## Project 3 Scientific Computing

Rebecca Selvaggini

June 2022

## 1 Multigrid 1d

In the first part of the project I have implemented a multigrid method for the solution of the following elliptic boundary value problem: let  $\Omega = (-2,2) \subset \mathbb{R}$  and let  $f,g \in \mathcal{C}^0(\bar{\Omega})$  be the functions  $f(x) = (x-1)^3$  and  $g(x) = \frac{|x|^2}{10}$ , find a function  $u \in \mathcal{C}^2(\bar{\Omega})$  such that

$$u''(x) - u(x) = f(x) \quad \text{in} \quad \Omega \tag{1}$$

$$u(-2) = g(-2)$$
  $u(2) = g(2)$ . (2)

In order to find the solution u let

$$\hat{A}_h \hat{u}_h = \hat{f}_h \tag{3}$$

be the standard finite difference approximation to the given boundary value problem, where  $\hat{A}_h \in \mathbb{R}^{N+1} \times \mathbb{R}^{N+1}$  and where we consider a uniform partitioning of the interval [-2,2] given by  $x_0 = -2 < x_1 < ... < x_{N-1} < 2 = x_N$ . From now on we usually assume that  $N = 2^{\ell}$  for some integer  $\ell > 1$ .

The first function implemented is gs\_step\_1d which perform one step of the Gauss-Seidel method to solve the linear system (3), given an initial guess  $\mathtt{uh} = u_h^{(k)}$  and the right hand side of the equation  $\mathtt{fh} = \hat{f}_h$ . The function will update  $\mathtt{uh}$  to be the new solution  $u_h^{(k+1)}$  and return as output the pseudo-residual  $|u_h^{(k+1)} - u_h^{(k)}|_{\infty}$ . The function twogrid\_step(uh,fh) take as input the same numpy.array of the first one, and implement the two-grid correction scheme where instead of solving  $\hat{A}_{2h}e_{2h}=r_{2h}$ , we perform five Gauss-Seidel steps on the coarse grid. For both the functions we investigate the number of iterations and the time needed to find a solution with pseudo-residual less then  $tol=10^{-8}$ , starting form the zero vector as initial guess. In Table 1 you can find the number of iteration (IT), the CPU time needed to perform it (in seconds) and the value of the pseudo-residual reached (residual), for different values of the mesh size h=4/N (in the table you find the value of  $\ell$ , where  $N=2^{\ell}$ ). For both methods we can see that as the value of h decrease (i.e. the value of N increase) the number of iteration needed to reach a pseudo-residual less then  $10^{-8}$  drastically increase, and consequently the time needed increase. However the two-gird correction scheme give an important improvement on both compared to the standard Gauss-Seidel method, as you can see in Figure 1.

|             | Gauss-Seidel         |                                         |      | Two-grid              |                       |
|-------------|----------------------|-----------------------------------------|------|-----------------------|-----------------------|
| $\ell$   IT | CPU time             | residual                                | IT   | CPU time              | residual              |
| 3   47      | 0.001995086669921875 | 7.848788285969022e-09                   | 7    | 0.0019998550415039062 | 5.524753987629083e-10 |
| 4   168     | 0.01299905776977539  | $9.90554926971754 \mathrm{e}\hbox{-}09$ | 9    | 0.003008604049682617  | 6.437632871225674e-09 |
| 5   616     | 0.05300259590148926  | 9.801360167926987e-09                   | 29   | 0.016999483108520508  | 7.012209035650585e-09 |
| 6 2245      | 0.31158447265625     | 9.981448556573014e-09                   | 103  | 0.09000515937805176   | 8.894776470924626e-09 |
| 7   8114    | 2.314413547515869    | 9.997855876520134e-09                   | 369  | 0.5892281532287598    | 9.832912262197624e-09 |
| 8   28976   | 13.860627174377441   | 9.998154526513758e-09                   | 1316 | 4.3507702350616455    | 9.997758620983177e-09 |

Table 1: Gauss-Seidel method and Two-grid correction scheme



Figure 1: Gauss-Seidel method and two-grid correction scheme for different values of  $N=2^l$ 

The next function implemented is v\_cycle\_step\_1d which take in input uh and fh as always, and two numbers alpha1 and alpha2 that give the number of, respectively, pre-smoothing and post-smoothing steps. The function depends on several routines as I\_2h(v2h) that implement the prolongation operator, I\_h(vh) that implement the full weighting restriction (as seen during the lectures) and the function Auf(uh, fh) that compute the vector fh - Auh, where A is the matrix of our linear system in (3).

The results of the investigation on the number of iterations and the CPU time needed for different values of  $\ell$  and  $\alpha_1$ ,  $\alpha_2$  are given in Table 2 where you can find then number of iteration (IT) and the CPU time (in seconds) to have a pseudo-residual less then  $10^{-8}$ , together with the pseudo-residual  $|u_h^{(k+1)} - u_h^{(k)}|_{\infty}$  obtained in the last iteration.

As you can see in the table, increasing the value of  $\ell$  (i.e. decreasing h) does not affect too much the number of iterations, but the CPU time increase as long as we increase  $\ell$ .

| $\alpha_1$ | $\alpha_2$ | $\ell$ | IT | CPU time              | residual               |
|------------|------------|--------|----|-----------------------|------------------------|
| 1          | 1          | 3      | 7  | 0.0019986629486083984 | 1.016823070187911e-09  |
|            | ĺ          | 4      | 8  | 0.0050144195556640625 | 4.142993947908735e-09  |
|            |            | 5      | 8  | 0.005010366439819336  | 7.930703205261125e-09  |
|            |            | 6      | 8  | 0.009000301361083984  | 3.725461994452672e-09  |
|            |            | 7      | 8  | 0.01800060272216797   | 8.296853093447965e-09  |
|            |            | 8      | 8  | 0.03400015830993652   | 3.5770645612220875e-09 |
|            |            | 9      | 8  | 0.07300591468811035   | 1.4489407451634406e-09 |
|            |            | 10     | 7  | 0.11900687217712402   | 3.448957786034157e-09  |
|            |            | 11     | 7  | 0.2550196647644043    | 1.8311241967161607e-09 |
|            |            | 12     | 7  | 0.5119023323059082    | 2.077941874123468e-09  |
|            |            | 13     | 7  | 0.7969393730163574    | 2.0385089727348316e-09 |
|            |            | 14     | 7  | 1.6390643119812012    | 2.0098861464035167e-09 |
|            |            | 15     | 7  | 3.131812810897827     | 2.0034589542916592e-09 |
| 2          | 2          | 3      | 4  | 0.002002716064453125  | 7.299621795908706e-09  |
|            |            | 4      | 5  | 0.004010677337646484  | 4.195958691610713e-09  |
|            |            | 5      | 6  | 0.005014181137084961  | 2.110396302157369e-10  |
|            |            | 6      | 6  | 0.011998891830444336  | 5.929862156861532e-10  |
|            |            | 7      | 6  | 0.017999887466430664  | 4.339050785340248e-10  |
|            |            | 8      | 5  | 0.033000946044921875  | 4.40734273382537e-09   |
|            |            | 9      | 5  | 0.05700397491455078   | 4.307008250048483e-09  |
|            |            | 10     | 5  | 0.10805726051330566   | 4.313898294139307e-09  |
|            |            | 11     | 5  | 0.2281806468963623    | 4.3157031281992886e-09 |
|            |            | 12     | 5  | 0.429995059967041     | 4.316153934258438e-09  |
|            |            | 13     | 5  | 0.8520302772521973    | 4.316265955761622e-09  |
|            |            | 14     | 5  | 1.6968178749084473    | 4.316294044404145e-09  |
|            |            | 15     | 5  | 3.468492031097412     | 4.3163010388092005e-09 |

Table 2: V-cycle 1d

Next we have the function full\_mg\_1d which implement a full multigrid step which use the same prolongation operator as v\_cycle\_step\_1d but the restriction operator Injection. In the tables 3, 4, 5, 6 you can find the values of the CPU time (in seconds), of the pseudo-residual and of the residual  $|f_h - A_h u_h|_{\infty}$  after one step of the full multigrid method for different values of  $\ell$  and of the parameters  $\alpha_1$ ,  $\alpha_2$  and  $\nu$  as specified in the caption of the tables.

| $\ell$ | CPU time              | pseudo-residual                          | residual            |
|--------|-----------------------|------------------------------------------|---------------------|
| 3      | 0.0                   | 0.05428121079015735                      | 0.1263162217298497  |
| 4      | 0.0019996166229248047 | 0.04955466114862506                      | 0.24400927755758062 |
| 5      | 0.00299835205078125   | 0.027150271926458913                     | 1.3118733991555303  |
| 6      | 0.00299835205078125   | 0.009656704628096868                     | 2.4721163847927983  |
| 7      | 0.005000114440917969  | 0.0032834114343441856                    | 3.362213308768446   |
| 8      | 0.008012533187866211  | 0.0009612285361641493                    | 3.9371920841283554  |
| 9      | 0.021013975143432617  | 0.0002609143779873091                    | 4.274821168943845   |
| 10     | 0.03200030326843262   | $6.808463680024746\mathrm{e}\text{-}05$  | 4.461994757341017   |
| 11     | 0.06599283218383789   | 1.7402783682729517e-05                   | 4.5620353257108945  |
| 12     | 0.13425540924072266   | $4.400487928546415 \mathrm{e}\text{-}06$ | 4.614246030221693   |
| 13     | 0.2526843547821045    | 1.1065181201863616e-06                   | 4.641073377570137   |
| 14     | 0.46872401237487793   | $2.774429048169047\mathrm{e}\text{-}07$  | 4.6547195428283885  |
| 15     | 0.9753847122192383    | 6.946349551117947e-08                    | 4.661616269513615   |

Table 3: Full multigrid with  $(\alpha_1, \alpha_2, \nu) = (1,1,1)$ 

| $\ell$ | CPU time              | pseudo-residual                           | residual              |
|--------|-----------------------|-------------------------------------------|-----------------------|
| 3      | 0.0010020732879638672 | 0.005277309556834808                      | 0.0024924665632575227 |
| 4      | 0.0010116100311279297 | 0.0023980750483256763                     | 0.014194388146876236  |
| 5      | 0.0030088424682617188 | 0.0031856773633578417                     | 0.09610353337686206   |
| 6      | 0.007012605667114258  | 0.001384058828477197                      | 0.2146943051052972    |
| 7      | 0.011001110076904297  | 0.00044109679154542836                    | 0.2988958050495967    |
| 8      | 0.017011404037475586  | 0.00012363247540467248                    | 0.34802691448192036   |
| 9      | 0.035013675689697266  | $3.2671648293736144 \mathrm{e}\text{-}05$ | 0.3744430195715722    |
| 10     | 0.06299328804016113   | $8.394210785134248 \mathrm{e}\text{-}06$  | 0.3881399201200111    |
| 11     | 0.1262040138244629    | 2.1272040504061174e-06                    | 0.395119510780205     |
| 12     | 0.2382955551147461    | $5.354048153716207\mathrm{e}\text{-}07$   | 0.3986447294591926    |
| 13     | 0.4719705581665039    | 1.3430302930883542e-07                    | 0.40041688922792673   |
| 14     | 0.9398622512817383    | 3.363231476649631e-08                     | 0.4013055303366855    |
| 15     | 1.8162224292755127    | 8.415152796814596e-09                     | 0.40175053106213454   |

Table 4: Full multigrid with  $(\alpha_1, \alpha_2, \nu) = (1,1,2)$ 

| $\ell$ | CPU time              | pseudo-residual                          | residual             |
|--------|-----------------------|------------------------------------------|----------------------|
| 3      | 0.0009999275207519531 | 0.002008222417011929                     | 0.008032889668049492 |
| 4      | 0.0020036697387695312 | 0.003255854322769647                     | 0.05209366916431435  |
| 5      | 0.003999471664428711  | 0.002635850115619176                     | 0.16869440739962727  |
| 6      | 0.005994558334350586  | 0.0010860964717104293                    | 0.2780406967578699   |
| 7      | 0.00901031494140625   | 0.0003411054217082321                    | 0.3492919518292297   |
| 8      | 0.015999555587768555  | $9.50101703552017\mathrm{e}\text{-}05$   | 0.3891616577749204   |
| 9      | 0.027998924255371094  | $2.5029236168400137\mathrm{e}\text{-}05$ | 0.41007900538306785  |
| 10     | 0.05201220512390137   | $6.420294222875267\mathrm{e}\text{-}06$  | 0.4207604021903535   |
| 11     | 0.09401655197143555   | 1.6256424553162674e-06                   | 0.4261524158064276   |
| 12     | 0.18401288986206055   | $4.08993278910863\mathrm{e}\text{-}07$   | 0.42886053648544475  |
| 13     | 0.40028953552246094   | 1.0257184851480972e-07                   | 0.43021751439664513  |
| 14     | 0.7770569324493408    | $2.5683445703528207\mathrm{e}\text{-}08$ | 0.4308967161778128   |
| 15     | 1.4335987567901611    | 6.4259244036968255e-09                   | 0.43123648688015237  |

Table 5: Full multigrid with  $(\alpha_1, \alpha_2, \nu) = (2,2,1)$ 

| $\ell$ | CPU time              | pseudo-residual                          | residual                                |
|--------|-----------------------|------------------------------------------|-----------------------------------------|
| 3      | 0.0010013580322265625 | $1.1309861073449667\mathrm{e}\text{-}05$ | $4.523944429379867\mathrm{e}\text{-}05$ |
| 4      | 0.0019989013671875    | $2.902896070944294\mathrm{e}\text{-}05$  | 0.00046446337135108706                  |
| 5      | 0.005998849868774414  | $4.473443739749783\mathrm{e}\text{-}05$  | 0.002863003993439861                    |
| 6      | 0.0069980621337890625 | $2.349144883173615\mathrm{e}\text{-}05$  | 0.006013810900952876                    |
| 7      | 0.018001317977905273  | 8.100028431656803e-06                    | 0.008294429114016566                    |
| 8      | 0.02900099754333496   | $2.3471695165741546\mathrm{e}\text{-}06$ | 0.009614006339830894                    |
| 9      | 0.05300092697143555   | 6.294473357260078e-07                    | 0.010312865148989658                    |
| 10     | 0.10200333595275879   | $1.628164317257763\mathrm{e}\text{-}07$  | 0.010670337669580476                    |
| 11     | 0.2060239315032959    | 4.13922867092964e-08                     | 0.010850739607121795                    |
| 12     | 0.3640894889831543    | 1.0434437425210774e-08                   | 0.010941300657577813                    |
| 13     | 0.735865592956543     | 2.6194246771638063e-09                   | 0.010986663517542183                    |
| 14     | 1.4597198963165283    | 6.562093091133647e-10                    | 0.011009364374331199                    |
| 15     | 2.785592794418335     | 1.6422152526729406e-10                   | 0.011020720003216411                    |
|        |                       |                                          |                                         |

Table 6: Full multigrid with  $(\alpha_1, \alpha_2, \nu) = (2,2,2)$ 

The last request for the one-dimensional case is the plotting of an approximated solution of the problem discussed above. In Figure 2 you can find the solution uh obtained by iterating the V-Cycle method up to a solution with pseudo-residual less then  $10^{-12}$  with fixed value  $\ell=8,~\alpha_1=\alpha_2=2$ . For the solution obtained we can estimate that  $\min u_h(x)=-3.694360963138051$ .



Figure 2: Approximation of solution u with V-Cycle method

## 2 Multigrid 2d

In this section we consider the multigrid method in the two-dimensional case. We have  $\Omega=(-2,2)^2\subset\mathbb{R}^2$ , we fix  $f(x)=f(x_1,x_2)=x_1^2-x_2^2$  and  $g(x)=g(x_1,x_2)=\frac{x_1^2+x_2^2}{10}$ . With the same assumption on the first case, we repeat the simulations on the functions implemented.

In Table 7 you can find the results on the Gauss-Seidel method: the number of iterations (IT) and the CPU time to obtain a solution with pseudo-residual less then  $10^{-8}$  together with the pseudo-residual at the last iteration, for different values of  $\ell = 2, \ldots, 6$ .

In Table 8 you can find the same results for the function v\_cycle\_step\_2d for two different sets of value of  $(\alpha_1, \alpha_2) = (1, 1), (2, 2)$ .

In Tables 9, 10, 11, 12 you can find the CPU time to perform one full-multigrid step, with the pseudo-residual and residual obtained, for different values of  $\ell$  and different values of  $(\alpha_1, \alpha_2, \nu)$  as stated in the caption of each table.

In the end in Figure 3 you can find a plot of the solution obtained by applying the V-Cycle method (starting from the zero vector) since we find a pseudo-residual smaller than  $10^{-12}$ , where we fixed  $\ell = 8$ . An estimate of the minimum of the function computed is  $\min u(x_1, x_2) = -0.04150939155234839$ .

| $\ell$ | IT   | pseudo-residual                          | CPU time              |
|--------|------|------------------------------------------|-----------------------|
| 2      | 17   | $7.636066501337524 \mathrm{e}\hbox{-}09$ | 0.0009999275207519531 |
| 3      | 60   | $9.289224500719229 \mathrm{e}\hbox{-}09$ | 0.009001493453979492  |
| 4      | 216  | 9.394708955223763e-09                    | 0.16592645645141602   |
| 5      | 777  | 9.886668095315798e-09                    | 2.1902685165405273    |
| 6      | 2783 | 9.986929200289651e-09                    | 27.886791706085205    |

Table 7: Gauss-Seidel method 2d

| $\alpha_1$ | $\alpha_2$ | $\ell$ | IT | pseudo-residual                           | CPU time              |
|------------|------------|--------|----|-------------------------------------------|-----------------------|
| 1          | 1          | 2      | 6  | $4.642810358390648 \mathrm{e}\text{-}09$  | 0.00199127197265625   |
|            |            | 3      | 9  | $2.666458998046295 \mathrm{e}\text{-}09$  | 0.008000373840332031  |
|            |            | 4      | 10 | $2.417379324493041 \mathrm{e}\text{-}09$  | 0.04200267791748047   |
|            |            | 5      | 10 | $2.803542786811164 \mathrm{e}\text{-}09$  | 0.16102051734924316   |
|            |            | 6      | 10 | $3.0225845160103404 \mathrm{e}\text{-}09$ | 0.6040449142456055    |
|            |            | 7      | 10 | $4.422206600906975 \mathrm{e}\text{-}09$  | 2.571983575820923     |
|            |            | 8      | 10 | 5.3505865293956845e-09                    | 9.610964059829712     |
| 2          | 2          | 2      | 4  | 3.416228411268207e-11                     | 0.0009953975677490234 |
|            |            | 3      | 6  | $2.6820405896188504\mathrm{e}\text{-}09$  | 0.008997917175292969  |
|            |            | 4      | 6  | $7.926279761011346 \mathrm{e}\text{-}09$  | 0.038002729415893555  |
|            |            | 5      | 7  | $8.316240474037784 \mathrm{e}\text{-}10$  | 0.14826130867004395   |
|            |            | 6      | 7  | 1.2686598438449437e-09                    | 0.6049520969390869    |
|            |            | 7      | 7  | $1.6600080199324907 \mathrm{e}\text{-}09$ | 2.4352219104766846    |
|            |            | 8      | 7  | 1.838143304233597e-09                     | 9.938615560531616     |
|            |            |        |    | · · · · · · · · · · · · · · · · · · ·     |                       |

Table 8: V-Cycle method, two-dimensional case

| $\ell$ | CPU time              | pseudo-residual        | residual            |
|--------|-----------------------|------------------------|---------------------|
| 2      | 0.0009958744049072266 | 0.04193744799999999    | 0.03196053760000017 |
| 3      | 0.0010030269622802734 | 0.05062909824074574    | 0.20487454839655594 |
| 4      | 0.006999492645263672  | 0.016904812446795175   | 0.24475979309504847 |
| 5      | 0.027011394500732422  | 0.004598384782798559   | 0.29429662609910245 |
| 6      | 0.09200191497802734   | 0.001235232641809636   | 0.3162195563032526  |
| 7      | 0.4222724437713623    | 0.00031892577242637055 | 0.3265799909645466  |
| 8      | 1.392103910446167     | 8.087032322828813e-05  | 0.33124484394329556 |

Table 9: Full 2d-multigrid with  $(\alpha_1, \alpha_2, \nu) = (1,1,1)$ 

| $\ell$ | CPU time              | pseudo-residual        | residual              |
|--------|-----------------------|------------------------|-----------------------|
| 2      | 0.0010008811950683594 | 0.0018444765647399608  | 0.0028057531294799487 |
| 3      | 0.00299835205078125   | 0.00398873862389288    | 0.016957936569347076  |
| 4      | 0.013015031814575195  | 0.0015494472410443466  | 0.025096981748455427  |
| 5      | 0.04300236701965332   | 0.000454718566571477   | 0.029101988260576306  |
| 6      | 0.16403722763061523   | 0.00012428086037025166 | 0.031815900254756     |
| 7      | 0.6820902824401855    | 3.217653806386611e-05  | 0.03294877497728521   |
| 8      | 2.6287174224853516    | 8.16484447951904e-06   | 0.03344320298833736   |

Table 10: Full 2d-multigrid with  $(\alpha_1,\alpha_2,\nu)=(1{,}1{,}2)$ 

| $\ell$ | CPU time             | pseudo-residual        | residual             |
|--------|----------------------|------------------------|----------------------|
| 2      | 0.001001596450805664 | 0.0025501386880000254  | 0.004129134399999956 |
| 3      | 0.004000186920166016 | 0.0054187161913315934  | 0.03365030173170469  |
| 4      | 0.006997823715209961 | 0.0018408745942332938  | 0.041818278618330984 |
| 5      | 0.037011146545410156 | 0.0005225605560839897  | 0.04356167552870627  |
| 6      | 0.12779450416564941  | 0.00013785533655080728 | 0.044760341163360806 |
| 7      | 0.4753401279449463   | 3.5328335156237234e-05 | 0.04551460215310499  |
| 8      | 1.8876299858093262   | 8.93659314499251e-06   | 0.045925385089503834 |

Table 11: Full 2d-multigrid with  $(\alpha_1,\alpha_2,\nu)=(2,\!2,\!1)$ 

| $\ell$ | CPU time              | pseudo-residual                           | residual              |
|--------|-----------------------|-------------------------------------------|-----------------------|
| 2      | 0.0010006427764892578 | 2.971798662837477e-05                     | 2.715805202657684e-05 |
| 3      | 0.003998517990112305  | 0.00019384360196836314                    | 0.001230101896276814  |
| 4      | 0.020003557205200195  | $5.8251308926310363\mathrm{e}\text{-}05$  | 0.00146373424122892   |
| 5      | 0.06900715827941895   | $1.2610385717926054 \mathrm{e}\text{-}05$ | 0.0011176673498365375 |
| 6      | 0.2356739044189453    | 3.3957771836332085e-06                    | 0.0010424296221884788 |
| 7      | 0.9359564781188965    | 8.893123585596019e-07                     | 0.0010169582794219423 |
| 8      | 3.699510097503662     | 2.2638169272504172e-07                    | 0.0010285213631959778 |

Table 12: Full 2d-multigrid with  $(\alpha_1,\alpha_2,\nu)=(2,\!2,\!2)$ 



Figure 3: Approximation of the solution u with 2d-V-Cycle method