第一章 连续

1.1 函数的连续性

定义 1.1.1: 连续点的定义

设函数 y = f(x) 在点 x_0 的某一邻域内有定义, 如果

$$\lim_{x\to x_0}f(x)=f(x_0)$$

那就称为函数 y = f(x) 在点 x_0 连续.

注 1.1.1

- 当极限需要讨论时: $\lim_{x\to x_0^+}f(x)=\lim_{x\to x_0^-}f(x)=f(x_0)\Leftrightarrow f(x)$ 在点 x_0 处连 续
- 连续性的四则运算: 设 f(x) 与 g(x) 都在点 $x=x_0$ 处连续,则 $f(x)\pm g(x)$ 与 f(x)g(x) 在点 $x=x_0$ 处连续,当 $g(x_0)\neq 0$ 时,f(x)/g(x) 在点 $x=x_0$ 处也连续。
- 复合函数的连续性: 设 $u=\varphi(x)$ 在点 $x=x_0$ 处连续,y=f(u) 在点 $u=u_0$ 处连续,且 $u_0=\varphi(x_0)$,则 $f[\varphi(x)]$ 在点 $x=x_0$ 处连续。
- 反函数的连续性: 设 y=f(x) 在区间 I_x 上单调且连续,则反函数 $x=\varphi(y)$ 在对应的区间 $I_y=\{y|y=f(x),x\in I_x\}$ 上连续且有相同的单调性
- f(x) 在点 $x=x_0$ 处连续,且 $f(x_0)>0$ (或 $f(x_0)<0$),则存在 $\delta>0$,使得当 $|x-x_0|<\delta$ 时 f(x)>0 (或f(x)<0).

1.2 函数的间断点

1.2.1 间断点的相关概念

• 可去间断点: 若 $\lim_{x\to x_0} f(x) = A \neq f(x_0)(f(x_0)$ 甚至可以无定义), 则这类间断点称为可去间断点

第一章 连续 2

图 1.1: 可去间断点函数图像

• 跳跃间断点¹: 若 $\lim_{x\to x_0^-} f(x)$ 与 $\lim_{x\to x_0^+} f(x)$ 都存在,但 $\lim_{x\to x_0^+} f(x) \neq \lim_{x\to x_0^-} f(x)$,则这类间断点称为跳跃间断点

图 1.2: 跳跃间断点函数图像

• 无穷间断点: 若 $\lim_{x \to x_0} f(x) = \infty$, 则这类间断点称为无穷间断点, 如 $y = \tan x$

图 1.3: 无穷间断点函数 tan 图像

• 振荡间断点: 若 $\lim_{x\to x_0} f(x)$ 振荡不存在, 则这类间断点称为振荡间断点

 $^{^{1}}$ 一点极限存在 f(x) 在 x_{0} 连续

第一章 连续 3

图 1.4: 振荡间断点函数 $\sin \frac{1}{x}$ 图像

1.2.2 间断点的分类

通过求函数在该点的左右极限来判断

• 第一类间断点: $\lim_{x\to x_0^-}f(x)$ 和 $\lim_{x\to x_0^+}f(x)$ 均存在

 $- \ \overline{\exists} \ \pm^2 \colon \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) \neq f(x_0)$

- 跳跃: $\lim_{x\to x_0^-} f(x) \neq \lim_{x\to x_0^+} f(x)$

• 第二类间断点: 除第一类以外的间断点 $\implies \lim_{x\to x_0^-} f(x)$ 和 $\lim_{x\to x_0^+} f(x)$ 均至少一个不存在

²可去间断点上极限存在但是导数不存在