ASD Laboratorio 01

Cristian Consonni/Alessio Guerrieri

UniTN

30/09/2016

CONTATTI

ISTRUTTORI

Cristian Consonni (cristian.consonni@unitn.it)
Alessio Guerrieri (a.guerrieri@unitn.it)

RICEVIMENTO

Consonni: via email e ufficio Open Space 9, Povo 2 (dopo il ponte, di fronte all'ufficio del prof. Montresor)

Guerrieri: via email

SITI INTERNET

Slides laboratorio (caricate in giornata):

http://judge.science.unitn.it/slides/

Judge: http://judge.science.unitn.it

Accesso a Judge tramite registrazione su:

http://judge.science.unitn.it/registration

CALENDARIO

16/12 21/12	Progetto 2 Progetto 2
09/12	No laboratorio
02/12	Dinamica 2
25/11	Dinamica 1
18/11	Progetto 1
11/11	Progetto 1
04/11	No laboratorio
28/10	Grafi 2
21/10	Grafi 1
14/10	No laboratorio
07/10	Ad-Hoc
30/09	Introduzione

Progetti:

- 11-18 novembre;
- 16-21 dicembre;

Iscrizione ai progetti entro il **07 novembre**:

http://bit.ly/ASDprog

PERCHÉ FARE UN LABORATORIO

DA PSEUDOCODICE A CODICE

	Т						Data			_						Working Variables					Variable	
	١.					14.1	14.5	149	9V4	9V5	*76	e.v.y	\circ_{V_0}	04.9	c.A.10	*V11	**V12	*V13	$^{1}V_{21}$	1V22	1V23	0V24
1	Mice			Indication of		0	0	0	0	0	0		0		0	0	0	0	0	0		0
ě	ă	Variables seted	Voriables receiving	change in the	Statement of Results		0	0	0	0	0	0		0	0		0		1.6	1.4	1.1	0
1 5	77	upon	results	Variable		,		4	0	0	0	0		0	0		0		Bits a fract.	8 to 0	B ta	0
Number of Operation	233					Ė	1	m	ů	ů	ů	ů	ů	ľů	ľ	l ė	Ů	l ů	81	R _S	R ₅	B ₇
-	×					Ŀ	Ľ	Ľ	ш	Ш	ш	ш	ш	ш	Ш	Ш			87	10	113	807
1	×	$^{1}\mathbf{v}_{2}\times ^{1}\mathbf{v}_{3}$	1 _{V4} , 1 _{V5} , 1 _{V6}		- an		2		24	2+	2 e											
2	-	$^{1}V_{4} - ^{1}V_{1}$	PV4	$\begin{cases} {}^{1}V_{4} & = {}^{2}V_{4} \\ {}^{1}V_{1} & = {}^{1}V_{1} \end{cases}$	- 2n - 1	-1			2n - 1													
3	+	$^{1}\mathbf{v}_{5}+^{1}\mathbf{v}_{1}$	PV5	{ 'vs = 2vs }	= 2m + 1	1				2n + 1												
4	0	$^2\mathrm{V}_5 + ^2\mathrm{V}_4$	1 _{V11}	$\begin{cases} 2V_5 & = & 0V_5 \\ 2V_4 & = & 0V_4 \end{cases}$	= 2n-1 2n-1				0	0						2n-1 7n-1						
5	1	$^{1}v_{11}+^{1}v_{2} \\$	PV13	$\begin{cases} v_{11} & = & v_{11} \\ v_{2} & = & v_{2} \end{cases}$	- 1 - 20-1		2									6-801						
4	-	$o_{V_{13}} - v_{V_{13}}$	1v13	Pv ₁₁ - °v ₁₁ Pv ₁₂ - °v ₁₃	$=-\frac{1}{2}\cdot\frac{2n-1}{2n+1}=\Lambda_0\cdot\cdot\cdot\cdot\cdot$													$\tfrac{1}{2}\cdot\tfrac{2n-1}{2n+1}-\Lambda_0$				
7	-	${}^3\mathbf{V}_3={}^3\mathbf{V}_1$	1v10	$\begin{cases} \begin{pmatrix} v_0 & - & \langle v_0 \rangle \\ \langle v_1 & - & \langle v_1 \rangle \end{pmatrix}$	= n - 1(= 3)										n-1							
8	+	${}^{1}V_{\gamma}+{}^{0}V_{\gamma}$	1v ₇	$ \begin{bmatrix} {}^{1}V_{2} & - & {}^{1}V_{2} \\ {}^{0}V_{7} & - & {}^{1}V_{7} \end{bmatrix} $	= 2+0=2		2					2										
9		$^{1}V_{6} + ^{1}V_{7} \\$	*v ₁₁	$\begin{cases} v_6 & = & v_6 \\ v_{11} & = & v_{11} \end{cases}$	- 2n - A ₃						2+	2				$\frac{2a}{2} - A_1$						
30	×	$^{1}V_{21}\times ^{2}V_{11}$	1v11	V21 - V21 2V1 - 2V1	$=$ $\mathbb{S}_1 \cdot \frac{2n}{2} = \mathbb{S}_1 A_1 \cdot \dots \cdot \dots \cdot \dots$											$\frac{2a}{2} = A_1$	$\mathbf{B}_1\cdot \mathbf{\tilde{q}}=\mathbf{B}_1\mathbf{A}_1$		151			
11		$^{1}V_{12} + ^{1}V_{13}$	PV13	V ₁₂ = OV ₁₂ V ₁₃ = OV ₁₂	$=-\tfrac{1}{2}\cdot\tfrac{2n+1}{2n+1}+\aleph_1\cdot\tfrac{2n}{2}\ldots\ldots\ldots$												0	$\left\{-\frac{1}{2}\cdot\frac{2m-1}{2k+1}+\aleph_1\cdot\frac{2n}{2}\right\}$				
12	-	${}^{1}V_{10} - {}^{1}V_{1} \\$	PV10	$ \begin{cases} ^{1}V_{29} & = & ^{2}V_{10} \\ ^{1}V_{1} & = & ^{1}V_{1} \end{cases} $	- n - 2(= 2)	1									n – 2							
33	r I-	${}^{1}V_{6}-{}^{1}V_{1} \\$	2V ₀	{ 'V ₀ = "V ₀ }	= 2n - 1						2n-1											
34	+	$^{1}V_{1}+^{1}V_{7} \\$	2Vy	$\begin{cases} {}^{1}V_{1} & = & {}^{1}V_{1} \\ {}^{1}V_{7} & = & {}^{2}V_{7} \end{cases}$	= 2 + 1 = 3	1						3										
35	ŀ	$^2V_6 + ^2V_7$	1 V 9	$\begin{cases} ^{2}V_{0} & = & ^{2}V_{0} \\ ^{2}V_{7} & = & ^{2}V_{7} \end{cases}$	= 2n-1						2n - 1	3	$\frac{3a-1}{2}$									
36	(×	$^{1}\mathrm{V}_{9}^{3}\mathrm{V}_{11}$	4v11	{ v _s = °v _s }	$=\frac{2n}{2}\cdot\frac{2m-1}{3}\dots$											$\tfrac{2n}{2} \cdot \tfrac{2n-1}{3}$						
17	rl-	$^{2}V_{6} - ^{1}V_{1}$	⁵ V ₆	$\left\{ \begin{bmatrix} 2V_0 & - & 2V_0 \\ 1V_1 & - & 1V_1 \end{bmatrix} \right\}$	= 2n - 2	1					2n - 2											
18 {		$^{1}\mathrm{V}_{1}+^{2}\mathrm{V}_{7}$	Pry	$\left\{ \begin{bmatrix} v_{v_1} & v_{v_2} \\ v_{v_1} & v_{v_1} \end{bmatrix} \right\}$	- 3 + 1 - 4	1						4										
39	ŀ	${}^3\mathrm{V}_6 + {}^3\mathrm{V}_7$	1v9	$\begin{bmatrix} \begin{smallmatrix} a_{V_0} & - & a_{V_0} \\ a_{V_0} & - & a_{V_0} \end{bmatrix}$	= 24-2						2n - 2	4		$\frac{2n-2}{4}$								
20	U×.	$^{1}V_{9}\times ^{4}V_{31}$	6v11	(v ₉ = °v ₉)	$= \tfrac{2n}{2} \cdot \tfrac{2m-1}{3} \cdot \tfrac{2m-2}{4} = \Lambda_3 \cdot \cdot \cdot \cdot \cdot \cdot$									0		$\left\{\frac{2p}{2}\cdot\frac{2n-1}{2}\cdot\frac{2n-2}{4}\right\}=A_0$						
21	×	$^{1}V_{22} \times ^{5}V_{13}$	e _{V13}	(1V22 = 1V22) (2V11 = 2V12)	$= \mathbb{B}_3 \cdot \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{4} = \mathbb{B}_5 \mathbb{A}_5$												BaAa			В6		
22	+	$^{2}V_{12} + ^{2}V_{13}$	*v ₁₃	{2V ₁₂ = 2V ₁₂ 2V ₁₃ = 2V ₁₃	= A ₀ + B ₁ A ₁ + B ₅ A ₅												0	$(A_8+B_1A_1+B_3A_3)$				
23	-	$^{2}V_{10} - ^{1}V_{1}$	*v10	$\begin{cases} {}^{2}V_{39} & = & {}^{9}V_{10} \\ {}^{1}V_{1} & = & {}^{1}V_{1} \end{cases}$	= n - 3(= 1)	1									n – 3							
	Here follows a reputition of Operations thereons to twenty-there																					
24	+	$v_{13} + v_{Y_{24}}$	1 _{V24}	$\begin{cases} {}^{1}V_{13} & = & {}^{0}V_{13} \\ {}^{0}V_{24} & = & {}^{1}V_{24} \end{cases}$	- By																	$_{\rm By}$
	1			$\begin{cases} v_1 = v_1 \\ v_2 = v_2 \end{cases}$	= n + 1 = 4 + 1 = 5																	
25	+	1V ₁ + 1V ₉	1V2	$\begin{cases} $	by a Variable-card. by a Variable-card.	1		n+1			0	0										
	1			C 11 = 17																		

OBIETTIVI DEL LABORATORIO

CAPACITÀ	ATTIVITÀ
Sapere la differenza fra pseu-	Passaggio da pseudocodice
docodice e chiacchiere	a codice
Utilizzare i concetti imparati a	Risoluzione di problemi
lezione	
Saper valutare l'efficienza di	Test automatizzato usando
un algoritmo	dati di differenti dimensioni

Useremo la Standard Template Library di C++ in modo da evitare la reimplementazione di strutture dati conosciute.

NON OBIETTIVI

Ottimizzazioni a basso livello

```
SCRIVETE COSÌ
float f=...
f*=pow(2,n);
```

```
NON COSÌ

float f=...
if (*(int*)&f & 0x7FFFFFFF) {
    *(int*)&f += n << 23;
}</pre>
```

We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil Donald Knuth

LEZIONE TIPO

- Soluzioni lab precedente (con consegna sorgenti)
- Descrizione di 3/4 problemi:
 - Traduzione da pseudocodice a codice
 - Problema semplice
 - Problema complicato
 - Vecchio progetto (non tutte le settimane)
- Lavoro individuale/gruppo per resto laboratorio

Purtroppo, oggi ci saranno anche chiacchere

CMS: CONTEST MANAGEMENT SYSTEM

Creato per l'edizione 2012 delle olimpiadi internazionali d'informatica

FUNZIONAMENTO

- Per ogni problema il sistema ha dei file di input ed una soluzione "ufficiale"
- Le vostre soluzioni devono leggere i dati di input da "input.txt" e scrivono su "output.txt"
- Il sistema riceve il sorgente e lo esegue per ogni file di input con un time limit per il singolo caso
- La soluzione riceve un punteggio da 0 a 100, in base a quante volte ha scritto la risposta corretta in tempo

ESEMPIO DI SOLUZIONE

```
#include <fstream>
using namespace std;
int main(){
  int N, M;
  ifstream in("input.txt");
  in >> N >> M;
  ofstream out ("output.txt");
  out << N+M << " \ n";
  return 0;
```

CMS: CONTEST MANAGEMENT SYSTEM

- Accessibile da judge.science.unitn.it
- Nome utente/password su: judge.science.unitn.it/registration
- Sorgenti in C/C++

SISTEMA DI SVILUPPO

- (Emacs/vim/gedit) + terminale
- Netbeans + Plugin C/C++

Altre possibilità:

- Eclipse + Plugin C/C++
- Codeblocks
- Geany
- ...

Real programmers code in binary.

PROGETTI

- 2 Progetti nel semestre
- Gruppi 2/3 persone
- 10 giorni di tempo
- Sottoposizione usando CMS
- Progetto è superato se la soluzione fa almeno 30 punti su 100
- Iscrizione su
 http://bit.ly/ASDprog

Progetti: Voti

- Per la sessione invernale bisogna superare almeno 1 progetto
- Per le sessioni estive ci saranno nuovi progetti
- Progetti completati durante il semestre danno punti bonus allo scritto
- Primo progetto da 1 a 2 punti
- Secondo progetto da 1 a 3 punti
- Punteggio dato in maniera competitiva
- Il progetto non è una barriera aggiuntiva

COPIATURE

- Vietata collaborazione di alcun tipo fra i gruppi
- Potete chiedere agli assistenti in caso di difficoltà
- Abbiamo potenti mezzi...
- Copiando guadagnate al massimo 1/2 punti allo scritto
- Se vi becchiamo...

COMPILAZIONE E CODING PRACTICES

NOTE DI COMPILAZIONE

- Sul server viene usato -DEVAL
- Consigliato C++ per le librerie
- Standard C++11 consigliato (più semplice!)

I miei esempi saranno C++11 (compila con -std=c++0x)

STANDARD TEMPLATE LIBRARY

```
#include <...>
using namespace std;
```

Documentazione online (anche su judge)

http://www.cplusplus.com/reference/

IFSTREAM E OFSTREAM

Lettura e scrittura su file. Come cout e cin, riconoscono il tipo delle variabili passate ed ignorano spazi ed invii.

```
#include <fstream>
using namespace std;
int main(){
                                     ofstream out ("output.
  ifstream in ("input.txt");
                                         txt");
  int N;
                                     out << N << endl;
  in >> N:
                                     for(int el:vec)
  for (int i=0; i<N; i++) {</pre>
                                        out << vec[i] << endl;
    int a;
    in>>a;
```

CODING: VECTOR

Equivalente all'arraylist di java.

```
#include<vector>
//Crea vector di interi
vector<int> intvec;
//Crea vector di 7 float inizializzati a 0.5
vector<float> floatvec(7,0.5);
//Accedi agli elementi
floatvec[2]=floatvec[5]+0.1;
//Aggiungi un elemento in fondo al vector
intvec.push back(231);
//Cicla sugli elementi:
for(int i=0;i<intvec.size();i++)</pre>
  intvec[i]=12;
//Ridimensiona vector
intvec.resize(100);
```

CODING: PAIR

Coppia di elementi.

```
#include <utility>
//pair di intero e float
pair<int,float> coppia1
//assegnazione elementi
coppia1.first=2;
coppia1.second=3.4;
coppial=make_pair(15,0.4);
//coppia di coppie
pair<pair<int,int>, pair<int,int> > c;
```

CODING: SORT

```
#include <algorithm>
//ordinare un array di N elementi
sort(arr,arr+N);
//ordinare un vector
sort(vec.begin(),vec.end());
```

CODING: SORTING STRUCTS

```
#include <algorithm>
#include <vector>
using namespace std;
struct stud{
  int id;
  int voto:
};
bool operator < (const stud a, const stud b) {
  return a.voto < b.voto:
int main(){
  vector<stud> arr(2);
  arr[0].id=1; arr[0].voto=30;
  arr[1].id=2; arr[1].voto=20;
  sort(arr.begin(),arr.end());
```

CODING: CODA

```
#include <queue>
//Dichiarare coda di interi
queue<int> q;
//Aggiungere un elemento alla coda
q.push(23);
//Leggere l'elemento in testa alla coda
int el=q.front();
//Eliminare l'elemento in testa alla coda
q.pop();
//Controllare se la coda e vuota
if (q.empty())
```

CODING: PILA

```
#include <stack>
//Dichiarare pila di interi
stack<int> s:
//Aggiungere un elemento in cima alla pila
s.push(23);
//Leggere l'elemento in cima alla pila
int el=s.top();
//Eliminare l'elemento in cima alla pila
s.pop();
//Controllare se la pila e vuota
if(s.empty())
```

NOTE SU C++11

- For-each
- auto
- Move operator

```
vector<int> arr= ...;
for(int el:arr) {
  cout << el << endl;
for(int& el:arr) {
  el++;
auto d=23;
for(auto& el:arr) {
  el+=d;
return arr;
```

23 / 27

SOMMA DI DUE NUMERI

Dati due interi, sommateli.

INPUT.TXT

Due interi N,M separati da spazio

OUTPUT.TXT

Un intero, uguale alla somma di N e M.

Esempio:

INPUT.TXT	OUTPUT.TX

23

SOTTOSEQUENZA DI SOMMA MASSIMA

Data una sequenza di interi, trovare la sottosequenza di somma massima

INPUT.TXT

N+1 righe: Il numero di elementi N sulla prima riga e gli N elementi nelle N righe seguenti.

Input.txt:

```
5
3
-2
4
1
```

Output.txt:

11

SOTTOMATRICE DI SOMMA MASSIMA

Data una matrice di interi, trovare la sottomatrice di somma massima

INPUT.TXT

R+1 righe: R e C (numero di righe e di colonne) sulla prima riga, C interi su ognuna delle seguenti R righe.

Input.txt:

3 4 2 -9 2 3 1 4 5 1

 $-2 \ 3 \ 4 \ 1$

Output.txt:

18

LAVORATE!

- Prendetevi un account
- Implementate una soluzione per il problema della somma (e testatela su judge.science.unitn.it)
- Risolvete uno (o entrambi) gli altri problemi
- Non usate judge come compilatore!
- Studenti di matematica mi vengano a parlare

NOTE

• I file C++ devono avere l'estensione .cpp