# Optimization

CISC 7026: Introduction to Deep Learning

University of Macau

Quiz 1 grades are on moodle (mean 2.75 / 4)

Quiz 1 grades are on moodle (mean 2.75 / 4)

When I have a function called g that maps some inputs  $a \in A, b \in$  $B, c \in C$  to outputs  $d \in D, e \in E$  I would write

$$g: A \times B \times C \mapsto D \times E$$

or

$$g:A,B,C\mapsto D,E$$

Quiz 1 grades are on moodle (mean 2.75 / 4)

When I have a function called g that maps some inputs  $a \in A, b \in$  $B, c \in C$  to outputs  $d \in D, e \in E$  I would write

$$g: A \times B \times C \mapsto D \times E$$

or

$$g:A,B,C\mapsto D,E$$

In my code, I would write

$$d, e = g(a, b, c)$$

 $\mathbb{R}$  is the set of real numbers

 $\mathbb{R}$  is the set of real numbers

 $5, \pi, e, -3.2, \frac{3}{2}, 1.3333...$  are all real numbers

 $\mathbb{R}$  is the set of real numbers

 $5, \pi, e, -3.2, \frac{3}{2}, 1.3333...$  are all real numbers

Unless the number is  $\sqrt{-1}$ , it is probably a real number

 $\mathbb{R}$  is the set of real numbers

 $5, \pi, e, -3.2, \frac{3}{2}, 1.3333...$  are all real numbers

Unless the number is  $\sqrt{-1}$ , it is probably a real number

When I write  $\mathbb{R}^{d_x}$ , this corresponds to  $d_x$  real numbers

 $\mathbb{R}$  is the set of real numbers

 $5, \pi, e, -3.2, \frac{3}{2}, 1.3333...$  are all real numbers

Unless the number is  $\sqrt{-1}$ , it is probably a real number

When I write  $\mathbb{R}^{d_x}$ , this corresponds to  $d_x$  real numbers

So  $f: \mathbb{R}^{d_x} \mapsto \mathbb{R}^{d_y}$  is a function that maps  $d_x$  numbers to  $d_y$  numbers

Assignment one should be graded next week

Assignment one should be graded next week

Today's lecture will be very theoretical, but I must teach it

Assignment one should be graded next week

Today's lecture will be very theoretical, but I must teach it

I understand the homework might be difficult for some

Assignment one should be graded next week

Today's lecture will be very theoretical, but I must teach it

I understand the homework might be difficult for some

Assignment 2 is **optional** (it is **not** required)

Assignment one should be graded next week

Today's lecture will be very theoretical, but I must teach it

I understand the homework might be difficult for some

Assignment 2 is **optional** (it is **not** required)

I will give n assignments and you will receive the highest n-1 grades

Assignment one should be graded next week

Today's lecture will be very theoretical, but I must teach it

I understand the homework might be difficult for some

Assignment 2 is **optional** (it is **not** required)

I will give n assignments and you will receive the highest n-1 grades

E.g., 
$$asg1 = 60$$
,  $asg2 = 90$ ,  $asg3 = 70$ , total  $score = \frac{160}{200}$ 

Assignment one should be graded next week

Today's lecture will be very theoretical, but I must teach it

I understand the homework might be difficult for some

Assignment 2 is **optional** (it is **not** required)

I will give n assignments and you will receive the highest n-1 grades

E.g., 
$$asg1 = 60$$
,  $asg2 = 90$ ,  $asg3 = 70$ , total  $score = \frac{160}{200}$ 

E.g., 
$$asg1 = 60$$
,  $asg2 = 0$ ,  $asg3 = 70$ , total score =  $\frac{130}{200}$ 

# Agenda

- 1. Review
- 2. Quiz
- 3. Optimization
- 4. Calculus review
- 5. Deriving linear regression
- 6. Gradient descent
- 7. Backpropagation
- 8. Coding

# Agenda

- 1. Review
- 2. Quiz
- 3. Optimization
- 4. Calculus review
- 5. Deriving linear regression
- 6. Gradient descent
- 7. Backpropagation
- 8. Coding

In lecture 1, we assumed a single-input system

In lecture 1, we assumed a single-input system

Years of education:  $X \in \mathbb{R}$ 

In lecture 1, we assumed a single-input system

Years of education:  $X \in \mathbb{R}$ 

But sometimes we want to consider multiple input dimensions

In lecture 1, we assumed a single-input system

Years of education:  $X \in \mathbb{R}$ 

But sometimes we want to consider multiple input dimensions

Years of education, BMI, GDP:  $X \in \mathbb{R}^3$ 

In lecture 1, we assumed a single-input system

Years of education:  $X \in \mathbb{R}$ 

But sometimes we want to consider multiple input dimensions

Years of education, BMI, GDP:  $X \in \mathbb{R}^3$ 

We can solve these problems using linear regression too

For multivariate problems, we will define the input dimension as  $d_{x}$ 

For multivariate problems, we will define the input dimension as  $d_{x}$ 

$$x \in X; X \in \mathbb{R}^{d_x}$$

For multivariate problems, we will define the input dimension as  $d_r$ 

$$x \in X; \quad X \in \mathbb{R}^{d_x}$$

We will write the vectors as

$$oldsymbol{x}_{[i]} = egin{bmatrix} x_{[i],1} \ x_{[i],2} \ dots \ x_{[i],d_x} \end{bmatrix}$$

The design matrix for a **multivariate** linear system is

$$\boldsymbol{X}_{D} = \begin{bmatrix} x_{[1],d_{x}} & x_{[1],d_{x}-1} & \dots & x_{[1],1} & 1 \\ x_{[2],d_{x}} & x_{[2],d_{x}-1} & \dots & x_{[2],1} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{[n],d_{x}} & x_{[n],d_{x}-1} & \dots & x_{[n],1} & 1 \end{bmatrix}$$

The design matrix for a **multivariate** linear system is

$$\boldsymbol{X}_{D} = \begin{bmatrix} x_{[1],d_{x}} & x_{[1],d_{x}-1} & \dots & x_{[1],1} & 1 \\ x_{[2],d_{x}} & x_{[2],d_{x}-1} & \dots & x_{[2],1} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{[n],d_{x}} & x_{[n],d_{x}-1} & \dots & x_{[n],1} & 1 \end{bmatrix}$$

The solution is the same as before

$$oldsymbol{ heta} = ig(oldsymbol{X}_D^ op oldsymbol{X}_D)^{-1} oldsymbol{X}_D^ op oldsymbol{y}$$

We combined **polynomial** and **multivariate** design matrices:

We combined **polynomial** and **multivariate** design matrices:

One-dimensional polynomial functions

$$m{X}_D = egin{bmatrix} x_{[1]}^m & x_{[1]}^{m-1} & \dots & x_{[1]} & 1 \\ x_{[2]}^m & x_{[2]}^{m-1} & \dots & x_{[2]} & 1 \\ dots & dots & \ddots & & & \\ x_{[n]}^m & x_{[n]}^{m-1} & \dots & x_{[n]} & 1 \end{bmatrix}$$

### We combined **polynomial** and **multivariate** design matrices:

One-dimensional polynomial functions

$$\boldsymbol{X}_{D} = \begin{bmatrix} x_{[1]}^{m} & x_{[1]}^{m-1} & \dots & x_{[1]} & 1 \\ x_{[2]}^{m} & x_{[2]}^{m-1} & \dots & x_{[2]} & 1 \\ \vdots & \vdots & \ddots & & \\ x_{[n]}^{m} & x_{[n]}^{m-1} & \dots & x_{[n]} & 1 \end{bmatrix} \qquad \boldsymbol{X}_{D} = \begin{bmatrix} x_{[1],d_{x}} & x_{[1],d_{x}-1} & \dots & 1 \\ x_{[2],d_{x}} & x_{[2],d_{x}-1} & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ x_{[n],d_{x}} & x_{[n],d_{x}-1} & \dots & 1 \end{bmatrix}$$

Multi-dimensional linear functions

$$\boldsymbol{X}_{D} = \begin{bmatrix} x_{[1],d_{x}} & x_{[1],d_{x}-1} & \dots & 1 \\ x_{[2],d_{x}} & x_{[2],d_{x}-1} & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ x_{[n],d_{x}} & x_{[n],d_{x}-1} & \dots & 1 \end{bmatrix}$$

$$oldsymbol{X}_D = [oldsymbol{x}_{D,[1]} \; ... \; oldsymbol{x}_{D,[n]}]^ op$$

$$oldsymbol{X}_D = [oldsymbol{x}_{D,[1]} \; ... \; oldsymbol{x}_{D,[n]}]^ op$$

$$oldsymbol{x}_{D,[i]} =$$

$$\left[ \underbrace{ \underbrace{ \underbrace{ x_{[i],d_x}^m x_{[i],d_x-1}^m ... x_{[i],1}^m }_{(d_x \Rightarrow 1,x^m)} \underbrace{ x_{[i],d_x}^m x_{[i],d_x-1}^m ... x_{[i],2}^m }_{(d_x \Rightarrow 2,x^m)} \right. ... \underbrace{ x_{[i],d_x}^{m-1} x_{[i],d_x}^{m-1} ... x_{[i],1}^m }_{(d_x \Rightarrow 1,x^{m-1})} \dots \right]$$

$$oldsymbol{X}_D = [oldsymbol{x}_{D,[1]} \; ... \; oldsymbol{x}_{D,[n]}]^ op$$

$$oldsymbol{x}_{D,[i]} =$$

$$\left[ \underbrace{x^m_{[i],d_x} x^m_{[i],d_x-1} ... x^m_{[i],1}}_{(d_x \Rightarrow 1, x^m)} \ \underbrace{x^m_{[i],d_x} x^m_{[i],d_x-1} ... x^m_{[i],2}}_{(d_x \Rightarrow 2, x^m)} \ ... \ \underbrace{x^{m-1}_{[i],d_x} x^{m-1}_{[i],d_x-1} ... x^m_{[i],1}}_{(d_x \Rightarrow 1, x^{m-1})} \ ... \right]$$

The resulting design matrix is too large to solve

$$oldsymbol{X}_D = [oldsymbol{x}_{D,[1]} \; ... \; oldsymbol{x}_{D,[n]}]^ op$$

$$oldsymbol{x}_{D,[i]} =$$

$$\left[ \underbrace{x^m_{[i],d_x} x^m_{[i],d_x-1} ... x^m_{[i],1}}_{(d_x \Rightarrow 1, x^m)} \ \underbrace{x^m_{[i],d_x} x^m_{[i],d_x-1} ... x^m_{[i],2}}_{(d_x \Rightarrow 2, x^m)} \ ... \ \underbrace{x^{m-1}_{[i],d_x} x^{m-1}_{[i],d_x-1} ... x^m_{[i],1}}_{(d_x \Rightarrow 1, x^{m-1})} \ ... \right]$$

The resulting design matrix is too large to solve

We introduced neural networks because they scale to larger problems

Brains and neural networks rely on **neurons** 

Brains and neural networks rely on **neurons** 

**Brain:** Biological neurons  $\rightarrow$  Biological neural network

Brains and neural networks rely on **neurons** 

**Brain:** Biological neurons  $\rightarrow$  Biological neural network

**Computer:** Artificial neurons  $\rightarrow$  Artificial neural network



Neurons send messages based on messages received from other neurons



Incoming electrical signals travel along dendrites



Electrical charges collect in the Soma (cell body)



The axon outputs an electrical signal to other neurons

How does a neuron decide to send an impulse ("fire")?

How does a neuron decide to send an impulse ("fire")?

Dendrites form a parallel circuit

How does a neuron decide to send an impulse ("fire")?

Dendrites form a parallel circuit

In a parallel circuit, we can sum voltages together

How does a neuron decide to send an impulse ("fire")?

Dendrites form a parallel circuit

In a parallel circuit, we can sum voltages together

Incoming impulses (via dendrites) change the electric potential of the neuron



How does a neuron decide to send an impulse ("fire")?

Dendrites form a parallel circuit

In a parallel circuit, we can sum voltages together

Incoming impulses (via dendrites) change the electric potential of the neuron



Many active dendrites will add together and trigger an impulse

We model the neuron "firing" using an activation function  $\sigma$ 

We model the neuron "firing" using an activation function  $\sigma$ 

Last time, we used the heaviside step function as the activation function

$$\sigma(x) = H(x) = \begin{cases} 0 & \text{if } x \le 0 \\ 1 & \text{if } x > 0 \end{cases}$$

We model the neuron "firing" using an activation function  $\sigma$ 

Last time, we used the heaviside step function as the activation function

$$\sigma(x) = H(x) = \begin{cases} 0 & \text{if } x \le 0 \\ 1 & \text{if } x > 0 \end{cases}$$



We modeled a neuron mathematically, creating an artificial neuron

We modeled a neuron mathematically, creating an artificial neuron

$$f(m{x}, m{ heta}) = \sigma(m{ heta}^ op \overline{m{x}}); \quad \overline{m{x}} = egin{bmatrix} 1 \ m{x} \end{bmatrix}$$

We modeled a neuron mathematically, creating an artificial neuron

$$f(m{x}, m{ heta}) = \sigma(m{ heta}^ op \overline{m{x}}); \quad \overline{m{x}} = egin{bmatrix} 1 \ m{x} \end{bmatrix}$$

$$f\Big(oldsymbol{x}, egin{bmatrix} b \ oldsymbol{w} \end{bmatrix}\Big) = \sigma(b + oldsymbol{w}^ op oldsymbol{x})$$

We modeled a neuron mathematically, creating an artificial neuron

$$f(m{x}, m{ heta}) = \sigma(m{ heta}^ op \overline{m{x}}); \quad \overline{m{x}} = egin{bmatrix} 1 \ m{x} \end{bmatrix}$$

$$f\Big(oldsymbol{x}, \left[egin{array}{c} b \ oldsymbol{w} \end{array}
ight]\Big) = \sigma(b + oldsymbol{w}^{ op} oldsymbol{x})$$

An artificial neuron is a linear model with an activation function  $\sigma$ 

We modeled a neuron mathematically, creating an artificial neuron

$$f(\boldsymbol{x},\boldsymbol{\theta}) = \sigma(\boldsymbol{\theta}^{\top}\overline{\boldsymbol{x}}); \quad \overline{\boldsymbol{x}} = \begin{bmatrix} 1 \\ \boldsymbol{x} \end{bmatrix}$$

$$f\Big(oldsymbol{x}, egin{bmatrix} b \ oldsymbol{w} \end{bmatrix}\Big) = \sigma(b + oldsymbol{w}^ op oldsymbol{x})$$

An artificial neuron is a linear model with an activation function  $\sigma$ 

$$f(\boldsymbol{x}, \boldsymbol{\theta}) = \sigma \left( \underbrace{\theta_0 1 + \theta_1 x_1 + \ldots + \theta_{d_x} x_{d_x}}_{\text{Linear model}} \right)$$

We can represent AND and OR boolean operators using a neuron

We can represent AND and OR boolean operators using a neuron

But a neuron cannot represent many other functions

We can represent AND and OR boolean operators using a neuron

But a neuron cannot represent many other functions

So we take many neurons and create a neural network

We can represent AND and OR boolean operators using a neuron

But a neuron cannot represent many other functions

So we take many neurons and create a neural network

We discussed **wide** neural networks and **deep** neural networks

How do we express a **wide** neural network mathematically?

How do we express a **wide** neural network mathematically?

A single neuron:

$$f: \mathbb{R}^{d_x} \times \Theta \mapsto \mathbb{R}$$

$$\Theta \in \mathbb{R}^{d_x+1}$$

How do we express a **wide** neural network mathematically?

A single neuron:

$$f: \mathbb{R}^{d_x} \times \Theta \mapsto \mathbb{R}$$

$$\Theta \in \mathbb{R}^{d_x+1}$$

 $d_u$  neurons (wide):

$$f: \mathbb{R}^{d_x} \times \Theta \mapsto \mathbb{R}^{d_y}$$

$$\Theta \in \mathbb{R}^{(d_x+1)\times d_y}$$

For a wide network (also called a layer):

$$f\left(\begin{bmatrix}x_1\\x_2\\\vdots\\x_{d_x}\end{bmatrix},\begin{bmatrix}\theta_{0,1}&\theta_{0,2}&\dots&\theta_{0,d_y}\\\theta_{1,1}&\theta_{1,2}&\dots&\theta_{1,d_y}\\\vdots&\vdots&\ddots&\vdots\\\theta_{d_x,1}&\theta_{d_x,2}&\dots&\theta_{d_x,d_y}\end{bmatrix}\right)=\begin{bmatrix}\sigma\left(\sum_{i=0}^{d_x}\theta_{i,1}\overline{x}_i\right)\\\sigma\left(\sum_{i=0}^{d_x}\theta_{i,2}\overline{x}_i\right)\\\vdots\\\sigma\left(\sum_{i=0}^{d_x}\theta_{i,d_y}\overline{x}_i\right)\end{bmatrix}$$

$$f(\boldsymbol{x}, \boldsymbol{\theta}) = \sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}); \quad \boldsymbol{\theta} \in \mathbb{R}^{(d_x + 1) \times d_y}$$

For a wide network (also called a layer):

$$f\left(\begin{bmatrix}x_1\\x_2\\\vdots\\x_{d_x}\end{bmatrix},\begin{bmatrix}\theta_{0,1}&\theta_{0,2}&\dots&\theta_{0,d_y}\\\theta_{1,1}&\theta_{1,2}&\dots&\theta_{1,d_y}\\\vdots&\vdots&\ddots&\vdots\\\theta_{d_x,1}&\theta_{d_x,2}&\dots&\theta_{d_x,d_y}\end{bmatrix}\right)=\begin{bmatrix}\sigma\left(\sum_{i=0}^{d_x}\theta_{i,1}\overline{x}_i\right)\\\sigma\left(\sum_{i=0}^{d_x}\theta_{i,2}\overline{x}_i\right)\\\vdots\\\sigma\left(\sum_{i=0}^{d_x}\theta_{i,d_y}\overline{x}_i\right)\end{bmatrix}$$

$$f(\boldsymbol{x}, \boldsymbol{\theta}) = \sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}); \quad \boldsymbol{\theta} \in \mathbb{R}^{(d_x + 1) \times d_y}$$

$$f\Big(oldsymbol{x}, egin{bmatrix} oldsymbol{b} \ oldsymbol{W} \end{bmatrix}\Big) = \sigma(oldsymbol{b} + oldsymbol{W}^ op oldsymbol{x}); \quad oldsymbol{b} \in \mathbb{R}^{d_y}, oldsymbol{W} \in \mathbb{R}^{d_x imes d_y}$$

A **wide** neural network is also called a **layer** 

A wide neural network is also called a layer

A layer is a linear operation and an activation function

$$f\Big(oldsymbol{x}, egin{bmatrix} oldsymbol{b} \ oldsymbol{W} \end{bmatrix}\Big) = \sigma(oldsymbol{b} + oldsymbol{W}^ op oldsymbol{x})$$

Many layers makes a deep neural network

$$egin{align} oldsymbol{z}_1 &= figg(oldsymbol{x}, egin{bmatrix} oldsymbol{b}_1 \ oldsymbol{w}_1 \end{bmatrix}igg) \ oldsymbol{z}_2 &= figg(oldsymbol{z}_1, egin{bmatrix} oldsymbol{b}_2 \ oldsymbol{W}_2 \end{bmatrix}igg) \ oldsymbol{y} &= figg(oldsymbol{z}_2, egin{bmatrix} oldsymbol{b}_2 \ oldsymbol{W}_2 \end{bmatrix}igg) \end{aligned}$$

## Agenda

- 1. Review
- 2. Quiz
- 3. Optimization
- 4. Calculus review
- 5. Deriving linear regression
- 6. Gradient descent
- 7. Backpropagation
- 8. Coding

# Agenda

- 1. Review
- 2. Quiz
- 3. Optimization
- 4. Calculus review
- 5. Deriving linear regression
- 6. Gradient descent
- 7. Backpropagation
- 8. Coding



Put away your phones and laptops

## Quiz

Put away your phones and laptops

Take out a paper and pen, write your name and student ID

Take out a paper and pen, write your name and student ID

I will take away your quiz, give zero points, and refer you to the Dean if:

Take out a paper and pen, write your name and student ID

I will take away your quiz, give zero points, and refer you to the Dean if:

• Your phone or laptop is open during the quiz

Take out a paper and pen, write your name and student ID

I will take away your quiz, give zero points, and refer you to the Dean if:

- Your phone or laptop is open during the quiz
- You talk to your neighbor

# Quiz

Put away your phones and laptops

Take out a paper and pen, write your name and student ID

I will take away your quiz, give zero points, and refer you to the Dean if:

- Your phone or laptop is open during the quiz
- You talk to your neighbor
- You look at your neighbor's quiz

Take out a paper and pen, write your name and student ID

I will take away your quiz, give zero points, and refer you to the Dean if:

- Your phone or laptop is open during the quiz
- You talk to your neighbor
- You look at your neighbor's quiz

After I explain the questions, you will have 15 minutes to finish the quiz

# Agenda

- 1. Review
- 2. Quiz
- 3. Optimization
- 4. Calculus review
- 5. Deriving linear regression
- 6. Gradient descent
- 7. Backpropagation
- 8. Coding

# Agenda

- 1. Review
- 2. Quiz
- 3. Optimization
- 4. Calculus review
- 5. Deriving linear regression
- 6. Gradient descent
- 7. Backpropagation
- 8. Coding

We previously introduced neural networks as universal function approximators

We previously introduced neural networks as universal function approximators

A deep neural network f can approximate  $\mathbf{any}$  continuous function g to infinite precision

We previously introduced neural networks as universal function approximators

A deep neural network f can approximate **any** continuous function g to infinite precision

$$f(x, \theta) = g(x) + \varepsilon; \quad \varepsilon \to 0$$

We previously introduced neural networks as universal function approximators

A deep neural network f can approximate **any** continuous function g to infinite precision

$$f(x, \theta) = g(x) + \varepsilon; \quad \varepsilon \to 0$$

g can be a mapping from pictures to text, English to Chinese, etc

We previously introduced neural networks as universal function approximators

A deep neural network f can approximate **any** continuous function g to infinite precision

$$f(x, \theta) = g(x) + \varepsilon; \quad \varepsilon \to 0$$

g can be a mapping from pictures to text, English to Chinese, etc

But how do we find the  $\theta$  that makes  $f(x, \theta) = g(x) + \varepsilon$ ?

We previously introduced neural networks as universal function approximators

A deep neural network f can approximate **any** continuous function g to infinite precision

$$f(x, \theta) = g(x) + \varepsilon; \quad \varepsilon \to 0$$

g can be a mapping from pictures to text, English to Chinese, etc

But how do we find the  $\theta$  that makes  $f(x, \theta) = g(x) + \varepsilon$ ?

We said this  $\theta$  exists, but never said how to find it

We previously introduced neural networks as universal function approximators

A deep neural network f can approximate **any** continuous function g to infinite precision

$$f(x, \theta) = g(x) + \varepsilon; \quad \varepsilon \to 0$$

g can be a mapping from pictures to text, English to Chinese, etc.

But how do we find the  $\theta$  that makes  $f(x, \theta) = g(x) + \varepsilon$ ?

We said this  $\theta$  exists, but never said how to find it

**Goal:** Find the parameters  $\theta$  a neural network

When we search for  $\theta$ , we call it **optimization** or **training** 

When we search for  $\theta$ , we call it **optimization** or **training** 

We optimize a loss function by computing

$$\operatorname*{arg\;min}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X},\boldsymbol{Y},\boldsymbol{\theta})$$

When we search for  $\theta$ , we call it **optimization** or **training** 

We optimize a loss function by computing

$$\operatorname*{arg\;min}_{m{ heta}} \mathcal{L}(m{X},m{Y},m{ heta})$$

This expression looks very simple, but it can be very hard to evaluate



Neural networks were discovered in 1943, but we could not train them until 1982!



Neural networks were discovered in 1943, but we could not train them until 1982!

This is why theory is important

Recall how we found  $\theta$  in the linear regression problem

Recall how we found  $\theta$  in the linear regression problem

We define the square error loss function

Recall how we found  $\theta$  in the linear regression problem

We define the square error loss function

$$\arg\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left( f(\boldsymbol{x}_{[i]}, \boldsymbol{\theta}) - \boldsymbol{y}_{[i]} \right)^{2}$$

Recall how we found  $\theta$  in the linear regression problem

We define the square error loss function

$$\arg\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^n \left( f\big(\boldsymbol{x}_{[i]}, \boldsymbol{\theta}\big) - \boldsymbol{y}_{[i]} \right)^2$$

Then, I gave you a magical solution to this optimization problem

Recall how we found  $\theta$  in the linear regression problem

We define the square error loss function

$$\arg\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^n \left( f\big(\boldsymbol{x}_{[i]}, \boldsymbol{\theta}\big) - \boldsymbol{y}_{[i]} \right)^2$$

Then, I gave you a magical solution to this optimization problem

$$oldsymbol{ heta} = ig(oldsymbol{X}_D^ op oldsymbol{X}_D^ op ig)^{-1} oldsymbol{X}_D^ op oldsymbol{Y}$$

Recall how we found  $\theta$  in the linear regression problem

We define the square error loss function

$$\arg\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^n \left( f\big(\boldsymbol{x}_{[i]}, \boldsymbol{\theta}\big) - \boldsymbol{y}_{[i]} \right)^2$$

Then, I gave you a magical solution to this optimization problem

$$oldsymbol{ heta} = ig(oldsymbol{X}_D^ op oldsymbol{X}_D^ op ig)^{-1} oldsymbol{X}_D^ op oldsymbol{Y}$$

Where does this solution come from? Can we do the same for neural networks?

The solution for linear regression and neural networks comes from **calculus** 

The solution for linear regression and neural networks comes from calculus

The solution for neural networks also comes from calculus

The solution for linear regression and neural networks comes from calculus

The solution for neural networks also comes from calculus

Let us review basic calculus concepts

# Agenda

- 1. Review
- 2. Quiz
- 3. Optimization
- 4. Calculus review
- 5. Deriving linear regression
- 6. Gradient descent
- 7. Backpropagation
- 8. Coding

# Agenda

- 1. Review
- 2. Quiz
- 3. Optimization
- 4. Calculus review
- 5. Deriving linear regression
- 6. Gradient descent
- 7. Backpropagation
- 8. Coding

We write the **derivative** of a function f with respect to an input x as

$$f'(x) = \frac{d}{dx}f = \frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

We write the **derivative** of a function f with respect to an input x as

$$f'(x) = \frac{d}{dx}f = \frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The derivative is the slope of a function

We write the **derivative** of a function f with respect to an input x as

$$f'(x) = \frac{d}{dx}f = \frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The derivative is the slope of a function



We write the **derivative** of a function f with respect to an input x as

$$f'(x) = \frac{d}{dx}f = \frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The derivative is the slope of a function



$$f(x), f'(x=a)$$

It is easiest if you treat the derivative as a **function of functions** 

It is easiest if you treat the derivative as a **function of functions** 

$$derivative(f) = f'$$

It is easiest if you treat the derivative as a **function of functions** 

$$derivative(f) = f'$$

$$\frac{d}{dx}:f\mapsto f'$$

It is easiest if you treat the derivative as a **function of functions** 

$$derivative(f) = f'$$

$$\frac{d}{dx}: f \mapsto f'$$

The derivative takes a function f and outputs a new function f'

It is easiest if you treat the derivative as a **function of functions** 

$$derivative(f) = f'$$

$$\frac{d}{dx}: f \mapsto f'$$

The derivative takes a function f and outputs a new function f'

$$\frac{d}{dx}: [f:X\mapsto Y]\mapsto [f':X\mapsto Y]$$

There are formulas for computing the derivative of various operations

There are formulas for computing the derivative of various operations

Constant

$$\frac{d}{dx}c = 0$$

There are formulas for computing the derivative of various operations

Constant

$$\frac{d}{dx}c = 0$$

Power

$$\frac{d}{dx}x^n = nx^{n-1}$$

Sum/Difference

$$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$$

Sum/Difference

**Product** 

$$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$$

$$\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + g'(x)f(x)$$

Sum/Difference

**Product** 

Chain

$$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$$

$$\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + g'(x)f(x)$$

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$$

For example, consider the function

$$f(x) = x^2 - 3x$$

For example, consider the function

$$f(x) = x^2 - 3x$$

We can write the derivative as

$$\frac{d}{dx}[f(x)] = 2x - 3$$

For example, consider the function

$$f(x) = x^2 - 3x$$

We can write the derivative as

$$\frac{d}{dx}[f(x)] = 2x - 3$$

We can evaluate the derivative at specific points

For example, consider the function

$$f(x) = x^2 - 3x$$

We can write the derivative as

$$\frac{d}{dx}[f(x)] = 2x - 3$$

We can evaluate the derivative at specific points

$$\frac{d}{dx}[f](1) = 2 \cdot 1 - 3 = -1$$



$$f(x) = x^2 - 3x$$





$$f(x) = x^2 - 3x$$

$$\frac{df}{dx} = 2x - 3$$



$$f(x) = x^2 - 3x$$



$$\frac{df}{dx} = 2x - 3$$

$$0 = 2x - 3 \quad \Rightarrow \quad x = \frac{3}{2}$$

We can expand the definition of derivative to multivariate functions. We call this the **gradient** 

$$\nabla_{\boldsymbol{x}} f \left( \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^\top \right) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \dots & \frac{\partial f}{\partial x_n} \end{bmatrix}^\top$$

We can expand the definition of derivative to multivariate functions. We call this the **gradient** 

$$\nabla_{\boldsymbol{x}} f \left( \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^\top \right) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \dots & \frac{\partial f}{\partial x_n} \end{bmatrix}^\top$$

Partial derivatives behave similarly to standard derivatives

We can expand the definition of derivative to multivariate functions. We call this the **gradient** 

$$\nabla_{\boldsymbol{x}} f \left( \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^\top \right) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \dots & \frac{\partial f}{\partial x_n} \end{bmatrix}^\top$$

Partial derivatives behave similarly to standard derivatives

$$\frac{\partial}{\partial x_1} f(x_1,...,x_n) \approx \frac{d}{dx_1} f(x_1,...,x_n)$$

We can expand the definition of derivative to multivariate functions. We call this the **gradient** 

$$\nabla_{\boldsymbol{x}} f \left( \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^\top \right) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \dots & \frac{\partial f}{\partial x_n} \end{bmatrix}^\top$$

Partial derivatives behave similarly to standard derivatives

$$\frac{\partial}{\partial x_1} f(x_1, ..., x_n) \approx \frac{d}{dx_1} f(x_1, ..., x_n)$$

When computing  $\frac{\partial}{\partial x_i} f(x_1,...,x_n)$ , we treat  $x_1,...,x_{i-1},x_{i+1},...,x_n$  as constant

For example, consider the function

$$f(x_1,x_2)=x_1^2-3x_1x_2$$

For example, consider the function

$$f(x_1, x_2) = x_1^2 - 3x_1x_2$$

We can write the gradient as

$$\nabla_{\boldsymbol{x}} f(\boldsymbol{x}) = \nabla_{x_1, x_2} f\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} \frac{\partial}{\partial x_1} f(x_1, x_2) \\ \frac{\partial}{\partial x_2} f(x_1, x_2) \end{bmatrix} = \begin{bmatrix} 2x_1 - 3x_2 \\ -3x_1 \end{bmatrix}$$

$$\nabla_{\boldsymbol{x}} f(\boldsymbol{x}) = \nabla_{x_1, x_2} f\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} \frac{\partial}{\partial x_1} f(x_1, x_2) \\ \frac{\partial}{\partial x_2} f(x_1, x_2) \end{bmatrix} = \begin{bmatrix} 2x_1 - 3x_2 \\ -3x_1 \end{bmatrix}$$

$$\nabla_{\boldsymbol{x}} f(\boldsymbol{x}) = \nabla_{x_1, x_2} f\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} \frac{\partial}{\partial x_1} f(x_1, x_2) \\ \frac{\partial}{\partial x_2} f(x_1, x_2) \end{bmatrix} = \begin{bmatrix} 2x_1 - 3x_2 \\ -3x_1 \end{bmatrix}$$

We can evaluate the gradient at specific points

$$\nabla_{\boldsymbol{x}} f(\boldsymbol{x}) = \nabla_{x_1, x_2} f \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} \frac{\partial}{\partial x_1} f(x_1, x_2) \\ \frac{\partial}{\partial x_2} f(x_1, x_2) \end{bmatrix} = \begin{bmatrix} 2x_1 - 3x_2 \\ -3x_1 \end{bmatrix}$$

We can evaluate the gradient at specific points

$$\nabla_{\boldsymbol{x}} f \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \nabla_{x_1, x_2} f \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{vmatrix} \frac{\partial}{\partial x_1} f(1, 0) \\ \frac{\partial}{\partial x_2} f(1, 0) \end{vmatrix} = \begin{bmatrix} 2 \cdot 1 - 3 \cdot 0 \\ -3 \cdot 1 \end{vmatrix} = \begin{bmatrix} -1 \\ -3 \end{bmatrix}$$

In calculus, we can find the local extrema of a function f(x) by finding where the derivative is zero

$$f'(x) = \frac{d}{dx}f(x) = 0$$

In calculus, we can find the local extrema of a function f(x) by finding where the derivative is zero

$$f'(x) = \frac{d}{dx}f(x) = 0$$

With a multivariate function, the extrema lies where the gradient is zero

$$\nabla_{\boldsymbol{x}} f(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \dots & \frac{\partial f}{\partial x_n} \end{bmatrix}^\top = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^\top$$

# Agenda

- 1. Review
- 2. Quiz
- 3. Optimization
- 4. Calculus review
- 5. Deriving linear regression
- 6. Gradient descent
- 7. Backpropagation
- 8. Coding

# Agenda

- 1. Review
- 2. Quiz
- 3. Optimization
- 4. Calculus review
- 5. Deriving linear regression
- 6. Gradient descent
- 7. Backpropagation
- 8. Coding

Now that we remember calculus, let us revisit linear regression

Now that we remember calculus, let us revisit linear regression

If we can derive the solution for linear regression, maybe we can apply it to deep neural networks

In linear regression, our loss function is

$$\mathcal{L}(oldsymbol{X},oldsymbol{Y},oldsymbol{ heta}) = \sum_{i=1}^n \left(fig(oldsymbol{x}_{[i]},oldsymbol{ heta}ig) - oldsymbol{y}_{[i]}
ight)^2$$

In linear regression, our loss function is

$$\mathcal{L}(oldsymbol{X},oldsymbol{Y},oldsymbol{ heta}) = \sum_{i=1}^n \left(fig(oldsymbol{x}_{[i]},oldsymbol{ heta}ig) - oldsymbol{y}_{[i]}
ight)^2$$

We can write the square error loss in matrix form as

$$\mathcal{L}(\boldsymbol{X},\boldsymbol{Y},\boldsymbol{\theta}) = (\boldsymbol{Y} - \boldsymbol{X}_D\boldsymbol{\theta})^\top (\boldsymbol{Y} - \boldsymbol{X}_D\boldsymbol{\theta})$$

In linear regression, our loss function is

$$\mathcal{L}(oldsymbol{X},oldsymbol{Y},oldsymbol{ heta}) = \sum_{i=1}^n \left(fig(oldsymbol{x}_{[i]},oldsymbol{ heta}ig) - oldsymbol{y}_{[i]}
ight)^2$$

We can write the square error loss in matrix form as

$$\mathcal{L}(\boldsymbol{X},\boldsymbol{Y},\boldsymbol{\theta}) = (\boldsymbol{Y} - \boldsymbol{X}_D\boldsymbol{\theta})^\top (\boldsymbol{Y} - \boldsymbol{X}_D\boldsymbol{\theta})$$
 
$$\mathcal{L}(\boldsymbol{X},\boldsymbol{Y},\boldsymbol{\theta}) = \underbrace{(\boldsymbol{Y} - \boldsymbol{X}_D\boldsymbol{\theta})^\top}_{\text{Linear function of }\boldsymbol{\theta}} \underbrace{(\boldsymbol{Y} - \boldsymbol{X}_D\boldsymbol{\theta})}_{\text{Linear function of }\boldsymbol{\theta}}$$
 Linear function of  $\boldsymbol{\theta}$ 

$$\mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) = \underbrace{(\boldsymbol{Y} - \boldsymbol{X}_D \boldsymbol{\theta})^\top}_{\text{Linear function of } \boldsymbol{\theta}} \underbrace{(\boldsymbol{Y} - \boldsymbol{X}_D \boldsymbol{\theta})}_{\text{Linear function of } \boldsymbol{\theta}}$$

$$\underbrace{\text{Quadratic function of } \boldsymbol{\theta}}_{\text{Quadratic function of } \boldsymbol{\theta}}$$

$$\mathcal{L}(\boldsymbol{X},\boldsymbol{Y},\boldsymbol{\theta}) = \underbrace{(\boldsymbol{Y} - \boldsymbol{X}_D\boldsymbol{\theta})^\top}_{\text{Linear function of }\boldsymbol{\theta}} \underbrace{(\boldsymbol{Y} - \boldsymbol{X}_D\boldsymbol{\theta})}_{\text{Linear function of }\boldsymbol{\theta}}$$

$$\underbrace{\text{Quadratic function of }\boldsymbol{\theta}}_{\text{Quadratic function of }\boldsymbol{\theta}}$$

A quadratic function has a single minima! The minima must be at

$$\nabla_{\boldsymbol{\theta}} \mathcal{L} = 0$$



Therefore, we know that the  $\theta$  that solves

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) = 0$$

Therefore, we know that the  $\theta$  that solves

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) = 0$$

Also solves

$$rg\min_{oldsymbol{ heta}} \mathcal{L}(oldsymbol{X}, oldsymbol{Y}, oldsymbol{ heta})$$

$$\mathcal{L}(\boldsymbol{X},\boldsymbol{Y},\boldsymbol{\theta}) = (\boldsymbol{Y} - \boldsymbol{X}_D\boldsymbol{\theta})^\top (\boldsymbol{Y} - \boldsymbol{X}_D\boldsymbol{\theta})$$

$$\mathcal{L}(\boldsymbol{X},\boldsymbol{Y},\boldsymbol{\theta}) = (\boldsymbol{Y} - \boldsymbol{X}_D\boldsymbol{\theta})^\top (\boldsymbol{Y} - \boldsymbol{X}_D\boldsymbol{\theta})$$

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \big[ (\boldsymbol{Y} - \boldsymbol{X}_D \boldsymbol{\theta})^\top (\boldsymbol{Y} - \boldsymbol{X}_D \boldsymbol{\theta}) \big]$$

$$\begin{split} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) &= (\boldsymbol{Y} - \boldsymbol{X}_D \boldsymbol{\theta})^\top (\boldsymbol{Y} - \boldsymbol{X}_D \boldsymbol{\theta}) \\ \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) &= \nabla_{\boldsymbol{\theta}} \left[ (\boldsymbol{Y} - \boldsymbol{X}_D \boldsymbol{\theta})^\top (\boldsymbol{Y} - \boldsymbol{X}_D \boldsymbol{\theta}) \right] \\ &= \nabla_{\boldsymbol{\theta}} \left[ \boldsymbol{Y}^\top \boldsymbol{Y} - \boldsymbol{Y}^\top \boldsymbol{X}_D \boldsymbol{\theta} - (\boldsymbol{X}_D \boldsymbol{\theta})^\top \boldsymbol{Y} + (\boldsymbol{X}_D \boldsymbol{\theta})^\top \boldsymbol{X}_D \boldsymbol{\theta} \right] \end{split}$$

$$\begin{split} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) &= (\boldsymbol{Y} - \boldsymbol{X}_D \boldsymbol{\theta})^\top (\boldsymbol{Y} - \boldsymbol{X}_D \boldsymbol{\theta}) \\ \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) &= \nabla_{\boldsymbol{\theta}} \Big[ (\boldsymbol{Y} - \boldsymbol{X}_D \boldsymbol{\theta})^\top (\boldsymbol{Y} - \boldsymbol{X}_D \boldsymbol{\theta}) \Big] \\ &= \nabla_{\boldsymbol{\theta}} \Big[ \boldsymbol{Y}^\top \boldsymbol{Y} - \boldsymbol{Y}^\top \boldsymbol{X}_D \boldsymbol{\theta} - (\boldsymbol{X}_D \boldsymbol{\theta})^\top \boldsymbol{Y} + (\boldsymbol{X}_D \boldsymbol{\theta})^\top \boldsymbol{X}_D \boldsymbol{\theta} \Big] \\ &= \boldsymbol{0} - \boldsymbol{Y}^\top \boldsymbol{X}_D \boldsymbol{I} - (\boldsymbol{X}_D \boldsymbol{I})^\top \boldsymbol{Y} + (\boldsymbol{X}_D \boldsymbol{I})^\top \boldsymbol{X}_D \boldsymbol{\theta} + (\boldsymbol{X}_D \boldsymbol{\theta})^\top \boldsymbol{X}_D \boldsymbol{I} \end{split}$$

$$= \mathbf{0} - \boldsymbol{Y}^{\top} \boldsymbol{X}_{D} \boldsymbol{I} - (\boldsymbol{X}_{D} \boldsymbol{I})^{\top} \boldsymbol{Y} + (\boldsymbol{X}_{D} \boldsymbol{I})^{\top} \boldsymbol{X}_{D} \boldsymbol{\theta} + (\boldsymbol{X}_{D} \boldsymbol{\theta})^{\top} \boldsymbol{X}_{D} \boldsymbol{I}$$

$$= \mathbf{0} - \mathbf{Y}^{\top} \mathbf{X}_{D} \mathbf{I} - (\mathbf{X}_{D} \mathbf{I})^{\top} \mathbf{Y} + (\mathbf{X}_{D} \mathbf{I})^{\top} \mathbf{X}_{D} \boldsymbol{\theta} + (\mathbf{X}_{D} \boldsymbol{\theta})^{\top} \mathbf{X}_{D} \mathbf{I}$$

$$= -\mathbf{Y}^{\top} \mathbf{X}_{D} - \mathbf{X}_{D}^{\top} \mathbf{Y} + \mathbf{X}_{D}^{\top} \mathbf{X}_{D} \boldsymbol{\theta} + (\mathbf{X}_{D} \boldsymbol{\theta})^{\top} \mathbf{X}_{D}$$

$$= \mathbf{0} - \mathbf{Y}^{\top} \mathbf{X}_{D} \mathbf{I} - (\mathbf{X}_{D} \mathbf{I})^{\top} \mathbf{Y} + (\mathbf{X}_{D} \mathbf{I})^{\top} \mathbf{X}_{D} \boldsymbol{\theta} + (\mathbf{X}_{D} \boldsymbol{\theta})^{\top} \mathbf{X}_{D} \mathbf{I}$$

$$= -\mathbf{Y}^{\top} \mathbf{X}_{D} - \mathbf{X}_{D}^{\top} \mathbf{Y} + \mathbf{X}_{D}^{\top} \mathbf{X}_{D} \boldsymbol{\theta} + (\mathbf{X}_{D} \boldsymbol{\theta})^{\top} \mathbf{X}_{D}$$

Remember, 
$$(AB)^{ op}=B^{ op}A^{ op}$$
, and so  $Y^{ op}X_D=Y^{ op}(X_D^{ op})^{ op}=X_D^{ op}Y$ 

$$= \mathbf{0} - \mathbf{Y}^{\top} \mathbf{X}_{D} \mathbf{I} - (\mathbf{X}_{D} \mathbf{I})^{\top} \mathbf{Y} + (\mathbf{X}_{D} \mathbf{I})^{\top} \mathbf{X}_{D} \boldsymbol{\theta} + (\mathbf{X}_{D} \boldsymbol{\theta})^{\top} \mathbf{X}_{D} \mathbf{I}$$

$$= -\mathbf{Y}^{\top} \mathbf{X}_{D} - \mathbf{X}_{D}^{\top} \mathbf{Y} + \mathbf{X}_{D}^{\top} \mathbf{X}_{D} \boldsymbol{\theta} + (\mathbf{X}_{D} \boldsymbol{\theta})^{\top} \mathbf{X}_{D}$$
Remember,  $(\mathbf{A} \mathbf{B})^{\top} = \mathbf{B}^{\top} \mathbf{A}^{\top}$ , and so  $\mathbf{Y}^{\top} \mathbf{X}_{D} = \mathbf{Y}^{\top} (\mathbf{X}_{D}^{\top})^{\top} = \mathbf{X}_{D}^{\top} \mathbf{Y}$ 

$$= -\mathbf{Y}^{\top} \mathbf{X}_{D} - \mathbf{Y}^{\top} \mathbf{X}_{D} + \mathbf{X}_{D}^{\top} \mathbf{X}_{D} \boldsymbol{\theta} + \mathbf{X}_{D}^{\top} \mathbf{X}_{D} \boldsymbol{\theta}$$

$$= \mathbf{0} - \mathbf{Y}^{\top} \mathbf{X}_{D} \mathbf{I} - (\mathbf{X}_{D} \mathbf{I})^{\top} \mathbf{Y} + (\mathbf{X}_{D} \mathbf{I})^{\top} \mathbf{X}_{D} \boldsymbol{\theta} + (\mathbf{X}_{D} \boldsymbol{\theta})^{\top} \mathbf{X}_{D} \mathbf{I}$$

$$= -\mathbf{Y}^{\top} \mathbf{X}_{D} - \mathbf{X}_{D}^{\top} \mathbf{Y} + \mathbf{X}_{D}^{\top} \mathbf{X}_{D} \boldsymbol{\theta} + (\mathbf{X}_{D} \boldsymbol{\theta})^{\top} \mathbf{X}_{D}$$
Remember,  $(\mathbf{A} \mathbf{B})^{\top} = \mathbf{B}^{\top} \mathbf{A}^{\top}$ , and so  $\mathbf{Y}^{\top} \mathbf{X}_{D} = \mathbf{Y}^{\top} (\mathbf{X}_{D}^{\top})^{\top} = \mathbf{X}_{D}^{\top} \mathbf{Y}$ 

$$= -\mathbf{Y}^{\top} \mathbf{X}_{D} - \mathbf{Y}^{\top} \mathbf{X}_{D} + \mathbf{X}_{D}^{\top} \mathbf{X}_{D} \boldsymbol{\theta} + \mathbf{X}_{D}^{\top} \mathbf{X}_{D} \boldsymbol{\theta}$$

$$= -2 \mathbf{X}_{D}^{\top} \mathbf{Y} + 2 \mathbf{X}_{D}^{\top} \mathbf{X} \boldsymbol{\theta}$$

$$= \mathbf{0} - \mathbf{Y}^{\top} \mathbf{X}_{D} \mathbf{I} - (\mathbf{X}_{D} \mathbf{I})^{\top} \mathbf{Y} + (\mathbf{X}_{D} \mathbf{I})^{\top} \mathbf{X}_{D} \boldsymbol{\theta} + (\mathbf{X}_{D} \boldsymbol{\theta})^{\top} \mathbf{X}_{D} \mathbf{I}$$

$$= -\mathbf{Y}^{\top} \mathbf{X}_{D} - \mathbf{X}_{D}^{\top} \mathbf{Y} + \mathbf{X}_{D}^{\top} \mathbf{X}_{D} \boldsymbol{\theta} + (\mathbf{X}_{D} \boldsymbol{\theta})^{\top} \mathbf{X}_{D}$$
Remember,  $(\mathbf{A} \mathbf{B})^{\top} = \mathbf{B}^{\top} \mathbf{A}^{\top}$ , and so  $\mathbf{Y}^{\top} \mathbf{X}_{D} = \mathbf{Y}^{\top} (\mathbf{X}_{D}^{\top})^{\top} = \mathbf{X}_{D}^{\top} \mathbf{Y}$ 

$$= -\mathbf{Y}^{\top} \mathbf{X}_{D} - \mathbf{Y}^{\top} \mathbf{X}_{D} + \mathbf{X}_{D}^{\top} \mathbf{X}_{D} \boldsymbol{\theta} + \mathbf{X}_{D}^{\top} \mathbf{X}_{D} \boldsymbol{\theta}$$

$$= -2 \mathbf{X}_{D}^{\top} \mathbf{Y} + 2 \mathbf{X}_{D}^{\top} \mathbf{X} \boldsymbol{\theta}$$

And so, the gradient of the loss is

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) = -2\boldsymbol{X}_D^{\top} \boldsymbol{Y} + 2\boldsymbol{X}_D^{\top} \boldsymbol{X}_D \boldsymbol{\theta}$$

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) = -2\boldsymbol{X}_D^{\top} \boldsymbol{Y} + 2\boldsymbol{X}_D^{\top} \boldsymbol{X}_D \boldsymbol{\theta}$$

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) = -2\boldsymbol{X}_D^{\top} \boldsymbol{Y} + 2\boldsymbol{X}_D^{\top} \boldsymbol{X}_D \boldsymbol{\theta}$$

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) = -2\boldsymbol{X}_D^{\top} \boldsymbol{Y} + 2\boldsymbol{X}_D^{\top} \boldsymbol{X}_D \boldsymbol{\theta}$$

$$\mathbf{0} = -2\boldsymbol{X}_D^{\top}\boldsymbol{Y} + 2\boldsymbol{X}_D^{\top}\boldsymbol{X}_D\boldsymbol{\theta}$$

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) = -2\boldsymbol{X}_D^{\top} \boldsymbol{Y} + 2\boldsymbol{X}_D^{\top} \boldsymbol{X}_D \boldsymbol{\theta}$$

$$\mathbf{0} = -2\boldsymbol{X}_D^{\top}\boldsymbol{Y} + 2\boldsymbol{X}_D^{\top}\boldsymbol{X}_D\boldsymbol{\theta}$$

$$2\boldsymbol{X}_D^{ op} \boldsymbol{Y} = 2\boldsymbol{X}_D^{ op} \boldsymbol{X}_D \boldsymbol{ heta}$$

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) = -2\boldsymbol{X}_D^{\top} \boldsymbol{Y} + 2\boldsymbol{X}_D^{\top} \boldsymbol{X}_D \boldsymbol{\theta}$$

$$egin{aligned} \mathbf{0} &= -2 oldsymbol{X}_D^ op oldsymbol{Y} + 2 oldsymbol{X}_D^ op oldsymbol{X}_D oldsymbol{ heta} \ & 2 oldsymbol{X}_D^ op oldsymbol{Y} = 2 oldsymbol{X}_D^ op oldsymbol{X}_D oldsymbol{ heta} \ & oldsymbol{X}_D^ op oldsymbol{Y} = oldsymbol{X}_D^ op oldsymbol{X} oldsymbol{ heta} \ & oldsymbol{X}_D^ op oldsymbol{X} oldsymbol{ heta} oldsymbol{ heta} oldsymbol{X}_D^ op oldsymbol{X}_D oldsymbol{ heta} \ & oldsymbol{X}_D^ op oldsymbol{X}_D oldsymbol{X}_D oldsymbol{ heta} \ & oldsymbol{X}_D^ op oldsymbol{X}_D old$$

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) = -2\boldsymbol{X}_D^{\top} \boldsymbol{Y} + 2\boldsymbol{X}_D^{\top} \boldsymbol{X}_D \boldsymbol{\theta}$$

$$egin{aligned} \mathbf{0} &= -2 oldsymbol{X}_D^ op oldsymbol{Y} + 2 oldsymbol{X}_D^ op oldsymbol{X}_D oldsymbol{ heta} \ & 2 oldsymbol{X}_D^ op oldsymbol{Y} = 2 oldsymbol{X}_D^ op oldsymbol{X}_D oldsymbol{ heta} \ & oldsymbol{X}_D^ op oldsymbol{Y} = oldsymbol{X}_D^ op oldsymbol{X}_D oldsymbol{ heta} \ & oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{Y} = oldsymbol{ heta} \ & oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{Y} = oldsymbol{ heta} \ & oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{Y} = oldsymbol{ heta} \ & oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{Y} = oldsymbol{ heta} \ & oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{Y} = oldsymbol{ heta} \ & oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{Y} = oldsymbol{ heta} oldsymbol{ heta} \ & oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{Y} = oldsymbol{ heta} oldsymbol{ heta} \ & oldsymbol{X}_D^ op oldsymb$$

$$\left( oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{Y} = oldsymbol{ heta}$$

$$\left(oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{Y} = oldsymbol{ heta}$$

This was the "magic" solution I gave you for linear regression

$$\left(oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{Y} = oldsymbol{ heta}$$

This was the "magic" solution I gave you for linear regression

$$oldsymbol{ heta} = ig(oldsymbol{X}_D^ op oldsymbol{X}_D)^{-1} oldsymbol{X}_D^ op oldsymbol{Y}$$

Great! We derived the solution to linear regression

Great! We derived the solution to linear regression

Now, we will do the same approach for neural networks

Great! We derived the solution to linear regression

Now, we will do the same approach for neural networks

To make it simple, we assume  $d_x = 1, d_y = 1, n = 1$ 

Great! We derived the solution to linear regression

Now, we will do the same approach for neural networks

To make it simple, we assume  $d_x = 1, d_y = 1, n = 1$ 

One input dimension, one output dimension, one datapoint

Great! We derived the solution to linear regression

Now, we will do the same approach for neural networks

To make it simple, we assume  $d_x = 1, d_y = 1, n = 1$ 

One input dimension, one output dimension, one datapoint

**Step 1**: Write the loss function for a neural network

Like linear regression, we can use square error for a neural network

Like linear regression, we can use square error for a neural network

$$\mathcal{L}(x, y, \boldsymbol{\theta}) = (f(x, \boldsymbol{\theta}) - y)^{2}$$

Like linear regression, we can use square error for a neural network

$$\mathcal{L}(x, y, \boldsymbol{\theta}) = (f(x, \boldsymbol{\theta}) - y)^{2}$$

All that changes is the model f

Like linear regression, we can use square error for a neural network

$$\mathcal{L}(x, y, \boldsymbol{\theta}) = (f(x, \boldsymbol{\theta}) - y)^{2}$$

All that changes is the model f

Linear regression:

$$f(x, y, \boldsymbol{\theta}) = \theta_0 + \theta_1 x$$

Like linear regression, we can use square error for a neural network

$$\mathcal{L}(x, y, \boldsymbol{\theta}) = (f(x, \boldsymbol{\theta}) - y)^{2}$$

All that changes is the model f

Linear regression:

Perceptron:

$$f(x, y, \boldsymbol{\theta}) = \theta_0 + \theta_1 x$$

$$f(x,y,\boldsymbol{\theta}) = \sigma(\theta_0 + \theta_1 x)$$

$$\mathcal{L}(x, y, \boldsymbol{\theta}) = (f(x, \boldsymbol{\theta}) - y)^2$$

Loss function

$$\mathcal{L}(x, y, \boldsymbol{\theta}) = (f(x, \boldsymbol{\theta}) - y)^{2}$$

$$f(x, \boldsymbol{\theta}) = \sigma(\theta_0 + \theta_1 x)$$

Loss function

Neural network model

$$\mathcal{L}(x, y, \boldsymbol{\theta}) = (f(x, \boldsymbol{\theta}) - y)^2$$

Loss function

$$f(x, \boldsymbol{\theta}) = \sigma(\theta_0 + \theta_1 x)$$

Neural network model

Now, we plug the model f into the loss function

$$\mathcal{L}(x, y, \boldsymbol{\theta}) = (f(x, \boldsymbol{\theta}) - y)^{2}$$

Loss function

$$f(x, \boldsymbol{\theta}) = \sigma(\theta_0 + \theta_1 x)$$

Neural network model

Now, we plug the model *f* into the loss function

$$\mathcal{L}(x,y,\pmb{\theta}) = \left(\sigma(\theta_0 + \theta_1 x) - y\right)^2$$

$$\mathcal{L}(x, y, \boldsymbol{\theta}) = (f(x, \boldsymbol{\theta}) - y)^{2}$$

Loss function

$$f(x, \boldsymbol{\theta}) = \sigma(\theta_0 + \theta_1 x)$$

Neural network model

Now, we plug the model f into the loss function

$$\mathcal{L}(x,y,\pmb{\theta}) = \left(\sigma(\theta_0 + \theta_1 x) - y\right)^2$$

Rewrite

$$\mathcal{L}(x, y, \boldsymbol{\theta}) = (f(x, \boldsymbol{\theta}) - y)^{2}$$

Loss function

$$f(x, \boldsymbol{\theta}) = \sigma(\theta_0 + \theta_1 x)$$

Neural network model

Now, we plug the model f into the loss function

$$\mathcal{L}(x,y,\pmb{\theta}) = \left(\sigma(\theta_0 + \theta_1 x) - y\right)^2$$

Rewrite

$$\mathcal{L}(x,y,\theta) = \underbrace{(\sigma(\theta_0 + \theta_1 x) - y)}_{\text{Nonlinear function of }\theta} \underbrace{(\sigma(\theta_0 + \theta_1 x) - y)}_{\text{Nonlinear function of }\theta} \underbrace{(\sigma(\theta_0 + \theta_1 x) - y)}_{\text{Nonlinear function of }\theta}$$

Linear regression loss function was quadratic with one minima



Linear regression loss function was quadratic with one minima



With a neural network, this is our loss function

$$\mathcal{L}(x,y,\theta) = \underbrace{(\sigma(\theta_0 + \theta_1 x) - y)(\sigma(\theta_0 + \theta_1 x) - y)}_{\text{Nonlinear function of }\theta} \underbrace{(\sigma(\theta_0 + \theta_1 x) - y)(\sigma(\theta_0 + \theta_1 x) - y)}_{\text{Nonlinear function of }\theta}$$

Linear regression loss function was quadratic with one minima



With a neural network, this is our loss function

$$\mathcal{L}(x,y,\theta) = \underbrace{(\sigma(\theta_0 + \theta_1 x) - y)(\sigma(\theta_0 + \theta_1 x) - y)}_{\text{Nonlinear function of }\theta} \underbrace{(\sigma(\theta_0 + \theta_1 x) - y)(\sigma(\theta_0 + \theta_1 x) - y)}_{\text{Nonlinear function of }\theta}$$

**Question:** How many minima does this function have?

Linear regression loss function was quadratic with one minima



With a neural network, this is our loss function

$$\mathcal{L}(x,y,\theta) = \underbrace{(\sigma(\theta_0 + \theta_1 x) - y)}_{\text{Nonlinear function of }\theta} \underbrace{(\sigma(\theta_0 + \theta_1 x) - y)}_{\text{Nonlinear function of }\theta}$$

**Question:** How many minima does this function have?

**Answer:** We do not know

The nonlinearity/activation function  $\sigma$  in the neural network means we cannot find an analytical solution

The nonlinearity/activation function  $\sigma$  in the neural network means we cannot find an analytical solution

$$f(x, \boldsymbol{\theta}) = \sigma(\theta_0 + \theta_1 x)$$

The nonlinearity/activation function  $\sigma$  in the neural network means we cannot find an analytical solution

$$f(x, \boldsymbol{\theta}) = \sigma(\theta_0 + \theta_1 x)$$

**Question:** Can we remove the activation function  $\sigma$ ?

The nonlinearity/activation function  $\sigma$  in the neural network means we cannot find an analytical solution

$$f(x, \boldsymbol{\theta}) = \sigma(\theta_0 + \theta_1 x)$$

**Question:** Can we remove the activation function  $\sigma$ ?

**Answer:** Yes, but the result is linear regression

The nonlinearity/activation function  $\sigma$  in the neural network means we cannot find an analytical solution

$$f(x, \boldsymbol{\theta}) = \sigma(\theta_0 + \theta_1 x)$$

**Question:** Can we remove the activation function  $\sigma$ ?

**Answer:** Yes, but the result is linear regression

$$f(x, \boldsymbol{\theta}) = \theta_0 + \theta_1 x$$

The nonlinearity/activation function  $\sigma$  in the neural network means we cannot find an analytical solution

$$f(x, \boldsymbol{\theta}) = \sigma(\theta_0 + \theta_1 x)$$

**Question:** Can we remove the activation function  $\sigma$ ?

**Answer:** Yes, but the result is linear regression

$$f(x, \boldsymbol{\theta}) = \theta_0 + \theta_1 x$$

Activation functions make the neural network powerful

Linear regression: analytical solution for  $oldsymbol{ heta}$ 

Linear regression: analytical solution for  $\theta$ 

Neural network: no analytical solution for  $\theta$ 

Linear regression: analytical solution for heta

Neural network: no analytical solution for  $\theta$ 

So how to find  $\theta$  for a neural network?

# Agenda

- 1. Review
- 2. Quiz
- 3. Optimization
- 4. Calculus review
- 5. Deriving linear regression
- 6. Gradient descent
- 7. Backpropagation
- 8. Coding

# Agenda

- 1. Review
- 2. Quiz
- 3. Optimization
- 4. Calculus review
- 5. Deriving linear regression
- 6. Gradient descent
- 7. Backpropagation
- 8. Coding

To find  $\theta$  for a neural network, we use **gradient descent** 

To find  $\theta$  for a neural network, we use **gradient descent** 

Gradient descent optimizes differentiable functions

To find  $\theta$  for a neural network, we use **gradient descent** 

Gradient descent optimizes differentiable functions

We must be able to take the derivative or gradient of the loss function to use gradient descent

To find  $\theta$  for a neural network, we use **gradient descent** 

Gradient descent optimizes differentiable functions

We must be able to take the derivative or gradient of the loss function to use gradient descent

How does gradient descent work?

A differentiable loss function produces a manifold



A differentiable loss function produces a manifold



Our goal is to find the lowest point on this manifold

A differentiable loss function produces a manifold



Our goal is to find the lowest point on this manifold

The lowest point solves  $\arg\min_{m{ heta}} \mathcal{L}(m{X}, m{Y}, m{ heta})$ 

**Note:** Gradient descent provides a **local** optima, not necessarily a global optima

**Note:** Gradient descent provides a **local** optima, not necessarily a global optima



**Note:** Gradient descent provides a **local** optima, not necessarily a global optima



In practice, a local optima provides a good enough model

# Relax

Let us define gradient descent without math

Let us define gradient descent without math

You are on the top of a mountain and there is lightning storm

Let us define gradient descent without math

You are on the top of a mountain and there is lightning storm



Let us define gradient descent without math

You are on the top of a mountain and there is lightning storm



For safety, you should walk down the mountain to escape the lightning

But you do not know the path down!

But you do not know the path down!



You see this, which way do you walk next?



This is gradient descent

In gradient descent, we look at the **slope** of the loss function

In gradient descent, we look at the **slope** of the loss function

And we walk in the steepest direction

In gradient descent, we look at the **slope** of the loss function

And we walk in the steepest direction



In gradient descent, we look at the **slope** of the loss function

And we walk in the steepest direction



And then we repeat





We find the gradient  $\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta})$ 



We find the gradient  $\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta})$ 

And update  $\theta$  in the steepest direction



Eventually, we arrive at the bottom

With gradient descent, the loss function must be differentiable

With gradient descent, the loss function must be differentiable

If we cannot compute the derivative/gradient, then we do not know which way to walk!

The gradient descent algorithm:

 $\theta \leftarrow \theta - \alpha J$ 

return  $\theta$ 

```
1:function Gradient Descent(X, Y, \mathcal{L}, t, \alpha)
          > Randomly initialize parameters
2:
          \boldsymbol{\theta} \leftarrow \mathcal{N}(0,1)
3:
          for i \in 1...t do
4:
                  > Compute the gradient of the loss
5:
                  J \leftarrow \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta})
6:
                  > Update the parameters using the negative gradient
7:
```

8:

9:



Two main steps in gradient descent:

Two main steps in gradient descent:

Step 1: Compute the gradient of the loss

Two main steps in gradient descent:

Step 1: Compute the gradient of the loss

Step 2: Update the parameters using the gradient

Two main steps in gradient descent:

Step 1: Compute the gradient of the loss

Step 2: Update the parameters using the gradient

Let us start with step 1

# Agenda

- 1. Review
- 2. Quiz
- 3. Optimization
- 4. Calculus review
- 5. Deriving linear regression
- 6. Gradient descent
- 7. Backpropagation
- 8. Coding

# Agenda

- 1. Review
- 2. Quiz
- 3. Optimization
- 4. Calculus review
- 5. Deriving linear regression
- 6. Gradient descent
- 7. Backpropagation
- 8. Coding

**Goal:** Compute the gradient of the loss  $\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta})$ 

**Goal:** Compute the gradient of the loss  $\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta})$ 

We call this process backpropagation

**Goal:** Compute the gradient of the loss  $\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta})$ 

We call this process **backpropagation** 

We propagate errors from the loss function **backward** through each layer of the neural network

**Goal:** Compute the gradient of the loss  $\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta})$ 

We call this process backpropagation

We propagate errors from the loss function **backward** through each layer of the neural network



Forward propagation



Backward propagation



Finding the gradient is necessary to use gradient descent!

Finding the gradient is necessary to use gradient descent!

First, we will find the gradient of a neural network layer

Finding the gradient is necessary to use gradient descent!

First, we will find the gradient of a neural network layer

Then, we will find the gradient of a deep neural network

Finding the gradient is necessary to use gradient descent!

First, we will find the gradient of a neural network layer

Then, we will find the gradient of a deep neural network

Finally, we will find the gradient of the loss function

Start with the equation of a neural network layer

$$f(\boldsymbol{x}, \boldsymbol{\theta}) = \sigma(\boldsymbol{\theta}^{ op} \overline{\boldsymbol{x}})$$

Start with the equation of a neural network layer

$$f(\boldsymbol{x}, \boldsymbol{\theta}) = \sigma(\boldsymbol{\theta}^{ op} \overline{\boldsymbol{x}})$$

Take the gradient of both sides

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}})$$

Start with the equation of a neural network layer

$$f(\boldsymbol{x},\boldsymbol{\theta}) = \sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}})$$

Take the gradient of both sides

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}})$$

Chain: 
$$\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$$

Start with the equation of a neural network layer

$$f(\boldsymbol{x},\boldsymbol{\theta}) = \sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}})$$

Take the gradient of both sides

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}})$$

Chain: 
$$\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} [\sigma] (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}) \cdot \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}})$$

$$\begin{split} \nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) &= \nabla_{\boldsymbol{\theta}} [\sigma] (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}) \cdot \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}) \\ \text{What is } \nabla_{\boldsymbol{\theta}} \sigma? \end{split}$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} [\sigma] (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}) \cdot \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}})$$

What is  $\nabla_{\boldsymbol{\theta}} \sigma$ ?



$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} [\sigma] (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}) \cdot \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}})$$

What is  $\nabla_{\boldsymbol{\theta}} \sigma$ ?



Derivative is zero everywhere and infinity at x = 0, so the derivative for a layer is either infinity or zero

We use a differentiable approximation of the heaviside step function

We use a differentiable approximation of the heaviside step function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

We use a differentiable approximation of the heaviside step function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

We call this approximation the **sigmoid function** 

We use a differentiable approximation of the heaviside step function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

We call this approximation the **sigmoid function** 





The sigmoid function has finite and nonzero derivative everywhere





$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

The derivative of the sigmoid function is

$$\frac{d}{dz}\sigma(z) = \sigma(z)\cdot(1-\sigma(z))$$





$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

The derivative of the sigmoid function is

$$\frac{d}{dz}\sigma(z) = \sigma(z)\cdot (1-\sigma(z))$$

$$\nabla_{\boldsymbol{z}} \sigma(\boldsymbol{z}) = \sigma(\boldsymbol{z}) \odot (1 - \sigma(\boldsymbol{z}))$$

Back to our layer

Back to our layer

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} [\sigma] (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}) \cdot \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}})$$

Back to our layer

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} [\sigma] (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}) \cdot \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}})$$

Plug in the gradient of our new activation function

$$\nabla_{\boldsymbol{z}} \sigma(\boldsymbol{z}) = \sigma(\boldsymbol{z}) \odot (1 - \sigma(\boldsymbol{z}))$$

Back to our layer

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} [\sigma] (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}) \cdot \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}})$$

Plug in the gradient of our new activation function

$$\nabla_{\boldsymbol{z}} \sigma(\boldsymbol{z}) = \sigma(\boldsymbol{z}) \odot (1 - \sigma(\boldsymbol{z}))$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = \left(\sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}) \odot (1 - \sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}))\right) \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}})$$

Back to our layer

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} [\sigma] (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}) \cdot \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}})$$

Plug in the gradient of our new activation function

$$\nabla_{\boldsymbol{z}} \sigma(\boldsymbol{z}) = \sigma(\boldsymbol{z}) \odot (1 - \sigma(\boldsymbol{z}))$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = \left(\sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}) \odot (1 - \sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}))\right) \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}})$$

Evalute the final term

Back to our layer

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} [\sigma] (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}) \cdot \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}})$$

Plug in the gradient of our new activation function

$$\nabla_{\boldsymbol{z}} \sigma(\boldsymbol{z}) = \sigma(\boldsymbol{z}) \odot (1 - \sigma(\boldsymbol{z}))$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = (\sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}) \odot (1 - \sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}))) \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}})$$

Evalute the final term

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = (\sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}) \odot (1 - \sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}))) \overline{\boldsymbol{x}}^{\top}$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = (\sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}) \odot (1 - \sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}))) \overline{\boldsymbol{x}}^{\top}$$

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = (\sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}) \odot (1 - \sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}))) \overline{\boldsymbol{x}}^{\top}$$

This is the gradient for the layer of a neural network!

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = (\sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}) \odot (1 - \sigma(\boldsymbol{\theta}^{\top} \overline{\boldsymbol{x}}))) \overline{\boldsymbol{x}}^{\top}$$

This is the gradient for the layer of a neural network!

We will use this to compute the gradient of a deep neural network

Recall the deep neural network has many layers

$$f_1(\boldsymbol{x}, \boldsymbol{\varphi}) = \sigma(\boldsymbol{\varphi}^{\top} \overline{\boldsymbol{x}}) \quad f_2(\boldsymbol{x}, \boldsymbol{\psi}) = \sigma(\boldsymbol{\psi}^{\top} \overline{\boldsymbol{x}}) \quad \dots \quad f_{\ell}(\boldsymbol{x}, \boldsymbol{\xi}) = \sigma(\boldsymbol{\xi}^{\top} \overline{\boldsymbol{x}})$$

Recall the deep neural network has many layers

$$f_1(\boldsymbol{x},\boldsymbol{\varphi}) = \sigma(\boldsymbol{\varphi}^{\top}\overline{\boldsymbol{x}}) \quad f_2(\boldsymbol{x},\boldsymbol{\psi}) = \sigma(\boldsymbol{\psi}^{\top}\overline{\boldsymbol{x}}) \quad \dots \quad f_{\ell}(\boldsymbol{x},\boldsymbol{\xi}) = \sigma(\boldsymbol{\xi}^{\top}\overline{\boldsymbol{x}})$$

And that we call them in series

$$egin{aligned} oldsymbol{z}_1 &= f_1(oldsymbol{x}, oldsymbol{arphi}) \ oldsymbol{z}_2 &= f_2(oldsymbol{z}_1, oldsymbol{\psi}) \ &drawpsilon & \ oldsymbol{z}_\ell &= f_\ell(oldsymbol{z}_{\ell-1}, oldsymbol{\xi}) \end{aligned}$$

Recall the deep neural network has many layers

$$f_1(\boldsymbol{x},\boldsymbol{\varphi}) = \sigma(\boldsymbol{\varphi}^{\top}\overline{\boldsymbol{x}}) \quad f_2(\boldsymbol{x},\boldsymbol{\psi}) = \sigma(\boldsymbol{\psi}^{\top}\overline{\boldsymbol{x}}) \quad \dots \quad f_{\ell}(\boldsymbol{x},\boldsymbol{\xi}) = \sigma(\boldsymbol{\xi}^{\top}\overline{\boldsymbol{x}})$$

And that we call them in series

$$egin{aligned} oldsymbol{z}_1 &= f_1(oldsymbol{x}, oldsymbol{arphi}) \ oldsymbol{z}_2 &= f_2(oldsymbol{z}_1, oldsymbol{\psi}) \ &drawpsilon & \ oldsymbol{z}_\ell &= f_\ell(oldsymbol{z}_{\ell-1}, oldsymbol{\xi}) \end{aligned}$$

Take the gradient of both sides

$$egin{aligned} 
abla_{oldsymbol{arphi},oldsymbol{\psi},...,oldsymbol{\xi}} oldsymbol{z}_{oldsymbol{arphi},oldsymbol{\psi},...,oldsymbol{\xi}} oldsymbol{z}_1 &= 
abla_{oldsymbol{arphi},oldsymbol{\psi},oldsymbol{\xi}} f_1(oldsymbol{x},oldsymbol{arphi}) \ &oldsymbol{arphi}_{oldsymbol{arphi},oldsymbol{\psi},...,oldsymbol{\xi}} oldsymbol{z}_2 &= 
abla_{oldsymbol{arphi},oldsymbol{\psi},oldsymbol{\xi}} f_2(oldsymbol{z}_1,oldsymbol{\psi}) \ & \vdots \ & egin{align*} 
abla_{oldsymbol{arphi},oldsymbol{\psi},...,oldsymbol{\xi}} oldsymbol{z}_\ell &= 
abla_{oldsymbol{arphi},oldsymbol{\psi},oldsymbol{\xi}} f_\ell(oldsymbol{z}_{\ell-1},oldsymbol{\xi}) \end{aligned}$$

Take the gradient of both sides

$$egin{aligned} 
abla_{oldsymbol{arphi},oldsymbol{\psi},...,oldsymbol{\xi}} oldsymbol{z}_{oldsymbol{arphi},oldsymbol{\psi},...,oldsymbol{\xi}} oldsymbol{z}_1 &= 
abla_{oldsymbol{arphi},oldsymbol{\psi},oldsymbol{\xi}} f_1(oldsymbol{x},oldsymbol{arphi}) \ 
abla_{oldsymbol{arphi},oldsymbol{\psi},...,oldsymbol{\xi}} oldsymbol{z}_2 &= 
abla_{oldsymbol{arphi},oldsymbol{\psi},oldsymbol{\xi}} f_2(oldsymbol{z}_1,oldsymbol{\psi}) \ 
& \vdots \ 
abla_{oldsymbol{arphi},oldsymbol{\psi},oldsymbol{\psi},oldsymbol{\xi}} f_{oldsymbol{\psi}}(oldsymbol{z}_{\ell-1},oldsymbol{\xi}) \end{aligned}$$

$$egin{aligned} 
abla_{oldsymbol{arphi}} oldsymbol{z}_1 &= 
abla_{oldsymbol{arphi}} f_1(oldsymbol{x}, oldsymbol{arphi}) \ 
abla_{oldsymbol{\psi}} oldsymbol{z}_2 &= 
abla_{oldsymbol{\psi}} f_2(oldsymbol{z}_1, oldsymbol{\psi}) \ &dots \ 
abla_{oldsymbol{arphi}} oldsymbol{z}_{oldsymbol{\psi}} &= 
abla_{oldsymbol{\psi}} f_2(oldsymbol{z}_1, oldsymbol{\psi}) \end{aligned}$$

Take the gradient of both sides

$$egin{aligned} 
abla_{oldsymbol{arphi},oldsymbol{\psi},...,oldsymbol{\xi}} oldsymbol{z}_{oldsymbol{arphi},oldsymbol{\psi},...,oldsymbol{\xi}} oldsymbol{z}_1 &= 
abla_{oldsymbol{arphi},oldsymbol{\psi},oldsymbol{\xi}} f_1(oldsymbol{x},oldsymbol{arphi}) \ 
abla_{oldsymbol{arphi},oldsymbol{\psi},...,oldsymbol{\xi}} oldsymbol{z}_2 &= 
abla_{oldsymbol{arphi},oldsymbol{\psi},oldsymbol{\xi}} f_2(oldsymbol{z}_1,oldsymbol{\psi}) \ 
& \vdots \ 
abla_{oldsymbol{arphi},oldsymbol{\psi},oldsymbol{\psi},oldsymbol{\xi}} f_{oldsymbol{\psi}}(oldsymbol{z}_{\ell-1},oldsymbol{\xi}) \end{aligned}$$

$$egin{aligned} 
abla_{oldsymbol{arphi}} oldsymbol{z}_1 &= 
abla_{oldsymbol{arphi}} f_1(oldsymbol{x}, oldsymbol{arphi}) \ 
abla_{oldsymbol{\psi}} oldsymbol{z}_2 &= 
abla_{oldsymbol{\psi}} f_2(oldsymbol{z}_1, oldsymbol{\psi}) \ &dots \ 
abla_{oldsymbol{arphi}} oldsymbol{z}_{oldsymbol{\psi}} &= 
abla_{oldsymbol{\psi}} f_2(oldsymbol{z}_1, oldsymbol{\psi}) \end{aligned}$$

The gradient of a deep neural network is

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = \nabla_{\boldsymbol{\varphi}, \boldsymbol{\psi}, \dots, \boldsymbol{\xi}} f \Big( \boldsymbol{x}, [\boldsymbol{\varphi} \ \boldsymbol{\psi} \ \dots \ \boldsymbol{\xi}]^{\top} \Big) = \begin{bmatrix} \nabla_{\boldsymbol{\varphi}} f_1(\boldsymbol{x}, \boldsymbol{\varphi}) \\ \nabla_{\boldsymbol{\psi}} f_2(\boldsymbol{z}_1, \boldsymbol{\psi}) \\ \vdots \\ \nabla_{\boldsymbol{\xi}} f_{\ell}(\boldsymbol{z}_{\ell-1}, \boldsymbol{\xi}) \end{bmatrix}$$

The gradient of a deep neural network is

$$\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}) = \nabla_{\boldsymbol{\varphi}, \boldsymbol{\psi}, \dots, \boldsymbol{\xi}} f \Big( \boldsymbol{x}, [\boldsymbol{\varphi} \ \boldsymbol{\psi} \ \dots \ \boldsymbol{\xi}]^{\top} \Big) = \begin{bmatrix} \nabla_{\boldsymbol{\varphi}} f_1(\boldsymbol{x}, \boldsymbol{\varphi}) \\ \nabla_{\boldsymbol{\psi}} f_2(\boldsymbol{z}_1, \boldsymbol{\psi}) \\ \vdots \\ \nabla_{\boldsymbol{\xi}} f_{\ell}(\boldsymbol{z}_{\ell-1}, \boldsymbol{\xi}) \end{bmatrix}$$

Where each layer gradient is

$$\nabla_{\pmb{\xi}} f_\ell(\pmb{z}_{\ell-1}, \pmb{\xi}) = \left(\sigma(\pmb{\xi}^\top \overline{\pmb{z}}_{\ell-1}) \odot \left(1 - \sigma(\pmb{\xi}^\top \overline{\pmb{z}}_{\ell-1})\right)\right) \overline{\pmb{z}}_{\ell-1}^\top$$

We computed the gradient of a neural network layer

We computed the gradient of a neural network layer

We computed the gradient of the neural network

We computed the gradient of a neural network layer

We computed the gradient of the neural network

Now, we must compute gradient of the loss function

We computed the gradient of a neural network layer

We computed the gradient of the neural network

Now, we must compute gradient of the loss function

$$\mathcal{L}(oldsymbol{X},oldsymbol{Y},oldsymbol{ heta}) = \sum_{i=1}^n \left(fig(oldsymbol{x}_{[i]},oldsymbol{ heta}ig) - oldsymbol{y}_{[i]}
ight)^2$$

$$abla_{m{ heta}} \mathcal{L}(m{X},m{Y},m{ heta}) = 
abla_{m{ heta}} \sum_{i=1}^n \left( fig(m{x}_{[i]},m{ heta}ig) - m{y}_{[i]} 
ight)^2$$

$$\mathcal{L}(oldsymbol{X},oldsymbol{Y},oldsymbol{ heta}) = \sum_{i=1}^n \left(fig(oldsymbol{x}_{[i]},oldsymbol{ heta}ig) - oldsymbol{y}_{[i]}
ight)^2$$

$$abla_{m{ heta}} \mathcal{L}(m{X},m{Y},m{ heta}) = 
abla_{m{ heta}} \sum_{i=1}^n \left( fig(m{x}_{[i]},m{ heta}ig) - m{y}_{[i]} 
ight)^2$$

$$abla_{m{ heta}} \mathcal{L}(m{X},m{Y},m{ heta}) = \sum_{i=1}^n 
abla_{m{ heta}} ig(fig(m{x}_{[i]},m{ heta}ig) - m{y}_{[i]}ig)^2$$

$$\mathcal{L}(oldsymbol{X},oldsymbol{Y},oldsymbol{ heta}) = \sum_{i=1}^n \left(fig(oldsymbol{x}_{[i]},oldsymbol{ heta}ig) - oldsymbol{y}_{[i]}
ight)^2$$

$$abla_{m{ heta}} \mathcal{L}(m{X},m{Y},m{ heta}) = 
abla_{m{ heta}} \sum_{i=1}^n \left( fig(m{x}_{[i]},m{ heta}ig) - m{y}_{[i]} 
ight)^2$$

$$abla_{m{ heta}} \mathcal{L}(m{X},m{Y},m{ heta}) = \sum_{i=1}^n 
abla_{m{ heta}} ig(fig(m{x}_{[i]},m{ heta}ig) - m{y}_{[i]}ig)^2$$

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) = \sum_{i=1}^{n} 2 \big( f \big( \boldsymbol{x}_{[i]}, \boldsymbol{\theta} \big) - \boldsymbol{y}_{[i]} \big) \nabla_{\boldsymbol{\theta}} f \big( \boldsymbol{x}_{[i]}, \boldsymbol{\theta} \big)$$

$$abla_{m{ heta}} \mathcal{L}(m{X}, m{Y}, m{ heta}) = \sum_{i=1}^{n} 2ig(fig(m{x}_{[i]}, m{ heta}ig) - m{y}_{[i]}ig) 
abla_{m{ heta}} fig(m{x}_{[i]}, m{ heta}ig)$$

$$abla_{m{ heta}}\mathcal{L}(m{X},m{Y},m{ heta}) = \sum_{i=1}^n 2ig(fig(m{x}_{[i]},m{ heta}ig) - m{y}_{[i]}ig)ar{
abla}_{m{ heta}}fig(m{x}_{[i]},m{ heta}ig)$$

$$egin{aligned} oldsymbol{
abla}_{oldsymbol{ heta}}f(oldsymbol{x},[oldsymbol{\phi}\ \psi\ ...\ oldsymbol{\xi}]^{ op}) = egin{bmatrix} 
abla_{oldsymbol{\phi}}f_1(oldsymbol{x},oldsymbol{arphi}) \ 
abla_{oldsymbol{\psi}}f_2(oldsymbol{z}_1,oldsymbol{\psi}) \ 
& arphi \ 
abla_{oldsymbol{\psi}}f_2(oldsym$$

$$abla_{m{ heta}}\mathcal{L}(m{X},m{Y},m{ heta}) = \sum_{i=1}^n 2ig(fig(m{x}_{[i]},m{ heta}ig) - m{y}_{[i]}ig)ar{
abla}_{m{ heta}}fig(m{x}_{[i]},m{ heta}ig)$$

$$egin{aligned} oldsymbol{
abla}_{oldsymbol{ heta}}f(oldsymbol{x},[oldsymbol{\phi}\ \psi\ ...\ oldsymbol{\xi}]^{ op}) = egin{bmatrix} 
abla_{oldsymbol{\phi}}f_1(oldsymbol{x},oldsymbol{arphi}) \ 
abla_{oldsymbol{\psi}}f_2(oldsymbol{z}_1,oldsymbol{\psi}) \ 
& arphi \ 
abla_{oldsymbol{\psi}}f_2(oldsym$$

$$\nabla_{\pmb{\xi}} f_{\ell}(\pmb{z}_{\ell-1}, \pmb{\xi}) = (\sigma(\pmb{\xi}^{\top} \overline{\pmb{z}}_{\ell-1}) \odot (1 - \sigma(\pmb{\xi}^{\top} \overline{\pmb{z}}_{\ell-1}))) \overline{\pmb{z}}_{\ell-1}^{\top}$$

**Question:** Why did we spend all this time deriving gradients?

**Question:** Why did we spend all this time deriving gradients?

**Answer:** The gradient is necessary for gradient descent

**Question:** Why did we spend all this time deriving gradients?

**Answer:** The gradient is necessary for gradient descent

- 1:**for**  $i \in 1...t$  **do**
- > Compute the gradient of the loss 2:
- $J \leftarrow \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta})$ 3:
- > Update the parameters using the negative gradient 4:
- $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} \alpha \boldsymbol{J}$ 5:

**Question:** Why did we spend all this time deriving gradients?

**Answer:** The gradient is necessary for gradient descent

- 1:**for**  $i \in 1...t$  **do**
- > Compute the gradient of the loss 2:
- $J \leftarrow \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta})$ 3:
- > Update the parameters using the negative gradient 4:
- $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} \alpha \boldsymbol{J}$ 5:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \alpha \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}_t)$$

## Agenda

- 1. Review
- 2. Quiz
- 3. Optimization
- 4. Calculus review
- 5. Deriving linear regression
- 6. Gradient descent
- 7. Backpropagation
- 8. Coding

## Agenda

- 1. Review
- 2. Quiz
- 3. Optimization
- 4. Calculus review
- 5. Deriving linear regression
- 6. Gradient descent
- 7. Backpropagation
- 8. Coding

Lecture 1: Introduction

Lecture 1: Introduction

The libraries compute the gradients using autograd

The libraries compute the gradients using autograd

Autograd differentiates nested functions using the chain rule

The libraries compute the gradients using autograd

Autograd differentiates nested functions using the chain rule

$$\nabla_{\boldsymbol{\theta}} f(g(h(x, \boldsymbol{\theta}))) = f'(g(h(x, \boldsymbol{\theta}))) \cdot g'(h(x, \boldsymbol{\theta})) \cdot h'(x, \boldsymbol{\theta})$$

The libraries compute the gradients using autograd

Autograd differentiates nested functions using the chain rule

$$\nabla_{\boldsymbol{\theta}} f(g(h(x, \boldsymbol{\theta}))) = f'(g(h(x, \boldsymbol{\theta}))) \cdot g'(h(x, \boldsymbol{\theta})) \cdot h'(x, \boldsymbol{\theta})$$

Engineers derived gradients for hundreds of functions f, g, h, ...

The libraries compute the gradients using autograd

Autograd differentiates nested functions using the chain rule

$$\nabla_{\boldsymbol{\theta}} f(g(h(x, \boldsymbol{\theta}))) = f'(g(h(x, \boldsymbol{\theta}))) \cdot g'(h(x, \boldsymbol{\theta})) \cdot h'(x, \boldsymbol{\theta})$$

Engineers derived gradients for hundreds of functions f, g, h, ...

Researchers derive their own analytical gradients like we did today

The libraries compute the gradients using **autograd** 

Autograd differentiates nested functions using the chain rule

$$\nabla_{\boldsymbol{\theta}} f(g(h(x, \boldsymbol{\theta}))) = f'(g(h(x, \boldsymbol{\theta}))) \cdot g'(h(x, \boldsymbol{\theta})) \cdot h'(x, \boldsymbol{\theta})$$

Engineers derived gradients for hundreds of functions f, g, h, ...

Researchers derive their own analytical gradients like we did today

Now, let us look at jax and torch optimization code

```
import jax
def L(theta, X, Y):
  . . .
# Create a new function that is the gradient of L
# Then compute gradient of L for given inputs
J = jax.grad(L)(X, Y, theta)
# Update parameters
alpha = 0.0001
theta = theta - alpha * J
```

```
import torch
optimizer = torch.optim.SGD(lr=0.0001)
def L(model, X, Y):
# Pytorch will record a graph of all operations
# Everytime you do theta @ x, it stores inputs and outputs
loss = L(X, Y, model) # compute gradient
# Traverse the graph backward and compute the gradient
loss.backward() # Sets .grad attribute on each parameter
optimizer.step() # Update the parameters using .grad
optimizer.zero grad() # Set .grad to zero, DO NOT FORGET!!
```

Time for some interactive coding

https://colab.research.google.com/drive/1W8WVZ8n\_9yJCcOqkPVURp\_wJUx3EQc5w