UNIT 3- Application of Integrals

Application of definite integration

1. Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.

Ans. 12π

2. Find the area of the region bounded by the curve $y = x^2$ and the line y = 4.

Ans. $\frac{32}{3}$

3. Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x, and the circle $x^2 + y^2 = 32$.

Ans. 4π

4. Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x-axis in the first quadrant.

Ans. $\frac{14}{3}$

5. Find the area lying above x-axis and included between the circle $x^2 + y^2 = 8x$ and inside of the parabola $y^2 = 4x$.

Ans.
$$\frac{4}{3}(8+3\pi)$$

Additional Problems

1

Find the area enclosed by the circle $x^2 + y^2 = a^2$.

2.

Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

3.

- 1. Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.
- 2. Find the area of the region bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$.
- 4. Find the area of the region bounded by the line y = 3x+2, the X-axis and the ordinates x = -1 and x = 1.
- 5. Find the area bounded by the curve $y = \cos x$ between x = 0 and $x = 2 \cdot pi$.

Find the area under the given curves and given lines:

(i)
$$y = x^2$$
, $x = 1$, $x = 2$ and x-axis

(ii)
$$y = x^4$$
, $x = 1$, $x = 5$ and x-axis

Sketch the graph of y = |x+3| and evaluate $\int_{-6}^{0} |x+3| dx$.

8.

Find the area bounded by the curve $y = \sin x$ between x = 0 and $x = 2\pi$.

Summary

- The area of the region bounded by the curve y = f(x), x-axis and the lines x = a and x = b (b > a) is given by the formula: Area = $\int_a^b y dx = \int_a^b f(x) dx$.
- The area of the region bounded by the curve $x = \phi(y)$, y-axis and the lines y = c, y = d is given by the formula: Area = $\int_{c}^{d} x dy = \int_{c}^{d} \phi(y) dy$.