Graph Theory winter term 2013

Problem sheet 12

Due date: **January 29, 12:00 am**.

Discussion of solutions: January 31.

(Please prepare solutions for at most three problems.)

Problem 45. 5 points

Suppose that the edges of K_n are colored with $k \geq 2$ colors in such a way that

- every color appears at least once,
- every triangle in K_n has all edges colored the same or no two edges colored the same.

Find for given k the maximum n for which such a k-edge coloring of K_n exists.

Problem 46. 5 points

If T is a tree on m vertices, show that in any red-blue coloring of the edges of $K_{(m-1)(n-1)+1}$ there is either a red copy of T or a blue copy of K_n .

Problem 47. 5 points

Consider a complete graph K_{17} with vertex set $V = \{0, 1, ..., 16\}$. Color an edge xy red if there exists a number $a \in V$ with $x - y = a^2 \mod 17$, and blue otherwise. Show that this red-blue edge coloring of K_{17} does not contain a monochromatic K_4 .

Hint: Note that xy is red if and only if $x - y \equiv \pm 1, \pm 2, \pm 4, or \pm 8 \pmod{17}$.

Problem 48. 5 points

Let $0 < a_1 < a_2 < \cdots < a_{mn+1}$ be mn+1 integers. Prove that you can select either m+1 of them no one of which divides any other, or n+1 of them each dividing the following one.

Open Problem.

Determine R(5,5).