

Embedded System Hardware

Peter Marwedel Informatik 12 TU Dortmund Germany

© Springer, 2010

2012年 11 月 13 日

These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

Motivation

(see lecture 1): "The development of ES cannot ignore the underlying HW characteristics. Timing, memory usage, power consumption, and physical failures are important."

 $\int P dt$

Reasons for considering hard- and software:

Real-time behavior

- Efficiency
 - Energy

- Security

Reliability

Structure of this course

Generic loop: tool chains differ in the number and type of iterations Numbers denote sequence of chapters

Embedded System Hardware

Embedded system hardware is frequently used in a loop ("hardware in a loop"): display information A/D converter processing sample-and-hold D/A converter (physical) actuators sensors environment cyber-physical systems

Many examples of such loops

- Heating
- Lights
- Engine control
- Power supply
- Robots

© P. Marwedel, 2011

Sensors

Processing of physical data starts with capturing this data. Sensors can be designed for virtually every physical and chemical quantity, including

- weight, velocity, acceleration, electrical current, voltage, temperatures, and
- chemical compounds.

Many physical effects used for constructing sensors.

Examples:

- law of induction (generat. of voltages in a magnetic field),
- light-electric effects.

Huge amount of sensors designed in recent years.

Example: Acceleration Sensor

Courtesy & ©: S. Bütgenbach, TU Braunschweig

Charge-coupled devices (CCD) image sensors

Based on charge transfer to next pixel cell

Corresponding to "bucket brigade device" (German: "Eimerkettenschaltung")

CMOS image sensors

Based on standard production process for CMOS chips, allows integration with other components.

See also B. Diericks: CMOS image sensor concepts. Photonics West 2000 Short course (Web)

Comparison CCD/CMOS sensors

Property	CCD	CMOS
Technology optimized for	Optics	VLSI technology
Technology	Special	Standard
Smart sensors	No, no logic on chip	Logic elements on chip
Access	Serial	Random
Size	Limited	Can be large
Power consumption	Low	Larger
Video mode	Possibly too slow	ok
Applications	Situation is changing over the years	

Example: Biometrical Sensors

e.g.: Fingerprint sensor

© P. Marwedel, 2010

Artificial eyes (1)

© Dobelle Institute (was at www.dobelle.com)

Artificial eyes (2)

Translation into sound
 [http://www.seeingwithsound.com/etumble.htm]

Other sensors

- Rain sensors for wiper control ("Sensors multiply like rabbits" [ITT automotive])
- Pressure sensors
- Proximity sensors
- Engine control sensors
- Hall effect sensors

Signals

Sensors generate signals

Definition: a **signal** s is a mapping

from the time domain D_T to a value domain D_V :

$$s: D_T \to D_V$$

 D_T : continuous or discrete time domain

 D_V : continuous or discrete value domain.

Discretization

Peter Marwedel Informatik 12 TU Dortmund Germany

© Springer, 2010

These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

Discretization of time

Digital computers require discrete sequences of physical values

Discrete time domain

Sample-and-hold circuits

Sample-and-hold circuits

Clocked transistor + capacitor; Capacitor stores sequence values

- e(t) is a mapping $\mathbb{R} \to \mathbb{R}$
- h(t) is a **sequence** of values or a mapping $\mathbb{Z} \to \mathbb{R}$

Do we lose information due to sampling?

Would we be able to reconstruct input signals from the sampled signals?

approximation of signals by sine waves.

Approximation of a square wave (1)

Target: square wave with period p_1 =4

$$e'_{K}(t) = \sum_{k=1,3,5,..}^{K} \frac{4}{\pi k} \sin\left(\frac{2\pi t}{p_{k}}\right)$$

with $\forall k: p_k = p_1/k$: periods of contributions to e'

Approximation of a square wave (2)

$$e'_{K}(t) = \sum_{k=1,3,5,..}^{K} \frac{4}{\pi k} \sin\left(\frac{2\pi t}{4/k}\right)$$

Approximation of a square wave (3)

$$e'_{K}(t) = \sum_{k=1,3,5,..}^{K} \frac{4}{\pi k} \sin\left(\frac{2\pi t}{4/k}\right)$$

Linear transformations

Let $e_1(t)$ and $e_2(t)$ be signals

Definition: A transformation Tr of signals is linear iff

$$Tr(e_1 + e_2) = Tr(e_1) + Tr(e_2)$$

In the following, we will consider linear transformations.

We consider sums of sine waves instead of the original signals.

Aliasing

Periods of p=8,4,1 Indistinguishable if sampled at integer times, p_s =1

Aliasing (2)

Reconstruction impossible, if not sampling frequently enough

How frequently do we have to sample?

Nyquist criterion (sampling theory):

Aliasing can be avoided if we restrict the frequencies of the incoming signal to less than half of the sampling rate.

 $p_s < \frac{1}{2} p_N$ where p_N is the period of the "fastest" sine wave or $f_s > 2 f_N$ where f_N is the frequency of the "fastest" sine wave f_N is called the **Nyquist frequency**, f_s is the **sampling rate**.

See e.g. [Oppenheim/Schafer, 2009]

Anti-aliasing filter

A filter is needed to remove high frequencies

Examples of aliasing in computer graphics

Original

Sub-sampled, no filtering

Examples of aliasing in computer graphics (2)

Discretization of values: A/D-converters

Digital computers require digital form of physical values

A/D-conversion; many methods with different speeds.

Flash A/D converter

Resolution

- Resolution (in bits): number of bits produced
- Resolution Q (in volts): difference between two input voltages causing the output to be incremented by 1

$$Q = \frac{V_{FSR}}{n} \quad \text{with}$$

Q: resolution in volts per step

 V_{FSR} : difference between largest

and smallest voltage

n: number of voltage intervals

Example:

 $Q = V_{ref}/4$ for the previous slide

Resolution and speed of Flash A/D-converter

Parallel comparison with reference voltage

Speed: O(1)

Hardware complexity: O(n)

Applications: e.g. in video processing

Higher resolution: Successive approximation

Key idea: binary search:

Set MSB='1'

if too large: reset MSB

Set MSB-1='1'

if too large: reset MSB-1

Speed: $O(\log_2(n))$

Hardware complexity: $O(\log_2(n))$

with n=# of distinguished

voltage levels;

slow, but high precision possible.

Successive approximation (2)

Application areas for flash and successive approximation converters

Quantization Noise

Quantization Noise

Signal to noise ratio

signal to noise ratio (SNR) [db] =
$$20 \log_{10} \left(\frac{\text{effective signal voltage}}{\text{effective noise voltage}} \right)$$

e.g.: $20 \log_{10}(2)=6.02$ decibels

Signal to noise for ideal n-bit converter : n * 6.02 + 1.76 [dB] e.g. 98.1 db for 16-bit converter, \sim 160 db for 24-bit converter

Additional noise for non-ideal converters

Summary

Hardware in a loop

- Sensors
- Discretization
 - Sample-and-hold circuits
 - Aliasing (and how to avoid it)
 - Nyquist criterion
 - A/D-converters
 - Quantization noise

SPARE SLIDES

Flash A/D converter

* Frequently, the case $h(t) > V_{ref}$ would not be decoded

Quantization noise for audio signal

Source: [http://www.beis.de/Elektronik/DeltaSigma/DeltaSigma.html]

