

CHAPTER 4

Signal Transmission

(Part 1 of 2)

Introduction

The characteristics and performance of a communication system depend on many aspects of signal transmission:

- Type of signals employed: analog / digital
- Transmission channels: wired / wireless
- Signal transmission methods: baseband / passband transmission

Communication systems transmit information in form of electromagnetic energy:

- voice-band frequencies

Signal transmission via over metal cables, e.g. twisted-pair or coaxial cable.

- radio frequencies
- infrared light
- visible light

Signal transmission via air or space.

Signal Transmission via fiber-optic cable

Electromagnetic Spectrum

Visible light

3

Radio transmission channels

The electromagnetic spectrum used for radio communication is divided into eight ranges, known as:

Radio frequency bands

VLF - Very Low Frequency VHF -

LF - Low Frequency

MF - Medium Frequency

HF - High Frequency

VHF - Very High Frequency

UHF - Ultra High Frequency

SHF - Super High Frequency

EHF - Extremely High Frequency

Table 4.1 RF Bands

Frequency Range	Name of Band	Other Names
30 kHz - 300 kHz	Low Frequency (LF)	Long Wave (LW)
300 kHz - 3 MHz	Medium Frequency (MF) Medium Wave (MW)	
3 MHz - 30 MHz	High Frequency (HF)	Short Wave (SW)
30 MHz - 300 MHz	Very High Frequency (VHF)	-
300 MHz - 3 GHz	Ultra High Frequency (UHF)	·
3 GHz - 30 GHz	Super High Frequency (SHF)	Microwave
30 GHz - 300 GHz	Extremely High Frequency (EHF)	Millimetre Wave
300 GHz - 3 THz	-	Infrared

Common Users of Radio Frequencies allocated by ITU

Relationship between frequency and wavelength

Wavelength, λ Distance travelled by radio wave in one period, T

$$\lambda = v_{(prop)} \times T$$
 metres

$$\lambda = \frac{\mathsf{v}_{(\text{prop})}}{\mathsf{f}}$$

$$v_{(prop)}$$
 = velocity of propagation

Max
$$v_{(prop)}$$
 = speed of light (3 x 10⁸) m/s

Signals travel through a transmission channel at a certain velocity dependent on the transmission medium.

e.g. Faster in outer space Slower on earth.

Example 4.1

- (a) A radio station is transmitting at 20 MHz. What is the wavelength of this transmission?
- (b) A 20 MHz signal travels along a certain length of co-axial cable at 2 x 10^8 m/s. What is the wavelength of this transmission?

Solution

(a) A radio station is transmitting at 20 MHz. What is the wavelength of this transmission?

Assume $v_{(prop)} = c = speed of light, for simplicity$

$$\lambda = \frac{V_{(prop)}}{f} \qquad \Longrightarrow \qquad \lambda = \frac{3x10^8}{20x10^6} = 15 \text{ m}$$

Solution

(b) A 20 MHz signal travels along a certain length of co-axial cable at 2×10^8 m/s. What is the wavelength of this transmission?

$$v_{(prop)} = 2 \times 10^8 \,\text{m/s}$$

$$\lambda = \frac{v_{(prop)}}{f} \qquad \Longrightarrow \qquad \lambda = \frac{2x10^8}{20x10^6} = 10 \text{ m}$$

The transmission channels, connecting the transmitters and receivers, take a variety of forms:

Wired channels

Wired channel includes twisted-pair, coaxial cable, fiber-optic cable and a combination of these.

- Provide a bandwidth of a few hundred kHz
- Suffer from cross-talk and sharp attenuation with frequencies above 100 kHz.

Wired channels

Coaxial cable

Signal transmission of frequency range from a few hundred kHz to about 1 GHz.

e.g. cable TV systems, data transmission in LANs.

Wired channels

optical fiber

for backbone networks

Dielectric waveguide that transports light signals

- Information is transmitted by varying the intensity of the light source.
- Provides very large bandwidth
- Suffer very little attenuation
- Immune to interferences and induced noise

Wireless channels

Transport radio waves without using a physical conductor.

Information bearing radio wave propagates through the air or vacuum. Radio propagates as Surface wave (below 3 MHz), Sky wave (3MHz to 30MHz) or Space wave (above 30MHz).

Advantages	Disadvantages
Suitable for signal broadcasting and mobile communication	 Channel characteristics highly dependent on Transmission frequency Channel noise Bandwidth

Transmission impairments

- Signals at transmitter and receiver are not the same due to transmission impairment.
- There are mainly four types of transmission impairment.

Transmission impairments

Attenuation

Loss of transmission signal strength as the signal travels through the channel.

Wired channels: Attenuation (dB) increases linearly with the distance.

Wireless channels: Attenuation (dB) increases logarithmically with the distance.

Transmission impairments

Distortion

Changes in signal in form or shape

Linear or nonlinear

Linear distortion	Nonlinear distortion
<u>Amplitude distortion</u> when the magnitude response of the channel is not constant (flat).	 Nonlinear distortion occurs when the relationship between the transmitted signal and received signal is not linear.
Phase distortion when the phase response of the channel is not linear (i.e. different frequency components suffer different amount of delay)	

Transmission impairments

Noise

Unwanted and unavoidable random waves added to signal by the channel or the receiver

Sources of noise
Thermal noise
Noise from semiconductor
Noise from lighting and the
sun, etc.

Common type of noise considered:Additive white Gaussian noise (AWGN)

Gaussian distribution
Uniform power spectral density
Additive to signals

- Noise limits the performance of communication systems
- Cause errors in digital signals

 Degrade the quality of analog signals

Transmission impairments

Interference

Random man-made signals that appear at the receiver from other sources.

Caused by other communication systems or electrical devices.

- Alters, modifies or disrupts a signal as it travels along a channel.
- Wireless communication systems are particularly vulnerable to interference because of the wide difference in the transmitted and received signal levels.

Channel models

System model incorporated the most important characteristics of channel.

Filters with additive noise, n(t)

Model parameters:

- deterministic or random
- time-invariant or variant
- linear or nonlinear

Only linear AWGN channel is considered in this module.

4.3 Baseband and passband signal transmission

Baseband signal transmission

Transmitting baseband signals directly over transmission channels.

Baseband signals
Natural speech (0.1-5 kHz)
Video signal (0-5 MHz)
etc.

Preferred for low frequency and short distance dedicated communication, usually over wiredline

Baseband signal is sent as it is without modulation

4.3 Baseband and passband signal transmission

Passband signal transmission

Impressing a baseband signal upon a radio frequency sinusoidal signal through modulation for transmission

Suitable for wireless, long- distance communications or shared channel.

End

CHAPTER 4

(Part 1 of 2)

