LINAG UT	
2.8.7 V. Vektorraum mit dim V = n < 0	
U1, U2,, U1 Undervanme von V mit V1+V2++Vy=V	
ZZ: V= U1 @ U2 @ @ Ur (=> dim U1 tdim 12+ +dim Ux =	h
Da Un nUz = or ist dim (V1 + Uz) = dim (V1) + dim ((2).
$(U_1 \cap U_2 = \varnothing)$, daher dim $(U_1 \cap U_2) = 0$.	
Uq := U1 & U2 dus 2.26. im Buch folgt Ua ist UR	Von V.
Da Van $U_3 = 0$ - ist dim $(V_a \oplus U_3) = dim (V_a) + dim ($	3/-
(gleich luis Ur)	1. 74
Also ist $\dim(U_1 \oplus U_2 \oplus \ldots \oplus U_r) = \dim(U_1) + \dim(U_2) + \ldots$	toun lor
dim(V) = n	
Aus dem Dinensionssatz folgt: Werm dim (U) + dim (T) = dim (U+T), dann
ist dim (UnT)=0 => UnT=0. Weiters folgt, da	33
dim (U+T) & dim (U) + dim (T) sein mus.	
Angenommen die Summe Ew. Un und Um ist	
nicht direlet. => 3 v EV: v E Un n Um	
\Rightarrow dim $(U_n \cap U_m) > 1$	
$\Rightarrow \dim (U_n + U_m) < \dim (U_n) + \dim (U_m)$	
=> dim (U, + U2++Un++Un++Ur) < dim (U1) + dim (U2)++dim (U	
$\frac{1}{2} + \dim(U_m) + \dots + \dim(U_m)$	
(V
ang G	-