

NÚMEROS COMPLEJOS

/igilada Mineducación

Operaciones aritméticas con números complejos Raíces cuadradas de números negativos Soluciones complejas de ecuaciones cuadráticas

DEFINICIÓN DE NÚMEROS COMPLEJOS

Un número complejo es una expresión de la forma

$$a + bi$$

donde a y b son números reales y $i^2 = -1$. La **parte real** de este número complejo es a y la **parte imaginaria** es b. Dos números complejos son **iguales** si y sólo si sus partes reales son iguales y sus partes imaginarias son iguales.

Observe que las partes reales e imaginarias de un número complejo son números reales.

EJEMPLO 1 Números complejos

Fundada en 1936

Los siguientes son ejemplos de números complejos.

3 + 4i Parte real 3, parte imaginaria 4

 $\frac{1}{2} - \frac{2}{3}i$ Parte real $\frac{1}{2}$, parte imaginaria $-\frac{2}{3}$

6*i* Parte real 0, parte imaginaria 6

-7 Parte real -7, parte imaginaria 0

Un número tal como 6*i*, que tiene parte real 0, se llama **número imaginario puro**. Un número real como -7 puede considerarse como número complejo con parte imaginaria 0.

Fundada en 1936

En el sistema de números complejos, toda ecuación cuadrática tiene soluciones. Los números
$$2i$$
 y $-2i$ son soluciones de $x^2 = -4$ porque

$$(2i)^2 = 2^2i^2 = 4(-1) = -4$$
 y $(-2i)^2 = (-2)^2i^2 = 4(-1) = -4$

Aun cuando usamos el término *imaginario* en este contexto, los números imaginarios no deben considerarse como menos "reales" (en el sentido más bien ordinario que matemático de la palabra) que números negativos o números irracionales. Todos los números (excepto posiblemente los enteros positivos) son creaciones de la mente humana —los números -1 y $\sqrt{2}$ así como el número i. Estudiamos números complejos porque completan, en una forma útil y elegante, nuestro estudio de las soluciones de ecuaciones. De hecho, los números imaginarios son útiles no sólo en álgebra y matemáticas, sino también en las otras ciencias. Para dar sólo un ejemplo, en teoría eléctrica la *reactancia* de un circuito es una cantidad cuya medida es un número imaginario.

5-14 ■ Encuentre las partes real e imaginaria del número complejo.

$$5.5 - 7i$$

7.
$$\frac{-2-5i}{2}$$

11.
$$-\frac{2}{3}$$

13.
$$\sqrt{3} + \sqrt{-4}$$

6.
$$-6 + 4i$$

8.
$$\frac{4 + 7i}{2}$$

10.
$$-\frac{1}{2}$$

12.
$$i\sqrt{3}$$

14.
$$2 - \sqrt{-5}$$

Operaciones aritméticas con números complejos

Universidad Pontificia Bolivariana

Fundada en 1936

Los números complejos se suman, restan, multiplican y dividen exactamente igual que con cualquier número de la forma $a + b\sqrt{c}$. La única diferencia que necesitamos recordar es que $i^2 = -1$. Entonces, los siguientes cálculos son válidos.

$$(a + bi)(c + di) = ac + (ad + bc)i + bdi^2$$
 Multiplique y reúna términos semejantes

$$= ac + (ad + bc)i + bd(-1)$$
 $i^2 = -1$

$$= (ac - bd) + (ad + bc)i$$
 Combine partes reales e imaginarias

Por lo tanto definimos la suma, diferencia y producto de números complejos como sigue.

Formación integral para la transformación social y humana

SUMAR, RESTAR Y MULTIPLICAR NÚMEROS COMPLEJOS

Definición Descripción

Suma

(a + bi) + (c + di) = (a + c) + (b + d)i Para sumar números complejos, sumamos las partes reales y las partes imaginarias.

Resta

$$(a + bi) - (c + di) = (a - c) + (b - d)i$$
 Para restar números complejos, restamos las partes reales y las partes imaginarias.

Multiplicación

$$(a + bi) \cdot (c + di) = (ac - bd) + (ad + bc)i$$
 Multiplicamos números complejos como binomios, usando $i^2 = -1$.

EJEMPLO 2 | Sumar, restar y multiplicar números complejos

Exprese lo siguiente en la forma a + bi.

(a)
$$(3 + 5i) + (4 - 2i)$$

(b)
$$(3 + 5i) - (4 - 2i)$$

(c)
$$(3 + 5i)(4 - 2i)$$

(d)
$$i^{23}$$

SOLUCIÓN

(a) De acuerdo con la definición, sumamos las partes reales y sumamos las partes imaginarias.

$$(3+5i)+(4-2i)=(3+4)+(5-2)i=7+3i$$

(b)
$$(3+5i)-(4-2i)=(3-4)+[5-(-2)]i=-1+7i$$

(c)
$$(3+5i)(4-2i) = [3\cdot 4-5(-2)] + [3(-2)+5\cdot 4]i = 22+14i$$

(d)
$$i^{23} = i^{22+1} = (i^2)^{11}i = (-1)^{11}i = (-1)i = -i$$

Evalúe la expresión y escriba el resultado en la forma a + bi.

1.
$$\left(1+\frac{4}{7}i\right)+\left(-\frac{2}{3}+9i\right)$$

2.
$$(2+3i)(4+5i)$$

3.
$$\left(1+\frac{4}{7}i\right)\left(-\frac{2}{3}+9i\right)$$

$$4. \quad 3i\left(8-\frac{1}{3}i\right)$$

5.
$$(-1+i)(2-i)$$

6.
$$\left(\frac{2}{3}-2i\right)\left(3+\frac{1}{2}i\right)$$

7.
$$2i(4+5i)$$

La división de números complejos es muy semejante a racionalizar el denominador de una expresión radical, que consideramos en la Sección 1.4. Para el número complejo z = a + bi definimos que su **conjugado complejo** es $\overline{z} = a - bi$. Observe que

Fundada en 1936

$$z \cdot \overline{z} = (a + bi)(a - bi) = a^2 + b^2$$

De modo que el producto de un número complejo y su conjugado es siempre un número real no negativo. Usamos esta propiedad para dividir números complejos.

Conjugados complejos

Conjugado
3 - 2i
1 + i
-4i
5

DIVISIÓN DE NÚMEROS COMPLEJOS

Para simplificar el cociente $\frac{a+bi}{c+di}$, multiplicamos el numerador y el denominador

Universidad Pontificia Bolivariana

Fundada en 1936

por el complejo conjugado del denominador:

$$\frac{a+bi}{c+di} = \left(\frac{a+bi}{c+di}\right) \left(\frac{c-di}{c-di}\right) = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2}$$

Más que memorizar toda esta fórmula, es más fácil recordar el primer paso y luego multiplicar el numerador y el denominador como de costumbre.

Para hacer la división de dos números complejos Z y W, primero se multiplica Z por el conjugado de W y éste resultado se divide entre el módulo al cuadrado de W, el cual es un número real.

Si hacemos
$$Z=a+bi$$
 y $W=c+di$, tendremos
$$\frac{Z}{W}=\frac{(ac+bd)+(bc-ad)i}{a^2+b^2}$$

EJEMPLO 3 Dividir números complejos

Exprese lo siguiente en la forma a + bi.

(a)
$$\frac{3+5i}{1-2i}$$

(b)
$$\frac{7+3i}{4i}$$

SOLUCIÓN Multiplicamos numerador y denominador por el complejo conjugado del denominador para hacer que el nuevo denominador sea un número real.

Fundada en 1936

(a) El complejo conjugado de 1 - 2i es $\overline{1 - 2i} = 1 + 2i$.

$$\frac{3+5i}{1-2i} = \left(\frac{3+5i}{1-2i}\right) \left(\frac{1+2i}{1+2i}\right) = \frac{-7+11i}{5} = -\frac{7}{5} + \frac{11}{5}i$$

(b) El complejo conjugado de 4i es -4i. Por lo tanto,

$$\frac{7+3i}{4i} = \left(\frac{7+3i}{4i}\right)\left(\frac{-4i}{-4i}\right) = \frac{12-28i}{16} = \frac{3}{4} - \frac{7}{4}i$$

Evalúe la expresión y escriba el resultado en la forma a + bi.

1.
$$\frac{2-3i}{5+2i}$$

$$\frac{1+i}{1-i}$$

3.
$$\frac{5-3i}{3+4i}$$

$$\frac{4}{7+6i}$$

5.
$$\frac{1-3i}{-2-2i}$$

Ejercicios

1. Sean los números complejos $Z_1=1+2i,\ Z_2=5+3i$ y $Z_3=4+i$. Efectuar las siguientes operaciones

Fundada en 1936

a)
$$Z_1 \cdot Z_2$$

b)
$$Z_2 \cdot \overline{Z_3}$$

c)
$$Z_1 \cdot Z_2 \cdot Z_3$$

d)
$$Z_1/Z_2$$

d)
$$(Z_1 + Z_2)/(Z_3 - Z_2)$$

e)
$$5Z_2 - 6Z_3$$

2. Calcular

a)
$$(3+2i)^2-(4+2i)$$

b)
$$[(5+2i)+(4-i)]/(6+5i)$$

c)
$$(5+2i)+6$$

$$d(6+2i)(1-5i)/(7+4i)^2$$

$$e)5(1-i)+6(7+1/2i)$$

f)
$$(-3-i)+(4-8i)[(5+3i)-(6+7i)]$$

g)
$$(5+4i)^2-(1-5i)^2$$

h)
$$5(\overline{(3+2i)} + (3+2i)(1+5i)$$

Raíces cuadradas de números negativos

Así como todo número real positivo r tiene dos raíces cuadradas (\sqrt{r} y $-\sqrt{r}$), todo número negativo también tiene dos raíces cuadradas. Si -r es un número negativo, entonces sus raíces cuadradas son $\pm i \sqrt{r}$, porque $(i \sqrt{r})^2 = i^2 r = -r$ y $(-i \sqrt{r})^2 = (-1)^2 i^2 r = -r$.

Fundada en 1931

RAÍCES CUADRADAS DE NÚMEROS NEGATIVOS

Si -r es negativo, entonces la **raíz cuadrada principal** de -r es

$$\sqrt{-r} = i\sqrt{r}$$

Las dos raíces cuadradas de -r son $i\sqrt{r}$ y $-i\sqrt{r}$.

Por lo general escribimos $i\sqrt{b}$ en lugar de $\sqrt{b}i$ para evitar confusión con $\sqrt{b}i$

EJEMPLO 4 Raíces cuadradas de números negativos

(a)
$$\sqrt{-1} = i\sqrt{1} = i$$

(a)
$$\sqrt{-1} = i\sqrt{1} = i$$
 (b) $\sqrt{-16} = i\sqrt{16} = 4i$ (c) $\sqrt{-3} = i\sqrt{3}$

(c)
$$\sqrt{-3} = i\sqrt{3}$$

Debe tenerse especial cuidado al realizar cálculos que comprendan raíces cuadradas de números negativos. Aun cuando $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$ cuando a y b son positivas, esto no es verdadero cuando ambas son negativas. Por ejemplo,

Fundada en 1936

$$\sqrt{-2} \cdot \sqrt{-3} = i\sqrt{2} \cdot i\sqrt{3} = i^2\sqrt{6} = -\sqrt{6}$$
pero
$$\sqrt{(-2)(-3)} = \sqrt{6}$$
entonces
$$\sqrt{-2} \cdot \sqrt{-3} \neq \sqrt{(-2)(-3)}$$

Al completar radicales de números negativos, expréselas primero en la forma $i\sqrt{r}$ (donde r > 0) para evitar posibles errores de este tipo.

EJEMPLO 5 Usar raíces cuadradas de números negativos

Evalúe $(\sqrt{12} - \sqrt{-3})(3 + \sqrt{-4})$ y expréselos en la forma a + bi.

SOLUCIÓN

$$(\sqrt{12} - \sqrt{-3})(3 + \sqrt{-4}) = (\sqrt{12} - i\sqrt{3})(3 + i\sqrt{4})$$

$$= (2\sqrt{3} - i\sqrt{3})(3 + 2i)$$

$$= (6\sqrt{3} + 2\sqrt{3}) + i(2 \cdot 2\sqrt{3} - 3\sqrt{3})$$

$$= 8\sqrt{3} + i\sqrt{3}$$

▼ Soluciones complejas de ecuaciones cuadráticas

Fundada en 1936

Ya hemos visto que si $a \ne 0$, entonces las soluciones de la ecuación cuadrática $ax^2 + bx + c = 0$ son

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Si $b^2 - 4ac < 0$, entonces la ecuación no tiene solución real. Pero en el sistema de números complejos, esta ecuación siempre tendrá soluciones porque los números negativos tienen raíces cuadradas en la situación expandida.

EJEMPLO 6 | Ecuaciones cuadráticas con soluciones complejas

Resuelva cada una de las ecuaciones siguientes.

(a)
$$x^2 + 9 = 0$$

(a)
$$x^2 + 9 = 0$$
 (b) $x^2 + 4x + 5 = 0$

SOLUCIÓN

(a) La ecuación $x^2 + 9 = 0$ significa $x^2 = -9$, y entonces

$$x = \pm \sqrt{-9} = \pm i\sqrt{9} = \pm 3i$$

Las soluciones son por tanto 3i y - 3i.

$$x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 5}}{2}$$

$$= \frac{-4 \pm \sqrt{-4}}{2}$$

$$= \frac{-4 \pm 2i}{2} = \frac{2(-2 \pm i)}{2} = -2 \pm i$$

Entonces las soluciones son -2 + i y -2 - i.

Vemos del Ejemplo 6 que si una ecuación cuadrática con coeficientes reales tiene soluciones complejos, entonces estas soluciones son complejos conjugados entre sí. Por lo tanto, si a + bi es una solución, entonces a - bi también es una solución.

EJEMPLO 7 Complejos conjugados como soluciones de una cuadrática

Demuestre que las soluciones de la ecuaciones

$$4x^2 - 24x + 37 = 0$$

son conjugados complejos entre sí.

SOLUCIÓN

Usamos la Fórmula Cuadrática para obtener

$$x = \frac{24 \pm \sqrt{(24)^2 - 4(4)(37)}}{2(4)}$$
$$= \frac{24 \pm \sqrt{-16}}{8} = \frac{24 \pm 4i}{8} = 3 \pm \frac{1}{2}i$$

Fundada en 1936

Por lo tanto, las soluciones son $3 + \frac{1}{2}i$ y $3 - \frac{1}{2}i$, y éstos son complejos conjugados.

47-56 ■ Evalúe la expresión radical y exprese el resultado en la

forma a + bi.

47.
$$\sqrt{-25}$$

48.
$$\sqrt{\frac{-9}{4}}$$

.51.
$$(3 - \sqrt{-5})(1 + \sqrt{-1})$$

48.
$$\sqrt{\frac{-9}{4}}$$
 51. $(3 - \sqrt{-5})(1 + \sqrt{-1})$ 52. $(\sqrt{3} - \sqrt{-4})(\sqrt{6} - \sqrt{-8})$

49.
$$\sqrt{-3}\sqrt{-3}$$

49.
$$\sqrt{-3}\sqrt{-12}$$
 50. $\sqrt{\frac{1}{3}}\sqrt{-27}$

$$\frac{2 + \sqrt{-8}}{1 + \sqrt{-2}}$$

$$54. \ \frac{1 - \sqrt{-1}}{1 + \sqrt{-1}}$$

57-72 ■ Encuentre todas las soluciones de la ecuación y expréselas en la forma a + bi.

57.
$$x^2 + 49 = 0$$

58.
$$9x^2 + 4 = 0$$

59.
$$x^2 - 4x + 5 = 0$$

60.
$$x^2 + 2x + 2 = 0$$

61.
$$x^2 + 2x + 5 = 0$$

62.
$$x^2 - 6x + 10 = 0$$

63.
$$x^2 + x + 1 = 0$$

64.
$$x^2 - 3x + 3 = 0$$

.65.
$$2x^2 - 2x + 1 = 0$$

66.
$$2x^2 + 3 = 2x$$

Representación de números complejos

Ahora que sabemos trabajar con los números complejos y las operaciones básicas de suma, resta, multiplicación y división, vamos a introducirnos en la representación de dichos números en el plano complejo.

Para representar gráficamente un número complejo, debemos dibujarlos en el plano complejo. Éste está formado por un eje real y un eje imaginario. Sobre el eje real representaremos la parte real del número complejo, mientras que en el eje imaginario representaremos la parte imaginaria. Dichos ejes los dibujaremos perpendiculares y secantes en el cero, que tiene parte real e imaginaria nula.

Diagrama de Argand

Un número complejo z en forma binómica se representará entonces en un plano complejo como el anterior de la siguiente forma:

Tenemos el complejo z=a+bi donde:

- •a es cualquier número real, y se le llama parte real de z.
- •b es cualquier número real, y se le llama la parte imaginaria de z.

Así, para representar un z=a+bi se dibuja en el plano el vector asociado a z que es el vector con origen (0,0) y extremo el punto (a,b).

Es decir, se toma la parte real del complejo y se dibuja en el eje real. Se toma la parte imaginaria y se dibuja en el eje imaginario. Se trazan paralelas a los ejes que pasen por cada uno de los puntos marcados y la intersección de dichas paralelas es el número que queríamos representar.

EL PLANO COMPLEJO

Diagrama de Argand

De acuerdo a la disposición de los ejes y el segmento dado, se ha formado un triángulo rectángulo, con catetos a y b, e hipotenusa dada por c. Usando el Teorema de Pitágoras, se demuestra que la longitud de este segmento c, es igual a $\sqrt{a^2 + b^2}$ y por lo tanto, igual al módulo del complejo Z. Esto es

$$|Z| = \sqrt{a^2 + b^2}$$

Usando conocimientos de trigonometría en el triángulo anterior, se demuestran las relaciones

$$\begin{aligned} a &= |Z| cos \theta \\ b &= |Z| sen \theta \end{aligned}$$

$$b = |Z| sen\theta$$

$$Z = |Z|(\cos\theta + i \ sen\theta)$$

Recíprocamente, si se conocen las coordenadas cartesianas de Z=a+bi, entonces |Z| y θ se calculan de acuerdo a las fórmulas

$$|Z| = \sqrt{a^2 + b^2}$$
$$\theta = \arctan \frac{b}{a}$$

llamadas Fórmulas de cambio de coordenadas cartesianas a polares.

Forma exponencial

Axioma de euler:
$$e^{i\theta} = \cos\theta + i \sin\theta$$

 $Z = |Z| e^{i\theta}$

Ejercicios.

- 1. Representar gráficamente en el plano complejo los siguientes números
 - a) $Z = 2(\cos 60^{\circ} + i \ \sin 60^{\circ})$
 - b) $Z = 1/5(\cos 45^{\circ} + i \ \sin 45^{\circ})$
 - c) $Z = 16(\cos 120^{\circ} + i \ sen 120^{\circ})$
 - d) $Z = 7(\cos 100^{\circ} + i \ \sin 100^{\circ})$
 - e) $Z = 4(\cos 400^{\circ} + i \ sen 400^{\circ})$
 - f) $Z = 6(\cos 312^{\circ} + i \sin 312^{\circ})$
 - g) $Z = (1 + \sqrt{2})(\cos 60^{\circ} + i \ sen 60^{\circ})$
- 2. Expresar los siguientes números complejos en forma polar
 - a) Z = 3 + 4i

 - e) Z = 1 i
 - f) $Z = \sqrt{3} + i$
 - g) Z = (6+i)(2-i)
 - h) Z = -7 7i
 - i) Z = 5

REFERENCIA

Stewart, J., Precálculo Matemáticas para el Cálculo, Cengage Learning, séptima edición.

Referencia en línea

http://www.ebooks7-24.com.consultaremota.upb.edu.co/stage.aspx?il

