Digital Design

Lecture of week 8 Dr Manal Tantawi

Chapter 5 Sequential Circuits

Combinational circuits Vs Sequential Circuits

Combinational Circuits

Gates

❖ No feedback

Time independent

Sequential Circuits

❖ Gates + memory units

❖ Feedback

Time dependent
(Clock)

Clock continued...

T = 1/Frequency (F)

For example
$$T = 0.5$$
 sec $F = 2$ HZ $T = 0.25$ sec $F = 4$ HZ

Latches & Flip Flops

RS Flipflop

R	S	Qn	Qn+1
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	undeterm
1	1	1	

R	S	Qn+1	
0	0	No change	Qn
0	1	set	1
1	0	reset	0
1	1	Indetermina	ate

Latches & Flip Flops

RS Latch

R	S	Qn	Qn+1
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	undeterm
1	1	1	

CLK	R	S	· Qn+l
0	Х	X	No change
1	0	0	No change
1	0	1	set
1	1	0	reset
1	1	1	Indeterminate

Latches & Flip Flops

RS Flip Flop

R	S	Qn	Qn+1
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	undeterm
1	1	1	

R	S	Qn+1	
0	0	No change	Qn
0	1	set	1
1	0	reset	0
1	1	Indetermina	ate

Flip flops

D Flip Flop

D	Qn	Qn+1
0	0	0
0	1	0
1	0	1
1	1	1

Characteristic table

D Flip-Flop

D	Q(n +	1)
0	0	Reset
1	1	Set

Flip Flops

JK Flip Flop

J	K	Qn	Qn+1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

JK Flip-Flop			
J	K	Q(n+	1)
0	0	Q(n)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(n)	Complement

Flip flops

▶ T Flip Flop

Т	Qn	Qn+1
0	0	0
0	1	1
1	0	1
1	1	0

Characteristic table

T Flip-Flop

T	Q(n + 1)	
0	Q(n)	No change
1	Q'(n)	Complement

Design Procedure

- 1) State Diagram
- 2) Number of ex. Inputs and outputs and number of flipflops
- 3) State Table
- 4) Simplified expressions using Kmap for external outputs and inputs of flipflops
- 5) Logic diagram

Design a sequential circuit that follows the following state diagram using D flip flops

2) Two flip flops, one ex. Input & one ex. output

3) state table

Present outputs

next outputs

An	Bn	X	An+1	Bn+1	D_{A}	D_{B}	Y
0	0	0	0	0			0
0	0	1	0	1			0
0	1	0	0	0			0
0	1	1	1	0			0
1	0	0	0	0			0
1	0	1	1	1			0
1	1	0	0	0			1
1	1	1	1	1			1

3) state table

D Flip-Flop

D	Q(n + 1)
0	0	Reset
1	1	Set

Present outputs

next outputs

4) Kmaps for ex. Output and flip flops inputs

Logic diagram

Design a sequential circuit that follows the following state diagram using T flip flops

2) 3 flip flops, no ex. Input & no ex. output

T Flip-Flop

T	Q(n + 1)	
0	Q(n)	No change
1	Q'(n)	Complement

A2n	A1n	A0n	A2n+1	A1n+1	A0n+1	Ta2	Ta1	Ta0
0	0	0	0	0	1	0		
0	0	1	0	1	0	0		
0	1	0	0	1	1	0		
0	1	1	1	0	0	1		
1	0	0	1	0	1	0		
1	0	1	1	1	0	0		
1	1	0	1	1	1	0		
1	1	1	0	0	0	1		

T Flip-Flop

T	Q(n + 1)	
0	Q(n)	No change
1	Q'(n)	Complement

A2n	Aln	A0n	A2n+1	A1n+1	A0n+1	Ta2	Ta1	Ta0
0	0	0	0	0	1	0	0	
0	0	1	0	1	0	0	1	
0	1	0	0	1	1	0	0	
0	1	1	1	0	0	1	1	
1	0	0	1	0	1	0	0	
1	0	1	1	1	0	0	1	
1	1	0	1	1	1	0	0	
1	1	1	0	0	0	1	1	

T	Q(n + 1)	A .
0	Q(n)	No change
1	Q'(n)	Complement

A2n	A1n	A0n	A2n+1	A1n+1	A0n+1	Ta2	Ta1	Ta0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

4) Kmaps for flip flops inputs

Logic diagram

Next Lecture we will continue chapter 5 thank you