NETWORK OF PIPES

In general we know the discharges coming to a loop. However we don't know the discharge in each pipe. Therefore, it is necessary to compute them.

We have two equations:

A,...,I:JUNCTIONS/ NODES

EF:LINK/BRANCH

•Conservation of Mass: Flow into each junction must be equal flow out of the junction

Energy Conservation:

Algebraic sum of head losses around each and every loop must be zero.

Darcy-Weicbach Eqution for head loss

$$h_{L} = f \frac{L}{D^{5}} \frac{8Q^{2}}{\pi^{2}g} + K_{m} \frac{8Q^{2}}{D^{4}} = K_{f}Q^{2} + K_{m}Q^{2} = K_{L}Q^{2}$$

$$h_1 = K_L Q |Q|$$

Where

$$K_{f} = 8f \frac{L}{D^{5}g\pi^{2}}$$

 $K_m = Local Loss coefficient,$

which can be written in terms of equivalent length, and

K₁ = combined loss coefícient

Conservation of Energy around any loop

$$\begin{split} &\sum_{i=1}^{N} h_{l_{loop}} = \sum_{i=1}^{N} K_{i} Q_{i}^{n} = \sum_{i=1}^{N} K_{i} (Q_{o} + \Delta Q)^{n} \\ &= \sum_{i=1}^{N} K Q_{o}^{n} + \sum_{i=1}^{N} nK \Delta Q Q_{o}^{n-1} + \dots \end{split}$$

where N = number of links

$$h_{loop} = 0 \Rightarrow \sum_{i=1}^{N} KQ_o^n + \sum_{i=1}^{N} nK\Delta QQ_o^{n-1} = o$$

If
$$n=2$$

$$\Delta \mathbf{Q} = \frac{\sum_{i=1}^{N} KQ_{o}|Q_{o}|}{\sum_{i=1}^{N} 2K|Q_{o}|}$$

Solution Procedure

1) Assume the best distribution of flow that satisfies the continuity equation at each junction.

Let Q_0 be the assumed discharge in a pipe, and Q be the actual discharge.

- 2) Then $Q=Q_0+\Delta Q$ for each pipe, where ΔQ is the error in estimation. Therefore, it is necessary to calculate the error, ΔQ , for each loop.
- 3) Calculation of ΔQ :

The head loss can be written as: hf=KQn. For Darcy-Weisbach equation n=2, and

$$K = 8f \frac{L}{D^5 g \pi^2}$$

4) Around any loop, algebraic summation od head loss must be zero:

$$\sum h_f = \sum KQ^2 = \sum K(Q_0 + \Delta Q)^2 = \sum K(Q_0^2 + 2\Delta Q \cdot Q_0 + \Delta Q^2)$$

Assuming that ΔQ is small, ΔQ^2 can be neglected, and the above equation can be solved for ΔQ as:

$$\Delta Q = \frac{\sum_{KQ_0|Q_0|}}{\sum_{KQ_0|Q_0|}}$$

 $\square \Delta Q$ for each and every loop must be smaller than a tolerable magnitude. Otherwise, it is necessary to iterate the solution until the error term DQ becomes acceptably small. The details can be explained best by an example:

Example 2.11

Given is the network shown in figure below. Find the discharges in each and every link.

Q's in m³/sec K's in "s²/m⁵"

Initial Guess

LOOP 1 Iteration

	· • · · · · · · · · · · · · · · · · · ·
K Q Q	2 K Q
AD 6*70*70=29400	2*6*70=840
AC 3*35*35 =3675	2*3*35=210
DC *-5*30*30 =-4500	2*5*30=300
Σ=28575	Σ=1350

$$\Delta Q_1 = -\frac{28575}{1350} = -21.17$$

AC 35-21.17

Flow Distribution After LOOP 2

K Q Q		2 K Q
AB	1*15*15 =225	2*1*15=300
BC	2*-35*35=-2450	2*2*35=140
AC	3*- <i>13.83</i> *13.83 =-574	2*3*13.83=83
	Σ=-2799	Σ=253

$$\Delta Q2 = \frac{2799}{253} = 11.06$$

Attention: One more iteration is needed

PUMPED DISCHARGE LINES

- Pump: adds energy to a fluid, resulting in an increase in pressure across the pump.
- Turbine: extracts energy from the fluid, resulting in a decrease in pressure across the turbine.

Categories

For gases, pumps are further broken down into

- Fans: Low pressure gradient, High volume flow rate. Examples include ceiling fans and propellers.
- Blower: Medium pressure gradient, Medium volume flow rate. Examples include centrifugal and squirrel-cage blowers found in furnaces, leaf blowers, and hair dryers.
- Compressor: High pressure gradient, Low volume flow rate. Examples include air compressors for air tools, refrigerant compressors for refrigerators and air conditioners.

· Positive-displacement machines

- Closed volume is used to squeeze or suck fluid.
- Pump: human heart
- Turbine: home water meter

Dynamic machines

- No closed volume. Instead, rotating blades supply or extract energy.
- Enclosed/Ducted Pumps: torpedo propulsor
- Open Pumps: propeller or helicopter rotor
- Enlosed Turbines: hydroturbine
- Open Turbines: wind turbine

WHICH ADDS ENERGY TO THE FLUID The power required to derive the

Types of Pumps

Axial

Centrifug

Centrifugal Pumps

Suction Lift

Static head when the pump is located above the suction tank (Static Suction Lift)

Suction Head

Pump Performance

SELECTION OF A PUMP

Matching Pump to System Demand

Manutacturer Pertormance Plat

Pumps in Parallel

Pumps in Parallel

Pump in Series

EXAMPLE 2.9:

The following pumped discharge pipelines are given;

- a) Determine the discharge when only one pump is operating (as shown in figure 1.) and compute the power consumption.
- b) Determine the discharge when both pumps are operating in series (as shown in figure 2.) and compute the power consumption.
- c) Determine the discharge when both pumps are operating in parallel (as shown in figure 3.) and compute the power consumption.

Pipeline Characteristics L=2000 m; D=0.2 m; ϵ =0.0002m; ν =1* 10⁻⁶m²/s

Pump Charecteristics

Q (lt/s)	0	10	20	30	40	50	60
H (m)	70	67	62.5	57.5	51	43	32
η (%)		45	63	75	82	79	71

Single Pump

2000

0.0002

0.00001

0.2

L (m)

D (m)

ε (m)

υ (m²/s)

Case 1: Single Pump

— system — Single Pump — eff.

Single Pump

Q	Re	f	hl	system
0	0	0	0.00	40.00
0.01	63662	0.0234	1.21	41.21
0.02	127324	0.0219	4.52	44.52
0.03	190986	0.0212	9.88	49.88
0.04	254648	0.0209	17.28	57.28
0.05	318310	0.0207	26.72	66.72
0.06	381972	0.0205	38.19	78.19

Н	Q
70	0
67	0.01
62.5	0.02
57.5	0.03
51	0.04
43	0.05
32	0.06

Case 1: Single Pump

Case 2: Pump in Series

Pumps in Series

H(m)	Q(m ³ / s)
140	0
134	0.01
125	0.02
115	0.03
102	0.04
86	0.05
64	0.06

SOLUTION
Q=56 ℓ/s
η=75%
(for Q=56 ℓ/s)
∑H=72m
∑P=52.8kW

Parallel Pumps

Н	Q
70	0
67	0.02
62.5	0.04
57.5	0.06
51	0.08
43	0.1
32	0.12

summary

	single	series	paralel	
Q (lt/s)	35	56	46	(2*23)
η (%)	80	75	68	
H (m)	54	72	61	
P (kW)	23.2	52.7	40.5	(2*20.24)
				()
P/Q (kW.s/lt)	0.66	0.94	0.88	

EXAMPLE 2.10

Water is pumped from reservoir A to reservoirs C and D. The system and pump characteristics are given below. Determine

- a) The discharge in each pipe,
- b) The head added to the system by pump,
- c)The head loss in each pipe for the computed discharges,
- d)Complete the HGL,
- e) Calculate the power of the pump for η =0.80.

Q (lt/s)	0	100	200	300	400	500
H _p (m)	50	48	45	38	30	18

SYSTEM CURVES

Branch AB:

$$80 = HB + hfAB - Hp$$

$$HB = 80 + Hp - hfAB$$

Branch BC:

HB = 80 + hfBC

Branch BD:

$$h_f = \frac{8fL}{g\pi^2 D^5} Q^2$$

$$h_f = 80.69Q^2$$

$$_{t}h_{f} = 161.38Q^{2}$$

$$QAB = QBC + QBD$$

Variation of head loss for each pipe

Q (lt/s)	h _{fAB} (m)	h _{fBD} (m)	h _{fBC} (m)
0	0	0	0
100	0.8	1.6	8.0
200	3.2	6.4	3.2
300	7.2	14.5	7.2
400	12.9	25.8	12.9
500	20.2	40.3	20.2

Head of Junction

Q (lt/s)	H _p (m)	from AB H _B (m)	from BC H _B (m)	from BD H _B (m)
0	50	130	80	90
100	48	127.2	80.8	91.6
200	45	121.8	83.2	96.5
300	38	110.8	87.2	104.5
400	30	97.1	92.9	115.8

Attention: The minimum HB value is 90 m.; above which flow in branch BC and BD will be in the assumed direction!

QAB = QBC + QBD

$$Q_{BC} = 1000 \cdot \left(\frac{H_B - 80}{80.69}\right)^{1/2}$$

$$Q_{BD} = 1000 \cdot \left(\frac{H_B - 90}{161.38}\right)^{1/2}$$

H _B	Q _{BC}	Q _{BD}	$Q_{BC}+Q_{B}$
(m)	(lt/s)	(lt/s)	(lt/s)
90	352	0	352
91	369.2	78.7	447.9
92	385.6	111.3	496.9
93	401.4	136.3	537.7
94	416.5	157.4	573.9
94	431.2	176	607.2

SUMMARY OF RESULTS:

- From the graph, the intersection of HB vs Q_{AB} and H_B vs $Q_{BC}+Q_{BD}$ is read to be at $H_B=90.8m$ and QAB=436.1 It/s. Furthermore, these values correspond to $Q_{BC}=365.8$ It/s and $Q_{BD}=70.3$ It/s.
- The pump head $H_{pump} = 26.1 \text{ m}$.
- $\cdot h_{fAB} = 15.34 \text{ m}.$
- $h_{fBC} = 10.8 \text{ m}.$
- \cdot h_{fBD}=0.8 m.

d)Hydraulic Grade Line

e)
$$P_{pump} = \gamma gQH_{pump}/h = 139.6 \text{ kW}$$

GRAVITY PIPELINES

The pipelines through which flow is maintained by the action of gravity are known as gravity pipelines.

In the selection of the diameter of gravity pipe lines:

- · Cost (capital + operation) is minimized;
- Depending on the type of pipe material a lower and an upper limits are set for the velocity, 0.5 m/s<V<2 m/s;
- To prevent air entrainment minimum pressure head, (p/γ) min permitted along the pipeline is 5m.

Because of limits set forth on velocity and pressure head there are lower and upper bounds for the discharge through a gravity pipeline. Consider the following schematic representation of a gravity pipeline system shown below

$$h_{res} + z_A = h_{IAB} = KQ_{out}^2 \Rightarrow Q_{out} = [(h_{res} + z_A)/K]^{1/2}$$

(note that since V < 2 m/s velocity heads are neglected!)

$$h_{res} + z_A = h_{IAB} = KQ_{out}^2 \Rightarrow Q_{out} = [(h_{res} + z_A)/K]^{1/2}$$

(note that since V < 2 m/s velocity heads are neglec

$$h_{res} = h_{max}$$
 $Q_{out} = Q_{max} = [(h_{res} + z_A)/K]^{1/2}$

$$h_{res} = 0$$
 $Q_{out} = Q_{min} = [z_A/K]^{1/2}$

if
$$Q_{max} < Q_{in}$$
 $h = h_{max}$; $Q_{spill} = Q_{in} - Q_{max}$

if
$$Q_{min} < Q_{in} < Q_{max}$$
 $0 < h_{res} < h_{max}$; $Q_{spill} = 0$

if $Q_{in} < Q_{min}$ to prevent free flow the valve is partially closed such that

$$h_{res} = KQ_{in}^2 + h_{valve} - Z_A > 0; Q_{spill} = 0$$

Example 2.11:

- Consider the reservoir-pipe system given below, with following values.
- a) Reservoir depth $h_{max}=5m$, $z_A=5m$, L=2000m, D=0.8m, f=0.02
- b) Determine:
- c) The system capacity, Q_{max} .
- d) Minimum flowrate, Q_0 .
- e) Spill flowrate, if Q=1.2m3/s.
- f) Valve loss, h_v, if Q=0.5m3/s.

- Consider the reservoir-pipe system given below, with following values.
- a) Reservoir depth hmax=5m, zA=5m, L=2000m, D=0.8m, f=0.02
- b) Determine:
- c) The system capacity, Qmax.
- d) Minimum flowrate, Q0.
- e) Spill flowrate, if Q=1.2m3/s.
- f) Valve loss, hv, if Q=0.5m3/s.

Solution

If minor losses except hv (valve loss) are neglected,

$$Q_{out} = \left(\frac{h_{res} + Z_A}{K}\right)^{1/2}$$
 $K = \frac{8fL}{g\pi^2 D^5} = 10.09$

$$K = \frac{8fL}{g\pi^2D^5} = 10.09$$

$$Q_{\text{max}} = \left(\frac{5+5}{10.09}\right)^{1/2} \cong 1.0 \text{ m}^3/\text{s}$$

$$Q_{min} = \left(\frac{5}{10.09}\right)^{1/2} \cong 0.70 \text{ m}^3/\text{s}$$

 $Q_{spill} = 0.20 \text{ m}^3/\text{ s}$

$$h_{res} + z_A = h_V + KQ_{in}^2 \Rightarrow h_V \ge z_A - KQ_{in}^2$$

$$h_{\vee} \ge 5 - 10.09.(0.5)^2$$

$$h_{V} \ge 2.48 \text{ m}$$