。そし て、上記ダイクロイックミラーによって色分解された光 9は、この複屈折マイクロレンズアレイ15によって、 照明光として各色毎に表示パネル16の異なる画素を照 明する。詳しくは後述する。この照明により、表示パネ ル16全体は、R. G. Bの各色それぞれにより順にス トライプ状に照明され、各色に照明された画素は各色の 情報表示を行う。

【0085】表示パネル16は反射型液晶表示パネルで あり、ここに照明された光を、画素毎に表示情報に応じ て偏光面を回転させたり(ON)、回転させなかったり (OFF) して反射する。このとき、OFFの反射光 は、複屈折マイクロレンズアレイ15を経てPBSプリ ズム14に戻るが、S偏光のままであるので、ここで反 射され、光源側へと戻される。一方、ONの反射光は、 P偏光に変換されているので、複屈折マイクロレンズア レイ15を経てPBSプリズム14に戻ってここを透過 し、次の投影光学系17に到る。尚、反射型液晶表示パ ネルとして、特に例えば高速応答性が必要な場合は、複 屈折の軸方向を変化させる事で変調する強誘電液晶(F LC) が用いられる。また、投影光学系17の光軸をL bとする。

【0086】この投影光学系17により、表示パネル1 6の表示情報が図示しないスクリーンに投影される。投 影光学系17を形成する投影レンズ群の一部のレンズ は、像シフト用レンズ18として、アクチュエータ19 により、矢印αで示す如く光軸Lbと垂直方向に高速で 駆動される。これにより、表示情報を高画素化する事が できる。詳しくは後述する。

【0087】図17は、本実施形態における複屈折回折 格子と第1, 第2レンズアレイとの関係を模式的に示す 分解斜視図である。同図では、レンズアレイ中の一部の セルを代表して示してある。同図に示すように、本実施 形態では、第1レンズアレイ4の実線で示す各セルの辺 方向と第2レンズアレイ6の破線で示す各セルの辺方向 とが異なるようにし、複屈折回折格子3のブレーズ3a の溝方向を第2レンズアレイ6の各セルの辺方向に沿う ようにしている。具体的には第1レンズアレイ4の各セ ルの辺方向の対角線方向が第2レンズアレイ6の各セル の辺方向となるようにしている。

【0088】図の左斜め下方に位置する図示しない上記

子3のブレーズ3aにより、実線で示す所定偏光面を持 つ光9aと、それとは垂直な偏光面を持つ破線で示す光 9 b とに偏光分離される。これらの光は、第 1 レンズア レイ4の格子状に並んだ個々のセルA, B, C, Dを透 過し、第1レンズアレイ4とは異なる方向に区切った長 方形の格子状に並んだ第2レンズアレイ6の個々のセル Aa, Ba, Ca, Da上に、所定偏光面を持つ光源像 と、それとは垂直な偏光面を持つ光源像とをそれぞれ作 り出す。

【0089】セルA、B、C、Dから、異なった方向に 10 並ぶセルAa, Ba, Ca, Daに光源像を作るため に、第1レンズアレイ4のA, B, C, D各セルは個々 に若干傾いているか、レンズ頂点が偏心している。即ち レンズ頂点がセルの中心からずれている。同様に、第2 レンズアレイ6の各セルAa, Ba, Ca, Daも個々 に傾いているか、レンズ頂点が偏心している。

【0090】これら互いの光源像は、複屈折回折格子3 による分離方向、即ち第2レンズアレイ6の各セルの長 辺方向に並び、正しく列を成す。また、これらの光源像 は、実線及び破線の楕円 (レンズアレイの正面から見れ 20 ば円)で示すように、第2レンズアレイ6の個々のセル 上に、或程度の大きさを持って投影される。ちなみに、 本例の座標系は、光源側から見た第1レンズアレイ4の 正面に向かって上方をy軸、右方をx軸としており、第 2レンズアレイ6の正面に向かって、各セルの辺方向に 沿った右斜め上方向をya軸、右斜め下方向をxa軸と している。

【0091】このような構成によれば、第2レンズアレ イ6における光源像の重なりが少なく、効率の良い偏光 変換を行う事ができる。このとき、例えば破線の楕円で 示した光源像の列に沿って、1/2波長板5を帯状にし たものを貼付し、分離した光源像の偏光面を揃えれば良 い。ちなみに、第1,第2レンズアレイの各セルが同列 方向(辺方向が同じ)に並んだ従来の方式と、本実施形 態の光源サイズ及び第2レンズアレイ6のセルの面積は 等しい。

【0092】本実施形態のようにインテグレータが1段 の場合、第1レンズアレイ4のセルは、表示パネル16 のアスペクト比にほぼ等しくする必要がある。このよう な場合でも、第1レンズアレイ4の各セルの辺方向と第 40 2レンズアレイ6の各セルの辺方向とが異なるようにす る事により、従来のように辺方向が同じ場合より効率が よい。図18は、インテグレータが1段の場合の第1, 第2レンズアレイの位置関係を模式的に示す正面図であ り、アスペクト比が4:3の場合を示している。同図に 示すように、ここでは第1レンズアレイ4の実線で示す 各セルの一つの対角線方向が、第2レンズアレイ6の破 線で示す各セルの長辺方向となるようにしている。

【0093】ここでは図示しない上記光源1及びリフレ

子3により、所定偏光面を持つ光と、それとは垂直な偏 光面を持つ光とに偏光分離される。これらの光は、第1 レンズアレイ4のアスペクト比が4:3の格子状に並ん だ個々のセルA、B、C、D、E、Fを透過し、第1レ ンズアレイ4とは異なる方向に区切った長方形の格子状 に並んだ第2レンズアレイ6の個々のセルAa、Ba, Ca. Da, Ea, Fa上に、所定偏光面を持つ光源像 と、それとは垂直な偏光面を持つ光源像とをそれぞれ作 り出す。

【0094】これら互いの光源像は、複屈折回折格子3 による分離方向に並び、正しく列を成す。また、これら の光源像は、実線及び破線の円で示すように、第2レン ズアレイ6の個々のセル上に、或程度の大きさを持って 投影される。ちなみに、本例の座標系は、光源側から見 た第1レンズアレイ4の正面に向かって上方をy軸、右 方をx軸としており、第2レンズアレイ6の正面に向か って、各セルの辺方向に沿った右斜め上方向をya軸、 右斜め下方向をxa軸としている。

【0095】本実施形態では、図17に示すように、複 屈折回折格子3の複屈折方向をブレーズ3aの溝方向と なるya軸方向に揃えているので、偏光分離を行った実 線及び破線で示す2種の光9a, 9b、ひいては実線及 び破線の楕円で示す2種の光源像は、偏光面がそれぞれ xa軸、ya軸方向となる。ところが、これらの光が次 に入射する光学系のためには、偏光面はy軸方向に揃え る必要があるので、2種の光源像の列それぞれに、互い に45°で交わる異なった光学軸を持つ帯状の1/2波 長板を用いて、偏光面を同時に揃えるようにしている。

【0096】尚、偏光面を揃える他の方法として、ま ず、2種の光源像の内の一方の光源像の列に帯状の1/ 2波長板を用いて、他方の光源像と偏光面を揃えるよう にした上で、偏光面全体を一挙に y 軸方向に揃える 1/ 2波長板を第2レンズアレイ6全面に用いる事も可能で ある。また、複屈折回折格子3の複屈折方向を、ブレー ズ3aの溝方向即ち第2レンズアレイ6の各セルの長辺 或いは短辺方向ではなく、第1レンズアレイ4の各セル の長辺或いは短辺方向となるようにしても良い。また、 複屈折回折格子を用いる方法以外の偏光分離の方法を行 っても良い。

【0097】図19は、本実施形態における複屈折マイ クロレンズアレイと表示パネルとの関係を模式的に示す 図である。図16でも示したように、表示パネル16の 直前には、複屈折材料により構成される複屈折マイクロ レンズアレイ15が配置されている。そして、上記ダイ クロイックミラーによってRGBに色分解された光9 は、この複屈折マイクロレンズアレイ15によって、各 色毎に表示パネル16の隣合った同一の複数画素をそれ ぞれ照明する。本実施形態では同一の画案が2個隣合っ ており、それが各色毎に配置されている状態、即ちR クター2からの光9は、これも図示しない複屈折回折格 50 1, R2、G1. G2、B1. B2の様に配置されてい る。

【0098】ここでは光9を、角度をRGB毎に変えて複数画素(ここでは2画素)×3色の画素単位で複屈折マイクロレンズアレイ15の各マイクロレンズ15bに入射させ、それぞれ表示パネル16のR1.R2、G1,G2、B1,B2の画素に集光するようにしている。このように、同一の複数画素が隣合うように配置する事で、各マイクロレンズの焦点距離が長くなり、効率の良い構成が可能となる。尚、同図の複屈折マイクロレンズアレイ15及び表示パネル16の左右は、図示を省10略している。

【0099】図20は、複屈折マイクロレンズアレイの 材料構成を示す模式図である。本実施形態では、表示パネル16として反射型液晶表示パネルを用いているので、この場合、表示パネル16直前の複屈折マイクロレンズアレイ15には、表示パネル16へ入射する光9 (照明光)と表示パネル16から反射した光21 (投影光)との両方が通過する事となる。表示パネル16へ入射する光9は前述のように作用するが、反射した光21は、このままでは複屈折マイクロレンズアレイ15によ 20

【0100】これに対処するため、本実施形態では、複屈折マイクロレンズアレイ15を、等方性の光学材料と複屈折特性を持つ光学材料とで構成している。同図において、表示パネル16へ入射する光9は、或特定の偏光面、例えば紙面に垂直な偏光面を持ち、反射した光の内、映像の表示に有効な光21は偏光面が回転していて、例えば紙面に沿った偏光面を持つ。

り光線が乱され、画質が劣化する。

【0101】そこで、複屈折マイクロレンズアレイ15を構成する、マイクロレンズ15bより上側にある等方 30性の光学材料の屈折率をNとし、マイクロレンズ15bより下側にある複屈折材料の、光9の偏光面に対する屈折率をNe、光21の偏光面に対する屈折率をNoとする。このとき、N=Noとする事により、複屈折マイクロレンズアレイ15は、光9に対してはマイクロレンズアレイとして働き、光21に対しては単なる透明平板となる。これにより、反射型表示パネルを用いても、光21の画質を劣化させる事がなくなる。

【0102】但し、同図では、説明のために、光9が表*

*示パネル16に対して斜め方向に入射し、光21として 反対側の斜め方向へと反射する形で描いているが、実際 は光9,光21共、主な光軸は表示パネル16に対して 垂直である。尚、同図の複屈折マイクロレンズアレイ1 5及び表示パネル16の左右は、図示を省略している。 また、以上に述べてきた光源1から複屈折マイクロレン ズアレイ15までの構成を、照明光学系と呼ぶ。

22

【0103】図21は、投影光学系における画素シフトの原理を模式的に示す斜視図である。本実施形態では、上記表示パネル16は単板であるので、例えば解像度がXGA(1024画素×768画素)の表示を行うためには、RGB各色に対してそれぞれ画素が必要であるので、そのままでは1つの表示パネルでXGA画素の3倍の画素が必要となり、表示パネルが大きくなってコストもかかる。そこで、単板でありながら表示パネルの画素数をXGAと同じにして、スクリーンに表示する画素を高速でずらす事により、カラーのXGA表示が可能となる。

【0104】具体的には、同図の投影光学系17の一部のレンズを、像シフト用レンズ18として、矢印 α で示す如く光軸L b と垂直方向に高速で駆動する。このとき、表示パネル16からの投影光の内、代表的にBの光に注目すると、同図(a)においてスクリーン20上でB1、B2の列であった位置に、矢印 β で示すように同図(b)においてそれぞれG1、G2の列が来るようにし、更に矢印 γ で示すように同図(c)においてそれぞれR1、R2の列が来るようにする。そして、最後には矢印 δ で示すように同図(a)の状態に戻る。以上のように3つの状態を高速で繰り返す。また、各状態に応じて表示の内容も切り替えて制御を行い、シフトして時間的に重ね合わせた画像でカラー表示を行う。

【0105】像シフト用レンズ180駆動は、図16で述べたアクチュエータ19により、画素サイズと同オーダー、即ち 10μ mから数 10μ mの単位で行われる。アクチュエータとしては、例えばMC(ムービングコイル)やMM(ムービングマグネット)等が、高出力で高速駆動するのに適している。

【0106】上述した画素シフトの構成を例1として改めて示すと、以下のようになる。

R1R2G1G2B1B2・・・・・・ (1フレーム目)

· · · · R 1 R 2 G 1 G 2 B 1 B 2 · · · ·

......R1R2G1G2B1B2

R1R2G1G2B1B2・・・・・・ (2フレーム目)

【0107】本例ではスクリーン上で、表示パネルの同一色の複数画素ずつ画素シフトする機構により、1フレーム中に3段階でシフトを行い、次のフレームの初めに元へ戻るが、この構成では光源に強度ムラがあった場

合、同一色で別の場所の画素(例えばR1とR2)で明 るさの差が生じる。

【0108】これを防止するための画素シフトの構成を、例2として以下に示す。

R1R2G1G2B1B2・・・・・・・ (1フレーム目)

· · R 1 R 2 G 1 G 2 B 1 B 2 · · · · · · ·

· · · · R 1 R 2 G 1 G 2 B 1 B 2 · · · · ·

· · · · · · R 1 R 2 G 1 G 2 B 1 B 2 · · · · · · · · · · · · R 1 R 2 G 1 G 2 B 1 B 2 · · · · · · · · · · · · R 1 R 2 G 1 G 2 B 1 B 2

R1R2G1G2B1B2 · · · · · · · · · (2フレーム目)

【0109】本例ではスクリーン上で、表示パネルの同 一色で別の場所の画素が重なるように画素シフトする機 構により、1フレーム中に6段階でシフトを行い、次の フレームの初めに元へ戻る構成である。これにより明る さムラを抑える事ができるが、ここでは画素シフトの駆 * *動制御を頻繁に行う必要が生じる。

【0110】駆動制御に余裕を持たせたままで明るさム ラを防止するための画素シフトの構成を、例3として以 下に示す。

R1R2G1G2B1B2 · · · · · · ·

· · · · R 1 R 2 G 1 G 2 B 1 B 2 · · · ·

•••••R1R2G1G2B1B2

R1R2G1G2B1B2・・・・・・ (2フレーム目)

· · · · R1R2G1G2B1B2 · · · · · · · · · · · · R 1 R 2 G 1 G 2 B 1 B 2

R1R2G1G2B1B2 · · · · · · · · (3フレーム目)

【0111】本例ではスクリーン上で表示パネルの同一 色の複数画素ずつ画素シフトする機構により、1フレー ム中に3段階でシフトを行い、次のフレームの初めに、 表示パネルの同一色で別の場所の画素が重なる位置に戻 20 係については後述する。 り、同様に3段階でシフトを行って、更に次のフレーム の初めに、最初の位置に戻る構成である。尚、以上に説 明した画素シフトの構成では、同一色の画素が2個隣合 って並ぶ例を示したが、これに限定される訳では勿論な く、実際は数個隣合う構成も可能であり、画素シフトの 構成も様々な組み合わせが考えられる。

【0112】図24は、本発明の第4の実施形態の表示 光学装置を模式的に示す構成図である。各部の配置は本 来3次元的なものであるが、理解を助けるために、平面 状に記載している。同図において、1は光源であり、2 は光源1を取り囲むように配置されるリフレクターであ る。また、7はリフレクター2の光の射出口2aを覆う ように配置され、光源1及びリフレクター2からの光に 含まれる紫外線及び赤外線をカットするUVIRカット フィルターである。

【0113】UVIRカットフィルター7の後方(図の. 右方)には、第1レンズアレイ4、少し離れて第2レン ズアレイ6、その直後に重ね合わせレンズ8が配置され ている。尚、ここでは図示しないが、第1レンズアレイ 4は、格子状に組み合わされた各セルを有しており、第 40 ぞれ異なった角度の光軸LR, LG, LB(それぞれ破 2レンズアレイ6は、第1レンズアレイ4とは別の格子 状に組み合わされた各セルを有している。各セルの長辺 と短辺との長さの比は、後述する表示パネルの表示面の それと同じ、即ち相似形になっている。また、第2レン ズアレイ6と重ね合わせレンズ8との間には、後述する マスク板31が設けられている。

【0114】そして、第1レンズアレイ4は、複屈折回 折格子を有しており、第2レンズアレイ6の各セルの短 辺方向に、光源1及びリフレクター2からの光9の偏光 分離を行う。第1レンズアレイ4、第2レンズアレイ6

を通じて偏光変換が行われ、光源1及びリフレクター2 からの光9 (不図示) は特定の偏光に揃えられて出てく る。この構成を偏光変換装置と呼ぶ。これらの詳細な関

【0115】また、第2レンズアレイ6とその直後の重 ね合わせレンズ8により、後述する表示パネルに、第1 レンズアレイ4の各セルの像が重なり合うようにしてい る。尚、重ね合わせレンズ8は、第2レンズアレイ6と 一体に成形されていても良い。以上の第1レンズアレイ 4から重ね合わせレンズ8までを、インテグレータ光学 系」と呼び、光軸をしとする。この、重ね合わせレンズ 8の焦点位置にコンデンサーレンズ32が配置されてい る。或いは、より照明の効率をよくするために、重ね合 30 わせレンズ8とコンデンサーレンズ32の合成焦点位置 を表示パネルとしても良い。本件では説明しやすくする ために、前者の構成としている。

【0116】そして、重ね合わせレンズ8とコンデンサ ーレンズ32との間に、R(赤), G(緑), B(青) それぞれの波長領域の光を反射する色分解光学系として のダイクロイックミラーRm, Gm, Bmがそれぞれ異な った傾きで配置されている。そして、光軸しでUVIR カットフィルター7を透過してきた光9が、Rm, Gm, Bmそれぞれのダイクロイックミラーで反射され、それ 線, 実線, 点線で示す) で後方(図の下方) に配置され たコンデンサーレンズ3.2に到達するようにしている。 尚、ダイクロイックミラーBmは全反射ミラーでも良

【0117】コンデンサーレンズ32の後方(図の下 方)には、マイクロシリンダーレンズアレイ33が配置 されている。このマイクロシリンダーレンズアレイはマ イクロレンズアレイとしても良い。更にその後方には、 PBS (偏光ビームスプリッター) プリズム14が配置 50 されている。このPBSプリズム14は、S偏光を反射

して、P偏光を透過する性質を持つ、一方、光源1及び リフレクター2からの光9は、上述した偏光変換によっ て、PBSプリズム14に対してほぼS偏光に揃えられ て、光軸Laに沿って入射する。

25

【0118】そのため、PBSプリズム14によって、 光9はその殆どが反射され、図の左方の表示パネル16 に向かう。そして、上記ダイクロイックミラーによって 色分解された光9は、上記マイクロシリンダーレンズア レイ33によって、照明光として各色毎に表示パネル1 6の異なる画素を照明する。詳しくは後述する。この照 明により、表示パネル16全体は、R、G、Bの各色それぞれにより順にストライプ状に照明され、各色に照明 された画素は各色の情報表示を行う。以上説明した構成 を、照明光学装置の一例とする。

【0119】表示パネル16は反射型液晶表示パネルであり、強誘電液晶、高速TN型液晶等のON、OFF切換の応答性の良い素子が使用される。そして、ここに照明された光を、画素毎に表示情報に応じて偏光面を回転させたり(ON)、回転させなかったり(OFF)して反射する。このとき、OFFの反射光はPBSプリズム 2014に戻るが、S偏光のままであるので、ここで反射され、光源側へと戻される。

【0120】一方、ONの反射光は、P偏光に変換されているので、PBSプリズム14に戻ってここを透過し、光軸Lbに沿って投影光である光21として次の投影光学系17により、表示パネル16の表示情報が図示しないスクリーンに投影される。尚、光21は図示を省略している。以上説明した投影光学系及びスクリーンの構成を、投影光学装置の一例とする。

【0121】図25は、本発明の第5の実施形態の表示 光学装置を模式的に示す構成図である。各部の配置は本来3次元的なものであるが、理解を助けるために、平面 状に記載している。同図において、1は光源であり、2は光源1を取り囲むように配置されるリフレクターである。また、7はリフレクター2の光の射出口2aを覆うように配置され、光源1及びリフレクター2からの光に含まれる紫外線及び赤外線をカットするUVIRカットフィルターである。

【0122】UVIRカットフィルター7の後方(図の右方)には、第1レンズアレイ4、少し離れて第2レンズアレイ6、その直後に重ね合わせレンズ8が配置されている。尚、ここでは図示しないが、第1レンズアレイ4は、格子状に組み合わされた各セルを有しており、第2レンズアレイ6は、第1レンズアレイ4とは別の格子状に組み合わされた各セルを有している。各セルの長辺と短辺との長さの比は、後述する表示パネルの表示面のそれと同じ、即ち相似形になっている。また、第2レンズアレイ6と重ね合わせレンズ8との間には、後述するマスク板31が設けられている。

【0123】また、第2レンズアレイ6とその直後の重ね合わせレンズ8により、後述する表示パネルに、第1レンズアレイ4の各セルの像が重なり合うようにしている。尚、重ね合わせレンズ8は、第2レンズアレイ6と一体に成形されていても良い。以上の第1レンズアレイ4から重ね合わせレンズ8までを、インテグレータ光学系1と呼び、光軸をLとする。この、重ね合わせレンズ8の焦点位置にコンデンサーレンズ32が配置されている。

【0124】そして、重ね合わせレンズ8とコンデンサーレンズ32との間に、R(赤),G(緑),B(青) それぞれの波長領域の光を反射する色分解光学系としてのダイクロイックミラーRm,Gm,Bmがそれぞれ異なった傾きで配置されている。そして、光軸LでUVIRカットフィルター7を透過してきた光9が、Rm,Gm,Bmそれぞれのダイクロイックミラーで反射され、それぞれ異なった角度の光軸LR,LG,LB(それぞれ破線,実線,点線で示す)で後方(図の下方)に配置されたコンデンサーレンズ32に到達するようにしている。尚、ダイクロイックミラーBmは全反射ミラーでも良い。

【0125】コンデンサーレンズ320後方(図の下方)には、マイクロシリンダーレンズアレイ33が配置されている。このマイクロシリンダーレンズアレイはマイクロレンズアレイとしても良い。また、マイクロシリンダーレンズアレイ330後方には、TIRプリズム22は、それぞれ三角柱状をしたガラス等より成るプリズム226、226。の或面同士が向かい合った構成となっている。プリズム227 は、入射面227 は、入射面227 は、入射面228 は、入射面228 は、入射面228 に向かい合った全反射面228 と入射面228 に向かい合った全反射面228 と入射面228 にの間隔は、数228 にの間隔は、数228 にの間隔は、数228 にの間隔は、光源

1及びリフレクター 2からの光 9 は、まず、プリズム 2 2 b に対して、光軸 L a に沿って入射面 2 2 b a に入射する。そして、全反射面 2 2 b b に臨界角を超える入射角で入射する事によって、光 9 はその殆どが反射され、入射出面 2 2 b c より射出し、照明光として表示パネル 1 6 に向かう。以上説明した構成を、照明光学装置の一例とする。表示パネル 1 6 は D M D で構成されており、ここに照明された光 9 を、画素毎に表示情報に応じて O Nの状態のマイクロミラー或いは O F F の状態のマイクロミラーで反射する。このとき、O N の反射光は、入射出面 2 2 b c に入射してプリズム 2 2 b に戻る。

【0127】そして、全反射面22bbに臨界角以内の入射角で入射してここを透過し、更に入射面22aaに入射して、プリズム22aを透過して射出面22abよ 50 り射出し、光軸しbに沿って投影光である光21として

投影光学系24に到る。この投影光学系24により、表 示パネル16の表示情報が図示しないスクリーンに投影 される。尚、光21は図示を省略している。一方、OF Fの反射光は、プリズム22b, 22aを透過しても、 最終的に投影光学系24に到らない方向へと射出する。

【0128】以上説明した投影光学系及びスクリーンの 構成を、投影光学装置の一例とする。尚、表示パネル1 6としてDMDの代わりに強誘電液晶, 高速TN型液晶 等を使用する事もできるが、その場合は偏光板が別途必 要となる。具体的には、TIRプリズム22の照明光入 射側と投影光射出側とに、それぞれ偏光板を互いに偏光 面が光学的に直交するように配設するか、或いはTIR プリズム22と表示パネル16との間に偏光板を配置す る必要がある。

【0129】図26は、本発明の第4或いは第5の実施 形態の表示光学装置の主要部分を拡大して示す模式図で あり、同図(a)は全体図、同図(b)は上記インテグ レータ光学系部分の側面図である。図24, 図25での 説明と同様にして、光軸しに沿って入射してきた光9 は、インテグレータ光学系 I の第1レンズアレイ4に到 20 達する。第1レンズアレイ4の後方(図の下方)には、 少し離れて第2レンズアレイ6、その直後に重ね合わせ レンズ8が配置されている。第2レンズアレイ6と重ね 合わせレンズ8との間には、第2レンズアレイ6の各セ ルの開口幅を規制する開口部であるスリット31aを有 するマスク板31が設けられている。詳しくは後述す

【0130】第1レンズアレイ4は、格子状に組み合わ された各セル4aを有しており、第2レンズアレイ6 は、第1レンズアレイ4とは別の格子状に組み合わされ 30 た各セル6aを有している。これら各セルは、同図

(a) の左右方向を長辺方向としている。第1レンズア レイ4に到達した光9は、その個々のセル4a毎に、そ の後方に少し離れて配置された第2レンズアレイ6の個 々のセル6a上に結像する。

【0131】また、第1レンズアレイ4は、同図(b) に示すように、複屈折回折格子を有しており、第2レン ズアレイ6の各セルの短辺方向に、光9の偏光分離を行 う。ここでは第1レンズアレイ4、第2レンズアレイ6 れて出てくる。この偏光変換の原理は、上記図2 (b) で説明した内容と同じである。但し、このような偏光変 換装置は、DMD、TIRプリズムを使用する上記図2 5で示した第5の実施形態の構成においては不要であ る。

【0132】続いて、図26(a)に戻って説明する と、第2レンズアレイ6とその直後の重ね合わせレンズ 8により、後述する表示パネル16に、第1レンズアレ イ4の各セルの像が重なり合うようにしている。 重ね合 わせレンズ8から出た光9は、Rm、Gm、Bmそれぞれ

のダイクロイックミラーで反射され、RGBに色分解さ れてそれぞれ異なった角度の光軸LR、LG、LB (それ ぞれ破線、実線、点線で示す)で後方(図の右方)に配 置されたコンデンサーレンズ32に到達する。

28

【0133】そして、マイクロシリンダーレンズアレイ 33及び照明・投影分離光学系34を経て、このマイク ロシリンダーレンズアレイ33の各マイクロシリンダー レンズ33aの働きによって、各色毎に表示パネル16 を照明する。尚、マイクロシリンダーレンズ33aの代 わりに回折レンズとしても良い。また、照明・投影分離 光学系34とは、上記図24に示した第4の実施形態に おけるPBSプリズム14、或いは上記図25に示した 第5の実施形態におけるTIRプリズム22のように、 照明光と投影光の分離を行う光学系を意味している。

【0134】このようにして、照明・投影分離光学系の 直前 (照明側入射位置) にマイクロシリンダーレンズア レイを配置する事で、数十画素毎にRGB各色の領域と なる照明を行うが、更にマイクロシリンダーレンズアレ イ33を、図26或いは図24、図25の矢印Gwで示 すように、その表面に沿って1フレーム内に微細ピッチ で或いは連続的に駆動し、画素上の照明光を移動してい る。そして、これに連動した画素表示を行う事で、全画 面において良好なカラー表示を行う事ができる。

【0135】具体的には、図27に示すように、表示パ ネル16上にRGB各色でストライプ状の照明(以下、 単にストライプと呼ぶ)を行い、これを矢印Gwで示す 方向に、1フレームの時間を一周期として移動させる。 ここでのストライプ s のピッチは 1 ~ 2 m m であり、表 示パネル16の画素の大きさと比較すると粗いものとな っている。このようにして、各画素に対してそれぞれR GBの光が順次照明される構成となっている。

【0136】図28は、上述したマスク板31の構成を 模式的に示す図である。同図 (a) はマスク板31の概 略構成、及び第2レンズアレイ6との光軸上から見た位 置関係を示している。また、同図(b)は、照明光とし ての上記各ストライプの横断面方向より見た、表示パネ ル上の位置と光の強度との関係を示すグラフである。ま ず、同図 (a) において、第2レンズアレイ6は、各セ ル6aが格子状に配列されており、レンズアレイ全体が を通じて偏光変換が行われ、光9は特定の偏光に揃えら 40 略正方形となっている。具体的には、各セル6aがその 長辺方向に4個、短辺方向に6個配列されている。

> 【0137】但し、このような配列に限定されるもので はなく、各セル6 a は例えば長辺方向に4~8 個配列さ れ、短辺方向には、レンズアレイ全体として略正方形と なるように、長辺と短辺の長さの比に応じた個数だけそ れぞれ配列される。ここで、第2レンズアレイ6は、こ れに重ねて配置されたマスク板31により、そのスリッ ト31aの部分だけ開口している。即ち、この部分だけ 光が透過する状態である。具体的には、第2レンズアレ 50 イ6の各セル6 aの中央で、長辺方向に1/3の幅 a o

だけ開口した状態となっている。尚、スリットは、単に 孔が開いている状態でも良いし、この部分が透明となっ ている状態でも良い。

【0138】このような構成により、各セル上の光源像 Liの幅が規制され、結果として上記表示パネル上に照明される各ストライプの幅が規制されて、隣合うストライプ同士の干渉を計算上は防止する事ができる。しかしながら、上述のように1/3幅開口した状態では、実際は誤差や収差等の影響により、同図(b)に示すように、各ストライプの幅の規制が十分ではなく、隣合うストライプ同士、即ち点線で示すBのストライプと破線で示すRのストライプ、或いはRのストライプと実線で示すGのストライプとが、まだ部分的に干渉しており、画像の色純度低下の原因となる。

【0139】そこで、上記開口の幅を更に規制する。図29は、開口幅を小さくしたマスク板31の構成を模式的に示す図である。同図(a)はそのマスク板31の概略構成、及び第2レンズアレイ6との光軸上から見た位置関係を示している。また、同図(b)は、この構成における各ストライプの表示パネル上の位置と光の強度との関係を示すグラフである。

【0140】同図(a)において、マスク板31の中央寄りのスリット31aの開口幅をa1、周辺寄りのスリット31aの開口幅をa1、周辺寄りのスリット31aの開口幅をa2とすると、a1は例えば上記a000.7~0.95倍であり、a2はa1より更に小さい値となっている。つまり、スリット31aが周辺に近いほど、開口幅を小さくしている。これは、レンズアレイの各セルの内、周辺に近いものほどその各セル上の光源像しiは、収差の影響で楕円状に歪んで小さくなるので、この部分の開口幅を多めに規制する事により、照明30効率の悪化を抑制しつつ上記各ストライプの幅を効果的に規制し、各ストライプ同士の干渉を防止して、色純度を損なわないようにするものである。

【0141】このような構成により、同図(b)に示すように、各ストライプの幅が十分に規制され、隣合うストライプ同士、即ち点線で示すBのストライプと破線で示すRのストライプ、或いはRのストライプと実線で示すGのストライプとが、互いに干渉する事なく、しかも離れてしまう事もないので、照明効率も色純度も保たれる事となる。

【0142】さらに、照明効率と各ストライプの幅の規制とを更に効果的に両立させる構成として、濃度フィルターを用いる方法がある。これは、図30に示すように、マスク板31の各スリット31aの開口幅a0の周辺付近で、その周辺に近づくに従って透過率が低下して行くようにした構成である。これにより、照明効率を保ったまま各ストライプの幅を更に効果的に規制し、各ストライプ同士の干渉を防止して、色純度を損なわないようにする事ができる。

【O 1 4 3】また、他の構成として、スリットの開口幅 50 されて輪状を成している。これをマイクコシリンダーレ

を可変にする方法がある。これは、例えば図31に示すように、実線で示すマスク板31と破線で示すマスク板35とを重ね合わせ、各スリット31a,35aが重なりあった部分を実際のスリットとして使用するものである。この場合、各マスク板31,35は、同図のスリット開口幅方向である矢印Hwに沿って、互いに連動してそれぞれ逆方向に駆動される構成となっている。これにより、スリットの中心位置が第2レンズアレイ6の各セル6aに対してずれる事なく、その開口幅を調節する事ができる。

【0144】開口幅の調節は、装置外部の光の強さに従って行われる。つまり、本実施形態の表示光学装置を使って画像投影を行う際に、使用する部屋の明るさに応じてスリットの開口幅を変化させる。即ち、部屋が比較的明るいときは、投影画像も明るくして見やすくするために、スリットの開口幅を大きくし、逆に部屋が比較的暗いときは、投影画像の色純度を重視して画質を高めるために、スリットの開口幅を小さくする。或いは、装置の出荷前に標準的な開口幅となるように調整して固定しても良い。

【0145】マスク板の駆動については、外部の光の強さを装置に設けたセンサー(不図示)により検出し、それをフィードバックして図示しないモーター等により行う方法でも良いし、使用者が投影画像を見ながら手動で行う方法でも良い。尚、以上説明したようなマスク板を使う構成は、上述した第1,第2の実施形態においても、インテグレータ光学系と色分離を行うダイクロイックミラーとの配置を交替した上で、使用する事ができる。

(0146)ところで、上述したマイクロシリンダーレンズアレイ33の駆動方法について以下に述べる。図32は、マイクロシリンダーレンズアレイを往復駆動する例を模式的に示している。同図において、マイクロシリンダーレンズアレイ33は、光軸方向より見た状態で描かれている。マイクロシリンダーレンズアレイ33の、各マイクロシリンダーレンズ33aの長手方向に沿った側面33bの中央付近には、カム36が当接しており、反対側の側面33cは、例えばバネ37により付勢され、マイクロシリンダーレンズアレイ33をカム36に10押しつける状態となっている。

【0147】このとき、カム36が軸36a周りに回転すると、その偏心によりマイクロシリンダーレンズアレイ33が、マイクロシリンダーレンズ33aの配列の1ピッチpだけ矢印Gw方向に往復駆動される。これにより、ここでは図示しない表示パネル16の画素上の照明光を移動させる事ができる。

【0148】また、図33は、マイクロシリンダーレンズを連続駆動する例を斜視図で示している。ここでは多数のマイクロシリンダーレンズ38aがベルト状に連結されて輪状を成している。これをマイクコシリンダーレ

ンズ群38と呼ぶ。マイクロシリンダーレンズ群38 は、軸支された2個のプーリー39に連架されており、 そのプーリー39間にはPBSプリズム14が配設され ている。今、プーリー39が図示しないモーター等によ り各矢印方向に回転すると、マイクロシリンダーレンズ 群38が回転し、マイクロシリンダーレンズ38aがそ の配列方向即ち矢印Gwで示す方向に連続駆動される。

【0149】このとき、光9が矢印で示す光軸方向よりマイクロシリンダーレンズ群38に入射すると、マイクロシリンダーレンズ38aを経てPBSプリズム14に 10到達し、ここで反射されて下方の表示パネル16を照明する。ここでは表示パネル16上の照明光が連続的に移動する事となる。尚、同図のマイクロシリンダーレンズ、PBSプリズム、表示パネルの位置関係は、図24に示したものとは若干異なっている。

【0150】尚、特許請求の範囲で言う照明光学系は、 実施形態における照明光学装置に対応している。

[0151]

【発明の効果】以上説明したように、本発明によれば、 画素ピッチが細かい表示パネルにおいても、効率の良い 20 構成が可能な、高解像度の表示光学装置を提供する事が できる。

【0152】特に、照明光学系に光源像を規制する開口部を有するマスク板を備え、所定の配置構成とする事により、表示パネル上に照明されるRGB各ストライプの幅が規制されて、隣合うストライプ同士の干渉を防止する事ができる。

【図面の簡単な説明】

【図1】本発明の第1の実施形態の表示光学装置を模式 的に示す構成図。

【図2】第1の実施形態の表示光学装置の主要部分を拡大して示す模式図。

【図3】複屈折マイクロシリンダーレンズアレイの材料 構成を示す模式図。

【図4】画素上の照明光を移動する事によりカラー表示を行う原理の説明図(構成)。

【図5】 画素上の照明光を移動する事によりカラー表示を行う原理の説明図(動作)。

【図6】本発明の第2の実施形態の表示光学装置を模式的に示す構成図。

【図7】スクリーン上の投影光を移動する事によりカラー表示を行う原理の説明図(構成)。

【図8】スクリーン上の投影光を移動する事によりカラー表示を行う原理の説明図(動作)。

【図9】TIRプリズム付近の構成を模式的に示す斜視図(従来例)。

【図10】TIRプリズム付近の構成を模式的に示す斜 視図(第1の実施形態)。

【図11】 TIRプリズム付近の構成を模式的に示す斜 視図 (第2の実施形態)。 32 【図 1 2 】従来のTIRブリズム付近の構成を模式的に 示す図。

【図13】従来の構成における照明光と投影光の角度範囲を示す図。

【図14】第1の実施形態の構成における照明光と投影 光の角度範囲を示す図。

【図15】第2の実施形態の構成における照明光と投影 光の角度範囲を示す図。

【図16】本発明の第3の実施形態の表示光学装置を模式的に示す構成図。

【図17】複屈折回折格子と第1,第2レンズアレイとの関係を模式的に示す分解斜視図。

【図18】インテグレータが1段の場合の第1,第2レンズアレイの位置関係を模式的に示す正面図。

【図19】複屈折マイクロレンズアレイと表示パネルと の関係を模式的に示す図。

【図20】複屈折マイクロレンズアレイの材料構成を示す模式図。

【図21】投影光学系における画素シフトの原理を模式 0 的に示す斜視図。

【図22】従来の一例であるマイクロレンズアレイと表示パネルとの関係を模式的に示す図。

【図23】従来の他の例であるマイクロレンズアレイと 表示パネルとの関係を模式的に示す図。

【図24】本発明の第4の実施形態の表示光学装置を模式的に示す構成図。

【図25】本発明の第5の実施形態の表示光学装置を模式的に示す構成図。

【図26】本発明の第4或いは第5の実施形態の表示光 0 学装置の主要部分を拡大して示す模式図。

【図27】表示パネル上にRGB各色でストライプ状の 照明を行う様子を模式的に示す図。

【図28】マスク板の構成を模式的に示す図。

【図29】開口幅を小さくしたマスク板の構成を模式的 に示す図。

【図30】濃度フィルターを用いたマスク板の構成を模 式的に示す図。

【図31】スリットの開口幅を可変にしたマスク板の構成を模式的に示す図。

40 【図32】マイクロシリンダーレンズアレイを往復駆動 する例を示す模式図。

【図33】マイクロシリンダーレンズアレイを連続駆動 する例を示す斜視図。

【符号の説明】

- 1 光源
- 2 リフレクター
- 3 複屈折回折格子
- 4 第1レンズアレイ
- 6 第2レンズアレイ
- 50 7 UVIRカットフィルター

(18)

特開2001-91894

8 重ね合わせレンズ

14 PBSプリズム

15 複屈折マイクロレンズアレイ

33

16 表示パネル

17 投影光学系

18 像シフト用レンズ

19 アクチュエータ

22 TIRプリズム

23,32 コンデンサーレンズ

31,35 マスク板

33 マイクロシリンダーレンズアレイ

34 照明·投影分離光学系

 R_m , G_m , B_m $\forall 1000$

【図1】

【図3】

【図2】

[図21]

[図25]

[図30]

【図32】

【図26】

[図31]

【図28】

[図29]

【図33】

フロントページの続き

F ターム(参考) 2H091 FA02X FA07X FA14X FA21X FA29X FA41Z FD07 HA12 LA21 LA30 5G435 ÄA00 BB12 BB16 BB17 CC12 DD02 DD04 FF03 FF05 FF13 GG01 GG02 GG03 GG04 GG11 GG16 GG28 LL15

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

I THO THUE BLANK (USPTO)