UNIVERSITY OF TORONTO

Faculty of Applied Science and Engineering

Term Test III

First Year — Program 5

MAT1855 — Linear Algebra

Examiners: J W Lorimer & G M T D'Eleuterio
31 March 2011

Student Name:			
	Last Name	First Names	
Student Number:		Tutorial Section:	

Instructions:

- 1. Attempt *all* questions.
- 2. The value of each question is indicated at the end of the space provided for its solution; a summary is given in the table opposite.
- **3.** Write the final answers *only* in the boxed space provided for each question.
- 4. No aid is permitted.
- **5.** The duration of this test is 90 minutes.
- **6.** There are 10 pages and 5 questions in this test paper.

For Markers Only		
Question	Value	Mark
	Α	
1	10	
	В	
2	10	
	С	
3	10	
4	10	
5	10	
Total	50	

A. Definitions and Statements

Fill in the blanks.

1 (a).	The <i>coordinates</i> of a vector $v \in \mathcal{V}$ in terms of the basis $B = \{b_1, b_2 \cdots b_n\}$ are	$\{\mathbf{b}_n\}$
		/2
1(b).	The function $\Delta: {}^n\mathbb{R}^n \mapsto \mathbb{R}$ is a <i>determinant function</i> if and only if	
		/2
1(c).	The (i, j) -minor matrix of $\mathbf{A} \in {}^n\mathbb{R}^n$ is	
		/2
1(d).	The cross product of two vectors $\underline{u}=(u_1,u_2,u_3)$ and $\underline{v}=(v_1,v_2,v_3)\in$ can be expressed using the determinant as	\mathbb{R}^3
		/2
1(e).	State the Cauchy-Binet product theorem for determinants.	
		/2

B. True or False

Determine if the following statements are true or false and indicate by "T" (for true) and "F" (for false) in the box beside the question. The value of each question is 2 marks.

2(a). If P is the transition (transformation) matrix between two bases for a vector space, then $Px = 0$ has a nontrivial solution.	
2(b). If $A, E \in {}^n\mathbb{R}^n$ and E is an elementary matrix of Type III, then $\det AE = \det A$.	
2(c). The determinant function det $: {}^{n}\mathbb{R}^{n} \mapsto \mathbb{R}$ is injective.	
2(d). If $\mathbf{A} \in {}^m\mathbb{R}^n$ and rank $\mathbf{A} = m$, then $\det \mathbf{A} \mathbf{A}^T \neq 0$.	
2(e) . There is only one determinant function $\Delta_n : {}^n\mathbb{R}^n \to \mathbb{R}$.	

C. Problems

- 3. Let $F = \{\mathbf{f}_1, \mathbf{f}_2 \cdots \mathbf{f}_n\}$ and $G = \{\mathbf{g}_1, \mathbf{g}_2 \cdots \mathbf{g}_n\}$ be two bases for ${}^n\mathbb{R}$. Also let \mathbf{Q}_1 be the transition (transformation) matrix from F to the standard basis E and \mathbf{Q}_2 be the transition (transformation) matrix from G to E.
 - (a) Show that $\mathbf{Q} = \mathbf{Q}_1^{-1} \mathbf{Q}_2$ is the transition (transformation) matrix from G to F.
 - (b) Find an invertible matrix **P** such that $\mathbf{Pf}_j = \mathbf{g}_j$, $j = 1 \cdots n$.

3(a). Show that $\mathbf{Q} = \mathbf{Q}_1^{-1} \mathbf{Q}_2$ is the transition (transformation) matrix from G to F.

/S

3(b). Find an invertible matrix P such that $\mathbf{Pf}_j = \mathbf{g}_j$, $j = 1 \cdots n$.	
	/5

2	Let {x span{z	$\mathbf{x}_1, \mathbf{x}_2 \cdots \\ \mathbf{x}_1, \mathbf{x}_2 \cdots$	$\{\mathbf{x}_{n-1}\}$ of $\{\mathbf{x}_{n-1}\}$ if	$\exists \ ^n \mathbb{R} \ $ bef and onl	linearly y if det	independent $\mathbf{x}_1 \mathbf{x}_2$	ndent a	$\mathbf{x} \in \mathbf{x}_{n-1}$	${}^{n}\mathbb{R}$. So $\left[= 0 \right]$	Show	that x	\in
											.cont'	d

4 cont'd	
	/10

- **5.** Let $\Delta_1 : {}^n\mathbb{R}^n \to \mathbb{R}$ and $\Delta_2 : {}^n\mathbb{R}^n \to \mathbb{R}$ be two determinant functions where $\Delta_1 \neq 0$, *i.e.*, $\Delta_1(\mathbf{A})$ is not zero for all $\mathbf{A} \in {}^n\mathbb{R}^n$.
 - (a) Show that $\Delta_1(\mathbf{1}) \neq 0$.
 - (b) Show that

$$\Delta_2(\mathbf{A}) = \frac{\Delta_2(\mathbf{1})}{\Delta_1(\mathbf{1})} \Delta_1(\mathbf{A})$$

for any $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$.

5(a). Show that $\Delta_1(\mathbf{1}) \neq 0$.

/4

5(b). Show that

$$\Delta_2(\mathbf{A}) = \frac{\Delta_2(\mathbf{1})}{\Delta_1(\mathbf{1})} \Delta_1(\mathbf{A})$$

for any $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$.

...cont'd

5(b)cont'd
/6