

Epidemics & Errors: Finding the Silver Lining

Zak Ogi-Gittins

University of Warwick zak.gittins@warwick.ac.uk

September 27, 2021

Imperfect data collection may introduce systematic bias into parameter inference

During epidemics, the reproduction number, R_t , is an important parameter to infer

Data source: Cori et. al, AJE 2013

R_t inference may be improved with extra information about systematic inference bias

Talk Outline

• R_t : The average number of people someone infected at time t could expect to infect (should conditions remain unchanged).

- R_t : The average number of people someone infected at time t could expect to infect (should conditions remain unchanged).
- Generation interval (GI): The interval between the time when an individual is infected by an infector and the time when this infector was infected.

- R_t : The average number of people someone infected at time t could expect to infect (should conditions remain unchanged).
- Generation interval (GI): The interval between the time when an individual is infected by an infector and the time when this infector was infected.
- Incidence: The number of individuals who develop a specific disease during a particular time period (we assume days).

Mis-specification of generation intervals

Generation intervals (GIs) can change during the course of an epidemic

One example cause: Public health measure e.g. enforced isolation if tested positive for disease.

The mis-specification, Δ , is the difference between the recorded & true generation intervals

Certain mis-specification characteristics are significant in systematic R_t inference bias

Mis-specification of generation intervals

Concept for R_t inference

$$\begin{split} \mathbb{E}[I_{\mathrm{Mon}}|R_{\mathrm{Mon}} = 1] &= \mathbb{P}[\mathrm{GI} = 1] \cdot I_{\mathrm{Sun}} \\ &+ \mathbb{P}[\mathrm{GI} = 2] \cdot I_{\mathrm{Sat}} \\ &+ \mathbb{P}[\mathrm{GI} = 3] \cdot I_{\mathrm{Fri}} \end{split}$$

$$ilde{R}_{\mathrm{Mon}} = rac{I_{\mathrm{Mon}}}{\mathbb{E}[I_{\mathrm{Mon}}|R_{\mathrm{Mon}}=1]}$$

Concept for R_t inference

Comparing perfect & realistic inferences via synthetic data

Synthetic outbreaks can be generated using the true R_t and the true GI

Best-case and realistic R_t estimates may be inferred using the true and recorded generation intervals respectively.

The ratio of these two inferences can be made, $ilde{R}_t^o/ ilde{R}_t^a$

Systematic over/under estimation bias does not imply over/under R_t estimation

Comparing perfect & realistic inferences via synthetic data

Results

The consensus view is that R_t inference is more bias, the greater R_t is from 1

Our results show that this view is false: Estimation bias is more complex

Using a limited knowledge of issues in data collection, we can comment on what type of bias may be present

Latest R and growth rate for England

Latest R range for England

0.8 to 1.0

Latest growth rate range for England

-3% to -1%

per day

Source: https://www.gov.uk/guidance/the-r-value-and-growth-rate, 25/09/21

Results

The team!

Zak Ogi-Gittins

Robin Thompson

Ed Hill

Thank you for listening, any questions are welcome!

Incidence time-series can be synthetically generated using the same method reversed

The \tilde{X} notation indicates that X is either estimated or synthetically generated. $\stackrel{\text{main}}{}$

