Einführung in die Datenbanken

Felix Leitl

25. Juni 2024

Inhaltsverzeichnis

rundlagen	
Modellierung	
Warum Datenbanken	
Vorteile einer Datenbank	
Nachteile	
Begriffe	
Datenbank	
Datenbank-Management-System	
Datenbanksystem	
Datenbankanwendung	
Datenmodell	
Datenbankschema	
Nutzdaten	
Metadaten	
Konzeptionelles Schema	
Externes Schema	
Internes Schema	
Phasen des Datenbankentwurfs	
	-
RM	
elationenmodell	
Bestandteile eines Datenmodells	
Begriffe	
Erweiterte Atributdefinition	
Sicherstellung der Referenziellen Integrität	
Löschen eines referenzierten Primärschlüssels	
Ändern eines referenzierten Primärschlüssels	
Integritätsbedingungen	
"System-enforced Integrity"	
Renutzerdefinierte oder globale" Integritätsbedingung	

Mapping	7
Abbildungskonzepte	7
Algorithmus	7
Reguläre Entity-Typen	7
Schwache Entity-Typen	7
M:N-Beziehungen	7
N:1-Beziehungen	
1:1-Beziehungen	
Mehrwertige Attribute	
Mehrstellige Beziehungen	
Generalisierung/Spezialisierung	
Kategorien	
Normalisierung	9
Relationenalgebra	9
SQL	9
Multidimensionale Datenmodellierung	9
Schichtenmodell	9
Transaktionen	9
Pufferverwaltung	9

Grundlagen

Modellierung

Ein Modell ist ein zweckgerichtetes Abbild der Wirklichkeit Zweck:

- Spezifizieren
- Konstruieren
- Visualisieren
- Dokumnetieren

Warum Datenbanken

- Große Software-Systeme
- Viele Anwendungen/Benutzer arbeiten mit den gleichen Daten
- Daten sollen auch nach Ende eines Programms verfügbar bleiben
- Daten sollen vor Verlust geschützt werden
- Daten sollen konsistent bleiben

Vorteile einer Datenbank

- Anwendungsneutralität
- Vermeidung redundanter Daten
- Zentrale Kontrolle der Datenintegrität
- Synchronisation im Mehrnutzerbetrieb
- Fehlertoleranz
- Perfomance
- Skalierbarkeit
- Verkürzte Entwicklungszeiten für Anwendungen
- Umsetzung von Standarts

Nachteile

- Hohe initiale Kosten
- General purpose software
- Signifikanter Overhead

Begriffe

Datenbank

Eine Datenbank ist eine Sammlung zusammenhängender Daten.

- repräsentiert einen Ausschnitt der realen Welt (Miniwelt)
- Logisch kohärente Sammlung von Daten
- Hat definierten Zweck

Datenbank-Management-System

Sammlung von Programmen zur Verwaltung einer Datenbank

- Erzeugung von DB
- Wartung von DB
- Konsistenter Zugriff auf DB

Datenbanksystem

• DB + DBMS

Datenbankanwendung

 \bullet DBS + Anwendungsprogramme

Datenmodell

• Strukturierungsvorschrift für Daten (z.B. Tabellenform)

Datenbankschema

• Beschreibung einer konkreten Datenbank

Nutzdaten

• Eigentliche Datenbank

Metadaten

- Struktur der DB
- Information über Speicherungsstrukturen

Konzeptionelles Schema

- Beschreibt sämtliche Daten auf logischer Ebene
- z.B. Patient (NR. Krankenkasse, Laborwerte)

Externes Schema

- Beschreibt den für die Anwendung relevanten Teil einer DB auf logischer Ebene
- z.B. für den Artzt: Patient (Nr., Laborwerte) und für die Verwaltung: Patient (Nr., Krankenkasse)

Internes Schema

- Beschreibt die interne Speicherungsstrukturen einer Datenbank
- Unsichtbar für Anwendung
- z.B. Index über Attribut Nr. von Patient

Phasen des Datenbankentwurfs

- Konzeptioneller Entwurf
 - Abbildung auf Semantisches Datenmodell (z.B. E/R-Modell)
- Logischer Entwurf
 - Abbildung auf Datenmodell

\mathbf{ERM}

Siehe Vorlesungsfolien

Relationenmodell

Bestandteile eines Datenmodells

- einfache Datentypen und Konstruktoren für zusammengesetzte Datentypen
- Konsitenzregeln:
 - inhärente Konsistenzregeln:
 gelten für ein Datenmodell per Konvenzion
 - explizite Konsistenzregeln:
 werden f
 ür eine Anwendung im Zuge der Datendefinition festgelegt
- Bennenungskonvention für die Bezeichnung von Datenbankelementen

Begriffe

- Relation: Menge von gleichartig aufgebauten Tupeln
- Tupel: Zeile einer Tabelle
- Kardinalität: Anzahl der Tupel in einer Relation
- Attribut: Spalte einer Tabelle

- Grad: Anzahl der Attribute
- Relationenschema:
 - Beschreibung einer Relation
 - besteht aus Relationennamen (z.B. Personen)
 - und einer Menge von Attributen (z.B. {PNr, Vorname, Nachname})
 - Jedes Attribut wird definiert über einen Attributnamen und einen Wertebereich
 - z.B. Personen (PRn, Vorname, Nachname)
- Relationales Datenbankschema: Menge von Relationalendatenbankschemata
- Wertebereich: zulässige Attribute
- Superschlüssel: definiert ein Tupel eindeutig
- Schlüsselkandidat: Minimaler Superschlüssel
- Primärschlüssel: Ausgewählter Schlüsselkandidat
- Fremdschlüssel: Attribut, dass mit Primärschlüssel einer Tabelle auf ein bestimmtes Tupel verweist

Erweiterte Atributdefinition

- NOT NULL
- UNIQUE
- PRIMARY KEY

Sicherstellung der Referenziellen Integrität

Löschen eines referenzierten Primärschlüssels

- RESTRICTED: ablehnen der Operation
- CASCADES: Alle referenzierenden Tupel werden auch gelöscht
- NULLIFIE: Referenzen werden auf NULL gesetzt
- SET DEFAULT

Ändern eines referenzierten Primärschlüssels

- RESTRICTED
- CASCADES

Integritätsbedingungen

,, System-enforced Integrity " $\,$

- Primärschlüsseleigenschaft
- Referenzielle Integrität

Benutzerdefinierte oder "globale" Integritätsbedingung

- Bedingungen aus der Anwendungsdomäne, die explizit formuliert werden müssen
- Kontrolliert durch das DBMS
- Operationen, die die Integritätsbedingungen verletzen werden abgelehnt

Mapping

Abbildungskonzepte

${f ER-Modell}$	Relationenmodell
Entity-Typ	"Entity"-Relation
1:1- oder 1:N-Beziehungstyp	Fremdschlüssel oder
M:N-Beziehungstyp	Beziehungstabelle mit 2 FS
N-ärer Beziehungstyp	Beziehungstabelle mit N FS
Einfaches Attribut	Attribut
Zusammengesetztes Attribut	Menge von Attributen
Mehrwertiges Attribut	"Attribut"-Relation mit FS
Wertebereich	Wertebereich
Schlüsselattribut	Schlüsselkandidat \rightarrow Primärschlüssel

Algorithmus

Reguläre Entity-Typen

- Erzeuge eine Relation R, die alle einfachen Attribute von E umfasst
 - Bei zusammengesetzten Attributen nur Komponenten als eigenständige Attribute
- Wähle aus Schlüsselkandidaten einen Primärschlüssel
 - -zusammengesetzt \rightarrow Komponenten bilden zusammen den Primärschlüssel
 - Jeder Schlüsselkandidat, außer PS wird UNIQUE & NOT NULL

Schwache Entity-Typen

- Erzeuge eine Relation, die alle einfachen Attribute von W umfasst
- Füge als Fremdschlüssel alle PS-Attribute der Owner-Typen ein
- PS wird Kombination aller FSA, zusammen mit partiellem Schlüssel (falls vorhanden)

M:N-Beziehungen

- Erzeuge Relation die alle einfachen Attribute von X umfasst
- FS ightarrow PSA der beidem Relationen
- PS ist Kombination der FSA

N:1-Beziehungen

- identifiziere die Relation, die dem Entity-Typ E auf der N-Seite des Beziehungstyps entspricht
- Füge den PS des anderen ET als FS in R ein
- Füge alle einfachen Attribute des Beziehungstyps X als Attribute in R ein

1:1-Beziehungen

- Identifiziere Relationen R & S
- Nehme den PS von S bzw. R als FS von R bzw. S auf UNIQUE
- Füge alle einfachen Attribute in R bzw. S ein

Mehrwertige Attribute

- Erzeuge Relation R mit folgenden Attributen:
 - Ein Attribut A, dass dem abzubildenden Attribut A entspricht
 - Den PS K der Relation S, die zu E gehört, als FS auf S
- Der PS der Relation R ist die Kombination von A & K

Mehrstellige Beziehungen

- Erzeuge Relation R, die alle einfachen Attribute von B umfasst
- FS \rightarrow PS aller Relationen
- $PS \rightarrow Kombination aller FS$

Generalisierung/Spezialisierung

siehe VL

Kategorien

siehe VL

Normalisierung

 ${\bf Relation en algebra}$

 \mathbf{SQL}

Multidimensionale Datenmodellierung

Schichtenmodell

Transaktionen

Pufferverwaltung