

A Mathematical Model of Network Communication

James R. Gatewood United States Military Academy, West Point Rensselaer Polytechnic Institute

> Donald Drew Rensselaer Polytechnic Institute

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding and DMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the , 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 15 MAR 2012		2. REPORT TYPE N/A		3. DATES COVE	RED		
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER		
A Mathematical M	lodel of Network Co	5b. GRANT NUM	IBER				
				5c. PROGRAM E	LEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Military Academy West Point, NY 10996					8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited.					
13. SUPPLEMENTARY NO	OTES						
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 34	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline of Presentation

- Motivation
- Communication Network
- Discrete Network Model
- Discrete Conservation of Packets Equations
- Continuum Network Model
- Example: One Dimensional Flow Model
- Current Work

Motivation

- Rapid Communication is essential in today's world.
- Understand the dynamics of flow by creating a communication network model.
- Modeling flow on a communication network will allow us to:
 - Describe normal and congested flow on large communication networks.
 - Predict changes in flow pattern due to changes in the spatial density and per-link traffic.

Communication Networks

- A communication network is a global system of interconnected networks, both big and small.
- Packet switching network because all data traffic is broken down into data chunks called packets.
- Everything traveling on a communication network is called a packet.

Discrete Communication Network

- Use graph theory to describe the connectivity of a network, where a graph is composed of nodes and links.
- Information travels along links connecting nodes.
- The graph is undirected; information travels in both directions.
- The nodes are routers in this model
- Routers will act as both host and switch computers.
- Host computers is where information enters (source), and exits (destination) a network.

Route Matrix

- The Route matrix depicts the global state of a network.
- Describes how to direct packets from source to destination.
- Each entry describes the next appropriate router a packet will take along its path.
- Routes are pre-determined by an optimal path algorithm.

<u> </u>	1	2	3	•••
1	$r_{1,1}$	$r_{1,2}$	$r_{1,3}$	• • •
2	$r_{2,1}$	$r_{2,2}$	$r_{2,3}$	• • •
3	$r_{3,1}$	$r_{3,2}$	$r_{3,3}$	• • •
•	•	•	•	•
•	•	•	•	•

$$r_{i,d} = x$$

i = Current position

d = Destination

x = Next position

X

Queue Dynamics

- Each router contains a queue of buffered packets.
- FIFO unlimited memory buffer
 - Packets enter queue in one of two ways
 - Packets flowed from another router along a connecting link.
 - Generated at a router according to some packet generator rate appropriate to the router.
- Upon being generated, a packet is given a destination by its originator.
- Once a packet reaches its destination it is delivered and exits immediately.

Flow equation (Arrivals Age zero)

$$b(j,d,0,\tau+1) = \sum_{a=0}^{\infty} \sum_{\substack{i=1\\j \neq d}}^{N} \delta_{j,R_{i,d}} \beta(i,d,a,\tau) + \nu(j,d,\tau)$$

 $b(j,d,a,\tau)$, number of buffered packets at node j, with destination d, age a at time t

 $\beta(i,d,a,\tau)$ is the sending rate of packets being sent from router i to router j toward its destination d at time τ

 $v(j,d,\tau)$ is the number of new packets entering the network at node j

Evolution Equation

Describes how packets are aging in the buffer.

$$b(j,d,a+1,\tau+1) = b(j,d,a,\tau) - \beta(j,d,a,\tau)$$

 $\beta(j,d,a,\tau)$ determines the number of packets that are sent outward from node j with destination d

Discrete Conservation of Packet Equation

 The number of buffered messages at router j with destination d at time t

$$n(j,d,\tau) = \sum_{a=0}^{\infty} b(j,d,a,\tau)$$

$$n(j,d,\tau+1) - n(j,d,\tau) = \sum_{a=0}^{N} b(j,d,a,\tau+1) - \sum_{a=0}^{N} b(j,d,a,\tau)$$

Discrete Conservation of Packet Equations

$$n(j,d,\tau+1) - n(j,d,t) = -\sum_{a=0}^{\infty} \beta(j,d,a,\tau) + \sum_{a=0}^{\infty} \sum_{i=1}^{N} \delta_{i,R_{i,d}} \beta(i,d,a,\tau)$$

$$+v(j,d,\tau)-\sum_{a=0}^{\infty}\beta(j,j,a,\tau)$$

Continuum Network Model

• To view this model as a flow model, well discuss the collection of routers as opposed to one. The collection of routers create a Voronoi Diagram.

Voronoi Diagram

- The spatial location of each router is of importance.
- Each router serves a particular coverage area of users who are sending and receiving packets in an area
- Associate each router with a physical spatial location
- Each router shares physical boundaries with another set of routers so that packets moving through the network will pass through physical boundaries around routers.

Voronoi Diagram

 x_j = Location of router jy = Location of destination d

Each x_j generates a Voronoi polygon $V(x_j)$, a tessellation in the plane. The Voronoi polygon $V(x_j)$ is the set of points closer to the point (router) x_j , than to all other routers in the diagram. A collection of Voronoi polygons is called a Voronoi Diagram.

Continuum Description

Let V_P be a Voronoi Diagram and ∂V_P be its boundary The density of packets for Voronoi polygon $V(x_i)$

$$\rho(x_j, y, t) = \frac{n(j, d, \tau)}{|V(x_j)|}$$

The number of packets buffered in the Vorono Diagram V_P

$$\sum_{j\in P} n(j,d,\tau)$$

Continuum Description Cont.

The evolution equation for the density of packets in a Voronoi Diagram

$$\int_{V_P} \frac{\rho(x, y, t + \Delta t) - \rho(x, y, t)}{\Delta t} dV = \sum_{j \in P} \frac{n(j, d, \tau + 1) - n(j, d, \tau)}{\Delta t}$$

Take the limit as Δt goes to zero, first term becomes

$$\int_{V_P} \frac{\partial \rho}{\partial t} \, dV$$

Flux

The flow vector from router x_i to router x_i is

$$\frac{x_i - x_j}{\left|x_i - x_j\right|} \beta(j, d, a, \tau)$$

The outflow through boundary element $\partial V_{l,m}$

$$\sum_{a=0}^{\infty} \sum_{\substack{j \in P \\ j \neq P}} \mathcal{S}_{(j,i)|(l,m)} \mathcal{S}_{i,R_{j,d}} \frac{-1}{\Delta t} \frac{x_i - x_j}{\left| x_i - x_j \right|} \beta(j,d,a,\tau) \cdot n_{l,m} = \Phi^O(x_{l,m},y,t) \cdot n_{l,m} \left| \partial V_{l,m} \right|$$

Similar derivation fo the incoming flow terms

$$\sum_{a=0}^{\infty} \sum_{\substack{j \in P \\ i \neq P}} \delta_{(j,i)|(l,m)} \delta_{j,R_{i,d}} \frac{1}{\Delta t} \frac{x_i - x_j}{\left| x_i - x_j \right|} \beta(i,d,a,\tau) \cdot n_{l,m} = \Phi^I(x_{l,m},y,t) \cdot n_{l,m} \left| \partial V_{l,m} \right|$$

Flux Cont.

The total flux of packets entering and exiting a boundary $\partial V_{l,m}$

$$\Phi(x_{l,m}, y, t) \cdot n_{l,m} \left| \partial V_{l,m} \right| = \Phi^{O}(x_{l,m}, y, t) \cdot n_{l,m} \left| \partial V_{l,m} \right| - \Phi^{I}(x_{l,m}, y, t) \cdot n_{l,m} \left| \partial V_{l,m} \right|$$

Total flux of packets in Voronoi Diagram V_p with destination y

$$\sum_{\substack{l \in \partial P \\ m \neq \partial P}} \Phi(x_{l,m}, y, t) \cdot n_{l,m} |\partial V_{l,m}|$$

Written in the continuum limit and using the divergence theorem the total flux becomes

$$\sum_{\substack{l \in \partial P \\ m \notin \partial P}} \Phi(x_{l,m}, y, t) \cdot n_{l,m} \Big| \partial V_{l,m} \Big| \to \int_{\partial V_P} \Phi(x, y, t) \cdot n \, ds$$

Source and Sink

The source and sink in their continuum limit

$$\sum_{j \in P} \frac{1}{\Delta t} \nu(j, d, \tau) \to \int_{V_P} \gamma(x, y, t) \, dv$$

$$\sum_{a=0}^{\infty} \sum_{j \in P} \frac{1}{\Delta t} \beta(j, d, a, \tau) \to \int_{V_P} \sigma(x, t) \, dV$$

Continuity Equation

Putting the continuum limits together we have the conservation of packets equation in a Voronoi Diagram V_P

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \Phi(x, y, t) = \gamma(x, y, t) - \sigma(x, t)$$

One Dimensional Network Flow Model

- One dimensional Network flow model with x=0 and a destination x=y.
- Analyze inner nodes
- Continuity equation in one dimensions

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho}{\partial x} = 0$$

$$\Phi(x, y, t) = \begin{cases} \rho(x, y, t) & \text{if } \rho(x, y, t) < \Phi_{\text{max}}(x, y, t) \\ \Phi_{\text{max}}(x, y, t) & \text{if } \rho(x, y, t) \ge \Phi_{\text{max}}(x, y, t) \end{cases}$$

Non-Saturated Flow

Flow Movement In Time

End of Flow

Example: Flow with Saturation

Initial Condition

End of Flow

Interruptions

- Disturbance in the flow
 - Limited bandwidth, link capacity drops to a lower value
 - Router (grid point) is down for some time.

Example

- Source node has constant flux of packets below link capacity.
- One of the grid points has limited bandwidth for a while.
- One of the inner grid points has a source term.

Interruptions

End of Flow

Current Work

- Currently route matrix is static.
- Make route matrix dynamic at every node (changes because of link weight, upstream traffic, etc.

$$R_{j,d} = i$$
 Before

$$R_{j,d}(t) \neq R_{j,d}(t+1)$$
 Now

Current Work

- Also leads to probabilities in which nodes packets will take next.
- Probability of going to node *i* to node *j* with destination *d*.

Questions!!!!!!!!!!

