

Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche Corso di Laurea in Ingegneria Informatica

Prova finale di laurea

Analisi comparativa di immagini SNOM e AFM di batteri tramite image processing per l'estrazione di informazioni morfologiche

Relatore Laureando

Prof.ssa Gabriella Cincotti

Davide Pierotti 562733

Roma, Luglio 2025 Anno Accademico 2024/2025

Ringraziamenti

Per prima cosa, desidero ringraziare la mia relatrice Gabriella Cincotti, che mi ha guidato, con infinita pazienza, nella stesura dell'elaborato. Grazie per i suoi preziosi consigli e per la sua disponibilità. Grazie per avermi fornito spunti fondamentali nella stesura di questo lavoro e per avermi indirizzato nei momenti di indecisione.

Un ringraziamento speciale va ai miei genitori, Roberto e Donatella, a cui dedico questo lavoro. Senza di voi non sarei mai potuto arrivare a questo importante traguardo.

Per finire, un ringraziamento ai miei amici, la mia ottima scusa per giustificare il fuori corso!

Indice

In	trod	uzione		1
1	Tec	niche (di microscopia a super-risoluzione	2
	1.1	1 Microscopi ottici		2
		1.1.1	Apertura numerica	3
	1.2	Micro	scopio elettronico	4
	1.3	Micro	scopio a effetto tunnel	6
	1.4	Atom	ic Force Microscopy	6
		1.4.1	Modalità a contatto	8
		1.4.2	Modalità a contatto infermittente	9
		1.4.3	Modalità senza contatto	9
		1.4.4	Sistema di controllo	11
	1.5	Scann	ing Near-field Optical Microscopy	12
		1.5.1	Aperture SNOM	13
		1.5.2	Apertureless SNOM	15
2	Gig	aScien	ace e Batteri	18
	2.1	SSNO	MBACTER	18
	2.2	Batte	ri	20
		2.2.1	Morfologia	20
		2.2.2	Parete cellulare	21
		2.2.3	Fattori di virulenza	22
		2.2.4	Adesione	23
3	Ana	alisi co	on MATLAB	25
		3.0.1	Analisi correlativa	25

4 Conclusioni	27
Lista di Termini e Acronimi	28

Elenco delle tabelle

2.1	Tipi di immagini presenti nel dataset	19
2.2	Lista dei ceppi batterici esaminati in SSNOMBACTER	24

Elenco delle figure

1.1	Principio di funzionamento di un microscopio ottico composto	3
1.2	Obiettivi con diverse aperture	4
1.3	Principio di funzionamento dei microscopi TEM e SEM $\ \ .$	5
1.4	Principio di funzionamento di un microscopio a effetto tunnel $\ \ldots \ \ldots$	6
1.5	Punta di un microscopio AFM vista al microscopio SEM	7
1.6	Principio di funzionamento di un microscopio AFM	8
1.7	Modalità di funzionamento di un microscopio AFM	8
1.8	Grafico delle forze di van der Waals secondo il modello di Lennard-Jones	10
1.9	Diagramma di un controllore PID ad anello chiuso	11
1.10	Principio di funzionamento di un microscopio SNOM	13
1.11	Ingrandimento sull'apertura della punta in un microscopio a-SNOM .	14
1.12	Modalità di illuminazione di un microscopio a-SNOM	14
1.13	Modelli di dipoli usati per elaborare le radiazioni nel campo vicino .	16
1.14	Sistema di rilevazione a pseudo-eterodina per microscopia s-SNOM $$.	17
2.1	Tipiche forme di aggregati batterici	20
2.2	Rappresentazione schematica del rivestimento cellulare	22
2.3	Un esemplare di ${\it Escherichia~Coli}$ visto al microscopio s-SNOM $$. $$.	23
3.1	Sistema multimodale per l'acquisizione di immagini correlative	26

Introduzione

Sin dal 17° secolo, in cui Antonie van Leeuwenhoek pose le basi della Microbiologia^[1,2,3], i microscopi ottici sono stati di vitale importanza nello sviluppo della nostra comprensione degli organismi microscopici. In tempi recenti, il raggiungimento del limite teorico della risoluzione spaziale dei microscopi ottici convenzionali, proporzionale alla lunghezza d'onda della luce, ha favorito lo sviluppo di nuovi dispositivi ottici che operano nel campo prossimo, come i microscopi Scanning Near-field Optical Microscopy (SNOM)^[4].

Nel 2020 è stato pubbicato sulla rivista GigaScience un set di oltre 4000 immagini di 15 specie di batteri diverse acquisite con un microscopio NeaSNOM^[5]. I batteri rimangono tuttora un grave problema per la salute pubblica, anche nei paesi sviluppati, per questo tra le specie esaminate in questo articolo ci sono anche batteri del gruppo ESKAPE, che sono resistenti agli antibiotici o sono stati identificati come patogeni opportunisti.^[6]

In questa tesi vengono analizzate varie tecniche di elaborazione per estrarre informazioni utili, anche in modo automatico, da queste immagini, partendo dalle diverse modalità di acquisizione e quali proprietà del campione possono essere registrate. Dopo aver discusso le procedure di elaborazione utilizzate, e come variano in base al tipo di immagine presa in considerazione, vengono tratte le conclusioni su quali caratteristiche possono essere estratte e quali tipi di immagini acquisite sono più utili al lavoro.

Questo è da riscrivere alla fine

Capitolo 1

Tecniche di microscopia a super-risoluzione

1.1 Microscopi ottici

I primi microscopi furono costruiti nel 17° secolo, oltre 400 anni fa e furono utilizzati per vedere per la prima volta i microrganismi che abitano la Terra. In quest'epoca ebbe inizio lo studio della Microbiologia. Lo studioso Robert Hooke osservò le pareti cellulari e usò per la prima volta il termine "cellula" [7,8]. Nel 1663 Antoine van Leeuwenhoek fabbricò artigianalmente dei microscopi semplici, a singola lente, con ingrandimenti molto superiori rispetto a quelli esistenti a quell'epoca e fu il primo ad osservare microrganismi, come batteri, protozoi e globuli rossi. [1,2,3,9]

Il microscopio ottico composto ingrandisce l'immagine del campione usando due o più lenti. Il campione viene illuminato usanto una sorgente di luce sul lato opposto all'obiettivo (microscopia a luce trasmessa) oppure sullo stesso lato (microscopia a luce riflessa).

Il sistema più semplice è composto da due lenti, una lente obiettivo vicina al campione da esaminare, e una lente oculare vicina all'osservatore. Il campione è prima messo a fuoco dalla lente obiettivo dentro al microscopio in un'immagine reale, che è creata dalla convergenza dei raggi di luce, poi questa immagine viene nuovamente ingrandita dalla lente oculare che crea una immagine virtuale, generata dalle proiezioni di raggi divergenti. L'osservatore quindi vede un'immagine ingrandita, invertita e virtuale del campione esaminato.

Il microscopio ottico composto ha continuato ad evolversi fino ad oggi, dando

Figura 1.1: Principio di funzionamento di un microscopio ottico composto

origine a numerose varianti per scopi più specializzati, come il microscopio a contrasto di fase (PCM)^[10] o il microscopio confocale (CLSM)^[11]. In generale, oggi la microscopia ottica ha raggiunto prestazioni molto elevate, sia dal punto di vista ottico che meccanico, ma la cui risoluzione spaziale è rimasta limitata dal principio di diffrazione della luce.

1.1.1 Apertura numerica

Il primo a definire questo limite fu $Ernst\ Abbe$ nel 1881, quando pubblicò il suo lavoro sulla misura dell'apertura dei microscopi. [12] Tale limite, chiamato apertura numerica (NA), misura l'angolo di accettazione massimodei raggi da parte di una lente, ed è usato in microscopia come parametro per valutarne la risoluzione delle ottiche. L'apertura numerica è definito come il prodotto tra l'indice di rifrazione n e il seno dell'apertura angolare della lente.

$$NA = n\sin\theta\tag{1.1}$$

Da questa formula, Abbe continuò il suo lavoro arrivando a definire anche il potere risolutivo, cioè la distanza minima tra due oggetti diversi affinché possano essere distinti.^[13]

$$d = \frac{\lambda}{2NA} = \frac{\lambda}{2n\sin\theta} \tag{1.2}$$

Quando l'aria è usata come mezzo di trasmissione, si ha un indice di rifrazione pari a 1, mentre si può arrivare fino a circa n=1.5 immergendo il campione e l'obiettivo in olio. L'apertura angolare massima teorica è di 180°, il che si traduce in un valore di $\theta=90^\circ$, tuttavia le lenti presenti ad oggi in commerco presentano un'apertura angolare di 144°, che corrisponde a un valore di sin $(\theta=72^\circ)\approx 0.95$. [14]

Figura 1.2: Obiettivi con diverse aperture

Per migliorare il potere risolutivo oltre il limite dei 250 nm, per le lunghezze d'onda dello spettro visibile, si possono usare onde elettromagnetiche con lunghezza minore, come i raggi X o i raggi ultravioletti, oppure raggi di altra natura, come i fasci di elettroni. Queste tecniche portano a risoluzioni maggiori ma presentano anche delle criticità, come una scarsa risposta da parte del campione oppure tossicità. [15]

1.2 Microscopio elettronico

La scoperta che i raggi di elettroni si comportano come onde con lunghezze d'onda molto più corte della luce visibile aprì nuove possibilità per l'osservazione dei dettagli microscopici. I primi prototipi di microscopi lettronici furono realizzati da Max Knoll e Ernst Ruska^[16] e già nel 1933 furono in grado di osservare strutture oltre il limite imposto dai microscopi ottici tradizionali.^[17]

I microscopi elettronici utilizzano un fascio di elettroni al posto della luce e delle lenti magnetiche al posto delle lenti ottiche. Usando raggi di elettroni invece che di luce, questi microscopi non misurano l'interazione tra materia e luce ma tra materia ed elettroni, aprendo le porte a nuovi campi di studio.

Il campione da esaminare è posto tra il cannone elettronico e il rilevatore e l'immagine si forma in base a come gli elettroni vengono trasmessi attraverso il campione, che deve essere molto sottile (meno di 100 nm). Questo tipo di microscopi si chiama

microscopio elettronico *a trasmissione* (Transmission Electron Microscopy — TEM) e i modelli più recenti possono arrivare a risoluzioni spaziali fino a $0.5 \text{ Å } (50 \text{ pm}).^{[18]}$

Un altro tipo di microscopio elettronico è quello a scansione (Scanning Electron Microscopy — SEM), in cui non si rileva il fascio trasmesso attraverso il campione, bensì i raggi secondari che sono generati dall'interazione del fascio con il campione (come elettroni secondari o raggi X). Questa tecnica può generare immagini tridimensionali e non richiede un campione sottile quanto la TEM. Modelli recenti di SEM possono arrivare a risoluzioni spaziali fino a 0.4 nm.^[19]

Figura 1.3: Principio di funzionamento dei microscopi TEM e SEM

Una limitazione di questi tipi di microscopi è che il campione deve essere conduttivo, altrimenti gli elettroni si accumulano sulla superficie del campione e lo caricano, distorcendo l'immagine. Per questo motivo, i campioni non conduttivi devono essere rivestiti con uno strato di metallo (come oro o carbonio) per permettere la conduzione degli elettroni.

1.3 Microscopio a effetto tunnel

La microscopia a scansione di sonda (SPM) fu sviluppata nel 1981 con l'invenzione del microscopio a effetto tunnel (STM).^[20] Questo tipo di microscopi rileva la superficie del campione usando una minuscola punta su cui è imposta una differenza di potenziale con il piano di osservazione. Mantenendo l'altezza della punta costante, si può misurare direttamente la variazione di corrente attraverso il campione in movimento, mentre per misurarne l'altezza si può mantenere costante la corrente e applicare un feedback al motore piezoelettrico che regola l'altezza della punta. Avendo una risoluzione di 0.1 nm, questa tecnica permette di osservare singoli atomi, ma può essere usata solo se il campione è conduttivo.^[21]

Figura 1.4: Principio di funzionamento di un microscopio a effetto tunnel

1.4 Atomic Force Microscopy

Una delle tecniche di microscopia che sono state usate per acquisire le immagini trattate in questa tesi è la microscopia a forza atomica (AFM). Questa tecnica è stata sviluppata nel 1986 da *Gerd Binnig* e *Heinrich Rohrer* ed è un altro tipo di tecnica di microscopia SPM che, permettendo di osservare campioni non conduttivi, a differenza della microscopia STM, ha aperto la strada a nuove applicazioni. [22]

I microscopi AFM usano una punta di diametro di circa 10 nm fissata a un braccio elastico (cantilever), che viene fatta scorrere sulla superficie del campione. La dimensione della punta è importante perché influisce sulla risoluzione spaziale dell'immagine, che può essere minore di un nanometro. La fabbricazione di punte con un raggio così piccolo è una delle limitazioni principali della microscopia AFM e il loro spessore minuscolo fa si che possano essere facilmente danneggiate.

Figura 1.5: Punta di un microscopio AFM vista al microscopio SEM [23]

Durante la scansione, la punta viene inclinata verso l'alto e il basso a causa della forza di interazione con il campione, che può essere di tipo repulsivo o attrattivo in base alla modalità di scansione. Queste inclinazioni vengono misurate da un raggio laser che viene riflesso dal cantilever su un fotodiodo a quadranti. L'inclinazione del cantilever deflette il raggio laser, che si sposta fra i quadranti del fotodiodo, e il segnale misurato dal fotodiodo viene poi convertito in una variazione di altezza della punta, che viene usata per generare l'immagine del campione.

Per effettuare la scansione, il supporto su cui poggia il campione viene spostato da un sistema piezoelettrico, che può espandersi e contrarsi con una precisione nanometrica applicando una piccola tensione imposta, dell'ordine dei mV. Gli elementi piezoelettrici sono in grado di muoversi in tre direzioni (X,Y,Z) e sono controllati da un sistema elettronico che regola il movimento del campione in modo da mantenere il segnale di riferimento costante.

Con questo sistema si possono apprezzare variazioni di altezza fino a 0.01 nm.^[24]
I microscopi AFM possono essere usati in diverse modalità, a seconda del tipo di interazione che si vuole misurare. Queste modalità possono essere divise in tre categorie principali.

Figura 1.6: Principio di funzionamento di un microscopio AFM

Figura 1.7: Modalità di funzionamento di un microscopio AFM

1.4.1 Modalità a contatto

Nella modalità a contatto la forza normale, quindi l'inclinamento verticale del cantilever, è mantenuta costante durante la scansione. Quando la punta si sposta sopra una parte protrudente del campione, il cantilever viene spinto verso l'alto e si crea un errore sull'inclinazione verticale. Per correggere questo errore, il controllore alza la punta finché l'errore non si annulla. Quando si incontrano delle depressioni nel campione si opera il procedimento opposto, abbassando la punta.

Questa modalità permette anche di misurare le forze di attrito tra la superficie del campione e la punta ma non è utilizzabile su campioni biologici perché troppo delicati. La forza esercitata dalla punta può provocare stimoli meccanici non sostenibili per delle cellule e deformare le biomolecole. [25]

Idealmente, la forza dovrebbe essere minore di 100 pN per essere utilizzabile su biomolecole e nell'ordine dei nN per le cellule. Per questo motivo, vengono usati dei cantilever con una bassa costante elastica per diminuire il rumore, aumentare la sensibilità e diminuire la forza di interazione. [26]

Un altro problema dell'uso di modalità a contatto è la possibilità che cellule poco

aderenti o particelle di sporco si attacchino al cantilever.

1.4.2 Modalità a contatto infermittente

Nella modalità a contatto intermittente, il cantilever oscilla verticalmente alla sua frequenza di risonanza, o poco meno. Quando la punta scansiona il campione, la sua altezza diminuisce l'ampiezza delle oscillazioni del cantilever che vengono misurate dal fotodiodo. Il segnale di controllo viene regolato in modo che, nel punto più basso del ciclo di oscillazione, la punta tocchi appena il campione. L'ampiezza di queste oscillazioni è quindi una misura delle interazioni tra la punta e il campione. Muovere la punta in alto e in basso, im modo da mantenere la stessa ampiezza di oscillazione, permette di ottenere una topografia del campione.

Altre informazioni che si possono ottenere sono l'ampiezza e la fase dell'errore tra l'oscillazione del cantilever e il segnale di riferimento. Questo scostamento dal segnale di riferimento è causato dalla dissipazione di energia tra la punta e il campione, che può essere dovuta dalle deformazioni della superficie del campione o da forze di attrazione. Queste informazioni possono essere usate per ottenere proprietà viscoelastiche del campione e distinguere materiali diversi. [27]

Al contrario della modalità a contatto, la forza laterale è trascurabile visto che la punta tocca il campione solo per un istante ed è maggiormente indicata per campioni biologici, che altrimenti si muoverebbero liberamente insieme alla punta.^[28]

Questa modalità di operazione è più lenta rispetto alla modalità a contatto a causa del meccanismo di scansione. Mentre nella modalità a contatto intermittente il segnale è generato dalla modulazione in ampiezza del cantilever, nella modalità a contatto si usa la deflessione del cantilever, che varia molto più velocemente. Questa differenza si riflette anche nel comportamento del controllore: la modalità a contatto è più stabile ad alti guadagni, che invece possono generare forti artefatti o immagini rumorose nella modalità a contatto intermittente. I parametri del controllore devono quindi essere scelti con più attenzione.

1.4.3 Modalità senza contatto

Nella modalità senza contatto, la punta non tocca mai il campione ma mantiene comunque un'alta sensibilità alla sua topologia. Per fare ciò, la punta deve trovarsi abbastanza vicino al campione da entrare nel suo campo di forze, ma senza passare nella regione attrattiva usata per le modalità a contatto.

Questa scelta comporta l'uso di un cantilever molto rigido che rimane molto vicino alla superficie del campione per osservare come cambiano l'ampiezza e la fase della sua oscillazione, evitando che passi al regime repulsivo. Questi sono effetti della variazione della frequenza di oscillazione in risposta alle forze applicate dalla superficie sulla punta (forze di van der Waals).

Per questa modalità si usa un cantilever ad alta frequenza di risonanza, tipicamente compresa tra 300 e 400 kHz, e bassa ampiezza di oscillazione, di circa 10 nm. [29] Come per la modalità a contatto intermittente, la velocità di scansione è più bassa di quella della modalità a contatto, ma queste proprietà del cantilever permettono di avere velocità maggiori della modalità a contatto intermittente.

Non entrando mai nella regione ripulsiva, questa modalità presenta il più basso rischio di danneggiare o contaminare la punta e il campione.^[30]

Figura 1.8: Grafico delle forze di van der Waals secondo il modello di Lennard-Jones Semipiano superiore: Forze repulsive Semipiano inferiore: Forze attrattive

Le modalità descritte nei paragrafi precedenti fanno tipicamente uso della modulazione in ampiezza. L'uso della modulazione in frequenza è limitato in quanto richiede attrezzature specifiche e un ambiente a vuoto ultra spinto. Usare una modalità oscillante a modulazione in frequenza ha anche dei vantaggi, come una risoluzione più alta. [31]

1.4.4 Sistema di controllo

Il controllo del sistema è affidato a un controllore PID (Proportional-Integrative-Derivative), di gran lunga il tipo di sistema di controllo più usato (nel 95% di tutti i casi).^[32]

Figura 1.9: Diagramma di un controllore PID ad anello chiuso e(t): funzione di errore

Quando le forze di interazione tra la punta e il campione cambiano, il cantilever si flette e, di conseguenza, modifica l'uscita del fotodiodo facendola deviare dal valore di ingresso. La differenza tra ingresso e uscita è la funzione di errore e(t).

Il controllore PID agisce su questa funzione e il suo comportamento è composto da tre azioni indipendenti, controllate da altrettante variabili di regolazione.^[33]

- ullet Il termine ${f P}$ (azione proporzionale) è proporzionale alla funzione di errore
- Il termine I (azione integrativa) è l'integrale dei valori passati di e(t)
- Il termine **D** (azione derivativa) è una stima delle variazioni future di e(t)

Il sistema di feedback comprende tre meccanismi principali: [34]

- 1. Il tubo piezoelettrico per il controllo del movimento e della posizione della punta rispetto alla superficie del campione
- Il cantilever e il sistema ottico per la misura della distanza tra la sonda e la superficie del campione
- 3. Il circuito di controllo per mantenere una deflessione costante correggendo la tensione applicata al tubo piezoelettrico

Per sua natura, un microscopio AFM è molto versatile e presenta molti parametri che si possono regolare per ottimizzare la resa delle immagini. Partendo da quelli più generali, si può impostare una modalità operativa, come quelle descritte sopra (*vedi* 1.4.1, 1.4.2, 1.4.3), e un tipo di cantilever che più si adattano al campione scelto.

Passando ai parametri di scansione, si possono impostare la velocità e l'area di scansione controllando opportunamente il sistema piezoelettrico su cui poggia il campione. L'area di scansione rappresenta il campo di osservazione del campione (es. $10~\mu m \times 10~\mu m$) ed influenza la risoluzione delle immagini. La velocità di scansione, espressa in $\mu m/s$ o linee al secondo (Hz), è inversamente proporzionale alla qualità dell'immagine, ma con basse velocità aumenta il rischio di muovere parti del campione.

È possibile anche regolare dei parametri relativi all'interazione tra la punta e il campione, come l'ampiezza e la frequenza di oscillazione (solo in modalità oscillanti) e la forza di carico desiderata. Per regolare questi parametri si può operare sull'ingresso del sistema e sul guadagno dell'anello di feedback.

1.5 Scanning Near-field Optical Microscopy

L'altra tecnica di microscopia usata per ottenere le immagini studiate in questa tesi è la microscopia ottica a scansione del campo vicino (Scanning Near-field Optical Microscopy — SNOM). Questa tecnica riesce a superare il limite di risoluzione sfruttando delle proprietà dei campi evanescenti. Ad *Edward Hutchinson Synge* è attribuito il merito di aver proposto per primo questa tecnica nel 1928, [35] ma il primo microscopio SNOM fu costruito solo nel 1984 da *Dieter Pohl*. [36]

I campi evanescenti possono essere descritti da onde piane della forma $\mathbf{E}e^{i(\mathbf{kr}-\omega t)}$, che sono caratterizzate dal fatto che almeno una componente del vettore d'onda \mathbf{k} , che descrive la direzione di propagazione, è immaginaria. Nella direzione spaziale definita dalla componente immaginaria, l'onda non si propaga ma decade esponenzialmente. I campi evanescenti sono di grande importanza per lo studio e la comprensione dei campi ottici confinati a dimensioni inferiori alla lunghezza d'onda. [37]

Come descritto nel paragrafo 1.1.1, un microscopio ottico tradizionale, per ottenere un immagine del campione, deve raccogliere tutta la luce diffratta nel campo lontano, che si propaga senza restrizioni. Al contrario, la microscopia SNOM utilizza un laser la cui luce è concentrata in un'apertura di diametro molto inferiore alla sua lunghezza d'onda, creando un campo evanescente dall'altro lato dell'apertura. [38] Quando il campione viene scansionato ad una piccola distanza sotto l'apertura (< 10 nm), la risoluzione ottica della luce trasmessa o riflessa è limitata solo dal diametro

dell'apertura. I campi evanescenti trasportano informazioni ad alte frequenze spaziali sul campione e permettono di arrivare a una risoluzione laterale di 6 nm^[39] e una risoluzione verticale di 2 nm.^[40]

Figura 1.10: Principio di funzionamento di un microscopio SNOM

Poiché le onde evanescenti sono confinate a una regione prossima alla superficie del mezzo che le origina, è necessario portare il rilevatore entro l'itervallo della lunghezza d'onda della radiazione utilizzata. Su queste onde si applica il principio di reciprocità di Helmholtz, secondo cui il campo vicino può essere convertito in onde propaganti dal rilevatore. Grazie a questo principio, i raggi entranti e uscenti possono essere considerati uno come il reciproco dell'altro, permettendo di usare la sonda ottica sia come sorgente che come rilevatore. [41]

Per questo motivo, una delle limitazioni principali di questa tecnica è la distanza di lavoro molto breve e una profondità di campo estremamente ridotta. Normalmente questi microscopi sono usati per studi di superficie, ma si possono anche usare per studiare regioni di interesse sotto la superficie, posto che siano entro il limite della profondità di campo.^[42]

1.5.1 Aperture SNOM

Nella microscopia a-SNOM la sonda ottica è installata nella punta, che ha un foro di dimensioni minori della lunghezza d'onda del raggio, da cui la luce può essere emessa o ricevuta. La luce è condotta alla punta da un cavo in fibra ottica monomodale e la punta ha uno strato metallico di rivestimento per riflettere i raggi. La dimensione dell'apertura può arrivare fino a circa 50 nm e influenza la risoluzione spaziale delle immagini. [43]

Figura 1.11: Ingrandimento sull'apertura della punta in un microscopio a-SNOM

La maggior parte dei microscopi a-SNOM usa un metodo simile a quello dei microscopi AFM senza contatto (vedi 1.4.3) basato sulla forza di taglio per controllare la distanza tra la punta e il campione. La sonda è messa in vibrazione alla sua frequenza di risonanza parallelamente alla superficie con un'ampiezza minore di 5 nm. L'ampiezza e la fase di queste oscillazioni della fibra sono monitorate da un apposito sensore di spostamento.^[45]

Modalità di operazione

I microscopi a-SNOM possono operare secondo diverse modalità, che dipendono principalmente dal percorso che compie la luce. Nella modalità più utilizzata la punta è usata sia per illuminare il campione che per raccogliere la luce generata nel campo vicino.^[46]

Figura 1.12: Modalità di illuminazione di un microscopio a-SNOM

a) In questa configurazione, la luce viene emessa da un laser e trasmessa alla

punta dal cavo in fibra ottica. L'apertura estremamente ristretta della punta crea un campo evanescente sulla superficie del campione. Questo campo poi interagisce con il campione e la radiazione convertita viene diffusa e raccolta da un obiettivo ottico convenzionale nel campo lontano.

- b) Al contrario della modalità di illuminazione, il campione è illuminato esternamente con luce dal campo lontano (ad esempio un laser o una lampada), mentre la punta viene usata come un rivelatore. Le onde evanescenti sulla superficie del campione vengono convertite in onde propaganti dentro la punta e trasmesse al rilevatore.
- c) In questo caso, la punta illumina il campione e riceve anche la luce riflessa. Sia l'emissione che la raccolta avvengono attraverso la stessa apertura. In questo caso è necessario installare un dispositivo che separi i due flussi di luce.
- d-e) Queste modalità sono simili alle prime, con la differenza che si basano sulla luce riflessa per effettuare le misure.

1.5.2 Apertureless SNOM

La struttura di un microscopio apertureless SNOM, anche detto di tipo scattering (s-SNOM), è molto simile a quella di un microscopio AFM, in quanto sono entrambe tecniche di microscopia SPM, e per questo lo stesso macchinario può offrire entrambe le tecniche di acquisizione. Questi sistemi possono anche essere combinati con altre tecniche di imaging, come la spettroscopia Raman^[47] o la spettroscopia infrarossa a trasformata di Fourier (FTIR) ^[48].

In questo caso si utilizza una punta metallica o rivestita in metallo per sondare il campo elettrico locale vicino al campione. Con una fonte di luce esterna a una frequenza a scelta, la punta metallica sparge la luce in base alla sua polarizzabilità. La presenza del campione sotto la punta metallica modifica la polarizzabilità della punta in funzione della costante dielettrica del campione. Scansionando la punta metallica sulla superficie del campione con un microscopio AFM in modalità a contatto intermittente (vedi 1.4.2) si ottiene il segnale usato per formare l'immagine contenente informazioni sulle proprietà ottiche del campione. [49]

I modelli numerici per lo studio delle interazioni nel campo vicino tra la punta e la superficie del campione usano tecniche di elaborazione diverse, come il modello a dipolo puntiforme e a dipolo finito.^[50]

Figura 1.13: Modelli di dipoli usati per elaborare le radiazioni nel campo vicino

Nel modello a dipolo puntiforme la punta della sonda è modellizzata come un punto con un certo momento di dipolo **p** generato dal campo elettrico incidente **E**. Il momento del dipolo è, quindi

$$\mathbf{p} = \alpha \mathbf{E} \tag{1.3}$$

dove α è il tensore di polarizzabilità della punta. Il campione genera un dipolo immagine che modifica il campo elettrico locale percepito dalla punta. La misurazione viene effettuata sulla radiazione prodotta da questo dipolo indotto. Questa approssimazione è buona per studi qualitativi ma ignora la geometria reale della punta e non tiene conto della distribuzione delle cariche lungo essa. [51]

Nel modello a dipolo finito la punta è rappresentata come un oggetto esteso, come uno sferoide. Il momento di dipolo non è quindi localizzato in un solo punto, ma è distribuito lungo l'asse. Questo modello è più accurato, specialmente per punte lunghe, e tiene conto delle risonanze plasmoniche lungo la punta.^[52]

La rilevazione del segnale è effettuata da un interferometro di Michelson, con la particolarità che uno degli specchi è mobile. Questa tecnica di misura prende il nome di spettroscopia a trasformata di Fourier (FTS). Il segnale viene registrato mentre lo specchio è in movimento, creando un interferogramma, e poi convertito in uno spettro dalla trasformata.^[53]

Figura 1.14: Sistema di rilevazione a pseudo-eterodina per microscopia s-SNOM

Capitolo 2

GigaScience e Batteri

2.1 SSNOMBACTER

Le immagini elaborate in questa tesi sono prese dal dataset di SSNOMBACTER, pubblicato su GigaScience nel 2020. Questo dataset comprende oltre 4000 immagini di 15 diverse specie batteriche generate da un microscopio s-SNOM con lo scopo di promuovere applicazioni nella Microbiologia e aumentare la popolarità di questa tecnica.^[5]

Queste immagini sono state generate da un microscopio NeaSNOM in modalità a contatto intermittente usando un laser con una lunghezza d'onda di 1,550 µm $(6,451.61 \text{ cm}^{-1})$ e un cantilever placcato in oro con un raggio alla punta minore di 35 nm, una frequenza di risonanza di 65kHz e una costante elastica di 0.5 N/m. (HQ:NSC19/Cr-Au)^[54]

Per ogni specie batterica sono state generate almeno 3 immagini su regioni diverse con un campo visivo di $10 \,\mu\text{m} \times 10 \,\mu\text{m}$, e almeno una con un campo visivo ingrandito, tra $2 \,\mu\text{m} \times 2 \,\mu\text{m} = 4 \,\mu\text{m} \times 4 \,\mu\text{m}$, in base alle dimensioni della specie selezionata. Sono state generate sia immagini SNOM che AFM della stessa regione esaminata per avere una caratterizzazione più completa e dettagliata delle specie batteriche, potendo infatti ricavare sia proprietà ottiche che topologiche o morfologiche usando degli appositi algoritmi di elaborazione.

Le immagini s-SNOM provvedono l'ampiezza e la fase dello spettro, da cui è possibile ricavare le proprietà dielettriche del campione, mentre le immagini AFM ne provvedono la topografia e le proprietà viscoelastiche. L'oggetto di questa tesi è comparare i due tipi di immagini e verificare quali caratteristiche morfologiche

possono essere estratte da esse.

I dati delle scansioni sono disponibili sia in formato Gwyddion Simple Fields^[55] (.gsf)¹, in cui sono disponibili i valori reali delle scansioni, sia come immagini .tiff con valori compresi tra 0 e 255. Ogni scansione è locata in una cartella a sè e i nomi dei file seguono questo modello:

[ceppo batterico] [numero FOV] [abbreviazione tipo immagine]

Ogni scansione è inoltre provvista di un file .txt con i parametri di acquisizione usati, come il tempo di integrazione, la frequenza di oscillazione della punta, i parametri del controlore PID, la sorgente laser e la frequenza di modulazione.

Abbr.	Descrizione
M0A	AFM — Errore topografia
M1A	AFM — Errore topografia; 1ª armonica
M2A	AFM — Errore topografia; 2ª armonica
M3A	AFM — Errore topografia; 3ª armonica
M4A	AFM — Errore topografia; 4 ^a armonica
M5A	AFM — Errore topografia; 5ª armonica
M1P	AFM — Fase topografia; 1 ^a armonica
M2P	AFM — Fase topografia; 2ª armonica
M3P	AFM — Fase topografia; 3 ^a armonica
M4P	AFM — Fase topografia; 4 ^a armonica
M5P	AFM — Fase topografia; 5 ^a armonica
O0A	SNOM — Ampiezza
O1A	SNOM — Ampiezza; 1 ^a armonica
O2A	SNOM — Ampiezza; 2 ^a armonica
O3A	SNOM — Ampiezza; 3 ^a armonica
O4A	SNOM — Ampiezza; 4 ^a armonica
O5A	SNOM — Ampiezza; 5 ^a armonica
O1P	SNOM — Fase; 1 ^a armonica
O2P	SNOM — Fase; 2 ^a armonica
O3P	SNOM — Fase; 3 ^a armonica
O4P	SNOM — Fase; 4 ^a armonica
O5P	SNOM — Fase; 5 ^a armonica
Z	AFM — Topografia

Tabella 2.1: Tipi di immagini presenti nel dataset

URL: https://gwyddion.net/documentation/user-guide-en/gsf.html

¹La specifica del file è disponibile online

2.2 Batteri

In Microbiologia, i batteri sono un regno (*Bacteria*) comprendente organismi unicellulari procarioti, le cui dimensioni possono variare tra circa 0.2 μm e 30 μm.^[56] I batteri sono stati tra le prime forme di vita ad apparire sulla Terra e sono presenti nella maggior parte dei suoi habitat. Alcuni batteri sono innocui, o perfino utili^[57], per gli altri esseri viventi ma altre specie possono vivere a spese loro e arrecargli danni, anche gravi.^[58]

2.2.1 Morfologia

Le dimensioni ridotte dei batteri fa sì che il loro rapporto superficie/volume sia in genere molto più elevato di quello delle cellule eucariote (dimensioni lineari tipiche nell'ordine delle decine di µm), con ovvie conseguenze sulla velocità con cui avvengono gli scambi molecolari tra cellula e ambiente, il trasporto di nutrienti, la crescita, la divisione cellulare e, di conseguenza, anche l'evoluzione. [59]

Essendo organismi unicellulari, i batteri presentano una limitata varietà di forme, che si

Figura 2.1: Tipiche forme di aggregati batterici [59]

possono raggruppare in questi gruppi: Cocchi, Bacilli, Coccobacilli, Spirali, Elicoidali.

Bacilli

Un **bacillo**, anche chiamato *batterio bacilliforme*, è un microrganismo a forma di bastoncino. I bacilli si trovano in molti gruppi batterici, ma esiste anche un genere

tassonomico chiamato *Bacillus*. I bacilli di solito si dividono sullo stesso piano e sono solitari, ma possono anche combinarsi in agglomerati:

- I diplobacilli sono coppie di bacilli legate sul lato corto.
- Gli streptobacilli sono catene di bacilli.
- I coccobacilli hanno una forma più ovale, simile ai cocchi.

Cocchi

Un **cocco**, anche chiamato *batterio coccoide*, è un microrganismo la cui forma è pressochè sferica, cioè quando la sua sfericità è vicina a 1. I batteri coccoidi si presentano spesso in disposizioni caratteristiche e anche queste forme hanno nomi specifici: [60]

- I diplococchi sono coppie di cocchi.
- Gli streptococchi sono catene di cocchi (come Streptococcus pyogenes).
- Gli stafilococchi sono gruppi irregolari di cocchi (com Staphylococcus aureus).
- I tetradi sono cluster di quattro cocchi disposti all'interno dello stesso piano (come *Micrococcus sp.*).
- I Sarcina sono cluster di otto cocchi a disposizione cuboidale (come Sarcina Ventriculi).

Contrariamente a molti batteri bacilliformi, la maggior parte dei batteri cocchi non ha flagelli e non possono muoversi autonomamente.^[61]

2.2.2 Parete cellulare

La morfologia batterica è determinata da una parete costituita da una macromolecola gigante di **peptidoglicano**, un polisaccaride complesso, che avvolge tutta la
cellula. La parte più interna di questa struttura è la membrana plasmatica ed è
presente in tutte le cellule. La parete invece può assumere strutture diverse, che
definiscono la Gram-positività di un batterio, o anche avere appendici sulla superficie (come dei flagelli) e ulteriori strati. Queste strutture di superficie conferiscono
loro ulteriori proprietà per interagire con ambienti complessi, come ad esempio quelli
costituiti da altre cellule, incluse quelle di ospiti animali, vegetali o microbici con cui
il microrganismo può instaurare relazioni di simbiosi o di parassitismo.^[62]

Figura 2.2: Rappresentazione schematica del rivestimento cellulare [59]

2.2.3 Fattori di virulenza

Comprendere i fattori di virulenza e patogenicità dei batteri è importante perché rappresentano dei potenziali obiettivi per il rilevamento degli agenti patogeni. Nel linguaggio comune questi termini sono spesso confusi o usati intercambiabilmente ma, per definizione, la patogenicità misura l'abilità di un organismo ad indurre una malattia, mentre la virulenza misura la gravità relativa della malattia. [63] Misurare virulenza di un organismo è molto complesso a causa della moltitudine di variabili che dipendono sia dal patogeno che dall'ospite e dalla loro interazione. [64]

Considerando i problemi sulla definizione della virulenza, anche i fattori di virulenza sono stati difficili da caratterizzare. Pertanto è importante comprendere i fattori di virulenza, poiché questi possono spesso essere utilizzati per rilevare i microrganismi patogeni. I fattori di virulenza tradizionali includono fattori che possono essere di aiuto in diverse fasi dell'infezione: [65]

- Adesione alla cellula ospite
- Ingresso nella cellula ospite
- Elusione del rilevamento da parte del sistema immunitario dell'ospite
- Replicazione intracellulare o extracellulare e inibizione della fagocitosi

Questi fattori possono essere sia necessari, ovvero che la presenza o meno del suo gene produttore influenzi la patogenicità della specie, oppure contributivi, cioè che alterano la gravità della malattia. Il consenso generale è che, indipendentemente

dalla funzione di un prodotto genico, se la sua espressione porta a un danno alla cellula ospite, allora si tratta di un fattore di virulenza.^[66]

2.2.4 Adesione

L'adesione ad una cellula ospite, o una matrice extracellulare, è un fattore importante per stabilire l'abilità di un microrganismo a provocare danni all'ospite. Questa adesione è mediata da molecole specifiche chiamate adesine, che possono essere proteiche e si suddividono principalmente in due categorie: adesine afimbriali (non filamentose) e fimbrie o pili, strutture filamentose presenti soprattutto nei batteri Gram-negativi (rari nei Gram-positivi).

I pili si osservano al microscopio elettronico come strutture simili a peli e sono fondamentali per l'adesione in batteri patogeni (come *Vibrio cholerae*), che è influenzata in particolar modo dalle proteine sull'estremità dei pili. [67] Altri batteri possiedono più geni per la produzione di fimbrie, e solo la rimozione combinata di tutti questi operoni ha dimostrato di ridurre significativamente la virulenza, suggerendo che i fattori di adesione possono compensarsi a vicenda.

Un'altra forma di adesione piliforme sono i curli, presenti in ceppi di *Escherichia coli* e *Salmonella*.^[68] Queste strutture sottili e irregolari sono altamente stabili e si legano a proteine dell'ospite come plasminogeno e fibronectina. Anche se i meccanismi di assemblaggio delle fimbrie variano, condividono caratteristiche strutturali comuni.^[69]

(a) Topografia AFM

(b) Ampiezza SNOM - 2^a armonica

Figura 2.3: Un esemplare di Escherichia Coli visto al microscopio s-SNOM [70]

Molte adesine, oltre a favorire l'adesione, giocano un ruolo nella fuga dal sistema immunitario dell'ospite. Sia i batteri Gram-negativi che quelli Gram-positivi esprimono una vasta gamma di adesine, che si legano a un ampio numero di bersagli

cellulari, come immunoglobuline, glico
proteine, glicolipidi e proteine della matrice extracellulare.
 $^{[71]}$

In conclusione, l'adesione dei batteri all'ospite è un processo complesso, che coinvolge numerosi tipi di adesine e meccanismi fondamentali non solo per l'inizio dell'infezione, ma anche per la sopravvivenza e la diffusione del patogeno.

Ceppo batterico	Gram	Origine	Regioni acquisite
Achromobacter xylosoxidans ATCC 27061 (DSMZ 2402)T	_	Yabuuchi and Oyama 1971 [52]	3 × (10 μm × 10 μm) 1 × (2 μm × 2 μm)
Acinetobacter baumannii ATCC 17978	_	Sahm et al. 1989 [53]	$4 \times (10 \ \mu m \times 10 \ \mu m)$ $1 \times (2 \ \mu m \times 2 \ \mu m)$
Acinetobacter baumannii ATCC 19606T	_	ATCC (Bouvet and Grimont 1986) [54]	$3 \times (10 \ \mu m \times 10 \ \mu m)$ $2 \times (2 \ \mu m \times 2 \ \mu m)$
Bacillus subtilis subsp. spizizenii DSMZ 3471	+	ATCC	3 × (10 μm × 10 μm) 1 × (4 μm × 4 μm)
Burkholderia cenocepacia ATCC BAA-245 (LMG 16656)T	_	Govan et al. 1993 [55]	3 × (10 μm × 10 μm) 1 × (2 μm × 2 μm)
Enterobacter aerogenes ATCC 13048 (DSMZ 30053)T	_	Bascomb et al. 1971 [56]	3 × (10 μm × 10 μm) 1 × (2 μm × 2 μm)
Enterobacter cloacae ATCC 13047 (DSMZ 30054)T	_	Hormaeche and Edwards 1960 [57]	3 × (10 μm × 10 μm) 1 × (2 μm × 2 μm)
Enterococcus faecali ATCC 29212	+	ATCC	3 × (10 μm × 10 μm) 3 × (2 μm × 2 μm)
Enterococcus faecalis ATCC 700802 (V583)	+	Sahm et al. 1989 [53]	3 × (10 μm × 10 μm) 1 × (2 μm × 2 μm)
Enterococcus faecium ATCC 19434 (DSMZ 20477)T	+	Schleifer and Kilpper-Bälz 1984 [58]	3 × (10 μm × 10 μm) 1 × (2 μm × 2 μm)
Escherichia coli MG1655 (ATCC 700926)T	_	ATCC	4 × (10 μm × 10 μm) 1 × (2 μm × 2 μm)
Klebsiella pneumoniae ATCC 27736	_	ATCC	3 × (10 μm × 10 μm) 1 × (2 μm × 2 μm)
Pseudomonas aeruginosa PAO1 (ATCC 15692)T	_	ATCC	3 × (10 μm × 10 μm) 2 × (2 μm × 2 μm)
Staphylococcus aureus ATCC 25923	+	ATCC	4 × (10 μm × 10 μm) 1 × (2 μm × 2 μm)
Staphylococcus aureus ATCC 43300	+	ATCC	3 × (10 μm × 10 μm) 1 × (2 μm × 2 μm)
Staphylococcus epidermidis SP1	+	Spallanzani Hospital, clinical isolate	$4 \times (10 \ \mu m \times 10 \ \mu m)$ $1 \times (2 \ \mu m \times 2 \ \mu m)$
Stenotrophomonas maltophilia ATCC 13637 (DSMZ 50170)T	_	Palleroni and Bradbury 1993 [59]	4 × (10 μm × 10 μm) 1 × (3 μm × 3 μm)
Streptococcus pyogenes ATCC 19615	+	ATCC	$4 \times (10 \ \mu\text{m} \times 10 \ \mu\text{m})$ $1 \times (2 \ \mu\text{m} \times 2 \ \mu\text{m})$

Tabella 2.2: Lista dei ceppi batterici esaminati in SSNOMBACTER ^[5] ATCC: American Type Culture Collection

Capitolo 3

Analisi con MATLAB

3.0.1 Analisi correlativa

La microscopia s-SNOM ha suscitato interesse negli ultimi anni, ma il suo impiego nella Microbiologia è rimasto limitato, soprattutto per le difficoltà nell'interpretare i dati a causa della scarsa disponibilità dei dati. Come accennato in precedenza, un microscopio può offrire più tecniche di microscopia per studiare più proprietà dello stesso materiale nello stesso momento, per questo recenti studi hanno accoppiato un sistema di microscopia s-SNOM ad altri sistemi per avere un contesto noto per analizzare i dati provenienti dal campo vicino, come la microscopia Atomic force microscopy (AFM) o CLSM.^[72]

Figura 3.1: Sistema multimodale per l'acquisizione di immagini correlative $^{[72]}$

Capitolo 4

Conclusioni

Lista di Termini e Acronimi

Glossario

cm⁻¹ Unità di misura di un onda che indica quante oscillazioni sono compiute in un centimetro. 19

Microbiologia branca della biologia che studia organismi viventi non visibili a occhio nudo (e.g. batteri, funghi, virus). 2, 17, 19

Acronimi

a-SNOM Aperture Scanning Near-field Optical Microscopy. 14, 15

AFM Atomic force microscopy. 6–8, 12, 14, 16, 17

CLSM Confocal Laser Scanning Microscopy. 3, 17

FTIR Fourier Transform Infrared Spectroscopy. 14

FTS Fourier Transform Spectroscopy. 17

NA Numerical Aperture. 3

PCM Phase-Contrast Microscopy. 3

PID Proportional-Integrative-Derivative. 11

s-SNOM Scattering-type Scanning Near-field Optical Microscopy. 16, 17, 19

SEM Scanning Electron Microscopy. 5, 7

SNOM Scanning Near-field Optical Microscopy. 1, 12–14

Acronyms 29

SPM Scanning Probe Microscopy. 6, 7, 14

 \mathbf{STM} Scanning Tunneling Microscope. 6, 7

 \mathbf{TEM} Transmission Electron Microscopy. 5

Bibliografia

- [1] N. Lane, «The unseen world: reflections on Leeuwenhoek (1677) 'Concerning little animals',» *Philosophical Transactions of the Royal Society B: Biological Sciences*, vol. 370, n. 1666, p. 20140344, 2015. DOI: 10.1098/rstb.2014.0344. indirizzo: https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2014.0344.
- [2] C. Dobell, «A Protozoological Bicentenary: Antony van Leeuwenhoek (1632–1723) and Louis Joblot (1645–1723),» Parasitology, vol. 15, n. 3, pp. 308–319, 1923.
 DOI: 10.1017/S0031182000014797.
- [3] J. O. Corliss, «Three Centuries of Protozoology: A Brief Tribute to its Founding Father, A. van Leeuwenhoek of Delft,» *The Journal of Protozoology*, vol. 22, n. 1, pp. 3–7, 1975. DOI: https://doi.org/10.1111/j.1550-7408.1975.tb00934.x. indirizzo: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1550-7408.1975.tb00934.x.
- [4] M. Ohtsu, «History, current developments, and future directions of near-field optical science,» *Opto-Electron Adv*, vol. 3, n. 3, p. 190046, 2020, ISSN: 2096-4579. DOI: 10.29026/oea.2020.190046. indirizzo: https://www.oejournal.org/article/id/5fa4dc96f4d7917194c90a73.
- [5] M. Lucidi et al., «SSNOMBACTER: A collection of scattering-type scanning near-field optical microscopy and atomic force microscopy images of bacterial cells,» GigaScience, vol. 9, n. 11, giaa129, nov. 2020, ISSN: 2047-217X. DOI: 10.1093/gigascience/giaa129. indirizzo: https://doi.org/10.1093/gigascience/giaa129.
- [6] M. S. Mulani, E. E. Kamble, S. N. Kumkar, M. S. Tawre e K. R. Pardesi, «Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review,» English, Frontiers in Microbiology, vol. 10, apr.

BIBLIOGRAFIA II

2019, ISSN: 1664-302X. DOI: 10.3389/fmicb.2019.00539. indirizzo: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.00539/full.

- [7] P. Fara, «A microscopic reality tale,» Nature, vol. 459, n. 7247, pp. 642–644, giu. 2009, ISSN: 1476-4687. DOI: 10.1038/459642a. indirizzo: https://doi.org/10.1038/459642a.
- [8] R. Hooke, Micrographia: or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses. With Observations and Inquiries Thereupon. The Royal Society, 1635–1703.
- [9] A. J. C. Jessup e M. T. Coroneo, «Examining the fabric of the eye: Antoni van Leeuwenhoek, the draper and ocular microscopist,» Survey of Ophthalmology, 2024, ISSN: 0039-6257. DOI: https://doi.org/10.1016/j.survophthal.2024.08.006. indirizzo: https://www.sciencedirect.com/science/article/pii/S0039625724000985.
- [10] F. Zernike, «How I Discovered Phase Contrast,» Science, vol. 121, n. 3141, pp. 345-349, 1955. DOI: 10.1126/science.121.3141.345. indirizzo: https://www.science.org/doi/abs/10.1126/science.121.3141.345.
- [11] J. B. Pawley, *Handbook of Biological Confocal Microscopy*, 3^a ed. Springer New York, NY, ISBN: 978-0-387-25921-5. DOI: 0.1007/978-0-387-45524-2.
- [12] E. Abbe Hon., «VII.—On the Estimation of Aperture in the Microscope.,»

 Journal of the Royal Microscopical Society, vol. 1, n. 3, pp. 388-423, 1881.

 DOI: https://doi.org/10.1111/j.1365-2818.1881.tb05909.x. indirizzo:
 https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2818.1881.tb05909.x.
- [13] A. Hon., «The Relation of Aperture and Power in the Microscope (continued).,» Journal of the Royal Microscopical Society, vol. 2, n. 4, pp. 460–473, 1882. DOI: https://doi.org/10.1111/j.1365-2818.1882.tb04805.x. indirizzo: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2818.1882.tb04805.x.
- [14] M. Wilson, «Collecting Light: The Importance of Numerical Aperture in Microscopy,» Leica Science Lab, lug. 2017. indirizzo: https://www.leica-

BIBLIOGRAFIA III

- microsystems.com/science-lab/microscopy-basics/collecting-light-the-importance-of-numerical-aperture-in-microscopy.
- [15] S. W. Hell, «Far-Field Optical Nanoscopy,» Science, vol. 316, n. 5828, pp. 1153–1158, 2007. DOI: 10.1126/science.1137395. indirizzo: https://www.science.org/doi/abs/10.1126/science.1137395.
- [16] C. W. Oatley, «The early history of the scanning electron microscope,» Journal of Applied Physics, vol. 53, n. 2, R1–R13, 1982.
- [17] «Physics 1981–1990,» in *Nobel Lectures*, T. Frängsmyr e G. Ekspong, cur., Singapore: World Scientific Publishing Co., 1993.
- [18] R. Erni, M. D. Rossell, C. Kisielowski e U. Dahmen, «Atomic-Resolution Imaging with a Sub-50-pm Electron Probe,» Phys. Rev. Lett., vol. 102, p. 096 101, 9 mar. 2009. DOI: 10.1103/PhysRevLett.102.096101. indirizzo: https://link.aps.org/doi/10.1103/PhysRevLett.102.096101.
- [19] T. Sunaoshi, K. Kaji, Y. Orai, C. Schamp e E. Voelkl, «STEM/SEM, Chemical Analysis, Atomic Resolution and Surface Imaging At ≥30 kV with No Aberration Correction for Nanomaterials on Graphene Support,» Microscopy and Microanalysis, vol. 22, n. S3, pp. 604–605, lug. 2016, ISSN: 1431-9276. DOI: 10.1017/S1431927616003871. indirizzo: https://doi.org/10.1017/S1431927616003871.
- [20] S. M. Salapalaka e M. V. Salapalaka, «Scanning Probe Microscopy,» IEEE Control Systems Magazine, vol. 28, n. 2, pp. 65–83, apr. 2008, ISSN: 1941-000X. DOI: 10.1109/MCS.2007.914688.
- [21] C. Bai, Scanning Tunneling Microscopy and Its Application, 2^a ed. Springer Berlin, Heidelberg, ago. 2000, pp. XIV, 370, ISBN: 978-3-540-65715-6.
- [22] G. Binnig, C. F. Quate e C. Gerber, «Atomic Force Microscope,» Phys. Rev. Lett., vol. 56, pp. 930–933, 9 mar. 1986. DOI: 10.1103/PhysRevLett.56.930. indirizzo: https://link.aps.org/doi/10.1103/PhysRevLett.56.930.
- [23] BudgetSensors. «Tap150Al-G AFM Probe. »indirizzo: https://www.budgetsensors. com/soft-tapping-mode-afm-probe-aluminum-tap150al.

BIBLIOGRAFIA

[24] W. Sun, «Principles of Atomic Force Microscopy,» in Atomic Force Microscopy in Molecular and Cell Biology, J. Cai, cur. Singapore: Springer Singapore, 2018, pp. 1–28, ISBN: 978-981-13-1510-7. DOI: 10.1007/978-981-13-1510-7_1. indirizzo: https://doi.org/10.1007/978-981-13-1510-7_1.

- [25] Q. Zhong, D. Inniss, K. Kjoller e V. Elings, «Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy,» Surface Science, vol. 290, n. 1, pp. L688–L692, 1993, ISSN: 0039-6028. DOI: https://doi.org/10.1016/0039-6028(93)90582-5. indirizzo: https://www.sciencedirect.com/science/article/pii/0039602893905825.
- [26] Y. Wang e J. Wang, «Friction Determination by Atomic Force Microscopy in Field of Biochemical Science,» *Micromachines*, vol. 9, n. 7, 2018, ISSN: 2072-666X. DOI: 10.3390/mi9070313. indirizzo: https://www.mdpi.com/2072-666X/9/7/313.
- [27] K. Babcock e C. Prater, «Phase Imaging: Beyond Topography,» in ser. Application Note, vol. AN11, Bruker, 2004.
- [28] S. Karrasch, M. Dolder, F. Schabert, J. Ramsden e A. Engel, «Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution,» *Biophysical Journal*, vol. 65, n. 6, pp. 2437-2446, 1993, ISSN: 0006-3495. DOI: https://doi.org/10.1016/S0006-3495(93)81327-4. indirizzo: https://www.sciencedirect.com/science/article/pii/S0006349593813274.
- [29] F. J. Giessibl, H. Bielefeldt, S. Hembacher e J. Mannhart, «Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy,» Applied Surface Science, vol. 140, n. 3, pp. 352–357, 1999, ISSN: 0169-4332. DOI: https://doi.org/10.1016/S0169-4332(98)00553-4. indirizzo: https://www.sciencedirect.com/science/article/pii/S0169433298005534.
- [30] H. Ho e P. West, «Optimizing AC-mode atomic force microscope imaging,» Scanning, vol. 18, n. 5, pp. 339–343, 1996. DOI: https://doi.org/10.1002/sca.1996.4950180503. indirizzo: https://onlinelibrary.wiley.com/doi/abs/10.1002/sca.1996.4950180503.
- [31] Y. Sugawara, M. Ohta, H. Ueyama e S. Morita, «Defect Motion on an InP(110) Surface Observed with Noncontact Atomic Force Microscopy,» *Science*, vol. 270,

BIBLIOGRAFIA V

- n. 5242, pp. 1646-1648, 1995. DOI: 10.1126/science.270.5242.1646. indirizzo: https://www.science.org/doi/abs/10.1126/science.270.5242.1646.
- [32] K. Åström e R. Murray, Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2010, ISBN: 9781400828739. indirizzo: https://books.google.it/books?id=cdG9fNqTDS8C.
- [33] K. Ogata, «PID Controllers and Modified PID Controllers,» in Modern Control Engineering, 5^a ed. PHI Learning Pvt Ltd, gen. 2010, cap. 8, ISBN: 978-8120340107.
- [34] M. Parisi, «Multiparametric feature extraction in AFM/s-SNOM images of bacterial cells using a machine learning approach,» Master's Thesis, Roma Tre University, dic. 2021.
- [35] E. S. and, «XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region,» The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 6, n. 35, pp. 356–362, 1928. DOI: 10.1080/14786440808564615. indirizzo: https://doi.org/10.1080/14786440808564615.
- [36] D. W. Pohl, W. Denk e M. Lanz, «Optical stethoscopy: Image recording with resolution $\lambda/20$,» Applied Physics Letters, vol. 44, n. 7, pp. 651–653, apr. 1984, ISSN: 0003-6951. DOI: 10.1063/1.94865. indirizzo: https://doi.org/10.1063/1.94865.
- [37] L. Novotny e B. Hecht, Principles of Nano-Optics, 2^a ed. Cambridge University Press, 2012.
- [38] E. Betzig e J. K. Trautman, «Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit,» Science, vol. 257, n. 5067, pp. 189–195, 1992. DOI: 10.1126/science.257.5067.189. indirizzo: https://www.science.org/doi/abs/10.1126/science.257.5067.189.
- [39] X. Ma et al., «6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source,» Nature Communications, vol. 12, n. 1, p. 6868, nov. 2021, ISSN: 2041-1723. DOI: 10.1038/s41467-021-27216-5. indirizzo: https://doi.org/10.1038/s41467-021-27216-5.

BIBLIOGRAFIA VI

[40] Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue e M. N. and, «Observation of nanostructure by scanning near-field optical microscope with small sphere probe,» *Science and Technology of Advanced Materials*, vol. 8, n. 3, pp. 181–185, 2007. DOI: 10.1016/j.stam.2007.02.013. indirizzo: https://doi.org/10.1016/j.stam.2007.02.013.

- [41] B. Hapke, «Introduction,» in *Theory of Reflectance and Emittance Spectrosco*py, Cambridge: Cambridge University Press, set. 1993, pp. 1–5.
- [42] D. Vobornik e S. Vobornik, «Scanning Near-field Optical Microscopy,» Bosn. J. Basic Med. Sci., vol. 8, n. 1, pp. 63–71, feb. 2008.
- [43] T. J. Antosiewicz, P. Wróbel e T. Szoplik, «Bi-metal coated aperture SNOM probes,» in *Metamaterials VI*, V. Kuzmiak, P. Markos e T. Szoplik, cur., International Society for Optics e Photonics, vol. 8070, SPIE, 2011, 80700Z. DOI: 10.1117/12.886834. indirizzo: https://doi.org/10.1117/12.886834.
- [44] TipsNano. «SNOM-C Contact Probe. »indirizzo: https://tipsnano.com/catalog/snom/snom-c/.
- [45] B. Hecht et al., «Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,» *The Journal of Chemical Physics*, vol. 112, n. 18, pp. 7761–7774, mag. 2000, ISSN: 0021-9606. DOI: 10.1063/1.481382. indirizzo: https://doi.org/10.1063/1.481382.
- [46] L. Alvarez e M. Xiao, «Theoretical Analyses on the Resolution of Collection Mode Scanning Near-Field Optical Microscopy,» Optical Review, vol. 13, n. 4, pp. 254–261, lug. 2006, ISSN: 1349-9432. DOI: 10.1007/s10043-006-0254-8. indirizzo: https://doi.org/10.1007/s10043-006-0254-8.
- [47] W. Zhang, Z. Fang e X. Zhu, «Near-Field Raman Spectroscopy with Aperture Tips,» Chemical Reviews, vol. 117, n. 7, pp. 5095–5109, apr. 2017, ISSN: 0009-2665. DOI: 10.1021/acs.chemrev.6b00337. indirizzo: https://doi.org/10.1021/acs.chemrev.6b00337.
- [48] N. Rotenberg e L. Kuipers, «Mapping nanoscale light fields,» Nature Photonics, vol. 8, n. 12, pp. 919–926, dic. 2014, ISSN: 1749-4893. DOI: 10.1038/nphoton. 2014.285. indirizzo: https://doi.org/10.1038/nphoton.2014.285.

BIBLIOGRAFIA VII

[49] L. Wang e X. G. Xu, «Scattering-type scanning near-field optical microscopy with reconstruction of vertical interaction,» Nature Communications, vol. 6, n. 1, p. 8973, nov. 2015, ISSN: 2041-1723. DOI: 10.1038/ncomms9973. indirizzo: https://doi.org/10.1038/ncomms9973.

- [50] A. Cvitkovic, N. Ocelic e R. Hillenbrand, «Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,» Opt. Express, vol. 15, n. 14, pp. 8550-8565, lug. 2007. DOI: 10.1364/0E. 15.008550. indirizzo: https://opg.optica.org/oe/abstract.cfm?URI=oe-15-14-8550.
- [51] C. Wu, M. Ye e H. Ye, «Image dipole approach and polarization effects in scanning near-field optical microscopy,» Optik, vol. 116, n. 6, pp. 277-280, 2005, ISSN: 0030-4026. DOI: https://doi.org/10.1016/j.ijleo.2005.01.024. indirizzo: https://www.sciencedirect.com/science/article/pii/S0030402605000586.
- [52] A. Jarzembski e K. Park, «Finite dipole model for extreme near-field thermal radiation between a tip and planar SiC substrate,» Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 191, pp. 67–74, 2017, ISSN: 0022-4073. DOI: https://doi.org/10.1016/j.jqsrt.2017.02.001. indirizzo: https://www.sciencedirect.com/science/article/pii/S0022407316304605.
- [53] C. Moreno, J. Alda, E. Kinzel e G. Boreman, «Phase imaging and detection in pseudo-heterodyne scattering scanning near-field optical microscopy measurements,» Appl. Opt., vol. 56, n. 4, pp. 1037–1045, feb. 2017. DOI: 10.1364/AO. 56.001037. indirizzo: https://opg.optica.org/ao/abstract.cfm?URI=ao-56-4-1037.
- [54] MikroMasch. «HQ:NSC19/Cr-Au.» Gold Coated Soft Tapping Mode and LFM AFM Probe. indirizzo: https://www.spmtips.com/afm-tip-hq-nsc19-crau.
- [55] D. Nečas e P. Klapetek, «Gwyddion: an open-source software for SPM data analysis,» Central European Journal of Physics, vol. 10, pp. 181–188, 1 2012, ISSN: 1895-1082. DOI: 10.2478/s11534-011-0096-2.
- [56] M. Göker e A. Oren, «Valid publication of names of two domains and seven kingdoms of prokaryotes,» *International Journal of Systematic and Evolutiona*

BIBLIOGRAFIA VIII

```
ry Microbiology, vol. 74, n. 1,006242,2024, ISSN: 1466-5034. DOI: https://doi.org/10.1099/ijsem.0.006242. indirizzo: https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.006242.
```

- [57] J. P. McCutcheon, «The Genomics and Cell Biology of Host-Beneficial Intracellular Infections,» Annual Review of Cell and Developmental Biology, vol. 37, n. Volume 37, 2021, pp. 115-142, 2021, ISSN: 1530-8995. DOI: https://doi.org/10.1146/annurev-cellbio-120219-024122. indirizzo: https://www.annualreviews.org/content/journals/10.1146/annurev-cellbio-120219-024122.
- [58] D. I. Johnson, «Bacterial Virulence Factors,» in Bacterial Pathogens and Their Virulence Factors. Cham: Springer International Publishing, 2018, pp. 1–38, ISBN: 978-3-319-67651-7. DOI: 10.1007/978-3-319-67651-7_1. indirizzo: https://doi.org/10.1007/978-3-319-67651-7_1.
- [59] G. Dehò e E. Galli, «La struttura della cellula procariotica,» in *Biologia dei microrganismi*, Dehò, Gianni e Galli, Enrica, cur., 3ª ed. Milano: Pearson, 2018, cap. 2, pp. 46–123, Traduzione e adattamento italiano dell'edizione originale "Brock Biology of Microorganisms".
- [60] A. Zapun, T. Vernet e M. G. Pinho, «The different shapes of cocci,» FEMS Microbiology Reviews, vol. 32, n. 2, pp. 345–360, feb. 2008, ISSN: 0168-6445.
 DOI: 10.1111/j.1574-6976.2007.00098.x. indirizzo: https://doi.org/10.1111/j.1574-6976.2007.00098.x.
- [61] W. Levinson, E. A. Joyce, J. Nussbaum, B. S. Schwartz e P. Chin-Hong, Review of medical microbiology & immunology: a guide to clinical infectious diseases, English, 15^a ed. New York: McGraw-Hill Education, 2018. indirizzo: https://accessmedicine.mhmedical.com/book.aspx?bookid=2381.
- [62] H. Smith, «Microbial surfaces in relation to pathogenicity,» Bacteriological Reviews, vol. 41, n. 2, pp. 475–500, 1977. DOI: 10.1128/br.41.2.475-500.1977. indirizzo: https://journals.asm.org/doi/abs/10.1128/br.41.2.475-500.1977.
- [63] D. W. Watson e C. A. Brandly, «VIRULENCE AND PATHOGENICITY,» Annual Review of Microbiology, vol. 3, n. Volume 3, 1949, pp. 195–220, 1949, ISSN: 1545-3251. DOI: https://doi.org/10.1146/annurev.mi.03.100149.

BIBLIOGRAFIA

- 001211. indirizzo: https://www.annualreviews.org/content/journals/10.1146/annurev.mi.03.100149.001211.
- [64] A. Casadevall e L. Pirofski, «Host-pathogen interactions: the attributes of virulence,» en, J. Infect. Dis., vol. 184, n. 3, pp. 337–344, ago. 2001.
- [65] T. E. Love e B. Jones, «Introduction to Pathogenic Bacteria,» in Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems, M. Zourob, S. Elwary e A. Turner, cur. New York, NY: Springer New York, 2008, pp. 3–13, ISBN: 978-0-387-75113-9. DOI: 10.1007/978-0-387-75113-9_1. indirizzo: https://doi.org/10.1007/978-0-387-75113-9_1.
- [66] A. Casadevall e L. A. Pirofski, «Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity,» en, *Infect. Immun.*, vol. 67, n. 8, pp. 3703–3713, ago. 1999.
- [67] E. Fällman, S. Schedin, J. Jass, B.-E. Uhlin e O. Axner, «The unfolding of the P pili quaternary structure by stretching is reversible, not plastic,» *EMBO reports*, vol. 6, n. 1, pp. 52–56, 2005. DOI: https://doi.org/10.1038/sj.embor.7400310. indirizzo: https://www.embopress.org/doi/abs/10.1038/sj.embor.7400310.
- [68] B. Kenny, R. DeVinney, M. Stein, D. J. Reinscheid, E. A. Frey e B. Finlay, «Enteropathogenic E. coli (EPEC) Transfers Its Receptor for Intimate Adherence into Mammalian Cells,» Cell, vol. 91, n. 4, pp. 511–520, nov. 1997, ISSN: 0092-8674. DOI: 10.1016/S0092-8674(00)80437-7. indirizzo: https: //doi.org/10.1016/S0092-8674(00)80437-7.
- [69] G. E. Soto e S. J. Hultgren, «Bacterial Adhesins: Common Themes and Variations in Architecture and Assembly,» Journal of Bacteriology, vol. 181, n. 4, pp. 1059–1071, 1999. DOI: 10.1128/jb.181.4.1059-1071.1999. indirizzo: https://journals.asm.org/doi/abs/10.1128/jb.181.4.1059-1071.1999.
- [70] M. Lucidi et al., SSNOMBACTER, ott. 2020. DOI: 10.17605/OSF.IO/5U6PG. indirizzo: osf.io/5u6pg.
- [71] B. B. Finlay e S. Falkow, «Common themes in microbial pathogenicity revisited,» *Microbiology and Molecular Biology Reviews*, vol. 61, n. 2, pp. 136–169, 1997. DOI: 10.1128/mmbr.61.2.136-169.1997. indirizzo: https://journals.asm.org/doi/abs/10.1128/mmbr.61.2.136-169.1997.

BIBLIOGRAFIA X

[72] S. G. Stanciu, D. E. Tranca, R. Hristu e G. A. Stanciu, «Correlative imaging of biological tissues with apertureless scanning near-field optical microscopy and confocal laser scanning microscopy,» *Biomed. Opt. Express*, vol. 8, n. 12, pp. 5374–5383, dic. 2017. DOI: 10.1364/BOE.8.005374. indirizzo: https://opg.optica.org/boe/abstract.cfm?URI=boe-8-12-5374.