Factorization in Integral Domains

Throughout these notes, R denotes an **integral domain**.

1 Unique factorization domains and principal ideal domains

Definition: For $r, s \in R$, we say that r divides s (written r|s) if there exists a $t \in R$ such that s = tr. An element $u \in R$ is a unit if it has a multiplicative inverse, i.e. if there exists an element $v \in R$ such that uv = 1. The (multiplicative) group of units is denoted R^* . If $r, s \in R$, then r and s are associates if there exists a unit $u \in R^*$ such that r = us. In this case, $s = u^{-1}r$, and indeed the relation that r and s are associates is an equivalence relation. We say that $r \in R$ is irreducible if $r \neq 0$, r is not a unit, and, for all $s \in R$, if s divides r then either s is a unit or s is an associate of r. In other words, if r = st for some $t \in R$, then one of s or t is a unit (and hence the other is an associate of r). If $r \in R$ with $r \neq 0$ and r is not a unit, then r is reducible if it is not irreducible.

Examples: 1) $R = \mathbb{Z}$. The units $\mathbb{Z}^* = \pm 1$. Two integers n and m are associates $\iff m = \pm n$.

- 2) R = F[x], F a field. The units in F[x] are: $(F[x])^* = F^*$, the set of constant nonzero polynomials. Hence, if F is infinite, there are an infinite number of units. Two polynomials f(x) and g(x) are associates \iff there exists a $c \in F^*$ with g(x) = cf(x).
- 3) $R = \mathbb{Z}[i]$, the Gaussian integers. The units $(\mathbb{Z}[i])^* = \{\pm 1, \pm i\}$. Two elements $\alpha, \beta \in \mathbb{Z}[i]$ are associates $\iff \alpha = \pm \beta$ or $\alpha = \pm i\beta$.
- 4) $R = \mathbb{Z}[\sqrt{2}]$. As we have seen on the homework, $1 + \sqrt{2}$ is a unit of infinite order. In fact, $(\mathbb{Z}[\sqrt{2}])^* \cong \mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})$.
 - 4) $R = \mathbb{Z}[\sqrt{-2}]$. As we have seen on the midterm, $(\mathbb{Z}[\sqrt{-2}])^* = \pm 1$.

Definition: R is a unique factorization domain (UFD) if

- (i) for every $r \in R$ not 0 or a unit, there exist irreducibles $p_1, \ldots, p_n \in R$ such that $r = p_1 \cdots p_n$, and
- (ii) if $p_i, 1 \le i \le n$ and $q_j, 1 \le j \le m$ are irreducibles such that $p_1 \cdots p_n = q_1 \cdots q_m$, then n = m and, after reordering, p_i and q_i are associates.

Note that two separate issues are involved: (i) the **existence** of some factorization of r into irreducibles and (ii) the **uniqueness** of a factorization. As we shall see, these two questions are in general unrelated.

Given an element r in a UFD, not 0 or a unit, it is often more natural to factor r by grouping together all of the associated irreducibles (after making some choices). Hence, such an r can always be written as

$$r = up_1^{a_1} \cdots p_n^{a_n},$$

where u is a unit, the p_i are irreducibles, $a_i > 0$, and, for $i \neq j$, p_i and p_j are not associates, and such a product is essentially unique in the following sense: if also

$$r = vq_1^{b_1} \cdots q_m^{b_m},$$

where v is a unit, the q_j are irreducibles, $b_j > 0$, and, for $k \neq \ell$, q_k and q_ℓ are not associates, then n = m and, after reordering, p_i and q_i are associates and $a_i = b_i$.

Definition: R is a principal ideal domain (PID) if every ideal I of R is principal, i.e. for every ideal I of R, there exists $r \in R$ such that I = (r).

Examples: The rings \mathbb{Z} and F[x], where F is a field, are PID's.

We shall prove later: A principal ideal domain is a unique factorization domain. However, there are many examples of UFD's which are not PID's. For example, if $n \geq 2$, then the polynomial ring $F[x_1, \ldots, x_n]$ is a UFD but not a PID. Likewise, $\mathbb{Z}[x]$ is a UFD but not a PID, as is $\mathbb{Z}[x_1, \ldots, x_n]$ for all $n \geq 1$.

Definition: Let R be an integral domain. Let $r, s \in R$, not both 0. A greatest common divisor (gcd) of r and s is an element $d \in R$ such that d|r, d|s, and if $e \in R$ and e|r, e|s, then e|d. If a gcd of r and s exists, it is unique up to a unit (i.e. any two gcd's of r and s are associates). The elements r and s are relatively prime if gcd(r,s) = 1; equivalently, if $d \in R$ and d|r, d|s, then d is a unit.

Proposition: if R is a UFD, then the gcd of two elements $r, s \in R$, not both 0, exists.

Proof. If say r = 0, then the gcd of r and s exists and is s. If r is a unit, then the gcd of r and s exists and is a unit. So we may clearly assume that

r is neither 0 nor a unit, and likewise that s is neither 0 nor a unit. Then we can factor both r and s as in the comments after the definition of a UFD. In fact, it is clear that we can write

$$r = up_1^{a_1} \cdots p_k^{a_k}, \qquad s = vp_1^{b_1} \cdots p_k^{b_k}$$

where u and v are units, the p_i are irreducibles, $a_i, b_i \geq 0$, and, for $i \neq j$, p_i and p_j are not associates. (Here, we set $a_i = 0$ if p_i is not a factor of r, and similarly for b_i .) Then set

$$t = p_1^{c_1} \cdots p_k^{c_k},$$

where $c_i = \min\{a_i, b_i\}$. We claim that t is a gcd of r and s. Clearly t|r and t|s. If now w|r and w|s and q is an irreducible factor of w, then $q = p_i$ for some i, and if d_i is the largest integer such that $p_i^{d_i}|w$, then since $p_i^{d_i}|r$ and $p_i^{d_i}|s$, $d_i \leq a_i$ and $d_i \leq b_i$. Hence $d_i \leq c_i$. It then follows by taking the factorization of w into powers of the p_i tines a unit that w|t. Hence t is a gcd of r and s. \square

Lemma: If R is a UFD and $p, r, s \in R$ are such that p is an irreducible and p|rs, then either p|r or p|s. More generally, if t and r are relatively prime and t|rs then t|s.

Proof. To see the first statement, write rs = pt and factor r, s, t into irreducibles. Then p must be an associate of some irreducible factor of either r or s, hence p divides either r or s. The second statement can be proved along similar but slightly more complicated lines. \square

As a consequence, we have:

Proposition: Let R be a UFD and let $r \in R$, where $r \neq 0$. Then (r) is prime ideal $\iff r$ is irreducible.

Proof. \implies : If (r) is a prime ideal, then r is not a unit, and $r \neq 0$ by assumption. If r = st, then one of $s, t \in (r)$, say $s \in (r)$, hence s = ru. Then r = rut so that ut = 1 and t is a unit. Hence r is irreducible. (Note: this part did not use the fact that R was a UFD, and holds in every integral domain.)

 \Leftarrow : If r is irreducible, then it is not a unit and hence $(r) \neq R$. Suppose that $st \in (r)$. Then r|st. By the remark above, either r|s or r|t, i.e. either $s \in (r)$ or $t \in (r)$. Hence (r) is prime. \square

Note: in case R is not a UFD, there will in general exist irreducibles r such that (r) is not a prime ideal.

Theorem: Let R be a PID, and let $r, s \in R$, not both 0. Then a gcd d of r and s exists. Moreover, d is a linear combination of r and s: there exist $a, b \in R$ such that d = ar + bs.

Note: for a general UFD, the gcd of two elements r and s will not in general be a linear combination of r and s. For example, in F[x,y], the elements x and y are relatively prime, hence their gcd is 1, but 1 is not a linear combination of x and y, since if f(x,y) = xp(x,y) + yq(x,y) is any linear combination of x and y, then f(0,0) = 0.

Proof. This argument is very similar to the corresponding argument for F[x], or for \mathbb{Z} . Given $r, s \in R$, not both 0, consider the ideal

$$(r,s) = \{ar + bs : a, b \in R\} = (r) + (s).$$

Then (r,s) is easily checked to be an ideal, hence there exists a $d \in R$ with (r,s)=(d). By construction d=ar+bs for some $r,s\in R$. Since $r=1\cdot r+0\cdot s\in (r,s)=(d)$, this says that d|r. Similarly d|s. Finally, if e|r and e|s, then e|(ar+bs)=d. \square

Corollary (of Theorem): If R is a PID, $r, s \in R$ are relatively prime and r|st, then r|t.

Proof. Write 1 = ar + bs for some $a, b \in R$. Then t = tar + tbs = r(at) + b(st). By assumption r|st and clearly r|r(at). Hence r|t. \square

Corollary: If R is a PID, and $r \in R$ is an irreducible, then for all $s, t \in R$, if r|st, then either r|s or r|t.

Proof. Since r is an irreducible, it is easy to see that a gcd of r and s is either a unit or an associate of r, i.e. if r does not divide s, then r and s are relatively prime. Suppose then that r does not divide s. Then by the previous corollary r|t. Hence either r|s or r|t. \square

The following proves the uniqueness half of the assertion that a PID is a UFD:

Corollary: If R is a PID, then uniqueness of factorization holds in R: if $p_i, 1 \le i \le n$ and $q_j, 1 \le j \le m$ are irreducibles such that $p_1 \cdots p_n = q_1 \cdots q_m$, then n = m and, after reordering, p_i and q_j are associates.

Proof. This is proved in exactly the same way as the argument for F[x] (or \mathbb{Z}). \square

Theorem: A PID is a UFD.

Proof. We have already seen that, if an irreducible factorization exists, it is unique. Thus the remaining point is to show that, if R is a PID, then every element $r \in R$, not 0 or a unit, admits **some** factorization into a product of irreducibles. The proof will be in several steps.

Lemma: Let R be an integral domain with the property that, if

$$(a_1) \subseteq (a_2) \subseteq \cdots \subseteq (a_n) \subseteq (a_{n+1}) \subseteq \cdots$$

is an increasing sequence of principal ideals, then the sequence is eventually constant, i.e. there exists an N such that, for all $n \geq N$, $(a_n) = (a_{n+1}) = \cdots$. Then every nonzero $r \in R$ which is not a unit factors into a product of irreducibles.

We can paraphrase the hypothesis of the lemma by saying that R satisfies the ascending chain condition (a.c.c) on principal ideals.

Proof of the lemma. Suppose by contradiction that $r \in R$ is an element, not zero or a unit, which does not factor into a product of irreducibles. In particular, r itself is not irreducible, so that $r = r_1 s_1$ where neither r_1 nor s_1 is a unit. Thus (r) is properly contained in (r_1) and in (s_1) . Clearly, we can assume that at least one of r_1 , s_1 , say r_1 , does not factor into irreducibles (if both so factor, so does the product). By applying the above to r_1 , we see that (r_1) is strictly contained in a principal ideal (r_2) , where r_2 does not factor into a product of irreducibles. Continuing in this way, we can produce a strictly increasing infinite chain of principal ideals $(r_1) \subset (r_2) \subset \cdots$, i.e. each (r_{i+1}) properly contains the previous ideal (r_i) , contradicting the hypothesis on R.

To complete the proof of the theorem that a PID is a UFD, it suffices to show that a PID R satisfies the hypotheses of the above lemma. First suppose that $(r_1) \subseteq (r_2) \subseteq \cdots$ is an increasing sequence of ideals of R. It is easy to check that $I = \bigcup_i (r_i)$ is again an ideal. More generally, we have the following:

Claim: Let R be a ring and let $I_1 \subseteq I_2 \subseteq \cdots$ be an increasing sequence of ideals of R. If $I = \bigcup_n I_n$, then I is an ideal of R.

Proof. To see that I is an additive subgroup, we show for example that it is closed under addition. Given $a, b \in I$, there exists a j such that $a \in I_j$ and there exists a k such that $b \in I_k$. Setting $\ell = \max\{j, k\}$, we have $a \in I_j \subseteq I_\ell$ and $b \in I_k \subseteq I_\ell$. Hence $a, b \in I_\ell$, and since I_ℓ is an ideal, $a + b \in I_\ell \subseteq I$. Thus I is closed under addition. Similarly, if $a \in I$, then $-a \in I$ and $ta \in I$ for all $t \in R$. Thus I is an ideal. \square

Returning to the proof of the theorem, given the increasing sequence of ideals $(r_1) \subseteq (r_2) \subseteq \cdots$, the claim implies that $I = \bigcup_i (r_i)$ is again an ideal of R. Since R is a PID, I = (r) for some $r \in R$. Necessarily $r \in (r_N)$ for some N. But then $(r) \subseteq (r_N) \subseteq (r_{N+1}) \cdots \subseteq \bigcup_i (r_i) = (r)$. Thus all inclusions are equalities, and $(r_n) = (r_N)$ for all $n \geq N$, i.e. the sequence is eventually constant. Hence R satisfies the hypotheses of the previous lemma, so that every $r \in R$, not 0 or a unit, factors into a product of irreducibles. \square

The ascending chain condition and the arguments we have just given are so fundamental that we generalize them as follows:

Proposition: For a ring R, the following two conditions are equivalent:

- (i) Every ideal I of R is finitely generated: if I is an ideal of R, then $I = (r_1, \ldots, r_n)$ for some $r_i \in R$.
- (ii) Every increasing sequence of ideals is eventually constant, in other words if

$$I_1 \subset I_2 \subset \cdots \subset I_n \subset I_{n+1} \subset \cdots$$

where the I_n are ideals of R, then there exists an $N \in \mathbb{N}$ such that for all $k \geq N$, $I_k = I_N$.

If the ring R satisfies either of the equivalent conditions above, then R is called a *Noetherian* ring.

- **Proof.** (i) \Longrightarrow (ii): given an increasing sequence of ideals $I_1 \subseteq I_2 \subseteq \cdots$, let $I = \bigcup_n I_n$. Then by the claim above, I is an ideal, and hence $I = (r_1, \ldots, r_n)$ for some $r_i \in R$. Thus $r_i \in I_{n_i}$ for some n_i . If $N = \max_i n_i$, then $r_i \in I_N$ for every i. Hence, for all $k \geq N$, $I = (r_1, \ldots, r_n) \subseteq I_N \subseteq I_k \subseteq I$. It follows that $I_k = I_N = I$ for all $k \geq N$.
- (ii) \Longrightarrow (i): Let I be an ideal of R and choose an arbitrary $r_1 \in I$ (for example, r_1 could be 0). Set $I_1 = (r_1)$. If $I = I_1$, stop. Otherwise there exists an $r_2 \in I I_1$. Set $I_2 = (r_1, r_2)$, and note that I_2 strictly contains I_1 . If $I = I_2$, stop, otherwise there exists an $r_3 \in I I_2$. Inductively suppose that we have

found $I_k = (r_1, \ldots, r_k)$ with $I_k \subseteq I$. If $I = I_k$ we are done, otherwise there exists $r_{k+1} \in I - I_k$ and we set $I_{k+1} = (r_1, \ldots, r_{k+1})$. So if I is not finitely generated, we have constructed a strictly increasing sequence $I_1 \subset I_2 \subset \cdots$, contradicting the assumption on R. Thus I is finitely generated. \square

Clearly, the arguments we have already discussed imply the following:

Theorem: Suppose that R is a Noetherian integral domain. Then every element $r \in R$, not 0 or a unit, factors into a product of irreducibles. Moreover, the following are equivalent:

- (i) R is a UFD.
- (ii) For every nonzero $r \in R$, the element r is irreducible if and only if (r) is a prime ideal. \square

2 Euclidean domains

We turn now to finding new examples of PID's.

Definition: Let R be an integral domain. A *Euclidean norm* on R is a function $N: R - \{0\} \to \mathbb{Z}$ satisfying:

- 1. For all $r \in R \{0\}$, $N(r) \ge 0$.
- 2. For all $a, b \in R$ with $a \neq 0$, there exist $q, r \in R$ with b = aq + r and either r = 0 or N(r) < N(a).

An integral domain R such that there exists a Euclidean norm on R is called a *Euclidean domain*.

Definition: The Euclidean norm N is submultiplicative if in addition N satisfies: For all $a, b \in R - \{0\}$, $N(a) \leq N(ab)$. It is multiplicative if N satisfies: For all $a, b \in R - \{0\}$, N(ab) = N(a)N(b). If N is multiplicative and N(a) > 0 for all $a \in R - \{0\}$, then N is submultiplicative. (In fact, the condition that N(a) > 0 for all $a \in R - \{0\}$ is automatically satisfied.)

Examples: $R = \mathbb{Z}$, N(a) = |a|; R = F[x], F a field, and $N(f(x)) = \deg f(x)$, defined for $f(x) \neq 0$. Here (1) is clear and (2) is the statement of

long division in \mathbb{Z} or in F[x]. In fact, it is easy to see that N is submultiplicative in both cases.

Remark: In the definition of a Euclidean norm, we do **not** require that the $q, r \in R$ are unique. In fact, this even fails in \mathbb{Z} if we allow q and r to be negative. For example, with a = 3, b = 11, we can write $11 = 3 \cdot 3 + 2 = 3 \cdot 4 + (-1)$.

Proposition: If R is a Euclidean domain, then R is a PID.

Proof. This argument should be very familiar. Let I be an ideal of R. If $I = \{0\}$, then I = (0) is principal. Otherwise, consider the nonempty set A of nonnegative integers $\{N(r): r \in I - \{0\}\}$. By the well-ordering principle, there exists an $a \in I - \{0\}$ such that N(a) is a smallest element of A. We claim that I = (a). Clearly $(a) \subseteq I$ since $a \in I$. Conversely, if $b \in I$, then there exist $q, r \in R$ such that b = aq + r with either r = 0 or N(r) < N(a). As $b, aq \in I$, $r = b - aq \in I$. Hence N(r) < N(a) is impossible by the choice of a, so that r = 0 and $b = aq \in (a)$. Thus $(a) \subseteq I$ and hence (a) = I. \square

Lemma: Let R be an integral domain and let N be a submultiplicative Euclidean norm on R. For all $b \in R - \{0\}$, exactly one of the following holds:

- 1. b is not a unit, N(b) > N(1), and N(a) < N(ab) for all $a \in R \{0\}$.
- 2. *b* is a unit, N(b) = N(1), and N(a) = N(ab) for all $a \in R \{0\}$.

Proof. Since we always have $N(a) \leq N(ab)$, it suffices to show that $N(a) = N(ab) \iff b$ is a unit. First, if b is a unit, then $N(a) \leq N(ab)$ and $N(ab) \leq N(abb^{-1}) = N(a)$, so that N(a) = N(ab). It is then an easy exercise to see that N(b) = N(1). Conversely, suppose that N(a) = N(ab). Applying long division of ab into a, we se that a = (ab)q + r, with either r = 0 or N(r) < N(ab) = N(a). We claim that r must be 0, since otherwise r = a - abq = a(1 - bq) with $1 - bq \neq 0$, and hence

$$N(a) \le N(a(1 - bq)) = N(r) < N(a),$$

a contradiction. Thus r=0, so that a=abq and thus bq=1, i.e. b is a unit.

Corollary: Let R be an integral domain and let N be a submultiplicative Euclidean norm on R. If $r \in R - \{0\}$ and r = ab with neither a nor b a unit, then N(a) < N(r) and N(b) < N(r). \square

Proposition: If R is a Euclidean domain with a submultiplicative Euclidean norm and $r \in R$ is not 0 or a unit, then r is a product of irreducibles.

Proof. Given r, not 0 or a unit, if r is irreducible we are done. Otherwise, $r = r_1 r_2$, with neither r_1 nor r_2 a unit. Hence $N(r_i) < N(r)$, i = 1, 2. If r_i is irreducible for i = 1, 2, we are done. Otherwise at least one of r_1 , r_2 factors into factors: say $r_1 = ab$, with $N(a) < N(r_1) < N(r)$ and $N(b) < N(r_1) < N(r)$. Clearly this process cannot continue indefinitely.

A more formal way to give this argument is as follows: if there exists an $r \in R$, not 0 or a unit, which is **not** a product of irreducibles, then there exists an r such that N(r) is minimal among all such, i.e. if $s \in R$ is not 0, a unit, or a product of irreducibles, then $N(r) \leq N(s)$, by the well-ordering principle. But such an r cannot be irreducible (since a single irreducible is by convention a product of one irreducible). So $r = r_1 r_2$, with neither r_1 nor r_2 a unit, and so $N(r_i) < N(r)$, i = 1, 2. But at least one of r_1 and r_2 is not a product of irreducibles, since if both r_1 and r_2 were a product of irreducibles, then $r_1 r_2 = r$ would also be a product of irreducibles. Say r_1 is not a product of irreducibles. Then by the choice of r, $N(r) \leq N(r_1)$. This contradicts $N(r_1) < N(r)$. Hence no such r can exist. \square

Corollary: If R is a Euclidean domain with a submultiplicative Euclidean norm, then R is a UFD. \square

Of course, the corollary follows from the more general fact that a PID is a UFD. But we were able to give a more direct proof using the proposition above.

The Euclidean algorithm in a Euclidean domain: Let R be a Euclidean domain with Euclidean norm N. Begin with $a, b \in R$, with $b \neq 0$. Write $a = bq_1 + r_1$, with $q_1, r_1 \in R$, and either $r_1 = 0$ or $N(r_1) < N(b)$. Note that $r_1 = a + b(-q_1)$ is a linear combination of a and b. If $r_1 = 0$, stop, otherwise repeat this process with b and r_1 instead of a and b, so that $b = r_1q_2 + r_2$, with $r_2 = 0$ or $N(r_2) < N(b)$ If $r_2 = 0$, stop, otherwise repeat again. to find r_1, \ldots, r_k with $N(r_1) > N(r_2) > N(r_3) > \cdots > N(r_k) \geq 0$, with $r_{k-1} = r_kq_{k+1} + r_{k+1}$. Since the integers $N(r_i)$ decrease, and they are

all nonnegative, eventually this procedure must stop with an r_n such that $r_{n+1} = 0$, and hence $r_{n-1} = r_n q_{n+1}$. The procedure looks as follows:

$$a = bq_1 + r_1$$

$$b = r_1q_2 + r_2$$

$$r_1 = r_2q_3 + r_3$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_n + r_n$$

$$r_{n-1} = r_nq_{n+1}.$$

Then r_n is a gcd of a, b and tracing back through the steps shows how to write it as a linear combination of a and b.

3 Factorization in the Gaussian integers

We now consider factorization in the Gaussian integers

$$\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}.$$

Consider the function $N: \mathbb{Z}[i] \to \mathbb{Z}$ defined by $N(\alpha) = \alpha \bar{\alpha}$, where if $\alpha = a + bi$, then $\bar{\alpha} = a - bi$ (i.e. $N(a + bi) = a^2 + b^2$). Note that, given $n \in \mathbb{Z}$, $n = N(\alpha)$ for some $\alpha \in \mathbb{Z}[i] \iff n$ is a sum of two integer squares.

Lemma: The function N satisfies:

- (a) $N(\alpha) \geq 0$ for all $\alpha \in \mathbb{Z}[i]$.
- (b) For all $\alpha, \beta \in \mathbb{Z}[i]$, $N(\alpha\beta) = N(\alpha)N(\beta)$ (N is multiplicative). Hence, if n_1 and n_2 are two integers which are each a sum of two integer squares, then n_1n_2 is a sum of two integer squares.
- (c) There is a natural extension of N to a function $\mathbb{Q}(i) \to \mathbb{Q}$, satisfying (a) and (b) (and which we continue to denote by N).
- (d) $N(\alpha) = 1 \iff \alpha \text{ is a unit.}$

Proof. (a) Clear. (b) $N(\alpha\beta) = (\alpha\beta)(\overline{\alpha\beta}) = (\alpha\beta)(\bar{\alpha}\bar{\beta}) = \alpha\bar{\alpha}\beta\bar{\beta} = N(\alpha)N(\beta)$. (c) Clear. (d) We can see this directly $(N(\alpha) = 1 \iff \alpha = \pm 1 \text{ or }$

 $\alpha = \pm i$) or as follows: if $N(\alpha) = 1$, then $\alpha \bar{\alpha} = 1$ and hence α is a unit with $\alpha^{-1} = \bar{\alpha}$. Conversely, if α is a unit, then $\alpha\beta = 1$ for some $\beta \in \mathbb{Z}[i]$, hence $N(\alpha\beta) = 1 = N(\alpha)N(\beta)$. Thus $N(\alpha)$ is a positive integer dividing 1, so $N(\alpha) = 1$. \square

Proposition: In the integral domain $\mathbb{Z}[i]$, the function $N(\alpha) = \alpha \bar{\alpha}$ is a (submultiplicative) Euclidean norm.

Proof. Given $\alpha, \beta \in \mathbb{Z}[i]$ with $\alpha \neq 0$, we must show that we can find $\xi, \rho \in \mathbb{Z}[i]$ with $\beta = \alpha\xi + \rho$ and $\rho = 0$ or $N(\rho) < N(\alpha)$. Consider the quotient $\beta/\alpha \in \mathbb{Q}[i]$. Write $\beta/\alpha = r + si$ with $r, s \in \mathbb{Q}$. Then there exist integers $n, m \in \mathbb{Z}$ with $|r - n| \leq \frac{1}{2}$ and $|s - m| \leq \frac{1}{2}$. Set $\xi = n + mi$ and $\gamma = \beta/\alpha - \xi$. Then $\beta = \alpha\xi + \alpha\gamma = \alpha\xi + \rho$, say, where $\rho = \alpha\gamma$. Since $\rho = \beta - \alpha\xi$, $\rho \in \mathbb{Z}[i]$. Moreover,

$$N(\gamma) = N(\beta/\alpha - \xi) = (r - n)^2 + (s - m)^2 \le \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} < 1.$$

Then $\beta = \alpha \xi + \rho$ with either $\rho = 0$ or

$$N(\rho) = N(\alpha \gamma) = N(\alpha)N(\gamma) < N(\alpha).$$

Hence N is a Euclidean norm and it is submultiplicative since it is multiplicative and $N(\alpha) \geq 1$ for all $\alpha \neq 0$. \square

Corollary: $\mathbb{Z}[i]$ is a PID and a UFD. \square

Lemma:

- (i) If $N(\alpha) = p$, where p is a prime number, then α is irreducible.
- (ii) If p is a prime number, then p is not irreducible in $\mathbb{Z}[i] \iff p = N(\alpha)$ for some $\alpha \in \mathbb{Z}[i] \iff p$ is a sum of two integer squares. In this case, if α divides p and α is not a unit or an associate of p, then $p = N(\alpha)$.

Proof. (i) If $\alpha = \beta \gamma$, then $p = N(\alpha) = N(\beta \gamma) = N(\beta)N(\gamma)$, and so one of $N(\beta)$, $N(\gamma)$ is 1. Hence either β or γ is a unit, so that α is irreducible.

(ii) If p is not irreducible, then $p = \alpha \beta$ where neither α nor β is a unit, hence $N(\alpha)$ and $N(\beta)$ are both greater than 1. Then $p^2 = N(p) =$

 $N(\alpha)N(\beta)$, so that $N(\alpha)=N(\beta)=p$. Conversely, if $p=N(\alpha)$, then $p=\alpha\bar{\alpha}$ with $N(\alpha)=N(\bar{\alpha})=p$, so that neither α nor $\bar{\alpha}$ is a unit. Hence p is not irreducible in $\mathbb{Z}[i]$. \square

Lemma: If π is an irreducible element of $\mathbb{Z}[i]$, then there exists a prime number p such that π divides p in $\mathbb{Z}[i]$. If the prime number p is also irreducible in $\mathbb{Z}[i]$, then π and p are associates, so that $\pi = \pm p$ or $\pm ip$. If the prime number p is not irreducible in $\mathbb{Z}[i]$, then $p = N(\pi)$ and every irreducible factor of p is other an associate of π or an associate of $\bar{\pi}$.

Proof. Consider $N(\pi) \in \mathbb{Z}$. Since π is not a unit, $N(\pi) > 1$, and hence $N(\pi)$ is a product of prime numbers $p_1 \cdots p_r$ (not necessarily distinct). Since $\mathbb{Z}[i]$ is a UFD and π is an irreducible dividing the product $p_1 \cdots p_r$, there must exist an i such that π divides p_i , and we take $p = p_i$. If p is also irreducible, then π and p are associates, and hence $\pi = \pm p$ or $\pm ip$. If p is not irreducible, then we have seen that $p = \alpha \bar{\alpha}$ for every $\alpha \in \mathbb{Z}[i]$ which is a nontrivial factor of p, hence π divides $p = \alpha \bar{\alpha}$. Moreover both α and $\bar{\alpha}$ are irreducible since both have norm p. It follows that π divides either α or $\bar{\alpha}$, say π divides α , and hence that π is an associate of α since α is irreducible. Since units have norm 1, it follows that $N(\pi) = N(\alpha) = p$. \square

Note that 2 is not irreducible in $\mathbb{Z}[i]$, and in fact 2 = N(1+i). The irreducible factors of 2 are $\pm 1 \pm i$, and they are all associates: up to a unit, 2 is a square since $2 = (-i)(1+i)^2$. For other primes p of the form $N(\alpha) = \alpha \bar{\alpha}$, this does not happen: if $\alpha = a + bi$, the associates of α are $\pm (a + bi)$ and $\pm i(a + bi) = \pm (-b + ai)$. Hence $\bar{\alpha} = a - bi$ is an associate of $\alpha \iff a = b$. If moreover α is irreducible, then since a|(a + ai), $a = \pm 1$ and b = 2.

We may now describe the irreducibles in $\mathbb{Z}[i]$ as follows:

Theorem: The irreducible elements in $\mathbb{Z}[i]$ are:

- 1. 1+i and its associates $\pm 1 \pm i$;
- 2. Ordinary prime numbers $p \in \mathbb{Z} \subseteq \mathbb{Z}[i]$ congruent to 3 mod 4 and their associates $\pm p, \pm ip$;
- 3. Gaussian integers $\alpha = a + bi$ such that $N(\alpha) = a^2 + b^2 = p$, where p is a prime number congruent to 1 mod 4. Moreover, for every prime number p congruent to 1 mod 4, there exists an $\alpha = a + bi$ such that $N(\alpha) = a^2 + b^2 = p$.

Proof. Let π be an irreducible in $\mathbb{Z}[i]$. We have seen that either π is an associate of a prime p which is irreducible in $\mathbb{Z}[i]$, or $N(\pi) = p$ is a prime number and that the irreducible factors of p are exactly the associates of π or $\bar{\pi}$. Moreover, 2 is not irreducible and the only irreducibles dividing 2 are 1+i and its associates. If p is an odd prime, p is not irreducible in $\mathbb{Z}[i] \iff p = a^2 + b^2$, where $a, b \in \mathbb{Z}$. Since p is odd, a and b cannot be both odd or both even, so one of them, say a, is odd and the other, say b, is even. Then $a^2 \equiv 1 \mod 4$ and $b^2 \equiv 0 \mod 4$, so that $p = a^2 + b^2 \equiv 1 \mod 4$. In other words, if p is an odd prime which is not irreducible in $\mathbb{Z}[i]$, then $p \equiv 1 \mod 4$. Hence, if p is an odd prime with $p \equiv 3 \mod 4$, then p is irreducible in $\mathbb{Z}[i]$ and its irreducible factors are its associates $\pm p, \pm ip$.

Thus we will be done if we show that every odd prime number congruent to 1 mod 4 is not irreducible in $\mathbb{Z}[i]$, for then the remaining irreducibles of $\mathbb{Z}[i]$ will be the nontrivial factors of p for such primes p, which are necessarily irreducible and of norm p. To see this statement, we use the following:

Lemma: If $p \equiv 1 \mod 4$, then there exists a $k \in \mathbb{Z}$ such that $k^2 \equiv -1 \mod p$.

Proof. The assumption $p \equiv 1 \mod 4$ is exactly the statement that 4|p-1. Now we know that $(\mathbb{Z}/p\mathbb{Z})^*$ is a cyclic group of order p-1. By known results on cyclic groups, there exists an element k of $(\mathbb{Z}/p\mathbb{Z})^*$ of order 4. In other words, $k^4 = 1$ in $(\mathbb{Z}/p\mathbb{Z})^*$ but $k^2 \neq 1$ in $(\mathbb{Z}/p\mathbb{Z})^*$. Since k^2 is then a root of the polynomial $x^2 - 1 = (x+1)(x-1)$ in the field $\mathbb{Z}/p\mathbb{Z}$, we must have $k^2 = \pm 1$, and since by assumption $k^2 \neq 1$, $k^2 = -1$. This says that there is an integer k such that $k^2 \equiv -1 \mod p$. \square

To complete the proof of the theorem, if $p \equiv 1 \mod 4$, then we shall show that p is not irreducible in $\mathbb{Z}[i]$. Let $k \in \mathbb{Z}$ be such that $k^2 \equiv -1 \mod p$, so that p divides $k^2 + 1$. In $\mathbb{Z}[i]$, we can factor $k^2 + 1 = (k+i)(k-i)$. If p were an irreducible, then since p divides $k^2 + 1 = (k+i)(k-i)$, p would divide one of the factors $k \pm i$. But

$$\frac{k \pm i}{p} = \frac{k}{p} \pm \frac{1}{p}i.$$

Since $\pm 1/p$ is not an integer, the quotient $(k \pm i)/p$ does not lie in $\mathbb{Z}[i]$. Hence p does not divide either factor $k \pm i$ of $k^2 + 1$, and so cannot be an irreducible.

Corollary: Let $n \in \mathbb{N}$, n > 1, and write $n = p_1^{a_1} \cdots p_r^{a_r}$, where the p_i are

distinct prime numbers and $a_i \in \mathbb{N}$. Then n is a sum of two integer squares if and only, for every prime factor p_i of n such that $p_i \equiv 3 \mod 4$, a_i is even.

Proof. \Leftarrow : If n is as described, then every prime factor p_i of n which is either 2 or $\equiv 1 \mod p$ is a sum of two squares, hence so is $p_i^{a_i}$ for an arbitrary positive power a_i . If $p_i \equiv 3 \mod 4$, then, if a_i is even, $p_i^{a_i}$ is also a square since it is an even power. Thus $n = p_1^{a_1} \cdots p_r^{a_r}$ is a sum of two squares since it is a product of factors, each of which is a sum of two squares.

 \Longrightarrow : Suppose that n is a sum of two squares. Then $n=N(\alpha)$ for some $\alpha\in\mathbb{Z}[i]$, not 0 or a unit. Factor α into a product of irreducibles: $\alpha=u\pi_1^{b_1}\cdots\pi_s^{b_s}$, where u is a unit, the b_i are positive integers, and π_i is not an associate . If π_i is not an associate of a prime $p_i\equiv 3 \mod 4$, then $N(\pi_i)$ is either 2 or a prime $\equiv 1 \mod 4$. If π_i is an associate of a prime $p_i\equiv 3 \mod 4$, then $N(\pi_i)=p_i^2$ and thus $N(\pi_i^{b_i})=p_i^{2b_i}$. Hence

$$n = N(\alpha) = (N(\pi_1))^{b_1} \cdots (N(\pi_s))^{b_s}$$

is a product of prime powers with the property that all of the primes \equiv 3 mod 4 occur to even powers. It follows that the prime factorization of n is as claimed. \square

4 Examples where unique factorization fails

One can try to extend the above arguments to more general classes of rings. One very kind of ring to consider is $\mathbb{Z}[\sqrt{-d}]$, where $d \in \mathbb{N}$. We usually assume that d has no squared prime factors, in other words that either d=1 or $d=p_1\cdots p_k$ is a product of distinct primes, since $\sqrt{-a^2e}=a\sqrt{-e}$. Note that $\mathbb{Z}[\sqrt{-d}]$ is a subring of the field $\mathbb{Q}(\sqrt{-d})$, which is called an *imaginary quadratic field*. Similarly, we could look at $\mathbb{Z}[\sqrt{d}]$, where $d \in \mathbb{N}$ and d has no squared prime factors. In this case $\mathbb{Z}[\sqrt{d}]$ is a subring of the field $\mathbb{Q}(\sqrt{d})$, which is called a real quadratic field.

There is a natural multiplicative function $N: \mathbb{Z}[\sqrt{-d}] \to \mathbb{Z}$ defined by, if $\alpha = a + b\sqrt{-d} \in \mathbb{Z}[\sqrt{-d}]$,

$$N(\alpha) = \alpha \bar{\alpha} = a^2 + db^2.$$

Just as in the case d=1, N is multiplicative, i.e. $N(\alpha\beta)=N(\alpha)N(\beta)$, and N extends to a function from $\mathbb{Q}(\sqrt{-d})$ to \mathbb{Q} which is a homomorphism of

multiplicative groups from $\mathbb{Q}(\sqrt{-d})^*$ to \mathbb{Q}^* . Adapting the arguments in the preceding section for $\mathbb{Z}[i]$, it is not hard to show:

Proposition: In the integral domain $\mathbb{Z}[\sqrt{-2}]$, the function $N(\alpha) = \alpha \bar{\alpha}$ is a (submultiplicative) Euclidean norm.

However, this fails for every d > 2.

Example: The integral domain $\mathbb{Z}[\sqrt{-3}]$ is not a UFD. In fact, in $\mathbb{Z}[\sqrt{-3}]$,

$$4 = 2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3}).$$

We will show that 2 and $1 \pm \sqrt{-3}$ are all irreducible, and that 2 is not an associate of $1 \pm \sqrt{-3}$. First, arguing as for $\mathbb{Z}[i]$, it is easy to check that $\alpha \in \mathbb{Z}[\sqrt{-3}]$ is a unit $\iff N(\alpha) = 1$. Now suppose that 2 factors in $\mathbb{Z}[\sqrt{-3}]$: say $2 = \alpha\beta$. Then $N(\alpha)N(\beta) = N(2) = 4$. If neither α nor β is a unit, then $N(\alpha) > 1$ and $N(\beta) > 1$, hence $N(\alpha) = N(\beta) = 2$. But if say $\alpha = a + b\sqrt{-3}$ with $a, b \in \mathbb{Z}$, then $a^2 + 3b^2 = 2$, hence b = 0 and $a^2 = 2$, which is impossible. Thus 2 is irreducible, and since $N(1 \pm \sqrt{-3}) = 4$ as well, a similar argument shows that $1 \pm \sqrt{-3}$ is irreducible. Finally, 2 and $1 + \sqrt{-3}$ are not associates, since if they were, then 2 would divide $1 + \sqrt{-3}$ in $\mathbb{Z}[\sqrt{-3}]$. But $(1 + \sqrt{-3})/2 = 1/2 + (1/2)\sqrt{-3} \notin \mathbb{Z}[\sqrt{-3}]$. Likewise, 2 and $1 - \sqrt{-3}$ are not associates in $\mathbb{Z}[\sqrt{-3}]$. Hence $\mathbb{Z}[\sqrt{-3}]$ is not a UFD.

This example is slightly misleading, because $\mathbb{Z}[\sqrt{-3}]$ is a subring of a somewhat more natural ring which is in fact a UFD: Let $\omega = e^{2\pi i/3} = -\frac{1}{2} + \frac{1}{2}\sqrt{-3}$ be a cube root of unity. Note that ω is a root of the monic polynomial $x^2 + x + 1$, since ω is a root of $x^3 - 1$ and $x^3 - 1 = (x - 1)(x^2 + x + 1)$. Note that, since $\omega^3 = 1$, $\omega^2 = \omega^{-1} = \bar{\omega}$. Hence $\sqrt{-3} = \omega - \omega^2 \in \mathbb{Z}[\omega]$, so that $\mathbb{Z}[\sqrt{-3}]$ is a subring of $\mathbb{Z}[\omega]$. More generally, we say that an $\alpha \in \mathbb{C}$ is an algebraic integer if α is a root of a monic polynomial with integer coefficients, i.e. $f(\alpha) = 0$, where $f(x) \in \mathbb{Z}[x]$ is monic. (It is easy to see that every algebraic number is a root of a polynomial $f(x) \in \mathbb{Z}[x]$, but f(x) is not usually monic.) Them if $E \leq \mathbb{C}$ is an algebraic extension of \mathbb{Q} , one can show that the set of algebraic integers in E is a subring of E whose quotient field is E, and this ring plays the role of the subring \mathbb{Z} of \mathbb{Q} . For $E = \mathbb{Q}(i)$, for example, the subring of algebraic integers is just $\mathbb{Z}[i]$, but for $E = \mathbb{Q}(\sqrt{-3})$, the subring of algebraic integers is $\mathbb{Z}[\omega]$. In this particular example, $\mathbb{Z}[\omega]$ is in fact a PID and hence a UFD.

However, this situation does not persist for long. For example, $\mathbb{Z}[\sqrt{-5}]$ turns out to be the full subring of algebraic integers in $\mathbb{Q}(\sqrt{-5})$, but it is

easy to check that

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

gives a factorization of 6 into a product of irreducibles in two essentially different ways. Hence $\mathbb{Z}[\sqrt{-5}]$ is not a UFD, and hence it is not a PID.

More generally, a famous theorem due to Heegner-Stark says that there is a finite (and relatively short) list of imaginary quadratic fields whose rings of integers are UFD's.

Much of the above discussion carries over to real quadratic fields. For example, for $\mathbb{Z}[\sqrt{2}]$, we have a multiplicative function $N: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}$ defined by

$$N(a + b\sqrt{2}) = |a^2 - 2b^2|.$$

One can check that, at least in this case, N is a Euclidean norm. For general real quadratic fields, one can define an analogous multiplicative function N, which will usually not however be a Euclidean norm. It is unknown if there are finitely or infinitely many real quadratic fields whose rings of integers are UFD's.