Math 260 Exercises 1.C Solutions

David L. Meretzky

Wednesday September 12th, 2018

Problem 1. For each of the following subsets of \mathbb{F}^3 , determine whether it is a sub-space for \mathbb{F}^3

- 1. $\{(x_1, x_2, x_3) \in \mathbb{F}^3 | x_1 + 2x_2 + 3x_3 = 0\}$
- 2. $\{(x_1, x_2, x_3) \in \mathbb{F}^3 | x_1 + 2x_2 + 3x_3 = 4\}$
- 3. $\{(x_1, x_2, x_3) \in \mathbb{F}^3 | x_1 x_2 x_3 = 0\}$
- 4. $\{(x_1, x_2, x_3) \in \mathbb{F}^3 | x_1 = 5x_3\}$

Solution 1. 1. Yes, as you should check.

- 2. No, as you should check.
- 3. No, notice that (1,0,1) and (0,1,0) are in this set but their sum is not: (1,0,1) + (0,1,0) = (1,1,1).
- 4. Yes, as you should check.

Problem 2. Show that the set of differentiable real-valued functions f on the interval (-4,4) such that f'(-1) = 3f(2) is a subspace of $\mathbb{R}^{(-4,4)}$.

Solution 2. See class notes on example 1.35 part d. For f and g satisfying the differential equations f'(-1) = 3f(2) and g'(-1) = 3g(2), the linearity of the derivative says that f'(-1) + g'(-1) = (f+g)'(-1). Similarly, 3f(2) + 3g(2) = 3(g+f)(2) therefore f+g satisfies the differential equation and therefore is in the subspace. Show that this set satisfies the 2 remaining conditions.

Problem 3. Is \mathbb{R}^2 a subspace of the complex vectorspace \mathbb{C}^2 ?

Solution 3. No. We shall have more to say on this later. For now, take note of a few things. As we said in class, \mathbb{R}^2 strictly speaking is not a subspace of \mathbb{R}^3 . Think about their definitions. The subspace W of \mathbb{R}^3 which has vectors of the form $(x_1, x_2, 0)$ where x_1 and x_2 are in \mathbb{R} looks enough like \mathbb{R}^2 . That we call it \mathbb{R}^2 in \mathbb{R}^3 .

The other problem (one which was pointed out to me by a student) is that scalar multiplication is defined differently for \mathbb{C}^2 and \mathbb{R}^2 . They are vectorspaces with scalars coming from different fields. One can show that there are no subspaces of \mathbb{C}^2 which "look like" \mathbb{R}^2 in the way that W looks like \mathbb{R}^2 .

Problem 4. Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under addition and under taking additive inverses, but is not a subspace

of \mathbb{R}^2

Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under scalar multiplication but is not a subspace of \mathbb{R}^2

Solution 4. "I will not deprive you of the pleasure of discovering the answer for yourself." See if you can use some graphical intuition. What do all subspaces of R^2 look like? Lines or the full plane or the trivial subspace. See if you can find some other shapes which satisfy additive properties, multiplicative properties.

Problem 5. Suppose U_1 and U_2 are subspaces of V. Prove that the intersection $U_1 \cap U_2$ is a subspace of V

Solution 5. Suppose $u \in U_1 \cap U_2$ and $w \in U_1 \cap U_2$. Then $u, w \in U_1$ and therefore $u + w \in U_1$. Similarly, $u, w \in U_2$ and therefore $u + w \in U_2$. So $u + w \in U_1$ and $u + w \in U_2$. Therefore $u + w \in U_1 \cap U_2$. So $U_1 \cap U_2$ is closed under addition. Verify the other 2 properties from 1.34.

Problem 6. Suppose

$$U = \{(x, x, y, y) \in \mathbb{F}^4 | x, y \in \mathbb{F}\}.$$

Find a subspace W of \mathbb{F}^4 such that $\mathbb{F}^4 = U \oplus W$

Solution 6. Going back to the definition, we need to find a description of a subspace W such that given any vector in \mathbb{F}^4 , that vector can be decomposed uniquely as a sum of a vector in U and a vector in W.

Let v be any vector in \mathbb{F}^4 . By definition $v=(\alpha,\beta,\gamma,\delta)$ where $\alpha,\beta,\gamma,\delta\in\mathbb{F}$. We would like to find a unique way to write v as a sum of a vector in U and a vector in W, written v=u+w where $u\in U$ and $w\in W$. Since $u\in U$ it will be of the form shown above. In particular we could let $u=(\alpha,\alpha,\gamma,\gamma)$ Expanding v=u+w:

$$(\alpha, \beta, \gamma, \delta) = (\alpha, \alpha, \gamma, \gamma) + w$$

subtracting the vector $(\alpha, \alpha, \gamma, \gamma)$ from both sides, we obtain

$$(\alpha, \beta, \gamma, \delta) - (\alpha, \alpha, \gamma, \gamma) = (0, \beta - \alpha, 0, \delta - \gamma) = w.$$

Define
$$W = \{(0, \beta - \alpha, 0, \delta - \gamma) | \alpha, \beta, \gamma, \delta \in \mathbb{F}\}.$$

It remains to check that for every $(\alpha, \beta, \gamma, \delta) \in \mathbb{F}^4$ it has a unique decomposition as a sum of two vectors, one from U and one from W.

Letting $(p,q,r,s) \in \mathbb{F}^4$, (p,q,r,s) = u + w. We see that (p,q,r,s) = (p,p,r,r) + (0,q-p,0,s-r) where u = (p,p,r,r) and w = (0,q-p,0,s-r). Thus $U + W = \mathbb{F}^4$. It remains to show that U + W is a direct sum.

To show $U \oplus W$, we need to show the decomposition v = u + w is unique. Note that the first component of w must be 0 (because otherwise it wouldn't be of the form of vectors in W). This means that the first component of u must be p. The first component of u must be the same as the second component, so the second component of u must be p. This determines uniquely the first and second elements of u and w.

Similarly, the third component of w must be 0 so the third component of u must be r. The third component of u must be the same as the fourth component. This determines uniquely the third and fourth elements of w.

For yourself you should make sure that you can verify that W is subspace.

Problem 7. Suppose

$$U = \{(x, y, x + y, x - y, 2x) \in \mathbb{F}^5 | x, y \in \mathbb{F}\}.$$

Find a subspace W of \mathbb{F}^5 such that $\mathbb{F}^5 = U \oplus W$

Solution 7. Let $(\alpha, \beta, \gamma, \delta, \varepsilon) \in \mathbb{F}^5$. We are trying to find a decomposition like so:

$$(\alpha, \beta, \gamma, \delta, \varepsilon) = (x, y, x + y, x - y, 2x) + w$$

Let x be α and y be β and subtract to solve for w.

$$(\alpha, \beta, \gamma, \delta, \varepsilon) - (\alpha, \beta, \alpha + \beta, \alpha - \beta, 2\alpha) = (0, 0, \gamma - (\alpha + \beta), \delta - (\alpha - \beta), \varepsilon - 2\alpha) = w$$

Then let $W = \{(0,0,\gamma-(\alpha+\beta),\delta-(\alpha-\beta),\varepsilon-2\alpha)|\alpha,\beta,\gamma,\delta,\varepsilon\in\mathbb{F}\}$. I will leave it to you to check that $U+W=\mathbb{F}^5$ and then check that $U\oplus W=\mathbb{F}^5$. In english: check that every vector in \mathbb{F}^5 can be written in this way. Then check that this way is unique. For yourself, check W is a subspace.

Problem 8. Suppose

$$U=\{(x,y,x+y,x-y,2x)\in \mathbb{F}^5|x,y\in \mathbb{F}\}.$$

Find three subspaces W_1 , W_2 , and W_3 of \mathbb{F}^5 such that $\mathbb{F}^5 = U \oplus W_1 \oplus W_2 \oplus W_3$.

Solution 8. Let W be the same subspace as in the answer to the previous problem, the problem will be solved if we can find W_1 , W_2 , and W_3 such that $W = W_1 \oplus W_2 \oplus W_3$.

Conjecture that $W_1 = \{(0,0,x,0,0) | x \in \mathbb{F}\}, W_2 = \{(0,0,0,y,0) | y \in \mathbb{F}\}$ and $W_3 = \{(0,0,0,0,z) | z \in \mathbb{F}\}.$ It is easy to show that $W_1 \oplus W_2 \oplus W_3 = \{(0,0,x,y,z) | x,y,z \in \mathbb{F}\}.$ Now we need to verify that $W = W_1 \oplus W_2 \oplus W_3.$

(We could also solve the problem by proving that $\mathbb{F}^5 = U \oplus W_1 \oplus W_2 \oplus W_3$. This is a simpler way. To show this is a direct sum note that the intersection of U and $W_1 \oplus W_2 \oplus W_3$ is only the 0 vector. There are a few more things to verify.)

First we show that W is contained in $\{(0,0,x,y,z)|x,y,z\in\mathbb{F}\}$. For any $(0,0,\gamma-(\alpha+\beta),\delta-(\alpha-\beta),\varepsilon-2\alpha)\in W$, just let $x=\gamma-(\alpha+\beta)$, let $y=\delta-(\alpha-\beta)$ and let $z=\varepsilon-2\alpha$.

To show that $\{(0,0,x,y,z)|x,y,z\in\mathbb{F}\}$ is contained in W is slightly harder. Let $(0,0,x,y,z)\in\{(0,0,x,y,z)|x,y,z\in\mathbb{F}\}$. To show that $(0,0,x,y,z)\in W$ we need to find α , β , γ , δ , and ε such that $\gamma-(\alpha+\beta)=x$, $\delta-(\alpha-\beta)=y$ and $\varepsilon-2\alpha=z$. Let α and β both equal 0. Let $\gamma=x$, $\delta=y$, and $\varepsilon=z$. Thus, $(0,0,x,y,z)\in W$, $\{(0,0,x,y,z)|x,y,z\in\mathbb{F}\}$ is contained in W, and the proof is complete.