Written Assignment 1 — Solutions

CS 440 September 18, 2025

Name: Yat Long Szeto BU ID: 90479281

Question 1: Shortest Path Composition

Proof

$$p^* = p_1 \cdot p_2$$
 split $a \to b$ path at c
 $\cot(p^*) = \cot(p_1) + \cot(p_2)$ path cost additivity
$$\exists \tilde{p}_1 : \cot(\tilde{p}_1) < \cot(p_1)$$
 assume p_1 not shortest
$$\cot(\tilde{p}_1 \cdot p_2) = \cot(\tilde{p}_1) + \cot(p_2)$$
 concatenate paths
$$< \cot(p_1) + \cot(p_2)$$
 by assumption
$$= \cot(p^*)$$
 substitution

This contradicts the optimality of p^* . Therefore p_1 must be a shortest $a \to c$ path and there is no such \tilde{p}_1 exists. WLOG, replace the prefix p_1 by the suffix p_2 and c by b. The same reasoning shows that if p_2 were not shortest $c \to b$, then replacing it with a shorter path would also contradict the optimality of p^* . Hence p_2 is a shortest $c \to b$ path as well.

Question 2: Iterative Deepening Returns Shortest Paths

Proof

$$\ell(v) = \min\{\operatorname{length}(P) : P \text{ is an } s \rightarrow v \text{ path}\} \quad \text{define shortest distance}$$
 When IDDFS, $d < \ell(v) \Rightarrow v$ not found too shallow
$$d = \ell(v) \Rightarrow v \text{ reachable} \qquad \qquad \text{path length fits}$$
 IDDFS finishes depth $d = \ell(v)$ before $d+1$ order of search v first discovered = at depth $\ell(v)$ cannot appear earlier

Therefore, the first time v is returned by Iterative Deepening is exactly at depth $\ell(v)$, and the path has the minimum number of edges.

Question 3: Diameter Bound

Proof

Fix
$$u, v \in V$$
, $u \neq v$. setup $W = (v_0, \dots, v_k), \ v_0 = u, \ v_k = v$ a $u \rightarrow v$ walk of minimum length $\exists i < j : \ v_i = v_j \Rightarrow W' = (v_0, \dots, v_i, v_{j+1}, \dots, v_k)$ delete cycle $\operatorname{len}(W') = k - (j - i) < k = \operatorname{len}(W)$ strictly shorter $\Rightarrow \neg \exists i < j : \ v_i = v_j$ contradiction to minimality $\Rightarrow W$ is simple no repetitions Let $P = W, \ |P| = m \ (\operatorname{edges}) \Rightarrow P \ \operatorname{visits} m + 1 \ \operatorname{distinct} \ \operatorname{vertices}$ path has one more vertex $m+1 \leq |V| \Rightarrow m \leq |V|-1$ counting bound $\operatorname{dist}(u,v) = |P| \leq |V|-1$ shortest path equals $|P|$ diam $(G) = \max_{u \neq v} \operatorname{dist}(u,v) \leq |V|-1$ take max

Question 4: Dijkstra's Algorithm and Shortest Paths

Notation. For vertices $u, v \in V$:

$$\delta(u, v) = \min\{\cot(P) : P \text{ is a path from } u \text{ to } v\}$$

denotes the true shortest-path cost. Dijkstra maintains tentative labels d[v] which are upper bounds on $\delta(s, v)$. At each step, the algorithm extracts the vertex v with minimal d[v] among unvisited vertices.

Answer

$$\forall v: \ d[v] \geq \delta(s,v) \qquad \text{tentative labels are upper bounds}$$
 Suppose $d[v] > \delta(s,v) \qquad \text{assume contradiction}$
$$\exists P: s = x_0, \dots, x_k = v, \ \cot(P) = \delta(s,v) \qquad \text{true shortest path}$$
 Let $x_j = \text{first vertex of } P \text{ not yet settled} \qquad \text{prefix in settled set } S$
$$x_{j-1} \in S: d[x_{j-1}] = \delta(s,x_{j-1}) \qquad \text{inductive assumption}$$

$$d[x_j] \leq d[x_{j-1}] + w(x_{j-1},x_j) \qquad \text{relaxation}$$

$$= \delta(s,x_{j-1}) + w(x_{j-1},x_j) \qquad \text{shortest-path property}$$

$$\Rightarrow d[x_j] \leq \delta(s,x_j) < \delta(s,v) < d[v] \qquad \text{contradiction}$$

Thus $d[v] = \delta(s, v)$ when v is extracted. By induction over the extraction steps, every vertex is settled with its true shortest-path distance.

Conclusion. When Dijkstra returns a path from s to v, it is guaranteed to be the shortest path because: 1. vertices are processed in nondecreasing order of distance, 2. once extracted, $d[v] = \delta(s, v)$, 3. no unvisited vertex can have a smaller true distance.