ST2132 Mathematical Statistics Assignment 5

Due date: 5 April 2024 23:59 on Canvas Please submit in pdf format.

Please work on the assignment by yourself only. We follow a strict rule on academic honesty.

1. We would like to investigate whether there is a relationship between weather conditions and the incidence of violent crime. We classified 1361 homocides according to the season, resulting in the following data:

Winter	Spring	Summer	Fall
340	395	358	268

Test the null hypothesis of equal proportions using a significance level of $\alpha = 0.01$.

2. We would like to investigate the incidence of concussions among athletes. Samples of soccer players, non-soccer athletes, and non-athletes are collected.

	# of Concussions				
	0	1	2	≥ 3	
Soccer	45	25	11	10	
N-S Athletes	68	15	8	5	
Non-athletes	45	5	3	0	

To see whether these three types of individuals have the same distribution, conduct a chi-square test of homogeneity at $\alpha = 5\%$. State (i) the degree of freedom, (ii) the expected frequency count of each cell and (iii) the conclusion of the test.

3. (Does Microsoft stock price really follow a lognormal distribution?) In finance literature, one popular model for stock price is the lognormal distribution. Suppose that we have the daily stock price of a stock, say S_1, S_2, \ldots, S_n . We can then compute the so-called log-return of the stock price $R_1, R_2, \ldots, R_{n-1}$, where

$$R_i = \ln\left(\frac{S_{i+1}}{S_i}\right), \quad i = 1, \dots, n-1.$$

On Canvas, there is a dataset "MSFT.csv" that contains the daily stock price of Microsoft from March 14 1986 to March 12 2024, with n=9575. Use your favourite computing language to answer this question, and attach your code at the end of your assignment.

(a) Now, we conduct the chi-square goodness-of-fit test, with the following H_0 :

$$H_0: R_i \stackrel{i.i.d.}{\sim} N(0, 0.02^2).$$

Fill in the following table:

Categories	Observed	Expected
< -0.001		
[-0.001, -0.0004)		
[-0.0004, 0)		
[0, 0.0004)		
[0.0004, 0.001)		
≥ 0.001		

Do we reject the null hypothesis at $\alpha = 5\%$? What is the degree of freedom that you use?

(b) Conduct the chi-square goodness-of-fit test, with the following H_0 :

 $H_0: R_i$ is normally distributed.

Estimate the two parameters by their maximum likelihood estimates and fill in the following table:

Categories	Observed	Expected
< -0.001		
[-0.001, -0.0004)		
[-0.0004, 0)		
[0, 0.0004)		
[0.0004, 0.001)		
≥ 0.001		

Do we reject the null hypothesis at $\alpha = 5\%$? What is the degree of freedom that you use?