In the claims:

For the Examiner's convenience, all pending claims are presented below with changes shown.

- 1 1. (Currently Amended) An apparatus, comprising:
- 2 an integrated circuit including:
- a first processor with a first dedicated cache;
- 4 a second processor with a second dedicated cache; and
- 5 control logic coupled to the first and second dedicated caches to <u>receive</u>
- 6 transfer first data from the first dedicated cache and to transfer the
- 7 <u>first data to the</u> second dedicated cache entirely within the integrated
- 8 circuit.
- 1 2. (Original) The apparatus of claim 1, wherein:
- the control logic is to transfer the first data if the first data is a cache line in the first
- dedicated cache and not in the second dedicated cache.
- 1 3. (Original) The apparatus of claim 1, wherein:
- 2 the control logic is to transfer the first data if the first data is a modified version of
- a particular cache line and the second dedicated cache contains an
- 4 unmodified version of the particular cache line.
- 1 4. (Original) The apparatus of claim 1, further comprising:
- a coherency unit to perform snoop operations on the first and second dedicated
- 3 caches.

l

5. (Original) The apparatus of claim 1, wherein:

2	the control logic is further to transfer second data from the second dedicated cache
3	to the first dedicated cache entirely within the integrated circuit.

- 1 6. (Original) The apparatus of claim 1, wherein the integrated circuit further
 2 includes:
 3 a shared cache coupled to the control logic and to the second dedicated cache to
 4 provide the first data to the second dedicated cache;
 5 wherein the control logic includes a write buffer to receive the first data from the
 6 first dedicated cache and to provide the first data to the shared cache.
- 7. (Original) The apparatus of claim 1, wherein the integrated circuit further includes:
- a shared cache coupled to the control logic, to the first dedicated cache, and to the
 second dedicated cache;
- wherein the control logic is further to transfer second data from the second dedicated cache to the first dedicated cache;
- wherein the control logic includes a first write buffer to receive the first data from
 the first dedicated cache and to provide the first data to the shared cache,
 and further includes a second write buffer to receive the second data from
 the second dedicated cache and provide the second data to the shared cache;
 wherein the shared cache is to provide the first data to the second dedicated cache
 and to provide the second data to the first dedicated cache.
 - 8. (Original) The apparatus of claim 1, wherein:

2		the control logic includes a fill buffer coupled to first and second dedicated caches
3		to receive the first data from the first dedicated cache and to provide the
4		first data to the second dedicated cache.
1	9.	(Original) The apparatus of claim 1, wherein:
2		the control logic includes a first fill buffer coupled to the first and second dedicated
3		caches to receive the first data from the first dedicated cache and to provide
4		the first data to the second dedicated cache; and
5		the control logic includes a second fill buffer coupled to the first and second
6		dedicated caches to receive second data from the second dedicated cache
7		and to provide the second data to the first dedicated cache
1	10.	(Original) The apparatus of claim 1, wherein the control logic includes:
2		a multiplexer coupled to the first and second caches to receive the first data from
3		the first dedicated cache and to provide the first data to the second dedicated
4		cache.
1	11.	(Original) The apparatus of claim 1, wherein the control logic includes:
2	•	a first multiplexer coupled to the first and second caches to receive the first data
3		from the first dedicated cache and to provide the first data to the second
4		dedicated cache; and
5		a second multiplexer coupled to the first and second caches to receive second data
6		from the second dedicated cache and to provide the second data to the first
7		dedicated cache.

(Original) A method, comprising: 12. Docket No: 005545.P005 Application No: 10/115,380

1

2		transferring first data from a first dedicated cache of a chip multi-processor to
3		control logic in the chip multi-processor, entirely within the chip multi-
4		processor; and
5		subsequently transferring the first data from the control logic to a second dedicated
6		cache of the chip multi-processor, entirely within the chip multi-processor.
1	13.	(Original) The method of claim 12, further comprising:
2		transferring second data from the second dedicated cache to the control logic,
3		entirely within the chip multi-processor; and
4		subsequently transferring the second data from the control logic to the first
5		dedicated cache, entirely within the chip multi-processor.
1	14.	(Original) The method of claim 12, wherein:
2		the transferring the first data from the first dedicated cache includes transferring the
3		first data from the first dedicated cache to a write buffer;
4		the transferring the first data from the control logic includes transferring the first
5		data from the write buffer to a shared cache.
1	15.	(Original) The method of claim 14, wherein:
2		the transferring the first data from the control logic further includes transferring the
3		first data from the shared cache to the second dedicated cache.
1	16.	(Original) The method of claim 12, wherein:
2		the transferring the first data from the first dedicated cache includes transferring the
3		first data from the first dedicated cache to a fill buffer;

4		the transferr	ing the first data from the control logic includes transferring the first
5		data	from the fill buffer to the second dedicated cache.
1	17.	(Original)	The method of claim 12, wherein:
2		the transferr	ing the first data from the first dedicated cache includes transferring the
3		first	data from the first dedicated cache to a multiplexer; and
4		the transferr	ing the first data from the control logic includes transferring the first
5		data	from the multiplexer to the second dedicated cache.
1	18.	(Currently A	amended) A system, comprising:
2		a main mem	ory,
3		a chip multi	processor coupled to the main memory and including:
4		a firs	at processor with a first dedicated cache;
5		a sec	ond processor with a second dedicated cache; and
6		conti	rol logic coupled to the first and second dedicated caches to receive
7			transfer first data from the first dedicated cache and to transfer the
8			first data to the second dedicated cache entirely within the integrated
9			circuit.
1	19.	(Original)	The system of claim 18, wherein:
2		the c	ontrol logic is further to transfer second data from the second dedicated
3			cache to the first dedicated cache entirely within the chip
4			multiprocessor.
1	20.	(Original)	The system of claim 18, wherein the chip multiprocessor further
2	inclu- Docke	des: et No: 005545.P0	05

3		a shared cache coupled to the control logic and to the second dedicated cache to		
4	provide the first data to the second dedicated cache;			
5	wherein the control logic includes a write buffer to receive the first data from the			
6		first dedicated cache and to provide the first data to the shared cache.		
1	21.	(Original) The system of claim 18, wherein:		
2		the control logic includes a fill buffer coupled to first and second dedicated caches		
3		to receive the first data from the first dedicated cache and to provide the		
4		first data to the second dedicated cache.		
1	22.	(Original) The system of claim 18, wherein the control logic includes:		
2		a multiplexer coupled to the first and second dedicated caches to receive the first		
3		data from the first dedicated cache and to provide the first data to the secon		
4		dedicated cache.		
1	23.	(Original) A machine-readable medium that provides instructions, which whe		
2		executed by a set of one or more processors, cause said set of processors to perform		
3		operations comprising:		
4		transferring data from a first dedicated cache in an integrated circuit to control log		
5		in the integrated circuit, entirely within the integrated circuit; and		
6		subsequently transferring the data from the control logic to a second dedicated		
7		cache of the integrated circuit, entirely within the integrated circuit.		
1	24.	(Original) The medium of claim 23, wherein:		
2		the transferring the data from the first dedicated cache includes transferring the da		
3	Docke	from the first dedicated cache to a write buffer; and No: 005545.P005		

4		the transferring the data from the control logic includes transferring the data from
5		the write buffer to a shared cache and subsequently transferring the data
6		from the shared cache to the second dedicated cache.
1	25.	(Original) The medium of claim 23, wherein:
2		the transferring the data from the first dedicated cache includes transferring the data
3		from the first dedicated cache to a fill buffer; and
4		the transferring the data from the control logic includes transferring the data from
5		the fill buffer to the second dedicated cache.
1	26.	(Original) The medium of claim 23, wherein:
2		the transferring the data from the first dedicated cache includes transferring the data
3		from the first dedicated cache to a multiplexer; and
4		the transferring the data from the control logic includes transferring the data from
5		the multiplexer to the second dedicated cache.