進捗報告

2023/06/26 小島光

前回までの課題

- *K*の値がチャネル幅・チャネル長によって変化 ⇒使用するチャネル幅、チャネル長付近で再評価
- $g_a L$ 特性の最小二乗近似が間違っていそう \Rightarrow 以前とは別の方法で再度近似を行ってみる
- Kの値を見直してバッファを再設計する必要がある

Process: rohm 0.18 μm

前回の設計での直流解析

目標值

	L[m]/W[m]/M	W/L ratio	gm[S]	gd[S]
M1	1 u/6.8 u/10	68	20 m	0
M2	1 u/21.5 u/40	860		0
I1	3.4432 mA		Vout	112.6 mV
12	1.1912 mA		Vinb	900 mV
lout	2.252 mA		Vbias1	500 mV

シミュレーション

	L[m]/W[m]/M	W/L ratio	gm[S]	gd[S]
M1	1 u/6.8 u/10	68	1.147 m	75.71 u
M2	1 u/21.5 u/40	860	8.437 m	8.583 m
11	1.557 mA		Vout	45.94 mV
12	638.2 uA		Vinb	900 mV
lout	918.7 uA		Vbias1	500 mV

前回の設計での直流解析

 M_1 の g_m が計算値よりも低い

 I_{out} に I_1 が引っ張られる

 M_1 の V_{gs} が大きくなる

 V_{out} の電位が下がる

 M_2 が非飽和になる

 M_2 の g_d が大きくなる

目標值

	L[m]/W[m]/M	W/L ratio	gm[S]	gd[S]
M1	1 u/6.8 u/10	68	20 m	0
M2	1 u/21.5 u/40	860		0
I1	3.4432 mA		Vout	112.6 mV
12	1.1912 mA		Vinb	900 mV
lout	2.252 mA		Vbias1	500 mV

シミュレーション

	L[m]/W[m]/M	W/L ratio	gm[S]	gd[S]
M1	1 u/6.8 u/10	68	1.147 m	75.71 u
M2	1 u/21.5 u/40	860	8.437 m	8.583 m
l1	1.557 mA		Vout	45.94 mV
12	638.2 uA		Vinb	900 mV
lout	918.7 uA		Vbias1	500 mV

前回の設計での直流解析

 M_1 の g_m が計算値よりも低い

 I_{out} に I_1 が引っ張られる

 M_1 の V_{qs} が大きくなる

 V_{out} の電位が下がる

 M_2 が非飽和になる

 M_2 の g_d が大きくなる

動作点付近での M_1 のKを再度推定 M_1 での V_{gs} を再設計する

左の曲線はチャネル幅が1μm時 のドレインコンダクタンス – チャネル長特性

以前の研究ではKが $100 \mu S/V$ は超えていた。

⇒チャネル長は0.54 μm程度でも ドレインコンダクタンスは十分無 視できる。

仮でチャネル長は $0.54 \mu m$ とした。

安藤さんの中間報告からチャネル幅が10.1 μmを超えるように設計すればモデルの変わり目(信頼性の低い点)を使わないで設計を行える

ゲート長: 0.54 μm(固定)

ゲート幅: 10.1 μm ~ 50 μm

でゲート幅を変えてKを推定する

安藤さんの中間報告スライドより引用

シミュレーション条件

チャネル長: 0.54 μm(固定) チャネル幅

: 15 μ m~50 μ m (step : 5 μ m)

並列数:1

バルクソース間電圧:0V

ドレインソース間電圧:1.8 V

excelでデータを処理し、 $g_m - V_{gs}$ 特性を次のスライドに掲載する

slope	L	W	K
5.6960.E-03	5.400.E-07	1.500.E-05	2.051.E-04
7.5493.E-03	5.400.E-07	2.000.E-05	2.038.E-04
9.3872.E-03	5.400.E-07	2.500.E-05	2.028.E-04
1.1212.E-02	5.400.E-07	3.000.E-05	2.018.E-04
1.3027.E-02	5.400.E-07	3.500.E-05	2.010.E-04
1.4831.E-02	5.400.E-07	4.000.E-05	2.002.E-04
1.6627.E-02	5.400.E-07	4.500.E-05	1.995.E-04
	2.020.E-04		

したがって今回は $K \equiv 202 \,\mu\text{S/V}$ とした。

別の要因

Kの値以外で考えられる要因を 探した。

前回設計した素子値でのシミュレーションにおいて、直流解析を行うとしきい電圧は484.8 mVとなっていた。

しきい電圧

$$V_{th}(V_{sb}) = 0.167781 \cdot V_{sb} + 0.424192$$
$$\equiv A \cdot V_{sb} + V_{th0}$$

以前の研究でしきい電圧は1次式で表せるとした。

シミュレーション時のバルクソース間 電圧は出力電圧に等しいので、この式 より

 $V_{th}(0.04594) = 0.4318 \cdots V$ したがって、約50 mVの差が生じていた。

しきい電圧

チャネル長: 0.54 μm

チャネル幅: $12 \mu m \sim 50 \mu m$ (step: $2 \mu m$)

並列数:1

しきい電圧

W[um]	А	В	-B/A
12	0.0500965	-0.020326	0.405736
14	0.0540586	-0.0219201	0.405488
16	0.0577381	-0.023399	0.40526
18	0.0611871	-0.0247838	0.405049
20	0.0644434	-0.02609	0.404852
22	0.0675356	-0.0273295	0.404667
24	0.0704858	-0.0285111	0.404494
26	0.0733116	-0.029642	0.404329
28	0.0760271	-0.0307281	0.404174
30	0.0786441	-0.0317742	0.404026
32	0.0811723	-0.0327842	0.403884
34	0.0836201	-0.0337615	0.403749
36	0.0859944	-0.034709	0.40362
38	0.0883015	-0.0356292	0.403495
40	0.0905465	-0.0365242	0.403375
42	0.092734	-0.0373959	0.40326
44	0.0948683	-0.038246	0.403148
46	0.0969529	-0.0390759	0.40304
48	0.098991	-0.039887	0.402936
50	0.1009855	-0.0406804	0.402834

 $\sqrt{I} - W$ グラフを $f(V_{gs}) = A \cdot V_{gs} + B$ の 形に線形近似したとき、左の表のよう な値になる。

-B/Aの平均値はおよそ0.404 Vであった。