Joaquín Pérez Muñoz

Curvas y Superficies

Introducción

Estos son los apuntes de la asignatura **Curvas y superficies**, obligatoria de 6 créditos en el segundo curso del Grado de Matemáticas de la Universidad de Granada. Son de libre distribución, y pueden bajarse de la página web

http://wdb.ugr.es/ jperez/curvas-y-superficies-3o-matematicas-grupo-a/ Están basados en apuntes previos del mismo autor, correspondientes a la asignatura Geometría de Curvas y Superficies, obligatoria de 12 créditos en tercer curso de la antigua Licenciatura de Matemáticas por la UGR. En estas notas encontrarás los enunciados y demostraciones de los resultados contenidos en el programa de la asignatura Curvas y Superficies. Hay ademájs material adicional que no aparece recogido en el programa de la asignatura, y que puede resultar útil para aquellos alumnos que quieran profundizar más en algunos temas.

Algunas veces, las demostraciones están resumidas y dejan que el lector compruebe los detalles como ejercicio. Además de éstos, al final de cada tema hay una relación de ejercicios propuestos.

Como siempre en estos casos, los apuntes no estarán libres de errores, y es labor conjunta del autor y de los lectores mejorarlos, un trabajo que nunca se termina. Si encuentras algún error, por favor envía un e-mail a la dirección de correo electrónico <code>jperez@ugr.es</code> Todo lo que se dice en los apuntes puede encontrarse, a menudo explicado con más profundidad, en numerosos textos básicos. Son recomendables los siguientes:

- A. M. Amores Lázaro, Curso Básico de curvas y superficies, Edit. Sanz y Torres, Madrid, 2001 (ISBN: 84-88667-77-9).
- M. P. do Carmo, Geometría diferencial de curvas y superficies, Alianza Universidad Textos, 135. Alianza Editorial, Madrid, 1992 (ISBN: 84-206-8135-0).
- L. A. Cordero, M. Fernández y A. Gray, GEOMETRÍA DIFERENCIAL DE CURVAS Y SUPERFICIES (CON MATHEMATICA), Addison-Wesley iberoamericana, Wilmington, 1995 (ISBN: 0-201-65364-8).
- A. F. Costa, M. Gamboa y A. M. Porto, Notas de Geometría diferencial de curvas y superficies, Edit. Sanz y Torres, Madrid, 1977 (ISBN: 84-88667-29-9).

II Introducción

■ W. Klingenberg, Curso de Geometría diferencial, Edit. Alhambra, Madrid, 1978 (ISBN: 84-205-0395-9).

- A. MONTESINOS y J. Lafuente, ESTELAS Y SILUETAS, UNED, Madrid, 1998 (ISBN: 84-362-3756-0).
- S. Montiel y A. Ros, Curvas y Superficies, Proyecto Sur de Ediciones, Granada, 1997 (ISBN: 84-8254-095-5).
- J. Oprea, DIFFERENTIAL GEOMETRY AND ITS APLICATIONS, Prentice Hall, Inc. Simon & Schuster / A Viacom Co., Upper Saddle River, New Jersey, 1997 (ISBN: 0-13-340738-1).
- D. J. Struik, GEOMETRÍA DIFERENCIAL CLÁSICA, Aguilar de ediciones, Madrid, 1973 (ISBN: 84-03-20146-X).

Granada, febrero de 2017 Joaquín Pérez Muñoz

Índice general

1.	Cur	Curvas en el plano y en el espacio.				
	1.1.	Curvas parametrizadas y regulares. Longitud de arco	1			
		1.1.1. Longitud de una curva.	5			
	1.2.	Teoría local de curvas planas: curvatura y diedro de Frenet	9			
		1.2.1. Material adicional sobre curvas planas	14			
	1.3.	Curvas en el espacio: curvatura, torsión y triedro de Frenet	15			
		1.3.1. Curvatura, torsión y triedro de Frenet para curvas no p.p.a	20			
		1.3.2. Material adicional sobre curvas en el espacio	22			
	1.4.	Ejercicios	24			
2.	Sup	Superficies en el espacio				
	2.1.	Definición de superficie. El plano tangente	33			
		2.1.1. Funciones y aplicaciones diferenciables	41			
	2.2.	La diferencial de una aplicación diferenciable	45			
	2.3.	Orientabilidad. Aplicación de Gauss	49			
	2.4.	Material adicional	51			
	2.5.	Ejercicios	53			
3.	Curvaturas en una superficie.					
	3.1.	Operador de Weingarten, segunda forma fundamental y curvaturas princi-				
		pales	59			
	3.2.	Curvatura de Gauss y curvatura media	60			
	3.3.	Superficies totalmente umbilicales	62			
	3.4.	Geometría local en un punto elíptico o hiperbólico	63			
	3.5.	Aplicación de Gauss y curvaturas en coordenadas locales	67			
	3.6.	Curvaturas normales y fórmula de Euler	69			
		3.6.1. Líneas de curvatura y direcciones asintóticas	71			
	3.7.	Teoremas de Hilbert, Jellet y Liebmann	72			
	3.8.	Ejercicios	75			

4.	Ison	netrías	s y geodésicas.	85
	4.1.	Distan	cia intrínseca de una superficie.	85
	4.2.	Variac	iones de una curva.	87
		4.2.1.	Las geodésicas como puntos críticos de la longitud	90
	4.3.	Expon	encial y entornos normales	99
		4.3.1.	Propiedades minimizantes de las geodésicas	101
		4.3.2.	El Teorema Egregium de Gauss	105
	4.4.	Mater	ial adicional	108
		4.4.1.	Superficies completas. Teorema de Hopf-Rinow	108
		4.4.2.	Coordenadas polares geodésicas	109
		4.4.3.	El Teorema de Minding	111
		4.4.4.	Geodésicas estables. Teorema de Bonnet sobre el diámetro	113
		4.4.5.	El Teorema de rigidez de Bonnet	119
		4.4.6.	Rigidez de la esfera	124
		4.4.7.	Entornos totalmente normales. Demostración del Teorema de Hopf-	
			Rinow	124
	4.5.	Ejercio	cios	133

Capítulo 1

Curvas en el plano y en el espacio.

1.1. Curvas parametrizadas y regulares. Longitud de arco.

Una idea intuitiva de curva es la trayectoria en el espacio de una partícula en movimiento. En cada instante la partícula estará en un lugar concreto, lugar que depende de un parámetro (que podemos ver como la variable tiempo), y la trayectoria es suave. Con más rigor, una curva diferenciable (parametrizada) es una aplicación diferenciable $\alpha \colon I \subset \mathbb{R} \to \mathbb{R}^3$, donde I es un intervalo abierto de la recta real (I podría ser no acotado). Diremos que la curva α es plana cuando exista un plano afín Π de \mathbb{R}^3 que contenga a la imagen de α (también llamada traza de α), a la que denotaremos por $\mathrm{Im}(\alpha)$. En este último caso, salvo un movimiento rígido podemos suponer que $\Pi = \{z = 0\}$ y entonces α puede verse como aplicación $\alpha \colon I \to \mathbb{R}^2$, omitiendo la tercera componente.

Volvamos al caso general. Escribiendo α en componentes, tenemos

$$\alpha(t) = (x(t), y(t), z(t)), \qquad t \in I,$$

donde x, y, z son funciones reales de variable real, infinitamente derivables en I. La variable t se llama el parámetro de la curva. El vector tangente o velocidad de α en $t \in I$ es

$$\alpha'(t) = (x'(t), y'(t), z'(t)) = \lim_{h \to 0} \frac{1}{h} (\alpha(t+h) - \alpha(t)) \in \mathbb{R}^3.$$

La recta tangente a α en t es la recta afín de \mathbb{R}^3 que pasa por $\alpha(t)$ en la dirección de $\alpha'(t)$, es decir $\{\alpha(t) + \lambda \alpha'(t) \mid \lambda \in \mathbb{R}\}$ (para que esto sea una recta debemos imponer $\alpha'(t) \neq 0$). Esta recta afín es la mejor aproximación lineal de α en el punto $\alpha(t)$.

Ejemplos.

¹Por diferenciable entendemos de clase C^{∞} .

Figura 1.1: Hélice circular.

- 1. Recta afín. Dados $p, v \in \mathbb{R}^3, v \neq 0$, consideremos la curva diferenciable $\alpha \colon \mathbb{R} \to \mathbb{R}^3$ dada por $\alpha(t) = p + tv$, $t \in \mathbb{R}$. La traza de α es la recta afín de \mathbb{R}^3 que pasa por p en la dirección de v, y α recorre esta recta a velocidad constante v. Nótese que si cambiamos v por 2v, entonces $\beta(t) = p + 2tv$ tiene la misma traza que α , pero se recorre al doble de velocidad: $\beta'(t) = 2v = 2\alpha'(t)$, para todo $t \in \mathbb{R}$.
- 2. CIRCUNFERENCIA. Dados $c \in \mathbb{R}^2$ y r > 0, sea $\alpha \colon \mathbb{R} \to \mathbb{R}^2$ la aplicación dada por $\alpha(t) = c + r(\cos t, \sin t)$. α es una curva diferenciable plana, cuya traza es la circunferencia de centro c y radio r.
- 3. HÉLICE CIRCULAR. Sean $a, b \in \mathbb{R} \{0\}$. Consideremos la curva diferenciable $\alpha \colon \mathbb{R} \to \mathbb{R}^3$ dada por $\alpha(t) = (a\cos t, a\sin t, bt)$. Notemos que la proyección de α sobre el plano (x,y) es una circunferencia de radio |a|, mientras que su tercera componente crece linealmente, proporcionalmente a b. Otra propiedad geométrica de α es que las rectas tangentes a α forman un ángulo constante con una dirección fija del espacio, en este caso con la dirección vertical. Véase la Figura 1.1.
- 4. Consideremos la curva $\alpha(t)=(t^2,0,0)$ definida en $I=\mathbb{R}$. Es claro que la traza de α es el semieje $\{(x,0,0)\mid x\geq 0\}$, y que el punto $\alpha(t)$ recorre dicho semieje viniendo desde $(+\infty,0,0)$ (para $t=-\infty$) para acercarse a $(0,0,0)=\alpha(0)$ perdiendo velocidad (porque $\alpha'(t)=(2t,0,0)$). En el instante t=0 la curva cambia de sentido y vuelve a marcharse en dirección a $(+\infty,0,0)$ cuando $t\to +\infty$, adquiriendo cada vez más velocidad.
- 5. Consideremos ahora $\alpha(t) = (t^3, t^2, 0), t \in \mathbb{R}$, que es una curva diferenciable plana contenida en $\Pi = \{z = 0\}$. La traza de α es el conjunto $\{(x, y, 0) \mid y = x^{2/3}\}$, véase

Figura 1.2: Traza de la curva $\alpha(t) = (t^3, t^2, 0), t \in \mathbb{R}$.

la Figura 1.2. Este ejemplo muestra que aunque α sea diferenciable, su traza puede presentar picos. Esto ocurre exactamente para $\alpha(0) = (0,0,0)$, donde $\alpha'(0) = 0$.

- 6. Una curva puede tener autointersecciones, como le pasa a la curva plana $\alpha(t) = (t^3 4t, t^2 4), t \in \mathbb{R}$ de la Figura 1.3.
- 7. Aunque una curva carezca de intersecciones, no tiene porqué ser un homeomorfismo sobre su imagen. Esto es lo que le ocurre al folium de Descartes $\alpha \colon (-1,\infty) \to \mathbb{R}^2$, $\alpha(t) = \left(\frac{3t}{1+t^3}, \frac{3t^2}{1+t^3}\right)$ (Figura 1.4).

En el siguiente enlace web pueden encontrarse multitud de ejemplos de curvas planas, con explicaciones y gráficos:

http://www.xahlee.org/SpecialPlaneCurves dir/specialPlaneCurves.html

Definición 1.1.1 Una curva diferenciable $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ se dice regular si $\alpha'(t) \neq 0$ para todo $t \in I$. Para este tipo de curvas, la recta tangente a α en un punto $\alpha(t)$ es $r = \{\alpha(t) + \lambda \alpha'(t) \mid \lambda \in \mathbb{R}\}.$

Si $\alpha \colon I \subset \mathbb{R} \to \mathbb{R}^3$ es una curva diferenciable y $h \colon J \to I$ un difeomorfismo (en particular, J ha de ser otro intervalo), entonces la aplicación $\beta = \alpha \circ h \colon J \to \mathbb{R}^3$ vuelve a ser una curva diferenciable, a la que llamaremos reparametrización de α (a h se le llama cambio de parámetro). Observemos que las trazas de α y de β coinciden y que

(1.1)
$$\beta'(t) = h'(t)\alpha'(h(t)),$$

para todo $t \in J$. De (1.1) se deduce que α es regular si y sólo si β es regular, y que la recta tangente a α en h(t) coincide con la recta tangente a β en t. La reparametrización

Figura 1.3: Curva con autointersecciones.

Figura 1.4: Folium de Descartes.

Figura 1.5: Poligonal inscrita en $\alpha|_{[a,b]}$.

se llama directa si h'(t) > 0 para todo $t \in J$ (equivalentemente, si existe $t \in J$ tal que h'(t) > 0) e inversa si h'(t) < 0 para todo t (o para algún t). Al ser h un difeomorfismo y J conexo, sólo puede darse una de estas dos posibilidades.

1.1.1. Longitud de una curva.

Sea $\alpha \colon I \subset \mathbb{R} \to \mathbb{R}^3$ una curva diferenciable y $[a,b] \subset I$. Queremos definir la longitud de α en el intervalo [a,b] y para ello vamos a medir la longitud de poligonales que aproximen a $\alpha|_{[a,b]}$ de una forma natural. Consideremos todas las poligonales inscritas en $\alpha|_{[a,b]}$, es decir, obtenidas uniendo puntos $\alpha(t_i)$ en la traza de α mediante segmentos, donde los valores t_i del parámetro se mueven en una partición de [a,b] (ver Figura 1.5). La longitud de cada una de estas poligonales es fácil de calcular: simplemente sumaremos $||p_i - p_{i-1}||$, donde p_{i-1}, p_i son cualesquiera vértices consecutivos de la poligonal. Cuanto mayor sea el número de puntos de la partición, mejor será la aproximación de α por poligonales. Cuando el número de segmentos tienda a infinito, las longitudes de las poligonales convergerán a un número real, que será la longitud de α . Veamos todo esto rigurosamente.

Sea $P = \{t_0 = a < t_1 < \dots < t_n = b\}$ una partición del intervalo [a, b]. Denotemos por

$$L(\alpha, P) = \sum_{i=1}^{n} \|\alpha(t_i) - \alpha(t_{i-1})\|, \quad \|P\| = \max\{t_i - t_{i-1} \mid 1 \le i \le n\}.$$

Sea \mathcal{P} el conjunto de la tales particiones de [a,b]. Notemos que si $P_1,P_2\in\mathcal{P}$ y $P_1\subset P_2$, entonces $L(\alpha,P_1)\leq L(\alpha,P_2)$.

Definición 1.1.2 En la situación anterior, se define la longitud de la curva α desde a hasta b como

$$L(\alpha)_a^b = \sup\{L(\alpha, P) : P \in \mathcal{P}\}.$$

Para que la definición de longitud tenga sentido, debe existir el supremo anterior (es decir, debe ser finito).

Proposición 1.1.1 Si $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ es una curva diferenciable $y[a,b] \subset I$, entonces $L(\alpha)_a^b$ existe y vale

(1.2)
$$L(\alpha)_a^b = \int_a^b \|\alpha'(t)\|, dt.$$

Demostración. Primero notemos que la integral de la derecha de (1.2) tiene sentido ya que $\|\alpha'\|$ es continua en el compacto [a,b]. Ahora veamos que $L(\alpha)_a^b$ es finito. Dada una partición $P \in \mathcal{P}$, la regla de Barrow nos permite escribir

(1.3)
$$L(\alpha, P) = \sum_{i=1}^{n} \left\| \int_{t_{i-1}}^{t_i} \alpha'(t) dt \right\| \le \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} \|\alpha'(t)\| dt = \int_{a}^{b} \|\alpha'(t)\| dt.$$

Como la desigualdad anterior es cierta para cualquier $P \in \mathcal{P}$, deducimos que $L(\alpha)_a^b$ existe y es menor o igual que $\int_a^b \|\alpha'(t)\| dt$.

Ahora veamos que (1.2) se cumple. Usando (1.3), basta probar la siguiente

Afirmación 1.1.1 Dado $\varepsilon > 0$, existe $\delta > 0$ tal que si $P \in \mathcal{P}$ cumple $||P|| < \delta$, entonces

$$\int_{a}^{b} \|\alpha'(t)\| dt - L(\alpha, P) < \varepsilon.$$

Demostración de la afirmación. Consideremos la función $f: I^3 \to \mathbb{R}$ dada por

$$f(t_1, t_2, t_3) = \sqrt{x'(t_1)^2 + y'(t_2)^2 + z'(t_3)^2}.$$

Como f es continua en el compacto $[a,b]^3 \subset I^3$, f es uniformemente continua. Por tanto, dado $\varepsilon > 0$, existe $\delta > 0$ tal que si $(t_1,t_2,t_3), (t'_1,t'_2,t'_3) \in [a,b]^3$, entonces

$$(1.4) |t_j - t_j'| < \delta \ \forall j = 1, 2, 3 \ \Rightarrow \ |f(t_1, f_2, t_3) - f(t_1', t_2', t_3')| < \frac{\varepsilon}{b - a}.$$

Por otro lado, el teorema del valor medio aplicado a x(t), y(t), z(t) nos da

$$\|\alpha(t_{i}) - \alpha(t_{i-1})\|^{2} = (x(t_{i}) - x(t_{i-1}))^{2} + (y(t_{i}) - y(t_{i-1}))^{2} + (z(t_{i}) - z(t_{i-1}))^{2}$$

$$= x'(\beta_{i})^{2}(t_{i} - t_{i-1})^{2} + y'(\gamma_{i})^{2}(t_{i} - t_{i-1})^{2} + z'(\delta_{i})^{2}(t_{i} - t_{i-1})^{2}$$

$$= f(\beta_{i}, \gamma_{i}, \delta_{i})^{2}(t_{i} - t_{i-1})^{2}$$

para ciertos $\beta_i, \gamma_i, \delta_i \in [t_{i-1}, t_i]$. Por tanto,

(1.5)
$$L(\alpha, P) = \sum_{i=1}^{n} f(\beta_i, \gamma_i, \delta_i)(t_i - t_{i-1}).$$

Por otro lado, el teorema del valor medio para integrales podemos escribir (1.6)

$$\int_{a}^{b} \|\alpha'(t)\| dt = \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} \|\alpha'(t)\| dt = \sum_{i=1}^{n} \|\alpha'(\xi_i)\|(t_i - t_{i-1}) = \sum_{i=1}^{n} f(\xi_i, \xi_i, \xi_i)(t_i - t_{i-1})$$

para cierto $\xi_i \in [t_{i-1}, t_i], 1 \leq i \leq n$. Tomemos ahora $P \in \mathcal{P}$ tal que $||P|| < \delta$. En particular, $t_i - t_{i-1} < \delta$ para todo i, de donde $|\beta_i - \xi_i| < \delta$, $|\gamma_i - \xi_i| < \delta$, $|\delta_i - \xi_i| < \delta$ para todo i. Tras sustituir (1.5),(1.6) tenemos:

$$\int_{a}^{b} \|\alpha'(t)\| dt - L(\alpha, P) = \sum_{i=1}^{n} \left(f(\xi_i, \xi_i, \xi_i) - f(\beta_i, \gamma_i, \delta_i) \right) (t_i - t_{i-1}).$$

Aplicando (1.4), lo anterior es menor que

$$\frac{\varepsilon}{b-a} \sum_{i=1}^{n} (t_i - t_{i-1}) = \varepsilon.$$

Veamos algunas propiedades de la longitud de curvas.

Proposición 1.1.2 Sea $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ una curva diferenciable $y [a, b] \subset I$.

- 1. La longitud es invariante por movimientos rígidos: si $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ es un movimiento rígido, entonces $L(\phi \circ \alpha)_a^b = L(\alpha)_a^b$.
- 2. La longitud es invariante por reparametrizaciones: si $h: J \to I$ es un difeomorfismo con h([c,d]) = [a,b], entonces $L(\alpha \circ h)_c^d = L(\alpha)_a^b$.
- 3. $\|\alpha(b) \alpha(a)\| \leq L(\alpha)_a^b$, y la igualdad se da si y sólo si α parametriza un segmento que une sus extremos de forma monótona (la curva más corta uniendo dos puntos de \mathbb{R}^3 es la línea recta).

Demostración. 1 es consecuencia de que si $\phi(x) = Ax + b$ con $A \in O(3)$ y $b \in \mathbb{R}^3$, entonces $(\phi \circ \alpha)'(t) = A\alpha'(t)$ luego $L(\phi \circ \alpha)_a^b = \int_a^b \|A\alpha'(t)\| \, dt = \int_a^b \|\alpha'(t)\| \, dt = L(\alpha)_a^b$. El apartado 2 es consecuencia directa de la fórmula de cambio de variable en integración. Para el apartado 3, primero notemos que

$$\|\alpha(b) - \alpha(a)\| = \left\| \int_a^b \alpha'(t) dt \right\| \le \int_a^b \|\alpha'(t)\| dt = L(\alpha)_a^b.$$

Pero lo anterior no nos dice cuándo se da la igualdad. Razonamos de otra forma, volviendo a probar la desigualdad pero ahora podremos caracterizar la igualdad analizando cada paso. Por el apartado 1, tras componer con un movimiento rígido del plano podemos supener

que $\alpha(a) = 0$. Si $\alpha(b) = 0$, entonces $\|\alpha(b) - \alpha(a)\| = 0$, que es trivialmente menor o igual que $L(\alpha)_a^b$. Y si fuera $L(\alpha)_a^b = 0$, entonces α sería una curva constante de a a b, con lo que el apartado 3 se cumpliría en este caso. De esta forma, podemos suponer que $\alpha(b) \neq 0$.

Como $\alpha(b) \neq 0$, existe $\bar{t} \in (a, b]$ tal que $\alpha(\bar{t}) = 0$ y $\alpha(t) \neq 0$ para todo $t \in (\bar{t}, b]$. En $(\bar{t}, b]$, podemos descomponer

$$\alpha' = \langle \alpha', \frac{\alpha}{\|\alpha\|} \rangle \frac{\alpha}{\|\alpha\|} + \alpha^{\perp},$$

donde α^{\perp} es ortogonal a α . Por tanto en $(\bar{t}, b]$ se tiene

$$\|\alpha'\|^2 = \langle \alpha', \frac{\alpha}{\|\alpha\|} \rangle^2 + \|\alpha^{\perp}\|^2 \stackrel{(A)}{\geq} \langle \alpha', \frac{\alpha}{\|\alpha\|} \rangle^2.$$

Y de aquí,

$$L(\alpha)_a^b \stackrel{(B)}{\geq} L(\alpha)_{\overline{t}}^b = \int_{\overline{t}}^b \|\alpha\| dt \ge \int_{\overline{t}}^b \left| \langle \alpha', \frac{\alpha}{\|\alpha\|} \rangle \right| dt \stackrel{(C)}{\geq} \int_{\overline{t}}^b \langle \alpha', \frac{\alpha}{\|\alpha\|} \rangle dt$$

$$= \int_{\overline{t}}^{b} (\|\alpha\|)' dt \stackrel{(*)}{=} \|\alpha(b)\| - \|\alpha(\overline{t})\| = \|\alpha(b)\| = \|\alpha(b) - \alpha(a)\|,$$

donde (A),(B),(C) se usarán al discutir la igualdad, y (*) se obtiene aplicando la regla de Barrow. Con eso hemos vuelto a probar la desigualdad. Y si se da la igualdad, entonces se dará la igualdad en (A),(B),(C) anteriores. De (A) se deduce que $\alpha^{\perp}=0$ o equivalentemente, $\alpha'=\langle\alpha',\frac{\alpha}{\|\alpha\|}\rangle\frac{\alpha}{\|\alpha\|}$ en $(\bar{t},b]$. Esto implica $\left(\frac{\alpha}{\|\alpha\|}\right)'=0$ en $(\bar{t},b]$, luego existe $c\in\mathbb{R}^2$ unitario tal que $\frac{\alpha}{\|\alpha\|}=c$ en $(\bar{t},b]$. De la igualdad en (B) se tiene $\alpha\equiv 0$ en $[0,\bar{t}]$. Por último, la igualdad en (C) implica $0\leq\langle\alpha',\frac{\alpha}{\|\alpha\|}\rangle=\langle\alpha',c\rangle$ en $(\bar{t},b]$, luego $\alpha|_{(\bar{t},b]}$ recorre de forma monótona el segmento de extremos $\alpha(0)=0$ y $\alpha(b)$.

Si α es una curva que cumple $\|\alpha'(t)\| = 1$ para todo t, entonces la longitud de α entre a y b cumple $L_a^b(\alpha) = b - a$. Es razonable decir en este caso que α está parametrizada por el arco (p.p.a.). Es natural plantear las siguientes dos cuestiones:

¿Puede toda curva ser reparametrizada por el arco? ¿Cuantas reparametrizaciones por el arco admite una curva?

Es claro que si una curva presenta valores del parámetro en los que el vector tangente se anula, entonces no podrá ser reparametrizada por el arco. Así que necesitaremos imponer a nuestra curva que su vector tangente no se anule en ningún punto, es decir, que la curva sea regular.

Proposición 1.1.3 Sea $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ una curva regular. Entonces, existe una reparametrización por el arco directa de α . En concreto, si $h: J \to I$ es el difeomorfismo dado por

$$h^{-1}(t) = \int_{a}^{t} \|\alpha'(r)\| dr, \quad t \in I$$

donde $a \in I$, entonces $\beta = \alpha \circ h$ está p.p.a.

Demostración. Notemos que al ser $r \in I \to \|\alpha'(r)\|$ continua, entonces su primitiva $\phi(t) = \int_a^t \|\alpha'(r)\| dr$ existe y es de clase C^1 . Como α es regular, $r \in I \to \|\alpha'(r)\|$ es diferenciable luego también lo es ϕ en I. Como $\phi' > 0$ en I, ϕ es estrictamente creciente luego es un difeomorfismo. Ahora $h = \phi^{-1}$ tiene sentido. Notemos también que $\phi(t) = L(\alpha)_a^t$, aunque estamos abusando de la notación porque t podría ser menor que a. Que β está p.p.a. se deduce de la ecuación (1.1).

En cuanto al número de parametrizaciones por el arco de una curva regular dada, si $\beta_1(s)$, $\beta_2(\tau)$ son reparametrizaciones por el arco de $\alpha = \alpha(t)$, entonces β_1 es una reparametrización de β_2 , es decir existe un difeomorfismo h tal que $\beta_1(s) = \beta_2(h(s))$. Derivando y tomando normas tendremos $|h'(\tau)| \equiv 1$ luego $h(\tau)$ es, salvo un signo, una traslación. Esto nos dice que salvo traslaciones o cambios de sentido, el parámetro arco de una curva regular es único.

Las parametrizaciones por el arco de la recta afín, la circunferencia y la hélice circular (con la misma notación usada anteriormente) vienen dadas por:

- 1. $\alpha(t) = p + t \frac{v}{\|v\|}, t \in \mathbb{R}.$
- 2. $\alpha(t) = c + r(\cos(t/r), \sin(t/r)), t \in \mathbb{R}$.

3.
$$\alpha(t) = \left(a\cos\frac{t}{\sqrt{a^2 + b^2}}, a\sin\frac{t}{\sqrt{a^2 + b^2}}, \frac{bt}{\sqrt{a^2 + b^2}}\right), t \in \mathbb{R}.$$

1.2. Teoría local de curvas planas: curvatura y diedro de Frenet.

Sea $\alpha\colon I\subset\mathbb{R}\to\mathbb{R}^2$ una curva plana. Queremos medir lo que la traza de α se curva en el plano, asignando a cada uno de sus puntos un número (por tanto, queremos definir una función $\kappa=\kappa(t)$ del parámetro de α que mida la curvatura en $\alpha(t)$). Es lógico pedir que κ sea constante cero en el caso de una recta, y constante no cero en el caso de una circunferencia. Una buena aproximación para definir κ es comparar la variación de longitud de α alrededor de $\alpha(t)$ con la de su imagen esférica, es decir la longitud de la imagen en la circunferencia unidad de $\alpha'/\|\alpha'\|$ (necesitamos para ello que α sea regular).

Denotaremos por $J: \mathbb{R}^2 \to \mathbb{R}^2$ al endomorfismo dado por J(x,y) = (-y,x) (giro de 90° en el sentido contrario a las agujas del reloj).

Proposición 1.2.1 Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^2$ una curva plana y regular. Entonces, para cada $t_0\in I$ se tiene

(1.7)
$$\lim_{\delta \to 0} \frac{L\left(\frac{\alpha'}{\|\alpha'\|}\right)_{t_0 - \delta}^{t_0 + \delta}}{L\left(\alpha\right)_{t_0 - \delta}^{t_0 + \delta}} = \frac{|\langle \alpha''(t_0), J\alpha'(t_0)\rangle|}{\|\alpha'(t_0)\|^3}.$$

Demostración. Veamos primero que podemos reducirnos al caso en que α sea parametrizada por el arco. Supongamos que β es una reparametrización por el arco directa de α . Así, existe un difeomorfismo h tal que $\alpha = \beta \circ h$ y h' > 0. Entonces $\alpha' = h'\dot{\beta}(h)$ de donde $\frac{\alpha'}{\|\alpha'\|} = \dot{\beta}(h) = \frac{\dot{\beta}(h)}{\|\dot{\beta}(h)\|}$, es decir, $\frac{\alpha'}{\|\alpha'\|}$ y $\frac{\dot{\beta}(h)}{\|\dot{\beta}(h)\|}$ coinciden salvo una reparametrización. Como la longitud es invariante por reparametrizaciones, deducimos que el miembro de la izquierda de (1.7) no cambia si sustituímos α por β . En cuanto al miembro de la derecha, notemos que $\alpha'' = (h')^2 \ddot{\beta}(h) + h'' \dot{\beta}(h)$. Por tanto, $\langle \alpha'', J\alpha' \rangle = \langle (h')^2 \ddot{\beta}(h) + h'' \dot{\beta}(h), h' J\dot{\beta}(h) \rangle = (h')^3 \langle \ddot{\beta}, J\beta \rangle(h)$ luego el miembro de la derecha de (1.7) tampoco cambia al sustituir α por β . Por tanto, en lo que sigue supondremos que α está p.p.a. En tal caso,

$$\lim_{\delta \to 0} \frac{L\left(\frac{\alpha'}{\|\alpha'\|}\right)_{t_0 - \delta}^{t_0 + \delta}}{L\left(\alpha\right)_{t_0 - \delta}^{t_0 + \delta}} = \lim_{\delta \to 0} \frac{L\left(\alpha'\right)_{t_0 - \delta}^{t_0 + \delta}}{2\delta} = \lim_{\delta \to 0} \frac{1}{2\delta} \int_{t_0 - \delta}^{t_0 + \delta} \|\alpha''(t)\| dt = \|\alpha''(t_0)\|.$$

Por otro lado, derivando en $\|\alpha'\|^2 = 1$ obtenemos $\langle \alpha', \alpha'' \rangle = 0$ luego $\alpha'' = \lambda J \alpha'$ donde $\lambda = \langle \alpha'', J \alpha' \rangle$ es derivable en I. Por tanto,

$$\frac{|\langle \alpha''(t_0), J\alpha'(t_0)\rangle|}{\|\alpha'(t_0)\|^3} = |\lambda(t_0)| = \|\alpha''(t_0)\|.$$

Por tanto, es razonable definir la curvatura de una curva regular α en $t_0 \in I$ (con la notación de arriba) como $\frac{|\langle \alpha''(t_0), J\alpha'(t_0)\rangle|}{\|\alpha'(t_0)\|^3}$. Como este número es el valor absoluto de otro, parece razonable dotar a la curvatura de un signo:

Definición 1.2.1 Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^2$ una curva plana y regular. La *curvatura* de α en $t\in I$ se define como

$$\kappa(t) = \frac{\langle \alpha''(t), J\alpha'(t) \rangle}{\|\alpha'(t)\|^3}.$$

De la demostración de la Proposición 1.2.1 se deduce que si $\alpha = \beta \circ h$ con β p.p.a., entonces las curvaturas κ_{α} de α y κ_{β} de β están relacionadas mediante

(1.8)
$$\kappa_{\alpha} = \pm \kappa_{\beta} \circ h,$$

1.2. TEORÍA LOCAL DE CURVAS PLANAS: CURVATURA Y DIEDRO DE FRENET.11

según que el cambio de parámetro h sea directo o inverso. Es fácil probar que una recta (con cualquier parametrización) tiene curvatura nula, y que una circunferencia de radio r tiene curvatura constante 1/r ó -1/r dependiendo de que la parametrización la recorra en sentido contrario o favorable a las agujas del reloj.

Estudiemos ahora algunas propiedades de la curvatura.

Proposición 1.2.2 Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^2$ una curva plana y regular.

- 1. Si $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ es un movimiento rígido y $\beta = \phi \circ \alpha$ entonces $\kappa_{\beta} = \pm \kappa_{\alpha}$, dependiendo de que ϕ sea directo o inverso.
- 2. Si la curvatura κ de α es constante, entonces la traza de α es un segmento de recta o un arco de circunferencia, dependiendo de κ sea cero o distinta de cero.

Demostración. Supongamos que $\phi(p) = Ap + b$ es un movimiento rígido, es decir $A \in O(2)$ y $b \in \mathbb{R}^2$. Entonces $\beta' = A\alpha'$ y $\beta'' = A\alpha''$ luego

$$\kappa_{\beta} = \frac{\langle A\alpha'', JA\alpha' \rangle}{\|A\alpha'\|^3} \stackrel{(\star)}{=} \pm \frac{\langle A\alpha'', AJ\alpha' \rangle}{\|A\alpha'\|^3} = \pm \frac{\langle \alpha'', J\alpha' \rangle}{\|\alpha'\|^3} = \pm \kappa_{\alpha},$$

donde en (\star) hemos usado que $J \circ A = (\det A).(A \circ J)$ (ejercicio 10).

En cuanto al apartado 2, supongamos que κ es constante. Por (1.8), podemos también suponer que α está p.p.a. Así, $\|\alpha'\| \equiv 1$ luego $\langle \alpha'', \alpha' \rangle = 0$ y $\alpha'' = \kappa J \alpha'$. Si $\kappa = 0$, entonces $\alpha'' = 0$ luego α es una recta afín. Si $\kappa \neq 0$, entonces definimos la función derivable

$$c(t) = \alpha(t) + \frac{1}{\kappa} J \alpha'(t), \quad t \in I.$$

Entonces, $c' = \alpha' + \frac{1}{\kappa}(J\alpha')' = \alpha' + \frac{1}{\kappa}J\alpha'' = \alpha' + \frac{1}{\kappa}J(\kappa J\alpha') = 0$, luego $c(t) = c_0$ es constante en I. Ahora consideremos la función derivable

$$f(t) = \|\alpha(t) - c_0\|^2, \quad t \in I.$$

Entonces, $f'=2\langle \alpha',\alpha-c\rangle=-2\langle \alpha',\frac{1}{\kappa}J\alpha'\rangle=0$, luego f es constante. Si f es idénticamente cero entonces α será constante c_0 , contradicción. Por tanto, $f\equiv r^2$ para cierto $r\in\mathbb{R}^+$ luego la traza de α está contenida en una circunferencia centrada en c_0 de radio r.

En la interpretación del signo de la curvatura juega un papel importante la función distancia (con signo) a la recta tangente. Si R es la recta afín en \mathbb{R}^2 que pasa por un punto p con dirección v (||v|| = 1), dicha función viene dada por

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(q) = \langle q - p, Jv \rangle.$$

Así, $f^{-1}(0) = R$, f > 0 en el semiplano abierto con borde R hacia el que apunta Jv y f < 0 en el otro semiplano abierto.

Sea $\alpha: I \subset \mathbb{R} \to \mathbb{R}^2$ una curva plana y p.p.a. Consideramos la restricción a los puntos de la curva de la función distancia a la recta tangente en $t_0 \in I$:

$$h: I \to \mathbb{R}, \quad h(t) = \langle \alpha(t) - \alpha(t_0), J\alpha'(t_0) \rangle.$$

Es claro que $h(t_0) = h'(t_0) = 0$ y que $h''(t_0) = \kappa(t_0)$, siendo κ la curvatura de α . Por tanto:

- 1. Si $\kappa(t_0) > 0$, entonces existe $\delta > 0$ tal que $\alpha(t_0 \delta, t_0 + \delta)$ está contenida en el semiplano cerrado determinado por la recta tangente a α en t_0 hacia el que apunta $J\alpha'(t_0)$.
- 2. Si $\kappa(t_0) < 0$, entonces existe $\delta > 0$ tal que $\alpha(t_0 \delta, t_0 + \delta)$ está contenida en el semiplano cerrado determinado por la recta tangente a α en t_0 hacia el que apunta $-J\alpha'(t_0)$.

Claramente, las conclusiones anteriores son válidas para una curva regular, sin que tenga que estar p.p.a.

Volvamos al caso $\|\alpha'\|=1$ y estudiemos con mayor detalle el caso $\kappa(t_0)>0$ (el caso $\kappa(t_0)<0$ es análogo). Definimos para cada $\lambda\in\mathbb{R}$ la función $g_\lambda\colon\mathbb{R}\to\mathbb{R}$ dada por

$$g_{\lambda}(t) = \|\alpha(t) - c(\lambda)\|^2,$$

donde $c(\lambda) = \alpha(t_0) + \lambda J \alpha'(t_0)$. Es claro que g_{λ} es derivable, $g_{\lambda}(t_0) = \lambda^2$, $g'_{\lambda}(t_0) = 0$, $g''_{\lambda}(t_0) = 2(1 - \lambda \kappa(t_0))$. Por tanto:

- 1. Si $\lambda < 1/\kappa(t_0)$, entonces existe $\delta > 0$ tal que $\alpha(t_0 \delta, t_0 + \delta)$ está fuera del disco abierto de centro $c(\lambda)$ y radio $|\lambda|$.
- 2. Si $\lambda > 1/\kappa(t_0)$, entonces existe $\delta > 0$ tal que $\alpha(t_0 \delta, t_0 + \delta)$ está contenida en el disco cerrado de centro $c(\lambda)$ y radio λ .

El valor $\lambda = 1/\kappa(t_0)$ es especial en el sentido de la discusión anterior, en el sentido que determina la mejor aproximación de α por una circunferencia que pasa por $\alpha(t_0)$ tangente a la recta tangente a α en ese punto: se llama a $\lambda = 1/\kappa(t_0)$ el radio de curvatura de α en t_0 . Al punto $\alpha(t_0) + (1/\kappa(t_0))J\alpha'(t_0)$ se le conoce como el centro de curvatura de α en t_0 y a la correspondiente circunferencia la llamaremos circunferencia osculatriz de α en $\alpha(t_0)$.

Vamos a introducir una nomenclatura que también será útil para curvas espaciales. Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^2$ una curva plana y p.p.a. Representaremos por

$$T(t) = \alpha'(t), \quad N(t) = J\alpha'(t)$$

1.2. TEORÍA LOCAL DE CURVAS PLANAS: CURVATURA Y DIEDRO DE FRENET.13

Figura 1.6: Diedro de Frenet.

al vector tangente a α y una elección (de las dos posibles) de normal unitario, ver Figura 1.6.

Es fácil comprobar que $\{T(t), N(t)\}$ es una base ortonormal positivamente orientada de \mathbb{R}^2 para cada $t \in I$ (llamaremos a esta base el diedro de Frenet), y que cumple las ecuaciones de Frenet:

$$T' = \kappa N, \quad N' = -\kappa T,$$

donde κ es la curvatura de α . Una forma de medir cómo α se curva es observar cómo el diedro de Frenet cambia conforme variamos el parámetro. Esto puede comprobarse escribiendo $T=e^{i\theta}$ donde $\theta=\theta(t)$ es cierta función derivable; derivando, $\alpha''=T'=i\theta'e^{i\theta}=\theta'N$ luego $\kappa=\langle\alpha'',J\alpha'\rangle=\langle\theta'N,N\rangle=\theta'$, es decir, θ es una primitiva de κ y ésta nos informa de la velocidad a la que el diedro de Frenet cambia. También notemos que

$$\kappa = \langle \alpha'', J\alpha' \rangle = \det(\alpha', \alpha''),$$

luego el signo de κ tiene el siguiente significado:

- 1. Si $\kappa(t_0) = 0$, entonces $\alpha'(t_0)$ (velocidad) y $\alpha''(t_0)$ (aceleración) llevan la misma dirección.
- 2. Si $\kappa(t_0) > 0$ (resp. < 0), entonces la velocidad de α y su aceleración forman una base positiva (resp. negativa) en t_0 .

Teorema 1.2.1 (Teorema fundamental de las curvas planas) $Sea \ \kappa \colon I \subset \mathbb{R} \to \mathbb{R}$ una función derivable definida en un intervalo abierto I. Entonces, existe una curva plana $y \ p.p.a. \ \alpha \colon I \to \mathbb{R}^2$ cuya función curvatura es κ . Ademas α es única salvo movimientos rígidos directos.

Demostración. Empecemos con la unicidad. Supongamos que $\alpha, \beta \colon I \to \mathbb{R}^2$ son curvas planas p.p.a., con $\kappa_{\alpha} = \kappa_{\beta} = \kappa$. Sean $\{T_{\alpha}, N_{\alpha}\}, \{T_{\beta}, N_{\beta}\}$ los diedros de Frenet respectivos.

Consideremos la función derivable $\chi: I \to \mathbb{R}$ dada por

$$\chi(t) = ||T_{\alpha}(t) - T_{\beta}(t)||^{2} + ||N_{\alpha}(t) - N_{\beta}(t)||^{2}.$$

Usando las ecuaciones de Frenet para α y β se tiene $\chi'=0$ en I, luego χ es constante. Salvo un movimiento rígido directo, podemos suponer que $\alpha(t_0)=\beta(t_0)$, $T_{\alpha}(t_0)=T_{\beta}(t_0)$ y $N_{\alpha}(t_0)=N_{\beta}(t_0)$. Así, $\chi(t_0)=0$ luego χ se anula idénticamente. En particular, $\alpha'=\beta'$ en I. Como $\alpha(t_0)=\beta(t_0)$, tenemos $\alpha=\beta$ en I.

Veamos ahora la existencia. Por la discusión previa a este teorema tiene sentido empezar definiendo, dada $\kappa\colon I\to\mathbb{R}$ una función derivable, la función (derivable) $\theta\colon I\to\mathbb{R}$ dada por

$$\theta(t) = \int_{t_0}^t \kappa(s) \, ds,$$

donde $t_0 \in I$ es cualquier punto. Elijamos una base ortonormal positiva $\{T_0, N_0\}$ y un punto $p_0 \in \mathbb{R}^2$. Definimos

$$\alpha(t) = p_0 + \int_{t_0}^t \cos \theta(s) \, ds \cdot T_0 + \int_{t_0}^t \sin \theta(s) \, ds \cdot N_0,$$

que es una curva plana y diferenciable. Claramente, $\alpha'(t) = \cos \theta(t) \cdot T_0 + \sin \theta(t) \cdot N_0$. De aquí deducimos que α está p.p.a., que $N(t) := -\sin \theta(t) \cdot T_0 + \cos \theta(t) \cdot N_0$ es un campo normal unitario a α , y que $\{\alpha'(t), N(t)\}$ es una base ortonormal positiva de \mathbb{R}^2 (luego éste es el diedro de Frenet de α). Por lo tanto, la curvatura de α viene dada por $\langle \alpha'', N \rangle = \theta' = \kappa$. Nótese que $\alpha(t_0) = p_0$, $\alpha'(t_0) = T_0$ y $N(t_0) = N_0$, luego en realidad hemos probado un enunciado (sólo aparentemente) más fuerte: $Dada \kappa$ como función curvatura prescrita, podemos encontrar una curva plana p.p.a. que la tiene por función curvatura, prescribiendo además un punto de \mathbb{R}^2 por el que pase en un instante dado con una dirección tangente unitaria.

Nota 1.2.1 El apartado 2 de la Proposición 1.2.2 es ahora consecuencia inmediata del Teorema 1.2.1.

1.2.1. Material adicional sobre curvas planas.

Supongamos que $\alpha\colon I\subset\mathbb{R}\to\mathbb{R}^2$ es una curva plana y p.p.a. Si $\kappa(t)>0$ para todo $t\in I$, a la curva formada por todos los centros de curvatura, $e(t)=\alpha(t)+(1/\kappa(t))J\alpha'(t)$, se le llama la evoluta de α . Notemos que $e'=\alpha'+\left(\frac{1}{\kappa}\right)'J\alpha'+\frac{1}{\kappa}J\alpha''=\left(\frac{1}{\kappa}\right)'J\alpha'$, luego $\|e'\|=|(1/\kappa)'|=|\kappa'|/\kappa^2$. Esto nos dice que

1. Si κ es no decreciente en $[a,b] \subset I$, entonces

$$L(e)_a^t = \int_a^t \frac{\kappa'}{\kappa^2} dt = -\int_a^t \left(\frac{1}{\kappa}\right)' dt = \frac{1}{\kappa(a)} - \frac{1}{\kappa(t)}, \quad \forall t \in [a, b].$$

1.3. CURVAS EN EL ESPACIO: CURVATURA, TORSIÓN Y TRIEDRO DE FRENET.15

2. Si
$$\kappa$$
 es no creciente en $[a,b] \subset I$, entonces $L(e)_a^t = \frac{1}{\kappa(t)} - \frac{1}{\kappa(a)}$.

Proposición 1.2.3 Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^2$ una curva plana y p.p.a., con curvatura κ positiva y no decreciente. Dado $a\in I$, se tiene

$$\|\alpha(t) - e(a)\| \le \frac{1}{\kappa(a)} \text{ para cada } t \in I \cap [a, \infty),$$

donde e es la evoluta de α . Por tanto, $\alpha(I \cap [a, \infty))$ está contenida en el disco osculatriz de α en a.

Demostración. Dado $t \in I \cap [a, \infty)$,

$$\|\alpha(t) - e(a)\| = \left\| \left(e(t) - \frac{1}{\kappa(t)} J \alpha'(t) \right) - e(a) \right\| \le \|e(t) - e(a)\| + \frac{1}{|\kappa(t)|} \|J \alpha'(t)\|$$

$$= \|e(t) - e(a)\| + \frac{1}{\kappa(t)} \le L(e)_a^t + \frac{1}{\kappa(t)} = \frac{1}{\kappa(a)}.$$

1.3. Curvas en el espacio: curvatura, torsión y triedro de Frenet.

Sea $\alpha \colon I \subset \mathbb{R} \to \mathbb{R}^3$ una curva p.p.a. Denotaremos por $T(t) = \alpha'(t)$ al vector tangente (unitario) a α . En el plano teníamos sólo dos opciones para elegir el vector normal a α en cada $t \in I$, lo que producía una noción de curvatura con signo. En este caso de curvas en \mathbb{R}^3 tenemos toda una circunferencia unidad de posibles elecciones para el vector normal N(t), por lo que no es lógico definir la curvatura usando N(t). Se define la curvatura de α en t como

$$\kappa(t) = ||T'(t)||, \quad t \in I.$$

Luego a diferencia con la situación para curvas planas, la curvatura de curvas espaciales siempre es no negativa.

Por ejemplo, si $\alpha(t) = p + tv$ es una recta afín $(p, v \in \mathbb{R}^3, ||v|| = 1)$ entonces T(t) = v y $\kappa(t) = 0$ para todo $t \in \mathbb{R}$. Recíprocamente, si $\alpha \colon I \subset \mathbb{R} \to \mathbb{R}^3$ es una curva p.p.a. con curvatura idénticamente nula, entonces el vector tangente $T = \alpha'$ es constante, luego la traza de α es un segmento de recta afín.

Supongamos ahora que $\kappa(t)>0$ para cada $t\in I;$ en tal caso la función κ es derivable y tiene sentido definir

$$N(t) = \frac{T'(t)}{\|T'(t)\|} = \frac{T'(t)}{\kappa(t)}, \quad t \in I,$$

que es un vector unitario y ortogonal a T, llamado el vector normal a α en t. De esta forma, la ecuación

(1.9)
$$T'(t) = \kappa(t)N(t)$$

se cumple trivialmente (comparar con la situación para curvas planas). Al plano generado por $\{T(t), N(t)\}$ se le llama plano osculador.

Nota 1.3.1 ¿Qué relación hay entre la curvatura de curvas planas y espaciales? ¿Y entre sus campos normales (supuesto que $\kappa > 0$)? Si $\alpha \colon I \to \mathbb{R}^3$ es una curva p.p.a. y plana, es decir, con traza contenida en un plano Π de \mathbb{R}^3 , entonces tiene sentido la curvatura $\widetilde{\kappa}$ y el campo normal \widetilde{N} de α como curva plana, independientemente de si κ tiene ceros o no. Usando las ecuaciones de Frenet para curvas planas, se tiene

(1.10)
$$\kappa(t) = ||T'(t)|| = ||\widetilde{\kappa}(t)\widetilde{N}(t)|| = |\widetilde{\kappa}(t)|,$$

Para preguntarse por la relación de \widetilde{N} y N, el último tiene que existir, luego necesitamos suponer κ sea estrictamente positiva. Tomemos un vector $a \in \Pi^{\perp} - \{0\}$. Derivando en $\langle T, a \rangle = 0$ tenemos $\langle T', a \rangle = 0$, luego (1.9) implica que $\kappa \langle N, a \rangle = 0$. Como κ no tiene ceros, deducimos que N toma valores en la variedad de dirección de Π . Como N, \widetilde{N} son campos unitarios y ortogonales a T contenidos en el mismo plano, deducimos que $N = \pm \widetilde{N}$.

Volvamos al caso general: $\alpha \colon I \to \mathbb{R}^3$ no es necesariamente plana, pero sí p.p.a. y con $\kappa(t) > 0$ para todo $t \in I$. En este caso, definiendo $B(t) = T(t) \times N(t)$ tenemos que

$$\{T(t), N(t), B(t)\}$$

es una base ortonormal positivamente orientada de \mathbb{R}^3 . A B(t) se le llama el vector binormal a α en t y a la anterior base, el triedro de Frenet de α en t, ver Figura 1.7.

Queremos medir ahora lo que la curva α "dista" de ser plana, asignando una función real $\tau = \tau(t)$ que se anule idénticamente en el caso de que α sea plana. Dar B(t) equivale a dar el plano osculador a α en t, luego B'(t) nos informa de cómo este plano osculador cambia. Pero $B' = (T \times N)' = T' \times N + T \times N' = \kappa N \times N + T \times N' = T \times N'$, luego B' es ortogonal a T. También B' es ortogonal a B, por ser B unitario. Esto nos dice que

$$B'(t) = \tau(t)N(t), \quad t \in I,$$

para cierta función diferenciable $\tau = \langle B', N \rangle$ en I. A τ se le llama la torsión de α . Claramente, una curva con curvatura estrictamente positiva tiene torsión idénticamente nula si y sólo si su plano osculador es constante $B_0 \in \mathbb{R}^3$ ($||B_0|| = 1$), y es fácil probar que esto ocurre si y sólo si la curva está contenida en un plano ortogonal a B_0 , es decir, si y sólo si la curva es plana.

1.3. CURVAS EN EL ESPACIO: CURVATURA, TORSIÓN Y TRIEDRO DE FRENET.17

Figura 1.7: Triedro de Frenet.

Ahora calculamos $N'(t), t \in I$. Como el triedro de Frenet es una base ortonormal, tenemos

$$N' = \langle N', T \rangle T + \langle N', N \rangle N + \langle N', B \rangle B = -\langle N, T' \rangle T - \langle N, B' \rangle B = -\kappa T - \tau B.$$

En resumen:

Proposición 1.3.1 (Ecuaciones de Frenet) Sea $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ una curva p.p.a. con curvatura $\kappa(t) > 0$ para todo $t \in I$ y torsión $\tau: I \to \mathbb{R}$. Entonces:

$$\begin{cases} T' = \kappa N \\ N' = -\kappa T - \tau B \\ B' = \tau N. \end{cases}$$

La curvatura de una hélice circular $\alpha(t)=\left(a\cos\frac{t}{\sqrt{a^2+b^2}},a\sin\frac{t}{\sqrt{a^2+b^2}},\frac{bt}{\sqrt{a^2+b^2}}\right)$, $t\in\mathbb{R}$, es $\kappa(t)=\frac{a}{a^2+b^2}$ (a>0) y su torsión es $\tau(t)=-\frac{b}{a^2+b^2}$ (Ejercicio 28). Recíprocamente, si una curva tiene curvatura y torsión constantes, entonces ha de ser una hélice circular (esto se deducirá del teorema fundamental de curvas espaciales de la próxima sección).

Notemos que hemos definido curvatura y torsión para curvas p.p.a. (con curvatura estrictamente positiva). Podemos relajar la condición $\|\alpha'\|=1$ pidiendo que $\alpha\colon I\to\mathbb{R}^3$ sea una curva regular. Entonces, la curvatura y la torsión de α en $t\in I$ se definen como la curvatura y la torsión de una reparametrización por el arco $directa^2$ $\beta(s)=\alpha(h(s))$ en el punto $s=h^{-1}(t)$, . Al final de este capítulo veremos expresiones para la curvatura y la torsión de curvas regulares, sin pasar por una reparametrización por el arco.

Teorema 1.3.1 (Teorema fundamental de las curvas alabeadas)

Sean $\kappa, \tau \colon I \subset \mathbb{R} \to \mathbb{R}$ dos funciones derivables definidas en un intervalo abierto I, tales

²Es decir, con h' > 0.

que $\kappa(t) > 0$ para todo $t \in I$. Entonces, existe una curva p.p.a. $\alpha \colon I \to \mathbb{R}^3$ cuyas funciones curvatura y torsión son respectivamente κ y τ . Además α es única salvo movimientos rígidos directos.

Demostración. Si ya tuviésemos nuestra solución α , entonces su triedro de Frenet $\{T, N, B\}$ cumpliría las ecuaciones de Frenet. Escribiendo $T = (T_1, T_2, T_3), N = (N_1, N_2, N_3)$ y $B = (B_1, B_2, B_3)$, se tendría

(1.11)
$$\begin{cases} T_i' = \kappa N_i \\ N_i' = -\kappa T_i - \tau B_i \\ B_i' = \tau N_i. \end{cases}$$

para i = 1, 2, 3. Esto puede verse como un sistema de 9 ecuaciones diferenciales ordinarias (EDO) con 9 incógnitas. Como dicho sistema es lineal (con coeficientes no necesariamente constantes), la teoría general de EDO nos asegura la existencia de una única solución para cada elección de condiciones iniciales.

Ahora empezamos la demostración de existencia. Elijamos una base ortonormal positiva $\{T_0, N_0, B_0\}$ de \mathbb{R}^3 y un instante $t_0 \in I$. Entonces, existen únicas funciones vectoriales diferenciables $T, B, N: I \to \mathbb{R}^3$ que cumplen el sistema (1.11) (no debemos llamarlo aún las ecuaciones de Frenet porque no tenemos curva) con condiciones iniciales

(1.12)
$$T(t_0) = T_0, \quad N(t_0) = N_0, \quad B(t_0) = B_0.$$

Veamos que para cada $t \in I$, $\{T(t), N(t), B(t)\}$ forma una base ortonormal positiva de \mathbb{R}^3 :

(1.13)
$$\begin{cases} (\|T\|^{2})' &= 2\langle T', T \rangle = 2\kappa \langle N, T \rangle \\ \langle T, N \rangle' &= \langle T', N \rangle + \langle T, N' \rangle = \kappa \|N\|^{2} - \kappa \|T\|^{2} - \tau \langle T, B \rangle \\ \langle T, B \rangle' &= \langle T', B \rangle + \langle T, B' \rangle = \kappa \langle N, B \rangle + \tau \langle T, N \rangle \\ (\|N\|^{2})' &= 2\langle N', N \rangle = -2\kappa \langle T, N \rangle - 2\tau \langle B, N \rangle \\ \langle N, B \rangle' &= \langle N', B \rangle + \langle N, B' \rangle = -\kappa \langle T, B \rangle - \tau \|B\|^{2} + \tau \|N\|^{2} \\ (\|B\|^{2})' &= 2\langle B', B \rangle = 2\tau \langle N, B \rangle \end{cases}$$

(1.13) puede verse como un sistema de 6 EDO en las incógnitas $||T||^2$, $\langle T, N \rangle$, $\langle T, B \rangle$, $||N||^2$, $\langle N, B \rangle$ y $||B||^2$, definido en el intervalo I. Ese sistema tendrá solución única para cada elección de condiciones iniciales. Si elegimos la condición inicial

(1.14)
$$\begin{cases} (\|T\|^2)(t_0) = 1, & \langle T, N \rangle(t_0) = 0, & \langle T, B \rangle(t_0) = 0, \\ (\|N\|^2)(t_0) = 1, & \langle N, B \rangle(t_0) = 0, & (\|B\|^2)(t_0) = 1, \end{cases}$$

entonces sabemos que la única solución del problema de valores iniciales (1.13)+(1.14) es la 6-upla de funciones escalares correspondiente a las funciones vectoriales T, N, B que

aparecieron antes. Pero las funciones

$$\left\{ \begin{array}{ll} (\|T\|^2) \equiv 1, & \langle T, N \rangle \equiv 0, & \langle T, B \rangle \equiv 0, \\ (\|N\|^2) \equiv 1, & \langle N, B \rangle \equiv 0, & (\|B\|^2) \equiv 1, \end{array} \right.$$

forman una solución de (1.13)+(1.14), y por tanto coincide con la anterior, es decir, $\{T(t), N(t), B(t)\}$ es una base ortonormal de \mathbb{R}^3 para cada $t \in I$. En particular, $t \in I \xrightarrow{d} \det(T(t), N(t), B(t))$ es continua y valuada en $\{\pm 1\}$. Como $\{T_0, N_0, B_0\}$ es una base positiva, es $d(t_0) = 1$ luego concluímos que $\{T(t), N(t), B(t)\}$ es una base positiva para cada $t \in I$. En particular, $B = T \times N$ en I.

Ya podemos definir la curva $\alpha \colon I \to \mathbb{R}^3$: elegimos $p_0 \in \mathbb{R}^3$ y definimos

(1.15)
$$\alpha(t) = p_0 + \int_{t_0}^t T(s) \, ds.$$

Así, $\alpha' = T$ luego α está p.p.a. Calculamos la curvatura κ_{α} de α usando la primera ecuación de (1.11):

$$\kappa_{\alpha} = ||T'|| = ||\kappa N|| = |\kappa| = \kappa.$$

Por tanto, el normal unitario N_{α} a α viene dado por

$$N_{\alpha} = \frac{T'}{\kappa_{\alpha}} = \frac{T'}{\kappa} = N,$$

donde hemos usado de nuevo la primera ecuación de (1.11). Como $B=T\times N$, concluímos que B es el binormal a α . Usando la tercera ecuación de (1.11) tendremos que la torsión de α es

$$\tau_{\alpha} = \langle B', N \rangle = \tau,$$

lo que termina de probar la existencia. En cuanto a la unicidad, supongamos que $\beta \colon I \to \mathbb{R}^3$ es otra curva p.p.a. con curvatura $\kappa_\beta = \kappa$ y torsión $\tau_\beta = \tau$. Consideremos el triedro de Frenet $\{T_\beta, N_\beta, B_\beta\}$ asociado a β . Como $\{T_0, N_0, B_0\}$ y $\{T_\beta(t_0), N_\beta(t_0), B_\beta(t_0)\}$ son dos bases ortonormales positivas de \mathbb{R}^3 , existe una única matriz $A \in SO(3)$ tal que $AT_\beta(t_0) = T_0$, $AN_\beta(t_0) = N_0$, $AB_\beta(t_0) = B_0$. Consideremos el movimiento rígido directo $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ dado por $\phi(p) = Ap + b$, donde $b \in \mathbb{R}^3$ se calcula imponiendo que $\phi(\beta(t_0)) = p_0 = \alpha(t_0)$. Entonces, $\phi \circ \beta$ es una curva p.p.a. con la misma curvatura κ y la misma torsión τ que β (Ejercicio 36). De las ecuaciones de Frenet para $\phi \circ \beta$ deducimos que el triedro de Frenet $\{T_{\phi \circ \beta}, N_{\phi \circ \beta}, B_{\phi \circ \beta}\}$ de $\phi \circ \beta$ cumple el mismo problema de valores iniciales (1.11)+(1.12) que cumple el triedro de Frenet $\{T, N, B\}$ de α . En particular, $(\phi \circ \beta)' = \alpha'$ en I luego $\phi \circ \beta$ y α se diferencian en una constante. Esta constante es cero por cómo hemos elegido la parte en traslación de ϕ , lo que termina de probar la unicidad.

Corolario 1.3.1 Sea $\alpha: I \to \mathbb{R}^3$ curva p.p.a. con curvatura $\kappa \equiv \kappa_0 > 0$ y torsión $\tau \equiv \tau_0 \in \mathbb{R}$. Entonces:

- 1. Si $\tau_0 = 0$, entonces α es un arco de circunferencia.
- 2. Si $\tau_0 \neq 0$, entonces α está contenida en una hélice circular.

Una hélice circular definida en el Ejemplo 3 de la Sección 1.1 tiene la propiedad de que sus rectas normales son perpendiculares al vector (0,0,1). En general, se define una hélice como una curva p.p.a. espacial con curvatura estrictamente positiva, cuyas rectas normales son perpendiculares a una dirección dada de \mathbb{R}^3 .

Teorema 1.3.2 (Lancret) Sea $\alpha: I \to \mathbb{R}^3$ una curva p.p.a. con curvatura κ estrictamente positiva y torsión τ . Sea $\{T, N, B\}$ el triedro de Frenet de α . Entonces, son equivalentes:

- 1. α es una hélice.
- 2. $\exists v \in \mathbb{R}^3 \{\vec{0}\} \ tal \ que \ \langle N, v \rangle \equiv 0.$
- 3. $\exists v \in \mathbb{R}^3 \{\vec{0}\} \text{ tal que } \langle T, v \rangle, \langle B, v \rangle \text{ con constantes.}$
- 4. τ/κ es constante.

Demostración. 1,2 son equivalentes por definición de hélice. Si suponemos 2, entonces por las ecuaciones de Frenet se tiene $\langle T,v\rangle'=\langle T',v\rangle=\kappa\langle N,v\rangle=0$ luego $\langle T,v\rangle$ es constante. Análogamente, $\langle B,v\rangle'=\langle B',v\rangle=\tau\langle N,v\rangle=0$ luego $\langle B,v\rangle$ también es constante, y se tiene 3.

Ahora veamos que 3 implica 4. $0 = (\langle T, v \rangle)' = \langle T', v \rangle = \kappa \langle N, v \rangle$ de donde $\langle N, v \rangle = 0$. Derivando, $0 = \langle N, v \rangle' = \langle N', v \rangle = -\kappa \langle T, v \rangle - \tau \langle B, v \rangle$ luego τ / κ es también constante.

Finalmente, probaremos 2 a partir de 4; supongamos que τ/κ es constante. Así, $B' = \tau N = \frac{\tau}{\kappa} T'$ luego $B - \frac{\tau}{\kappa} T$ es un vector constante de \mathbb{R}^3 , al que llamamos v. Claramente, $v \neq 0$ y $\langle N, v \rangle = 0$ en I luego se tiene 2.

Una hélice generalizada es una curva diferenciable $\alpha \colon I \to \mathbb{R}^3$ tal que $\langle \alpha', v \rangle$ es constante para algún $v \in \mathbb{R}^3 - \{0\}$. Esto no equivale, ni siquiera en el caso de que α sea p.p.a. con $\kappa > 0$, a que α sea una hélice.

1.3.1. Curvatura, torsión y triedro de Frenet para curvas no p.p.a.

Para finalizar este capítulo, veremos expresiones para curvatura, torsión y triedro de Frenet de una curva $\alpha \colon I \to \mathbb{R}^3$ regular, no necesariamente p.p.a. Si $\beta = \alpha \circ h \colon J \to \mathbb{R}^3$ es una reparametrización por el arco directa de α (es decir, h' > 0 en J), entonces se define la *curvatura* de α como

$$\kappa_{\alpha}(t) = \kappa_{\beta}(h^{-1}(t)), \ \forall t \in I.$$

1.3. CURVAS EN EL ESPACIO: CURVATURA, TORSIÓN Y TRIEDRO DE FRENET.21

Y si $\kappa_{\alpha} > 0$ en I, entonces se define la torsión de α y su triedro de Frenet como

$$\tau_{\alpha}(t) = \tau_{\beta}(h^{-1}(t)), \quad \begin{cases} T_{\alpha}(t) = T_{\beta}(h^{-1}(t)) \\ N_{\alpha}(t) = N_{\beta}(h^{-1}(t)) \end{cases} \quad \forall t \in I,$$

$$B_{\alpha}(t) = B_{\beta}(h^{-1}(t))$$

donde los subíndices hacen referencia a la curva. A veces, no es posible calcular explícitamente el cambio de parámetro que pasa de α a β , por lo que sería deseable contar con expresiones de la curvatura, torsión y del triedro de Frenet de α sin tener que pasar por su reparametrización por el arco β .

Proposición 1.3.2 Sea $\alpha \colon I \to \mathbb{R}^3$ una curva regular. Entonces, su curvatura viene dada por

(1.16)
$$\kappa_{\alpha} = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3}.$$

 $Y si \kappa_{\alpha} > 0 en I, entonces$

- 1. La torsión de α es $\tau_{\alpha} = -\frac{\det(\alpha', \alpha'', \alpha''')}{\|\alpha' \times \alpha''\|^2}$.
- 2. El triedro de Frenet de α viene dado por

$$T_{\alpha} = \frac{\alpha'}{\|\alpha'\|}, \quad B_{\alpha} = \frac{\alpha' \times \alpha''}{\|\alpha' \times \alpha''\|}, \quad N_{\alpha} = B_{\alpha} \times T_{\alpha}.$$

Además, N_{α} también puede calcularse como el normalizado de $\|\alpha'\|^2 \alpha'' - \langle \alpha', \alpha'' \rangle \alpha'$.

Demostración. Sea $\beta = \alpha \circ h \colon J \to \mathbb{R}^3$ una reparametrización por el arco directa de α . $1 = \|\dot{\beta}\| = \dot{h}\|\alpha'\|$ (hemos usado que la parametrización es directa), luego $\dot{h} = 1/\|\alpha'\|$. Llamando $\phi = h^{-1}$, entonces $\phi' = \|\alpha'\|$ y $\alpha = \beta \circ \phi$. Derivando esta última ecuación:

(1.17)
$$\begin{cases} \alpha' = \phi'(\dot{\beta} \circ \phi) \\ \alpha'' = \phi''(\dot{\beta} \circ \phi) + (\phi')^2(\ddot{\beta} \circ \phi) \\ \alpha''' = \phi'''(\dot{\beta} \circ \phi) + 3\phi'\phi''(\ddot{\beta} \circ \phi) + (\phi')^3(\ddot{\beta} \circ \phi). \end{cases}$$

Por tanto,

$$\alpha' \times \alpha'' = (\phi')^3 (\dot{\beta} \circ \phi) \times (\ddot{\beta} \circ \phi) = \|\alpha'\|^3 (T_{\beta} \times \dot{T}_{\beta}) \circ \phi = \|\alpha'\|^3 (T_{\beta} \times \kappa_{\beta} N_{\beta}) \circ \phi$$
$$= \|\alpha'\|^3 (\kappa_{\beta} \circ \phi) (B_{\beta} \circ \phi) = \|\alpha'\|^3 \kappa_{\alpha} (B_{\beta} \circ \phi).$$

Tomando normas se tiene directamente (1.16). En cuanto al apartado 1, de (1.17) tenemos

$$\det(\alpha', \alpha'', \alpha''') = \det\left(\phi'(\dot{\beta} \circ \phi), (\phi')^2(\ddot{\beta} \circ \phi), (\phi')^3(\ddot{\beta} \circ \phi)\right)$$

$$= \|\alpha'\|^6 \left[\det \left(T_{\beta}, \kappa_{\beta} N_{\beta}, \widehat{\kappa_{\beta} N_{\beta}} \right) \circ \phi \right] = \|\alpha'\|^6 \kappa_{\alpha}^2 \left[\det \left(T_{\beta}, N_{\beta}, \dot{N}_{\beta} \right) \circ \phi \right]$$
$$= \|\alpha'\|^6 \kappa_{\alpha}^2 \left[\det \left(T_{\beta}, N_{\beta}, -\tau_{\beta} B_{\beta} \right) \circ \phi \right] = -\|\alpha'\|^6 \kappa_{\alpha}^2 \tau_{\alpha}.$$

Sustituyendo (1.16) en la última expresión tendremos probado el apartado 1 de la proposición. En cuanto al apartado 2, la fórmula $T_{\alpha} = \frac{\alpha'}{\|\alpha'\|}$ es trivial. Veamos ahora que N_{α} es el normalizado de $\|\alpha'\|^2 \alpha'' - \langle \alpha', \alpha'' \rangle \alpha'$. Por definición,

$$N_{\alpha} = N_{\beta} \circ \phi = \left(\frac{1}{\kappa_{\beta}} \frac{dT_{\beta}}{ds}\right) \circ \phi = \frac{1}{\kappa_{\alpha}} \left(\frac{d(T_{\alpha} \circ \phi^{-1})}{ds} \circ \phi\right) = \frac{1}{\kappa_{\alpha}} \left(\frac{d\phi^{-1}}{ds} \circ \phi\right) \frac{dT_{\alpha}}{dt}$$
$$= \frac{1}{\kappa_{\alpha} \|\alpha'\|} \frac{d}{dt} \left(\frac{\alpha'}{\|\alpha'\|}\right) = \frac{1}{\kappa_{\alpha} \|\alpha'\|^4} \left(\|\alpha'\|^2 \alpha'' - \langle \alpha', \alpha'' \rangle \alpha'\right),$$

lo que implica que N_{α} es el normalizado de $\|\alpha'\|^2\alpha'' - \langle \alpha', \alpha'' \rangle \alpha'$. Veamos ahora que $B_{\alpha} = \frac{\alpha' \times \alpha''}{\|\alpha' \times \alpha''\|}$: Primero notemos que $\alpha' \times N_{\alpha}$ no tiene ceros, luego $\alpha' \times (\|\alpha'\|^2\alpha'' - \langle \alpha', \alpha'' \rangle \alpha') = \|\alpha'\|^2\alpha' \times \alpha''$ tampoco tiene ceros. De aquí deducimos que $\alpha' \times \alpha''$ tampoco los tiene, luego la fórmula que queremos probar tiene sentido. Observemos que $\alpha' \times \alpha''$ es ortogonal a T_{α} . También $\alpha' \times \alpha''$ es ortogonal a N_{α} , ya que este último es paralelo a $\|\alpha'\|^2\alpha'' - \langle \alpha', \alpha'' \rangle \alpha'$ y $\langle \alpha' \times \alpha'', \|\alpha'\|^2\alpha'' - \langle \alpha', \alpha'' \rangle \alpha' \rangle = 0$. Esto nos dice que $\{\alpha', \|\alpha'\|^2\alpha'' - \langle \alpha', \alpha'' \rangle \alpha', \alpha' \times \alpha''\}$ es una base de \mathbb{R}^3 . Veamos que es positiva y tendremos la fórmula que queremos para B_{α} :

$$\det(\alpha', \|\alpha'\|^2 \alpha'' - \langle \alpha', \alpha'' \rangle \alpha', \alpha' \times \alpha'') = \|\alpha'\|^2 \det(\alpha', \alpha'', \alpha' \times \alpha'') = \|\alpha'\|^2 \|\alpha' \times \alpha''\|^2 > 0,$$

con lo que la fórmula para B_{α} está probada. Por último, $N_{\alpha} = B_{\alpha} \times T_{\alpha}$ se deduce de que $\{T_{\alpha}, N_{\alpha}, B_{\alpha}\}$ es una base ortonormal positiva de \mathbb{R}^3 .

1.3.2. Material adicional sobre curvas en el espacio.

Como la curvatura y la torsión determinan a las curvas p.p.a. espaciales salvo movimientos rígidos directos, es razonable pensar que si una curva está sometida a una ligadura (como por ejemplo tener su traza contenida en una esfera) entonces su curvatura y torsión deberán estar relacionadas. En esta línea tenemos los Ejercicios 40 y 41. Veamos otro resultado para cuando la ligadura es una esfera:

Proposición 1.3.3 Sea $\alpha: I \to \mathbb{R}^3$ una curva p.p.a. con curvatura κ estrictamente positiva y torsión τ , cumpliendo $\kappa' \neq 0$ y $\tau \neq 0$ en I. Entonces, la traza de α está contenida en una esfera de radio r > 0 si y sólo si

(1.18)
$$\frac{1}{\kappa^2} + \frac{(\kappa')^2}{\tau^2 \kappa^4} = r^2.$$

1.3. CURVAS EN EL ESPACIO: CURVATURA, TORSIÓN Y TRIEDRO DE FRENET.23

Demostración. Supongamos que α está contenida en una esfera de radio r. Como (1.18) es invariante frente a traslaciones de la curva, podemos suponer que la esfera está centrada en el origen, es decir $\|\alpha\|^2 = r^2$ en I. Derivando tres veces y usando las ecuaciones de Frenet:

$$\begin{split} &\langle \alpha, T \rangle = 0, \\ &1 + \kappa \langle \alpha, N \rangle = 0, \\ &\kappa' \langle \alpha, N \rangle + \kappa \langle \alpha, -\kappa T - \tau B \rangle = \kappa' \langle \alpha, N \rangle - \kappa \tau \langle \alpha, B \rangle = 0, \end{split}$$

donde, como siempre, $\{T, N, B\}$ es el triedro de Frenet de α . Así,

$$r^2 = \|\alpha\|^2 = \langle \alpha, T \rangle^2 + \langle \alpha, N \rangle^2 + \langle \alpha, B \rangle^2 = 0 + \frac{1}{\kappa^2} + \left(\frac{\kappa' \langle \alpha, N \rangle}{\kappa \tau}\right)^2 = \frac{1}{\kappa^2} + \left(\frac{-\kappa'}{\kappa^2 \tau}\right)^2,$$

que es (1.18). Recíprocamente, supongamos que (1.18) se cumple. Derivando y simplificando $2\frac{\kappa'}{\kappa^2}$ (aquí usamos que κ' no tiene ceros):

$$-\frac{1}{\kappa} + \frac{1}{\tau} \left(\frac{\kappa'}{\tau \kappa^2} \right)' = 0,$$

que puede reescribirse

(1.19)
$$\frac{\tau}{\kappa} + \left[\frac{1}{\tau} \left(\frac{1}{\kappa}\right)'\right]' = 0.$$

Ahora definimos una curva diferenciable $\beta \colon I \to \mathbb{R}^3$ mediante $\beta = \alpha + \frac{1}{\kappa}N - \frac{1}{\tau}\left(\frac{1}{\kappa}\right)'B$. Derivando,

$$\beta' = T + \left(\frac{1}{\kappa}\right)'N + \frac{1}{\kappa}\left(-\kappa T - \tau B\right) - \left[\frac{1}{\tau}\left(\frac{1}{\kappa}\right)'\right]'B - \frac{1}{\tau}\left(\frac{1}{\kappa}\right)'\tau N = 0,$$

donde hemos usado (1.19) en la última igualdad. Así, β es cierta constante $p_0 \in \mathbb{R}^3$ y

$$\|\alpha - p_0\|^2 = \left\|\frac{1}{\kappa}N - \frac{1}{\tau}\left(\frac{1}{\kappa}\right)'B\right\|^2 = \frac{1}{\kappa^2} + \left[\frac{1}{\tau}\left(\frac{1}{\kappa}\right)'\right]^2 = r^2,$$

y la traza de α está contenida en una esfera centrada en p_0 de radio r.

1.4. Ejercicios.

- 1. Parametrizar una curva plana cuya traza sea:
 - a) Una circunferencia centrada en el punto (0,1) de radio 1, recorrida en el sentido horario y tal que $\alpha(0)=(0,0)$.
 - b) Una parábola de ecuación $y = x^2 + 3$.
 - c) Una rama de la hipérbola $x^2 y^2 = 1$.
 - d) Una rama de la hipérbola xy = 1.
 - e) Una elipse centrada en el origen cuyos ejes sean los ejes coordenados, con semiejes a,b>0 y recorrida en sentido contrario a las agujas del reloj.
- 2. Calcular una parametrización de una circunferencia que tenga aceleración tangencial.
- 3. Calcular la longitud de la curva $\alpha(t)=(2a(1+\cos t),2a(1+\sin t),a\sqrt{5}t)$ entre los valores del parámetro t=0 y $t=2\pi$.
- 4. La $espiral\ logaritmica$ es la curva plana $\alpha(t)=e^t(\cos(t),\sin(t)),\ t\in\mathbb{R}.$ Representar gráficamente la traza de α . ¿Es α parametrizada regular? Calcular la longitud $L(\alpha)_a^b$, donde $[a,b]\subset\mathbb{R}.$ Deducir que aunque la traza de α se enrolla infinitas veces alrededor del origen cuando $a\to-\infty$, la longitud $L(\alpha)_{-\infty}^0=\lim_{a\to-\infty}L(\alpha)_a^0$ es finita. Calcular el parámetro arco y la curvatura de la espiral logarítmica. Probar que en una espiral logarítmica, el vector de posición forma ángulo constante con el vector tangente. ¿Cuál es la familia de curvas planas con esta última propiedad?
- 5. La lemniscata de Bernouilli es el conjunto de puntos $(x,y) \in \mathbb{R}^2$ tales que el producto de sus distancias a dos puntos llamados focos es el cuadrado de la semidistancia entre los focos. Demostrar que si los focos son $(\pm a,0)$ con a>0, entonces la lemniscata puede parametrizarse por

$$\alpha(t) = \left(\frac{a\sqrt{2}\cos t}{1 + \sin^2 t}, \frac{a\sqrt{2}\sin t\cos t}{1 + \sin^2 t}\right), \quad t \in \mathbb{R}.$$

6. La cicloide es la trayectoria que describe un punto sobre una circunferencia que rueda a lo largo de una recta. Encontrar una parametrización de la cicloide; para ello, suponer que la recta es el eje OX, que la circunferencia que gira siempre tangente al eje OX tiene radio 1, que en instante t=0 la circunferencia está centrada en (0,1) y que el punto que describe la cicloide es (en t=0) el origen (solución: $c(t)=(t-\sin t,1-\cos t)$). Calcular la longitud de la cicloide correspondiente a una rotación completa de la circunferencia que rueda sobre el eje OX.

1.4. EJERCICIOS.

- 7. La catenaria es la curva plana $\alpha \colon \mathbb{R} \to \mathbb{R}^2$ dada por $\alpha(t) = (t, \cosh t)$.
 - a) Probar que α es regular, y que la longitud de α desde $\alpha(t_1)$ hasta $\alpha(t_2)$ es $\sinh t_2 \sinh t_1$ ($t_1 < t_2$).
 - b) Calcular la curvatura de la catenaria y reparametrizarla por el arco.
- 8. La tractriz es la curva plana $\alpha \colon (0,\pi) \to \mathbb{R}^2$ dada por $\alpha(t) = (\sin t, \cos t + \log \tan \frac{t}{2})$.
 - a) Probar que α es regular excepto para $t=\pi/2$, y que para $t\in(0,\pi)-\{\frac{t}{2}\}$, t mide el ángulo que forma $\alpha'(t)$ con la dirección positiva del eje OY.
 - b) Calcular la curvatura de α y demostrar que la longitud del segmento de la tractriz entre el punto de tangencia y el eje OY es constante 1.
- 9. Sean $\alpha\colon I\to\mathbb{R}^2$, $\beta\colon J\to\mathbb{R}^2$ dos curvas planas p.p.a. con trazas disjuntas. Supongamos que la distancia entre las trazas de α y β se alcanza en $\alpha(t_0)$ y $\beta(s_0)$, donde $t_0\in I$ y $s_0\in J$. Probar que las rectas tangentes a α en t_0 y a β en s_0 son paralelas.
- 10. Sea J(x,y)=(-y,x) y $A\in O(2)$. Probar que $J\circ A=(\det A).(A\circ J).$
- 11. Probar que si todas las rectas afines tangentes a una curva plana p.p.a. pasan por un punto de \mathbb{R}^2 , entonces la curva es segmento de recta.
- 12. Probar que si todas las rectas afines normales a una curva plana p.p.a. pasan por un punto $p_0 \in \mathbb{R}^2$, entonces la curva es un arco de circunferencia centrada en p_0 .
- 13. Probar que una curva plana regular es un segmento de recta si y sólo si todas sus rectas tangentes afines son paralelas.
- 14. Demostrar que una curva plana p.p.a. es un segmento de recta o un arco de circunferencia si y sólo si todas sus rectas tangentes equidistan de un punto fijo $p_0 \in \mathbb{R}^2$.
- 15. Determina las curvas regulares planas cuyas rectas afines normales equidistan de un punto fijo (solución: son aquellas cuya curvatura no tiene ceros y es de la forma $\kappa(t)^2=\frac{1}{at+b}$ siendo $a,b\in\mathbb{R}$).
- 16. Sea $\alpha(\theta)=r(\theta)(\cos\theta,\sin\theta)$ una curva plana en coordenadas polares, donde $r\colon I\to\mathbb{R}^+$ es una función diferenciable definida en un intervalo abierto $I\subset\mathbb{R}$. Probar que la curvatura de α es

$$\kappa = \frac{2(r')^2 - rr'' + r^2}{[r^2 + (r')^2]^{3/2}}.$$

17. Comparación de curvas.

Sean $\alpha\colon I\to\mathbb{R}^2$, $\beta\colon J\to\mathbb{R}^2$ dos curvas p.p.a. con diedros de Frenet respectivos $\{T_\alpha,N_\alpha\}$, $\{T_\beta,N_\beta\}$. Supongamos que existen $t_0\in I$, $s_0\in J$ tales que $\alpha(t_0)=\beta(s_0)=(0,0)$, $T_\alpha(t_0)=T_\beta(s_0)=(1,0)$, $N_\alpha\equiv N_\beta(s_0)=(0,1)$. Probar que

- 26
- a) Si $\kappa_{\alpha}(t_0) > \kappa_{\beta}(s_0)$, entonces α está estrictamente por encima de β en un entorno de (0,0), es decir, α,β pueden reparametrizarse como grafos $\alpha_1(x)=(x,f(x))$, $\beta_1(x)=(x,h(x))$ de funciones derivables alrededor de x=0 con f(0)=h(0)=0, y f(x)>h(x) para cada $x\neq 0$ en un entorno de cero.
- b) Si α está por encima de β en un entorno de (0,0), entonces $\kappa_{\alpha}(t_0) \geq \kappa_{\beta}(s_0)$.

(Indicación: una vez reparametrizadas α, β como grafos α_1, β_1 , considerar la función g(x) = f(x) - h(x), que cumple g(0) = g'(0) = 0, $g''(0) = \kappa_{\alpha}(t_0) - \kappa_{\beta}(s_0)$). Nótese que este principio de comparación generaliza las comparaciones con la recta tangente y con la circunferencia osculatriz contenidas en la teoría.

18. Usar el principio de comparación de curvas para probar que si $\alpha\colon I\to\mathbb{R}^2$ es una curva p.p.a. que alcanza su distancia máxima al origen en $t_0\in I$, entonces su curvatura κ cumple

$$|\kappa(t_0)| \ge \frac{1}{\|\alpha(t_0)\|}.$$

- 19. Sean $\alpha, \beta \colon I \to \mathbb{R}^2$ dos curvas p.p.a. de forma que sus respectivas curvaturas cumplen $\kappa_{\alpha} = -\kappa_{\beta}$ en I. Probar que existe un movimiento rígido inverso $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ tal que $\beta = \phi \circ \alpha$.
- 20. Sea $\alpha\colon I\to\mathbb{R}^2$ una curva p.p.a. con $0\in I$, simétrica respecto a $\alpha(0)$. Relacionar la curvatura de α con la de la curva $\beta\colon I\to\mathbb{R}^2$ dada por $\beta(t)=\alpha(-t)$.
- 21. Supongamos que $\alpha \colon (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ es una curva p.p.a. cuya función curvatura es par. Demostrar que la traza de α es simétrica respecto a la recta afín normal a α en t=0.
- 22. Supongamos que $\alpha \colon (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ es una curva p.p.a. cuya función curvatura es impar. Demostrar que la traza de α es simétrica respecto al punto $\alpha(0)$.
- 23. Sea $\alpha\colon I\to\mathbb{R}^2$ una curva p.p.a. y $t_0\in I$ tal que $\kappa(t_0)\neq 0$. Demostrar que existe un $\varepsilon>0$ tal que para todo $t\in (t_0-\varepsilon,t_0+\varepsilon)$, la recta afín normal a α en el instante t corta a la recta afín normal a α en t_0 , y que dicho punto de intersección converge a $e(t_0)=\alpha(t_0)+\frac{1}{\kappa(t_0)}J\alpha'(t_0)$, el correspondiente punto en la evoluta de α .
- 24. Sea $F\colon O\to \mathbb{R}$ una función diferenciable definida en un abierto $O\subset \mathbb{R}^2$, y sea $a\in \mathbb{R}$ un valor regular de F. Probar que $\{(x,y)\in O\mid F(x,y)=a\}$ puede parametrizarse como una curva regular alrededor de cualquiera de sus puntos, y calcular el normal unitario y la curvatura de dicha curva en términos de las derivadas parciales de F.
- 25. Sea $f: I \to \mathbb{R}$ una función derivable definida en un intervalo abierto $I \subset \mathbb{R}$. Calcular el parámetro arco y la curvatura del grafo de f.

1.4. EJERCICIOS. 27

26. Sea $\alpha\colon\mathbb{R}\to\mathbb{R}^2$ una curva p.p.a., cerrada y L-periódica (L>0). Probar que si el valor absoluto de la curvatura de α es estrictamente menor que una constante C>0, entonces $\alpha(\mathbb{R})$ no puede estar contenida en un disco de radio 1/C.

- 27. La involuta de una curva p.p.a. $\alpha\colon I\to\mathbb{R}^2$ es la curva $\beta\colon I\to\mathbb{R}^2$ dada por $\beta(t)=\alpha(t)+(t_0-t)\alpha'(t)$, donde $t_0\in I$ es un instante fijo. Probar que β no es regular en t_0 ni en los puntos donde la curvatura κ_α de α se anule. Calcular la curvatura de la involuta (donde β sea regular). Demostrar que en un subintervalo donde κ_α sea positiva, la evoluta de β es α . En este sentido, la evoluta y la involuta son transformaciones recíprocas.
- 28. Sea $\alpha(t)=\left(a\cos\frac{t}{\sqrt{a^2+b^2}},a\sin\frac{t}{\sqrt{a^2+b^2}},\frac{bt}{\sqrt{a^2+b^2}}\right)$, $t\in\mathbb{R}$, una hélice circular. Demostrar que la curvatura de α es $\kappa(t)=\frac{a}{a^2+b^2}$ y la torsión es $\tau(t)=-\frac{b}{a^2+b^2}$.
- 29. Se considera la curva parametrizada $\alpha \colon \mathbb{R} \to \mathbb{R}^3$ dada por $\alpha(t) = (1 + \cos(t), \sin(t), \cosh(t))$. Demostrar que α es regular. Calcular el triedro de Frenet, la curvatura y la torsión de α .
- 30. Sea $\alpha\colon I\to\mathbb{R}^3$ una curva regular. Probar que si $\alpha'(t)$ y $\alpha''(t)$ son linealmente dependientes para todo t, entonces la traza de α está contenida en una recta.
- 31. Se considera la curva $\alpha(t) = (\cos t, \cos(2t), \sin t)$ con $t \in \mathbb{R}$. ¿Es α regular? Calcular las rectas tangente y normal, el triedro de Frenet, la curvatura y la torsión de α en $\alpha(\pi/4)$.
- 32. Se considera la curva $\alpha(t)=(\frac{4}{5}\cos t,1-\sin t,-\frac{3}{5}\cos t)$, con $t\in\mathbb{R}$. Calcular su triedro de Frenet, su curvatura y su torsión. ¿Es α una circunferencia? En caso afirmativo, calcular su centro y su radio.
- 33. Probar que si todas las rectas afines normales a una curva (espacial) p.p.a. con curvatura estrictamente positiva pasan por un punto $p_0 \in \mathbb{R}^3$, entonces la curva es un arco de circunferencia centrada en p_0 .
- 34. Probar que no existe ninguna curva p.p.a. con curvatura estrictamente positiva tal que todas las rectas afines binormales (es decir, con la dirección del vector binormal en cada punto) pasan por un punto $p_0 \in \mathbb{R}^3$.
- 35. Sea $\alpha\colon I\to\mathbb{R}^3$ una curva p.p.a. y $p_0\in\mathbb{R}^3-\alpha(I)$. Probar que la traza de α está contenida en una esfera centrada en p_0 si y sólo si para cada $t\in T$, el vector tangente $\alpha'(t)$ es ortogonal al vector de posición $\alpha(t)-p_0$ respecto del origen p_0 .
- 36. Sea $\alpha\colon I\to\mathbb{R}^3$ una curva p.p.a. $\phi\colon\mathbb{R}^3\to\mathbb{R}^3$ un movimiento rígido y $\beta=\phi\circ\alpha$. Demostrar que las curvaturas $\kappa_\alpha,\kappa_\beta$ coinciden y que si éstas son estrictamente positivas, entonces la torsiones se relacionan por $\tau_\beta=\pm\tau_\alpha$, donde se da si y sólo si ϕ es inverso.

28

Recíprocamente, si $\alpha, \beta \colon I \to \mathbb{R}^3$ son curvas p.p.a. con curvaturas $\kappa_\alpha = \kappa_\beta > 0$ y torsiones $\tau_\alpha = -\tau_\beta$, probar que existe un movimiento rígido inverso $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\beta = \phi \circ \alpha$ (el caso $\tau_\alpha = \tau_\beta$ está cubierto por el Corolario 1.3.1).

- 37. Sea $\alpha\colon I\to\mathbb{R}^3$ una curva regular. Para cada $\lambda\in\mathbb{R}-\{0\}$, se define la curva $\beta\colon I\to\mathbb{R}^3$ dada por $\beta(t)=\lambda\alpha(t)$. Relacionar las curvaturas, las torsiones y los triedros de Frenet de α y β .
- 38. Relacionar la longitud, curvatura y torsión de una curva cuando le aplicamos una homotecia de razón $\lambda > 0$ (dado $p_0 \in \mathbb{R}^3$, la homotecia de razón λ y centro p_0 es $H \colon \mathbb{R}^3 \to \mathbb{R}^3$, $H(p) = p_0 + \lambda(p p_0)$).
- 39. Sean $\alpha,\beta\colon I\to\mathbb{R}^3$ dos curvas p.p.a. y con curvaturas positivas. Demostrar que si $\alpha(s)=-\beta(-s)$ para cada $s\in\mathbb{R}$, entonces $\kappa_{\alpha}(s)=\kappa_{\beta}(-s)$ y $\tau_{\alpha}(s)=-\tau_{\beta}(-s)$ para cada $s\in I$.
- 40. Sea $\alpha\colon I\to\mathbb{R}^3$ una curva p.p.a. con curvatura positiva. Demostrar que α es un arco de circunferencia si y sólo si tiene curvatura constante y su traza está contenida en una esfera.
- 41. Sea $\alpha\colon I\to\mathbb{R}^3$ una curva p.p.a. con curvatura κ positiva. Probar que si la torsión de α es constante $\tau_0\in\mathbb{R}$ y la traza de α está contenida en una esfera, entonces existen $a,b\in\mathbb{R}$ tales que

$$\kappa(t) = \frac{1}{a\cos(\tau_0 t) + b\sin(\tau_0 t)}, \quad \forall t \in I.$$

42. Sea $\alpha\colon I\to\mathbb{R}^3$ una curva p.p.a. con curvatura estrictamente positiva. Probar que existe una curva diferenciable $\omega\colon I\to\mathbb{R}^3$ tal que las ecuaciones de Frenet de α se escriben

$$T' = \omega \times T$$
, $N' = \omega \times N$, $B' = \omega \times B$,

donde $\{T,N,B\}$ es el triedro de Frenet de α . A la curva ω se le llama la velocidad angular de α . Demostrar que α tiene velocidad angular constante si y sólo si es un arco de circunferencia o de hélice circular.

- 43. Otra interpretación de la circunferencia osculatriz.
 - a) Sea $v\colon I\to\mathbb{R}^2$ una aplicación diferenciable, definida en un intervalo abierto I que contiene al origen, con v(0)=(0,0). Demostrar que en un entorno de (0,0) se tiene

$$\det(v(s), v(t)) = \frac{st(t-s)}{2} \left[\det(v'(0), v''(0)) + R(s, t) \right]$$

donde $R(s,t) \in \mathbb{R}$ tiende a cero cuando $(s,t) \to (0,0)$.

1.4. EJERCICIOS.

b) Sea $\alpha\colon I\to\mathbb{R}^2$ una curva plana y p.p.a. Supongamos que en la curvatura k de α no se anula en un instante $t_0\in I$. Usar el apartado a) para probar que existe $\varepsilon>0$ tal que para cualesquiera $s,t\in (t_0-\varepsilon,t_0+\varepsilon)-\{t_0\}$ con $s\neq t$, los puntos $\alpha(s),\alpha(t),\alpha(t_0)$ no están alineados.

c) Por el apartado b), para cada $s,t\in (t_0-\varepsilon,t_0+\varepsilon)-\{t_0\}$ con $s\neq t$ existe una única circunferencia C(s,t) que pasa por $\alpha(s),\alpha(t),\alpha(t_0)$. A partir de ahora, normalizaremos la situación fijando $\alpha(0)=(0,0)$ y $\alpha'(0)=(1,0)$ (siempre puede conseguirse esto tras un movimiento rígido directo). Probar que el centro p(s,t)=(a(s,t),b(s,t)) de C(s,t) está dado por

$$a(s,t) = \frac{\det(V(t),V(s))}{2\det(\alpha(t),\alpha(s))}, \quad b(s,t) = \frac{\det(W(t),W(s))}{2\det(\alpha(t),\alpha(s))},$$

donde
$$V(t) = (\|\alpha(t)\|^2, y(t)), \ W(t) = (x(t), \|\alpha(t)\|^2) \ \text{y} \ \alpha(t) = (x(t), y(t)).$$

- d) Usar el apartado a) para probar que cuando $s,t\in -(\varepsilon,\varepsilon)-\{0\}$ tienden a cero entonces C(s,t) converge a la circunferencia osculatriz de α en $\alpha(0)$.
- 44. Dos curvas planas regulares $\alpha\colon I\to\mathbb{R}^2$, $\beta\colon J\to\mathbb{R}^2$ se dicen curvas de Bertrand si existe una función diferenciable $r\colon I\to J$ tal que la recta afín normal a α en cada $t\in I$ coincide con la recta afín normal a β en r(t). Demostrar que si α,β son curvas de Bertrand, entonces la distancia entre ambas rectas afines normales es constante.
- 45. Se considera la curva $\alpha \colon \mathbb{R} \to \mathbb{R}^3$, $\alpha(t) = (\frac{1}{3}t^3, 2t, t^2)$.
 - a) ¿Es α una curva regular? Obtener la longitud del arco de α comprendido entre los puntos P=(1/3,2,1) y Q=(9,6,9). Calcular el triedro de Frenet de α en P.
 - b) Obtener la curvatura y la torsión de α en un punto cualquiera.
 - c) ¿Es α una hélice? En caso afirmativo, calcular su eje y el ángulo que forman las rectas tangentes a α con el eje.
- 46. Obtener una parametrización α de una curva contenida en el cilindro de ecuación $x^2+y^2=1$ y tal que sus rectas tangentes formen un ángulo constante con el eje del cilindro. Calcular la curvatura y torsión de α . ¿Se puede decir algo de α desde un punto de vista geométrico?
- 47. Calcular el diedro de Frenet de la espiral logarítmica α definida en el problema 4. Calcular también la evoluta de α . ¿Hay alguna relación geométrica entre α y su evoluta?
- 48. Sean $I \subset \mathbb{R}$ un intervalo abierto y $\alpha \colon I \to \mathbb{R}^3$ una curva p.p.a., valuada en la esfera unidad $\mathbb{S}^2(1)$, con curvatura k > 0 y torsión τ .

- (A) Probar que $k^2\tau=-\det(\alpha',\alpha'',\alpha''')$ y que llamando $J=\det(\alpha,\alpha',\alpha'')$, entonces $\alpha''=-\alpha+J\alpha\times\alpha',\quad \alpha'''=-(1+J^2)\alpha'+J'\alpha\times\alpha',\quad k=\sqrt{1+J^2},\quad \tau=-\frac{J'}{1+J^2}.$
- (B) Deducir que α es una circunferencia dentro de $\mathbb{S}^2(1)$ si y sólo si J es constante, y que α es un círculo máximo sí y sólo si J=0.
- 49. Dada una curva $\alpha\colon I\to\mathbb{R}^2$ p.p.a., demostrar que si todas sus rectas normales afines equidistan de un punto, entonces existen $a,b\in\mathbb{R}$ tales que $\kappa(t)=\pm\frac{1}{\sqrt{at+b}}$, $\forall t\in I$.
- 50. Sea $\alpha\colon I\to\mathbb{R}^3$ una curva p.p.a. con curvatura $\kappa(t)>0$ y torsión $\tau(t)$, $\forall t\in I$. Probar que si todos los planos osculadores afines de α equidistan de un punto $p_0\in\mathbb{R}^3$, entonces existen $a,b\in\mathbb{R}$ tales que $\frac{\tau(t)}{\kappa(t)}=at+b$, $\forall t\in I$.
- 51. Sea $\alpha\colon I\to\mathbb{R}^3$ una curva p.p.a. con curvatura positiva. Demostrar que si todos los planos afines osculadores a α pasan por un mismo punto, entonces α es una curva plana.
- 52. Sea $B\colon I\to\mathbb{S}^2(1)\subset\mathbb{R}^3$ el vector binormal de una curva $\alpha\colon I\to\mathbb{R}^3$ p.p.a. con torsión $\tau>0.$
 - a) Determina la curva α , su curvatura, su triedro y su torsión en términos de B y sus derivadas.
 - b) Halla la expresión general de una curva $\alpha \colon \mathbb{R} \to \mathbb{R}^3$ p.p.a. y con torsión positiva sabiendo que su vector binormal viene dado por

$$B(s) = \left(\frac{2}{\sqrt{5}} \operatorname{sen} s, \frac{2}{\sqrt{5}} \operatorname{cos} s, \frac{-1}{\sqrt{5}}\right) \quad s \in \mathbb{R}.$$

Calcula su curvatura y su torsión.

- 53. Sea $\alpha\colon I\to\mathbb{R}^3$ una curva p.p.a. con curvatura positiva. Dado $s_0\in I$, sea $f\colon I\to\mathbb{R}$ la función distancia con signo respecto al plano afín osculador en s_0 , es decir, $f(s)=\langle\alpha(s)-\alpha(s_0),B(s_0)\rangle$, donde $B(s_0)$ es el binormal de α en s_0 . Calcular $f(s_0)$, $f'(s_0)$, $f''(s_0)$ y $f'''(s_0)$. Deducir que si la torsión $\tau(s_0)\neq 0$, entonces hay un intervalo abierto J con $s_0\in J\subset I$ tal que $\alpha(J)$ contiene puntos a ambos lados del plano afín osculador en s_0 .
- 54. Sea $\alpha \colon \mathbb{R} \to \mathbb{R}^3$ la curva parametrizada por $\alpha(t) = (\cos(2t), \sin(2t), 2\cos t)$.
 - a) Calcular la curvatura y la torsión de α .

1.4. EJERCICIOS. 31

- b) Demostrar que la traza de α coincide con la intersección del cilindro de ecuación $x^2+y^2=1$ con la esfera de ecuación $(x-1)^2+y^2+z^2=4$.
- 55. Describir explícitamente todas las curvas diferenciables α en \mathbb{R}^3 que cumplen $\alpha'' = \alpha' \times a$, siendo $a \in \mathbb{R}^3 \{(0,0,0)\}$. ¿Qué son geométricamente estas curvas?
- 56. Sea $a\colon I\to\mathbb{R}^3$ una curva p.p.a. definida en un intervalo abierto $I\subset\mathbb{R}$ con $0\in I$. Probar que existe $\varepsilon>0$ tal que α se desarrolla en términos de su triedro de Frenet en t=0 como

$$\alpha(t) = \alpha(0) + \left[t - \frac{\kappa(0)^2}{6}t^3\right]T(0) + \left[\frac{\kappa(0)}{2}t^2 + \frac{\kappa'(0)^2}{6}t^3\right]N(0) + \frac{\kappa(0)\tau(0)}{6}t^3B(0) + R(t),$$

donde $\lim_{t\to 0} \frac{R(t)}{t^3} = 0$.

- 57. Sea $\alpha\colon I\to\mathbb{R}^2$ una curva plana p.p.a. con curvatura positiva $\kappa_\alpha(t)$ y sea $\beta\colon I\to\mathbb{R}^2$ su evoluta, que suponemos regular.
 - (A) Demostrar que la curvatura κ_{β} de β cumple:

$$\kappa_{\beta}(t) = \frac{\kappa_{\alpha}(t)}{\left| \left(\frac{1}{\kappa_{\alpha}(t)} \right)' \right|}.$$

(B) Usar lo anterior para probar que si todas las rectas afines normales a α equidistan de un punto, entonces la traza de α o la de β están contenidas en una circunferencia.

Capítulo 2

Superficies en el espacio

2.1. Definición de superficie. El plano tangente.

Intuitivamente, una superficie es un subconjunto de \mathbb{R}^3 donde cada punto tiene un entorno similar a un trozo de plano que ha sido suavemente curvado. Ejemplos triviales de superficies son un plano, una esfera y cilindro, un toro de revolución... (Figura 2.1). Pero antes de definir rigurosamente qué es una superficie regular, quizás convenga comentar qué no es una superficie, es decir, qué patologías no admitiremos (la razón principal de estas exclusiones será que queremos aplicar el Análisis para estudiar superficies, lo que exige ciertos mínimos de diferenciabilidad, esto no dice que nuestra definición de superficie sea la única posible).

Por ejemplo, no admitiremos que una superficie tenga picos, como le ocurre en un poliedro, en un cono o en el conjunto $\{(x,y,z)\in\mathbb{R}^3\mid y^2=z^3\}$ representado en la Figura 2.2 derecha. Tampoco admitiremos como superficies aquellas que tengan autointersecciones,

Figura 2.1: Algunas superficies sencillas.

Figura 2.2: Algunos conjuntos que no admitiremos como superficies.

Figura 2.3: La figura de la izquierda no se admitirá como superficie regular, pero las otras dos sí.

como la de la izquierda en la Figura 2.3. Sí serán admisibles figuras de topología complicada (Figura 2.3 derecha) o no compactas (Figura 2.3 centro, nótese que sólo se representa una parte de la superficie).

Definición 2.1.1 Una superficie (regular) es un subconjunto $S \subset \mathbb{R}^3$ tal que cada $p \in S$ tiene asociado un abierto $U \subset \mathbb{R}^2$, un entorno abierto V de p en \mathbb{R}^3 y una aplicación diferenciable $X: U \to \mathbb{R}^3$ que cumple

- 1. $X(U) = V \cap S$.
- 2. $X: U \to V \cap S$ es un homeomorfismo.
- 3. La diferencial de X en cualquier punto $q \in U$, $dX_q : \mathbb{R}^2 \to \mathbb{R}^3$, es un monomorfismo.

A X se le llama parametrización de S alrededor de p. Decir que X = X(u, v) = (x(u, v), y(u, v), z(u, v)) es diferenciable equivale a que las funciones x, y, z sean de clase C^{∞} . Ya

Figura 2.4: Parametrización de una superficie.

que $X\colon U\to\mathbb{R}^3$ es diferenciable, en particular es continua luego $X\colon U\to V\cap S$ es continua. Es decir, la condición 2 anterior sólo exige que $X\colon U\to V\cap S$ sea biyectiva y que $X^{-1}\colon V\cap S\to U$ sea continua. La condición 3 equivale a exigir que los vectores $\frac{\partial X}{\partial u}(q)$, $\frac{\partial X}{\partial v}(q)$ sean linealmente independientes para todo $q\in U$. A las variables u,v de X se les llama coordenadas locales de S, y a las curvas espaciales $u\mapsto X(u,v_0), v\mapsto X(u_0,v),$ curvas coordenadas de la parametrización, ver Figura 2.4. Una forma intuitiva de ver las parametrizaciones es como asignaciones de coordenadas bidimensionales en un trozo de superficie, como hacen los mapas con una extensión de terreno.

Uno podría decir que las superficies son el análogo bidimensional de las curvas espaciales; sin embargo, hay notables diferencias entre la forma de tratar cada caso: las curvas eran aplicaciones mientras que las superficies son subconjuntos de \mathbb{R}^3 , las primeras podían tener picos o autointersecciones, pero las segundas no.

Como primer ejemplo de superficie, consideremos la aplicación $X: \mathbb{R}^2 \to \mathbb{R}^3$, X(u,v) = (u,v,0). Entonces, X es una parametrización y su imagen, el plano $\{z=0\}$, es una superficie. Es fácil probar que si $S \subset \mathbb{R}^3$ es una superficie y $O \subset S$ es un abierto suyo, entonces O es también una superficie. También es fácil demostrar que si $\phi: O_1 \to O_2$ es un difeomorfismo entre dos abiertos de \mathbb{R}^3 y S es una superficie contenida en O_1 , entonces $\phi(S)$ es también una superficie de \mathbb{R}^3 . En particular, cualquier plano afín de \mathbb{R}^3 es una superficie.

Un ejemplo algo más elaborado es el helicoide. Consideremos una hélice circular $\alpha(u) = (\cos u, \sin u, au)$, a > 0. Por cada punto $\alpha(u)$ de la hélice trazamos la recta horizontal que une ese punto con el eje OZ, $\{(v\cos u, v\sin u, au) \mid v \in \mathbb{R}\}$. El conjunto de puntos formado de esta manera se llama un helicoide:

$$(2.1) S = \{(v\cos u, v\sin u, au) \mid u, v \in \mathbb{R}\}.$$

La aplicación $X : \mathbb{R}^2 \to \mathbb{R}^3$ dada por $X(u, v) = (v \cos u, v \sin u, au)$ es una parametrización de todos los puntos del helicoide, por lo que éste es una superficie.

Lema 2.1.1 Sea $X: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ una aplicación diferenciable, donde U es un abierto de \mathbb{R}^2 . Supongamos que $q_0 \in U$ cumple que $dX_{q_0}: \mathbb{R}^2 \to \mathbb{R}^3$ es inyectiva. Entonces, existe un entorno abierto W de q_0 con $W \subset U$ y una proyección ortogonal $\pi: \mathbb{R}^3 \to \mathbb{R}^2$ sobre alguno de los planos $\{x = 0\}$, $\{y = 0\}$ ó $\{z = 0\}$ tales que

- 1. $(\pi \circ X)(W)$ es un abierto de \mathbb{R}^2 y $\phi := \pi \circ X \colon W \to W' := (\pi \circ X)(W)$ es un difeomorfismo.
- 2. S = X(W) es una superficie de \mathbb{R}^3 y $X|_W$ es una parametrización (global) de S.

Demostración. Por hipótesis, la matriz Jacobiana

$$dX_{q_0} \equiv \begin{pmatrix} x_u(q_0) & x_v(q_0) \\ y_u(q_0) & y_v(q_0) \\ z_u(q_0) & z_v(q_0) \end{pmatrix}$$

tiene rango 2. Así, uno de sus menores de orden tendrá determinante distinto de cero. Supongamos que

$$\left| \begin{array}{cc} x_u(q_0) & x_v(q_0) \\ y_u(q_0) & y_v(q_0) \end{array} \right| \neq 0$$

(los otros casos son análogos). Consideremos la proyección $\pi\colon\mathbb{R}^3\to\{z=0\}\equiv\mathbb{R}^2$, $\pi(x,y,z)=(x,y)$, y la aplicación diferenciable $\pi\circ X\colon U\to\mathbb{R}^2$, $(\pi\circ X)(u,v)=(x(u,v),y(u,v))$. Entonces, la diferencial de $\pi\circ X$ en q_0 es regular luego el teorema de la función inversa asegura que existen abiertos $W\subset U$ conteniendo a q_0 y $W'\subset\mathbb{R}^2$ conteniendo a $(\pi\circ X)(q_0)$ tales que $(\pi\circ X)(W)=W'$ y $\pi\circ X\colon W\to W'$ es un difeomorfismo, lo que prueba el apartado 1.

Para probar el apartado 2, basta ver que $X \colon W \to X(W) = S$ es una parametrización de S. Esto se tendrá si probamos que

- $X: W \to X(W)$ es un homeomorfismo, y
- La diferencial dX_q es inyectiva en cada punto $q \in W$.

Consideremos el difeomorfismo $\phi = \pi \circ X \colon W \to W'$. Entonces, $Y := X \circ \phi^{-1} \colon W' \to \mathbb{R}^3$ es diferenciable y se escribe

$$Y(a,b) = (a,b,f(a,b)), \quad \forall (a,b) \in W'.$$

para cierta función (diferenciable) $f \colon W' \to \mathbb{R}$. Como X e Y se diferencian en un difeomorfismo, los dos puntos anteriores se tendrán para X si y sólo si se tienen para Y, y que Y los cumple es trivial.

Cambiando X por Y en el último lema, tenemos el siguiente resultado:

Corolario 2.1.1 Dado cualquier punto en una superficie S, existe una parametrización de S alrededor de p como grafo de una función diferenciable:

$$X(u,v) = (u,v,f(u,v)) \text{ \'o bien } X(u,v) = (u,f(u,v),v) \text{ \'o bien } X(u,v) = (f(u,v),u,v).$$

Como el origen en una de las hojas del cono $\{z^2 = x^2 + y^2, z \ge 0\}$, no admite una parametrización diferenciable de tipo grafo, concluímos que tampoco una de las hojas del cono es una superficie alrededor del origen.

A continuación veremos algunos ejemplos de superficies.

Grafos. Sea O un abierto de \mathbb{R}^2 y $f: O \to \mathbb{R}$ una función diferenciable. Consideremos el grafo de f,

$$G(f) = \{(u, v, f(u, v)) \mid (u, v) \in O\}.$$

Se define ahora $X : U = O \to \mathbb{R}^3$ mediante X(u,v) = (u,v,f(u,v)). Es fácil comprobar que X es una parametrización de G(f) alrededor de cualquier punto $p \in G(f)$. Por tanto, G(f) es una superficie. Por ejemplo, un paraboloide elíptico $S = \{(x,y,z) \mid z = x^2 + y^2\}$ y un paraboloide hiperbolico $S = \{(x,y,z) \mid z = x^2 - y^2\}$ son superficies.

Superficies en forma implícita. Otro método general de construir superficies es de forma implícita: Si O es un abierto de \mathbb{R}^3 , $F\colon O\to\mathbb{R}$ una función diferenciable y $a\in\mathbb{R}$, ¿Cuándo $S=F^{-1}(\{a\})$ es una superficie? Desde luego, habrá que imponer alguna condición adicional ya que el cono está dado por la ecuación implícita $x^2+y^2-z^2=0$ y no es una superficie. En este caso particular lo que falla es la condición 3 de superficie, y este fallo procede de que la diferencial de f en (0,0,0) se anula. En esta línea, tenemos el siguiente resultado:

Proposición 2.1.1 Sea O un abierto de \mathbb{R}^3 y $F: O \to \mathbb{R}$ una función diferenciable. Si $a \in \mathbb{R}$ es un valor regular de F, es decir, para todo $p \in F^{-1}(\{a\})$ la diferencial $dF_p: \mathbb{R}^3 \to \mathbb{R}$ es no nula y $F^{-1}(\{a\}) \neq \emptyset$, entonces $S = F^{-1}(\{a\})$ es una superficie.

Demostración. Sea $p_0 = (x_0, y_0, z_0) \in S$. Como la diferencial de F en p_0 no es nula, alguna de las derivadas parciales de F no se anula. Sin pérdida de generalidad, supondremos $\frac{\partial F}{\partial z}(p_0) \neq 0$. Consideremos la aplicación diferenciable $H \colon O \to \mathbb{R}^3$ dada por

$$H(x, y, z) = (x, y, F(x, y, z)).$$

Entonces, la matriz jacobiana de H en p_0 es una matriz regular:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ F_x(p_0) & F_y(p_0) & F_z(p_0) \end{pmatrix},$$

donde como siempre $F_x = \frac{\partial F}{\partial x}$, etc. Por el teorema de la función inversa, existe un entorno abierto O_1 de p_0 contenido en O y un entorno abierto O_2 de (x_0, y_0, a) tal que $H: O_1 \to O_2$ es un difeomorfismo. Su inversa es del tipo

$$H^{-1}(u, v, w) = (u, v, f(u, v, w)), (u, v, w) \in O_2,$$

para cierta función diferenciable $f: O_2 \to \mathbb{R}$. Esto nos dice que H transforma $O_1 \cap F^{-1}(\{a\})$ en $O_2 \cap \{(u, v, a) \mid (u, v) \in \mathbb{R}^2\}$. Como $O_2 \cap \{(u, v, a) \mid (u, v) \in \mathbb{R}^2\}$ es una superficie de \mathbb{R}^3 y H es un difeomorfismo, concluímos que $O_1 \cap F^{-1}(\{a\})$ también es una superficie, lo que termina la demostración.

Todo grafo $\{z = f(x,y)\}$ puede escribirse de forma implícita, sin más que escribir F(x,y,z) = f(x,y) - z, que tiene a 0 como valor regular. Veamos algunos ejemplos más interesantes de superficies que pueden escribirse como imagen inversa de un valor regular:

- 1. LA ESFERA. Dados $p_0 \in \mathbb{R}^3$ y r > 0, la esfera $\mathbb{S}^2(p_0, r) = \{p \in \mathbb{R}^3 \mid \|p p_0\| = r\}$ puede escribirse como $F^{-1}(\{r^2\})$ para $F \colon \mathbb{R}^3 \to \mathbb{R}$, $F(p) = \|p p_0\|^2$, y r^2 es valor regular de F, luego $\mathbb{S}^2(p_0, r)$ es una superficie. También es posible recubrir $\mathbb{S}^2(p_0, r)$ por imágenes de parametrizaciones: dos proyecciones estereográficas desde puntos antípodas, o bien seis proyecciones ortogonales de hemisferios en los discos coordenados.
- 2. EL ELIPSOIDE. Dados $a,b,c>0,\ S=\{(x,y,z)\mid \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\}=F^{-1}(\{1\})$ donde $F\colon\mathbb{R}^3\to\mathbb{R},\ F(x,y,z)=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}$ y 1 es valor regular de F.
- 3. EL CILINDRO. $S = \{(x,y,z) \mid x^2 + y^2 = 1\} = F^{-1}(\{1\})$ donde $F \colon \mathbb{R}^3 \to \mathbb{R}$, $F(x,y,z) = x^2 + y^2$ y 1 es valor regular de F.
- 4. EL PARABOLOIDE ELÍPTICO. $S=\{(x,y,z)\mid x^2+y^2=z\}=F^{-1}(\{0\})$ donde $F\colon\mathbb{R}^3\to\mathbb{R},\,F(x,y,z)=x^2+y^2-z$ y 0 es valor regular de F.
- 5. EL PARABOLOIDE HIPERBÓLICO. $S=\{(x,y,z)\mid x^2-y^2=z\}=F^{-1}(\{0\})$ donde $F\colon\mathbb{R}^3\to\mathbb{R},\,F(x,y,z)=x^2-y^2-z$ y 0 es valor regular de F.
- 6. El hiperboloide reglado (o de una hoja). $S = \{(x, y, z) \mid z^2 + 1 = x^2 + y^2\} = F^{-1}(\{1\})$ donde $F: \mathbb{R}^3 \to \mathbb{R}, F(x, y, z) = x^2 + y^2 z^2$ y 1 es valor regular de F.
- 7. El hiperboloide elíptico (o de dos hojas). $S = \{(x, y, z) \mid z^2 1 = x^2 + y^2\} = F^{-1}(\{-1\})$ donde $F \colon \mathbb{R}^3 \to \mathbb{R}, \ F(x, y, z) = x^2 + y^2 z^2 \ y 1$ es valor regular de F.
- 8. EL CONO MENOS EL ORIGEN. $S = \{(x,y,z) \in \mathbb{R}^3 \{(0,0,0)\} \mid z^2 = x^2 + y^2\} = F^{-1}(\{0\})$ donde $F \colon \mathbb{R}^3 \{(0,0,0)\} \to \mathbb{R}$, $F(x,y,z) = x^2 + y^2 z^2$ y 0 es valor regular de F (podemos extender diferenciablemente F al origen con F(0,0,0) = 0, pero entonces $0 \in \mathbb{R}$ deja de ser valor regular de la extensión).

Figura 2.5: Toro de revolución.

- 9. EL TORO DE REVOLUCIÓN. Sean 0 < r < a y $S = \{(x, y, z) \in \mathbb{R}^3 \mid (\sqrt{x^2 + y^2} a)^2 + z^2 = r^2\} = F^{-1}(\{r^2\})$ donde $F : \mathbb{R}^3 \{\text{ eje } z\} \to \mathbb{R}, F(x, y, z) = (\sqrt{x^2 + y^2} a)^2 + z^2$ y r^2 es valor regular de F (ver Figura 2.5).
- 10. El Helicoide. Sea a>0. Llamando $x=v\cos u,\ y=v\sin u,\ z=au$ a las componentes de un punto cualquiera del helicoide (2.1), tenemos $x\sin(z/a)=y\cos(z/a)$. Definimos $F\colon\mathbb{R}^3\to\mathbb{R}$ mediante $F(x,y,z)=x\sin(z/a)-y\cos(z/a)$. Entonces, 0 es un valor regular de F y $F^{-1}(\{0\})$ es el helicoide.
- 11. Sabemos que el cubo no es una superficie (no es diferenciable a lo largo de sus aristas), pero puede aproximarse por superficies compactas: Dado $n \ge 1$, sea $S_n = \{(x,y,z) \mid x^{2n} + y^{2n} + z^{2n} = 1\}$. Entonces, $S_n = F_n^{-1}(\{1\})$ para $F(x,y,z) = x^{2n} + y^{2n} + z^{2n}$ y 1 es valor regular de F_n . Puede probarse que cuando $n \to \infty$, S_n tiende al cubo $[-1,1]^3$ (ver Figura 2.6).

Superficies de revolución. Uno de los ejemplos anteriores es el toro de revolución, obtenido al girar alrededor del eje OZ la circunferencia en el plano $\{x=0\}$ centrada en (0,a,0) de radio r. Este ejemplo sugiere que también podremos construir superficies rotando alrededor del eje OZ ciertas curvas en el plano $\{x=0\}$. Pero debemos imponer ciertas condiciones sobre las curvas generatrices para que al rotarlas se obtengan superficies de \mathbb{R}^3 .

Tomemos una curva plana regular $\alpha \colon I \to \{x=0\} \subset \mathbb{R}^3$, que vendrá dada por $\alpha(t) = (0, f(t), g(t)), t \in I$. Supongamos que f(t) > 0 para todo $t \in I$ y que una de las dos condiciones siguientes se cumple:

- 1. α es un embebimiento topológico.
- 2. $I = \mathbb{R}$, α es periódica de período mínimo T > 0 y α es inyectiva en [0, T).

Figura 2.6: La superficie compacta S_n para n=4 está próxima al cubo unidad.

El conjunto obtenido al rotar α alrededor del eje OZ es

$$S = \{ (f(t)\cos\theta, f(t)\sin\theta, g(t)) \mid t \in I, \theta \in \mathbb{R} \}.$$

Para comprobar que S es una superficie, definimos parametrizaciones. Sea $X: I \times \mathbb{R} \to \mathbb{R}^3$ la aplicación diferenciable dada por $X(u,v)=(f(u)\cos v,f(u)\sin v,g(u))$. Entonces, $X|_{I\times(0,2\pi)}$ y $X|_{I\times(-\pi,\pi)}$ son dos parametrizaciones de S (Ejercicio 1). Como las imágenes de $X|_{I\times(0,2\pi)}$ y $X|_{I\times(-\pi,\pi)}$ recubren a S, deducimos que S es una superficie, llamada de revolución.

Como ejemplos podemos citar:

- 1. $\alpha(t) = (0, \cos t, \sin t), t \in \mathbb{R}$, produce la esfera unidad.
- 2. $\alpha(t) = (0, 1, t), t \in \mathbb{R}$, produce el cilindro vertical de radio 1 centrado en el eje OZ.
- 3. $\alpha(t) = (0, \cosh t, \sinh t), t \in \mathbb{R}$, produce el hiperboloide reglado.
- 4. $\alpha(t) = (0, \sinh t, \pm \cosh t), t \in (0, \infty)$, producen las dos hojas del hiperboloide elíptico, cada una menos el punto de corte con el eje OZ.
- 5. $\alpha(t) = (0, t, \pm t), t \in (0, \infty)$, producen las dos componentes del cono menos el origen.
- 6. $\alpha(t)=(0,a+r\cos t,r\sin t),\ t\in\mathbb{R},$ produce el toro de revolución de parámetros 0< r< a.
- 7. $\alpha(t) = (0, \cosh t, t), t \in \mathbb{R}$, produce la catenoide $S = \{(x, y, z) \mid x^2 + y^2 = \cosh^2 z\}$ (a la generatriz α se la llama catenaria).

Figura 2.7: Cambio de parámetros.

En el material adicional de este capítulo (Sección2.4) podrás encontrar información sobre otra familia destacada de superficies, las *superficies regladas*.

Terminaremos esta sección con un enlace a una web con gran cantidad de ejemplos de superficies: http://commons.wikimedia.org/wiki/Category:Surfaces

2.1.1. Funciones y aplicaciones diferenciables.

Nuestro siguiente objetivo es estudiar el concepto de diferenciabilidad para funciones definidas en superficies, para poder extender el cálculo diferencial a objetos más generales que abiertos de un plano. Para ello, necesitamos probar que el cambio de parámetros en una superficie es un difeomorfismo.

Teorema 2.1.1 (Los cambios de parámetros son difeomorfismos)

Sean $X_i: U_i \subset \mathbb{R}^2 \to \mathbb{R}^3$, i = 1, 2, dos parametrizaciones de una superficie S tal que $O = X_1(U_1) \cap X_2(U_2) \neq \emptyset$. Entonces, el cambio de parámetros $X_2^{-1} \circ X_1: X_1^{-1}(O) \to X_2^{-1}(O)$ es un difeomorfismo entre abiertos de \mathbb{R}^2 (Figura 2.7).

Demostración. Por definición de parametrización, $\phi := X_2^{-1} \circ X_1 \colon X_1^{-1}(O) \to X_2^{-1}(O)$ es un homeomorfismo entre abiertos de \mathbb{R}^2 . Por tanto, basta probar que ϕ es diferenciable alrededor de cada punto $p_0 \in X_1^{-1}(O)$ (y luego aplicaremos el mismo argumento cambiando los subíndices). Por el Lema 2.1.1 aplicado a la parametrización $X_2|_{X_2^{-1}(0)} \colon X_2^{-1}(0) \to \mathbb{R}^3$ alrededor de $\phi(p_0)$, existe un entorno abierto W de $\phi(p_0)$ con $W \subset X_2^{-1}(0)$ y una proyección ortogonal $\pi \colon \mathbb{R}^3 \to \mathbb{R}^2$ sobre alguno de los planos $\{x=0\}$, $\{y=0\}$ ó $\{z=0\}$ (supondremos que es este último) tales que $(\pi \circ X_2)(W)$ es un abierto de \mathbb{R}^2 y $\pi \circ X_2 \colon W \to (\pi \circ X_2)(W)$ es un difeomorfismo. Como ϕ es un homeomorfismo, $\phi^{-1}(W)$ es un entorno abierto de p_0

en $X_1^{-1}(0)$ y en este entorno podemos escribir

$$\phi = X_2^{-1} \circ X_1 = (\pi \circ X_2)^{-1} \circ \pi \circ X_1.$$

Luego $\phi|_{\phi^{-1}(W)}$ es composición de tres aplicaciones diferenciables, y es por tanto diferenciable.

Ya podemos pasar la noción de diferenciabilidad del Análisis a la Geometría Diferencial de superficies.

Definición 2.1.2 Sea $f: S \to \mathbb{R}$ una función definida sobre una superficie S. Dado $p \in S$, diremos que f es diferenciable en p si para toda parametrización $X: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ de S alrededor de p, función $f \circ X: U \to \mathbb{R}^2$ es diferenciable en el punto $q \in U$ tal que X(q) = p. Diremos que f es diferenciable en S cuando sea diferenciable en todos los puntos de S.

En la definición anterior, podemos cambiar "para toda parametrización" por "existe una parametrización", gracias al Teorema 2.1.1. A continuación usaremos la definición anterior para extender el concepto de función diferenciable a un contexto más general.

Definición 2.1.3 Sea S una superficie.

- 1. Diremos que una aplicación $F = (f_1, \ldots, f_n) \colon S \to \mathbb{R}^n$ es diferenciable si $f_i \colon S \to \mathbb{R}$ es diferenciable para todo $i = 1, \ldots, n$.
- 2. Sea O un abierto de \mathbb{R}^n y $F \colon O \to S$ una aplicación. F se dice diferenciable si $i \circ F \colon O \to \mathbb{R}^3$ es diferenciable, donde $i \colon S \to \mathbb{R}^3$ es la inclusión.
- 3. Sea \widetilde{S} otra superficie. Una aplicación $F \colon S \to \widetilde{S}$ se dirá diferenciable si $i \circ F \colon S \to \mathbb{R}^3$ es diferenciable (ahora i es la inclusión de \widetilde{S} en \mathbb{R}^3).

Veamos algunas propiedades prácticas de la diferenciabilidad.

Proposición 2.1.2 1. Toda aplicación diferenciable es continua.

- 2. Sea O un abierto de \mathbb{R}^2 y $f: O \to \mathbb{R}$ una función. Entonces, f es diferenciable en el sentido de la Definición 2.1.3 si y sólo si lo es en el sentido del Análisis.
- 3. La restricción de cualquier aplicación diferenciable definida en una superficie a un abierto suyo es diferenciable.
- 4. Sea S una superficie, $F,G: S \to \mathbb{R}^n$ aplicaciones diferenciables $y \lambda \in \mathbb{R}$. Entonces, las aplicaciones F+G, $\lambda F\colon S \to \mathbb{R}^n$ $y \langle F,G \rangle\colon S \to \mathbb{R}$ son diferenciables. Si n=1 $y G(p) \neq 0$ para cada $p \in S$, entonces $F/G\colon S \to \mathbb{R}$ es diferenciable. Si n=3, entonces $F \times G\colon S \to \mathbb{R}^3$ es diferenciable.

- 5. Sea O un abierto de \mathbb{R}^3 y S una superficie con $S \subset O$. Si $F: O \to \mathbb{R}^n$ es una aplicación diferenciable, entonces $F|_S: S \to \mathbb{R}^n$ es diferenciable. En particular, la inclusión $i: S \to \mathbb{R}^3$, la identidad $1_S: S \to S$ y las aplicaciones constantes definidas en S son diferenciables.
- 6. Si $X: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ es una parametrización de una superficie S, entonces las aplicaciones $X: U \to S$ y $X^{-1}: X(U) \to U$ son diferenciables.
- 7. Si $F: S_1 \to S_2$ y $G: S_2 \to S_3$ aplicaciones diferenciables donde S_1 , S_2 y S_3 son superficies o abiertos de un espacio Euclídeo, entonces $G \circ F: S_1 \to S_3$ es diferenciable.

Demostración. Ejercicio.

Hay algunas funciones diferenciables especialmente importantes desde el punto geométrico, como la función altura o la función distancia (al cuadrado) para una superficie $S \subset \mathbb{R}^3$.

- 1. Dado Π un plano afín con vector normal $a \in \mathbb{R}^3 \{0\}$ y $p_0 \in \Pi$, la función altura respecto a Π es la aplicación $h \colon S \to \mathbb{R}$ dada por $h(p) = \langle p p_0, a \rangle$, $p \in S$. Cuando ||a|| = 1, entonces h mide la altura (con signo) de los puntos de S relativa al plano Π .
- 2. Dado $p_0 \in \mathbb{R}^3$, la función distancia al cuadrado respecto a p_0 es la aplicación $f: S \to \mathbb{R}$ dada por $f(p) = ||p p_0||^2$, $p \in S$. Cuando $p_0 \notin S$, la raíz positiva $d = \sqrt{f}$ es diferenciable, y se llama la función distancia a p_0 .

Definición 2.1.4 Un difeomorfismo entre dos superficies S_1 y S_2 es una aplicación diferenciable y biyectiva $F: S_1 \to S_2$ tal que $F^{-1}: S_2 \to S_1$ también es diferenciable. La identidad es un difeomorfismo, la inversa de un difeomorfismo vuelve a ser difeomorfismo, lo mismo que la composición. Diremos que dos superficies S_1 y S_2 son difeomorfas cuando exista un difeomorfismo $\phi: S_1 \to S_2$ (ésta es una relación de equivalencia). Un resultado de Topología Diferencial, que excede los contenidos de este curso, asegura que dos superficies homeomorfas son siempre difeomorfas.

Proposición 2.1.3

- 1. Si $X: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ es una parametrización de una superficie S, entonces $X: U \to X(U)$ es un difeomorfismo.
- 2. Si S es una superficie contenida en un abierto O de \mathbb{R}^3 y $\phi: O \to \widetilde{O}$ es un difeomorfismo de O en otro abierto \widetilde{O} de \mathbb{R}^3 , entonces $\phi|_S: S \to \phi(S)$ es un difeomorfismo.

Demostración. Ejercicio.

A continuación veremos el concepto de vector tangente a una superficie en un punto. Esto nos permitirá hablar de la diferencial de una aplicación diferenciable y de poder estudiar la geometría de una superficie por medio del cálculo diferencial.

Definición 2.1.5 Sea p un punto en una una superficie $S \subset \mathbb{R}^3$. Un vector $v \in \mathbb{R}^3$ se dice tangente a S en p si existe una curva diferenciable $\alpha \colon (-\varepsilon, \varepsilon) \to S \subset \mathbb{R}^3$ con $\alpha(0) = p$ y $\alpha'(0) = v$.

Es decir, los vectores tangentes a una superficie son los vectores tangentes a curvas espaciales cuyas trazas están contenidas en la superficie. El que el dominio de α en la definición anterior sea $(-\varepsilon, \varepsilon)$ no es relevante, podría ser cualquier intervalo abierto.

A continuación definimos el mejor objeto lineal que aproxima una superficie en un punto suyo (algo similar se hizo con curvas y sus rectas tangentes). Se define el plano tangente a S en $p \in S$ como

$$TpS = \{v \in \mathbb{R}^3 \mid v \text{ es un vector tangente a } S \text{ en } p\}.$$

Lema 2.1.2 Sea S una superficie, $p \in S$ y $X : U \subset \mathbb{R}^2 \to \mathbb{R}^3$ una parametrización de S alrededor de p = X(q), $q \in U$. Entonces,

$$T_p S = dX_q(\mathbb{R}^2).$$

En particular, T_pS es un subespacio vectorial de \mathbb{R}^2 con dimensión 2, y $\{X_u(q), X_v(q)\}$ es una base de T_pS .

Demostración. Sea $w \in \mathbb{R}^2$. Consideremos el segmento $\beta \colon (-\varepsilon, \varepsilon) \to U$, $\beta(t) = q + tw$. Para $\varepsilon > 0$ suficientemente pequeño, la traza de β está contenida en U luego $\alpha = X \circ \beta$ es una curva diferenciable con traza contenida en S, y $w = \beta'(0)$ tiene como imagen por dX_q a $\alpha'(0) \in T_pS$. Por tanto, $dX_q(\mathbb{R}^2) \subseteq T_pS$.

Recíprocamente, sea $v = \alpha'(0) \in T_pS$, donde $\alpha \colon (-\varepsilon, \varepsilon) \to S$ es una curva diferenciable. Por continuidad de α , podemos tomar $\varepsilon > 0$ suficientemente pequeño de forma que $\alpha(-\varepsilon, \varepsilon)$ está contenida en X(U). Ahora definimos $\beta = X^{-1} \circ \alpha$, que es una curva diferenciable plana con $\beta(0) = q$ y $v = \alpha'(0) = (X \circ \beta)'(0) = dX_q(\beta'(0))$, así que $T_pS \subseteq dX_q(\mathbb{R}^2)$. \square

Con la notación anterior, si un vector $w \in \mathbb{R}^2$ tiene coordenadas (a, b) en la base usual, entonces las coordenadas de $v = dX_q(w) \in T_pS$ respecto a $\{X_u(q), X_v(v)\}$ son las mismas:

$$v = dX_q(w) = dX_q(a\partial_u + b\partial_v) = a \cdot dX_q(\partial_u) + b \cdot dX_q(\partial_v) = aX_u(q) + bX_v(q).$$

Veamos algunos casos particulares de superficies y sus planos tangentes.

- 1. Si S es una superficie, $p \in S$ y $S_1 \subset S$ es un abierto de S conteniendo a p, entonces $T_pS_1 = T_pS$.
- 2. Si S es una superficie y $\phi: O_1 \to O_2$ es un difeomorfismo entre abiertos de \mathbb{R}^3 con $S \subset O_1$, entonces $T_{\phi(p)}\phi(S) = d\phi_p(T_pS)$, para todo $p \in S$.

3. Si una superficie S se escribe como imagen inversa $S = F^{-1}(\{a\})$ de un valor regular $a \in \mathbb{R}$ para una función diferenciable $F \colon O \to \mathbb{R}$ (aquí O es un abierto de \mathbb{R}^3), entonces dado $p \in S$ es

$$T_p S = \ker(dF_p) = \langle (\nabla F)_p \rangle^{\perp},$$

ya que la inclusión $T_pS \subset \ker(dF_p)$ es evidente y luego sólo hay que razonar por dimensiones.

- 4. El plano tangente a un plano afín $\Pi = \{p \in \mathbb{R}^3 \mid \langle p p_0, a \rangle = 0\}$ (aquí $a \in \mathbb{R}^3 \{0\}$ es un vector normal a Π) en un punto $p \in \Pi$ es el plano vectorial paralelo a Π , $T_p\Pi = \{v \in \mathbb{R}^3 \mid \langle v, a \rangle = 0\}$ (usar que $\Pi = F^{-1}(\{0\})$ para $F(p) = \langle p p_0, a \rangle$ y el apartado anterior).
- 5. El plano tangente a una esfera $\mathbb{S}^2(p_0,r)$ en un punto $p \in \mathbb{S}^2(p_0,r)$ es $T_p\mathbb{S}^2(p_0,r) = \{v \in \mathbb{R}^3 \mid \langle v, p p_0 \rangle = 0\}$ (usar que $\mathbb{S}^2(p_0,r) = F^{-1}(r^2)$ para $F(p) = \|p p_0\|^2$ y el apartado 3).

Dada una superficie S y un punto $p \in S$, se define la primera forma fundamental de S en p como la métrica euclidea

$$I_p: T_pS \times T_pS \to \mathbb{R}, \quad I_p(v, w) = \langle v, w \rangle.$$

2.2. La diferencial de una aplicación diferenciable.

Sea S una superficie y $f: S \to \mathbb{R}^n$ una aplicación diferenciable. Dado un punto $p \in S$, define la diferencial de f en p como la aplicación $df_p: T_pS \to \mathbb{R}^n$ dada por

$$df_p(v) = (f \circ \alpha)'(0) = \frac{d}{dt}\Big|_{t=0} (f \circ \alpha)(t),$$

donde $\alpha \colon (-\varepsilon, \varepsilon) \to S$ es una curva diferenciable con $\alpha(0) = p, \, \alpha'(0) = v.$

Así, en el caso de que S sea un abierto del plano, la diferencial coincide con la del Análisis.

Proposición 2.2.1 En la situación anterior:

- 1. $df_p(v)$ está bien definida, i.e. no depende de la curva α que representa al vector v.
- 2. Sea $X: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ una parametrización de S alrededor de $p = X(q), q \in U$. Si (a,b) son las coordenadas de $v \in T_pS$ respecto a la base $\{X_u(q), X_v(q)\}$, entonces

(2.2)
$$df_p(v) = d(f \circ X)_q(a, b).$$

3. $df_p: T_pS \to \mathbb{R}^n$ es lineal.

Demostración. Tomemos una parametrización X como en el apartado 2. Dado $v \in T_pS$, tomemos una curva diferenciable $\alpha \colon (-\varepsilon, \varepsilon) \to S$ con $\alpha(0) = p$, $\alpha'(0) = v$. Tomando $\varepsilon > 0$ suficientemente pequeño, podemos suponer que $\alpha(-\varepsilon, \varepsilon) \subset X(U)$. Llamemos $\beta = X^{-1} \circ \alpha \colon (-\varepsilon, \varepsilon) \to U$, diferenciable. Entonces,

$$(f \circ \alpha)'(0) = [(f \circ X) \circ \beta]'(0) \stackrel{(\star)}{=} d(f \circ X)_q(\beta'(0)),$$

donde en (\star) hemos usado la regla de la cadena para aplicaciones diferenciables entre abiertos de espacios Euclídeos. Según vimos tras la demostración del Lema 2.1.2, las coordenadas del vector $\beta'(0) \in \mathbb{R}^2$ respecto a la base usual de \mathbb{R}^2 son las mismas que las coordenadas (a,b) de v respecto a la base $\{X_u(q), X_v(q)\}$ de T_pS . Es decir,

$$(f \circ \alpha)'(0) = d(f \circ X)_q(a, b),$$

con lo que $(f \circ \alpha)'(0)$ no depende de la curva α (ni de la parametrización X), sino sólo de f y de v. Esto prueba los apartados 1 y 2. El apartado 3 se deduce de (2.2) y de que la diferencial del Análisis y la aplicación que a cada $v \in T_pS$ le asigna sus coordenadas (a, b) respecto a la base $\{X_u(q), X_v(q)\}$ son lineales.

Veamos algunos casos particulares de funciones y sus diferenciales.

- 1. Si S es una superficie, $p \in S$ y $S_1 \subset S$ es un abierto de S que contiene a p, entonces $d(f|_{S_1})_p = df_p$ (recordemos que $T_pS_1 = T_pS$).
- 2. Si S es una superficie, $O \subset \mathbb{R}^3$ un abierto conteniendo a S y $F: O \to \mathbb{R}^n$ es una aplicación diferenciable, entonces la diferencial de $F|_S: S \to \mathbb{R}^n$ es $d(F|_S)_p = (dF_p)|_{T_pS}$, para todo $p \in S$.
- 3. Si $f: S \to \mathbb{R}^n$ es constante, entonces $df_p = 0$ para todo $p \in S$. Recíprocamente, si $df_p = 0$ para todo $p \in S$ y S es conexa, entonces f es constante.
- 4. Si $i: S \to \mathbb{R}^3$ es la inclusión y $p \in S$, entonces di_p es la inclusión de T_pS en \mathbb{R}^3 .
- 5. Función altura. Si $p_0 \in \mathbb{R}^3$ y $a \in \mathbb{R}^3 \{0\}$, la diferencial de la función altura $h \colon S \to \mathbb{R}, h(p) = \langle p p_0, a \rangle$ es

$$dh_p(v) = \langle v, a \rangle, \quad \forall p \in S, \ v \in T_p S.$$

6. FUNCIÓN DISTANCIA AL CUADRADO. Si $p_0 \in \mathbb{R}^3$, la diferencial de la función distancia al cuadrado $f: S \to \mathbb{R}, f(p) = ||p - p_0||^2$ es

$$df_p(v) = 2\langle v, p - p_0 \rangle, \quad \forall p \in S, \ v \in T_p S.$$

7. FUNCIÓN DISTANCIA. Si $p_0 \in \mathbb{R}^3 - S$, la diferencial de la función distancia $f: S \to \mathbb{R}$, $h(p) = ||p - p_0||$ es

$$dh_p(v) = \frac{\langle v, p - p_0 \rangle}{\|p - p_0\|}, \quad \forall p \in S, \ v \in T_p S.$$

A continuación estudiamos la diferencial de aplicaciones que llegan a superficies, primero partiendo de un abierto de un espacio Euclídeo y luego partiendo de una superficie, y con ello completaremos las posibilidades.

Sea $F: O \subset \mathbb{R}^n \to S$ una aplicación diferenciable de un abierto O de \mathbb{R}^n en una superficie S. Tras componer F con la inclusión $i: S \to \mathbb{R}^3$, obtenemos una aplicación diferenciable $F: O \to \mathbb{R}^3$. Su diferencial $dF_p: \mathbb{R}^n \to \mathbb{R}^3$ está entonces bien definida en el sentido del Análisis para cada $p \in O$, es lineal y cumple

(2.3)
$$dF_p(v) = \frac{d}{dt}\Big|_0 (F \circ \alpha)(t),$$

donde p es cualquier punto en $O, v \in \mathbb{R}^3$ y $\alpha : (-\varepsilon, \varepsilon) \to O$ es una curva diferenciable con $\alpha(0) = p$, $\alpha'(0) = v$. Dados tales p, v, α , se tiene que $t \in (-\varepsilon, \varepsilon) \mapsto (F \circ \alpha)(t)$ es una curva diferenciable valuada en S, y por tanto $(F \circ \alpha)'(0) \in T_{F(p)}S$. Como v es arbitrario, deducimos que $dF_p(\mathbb{R}^n) \subset T_{F(p)}S$. Así, podemos considerar la restricción (lineal)

$$dF_p \colon \mathbb{R}^n \to T_{F(p)}S$$
,

que será la definición de diferencial de $F: O \to S$ en $p \in O$.

Ahora supongamos que $F \colon S_1 \to S_2$ es una aplicación diferenciable entre superficies. Componemos F con la inclusión de S_2 en \mathbb{R}^3 , obteniendo una aplicación diferenciable $F \colon S \to \mathbb{R}^3$, que por tanto tiene una diferencial $dF_p \colon T_pS_1 \to \mathbb{R}^3$ bien definida, lineal y que cumple (2.3) para cada $p \in S_1$, $v \in T_pS_1$ y $\alpha \colon (-\varepsilon, \varepsilon) \to S_1$ curva diferenciable con $\alpha(0) = p, \alpha'(0) = v$. Razonando como arriba llegamos a que la imagen de $dF_p \colon T_pS_1 \to \mathbb{R}^3$ está contenida en el plano $T_{F(p)}S_2$. Por tanto, dado un punto $p \in S_1$ se define la diferencial de $F \colon S_1 \to S_2$ en p como la restricción $dF_p \colon T_pS_1 \to T_{F(p)}S_2$, que es lineal y viene dada por

$$dF_p(v) = dF_p(\alpha'(0)) = (F \circ \alpha)'(0) \in T_{F(p)}S_2, \ \forall v \in T_pS_1.$$

Sabemos que la composición de aplicaciones diferenciables vuelve a ser diferenciable (apartado 7 de la Proposición 2.1.2). Una vez definida la diferencial de una aplicación diferenciable en los tres casos posibles, extenderemos la regla de la cadena del Análisis a esta nueva situación.

Teorema 2.2.1 (Regla de la cadena) Sean $F: S_1 \to S_2$, $G: S_2 \to S_3$ dos aplicaciones diferenciables, donde S_1, S_2, S_3 son superficies o abiertos de espacios Euclídeos. Dado $p \in S_1$, se tiene

$$d(G \circ F)_p = dG_{F(p)} \circ dF_p \colon T_p S_1 \to T_{(G \circ F)(p)} S_3.$$

Demostración. Ejercicio.

Si $\phi: S_1 \to S_2$ es un difeomorfismo entre superficies, entonces la regla de la cadena aplicada a $\phi \circ \phi^{-1}$ y a $\phi^{-1} \circ \phi$ implica que para cada punto $p \in S_1$, la diferencial $d\phi_p: T_pS_1 \to T_{\phi(p)}S_2$ es un isomorfismo de espacios vectoriales y que

$$(d\phi^{-1})_{\phi(p)} = (d\phi_p)^{-1}.$$

El recíproco local es cierto, y es la versión para superficies del Teorema de la función inversa del Análisis.

Teorema 2.2.2 (Teorema de la Función Inversa) Sea $F: S_1 \to S_2$ una aplicación diferenciable entre superficies y sea $p \in S_1$. Si $dF_p: T_pS_1 \to T_{F(p)}S_2$ es un isomorfismo de espacios vectoriales, entonces existen entornos abiertos V_1 de p en S_1 y V_2 de F(p) en S_2 tales que $F(V_1) = V_2$ y $F|_{V_1}: V_1 \to V_2$ es un difeomorfismo.

Demostración. Sean $X_i: U_i \to \mathbb{R}^3$, i = 1, 2, parametrizaciones de S_1 alrededor de p y de S_2 alrededor de F(p), de forma que $F(X_1(U_1)) \subset X_2(U_2)$. Sean $q_i \in U_i$, i = 1, 2, tales que $X_1(q_1) = p$, $X_2(q_2) = F(p)$. La aplicación $X_2^{-1} \circ F \circ X_1: U_1 \to U_2$ es diferenciable, y su diferencial en q_1 es un isomorfismo de espacios vectoriales ya que

$$d(X_2^{-1} \circ F \circ X_1)_{q_1} = (dX_2)_{q_2}^{-1} \circ dF_p \circ (dX_1)_{q_1},$$

y cada una de las tres diferenciales del miembro de la derecha es un isomorfismo. Aplicando el Teorema de la función inversa del Análisis encontramos abiertos $W_i \subset U_i$ con $q_i \in W_i$ (i=1,2) de forma que $(X_2^{-1} \circ F \circ X_1)(W_1) = W_2$ y $(X_2^{-1} \circ F \circ X_1)|_{W_1} : W_1 \to W_2$ es un difeomorfismo. Ahora basta definir $V_i = X_i(W_i)$, i=1,2, para tener el enunciado.

A partir del teorema anterior es razonable decir que una aplicación diferenciable $F \colon S_1 \to S_2$ entre superficies es un difeomorfismo local si para todo $p \in S_1$ existen entornos abiertos V de p en S_1 y W de F(p) en S_2 tales que F(V) = W y $F|_V \colon V \to W$ es un difeomorfismo.

En el siguiente resultado se estudian algunas propiedades de los difeomorfismos locales.

Proposición 2.2.2 Sea $F: S_1 \to S_2$ una aplicación diferenciable entre superficies.

- 1. F es un difeomorfismo local si y sólo si $dF_p: T_pS_1 \to T_{F(p)}S_2$ es un isomorfismo de espacios vectoriales para todo $p \in S_1$.
- 2. Si F es un difeomorfismo local, entonces F es una aplicación abierta.

Demostración. Ejercicio.

Figura 2.8: Campos normales en un plano y una esfera.

Corolario 2.2.1 Si S_1, S_2 son dos superficies y $S_1 \subset S_2$, entonces S_1 es un abierto de S_2 .

Demostración. Consideremos la inclusión $i \colon S_1 \to S_2$, diferenciable. Dado $p \in S_1$, la diferencial de i en p es la inclusión de T_pS_1 en $T_pS_2 = T_pS_1$, y por tanto es la identidad. Por el teorema de la función inversa, existen entornos abiertos V de p en S_1 y W de p en S_2 tales que i(V) = W (luego V = W) y $i|_V = 1_V \colon V \to V$ es un difeomorfismo. Esto nos dice que V es abierto en S_2 y por tanto, p es interior a S_2 . Como $p \in S_1$ es arbitrario, deducimos que S_1 es un abierto de S_2 .

Definición 2.2.1 Sea $f: S \to \mathbb{R}$ una aplicación diferenciable definida en una superficie S. Un punto $p \in S$ se dice *punto crítico* de f si $df_p = 0$.

2.3. Orientabilidad. Aplicación de Gauss.

Sea $S \subset \mathbb{R}^3$ una superficie. Un campo de vectores (diferenciable) en S es una aplicación diferenciable $V : S \to \mathbb{R}^3$. Si $V_p := V(p) \in T_pS$ para todo $p \in S$, diremos que V es un campo tangente a S. Si $V_p \perp T_pS$ para todo $p \in S$, diremos que V es un campo normal a S. Un campo unitario es aquel que cumple $||V_p|| = 1$ para todo $p \in S$, ver Figura 2.8).

Definición 2.3.1 La recta normal a una superficie $S \subset \mathbb{R}^3$ en un punto $p \in S$ es la recta afín que pasa por p y es ortogonal a T_pS .

Dado $p \in S$, existen exactamente dos vectores unitarios perpendiculares a T_pS . Pero ¿hasta dónde podemos variar esta elección de forma suave? Si $X: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ es una

parametrización de S, entonces existe un campo normal unitario definido sobre el abierto X(U), a saber:

(2.4)
$$N^{X} = \frac{X_{u} \times X_{v}}{\|X_{u} \times X_{v}\|} \circ X^{-1} \colon X(U) \to \mathbb{S}^{2}(1).$$

Si S es conexa y admite un campo normal unitario $N: S \to \mathbb{S}^2(1)$, entonces -N es otro campo normal unitario global. Además, estos son los únicos campos normales unitarios posibles: si $N_1: S \to \mathbb{S}^2(1)$ es otro campo normal unitario, entonces consideramos el conjunto $A = \{p \in S \mid (N_1)_p = N_p\}$. No es difícil ver que A es abierto y cerrado, luego $A = \emptyset$ ó A = S, por ser S conexa. En el primer caso, $N_1 = N$ mientras que en el segundo, $N_1 = -N$.

Definición 2.3.2 Una superficie $S \subset \mathbb{R}^3$ se dice *orientable* si admite un campo normal unitario global $N \colon S \to \mathbb{S}^2(1)$. A este campo N se le llama *aplicación de Gauss*. Es claro que una superficie orientable conexa admite exactamente dos aplicaciones de Gauss, que también suelen llamarse *orientaciones* de la superficie. Si elegimos una orientación en una superficie orientable, diremos que la superficie está *orientada*.

Si S está orientada por una aplicación de Gauss $N: S \to \mathbb{S}^2(1)$ y $p \in S$, entonces una base $\{v_1, v_2\}$ de T_pS se dice positivamente orientada si $\det(v_1, v_2, N_p) > 0$. En caso contrario diremos que la base está negativamente orientada.

Toda superficie es localmente orientable, y es orientable si admite una parametrización global. Por ejemplo, los planos afines y los grafos de funciones diferenciables son orientables. Si una superficie $S = f^{-1}(\{a\})$ es imagen inversa de un valor regular $a \in \mathbb{R}$ por una aplicación diferenciable $F \colon O \to \mathbb{R}$ (aquí O es un abierto de \mathbb{R}^3), entonces S es orientable: basta considerar la aplicación de Gauss

$$N = \frac{\nabla F}{\|\nabla F\|} \colon S \to \mathbb{S}^2(1),$$

donde $\nabla f = (f_x, f_y, f_z)$ es el gradiente euclídeo de f. Por ejemplo, las esferas, cilindros, y todas las cuádricas son orientables.

Como ejemplo de superficie no orientable podemos citar a la cinta de Möbius definida en la Sección 2.4: Si prolongamos una elección cualquiera de normal unitario de forma continua sobre la cinta, el recorrerla una vez por su curva central llegaremos al opuesto del vector unitario originalmente elegido. Una demostración rigurosa de la no orientabilidad de la cinta de Möbius puede verse en las páginas 71–75 del libro de Montiel y Ros, Curves AND Surfaces, Graduate texts in Mathematics 69, AMS-RSME 2005.

Aunque no lo demostraremos, toda superficie compacta de \mathbb{R}^3 es orientable; incluso puede debilitarse la hipótesis de compacidad exigiendo sólo que la superficie sea un cerrado de \mathbb{R}^3 .

51

2.4. Material adicional.

Definición 2.4.1 Una superficie $S \subset \mathbb{R}^3$ se dice reglada si por cada punto de S pasa una línea recta contenida en S. Más concretamente, una superficie reglada es aquella en la que cada punto admite una parametrización del tipo

$$(2.5) (t,v) \in I \times \mathbb{R} \mapsto X(t,v) = \alpha(t) + ve(t)$$

donde I es un intervalo abierto, $\alpha \colon I \to \mathbb{R}^3$ es una curva diferenciable con traza contenida en la superficie, y $e \colon I \to \mathbb{R}^3$ es una curva diferenciable regular con traza contenida en la esfera unidad. Así, $\{\alpha(t) + ve(t) \mid v \in \mathbb{R}\}$ parametriza la recta afín que pasa por $\alpha(t)$ con velocidad e(t).

Los ejemplos más simples de superficies regladas son el plano, el cilindro y el cono. Un poco más elaborados son el hiperboloide reglado o el helicoide.

Supongamos que la aplicación X definida en (2.5) es una parametrización. Entonces, evaluando en (t,0) las igualdades $X_t = \alpha' + ve'$ y $X_v = e$ deducimos que $\alpha'(t), e(t)$ son linealmente independientes en cada $t \in I$. Veamos que

(*) Para cada $t \in I$, $\{\alpha'(t), e(t), e'(t)\}$ es una base de \mathbb{R}^3 .

En efecto, si en un instante $t_0 \in I$ los vectores $\alpha'(t_0), e(t_0), e'(t_0)$ son linealmente dependientes, entonces $e'(t_0) = \lambda \alpha'(t_0) + \mu e(t_0)$ para ciertos $\lambda, \mu \in \mathbb{R}$. Omitiendo el punto (t_0, v) en lo que sigue, tenemos:

$$0 \neq X_t \times X_v = [\alpha' + v(\lambda \alpha' + \mu e)] \times e = (1 + \lambda v)\alpha' \times e,$$

luego $1 + \lambda v \neq 0$ para todo $v \in \mathbb{R}$, y así, $\lambda = 0$. Esto implica $e'(t_0) = \mu e(t_0)$, lo cual es imposible por ser $e'(t_0) \neq 0$ ortogonal al vector unitario $e(t_0)$.

Recíprocamente, supongamos que $\alpha, e \colon I \to \mathbb{R}^3$ son curvas diferenciables tales que ||e(t)|| = 1 y la condición (\star) se cumple. Fijemos $(t_0, v_0) \in I \times \mathbb{R}$. Como $X_t(t_0, v_0) = \alpha'(t_0) + v_0 e'(t_0)$ y $X_v(t_0, v_0) = e(t_0)$ son linealmente independientes por la condición (\star) , entonces la diferencial $dX_{(t_0,v_0)}$ es inyectiva. Por el Lema 2.1.1, existirá un entorno abierto W de (t_0, v_0) en $I \times \mathbb{R}$ tal que S = X(W) es una superficie de \mathbb{R}^3 y $X \colon W \to \mathbb{R}^3$ es una parametrización de S. Por supuesto, S es entonces una superficie reglada. En conclusión, (\star) caracteriza localmente a las superficies regladas.

Veamos algunos ejemplos de superficies regladas.

- 1. $\alpha(t) = (t, 0, 0), e(t) = (0, 1, 0)$ produce el plano $\{z = 0\}$.
- 2. $\alpha(t) = (\cos t, \sin t, 0), e(t) = (0, 0, 1)$ produce el cilindro $\{x^2 + y^2 = 1\}$.
- 3. $\alpha(t) = (0,0,0), \ e(t) = \frac{1}{\sqrt{2}}(\cos t, \sin t, 1)$ produce el cono $\{x^2 + y^2 = z^2\}$ (hay que quitarle el origen para que sea una superficie).

Figura 2.9: Cinta de Möbius reglada.

- 4. $\alpha(t)=(t,0,t^2),\,e(t)=\frac{1}{\sqrt{2(1+t^2)}}(1,\pm 1,2t)$ son dos familias de rectas distintas pasando por cada punto del paraboloide hiperbólico.
- 5. $\alpha(t) = (\cos t, \sin t, 0), e(t) = \frac{1}{\sqrt{2}}(-\sin t, \cos t, \pm 1)$ son dos familias de rectas distintas pasando por cada punto del hiperboloide de una hoja.
- 6. $\alpha(t) = (\cos(2t), \sin(2t), 0), e(t) = (\cos t \cos(2t), \cos t \sin(2t), \sin t)$ produce la *cinta de Möbius* (Figura 2.9).

Una superficie se dice doblemente reglada si a través de cada punto pasan dos rectas distintas contenidas en la superficie. Por ejemplo, el paraboloide hiperbólico y el hiperboloide de una hoja son superficies doblemente regladas. El plano es la única superficie que contiene tres rectas distintas a través de cada uno de sus puntos.

Las propiedades de ser reglada o doblemente reglada se conservan por un tipo especial de transformaciones de \mathbb{R}^3 , llamadas transformaciones proyectivas. Por ello, las superficies regladas son importantes en Geometría Algebraica.

2.5. EJERCICIOS. 53

2.5. Ejercicios.

1. Probar que las restricciones $X|_{I imes (0,2\pi)}$ y $X|_{I imes (-\pi,\pi)}$ de la aplicación $(u,v) \in I imes \mathbb{R} \mapsto X(u,v) = (f(u)\cos v, f(u)\sin v, g(u))$ definida en la Sección 2.1 son parametrizaciones de la superficie de revolución obtenida al rotar la curva $t \in I \mapsto \alpha(t) = (0,f(t),g(t))$ alrededor del eje OZ (se supone que α cumple las hipótesis que aparecen en la Sección 2.1).

- 2. En los siguientes casos, ¿puede ser la aplicación $X \colon \mathbb{R}^2 \to \mathbb{R}^3$ una parametrización local de una superficie alrededor de (u,v)=(0,0)?
 - (A) $X(u,v) = (u^2, u^4, v)$.
 - **(B)** $X(u,v) = (u, u^2, v + v^3).$
- 3. ¿Es el conjunto $S = \{(x, y, z) \in \mathbb{R}^3 \mid xyz = 0\}$ una superficie?
- 4. Cuádricas.
 - (A) Dada una matriz simétrica A de orden 4, se define

$$S_A = \left\{ p \in \mathbb{R}^3 : (1, p^t) A \begin{pmatrix} 1 \\ p \end{pmatrix} = 0 \right\}.$$

Supongamos que $S_A \neq \emptyset$ y que para cada $p \in \mathbb{R}^3$, $(1, p^t)A \neq 0$. Probar que S_A es una superficie. Esto unifica los ejemplos de esferas, elipsoides, hiperboloides, paraboloides y cilindros.

(B) Sea $B\in\mathcal{M}_3(\mathbb{R})$ una matriz simétrica real, $b\in\mathbb{R}^3$ y $c\in\mathbb{R}$. Consideremos el conjunto

$$S(B,b,c) = \{ p \in \mathbb{R}^3 \mid \langle Bp, p \rangle + 2\langle b, p \rangle + c = 0 \}.$$

Relacionar S_A con S(B,b,c). ¿Para qué matrices B, vectores b y números reales c es S(B,b,c) una superficie? Cuando S(B,b,c) sea una superficie, calcular el plano tangente en un punto arbitrario $p \in S(B,b,c)$.

- 5. Probar que dado un punto p en una superficie S, existe un abierto $O \subset \mathbb{R}^3$ con $p \in O$ y una función diferenciable $f \colon O \to \mathbb{R}$ tal que $S \cap O = f^{-1}(\{0\})$, siendo 0 un valor regular de f (Indicación: usar una parametrización como grafo).
- 6. Demostrar la Proposición 2.1.2.
- 7. Demostrar la Proposición 2.1.3.
- 8. Probar que las siguientes parejas de superficies son difeomorfas: Un plano y un paraboloide elíptico; un hiperboloide de una hoja y un cilindro; un cilindro y una catenoide; un plano y un helicoide.

9. Sea $C=\{p\in\mathbb{R}^3\mid \|p\|^2-\langle p,a\rangle^2=r^2\}$ el cilindro de radio r>0 y eje la recta vectorial de dirección $a\in\mathbb{R}^3$, $\|a\|=1$. Probar que dado $p\in C$,

$$T_pC = \{v \in \mathbb{R}^3 \mid \langle p, v \rangle - \langle p, a \rangle \langle a, v \rangle = 0\} = (p - \langle p, a \rangle a)^{\perp}.$$

Concluir que todas las rectas normales a C cortan el eje del cilindro perpendicularmente.

- 10. Calcular el plano tangente en cualquier punto al helicoide $H = \{(v \cos u, v \sin u, au) \mid u, v \in \mathbb{R}\}$, donde a > 0.
- 11. Probar el Teorema 2.2.1.
- 12. Probar la Proposición 2.2.2.
- 13. Demostrar que cualquier esfera es difeomorfa a cualquier elipsoide.
- 14. Demostrar que $\mathbb{S}^2(1) \{(0,0,\pm 1)\}$ es difeomorfa al cilindro $\{(x,y,z) \mid x^2 + y^2 = 1\}$.
- 15. Sea S una superficie que no pasa por el origen. Consideremos la aplicación $F\colon S\to \mathbb{S}^2(1)$ dada por

$$F(p) = \frac{p}{\|p\|}, \quad p \in S.$$

Probar que F es diferenciable, calcular su diferencial y demostrar que dado $p \in S$, dF_p tiene núcleo no trivial si y sólo si la recta vectorial que pasa por p es tangente a S en p.

- 16. Sea $S=\{(x,y,z)\mid x^2+y^2=1\}$ el cilindro vertical de radio 1 y eje OZ. Probar que la aplicación $F\colon \mathbb{R}^2\to S$ dada por $F(x,y)=(\cos x,\sin x,y)$ es un difeomorfismo local. ¿Son \mathbb{R}^2 y S difeomorfos?
- 17. Sea $A \in \mathcal{M}_3(\mathbb{R})$ una matriz simétrica. Consideremos la aplicación $f \colon \mathbb{S}^2(1) \to \mathbb{R}$, $f(p) = \langle p, Ap \rangle$.
 - (A) Probar que f es diferenciable y calcular su diferencial.
 - (B) Demostrar que $p \in \mathbb{S}^2(1)$ es punto crítico de f si y sólo si p es vector propio de A.
 - (C) Probar que si $\lambda_1, \lambda_2 \in \mathbb{R}$ son dos valores propios distintos de A y $p_1, p_2 \in \mathbb{S}^2(1)$ son vectores propios de A asociados a λ_1, λ_2 respectivamente, entonces p_1 y p_2 son ortogonales. En este caso, sea $p_3 \in \mathbb{S}^2(1)$ ortogonal a p_1 y a p_2 . Probar que p_3 también es un valor propio de A.
 - (D) Concluir que A admite una base ortonormal de \mathbb{R}^3 formada por vectores propios.
- 18. Sea $a \in \mathbb{R}^3 \{0\}$. Probar que un punto p en una superficie $S \subset \mathbb{R}^3$ es crítico para la función altura $h \colon S \to \mathbb{R}$ dada por $h(p) = \langle p, a \rangle$ si y sólo si a es normal a S en p (es decir, T_pS es ortogonal a a).

2.5. EJERCICIOS. 55

19. Sea $p_0 \in \mathbb{R}^3$. Probar que un punto p en una superficie $S \subset \mathbb{R}^3$ es crítico para la función distancia al cuadrado $f \colon S \to \mathbb{R}$ dada por $f(p) = \|p - p_0\|^2$ si y sólo si $p = p_0$ ó bien $p - p_0$ es normal a S en p. Si $p_0 \in \mathbb{R}^3 - S$, demostrar que los puntos críticos de la función distancia a p_0 coinciden con los de la función distancia al cuadrado a p_0 .

- 20. Sea S una superficie compacta, que admite una función diferenciable con a lo más tres puntos críticos. Demostrar que S es conexa.
- 21. Sea S una superficie en \mathbb{R}^3 .
 - (A) Demostrar que si S en compacta, entonces dado $a \in \mathbb{R}^3 \{0\}$ existen al menos dos puntos en S tales que a es normal a S en esos dos puntos, y que desde cada punto de \mathbb{R}^3 puede trazarse al menos una recta normal a S.
 - (B) Demostrar que si S es conexa y todas las rectas normales a S son paralelas, entonces S está contenida en un plano.
 - (C) Probar que si S es conexa y todas las rectas normales a S pasan por un mismo punto $p_0 \in \mathbb{R}^3$, entonces S está contenida en una esfera centrada en p_0 .
- 22. Sea S una superficie compacta y conexa. Admitiendo que todo homeomorfismo local $F\colon S\to \mathbb{S}^2(1)$ es un homeomorfismo 1 , probar que si existe un punto $p_0\in \mathbb{R}^3-S$ desde el cual no puede trazarse ninguna recta tangente a S, entonces S es difeomorfa a una esfera (Indicación: considerar la aplicación $F\colon S\to \mathbb{S}^2(1)$ dada por $F(p)=\frac{p-p_0}{\|p-p_0\|}$).
- 23. Dado a>3, se define $S_a=\{(x,y,z)\in\mathbb{R}^3\mid e^{x^2}+e^{y^2}+e^{z^2}=a\}$. Demostrar que S_a es una superficie conexa y encontrar un difeomorfismo entre S_a y \mathbb{S}^2 .
- 24. Sea $S = \{(x, y, z) \in \mathbb{R}^3 \mid (x^2 + y^2)^2 + z^2 = 1\}.$
 - (A) Cortando S por planos $\{z=\mathsf{cte}\}$, haz un esbozo gráfico de S y prueba que S es una superficie compacta y orientable.
 - (B) Determina los puntos $p \in S$ para los que $T_pS \perp p$. Prueba que no existe ningún punto $p \in S$ tal que $p \in T_pS$.
 - (C) ¿Es S una superficie de revolución? En caso afirmativo determina su eje, la curva generatriz y parametriza una abierto denso de S.
 - (D) Prueba que $f \colon S \to \mathbb{S}^2(1)$ dada por $f(p) = \frac{p}{||p||}$ es un difeomorfismo.
- 25. Sea S una superficie, $p_0 \in S$ y $\Pi = p_0 + T_{p_0}S$ el plano afín tangente a S en p_0 . Tomemos un vector $a \in \mathbb{S}^2(1)$ perpendicular a S en p_0 .

¹Esto se deduce de teoría de recubridores, que no abordaremos en esta asignatura.

- (A) Probar que la proyección ortogonal sobre Π , $f \colon S \to \mathbb{R}^3$, $f(p) = p \langle p p_0, a \rangle a$, cumple $f(S) \subset \Pi$. Tiene pues, sentido considerar la restricción $f \colon S \to \Pi$.
- (B) Demostrar que la diferencial de $f \colon S \to \Pi$ en p_0 es la identidad.
- (C) Concluir que existen entornos U de p_0 en Π y V de p_0 en S tales que V es el grafo de una función diferenciable $h \colon U \to \mathbb{R}$.
- 26. Sea $\varphi\colon\mathbb{R}\to\mathbb{R}$ una función diferenciable y positiva. Se considera el subconjunto de \mathbb{R}^3 dado por $S=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2=\varphi(z)^2\}$ y el cilindro $S'=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2=1\}$. Demostrar que S es una superficie y que la aplicación $f\colon S\to S'$ dada por

$$f(x, y, z) = \left(\frac{x}{\varphi(z)}, \frac{y}{\varphi(z)}, z\right)$$

es un difeomorfismo.

- 27. Sea S una superficie compacta con $\vec{0} \notin S$. Probar que existen números positivos $a \leq b$ tales que $S \subseteq \{p \in \mathbb{R}^3 \mid a \leq |p| \leq b\}$ y S corta tangencialmente a $\mathbb{S}^2(\vec{0}, a)$ y $\mathbb{S}^2(\vec{0}, b)$.
- 28. Probar que si una superficie S es unión de dos abiertos suyos orientables y con intersección conexa, entonces S es orientable.
- 29. Sea $F\colon S_1\to S_2$ un difeomorfismo local entre dos superficies. Probar que si S_2 es orientable, entonces S_1 también lo es (en particular, la orientabilidad de superficies es invariante frente a difeomorfismos).
- 30. Sea $S\subset\mathbb{R}^3$ una superficie compacta. Probar que existe una recta afín que corta perpendicularmente a S en al menos dos puntos.
- 31. Sea $S \subset \mathbb{R}^3$ una superficie cerrada (no necesariamente compacta). Dado $p_0 \in \mathbb{R}^3$, probar que la función distancia al punto p_0 alcanza su mínimo en algún punto de S.
- 32. Supongamos que una superficie $S\subset\mathbb{R}^3$ está completamente a un lado de un plano afín Π . Probar que S y Π son tangentes en cada punto $p\in S\cap\Pi$.
- 33. Probar que si dos superficies compactas son disjuntas, entonces existe una línea recta que corta perpendicularmente a ambas superficies.
- 34. Considera la aplicación $X: \mathbb{R}^2 \to \mathbb{R}^3$ definida como

$$X(u,v) = ((2 + \operatorname{sen} v) \cos u, (2 + \operatorname{sen} v) \operatorname{sen} u, v).$$

(A) Prueba que $S=X(\mathbb{R}^2)$ es una superficie regular de \mathbb{R}^3 y calcula el plano tangente a S en el punto $p_0=(\sqrt{2},\sqrt{2},0)$.

2.5. EJERCICIOS. 57

(B) ¿Es S una superficie orientable? Prueba que S es difeomorfa al cilindro $\mathcal{C}=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2=1\}.$

- (C) Clasifica los puntos de S en función de sus curvaturas.
- 35. Considera las superficies $S_1=\{(x,y,z)\in\mathbb{R}^3\mid z=xy\}$ y $S_2=\{(x,y,z)\in\mathbb{R}^3\mid y=x^2\}.$
 - (A) Prueba que $S_1 \cap S_2$ puede parametrizarse como una curva regular α .
 - (B) Comprueba que $p=(0,0,0)\in S_1\cap S_2$ y calcula el plano osculador de α en dicho punto. ¿Coincide este plano con alguno de los planos tangentes T_pS_1 o T_pS_2 ?
 - (C) Calcula la curvatura y la torsión de α en cada punto.
- 36. Sea S una superficie compacta y $f \colon \mathbb{R}^3 \to \mathbb{R}^3$ una función diferenciable cuyo gradiente no se anula nunca. Probar que existen $a,b \in \mathbb{R}$ con $a \le b$ tales que $S \subseteq f^{-1}([a,b])$ y S corta de forma tangencial a las superficies $f^{-1}(a)$ y $f^{-1}(b)$.
- 37. Sea S el conjunto de las rectas afines normales a la hélice dada por $\alpha(t)=(\cos t,\sin t,t)$, $t\in\mathbb{R}.$
 - (A) Probar que un punto $(x, y, z) \in \mathbb{R}^3$ está en S si y sólo si $x \operatorname{sen} z = y \cos z$.
 - (B) Demostrar que S es una superficie. Calcular una base del plano tangente a S en cada punto. Obtener una orientación de S.
 - (C) Encontrar una parametrización global de S. Probar que S es difeomorfa a \mathbb{R}^2 .
 - (D) Sea $\pi\colon S\to\mathbb{R}^2$ la proyección $\pi(x,y,z)=(x,y)$. Calcular la diferencial de π en cada punto. ¿Para qué puntos de S se cumple que π es un difeomorfismo local alrededor de esos puntos?

Capítulo 3

Curvaturas en una superficie.

3.1. Operador de Weingarten, segunda forma fundamental y curvaturas principales.

Sea S una superficie orientable y $N: S \to \mathbb{S}^2$ su aplicación de Gauss. Siguiendo la misma idea que se usó para la definición de curvatura de una curva plana, podríamos estudiar cómo se curva la superficie mirando la variación del plano tangente, o equivalentemente, la variación de la aplicación de Gauss. Por ello consideramos su diferencial en un punto $p \in S$,

$$dN_p: T_pS \to T_{N(p)}\mathbb{S}^2 = \langle N(p) \rangle^{\perp} = T_pS,$$

que es un endomorfismo de espacios vectoriales. Recordemos que en T_pS teníamos una estructura de espacio vectorial métrico euclídeo, dada por la primera forma fundamental $I_p(v,w) = \langle v,w \rangle, \ \forall v,w \in T_pS$. Veamos que dN_p tiene un buen comportamiento frente a la primera forma fundamental.

Lema 3.1.1 En la situación anterior, dN_p es un endomorfismo autoadjunto de (T_pS, I_p) .

Demostración. Sea $X=X(u,v)\colon U\subset\mathbb{R}^2\to\mathbb{R}^3$ una parametrización de S alrededor de p. Entonces,

$$\langle (N \circ X)_v, X_u \rangle = (\langle N \circ X, X_u \rangle)_v - \langle N \circ X, X_{uv} \rangle = -\langle N \circ X, X_{uv} \rangle$$
$$= -\langle N \circ X, X_{vu} \rangle = (\langle N \circ X, X_v \rangle)_u - \langle N \circ X, X_{vu} \rangle = \langle (N \circ X)_u, X_v \rangle.$$

Usando la regla de la cadena, deducimos que $\langle dN_X(X_v), X_u \rangle = \langle dN_X(X_u), X_v \rangle$. Por bilinealidad, ahora es trivial probar que $\langle dN_p(v_1), v_2 \rangle = \langle dN_p(v_2), v_1 \rangle$, $\forall v_1, v_2 \in T_pS$.

Dos invariantes asociados a un endomorfismo de espacios vectoriales son la traza y el determinante. Además, en el caso de endomorfismos diagonalizables (en particular, los

autoadjuntos) en dimensión 2, caracterizan al endomorfismo. Estos dos invariantes tiene un nombre especial en el caso de que el endomorfismo sea dN_p y como es natural, gobiernan la forma local de una superficie. Dedicaremos el resto de la asignatura a estudiar en qué forma lo hacen.

Definición 3.1.1 En la situación anterior, se define el endomorfismo de Weingarten de S en p asociado a la aplicación de Gauss N como $A_p = -dN_p$.

En un espacio vectorial métrico euclídeo $(V, \langle \cdot, \cdot \rangle)$, hay una biyección $\Phi \colon \mathcal{A} \to \mathcal{B}$ entre el conjunto \mathcal{A} de endomorfismos autoadjuntos y el conjunto \mathcal{B} de formas bilineales simétricas: Dado $f \in \mathcal{A}$, se define $\Phi(f) = g_f \in \mathcal{B}$ mediante

$$g_f(x,y) = \langle f(x), y \rangle, \quad \forall x, y \in V,$$

y dada $g \in \mathcal{B}$, se define $f_g = \Phi^{-1}(g) \in \mathcal{A}$ como el único endomorfismo de V que a cada $x \in V$ le asigna el vector $f_g(x)$ de V dado por

$$g(x,y) = \langle f_g(x), y \rangle, \quad \forall y \in V.$$

Volvamos a nuestra superficie S orientada por una aplicación de Gauss $N: S \to \mathbb{S}^2$. Aplicando lo anterior a (T_pS, I_p) , el endomorfismo de Weingarten $A_p = -dN_p$ tiene una forma bilineal simétrica asociada, que se llama la segunda forma fundamental de S en p:

$$\sigma_p(v, w) = [\Phi(A_p)](v, w) = -\langle dN_p(v), w \rangle, \quad \forall v, w \in T_p S.$$

Como A_p es un endomorfismo autoadjunto ha de ser ortogonalmente diagonalizable. A los valores propios $k_1(p), k_2(p)$ de A_p se les llama curvaturas principales de S en p respecto a la aplicación de Gauss N. Cuando $k_1(p) \neq k_2(p)$, entonces A_p tiene dos subespacios propios, cada uno con dimensión 1. En este caso, a las direcciones propias de A_p se les llama direcciones principales de S en p. Si $\{e_1, e_2\}$ es una base de direcciones principales, entonces

$$A_p e_i = -dN_p(e_i) = k_i(p)e_i, \quad i = 1, 2.$$

3.2. Curvatura de Gauss y curvatura media.

Definición 3.2.1 En la situación anterior, se definen la curvatura de Gauss y la curvatura media de S en p como

$$K(p) = \det(dN_p), \quad H(p) = -\frac{1}{2}\operatorname{Traza}(dN_p).$$

Claramente, la curvatura de Gauss no depende de la elección de la aplicación de Gauss N, por lo que tiene sentido definirla para superficies no orientables. Por el contrario, la curvatura media H depende de la elección de la aplicación de Gauss, pero H^2 puede definirse sobre superficies no orientables. Así,

$$K = k_1 k_2, \quad H = \frac{1}{2}(k_1 + k_2),$$

y la ecuación característica queda

$$(3.1) k_i^2 - 2Hk_i + K = 0,$$

para i = 1, 2. Como la anterior ecuación de segundo grado tiene solución, su discriminante ha de ser mayor o igual a cero:

$$K \leq H^2$$
,

con igualdad en $p \in S$ si y solo si $k_1(p) = k_2(p)$. En este caso, p se dice un punto *umbilical* (en este caso dN_p es un múltiplo de la identidad y la segunda forma fundamental σ_p en p es un múltiplo de la primera I_p).

Un punto $p \in S$ se dice elíptico (resp. hiperbólico, llano) si K(p) > 0 (resp. K(p) < 0, K(p) = 0). Dentro de los puntos llanos, se distinguen entre parabólicos (cuando $\sigma_p \neq 0$) y planos (cuando $\sigma_p = 0$).

Veamos algunos ejemplos.

- 1. En un plano afín $\Pi \subset \mathbb{R}^3$ la aplicación de Gauss es constante, luego $dN_p = 0$ $\forall p \in \Pi$. Esto nos dice que $k_1 = k_2 = K = H = 0$ en Π . Como todos los puntos son umbilicales, decimos que un plano afín es totalmente umbilical. Por tanto, todos los puntos de Π son de tipo plano.
- 2. En una esfera $\mathbb{S}^2(p_0,r)$ de centro $p_0 \in \mathbb{R}^3$ y radio r > 0 tenemos dos normales unitarios: $N \colon \mathbb{S}^2(p_0,r) \to \mathbb{S}^2$, $N_p = -\frac{p-p_0}{r}$ y su opuesto. Con esta elección de aplicación de Gauss, el endomorfismo de Weingarten es $A_p v = -dN_p(v) = \frac{1}{r}v$, $\forall v \in T_p \mathbb{S}^2(p_0,r)$ luego $k_1 = k_2 = \frac{1}{r} = H$ y $K = \frac{1}{r^2}$. Por tanto, $\mathbb{S}^2(p_0,r)$ también es una superficie totalmente umbilical y todos sus puntos son elípticos.
- 3. En un cilindro $C=\{p=(x,y,z)\in\mathbb{R}^3\mid x^2+y^2=r^2\}$, los normales unitarios son $N\colon C\to\mathbb{S}^2,\ N_p=-\frac{1}{r}(x,y,0)$ y su opuesto. Tomando esta aplicación de Gauss, el endomorfismo de Weingarten es $A_pv=-dN_p(v)=\frac{1}{r}(v_1,v_2,0)$ para cualquier $(v_1,v_2,0)\in T_pC$. Notemos que $\{(0,0,1),(-y,x,0)\}$ es base de T_pC y que $A_p(0,0,1)=0,\ A_p(-y,x,0)=\frac{1}{r}(-y,x,0),$ con lo que $k_1=0,\ k_2=\frac{1}{r},\ H=\frac{1}{2r}$ y K=0. Todos los puntos de C son de tipo parabólico.

Las superficies con K=0 se llaman llanas, y las que tienen H=0 se dicen minimas. Por ejemplo, el plano y el cilindro son superficies llanas, mientas que el plano y la catenoide (Ejercicio 1) son mínimas. En una superficie mínima no puede haber puntos de tipo elíptico, y sus puntos umbilicales coinciden con los puntos de tipo plano mientras que el resto son puntos hiperbólicos.

Las únicas superficies llanas y mínimas a la vez son abiertos de planos afines (si H = K = 0 entonces $k_1 = k_2 = 0$ luego $dN_p = 0$ para todo p, suponiendo la superficie conexa, esto nos lleva a que N es constante $a \in \mathbb{S}^2$, lo que implica fácilmente que la superficie está contenida en un plano afín ortogonal a a). Nótese que también hemos probado que si una superficie tiene segunda forma fundamental idénticamente nula, entonces es un abierto de un plano afín.

3.3. Superficies totalmente umbilicales.

Teorema 3.3.1 Las únicas superficies conexas, orientables y totalmente umbilicales son abiertos de planos afines y de esferas.

Demostración. Sea σ la segunda forma fundamental de una superficie conexa, orientable y totalmente umbilical $S \subset \mathbb{R}^3$ con respecto a una elección de su aplicación de Gauss $N: S \to \mathbb{S}^2$. Como S es totalmente umbilical, $\sigma = \lambda \langle , \rangle$ para cierta función $\lambda: S \to \mathbb{R}$.

Veamos que λ es diferenciable: Tomemos un punto $p \in S$ y una parametrización $X: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ de S alrededor de p. Así,

$$(\lambda \circ X) \|X_u\|^2 = \sigma_X(X_u, X_u) = -\langle dN_X(X_u), X_u \rangle = -\langle (N \circ X)_u, X_u \rangle.$$

Como $||X_u||^2$ no tiene ceros en U y $||X_u||^2$, $-\langle (N \circ X)_u, X_u \rangle$ son funciones diferenciables en U, deducimos que λ es diferenciable en X(U). Por ser p arbitrario en S, λ será diferenciable en S.

Veamos ahora que λ es constante en S: Como $\sigma = \lambda \cdot \langle , \rangle$ en S, entonces $dN_p = -\lambda 1_{T_pS}$ para todo $p \in S$. Volviendo a usar la parametrización anterior,

$$(N \circ X)_u = dN_X(X_u) = -(\lambda \circ X)X_u, \quad (N \circ X)_v = dN_X(X_v) = -(\lambda \circ X)X_v$$

en U. Derivando la primera ecuación respecto a v y restando la derivada de la segunda respecto a u nos queda

$$0 = -(\lambda \circ X)_v X_u + (\lambda \circ X)_u X_v.$$

Como $\{X_u, X_v\}$ son linealmente independientes, deducimos que $(\lambda \circ X)_u = (\lambda \circ X)_v = 0$ en U. Tomando U conexo, λ será constante en U. Ahora un argumento sencillo de conexión de S nos lleva a que λ es constante en S.

Una vez que sabemos que λ es constante en S separamos dos casos: Si $\lambda = 0$, entonces $\sigma = 0$ en S y habíamos visto antes de este teorema que S es un abierto de un plano. Y $\underline{\text{si }\lambda \in \mathbb{R} - \{0\}}$, definimos $F \colon S \to \mathbb{R}^3$ por $F(p) = p + \frac{1}{\lambda} N_p$, diferenciable. Dado $p \in S$ y $v \in T_p S$,

$$dF_p(v) = v + \frac{1}{\lambda}dN_p(v) = v - v = 0.$$

Como $p \in S$, $v \in T_pS$ son arbitrarios y S es conexa, F es será una constante $p_0 \in \mathbb{R}^3$. Esto nos dice que S está contenida en una esfera centrada en p_0 de radio $1/|\lambda|$.

3.4. Geometría local en un punto elíptico o hiperbólico.

A continuación estudiaremos el comportamiento local de una superficie alrededor de un punto elíptico o hiperbólico. Para ello nos basaremos en la noción de hessiano de una función diferenciable definida sobre una superficie, en un punto crítico. Este concepto es una extensión a superficies del correspondiente para funciones diferenciables en el plano, y nos permitirá estudiar los extremos locales de dicha función.

Definición 3.4.1 Sea $f: S \to \mathbb{R}$ una función diferenciable definida sobre una superficie $S \subset \mathbb{R}^3$. Si $p_0 \in S$ es un punto crítico de f, se define el hessiano de f en p_0 como la aplicación $(\nabla^2 f)_{p_0}: T_{p_0}S \to \mathbb{R}$ dada por

$$(\nabla^2 f)_{p_0}(v) = \frac{d^2}{dt^2} \bigg|_{t=0} (f \circ \alpha)(t),$$

donde $\alpha \colon (-\varepsilon, \varepsilon) \to S$ es cualquier curva diferenciable con $\alpha(0) = p$ y $\alpha'(0) = v$.

Para que la definición anterior tenga sentido debemos probar que no depende de la curva α elegida para representar al vector v. Supongamos que $X: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ es una parametrización de S alrededor de X(0,0)=p. Como $\{X_u(0,0),X_v(0,0)\}$ es base, tendremos $v=aX_u+bX_v$ para $a=u'(0), b=v'(0)\in\mathbb{R}$ (omitimos el punto (0,0) en lo que sigue). Además, la curva α anterior se escribirá $\alpha(t)=X(u(t),v(t))$ donde $t\mapsto (u(t),v(t))$ es una curva diferenciable valuada en U. Entonces,

$$\frac{d^2}{dt^2}\Big|_{t=0} (f \circ \alpha)(t) = \frac{d^2}{dt^2}\Big|_{t=0} (f \circ X)(u(t), v(t)) = \frac{d}{dt}\Big|_{t=0} ((f \circ X)_u \cdot u'(t) + (f \circ X)_v \cdot v'(t))$$

$$= \left[(f \circ X)_{uu} \cdot u'(0) + (f \circ X)_{uv} \cdot v'(0) \right] u'(0) + (f \circ X)_u \cdot u''(0)$$

$$+ \left[(f \circ X)_{vu} \cdot u'(0) + (f \circ X)_{vv} \cdot v'(0) \right] v'(0) + (f \circ X)_v \cdot v''(0).$$

En cada una de las dos últimas líneas, el último sumando vale cero porque p es punto crítico de f, luego queda

$$\frac{d^2}{dt^2}\Big|_{t=0} (f \circ \alpha)(t) = (f \circ X)_{uu} \cdot u'(0)^2 + 2(f \circ X)_{uv} \cdot u'(0) \cdot v'(0) + (f \circ X)_{vv} \cdot v'(0)^2$$

$$= (a,b) \left(\begin{array}{cc} (f \circ X)_{uu} & (f \circ X)_{uv} \\ (f \circ X)_{uv} & (f \circ X)_{vv} \end{array} \right) \left(\begin{array}{c} a \\ b \end{array} \right) = \left[\operatorname{Hess}_{(0,0)}(f \circ X) \right] (a,b),$$

donde $\operatorname{Hess}_{(0,0)}(f\circ X)$ es el hessiano del Análisis de la aplicación diferenciable $f\circ X$ en el punto (0,0). En particular, $\frac{d^2}{dt^2}\Big|_{t=0}(f\circ\alpha)(t)$ no depende de α y $\left[\operatorname{Hess}_{(0,0)}(f\circ X)\right](a,b)$ no depende de X.

El desarrollo anterior también prueba que $(\nabla^2 f)_{p_0}$ es una forma cuadrática sobre $T_{p_0}S$, y podemos trasladar directamente propiedades sobre extremos locales de funciones.

Lema 3.4.1 Sea $f: S \to \mathbb{R}$ una función diferenciable definida sobre una superficie $S \subset \mathbb{R}^3$, $y p_0 \in S$ un punto crítico de f.

- 1. Si p_0 es un máximo (resp. mínimo) local de f, entonces la forma cuadrática $(\nabla^2 f)_{p_0}$ es semidefinida negativa (resp. positiva).
- 2. Si $(\nabla^2 f)_{p_0}$ es definida negativa (resp. positiva), entonces p_0 es un máximo (resp. mínimo) local de f.

Ahora estudiaremos el hessiano de dos funciones definidas sobre cualquier superficie, que contienen importante información geométrica de la misma. En primer lugar, consideramos un punto p_0 de una superficie $S \subset \mathbb{R}^3$ y el plano tangente afín en p_0 , cuya ecuación es $\langle p - p_0, N(p_0) \rangle = 0$, donde N una aplicación de Gauss de S. Consideramos la función altura $h \colon S \to \mathbb{R}$ respecto a dicho plano afín,

$$h(p) = \langle p - p_0, N(p_0) \rangle, \quad p \in S.$$

Entonces, se cumple $h(p_0) = 0$, p_0 es un punto crítico de h (porque $dh_{p_0}(v) = \langle v, N(p_0) \rangle = 0$, $\forall v \in T_{p_0}S$) y dado $v \in T_{p_0}S$,

$$(\nabla^2 h)_{p_0}(v) = \frac{d^2}{dt^2} \bigg|_{t=0} \langle \alpha(t) - p_0, N(p_0) \rangle = \frac{d}{dt} \bigg|_{t=0} \langle \alpha'(t), N(p_0) \rangle$$

$$(3.2) \qquad = \langle \alpha''(0), N(p_0) \rangle = -\langle \alpha'(0), dN_p(\alpha'(0)) \rangle = \sigma_{p_0}(v, v),$$

donde $\alpha: (-\varepsilon, \varepsilon) \to S$ es una curva diferenciable tal que $\alpha(0) = p_0, \alpha'(0) = v$.

Figura 3.1: Izquierda: punto elíptico. Derecha: punto hiperbólico.

A continuación consideramos la función cuadrado de la distancia a un punto $q_0 \in \mathbb{R}^3$, $f: S \to \mathbb{R}$ dada por

$$f(p) = ||p - q_0||^2, p \in S.$$

Si un punto $p_0 \in S$ es crítico para f, entonces $0 = df_{p_0}(v) = 2\langle v, p_0 - q_0 \rangle$ para todo $v \in T_pS$ luego $p_0 - q_0$ es perpendicular a $T_{p_0}S$, es decir $p_0 - q_0 = \lambda N_{p_0}$ para cierto $\lambda \in \mathbb{R}$ y en este caso,

$$(\nabla^2 f)_{p_0}(v) = \left. \frac{d^2}{dt^2} \right|_{t=0} \|\alpha(t) - q_0\|^2 = 2 \left. \frac{d}{dt} \right|_{t=0} \langle \alpha'(t), \alpha(t) - q_0 \rangle$$

$$= 2 \left(\langle \alpha''(0), \alpha(0) - q_0 \rangle + \|\alpha'(0)\|^2 \right) = 2 \left(\langle \alpha''(0), \lambda N_{p_0} \rangle + \|v\|^2 \right)$$

$$(3.3) = 2\left(-\lambda \langle \alpha'(0), dN_{p_0}(\alpha'(0))\rangle + ||v||^2\right) = 2\left(||v||^2 + \lambda \cdot \sigma_{p_0}(v, v)\right)$$

Ahora podemos particularizar el Lema 3.4.1 a las dos funciones anteriores. La información geométrica obtenida es la siguiente:

Proposición 3.4.1 Sea p_0 un punto de una superficie $S \subset \mathbb{R}^3$.

- 1. Si p_0 es elíptico, entonces existe una esfera $\mathbb{S}^2(q_0, R)$ tangente a S en p_0 tal que $\overline{\mathbb{B}}(q_0, R) \cap S$ es un entorno de p_0 en S. En particular, existe un entorno de p_0 en S que está contenido en uno de los dos semiespacios cerrados en los que el plano $p_0 + T_{p_0}S$ divide a \mathbb{R}^3 , y el único punto de contacto entre ese entorno y $p_0 + T_{p_0}S$ es p_0 .
- 2. Si p_0 es hiperbólico, entonces en cualquier entorno de p_0 en S hay puntos en ambos semiespacios, ver Figura 3.1.

Demostración. 1. Tomemos una aplicación de Gauss N para S en un entorno de p_0 . Como p_0 es elíptico, podemos elegir N de forma que las curvaturas principales k_1, k_2 en p_0 son ambas positivas. Sea $\{e_1, e_2\}$ una base ortonormal de direcciones principales en p_0 (en rigor, para hablar de direcciones principales necesitamos que p_0 no sea un punto umbilical; si p_0 es umbilical, entonces $k_1 = k_2$ también pueden tomarse positivas y elegimos cualquier base ortonormal de $T_{p_0}S$). Sea $\mu \in \mathbb{R} - \{0\}$ a determinar y $q_0 := p_0 + \mu N_{p_0}$. Entonces, la función distancia al cuadrado a q_0 , $f(p) = ||p - q_0||^2$, tiene un punto crítico en p_0 y (3.3) nos dice que la forma bilineal simétrica asociada a $(\nabla^2 f)_{p_0}$ es

$$(\nabla^2 f)_{p_0}(v, w) = 2\left(\langle v, w \rangle - \mu \cdot \sigma_{p_0}(v, w)\right), \quad v, w \in T_{p_0} S,$$

cuya matriz respecto a la base ortonormal $\{e_1, e_2\}$ es

$$2\begin{pmatrix} 1-\mu k_1 & 0\\ 0 & 1-\mu k_2 \end{pmatrix}.$$

Así, tomando $\mu > 0$ suficientemente grande como para que $1 - \mu k_i < 0$, i = 1, 2, tendremos que $(\nabla^2 f)_{p_0}$ es definido negativo luego f tiene un máximo local estricto en p_0 . A partir de aquí, la primera frase del apartado I se obtiene tomando $I = \mu$. La segunda frase del apartado I se deduce inmediatamente de la primera.

2. Razonando por reducción al absurdo, supongamos que en cierto entorno de p_0 , la superficie S se queda a un lado del plano tangente afín en p_0 . Tomemos un sistema de referencia en \mathbb{R}^3 con origen p_0 , de forma que el plano tangente afín a S en $p_0 = \vec{0}$ es $\{z = 0\}$ y nuestra superficie S se queda localmente entorno al origen en el semiespacio $\{z \geq 0\}$. Sea a = (0,0,1) y $h: S \to \mathbb{R}$ la función altura respecto a $a, h(p) = \langle p, a \rangle$. Así, p_0 es un mínimo local (no necesariamente estricto) para h luego el hessiano $(\nabla^2 h)_{p_0}$ es semidefinido positivo sobre $T_{p_0}S = \{z = 0\}$. Elegimos una aplicación de Gauss N para S en un entorno de p_0 , de forma que $N_{p_0} = a$. Así, (3.2) nos dice que $\sigma_{p_0}(v,v) = (\nabla^2 h)_{p_0}(v) \geq 0 \ \forall v \in T_{p_0}S$, de donde la curvatura the Gauss en p_0 es no negativa, contradicción con que el punto sea hiperbólico.

En el apartado 1 de la última demostración vimos que si un punto $p_0 \in S$ es elíptico, entonces existe un punto $q_0 \in \mathbb{R}^3 - \{p_0\}$ tal que la función distancia al cuadrado a q_0 tiene un máximo local en p_0 . Veamos que el recíproco es también cierto:

Supongamos que $p_0 \in S$ es un máximo local de $f: S \to \mathbb{R}$, $f(p) = ||p - q_0||^2$, para algún $q_0 \in \mathbb{R}^3 - \{p_0\}$. Por ser p_0 punto crítico de f, tenemos que $p_0 - q_0$ lleva la dirección normal a S en p_0 o equivalentemente, podemos elegir una aplicación de Gauss N para S alrededor de p_0 de forma que $p_0 - q_0 = \lambda N_{p_0}$ para cierto $\lambda \in \mathbb{R} - \{0\}$. Como p_0 es máximo local de f, el hessiano $(\nabla^2 f)_{p_0}$ es semidefinido negativo. Razonando como en el apartado f de la última demostración, la matriz de la forma bilineal simétrica asociada a f

3.5. APLICACIÓN DE GAUSS Y CURVATURAS EN COORDENADAS LOCALES.67

respecto a una base ortonormal de direcciones principales¹ viene dada por

$$2\left(\begin{array}{cc} 1+\lambda k_1 & 0\\ 0 & 1+\lambda k_2 \end{array}\right).$$

Por tanto, $1 + \lambda k_i \leq 0$, i = 1, 2, luego $1 \leq (-\lambda k_1)(-\lambda k_2) = \lambda^2 K(p_0)$ donde K es la curvatura de Gauss de S. Esto nos dice que p_0 es un punto elíptico.

Dos consecuencias inmediatas de esta caracterización de los puntos elípticos como los máximos locales de funciones distancia al cuadrado son:

Corolario 3.4.1 Toda superficie compacta de \mathbb{R}^3 tiene un punto elíptico.

Demostración. Sea $q_0 \in \mathbb{R}^3 - S$ y $f \colon S \to \mathbb{R}$ la función distancia al cuadrado a p_0 . Como S es compacta, f debe tener un máximo $p_0 \in S$. Por el desarrollo anterior al este corolario, p_0 es un punto elíptico.

Corolario 3.4.2 No hay superficies mínimas compactas en \mathbb{R}^3 .

Demostración. Si $S \subset \mathbb{R}^3$ es compacta, entonces existe un punto elíptico $p \in S$. Como S es mínima, las curvaturas principales en p son opuestas luego $K(p) \leq 0$, contradicción. \square

3.5. Aplicación de Gauss y curvaturas en coordenadas locales.

En esta sección obtendremos unas fórmulas útiles para calcular la aplicación de Gauss, la primera y segunda formas fundamentales y las curvaturas de Gauss y media de cualquier superficie $S \subset \mathbb{R}^3$, en términos de una parametrización $X \colon U \subset \mathbb{R}^2 \to \mathbb{R}^3$ de la misma. Sabemos por (2.4) que

$$(3.5) N \circ X = \frac{X_u \times X_v}{\|X_u \times X_v\|}$$

es una aplicación de Gauss definida en X(U). Llamemos

$$\left(\begin{array}{cc} E & F \\ F & G \end{array}\right), \quad \left(\begin{array}{cc} e & f \\ f & g \end{array}\right)$$

a las matrices de la primera y segunda formas fundamentales respecto a la base $\{X_u, X_v\}$, es decir:

(3.6)
$$E = ||X_u||^2, \quad F = \langle X_u, X_v \rangle, G = ||X_v||^2.$$

 $^{^{1}}$ De nuevo tenemos que observar que si el punto p_{0} es umbilical para S, este paso puede darse.

$$(3.7)$$

$$e = \sigma(X_u, X_u) = -\langle (N \circ X)_u, X_u \rangle = \langle N \circ X, X_{uu} \rangle, \quad f = \langle N \circ X, X_{uv} \rangle, \quad g = \langle N \circ X, X_{vv} \rangle.$$

Proposición 3.5.1 En la situación anterior, la curvatura de Gauss K y media H de S vienen dadas por

(3.8)
$$K \circ X = \frac{eg - f^2}{EG - F^2}, \quad H \circ X = \frac{Eg - 2Ff + Ge}{2(EG - F^2)}.$$

Demostración. Sean $v, w \in T_pS$, donde $p \in X(U)$. Sean $v_B, w_B \in \mathbb{R}^2$ las coordenadas de v, w respecto a la base $B = \{X_u, X_v\}$. La igualdad $\sigma_p(v, w) = -\langle v, dN_p(w) \rangle$ se escribe matricialmente

$$v_B \cdot M_B(\sigma_p) \cdot w_B^t = -v_B \cdot M_B(I_p) \cdot M(dN_p, B) \cdot w_B^t,$$

donde $M_B(I_p) = \begin{pmatrix} E & F \\ F & G \end{pmatrix}$, $M_B(\sigma) = \begin{pmatrix} e & f \\ f & g \end{pmatrix}$ son las matrices de la primera y segunda forma fundamental respecto a B, y $M(dN_p, B)$ es la matriz de la diferencial de N en p respecto a B. Como lo anterior es cierto para cualesquiera $v_B, w_B \in \mathbb{R}^2$, obtenemos

$$(3.9) M_B(\sigma_p) = -M_B(I_p) \cdot M(dN_p, B).$$

Por tanto,

$$K = \det(dN_p) = \det\left[-\left(\begin{array}{cc} E & F \\ F & G \end{array}\right)^{-1} \cdot \left(\begin{array}{cc} e & f \\ f & g \end{array}\right)\right] = \frac{eg - f^2}{EG - F^2},$$

$$H = -\frac{1}{2}\operatorname{traza}(dN_p) = \frac{1}{2}\operatorname{traza}\left[\left(\begin{array}{cc} E & F \\ F & G \end{array}\right)^{-1} \cdot \left(\begin{array}{cc} e & f \\ f & g \end{array}\right)\right]$$

$$= \frac{1}{2(EG - F^2)}\left(\begin{array}{cc} Ge - Ff & Gf - Fg \\ Ef - Fe & Eg - Ff \end{array}\right) = \frac{Eg - 2Ff + Ge}{2(EG - F^2)}.$$

Como las funciones E,F,G,e,f,g son diferenciables, de la Proposición 3.5.1 obtenemos que K y H son también funciones diferenciables. Como las curvaturas principales vienen dadas por

$$k_i = H \pm \sqrt{H^2 - K}$$

(esto se deduce de resolver la ecuación de segundo grado (3.1), deducimos que k_1 y k_2 son funciones continuas en S, y diferenciables en S – {puntos umbilicales}.

Figura 3.2: Π_v es el plano de vertical en la figura.

3.6. Curvaturas normales y fórmula de Euler.

Sea p un punto de una superficie $S \subset \mathbb{R}^3$ y $v \in T_pS$ un vector unitario. Tomemos una aplicación de Gauss N para S (hacemos esto localmente alrededor de p, lo cual permite tener siempre una aplicación de Gauss aunque no sea global). Consideremos el plano afín Π_v que pasa por p cuya variedad de dirección está generada por v y N_p , ver Figura 3.2):

$$\Pi_v = \{ q \in \mathbb{R}^3 \mid \langle q - p, v \times N_p \rangle = 0 \}.$$

Así, $\{\Pi_v \mid v \in T_pS, ||v|| = 1\}$ es el haz de planos afines con base la recta normal a S en p.

Lema 3.6.1 En la situación anterior, existe un abierto V de S conteniendo a p y una curva diferenciable $\alpha_v : (-\varepsilon, \varepsilon) \to S$ con $\alpha_v(0) = p$ y $\alpha'_v(0) = v$, tal que $V \cap \Pi_v = traza(\alpha_v)$.

Demostración. Por el Corolario 2.1.1, S localmente alrededor de p como imagen inversa de un valor regular (que podemos suponer que es cero) por una función diferenciable $F: O \to \mathbb{R}$, donde O es un abierto de \mathbb{R}^3 que contiene a p. Definimos $f: \Pi_v \cap O \to \mathbb{R}$ como $f = F|_{\Pi_v \cap O}$, que es diferenciable sobre el trozo de plano $\Pi_v \cap O$. Además $p \in \Pi_v \cap O$ y f(p) = F(p) = 0 y $df_p = (dF_p)|_{T_p\Pi_v}$. Si p fuera un punto crítico de f, entonces tendríamos $T_p\Pi_v \subset \ker(dF_p) = T_pS$, lo cual es imposible porque S y Π_v se cortan transversalmente.

Terminaremos la demostración probando que existe una curva diferenciable $\alpha: (-\varepsilon, \varepsilon) \to \mathbb{R}^3$ con valores en $F^{-1}(\{0\})$, con $\alpha(0) = p$ y tal que α parametriza $F^{-1}(\{0\}) \cap \Pi_v = f^{-1}(\{0\})$ localmente alrededor de p. Para ello, tras aplicar un movimiento rígido en \mathbb{R}^3 podemos suponer que $p = 0 \in \mathbb{R}^3$ y que $\Pi_v = \{(x, y, z) \mid z = 0\}$, al que identificaremos con \mathbb{R}^2 . Nuestra función diferenciable f es ahora del tipo $f: O_1 \to \mathbb{R}$, donde $O_1 = O \cap \{z = 0\}$ es un abierto de \mathbb{R}^2 , y cumple f(0,0) = 0, $df_{(0,0)} \neq 0$. Además, el conjunto de ceros de f corresponde con los puntos del plano $\Pi_v \equiv \mathbb{R}^2$ que están sobre la superficie S. Como $df_{(0,0)} \neq 0$, podemos suponer $f_y(0,0) \neq 0$ luego por el teorema de la función implícita del

Análisis existe un abierto O_2 de \mathbb{R}^2 con $(0,0) \in O_2 \subset O_1$ tal que el conjunto de ceros de f en O_2 se parametriza de la forma

$$f^{-1}(\{0\}) \cap O_2 = \{(x, g(x)) \mid x \in (-\varepsilon, \varepsilon)\},\$$

donde $g:(-\varepsilon,\varepsilon)\to\mathbb{R}$ es una función diferenciable. Reparametrizando la curva $\alpha(x)=(x,g(x))$ por el arco tendremos la curva que estábamos buscando.

Volviendo a la situación que teníamos antes del Lema 3.6.1, podemos parametrizar por el arco la curva $\alpha_v \colon (-\varepsilon, \varepsilon) \to S$ dada por el Lema 3.4.1 (eso no destruye la condición $\alpha_v'(0) = v$ porque ||v|| = 1). Sea $\kappa_v \in \mathbb{R}$ la curvatura de α_v como curva plana, donde para definirla debemos elegir una orientación en el plano Π_v ; tomamos aquella que hace que la base $\{v, N_p\}$ sea positiva. Entonces, $\kappa_v = \langle \alpha_v''(0), N_p \rangle$. Derivando la igualdad $\langle \alpha_v', N \circ \alpha_v \rangle = 0$ en t = 0 se tiene

$$0 = \langle \alpha_v''(0), N_p \rangle + \langle \alpha_v'(0), dN_p(\alpha_v'(0)) \rangle = \kappa_v + \langle v, dN_p(v) \rangle = \kappa_v - \sigma_p(v, v),$$

de donde $\sigma_p(v,v) = \kappa_v$ nos da una interpretación geométrica de la segunda forma fundamental (a esta igualdad se la conoce con el nombre de *Teorema de Meusnier*). A $\sigma_p(v,v)$ se le llama *curvatura normal* de S en la dirección de v.

A continuación vamos a obtener la fórmula de Euler, que relaciona las curvaturas principales con las curvaturas normales. Tomamos una base ortonormal $\{e_1, e_2\}$ de T_pS con $dN_p(e_i) = -k_i(p)e_i$, entonces

$$\kappa_v = \sigma_p(v, v) = \sigma_p \left(\sum_{i=1}^2 \langle v, e_i \rangle e_i, \sum_{j=1}^2 \langle v, e_j \rangle e_j \right) = \sum_{i=1}^2 \langle v, e_i \rangle^2 \sigma_p(e_i, e_i)$$

$$= \langle v, e_1 \rangle^2 k_1(p) + \langle v, e_2 \rangle^2 k_2(p),$$

que es la fórmula de Euler². De esta fórmula se deduce que si $k_1(p) \le k_2(p)$, entonces

$$k_1(p) \le \kappa_v \le k_2(p), \quad \forall v \in T_p S, \ \|v\| = 1,$$

es decir, las curvaturas principales son el máximo y el mínimo de las curvaturas de las secciones normales a S en p. En el caso de que p sea un punto umbilical, deducimos que todas las curvaturas normales coinciden. Esto nos dice que en un punto umbilical, la superficie se curva de idéntica forma en cada dirección tangente.

²Ésta es una reformulación en lenguaje moderno del *Teorema de Euler*, generalizado más tarde por Meusnier: las curvaturas de las infinitas secciones normales de una superficie en un punto dado no son un conjunto arbitrario de números, sino que toman los valores de un polinomio de segundo grado en dos variables.

3.6.1. Líneas de curvatura y direcciones asintóticas.

Sea $S \subset \mathbb{R}^3$ una superficie.

Definición 3.6.1 Una curva $C \subset S$ se dice una línea de curvatura si C puede parametrizarse por una curva regular $\alpha \colon I \subset \mathbb{R} \to S$ de forma que $\alpha'(t)$ define una dirección principal en $\alpha(t)$, para todo $t \in I$.

Lema 3.6.2 (Teorema de Olinde Rodrigues) Sea $S \subset \mathbb{R}^3$ una superficie. Una curva regular $\alpha \colon I \subset \mathbb{R} \to S$ es una línea de curvatura si y sólo si

$$(N \circ \alpha)'(t) = \lambda(t)\alpha'(t), \quad \forall \in I$$

donde $\lambda: I \to \mathbb{R}$ es una función diferenciable. En este caso, $-\lambda(t)$ es una curvatura principal en el punto $\alpha(t)$.

Demostración. Ejercicio.

Definición 3.6.2 Una dirección asintótica de S en un punto $p \in S$ es una dirección en T_pS para la que la curvatura normal es cero. Una línea asintótica es una curva regular $\alpha: I \subset \mathbb{R} \to S$ tal que $\alpha'(t)$ define una dirección asintótica en $\alpha(t)$ para cada $t \in I$.

Lema 3.6.3 Sea $S \subset \mathbb{R}^3$ una superficie. Entonces:

- 1. Si $p \in S$ es un punto elíptico, entonces no hay direcciones asintóticas en p.
- 2. Si p es un punto parabólico, entonces existe una única dirección asintótica en p, y coincide con una de las direcciones principales en p.
- 3. Si p es un punto de tipo plano, entonces todas las direcciones de T_pS son asintóticas.
- 4. Si p es un punto hiperbólico, entonces existen exactamente dos direcciones asintóticas en p, cuyas bisectrices en T_pS son las direcciones principales.
- 5. Si S es una superficie mínima, entonces las direcciones asintóticas en cualquier punto no llano son ortogonales.

Demostración. Ejercicio.

3.7. Teoremas de Hilbert, Jellet y Liebmann.

Los tres teoremas que siguen son de tipo global, y dependen de la continuidad de las curvaturas principales de una superficie.

Teorema 3.7.1 (Hilbert) Sea S una superficie orientada y $k_1 \leq k_2 \colon S \to \mathbb{R}$ las correspondientes curvaturas principales. Supongamos que en un punto $p_0 \in S$ se cumplen las siguientes propiedades:

- 1. k_1 tiene un mínimo local en p_0 .
- 2. k_2 tiene un máximo local en p_0 .
- 3. p₀ es un punto elíptico.

Entonces, p_0 es un punto umbilical.

Demostración. Por reducción al absurdo, supongamos que p_0 no es umbilical, y por tanto $k_1(p_0) < k_2(p_0)$. Así, tienen sentido las direcciones principales en p_0 . Tras un movimiento rígido, podemos suponer que $p_0 = \vec{0}$ es el origen de \mathbb{R}^3 , el plano tangente en p_0 es $\{z = 0\}$, las direcciones principales son $e_1 = (1,0,0), e_2 = (0,1,0)$ y el normal en p_0 es (0,0,1). Por el Corolario 2.1.1, existe una parametrización $X: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ de S alrededor de p_0 de la forma X(u,v) = (u,v,h(u,v)), donde $h: U \to \mathbb{R}$ es cierta función diferenciable y U es un abierto de \mathbb{R}^2 que contiene a (0,0). Por tanto,

$$h(0,0) = h_u(0,0) = h_v(0,0) = 0.$$

Calculamos los coeficientes de la segunda forma fundamental de S:

(3.10)
$$e = \frac{h_{uu}}{\sqrt{1 + h_u^2 + h_v^2}}, \quad f = \frac{h_{uv}}{\sqrt{1 + h_u^2 + h_v^2}}, \quad g = \frac{h_{vv}}{\sqrt{1 + h_u^2 + h_v^2}}.$$

Como $X_u(0,0), X_v(0,0)$ son direcciones principales de S, (3.10) implica

$$(3.11) h_{uu}(0,0) = e(0,0) = \sigma_{p_0}(e_1,e_1) = k_1(p_0), h_{uv}(0,0) = 0, h_{vv}(0,0) = k_2(p_0).$$

Consideremos las curvas $\alpha(u) = X(u, 0), \ \beta(v) = X(0, v), \ y$ las curvas espaciales (valuadas en la esfera unidad)

$$E_1(v) = \frac{1}{\|X_u(0,v)\|} X_u(0,v), \quad E_2(u) = \frac{1}{\|X_v(u,0)\|} X_v(u,0).$$

Así, $E_1(v) \in T_{\beta(v)}S$ y $E_2(u) \in T_{\alpha(u)}S$. Ahora definimos las funciones

$$h_1(v) = \sigma_{\beta(v)}(E_1(v), E_1(v)) = \frac{h_{uu}}{(1 + h_u^2)\sqrt{1 + h_u^2 + h_v^2}}(0, v),$$

$$h_2(u) = \sigma_{\alpha(u)}(E_2(u), E_2(u)) = \frac{h_{vv}}{(1 + h_v^2)\sqrt{1 + h_u^2 + h_v^2}}(u, 0).$$

Usando la hipótesis 2 tenemos

$$h_2(0) = \sigma_{p_0}(e_2, e_2) = k_2(p_0) \ge k_2(\alpha(u)) \ge \sigma_{\alpha(u)}(E_2(u), E_2(u)) = h_2(u).$$

De forma análoga, usando la hipótesis 1 deducimos

$$h_1(0) = \sigma_{p_0}(e_1, e_1) = k_1(p_0) \le k_1(\beta(v)) \le \sigma_{\beta(v)}(E_1(v), E_1(v)) = h_1(v).$$

Por tanto, h_1 tiene un mínimo local en v = 0 y h_2 un máximo local en u = 0. De aquí se deduce que

$$(3.12) h_2''(0) \le 0 \le h_1''(0).$$

Ahora derivamos en u en la definición de h_2 , para obtener

$$h_2'(u) = \frac{h_{uvv}}{(1+h_v^2)\sqrt{1+h_u^2+h_v^2}} - \frac{2h_v h_{uv} h_{vv}}{(1+h_v^2)^2 \sqrt{1+h_u^2+h_v^2}} - \frac{h_{vv}(h_u h_{uu} + h_v h_{uv})}{(1+h_v^2)(1+h_u^2+h_v^2)^{3/2}}.$$

Derivando de nuevo, evaluando en u = 0 y usando que $h_u(0,0) = h_v(0,0) = 0$:

$$h_2''(0) = h_{uuvv}(0,0) - h_{vv}(0,0) \left[3h_{uv}(0,0)^2 + h_{uu}(0,0)^2 \right].$$

Si ahora simplificamos usando (3.11) tendremos

(3.13)
$$h_2''(0) = h_{uuvv}(0,0) - k_2(p_0)k_1(p_0)^2.$$

Razonando análogamente con h_1 se obtiene

(3.14)
$$h_1''(0) = h_{uuvv}(0,0) - k_1(p_0)k_2(p_0)^2.$$

Ahora (3.12), (3.13) y (3.14) implican

$$0 \ge h_2''(0) - h_1''(0) = -k_2(p_0)k_1(p_0)^2 + k_1(p_0)k_2(p_0)^2 = K(p_0)[k_2(p_0) - k_1(p_0)],$$

donde $K(p_0)$ es la curvatura de Gauss de S en p_0 , que es positiva por ser p_0 un punto elíptico. Así, $k_2(p_0) \leq k_1(p_0)$, contradicción.

Nota 3.7.1 En la situación del teorema de Hilbert, se puede deducir algo más fuerte:

En las condiciones del Teorema de Hilbert, existe un entorno abierto de p_0 en S que está contenido en una esfera.

En efecto, por hipótesis k_i tiene un mínimo (para i=1) o un máximo (para i=2) local en p_0 , luego existe un entorno abierto U de p_0 en S (podemos tomar U conexo) tal que $k_1(p_0) \le k_1(p)$ y $k_2(p) \le k_2(p_0)$, para cada $p \in U$. Por tanto, dado $p \in U$ se tiene

$$k_1(p_0) \le k_1(p) \le k_2(p) \le k_2(p_0) = k_1(p_0),$$

donde hemos usado que p_0 es umbilical por el Teorema de Hilbert. Lo anterior implica que k_1 y k_2 son constantes iguales a $k_1(p_0)$ en U. Finalmente, aplicando la caracterización de las superficies totalmente umbilicales en la superficie conexa U, deducimos que U es un abierto de una esfera (no puede ser un abierto de un plano porque $K(p_0) > 0$).

Teorema 3.7.2 (Jellet-Liebmann) Sea $S \subset \mathbb{R}^3$ una superficie compacta y conexa con curvatura media constante y curvatura de Gauss positiva. Entonces, S es una esfera.

Demostración. S es orientable por ser una superficie compacta en \mathbb{R}^3 (estamos usando el teorema de separación de Jordan-Brouwer). Consideremos una aplicación de Gauss para S, y sean $k_1 \leq k_2 \colon S \to \mathbb{R}$ las curvaturas principales de S respecto a ésta. Como k_1 es continua y S es compacta, existe $p_0 \in S$ donde k_1 alcanza su mínimo. Como $k_2 = 2H - k_1$ y la curvatura media H de S es constante, deducimos que k_2 alcanza un máximo en p_0 . Como $K(p_0) > 0$, podemos aplicar el Teorema de Hilbert para concluir que p_0 es umbilical. Usando la Nota 3.7.1 con U = S (notemos que el mínimo de k_1 y el máximo de k_2 en p_0 son globales y que S se supone conexa), deducimos que S está contenida en una esfera. Como S es compacta, S es una esfera.

Teorema 3.7.3 (Hilbert-Liebmann) Sea $S \subset \mathbb{R}^3$ una superficie compacta y conexa con curvatura de Gauss constante. Entonces, S es una esfera.

Demostración. Sea $K \in \mathbb{R}$ la curvatura de Gauss de S. Por ser S compacta admite un punto elíptico (luego K > 0) y S es orientable. Consideremos una aplicación de Gauss para S, y sean $k_1 \leq k_2 \colon S \to \mathbb{R}$ las curvaturas principales de S respecto a ésta. Como k_1 es continua y S es compacta, existe $p_0 \in S$ donde k_1 alcanza su mínimo. Como $K = k_1k_2$ es una constante positiva, deducimos que k_2 alcanza un máximo en p_0 . Ahora se termina igual que en la demostración del Teorema de Jellet-Liebmann.

3.8. EJERCICIOS. 75

3.8. Ejercicios.

1. Probar que la curvatura de Gauss, la curvatura media y las curvaturas principales de la catenoide $\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2=\cosh^2z\}$ son

$$K(x, y, z) = -\frac{1}{\cosh^4 z}, \quad H = 0, \quad k_1(x, y, z) = -k_2(x, y, z) = \frac{1}{\cosh^2 z}.$$

2. Probar que la curvatura de Gauss y la curvatura media del paraboloide elíptico $\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2=2z\}$ vienen dadas por

$$K(x,y,z) = \frac{1}{(1+2z)^2}, \quad H^2(x,y,z) = \frac{(1+z)^2}{(1+2z)^3}.$$

Concluir que todos sus puntos son de tipo elíptico.

- 3. Sea $A \in O(3)$, $b \in \mathbb{R}^3$ y $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ el movimiento rígido $\phi(p) = Ap + b$. Si $S \subset \mathbb{R}^3$ es una superficie $\widetilde{S} = \phi(S)$, probar que las curvaturas de Gauss y media de S y \widetilde{S} están relacionadas por $\widetilde{K} \circ \phi = K$, $\widetilde{H} \circ \phi = H$.
- 4. Sea $S=S(B,b,c)=\{p\in\mathbb{R}^3\mid \langle Bp,p\rangle+2\langle b,p\rangle+c=0\}$ la cuádrica definida en el Ejercicio 4 del tema anterior, donde $B\in\mathcal{M}_3(\mathbb{R})$ es una matriz simétrica no nula, $b\in\mathbb{R}^3$ y $c\in\mathbb{R}$. Demostrar que

$$N_p = \frac{Bp + b}{\|Bp + b\|}, \quad p \in S,$$

es una aplicación de Gauss en S, y que la segunda forma fundamental asociada es

$$\sigma_p(v,v) = -\frac{1}{\|Bp+b\|} \langle Bv, v \rangle, \quad p \in S, \ v \in T_p S.$$

Concluir que un elipsoide tiene curvatura de Gauss positiva en todos sus puntos.

5. Sea a>0. Consideremos la parametrización global $(u,v)\in\mathbb{R}^2\mapsto X(u,v)=(v\cos u,v\sin u,au)$ del helicoide $S=\{(x,y,z)\mid x\sin(z/a)=y\cos(z/a)\}$. Probar que S es una superficie mínima, y que la curvatura de Gauss de S viene dada por

$$K \circ X = -\frac{a^2}{(a^2 + v^2)^2}.$$

En particular, el helicoide no tiene puntos umbilicales y su aplicación de Gauss N es un difeomorfismo local. ¿Es N un difeomorfismo?

6. Sea $S = \{(x, y, f(x, y)) \mid (x, y) \in U\}$ el grafo de una función diferenciable $f \colon U \subset \mathbb{R}$, donde U es un abierto de \mathbb{R}^2 . Probar que

$$N = \frac{1}{\sqrt{1 + f_x^2 + f_y^2}} (-f_x, -f_y, 1)$$

es una aplicación de Gauss para S, que su curvatura de Gauss es

$$K = \frac{f_{xx}f_{yy} - f_{xy}^2}{(1 + f_x^2 + f_y^2)^2},$$

y que la curvatura media respecto a N es

$$H = \frac{(1+f_y^2)f_{xx} - 2f_x f_y f_{xy} + (1+f_x^2)f_{yy}}{2(1+f_x^2+f_y^2)^{3/2}}.$$

7. Probar que la curvatura de Gauss del paraboloide hiperbólico $S=\{(x,y,z)\mid z=x^2-y^2\}$ es

$$K = \frac{-4}{(1+4x^2+4y^2)^2}.$$

Concluir que todos los puntos de S son hiperbólicos.

- 8. Calcular la curvatura de Gauss de un toro de revolución. Estudiar qué puntos del toro son elípticos, hiperbólicos y llanos.
- 9. Clasificar según su curvatura de Gauss y media el punto p=(0,0,0) del grafo dado por $z=x^n+y^n$ (siendo $n\geq 2$). ¿Cuál es la posición local entre S y el plano afín tangente en el punto p?
- 10. Consideremos una curva regular $\alpha\colon I\to \{(x,y,z)\mid x=0\},\ \alpha(u)=(0,y(u),z(u)),$ donde y(u)>0 para todo $u\in I.$ Sea $X\colon I\times (0,2\pi)\to \mathbb{R}^3$ la parametrización de la superficie de revolución S obtenida al girar α alrededor del eje OZ. Demostrar que las curvaturas de Gauss y media de S viene dadas por

$$\begin{split} K(X(u,v)) &= \frac{z'(u)(y'(u)z''(u) - y''(u)z'(u))}{y(u)(y'(u)^2 + z'(u)^2)^2} = \frac{z'(u)}{y(u)} \frac{\kappa_{\alpha}(u)}{\|\alpha'(u)\|}, \\ H(X(u,v)) &= \frac{y(u)(y'(u)z''(u) - y''(u)z'(u)) + z'(u)(y'(u)^2 + z'(u)^2)}{2y(u)(y'(u)^2 + z'(u)^2)^{3/2}} \\ &= \frac{z'(u)}{2y(u)} \frac{1}{\|\alpha'(u)\|} + \frac{\kappa_{\alpha}(u)}{2}, \end{split}$$

donde κ_{α} es la curvatura de α como curva plana. Concluir que las superficies de revolución llanas, esto es, con K=0, son abiertos de planos, cilindros o conos. Probar también que las superficies de revolución mínimas son abiertos de planos o de catenoides.

3.8. EJERCICIOS. 77

11. Sea $\phi\colon\mathbb{R}^3\to\mathbb{R}^3$, $\phi(p)=\lambda p$, la homotecia de razón $\lambda>0$. Demostrar que ϕ es un difeomorfismo de \mathbb{R}^3 en sí mismo, que su inversa es la homotecia de razón $1/\lambda$ y que la diferencial $d\phi_p$ conserva los ángulos entre vectores. Probar que si S es una superficie de \mathbb{R}^3 , entonces $\widetilde{S}=\phi(S)$ es una superficie difeomorfa a S y que sus curvaturas están relacionadas por

$$\widetilde{K} \circ \phi = \frac{1}{\lambda^2} K, \quad \widetilde{H} \circ \phi = \frac{1}{\lambda} H.$$

(H, \widetilde{H} son las curvaturas medias de S,\widetilde{S} respecto a los normales respectivos $N,\widetilde{N}=N\circ\phi^{-1}$).

12. Sea $\psi \colon \mathbb{R}^3 - \{0\} \to \mathbb{R}^3 - \{0\}$, $\phi(p) = \frac{p}{\|p\|^2}$, la inversión centrada en el origen. Demostrar que ψ es un difeomorfismo de $\mathbb{R}^3 - \{0\}$ en sí mismo, que su inversa es la propia ψ y que la diferencial $d\psi_p$ viene dada por

$$d\psi_p(v) = \frac{v}{\|p\|^2} - 2\frac{\langle p, v \rangle}{\|p\|^4} p, \quad \forall v \in \mathbb{R}^3.$$

Deducir que conserva $d\psi_p$ conserva los ángulos entre vectores. Probar que si S es una superficie contenida en $\mathbb{R}^3-\{0\}$, entonces $\widetilde{S}=\psi(S)$ es una superficie difeomorfa a S. Supongamos que S es orientable y que N es una una aplicación de Gauss de S. Probar que

$$\widetilde{N}_{\psi(p)} = N_p - 2 \frac{\langle N_p, p \rangle}{\|p\|^2} p, \quad p \in S,$$

es una aplicación de Gauss de \widetilde{S} , y que las curvaturas de Gauss y media de S,\widetilde{S} (respecto a N,\widetilde{N}) están relacionadas por

$$\widetilde{K}(\psi(p)) = \|p\|^4 K(p) + 4\|p\|^2 \langle N_p, p \rangle H(p) + 4\langle N_p, p \rangle^2,$$

$$\widetilde{H}(\psi(p)) = \|p\|^2 H(p) + 2\langle N_p, p \rangle.$$

Deducir que las inversiones conservan puntos umbilicales.

13. Sea S una superficie conexa y orientable y $N\colon S\to\mathbb{S}^2$ una aplicación de Gauss. Dado $p_0\in\mathbb{R}^3$, se define la función soporte de S con base p_0 como

$$f \colon S \to \mathbb{R}, \quad f(p) = \langle N_p, p - p_0 \rangle.$$

- (A) Probar que en una esfera, la función soporte con base en su centro es constante.
- (B) Supongamos que existe $p_0 \in \mathbb{R}^3$ tal que la función soporte de S con base p_0 es constante, y que la superficie S no es llana. Probar que S es un abierto de una esfera centrada en p_0 .

- 14. Sea $S\subset\mathbb{R}^3$ una superficie compacta y conexa que admite una función soporte constante. Probar que S es una esfera.
- 15. Sea S una superficie compacta y orientada. Probar que la aplicación de Gauss de S es un difeomorfismo local si y sólo si la curvatura de Gauss de S es positiva.
- 16. Sea Π un plano vectorial de \mathbb{R}^3 y $\alpha\colon I\to\Pi$ una curva regular que es un homeomorfismo sobre su imagen. Dado un vector unitario $a\in\mathbb{R}^3$ que sea normal a Π , definimos $X\colon I\times\mathbb{R}\to\mathbb{R}^3$ por

$$X(t,s) = \alpha(t) + sa, \quad t \in I, \ s \in \mathbb{R}.$$

A la superficie $S=X(I\times\mathbb{R})$ se le llama $cilindro\ recto\ con\ directriz\ \alpha(I)$. Probar que S es una superficie llana y calcular la curvatura media de S.

- 17. Sea $S \subset \mathbb{R}^3$ una superficie compacta, contenida en una bola de radio r > 0. Probar que existe un punto $p \in S$ tal que $K(p) \geq \frac{1}{r^2}$ y $|H(p)| \geq \frac{1}{r}$.
- 18. Supongamos que una superficie S y un plano afín Π son tangentes a lo largo de una curva regular. Probar que todos los puntos de la traza de esta curva son llanos.
- 19. Probar que si una superficie $S \subset \mathbb{R}^3$ contiene un segmento de línea recta r, entonces en cada punto $p \in r$ se tiene que la dirección de r es una dirección asintótica de S en p la curvatura de Gauss de S cumple $K(p) \leq 0$.
- 20. Sea p un punto en una superficie $S \subset \mathbb{R}^3$. Probar que la suma de las curvaturas normales en cualquier par de direcciones tangentes en p ortogonales es constante.
- 21. Prueba el Teorema de Olinde Rodrigues (Lemma 3.6.2).
- 22. Demuestra el Lema 3.6.3.
- 23. INDICATRIZ DE DUPIN. Sea $S \subset \mathbb{R}^3$ una superficie. Dado $p \in S$, se define la indicatriz $de\ Dupin$ en p como

$$\mathcal{D}(p) = \{ v \in T_p S \mid \sigma_p(v, v) = \pm 1 \}.$$

Probar que

- a) Si $p \in S$ es un punto de tipo plano, entonces $\mathcal{D}(p) = \emptyset$.
- b) Si p es un punto umbilical no llano, entonces $\mathcal{D}(p)$ es una circunferencia centrada en el origen de T_pS .
- c) Supongamos que $p \in S$ no es un punto umbilical. Sea $B = \{e_1, e_2\}$ una base ortonormal de direcciones principales en p, con curvaturas principales asociadas

3.8. EJERCICIOS. 79

 $k_1,k_2\in\mathbb{R}$. Dado $v\in T_pS$, sean $(a,b)_B\in\mathbb{R}^2$ las coordenadas de v respecto a B, es decir $v=ae_1+be_2$. Probar que

$$\mathcal{D}(p) = \{(a,b)_B \in \mathbb{R}^2 \mid k_1 a^2 + k_2 b^2 = \pm 1\},\$$

que es una cónica en el plano (a,b). Esta cónica puede ser de tres tipos:

- Si p es un punto elíptico, entonces $\mathcal{D}(p)$ es una elipse con semiejes $1/\sqrt{|k_1|}$, $1/\sqrt{|k_2|}$ apuntando en las direcciones principales en p.
- Si p es un punto parabólico, entonces $\mathcal{D}(p)$ es un par de rectas paralelas a una de las direcciones principales en p, a distancia del origen $1/\sqrt{|k|}$, donde k es la curvatura principal no nula en p.
- Si p es un punto hiperbólico, entonces $\mathcal{D}(p)$ es una pareja de hipérbolas que cortan a los ejes dados por las direcciones principales en los puntos $\pm (1/\sqrt{k_2},0)_B$, $\pm (0,-1/\sqrt{-k_1})_B$ (hemos ordenado las curvaturas principales en p de forma que $k_1 < 0 < k_2$), de forma que esta hipérbolas son asintóticas a las direcciones asintóticas de T_pS (de aquí el nombre de direcciones asintóticas, recordemos que en este caso las direcciones asintóticas forman ángulos cuyas bisectrices son los ejes $e_1 = \mathsf{OX},\ e_2 = \mathsf{OY}$ dados por las direcciones principales).

24. DIRECCIONES CONJUGADAS.

Sea $S\subset\mathbb{R}^3$ una superficies. Dado $p\in S$, dos vectores $v,w\in T_pW-\{0\}$ se definen $direcciones\ conjugadas\$ si $\sigma_p(v,w)=0$ (claramente, esto no depende de los vectores v,w sino sólo de sus direcciones). Probar que

- a) En un punto de tipo plano, todo par de direcciones son conjugadas.
- b) En un punto umbilical no llano, todo par de direcciones ortogonales son conjugadas.
- c) Las direcciones principales en p son direcciones conjugadas.
- d) Las direcciones asintóticas son conjugadas de sí mismas.
- 25. Variación Paralela. Sea S una superficie orientable y $N\colon S\to \mathbb{S}^2$ una aplicación de Gauss. Dado r>0, consideramos la aplicación $F_r\colon S\to \mathbb{R}^3$ dada por

$$F_r(p) = p + rN_p, \quad p \in S.$$

Supongamos que $F_r(S)$ es una superficie (llamada $superficie\ paralela$) y que para cada $r \in (0, \varepsilon), F_r \colon S \to S_r$ es un difeomorfismo, para cierto $\varepsilon > 0$. Fijemos $r \in (0, \varepsilon)$.

(A) Sea $p \in S$ y $e_1, e_2 \in T_pS$ vectores unitarios y ortogonales con $dN_p(e_i) = -k_i(p)e_i$, i = 1, 2 (es decir, $k_1(p), k_2(p)$ son las curvaturas principales en p). Demostrar que $(dF_r)_p(e_i) = (1 - rk_i(p))e_i$, $1 - rk_i(p) > 0$ y $1 - 2rH(p) + r^2K(p) > 0$.

- 80
- (B) Probar que el plano tangente a S en $p \in S$ coincide con el plano tangente a $F_r(S)$ en $F_r(p)$, y que existe una aplicación de Gauss N' para $F_r(S)$ tal que $N' \circ F_r = N$.
- (C) Probar que la recta normal afín a S en $p \in S$ coincide con la recta normal afín a $F_r(S)$ en $F_r(p)$.
- (D) Probar que las curvaturas principales de S en $p \in S$ y de $F_r(S)$ en $F_r(p)$ están relacionados por

$$k'_i(F_r(p)) = \frac{k_i(p)}{1 - rk_i(p)}, \quad i = 1, 2,$$

y que las direcciones principales coinciden.

Demostrar que las curvaturas de Gauss y media de S y $F_r(S)$ se relacionan mediante

$$K' \circ F_r = \frac{K}{1 - 2rH + r^2K}, \quad H' \circ F_r = \frac{H - rK}{1 - 2rH + r^2K}.$$

- (E) Supongamos que S tiene curvatura media constante $H=\frac{1}{2r}$. Demostrar que K no tiene ceros en S y que $F_r(S)$ tiene curvatura de Gauss constante $K'=\frac{1}{r^2}$.
- 26. Comparación de superficies en un punto.

Sean S_1, S_2 dos superficies orientables tangentes en un punto común p. Tomemos aplicaciones de Gauss N_i en S_i , i=1,2, tales que $(N_1)_p=(N_2)_p$. Así, podemos expresar S_1, S_2 localmente como grafos de funciones diferenciables f_1, f_2 definidas en un abierto de $T_pS_1=T_pS_2$ que contiene al origen. Además, salvo un giro y una traslación supondremos que $p=\vec{0}\in\mathbb{R}^3$, $T_pS_i=\{z=0\}$ y $(N_1)_p=(N_2)_p=(0,0,1)$. Decimos que S_1 está por encima de S_2 alrededor de p si existe un entorno del origen en T_pS_1 tal que $f_1\geq f_2$ en dicho entorno.

- (A) Probar que si S_1 está por encima de S_2 alrededor de p, entonces las segundas formas fundamentales de S_1, S_2 respecto a N_1, N_2 cumplen $(\sigma_1)_p(v,v) \geq (\sigma_2)_p(v,v)$ para todo $v \in T_pS_1$. En particular, las curvaturas medias cumplen $H_1(p) \geq H_2(p)$.
- (B) Demostrar que si $(\sigma_1)_p(v,v) > (\sigma_2)_p(v,v)$ para todo $v \in T_pS_1 \{0\}$, entonces S_1 está por encima de S_2 alrededor de p.
- 27. Sea S un grafo sobre un disco de radio r>0 en \mathbb{R}^2 . Probar que si la curvatura media H de S cumple $H\geq a$ para un a>0, entonces $ar\leq 1$.
- 28. Consideremos el elipsoide $S \subset \mathbb{R}^3$ de ecuación $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, donde 0 < a < b < c.
 - (A) Sean

$$F: \mathbb{R}^3 \to \mathbb{R}, \qquad F(x, y, z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2},$$

$$\theta: S \to \mathbb{R}^3, \qquad \theta(x, y, z) = \left(\frac{x}{a^2}, \frac{y}{b^2}, \frac{z}{c^2}\right),$$

$$h = \|\nabla F\|/2: S \to \mathbb{R}$$

 $(\nabla F$ es el gradiente de F). Probar que $N=\frac{\theta}{h}$ es una aplicación de Gauss para S.

3.8. EJERCICIOS. 81

(B) Sea $p \in S$. Demostrar que p es umbilical si y sólo si $\det(d\theta_p(v), \theta(p), v) = 0$ para todo $v \in \langle \theta(p) \rangle^{\perp}$.

(C) Consideremos la forma bilineal simétrica $Q \colon \mathbb{R}^3 \rtimes \mathbb{R}^3 \to \mathbb{R}$ dada por $Q(v,w) = v^t \cdot A \cdot w$, donde

$$A = \begin{pmatrix} 0 & (a^2 - b^2)z & (c^2 - a^2)y \\ (a^2 - b^2)z & 0 & (b^2 - c^2)x \\ (c^2 - a^2)y & (b^2 - c^2)x & 0 \end{pmatrix}.$$

Demostrar que p es umbilical si y sólo si Q(v,v)=0, para todo $v\in\langle\theta(p)\rangle^{\perp}$.

- (D) Probar que si $p \in S$ es umbilical, entonces $\det(A) = 0$ y por tanto una de las coordenadas de p es cero.
- (E) Deducir que los puntos umbilicales del elipsoide S se reducen a los siguientes cuatro: $\left(\pm a\sqrt{\frac{b^2-a^2}{c^2-a^2}},0,\pm c\sqrt{\frac{c^2-b^2}{c^2-a^2}}\right)$.
- 29. Sea S una superficie orientable, conexa y con curvaturas principales constantes. Probar que si S tiene un punto elíptico, entonces S es un abierto de una esfera.
- 30. Sea $S \subset \mathbb{R}^3$ una superficie compacta y conexa, con curvatura de Gauss positiva. Si H/K es constante, probar que S es una esfera.
- 31. Sea $S \subset \mathbb{R}^3$ una superficie compacta y conexa, con curvatura de Gauss positiva. Si una curvatura principal de S es constante, probar que S es una esfera.
- 32. Banda de Möbius. Se considera la superficie no orientable $S=X(\mathbb{R}^2)$, siendo $X\colon\mathbb{R}^2\to\mathbb{R}^3$ la aplicación dada por

$$X(u,v) = ((2 + v\sin(u/2))\sin u, (2 + v\sin(u/2))\cos u, v\cos(u/2)), \quad (u,v) \in \mathbb{R}^2.$$

Comprobar que la curvatura de Gauss de S viene dada por:

$$K(X(u,v)) = -\frac{1}{\left[\frac{v^2}{4} + (2 + v\sin(u/2))^2\right]^2}.$$

33. Se dice que una aplicación diferenciable entre superficies $f: S \to S'$ es conforme si para cada $p \in S$ y cualesquiera $u, v \in T_pS$ se cumple que

$$\langle (df)_p(u), (df)_p(v) \rangle = \lambda(p)\langle u, v \rangle,$$

donde $\lambda\colon S\to\mathbb{R}$ es diferenciable y positiva. Consideremos el cilindro circular recto $S=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2=1\}$, la catenoide $S'=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2=\cosh^2(z)\}$, y la aplicación $f\colon S\to S'$ definida por $f(x,y,z)=(x\cosh z,y\cosh z,z)$. Demostrar que f es un difeomorfismo conforme.

34. Sea S una superficie orientable y $N\colon S\to\mathbb{S}^2(1)$ una aplicación de Gauss. Probar que dado $p\in S$ y $u,v\in T_pS$, se tiene:

$$\langle dN_p(u), dN_p(v) \rangle = -K(p)\langle u, v \rangle - 2H(p)\langle dN_p(u), v \rangle.$$

Deducir que la aplicación de Gauss de una superficie mínima sin puntos umbilicales es una aplicación conforme.

- 35. Sobre el cilindro $S = \{(x,y,z) \mid x^2 + y^2 = 1\}$ se considera la curva $\alpha_n(t) = (\cos t, \sin t, nt)$, con $n \in \mathbb{N}$. Calcular la curvatura normal de S en la dirección del normalizado de $\alpha'_n(0)$.
- 36. Sean S_1 y S_2 dos superficies tangentes a lo largo de una curva regular y conexa C. Probar que:
 - (A) Si C es una línea asintótica de S_1 , entonces también lo es de S_2 .
 - (B) Si S_1 es un plano afín, entonces los puntos de C son llanos de S_2 .
 - Si C es una línea de curvatura de S_1 , ¿también lo es de S_2 ?
- 37. Sea S una superficie orientable y P un plano afín. Supongamos que S y P se cortan a lo largo de una curva regular α formando un ángulo constante. Demostrar que α es una línea de curvatura de S.
- 38. Sea $\Pi=p_0+\langle a\rangle^\perp$ un plano afín en \mathbb{R}^3 $(a\in\mathbb{R}^3,\,\|a\|=1)$, y $\phi\colon\mathbb{R}^3\to\mathbb{R}^3$ la reflexión con respecto a $\Pi,\,\phi(p)=p-2\langle p-p_0,a\rangle a,\,\forall p\in\mathbb{R}^3$. Supongamos que $S\subset\mathbb{R}^3$ es una superficie orientable simétrica respecto a Π (es decir, $\phi(S)\subseteq S$), con $S\not\subset\Pi$, y $N\colon S\to\mathbb{S}^2(1)$ una aplicación de Gauss de S.
 - (A) Probar que dado $p \in S \cap \Pi$, se tiene $N_p \in \vec{\Pi}$ (indicación: demostrar que dado $p \in S \cap \Pi$, $d\phi_p$ deja invariante a $L(\{N_p\})$ y discutir sobre los valores posibles del autovalor de $d\phi_p$ asociado a N_p).
 - (B) Sea $v \in T_pS$ un vector unitario tal que $\vec{\Pi} = L(\{v,N_p\})$. Probar que $dN_p(v)$ es paralelo a v (indicación: parametrizar localmente $S \cap \Pi$ alrededor de p como una curva p.p.a. α , y derivar la ecuación $\langle N_\alpha, a \rangle = 0$). Deducir que $\{v, v \times N_p\}$ es una base (ortonormal) de direcciones principales en p.
- 39. Sea $S \subset \mathbb{R}^3$ una superficie de revolución. Probar que en cada punto $p \in S$, las direcciones principales en p vienen dadas por la dirección tangente a la generatriz de S que pasa por p y la de la circunferencia contenida en S y ortogonal a la generatriz en p.
- 40. Sea $S \subset \mathbb{R}^3$ una superficie orientable y $p \in S$. Se define la tercera forma fundamental de S en p como:

$$III_p(u, v) = \langle A_p(u), A_p(v) \rangle, \quad \forall u, v \in T_p S,$$

3.8. EJERCICIOS.

donde A_p es el endomorfismo de Weingarten en p. Demostrar que $III_p=2H(p)\sigma_p-K(p)I_p$, donde I_p es la primera forma fundamental en p y σ_p es la segunda forma fundamental en p.

- 41. Demostrar que si S es una superficie compacta y conexa con curvatura de Gauss K > 0 y tal que 2H + K es una constante $c \ge 0$, entonces S es una esfera.
- 42. Sea S un ovaloide. Supongamos que existe $b \in \mathbb{R}$ de forma que H+bK=0 en S. Demostrar que S es una esfera.
- 43. ¿Qué se puede decir de una superficie orientada S cuya aplicación de Gauss $N \colon S \to \mathbb{S}^2(1)$ es una isometría global?
- 44. Se considera el conjunto $S = \{(x, y, z) \in \mathbb{R}^3 \mid \cos(x) + \cos(y) + \cos(z) = 0\}.$
 - (A) Demostrar que S es una superficie orientable y calcular el plano tangente de S en cada punto.
 - (B) Calcular la curvatura de Gauss, la curvatura media y una base ortonormal de direcciones principales de S en el punto $p=(0,\pi,\pi/2)$.
- 45. Consideramos el helicoide $S=X(\mathbb{R}^2)$, donde $X:\mathbb{R}^2\to\mathbb{R}^3$ viene dada por $X(u,v)=(v\cos u,v\sin u,u)$.
 - (A) Prueba que se anula la curvatura normal de S en la dirección tangente a cada una de las siguientes curvas:

$$\alpha(u)=X(u,v_0)$$
, con $v_0\in\mathbb{R}$, $y \qquad \beta(v)=X(u_0,v)$, con $u_0\in\mathbb{R}$.

- (B) Usa el apartado anterior para calcular las direcciones principales de S en un punto arbitrario.
- 46. Sea S una superficie conexa, compacta y orientada, sin puntos llanos, cuyas curvaturas principales k_1 y k_2 cumplen que $k_1 \le k_2$ y $k_1 e^{k_2}$ es constante. Prueba que S es una esfera.
- 47. Una superficie S es homogénea si dados cualesquiera $p,q\in S$ existe una isometría $f\colon S\to S$ con f(p)=q. Demostrar que si S es compacta, conexa y homogénea entonces S es una esfera.
- 48. Para cada $n \in \mathbb{N}$ se considera el subconjunto de \mathbb{R}^3 dado por:

$$S_n = \{(x, y, z) \in \mathbb{R}^3 \mid x^{2n} + y^{2n} + z^{2n} = 1\}.$$

(A) Probar que S_n es una superficie orientable y calcular una aplicación de Gauss.

- (B) Demostrar que los puntos de S_n en los que el plano tangente es horizontal son umbilicales. ¿Son puntos de tipo plano?
- (C) ¿En qué puntos de S_n no es un difeomorfismo local la proyección $\pi\colon S_n\to\mathbb{R}^2$ dada por $\Pi(x,y,z)=(x,y)$?
- (D) Probar que la aplicación $f \colon S_n \to \mathbb{S}^2(1)$ dada por $f(p) = \frac{p}{\|p\|}$ es un difeomorfismo.
- 49. Sea S una superficie compacta y conexa con curvatura de Gauss positiva en cada punto. Supongamos que las curvaturas principales k_1 y k_2 de S cumplen $k_2 = f(k_1)$, donde $f : \mathbb{R} \to \mathbb{R}$ es una función decreciente. Probar que S es una esfera.
- 50. Sea S una superficie orientable, cerrada y conexa de forma que H^2-K es constante. ¿Es S un plano o una esfera?

Capítulo 4

Isometrías y geodésicas.

Estudiaremos en este capítulo los objetos fundamentales de la geometría intrínseca: las $geod\acute{e}sicas$, curvas en una superficie que juegan el papel de las rectas de la geometría Euclídea. Estas geodésicas son el punto de partida del estudio de la geometría intrínseca en abstracto, y pueden generalizarse a "superficies abstractas" (es decir, sin tener que estar embebidas en \mathbb{R}^3 e incluso a "superficies de dimensión arbitraria", llamadas variedades, sólo requiriendo que en cada punto de las mismas tengamos una métrica euclídea definida sobre el espacio tangente, que cambia suavemente de punto a punto. Este es el punto de partida de la Geometría Riemanniana, que no veremos en esta asignatura.

4.1. Distancia intrínseca de una superficie.

En \mathbb{R}^n , la curva más corta uniendo dos puntos dado es el segmento de recta con esos extremos. Nos planteamos ahora qué sentido tiene preguntarse cuál es la curva más corta uniendo dos puntos en una superficie. Cuando una curva en una superficie tenga esta propiedad de minimización de longitudes de curvas uniendo sus mismos extremos, se la llamará $geodésica\ minimizante$. Es claro el interés de determinar las geodésicas minimizantes sobre la Tierra, por ejemplo para trazar cartas de navegación aéreas.

En el caso de una superficie conexa $S \subset \mathbb{R}^3$, tenemos dos posibles distancias a considerar; en primer lugar, la restricción a S de la distancia usual d_u sobre \mathbb{R}^3 , es decir,

$$d_u(p,q) = ||p - q||, \quad p, q \in S.$$

Sabemos que $d_u(p,q)$ es la menor longitud de curvas diferenciables a trozos en \mathbb{R}^3 que unen p y q (esta longitud mínima es alcanzada por el segmento rectilíneo que une p y q). La otra noción natural de distancia consiste en considerar el ínfimo de longitudes de curvas que unan p y q y que estén contenidas en la superficie:

$$(4.1) \qquad d(p,q)=\inf\{L(\alpha)_0^1\mid \alpha\colon [0,1]\to S \text{ curva } C^\infty \text{ a trozos, } \alpha(0)=p,\ \alpha(1)=q\},$$

donde $L(\alpha)_0^L = \text{Longitud}(\alpha)_0^L$. Para que el ínfimo anterior tenga sentido, necesitamos el siguiente

Lema 4.1.1 Dados dos puntos p,q en una superficie conexa $S \subset \mathbb{R}^3$, existe una curva C^{∞} a trozos que empieza en p y termina en q.

Demostración. Como S es conexa y localmente arcoconexa, S es arcoconexa¹. Por tanto, existe una curva continua $\exists \beta \colon [0,1] \to S$ con $\beta(0) = p$ y $\beta(1) = q$. Sea

$$A = \{t \in [0,1] \mid \exists \alpha_t \text{ curva } C^{\infty} \text{ a trozos en } S \text{ que empieza en } p \text{ y termina en } \beta(t)\}.$$

A es abierto, sin más que considerar una parametrización $X \colon U \subset \mathbb{R}^2 \to \mathbb{R}^3$ de S alrededor de un punto $\beta(t_0)$ con $t_0 \in A$, de forma que U sea convexo en \mathbb{R}^2 (por ejemplo, U puede ser una bola $\mathbb{B}(0,\delta) \subset \mathbb{R}^2$). A es cerrado, ya que si $\{t_k\}_k \subset A$ converge a $t_\infty \in [0,1]$, entonces tomamos una parametrización $X \colon U = \mathbb{B}(0,\delta) \subset \mathbb{R}^2 \to \mathbb{R}^3$ de S alrededor del punto $\beta(t_\infty) \in S$. Por continuidad de β , tenemos $\beta(t_k) \in X(U)$ a partir de un natural, y ahora no hay más que unir $\beta(t_k)$ con $\beta(t_\infty)$ dentro de X(U) (podemos, por convexidad de U) y usar que $t_k \in A$ para deducir que $t_\infty \in A$. Como $A \neq \emptyset$ y [0,1] es conexo, deducimos que $1 \in A$.

Por tanto, $d: S \times S \to \mathbb{R}$ está ya bien definida. Dados dos puntos p,q de una superficie, el segmento que los une no tiene porqué estar contenido en la superficie; aún así, es claro a partir de la definición (4.1) que

$$(4.2) ||p - q|| \le d(p, q).$$

Proposición 4.1.1 En la situación anterior, d es distancia. Es decir, dados $p, q, x \in S$ se tienen

- 1. $d(p,q) \ge 0$, y si d(p,q) = 0, entonces p = q.
- 2. d(p,q) = d(q,p).
- 3. $d(p,q) \le d(p,x) + d(x,q)$ (designal dad triangular).

Demostración. La desigualdad en 1 es trivial. Y si d(p,q) = 0, entonces (4.2) implica que ||p-q|| = 0, de donde p = q. 2 se deduce de que existe una biyección que conserva las longitudes, del conjunto de curvas diferenciables valuadas en S que empiezan en p y terminan en q en el conjunto de curvas diferenciables valuadas en S que empiezan en q

¹Esta es una propiedad de espacios topológicos: si X es un espacio topológico conexo y localmente arcoconexo, y C es una componente arcoconexa de X, entonces C es abierta. Como X se escribe en unión disjunta de sus componentes arcoconexas y éstas son abiertas, entonces caso de haber más de una se contradiría la conexión de X.

Figura 4.1: Variación de una curva α en una superficie.

y terminan en p. Para 3 basta conectar curvas que empiezan en p y terminan en x con curvas que comienzan en x y terminan en q, y luego comparar los ínfimos de las longitudes de estas curvas conectadas con todas las que comienzan en p y terminan en q.

Una vez que sabemos que d es una distancia, (S, d) se convierte en un espacio métrico.

4.2. Variaciones de una curva.

Para calcular las curvas en una superficie que minimizan la longitud entre sus extremos, primero deben minimizar la longitud de entre curvas *próximas* con los mismos extremos. Esto nos lleva de forma natural al concepto de *variación propia* de una curva dada.

Definición 4.2.1 Sea α : $[a,b] \to S$ una curva diferenciable sobre una superficie $S \subset \mathbb{R}^3$. Una *variación* de α es una aplicación diferenciable $F: [a,b] \times (-\varepsilon,\varepsilon) \to S$ tal que $F_0(t) := F(t,0) = \alpha(t)$ para cada $t \in [a,b]$, ver Figura 4.1.

Las curvas longitudinales de la variación son F_s : $[a,b] \to S$, $F_s(t) = F(t,s)$, $\forall s \in (-\varepsilon,\varepsilon)$. Así, la curva central de la variación es $F_0 = \alpha$. Las curvas transversales de F son F_t : $(-\varepsilon,\varepsilon) \to S$, $F_t(s) = F(t,s)$, $\forall t \in [a,b]$. La variación se dice propia en a si $F_s(0) = a$ $\forall s \in (-\varepsilon,\varepsilon)$, y se dice propia si es propia en a y en b simultáneamente (es decir, fija los extremos de α).

El campo variacional de F es la aplicación diferenciable $V: [a,b] \to \mathbb{R}^3$ dada por

$$V(t) = \frac{\partial F}{\partial s}(t,0), \quad t \in [a,b].$$

Claramente, $V(t) \in T_{\alpha(t)}S$, $\forall t \in [a, b]$. Esto es, V es un campo tangente a S.

Si la variación es propia, su campo variacional se anulará en los extremos. A continuación veremos una especie de recíproco de la construcción anterior: los campos tangentes a lo

largo de una curva pueden ser integrados, y si se anulan en los extremos de la curva, la variación que lo integra puede elegirse propia. Antes de este resultado sobre variaciones de una curva necesitaremos el siguiente resultado auxiliar.

Lema 4.2.1 (Existencia de entornos tubulares) Sea p_0 un punto en una superficie $S \subset \mathbb{R}^3$. Entonces, existe un entorno abierto orientable V de p_0 en S y un número $\delta > 0$ tal que el conjunto

$$T(V, \delta) = \{ p + tN_p \mid p \in V, |t| < \delta \},$$

(donde $N: V \to \mathbb{S}^2$ es una aplicación de Gauss) cumple

- 1. $T(V, \delta)$ es un abierto de \mathbb{R}^3 .
- 2. La aplicación $E: V \times (-\delta, \delta) \to T(V, \delta)$ definida por $E(p, t) = p + tN_p$ es un difeomorfismo.

En estas condiciones, a $T(V, \delta)$ se le llama entorno tubular de V de radio δ .

Demostración. Como el resultado es local, podemos suponer que S es orientable y que $N\colon S\to\mathbb{S}^2$ es una aplicación de Gauss para S. La aplicación $E\colon S\times\mathbb{R}\to\mathbb{R}^3$ dada por $E(p,t)=p+tN_p$ es diferenciable (en el sentido de que lo es fijando cada una de sus variables por separado). En estas condiciones, se puede calcular la diferencial de E en $(p,t)\in S\times\mathbb{R}$ en analogía a las derivadas parciales, actuando sobre $(v,0),(0,1)\in T_pS\times\mathbb{R}$, sin más que derivar la composición de E con curvas que representen a esos vectores:

$$dE_{(p,t)}(v,0) = \frac{d}{ds}\Big|_{s=0} E(\alpha(s),t) = \frac{d}{ds}\Big|_{s=0} (\alpha(s) + tN_{\alpha(s)}) = v + tdN_p(v),$$

$$dE_{(p,t)}(0,1) = \frac{d}{ds}\Big|_{s=0} E(p,t+s) = \frac{d}{ds}\Big|_{s=0} (p+(t+s)N_p) = N_p.$$

donde $\alpha \colon (-\varepsilon,\varepsilon) \to S$ es una curva diferenciable tal que $\alpha(0)=p, \, \alpha'(0)=v.$ Así, $dE_{(p,0)}$ es un isomorfismo de espacios vectoriales. El Teorema de la Función Inversa (que también es válido en esta situación) nos da la existencia de un entorno V de p en S y un $\delta>0$ tales que $E|_{V\times(-\delta,\delta)}\colon V\times(-\delta,\delta)\to E(V\times(-\delta,\delta))=T(V,\delta)$ es un difeomorfismo. \square

Proposición 4.2.1 Sea $\alpha:[a,b] \to S$ una curva diferenciable sobre una superficie $S \subset \mathbb{R}^3$ y $V:[a,b] \to \mathbb{R}^3$ una aplicación diferenciable tal que $V(t) \in T_{\alpha(t)}S$ para cada $t \in [a,b]$. Entonces, existe $\varepsilon > 0$ y una variación $F:[a,b] \times (-\varepsilon,\varepsilon) \to S$ de α cuyo campo variacional es V. Además, si V(a) = V(b) = 0, la variación F puede elegirse propia.

Demostración. Dado $t \in [a, b]$, el Lema 4.2.1 nos permite tomar un entorno abierto orientable V_t de $\alpha(t)$ en S y un número $\delta_t > 0$ tal que

$$T(V_t, \delta_t) = \{ p + tN_p \mid p \in V_t, |t| < \delta_t \}$$

es un entorno tubular de V_t de radio δ_t . Moviendo t en [a,b] y usando la compacidad de $\alpha([a,b])$ podemos encontrar una partición $a=t_0 < t_1 < \ldots < b=t_k$, abiertos V_1,\ldots,V_k de S y un $\delta>0$ de forma que:

- $\alpha([t_{i-1}, t_i]) \subset V_i$, para cada i.
- $T(V_i, \delta) = \{p + sN_p \mid p \in V_i, |s| < \delta\}$ es un entorno tubular de V_i de radio δ . Es decir, $T(V_i, \delta)$ es un abierto de \mathbb{R}^3 y la aplicación $E_i \colon V_i \times (-\delta, \delta) \to T(V_i, \delta)$ dada por $E_i(p, s) = p + sN_p$ es un difeomorfismo.

Llamemos $\pi^{(i)} = \pi_1 \circ E_i^{-1} : T(V_i, \delta) \to V_i, \ \pi \pi^{(i)}(E_i(p, s)) = p$, donde π_1 es la proyección sobre el primer factor. Claramente, $\pi^{(i)}$ es diferenciable.

La primera condición anterior y la compacidad de $\alpha([t_{i-1}, t_i])$ implican que dado $i = 1, \ldots, k$, existe $\varepsilon_i' > 0$ tal que si $p \in \mathbb{R}^3$ cumple $\operatorname{dist}(p, \alpha([t_{i-1}, t_i])) < \varepsilon_i'$, entonces $p \in T(V_i, \delta)$. Tomemos $\varepsilon' = \min\{\varepsilon_1', \ldots, \varepsilon_i'\} > 0$ y llamemos

$$M := \max\{\|V(t)\| : t \in [a, b]\}, \quad \varepsilon = \frac{\varepsilon'}{(1+M)}.$$

Dado $i = 1, ..., k \text{ y } (t, s) \in [t_{i-1}, t_i] \times (-\varepsilon, \varepsilon)$, se tiene

$$\operatorname{dist}(\alpha(t) + sV(t), \alpha([a,b])) \leq \operatorname{dist}(\alpha(t) + sV(t), \alpha(t)) = \|sV(t)\| < \varepsilon M < \varepsilon' < \varepsilon_i',$$

luego $\alpha(t) + sV(t) \in T(V_i, \delta)$. Ahora podemos definir $F_i : [t_{i-1}, t_i] \times (-\varepsilon, \varepsilon) \to S$ mediante

$$F_i(t,s) = \pi^{(i)} \left(\alpha(t) + sV(t) \right),$$

que es claramente diferenciable. En la intersección de dos entornos tubulares consecutivos $T(V_i, \delta) \cap T(V_{i+1}, \delta)$, las correspondientes proyecciones $\pi^{(i)}, \pi^{(i+1)}$ coinciden (llevan cada punto en su proyección ortogonal sobre la superficie). También podemos suponer que los distintos V_i sólo se cortan para índices consecutivos, por compacidad de $\alpha([a, b])$. De todo esto se puede deducir que la aplicación $F: [a, b] \times (-\varepsilon, \varepsilon) \to S$ definida por $F(t, s) = F_i(t, s)$ si $t \in [t_{i-1}, t_i]$ está bien definida y es diferenciable. Es fácil ver que F es una variación de α , cuyo campo variacional viene dado por

$$(4.3) \quad \frac{\partial F}{\partial s}(t,0) = (dF)_{(t,0)}(0,1) = \frac{d}{ds} \Big|_{0} F(t,s) = \frac{d}{ds} \Big|_{0} \pi \left(\alpha(t) + sV(t)\right) = d\pi_{\alpha(t)}(V(t)).$$

Ahora calculamos la diferencial de π . Dado $(p,t) \in W \times (-\delta,\delta)$ y $v \in T_p S$,

$$v = (d\pi_1)_{(p,t)}(v,0) = d(\pi \circ E)_{(p,t)}(v,0) = d\pi_{p+tN_p}\left(dE_{(p,t)}(v,0)\right) = d\pi_{p+tN_p}\left(v + tdN_p(v)\right),$$

luego tomando t=0 tenemos $d\pi_p(v)=v, \forall p\in W \ y \ v\in T_pS$. Sustituyendo en (4.3),

$$\frac{\partial F}{\partial s}(t,0) = (dF)_{(t,0)}(0,1) = \frac{d}{ds}\Big|_{0} F(t,s) = V(t),$$

luego el campo variacional de F es V. Por último, es inmediato comprobar que cuando V(a) = V(b) = 0, la variación F así definida es propia.

4.2.1. Las geodésicas como puntos críticos de la longitud.

Definición 4.2.2 Sea $F:[a,b]\times(-\varepsilon,\varepsilon)\to S$ una variación de una curva diferenciable $\alpha\colon [a,b]\to S$ sobre una superficie $S\subset\mathbb{R}^3$. Se define la función longitud de la variación F como $L_F\colon(-\varepsilon,\varepsilon)\to\mathbb{R}$,

$$L_F(s) = L(F_s) = \text{longitud}(F_s) = \int_a^b \left\| \frac{\partial F}{\partial t}(t, s) \right\| dt.$$

Es claro que para la definición anterior no necesitamos que la curva F_s sea regular, ya que la longitud es invariante frente a reparametrizaciones. Pero para poder derivar el integrando anterior respecto a s necesitamos que $s \in (-\varepsilon, \varepsilon) \mapsto \left\| \frac{\partial F}{\partial t}(t,s) \right\|$ sea diferenciable en s para cada $t \in [a,b]$. Como F es diferenciable, lo anterior se tendrá por composición si aseguramos que $\frac{\partial F}{\partial t}(t,s)$ no tiene ceros en [a,b], $\forall s \in (-\varepsilon,\varepsilon)$. Una forma de conseguir esto es suponer que α es una curva regular, es decir $\frac{\partial F}{\partial t}(t,0) = \alpha'(t) \neq 0$ para cada $t \in [a,b]$. Por compacidad de [a,b] y continuidad de $\frac{\partial F}{\partial t}(t,s)$, podemos tomar $\varepsilon > 0$ suficientemente pequeño como para que $\frac{\partial F}{\partial t}(t,s)$ no tenga ceros en $[a,b] \times (-\varepsilon,\varepsilon)$. En estas condiciones, un resultado de derivación de integrales de funciones reales de variable real dependientes de un parámetro nos asegura que $L_F = L_F(s)$ es derivable en $s \in (-\varepsilon,\varepsilon)$ y su derivada se calcula integrando la derivada del integrando anterior, es decir:

(4.4)
$$L'_{F}(s) = \int_{a}^{b} \frac{\partial}{\partial s} \left\| \frac{\partial f}{\partial t}(t, s) \right\| dt = \int_{a}^{b} \frac{\langle \frac{\partial^{2} F}{\partial t \partial s}, \frac{\partial F}{\partial t} \rangle}{\left\| \frac{\partial F}{\partial s} \right\|}(t, s) dt.$$

Si suponemos que α está p.p.a., entonces

(4.5)
$$L'_{F}(0) = \int_{a}^{b} \langle \frac{\partial^{2} F}{\partial t \partial s}, \frac{\partial F}{\partial t} \rangle (t, 0) dt.$$

Teorema 4.2.1 (Primera fórmula de variación de la longitud) $Sea \alpha: [a,b] \to S$ una curva diferenciable y p.p.a. con valores en una superficie $S \subset \mathbb{R}^3$. $Sea F: [a,b] \times (-\varepsilon,\varepsilon) \to S$ una variación diferenciable de α con campo variacional V. Entonces,

(4.6)
$$L'_F(0) = -\int_a^b \langle V(t), \alpha''(t) \rangle dt + \langle V(b), \alpha'(b) \rangle - \langle V(a), \alpha'(a) \rangle.$$

Demostración. Usando (4.5) y el Teorema fundamental del Cálculo,

$$L'_{F}(0) = \int_{a}^{b} \frac{\partial}{\partial t} \langle \frac{\partial F}{\partial s}, \frac{\partial F}{\partial t} \rangle (t, 0) dt - \int_{a}^{b} \langle \frac{\partial F}{\partial s}, \frac{\partial^{2} F}{\partial t^{2}} \rangle (t, 0) dt$$

$$= \langle \frac{\partial F}{\partial s}, \frac{\partial F}{\partial t} \rangle (b, 0) - \langle \frac{\partial F}{\partial s}, \frac{\partial F}{\partial t} \rangle (a, 0) - \int_{a}^{b} \langle \frac{\partial F}{\partial s}, \frac{\partial^{2} F}{\partial t^{2}} \rangle (t, 0) dt$$

$$= \langle V(b), \alpha'(b) \rangle - \langle V(a), \alpha'(a) \rangle - \int_{a}^{b} \langle V(t), \alpha''(t) \rangle dt.$$

Gracias a la primera fórmula de variación de la longitud podemos caracterizar los puntos críticos de la longitud para variaciones propias. Antes introducimos algo de notación: Dado $p \in S$ y $v \in \mathbb{R}^3$, podemos descomponer v de forma única como

$$v = v^T + \langle v, N_p \rangle N_p$$

donde N_p es un vector unitario perpendicular a T_pS .

Corolario 4.2.1 Sea $\gamma: [a,b] \to S$ una curva regular en una superficie. Son equivalentes:

- 1. Para toda variación propia F de γ , la función longitud L_F de F cumple $L'_F(0) = 0$.
- 2. La componente tangencial $(\gamma'')^T$ de la aceleración γ'' de γ es colineal con γ' , es decir $(\gamma'')^T \times \gamma' = 0$ en [a, b].

Demostración. Primero veamos que la condición $(\gamma'')^T \times \gamma' = 0$ es invariante frente a reparametrizaciones: si $\beta(s) = \gamma(h(s))$ es una reparametrización de γ , entonces $\dot{\beta} = \dot{h}\gamma'(h)$ y $\ddot{\beta} = \ddot{h}\gamma'(h) + (\dot{h})^2\gamma''(h)$, luego $(\ddot{\beta})^T = \ddot{h}(\gamma'(h))^T + (\dot{h})^2(\gamma''(h))^T = \ddot{h}\gamma'(h) + (\dot{h})^2(\gamma''(h))^T$ y

$$(\ddot{\beta})^T \times \dot{\beta} = \left[\ddot{h} \gamma'(h) + (\dot{h})^2 (\gamma''(h))^T \right] \times \dot{h} \gamma'(h) = (\dot{h})^3 ((\gamma'')^T \times \gamma')(h),$$

lo que implica que la condición 2 es invariante frente a reparametrizaciones. También la condición 1 lo es, claramente. Así, en lo que sigue supondremos que γ está p.p.a., luego γ'' es ortogonal a γ' . Esto nos dice que $(\gamma'')^T \times \gamma' = 0$ si y sólo si $(\gamma'')^T = 0$ (de hecho, es

inmediato probar que si γ está parametrizada proporcionalmente al arco, esta equivalencia se mantiene).

Supongamos primero que γ está p.p.a. y $(\gamma'')^T = 0$ en [a, b]. Entonces, dada una variación propia F de γ , la primera variación de la longitud nos dice que

$$L_F'(0) = -\int_a^b \langle V(t), \gamma''(t) \rangle dt = -\int_a^b \langle V(t), [\gamma''(t)]^T \rangle dt = 0.$$

Recíprocamente, supongamos que 1 se da. Tomemos una función derivable $h: [a, b] \to \mathbb{R}$ que se anule en a y b y que sea estrictamente positiva en (a, b). Definimos $V: [a, b] \to \mathbb{R}^3$ mediante $V(t) = h(t)[\gamma''(t)]^T$. La Proposición 4.2.1 asegura que existe una variación propia F de γ con campo variacional V. Llamemos L_F a la función longitud de F. La primera fórmula de variación de la longitud y la hipótesis 1 implican

$$0 = L'_F(0) = -\int_a^b h\langle (\gamma'')^T, \gamma'' \rangle dt = -\int_a^b h \|(\gamma'')^T\|^2 dt.$$

Como el integrando anterior es no negativo en (a,b) y su integral es cero, deducimos que $h\|(\gamma'')^T\|^2 = 0$ en [a,b]. Como h > 0 en (a,b), debe ser $(\gamma'')^T = 0$ en (a,b), y por continuidad también en [a,b].

Definición 4.2.3 Sea $S \subset \mathbb{R}^3$ una superficie. Una curva diferenciable $\gamma \colon [a,b] \to S$ se dice *geodésica* si su aceleración $\gamma''(t)$ es perpendicular a S:

$$\gamma''(t) \perp T_{\gamma(t)}S, \quad \forall t \in [a, b].$$

Toda geodésica está parametrizada proporcionalmente al arco, ya que

$$\frac{d}{dt} \|\gamma'(t)\|^2 = 2\langle \gamma''(t), \gamma'(t) \rangle = 0.$$

En particular:

- 1. Las únicas reparametrizaciones de una geodésica que siguen siendo geodésicas son aquellas donde el cambio de parámetro es afín, h(t) = at + b con $a \neq 0$. Esto nos dice que la propiedad de que una curva sea geodésica no sólo depende de su traza, sino de cómo se recorre ésta. Desde luego, las curvas constantes son geodésicas, pero éstas no son interesantes.
- 2. Si γ es una geodésica de S, entonces $(\gamma'')^T = 0$, luego por el Corolario 4.2.1, γ es punto crítico de la función longitud para toda variación propia de γ (pero no necesariamente un mínimo). Recíprocamente, si $\gamma \colon [a,b] \to S$ es una curva regular parametrizada proporcionalmente al arco y γ es un punto crítico del funcional longitud para toda variación propia de γ , entonces el Corolario 4.2.1 asegura que $(\gamma'')^T \times \gamma' = 0$ en [a,b]. Como γ está parametrizada proporcionalmente al arco, entonces $(\gamma'')^T = 0$ en [a,b], es decir, γ es una geodésica. En resumen:

Una curva parametrizada proporcionalmente al arco $\gamma \colon [a,b] \to S$ es una geodésica si y sólo si es un punto crítico del funcional longitud para toda variación propia de γ .

Incluso antes de ver ejemplos, mostraremos que el concepto de geodésica es natural para estudiar geometría intrínseca de superficies.

Definición 4.2.4 Una aplicación diferenciable $F\colon S\to \widetilde{S}$ entre dos superficies se llama isometría local si su diferencial en cada punto de S es una isometría vectorial (es decir, 2 se cumple). Si además F es un difeomorfismo, diremos que F es una isometría, y en tal caso, S y \widetilde{S} se dicen superficies isométricas².

Como una isometría vectorial entre dos planos vectoriales es un isomorfismo, deducimos que toda isometría local es un difeomorfismo local. La composición de isometrías locales es una isometría local. La inversa de una isometría es una isometría, y el conjunto de isometrías de una superficie en sí misma es un grupo con la composición. Por el teorema de la función inversa, si $F \colon S \to \widetilde{S}$ es una isometría local, dado $p \in S$ existen entornos abiertos U de p en S y \widetilde{p} en \widetilde{S} tales que $F(U) = \widetilde{U}$ y $F|_U \colon U \to \widetilde{U}$ es una isometría.

Por ejemplo, Sea $\Pi = \{(x, y, z) \mid z = 0\}$ y $C = \{(x, y, z) \mid x^2 + y^2 = 1\}$. Entonces, la aplicación $F \colon \Pi \to C$ dada por $F(x, y, 0) = (\cos x, \sin x, y)$ es una isometría local, y si la restringimos a la banda abierta $S = \{(x, y, z) \in \Pi \mid 0 < x < 2\pi\}$ entonces $F|_S \colon S \to \widetilde{S}$ es una isometría sobre el abierto $C - (\{(1, 0)\} \times \mathbb{R})$.

El siguiente resultado caracteriza a las isometrías locales e interpreta geométricamente las mismas.

Proposición 4.2.2 Sea $F: S \to \widetilde{S}$ una aplicación diferenciable entre dos superficies. Entonces, F es una isometría local si y sólo si F conserva la longitud de las curvas, es decir: Para toda curva diferenciable $\alpha: I \subset \mathbb{R} \to S$ y todo subintervalo $[a,b] \subset I$, se tiene $L(F \circ \alpha)_a^b = L(\alpha)_a^b$.

Demostración. Sea $\alpha: I \to S$ una curva diferenciable y $[a, b] \subset I$. Entonces,

$$L(F \circ \alpha)_a^b = \int_a^b \|(F \circ \alpha)'(t)\| dt.$$

Si F es una isometría local, entonces $\|(F \circ \alpha)'(t)\| = \|dF_{\alpha(t)}(\alpha'(t))\| = \|\alpha'(t)\|$ de donde $L(F \circ \alpha)_a^b = L(\alpha)_a^b$. Recíprocamente, sea $p \in S$ y $v \in T_pS$. Si v = 0, la igualdad $\|dF_p(v)\| = \|v\|$ se da trivialmente. Supongamos $v \neq 0$ y tomemos una curva diferenciable $\alpha : (-\varepsilon, \varepsilon) \to 0$

 $[\]overline{}^2$ "Ser isométrica a" es una relación de equivalencia en el conjunto de las superficies de \mathbb{R}^3 . Por ello, siempre que S sea isométrica a \widetilde{S} , también \widetilde{S} será isométrica a S. Esto nos permite decir simplemente que ambas superficies son isométricas, sin explicitar el orden.

S con $\alpha(0) = p$, $\alpha'(0) = v$. Por continuidad de α' podemos suponer que α es regular. Entonces, dado $t \in (0, \varepsilon)$,

$$\int_0^t \|(F \circ \alpha)'(s)\| \, ds = L(F \circ \alpha)_0^t = L(\alpha)_0^t = \int_0^t \|\alpha'(s)\| \, ds,$$

luego derivando en t y aplicando el teorema fundamental del cálculo, $\|(F \circ \alpha)'(t)\| = \|\alpha'(t)\|$. Evaluando en t = 0 obtenemos $\|dF_p(v)\| = \|v\|$.

Proposición 4.2.3 Sea $F: S \to \widetilde{S}$ una isometría local entre dos superficies $y \gamma: [a,b] \to S$ una curva diferenciable en S. Entonces, γ es una geodésica de S si y sólo si $F \circ \gamma$ es una geodésica de \widetilde{S} .

Demostraci'on. De la definición de geodésica se deduce que este concepto es puramente local, y por tanto nos podemos restringir al caso de que F sea una isometría. Entonces F y su inversa conservan longitudes y variaciones propias, luego conservan los puntos críticos de las correspondientes funciones longitud. Como también conservan la propiedad de que una curva esté parametrizada proporcionalmente al arco, la proposición está probada. \Box

Veamos algunos ejemplos de geodésicas.

- 1. Dados $p,v\in\mathbb{R}^2$, la curva $\gamma\colon\mathbb{R}\to\mathbb{R}^2$ dada por $\gamma(t)=p+tv$ es una geodésica. Además, $\gamma(0)=p,\,\gamma'(0)=v.$ Recíprocamente, en \mathbb{R}^2 (o en cualquier plano afín) no hay más geodésicas que éstas.
- 2. Dados $p \in \mathbb{S}^2 = \mathbb{S}^2(1)$ y $v \in T_p \mathbb{S}^2 = \langle p \rangle^{\perp}, \, v \neq 0$, la curva $\gamma \colon \mathbb{R} \to \mathbb{S}^2$ dada por

$$\gamma(t) = \cos(\|v\|t)p + \sin(\|v\|t)\frac{v}{\|v\|}$$

es la geodésica que pasa por p en t=0 con velocidad v. La traza de γ es un círculo máximo de \mathbb{S}^2 .

3. Dado un punto p=(x,y,z) en el cilindro $C=\{x^2+y^2=1\}$, el vector v=(-ay,ax,b) es tangente a C en p, para cualquier $(a,b)\in\mathbb{R}^2-\{(0,0)\}$. La curva $\gamma\colon\mathbb{R}\to C$ dada por

$$\gamma(t) = (x\cos(at) - y\sin(at), y\cos(at) + x\sin(at), bt + z)$$

es la geodésica que pasa por p en t=0 con velocidad v. La traza de γ es una circunferencia horizontal si b=0, una recta vertical si a=0 y una hélice circular si $ab \neq 0$, ver Figura 4.2.

Figura 4.2: Geodésicas en un cilindro.

En los dos últimos ejemplos hemos dicho que γ es la geodésica y no una geodésica que pasa por p en t=0 con velocidad v. Esto exige que no haya más de una con estas condiciones iniciales, lo que será cierto en general (Teorema 4.2.2). No obstante, no es difícil probar directamente que éstas son las únicas geodésicas, sin usar este resultado general (Ejercicios 1 y 2).

Teorema 4.2.2 (Existencia y unicidad de geodésicas) Sea p_0 un punto en una superficie $S \subset \mathbb{R}^3$ y $v \in T_{p_0}S$. Entonces, existe una única geodésica maximal

$$\gamma(\cdot) = \gamma(\cdot, p_0, v) \colon I_{p_0, v} \to S \quad con \quad \gamma(0) = p_0, \ \gamma'(0) = v,$$

donde $I_{p_0,v}$ es un intervalo abierto de \mathbb{R} que contiene a cero.

Demostración. Haremos la demostración de dos formas; en ambos casos nos basaremos en la existencia y unicidad de solución maxima de un problema de valores iniciales (PVI). En la primera forma, el PVI será de segundo orden, definido a partir de una parametrización de la superficie. En la segunda demostración, el PVI será de primer orden porque lo plantearemos en el fibrado tangente de la superficie, $TS = \bigcup_{p \in S} T_p S$; la equivalencia entre la primera formulación y la segunda es la misma que permite transformar un sistema de EDOs de segundo orden en un sistema de EDOs de primer orden con el doble de ecuaciones que el primero. La maximalidad de la que habla el Teorema 4.2.2 no es la maximalidad que proporciona el correspondiente resultado de existencia y unicidad de soluciones de un PVI, ya que la formulación del mismo es siembre local (por medio de una parametrización, o por medio de un entorno tubular de un entorno abierto de p_0 en S); sin embargo, esta última unicidad nos permite prolongar la solución local del PVI de forma única, hasta conseguir la geodésica maximal que aparece en el enunciado del teorema.

PRIMERA DEMOSTRACIÓN.

Sea $X = X(u, v) \colon U \to \mathbb{R}^3$ una parametrización local de S alrededor de p_0 . Toda curva $\gamma = \gamma(t)$ en S con $\gamma(0) = p_0 = X(0, 0)$ se escribirá (al menos, alrededor de t = 0) de la forma

$$\gamma(t) = X(\beta(t)), \quad \beta(t) = (u(t), v(t)) \in U,$$

donde β es una curva diferenciable en U con $\beta(0) = (0,0)$. Por tanto,

$$\gamma' = (X \circ \beta)' = dX_{\beta}(\beta') = u'X_{u}(\beta) + v'X_{v}(\beta).$$

Volviendo a derivar,

$$\gamma'' = u''X_{u}(\beta) + u'(X_{u} \circ \beta)' + v''X_{v}(\beta) + v'(X_{v} \circ \beta)'
= u''X_{u}(\beta) + v''X_{v}(\beta) + u'[u'X_{uu}(\beta) + v'X_{uv}(\beta)] + v'[u'X_{vu}(\beta) + v'X_{vv}(\beta)]
= u''X_{u}(\beta) + v''X_{v}(\beta) + (u')^{2}X_{uu}(\beta) + 2u'v'X_{uv}(\beta) + (v')^{2}X_{vv}(\beta).$$

Por tanto,

$$(4.7) \qquad (\gamma'')^T = u'' X_u(\beta) + v'' X_v(\beta) + (u')^2 X_{uu}(\beta)^T + 2u'v' X_{uv}(\beta)^T + (v')^2 X_{vv}(\beta)^T.$$

A continuación escribimos $X_{uu}(\beta)^T$, $X_{uv}(\beta)^T$, $X_{vv}(\beta)^T$ en combinación lineal de $X_u(\beta)$, $X_v(\beta)$. Esto lo hacemos en cualquier punto de U (omitimos la variable):

$$(4.8) (X_{uu})^T = \Gamma_{11}^1 X_u + \Gamma_{11}^2 X_v, \quad (X_{uv})^T = \Gamma_{12}^1 X_u + \Gamma_{12}^2 X_v, \quad (X_{vv})^T = \Gamma_{22}^1 X_u + \Gamma_{22}^2 X_v,$$

para ciertas funciones diferenciables Γ^k_{ij} en U. Podemos escribir (4.8) de forma más compacta:

$$(D_{ij}X)^T = \sum_{k=1}^{2} \Gamma_{ij}^k D_k X, \quad \forall i, j = 1, 2,$$

donde $D_1X = X_u$, $D_{12}X = X_{uv}$, etc. Las funciones Γ_{ij}^k pueden calcularse explícitamente a partir de X y de la primera forma fundamental de S, aunque no usaremos las expresiones concretas de dichas funciones. Lo importante de cara a nuestro PVI en las incógnitas u(t), v(t) es que las Γ_{ij}^k no dependen de γ . De (4.7) y (4.8) se tiene que $(\gamma'')^T = 0$ (es decir, γ es geodésica) si y sólo si u(t), v(t) satisfacen el sistema de dos ecuaciones diferenciales ordinarias de segundo orden siguiente: (4.9)

$$\begin{cases} u''(t) + (u'(t))^2 \Gamma^1_{11}(u(t), v(t)) + 2u'(t)v'(t)\Gamma^1_{12}(u(t), v(t)) + (v'(t))^2 \Gamma^1_{22}(u(t), v(t)) = 0, \\ v''(t) + (u'(t))^2 \Gamma^2_{11}(u(t), v(t)) + 2u'(t)v'(t)\Gamma^2_{12}(u(t), v(t)) + (v'(t))^2 \Gamma^2_{22}(u(t), v(t)) = 0. \end{cases}$$

Ahora la teoría clásica de EDOs nos dice que para determinar de forma única una solución u(t), v(t) de (4.9), debemos dar (u(0), v(0)) y (u'(0), v'(0)). El primer dato es (0,0), porque $X(0,0) = p_0$, y el segundo equivale a dar un vector tangente $v \in T_{p_0}S$.

SEGUNDA DEMOSTRACIÓN.

Sean V un entorno abierto orientable de p_0 en S y $\delta > 0$ tales que $T(V, \delta) = \{p + sN_p \mid p \in V, |s| < \delta\}$ es un entorno tubular de V, siendo $N \colon V \to \mathbb{S}^2$ una aplicación de Gauss (todo ello dado por el Lema 4.2.1). Así, $T(V, \delta)$ es un abierto de \mathbb{R}^3 y la aplicación $E \colon V \times (-\delta, \delta) \to T(V, \delta)$ dada por $E(p, s) = p + sN_p$ es un difeomorfismo. Consideremos la aplicación diferenciable $\pi = \pi_1 \circ E^{-1} \colon T(V, \delta) \to V$, $\pi(p + sN_p) = p$, donde π_1 es la proyección sobre el primer factor.

Sea $G \colon T(V, \delta) \times \mathbb{R}^3 \to \mathbb{R}^3$ la aplicación diferenciable dada por

$$G(x,y) = -\langle y, d(N \circ \pi)_x(y) \rangle (N \circ \pi)(x),$$

y $\mathcal{G}: T(V, \delta) \times \mathbb{R}^3 \to \mathbb{R}^3 \times \mathbb{R}^3$ dada por

$$\mathcal{G}(x,y) = (y, G(x,y)),$$

también diferenciable. Ahora se considera el sistema de ODE de primer orden

$$(4.10) (x'(t), y'(t)) = \mathcal{G}(x(t), y(t)) = (y(t), G(x(t), y(t))),$$

que es equivalente a

$$(4.11) x''(t) = G(x(t), x'(t)).$$

Aplicando a (4.10) resultados de existencia y unicidad y de dependencia diferenciable de soluciones de un sistema de ODE en función de las condiciones iniciales, concluímos que

1. Dada una condición inicial $(a,b) \in T(V,\delta) \times \mathbb{R}^3$, existe $\varepsilon = \varepsilon(a,b) \in (0,\infty]$ y existe una aplicación diferenciable $g_{a,b} \colon (-\varepsilon,\varepsilon) \to T(V,\delta) \times \mathbb{R}^3$ tal que

$$(\star) \left\{ \begin{array}{l} g'_{a,b}(t) = \mathcal{G}(g_{a,b}(t)) \ \forall t \in (-\varepsilon, \varepsilon), \\ g_{a,b}(0) = (a,b). \end{array} \right.$$

- 2. $g_{a,b}$ es maximal, en el sentido de que no puede definirse como solución del problema de valores iniciales (\star) en un intervalo simétrico mayor.
- 3. $g_{a,b}$ depende diferenciablemente de a, b, en el sentido de que el conjunto

$$\mathcal{D} = \{ (t, a, b) \in \mathbb{R} \times T(V, \delta) \times \mathbb{R}^3 \mid |t| < \varepsilon(a, b) \}$$

es abierto (de \mathbb{R}^7) y la aplicación $\Gamma \colon \mathcal{D} \to T(V, \delta) \times \mathbb{R}^3$ dada por

$$\Gamma(t, a, b) = g_{a,b}(t)$$

es diferenciable.

Volvamos a las condiciones iniciales $p_0 \in S$, $v \in T_{p_0}S$ del enunciado. Como $(p_0, v) \in T(V, \delta) \times \mathbb{R}^3$, tenemos un $\varepsilon = \varepsilon(p_0, v) > 0$ y una solución $g = g_{p_0, v} \colon (-\varepsilon, \varepsilon) \to T(V, \delta) \times \mathbb{R}^3$ de (\star) . Si denotamos por g(t) = (x(t), y(t)), entonces $x \colon (-\varepsilon, \varepsilon) \to T(V, \delta)$ es diferenciable y cumple (4.11) junto con $x(0) = p_0, x'(0) = y(0) = v$. Veamos que $t \mapsto x(t)$ es la geodésica buscada.

Primero veamos que $t\mapsto x(t)$ está valuada en S. Usando el difeomorfismo E asociado al entorno tubular, tendremos

(4.12)
$$x(t) = p(t) + s(t)N_{p(t)} = E(p(t), s(t)),$$

para ciertas aplicaciones diferenciables $t \mapsto p(t) \in V$ y $t \mapsto s(t) \in (-\delta, \delta)$. Entonces, $p_0 = x(0)$ implica que $p(0) = p_0$ y s(0) = 0. Además, derivando en (4.12) obtenemos

$$x'(t) = p'(t) + s'(t)N_{n(t)} + s(t)dN_{n(t)}(p'(t)),$$

de donde

$$(4.13) s'(t) = \langle x'(t), N_{p(t)} \rangle,$$

en particular $s'(0) = \langle v, N_{p_0} \rangle = 0$. Derivando en (4.13),

$$s''(t) = \langle x''(t), N_{p(t)} \rangle + \langle x'(t), dN_{p(t)}(p'(t)) \rangle$$

$$\stackrel{(4.11)}{=} \langle G(x(t), x'(t)), N_{p(t)} \rangle + \langle x'(t), dN_{p(t)}(p'(t)) \rangle$$

$$= -\langle x'(t), d(N \circ \pi)_{x(t)}(x'(t)) \rangle + \langle x'(t), dN_{p(t)}(p'(t)) \rangle = 0$$

para todo t, luego s es una función afín. Como s(0) = s'(0) = 0, deducimos que s(t) = 0 y así, $x(t) = p(t) \in S$ para todo $t \in (-\varepsilon, \varepsilon)$. Para ver que $t \mapsto x(t)$ es una geodésica, calculamos

$$[x''(t)]^T = [G(x(t), x'(t))]^T = 0,$$

Luego $t \mapsto x(t)$ es una geodésica. Recíprocamente, si $\gamma(t)$ es una geodésica con $\gamma(0) = p_0$ y $\gamma'(0) = v$, entonces por definición $\gamma''(t)$ es perpendicular a S en $\gamma(t)$, es decir

$$\gamma''(t) = \lambda(t) N_{\gamma(t)},$$

para cierta función $\lambda = \lambda(t)$ que viene dada por

$$\lambda = \langle \gamma'', N_{\gamma} \rangle = -\langle \gamma', dN_{\gamma}(\gamma') \rangle.$$

Así,

$$\gamma'' = -\langle \gamma', dN_{\gamma}(\gamma') \rangle N_{\gamma} = -\langle \gamma', d(N \circ \pi)_{\gamma}(\gamma') \rangle (N \circ \pi)(\gamma) = G(\gamma, \gamma'),$$

es decir, $t \mapsto \gamma(t)$ es una solución de (4.11). Esto nos dice que las geodésicas de S son exactamente las soluciones de (4.11) cuyas condiciones iniciales son un punto de S y un

vector tangente a S en ese punto. Ahora el teorema se deduce de las propiedades 1,2,3 anteriores.

La demostración anterior y la dependencia diferenciable de la solución de un problema de valores iniciales a partir de sus condiciones iniciales, permiten asegurar que si variamos $p_0 \in S$ y $T_{p_0}S$ de forma diferenciable, entonces los números $a(p_0, v), b(p_0, v)$ y la geodésica $\gamma(\cdot, p_0, v)$ que aparecen en el Teorema 4.2.2 también se mueven de forma diferenciable. A la aplicación $(p, v) \mapsto \gamma(\cdot, p, v)$ se le llama el flujo geodésico de S.

Lema 4.2.2 (Lema de homogeneidad) Con la notación del Teorema 4.2.2, se tiene que para cada $\lambda > 0$, $I_{p,\lambda v} = \frac{1}{\lambda} I_{p,v} y$

$$\gamma(t, p, \lambda v) = \gamma(\lambda t, p, v), \quad \forall t \in I_{p, \lambda v}.$$

Demostración. Se deduce directamente de que al reparametrizar proporcionalmente al arco una geodésica volvemos a obtener una geodésica, y de la unicidad de las geodésicas a partir de sus condiciones iniciales.

4.3. Exponencial y entornos normales.

Sea $p \in S$ un punto en una superficie. Siguiendo con la notación del Teorema 4.2.2, consideremos el conjunto

$$A(p) = \{ v \in T_p S \mid 1 \in I_{p,v} \}.$$

A(p) es un abierto de T_pS , por la dependencia diferenciable de la que se habla en el párrafo anterior al Lema de Homogeneidad. El origen de T_pS está en A(p), ya que $I_{p,0}=\mathbb{R}$. El Lema de homogeneidad implica que A(p) es estrellado respecto al origen: si $v\in A(p)$ y $\lambda\in(0,1]$, entonces $I_{p,\lambda v}=\frac{1}{\lambda}I_{p,v}$, que contiene a 1 ya que $1\in I_{p,v}$ y $\frac{1}{\lambda}\geq 1$. Por tanto, $\lambda v\in A(p)$. De nuevo, la dependencia diferenciable de la solución de un problema de valores iniciales en términos de sus condiciones iniciales nos dice que la aplicación

$$\exp_p \colon A(p) \to S, \quad \exp(v) = \gamma(1, p, v),$$

está bien definida y en diferenciable. A esta aplicación $\exp_p: A(p) \to S$ la llamaremos la exponencial en el punto p. Notemos que dado $v \in T_pS$ y $t \in I_{p,v} \cap [0,\infty)$, se tiene

$$\exp_p(tv) = \gamma(1, p, tv) = \gamma(t, p, v),$$

es decir, \exp_p lleva segmentos que parten del origen en T_pS en geodésicas que parten de p (geodésicas radiales en p).

Es claro que $\exp_p(0) = \gamma(1,p,0) = p,$ y que la diferencial de \exp_p en $0 \in T_pS$ está dada por

$$(d\exp_p)_0(v) = \frac{d}{dt}\bigg|_{t=0} \exp_p(tv) = \frac{d}{dt}\bigg|_{t=0} \gamma(1, p, tv) = \frac{d}{dt}\bigg|_{t=0} \gamma(t, p, v) = v, \quad \forall v \in T_p S,$$

(hemos tomado t>0 en la línea anterior), luego $d(\exp_p)_0=1_{T_pS}$. Por el Teorema de la Función inversa, existe un abierto $V_0\subset A(p)$ con $0\in V_0$ tal que

$$\exp_p \colon V_0 \to U_p = \exp_p(V_0)$$

es un difeomorfismo. Al abierto $U_p \subset S$ se le llema entorno normal de p.

Con la notación anterior, si r > 0 cumple $\mathbb{B}(0,r) \subset V_0$, entonces a

$$B(p,r) := \exp_p(\mathbb{B}(0,r)) \subset S$$

lo llamaremos bola geodésica de centro p y radio r (radio geodésico). Observemos que $\exp_p \colon \mathbb{B}(0,r) \to B(p,r)$ es un difeomorfismo. Dado r>0, si la circunferencia $\mathbb{S}^1(0,r)=\{v\in T_pS\mid \|v\|=r\}$ está contenida en V_0 , es decir, si \exp_p se restringe a $\mathbb{S}^1(0,r)$ como un difeomorfismo sobre su imagen, entonces a

$$S^1(p,r) := \exp_p(\mathbb{S}^1(0,r))$$

se le llama el *círculo geodésico* de centro p y radio r. Notemos que por ser $\mathbb{S}^1(0,r)$ compacto y V_0 abierto, tenemos que r > 0 es el radio de un círculo geodésico centrado en p si y sólo si existe $\varepsilon > 0$ tal que $r + \varepsilon$ es radio geodésico en p.

Veamos algunos ejemplos.

1. El plano \mathbb{R}^2 .

Como las geodésicas de \mathbb{R}^2 son las rectas afines parametrizadas proporcionalmente al arco, tenemos $\gamma(t, p, v) = p + tv$ para cualesquiera $p, v \in \mathbb{R}^2$ y $t \in \mathbb{R}$. Así, para cada $p \in \mathbb{R}^2$ la exponencial \exp_p está definida en todo \mathbb{R}^2 y vale

$$\exp_p(v) = \gamma(1, p, v) = p + v, \quad \forall v \in \mathbb{R}^2.$$

Como \exp_p es la traslación de vector p en \mathbb{R}^2 , que es un difeomorfismo de \mathbb{R}^2 en sí mismo, concluímos que el mayor entorno normal de cualquier punto de \mathbb{R}^2 es todo el plano, y que las bolas geodésicas existen para cualquier valor del radio y coinciden con las bolas métricas de \mathbb{R}^2 para la distancia usual.

2. LA ESFERA $\mathbb{S}^2 = \mathbb{S}^2(1)$. Teníamos $\gamma(t,p,0) = p$ y $\gamma(t,p,v) = \cos(\|v\|t)p + \sin(\|v\|t)\frac{v}{\|v\|}$ si $v \neq 0$. Como estas

geodésicas están definidas para todo $t \in \mathbb{R}$, tenemos que dado $p \in \mathbb{S}^2$ la exponencial \exp_p está definida en todo el plano tangente $T_p\mathbb{S}^2 = \langle p \rangle^{\perp}$, y

$$\exp_p(v) = \cos \|v\| p + \sin \|v\| \frac{v}{\|v\|}, \quad \forall v \perp p.$$

Para ver cuál es el mayor entorno normal de p en \mathbb{S}^2 , empezamos estudiando los puntos críticos de \exp_p , que son los vectores $v \in \langle p \rangle^{\perp}$ tales que $\ker(d \exp_p)_v \neq 0$. Como $(d \exp_p)_0$ es la identidad, podemos suponer $v \neq 0$. Dado $w \in T_v(T_p\mathbb{S}^2) = T_p\mathbb{S}^2$,

$$(d \exp_p)_v(w) = \frac{d}{dt} \Big|_0 \exp_p(v + tw) = \frac{d}{dt} \Big|_0 \left(\cos \|v + tw\|_p + \sin \|v + tw\| \frac{v + tw}{\|v + tw\|} \right)$$

$$= -\frac{\langle v, w \rangle}{\|v\|} \sin \|v\|_p + \frac{\langle v, w \rangle}{\|v\|^2} \left[\cos \|v\| - \frac{\sin \|v\|}{\|v\|} \right] v + \frac{\sin \|v\|}{\|v\|} w.$$

Como $p \perp v$ y $p \perp w$, obtenemos

$$\ker(d\exp_p)_v = \left\{ w \in \langle p \rangle^\perp \ \middle| \ \begin{array}{l} \langle v, w \rangle \sin \|v\| = 0 \quad (*), \\ \frac{\langle v, w \rangle}{\|v\|} \left[\cos \|v\| - \frac{\sin \|v\|}{\|v\|} \right] v + \sin \|v\| w = 0 \quad (**) \end{array} \right\}.$$

Supongamos que $w \in \ker(d\exp_p)_v - \{0\}$. Entonces, (*) implica $\langle v,w\rangle = 0$ ó bien sen ||v|| = 0. En el primer caso, (**) implica sen ||v|| = 0, luego esta última ecuación es cierta en cualquier caso, y por tanto $||v|| = k\pi$, $k \in \mathbb{N}$, y de nuevo (**) nos dice que $\langle v,w\rangle = 0$. Por tanto, $\ker(d\exp_p)_v \subseteq \{w \in T_p\mathbb{S}^2(1) \mid \langle v,w\rangle = 0\}$. De hecho, la expresión general de $(d\exp_p)_w$ obtenida arriba nos dice que se la la igualdad en la inclusión anterior. También deducimos que \exp_p es un difeomorfismo local en $\mathbb{B}(0,\pi) = \{v \in T_p\mathbb{S}^2 \mid ||v|| < \pi\}$. Cuando aplicamos \exp_p a esta bola del plano tangente, estamos recorriendo las geodésicas radiales en $\mathbb{S}^2(1)$ que parten de p hasta llegar al punto antípoda -p, pero sin tomar este valor. Es geométricamente claro que estos medios círculos máximos no se cortan, de donde concluímos que \exp_p es inyectiva en $\mathbb{B}(0,\pi)$. Por tanto,

El mayor entorno normal de
$$p \in \mathbb{S}^2(1)$$
 es $B(p,\pi) = \exp_p(\mathbb{B}(0,\pi)) = \mathbb{S}^2(1) - \{-p\}.$

4.3.1. Propiedades minimizantes de las geodésicas.

Lema 4.3.1 (Lema de Gauss) Sea p un punto en una superficie $S \subset \mathbb{R}^3$ y $v \in T_pS$ tal que la exponencial exp_p está definida en v. Entonces:

$$\langle (dexp_p)_v(v), (dexp_p)_v(w) \rangle = \langle v, w \rangle, \quad \forall w \in TpS.$$

En particular, las geodésicas radiales partiendo de p son ortogonales a los círculos geodésicos centrados en p.

Demostración. Si v=0, la fórmula es evidente. Supongamos entonces que $v\neq 0$. Como la fórmula es lineal en w, basta probarla en los casos $w\|v$ y $w\perp v$. Supongamos primero que $w=\lambda v,\,\lambda\in\mathbb{R}$. Entonces,

$$\langle (d\exp_p)_v(v), (d\exp_p)_v(w) \rangle = \lambda \left\| (d\exp_p)_v(v) \right\|^2 = \lambda \|\gamma'(1, p, v)\|^2$$
$$= \lambda \|\gamma'(0, p, v)\|^2 = \lambda \|v\|^2 = \langle v, w \rangle.$$

Ahora supongamos $\langle v,w\rangle=0$. Por tanto, podemos ver w como vector tangente al círculo $\mathbb{S}^1(\|v\|)\subset T_pS$ en el punto $v\in\mathbb{S}^1(\|v\|)$. Así, existe una curva diferenciable $v=v(s)\colon (-\varepsilon,\varepsilon)\to \mathbb{S}^1(\|v\|)$ tal que $v(0)=v,\ \dot{v}(0)=w.$ Como la exponencial \exp_p está definida en v, y su dominio de definición A(p) en un abierto de T_pS , podemos elegir $\varepsilon>0$ suficientemente pequeño como para que $v(]-\varepsilon,\varepsilon[)$ esté contenido en A(p). Como $v([-\frac{\varepsilon}{2},\frac{\varepsilon}{2}])$ es un compacto contenido en el abierto A(p), que es estrellado respecto al origen, existe $\delta>0$ tal que $tv(s)\in A(p)$ para todo $(t,s)\in (-\delta,1+\delta)\times (-\varepsilon,\varepsilon)$ luego podemos considerar la aplicación diferenciable $f\colon (-\delta,1+\delta)\times (-\frac{\varepsilon}{2},\frac{\varepsilon}{2})\to S$ dada por

$$f(t,s) = \exp_p(tv(s)).$$

Notemos que $\frac{\partial f}{\partial t}(t,s) = \frac{d}{du}\big|_{u=0} \exp_p((t+u)v(s)) = \frac{d}{du}\big|_{u=0} \gamma(t+u,p,v(s)) = \gamma'(t,p,v(s))$ por el Lema de Homogeneidad. Por tanto,

$$\left[\frac{\partial^2 f}{\partial t^2}(t,s)\right]^T = \gamma''(t,p,v(s))^T = 0.$$

Además,

$$\left\| \frac{\partial f}{\partial t} \right\|^2 (t, s) = \| \gamma'(t, p, v(s)) \|^2 = \| v(s) \|^2$$

que es constante, luego

$$\frac{\partial}{\partial t} \left(\langle \frac{\partial f}{\partial t}, \frac{\partial f}{\partial s} \rangle \right) = \left\langle \frac{\partial^2 f}{\partial t^2}, \frac{\partial f}{\partial s} \right\rangle + \left\langle \frac{\partial f}{\partial t}, \frac{\partial^2 f}{\partial t \partial s} \right\rangle = \left\langle \left[\frac{\partial^2 f}{\partial t^2} \right]^T, \frac{\partial f}{\partial s} \right\rangle + \left\langle \frac{\partial f}{\partial t}, \frac{\partial^2 f}{\partial t \partial s} \right\rangle \\
= \left\langle \frac{\partial f}{\partial t}, \frac{\partial^2 f}{\partial t \partial s} \right\rangle = \frac{1}{2} \frac{\partial}{\partial s} \left(\left\| \frac{\partial f}{\partial t} \right\|^2 \right) = 0.$$

Como lo anterior es cierto $\forall t, s$, tenemos que para s arbitrario, $\langle \frac{\partial f}{\partial t}, \frac{\partial f}{\partial s} \rangle$ no depende de t. Si vemos que $\langle \frac{\partial f}{\partial t}, \frac{\partial f}{\partial s} \rangle (0, s) = 0$ para s arbitrario, entonces tendremos

$$\langle \frac{\partial f}{\partial t}, \frac{\partial f}{\partial s} \rangle = 0$$

para cualesquiera t y s. Evaluando (4.14) en t = 1 y s = 0 tendremos

$$\langle (d\exp_p)_v(v), (d\exp_p)_v(w) \rangle = 0,$$

que es lo que quedaba para deducir el lema de Gauss. Así que todo se reduce a probar que $\langle \frac{\partial f}{\partial t}, \frac{\partial f}{\partial s} \rangle (0, s) = 0$. Esto se deduce de que

$$\frac{\partial f}{\partial s}(0,s) = \frac{d}{d\lambda}\Big|_{\lambda=0} \exp_p(0 \cdot v(s+\lambda)) = 0.$$

A continuación veremos cómo de la existencia de entornos normales y del lema de Gauss se deduce que las geodésicas *localmente* minimizan la longitud.

Definición 4.3.1 Una curva $\alpha \colon [a,b] \to S$ valuada en una superficie $S \subset \mathbb{R}^3$ es diferenciable a trozos si α es continua en [a,b] y existen $a=t_0 < t_1 < \ldots < t_k = b$ tales que $\alpha|_{[t_{i-1},t_i]}$ es diferenciable, para cada $i=1,\ldots,k$. En particular, existen $\alpha'(a^+) \in T_{\alpha(a)}S$, $\alpha'(b^-) \in T_{\alpha(b)}S$ y $\alpha'(t_i^-), \alpha'(t_i^+) \in T_{\alpha(t_i)}S, \forall i=1,\ldots,k-1$, aunque no tiene porqué darse $\alpha'(t_i^+) = \alpha'(t_i^+)$. Cuando esta igualdad no sea cierta, decimos que t_i es un v ertice de α .

Teorema 4.3.1 Sea B(p,r) una bola geodésica de radio r > 0 centrada en un punto p de una superficie $S \subset \mathbb{R}^3$. Dado $q \in B(p,r)$, sea v el único vector de $\mathbb{B}(0,r) \subset T_pS$ tal que $\exp_p v = q$. Llamemos $\gamma(t) = \gamma(t,p,v) = \exp_p(tv)$, $1 \le t \le 1$. Entonces:

- 1. $L(\gamma)_0^1 = ||v||$.
- 2. Si $\alpha:[0,1]\to S$ es una curva diferenciable a trozos con $\alpha(0)=p,\alpha(1)=q$, entonces $L(\gamma)_0^1\leq L(\alpha)_0^1$, con igualdad si y sólo si α es una reparametrización no decreciente de γ .

Demostración. 1 es claro. Veamos 2 discutiendo dos casos sobre la curva α .

Caso I: Supongamos $\alpha([0,1]) \subset B(p,r)$.

El argumento que sigue usa muchas de las ideas de la demostración del apartado 3 de la Proposición 1.1.2. Sea $\beta = \exp_p^{-1} \circ \alpha$, curva diferenciable a trozos en $\mathbb{B}(0,r)$ con la misma partición de vértices que α y con $\beta(0) = 0$, $\beta(1) = v$. Entonces existe $\overline{t} \in [0,1)$ tal que $\beta(\overline{t}) = 0$ y $\beta(t) \neq 0$ para todo $t \in (\overline{t},1]$. En $(\overline{t},1]^* = (\overline{t},1] - \{\text{vértices de }\alpha\}$, podemos descomponer

$$\beta' = \langle \beta', \frac{\beta}{\|\beta\|} \rangle \frac{\beta}{\|\beta\|} + \beta^{\perp},$$

donde β^{\perp} es ortogonal a β . Por tanto en $(\bar{t}, 1]^*$ se tiene

$$\alpha' = (d \exp_p)_{\beta}(\beta') = \langle \beta', \frac{\beta}{\|\beta\|} \rangle (d \exp_p)_{\beta} \left(\frac{\beta}{\|\beta\|} \right) + (d \exp_p)_{\beta}(\beta^{\perp})$$

у

$$\begin{split} \|\alpha'\|^2 &= \langle \beta', \frac{\beta}{\|\beta\|} \rangle^2 \left\| (d \exp_p)_\beta \left(\frac{\beta}{\|\beta\|} \right) \right\|^2 + \| (d \exp_p)_\beta (\beta^\perp) \|^2 \\ &+ 2 \langle \beta', \frac{\beta}{\|\beta\|} \rangle \left\langle (d \exp_p)_\beta \left(\frac{\beta}{\|\beta\|} \right), (d \exp_p)_\beta (\beta^\perp) \right\rangle. \end{split}$$

Como $\alpha = \exp \circ \beta$, podemos usar el Lema de Gauss en los sumandos primero y tercero. Como $\beta \perp \beta^{\perp}$, el tercer sumando se anula. Así obtenemos

$$\|\alpha'\|^2 = \langle \beta', \frac{\beta}{\|\beta\|} \rangle^2 + \|(d \exp_p)_{\beta}(\beta^{\perp})\|^2 \stackrel{(A)}{\geq} \langle \beta', \frac{\beta}{\|\beta\|} \rangle^2.$$

Y de aquí,

$$L(\alpha)_{0}^{1} \stackrel{(B)}{\geq} L(\alpha)_{\overline{t}}^{1} = \int_{\overline{t}}^{1} \|\alpha\| dt \geq \int_{\overline{t}}^{1} \left| \langle \beta', \frac{\beta}{\|\beta\|} \rangle \right| dt \stackrel{(C)}{\geq} \int_{\overline{t}}^{1} \langle \beta', \frac{\beta}{\|\beta\|} \rangle dt$$
$$= \int_{\overline{t}}^{1} (\|\beta\|)' dt \stackrel{(*)}{=} \|\beta(1)\| - \|\beta(\overline{t})\| = \|v\| = L(\gamma)_{0}^{1},$$

donde (A),(B),(C) se usarán al discutir la igualdad, y (*) se obtiene aplicando la regla de Barrow en cada componente de $(\bar{t},1]^*$. Si se da la igualdad, entonces se dará la igualdad en (A),(B),(C) anteriores. De (A) se deduce que $\beta^{\perp}=0$ o equivalentemente, $\beta'=\langle\beta',\frac{\beta}{\|\beta\|}\rangle\frac{\beta}{\|\beta\|}$ en $(\bar{t},1]^*$. Esto implica $\left(\frac{\beta}{\|\beta\|}\right)'=0$ en $(\bar{t},1]^*$, luego para cada componente I de $(\bar{t},1]^*$ existe $c_I\in\mathbb{S}^1(1)\subset T_pS$ tal que $\frac{\beta}{\|\beta\|}=c_I$ en I. De la igualdad en (B) se tiene $\alpha\equiv p$ en $[0,\bar{t}]$. Por último, la igualdad en (C) implica $0\leq \langle\beta',\frac{\beta}{\|\beta\|}\rangle=\langle\beta',c_I\rangle$ en I, luego $\beta|_I$ recorre de forma no decreciente en norma un segmento dentro de la semirrecta \mathbb{R}^+c_I . Como $\frac{\beta}{\|\beta\|}$ es una curva continua en $(\bar{t},1]^*$, todos los c_I deben ser el mismo. Como $\beta(\bar{t})=0$ y $\beta(1)=v$, tenemos que $\beta|_{(\bar{t},1]}$ recorre el segmento $\overline{0,v}\subset T_pS$ de forma no decreciente en norma. Ahora sólo hay que componer con exp, para obtener lo que buscábamos.

Caso II: Supongamos $\alpha([0,1]) \not\subset B(p,r)$.

Tomemos $\bar{t} \in (0,1]$ tal que $\alpha(t) \in B(p,r)$ en $[0,\bar{t}), \alpha(\bar{t}) \in \partial B(p,r)$ (esta frontera es topológica, no tiene porqué ser una esfera geodésica). Tomemos una sucesión $\{t_k\}_k \subset [0,\bar{t})$ convergiendo a \bar{t} . Aplicando el caso I a $\alpha|_{[0,t_k]}$ tenemos $L(\alpha)_0^{t_k} \ge ||v_k||$, donde v_k es el único vector de $\mathbb{B}(0,r) \subset T_pS$ con $\exp_p v_k = \alpha(t_k)$. Por tanto, $L(\alpha)_0^{\bar{t}} = \lim_k L(\alpha)_0^{t_k} \ge \lim_k ||v_k||$.

Veamos que $||v_k|| \to r$: Podemos suponer tras pasar a una parcial que $\{||v_k||\}_k$ tiene límite $l \le r$. Si l < r, entonces una parcial de v_k convergerá a un vector $v_\infty \in \mathbb{B}(0,r)$, luego $\exp_p v_\infty = \lim_k \exp_p(v_k) = \lim_k \alpha(t_k) = \alpha(\bar{t})$, de donde $\alpha(\bar{t}) \in B(p,r)$, contradicción. Así, l = r luego $L(\alpha)_0^1 \ge L(\alpha)_0^{\bar{t}} \ge l = r > ||v|| = L(\gamma)_0^1$ y hemos terminado (la igualdad no puede darse en este caso II).

4.3.2. El Teorema Egregium de Gauss.

El teorema de rigidez de Bonnet (material adicional, Teorema 4.4.4) afirma que la clase de transformaciones que conservan las longitudes de curvas y las segundas formas fundamentales coincide con la clase de los movimientos rígidos de \mathbb{R}^3 . Si sólo pedimos que se conserven las longitudes de curvas, ¿crece mucho la clases de transformaciones con esta propiedad? En lenguaje actual, una aplicación diferenciable $\phi: S_1 \to S_2$ con la propiedad de conservar las longitudes de curvas es una isometría local (Definición 4.2.4). Este mismo concepto, en los tiempos de Gauss, se expresaba diciendo que S_1 es desarrollable sobre S_2 , en el mismo sentido que los topógrafos trazan un mapa y que un cilindro o medio cono menos su vértice pueden desarrollarse sobre un plano. Volviendo al ejemplo de los mapas, ya en tiempos de Euler se sabía que es imposible trazar un mapa sin introducir distorsiones en las medidas de las longitudes. También se sabe que la esfera tiene curvatura positiva, mientras que el plano la tiene idénticamente nula. Así que una cuestión natural es hasta qué punto las isometrías locales conservan parte de la geometría de las superficies. La respuesta la dará el Teorema Egregium de Gauss (1827): la curvatura de Gauss Ktambién se conserva. Es decir, K no sólo es invariante por la clase de los movimientos rígidos de \mathbb{R}^3 , sino por una clase mucho más grande, la de las isometrías locales entre superficies. Para probar esto, veremos cómo K puede calcularse sin usar la aplicación de Gauss, y en este sentido usamos el término "geometría intrínseca": K no depende de cómo pongamos la superficie dentro del espacio \mathbb{R}^3 , sólo dependerá de las longitudes de curvas (o equivalentemente, de la primera forma fundamental).

Sea $S \subset \mathbb{R}^3$ una superficie y $X \colon U \subset \mathbb{R}^2 \to \mathbb{R}^3$ una parametrización de S. Consideramos la base $B = \left\{ X_u, X_v, N \circ X = \frac{X_u \times X_v}{\|X_u \times X_v\|} \right\}$ de \mathbb{R}^3 . Siguiendo la idea que se usó con las ecuaciones de Frenet para curvas, a continuación estudiaremos la variación de esta base respecto de los parámetros u, v de la carta. Nótese que dado $w \in \mathbb{R}^3$, tenemos $w = aX_u + bX_v + c(N \circ X)$, donde $a, b, c \in \mathbb{R}$ y $\langle w, N \circ X \rangle = c$. Si tomamos w como X_{uu} (resp.

 X_{uv}, X_{vv} , el coeficiente c correspondiente es e (resp. f, g), ver (3.7). Así,

$$\begin{cases}
X_{uu} = \Gamma_{11}^{1} X_{u} + \Gamma_{11}^{2} X_{v} + e(N \circ X), \\
X_{uv} = \Gamma_{12}^{1} X_{u} + \Gamma_{12}^{2} X_{v} + f(N \circ X), \\
X_{vu} = \Gamma_{21}^{1} X_{u} + \Gamma_{21}^{2} X_{v} + f(N \circ X), \\
X_{vv} = \Gamma_{22}^{1} X_{u} + \Gamma_{22}^{2} X_{v} + g(N \circ X), \\
(N \circ X)_{u} = a_{11} X_{u} + a_{12} X_{v}, \\
(N \circ X)_{v} = a_{21} X_{u} + a_{22} X_{v},
\end{cases}$$

donde Γ_{ij}^k , a_{ij} son funciones diferenciables en el abierto $U \subset \mathbb{R}^2$. A las funciones Γ_{ij}^k se les llama los símbolos de Christoffel de la parametrización. Como $X_{uv} = X_{vu}$, deducimos que los símbolos de Christoffel Γ_{ij}^k son simétricos en i, j, y podemos eliminar la tercera ecuación de (4.15). Veamos que los símbolos de Christoffel pueden obtenerse derivando los coeficientes de la primera forma fundamental:

$$\frac{1}{2}E_u = \frac{1}{2} (\|X_u\|^2)_u = \langle X_{uu}, X_u \rangle = \Gamma_{11}^1 E + \Gamma_{11}^2 F,$$

$$F_u - \frac{1}{2}E_v = (\langle X_u, X_v \rangle)_u - \langle X_u, X_{uv} \rangle = \langle X_{uu}, X_v \rangle = \Gamma_{11}^1 F + \Gamma_{11}^2 G,$$

que podemos ver como sistema de dos ecuaciones lineales en las incógnitas Γ^1_{11} , Γ^2_{11} . Resolvemos el sistema:

$$\Gamma_{11}^1 = \frac{\frac{1}{2}GE_u - FF_u + \frac{1}{2}FE_v}{EG - F^2}, \quad \Gamma_{11}^2 = \frac{EF_v - \frac{1}{2}EE_v - \frac{1}{2}FE_u}{EG - F^2}.$$

De forma análoga pero usando las ecuaciones 2,3,4 en (4.15) se obtienen expresiones que prueban que

Los símbolos de Christoffel se obtienen a partir de los coeficientes de la primera forma fundamental y sus primeras derivadas parciales.

Volvamos a (4.15). Derivando respecto a v en la primera ecuación y respecto a u en la segunda:

$$X_{uuv} = (\Gamma_{11}^1)_v X_u + \Gamma_{11}^1 X_{uv} + (\Gamma_{11}^2)_v X_v + \Gamma_{11}^2 X_{vv} + e_v(N \circ X) + e(N \circ X)_v,$$

$$X_{uvu} = (\Gamma_{12}^1)_u X_u + \Gamma_{12}^1 X_{uu} + (\Gamma_{12}^2)_u X_v + \Gamma_{12}^2 X_{uv} + f_u(N \circ X) + f(N \circ X)_u.$$

Como $X_{uuv} = X_{uvu}$, podemos igualar los miembros de la derecha en las dos últimas ecuaciones. Son dos combinaciones lineales de vectores donde aparecen $X_u, X_v, N \circ X$ que forman base. Eliminamos el resto de vectores sustituyendo (4.15):

$$(\Gamma_{11}^1)_v X_u + \Gamma_{11}^1 (\Gamma_{12}^1 X_u + \Gamma_{12}^2 X_v + f(N \circ X))$$

$$+(\Gamma_{11}^{2})_{v}X_{v} + \Gamma_{11}^{2} \left(\Gamma_{22}^{1}X_{u} + \Gamma_{22}^{2}X_{v} + g(N \circ X)\right)$$

$$+e_{v}(N \circ X) + e\left(a_{21}X_{u} + a_{22}X_{v}\right)$$

$$= (\Gamma_{12}^{1})_{u}X_{u} + \Gamma_{12}^{1} \left(\Gamma_{11}^{1}X_{u} + \Gamma_{11}^{2}X_{v} + e(N \circ X)\right)$$

$$+(\Gamma_{12}^{2})_{u}X_{v} + \Gamma_{12}^{2} \left(\Gamma_{12}^{1}X_{u} + \Gamma_{12}^{2}X_{v} + f(N \circ X)\right)$$

$$+f_{u}(N \circ X) + f\left(a_{11}X_{u} + a_{12}X_{v}\right).$$

Ahora sí podemos identificar coeficientes: Para X_u ,

$$(\Gamma_{11}^1)_v + \Gamma_{11}^1 \Gamma_{12}^1 + \Gamma_{11}^2 \Gamma_{12}^1 + ea_{21} = (\Gamma_{12}^1)_u + \Gamma_{12}^1 \Gamma_{11}^1 + \Gamma_{12}^2 \Gamma_{12}^1 + fa_{11},$$

para X_v ,

$$(4.16) \qquad \Gamma_{11}^{1}\Gamma_{12}^{2} + (\Gamma_{11}^{2})_{v} + \Gamma_{11}^{2}\Gamma_{22}^{2} + ea_{22} = \Gamma_{12}^{1}\Gamma_{11}^{2} + (\Gamma_{12}^{2})_{u} + (\Gamma_{12}^{2})^{2} + fa_{12},$$

y para $N \circ X$,

$$\Gamma_{11}^1 f + \Gamma_{11}^2 g + e_v = \Gamma_{12}^1 e + \Gamma_{12}^2 f + f_u.$$

Sólo usaremos (4.16) en lo que sigue. Primero calculamos a_{ij} en función de los coeficientes de la primera y segunda forma fundamental:

$$-e = -\langle N \circ X, X_{uu} \rangle = \langle (N \circ X)_u, X_u \rangle = a_{11}E + a_{12}F$$

y análogamente, $-f = a_{11}F + a_{12}G$. Resolviendo este sistema de dos ecuaciones lineales con incógnitas a_{11}, a_{12} se obtienen

$$a_{11} = \frac{fF - eG}{EG - F^2}, \quad a_{12} = \frac{Fe - Ef}{EG - F^2}.$$

Razonando análogamente con la última ecuación de (4.15) deducimos que

$$a_{21} = \frac{gF - fG}{EG - F^2}, \quad a_{22} = \frac{Ff - Eg}{EG - F^2}.$$

Ahora sustituímos en (4.16) y pasamos todos los símbolos de Christoffel a un lado:

$$(\Gamma_{11}^2)_v - (\Gamma_{12}^2)_u + \Gamma_{11}^1 \Gamma_{12}^2 + \Gamma_{11}^2 \Gamma_{22}^2 - \Gamma_{12}^1 \Gamma_{11}^2 - (\Gamma_{12}^2)^2 = E \frac{eg - f^2}{EG - F^2} = E \cdot (K \circ X),$$

donde K es la curvatura de Gauss de S. Esto nos da una expresión la curvatura de Gauss que sólo depende de los símbolos de Christoffel, sus primeras derivadas y E. Por lo obtenido antes, K podrá expresarse únicamente en términos de los coeficientes de la primera forma fundamental y sus derivadas parciales hasta el orden 2. A partir de aquí es trivial probar el siguiente resultado:

Teorema 4.3.2 (Teorema Egregium de Gauss) Sea $F: S \to S'$ una isometría local entre dos superficies de \mathbb{R}^3 , con curvaturas de Gauss K, K'. Entonces $K' \circ F = K$, esto es: las isometrías locales conservan la curvatura de Gauss.

Una consecuencia directa del Teorema Egregium de Gauss es que un abierto de esfera no puede ser isométrico a un abierto del plano, es decir, no podemos trazar mapas sin distorsionar las distancias, por pequeña que sea la porción de tierra a representar.

4.4. Material adicional.

4.4.1. Superficies completas. Teorema de Hopf-Rinow.

Definición 4.4.1 Una superficie $S \subset \mathbb{R}^3$ se dice *completa* si el espacio métrico (S, d) es completo (toda sucesión de Cauchy es convergente).

Notemos que si $S \subset \mathbb{R}^3$ es una superficie cerrada (como subconjunto de \mathbb{R}^3), entonces S es completa: Consideremos las distancia d sobre S definida en (4.1). Sea $\{p_k\}_k \subset S$ una sucesión de Cauchy respecto a d. De (4.2) se deduce que $\{p_k\}_k$ es de Cauchy en el espacio métrico (\mathbb{R}^3, d_u), que es completo. Por tanto, $\{p_k\}_k$ será convergente en (\mathbb{R}^3, d_u) a un punto $p_\infty \in \mathbb{R}^3$. Este punto p_∞ tiene que estar en S por ser ésta cerrada, luego $\{p_k\}_k \subset S$. Como la convergencia de sucesiones no depende de la distancia que genera la topología sino de la topología misma, tenemos que $\{p_k\}_k$ es convergente (a p_∞) en S, luego S es completa.

Teorema 4.4.1 (Hopf-Rinow) Sea $S \subset \mathbb{R}^3$ una superficie conexa. Son equivalentes:

- 1. S es completa.
- 2. Para todo punto $p \in S$, \exp_p está definida en todo T_pS .
- 3. Existe un punto $p \in S$ tal que \exp_p está definida en todo T_pS .
- 4. La familia de compactos de S coincide con la familia de cerrados y d-acotados.

Además, cualquiera de los apartados anteriores implica que para cualquier par de puntos $p, q \in S$ existe una geodésica minimizante³ que une p con q.

No probaremos ahora el Teorema de Hopf-Rinow, ya que la dificultad de su demostración excede el nivel de lo desarrollado hasta ahora. En el material adicional de este capítulo veremos una demostración del mismo, entre otras cosas.

 $^{^3}$ Es decir, una geodésica cuya longitud es d(p,q).

109

4.4.2. Coordenadas polares geodésicas.

Otra consecuencia del lema de Gauss es la construcción de parametrizaciones locales basadas en la exponencial. Esta será la herramienta fundamental para probar el Teorema de Minding en la sección 4.4.3.

Proposición 4.4.1 (Coordenadas polares geodésicas) Sea B(p,r) una bola geodésica de radio r>0 centrada en un punto p de una superficie $S\subset\mathbb{R}^3$. Sea $\{e_1,e_2\}$ una base ortonormal de T_pS . Entonces, la aplicación $X:(0,r)\times(0,2\pi)\to S$ dada por

$$X(t,\theta) = \exp_p(t\cos\theta e_1 + t\sin\theta e_2)$$

es una parametrización de S alrededor de p y cumple:

- 1. $E = ||X_t||^2 = 1$, $F = \langle X_t, X_\theta \rangle = 0$, y por tanto la primera forma fundamental está determinada por la función $G = ||X_\theta||^2$.
- 2. $(\sqrt{G})_{tt} + (K \circ X)\sqrt{G} = 0$, donde K es la curvatura de Gauss de X.
- 3. $\lim_{t\to 0} \sqrt{G}(t,\theta) = 0$ $y \lim_{t\to 0} (\sqrt{G})_t(t,\theta) = 1$, para todo $\theta \in (0,2\pi)$.

Demostración. Notemos que para $\theta \in (0, 2\pi)$ fijo, $\gamma(t) := X(t, \theta)$ es la geodésica radial en p con velocidad inicial $\gamma'(0) = \cos \theta e_1 + \sin \theta e_2 = e^{i\theta}$. Así, $E = ||X_t||^2 = ||\gamma'(t)||^2 = ||\gamma'(0)||^2 = 1$. Por otro lado,

$$(4.17) X_{\theta}(t,\theta) = \frac{d}{d\theta} \exp_p(te^{i\theta}) = (d \exp_p)_{te^{i\theta}} \left(ite^{i\theta}\right),$$

$$(4.18) X_t(t,\theta) = (d \exp_p)_{te^{i\theta}} \left(e^{i\theta}\right),$$

luego el Lema de Gauss nos dice que

$$F(t,\theta) = \langle X_t, X_\theta \rangle (t,\theta) = \langle e^{i\theta}, ite^{i\theta} \rangle = 0,$$

lo que prueba el apartado 1. En cuanto al apartado 2, recordemos de (3.8) que K viene dada por la ecuación

$$K \circ X = \frac{eg - f^2}{EG - F^2} = \frac{eg - f^2}{\|X_{\theta}\|^2},$$

donde e, f, g son los coeficientes de la segunda forma fundamental σ de S respecto a la parametrización X. Calculamos estos coeficientes:

$$e = \sigma(X_t, X_t) = -\langle (N \circ X)_t, X_t \rangle = \langle N \circ X, X_{tt} \rangle, \quad f = \langle N \circ X, X_{t\theta} \rangle, \quad g = \langle N \circ X, X_{\theta\theta} \rangle,$$

donde $N = \frac{X_t \times X_\theta}{\|X_t \times X_\theta\|}$ es una aplicación de Gauss de S. Por otro lado,

$$(\sqrt{G})_t = (\|X_{\theta}\|)_t = \frac{\langle X_{t\theta}, X_{\theta} \rangle}{\|X_{\theta}\|},$$

$$(\sqrt{G})_{tt} = \frac{(\langle X_{t\theta}, X_{\theta} \rangle)_t \|X_{\theta}\| - \langle X_{t\theta}, X_{\theta} \rangle \frac{\langle X_{t\theta}, X_{\theta} \rangle}{\|X_{\theta}\|}}{\|X_{\theta}\|^2} = \|X_{\theta}\|^{-3} \left[(\langle X_{t\theta}, X_{\theta} \rangle)_t \|X_{\theta}\|^2 - \langle X_{t\theta}, X_{\theta} \rangle^2 \right]$$

Luego

$$(\sqrt{G})_{tt} + (K \circ X)\sqrt{G} = G^{-3/2} \left[(\langle X_{t\theta}, X_{\theta} \rangle)_t G - \langle X_{t\theta}, X_{\theta} \rangle^2 \right] + (eg - f^2)G^{-1/2}$$

$$(4.19) = G^{-3/2} \left[(\langle X_{t\theta}, X_{\theta} \rangle)_t G - \langle X_{t\theta}, X_{\theta} \rangle^2 + (eg - f^2)G \right]$$

Derivando en $||X_t||^2 = 1$ respecto a θ obtenemos $\langle X_{t\theta}, X_t \rangle = 0$ luego $X_{t\theta}$ no tiene componente en la dirección de X_t al expresarlo en combinación lineal de la base $\{X_t, X_\theta, N\}$ de \mathbb{R}^3 . Por tanto,

$$X_{t\theta} = \mu X_{\theta} + f N,$$

donde $\mu = \langle X_{t\theta}, X_{\theta} \rangle / G$, diferenciable. Por otro lado, como $t \mapsto X(t, \theta)$ es geodésica de S, entonces X_{tt} va en la dirección de N y por tanto, $X_{tt} = \langle X_{tt}, N \rangle N = eN$. Así,

$$\langle X_{tt\theta}, X_{\theta} \rangle = \langle (eN)_{\theta}, X_{\theta} \rangle = \langle e_{\theta}N + eN_{\theta}, X_{\theta} \rangle = e\langle N_{\theta}, X_{\theta} \rangle = -e\langle N, X_{\theta\theta} \rangle = -eg\langle N_{\theta}, X_{\theta} \rangle = -e\langle N_{\theta}, X_{\theta\theta} \rangle = -eg\langle N_{\theta}, X_{\theta} \rangle = -e\langle N_{\theta}, X_{\theta\theta} \rangle = -eg\langle N_{\theta}, X_{\theta} \rangle = -e\langle N_{\theta}, X_{\theta\theta} \rangle = -eg\langle N_{$$

luego

$$(4.20) \quad (\langle X_{t\theta}, X_{\theta} \rangle)_t = \langle X_{tt\theta}, X_{\theta} \rangle + \|X_{t\theta}\|^2 = -eg + \|\mu X_{\theta} + fN\|^2 = -eg + \mu^2 G + f^2.$$

Sustituyendo esto en el corchete de (4.19) tenemos

$$(\langle X_{t\theta}, X_{\theta} \rangle)_t G - \langle X_{t\theta}, X_{\theta} \rangle^2 + (eg - f^2)G^2 = (-egG + \mu^2 G^2 + f^2 G) - (\mu G)^2 + (eg - f^2)G^2 = 0$$

lo que prueba el apartado 2.

Por último, (4.17) implica

$$\lim_{t \to 0} X_{\theta}(t, \theta) = \lim_{t \to 0} (d \exp_p)_{te^{i\theta}} \left(ite^{i\theta} \right) = (d \exp_p)_0(0) = 0,$$

luego $\lim_{t\to 0} \sqrt{G}(t,\theta) = \lim_{t\to 0} ||X_{\theta}||(t,\theta) = 0$, y

$$(4.21) \qquad (\sqrt{G})_t = (\|X_\theta\|)_t = \frac{\langle X_{t\theta}, X_\theta \rangle}{\|X_\theta\|} = \left\langle X_{t\theta}, \frac{X_\theta}{\|X_\theta\|} \right\rangle.$$

Pero (4.18) nos da

$$(4.22) \qquad \lim_{t \to 0} X_{t\theta}(t,\theta) = \left(\lim_{t \to 0} X_t(t,\theta)\right)_{\theta} = \left(\lim_{t \to 0} (d\exp_p)_{te^{i\theta}}(e^{i\theta})\right)_{\theta} = \left(e^{i\theta}\right)_{\theta} = ie^{i\theta}.$$

Usando ahora (4.17),

$$(4.23) \quad \lim_{t \to 0} \frac{X_{\theta}}{\|X_{\theta}\|} = \lim_{t \to 0} \frac{(d \exp_p)_{te^{i\theta}}(ite^{i\theta})}{\|(d \exp_p)_{te^{i\theta}}(ite^{i\theta})\|} = \lim_{t \to 0} \frac{(d \exp_p)_{te^{i\theta}}(ie^{i\theta})}{\|(d \exp_p)_{te^{i\theta}}(ie^{i\theta})\|} = \frac{ie^{i\theta}}{\|ie^{i\theta}\|} = ie^{i\theta}.$$

Sustituyendo (4.22) y (4.23) en (4.21) tenemos
$$\lim_{t\to 0} (\sqrt{G})_t = \langle ie^{i\theta}, ie^{i\theta} \rangle = 1.$$

4.4.3. El Teorema de Minding.

Los apartados 2 y 3 de la Proposición 4.4.1 nos permiten calcular explícitamente la función G (y por tanto, la primera forma fundamental) de una superficie de curvatura de Gauss constante. Recordemos que el Teorema de Hilbert-Liebmann (Teorema 3.7.3) caracterizaba a las esferas como las únicas superficies compactas y conexas con K constante. Ahora no necesitaremos la hipótesis global de compacidad para describir las superficies con K=c constante:

La ODE del apartado 2 de la Proposición 4.4.1 es $(\sqrt{G})_{tt} + c\sqrt{G} = 0$, cuya solución general es $\sqrt{G}(t,\theta) = a(\theta)\mathbf{S}_c(t) + b(\theta)\mathbf{C}_c(t)$, donde $a,b \in C^{\infty}(0,2\pi)$ y las funciones $\mathbf{S}_c,\mathbf{C}_c$ viene dadas por

$$\mathbf{S}_c(t) = \begin{cases} t & \text{si } c = 0, \\ \frac{1}{\sqrt{c}} \sin(\sqrt{c}t) & \text{si } c > 0, \\ \frac{1}{\sqrt{-c}} \sinh(\sqrt{-c}t) & \text{si } c < 0, \end{cases} \quad \mathbf{C}_c(t) = \begin{cases} 1 & \text{si } c = 0, \\ \cos(\sqrt{c}t) & \text{si } c > 0, \\ \cosh(\sqrt{-c}t) & \text{si } c < 0. \end{cases}$$

Como $0 = \lim_{t\to 0} \sqrt{G}(t,\theta) = b(\theta)$ tenemos $\sqrt{G}(t,\theta) = a(\theta)\mathbf{S}_c(t)$, luego

$$1 = \lim_{t \to 0} (\sqrt{G})_t(t, \theta) = a(\theta) \mathbf{S}'_c(t) = a(\theta) \lim_{t \to 0} \mathbf{C}_c(t) = a(\theta).$$

Por tanto,

(4.24)
$$G(t,\theta) = \mathbf{S}_c(t)^2 = \begin{cases} t^2 & \text{si } c = 0, \\ \frac{1}{c}\sin^2(\sqrt{c}t) & \text{si } c > 0, \\ \frac{1}{-c}\sinh^2(\sqrt{-c}t) & \text{si } c < 0. \end{cases}$$

Este control de la primera forma fundamental cuando la curvatura de la superficie es constante tiene como consecuencia el siguiente resultado.

Teorema 4.4.2 (Minding) Sean $S, \widetilde{S} \subset \mathbb{R}^3$ superficies con la misma curvatura de Gauss constante. Sean $p \in S$, $\widetilde{p} \in \widetilde{S}$ y r > 0 tales que B(p,r), $B(\widetilde{p},r)$ son bolas geodésicas de S, \widetilde{S} respectivamente. Dada una isometría vectorial $I: T_pS \to T_{\widetilde{p}}\widetilde{S}$, la composición $\phi := \exp_{\widetilde{p}} \circ I \circ (\exp_p)^{-1} \colon B(p,r) \to B(\widetilde{p},r)$ es una isometría. En particular:

Dados dos puntos en superficies con la misma curvatura de Gauss constante, existen entornos abiertos de esos puntos que son isométricos.

Demostración. ϕ es C^{∞} y biyectiva por composición. Fijemos $q \in B(p,r)$ y veamos que $d\phi_q$ es una isometría vectorial. Basta entonces probar que

para cada $w \in T_qS$. Como B(p,r) es bola geodésica, existe un único $v \in \mathbb{B}(0,r) \subset T_pS$ tal que $\exp_p v = q$. Consideremos la geodésicas p.p.a.

$$\gamma(t) = \exp_p\left(t\frac{v}{\|v\|}\right) \text{ en } S, \qquad \widetilde{\gamma}(t) = \exp_{\widetilde{p}}\left(tI(\frac{v}{\|v\|})\right) \text{ en } \widetilde{S},$$

ambas definidas al menos en [0, ||v||]. Notemos que las trazas de $\gamma, \widetilde{\gamma}$ están contenidas respectivamente en $B(p, r), B(\widetilde{p}, r)$. Además,

- $\gamma(0) = p, \gamma(||v||) = q,$
- $\bullet \ \widetilde{\gamma} = \phi \circ \gamma, \ \widetilde{\gamma}(0) = \widetilde{p} \ \mathrm{y} \ \widetilde{\gamma}'(0) = I(\frac{v}{\|v\|}).$

Probaremos (4.25) considerando dos casos.

Caso I: $w, \gamma'(||v||)$ son linealmente dependientes.

Pongamos $w = \lambda \gamma'(\|v\|)$, $\lambda \in \mathbb{R}$. Entonces, $d\phi_q(w) = \lambda d\phi_q(\gamma'(\|v\|)) = \lambda(\phi \circ \gamma)'(\|v\|) = \lambda \widetilde{\gamma}'(\|v\|)$. Tomando normas, $\|d\phi_q(w)\| = |\lambda| = \|w\|$.

Caso II: $w, \gamma'(||v||)$ son ortogonales.

Escribamos $v = ||v|| (\cos \theta_0 e_1 + \sin \theta_0 e_2)$ en combinación de una base ortonormal $\{e_1, e_2\}$ que elegimos en T_pS . Notemos que puede suponerse $v \neq 0$ (en caso contrario, $q = \exp_p 0 = p$, luego $d\phi_q = d\phi_p = I$ que es una isometría vectorial por hipótesis). Así que ||v|| > 0. Por el Lema de Gauss, podemos ver w como vector tantente en q al círculo geodésico S(p, ||v||). Consideremos la curva $v = v(\theta) : (\theta_0 - \varepsilon, \theta_0 + \varepsilon) \to T_pS$ dada por $v(\theta) = ||v|| (\cos \theta e_1 + \sin \theta e_2)$. Así, $v(\theta_0) = v$ y

$$(\exp_p \circ v)'(\theta_0) = (d \exp_p)_v[||v||(-\sin \theta_0 e_1 + \cos \theta_0 e_2)] \in T_q S,$$

que es una base de la recta tangente al círculo geodésico S(p, ||v||) en el punto q. Por homogeneidad de (4.25) en w, podemos suponer $w = (\exp_p \circ v)'(\theta_0)$.

Como r es radio geodésico en p para S y en \widetilde{p} para \widetilde{S} , podemos considerar coordenadas polares geodésicas en cada superficie alrededor de p, \widetilde{p} , donde las bases ortonormales elegidas para estas coordenadas locales son $\{e_1, e_2\}$ en T_pS y $\{I(e_1), I(e_2)\}$ en $T_{\widetilde{p}}\widetilde{S}$. Es decir, $X: (0, r) \times (0, 2\pi) \to S$, $\widetilde{X}: (0, r) \times (0, 2\pi) \to \widetilde{S}$ dadas por

$$X(t,\theta) = \exp_p\left(t\cos\theta e_1 + t\sin\theta e_2\right) = \exp_p\left(t\frac{v(\theta)}{\|v\|}\right),\,$$

$$\widetilde{X}(t,\theta) = \exp_{\widetilde{p}} \left(t \frac{I(v(\theta))}{\|v\|} \right) = [\exp_{\widetilde{p}} \circ I \circ (\exp_p)^{-1}](X(t,\theta)) = \phi(X(t,\theta)).$$

Así, $X(||v||, \theta_0) = \exp_p(v) = q$,

$$X_{\theta}(\|v\|, \theta_0) = \left. \frac{d}{d\theta} \right|_{\theta = \theta_0} X(\|v\|, \theta) = \left. \frac{d}{d\theta} \right|_{\theta = \theta_0} \exp_p(v(\theta)) = (\exp_p \circ v)'(\theta_0) = w,$$

У

$$\widetilde{X}_{\theta}(\|v\|, \theta_0) = (\phi \circ X)_{\theta}(\|v\|, \theta_0) = d\phi_{X(\|v\|, \theta_0)}(X_{\theta}(\|v\|, \theta_0)) = d\phi_q(w),$$

luego (4.25) estará probada si vemos que $\sqrt{G}(\|v\|, \theta_0) = \sqrt{\widetilde{G}}(\|v\|, \theta_0)$, donde $G = \|X_{\theta}\|^2$ y $\widetilde{G} = \|\widetilde{X}_{\theta}\|^2$. Como S, \widetilde{S} tienen la misma curvatura constante (pongamos $c \in \mathbb{R}$), entonces (4.24) nos dice que $G(t, \theta) = \mathbf{S}_c(t)^2 = \widetilde{G}(t, \theta)$ para todos t y θ , y ya sólo queda evaluar en $(t, \theta) = (\|v\|, \theta_0)$.

Corolario 4.4.1 Dos superficies con la misma curvatura de Gauss constante son localmente isométricas.

4.4.4. Geodésicas estables. Teorema de Bonnet sobre el diámetro.

Sabemos que las geodésicas son curvas diferenciables con aceleración intrínseca nula en una superficie, y que minimizan localmente la longitud. Pero ¿hasta dónde minimiza la longitud una geodésica? Para responder a esta pregunta estudiaremos un poco más de cálculo de variaciones de geodésicas.

Si una geodésica $\gamma \colon [a,b] \to S$ en una superficie $S \subset \mathbb{R}^3$ minimiza la longitud entre todas las curvas diferenciables a trozos que tienen los mismos extremos que γ , entonces dada una variación propia $F \colon [a,b] \times (-\delta,\delta) \to S$ se tiene que

$$L_F(s) = L(F_s) = \text{longitud}(F_s) \ge L(\gamma) = L_F(0), \quad \forall s \in (-\delta, \delta),$$

y por tanto $L'_F(0) = 0$ (cosa que ya sabíamos por el apartado 1 del Corolario 4.2.1) y $L''_F(0) \geq 0$. Nótese que para este argumento no necesitamos que γ minimice la longitud entre todas las curvas con sus mismos extremos, sino sólo entre las curvas "próximas a γ " con sus mismos extremos, al menos entre las curvas longitudinales de la variación propia F.

Una forma de construir variaciones propias de γ es la siguiente: supongamos que γ está parametrizada por el arco. Trasladamos el parámetro de γ para que esté definida en [0,L], donde $L=L(\gamma)$. Sea $N\colon S\to \mathbb{S}^2(1)$ una aplicación de Gauss para S, a la que supondremos orientable de ahora en adelante. Llamamos

$$B(t) = \gamma'(t) \times N_{\gamma(t)} \in T_{\gamma(t)}S, \quad t \in [0, L].$$

Así, $\{\gamma'(t), B(t)\}$ es una base ortonormal de $T_{\gamma(t)}S$ y $\{\gamma'(t), N_{\gamma(t)}, B(t)\}$ es base ortonormal positiva de \mathbb{R}^3 para cada $t \in [0, L]$. Dado $t \in [0, L]$, la exponencial $\exp_{\gamma(t)}$ estará definida en un abierto de $T_{\gamma(t)}S$ que como mínimo contiene a una bola $\mathbb{B}(0, \varepsilon(t)) \subset T_{\gamma(t)}S$. Además, $\varepsilon(t)$ depende continuamente de t por la dependencia continua de las geodésicas respecto a las condiciones iniciales. Esta continuidad de $\varepsilon(t)$ y la compacidad de [0, L] nos permite elegir $\varepsilon > 0$ tal que $\exp_{\gamma(t)}$ está definida en $\mathbb{B}(0, \varepsilon) \subset T_{\gamma(t)}S$ para cada $t \in [a, b]$. Ahora tomemos una función $f \in C^{\infty}([0, L])$. Sea $M = 1 + \max|f| > 0$, que existe por ser f continua en el compacto [0, L]. Entonces, la aplicación

$$(4.26) F(t,s) = \exp_{\gamma(t)}(sf(t)B(t))$$

está definida y es diferenciable en $[0,L] \times (-\delta,\delta)$ donde $\delta = \frac{\varepsilon}{M} > 0$, ya que $||sf(t)B(t)|| = |sf(t)| < |s|M < \varepsilon$. Además:

- 1. F es una variación de γ , ya que $F(t,0) = \exp_{\gamma(t)}(0) = \gamma(t), t \in [0,L]$.
- 2. Si elegimos f de forma que f(0) = f(L) = 0, entonces $F_s(0) = \exp_{\gamma(0)}(0) = \gamma(0)$ y $F_s(L) = \exp_{\gamma(L)}(0) = \gamma(L)$ para cada s, luego la variación es propia.

Por lo anterior, si γ minimiza la longitud entre curvas con sus mismos extremos, entonces tenemos $L_F''(0) \geq 0$. A continuación calcularemos esta segunda derivada en términos de γ , f y de la geometría de S. Para está segunda derivada no precisaremos que f(0) = f(L) = 0.

Proposición 4.4.2 (Segunda fórmula de variación de la longitud)

Sea $\gamma \colon [0,L] \to S$ una geodésica p.p.a. en una superficie $S, \ y \ f \colon [0,L] \to \mathbb{R}$ una función C^{∞} . Consideremos la variación $F \colon [0,L] \times (-\delta,\delta) \to S$ dada por (4.26). Entonces,

$$L_F''(0) = \int_0^L \left[f'(t)^2 - (K \circ \gamma)(t) f(t)^2 \right] dt,$$

 $donde\ K\ es\ la\ curvatura\ de\ Gauss\ de\ S.$

Demostración. Derivando respecto a s en s=0 la fórmula (4.4) y usando que $\frac{\partial F}{\partial t}(t,0)=\gamma'(t)$ tiene norma 1, tenemos

$$L_F''(0) = \int_0^L \frac{\partial}{\partial s} \bigg|_{s=0} \left(\langle \frac{\partial^2 F}{\partial t \partial s}, \frac{\partial F}{\partial t} \rangle \right) dt - \int_0^L \langle \frac{\partial^2 F}{\partial t \partial s}, \frac{\partial F}{\partial t} \rangle (t, 0) \left. \frac{\partial}{\partial s} \right|_{s=0} \left(\left\| \frac{\partial F}{\partial t} \right\| \right) dt$$

$$(4.27) \qquad = \int_0^L \langle \frac{\partial^3 F}{\partial t \partial s^2}, \frac{\partial F}{\partial t} \rangle(t, 0) \, dt + \int_0^L \| \frac{\partial^2 F}{\partial t \partial s} \|^2(t, 0) \, dt - \int_0^L \langle \frac{\partial^2 F}{\partial t \partial s}, \frac{\partial F}{\partial t} \rangle^2(t, 0) \, dt.$$

Claramente, $\frac{\partial F}{\partial t}(t,0) = \gamma'(t)$ luego $\frac{\partial^2 F}{\partial t^2}(t,0) = \gamma''(t) = \langle \gamma''(t), N_{\gamma(t)} \rangle N_{\gamma(t)}$ donde hemos usado que la parte tangente de $\gamma''(t)$ a S es cero por ser γ una geodésica. Por otro lado, de (4.26) se deduce que el campo variacional de F es

$$V(t) = \frac{\partial F}{\partial s}(t,0) = f(t)B(t),$$

luego

$$(4.28) V' = f'B + fB' = f'B + f\sigma_{\gamma}(\gamma', B)N_{\gamma},$$

donde hemos usado el Ejercicio 10.

El siguiente paso es comprobar que

(4.29)
$$\frac{\partial^2 F}{\partial s^2}(t,0) = f(t)^2 \sigma_{\gamma(t)}(B(t), B(t)) N_{\gamma(t)}, \quad t \in [0, L].$$

Para ello consideremos, fijado $t \in [0, L]$, la geodésica radial en $\gamma(t)$ dada por $s \mapsto F_t(s) = \exp_{\gamma(t)}(sf(t)B(t))$. La velocidad de F_t en s = 0 es $\dot{F}_t(0) = f(t)B(t)$, luego $||\dot{F}_t|| = |f(t)|$, constante (en s). Si f(t) = 0, entonces F_t es constante $\gamma(t)$ luego (4.29) se cumple trivialmente. Supongamos ahora que $f(t) \neq 0$. Reparametrizamos F_t por el arco, definiendo

$$u \in (-\delta |f(t)|, \delta |f(t)|) \mapsto \Gamma_t(u) = F\left(t, \frac{u}{f(t)}\right) = \exp_{\gamma(t)}(uB(t))$$

(el cambio de parámetro es u = sf(t)). Como Γ_t es una geodésica parametrizada por el arco, podemos aplicarle el Ejercicio 10 para concluir que

$$\frac{d^2\Gamma_t}{du^2} = \sigma_{\Gamma_t} \left(\frac{d\Gamma_t}{du}, \frac{d\Gamma_t}{du} \right) N_{\Gamma_t}.$$

Por la regla de la cadena, $\frac{\partial F}{\partial s}(t,s) = \frac{\partial F}{\partial u}(t,u(s))\frac{du}{ds} = f(t)\frac{d\Gamma_t}{du}(u(s))$, y derivando de nuevo

$$\frac{\partial^2 F}{\partial s^2}(t,s) = f(t)^2 \frac{d^2 \Gamma_t}{du^2}(u(s)) = f(t)^2 \sigma_{\Gamma_t(u(s))} \left(\frac{d\Gamma_t}{du}(u(s)), \frac{d\Gamma_t}{du}(u(s)) \right) N_{\Gamma_t(u(s))}.$$

Evaluando en s = 0,

$$\frac{\partial^2 F}{\partial s^2}(t,0) = f(t)^2 \sigma_{\Gamma_t(0)} \left(\frac{d\Gamma_t}{du}(0), \frac{d\Gamma_t}{du}(0) \right) N_{\Gamma_t(0)} = f(t)^2 \sigma_{\gamma(t)} \left(B(t), B(t) \right) N_{\gamma(t)},$$

lo que prueba (4.29).

Calculamos ahora la primera integral de (4.27):

$$\int_0^L \langle \frac{\partial^3 F}{\partial t \partial s^2}, \frac{\partial F}{\partial t} \rangle (t, 0) \, dt$$

$$= \int_0^L \langle \frac{\partial^3 F}{\partial t \partial s^2}(t,0), \gamma'(t) \rangle dt = \left[\langle \frac{\partial^2 F}{\partial s^2}(t,0), \gamma'(t) \rangle \right]_0^L - \int_0^L \langle \frac{\partial^2 F}{\partial s^2}(t,0), \gamma''(t) \rangle dt.$$

Usando (4.29) en cada uno de los dos sumandos del miembro de la derecha anterior el primero se anulará y el segundo queda

$$-\int_0^L f^2 \sigma_{\gamma}(B, B) \langle N_{\gamma}, \gamma'' \rangle dt = -\int_0^L f^2 \sigma_{\gamma}(B, B) \sigma_{\gamma}(\gamma', \gamma') dt.$$

La segunda integral de (4.27) es

$$\int_{0}^{L} \|\frac{\partial^{2} F}{\partial t \partial s}\|^{2}(t,0) dt = \int_{0}^{L} \|V'\|^{2} dt = \int_{0}^{L} \left[(f')^{2} + f^{2} \sigma_{\gamma}(\gamma', B)^{2} \right] dt,$$

donde hemos usado (4.28). Por último, la tercera integral de (4.27) es

$$-\int_{0}^{L} \left\langle \frac{\partial^{2} F}{\partial t \partial s}, \frac{\partial F}{\partial t} \right\rangle^{2} (t, 0) dt = -\int_{0}^{L} \left\langle V', \gamma' \right\rangle dt,$$

cuyo integrando se anula idénticamente por (4.28). Resumiendo,

$$L_F''(0) = \int_0^L \left[(f')^2 - f^2 \left(\sigma_\gamma(B, B) \sigma_\gamma(\gamma', \gamma') - \sigma_\gamma(\gamma', B)^2 \right) \right] dt,$$

y ahora sólo queda comprobar que $K \circ \gamma = \sigma_{\gamma}(B, B)\sigma_{\gamma}(\gamma', \gamma') - \sigma_{\gamma}(\gamma', B)^2$, lo cual se deduce directamente de que $\{\gamma'(t), B(t)\}$ es una base ortonormal de $T_{\gamma(t)}S$, para todo $t \in [0, L]$.

La Proposición 4.4.2 y el desarrollo anterior a ésta sugiere la siguiente definición para expresar la propiedad de que una geodésica minimice *localmente* la longitud.

Definición 4.4.2 Sea $\gamma: [0, L] \to S$ una geodésica p.p.a. en una superficie $S \subset \mathbb{R}^3$. γ se dice *estable* si para toda función $f \in C^{\infty}([0, L])$ con f(0) = f(L) = 0 se cumple

$$\int_0^L \left[(f'(t))^2 - (K \circ \gamma)(t)f(t)^2 \right] dt \ge 0.$$

Claramente, una geodésica γ que minimice la longitud entre sus extremos es siempre estable, aunque el recíproco no tiene porqué ser cierto.

Aplicaremos lo anterior para estimar el diámetro de una superficie a partir de su curvatura. En lo que sigue, sólo consideraremos superficies conexas. En un espacio métrico (X, d), el diámetro se define como

$$diam(X, d) = \sup\{d(x, y) \mid x, y \in X\}.$$

El diámetro anterior no tiene porqué alcanzarse en un par de puntos (el ínfimo anterior no tiene porqué ser un máximo), como ocurre en el caso de \mathbb{R}^n con la distancia usual $d_u(x,y) = ||x-y||$, que tiene diámetro infinito, o en el caso de una bola abierta de \mathbb{R}^n con la distancia inducida por d_u , donde el diámetro es finito pero sólo se alcanza por puntos del borde de la bola, que no están en el espacio métrico considerado.

Recordemos que si $S \subset \mathbb{R}^3$ es una superficie, entonces la distancia d definida en (4.1) convertía a (S,d) en un espacio métrico. Tiene sentido relacionar las bolas métricas $B_d(p,r) = \{q \in S \mid d(p,q) < r\}$ (aquí r es cualquier radio positivo) con las bolas geodésicas, $B(p,r) = \exp(\mathbb{B}(0,r))$, donde $p \in S$ y r > 0 es un radio geodésico en p (recordemos que B(p,r) es la imagen difeomórfica por \exp_p de $\mathbb{B}(0,r) \subset T_pS$). Para conseguir esta relación necesitamos un resultado previo.

Lema 4.4.1 Si B(p,r) es una bola geodésica en S centrada en un punto p de una superficie $S \subset \mathbb{R}^3$ y $q \in S - B(p,r)$, entonces $d(p,q) \geq r$.

Demostración. Fijemos una curva $\alpha \colon [0,1] \to S$ C^{∞} a trozos con $\alpha(0) = p$, $\alpha(0) = q$, y veamos que su longitud $L(\alpha)$ cumple $L(\alpha) \geq r$. Sea $r' \in (0,r)$. Como α es continua, $\alpha(0) = p \in B(p,r')$ y $\alpha(1) = q \in S - B(p,r')$, existirá un $t_0 \in (0,1)$ tal que $\alpha(t_0) \in \partial B(0,r') = \exp_p(\partial \mathbb{B}(0,r')) = S(p,r')$ (círculo geodésico). Llamemos $x \in \partial \mathbb{B}(0,r')$ al único vector de $\mathbb{B}(0,r)$ que se aplica en $\alpha(t_0)$ por \exp_p . Como $\alpha(t_0) \in B(p,r)$, el Teorema 4.3.1 implica que $L(\alpha)_0^{t_0} \geq ||x|| = r'$, luego $L(\alpha) \geq r'$. Como esto es cierto $\forall r' \in (0,r)$, tenemos $L(\alpha) \geq r$.

El Lema 4.4.1 también implica la no degeneración de la distancia, es decir, que si $p, q \in S$ son puntos distintos, entonces d(p,q) > 0 (basta elegir una bola geodésica centrada en p que no contenga a q). De hecho, esta demostración es puramente intrínseca, y puede generalizarse a geometrías más generales.

Como espacio métrico, toda superficie (S,d) admite una topología natural \mathcal{T}_d de forma que una base de \mathcal{T}_d es la familia de bolas métricas $B_d(p,R) = \{q \in S \mid d(p,q) < R\}$ con $p \in S$ y R > 0. Hasta ahora, habíamos considerado siempre en S la topología usual \mathcal{T}_u , es decir, la topología inducida en S por la topología usual de \mathbb{R}^3 . De hecho, ambas topologías coinciden: Fijado $p \in S$, \mathcal{T}_d tiene por base de entornos de p a $\{B_d(p,R) \mid R > 0\}$, mientras que \mathcal{T}_u tiene por base de entornos de p a $\{B(p,r) = \exp_p(\mathbb{B}(0,r)) \mid r$ es radio geodésico en $p\}$. Por tanto, \mathcal{T}_d coincidirá con \mathcal{T}_u si comprobamos la siguiente propiedad:

Lema 4.4.2 Sea $p \in S$. Si B(p,r) es una bola geodésica, entonces $B(p,r) = B_d(p,r)$.

Demostración. El Lema 4.4.1 implica que $B_d(p,r) \subset B(p,r)$. Recíprocamente, si $q \in B(p,r)$ entonces existe $v \in \mathbb{B}(0,r)$ tal que $q = \exp_p v$. Por el Teorema 4.3.1, d(p,q) = ||v|| < r ||v|| < r ||v|| < r ||v||

Como la distancia está construída a partir de longitudes de curvas, es claro que las isometrías entre superficies conservan la distancia. Por otro lado, (4.2) implica que el diámetro de una superficie cumple

$$\operatorname{diam}(S, (d_u)|_S) \leq \operatorname{diam}(S, d),$$

siendo $(d_u)|_S$ la restricción de la distancia usual de \mathbb{R}^3 a S. Una aplicación sofisticada de la existencia de entornos totalmente normales es el famoso Teorema de Hopf-Rinow, que se enunció en el Teorema 4.4.1 y se demostrará en la sección 4.4.7, junto con la existencia de entornos totalmente normales.

Teorema 4.4.3 (Bonnet) Sea $S \subset \mathbb{R}^3$ una superficie conexa y completa cuya curvatura de Gauss cumple $K \geq \frac{1}{R^2}$ para cierto R > 0. Entonces, S es compacta y su diámetro cumple

$$diam(S, d) \le \pi R.$$

Demostración. Sean $p,q \in S$. Probemos que $d(p,q) \leq \pi R$ y tendremos diam $(S,d) \leq \pi R$. Como S es completa, el Teorema de Hopf-Rinow asegura que existe una geodésica p.p.a. $\gamma \colon [0,L] \to S$ con $\gamma(0) = p, \gamma(1) = q$ y L = d(p,q). Consideremos la variación propia $F \colon [0,L] \times (-\delta,\delta) \to S$ de γ dada por (4.26), donde $B = \gamma' \times N$ y f es una función C^{∞} en [0,L] a determinar, con f(0) = f(L) = 0. Aquí, N es una aplicación de Gauss para S (al menos, N está definida en un entorno de la traza de γ , ya que ésta no puede ser cerrada o tener autointersecciones por ser minimizante), y la exponencial necesaria para definir la variación F(t,s) está definida en todo $T_{\gamma(t)}S$ por completitud de S y por el Teorema de Hopf-Rinow.

Sea L_F la función longitud asociada a F. Entonces $L_F'(0)=0$ por ser γ geodésica (Corolario 4.2.1) y la Proposición 4.4.2 asegura que

$$L_F''(0) = \int_0^L \left[f'(t)^2 - (K \circ \gamma)(t) f(t)^2 \right] dt \ge 0,$$

donde la desigualdad se ha deducido de que γ es estable por minimizar la longitud entre sus extremos. Como $K \geq \frac{1}{B^2}$ tenemos

(4.30)
$$0 \le \int_0^L \left[f'(t)^2 - \frac{1}{R^2} f(t)^2 \right] dt,$$

para cualquier $f \in C^{\infty}([0, L])$ con f(0) = f(L) = 0. Ahora tomamos $f(t) = \sin(\frac{\pi}{L}t)$, que cumple f(0) = f(L) = 0. Sustituyendo en (4.30),

$$0 \le \int_0^L \left[\frac{\pi^2}{L^2} \cos^2 \left(\frac{\pi}{L} t \right) - \frac{1}{R^2} \sin^2 \left(\frac{\pi}{L} t \right) \right] dt$$

$$= \frac{\pi^2}{L^2} \left[\frac{t}{2} + \frac{L}{4\pi} \sin\left(\frac{2\pi t}{L}\right) \right]_0^L - \frac{1}{R^2} \left[\frac{t}{2} - \frac{L}{4\pi} \sin\left(\frac{2\pi t}{L}\right) \right]_0^L = \frac{\pi^2}{2L} - \frac{L}{2R^2},$$

de donde deducimos que $d(p,q) = L \le \pi R$.

Como p, q son arbitrarios en S, tenemos diam $(S, d) \le \pi R$. Así, S es acotada y por ser completa, ha de ser compacta (por el Teorema de Hopf-Rinow).

4.4.5. El Teorema de rigidez de Bonnet.

Todos los elementos básicos de la geometría de superficies en \mathbb{R}^3 tienen la propiedad de ser invariantes por movimientos rígidos del espacio, es decir, si S es una superficie y $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ es un movimiento rígido, entonces las geometrías de S y de $\phi(S)$ coinciden. Imaginemos la situación al revés:

Si S_1, S_2 son dos superficies en \mathbb{R}^3 y $\phi \colon S_1 \to S_2$ es una aplicación, ¿qué tenemos que imponerle para que ϕ se extienda a un movimiento rígido de \mathbb{R}^3 ?

A continuación veremos la respuesta en el teorema de rigidez de Bonnet (1867): ϕ debe conservar la longitud de las curvas en ambas superficies y sus segundas formas fundamentales. Para entender mejor esto, pensemos que las superficies están hechas de un material flexible pero inextensible. De esta forma, toda deformación de una superficie conservaría las longitudes de curvas. Pero ¿podemos deformar una superficie de manera que también se conserven las curvaturas de todas sus secciones normales? La respuesta es no, a menos que la deformación consista en simplemente mover la superficie por movimientos rígidos en \mathbb{R}^3 .

Sea $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ un movimiento rígido, esto es $\phi(p) = Ap + b$ donde $A \in O(3)$ es una matriz ortogonal y $b \in \mathbb{R}^3$ un vector. Si $S \subset \mathbb{R}^3$ es una superficie, entonces $\widetilde{S} = \phi(S)$ también es una superficie de \mathbb{R}^3 , y la restricción $F = \phi|_S \colon S \to \widetilde{S}$ cumple:

- 1. F es un difeomorfismo.
- 2. La diferencial de F en cualquier punto $p \in S$ es una isometría vectorial:

$$\langle dF_p(v), dF_p(w) \rangle = \langle v, w \rangle, \quad \forall v, w \in T_p S.$$

3. F conserva (salvo el signo) las aplicaciones de Gauss, es decir si $N: S \to \mathbb{S}^2$ es una aplicación de Gauss para S, entonces $\widetilde{N} = A \circ N \circ F^{-1}$ es una aplicación de Gauss para \widetilde{S} . Derivando, $d\widetilde{N}_{F(p)} \circ A = A \circ dN_p$ para cada $p \in S$, lo que implica que F conserva las segundas formas fundamentales asociadas a N y \widetilde{N} : Para cada $p \in S$,

$$\widetilde{\sigma}_{F(p)}\left(dF_p(v), dF_p(w)\right) = \sigma_p(v, w), \quad \forall v, w \in T_pS.$$

En particular, las curvaturas de Gauss y media se conservan también: $\widetilde{K}\circ F=K,$ $\widetilde{H}\circ F=H.$

Por tanto, la restricción de un movimiento rígido ϕ a una superficie $S \subset \mathbb{R}^3$ es una isometría entre S y $\phi(S)$. Este caso particular de isometrías se llaman *congruencias*.

Proposición 4.4.3 Sean S, \widetilde{S} dos superficies $y X, \widetilde{X} \colon U \to \mathbb{R}^3$ parametrizaciones respectivas de S y \widetilde{S} definidas en el mismo abierto U de \mathbb{R}^2 . Si los coeficientes de la primera forma fundamental de S respecto a X coinciden con los de \widetilde{S} respecto a \widetilde{X} , entonces $\widetilde{X} \circ X^{-1} \colon X(U) \to \widetilde{X}(U)$ es una isometría.

Demostración. $F:=\widetilde{X}\circ X^{-1}\colon X(U)\to \widetilde{X}(U)$ es un difeomorfismo, así que sólo queda probar que dado $p\in X(U)$, dF_p es una isometría de espacios vectoriales. Esto equivale a que $\|dF_p(v)\|^2=\|v\|^2$, para cualquier $v\in T_pS$. Fijemos $v\in T_pS$. Sea q el único punto de U tal que X(q)=p, y sea $w=(a,b)\in\mathbb{R}^2$ el único vector tal que $dX_q(w)=v$. Vimos en la demostración del Lema 2.1.2 que las coordenadas de v respecto a la base $\{X_x(q),X_y(q)\}$ son (a,b) (aquí (x,y) son las coordenadas en $U\subset\mathbb{R}^2$). Por tanto,

$$||v||^2 = ||dX_q(v)||^2 = a^2 E(q) + 2abF(q) + b^2 G(q),$$

donde E, F, G son los coeficientes de la primera forma fundamental de S respecto a X. Por otro lado, $dF_p(v) = d(\widetilde{X} \circ X^{-1})_p(v) = d\widetilde{X}_q(w)$ tiene coordenadas (a, b) respecto a la base $\{\widetilde{X}_x(q), \widetilde{X}_y(q)\}$ de $T_{\widetilde{X}(q)}\widetilde{S} = T_{F(p)}\widetilde{S}$, luego

$$||dF_p(v)||^2 = a^2 \tilde{E}(q) + 2ab\tilde{F}(q) + b^2 \tilde{G}(q),$$

donde $\widetilde{E}, \widetilde{F}, \widetilde{G}$ son los coeficientes de la primera forma fundamental de \widetilde{S} respecto a \widetilde{X} . Como por hipótesis tenemos $E = \widetilde{E}, F = \widetilde{F}, G = \widetilde{G}$ deducimos que F es una isometría. \square Veamos una aplicación de la proposición anterior. Consideremos la parametrización

$$X(\theta, z) = (\cos \theta \cosh z, \sin \theta \cosh z, z)$$

de la catenoide, definida en $U=(0,2\pi)\times\mathbb{R}$. Los coeficientes de la segunda forma fundamental son $E(\theta,z)=\cosh^2z=G(\theta,z), F(\theta,z)=0$. Ahora consideremos la parametrización

121

 $\widetilde{X}(x,y)=(y\cos x,y\sin x,x),\ (x,y)\in(0,2\pi)\times\mathbb{R}$ del helicoide. Haciendo el cambio de parámetros $x=\theta,\,y=\sinh z$ (definido en U), obtenemos

$$\widetilde{X}(\theta, z) = (\cos \theta \sinh z, \sin \theta \sinh z, \theta).$$

Los coeficientes de la primera forma fundamental del helicoide respecto a \widetilde{X} son $\widetilde{E}(\theta,z) = \cosh^2 z = \widetilde{G}(\theta,z)$, $\widetilde{F}(\theta,z) = 0$. Por tanto, la catenoide y el helicoide son localmente isométricos (no son isométricos porque la catenoide es topológicamente un anillo y el helicoide es topológicamente un plano).

Para probar el Teorema de Bonnet necesitamos dos resultados previos. El primero de ellos sólo se usará para n=3, pero lo enunciamos en general ya que la demostración es la misma en este caso.

Lema 4.4.3 Sea $\phi: O \to O'$ un difeomorfismo entre abiertos de \mathbb{R}^n , tal que $d\phi_x \in O(n)$ para cada $x \in O$ y O se supone conexo. Entonces, ϕ es la restricción a O de un movimiento rígido de \mathbb{R}^n .

Demostración. Por hipótesis $\langle d\phi_x(u), d\phi_x(v) \rangle = \langle u, v \rangle$ para cualesquiera $x \in O, u, v \in \mathbb{R}^n$. Tomando como u, v los vectores de la base usual, deducimos

$$\left\langle \frac{\partial \phi}{\partial x_i}, \frac{\partial \phi}{\partial x_j} \right\rangle = \delta_{ij}$$
 en O .

Derivando y aplicando la igualdad de Schwarz,

$$\left\langle \frac{\partial^2 \phi}{\partial x_i \partial x_j}, \frac{\partial \phi}{\partial x_k} \right\rangle = -\left\langle \frac{\partial^2 \phi}{\partial x_i \partial x_k}, \frac{\partial \phi}{\partial x_j} \right\rangle = -\left\langle \frac{\partial^2 \phi}{\partial x_k \partial x_i}, \frac{\partial \phi}{\partial x_j} \right\rangle = \left\langle \frac{\partial^2 \phi}{\partial x_k \partial x_j}, \frac{\partial \phi}{\partial x_i} \right\rangle$$
$$= \left\langle \frac{\partial^2 \phi}{\partial x_j \partial x_k}, \frac{\partial \phi}{\partial x_i} \right\rangle = -\left\langle \frac{\partial^2 \phi}{\partial x_j \partial x_i}, \frac{\partial \phi}{\partial x_k} \right\rangle = -\left\langle \frac{\partial^2 \phi}{\partial x_i \partial x_j}, \frac{\partial \phi}{\partial x_k} \right\rangle,$$

de donde

$$\left\langle \frac{\partial^2 \phi}{\partial x_i \partial x_j}, \frac{\partial \phi}{\partial x_k} \right\rangle = 0$$
 en $O, \forall i, j, k = 1, \dots, n$.

Fijando i, j y usando que $\left\{\frac{\partial \phi}{\partial x_k} \mid 1 \leq k \leq n\right\}$ es una base ortonormal de \mathbb{R}^n en cada punto de O, deducimos que

$$\frac{\partial^2 \phi}{\partial x_i \partial x_j} = 0 \quad \text{en } O, \, \forall i, j = 1, \dots, n.$$

Integrando dos veces (o desarrollando en serie) y usando que O es conexo, llegamos a que ϕ es la restricción a O de una aplicación afín, $\widetilde{\phi}(p) = Ap + b$, donde $A \in \mathcal{M}_n(\mathbb{R})$ y $b \in \mathbb{R}^n$. Por tanto, $d\phi_p = A$ luego $A \in O(n)$ y ϕ es la restricción a O de un movimiento rígido. \square

Sabemos que ciertos abiertos del plano $\Pi = \{(x,y,z) \mid z=0\}$ y del cilindro $C = \{(x,y,z) \mid x^2+y^2=1\}$ son isométricos. Esta isometría no puede ser la restricción de un movimiento rígido (porque un movimiento rígido lleva planos en planos), luego existen isometrías entre superficies que no conservan sus segundas formas fundamentales. Como adelantamos, el que una isometría entre superficies conserve las segundas formas fundamentales es algo muy restrictivo:

Teorema 4.4.4 (Bonnet) Sean $S, S' \subset \mathbb{R}^3$ dos superficies orientables, con S conexa. Si $F: S \to S'$ es una isometría local que conserva las segundas formas fundamentales de S y S', entonces F es la restricción a S de un movimiento rígido de \mathbb{R}^3 , es decir, S y S' son congruentes.

Demostración. Por hipótesis, existen aplicaciones de Gauss N, N' en S, S' respectivamente, con segundas formas fundamentales asociadas σ, σ' , tales que $\sigma'_{F(p)}(dF_p(v), dF_p(w)) = \sigma_p(v, w)$ para cualesquiera $p \in S, v, w \in T_pS$. Fijemos un punto $p_0 \in S$. Como F es una isometría local, el Teorema de la Función inversa asegura que existen entornos abiertos V de p_0 en p_0 en

$$T(V,\delta) = \{p + tN_p \mid p \in V, |t| < \delta\}, \quad T(V',\delta) = \{p' + tN'_{p'} \mid p' \in V', |t| < \delta\}$$

sean entornos tubulares de V, V' respectivamente de cierto radio común $\delta > 0$. Ahora definimos la aplicación $\phi \colon T(V, \delta) \to T(V', \delta)$,

(4.31)
$$\phi(p+tN_p) = F(p) + tN'_{F(p)}, \quad \forall p+tN_p \in T(V,\delta).$$

Queremos aplicarle a ϕ el Lema 4.4.3, para concluir que ϕ es la restricción a $T(V, \delta)$ de un movimiento rígido de \mathbb{R}^3 . Para ello, debemos probar que ϕ es un difeomorfismo y que $d\phi_x \in O(3)$ para cada $x \in T(V, \delta)$.

Por definición de entorno tubular, $T(V,\delta)$ y $T(V',\delta)$ son abiertos de \mathbb{R}^3 y las aplicaciones

$$E \colon V \times (-\delta, \delta) \to T(V, \delta), \qquad E(p, t) = p + tN_p, E' \colon V' \times (-\delta, \delta) \to T(V', \delta), \quad E'(p', t) = p' + tN'_{p'},$$

son difeomorfismos. Además, (4.31) se traduce en que $\phi \circ E = E' \circ (F \times 1_{\mathbb{R}})$, luego ϕ es un difeomorfismo. Dado $x = E(p,t) \in T(V,\delta)$, la regla de la cadena nos dice que $d\phi_x \circ dE_{(p,t)} = dE'_{(F(p),t)} \circ (dF_p \times 1_{\mathbb{R}})$. Evaluando en $(v,0), (0,1) \in T_pS \times \mathbb{R}$, obtenemos respectivamente

(4.32)
$$d\phi_x(v + tdN_p(v)) = dF_p(v) + tdN'_{F(p)}(dF_p(v)),$$

$$(4.33) d\phi_x(N_p) = N'_{F(p)}.$$

Por otro lado, como F conserva las segundas formas fundamentales,

$$\langle dN'_{F(p)}(dF_p(v)), dF_p(w) \rangle = -\sigma_{F(p)}(dF_p(v), dF_p(w)) = -\sigma_p(v, w) = \langle dN_p(v), w \rangle$$

para cualesquiera $v, w \in T_pS$. Como F es una isometría local, el miembro de la derecha de la última expresión es $\langle dF_p(dN_p(v)), dF_p(w) \rangle$. Variando $v, w \in T_pS$ obtenemos

$$(4.34) dN'_{F(p)} \circ dF_p = dF_p \circ dN_p.$$

Sustituyendo (4.34) en (4.32) queda

$$d\phi_x(v + tdN_p(v)) = dF_p(v) + tdF_p(dN_p(v)) = dF_p(v + tdN_p(v)), \quad \forall v \in T_pS.$$

Usando que $v \in T_pS \mapsto v + tdN_p(v) = dE_{(p,t)}(v,0)$ es un isomorfismo de espacios vectoriales, queda

$$(4.35) d\phi_x(w) = dF_p(w), \quad \forall w \in T_p S.$$

Como F es una isometría local de S en S', (4.35) nos dice que la restricción de $d\phi_x$ al plano T_pS es una isometría vectorial en el plano $T_{F(p)}S'$. Por otro lado, (4.33) nos dice que la restricción de $d\phi_x$ al subespacio ortogonal de T_pS en \mathbb{R}^3 es una isometría vectorial sobre el subespacio ortogonal del plano $T_{F(p)}S'$. Por tanto, $d\phi_x$ es una isometría vectorial para cada $x \in T(V, \delta)$.

Aplicando el Lema 4.4.3, existe un movimiento rígido $\widetilde{\phi} = \widetilde{\phi}^{p_0} \colon \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\widetilde{\phi}|_{T(V,\delta)} = \phi$. En particular, $\widetilde{\phi}|_V = F|_V$. Ahora un argumento de conexión de S nos asegura que los movimientos rígidos $\widetilde{\phi}^{p_0}$ no dependen del punto $p_0 \in S$, lo que termina la demostración.

Corolario 4.4.2

- 1. Sean $\Pi, \Pi' \subset \mathbb{R}^3$ dos planos afines y $F: U \to \Pi'$ una isometría local, donde U es un abierto conexo de Π . Entonces, F es la restricción de un movimiento rígido de \mathbb{R}^3 .
- 2. Sean $S, S' \subset \mathbb{R}^3$ dos esferas del mismo radio. $y \ F \colon U \to S'$ una isometría local, donde U es un abierto conexo de S. Entonces, F es la restricción de un movimiento rígido de \mathbb{R}^3 .

Demostración. Por el teorema de Bonnet, en ambos casos basta comprobar que F conserva las segundas formas fundamentales. En el caso 1 esto es trivial porque ambas son cero. En el caso 2, la umbilicidad de las esferas hace que la segunda forma fundamental sea proporcional a la primera, con factor de proporcionalidad el inverso del radio de la esfera. Como ambas esferas tienen el mismo radio, F también conserva las segundas formas fundamentales en este segundo caso.

Corolario 4.4.3 Sean $S, S' \subset \mathbb{R}^3$ dos esferas y $F: U \to S'$ una isometría local, donde U es un abierto conexo de S. Entonces, F es la restricción de un movimiento rígido de \mathbb{R}^3 . En particular S, S' tienen el mismo radio.

Demostraci'on. Por el Corolario 4.4.2, basta probar que ambas esferas tienen el mismo radio. Esto se deduce del Teorema Egregium de Gauss, ya que la curvatura de una esfera es el inverso del cuadrado del radio.

4.4.6. Rigidez de la esfera.

Hemos visto dos resultados de rigidez (Corolarios 4.4.2 y 4.4.3) donde se veía la imposibilidad de llevar una esfera en otra conservando las longitudes de curvas, ni siquiera localmente. En esta sección extenderemos este resultado al caso en que la segunda superficie es arbitraria. A cambio, el resultado deberá ser global en vez de local.

Teorema 4.4.5 (Rigidez de las esferas) Sea $F: \mathbb{S}^2(r) \to S$ una isometría local entre una esfera de radio r > 0 y una superficie conexa S. Entonces, F es la restricción de un movimiento rígido de \mathbb{R}^3 (en particular, S es otra esfera de radio r).

Demostración. Por el Corolario 4.4.3, basta probar que S es una esfera. Como F es continua y $\mathbb{S}^2(r)$ compacta, su imagen $F(\mathbb{S}^2(r))$ es un cerrado de S. Como F es un difeomorfismo local, es una aplicación abierta luego $F(\mathbb{S}^2(r))$ es un abierto de S. Como S es conexa, debe ser $F(\mathbb{S}^2(r)) = S$ luego S es compacta. Por otro lado, el Teorema Egregium de Gauss asegura que la curvatura de Gauss de S es constante. En estas condiciones, el Teorema de Hilbert-Liebmann nos dice que S es una esfera.

La rigidez de las esferas, probada por Liebmann en 1838, muestra que la geometría global de una esfera está completamente determinada por la de su primera forma fundamental. Esta propiedad de rigidez no es exclusiva de las esferas: Cohn-Vossen probó en 1927 que también la tienen las superficies compactas con curvatura positiva (ovaloides), pero la demostración es mucho más complicada (ver por ejemplo las págs. 214–219 del libro de Montiel y Ros, Curves and Surfaces, Graduate texts in Mathematics 69, AMS-RSME 2005). Sin embargo, existen superficies compactas que no son rígidas, incluso de revolución: en la Figura 4.3 se muestran dos superficies isométricas, donde la isometría local fija un abierto no trivial de las superficies (luego no puede ser la restricción de un movimiento rígido).

4.4.7. Entornos totalmente normales. Demostración del Teorema de Hopf-Rinow.

Terminaremos el material adicional con esta sección, cuya dificultad es superior a las anteriores. La razón de esta dificultad estriba en que necesitaremos estudiar parte de

Figura 4.3: Dos superficies isométricas pero no congruentes.

la geometría en el fibrado tangente a una superficie, que es una variedad diferenciable de dimensión 4. Este objeto supone un nivel de abstracción superior al de las curvas y superficies estudiados hasta ahora, y sólo daremos una idea de cómo trabajar sobre el fibrado tangente para obtener los resultados deseados, más que exponer demostraciones completamente rigurosas.

Como siempre, $S \subset \mathbb{R}^3$ denotará una superficie. Recordemos que dado un punto $p \in S$ la exponencial \exp_p está definida en un abierto $\mathcal{A}(p) \subset T_pS$ que es estrellado respecto al origen por el Lema de Homogeneidad. La dependencia diferenciable de la solución de un problema de valores iniciales respecto a las condiciones iniciales nos permite mover el punto p en S de forma que los correspondientes abiertos $\mathcal{A}(p)$ se mueven diferenciablemente al variar p. Esto se hace dotando rigurosamente dotando al conjunto

$$TS = \{(p, v) \mid p \in S, v \in T_pS\}$$

de una estructura diferenciable 4-dimensional. Aquí no vamos a entrar a definir en detalle esta estructura diferenciable; simplemente apuntaremos que el hecho de que una parametrización $X: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ de S alrededor de un punto $p \in S$ produce un difeomorfismo entre U y X(U) y que dado $q \in U$, el espacio tangente $T_X(q)S$ puede identificarse con \mathbb{R}^2 vía dX_q , nos permite identificar localmente puntos de TS con listas en \mathbb{R}^4 , sin más que asociar, a cada $q \in X(U)$ y $v \in T_qS$, la lista $(x, y, a, b) \in \mathbb{R}^4$ tal que X(x, y) = q y

$$v = aX_x(x,y) + bX_y(x,y).$$

A TS se le llama el fibrado tangente a S, y puede dotársele de una topología Hausdorff. Existe un concepto de diferenciabilidad para aplicaciones E definidas sobre abiertos de TS, que simplemente se traduce en la diferenciabilidad de la correspondiente expresión local de E en términos de las coordenadas (x, y, a, b) definida arriba, como función de cuatro variables reales. Esto es justamente lo que ocurre con la proyección canónica

$$\pi \colon TS \to S, \quad \pi(p,v) = p,$$

y con la aplicación exponencial

$$\exp: \mathcal{A} \subset TS \to S, \ \exp(p, v) = \exp_p v,$$

donde $\mathcal{A} = \{(p, v) \in TS \mid v \in \mathcal{A}(v)\}$, que resulta ser un abierto de TS. Tanto la proyección π como la exponencial exp son diferenciables en el sentido local anteriormente esbozado. Notemos que para cada $p \in S$, (p, 0) pertenece a \mathcal{A} .

Como en cualquier variedad diferenciable, los teoremas clásicos del Análisis Real siguen valiendo en TS. Uno de estos resultados clásicos, el Teorema de la Función Inversa, es la base de la siguiente propiedad.

Proposición 4.4.4 Dado $p \in S$, existen abiertos $\mathcal{V} \subset \mathcal{A}$ y $U \subset S$ con $(p,0) \in \mathcal{V}$ y $p \in U$, tales que la aplicación

$$(\pi, \exp): \quad \mathcal{V} \longrightarrow \quad U \times U$$

$$(q, v) \longmapsto (q, \exp_q v)$$

es un difeomorfismo.

Demostración. Por el Teorema de la Función Inversa aplicado a $(\pi, \exp) : \mathcal{A} \to S \times S$, basta probar que $d(\pi, \exp)_{(p,0)} : T_{(p,0)} \mathcal{A} \to T_p S \times T_p S$ es un isomorfismo de espacios vectoriales (aquí $T_{(p,0)} \mathcal{A}$ es el espacio tangente a \mathcal{A} en $(p,0) \in \mathcal{A}$, que puede identificarse con \mathbb{R}^4). Esto lo haremos viendo que $d(\pi, \exp)_{(p,0)}$ es sobreyectiva, lo que a su vez será consecuencia de los siguientes dos puntos:

- (A) $\forall v \in T_p S$, (v, 0) está en la imagen de $d(\pi, \exp)_{(p, 0)}$.
- **(B)** $\forall v \in T_p S$, (v, v) está en la imagen de $d(\pi, \exp)_{(p,0)}$.

Sea $v \in T_pS$ y $\alpha: (-\varepsilon, \varepsilon) \to S$ una curva diferenciable con $\alpha(0) = p$, $\alpha'(0) = v$. Tomemos un campo diferentiable a lo largo de α , es decir, una aplicación $W: (-\varepsilon, \varepsilon) \to \mathbb{R}^3$ tal que

$$W(t) \in T_{\alpha(t)}S, \quad \forall t \in (-\varepsilon, \varepsilon),$$

elegido de forma que W(0) = 0. Así, $\widetilde{\alpha} := (\alpha, W)$ es una curva diferenciable valuada en TS y $\widetilde{\alpha}(0) = (p, 0) \in \mathcal{A}$ luego por continuidad de $\widetilde{\alpha}$ y por ser \mathcal{A} abierto podemos suponer $\widetilde{\alpha}(t) \in \mathcal{A}$ para cada $t \in (-\varepsilon, \varepsilon)$. Además,

$$d(\pi, \exp)_{(p,0)}(\widetilde{\alpha}'(0)) = \left. \frac{d}{dt} \right|_{0} \left(\alpha(t), \exp_{\alpha(t)} W(t) \right) = \left(v, \left. \frac{d}{dt} \right|_{0} \exp_{\alpha(t)} W(t) \right).$$

127

Supongamos ahora que α es una geodésica en S (luego necesariamente $\alpha(t) = \gamma(t, p, v)$) y que W es de la forma $W(t) = f(t)\alpha'(t)$, donde $f: (-\varepsilon, \varepsilon) \to \mathbb{R}$ es una función C^{∞} con f(0) = 0. Así,

$$d(\pi, \exp)_{(p,0)}(\widetilde{\alpha}'(0)) = \left(v, \frac{d}{dt}\bigg|_{0} \exp_{\alpha(t)} f(t)\alpha'(t)\right).$$

Por otro lado, $\beta(s) = \alpha(t+s)$ es una geodésica en S con condiciones iniciales $\beta(0) = \alpha(t)$, $\beta'(0) = \alpha'(t)$, y $s \mapsto \exp_{\alpha(t)} s\alpha'(t)$ es también geodésica en S con las mismas condiciones iniciales, luego $\alpha(t+s) = \exp_{\alpha(t)} s\alpha'(t)$ siempre que $|t+s| < \varepsilon$ y $|t| < \varepsilon$. En particular,

$$\alpha(t + f(t)) = \exp_{\alpha(t)}(f(t)\alpha'(t))$$

para $|t| < \delta$ y para cierto $\delta > 0$. Así,

$$d(\pi, \exp)_{(p,0)}(\widetilde{\alpha}'(0)) = \left(v, \frac{d}{dt}\bigg|_{0} \alpha(t+f(t))\right) = (v, [1+f'(0)]\alpha'(0)) = (v, [1+f'(0)]v).$$

Si tomamos $f \in C^{\infty}(-\varepsilon, \varepsilon)$ con f(0) = 0, f'(0) = -1, lo anterior prueba que (v, 0) está en la imagen de $d(\pi, \exp)_{(p,0)}$; por último, si tomamos $f \in C^{\infty}(-\varepsilon, \varepsilon)$ con f(0) = 0, f'(0) = 0, tenemos que (v, v) está en la imagen de $d(\pi, \exp)_{(p,0)}$.

El siguiente resultado nos describe una base de la topología del fibrado tangente. Lo aceptaremos \sin demostración, ya que tampoco hemos definido rigurosamente la topología subyacente a TS.

Lema 4.4.4 Sean $W \subset S$ un abierto que contenga a p y $\delta > 0$. Llamemos

$$W(\delta) = \{(q, v) \in TS \mid q \in W, \|v\|^2 < \delta^2\}.$$

Entonces, la familia de subconjuntos

$$\mathcal{B}_{(p,0)} = \{\mathcal{W}(\delta) \mid W \subset S \text{ abierto conteniendo a p, } \delta > 0\}$$

es una base de entornos abiertos de (p,0) en la topología de TS.

Teorema 4.4.6 (Entornos totalmente normales) Dado $p \in S$, existen un abierto $W \subset S$ con $p \in W$ y un $\delta = \delta(W) > 0$ tales que

- 1. Para cada $q \in W$, $B(q, \delta)$ es bola geodésica (es decir, \exp_q está definida en $\mathbb{B}(0, \delta) \subset T_qS$ y es un difeomorfismo de $\mathbb{B}(0, \delta)$ en $B(q, \delta)$).
- 2. Para cada $q \in W$, $W \subset B(q, \delta)$.

(A este W se le llama un entorno totalmente normal de p).

Demostración. Por la Proposición 4.4.4, existen abiertos $\mathcal{V} \subset \mathcal{A}$ y $U \subset S$ con $(p,0) \in \mathcal{V}$ y $p \in U$, tales que $(\pi, \exp) \colon \mathcal{V} \to U \times U$ es un difeomorfismo. Por el Lema 4.4.4, existe un abierto $W \subset S$ y un $\delta > 0$ tales que $p \in W$ y $(p,0) \in \mathcal{W}(\delta) \subset \mathcal{V}$. Veamos que este W cumple 1: Sea $q \in W$. Como $\{q\} \times \mathbb{B}(0,\delta) \subset \mathcal{W}(\delta) \subset \mathcal{V} \subset \mathcal{A}$, entonces \exp_q está definida en $\mathbb{B}(0,\delta) \subset T_qS$. Además, la restricción del difeomorfismo (π, \exp) a $\{q\} \times \mathbb{B}(0,\delta)$ es $(q,v) \mapsto (q, \exp_p v)$ (aquí q es fijo), luego \exp_q es un difeomorfismo de $\mathbb{B}(0,\delta)$ en su imagen y por tanto $B(q,\delta)$ es bola geodésica.

Cualquier abierto $W_1 \subset W$ que contenga a p cumplirá 1 con el mismo δ . Por tanto, para terminar bastará probar que existe un abierto $\exists W_1 \subset W$ con $p \in W_1$ tal que $W_1 \subset B(q, \delta)$ para cada $q \in W_1$. Como $\mathcal{W}(\delta)$ es abierto de TS contenido en \mathcal{V} , la Proposición 4.4.4 implica que $(\pi, \exp)(\mathcal{W}(\delta))$ es un abierto de $U \times U$ que contiene a (p, p), luego existe un abierto $W_1 \subset W$ tal que $(p, p) \in W_1 \times W_1 \subset (\pi, \exp)(\mathcal{W}(\delta))$. Esta última inclusión implica que dado $q \in W_1$, $\{q\} \times W_1 \subset \{(q, \exp_q v) \mid ||v||^2 < \delta^2\} = \{q\} \times B(q, \delta)$.

Nota 4.4.1

- 1. Un entorno totalmente normal es entorno normal de todos sus puntos.
- 2. Si W es un entorno totalmente normal de $p \in S$ con radio asociado $\delta > 0$ y $q_1, q_2 \in W$, entonces existe una geodésica γ que parte de q_1 y llega a q_2 : basta considerar la bola geodésica $B(q_1, \delta)$, que contiene a W. Además, γ es la única⁴ curva C^{∞} a trozos con esos extremos que minimiza la distancia. γ podría no estar contenida en W, aunque sí lo estará en $B(q_1, \delta)$. De hecho, puede conseguirse que γ esté contenida en W sin más que tomar un entorno estrictamente convexo⁵ dentro de W, subconjunto que seguirá siendo un entorno totalmente normal de p con el mismo δ asociado.

Recordemos que una curva continua $\alpha:[a,b]\to S$ se dice C^∞ a trozos si existen $t_0=a< t_1<\ldots< t_k=b$ tales que $\alpha|_{[t_{i-1},t_i]}$ es diferenciable, $\forall i=1,\ldots,k$. Si 1< i< k, entonces los vectores tangentes $\alpha'(t_i^-)$ y $\alpha'(t_i^+)$ existen pero no tienen porqué coincidir. A t_1,\ldots,t_{k-1} se les llama v'ertices de α .

Corolario 4.4.4 Sea α : $[a,b] \to S$ una curva C^{∞} a trozos y $[a,b]^* = [a,b] - \{v\'{e}rtices\ de\ \alpha\}$. Si $L(\alpha)_a^b = d(\alpha(a), \alpha(b))$ y existe un $c \ge 0$ tal que $\|\alpha'\| = c$ en $[a,b]^*$, entonces α es una geodésica (en particular, α es C^{∞}).

Demostración. Basta probar que dado $t_0 \in (a,b)$, $\exists \varepsilon > 0$ tal que $\alpha|_{[t_0-\varepsilon,t_0+\varepsilon]}$ es una geodésica. Fijemos $t_0 \in [a,b]$ y sea W un entorno totalmente normal de $\alpha(t_0)$ con radio asociado $\delta > 0$. Por continuidad, $\exists \varepsilon > 0$ tal que $\alpha([t_0 - \varepsilon, t_0 + \varepsilon]) \subset W$. Por la Nota 4.4.1, existe una geodésica γ uniendo $\alpha(t_0 - \varepsilon)$ con $\alpha(t_0 + \varepsilon)$ que además cumple

⁴En el sentido del Teorema 4.3.1.

⁵No estudiaremos este tipo de entornos.

- $L(\gamma) = d(\alpha(t_0 \varepsilon), \alpha(t_0 + \varepsilon)),$
- γ es la única curva (salvo reparamerizaciones) con sus mismos extremos y la menor longitud posible.

Como $\alpha|_{[t_0-\varepsilon,t_0+\varepsilon]}$ tiene los mismos extremos que γ y minimiza la longitud entre ellos (porque minimiza de a a b), $\alpha|_{[t_0-\varepsilon,t_0+\varepsilon]}$ es una reparametrización no decreciente de γ , i.e. $\alpha|_{[t_0-\varepsilon,t_0+\varepsilon]}=\gamma\circ\phi$ donde ϕ es una función derivable a trozos con $\phi'\geq 0$ donde tenga sentido. Como $\alpha'=(\gamma\circ\phi)\phi'$ y $\|\alpha'\|,\|\gamma'\|$ son constantes en $[t_0-\varepsilon,t_0+\varepsilon]^*=[t_0-\varepsilon,t_0+\varepsilon]\cap [a,b]^*$, existirá un $c_1\geq 0$ tal que $\phi'=c$ en $[t_0-\varepsilon,t_0+\varepsilon]^*$ (ojo: c_1 no depende de la componente de $[t_0-\varepsilon,t_0+\varepsilon]^*$), luego ϕ es afín en cada componente de $[t_0-\varepsilon,t_0+\varepsilon]^*$, con la misma pendiente en cada componente. Como ϕ es continua, concluímos que ϕ no tiene vértices en $[t_0-\varepsilon,t_0+\varepsilon]$, luego tampoco los tiene α . Por tanto, $\alpha|_{[t_0-\varepsilon,t_0+\varepsilon]}$ es una reparametrización afín de γ luego $\alpha|_{[t_0-\varepsilon,t_0+\varepsilon]}$ es geodésica. \square

Aunque no la usaremos, enunciaremos una importante consecuencia de los entornos totalmente normales sobre unicidad de isometrías locales. *Grosso modo*, las isometrías locales están determinadas por su valor en un punto y por su aproximación lineal en ese punto, tal y como les ocurre a las geodésicas.

Corolario 4.4.5 Sean $f, h: S_1 \to S_2$ isometrías locales entre dos superficies, con S_1 conexa. Supongamos que existe $p \in S_1$ tal que f(p) = h(p) y $df_p = dh_p$. Entonces, f = h en S_1 .

Demostración. Sea $q \in S_1$. Como S_1 es conexa, existe una curva continua $\alpha:[0,1] \to S_1$ tal que $\alpha(0) = p, \alpha(1) = q$. Recubrimos $\alpha([0,1])$ por entornos totalmente normales $W_{\alpha(t)}$ de cada $\alpha(t)$. Por ser $\alpha([0,1])$ compacto, podemos extraer un subrecubrimiento finito $W_{\alpha(t_1)}, \ldots, W_{\alpha(t_k)}$. Reordenando los índices, podemos suponer $W_{\alpha(t_{i-1})} \cap W_{\alpha(t_i)} \neq \emptyset$ y $p \in W_{\alpha(t_1)}, q \in W_{\alpha(t_k)}$. Veamos que f = h en $W_{\alpha(t_1)}$ y habremos terminado (basta repetir el proceso hasta llegar a q): Dado $x \in W_{\alpha(t_1)}$, existe una geodésica γ de S_1 con $\gamma(0) = p, \gamma(1) = x$. Como f, h son isometrías locales, entonces $f \circ \gamma$ y $h \circ \gamma$ son geodésicas de S_2 . Además tienen las mismas condiciones iniciales, luego $f \circ \gamma = h \circ \gamma$, en particular f(x) = h(x).

Empezamos ya los preparativos de la prueba del Teorema de Hopf-Rinow. A partir de ahora, $S \subset \mathbb{R}^3$ representará una superficie conexa, lo que nos permite considerar la distancia d definida en (4.1). Por tanto, (S, d) es un espacio métrico.

Lema 4.4.5 Sea $p \in S$ tal que \exp_p está definida en todo T_pS . Entonces, todo punto $q \in S$ puede unirse a p por una geodésica que minimiza la longitud.

Demostración. Fijemos $q \in S$ y sea R = d(p,q). Tomemos r > 0 tal que S(p,r) es un círculo geodésico. ¿Cuál es la dirección del camino más corto de p a q? Sea $f: S(p,r) \to \mathbb{R}$

la función distancia a q, f(x) = d(x,q), $x \in S(p,r)$. Como S(p,r) es compacta, existe un punto $x_0 \in S(p,r)$ donde f alcanza un mínimo. Para este x_0 , existe un único vector $v \in T_pS$ con ||v|| = 1 tal que $\exp_p(rv) = x_0$. Veamos que $\gamma(t) = \gamma(t,p,v)$ es la geodésica buscada: primero, γ está definida en todo \mathbb{R} por hipótesis. Como γ está p.p.a., tenemos $L(\gamma)_0^t = t$ para cada t > 0. Basta entonces comprobar que $\gamma(R) = q$. Sea

$$A = \{ t \in [r, R] \mid d(\gamma(t), q) = R - t \}.$$

A es cerrado (es el conjunto de coincidencia de dos funciones continuas).

Afirmación 4.4.1 $r \in A$ (luego $A \neq \emptyset$).

Demostración de la Afirmación 4.4.1. $R = d(p,q) \le d(p,x_0) + d(x_0,q) = r + d(x_0,q)$. Por tanto, $d(\gamma(r),q) = d(x_0,q) \ge R - r$. Veamos que la desigualdad estricta es imposible: por reducción al absurdo, supongamos $d(x_0,q) > R - r$. Tomamos $\varepsilon > 0$ tal que $R - r + \varepsilon < d(x_0,q)$. Como $R + \varepsilon > R = \inf\{L(\alpha) \mid \alpha \text{ curva uniendo } p,q\}$, existirá una curva C^{∞} a trozos $\alpha: [0,1] \to S$ con $\alpha(0) = p,\alpha(1) = q$ tal que $R \le L(\alpha) < R + \varepsilon$. Por conexión, existe un punto $x \in \alpha([0,1]) \cap S(p_0,r)$. Así, $r + L(\alpha)_x^q \le L(\alpha)_p^x + L(\alpha)_x^q = L(\alpha) < R + \varepsilon$ luego $d(x,q) \le L(\alpha)_x^q < R - r + \varepsilon < d(x_0,q)$, lo que contradice que x_0 es mínimo de f.

Afirmación 4.4.2 $\sup A = R$.

Demostración de la Afirmación 4.4.2. sup A existe porque [r, R] es acotado y por la Afirmación 4.4.1. Basta probar que dado $t_0 \in A$ con $t_0 < R$, existe $\delta > 0$ tal que $t_0 + \delta \in A$. Elegimos $\delta > 0$ tal que $t_0 + \delta \leq R$ y $S(\gamma(t_0), \delta)$ es un círculo geodésico. Usando el razonamiento hecho hasta ahora, existirá un punto $y_0 \in S(\gamma(t_0), \delta)$ donde $d(\cdot,q)|_{S(\gamma(t_0),\delta)}$ alcanza su mínimo. Por la Afirmación 4.4.1 en este caso, tenemos $d(y_0,q) = d(\gamma(t_0),q) - \delta = R - t_0 - \delta$ (porque $t_0 \in A$). Sea $\widehat{\gamma}: [0,\delta] \to S$ la única geodésica tal que $\widehat{\gamma}(0) = \gamma(t_0), \ \widehat{\gamma}(\delta) = y_0, \ L(\widehat{\gamma}) = d(\gamma(t_0), y_0) = \delta$ (nótese que $\widehat{\gamma}$ no tiene porqué estar definida en todo \mathbb{R}). La curva $\gamma|_0^{t_0} \cup \widehat{\gamma}$ es C^{∞} a trozos, une p con y_0 y tiene velocidad c
te. 1 en norma donde tenga sentido. Si vemos que $\gamma|_0^{t_0}\cup\widehat{\gamma}$ minimiza la longitud entre sus extremos, será diferenciable por el Corolario 4.4.4. Por la designaldad triangular, $R = d(p,q) \le d(p,y_0) + d(y_0,q) = d(p,y_0) + R - t_0 - \delta$, luego $d(p,y_0) \geq t_0 + \delta. \text{ Entonces } L(\gamma|_0^{t_0} \cup \widehat{\gamma}) = L(\gamma|_0^{t_0}) + L(\widehat{\gamma}) = t_0 + \delta \leq d(p,y_0) \leq L(\gamma|_0^{t_0} \cup \widehat{\gamma}),$ luego $\gamma|_0^{t_0} \cup \widehat{\gamma}$ minimiza la longitud entre sus extremos, y por tanto es diferenciable en $\gamma(t_0)$. Como $\gamma|_0^{t_0}$ y $\hat{\gamma}$ son geodésicas con las mismas condiciones iniciales en $\gamma(t_0)$, coincidirán: $\widehat{\gamma}(t) = \gamma(t+t_0), \ \forall t \in [0,\delta].$ Veamos ya que $t_0 + \delta \in A$: $t_0 + \delta \leq R$ por definición de δ , y $d(\gamma(t_0+\delta),q)=g(\widehat{\gamma}(\delta),q)=d(y_0,q)=R-t_0-\delta.$

Dado $p \in S$ y r > 0 (no necesariamente radio geodésico), denotaremos por $B_d(p, r)$ a la bola métrica en (S, d) centrada en p y de radio r. Sabemos que para radios geodésicos, $B_d(p, r) = B(p, r) = \exp_p(\mathbb{B}(0, r))$.

131

Lema 4.4.6 Sea $p \in S$ tal que \exp_p está definida en todo T_pS . Entonces, $\exp_p(\mathbb{B}(0,r)) = B_d(p,r) \ \forall r > 0$ (aunque la exponencial no tiene porqué ser un difeomorfismo).

Demostración. Fijemos r > 0. La inclusión $\exp_p(\mathbb{B}(0,r)) \subset B_d(p,r)$ se deduce directamente de la definición de distancia (4.1). Recíprocamente, si $q \in B_d(p,r)$ entonces el Lema 4.4.5 implica que existe una geodésica minimizante γ uniendo p con q y p.p.a. Así γ se escribe $\gamma(t) = \exp_p(t\gamma'(0))$ luego $q = \gamma(d(p,q)) = \exp_p(d(p,q)\gamma'(0)) \in \exp_p(\mathbb{B}(0,r))$. \square

Lema 4.4.7 Sea $\gamma:[0,t_0)\to S$ una geodésica para la que existe el límite $q=\lim_{t\to t_0^-}\gamma(t)\in S$. Entonces, γ puede extenderse como geodésica a $[0,t_0+\varepsilon)$ para cierto $\varepsilon>0$, con $\gamma(t_0)=q$.

Demostración. Claramente podemos suponer γ p.p.a. Tomemos un entorno totalmente normal W de q, con radio asociado $\delta > 0$. Como la curva $\overline{\gamma} : [0, t_0] \to S$ dada por

$$\overline{\gamma}(t) = \begin{cases} \gamma(t) & \text{si } 0 \le t < t_0 \\ q & \text{si } t = t_0 \end{cases}$$

es continua y $\overline{\gamma}(t_0) = q \in W$ que es abierto, existe $t_1 \in [0, t_0)$ tal que $\overline{\gamma}((t_1, t_0]) \subset W$. Como $q = \lim_{t \to t_0^-} \gamma(t)$, podemos tomar $t' \in (t_1, t_0)$ tal que $d(\gamma(t'), q) \leq \frac{\delta}{2}$. Como $\gamma(t') \in W$ y éste es un entorno totalmente normal, $B(\gamma(t'), \delta)$ es bola geodésica. Por tanto, todas las geodésicas radiales p.p.a. saliendo de $\gamma(t')$ están definidas al menos, en $(-\delta, \delta)$. Como γ es una de estas geodésicas radiales salvo una traslación de parámetro, deducimos que γ está definida en $[t', t' + \delta]$ y minimiza la longitud de $\gamma(t')$ a $\gamma(t' + \delta)$. Como $d(\gamma(t'), q) \leq \frac{\delta}{2}$, en particular γ está definida en t_0 , donde toma el valor t_0 .

Demosración del Teorema de Hopf-Rinow, enunciado en el Teorema 4.4.1.

 $1\Rightarrow 2$. Sea $p\in S$. Probar que \exp_p está definida en todo T_pS equivale a demostrar que para cada vector $v\in T_pS$ con $\|v\|=1$, la geodésica $\gamma(t)=\exp_p(tv)$ está definida en todo \mathbb{R} . Supongamos entonces que para un $v\in T_pS$ con $\|v\|=1$, $\gamma(t)$ está definida en $[0,t_0)$ pero no en t_0 (sabemos que γ está definida al menos en un entorno de cero). Si probamos que existe el límite $\lim_{t\to t_0^-}\gamma(t)\in S$, entonces el Lema 4.4.7 producirá la contradicción buscada. Sea $\{t_k\}_k\subset [0,t_0)$ con $t_k\nearrow t_0$. $\{\gamma(t_k)\}_k$ es una sucesión de Cauchy en (S,d) porque $d(\gamma(t_k),\gamma(t_l))\leq L(\gamma)^{t_l}_{t_k}=|t_k-t_l|$. Como (S,d) es un espacio métrico completo, $\{\gamma(t_k)\}_k$ es convergente luego existe $q\in S$ tal que $\gamma(t_k)\to q$ cuando $k\to\infty$. Para probar que $\lim_{t\to t_0^-}\gamma(t)=q$, veremos que $\lim_{t\to t_0^-}d(\gamma(t),q)=0$: Fijo $t\in [0,t_0)$. Entonces, $d(\gamma(t),\gamma(t_k))\leq L(\gamma)^{t_k}_t=|t-t_k|$. Tomando $k\to\infty$, tendremos $d(\gamma(t),q)\leq |t-t_0|$, y esto es cierto para cada $t\in [0,t_0)$. Por tanto $0\leq \lim_{t\to t_0^-}d(\gamma(t),q)\leq \lim_{t\to t_0^-}|t-t_0|=0$ luego $\lim_{t\to t_0^-}\gamma(t)=q$.

- $2 \Rightarrow 3$. Evidente.
- $3\Rightarrow 4$. En un espacio métrico, todo compacto es cerrado y acotado. Recíprocamente, si $A\subset S$ es cerrado y acotado, entonces $A\subset B_d(p,R)$ para cierto R>0 (p es el punto de S donde suponemos que \exp_p está definida en todo T_pS). Por el Lema 4.4.6, $B_d(p,R)=\exp_p(\mathbb{B}(0,R))\subset \exp_p(\overline{\mathbb{B}(0,R)})$. Como $\exp_p(\overline{\mathbb{B}(0,R)})$ es imagen continua de un compacto, también es compacto. Como A es cerrado dentro de un compacto, también será compacto.
- $4 \Rightarrow 1$. Sea $\{p_k\}_k \subset S$ una sucesión de Cauchy respecto a la distancia d. Como $\{p_k\}_k$ es acotada, existe R > 0 tal que $\{p_k\}_k \subset \overline{B_d(p,R)}$, que es compacto (p es cualquier punto de S). Por tanto, $\{p_k\}_k$ admite una parcial convergente. Pero una sucesión de Cauchy con una parcial convergente es ella misma convergente.

Finalmente, la última afirmación del Teorema 4.4.1 es consecuencia de Lema 4.4.5.

4.5. EJERCICIOS.

4.5. Ejercicios.

1. Sea $\gamma\colon [a,b]\to \mathbb{S}^2(p_0,r)$ una curva p.p.a. con valores en la esfera de radio r>0 y centro $p_0\in\mathbb{R}^3$. Demostrar que γ es una geodésica si y sólo si $r^2\gamma''+\gamma-p_0=0$ en [a,b]. Integrar esta EDO para deducir que

$$\gamma(t) = p_0 + \cos(t/r)(p - p_0) + \sin(t/r)rv,$$

donde $p \in \mathbb{S}^2(p_0, r)$ y $v \in T_p \mathbb{S}^2(p_0, r)$, ||v|| = 1.

2. Sea $\gamma\colon [a,b]\to C$ una curva p.p.a. con valores en el cilindro $C=\{(x,y,z)\mid x^2+y^2=1\}.$ Demostrar que γ es una geodésica si y sólo si

$$x'' + [1 - (z')^2]x = 0$$
, $y'' + [1 - (z')^2]y = 0$, $z'' = 0$ en $[a, b]$,

donde $\gamma(t)=(x(t),y(t),z(t))$. Integrar esta EDO para deducir que

$$\gamma(t) = (x_0 \cos(at) - y_0 \sin(at), y_0 \cos(at) + x_0 \sin(at), bt + z_0),$$

donde $(x_0, y_0, z_0) \in C$ y $(a, b) \in \mathbb{S}^1(1) \subset \mathbb{R}^2$.

- 3. Probar que todo meridiano (convenientemente parametrizado) de una superficie de revolución es una geodésica. Por meridiano se entiende la imagen de la curva generatriz por un giro alrededor del eje de rotación. Demostrar también que un paralelo (es decir, la circunferencia obtenida al girar un punto p_0 de la curva generatriz) es una geodésica si y sólo si p_0 está a distancia crítica al eje de giro.
- 4. Demostrar que dado un punto p=(x,y,z) en el cilindro $C=\{x^2+y^2=1\}$, la exponencial $\exp_p\colon T_pC=\{(-ay,ax,b)\mid (a,b)\in\mathbb{R}^2\}\to C$ viene dada por:

$$\exp_p(-ay, ax, b) = (x\cos a - y\sin a, y\cos a + x\sin a, b + z).$$

Demostrar que la restricción de \exp_p es a $U=\{(-ay,ax,b)\in T_pC\mid -\pi < a < \pi\}$ es un difeomorfismo, y que el correspondiente entorno normal $V=\exp_p(U)$ es $V=C-\{(-x,-y,\lambda)\mid \lambda\in\mathbb{R}\}.$

- 5. Sea a>0. Encontrar una isometría local del helicoide $H_a=\{(x,y,z)\in\mathbb{R}^3\mid x\sin(z/a)=y\cos(z/a)\}$ en la catenoide $C_a=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2=a^2\cosh^2(z/a)\}=a\cdot C_1.$
- 6. Sea $\alpha\colon [a,b]\to S$ una curva diferenciable en una superficie S. Se define la energía de α como

$$E(\alpha) = \int_a^b \|\alpha'(t)\|^2 dt.$$

Demostrar que la relación entre la energía y la longitud es

$$L(\alpha)^2 \le (b-a)E(\alpha),$$

y que la igualdad es cierta si y sólo si α está parametrizada proporcionalmente al arco.

7. Sea $F:[a,b]\times (-\varepsilon,\varepsilon)\to S$ una variación diferenciable de una curva $\alpha\colon [a,b]\to S$ en una superficie S, con campo variacional V. Probar que si definimos $E_F(s)=E(F_s)$ (energía de la curva longitudinal F_s), entonces la primera fórmula de variación de la energía viene dada por

$$\frac{1}{2}E_F'(0) = \langle V(b), \alpha'(b) \rangle - \langle V(a), \alpha'(a) \rangle - \int_a^b \langle V(t), \alpha''(t) \rangle dt.$$

Deducir que $E_F'(0)=0$ para toda variación propia de α si y sólo si α es una geodésica. En este sentido, la energía es un funcional más apropiado para estudiar geodésicas que la longitud, que no distingue reparametrizaciones.

- 8. Probar que si $\gamma\colon [a,b]\to S$ es una curva diferenciable que minimiza la longitud entre todas las curvas diferenciables a trozos $\alpha\colon [a,b]\to S$ con $\alpha(a)=\gamma(a)$ y $\alpha(b)=\gamma(b)$, y γ está parametrizada proporcionalmente al arco, entonces γ minimiza la energía entre todas las curvas con sus mismos extremos (en particular, γ es una geodésica).
- 9. Probar que si $\gamma\colon [a,b]\to S$ es una curva diferenciable que minimiza la energía entre todas las curvas con sus mismos extremos, entonces γ es una geodésica y minimiza la longitud entre todas las curvas con sus mismos extremos.
- 10. Triedro y ecuaciones de Darboux.

Sea $S\subset\mathbb{R}^3$ una superficie orientable con aplicación de Gauss $N\colon S\to\mathbb{S}^2$ y segunda forma fundamental asociada $\sigma.$ Dada una geodésica p.p.a. $\gamma\colon I\to S$ definida sobre un intervalo $I\subset\mathbb{R}$, se definen

$$T = \gamma', \quad N_{\gamma} = N \circ \gamma, \quad B = T \times N_{\gamma}.$$

Así, $T, N_{\gamma}, B \colon I \to \mathbb{S}^2$ son aplicaciones diferenciables y $\{T, N_{\gamma}, B\}$ forman una base ortonormal positiva de \mathbb{R}^3 (Ilamada $triedro\ de\ Darboux$) con $T(t), B(t) \in T_{\gamma(t)}S$ para cada $t \in I$. Probar las siguientes igualdades ($ecuaciones\ de\ Darboux$):

$$\begin{cases} T' = \sigma_{\gamma}(T, T)N_{\gamma}, \\ (N_{\gamma})' = -\sigma_{\gamma}(T, T)T - \sigma_{\gamma}(T, B)B, \\ B' = \sigma_{\gamma}(T, B)N_{\gamma}. \end{cases}$$

4.5. EJERCICIOS.

11. CURVATURA GEODÉSICA Y GENERALIZACIÓN DE LAS ECUACIONES DE DARBOUX PARA UNA CURVA P.P.A.

Sea $S\subset\mathbb{R}^3$ una superficie orientable con aplicación de Gauss $N\colon S\to\mathbb{S}^2$ y segunda forma fundamental asociada σ . Dada una curva diferenciable y p.p.a. $\alpha\colon I\to S$ definida sobre un intervalo $I\subset\mathbb{R}$, se definen

$$T = \alpha', \quad N_{\alpha} = N \circ \alpha, \quad B = T \times N_{\alpha}.$$

Así, $T, N_{\alpha}, B \colon I \to \mathbb{S}^2$ son aplicaciones diferenciables y para cada $t \in I$, $\{T, N_{\alpha}, B\}$ forma una base ortonormal positiva de \mathbb{R}^3 , que también llamaremos $triedro\ de\ Darboux$ ya que generaliza la situación del ejercicio 10.

- (A) Probar que $T' = (\alpha'')^T + \kappa_n N_\alpha$, donde $\kappa_n = \sigma_\alpha(T,T)$ es la curvatura normal de S en la dirección de α' .
- (B) Demostrar que $(\alpha'')^T$ lleva la dirección de B. Por tanto, podemos escribir $(\alpha'')^T = \kappa_g \, B$, donde $\kappa_g = \langle \alpha'', B \rangle = -\det(\alpha' \alpha'', N_\alpha)$ se llama la curvatura geodésica de α . Concluir que α es una geodésica de S si y sólo si su curvatura geodésica se anula idénticamente.
- (C) Probar que $T' = \kappa_g B + \kappa_n N_\alpha$ (comparar con la primera ecuación de Darboux del ejercicio 10).
- (D) Demostrar que $(N_{\alpha})' = -\kappa_n T \sigma_{\alpha}(T,B)B$, es decir, la segunda ecuación de Darboux del ejercicio 10 se cumple sin cambios en este caso más general.
- (E) Probar que $B'=-\kappa_g\,T+\sigma_\alpha(T,B)N_\alpha$ (comparar con la tercera ecuación de Darboux del ejercicio 10).
- 12. (A) Sea p un punto de una superficie orientable $S\subset\mathbb{R}^3$ y $v\in T_pS$, $\|v\|=1$, tal que $\sigma_p(v,v)\neq 0$, donde σ es la segunda forma fundamental de S asociada a una aplicación de Gauss N. Supongamos que la geodésica $\gamma\colon I\to S$ con condiciones iniciales $\gamma(0)=p,\ \gamma'(0)=v$ es plana, es decir existen $p_0,a\in\mathbb{R}^3,\ \|a\|=1$, tales que

$$\langle \gamma(t) - p_0, a \rangle = 0,$$

para todo $t \in I$. Usar las ecuaciones de Darboux para probar que existe un intervalo abierto $J \subset I$ que contiene a cero tal que $\gamma' \times N_{\gamma} = \pm a$ en J y que $dN_p(v)$ es paralelo a v (es decir, v es un vector propio de dN_p).

- (B) Probar que si todas las geodésicas de una superficie conexa son curvas planas, entonces la superficie es totalmente umbilical, esto es, es un abierto de un plano o de una esfera.
- 13. ¿Qué se puede decir de una superficie orientada S cuya aplicación de Gauss $N: S \to \mathbb{S}^2(1)$ es una isometría global?

- 14. ¿Existe una parametrización $X: U \to \mathbb{S}^2(1)$ para la que E=1, F=0 y G=1?
- 15. Sea X=X(u,v) una parametrización de una superficie $S\subset\mathbb{R}^3$ tal que los coeficientes de la primera forma fundamental son $E=G,\,F=0$ (a una tal parametrización se le llama isoterma). Demostrar que S es una superficie mínima si y sólo si X es armónica, es decir, $X_{uu}+X_{vv}=0$.
- 16. Sea $S=\{(x,y,z)\in\mathbb{R}^3\mid z=0,\ x^2+y^2<1\}$. Demostrar que si $f\colon S\to S$ es una isometría local, entonces f(0,0,0)=(0,0,0).
- 17. Se considera la catenoide $S = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 = \cosh^2(z)\}.$
 - (A) Calcular una aplicación de Gauss de S. Dado $p=(x,y,z)\in S$, comprobar que los vectores $e_1=(-y,x,0)$ y $e_2=(x\,\sinh(z),y\,\sinh(z),\cosh(z))$ definen una base ortogonal de T_pS .
 - (B) Probar que $\{e_1,e_2\}$ es una base de direcciones propias del operador de Weingarten de S en p. Calcular K(p) y H(p), y clasificar los puntos de S atendiendo al comportamiento de K(p).
 - (C) Sea $\Pi = \{(x, y, z) \in \mathbb{R}^3 \, / \, x = 0\}$. Se considera la aplicación $f: \Pi \to S$ definida por:

$$f(0, y, z) = (\cosh(z)\cos(y), \cosh(z)\sin(y), z).$$

Probar que f es un difeomorfismo local cuya diferencial en cada punto conserva los ángulos. ¿Es f una isometría local?

- (D) Sea $\gamma\colon I\to\Pi$ una geodésica p.p.a. en Π . Estudiar bajo qué condiciones se cumple que $f\circ\gamma$ es una geodésica de S.
- 18. Para cada $n \in \mathbb{N}$, $n \geq 2$, sea $S_n = \{(x,y,z) \in \mathbb{R}^3 \mid z = \phi_n(x,y)\}$, donde $\phi_n \colon \mathbb{R}^2 \to \mathbb{R}$ es la función dada por $\phi_n(x,y) = x^n y^n$.
 - (A) Calcular K(p) y H(p), siendo p = (0,0,0). En base a lo obtenido, deducir qué tipo de punto es p en función de n.
 - (B) Estudiar de forma razonada la posición local entre S_n y el plano afín tangente a S_n en p = (0,0,0).
 - (C) Demostrar que S_n es difeomorfa a S_m para cualesquiera n y m. ¿Son S_n y S_m isométricas si $n \neq m$?
 - (D) Obtener una geodésica de S_n .
- 19. En el hiperboloide de una hoja $H=\{(x,y,z)\in\mathbb{R}^3\ /\ x^2+y^2-z^2=1\}$ se considera el punto $p_0=(1,1,1)$. Encuentra explícitamente dos geodésicas de H que pasen por p_0 y tales que sus respectivos vectores tangentes en p_0 sean linealmente independientes.

4.5. EJERCICIOS. 137

- 20. Se considera el conjunto $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 z^2 = -1\}.$
 - (A) Demostrar que S es una superficie orientable y calcular una aplicación de Gauss.
 - (B) Probar que S tiene dos componentes conexas, y que cada una de ellas es difeomorfa a un plano.
 - (C) Estudiar si $p_+ = (0,0,1)$ y $p_- = (0,0,-1)$ son puntos umbilicales de S.
 - (D) Probar que las rotaciones alrededor del eje z y la reflexión con respecto al plano $\{z=0\}$ son isometrías de S. Parametrizar la intersección $S\cap\{z=a\}$ y estudiar si es o no una geodésica de S.
- 21. Sea $I\subset\mathbb{R}$ un intervalo abierto y $\alpha:I\to\mathbb{R}^3$ una curva p.p.a. con curvatura positiva. Supongamos que $\alpha(I)$ está contenida en una esfera S y que todas las rectas binormales de α son tangentes a S. Prueba que α es una geodésica de S.
- 22. Sea $S \subset \mathbb{R}^3$ una superficie, $I \subset \mathbb{R}$ un intervalo abierto y $\alpha \colon I \to S$ una curva p.p.a. con curvatura positiva. Supongamos que α es una línea asintótica de S.
 - (A) Prueba que si $\{t_{\alpha}, n_{\alpha}, b_{\alpha}\}$ es el triedro de Frenet de α , entonces $\{t_{\alpha}, n_{\alpha}\}$ es una base ortonormal de $T_{\alpha}S$.
 - (B) Calcula la matriz de la segunda forma fundamental de S respecto de la base $\{t_{\alpha}, n_{\alpha}\}$ y concluye que la curvatura de Gauss de S a lo largo de α viene dada por

$$K \circ \alpha = -\sigma_{\alpha}(\alpha', n_{\alpha})^2 = -\tau_{\alpha}^2$$

donde τ_{α} es la torsión de α .

- 23. Sea C la curva plana contenida en el plano $\{x=0\}$ formada por los puntos (0,y,z) que equidistan del punto (0,2,0) y del eje z. Sea S la superficie que se obtiene revolucionando C alrededor del eje z.
 - (A) Encuentra una parametrización de S y una aplicación de Gauss N de S.
 - (B) Calcula la curvatura de Gauss y la curvatura media de S respecto de N.
 - (C) Da explícitamente un punto de S y describe geométricamente una geodésica de S que pase por dicho punto.
- 24. Sea $S\subset\mathbb{R}^3$ una superficie y $\gamma\colon\mathbb{R}\to S$ una geodésica en S. Prueba que para cada $t,s\in\mathbb{R}$ se cumple

$$\exp_{\gamma(t)} (s \gamma'(t)) = \gamma(t+s).$$

25. Sean S una superficie y Π un plano afín, que se cortan formando un ángulo constante $\theta \neq 0$ a lo largo de una curva regular $C \subset S \cap \Pi$. Supongamos que $\alpha \colon I \to C$ es una parametrización por el arco de C.

- (A) Prueba que α es una línea de curvatura de S.
- (B) Demostrar que la curvatura principal de S asociada a la dirección principal α' es (salvo el signo) $\kappa_{\alpha} \operatorname{sen} \theta$, donde κ_{α} es la curvatura de α como curva plana.
- (C) Probar que si C está contenida en una recta, entonces α es una geodésica de S.
- 26. Sea B(p,r) una bola geodésica en una superficie $S \subset \mathbb{R}^3$, de centro $p \in S$ y radio r > 0. Probar que si $f,g \colon B(p,r) \to S'$ son dos isometrías locales de B(p,r) en una superficie $S' \subset \mathbb{R}^3$ con f(p) = g(p) y $df_p = dg_p$, entonces f = g en B(p,r).
- 27. Sea $f \colon \mathbb{R} \to \mathbb{R}$ una función diferenciable y positiva definida sobre un intervalo abierto $I \subset \mathbb{R}$. Sea $\alpha \colon \mathbb{R} \to \{y=0,x>0\}$ las curva plana dada por $\alpha(t)=(f(t),0,t)$ y S_f la superficie de revolución generada al girar la traza de α alrededor del eje z.
 - (A) Calcular las curvaturas de Gauss y media de S_f . Clasificar los puntos de S_f en función de la curvatura de α (como curva plana). ¿Puede tener S_f puntos de tipo plano?
 - (B) Probar que si S_f es cerrada y llana, entonces S_f es un cilindro circular recto.
 - (C) Dadas $f, g: I \to \mathbb{R}$ funciones diferenciables y positivas, encontrar un difeomorfismo entre las superficies S_f y S_q .
 - (D) Sea $t_0 \in I$. Probar que el paralelo generado por $\alpha(t_0)$ es geodésica de S_f si y sólo si $f'(t_0) = 0$.
- 28. Sea $\alpha\colon I\to\mathbb{S}^2(1)$ una curva p.p.a. Se llama cono sobre α a la superficie S_α parametrizada por la aplicación $X\colon\mathbb{R}^+\times I\to S_\alpha$ dada por $X(t,s)=t\alpha(s)$ (se supone que α cumple las condiciones para que S sea superficie).
 - (A) Demostrar que S_{α} es orientable y llana.
 - (B) Probar que las homotecias de \mathbb{R}^3 centradas en el origen son difeomorfismos de S en sí misma.
 - (C) Probar que S_{α} tiene curvatura media constante si y sólo si α es una geodésica de $\mathbb{S}^2(1)$. Además, en tal caso, S_{α} es un abierto de un plano afín.
 - (D) Demostrar que si $\alpha, \beta \colon I \to \mathbb{S}^2(1)$ son dos curvas p.p.a., entonces los conos S_{α} y S_{β} son superficies isométricas.
 - (E) Estudiar si la curva α es o no geodésica de S_{α} .
- 29. Considera el conjunto $S = \{(x, y, z) \in (-\frac{\pi}{2}, \frac{\pi}{2}) \times (-\frac{\pi}{2}, \frac{\pi}{2}) \times \mathbb{R} \mid e^z = \frac{\cos y}{\cos x} \}.$

4.5. EJERCICIOS. 139

- a) (0,5 puntos) Encuentra una parametrización global de S (en particular, se obtiene que S es una superficie regular de \mathbb{R}^3).
- b) (1 punto) Calcula el plano tangente en un punto arbitrario de S, así como una aplicación de Gauss de S.
- c) (1 punto) Calcula la curvatura de Gauss K y la curvatura media H de S.
- d) (1 punto) Describe geométricamente cuatro geodésicas que pasen por el punto p=(0,0,0) con vectores tangentes linealmente independientes dos a dos.
- 30. Se considera la superficie $S=\{(x,y,z)\in\mathbb{R}^3\mid z=x^3+y^3\}$. Clasificar los puntos de S según sus curvaturas de Gauss y media. ¿Es posible encontrar una isometría local entre el plano $\{z=0\}$ y S?
- 31. Se considera la superficie $S = \{(x, y, z) \in \mathbb{R}^3 \mid z = xy\}.$
 - (A) Calcular una aplicación de Gauss de S. Obtener las curvaturas principales y una base de direcciones principales de S en el punto p = (0, 0, 0).
 - (B) Probar que S es difeomorfa al paraboloide elíptico de ecuación $z = x^2 + y^2$.
 - (C) Calcular las curvaturas de Gauss y media de S. ¿En qué puntos de S se anula la curvatura media?
 - (D) Obtener las curvaturas principales y una base de direcciones principales de S en el punto p=(0,0,0).
 - (E) Probar que las intersecciones de S con los planos $\{x=a\}$, $\{y=b\}$ convenientemente parametrizadas, son geodésicas de S.
 - (F) ¿Es posible encontrar una isometría local entre S y el paraboloide elíptico de ecuación $z=x^2+y^2$?
- 32. Se considera el helicoide $S=\{(x,y,z)\in\mathbb{R}^3\mid x\sin z=y\cos z\}$. Para cada $\theta\in\mathbb{R}$ se define la aplicación $f_\theta\colon S\to S$ dada por

$$f_{\theta}(x, y, z) = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta, z + \theta).$$

- (A) Demostrar que f_{θ} está bien definida y que es una isometría de S.
- **(B)** Se considera el punto de S dado por p=(1,0,0), y la curva $\alpha\colon\mathbb{R}\to S$ definida por $\alpha(\theta)=f_\theta(p)$. Estudiar si α es una geodésica de S.
- 33. ¿Es cierto que si $f: S \to S'$ es un difeomorfismo local entre dos superficies que cumple K'(f(p)) = K(p) para cada $p \in S$, entonces f es una isometría local?

- 34. ¿Es cierto que una homotecia ϕ de \mathbb{R}^3 transforma geodésicas de una superficie S en geodésicas de la superficie $S' = \phi(S)$?
- 35. Consideremos la superficie $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2, z > 0\}.$
 - (A) Parametrizar de forma explícita las curvas diferenciables en S que forman un ángulo constante con el eje z.
 - (B) ¿Cuáles de las curvas que han aparecido en el apartado anterior son geodésicas de S?
- 36. Sean a, b > 0. Se considera el subconjunto S_{ab} de \mathbb{R}^3 definido por:

$$S_{ab} = \{(x, y, z) \in \mathbb{R}^3 \mid a^2 x^2 + b^2 z^2 = 1\}.$$

- (A) Sea $C_{ab}=S_{ab}\cap\{y=0\}$. Parametrizar C_{ab} mediante una curva plana regular. Calcular el diedro de Frenet y la curvatura de dicha curva en cada instante.
- (B) Demostrar que S_{ab} es una superficie orientable y que su plano tangente en cada punto contiene a la dirección horizontal (0,1,0).
- (C) Probar que S_{ab} es difeomorfa al cilindro circular S_{11} .
- (D) Demostrar que S_{ab} es una superficie llana. ¿Es umbilical el punto p = (0, 0, 1/b)?
- (E) Sea $P=\{(x,y,z)\in\mathbb{R}^3\mid x=0\}$. Estudiar para qué valores de a,b>0 se cumple que la aplicación $f\colon P\to S_{ab}$ definida por

$$f(0, y, z) = \left(\frac{\cos y}{a}, z, \frac{\sin y}{b}\right)$$

es una isometría local. Para tales valores, ¿es f la restricción de un movimiento rígido?

- (F) Sea $\alpha \colon \mathbb{R} \to S_{ab}$ la curva dada por $\alpha(t) = f(0,t,t)$. ¿Es α una geodésica de S_{ab} ?
- 37. Para cada número real $a \ge 1$ se considera el elipsoide dado por $S_a = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + az^2 = 1\}.$
 - (A) Encontrar una aplicación de Gauss para S_a .
 - (B) Calcular la curvatura de Gauss, la curvatura media y una base ortonormal de direcciones principales de S_a en el punto p=(1,0,0).
 - (C) Estudiar, en función de a, cuándo el conjunto $C_a = S_a \cap \{z = 0\}$ es la traza de una geodésica de S_a .
- 38. Se considera el conjunto $S = \{(x, y, z) \in \mathbb{R}^3 \mid \cos x + \cos y + \cos z = 0\}.$

4.5. EJERCICIOS. 141

(A) Demostrar que S es una superficie orientable y calcular el plano tangente de S en cada punto.

- (B) Calcular la curvatura de Gauss, la curvatura media y una base ortonormal de direcciones principales de S en el punto $p=(0,\pi,\pi/2)$.
- (C) Para cualesquiera $n,m,k\in\mathbb{Z}$ se define la aplicación $T_{nmk}\colon\mathbb{R}^3\to\mathbb{R}^3$ mediante $T_{nmk}(x,y,z)=(x+2\pi n,y+2\pi m,z+2\pi k).$ Demostrar que cada T_{nmk} es una isometría de S en sí misma. ¿Qué relación existe entre $K\circ T_{223}$ y K?, ¿y entre $H\circ T_{223}$ y H?
- 39. Sea S una superficie conexa y orientable con la propiedad de que todas sus geodésicas son segmentos de recta. Demostrar que S es un abierto de un plano afín.
- 40. Probar que si S es una superficie completa y $f \colon S \to S'$ es una isometría, entonces se cumple $f \circ \exp_p = exp_{f(p)} \circ df_p$, para cada $p \in S$.
- 41. ¿Existe un difeomorfismo local $f: \mathbb{R}^2 \to \mathbb{S}^2(1)$? ¿ y una isometría local? ¿Qué respuestas tienen las mismas preguntas para $f: \mathbb{S}^2(1) \to \mathbb{R}^2$?
- 42. ¿Es cierto que si S es una superficie cerrada, conexa y orientable con curvatura media constante y positiva, entonces S es una esfera?
 - (Material adicional). Los ejercicios que siguen se refieren al material adicional de este capítulo.
- 43. Sea $\gamma \colon [a,b] \to S$ una geodésica en una superficie $S \subset \mathbb{R}^3$ y $F \colon [a,b] \times (-\varepsilon,\varepsilon) \to S$ una variación diferenciable de γ con campo variacional V. En este ejercicio probaremos la segunda fórmula de variación de la energía. Para ello seguiremos los siguientes pasos.
 - (A) Deducir de la primera fórmula de variación de la energía que

$$(4.36) \frac{1}{2}E_F'(s) = \left[\langle \frac{\partial F}{\partial s}, \frac{\partial F}{\partial t} \rangle \right]_a^b - \int_a^b \langle \frac{\partial F}{\partial s}, \left[\frac{\partial^2 F}{\partial t^2} \right]^T \rangle dt,$$

 $\quad \text{donde } [\cdot]^T \text{ denota parte tangente a } S.$

(B) Derivar en s = 0 la expresión (4.36) obteniendo

$$\frac{1}{2}E_F''(0) = \left[\left\langle \frac{\partial^2 F}{\partial s^2}(t,0), \gamma'(t) \right\rangle \right]_a^b + \left[\left\langle V(t), V'(t) \right\rangle \right]_a^b - E_1,$$

donde

$$E_1 = \int_a^b \langle V(t), \frac{\partial}{\partial s} \left[\left(\frac{\partial^2 F}{\partial t^2} \right)^T \right] (t, 0) \rangle dt.$$

(C) Demostrar que en cualquier (t,s), la componente tangente a la superficie del vector $\frac{\partial}{\partial s} \left[\left(\frac{\partial^2 F}{\partial t^2} \right)^T \right] - \frac{\partial}{\partial t} \left[\left(\frac{\partial^2 F}{\partial t \partial s} \right)^T \right]$ es

$$\langle \frac{\partial F}{\partial t}, dN_F \left(\frac{\partial F}{\partial t} \right) \rangle dN_F \left(\frac{\partial F}{\partial s} \right) - \langle \frac{\partial F}{\partial t}, dN_F \left(\frac{\partial F}{\partial s} \right) \rangle dN_F \left(\frac{\partial F}{\partial t} \right),$$

donde N representa una aplicación de Gauss (local) de S. Probar que la última expresión es igual a

$$(K \circ F) \left(\| \frac{\partial F}{\partial t} \|^2 \frac{\partial F}{\partial s} - \langle \frac{\partial F}{\partial t}, \frac{\partial F}{\partial s} \rangle \frac{\partial F}{\partial t} \right),$$

donde K es la curvatura de Gauss de S (indicación: para esto último, discutir si en un (t,s), los vectores $\frac{\partial F}{\partial t}, \frac{\partial F}{\partial s}$ son linealmente dependientes o independientes).

(D) Deducir que la segunda variación de la energía es

$$\frac{1}{2}E_F''(0) = \left[\langle \frac{\partial^2 F}{\partial s}(t,0), \gamma'(t) \rangle \right]_a^b + \int_a^b \|(V')^T\|^2 dt - \int_a^b (K \circ \gamma) \left[\|\gamma'\|^2 \|V\|^2 - \langle \gamma', V \rangle^2 \right] \rangle dt.$$

44. Sea $\gamma\colon [a,b]\to S$ una geodésica en una superficie $S\subset\mathbb{R}^3$. Consideremos el espacio vectorial $\Omega_{\gamma,0}$ de los campos diferenciables a lo largo de γ , tangentes a S y que se anulan en a y en b. Se define la forma indice $I_\gamma\colon\Omega_{\gamma,0}\times\Omega_{\gamma,0}\to\mathbb{R}$ como la forma bilineal simétrica asociada a la forma cuadrática

$$I_{\gamma}(V,V) = \int_{a}^{b} \left\{ \|(V')^{T}\|^{2} - (K \circ \gamma) \left[\|\gamma'\|^{2} \|V\|^{2} - \langle \gamma', V \rangle^{2} \right] \right\} dt.$$

Deducir de la segunda fórmula de variación de la energía que para cualquier variación propia F de γ , se tiene

$$\frac{1}{2}E_F''(0) = I_{\gamma}(V, V),$$

donde V es el campo variacional de F. En particular, si γ minimiza la energía entre sus extremos, entonces I_{γ} es semidefinida positiva.

45. El radical de la forma índice definida en el ejercicio anterior es

$$\operatorname{Rad}(I_{\gamma}) = \{ V \in \Omega_{\gamma,0} \mid I_{\gamma}(V, W) = 0, \ \forall W \in \Omega_{\gamma,0} \}.$$

Un campo diferenciable V a lo largo de la geodésica γ , tangente a S, se dice un campo $de\ Jacobi$ si cumple la ecuación diferencial ordinaria lineal

$$(V'')^T + (K \circ \gamma) \left[\|\gamma'\|^2 V - \langle \gamma', V \rangle \gamma' \right] = 0 \quad \text{en } [a, b].$$

Denotaremos por \mathcal{J}_{γ} al espacio vectorial (4-dimensional) de campos de Jacobi a lo largo de γ . Probar que $\mathcal{J}_{\gamma} \cap \Omega_{\gamma,0} = \operatorname{Rad}(I_{\gamma})$.

4.5. EJERCICIOS. 143

- 46. Sea $\gamma \colon [a,b] \to S$ una geodésica no constante en una superficie $S \subset \mathbb{R}^3$.
 - (A) Dada $f\in C^\infty([a,b])$, demostrar que $f\gamma'\in\mathcal{J}_\gamma$ (campo de Jacobi) si y sólo si f es una función afín. Probar también que todo $V\in\mathcal{J}_\gamma$ se descompone de forma única como $V=f\gamma'+V^\perp$, donde f es una función afín y $V^\perp\in\mathcal{J}_\gamma$ es ortogonal a γ' en todo instante.
 - (B) Probar que si $V \in \mathcal{J}_{\gamma}$ es ortogonal a γ' en dos instantes distintos $t_1, t_2 \in [a, b]$, entonces $V \perp \gamma'$, y que la misma conclusión se da si existe $t_1 \in [a, b]$ tal que $V(t_1), V'(t_1)$ son ortogonales a $\gamma'(t_1)$.
 - (C) Deducir que la dimensión del radical de I_{γ} es menor o igual que 1 (indicación: probar que $\operatorname{Rad}(I_{\gamma}) \subset \ker(\phi)$, donde $\phi \colon \{V \in \mathcal{J}_{\gamma} \mid V(a) = 0\} \to \{f \colon [a,b] \to \mathbb{R} \mid f \text{ afín, } f(a) = 0\}$ es la proyección $\phi(V) = f$, donde $V = f\gamma' + V^{\perp}$ es la descomposición del apartado (A)).