18.5 Standing waves in air columns

Natural frequencies of standing wave in pipes:

a) Both ends are open: any harmonic can exist.

$$f_n = n (v / 2L)$$
 for $n = 1, 2, 3, ...$

b) Only one end is open: only odd harmonics can exist.

$$f_n = n (v / 4L)$$
 for $n = 1, 3, 5, ...$

In a pipe open at both ends, the harmonic series created consists of all integer multiples of the fundamental frequency: $f_1, 2f_1, 3f_1, \ldots$

In a pipe closed at one end and open at the other, the harmonic series created consists of only odd-integer multiples of the fundamental frequency: f_1 , $3f_1$, $5f_1$,

18.6 Standing waves in membranes (descriptive)

Representation of some of the normal modes possible in a circular membrane fixed at its perimeter. The pair of numbers above each pattern corresponds to the number of *radial nodes* and the number of *circular nodes*. In each diagram, elements of the membrane on either side of a nodal line move in opposite directions, as indicated by the colors.

18.7 Beats: Interference in time

- Spatial interference : SP of waves having same f. \rightarrow Standing wave.
- Temporal interference : SP of waves having different $f \rightarrow$ Beats.

<u>Definition of beating</u>: Beating is the periodic variation in intensity

at a given point due to the superposition of

two waves having slightly different frequencies.

\overline{SP} of two waves with slightly different f:

Beat frequency (i.e., number of beats per second):

$$f_{\mathbf{b}} = f_1 - f_2$$

18.8 Nonsinusoidal Wave Patterns (descriptive)

Sound wave patterns produced by (a) a tuning fork, (b) a flute, and (c) a clarinet, each at approximately the same frequency.

This mix of higher frequencies determines the instrument's unique sound.

• Examples of the superposition principle: Composite (or Complex) wave

Fourier theorem:

⇒ Any complex wave can be considered as being composed of many simple sinusoidal waves of different amplitudes, wavelengths, and frequencies.

(*B*) Square wave :

$$y(x) = \cos(kx) + (1/3)\cos(3kx) + (1/5)\cos(5kx)$$

 \Leftarrow Fourier synthesis of a square wave.