ENGINEERING TEST REPORT

Yapalong5000 Model: Yapalong5000 **FCC ID: UJW-5000**

Applicant:

Nautic Devices Inc. 7895 Tranmere Drive, Unit 13 Mississauga, Ontario Canada L5S 1V9

In Accordance With

Federal Communications Commission (FCC) Part 15, Subpart C, Section 15.247 Digital Modulation Systems (DTS) Operating in 902-928 MHz Band

UltraTech's File No.: 18NAT010_FCC15C247

This Test report is Issued under the Authority of

Tri M. Luu

Vice President of Engineering UltraTech Group of Labs

Date: December 14, 2018

Report Prepared by: Dan Huynh Tested by: Hung Trinh

Issued Date: December 14, 2018 Test Dates: July 23 - August 23, 2018

- The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.
- This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.
- This test report shall not be reproduced, except in full, without a written approval from UltraTech

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050 Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

AT-1945

APEC TEL CA0001

1309

CA 0001/2049

 $ar{L}$

SL2-IN-E-1119R

CA2049

TABLE OF CONTENTS

EXHIBIT	1. INTRODUCTION	1
1.1. 1.2. 1.3.	SCOPE	1
EXHIBIT	2. PERFORMANCE ASSESSMENT	2
2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	CLIENT INFORMATION	2 3 3
EXHIBIT	3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	4
3.1. 3.2.	CLIMATE TEST CONDITIONSOPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	
EXHIBIT	4. SUMMARY OF TEST RESULTS	5
4.1. 4.2. 4.3.	LOCATION OF TESTSAPPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTSMODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	5
EXHIBIT	5. TEST DATA	6
5.1. 5.2. 5.3. 5.4. 5.5.	POWER LINE CONDUCTED EMISSIONS [§15.207(a)]	. 11 . 18 . 25
EXHIBIT	6. TEST EQUIPMENT LIST	. 40
EXHIBIT	7. MEASUREMENT UNCERTAINTY	. 41
7.1. 7.2	LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C, Section 15.247	
Title:	Code of Federal Regulations (CFR), Title 47 – Telecommunication, Part 15 – Radio Frequency Devices	
Purpose of Test:	Equipment Certification	
Test Procedures:	 ANSI C63.4 ANSI C63.10 FCC KDB Publication No. 558074 D01 DTS Meas Guidance v04 	
Environmental Classification:	[x] Commercial, industrial or business environment [x] Residential environment	

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

1.3. NORMATIVE REFERENCES

Publication	Year	Title
47 CFR Parts 0-19	2018	Code of Federal Regulations (CFR), Title 47 – Telecommunication
ANSI C63.4	2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz
ANSI C63.10	2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
FCC, KDB Publication No. 558074 D01 DTS Meas Guidance v04	2017	Guidance for Performing Compliance Measurements for Digital Transmission Systems (DTS) Operating Under Section 15.247

File #: 18NAT010_FCC15C247 December 14, 2018

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

Applicant		
Name:	Nautic Devices Inc.	
Address:	7895 Tranmere Drive, Unit 13 Mississauga, Ontario Canada L5S 1V9	
Contact Person:	Mr. Shawn Zhou Phone #: 905-405-0300 Fax #: N/A Email Address: szhou@nauticdevices.com	

Manufacturer		
Name:	Nautic Devices Inc.	
Address:	7895 Tranmere Drive, Unit 13 Mississauga, Ontario Canada L5S 1V9	
Contact Person:	Mr. Shawn Zhou Phone #: 905-405-0300 Fax #: N/A Email Address: szhou@nauticdevices.com	

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	Nautic Devices Inc.
Product Name:	Yapalong5000
Model:	Yapalong5000
Serial Number:	Test Sample
Type of Equipment:	Digital Transmission System (DTS)
Input Power Supply Type:	3.7 V Lithium-lon Battery / 5V 2A via AC/DC adapter
Primary User Functions of EUT:	Radio communication

2.3. **EUT'S TECHNICAL SPECIFICATIONS**

Transmitter			
Equipment Type:	Portable		
Intended Operating Environment:	 Commercial, industrial or business environment Residential environment 		
Power Supply Requirement:	3.7 V Lithium-Ion Battery / 5V 2A via AC/DC adapter		
RF Output Power Rating:	25.75 dBm (375.84 mW) Average Power		
Operating Frequency Range:	903.401 to 926.651 MHz		
RF Output Impedance:	50 Ω		
Duty Cycle:	8.3 % for normal mode of operation 85% for testing purpose		
Modulation Type:	FSK		
Antenna Connector Types:	Integral		

2.4. ASSOCIATED ANTENNA DESCRIPTIONS

Manufacturer:	LPC Electronics, Inc. California, USA
Type:	Internal PCB Antenna
Model:	Y5000 Rev.3
Frequency Range:	902 - 928 MHZ
Gain (dBi):	1 dBi

2.5. **LIST OF EUT'S PORTS**

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	Dual Audio Jack – 3.5 mm	1	Audio Jack	1.0 meter, shielded
2	Dual Audio Jack – 2.5 mm	1	Audio Jack	1.0 meter, shielded
3	Power Jack	1	DC Power Jack	1.0 meter, non-shielded

2.6. **ANCILLARY EQUIPMENT**

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

- 1) Nautic Device Inc. headset
- 2) KYT AC/DC adapter, Model KYT050200UU-01

EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS EXHIBIT 3.

CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21 to 23 °C
Humidity:	45 to 58%
Pressure:	102 kPa
Power Input Source:	3.7 V Lithium-Ion Battery / 5V 2A via AC/DC adapter

OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS 3.2.

Operating Modes:	Each of lowest, middle and highest channel frequencies transmits continuously for emissions measurements.
Special Test Software:	Test software provided by the Applicant to operate the EUT at each channel frequency continuously and in the range of typical modes of operation.
Special Hardware Used:	N/A
Transmitter Test Antenna:	The EUT is tested with the antenna fitted in a manner typical of normal intended use as integral antenna equipment as described with the test results.

Transmitter Test Signals			
Frequency Band(s):	903.401 to 926.651 MHz		
Frequency(ies) Tested:	903.401 MHz, 915.401 MHz and 926.651MHz		
RF Power Output: (measured maximum output power at antenna terminals)	25.75 dBm (375.84 mW)		
Normal Test Modulation:	FSK		
Modulating Signal Source:	Internal		

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with ANAB File No.: AT-1945.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Section(s)	Test Requirements	Compliance (Yes/No)
15.203	Antenna requirements	Yes
15.207(a)	AC Power Line Conducted Emissions	Yes
15.247(a)(2)	6 dB Bandwidth	Yes
15.247(b)(3)	Peak Conducted Output Power	Yes
15.247(d)	Band-Edge and RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	N/A
15.247(d), 15.209 & 15.205	Transmitter Spurious Radiated and Band-Edge Emissions	Yes
15.247(e)	Power Spectral Density	Yes
15.247(i), 1.1307, 1.1310, 2.1093	RF Exposure	Yes

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None.

December 14, 2018

EXHIBIT 5. TEST DATA

5.1. POWER LINE CONDUCTED EMISSIONS [§15.207(a)]

5.1.1. Limit(s)

The equipment shall meet the limits of the following table:

Frequency of emission	Conducted Limits (dBμV)			
(MHz)	Quasi-peak	Average		
0.15–0.5 0.5–5 5-30	66 to 56* 56	56 to 46* 46 50		

^{*}Decreases linearly with the logarithm of the frequency

5.1.2. Method of Measurements

ANSI C63.4

5.1.3. Test Arrangement

5.1.4. Test Data

Plot 5.1.4.1. Power Line Conducted Emissions (Tx Mode)
Line Voltage: 120 VAC: Line Tested: Hot

Plot 5.1.4.2. Power Line Conducted Emissions (Tx Mode) Line Voltage: 120 VAC Line Tested: Neutral

Plot 5.1.4.3. Power Line Conducted Emissions (Rx Mode) Line Voltage: 120 VAC; Line Tested: Hot

File #: 18NAT010_FCC15C247

December 14, 2018

Plot 5.1.4.4. Power Line Conducted Emissions (Rx Mode) Line Voltage: 120 VAC; Line Tested: Neutral

ULTRATECH GROUP OF LABS

5.2. OCCUPIED BANDWIDTH [§ 15.247(a)(2)]

5.2.1. Limit(s)

The minimum 6 dB bandwidth shall be at least 500 kHz.

5.2.2. Method of Measurements

KDB 558074 D01 DTS Meas Guidance v04, Section 8.2 Option 2

5.2.3. Test Arrangement

5.2.4. Test Data

Modulation	Frequency (MHz)	6dB BW (kHz)	99% Occupied Bandwidth (MHz)
	903.401	973.948	1.876
FSK	915.401	965.932	1.858
	926.651	977.956	1.888

See the following plots for detailed measurements.

Plot 5.2.4.1. 6 dB Bandwidth, 903.401 MHz, FSK modulation

Plot 5.2.4.2. 6 dB Bandwidth, 915.401 MHz, FSK modulation

Plot 5.2.4.3. 6 dB Bandwidth, 926.651 MHz, FSK modulation

Marker 1 [T1] RBW 50 kHz RF All 311 aB Ref Lv] 25.49 dBm VΒW 200 kHz 40 dBm 903,38596994 MHz SWT 5 ms Un i t dBm 20.7 dB Offset **▼**1 [T1] 26.49 dBm 903.38596994 MHz 30 1.87575150 MHZ ∇T 1 [T1] 5.64 dBm 45410621 MHz 20 4.97 dBm 904.32985772 MHz 10 1 V I EW 1MA -10 -20 -30 - 4r -50 Span 3 MHz Center 903,401 MHz 3DO kHz/ 23.JUL.2018 15:53:32 Date:

Plot 5.2.4.4. 99% Occupied Bandwidth, 903.401 MHz, FSK modulation

Marker 1 [T1] RBW 50 kHz RF All 311 aB Ref Lv] 25.59 dBm VBW 200 kHz 40 dBm 915,37995792 MHz 5WT 5 ms Unit dBm 20.7 dB Offset [T1] 26.69 dBm 915.37995792 MHz 30 1.85771<mark>543 MHz</mark> OPE ∇T 1 [T1] 6.39 dBm 914.46011824 MHz 20 [T1] 5.84 dBm 916.31783367 MHz 1MA 1 V I EW - 10 -20 -30 -40 -50 Center 915,401 MHz Span 3 MHz 3DO kHz/ 23.JUL.2018 15:57:26 Date:

Plot 5.2.4.5. 99% Occupied Bandwidth, 915.401 MHz, FSK modulation

Marker 1 [T1] RBW 50 KHZ RF All 311 aB Ref Lvl 25.96 dBm VBW 200 kHz 926,61292385 MHz 40 dBm 5WT 5 ms Unit ${\tt dBm}$ 20.7 dB Offset 25.96 dBm [T1] 926.61292385 MHz 30 1.88777555 MHz OHE ∇T [T1] 5.63 dBm .69208<mark>216 MHz</mark> 20 [T1] 5.12 dBm 927.57985772 MHz 10 **1VIEW** 1MA -20 -30 -40 -50 Center 926,651 MHz 3DO kHz/ Span 3 MHz 23.JUL.2018 15:47:21 Date:

Plot 5.2.4.6. 99% Occupied Bandwidth, 926.651 MHz, FSK modulation

5.3. MAXIMUM CONDUCTED OUTPUT POWER - DTS [§ 15.247(b)(3)]

5.3.1. Limit(s)

§ 15.247(b)(3): For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

§ 15.247(b)(4): The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.3.2. Method of Measurements & Test Arrangement

KDB 558074 D01 DTS Meas Guidance v04, Section 9.2.2.4 Method AVGSA-2

5.3.3. Test Arrangement

5.3.4. Test Data

Remarks:

- Duty cycle for test mode is 84.5% < 98%, Duty Cycle Factor = $10*\log (1/x) = 10*\log (1/0.845) = 0.73$ dB

Computation of duty-cycle factor

Sub-Pulse	Duration (ms)	Number of pulses	Sub-Pulse "On Time" (ms)		
1	84.48	124	0.8448		
		TOTAL ON TIME:	0.8448		
Duty cycle factor: $10*\log (1/x) = 10*\log (1/0.845) = 0.73 \text{ dB}$					

Modulation	Frequency (MHz)	*Maximum Conducted Average Output Power (dBm)	Limit (dBm)
	903.401	25.38	30
FSK	915.401	25.75	30
	926.651	25.24	30

See the following test data plots for measurements of duty cycle and power

311 aB RBW 100 kHz RF All Ref Lv] VBW 300 kHz 40 dBm 5WT 100 m.s Unit dBm 20.7 dB Offset 30 <u>արտասանությունից ուսանի ուսանան անարի հասարանին հարարարի հանական ինչ անական անարան ինչ անական հարարարի հարարար</u> 20 10 1AP -20 -30 -50 Center 915.401 MHz 10 ms/ Date: 22.AUG.2018 14:52:34

Plot 5.3.4.1. Duty Cycle (in 100ms)

Plot 5.3.4.2. Duty Cycle (Pulse 1)

Marker 1 [T1] RBW 1 MHZ RF All 311 dB Ref Lv] 25.52 dBm VBW 3 MHz 903,51823447 MHz 40 dBm 5WT 5 ms Unit ${\tt dBm}$ 20.7 dB Offset [T1] 25.62 dBm 903,51823447 MHz 30 24.65 dBm 10000**0**000 MHz www. 1RM -10-20 -30 -40 -50 CO Span 3 MHz Center 903,401 MHz 3DO kHz/ 22.AUG.2018 15:45:31 Date:

Plot 5.3.4.3. Measured Power (CH PWR), 903.401 MHz, FSK modulation

Marker 1 [T1] RBW 1 MHZ RF All 311 dB Ref Lv] 25.28 dBm VBW 3 MHz 40 dBm 915,27174148 MHz 5WT 5 ms Unit ${\tt dBm}$ 20.7 dB Offset [T1] 26.28 dBm 915,27174148 MHz 30 26.02 dBm 00000000 MHz **1VIEW** 1RM -10 -20 -30 -40 M -50 CO Center 915,401 MHz Span 3 MHz 3DO kHz/ 22.AUG.2018 15:49:28 Date:

Plot 5.3.4.4. Measured Power (CH PWR), 915.401 MHz, FSK modulation

Marker 1 [T1] RBW 1 MHZ RF All 311 dB Ref Lv] 25.47 dBm VBW 3 MHz 40 dBm 926,46162124 MHz 5WT 5 ms Unit ${\tt dBm}$ 20.7 dB Offset [T1] 25.47 dBm 926,46162124 MHz 30 24.51 dBm CH PWH ВМ 100000000 MHz M/L 1RM -10-20 -30 -40 -50 cb CO Span 3 MHz Center 926,651 MHz 3DO kHz/ 22.AUG.2018 15:51:48 Date:

Plot 5.3.4.5. Measured Power (CH PWR), 926.651 MHz, FSK Modulation

5.4. TRANSMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(d), 15.209 & 15.205]

5.4.1. Limit(s)

§ 15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Section 15.205(a) - Restricted Bands of Operation

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
1 0.495–0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125–4.128	25.5-25.67	1300–1427	8.025-8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108-121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625–8.38675	156.7-156.9	2655–2900	22.01–23.12
8.41425–8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29–12.293	167.72-173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43-36.5
12.57675–12.57725	322-335.4	3600–4400	(2)
13.36–13.41.			, ,

¹Until February 1, 1999, this restricted band shall be 0.490–0.510 MHz.

Section 15.209(a) - Field Strength Limits within Restricted Frequency Bands

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2,400 / F (kHz)	300
0.490 - 1.705	24,000 / F (kHz)	30
1.705 - 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

²Above 38.6

5.4.2. Method of Measurements

ANSI C63.10-2013 KDB 558074 D01 DTS Meas Guidance V04, Section 13, ANSI C63.10-2013 Section 11.13

5.4.3. Test Arrangement

For Band-Edge

For Spurious and Harmonics

For Duty Cycle Measurment

5.4.4. Test Data

Remark(s):

- All spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- EUT shall be tested in three orthogonal positions.
- The EUT is unable to be configured for 100 % duty cycle, it was configured for the longest duration duty cycle supported by the system at 85 % duty cycle.
- Under normal mode of operation the duty cycle is 8.3 %, a duty cycle correction factor of -21.57 dB, as computed in section 5.4.4.1.1 were applied to a measurement made with an average detector.

5.4.4.1. Spurious Radiated Emissions

Fundamental Frequency: 903.401 MHz Frequency Test Range: 30 MHz - 10 GHz RF RF Antenna Limit Limit Frequency Peak Level Avg Level **Plane** 15.209 15.247 Margin Pass/ (MHz) (dBµV/m) (dBµV/m) (H/V) (dBµV/m) (dBµV/m) (dB) Fail 903.401 127.27 ٧ 903.401 127.43 Н 2710.203 72.81 ٧ 35.05 54.0 97.4 -19.0 Pass* 97.4 2710.203 72.84 35.29 Н 54.0 -18.7 Pass* All other spurious emissions and harmonics are more than 20 dB below the applicable limit.

^{*}Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

Fundamental Frequency:		915.401 M	Hz				
Frequency Te	est Range:	30 MHz –	10 GHz				
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
915.401	127.15		V				
915.401	128.06		Н				
2746.203	73.42	35.44	V	54.0	98.1	-18.6	Pass*
2746.203	72.46	34.38	Н	54.0	98.1	-19.6	Pass*
All other spuri	ous emissions	and harmonics	are more than 2	20 dB below the	applicable limi	†_	

^{*}Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: 18NAT010_FCC15C247

December 14, 2018

Fundamental	Frequency:	926.651 MHz					
Frequency Te	est Range:	30 MHz –	10 GHz				
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
926.651	127.21		V				
926.651	128.84		Н				
30 - 10000	*	*	V/H	*	*	*	*
*All other spu	rious emissions	and harmonics	are more than	20 dB below th	e applicable lim	it	•

5.4.4.1.1. Duty-Cycle Correction Factor

Plot 5.4.4.1.1.1. Duty Cycle Calculation

5.4.4.2. Band -Edge RF Radiated Emissions

Plot 5.4.4.2.1. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Low End of Frequency Band, 903.401 MHz FSK Modulation

Plot 5.4.4.2.2. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Low End of Frequency Band, 903.401 MHz FSK Modulation

Plot 5.4.4.2.3. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization High of Frequency Band, 926.651 MHz FSK Modulation

Plot 5.4.4.2.4. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization High of Frequency Band, 926.651 MHz FSK Modulation

Plot 5.4.4.2.5. Band-Edge RF Radiated Emissions at 3 m for Australia Band 915 – 928 MHz , 916.901 MHz Horizontal Polarization, Low End of Frequency Band

Plot 5.4.4.2.6. Band-Edge RF Radiated Emissions at 3 m for Australia Band 915 – 928 MHz, 926.651 MHz Horizontal Polarization, High End of Frequency Band

Plot 5.4.4.2.7. Band-Edge RF Radiated Emissions at 3 m for Australia Band 915 – 928 MHz , 916.901 MHz Vertical Polarization, Low End of Frequency Band

Plot 5.4.4.2.8. Band-Edge RF Radiated Emissions at 3 m for Australia Band 915 – 928 MHz, 926.651 MHz Vertical Polarization, High End of Frequency Band

Plot 5.4.4.2.9. Band-Edge RF Radiated Emissions at 3 m for New Zealand Band 921 – 928 MHz , 922.901 MHz Horizontal Polarization, Low End of Frequency Band

Plot 5.4.4.2.10. Band-Edge RF Radiated Emissions at 3 m for New Zealand Band 921 – 928 MHz, 926.651 MHz Horizontal Polarization, High End of Frequency Band

Plot 5.4.4.2.11. Band-Edge RF Radiated Emissions at 3 m for New Zealand Band 921 – 928 MHz , 922.901 MHz Vertical Polarization, Low End of Frequency Band

Plot 5.4.4.2.12. Band-Edge RF Radiated Emissions at 3 m for New Zealand Band 921 – 928 MHz, 926.651 MHz Vertical Polarization, High End of Frequency Band

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

5.5. POWER SPECTRAL DENSITY [§ 15.247(e)]

5.5.1. Limit(s)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.5.2. Method of Measurements

KDB 558074 D01 DTS Meas Guidance v04, Section 10.5 Method AVGPSD-2

5.5.3. Test Arrangement

5.5.4. Test Data

Modulation	Frequency (MHz)	Measured PSD (dBm)	Duty Cycle Correction (dB)	*Computed Average PSD	Limit (dBm)	Margin (dBm)
	903.401	5.28	0.73	6.01	8	-1.99
FSK	915.401	5.80	0.73	6.53	8	-1.47
	926.651	5.39	0.73	6.12	8	-1.88

^{*} Computed Average PSD = Measured PSD + Duty Cycle Correction

Plot 5.5.4.1. Power Spectral Density, 903.401 MHz, FSK modulation Detector RMS, Video Trace Averaging with 100 Traces, Sweep Points 5000 ≥ 2*Span/RBW

Plot 5.5.4.2. Power Spectral Density, 915.401 MHz, FSK Modulation Detector RMS, Video Trace Averaging with 100 Traces, Sweep Points 5000 ≥ 2*Span/RBW

Plot 5.5.4.3. Power Spectral Density, 926.651 MHz, FSK Modulation Detector RMS, Video Trace Averaging with 100 Traces, Sweep Points 5000 ≥ 2*Span/RBW

EXHIBIT 6. TEST EQUIPMENT LIST

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Cal. Due Date
Signal Generator	IFR	2025	202304/141	9 kHz – 2.51 GHz	04 May 2019
Spectrum Analyzer	Agilent	E7405A	US39440181	9 kHz–26.5 GHz	04 Feb 2019
Attenuator	Pasternack	PE7010-20	ATT13	DC-2 GHz	21 Mar 2019
LISN Used	EMCO	3825/2R	1165	10 kHz-30 MHz	03 Nov 2018
Spectrum Analyzer	Rohde & Schwarz	FSEK30	100077	20Hz-40 GHz	05 Dec 2018
DC Block	Hewlett Packard	11742A	12460	0.045–26.5 GHz	See Note 1
Attenuator	Pasternack	PE7024-20	6	DC-26.5 GHz	See Note 1
EMI Receiver	Rohde & Schwarz	ESU40	100037	20Hz-40 GHz	04 May 2019
RF Amplifier	Com-Power	PAM-0118A	551016	0.5 – 18 GHz	09 Mar 2019
RF Amplifier	Hewlett Packard	84498	3008A00769	1 – 26.5 GHz	04 Oct 2018
Biconilog	EMCO	3142C	00026873	26-3000 MHz	27 Apr 2019
Horn Antenna	EMCO	3155	6570	1 – 18 GHz	13 Oct 2018
Horn Antenna	ETS-Lindgren	3160-09	001183858	18 – 26.5 GHz	11 Oct 2018
High Pass Filter	K&L	11SH10- 1500/T8000	2	Cut off 900 MHz	See Note 1
Band Reject Filter	Micro-Tronics	BRC50722	001	Cut off 902-928 MHz	See Note 1
Attenuator	Pasternack	PE7024-10	4	DC-26.5 GHz	See Note 1
Spectrum Analyzer	Rohde & Schwarz	FSU26	100398	20Hz-26.5 GHz	06 Oct 2019
Oscilloscope	Hewlett Packard	54801A	US38380192	DC-500 MHz	06 Sep 2019
Test Antenna for Oscilloscope	Microhard	MHS031070		900 MHz Band	See Note 1
Note 1: Internal Verifi	cation/Calibration chec	k			

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

EXHIBIT 7. **MEASUREMENT UNCERTAINTY**

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

	Line Conducted Emission Measurement Uncertainty (9 kHz – 30 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 1.44	<u>+</u> 1.8
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 2.89	<u>+</u> 3.6

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured (dB)	Limit (dB)
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} \sum_{j=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.79	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured (dB)	Limit (dB)
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.78	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured (dB)	Limit (dB)
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.75	Under consideration