FYS3120 Classical Mechanics and Electrodynamics

Problem set 11

 $\mathrm{May}\ 2,\ 2019$

Problem 1 Figure 1 shows a rectangular current loop ABCD. In the loop's rest frame, S, the loop has length a in the x direction and width b in the y direction, the current is I and the charge density is zero. We remind you of the following general definitions of the electric dipole moment \vec{p} , and the magnetic dipole moment \vec{m} , for a given current distribution:

$$\vec{p} = \int \vec{r} \rho(\vec{r}) \, d^3r \tag{1}$$

$$\vec{m} = \frac{1}{2} \int (\vec{r} \times \vec{j}(\vec{r})) d^3r \tag{2}$$

Figure 1: Illustration of current loop.

- a) Show that in the rest frame the loop's electric dipole moment is zero and the magnetic moment is $\vec{m} = I\vec{a} \times \vec{b}$, where $I = j\Delta$ with j as the current density and Δ as the cross section area of the current wire.
- Δ is the cross section area of the current wire. Using this, the integral in (2) instead evaluated as a piecewize line integral:

$$\begin{split} \vec{m} &= \Delta \frac{1}{2} [\int_{A}^{B} (\vec{x} \times \vec{j}(\vec{x})) \, dx + \int_{C}^{D} ((\vec{x} + \vec{b}) \times \vec{j}(\vec{x})) \, dx \\ &+ \int_{A}^{D} (\vec{x} \times \vec{j}(\vec{y})) \, dy + \int_{B}^{C} ((\vec{x} + \vec{a}) \times \vec{j}(\vec{y})) \, dy] \\ \vec{m} &= \Delta \frac{1}{2} \left[\int_{A}^{B} 0 + \, dx \int_{C}^{D} bj(\vec{x}) \vec{k} \, dx + \int_{A}^{D} 0 \, dy + \int_{B}^{C} aj(\vec{y}) \vec{k} \, dy \right] \end{split}$$

I uniform on each segment of the loop $\rightarrow \vec{j}(\vec{r}) = \vec{j}$, thus:

$$\vec{m} = \Delta \frac{1}{2} \left[\int_{C}^{D} bj\vec{k} \, dx + \int_{B}^{C} aj\vec{k} \, dy \right]$$

$$\vec{m} = \Delta \frac{1}{2} \left[jab\vec{k} + jab\vec{k} \right] = \Delta jab\vec{k} = I\vec{a} \times \vec{b}$$

Charge density $\rho(\vec{r}) = 0 \implies \vec{p} = 0$

In the following we will examine how the loop is observed in a reference frame S', where the loop is moving with velocity \vec{v} to the right $(\beta = v/c)$ and $\gamma = 1/\sqrt{1-\beta^2}$. The Lorentz transformation formulas for charge and current denisities may be useful when solving the problems below.

- **b)** What is the length and width of the loop in S'?
 - Length contraction in x direction $\rightarrow a' = \frac{1}{\gamma}a$. No velocity in y direction $\rightarrow b' = b$
- c) Show that the parts AB and CD of the loop have charge $\pm aIv/c^2$ in S'.
- $Q = \int \rho(\vec{r})d^3r$. Using $\Delta' = \Delta$ on loop from A to B, and the fact that $\vec{j}(\vec{r}) = \vec{j} \implies \rho'(x') = \rho$

$$Q'_{AB} = \int_{A}^{B} \Delta p'(x) dx = \Delta \rho' a'$$

Using Lorentz transformation in the x-direction, and that I is uniform:

$$\rho' = \gamma(\rho - \frac{v}{c^2}j) = -\gamma \frac{v}{c^2}j \tag{3}$$

Thus $Q'_{AB}=\Delta a'-\gamma\frac{v}{c^2}j=-\Delta a\frac{v}{c^2}j=-aIv/c^2$. Similarly, $Q'_{DC}=aIv/c^2$ as the current travels in the opposite direction on the upper part of the loop. Thus $Q=\pm aIv/c^2$ on the parts AB and CD of the loop in S'.

d) Show that in S' the loop's electric dipole moment is $\vec{p}' = -\frac{1}{c^2}\vec{m} \times \vec{v}$, and the magnetic dipole moment is $\vec{m}' = (1 - \beta^2/2)\vec{m}$.

$$\begin{split} p' &= \int \vec{r'} \rho(\vec{r'}) \, d^3r' \\ &= \Delta \int_A^B \vec{x'} \rho(\vec{r'}) \, dx' + \Delta \int_D^C (\vec{x'} + \vec{b'}) \rho(\vec{r'}) \, dx' + \Delta' \int_A^D \vec{y'} \rho(\vec{r'}) \, dy' + \Delta' \int_B^C (\vec{y'} + \vec{a'}) \rho(\vec{r'}) \, dy' \\ &= \Delta \left[\int_A^B \vec{x'} \rho(\vec{r'}) \, dx' + \int_D^C (\vec{x'} + \vec{b'}) \rho(\vec{r'}) \, dx' + \frac{1}{\gamma} \int_A^D \vec{y'} \rho(\vec{r'}) \, dy' + \frac{1}{\gamma} \int_B^C (\vec{y'} + \vec{a'}) \rho(\vec{r'}) \, dy' \right] \\ &= -\gamma \frac{v}{c^2} j \Delta \left[\int_A^B \vec{x'} \, dx' + \int_D^C (\vec{x'} + \vec{b'}) \, dx' + \frac{1}{\gamma} \int_A^D \vec{y'} \, dy' + \frac{1}{\gamma} \int_B^C (\vec{y'} + \vec{a'}) \, dy' \right] \\ &= -\gamma \frac{v}{c^2} I \left[\vec{a'} + \int_D^C (\vec{x'} + \vec{b'}) \, dx' + \frac{1}{\gamma} \vec{b'} + \frac{1}{\gamma} \int_B^C (\vec{y'} + \vec{a'}) \, dy' \right] \end{split}$$

- e) Show that the current is $I\gamma$ in the AB and CD and I/γ in BC and DA.
- f) Show that the result in e) is consistent with charge conservation.

Problem 2 An electric point charge q is moving with constant velocity \vec{v} along the x-axis of the inertial frame S, as illustrated in Fig. 2. Assume it passes the origin of S at t = 0.

Figure 2: Charge on the move.

- a) Give the expression for the scalar potential ϕ' and the vector potential $\vec{A'}$ set up by the charge in its rest frame S'. In the relativistic description the scalar and vector potentials define the four-potential A'^{μ} , with the time component related to the scalar potential as $A'^0 = \phi'/c$. Make use of the transformation properties of the four-potential to determine its components A^{μ} in reference frame S as functions of the coordinates (ct, x, y, z) in the same frame.
- $\phi'(\vec{r}) = \frac{q}{4\pi\epsilon_0 r}$
- $\vec{A}' = 0$, as there are no currents in the rest frame S'.
- $A'^{\mu} = (A'^0, \vec{A}) = (\phi'/c, \vec{0}) = (\frac{q/c}{4\pi\epsilon_0 r}, \vec{0})$
- RF S moves with velocity -v with respect to RF S', thus $\phi = \gamma(\phi' + vA'_x) = \gamma\phi$.
- **b)** Determine (the components of) the electric field \vec{E} in the reference frame S, as functions of (ct, x, y, z).
- c) Determine similarly the magnetic field \vec{B} in reference frame S.

A magnetic dipole, with dipole moment \vec{m} , is at rest in S, at the position (x, y, z) = (0, d, 0). The dipole vector \vec{m} points in the x-direction.

- d) The field from the moving charge acts with a time dependent torque on the dipole, $\vec{M} = \vec{m} \times \vec{B}$. Find the expression for the torque.
- e) Assuming the magnetic dipole can be viewed as a small current loop, the force on the dipole from the field produced by the moving charge is $\vec{F} = \vec{\nabla}(\vec{m} \cdot \vec{B})$. Determine the force.