- ES-S1 - - 2020-2021 -

- Correction - Epreuve 2 -

PARTIE I - Endomorphismes

Dans cette partie, n désigne un entier naturel non nul et a et b des constantes réelles. On note Δ l'endomorphisme de $\mathbb{R}[X]$ défini par

$$\forall P \in \mathbb{R}[X], \ \Delta(P) = XP'$$

1. Calculer, pour tout $k \in [0, n]$, $\Delta(X^k)$.

Pour tout
$$k \in [1, n]$$
, $\Delta(X^k) = XkX^{k-1} = kX^k$; pour $k = 0, \Delta(X^0) = X \times 0 = 0 = 0 \times X^0$.
Donc pour tout $k \in [0, n]$:
$$\Delta(X^k) = kX^k$$

2. Montrer que

$$\forall P \in \mathbb{R}[X], X^2 P'' = \Delta \circ (\Delta - \mathrm{Id})(P)$$

où Id désigne l'endomorphisme identité de $\mathbb{R}[X]$.

Soit
$$P \in \mathbb{R}[X]$$
, $\Delta \circ (\Delta - \mathrm{Id})(P) = \Delta (XP' - P) = X(P' + XP'' - P') = X^2P''$.

3. Justifier que $\mathbb{R}_n[X]$ est stable par Δ .

Soit
$$P \in \mathbb{R}_n[X]$$
. Alors $P' \in \mathbb{R}_{n-1}[X]$ et $XP' \in \mathbb{R}_n[X]$, donc $\Delta(P) \in \mathbb{R}_n[X]$.

On notera Δ_n l'endomorphisme de $\mathbb{R}_n[X]$ induit par Δ .

4. Déterminer la matrice de Δ_n dans la base canonique de $\mathbb{R}_n[X]$.

D'après la première question, on obtient immédiatement la matrice diagonale suivante :

$$\operatorname{mat}(\Delta_n) = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & n \end{pmatrix}$$

5. On considère l'endomorphisme φ de $\mathbb{R}[X]$ défini par

$$\forall P \in \mathbb{R}[X], \varphi(P) = X^2 P'' + aXP' + bP$$

Exprimer φ en fonction de Δ , et en déduire que φ induit un endomorphisme de $\mathbb{R}_n[X]$. On notera φ_n l'endomorphisme induit.

Soit
$$P \in \mathbb{R}[X]$$
. D'après la deuxième question, $(\Delta^2 - \Delta)(P) = X^2 P''$.
On a donc $(\Delta^2 + (a-1)\Delta + b\operatorname{Id})(P) = (\Delta^2 - \Delta)(P) + a\Delta(P) + bP = X^2 P'' + aXP' + bP = \varphi(P)$. D'où :
$$\varphi = \Delta^2 + (a-1)\Delta + b\operatorname{Id}$$

Comme Δ induit un endomorphisme sur $\mathbb{R}_n[X]$, un raisonnement analogue en remplaçant $\mathbb{R}[X]$ par $\mathbb{R}_n[X]$ donne que φ induit un endomorphisme φ_n sur $\mathbb{R}_n[X]$ tel que

$$\varphi_n = \Delta_n^2 + (a-1)\Delta_n + b \operatorname{Id}_n$$

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 1 sur 6

6. Exprimer la matrice de φ_n dans la base canonique de $\mathbb{R}_n[X]$.

D'après la quatrième question, la matrice de Δ_n est diagonale avec pour éléments diagonaux les entiers k, pour $k \in [0, n]$.

On déduit de la question précédente, que la matrice de φ_n est également diagonale, avec pour éléments diagonaux $k^2 + (a-1)k + b$, pour $k \in [0, n]$.

7. On considère l'équation

$$s^2 + (a-1)s + b = 0 \quad (1)$$

a. Expliciter le noyau de φ_n lorsque l'équation (1) admet deux racines entières $m_1, m_2 \in [0, n]$.

Lorsque l'équation (1) admet deux solutions entières m_1 et m_2 dans [0, n], alors la matrice de φ_n admet exactement deux fois 0 sur la diagonale, aux colonnes $m_1 + 1$ et $m_2 + 1$. De plus, elle est diagonale. On en déduit que 0 est valeur propre double et que $\operatorname{Ker}(\varphi_n) = \operatorname{E}_0(\varphi_n) = \operatorname{Vect}\{X^{m_1}, X^{m_2}\}$.

b. Expliciter le noyau de φ_n lorsque l'équation (1) admet une unique racine entière $m \in [0, n]$.

Lorsque l'équation (1) admet une seule solution entière m dans [0, n], alors la matrice de φ_n admet exactement une fois 0 sur la diagonale, à la colonne m+1. De plus, elle est diagonale. On en déduit que 0 est valeur propre simple et que $\operatorname{Ker}(\varphi_n) = \operatorname{E}_0(\varphi_n) = \operatorname{Vect}\{X^m\}$

c. Déterminer le noyau de φ .

Comme précédemment si (1) n'admet pas de solution entière dans [0, n], alors 0 n'est pas valeur propre de φ et $\text{Ker}(\varphi_n) = \{0\}$.

Si $P \in \text{Ker}(\varphi) \setminus \{0\}$, notons $n = \deg(P)$. Alors $\varphi(P) = \varphi_n(P) = 0$ et $P \in \text{Ker}(\varphi_n)$.

On en déduit que $\operatorname{Ker}(\varphi) = \bigcup_{n \in \mathbb{N}} \operatorname{Ker}(\varphi_n)$. D'où :

- Si (1) n'admet pas de solution dans \mathbb{N} , alors $\operatorname{Ker}(\varphi) = \{0\}$
- Si (1) admet une solution entière $m \in \mathbb{N}$ alors $\operatorname{Ker}(\varphi) = \operatorname{Vect}\{X^m\}$
- Si (1) admet deux solutions entières m_1 et m_2 dans \mathbb{N} , alors $\operatorname{Ker}(\varphi) = \operatorname{Vect}\{X^{m_1}, X^{m_2}\}$.

PARTIE II - Une équation différentielle

On considère dans cette partie l'équation différentielle

$$x^2y'' + axy' + by = 0 (H_0)$$

où a et b sont des constantes réelles, et on note $I =]0, +\infty[$.

1. Montrer que si y est solution de (H_0) sur I, alors $g = y \circ \exp$ est une solution sur \mathbb{R} de l'équation différentielle linéaire à coefficients constants :

$$u'' + (a-1)u' + bu = 0 (H_1)$$

Soit y une solution de (H₀) sur I. On pose $g = y \circ \exp$.

g est définie et deux fois dérivable sur $\mathbb R$ par composition, et pour tout $x \in \mathbb R$ on a :

 $g'(x) = y'(e^x)e^x; \quad g''(x) = y''(e^x)e^{2x} + y'(e^x)e^x.$

On a alors, pour $x \in \mathbb{R}$, en notant $t = e^x \in I$:

 $g''(x) + (a-1)g'(x) + bg(x) = y''(t)t^2 + ay'(t)t + by(t) = 0$ car y est solution de (H₀) sur I.

On en déduit que $g = y \circ \exp$ est solution de (H_1) sur \mathbb{R} .

2. Réciproquement, soit g une solution de (H_1) sur \mathbb{R} . Montrer que $g \circ \ln$ est solution de (H_0) sur I.

Soit g une solution de (H_1) sur \mathbb{R} . On pose $h = g \circ \ln$. h est définie et deux fois dérivable sur I par composition, et pour tout $x \in I$, on a :

 $\operatorname{Sp\'{e}}\operatorname{PT}$

$$h'(x)=g'(\ln(x))\frac{1}{x}; \qquad h''(x)=g''(\ln(x))\frac{1}{x^2}-\frac{1}{x^2}g'(\ln(x)).$$
 On a alors, pour $x\in I$, en notant $t=\ln(x)\in\mathbb{R}$:
$$x^2h''(x)+axh'(x)+bh(x)=g''(t)+(a-1)g'(t)+bg(t)=0 \text{ car } g \text{ est solution de (H_1)}.$$
 On en déduit que $h=g\circ\ln$ est solution de (H_0) sur I .

- **3.** Dans cette question on suppose que a=3 et b=1.
 - a. Donner les solutions à valeurs réelles de l'équation (H₁).

Pour a=3 et b=1, (H_1) est une équation différentielle linéaire du second ordre à coefficients constants dont l'équation caractéristique $r^2+2r+1=0$ admet -1 pour solution double. On en déduit que les solutions sont : $u:t\mapsto (\lambda t+\mu)\mathrm{e}^{-t}$, avec $(\lambda,\mu)\in\mathbb{R}^2$.

b. En déduire les solutions à valeurs réelles de l'équation (H_0) sur l'intervalle I.

On déduit des questions précédentes que les solutions de (H_0) sur I sont :

$$y: x \mapsto \frac{\lambda \ln(x) + \mu}{x}, \quad (\lambda, \mu) \in \mathbb{R}^2$$

c. Après vous être assuré que la fonction $x \mapsto \frac{1}{x}$ figure bien parmi les solutions sur I de (H_0) , résoudre l'équation différentielle suivante :

$$x^2y'' + 3xy' + y = \frac{1}{x}$$
 (L₀)

On a bien trouvé que $h: x \mapsto \frac{1}{x}$ est une solution de (H_1) sur I, où elle ne s'annule pas. On cherche une solution de (L_0) sous la forme $y = \lambda h$ où λ est deux fois dérivable sur I. y est solution de (L_0) sur I si, et seulement si pour tout $x \in I$:

$$x^{2} (\lambda''h + 2\lambda'h' + \lambda h'') + 3x(\lambda'h + \lambda h') + \lambda h = \frac{1}{x}.$$

Comme h est solution de (H₀), cela équivaut à : $x\lambda'' + \lambda' = \frac{1}{x}$.

 λ' est donc solution de l'équation différentielle $(L_1): xy' + y = \frac{1}{x}$.

Les solutions de l'équation homogène xy'+y=0 sont de la forme $x\mapsto \frac{C}{x}$, où $C\in\mathbb{R}$.

On cherche une solution particulière sous la forme $y_p: x \mapsto \frac{C}{x}$ où C est une fonction dérivable sur I, et on obtient $y_p: x \mapsto \frac{\ln(x)}{x}$.

On en déduit qu'il existe $C_1 \in \mathbb{R}$ tel que pour $x \in I$, $\lambda'(x) = \frac{C_1 + \ln(x)}{x}$ et par suite qu'il existe $C_2 \in \mathbb{R}$ tel que pour $x \in I$, $\lambda(x) = C_1 \ln(x) + \frac{1}{2} (\ln(x))^2 + C_2$.

Finalement, les solutions de (L_1) sur I sont :

$$y: x \mapsto \frac{C_1 \ln(x) + C_2}{x} + \frac{(\ln(x))^2}{2x}, \quad \text{avec}, (C_1, C_2) \in \mathbb{R}^2$$

PARTIE III - Une équation de Bessel

On se propose dans cette partie d'étudier l'équation différentielle

$$x^2y'' + xy' + x^2y = 0 (H_2)$$

1. Rappeler la définition du rayon de convergence d'une série entière.

Le rayon de convergence de la série entière $\sum a_k x^k$ est

$$R = \sup\{r \in \mathbb{R}^+/(a_k r^k)_k \text{ est bornée }\}$$

 $\operatorname{Sp\'{e}}\operatorname{PT}$

2. Série entière dont la somme est solution de (H₂)

On suppose qu'il existe une série entière $\sum_{k>0} c_k x^k$, avec $c_0 = 1$, de rayon de convergence R > 0, dont la fonction somme S est solution de (H_2) sur]-R,R

a. Montrer que pour tout $k \in \mathbb{N}$, on a :

$$\begin{cases} c_{2k+1} = 0 \\ c_{2k} = \frac{(-1)^k}{4^k (k!)^2} \end{cases}$$

S est de classe C^{∞} sur]-R,R[, et d'après le théorème de dérivation d'une série entière pour tout $x \in]-R,R[$:

$$S'(x) = \sum_{k=1}^{+\infty} k c_k x^{k-1} \text{ et } S''(x) = \sum_{k=2}^{+\infty} k (k-1) c_k x^{k-2}.$$
 En remplaçant dans l'équation différentielle, on obtient pour tout $x \in]-R, R[:]$

$$c_1 x + \sum_{k=2}^{+\infty} (k^2 c_k + c_{k-2}) x^k = 0$$

Par unicité du développement en série entière, on en déduit :

$$c_1 = 0$$
 et $\forall k \ge 2, c_k = -\frac{c_{k-2}}{k^2}$

Comme de plus $c_0 = 1$, une récurrence immédiate donne le résultat attendu.

b. Déterminer le rayon de convergence de la série entière $\sum_{k>0} c_k x^k$.

On s'intéresse à la série entière $\sum c_{2k}x^{2k}$. Pour $k \in \mathbb{N}$ et $x \neq 0$, on note $u_k(x) = c_{2x}x^{2k}$.

On a:
$$\left| \frac{u_{k+1}(x)}{u_k(x)} \right| = \left| \frac{x^2}{4(k+1)^2} \right| \xrightarrow[k \to +\infty]{} 0.$$

D'après le critère de d'Alembert, la série $\sum u_k(x)$ converge donc pour tout réel $x \neq 0$, et elle converge également pour x = 0.

On en déduit que la série entière $\sum c_{2k}x^{2k}$ a un rayon de convergence infini.

3. Inverse d'une série entière non nulle en 0

Soit $\sum_{k>0} a_k x^k$ une série entière de rayon de convergence $R_a > 0$ telle que $a_0 = 1$.

L'objectif de cette question est de montrer l'existence et l'unicité d'une série entière $\sum_{k>0} b_k x^k$ de rayon de convergence $R_b > 0$ telle que pour tout x dans les domaines de convergence :

$$\left(\sum_{k=0}^{+\infty} a_k x^k\right) \left(\sum_{k=0}^{+\infty} b_k x^k\right) = 1$$

a. Montrer que si $\sum_{k>0} b_k x^k$ est solution, alors la suite (b_k) satisfait aux relations suivantes :

$$\begin{cases} b_0 = 1\\ \sum_{k=0}^n a_k b_{n-k} = 0, \quad \forall n \in \mathbb{N}^* \end{cases}$$
 (2)

Par produit de Cauchy, appliqué aux séries entières qui sont absolument convergentes dans l'intervalle ouvert

$$\forall x \in]-R_m, R_m[, \qquad \left(\sum_{k=0}^{+\infty} a_k x^k\right) \left(\sum_{k=0}^{+\infty} b_k x^k\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right) x^n.$$

Spé PTPage 4 sur 6 Par hypothèse cette somme vaut 1, donc par unicité du développement en série entière, on a :

$$a_0 b_0 = 1$$
 et $\forall n \in \mathbb{N}^*, \sum_{k=0}^n a_k b_{n-k} = 0$

Comme par hypothèse $a_0 = 1$, on obtient le résultat attendu.

b. Soit r un réel tel que $0 < r < R_a$. Montrer qu'il existe un réel M>0 tel que pour tout $k\in\mathbb{N}$:

$$|a_k| \le \frac{M}{r^k}$$

Comme $0 < r < R_a$, par définition du rayon de convergence, la suite $(a_k r^k)_k$ est bornée, donc

$$\exists M > 0, \quad \forall k \in \mathbb{N}, \quad |a_k r^k| \le M \quad \text{i.e.} \quad |a_k| \le \frac{M}{r^k}$$

c. Montrer que (2) admet une unique solution $(b_k)_{k\in\mathbb{N}}$ et que pour tout $k\in\mathbb{N}^*$:

$$|b_k| \le \frac{M(M+1)^{k-1}}{r^k}$$

Pour $k \in \mathbb{N}^*$, on note H_k l'assertion :

- " b_k est défini de façon unique et $|b_k| \leq \frac{M(M+1)^{k-1}}{\frac{k}{n-1}}$ ".
- Initialisation: d'après la relation (2), $a_0 b_1 + a_1 b_0 = 0$ avec $a_0 = b_0 = 1$ donc $b_1 = -a_1$ et $|b_1| = |a_1| \le \frac{M}{r}$. L'assertion H_1 est donc vérifiée.
- Hérédité : Soit $k \in \mathbb{N}^*$. On suppose que H_1, \dots, H_k sont vraies. D'après la relation (2), sachant que $a_0 = 1$, on a :

$$b_{k+1} = -\sum_{i=0}^{\kappa} a_{k+1-i}b_i$$
 ce qui définit b_{k+1} de façon unique, et

$$\begin{split} |b_{k+1}| &\leq \sum_{i=0}^k |a_{k+1-i}| \, |b_i| \leq \frac{M}{r^{k+1}} + \sum_{i=1}^k \frac{M}{r^{k+1-i}} \times \frac{M(M+1)^{i-1}}{r^i} \\ \text{d'après la question précédente, et l'hypothèse de récurrence.} \\ \text{On obtient alors } |b_{k+1}| &\leq \frac{M}{r^{k+1}} + \frac{M^2}{r^{k+1}} \times \frac{(M+1)^k - 1}{(M+1) - 1} = \frac{M(M+1)^k}{r^{k+1}} \end{split}$$

On obtient alors
$$|b_{k+1}| \le \frac{M}{r^{k+1}} + \frac{M^2}{r^{k+1}} \times \frac{(M+1)^k - 1}{(M+1) - 1} = \frac{M(M+1)^k}{r^{k+1}}$$

d. Que peut-on dire du rayon de convergence R_b ?

D'après la question précédente, pour $x \in \mathbb{R}$, $k \in \mathbb{N}^*$, $|b_k x^k| \leq \frac{M}{M+1} \left| \frac{(M+1)x}{r} \right|^k$.

Ainsi, d'après le théorème de comparaison sur les séries, si $\left| \frac{(M+1)x}{r} \right| < 1$, la série géométrique $\sum \left(\frac{(M+1)x}{r} \right)^k$ étant absolument convergente, il en est de même que la série $\sum b_k x^k$.

On en déduit que si $|x| < \frac{r}{M+1}$ alors la série $\sum b_k x^k$ est absolument convergente, et donc que

$$R_b \ge \frac{r}{M+1} > 0$$

4. Ensemble des solutions de (H₂)

Justifier qu'il existe un réel r > 0, tel que S ne s'annule pas sur [0, r].

 $S(0) = c_0 \neq 0$ donc, S étant continue, il existe un voisinage de 0 sur lequel S ne s'annule pas.

Spé PT Page 5 sur 6 **b.** Soit λ une fonction de classe C^2 sur]0, r[.

Montrer que la fonction $y: x \mapsto \lambda(x)S(x)$ est solution de (H_2) sur]0,r[si, et seulement si la fonction $x \mapsto xS^2(x)\lambda'(x)$ est de dérivée nulle sur [0, r].

On note pour $x \in]0, r[, y(x) = \lambda(x)S(x), \text{ où } \lambda \text{ est de classe } C^2 \text{ sur }]0, r[.$

Par produit, y est de classe C^2 sur]0,r[, et comme S est solution de (H_2) , on obtient pour tout $x \in]0,r[$: $x^{2}y''(x) + xy'(x) + x^{2}y(x) = x^{2}\lambda''(x)S(x) + 2x^{2}\lambda'(x)S'(x) + x\lambda'(x)S(x).$

De plus, en notant $\forall x \in]0, r[, u(x) = x\lambda'(x)S(x)^2, \text{ on a} :$

$$\forall x \in]0, r[, u'(x) = \lambda'(x)S(x)^2 + x\lambda''(x)S(x)^2 + x\lambda'(x)2S(x)S'(x) = \frac{S(x)}{x} \left(x^2y''(x) + xy'(x) + x^2y(x)\right).$$

 $\forall x \in]0, r[, u'(x) = \lambda'(x)S(x)^2 + x\lambda''(x)S(x)^2 + x\lambda'(x)2S(x)S'(x) = \frac{S(x)}{x} \left(x^2y''(x) + xy'(x) + x^2y(x)\right).$ S ne s'annulant pas sur]0, r[, on en déduit que y est solution de (H₂) sur]0, r[, si et seulement si u est de dérivée nulle sur]0, r[.

Montrer que S^2 est somme d'une série entière dont on donnera le rayon de convergence. Que vaut $S^2(0)$?

D'après le théorème sur le produit de Cauchy pour les séries entières, S^2 est la somme d'une série entière de rayon $+\infty$, et $S(0)^2 = 1$.

d. En déduire l'existence d'une fonction μ somme d'une série entière de rayon de convergence $R_m > 0$ telle que $x \mapsto \mu(x) + S(x) \ln(x)$ soit solution de (H₂) sur un intervalle $[0, R_m[$.

On cherche une fonction λ et un réel r > 0 tels que S ne s'annule pas sur]0, r[et $\forall x \in]0, r[, xS(x)^2\lambda'(x) = 1$. D'après la question **4.b**, on aura alors $x \mapsto \lambda(x)S(x)$ solution de (H_2) sur]0, r[.

La question $\mathbf{4.c}$ permet d'appliquer à S^2 la question $\mathbf{3.}$ sur l'inverse d'une série entière non nulle en 0.

Il existe donc une série entière $\sum b_k x^k$ de rayon r > 0 telle que $b_0 = 1$ qui vérifie pour tout $x \in]0, r[$:

$$S(x)^2 \left(\sum_{k=0}^{+\infty} b_k x^k \right) = 1 \text{ ce qui s'écrit également, } x \text{ étant non nul, } xS(x)^2 \left(\frac{1}{x} + \sum_{k=1}^{+\infty} b_k x^{k-1} \right) = 1$$

On remarque au produit non nul que S ne s'annule pas sur]0, r[.

En prenant, pour $x \in]0, r[$, $\lambda(x) = \ln(x) + \sum_{k=1}^{+\infty} b_k \frac{x^k}{k}$, on obtient pour $x \in]0, r[$, $xS(x)^2 \lambda'(x) = 1$.

On note alors, pour $x \in]0, r[, \quad \mu(x) = \left(\sum_{k=1}^{+\infty} b_k \frac{x^k}{k}\right) \times S(x).$

Par produit de Cauchy, μ est la somme d'une série entière de rayon $R_m > 0$ et d'après ce qui précède, la fonction $x \mapsto \mu(x) + \ln(x)S(x)$ est solution de (H₂) sur $[0, R_m[$.

En déduire l'ensemble des solutions de (H_2) sur $]0, R_m[$, à l'aide des fonctions définies au fil du problème.

La fonction μ est continue sur $[0, R_m[$ comme somme de série entière et S(0) = 1; on en déduit que la fonction $S_1 = \mu + S \times \ln$ n'est pas bornée sur $]0, R_m[$. Or, comme S est continue sur \mathbb{R} , elle l'est en particulier sur $[0,R_m]$ elle est donc bornée sur ce segment, de plus elle n'est pas nulle. Si la famille (S,S_1) était liée sur

 $]0, R_m[$, il existerait $a \in \mathbb{R}$ tel que $S_1 = aS$ et S_1 serait elle aussi bornée sur $]0, R_m[$. On en déduit que (S, S_1) est libre dans l'espace vectoriel des fonctions de classe C^2 sur $]0, R_m[$, et que l'on a une base de solutions de (H_2) .

On en déduit que l'ensemble des solutions de (H_2) sur $]0, R_m[$ est :

$$Vect{S, S_1} = {AS + B(\mu + S \times ln), (A, B) \in \mathbb{R}^2}$$

Spé PT Page 6 sur 6