JUL 0 9 2008 W

SEQUENCE LISTING

Chan, Doug W Chen, Ping-Chi B Chen, David J

<120> DNA Dependent Protein Kinase Catalytic Subunit Phosphorylation Sites and Antibodies Thereto

<130> IB-1807 PCT

<140> US 10/511,561

<141> 2004-10-15

<150> US 60/375,094

<151> 2002-04-22

<160> 28

<170> PatentIn version 3.1

<210> 1

<211> 13

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(13)

<223> HUMAN GENETIC ORIGIN

<220>

<221> MOD_RES

<222> (6)..(6)

<223> PHOSPHORYLATION at T2609

<400> 1

Pro Met Phe Val Glu Thr Gln Ala Ser Gln Gly Thr Cys
1 10

<210> 2

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(14)

<223> HUMAN GENETIC ORIGIN

<220>

<221> MOD RES

<222> (7)..(7)

<223> PHOSPHORYLATION at S2056

<400> 2

Gln Ser Tyr Ser Tyr Ser Ser Gln Asp Pro Arg Pro Ala Cys 1 5 10

<210> 3

<211> 4128

<212> PRT

<213> Homo sapiens

<400> 3

Met Ala Gly Ser Gly Ala Gly Val Arg Cys Ser Leu Leu Arg Leu Gln
1 10 15

Glu Thr Leu Ser Ala Ala Asp Arg Cys Gly Ala Ala Leu Ala Gly His
20 25 30

Gln Leu Ile Arg Gly Leu Gly Gln Glu Cys Val Leu Ser Ser Pro $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ala Val Leu Ala Leu Gln Thr Ser Leu Val Phe Ser Arg Asp Phe Gly 50 60

Leu Leu Val Phe Val Arg Lys Ser Leu Asn Ser Ile Glu Phe Arg Glu 65 70 75 80

Cys Arg Glu Glu Ile Leu Lys Phe Leu Cys Ile Phe Leu Glu Lys Met 85 90 95

Gly Gln Lys Ile Ala Pro Tyr Ser Val Glu Ile Lys Asn Thr Cys Thr 100 105 110

Ser Val Tyr Thr Lys Asp Arg Ala Ala Lys Cys Lys Ile Pro Ala Leu 115 120 125

Asp Leu Leu Ile Lys Leu Leu Gln Thr Phe Arg Ser Ser Arg Leu Met 130 135 140

Asp Glu Phe Lys Ile Gly Glu Leu Phe Ser Lys Phe Tyr Gly Glu Leu 145 150 155 160

Ala Leu Lys Lys Lys Ile Pro Asp Thr Val Leu Glu Lys Val Tyr Glu 165 170 175

Leu Leu Gly Leu Gly Glu Val His Pro Ser Glu Met Ile Asn Asn 180 185 190

Ala	Glu	Asn 195	Leu	Phe	Arg	Ala	Phe 200	Leu	Gly	Glu	Leu	Lys 205	Thr	Gln	Met
Thr	Ser 210	Ala	Val	Arg	Glu	Pro 215	Lys	Leu	Pro	Val	Leu 220	Ala	Gly	Cys	Leu
Lys 225	Gly	Leu	Ser	Ser	Leu 230	Leu	Cys	Asn	Phe	Thr 235	Lys	Ser	Met	Glu	Glu 240
Asp	Pro	Gln	Thr	Ser 245	Arg	Glu	Ile	Phe	Asn 250	Phe	Val	Leu	Lys	Ala 255	Ile
Arg	Pro	Gln	Ile 260	Asp	Leu	Lys	Arg	Tyr 265	Ala	Val	Pro	Ser	Ala 270	Gly	Leu
Arg	Leu	Phe 275	Ala	Leu	His	Ala	Ser 280	Gln	Phe	Ser	Thr	Cys 285	Leu	Leu	Asp
Asn	Tyr 290	Val	Ser	Leu	Phe	Glu 295	Val	Leu	Leu	Lys	Trp 300	Cys	Ala	His	Thr
Asn 305	Val	Glu	Leu	Lys	Lys 310	Ala	Ala	Leu	Ser	Ala 315	Leu	Glu	Ser	Phe	Leu 320
Lys	Gln	Val	Ser	Asn 325	Met	Val	Ala	Lys	Asn 330	Ala	Glu	Met	His	Lys 335	Asn
Lys	Leu	Gln	Tyr 340	Phe	Met	Glu	Gln	Phe 345	Tyr	Gly	Ile	Ile	Arg 350	Asn	Val
Asp	Ser	Asn 355	Asn	Lys	Glu	Leu	Ser 360	Ile	Ala	Ile	Arg	Gly 365	Tyr	Gly	Leu
Phe	Ala 370	Gly	Pro	Cys	Lys	Val 375	Ile	Asn	Ala	Lys	Asp 380	Val	Asp	Phe	Met
Tyr 385	Val	Glu	Leu	Ile	Gln 390	Arg	Cys	Lys	Gln	Met 395	Phe	Leu	Thr	Gln	Thr 400
Asp	Thr	Gly	Asp	Tyr 405	Arg	Val	Tyr	Gln	Met 410	Pro	Ser	Phe	Leu	Gln 415	Ser
Val	Ala	Ser	Val 420	Leu	Leu	Tyr	Leu	Asp 425	Thr	Val	Pro	Glu	Val 430	Tyr	Thr

Pro	Val	Leu 435	Glu	His	Leu	Val	Val 440	Met	Gln	Ile	Asp	Ser 445	Phe	Pro	Gln
Tyr	Ser 450	Pro	Lys	Met	Gln	Leu 455	Val	Cys	Cys	Arg	Ala 460	Ile	Val	Lys	Val
Phe 465	Leu	Ala	Leu	Ala	Ala 470	Lys	Gly	Pro	Val	Leu 475	Arg	Asn	Cys	Ile	Ser 480
Thr	Val	Val	His	Gln 485	Gly	Leu	Ile	Arg	Ile 490	Cys	Ser	Lys	Pro	Val 495	Val
Leu	Pro	Lys	Gly 500	Pro	Glu	Ser	Glu	Ser 505	Glu	Asp	His	Arg	Ala 510	Ser	Gly
Glu	Val	Arg 515	Thr	Gly	Lys	Trp	Lys 520	Val	Pro	Thr	Tyr	Lys 525	Asp	Tyr	Val
Asp	Leu 530	Phe	Arg	His	Leu	Leu 535	Ser	Ser	Asp	Gln	Met 540	Met	Asp	Ser	Ile
Leu 545	Ala	Asp	Glu	Ala	Phe 550	Phe	Ser	Val	Asn	Ser 555	Ser	Ser	Glu	Ser	Leu 560
Asn	His	Leu	Leu	Tyr 565	Asp	Glu	Phe	Val	Lys 570	Ser	Val	Leu	Lys	Ile 575	Val
Glu	Lys	Leu	Asp 580	Leu	Thr	Leu	Glu	Ile 585	Gln	Thr	Val	Gly	Glu 590	Gln	Glu
Asn	Gly	Asp 595	Glu	Ala	Pro	Gly	Val 600	Trp	Met	Ile	Pro	Thr 605	Ser	Asp	Pro
Ala	Ala 610	Asn	Leu	His	Pro	Ala 615	Lys	Pro	Lys	Asp	Phe 620	Ser	Ala	Phe	Ile
Asn 625	Leu	Val	Glu	Phe	Cys 630	Arg	Glu	Ile	Leu	Pro 635	Glu	Lys	Gln	Ala	Glu 640
Phe	Phe	Glu	Pro	Trp 645	Val	Tyr	Ser	Phe	Ser 650	Tyr	Glu	Leu	Ile	Leu 655	Gln
Ser	Thr	Arg	Leu 660	Pro	Leu	Ile	Ser	Gly 665	Phe	Tyr	Lys	Leu	Leu 670	Ser	Ile

Thr	Val	Arg 675	Asn	Ala	Lys	Lys	Ile 680	Lys	Tyr	Phe	Glu	Gly 685	Val	Ser	Pro
Lys	Ser 690	Leu	Lys	His	Ser	Pro 695	Glu	Asp	Pro	Glu	Lys 700	Tyr	Ser	Cys	Phe
Ala 705	Leu	Phe	Val	Lys	Phe 710	Gly	Lys	Glu	Val	Ala 715	Val	Lys	Met	Lys	Gln 720
Tyr	Lys	Asp	Glu	Leu 725	Leu	Ala	Ser	Cys	Leu 730	Thr	Phe	Leu	Leu	Ser 735	Leu
Pro	His	Asn	Ile 740	Ile	Glu	Leu	Asp	Val 745	Arg	Ala	Tyr	Val	Pro 750	Ala	Leu
Gln	Met	Ala 755	Phe	Lys	Leu	Gly	Leu 760	Ser	Tyr	Thr	Pro	Leu 765	Ala	Glu	Val
Gly	Leu 770	Asn	Ala	Leu	Glu	Glu 775	Trp	Ser	Ile	Tyr	Ile 780	Asp	Arg	His	Val
Met 785	Gln	Pro	Tyr	Tyr	Lys 790	Asp	Ile	Leu	Pro	Cys 795	Leu	Asp	Gly	Tyr	Leu 800
Lys	Thr	Ser	Ala	Leu 805	Ser	Asp	Glu	Thr	Lys 810	Asn	Asn	Trp	Glu	Val 815	Ser
Ala	Leu	Ser	Arg 820	Ala	Ala	Gln	Lys	Gly 825	Phe	Asn	Lys	Val	Val 830	Leu	Lys
His	Leu	Lys 835	Lys	Thr	Lys	Asn	Leu 840	Ser	Ser	Asn	Glu	Ala 845	Ile	Ser	Leu
Glu	Glu 850	Ile	Arg	Ile	Arg	Val 855	Val	Gln	Met	Leu	Gly 860	Ser	Leu	Gly	Gly
Gln 865	Ile	Asn	Lys	Asn	Leu 870	Leu	Thr	Val	Thr	Ser 875	Ser	Asp	Glu	Met	Met 880
Lys	Ser	Tyr	Val	Ala 885	Trp	Asp	Arg	Glu	Lys 890	Arg	Leu	Ser	Phe	Ala 895	Val
Pro	Phe	Arg	Glu 900	Met	Lys	Pro	Val	Ile 905	Phe	Leu	Asp	Val	Phe 910	Leu	Pro

Arg Val Thr Glu Leu Ala Leu Thr Ala Ser Asp Arg Gln Thr Lys Val

915 920 925

- Ala Cys Glu Leu Leu His Ser Met Val Met Phe Met Leu Gly Lys 930 935 940
- Ala Thr Gln Met Pro Glu Gly Gly Gln Gly Ala Pro Pro Met Tyr Gln 945 950 955 960
- Leu Tyr Lys Arg Thr Phe Pro Val Leu Leu Arg Leu Ala Cys Asp Val 965 970 975
- Asp Gln Val Thr Arg Gln Leu Tyr Glu Pro Leu Val Met Gln Leu Ile 980 985 990
- His Trp Phe Thr Asn Asn Lys Lys Phe Glu Ser Gln Asp Thr Val Ser 995 1000 1005
- Leu Leu Glu Ala Ile Leu Asp Gly Ile Val Asp Pro Val Asp Ser 1010 1015 1020
- Thr Leu Arg Asp Phe Cys Gly Arg Cys Ile Arg Glu Phe Leu Lys 1025 1030 1035
- Trp Ser Ile Lys Gln Ile Thr Pro Gln Gln Gln Glu Lys Ser Pro 1040 1045 1050
- Val Asn Thr Lys Ser Leu Phe Lys Arg Leu Tyr Ser Leu Ala Leu 1055 1060 1065
- His Pro Asn Ala Phe Lys Arg Leu Gly Ala Ser Leu Ala Phe Asn 1070 1075 1080
- Asn Ile Tyr Arg Glu Phe Arg Glu Glu Glu Ser Leu Val Glu Gln 1085 1090 1095
- Phe Val Phe Glu Ala Leu Val Ile Tyr Met Glu Ser Leu Ala Leu 1100 1105 1110
- Ala His Ala Asp Glu Lys Ser Leu Gly Thr Ile Gln Gln Cys Cys 1115 1120 1125
- Asp Ala Ile Asp His Leu Cys Arg Ile Ile Glu Lys Lys His Val 1130 1135 1140
- Ser Leu Asn Lys Ala Lys Lys Arg Arg Leu Pro Arg Gly Phe Pro 1145 1150 1155.

Pro	Ser 1160		Ser	Leu	Cys	Leu 1165	Leu	Asp	Leu	Val	Lys 1170	Trp	Leu	Leu
Ala	His 1175	Cys	Gly	Arg	Pro	Gln 1180	Thr	Glu	Cys	Arg	His 1185	Lys	Ser	Ile
Glu	Leu 1190	Phe	Tyr	Lys	Phe	Val 1195	Pro	Leu	Leu	Pro	Gly 1200	Asn	Arg	Ser
Pro	Asn 1205	Leu	Trp	Leu	Lys	Asp 1210	Val	Leu	Lys	Glu	Glu 1215	Gly	Val	Ser
Phe	Leu 1220	Ile	Asn	Thr	Phe	Glu 1225	Gly	Gly	Gly	Cys	Gly 1230	Gln	Pro	Ser
Gly	Ile 1235	Leu	Ala	Gln	Pro	Thr 1240	Leu	Leu	Tyr	Leu	Arg 1245	Gly	Pro	Phe
Ser	Leu 1250	Gln	Ala	Thr	Leu	Cys 1255	Trp	Leu	Asp	Leu	Leu 1260	Leu	Ala	Ala
Leu	Glu 1265	Cys	Tyr	Asn	Thr	Phe 1270	Ile	Gly	Glu	Arg	Thr 1275	Val	Gly	Ala
Leu	Gln 1280	Val	Leu	Gly	Thr	Glu 1285	Ala	Gln	Ser	Ser	Leu 1290	Leu	Lys	Ala
Val	Ala 1295	Phe	Phe	Leu	Glu	Ser 1300	Ile	Ala	Met	His	Asp 1305	Ile	Ile	Ala
Ala	Glu 1310	Lys	Cys	Phe	Gly	Thr 1315	Gly	Ala	Ala	Gly	Asn 1320	Arg	Thr	Ser
Pro	Gln 1325	Glu	Gly	Glu	Arg	Tyr 1330	Asn	Tyr	Ser	Lys	Cys 1335		Val	Val
Val	Arg 1340	Ile	Met	Glu	Phe	Thr 1345	Thr	Thr	Leu	Leu	Asn 1350	Thr	Ser	Pro
Glu	Gly 1355	Trp	Lys	Leu	Leu	Lys 1360	Lys	Asp	Leu	Cys	Asn 1365	Thr	His	Leu
Met	Arg 1370	Val	Leu	Val	Gln	Thr 1375	Leu	Cys	Glu	Pro	Ala 1380	Ser	Ile	Gly

Phe	Asn 1385		Gly	Asp	Val	Gln 1390		Met	Ala	His	Leu 1395		Asp	Val
Cys	Val 1400	Asn	Leu	Met	Lys	Ala 1405	Leu	Lys	Met	Ser	Pro 1410	Tyr	Lys	Asp
Ile	Leu 1415	Glu	Thr	His	Leu	Arg 1420	Glu	Lys	Ile	Thr	Ala 1425	Gln	Ser	Ile
Glu	Glu 1430	Leu	Cys	Ala	Val	Asn 1435	Leu	Tyr	Gly	Pro	Asp 1440	Ala	Gln	Val
Asp	Arg 1445	Ser	Arg	Leu	Ala	Ala 1450	Val	Val	Ser	Ala	Cys 1455	Lys	Gln	Leu
His	Arg 1460		Gly	Leu	Leu	His 1465	Asn	Ile	Leu	Pro	Ser 1470	Gln	Ser	Thr
Asp	Leu 1475	His	His	Ser	Val	Gly 1480	Thr	Glu	Leu	Leu	Ser 1485	Leu	Val	Tyr
Lys	Gly 1490	Ile	Ala	Pro	Gly	Asp 1495	Glu	Arg	Gln	Cys	Leu 1500	Pro	Ser	Leu
Asp	Leu 1505	Ser	Cys	Lys	Gln	Leu 1510	Ala	Ser	Gly	Leu	Leu 1515	Glu	Leu	Ala
Phe	Ala 1520	Phe	Gly	Gly	Leu	Cys 1525	Glu	Arg	Leu	Val	Ser 1530	.Leu	Leu	Leu
Asn	Pro 1535	Ala	Val	Leu	Ser	Thr 1540	Ala	Ser	Leu	Gly	Ser 1545	Ser	Gln	Gly
Ser	Val 1550	Ile	His	Phe	Ser	His 1555	Gly	Glu	Tyr	Phe	Tyr 1560	Ser	Leu	Phe
Ser	Glu 1565	Thr	Ile	Asn	Thr	Glu 1570	Leu	Leu	Lys	Asn	Leu 1575	Asp	Leu	Ala
Val	Leu 1580	Glu	Leu	Met	Gln	Ser 1585	Ser	Val	Asp	Asn	Thr 1590	Lys	Met	Val
Ser	Ala 1595	Val	Leu	Asn	Gly	Met 1600	Leu	Asp	Gln	Ser	Phe 1605	Arg	Glu	Arg

Ala	Asn 1610		Lys	His	Gln	Gly 1615	Leu	Lys	Leu	Ala	Thr 1620	Thr	Ile	Leu
Gln	His 1625		Lys	Lys	Cys	Asp 1630	Ser	Trp	Trp	Ala	Lys 1635	Asp	Ser	Pro
Leu	Glu 1640	Thr	Lys	Met	Ala	Val 1645	Leu	Ala	Leu	Leu	Ala 1650	Lys	Ile	Leu
Gln	Ile 1655	Asp	Ser	Ser	Val	Ser 1660	Phe	Asn	Thr	Ser	His 1665	Gly	Ser	Phe
Pro	Glu 1670	Val	Phe	Thr	Thr	Tyr 1675	Ile	Ser	Leu	Leu	Ala 1680	Asp	Thr	Lys
Leu	Asp 1685	Leu	His	Leu	Lys	Gly 1690	Gln	Ala	Val	Thr	Leu 1695	Leu	Pro	Phe
Phe	Thr 1700	Ser	Leu	Thr	Gly	Gly 1705	Ser	Leu	Glu	Glu	Leu 1710	Arg	Arg	Val
	1715					Ala 1720					1725			
Phe	Pro 1730	Pro	Gly	Thr	Pro	Arg 1735	Phe	Asn	Asn	Tyr	Val 1740	Asp	Cys	Met
	1745					Leu 1750					1755			
	1760					Val 1765		_			1770			
	1775					Ser 1780					1785			
	1790					Val 1795					1800		-	
Met	1805					Pro 1810					1815			
Phe	Val 1820	Asp	Arg	Ser	Leu	Leu 1825	Thr	Leu	Leu	Trp	His 1830	Cys	Ser	Leu

Asp Ala Leu Arg Glu Phe Phe Ser Thr Ile Val Val Asp Ala Ile

1835 1840 1845

Asp	Val 1850	Leu	Lys	Ser	Arg	Phe 1855	Thr	Lys	Leu	Asn	Glu 1860		Thr	Phe
Asp	Thr 1865	Gln	Ile	Thr	Lys	Lys 1870	Met	Gly	Tyr	Tyr	Lys 1875	Ile	Leu	Asp
Val	Met 1880		Ser	Arg	Leu	Pro 1885		Asp	Asp	Val	His 1890	Ala	Lys	Glu
Ser	Lys 1895	Ile	Asn	Gln		Phe 1900	His	Gly	Ser	Cys	Ile 1905	Thr	Glu	Gly
Asn	Glu 1910		Thr	Lys		Leu 1915		Lys	Leu	Cys	Tyr 1920	Asp	Ala	Phe
Thr	Glu 1925	Asn	Met	Ala	Gly	Glu 1930	Asn	Gln	Leu	Leu	Glu 1935	Arg	Arg	Arg
Leu	Tyr 1940	His	Cys	Ala	Ala	Tyr 1945	Asn	Cys	Ala	Ile	Ser 1950	Val	Ile	Cys
Cys	Val 1955	Phe	Asn	Glu	Leu	Lys 1960	Phe	Tyr	Gln	Gly	Phe 1965	Leu	Phe	Ser
Glu	Lys 1970	Pro	Glu	Lys	Asn	Leu 1975	Leu	Ile	Phe	Glu	Asn 1980	Leu	Ile	Asp
Leu	Lys 1985	Arg	Arg	Tyr	Asn	Phe 1990	Pro	Val	Glu	Val	Glu 1995	Val	Pro	Met
Glu	Arg 2000	Lys	Lys	Lys	Tyr	Ile 2005	Glu	Ile	Arg	Lys	Glu 2010	Ala	Arg	Glu
Ala	Ala 2015	Asn	Gly	Asp	Ser	Asp 2020	Gly	Pro	Ser	Tyr	Met 2025	Ser	Ser	Leu
Ser	Tyr 2030	Leu	Ala	Asp	Ser	Thr 2035	Leu	Ser	Glu	Glu	Met 2040	Ser	Gln	Phe
Asp	Phe 2045	Ser	Thr	Gly	Val	Gln 2050	Ser	Tyr	Ser	Tyr	Ser 2055	Ser	Gln	Asp
Pro	Arg 2060	Pro	Ala	Thr	Gly	Arg 2065	Phe	Arg	Arg	Arg	Glu 2070	Gln	, Arg	Asp

Pro Thr 2075		His	Asp	Asp	Val 2080	Leu	Glu	Leu	Glu	Met 2085		Glu	Leu
Asn Arg 2090		Glu	Cys	Met	Ala 2095		Leu	Thr	Ala	Leu 2100	Val	Lys	His
Met His 2105	-	Ser	Leu	Gly	Pro 2110		Gln	Gly	Glu	Glu 2115	Asp	Ser	Val
Pro Arg 2120	_	Leu	Pro	Ser	Trp 2125	Met	Lys	Phe	Leu	His 2130	Gly	Lys	Leu
Gly Asn 2135		Ile	Val	Pro	Leu 2140	Asn	Ile	Arg	Leu	Phe 2145	Leu	Ala	Lys
Leu Val 2150		Asn	Thr	Glu	Glu 2155	Val	Phe	Arg	Pro	Tyr 2160	Ala	Lys	His
Trp Leu 2165		Pro	Leu		Gln 2170	Leu	Ala	Ala	Ser	Glu 2175		Asn	Gly
Gly Glu 2180		Ile	His	Tyr	Met 2185	Val	Val	Glu	Ile	Val 2190	Ala	Thr	Ile
Leu Ser 2195	Trp	Thr	Gly	Leu	Ala 2200	Thr	Pro	Thr	Gly	Val 2205	Pro	Lys	Asp
Glu Val 2210	Leu	Ala	Asn	Arg	Leu 2215	Leu	Asn	Phe	Leu	Met 2220	Lys	His	Val
Phe His 2225	Pro	Lys	Arg	Ala	Val 2230	Phe	Arg	His	Asn	Leu 2235	Glu	Ile	Ile
Lys Thr 2240	Leu	Val	Glu	Cys	Trp 2245	Lys	Asp	Cys	Leu	Ser 2250	Ile	Pro	Tyr
Arg Leu 2255	Ile	Phe	Glu	Lys	Phe 2260	Ser	Gly	Lys	Asp	Pro 2265	Asn	Ser	Lys
Asp Asn 2270	Ser	Val	Gly	Ile	Gln 2275	Leu	Leu	Gly	Ile	Val 2280	Met	Ala	Asn
Asp Leu 2285	Pro	Pro	Tyr	Asp	Pro 2290	Gln	Cys	Gly	Ile	Gln 2295	Ser	Ser	Glu

Tyr	Phe 2300	Gln	Ala	Leu	Val	Asn 2305	Asn	Met	Ser	Phe	Val 2310	Arg	Tyr	Lys
Glu	Val 2315	Tyr	Ala	Ala	Ala	Ala 2320	Glu	Val	Leu	Gly	Leu 2325	Ile	Leu	Arg
Tyr	Val 2330	Met	Glu	Arg	Lys	Asn 2335	Ile	Leu	Glu	Glu	Ser 2340	Leu	Cys	Glu
Leu	Val 2345	Ala	Lys	Gln	Leu	Lys 2350	Gln	His	Gln	Asn	Thr 2355	Met	Glu	Asp
Lys	Phe 2360	Ile	Val	Cys	Leu	Asn 2365	Lys	Val	Thr	Lys	Ser 2370	Phe	Pro	Pro
Leu	Ala 2375	Asp	Arg	Phe	Met	Asn 2380	Ala	Val	Phe	Phe	Leu 2385	Leu	Pro	Lys
Phe	His 2390	Gly	Val	Leu	Lys	Thr 2395	Leu	Cys	Leu	Glu	Val 2400	Val	Leu	Cys
Arg	Val 2405	Glu	Gly	Met	Thr	Glu 2410	Leu	Tyr	Phe	Gln	Leu 2415	Lys	Ser	Lys
Asp	Phe 2420	Val	Gln	Val	Met	Arg 2425	His	Arg	Asp	Asp	Glu 2430	Arg	Gln	Lys
Val	Cys 2435	Leu	Asp	Ile	Ile	Tyr 2440	Lys	Met	Met	Pro	Lys 2445	Leu	Lys	Pro
Val	Glu 2450	Leu	Arg	Glu	Leu	Leu 2455	Asn	Pro	Val	Val	Glu 2460	Phe	Val	Ser
His	Pro 2465	Ser	Thr	Thr	Cys	Arg 2470	Glu	Gln	Met	Tyr	Asn 2475	Ile	Leu	Met
Trp	Ile 2480	His	Asp	Asn	Tyr	Arg 2485	Asp	Pro	Glu	Ser	Glu 2490	Thr	Asp	Asn
Asp	Ser 2495	Gln	Glu	Ile	Phe	Lys 2500	Leu	Ala	Lys	Asp	Val 2505	Leu	Ile	Gln
Gly	Leu 2510	Ile	Asp	Glu	Asn	Pro 2515	Gly	Leu	Gln	Leu	Ile 2520	Ile	Arg	Asn

Phe	Trp 2525		His	Glu	Thr	Arg 2530	Leu	Pro	Ser	Asn	Thr 2535	Leu	Asp	Arg
Leu	Leu 2540	Ala	Leu	Asn	Ser	Leu 2545		Ser	Pro	Lys	Ile 2550	Glu	Val	His
Phe	Leu 2555	Ser	Leu	Ala	Thr	Asn 2560	Phe	Leu	Leu	Glu	Met 2565	Thr	Ser	Met
Ser	Pro 2570	Asp	Tyr	Pro	Asn	Pro 2575	Met	Phe	Glu	His	Pro 2580	Leu	Ser	Glu
Cys	Glu 2585	Phe	Gln	Glu	Tyr	Thr 2590	Ile	Asp	Ser	Asp	Trp 2595	Arg	Phe	Arg
Ser	Thr 2600	Val	Leu	Thr	Pro	Met 2605	Phe	Val	Glu	Thr	Gln 2610	Ala	Ser	Gln
Gly	Thr 2615	Leu	Gln	Thr	Arg	Thr 2620	Gln	Glu	Gly	Ser	Leu 2625	Ser	Ala	Arg
Trp	Pro 2630	Val	Ala	Gly	Gln	Ile 2635	Arg	Ala	Thr	Gln	Gln 2640	Gln	His	Asp
Phe	Thr 2645	Leu	Thr	Gln	Thr	Ala 2650	Asp	Gly	Arg	Ser	Ser 2655	Phe	Asp	Trp
Leu	Thr 2660	Gly	Ser	Ser	Thr	Asp 2665	Pro	Leu	Val	Asp	His 2670	Thr	Ser	Pro
Ser	Ser 2675	Asp	Ser	Leu	Leu	Phe 2680	Ala	His	Lys	Arg	Ser 2685	Glu	Arg	Leu
Gln	Arg 2690	Ala	Pro	Leu	Lys	Ser 2695	Val	Gly	Pro	Asp	Phe 2700	Gly	Lys	Lys
Arg	Leu 2705	Gly	Leu	Pro	Gly	Asp 2710	Glu	Val	Asp	Asn	Lys 2715	Val	Lys	Gly
Ala	Ala 2720	Gly	Arg	Thr	Asp	Leu 2725	Leu	Arg	Leu	Arg	Arg 2730	Arg	Phe	Met
Arg	Asp 2735	Gln	Glu	Lys	Leu	Ser 2740	Leu	Met	Tyr	Ala	Arg 2745	Lys	Gly	Val

Ala Glu Gln Lys Arg Glu Lys Glu Ile Lys Ser Glu Leu Lys Met

2750 2755 2760

Lys	Gln 2765		Ala	Gln	Val	Val 2770		Tyr	Arg	Ser	Tyr 2775	Arg	His	Gly
Asp	Leu 2780	Pro	Asp	Ile	Gln	Ile 2785	Lys	His	Ser	Ser	Leu 2790	Ile	Thr	Pro
Leu	Gln 2795	Ala	Val	Ala	Gln	Arg 2800	Asp	Pro	Ile	Ile	Ala 2805	Lys	Gln	Leu
Phe	Ser 2810	Ser	Leu	Phe	Ser	Gly 2815	Ile	Leu	Lys	Glu	Met 2820	_	Lys	Phe
Lys	Thr 2825	Leu	Ser	Glu	Lys	Asn 2830	Asn	Ile	Thr	Gln	Lys 2835	Leu	Leu	Gln
Asp	Phe 2840	Asn	Arg	Phe	Leu	Asn 2845	Thr	Thr	Phe	Ser	Phe 2850	Phe	Pro	Pro
Phe	Val 2855	Ser	Cys	Ile	Gln	Asp 2860	Ile	Ser	Cys	Gln	His 2865	Ala	Ala	Leu
Leu	Ser 2870	Leu	Asp	Pro	Ala	Ala 2875	Val	Ser	Ala	Gly	Cys 2880	Leu	Ala	Ser
Leu	Gln 2885	Gln	Pro	Val	Gly	Ile 2890	Arg	Leu	Leu	Glu	Glu 2895	Ala	Leu	Leu
Arg	Leu 2900	Leu	Pro	Ala	Glu	Leu 2905	Pro	Ala	Lys	Arg	Val 2910	_	Gly	Lys
Ala	Arg 2915	Leu	Pro	Pro	Asp	Val 2920	Leu	Arg	Trp	Val	Glu 2925	Leu	Ala	Lys
Leu	Tyr 2930	Arg	Ser	Ile	Gly	Glu 2935	Tyr	Asp	Val	Leu	Arg 2940	Gly	Ile	Phe
Thr	Ser 2945	Glu	Ile	Gly	Thr	Lys 2950	Gln	Ile	Thr	Gln	Ser 2955	Ala	Leu	Leu
Ala	Glu 2960	Ala	Arg	Ser	Asp	Tyr 2965	Ser	Glu	Āla	Ala	Lys 2970	Gln	Tyr	Asp
Glu	Ala 2975	Leu	Asn	Lys	Gln	Asp 2980	Trp	Val	Asp	Gly	Glu 2985	Pro	Thr	Glu

Ala Glu Lys Asp Phe Trp Glu Leu Ala Ser Leu Asp Cys Tyr Asn His Leu Ala Glu Trp Lys Ser Leu Glu Tyr Cys Ser Thr Ala Ser Ile Asp Ser Glu Asn Pro Pro Asp Leu Asn Lys Ile Trp Ser Glu Pro Phe Tyr Gln Glu Thr Tyr Leu Pro Tyr Met Ile Arg Ser Lys Leu Lys Leu Leu Gln Gly Glu Ala Asp Gln Ser Leu Leu Thr Phe Ile Asp Lys Ala Met His Gly Glu Leu Gln Lys Ala Ile Leu Glu Leu His Tyr Ser Gln Glu Leu Ser Leu Leu Tyr Leu Leu Gln Asp Asp Val Asp Arg Ala Lys Tyr Tyr Ile Gln Asn Gly Ile Gln Ser Phe Met Gln Asn Tyr Ser Ser Ile Asp Val Leu Leu His Gln Ser Arg Leu Thr Lys Leu Gln Ser Val Gln Ala Leu Thr Glu Ile Gln Glu Phe Ile Ser Phe Ile Ser Lys Gln Gly Asn Leu Ser Ser Gln Val Pro Leu Lys Arg Leu Leu Asn Thr Trp Thr Asn Arg Tyr Pro Asp Ala Lys Met Asp Pro Met Asn Ile Trp Asp Asp Ile Ile Thr Asn Arg Cys Phe Phe Leu Ser Lys Ile Glu Glu Lys Leu Thr Pro Leu Pro Glu Asp Asn Ser Met Asn Val Asp Gln Asp Gly Asp

3205 3210

Pro	Ser 3215	Asp	Arg	Met	Glu	Val 3220	Gln	Glu	Gln	Glu	Glu 3225	Asp	Ile	Ser
Ser	Leu 3230	Ile	Arg	Ser	Cys	Lys 3235		Ser	Met	Lys	Met 3240	Lys	Met	Ile
Asp	Ser 3245	Ala	Arg	Lys	Gln	Asn 3250	Asn	Phe	Ser	Leu	Ala 3255	Met	Lys	Leu
Leu	Lys 3260	Glu	Leu	His	Lys	Glu 3265		Lys	Thr	Arg	Asp 3270	Asp	Trp	Leu
Val	Ser 3275	Trp	Val	Gln	Ser	Tyr 3280	Cys	Arg	Leu	Ser	His 3285	Cys	Arg	Ser
Arg	Ser 3290	Gln	Gly	Cys	Ser	Glu 3295	Gln	Val	Leu	Thr	Val 3300	Leu	Lys	Thr
Val	Ser 3305	Leu	Leu	Asp	Glu	Asn 3310	Asn	Val	Ser	Ser	Tyr 3315	Leu	Ser	Lys
Asn	Ile 3320	Leu	Ala	Phe	Arg	Asp 3325	Gln	Asn	Ile	Leu	Leu 3330	Gly	Thr	Thr
Tyr	Arg 3335	Ile	Ile	Ala	Asn	Ala 3340	Leu	Ser	Ser	Glu	Pro 3345	Ala	Cys	Leu
Ala	Glu 3350	Ile	Glu	Glu	Asp	Lys 3355	Ala	Arg	Arg	Ile	Leu 3360	Glu	Leu	Ser
Gly	Ser 3365	Ser	Ser	Glu	Asp	Ser 3370		Lys	Val	Ile	Ala 3375	Gly	Leu	Tyr
Gln	Arg 3380	Ala	Phe	Gln	His	Leu 3385	Ser	Glu	Ala	Val	Gln 3390	Ala	Ala	Glu
Glu	Glu 3395	Ala	Gln	Pro	Pro	Ser 3400	Trp	Ser	Cys	Gly	Pro 3405	Ala	Ala	Gly
Val	Ile 3410	Asp	Ala	Tyr	Met	Thr 3415	Leu	Ala	Asp	Phe	Cys 3420	Asp	Gln	Gln
Leu	Arg 3425	Lys	Glu	Glu	Glu	Asn 3430	Ala	Ser	Val	Thr	Asp 3435	Ser	Ala	Glu

Leu	Gln 3440		Tyr	Pro	Ala	Leu 3445	Val	Val	Glu	Lys	Met 3450	Leu	Lys	Ala
Leu	Lys 3455	Leu	Asn	Ser	Asn	Glu 3460	Ala	Arg	Leu	Lys	Phe 3465		Arg	Leu
Leu	Gln 3470		Ile	Glu	Arg	Tyr 3475		Glu	Glu	Thr	Leu 3480		Leu	Met
Thr	Lys 3485	Glu	Ile	Ser	Ser	Val 3490	Pro	Cys	Trp	Gln	Phe 3495	Ile	Ser	Trp
Ile	Ser 3500	His	Met	Val	Ala	Leu 3505	Leu	Asp	Lys	Asp	Gln 3510		Val	Ala
Val	Gln 3515	His	Ser	Val	Glu	Glu 3520	Ile	Thr	Asp	Asn	Tyr 3525	Pro	Gln	Ala
Ile	Val 3530	Tyr	Pro	Phe	Ile	Ile 3535	Ser	Ser	Glu	Ser	Tyr 3540	Ser	Phe	Lys
Asp ,	Thr 3545	Ser	Thr	Gly	His	Lys 3550	Asn	Lys	Glu	Phe	Val 3555		Arg	Ile
Lys	Ser 3560	Lys	Leu	Asp	Gln	Gly 3565	Gly	Val	Ile	Gln	Asp 3570	Phe	Ile	Asn
Ala	Leu 3575	Asp	Gln	Leu	Ser	Asn 3580	Pro	Glu	Leu	Leu	Phe 3585	Lys	Asp	Trp
Ser	Asn 3590	Asp	Val	Arg	Ala	Glu 3595	Leu	Ala	Lys	Thr	Pro 3600	Val	Asn	Lys
Lys	Asn 3605	Ile	Glu	Lys	Met	Tyr 3610	Glu	Arg	Met	Tyr	Ala 3615	Ala	Leu	Gly
Asp	Pro 3620	Lys	Ala	Pro	Gly	Leu 3625	Gly	Ala	Phe	Arg	Arg 3630	Lys	Phe	Ile
Gln	Thr 3635	Phe	Gly	Lys	Glu	Phe 3640	Asp	Lys	His	Phe	Gly 3645	_	Gly	Gly
Ser	Lys 3650	Leu	Leu	Arg	Met	Lys 3655	Leu	Ser	Asp	Phe	Asn 3660	Asp	Ile	Thr

Asn Met Leu Leu Lys Met Asn Lys Asp Ser Lys Pro Pro Gly

3665 3670 3675

Asn	Leu 3680	Lys	Glu	Cys	Ser	Pro 3685	Trp	Met	Ser	Asp	Phe 3690	Lys	Val	Glu
Phe	Leu 3695	Arg	Asn	Glu	Leu	Glu 3700	Ile	Pro	Gly	Gln	Tyr 3705	Asp	Gly	Arg
Gly	Lys 3710	Pro	Leu	Pro	Glu	Tyr 3715	His	Val	Arg	Ile	Ala 3720	Gly	Phe	Asp
Glu	Arg 3725	Val	Thr	Val	Met	Ala 3730		Leu	Arg	Arg	Pro 3735	Lys	Arg	Ile
Ile	Ile 3740	Arg	Gly	His	Asp	Glu 3745	Arg	Glu	His	Pro	Phe 3750	Leu	Val	Lys
Gly	Gly 3755	Glu	Asp	Leu	Arg	Gln 3760	Asp	Gln	Arg	Val	Glu 3765	Gln	Leu	Phe
Gln	Val 3770	Met	Asn	Gly	Ile	Leu 3775	Ala	Gln	Asp	Ser	Ala 3780	Cys	Ser	Gln
Arg	Ala 3785	Leu	Gln	Leu	Arg	Thr 3790	Tyr	Ser	Val	Val	Pro 3795	Met	Thr	Ser
Arg	Leu 3800	Gly	Leu	Ile	Glu	Trp 3805	Leu	Glu	Asn	Thr	Val 3810	Thr	Leu	Lys
Asp	Leu 3815	Leu	Leu	Asn	Thr	Met 3820	Ser	Gln	Glu	Glu	Lys 3825	Ala	Ala	Tyr
Leu	Ser 3830	Asp	Pro	Arg	Ala	Pro 3835	Pro	Cys	Glu	Tyr	Lys 3840	Asp	Trp	Leu
Thr	Lys 3845	Met	Ser	Gly	Lys	His 3850	Asp	Val	Gly	Ala	Tyr 3855	Met	Leu	Met
Tyr	Lys 3860	Gly	Ala	Asn	Arg	Thr 3865	Glu	Thr	Val	Thr	Ser 3870	Phe	Arg	Lys
Arg	Glu 3875	Ser	Lys	Val	Pro	Ala 3880	Asp	Leu	Leu	Lys	Arg 3885	Ala	Phe	Val
Arg	Met 3890	Ser	Thr	Ser	Pro	Glu 3895	Ala	Phe	Leu	Ala	Leu 3900	Arg	Ser	His

Phe	Ala 3905		Ser	His	Ala	Leu 3910		Cys	Ile	Ser	His 3915	Trp	Ile	Leu
Gly	Ile 3920		Asp	Arg	His	Leu 3925		Asn	Phe	Met	Val 3930		Met	Glu
Thr	Gly 3935	Gly	Val	Ile	Gly	Ile 3940	Asp	Phe	Gly	His	Ala 3945	Phe	Gly	Ser
Ala	Thr 3950		Phe	Leu	Pro	Val 3955	Pro	Glu	Leu	Met	Pro 3960	Phe	Arg	Leu
Thr	Arg 3965	Gln	Phe	Ile	Asn	Leu 3970	Met	Leu	Pro	Met	Lys 3975	Glu	Thr	Gly
Leu	Met 3980		Ser	Ile	Met	Val 3985	His	Ala	Leu	Arg	Ala 3990	Phe	Arg	Ser
Asp	Pro 3995	Gly	Leu	Leu	Thr	Asn 4000	Thr	Met	Asp	Val	Phe 4005	Val	Lys	Glu
Pro	Ser 4010	Phe	Asp	Trp	Lys	Asn 4015	Phe	Glu	Gln	Lys	Met 4020	Leu	Lys	Lys
Gly	Gly 4025	Ser	Trp	Ile	Gln	Glu 4030	Ile	Asn	Val	Ala	Glu 4035	Lys	Asn	Trp
Tyr	Pro 4040	Arg	Gln	Lys	Ile	Cys 4045	Tyr	Ala	Lys	Arg	Lys 4050	Leu	Ala	Gly
Ala	Asn 4055	Pro	Ala	Val	Ile	Thr 4060	Cys	Asp	Glu	Leu	Leu 4065	Leu	Gly	His
Glu	Lys 4070	Ala	Pro	Ala	Phe	Arg 4075	Asp	Tyr	Val	Ala	Val 4080	Ala	Arg	Gly
Ser	Lys 4085	Asp	His	Asn	Ile	Arg 4090	Ala	Gln	Glu	Pro	Glu 4095	Ser	Gly	Leu
Ser	Glu 4100	Glu	Thr	Gln	Val	Lys 4105	Cys	Leu	Met	Asp	Gln 4110	.Ala	Thr	Asp
Pro	Asn 4115	Ile	Leu	Gly	Arg	Thr 4120	Trp	Glu	Gly	Trp	Glu 4125	Pro	Trp	Met

```
<211> 21
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222> (1)..(21)
<223> HUMAN GENETIC ORIGIN
<220>
<221> MOD RES
<222> (11)..(11)
<223> PHOSPHORYLATION at T2609
<400> 4
Ser Thr Val Leu Thr Pro Met Phe Val Glu Thr Gln Ala Ser Gln Gly
               5
                                   10
Thr Leu Gln Thr Arg
           20
<210> 5
<211> 29
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222> (1)..(29)
<223> HUMAN GENETIC ORIGIN
<220>
<221> MOD RES
<222> (13)..(13)
<223> PHOSPHORYLATION at S2056
<400> 5
Asp Phe Ser Thr Gly Val Gln Ser Tyr Ser Tyr Ser Ser Gln Asp Pro
               5
                                   10
Arg Pro Ala Thr Gly Arg Phe Arg Arg Glu Gln Arg
<210> 6
<211> 303
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
```

<210> 4

<222> (1)..(303) <223> HUMAN GENETIC ORIGIN <220> <221> MOD RES <222> (177)..(177) <223> PHOSPHORYLATION at S2056 <400> 6 Met Tyr Ser Arg Leu Pro Lys Asp Val His Ala Lys Glu Ser Lys 5 Ile Asn Gln Val Phe His Gly Ser Cys Ile Thr Glu Gly Asn Glu Leu 25 Thr Lys Thr Leu Ile Lys Leu Cys Tyr Asp Ala Phe Thr Glu Asn Met 40 Ala Gly Glu Asn Gln Leu Leu Glu Arg Arg Leu Tyr His Cys Ala 55 Ala Tyr Asn Cys Ala Ile Ser Val Ile Cys Cys Val Phe Asn Glu Leu 70 7.5 Lys Phe Tyr Gln Gly Phe Leu Phe Ser Glu Lys Pro Glu Lys Asn Leu 85 90 . 95 Leu Ile Phe Glu Asn Leu Ile Asp Leu Lys Arg Arg Tyr Asn Phe Pro 100 105 110 Val Glu Val Glu Val Pro Met Glu Arg Lys Lys Tyr Ile Glu Ile Arg Lys Glu Ala Arg Glu Ala Ala Asn Gly Asp Ser Asp Gly Pro Ser Tyr Met Ser Ser Leu Ser Tyr Leu Ala Asp Ser Thr Leu Ser Glu Glu 145 150 155 Met Ser Gln Phe Asp Phe Ser Thr Gly Val Gln Ser Tyr Ser Tyr Ser 165 170 175 Ser Gln Asp Pro Arg Pro Ala Thr Gly Arg Phe Arg Arg Glu Gln . 190 180 185

Arg Asp Pro Thr Val His Asp Asp Val Leu Glu Leu Glu Met Asp Glu

200 205

Leu Asn Arg His Glu Cys Met Ala Pro Leu Thr Ala Leu Val Lys His Met His Arg Ser Leu Gly Pro Pro Gln Gly Glu Glu Asp Ser Val Pro 230 235 Arg Asp Leu Pro Ser Trp Met Lys Phe Leu His Gly Lys Leu Gly Asn 245 250 Pro Ile Val Pro Leu Asn Ile Arg Leu Phe Leu Ala Lys Leu Val Ile 260 265 270 Asn Thr Glu Glu Val Phe Arg Pro Tyr Ala Lys His Trp Leu Ser Pro 275 285 Leu Leu Gln Leu Ala Ala Ser Glu Asn Asn Gly Gly Glu Gly Ile <210> 7 <211> 388 <212> PRT <213> Artificial Sequence <220> <221> PEPTIDE <222> (1)..(388) <223> HUMAN GENETIC ORIGIN <220> <221> MOD RES <222> (177)..(177) <223> PHOSPHORYLATION at S2056 <400> 7 Met Tyr Ser Arg Leu Pro Lys Asp Asp Val His Ala Lys Glu Ser Lys 5 15 Ile Asn Gln Val Phe His Gly Ser Cys Ile Thr Glu Gly Asn Glu Leu 20 25 30 Thr Lys Thr Leu Ile Lys Leu Cys Tyr Asp Ala Phe Thr Glu Asn Met Ala Gly Glu Asn Gln Leu Leu Glu Arg Arg Leu Tyr His Cys Ala

Ala Tyr Asn Cys Ala Ile Ser Val Ile Cys Cys Val Phe Asn Glu Leu

75

Lys	Phe	Tyr	Gln	Gly 85	Phe	Leu	Phe	Ser	Glu 90	Lys	Pro	Glu	Lys	Asn 95	Leu
Leu	Ile	Phe	Glu 100	Asn	Leu	Ile	Asp	Leu 105	Lys	Arg	Arg	Tyr	Asn 110	Phe	Pro
Val	Glu	Val 115	Glu	Val	Pro	Met	Glu 120	Arg	Lys	Lys	Lys	Tyr 125	Ile	Glu	Ile
Arg	Lys 130	Glu	Ala	Arg	Glu	Ala 135	Ala	Asn	Gly	Asp	Ser 140	Asp	Gly	Pro	Ser
Tyr 145	Met	Ser	Ser	Leu	Ser 150	Tyr	Leu	Ala	Asp	Ser 155	Thr	Leu	Ser	Glu	Glu 160
Met	Ser	Gln	Phe	Asp 165	Phe	Ser	Thr	Gly	Val 170	Gln	Ser	Tyr	Ser	Tyr 175	Ser
Ser	Gln	Asp	Pro 180	Arg	Pro	Ala	Thr	Gly 185	Arg	Phe	Arg	Arg	Arg 190	Glu	Gln
Arg	Asp	Pro 195	Thr	Val	His	Asp	Asp 200	·Val	Leu	Glu	Leu	Glu 205	Met	Asp	Glu
Leu	Asn 210	Arg	His	Glu	Cys	Met 215	Ala	Pro	Leu	Thr	Ala 220	Leu	Val	Lys	His
Met 225	His	Arg	Ser	Leu	Gly 230	Pro	Pro	Gln	Gly	Glu 235	Glu	Asp	Ser	Val	Pro 240
Arg	Asp	Leu	Pro	Ser 245	Trp	Met	Lys	Phe	Leu 250	His	Gly	Lys	Leu	Gly 255	Asn
Pro	Ile	Val	Pro 260	Leu	Asn	Ile	Arg	Leu 265	Phe	Leu	Ala	Lys	Leu 270	Val	Ile
Asn	Thr	Glu 275	Glu	Val	Phe	Arg	Pro 280	Tyr	Ala	Lys	His	Trp 285	Leu	Ser	Pro
Leu	Leu 290	Gln	Leu	Ala	Ala	Ser 295	Glu	Asn	Asn	Gly	Gly 300	Glu	Gly	Ile	His
Tyr 305	Met	Val	Val	Glu	Ile 310	Val	Ala	Thr	Ile	Leu 315	Ser	Trp	Thr	Gly	Leu 320

Ala Thr Pro Thr Gly Val Pro Lys Asp Glu Val Leu Ala Asn Arg Leu 325 330 Leu Asn Phe Leu Met Lys His Val Phe His Pro Lys Arg Ala Val Phe 345 Arg His Asn Leu Glu Ile Ile Lys Thr Leu Val Glu Cys Trp Lys Asp 355 360 365 Cys Leu Ser Ile Pro Tyr Arg Leu Ile Phe Glu Lys Phe Ser Gly Lys 370 375 380 Asp Pro Asn Ser 385 <210> 8 <211> 821 <212> PRT <213> Artificial Sequence <220> <221> PEPTIDE <222> (1)..(821) <223> HUMAN GENETIC ORIGIN <220> <221> MOD RES <222> (177)..(177) <223> PHOSPHORYLATION at S2056 <220> <221> MOD RES <222> (730)..(730) <223> PHOSPHORYLATION at T2609 <400> 8 Met Tyr Ser Arg Leu Pro Lys Asp Val His Ala Lys Glu Ser Lys 10 Ile Asn Gln Val Phe His Gly Ser Cys Ile Thr Glu Gly Asn Glu Leu 20 25

Ala Tyr Asn Cys Ala Ile Ser Val Ile Cys Cys Val Phe Asn Glu Leu

Thr Lys Thr Leu Ile Lys Leu Cys Tyr Asp Ala Phe Thr Glu Asn Met

Ala Gly Glu Asn Gln Leu Leu Glu Arg Arg Leu Tyr His Cys Ala

55

35

Lys Phe Tyr Gln Gly Phe Leu Phe Ser Glu Lys Pro Glu Lys Asn Leu 85 90 95

65

Leu Ile Phe Glu Asn Leu Ile Asp Leu Lys Arg Arg Tyr Asn Phe Pro $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$

Val Glu Val Glu Val Pro Met Glu Arg Lys Lys Tyr Ile Glu Ile 115 120 125

Arg Lys Glu Ala Arg Glu Ala Ala Asn Gly Asp Ser Asp Gly Pro Ser 130 135 140

Tyr Met Ser Ser Leu Ser Tyr Leu Ala Asp Ser Thr Leu Ser Glu Glu 145 150 155 160

Met Ser Gln Phe Asp Phe Ser Thr Gly Val Gln Ser Tyr Ser Tyr Ser 165 170 175

Ser Gln Asp Pro Arg Pro Ala Thr Gly Arg Phe Arg Arg Glu Gln 180 185 190

Arg Asp Pro Thr Val His Asp Asp Val Leu Glu Leu Glu Met Asp Glu
195 200 205

Leu Asn Arg His Glu Cys Met Ala Pro Leu Thr Ala Leu Val Lys His 210 215 220

Met His Arg Ser Leu Gly Pro Pro Gln Gly Glu Glu Asp Ser Val Pro 225 230 235 240

Arg Asp Leu Pro Ser Trp Met Lys Phe Leu His Gly Lys Leu Gly Asn 245 250 255

Pro Ile Val Pro Leu Asn Ile Arg Leu Phe Leu Ala Lys Leu Val Ile 260 265 270

Asn Thr Glu Glu Val Phe Arg Pro Tyr Ala Lys His Trp Leu Ser Pro 275 280 285

Leu Leu Gln Leu Ala Ala Ser Glu Asn Asn Gly Gly Glu Gly Ile His 290 295 300

Tyr Met Val Val Glu Ile Val Ala Thr Ile Leu Ser Trp Thr Gly Leu 305 310 315 320

Ala	Thr	Pro	Thr	Gly 325	Val	Pro	Lys	Asp	Glu 330	Val	Leu	Ala	Asn	Arg 335	Leu
Leu	Asn	Phe	Leu 340	Met	Lys	His	Val	Phe 345	His	Pro	Lys	Arg	Ala 350	Val	Phe
Arg	His	Asn 355	Leu	Glu	Ile	Ile	Lys 360	Thr	Leu	Val	Glu	Cys 365	Trp	Lys	Asp
Cys	Leu 370	Ser	Ile	Pro	Tyr	Arg 375	Leu	Ile	Phe	Glu	Lys 380	Phe	Ser	Gly	Lys
Asp 385	Pro	Asn	Ser	Lys	Asp 390	Asn	Ser	Val	Gly	Ile 395	Gln	Leu	Leu	Gly	Ile 400
Val	Met	Ala	Asn	Asp 405	Leu	Pro	Pro	Tyr	Asp 410	Pro	Gln	Cys	Gly	Ile 415	Gln
Ser	Ser	Glu	Tyr 420	Phe	Gln	Ala	Leu	Val 425	Asn	Asn	Met	Ser	Phe 430	Val	Arg
Tyr	Lys	Glu 435	Val	Tyr	Ala	Ala	Ala 440	Ala	Glu	Val	Leu	Gly 445	Leu	Ile	Leu
Arg	Tyr 450	Val	Met	Glu	Arg	Lys 455	Asn	Ile	Leu	Glu	Glu 460	Ser	Leu	Cys	Glu
Leu 465	Val	Ala	Lys	Gln	Leu 470	Lys	Gln	His	Gln	Asn 475	Thr	Met	Glu	Asp	Lys 480
Phe	Ile	Val	Cys	Leu 485	Asn	Lys	Val	Thr	Lys 490	Ser	Phe	Pro	Pro	Leu 495	Ala
Asp	Arg	Phe	Met 500	Asn	Ala	Val	Phe	Phe 505	Leu	Leu	Pro	Lys	Phe 510	His	Gly
Val	Leu	Lys 515	Thr	Leu	Cys	Leu	Glu 520	Val	Val	Leu	Cys	Arg 525	Val	Glu	Gly
Met	Thr 530	Glu	Leu	Tyr	Phe	Gln 535	Leu	Lys	Ser	Lys	Asp 540	Phe	Val	Gln	Val
Met	Arg	His	Arg	Asp	Asp	Glu	Arg	Gln	Lys	Val	Cys	Leu	Asp	Ile	Ile
545					550					555					560

Tyr	Lys	Met	Met	Pro 565	Lys	Leu	Lys	Pro	Val 570	Glu	Leu	Arg	Glu	Leu 575	Leu
Asn	Pro	Val	Val 580	Glu	Phe	Val	Ser	His 585	Pro	Ser	Thr	Thr	Cys 590	Arg	Glu
Gln	Met	Tyr 595	Asn	Ile	Leu	Met	Trp 600	Ile	His	Asp	Asn	Tyr. 605	Arg	Asp	Pro
Glu	Ser 610	Glu	Thr	Asp	Asn 、	Asp 615	Ser	Gln	Glu	Ile	Phe 620	Lys	Leu	Ala	Lys
Asp 625	Val	Leu	Ile	Gln	Gly 630	Leu	Ile	Asp	Glu	Asn 635	Pro	Gly	Leu	Gln	Leu 640
Ile	Ile	Arg	Asn	Phe 645	Trp	Ser	His	Glu	Thr 650	Arg	Leu	Pro	Ser	Asn 655	Thr
Leu	Asp	Arg	Leu 660	Leu	Ala	Leu	Asn	Ser 665	Leu	Tyr	Ser	Pro	Lys 670	Ile	Glu
Val	His	Phe 675	Leu	Ser	Leu	Ala	Thr 680	Asn	Phe	Leu	Leu	Glu 685	Met	Thr	Ser
Met	Ser 690	Pro	Asp	Tyr	Pro	Asn 695	Pro	Met	Phe	Glu	His 700	Pro	Leu	Ser	Glu
Cys 705	Glu	Phe	Gln	Glu	Tyr 710	Thr	Ile	Asp	Ser	Asp 715	Trp	Arg	Phe	Arg	Ser 720
Thr	Val	Leu	Thr	Pro 725	Met	Phe	Val	Glu	Thr 730	Gln	Ala	Ser	Gln	Gly 735	Thr
Leu	Gln	Thr	Arg 740	Thr	Gln	Glu	Gly	Ser 745	Leu	Ser	Ala	Arg	Trp 750	Pro	Val
Ala	Gly	Gln 755	Ile	Arg	Ala	Thr	Gln 760	Gln	Gln	His	Asp	Phe 765	Thr	Leu	Thr
Gln	Thr 770	Ala	Asp	Gly	Arg	Ser 775	Ser	Phe	Asp	Trp	Leu 780	Thr	Gly	Ser	Ser
Thr 785	Asp	Pro	Leu	Val	Asp 790	His	Thr	Ser	Pro	Ser 795	Ser	Asp	Ser	Leu	Leu 800

Phe Ala His Lys Arg Ser Glu Arg Leu Gln Arg Ala Pro Leu Lys Ser 805 810 815

Val Gly Pro Asp Phe 820

<210> 9

<211> 440

<212> PRT

<213> Artificial Sequence

·<220>

<221> PEPTIDE

<222> (1)..(440)

<223> HUMAN GENETIC ORIGIN

<220>

<221> MOD RES

<222> (349)..(349)

<223> PHOSPHORYLATION at T2609

<400> 9

Ser Gly Lys Asp Pro Asn Ser Lys Asp Asn Ser Val Gly Ile Gln Leu 1 5 10 15

Leu Gly Ile Val Met Ala Asn Asp Leu Pro Pro Tyr Asp Pro Gln Cys
20 25 30

Gly Ile Gln Ser Ser Glu Tyr Phe Gln Ala Leu Val Asn Asn Met Ser 35 40 45

Phe Val Arg Tyr Lys Glu Val Tyr Ala Ala Ala Ala Glu Val Leu Gly 50 60

Leu Ile Leu Arg Tyr Val Met Glu Arg Lys Asn Ile Leu Glu Glu Ser 65 70 75 80

Leu Cys Glu Leu Val Ala Lys Gln Leu Lys Gln His Gln Asn Thr Met 85 90 95

Glu Asp Lys Phe Ile Val Cys Leu Asn Lys Val Thr Lys Ser Phe Pro $100 \hspace{1cm} 105 \hspace{1cm} 110$

Pro Leu Ala Asp Arg Phe Met Asn Ala Val Phe Phe Leu Leu Pro Lys 115 120 125

Phe His Gly Val Leu Lys Thr Leu Cys Leu Glu Val Val Leu Cys Arg 130 135 140

Val 145	Glu	Gly	Met	Thr	Glu 150	Leu	Tyr	Phe	Gln	Leu 155	Lys	Ser	Lys	Asp	Phe 160
Val	Gln	Val	Met	Arg 165	His	Arg	Asp	Asp	Glu 170	Arg	Gln	Lys	Val	Cys 175	Leu
Asp	Ile	Ile	Tyr 180	Lys	Met	Met	Pro	Lys 185	Leu	Lys	Pro		Glu 190	Leu	Arg
Glu	Leu	Leu 195	Asn	Pro	Val	Val	Glu 200	Phe	Val	Ser	His	Pro 205	Ser	Thr	Thr
Cys	Arg 210	Glu	Gln	Met	Tyr	Asn 215	Ile	Leu	Met	Trp	Ile 220	His	Asp	Asn	Tyr
Arg 225	Asp	Pro	Glu	Ser	Glu 230	Thr	Asp	Asn	Asp	Ser 235	Gln	Glu	Ile	Phe	Lys 240
Leu	Ala	Lys	Asp	Val 245	Leu	Ile	Gln	Gly	Leu 250	Ile	Asp	Glu	Asn	Pro 255	Gly
Leu	Gln	Leu	Ile 260	Ile	Arg	Asn	Phe	Trp 265	Ser	His	Glu	Thr	Arg 270	Leu	Pro
Ser	Asn	Thr 275	Leu	Asp	Arg	Leu	Leu 280	Ala	Leu	Asn	Ser	Leu 285	Tyr	Ser	Pro
Lys	Ile 290	Glu	Val	His	Phe	Leu 295	Ser	Leu	Ala	Thr	Asn 300	Phe	Leu	Leu	Glu
Met 305	Thr	Ser	Met	Ser	Pro 310	Asp	Tyr	Pro	Asn	Pro 315	Met	Phe	Glu	His	Pro 320
Leu	Ser	Glu	Cys	Glu 325	Phe	Gln	Glu	Tyr	Thr 330	Ile	Asp	Ser	Asp	Trp 335	Arg
Phe	Arg	Ser	Thr 340	Val	Leu	Thr	Pro	Met 345	Phe	Val	Glu	Thr	Gln 350	Ala	Ser
Gln	Gly	Thr 355	Leu	Gln	Thr	Arg	Thr 360	Gln	Glu	Gly	Ser	Leu 365	Ser	Ala	Arg
Trp	Pro 370	Val	Ala	Gly	Gln	Ile 375	Arg	Ala	Thr	Gln	Gln 380	Gln	His	Asp	Phe

Thr Leu Thr Gln Thr Ala Asp Gly Arg Ser Ser Phe Asp Trp Leu Thr 390 395 Gly Ser Ser Thr Asp Pro Leu Val Asp His Thr Ser Pro Ser Ser Asp 405 410 Ser Leu Leu Phe Ala His Lys Arg Ser Glu Arg Leu Gln Arg Ala Pro 425 Leu Lys Ser Val Gly Pro Asp Phe 435 <210> 10 <211> 200 <212> PRT <213> Artificial Sequence <220> <221> PEPTIDE <222> (1)..(200) <223> HUMAN GENETIC ORIGIN <220> <221> MOD_RES $\langle 222 \rangle$ (109) ... (109)<223> PHOSPHORYLATION at T2609 <400> 10 Leu Ala Lys Asp Val Leu Ile Gln Gly Leu Ile Asp Glu Asn Pro Gly 5 Leu Gln Leu Ile Ile Arg Asn Phe Trp Ser His Glu Thr Arg Leu Pro 25 Ser Asn Thr Leu Asp Arg Leu Leu Ala Leu Asn Ser Leu Tyr Ser Pro 40 Lys Ile Glu Val His Phe Leu Ser Leu Ala Thr Asn Phe Leu Leu Glu 50 55 60 Met Thr Ser Met Ser Pro Asp Tyr Pro Asn Pro Met Phe Glu His Pro 65 70 Leu Ser Glu Cys Glu Phe Gln Glu Tyr Thr Ile Asp Ser Asp Trp Arg 95 85 90

Phe Arg Ser Thr Val Leu Thr Pro Met Phe Val Glu Thr Gln Ala Ser

105

110

Gln Gly Thr Leu Gln Thr Arg Thr Gln Glu Gly Ser Leu Ser Ala Arg 115 120 125

Trp Pro Val Ala Gly Gln Ile Arg Ala Thr Gln Gln His Asp Phe 130 135 140

Thr Leu Thr Gln Thr Ala Asp Gly Arg Ser Ser Phe Asp Trp Leu Thr 145 150 155 160

Gly Ser Ser Thr Asp Pro Leu Val Asp His Thr Ser Pro Ser Ser Asp 165 170 175

Ser Leu Leu Phe Ala His Lys Arg Ser Glu Arg Leu Gln Arg Ala Pro 180 185 190

Leu Lys Ser Val Gly Pro Asp Phe 195 200

<210> 11

<211> 428

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(428)

<223> HUMAN GENETIC ORIGIN

<220>

<221> MOD RES

<222> (335)..(335)

<223> PHOSPHORYLATION at T2609

<400> 11

Gln Cys Gly Ile Gln Ser Ser Glu Tyr Phe Gln Ala Leu Val Asn Asn 20 25 30

Met Ser Phe Val Arg Tyr Lys Glu Val Tyr Ala Ala Ala Glu Val 35 40 45

Leu Gly Leu Ile Leu Arg Tyr Val Met Glu Arg Lys Asn Ile Leu Glu 50 55 60

Glu Ser Leu Cys Glu Leu Val Ala Lys Gln Leu Lys Gln His Gln Asn 65 70 75 80

Thr M	let (Glu	Asp	Lys 85	Phe	Ile	Val	Cys	Leu 90	Asn	Lys	Val	Thr	Lys 95	Ser
Phe P	ro E	Pro	Leu 100	Ala	Asp	Arg	Phe	Met 105	Asn	Ala	Val	Phe	Phe 110	Leu	Leu
Pro L	_	Phe 115	His	Gly	Val	Leu	Lys 120	Thr	Leu	Cys	Leu	Glu 125	Val	Val	Leu
Cys A	rg V 30	Jal	Glu	Gly	Met	Thr 135	Glu	Leu	Tyr	Phe	Gln 140	Leu	Lys	Ser	Lys
Asp P	he V	/al	Gln	Val	Met 150	Arg	His	Arg	Asp	Asp 155	Glu	Arg	Gln	Lys	Val 160
Cys L	eu P	Asp	Ile	Ile 165	Tyr	Lys	Met	Met	Pro 170	Lys	Leu	Lys	Pro	Val 175	Glu
Leu A	rg G	Glu	Leu 180	Leu	Asn	Pro	Val	Val 185	Glu	Phe	Val	Ser	His 190	Pro	Ser
Thr T		Cys 195	Arg	Glu	Gln	Met	Tyr 200	Asn	Ile	Leu	Met	Trp 205	Ile	His	Asp
Asn T	yr <i>P</i> 10	Arg	Asp	Pro	Glu	Ser 215	Glu	Thr	Asp	Asn	Asp 220	Ser	Gln	Glu	Ile
Phe L 225	ys I	Leu	Ala	Lys	Asp 230	Val	Leu	Ile	Gln	Gly 235	Leu	Ile	Asp	Glu	Asn 240
Pro G	ly I	Leu	Gln	Leu 245	Ile	Ile	Arg	Asn	Phe 250	Trp	Ser	His	Glu	Thr 255	Arg
Leu P	ro S		Asn 260	Thr	Leu	Asp	Arg	Leu 265	Leu	Ala	Leu	Asn	Ser 270	Leu	Tyr
Ser P		Lys 275	Ile	Glu	Val	His	Phe 280	Leu	Ser	Leu	Ala	Thr 285	Asn	Phe	Leu
Leu G 2	lu M 90	1et	Thr	Ser	Met	Ser 295	Pro	Asp	Tyr	Pro	Asn 300	Pro	Met	Phe	Glu
His P 305	ro I	Leu	Ser	Glu	Cys 310	Glu	Phe	Gln	Glu	Tyr 315	Thr	Ile	Asp	Ser	Asp 320

Trp Arg Phe Arg Ser Thr Val Leu Thr Pro Met Phe Val Glu Thr Gln 330 Ala Ser Gln Gly Thr Leu Gln Thr Arg Thr Gln Glu Gly Ser Leu Ser 340 345 Ala Arg Trp Pro Val Ala Gly Gln Ile Arg Ala Thr Gln Gln His 360 365 Asp Phe Thr Leu Thr Gln Thr Ala Asp Gly Arg Ser Ser Phe Asp Trp 370 375 Leu Thr Gly Ser Ser Thr Asp Pro Leu Val Asp His Thr Ser Pro Ser 395 Ser Asp Ser Leu Leu Phe Ala His Lys Arg Ser Glu Arg Leu Gln Arg 410 Ala Pro Leu Lys Ser Val Gly Pro Asp Phe Gly Lys 420 425 <210> 12 <211> 273 <212> PRT <213> Artificial Sequence <220> <221> PEPTIDE <222> (1)..(273) <223> HUMAN GENETIC ORIGIN <220> <221> MOD_RES $\langle 222 \rangle$ $(180) \dots (180)$ <223> PHOSPHORYLATION at T2609 <400> 12 Glu Arg Gln Lys Val Cys Leu Asp Ile Ile Tyr Lys Met Met Pro Lys 5 10 Leu Lys Pro Val Glu Leu Arg Glu Leu Leu Asn Pro Val Val Glu Phe Val Ser His Pro Ser Thr Thr Cys Arg Glu Gln Met Tyr Asn Ile Leu 40

Met Trp Ile His Asp Asn Tyr Arg Asp Pro Glu Ser Glu Thr Asp Asn

60

55

Asp Ser Gln Glu Ile Phe Lys Leu Ala Lys Asp Val Leu Ile Gln Gly 70 75 Leu Ile Asp Glu Asn Pro Gly Leu Gln Leu Ile Ile Arg Asn Phe Trp Ser His Glu Thr Arg Leu Pro Ser Asn Thr Leu Asp Arg Leu Leu Ala Leu Asn Ser Leu Tyr Ser Pro Lys Ile Glu Val His Phe Leu Ser Leu 120 Ala Thr Asn Phe Leu Leu Glu Met Thr Ser Met Ser Pro Asp Tyr Pro 135 130 140 Asn Pro Met Phe Glu His Pro Leu Ser Glu Cys Glu Phe Gln Glu Tyr 145 150 155 Thr Ile Asp Ser Asp Trp Arg Phe Arg Ser Thr Val Leu Thr Pro Met 165 170 Phe Val Glu Thr Gln Ala Ser Gln Gly Thr Leu Gln Thr Arg Thr Gln 180 185 Glu Gly Ser Leu Ser Ala Arg Trp Pro Val Ala Gly Gln Ile Arg Ala 200 Thr Gln Gln Gln His Asp Phe Thr Leu Thr Gln Thr Ala Asp Gly Arg 215 220 210 Ser Ser Phe Asp Trp Leu Thr Gly Ser Ser Thr Asp Pro Leu Val Asp 225 230 235 His Thr Ser Pro Ser Ser Asp Ser Leu Leu Phe Ala His Lys Arg Ser 245 250 255 Glu Arg Leu Gln Arg Ala Pro Leu Lys Ser Val Gly Pro Asp Phe Gly 265

<210> 13

Lys

<211> 140

```
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222> (1)..(140)
<223> HUMAN GENETIC ORIGIN
<220>
<221> MOD_RES
<222> (49)..(49)
<223> PHOSPHORYLATION at T2609
<400> 13
Phe Leu Leu Glu Met Thr Ser Met Ser Pro Asp Tyr Pro Asn Pro Met
                                  10
Phe Glu His Pro Leu Ser Glu Cys Glu Phe Gln Glu Tyr Thr Ile Asp
           20
                               25
Ser Asp Trp Arg Phe Arg Ser Thr Val Leu Thr Pro Met Phe Val Glu
                40
Thr Gln Ala Ser Gln Gly Thr Leu Gln Thr Arg Thr Gln Glu Gly Ser
Leu Ser Ala Arg Trp Pro Val Ala Gly Gln Ile Arg Ala Thr Gln Gln
                   70
Gln His Asp Phe Thr Leu Thr Gln Thr Ala Asp Gly Arg Ser Ser Phe
               85
Asp Trp Leu Thr Gly Ser Ser Thr Asp Pro Leu Val Asp His Thr Ser
           100
                              105
Pro Ser Ser Asp Ser Leu Leu Phe Ala His Lys Arg Ser Glu Arg Leu
       115
               120
Gln Arg Ala Pro Leu Lys Ser Val Gly Pro Asp Phe
   130
                                         140
                       135
<210> 14
<211> 102
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
```

<222> (1)..(102)

<223> HUMAN GENETIC ORIGIN

```
<220>
<221> MOD RES
<222>
      (9)..(9)
<223> PHOSPHORYLATION at T2609
 <400> 14
Val Leu Thr Pro Met Phe Val Glu Thr Gln Ala Ser Gln Gly Thr Leu
                5
Gln Thr Arg Thr Gln Glu Gly Ser Leu Ser Ala Arg Trp Pro Val Ala
Gly Gln Ile Arg Ala Thr Gln Gln His Asp Phe Thr Leu Thr Gln
                            40
Thr Ala Asp Gly Arg Ser Ser Phe Asp Trp Leu Thr Gly Ser Ser Thr
                        55
Asp Pro Leu Val Asp His Thr Ser Pro Ser Ser Asp Ser Leu Leu Phe
                    70
Ala His Lys Arg Ser Glu Arg Leu Gln Arg Ala Pro Leu Lys Ser Val
                85
                                     90
Gly Pro Asp Phe Gly Lys
            100
<210> 15
<211>
       13509
<212>
       DNA
<213>
      Homo sapiens
<220>
<221> misc feature
<222> (6233)..(6235)
<223> Encodes S2056
<220>
<221>
       misc feature
<222>
       (788\overline{2})..(7884)
<223>
       Encodes T2609
<400> 15
ggggcatttc cgggtccggg ccgagcgggc gcacgcgcgg gagcgggact cggcggcatg
                                                                       60
gcgggctccg gagccggtgt gcgttgctcc ctgctgcggc tgcaggagac cttgtccgct
                                                                      120
geggaeeget geggtgetge eetggeeggt cateaactga teegeggeet ggggeaggaa
                                                                       180
```

tgcgtcctga gcagcagccc cgcggtgctg gcattacaga catctttagt tttttccaga

gatttcggtt	tgcttgtatt	tgtccggaag	tcactcaaca	gtattgaatt	tcgtgaatgt	300
agagaagaaa	tcctaaagtt	tttatgtatt	ttcttagaaa	aaatgggcca	gaagatcgca	360
ccttactctg	ttgaaattaa	gaacacttgt	accagtgttt	atacaaaaga	tagagctgct	420
aaatgtaaaa	ttccagccct	ggaccttctt	attaagttac	ttcagacttt	tagaagttct	480
agactcatgg	atgaatttaa	aattggagaa	ttatttagta	aattctatgg	agaacttgca	540
ttgaaaaaaa	aaataccaga	tacagtttta	gaaaaagtat	atgagctcct	aggattattg	600
ggtgaagttc	atcctagtga	gatgataaat	aatgcagaaa	acctgttccg	cgcttttctg	660
ggtgaactta	agacccagat	gacatcagca	gtaagagagc	ccaaactacc	tgttctggca	720
ggatgtctga	aggggttgtc	ctcacttctg	tgcaacttca	ctaagtccat	ggaagaagat	780
ccccagactt	caagggagat	ttttaatttt	gtactaaagg	caattcgtcc	tcagattgat	840
ctgaagagat	atgctgtgcc	ctcagctggc	ttgcgcctat	ttgccctgca	tgcatctcag	900
tttagcacct	gccttctgga	caactacgtg	tctctatttg	aagtcttgtt	aaagtggtgt	960
gcccacacaa	atgtagaatt	gaaaaaagct	gcactttcag	ccctggaatc	ctttctgaaa	1020
caggtttcta	atatggtggc	gaaaaatgca	gaaatgcata	aaaataaact	gcagtacttt	1080
atggagcagt	tttatggaat	catcagaaat	gtggattcga	acaacaagga	gttatctatt	1140
gctatccgtg	gatatggact	ttttgcagga	ccgtgcaagg	ttataaacgc	aaaagatgtt	1200
gacttcatgt	acgttgagct	cattcagcgc	tgcaagcaga	tgttcctcac	ccagacagac	1260
actggtgacg	accgtgttta	tcagatgcca	agcttcctcc	agtctgttgc	aagcgtcttg	1320
ctgtaccttg	acacagttcc	tgaggtgtat	actccagttc	tggagcacct	cgtggtgatg	1380
cagatagaca	gtttcccaca	gtacagtcca	aaaatgcagc	tggtgtgttg	cagagccata	1440
gtgaaggtgt	tcctagcttt	ggcagcaaaa	gggccagttc	tcaggaattg	cattagtact	1500
gtggtgcatc	agggtttaat	cagaatatgt	tctaaaccag	tggtccttcc	aaagggccct	1560
gagtctgaat	ctgaagacca	ccgtgcttca	ggggaagtca	gaactggcaa	atggaaggtg	1620
cccacataca	aagactacgt	ggatctcttc	agacatctcc	tgagctctga	ccagatgatg	1680
gattctattt	tagcagatga	agcattttc	tctgtgaatt	cctccagtga	aagtctgaat	1740
catttacttt	atgatgaatt	tgtaaaatcc	gttttgaaga	ttgttgagaa	attggatctt	1800
acacttgaaa	tacagactgt	tggggaacaa	gagaatggag	atgaggcgcc	tggtgtttgg	1860
atgatcccaa	cttcagatcc	agcggctaac	ttgcatccag	ctaaacctaa	agatttttcg	1920
gctttcatta	acctggtgga	attttgcaga	gagattctcc	ctgagaaaca	agcagaattt	1980
tttgaaccat	gggtgtactc	attttcatat	gaattaattt	tgcaatctac	aaggttgccc	2040

ctcatcagtg gtttctacaa	attgctttct	attacagtaa	gaaatgccaa	gaaaataaaa	2100
tatttcgagg gagttagtco	aaagagtctg	aaacactctc	ctgaagaccc	agaaaagtat	2160
tcttgctttg ctttatttgt	gaaatttggc	aaagaggtgg	cagttaaaat	gaagcagtac	2220
aaagatgaac ttttggcctc	ttgtttgacc	tttcttctgt	ccttgccaca	caacatcatt	2280
gaactcgatg ttagagccta	cgttcctgca	ctgcagatgg	ctttcaaact	gggcctgagc	2340
tataccccct tggcagaagt	aggcctgaat	gctctagaag	aatggtcaat	ttatattgac	2400
agacatgtaa tgcagcctta	ttacaaagac	attctcccct	gcctggatgg	atacctgaag	2460
acttcagcct tgtcagatga	gaccaagaat	aactgggaag	tgtcagctct	ttctcgggct	2520
gcccagaaag gatttaataa	agtggtgtta	aagcatctga	agaagacaaa	gaacctttca	2580
tcaaacgaag caatatcctt	agaagaaata	agaattagag	tagtacaaat	gcttggatct	2640
ctaggaggac aaataaacaa	aaatcttctg	acagtcacgt	cctcagatga	gatgatgaag	2700
agctatgtgg cctgggacag	agagaagcgg	ctgagctttg	cagtgccctt	tagagagatg	2760
aaacctgtca ttttcctgga	tgtgttcctg	cctcgagtca	cagaattagc	gctcacagcc	2820
agtgacagac aaactaaagt	tgcagcctgt	gaacttttac	atagcatggt	tatgtttatg	2880
ttgggcaaag ccacgcagat	gccagaaggg	ggacagggag	ccccacccat	gtaccagctc	2940
tataagcgga cgtttcctgt	gctgcttcga	cttgcgtgtg	atgttgatca	ggtgacaagg	3000
caactgtatg agccactagt	tatgcagctg	attcactggt	tcactaacaa	caagaaattt	3060
gaaagtcagg atactgttgc	cttactagaa	gctatattgg	atggaattgt	ggaccctgtt	3120
gacagtactt taagagattt	ttgtggtcgg	tgtattcgag	aattccttaa	atggtccatt	3180
aagcaaataa caccacagca	gcaggagaag	agtccagtaa	acaccaaatc	gcttttcaag	3240
cgactttata gccttgcgct	tcaccccaat	gctttcaaga	ggctgggagc	atcacttgcc	3300
tttaataata tctacaggga	attcagggaa	gaagagtctc	tggtggaaca	gtttgtgttt	3360
gaagccttgg tgatatacat	ggagagtctg	gccttagcac	atgcagatga	gaagtcctta	3420
ggtacaattc aacagtgttg	tgatgccatt	gatcacctat	gccgcatcat	tgaaaagaag	3480
catgtttctt taaataaagc	aaagaaacga	cgtttgccgc	gaggatttcc	accttccgca	3540
tcattgtgtt tattggatct	ggtcaagtgg	cttttagctc	attgtgggag	gccccagaca	3600
gaatgtcgac acaaatccat	tgaactcttt	tataaattcg	ttcctttatt	gccaggcaac	3660
agatececta atttgtgget	gaaagatgtt	ctcaaggaag	aaggtgtctc	ttttctcatc	3720
aacacctttg aggggggtgg	ctgtggccag	ccctcgggca	tcctggccca	gcccaccctc	3780
ttgtaccttc gggggccatt	cagcctgcag	gccacgctat	gctggctgga	cctgctcctg	3840
gccgcgttgg agtgctacaa	cacgttcatt	ggcgagagaa	ctgtaggagc	gctccaggtc	3900

3960 ctaggtactg aagcccagtc ttcacttttg aaagcagtgg ctttcttctt agaaagcatt gccatgcatg acattatagc agcagaaaag tgctttggca ctggggcagc aggtaacaga 4020 acaagcccac aagagggaga aaggtacaac tacagcaaat gcaccgttgt ggtccggatt 4080 atggagttta ccacgactct gctaaacacc tccccggaag gatggaagct cctgaagaag 4140 gacttgtgta atacacacct gatgagagtc ctggtgcaga cgctgtgtga gcccgcaagc 4200 ataggtttca acatcggaga cgtccaggtt atggctcatc ttcctgatgt ttgtgtgaat 4260 4320 ctgatgaaag ctctaaagat gtccccatac aaagatatcc tagagaccca tctgagagag 4380 aaaataacag cacagagcat tgaggagctt tgtgccgtca acttgtatgg ccctgacgcg caagtggaca ggagcaggct ggctgctgtt gtgtctgcct gtaaacagct tcacagagct 4440gggcttctgc ataatatatt accgtctcag tccacagatt tgcatcattc tgttggcaca 4500 gaacttettt ceetggttta taaaggeatt geeetggag atgagagaea gtgtetgeet 4560 tetetagace teagttgtaa geagetggee ageggaette tggagttage etttgetttt 4620 ggaggactgt gtgagcgcct tgtgagtctt ctcctgaacc cagcggtgct gtccacggcg 4680 4740 teettgggea geteaeaggg eagegteate eactteteee atggggagta tttetatage ttgttctcag aaacgatcaa cacggaatta ttgaaaaatc tggatcttgc tgtattggag 4800 4860 ctcatgcagt cttcagtgga taataccaaa atggtgagtg ccgttttgaa cggcatgtta 4920 gaccagaget teagggageg ageaaaceag aaacaceaag gactgaaact tgegactaea 4980 attotgcaac actggaagaa gtgtgattca tggtgggcca aagattcccc tctcgaaact aaaatggcag tgctggcctt actggcaaaa attttacaga ttgattcatc tgtatctttt 5040 5100 aatacaagtc atggttcatt ccctgaagtc tttacaacat atattagtct acttgctgac acaaagctgg atctacattt aaagggccaa gctgtcactc ttcttccatt cttcaccagc 5160 5220 ctcactggag gcagtctgga ggaacttaga cgtgttctgg agcagctcat cgttgctcac 5280 ttccccatgc agtccaggga atttcctcca ggaactccgc ggttcaataa ttatgtggac tgcatgaaaa agtttctaga tgcattggaa ttatctcaaa gccctatgtt gttggaattg 5340 atgacagaag ttctttgtcg ggaacagcag catgtcatgg aagaattatt tcaatccagt 5400 ttcaggagga ttgccagaag gggttcatgt gtcacacaag taggccttct ggaaagcgtg 5460 tatgaaatgt tcaggaagga tgaccccgc ctaagtttca cacgccagtc ctttgtggac 5520 cgctccctcc tcactctgct gtggcactgt agcctggatg ctttgagaga attcttcagc 5580 acaattgtgg tggatgccat tgatgtgttg aagtccaggt ttacaaagct aaatgaatct 5640 5700 acctttgata ctcaaatcac caagaagatg ggctactata agattctaga cgtgatgtat

tctcgccttc	ccaaagatga	tgttcatgct	aaggaatcaa	aaattaatca	agttttccat	5760
ggctcgtgta	ttacagaagg	aaatgaactt	acaaagacat	tgattaaatt	gtgctacgat	5820
gcatttacag	agaacatggc	aggagagaat	cagctgctgg	agaggagaag	actttaccat	5880
tgtgcagcat	acaactgcgc	catatctgtc	atctgctgtg	tcttcaatga	gttaaaattt	5940
taccaaggtt	ttctgtttag	tgaaaaacca	gaaaagaact	tgcttatttt	tgaaaatctg	6000
atcgacctga	agcgccgcta	taattttcct	gtagaagttg	aggttcctat	ggaaagaaag	6060
aaaaagtaca	ttgaaattag	gaaagaagcc	agagaagcag	caaatgggga	ttcagatggt	6120
ccttcctata	tgtcttccct	gtcatatttg	gcagacagta	ccctgagtga	ggaaatgagt	6180
caatttgatt	tctcaaccgg	agttcagagc	tattcataca	gctcccaaga	ccctagacct	6240
gccactggtc	gttttcggag	acgggagcag	cgggacccca	cggtgcatga	tgatgtgctg	6300
gagctggaga	tggacgagct	caatcggcat	gagtgcatgg	cgcccctgac	ggccctggtc	6360
aagcacatgc	acagaagcct	gggcccgcct	caaggagaag	aggattcagt	gccaagagat	6420
cttccttctt	ggatgaaatt	cctccatggc	aaactgggaa	atccaatagt	accattaaat	6480
atccgtctct	tcttagccaa	gcttgttatt	aatacagaag	aggtctttcg	cccttacgcg	6540
aagcactggc	ttagcccctt	gctgcagctg	gctgcttctg	aaaacaatgg	aggagaagga	6600
attcactaca	tggtggttga	gatagtggcc	actattcttt	catggacagg	cttggccact	6660
ccaacagggg	tccctaaaga	tgaagtgtta	gcaaatcgat	tgcttaattt	cctaatgaaa	6720
catgtctttc	atccaaaaag	agctgtgttt	agacacaacc	ttgaaattat	aaagaccctt	6780
gtcgagtgct	ggaaggattg	tttatccatc	ccttataggt	taatatttga	aaagttttcc	6840
ggtaaagatc	ctaattctaa	agacaactca	gtagggattc	aattgctagg	catcgtgatg	6900
gccaatgacc	tgcctcccta	tgacccacag	tgtggcatcc	agagtagcga	atacttccag	6960
gctttggtga	ataatatgtc	ctttgtaaga	tataaagaag	tgtatgccgc	tgcagcagaa	7020
gttctaggac	ttatacttcg	atatgttatg	gagagaaaaa	acatactgga	ggagtctctg	7080
tgtgaactgg	ttgcgaaaca	attgaagcaa	catcagaata	ctatggagga	caagtttatt	7140
gtgtgcttga	acaaagtgac	caagagcttc	cctcctcttg	cagacaggtt	catgaatgct	7200
gtgttctttc	tgctgccaaa	atttcatgga	gtgttgaaaa	cactctgtct	ggaggtggta	7260
ctttgtcgtg	tggagggaat	gacagagctg	tacttccagt	taaagagcaa	ggacttcgtt	7320
caagtcatga	gacatagaga	tgatgaaaga	caaaaagtat	gtttggacat	aatttataag	7380
atgatgccaa	agttaaaacc	agtagaactc	cgagaacttc	tgaaccccgt	tgtggaattc	7440
gtttcccatc	cttctacaac	atgtagggaa	caaatgtata	atattctcat	gtggattcat	7500
gataattaca	gagatccaga	aagtgagaca	gataatgact	cccaggaaat	atttaagttg	7560

gcaaaagatg tgctgattca aggattgatc gatgagaacc ctggacttca attaattatt cgaaatttct ggagccatga aactaggtta ccttcaaata ccttggaccg gttgctggca ctaaattcct tatattctcc taagatagaa gtgcactttt taagtttagc aacaaatttt ctgctcgaaa tgaccagcat gagcccagat tatccaaacc ccatgttcga gcatcctctg tcagaatgcg aatttcagga atataccatt gattctgatt ggcgtttccg aagtactgtt ctcactccga tgtttgtgga gacccaggcc tcccagggca ctctccagac ccgtacccag gaagggtccc teteageteg etggceagtg geagggeaga taagggeeac ceageageag catgacttca cactgacaca gactgcagat ggaagaagct catttgattg gctgaccggg agcagcactg accegetggt egaccacace agteceteat etgacteett getgtttgee cacaagagga gtgaaaggtt acagagagca cccttgaagt cagtggggcc tgattttggg aaaaaaaaggc tgggccttcc aggggacgag gtggataaca aagtgaaagg tgcggccggc cggacggacc tactacgact gcgcagacgg tttatgaggg accaggagaa gctcagtttg atgtatgcca gaaaaggcgt tgctgagcaa aaacgagaga aggaaatcaa gagtgagtta aaaatgaagc aggatgccca ggtcgttctg tacagaagct accggcacgg agaccttcct gacattcaga tcaagcacag cagcctcatc accccgttac aggccgtggc ccagagggac ccaataattg caaaacagct ctttagcagc ttgttttctg gaattttgaa agagatggat aaatttaaga cactgtctga aaaaaacaac atcactcaaa agttgcttca agacttcaat cgttttctta ataccacctt ctctttcttt ccaccctttg tctcttgtat tcaggacatt agetgteage aegeageect getgageete gacecagegg etgttagege tggttgeetg gccagcctac agcagcccgt gggcatccgc ctgctagagg aggctctgct ccgcctgctg cctgctgagc tgcctgccaa gcgagtccgt gggaaggccc gcctccctcc tgatgtcctc agatgggtgg agcttgctaa gctgtataga tcaattggag aatacgacgt cctccgtggg atttttacca gtgagatagg aacaaagcaa atcactcaga gtgcattatt agcagaagcc agaagtgatt attctgaagc tgctaagcag tatgatgagg ctctcaataa acaagactgg gtagatggtg agcccacaga agccgagaag gatttttggg aacttgcatc ccttgactgt tacaaccacc ttgctgagtg gaaatcactt gaatactgtt ctacagccag tatagacagt gagaaccccc cagacctaaa taaaatctgg agtgaaccat tttatcagga aacatatcta ccttacatga tccgcagcaa gctgaagctg ctgctccagg gagaggctga ccagtccctg ctgacattta ttgacaaagc tatgcacggg gagctccaga aggcgattct agagcttcat

tacagtcaag agctgagtct gctttacctc ctgcaagatg atgttgacag agccaaatat

7620

7680

7740

7800

7860

7920

7980

8040

8100

8160

8220

8280

8340

8400

8460

8520

8580

8640

8700

8760

8820

8880

8940

9000

9060

9120

9180

9240

9300

9360

tacattcaaa atggcattca	gagttttatg	cagaattatt	ctagtattga	tgtcctctta	9420
caccaaagta gactcaccaa	attgcagtct	gtacaggctt	taacagaaat	tcaggagttc	9480
atcagcttta taagcaaaca	aggcaattta	tcatctcaag	ttccccttaa	gagacttctg	9540
aacacctgga caaacagata	tccagatgct	aaaatggacc	caatgaacat	ctgggatgac	9600
atcatcacaa atcgatgttt	ctttctcagc	aaaatagagg	agaagcttac	ccctcttcca	9660
gaagataata gtatgaatgt	ggatcaagat	ggagacccca	gtgacaggat	ggaagtgcaa	9720
gagcaggaag aagatatcag	ctccctgatc	aggagttgca	agttttccat	gaaaatgaag	9780
atgatagaca gtgcccggaa	gcagaacaat	ttctcacttg	ctatgaaact	actgaaggag	9840
ctgcataaag agtcaaaaac	cagagacgat	tggctggtga	gctgggtgca	gagctactgc	9900
cgcctgagcc actgccggag	ccggtcccag	ggctgctctg	agcaggtgct	cactgtgctg	9960
aaaacagtct ctttgttgga	tgagaacaac	gtgtcaagct	acttaagcaa	aaatattctg	10020
gctttccgtg accagaacat	tctcttgggt	acaacttaca	ggatcatagc	gaatgctctc	10080
agcagtgagc cagcctgcct	tgctgaaatc	gaggaggaca	aggctagaag	aatcttagag	10140
ctttctggat ccagttcaga	ggattcagag	aaggtgatcg	cgggtctgta	ccagagagca	10200
ttccagcacc tctctgaggc	tgtgcaggcg	gctgaggagg	aggcccagcc	tccctcctgg	10260
agctgtgggc ctgcagctgg	ggtgattgat	gcttacatga	cgctggcaga	tttctgtgac	10320
caacagctgc gcaaggagga	agagaatgca	tcagttattg	attctgcaga	actgcaggcg	10380
tatccagcac ttgtggtgga	gaaaatgttg	aaagctttaa	aattaaattc	caatgaagcc	10440
agattgaagt ttcctagatt	acttcagatt	atagaacggt	atccagagga	gactttgagc	10500
ctcatgacaa aagagatctc	ttccgttccc	tgctggcagt	tcatcagctg	gatcagccac	10560
atggtggcct tactggacaa	agaccaagcc	gttgctgttc	agcactctgt	ggaagaaatc	10620
actgataact acccgcaggc	tattgtttat	cccttcatca	taagcagcga	aagctattcc	10680
ttcaaggata cttctactgg	tcataagaat	aaggagtttg	tggcaaggat	taaaagtaag	10740
ttggatcaag gaggagtgat	tcaagatttt	attaatgcct	tagatcagct	ctctaatcct	10800
gaactgctct ttaaggattg	gagcaatgat	gtaagagctg	aactagcaaa	aacccctgta	10860
aataaaaaaa acattgaaaa	aatgtatgaa	agaatgtatg	cagccttggg	tgacccaaag	10920
gctccaggcc tgggggcctt	tagaaggaag	tttattcaga	cttttggaaa	agaatttgat	10980
aaacattttg ggaaaggagg	ttctaaacta	ctgagaatga	agctcagtga	cttcaacgac	11040
attaccaaca tgctactttt	aaaaatgaac	aaagactcaa	agccccctgg	gaatctgaaa	11100
gaatgttcac cctggatgag	cgacttcaaa	gtggagttcc	tgagaaatga	gctggagatt	11160
cccggtcagt atgacggtag	gggaaagcca	ttgccagagt	accacgtgcg	aatcgccggg	11220

tttgatgagc gggtgacagt	catggcgtct	ctgcgaaggc	ccaagcgcat	catcatccgt	11280
ggccatgacg agagggaaca	ccctttcctg	gtgaagggtg	gcgaggacct	gcggcaggac	11340
cagcgcgtgg agcagctctt	ccaggtcatg	aatgggatcc	tggcccaaga	ctccgcctgc	11400
agccagaggg ccctgcagct	gaggacctat	agcgttgtgc	ccatgacctc	caggttagga	11460
ttaattgagt ggcttgaaaa	tactgttacc	ttgaaggacc	ttcttttgaa	caccatgtcc	11520
caagaggaga aggcggctta	cctgagtgat	cccagggcac	cgccgtgtga	atataaagat	11580
tggctgacaa aaatgtcagg	aaaacatgat	gttggagctt	acatgctaat	gtataagggc	11640
gctaatcgta ctgaaacagt	cacgtctttt	agaaaacgag	aaagtaaagt	gcctgctgat	11700
ctcttaaagc gggccttcgt	gaggatgagt	acaagccctg	aggctttcct	ggcgctccgc	11760
tcccacttcg ccagctctca	cgctctgata	tgcatcagcc	actggatcct	cgggattgga	11820
gacagacatc tgaacaactt	tatggtggcc	atggagactg	gcggcgtgat	cgggatcgac	11880
tttgggcatg cgtttggatc	cgctacacag	tttctgccag	tccctgagtt	gatgcctttt	11940
cggctaactc gccagtttat	caatctgatg	ttaccaatga	aagaaacggg	ccttatgtac	12000
agcatcatgg tacacgcact	ccgggccttc	cgctcagacc	ctggcctgct	caccaacacc	12060
atggatgtgt ttgtcaagga	gccctccttt	gattggaaaa	attttgaaca	gaaaatgctg	12120
aaaaaaggag ggtcatggat	tcaagaaata	aatgttgctg	aaaaaaattg	gtacccccga	12180
cagaaaatat gttacgctaa	gagaaagtta	gcaggtgcca	atccagcagt	cattacttgt	12240
gatgagctac tcctgggtca	tgagaaggcc	cctgccttca	gagactatgt	ggctgtggca	12300
cgaggaagca aagatcacaa	cattcgtgcc	caagaaccag	agagtgggct	ttcagaagag	12360
actcaagtga agtgcctgat	ggaccaggca	acagacccca	acatccttgg	cagaacctgg	12420
gaaggatggg agccctggat	gtgaggtctg	tgggagtctg	cagatagaaa	gcattacatt	12480
gtttaaagaa tctactatac	tttggttggc	agcattccat	gagctgattt	tcctgaaaca	12540
ctaaagagaa atgtcttttg	tgctacagtt	tcgtagcatg	agtttaaatc	aagattatga	12600
tgagtaaatg tgtatgggtt	aaatcaaaga	taaggttata	gtaacatcaa	agattaggtg	12660
aggtttatag aaagatagat	atccaggett	accaaagtat	taagtcaaga	atataatatg	12720
tgatcagctt tcaaagcatt	tacaagtgct	gcaagttagt	gaaacagctg	tctccgtaaa	12780
tggaggaaat gtggggaagc	cttggaatgc	ccttctggtt	ctggcacatt	ggaaagcaca	12840
ctcagaaggc ttcatcacca	agattttggg	agagtaaagc	taagtatagt	tgatgtaaca	12900
ttgtagaagc agcataggaa	caataagaac	aataggtaaa	gctataatta	tggcttatat	12960
ttagaaatga ctgcatttga ttctcttcta gttttgacat					13020 13080

```
taggagggca aaaattttgg tcatagcatt cacttttgct attccaatct acaactggaa 13140
gatacataaa agtgctttgc attgaatttg ggataacttc aaaaatccca tggttgttgt 13200
tagggatagt actaagcatt tcagttccag gagaataaaa gaaattccta tttgaaatga 13260
attecteatt tggaggaaaa aaageatgea ttetageaca acaagatgaa attatggaat 13320
acaaaagtgg ctccttccca tgtgcagtcc ctgtccccc ccgccagtcc tccacaccca 13380
aactgtttct gattggcttt tagctttttg ttgttttttt ttttccttct aacacttgta 13440
tttggaggct cttctgtgat tttgagaagt atactcttga gtgtttaata aagtttttt 13500
ccaaaagta
                                                                  13509
<210> 16
<211>
      63
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223>
      cDNA sequence encoding the 2599-2619 peptide
<220>
<221>
      CDS
<222>
      (1)..(63)
<223> HUMAN GENETIC ORIGIN
<220>
<221> misc feature
<222>
      (31)..(33)
<223> encodes T2609 residue
<400> 16
agtactgttc tcactccgat gtttgtggag acccaggcct cccagggcac tctccagacc
                                                                      60
cgt
                                                                      63
<210> 17
<211>
      87
<212>
      DNA
<213> Artificial sequence
<220>
<223>
      cDNA sequence encoding the 2044-2072 peptide
<220>
<221>
      CDS
<222>
      (1)..(87)
<223> HUMAN GENETIC ORIGIN
<220>
<221> misc feature
```

<222> (37)..(37)

<223> encodes S2056 resdiue <400> 17 gatttctcaa ccggagttca gagctattca tacagctccc aagaccctag acctgccact 60 ggtcgttttc ggagacggga gcagcgg 87 <210> 18 909 <211> <212> DNA <213> Artificial Sequence <220> <223> cDNA sequence encoding the 1879-2182 peptide <220> <221> CDS <222> (1)..(909)<223> HUMAN GENETIC ORIGIN <220> <221> misc feature <222> (529)..(529)<223> encodes S2056 residue <400> 18 atgtattctc gccttcccaa agatgatgtt catgctaagg aatcaaaaat taatcaagtt 60 ttccatggct cgtgtattac agaaggaaat gaacttacaa agacattgat taaattgtgc 120 tacgatgcat ttacagagaa catggcagga gagaatcagc tgctggagag gagaagactt 180 taccattgtg cagcatacaa ctgcgccata tctgtcatct gctgtgtctt caatgagtta 240 300 aaattttacc aaggttttct gtttagtgaa aaaccagaaa agaacttgct tatttttgaa aatctgatcg acctgaagcg ccgctataat tttcctgtag aagttgaggt tcctatggaa 360 agaaagaaaa agtacattga aattaggaaa gaagccagag aagcagcaaa tggggattca 420 gatggtcctt cctatatgtc ttccctgtca tatttggcag acagtaccct gagtgaggaa 480 atgagtcaat ttgatttctc aaccggagtt cagagctatt catacagctc ccaagaccct 540 600 agacctgcca ctggtcgttt tcggagacgg gagcagcggg accccacggt gcatgatgat gtgctggagc tggagatgga cgagctcaat cggcatgagt gcatggcgcc cctgacggcc 660 ctggtcaagc acatgcacag aagcctgggc ccgcctcaag gagaagagga ttcagtgcca 720 agagatette ettettggat gaaatteete catggeaaac tgggaaatee aatagtaeea 780 ttaaatatcc gtctcttctt agccaagctt gttattaata cagaagaggt ctttcgccct 840 tacgcgaagc actggcttag ccccttgctg cagctggctg cttctgaaaa caatggagga 900

gaaggaatt

909

```
<210>
       19
<211>
       1164
<212>
       DNA
<213>
       Artificial sequence
<220>
<223>
       Cloned DNA sequence encoding the 1879-2267 peptide
<220>
<221>
       CDS
<222>
       (1)...(1164)
<223>
       HUMAN GENETIC ORIGIN
<220>
<221> misc feature
<222>
      (529)..(531)
<223>
       encodes S2056 residue
<400> 19
atgtattctc gccttcccaa agatgatgtt catgctaagg aatcaaaaat taatcaagtt
                                                                       60
ttccatggct cgtgtattac agaaggaaat gaacttacaa agacattgat taaattgtgc
                                                                      120
tacgatgcat ttacagagaa catggcagga gagaatcagc tgctggagag gagaagactt
                                                                      180
                                                                      240
taccattgtg cagcatacaa ctgcgccata tctgtcatct gctgtgtctt caatgagtta
aaattttacc aaggttttct gtttagtgaa aaaccagaaa agaacttgct tatttttgaa
                                                                      300
aatctgatcg acctgaagcg ccgctataat tttcctgtag aagttgaggt tcctatggaa
                                                                      360
agaaagaaaa agtacattga aattaggaaa gaagccagag aagcagcaaa tggggattca
                                                                      420
gatggtcctt cctatatgtc ttccctgtca tatttggcag acagtaccct gagtgaggaa
                                                                      480
                                                                      540
atgagtcaat ttgatttctc aaccggagtt cagagctatt catacagctc ccaagaccct
agacctgcca ctggtcgttt tcggagacgg gagcagcggg accccacggt gcatgatgat
                                                                      600
gtgctggagc tggagatgga cgagctcaat cggcatgagt gcatggcgcc cctgacggcc
                                                                      660
                                                                      720
ctggtcaagc acatgcacag aagcctgggc ccgcctcaag gagaagagga ttcagtgcca
agagatette ettettggat gaaatteete eatggeaaae tgggaaatee aatagtaeea
                                                                      780
ttaaatatcc gtctcttctt agccaagctt gttattaata cagaagaggt ctttcgccct
                                                                      840
tacgcgaagc actggcttag ccccttgctg cagctggctg cttctgaaaa caatggagga
                                                                      900
gaaggaattc actacatggt ggttgagata gtggccacta ttctttcatg gacaggcttg
                                                                      960
gccactccaa caggggtccc taaagatgaa gtgttagcaa atcgattgct taatttccta
                                                                     1020
atgaaacatg tettteatee aaaaagaget gtgtttagae acaacettga aattataaag
                                                                     1080
accettgtcg agtgctggaa ggattgttta tecatecett ataggttaat atttgaaaag
                                                                     1140
```

```
<210>
      20
<211>
      2463
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223>
      cDNA sequence encoding the 1879-2700 peptide
<220>
<221>
      CDS
<222>
       (1)..(2463)
<223>
      HUMAN GENETIC ORIGIN
<220>
<221> misc feature
<222>
      (529)..(531)
      encodes S2056 residue
<223>
<220>
<221> misc feature
<222>
      (2188)..(2190)
<223>
      encodes T2609 residue
<400>
      20
                                                                       60
atgtattctc gccttcccaa agatgatgtt catgctaagg aatcaaaaat taatcaagtt
                                                                      120
ttccatggct cgtgtattac agaaggaaat gaacttacaa agacattgat taaattgtgc
                                                                      180
tacqatqcat ttacaqaqaa catqqcaqqa qaqaatcaqc tqctqqaqaq qaqaaqactt
                                                                      240
taccattgtg cagcatacaa ctgcgccata tctgtcatct gctgtgtctt caatgagtta
                                                                      300
aaattttacc aaggttttct gtttagtgaa aaaccagaaa agaacttgct tatttttgaa
aatctgatcg acctgaagcg ccgctataat tttcctgtag aagttgaggt tcctatggaa
                                                                      360
agaaagaaaa agtacattga aattaggaaa gaagccagag aagcagcaaa tggggattca
                                                                      420
                                                                      480
gatggtcctt cctatatgtc ttccctgtca tatttggcag acagtaccct gagtgaggaa
                                                                      540
atgagtcaat ttgatttctc aaccggagtt cagagctatt catacagctc ccaagaccct
                                                                      600
agacctgcca ctggtcgttt tcggagacgg gagcagcggg accccacggt gcatgatgat
                                                                      660
gtgctggagc tggagatgga cgagctcaat cggcatgagt gcatggcgcc cctgacggcc
                                                                      720
ctggtcaagc acatgcacag aagcctgggc ccgcctcaag gagaagagga ttcagtgcca
                                                                      780
agagatette ettettggat gaaatteete eatggeaaac tgggaaatee aatagtacea
ttaaatatcc gtctcttctt agccaagctt gttattaata cagaagaggt ctttcgccct
                                                                      840
                                                                      900
tacgcgaagc actggcttag ccccttgctg cagctggctg cttctgaaaa caatggagga
                                                                      960
gaaggaattc actacatggt ggttgagata gtggccacta ttctttcatg gacaggcttg
```

gccactccaa	caggggtccc	taaagatgaa	gtgttagcaa	atcgattgct	taatttccta	1020
atgaaacatg	tctttcatcc	aaaaagagct	gtgtttagac	acaaccttga	aattataaag	1080
acccttgtcg	agtgctggaa	ggattgttta	tccatccctt	ataggttaat	atttgaaaag	1140
ttttccggta	aagatcctaa	ttctaaagac	aactcagtag	ggattcaatt	gctaggcatc	1200
gtgatggcca	atgacctgcc	tccctatgac	ccacagtgtg	gcatccagag	tagcgaatac	1260
ttccaggctt	tggtgaataa	tatgtccttt	gtaagatata	aagaagtgta	tgccgctgca	1320
gcagaagttc	taggacttat	acttcgatat	gttatggaga	gaaaaaacat	actggaggag	1380
tctctgtgtg	aactggttgc	gaaacaattg	aagcaacatc	agaatactat	ggaggacaag	1440
tttattgtgt	gcttgaacaa	agtgaccaag	agcttccctc	ctcttgcaga	caggttcatg	1500
aatgctgtgt	tctttctgct	gccaaaattt	catggagtgt	tgaaaacact	ctgtctggag	1560
gtggtacttt	gtcgtgtgga	gggaatgaca	gagctgtact	tccagttaaa	gagcaaggac	1620
ttcgttcaag	tcatgagaca	tagagatgat	gaaagacaaa	aagtatgttt	ggacataatt	1680
tataagatga	tgccaaagtt	aaaaccagta	gaactccgag	aacttctgaa	ccccgttgtg	1740
gaattcgttt	cccatccttc	tacaacatgt	agggaacaaa	tgtataatat	tctcatgtgg	1800
attcatgata	attacagaga	tccagaaagt	gagacagata	atgactccca	ggaaatattt	1860
aagttggcaa	aagatgtgct	gattcaagga	ttgatcgatg	agaaccctgg	acttcaatta	1920
attattcgaa	atttctggag	ccatgaaact	aggttacctt	caaatacctt	ggaccggttg	1980
ctggcactaa	attccttata	ttctcctaag	atagaagtgc	actttttaag	tttagcaaca	2040
aattttctgc	tcgaaatgac	cagcatgagc	ccagattatc	caaaccccat	gttcgagcat	2100
cctctgtcag	aatgcgaatt	tcaggaatat	accattgatt	ctgattggcg	tttccgaagt	2160
actgttctca	ctccgatgtt	tgtggagacc	caggcctccc	agggcactct	ccagacccgt	2220
acccaggaag	ggtccctctc	agctcgctgg	ccagtggcag	ggcagataag	ggccacccag	2280
cagcagcatg	acttcacact	gacacagact	gcagatggaa	gaagctcatt	tgattggctg	2340
accgggagca	gcactgaccc	gctggtcgac	cacaccagtc	cctcatctga	ctccttgctg	2400
tttgcccaca	agaggagtga	aaggttacag	agagcaccct	tgaagtcagt	ggggcctgat	2460
ttt						2463

<210> 21

<211> 1320

<212> DNA

<213> Artificial sequence

<223> cDNA sequence encoding the 2261-2700 peptide

<220>

<221> CDS

<222> (1)..(1320)

<223> HUMAN GENETIC ORIGIN

<220>

<221> misc feature

<222> (1045)..(1047)

<223> encodes T2609 residue

<400> 21

teeggtaaag ateetaatte taaagacaac teagtaggga tteaattget aggeategtg 60 atggccaatg acctgcctcc ctatgaccca cagtgtggca tccagagtag cgaatacttc 120 caggetttgg tgaataatat gteetttgta agatataaag aagtgtatge egetgeagea 180 gaagttctag gacttatact tcgatatgtt atggagagaa aaaacatact ggaggagtct 240 300 ctgtgtgaac tggttgcgaa acaattgaag caacatcaga atactatgga ggacaagttt attgtgtgct tgaacaaagt gaccaagagc ttccctcctc ttgcagacag gttcatgaat 360 gctgtgttct ttctgctgcc aaaatttcat ggagtgttga aaacactctg tctggaggtg 420 gtactttgtc gtgtggaggg aatgacagag ctgtacttcc agttaaagag caaggacttc 480 540 gttcaagtca tgagacatag agatgatgaa agacaaaaag tatgtttgga cataatttat aagatgatgc caaagttaaa accagtagaa ctccqagaac ttctgaaccc cgttgtggaa 600 660 ttcgtttccc atccttctac aacatgtagg gaacaaatgt ataatattct catgtggatt 720 catgataatt acagagatcc agaaagtgag acagataatg actcccagga aatatttaag 780 ttggcaaaag atgtgctgat tcaaggattg atcgatgaga accctggact tcaattaatt attegaaatt tetggageea tgaaactagg ttacetteaa atacettgga eeggttgetg 840 gcactaaatt ccttatattc tcctaagata gaagtgcact ttttaagttt agcaacaaat 900 960 tttctgctcg aaatgaccag catgagccca gattatccaa accccatgtt cgagcatcct ctgtcagaat gcgaatttca ggaatatacc attgattctg attggcgttt ccgaagtact 1020 1080 gttctcactc cgatgtttgt ggagacccag gcctcccagg gcactctcca gacccgtacc 1140 caggaagggt ccctctcagc tcgctggcca gtggcagggc agataagggc cacccagcag 1200 cagcatgact tcacactgac acagactgca gatggaagaa qctcatttga ttggctgacc 1260 gggagcagca ctgacccgct ggtcgaccac accagtccct catctgactc cttgctgttt 1320 gcccacaaga ggagtgaaag gttacagaga gcacccttga agtcagtggg gcctgatttt

```
<211>
      600
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223>
      cDNA sequence encoding the 2500-2700 peptide
<220>
<221>
      CDS
<222>
      (1)..(600)
      HUMAN GENETIC ORIGIN
<223>
<220>
<221> misc feature
<222>
      (325)..(327)
<223>
      encodes T2609 residue
<400> 22
ttggcaaaag atgtgctgat tcaaggattg atcqatgaga accctggact tcaattaatt
                                                                      60
attogaaatt totggagooa tgaaactagg ttacottcaa atacottgga coggttgotg
                                                                     120
gcactaaatt ccttatattc tcctaagata gaagtgcact ttttaagttt agcaacaaat
                                                                     180
tttctgctcg aaatgaccag catgagccca gattatccaa accccatgtt cgagcatcct
                                                                     240
ctgtcagaat gcgaatttca ggaatatacc attgattctg attggcgttt ccgaagtact
                                                                     300
gttctcactc cgatgtttgt ggagacccag gcctcccagg gcactctcca gacccgtacc
                                                                     360
caggaagggt ccctctcagc tcgctqqcca qtqqcaqqqc agataagqqc cacccaqcaq
                                                                     420
cagcatgact tcacactgac acagactgca gatggaagaa gctcatttga ttggctqacc
                                                                     480
                                                                     540
gggagcagca ctgacccqct gqtcgaccac accagtccct catctgactc cttqctqttt
gcccacaaga ggagtgaaag gttacagaga gcacccttga agtcagtggg gcctgatttt
                                                                     600
<210> 23
<211>
      1284
<212>
      DNA
<213> Artificial sequence
<220>
<223> cDNA sequence encoding 2275-2702 peptide
<220>
<221> CDS
<222>
      (1)..(1284)
<223> HUMAN GENETIC ORIGIN
<220>
<221> misc feature
<222>
      (1003)..(1005)
<223> encodes T2609 residue
```

<400> 23

60 caattgctag gcatcgtgat ggccaatgac ctgcctccct atgacccaca gtgtggcatc cagagtagcg aatacttcca ggctttggtg aataatatgt cctttgtaag atataaagaa 120 gtgtatgccg ctgcagcaga agttctagga cttatacttc gatatgttat ggagagaaaa 180 aacatactgg aggagtetet gtgtgaactg gttgcgaaac aattgaagca acatcagaat 240 300 actatggagg acaagtttat tgtgtgcttg aacaaagtga ccaagagctt ccctcctctt gcagacaggt tcatgaatgc tgtgttcttt ctgctgccaa aatttcatgg agtgttgaaa 360 420 acactetgte tggaggtggt actttgtegt gtggagggaa tgacagaget gtaettecag 480 ttaaagagca aggacttcgt tcaagtcatg agacatagag atgatgaaag acaaaaagta tgtttggaca taatttataa gatgatgcca aagttaaaac cagtagaact ccgagaactt 540 600 ctgaaccccg ttgtggaatt cgtttcccat ccttctacaa catgtaggga acaaatgtat aatattetea tgtggattea tgataattae agagateeag aaagtgagae agataatgae 660 720 tcccaggaaa tatttaagtt ggcaaaagat gtgctgattc aaggattgat cgatgagaac 780 cctggacttc aattaattat tcgaaatttc tggagccatg aaactaggtt accttcaaat 840 accttggacc ggttgctggc actaaattcc ttatattctc ctaagataga agtgcacttt 900 ttaagtttag caacaaattt tctgctcgaa atgaccagca tgagcccaga ttatccaaac 960 cccatgttcg agcatcctct gtcagaatgc gaatttcagg aatataccat tgattctgat 1020 tggcgtttcc gaagtactgt tctcactccg atgtttgtgg agacccaggc ctcccagggc 1080 ataagggcca cccagcagca gcatgacttc acactgacac agactgcaga tggaagaagc 1140 tcatttgatt ggctgaccgg gagcagcact gacccgctgg tcgaccacac cagtccctca 1200 1260 tetgaeteet tgetgtttge ceacaagagg agtgaaaggt tacagagage accettgaag 1284 tcagtggggc ctgattttgg gaaa

```
<210>
       24
<211>
       819
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       cDNA sequence encoding 2429-2072 peptide
<220>
<221>
       CDS
<222>
       (1)..(819)
<223>
       HUMAN GENETIC ORIGIN
<220>
<221> misc_feature
```

```
<222>
      (538)..(540)
<223>
      encodes T2609 residue
<400>
      24
gaaagacaaa aagtatgttt ggacataatt tataagatga tgccaaagtt aaaaccagta
                                                                       60
gaactccgag aacttctgaa ccccgttgtg gaattcgttt cccatccttc tacaacatgt
                                                                      120
agggaacaaa tgtataatat tctcatgtgg attcatgata attacagaga tccagaaagt
                                                                      180
gagacagata atgactccca ggaaatattt aagttggcaa aagatgtgct gattcaagga
                                                                      240
ttgatcgatg agaaccctgg acttcaatta attattcgaa atttctggag ccatgaaact
                                                                      300
aggttacett caaatacett ggaceggttg etggcactaa atteettata tteteetaag
                                                                      360
atagaagtgc actttttaag tttagcaaca aattttctgc tcgaaatgac cagcatgagc
                                                                      420
ccagattatc caaaccccat gttcgagcat cctctgtcag aatgcgaatt tcaggaatat
                                                                      480
accattgatt ctgattggcg tttccgaagt actgttctca ctccgatgtt tgtggagacc
                                                                      540
caggeeteee agggeactet ceagaceegt acceaggaag ggteeetete agetegetgg
                                                                      600
ccagtggcag ggcagataag ggccacccag cagcagcatg acttcacact gacacagact
                                                                      660
                                                                      720
gcagatggaa gaagctcatt tgattggctg accgggagca gcactgaccc gctggtcgac
                                                                      780
cacaccagtc cctcatctga ctccttgctg tttgcccaca agaggagtga aaggttacag
agagcaccct tgaagtcagt ggggcctgat tttgggaaa
                                                                      819
<210>
       25
<211>
       420
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223>
       cDNA Sequence encoding 2561-2700 peptide
<220>
<221>
       CDS
<222>
       (1)..(420)
      HUMAN GENETIC ORIGIN
<223>
<220>
<221>
      misc feature
      (145)..(147)
<222>
       Encodes T2609 residue
<223>
<400>
       25
tttctgctcg aaatgaccag catgagccca gattatccaa accccatgtt cgagcatcct
                                                                       60
ctgtcagaat gcgaatttca ggaatatacc attgattctg attggcgttt ccgaagtact
                                                                      120
gttctcactc cgatgtttgt ggagacccag gcctcccagg gcactctcca gacccgtacc
                                                                      180
```

				-		
caggaagg	gt ccctctcage	tcgctggcca	gtggcagggc	agataagggc	cacccagcag	240
cagcatgad	ct tcacactgac	acagactgca	gatggaagaa	gctcatttga	ttggctgacc	300
gggagcago	ca ctgacccgct	ggtcgaccac	accagtccct	catctgactc	cttgctgttt	360
gcccacaaq	ga ggagtgaaag	gttacagaga	gcacccttga	agtcagtggg	gcctgatttt	420
<210> 26	6					
	06 NA rtificial Sequ	ience				
<220> <223> cI	ONA sequence e	encoding 260	00-2702 pept	cide		
	OS 1)(306) UMAN GENETIC C	DRIGIN				
<222> (2	isc_feature 25)(27) ncodes T2609 r	residue				
<400> 26	6					
gttctcact	tc cgatgtttgt	ggagacccag	gcctcccagg	gcactctcca	gacccgtacc	60
caggaaggg	gt ccctctcagc	tcgctggcca	gtggcagggc	agataagggc	cacccagcag	120
cagcatgad	ct tcacactgac	acagactgca	gatggaagaa	gctcatttga	ttggctgacc	180
gggagcago	ca ctgacccgct	ggtcgaccac	accagtccct	catctgactc	cttgctgttt	240
gcccacaaq	ga ggagtgaaag	gttacagaga	gcacccttga	agtcagtggg	gcctgatttt	300
gggaaa						306
<210> 27	7					
	4 NA rtificial sequ	nence				
<220> <223> Pr	rimer to creat	e T2609A mu	utation			
<400> 27	7					
tccgatgtt	tt gtggaggacc	aggcctccca	gggc			34
<210> 28	3					
2011	4					

<211> 34 <212> DNA <213> Artificial Sequence

<220>

<223> Reverse primer to create T2609A mutation

<400> 28

gccctgggag gcctggtcct ccacaaacat cgga

34