

Análisis Avanzado - Integral de Lebesgue 3

Segundo cuatrimestre de 2021

Daniel Carando - Victoria Paternostro

Dto. de Matemática - FCEN - UBA

Integral de Lebesgue de funciones no negativas. Sea $f: E \to \mathbb{R}$ una función medible tal que $f \ge 0$ en E. $f: E \to [0, +\infty)$ Definimos la integral de Lebesgue de f como $\int_{E} f \, d\mu := \sup \{ \int_{F} \varphi \, d\mu : \varphi \text{ es simple } 0 \leq \varphi \leq f \}.$ 9- an=0) MlEn =+ 20 considerans " 0. + ss = 0" to 20 lo que vimos la vez nasado vale n' f: E -> [0, +>] (n' f vale + a ly alyum D. Carando - V. Paternostro

Integral de Lebesgue de funciones no negativas.

Sea $f: E \to [0, +\infty]$ una función medible. Definimos la integral de Lebesgue de f como

$$\int_{\mathsf{E}} f \, \mathrm{d} \mu := \sup \{ \int_{\mathsf{E}} \varphi \, \mathrm{d} \mu : \underbrace{\varphi \text{ es simple }}_{} \mathsf{O} \leq \varphi \leq f \}.$$

Integral de Lebesgue de funciones no negativas.

Sea $f: E \to [0, +\infty]$ una función medible. Definimos la integral de Lebesgue de f como

$$\int_{\mathbf{E}}\!f\,\mathrm{d}\mu:=\sup\{\int_{\mathbf{E}}\!\varphi\,\mathrm{d}\mu:\varphi\text{ es simple }\mathsf{O}\leq\varphi\leq f\}.$$

Definición

Sea $f \ge$ o medible. Decimos que f es integrable en E si

$$\int_{F} f \, d\mu < +\infty$$

Integral de Lebesgue de funciones no negativas.

Sea $f: E \to [0, +\infty]$ una función medible. Definimos la integral de Lebesgue de f como

$$\int_{\mathsf{E}} f \, \mathrm{d} \mu := \sup \{ \int_{\mathsf{E}} \varphi \, \mathrm{d} \mu : \varphi \text{ es simple } \mathrm{O} \leq \varphi \leq f \}.$$

Definición

Sea $f \ge$ o medible. Decimos que f es integrable en E si

$$\int_{E} f \, d\mu < +\infty.$$

Por lo que vimos en la clase pasada, si f es integrable entonces $f(x) < +\infty$ para casi todo $x \in \overline{E}$.

$$f^+ = \max\{f, O\}$$

$$f^+ = \max\{f, O\} = egin{cases} f(x), & \operatorname{si} f(x) \geq O \ O, & \operatorname{si} f(x) < O. \end{cases}$$

$$f^- = -\min\{f, O\} = \max\{-f, O\}$$

$$f^+ = \max\{f, o\} = \begin{cases} f(x), & \operatorname{si} f(x) \ge o \\ o, & \operatorname{si} f(x) < o. \end{cases}$$

$$f^- = -\min\{f, O\} = \max\{-f, O\} = \begin{cases} O, & \Rightarrow \operatorname{si} f(x) \ge O \\ -f(x), & \operatorname{si} f(x) < O. \end{cases}$$

$$f^+ = \max\{f, O\} =$$

$$\begin{cases} f(x), & \text{si } f(x) \geq O \\ O, & \text{si } f(x) < O. \end{cases}$$

$$\max\{f,0\} = \left\{0, \quad \operatorname{si} f(x) < 0\right\}$$

$$f^- = -\min\{f, O\} = \max\{-f, O\} = egin{cases} O, & \operatorname{si} f(x) \geq O \ -f(x), & \operatorname{si} f(x) < O. \end{cases}$$

$$f^+ = \max\{f, o\} = egin{cases} f(x), & \operatorname{si} f(x) \geq o \ o, & \operatorname{si} f(x) < o. \end{cases}$$

$$f^- = -\min\{f, O\} = \max\{-f, O\} = egin{cases} O, & \operatorname{si} f(x) \geq O \ -f(x), & \operatorname{si} f(x) < O. \end{cases}$$

$$f^+ = \max\{f, O\} = egin{cases} f(x), & \operatorname{si} f(x) \geq O \ O, & \operatorname{si} f(x) < O. \end{cases}$$

$$f^- = -\min\{f, O\} = \max\{-f, O\} = egin{cases} \mathtt{O}, & \mathsf{si}\,f(x) \geq \mathtt{O} \ -f(x), & \mathsf{si}\,f(x) < \mathtt{O}. \end{cases}$$

$$f^+$$
 y f^- son medibles $f^+ \ge 0, \ f^- \ge 0$ $f = f^+ - f^-$

$$f^+ = \max\{f, O\} = egin{cases} f(x), & \operatorname{si} f(x) \geq O \ O, & \operatorname{si} f(x) < O. \end{cases}$$

$$f^- = -\min\{f, O\} = \max\{-f, O\} = egin{cases} O, & \operatorname{si} f(x) \geq O \ -f(x), & \operatorname{si} f(x) < O. \end{cases}$$

$$f^+$$
 v f^- son medibles

$$f^+ \ge 0, f^- \ge 0$$

$$f = f^+ - f^- \qquad |f| = f^+ + f^-$$

Definición Sea f medible. Decimos que $\int_E f \, d\mu$ existe si $\int_E f^+ \, d\mu < +\infty \qquad \acute{\text{O}} \qquad \int_E f^- \, d\mu < +\infty.$

Definición

Sea f medible. Decimos que $\int_{F} f d\mu$ existe si

$$\int_{\mathcal{E}} f^+ \, d\mu < +\infty$$
 ó $\int_{\mathcal{E}} f^- \, d\mu < +\infty.$

En ese caso, definimos

$$\int_{E} f \, d\mu = \int_{E} f^{+} \, d\mu - \int_{E} f^{-} \, d\mu. \qquad \left(f = f^{+} - f^{-} \right)$$

Definición

Sea f medible. Decimos que $\int_{F} f d\mu$ existe si

$$\int_E f^+ \, \mathrm{d} \mu < +\infty \qquad \text{\'o} \qquad \int_E f^- \, \mathrm{d} \mu < +\infty.$$

En ese caso, definimos

$$\int\int_E f \, \mathrm{d}\mu = \int_E f^+ \, \mathrm{d}\mu - \int_E f^- \, \mathrm{d}\mu.$$

Decimos que f es integrable en E si $\int_{E} f d\mu$ existe y es un número finito.

Propiedades: Sean f, g medibles.

Sean f, g medibles.

1. Si $\int_{\mathbb{E}} f \, d\mu$ existe, entonces $\left| \int_{\mathbb{E}} f \, d\mu \right| \leq \int_{\mathbb{E}} |f| \, d\mu$.

$$\frac{1}{2} \int_{0}^{\pi} dx dx dx = \frac{1}{2} \int_{0}^{\pi} dx dx dx = \frac{1}{2} \int_{0}^{\pi} dx dx dx = \frac{1}{2} \int_{0}^{\pi} dx dx dx dx = \frac{1}{2} \int_{0}^{\pi} dx dx$$

NO NEGATIVAS

LINGALIDAD

- Sean f, a medibles. 1. Si $\int_{\mathcal{E}} f \, d\mu$ existe, entonces $|\int_{\mathcal{E}} f \, d\mu| \leq \int_{\mathcal{E}} |f| \, d\mu$.
 - 2. f es integrable si y sólo si |f| lo es.

- SIFI - S(F+F) - SF+ SF- Z+2.

Sean f. g medibles.

- 1. Si $\int_{\mathcal{E}} f \, d\mu$ existe, entonces $\left| \int_{\mathcal{E}} f \, d\mu \right| \leq \int_{\mathcal{E}} |f| \, d\mu$.
- 2. f es integrable si y sólo si |f| lo es.
- 3. Si f es integrable entonces f es finita en ctp de E.

Sean f, q medibles.

- 1. Si $\int_{\mathcal{E}} f \, d\mu$ existe, entonces $\left| \int_{\mathcal{E}} f \, d\mu \right| \leq \int_{\mathcal{E}} |f| \, d\mu$.
- 2. f es integrable si y sólo si |f| lo es.
- 3. Si f es integrable entonces f es finita en ctp de E.
- 4. Si $f \leq g$ en ctp de E y sus integrales en E existen, entonces $\int_E f \, d\mu \leq \int_E g \, d\mu$.

Sean f, g medibles.

- 1. Si $\int_{F} f d\mu$ existe, entonces $\left| \int_{F} f d\mu \right| \leq \int_{F} |f| d\mu$.
- 2. f es integrable si y sólo si |f| lo es.
- 3. Si f es integrable entonces f es finita en ctp de E.
- 4. Si $f \leq g$ en ctp de E y sus integrales en E existen, entonces $\int_E f \ d\mu \leq \int_E g \ d\mu$.
- 5. Si $\int_E f \, d\mu$ existe y $c \in \mathbb{R}$, entonces $\int_E cf \, d\mu = c \int_E f \, d\mu$.

o
$$r$$
 CZO man $(cf)^+ = c \cdot (f^+) \leq$

$$(cf)^- = c \cdot (f^-) \leq$$
g pulm la pup.

Sean f, g medibles.

- 1. Si $\int_{E} f d\mu$ existe, entonces $\left| \int_{E} f d\mu \right| \leq \int_{E} |f| d\mu$.
- 2. f es integrable si y sólo si |f| lo es.
- 3. Si f es integrable entonces f es finita en ctp de E.
- 4. Si $f \leq g$ en ctp de E y sus integrales en E existen, entonces $\int_E f \, d\mu \leq \int_E g \, d\mu$.
- 5. Si $\int_E f \, d\mu$ existe y $c \in \mathbb{R}$, entonces $\int_E cf \, d\mu = c \int_E f \, d\mu$.
- 6. Si f y g son integrables entonces f + g lo es y

$$\int_{\mathsf{E}} f + g \, \mathsf{d} \mu = \int_{\mathsf{E}} f \, \mathsf{d} \mu + \int_{\mathsf{E}} g \, \mathsf{d} \mu.$$

LINEALIDAD

NO LO HACEMON (GERARAR EN DONDE FA FIG & (C/N) NEG O POSIT

Teorema de la convergencia Monótona

Sea $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones medibles en E.

1. Si existe φ integrable en E tal que $\varphi \leq f_n \leq f_{n+1}$ para todo $n \in \mathbb{N}$, entonces

$$\lim_{n\to\infty}\int_{E}f_{n}\,d\mu=\int_{E}\lim_{n\to\infty}f_{n}\,d\mu.$$

Teorema de la convergencia Monótona

Sea $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones medibles en E.

1. Si existe φ integrable en E tal que $\varphi \leq f_n \leq f_{n+1}$ para todo $n \in \mathbb{N}$, entonces

$$\lim_{n\to\infty}\int_{E}f_{n}\,d\mu=\int_{E}\lim_{n\to\infty}\int_{n}d\mu.$$

2. Si existe φ integrable en E tal que $f_{n+1} \geq f_n \geq \varphi$ para todo $n \in \mathbb{N}$, entonces

$$\lim_{n\to\infty}\int_{E}f_n\,d\mu=\int_{E}\underbrace{\lim_{n\to\infty}f_n}d\mu.$$

$$|DEA| = fn - f$$

$$|DEA| = fn - fn$$

$$|DEA| = fn$$

$$|$$

Teorema de la convergencia Monótona con hipótesis ctp

Sea $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones medibles en E.

D. Carando - V. Paternostro

1. Si existe φ integrable en E tal que $\varphi \leq f_n$ ctp para todo $n \in \mathbb{N}$ y $|f_n \leq f_{n+1}$ ctp para todo $n \in \mathbb{N}$, entonces

$$\lim_{n\to\infty}\int_{E}f_n\,d\mu=\int_{E}\lim_{n\to\infty}f_n\,d\mu.$$

And
$$A_{n} = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\}$$

$$M(A_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M(C) = 0$$

$$M = \{2CE \mid f_{m}(x) \mid \mathcal{L}(x)\} \}$$

$$M(B_{m}) = 0$$

$$M(C) =$$

Lema de Fatou

Sea $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones medibles definidas en *E*. Si existe ϕ integrable en *E* tal que $f_n \geq \phi$ para todo $n \in \mathbb{N}$, entonces

$$\int_{E} \liminf_{n \to +\infty} f_n \, d\mu \le \liminf_{n \to +\infty} \int_{E} f_n \, d\mu.$$

Teorema de Convergencia Dominada (MAYORA DA)

Sea $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones medibles definidas en E tal que existe $f=\lim_{n\to+\infty}f_n$. Si existe ϕ integrable tal que $|f_n|\leq\phi$ en E para todo $n\in\mathbb{N}$, entonces

$$\lim_{n\to+\infty}\int_{E}f_{n}\,\mathrm{d}\mu=\int_{E}f\,\mathrm{d}\mu.$$

Análisis Avanzado D. Carando - V. Paternostro

-bm-fcen-uba

Teorema (continuidad absoluta de la integral)

Sea f integrable en E. Entonces, dado $\varepsilon >$ 0, existe $\delta >$ 0 tal que

si
$$A \subseteq E$$
 es medible con $\mu(A) < \delta \implies \left| \int_A f \, d\mu \right| < \varepsilon$.

Teorema (Riemann implica Lebesgue)

Sea I un intervalo cerrado y acotado y $f: I \to \mathbb{R}$ una función acotada.

Si f es integrable Riemann, entonces es integrable Lebesgue y ambas integrales coinciden.

$$I = [a,b]$$

$$Si f TIENE PRIMITIVA F en [a,b].$$

$$S f qn = F(b) - F(a)$$

$$S \chi^{2} dn = S \chi^{2} dx = \frac{\chi^{3}}{3} / \frac{1}{5} = 1/3.$$

$$[a,b]$$

$$F(b) - F(a)$$

$$F(b) - F(b)$$

$$F(b)$$