Devoir surveillé n° 4 - Remarques

Barème.

Toutes les questions sont notées sur 4 points, le total est de 92 points (v1) et 116 points (v2).

Statistiques descriptives.

	Note brute v1	Note finale v1	Note brute v2	Note finale v2
Note maximale	55	18	65	20
Note minimale	27	5	13	7
Moyenne	$\approx 41,38$	$\approx 11,33$	$\approx 29,65$	$\approx 11,35$
Écart-type	$\approx 7,34$	$\approx 3,42$	$\approx 11,38$	$\approx 2,82$

CCINP PSI 2012 - 2nde épreuve (v1).

- 1. Question a normalement mal réussie! Savoir placer $1, j, j^2$ sur le cerc le trigo est tout de même fondamental.
 - Savoir déterminer une équation de droite, et rédiger cela correctement, c'est du programme de collège et ce n'est pas acquis. C'est un peu inquiétant.
- **2.a.** Les coefficients diagonaux de A^2 ne sont pas les carrés des coefficients diagonaux de A.
- **2.d.** Beaucoup d'escroqueries pour la seconde inégalité. De manière générale, il y a beaucoup trop d'erreurs dans la manipulation des inégalités. À revoir.
- **3.c.** Attention, si P est un polynôme annulateur de A, le spectre de A est inclus dans l'ensemble des racines de P, mais il n'y a pas forcément égalité. Pour conclure ici, le plus simple était de calculer le polynôme caractéristique de A: avec ce polynôme, les racines sont exactement les valeurs propres de A.
- **6.c.** Il faut d'abord justifier que $y_1 \neq 0$.
- **8.b.** Attention, si $E = F \oplus G$ et $x \notin F$, on n'a pas forcément $x \in G$. Considérer par exemple $\mathbb{R}^2 = \text{Vect}(1,0) \oplus \text{Vect}(0,1)$ et x = (1,1).

X-ENS PC 2017 (v2).

- 7. Les affirmations (ii) et (iii) sont fausses. Pour le justifier, il faut donner un contre-exemple concret. Des considérations théoriques ne prouvent rien.
- **8.** Attention, rien ne dit que $\rho(A)$ est une valeur propre de A.
- **9.** Si $A = PTP^{-1}$ et si $T^k \xrightarrow[k \to +\infty]{} 0$, il faut démontrer que $A^k \xrightarrow[k \to +\infty]{} 0$. Cela n'a rien d'automatique, il ne s'agit pas de suites réelles où l'on considérerait P et P^{-1} comme des constantes.
- **12.** Si A, B, C, D sont des matrices telles que $A \ge B$ et $C \ge D$, là aussi, il ne s'agit pas de réels, rien n'assure que $AC \ge BD$.
- **15.a.** Toujours la même remarque : si x et y sont des vecteurs, $x \ge y \Rightarrow Ax \ge Ay$ doit être démontré. C'était le seul point important de cette question.