Cálculo Diferencial e Integral I 2^o Teste

Campus da Alameda

4 de Junho de 2011, 11:30 horas

LEIC (Prova B)

Apresente todos os cálculos e justificações relevantes

1. Calcule, se existirem em $\overline{\mathbb{R}}$,

$$\lim_{x\to 0}\frac{\operatorname{arctg} x}{x},\qquad \lim_{x\to 0}\frac{x^2}{\cos x},\qquad \lim_{x\to +\infty}x^{\frac{1}{3x}}$$

2. Calcule uma primitiva de cada uma das funções seguintes

$$\frac{e^{\arcsin x}}{\sqrt{1-x^2}}, \qquad \frac{x-2}{9+x^2}$$

- 3. Calcule a área da região plana delimitada pelos gráficos das funções |x|-2 e $4-x^2$.
- 4. Seja $g \in C^1(\mathbb{R})$ e seja $\phi : \mathbb{R} \to \mathbb{R}$ a função definida por

$$\phi(x) = \int_{\text{sen } x}^{x} g(t) \, dt.$$

Calcule ϕ' e ϕ'' .

5. Determine a natureza das seguintes séries e calcule a soma de uma delas

$$\sum_{n=1}^{+\infty} \frac{3n-1}{n^3+n+2}, \qquad \sum_{n=0}^{+\infty} \frac{2^{n+1}+(-1)^n}{3^{n+1}}$$

6. Seja $g:\mathbb{R}^+\to\mathbb{R}$ uma função diferenciável em \mathbb{R}^+ e tal que

$$\forall_{n \in \mathbb{N}} \quad g(n) = 1 + (-1)^n$$

Prove que não existe, em $\overline{\mathbb{R}}$, $\lim_{x\to+\infty} g'(x)$.