Algorithmes génétiques

Nicolas Bredeche Sorbonne Université, CNRS nicolas.bredeche(·)sorbonne-universite.fr

Optimisation: éléments

2

Problème: $y^* = argopt_{y \in Y} f(y)$

Solution candidate: a := (y, f(y)) Formulation simplifiée

Blackbox optimisation and robotics

 $f(y): \mathbb{R}^n \to \mathbb{R}$

par exemple: surface explorée

$$y^* = argopt_{y \in Y} f(y)$$

Définition de la classe de problèmes

Propriétés

- Espace de recherche
 - binaire, symbolique, continu
 - structuré ou non
- Fonction de performance
 - ▶ lien ténu entre représentation et performance
 - évaluation potentiellement bruitée
- Relation faible entre espace de recherche et objectif
 - I'espace de recherche contraint la forme des solutions
 - la mesure de performance permet de comparer des solutions

mesure à maximiser: distance euclidienne entre la position de départ et celle de fin sur une période de N=400 pas de temps

$$f(y) = score(y) = \sqrt{(pos_{end} - pos_{init})^2}$$

un algorithme naif: la recherche au hasard

cf.TP #2 - optimisation.py

Optimisation

- Des méthodes pour des classes de problèmes
 - ▶ Algorithme de gradient (recherche locale, suit le gradient si il existe)
 - ► Hill-climbing (recherche locale, change un élément à la fois)
 - ▶ Méthodes énumératives (recherche globale, espace de recherche discret)
 - Méthodes heuristiques (espaces structurés)
 - Méta-heuristique et méthodes stochastiques
 - recherche aléatoire (recherche globale, sans a priori) [Monte carlo, Tabu]
 - recuit simulé (recherche globale) ["simulated annealing"]
 - méthodes bio-inspirées (recherche globale) [DE, PSO, Algo. évol., ...]

8

C'est (presque) la même chose avec le café!

 θ : parameters

f : objective function

 $f(\theta)$: fitness

problème classique d'optimisation boîte noire

[Herdy, 1997]

algorithmes évolutionniste/évolutionnaire -- "evolutionary computation"

• Algorithmes génétiques

- ► Holland, 1975 (IA et Biologie)
- représentation: chaînes de bits

Stratégies d'évolution

- ▶ Rechenberg, Schwefel, 1965 (Math Appl.)
- représentation: vecteur de réels

• Programmation génétique

- ► Koza, 1992
- représentation: arbre, DAG, graphe, AdF

Programmation évolutionnaire

- ▶ Fogel, 1966
- représentation: Automates

nicolas.bredeche@upmc.fr

Algorithmes génétiques

Recherche dans un espace d'entiers ou de symboles

Solution candidate: a := (y, f(y))

→ algorithmes génétiques

Exemples d'espace de recherche:

- composition d'une équipe de football
- découverte d'un code secret
- construire un emploi du temps

$$a := (y, s, f(y), f'(y), f''(y))$$

12

Opérateurs de sélection

N individus Sélection N' individus

- Définition
 - ▶ Sélectionne une sous-partie des solutions candidates
- Exemple
 - Renvoie les N meilleurs individus parmi M

- K-tournament
 - ▶ sélectionner k individus
 - garder le meilleur
- Fitness-proportionate

- (μ,λ)-ES
 - sélectionner les μ meilleurs, générer λ enfants, garder λ
- $(\mu + \lambda)$ -ES ("élitiste")
 - ightharpoonup sélectionner les μ meilleurs, générer λ enfants, garder μ et λ

Tableau

- Propriétés
 - Déterministe vs. stochastique
 - Compromis exploration/exploitation
 - Ne pas confondre l'archivage et la sélection
 - ex.: la sélection avec élitisme vs. archivage des meilleurs

16

- Définition
 - ▶ Construit un nouvel individu à partir d'un (ou plusieurs) individus
- Exemple
 - Modifie aléatoirement un élément du génome
- Propriétés
 - Conservatif vs. disruptif

Opérateur de variation: mutation

parent variation enfant

- Définition
 - ▶ Construit un nouvel individu à partir d'un seul individu parent
- Exemples

- Définition
 - ► Construit un nouvel individu à partir de 2 (ou +) individus parents
- Exemples:

Stochastique

- Les opérateurs de variation sont stochastiques
 - il s'applique avec une certaine probabilité
 - "probabilité de mutation", "probabilité de croisement"
 - il s'applique de manière déterministe ou non
 - la mutation bit-flip choisit un paramètre au hasard

Cas d'étude

Optimiser l'exploration

Blackbox optimisation and robotics

$$f(y): \{-1,0,1\}^6 \to \mathbb{R}$$

$$y^* = argopt_{y \in Y} f(y)$$

nicolas.bredeche@upmc.fr

Evolutionary Robotics

22

 θ : parameters

f : objective function

problème classique d'apprentissage par renforcement

 $f(\theta)$: fitness

Problème: trouver une combinaison de 0 et 1

- Objectif: maximiser la fonction fitness
- Population initiale: 4 individus tirés au hasard
- Opérateur de Sélection : prend le meilleur
- Opérateurs de Variation : croisement ou mutation
 - Probabilité de croisement: p ; probabilité de mutation: I-p ; avec p=0.5
 - Croisement: on mélange le début d'un génome et la fin d'un second
 - Mutation: on change une valeur au hasard

Remarques:

- 1. les opérateurs sont ici choisis arbitrairement. D'autres choix sont possibles.
- 2. on imagine que les scores sont calculés par un simulateur externe qui renvoie un scalaire entre 0 et 6 pour un génome donné en entrée

nicolas.bredeche@upmc.fr random generator: <0.1 0.3 0.6 0.1 0.7 0.3 0.9 0.9 0.7 0.1 0.9 0.2 0.4 0.1 0.9 0.5 0.6 0.9>

déroulement de l'algorithme

nicolas.bredeche@upmc.fr

Comment mesurer la performance d'une solution?

le capteur 2 active le moteur I

- Paysage de la fonction fitness
 - ▶ Une fitness renvoie une valeur unique...
 - ▶ ce "score" peut aider (ou non) la recherche
- Combiner plusieurs objectifs
 - ▶ Fitness agrégée (combinaison linéaire d'objectifs)
 - ► Fitness lexico-graphique (ordonner les objectifs)
 - Multi-objectif

28

Comment tracer vos résultats?

En pratique

- Il s'agit d'une méthode stochastique, donc: faire plusieurs runs!
- Sur le calcul de la fitness: réévaluer pour bien estimer la qualité
- Fonction fitness:
 - elle guide l'évolution. Il faut la définir avec soin (si possible).

Tableau

A retenir:

- Médianes plutôt que moyennes
- Evaluations plutôt que générations
- ▶ Répéter les expériences, poursuivre jusqu'à convergence
- En pratique:
 - meilleures performances au mieux: le choix de la solution
 - meilleures performances en moyenne: le choix de l'algorithme

Tableau

- **Objectif**: maximiser la correspondance entre une chaîne de bits et une autre (ex.:[1,1,1,1,1,1,1])
- Représentation d'un individu : {0, | }m
- Population initiale : N individus
- Opérateur de sélection : par tournoi de taille k
- Opérateurs de variation : mutation bit-flip (probabilité/bits)

en rouge, les paramètres à régler

nicolas.bredeche@upmc.fr

30

- 1 Connectez-vous sur www.wooclap.com/QCCFRA
- Vous pouvez participer

SMS

Vous pouvez participer

exemple pratique (sur Moodle) Algorithme génétique et maxOne

Fin du cours