ELEC412 Cheat Sheet

Chapter 3: PN Junctions

3.2 - Concept of PN Junction

Energy Band Diagram for a PN Junction

Built in potential: $\Phi_{bi} = kT ln(\frac{N_A N_D}{n_i^2})$ (1)

I-V Characteristics of a PN Junction

 $I = I_0 exp(V_a/V_t)$ (2)

Dynamic resistance: $R_{dyn} = \frac{d(V_a)}{dI} = \frac{V_t}{I}$ (3) IV characteristics of pn junc. w/ rev. current:

 $I = I_0 exp(V_a/V_t) - I_r$ (4)

If $I_r=I_0$ then $I=I_0[\exp(V_a/V_t)-1]$ - ideal diode eqn.(5) Hole diffusion current flowing into the n-side in a p^+n junc.:

 $I_p(x) = q D_p[d(p_n(x))/dx] A_{cs}$ (6)

 $p_n(x) = p' exp(-x/L_p) + p_{n0}$ (7)

 $d(p_n(x))/dx = -(p_n(x) - p_{n0})/L_p$ (8)

 $I_p(x) = -qD_p(p_n(x) - p_{n0})A_{cs}/L_p$ (9) $p' = p_{n0}[exp(qV_a/kT) - 1]$ (10)

 $I_p = [qD_pn_i^2A_{cs}/(N_DL_p)][exp(qV_a/kT) - 1]$ (11)

 $I = I_p + I_n = I_0[exp(V_a/V_t)] - 1$ (12)

where $I_0 = q D_p n_i^2 A_{cs} / (N_D L_p) + q D_n n_i^2 A_{cs} / (N_A L_p)$ $I_G = q n_i W_i A_{cs} / (2 \tau_0)$ (13)

 $I_G = q n_i W_j A_{cs} / (2\tau_0)$ (13) $I = I_0 exp[(V_a/\eta_I V_t) - 1] - I_G$ (14)

Space-Charge and Charge Storage Effects

$$C_{jun} = \varepsilon_s A_{cs}/W_j \text{ (15)}$$

$$W_j = \sqrt{2\varepsilon_s (V_{bi} - V_a)/(qN_{eff})} \text{ (16)}$$

$$W_j = [12\varepsilon_s (V_{bi} - V_a)/(qa)]^{1/3} \text{ (17)}$$

$$C_{diff} = [qA_{cs} (L_p p_{n0} + L_n p_{p0})/2V_t] exp(V_0/V_t) \text{ (18)}$$

$$C_{diff} \approx I_0 \tau_p/(2V_t) \text{ (19)}$$

Tunnel PN Junctions

$$D_{12} = D_b exp(-2d_b \sqrt{2m_e^*(\Phi_B - E)}/h')$$
 (20)
$$I_{tun} = qA_{cs} \int_E^{\acute{E}} [f_t S_1 D_{12} S_2] dE$$
 (21)

Junction Breakdown

$$V_{br} = \epsilon_s \dot{E}_{cr}^2/(2qN_{eff})$$
 (22) $d(j_n)/dx - (\alpha_i - \beta_i)j_n = -(\alpha_i - \beta_i)j_T + \alpha_i j_T$ (23) If $\alpha_i = \beta_i$ then $M_n = j_n(L)/j_n(0) = 1/[1 - \int_0^L (\alpha_i)dx]$ (24) $V_{br} \approx 4E_q/q$ (25)

Noise in PN Junctions

$$\hat{i}^2 = 2q(I_d + 2I_0)\delta f$$
 (26)

Heterojunctions

$$\begin{split} &\Delta E_c = \xi_1 - \xi_2 \ (\mathbf{27}) \\ &\phi_{bi} = E_{g1} - \Delta E_n - \Delta E_p + \Delta E_c \ (\mathbf{28}) \\ &W_j = W_n + W + p \ (\mathbf{29}) \\ &W_n = \sqrt{2\epsilon_1 \epsilon_2 N_A V_{bi} / [q N_D (\epsilon_2 N_D + \epsilon_1 N_A)]} \\ &W_p = \sqrt{2\epsilon_1 \epsilon_2 N_D V_{bi} / [q N_A (\epsilon_2 N_D + \epsilon_1 N_A)]} \\ &C_{jun} = \sqrt{\epsilon_1 \epsilon_2 N_D N_A / [2(\epsilon_2 N_D + \epsilon_1 N_A) V_{bi}]} \ (\mathbf{30}) \\ &I = I_0 (1 - V_a / V_{bi}) [exp(V_a / V_t) - 1] \ (\mathbf{31}) \end{split}$$

3.3 - Schottky Junction

Schottky Junction at Equilibrium

Schottky Junction under Bias

$$\begin{split} &\Phi_{bi} = \Phi_B - E_n - qV_a \ \textbf{(38)} \\ &\text{Total fwd-bias current } I = I_{sm} + I_{ms} \ \textbf{(39)} \\ &= A^*T^2A_{cs}exp(-\Phi_B/\Phi_t)[exp(V_a/V_t) - 1] \\ &= I_0[exp(V_a/V_t) - 1] \\ &\text{where } I_0(=A^*T^2A_{cs}exp(-\Phi_B/\Phi_t)) \text{ is the saturation current } I_{tun} = I_fexp(\Phi_B/E_\infty) \ \textbf{(40)} \\ &E_\infty = qh/4\pi\sqrt{N_D/(\epsilon_s m_e^*)} \end{split}$$

Nonideal Schottky Junctions

Schottky barrier height $\Phi_B = E_g - \Phi_0$ (41) $\Delta\Phi_B = q\sqrt{qE'/(4\pi\epsilon_s)}$ (42) $I_p = (qD_pp_{n0}A_{cs}/L_p)[exp(V_a/V_t-1)]$ (43) $\gamma^* = I_p/I$ (44) $I = A^*T^2A_{cs}exp(-\Phi_B/\Phi_t)[exp(V_a/(\eta_IV_t))-1]$ (45)

Capacitance Effect and Equivalent-Circuit Model of a Schottky Junction

$$C_{jun} = A_{cs} \sqrt{q N_D \epsilon_s}$$
 (46)

Modification of the Barrier Height

$$\Phi_B^* = \Phi_B - q/\epsilon_s \sqrt{n_1 a'/4\pi}$$

$$\Delta d = [a'p_1 - (W - a')n_2]/p_1$$

$$\Phi_B^* = \Phi_B + q^2 p_1 \Delta d^2/2\epsilon_s$$
(49)

3.4 - Metal-Semiconductor Contact

$$R_c = \sqrt{R_{sh}r_c}/d_c coth[L\sqrt{R_{sh}/r_c}]$$
(50)

$$R_{sh} = r_{sheet}L_{sh}/d_c$$
(51)

$$R = R_c + R_{sh} + R_{sp}$$
(52)

$$r_c \approx exp[2V_{bn}\sqrt{\epsilon_s m_e^*/N_D}/(h')]$$
(53)

3.5 - MIS Junction and Field-Effect Properties

(54) (55) (56)

Glossary of Variables

 Φ_{bi} is the build-in potential

 $V_{bi}(=\Phi_{bi}/q)$ is the build-in voltage in V k(8.62 x $10^{-5}ev/K$): Boltzmann constant

T: absolute temp. in Kelvin

 n_i is the intrinsic carrier density of the semiconductor $/m^3$

 N_A is the acceptor density $/m^3$ N_D is the donor density $/m^3$

 V_a is the applied voltage and is a fixed voltage in V

 I_0 is the saturation current in A

 $V_t (= kT/q)$ is the thermal voltage (0.026V unless said otherwise)

 R_{dyn} is the dynamic resistance (Ω)

 I_r is the reverse current (or leakage current)

 I_p is the hole diffusion current flowing into the n side in a p^+n

q $(1.602 \times 10^{-19} \text{ C})$ is the electron charge in C

 D_p is the hole diffusivity in m^2/s

 D_n is the electron diffusivity in m^2/s

 A_{cs} is the cross section of the pn junc in m^2

 $d(p_n(x))/dx$ is the hole density grad. in the n-side in $/m^4$

p' is the excess hole density at x=0 in $/m^3$

 $p_{n0}(=n_i^2/N_D)$ is the equilib. hole density in the n-side in $/m^3$ $p_{p0}(=n_i^2/N_A)$

 L_p is the diffusion length of the holes in m

 L_n is the diffusion length of the electrons in m

 I_G thermal generation current

 τ_0 is the generation lifetime of the carriers in s

 τ_p is the lifetime of the holes in s

 W_i is the width of the junc. region in m

 η_I is the ideality factor, takes into account the recomb. effect

 ε_s is the semiconductor permittivity in F/m

 C_{jun} is the junction capacitance in F

 $N_{eff} = N_A N_D / (N_A + N_D)$

a is the gradient of the dopant density in $/m^4$

 V_0 is the forward-bias voltage in V

 D_{12} the transmission coefficient (prob. that tunnelling event will occur) D_h is a constant

 m_e^* is the effective mass of the electrons in kg

 d_b is the barrier width in m

 $h'(=1.05 \times 10^{-34} J \cdot s)$ is Planck's constant divided by 2π

 I_{tun} is the tunneling current in A

 S_1 and S_2 are the respective densities of states of E. bands in the two

sides of the PN junction in $/m^3$

 f_t is a tunneling freq. parameter in $m^4/s \cdot eV$

 E_c is the E. at the conduction band edge in eV

É is the upper E. limit for tunneling in eV

 \acute{E}_{cr}^2 is the critical field

 V_{br} is the breakdown voltage in V

 j_n is the electron current density in A/m^2

 j_p is the hole current density in A/m^2

 $j_T (= j_n + j_p)$ is the total current density in A/m^2

 α_i is the electron ionization rate in /m

 β_i is the hole ionization rate in /m

L is the length of the ionization region in m M_n is the electron multiplication factor

 E_q is the E. gap of the semiconductor in eV

 \hat{i}^2 is the shot noise (generated when carriers cross a barrier) in A^2

 I_d is the diode current in A I_0 is the saturation current in A

 δf is the freq. range in Hz ξ_1 and ξ_2 are the respective electron affinities in the two semiconductors E_{q1} is the E. gap of the narrow-gap p-type semiconductor in eV ΔE_n is the E. difference between the conduction band edge and the Fermi level in the wide-gap semiconductor in eV ΔE_n is the E. difference between the valence band edge and the Fermi level in the narrow-gap semiconductor in eV ϵ_1 and ϵ_2 are the respective permittivities of the p-type and n-type semiconductors in F/m v_x is the velocity of the electrons in the +x direction in m/s m_e^* is the effective mass of the electrons in kg $\langle v_x \rangle$ is the average velocity of electrons in m/s f_{vx} is the velocity distribution of the electrons $\partial n/\partial E$ is the rate at which the electron density changes with E. band in $/m^3 \cdot eV$ I_{sm} is the current of electrons moving from the semiconductor into the metal (pos. value) $A^* (= 4\pi q m_e^* k^2/h^3 = 1.2 \times 10^6 A/m^2 \cdot K^2$ is called the Richardson constant E_n is the E. diff. between the semiconductor Fermi lvl and the conduction band edge in eV Φ_B is the barrier height in eV E_{∞} is a parameter dependent on the dopant density in J I_f is a pre-exponential constant that depends on the field-emission process in A Φ_0 is the location of the surface Fermi level in eV E' is the electric field in V/m $\Delta\Phi_B$ is the resulting lowering in the barrier height in eV - usually quite small ($\approx 0.01eV$) I_n is the minority carrier current in A γ^* is the minority carrier injection ratio I is the total current flowing across the Schottky junction in A a' is the dopant layer thickness in m n_1 is the interface dopant density in $/m^3$ n_2 is the substrate donor density in $/m^3$ W is the depletion-layer width in m Δd is the distance away from the interface in m Φ_B^* is the effective barrier height in m p_1 is the surface dopant density in $/m^3$ p_2 is the surface dopant density in $/m^3$ R_c is the contact resistance in Ω R_{sh} is the shunt resistance in Ω r_c is the specific contact resistance in $\Omega \cdot m^2$ d_c is the width of the contact in m L is the contact length in m r_{sheet} is the semiconductor sheet resistance in Ω /square

 L_{sh} is the length of the shunt path in m