Radiation

Radiation budget drives climate and weather

Top-of atmosphere radiation exchange with sun / space determines climate, measured since 1960s

Radiation in reality

- Photons emitted by sun (shortwave / visible) and Earth system (longwave / infrared), absorbed or scattered by surface, atmospheric gases, aerosol, cloud water or ice particles

Radiation variables and thermal emission laws

- Zenith angle θ , azimuth angle ϕ
- **Radiance** R: radiative power at one angle (per area)
- Irradiance or **flux** F: Radiative power per area integrated over angles, e.g. total up- or downward flux, $F^{\downarrow}(\lambda) = \int_{\pi/2}^{\pi} \int_{0}^{2\pi} R(x, \lambda, \theta, \phi) d\phi d\theta$, λ wavelength
 - Thermal emitted power per area, (one wavelength): **Planck's** law;

All wavelengths: **Stefan-Boltzmann law** $F = \sigma T^4$ σ Stefan-Boltzmann constant

Material bulk optical properties

- Extinction coefficient β measures local extinction by absorption + scattering
- Optical depth $\tau = \int_{path s} \beta \, ds$ measures extinction along a path Beer-Lambert-law $I_1 = I_0 \cdot exp(-\tau)$

- Single scattering albedo
 - ω = fraction of total extinction due to scattering = β_{scat} / (β_{scat} + β_{abs})
- Asymmetry parameter g: describes ratio of forward to backward scattering

Radiation scheme in NWP / climate model

From NWP / climate model:

- temperature, humidity
- gases, aerosol, surface properties (usually climatology)
- Clouds: cloud fraction, liquid & ice water content, effective particle radius

Radiation scheme

- Optical properties for each atmospheric component: optical depth, single scattering albedo, asymmetry factor
- Radiation solver calculates radiative fluxes,
- From fluxes: **heating rates**

- Numerical efficiency: Use coarser radiation grid, long radiation timestep
- Météo-France models: ecRad (Hogan & Bozzo 2018)

New modular radiation scheme ecRad (Hogan & Bozzo 2018)

surface

Surface optics

surface

optical properties properties

gas mixing

ratios

Gas optics

clear-skv

properties

optical

Interpolate to radiation grid

cloud

properties

aerosol

Cloud optics

cloud optical

Interpolate to model grid

properties

mixing ratios

Aerosol optics

Solver

Surface optics

fluxes

fluxes at surface facets

- Gas optics:
 - RRTMG (lacono et al. 2008)
 - ecCKD (Hogan & Matricardi 2020): Fewer spectral intervals but similar precision
- **Aerosol optics:** variable species number and properties (set at run-time)
- **Cloud optics:**
 - liquid: SOCRATES (MetOffice), Slingo (1989), Mie calculation
 - ice: Fu 1996, 1997, 1998 (default), Yi et al. 2013, Baran et al. 2014, Baum et al. 2014

From ecRad 1.6: user can choose hydrometeor number + add optics

Surface: Consistent treatment of urban and forest canopies

Solvers for radiative transfer equations:

McICA (Pincus et al. 2003), Tripleclouds (Shonk & Hogan, 2008) or SPARTACUS (Schäfer et al. 2016, Hogan et al. 2016)

- SPARTACUS makes ecRad the only global radiation scheme that can do sub-grid **3D** radiative effects
- Longwave scattering optional
- Can configure cloud overlap
- Cloud inhomogeneity: can configure width and shape of PDF

Info / documentation: https://confluence.ecmwf.int/ display/ECRAD/ECMWF+Ra diation+Scheme+Home

Radiation spectra and atmospheric gases

Atmospheric gases

 Molecules have different modes (vibration, rotation)

Water molecule:

- Absorbing / emitting photons changes mode, photon wavelength corresponds to energy change
- Air molecules also scatter shortwave (especially ultraviolet / UV) radiation

Gas optics: bands (RRTMG)

- Divide spectrum into bands with similar Planck function
- In each band:
 - approximate Planck function
 - Gas absorption function still varies strongly

Gas optics: g-points / correlated k-method (RRTMG)

- In each band: Approximate Planck function, cloud+aerosol optics on bands: in RRTMG 14 SW + 16 LW
- Re-order in band by gas absorption, approximate on g-points
 - \rightarrow > 200 g-points
- Determines spectral dimension and code structure of most radiation schemes (incl. older ecRad versions)
- New more precise scheme with only 64 g-points available: ecCKD

ecCKD gas optics: full-spectrum correlated-k-method (Hogan 2010)

- Re-order whole spectrum, average Planck emission, cloud + aerosol optics interpolated onto chosen bands, more options available
- With 64 g-points: cheaper, more precise that RRTMG (Hogan and Matricardi 2020)

Cloud particles

Scattering by particles clouds, aerosol, air molecules

Scattering intensity at scattering angle θ depends on size parameter $x=2\pi r/\lambda$: ratio of particle radius r and wavelength λ

 $r \gg \lambda$: Geometric optics

r >> λ : Rayleigh scattering: particle acts as electric dipole, scattering intensity $p(\theta)=3/4(1+(\cos\theta)^2)$

Rayleigh **scattering efficiency** Q_s~x⁴ measures scattering per particle area

Mie scattering

r≈λ, spherical particles

)

Mie scattering

- complex function of scattering angle effects like rainbow,...
- Approximated by numerical algorithms
- Strong forward peak: treated together with non-scattered direct radiation in model (Delta-Eddington-scaling)

Ice particle shape and effective radius

- Ice particle shape assumptions (liquid: spherical)
- Fu ice optics (Fu 1996, 1998, default): hexagonal columns
- Alternative ice optics in ecRad: ice habit mixtures

- Parametrised effective radius
 - = mean radius weighted by number, area, scattering efficiency of each particle size
- Definition needs to agree with optics
- Consistency with microphysics?
- Further uncertainties: surface coupling: albedo, emissivity; cloud and aerosol input

Radiation solver and cloud geometry

Simplified two-stream equations (slide adapted from R. Hogan)

Upwelling flux:

Gradient of flux with height

Loss of flux by scattering or absorption

Gain in flux by scattering from other direction

Downwelling flux:

$$\frac{\partial F^{+}}{\partial z} = -\beta_{e} \left(\gamma_{1} F^{+} - \gamma_{2} F^{-} \right) + S^{+}$$

$$-\frac{\partial F^{-}}{\partial z} = -\beta_{e} \left(\gamma_{1} F^{-} - \gamma_{2} F^{+} \right) + S^{-}$$

Source from scattering of the direct solar beam (shortwave) or emission (longwave)

with coefficients (with delta-Eddington scaling):

$$\gamma_1 = \frac{1}{\mu_1} \left[1 - \frac{\omega(1+g)}{2} \right]$$
 and

$$\gamma_2 = \frac{1}{\mu_1} \left[\frac{\omega(1-g)}{2} \right],$$

Radiation solvers and sub-grid cloud geometry

Simplify by treating **only vertical** dimension explicitly.

Deterministic:

Two-stream solver: solve in **cloudy** *I* **clear regions**, partition at layer boundaries according to **overlap**

Tripleclouds/SPARTACUS (ecRad): similar; 3 regions: clear, thin cloud, thick cloud cloud inhomogeneity

Stochastic:

McICA (ecRad): draw random clouds in sub-columns for overlap + inhomogeneity; distribute spectral intervals in 1 sub-column each fast, random noise

Cloud geometry uncertainties

- For given layer clouds, cloud overlap decides total cloud cover
- Observations: exponential-random overlap, decorrelation length should depend on cloud type
- Reflectivity and longwave emissivity non-linear functions of optical depth: need horizontal cloud variability (fractional standard deviation FSD = standard deviation / mean optical depth)
- Should also depend on cloud type, resolution

3D cloud effects

a) Shortwave cloud side

- Shortwave cloud side illumination increases cloud reflectivity, cloud side escape decreases cloud reflectivity
- Longwave cloud side illumination and escape increase cloud effect
- Shortwave entrapment decreases cloud reflectivity
- Similar effects at complex surfaces (trees / mountains / buildings)
- **Usually neglected, SPARTACUS** solver in ecRad can treat them (Schäfer et al. 2016, Hogan et al. 2016, 2019), cost x4

Further uncertainties: surface coupling: albedo, emissivity, one- or multi-level coupling Cloud and aerosol input

NAMELIST/NAM PARAM ECRADn/ **IVERBOSESETUP. IVERBOSE.** & # How much is written in output? # output fluxes, solver LDO SW, LDO LW, LDO SW DIRECT, LDO CLEAR, LDO SURFACE SW SPECTRAL FLUX, LDO CANOPY FLUXES SW, LDO CANOPY FLUXES LW & #which fluxes? LDO SAVE SPECTRAL FLUX, LDO SAVE GPOINT FLUX, LDO LW DERIVATIVES, LDO SAVE RADIATIVE PROPERTIES, &# save intermediate properties? CSW SOLVER NAME, CLW SOLVER NAME, LDO LW CLOUD SCATTERING, LDO LW AEROSOL SCATTERING, & # Radiation solver, Do LW cloud / aerosol scattering?

https://confluence.ecmwf.int/download/attachments/70945505/ecrad documentation.pdf?version=4&modificationDate=1584914933898&api=v2)

Namelist: From MesoNH 6.0. all ecRad namelist parameters will all be available in MesoNH (see src/MNH/modn param ecradn.F90.

gas / cloud optics CGAS_MODEL_NAME, NRADLP, NRADLP, NRADLP, CLIQUID_MODEL_NAME, CICE_MODEL_NAME, LDO FU LW ICE OPTICS BUG, & # gas, liquid, ice optics, do IFS ice bug? CGAS OPTICS SW OVERRIDE FILE NAME, CGAS OPTICS LW OVERRIDE FILE NAME& # use gas optics from specified file? LDO SW DELTA SCALING WITH GASES, LUSE THICK CLOUD SPECTRAL AVERAGING & # Do Delta-Eddington scaling with gases/ thick cloud spectral averaging?

XMAX GAS OD 3D, XMAX CLOUD OD, LUSE GENERAL CLOUD OPTICS, & # max. gas / cloud optical depth, General cloud types method? CCLOUD_TYPE_NAME, CCLIQ OPTICS OVERRIDE_FILE_NAME, CICE_OPTICS_OVERRIDE_FILE_NAME, & # Vector of cloud types, liquid / ice optics from specified file?

aerosols LUSE AEROSOLS, LUSE GENERAL AEROSOL OPTICS, & # Do aerosols? Use general aerosol method?

LDO CLOUD AEROSOL PER SW G POINT, LDO CLOUD AEROSOL PER LW G POINT, & # do aerosols per band or per g-point? NAEROSOL TYPES, NI AEROSOL TYPE MAP, CAEROSOL OPTICS OVERRIDE FILE NAME, & number + type of aerosols, use aerosol optics from file?

Surface

SURF_TYPE, LDO_WEIGHTED_SURFACE_MAPPING, & # Surface type / mapping

LSPEC ALB, LSPEC EMISS, LDO NEAREST SPECTRAL SW ALBEDO, LDO NEAREST SPECTRAL LW EMISS, & # spectral albedo / emissivity / mapping method

ISW ALBEDO INDEX, ILW EMISS INDEX, XSW ALBEDO WAVELENGTH BOUND, XLW EMISS WAVELENGTH BOUND, & # Albedo / emissivity index / bands # cloud geometry

XCLOUD FRACTION THRESHOLD, XCLOUD MIXING RATIO THRESHOLD, & minimum thresholds for cloud

OVERLAP SCHEME NAME, LUSE BETA OVERLAP, NREG, XCLOUD FRAC STD, & # vertical overlap scheme, beta overlap? number of regions, fractional stand. dev.

XCLOUD INHOM DECORR SCALING, XCLEAR TO THICK FRACTION & # cloud inhomogeneity overlap compared to region overlap, ratio of thick cloud next to clear

CCLOUD PDF SHAPE NAME, CCLOUD PDF OVERRIDE FILE NAME, & # name of horizontal cloud distribution PDF / Use PDF from file?

SPARTACUS solver: 3D effects

LDO 3D EFFECTS, LDO LW SIDE EMISSIVITY, LDO 3D LW MULTILAYER EFFECTS, XMAX 3D TRANSFER RATE, & #Do 3D effects? / Which ones? Maximum 3D flux CSW ENTRAPMENT NAME, LUSE EXPM EVERYWHERE, XOVERHANG FACTOR, XOVERHEAD SUN FACTOR, & # method entrapment, matrix exponential, min SZA 3D

Summary

- Radiation drives weather and climate, plant growth, human comfort,... at all scales
- Simplified description for weather / climate models: Two-stream equations for up-/downward flux, emission: Stefan-Bolzman-law; bulk optical properties
- Spectrum divided into bands to capture gas emission and absorption
- Clouds: Mie scattering, cloudy + clear region in each gridbox, some uncertainty
- Météo-France NWP / climate models: ecRad fast and flexible radiation scheme
 Parametrisations can be changed individually

Thank you for your attention!

Contact: sophia.schaefer@meteo.fr

Literature

- Petty, Grant William, 2006. *A first course in atmospheric radiation*. Sundog Pub.
- Liou, K.-N., 1992: *Radiation and Cloud Processes in the Atmosphere*. Oxford University Press.
- A First Course In Atmospheric Radiation Becomb Edition
- <u>ecRad radiation scheme</u>: Hogan, R. J., Bozzo, A. (2018). *A flexible and efficient radiation scheme for the ECMWF model*. JAMES.
- RRTM gas optics: Mlawer, Eli J. et al., 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. JGR.
- <u>Cloud geometry</u>: Shonk, Jonathan K.P. et al., 2010. Effect of improving representation of horizontal and vertical cloud structure on the Earth's global radiation budget. Part I + Part II. QJRMS.

Namelist parameters for ecRad in AROME

All ecRad parameters are explained in the user guide:

https://confluence.ecmwf.int/download/attachments/70945505/ecrad documentation.pdf?version=4&modificationDate=1584914933898&api=v2

&NAERAD #radiation parameters for all schemes

Needed for ecRad:

LAER3D=.TRUE., # => using 3D or real-time aerosols? Might be

important? LUSEPRE2017RAD=.FALSE., # => To use ecRad

LRRTM=.TRUE.. # => To use ecRad

LSRTM=.TRUE..# => To use ecRad

NAER=0, # Aerosol option, used, 1 by default, 0=no aerosols

NRADFR=18. # Variable for intermittent NAERMACC=1, # CAMS aerosol, needed

NOZOCL=4, # Ozon climatology choice

NSW=6, # No. of shortwave bands, somethingg funny happening...

RRE2DE=0.64952, # Geometrical factor for hexagonal particles, not sure

if needed

Not used in ecRad?:

NDUMPBADINPUTS=0, ??

NICEOPT=3, # Ice option, Internal for old scheme

NLIQOPT=2, # Liquid option, Internal for old scheme

NMCICA=1, # old scheme, hopefully

NOVLP=1, # Overlap - not needed

NRADIP=3, # effective radius size ice particle, probl. not used

NRADLP=2, # effective radius size liquid particle, prob. not used

RLWINHF=1, # Longwave inhomogenity, old scheme, spp-patterns ensemble

RSWINHF=1, # Shortwave inhomogenity, old scheme, spp-patterns ensemble

&RADIATION # ecRad parameters Iverbose=1, # from 1 to 5

Iverbosesetup=3, # highest is 5

directory name=".", # can change

do clear=.TRUE., # clear sky and all sky calculations if TRUE

do save radiative properties =.FALSE., # default FALSE

do save spectral flux =.FALSE.. # goes into seperate file, for debugging... do save gpoint flux=.FALSE., # as above, a lot of data

do surface sw spectral flux =.TRUE., # for spectral coupling to the surface

use aerosols=.TRUE., # FALSE: all aerosol input ignored, should always be TRUE?!

do lw derivatives=.TRUE., # Diagnostic, set to FALSE?

gas model name='RRTMG-IFS', # Other options in user guide, only in offline ecRad cloud mixing ratio threshold=.100E-08, # less water than this then considered no cloud

internal inhomogenity cloud fraction threshold= .100E-05, # if less than this then no cloud

use beta overlap= .FALSE., # not using beta -> then using alpha overlap, default

liquid model name='Nielsen', #needs the .nc file provided in data folder

ice model name='Fu-IFS', # Operational option, other might be better

do fu lw ice optics bug=.FALSE., # There was a bug in the IFS, can be reproduced if you want overlap scheme name='Exp-Ran', # Most sensible choice, IFS used a different one

sw solver name='McICA', # Shortwave solver, McICA is the operational one

lw solver name='McICA', # Longwave solver, possible to use different from SW but need a reason

cloud inhom decorr scaling= 1.00, # same vertical decorrelation scale for cloud edges and cloud

do sw delta scaling with gases=.FALSE., # FALSE: only cloud particles, TRUE: also with gases do lw cloud scattering=.FALSE., # TRUE: more expensive, better, but more cost for small benefit do lw aerosol scattering=.FALSE., # benefit of TRUE is even smaller than for the cloud scattering

Two-stream equations

Simplifications:

- ignore phase, polarisation
- only treat up-/downward flux instead of radiances in all directions (2 streams)
- scattering phase function described by one parameter: asymmetry factor g

- Treat cloudy / clear region of gridbox separately
- Treat direct solar radiation separately; Diffuse radiation: assume solar zenith angle to approximate integral over angles

Emission spectra of sun and Earth

Atmospheric gases

Gas	Parts by volume (per million)	Interaction	•	- Gas-radiation interactions:
Nitrogen (N ₂)	780,840 ppm (78.084%)	sw (scat)		shortwave (sw) absorption (abs) and scattering (scat), longwave (w) absorption (greenhouse gases)
Oxygen (O ₂)	209,460 ppmv (20.946%)	sw (scat, abs)		
Water vapour (H ₂ O)	~0.40% total, surface ~1%-4%	lw, sw (abs)		
Argon (Ar)	9,340 ppmv (0.9340%)			
Carbon dioxide (CO ₂)	390 ppmv (0.039%) rising	lw, sw (abs)	gases)	
Neon (Ne)	18.18 ppmv (0.001818%)			
Helium (He)	5.24 ppmv (0.000524%)			
Methane (CH ₄)	1.79 ppmv (0.000179%) rising	lw		Not all gases radiatively
Krypton (Kr)	1.14 ppmv (0.000114%)			active, small concentrations can have
Hydrogen (H ₂)	0.55 ppmv (0.000055%)			strong effect
Nitrous oxide (N ₂ O)	0.319 ppmv (0.00003%) rising	lw		culong eneot
Carbon monoxide (CO)	0.1 ppmv (0.00001%)			
Xenon (Xe)	0.09 ppmv (0.000009%)			
Ozone (O ₃)	0.0 to 0.07 ppmv (0.000007%)	lw, sw (abs) able by R. Hogan		RÉPUBLIQUE FRANÇAISE Library Gardinaries