浙江大学 2009-2010 学年秋冬学期《微积分 I》课程期末考试试卷

- 一、求导数或微分(每小题 6 分,共 18 分)
- (1) 设 $y = \arcsin \sqrt{x-1} + x^{e^{2x}}$, 求 dy.

(3) 设
$$y = y(x)$$
 是由方程 $\ln(x^2 + y) = x^3 y + \sin x$ 所确定,求 $\frac{dy}{dx}\Big|_{x=0}$.

二、求极限(每小题 6 分, 共 18 分)

(4)
$$x \lim_{x \to 0} \frac{\ln(1+x) - \sin x}{\sqrt[3]{1-x^2} - 1}$$
, (5) $\lim_{x \to \infty} \frac{\sqrt{4x^2 + x + 1} + x + 1}{\sqrt{x^2 + \sin x}}$,

(6)
$$\lim_{x\to 0} \left(\frac{2+\cos x}{3}\right)^{\frac{1}{x^2}}$$
.

三、求积分(每小题 6 分, 共 24 分)

(7)
$$\int \frac{\ln(1+x^2)}{x^3} dx$$
, (8) $\Re \int_0^{+\infty} \frac{dx}{\sqrt{x(x+1)}}$, (9) $\int_{-2}^2 (x^3+2|x|)\sqrt{4-x^2} dx$,

(10) 已知 $\frac{\sin x}{x}$ 是 f(x) 的一个原函数, 求 $\int x^3 f'(x) dx$.

四、(本题8分)

求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n}$ 的收敛半径、收敛区间及收敛域,并求其和函数.

五、(本题8分)

设 f(x) 连续,且 f(x) 在 x = 0 处存在一阶导数, f(0) = 0 , f'(0) = 1 ,并设 $F(x) = \int_0^{x^2} f(u) du$,已知当 $x \to 0$ 时 F(x) 与 Ax^n 为等价无穷小,求 A = n 的值.

六、(本题 10 分)

过坐标原点作曲线 $y = e^x$ 的切线 L,

- (1) 求 L 的方程;
- (2) 以曲线 $y = e^x$, 切线 $L \otimes X$ 轴负向为边界构成的向左无限伸展的平面区域记为 D, 求 D 的面积;
- (3) 将D绕x轴旋转一周生成的旋转体记为V, 求V的体积.

七、(本题8分)

证明函数 f(x) 极值的第二充分条件定理:

设 f(x) 在 $x = x_0$ 处存在二阶导数, $f'(\hat{x}_0) = 0$, $f''(x_0) = A > 0$ (A < 0),则 $f(x_0)$ 为 f(x) 的极小(大)值.

并请举例说明:上述定理仅是充分条件而非必要条件,即: f(x) 在 $x = x_0$ 处存在二阶导数, $f'(x_0) = 0$, $f(x_0)$ 为 f(x) 的极小(大)值,但 $f''(x_0)$ 并不一定为正(负).

八、(本题6分)

- (1) 写出 $f(x) = e^{x^2} + e^{-x^2}$ 展成 x 的幂级数展开式,并写出其收敛域;
- (2) 积分 $\int_0^1 (e^{x^2} + e^{-x^2}) dx$ 与积分 $\int_0^1 (e^{x^3} + e^{-x^3}) dx$ 谁大谁小,并请说明理由.