Insper

APS 1 – Modelos Lineares Contínuos Professor Fabiano Daher Adegas

> Matheus Amaral Ricardo Thiago Maitan Pegorer

> > São Paulo 09/2021

Sumário

1.	Exer	cício 1	. 3
	1.1.	Memorial de cálculo	. 3
		Resultados	
		cício 2	
		Memorial de cálculo	
		Resultados	

1. Exercício 1

O problema em questão se trata de minimizar o custo da fabricação para a ração de gado, dado os alimentos que constituem a receita e seus respectivos nutrientes.

Tabela 1: Informações nutricionais e de custo para cada ingrediente que constitui a ração.

	aveia	milho	alfafa	amendoim
%Proteína	60	80	55	40
%Gordura	50	70	40	100
%Fibra	90	30	60	80
Custo	200	150	100	75

A tabela 1 nos informa os alimentos que constituem a receita da ração e os nutrientes que compõe cada alimento.

1.1. Memorial de cálculo

O problema nos informa que a ração deve satisfazer pelo menos 60% da ingestão diária de proteína e fibra, sem superar 60% da ingestão diária de gordura.

Assim, tendo as informações do problema, é possível dar início a modelagem do problema:

- Objetivo: Minimizar o custo na produção da ração e encontrar as frações de cada alimento que constitui a ração
- Variável de decisão: quantidade de cada ingrediente na ração (f)
- Função objetivo: min $\sum ci \cdot fi$
- Variáveis auxiliares: corresponde aos nutrientes que compõe cada ingrediente
 (a)
 - \circ $a1 \ge 60\%$
 - \circ $a2 \leq 60\%$
 - o a3 ≥ 60%

→ Restrições do problema:

- $0.6 f1 + 0.8 f2 + 0.55 f3 + 0.4 f4 \ge a1$
- $0.5 f1 + 0.7 f2 + 0.4 f3 + 0.4 f4 \le a2$
- $0.9 f1 + 0.3 f2 + 0.6 f3 + 0.8 f4 \le a3$
- $\sum fi = 1$

1.2. Resultados

Tendo modelado o problema em questão, chegou-se aos seguintes valores:

- Custo minimizado = \$125/tonelada
- Porcentagens dos ingredientes:
 - \circ Aveia = 15,7%
 - \circ Milho = 27,1%
 - \circ Alfafa = 40,1%
 - \circ Amendoim = 17,1%

2. Exercício 2

O problema em questão se trata de encontrar a maneira de gerenciar a potência da rede convencional e a potência da bateria que minimize o custo total de energia de preço variável.

2.1. Memorial de cálculo

Possuindo as informações necessárias para a modelagem do problema, inicia-se definindo a variável de decisão, as variáveis auxiliares, o tipo de problema em questão, a função objetivo e as restrições que compõe o problema

- Variável de decisão: Energia retirada da rede em cada momento do dia
- Tipo de problema: Multi-estagio (variação de elementos no decorrer do tempo)
- Função objetivo: $\sum E_{rede(k)} \cdot C_{rede(k)}$, sendo k o intervalo de tempo = 1/6h
- Variáveis auxiliares:
 - o $E_{p(k)} = Energia$ presente na bateria no instante de tempo k
 - o $E_{r(k)} = Energia \ retirada \ da \ bateria no instante de tempo k$
- Restrições:
 - $\circ \quad E_{carga} = E_{fv} + E_{rede} + E_r$
 - o $Min_{bat} < E_{bat} < Max_{bat}$
 - \circ $E_{rmin} < Er < E_{rmax}$
 - o $E_p(0) = 1250$
 - $o E_{p(k+1)} = E_{p(k)} E_{r(k)}$

2.2. Resultados

Tendo modelado o problema utilizando linguagem python, chegou-se ao resultado ótim o de R\$ 40.193.43