ein Woche, eine Beispiel April 16th. examples in algebraic topology

Past
closed surface din 2
Hopf surface din 4
K3 surface

CIP CIP CIP Grassmannian mfld, e.g. Gr(2.4)

Moore space
Eilenberg - Maclane space
low-dimensional CW-cplx

Goal.

- · compute $H_n(X, \mathbb{Z})$, $H^*(X, \mathbb{Z})$, $\pi_n(X, \mathbb{Z}) \leftarrow Whitehead$ bracket
- · compute characteristic class and applies the results.
- optional question is X * oriented?

 * a mfld? of dim n

 * a cplx mfld?

 * a Lie group?

Today:
$$S^{\infty}$$
 S^{∞} ; $IRIP^{\Lambda}$, $IRIP^{\infty}$; CIP^{Λ} , CIP^{∞} ; ...

 $S^{\infty} = US^{\Lambda}$ $S^{\Lambda} \hookrightarrow S^{M}$ by $(x_{0}, ..., x_{n}) \mapsto (x_{0}, ..., x_{n}, 0, ..., 0)$

1. relations. fiber bundle

 $Z/_{12} \longrightarrow S^{\Lambda}$ $S' \longrightarrow S^{2n+1}$ $Z/_{kZ} \longrightarrow S^{2n+1}$
 $IRIP^{\Lambda}$ CIP^{Λ} $S^{2n+1}/_{Z/_{kZ}}$ $k \in \mathbb{N}^{+}$, $k > 1$
 $Z/_{2Z} \longrightarrow S^{\infty}$ $S' \longrightarrow S^{\infty}$ $Z/_{kZ} \longrightarrow S^{\infty}$
 $IRIP^{\infty}$ CIP^{∞} $S^{\infty}/_{Z/_{kZ}}$

2. (canonical) CW structure.

e.q.														
J. J.	#m-cell	0	1	2	3	4	5	m >5						
	2 _r	2	2	2	2	2	2	0						
	IRIPS	1	1	1	1	1	1	O						
	CIP'	1	o	1	ა	1	υ	o						

$$\Rightarrow \begin{cases} \chi(S^n) = \begin{cases} 0 & n \text{ odd} \\ 1 & n \text{ even} \\ 1 & n \text{ even} \end{cases}$$

$$\chi(|R|p^n) = \begin{cases} 0 & n \text{ odd} \\ 1 & n \text{ even} \end{cases}$$

3. Homology & Cohomology

homology												
	H: (X,Z)	0	1	2	3	4	5	i >5				
	2 _t	Z	S	0	0	၁	Z	o				
	IRIP"	Z	2/22	O	2/27/	b	Z	0				
	Clb,	Z	0	Z	0	Z	0	0				
	IR IP4	Z	Z/ _{2]4}	0	7427	0	o	0				

Cor. IRIP" is nonoriented; IRIP", 5", CIP" are oriented.

5' 0→Ze' + Ze' +

Rock. The definition of cellular homology uses the homology of
$$S$$
, so seriously]

we can't compute $H_i(S^n, Z)$ by cellular homology.

$$|R||^{5} \quad 0 \quad \longrightarrow \mathbb{Z}e^{5} \longrightarrow \mathbb{Z}e^{4} \longrightarrow \mathbb{Z}e^{3} \longrightarrow \mathbb{Z}e^{2} \longrightarrow$$

Similarly, Hn (500, Z) = fZ n=0 otherwise

$$H_n(IRIP^{\bullet o}, \mathbb{Z}) = \begin{cases} \mathbb{Z} & n=0 \\ \mathbb{Z}/_{\mathbb{Z}\mathbb{Z}} & n \text{ odd} \\ 0 & \text{otherwise} \end{cases}$$
 $H_n(IRIP^{\bullet o}, \mathbb{Z}/_{\mathbb{Z}\mathbb{Z}}) = \mathbb{Z}/_{\mathbb{Z}\mathbb{Z}}$

co homology

H ¹ (X,Z)	0	1	2	3	4	5	i >5
$\mathcal{Z}_{\mathfrak{r}}$	7/	o	0	0	ು	Z	o
IRIP"	Z	O	74274	o	72/274	Z	0
CIP *	Z	٥	Z	0	Z	٥	0
IR IP4	Z	0	7/27/	0	74274	o	0

$$\Rightarrow \begin{cases} H^*(|R|P^{2n}) = \mathbb{Z}[x]/(2x, x^{n+1}) \\ H^*(|R|P^{2n+1}) = \mathbb{Z}[x]/(2x, x^{n+1}) \oplus \mathbb{Z}y \\ H^*(\mathbb{C}[P^n) = \mathbb{Z}[x]/(x^{n+1}) \end{cases}$$

prod structure. Use Poincaré duality & cellular cohomology, see [May, P153]. H" (CP") ~ H" (CP"-1) for 9 < n

> https://math.stackexchange.com/questions/1128712 /integral-cohomology-ring-of-real-projective-space

By spectral sequence: GTM 82 Example 14.22, 14.32, Ex 18.4, 18.10

```
Interlude: LES of homotopy groups x & EBCACX, X top space
   Def relative homotopy group
                            \pi_{h}(X,A,x_{0}) = \left[f: (I^{\gamma},\partial I^{\gamma},J^{\gamma-1}) \longrightarrow (X,A,x_{0})\right] \qquad n\geqslant 1 \quad J^{\gamma-1} = \partial I^{\gamma} - I^{\gamma-1}
          Relations. f \sim g \iff \exists F_t \cdot (I^n, \partial I^n, J^{n-1}) \rightarrow (x, A, x_0) s.t
           (denote by [f] = [g]) Fo = f Fi = g
   Lemma: Suppose f: (I^n, \partial I^n, J^{h-1}) \rightarrow (X, A, x_0),
                f(I^n) \subseteq A, then [f] = [o]
    Thm. we have LES <= ker = Im

\Im \pi_2(A,B,x_0) \longrightarrow \pi_2(X,B,x_0) \longrightarrow \pi_2(X,A,x_0)

          \hookrightarrow \pi_{\iota}(A,B,x_{\bullet}) \longrightarrow \pi_{\iota}(\chi,B,x_{\bullet}) \rightarrow \pi_{\iota}(\chi,A,x_{\bullet})
    Cor we have LES
                            \pi_2(A,x_0) \longrightarrow \pi_2(X,x_0) \longrightarrow \pi_2(X,A,x_0)

\widehat{S\pi}_{i}(A, x_{o}) \longrightarrow \pi_{i}(X, x_{o}) \longrightarrow \pi_{i}(X, A, x_{o})

                            S_{\pi_o(A, X_o)} \longrightarrow \pi_o(X, X_o)
                                                                                      scalled Serve fibration
    Thm. when p: E \rightarrow B has the homotopy lifting property w.r.t. I^k (\forall k \ge 0)
                 then (denote bo & B. x & F . = p - (B))
                          p_*: \pi_n(E, F, x_o) \longrightarrow \pi_n(B, b_o) n \ge 1 I^k \times [o, 1] \longrightarrow E \ni x_o f isomorphism.
                  is an isomorphism.
   Rmk. 1 The proof mainly uses the HLP: homotopy lifting property.
               2. Any fiber bundle p. Ē→B is a Serre fibration.
  Cor Suppose p: E \rightarrow B is the fiber bundle map, then we have LES
           (denote boeB. xoeF .= p (B))
                          \pi_{2}(F, x_{0}) \longrightarrow \pi_{2}(E, x_{0}) \longrightarrow \pi_{2}(B, b_{0})_{>}

\widehat{\Rightarrow} \pi_{\iota}(F, \times_{o}) \longrightarrow \pi_{\iota}(E, \times_{o}) \longrightarrow \pi_{\iota}(B, b_{o})

                      \hookrightarrow \pi_{\circ}(F, x_{\circ}) \longrightarrow \pi_{\circ}(E, x_{\circ})
4. Humotopy: by LES of fibration, we obtain
                                                                          \pi_{m}(\mathbb{C}|\mathbb{P}^{n}) = \begin{cases} 0 & m=1 \\ \mathbb{Z} & m=2 \\ \pi_{n}(\mathbb{C}^{2n+1}) & m > 2 \end{cases}
                \pi_m(|R|p^n) = \begin{cases} 2\ell/2 & m=1\\ \pi_m(S^n) & m>1 \end{cases}
      Rmk. So is contractable by the argument in https://mathoverflow.net/questions/198
      Cor IRIP is of type K(2/12, 1)
```

CIP is of type K(Z, 2)

	π ₁	π ₂	π ₃	π ₄	π ₅	π ₆	π ₇	π ₈	π ₉	π ₁₀	π ₁₁	π ₁₂	π ₁₃	π ₁₄	π ₁₅	
S ⁰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
S ¹	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- in GTM 82(naive)
S ²	0	\mathbb{Z}	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^2	\mathbb{Z}_{12}^{\times} \mathbb{Z}_2	$\mathbb{Z}_{84} \times \mathbb{Z}_2^2$	\mathbb{Z}_2^2	What I can prove now
S ³	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^2	$\mathbb{Z}_{12}^{II} \times \mathbb{Z}_2$	$\mathbb{Z}_{84} \times \mathbb{Z}_2^2$	\mathbb{Z}_2^2	
S ⁴	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z} × \mathbb{Z}	\mathbb{Z}_2^2	\mathbb{Z}_2^2	$\mathbb{Z}_{24}^{ imes}$ \mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^3	$\mathbb{Z}_{120} \times \mathbb{Z}_{12} \times \mathbb{Z}_{2}$	$\mathbb{Z}_{84} \times \mathbb{Z}_2^5$	
S ⁵	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}_{::4}$	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{30}	\mathbb{Z}_2	\mathbb{Z}_2^3	\mathbb{Z}_{72} × \mathbb{Z}_2	
S ⁶	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	Z	2,2	\mathbb{Z}_{50}	\mathbb{Z}_{24} × \mathbb{Z}_2	\mathbb{Z}_2^3	
S ⁷	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	0	\mathbb{Z}_2	Z ₁₂₀	\mathbb{Z}_2^3	
S ⁸	0	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	0	\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_{120}$	
															π ₁ (ς"	· F)

split by the suspension homomorphism $https://math.stackexchange.com/questions/3\,969\,577/how-torsion-arise-in-homotopy-groups-of-spheres$

```
5. Characteristic class
```

We have both tautological vector bundle and tangent bundle for Sn, IRIP, CIPn.

https://en.wikipedia.org/wiki/Chern_class

$$c(\mathbb{CP}^n) \overset{\mathrm{def}}{=} c(T\mathbb{CP}^n) = c(\mathcal{O}_{\mathbb{CP}^n}(1))^{n+1} = (1+a)^{n+1},$$

where a is the canonical generator of the cohomology group $H^2(\mathbb{CP}^n,\mathbb{Z});$

tautological bundle $\mathcal{O}_{GP}(-1)$: $c(\mathcal{O}_{GP}(-1)) = 1-a$

Cor. TCIP, OciP(-1) are not spin; CIP, is not a boundary.

IRIP': similarly, $\omega(x_n') = 1 + t$ $\omega(IRIP^n) = \omega(x_n')^{n+1} = (1+t)^{n+1}$

Cor. In is not orientable;

TIRIP is orientable only when $n = 1 \mod 2$;

TIRIP is spin only when $n \equiv 3 \mod 4$ or n = 1.

S¹. Lemma π*. H'(IRIP', 2/22) -> H'(S', 2/22) is zero.

Proof by computation.

 $C'(IRIP^s, \mathbb{Z}/22)$ $0 \leftarrow e^{s*} \leftarrow e^{q*} \leftarrow e^{3*} \leftarrow e^{2*} \leftarrow e^{(*} \leftarrow e^{0*} \leftarrow 0$

est - est - eit -P5+ e2+ e-1 e4+

btw. when n is odd, $H^{n}(IRIP^{n}, \mathbb{Z}) \longrightarrow H^{n}(S^{n}, \mathbb{Z})$

$$\frac{115}{2} \xrightarrow{\times 2} \frac{115}{2}$$

 $\omega(\gamma_{n,s^n}) = \pi^* \omega(\gamma_{n,R|p^n}) = 1$ $\omega(TS^*) = \pi^* \omega(TIRIP^*) = 1$ 8', s', TS' are spin, Sh= 2D".

```
6. Cplx mfld
                   CIPh is undoubtedly projectix mfld.
                   IRIP<sup>2n-1</sup>, S<sup>2n-1</sup> are not oply milds since they're of odd dim.

IRIP<sup>2n</sup> is not solv all
                    IRIP^{2n} is not cplx mfld since it's not orientable. S^{n}(n>6), S^{4} are not cplx mflds, see https://mathoverflow.net/questions/11664/complex-structure-on-sn
                    Whether S<sup>6</sup> is a cplx mfld is still an open problem, see https://mathoverflow.net/questions/1973/is-there-a-complex-structure-on-the-6-sphere
                     related problems is the cplx structure of CIP unique? Still open, see
                                https://mathoverflow.net/questions/382442/is-the-complex-structure-of-mathbb-cpn-unique
7 Lie group. S', S3, IRIP', IRIP', we have IRIP' = S' and
                                                                  S' = SU2 = {ge H | 91 = 1}
                                                                  |\mathcal{R}|^{3} \cong 50_{3} \text{ https://math.stackexchange.com/questions/4065801/collecting-proofs-so3-cong-bbb-r-p3}
                                                                                                  But a better way to see it is here: https://www.youtube.com/watch?v=ACZC_XEyg9U
           for 51: https://math.stackexchange.com/questions/12453/is-there-an-easy-way-to-show-which-spheres-can-be-lie-groups
         for IRIP": lemma. a Lie/topological group structure lifts to a covering space
                                       Proof: 5ee https://math.stackexchange.com/questions/5391/covering-of-a-topological-group-is-a-topological-group
                                       Cor. IRIP" (n>3) is not a Lie group
          for Olp^h lemma for the connected Lie group G, \pi_s(G) = 0 \pi_s(G) has no torsion!
                                        broof; 566 https://mathoverflow.net/questions/8957/homotopy-groups-of-lie-groups
                                       Cor. Clph is not a Lie group.
                                         different proof of this Cor: https://math.stackexchange.com/questions/3043483/lie-group-structure-o
          Interesting results during the ways of searching
                                      Lemma: a opt Lie group is either abelian => torus
                                                                                                                                               ninabolian & have nonzero H3
                                        See
                                                          https://math.stack exchange.com/questions/3421788/topological-lie-group-structure-on-projective-spaces for the projective of the project
                                        Lemma
                                                          every compact Lie group has zero Euler characteristic since it is parallelizable
                                         Spo
                                                            https://math.stackexchange.com/questions/829928/can-s2-be-turned-into-a-topological-group/
```