Matrices

Stolfi Noelle noelle.stolfi@unice.fr

Université Nice Sophia Antipolis IUT Nice Côte d'Azur

4 novembre 2015

Définition : matrice

Définition

Un tableau de réels formé de $p \in \mathbb{N}^*$ lignes et $q \in \mathbb{N}^*$ colonnes est appelé matrice de dimension $p \times q$. Les nombres réels qui la composent sont les éléments de la matrice.

Une matrice est carrée si et seulement si p = q.

Notation

Soit A une matrice. L'élément (i,j) sera noté $a_{i,j}$

$$A = \begin{pmatrix} a_{11} & \dots & a_{1q} \\ \vdots & & \vdots \\ a_{p1} & \dots & a_{pq} \end{pmatrix} = (a_{ij})_{1 \leq i \leq p, 1 \leq j \leq q}$$

Notation

L'ensemble des matrices réelles est noté $\mathcal{M}_{pq}(\mathbb{R})$.

Cas particuliers:

- Pour p=1 on dit **vecteur ligne** : par exemple $W=\left(\begin{array}{ccc} 4 & -1 & 0 \end{array}\right)$
- Pour q = 1 on dit vecteur colonne. On l'appelle vecteur de

dimension *p*. Exemple :
$$V = \begin{pmatrix} 3/2 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$

Addition de matrices

Définition

$$\begin{array}{ccc} +: \mathcal{M}_{pq}(\mathbb{R}) \times \mathcal{M}_{pq}(\mathbb{R}) & \to & \mathcal{M}_{pq}(\mathbb{R}) \\ (A, B) & \mapsto & A + B = (a_{ij} + b_{ij})_{1 \leq i \leq p, 1 \leq j \leq q} \end{array}$$

Pour
$$A=\begin{pmatrix}1&2&5\\3&-5&0\end{pmatrix}$$
 et $B=\begin{pmatrix}5&-2&3\\0&1&1\end{pmatrix}$ on a $A+B=\begin{pmatrix}6&0&8\\3&-4&1\end{pmatrix}$

Multiplication par un réel

Définition

$$\begin{array}{ccc} \times : \mathbb{R} \times \mathcal{M}_{pq}(\mathbb{R}) & \to & \mathcal{M}_{pq}(\mathbb{R}) \\ (k,A) & \mapsto & kA = (ka_{ij})_{1 \leq i \leq p, 1 \leq j \leq q} \end{array}$$

Pour
$$A = \begin{pmatrix} 1 & 2 & 5 \\ 3 & -5 & 0 \end{pmatrix}$$
 et $k = 10$ on a $10A = \begin{pmatrix} 10 & 20 & 50 \\ 30 & -50 & 0 \end{pmatrix}$

Multiplication de deux matrices

Définition

$$\begin{array}{ccc} \times: \mathcal{M}_{pq}(\mathbb{R}) \times \mathcal{M}_{qr}(\mathbb{R}) & \to & \mathcal{M}_{pr}(\mathbb{R}) \\ (A,B) & \mapsto & AB = C = (c_{ij})_{1 \leq i \leq p, 1 \leq j \leq r} \end{array}$$

avec

$$c_{ij} = \sum_{k=1}^{q} a_{ik} b_{kj}$$

Pour
$$A = \begin{pmatrix} 2 & 3 & 4 \\ 4 & 5 & 6 \end{pmatrix} \in \mathcal{M}_{23}(\mathbb{R})$$
 et $B = \begin{pmatrix} 1 & -1 \\ 3 & -2 \\ -1 & 1 \end{pmatrix} \in \mathcal{M}_{32}(\mathbb{R})$ on a $AB = \begin{pmatrix} 7 & -4 \\ 13 & -8 \end{pmatrix} \in \mathcal{M}_{22}(\mathbb{R})$

Multiplication non commutative

La multiplication de deux matrices n'est pas commutative!

Pour
$$A=\begin{pmatrix}1&2\\3&4\end{pmatrix}\in\mathcal{M}_{22}(\mathbb{R})$$
 et $B=\begin{pmatrix}1&1\\0&1\end{pmatrix}\in\mathcal{M}_{22}(\mathbb{R})$ on a $AB=\begin{pmatrix}1&3\\3&7\end{pmatrix}\in\mathcal{M}_{22}(\mathbb{R})$ et $BA=\begin{pmatrix}4&6\\3&4\end{pmatrix}\in\mathcal{M}_{22}(\mathbb{R})$

Aussi il faut être "prudent" lorsqu'on développe des produits d'expressions. Par exemple : pour $A, B \in \mathcal{M}_{pp}(\mathbb{R})$

$$(A+B)(A+B) = A \times A + A \times B + B \times A + B \times B$$

On ne peut plus utiliser la notion d'identité remarquable à cause de la non commutativité de la multiplication.

La propriété vraie dans \mathbb{R} "si le produit de deux facteurs est nul alors au moins l'un des facteurs est nul" n'est plus vérifiée dans l'ensemble des matrices.

Pour
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in \mathcal{M}_{22}(\mathbb{R})$$
 et $B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \in \mathcal{M}_{22}(\mathbb{R})$
 $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{22}(\mathbb{R})$

Puissance d'une matrice carrée

Définition

Soit
$$A \in \mathcal{M}_{pp}(\mathbb{R})$$
 et soit $n \in \mathbb{N}^*$. Alors $A^n = \underbrace{A \times \ldots \times A}_{n \text{ fois}}$.

Exercice

Soit $A=\begin{pmatrix}1&0\\1&1\end{pmatrix}$. Calculer A^n , $\forall n\in\mathbb{N}^*$ et démontrer le résultat par récurrence.

Propriétés des opérations

- commutativité de l'addition
- associativité de l'addition
- distributivité de la multiplication externe
- associativité de la multiplication interne
- distributivité de la multiplication interne sur l'addition à gauche
- distributivité de la multiplication interne sur l'addition à droite

Trace

Soit $A \in \mathcal{M}_{pp}(\mathbb{R})$.

Définition

La trace de A, notée tr(A) est définie par

$$tr(A) = \sum_{i=1}^{p} a_{ii}$$

Propriétés

Soient $A, B \in \mathcal{M}_{pp}(\mathbb{R})$, $k \in \mathbb{R}$:

- tr(A + kB) = tr(A) + ktr(B)
- tr(AB) = tr(BA)

Preuve en exercice.

Transposée

Soit $A \in \mathcal{M}_{pq}(\mathbb{R})$.

Définition

La transposée de A, notée A^T est définie par

$$A^T = (a_{ji})_{j,i}$$

Trouver
$$A^T$$
 pour $A = \begin{pmatrix} 1 & 2 & 5 \\ 3 & -5 & 0 \end{pmatrix}$ et V^T pour $V = \begin{pmatrix} 3/2 \\ 2 \\ 1 \\ 0 \end{pmatrix}$

Propriétés

Soient $A, B \in \mathcal{M}_{pq}(\mathbb{R})$, $k \in \mathbb{R}$:

- $(A^T)^T = A$
- $(A + kB)^T = A^T + kB^T$

Soient $A\in \mathcal{M}_{pq}(\mathbb{R})$ et $B\in \mathcal{M}_{qr}(\mathbb{R})$ alors

$$(AB)^T = B^T A^T$$

Preuve en exercice.

Matrice nulle

La matrice nulle est la matrice dont tous les éléments sont nuls.

On la notera 0 quelle que soit la dimension.

Elle est l'élément neutre de l'addition.

$$\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

Matrice Identité

C'est une matrice carrée avec des 1 sur la diagonale principale et des 0 ailleurs.

On la notera / quelle que soit sa dimension.

Elle est l'élément neutre pour la multiplication des matrices.

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

Matrice diagonale

C'est une matrice carrée ayant des 0 partout sauf éventuellement sur la diagonale.

Un cas particulier est la matrice identité.

La diagonale est formée de réels.

$$\left(\begin{array}{cccc}
11 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 9
\end{array}\right)$$

Matrice triangulaire

Une matrice triangulaire supérieure (resp. inférieure) est une matrice carrée qui a des éléments nuls en dessous (resp. au-dessus) de la diagonale principale.

$$\left(\begin{array}{ccccc}
-1 & 4 & 2 & 1 \\
0 & 4 & 2 & 7 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 8
\end{array}\right)$$

Matrice symétrique

Soit
$$A \in \mathcal{M}_{pp}(\mathbb{R})$$

La matrice A est symétrique $\Leftrightarrow a_{ij} = a_{ji}, \ \forall i,j = 1, \dots p$

Exemple

$$\left(\begin{array}{cccc}
1 & 2 & -4 \\
2 & 9 & 7 \\
-4 & 7 & 10
\end{array}\right)$$

La matrice A est symétrique $\Leftrightarrow A = A^T$

Matrice antisymétrique

Soit
$$A \in \mathcal{M}_{pp}(\mathbb{R})$$
.

La matrice A est antisymétrique $\Leftrightarrow A = -A^T$

Exemple

$$\left(\begin{array}{ccc}
0 & 1 & 2 \\
-1 & 0 & -3 \\
-2 & 3 & 0
\end{array}\right)$$

Prouver que toute matrice antisymétrique a une diagonale formée de 0.

Matrice orthogonale

Soit $A \in \mathcal{M}_{pp}(\mathbb{R})$.

La matrice A est orthogonale $\Leftrightarrow AA^T = A^TA = I$

$$\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)$$