Projet 3 - Concevez une application au service de la santé publique

Appel à projets pour trouver des idées innovantes d'applications en lien avec l'alimentation.

Sommaire

Mon idée d'application

Nettoyage des données

Analyse des données (univariée et multivariée)

Le projet et sa faisabilité

puis remarques.

- Scanner un produit
- Obtenir son nutri score

Si sa catégorie est détectée

Trouver 3 alternatives avec un meilleur nutri score

Nettoyage des données 👚

- 320 772 individus pour 162 variables
- Conservation des variables remplies à plus de 60% avant sélection pour l'application

```
list var = ['code', 'url', 'product name', 'brands',
                  'countries', 'countries_tags', 'countries_fr',
                  'ingredients_text', 'additives_n', 'additives',
                   'energy_100g', 'fat_100g', 'saturated-fat_100g', 'carbohydrates_100g',
                  'sugars 100g', 'fiber 100g', 'proteins 100g', 'salt 100g', 'sodium 100g',
                  'nutrition-score-fr 100g', 'nutrition grade fr',
                  'pnns groups 1', 'pnns groups 2', 'main category fr']
```

- Suppression des individus sans code ou sans product name, et ceux qui n'ont aucune donnée à partir d'ingredients_text
- Suppression des duplicates sur la variable code en conservant l'individu le plus rempli

282988

Nettoyage des données

Valeurs aberrantes

- energy_100g ⇒ NaN pour > 4000kcal (aliment le plus calorique possible)
- autres valeurs en 100g ⇒ val abs>100 : NaN , val abs<100 : val abs

Valeurs manquantes

- valeurs en $100g \Rightarrow NaN$: median du pnns_groups_2 \rightarrow univariée
- energy_100g ⇒ iterative imputer (25,5 k données) multivariée
- nutri score ⇒ knn imputer (64,5 k données)

<page-header> Analyse des données - Univariée

Analyse des données - Bivariée (Quali x Quanti)

Analyse des données - Bivariée (Quanti x Quanti)

$$y = 12.4x + 903.7$$

 $r2 = 0.10$

$$y = 36,6 \times 1 + 13,5 \times 2 + 436,7$$

 $r2 = 0,69$

Analyse des données - Bivariée (Quali x Quali)

nutrition_grade_ii	a	D	C	u	-	lotalCateg	
pnns_groups_1							
Beverages	6.61	36.55	21.19	11.52	24.13	100.0	
Cereals and potatoes	48.08	21.66	18.28	10.49	1.49	100.0	
Composite foods	22.81	36.39	25.16	14.32	1.32	100.0	
Fat and sauces	4.09	25.14	19.99	34.94	15.84	100.0	
Fish Meat Eggs	9.01	35.47	19.90	21.48	14.14	100.0	
Fruits and vegetables	46.72	11.57	40.04	1.37	0.31	100.0	
Milk and dairy products	10.70	27.65	20.40	37.08	4.17	100.0	
Salty snacks	7.31	10.43	24.66	43.94	13.66	100.0	
Sugary snacks	1.36	18.86	7.17	30.98	41.63	100.0	

Analyse des données - Multivariées - ACP

ACP - F1 & F2

F1: Aliments les plus caloriques et gras / mauvais à droite (Fat & Sauces \rightarrow , fruits and vg \leftarrow)

Projection des individus (sur F1 et F2)

F2: Aliments salés en haut. aliments sucrés plus bas (salty snacks ↑, beverages & sugary snacks ↓)

energy_100g

F1

0.53 -0.02

0.13

energy_100g

sugars_100g

proteins_100g

fiber_100g

salt_100g -0.04

sodium_100g -0.04

saturated_fat_100g

carbohydrates_100g

nutrition_score_fr_100g

fat_100g

0.53 -0.02

0.43 0.12

0.41 0.13

0.25 -0.24

0.24 -0.21

0.13 -0.04

0.13

0.65

0.65

0.11

0.16

0.46

F2: Aliments salés en haut,

ACP - F3 & F4

des glucides, un peu de sel mais pas fat_100g -0.33 -0.09 trop de gras ni de protéines (saturated_fat_100g -0.23 -0.27 Beverages \rightarrow , carbohydrates_100g 0.52 0.24 Fat & Sauces, Salty Snacks, Milk sugars_100g 0.54 -0.16 Dairy, Fish Meat Eggs ←) fiber_100g 0.03 0.75 proteins_100g -0.34 0.45 F4: Fibres et protéines en haut, gras salt_100g 0.26 0.05 vers le bas (Fish Meat Eggs, sodium_100g 0.27 0.05 Cereals↑, nutrition_score_fr_100g 0.10 -0.22Fat & Sauces ↓) Projection des individus (sur F3 et F4) pnns groups 1 Cereals and potatoes Fruits and vegetables Milk and dairy products Composite foods Sugary snacks Fat and sauces Salty snacks Fish Meat Eggs Beverages

F3 : Aliments les plus sucrés et avec

F3

-0.00 0.13

energy_100g

ACP - F4 & F5

F4: Fibres et protéines a droite, gras

F4

0.13 0.02

energy_100g

<page-header> Analyse des données - Pour aller + loin

Clusters n_clust=50 ⇒ Classification

return product scanned

Le projet et sa faisabilité

```
def applicationbis(code):
   code = str(code)
   product = data[data['code'] == code]
   cols = ['code', 'url', 'product_name', 'nutrition_grade_fr', 'nutrition_score_fr_100g', 'pnns_groups_1', 'energy_100g',
       'fat 100g', 'sugars 100g', 'fiber 100g', 'proteins 100g', 'salt 100g']
   product scanned = product[cols]
   if not pd.isnull(product scanned['pnns groups 1'].iloc[0]):
       category = product scanned['pnns groups 1'].iloc[0]
       similar products = data[data['pnns groups 1'] == category]
       features = similar products[['nutrition score fr 100g', 'energy 100g',
       'fat 100g', 'sugars 100g', 'fiber 100g', 'proteins 100g', 'salt 100g']]
       kmeans = KMeans(n clusters=3, random state=0, n init='auto').fit(features)
       closest products = similar products.iloc[kmeans.labels ==kmeans.predict(features)[0]]
       closest products = closest products.sort values(by='nutrition score fr 100g', ascending=True)
       closest products = closest products[cols].head(3)
       return pd.concat([product scanned, closest products]).set axis(['Scanned Product', 'Similar 1', 'Similar 2', 'S
```

L'application : on scanne un produit, on obtient son nutri score

Si la catégorie est identifiée on obtient 3 alternatives avec un meilleur Nutri Score dans la même catégorie.

	code	url	product_name	nutrition_grade_fr	nutrition_score_fr_100g	pnns_groups_1	energy_100g	fat_100g	sugars_100g	fiber_100g	proteins_100g	salt_100g
Scanned_Product	5000159012041	http://world- fr.openfoodfacts.org /produit /5000159012041 /skittles-fruits- wrigley-s	Skittles Fruits	d	17.0	Sugary snacks	1712.000000	4.2	89.9	1.1	0.0	0.03
Similar_1	7702025182305	http://world- fr.openfoodfacts.org /produit /7702025182305 /recreo	Recreo	b	0.0	Sugary snacks	1903.438952	21.0	30.5	2.6	6.1	0.57
Similar_2	3582730001719	http://world- fr.openfoodfacts.org /produit /3582730001719 /patisserie- orientale-zalabia- x2-sans-marque	Pātisserie orientale (Zalabia x2)	b	0.0	Sugary snacks	1903.438952	21.0	30.5	2.6	6.1	0.57
Similar_3	3582739701887	http://world- fr.openfoodfacts.org /produit /3582739701887 /mini-montecao-x4- les-delices-de-	Mini Montecao x4	b	0.0	Sugary snacks	1903.438952	21.0	30.5	2.6	6.1	0.57

djamila

Comparaison entre le nutriscore calculé et donné par le jeu de données 80000 70000 60000 50000 10000 a b c d e Scores

Conclusions & Remarques

Si c'était à refaire:

- Utiliser un iterative imputer pour toutes les données en 100g plutôt que la médiane du groupe, puisque je m'en sers dans l'application.
- Mettre à part les individus dont j'ai le nutriscore mais aucune info de composition (donc pas d'iterative imputer possible) pour les garder pour infos produits pour l'app mais pas pour les suggestions

Avec plus de connaissances :

- Essayer d'estimer les pnns_groups_1 & 2 inconnus à l'aide de la composition, du nom et des ingrédients
- concernant le nutrition grade, j'ai fait une fonction pour le calculer à partir du nutriscore estimé mais non concluant
- pas réussi à exploiter les pays

Le plus important : j'ai gagné en compétences

