Titanium alloys

The material. The alloys of titanium have the highest strength-to-weight ratio of any structural metal, about 25% greater than the best alloys of aluminum or steel. Titanium alloys can be used at temperatures up to 500°C—compressor blades of aircraft turbines are made of them. They have unusually poor thermal and electrical conductivity, and low expansion coefficients. The alloy Ti 6%/Al 4% V is used in quantities that exceed those of all other titanium alloys combined. The data in this record describe it and similar alloys.

Composition

Ti+ alloying elements, e.g., Al, Zr, Cr, Mo, Si, Sn, Ni, Fe, V

General properties

Density	4,400	_	4,800	kg/m ³		
Price	57	_	63	USD/kg		
Mechanical properties						
Young's modulus	110	_	120	GPa		
Yield strength (elastic limit)	750	_	1,200	MPa		
Tensile strength	800	_	1,450	MPa		
Elongation	5	_	10	%		
Hardness—Vickers	267	_	380	HV		
Fatigue strength at 10 ⁷ cycles	589	_	617			
Fracture toughness	55	_	70	MPa · m $^{1/2}$		
Thermal properties						
Melting point	1,480	_	1,680	°C		
Maximum service temperature	450	_	500	°C		
Thermal conductor or insulator?	Poor conductor					
Thermal conductivity	7	_	14	$W/m \cdot K$		
Specific heat capacity	645	_	655	J/kg · K		
Thermal expansion coefficient	8.9	_	9.6	µstrain/°C		
Electrical properties						

Electrical conductor or insulator?	Good conductor	
Electrical resistivity	100 - 170	μohm · cm

Adiabatic heating heats the air in the compressor to about 500°C, requiring the use of titanium alloys for the blades (Reproduced with the permission of Rolls-Royce plc, copyright © Rolls-Royce plc 2004)

Eco properties: material

Global production, main component Reserves	$2.0 \times 10^{5} \\ 720 \times 10^{6}$			metric ton/yr metric ton
Embodied energy, primary production	650	_	720	MJ/kg
CO ₂ footprint, primary production	44	_	49	kg/kg
Water usage	470	_	1,410	L/kg
Eco-indicator	3,450			millipoints/kg
Eco properties: processing				
Casting energy	12.6	_	13.9	MJ/kg
Casting CO ₂	0.9	_	1.0	kg/kg
Forging, rolling energy	14	_	15	MJ/kg
Forging, rolling CO ₂	1.1	_	1.2	kg/kg
End of life				
Embodied energy, recycling	78	_	96	MJ/kg
CO ₂ footprint, recycling	4.7	_	5.7	kg/kg
Recycle fraction in current supply	21	_	24	%
,				

Typical uses. Aircraft turbine blades; general aerospace applications; chemical engineering; pressure vessels; high-performance automotive parts such as connecting rods; heat exchangers; bioengineering; medical; missile fuel tanks; compressors; valve bodies; light springs, surgical implants; marine hardware, paper-pulp equipment; sports equipment such as golf clubs and bicycles.