## 1 Question

Objective: Train a linear classifier on MNIST using softmax loss and L2 regularization.

Best Performance: Achieved 92.22% test accuracy with optimal hyperparameters (LR = 0.001,  $\lambda = 0.001$ , 50 epochs).

#### **Key Findings:**

- Learning Rate: Critical for stability; lower rates (0.001) performed best, while higher rates (0.1) caused divergence.
- Regularization: Moderate  $\lambda$  values (0.001–0.01) improved generalization;  $\lambda=1$  led to underfitting ( $\sim 88\%$  accuracy).

## **Model Comparison Summary**

| Model                | Training Accuracy   | Testing Accuracy | Validation Accuracy |
|----------------------|---------------------|------------------|---------------------|
| Logistic Regression  | 94%                 | 92%              | 92%                 |
| Single-Layer Network | 93.93%  (epoch  20) | 91.76%           | 92.93%              |

Maximum Accuracy Class: 1, Accuracy: 0.9806 Minimum Accuracy Class: 8, Accuracy: 0.7156



Figure 1: Parameter Tuning

# 2 Question

| x   | y  | z   | $\frac{\partial}{\partial x} (dx)$    | $\frac{\partial}{\partial y} (dy)$ | $\frac{\partial}{\partial z} (dz)$ |
|-----|----|-----|---------------------------------------|------------------------------------|------------------------------------|
| 2   | 4  | 1   | $2.1417102890343505 \times 10^{-16}$  | 0.43720979194276516                | -0.3069722756588883                |
| 9   | 14 | 3   | $-2.5313688314302287 \times 10^{-15}$ | -1.148344174369598                 | $2.672161875217988 \times 10^{-7}$ |
| 128 | 42 | 666 | $1.3244281103803983 \times 10^{-14}$  | -0.42245219681098717               | -0.0                               |
| 52  | 14 | 28  | $-6.6263243875773434 \times 10^{-15}$ | -0.42245219681098645               | -0.0                               |

Table 1: Gradients at different points.

# 3 Question

#### Best Model

• Parameters: batch\_size=32, learning\_rate=0.01

• Test Accuracy: 96.92% (near SOTA for simple MLPs)

• Validation Accuracy: Peaked at 97.88% (Epoch 5)

#### Hyperparameter Insights

• Optimal LR: 0.01 (fast convergence)

• High LR (0.1): Failed (approximately 10% accuracy, divergence)

• Batch Sizes: Smaller batches (32) outperformed larger ones

#### Comparison

| Model               | Test Accuracy          |
|---------------------|------------------------|
| Logistic Regression | 92%                    |
| Single-Layer        | 91%                    |
| Two-Layer MLP       | $\boldsymbol{96.92\%}$ |

Table 2: Model Comparison on MNIST Dataset



Figure 2: Parameter Tuning

## 4 Question



Figure 3: Before and After convolution

### 5 Question

#### 5.1 1. Effect of Increasing Stride (padding=0, kernel=5)

- Stride =  $1 \rightarrow L2 = 2.9391$
- Stride =  $2 \to L2 = 2.9967$
- Stride =  $3 \rightarrow L2 = 3.0114$

As the stride increases from 1 to 3, the L2 distance slightly increases. A larger stride results in fewer sampled positions on the feature map (i.e., more downsampling), causing the outputs to deviate more from the baseline  $C_0$ .

#### 5.2 2. Effect of Padding=2 vs. Padding=0 (stride=1, kernel=5)

- Padding =  $2 \rightarrow L2 = 2.8642$
- Padding =  $0 \rightarrow L2 = 2.9391$

When more padding is applied (padding = 2), the L2 distance decreases. Additional padding helps preserve spatial resolution at the edges, making the filtered outputs closer to  $C_0$  in the L2 sense. In contrast, setting padding = 0 cuts off border regions, slightly altering the receptive field and increasing the distance from the baseline.