

深度前馈神经网络

.

.

.

• • • • • • •

试试理解计算机语言

计算机眼里的图片

手写阿拉伯数字1

5 还是 6?

.

.

.

.

.

.

.

.

.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0

- 识别规则
 - 形态
 - 比划顺序

• 如何定义明确的识别规则?

目录

- 神经网络的由来及发展
- 神经网络与MLP

神经网络的由来及发展

.

.

神经网络范畴

神经元 vs. 人工神经元

神经元

人工神经元

线性运算

线性函数加入激活函数

1943 年,人工神经元模型MP被提出

沃伦.麦卡洛克

沃尔特.皮茨

$$o = \begin{cases} 1 & \sum_{j=0}^{n} w_j x_j - b \ge 0 \\ 0 & \sum_{j=0}^{n} w_j x_j - b < 0 \end{cases}$$

- ◇多输入单输出
- ◇空间整合

- ♦兴奋性和抑制性
 - ♦阈值特性

ITLiu http://www.itliu.niet.cn

HuBei University Business School

1958年,Rosenblatt提出感知器

- 网络结构
 - 由两层神经网络组成
 - 输入层接收外界输入信号
 - 输出层是MP神经元
- 引发了神经网络第一次高潮

$$y = \operatorname{sgn}(\boldsymbol{w} \cdot \boldsymbol{x})$$

$$sgn(y) = \begin{cases} 1, & \text{if } y > 0 \\ 0, & \text{otherwise} \end{cases}$$

1969年,神经网络开始步入冰河期

- Minsky出版《Perceptron》
 - 单层神经网络只能解决线性可分问题
 - 单层神经网络无法解决XOR问题

神奇的异或运算

Magic xor Box

小考题 2: 交换数值

小考题 1: 出现奇数次的数字

有一堆数字,

2024359681743785019

哪个数字只出现了一次?

	数字	1	2	3
数字	二进制	01	10	11
1	01	00	11	10
2	10	00	00	01
3	11	10	01	00

a = 2 $b = 3$	
列出计算公式 只对 a 和 b 进行运算,	使
a = 3 $b = 2$	

对于数字组成的任意序列,如果只有一个数字出现了基数次,如何找到这个数字?

对于 22113 2 xor 2 xor 1 xor 1 xor 3 = 3

a和b的值并不提前给出,如何计算?

$$a = a xor b$$
 $a = 2 xor 3 = 1$
 $b = a xor b$ $b = 1 xor 3 = 2$
 $a = a xor b$ $a = 1 xor 2 = 3$

线性可分与不可分

线性可允

x ₁	X ₂	x_1 AND x_2
0	0	0
0	1	0
1	0	0
1	1	1

x ₁	X ₂	x ₁ OR x ₂
0	0	0
0	1	1
1	0	1
1	1	1

线性不可分

x ₁	X ₂	x XOR y
0	0	0
0	1	1
1	0	1
1	1	0

人工神经网络无法解决异或问题!!!

一个神经元不够

单一神经元的计算能力很弱

[1] Minsky M, Papert S A. Perceptrons: An introduction to computational geometry[M]. MIT press, 2017.

两层神经网络解决异或问题

双层油级网络解冲员或问题

隐藏层第一个神经元 $f(x_1w_{1,1}^{(1)} + x_2w_{2,1}^{(1)} + bw_{3,1}^{(1)})$

隐藏层第二个神经元 $f(x_1w_{1,2}^{(1)} + x_2w_{2,2}^{(1)} + bw_{3,2}^{(1)})$

真值表

x ₁	x ₂	a ₁	\mathbf{a}_2	y
0	0	0	1	0
0	1	1	1	1
1	0	1	1	1
1	1	1	0	0

异或运算真值表

x ₁	X ₂	x XOR y
0	0	0
0	1	1
1	0	1
1	1	0

$$y = f(f(x_1w_{1,1}^{(1)} + x_2w_{2,1}^{(1)} + bw_{3,1}^{(1)})w_{1,1}^{(2)} + f(x_1w_{1,2}^{(1)} + x_2w_{2,2}^{(1)} + bw_{3,2}^{(1)})w_{2,1}^{(2)} + bw_{3,1}^{(2)})$$

1986年,反向传播算法 (BP) 被提出

- Rumelhar和Hinton提出BP算法
 - 解决异或等分线性分类问题
 - 解决神经网络复杂计算的问题
 - 两层神经网络开始成为热点
- 两层神经网络可以无限逼近任意连续函数

神经网络解决非线性二分类问题

https://cs.stanford.edu/people/karpathy/convnetjs//demo/classify2d.html

20 世纪 90 年代中期神经网络再次没落

- 两层神经网络面临的问题
 - 局部最优
 - 调参繁琐
- 非神经网络算法逐步流行
 - Boosting
 - 支持向量机
 - 0 0 0

2006年开始,深度神经网络持续风靡

- · Hinton在《Science》上发表文章提出深度学习
 - 提出"深度信念网络"
 - 提出"预训练"
 - 多层神经网络训练时间大幅减少

- 深度神经网络渗透并颠覆了诸多传统行业
 - 图像识别: CNN
 - 自然语言处理、语音识别: RNN
 - 0 0 0

深度神经网络

"深度"神经网络

Left: Depth = 2.

Right: Depth = 3

要求

- 每一层捕获不同模型
- 不丢失信息

神经网络与MLP

.

.

• • • • • • •

• • • • • • •

.

基本人工神经元结构

对应的连接权值

基本人工神经元结构

$$z = w_1 x_1 + w_2 x_2 + \dots + w_N x_N + b$$

$$y = \begin{cases} 1 & a \ge threshold \\ 0 & a < threshold \end{cases}$$

激活函数 — 引入非线性因素

1931
Additional, na

- 激活函数可能具有的特性
 - h: R->R 且 几乎处处可导
 - 反向传播时需要计算激活函数的偏导数
 - 非线性函数
 - 在神经网络中引入非线性因素
 - 单调性
 - 当激活函数是单调的时候, 单层网络能够保证是凸函数
 - 输出值范围
 - 当激活函数输出值是有限的时候,基于梯度的优化方法会更加稳定,因为特征的表示受有限权值的影响更显著;
 - 当激活函数的输出是 无限 的时候,模型的训练会更加高效,不过在这种情况小,一般需要更小的learning rate

Hyper-parameters in Action!Daniel Godoy

•.Sigmoid函数

$$f(x) = \frac{1}{1 + e^{-x}}$$

- 优点
 - 具有较好的可解释性
 - 输出范围有限
 - 单调连续
- 缺点
 - 函数饱和, 梯度容易消失
 - 输出不以0为中心

Sigmoid

.

Hyper parameters in Action!

Tanh逐数

$$f(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

- 优点
 - 比Sigmoid收敛速度快
 - 输出以0为中心
- 缺点
 - 函数饱和, 梯度容易消失

$$tanh(x) = 2 \ sigmoid(2x) - 1$$

Tanh

.

.

.

Hyper-parameters in Action!

— Daniel Godoy

• ReLU (Rectified Linear Units) 函数

$$f(x) = max(0, x)$$

- 优点
 - 收敛速度比上述激活函数更快
 - 计算简单
- 缺点
 - 当输入小于0时, 训练参数将无法更新

ReLU

Hyper-parameters in Action!

— Daniel Godoy

• Leaky-ReLU函数

$$f(x) = \begin{cases} x, & \text{if } x \ge 0 \\ \alpha x, & \text{if } x < 0 \end{cases}$$

- 优点
 - 收敛速度快
 - 解决神经元死亡现象
- 缺点
 - 实际应用中发现效果不稳定

• ELU函数

$$f(x) = \begin{cases} x, & \text{if } x \ge 0 \\ \alpha (e^x - 1), & \text{if } x < 0 \end{cases}$$

- 优点
 - 收敛速度快
 - 缓解梯度消失
 - 对输入变化更鲁棒

Maxout函数

$$f(x) = max(w_1^T x + b_1, w_2^T x + b_2, \cdots, w_n^T + b_n)$$

- 优点
 - 收敛速度快
 - 不饱和
 - 可以拟合任意凸函数

- 缺点
 - 参数量增加, 计算复杂度增大

常见的激活函数

Softmax 函数将多个神经元输出映射到区间(0, 1), 常用于多分类问题中

$$Softmax(z_i) = \frac{e^{z_i}}{\sum_i e^{z_i}}$$

分类概率

多层感知机

- 多层感知机模型是一种前馈神经网络
 - · 前馈 ——— 信息从输入层到输出层单向流动

- 多层感知机模型是一个监督学习模型
 - 通过在训练集中寻找最优参数 θ ,从而得到函数 $f(x,\theta)$ 的最优近似 $f(x,\theta)$
- 将含有一层隐含层的感知机网络推广到多层网络结构,数学表达式为

$$f(x) = f^{(n)}(f^{(n-1)}(\dots f^{1}(x)))$$

$$z_j^{(1)} = \sum_i w_{ij}^{(1)} y_j^0 + b^{(0)}$$

$$y_j^{(1)} = f_1(z_j^{(1)})$$

$$z_j^{(1)} = \sum_i w_{ij}^{(1)} y_j^0 + b^{(0)}$$

$$y_j^{(1)} = f_1(z_j^{(1)})$$

$$z_j^{(1)} = \sum_i w_{ij}^{(1)} y_j^0 + b^{(0)}$$

$$y_j^{(1)} = f_1(z_j^{(1)})$$

神经网络如何拟合一个一元函数

y=f(z)

前馈神经网络

只需具备单层隐含层和有限个神经单元 就能以任意精度拟合任意复杂度的函数

—— 万能近似定理 Universal approximation theorem

Hornik et al., 1989; Cybenko, 1989

A visual proof that neural nets can compute any function http://neuralnetworksanddeeplearning.com/chap4.html

一个简单的双层神经网络

.

• • • • •

$$\sigma(z) = 1/(1+e^{-z}) \quad z = wx + b$$

输入层到隐藏层的参数如何影响输出?—改变偏置/权重

改变偏重

改变权值

输入层到隐藏层的参数如何影响输出?—改变偏置和权重

隐藏层到输出层的参数如何影响输出?

问题1

s1 是负数会如何?

问题2

- · s1 如果大于 s2, 那么图形会怎样变化?
- 问题3
- w1 如果大于w2会如何?

问题4

• w1 是负数会如何?

隐藏层神经元的相互作用

S1 变为负数

S1 大于 s2

w1 大于 w2

w1 是负数

固定权重比, 生成脉冲函数

• • • • • • •

任意激活函数都可以变为阶跃函数

• 权重足够大,则任意函数的输出在 x 轴会被压缩到很小的范围。

深度神经网络可以拟合任意函数

- •如何让深度神经网络拟合一个特定特性的函数呢?
 - 输入图像,输出标签
 - 输入声音,输出翻译
 - 输入比赛状态,输出下一步怎么走
- · 深度神经网络就是一个函数
 - 网络的参数是,权重和偏置
 - 学习网络指的是: 使网络计算得到想要的函数的权重和偏置
 - 最终目的是对某函数进行建模

神经网络的训练 — MNIST 数据集

• MNST

- 250 个不同人的手写数字
- 60000个训练集, 10000个测试集
- 每张图片由 28 x 28 个像素点组成

ITLiu http://www.itliu.net.cn

HuBei University Business School

网络设计

- ·••••输入层: ×
 - 784个神经元(28x28)
 - 隐藏层
 - 可以灵活设计
 - 输出层: y(x)
 - 10个神经元

真实输出y(x): [0,0,0,0,0,1,0,0,0,0]

10个预测标签

网络预测输出:

如何判断函数拟合效果?

根据误差调整模型

Mean Absolute Error: 平均绝对误差

$$ext{MAE}(y, \hat{y}) = rac{1}{m} \sum_{i=1}^n |y_i - \hat{y}_i|$$

Mean Squared Error: 均方误差

$$ext{MSE}(y, \hat{y}) = rac{1}{m} \sum_{i=1}^m (y_i - \hat{y}_i)^2$$

Root Mean Squared Error: 均方根误差

$$\text{RMSE}(y, \hat{y}) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2}$$