

Setting:
$$D_{u} = \left\{ \left(x_{i}, y_{i} \right) \right\}_{i=1}^{n}$$

$$D_{u} = \left\{ \left(x_{i} \right) \right\}_{i=1}^{n}$$

Datuset Assumption: Category / class Set:

Notations:

classification head weight matrix.	
W: RD > RC, U CVI -) a softmax.	
final prediction: C: = organax (w.z.) one of the Guc	^
for unknown no of classes we	
initrace the head with Large	
Number of dasser. OVER CLUSTE soution	F
optimization Objective:	
parrurise objective	
L= Ls + 2, Lp + 2, 2	
superivire de Regulovière.	

@ Supervised Objective with Uncertainty Adaptive

-utilization of categornical annotated labels.

Let
$$x = \frac{1}{n} = \sum_{i=1}^{n} \sum_{j \in \mathbb{Z}_{i}} \frac{1}{n! \in \mathbb{Z}_{i}} = \sum_{j \in \mathbb{Z}_{i}}$$

- result in learning a dossifier with larger margin.
- Result model blas towards the known classes [smaller intra-class variance for the known compared to novel classes]

Introduce uncortaints Adaptive margin

[propose a normalization]]

$$\mathcal{L}_{S} = \frac{1}{n} \underbrace{\mathcal{E}_{S} - \log \left(\frac{S(w_{y}, z_{i} + \lambda \overline{u})}{2i} + \underbrace{\mathcal{E}_{S}(w_{y}, z_{i} + \lambda \overline{u})}_{+ \underbrace{\mathcal{E}_{S}(w_{y}, z_{i} + \lambda \overline{u})}_$$

acorte s

$$= \frac{1}{|D_{N}|} \sum_{n \in D_{N}} P_{n} (y = 0) \times P_{n}$$

Geroup uncertainty.

Son products

works with positive only 11

(un) Regularizer term

$$\mathcal{Z} = kL \left(\frac{1}{m+n} \sum_{z_i \in \mathcal{Z}_r \cup z_u} \mathcal{D}(w_i, z_i) || \mathcal{P}(y_i) \right)$$