Reinforcement Learning II

Julien Prat (CNRS, IP Paris)
November 2023

Dynamic Programming

 Dynamic Programming (DP) is an optimization method that solves complex problems by breaking them down into simpler subproblems in a recursive manner.

- Dynamic Programming assumes that the agent knows:
 - ☐ The structure of the model
 - ☐ The law of motion of the state variable, including the impact of the control variable

Bayesian Learning

 Combining Bayesian Learning with DP alllows one to relax the assumption that the law of motion of the state variable is known with certainty.

- Bayesian learning still requires that the agent knows:
 - ☐ The structure of the model
 - ☐ The probabilistic structure of the law of motion of the state
- Furthermore Bayesian learning also requires that we specify the prior of the agent

Reinforcement Learning

- In practice, the environment can be too complex to build an explicit model.
- Reinforcement learning is model free.
 It does not require knowledge of the payoff function and law of motion of the state.
- The agent learns how to maximize her reward by repeatedly interacting with the environment.

Reinforcement Learning

• DP can be seen as subfield of RL (MDP stands for Markov Decision

Process Policy iteratiton Dynamic **Programming** Value iteration On policy Monte-Carlo Off policy On policy Temporal-Difference **General MDP** Model free Off policy Q-learning (Off policy) Sarsa (On policy) Model based Dyna Reinforcement Linear combination of features Learning Value function **Neural Network** approximation Other... Large-scale MDP Policy gradient Natural Policy gradient Actor-Critic

Source: Zhao Mingming's class notes

Monte-Carlo

• Fix the policy function π and define the associated value function

$$v^{\pi}(s_0) = E^{\pi} \left[\sum_{t=0}^{T} \gamma^t r(s_{t+1}, s_t | s_0, a_t^{\pi}) \right],$$

where T is the terminal time the episode.

- Run Monte-Carlo simulations to approximate the expected return of the policy function π with the empirical mean return.
- By the law of large numbers, the average value converges to the expected value.
- Note that a simulator for the payoff and transition functions are required.

First-visit MC prediction, for estimating $V \approx v_{\pi}$

```
Input: a policy \pi to be evaluated

Initialize:

V(s) \in \mathbb{R}, arbitrarily, for all s \in \mathcal{S}

Returns(s) \leftarrow an empty list, for all s \in \mathcal{S}

Loop forever (for each episode):

Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T

G \leftarrow 0

Loop for each step of episode, t = T-1, T-2, \ldots, 0:

G \leftarrow \gamma G + R_{t+1}

Unless S_t appears in S_0, S_1, \ldots, S_{t-1}:

Append G to Returns(S_t)

V(S_t) \leftarrow average(Returns(S_t))
```

Model Free Control

- Extend insights from prediction to optimize the value function of an unknown MDP.
- Model Free control applicable when:
 - ✓MDP model is unknown, but experience can be sampled.
 - ✓MDP model is known, but is too big to use, except by samples.
- Define Q-function or state-action value function

$$Q(s,a) = E\left[\sum_{i=0}^{\infty} \gamma^{i} r(s_{t+i}, a_{t+i}) \,|\, s_{t} = s, a_{t} = a\right].$$

Monte-Carlo estimation of action values

- With a model, state values are sufficient to determine a policy. One simply looks one period ahead and choose the action that yields the optimal reward plus next period value.
- Without a model, one must explicitly estimate the value of each actionstate pair.
- Monte-Carlo simulations can be used to estimate $Q_{\pi}(s,a)$, i.e. the value of starting in (s,a) and following the policy π .
- Estimation converges under the following hypotheses:
 - 1. Infinite number of episodes;
 - 2. Exploring starts: all state-action pairs have a nonzero probability of being selected at the start of an episode.

Monte-Carlo Control

- After each simulated episode, update the guessed policy by making it greedy with respect to the action value function.
- Using the action value function to update the policy ensures that we do not need a model to construct the greedy policy.
- Alternate between evaluation and improvement on an episode-byepisode basis.

Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$ Initialize: $\pi(s) \in \mathcal{A}(s)$ (arbitrarily), for all $s \in \mathcal{S}$ $Q(s, a) \in \mathbb{R}$ (arbitrarily), for all $s \in S$, $a \in A(s)$ $Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, a \in \mathcal{A}(s)$ Loop forever (for each episode): Choose $S_0 \in \mathcal{S}$, $A_0 \in \mathcal{A}(S_0)$ randomly such that all pairs have probability > 0Generate an episode from S_0, A_0 , following $\pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$ Loop for each step of episode, $t = T-1, T-2, \ldots, 0$: $G \leftarrow \gamma G + R_{t+1}$ Unless the pair S_t , A_t appears in S_0 , A_0 , S_1 , A_1 , ..., S_{t-1} , A_{t-1} : Append G to $Returns(S_t, A_t)$ $Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))$ $\pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)$

Temporal-Difference Learning

Monte-Carlo learns from completed episodes

$$V(s) \leftarrow V(s) + \alpha [G - V(s)],$$

where α is the learning rate parameter and $G \equiv \sum_{t=0}^{L} \gamma^t r_t$ is the simulated return.

• Temporal-Difference uses bootstrapping to learn from incomplete episodes, i.e. learning occurs at *every step*:

$$V(s) \leftarrow V(s) + \alpha[r + \gamma V(s') - V(s)].$$

DP vs. TD

DP Backups

$$v^{\pi}(s) \leftarrow E^{\pi}[r(s', s, a) + \gamma v^{\pi}(s')]$$

TD Backups

$$v^{\pi}(s) \leftarrow v^{\pi}(s) + \alpha[r(s', s, a) + \gamma v^{\pi}(s') - v^{\pi}(s)]$$

Source: David Silver's class notes

Sarsa

Apply TD to action value function:

$$Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma Q(s',a') - Q(s,a)].$$

 Update performed after every transition from a nonterminal state.

 Transitions and updates are both determined by an on-policy algorithm.

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

Q(S,A) \leftarrow Q(S,A) + \alpha \big[ R + \gamma Q(S',A') - Q(S,A) \big]

S \leftarrow S'; A \leftarrow A';

until S is terminal
```

Q-learning

Use off-policy TD control

$$Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a} Q(s',a) - Q(s,a)].$$

• Update is independent of policy that determines which stateaction pairs are visited (and thus updated).

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Take action A, observe R, S'

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]

S \leftarrow S'

until S is terminal
```

Q-learning

- Since $V(s) = max_aQ(s,a)$, Q-learning algorithm converges to the solution of Value Function iteration.
- However, there is a key difference:
 - Value function iteration requires knowledge of the MDP.
 - Q-learning can be performed without an explicit model of the MDP. Instead, one needs to simulate enough exploration paths.
- Greedy algorithm might prevent exploration (remember the state-action space must be scanned). ε -greedy exploration:
 - ✓ With probability 1-ε select greedy action
 - ✓ With probability ε select action at random

Greedy policy improvements

Unifying Matrix

• Monte-Carlo:

- Pros: No bias, little dependence to initial conditions, works in non-Markovian settings
- Cons: requires completed episodes, high variance

• <u>Temporal Difference:</u>

- Pros: Usually faster than MC, works in non-terminating environments (infinite horizon), low variance
- Cons: sensitive to initial conditions, biased

Source: David Silver's class notes

Large Scale MDPs

- In large scale problem, the table representation of the Q-function is too big and has to be approximated:
- Linear approximation of the value function

$$Q_{ heta}(x,a) = \sum_{r=1}^K heta_r \phi_r(x,a) = \phi^T(x,a) heta$$

where vector θ is identified by gradient descent to minimize error.

2. Neural network as function approximater.

Source: "Deep reinforcement learning enabled self-learning control for energy efficient driving", Qi et al., 2019