9.3 Area of Circles

How do you find the area of a circle?

EXPLORE ACTIVITY 1

Exploring Area of Circles

You can use what you know about circles and π to help find the formula for the area of a circle.

STEP 1

Use a compass to draw a circle and cut it out.

STEP 2

Fold the circle three times as shown to get equal wedges.

STEP 3

Unfold and shade one-half of the circle.

STEP 4

Cut out the wedges, and fit the pieces together to form a figure that looks like a parallelogram.

The base and height of the parallelogram relate to the parts of the circle.

base
$$b = \frac{1}{1000}$$
 the circumference of the circle, or _____

height h = the of the circle, or

To find the area of a parallelogram, the equation is A =___

To find the area of the circle, substitute for b and h in the area formula.

 $A = \pi r$

$$A = \bigcap h$$

Substitute πr for b.

Substitute r for h.

1. How can you make the wedges look more like a parallelogram?

$$r \cdot r = r^2$$

Finding the Area of a Circle

Area of a Circle

The area of a circle is equal to $\boldsymbol{\pi}$ times the radius squared.

Remember that area is given in square units.

EXAMPLE 1

A biscuit recipe calls for the dough to be rolled out and circles to be cut from the dough. The biscuit cutter has a radius of 4 cm. Find the area of the biscuit once it is cut. Use 3.14 for π .

If the radius increases by 1 centimeter, how does the area of the top of the biscuit change? $A = \pi r^2$ Use the formula.

 $A = \pi(4)^2$ Substitute. Use 4 for r.

 $A \approx 3.14 \times 4^2$ Substitute. Use 3.14 for π .

 $A \approx 3.14 \times 16$ Evaluate the power.

 $A \approx 50.24$ Multiply.

The area of the biscuit is about 50.24 cm².

Reflect

2. Compare finding the area of a circle when given the radius with finding the area when given the diameter.

3. Why do you evaluate the power in the equation before multiplying?

Personal Math Trainer Online Assessment and Intervention my.hrw.com

YOUR TURN

4. A circular pool has a radius of 10 feet. What is the area of the pool? Use 3.14 for π .

© Houghton Mifflin Harcourt Publishing Company • Image Credits: Zigzag Mountain

Art/Shutterstock

Finding the Relationship between **Circumference and Area**

You can use what you know about circumference and area of circles to find a relationship between them.

Find the relationship between the circumference and area of a circle.

Start with a circle that has radius *r*.

$$r = \frac{\Box}{\Box}$$

Solve the equation $C = 2\pi r$ for r.

Remember: Because the exponent is outside the parentheses, you must apply it to the numerator and to each factor of the denominator.

Substitute your expression for *r* in the formula for area of a circle.

Square the term in the parentheses.

$$A = \pi \left(\frac{1}{2} \right)^{2}$$

Evaluate the power.

$$A = \frac{\left(\begin{array}{c} \cdot \\ \end{array}\right)}{\left(\begin{array}{c} \cdot \\ \end{array}\right)}$$

Simplify.

$$A = \frac{1}{1 \cdot 1}$$

Solve for C^2 .

$$C^2 = 4$$

The circumference of the circle squared is equal to

EXPLORE ACTIVITY 2 (cont'd)

Reflect

5. Does this formula work for a circle with a radius of 3 inches? Show your work.

Guided Practice

Find the area of each circle. Round to the nearest tenth if necessary. Use 3.14 for π .

(Explore Activity 1)

1.

2.

3.

Solve. Use 3.14 for π . (Example 1)

4. A clock face has a radius of 8 inches. What is the area of the clock face? Round your answer to the nearest hundredth.

5. A DVD has a diameter of 12 centimeters. What is the area of the DVD? Round your answer to the nearest hundredth.

6. A company makes steel lids that have a diameter of 13 inches. What is the area of each lid? Round your answer to the nearest hundredth.

Find the area of each circle. Give your answers in terms of π .

(Explore Activity 2)

7.
$$C = 4\pi$$

8.
$$C = 12\pi$$

9.
$$C = \frac{\pi}{2}$$

$$A =$$

$$A =$$

10. A circular pen has an area of 64π square yards. What is the circumference of the pen? Give your answer in terms of π . (Explore Activity 2)

ESSENTIAL QUESTION CHECK-IN

11. What is the formula for the area *A* of a circle in terms of the radius *r*?

9.3 Independent Practice

- 12. The most popular pizza at Pavone's Pizza is the 10-inch personal pizza with one topping. What is the area of a pizza with a diameter of 10 inches? Round your answer to the nearest hundredth.
- **13.** A hubcap has a radius of 16 centimeters. What is the area of the hubcap? Round your answer to the nearest hundredth.

- **14.** A stained glass window is shaped like a semicircle. The bottom edge of the window is 36 inches long. What is the area of the stained glass window? Round your answer to the nearest hundredth.
- **15.** Analyze Relationships The point (3, 0) lies on a circle with the center at the origin. What is the area of the circle to the nearest hundredth?
- 16. Multistep A radio station broadcasts a signal over an area with a radius of 50 miles. The station can relay the signal and broadcast over an area with a radius of 75 miles. How much greater is the area of the broadcast region when the signal is relayed? Round your answer to the nearest square mile.

- 17. Multistep The sides of a square field are 12 meters. A sprinkler in the center of the field sprays a circular area with a diameter that corresponds to a side of the field. How much of the field is **not** reached by the sprinkler? Round your answer to the nearest hundredth.
- 18. Justify Reasoning A small silver dollar pancake served at a restaurant has a circumference of 2π inches. A regular pancake has a circumference of 4π inches. Is the area of the regular pancake twice the area of the silver dollar pancake? Explain.

19.	Analyze Relationships A bakery offers
	a small circular cake with a diameter of
	8 inches. It also offers a large circular cake
	with a diameter of 24 inches. Does the top
	of the large cake have three times the area
	of that of the small cake? If not, how much
	greater is its area? Explain.

- **20.** Communicate Mathematical Ideas You can use the formula $A = \frac{C^2}{4\pi}$ to find the area of a circle given the circumference. Describe another way to find the area of a circle when given the circumference.
- **21. Draw Conclusions** Mark wants to order a pizza. Which is the better deal? Explain.

Donnie's Pizza Palace						
Diameter (in.)	12	18				
Cost (\$)	10	20				

- **22. Multistep** A bear was seen near a campground. Searchers were dispatched to the region to find the bear.
 - **a.** Assume the bear can walk in any direction at a rate of 2 miles per hour. Suppose the bear was last seen 4 hours ago. How large an area must the searchers cover? Use 3.14 for π . Round your answer to the

nearest square mile.

b. What If? How much additional area would the searchers have to cover if the bear were last seen 5 hours ago? _____

FOCUS ON HIGHER ORDER THINKING

- **23. Analyze Relationships** Two circles have the same radius. Is the combined area of the two circles the same as the area of a circle with twice the radius? Explain.
- **24.** Look for a Pattern How does the area of a circle change if the radius is multiplied by a factor of *n*, where *n* is a whole number?
- **25.** Represent Real World Problems The bull's-eye on a target has a diameter of 3 inches. The whole target has a diameter of 15 inches. What part of the whole target is the bull's-eye? Explain.

Work Area