به نام خدا

فصل سوم شرح و کنترل فرآیند (بخش اول) Process Description and Control

سرفصل مطالب

- فرآیند چیست؟
 - حالات فرآيند
 - شرح فرآیند
 - كنترل فرآيند
- اجرای سیستم عامل
- مدیریت فرآیند در UNIX SVR4

• در این فصل بررسی خواهد شد که چگونه یک فرآیند نمایش داده می شود و توسط سیستم عامل کنترل می شود.

سرفصل مطالب

- فرآیند چیست؟
 - حالات فرآيند
 - شرح فرآیند
 - كنترل فرآيند
- اجرای سیستم عامل
- مدیریت فرآیند در UNIX SVR4

نیازهایی که سیستم عامل باید پاسخگو باشد

- كار اصلى سيستم عامل: مديريت فرآيندها
- سیستم عامل باید در بین اجرای فرآیندها قرار بگیرد (interleave)، تا هم زمان پاسخ قابل قبول بوده و هم بهره گیری از پردازنده بیشینه باشد.
- سیستم عامل باید با پیروی از یک سیاست معین منابع را به فرآیند ها نسبت دهد، و در عین حال از بروز بن بست جلوگیری کند.
 - سیستم عامل باید از منابع هر فرآیند در مقابل فرآیندهای دیگر محافظت کند.
 - از ارتباط میان فرآیندها و ایجاد فرآیند توسط کاربر پشتیبانی کند.
 - و هماهنگی و همگامی (synchronization) بین فرآیندها را برقرار کند.

- منابع را برای کاربردهای متعدد فراهم کند.
- پردازنده بین برنامه های کاربردی تعویض و دست به دست شود به گونه ای که به نظر برسد همه آنها در حال اجرا هستند.
 - از دستگاه های ورودی-خروجی استفاده کارآمد شود.

فرآیند چیست؟

- یک برنامه در حال اجرا
- رویدادی از اجرای یک برنامه روی یک کامپیوتر
- موجودیتی که بتواند به پردازنده نسبت داده شود و روی آن اجرا شود.

اجرای فرآیند

- فرآیند از این اجزا تشکیل شده است:
 - کد برنامه
 - مجموعه داده ها
- تعدادی ویژگی که فرآیند را توصیف می کنند.

عناصر فرآيند

- شناسه (Identifier)
 - وضعیت (state)
 - اولویت (Priority)
- (Program counter) شمارنده برنامه
- اشاره گرهای حافظه (Memory pointers)
 - داده های متن یا زمینه (Context)
- (I/O status information) اطلاعات وضعیت ورودی اخروجی -
 - اطلاعات حسابداری (Accounting information)

بلاک کنترل فرآیند (PCB) بلاک کنترل فرآیند (PCB)

و حاوی عناصر فرآیند می باشد.

• توسط سیستم عامل ایجاد و مدیریت می شود.

• اجازه پشتیبانی از چندین فرآیند را می دهد.

Identifier

State

Priority

Program counter

Memory pointers

Context data

I/O status

Accounting information

•

.

روند یک فرآیند (race of the Process

رفتار یک فرآیند با لیستی از دنباله دستورات که باید اجرا شوند،
مشخص می شود.

• به این لیست، رد یا روند آن فرآیند می گویند.

• توزیع کننده (Dispatcher)، یک برنامه کوچک است که کنترل پردازنده را از یک فرآیند به فرآیند دیگر تعویض می کند.

وقت پردازنده را بین فرآیندها توزیع می کند.

روند یک فرآیند (Trace of the Process)

- فرض کنید سه فرآیند فعال در حافظه اصلی قرار دارد.
 - از حافظه مجازی فعلا صرفنظر می کنیم.

روند اجرای سه فرآیند نمونه

• هر فرآیند اجرا می شود تا به خاتمه برسد.

(a) Trace of Process A

(b) Trace of Process B (c) Trace of Process C

5000 = Starting address of program of Process A 8000 = Starting address of program of Process B 12000 = Starting address of program of Process C

Figure 3.3 Traces of Processes of Figure 3.2

1					
1	5000		27	12004	
2	5001		28	12005	
3	5002				Time out
4	5003		29	100	11110 000
5	5004		30	101	
6	5005		31	102	
		Time out	32	103	
7	100		33	104	
8	101		34	105	
9	102		35	5006	
10	103		36	5007	
11	104		37	5008	
12	105		38	5009	
13	8000		39	5010	
14	8001		40	5011	
15	8002				Time out
16	8003		41	100	
		I/O request	42	101	
17	100		43	102	
18	101		44	103	
19	102		45	104	
20	103		46	105	
21	104		47	12006	
22	105		48	12007	
23	12000		49	12008	
24	12001		50	12009	
25	12002		51	12010	
26	12003		52	12011	
			Time out		

روند اجرای سه فرآیند نمونه

• فرض می شود که سیستم عامل در هر دوره تنها زمان اجرای ۶ دستور را به یک فرآیند می دهد.

• ۱۰۰ = آدرس شروع برنامه توزیع کننده

shaded areas indicate execution of dispatcher process; first and third columns count instruction cycles; second and fourth columns show address of instruction being executed

روند اجرای سه فرآیند نمونه

second and fourth columns show address of instruction being executed

سرفصل مطالب

- فرآیند چیست؟
 - حالات فرآيند
 - شرح فرآیند
 - كنترل فرآيند
- اجرای سیستم عامل
- مدیریت فرآیند در UNIX SVR4

مدل دو حالته فرآیند

- فرآیند می تواند در یکی از دو حالت زیر باشد:
 - اجرا
 - عدم اجرا

(a) State transition diagram

صف بندی فرآیندهای در حال انتظار

- صف می تواند لیستی از اشاره گر ها به فرآیند ها باشد.
- یا می تواند یک لیست پیوندی از جدول های اطلاعاتی باشد که هر جدول بیانگر یک فرآیند است.
 - توزیع کننده بر روی این صف عمل می کند.

(b) Queuing diagram

هر فرآیند توسط توریع کننده به پردازنده داده می شود و مجددا به صف انتظار برمی گردد تا اینکه بالاخره اجرای آن به انتها برسد.

• طول عمر یک فرآیند محدود به زمان ایجاد و پایان آن فرآیند می شود.

• ایجاد فرآیند

- برای فرآیند جدیدی که به لیست فرآیندهای سیستم عامل اضافه می شود، سیستم عامل ساختمان داده های لازم را برای آن فرآیند ساخته و فضای لازم از حافظه اصلی را به آن اختصاص می دهد.

• خاتمه فرآيند

- سیستم عامل باید وسیله ای برای نشان دادن پایان یک فرآیند داشته باشد.
- معمولا از یک دستور توقف که توسط فرآیند اجرا می گردد، استفاده می شود.

ايجاد فرآيند

- عواملی که منجر به ایجاد فرآیند می شوند عبارتند از:
- کار دسته ای جدید (در سیستم های قدیمی و در گذشته)
 - ارائه یک سرویس توسط سیستم عامل
- ایجاد توسط فرآیند موجود (به این عمل زایش فرآیند می گویند. یک فرآیند والد، فرآیند فرزند را ایجاد می کند).

خاتمه فرآيند

• عواملی که منجر به خاتمهٔ یک فرآیند می شوند عبارتند از:

خطای محاسباتی

خطای حفاظت

خطای ورودی اخروجی

- پایان طبیعی
- عدم دسترسی به حافظه مورد نیاز
 - تجاوز از حد زمانی تعیین شده
 - دستورالعمل ممتاز
 - نقض محدوده
 - به وجود آمدن شرایط خطا
 - پایان یافتن پدر
 - درخواست پدر
- <u>- دخالت سیستم عامل یا کاربر (مثلا در حالت بن بست)</u>

