Sea una matriz cuadrada de orden  $n_x n$  definida sobre un cuerpo K. El determinante es una función que asigna un escalar a esta matriz cuadrada, es decir:

Det 
$$A: K^{n_X n} \to K$$

El determinante se define como la sumatoria de n! términos donde cada término de la sumatoria resulta del producto de n elementos, donde cada uno de esos elementos pertenecen a filas y columnas distintas de la matriz original.

Trabajar la teoría de determinantes a partir de esta definición es bastante engorroso, por lo que es conveniente comenzar con el cálculo de determinantes para matrices cuadradas de  $2_x2$ , luego de  $3_x3$  y así sucesivamente hasta el orden  $n_xn$  para obtener una definición de determinantes que nos permita su generalización mucho más comprensible que la anterior.

Simbolizaremos el determinante de la siguiente manera |A| o det A

Determinante para una matriz  $[A]_{2,2}$ 

Sea:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Definimos el determinante de esta matriz de la siguiente manera:

$$|A| = a_{11}a_{22} - a_{12}a_{21}$$

Determinante para una matriz  $[A]_{3_x3}$ 

Sea:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Para definir el determinante de una matriz de  $3_x3$ , utilizaremos la definición del determinante de una matriz de  $2_x2$ , de la siguiente manera:

$$|A| = a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

que resulta:

$$|A| = a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}$$

Es decir que hemos resuelto un determinante de  $3_x3$  desarrollándolo por la primer fila de la siguiente manera, multiplicamos el coeficiente  $a_{11}$  por el determinante que resulta de tachar la primer fila y primer columna, el segundo término que es negativo resulta de multiplicar  $a_{12}$  por el determinante obtenido al tachar la segunda fila y segunda columna, el tercer y último término resulta del producto de  $a_{13}$  por el determinante que surge de tachar la fila 3 y la columna 3.

Este determinante de  $3_x3$  que desarrollamos por la primer fila resulta de ir multiplicando los coeficientes de la primer fila por los determinantes que quedan de  $2_x2$ , alternando sus signos empezando por un positivo, es decir que hemos resuelto un determinante de  $3_x3$  por tres determinantes de  $2_x2$  que hemos definido anteriormente.

Para resolver un determinante de  $3_x3$  tenemos una regla práctica conocida como Regla de Sarrus.

#### Regla de Sarrus:

Como hemos dicho la Regla de Sarrus nos permite resolver únicamente determinantes de  $3_x3$  de una manera práctica. La misma consiste en escribir nuevamente la fila 1 y 2 en el lugar de las filas 4 y 5 de la siguiente manera:



Luego se multiplican las diagonales con tres elementos, con signo positivo las que tienen la dirección de la diagonal principal y signo negativo el producto de las otras diagonales de la siguiente manera:

$$|A| = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{13} - a_{31}a_{22}a_{13} - a_{11}a_{32}a_{23} - a_{21}a_{12}a_{33}$$
 Que es el mismo cálculo que vimos anteriormente.

La Regla de Sarrus es muy importante ya que los determinantes de  $3_x3$ , tienen varias aplicaciones como el producto cruz entre vectores de  ${\bf R}^3$ , cálculo de volúmenes de paralelepípedos cuyos lados son vectores de  ${\bf R}^3$ , Ecuaciones de planos, etc.

# Determinante para una matriz $[A]_{4,4}$

Sea:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

No existe ninguna regla para resolver un determinante de  $4_x4$ , por lo tanto lo debemos calcular por cuatro determinantes de  $3_x3$ , desarrollándolo por la primer fila de la siguiente manera:

$$\begin{vmatrix} A \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} & a_{24} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{43} & a_{44} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} & a_{24} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{vmatrix} - a_{14} \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{vmatrix}$$

Es decir que multiplicamos los coeficientes de la primer fila, por los determinantes de  $3_x3$  que resultan de tachar la fila y columna del coeficiente correspondiente, los signos se van alternando comenzando con un positivo.

## Determinante para una matriz $[A]_{n,n}$

Sea:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Para resolver el determinante de esta matriz A de orden  $n_{x}n$ , debemos desarrollar por la primer fila, multiplicando los coeficientes de la misma por los determinantes que nos quedan de tachar la fila y columna correspondientes a dichos coeficientes, alternando sus signos y comenzando con un positivo. Es decir que obtendremos n determinantes de orden  $(n-1)_{x}(n-1)$  que también desarrollaremos cada uno por la primer fila, es decir que cada término estará formado por (n-1) determinantes de orden  $(n-2)_{x}(n-2)$  y así sucesivamente hasta llegar a determinantes de orden  $3_{x}3$  que podemos resolver mediante la Regla de Sarrus. Por supuesto que cuando el orden del determinante es mayor que  $4_{x}4$ , resolverlo de esta manera es muy largo y engorroso, más adelante veremos más sencillo para resolver determinantes.

En primer lugar trataremos de formalizar lo visto hasta aquí lo que nos permitirá obtener una definición de determinantes alternativa a la vista al comienzo.

#### **Menor Complementario**

Sea A una matriz de orden  $n_x n$  y sea  $\left(M_{ij}\right)$  la matriz de orden  $\left(n-1\right)_x \left(n-1\right)$  que resulta de tachar la i-ésima fila y la j-ésima columna. A la matriz  $\left(M_{ij}\right)$  se la llama ij-ésimo menor complementario de A (algunos autores llaman solamente menor)

## Cofactor

Sea A una matriz de orden  $n_x n$ , el ij-ésimo cofactor de A, denotado por  $cof a_{ij}$  está definido de la siguiente forma:

$$\operatorname{cof} a_{ij} = \left(-1\right)^{i+j} \left| M_{ij} \right|$$

Algunos autores para el cofactor, utilizan la nomenclatura  $A_{ij}$ Con los conceptos vistos anteriormente daremos una definición de determinantes

# Definición de determinante para una matriz $[A]_{n,n}$

Lo definiremos en primer lugar desarrollándolo por la primer fila

$$\det A = |A| = a_{11} \operatorname{cof} a_{11} + a_{12} \operatorname{cof} a_{12} + \dots + a_{1n} \operatorname{cof} a_{1n} = \sum_{j=1}^{n} a_{1j} \operatorname{cof} a_{1j}$$

Hay un Teorema cuya demostración se hace por inducción y es compleja que nos dice que el determinante de una matriz A de orden  $n_x n$  se puede calcular desarrollándolo por cualquier fila o columna ya que su valor no cambia, por lo tanto se define:

Por la i-ésima fila

det 
$$A = |A| = a_{i1} \operatorname{cof} a_{i1} + a_{i2} \operatorname{cof} a_{i2} + \dots a_{in} \operatorname{cof} a_{in} = \sum_{j=1}^{n} a_{ij} \operatorname{cof} a_{ij}$$

Por la j-ésima columna

$$\det A = |A| = a_{1j} \cot a_{1j} + a_{2j} \cot a_{2j} + \dots + a_{nj} \cot a_{nj} = \sum_{i=1}^{n} a_{ij} \cot a_{ij}$$

En definitiva calcular el determinante de una matriz A de orden  $n_x n$ , se desarrolla por una fila o columna y se obtienen n determinantes de orden  $(n-1)_x(n-1)$  y así sucesivamente hasta llegar a uno de  $3_x 3$  que resolvemos mediante la Regla de Sarrus. El signo de cada término será positivo si (i+j) es par y será negativo si (i+j) es impar y el coeficiente se obtiene al multiplicar el elemento  $a_{ij}$  por el determinante que resulta de tachar la fila i y la columna j

Basados en esta definición de determinante, veremos una serie de propiedades que nos resultarán de gran utilidad para el cálculo de los mismos en forma relativamente sencilla.

#### Propiedades de los determinantes

### Propiedad 1

Si una matriz A de orden  $n_x n$  tiene una fila o columna de ceros, su determinante es igual a cero

#### Demostración:

Supongamos que el renglón i de la matriz A, sean todos ceros. Es decir  $a_{ij}=0$   $\forall j:1,2.....n$ , desarrollaremos el determinante de la matriz por el renglón i

$$|A| = \sum_{i=1}^{n} a_{ij} \text{ cof } a_{ij} = \sum_{i=1}^{n} 0 \text{ cof } a_{ij} = \sum_{i=1}^{n} 0 = 0$$

#### **Propiedad 2**

Si a una fila o columna de una matriz A de orden  $n_{x}n$ , la multiplicamos por una constante  $c \in \mathbf{R}$  (esta es una operación de renglón), el valor del determinante resulta multiplicado por ese valor constante. Sean:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \qquad y \qquad B = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{i1} & ca_{i2} & \dots & ca_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Es decir que la matriz B, resulta de multiplicar la fila i de la matriz A por una constante  $c \in \mathbb{R}$ , entonces el |B| = c|A|

#### Demostración:

Desarrollemos el determinante de la matriz B por la fila i

$$|B| = \sum_{j=1}^{n} c \ a_{ij} \ \text{cof} \ a_{ij} = c \sum_{j=1}^{n} a_{ij} \ \text{cof} \ a_{ij} = c |A|$$

\* Por propiedad de la sumatoria

#### Observación

De la propiedad anterior se deduce claramente que  $|c(A)| = c^n |A|$ 

## **Propiedad 3**

Sean A, B y C tres matrices iguales de  $n_x n$ , excepto en la j-ésima columna (también vale para la i-ésima fila) y que la j-ésima columna de la matriz C, es la suma de las jésimas columnas de las matrices A y B, es decir:

$$A = \begin{pmatrix} a_{11} & a_{12} & . & a_{1j} & . & a_{1n} \\ a_{21} & a_{22} & . & a_{2j} & . & a_{2n} \\ . & . & . & . & . & . \\ a_{i1} & a_{i2} & . & a_{ij} & . & a_{in} \\ . & . & . & . & . & . \\ a_{n1} & a_{n2} & . & a_{nj} & . & a_{nn} \end{pmatrix} \qquad B = \begin{pmatrix} a_{11} & a_{12} & . & b_{1j} & . & a_{1n} \\ a_{21} & a_{22} & . & b_{2j} & . & a_{2n} \\ . & . & . & . & . & . \\ a_{i1} & a_{i2} & . & b_{ij} & . & a_{in} \\ . & . & . & . & . & . \\ a_{n1} & a_{n2} & . & b_{nj} & . & a_{nn} \end{pmatrix}$$

$$B = \begin{pmatrix} a_{11} & a_{12} & . & b_{1j} & . & a_{1n} \\ a_{21} & a_{22} & . & b_{2j} & . & a_{2n} \\ . & . & . & . & . & . \\ a_{i1} & a_{i2} & . & b_{ij} & . & a_{in} \\ . & . & . & . & . & . \\ a_{n1} & a_{n2} & . & b_{ni} & . & a_{nn} \end{pmatrix}$$

$$C = \begin{pmatrix} a_{11} & a_{12} & . & a_{1j} + b_{1j} & . & a_{1n} \\ a_{21} & a_{22} & . & a_{2j} + b_{2j} & . & a_{2n} \\ . & . & . & . & . & . & . \\ a_{i1} & a_{i2} & . & a_{ij} + b_{ij} & . & a_{in} \\ . & . & . & . & . & . & . \\ a_{n1} & a_{n2} & . & a_{nj} + b_{nj} & . & a_{nn} \end{pmatrix}$$

Entonces el |C| = |A| + |B|

## Demostración:

Desarrollemos el determinante de C por la columna i

$$|C| = \sum_{i=1}^{n} (a_{ij} + b_{ij}) \operatorname{cof} (a_{ij} + b_{ij})$$

pero el cof  $(a_{ij} + b_{ij}) = cof(b_{ij}) = cof(a_{ij})$  para i:1,2,....n, entonces

$$|C| = \sum_{i=1}^{n} (a_{ij} + b_{ij}) \operatorname{cof} a_{ij} = \sum_{i=1}^{n} a_{ij} \operatorname{cof} a_{ij} + \sum_{i=1}^{n} b_{ij} \operatorname{cof} a_{ij} = |A| + |B|$$

\* Por propiedad de la sumatoria

#### **Propiedad 4**

Si en una matriz A de orden  $n_x n$ , le intercambiamos dos filas (o columnas), el determinante cambia de signo (esta es una operación de renglón)

### Demostración:

La demostración la haremos en primer lugar si intercambiamos dos filas adyacentes, es decir supongamos que intercambiamos los renglones  $i \in i+1$ , es decir sean:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ a_{(i+1)1} & a_{(i+1)2} & \dots & a_{(i+1)n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \qquad B = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{(i+1)1} & a_{(i+1)2} & \dots & a_{(i+1)n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

$$B = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ & & & \ddots & \ddots & \ddots \\ a_{(i+1)1} & a_{(i+1)2} & \dots & a_{(i+1)n} \\ a_{i1} & a_{i2} & \dots & a_{in} \\ & & & \ddots & \ddots & \ddots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Desarrollemos el determinante de la matriz A por la i-ésima fila

$$|A| = \sum_{j=1}^{n} a_{ij} \operatorname{cof} a_{ij} = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} |M_{ij}|$$

Desarrollemos el determinante de la matriz B por la (i+1)-ésima fila

$$|B| = \sum_{j=1}^{n} a_{ij} \operatorname{cof} a_{ij} = \sum_{j=1}^{n} a_{ij} \left(-1\right)^{i+1+j} |M_{ij}| = \sum_{j=1}^{n} a_{ij} \left(-1\right)^{i+j} \left(-1\right) |M_{ij}| = -\sum_{j=1}^{n} a_{ij} \left(-1\right)^{i+j} |M_{ij}| = -|A|$$

\* Por propiedad de la sumatoria

Ahora demostraremos cuando los renglones no son adyacentes

Supongamos que intercambiamos dos renglones que no son adyacentes, por ejemplo el i con el j siendo i < j, es decir que vamos a intercambiar el i con el j.

Para llevar el renglón j al renglón i, lo haremos cambiado por los renglones adyacentes, por lo tanto para llevar el renglón i al lugar del renglón i, se deben efectuar j-i cambios advacentes. Luego el renglón i quedó en el lugar i+1, que para llevarlo al lugar del renglón j debemos efectuar  $\lceil j - (i+1) \rceil$  cambios entre renglones adyacentes. En realidad hemos hecho  $(j-i)+\lceil j-(i+1)\rceil$  cambios entre renglones adyacentes, pero:

$$(j-i)+[j-(i+1)]=j-i+j-i-1=2j-2i-1=2(j-i)-1$$

Vemos que hemos hecho un número impar de cambios entre renglones adyacentes, por lo que el determinante de A se multiplica por (-1) un número impar de veces, lo que nos da un cambio de signo en el resultado del determinante.

## **Propiedad 5**

Si una matriz A de orden  $n_x n$ , tiene dos filas (columnas) iguales entonces el determinante de dicha matriz es cero

#### Demostración:

Supongamos que en la matriz A, la fila i y la fila j son iguales, sin intercambiamos ambas la matriz sigue siendo la misma pero por la propiedad 4 resulta:

$$|A| = -|A|$$
  $\Rightarrow$   $2|A| = 0$   $\Rightarrow$   $|A| = 0$ 

## Propiedad 6

Sea una matriz A de orden  $n_x n$  tal que una fila (columna) de dicha matriz es múltiplo de otra fila (columna) de dicha matriz, entonces el determinante es cero.

#### Demostración:

Sea el renglón j múltiplo del renglón i, es decir:

$$|A| = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \dots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ a_{in} & a_{n2} & \dots & \vdots \\ a_{n1} & a_{n$$

## Propiedad 7

Si al múltiplo de un renglón (columna) de una matriz A de orden  $n_x n$ , se suma a otro renglón (columna) de dicha matriz el valor del determinante no cambia (esta es una operación de renglón).

## Demostración:

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} + ca_{i1} & a_{j2} + ca_{i2} & \dots & a_{jn} + ca_{in} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = |A| + \mathbf{0}^{prop.6} = |A|$$

## **Propiedad 8**

Sea A de orden  $n_x n$ , una matriz triangular superior (inferior). Entonces el determinante de dicha matriz es el producto de los elementos de su diagonal

## Demostración:

La demostración la haremos por inducción

1) Verificamos si cumple para n=2

$$|A_2| = \begin{vmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{vmatrix} = a_{11}a_{22} - 0a_{12} = a_{11}a_{22}$$
 Cumple para  $n = 2$ 

2) Suponemos cierto para n-1, es decir cumple:

$$|A_{n-1}| = \begin{vmatrix} a_{22} & a_{23} & a_{24} & a_{25} & \dots & a_{2n} \\ 0 & a_{33} & a_{34} & a_{35} & \dots & a_{3n} \\ 0 & 0 & a_{44} & a_{45} & \dots & a_{4n} \\ 0 & 0 & 0 & a_{55} & \dots & a_{5n} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & a_{nn} \end{vmatrix} = a_{22}a_{33}a_{44}a_{55}......a_{nn}$$

3) Debemos probar que cumple para *n* 

$$|A_n| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & a_{24} & a_{25} & \dots & a_{2n} \\ 0 & 0 & a_{33} & a_{34} & a_{35} & \dots & a_{3n} \\ 0 & 0 & 0 & a_{44} & a_{45} & \dots & a_{4n} \\ 0 & 0 & 0 & 0 & a_{55} & \dots & a_{5n} \\ 0 & 0 & 0 & 0 & 0 & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \dots & a_{nn} \end{vmatrix}$$

Desarrollemos este determinante por la primer fila, es decir:

$$|A_n| = a_{11} \begin{vmatrix} a_{22} & a_{23} & a_{24} & a_{25} & \dots & a_{2n} \\ 0 & a_{33} & a_{34} & a_{35} & \dots & a_{3n} \\ 0 & 0 & a_{44} & a_{45} & \dots & a_{4n} \\ 0 & 0 & 0 & a_{55} & \dots & a_{5n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & a_{nn} \end{vmatrix} - a_{12} \begin{vmatrix} 0 & a_{23} & a_{24} & a_{25} & \dots & a_{2n} \\ 0 & a_{33} & a_{34} & a_{35} & \dots & a_{3n} \\ 0 & 0 & a_{44} & a_{45} & \dots & a_{4n} \\ 0 & 0 & 0 & a_{55} & \dots & a_{5n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & a_{nn} \end{vmatrix}$$

Vemos que salvo el primer determinante los restantes tienen una columna de ceros, por lo tanto el valor de los determinantes del segundo al final valen cero, es decir:

Es decir:

$$|A_n| = a_{11}a_{22}a_{33}.....a_{nn}$$

## Observación 1

El determinante de una matriz diagonal, también es el producto de los elementos de la diagonal ya que es una matriz triangular

## Observación 2

El determinante de la matriz identidad es uno, ya que es diagonal y todos los elementos de la diagonal valen 1. Es decir  $|I_n|$ =1  $\forall n \in \mathbb{N}$ 

#### **Propiedad 9**

Sea A una matriz de orden  $n_x n$ , entonces el determinante de esta matriz y de su traspuesta son iguales, es decir  $|A| = |A^t|$ 

#### Demostración:

La demostración la haremos por inducción

1) Verificamos si cumple para n=2

$$\begin{vmatrix} A_2 \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

$$\begin{vmatrix} A_2^t \\ = \begin{vmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Como  $|A_2| = |A_2^t|$  cumple para n = 2

- 2) Suponemos cierto para n-1, es decir cumple:  $|A_{n-1}| = |A_{n-1}^t|$
- 3) Debemos probar que cumple para n, sean:

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix}$$

$$|B| = |A^t| = \begin{vmatrix} a_{11} & a_{21} & a_{31} & \dots & a_{n1} \\ a_{12} & a_{22} & a_{32} & \dots & a_{n2} \\ a_{13} & a_{23} & a_{33} & \dots & a_{n3} \\ \dots & \dots & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & a_{3n} & \dots & a_{nn} \end{vmatrix}$$

Desarrollaremos el determinante de A por la primer fila y el determinante de B por la primer columna utilizando la notación de letras mayúsculas para los cofactores

$$|A| = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} + \dots + a_{1n}A_{1n}$$

$$|B| = |A^t| = a_{11}B_{11} + a_{12}B_{21} + a_{13}B_{31} + \dots + a_{1n}A_{n1}$$

Como los coeficientes son iguales solo debemos probar que  $A_{1k} = B_{k1} \ \forall k:1,2,...n$ 

$$B_{k1} = (-1)^{k+1} \begin{vmatrix} a_{21} & a_{31} & \dots & \dots & a_{n1} \\ a_{22} & a_{32} & \dots & \dots & a_{n2} \\ \dots & \dots & \dots & \dots & \dots \\ a_{2(k-1)} & a_{3(k-1)} & \dots & \dots & \dots & a_{n(k-1)} \\ a_{2(k+1)} & a_{3(k+1)} & \dots & \dots & \dots & a_{n(k+1)} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{2n} & a_{3n} & \dots & \dots & \dots & \dots & a_{nn} \end{vmatrix} = (-1)^{k+1} |N_{k1}|$$

pero  $|M_{1k}| = |N_{k1}|$  por ser  $(M_{1k}) = (N_{k1})^t$  matrices de orden  $(n-1)_x(n-1)$  que lo hemos supuesto cierto. Por lo tanto cumple  $\forall n \in \square$ 

#### Propiedad 10

Sea A una matriz de orden  $n_x n$  singular, (es decir que no tiene inversa), si y solo si su determinante es cero, es decir:

A es singular 
$$(\exists A^{-1}) \Leftrightarrow |A| = 0$$

#### Propiedad 11

Sea A una matriz de orden  $n_x n$  no singular,(es decir que tiene inversa), si y solo si su determinante es distinto de cero, es decir:

A es no singular 
$$(\exists A^{-1}) \Leftrightarrow |A| \neq 0$$

#### **Propiedad 12**

Sean A y B dos matrices de orden  $n_x n$ , entonces:

$$|AB| = |A||B|$$

## **Propiedad 13**

Sea A una matriz de orden  $n_x n$  no singular, (es decir que tiene inversa,  $\exists A^{-1}$ )

Entonces el determinante de la matriz inversa es el inverso multiplicativo del determinante de la matriz. Es decir  $\left|A^{-1}\right| = \frac{1}{|A|}$ 

## Demostración:

Por existir la matriz inversa de A sabemos que:

$$AA^{-1} = A^{-1}A = I_n \Rightarrow |AA^{-1}| = |A^{-1}A| = |I_n| = 1$$

por propiedad 14 resulta:

$$|A||A^{-1}| = |A^{-1}||A| = 1 \implies |A^{-1}| = \frac{1}{|A|}$$

Veremos ahora como calcular el determinante de una matriz A de orden  $n_v n$ 

## **REGLA DE CHIO:**

Esta regla utiliza las propiedades 2, 7 y 4. Es decir que si queremos calcular el determinante de una matriz A de orden  $n_x n$ , con estas propiedades hacemos  $a_{11} = 1$  y el resto de la primer columna cero, es decir que aplicamos Gauss-Jordan. Si desarrollamos por la primer columna nos queda para calcular un solo determinante de orden  $(n-1)_x(n-1)$  y repetimos este proceso hasta obtener un solo determinante de orden  $3_x 3$  que resolvemos mediante la regla de Sarrus. Veremos un ejemplo:

## **Ejemplo**

Calcular el siguiente determinante

$$|A| = \begin{vmatrix} 2 & 0 & -1 & 2 \\ 3 & 2 & -2 & -3 \\ 0 & -2 & -2 & 2 \\ 2 & 3 & 0 & -1 \end{vmatrix}$$

En primer lugar intercambiamos la columna 3, con la 1 que por propiedad 4, el determinante cambia de signo. Luego por propiedad 2, multiplicamos la fila 1 por la constante -1 para tener un

1 en la posición  $a_{11}$ . Al final aplicamos la propiedad 7 para hacer ceros en el resto de la columna 1.

$$|A| = \begin{vmatrix} 2 & 0 & -1 & 2 \\ 3 & 2 & -2 & -3 \\ 0 & -2 & -2 & 2 \\ 2 & 3 & 0 & -1 \end{vmatrix} \xrightarrow{prop.4} = \begin{vmatrix} -1 & 0 & 2 & 2 \\ -2 & 2 & 3 & -3 \\ -2 & -2 & 0 & 2 \\ 0 & 3 & 2 & -1 \end{vmatrix} \xrightarrow{prop.2} = -(-1) \begin{vmatrix} 1 & 0 & -2 & -2 \\ -2 & 2 & 3 & -3 \\ -2 & -2 & 0 & 2 \\ 0 & 3 & 2 & -1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & -2 & -2 \\ -2 & 2 & 3 & -3 \\ -2 & -2 & 0 & 2 \\ 0 & 3 & 2 & -1 \end{vmatrix}$$

Ya este determinante lo podemos resolver por la regla de Sarrus

$$|A| = \begin{vmatrix} 2 & 0 & -1 & 2 \\ 3 & 2 & -2 & -3 \\ 0 & -2 & -2 & 2 \\ 2 & 3 & 0 & -1 \end{vmatrix} = \begin{vmatrix} 2 & -1 & -7 \\ -2 & -4 & -2 \\ 3 & 2 & -1 \end{vmatrix} = 8 + 28 + 6 - (84 - 2 - 8) = -32$$

Algunos autores utilizan las mismas propiedades y llevan el determinante a triangular superior o inferior y luego calculan el determinante multiplicando los elementos de la diagonal, como lo indica la propiedad 8.