Transport Layer

our goals:

- understand principles behind transport layer services:
 - multiplexing, demultiplexing
 - reliable data transfer
 - flow control
 - congestion control

- learn about Internet transport layer protocols:
 - UDP: connectionless transport
 - TCP: connectionoriented reliable transport
 - TCP congestion control

Outline

- 3.1 transport-layer services
- 3.2 multiplexing and demultiplexing
- 3.3 connectionless transport: UDP
- 3.4 principles of reliable data transfer

- 3.5 connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 principles of congestion control
- 3.7 TCP congestion control

Transport services and protocols

- provide logical communication between app processes running on different hosts
- transport protocols run in end systems
 - send side: breaks app messages into segments, passes to network layer
 - rcv side: reassembles segments into messages, passes to app layer
- more than one transport protocol available to apps
 - Internet: TCP and UDP

Transport vs. network layer

- network layer: logical communication between hosts
- * transport layer: logical communication between processes
 - relies on, enhances, network layer services

household analogy:

- 12 kids in Ann's house sending letters to 12 kids in Bill's house:
- hosts = houses
- processes = kids
- app messages = letters in envelopes
- * transport protocol = Ann and Bill who demux to in-house siblings
- network-layer protocol = postal service

Internet transport-layer protocols

- reliable, in-order delivery (TCP)
 - congestion control
 - flow control
 - connection setup
- unreliable, unordered delivery: UDP
 - no-frills extension of "best-effort" IP
- * services not available:
 - delay guarantees
 - bandwidth guarantees

Outline

- 3.1 transport-layer services
- 3.2 multiplexing and demultiplexing
- 3.3 connectionless transport: UDP
- 3.4 principles of reliable data transfer

- 3.5 connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 principles of congestion control
- 3.7 TCP congestion control

Multiplexing/demultiplexing

multiplexing at sender:

handle data from multiple sockets, add transport header (later used for demultiplexing) demultiplexing at receiver:
use header info to deliver
received segments to correct
socket

How demultiplexing works

- host receives IP datagrams
 - each datagram has source IP address, destination IP address
 - each datagram carries one transport-layer segment
 - each segment has source, destination port number
- host uses IP addresses & port numbers to direct segment to appropriate socket

TCP/UDP segment format

Connectionless demultiplexing

host-local port #:

DatagramSocket mySocket1 = new DatagramSocket(12534);

- * recall: created socket has recall: when creating datagram to send into UDP socket, must specify
 - destination IP address
 - destination port #

- * when host receives UDP segment:
 - checks destination port # in segment
 - directs UDP segment to socket with that port #

IP datagrams with same dest. port #, but different source IP addresses and/or source port numbers will be directed to same socket at dest

Connectionless demux: example

Connection-oriented demux

- TCP socket identified by 4-tuple:
 - source IP address
 - source port number
 - dest IP address
 - dest port number
- demux: receiver uses all four values to direct segment to appropriate socket

- server host may support many simultaneous TCP sockets:
 - each socket identified by its own 4-tuple
- web servers have different sockets for each connecting client
 - non-persistent HTTP will have different socket for each request

Connection-oriented demux: example

three segments, all destined to IP address: B, dest port: 80 are demultiplexed to *different* sockets

Connection-oriented demux: example

Outline

- 3.1 transport-layer services
- 3.2 multiplexing and demultiplexing
- 3.3 connectionless transport: UDP
- 3.4 principles of reliable data transfer

- 3.5 connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 principles of congestion control
- 3.7 TCP congestion control

UDP: User Datagram Protocol [RFC 768]

- "no frills," "bare bones"
 Internet transport
 protocol
- * "best effort" service, UDP segments may be:
 - lost
 - delivered out-of-order to app
- * connectionless:
 - no handshaking between UDP sender, receiver
 - each UDP segment handled independently of others

- UDP use:
 - streaming multimedia apps (loss tolerant, rate sensitive)
 - DNS
 - SNMP
- reliable transfer over UDP:
 - add reliability at application layer
 - application-specific error recovery!

UDP: segment header

source port # dest port # length checksum

application data (payload)

UDP segment format

length, in bytes of UDP segment, including header

why is there a UDP?

- no connection establishment (which can add delay)
- simple: no connection state at sender, receiver
- * small header size
- no congestion control:
 UDP can blast away as
 fast as desired

UDP checksum

Goal: detect "errors" (e.g., flipped bits) in transmitted segment

sender:

- treat segment contents, including header fields, as sequence of 16-bit integers
- checksum: addition (one's complement sum) of segment contents
- sender puts checksum value into UDP checksum field

receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected. But maybe errors nonetheless? More later

- 一、下面的图是一个UDP的检验和所需要用到的所有信息,包括三个部分:
- 1.UDP伪首部
- 2.UDP首部
- QIIDD的数据部分(切记不要溃漏该部分,否则就~叶而了~)

首先解释下伪首部的概念,伪首部包含IP首部一些字段。其目的是让UDP两次检查数据是否已经正确到达目的地,只是还有一个概念十分重要,那就是16位UDP总长度,请注意该长度不是报文的总长度,而只是UDP(包括UDP头和数据部二、计算检验和(checksum)的过程很关键,主要分为以下几个步骤:

- 1.把伪首部添加到UDP血;
- 2.计算初始时是需要将检验和字段添零的;
- 3.把所有位划分为16位(2字节)的字
- 4.把所有16位的字相加,如果遇到进位,则将高于16字节的进位部分的值加到最低位上,举例, 0xBB5E+0xFCED=0x1 E
- 5.将所有字相加得到的结果应该为一个16位的数,将该数取反则可以得到检验和checksum。

Internet checksum: example

example: add two 16-bit integers

					0 1												
wraparound	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1
sum checksum					1 0												

Note: when adding numbers, a carryout from the most significant bit needs to be added to the result

Outline

- 3.1 transport-layer services
- 3.2 multiplexing and demultiplexing
- 3.3 connectionless transport: UDP
- 3.4 principles of reliable data transfer

- 3.5 connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 principles of congestion control
- 3.7 TCP congestion control

- important in application, transport, link layers
 - top-10 list of important networking topics!

(a) provided service

- (b) service implementation
- characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

- important in application, transport, link layers
 - top-10 list of important networking topics!

 characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

- important in application, transport, link layers
 - top-10 list of important networking topics!

 characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

- important in application, transport, link layers
 - top-10 list of important networking topics!

 characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

Reliable data transfer: getting started

Reliable data transfer: getting started

we'll:

- incrementally develop sender, receiver sides of reliable data transfer protocol (rdt)
- * consider only unidirectional data transfer
 - but control info will flow on both directions!
- use finite state machines (FSM) to specify sender, receiver

event causing state transition
actions taken on state transition

state: when in this
"state" next state
uniquely determined
by next event

event

event

event

actions

state

1

event

actions

rdt1.0: reliable transfer over a reliable channel

- underlying channel perfectly reliable
 - no bit errors
 - no loss of packets
- * separate FSMs for sender, receiver:
 - sender sends data into underlying channel
 - receiver reads data from underlying channel

rdt2.0: channel with bit errors

- underlying channel may flip bits in packet
 - checksum to detect bit errors
- * the question: how to recover from errors:

How do humans recover from "errors" during conversation?

rdt2.0: channel with bit errors

- underlying channel may flip bits in packet
 - checksum to detect bit errors
- * the question: how to recover from errors:
 - acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK
 - negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors
 - sender retransmits pkt on receipt of NAK
- * new mechanisms in rdt2.0 (beyond rdt1.0):
 - error detection
 - feedback: control msgs (ACK,NAK) from receiver to sender

rdt2.0: FSM specification

receiver

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

Wait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt2.0: operation with no errors

rdt2.0: error scenario

rdt2.0 has a fatal flaw!

what happens if ACK/NAK corrupted?

- sender doesn't know what happened at receiver!
- can't just retransmit: possible duplicate

handling duplicates:

- sender retransmits current pkt if ACK/NAK corrupted
- sender adds sequence number to each pkt
- receiver discards (doesn't deliver up) duplicate pkt

stop and wait

sender sends one packet, then waits for receiver response

rdt2.1: sender, handles garbled ACK/NAKs

rdt2.1: receiver, handles garbled ACK/NAKs

rdt2.1: discussion

sender:

- seq # added to pkt
- * two seq. #'s (0,1) will suffice. Why?
- must check if received ACK/NAK corrupted
- twice as many states
 - state must "remember" whether "expected" pkt should have seq # of 0 or 1

receiver:

- must check if received packet is duplicate
 - state indicates
 whether 0 or 1 is
 expected pkt seq #
- note: receiver can not know if its last ACK/NAK received OK at sender

rdt2.2: a NAK-free protocol

- same functionality as rdt2.1, using ACKs only
- instead of NAK, receiver sends ACK for last pkt received OK
 - receiver must explicitly include seq # of pkt being ACKed
- duplicate ACK at sender results in same action as NAK: retransmit current pkt

rdt2.2: sender, receiver fragments

rdt3.0: channels with errors and loss

new assumption: underlying channel can also lose packets (data, ACKs)

checksum, seq. #,
 ACKs,
 retransmissions will
 be of help ... but not
 enough

- approach: sender waits
 "reasonable" amount
 of time for ACK
- retransmits if no ACK received in this time
- if pkt (or ACK) just delayed (not lost):
 - retransmission will be duplicate, but seq. #'s already handles this
 - receiver must specify seq # of pkt being ACKed
- * requires countdown timer

rdt3.0 sender

rdt3.0 in action

rdt3.0 in action

Performance of rdt3.0

- * rdt3.0 is correct, but performance stinks
- e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

$$D_{trans} = \frac{L}{R} = \frac{8000 \text{ bits}}{10^9 \text{ bits/sec}} = 8 \text{ microsecs}$$

• U sender: utilization - fraction of time sender busy sending

$$U_{sender} = \frac{L/R}{RTT + L/R} = \frac{.008}{30.008} = 0.00027$$

- if RTT=30 msec, 1KB pkt every 30 msec: 33kB/sec thruput over 1 Gbps link
- network protocol limits use of physical resources!

rdt3.0: stop-and-wait operation

Pipelined protocols

pipelining: sender allows multiple, "inflight", yet-to-be-acknowledged pkts

- range of sequence numbers must be increased
- buffering at sender and/or receiver

(a) a stop-and-wait protocol in operation

(b) a pipelined protocol in operation

* two generic forms of pipelined protocols: go-Back-N, selective repeat

Pipelining: increased utilization

Throughput (more)

What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Pipelined protocols: overview

Go-back-N:

- sender can have up to N unacked packets in pipeline
- * receiver only sends cumulative ack
 - doesn't ack packet if there's a gap
- sender has timer for oldest unacked packet
 - when timer expires, retransmit all unacked packets

Selective Repeat:

- sender can have up to N unack' ed packets in pipeline
- rcvr sends individual ack for each packet
- sender maintains timer for each unacked packet
 - when timer expires, retransmit only that unacked packet

Go-Back-N: sender

- * k-bit seq # in pkt header
- "window" of up to N, consecutive unack'ed pkts allowed

- ACK(n): ACKs all pkts up to, including seq # n "cumulative ACK"
 - may receive duplicate ACKs (see receiver)
- timer for oldest in-flight pkt
- timeout(n): retransmit packet n and all higher seq # pkts in window

GBN: sender extended FSM

```
rdt send(data)
                       if (nextseqnum < base+N) {
                          sndpkt[nextseqnum] = make pkt(nextseqnum,data,chksum)
                          udt_send(sndpkt[nextseqnum])
                          if (base == nextsegnum)
                            start timer
                          nextsegnum++
                       else
   Λ
                         refuse data(data)
   base=1
   nextseqnum=1
                                           timeout
                                          start timer
                             Wait
                                          udt send(sndpkt[base])
                                          udt_send(sndpkt[base+1])
rdt rcv(rcvpkt)
 && corrupt(rcvpkt)
                                          udt_send(sndpkt[nextseqnum-1])
                         rdt rcv(rcvpkt) &&
                           notcorrupt(rcvpkt)
                         base = getacknum(rcvpkt)+1
                         If (base == nextseqnum)
                            stop timer
                           else
                           start timer
                                                                         Transport Layer 3-51
```

GBN: receiver extended FSM

ACK-only: always send ACK for correctlyreceived pkt with highest in-order seq

- may generate duplicate ACKs
- need only remember expectedseqnum
- out-of-order pkt:
 - discard (don't buffer): no receiver buffering!
 - re-ACK pkt with highest in-order seq #

GBN in action

Selective repeat

- receiver individually acknowledges all correctly received pkts
 - buffers pkts, as needed, for eventual in-order delivery to upper layer
- sender only resends pkts for which ACK not received
 - sender timer for each unACKed pkt
- sender window
 - N consecutive seq #'s
 - limits seq #s of sent, unACKed pkts

Selective repeat: sender, receiver windows

(b) receiver view of sequence numbers

Selective repeat

-sender-

data from above:

if next available seq # in window, send pkt

timeout(n):

resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

- mark pkt n as received
- if n smallest unACKed pkt, advance window base to next unACKed seq #

-receiver-

pkt n in [rcvbase, rcvbase+N-1]

- send ACK(n)
- out-of-order: buffer
- in-order: deliver (also deliver buffered, inorder pkts), advance window to next not-yetreceived pkt

pkt n in [rcvbase-N,rcvbase-1]

ACK(n)

otherwise:

ignore

Selective repeat in action

Selective repeat: dilemma

example:

- * seq #'s: 0, 1, 2, 3
- window size=3
- receiver sees no difference in two scenarios!
- duplicate data accepted as new in (b)
- Q: what relationship between seq # size and window size to avoid problem in (b)?

sender window (after receipt)

receiver window (after receipt)

receiver can't see sender side.
receiver behavior identical in both cases!
something's (very) wrong!

