

$$n = 10$$
, $\bar{x} = 199 \text{ ml}$, $s = 0.8 \text{ ml}$

$$n = 10$$
, $\overline{x} = 199 \text{ ml}$, $s = 0.8 \text{ ml}$

$$n = 10$$
, $\bar{x} = 199 \text{ ml}$, $s = 0.8 \text{ ml}$

$$n = 10$$
, $\bar{x} = 199 \text{ ml}$, $s = 0.8 \text{ ml}$

Step 1: Formulate Hypothesis

n = 10, $\bar{x} = 199 \text{ ml}$, s = 0.8 ml

Step 1: Formulate Hypothesis

Null Hypothesis H_0 :


```
n = 10, \bar{x} = 199 \text{ ml}, s = 0.8 \text{ ml}
```

Step 1: Formulate Hypothesis

Null Hypothesis H_0 :

Alternate Hypothesis H_A :


```
n = 10, \bar{x} = 199 \text{ ml}, s = 0.8 \text{ ml}
```

Step 1: Formulate Hypothesis

Null Hypothesis H_0 : $\mu = 200$

Alternate Hypothesis H_A : $\mu \neq 200$

```
n = 10, \bar{x} = 199 \text{ ml}, s = 0.8 \text{ ml}
```

Step 1: Formulate Hypothesis

```
Null Hypothesis H_0: \mu = 200
Alternate Hypothesis H_A: \mu \neq 200
```


n = 10, $\bar{x} = 199 \text{ ml}$, s = 0.8 ml

Step 1: Formulate Hypothesis

Null Hypothesis H_0 : $\mu = 200$

Alternate Hypothesis H_{Δ} : $\mu \neq 200$

$$n = 10$$
, $\bar{x} = 199 \text{ ml}$, $s = 0.8 \text{ ml}$

Step 1: Formulate Hypothesis

Null Hypothesis H_0 : $\mu = 200$ Alternate Hypothesis H_A : $\mu \neq 200$

$$n = 10$$
, $\bar{x} = 199 \text{ ml}$, $s = 0.8 \text{ ml}$

Step 1: Formulate Hypothesis

Null Hypothesis
$$H_0$$
: μ = 200
Alternate Hypothesis H_A : μ ≠ 200

Step 2: Calculate the t-statistic

t-statistic =
$$\frac{\overline{x} - \mu}{s / \sqrt{n}}$$

$$n = 10$$
, $\bar{x} = 199 \text{ ml}$, $s = 0.8 \text{ ml}$

Step 1: Formulate Hypothesis

Null Hypothesis
$$H_0$$
: μ = 200
Alternate Hypothesis H_A : μ ≠ 200

Step 2: Calculate the t-statistic

t-statistic =
$$\frac{\overline{x} - \mu}{s / \sqrt{n}}$$
 = $\frac{199 - 200}{0.8 / \sqrt{10}}$ = -3.9528

$$n = 10$$
, $\bar{x} = 199 \text{ ml}$, $s = 0.8 \text{ ml}$

Step 1: Formulate Hypothesis

Null Hypothesis
$$H_0$$
: μ = 200
Alternate Hypothesis H_A : $\mu \neq$ 200

Step 2: Calculate the t-statistic

t-statistic =
$$\frac{\overline{x} - \mu}{s / \sqrt{n}}$$
 = $\frac{199 - 200}{0.8 / \sqrt{10}}$ = -3.9528

Sample mean 199 way above 200 ≡ t-statistic -3.9528 way above 0

Sample mean 199 way below 200 ≡ t-statistic -3.9528 way below 0

Step 1: Formulate Hypothesis

Step 2 : Calculate the t-statistic

Step 1: Formulate Hypothesis

Step 2 : Calculate the t-statistic

Step 3: Cutoff values for the t-statistic

 α : The 'significance' level

Step 1: Formulate Hypothesis

Step 2 : Calculate the t-statistic

Step 3: Cutoff values for the t-statistic

 α : The 'significance' level. Typically, = 0.05 or 0.01

Step 1: Formulate Hypothesis

Step 2 : Calculate the t-statistic

Step 3: Cutoff values for the t-statistic

 α : The 'significance' level. Typically, = 0.05 or 0.01

The probability of rejecting the Null hypothesis when it is true.

Step 1: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 3: Cutoff values for the t-statistic

 α : The 'significance' level. Typically, = 0.05 or 0.01

The probability of rejecting the Null hypothesis when it is true.

Step 1: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 3: Cutoff values for the t-statistic

 α : The 'significance' level. Typically, = (0.05) or 0.01 The probability of rejecting the Null hypothesis when it is true.

Step 1: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 3: Cutoff values for the t-statistic

 α : The 'significance' level. Typically, = (0.05) or 0.01 The probability of rejecting the Null hypothesis when it is true.

Step 1: Formulate Hypothesis

Step 2 : Calculate the t-statistic

Step 3: Cutoff values for the t-statistic

 α : The 'significance' level. Typically, = 0.05 or 0.01 The probability of rejecting the Null hypothesis when it is true.

Step 1 : Formulate Hypothesis

Step 2 : Calculate the t-statistic

Step 3: Cutoff values for the t-statistic

 α : The 'significance' level. Typically, = 0.05 or 0.01 The probability of rejecting the Null hypothesis when it is true.

Step 1: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 4: Check whether t-statistic falls in the rejection region

Step 1: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 4: Check whether t-statistic falls in the rejection region

Step 1: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 4: Check whether t-statistic falls in the rejection region

Step 1: Formulate Hypothesis

Step 2 : Calculate the t-statistic

Step 3: Cutoff values for the t-statistic

Step 4: Check whether t-statistic falls in the rejection region

