Transposable Element AI Training Guide

Key Metrics to Monitor

1. Mean Fitness (Target: 0.7-0.9)

Mean fitness: 0.8250 ← GOOD (High baseline fitness)

Mean fitness: 0.7899 ← OK (Slight drop is normal early on)

- **Good**: Steady or increasing fitness, especially after stress events
- **Bad**: Continuous decline or stuck below 0.5
- What it means: How well the population recognizes antigens

2. Population Stress (0.0-1.0)

Population stress: 0.0000 ← Currently no stress (pre-mutation)

- Expected Pattern:
 - 0.0-0.3: Normal evolution
 - 0.3-0.7: Mild stress, increased transposition
 - 0.7-1.0: High stress, transposition cascade

3. Population Size

Population after selection: 175 → 305 → 531 ← GOOD (Healthy growth)

- **Good**: Controlled growth (100-5000)
- Bad: Explosion beyond max_population or crash to <50
- What it means: Diversity and adaptation capacity

Transposition Events to Watch

Good Patterns

1. Diverse Transposition Types

```
    Gene jumped ← Exploration
    Gene duplicated ← Creating variants
    Gene inverted ← Trying opposites
```

You want to see all types, not just one.

2. Position-Based Specialization

V genes: 0.0-0.3 (early position)
D genes: 0.3-0.6 (middle position)
J genes: 0.6-1.0 (late position)

Genes should mostly stay in their zones but occasionally explore.

3. Stress-Responsive Bursts

Generation 50: 2-3 transpositions ← Normal

VIRUS MUTATED!

Generation 51: 15-20 transpositions ← Good response!

Warning Signs

1. Excessive Deletions

- X Gene deleted (silenced)
- X Gene deleted (silenced)
- X Gene deleted (silenced) ← Too many!

Some deletion is normal, but >30% indicates problems.

2. No Transpositions During Stress

∠ VIRUS MUTATED!

Generation X: 0 transpositions ← BAD! System not responding.

3. Position Chaos

V gene at position 0.95 \leftarrow V genes shouldn't be this late J gene at position 0.05 \leftarrow J genes shouldn't be this early

Training Phases to Expect

Phase 1: Initial Adaptation (Gen 1-50)

- Fitness: May drop slightly as system explores
- Transpositions: Low rate (1-5 per generation)
- Population: Steady growth
- What's happening: Building baseline diversity

Phase 2: First Viral Mutation (Gen 50)

VIRUS MUTATED TO Alpha Variant! Sites: [5]

• **Fitness**: Should drop sharply (0.8 → 0.4-0.5)

• **Stress**: Spikes to 0.8-1.0

• **Transpositions**: Burst of activity (10-30 events)

Good sign: Fitness recovers within 10-20 generations

Phase 3: Subsequent Mutations

Each mutation should show:

- 1. Initial fitness drop (smaller each time)
- 2. Stress spike (may be lower)
- 3. Transposition burst (more targeted)
- 4. Faster recovery (5-10 generations)

Phase 4: Escape Variant (Gen 250+)

X VIRUS MUTATED TO Hypothetical Escape Variant! Sites: [1, 3, 5, 7, 9, 12, 15, 17, 18]

• **Success Indicator**: System maintains >0.6 fitness despite massive mutation

Key Performance Indicators

6 Adaptation Speed

python

Good: Fitness recovery in <20 generations
Bad: Fitness still low after 50 generations

o Transposition Efficiency

Good: Stress → Burst → Quick stabilization

Bad: Constant high transposition (thrashing)

o Diversity Maintenance

python

Good: 50-200 unique gene configurations

Bad: <10 variants (convergence) or >1000 (chaos)

odule Families

Look for emergence of gene families:

V12 → V12-copy1 → V12-copy1-mut3 ← Gene family tree

Optimization Targets

1. **Primary Goal**: Maintain fitness > 0.7 across all viral variants

2. **Secondary Goal**: Minimize time to recover from mutations

3. **Tertiary Goal**: Develop reusable gene modules

Live Monitoring Commands

Add these to your code for better insights:

python

After each generation

print(f"Active genes per cell: {np.mean([len([g for g in cell.genes if g.is_active]) for cell in center.population.values()]):.1f}" print(f"Unique gene families: {len(set([g.gene_type + str(g.variant_id) for cell in center.population.values() for g in cell.ge

Red Flags

1. **Fitness Collapse**: Never recovers above 0.5

2. **Population Crash**: <50 cells remaining

3. **Transposition Freeze**: No events during high stress

4. **Memory Explosion**: >20 genes per cell

5. Premature Convergence: All cells identical

Success Metrics Summary

Metric	Bad	ОК	Good	Excellent
Fitness Recovery Time	>50 gen	20-50 gen	10-20 gen	<10 gen
Population Size	<50 or >5000	50-100	100-1000	500-2000
Transposition Rate (normal)	0 or >10	5-10	1-5	2-4
Transposition Rate (stress)	<5 or >50	5-10	10-30	15-25
Gene Diversity	<10 types	10-30	30-100	50-150
Stress Response Time	>5 gen	2-5 gen	1-2 gen	Immediate

What Your Current Output Shows

Looking at your output:

Generation 1-4:

- ✓ Good fitness (0.79-0.82)
- Healthy population growth
- ☑ Diverse transposition types
- ⚠ No stress yet (waiting for virus)

You're in the **baseline building phase** - this looks perfectly normal! The system is:

- Exploring the solution space (jumps)
- Pruning ineffective genes (deletions)
- Starting to create variants (duplication)

Next milestone: Watch for the first viral mutation around generation 50. You should see stress spike and a transposition cascade.