# Review:LSTM-Based Deep Learning Model for Nonfactoid Answer Selection

Under review as a conference paper at ICLR 2016

An Weijie

### Motivation

- Apply a general deep learning (DL) framework for the answer selection task
- Combining convolutional neural network & Utilize a simple but efficient attention to generate the answer representation according to the question context

# Main Challenge

- The major challenge of this task is that the correct answer might not directly share lexical units with the question.
- The answers are sometimes noisy and contain a large amount of unrelated information.

# Basic Model: QA-LSTM



# QA-LSTM/CNN



More composite representation of questions and answers.

$$o_F(t) = \tanh \left[ \left( \sum_{i=0}^{m-1} \mathbf{h}(t+i)^T \mathbf{F}(i) \right) + b \right]$$

### Attention-Based QA-LSTM



Figure 3: QA-LSTM with attention

Use a simple attention model for the answer vector generation based on questions

$$\mathbf{m}_{a,q}(t) = \tanh(\mathbf{W}_{am}\mathbf{h}_{a}(t) + \mathbf{W}_{qm}\mathbf{o}_{q})$$
  
 $s_{a,q}(t) \propto \exp(\mathbf{w}_{ms}^{T}\mathbf{m}_{a,q}(t))$   
 $\widetilde{\mathbf{h}}_{a}(t) = \mathbf{h}_{a}(t)s_{a,q}(t)$ 

## Experiments

InsuranceQA Experiment
 (https://github.com/shuzi/insuranceQA.git)

TrecQA Experiment

(http://cs.jhu.edu/~xuchen/packages/jacana-qa-naacl2013-data-results.tar.bz2)

# InsuranceQA

|                                           | Validation | Test1 | Test2 |
|-------------------------------------------|------------|-------|-------|
| A. Bag-of-word                            | 31.9       | 32.1  | 32.2  |
| B. Metzler-Bendersky IR model             | 52.7       | 55.1  | 50.8  |
| C. Architecture-II in (Feng et al., 2015) | 61.8       | 62.8  | 59.2  |
| D. Architecture-II with GESD              | 65.4       | 65.3  | 61.0  |

Table 2: Baseline results of InsuranceQA

| \$ V\$ | Model                                    | Validation | Test1 | Test2 |
|--------|------------------------------------------|------------|-------|-------|
| A      | QA-LSTM basic-model(head/tail)           | 54.0       | 53.1  | 51.2  |
| В      | QA-LSTM basic-model(avg pooling)         | 58.5       | 58.2  | 54.0  |
| C      | QA-LSTM basic-model(max pooling)         | 64.3       | 63.1  | 58.0  |
| D      | QA-LSTM/CNN(fcount=1000)                 | 65.5       | 65.9  | 62.3  |
| E      | QA-LSTM/CNN(fcount=2000)                 | 64.8       | 66.8  | 62.6  |
| F      | QA-LSTM/CNN(fcount=4000)                 | 66.2       | 64.6  | 62.2  |
| G      | QA-LSTM with attention (max pooling)     | 66.5       | 63.7  | 60.3  |
| H      | QA-LSTM with attention (avg pooling)     | 68.4       | 68.1  | 62.2  |
| I      | QA-LSTM/CNN (fcount=4000) with attention | 67.2       | 65.7  | 63.3  |

## TrecQA

| Models                              | MAP    | MRR    |
|-------------------------------------|--------|--------|
| Wang et al. (2007)                  | 0.6029 | 0.6852 |
| Heilman & Smith (2010)              | 0.6091 | 0.6917 |
| Wang & Manning (2010)               | 0.6029 | 0.6852 |
| Yao et al. (2013)                   | 0.6307 | 0.7477 |
| Severyn & Moschitti (2013)          | 0.6781 | 0.7358 |
| Yih et al. (2013)-BDT               | 0.6940 | 0.7894 |
| Yih et al. (2013)-LCLR              | 0.7092 | 0.7700 |
| Wang & Nyberg (2015)                | 0.7134 | 0.7913 |
| Architecture-II (Feng et al., 2015) | 0.7106 | 0.7998 |

Table 4: Test results of baselines on TREC-QA

|   | Models                     | MAP       | MRR            |
|---|----------------------------|-----------|----------------|
| A | QA-LSTM (avg-pool)         | 68.19     | 76.52          |
| В | QA-LSTM with attention     | 68.96     | 78.49          |
| C | QA-LSTM/CNN                | 70.61     | 81.04          |
| D | QA-LSTM/CNN with attention | 71.11     | 83.22          |
| E | QA-LSTM/CNN with attention | 72.79     | 82.40          |
|   | (LSTM hiddenvector=500)    | LEAST DIE | 12.02.01.02.00 |

Table 5: Test results of the proposed models on TREC-QA

#### What is the Jeopardy Model? A Quasi-Synchronous Grammar for QA

Mengqiu Wang and Noah A. Smith and Teruko Mitamura

Language Technologies Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

{mengqiu, nasmith, teruko}@cs.cmu.edu

| Models                              | MAP    | MRR    |
|-------------------------------------|--------|--------|
| Wang et al. (2007)                  | 0.6029 | 0.6852 |
| Heilman & Smith (2010)              | 0.6091 | 0.6917 |
| Wang & Manning (2010)               | 0.6029 | 0.6852 |
| Yao et al. (2013)                   | 0.6307 | 0.7477 |
| Severyn & Moschitti (2013)          | 0.6781 | 0.7358 |
| Yih et al. (2013)-BDT               | 0.6940 | 0.7894 |
| Yih et al. (2013)-LCLR              | 0.7092 | 0.7700 |
| Wang & Nyberg (2015)                | 0.7134 | 0.7913 |
| Architecture-II (Feng et al., 2015) | 0.7106 | 0.7998 |

Table 4: Test results of baselines on TREC-QA

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | develop | ment set | test   | set    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|----------|--------|--------|
| training dataset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | model                | MAP     | MRR      | MAP    | MRR    |
| 100 manually-judged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TreeMatch            | 0.4074  | 0.4458   | 0.3814 | 0.4462 |
| THE PARTY OF THE P | +WN                  | 0.4328  | 0.4961   | 0.4189 | 0.4939 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cui et al.           | 0.4715  | 0.6059   | 0.4350 | 0.5569 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +WN                  | 0.5311  | 0.6162   | 0.4271 | 0.5259 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jeopardy (base only) | 0.5189  | 0.5788   | 0.4828 | 0.5571 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jeopardy             | 0.6812  | 0.7636   | 0.6029 | 0.6852 |
| +2,293 noisy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cui et al.           | 0.2165  | 0.3690   | 0.2833 | 0.4248 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +WN                  | 0.4333  | 0.5363   | 0.3811 | 0.4964 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jeopardy (base only) | 0.5174  | 0.5570   | 0.4922 | 0.5732 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jeopardy             | 0.6683  | 0.7443   | 0.5655 | 0.6687 |

# Tree Edit Models for Recognizing Textual Entailments, Paraphrases, and Answers to Questions

#### Michael Heilman Noah A. Smith

Language Technologies Institute Carnegie Mellon University Pittsburgh, PA 15213, USA

{mheilman, nasmith}@cs.cmu.edu

| Models                              | MAP    | MRR    |
|-------------------------------------|--------|--------|
| Wang et al. (2007)                  | 0.6029 | 0.6852 |
| Heilman & Smith (2010)              | 0.6091 | 0.6917 |
| Wang & Manning (2010)               | 0.6029 | 0.6852 |
| Yao et al. (2013)                   | 0.6307 | 0.7477 |
| Severyn & Moschitti (2013)          | 0.6781 | 0.7358 |
| Yih et al. (2013)-BDT               | 0.6940 | 0.7894 |
| Yih et al. (2013)-LCLR              | 0.7092 | 0.7700 |
| Wang & Nyberg (2015)                | 0.7134 | 0.7913 |
| Architecture-II (Feng et al., 2015) | 0.7106 | 0.7998 |

Table 4: Test results of baselines on TREC-QA

| System                  | MAP    | MRR    |
|-------------------------|--------|--------|
| Punyakanok et al., 2004 | 0.3814 | 0.4462 |
| +WN                     | 0.4189 | 0.4939 |
| Cui et al., 2005        | 0.4350 | 0.5569 |
| +WN                     | 0.4271 | 0.5259 |
| Wang et al., 2007       | 0.4828 | 0.5571 |
| +WN                     | 0.6029 | 0.6852 |
| Tree Edit Model         | 0.6091 | 0.6917 |

Table 5: Results for the task of answer selection for question answering. +WN denotes use of WordNet features.

#### Probabilistic Tree-Edit Models with Structured Latent Variables for Textual Entailment and Question Answering

Mengqiu Wang

Computer Science Department Stanford University

mengqiu@cs.stanford.edu

Christopher D. Manning

Computer Science Department Stanford University

manning@cs.stanford.edu

| Models                              | MAP    | MRR    |
|-------------------------------------|--------|--------|
| Wang et al. (2007)                  | 0.6029 | 0.6852 |
| Heilman & Smith (2010)              | 0.6091 | 0.6917 |
| Wang & Manning (2010)               | 0.6029 | 0.6852 |
| Yao et al. (2013)                   | 0.6307 | 0.7477 |
| Severyn & Moschitti (2013)          | 0.6781 | 0.7358 |
| Yih et al. (2013)-BDT               | 0.6940 | 0.7894 |
| Yih et al. (2013)-LCLR              | 0.7092 | 0.7700 |
| Wang & Nyberg (2015)                | 0.7134 | 0.7913 |
| Architecture-II (Feng et al., 2015) | 0.7106 | 0.7998 |

Table 4: Test results of baselines on TREC-QA

| System                  | MAP    | MRR    |
|-------------------------|--------|--------|
| Punyakanok et al., 2004 | 0.4189 | 0.4939 |
| Cui et al., 2005        | 0.4350 | 0.5569 |
| Wang et al., 2007       | 0.6029 | 0.6852 |
| H&S, 2010               | 0.6091 | 0.6917 |
| Tree-edit CRF           | 0.5951 | 0.6951 |

Table 3: Results on QA task reported in Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR).

### Answer Extraction as Sequence Tagging with Tree Edit Distance

Xuchen Yao and Benjamin Van Durme

Johns Hopkins University Baltimore, MD, USA

| Models                              | MAP    | MRR    |
|-------------------------------------|--------|--------|
| Wang et al. (2007)                  | 0.6029 | 0.6852 |
| Heilman & Smith (2010)              | 0.6091 | 0.6917 |
| Wang & Manning (2010)               | 0.6029 | 0.6852 |
| Yao et al. (2013)                   | 0.6307 | 0.7477 |
| Severyn & Moschitti (2013)          | 0.6781 | 0.7358 |
| Yih et al. (2013)-BDT               | 0.6940 | 0.7894 |
| Yih et al. (2013)-LCLR              | 0.7092 | 0.7700 |
| Wang & Nyberg (2015)                | 0.7134 | 0.7913 |
| Architecture-II (Feng et al., 2015) | 0.7106 | 0.7998 |

Table 4: Test results of baselines on TREC-QA

| System                     | MAP    | MRR    |
|----------------------------|--------|--------|
| Wang et al. (2007)         | 0.6029 | 0.6852 |
| Heilman and Smith (2010)   | 0.6091 | 0.6917 |
| Wang and Manning (2010)    | 0.5951 | 0.6951 |
| this paper (48 features)   | 0.6319 | 0.7270 |
| +WNsearch                  | 0.6371 | 0.7301 |
| +WNfeature (11 more feat.) | 0.6307 | 0.7477 |

Table 3: Results on the QA Sentence Ranking task.

#### **Automatic Feature Engineering for Answer Selection and Extraction**

Aliaksei Severyn DISI, University of Trento 38123 Povo (TN), Italy severyn@disi.unitn.it Alessandro Moschitti
Qatar Computing Research Institue
5825 Doha, Qatar
amoschitti@qf.org.qa

| Models                              | MAP    | MRR    |
|-------------------------------------|--------|--------|
| Wang et al. (2007)                  | 0.6029 | 0.6852 |
| Heilman & Smith (2010)              | 0.6091 | 0.6917 |
| Wang & Manning (2010)               | 0.6029 | 0.6852 |
| Yao et al. (2013)                   | 0.6307 | 0.7477 |
| Severyn & Moschitti (2013)          | 0.6781 | 0.7358 |
| Yih et al. (2013)-BDT               | 0.6940 | 0.7894 |
| Yih et al. (2013)-LCLR              | 0.7092 | 0.7700 |
| Wang & Nyberg (2015)                | 0.7134 | 0.7913 |
| Architecture-II (Feng et al., 2015) | 0.7106 | 0.7998 |

Table 4: Test results of baselines on TREC-QA

| Table 4: An | swer sentence | reranking on | TREC 13. |
|-------------|---------------|--------------|----------|
|             |               |              |          |

| System                   | MAP    | MRR    |  |
|--------------------------|--------|--------|--|
| Wang et al. (2007)       | 0.6029 | 0.6852 |  |
| Heilman & Smith (2010)   | 0.6091 | 0.6917 |  |
| Wang & Manning (2010)    | 0.5951 | 0.6951 |  |
| Yao et al. (2013)        | 0.6319 | 0.7270 |  |
| + WN                     | 0.6371 | 0.7301 |  |
| shallow tree (S&M, 2012) | 0.6485 | 0.7244 |  |
| + semantic tagging       | 0.6781 | 0.7358 |  |

### **Question Answering Using Enhanced Lexical Semantic Models**

Wen-tau Yih Ming-Wei Chang Christopher Meek Andrzej Pastusiak

Microsoft Research Redmond, WA 98052, USA

{scottyih, minchang, meek, andrzejp}@microsoft.com

| Models                              | MAP    | MRR    |
|-------------------------------------|--------|--------|
| Wang et al. (2007)                  | 0.6029 | 0.6852 |
| Heilman & Smith (2010)              | 0.6091 | 0.6917 |
| Wang & Manning (2010)               | 0.6029 | 0.6852 |
| Yao et al. (2013)                   | 0.6307 | 0.7477 |
| Severyn & Moschitti (2013)          | 0.6781 | 0.7358 |
| Yih et al. (2013)-BDT               | 0.6940 | 0.7894 |
| Yih et al. (2013)-LCLR              | 0.7092 | 0.7700 |
| Wang & Nyberg (2015)                | 0.7134 | 0.7913 |
| Architecture-II (Feng et al., 2015) | 0.7106 | 0.7998 |

|              | LR     |        | BDT    |        | LCLR   |        |
|--------------|--------|--------|--------|--------|--------|--------|
| Feature set  | MAP    | MRR    | MAP    | MRR    | MAP    | MRR    |
| 1: I         | 0.6531 | 0.7071 | 0.6323 | 0.6898 | 0.6629 | 0.7279 |
| 2: I+L       | 0.6744 | 0.7223 | 0.6496 | 0.6923 | 0.6815 | 0.7270 |
| 3: I+L+WN    | 0.7039 | 0.7705 | 0.6798 | 0.7450 | 0.7316 | 0.7921 |
| 4: I+L+WN+LS | 0.7339 | 0.8107 | 0.7523 | 0.8455 | 0.7626 | 0.8231 |
| 5: All       | 0.7374 | 0.8171 | 0.7495 | 0.8450 | 0.7648 | 0.8255 |

Table 4: Test results of baselines on TREC-QA

#### A Long Short-Term Memory Model for Answer Sentence Selection in Question Answering

Di Wang and Eric Nyberg
Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
{diwang,ehn}@cs.cmu.edu

| Models                              | MAP    | MRR    |
|-------------------------------------|--------|--------|
| Wang et al. (2007)                  | 0.6029 | 0.6852 |
| Heilman & Smith (2010)              | 0.6091 | 0.6917 |
| Wang & Manning (2010)               | 0.6029 | 0.6852 |
| Yao et al. (2013)                   | 0.6307 | 0.7477 |
| Severyn & Moschitti (2013)          | 0.6781 | 0.7358 |
| Yih et al. (2013)-BDT               | 0.6940 | 0.7894 |
| Yih et al. (2013)-LCLR              | 0.7092 | 0.7700 |
| Wang & Nyberg (2015)                | 0.7134 | 0.7913 |
| Architecture-II (Feng et al., 2015) | 0.7106 | 0.7998 |

Table 4: Test results of baselines on TREC-QA

| Features                 | MAP    | MRR    |
|--------------------------|--------|--------|
| BM25                     | 0.6370 | 0.7076 |
| Single-Layer LSTM        | 0.5302 | 0.5956 |
| Single-Layer BLSTM       | 0.5636 | 0.6304 |
| Three-Layer BLSTM        | 0.5928 | 0.6721 |
| Three-Layer BLSTM + BM25 | 0.7134 | 0.7913 |

### TrecQA 8-13

http://cs.jhu.edu/~xuchen/packages/jacana-qa-naacl2013-data-results.tar.bz2

```
<OApairs id='1'>
<question>
                                                                               of Margaret
Who is the author of the book
                                         The Iron
                                                                                              Thatcher
                                                    Lady
                                                               Α
                                                                   Biography
       ?
NNP VBZ DT NN IN
                  DT NN ,
                                 DT JJ NN
                                                DT NN IN NNP NNP
SUB ROOT
           NMOD
                                     PMOD
                                                    NMOD
                                                            NMOD
                  PRD NMOD
                              NMOD
                                                                    NMOD
                                                                           Р
                                                                               NMOD
                                                                                      NMOD
                                                                                              NMOD
NMOD
       PMOD
                                                        15 18 16 18 2
                      5 15 15 12 12 15 15 15 7
           PER DESC-B - - - -
                                         WORK OF ART-B
                                                        WORK OF ART-I
                                                                       WORK OF ART-I
                                                                                      WORK OF ART-I
                                 PERSON-B
WORK OF ART-I
              WORK OF ART-I -
                                             PERSON-I
</question>
<positive>
the IRON
                                     of Margaret
           LADY
                  ; A
                          Biography
                                                    Thatcher
                                                               by Hugo
                                                                                   -LRB-
                                                                           Young
                                                                                          Farrar ,
           Giroux -RRB-
Straus &
DT NNP NNP :
              DT NN IN
                          NNP NNP IN NNP NNP -LRB-
                                                    NNP ,
                                                            NNP CC NNP -RRB-
NMOD
                          NMOD
                                                                               PMOD
       NMOD
              NMOD
                                  ROOT
                                         NMOD
                                                 NMOD
                                                        PMOD
                                                                NMOD
                                                                       NMOD
                                                                                          NMOD
                                                                                                  P
NMOD
       NMOD
               PMOD
                                            18
                                                18
                                                        18
                                         10
                                                    18
                                                           18
                  ORGANIZATION-I
                                                                                              PERSON-I
   ORGANIZATION-B
                                 ORGANIZATION-I
                                                ORGANIZATION-I ORGANIZATION-I -
                                                                                   PERSON-B
       PERSON-B
                  PERSON-I
                                 ORGANIZATION-B
                                                ORGANIZATION-I ORGANIZATION-I ORGANIZATION-I
ORGANIZATION-I -
Hugo
       Young
11 12
</positive>
```

1162 training questions, 65 development questions and 68 test questions.

### InsuranceQA

https://github.com/shuzi/insuranceQA.git

- For all train/valid/test files, format is same, with various answer pool size:
  - O <Domain><TAB><QUESTION><TAB><Groundtruth><TAB><Pool>
- For InsuranceQA.question.anslabel.\*:
  - O <Domain><TAB><QUESTION><TAB><Groundtruth>
- For InsuranceQA.label2answer.\*
  - O <Answer Label><TAB><Answer Text>
- For vocabulary file:
  - o <word index><TAB><original word>

#### Corpus Statistics

|       | Question | Answer | Question Running Words |
|-------|----------|--------|------------------------|
| Train | 12,889   | 21,325 | 107,889                |
| Valid | 2,000    | 3354   | 16,931                 |
| Test  | 2,000    | 3308   | 16,815                 |