סיכומי הרצאות - אלגברה לינארית 1

מיכאל פרבר ברודסקי

תוכן עניינים

2		חבורות, חוגים ושדות	מונואידים,	I
2			1 הגדרות	
2		תכונות של פעולות	1.1	
2		מונואיד	1.2	
2		חבורה	1.3	
2		חוג	1.4	
3		שדה	1.5	
3			מרוכבים I	Ι
3		בסיסיות	2 הגדרות	
3		לארית	3 הצגה פו	
4			מטריצות III	Ι
4			4 הגדרות	
4		פעולות בסיסיות	4.1	
4		פעולות אלמנטריות על מט	4.2	
5		שונות	4.3	
5		ירוג קנוני	5 דירוג וד	
5		הגדרות	5.1	
6		מציאת פתרונות	5.2	
	הפתרונות לפי צורה מדורגת (לא בהכרח			
6		• •		
6	ית עצמם לפי צורה מדורגת קנונית			
6				
6				
6			7.1	
7		קבוצת הצירופים הלינאריי	7.2	

חלק I

מונואידים, חבורות, חוגים ושדות

1 הגדרות

1.1 תכונות של פעולות

A imes A הוא A imes A הוא A imes A תהא A imes A

- $\forall a, b, c \in A. (a*b)*c = a*(b*c)$ אסוצייטיבית: * .1
 - $. \forall a, b.a * b = b * a$ אילופית: * .2
 - $.*: A \times A \rightarrow A :*$ סגורה לפעולה A סגורה לפעולה

1.2 מונואיד

G כך ש: G כלשהי ו־G כאשר כלשהי ו־G כאשר כלשהי ו־G כאשר כלשהי ו־ל

- .* סגורה לפעולה G .1
- 2. * פעולה אסוצייטיבית.
- . האיבר הזה . $\exists e \in G. \forall g \in G. e*g = g*e = g$ האיבר לפעולה, לפעולה, לפעולה, לפעולה. פ e_G האיבר הזה יחיד ומסומן.

1.3 חבורה

מקרה פרטי של מונואיד שמקיימת גם:

4. קיים איבר הופכי, כלומר $g\in G.\exists h\in G.g*h=h*g=e$ ראיבר יחידה. איבר איבר הופכי של g מסומן -g^-1

1.4 חוג

שלשה $\langle R, +, * \rangle$ נקראת חוג אם:

- $. orall a, b \in R.a + b = b + a$ חבורה חילופית, כלומר $\langle R, +
 angle$.1
 - .* סגורה לפעולה R ו־R סגורה לפעולה * .2
 - 3. חוק הפילוג:

$$\forall a, b, c \in R.a * (b+c) = a * b + a * c$$

 $(b+c) * a = b * a + c * a$

a*b=b*a חוג חילופית b*a* אם a*b=b*a* חוג חילופית (כלומר

חוג עם יחידה $^{ au}$ אם $\langle R, * \rangle$ מונואיד.

. פיים אם לכפל לכפל ניטרלי לחיבור, 1_R לחיבור, 0_R ניטרלי לכפל אם סיים

מחלק $a*b=0_R$ כך ש־ $b \neq 0_R$ עם יש "מחלק "מחלק (נקרא "מחלק $b \neq a \in R$ בממשיים אין מחלק $a*b=0_R$ מחלק מחלק ...

חוג חילופי עם יחידה וללא מחלקי 0 נקרא **תחום שלמות**. הוא מקיים את חוק הצמצום (לכל a=c אז a*b=c*b, אם $a,b,c\in R$

1.5 שדה

גם: מקרה פרטי של חוג שמקיים גם: $\langle F, +, * \rangle$

. חבורה חילופית. $\langle F \setminus \{0_F\}, * \rangle$

כל שדה הוא תחום שלמות, אבל ההפך אינו נכון. תחומי שלמות <u>סופיים</u> הם כן שדות. הרבה פעמים בהגדרת שדה מוסיפים את הדרישה $1_F \neq 1_F$.

חלק II

מרוכבים

2 הגדרות בסיסיות

נסמן הוא המספר המספר היא: $\mathbb{C}=\mathbb{R}^2$, כאשר המספר הראשון הוא . $i=\sqrt{-1}$ נסמן החלק הממשי (שמסומן ($Re\left(c\right)$) והמספר השני הוא החלק הדמיוני (שמסומן , $z\in\mathbb{C}$) עובדות: עבור

- . בירים. z של z מראשית הצירים. $||z||=\sqrt{Re\left(z\right)^{2}+Im\left(z\right)^{2}}$. מראשית הצירים. 1
 - $z=||z||\,e^{i\cdot\arg(z)}$ לכן, $e^{i heta}=\cos\left(heta
 ight)+i\sin\left(heta
 ight)$.2
 - 3. **חיבור:** מחברים את החלק הממשי והדמיוני בנפרד.
 - $.i^2 = -1$ משתמשים בזה ש־ $.(a+ib)\cdot(c+id) = (ac-bd)+i\,(bc+da)$.4.
 - 5. כל שורש של פולינום מרוכב הוא מרוכב.
 - .6 נגדיר \overline{z} להיות $\overline{z}=a-ib$ כלומר להפוך את החלק הדמיוני.
 - $\overline{\overline{z}} = z$ (x)
 - $z\cdot \overline{z} = \left|\left|z\right|\right|^2$ (1)
 - $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$ (a)
 - $\overline{z_1\cdot z_2}=\overline{z_1}\cdot\overline{z_2}$ (7)
 - $Re\left(z
 ight)=rac{z+\overline{z}}{2},Im\left(z
 ight)=rac{z-\overline{z}}{2i},$ (ה)
- .(כלומר כל שורש של כל פולינום מרוכב הוא מרוכב). שדה סגור אלגברית (כלומר כל שורש של כל פולינום מרוכב הוא מרוכב).
 - .8 איבר הופכי מקבלים (אם מכפילים בהופכי מקבלים 1). $w = \frac{a-ib}{a^2+b^2}$

3 הצגה פולארית

נגדיר מרוכב בתור אוג $\langle r, \theta \rangle$ כאשר r המרחק מראשית הצירים ו־ θ הארגומנט.

$$z = r\cos\theta + ir\sin\theta = r \cdot e^{i\theta}$$

עובדות:

1. הארגומנט של z: נסמן $\arg(z)$ להיות הזווית שהמספר יוצר עם ציר הממשיים (לרוב נסמן $\arg(z)$ ברוב $\arg(z) = \arctan(\frac{b}{a})$ ניתן לחשב אותו בעזרת $\gcd(z) = \arctan(\frac{b}{a})$

$$\overline{z}=r\cdot e^{-i\theta}, z^{-1}=rac{1}{r}e^{-i\theta}$$
 .2

$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$
.3

4. להכפיל מספרים מרוכבים על הגרף נראה כמו להכפיל את האורכים זה בזה ולחבר את הזוויות

 $e^{i\theta}=e^{i(\theta+2\pi k)}$ - פתרון משוואה $z^n=re^{i\theta}$. נמצא הצגה פולארית נמצא . $z^n=a+ib$ נשתמש בעובדה עבור . $k\in\mathbb{Z}$ עבור

$$z = \sqrt[n]{r}e^{i\left(\frac{\theta}{n} + 2\pi\frac{k}{n}\right)}$$

עבור שונים. $k \in \{0, \dots, n-1\}$ ולכל ולככו $k \in \mathbb{Z}$

חלק III

מטריצות

4 הגדרות

וקטור הוא nיה של איברים ב־ \mathbb{F} . מטריצה היא mיה של וקטורים. מטריצה מסדר היא $m \times n$ מטריצה עם שורות ו־n עמודות (קודם p ואז p).

נגדיר מערכת משוואות כמטריצה באופן הבא:

$$\begin{cases} \alpha_{1,1}x_1 + \dots + \alpha_{1,n}x_n &= b_1 \\ \vdots &= \vdots &\equiv \begin{pmatrix} \alpha_{1,1} & \dots & \alpha_{1,n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ \alpha_{m,1}x_1 + \dots + \alpha_{m,n}x_n &= b_m \end{pmatrix}$$

4.1 פעולות בסיסיות

חיבור וקטורים:

$$\begin{pmatrix} \alpha_0 \\ \vdots \\ \alpha_n \end{pmatrix} + \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} \alpha_0 + \beta_0 \\ \vdots \\ \alpha_n + \beta_n \end{pmatrix}$$

כפל מטריצה בוקטור: כמו להציב את הוקטור בעמודות המטריצה.

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix} \cdot \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} \beta_1 a_{1,1} + \dots + \beta_n a_{1,n} \\ \dots + \dots + \dots \\ \beta_1 a_{m,1} + \dots + \beta_n a_{m,n} \end{pmatrix}$$

 $A\overline{x}=\overline{b}$ בנוסף, הפתרונות של $\overline{x}\in \mathrm{Sols}\left(A\mid b
ight)$ שקולים ל

את פתרונות המטריצה נסמן ב־Sols. מטריצות נקראות שקולות אם הפתרונות שלהן זהים.

4.2 פעולות אלמנטריות על מטריצה

הפעולות האלה הן:

 $R_i \leftrightarrow R_i$. להחליף סדר בין משוואות.

 $R_i
ightarrow R_i + R_j$.3 משוואות.

כולן משמרות את הפתרונות של המטריצה.

מטריצות ששקולות באמצעות סדרת פעולות אלמנטריות נקראות <u>שקולות שורה</u>.

4.3 שונות

מטריצה ריבועית: מטריצה שכמות העמודות בה שווה לכמות השורות.

(מטריצה ריבועית) $A\in M_n\left(\mathbb{F}
ight)$ משפט עבור שקולים עבור מטריצה 1.4 משפט

- I_n שקולת שורות ל- I_n .1
- . יש פתרון יחיד. $\overline{b}\in\mathbb{F}^n$ למערכת $\overline{b}\in\mathbb{F}^n$
 - . לכל $b \in \mathbb{F}^n$ למערכת לכל לכל למערכת למערכת למערכת 3.
 - . יש פתרון יחיד. $A\overline{x}=\overline{0}$.4
- . יש פתרון יחיד. $A\overline{x}=\overline{b}$ יש פתרון יחיד.

מטריצת היחידה: מסומנת $i\neq j$ ואם $i\neq j$ אם $a_{i,j}=1$ אם מטריצה ריבועית מטריצה . I_n ואם מטריצה מסומנת $a_{i,j}=0$

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $:e_i$ וקטור

$$(e_i)_i = \begin{cases} 0 & x \neq i \\ 1 & x = i \end{cases}$$

iה בעצם 0 בכל מקום חוץ מהמקום ה־i

דירוג ודירוג קנוני 5

5.1 הגדרות

בצורה מדורגת:

- .1 משוואות 0 (מהצורה b=0) נמצאות למטה.
- 2. המשתנה הפותח בכל משוואה נמצא מימין ממש למשתנים הפותחים במשוואות מעליו.

משתנה חופשי הוא משתנה שלא מקדם פותח של אף שורה.

בנוסף, בצורה מדורגת קנונית:

- 3. המקדם של כל משתנה פותח הוא 1
- 4. לכל משתנה פותח של משוואה, המקדם של המשתנה בשאר המשוואות הוא 0.

לכל מטריצה קיימת צורה מדורגת קנונית יחידה ששקולה לה.

5.2 מציאת פתרונות

5.2.1 מציאת מספר הפתרונות לפי צורה מדורגת (לא בהכרח קנונית)

עבור $(A \mid b)$ מטריצה מדורגת:

- .1 אין פתרון. ($b \neq 0$ כאשר $b \neq 0$ כאשר סתירה ($A \mid b$) אין פתרון.
 - . אחרת, יש $|\mathbb{F}|^k$ פתרונות כאשר k מספר המשתנים החופשיים.

5.2.2 מציאת הפתרונות עצמם לפי צורה מדורגת קנונית

אז: $(A\mid b)$ מטריצה מדורגת קנונית מסדר m imes n ששקולה ל־ $(A'\mid b')$

- $\operatorname{Sols}\left((A'\mid b')\right)=\emptyset$ אם ב־ $(A'\mid b')$ יש שורת סתירה אז.
- 2. אחרת: נעשה החלפה על המשתנים החופשיים. כל משתנה שאינו חופשי יוגדר לפי משוואה מסוימת. דוגמה:

$$\left(\begin{array}{ccccccc} 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 4 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 3 & 3 \end{array}\right)$$

המקדמים החופשיים הם 1,4,6 הפתרון הוא:

$$\left\{ \begin{pmatrix} x_1 \\ 1 \\ 2 - 4x_4 \\ x_4 \\ 3 - 3x_6 \\ x_6 \end{pmatrix} \mid x_1, x_4, x_6 \in \mathbb{R} \right\}$$

6 תת מרחב

טענה (בוחן תת מרחב): ענה $U\subseteq F^n$ מרחב אמ"מ:

- .1 סגורה לחיבור. U
- .2 סגירה לכפל בסקלר. U
- $.u \neq \emptyset$ ניתן ניתן להחליף את ניתן להחליף. $\overline{0} \in U$.3

נובע מכאן גם שחיתוך של תתי מרחבים הוא תת מרחב.

צירופים לינאריים

7.1 בת"ל

לכל (בת"ל) מדרה 1.7 סדרת שיות ($\overline{v_1},\dots,\overline{v_k}$) הגדרה $(\overline{v_1},\dots,\overline{v_k})\in (\mathbb{F}^m)^k$ חיות סדרת הגדרה 1.7 סדרת למשוואה $\overline{b}\in \mathbb{F}^m$

נקראת
$$\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix} \in \mathbb{F}^k$$
 נקראת מקדמים ($\overline{v_1},\dots,\overline{v_k}$) כקראת $(\overline{v_1},\dots,\overline{v_k}) \in (\mathbb{F}^n)^k$ נקראת $\alpha_1\overline{v_1}+\dots+\alpha_k\overline{v_k}=0$ אם (v_1,\dots,v_k)

נגדיר את מרחב התלויות של (v_1,\ldots,v_k) להיות:

$$LD\left(\left(v_{1},\ldots,v_{k}\right)\right) = \left\{ \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix} \in \mathbb{F}^{n} \mid \alpha_{1}v_{1} + \cdots + \alpha_{k}v_{k} = 0 \right\}$$

 $LD\left((v_1,\ldots,v_k)\right) = \mathrm{Sols}\left((v_1,\ldots,v_k\mid 0)\right)$ ר

 $LD\left(v_{1},\ldots,v_{k}
ight)=\left\{ 0
ight\} \iff v_{1},\ldots,v_{k}$ 3.7 מסקנה רייש מסקנה

קבוצת הצירופים הלינאריים

 $(v_1,\ldots,v_k)\in (\mathbb{F}^n)^k$ איות, סדרת סדרת 4.7 אנדרה 4.7

$$\operatorname{sp}(v_1, \dots, v_k) = \left\{ \sum_{i=1}^k \alpha_i v_i \mid \alpha_1, \dots, \alpha_k \in \mathbb{F} \right\}$$

יא: $K\subseteq \mathbb{F}^n$ היא: המרחב הנפרש על ידי v_1,\ldots,v_k היא

$$\operatorname{sp}(k) = \left\{ b \in \mathbb{F}^n \mid \exists k \in \mathbb{N}. \exists \alpha_1, \dots, \alpha_k \in \mathbb{F}. \exists t_1, \dots, t_k \in K. b = \sum_{i=1}^k \alpha_i t_i \right\}$$