Analysis III (Marciniak-Czochra)

Robin Heinemann

9. November 2017

Inhaltsverzeichnis

1	Gru	ndlagen der Maß- und Integrationstheorie	1
	1.1	Messbare Funktionen	11
	1.2	Integration	12

1 Grundlagen der Maß- und Integrationstheorie

Motivation: Erweiterung des Riemannintegrals auf einen größeren Bereich von Funktionen

Satz 1.1 (Kriterium für Riemann Integrierbarkeit) Sei $f:[a,b] o\mathbb{R}$ beschränkt. Dann ist f genau dann Riemann integrierbar, falls die Menge S der Unstetigkeiten von f eine Nullmenge ist, im Sinne, dass es für jedes für jedes $\varepsilon > 0$ eine abzählbare Familie von Intervallen I_i gibt, mit

$$S \subset \bigcup_{i=1}^{\infty} I_i$$

$$\sum_{i=1}^{\infty} |I_i| < \varepsilon$$

$$\sum_{i=1}^{\infty} |I_i| < \varepsilon$$

Bemerkung Insbesondere ist die Funktion

$$f: [0,1] \to \mathbb{R}, f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

nicht Riemann integrierbar.

Das Riemann-Integral der Funktion ist definiert über eine Zerlegnug des Definitionsbereiches in kleine Intervalle. Beim Lebesgue Integral wird stattdessen der Bildbereich zerlegt! Für eine nichtnegative $f:\Omega\to[0,\infty],\Omega\subset$ \mathbb{R}^n betrachten wir die Mengen

$$E_k := f^{-1}((t_k, t_{k+1}]) \subset \mathbb{R}^n$$

wobe
i $t_k=hk$ für ein vorgegebenens h>0, und approximieren dann das Integral vo
nfdurch

$$\sum_{i=1}^{\infty} t_k^{(h)} \mu(E_k) \le \int f(x) dx \le \sum_{i=1}^{\infty} t_{k+1}^{(h)} \mu(E_k)$$
 (*)

wobei das **Maß** $\mu: \mathcal{P}(\mathbb{R}^n) \to [0,\infty]$ eine Abbildung ist, welche das Maß der Menge $E=\mathcal{P}(\mathbb{R}^n)$ misst. Das Integral ergibt sich aus (*) im Limes $h\to 0$. Für das Lebesgue-Integral müssen wir ein geeignetes Maß definieren \to Lebesguemaß \mathcal{L}^n

$$\int_0^1 f(x) d\mathcal{L}^1(x) = \underbrace{\mathcal{L}^1(\mathbb{Q})}_0 \cdot 1 + \underbrace{\mathcal{L}^2(\mathbb{R} \setminus \mathbb{Q})}_1 \cdot 0 = 0$$

Definition 1.2 (Maßproblem) Wir suchen eine Abbildung $\mu: \mathcal{P}(\mathbb{R}^n) \to [0,\infty]$ mit den folgenden Eigenschaft

1.
$$\mu(A) \subseteq \mu(B) \forall A \subset B$$
 (Monotonie)

2.
$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i) \text{ falls } A_i \cap A_j = \emptyset \forall i \neq j$$
 (σ -Additivität)

3.
$$\mu([0,1]^n) = 1$$
 (Normierung)

4.
$$\mu(QA + y) = \mu(A)$$
 falls $Q \in O(n), y \in \mathbb{R}^n$ (Euklidische Invarianz)

Dieses Problem heißt Maßproblem. In einer etwas schwächeren Version kann man auch fordern

2.
$$\mu\left(\bigcup_{i=1}^{k} A_i\right) = \sum_{i=1}^{k} \mu(A_i)$$

4.
$$\mu(A+y) = \mu(A)$$
 für $y \in \mathbb{R}^n$

Satz 1.3 (Vitali: 1908) Es gibt keine Abbildung $\mu: \mathcal{P}(\mathbb{R}^n) \to [0, \infty]$ welche die Forderungen des Maßproblems erfüllt.

Beweis Sei $\mu: \mathcal{P}(\mathbb{R}^n) \to [0,\infty]$ eine Abbildung die die Forderungen des Maßproblems erfüllt. Sei $q_i, i \in \mathbb{N}$ eine Abzählung von $[0,1]^n \cap \mathbb{Q}^n$. Wir definieren die Äquivalenzrelation $x \sim y$ auf $E:=[0,1]^n$ durch $x \sim y \iff x-y \in \mathbb{Q}$. Nach dem Auswahlaxiom gibt es eine Menge $M_0 \subset [0,1]^n$, welche aus jeder Äquivalenzklasse genau ein Element enthält, das heißt es gilt:

1.
$$\forall y \in [0,1]^n \exists x \in M_0 : x \sim y \in \mathbb{Q}$$

2. Aus
$$x, y \in M_0, x - y \in \mathbb{Q} \implies x = y$$

Wir definieren $M_i=M_0+q_i$. Aus der Definition von M_i folgt $M_i\cap M_j=\emptyset \forall i\neq j$. In der Tat falls $x\in M_i\cap M_j$, dann $x-q_i\in M_0$ und $x-q_j\in M_0\stackrel{1}{\Rightarrow}q_i=q_j$. Außerdem gilt $[0,1]^n\subset\bigcup_{i=1}^\infty M_i\subset [0,2]^n$. Die erste Einbettung folgt aus 1., die zweite Einbettung gilt, da $y+q_j\in [0,2]^n \forall y\in M_0$ und $y\in [0,1]^n$ schließlich gilt $\mu(M_j)=\mu(M_0)\forall j\in \mathbb{N}$. Dies folgt aus den Forderungen 1., 3., 4. (abgeschwächte Version reicht).

$$\implies 1 = \mu([0,1]^n) \le \mu\left(\bigcup_{j=0}^{\infty} M_j\right) = \sum_{i=0}^{\infty} \mu(M_i) = \sum_{i=0}^{\infty} \mu(M_0) \implies \mu(M_i) = \mu(M_0) > 0$$

und

$$\mu\bigg(\bigcup_{i=0}^{\infty} M_i\bigg) = \infty$$

Aus 3. und 4. folgt andererseits

$$\mu([0,2]^n) = 2^n \mu([0,1]^n) = 2^n$$

$$\stackrel{(*)}{\Longrightarrow} \mu\left(\bigcup_{i=0}^{\infty} M_i\right) \le \mu([0,2]^n) = 2^n < \infty$$

Bemerkung Jedes Maß, welche die Eigenschaften des Maßproblems erfüllt, kann also nicht auf der ganzen $\mathcal{P}(\mathbb{R}^n)$ definiert sein, sondern auf einer Untermenge der $\mathcal{P}(\mathbb{R}^n)$.

Frage: Welche ist die "größte" (eine "gute") Untermenge $\mathcal{A}\subset\mathcal{P}(\mathbb{R}^n)$, sodass es eine Lösung des Maßproblems gibt?

Definition 1.4 (Algebra und \sigma-Algebra) Eine Algebra $\mathcal A$ ist die Familie von Teilmengen einer gegebenen Menge X mit

- $X \in \mathcal{A}$
- $A \in \mathcal{A} \implies A^C := X \setminus A \in \mathcal{A}$
- $A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$

Falls

$$(A_k)_{k\in\mathbb{N}}\subset\mathcal{A}\implies\bigcup_{k\in\mathbb{N}}A\in\mathcal{A}$$

so spricht man von einer σ -Algebra.

Lemma 1.5 Sei X eine Menge, \mathcal{A} eine σ Algebra und $(A_k)_{k\in\mathbb{N}}\subset\mathcal{A}$. Dann gehören $\emptyset,\bigcap_{k\in\mathbb{N}}A_k$ und $A_1\setminus A_2$ zu \mathcal{A} .

Beweis (Übung)

Definition 1.6 (Erzeugte und relative \sigma-Algebra) Für $S \subset \mathcal{P}(X)$ wird

$$\Sigma(S) = \Sigma(S \mid X) := \bigcap \{ \mathcal{A} \subset \mathcal{P}(X) \mid \mathcal{A} \text{ ist eine } \sigma\text{-Algebra mit } S \subseteq \mathcal{A} \}$$

als die von S erzeugte σ -Algebra bezeichnet. $\forall Y \subset X$ definieren wir die relative σ -Algebra

$$\mathcal{A} \cap Y := \{ A \cap Y \mid A \in \mathcal{A} \}$$

Lemma 1.7 Die erzeugte relative σ -Algebra sind wohldefiniert. Für alle Mengen $S \subset \mathcal{P}(X), Y \subset X$ gilt

$$\Sigma(S \cap Y \mid Y) = \Sigma(S \mid X) \cap Y$$

Beweis (Übungen)

Definition 1.8 (Topologischer Raum) Ein topologischer Raum ist ein Paar (X, \mathcal{O}) bestehend aus Menge X und $\mathcal{O} \subset \mathcal{P}(X)$ mit

- $\emptyset, X \in \mathcal{O}$
- $U, V \in \mathcal{O} \implies U \cap V \in \mathcal{O}$
- $(U_k)_{k\in I}\subset\mathcal{O}\implies\bigcup_{k\in I}U_k\in\mathcal{O}$ für eine beliebige Indexmenge I.

Die Elemente von $\mathcal O$ werden als **offene Menge** bezeichnet.

Bemerkung Topologische Raum ist abgeschlossen unter endlichen Schnitten und abzählbaren Vereinigungen.

Definition 1.9 (Borel- σ **-Algebra, Borel Menge)** Ist X ein topologischer Raum, so ist die Borel- σ -Algebra $\mathcal{B}(X)$ diejenige σ -Algebra, die von den offenen Mengen erzeugt wird. Ihre Elemente heißen Borel-Mengen.

$$\mathcal{B}^n := \mathcal{B}(\mathbb{R}^n)$$

$$\mathcal{B} := \mathcal{B}^1$$

Bemerkung Die σ -Algebra die von den abgeschlossenen Mengen erzeugt wird, ist ebenfalls identisch mit der Borel σ -Algebra.

Definition 1.10 (Messraum, Maß, Maßraum) Eine Menge X mit einer σ -Algebra $\mathcal{A} \subset \mathcal{P}(X)$ heißt **Messraum**. Ein **Maß** ist eine Abbildung $\mu : \mathcal{A} \to [0, \infty]$ mit

•
$$\mu(\emptyset) = 0$$

•
$$\mu(\bigcup_{k\in\mathbb{N}}A_k)=\sum_{k\in\mathbb{N}}\mu(A_k)$$
 für disjunkte Mengen

 σ -Additivität

Die Elemente in \mathcal{A} heißen messbar, und (X, \mathcal{A}, μ) heißt **Maßraum**.

Definition 1.11 (\sigma-Finitheit) Ein Mah heißt σ -finit, falls es eine abzählbare Überdeckung $\{X_k\}_{k\in\mathbb{N}}\subset\mathcal{A}$ von X gibt, also

$$X = \bigcup_{k \in \mathbb{N}} X_k$$

sodass $\mu(X_k) < \infty \forall k$.

 μ heißt endlich falls $\mu(X) < \infty$. Bei Wahrscheinlichkeitsmaß $\mu(X) = 1$.

Beispiel 1.12 1. Zählmaß: Für X und $A = \mathcal{P}(X)$ setze für $A \in A$:

$$\mu(A) = \begin{cases} \#A & A \text{ endlich} \\ \infty & \text{sonst} \end{cases}$$

 μ ist endlich falls X endlich und σ -finit wenn X abzählbar.

2. Dirac-Maß: Für einen fest gewählten $x_0 \in X$ und $\mathcal{A} = \mathcal{P}(X)$ setzen wir für $A \subset X$

$$\mu(A) := \begin{cases} 0 & x_0 \notin A \\ 1 & x_0 \in A \end{cases}$$

3. Positive Linearkombination: μ_1, μ_2 Maße auf (X, \mathcal{A}) . Dann ist $\mu := \alpha_1 \mu_1 + \alpha_2 \mu_2$ für $\alpha_1, \alpha_2 \geq 0$ wieder ein Maß

Lemma 1.13 Sei (X, \mathcal{A}, μ) ein Maßraum und $Y \in \mathcal{A}$. Dann ist $\mu \mid_Y (A) := \mu(A \cap Y) \forall A \in \mathcal{A}$ wieder ein Maß auf (X, \mathcal{A}) . Durch Einschränken der σ -Algebra \mathcal{A} auf $\mathcal{A} \mid_Y := \{A \in \mathcal{A} \mid A \subset Y\}$ wird $(Y, \mathcal{A} \mid_Y, \mu \mid_Y)$ auch ein Maßraum. Falls (X, \mathcal{A}, μ) σ -finit, dann $(Y, \mathcal{A} \mid_Y, \mu \mid_Y)$ auch.

Notation: Zu $(A_k)_{k\in\mathbb{N}}\subset X$ schreiben wir

- $A_k \nearrow A(k \to \infty)$ falls $A_k \subset A_{k+1} \forall k \in \mathbb{N}$ und $A = \bigcup_{k \in \mathbb{N}} A_k$
- $A_k \setminus A(k \to \infty)$ falls $A_k \supset A_{k+1} \forall k \in \mathbb{N}$ und $A = \bigcap_{k \in \mathbb{N}} A_k$

Satz 1.14 Für jeden Maßraum (X, \mathcal{A}, μ) und $(A_k)_{k \in \mathbb{N}} \subset \mathcal{A}$ gilt

1.
$$A_1 \subset A_2 \implies \mu(A_1) \le \mu(A_2)$$
 (Monotonie)

2.
$$\mu(\bigcup_{k\in\mathbb{N}}A_k)\leq\sum_{k\in\mathbb{N}}\mu(A_k)$$
 (σ -Subadditivität)

3.
$$A_k \nearrow A \implies \mu(A_k) \nearrow \mu(A)$$
 für $(k \to \infty)$ (Stetigkeit von Unten)

4.
$$A_k \searrow A \implies \mu(A_k) \searrow \mu(A)$$
 für $(k \to \infty)$ und $\mu(A_1) < \infty$ (Stetigkeit von Oben)

Beweis 1. $A, B \in \mathcal{A}, A \subset B \implies B = A \dot{\cup} (B \setminus A), B \setminus A \in \mathcal{A} \implies \mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$

2. Wir definieren $(B_k)_{k\in\mathbb{N}}\subset\mathcal{A}$ durch

$$B_1 := A_1, B_{k+1} := A_{k+1} \setminus \bigcup_{j=1}^k A_k \implies \bigcup_{k \in \mathbb{N}} B_k \qquad \qquad = \bigcup_{k \in \mathbb{N}} A_k$$

Nach Definition gilt

$$\mu\left(\bigcup_{k\in\mathbb{N}}A_k\right) = \mu\left(\bigcup_{k\in\mathbb{N}}B_k\right) = \sum_{k\in\mathbb{N}}\mu(B_k) \le \sum_{k\in\mathbb{N}}\mu(A_k)$$

3. Definieren $(C_k)_{k\in\mathbb{N}}\subset\mathcal{A}$ durch

$$C_1 := A_1$$
$$C_{k+1} := A_{k+1} \setminus A_k$$

Es gilt

$$\implies \bigcup_{k \in \mathbb{N}} C_k = \bigcup_{k \in \mathbb{N}} A_k = A$$

$$\mu(A_k) = \sum_{j=1}^k \mu(C_j) \xrightarrow{k \to \infty} \sum_{k \in \mathbb{N}} \mu(C_k) = \mu(A) \le \sum_{k \in \mathbb{N}} \mu(A_k)$$

4. $D_k := A_1 \setminus A_k \forall k \in \mathbb{N}$. Damit ist $D_k \nearrow A_1 \setminus A$ und

$$\mu(A_1) - \mu(A_k) = \mu(A_1 \setminus A_k) \xrightarrow{k \to \infty} [3.]\mu(A_1 \setminus A) = \mu(A_1) - \mu(A)$$

Subtraktion von $\mu(A_1) < \infty$ liefert die Behaptung.

Beispiel 1.15 $\mu: \mathcal{P}(\mathbb{N}) \to [0,\infty], \mu(A) := \#A$. Die Mengenfolge $A_n := \{n,n+1,n+2,\dots\}$ ist fallend gegen die leere Menge, aber es ist

$$0 = \mu(\emptyset) \neq \lim_{n \to \infty} \mu(A_n) = \infty$$

Definition 1.16 (Borel-Maß) Set X ein topologischer Raum. Ein Maß auf einer Borel- σ -Algebra $\mathcal{B}(X)$ heißt Borel-Maß, falls es auf Kompakta stets endlich Werte annimmt.

Beispiel 1.17 Für $X = \mathbb{R}$ ist das Dirac-Maß ein Brel-Maß, aber nicht das Zählmaß.

Definition 1.18 (Regularität) Sei X ein topologischer Raum, (X, \mathcal{A}, μ) ein Maßraum. Das Maß μ heißt **regulär von außen**, wenn für $A \in \mathcal{A}$ gilt

$$\mu(A) = \inf\{\mu(U) \mid A \subset U, U \text{ offen}\}\$$

 μ heißt **regulär von innen**, wenn für $A \in \mathcal{A}$ gilt

$$\mu(A) = \sup \{ \mu(K) \mid K \subset A, K \text{kompakt} \}$$

Beispiel 1.19 Das Zählmaß mit $X = \mathbb{R}$, $A = \mathcal{B}$, ist regulär von inne, aber nicht von außen. Das Dirac-Maß ist regulär.

Definition (Kompaktheit) Sei X ein topologischer Raum und $A \subset X$. Dann nennt man A kompakt, wenn **jede** offene Überdeckung von A eine **endliche** Teilüberdeckung besitzt. Das beutet:

$$\forall I \exists I' \subset I, \big|I'\big| < \infty : A \subset \bigcup_{i \in I} A_i \implies A \subset \bigcup_{i \in I'} A_i$$

Bemerkung In einem metrischen Raum isnd die bisherigen Definitionen der Kompaktheit mit der neu eingeführten äquivalent.

Konstruktion von Maßen

Strategie:

- 1. Starte mit einem Prämaß λ auf einer Algebra endlichen, disjunkten Vereinigungen von Intervallen, λ = Summe der Längen
- 2. Dieses Prämaß kann zu einem äußeren Maß auf $\mathcal{P}(\mathbb{R})$ fortgesetzt werden (keine σ -Additivität)
- 3. Einschränkung auf Borel- σ -Algebra liefert ein Maß.

Definition 1.20 (Dynkin-System) Eine Familie $\mathcal{D} \subset \mathcal{P}(X)$, X Menge, heißt Dynkin-System, falls gilt:

- 1. $X \in \mathcal{D}$
- 2. $A \in \mathcal{D} \implies A^C \in \mathcal{D}$

3.
$$(A_k)_{k\in\mathbb{N}}\subset\mathcal{D}, A_k\cap A_l=\emptyset \forall k,l\in\mathbb{N}, k\neq l \implies \bigcup_{k\in\mathbb{N}A_k\in\mathcal{D}}$$

Bemerkung 1. Ein Dynkin-System ist abgeschlossen bezüglich Mengensubtraktion:

$$A, B \in \mathcal{D}, B \subset A \implies A \setminus B = A \cap B^C = (A^C \cup B)^C \in \mathcal{D}$$

2. Ist $S \subset \mathcal{P}(X)$, so ist

$$\mathcal{D}(S) = \bigcap \{\mathcal{D} \mid \mathcal{D} \text{ Dynkin-System}, S \subset \mathcal{D}\}$$

das von S erzeugte Dynkin-System

3. Das von S erzeugte Dynkin-System ist wohldefinieret, dass heiß, es ist eindeutig und tatsächlich ein Dynkin-System.

Lemma 1.21 Ist \mathcal{D} ein Dynkin-System und abgeschlossen bezüglich endlicher Schnitte oder alternativ bezüglich beliebiger (also nicht disjunkter) endlicher Vereinigung, so ist \mathcal{D} eine σ -Algebra

Lemma 1.22 Sei S eine (nicht leere) Familie von Teilmengen einer Menge X, die abgeschlossen ist unter endlichen Schnitten sind, dann folgt $\mathcal{D}(S) = \Sigma(S)$

Beweis Nach Definition gilt $\mathcal{D}\subset \Sigma(S)$. Die andere Inklusion folgt sofort, wenn wir zeigen, dass $\mathcal{D}(S)$ σ -Algebra ist. Nach Lemma 1.21 genügt es zu zeigen, dass $\mathcal{D}(S)$ abgeschlossen ist unter endlichen Schnitten. Definiere für ein beliebiges $A\in \mathcal{D}(S)$

$$D(A) := \{ B \in \mathcal{D} \mid A \cap B \in \mathcal{D} \} \subset \mathcal{D}$$

wir müssen beweisen $D(A) = \mathcal{D}$ für alle $A \in \mathcal{D}$. Es gilt

- 1. $X \in \mathcal{D}, A \cap X = A \in \mathcal{D} \implies X \in D(A)$
- 2. $B \in D(A) \implies B \in \mathcal{D}, A \cap B \in \mathcal{D}$ woraus folgt

$$A \cap B^C = A \setminus (B \cap A) \in \mathcal{D} \implies B^C \in D(A)$$

3. $B = \bigcup_{k \in \mathbb{N}} B_k, B_k \in D(A) \implies B_k \in \mathcal{D}, A \cap B_k \in \mathcal{D}$ woraus folgt, dass $B \in \mathcal{D}$ und

$$B \cap A = \bigcup_{k \in \mathbb{N}} (B_k \cap A) \in \mathcal{D} \implies B \in D(A)$$

Behauptung: $A \in S \implies S \subset D(A)$, denn: $B \in S \implies A \cap B \in S \implies B \in D(A)$. Da $\mathcal{D} = D(S)$ das kleinste Dynkin-System ist, das S enthätlt folgt $\mathcal{D} \subset D(A) \implies \mathcal{D} = D(A)$. Für beliebiges $U \in S, V \in \tilde{\mathcal{D}} = D(U)$ folgt nach Definition $U \cap V \in \mathcal{D}$. Dies impliziert $U \in D(V)$, also $S \subset D(V) \forall V \in \mathcal{D}$. Wie eben ist $D(V) \subset \mathcal{D}$, also $D(V) = \mathcal{D} \forall V \in \mathcal{D}$.

Bemerkung Lemma 1.22 lässt sich wie folgt anwenden:

- 1. Verifiziere eine Eigenschaft ε auf einer Menge $S\subset \mathcal{P}(X)$, die abgeschlossen ist unter endlichen Schnitten ist.
- 2. Zeige, dass die Menge aller Mengen, die ε erfüllen ein Dynkin-System ist.
- 3. Schließe, dass ε auf $\Sigma(S)$ gilt.

Satz 1.23 (Eindeutigkeit von Maßen) Sei (X, Σ, μ) ein Maßraum und $S \subset \mathcal{P}(X)$ Familie von Menge, die abgeschlossen unter endlichen Schnitten und $\Sigma = \Sigma(S)$. Weiter enthalte S eine Folge aufsteigender Mengen $(X_k)_{k \in \mathbb{N}} \subset S$ mit $X_k \nearrow X$ und $\mu(X_k) < \infty$ für alle $k \in \mathbb{N}$. Dann ist μ auf $\Sigma = \Sigma(S)$ durch die Werte auf S eindeutig bestimmt.

Beweis Sei $\tilde{\mu}$ ein weiteres Maß mit $\tilde{\mu} = \mu$ auf S. Dann gilt

$$\tilde{\mu}(X) = \lim_{k \to \infty} \tilde{\mu}(X_k) = \lim_{k \to \infty} \mu(X_k) = \mu(X)$$

zunächst $\mu(X) < \infty$. Idee:

$$\mathcal{D} = \{ A \in \Sigma \mid \tilde{\mu}(A) = \mu(A) \}$$

ist ein Dynkin-System.

 $X \in \mathcal{D}$ bereits gezeigt. Für $A \in \mathcal{D}$ ist

$$\tilde{\mu}(A^C) = \tilde{\mu}(X) - \tilde{\mu}(A) = \mu(X) - \mu(A) = \mu(A^C)$$

 $\implies A^C \in \mathcal{D}$. Betrachte $(B_k)_{k \in \mathbb{N}}, B_k \cap B_l = \emptyset \forall k, l \in \mathbb{N}, k \neq l \text{ und } B_k \in \mathcal{D}$ sowie $B = \bigcup_{k \in \mathbb{N}} B_k$. Dann gilt

$$\tilde{\mu}(B) = \sum_{k \in \mathbb{N}} \tilde{\mu}(B_k) = \sum_{k \in \mathbb{N}} \mu(B_k) = \mu(B)$$

Nach Lemma 1.22 folgt also $\Sigma = \Sigma(S) = \mathcal{D}(S) \subset \mathcal{D} \subset \Sigma \implies \mathcal{D} = \Sigma$. Im allgemeinen Fall erhalten wir für $A \in \Sigma$:

$$\tilde{\mu}(A) = \lim_{k \to \infty} \tilde{\mu}(A \cap X_k) = \lim_{k \to \infty} \mu(X_k \cap A)$$

Definition 1.24 (Prämaß) Sei X eine Menge und $\mathcal{A} \subset \mathcal{P}(X)$ eine Algebra. Ein **Prämaß** auf X ist eine σ -additive Abbildung $\mu: \mathcal{A} \to [0, \infty]$ mit $\mu(\emptyset) = 0$.

Bemerkung Man braucht nur die σ -Additivität für solche (paarweise disjunkte) Folgen $(A_k)_{k\in\mathbb{N}}\subset\mathcal{A}$ gewährleisten, deren Vereinigung

$$\bigcup_{k\in\mathbb{N}}A_k\in\mathcal{A}$$

Ein Prämaß auf einer σ -Algebra ist ein Maß.

Korollar 1.25 Sei μ ein σ -finites Prämaß auf einer Algebra \mathcal{A} , dann gibt es höchstens eine Fortsetzung auf $\Sigma(\mathcal{A})$.

Beweis Setze $S=\mathcal{A}$ wie im Satz 1.23. Offenbar ist abgeschlossen unter endlichen Schnitten. Da X σ -finit ist, gibt es eine Folge $(X_k)_{k\in\mathbb{N}}$ mit $X=\bigcup_{k\in\mathbb{N}}X_k$ und $\mu(X_k)<\infty \forall k\in\mathbb{N}$. Für $A_k:=\bigcup_{j=1}^kX_j$ ist $A_k\nearrow X$ und

$$\mu(A_k) \le \sum_{j=1}^k \mu(X_k) < \infty$$

Nach dem Setz 1.23 ist das auf (X, Σ) , so es denn existiert, eindeutig.

Beispiel 1.26 Die Menge S, sei die Menge, die alle Intervalle $[a,b), -\infty \leq a_eqb \leq \infty$ erzeugt dann unter endlichen Vereinigungen eine Algebra A. Wir setzen

$$\mu(\emptyset) = 0$$
$$\mu([a, b)) = \infty$$

Dieses μ ist Prämaß auf \mathcal{A} . Es gibt (mindestens) zwei Fortsetzungen:

- 1. Zählmaß ist eine Fortsetzung
- 2. $\mu(A) = \infty \forall A \neq \emptyset$

Definition 1.27 (äußeres Maß) Elne Funktion $\mu^*: \mathcal{P}(X) \to [0, \infty]$ ist ein äußeres Maß auf X, falls für alle $(A_k)_{k \in \mathbb{N}} \subset \mathcal{P}(X)$ die folgenden Eigenschaften erfüllt sind:

1.
$$\mu^*(\emptyset) = 0$$

2.
$$\mu^*(A_1) \leq \mu(A_2)$$
, falls $A_1 \subset A_2$ (Monotonie)

3.
$$\mu^* \left(\bigcup_{k \in \mathbb{N}} A_k \right) \le \sum_{k \in \mathbb{N}} \mu^*(A_k)$$
 (σ -Subadditivität)

Satz 1.28 Sei μ^* ein äußeres Maß auf eine Menge X. Wir sagen, die Menge $A \subset X$ erfüllt die Caratheodory-Bedingung (CB) falls

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^C) \forall E \subset X$$

Die Familie Σ aller Mengen, die die Caratheodory-Bedingung erfüllen bildet eine σ -Algebra und $\mu^*|_{\Sigma}$ ist ein Maß.

Beweis Wir zeigen zunächst, dass Σ eine Algebra ist. Offenbar $X \in \Sigma$. Abgeschlossen unter Komplementbildung ist klar. Für endliche Vereinigungen wähle $A, B \in \Sigma$. Sei $E \subset X$ beliebig.

$$\mu^*((A \cup B) \cap E) \le \mu^*(A \cap B^C \cap E) + \mu^*(A^C \cap B \cap E) + \mu^*(A \cap B \cap E)$$

Nun wird die Caratheodory-Bedingung zweimal angewandt

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^C)$$

= $\mu^*(E \cap A \cap B) + \mu^*(E \cap A \cap B^C) + \mu^*(E \cap A^C \cap B) + \mu^*(E \cap A^C \cap B^C)$

Mit obiger Abschätzung erhalten wir

$$\mu^*(E) \ge \mu^*((A \cup B) \cap E) + \mu^*(E \cap A^C \cap B^C) = \mu^*((A \cup B) \cap E) + \mu^*((A \cup B)^C \cap E)$$

Die andere Richtung folgt aus der σ -Subadditivität

Sei nun also $(A_k)_{k\in\mathbb{N}}\subset\Sigma$. Wir können ohne Beschränkung der Allgemeinheit annehmen, dass die A_k paarweise disjunkt sind. Nun ist für jedes $E\subset X$ und

$$B_k = \bigcup_{j=1}^k A_k \in \Sigma, \qquad B_k \nearrow \bigcup_{k \in \mathbb{N}} A_k$$
$$\mu^*(B_k \cup E) = \mu^*(B_k \cap E \cap A_k) + \mu^*(B_k \cap E \cap A_k^C)$$
$$= \sum_{j=1}^k \mu^*(E \cap A_j)$$

Also haben wir

$$\mu^*(E) = \mu^*(E \cap B_k) + \mu^*(E \cap B_k^C)$$

Mit $k \to \infty$ erhält man

$$\mu^*(E) \ge \sum_{k \in \mathbb{N}} \mu^*(E \cap A_k) + \mu^*(E \cap A^C) \ge \mu^* \left(\bigcup_{k \in \mathbb{N}} (A_k \cap E) + \mu^*(E \cap A^C) \right)$$

$$\ge \mu^*(E)$$

Also gilt

$$A = \bigcup_{k \in \mathbb{N}} A_k \in \Sigma$$

Damit $\mu^*|_{\Sigma}$ ein Maß ist, betrachte Folge $(A_k)_{k\in\mathbb{N}}$ paarweise disjunkt. Da Σ eine σ -Algebra ist wähle in der Caratheodory-Bedingung $E=A=\bigcup_{k\in\mathbb{N}}A_k$.

$$\mu^*(E) = \mu^*(A) = \sum_{k \in \mathbb{N}} \mu^*(A \cap A_k) + \mu^*(A \cap A^C) = \sum_{k \in \mathbb{N}} \mu^*(A_k)$$

 $\mu^*(\emptyset) = 0$ gilt nach Definition des äußeren Maßes.

Bemerkung Das soeben konstruierte Maß $\mu^* \mid_{\Sigma}$ ist vollständig, jede Teilmenge einer Nullmenge ist messbar.

Beweis Sei $A \in \Sigma$, $\mu^*(A) = 0$ und $B \subset A$. Es gilt für E = X in der Caratheodory-Bedingung

$$\mu^*(E \cap B) \le \mu^*(A) + \mu^*(E \cap B^C) \le \mu^*(E)$$

Insofern ist $B \in \Sigma$

Fahrplan für das Lebesgue-Maß

Für ein verallgemeinertes Intervall I der Form (a,b),(a,b],[a,b),[a,b] mit $-\infty \leq a \leq b \leq \infty$ setzen wir $\lambda(I) := b - a \in [0,\infty]$

Lemma 1.31 Dies ergibt ein eindeutiges σ -finites Prämaß auf der Algebra \mathcal{A} , die aus endliches Vereinigungen disjunkter Intervalle besteßt

$$\lambda\left(\bigcup_{j=1}^{k} I_j\right) = \sum_{j=1}^{k} \lambda(I_j)$$

Wir erhalten zunechst eine Fortsetzung von λ zu einem äußeren Maß λ^* , also $\lambda = \lambda^*$ auf \mathcal{A} , wobei jede Menge aus \mathcal{A} die Caratheodory-Bedingung erfüllt. Satz 1.27 liefert eine σ -Algebra $\Lambda \supset \mathcal{A}$, sodass $\lambda := \lambda^* \mid_{\Lambda}$ ein Maß ist

Definition 1.32 Die Elemente von Λ nennt man Lebesque-messbare Mengen und λ das Lebesque-Maß.

Lemma 1.31 Sei μ ein Prämaß auf einer Algebra $\mathcal{A} \subset \mathcal{P}(X)$. Wir setzen für $A \subset X$

$$\mu^*(A) = \inf\{\sum_{k \in \mathbb{N}} \mu(A_k) \mid (A_k)_{k \in \mathbb{N}} \subset \mathcal{A}, A \subset \bigcup_{k \in \mathbb{N}} A_k\}$$

Dies ist ein äußeres Maß mit $\mu^* = \mu$ auf \mathcal{A} und jede Menge aus \mathcal{A} erfüllt die Caratheodory-Bedingung.

Beweis (Caratheodory-Eigenschaft) Sei $E \subset X$ und $A \subset A$. Zu zeigen:

$$\mu^*(E) = \mu^*(E \cap A^C) + \mu^*(E \cap A)$$

" \leq " folgt aus Subadditivität. Noch zu zeigen: \geq . Wir betrachten eine beliebige Überdeckung von E durch $(B_k)_{k\in\mathbb{N}}\subset \mathcal{A}, B:=\bigcup_{k\in\mathbb{N}}B_k\supset E$. Dann ist zunächst auch $(B_k\cap A)_{k\in\mathbb{N}}$ eine Überdeckung von $E\cap A$ und entsprechend $(B_k\cap A^C)_{k\in\mathbb{N}}$ von $E\cap A^C$. Wir erhalten

$$\sum_{k \in \mathbb{N}} \mu(B_k) = \sum_{k \in \mathbb{N}} \mu(B_k \cap A) + \sum_{k \in \mathbb{N}} \mu(B_k \cap A^C)$$
$$\geq \mu^*(E \cap A) + \mu^*(E \cap A^C)$$

Infimum über $(B_k)_{k\in\mathbb{N}}$ mit $\bigcup_{k\in\mathbb{N}}\supset E$ liefert

$$\mu(E^*) \ge \mu^*(E \cap A) + \mu^*(E \cap A^C)$$

Beweis (von Lemma 1.31) • \mathcal{A} ist Algebra ($\mathbb{R} = (-\infty, \infty)$, das Komplement einer endlichen Vereinigung disjunkter Intervalle besitzt wieder diese Form)

• Offenbar gilt $\lambda(\emptyset) = 0$

zu zeigen (für σ -Algebra): für alle paarweise disjunkten Folgen $(I_k)_{k\in\mathbb{N}}\subset\mathcal{A}$

$$\lambda\left(\bigcup_{k\in\mathbb{N}}I_k\right) = \sum_{k\in\mathbb{N}}\lambda(I_k)$$

Wir bekommen

$$\sum_{j=1}^{k} \lambda(I_j) = \lambda \left(\bigcup_{j=1}^{k} I_j \right) \stackrel{\uparrow}{\leq} \lambda \left(\bigcup_{j=1}^{\infty} I_j \right) = \lambda(I)$$
Additivität

" \geq ": wür wählen $\forall k \in \mathbb{N}$ ein offenes $J_k \supset I_k$ mit

$$\lambda(J_k) \leq \lambda(I_k) + \frac{\varepsilon}{2^k} \qquad \text{ für ein } \varepsilon > 0$$

Sei zunächst I kompakt. Dann können wir endlich viele J_k auswählen, sodass diese I überdecken. Wir nehmen an, dass dies die ersten K Elemente sind (Umnummerierung). Es gilt

Monotonie aus Konstruktion
$$\lambda(I) \stackrel{\uparrow}{=} \lambda \left(\bigcup_{j=1}^k J_j \right) \leq = \sum_{j=1}^k \lambda(J_j) \stackrel{\uparrow}{\leq} \sum_{j=1}^k \lambda(I) + \varepsilon$$
 Subadditivität

Mit $\varepsilon \searrow 0$ folgt σ -Additivität für kompakte I. Die Behauptung folgt auch für beschränkte I (weil mit Additivität und $\lambda(\{x\}) = \lambda([x,x]) = 0 \forall x \in \mathbb{R}$ können wir die Endpunkte an Intervalle hinzufügen oder entfernen). Sei I ein unbeschränkts Intervall $\lambda(I) = \infty$. Zu zeigen

$$\sum_{j=1}^{\infty} \lambda(I_j) = \infty$$

Sei $\xi \in I, I \cap [\xi - x, \xi + x]$ kompakt. $\forall x \in \mathbb{R}$ und von den ersten K Elementen überdeckt. $K = K(\xi)$. Wir bekommen

$$\sum_{j=1}^{\infty} \lambda(I_j) \geq \sum_{j=1}^{k} \lambda(I_j) \geq \sum_{j=1}^{k} \lambda(J_i) - \varepsilon$$

$$\text{Konstruktion}$$

$$\geq \lambda(I \cap [\xi - x, \xi + x]) - \varepsilon \geq x - |\xi| - \varepsilon$$

$$\implies \sum_{j=1}^{\infty} \lambda(I_j) \geq x - |\xi| - \varepsilon \xrightarrow{x \to \infty} \infty$$

1.1 Messbare Funktionen

Definition 1.32 Seien $(X, \Sigma_X), (Y, \Sigma_Y), f: X \to Y$ heißt **messbar** $(\Sigma_X - \Sigma_Y)$ messbar falls

$$\forall A \in \Sigma_Y f^{-1}(A) \in \Sigma_X$$

Ist X ein topologischer Raum und Σ_X die entsprechende Borel- σ -Algebra so nennen wir eine messbare Funktion die Borel-Funktion.

Bemerkung Es genügt, Messbarkeit für ein Messsystem $S \subset \mathcal{P}(Y)$ mit $\Sigma(S) = \Sigma_Y$ zu überprüfen. In der Tat ist $f^{-1}(A) \in \Sigma_X \forall A \in S$ so folgt

$$f^{-1}(A^C) = f^{-1}(Y \setminus A) = X \setminus f^{-1}(A) = (f^{-1}(A))^C \in \Sigma_x$$

weiter ist

$$f^{-1}\left(\bigcup_{k\in\mathbb{N}}A_k\right)=\bigcup_{k\in\mathbb{N}}f^{-1}(A_k)\in\Sigma_x$$

Wir werden häufig nutzen $(Y, \Sigma) = (\mathbb{R}^n, \mathcal{B}^n)$

Lemma 1.33 $f:(X,\Sigma)\to(\mathbb{R}^n,\mathcal{B}^n)$ ist genau dann messbar, wenn

$$f^{-1}(I) \in \Sigma \forall I = \sum_{j=1}^{n} (a_j, \infty), a_j \in \mathbb{R}$$

insbesondere ist f genau dann messbar, wenn jede seiner Komponenten $x \to \langle f(x), e_i \rangle, i = 1, \dots, n$ messbar ist und eine komplexwertige Funktion ist messbar genau dann wenn Real- und Imaginärteil messbar sind.

Beweis Die σ -Algebra die von den verallgemeinerten Quadern erzeugt wird enthält die Quader der Form

$$\underset{j=1}{\overset{n}{\times}}(a_j,b_j)$$

Diese bilden eine Basis für die Topologie \implies führen auf \mathcal{B}^n .

Lemma 1.34 Seien $(X, \Sigma_X), (Y, \Sigma_Y), (Z, \Sigma_Z)$ Messräume. Sind $f: X \to Y, g: Y \to Z$ messbar, dann ist auch $g \circ f: X \to Z$ messbar. Sind X, Y topologische Räume, Σ_X, Σ_Y \mathcal{B} - σ -Algebren so ist jede stetige Funktion $f: X \to Y$ messbar.

Beweis Das Urbild offener Mengen (diese erzeugen \mathcal{B} - σ -Algebra Σ_Y) ist aufgrund der stetigkeit offen, also messbar. Ist $C \in \Sigma_Z$ messbar, so ist es auch $B := g^{-1}(C) \in \Sigma_y$ und $A := f^{-1}(B) \in \Sigma_x$

Lemma 1.35 (1.36) Sind $f, g: (X, \Sigma) \to (\mathbb{R}, \mathcal{B})$ messbar, so auch f + g, f - g.

Beweis Aus Stetigkeit von Addition und Subtraktion auf $(\mathbb{R}, \mathcal{B}) \times (\mathbb{R}, \mathcal{B}) \to (\mathbb{R}, \mathcal{B})$ und Lemma 1.36.

Bemerkung Für $\mathbb{\bar{R}}:=\mathbb{R}\cup\{-\infty,\infty\}$ ist $f:X\to\mathbb{\bar{R}}$ eine Borel-Funktion, wenn $f^{-1}(\{-\infty;\infty\})$ beiden Borel-Mengen sind und $f\big|_{X\setminus f^{-1}(\{\pm\infty\})}$ eine Borel-Funktion.

Lemma 1.36 (1.40) Sei (f_k) eine Folge messbarer Funktionen $(X, \bar{Z}) \to (\bar{\mathbb{R}}, \bar{\mathcal{B}})$. Dann sind auch

$$\sup_{k \in \mathbb{N}} f_k, \inf_{k \in \mathbb{N}} f_k, \limsup_{k \to \infty} f_k, \liminf_{k \to \infty} f_k$$

messbar.

1.2 Integration

Definition 1.37 Eine messbare Funktion $f:(X,\Sigma)\to(\mathbb{R},\mathcal{B})$ heißt **einfach**, wenn ihr Bild endlich ist, das heiß $\exists A_1,\ldots,A_m\in\Sigma,\alpha_1,\ldots,\alpha_m\in\mathbb{R}$ mit

$$f = \sum_{j=1}^{m} \alpha_j \chi_{A_j}$$

wobei χ_M die charakteristische Funktion ist.

$$\chi_M(x) = \begin{cases} 1 & x \in M \\ 0 & x \notin M \end{cases}$$

Wir können fordern, dass A_j paarweise disjunkt sind, $\alpha_i \neq \alpha_j, i \neq j$ und $\bigcup A_j = X$ gilt.

$$\implies f(x) = \{\alpha_1, \dots, \alpha_m\}, \qquad f^{-1}(\{\alpha_j\}) = A_j \quad \forall j = 1, \dots, m$$

und diese Darstellung ist eindeutig.

Den Vektorraum einfacher Funktionen bezeichnen wir mit $S(X, \mu)$

Definition 1.38 (Integral auf $S(X, \mu)$) Das Integral einer nicht negativen einfachen Funktion über die Menge $A \in \Sigma$ wird durch

$$\int_A f \mathrm{d}\mu := \sum_{j=1}^n \alpha_j \mu(A_j \cap A)$$

erklärt, wobei wir $0 \cdot \infty = 0$ vereinbaren.

Lemma 1.39 Das Integral hat die folgenden Eigenschaften

$$\begin{array}{lll} 1. & \int_A f \mathrm{d} \psi & = \int_X \chi_A f \mathrm{d} \mu & \text{ für } f \in S(X,\mu) \\ 2. & \int_{\bigcup_{k \in \mathbb{N}} B_k} f \mathrm{d} \mu & = \sum_{k \in \mathbb{N}} \int_{B_k} f \mathrm{d} \mu & B_k \text{ paarweise disjunkt}, (B_k)_{k \in \mathbb{N}} \in \Sigma \\ 3. & \int_A \alpha f \mathrm{d} \mu & = \alpha \int_A f \mathrm{d} \mu & \text{ für } \alpha \geq 0 \\ 4. & \int_A (f+g) \mathrm{d} \mu & = \int_A f \mathrm{d} \mu + \int_A g \mathrm{d} \mu & \text{ für } g \geq S(X,\mu) \\ 5. & A \subset B, B \in \Sigma \implies \int_A f \mathrm{d} \mu \leq \int_B f \mathrm{d} \mu \\ 6. & f \leq g \implies \int_A f \mathrm{d} \mu & \leq \int_A g \mathrm{d} \mu, g \in S(\Sigma,\mu), g \geq 0 \end{array}$$

Beweis 1. aus Definition

2.
$$\mu\left(A_j\cap\bigcup_{n\in\mathbb{N}}B_n\right)=\sum_{k\in\mathbb{N}}\mu(A_j\cap B_k)$$
 (man darf die Reihe über nichtnegative Zahlen umsortieren)

- 3. klar
- 4. Für

$$f = \sum_{j=1}^{n} \alpha_j \chi_{A_j}$$
$$g = \sum_{k=1}^{n} \beta_k \chi_{B_k}$$

gilt mit $C_{jk} = A_j \cap B_k$

$$\int_{A} (f+g) d\mu = \sum_{j,k} \int_{C_{jk}} (f+g) d\mu = \sum_{j,k} (\alpha_j + \beta_k) \mu(C_{jk})$$
$$= \sum_{j,k} \alpha_j \mu(C_{jk}) + \sum_{j,k} \beta_k \mu(C_{jk}) = \int_{A} f d\mu + \int_{A} g d\mu$$

- 5. Aus Monotonie von μ
- 6. Wie in 4. mit

$$\int_{A} f d\mu = \sum_{j,k} \alpha_{j} \mu(C_{jk}) \le \sum_{j,k} \beta_{k} \mu(C_{jk}) = \int_{A} g d\mu$$

Definition 1.40 (Integral von nichtnegativen Funktionen) Sei (X, Σ, μ) Maßraum, $A \in \Sigma, f : (X, \Sigma) \to (\mathbb{R}, \mathcal{B})$ messbar und nichtnegtiv. Dann ist

$$\int_A f d\mu := \sup \{ \int_a g d\mu \mid g \in S(X, \mu), g \le f, g \ge 0 \}$$

Bemerkung Bis auf 2. und 4. übertragen sich die Eigenschaften des Integrals über einfache Funktionen.

Satz 1.41 (Monotone Konvergenz / Beppo Levi) Sei $(f_k)_{k\in\mathbb{N}}$ eine Folge messbarer nichtnegativer Funktionen

$$f_k: (X, \Sigma) \to (\mathbb{R}, \mathcal{B}) \quad \text{mit} \quad f_k \nearrow f$$

 $(f_k\nearrow f\implies f_k\xrightarrow{k\to\infty}f$ punktweise und (implizit aus Nichtnegativität) $\sum_{k=1}^nf_k$ monoton) Dann ist für $A\in\Sigma$

$$\int_A f_k \mathrm{d}\mu \to \int_A f \mathrm{d}\mu$$

Beweis f messbar, damit erhält man die Monotonie von

$$\int_{\mathcal{A}} f_k \mathrm{d}\mu$$

und hieraus Konvergenz gegen $\varphi \in [0, \infty]$. Aus $f_k \leq f$ und Monotonie den Integral:

$$\varphi \le \int_A f \mathrm{d}\mu$$

Für " \geq " nehmen wir $g \in S(X, \mu), g \geq 0, g \leq f$ mit

$$A_k := \{ x \in A \mid f_k(x) \ge \theta \cdot g(x) \}$$

für ein festes $\theta \in (0,1)$ und hierraus

$$\varphi \xleftarrow{k \to \infty} \int_A f_k d\mu \ge \int_{A_k} f_k d\mu \ge \int_A \theta g d\mu$$
$$\ge \theta \int_{A_k} g d\mu \to \theta \int_A g d\mu$$

Insbesondere gilt für $\theta = 1$

$$\implies \varphi \ge \int_A g \mathrm{d}\mu$$

$$\implies \varphi = \int_A f \mathrm{d}\mu$$

Bemerkung $\forall f \geq 0$, mit einer monoton steigenden Folge nicht negativer einfacher Funktionen $(g_k)_{k \in \mathbb{N}}, g_k \nearrow f$ ist

$$\int_A g_k \mathrm{d}\mu \nearrow \int_A f \mathrm{d}\mu$$

Eine geeignete Funktion ist

$$g_k(x) := \sum_{j=0}^{k2^k} \frac{j}{2^k} \chi_{f^{-1}(A_j)}(x)$$

mit

$$A_j = \{ [\frac{j}{2^k}, \frac{j+1}{2^k}) \mid j = 0, \dots, k2^k - 1 \}$$

Ist f gleichmäßig beschränkt $\implies (g_k)_{k\in\mathbb{N}}$ konvergiert gleichmäßig (denn $0\leq f-g_k\leq \frac{1}{2^k}$ für k groß genug) Mit Satz von Beppo Levi erhält man somit

$$2. \qquad \int_{\bigcup_{k\in\mathbb{N}}B_k}f\mathrm{d}\mu=\sum_{k\in\mathbb{N}}\int_{B_k}f\mathrm{d}\mu \qquad B_k \text{ paarweise disjunkt}, (B_k)_{k\in\mathbb{N}}\in\Sigma$$

$$4. \qquad \int_A (f+g) \mathrm{d}\mu = \int_A f \mathrm{d}\mu + \int_A g \mathrm{d}\mu \qquad \text{für } g \geq S(X,\mu)$$

Lemma 1.42 Ist $f \ge 0$ messbar, so wird durch

$$\nu(A) := \int f \mathrm{d}\mu$$

ein Maß mit

$$\int dd\nu = \int gf d\mu$$

für jedes messbare $g \geq 0$ definiert (Bezeichnung: $\mathrm{d}\nu = f\mathrm{d}\mu$)

Beweis

$$\begin{split} \nu(\emptyset) &= \int_{\emptyset} f \mathrm{d}\mu = \int \chi_{\emptyset} f \mathrm{d}\mu = 0 \cdot \int f \mathrm{d}\mu = 0 \\ \nu(A \cup B) &= \int_{A \cup B} f \mathrm{d}\mu = \int_{A} f \mathrm{d}\mu + \int_{B} \mathrm{d}\mu = \nu(A) + \nu(B) \quad \text{für } A \cap B = \emptyset \end{split}$$

Für abzählbare Vereinigungen äquivalent

$$\nu\left(\bigcup_{k\in\mathbb{N}}^{\cdot}A_{k}\right) = \sum_{k\in\mathbb{N}}\nu(A_{k})$$

Ist g einfach und ≥ 0

$$\implies g = \sum_{i=1}^{n} \alpha_i \chi_{B_i}$$

für disjunkte $B_j \in \Sigma, \bigcup B_j = X, \alpha_j \ge 0$

$$\int g d\nu = \sum_{j=1}^{n} \alpha_{j} \nu(A_{j}) = \sum_{j=1}^{n} \alpha_{j} \int_{B_{j}} f d\mu = \sum_{j=1}^{n} \int \alpha_{j} f \chi_{B_{j}} d\mu$$
$$= \int \sum_{j=1}^{n} \underbrace{(\alpha_{j} \chi_{B_{j}})}_{=g} f d\mu = \int g f d\mu$$

Appoximation liefert die Behauptung für beliebigte $g \geq 0$.

Satz 1.43 (Fatou Lemma) Sei (X, Σ, μ) ein Maßraum. Ist f_k eine Folge nicht-negativer Funktionen $(X, \Sigma) \to (\mathbb{R}, \mathcal{B})$ so gilt $\forall A \in \Sigma$

$$\int_{A} \liminf_{k \to \infty} f_k \mathrm{d}\mu \le \liminf_{k \to \infty} \int_{A} f_k \mathrm{d}\mu$$

Beweis Wir setzen $g_k := \inf_{j \geq k} f_j$, also

$$g_k \nearrow \lim_{j \to \infty} \inf f_j$$

Weiterhin $g_k \leq f_k \forall k \in \mathbb{N}$

$$\implies \int_A g_k \mathrm{d}\mu \le \int_A f_k \mathrm{d}\mu$$

Übergang zum lim inf

$$\implies \liminf \int g_k d\mu = \lim_{k \to \infty} \int g_k d\mu = \int_A \lim_{k \to \infty} g_k d\mu$$
$$= \int_A \liminf_{k \to \infty} f_k d\mu \qquad \Box$$