E. Restaurant

Time limit: 4s

Memory limit: 256 MB

A restaurant received n orders for the rental. Each rental order reserve the restaurant for a continuous period of time, the i-th order is characterized by two time values — the start time l_i and the finish time r_i ($l_i \le r_i$).

Restaurant management can accept and reject orders. What is the maximal number of orders the restaurant can accept?

No two accepted orders can intersect, i.e. they can't share even a moment of time. If one order ends in the moment other starts, they can't be accepted both.

Input

The first line contains integer number n ($1 \le n \le 5 \cdot 10^5$) — number of orders. The following n lines contain integer values I_i and I_i each ($1 \le I_i \le I_i \le 10^9$).

Output

Print the maximal number of orders that can be accepted.

Examples

input		
2		
7 11		
4 7		
output		
1		

input			
5			
1 2			
2 3			
3 4			
4 5			
5 6			
output			
3			

input	
6	
4 8	
1 5	
4 7	
2 5	
1 3	
6 8	
output	

2