Case Study: Prolonged infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised cancer patient.

Victoria A. Avanzato, M. Jeremiah Matson, Stephanie N. Seifert, Rhys Pryce, Brandi N. Williamson, Sarah L. Anzick, Kent Barbian, Seth D. Judson, Elizabeth R. Fischer, Craig Martens, Thomas A. Bowden, Emmie de Wit, Francis X. Riedo, Vincent J. Munster

PII: S0092-8674(20)31456-2

DOI: https://doi.org/10.1016/j.cell.2020.10.049

Reference: CELL 11714

To appear in: Cell

Received Date: 20 September 2020

Revised Date: 13 October 2020 Accepted Date: 28 October 2020

Please cite this article as: Avanzato, V.A., Matson, M.J., Seifert, S.N., Pryce, R., Williamson, B.N., Anzick, S.L., Barbian, K., Judson, S.D., Fischer, E.R., Martens, C., Bowden, T.A., de Wit, E., Riedo, F.X., Munster, V.J., Case Study: Prolonged infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised cancer patient., *Cell* (2020), doi: https://doi.org/10.1016/j.cell.2020.10.049.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Published by Elsevier Inc.

Long-term SARS-CoV-2 Shedding

Immunocompromised individual • Cancer (CLL)

- Hypogammaglobulinemia

1	
2	Case Study: Prolonged infectious SARS-CoV-2 shedding
3	from an asymptomatic immunocompromised cancer patient.
4	
5	Victoria A. Avanzato ^{1,2,7} , M. Jeremiah Matson ^{1,3,7} , Stephanie N. Seifert ^{1,7} , Rhys Pryce ² , Brandi
6	N. Williamson ¹ , Sarah L. Anzick ⁴ , Kent Barbian ⁴ , Seth D. Judson ⁵ , Elizabeth R. Fischer ⁴ , Craig
7	Martens ⁴ , Thomas A. Bowden ² , Emmie de Wit ¹ , Francis X. Riedo ^{6,8*} , Vincent J. Munster ^{1,8,9*} .
8	
9	1. Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National
10	Institutes of Health, Hamilton, MT 59840, USA
11	2. Division of Structural Biology, Wellcome Centre for Human Genetics, University of
12	Oxford, Oxford OX3 7BN, UK
13	3. Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA
14	4. Research Technologies Branch, National Institute of Allergy and Infectious Diseases,
15	National Institutes of Health, Hamilton, MT 59840, USA
16	5. Department of Medicine, University of Washington, Seattle, WA 98195, USA
17	6. EvergreenHealth, Kirkland, WA 98034, USA
18	7. These authors contributed equally.
19	8. Joint corresponding authors.
20	9. Lead contact
21	*Correspondence: vincent.munster@nih.gov, FXRiedo@evergreenhealthcare.org
22	
23	

24	Summary
25	Long-term SARS-CoV-2 shedding was observed from the upper respiratory tract of a female
26	immunocompromised patient with chronic lymphocytic leukemia and acquired
27	hypogammaglobulinemia. Shedding of infectious SARS-CoV-2 was observed up to 70 days, and
28	genomic and subgenomic RNA up to 105 days past initial diagnosis. The infection was not cleared
29	after a first treatment with convalescent plasma, suggesting limited impact on SARS-CoV-2 in the
30	upper respiratory tract within this patient. Several weeks after a second convalescent plasma
31	transfusion, SARS-CoV-2 RNA was no longer detected. We observed marked within-host
32	genomic evolution of SARS-CoV-2, with continuous turnover of dominant viral variants.
33	However, replication kinetics in Vero E6 cells and primary human alveolar epithelial tissues were
34	not affected. Our data indicate that certain immunocompromised patients may shed infectious virus
35	for longer durations than previously recognized. Detection of subgenomic RNA is recommended
36	in persistently SARS-CoV-2 positive individuals as a proxy for shedding of infectious virus.
37	
38	
39	
40	
41	
12	
43	
14	
45	
46	

_	T 4	duction
	Intro	aniction

SARS-CoV-2 RNA can be detected from various sites, including samples obtained from the nares, nasopharynx, pharynx, bronchoalveolar lavage (BAL) fluid, feces, and blood (Wang et al., 2020, Sun et al., 2020, Judson and Munster, 2020). The duration of SARS-CoV-2 RNA shedding is generally between 3 and 46 days after symptom onset (Fu et al., 2020, Qian et al., 2020, Liu et al., 51 2020c). Asymptomatic patients shed SARS-CoV-2 RNA comparably with symptomatic cases in 52 regards to duration and viral loads (Lee et al., 2020, Long et al., 2020, Zou et al., 2020). Persistent SARS-CoV-2 RNA shedding has been documented with patients remaining qRT-PCR positive for 54 up to 63 days (Li et al., 2020, Liu et al., 2020b). In addition, there are reports of patients testing positive again after a period of negative testing in both symptomatic and asymptomatic cases (Lan et al., 2020, Hu et al., 2020). As qRT-PCR detects viral RNA but does not confirm the presence of infectious SARS-CoV-2, these observations raise questions about the duration of infectious SARS-59 CoV-2 shedding and transmission potential in both symptomatic and asymptomatic cases. 60 Estimates suggest that infectiousness begins 2.3 days prior to symptom onset and declines within 7 days of symptom onset (He et al., 2020b). Consistent with this, infectious SARS-CoV-2 has been 62 isolated from patient samples taken up to 8 days after symptom onset, but typically not thereafter 63 (Wolfel et al., 2020, Bullard et al., 2020). In contrast to the prolonged shedding of SARS-CoV-2 65 RNA, the longest detected shedding of infectious SARS-CoV-2 virus is up to 20 days after the initial positive test result (van Kampen et al., 2020, Liu et al., 2020b). The probability of isolating 66 SARS-CoV-2 decreases with lower viral load, when the duration of symptoms exceeds 15 days, 67 and upon the generation of detectable neutralizing antibodies (van Kampen et al., 2020).

70	On January 19, 2020 the first case of coronavirus disease 2019 (COVID-19) was identified in the
71	United States of America (USA) in Snohomish County, Washington, in a traveller returning from
72	Wuhan, China. Community spread in the Seattle region became evident in late February of 2020
73	(Bhatraju et al., 2020), with extensive spread in a long-term care facility (McMichael et al.,
74	2020a). Here, we describe an asymptomatic, immunocompromised patient persistently testing
75	positive for SARS-CoV-2 by qRT-PCR who was infected during the early phase of SARS-CoV-2
76	spread in the USA. Infectious SARS-CoV-2 was successfully isolated from nasopharyngeal swabs
77	49 days and 70 days past the initial positive qRT-PCR test. Convalescent plasma treatment was not
78	immediately successful in clearing the infection, but evidence of SARS-CoV-2 RNA was
79	eventually cleared after 105 days.
80	
81	Results
01	resures
82	Clinical presentation of an immunocompromised patient persistently infected with SARS-CoV-2
82 83	Clinical presentation of an immunocompromised patient persistently infected with SARS-CoV-2
82 83	Clinical presentation of an immunocompromised patient persistently infected with SARS-CoV-2 On February 12, 2020, a 71-year-old woman with a 10-year history of chronic lymphocytic
82838485	Clinical presentation of an immunocompromised patient persistently infected with SARS-CoV-2 On February 12, 2020, a 71-year-old woman with a 10-year history of chronic lymphocytic leukemia (CLL), acquired hypogammaglobulinemia, anemia, and chronic leukocytosis presented
82838485	Clinical presentation of an immunocompromised patient persistently infected with SARS-CoV-2 On February 12, 2020, a 71-year-old woman with a 10-year history of chronic lymphocytic leukemia (CLL), acquired hypogammaglobulinemia, anemia, and chronic leukocytosis presented to the emergency department with low back and lower extremity pain. She underwent surgery for a
8283848586	Clinical presentation of an immunocompromised patient persistently infected with SARS-CoV-2 On February 12, 2020, a 71-year-old woman with a 10-year history of chronic lymphocytic leukemia (CLL), acquired hypogammaglobulinemia, anemia, and chronic leukocytosis presented to the emergency department with low back and lower extremity pain. She underwent surgery for a spinal fracture and stenosis related to her cancer on February 14, 2020 (biopsy results in Table S1)
828384858687	Clinical presentation of an immunocompromised patient persistently infected with SARS-CoV-2 On February 12, 2020, a 71-year-old woman with a 10-year history of chronic lymphocytic leukemia (CLL), acquired hypogammaglobulinemia, anemia, and chronic leukocytosis presented to the emergency department with low back and lower extremity pain. She underwent surgery for a spinal fracture and stenosis related to her cancer on February 14, 2020 (biopsy results in Table S1) and was subsequently transferred to a rehabilitation facility on February 19, 2020. On February 25,
82838485868788	Clinical presentation of an immunocompromised patient persistently infected with SARS-CoV-2 On February 12, 2020, a 71-year-old woman with a 10-year history of chronic lymphocytic leukemia (CLL), acquired hypogammaglobulinemia, anemia, and chronic leukocytosis presented to the emergency department with low back and lower extremity pain. She underwent surgery for a spinal fracture and stenosis related to her cancer on February 14, 2020 (biopsy results in Table S1) and was subsequently transferred to a rehabilitation facility on February 19, 2020. On February 25, 2020, she was re-hospitalized for anemia and underwent a chest X-ray the following day, which
82 83 84 85 86 87 88	Clinical presentation of an immunocompromised patient persistently infected with SARS-CoV-2 On February 12, 2020, a 71-year-old woman with a 10-year history of chronic lymphocytic leukemia (CLL), acquired hypogammaglobulinemia, anemia, and chronic leukocytosis presented to the emergency department with low back and lower extremity pain. She underwent surgery for a spinal fracture and stenosis related to her cancer on February 14, 2020 (biopsy results in Table S1) and was subsequently transferred to a rehabilitation facility on February 19, 2020. On February 25, 2020, she was re-hospitalized for anemia and underwent a chest X-ray the following day, which was normal. She could not return to her rehabilitation center due to a confirmed outbreak of

93	of the COVID-19 outbreak, she was tested and found positive for SARS-CoV-2 on March 2, 2020
94	(Figure 1). After the initial SARS-CoV-2 diagnosis, the patient was kept in isolation at an isolation
95	ward in a single room with negative airflow. Attending medical staff were using full personal
96	protective equipment comprised of Powered Air Purifying Respirators (PAPR) or N95 respirators
97	with goggles, gowns and gloves. Over the course of the next 15 weeks, she was tested for SARS-
98	CoV-2 another 14 times by several diagnostic companies and remained positive on testing through
99	June 15, 2020, 105 days since the initial positive test. Subsequently, the patient tested negative on
100	four consecutive swabs from June 16 to July 16, indicating her infection had cleared.
101	
102	Due to acquired hypogammaglobulinemia caused by her CLL, the patient received intravenous
103	immunoglobulin (IVIG) every 4 to 6 weeks as part of her treatment regimen. She received IVIG
104	treatment on both April 6 and May 6, 2020. The manufacture date of her specific lot of IVIG
105	preceded January 1, 2020, before the beginning of the COVID-19 pandemic and therefore did not
106	contribute to any SARS-CoV-2 serology results (Table S2). Due to the persistence of her SARS-
107	CoV-2 infection, serum samples were tested for antibodies against the spike glycoprotein through
108	a study at the NIH Clinical Center and no spike-specific antibodies were detected (Burbelo et al.,
109	2020). On May 12, 2020, she was transfused with 200 mL of SARS-CoV-2 convalescent plasma
110	provided by Bloodworks Northwest under an FDA eIND protocol with a virus neutralizing (VN)
111	titer of 60 (Table 1). Her infection persisted, and on May 23, 2020, she received another 200 mL
112	dose of convalescent plasma from a different donor with a VN titer of 160 under the same protocol
113	(Table 1). Additional laboratory values are available in Table S3.
111	

114

115 Long-term shedding of genomic RNA, subgenomic RNA and infectious SARS-CoV-2

116	SARS-CoV-2 shedding kinetics within the patient were monitored using the detection of genomic
117	RNA (gRNA), subgenomic RNA (sgRNA) and infectious SARS-CoV-2. RNA was extracted from
118	nasopharyngeal and oropharyngeal swabs collected at 49, 70, 77, 85, 105, and 136 days from the
119	initial diagnosis and evaluated for the presence of viral gRNA (Corman et al., 2020) and sgRNA
120	(Wolfel et al., 2020). gRNA and sgRNA were detected in nasopharyngeal swabs out to day 105,
121	except for the swab taken at day 77 (Figure 2A), though the test through EvergreenHealth was
122	positive at this time. None of the oropharyngeal swabs were positive, for gRNA or sgRNA,
123	suggesting the infection was confined to the nasopharynx. Absolute quantification of gRNA and
124	sgRNA on positive swabs was performed by droplet digital PCR (ddPCR) (Figure 2A). The
125	highest viral load was detected in the day 70 swab, at 2.2×10^6 gRNA copies/mL (CT 22.44), and
126	$1.1 \times 10^5 \text{ sgRNA copies/mL (CT 29.05)}$. The detection of sgRNA in swabs is indicative of active
127	SARS-CoV-2 replication, as only actively replicating SARS-CoV-2 would initiate RNA synthesis
128	resulting in replication and transcription of sgRNAs (Wang Y., 2020, Kim et al., 2020) and
129	sgRNA, unlike gRNA, does not persist in the nasal cavity in the absence of virus replication
130	(Speranza et al., 2020). Virus isolation was attempted on all qRT-PCR positive samples. Infectious
131	SARS-CoV-2 was successfully cultured from the nasopharyngeal swabs collected at day 49 and
132	day 70. Scanning and transmission electron microscopy on SARS-CoV-2 cultured from the
133	nasopharyngeal swabs collected on day 49 and 70 shows viral particles consistent with coronavirus
134	morphology, supporting a persistent SARS-CoV-2 infection with shedding of infectious virus in
135	this patient (Figure 3).

136

137 Convalescent plasma treatment did not clear SARS-CoV-2 from the upper respiratory tract

138	In an attempt to treat the persistent SARS-CoV-2 infection, the patient received two doses of
139	convalescent plasma therapy on day 71 and 82. Pre- and post-transfusion serum samples and the
140	transfusion convalescent plasma samples were analyzed for the presence of full-length spike and
141	spike receptor binding domain (RBD) antibodies by ELISA assay and of SARS-CoV-2
142	neutralizing antibodies in a virus neutralization (VN) assay (Figure 2B and 2C, Figure S1A and
143	S1B, and Table 1) (Amanat et al., 2020, Wrapp et al., 2020). The first dose of convalescent plasma
144	(convalescent plasma 1) had an IgG spike titer of 2560, RBD titer of 3840 and a VN titer of 60.
145	The second dose of convalescent plasma (convalescent plasma 2) had an IgG spike titer of 5120,
146	RBD titer of 5120 and a VN titer of 160 (Figure 2B, S1A, Table 1). Prior to the first dose of
147	plasma given on day 71, detectable spike and RBD IgG antibody titers were very low in serum
148	collected from the patient, with IgG titers between 1:10 and 1:40 at day 49 and 71 pre transfusion;
149	no VN titers were detected in these samples. Immediately after the first transfusion at day 71, the
150	spike and RBD IgG antibody titers rose to 1:320 and then decreased to 1:80 and 1:160 respectively
151	at day 77. No VN titers were detected at day 71 and 77 (Figure 2C, S1B, Table 1). Immediately
152	after the second transfusion at day 82 the spike and RBD IgG titers increased to 1:320 and 1:640
153	respectively and remained elevated by day 105 (Figure 2C, S1B). Low neutralizing titers of 1:10
154	were observed at day 82 and 105 (Table 1).
155	
156	Despite two transfusions of convalescent plasma, nasopharyngeal swabs at day 85 and 105
157	remained positive for both gRNA and sgRNA, suggesting that the convalescent plasma therapy
158	was not successful in rapidly clearing the infection from the upper respiratory tract in this patient.
159	Although the presence of sgRNA at these timepoints suggests active viral replication, infectious
160	SARS-CoV-2 could not be cultured after day 70.

162	Genetic analysis of patient swab samples links infection to the primary Washington State outbreak
163	SARS-CoV-2 full genome sequences were obtained from nasopharyngeal swabs collected at days
164	49, 70, 85, and 105 (Table S4). Full genomes were obtained by sequencing using the ARTIC
165	primer set (https://artic/network/) and assembling reads to MN985325.1 (USA/WA1/2020) as the
166	reference genome (Harcourt et al., 2020). The SARS-CoV-2 lineage was determined using
167	Pangolin software (https://pangolin.cog-uk.io/), which placed the patient viral genomes in lineage
168	A.1, which consists of genomes originating from the primary outbreak in Washington state
169	(Rambaut et al., 2020). A maximum-likelihood tree was generated using representative SARS-
170	CoV-2 genomes from previously described lineages (Rambaut et al., 2020) obtained from the
171	GISAID database (<u>www.gisaid.org</u>) (Shu and McCauley, 2017). The patient SARS-CoV-2 full
172	length genomes cluster together within lineage A.1 (Figure 4A). This suggests that the patient was
173	infected with a virus from the SARS-CoV-2 A.1 lineage, which circulated after the initial import
174	from China, followed by exponential growth and local transmission in Washington state.
175	In order to visualize the temporal relationships of the patient isolates, forty-four full SARS-CoV-2
176	genome sequences from Washington state belonging to NextStrain clade 19B
177	(clades.nextstrain.org) were subsampled from the GISAID database (<u>www.gisaid.org</u>) (Shu and
178	McCauley, 2017) representing strains collected in Washington state from February to May, 2020.
179	A full genome alignment was performed with four of the full genome sequences recovered from
180	the persistently infected patient, the USA/WA1/2020 genome sequence, and the Wuhan-Hu-
181	1/2019 genome sequence with MAFFT v. 1.4 (Katoh and Standley, 2013, Katoh et al., 2002)
182	implemented in Geneious Prime v. 2020.1.2 (<u>www.geneious.com</u>). A maximum likelihood tree
183	was reconstructed with PhyML v. 3.1 (Guindon et al., 2010) and a tree showing temporal

184	divergence (Figure 4B) was inferred in TreeTime v. 0.7.6 (Sagulenko et al., 2018, Hadfield et al.,
185	2018) using the HKY85 model of nucleotide substitution and a fixed molecular clock at 8e-4 with
186	a standard deviation of 4e-4 as implemented in the NextStrain pipeline (nextstrain.org/sars-cov-2/)
187	Divergence dating estimates place the patient isolates sharing a most recent common ancestor
188	between February 27 th and March 31 st , 2020, within 90% of the marginal probability distribution.
189	This is consistent with the timing of patient's first positive test on March 2, 2020. To further
190	evaluate the relationship between the SARS-CoV-2 genomes recovered from the patient swabs
191	with other SARS-CoV-2 genomes circulating in Washington state at the times of sampling (April
192	20, May 11, May 26, and June 15, 2020), Washington SARS-CoV-2 genomes were downloaded
193	from the GISAID database (Shu and McCauley, 2017). Quality of the sequences was determined
194	by the Nextclade server v.0.7.5 (https://clades/nextstrain.org/) and 1,789 sequences at April 20,
195	385 sequences between April 20 and May 11, 268 sequences between May 11 and May 26, and
196	709 sequences between May 26 and June 15, were kept for further phylogenetic analysis.
197	Maximum likelihood trees using the curated sets of sequences, the four patient genomes, and the
198	USA/WA1/2020 genome were inferred using ModelFinder (Kalyaanamoorthy et al., 2017) and
199	ultrafast bootstrap (Hoang et al., 2018) implemented in IQ-TREE v1.6.12 (Nguyen et al., 2015).
200	The phylogenetic trees show that the patient genomes in this study cluster as a monophyletic clade
201	consistent with infection in late February/early March followed by viral persistence (Figure S2).
202	
203	Next, full genome sequences from the two SARS-CoV-2 isolates were obtained (Table S4), and
204	the consensus level variants in the sequences obtained from nasopharyngeal swabs and SARS-
205	CoV-2 isolates cultured from those swabs were compared to the reference strain USA/WA1/2020
206	(MN985325.1) (Harcourt et al., 2020). Several single nucleotide (nt) substitutions were observed

207	within ORF1ab, spike, M and ORF8 coding sequence in the full genome sequences obtained
208	directly from the patient swabs and the SARS-CoV-2 isolates. In addition, a 3 nt deletion leading
209	to the loss of a methionine residue was observed in nsp1 in day 49 and day 70 samples (Table 2).
210	Within the genomes of the two SARS-CoV-2 isolates, two in-frame deletions were observed in the
211	spike glycoprotein coding region. A 21 nt in-frame deletion (residue 21,975 – 21,995) was found
212	in the N-terminal domain (NTD) of S1, leading to a 7 amino acid deletion (aa 139-145) within the
213	spike glycoprotein of the SARS-CoV-2 day 49 isolate. A smaller 12 nt deletion (residues 21,982 –
214	21,993) was detected in the day 70 isolate, leading to a 4 amino acid deletion (aa 141-144) in the
215	NTD, which falls within the 7-amino acid deletion found in the day 49 isolate (Figure 5A). These
216	observed deletions in the spike glycoprotein map to a region in the NTD that is partially solvent-
217	exposed and forms a β -strand in a compact conformation of the spike (Wrobel et al., 2020) (Figure
218	5B and 5C). This region is unmodelled in other structures representing additional conformational
219	states of the spike, and thus is likely flexible (Wrapp et al., 2020, Walls et al., 2020). It is possible
220	that the apparent plasticity within this region of the molecule may contribute to the structural
221	permissibility of the identified deletions. The position of these deletions is distinct from those
222	observed in other SARS-CoV-2 isolates, which locate to the S1/S2 and S2' cleavage sites (Andres
223	et al., 2020, Lau et al., 2020, Liu et al., 2020d).
224	
225	Comparison of the full genome sequences obtained directly from the patient samples with the
226	genome data obtained from the two SARS-CoV-2 isolates showed that the 21-nucleotide deletion
227	was present in a minority of sequencing reads (1%) in the genome obtained from the patient
228	sample from day 49 (Table 2), and was selected for upon passage in cell culture. The 12-nucleotide

229 deletion at day 70 was present in 100% of the reads in both the clinical sample and tissue culture

230	isolate. Notably, neither spike deletion was detected in the genome sequences from the day 85 and
231	day 105 swabs (Table 2). It is possible that other minor variants exist at low levels that were
232	undetected by the depth of sequencing coverage or were not reflected in the sampling at that
233	timepoint. The variation observed between the different full-length genomes obtained at various
234	time-points during the course of infection points to a quasispecies complex with continuous
235	turnover of dominant viral species.
236	
237	Growth kinetics of SARS-CoV-2 patient isolates
238	The replication kinetics of the day 49 isolate SARS-CoV-2 were compared to those of the
239	reference strain USA/WA1/2020 in Vero E6 cells. Despite the observed mutations in the day 49
240	isolate, no difference in replication kinetics were observed between the day 49 isolate and the
241	reference strain (Figure 6A). To determine growth kinetics in a more functionally relevant cell
242	type, growth curves were also performed on primary human alveolar epithelial tissues
243	(EpiAlveolar TM , MatTek Corporation, Ashland, MA, USA). No significant differences were
244	observed between the patient isolate and reference strain in these cells either (Figure 6B).
245	
246	Discussion
247	In this report, we describe long-term SARS-CoV-2 shedding in an immunocompromised patient
248	with chronic lymphocytic leukemia (CLL) and acquired hypogammaglobulinemia out to 105 days
249	past the initial positive test. Although the exact time-point when the patient acquired the SARS-
250	CoV-2 is unknown, it is likely that the exposure occurred in the long-term care facility where she
251	resided between February 19-25, 2020, just shortly before a large COVID-19 outbreak was
252	identified in that facility on February 28, 2020. The patient remained asymptomatic throughout the

253	course of infection despite the isolation of infectious SARS-CoV-2 49 and 70 days past the initial
254	diagnosis, much longer than shedding of infectious virus up to day 20 as reported previously (van
255	Kampen et al., 2020). The information available to date on SARS-CoV-2 infection in
256	immunocompromised patients, including those with cancers such as CLL, is limited, and mostly
257	focuses on disease severity and outcome (He et al., 2020a, Paneesha et al., 2020, Baumann et al.,
258	2020, Furstenau et al., 2020, Jin et al., 2020, Soresina et al., 2020, Zhu et al., 2020, Fill et al.,
259	2020). Although it is difficult to extrapolate from a single patient, our data suggest that long-term
260	shedding of infectious virus may be a concern in certain immunocompromised patients. Given that
261	immunocompromised patients could have prolonged shedding and may not have typical symptoms
262	of COVID-19, symptom-based strategies for testing patients and discontinuing transmission-based
263	precautions, as recommended by the CDC (CDC, 2020b), may fail to detect whether certain
264	patients are shedding infectious virus.
265	The patient eventually cleared the SARS-CoV-2 infection from the upper respiratory tract, after
266	the development of low neutralizing antibody titers. How the virus was cleared and the effect of
267	convalescent plasma on clearance of virus is unknown. The initial administration of convalescent
268	plasma was followed by a decreased viral load in nasal swabs, but viral loads subsequently
269	increased, despite administration of a second dose of convalescent plasma comprising higher
270	antibody titers. Therapeutic administration of convalescent plasma is focused at treatment of
271	severe or life-threatening COVID-19. Several clinical trials are investigating the efficacy of
272	convalescent plasma, but currently the efficacy of convalescent plasma therapy on COVID-19
273	outcome remains equivocal (Mira et al., 2020, Salazar et al., 2020). The limited impact of the
274	convalescent plasma treatment on clearance of SARS-CoV-2 could be due to the fact that IV

administered antibodies do not distribute well to the nasal epithelium (Ikegami et al., 2020) 276 compared to the lower respiratory tract (Mira et al., 2020). 277 Throughout the course of infection there was marked within-host genomic evolution of SARS-CoV-2. Deep sequencing revealed a continuously changing virus population structure with 279 turnover in relative frequency of the observed genotypes over the course of infection. Within 280 SARS-CoV-2 there is generally relatively limited within-host variation reported, and over the course of infection the major SARS-CoV-2 population remains identical (Jary et al., 2020, Shen et al., 2020, Capobianchi et al., 2020). Potential factors contributing to the observed within-host 283 284 evolution is the prolonged infection and the compromised immune status of the host, possibly resulting in a different set of selective pressures compared to an immune-competent host. These 286 differential selective pressures may have allowed a larger genetic diversity with a continuous turnover of dominant viral species throughout the course of the infection. While some sequence variants remain consistent throughout the duration of infection, we also observed variants unique 288 to individual time points, such as the spike deletions observed at day 49 and day 70. Previously 289 reported spike deletions, distinct from those reported herein, were observed at relatively low frequency in clinical samples, but were enriched upon virus isolation (Andres et al., 2020, Liu et al., 2020d). Similar to these reports, the spike deletion in the isolate at day 49 was observed as a

294

293

In contrast to the previously reported deletions at the cleavage sites, both spike deletions observed at day 49 and 70 in the patient are located in the NTD of S1, a region distal from the receptor binding site. These deleted residues are not modelled in a number of spike structures (Wrapp et al.,

minor variant in the patient sample but was also selected for during passage upon virus isolation.

2020, Walls et al., 2020), suggesting that this region is conformationally labile. Although the NTD has been identified as an antigenic target (Brouwer et al., 2020, Chi et al., 2020, Liu et al., 2020a), no clear difference in virus neutralization was observed between the two patient isolates and the 300 prototype USA/WA1/2020 SARS-CoV-2 isolate. 302 303 Despite genetic changes in the SARS-CoV-2 isolated from the patient, replication kinetics did not significantly change when compared to the USA/WA1/2020 virus in Vero E6 cells and primary human alveolar epithelial tissues. This indicates that, most likely, the infectious virus shed by the patient would still be able to establish a productive infection in contacts upon transmission, assuming that viral growth kinetics in vitro are a suitable surrogate for virus fitness in vivo. 307 Moreover, despite prolonged replication exclusively in the upper respiratory tract, the virus was 309 still able to replicate in epithelial cells derived from the lower respiratory tract, suggestive that it could still cause pneumonia. 311 Many current infection control guidelines assume that persistently PCR positive patients are 312 shedding residual RNA and not infectious virus, with immunocompromised patients thought to remain infectious for no longer than 20 days after symptom onset (CDC, 2020a). Here, we show that certain patients may shed infectious, replication-competent virus for much longer durations 316 than previously recognized (van Kampen et al., 2020). Whereas infectious virus could be detected up to day 70, sgRNA, a molecular marker for active SARS-CoV-2 replication (Speranza et al., 2020), could be detected up until day 105. An immunocompromised state has been identified as a 318 risk factor for the development of severe disease and complications from COVID-19 (CDC, 319 2020b). A wide variety of conditions and treatments can alter the immune system and cause

321	immunodeficiency, creating opportunities for prolonged viral replication and shedding of
322	infectious SARS-CoV-2. While this reports focuses on the long-term shedding of one
323	immunocompromised patient, an estimated 3 million people in the US have some form of
324	immunocompromising condition, including HIV infection, solid-organ transplant recipients,
325	haemopoietic stem-cell transplants, patients receiving chemotherapy and patients receiving
326	corticosteroids (Kunisaki and Janoff, 2009). This transient or chronic immunocompromised patient
327	population is at higher risk of respiratory disease complications with respiratory infections such as
328	influenza A virus and SARS-CoV-2 (Kunisaki and Janoff, 2009). Prolonged shedding of pH1N1
329	shedding was observed in immunocompromised patients with a variety of immunocompromising
330	conditions during the previous pandemic in 2009, such as cancer patients on chemotherapy and
331	solid-organ transplant recipients (van der Vries et al., 2013). For the SARS-CoV-2 related Middle
332	East respiratory syndrome coronavirus (MERS-CoV), prolonged shedding up to 38 days was
333	observed in patients with myelodysplastic syndrome, autologous peripheral blood stem cell
334	transplantation for treatment of large B-cell lymphoma and a patient with a peripheral T-cell
335	lymphoma (Kim et al., 2017). MERS-CoV shedding was higher and longer in experimentally
336	infected non-human primates immunosuppressed with cyclophosphamide and dexamethasone
337	providing experimental support for the impact of immunosuppression on virus-host dynamics
338	observed here (Prescott et al., 2018).

339

340 Limitations of the Study

A limitation of the present study is that it comprises only a single case, making it difficult to draw general conclusions on the use of convalescent plasma in clearance of the virus, potential alternative mechanisms involved in virus clearance and the frequency of persistent SARS-CoV-2

344	infection and shedding in patients with other immunocompromising conditions. Identification of
345	additional cases of persistent infection and long-term shedding of infectious virus are needed so
346	the infection dynamics can be studied in this diverse population in more detail. Understanding the
347	mechanism of virus persistence and eventual clearance will be essential to providing appropriate
348	treatment and preventing transmission of SARS-CoV-2, as persistent infection and prolonged
349	shedding of infectious SARS-CoV-2 might occur more frequently. Because immunocompromised
350	patients are often cohorted in hospital settings, a more nuanced approach to testing these
351	individuals is warranted, and the presence of persistently positive patients by performing SARS-
352	CoV-2 gRNA and sgRNA analyses on clinical samples should be investigated.

353

Acknowledgements

355 We would like to thank Neeltje van Doremalen, Jonathan Schulz, Myndi Holbrook, Anita Mora
356 and Rose Perry for excellent technical assistance. We would like to thank MatTek corporation for
357 providing the alveolar tissue culture system and technical support, as well as all the originating and
358 submitting laboratories and authors who deposited SARS-CoV-2 genomes to GISAID. We would
359 also like to thank the health care workers and laboratorians at EvergreenHealth for the selfless
360 service to patients. Finally, to the patient described in this report for her gracious willingness to
361 participate and contribute to these studies as we sought to understand this enigmatic infection.

362

363 Funding

This work was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases (NIAID). T.A.B. is supported by the Medical Research Council UK

366	(MR/S007555/1). The Wellcome Centre for Human Genetics is supported by Wellcome Centre
367	grant 203141/Z/16Z.
368	
369	Author Contributions
370	Conceptualization, F.X.R and V.J.M.; Resources, E.R.F., C.M., and F.X.R.; Methodology,
371	V.A.A., M.J.M., S.N.S., B.N.W, E.R.F, C.M., T.A.B. and E.D.W.; Investigation,
372	V.A.A, M.J.M, S.N.S, R.P., B.N.W., S.A., K.B., E.R.F., and E.D.W.; Writing – Original Draft,
373	V.A.A., M.J.M, F.X.R. and V.J.M; Writing –Review & Editing, S.N.S., S.D.J., C.M., T.A.B.,
374	E.D.W.; Data Curation, C.M.; Supervision, T.A.B., E.D.W., F.X.R., and V.J.M
375	
376	Declaration of Interests
377	The authors declare no competing interests.
378	
379	Figure Titles and Legends
380	
381	Figure 1. Timeline of clinical presentation, diagnostic tests, and treatments of an
382	immunocompromised patient with long term shedding of SARS-CoV-2. Dates of relevant
383	clinical events, such as surgeries, therapies, and outcome of diagnostic tests are shown.
384	Diagnostic qRT-PCR positive nasopharyngeal and oropharyngeal swabs taken 49, 70, 77, 85,
385	and 105 days from the initial positive patient sample were sent to Rocky Mountain Laboratories,
386	NIH, for further analysis. Serum and plasma samples pre and post transfusion, as well as a
387	sample from the donor plasma, were also provided. See also Tables S1-S3 for additional
388	laboratory values and clinical information.

Figure 2. Assessment of viral load and seroconversion in a patient persistently infected with SARS-CoV-2 and treated with convalescent plasma. (A) Viral loads were in nasopharyngeal swabs collected at different timepoints after the initial SARS-CoV-2 diagnosis. Viral RNA extracted from nasopharyngeal swab was analyzed for the presence of genomic RNA (gRNA; dark blue) and subgenomic RNA (sgRNA; light blue symbols) by qRT-PCR and reported as Ct value (circles, left panel) and in droplet digital PCR and reported as copy numbers (triangles, right panel). (B) IgG titers against full length recombinant SARS-CoV-2 spike ectodomain were determined in ELISA on convalescent plasma used for transfusion. The light grey bar is the IgG titer of the fist donor (convalescent plasma 1) and the dark grey is the second donor (convalescent plasma 2). (C) IgG titers against full length recombinant SARS-CoV-2 spike ectodomain were determined in ELISA on patient serum collected on several timepoints, including immediately before and after transfusion with convalescent plasma at day 71 (light grey) and 82 (dark grey). Each serum/plasma sample was tested in duplicate. See also Figure S1 for IgG titers against SARS-CoV-2 receptor binding domain (RBD).

Figure 3. Electron microscopy confirms isolation of coronavirus from patient nasopharyngeal swabs. SARS-CoV-2 cultured from patient nasopharyngeal swabs was used to inoculate Vero E6 cells for imaging by scanning and transmission electron microscopy (SEM and TEM). SEM images of the day 49 (A) and day 70 isolate (B). TEM images of the day 49 (C) and day 70 (D and E) isolate. SEM scalebar: 1 μM; TEM scalebar: 0.5 μM.

Figure 4. Phylogenomic analyses of described SARS-CoV-2 strains in a persistently
infected patient. (A) Full genome SARS-CoV-2 sequences representing previously described
lineages (Rambaut et al., 2020) were downloaded from GISAID (Shu and McCauley, 2017).
Lineages were then assigned using Pangolin v2.0.3 (https://pangolin.cog-uk.io/). Using a
representative genome from the assigned lineages and the four patient SARS-CoV-2 sequences,
a maximum likelihood tree was inferred using PhyML v3.3.20180621 (Guindon et al., 2010)
implemented in Geneious Prime v. 2020.1.2 (www.geneious.com) with a general time reversible
model of nucleotide substitution and rooted at the Wuhan-Hu-1/2019 SARS-CoV-2 strain.
Sequences from A and A.1 lineages are labelled, and the patient SARS-CoV-2 sequences are
shown in cyan. hCoV-19/USA/WA-RML-1, 2, 3, and 4 are the patient derived genome
sequences from day 49, 70, 85, and 105 nasopharyngeal swabs, respectively. (B) Full SARS-
CoV-2 genomes were subsampled from Washington state representing NextStrain clade 19B,
including the four full genome sequences recovered from the patient and the Wuhan-Hu-1/2019
sequence, and aligned using MAFFT v1.4 (Katoh and Standley, 2013, Katoh et al., 2002)
implemented in Geneious Prime v. 2020.1.2 (<u>www.geneious.com</u>). A maximum likelihood tree
was then reconstructed with PhyML v. 3.1 (Guindon et al., 2010) and a tree showing temporal
divergence was inferred in TreeTime v. 0.7.6 (Hadfield et al., 2018). The patient SARS-CoV-2
sequences are shown in cyan and hCoV-19/USA/WA-RML-1, 2, 3, and 4 are the patient derived
genome sequences from day 49, 70, 85, and 105 nasopharyngeal swabs, respectively. See also
Figure S2.
Figure 5. Deletions in the N-terminal domain of S1 of the spike protein. (A) Nucleotide and
amino acid sequence alignment of the region of the spike gene of the four patient sequences and

the reference USA/WA1/2020 genome sequence containing the deletions observed in the day 49
and day 70 samples. Alignment was generated with MAFFT v.1.4 (Katoh and Standley, 2013,
Katoh et al., 2002) implemented in Geneious Prime 2020.1.2 (https://www.geneious.com). (B)
Amino acid residues removed by the day 49 (orange) and day 70 (red) spike deletions are
highlighted on a SARS-CoV-2 spike trimer (PDB: 6zge) (Wrobel et al., 2020). Each protomer of
the trimer is shown in surface representation, colored in shades of grey. A single protomer is
annotated and its secondary structure is shown in cartoon representation. Glycans are shown as
beige-colored sticks. Previously reported spike deletions observed at the S1/S2 and S2' cleavage
sites (Andres et al., 2020, Lau et al., 2020, Liu et al., 2020d) are colored blue and cyan,
respectively. (C). Close-up view of the indicated region of panel B (dotted box) with the protein
surface removed for clarity and accompanying amino acid sequence alignment, generated using
Multalin (Corpet, 1988) and plotted with ESPript (Robert and Gouet, 2014).
Figure 6. Growth kinetics of the day 49 patient isolate in Vero E6 cells and primary human
alveolar epithelial tissues. (A) Vero E6 cells were inoculated with the day 49 patient isolate
and the reference USA/WA1/2020 strain at a MOI of 0.01, in triplicate. (B) Primary 3D human
alveolar epithelial tissues grown in 3D transwell culture were inoculated with the same isolates at
alveolar epithelial tissues grown in 3D transwell culture were inoculated with the same isolates at a MOI of 0.1. Supernatant was harvested at designated timepoints for assessment of viable virus
a MOI of 0.1. Supernatant was harvested at designated timepoints for assessment of viable virus
a MOI of 0.1. Supernatant was harvested at designated timepoints for assessment of viable virus using endpoint titration. Data shown are the mean and the standard error of the mean for three

Tables

Table 1. Virus neutralization titers in patient pre- and post-transfusion sera and convalescent plasma used for transfusion. Virus neutralization assays were performed for all sera and plasma with SARS-CoV-2 strains USA/WA1/2020 and the day 49 and day 70 patient isolates. Each serum/plasma sample was tested in duplicate.

Sera	USA/WA1/2020	Day 49 isolate	Day 70 isolate
Day 49	<10	<10	<10
Day 71	<10	<10	<10
Day 71 post transfusion	<10	<10	<10
Day 77	<10	<10	<10
Day 82	<10	10	<10
Day 82 post transfusion	10	10	15
Day 105	10	<10	<10
Convalescent plasma 1	60	40	40
Convalescent plasma 2	160	160	60

Table 2. Consensus sequence variants in patient clinical samples and SARS-CoV-2 isolates compared to reference USA/WA1/2020 (MN985325.1). *Note – Minor variants present in less than 50% of the reads were not included in the consensus, but these minor variants were included in the table to demonstrate their presence in clinical samples as well as the isolate.

Position	gene	Nucleotide change	Protein change	Day 49 Patient	Day 49 Isolate	Day 70 Patient	Day 70 Isolate	Day 85 Patient	Day 105 Patient
518 - 520	orf1ab	3 bp deletion	M → del	22%*	100%	100%	100%	-	-
2,113	orf1ab	$C \rightarrow T$	None	-	-	100%	100%	-	-
4,084	orf1ab	$C \rightarrow T$	None	87.5%	100%	_	_	-	97%
17,747	orf1ab	$C \rightarrow T$	$P \rightarrow L$	100%	100%	100%	100%	100%	100%
17,858	orf1ab	$A \rightarrow G$	$Y \rightarrow C$	100%	100%	100%	100%	100%	100%
19,420	orf1ab	$T \rightarrow C$	$S \rightarrow P$	72%	98%	-	-	-	92%
21,975 - 21,995	Spike	21 bp deletion	DPFLGVYY \rightarrow D	1%*	100%	-	-	-	-
21,982 - 21,993	Spike	12 bp deletion	$FLGVY \rightarrow F$	-	-	100%	100%	-	-
23,010	Spike	$T \rightarrow C$	$V \rightarrow A$	100%	100%	100%	100%	100%	99%
23,616	Spike	$G \rightarrow A$	$R \rightarrow Q$	-	-	-	95%	-	-
23,617	Spike	$T \rightarrow A$	КЭŲ	-	-	-	95%	-	-
26,526	M	$G \rightarrow T$	$A \rightarrow S$	-	-	16%*	100%	-	-
27,899	Orf8	$A \rightarrow T$	$K \rightarrow N$	-	-	100%	100%	-	-
29,308	N	$T \rightarrow A$	$N \rightarrow K$	-	-	-	-	56%	-
29,854	-	$C \rightarrow T$	-	-	-	-	100%	-	-

Figure S1. ELISA titers against SARS-CoV-2 receptor binding domain (RBD). Related to
Figure 2. (A) IgG titers against SARS-CoV-2 receptor binding domain (RBD) were determined
in ELISA on convalescent plasma used for transfusion. The light grey bar is the IgG titer of the
fist donor (convalescent plasma 1) and the dark grey is the second donor (convalescent plasma
2). (B) IgG titers against SARS-CoV-2 (RBD) were determined in ELISA on patient serum
collected on several timepoints, including immediately before and after transfusion with
convalescent plasma at day 71 (light grey) and day 82 (dark grey). Each serum/plasma sample
was tested in duplicate.
Figure S2. Maximum-likelihood trees of the SARS-CoV-2 patient with other SARS-CoV-2
genomes circulating in Washington state at the times of sampling (April 20, May 11, May
26, and June 15, 2020). Related to Figure 4, Table 2. (A) Maximum likelihood tree using 1789
26, and June 15, 2020). Related to Figure 4, Table 2. (A) Maximum likelihood tree using 1789 full genome SARS-CoV-2 sequences deposited to GISAID until 20 April 2020. Inset shows a
full genome SARS-CoV-2 sequences deposited to GISAID until 20 April 2020. Inset shows a
full genome SARS-CoV-2 sequences deposited to GISAID until 20 April 2020. Inset shows a close up of the monophyletic clade of the genomes directly obtained from the patient samples
full genome SARS-CoV-2 sequences deposited to GISAID until 20 April 2020. Inset shows a close up of the monophyletic clade of the genomes directly obtained from the patient samples (cyan). (B) Maximum likelihood tree using 385 full genome SARS-CoV-2 sequences deposited
full genome SARS-CoV-2 sequences deposited to GISAID until 20 April 2020. Inset shows a close up of the monophyletic clade of the genomes directly obtained from the patient samples (cyan). (B) Maximum likelihood tree using 385 full genome SARS-CoV-2 sequences deposited to GISAID between 20 April and 11 May, 2020. The monophyletic clade of the genomes directly
full genome SARS-CoV-2 sequences deposited to GISAID until 20 April 2020. Inset shows a close up of the monophyletic clade of the genomes directly obtained from the patient samples (cyan). (B) Maximum likelihood tree using 385 full genome SARS-CoV-2 sequences deposited to GISAID between 20 April and 11 May, 2020. The monophyletic clade of the genomes directly obtained from the patient samples is shown in cyan. (C) Maximum likelihood tree using 268 full
full genome SARS-CoV-2 sequences deposited to GISAID until 20 April 2020. Inset shows a close up of the monophyletic clade of the genomes directly obtained from the patient samples (cyan). (B) Maximum likelihood tree using 385 full genome SARS-CoV-2 sequences deposited to GISAID between 20 April and 11 May, 2020. The monophyletic clade of the genomes directly obtained from the patient samples is shown in cyan. (C) Maximum likelihood tree using 268 full genome SARS-CoV-2 sequences deposited to GISAID between 11 May and 26 May, 2020. The
full genome SARS-CoV-2 sequences deposited to GISAID until 20 April 2020. Inset shows a close up of the monophyletic clade of the genomes directly obtained from the patient samples (cyan). (B) Maximum likelihood tree using 385 full genome SARS-CoV-2 sequences deposited to GISAID between 20 April and 11 May, 2020. The monophyletic clade of the genomes directly obtained from the patient samples is shown in cyan. (C) Maximum likelihood tree using 268 full genome SARS-CoV-2 sequences deposited to GISAID between 11 May and 26 May, 2020. The monophyletic clade of the genomes directly obtained from the patient samples is shown in cyan.

492	STAR Methods
493	Resource Availability
494	Lead Contact
495	Further information and requests for resources and reagents should be directed to and will be
496	fulfilled by the Lead Contact, Vincent Munster (Vincent.munster@nih.gov).
497	
498	Materials Availability
499	This study did not generate new reagents.
500	
501	Data Availability
502	The data and the Supplementary Tables from this study have been deposited to Mendeley Data at
503	http://dx.doi.org/10.17632/3n377gv8kb.
504	Genome sequences have been deposited to Genbank: MT982403, MT982402, MT982405,
505	MT982406, MT982401 and MT982404.
506	
507	Experimental Model and Subject Details
508	Human Patient
509	The patient described in this case study is a 71 year old female with a 10 year history of chronic
510	lymphocytic leukemia (CLL), acquired hypogammaglobulinemia, anemia, and chronic
511	leukocytosis. The patient tested positive for SARS-CoV-2 on March 2, 2020, and remained
512	positive through June 15, 2020. During the course of the study, the patient was transfused with
513	intravenous immunoglobulin (IVIG, 25 g) on April 6 and May 6, 2020, and convalescent plasma
514	against SARS-CoV-2 on May 12 and May 23, 2020. After the initial SARS-CoV-2 diagnosis, the

515	patient was kept in isolation in an isolation ward in a single room with negative airflow.
516	Anonymized plasma, serum and swabs from a patient at EvergreenHealth, Kirkland, Washington
517	were obtained under an NIH Institutional Review Board exemption. Verbal and signed consent
518	were obtained from the patient to allow analyses of the samples.
519	
520	
521	Cells
522	Vero E6 is a female African green monkey kidney epithelial cell line. Vero E6 cells were
523	maintained at 37°C and 5% CO ₂ in DMEM supplemented with 10% fetal bovine serum, 1 mM
524	L-glutamine, 50 U/mL penicillin and 50 μ g/mL streptomycin. Vero E6 cells were provided by
525	Dr. Ralph Baric. Cells were authenticated by cytochrome B sequencing. Mycoplasma testing was
526	performed monthly, and no mycoplasma was detected.
527	
528	FreeStyle 293-F (RRID: CVCL_D603) is a female human embryonic cell line adapted for
529	growth in suspension culture. FreeStyle 293-F cells were grown in Freestyle 293 Expression
530	Medium (Gibco) at 37°C and 8% CO ₂ , shaking at 130 rpm. Cells were not authenticated in
531	house. Mycoplasma testing was performed monthly, and no mycoplasma was detected.
532	
533	MatTek EpiAlveolar is a 3D co-culture model of the air-blood barrier produced from primary
534	human alveolar epithelial cells, pulmonary endothelial cells and fibroblasts, and maintained
535	according to manufactures instructions (https://www.mattek.com/products/epialveolar/). Cells
536	were not authenticated in house. Mycoplasma testing was performed monthly, and no
537	mycoplasma was detected.

538

539

540

541

542

543

SARS-CoV-2 Virus

SARS-CoV-2 strain nCoV-WA1-2020 (MN985325.1) (Harcourt et al., 2020) was provided by CDC, Atlanta, USA. SARS-CoV-2 isolates were propagated on Vero E6 cells grown in DMEM supplemented with 2% fetal bovine serum (Gibco), 1 mM L-glutamine (Gibco), 50 U/mL penicillin and 50 µg/mL streptomycin (Gibco) (virus isolation medium), at 37°C and 5% CO₂.

Infectious titer of SARS-CoV-2 virus stocks was determined by end-point titration and is

544

545

546

547

548

549

550

551

552

553

554

reported as log_{10} 50% tissue culture infective dose (TCID₅₀/mL). 1.5 x 10⁴ Vero E6 cells were seeded into each well in 96-well plates in DMEM supplemented with 10% fetal bovine serum, 1 mM L-glutamine, 50 U/mL penicillin and 50 µg/mL streptomycin and incubated overnight at 37°C and 5% CO₂. The following morning, when the cells were at approximately 90% confluency, the wells were inoculated with ten-fold serial dilutions of virus stock diluted in virus isolation medium (100 uL per well, with 10 replicate wells for each dilution). The plates were incubated at 37°C and 5% CO₂ and the cytopathic effect (CPE) was assessed for each well after 5 days. Wells that demonstrated CPE were counted, and the titer was determined by the method of Spearman and Kärber using 10 replicates as follows:

555

 $Log_{10} TCID_{50}/mL = (X - d/2 + [d \cdot S])$

where X is \log_{10} of the lowest dilution with all wells positive for CPE, d is \log_{10} of the dilution 556 557 factor (10 in these titrations), and S is the sum of the fraction of wells positive for CPE at all tested dilutions.

558

559

560

Method Details

561	Clinical Sample RNA Extraction and qRT-PCR
562	Clinical samples were deidentified as part of their analyses. Nasopharyngeal and oropharyngeal
563	swabs were shipped on wet ice in viral transport medium (VTM) to Rocky Mountain
564	Laboratories (NIH). RNA was extracted using Trizol (Invitrogen), Phasemaker tubes
565	(Invitrogen) and the PureLink RNA Mini Kit (Invitrogen) according to manufacturer's
566	instructions and eluted in 100 μL RNase-free H2O. First strand cDNA synthesis was performed
567	with the SuperScript IV First Strand Synthesis System (Invitrogen), using 11 μL input RNA and
568	random hexamers. qRT-PCR was performed using 5 μL of cDNA using the QuantiFast Probe
569	kit (QIAGEN) using E gRNA (Corman et al., 2020) and sgRNA specific assays (Wolfel et al.,
570	2020). To quantify viral load within the patient samples, 5 μ L of cDNA was analyzed using
571	droplet digital PCR (Biorad) using the same E gRNA and sgRNA assays. The SARS-CoV-2
572	testing through EvergreenHealth were performed by University of Washington, LabCrop,
573	Cepheid, and GenMark. Kashi clinical laboratories and Magnolia diagnostics performed the
574	negative tests taken at the care facilities.
575	
576	Virus Isolation
577	Virus isolation of the clinical specimen was performed on Vero E6 cells in 96 well plates. In
578	brief, media was removed from wells and replaced with 100 μL of undiluted swab sample, or
579	swab sample diluted 1:10 in DMEM supplemented with 2% fetal bovine serum (Gibco), 1 mM
580	L-glutamine (Gibco), 50 U/mL penicillin and 50 μ g/mL streptomycin (Gibco) (virus isolation
581	medium). Diluted and undiluted samples were inoculated onto 7 wells. Spin inoculation was
582	performed at 1000 x g for 1 hour at 35°C. Inoculum was removed and wells were washed twice
583	with and replaced with 100 μL of virus isolation medium and incubated at 37°C and 5% CO ₂ .

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

After 5 days, replicate wells were pooled, diluted 10x in virus isolation medium, and used to inoculate T25 flasks of Vero E6 cells in virus isolation medium and incubated at 37°C and 5% CO₂. Flasks were observed for cytopathic effect. RNA was extracted, as described above, for confirmation of SARS-CoV-2 by qRT-PCR and next generation sequencing. Growth kinetics of SARS-COV-2 isolates Vero E6 cells were seeded in 6 well plates at a density of 4 x 10⁵ cells/well in DMEM supplemented with 2% fetal bovine serum (Gibco), 1 mM L-glutamine (Gibco), 50 U/mL penicillin and 50 µg/mL streptomycin (Gibco) (virus isolation medium) and incubated overnight at 37°C and 5% CO₂. The following day, the media was removed from the wells and replaced with 1 mL of virus isolation medium containing virus at a MOI of 0.01. The patient day49 isolate and the USA/WA1/2020 strain were tested in triplicate, with mock control wells in triplicate. After a 1-hour incubation at 37°C and 5% CO₂, the inoculum was removed, and wells were washed 3x with PBS and replaced with a fresh 2 mL of virus isolation medium. Supernatant samples were taken at 0, 12, 24, 48, 72, 96, and 120 hours post inoculation. Titer of infectious virus from supernatant was determined by endpoint titration in Vero E6 cells, as described above, but using 4 replicates per sample to determine the TCID₅₀/mL using the Spearman-Karber method. The EpiAlveolar cell growth kinetic experiment was set up similar to the Vero E6 cells but with the following differences. Cells were provided by MatTek with 2.5 x 10⁵ cells/transwell insert. Cells were infected by adding 75 µL of ALI medium containing virus at an MOI of 0.01 to the apical side of the transwell insert. After the above outlined incubation, the inoculum was removed, wells were washed 1x with PBS and replaced with 75 µL of ALI medium upon the apical surface. During sampling of the EpiAlveolar cells, 500 µL of DMEM medium was added

607	to the apical side, gently pipetted to mix, removed, and 75 μL of fresh ALI medium replaced on
608	the apical surface.
609	
610	Expression and Purification of SARS-CoV-2 Spike and Receptor Binding Domain
611	Expression plasmids encoding the codon optimized SARS-CoV-2 full length spike and receptor
612	binding domain (RBD) were kindly provided Kizzmekia Corbett and Barney Graham (Vaccine
613	Research Center, Bethesda, USA) and Florian Krammer (Icahn School of Medicine at Mt. Sinai,
614	New York, USA), respectively (Wrapp et al., 2020, Amanat et al., 2020). Both plasmids were
615	expressed in Freestyle 293-F cells (Thermofisher), maintained in Freestyle 293 Expression
616	Medium (Gibco/ThermoFisher) at 37°C and 8% CO ₂ in a humidified incubator shaking at 130
617	rpm. Cultures totaling 500 mL were transfected with PEI at a density of one million cells per
618	mL. Supernatant was harvested 7 days post transfection, clarified by centrifugation and sterile
619	filtered through a 0.22 μM membrane. The protein was purified using Ni-NTA immobilized
620	metal-affinity chromatography (IMAC) using Ni Sepharose 6 Fast Flow Resin (GE Lifesciences)
621	or NiNTA Agarose (QIAGEN) and gravity flow. After elution the protein was buffer exchanged
622	into 10 mM Tris pH8, 150 mM NaCl buffer before further use or frozen at -80°C for storage.
623	
624	Enzyme-Linked Immunosorbent Assay (ELISA)
625	Purified SARS-CoV-2 full length spike or RBD protein was diluted to 1 μ g/mL in PBS.
626	Maxisorp plates (Nunc) were coated with 100 μL per well (100 ng protein per well) and
627	incubated overnight at 4°C. Plates were washed 3x with PBST (0.1% Tween) and blocked with
628	100 µL casein in PBS blocking buffer (ThermoFisher) for 1 hour at room temp. Plates were
629	again washed 3x with PBST (0.1% Tween), and 100 μL of serum samples, serially diluted 2 fold

in casein in PBS blocking buffer, in duplicate, was added to the wells and incubated at room
temperature for 1 hour. Plates were washed 4x with PBST (0.1% Tween), and 100 μL secondary
antibody, rabbit anti-human IgG Fc HRP (Novus Biologicals, NBP1-73529) diluted 1:4000 in
casein in PBS blocking buffer, was added to the wells and incubated for 1 hour at room
temperature. The wells were washed 5x with PBST (0.1% Tween) and developed with the KPL
TMP 2-component peroxidase substrate kit (Seracare, 5120-0047). The reaction was stopped
with KPL stop solution (Seracare, 5150-0020) and read at 450 nm. The threshold for positivity
was calculated as the average plus 3 times the standard deviation of negative control sera.
Reported titers are the reciprocal value of the highest dilution at which signal was observed
above the calculated threshold.
Virus Neutralization assay
Serum and plasma samples were heat inactivated at 56°C for 30 minutes. Two-fold serial
dilutions were prepared in DMEM supplemented with 2% FBS, with each sample diluted in
duplicate in 96 well plate format. 100 TCID ₅₀ of SARS-CoV-2, in virus isolation medium, was
then added to each well. The virus-serum/plasma mixture was incubated at 37°C for 1 hour to
allow for neutralization, then 100 uL per well was added to Vero E6 cells in 96 well plates and
incubated at 37°C and 5% CO ₂ . After 5 days, wells were observed for cytopathic effect. The
virus neutralization titer is displayed as the reciprocal value of the highest dilution of
serum/plasma that still inhibited virus replication at which no cytopathic effect was observed.
Next generation sequencing of patient clinical samples and isolates

Clinical Samples - Viral RNA was extracted from patient nasopharyngeal swabs using Trizol
(Invitrogen) for use with the ARTIC nCoV-2019 sequencing protocol V.1 (Protocols.io -
https://www.protocols.io/view/ncov-2019-sequencing-protocol-bbmuik6w). 30-35 PCR cycles
were used to generate tiled-PCR amplicons. Primer pools consisted of the ARTIC nCoV-2019 v3
Panel (Integrated DNA Technologies, Belgium) and were diluted and used in PCR reactions
following the instructions. Products from Pool 1 and Pool 2 were combined, AmPure XP
cleaned, and quantitated as per the instructions – through step 16.18. Following assessment on a
BioAnalyzer DNA Chip (Agilent Technologies, Santa Clara, CA), a volume consisting of 500 ng
of product was taken directly into TruSeq DNA PCR-Free Library Preparation Guide, Revision
D. (Illumina, San Diego, CA) beginning with the Repair Ends step (q.s. to 50 μL with RSB) and
subsequent cleanup consisted of a single 1:1 AmPure XP/reaction ratio. All downstream steps
followed the manufacturer's instructions. Final libraries were visualized on a BioAnalyzer HS
chip (Agilent Technologies, Santa Clara, CA) and quantified using KAPA Library Quant Kit
(Illumina) Universal qPCR Mix (Kapa Biosystems, Wilmington, MA) on a CFX96 Real-Time
System (BioRad, Hercules, CA).
Isolates - Viral RNA was extracted from clarified cell culture supernatant using Trizol
(Invitrogen). Extracted RNA was depleted of rRNA using Ribo-Zero Gold H/M/R (Illumina, San
Diego, CA) based on manufacturer's protocols. After Ampure RNAClean XP (Beckman Coulter,
Brea, CA) purification, the enriched RNA was eluted in 6 μL of water and assessed on a
BioAnalyzer RNA Pico Chip (Agilent Technologies, Santa Clara, CA). Following the Truseq
Stranded mRNA Library Preparation Guide, Revision E., (Illumina, San Diego, CA), the
remaining RNA was added to Elute-Frag-Prime Buffer and continued through second-strand

675	cDNA synthesis. The resulting double-stranded cDNAs were treated with a combined mixture of
676	RiboShredder RNase Blend (Lucigen, Middleton, WI) and high concentration DNase-free RNase
677	(Roche Diagnostics, Indianapolis, IN). After AMpure XP purification (Beckman Coulter, Brea,
678	CA), samples were analyzed on a RNA Pico chip to confirm no remaining RNA. Library
679	preparation continued with adenylation of ends following manufacturer's recommendations. All
680	downstream steps followed the manufacturer's instructions. Final libraries were visualized on a
681	BioAnalyzer DNA1000 chip (Agilent Technologies, Santa Clara, CA) and quantified using
682	KAPA Library Quant Kit (Illumina) Universal qPCR Mix (Kapa Biosystems, Wilmington, MA)
683	on a CFX96 Real-Time System (BioRad, Hercules, CA).
684	
685	Sequencing and bioinformatics
686	Libraries were diluted to 2 nM stock, pooled together as needed in equimolar concentrations and
687	sequenced on the MiSeq (Illumina, Inc, San Diego, CA) using on-board cluster generation and 2
688	x 150 paired-end sequencing. Raw image files were converted to fastq files using bcl2fastq
689	(v2.20.0.422, Illumina, Inc. San Diego, CA) and trimmed of adapter sequences using cutadapt
690	version 1.12 (Martin, 2011). Adapter-trimmed reads were trimmed and filtered to remove low
691	quality sequence using fastq_quality_trimmer and fastq_quality_filter tools from the FASTX
692	Toolkit, v 0.0.14 (Gordon, Gordon, 2018). Singletons were removed and quality filtered reads
693	were coordinate-order sorted using a custom perl script.
694	Reads were filtered for repeat sequence, rRNA, and PhiX contaminants and then mapped to the
695	SARS-CoV-2 isolate 2019-nCoV/USA_WA1 (MN985325.1) reference genome using bowtie2
696	with -no-mixed -no-unal -X 1500 options (Langmead and Salzberg, 2012). Aligned SAM files
697	were converted to BAM format, then sorted and indexed using SAMtools (Li et al., 2009).

698	Duplicate reads were removed from the mapped reads using picard's MarkDuplicates tool
699	(Institute, 2018)
700	To process the ARTIC data a custom pipeline was developed. Fastq read pairs were first
701	compared to a database of ARTIC primer pairs to identify read pairs that had correct, matching
702	primers on each end. Once identified, the ARTIC primer sequence was trimmed off. Read pairs
703	that did not have the correct ARTIC primer pairs were discarded. Remaining read pairs were
704	collapsed into one sequence using AdapterRemoval (Schubert et al., 2016), requiring a minimum
705	25 base overlap and 300 base minimum length, generating ARTIC amplicon sequences. Identical
706	amplicon sequences were removed and the unique amplicon sequences were then mapped to the
707	SARS-CoV-2 genome (MN985325.1) using Bowtie2 (Langmead and Salzberg, 2012). Aligned
708	SAM files were converted to BAM format, then sorted and indexed using SAMtools (Li et al.,
709	2009).
710	Variant calling was performed using Genome Analysis Toolkit (GATK, version 4.1.2)
711	HaplotypeCaller with ploidy set to 2 (McKenna et al., 2010). Single nucleotide polymorphic
712	variants were filtered for QUAL $>$ 200 and quality by depth (QD) $>$ 20 and indels were filtered
713	for QUAL $>$ 500 and QD $>$ 20 using the filter tool in bcftools, v1.9 (Li et al., 2009). The
714	accuracy of the filtered variant calls was manually inspected in Broad's Integrative Genomics
715	Viewer (IGV) (Robinson et al., 2017). Consensus sequences were generated using bcftools
716	consensus (Li et al., 2009) and subsequently aligned using MAFFT (Katoh and Standley, 2013,
717	Katoh et al., 2002) with 2,434 GISAID Washington SARS2 reference sequences in addition to
718	the 2019-nCoV/USA_WA1 genome used for mapping.
719	
720	Phylogenomic Analysis

721	Available SARS-CoV-2 full genome sequences were downloaded from the GISAID database
722	(http://gisaid.org/) (Shu and McCauley, 2017). The sequences were then assigned to previously
723	described lineages (Rambaut et al., 2020) using Pangolin v2.0.3 (https://pangolin.cog-uk.io/),
724	and aligned using MAFFT v. 1.4 (Katoh and Standley, 2013, Katoh et al., 2002). A maximum
725	likelihood tree with the patient SARS-CoV-2 genomes, the Wuhan-Hu-1/2019 genome sequence
726	the USA/WA-1/2020 genome, and a representative genome from the assigned lineages was
727	inferred using PhyML v.3.3.20180621 (Guindon et al., 2010) implemented in Geneious Prime
728	v.2020.1.2 (www.geneious.com) with a general time reversible model of nucleotide substitution
729	and rooted at the Wuhan-Hu-1/2019 SARS-CoV-2 strain. The final figure was made using
730	FigTree v.1.4.4 (<u>http://tree.bio.ed.ac.uk/software/figtree/</u>). For the time tree, full SARS-CoV-2
731	genomes were subsampled from Washington state representing NextStrain clade 19B, including
732	the four patient genomes sequences and the Wuhan-Hu-1/2019 genome sequence. The sequences
733	were aligned using MAFFT v. 1.4 (Katoh and Standley, 2013, Katoh et al., 2002) implemented
734	in Geneious Prime v. 2020.1.2 (www.geneious.com), a maximum likelihood tree reconstructed
735	with PhyML v.3.1 (Guindon et al., 2010), and the time tree showing temporal divergence
736	inferred in TreeTime v.0.7.6 (Hadfield et al., 2018) using the HKY85 model of nucleotide
737	substitution and a fixed molecular clock at 8e-4 with a standard deviation of 4e-4 as
738	implemented in the NextStrain pipeline (nextstrain.org/sars-cov-2/).
739	To evaluate the relationship between the SARS-CoV-2 genomes recovered from the patient
740	swabs with other SARS-CoV-2 genomes from Washington state, genomes at the times of
741	sampling (April 20, May 11, May 26, and June 15, 2020) from Washington state were
742	downloaded from the GISAID database (http://gisaid.org) (Shu and McCauley, 2017). The
743	sequences were aligned by MAFFT (Katoh and Standley, 2013, Katoh et al., 2002). The

744	sequences were analyzed by the Nextclade server v0.7.5 (https://clades.nextstrain.org/) for
745	quality and sequences that were not of sufficient quality were discarded. 1,789 sequences at
746	April 20, 385 sequences between April 20 and May 11, 268 sequences between May 11 and May
747	26, and 709 sequences between May 26 and June 15 were kept for further phylogenetic analysis.
748	Maximum likelihood trees using the curated sets of genomes, the four patient genomes, and the
749	USA/WA1/2020 genome, were inferred using ModelFinder (Kalyaanamoorthy et al., 2017) and
750	ultrafast bootstrap (Hoang et al., 2018) implemented in IQ-TREE (Nguyen et al., 2015), and
751	rooted at USA/WA1/2020. Final figures were made using FigTree v.1.4.4
752	(http://tree.bio.ed.ac.uk/software/figtree/). A table of acknowledgements for the GISAID genome
753	sequences used to within this work is available at Mendeley Data at
754	http://dx.doi.org/10.17632/3n377gv8kb.
755	
755 756	Electron Microscopy
	Electron Microscopy Vero E6 cells cultured in DMEM supplemented with 10% fetal bovine serum, 1 mM L-
756	
756 757	Vero E6 cells cultured in DMEM supplemented with 10% fetal bovine serum, 1 mM L-
756 757 758	Vero E6 cells cultured in DMEM supplemented with 10% fetal bovine serum, 1 mM L-glutamine, 50 U/mL penicillin and 50 μ g/mL streptomycin were plated at 5 x 10 ⁴ cells/well in 24
756 757 758 759	Vero E6 cells cultured in DMEM supplemented with 10% fetal bovine serum, 1 mM L-glutamine, 50 U/mL penicillin and 50 μ g/mL streptomycin were plated at 5 x 10 ⁴ cells/well in 24 well plates containing Thermanox TM cover slips (Ted Pella, Redding, CA) for transmission
756 757 758 759 760	Vero E6 cells cultured in DMEM supplemented with 10% fetal bovine serum, 1 mM L-glutamine, 50 U/mL penicillin and 50 μ g/mL streptomycin were plated at 5 x 10 ⁴ cells/well in 24 well plates containing Thermanox TM cover slips (Ted Pella, Redding, CA) for transmission electron microscopy or silicon chips (Ted Pella, Redding, CA) for scanning electron microscopy
756 757 758 759 760 761	Vero E6 cells cultured in DMEM supplemented with 10% fetal bovine serum, 1 mM L-glutamine, 50 U/mL penicillin and 50 μ g/mL streptomycin were plated at 5 x 10 ⁴ cells/well in 24 well plates containing Thermanox TM cover slips (Ted Pella, Redding, CA) for transmission electron microscopy or silicon chips (Ted Pella, Redding, CA) for scanning electron microscopy in the wells, and incubated overnight at 37°C and 5% CO ₂ . The next day, media was carefully
756 757 758 759 760 761 762	Vero E6 cells cultured in DMEM supplemented with 10% fetal bovine serum, 1 mM L-glutamine, 50 U/mL penicillin and 50 μ g/mL streptomycin were plated at 5 x 10 ⁴ cells/well in 24 well plates containing Thermanox TM cover slips (Ted Pella, Redding, CA) for transmission electron microscopy or silicon chips (Ted Pella, Redding, CA) for scanning electron microscopy in the wells, and incubated overnight at 37°C and 5% CO ₂ . The next day, media was carefully aspirated from the wells and replaced with 1 mL of virus isolation medium containing SARS-
756 757 758 759 760 761 762 763	Vero E6 cells cultured in DMEM supplemented with 10% fetal bovine serum, 1 mM L-glutamine, 50 U/mL penicillin and 50 μg/mL streptomycin were plated at 5 x 10 ⁴ cells/well in 24 well plates containing Thermanox TM cover slips (Ted Pella, Redding, CA) for transmission electron microscopy or silicon chips (Ted Pella, Redding, CA) for scanning electron microscopy in the wells, and incubated overnight at 37°C and 5% CO ₂ . The next day, media was carefully aspirated from the wells and replaced with 1 mL of virus isolation medium containing SARS-CoV-2 virus at a MOI of 1 and incubated for 1 hour at 37°C and 5% CO ₂ . Wells were washed

767	
768	Scanning electron microscopy
769	Cells were fixed with Karnovsky's formulation of 2% paraformaldehyde/2.5% glutaraldehyde in
770	0.1 M Sorenson's phosphate buffer, and then post-fixed with 1.0% osmium tetroxide/0.8%
771	potassium ferrocyanide in 0.1 M sodium cacodylate buffer washed with 0.1 M sodium
772	cacodylate buffer then stained with 1% tannic acid in dH2O. After additional buffer washes, the
773	samples were further osmicated with 2% osmium tetroxide in 0.1M sodium cacodylate, then
774	washed with dH2O. Specimens were dehydrated with a graded ethanol series from 50%, 75%,
775	100% x 3 for 5 minutes each, critical point dried under CO2 in a Bal-Tec model CPD 030 Drier
776	(Balzers, Liechtenstein), mounted with double sided carbon tape on aluminum specimen mounts
777	(Ted Pella), and sputter coated with 35 Å of iridium in a Quorum EMS300T D sputter coater
778	(Electron Microscopy Sciences, Hatfield, PA) prior to viewing at 5 kV in a Hitachi SU-8000
779	field emission scanning electron microscope (Hitachi, Tokyo, Japan).
780	
781	Transmission electron microscopy
782	Specimens were fixed as described above for scanning electron microscopy and additionally
783	stained overnight with 1% uranyl acetate at 4 °C after the second osmium staining and then
784	dehydrated with the same graded ethanol series and embedded in Spurr's resin. Thin sections
785	were cut with a Leica UC7 ultramicrotome (Buffalo Grove, IL) prior to viewing at 120 kV on a
786	FEI BT Tecnai transmission electron microscope (Thermofisher/FEI, Hillsboro, OR). Digital
787	images were acquired with a Gatan Rio camera (Gatan, Pleasanton, CA).
788	
789	Structure Mapping

790	The Pymol Molecular Graphics System (https://www.schrodinger.com/pymol) was used to map
791	the location of the observed deletions onto a SARS-CoV-2 spike structure (PDB: 6ZGE)
792	(Wrobel et al., 2020). Nucleotide sequence alignments were generated using MAAFT align
793	(Katoh and Standley, 2013, Katoh et al., 2002) implemented in Geneious Prime v.2020.1.2
794	(https://www.geneious.com) and amino acid sequence alignments were generated with Multalin
795	(Corpet, 1988) and plotted with ESPript (Robert and Gouet, 2014).
796	
797	Quantification and Statistical Analysis
798	Data and statistical analysis was performed using GraphPad Prism 8.2.0. Replicates and
799	statistical details can also be found in the methods and figure legends. For ELISA and virus
800	neutralization assays, the serum/plasma samples were diluted and tested in duplicate. For the
801	growth curves, both virus isolates (day 49 patient isolate and USA/WA1/2020) were tested in
802	three replicate wells for both Vero E6 cells and the primary human alveolar epithelial cells. The
803	growth curve data shown are the mean and standard error of the mean for the three independent
804	replicates. The statistical analysis was performed using a 2-way ANOVA in Graphpad Prism
805	8.2.0. Further methods to determine whether the data met assumptions of the statistical approach
806	were not relevant for these analyses.
807	
808	References
809 810 811 812 813 814 815	AMANAT, F., STADLBAUER, D., STROHMEIER, S., NGUYEN, T. H. O., CHROMIKOVA, V., MCMAHON, M., JIANG, K., ARUNKUMAR, G. A., JURCZYSZAK, D., POLANCO, J., BERMUDEZ-GONZALEZ, M., KLEINER, G., AYDILLO, T., MIORIN, L., FIERER, D. S., LUGO, L. A., KOJIC, E. M., STOEVER, J., LIU, S. T. H., CUNNINGHAM-RUNDLES, C., FELGNER, P. L., MORAN, T., GARCIA-SASTRE, A., CAPLIVSKI, D., CHENG, A. C., KEDZIERSKA, K., VAPALAHTI, O., HEPOJOKI, J. M., SIMON, V. & KRAMMER, F. 2020. A serological assay to detect SARS-CoV-2 seroconversion in humans. <i>Nat Med</i> , 26, 1033-1036.
816 817	ANDRES, C., GARCIA-CEHIC, D., GREGORI, J., PIÑANA, M., RODRIGUEZ-FRIAS, F., GUERRERO-MURILLO, M. ESPERALRA I RANDO A GOTERRIS I CODINA M.G. QUER S. MARTÍN M.C. CAMPINS

- M., FERRER, R., ALMIRANTE, B., ESTEBAN, J. I., PUMAROLA, T., ANTÓN, A. & QUER, J. 2020.
 Naturally occurring SARS-CoV-2 gene deletions close to the spike S1/S2 cleavage site in the viral quasispecies of COVID19 patients. *bioRxiv*, 2020.06.03.129585.
 - BAUMANN, T., DELGADO, J. & MONTSERRAT, E. 2020. CLL and COVID-19 at the Hospital Clinic of Barcelona: an interim report. *Leukemia*, 34, 1954-1956.

- BHATRAJU, P. K., GHASSEMIEH, B. J., NICHOLS, M., KIM, R., JEROME, K. R., NALLA, A. K., GRENINGER, A. L., PIPAVATH, S., WURFEL, M. M., EVANS, L., KRITEK, P. A., WEST, T. E., LUKS, A., GERBINO, A., DALE, C. R., GOLDMAN, J. D., O'MAHONY, S. & MIKACENIC, C. 2020. Covid-19 in Critically III Patients in the Seattle Region Case Series. *N Engl J Med*, 382, 2012-2022.
- BROUWER, P. J. M., CANIELS, T. G., VAN DER STRATEN, K., SNITSELAAR, J. L., ALDON, Y., BANGARU, S., TORRES, J. L., OKBA, N. M. A., CLAIREAUX, M., KERSTER, G., BENTLAGE, A. E. H., VAN HAAREN, M. M., GUERRA, D., BURGER, J. A., SCHERMER, E. E., VERHEUL, K. D., VAN DER VELDE, N., VAN DER KOOI, A., VAN SCHOOTEN, J., VAN BREEMEN, M. J., BIJL, T. P. L., SLIEPEN, K., AARTSE, A., DERKING, R., BONTJER, I., KOOTSTRA, N. A., WIERSINGA, W. J., VIDARSSON, G., HAAGMANS, B. L., WARD, A. B., DE BREE, G. J., SANDERS, R. W. & VAN GILS, M. J. 2020. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. *Science*, 369, 643-650.
- BULLARD, J., DUST, K., FUNK, D., STRONG, J. E., ALEXANDER, D., GARNETT, L., BOODMAN, C., BELLO, A., HEDLEY, A., SCHIFFMAN, Z., DOAN, K., BASTIEN, N., LI, Y., VAN CAESEELE, P. G. & POLIQUIN, G. 2020. Predicting infectious SARS-CoV-2 from diagnostic samples. *Clin Infect Dis*.
- BURBELO, P. D., RIEDO, F. X., MORISHIMA, C., RAWLINGS, S., SMITH, D., DAS, S., STRICH, J. R., CHERTOW, D. S., DAVEY, R. T., JR. & COHEN, J. I. 2020. Detection of Nucleocapsid Antibody to SARS-CoV-2 is More Sensitive than Antibody to Spike Protein in COVID-19 Patients. *medRxiv*.
- CAPOBIANCHI, M. R., RUECA, M., MESSINA, F., GIOMBINI, E., CARLETTI, F., COLAVITA, F., CASTILLETTI, C., LALLE, E., BORDI, L., VAIRO, F., NICASTRI, E., IPPOLITO, G., GRUBER, C. E. M. & BARTOLINI, B. 2020. Molecular characterization of SARS-CoV-2 from the first case of COVID-19 in Italy. *Clin Microbiol Infect*, 26, 954-956.
- CDC. 2020a. *Duration of Isolation and Precautions for Adults with COVID-19* [Online]. Available: https://www.cdc.gov/coronavirus/2019-ncov/hcp/duration-isolation.html [Accessed].
- CDC. 2020b. People with Certain Medical Conditions [Online]. [Accessed August 31 2020].
- CHI, X., YAN, R., ZHANG, J., ZHANG, G., ZHANG, Y., HAO, M., ZHANG, Z., FAN, P., DONG, Y., YANG, Y., CHEN, Z., GUO, Y., ZHANG, J., LI, Y., SONG, X., CHEN, Y., XIA, L., FU, L., HOU, L., XU, J., YU, C., LI, J., ZHOU, Q. & CHEN, W. 2020. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. *Science*, 369, 650-655.
- CORMAN, V. M., LANDT, O., KAISER, M., MOLENKAMP, R., MEIJER, A., CHU, D. K., BLEICKER, T., BRUNINK, S., SCHNEIDER, J., SCHMIDT, M. L., MULDERS, D. G., HAAGMANS, B. L., VAN DER VEER, B., VAN DEN BRINK, S., WIJSMAN, L., GODERSKI, G., ROMETTE, J. L., ELLIS, J., ZAMBON, M., PEIRIS, M., GOOSSENS, H., REUSKEN, C., KOOPMANS, M. P. & DROSTEN, C. 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. *Euro Surveill*, 25.
- CORPET, F. 1988. Multiple sequence alignment with hierarchical clustering. *Nucleic Acids Res*, 16, 10881-90.
- FILL, L., HADNEY, L., GRAVEN, K., PERSAUD, R. & HOSTOFFER, R. 2020. The clinical observation of a patient with common variable immunodeficiency diagnosed as having coronavirus disease 2019. Ann Allergy Asthma Immunol, 125, 112-114.
- FU, Y., HAN, P., ZHU, R., BAI, T., YI, J., ZHAO, X., TAO, M., QUAN, R., CHEN, C., ZHANG, Y., HE, Q., JING, M., XIONG, X., TIAN, D. & YAN, W. 2020. Risk factors for viral RNA shedding in COVID-19 patients. *Eur Respir J*, 56.

- FURSTENAU, M., LANGERBEINS, P., DE SILVA, N., FINK, A. M., ROBRECHT, S., VON TRESCKOW, J., SIMON, F., HOHLOCH, K., DROOGENDIJK, J., VAN DER KLIFT, M., VAN DER SPEK, E., ILLMER, T., SCHOTTKER, B., FISCHER, K., WENDTNER, C. M., TAUSCH, E., STILGENBAUER, S., NIEMANN, C. U., GREGOR, M., KATER, A. P., HALLEK, M. & EICHHORST, B. 2020. COVID-19 among fit patients with CLL treated with venetoclax-based combinations. *Leukemia*, 34, 2225-2229.
- GORDON, A. *FASTX -Toolkit* [Online]. Available: http://hannonlab.cshl.edu/fastx_toolkit/ [Accessed]. GORDON, A. 2018. *"FASTX-Toolkit"* [Online]. Institute, B. Available:

http://hannonlab.cshl.edu/fastx_toolkit/ [Accessed].

- GUINDON, S., DUFAYARD, J. F., LEFORT, V., ANISIMOVA, M., HORDIJK, W. & GASCUEL, O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Syst Biol*, 59, 307-21.
- HADFIELD, J., MEGILL, C., BELL, S. M., HUDDLESTON, J., POTTER, B., CALLENDER, C., SAGULENKO, P., BEDFORD, T. & NEHER, R. A. 2018. Nextstrain: real-time tracking of pathogen evolution. *Bioinformatics*, 34, 4121-4123.
- HARCOURT, J., TAMIN, A., LU, X., KAMILI, S., SAKTHIVEL, S. K., MURRAY, J., QUEEN, K., TAO, Y., PADEN, C. R., ZHANG, J., LI, Y., UEHARA, A., WANG, H., GOLDSMITH, C., BULLOCK, H. A., WANG, L., WHITAKER, B., LYNCH, B., GAUTAM, R., SCHINDEWOLF, C., LOKUGAMAGE, K. G., SCHARTON, D., PLANTE, J. A., MIRCHANDANI, D., WIDEN, S. G., NARAYANAN, K., MAKINO, S., KSIAZEK, T. G., PLANTE, K. S., WEAVER, S. C., LINDSTROM, S., TONG, S., MENACHERY, V. D. & THORNBURG, N. J. 2020. Severe Acute Respiratory Syndrome Coronavirus 2 from Patient with Coronavirus Disease, United States. *Emerg Infect Dis*, 26, 1266-1273.
- HE, W., CHEN, L., CHEN, L., YUAN, G., FANG, Y., CHEN, W., WU, D., LIANG, B., LU, X., MA, Y., LI, L., WANG, H., CHEN, Z., LI, Q. & GALE, R. P. 2020a. COVID-19 in persons with haematological cancers. Leukemia, 34, 1637-1645.
- HE, X., LAU, E. H. Y., WU, P., DENG, X., WANG, J., HAO, X., LAU, Y. C., WONG, J. Y., GUAN, Y., TAN, X., MO, X., CHEN, Y., LIAO, B., CHEN, W., HU, F., ZHANG, Q., ZHONG, M., WU, Y., ZHAO, L., ZHANG, F., COWLING, B. J., LI, F. & LEUNG, G. M. 2020b. Temporal dynamics in viral shedding and transmissibility of COVID-19. *Nat Med*, 26, 672-675.
- HOANG, D. T., CHERNOMOR, O., VON HAESELER, A., MINH, B. Q. & VINH, L. S. 2018. UFBoot2: Improving the Ultrafast Bootstrap Approximation. *Mol Biol Evol*, 35, 518-522.
- HU, Z., SONG, C., XU, C., JIN, G., CHEN, Y., XU, X., MA, H., CHEN, W., LIN, Y., ZHENG, Y., WANG, J., HU, Z., YI, Y. & SHEN, H. 2020. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. *Sci China Life Sci*, 63, 706-711.
- IKEGAMI, S., BENIRSCHKE, R., FLANAGAN, T., TANNA, N., KLEIN, T., ELUE, R., DEBOSZ, P., MALLEK, J., WRIGHT, G., GUARIGLIA, P., KANG, J. & GNIADEK, T. J. 2020. Persistence of SARS-CoV-2 nasopharyngeal swab PCR positivity in COVID-19 convalescent plasma donors. *Transfusion*.
- INSTITUTE, B. 2018. "Picard Toolkit" [Online]. Broad Institute. Available: http://broadinstitute.github.io/picard [Accessed].
- JARY, A., LEDUCQ, V., MALET, I., MAROT, S., KLEMENT-FRUTOS, E., TEYSSOU, E., SOULIE, C., ABDI, B., WIRDEN, M., POURCHER, V., CAUMES, E., CALVEZ, V., BURREL, S., MARCELIN, A. G. & BOUTOLLEAU, D. 2020. Evolution of viral quasispecies during SARS-CoV-2 infection. *Clin Microbiol Infect*.
- JIN, X. H., ZHENG, K. I., PAN, K. H., XIE, Y. P. & ZHENG, M. H. 2020. COVID-19 in a patient with chronic lymphocytic leukaemia. *Lancet Haematol*, **7**, e351-e352.
- JUDSON, S. D. & MUNSTER, V. J. 2020. A framework for nosocomial transmission of emerging coronaviruses. *Infect Control Hosp Epidemiol*, 1-2.

- KALYAANAMOORTHY, S., MINH, B. Q., WONG, T. K. F., VON HAESELER, A. & JERMIIN, L. S. 2017.
 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat Methods*, 14, 587-589.
- KATOH, K., MISAWA, K., KUMA, K. & MIYATA, T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res*, 30, 3059-66.
- 916 KATOH, K. & STANDLEY, D. M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol Biol Evol*, 30, 772-80.
- 918 KIM, D., LEE, J. Y., YANG, J. S., KIM, J. W., KIM, V. N. & CHANG, H. 2020. The Architecture of SARS-CoV-2 919 Transcriptome. *Cell*, 181, 914-921 e10.
- KIM, S. H., KO, J. H., PARK, G. E., CHO, S. Y., HA, Y. E., KANG, J. M., KIM, Y. J., HUH, H. J., KI, C. S., JEONG,
 B. H., PARK, J., JANG, J. H., KIM, W. S., KANG, C. I., CHUNG, D. R., SONG, J. H. & PECK, K. R. 2017.
 Atypical presentations of MERS-CoV infection in immunocompromised hosts. *J Infect Chemother*, 23, 769-773.
- KUNISAKI, K. M. & JANOFF, E. N. 2009. Influenza in immunosuppressed populations: a review of infection frequency, morbidity, mortality, and vaccine responses. *Lancet Infectious Diseases*, 9, 493-504.
- 927 LAN, L., XU, D., YE, G., XIA, C., WANG, S., LI, Y. & XU, H. 2020. Positive RT-PCR Test Results in Patients Recovered From COVID-19. *JAMA*.
- 929 LANGMEAD, B. & SALZBERG, S. L. 2012. Fast gapped-read alignment with Bowtie 2. *Nat Methods,* 9, 357-930 9.
- LAU, S. Y., WANG, P., MOK, B. W., ZHANG, A. J., CHU, H., LEE, A. C., DENG, S., CHEN, P., CHAN, K. H.,
 SONG, W., CHEN, Z., TO, K. K., CHAN, J. F., YUEN, K. Y. & CHEN, H. 2020. Attenuated SARS-CoV-2
 variants with deletions at the S1/S2 junction. *Emerg Microbes Infect*, 9, 837-842.
- LEE, S., KIM, T., LEE, E., LEE, C., KIM, H., RHEE, H., PARK, S. Y., SON, H. J., YU, S., PARK, J. W., CHOO, E. J.,
 PARK, S., LOEB, M. & KIM, T. H. 2020. Clinical Course and Molecular Viral Shedding Among
 Asymptomatic and Symptomatic Patients With SARS-CoV-2 Infection in a Community Treatment
 Center in the Republic of Korea. JAMA Intern Med.
 - LI, H., HANDSAKER, B., WYSOKER, A., FENNELL, T., RUAN, J., HOMER, N., MARTH, G., ABECASIS, G., DURBIN, R. & GENOME PROJECT DATA PROCESSING, S. 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25, 2078-9.
 - LI, J., ZHANG, L., LIU, B. & SONG, D. 2020. Case Report: Viral Shedding for 60 Days in a Woman with COVID-19. *Am J Trop Med Hyg*, 102, 1210-1213.

938

939

940

941

- LIU, L., WANG, P., NAIR, M. S., YU, J., RAPP, M., WANG, Q., LUO, Y., CHAN, J. F., SAHI, V., FIGUEROA, A.,
 GUO, X. V., CERUTTI, G., BIMELA, J., GORMAN, J., ZHOU, T., CHEN, Z., YUEN, K. Y., KWONG, P. D.,
 SODROSKI, J. G., YIN, M. T., SHENG, Z., HUANG, Y., SHAPIRO, L. & HO, D. D. 2020a. Potent
 Neutralizing Monoclonal Antibodies Directed to Multiple Epitopes on the SARS-CoV-2 Spike.
 bioRxiv.
- 948 LIU, W. D., CHANG, S. Y., WANG, J. T., TSAI, M. J., HUNG, C. C., HSU, C. L. & CHANG, S. C. 2020b.

 949 Prolonged virus shedding even after seroconversion in a patient with COVID-19. *J Infect,* 81, 318950 356.
- LIU, Y., CHEN, X., ZOU, X. & LUO, H. 2020c. A severe-type COVID-19 case with prolonged virus shedding. J
 Formos Med Assoc.
- LIU, Z., ZHENG, H., LIN, H., LI, M., YUAN, R., PENG, J., XIONG, Q., SUN, J., LI, B., WU, J., YI, L., PENG, X.,
 ZHANG, H., ZHANG, W., HULSWIT, R. J. G., LOMAN, N., RAMBAUT, A., KE, C., BOWDEN, T. A.,
 PYBUS, O. G. & LU, J. 2020d. Identification of common deletions in the spike protein of SARS COV-2. *J Virol*.
- 957 LONG, Q. X., TANG, X. J., SHI, Q. L., LI, Q., DENG, H. J., YUAN, J., HU, J. L., XU, W., ZHANG, Y., LV, F. J., SU, 958 K., ZHANG, F., GONG, J., WU, B., LIU, X. M., LI, J. J., QIU, J. F., CHEN, J. & HUANG, A. L. 2020.

- 959 Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. *Nat Med*, 26, 1200-1204.
- 961 MARTIN, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal*, 17, 10-12.

- MCKENNA, A., HANNA, M., BANKS, E., SIVACHENKO, A., CIBULSKIS, K., KERNYTSKY, A., GARIMELLA, K., ALTSHULER, D., GABRIEL, S., DALY, M. & DEPRISTO, M. A. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res*, 20, 1297-303.
 - MCMICHAEL, T. M., CLARK, S., POGOSJANS, S., KAY, M., LEWIS, J., BAER, A., KAWAKAMI, V., LUKOFF, M. D., FERRO, J., BROSTROM-SMITH, C., RIEDO, F. X., RUSSELL, D., HIATT, B., MONTGOMERY, P., RAO, A. K., CURRIE, D. W., CHOW, E. J., TOBOLOWSKY, F., BARDOSSY, A. C., OAKLEY, L. P., JACOBS, J. R., SCHWARTZ, N. G., STONE, N., REDDY, S. C., JERNIGAN, J. A., HONEIN, M. A., CLARK, T. A., DUCHIN, J. S., PUBLIC HEALTH, S., KING COUNTY, E. & TEAM, C. C.-I. 2020a. COVID-19 in a Long-Term Care Facility King County, Washington, February 27-March 9, 2020. MMWR Morb Mortal Wkly Rep, 69, 339-342.
 - MCMICHAEL, T. M., CURRIE, D. W., CLARK, S., POGOSJANS, S., KAY, M., SCHWARTZ, N. G., LEWIS, J., BAER, A., KAWAKAMI, V., LUKOFF, M. D., FERRO, J., BROSTROM-SMITH, C., REA, T. D., SAYRE, M. R., RIEDO, F. X., RUSSELL, D., HIATT, B., MONTGOMERY, P., RAO, A. K., CHOW, E. J., TOBOLOWSKY, F., HUGHES, M. J., BARDOSSY, A. C., OAKLEY, L. P., JACOBS, J. R., STONE, N. D., REDDY, S. C., JERNIGAN, J. A., HONEIN, M. A., CLARK, T. A., DUCHIN, J. S., PUBLIC, H.-S., KING COUNTY, E. & TEAM, C. C.-I. 2020b. Epidemiology of Covid-19 in a Long-Term Care Facility in King County, Washington. *N Engl J Med*, 382, 2005-2011.
 - MIRA, E., YARCE, O. A., ORTEGA, C., FERNANDEZ, S., PASCUAL, N. M., GOMEZ, C., ALVAREZ, M. A., MOLINA, I. J., LAMA, R. & SANTAMARIA, M. 2020. Rapid recovery of a SARS-CoV-2-infected X-linked agammaglobulinemia patient after infusion of COVID-19 convalescent plasma. *J Allergy Clin Immunol Pract*.
 - NGUYEN, L. T., SCHMIDT, H. A., VON HAESELER, A. & MINH, B. Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol*, 32, 268-74.
 - PANEESHA, S., PRATT, G., PARRY, H. & MOSS, P. 2020. Covid-19 infection in therapy-naive patients with B-cell chronic lymphocytic leukemia. *Leuk Res*, 93, 106366.
 - PRESCOTT, J., FALZARANO, D., DE WIT, E., HARDCASTLE, K., FELDMANN, F., HADDOCK, E., SCOTT, D., FELDMANN, H. & MUNSTER, V. J. 2018. Pathogenicity and Viral Shedding of MERS-CoV in Immunocompromised Rhesus Macaques. *Front Immunol*, 9, 205.
 - QIAN, G. Q., CHEN, X. Q., LV, D. F., MA, A. H. Y., WANG, L. P., YANG, N. B. & CHEN, X. M. 2020. Duration of SARS-CoV-2 viral shedding during COVID-19 infection. *Infect Dis (Lond)*, 52, 511-512.
 - RAMBAUT, A., HOLMES, E. C., O'TOOLE, A., HILL, V., MCCRONE, J. T., RUIS, C., DU PLESSIS, L. & PYBUS, O. G. 2020. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. *Nat Microbiol*.
 - ROBERT, X. & GOUET, P. 2014. Deciphering key features in protein structures with the new ENDscript server. *Nucleic Acids Res*, 42, W320-4.
 - ROBINSON, J. T., THORVALDSDOTTIR, H., WENGER, A. M., ZEHIR, A. & MESIROV, J. P. 2017. Variant Review with the Integrative Genomics Viewer. *Cancer Res*, 77, e31-e34.
- SAGULENKO, P., PULLER, V. & NEHER, R. A. 2018. TreeTime: Maximum-likelihood phylodynamic analysis.

 Virus Evol, 4, vex042.
- SALAZAR, E., PEREZ, K. K., ASHRAF, M., CHEN, J., CASTILLO, B., CHRISTENSEN, P. A., EUBANK, T.,

 BERNARD, D. W., EAGAR, T. N., LONG, S. W., SUBEDI, S., OLSEN, R. J., LEVEQUE, C., SCHWARTZ,

 M. R., DEY, M., CHAVEZ-EAST, C., ROGERS, J., SHEHABELDIN, A., JOSEPH, D., WILLIAMS, G.,

 THOMAS, K., MASUD, F., TALLEY, C., DLOUHY, K. G., LOPEZ, B. V., HAMPTON, C., LAVINDER, J.,

- 1007 GOLLIHAR, J. D., MARANHAO, A. C., IPPOLITO, G. C., SAAVEDRA, M. O., CANTU, C. C., YERRAMILLI, P., PRUITT, L. & MUSSER, J. M. 2020. Treatment of Coronavirus Disease 2019 (COVID-19) Patients with Convalescent Plasma. *Am J Pathol*, 190, 1680-1690.
- SCHUBERT, M., LINDGREEN, S. & ORLANDO, L. 2016. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. *BMC Res Notes*, 9, 88.

- SHEN, Z., XIAO, Y., KANG, L., MA, W., SHI, L., ZHANG, L., ZHOU, Z., YANG, J., ZHONG, J., YANG, D., GUO, L., ZHANG, G., LI, H., XU, Y., CHEN, M., GAO, Z., WANG, J., REN, L. & LI, M. 2020. Genomic Diversity of Severe Acute Respiratory Syndrome-Coronavirus 2 in Patients With Coronavirus Disease 2019. Clin Infect Dis, 71, 713-720.
- SHU, Y. & MCCAULEY, J. 2017. GISAID: Global initiative on sharing all influenza data from vision to reality. *Euro Surveill*, 22.
 - SORESINA, A., MORATTO, D., CHIARINI, M., PAOLILLO, C., BARESI, G., FOCA, E., BEZZI, M., BARONIO, B., GIACOMELLI, M. & BADOLATO, R. 2020. Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. *Pediatr Allergy Immunol*.
 - SPERANZA, E., WILLIAMSON, B. N., FELDMANN, F., STURDEVANT, G. L., PEREZ-PEREZ, L., MEAD-WHITE, K., SMITH, B. J., LOVAGLIO, J., MARTENS, C., MUNSTER, V. J., OKUMURA, A., SHAIA, C., FELDMANN, H., BEST, S. M. & DE WIT, E. 2020. SARS-CoV-2 infection dynamics in lungs of African green monkeys. *bioRxiv*.
 - SUN, J., XIAO, J., SUN, R., TANG, X., LIANG, C., LIN, H., ZENG, L., HU, J., YUAN, R., ZHOU, P., PENG, J., XIONG, Q., CUI, F., LIU, Z., LU, J., TIAN, J., MA, W. & KE, C. 2020. Prolonged Persistence of SARS-CoV-2 RNA in Body Fluids. *Emerg Infect Dis*, 26, 1834-1838.
 - VAN DER VRIES, E., STITTELAAR, K. J., VAN AMERONGEN, G., VELDHUIS KROEZE, E. J., DE WAAL, L., FRAAIJ, P. L., MEESTERS, R. J., LUIDER, T. M., VAN DER NAGEL, B., KOCH, B., VULTO, A. G., SCHUTTEN, M. & OSTERHAUS, A. D. 2013. Prolonged influenza virus shedding and emergence of antiviral resistance in immunocompromised patients and ferrets. *PLoS Pathog*, 9, e1003343.
 - VAN KAMPEN, J. J. A., VAN DE VIJVER, D. A. M. C., FRAAIJ, P. L. A., HAAGMANS, B. L., LAMERS, M. M., OKBA, N., VAN DEN AKKER, J. P. C., ENDEMAN, H., GOMMERS, D. A. M. P. J., CORNELISSEN, J. J., HOEK, R. A. S., VAN DER EERDEN, M. M., HESSELINK, D. A., METSELAAR, H. J., VERBON, A., DE STEENWINKEL, J. E. M., ARON, G. I., VAN GORP, E. C. M., VAN BOHEEMEN, S., VOERMANS, J. C., BOUCHER, C. A. B., MOLENKAMP, R., KOOPMANS, M. P. G., GEURTSVANKESSEL, C. & VAN DER EIJK, A. A. 2020. Shedding of infectious virus in hospitalized patients with coronavirus disease-2019 (COVID-19): duration and key determinants. *medRxiv*, 2020.06.08.20125310.
 - WALLS, A. C., PARK, Y. J., TORTORICI, M. A., WALL, A., MCGUIRE, A. T. & VEESLER, D. 2020. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. *Cell*, 181, 281-292 e6.
 - WANG, W., XU, Y., GAO, R., LU, R., HAN, K., WU, G. & TAN, W. 2020. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. *JAMA*.
 - WANG Y., G. M., PERLMAN S. 2020. Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. *In:* MAIER H., B. E. (ed.) *Coronaviruses. Methods in Molecular Biology.* NY: Humana, New York, NY.
- WOLFEL, R., CORMAN, V. M., GUGGEMOS, W., SEILMAIER, M., ZANGE, S., MULLER, M. A., NIEMEYER, D.,
 JONES, T. C., VOLLMAR, P., ROTHE, C., HOELSCHER, M., BLEICKER, T., BRUNINK, S., SCHNEIDER,
 J., EHMANN, R., ZWIRGLMAIER, K., DROSTEN, C. & WENDTNER, C. 2020. Virological assessment
 of hospitalized patients with COVID-2019. *Nature*, 581, 465-469.
- WRAPP, D., WANG, N., CORBETT, K. S., GOLDSMITH, J. A., HSIEH, C. L., ABIONA, O., GRAHAM, B. S. & MCLELLAN, J. S. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. *Science*, 367, 1260-1263.

1053	WROBEL, A. G., BENTON, D. J., XU, P., ROUSTAN, C., MARTIN, S. R., ROSENTHAL, P. B., SKEHEL, J. J. &
1054	GAMBLIN, S. J. 2020. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus
1055	evolution and furin-cleavage effects. Nat Struct Mol Biol.
1056	ZHU, L., XU, X., MA, K., YANG, J., GUAN, H., CHEN, S., CHEN, Z. & CHEN, G. 2020. Successful recovery of
1057	COVID-19 pneumonia in a renal transplant recipient with long-term immunosuppression. Am J
1058	Transplant, 20, 1859-1863.
1059	ZOU, L., RUAN, F., HUANG, M., LIANG, L., HUANG, H., HONG, Z., YU, J., KANG, M., SONG, Y., XIA, J., GUO,
1060	Q., SONG, T., HE, J., YEN, H. L., PEIRIS, M. & WU, J. 2020. SARS-CoV-2 Viral Load in Upper
1061	Respiratory Specimens of Infected Patients. N Engl J Med, 382, 1177-1179.
1062	

In Brief:

This case study describes a female immunocompromised patient with chronic lymphocytic leukemia and acquired hypogammaglobulinemia who became persistently infected with SARS-CoV-2. Though asymptomatic throughout the course of infection, the patient demonstrated prolonged shedding of both infectious SARS-CoV-2 virus and RNA. This study demonstrates certain patients may remain infectious for prolonged periods of time and highlights the need for further studies to understand risk factors for prolonged infectious SARS-CoV-2 shedding.

Highlights:

- Persistent SARS-CoV-2 infection and shedding in immunocompromised patient
- Infectious SARS-CoV-2 isolated up to 70 days post diagnosis
- Observed within-host genetic variation with continuous turnover of viral variants
- Patient SARS-CoV-2 isolates do not display altered replication

