Review of Lecture 6

• $m_{\mathcal{H}}(N)$ is polynomial

if ${\mathcal H}$ has a break point k

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$
 maximum power is N^{k-1}

• The VC Inequality

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 7: The VC Dimension

Outline

• The definition

VC dimension of perceptrons

Interpreting the VC dimension

• Generalization bounds

Learning From Data - Lecture 7 2/24

Definition of VC dimension

The VC dimension of a hypothesis set \mathcal{H} , denoted by $d_{\mathrm{VC}}(\mathcal{H})$, is

the largest value of N for which $m_{\mathcal{H}}(N)=2^N$

"the most points ${\cal H}$ can shatter"

$$N \leq d_{\mathrm{VC}}(\mathcal{H}) \implies \mathcal{H}$$
 can shatter N points

$$k > d_{ ext{VC}}(\mathcal{H}) \implies k$$
 is a break point for \mathcal{H}

Learning From Data - Lecture 7 3/24

The growth function

In terms of a break point k:

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$

In terms of the VC dimension $d_{
m VC}$:

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{d_{\mathrm{VC}}} \binom{N}{i}$$
 maximum power is $N^{d_{\mathrm{VC}}}$

Learning From Data - Lecture 7 4/24

Examples

• \mathcal{H} is positive rays:

$$d_{
m VC}=1$$

• \mathcal{H} is 2D perceptrons:

$$d_{\rm VC}=3$$

• \mathcal{H} is convex sets:

$$d_{ ext{VC}}=\infty$$

VC dimension and learning

 $d_{\mathrm{VC}}(\mathcal{H})$ is finite $\implies g \in \mathcal{H}$ will generalize

- Independent of the learning algorithm
- Independent of the input distribution
- Independent of the target function

Learning From Data - Lecture 7 6/24

VC dimension of perceptrons

For
$$d=2$$
, $d_{\rm VC}=3$

In general,
$$d_{
m VC}=d+1$$

We will prove two directions:

$$d_{\rm VC} \le d+1$$

$$d_{\rm VC} \geq d+1$$

Here is one direction

A set of N=d+1 points in \mathbb{R}^d shattered by the perceptron:

$$\mathbf{X} = \begin{bmatrix} -\mathbf{x}_{1}^{\mathsf{T}} - \\ -\mathbf{x}_{2}^{\mathsf{T}} - \\ -\mathbf{x}_{3}^{\mathsf{T}} - \\ \vdots \\ -\mathbf{x}_{d+1}^{\mathsf{T}} - \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & & 0 \\ \vdots & & \ddots & & 0 \\ 1 & 0 & \dots & 0 & 1 \end{bmatrix}$$

X is invertible

Can we shatter this data set?

For any
$${f y}=\left[\begin{array}{c} y_1\\y_2\\\vdots\\y_{d+1}\end{array}\right]=\left[\begin{array}{c}\pm 1\\\pm 1\\\vdots\\\pm 1\end{array}\right]$$
 , can we find a vector ${f w}$ satisfying

$$sign(Xw) = y$$

Easy! Just make
$$Xw = y$$

which means
$$\mathbf{w} = X^{-1}\mathbf{y}$$

We can shatter these d+1 points

This implies what?

[a]
$$d_{\text{VC}} = d + 1$$

[b]
$$d_{\text{VC}} \ge d+1$$
 \checkmark

[c]
$$d_{\text{VC}} \leq d+1$$

[d] No conclusion

Learning From Data - Lecture 7 10/24

Now, to show that $d_{vc} \leq d+1$

We need to show that:

- [a] There are d+1 points we cannot shatter
- **[b]** There are d+2 points we cannot shatter
- [c] We cannot shatter any set of d+1 points
- [d] We cannot shatter any set of d+2 points \checkmark

11/24

Take any d+2 points

For any d+2 points,

$$\mathbf{x}_1, \cdots, \mathbf{x}_{d+1}, \mathbf{x}_{d+2}$$

More points than dimensions \implies we must have

$$\mathbf{x}_j = \sum_{i \neq j} \mathbf{a_i} \; \mathbf{x}_i$$

where not all the a_i 's are zeros

So?

$$\mathbf{x}_j = \sum_{i \neq j} \mathbf{a}_i \; \mathbf{x}_i$$

Consider the following dichotomy:

$$\mathbf{x}_i$$
's with non-zero \mathbf{a}_i get $y_i = \operatorname{sign}(\mathbf{a}_i)$

and
$$\mathbf{x}_j$$
 gets $y_j = -1$

No perceptron can implement such dichotomy!

Why?

$$\mathbf{x}_j = \sum_{i \neq j} a_i \; \mathbf{x}_i \implies \mathbf{w}^\mathsf{T} \mathbf{x}_j = \sum_{i \neq j} a_i \; \mathbf{w}^\mathsf{T} \mathbf{x}_i$$

If
$$y_i = \operatorname{sign}(\mathbf{w}^\mathsf{T} \mathbf{x}_i) = \operatorname{sign}(a_i)$$
, then $a_i \mathbf{w}^\mathsf{T} \mathbf{x}_i > 0$

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{j} = \sum_{i \neq j} a_{i} \; \mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} \; > \; 0$$

Therefore,
$$y_j = \operatorname{sign}(\mathbf{w}^\mathsf{T} \mathbf{x}_j) = +1$$

Putting it together

We proved
$$d_{
m VC} \leq d+1$$
 and $d_{
m VC} \geq d+1$

$$d_{\mathrm{VC}} = d + 1$$

What is d+1 in the perceptron?

It is the number of parameters w_0, w_1, \cdots, w_d

Outline

• The definition

VC dimension of perceptrons

Interpreting the VC dimension

• Generalization bounds

Learning From Data - Lecture 7 16/24

1. Degrees of freedom

Parameters create degrees of freedom

of parameters: analog degrees of freedom

 d_{VC} : equivalent 'binary' degrees of freedom

Learning From Data - Lecture 7 17/24

The usual suspects

Positive rays ($d_{VC} = 1$):

$$h(x) = -1$$

$$h(x) = +1$$

Positive intervals ($d_{VC} = 2$):

$$h(x) = -1$$
 $h(x) = +1$ $h(x) = -1$

Not just parameters

Parameters may not contribute degrees of freedom:

 $d_{
m VC}$ measures the **effective** number of parameters

Learning From Data - Lecture 7 19/24

2. Number of data points needed

Two small quantities in the VC inequality:

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \leq 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2 N}$$

If we want certain ϵ and δ , how does N depend on d_{VC} ?

Let us look at

$$N^{\mathbf{d}}e^{-N}$$

$$N^{\mathbf{d}}e^{-N}$$

Fix $N^{\mathbf{d}}e^{-N} = \text{small value}$

How does N change with d?

Rule of thumb:

$$N \geq 10 d_{\rm VC}$$

Learning From Data - Lecture 7 21/24

Outline

• The definition

VC dimension of perceptrons

Interpreting the VC dimension

Generalization bounds

Learning From Data - Lecture 7

Rearranging things

Start from the VC inequality:

$$\mathbb{P}[|E_{\text{out}} - E_{\text{in}})| > \epsilon] \leq 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2 N}$$

Get ϵ in terms of δ :

$$\delta = 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2 N} \implies \epsilon = \sqrt{\frac{8}{N}\ln\frac{4m_{\mathcal{H}}(2N)}{\delta}}$$

With probability $\geq 1-\delta$, $|E_{\mathrm{out}}-E_{\mathrm{in}}| \leq \Omega(N,\mathcal{H},\delta)$

Generalization bound

With probability
$$\geq 1-\delta$$
, $E_{
m out}-E_{
m in} \leq \Omega$

$$E_{
m out} - E_{
m in} \, < \Omega$$

With probability $\geq 1 - \delta$,

$$E_{
m out} \leq E_{
m in} + \Omega$$