Algoritmizace – 3. cvičení – Složitost

Michal Töpfer

17. 10. 2023

Definice

Nechť $f, g: \mathbb{N} \to \mathbb{R}^+$.

- $f \in \mathcal{O}(g) \iff \exists c > 0, \exists n_0 \in \mathbb{N} : \forall n > n_0 : f(n) \le c \cdot g(n)$
- $f \in \Omega(g) \iff \exists d > 0, \exists m_0 \in \mathbb{N} : \forall m > m_0 : f(m) \ge d \cdot g(m)$
- $f \in \Theta(g) \iff f \in f \in \mathcal{O}(g) \land f \in \Omega(g)$

Zadání

Nechť $f_3, f_4, f_5, g_3, g_4, g_5: \mathbb{N} \to \mathbb{R}^+$. Dokažte nebo vyvraťte následující tvrzení.

- 1. $n^2 \in \mathcal{O}(n^3)$
- 2. $n^3 \in \mathcal{O}(n^2)$
- 3. $f_3 \in \mathcal{O}(g_3) \implies g_3 \in \mathcal{O}(f_3)$,
- 4. $f_4 \in \mathcal{O}(g_4) \implies g_4 \in \Omega(f_4),$
- 5. $f_5 \in \mathcal{O}(g_5) \vee g_5 \in \mathcal{O}(f_5)$.

Řešení

1. Platí

Rozepíšeme podle definice:

$$n^2 \in \mathcal{O}(n^3) \iff \exists c_1 > 0, \exists n_1 \in \mathbb{N} : \forall n > n_1 : n^2 \le c_1 \cdot n^3.$$

Pro dokázání tvrzení stačí najít c_1 a n_1 , aby $\forall n > n_1 : n^2 \le c_1 \cdot n^3$. Výraz můžeme vydělením n^2 (což je pro $n \ne 0$ ekvivalentní úprava) upravit na $\forall n > n_1 : 1 \le c_1 \cdot n$.

Nyní stačí volit například $c_1 = 1$, $n_1 = 1$. A vidíme, že $\forall n > 1 : 1 \le 1 \cdot n$. Zadané tvrzení tedy platí.

2. Neplatí

Ukážeme, že platí negace původního tvrzení, čímž původní tvrzení vyvrátíme.

Začneme rozepsáním znegované definice:

$$n^3 \notin \mathcal{O}(n^2) \iff \forall c_2 > 0, \forall n_2 \in \mathbb{N} : \exists n > n_2 : n^3 > c_2 \cdot n^2.$$

Naším cílem je tedy ukázat, že pro každé c_2 a n_2 umíme najít nějaké $n > n_2$, pro které platí výraz $n^3 > c_2 \cdot n^2$. Výraz opět můžeme upravit na $n > c_2$.

Když dostaneme nějaká c_2 a n_2 můžeme zvolit $n > \max(n_2, c_2)$ (vždy existuje přirozené číslo větší než libovolná konstanta). Pro toto vybrané n platí $n > n_2$ i $n > c_2$, negace původního zadání je tedy dokázána.

3. Neplatí

Najdeme protipříklad, tedy nějaké dvě funkce, pro které platí předpoklad implikace (levá strana) a neplatí důsledek (pravá strana).¹

Vezmeme například funkce $f_3(n) = n^2$, $g_3(n) = n^3$.

Z příkladu 1 máme platnost předpokladu implikace: $f_3 \in \mathcal{O}(g_3)$.

Z příkladu 2 máme neplatnost důsledku implikace: $g_3 \notin \mathcal{O}(f_3)$.

Dohromady tedy zadaná implikace neplatí.

Poznámka: Zvolené funkce samozřejmě nejsou jediné možné řešení.

4. Platí

Dokazujeme implikaci. Předpokládáme platnost předpokladu implikace a dokazujeme, že platí její důsledek. Opět začneme rozepsáním podle definice.

- Předpoklad (víme, že platí): $f_4 \in \mathcal{O}(g_4) \iff \exists c_4 > 0, \exists n_4 \in \mathbb{N} : \forall n > n_4 : f_4(n) \leq c_4 \cdot g_4(n).$
- Důsledek (chceme ukázat): $g_4 \in \Omega(f_4) \iff \exists d_4 > 0, \exists m_4 \in \mathbb{N} : \forall m > m_4 : g_4(n) \geq d_4 \cdot f_4(n).$

Abychom důsledek ukázali, musíme najít d_4 a m_4 , taková, že pro všechna $m>m_4$ platí nerovnost $g_4(n)\geq d_4\cdot f_4(n)$. Nerovnost můžeme upravit na

$$f_4(n) \le \frac{1}{d_4} \cdot g_4(n).$$

Z předpokladu implikace můžeme vzít c_4 a n_4 a na jejich základě zvolit $d_4 = \frac{1}{c_4}$ a $m_4 = n_4$. Pak zjevně

$$\forall m > m_4 : f_4(m) \le \frac{1}{d_4} \cdot g_4(m) \iff \forall n > n_4 : f_4(n) \le c_4 \cdot g_4(n),$$

což je přesně výraz z předpokladu implikace, o kterém víme, že platí.

Nalezením d_4 a m_4 jsme ukázali platnost důsledku implikace a tím jsme dokázali i celou implikaci.

 $^{^{1}}$ Pokud to chcete ještě formálněji: původní zadání říká, že pro každé funkce f_{3} a g_{3} má platit zadaná implikace. Negace zadání tedy je, že existují nějaké dvě funkce, pro které implikace neplatí (tedy platí její negace). A negace implikace je přesně, když platí její předpoklad a neplatí důsledek.

5. Neplatí

Najdeme protipříklad, tedy nějaké dvě funkce, pro které tvrzení neplatí. To uděláme tak, že ukážeme, že pro ně platí negace zadaného tvrzení: $f_5 \notin \mathcal{O}(g_5) \land g_5 \notin \mathcal{O}(f_5)$.

Vezmeme funkce

$$f_5(n) = \begin{cases} 1 & \text{pro } n \text{ sud\'e} \\ n & \text{pro } n \text{ lich\'e} \end{cases}, \qquad g_5(n) = \begin{cases} n & \text{pro } n \text{ sud\'e} \\ 1 & \text{pro } n \text{ lich\'e} \end{cases}$$

Ukážeme, že $f_5 \notin \mathcal{O}(g_5)$. Podle definice

$$f_5 \notin \mathcal{O}(g_5) \iff \forall c_5 > 0, \forall n_5 \in \mathbb{N} : \exists n > n_5 : f_5(n) > c_5 \cdot g_5(n).$$

Naším cílem je tedy ukázat, že pro každé c_5 a n_5 umíme najít nějaké $n > n_5$, pro které platí výraz $f_5(n) > c_5 \cdot g_5(n)$. To uděláme snadno tak, že vezmeme liché n, protože pak $f_5(n) = n$, $g_5(n) = 1$.

Když tedy dostaneme nějaká c_5 a n_5 , můžeme zvolit liché $n>\max(c_5,n_5)$. Pak

$$f_5(n) = n > c_5 \cdot 1 = c_5 \cdot g_5(n),$$

což jsme přesně chtěli.

Důkaz druhé poloviny negovaného tvrzení uděláme obdobně, akorát místo lichého n potřebujeme brát sudé.

Poznámka: Zvolené funkce samozřejmě nejsou jediné možné řešení.