Esercizi sugli aspetti computazionali della Trasformata Discreta di Fourier

Al fine di invogliare gli studenti a esercitarsi con il materiale visto a lezione, i seguenti esercizi sono proposti senza soluzioni.

Exercise 1.1 Descrivere e analizzare un algoritmo per moltiplicare due polinomi di grado limitato da m e n (con $m \ll n$) in tempo $O(n \log m)$. (Suggerimento: Si determini una scomposizione del polinomio di limite di grado maggiore in polinomi di grado limitato da m moltiplicati per una potenza dell'indeterminata.)

The correctness of UNEVEN_LIN_CONV immediately follows from the above discussion. As for its running time, we have that the n/m calls to LIN_CONV account for a total of $\Theta((n/m)m\log m) = \Theta(n\log m)$ arithmetic operations between complex numbers, while the additions needed to obtain the final coefficients add a total of $(n/m)(2m-1) = \Theta(n)$ scalar sums, for a total time $T(m,n) = \Theta(n\log m)$.

- Exercise 1.2 Si consideri l'operazione di convoluzione lineare $u \star x$, con entrambe le sequenze di lunghezza n e con u = (1, 1, ..., 1). Si sviluppi un algoritmo iterativo per eseguire tale operazione in tempo O(n). (Suggerimento: Si determini una ricorrenza sulle componenti della convoluzione.)
- **Exercise 1.3** Siano k e n potenze di due, con $1 \le k \le n$. Un vettore $\boldsymbol{x} = (x_0, x_1, \dots, x_{n-1})$ si dice (n, k)-padded se $x_i = 0$ per $k \le i \le n-1$.
- **Punto 1.** Si fornisca lo pseudocodice e si provi la correttezza di un algoritmo PADDED_FFT(x, k), ottenuto modificando l'algoritmo ricorsivo FFT visto in classe, per il caso di vettori (n, k)-padded. (Suggerimento: la ricorsione deve essere in funzione del parametro k, con caso di base k = 1.)

Punto 2 Si imposti e si risolva la ricorrenza sul numero di operazioni aritmetiche tra scalari complessi $T_{PF}(n,k)$ effettuate dall'algoritmo sviluppato al Punto 1.

Exercise 1.4 Siano k, n potenze di due, con $1 \le k < n$. Dato un vettore $\mathbf{A} \in \mathbf{C}^k$, si consideri il vettore a n componenti $\mathbf{B} \in \mathbf{C}^n$ ottenuto concatenando \mathbf{A} con se stesso per n/k volte:

$$oldsymbol{B} = (\underbrace{oldsymbol{A} | A | \dots | A}_{n/k ext{ volte}}).$$

Si discuta di come ottenere $DFT_n(\mathbf{B})$ in tempo $\Theta((n/k)\log(n/k))$. Nell'analisi di complessità, si considerino di costo unitario e non nullo solo le operazioni aritmetiche tra numeri complessi. (Suggerimento: Si ricordi che \mathbf{B} ricalca la struttura della trasformata di un vettore (n, k)-sparso (vista a lezione) e si utilizzi la relazione tra DFT_n^{-1} e DFT_n^R .)

Exercise 1.5

- **Punto 1.** Si fornisca un algoritmo divide-and-conquer per ottenere la potenza k-sima z^k di un dato numero complesso z eseguendo $\Theta(\log k)$ moltiplicazioni complesse (Suggerimento: Si ottenga z^k in funzione di $z^{\lfloor k/2 \rfloor}$.)
- **Punto 2.** Siano ora k, n > 0. Dato il vettore dei coefficienti $\boldsymbol{a} \in \boldsymbol{C}^n$ di un polinomio A(x) di grado limitato da n, si fornisca un algoritmo che restituisca il vettore dei coefficienti del polinomio $p(x) = (A(x))^k$.
- **Exercise 1.6** Sia n una potenza di due. Usando la FFT, progettare e analizzare un algoritmo che, dato in ingresso n, produca in uscita il vettore $C[k] = \binom{n-1}{k}$, con $0 \le k \le n-1$ eseguendo $O(n \log n)$ operazioni tra scalari complessi. (Suggerimento: Si consideri l'espansione di Newton del polinomio $p(x) = (x+1)^{n-1} \ldots$)
- **Exercise 1.7** Sia n > 0. Per $0 \le j \le n 1$, sia \mathbf{F}_n^j la j-sima colonna della matrice di Fourier di ordine n. Si determinino le componenti di $DFT_n(\mathbf{F}_n^j)$ e si fornisca lo pseudocodice di un algoritmo per calcolarle che non esegue alcuna operazione aritmetica tra scalari complessi.
- **Exercise 1.8** Sia n una potenza di due e siano dati due insiemi $A, B \subseteq \{0, 1, 2, \dots n-1\}$ rappresentati in ingresso per mezzo dei loro vettori caratteristici (cioè vettori binari \boldsymbol{a} e $\boldsymbol{b} \in \{0, 1\}^n$ con $a_i = 1 \Leftrightarrow i \in A$ e $b_j = 1 \Leftrightarrow j \in B$). Si voglia calcolare, per ogni intero i, $0 \leq i \leq 2n-2$, il numero z_i di coppie distinte $(a, b) \in A \times B$ tali che a + b = i.
- Punto 1. Si riconduca il problema al calcolo di una opportuna convoluzione lineare.

Punto 2. Si fornisca lo pseudocodice dell'algoritmo CARTESIAN_SUM(a, b) che risolve il problema in tempo $O(n \log n)$.

Exercise 1.9

Punto 1. Sia n > 0. Si dimostri rigorosamente che per ogni vettore $\boldsymbol{x} = (x_0, x_1, \dots, x_{n-1}) \in \boldsymbol{C}^n$ si ha:

$$(F_n)^2 \boldsymbol{x} = n \cdot \boldsymbol{x}^R,$$

dove $(F_n)^2 = F_n \times F_n$ denota il quadrato della matrice di Fourier di ordine n e $\boldsymbol{x}^R = (x_0, x_{n-1}, x_{n-2}, \dots, x_1)$ denota il reverse del vettore \boldsymbol{x} .

Punto 2. Utilizzando la relazione provata al Punto 1, si fornisca lo pseudocodice e si analizzi un algoritmo divide-and-conquer KFT(\boldsymbol{x},k) che, dati in ingresso un vettore complesso $\boldsymbol{x} \in \boldsymbol{C}^n$, con n potenza di due e k un generico intero positivo o nullo, restituisca $\boldsymbol{y} = (F_n)^k \boldsymbol{x}$ eseguendo $T(n,k) = O(n(k+\log n))$ operazioni aritmetiche tra scalari complessi.

(Suggerimento: si osservi che per $k \geq 2$ vale $(F_n)^k \boldsymbol{x} = (F_n)^2 ((F_n)^{k-2} \boldsymbol{x}) \dots)$