```
In [1]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")
data=pd.read_csv("/home/placement/Downloads/fiat500.csv")
```

# In [2]: data.describe()

# Out[2]:

|       | ID          | engine_power | age_in_days | km            | previous_owners | lat         | lon         | price        |
|-------|-------------|--------------|-------------|---------------|-----------------|-------------|-------------|--------------|
| count | 1538.000000 | 1538.000000  | 1538.000000 | 1538.000000   | 1538.000000     | 1538.000000 | 1538.000000 | 1538.000000  |
| mean  | 769.500000  | 51.904421    | 1650.980494 | 53396.011704  | 1.123537        | 43.541361   | 11.563428   | 8576.003901  |
| std   | 444.126671  | 3.988023     | 1289.522278 | 40046.830723  | 0.416423        | 2.133518    | 2.328190    | 1939.958641  |
| min   | 1.000000    | 51.000000    | 366.000000  | 1232.000000   | 1.000000        | 36.855839   | 7.245400    | 2500.000000  |
| 25%   | 385.250000  | 51.000000    | 670.000000  | 20006.250000  | 1.000000        | 41.802990   | 9.505090    | 7122.500000  |
| 50%   | 769.500000  | 51.000000    | 1035.000000 | 39031.000000  | 1.000000        | 44.394096   | 11.869260   | 9000.000000  |
| 75%   | 1153.750000 | 51.000000    | 2616.000000 | 79667.750000  | 1.000000        | 45.467960   | 12.769040   | 10000.000000 |
| max   | 1538.000000 | 77.000000    | 4658.000000 | 235000.000000 | 4.000000        | 46.795612   | 18.365520   | 11100.000000 |

In [3]: data1=data.loc[(data.previous\_owners==1)]

In [4]: data1

Out[4]:

|      | ID   | model  | engine_power | age_in_days | km     | previous_owners | lat       | lon       | price |
|------|------|--------|--------------|-------------|--------|-----------------|-----------|-----------|-------|
| 0    | 1    | lounge | 51           | 882         | 25000  | 1               | 44.907242 | 8.611560  | 8900  |
| 1    | 2    | pop    | 51           | 1186        | 32500  | 1               | 45.666359 | 12.241890 | 8800  |
| 2    | 3    | sport  | 74           | 4658        | 142228 | 1               | 45.503300 | 11.417840 | 4200  |
| 3    | 4    | lounge | 51           | 2739        | 160000 | 1               | 40.633171 | 17.634609 | 6000  |
| 4    | 5    | pop    | 73           | 3074        | 106880 | 1               | 41.903221 | 12.495650 | 5700  |
|      |      |        |              |             |        |                 |           |           |       |
| 1533 | 1534 | sport  | 51           | 3712        | 115280 | 1               | 45.069679 | 7.704920  | 5200  |
| 1534 | 1535 | lounge | 74           | 3835        | 112000 | 1               | 45.845692 | 8.666870  | 4600  |
| 1535 | 1536 | pop    | 51           | 2223        | 60457  | 1               | 45.481541 | 9.413480  | 7500  |
| 1536 | 1537 | lounge | 51           | 2557        | 80750  | 1               | 45.000702 | 7.682270  | 5990  |
| 1537 | 1538 | pop    | 51           | 1766        | 54276  | 1               | 40.323410 | 17.568270 | 7900  |
|      |      |        |              |             |        |                 |           |           |       |

1389 rows × 9 columns

In [6]: data2

Out[6]:

|      | model  | engine_power | age_in_days | km     | previous_owners | price |
|------|--------|--------------|-------------|--------|-----------------|-------|
| 0    | lounge | 51           | 882         | 25000  | 1               | 8900  |
| 1    | pop    | 51           | 1186        | 32500  | 1               | 8800  |
| 2    | sport  | 74           | 4658        | 142228 | 1               | 4200  |
| 3    | lounge | 51           | 2739        | 160000 | 1               | 6000  |
| 4    | pop    | 73           | 3074        | 106880 | 1               | 5700  |
|      |        |              |             |        |                 |       |
| 1533 | sport  | 51           | 3712        | 115280 | 1               | 5200  |
| 1534 | lounge | 74           | 3835        | 112000 | 1               | 4600  |
| 1535 | pop    | 51           | 2223        | 60457  | 1               | 7500  |
| 1536 | lounge | 51           | 2557        | 80750  | 1               | 5990  |
| 1537 | pop    | 51           | 1766        | 54276  | 1               | 7900  |

1389 rows × 6 columns

In [7]: data2=pd.get\_dummies(data2)

In [8]: data2

Out[8]:

|      | engine_power | age_in_days | km     | previous_owners | price | model_lounge | model_pop | model_sport |
|------|--------------|-------------|--------|-----------------|-------|--------------|-----------|-------------|
| 0    | 51           | 882         | 25000  | 1               | 8900  | 1            | 0         | 0           |
| 1    | 51           | 1186        | 32500  | 1               | 8800  | 0            | 1         | 0           |
| 2    | 74           | 4658        | 142228 | 1               | 4200  | 0            | 0         | 1           |
| 3    | 51           | 2739        | 160000 | 1               | 6000  | 1            | 0         | 0           |
| 4    | 73           | 3074        | 106880 | 1               | 5700  | 0            | 1         | 0           |
|      |              |             |        |                 |       |              |           |             |
| 1533 | 51           | 3712        | 115280 | 1               | 5200  | 0            | 0         | 1           |
| 1534 | 74           | 3835        | 112000 | 1               | 4600  | 1            | 0         | 0           |
| 1535 | 51           | 2223        | 60457  | 1               | 7500  | 0            | 1         | 0           |
| 1536 | 51           | 2557        | 80750  | 1               | 5990  | 1            | 0         | 0           |
| 1537 | 51           | 1766        | 54276  | 1               | 7900  | 0            | 1         | 0           |

1389 rows × 8 columns

In [9]: y=data2['price'] #adding to seperate dataframe the value, we want to predict x=data2.drop('price',axis=1)#removing the value we want to predict from the original dataframe

```
In [10]: y
Out[10]: 0
                 8900
                 8800
         2
                 4200
         3
                 6000
         4
                 5700
                 . . .
         1533
                 5200
         1534
                 4600
         1535
                 7500
         1536
                 5990
         1537
                 7900
         Name: price, Length: 1389, dtype: int64
In [11]: #divide data into training and testing
         from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.33,random_state=42)
```

In [12]: x\_train

Out[12]:

|      | engine_power | age_in_days | km     | previous_owners | model_lounge | model_pop | model_sport |
|------|--------------|-------------|--------|-----------------|--------------|-----------|-------------|
| 915  | 51           | 397         | 17081  | 1               | 1            | 0         | 0           |
| 12   | 51           | 456         | 18450  | 1               | 1            | 0         | 0           |
| 638  | 51           | 397         | 21276  | 1               | 1            | 0         | 0           |
| 190  | 51           | 821         | 19000  | 1               | 1            | 0         | 0           |
| 701  | 51           | 701         | 27100  | 1               | 1            | 0         | 0           |
|      |              |             |        |                 |              |           |             |
| 1201 | 51           | 790         | 50740  | 1               | 0            | 1         | 0           |
| 1239 | 51           | 4383        | 107600 | 1               | 0            | 1         | 0           |
| 1432 | 51           | 701         | 42095  | 1               | 1            | 0         | 0           |
| 951  | 51           | 3684        | 78000  | 1               | 1            | 0         | 0           |
| 1235 | 51           | 1613        | 45000  | 1               | 1            | 0         | 0           |

930 rows × 7 columns

In [13]: x\_test

# Out[13]:

|      | engine_power | age_in_days | km     | previous_owners | model_lounge | model_pop | model_sport |
|------|--------------|-------------|--------|-----------------|--------------|-----------|-------------|
| 625  | 51           | 3347        | 148000 | 1               | 1            | 0         | 0           |
| 187  | 51           | 4322        | 117000 | 1               | 1            | 0         | 0           |
| 279  | 51           | 4322        | 120000 | 1               | 0            | 1         | 0           |
| 734  | 51           | 974         | 12500  | 1               | 0            | 1         | 0           |
| 315  | 51           | 1096        | 37000  | 1               | 1            | 0         | 0           |
|      |              |             |        |                 |              |           |             |
| 115  | 51           | 397         | 16135  | 1               | 1            | 0         | 0           |
| 370  | 51           | 366         | 11203  | 1               | 0            | 1         | 0           |
| 1179 | 74           | 3804        | 62000  | 1               | 1            | 0         | 0           |
| 93   | 51           | 397         | 17250  | 1               | 1            | 0         | 0           |
| 147  | 51           | 762         | 15917  | 1               | 1            | 0         | 0           |

459 rows × 7 columns

8900

6500

8800

Name: price, Length: 930, dtype: int64

1432

1235

951

```
In [15]: y test
Out[15]: 625
                  5400
         187
                  5399
         279
                  4900
         734
                 10500
         315
                  9300
                  . . .
         115
                 10650
         370
                  9900
         1179
                  5900
         93
                 10050
                  9900
         147
         Name: price, Length: 459, dtype: int64
In [16]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import ElasticNet
         elastic = ElasticNet()
         parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         elastic regressor = GridSearchCV(elastic, parameters)
         elastic_regressor.fit(x_train, y_train)
Out[16]:
                GridSearchCV
          ▶ estimator: ElasticNet
                ▶ ElasticNet
In [17]: elastic regressor.best params
Out[17]: {'alpha': 0.01}
```

```
In [18]: elastic=ElasticNet(alpha=0.01)
    elastic.fit(x_train,y_train)
    y_pred_elastic=elastic.predict(x_test)

In [19]: from sklearn.metrics import mean_squared_error #calculating MSE
    elastic_error=mean_squared_error(y_pred_elastic,y_test)
    elastic_error

Out[19]: 515349.9787871871

In [20]: from sklearn.metrics import r2_score
    r2_score(y_test,y_pred_elastic)

Out[20]: 0.8602162350730707
```

In [21]: Results=pd.DataFrame(columns=['Price','Predicted'])
 Results['Price']=y\_test
 Results['Predicted']=y\_pred\_elastic
 Results=Results.reset\_index()
 Results['Id']=Results.index
 Results.head(15)

# Out[21]:

|    | index | Price | Predicted    | ld |
|----|-------|-------|--------------|----|
| 0  | 625   | 5400  | 5482.171479  | 0  |
| 1  | 187   | 5399  | 5127.531740  | 1  |
| 2  | 279   | 4900  | 4803.203231  | 2  |
| 3  | 734   | 10500 | 9662.825235  | 3  |
| 4  | 315   | 9300  | 9408.645424  | 4  |
| 5  | 652   | 10850 | 10350.952605 | 5  |
| 6  | 1472  | 9500  | 9806.127960  | 6  |
| 7  | 619   | 7999  | 8341.142824  | 7  |
| 8  | 992   | 6300  | 5913.786719  | 8  |
| 9  | 1154  | 10000 | 10149.093829 | 9  |
| 10 | 757   | 6000  | 5643.649619  | 10 |
| 11 | 1299  | 8500  | 7780.541311  | 11 |
| 12 | 400   | 8580  | 9720.293317  | 12 |
| 13 | 314   | 4600  | 4459.155236  | 13 |
| 14 | 72    | 7400  | 6541.667411  | 14 |

```
In [22]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='Id',y='Price',data=Results.head(50))
sns.lineplot(x='Id',y='Predicted',data=Results.head(50))
plt.plot()
```

# Out[22]: []



In [ ]: