(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 14 June 2001 (14.06.2001)

PCT

(10) International Publication Number WO 01'/42223 A1

- (51) International Patent Classification7: C07D 231/14, A01N 43/56
- (21) International Application Number: PCT/EP00/11195
- (22) International Filing Date:

11 November 2000 (11.11.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

9929163.5

9 December 1999 (09.12.1999) GB

- 9929563.6 14 December 1999 (14.12.1999) GB
- (71) Applicant (for all designated States except US): SYN-GENTA PARTICIPATIONS AG [CH/CH]; Schwazwaldallee 215, CH-4058 Basel (CH).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): WALTER, Harald [DE/CH]; Chilchmattstrasse 12b, CH-4118 Rodersdorf (CH).

- (74) Agents: WERNER, Bastian et al.; c/o Syngenta Participations AG, Intellectual Property, P.O. Box, CH-4002 Basel (CH).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- With amended claims.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PYRAZOLECARBOXAMIDE AND PYRAZOLETHIOAMIDE AS FUNGICIDE

(57) Abstract: Novel pyrazole derivatives of formula (I), wherein: X is oxygen or sulfur; R_1 is C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy- C_1 - C_3 alkyl or C_1 - C_3 haloalkoxy- C_1 - C_3 alkyl; R_2 is C_1 - C_3 haloalkyl; and R_3 is halogen. The novel compounds have plant-protective properties and are suitable for protecting plants against infestations by phytopathogenic microorganisms.

Pyrazolecarboxamide and pyrazolethioamide as fungicide

The present invention relates to novel pyrazolecarboxamides or pyrazolethioamides which have microbicidal activity, in particular fungicidal activity. The invention also relates to the preparation of these substances, to agrochemical compositions which comprise at least one of the novel compounds as active ingredient, to the preparation of the compositions mentioned and to the use of the active ingredients or compositions in agriculture and horticulture for controlling or preventing infestation of plants by phytopathogenic microorganisms, preferably fungi.

The pyrazolecarboxamides of the present invention have the general formula I

$$R_2$$
 N
 N
 R_1
 R_3
 (1)

wherein

X is oxygen or sulfur;

 R_1 is C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy- C_1 - C_3 alkyl or C_1 - C_3 haloalkoxy- C_1 - C_3 alkyl;

R₂ is C₁-C₃haloalkyl; and

R₃ is halogen.

Surprisingly, it has now been found that the compounds of formula I exhibit improved biological properties which render them more suitable for the practical use in agriculture and horticulture.

Where asymmetrical carbon atoms are present in the compounds of formula I, these compounds are in optically active form. The invention relates to the pure isomers, such as enantiomers and diastereomers, as well as to all possible mixtures of isomers, e.g. mixtures of diastereomers, racemates or mixture of racemates.

Within the present specification alkyl denotes methyl, ethyl, n-propyl and isopropyl. Alkyl as part of other radicals such as alkoxyalkyl, haloalkyl or haloalkoxyalkyl is understood in an analogous way. Halogen will be understood generally as meaning fluoro, chloro, bromo or iodo. Fluoro, chloro or bromo are preferred meanings. Halogen as part of other radicals such as haloalkyl or haloalkoxyalkyl is understood in an analogous way. Typical alkoxyalkyl radicals include methoxymethyl, ethoxymethyl, propoxymethyl, methoxyethyl, ethoxyethyl and methoxypropyl. Typical haloalkoxyalkyl radicals include fluoromethoxymethyl, difluoromethoxymethyl, trifluoromethoxymethyl, 2,2,2-trifluoroethoxymethyl, 3-chloropropoxymethyl, 2,2,3,3,3-pentafluoropropoxymethyl, 2,2,2-trifluoroethxyethyl and trifluoromethoxypropyl.

Within the group of compounds of formula I those compounds are preferred wherein X is oxygen (subgroup A).

Another group of compounds of formula I are those wherein X is sulfur (subgroup B).

Within the subgroups A and B those compounds are preferred wherein

R, is C₁-C₃alkyl; or

R₁ is C₁-C₃alkoxy-C₁-C₃alkyl or C₁-C₃haloalkoxy-C₁-C₃alkyl;

R₂ is C₁-C₃haloalkyl; or

R₂ is CF₃, CF₂H, CFH₂, CF₂CI, CF₂CF₃, CCI₃, CH₂CF₃, CH₂CCI₃ or CF₂CF₂CF₃; and

R₃ is fluoro, chloro or bromo (subgroups AC and BD).

Within the subgroup A are those compounds preferred wherein

R₁ is C₁-C₃alkyl;

R₂ is C₁-C₃haloalkyl; and

R₃ is fluoro, chloro or bromo (subgroup A1).

Within the scope of subgroup A1 those compounds of formula I are particularly preferred, wherein

R₂ is CF₃, CF₂H, CFH₂, CF₂CI, CF₂CF₃, CCI₃, CH₂CF₃, CH₂CCI₃ or CF₂CF₂CF₃ (subgroup A2).

Another preferred embodiment of compounds of formula I are those within subgroup A, wherein

R₁ is C₁-C₃haloalkyl;

R₂ is C₁-C₃haloalkyl; and

R₃ is fluoro, chloro or bromo (subgroup A3).

A preferred embodiment of compounds of formula I are those within subgroup A, wherein

 R_1 is C_1 - C_3 alkoxy- C_1 - C_3 alkyl or C_1 - C_3 haloalkoxy- C_1 - C_3 alkyl;

R₂ is C₁-C₃haloalkyl; and

R₃ is fluoro, chloro or bromo (subgroup A4).

Within the scope of subgroup B those compounds of formula I are preferred, wherein

R, is C₁-C₃alkyl;

R₂ is C₁-C₃haloalkyl; and

R₃ is fluoro, chloro or bromo (subgroup B1).

A special group of compounds of formula I within the scope of subgroup B1 are those, wherein

 R_2 is CF_3 , CF_2H , CFH_2 , CF_2CI , CF_2CF_3 , CCI_3 , CH_2CF_3 , CH_2CCI_3 or $CF_2CF_2CF_3$ (subgroup B2).

Within the scope of subgroup B another preferred embodiment of compounds of formula I are those, wherein

R₁ is C₁-C₃haloalkyl;

R₂ is C₁-C₃haloalkyl; and

R₃ is fluoro, chloro or bromo (subgroup B3).

A preferred embodiment of compounds of formula I are those within subgroup B, wherein

 R_1 is C_1 - C_3 alkoxy- C_1 - C_3 alkyl or C_1 - C_3 haloalkoxy- C_1 - C_3 alkyl;

R₂ is C₁-C₃haloalkyl; and

R₃ is fluoro, chloro or bromo (subgroup B4).

Most preferred within the scope of subgroup AC are those compounds wherein

R₁ is CH₃ or CH₂OCH₃; and R₂ is CF₃, CF₂H or CFH₂ (subgroup C).

Particularly preferred within the scope of subgroup C are those compounds wherein R_1 is CH_3 ; and

 R_2 is CF_3 (subgroup C1).

Another preferred embodiment within the scope of subgroup BD are those compounds wherein

R₁ is CH₃ or CH₂OCH₃; and

R₂ is CF₃, CF₂H or CFH₂ (subgroup D).

Within the scope of subgroup D are particularly preferred those compounds wherein $R_{\mbox{\tiny 1}}$ is $CH_{\mbox{\tiny 3}}$; and

R₂ is CF₃ (subgroup D1).

The compounds according to formula I may be prepared according to the following reaction in scheme 1.

Scheme 1

R₂ COOH
$$SOCI_2$$
 or PCI_5 or

P₂ S₅ or Lawesson-reagent solvent: toluene, THF, dioxane T = O° - reflux

The pyrazole carboxylic acid II reacts with an activating agent such thionyl chloride, phosphorous pentachloride or oxalyl chloride to give the corresponding acid chloride in the presence of a solvent at a temperature between 0°C and reflux temperature and a reaction time of 30 minutes to 24 hours. Representative solvents are toluene, benzene, xylene, hexane, cyclohexane chloroform or methylenechloride. The obtained acyl chloride III are normally not isolated. The new carboxamides of formula Ia are preferably obtained by reacting the activated carboxylic acid of formula III with an aromatic amine of formula IV in the presence of a solvent like toluene, benzene, xylene, hexane, cyclohexane chloroform or methylenechloride and in the presence of an acid binding agent like triethylamine, Hünig base, sodium carbonate, potassium carbonate or sodium hydrogencarbonate at a temperature between 0°C and reflux temperature. The pyrazolethioamides Ib are obtained by reacting the pyrazolecarboxamides Ia with phosphorpentasulfid or Lawesson-reagent in a solvent like dioxane, tetrahydrofurane or toluene at a temperature between 0°C and reflux temperature. Preferably the entire reaction sequence of scheme 1 is conducted as a single-vessel reaction.

The compounds according to the formula I may also be prepared according to the following reaction in scheme 1A.

Scheme 1A

The "in situ" prepared pyrazole carboxylic acid chloride III reacts with an orthohalosubstituted phenylamine in the presence of a solvent like toluene, benzene, xylene, hexane, cyclohexane, THF, chloroform or methylenechloride and in the presence of a base like sodium carbonate, sodium hydrogencarbonate, potassium carbonate, Hünig base, triethylamine or pyridine at a temperature between 0°C and reflux temperature. The obtained pyrazolecarboxamide of formula Va reacts with the p-substituted phenyl boronic acid (VI) in the presence of a Pd-catalyst like Pd(P(phenyl)₃)₄, Pd(P(phenyl₃)Cl₂, PdCl₂dppb, Pd₂(dba)₃, Pd(OAc)₂, PdOAc₂/(o-tolyl)₃P, Pd(OAc)₂/dppf, Pd(PhCN)₂Cl₂/Ph₃As, Pd(CH₃CN)₂Cl₂, Pd₂(dba)₃/P(tert.butyl)₃, Pd(OAc)₂/P(tert.butyl)₂biphenyl, Pd(OAc)₂/TPPTS, Pd(OAc)₂/PCy₃, Pd(OAc)₂/P(O-i-Pr)₃, Pd(OAc)₂/2-dimethylamino-2'-dicyclohexylphosphinobiphenyl, Pd(OAc)₂/2-dimethylamino-2'-ditert.butylphosphinobiphenyl,

Pd(OAc)₂/(o-biphenyl)P(cyclohexyl)₂ in a solvent like 1,2-dimethoxyethane/water, DMF, DMA, THF/water, dioxane/water, benzene, toluene, xylene and others and a base like sodium carbonate, sodium hydrogencarbonate, potassium carbonate, cesium carbonate, potassium phosphate, triethylamine, sodium hydroxide, sodium ethylate, sodium tert butylate, silver oxide, barium carbonate, potassium fluoride or cesium fluoride at a temperature between 0°C and reflux temperature.

The pyrazolethioamide lb is obtained by treating the pyrazolecarboxamide Va with P_2S_5 or Lawesson-reagent in a solvent like dioxane, tetrahydrofurane or toluene at a temperature between 0°C and reflux temperature, giving the pyrazolethioamide Vb and subsequent reaction of this pyrazolethioamide Vb with the boronic acid derivative of formula VI in the presence of a Pd-catalyst like $Pd(P(phenyl)_3)_4$, $Pd(P(phenyl)_3)Cl_2$, $PdCl_2dppb$, $Pd_2(dba)_3$, $Pd(OAc)_2$, $PdOAc_2$ /(o-tolyl) $_3P$, $Pd(OAc)_2$ /dppf, $Pd(PhCN)_2Cl_2$ /Ph $_3$ As, $Pd(CH_3CN)_2Cl_2$, $Pd_2(dba)_3$ /P(tert.butyl) $_3$, $Pd(OAc)_2$ /P(tert.butyl) $_2$ biphenyl, $Pd(OAc)_2$ /TPPTS, $Pd(OAc)_2$ /PCy $_3$, $Pd(OAc)_2$ /P(O-i-Pr) $_3$, $Pd(OAc)_2$ /2-dimethylamino-2'-dicyclohexylphosphinobiphenyl, $Pd(OAc)_2$ /2-dimethylamino-2'-ditert.butylphosphinobiphenyl,

Pd(OAc)₂/(o-biphenyl)P(cyclohexyl)₂ in a solvent like 1,2-dimethoxyethane/water, DMF, DMA, THF/water, dioxane/water, benzene, toluene, xylene and others and a base like sodium carbonate, sodium hydrogencarbonate, potassium carbonate, cesium carbonate, potassium phosphate, triethylamine, sodium hydroxide, sodium ethylate, sodium tert.butylate, silver oxide, barium carbonate, potassium fluoride or cesium fluoride at a temperature between 0°C and reflux temperature.

The invention relates also to the compounds of the formulae Va and Vb, wherein R_1 , R_2 and X have the meaning as defined for formula I and R_4 is halogen, preferably chloro, bromo or iodo.

Compounds of formula IV are known from the literature or may be prepared following the scheme 2.

Scheme 2:

R₃

$$\begin{array}{c}
1) \text{ n-BuLi} \\
2) \text{ B(OR)}_3
\end{array}$$

$$X_1 = \text{Br, I} \qquad \text{solvent: THF}$$

$$X_2 \quad (X_2 = \text{Halogen})$$
Red.
$$H_2/\text{cat.}(\text{Pd/C,Ra-Nickel}) \text{ or}$$

$$\begin{array}{c}
Fe/\text{CH}_3\text{COOH} \\
T = \text{RT-reflux} \\
\text{solvent: THF, alcohols, water}
\end{array}$$

The pyrazoles of formula II are known from the literature or may be prepared following the scheme 3.

Scheme 3:

OR' + R:COCI or
$$(R_2OOC)_2$$
 O
$$\frac{\text{pyridine or other base}}{\text{solvent: CHCl}_3 \text{ or CH}_2Cl}_2$$

$$T = 0^{\circ} \text{ C-reflux}$$

$$R' = C_1 - C_6 - \text{alkyl} \text{ or benzyl}$$

$$R_2 - COOH - COOH$$

Surprisingly, it has now been found that the novel compounds of formula I have, for practical purposes, a very advantageous spectrum of activities for protecting plants against diseases that are caused by fungi as well as by bacteria and viruses.

The compounds of formula I can be used in the agricultural sector and related fields of use as active ingredients for controlling plant pests. The novel compounds are distinguished by excellent activity at low rates of application, by being well tolerated by plants and by being environmentally safe. They have very useful curative, preventive and systemic properties and are used for protecting numerous cultivated plants. The compounds of formula I can be used to inhibit or destroy the pests that occur on plants or parts of plants (fruit, blossoms, leaves, stems, tubers, roots) of different crops of useful plants, while at the same time protecting also those parts of the plants that grow later e.g. from phytopathogenic microorganisms.

It is also possible to use compounds of formula I as dressing agents for the treatment of plant propagation material, in particular of seeds (fruit, tubers, grains) and plant cuttings (e.g. rice), for the protection against fungal infections as well as against phytopathogenic fungi occurring in the soil.

The compounds I are, for example, effective against the phytopathogenic fungi of the following classes: Fungi imperfecti (e.g. Botrytis, Pyricularia, Helminthosporium, Fusarium, Septoria, Cercospora and Alternaria) and Basidiomycetes (e.g. Rhizoctonia, Hemileia, Puccinia). Additionally, they are also effective against the Ascomycetes classes (e.g. Venturia and Erysiphe, Podosphaera, Monilinia, Uncinula) and of the Oomycetes classes (e.g. Phytophthora, Pythium, Plasmopara). Outstanding activity has been observed against powdery mildew (Erysiphe spp.). Furthermore, the novel compounds of formula I are effective against phytopathogenic bacteria and viruses (e.g. against Xanthomonas spp, Pseudomonas spp, Erwinia amylovora as well as against the tobacco mosaic virus).

Within the scope of present invention, target crops to be protected typically comprise the following species of plants: cereal (wheat, barley, rye, oat, rice, maize, sorghum and related species); beet (sugar beet and fodder beet); pomes, drupes and soft fruit (apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries and blackberries); leguminous plants (beans, lentils, peas, soybeans); oil plants (rape, mustard, poppy, olives, sunflowers,

coconut, castor oil plants, cocoa beans, groundnuts); cucumber plants (pumpkins, cucumbers, melons); fibre plants (cotton, flax, hemp, jute); citrus fruit (oranges, lemons, grapefruit, mandarins); vegetables (spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, paprika); lauraceae (avocado, cinnamomum, camphor) or plants such as tobacco, nuts, coffee, eggplants, sugar cane, tea, pepper, vines, hops, bananas and natural rubber plants, as well as ornamentals.

The compounds of formula I are used in unmodified form or, preferably, together with the adjuvants conventionally employed in the art of formulation. To this end they are conveniently formulated in known manner to emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granulates, and also encapsulations e.g. in polymeric substances. As with the type of the compositions, the methods of application, such as spraying, atomising, dusting, scattering, coating or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances. The compositions may also contain further adjuvants such as stabilizers, antifoams, viscosity regulators, binders or tackifiers as well as fertilizers, micronutrient donors or other formulations for obtaining special effects.

Suitable carriers and adjuvants can be solid or liquid and are substances useful in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, thickeners, binders or fertilizers. Such carriers are for example described in WO 97/33890.

The compounds of formula I are normally used in the form of compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession with further compounds. These further compounds can be e.g. fertilizers or micronutrient donors or other preparations which influence the growth of plants. They can also be selective herbicides as well as insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, if desired together with further carriers, surfactants or application promoting adjuvants customarily employed in the art of formulation.

The compounds of formula I can be mixed with other fungicides, resulting in some cases in unexpected synergistic activities.

Mixing components which are particularly preferred are azoles such as azaconazole, bitertanol, propiconazole, difenoconazole, diniconazole, cyproconazole, epoxiconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imazalil, imibenconazole, ipconazole, tebuconazole, tetraconazole, fenbuconazole, metconazole, myclobutanil, perfurazoate, penconazole, bromuconazole, pyrifenox, prochloraz, triadimefon, triadimenol, triflumizole or triticonazole; pyrimidinyl carbinoles such as ancymidol, fenarimol or nuarimol; 2-aminopyrimidine such as bupirimate, dimethirimol or ethirimol; morpholines such as dodemorph, fenpropidin, fenpropimorph, spiroxamin or tridemorph; anilinopyrimidines such as cyprodinil, pyrimethanil or mepanipyrim; pyrroles such as fenpicionil or fludioxonil; phenylamides such as benalaxyl, furalaxyl, metalaxyl, R-metalaxyl, ofurace or oxadixyl; benzimidazoles such as benomyl, carbendazim, debacarb, fuberidazole or thiabendazole; dicarboximides such as chlozolinate, dichlozoline, iprodine, myclozoline, procymidone or vinclozolin; carboxamides such as carboxin, fenfuram, flutolanil, mepronil, oxycarboxin or thifluzamide; guanidines such as guazatine, dodine or iminoctadine; strobilurines such as azoxystrobin, kresoxim-methyl, metominostrobin, SSF-129, methyl 2-[(2-trifluoromethyl)-pyrid-6-yloxymethyl]-3methoxyacrylate or $2-[\alpha{[(\alpha-methyl-3-trifluoromethyl-benzyl)imino]-oxy}-o-tolyl]-glyoxylic acid$ methylester-O-methyloxime (trifloxystrobin); dithiocarbamates such as ferbam, mancozeb, maneb, metiram, propineb, thiram, zineb or ziram; N-halomethylthio-dicarboximides such as captafol, captan, dichlofluanid, fluoromide, folpet or tolyfluanid; copper compounds such as Bordeaux mixture, copper hydroxide, copper oxychloride, copper sulfate, cuprous oxide, mancopper or oxine-copper; nitrophenol derivatives such as dinocap or nitrothal-isopropyl; organo phosphorous derivatives such as edifenphos, iprobenphos, isoprothiolane, phosdiphen, pyrazophos or toclofos-methyl; and other compounds of diverse structures such as acibenzolar-S-methyl, anilazine, blasticidin-S, chinomethionat, chloroneb, chlorothalonil, cymoxanil, dichlone, diclomezine, dicloran, diethofencarb, dimethomorph, dithianon, etridiazole, famoxadone, fenamidone, fentin, ferimzone, fluazinam, flusulfamide, fenhexamid, fosetyl-aluminium, hymexazol, kasugamycin, methasulfocarb, pencycuron, phthalide, polyoxins, probenazole, propamocarb, pyroquilon, quinoxyfen, quintozene, sulfur, triazoxide, tricyclazole, triforine, validamycin, (S)-5-methyl-2-methylthio-5-phenyl-3-phenyl-amino-3,5dihydroimidazol-4-one (RPA 407213), 3,5-dichloro-N-(3-chloro-1-ethyl-1-methyl-2oxopropyl)-4-methylbenzamide (RH 7281), N-allyl-4,5-dimethyl-2-trimethylsilylthiophene-3carboxamide (MON 65500), 4-chloro-4-cyano-N,N-dimethyl-5-p-tolylimidazole-1-sulfonamide (IKF-916), N-(1-cyano-1,2-dimethylpropyl)-2-(2,4-dichlorophenoxy)-propionamide (AC 382042), or iprovalicarb (SZX 722).

A preferred method of applying a compound of formula I, or an agrochemical composition which contains at least one of said compounds, is foliar application. The frequency of application and the rate of application will depend on the risk of infestation by the corresponding pathogen. However, the compounds of formula I can also penetrate the plant through the roots via the soil (systemic action) by drenching the locus of the plant with a liquid formulation, or by applying the compounds in solid form to the soil, e.g. in granular form (soil application). In crops of water rice such granulates can be applied to the flooded rice field. The compounds of formula I may also be applied to seeds (coating) by impregnating the seeds or tubers either with a liquid formulation of the fungicide or coating them with a solid formulation.

The formulation, i.e. the compositions containing the compound of formula I and, if desired, a solid or liquid adjuvant, are prepared in known manner, typically by intimately mixing and/or grinding the compound with extenders, e.g. solvents, solid carriers and, optionally, surface active compounds (surfactants).

The agrochemical formulations will usually contain from 0.1 to 99 % by weight, preferably from 0.1 to 95 % by weight, of the compound of formula I, 99.9 to 1 % by weight, preferably 99.8 to 5 % by weight, of a solid or liquid adjuvant, and from 0 to 25 % by weight, preferably from 0.1 to 25 % by weight, of a surfactant.

Advantageous rates of application are normally from 5 g to 2 kg of active ingredient (a.i.) per hectare (ha), preferably from 10 g to 1 kg a.i./ha, most preferably from 20 g to 600 g a.i./ha. When used as seed drenching agent, convenient dosages are from 10 mg to 1 g of active substance per kg of seeds.

Whereas it is preferred to formulate commercial products as concentrates, the end user will normally use dilute formulations.

The following non-limiting Examples illustrate the above-described invention in more detail. Temperatures are given in degrees Celsius. The following abbreviations are used: m.p.= melting point; b.p.= boiling point. "NMR" means nuclear magnetic resonance spectrum. MS stands for mass spectrum. "%" is percent by weight, unless corresponding concentrations are indicated in other units.

Example 1

1-Methyl-3-trifluoromethyl-1H-pyrazole-4-carboxylic acid (4'-chlorobiphenyl-2-yl) amide

A solution of 1-methyl-3-trifluoromethyl-1H-pyrazole-4-carboxylic acid (0.68 g) and oxalyl chloride (0.49 g) in methylene chloride (30 ml) is stirred for 2 hours at room temperature in the presence of a catalytic amount of DMF. The resulting acid chloride solution is then added to a solution of 4'-chlorobiphenyl-2-ylamine (0.71 g) and triethylamine (0.36 g) in 15 ml of methylene chloride at 0°C. The reaction mixture is then stirred for 4 hours at room temperature. After distilling off the solvent in a water-jet-vacuum, the residue is taken up in ethylacetate/water. The ethylacetate phase is extracted twice with water. After drying of the organic phase with Na₂SO₄, the solvent is distilled off in a water-jet-vacuum and the residue purified by column chromatography (silica gel; eluant: ethylacetate/hexane=1:1). 0.8 g of 1-methyl-3-trifluoromethyl-1H-pyrazole-4-carboxylic acid (4'-chlorobiphenyl-2-yl) amide are obtained in the form of slightly brownish crystals having a melting point of 144-146°C.

Example 1 (Suzuki-coupling)

1-Methyl-3-trifluoromethyl-1H-pyrazole-4-carboxylic acid (4'-chlorobiphenyl-2-yl) amide

A solution of 1-methyl-3-trifluoromethyl-1H-pyrazole-4-carboxylic acid(2-bromo-phenyl)amide (0.64 g), 4-chlorobenzene boronic acid (0.29 g), powdered sodium carbonate (0.25 g) and tetrakis(triphenylphosphine) palladium (0.04 g) in 25 ml 1,2-dimethoxyethane (DME) and 2 ml water is heated at reflux temperature for 20 hours. After cooling, the solvent is removed in a water jet vacuum and the residue taken up in ethylacetate/water. The ethylacetate phase is washed twice with water and brine and then dried over sodium sulfate. Distilling off the solvent left the raw material which can be further purified by column chromatography (silicagel; eluant: ethylacetate/hexane 1:1) or recrystallization from TBME/hexane. The yield after purification is 0.6 g; m.p. = 145-146°C.

The following compounds of formula I are prepared in a similar way, using analogous methods.

Table 1					
Compd.	R ₁	R ₂	R_3	X	phys.data
No.					m.p. °C
1	CH₃	CF₃	CI	0	144-146
2	CH₃	CF₃	F	Ο .	149-151
3	CH ₃	CF₃	Br	0	
4	CH ₃	CF ₃	I	0	
5	CH ₃	CF₂H	CI	0	161-162
6	CH₃	CF₂H	F	0	144-145
7	CH₃	CF₂H	Br	0	
8	CH₃	CF₂H	1	0	
9	CF ₃	CF ₃	CI	0	
10	CF₃	CF ₃	F	0	
11	СН₃	CFH₂	CI	0_	
12	CH₃	CFH₂	F	0	
13	CF₂H	CF ₃	F	0	
14	CF₂H	CF ₃	CI	0	
15	CFH₂	CF ₃	F	0	
16	CFH ₂	CF ₃	CI	Ο _.	
17	CH₃	CF ₂ CF ₃	F	0	146

WO 01/42223 PCT/EP00/11195

- 15 -

18	CH₂OCH₃	CF ₃	CI	0	
19	CH₂OCH₃	CF ₃	F ·	0	
20	CH₂OCF₃	CF ₃	CI	0 ,	
21	CH₂OCF₃	CF ₃	F	0	
22,	CH ₃	CF ₃	CI	S	85-86
23	CH ₃	CF ₃	F.	s	125-127
24	CH₃	CF ₃	Br	S	
25	CH₃	CF ₃	ŀ	S	
26	CH₃	CF₂H	F	S	
27	CH₃	CF₂H	CI	S	
28	CH₃	CF₂H	Br	. \$	
29	CH₃	CF₂H	l l	*S	
30	CF ₃	CF ₃	CI	S	
31	CF ₃	CF ₃	F	S	
32	CH₂OCH₃	CF ₃	CI	S	
33	CH₂OCH₃	CF ₃	F	S	
34	CH₂OCF₃	CF ₃	CI	·S	
35	CH₂OCF₃	CF ₃	F	s ·	
36	CH₃	CFH₂	CI	S	
37	CH ₃	CFH₂	F	S	
38	CH₃	CF ₂ CF ₃	F	S	

Table 2

Compd.	R ₁	R_2	R ₄	X	phys.data
No.					m.p. °C
39	CH ₃	CF₂H	CI .	0	
40	CH ₃	CF₂H	Br	0	
41	CH ₃	CF₂H	F	0	
42	CH ₃	CF ₃	CI	0	120-121
43	CH ₃	CF ₃	Br	0	127-128
44	CH ₃	CF₃	i	0	176-177
45	CH ₃	CF₃CF₂	Br	o `	
46	CH₂OCH₃	CF₂H	CI	0	
47	CH₂OCH₃	CF₂H	Br	Ο.	
48	CH₂OCH₃	CF₂H	1	0	
49	CH₂OCH₃	CF ₃	CI ·	0	
50	CH₂OCH₃	CF ₃	Br	0	
51	CH₂OCH₃	CF ₃	1	0	
52	CH₃	CF₂H	CI	S	
53	CH₃	CF₂H	Br	S	
54	CH ₃	CF₂H	1	s	
55	CH ₃	CF ₃	CI	s	107-108
56	CH ₃	CF ₃	Br	S	109-110
57	CH ₃	CF ₃	1	S ⁻	98-99
58	CH ₃	CF ₃ CF ₂	Br	S	102-103
59	CH₂OCH₃	CF₂H	CI	S	
60	CH₂OCH₃	CF₂H	Br	S	
61	CH₂OCH₃	CF₂H	1	S	
62	CH₂OCH₃	CF ₃	CI	S	

WO 01/42223 PCT/EP00/11195

- 17 -

 CH_2OCH_3 CF_3 Br S CH_2OCH_3 CF_3 I S

Formulation Examples for compounds of formula I

Working procedures for preparing formulations of the compounds of formula I such as Emulsifiable concentrates, Solutions, Granulates, Dusts and Wettable powders are described in WO 97/33890.

Biological Examples: Fungicidal actions

Example B-1: Action against Puccinia recondita / wheat (Brownrust on wheat)

1 week old wheat plants cv. Arina are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application wheat plants are inoculated by spraying a spore suspension (1 x 10⁵ uredospores/ml) on the test plants. After an incubation period of 2 days at 20° C and 95% r. h. plants are kept in a greenhouse for 8 days at 20° C and 60% r.h. The disease incidence is assessed 10 days after inoculation. Compounds of Table 1 show good activity in this test (< 20% infestation). Infestation is prevented virtually completely (0-5% infestation) with compounds 1, 2, 5, 6, 17, 22 and 23.

Example B-2: Action against Podosphaera leucotricha / apple (Powdery mildew on apple)

5 week old apple seedlings cv. McIntosh are treated with the formulated test compound (0.002% active ingredient) in a spray chamber. One day after application apple plants are inoculated by shaking plants infected with apple powdery mildew above the test plants. After an incubation period of 12 days at 22° C and 60% r. h. under a light regime of 14/10 h (light/dark) the disease incidence is assessed.

Compounds of Table 1 show good activity in this test. The compounds 1, 2, 5, 6, 17, 22 and 23 exhibit strong efficacy (< 20% infestation).

Example B-3: Action against Venturia inaequalis / apple (Scab on apple)

4 week old apple seedlings cv. McIntosh are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application apple plants are

inoculated by spraying a spore suspension (4 x 10^5 conidia/ml) on the test plants. After an incubation period of 4 days at 21° C and 95% r. h. the plants are placed for 4 days at 21° C and 60% r. h. in a greenhouse. After another 4 day incubation period at 21° C and 95% r. h. the disease incidence is assessed.

Compounds of Table 1 show good activity in this test. The compounds 1, 2, 5, 6, 17, 22 and 23 exhibit strong efficacy (< 20% infestation).

Example B-4: Action against Erysiphe graminis / barley (Powdery mildew on barley)

1 week old barley plants cv. Express are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application barley plants are inoculated by shaking powdery mildew infected plants above the test plants. After an incubation period of 6 days at 20° C / 18°C (day/night) and 60% r. h. in a greenhouse the disease incidence is assessed.

Compounds of Table 1 show good activity in this test. The compounds 1, 2, 5, 6, 17, 22 and 23 exhibit strong efficacy (< 20% infestation).

Example B-5: Action against Botrytis cinerea / apple (Botrytis on apple fruits)

In an apple fruit cv. Golden Delicious 3 holes are drilled and each filled with 30μ l droplets of the formulated test compound (0.002% active ingredient). Two hours after application 50μ l of a spore suspension of *B. cinerea* (4 x 10^5 conidia/ml) are pipetted on the application sites. After an incubation period of 7 days at 22° C in a growth chamber the disease incidence is assessed.

Compounds of Table 1 show good activity in this test. The compounds 1, 2, 5, 6, 17, 22 and 23 exhibit very strong efficacy (< 10% infestation).

Example B-6: Action against Botrytis cinerea / grape (Botrytis on grapes)

5 week old grape seedlings cv. Gutedel are treated with the formulated test compound (0.002% active ingredient) in a spray chamber. Two days after application grape plants are inoculated by spraying a spore suspension (1 x 10⁶ conidia/ml) on the test plants. After an incubation period of 4 days at 21° C and 95% r. h. in a greenhouse the disease incidence is assessed.

Compounds of Table 1 show good activity in this test. The compounds 1, 2, 5, 6, 17, 22 and 23 exhibit very strong efficacy (< 10% infestation).

- 19 -

Example B-7: Action against Botrytis cinerea / tomato (Botrytis on tomatoes)

4 week old tomato plants cv. Roter Grom are treated with the formulated test compound (0.002% active ingredient) in a spray chamber. Two days after application tomato plants are inoculated by spraying a spore suspension (1 x 10⁵ conidia/ml) on the test plants. After an incubation period of 4 days at 20° C and 95% r. h. in a growth chamber the disease incidence is assessed.

Compounds of Table 1 show good activity in this test. The compounds 1, 2, 5, 6, 17, 22 and 23 exhibit very strong efficacy (< 10% infestation).

Example B-8: Action against Pyrenophora teres / barley (Net blotch on barley)

1 week old barley plants cv. Express are treated with the formulated test compound (0.002% active ingredient) in a spray chamber. Two days after application barley plants are inoculated by spraying a spore suspension (3 x 10⁴ conidia/ml) on the test plants. After an incubation period of 2 days at 20° C and 95% r. h. plants are kept for 2 days at 20° C and 60% r.h. in a greenhouse. The disease incidence is assessed 4 days after inoculation. Compounds of Table 1 show good activity in this test. The compounds 1, 2, 5, 6, 17, 22 and 23 exhibit strong efficacy (< 20% infestation).

Example B-9: Action against Septoria nodorum / wheat (Septoria leaf spot on wheat)

1 week old wheat plants cv. Arina are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application wheat plants are inoculated by spraying a spore suspension (5 x 10⁵ conidia/ml) on the test plants. After an incubation period of 1 day at 20° C and 95% r. h. plants are kept for 10 days at 20° C and 60% r.h. in a greenhouse. The disease incidence is assessed 11 days after inoculation. Compounds of Table 1 show good activity in this test. The compounds 1, 2, 5, 6, 17, 22 and 23 exhibit strong efficacy (< 20% infestation).

What is claimed is

1. A pyrazolecarboxamide of formula I

$$R_2$$
 N
 H
 R_3
 (1)

wherein

X is oxygen or sulfur;

 R_1 is C_1-C_3 alkyl, C_1-C_3 haloalkyl, C_1-C_3 alkoxy- C_1-C_3 alkyl or C_1-C_3 haloalkoxy- C_1-C_3 alkyl;

R₂ is C₁-C₃haloalkyl; and

R₃ is halogen.

- 2. A compound of formula I according to claim 1, wherein X is oxygen.
- 3. A compound of formula I according to claim 1, wherein X is sulfur.
- 4. A compound of formula I according to claims 2 or 3, wherein

R₁ is C₁-C₃alkyl; and

R₃ is fluoro, chloro or bromo.

5. A compound of formula I according to claim 4, wherein

R₂ is CF₃, CF₂H, CFH₂, CF₂CF₃, CCI₃, CH₂CF₃, CH₂CCI₃ or CF₂CF₂CF₃.

6. A compound of formula I according to claims 2 or 3, wherein

R₁ is C₁-C₃haloalkyl; and

R₃ is fluoro, chloro or bromo.

- 7. A process for the preparation of compounds of formula I which comprises reacting the starting materials according
- a) to the scheme

wherein X, R₁, R₂ and R₃ are as defined for formula I in claim 1; or

b) according to the scheme

$$R_2$$
 COCI R_2 R_4 R_4 R_4 Solvent, base R_1 R_1 R_2 R_3 R_4 R_4 R_4 R_5 R_5 R_6 R_7 R_8 R_8

c) according to the sheme

$$R_2$$
 COCI H_2N R_4 solvent, base R_1 V_2 R_4 V_4 R_4 R_5 R_5 R_7 R_8 R_8 R_8 R_8 R_8 R_8 R_9 $R_$

wherein R_1 , R_2 and R_3 are as defined for formula I in claim 1 and R_4 is chloro, bromo or iodo.

8. A composition for controlling microorganisms and preventing attack and infestation of plants therewith, wherein the active ingredient is a compound as claimed in claim 1 together with a suitable carrier.

- 9. A method of controlling or preventing infestation of cultivated plants by phytopathogenic microorganisms by application of a compound of formula I as claimed in claim 1 to plants, to parts thereof or the locus thereof.
- 10. A compound of formula V

$$R_2$$
 N
 N
 R_4

wherein

X is oxygen or sulfur;

 $R_1 \text{ is } C_1 - C_3 \text{alkyl, } C_1 - C_3 \text{haloalkyl, } C_1 - C_3 \text{alkoxy-} C_1 - C_3 \text{alkyl or } C_1 - C_3 \text{haloalkoxy-} C_1 - C_3 \text{alkyl, } C_1 - C_3 \text{alkyl, } C_2 - C_3 \text{alkyl, } C_2 - C_3 \text{alkyl, } C_3 -$

R₂ is C₁-C₃haloalkyl; and

R₄ is chloro, bromo or iodo.

AMENDED CLAIMS

[received by the International Bureau on 22 February 2001 (22.02.01); original claim 1 amended; remaining claims unchanged (1 page)]

What is claimed is

1. A pyrazolecarboxamide of formula I

$$R_2$$
 N
 N
 R_1
 R_3
 (1)

wherein

X is oxygen or sulfur;

R₁ is C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy-C₁-C₃alkyl or C₁-C₃haloalkoxy-C₁-C₃alkyl;

R₂ is C₁-C₃haloalkyl; and

 R_3 is halogen; with the proviso that if R_1 is CH_3 , R_2 is CF_3 and X is oxygen, then R_3 is bromo or iodo.

- 2. A compound of formula I according to claim 1, wherein X is oxygen.
- 3. A compound of formula I according to claim 1, wherein X is sulfur.
- 4. A compound of formula I according to claims 2 or 3, wherein R_1 is $C_1\text{-}C_3$ alkyl; and

R₃ is fluoro, chloro or bromo.

- 5. A compound of formula I according to claim 4, wherein R₂ is CF₃, CF₂H, CFH₂, CF₂CF₃, CCI₃, CH₂CF₃, CH₂CCI₃ or CF₂CF₂CF₃.
- 6. A compound of formula I according to claims 2 or 3, wherein

R, is C₁-C₃haloalkyl; and

R₃ is fluoro, chloro or bromo.

AMENDED SHEET (ARTICLE 19)

INTERNATIONAL SEARCH REPORT

Interr and Application No PCT/EP 00/11195

		•	. 0.7 21 007 11133
A. CLASS IPC 7	CO7D231/14 A01N43/56		
According t	to International Patent Classification (IPC) or to both national c	lassification and IPC	
B. FIELDS	SEARCHED		
Minimum d IPC 7	ocumentation searched (classification system followed by clas CO7D A01N	silication symbols)	
Documenta	ation searched other than minimum documentation to the exten	I that such documents are include	ed in the fields searched
	data base consulted during the international search (name of data in ternal, CHEM ABS Data, BEILSTEIN		earch terms used)
C DOCUM	EENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of	the relevant nassanes	Relevant to claim No.
Odicyory	Oldier of desertein, with a decirion, where appropriate, or	me reievam passages	- Helevall to dann No.
х	EP 0 589 301 A (BASF AG) 30 March 1994 (1994-03-30) page 30; claim 1; examples 37-		1-10
Y	WO 97 08148 A (BASF AG ;EICKE RANG HARALD (DE); HARREUS ALB 6 March 1997 (1997-03-06) page 25-26; claim 1; examples table 3	RECHT (DE))	1-10
Υ	EP 0 545 099 A (BASF AG) 9 June 1993 (1993-06-09) example 3.42; table 3		1-10
Y	WO 93 11117 A (MONSANTO CO) 10 June 1993 (1993-06-10) page 40; claim 1		1-10
Furt	her documents are listed in the continuation of box C.	Palent family me	mbers are listed in annex.
"A" docume consid "E" earlier filing c "L" docume which citatio "O" docume	ategories of cited documents: ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means	or priority date and no cited to understand the invention "X" document of particular cannot be considered involve an inventive s "Y" document of particular cannot be considered document is combine	ed after the international filing date of in conflict with the application but the principle or theory underlying the relevance; the claimed invention I novel or cannot be considered to the underlying the claimed invention relevance; the claimed invention to involve an inventive step when the d with one or more other such docu-
P docume	ent published prior to the international filing date but han the priority date claimed	in the art. *&* document member of t	tion being obvious to a person skilled the same patent family
Date of the	actual completion of the international search	Date of mailing of the	international search report
3	1 January 2001	06/02/200	1
Name and r	malling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax. (+31-70) 340-3016	Authorized officer Lauro, P	

Form PCT/ISA/210 (second sheet) (July 1992)

2

...ormation on patent family members

PCT/EP 00/11195

		. TCI/EF	00/11195
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0589301 A	30-03-1994	DE 4231517 A AU 669732 B AU 4742293 A CA 2105503 A HU 68762 A,B JP 6199803 A NZ 248694 A US 5438070 A	24-03-1994 20-06-1996 31-03-1994 22-03-1994 28-07-1995 19-07-1994 28-03-1995 01-08-1995
WO 9708148 A	06-03-1997	DE 19531813 A AU 6928596 A EP 0847388 A JP 11511449 T US 5998450 A	06-03-1997 19-03-1997 17-06-1998 05-10-1999 07-12-1999
EP 0545099 A	09-06-1993	AT 149487 T AU 656243 B AU 2855492 A CA 2081935 A CZ 9203448 A DE 59208113 D DK 545099 T ES 2098421 T GR 3023336 T HU 213622 B IL 103614 A JP 5221994 A NZ 245194 A PL 296677 A SK 344892 A US 5480897 A US 5589493 A US 5589493 A US 5330995 A ZA 9208977 A	15-03-1997 27-01-1995 27-05-1993 23-05-1993 13-10-1993 10-04-1997 24-03-1997 01-05-1997 29-08-1997 28-08-1997 24-09-1998 31-08-1993 27-02-1996 18-10-1993 08-03-1995 02-01-1996 17-09-1996 31-12-1996 19-07-1994 19-05-1994
WO 9311117 A	10-06-1993	US 5223526 A AT 149490 T AU 657598 B AU 3240793 A BR 9206869 A CA 2123122 A CZ 9401260 A DE 69217997 D DE 69217997 T EP 0623113 A HU 67795 A JP 7501549 T LT 234 A MD 940085 A MX 9207038 A MX 9207038 A NZ 246269 A SI 9200352 A SK 67894 A TR 26592 A ZA 9209441 A ZW 18792 A CN 1078234 A	29-06-1993 15-03-1997 16-03-1995 28-06-1993 28-11-1995 10-06-1993 15-02-1995 10-04-1997 04-09-1997 09-11-1994 28-04-1995 16-02-1995 15-06-1994 30-06-1995 01-06-1993 26-07-1995 30-06-1993 08-02-1995 15-03-1995 15-03-1995 25-08-1993 10-11-1993