Modular Polynomial Arithmetic Over GF(2ⁿ)

Dr. E.SURESH BABU

Assistant Professor

Computer Science and Engineering Department

National Institute of Technology, Warangal

Warangal

Outline

- **❖ Modular Polynomial Arithmetic Over GF(2ⁿ)**
- **❖** Arithmetic Polynomials Over GF(2ⁿ)
 - \checkmark Example: Arithmetic Polynomials Over GF(28)
- ❖ Finding Multiplicative Inverses in GF(2ⁿ)
- **❖** Using A Generator: To Represent The Elements in GF(2ⁿ)

Modular Polynomial Arithmetic Over GF(2ⁿ)

Modular Polynomial Arithmetic Over GF(2ⁿ)

- ❖ In **GF(2ⁿ)**, when the **degree of the result** is more than **n-1**, it needs to be **reduced modulo a irreducible polynomial**.
 - ✓ This can be implemented as **BIT-SHIFT** and **XOR**.

Example: Modular Polynomial Arithmetic Over GF(23)

* We will first choose a particular irreducible polynomial, as

$$x^3 + x + 1$$

❖ (By the way there exist only **two irreducible polynomials** of **degree 3** over GF(2). The other is

$$x^3 + x^2 + 1$$
.

For Example: $x^4+x^3+x+1 \equiv x^2+x \mod (x^3+x+1)$.

❖ The bit-string representation of

$$x^4+x^3+x+1 \rightarrow 11011$$

$$x^3+x+1 \rightarrow 1011.$$

Arr The degree of 11011(x^4+x^3+x+1) is 4 and the degree of the

irreducible polynomial is 3 (x^3+x+1).

For Example: $x^4+x^3+x+1 \equiv x^2+x \mod (x^3+x+1)$.

The reduction starts by shifting the irreducible polynomial

1011 one bit left, you get 10110, then

11011

⊕10110

1101. (x^3+x^2+1)

For Example: $x^4+x^3+x+1 \equiv x^2+x \mod (x^3+x+1)$.

- \clubsuit The degree of 1101 is 3 which is still greater than n-1=2,
 - ✓ so you need another XOR. But you don't need to shift the

irreducible polynomial this time.

$$\begin{array}{c}
1101 \\
\oplus 1011 \\
\hline
0110 = x^2 + x.
\end{array}$$

Arithmetic Polynomials Over GF(2ⁿ)

Recap...

* Keep in mind that we will **not use modular arithmetic**, as we have seen that modular arithmetic (Z_8) not result in a field.

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

(a) Addition modulo 8

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1		7	2	5
4	0	4	0	4	-	4	0	4
5	0	5	111	7	4	1	1	3
6	0	6	2	2	0	6	**	2
7	0	7	6	5	C.	3	2	1

(b) Multiplication modulo 8

w	-w	w^{-1}	
0	0		l
1	7	1	l
2	6		
3	5	3	l
4	4	_	
5	3	5	l
6	2		-
7	1	7	
	1	7	

(c) Additive and multiplicative inverses modulo 8

Polynomials in GF(2ⁿ)

* we will see how polynomial arithmetic provides a means for constructing the desired Finite field.

How to Find All the Polynomials in GF(2ⁿ)

- \bullet To find all the polynomials in GF(2ⁿ),
 - ✓ we need an **irreducible polynomial** of degree n.
- ❖ For Example : AES arithmetic is based on GF(2⁸) which uses the following irreducible polynomial

$$x^8 + x^4 + x^3 + x + 1$$

Polynomials Over GF(2ⁿ)

- ❖ There are 2ⁿ polynomials in the Finite field and the degree of each polynomial is no more than n-1.
- **❖ GF(2³) contains 8 element**

```
{ 0, 1, x, x+1, x^2, x^2+1, x^2+x, x^2+x+1 }.

{ 000, 001, 010, 011, 100, 101, 110, 111 }

\checkmark x+1 is actually 0x^2+1x+1 \rightarrow 011.
```

$$\sqrt{x^2+x} = 1x^2+1x+0 \rightarrow 110.$$

Polynomials Over GF(2³): Example

- ❖ To construct the **finite field GF(2³)**, we need to choose an **irreducible polynomial of degree 3**.
- **Only Two Irreducible Polynomials**

$$x^3 + x + 1$$
 and $x^3 + x^2 + 1$.

❖ We will consider first Irreducible Polynomials: x³ + x + 1

Addition Polynomial Operation in GF(2ⁿ)

- ❖Already We have seen that addition of polynomials over **GF(2)** is performed by adding corresponding coefficients
 - ✓ **Addition** is just the **XOR** operation.
- ❖ Addition of two polynomials in GF(2ⁿ) corresponds to a bitwise

XOR operation.

Addition Operation in GF(2ⁿ): Bit Representation

		000	001	010	011	100	101	110	111
	+	0	1	2	3	4	5	б	7
000	0	0	1	2	3	4	5	6	7
001	1	1	0	3	2	5	4	7	б
010	2	2	3	0	1	6	7	4	5
011	3	3	2	1	0	7	б	5	4
100	4	4	5	é	7	0	1	2	3
101	5	5	4		б	1	0	3	2
110	б	6	7	4	5	2	3	0	1
111	7	7	б	5	4	3	2	1	0

100 + 010 = 110

equivalent to Polynomial **x**²+**x**

(a) Addition

Addition Polynomial Operation in GF(2ⁿ)

				F	•				
		000	001	010	011	100	101	110	111
	+	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + 1$	$x^2 + x + 1$
001	1	1	0	x + 1	x	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	х	х	x + 1	0	1	$x^{2} + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x + 1	x	1	0	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	x ²
- 1 00	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	Х	x + 1
101	$x^2 + 1$	$x^2 + 1$	x ²	$x^2 + 1$	$x^2 + x$	1	0	x + 1	х
110	$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x ²	$x^2 + 1$	х	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x ²	x + 1	Х	1	0

(a) Addition

$$100 + 010 = 110$$

$$010$$

$$110$$

equivalent to Polynomial

$$\mathbf{x}^2 + \mathbf{x}$$

Multiplication Polynomial Operation in GF(2ⁿ)

- ❖ There is no simple XOR operation w.r.t multiplication in GF(2ⁿ).
- **A Reasonably Straightforward Technique** we will discuss.

Multiplication Polynomial Mechanism in GF(2ⁿ)

❖ In general, In **GF(2ⁿ),** An nth-degree polynomial p(x) we have

$$x^n \mod p(x) = [p(x) - x^n]$$

❖ For Example : Consider a **irreducible polynomial** in **GF(28) is**

$$m(x) = x^8 + x^4 + x^3 + x + 1$$

$$x^8 \mod m(x) = [m(x) - x^8] = x^4 + x^3 + x + 1$$

GF(28) is used in AES Encryption Algorithm

Multiplication Polynomial Mechanism in GF(2ⁿ)

Now, consider a polynomial in **GF(28)**, which has the form

$$f(x) = b_7 x^7 + b_6 x^6 + b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0.$$

 \Leftrightarrow If we **multiply** f(x) by x, we have

$$x \times f(x) = (b_7 x^8 + b_6 x^7 + b_5 x^6 + b_4 x^5 + b_3 x^4 + b_2 x^3 + b_1 x^2 + b_0 x) \bmod m(x)$$

If $b_7=0$, then the result is a polynomial of degree less than 8, which is already in reduced form, and no further computation is necessary

If $\mathbf{b_7} = \mathbf{1}$, then reduction modulo m(x) is achieved using $\mathbf{x^4} + \mathbf{x^3} + \mathbf{x} + \mathbf{1}$

$$x^4 + x^3 + x + 1$$

Continuation

$$x \times f(x) = (b_7 x^8 + b_6 x^7 + b_5 x^6 + b_4 x^5 + b_3 x^4 + b_2 x^3 + b_1 x^2 + b_0 x) \bmod m(x)$$

- ❖ If the **bit** $\mathbf{b_7} = \mathbf{0}$ then the right hand above is already in the set of polynomials in GF(2⁸) and nothing further needs to be done.
- \clubsuit In this case, the output bit pattern is $b_6b_5b_4b_3b_2b_1b_00.$

Continuation

 \Leftrightarrow If $\mathbf{b_7} = \mathbf{1}$, then reduction modulo $\mathbf{m(x)}$ is achieved using $\mathbf{x^4} + \mathbf{x^3} + \mathbf{x} + \mathbf{1}$

$$(f(x) \times x) \mod m(x)$$

$$= (b_7x^8 + b_6x^7 + b_5x^6 + b_4x^5 + b_3x^4 + b_2x^3 + b_1x^2 + b_0x) \mod m(x)$$

$$= (b_6x^7 + b_5x^6 + b_4x^5 + b_3x^4 + b_2x^3 + b_1x^2 + b_0x) + (x^8 \mod m(x))$$

$$= (b_6x^7 + b_5x^6 + b_4x^5 + b_3x^4 + b_2x^3 + b_1x^2 + b_0x) + (x^4 + x^3 + x + 1)$$

$$= (b_6b_5b_4b_3b_2b_1b_00) \otimes (00011011)$$

Continuation

 \Rightarrow If $b_7 = 1$, then reduction modulo m(x) is achieved using $x^4 + x^3 + x + 1$

$$x \times f(x) = (b_6 x^7 + b_5 x^6 + b_4 x^5 + b_3 x^4 + b_2 x^3 + b_1 x^2 + b_0 x) + (x^4 + x^3 + x + 1)$$

❖ The above Equation follows that multiplication by (i.e., 00000001) can be implemented as a 1-bit left shift followed by a conditional

bitwise XOR with (00011011), which represents $x^4 + x^3 + x + 1$

In General

❖ To summarize, **Multiplication by a higher power** of can be achieved by **repeated application** of following Equation

$$x \times f(x) = \begin{cases} (b_6b_5b_4b_3b_2b_1b_00) & \text{if } b_7 = 0\\ (b_6b_5b_4b_3b_2b_1b_00) \oplus (00011011) & \text{if } b_7 = 1 \end{cases}$$

By adding intermediate results, multiplication by any constant in GF(28) can be achieved.

Multiplication Polynomial in GF(23)

		000	001	010	011	100	101	110	111
	×	0	1	2	3	4	5	6	7
000	0	0	0	0	0	0	0	0	0
001	1	0	1	2	3	4	5	6	7
010	2	0	2	4	6	3	1	7	5
011	3	0	3	6	5	7	4	1	2
1 00	4	0	4	3	7	6	2	5	1
101	5	0	5		4	2	7	3	6
110	6	0	6	7	1	5	3	2	4
111	7	0	7	5	2	1	6	4	3

(b) Multiplication

$$m(x): x^3 + x + 1$$

$$x^3 \operatorname{Mod} m(x) = m(x) - x^3$$

$$m(x) = x + 1 = 011$$

$$100 \times 010 = ?$$

Shift

$$x^{1}$$
: 100 X 010 = 000 \oplus 011 = 011

$$x^2$$
: 100 X 100 = 110

Multiplication Polynomial Operation in GF(2ⁿ)

						_				
		×	000	001 1	010 x	$\begin{array}{c} 011 \\ x + 1 \end{array}$	$\frac{100}{x^2}$	$101 \\ x^2 + 1$	$ \begin{array}{c} 110 \\ x^2 + x \end{array} $	$ \begin{array}{ccc} 111 \\ x^2 + x + 1 \end{array} $
	000	0	0	0	0	0	0	0	0	0
	001	1	0	1	х	x + 1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
	010	x	0	x	x ²	$x^2 + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
	011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	х
W.A.	100	x^2	0	x ²	x + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
	101	$x^2 + 1$	0	$x^2 + 1$		x ²	x	$x^2 + x + 1$	x + 1	$x^2 + x$
	110	$x^2 + x$	0	$x^2 + x$	$x^2 + 2 + 1$	1	$x^2 + 1$	x + 1	x	x ²
	111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	x	1	$x^2 + 1$	x^2	x + 1

(b) Multiplication

Finally 100 X 010
=
$$011 = 3 = x+1$$

Additive and multiplicative inverses Does Exist for all Elements in GF(2³)

W	-w	W^{-1}
0	0	_
1	1	1
2	2	5
3	3	6
4 5	4	7
5	5	2
6	6	3
7	7	4

(c) Additive and multiplicative inverses

Observation: Polynomials Over GF(23)

- ❖ Hence GF(2³) is a finite field because
 - ✓ it is a finite set and
 - ✓ it contains a **unique multiplicative inverse** for every non-zero element.

Example: Arithmetic Polynomials Over GF(2⁸)

Exercise: Fast Bit Multiplication Polynomial in GF(28)

Construct the Multiplication Polynomial in GF(28)

$$f(x) = x^6 + x^4 + x^2 + x + 1$$
 $g(x) = x^7 + x + 1$

$$g(x) = x^7 + x + 1$$

$$m(x) = x^8 + x^4 + x^3 + x + 1$$

$$f(x) \times g(x) \mod m(x) = x^7 + x^6 + 1.$$

Solution: Multiplication Polynomial in GF(28)

Construct the Multiplication Polynomial in GF(28)

```
we need to compute (01010111) \times (10000011). First, we
            determine the results of multiplication by powers of x:
         (01010111) \times (00000010) = (10101110)
         (01010111) \times (00000100) = (01011100) \oplus (00011011) = (01000111)
         (01010111) \times (00001000) = (10001110)
         (01010111) \times (00010000) = (00011100) \oplus (00011011) = (00000111)
         (01010111) \times (00100000) = (00001110)
         (01010111) \times (01000000) = (00011100)
         (01010111) \times (10000000) = (00111000)
So.
(01010111) \times (10000011) = (01010111) \times [(00000001) \oplus (00000010) \oplus (10000000)]
                            = (01010111) \oplus (10101110) \oplus (00111000) = (11000001)
which is equivalent to x^7 + x^6 + 1.
```

Another Example

Find the result of multiplying $P_1 = (x^5 + x^2 + x)$ by $P_2 = (x^7 + x^4 + x^3 + x^2 + x)$ in $GF(2^8)$ with irreducible polynomial $(x^8 + x^4 + x^3 + x^4 + x^4)$

Another Example:

* Step-1: We first find the partial result of multiplying x^0 , x^1 , x^2 , x^3 , x^4 , and x^5 by P_2 .

❖ We have P1 = 000100110, P2 = 10011110, modulus = 100011010 (nine bits). We show the exclusive or operation by

Example

Powers	Operation	New Result	Reduction
$x^0 \otimes P_2$		$x^7 + x^4 + x^3 + x^2 + x$	No
$x^1 \otimes P_2$	$x \otimes (x^7 + x^4 + x^3 + x^2 + x)$	$x^5 + x^2 + x + 1$	Yes
$x^2 \otimes P_2$	$\boldsymbol{x} \otimes (x^5 + x^2 + x + 1)$	$x^6 + x^3 + x^2 + x$	No
$x^3 \otimes P_2$	$\boldsymbol{x} \otimes (x^6 + x^3 + x^2 + x)$	$x^7 + x^4 + x^3 + x^2$	No
$x^4 \otimes P_2$	$x \otimes (x^7 + x^4 + x^3 + x^2)$	$x^5 + x + 1$	Yes
$x^5 \otimes P_2$	$\boldsymbol{x} \otimes (x^5 + x + 1)$	$x^6 + x^2 + x$	No

$$\mathbf{P_1} \times \mathbf{P_2} = (x^6 + x^2 + x) + (x^6 + x^3 + x^2 + x) + (x^5 + x^2 + x + 1) = x^5 + x^3 + x^2 + x + 1$$

Example:

* An efficient algorithm for multiplication using n-bit words

Powers	Shift-Left Operation	Exclusive-Or			
$x^0 \otimes P_2$		10011110			
$x^1 \otimes P_2$	00111100	$(00111100) \oplus (00011010) = \underline{00100111}$			
$x^2 \otimes P_2$	01001110	<u>01001110</u>			
$x^3 \otimes P_2$	10011100	10011100			
$x^4 \otimes P_2$	00111000	$(00111000) \oplus (00011010) = 00100011$			
$x^5 \otimes P_2$	01000110	<u>01000110</u>			
$P_1 \otimes P_2 = 0$	$P_1 \otimes P_2 = (001001111) \oplus (01001110) \oplus (01000110) = 001011111$				

❖ We will use same **Extended Euclid's Algorithm** for finding the

multiplicative inverse (MI) of a bit pattern in GF(2ⁿ)

Extended Euclid's Algorithm

```
r_1 \leftarrow a; \quad r_2 \leftarrow b;

s_1 \leftarrow 1; \quad s_2 \leftarrow 0; (Initialization)

t_1 \leftarrow 0; \quad t_2 \leftarrow 1;
```

```
while (r_2 > 0)
         q \leftarrow r_1 / r_2;
           r \leftarrow r_1 - q \times r_2;
                                                             (Updating r's)
          r_1 \leftarrow r_2; r_2 \leftarrow r;
           s \leftarrow s_1 - q \times s_2;
                                                             (Updating s's)
           s_1 \leftarrow s_2; s_2 \leftarrow s;
           t \leftarrow t_1 - q \times t_2;
                                                            (Updating t's)
           t_1 \leftarrow t_2; \ t_2 \leftarrow t;
          \gcd(a, b) \leftarrow r_1; \ s \leftarrow s_1; \ t \leftarrow t_1
```

Finding Multiplicative Inverses in GF(28)Using Extended Euclid Function

❖ In GF (28), Find the **inverse of** ($x^7 + x^4 + x^2 + 1$) modulo ($x^8 + x^4 + x^3 + x + 1$).

$$r = r_1 - q \times r_2$$

$$s = s_1 - q \times s_2$$

$$\mathbf{t} = \mathbf{t_1} - \mathbf{q} \times \mathbf{t_2}$$

 $\mathbf{r_2}$

 \mathbf{r}_1

* In GF (28), find the **inverse of** ($x^7 + x^4 + x^2 + 1$) modulo ($x^8 + x^4 + x^3 + x + 1$).

 $\mathbf{t_1}$

* In GF (28), find the **inverse of** ($\mathbf{x}^7 + \mathbf{x}^4 + \mathbf{x}^2 + \mathbf{1}$) modulo ($\mathbf{x}^8 + \mathbf{x}^4 + \mathbf{x}^4 + \mathbf{x}^3 + \mathbf{x} + \mathbf{1}$).

* In GF (28), find the **inverse of** ($\mathbf{x}^7 + \mathbf{x}^4 + \mathbf{x}^2 + \mathbf{1}$) modulo ($\mathbf{x}^8 + \mathbf{x}^4 + \mathbf{x}$

 $\mathbf{q} \qquad \mathbf{r}_1 \qquad \mathbf{r}_2 \qquad \mathbf{r} \qquad \mathbf{t}_1 \qquad \mathbf{t}_2 \qquad \mathbf{t}$

* In GF (28), find the **inverse of** ($x^7 + x^4 + x^2 + 1$) modulo ($x^8 + x^4 + x^3 + x + 1$).

* In GF (28), find the **inverse of** ($x^7 + x^4 + x^2 + 1$) modulo ($x^8 + x^4 + x^4 + x^3 + 1$).

* In GF (28), find the **inverse of** ($x^7 + x^4 + x^2 + 1$) modulo ($x^8 + x^4 + x^4 + 1$).

* In GF (28), find the **inverse of** ($x^7 + x^4 + x^2 + 1$) modulo ($x^8 + x^4 + x^4 + 1$).

 $\mathbf{q} \qquad \mathbf{r}_1 \qquad \mathbf{r}_2 \qquad \mathbf{r} \qquad \mathbf{t}_1 \qquad \mathbf{t}_2 \qquad \mathbf{t}$

 $x^8 + x^4 + x^3 + x + 1 | x^7 + x^4 + x^2 + 1$

 \clubsuit In GF (28), find the inverse of $(x^7 + x^4 + x^2 + 1)$ modulo $(x^8 + x^4 + x^4)$

$$x^3 + x + 1$$
).

$$x^8 + x^4 + x^3 + x + 1 \quad x^7 + x^4 + x^2 + 1$$

 \clubsuit In GF (28), find the **inverse of** $(x^7 + x^4 + x^2 + 1)$ modulo $(x^8 + x^4 + x^3 + x + 1)$.

q	\mathbf{r}_1	$\mathbf{r_2}$	r	$\mathbf{t_1}$	t_2	t
X	$x^8 + x^4 + x^3 + x + 1$	$x^7 + x^4 + x^2 + 1$		0	1	

 \clubsuit In GF (28), find the inverse of ($x^7 + x^4 + x^2 + 1$) modulo ($x^8 + x^4 + x^$

$$x^3 + x + 1$$
).

$$r \leftarrow r_1 - q \times r_2;$$

 $r_1 \leftarrow r_2; r_2 \leftarrow r;$

(Updating r's)

q	\mathbf{r}_1	$\mathbf{r_2}$	r	t ₁	t ₂	t
X	$x^8 + x^4 + x^3 + x + 1$	$x^7 + x^4 + x^2 + 1$	$x^5 + x^4 + 1$	0	1	

 \clubsuit In GF (28), find the inverse of ($x^7 + x^4 + x^2 + 1$) modulo ($x^8 + x^4 + x^$

$$x^3 + x + 1$$
).

$$r \leftarrow r_1 - q \times r_2;$$

 $r_1 \leftarrow r_2; r_2 \leftarrow r;$

(Updating r's)

q	\mathbf{r}_1	$\mathbf{r_2}$	r	\mathfrak{r}_1	\mathfrak{t}_2	
Х	$x^8 + x^4 + x^3 + x + 1$	$x^7 + x^4 + x^2 + 1$	$x^5 + x^4 + 1$	0	1	
	$y^7 + y^4 + y^2 + 1$	$x^5 + x^4 + 1$				

 \clubsuit In GF (28), find the inverse of ($x^7 + x^4 + x^2 + 1$) modulo ($x^8 + x^4 + x^$

$$x^3 + x + 1$$
).

$$t \leftarrow t_1 - q \times t_2;$$

 $t_1 \leftarrow t_2; t_2 \leftarrow t;$

(Updating t's)

q	$\mathbf{r_1}$	$\mathbf{r_2}$	r	t ₁	t_2	t
Х	$x^8 + x^4 + x^3 + x + 1$	$x^7 + x^4 + x^2 + 1$	$x^5 + x^4 + 1$	0	1	X
	$v^7 + v^4 + v^2 + 1$	$v^5 + v^4 + 1$				

 \clubsuit In GF (28), find the inverse of ($x^7 + x^4 + x^2 + 1$) modulo ($x^8 + x^4 + x^$

$$x^{3} + x + 1).$$

$$t \leftarrow t_{1} - q \times t_{2};$$

$$t_{1} \leftarrow t_{2}; t_{2} \leftarrow t;$$
(Updating t's)
$$x \quad x^{8} + x^{4} + x^{3} + x + 1 \quad x^{7} + x^{4} + x^{2} + 1 \quad x^{5} + x^{4} + 1$$

$$x \quad x^{7} + x^{4} + x^{2} + 1 \quad x^{5} + x^{4} + 1$$

$$x \quad x^{7} + x^{4} + x^{2} + 1 \quad x^{5} + x^{4} + 1$$

$$x \quad x^{7} + x^{4} + x^{2} + 1 \quad x^{5} + x^{4} + 1$$

Repeat the Process to Find the Multiplicative Inverse

 \clubsuit In GF (28), find the inverse of ($x^7 + x^4 + x^2 + 1$) modulo ($x^8 + x^4 + x^$

$$x^3 + x + 1$$
).

q	$\mathbf{r_1}$	$\mathbf{r_2}$	r	$\mathbf{t_1}$	t_2	t
X	$x^8 + x^4 + x^3 + x + 1$			0	1	X
$x^2 + x + 1$	$x^7 + x^4 + x^2 + 1$	$x^5 + x^4 + 1$	X	1	X	$x^3 + x^2 + x + 1$
$x^4 + x^3$	$x^5 + x^4 + 1$	X	1	X	$x^3 + x^2 + x + 1$	$x^7 + x^3 + x$
X	X	1	0	$x^3 + x^2 + x + 1$	$x^7 + x^3 + x$	$x^8 + x^4 + x^3 + x + 1$
	1	0		$x^7 + x^3 + x$		

The answer is $(x^7 + x^3 + x)$

 \clubsuit In GF (2⁴), find the **inverse of (x² + 1)** modulo (x⁴ + x + 1).

$$r = r_1 - q \times r_2$$
; $s = s_1 - q \times s_2$; $t = t_1 - q \times t_2$

	q	r_{I}	r_2	r	t_I	t_2	t
(x	(2 + 1)	$(x^4 + x + 1)$	$(x^2 + 1)$	(x)	(0)	(1)	$(x^2 + 1)$
	(x)	$(x^2 + 1)$	(x)	(1)	(1)	$(x^2 + 1)$	$(x^3 + x + 1)$
	(x)	(x)	(1)	(0)	$(x^2 + 1)$	$(x^3 + x + 1)$	(0)
		(1)	(0)		$(x^3 + x + 1)$	(0)	

The answer is $(x^3 + x + 1)$

 \clubsuit In GF(28), find the inverse of (x5) modulo (x8 + x4 + x3 + x + 1).

q	r_I	r_2	r	t_I	t_2	t
(x^3)	$(x^8 + x^4 + x^3 + x^3)$	$(x+1)$ (x^5)	$(x^4 + x^3 + x + 1)$	(0)	(1)	(x^3)
(x + 1)	(x^5) (x^4)	$+x^3+x+1)$	$(x^3 + x^2 + 1)$	(1)	(x^3)	$(x^4 + x^3 + 1)$
(x)	$(x^4 + x^3 + x + 1)$	$(x^3 + x^2 + 1)$	(1)	(x^3)	$(x^4 + x^3 + 1)$	$(x^5 + x^4 + x^3 + x)$
$(x^3 + x^2 + 1)$	$(x^3 + x^2 + 1)$	(1)	(0)	$(x^4 + x^3 + 1)$	$(x^5 + x^4 + x^3 + x)$	(0)
	(1)	(0)		$(x^5 + x^4 + x^3)$	+ x) (0)	

The answer is $(x^5 + x^4 + x^3 + x)$

Using A Generator: To Represent The Elements in GF(2ⁿ)

Using A Generator: To Represent The Elements Of GF(2ⁿ)

- ❖ It is particularly convenient to represent the elements of a Galois Field GF(2ⁿ) with the help of a generator element.
- ❖ If **g** is a generator element, then every element of GF(2ⁿ), except for the 0 element, can be expressed as some power of g.

$$\{0, g, g, g^2, ..., g^N\}$$
, where $N = 2^n - 2$

Example:

Cenerate the **elements of the field** $GF(2^3)$ using the irreducible polynomial $f(x) = x^3 + x + 1$.

Solution

- ❖ The elements 0, g⁰, g¹, and g² can be easily generated
 - ✓ because they are the 3-bit representations of 0, 1, x, and x^2
- \Leftrightarrow Elements g^3 through g^6 ($2^3-2=8-2=6$), which represent x^3 though x^6 need to be divided by the irreducible polynomial.

Observation

* To avoid the **polynomial division**, we use

✓ The relation
$$f(g) = g^3 + g + 1 = 0$$

 $g^3 = -g - 1$

❖ We now show that 'g' generates all of the polynomials of degree

= g + 1

less than 3.

Generator for $GF(2^3)$ using $x^3 + x + 1$

Power Representation	Polynomial Representation	Binary Representation	Decimal (Hex) Representation
0	0	000	0
g^0	1	001	1
g^1	g	010	2
g^2	g^2	100	4
g^3	g + 1	011	3
g^4	$g^2 + g$	110	6
g ⁵	$g^2 + g + 1$	111	7
g^6	$g^2 + 1$	101	5
$g^0(=g^7)$	1	001	1

Operations on Generator in $GF(2^3)$:

- ❖ This Power Representation makes multiplication easy.
- ❖ To multiply in the power notation, add exponents modulo 7.

$$g^k = g^{k \mod 7}$$
 for any integer k

***** For Example:

$$g^4 \chi g^6 = g^{(10 \text{ mod } 7)} = g^3 = g + 1$$

❖ The same result is achieved using polynomial arithmetic

Polynomial Arithmetic in GF(2³): Previous Example

***** For Example:

$$g^4 X g^6 = g^{(10 \text{ mod } 7)} = g^3 = g + 1$$

❖ The same result is achieved using polynomial arithmetic, We have

$$g^4 = g^2 + g$$
 and $g^6 = g^2 + 1$.

$$(g^2 + g) \times (g^2 + 1) = g^4 + g^3 + g^2 + 1.$$

Next, we need to determine $(g^4 + g^3 + g^2 + 1) \mod(g^3 + g + 1)$ by division:

Polynomial Arithmetic in GF(2³): Previous Example

Next, we need to determine $(g^4 + g^3 + g^2 + 1) \mod(g^3 + g + 1)$ by division:

$$g^{3} + g + 1 / g^{4} + g^{3} + g^{2} + g$$

$$g^{4} + g^{2} + g$$

$$g^{3}$$

$$g^{3} + g + 1$$

$$g + 1$$

Both **Provides** Same Results

$$g^4 \times g^6 = g^{(10 \text{ mod } 7)} = g^3 = g + 1$$

Addition tables for $GF(2^3)$ using the Power Representation.

 $GF(2^3)$ Arithmetic Using Generator for the Polynomial $(x^3 + x + 1)$

		000	001	010	100	011	110	111	101
	+	0	1	G	g^2	g^3	g^4	g^5	g ⁶
000	0	0	1	G	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$
001	1	1	0	g + 1	$g^2 + 1$	g	$g^2 + g + 1$	$g^2 + g$	g^2
010	g	g	g + 1	0	$g^2 + g$	1	g ²	$g^2 + 1$	g^2+g+1
100	g^2	g^2	$g^2 + 1$	$g^2 + g$	0	g^2+g+1	g	g + 1	1
011	g^3	g + 1	g	1	$g^2 + g + 1$	0	$g^2 + 1$	g^2	$g^2 + g$
110	g^4	$g^2 + g$	g^2+g+1	g^2	g	$g^2 + 1$	0	1	g + 1
111	g^5	$g^2 + g + 1$	$g^2 + g$	$g^2 + 1$	g + 1	g^2	1	0	g
101	g^6	$g^2 + 1$	g^2	$g^2 + g + 1$	1	$g^2 + g$	g + 1	g	0

Multiplication tables for GF(2³) using the Power Representation.

		000	001	010	100	011	110	111	101
	×	0	1	G	g^2	g^3	g^4	g^5	g^6
000	0	0	0	0	0	0	0	0	0
001	1	0	1	G	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$
010	g	0	g	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1
100	g^2	0	g ²	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1	g
011	g^3	0	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1	g	g ²
110	g^4	0	$g^2 + g$	g^2+g+1	$g^2 + 1$	1	g	g ²	g + 1
111	g^5	0	$g^2 + g + 1$	$g^2 + 1$	1	g	g ²	g + 1	$g^2 + g$
101	g^6	0	$g^2 + 1$	1	g	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$

In general, for $GF(2^n)$ with irreducible polynomial f(x), determine $g^n = f(g) - g^n$. Then calculate all of the powers of g from g^{n+1} through g^{2^n-2} . The elements of the field correspond to the powers of g from g^0 through g^{2^n-2} plus the value 0. For multiplication of two elements in the field, use the equality $g^k = g^{k \mod(2^n-1)}$ for any integer k.

Outline

- **❖ Modular Polynomial Arithmetic Over GF(2ⁿ)**
- **❖** Arithmetic Polynomials Over GF(2ⁿ)
 - \checkmark Example: Arithmetic Polynomials Over GF(28)
- ❖ Finding Multiplicative Inverses in GF(2ⁿ)
- **❖** Using A Generator: To Represent The Elements in GF(2ⁿ)

Thank U