



## **Requirement Engineering**

**Lecture 10: Requirements Validation** 

Prof. Dr. Benjamin Leiding M.Sc. Anant Sujatanagarjuna





### News

- 26.10.2022 → No lecture
- 02.11.2022 → Organization (L00) + Introduction (L01)
- 09.11.2022 → System Context Boundaries and Types of Requirements (L02)
- 16.11.2022 → Elicitation Part 1 (L03)
- 23.11.2022 → Elicitation Part 2 (L04) and Negotiations (L05)
- 30.11.2022 → Documentation Introduction (L06)
- 07.12.2022 → Documentation Textual Requirements Specification (L07)
- 14.12.2022 → Documentation Model-based Requirements Documentation (L08)
- 21.12.2022 → No Lecture
- 11.01.2023 → Documentation Formal Requirements Specification (L09)
- 18.01.2023 → Validation (L10)
- 25.01.2023 → Traceability (L11), Requirements Management (L12) and Tool Support (L13)
- 01.02.2023 → No Lecture
- 08.02.2023 → Exam Q&A





### **Exercises**

- 09.11.2022 → Exercise 01 Knowledge Test (MC)
- 23.11.2022 → Exercise 02 Elicitation I
- 30.11.2022 → Exercise 03 Elicitation II
- 14.12.2022 → Exercise 04 Agent-oriented Modelling
- 21.12.2022 → No Exercise
- 11.01.2023 → Exercise 05 Coloured Petri Nets I
- 18.01.2023 → Exercise 06 Coloured Petri Nets II
- 25.01.2023 → Bonus Task
- 01.02.2023 → Exercise 07 Management and Traceability (MC)





### News

### **Course Evaluation**

Link: Click Me







### **General Requirements Engineering Process**

### **Overview**

|                       |             | Requiremen    | s Engineering |                         |         |
|-----------------------|-------------|---------------|---------------|-------------------------|---------|
| Requirements Analysis |             |               |               | Requirements Management |         |
| Elicitation           | Negotiation | Documentation | Validation    | Change Management       | Tracing |





## Lecture 10: Requirements Validation Content

- 1. Requirements Validation in General
- 2. Principles of Requirements Validation
- 3. Requirements Validation Techniques





## REQUIREMENTS VALIDATION IN GENERAL





- Review of the requirements
  - Should uncover errors in requirements
- Present requirements to stakeholders
  - Identify deviations between requirements and actual wishes
- Quality of requirements is evaluated
  - Decision is made if quality is sufficient
  - Leads to approval of requirements
  - Should use predefined criteria





# Requirements Validation in General Quality Aspects of Requirements

### Three major goals of validation:

- Content
  - Are all relevant requirements elicited and documented?
  - Is the level of detail appropriate?
- Documentation
  - Is the documentation according to predefined guidelines and specifications?
- Agreement
  - Do all stakeholders concur with the documented requirements





# Requirements Validation in General Quality Aspects - Content

- Refers to the content of the document
  - The requirements themselves
  - The completeness of the requirements





# Requirements Validation in General Quality Aspects - Documentation

- Validates the documentation of the requirements
  - Flaws in the documentation
  - Violation of documentation guidelines
    - Project specific
    - Organization specific
  - Understandability of document formats
  - Structure of the documents





### **Quality Aspects - Documentation (Guideline Violation Risks)**

- Impairment of development activities
  - Development activities may require certain document formats
  - For example, consider the Rational Unified Process (RUP)
    - Later stages refine models created during the requirements engineering
    - If models have not been created, refinement is not possible
- Misunderstandings
  - The target audience may not understand or misinterpret requirements in certain document formats
  - Requirements may become unusable





### **Quality Aspects - Documentation (Guideline Violation Risks)**

- Incompleteness
  - Relevant information may be missing from the document
  - Must not necessarily be the requirements themselves
    - Stakeholders involved
    - Persons responsible
- Overlooking requirements
  - Requirements documented at the wrong place → Not missing!
  - May be overlooked in later activities → Example: Developer wants to implement the persistence features of a system. Checks section "4.3 Persistence requirements" and implements all documented features. Additional persistence requirements hiding in other sections





### **Quality Aspects - Documentation (Test Criteria)**

- Conformation to documentation format and rules
  - Are all documents in the predetermined documentation format?
  - Have modeling languages been used properly?
- Conformity to documentation structures
  - Has the structure of the document been maintained?
  - Is everything where it belongs?
- Understandability
  - Is the documentation understandable in the given context?
  - Is the glossary sufficient?



### **Quality Aspects - Agreement**

- Stakeholders gain additional knowledge during the course of requirements engineering
  - May lead to changes between the begin of the elicitation and the end of the documentation
  - Validation offers a last opportunity for changes without impacting later phases
- Test criteria
  - Agreed → Is every requirement agreed upon with all relevant stakeholders?
  - Agreed after changes → Is every requirement agreed upon with all relevant stakeholders after it has been changed?
  - Conflicts resolved → Have all known conflicts with regard to the requirements been resolved?





### PRINCIPLES OF REQUIREMENTS VALIDATION





• 6 principles of requirements validation



### **Overview**

### 1. Involvement of the correct stakeholders

- Independence of the author
  - Author should not be the one validate a requirement
  - Has prior knowledge which influences the validation
- Internal auditors
  - Stakeholders that are members of the developing organization
  - Easy to organize
- External auditors
  - Higher effort
  - Have to become familiar with the document
  - Independent perspective





### **Overview**

### 2. Separating the identification and the correction of errors

- Identify flaw
- Document flaw
- Fix flaw
- Separation allows concentration on identification → Better separation of resources

### 3. Validation from different views

Different people → Different perspectives



### Overview

### 4. Adequate change of documentation type

- Check if usage of different documentation types balances out weaknesses
- Natural language → Very expressive
- Conceptual models → Abstraction and complex behavior

### 5. Construction of development artifacts

- Creation of artifacts reveals ambiguities
- Example:
  - Creation of a test case to validate the requirement
  - Problems during the test creation



### **Overview**

### 6. Repeated validation

- Positive validation at one point does not guarantee that a requirement is still valid at a later point in time
- Should be repeated in the following cases
  - Lots of innovative ideas and technologies
  - Significant gain of knowledge
  - Long-lasting projects
  - Very early previous validation
  - Unknown domain
  - Reuse of requirements





## **VALIDATION TECHNIQUES**





### **Overview**

6 validation techniques in this lecture

- Three types of reviews
  - Commenting
  - Inspections
  - Walk-throughs
- Three supporting techniques
  - Perspective-based reading
  - Prototypes
  - Checklists





# **Validation Techniques Commenting**

- Author gives requirements to another person
  - Usually a co-worker
- Receive expert opinion of the other person
  - Marks flaws in the document
  - Briefly discusses the flaws with the author
- Informal and cheap





### Inspection

## Systematic check development artifacts for errors

- Consists of 4 phases
  - Planning
    - Object and goals of the inspection are determined
    - Roles and participants are selected
  - Overview
    - Author explains the requirements to the inspection team → Common understanding

#### Error detection

- Inspectors analyze the requirements for flaws
  → Individually or in teams
- Error collection and consolidation
  - Results are collected and consolidated
  - Duplicate errors removed
  - Check if each finding is indeed an error





### **Inspection - Roles**

- Organizer
  - Plans and supervises the inspection process
- Moderator
  - Leads collection and consolidation session
  - Neutral

- Author
  - Explains the requirements
  - Responsible for error correction
- Reader
  - Introduces the requirements to be inspected
  - Neutral (usually the moderator)





### **Inspection - Roles**

- Inspectors / Reviewers
  - Responsible for the flaw detection
  - Communicate findings to members of the project team
- Minute-taker / Recorder
  - Takes minutes of the results during the collection and consolidation session
  - Writes protocol of the inspection results





### Walk-Through

- "Lightweight" inspection
  - Less strict
  - Roles not strongly differentiated
- Step-by-step "walk-through" of the requirements during the review session
  - Author introduces the requirements
    - Can use the opportunity to give additional details about the requirements
    - For example, rationale for a decision



### **Perspective-based Reading**

- Validate the requirements from a certain perspective
- Examples:
  - User/customer perspective → Do the requirements meat the expectations and desired functions of a user?
  - Software architect perspective → Do the requirements contain all information required for the architectural design?
  - Tester perspective → Do the requirements contain all information necessary to derive test cases?
  - Content / documentation / agreement perspective





# **Validation Techniques Prototypes**

- Implement something to try out
  - Not everything, but a subset of the requirements
- Throw-away prototypes
  - Use once, throw away
- Evolutionary prototypes
  - Develop further after prototypical use
    - Additional prototypes
    - Development artifact



### **Prototypes**

- Validation with prototypes requires
  - Manuals / Instructions → Information necessary to apply the prototype
  - Validation scenarios
    - Scenarios to perform with the prototype
    - Encompasses data and user interactions
  - Checklist with validation criteria → Define how users of the prototype validate the requirements

#### Results:

- Protocol of the auditor → Experiences with the prototype of the auditor
- Observation protocol (optional) → "Second person" writes protocol of how the auditor interacted with the prototype





### **Checklists**

- Set of questions and/or statements about a certain circumstance
  - Make sure no aspect is omitted
  - Should not be longer than a single page
- Can be used in combination with all previously introduced techniques
  - Provide a guideline
  - Automatically structure review results





### **Checklists**

- Sources for checklist entries
  - The three quality aspects of requirements
  - Principles of requirements validation
  - Criteria for good requirements (Lecture 04, Part 1, Section 2)
  - Characteristics for good requirements documents (Lecture 04, Part 1, Section 3)
  - Experience from prior projects
  - Error statistics





### (Software-) Reviews - Its Complicated

- 90% of all companies choose testing as their only quality assurance measure
- Test requires executable code → Bugs are discovered late
- Failures are discovered not the bugs themselves
  - Isolation of the error requires additional effort
- Not all errors are found with testing
  - No proof of correctness
- Test effort ("debugging") often more than 50% of the development effort





### (Software-) Reviews - Its Complicated

- 90% of all companies choose testing as their only quality assurance measure
- Test requires executable code → Bugs are discovered late
- Failures are discovered not the bugs themselves
  - Isolation of the error requires additional effort
- Not all errors are found with testing
  - No proof of correctness
- Test effort ("debugging") often more than 50% of the development effort

→ Do not use "reviews" as your only validation technique



### (Software-) Reviews - Overview

Without reviews



• With reviews (ideally):





### **Review Techniques - Overview**



- Inspections as the most reliable review technique
  - Empirical studies
  - Inspections find 50% more defects than walkthroughs
  - Inspections find up to 6x more defects than ad-hoc reviews





### **Review Techniques**

- Ad-hoc Review
  - If you cannot solve a problem, you spontaneously ask an employee for help
  - Result depends entirely on the experience of one employee
- Peer Desk-Checking
  - Similar to ad-hoc review
  - The employee "executes the product to be checked on paper" (mostly code)



### **Review Techniques**

- Pair Programming
  - Two developers share a PC workstation. While one operates the keyboard, the other checks the input.
  - One of the practices of eXtreme Programming.
- Walkthrough
  - The author of a document presents it to collaborators to gain a general understanding and improve the quality of the document.
  - No predefined process and no guidance on how to find errors.
  - Risk: The author easily forgets to focus on the essential parts of the document during the presentation.





# **Validation Techniques Review Techniques**

- Team-Review
  - Similar to the inspection technique but less formal
  - Several employees inspect a product individually
  - The results are discussed in a meeting with the author





### **SUMMARY**





### **Summary**

- Validation ensures quality of the requirements
- Makes sure all stakeholders are on the same page
  - Also offers last chance for changes without negative impact on later phases
- Different aspects of quality
  - Content, documentation, agreement
- Should abide by the six principles of validation
  - Increases the quality of validation results
- Different techniques available for validation
  - Usually some flavor of a review
  - Checklists are helpful





### News

### **Course Evaluation**

Link: Click Me







## **Questions?**





### References

- Additional literature on reviews and software inspection
  - Karl E. Wiegers (2002) Peer Reviews in Software A practical Guide.
  - T. Gilb, D. Graham (1993) Software Inspection.