Partial Differential Equation - HW 3

SungBin Park, 20150462

November 17, 2018

Problem 1

I'll imitate the proof in Evans.

Proof. Since each Γ_j is compact, $\partial\Omega$ is compact and we can choose finite points $x_i \in \partial\Omega$ with radius $r_i > 0$ and $\partial\Omega \subset \bigcup_{i=1}^n B\left(x_i, \frac{r_i}{2}\right)$. If x_i is not in end point of some Γ_j for all j, then we can use the argument in the Evans, so we only need to consider the case that x_i is in end point of Γ_j for some j.

Fix x^0 is in end point of Γ_j and assume that x^0 is also a end point of Γ_{j+1} . As Γ_j , Γ_{j+1} are C^1 , there exists $r_1, r_2 > 0$ and a C^1 function $\gamma_1, \gamma_2 : \mathbb{R} \to \mathbb{R}$ implicit function theorem.

Problem 2

- 1. $W_0^{1,p}(\Omega)$ is a vector space: For $f=0,\ f\in W_0^{1,p}(\Omega)$, so $W_0^{1,p}(\Omega)\neq \phi$. For $f_1,f_2\in W_0^{1,p}(\Omega)$, there exists f_1^j,f_2^j such that $(f_1^j),(f_2^j)\in C_c^\infty(\Omega)$ and $f_1^j\to f_1,\ f_2^j\to f_2$ in $W^{1,p}(U)$. Since union of two compact set in Ω is compact in $\Omega,\ f_1^j+f_2^j\in C_c^\infty(\Omega)$ and for large enough N satisfying $\left\|f_1^j-f_1\right\|_{W^{1,p}(\Omega)},\left\|f_2^j-f_2\right\|_{W^{1,p}(\Omega)}\leq \epsilon/2$ for $j>N,\ \left\|f_1^j+f_2^j-f_1-f_2\right\|_{W^{1,p}(\Omega)}\leq \left\|f_1^j-f_1\right\|_{W^{1,p}(\Omega)}+\left\|f_2^j-f_2\right\|_{W^{1,p}(\Omega)}\leq \epsilon$. Therefore, $f_1^j+f_2^j\to f_1+f_2$ and $f_1+f_2\in W^{1,p}(\Omega)$. Also, $\lambda f^j\to \lambda f$ in $W^{1,p}(\Omega)$ for scalar λ . Therefore, $W^{1,p}$ is vector space. (Other ...)
- 2. With the norm $\|\cdot\|_{W^{1,p}(\Omega)}$, $W_0^{1,p}(\Omega)$ is Banach space: Let f_j be a cauchy sequence in $W_0^{1,p}(\Omega)$. Since $W^{1,p}(\Omega)$ is Banach space, $f_j \to f$ in $W^{1,p}(\Omega)$. Since Ω is bounded and $\partial \Omega$ is C^1 , there exists bounded linear operator $T: W^{1,p}(\Omega) \to L^p(\partial \Omega)$ and $Tf_j \equiv 0$ on ∂U as $f_j \in W_0^{1,p}(\Omega)$. Then,

$$\lim_{j \to \infty} ||Tf_j - Tf||_{W^{1,p}(\Omega)} = \lim_{j \to \infty} ||T(f_j - f)||_{W^{1,p}(\Omega)} \le \lim_{j \to \infty} ||T||_{W^{1,p}(\Omega)} ||f_j - f||_{W^{1,p}(\Omega)} = 0$$

as $||T||_{W^{1,p}(\Omega)}$ is bounded. Therefore, $Tf_j \to Tf$ and $\lim_{j \to \infty} ||Tf_j||_{W^{1,p}(\Omega)} = ||Tf||_{W^{1,p}(\Omega)} = 0$. As a result, $f \in W_0^{1,p}(\Omega)$ implying Cauchy sequence in $W_0^{1,p}(\Omega)$ converges.

Therefore, $W_0^{1,p}(\Omega)$ is Banach space.

Problem 3

For $k \in \mathbb{N}$ and $\alpha \in (0, 1]$,

$$C^{k,p}(\bar{\Omega}) := \{ u \in C^k(\bar{\Omega}) : ||u||_{C^{k,\alpha}(\bar{\Omega})} < \infty \}$$

(a) Clearly, $0 \in C^{k,p}(\bar{\Omega})$. For $f_1, f_2 \in C^{k,p}(\bar{\Omega})$,

Problem 4