데이터사이언스응용 (Capstone design)

김응희

ehkim@sunmoon.ac.kr

Week 08

향후 수업 진행 방식 공지

방침	격주 등교
의도	등교 학생 수 ¹ / ₂ 선 유지 → 코로나 확산 방지
예외	20명 이하 수강생 교과목
데이터사이언스응용 수업 요일	수요일 & 금요일
강의실	원화관 605호

Ways classifying a given dataset

Vladimir Vapnik

Vladimir Vapnik

Prerequisites for SVM

- Vector & dot product
- Equation of lines and planes
- Distance from a point to a plane
- Constrained optimization

Prerequisites for SVM

- Vector & dot product
- Equation of lines and planes
- Distance from a point to a plane
- Constrained optimization

Contents of this week

- Equation of lines and planes
- Distance from a point to a plane
- Support vector machine part I
- Constrained optimization
- Support vector machine part II

Equation of lines and planes

Forms of linear equations

Slope-intercept	y = mx + b	m: slopeb: y-intercept
Point-slope	$y - y_0 = \mathbf{m}(x - x_0)$	m : slope (x_0, y_0) : a point on the line
Standard	ax + by = c	a, b, c: constants

Forms of linear equations

Slope-intercept	y = mx + b	m: slopeb: y-intercept
Point-slope	$y - y_0 = \mathbf{m}(x - x_0)$	m : slope (x_0, y_0) : a point on the line
Standard	ax + by = c	a, b, c: constants

- Ingredients: 2 vectors
 - Position vector (point on the line)
 - Direction vector

- Ingredients: 2 vectors
 - Position vector (point on the line)
 - Direction vector

- Ingredients: 2 vectors
 - Position vector (point on the line)
 - Direction vector

- Ingredients: 2 vectors
 - Position vector (point on the line)
 - Direction vector

- Ingredients: 2 vectors
 - Position vector (point on the line)
 - Direction vector

- Ingredients: 2 vectors
 - Position vector (point on the line)
 - Direction vector

- Ingredients: 2 vectors
 - Position vector (point on the line)
 - Direction vector

- Ingredients: 2 vectors
 - Position vector (point on the line)
 - Direction vector

- Ingredients: 2 vectors
 - Position vector (point on the line)
 - Direction vector

- Ingredients: 2 vectors
 - Position vector (point on the line)
 - Direction vector

- Ingredients: 2 vectors
 - Position vector (point on the line)
 - Direction vector

Vector equation of a line

$$\vec{p} = \overrightarrow{p_0} + \lambda \vec{v}$$

 $\overrightarrow{p_0}$: position vector \overrightarrow{v} : direction vector

Vector equation of a line

$$\vec{p} = \overrightarrow{p_0} + \lambda \vec{v}$$

 $\overrightarrow{p_0}$: position vector

$$\vec{p} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\vec{p} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad \vec{p_0} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} \qquad \vec{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$\vec{v} = \begin{bmatrix} a \\ b \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + \lambda \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$\downarrow$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 + \lambda a \\ y_0 + \lambda b \\ z_0 + \lambda c \end{bmatrix}$$

$$\downarrow$$

$$x = x_0 + a\lambda$$

$$y = y_0 + b\lambda$$

$$z = z_0 + c\lambda$$

Parametric equations for a line through (x_0, y_0, z_0) and parallel to direction vector $\langle a, b, c \rangle$

From lines to planes

What we need to define a line

(in any dimensions)

- 1. Position vector (on the line)
- 2. Direction vector (parallel to the line)

From lines to planes

What we need to define a line

(in any dimensions)

- 1. Position vector (on the line)
- 2. Direction vector (parallel to the line)

What we need to define a plane

(in any dimensions)

- 1. Position vector (on the plane)
- 2. Direction vector (parallel to the line)

Equations of a plane

What we need to define a plane

(in any dimensions)

- 1. Position vector (on the plane)
- 2. Perpendicular vector (to the plane)

Equation of a plane

- Position vector (point on the plane)
- Perpendicular vector (to the plane)

Equation of a plane

- Position vector (point on the plane)
- Perpendicular vector (to the plane)

other points on the plane

Equation of a plane

- Position vector (point on the plane)
- Perpendicular vector (to the plane)

Vectors from the position vector to other points on the plane

- Position vector (point on the plane)
- Perpendicular vector (to the plane)

- Position vector (point on the plane)
- Perpendicular vector (to the plane)

- Position vector (point on the plane)
- Perpendicular vector (to the plane)

- Position vector (point on the plane)
- Perpendicular vector (to the plane)

- Position vector (point on the plane)
- Perpendicular vector (to the plane)

- Position vector (point on the plane)
- Perpendicular vector (to the plane)

- Position vector (point on the plane)
- Perpendicular vector (to the plane)

- Position vector (point on the plane)
- Perpendicular vector (to the plane)

Vector equation of a plane

- Position vector (point on the plane): $\langle x_0, y_0, z_0 \rangle$
- Perpendicular vector (to the plane): $\langle a, b, c \rangle$

- Position vector (point on the plane): $\langle x_0, y_0, z_0 \rangle$
- Perpendicular vector (to the plane): $\langle a, b, c \rangle$

Vector equation of a plane

$$< x - x_0, y - y_0, z - z_0 > < a, b, c > = 0$$

- Position vector (point on the plane): $\langle x_0, y_0, z_0 \rangle$
- Perpendicular vector (to the plane): $\langle a, b, c \rangle$

Vector equation of a plane

$$< x - x_0, y - y_0, z - z_0 > < a, b, c > = 0$$

Scalar equation of a plane

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

- Position vector (point on the plane): $\langle x_0, y_0, z_0 \rangle$
- Perpendicular vector (to the plane): $\langle a, b, c \rangle$

Vector equation of a plane

Linear equation of a plane

- Position vector (point on the plane): $\langle x_0, y_0, z_0 \rangle$
- Perpendicular vector (to the plane): $\langle a, b, c \rangle$

- Position vector (point on the plane): $\vec{p} = \langle p_1, p_2, p_3 \rangle$
- Perpendicular vector (to the plane): $\vec{w} = \langle w_1, w_2, w_3 \rangle$

Vector equation of a plane

Linear equation of a plane

- Position vector (point on the plane): $\vec{p} = \langle p_1, p_2, p_3 \rangle$
- Perpendicular vector (to the plane): $\vec{w} = \langle w_1, w_2, w_3 \rangle$

Vector equation of a plane

$$\langle x_1 - p_1, x_2 - p_2, x_3 - p_3 \rangle \cdot \langle w_1, w_2, w_3 \rangle = 0$$
Scalar equation of a plane
$$w_1(x_1 - p_1) + w_2(x_2 - p_2) + w_3(x_3 - p_3) = 0$$

$$w_1x_1 + w_2x_2 + w_3x_3 - (w_1p_1 + w_2p_2 + w_3p_3) = 0$$

$$b = -(w_1p_1 + w_2p_2 + w_3p_3) \qquad b = -(\vec{w} \cdot \vec{p})$$

$$w_1x_1 + w_2x_2 + w_3x_3 + b = 0$$

$$\vec{w} \cdot \vec{x} + b = 0$$

Linear equation of a plane

plane for any dimension

- Position vector (point on the plane): $\vec{p} = \langle p_1, p_2, p_3 \rangle$
- Perpendicular vector (to the plane): $\vec{w} = \langle w_1, w_2, w_3 \rangle$

Vector equation of a plane

Linear equation of a plane

plane for any dimension

• This is why people say..

• This is why people say..

• This is why people say..

What we know is

- Position vector (point on the plane)
- Perpendicular vector (to the plane)
- Point on the space

- Position vector (point on the plane)
- Perpendicular vector (to the plane)
- Point on the space
- Vector from P to Q

- Position vector (point on the plane)
- Perpendicular vector (to the plane)
- Point on the space
- Vector from P to Q

$$\overrightarrow{w} \cdot \overrightarrow{PQ} = ||\overrightarrow{w}|| \times ||\overrightarrow{PQ}|| \times \cos \theta$$

- Position vector (point on the plane)
- Perpendicular vector (to the plane)
- Point on the space
- Vector from P to Q

- Position vector (point on the plane)
- Perpendicular vector (to the plane)
- Point on the space
- Vector from P to Q

$$\frac{|\overrightarrow{w} \cdot \overrightarrow{PQ}|}{||\overrightarrow{w}||} = ||\overrightarrow{PQ}|| \times \cos \theta$$

- Position vector (point on the plane)
- Perpendicular vector (to the plane)
- Point on the space
- Vector from P to Q

Contents of this week

- Equation of lines and planes
- Distance from a point to a plane
- Support vector machine part I
- Constrained optimization
- Support vector machine part II

- Position vector (point on the plane): $\vec{p} = \langle p_1, p_2 \rangle$
- Perpendicular vector (to the plane): $\overrightarrow{w} = \langle w_1, w_2 \rangle$

$$w^T \vec{x} + b = 0$$

$$b = -(\vec{w} \cdot \vec{p})$$

- Position vector (point on the plane): $\vec{p} = \langle p_1, p_2 \rangle$
- Perpendicular vector (to the plane): $\overrightarrow{w} = \langle w_1, w_2 \rangle$

$$w^T \vec{x} + b = 0$$

$$b = -(\vec{w} \cdot \vec{p})$$

- Position vector (point on the plane): $\vec{p} = \langle p_1, p_2 \rangle$
- Perpendicular vector (to the plane): $\overrightarrow{w} = \langle w_1, w_2 \rangle$

$$w^T \vec{x} + b = 0$$

$$b = -(\vec{w} \cdot \vec{p})$$

• Separates a D —dimensional space into two half-spaces

distance from the origin to the plane is...

- Position vector (point on the plane): $\vec{p} = \langle p_1, p_2 \rangle$
- Perpendicular vector (to the plane): $\vec{w} = \langle w_1, w_2 \rangle$

$$w^T \vec{x} + b = 0$$

$$b = -(\vec{w} \cdot \vec{p})$$

$$\frac{|\overrightarrow{w} \cdot \overrightarrow{PQ}|}{||\overrightarrow{w}||} = ||\overrightarrow{PQ}|| \times \cos \theta$$

- Position vector (point on the plane)
- Perpendicular vector (to the plane)
- Point on the space
- Vector from P to Q

$$\frac{|\overrightarrow{w} \cdot \overrightarrow{PQ}|}{||\overrightarrow{w}||} = ||\overrightarrow{PQ}|| \times \cos \theta$$
• $\overrightarrow{p} = \langle p_1, p_2 \rangle$
• $\overrightarrow{q} = \langle 0, 0 \rangle$
• $\overrightarrow{PQ} = \langle 0 - p_1, 0 - p_2 \rangle$
• $\overrightarrow{PQ} = -\overrightarrow{p}$

- Position vector (point on the plane)
- Perpendicular vector (to the plane)
- Point on the space
- Vector from P to Q

$$\frac{|\overrightarrow{w} \cdot -\overrightarrow{p}|}{||\overrightarrow{w}||} = ||\overrightarrow{PQ}|| \times \cos \theta$$
• $\overrightarrow{p} = \langle p_1, p_2 \rangle$
• $\overrightarrow{q} = \langle 0, 0 \rangle$
• $\overrightarrow{PQ} = \langle 0 - p_1, 0 - p_2 \rangle$
• $\overrightarrow{PQ} = -\overrightarrow{p}$

- Position vector (point on the plane)
- Perpendicular vector (to the plane)
- Point on the space
- Vector from P to Q

- Position vector (point on the plane)
- Perpendicular vector (to the plane)
- Point on the space
- Vector from P to Q

• Separates a D —dimensional space into two half-spaces

- Position vector (point on the plane): $\vec{p} = \langle p_1, p_2 \rangle$
- Perpendicular vector (to the plane): $\vec{w} = \langle w_1, w_2 \rangle$

$$w^T \vec{x} + b = 0$$

$$b = -(\vec{w} \cdot \vec{p})$$

• Separates a *D* —dimensional space into two half-spaces

- Position vector (point on the plane): $\vec{p} = \langle p_1, p_2 \rangle$
- Perpendicular vector (to the plane): $\overrightarrow{w} = \langle w_1, w_2 \rangle$

• Separates a *D* —dimensional space into two half-spaces

- Position vector (point on the plane): $\vec{p} = \langle p_1, p_2 \rangle$
- Perpendicular vector (to the plane): $\vec{w} = \langle w_1, w_2 \rangle$

$$w^T \vec{x} + b = 0$$

$$b = -(\vec{w} \cdot \vec{p})$$

• Separates a D —dimensional space into two half-spaces

- Position vector (point on the plane): $\vec{p} = \langle p_1, p_2 \rangle$
- Perpendicular vector (to the plane): $\vec{w} = \langle w_1, w_2 \rangle$

$$w^T \vec{x} + b = 0$$

$$b = -(\vec{w} \cdot \vec{p})$$

• Separates a *D* —dimensional space into two half-spaces

- Position vector (point on the plane): $\vec{p} = \langle p_1, p_2 \rangle$
- Perpendicular vector (to the plane): $\overrightarrow{w} = \langle w_1, w_2 \rangle$

$$w^T \vec{x} + b = 0$$

$$b = -(\vec{w} \cdot \vec{p})$$

• Separates a *D* —dimensional space into two half-spaces

- Position vector (point on the plane): $\vec{p} = \langle p_1, p_2 \rangle$
- Perpendicular vector (to the plane): $\overrightarrow{w} = \langle w_1, w_2 \rangle$

$$w^T \vec{x} + b = 0$$

$$b = -(\vec{w} \cdot \vec{p})$$

• Separates a *D* —dimensional space into two half-spaces

• Perpendicular vector (to the plane): $\overrightarrow{w} = \langle w_1, w_2 \rangle$

$$w^T \vec{x} + b = 0$$
$$b = -(\vec{w} \cdot \vec{p})$$

• Separates a *D* —dimensional space into two half-spaces

• Separates a *D* —dimensional space into two half-spaces

• Separates a *D* —dimensional space into two half-spaces

• Separates a *D* —dimensional space into two half-spaces

distance from the origin to the plane is...

- Position vector (point on the plane): $\vec{p} = \langle p_1, p_2 \rangle$
- Perpendicular vector (to the plane): $\vec{w} = \langle w_1, w_2 \rangle$

$$w^T \vec{x} + b = 0$$
$$b = -(\vec{w} \cdot \vec{p})$$

Our decision rule

$$\begin{cases} \text{IF } \overrightarrow{w} \cdot \overrightarrow{x} + b > 0 \text{ THEN } \overrightarrow{x} \text{ is above the plane.} \\ \text{IF } \overrightarrow{w} \cdot \overrightarrow{x} + b < 0 \text{ THEN } \overrightarrow{x} \text{ is bellow the plane.} \end{cases}$$

• Separates a *D* —dimensional space into two half-spaces

distance from the origin to the plane is...

- Position vector (point on the plane): $\vec{p} = \langle p_1, p_2 \rangle$
- Perpendicular vector (to the plane): $\vec{w} = \langle w_1, w_2 \rangle$

$$w^T \vec{x} + b = 0$$
$$b = -(\vec{w} \cdot \vec{p})$$

Our decision rule

$$\begin{cases} \text{IF } w^T \cdot \vec{x} + b > 0 \text{ THEN } \vec{x} \text{ is above the plane.} \\ \\ \text{IF } w^T \cdot \vec{x} + b < 0 \text{ THEN } \vec{x} \text{ is bellow the plane.} \end{cases}$$

• Separates a *D* —dimensional space into two half-spaces

distance from the origin to the plane is...

- Position vector (point on the plane): $\vec{p} = \langle p_1, p_2 \rangle$
- Perpendicular vector (to the plane): $\overrightarrow{w} = \langle w_1, w_2 \rangle$

$$w^T \vec{x} + b = 0$$
$$b = -(\vec{w} \cdot \vec{p})$$

Our decision rule

 $\begin{cases} \text{IF } w^T \cdot \vec{x} + b > 0 \text{ THEN } \vec{x} \text{ is above the plane.} \\ \text{IF } w^T \cdot \vec{x} + b < 0 \text{ THEN } \vec{x} \text{ is bellow the plane.} \end{cases}$

$$sign(w^T \cdot \vec{x} + b) \begin{cases} positive \rightarrow +1 \\ negative \rightarrow -1 \end{cases}$$

SVM

Perceptron

$$\frac{w^T \vec{x}}{||\vec{w}||} - \frac{-b}{||\vec{w}||} = \frac{w^T \vec{x} + b}{||\vec{w}||}$$

- Position vector (point on the plane): \vec{p}
- Perpendicular vector (to the plane): \vec{w}

$$b = -(\vec{w} \cdot \vec{p})$$

- Position vector (point on the plane): \vec{p}
- Perpendicular vector (to the plane): \vec{w}

$$b = -(\vec{w} \cdot \vec{p})$$

- Position vector (point on the plane): \vec{p}
- Perpendicular vector (to the plane): \vec{w}

$$b = -(\vec{w} \cdot \vec{p})$$

 $\frac{1}{k}\vec{w}$: perpendicular vector to the plane

$$\longrightarrow y\left(\frac{w^T\vec{x}+b}{||\vec{w}||}\right)$$

$$\longrightarrow y\left(\frac{w^T\vec{x}+b}{||\vec{w}||}\right)$$

Maximize $\frac{2}{||w||}$ subject to $y_i(w^T \overrightarrow{x_i}) \ge 1, \forall i \in n$

Maximize
$$\frac{2}{||w||}$$
 subject to $y_i(w^T \vec{x_i}) \ge 1, \forall i \in n$

Minimize
$$||w||$$

subject to $y_i(w^T \overrightarrow{x_i}) \ge 1, \forall i \in n$

Minimize ||w||subject to $y_i(w^T \vec{x_i}) \ge 1, \forall i \in n$ Minimize $||w||^2$ subject to $y_i(w^T \vec{x_i}) \ge 1, \forall i \in n$

Minimize $||w||^2$ subject to $y_i(w^T \vec{x_i}) \ge 1, \forall i \in n$ Minimize $\frac{1}{2} ||w||^2$ subject to $y_i(w^T \vec{x_i}) \ge 1, \forall i \in n$

Contents of this week

- Equation of lines and planes
- Distance from a point to a plane
- Support vector machine part I
- Constrained optimization
- Support vector machine part II

Thank you