WikipediA

Parity-check matrix

In <u>coding theory</u>, a **parity-check matrix** of a <u>linear block code</u> *C* is a matrix which describes the linear relations that the components of a <u>codeword</u> must satisfy. It can be used to decide whether a particular vector is a codeword and is also used in decoding algorithms.

Contents

Definition

Creating a parity check matrix

Syndromes

See also

Notes

References

Definition

Formally, a parity check matrix, H of a linear code C is a <u>generator matrix</u> of the <u>dual code</u>, C^{\perp} . This means that a codeword \mathbf{c} is in C if and only if the matrix-vector product $H\mathbf{c}^{\top} = \mathbf{o}$ (some authors^[1] would write this in an equivalent form, $\mathbf{c}H^{\top} = \mathbf{o}$.)

The rows of a parity check matrix are the coefficients of the parity check equations.^[2] That is, they show how linear combinations of certain digits (components) of each codeword equal zero. For example, the parity check matrix

$$H = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix},$$

compactly represents the parity check equations,

$$c_3 + c_4 = 0$$

 $c_1 + c_2 = 0$

that must be satisfied for the vector (c_1, c_2, c_3, c_4) to be a codeword of C.

From the definition of the parity-check matrix it directly follows the minimum distance of the code is the minimum number d such that every d-1 columns of a parity-check matrix H are linearly independent while there exist d columns of H that are linearly dependent.

Creating a parity check matrix

The parity check matrix for a given code can be derived from its <u>generator matrix</u> (and vice versa). [3] If the generator matrix for an [n,k]-code is in standard form

$$G = [I_k|P],$$

then the parity check matrix is given by

$$H = [-P^{\top}|I_{n-k}],$$

because

$$GH^{\top} = P - P = 0.$$

Negation is performed in the finite field \mathbf{F}_q . Note that if the <u>characteristic</u> of the underlying field is 2 (i.e., 1 + 1 = 0 in that field), as in binary codes, then -P = P, so the negation is unnecessary.

For example, if a binary code has the generator matrix

$$G = \left[egin{array}{ccc|c} 1 & 0 & 1 & 0 & 1 \ 0 & 1 & 1 & 1 & 0 \end{array}
ight],$$

then its parity check matrix is

$$H = \left[egin{array}{ccc|c} 1 & 1 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 & 1 \end{array}
ight].$$

It can be verified that G is a $k \times n$ matrix, while H is a $(n - k) \times n$ matrix.

Syndromes

For any (row) vector \mathbf{x} of the ambient vector space, $\mathbf{s} = H\mathbf{x}^{\top}$ is called the <u>syndrome</u> of \mathbf{x} . The vector \mathbf{x} is a codeword if and only if $\mathbf{s} = \mathbf{o}$. The calculation of syndromes is the basis for the syndrome decoding algorithm. ^[4]

See also

Hamming code

Notes

- 1. for instance, Roman 1992, p. 200
- 2. Roman 1992, p. 201
- 3. Pless 1998, p. 9
- 4. Pless 1998, p. 20

References

- Hill, Raymond (1986). A first course in coding theory. Oxford Applied Mathematics and Computing Science Series.
 Oxford University Press. p. 69. ISBN 0-19-853803-0.
- Pless, Vera (1998), Introduction to the Theory of Error-Correcting Codes (3rd ed.), Wiley Interscience, ISBN 0-471-19047-0

- Roman, Steven (1992), Coding and Information Theory, GTM, 134, Springer-Verlag, ISBN 0-387-97812-7
- J.H. van Lint (1992). Introduction to Coding Theory. GTM. 86 (2nd ed.). Springer-Verlag. p. 34. ISBN 3-540-54894-7.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Parity-check_matrix&oldid=871315283"

This page was last edited on 2018-11-30, at 14:39:58.

Text is available under the <u>Creative Commons Attribution-ShareAlike License</u>; additional terms may apply. By using this site, you agree to the <u>Terms of Use</u> and <u>Privacy Policy</u>. Wikipedia® is a registered trademark of the <u>Wikimedia</u> Foundation, Inc., a non-profit organization.