

Structure of a Data Analysis

Part 2

Roger D. Peng, Associate Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

Steps in a data analysis

- Define the question
- · Define the ideal data set
- Determine what data you can access
- · Obtain the data
- · Clean the data
- Exploratory data analysis
- · Statistical prediction/modeling
- Interpret results
- · Challenge results
- Synthesize/write up results
- · Create reproducible code

Steps in a data analysis

- Define the question
- · Define the ideal data set
- Determine what data you can access
- · Obtain the data
- · Clean the data
- Exploratory data analysis
- Statistical prediction/modeling
- Interpret results
- Challenge results
- Synthesize/write up results
- · Create reproducible code

An example

Start with a general question

Can I automatically detect emails that are SPAM or not?

Make it concrete

Can I use quantitative characteristics of the emails to classify them as SPAM/HAM?

Our data set

T. Hastie, R. Tibshirani, J.H. Friedman. The Elements of Statistical Learning. Springer, 2001.

http://search.r-project.org/library/kernlab/html/spam.html

Subsampling our data set

We need to generate a test and training set (prediction)

```
# If it isn't installed, install the kernlab package
library(kernlab)
data(spam)
# Perform the subsampling
set.seed(3435)
trainIndicator = rbinom(4601, size = 1, prob = 0.5)
table(trainIndicator)
## trainIndicator
      0
## 2314 2287
trainSpam = spam[trainIndicator == 1, ]
testSpam = spam[trainIndicator == 0, ]
```

Exploratory data analysis

- · Look at summaries of the data
- · Check for missing data
- · Create exploratory plots
- Perform exploratory analyses (e.g. clustering)

Names

names(trainSpam)

##	[1]	"make"	"address"	"all"
##	[4]	"num3d"	"our"	"over"
##	[7]	"remove"	"internet"	"order"
##	[10]	"mail"	"receive"	"will"
##	[13]	"people"	"report"	"addresses"
##	[16]	"free"	"business"	"email"
##	[19]	"you"	"credit"	"your"
##	[22]	"font"	"num000"	"money"
##	[25]	"hp"	"hpl"	"george"
##	[28]	"num650"	"lab"	"labs"
##	[31]	"telnet"	"num857"	"data"
##	[34]	"num415"	"num85"	"technology"
##	[37]	"num1999"	"parts"	"pm"
##	[40]	"direct"	"cs"	"meeting"
##	[43]	"original"	"project"	"re"
##	[46]	"edu"	"table"	"conference"
##	[49]	"charSemicolon"	"charRoundbracket"	"charSquarebracket"
##	[52]	"charExclamation"	"charDollar"	"charHash"
##	[55]	"capitalAve"	"capitalLong"	"capitalTotal"
##	[58]	"type"		

Head

head(trainSpam)

##		make	addre	SS	all	num3d	our	over	remove	in	ternet	order	mail	recei	ive	
##	1	0.00	0.	64	0.64	0	0.32	0.00	0.00		0	0.00	0.00	0.	.00	
##	7	0.00	0.	00	0.00	0	1.92	0.00	0.00		0	0.00	0.64	0.	.96	
##	9	0.15	0.	00	0.46	0	0.61	0.00	0.30		0	0.92	0.76	0.	.76	
##	12	0.00	0.	00	0.25	0	0.38	0.25	0.25		0	0.00	0.00	0.	.12	
##	14	0.00	0.	00	0.00	0	0.90	0.00	0.90		0	0.00	0.90	0.	.90	
##	16	0.00	0.	42	0.42	0	1.27	0.00	0.42		0	0.00	1.27	0.	.00	
##		will	people	e r	eport	addre	esses	free	busine	SS	email	you c	redit	your	fon	t
##	1	0.64	0.0	0	C)	0	0.32		0	1.29	1.93	0.00	0.96		0
##	7	1.28	0.0	0	C)	0	0.96		0	0.32	3.85	0.00	0.64		0
##	9	0.92	0.0	0	C)	0	0.00		0	0.15	1.23	3.53	2.00		0
##	12	0.12	0.1	2	C)	0	0.00		0	0.00	1.16	0.00	0.77		0
##	14	0.00	0.9	0	C)	0	0.00		0	0.00	2.72	0.00	0.90		0
##	16	0.00	0.0	0	C)	0	1.27		0	0.00	1.70	0.42	1.27		0
##		num00	00 mon	ey :	hp hp	ol geoi	rge n	um650	lab la	bs	telnet	num85	7 data	a num4	115	
##	1		0 0.	00	0	0	0	0	0	0	0		0.00)	0	
##	7		0 0.	00	0	0	0	0	0	0	0		0.00)	0	
##	9		0 0.	15	0	0	0	0	0	0	0		0 0.15	5	0	
##	12		0 0.	00	0	0	0	0	0	0	0		0.00)	0	
##	14		0 0.	00	0	0	0	0	0	0	0		0.00)	0	

Summaries

table(trainSpam\$type)

```
## ## nonspam spam ## 1381 906
```

Plots

plot(trainSpam\$capitalAve ~ trainSpam\$type)

Plots

plot(log10(trainSpam\$capitalAve + 1) ~ trainSpam\$type)

Relationships between predictors

plot(log10(trainSpam[, 1:4] + 1))

Clustering

```
hCluster = hclust(dist(t(trainSpam[, 1:57])))
plot(hCluster)
```

Cluster Dendrogram

dist(t(trainSpam[, 1:57])) hclust (*, "complete")

New clustering

hClusterUpdated = hclust(dist(t(log10(trainSpam[, 1:55] + 1))))
plot(hClusterUpdated)

Cluster Dendrogram

dist(t(log10(trainSpam[, 1:55] + 1))) hclust (*, "complete")

Statistical prediction/modeling

- Should be informed by the results of your exploratory analysis
- Exact methods depend on the question of interest
- Transformations/processing should be accounted for when necessary
- · Measures of uncertainty should be reported

Statistical prediction/modeling

```
trainSpam$numType = as.numeric(trainSpam$type) - 1
costFunction = function(x, y) sum(x != (y > 0.5))
cvError = rep(NA, 55)
library(boot)
for (i in 1:55) {
    lmFormula = reformulate(names(trainSpam)[i], response = "numType")
    glmFit = glm(lmFormula, family = "binomial", data = trainSpam)
    cvError[i] = cv.glm(trainSpam, glmFit, costFunction, 2)$delta[2]
}
## Which predictor has minimum cross-validated error?
names(trainSpam)[which.min(cvError)]
## [1] "charDollar"
```

Get a measure of uncertainty

```
## Use the best model from the group
predictionModel = glm(numType ~ charDollar, family = "binomial", data = trainSpam)
## Get predictions on the test set
predictionTest = predict(predictionModel, testSpam)
predictedSpam = rep("nonspam", dim(testSpam)[1])
## Classify as `spam' for those with prob > 0.5
predictedSpam[predictionModel$fitted > 0.5] = "spam"
```

Get a measure of uncertainty

```
## Classification table
table(predictedSpam, testSpam$type)
##
## predictedSpam nonspam spam
##
        nonspam 1346 458
##
        spam
                    61 449
## Error rate
(61 + 458)/(1346 + 458 + 61 + 449)
## [1] 0.2243
```

Interpret results

- · Use the appropriate language
 - describes
 - correlates with/associated with
 - leads to/causes
 - predicts
- · Give an explanation
- Interpret coefficients
- · Interpret measures of uncertainty

Our example

- · The fraction of charcters that are dollar signs can be used to predict if an email is Spam
- Anything with more than 6.6% dollar signs is classified as Spam
- More dollar signs always means more Spam under our prediction
- · Our test set error rate was 22.4%

Challenge results

- · Challenge all steps:
 - Question
 - Data source
 - Processing
 - Analysis
 - Conclusions
- · Challenge measures of uncertainty
- Challenge choices of terms to include in models
- Think of potential alternative analyses

Synthesize/write-up results

- · Lead with the question
- Summarize the analyses into the story
- Don't include every analysis, include it
 - If it is needed for the story
 - If it is needed to address a challenge
- Order analyses according to the story, rather than chronologically
- Include "pretty" figures that contribute to the story

In our example

- Lead with the question
 - Can I use quantitative characteristics of the emails to classify them as SPAM/HAM?
- · Describe the approach
 - Collected data from UCI -> created training/test sets
 - Explored relationships
 - Choose logistic model on training set by cross validation
 - Applied to test, 78% test set accuracy
- Interpret results
 - Number of dollar signs seems reasonable, e.g. "Make money with Viagra \$ \$ \$ \$!"
- Challenge results
 - 78% isn't that great
 - I could use more variables
 - Why logistic regression?

Create reproducible code

```
index.Rmd ×
🔷 🖒 📙 💆 🔍 🖊 🚾 🖋 Knit HTML
                                                                                                  Run 🕩 🖸 Chunks 🕶
Q, Find Next Prev Replace
                                            Replace All
☐ In selection ☐ Match case ☐ Whole word ☐ Regex 		 ✔ Wrap
252 ---
 253 ## New clustering
 254- ```{r, fig.height =6,fig.width=6}
 255 hClusterUpdated = hclust(dist(t(log10(trainSpam[,1:55]+1))))
 256 plot(hClusterUpdated)
259 ---
 260 ## Statistical prediction/modeling
262 * Should be informed by the results of your exploratory analysis
263 * Exact methods depend on the question of interest
 264 * Transformations/processing should be accounted for when necessary
265 * Measures of uncertainty should be reported
267 ---
268 ## Statistical prediction/modeling
 269 - ```{r,cache=TRUE}
 270 trainSpam$numType = as.numeric(trainSpam$type)-1
 271 costFunction = function(x,y){sum(x!=(y > 0.5))}
 272 cvError = rep(NA, 55)
 273 library(boot)
 274 - for(i in 1:55){
 275     lmFormula = as.formula(paste("numType~",names(trainSpam)[i],sep=""))
276 glmFit = glm(lmFormula,family="binomial",data=trainSpam)
 277  cvError[i] = cv.glm(trainSpam,glmFit,costFunction,2)$delta[2]
278 }
279 which.min(cvError)
 280 names(trainSpam)[which.min(cvError)]
 281
 282
283
186:1 (Top Level) ‡
```