5. Operadores ortogonales

A lo largo de esta sección, E y F denotarán e.p.i.'s reales de dimensión finita (salvo se diga lo contrario), $\mathcal{L}(E,F):=\{A:E\to F\;;\;A\text{ es lineal}\}$ y $\mathrm{End}(E):=\mathcal{L}(E,E)$. Los operadores ortogonales sobre E son los automorfismos de E; es decir, son las simetrías de esta estructura. Desde una perspectiva más concreta, los operadores ortogonales son aquellos para los cuales se pueden obtener las matrices más simples, después de los autoadjuntos.

Propiedad 5.7. Sea $A \in \mathcal{L}(E, F)$. Las siguientes proposiciones son equivalentes:

- (I) $\forall v \in E : |Av| = |v|$.
- (II) $\forall u, v \in E : |Au Av| = |u v|$.
- (III) $\forall u, v \in E : \langle Au, Av \rangle = \langle u, v \rangle.$
- (IV) $A^*A = I$.
- (v) La matriz de A respecto a cualquier par de bases ortonormales de E y F es una matriz ortogonal.

(VI) La matriz de A respecto a un cierto par de bases ortonormales de E y F es una matriz ortogonal.
(VII) A transfoma cierta base ortonormal de E en un conjunto ortonormal de F .
(VIII) A transfoma toda base ortonormal de E en un conjunto ortonormal de F .
Demostración. Ejercicio.
Definición 5.8. Decimos que una transformación lineal $A \in \mathcal{L}(E, F)$ es ortogonal cuando cumple una de las proposiciones de la propiedad 5.7.
Propiedad 5.9. Sea $A \in \text{End}(E)$, sea F subespacio de E y sean $u, v \in \mathcal{E}$.
(I) A es ortogonal sii $A^{-1} = A^*$.
(II) A es ortogonal sii $AA^* = I$.
(III) $\sigma(A) \subset \{-1,1\}.$
(IV) $Au = u, Av = -v \implies \langle u, v \rangle = 0.$
(v) A es ortogonal, F es invariante por $A \Rightarrow F^{\perp}$ es invariante por A .
(VI) A es invertible, F es invariante por $A \Rightarrow F$ es invariante por A^{-1} .
Demostración. Ejercicio.
Propiedad 5.10. Sea $A \in \text{End}(E)$. Dos de las proposiciones de abajo implican la tercera.
(I) A es una involución.
(II) A es autoadjunto.
(III) $A^{-1} = A^*$.
Demostración. Ejercicio.

Observación 5.12. Sea $A \in \text{End}(E)$ ortogonal con $\dim(E) = 2$. Tenemos cuatro casos:

(I) $\sigma(A) = \{1\}.$

Ejemplo $5.11. \dots$

(II) $\sigma(A) = \{-1\}.$

(III) $\sigma(A) = \{-1, 1\}.$

(IV)
$$\sigma(A) = \{ \}.$$

Theorem 5.13. Sea $A \in \text{End}(E)$ ortogonal. Existe una base ortonormal de E respecto a la cual la matriz de A tiene la forma:

donde los términos no aludidos son iguales a cero.

Demostración. Ejercicio.

Observación 5.14. ...
$$\Box$$

Corolario 5.15. Si E tiene dimensión impar, todo endomorfismo ortogonal posee un autovector con autovalor asociado -1 o 1.

Ejemplo 5.16 (Operadores ortogonales sobre
$$\mathbb{R}^3$$
). ...

Theorem 5.17. Todo $A \in \text{End}(E)$ puede ser expresado como

$$A = PU \tag{1}$$

donde $P, U \in \text{End}(E)$, U es ortogonal y $P \geq 0$.

Demostración. Ejercicio.

Definición 5.18. La expresión de la ecuación (1) se llama una descomposición polar del endomorfismo A.

Observación 5.19. Si un endomorfismo es invertible, su descomposición polar es única.

Definición 5.20. Sea r > 0, una aplicación $S : E \to E$ es llamada de **semejanza de** razón r si |Su - Sv| = r|u - v| para todo $u, v \in E$; decimos que S preserva ángulos si

$$\frac{\langle Su, Sv \rangle}{|Su||Sv|} = \frac{\langle u, v \rangle}{|u||v|}$$

para todo $u, v \in E \setminus \{0\}$. Una semejanza de razón 1 es llamada **isometría**.

Ejercicio 5.1. Sea $f: \mathbb{R}^n \to \mathbb{R}^n$ una aplicación tal que f(0) = 0 y |fu - fv| = |u - v| para cualesquiera $u, v \in \mathbb{R}^n$. Pruebe que

- (I) $\forall u \in \mathbb{R}^n : |f(u)| = |u|$.
- (II) $\forall u, v \in \mathbb{R}^n : \langle fu, fv \rangle = \langle u, v \rangle.$
- (III) $\{f(e_1), \ldots, f(e_n)\}\$ es una base ortonormal de \mathbb{R}^n .
- (IV) $\forall u = x_1 e_1 + \dots + x_n e_n \in \mathbb{R}^n$ se tiene $\langle f(v), f(e_i) \rangle = x_i, i = 1, \dots, n$. Luego, $f(u) = x_1 f(e_1) + \dots + x_n f(e_n)$.
- (v) $f \in \text{End}(\mathbb{R}^n)$ y es ortogonal.

Ejercicio 5.2. Pruebe que toda semejanza $S: E \to E$ de razón r > 0 tiene la forma S = rA + b, donde $A \in \operatorname{End}(\mathbb{R}^n)$ es ortogonal y $b \in \mathbb{R}^n$.

Ejercicio 5.3. Sea E subespacio vectorial de F y sea $A \in \mathcal{L}(E, F)$ ortogonal. Pruebe que existe un endomorfismo ortogonal sobre F que extiende a A.

Ejercicio 5.4. Sean $A \in \mathcal{L}(E, F)$ y $B \in \mathcal{L}(E, G)$ invertibles. Pruebe que existe $C \in \mathcal{L}(F, G)$ ortogonal e invertible con B = CA sii |Av| = |Bv| para todo $v \in E$.

Ejercicio 5.5. Sean $A, B \in \text{End}(E)$ con |Av| = |Bv| para todo $v \in E$. Pruebe que existe $C \in \text{End}(E)$ ortogonal con B = CA.

Ejercicio 5.6. Sea $u \in \mathbb{R}^n$ unitario. Pruebe las siguientes afirmaciones.

- (I) $H_u: \mathbb{R}^n \to \mathbb{R}^n$, $v \mapsto v 2\langle v, u \rangle u$, es ortogonal.
- (II) Sean $v, w \in \mathbb{R}^n$ con |v| = |w| y $v \neq w$. Tomando u = (v w)/|v w|, se tiene que $H_u(v) = w$.

Ejercicio 5.7. Pruebe que todo $A \in \text{End}(E)$ puede ser expresado como A = UP, donde $P, U \in \text{End}(E)$, U es ortogonal y P > 0.

Ejercicio 5.8. Sean $A, S \in \text{End}(E)$. Pruebe las siguientes proposiciones.

- (I) Si A transforma vectores unitarios en vectores unitarios, entonces A es ortogonal.
- (II) Si S es invertible y transforma dos vectores cualesquiera de la misma longitud en vectores de la misma longitud, entonces S es una semejanza.

Ejercicio 5.9. Sea $S \in \text{End}(E)$ invertible que preserva ángulos. Pruebe las siguientes afirmaciones.

(I) S transforma vectores ortogonales de la misma longitud en vectores ortogonales de igual longitud.

(II) S es una semejanza.

Ejercicio 5.10. Si la descomposición polar de un endomorfismo es única, pruebe que dicho endomorfismo es invertible.

Ejercicio 5.11. Sea $A \in \text{End}(\mathbb{R}^3)$, $(x, y, z) \mapsto (2x + 3y - 6z, 6x + 2y + 3z, -3x + 6y + 2z)$.

- (I) Pruebe que A es una semejanza de razón 7.
- (II) Verifique que o $7 \in \sigma(A)$ o bien $-7 \in \sigma(A)$.
- (III) Encuentre un autovector de A, complételo a fin de obtener una base ortonormal de \mathbb{R}^3 y determine la matriz del operador A en esta base.

Ejercicio 5.12. ¿Puede una matriz ortogonal ser antisimétrica?

Ejercicio 5.13. Encuentre la descomposición polar de las siguientes matrices:

$$\begin{pmatrix}
1 & 2 \\
2 & -1
\end{pmatrix}$$

(II)
$$\begin{bmatrix} \sqrt{2} & 1 & 1 \\ -\sqrt{2} & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$