Recuperação de Informação

Edleno Silva de Moura

O curso:

- Base teórica sobre a área (Modelos, Avaliação, Algoritmos e Estruturas de dados Importantes)
- Sistemas de BUSCA
- Bibliotecas Digitais
- Busca na Web

FOCO EM BUSCA

cross platform

cross platform

command prompt

chkdsk

control

Busca (linkedin, facebook, americanas)

tá rolando o aniversário Americanas com milhaaares de ofertas ;) eu queeero >

Netshoes (busca mulitmodal)

Busca no Instagram

Busca no OLX, Ifood,...

No Jusbrasil

Busca no Imposto de Renda

Busca em Máquinas de Busca

Na wikipedia

WikipediA

A enciclopédia livre

Português

1 013 000+ artigos

English

5 930 000+ articles

Español

1 545 000+ artículos

Deutsch

2 343 000+ Artikel

Français

2 139 000+ articles

日本語

1 168 000+ 記事

Русский

1 568 000+ статей

Italiano

1 552 000+ voci

中文

1 073 000+ 條目

Polski

1 359 000+ haseł

Até aqui no meu computador...

Pensando fora da caixa... (de busca)

- Quando faço um sistema de recomendação, ele envolve muitos conceitos ligados a RI.
- Quando tenho que classificar documentos, dominar bem os conceitos de RI pode ajudar
- Quando tenho que fazer um crawler, conceitos de RI podem ajudar

Pensando fora da caixa... (de busca)

- Sistemas de segurança para sites
- Detecção de plágio
- Identificação de SPAM
- Identificação de autoria de textos

RESUMO:

 Conhecimento útil para muitos problemas práticos do dia-a-dia ligados à computação Introdução: O que é RI ?

O que é RI?

Recuperação de informação é uma subárea da ciência da computação que trata da recuperação automática de informação (normalmente contida em documentos textuais).

Documentos

- Fazem o papel de registros de dados.
- Podem conter qualquer tipo de mídia (texto, imagem, som).
- Normalmente são compostos de textos em linguagem natural ou de informação textual associada a outros tipos de dados.

Exemplos

(https://rafaelluccasvsantana.jusbrasil.com.br/artigos/795241195/ decreto-10189-19-indulto-natalino-viola-principio...)

A Constituição Federal/1988 em seu artigo 84, XII, atribuiu como ato privativo do Presidente da República conceder o indulto, que nos termos do

artigo 107, II, do Código Penal, é causa de extinção da punibilidade.

Conforme leciona Giuseppe Maggiore: "Uma das mais antigas formas de extinção da pretensão punitiva é a indulgência do príncipe, que se expressa em três instituições: a anistia, o indulto e a graça. A indulgentia principis se justifica como uma medida equitativa enderecada a suavizar a aspereza da justiça (supplementum iustitiae), quando particulares circunstâncias políticas, econômicas e sociais, fariam esse rigor aberrante e iníquo. Desse modo, atua como um ótimo meio de pacificação social".

Outro exemplo:

https://presrepublica.jusbrasil.com.br/legislacao/100760/decreto-3800-01...

20 de abril de 2001

□Salvar - 0 comentários - Imprimir - Reportar

Publicado por Presidência da Republica (extraído pelo Jusbrasif) - 18 anos atrás

Ver artigo: número Ir

Regulamenta os arts. 40, 90 e 11 da Lei no 8.248, de 23 de outubro de 1991, e os arts. 80 e 11 da Lei no 10.176, de 11 de janeiro de 2001, que tratam do benefício fiscal concedida às empresas de desenvolvimento ou produção de bens e serviços de informática e automação, que investirem em atividades de pesquisa e desenvolvimento em tecnologia da informação, e dá outras providências.

(Revogado)

O VICE-PRESIDENTE DA REPÚBLICA

(Revogado)

O VICE-PRESIDENTE DA REPÚBLICA

(Revogado)

, no exercício do cargo de Presidente da República, usando da atribuição que lhe confere o art. 84, inciso IV, da Constituição, e tendo em vista o disposto no art. 12 da Lei no 10.176, de 11 de janeiro de 2001, DECRETA: (Revogado)

Art. 10 As empresas de desenvolvimento ou produção de bens e serviços de informática e automação, que investirem em atividades de pesquisa e desenvolvimento em tecnologia da informação, farão jus aos seguintes benefícios fiscais relativos ao Imposto sobre Produtos Industrializados - IPI incidentes sobre os bens de que trata o § 10 deste artigo, desde que atendidos os requisitos estabelecidos neste Decreto:

(Revogado)

 I - nas regiões de influência da Superintendência do Desenvolvimento da Amazônia - SUDAM, da

Outro exemplo no site jusbrasil.com.br

2º Grau

Tribunal de Contas da União TCU - REPRESENTAÇÃO (REPR) : RP 02920620170

Ementa

REPRESENTAÇÃO. POSSÍVEIS IRREGULARIDADES NA APLICAÇÃO DE RECURSOS DE PROGRAMAS PRIORITÁRIOS DECORRENTES DE CONTRAPARTIDA DE EMPRESAS QUE USUFRUEM DE BENEFÍCIOS

Mais exemplos (doc no ifood)

Fast Temaki - P10

★ 4.5 · Japonesa · 2,2 km

28-38 min • Fechado

Enjoy Mais Que Temaki

🛊 - 🔹 Japonesa 🔹 2,5 km

45-55 min • Fechado

Combo 20 hots e 2 temakis (10 hot philadélfia, 10 hot butterfly,1 temaki philadelfia,1 temaki butterfly)

10 hot philadélfia, 10 hot butterfly, 1 temaki philadelfia, 1 temaki butterfly

R\$ 60,00 R\$ 80,00

Documentos

- São as unidades de informação que buscamos:
- Anúncios num sites de anúncio
- Hotéis num site de hotéis
- Pratos e os restaurantes num site de alimentação
- Artefatos jurídicos num site para a área jurídica (lei, jurisprudência, artigos de advogados e etc...)

Recuperar Dados e Recuperar Informação

- Confusão entre recuperação de informação e recuperação de dados.
- Recuperação de Dados:
 - Tarefas precisas;
 - Sistemas não visam incorporar o significado do que está sendo buscado;
 - Respostas devem ser corretas;

Recuperar Dados e Recuperar Informação

- Recuperação de Informação:
 - Tarefas imprecisas;
 - Sistemas tentam modelar o significado do que está sendo buscado;
 - Objetivo é trazer as melhores respostas (normalmente não há o conceito de resposta correta);

Recuperar Dados e Recuperar Informação

Todo sistema de recuperação de informação é também um sistema de recuperação de dados, mas o contrário nem sempre é verdade.

Exemplos

- Recuperação de Dados:
 - Uma busca por documentos que contém a palavra Manaus;
- Recuperação de Informação:
 - Uma busca por bons documentos que falam sobre a cidade de Manaus;

Dúvidas?

Histórico

Histórico

- Sistemas de RI utilizando computadores surgiram na década de 60.
- Principal objetivo era automatizar o acesso a informação em bibliotecas.

Principais focos até final dos anos 80

- RI em catálogos de bibliotecas.
- RI em Jornais, revistas e enciclopédias eletrônicas.
- RI em bases de dados de empresas.

Anos 90 e Anos 2000

- Recuperação de Informação na Web:
 - Abundância de informação não estruturada;
 - Publicação sem controle central e diversidade;
 - Dificuldade na busca de informação específica;

A Web

- Google tem mais de 10 hexabytes.
- Web deve ter alguns trilhões de páginas (CHUTE GROSSEIRO, número muito difícil de estimar hoje em dia)
- Mais chutes: Google usa mais de 1 milhão de máquinas para sua máquina de busca!!
- OUTRO CHUTE: Brasil deve ter mais de 1 centena de bilhões
- Tendência de crescimento continua

2010 em diante

- Mundo vive uma expansão a conectividade entre pessoas.
- Plataformas mobile, dispositivos que interagem entre si, com pessoas e com o ambiente
- Muitos problemas de busca/classificação onde precisamos avaliar as distâncias entre objetos.

Novos serviços online baseados em informação

- OLX
- GETNINJAS
- IFOOD
- JUSBRASIL
- UBEREATS
- E-COMMERCE EM GERAL GANHA FORÇA E BUSCA É ESSENCIAL!

(muitas empresas no Brasil com oportunidades de emprego)

Amplo uso de machine learning (ML)

- Carros autônomos
- Deep Learning
- Atendentes virtuais e chatbots (Google, Apple e etc...)
- Máquinas substituindo motoristas, médicos e etc...?
- Pode-se usar bastante ML em RI
- Conceitos de RI podem ajudar a melhorar muitas soluções de ML

Dúvidas?

Métricas para avaliação de Sistemas de RI

Avaliação de Sistemas de Busca

- N conjunto de documentos relevantes identificados pelos especialistas
- R conjunto de documentos respondidos pelo sistema que foram examinados.

Precisão e Revocação

Precisão =
$$\frac{|N \cap R|}{|R|}$$

Revocação =
$$\frac{|N \cap R|}{|N|}$$

Curva de Precisão e Revocação

- Para facilitar a avaliação dos resultados é traçado um gráfico que mostra a evolução da precisão em função da revocação.
- Gráfico é conhecido como curva de precisão e revocação.

Exemplo

- Documentos relevantes: {1, 4, 8, 44, 72}.
- Um sistema recupera o vetor resultado: <8,22, 72, 3, 1, 2, 24, 6, 33, 45, 4, 48, 55, 32, 11,44>.
- O nível de revocação 20% é atingido quando encontramos o primeiro documento relevante (8), a precisão é de 1/1 = 100%.
- Para revocação de 40% a precisão é igual a 2/3 = 66%.

Curva de Precisão e Revocação

Precisão média

- Normalmente é interessante que se faça a avaliação do sistema utilizando-se uma média das precisões obtidas em várias consultas
- Pontos de precisão conhecidos são diferentes para cada consulta
 - Solução é criar uma forma de se ter valores conhecidos nos mesmos pontos em todas as consultas.

Precisão nos 11 pontos

- Utiliza-se um método de interpolação para se obter a precisão em 11 pontos de revocação (0%, 10%, 20%, ...,100%)
- Interpolação é feita tomando-se a precisão máxima conhecida entre o ponto atual e o próximo. Se não houver resultado, buscase os próximos pontos até que se tenha uma definição

Se não recupera todos os relevantes precisão cai a zero

Precisão também pode ser computada em função do número de documentos vistos

Neste caso também utiliza-se interpolação

Exercício

- Documentos relevantes: {1, 4, 8, 25,44,53, 72}.
- Um sistema recupera o vetor resultado: <8, 22, 72, 1, 3, 2, 25, 6, 33, 45, 4, 48, 55, 32, 11, 44>.
- Mostre a curva de precisão e revocação utililizando os 11 pontos padronizados

Calculando valores únicos

- Em alguns casos é interessante que se tenha um único valor de precisão para cada consulta
- Com este valor é possível comparar diretamente dois sistemas e determinar qual o melhor

Medidas de precisão escalares

- Precisão média nos relevantes encontrados
 - Tira-se a média das precisões nos pontos de revocação onde apareceram documentos relevantes (MAP não interpolado)
 - Há também o MAP Interpolado (média nos 11 pontos) (CAIU EM DESUSO!)

Exercício

Calcule o MAP para o exercício anterior

Medidas de precisão escalares

- Precisão@R
 - Calcula-se a precisão na R-ésima posição do ranking
 - Muito utilizada quando assume-se que usuário está interessado nos R primeiros.
 - Por exemplo, nas máquinas costuma-se assumir que usuário está interessado em respostas apenas entre os 10 primeiros itens

Medidas Escalares (Vorhees, SIGIR, 2004)

$$bpref10 = \frac{1}{R} \sum_{r=1}^{R} 1 - \frac{Irrelevant_{R}(r)}{R+10}$$

- R é o número de relevantes
- Irrelevant_R(r) é o número de documentos irelevantes acima de r, entre os R+10 documentos do topo (valor maximo é R+10.
- Falha quando número de relevantes é pequeno

• Ex:
$$1/7x$$
 ($(1-0/17)+(1-1/17)$)
 $(1-1/17)+(1-3/17)+(1-6/17)+$
 $(1-10/17)+0)=0.67$

Exercício

Cacule o Bpref-10 para o exercício anteriorl

Histograma de precisão

Pode-se montar um histograma com as diferenças entre dois sistemas em vários pontos de precisão-R

Resumos comparativos

- Pode-se ainda montar resumos comparativos sobre os sistemas que estão sendo experimentados
 - Exemplo: número de consultas usadas no experimento, número médio de docs recuperados por consulta, número médio de relevantes por consulta, precisão-10 de cada sistema e assim por diante.

Medidas alternativas

Medida F1(Média Harmônica)

$$F1(j) = \frac{2}{\frac{1}{R(j)} + \frac{1}{P(j)}}$$

Onde R(j) é a revocação em um dado ponto j e P(j) é a precisão neste ponto

A medida F é útil para combinar a precisão e a revocação em um único número

Medidas Alternativas

Medida F

$$F(j) = \frac{1 + b^2}{\frac{b^2}{R(j)} + \frac{1}{P(j)}}$$

- •Valores de b maiores que 1 indicam que o usuário está mais interessado na precisão
- •Valores menores que 1 indicam que usuário está mais interessado na revocação

Exercício

Calcule a medida F para o exercício anterior

MRR(Mean Reciprocal Ranking)

$$MRR(S,Q) = \frac{\sum_{q \in Q} \frac{1}{PosRel(S(q))}}{Q}$$

- Onde Q é um conjunto de consultas
- S é um sistema de ranking
- PosRel(R(q)) é a posição da primeira resposta relevante no ranking do sistema S para a consulta q
- #Q é o número de consultas avaliadas

Exercício

 Calcule o MRR para o exercício anterior

Métricas baseadas em Ganho Cumulativo (CG)

- Quando examinamos uma resposta de um sistema, fica claro que:
 - Alguns documentos relevantes atendem melhor às necessidades dos usuários que outros
 - Quanto mais longe do topo um documento relevante está, menor a sua utilidade na resposta
- Métricas baseadas em ganho cumulativo tentam incorporar estes dois fatos na avaliação

Ganho Cumulativo (CG)

 Documentos da resposta são substituídos pelos seus graus de relevância:

 Ganho cumulativo (CG) é igual a soma dos valores de ganho obtidos até cada posição:

 CG leva em consideração a relevância, mas não a posição

Calcule do CG para o exemplo abaixo ate o 60 documento

- Documentos relevantes: {1(3), 4(1), 8(2), 25(1),44(3), 53(3), 72(2)}.
- Um sistema recupera o vetor resultado: <8, 22, 72, 1, 3, 2, 25, 6, 33, 45, 4, 48, 55, 32, 11, 44>.
- Um sistema recupera o vetor resultado: <25, 22, 4, 3, 72, 2, 8, 6, 33, 45, 4, 48, 55, 32, 11, 44>.

Ganho Cumulativo Descontado (DCG)

- Inclui a noção de que documentos relevantes têm a utilidade reduzida na medida em que são apresentados mais longe do topo da resposta
- A proposta é incluir um fator de desconto no ganho de acordo com a posição na qual os documentos são apresentados
- Uma proposta é dividir pelo log da posição no ranking
- A base do logaritmo ajusta o fator de desconto e o log não é aplicado para a primeira posição do ranking

DCG

Usando log na base 2:

 Valores médios de DCG podem ser computados para avaliar o desempenho de um sistema e gráficos de DCG podem ser criados para facilitar a visualização dos resultados da avaliação

Calcule do DCG para o exemplo abaixo ate o 60 documento

- Documentos relevantes: {1(3), 4(1), 8(2), 25(1),44(3), 53(3), 72(2)}.
- Um sistema recupera o vetor resultado: <8, 22, 72, 1, 3, 2, 25, 6, 33, 45, 4, 48, 55, 32, 11, 44>.
- Um sistema recupera o vetor resultado: <25, 22, 4, 3, 72, 2, 8, 6, 33, 45, 4, 48, 55, 32, 11, 44>.

NDCG (Jarvelin et al, TOIS, 2002)

- Normalized Cumulative Discount Gain
- Ganho Cumulativo Descontado Normalizado
- Valor ótimo de DCG poderia ser obtido com sistema que coloca os documentos ordenados de forma decrescente por valor de relevância:
- <3,3,3,3,2,2,2,2,1,1,1,0,0,0,0>
- NDCG divide o DCG de cada sistema pelo DCG de um sistema ideal, obtendo valores entre 0 e 1 para cada posição do ranking.
- NDCG@K: NDCG obitdo na k-ésima posição do ranking.

Calcule do NDCG para o exemplo abaixo ate o 60 documento

- Documentos relevantes: {1(3), 4(1), 8(2), 25(1),44(3), 53(3), 72(2)}.
- Um sistema recupera o vetor resultado: <8, 22, 72, 1, 3, 2, 25, 6, 33, 45, 4, 48, 55, 32, 11, 44>.
- Um sistema recupera o vetor resultado: <25, 22, 4, 3, 72, 2, 8, 6, 33, 45, 4, 48, 55, 32, 11, 44>.

E depois de tirar a média

- 1 Pode-se usar testes estatísticos para verificar se a diferença entre as médias é estatisticamente significante
- 2 Pode-se calcular a variância em torno da média com algum intervalo de confiança: tipicamente 95% ou 99%, e verificar se as duas médias estão distantes o suficiente

Testes estatísticos

- Hipótese nula: Hipótese de que dois resultados comparados são iguais
- Hipótese alternativa: Há diferenças entre os dois resultados (bicaudal)
- Testes estatísticos servem para dizer se a hipótese nula está descartada com um certo grau de certeza (p-value), normalmente entre 95% e 99%

Testes estatísticos

- Se o teste de significância falha, isso não quer dizer que os dois sistemas produzem resultados iguais. Isso quer dizer que seu experimento não foi conclusivo!
- Pode-se ampliar número de amostras para tornar experimento mais conclusivo
- Diferença ser considerada estatisticamente significante não significa que diferença é necessariamente grande!!!!!

Testes estatísticos

- Tentam estimar se os resultados de comparação entre dois sistemas foi obtido ao acaso (por sorte) ou se há uma diferença consistente
- Podem ser aplicados sobre as diversas métricas, tais como MAP, bpref, NDCG@K...

Há críticas sobre estes testes...

 Alguns autores da área de estatística criticam o uso deste tipo de testes e sugerem o uso de intervalos de confiança ao invés de testes estatísticos

T-test

- Proposto em 1908
- Autor (William S. Gosset) usou um codinome (student) porque não podia ser identificado. Por isso, o teste é conhecido como "t-student test"
- Uso em RI:
- Utilizado para verificar se a hipótese "a média de valores de duas populações é igual" é válida ou não.

T-teste é paramétrico

- REQUISITOS:
- As duas amostras devem ter distribuição normal. Aplicar um teste de normalidade
- As duas amostras devem ter mesma variância. Aplicar um teste F de igualdade de variâncias.
- As duas amostras devem ser independentes.

Tipos de ttest

- Pareado e não pareado: quando queremos usar em RI são pareados(ou emparelhados), as amostras representam dois momentos distintos para as mesmas consultas (mesma população)
- Não pareados são testes em que as amostras são diferentes. Não costumamos aplicar em RI

Tipos de ttest

- Bicaudal ou unicaudal: Em RI queremos bicaudal (two-sided ou two-tails). Responde se há ou não diferenças entre duas médias.
- Unicaudal: responde se diferença é positiva ou negativa em relação a uma média. (não usado em RI)

T-test

 Média das diferenças sobre desvio padrão multiplicado pela raiz do número de amostras.

$$t = \frac{\sum |a_i - b_i|}{\sqrt{\frac{N(\sum (a_i - b_i)^2) - (\sum |a_i - b_i|)^2}{N - 1}}}$$

 Resultado obtido é comparado ao valor da tabela de teste t, com coluna dada pelo grau de certeza esperado e linha dada pelo número de elementos comparados menos o número de amostras (N -1)

ε n	.400	.250	.100	.050	.025	.010	.005	.001
1	.325	1,000	3.078	6.314	12.706	31.821	63.656	318.289
2	.289	.816	1.886	2.920	4.303	6.965	9.925	22.328
3	.277	.765	1.638	2.353	3.182	4.541	5.841	10.214
4	.271	.741	1.533	2.132	2.776	3.747	4.604	7.173
5	.267	.727	1.476	2.015	2.571	3.365	4.032	5.894
6	.265	.718	1.440	1.943	2.447	3.143	3.707	5.208
7	.263	.711	1.415	1.895	2.365	2.998	3.499	4.785
8	.262	.706	1.397	1.860	2.306	2.896	3.355	4.501
9	.261	.703	1.383	1.833	2.26 ²	2.821	3.250	4.297
10	.260	.700	1.372	1.812	2.228	2.764	3.169	4.144
11	260	607	1 262	1 706	2 201	2 71 9	2 106	4.025

Calcule o resultado do teste t para:

S1	S2	S1-S2	s1-s2 ^2
35	29	6	36
50	40	10	100
10	10	0	0
40	45	5	25
21	20	1	1
19	15	4	16
70	60	10	100
30	25	5	25
80	70	10	100

$$t = \frac{\sum |a_i - b_i|}{\sqrt{\frac{N(\sum (a_i - b_i)^2) - (\sum |a_i - b_i|)^2}{N - 1}}}$$

Wilcoxon

- Proposto por Frank Wilcoxon, 1945
- Não paramétrico (uso mais amplo que ttest mas menos conclusivo)
- Mesmas questões (pareado, não pareado)

Muito além das métricas...

Coleções de referência

 Métricas são importantes, mas antes de calculá-las, precisamos ter conjuntos de consultas e avaliações de relevância para tais conjuntos

Coleções de referência

- A forma como se cria coleções tem sido objeto de estudo desde o início da área
- IR lida com incerteza, é difícil julgar uma resposta como boa. Muitas vezes é difícil saber qual a melhor resposta entre dois sistemas

Algumas premissas básicas

- Ao criar uma coleção de referência:
 - Queremos medir a habilidade do sistema para recuperar os documentos relevantes para o usuário
 - 2. Habilidade de separar relevantes de não relevantes
 - 3. Facilidade para o usuário especificar o que deseja
 - 4. Descobrir se e quanto um sistema X é melhor ou não que um sistema Y.

- Seleção das consultas:
 - De onde serão tiradas as consultas ? Elas representam uma boa amostra do que é/ será buscado no sistema ?
 - Há algum tipo de classificação importante entre as consultas: difíceis, fáceis, atemporais, temporais,
 - Quantas consultas devemos ter ?

- Quem vai avaliar as respostas ?
 - Grau de imparcialidade dos avaliadores.
 - Representam os usuários que terão acesso ao sistema ? (entendem suas necessidades e como eles pensam ?)
 - São imparciais na sua avaliação ?
 - Entendem dos objetivos do sistema proposto?
 - Quantos vão avaliar cada resposta ?

- Que respostas vou mostrar para os avaliadores ?
 - Costuma-se mostrar a união do topo de um conjunto de sistemas. Depois toma-se a avaliação das respostas para obter-se o conjunto de relevantes
 - Problema: Se um novo sistema traz novas respostas relevantes muito diferentes das avaliadas, o mesmo vai ser prejudicado nas avaliações!

- Que respostas vou mostrar para os avaliadores ?
 - Se mostro um conjunto muito pequeno, avaliação pode ficar incopleta
 - Se mostro um conjunto muito grande, avaliação pode ficar muito cara

- Text Retrieval Conference: conferência anual que cria e atualiza diversas coleções de referência para disponibiliza-las para pesquisadores avaliarem seus sistemas
- Como funciona: você pode inscrever seu grupo de pesquisa em uma task (tarefa) e submeter sistemas que farão parte da seleção de resultados avaliados
- Durante a tarefa, cada grupo recebe adividades que deve obrigatoriamente executar

- Ao final do ano, são publicados trabalhos mostrando os resultados obtidos pelos melhores sistemas dentro os que participaram da task.
- Mais que isso, as avaliações de consultas são disponibilizadas na forma de coleções de referência

- Ao final do ano, são publicados trabalhos mostrando os resultados obtidos pelos melhores sistemas dentro os que participaram da task.
- Mais que isso, as avaliações de consultas são disponibilizadas na forma de coleções de referência

https://trec.nist.gov/pubs/call2020.html

View on GitHub

TREC-2019-Deep-Learning

Website for the TREC Deep Learning Track 2019

TREC 2019 Deep Learning Track Guidelines

Timetable

- August 7: Submissions close for document ranking task
- August 14: Submissions close for passage ranking task
- August 21: Optional Docker images due for the Replicable Runs Initiative
- November 13-15: TREC conference

Please see recent announcement about undated deadlines for submitting runs for the passage

Para discutir...

- Como comparar Google x Bing ??
- Problemas com métricas de avaliação
 - Subjetividade e contexto
 - Uso de logs x uso de consultas especificas
 - Níveis de relevância