

INFO-6147 Deep Learning With Pytorch Fall 2024 Project Final Report

Proposal: Tiny ImageNet Classification

Name: Mohamed Hossni Ali

ID: 1306850

Contents

Table of Figures	2
Introduction	3
Objective	3
Dataset Description	3
Data Preprocessing	4
Methodology	4
Classifier 1 Architecture	4
Classifier 2 Architecture	5
Classifier 3 Architecture	5
Classifier 4 Architecture	6
Classifier 4.2 Architecture	7
Classifier 5 Architecture	8
Classifier 7 Architecture	9
Data Augmentation Methods:	9
Switching off pixels	10
Creating new images	10
Results	11
Conclusions and recommendations	14
Project Hosting:	14
Final Notes	14
References:	15
Annendix A: Tiny ImageNet Classes	16

Table of Figures

Figure 1: Tiny ImageNet sample	3
Figure 2: Classifier 1 architecture	
Figure 3: Classifier 2 architecture	5
Figure 4: Classifier 3 architecture	ε
Figure 5: Classifier 4 architecture	
Figure 6: Classifier 4.2 architecture with return x+y	
Figure 7: Classifier 5 architecture	
Figure 8: Classifier 7 architecture	g
Figure 9: Data Augmentation, random switching off of pixel (noise)	10
Figure 10: Data augmentation, rotation and flipping	11
Figure 11: Training loss chart for all the models	
Figure 12:test loss for all models	
Figure 13: Models accuracy over epochs	
Figure 14: resnet18 pretrained model accuracy	
Figure 15: accuracy comparison for all the models	

Introduction

Image classification tasks are important part of computer vision which is used in various applications. This project aims to create an image classification model using convolutional neural network (CNN) and then compare its results with state of the art models available on the web. The dataset that is used in this project is Tiny ImageNet.

Objective

The objective of this project is to create different classifiers with reasonable accuracy on Tiny ImageNet dataset. Additionally, transfer learning will be used to compare the model which is made from scratch to the industry state of the art models.

Dataset Description

Tiny ImageNet dataset is a group of colored images with 200 classes. The dataset contains 100,000 samples with balanced distribution of 500 images per class for training (50 for validation and 50 for testing). The images in this dataset are of size 64X64X3. The list of classes are presented in Appendix A [1].

The data comes in zip file which when extracted explodes multiple folders. One folder for training contains subfolders for each class which has images folder for images. The validation set is contained in one val folder that has the 10k validation images and text file that contain the class reference of these images.

Figure 1: Tiny ImageNet sample

Data Preprocessing

Before training the model with the dataset the mean and standard deviation (std) values were calculated on the trainset for normalization. The mean was [0.4802, 0.4481, 0.3975] and the standard deviation [0.2296, 0.2263, 0.2255] for the three channels.

The ImageFolder function was used to create the training set data loader while a custom function was used to create the validation dataset loader as the labels had to be linked differently.

The final transformation included normalization and conversion to tensor.

Methodology

The methodology for classification in this project is conducted using CNN. CNNs can capture spatial information with filters and they would be the appropriate candidates for this task.

Multiple network designs were constructed and trained with the dataset. The following section describes each of these designs in details.

Classifier 1 Architecture

The first model constitutes of 8 convolutional layers and 3 fully connected layers at the end. ReLu activation function is applied after every convolution and max pooling is done after every two consecutive convolutions to reduce the size. A regulation was applied throughout by using dropout layers.

```
Lass Llass llass (renn.noouse):

def _init__(self):
    super(classifier, self).__init__()
    self.comv1 = nn.conv2d(in_channels=3,out_channels=32,kernel_size=3, padding=1)
    self.sMl = nn.8atchNorm2d(num_features=32)
    self.comv2 = nn.conv2d(in_channels=32, out_channels=32, kernel_size=3, padding=1)
    self.sMl = nn.8atchNorm2d(num_features=32)
   self.conv2_drop = nn.Dropout2d()
   self.conv3 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size=3, padding=1) self.8N3 = nn.8atchNorm2d(num_features=64) self.conv4 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1) self.8N4 = nn.8atchNorm2d(num_features=64)
   self.conv5 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=3, padding=1)
   self.8MS = nn.8atchNorm2d(num_features=128)
self.conv6 = nn.Conv2d(in_channels=128,out_channels=128,kernel_size=3, padding=1)
self.8M6 = nn.8atchNorm2d(num_features=128)
    self.BN7 = nn.BatchNorm2d(num_features=256)
self.conv8 = nn.Conv2d(in_channels=256,out_channels=256,kernel_size=3, padding=1)
    self.BN8 = nn.BatchNorm2d(num features=256)
   self.fc1 = nn.Linear(4096, 1024)
self.fc2 = nn.Linear(1024,512)
self.fc3 = nn.Linear(512,200)
x = F.relu(self.RN1(self.conv1(x)))
 x = self.conv2_drop(F.max_pool2d(F.relu(self.conv2(x)), 2))
x = self.conv2_drop(F.relu(self.BN3(self.conv3(x))))
x = self.conv2_drop(F.max_pool2d(F.relu(self.BN4(self.conv4(x))), 2))
x = F.relu(self.BN5(self.conv5(x)))
x = self.conv2 drop(F.max pool2d(F.relu(self.BN6(self.conv6(x))), 2))
 x = F.relu(self.BN7(self.conv7(x)))
 \begin{array}{lll} x &= self.conv2\_drop(F.max\_pool2d(F.relu(self.BN8(self.conv8(x))), \ 2)) \\ x &= x.view(x.size(0),-1) \end{array} 
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
 x = self.fc3(x)
```

Figure 2: Classifier 1 architecture

Classifier 2 Architecture

The second classification model was similar to the first except there are middle fully connected layers that get reshaped back into the correct dimensions. The philosophy behind this was to change the output of the convolutions with weights.

```
class Classifier_middle_FC(nn.Module):
     ss classifier_middle_FC(nn.Nodule):
    f_init_(self):
    super(classifier_middle_FC, self).__init__()
    self.conv1 = nn.Conv2d(in.Chanels=3.out_chanels=32,kernel_size=3, padding=1)
    self.sul = nn.Batchborm2d(num_features=32)
    self.conv2 = nn.Conv2d(in.Channels=32, out_chanels=32, kernel_size=3, padding=1)
    self.sul = nn.Batchborm2d(num_features=32)
    val = nn.Batchborm2d(num_features=32)
      self.conv2_drop = nn.Dropout2d()
       self.conv3 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size=3, padding=1)
      self.BN3 = Inn.conv2d(in_channels=52,0ut_channels=64, kernel_size=3, padding=1)
self.conv4 = nn.conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1)
self.BN4 = nn.BatchNorm2d(num_features=64)
     self.fc_inner_2 = nn.Linear(16384, 16384)
      self.conv5 = nn.Conv2d(in channels=64,out channels=128,kernel size=3, padding=1)
      self.BN5 = nn.BatchNorm2d(num features=128)
     self.conv7 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=3, padding=1)
      self.BN7 = nn.BatchNorm2d(num features=256)
      self.conv8 = nn.Conv2d(in channels=256,out channels=256,kernel size=3, padding=1)
      self.BN8 = nn.BatchNorm2d(num features=256)
     self.fc1 = nn.Linear(4096, 1024)
self.fc2 = nn.Linear(1024,512)
self.fc3 = nn.Linear(512,200)
                x = F.relu(self.BN1(self.conv1(x)))
x = self.conv2_drop(F.max_pool2d(F.relu(self.conv2(x)), 2))
                 \begin{array}{lll} x = self.conv2\_drop(\texttt{F.relu}(self.BM3(self.conv3(x)))) \\ x = self.conv2\_drop(\texttt{F.max.pool2d}(\texttt{F.relu}(self.BM4(self.conv4(x))), \ 2)) \\ x = x.view(x.size(0), -1) \\ x = \texttt{F.relu}(self.f.c.inner.2(x)) \\ x = x.view(x.size(0), 64, 16, 16) \end{array} 
                x = F.relu(self.BH5(self.conv5(x)))
x = self.conv2_drop(F.max_pool2d(F.relu(self.BH6(self.conv6(x))), 2))
x = x.view(x.size(0), -1)
x = F.relu(self.f.inner_2(x))
x = x.view(x.size(0), 128,8,8)
                x = F.relu(self.BN7(self.conv7(x)))
x = self.conv2_drop(F.max_pool2d(F.relu(self.BN8(self.conv8(x))), 2))
                 x = F.relu(self.fc2(x))
                 x = self.fc3(x)
```

Figure 3: Classifier 2 architecture

Classifier 3 Architecture

This model was designed with an intermediate linear layer that reduces the dimensions of the image before going into the last convolutional block. This was used as a replacement for maxpooling after the sixth convolutional block. The concept assumed that having weights that will reduce the dimension might work better than taking the max value using the max-pool method.


```
class Classifier_FC_asPool(nn.Module):
  def __init__(self):
    er __int__(serr):
super(classifier FC_asPool, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size=3, padding=1)
    self.BN1 = nn.BatchNorm2d(num_features=32)
    self.conv2 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, padding=1)
    self.BN2 = nn.BatchNorm2d(num_features=32)
    self.conv2_drop = nn.Dropout2d()
    self.conv3 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size=3, padding=1)
    self.BN3 = nn.BatchNorm2d(num_features=64)
self.conv4 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1)
    self.BN4 = nn.BatchNorm2d(num_features=64)
    self.conv5 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=3, padding=1)
    self.BN5 = nn.BatchNorm2d(num_features=128)
self.conv6 = nn.Conv2d(in_channels=128,out_channels=128,kernel_size=3, padding=1)
    self.BN6 = nn.BatchNorm2d(num_features=128)
    self.fc_inner_3 = nn.Linear(32768, 8192)
    #reshape here again
    self.conv7 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=3, padding=1)
    self.BN7 = nn.BatchNorm2d(num_features=256)
    self.conv8 = nn.Conv2d(in_channels=256,out_channels=256,kernel_size=3, padding=1)
    self.BN8 = nn.BatchNorm2d(num_features=256)
    self.fc1 = nn.Linear(4096, 1024)
self.fc2 = nn.Linear(1024,512)
self.fc3 = nn.Linear(512,200)
         def forward(self, x):
          x = F.relu(self.BN1(self.conv1(x)))
           x = self.conv2\_drop(F.max\_pool2d(F.relu(self.BN1(self.conv2(x))),2))
           x = self.conv2_drop(F.relu(self.BN3(self.conv3(x))))
           x = self.conv2\_drop(F.max\_pool2d(F.relu(self.BN4(self.conv4(x))),2))
           x = F.relu(self.BN5(self.conv5(x)))
           x = self.conv2_drop(F.relu(self.BN6(self.conv6(x))))
           #reshaping to feed to FC_inner_3
           x = x.view(x.size(0),-1)
           x = F.relu(self.fc_inner_3(x))
           x = x.view(x.size(0),128,8,8)
           x = F.relu(self.BN7(self.conv7(x)))
           x = self.conv2_drop(F.max_pool2d(F.relu(self.BN8(self.conv8(x))), 2))
           x = x.view(x.size(0),-1)
           x = F.relu(self.fc1(x))
           x = F.relu(self.fc2(x))
           x = self.fc3(x)
          return x
```

Figure 4: Classifier 3 architecture

Classifier 4 Architecture

This model has deeper convolutions (i.e each convolutional layer has more channels than the previous models). The first convolution starts with 128 channels and goes up to 1024 in contrast to the earlier model which had maximum of 256 channels in the last conv layer.

Figure 5: Classifier 4 architecture

Classifier 4.2 Architecture

Taking the previous model a step further and being inspired by resent, this model has an inner linear layers that act as middle classifier. The value output from the middle classifier (y) is then summed with the final x value to boost the classification.

```
□ □ □ □ inear(16384,8192)
                                                                                                             self.fc2 = nn.Linear(8192,4096)
                                                                                                            self.fc3 = nn.Linear(4096, 2048)
                                                                                                             self.fc4 = nn.Linear(2048, 1024)
                                                                                                             self.fc5 = nn.Linear(1024,512)
                                                                                                            self.fc6 = nn.Linear(512,200)
class Classifier deep convs(nn.Module):
  def __init__(self):
                                                                                                          def forward(self, x):
    x = F.relu(self.BN1(self.conv1(x)))
    super(Classifier_deep_convs, self).__init__()
    self.comv1 = nn.Conv2d(in_channels=3.0ut_channels=128,kernel_size=3, padding=1)
self.BN1 = nn.BatchNorm2d(num_features=128)
self.conv2 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, padding=1)
                                                                                                            x = self.conv2 drop(F.max pool2d(F.relu(self.conv2(x)),2))
    self.BN2 = nn.BatchNorm2d(num_features=128)
                                                                                                            x = self.conv2_drop(F.relu(self.BN3(self.conv3(x))))
                                                                                                            x = self.conv2_drop(F.max_pool2d(F.relu(self.BN4(self.conv4(x))),2))
    self.conv2 drop = nn.Dropout2d()
    self.conv3 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=3, padding=1)
                                                                                                            x = F.relu(self.BN5(self.conv5(x)))
    self.BN3 = nn.BatchNorm2d(num_features=256)
self.conv4 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1)
                                                                                                            x = self.conv2 drop(F.max pool2d(F.relu(self.BN6(self.conv6(x))),2))
                                                                                                            y = x.view(x.size(0),-1)
    self.BN4 = nn.BatchNorm2d(num features=256)
                                                                                                            y = F.relu(self.fc_mid1(y))
y = F.relu(self.fc_mid2(y))
    self.conv5 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=3, padding=1)
    self.BN5 = nn.BatchNorm2d(num_features=512)
self.conv6 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=3, padding=1)
                                                                                                            y = F.relu(self.fc_mid3(y))
                                                                                                            y = F.relu(self.fc_mid4(y))
    self.BN6 = nn.BatchNorm2d(num_features=512)
                                                                                                            y = F.relu(self.fc_mid5(y))
                                                                                                            y = self.fc_mid6(y)
    self.fc_mid1 = nn.Linear(32768,8192)
                                                                                                            x = F.relu(self.BN7(self.conv7(x)))
    self.fc_mid2 = nn.Linear(8192,4096)
self.fc_mid3 = nn.Linear(4096, 2048)
self.fc_mid4 = nn.Linear(2048, 1024)
                                                                                                            x = self.conv2_drop(F.max_pool2d(F.relu(self.BN8(self.conv8(x))), 2))
                                                                                                            x = x.view(x.size(0),-1)
                                                                                                            x = F.relu(self.fc1(x))
    self.fc mid5 = nn.Linear(1024,512)
    self.fc_mid6 = nn.Linear(512,200)
                                                                                                             x = F.relu(self.fc2(x))
                                                                                                            x = F.relu(self.fc3(x))
    self.conv7 = nn.Conv2d(in_channels=512,out_channels=1024,kernel_size=3, padding=1)
                                                                                                            x = F.relu(self.fc4(x))
    self.BN7 = nn.BatchNorm2d(num_features=1024)
                                                                                                             x = F.relu(self.fc5(x))
    self.conv8 = nn.Conv2d(in_channels=1024,out_channels=1024,kernel_size=3, padding=1)
                                                                                                            x = self.fc6(x)
    self.BN8 = nn.BatchNorm2d(num_features=1024)
```

Figure 6: Classifier 4.2 architecture with return x+y

Classifier 5 Architecture

This classifier adds more convolutions to the previous classifiers and has 16 convolutional layers with large number of channels like the classifier 4.

```
class Classifier_multi_convs(nn.Module):
 def __init__(self):
    super(Classifier_multi_convs, self).__init__()
    self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size=3, padding=1)
    self.BN1 = nn.BatchNorm2d(num_features=32)
    self.conv2 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, padding=1)
    self.BN2 = nn.BatchNorm2d(num_features=32)
    self.conv3 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, padding=1)
    self.BN3 = nn.BatchNorm2d(num features=32)
    self.conv4 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, padding=1)
    self.BN4 = nn.BatchNorm2d(num_features=32)
    self.conv2_drop = nn.Dropout2d()
    self.conv5 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size=3, padding=1)
    self.BN5 = nn.BatchNorm2d(num_features=64)
    self.conv6 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1)
    self.BN6 = nn.BatchNorm2d(num_features=64)
    self.conv7 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1)
    self.BN7 = nn.BatchNorm2d(num_features=64)
    self.conv8 = nn.Conv2d(in channels=64, out channels=64, kernel size=3, padding=1)
    self.BN8 = nn.BatchNorm2d(num_features=64)
    self.conv9 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=3, padding=1)
    self.BN9 = nn.BatchNorm2d(num features=128)
    self.conv10 = nn.Conv2d(in_channels=128,out_channels=128,kernel_size=3, padding=1)
    self.BN10 = nn.BatchNorm2d(num_features=128)
    self.conv11 = nn.Conv2d(in_channels=128,out_channels=128,kernel_size=3, padding=1)
self.BN11 = nn.BatchNorm2d(num_features=128)
    self.conv12 = nn.Conv2d(in_channels=128,out_channels=128,kernel_size=3, padding=1)
    self.BN12 = nn.BatchNorm2d(num_features=128)
                      #self.fc1 = nn.Linear(16384,8192)
#self.fc2 = nn.Linear(8192,4096)
self.fc1 = nn.Linear(4096, 2048)
self.fc2 = nn.Linear(2048, 1024)
self.fc3 = nn.Linear(1024,512)
self.fc4 = nn.Linear(1027,200)
                    def forward(self, x):
    x = self.comv2_drop(F.relu(self.BHI(self.comv1(x))))
    x = self.comv2_drop(F.relu(self.BHI(self.comv2(x)))))
    x = self.comv2_drop(F.relu(self.BHI(self.comv3(x))))
    x = self.comv2_drop(F.relu(self.BHI(self.comv3(x))), 2))
                      x = self.comv2_drop(F.relu(self.BM9(self.comv9(x))))
x = self.comv2_drop(F.relu(self.BM10(self.comv10(x))))
x = self.comv2_drop(F.relu(self.BM11(self.comv11(x))))
x = self.comv2_drop(F.melu.gelf.BM11(self.comv11(x))),2))
              x = self.conv2_drop(F.relu(self.BN13(self.conv13(x))))
              x = self.conv2_drop(F.relu(self.BN14(self.conv14(x))))
              x = self.conv2_drop(F.relu(self.BN15(self.conv15(x))))
              x = self.conv2_drop(F.max_pool2d(F.relu(self.BN16(self.conv16(x))),2))
              x = x.view(x.size(0),-1)
              x = F.relu(self.fc1(x))
              x = F.relu(self.fc2(x))
              x = F.relu(self.fc3(x))
              x = self.fc4(x)
```

Figure 7: Classifier 5 architecture

return x

Classifier 7 Architecture

Number 6 was skipped as there were two classifiers for number 4 (4 and 4.2). this classifier Adaptive Average pooling in between the convolutions that are based on Classifier 4 design and sums up these intermediary value when it returns the logit as x+x1+x2. This provides a much needed advantage of classifier 4.2 as it has a much smaller size after removing the FC layers that were previously put in 4.2.

```
class Classifier_deep_convs(nn.Module):
    super(Classifier deep convs, self). init ()
    self.conv1 = nn.Conv2d(in_channels=3,out_channels=128,kernel_size=3, padding=1)
self.BN1 = nn.BatchNorm2d(num_features=128)
self.conv2 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, padding=1)
    self.BN2 = nn.BatchNorm2d(num features=128)
    self.conv2_drop = nn.Dropout2d()
    self.conv3 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=3, padding=1)
     self.BN3 = nn.BatchNorm2d(num_features=256)
    self.conv4 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1)
self.BN4 = nn.BatchNorm2d(num_features=256)
    self.fcmid1 = nn.Linear(256,200)
    self.conv5 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=3, padding=1)
self.BN5 = nn.BatchNorm2d(num_features=512)
     self.conv6 = nn.Conv2d(in channels=512,out channels=512,kernel size=3, padding=1)
    self.BN6 = nn.BatchNorm2d(num_features=512)
    self.fcmid2 = nn.Linear(512,200)
    self.conv7 = nn.Conv2d(in_channels=512,out_channels=1024,kernel_size=3, padding=1)
self.BN7 = nn.BatchNorm2d(num_features=1024)
self.conv8 = nn.Conv2d(in_channels=1024,out_channels=1024,kernel_size=3, padding=1)
    self.BN8 = nn.BatchNorm2d(num_features=1024)
    self.fc1 = nn.Linear(1024,512)
    self.fc2 = nn.Linear(512,200)
  def forward(self, x)
   x = F.relu(self.BN1(self.conv1(x)))
x = self.conv2_drop(F.max_pool2d(F.relu(self.conv2(x)),2))
    x = self.conv2_drop(F.relu(self.BN3(self.conv3(x))))
x = self.conv2_drop(F.max_pool2d(F.relu(self.BN4(self.conv4(x))),2))
     \begin{array}{lll} \texttt{x1} &=& \texttt{F.adaptive\_avg\_pool2d}(\texttt{x,} & (\texttt{1,1})) \\ \texttt{x1} &=& \texttt{x1.view}(\texttt{x1.size}(\theta), \texttt{-1}) \end{array} 
    x1 = self.fcmid1(x1) #1st clf
        x = F.relu(self.BN5(self.conv5(x)))
         x = self.conv2_drop(F.max_pool2d(F.relu(self.BN6(self.conv6(x))),2))
         x2 = F.adaptive\_avg\_pool2d(x, (1,1))
         x2 = x2.view(x2.size(0), -1)
         x2 = self.fcmid2(x2) #2nd clf
         x = F.relu(self.BN7(self.conv7(x)))
         x = self.conv2_drop(F.max_pool2d(F.relu(self.BN8(self.conv8(x))), 2))
         x = F.adaptive\_avg\_pool2d(x,(1,1))
         x = x.view(x.size(0),-1)
         x = F.relu(self.fc1(x))
        x = self.fc2(x)
         x = x+x1+x2
        return x
```

Figure 8: Classifier 7 architecture

Data Augmentation Methods:

Three types of Data Augmentation methods were used. The first one was switching off some pixels (5%) in the images at random every epoch. Second method was to produce new image samples by rotating at 90,45,25 and 65 degrees angles and flipping horizontally. The following sections have more details.

Switching off pixels

In this method it is like adding noise to the image. The 3-D tensor of 5% zeros was created at random every single epoch and then multiplied by the input images during the training. This method was not effective.

Figure 9: Data Augmentation, random switching off of pixel (noise)

Creating new images

This method involved rotating and flipping the images. With the angles used and the flip the result was 4000 images per class. This sums up to 800k images for the training set. This made it extremely difficult to run for long epochs due to resources limitations (colab allows for limited hours). When tested with classifier 4.2 the accuracy was 10% at 4 epochs which is a good jump. However, the resources did not allow to train further.

Figure 10: Data augmentation, rotation and flipping

Results

The results for training loss, test loss and accuracy were saved for all the models (except clf2 due to runtime restart). Below are the curves for the training loss for the classifier recorded every 100 iterations. Some classifiers were trained longer and others lesser than 30 epochs depending on the seen results during the training. It can be seen that resent classifier had the quickest drop in training loss.

Figure 11: Training loss chart for all the models

The curves below show the test loss for the models. When the curve starts increasing like in the case of resent, it can be confirmed that the model is over fitting.

Figure 12:test loss for all models

The chart below shows the accuracy of the different models. Since model 4 showed some promising test accuracy results it was further developed with 4.2 and 7. These three classifiers (4, 4.2 and 7) performed better than resnet18 with delayed reach to results. However, from the test loss curves above they do not over fit like resnet18 did.

Figure 13: Models accuracy over epochs

Using a pretrained resnet18 model produce 53.5% accuracy over 20 epochs. This shows that the models designed in this project while they're less than 18 convolutions have achieved acceptable classification results over 200 classes.

Figure 14: resnet18 pretrained model accuracy

Figure 15: accuracy comparison for all the models

Conclusions and recommendations

Classifying 200 classes can be a challenging task. To achieve high accuracy many models were constructed and tested. The models designed in this project are comparable with resnet18 model which shows acceptable results.

There were resources limitations to be able to train more models with different architectures which lead to not being able to use the data augmentation (800k training images) to improve the analysis.

Further work can be done with model design and the use of other neural networks (other than CNN) to analyze how different neural networks architectures can change improve the accuracy of classification.

Project Hosting:

The project will be hosted in the following github repository

https://github.com/m-hossni/INFO-6147-Deep-Learning.git

Final Notes

There are multiple notebooks in the github repo above. This is because different models were used at different stages in different notebooks in google colab.

You may find several sections of the code repeated like image display, this was doen to ensre that the loader is assigned the correct labels.

You may also find some part of the training loop interrupted with error. This was done to avoid google colab erasing the variables and to be able to save the model parameters and logs.

Additionally, there are json logs for different models available in the github inside model_data folder. The models parameter were also saved but due to their size they are not pushed to github.

References:

Data source: Tiny ImageNet

[1] Data classes: Tiny-Imagenet-200/sets/words200.txt at master · rmccorm4/Tiny-Imagenet-200

Appendix A: Tiny ImageNet Classes

n01443537	goldfish, Carassius auratus	n02099601	golden retriever
n01629819 salamandra	European fire salamander, Salamandra	n02099712	Labrador retriever
n01641577	bullfrog, Rana catesbeiana	n02106662 dog, German polic	German shepherd, German shepherd e dog, alsatian
n01644900	tailed frog, bell toad, ribbed toad, tailed	n02113799	standard poodle
toad, Ascaphus tru n01698640 mississipiensis	ıı American alligator, Alligator	n02123045	tabby, tabby cat
		n02123394	Persian cat
n01742172	boa constrictor, Constrictor constrictor	n02124075	Egyptian cat
n01768244	trilobite	n02125311 lion, painter, panth	cougar, puma, catamount, mountain er, Felis concolor
n01770393	scorpion	n02129165	lion, king of beasts, Panthera leo
n01774384	black widow, Latrodectus mactans	n02132136	brown bear, bruin, Ursus arctos
n01774750	tarantula	n02165456	ladybug, ladybeetle, lady beetle,
n01784675	centipede	ladybird, ladybird beetle	
n01855672	goose	n02190166	fly
n01882714	koala, koala bear, kangaroo bear, native	n02206856	bee
bear, Phascolarctos cinereus		n02226429	grasshopper, hopper
n01910747	jellyfish	n02231487	walking stick, walkingstick, stick insect
n01917289	brain coral	n02233338	cockroach, roach
n01944390	snail	n02236044	mantis, mantid
n01945685	slug	n02268443	dragonfly, darning needle, devil's
n01950731	sea slug, nudibranch	darning needle, sewing needle, snake feeder, snake doctor mosquito hawk, skeeter hawk	
n01983481	American lobster, Northern lobster,		
Maine lobster, Homarus americanus		n02279972 monarch, monarch butterfly, milkweed butterfly, Danaus plexippus	
n01984695 crawfish, crayfish,	spiny lobster, langouste, rock lobster, sea crawfish	n02281406	sulphur butterfly, sulfur butterfly
n02002724	black stork, Ciconia nigra	n02321529	sea cucumber, holothurian
n02056570	king penguin, Aptenodytes patagonica	n02364673	guinea pig, Cavia cobaya
n02058221	albatross, mollymawk	n02395406	hog, pig, grunter, squealer, Sus scrofa
	•		
n02074367	dugong, Dugong dugon	n02403003	OX
n02085620	Chihuahua	n02410509	bison
n02094433	Yorkshire terrier		

n02415577 bighorn, bighorn sheep, cimarron,		n02892201	brass, memorial tablet, plaque
Rocky Mountain bi canadensis	ghorn, Rocky Mountain sheep, Ovis	n02906734	broom
n02423022	gazelle	n02909870	bucket, pail
n02437312	Arabian camel, dromedary, Camelus	n02917067	bullet train, bullet
dromedarius		n02927161	butcher shop, meat market
n02480495 pygmaeus	orangutan, orang, orangutang, Pongo	n02948072	candle, taper, wax light
n02481823	chimpanzee, chimp, Pan troglodytes	n02950826	cannon
n02486410	baboon	n02963159	cardigan
n02504458	African elephant, Loxodonta africana	n02977058 cash machine, cash dispenser, automated teller machine, automatic teller machine,	
n02509815	lesser panda, red panda, panda, bear	automated teller, automatic teller, ATM	
cat, cat bear, Ailur		n02988304	CD player
n02666196	abacus	n02999410	chain
n02669723 robe	academic gown, academic robe, judge's	n03014705	chest
n02699494	altar	n03026506	Christmas stocking
n02730930	apron	n03042490	cliff dwelling
n02769748	backpack, back pack, knapsack,	n03085013	computer keyboard, keypad
packsack, rucksack, haversack		n03089624	confectionery, confectionary, candy
n02788148 bannister, banister, balustrade, balusters, handrail		store n03100240	convertible
n02791270	barbershop	n03126707	crane
	·		
n02793495	barn	n03160309	dam, dike, dyke
n02795169	barrel, cask	n03179701	desk
n02802426	basketball	n03201208	dining table, board
n02808440	bathtub, bathing tub, bath, tub	n03250847	drumstick
n02814533	beach wagon, station wagon, wagon,	n03255030	dumbbell
	vaggon, station waggon, waggon	n03355925	flagpole, flagstaff
n02814860 beacon, lighth pharos	beacon, lighthouse, beacon light,	n03388043	fountain
n02815834	beaker	n03393912	freight car
n02823428	beer bottle	n03400231	frying pan, frypan, skillet
n02837789	bikini, two-piece	n03404251	fur coat
n02841315	binoculars, field glasses, opera glasses	n03424325	gasmask, respirator, gas helmet
n02843684	birdhouse	n03444034	go-kart
n02883205	bow tie, bow-tie, bowtie	n03447447	gondola

n03544143	hourglass	n04070727	refrigerator, icebox
n03584254	iPod	n04074963	remote control, remote
n03599486	jinrikisha, ricksha, rickshaw	n04099969	rocking chair, rocker
n03617480	kimono	n04118538	rugby ball
n03637318	lampshade, lamp shade	n04133789	sandal
n03649909	lawn mower, mower	n04146614	school bus
n03662601	lifeboat	n04149813	scoreboard
n03670208	limousine, limo	n04179913	sewing machine
n03706229	magnetic compass	n04251144	snorkel
n03733131	maypole	n04254777	sock
n03763968	military uniform	n04259630	sombrero
n03770439	miniskirt, mini	n04265275	space heater
n03796401	moving van	n04275548	spider web, spider's web
n03804744	nail	n04285008	sports car, sport car
n03814639	neck brace	n04311004	steel arch bridge
n03837869	obelisk	n04328186	stopwatch, stop watch
n03838899	oboe, hautboy, hautbois	n04356056	sunglasses, dark glasses, shades
n03854065	organ, pipe organ	n04366367	suspension bridge
n03891332	parking meter	n04371430	swimming trunks, bathing trunks
n03902125	pay-phone, pay-station	n04376876	syringe
n03930313	picket fence, paling	n04398044	teapot
n03937543	pill bottle	n04399382	teddy, teddy bear
n03970156	plunger, plumber's helper	n04417672	thatch, thatched roof
n03976657	pole	n04456115	torch
n03977966	police van, police wagon, paddy wagon,	n04465501	tractor
patrol wagon, wagon, black Maria		n04486054	triumphal arch
n03980874	poncho	n04487081	trolleybus, trolley coach, trackless
n03983396	pop bottle, soda bottle	trolley	A A.H.
n03992509	potter's wheel	n04501370	turnstile
n04008634	projectile, missile	n04507155	umbrella
n04023962 punchball	punching bag, punch bag, punching ball,	n04532106	vestment
n04067472	reel	n04532670	viaduct
		n04540053	volleyball

n04560804 water jug

n04562935 water tower

n04596742 wok

n04597913 wooden spoon

n06596364 comic book

n07579787 plate

n07583066 guacamole

n07614500 ice cream, icecream

n07615774 ice lolly, lollipop, popsicle

n07695742 pretzel

n07711569 mashed potato

n07715103 cauliflower

n07720875 bell pepper

n07734744 mushroom

n07747607 orange

n07749582 lemon

n07753592 banana

n07768694 pomegranate

n07871810 meat loaf, meatloaf

n07873807 pizza, pizza pie

n07875152 potpie

n07920052 espresso

n09193705 alp

n09246464 cliff, drop, drop-off

n09256479 coral reef

n09332890 lakeside, lakeshore

n09428293 seashore, coast, seacoast, sea-coast

n12267677 acorn