

ADA090289

A COMPREHENSIVE ANALYTICAL MODEL OF ROTORCRAFT AERODYNAMICS AND DYNAMICS. PART III. PROGRAM MANUAL

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, MOFFETT FIELD, CA. AMES RESEARCH CENTER

JUN 1980

Selected Research In Microfiche

SRIM® is a tailored information service that delivers complete microfiche copies of government publications based on your needs, automatically, within a few weeks of announcement by NTIS.

SRIM® Saves You Time, Money, and Space!

Automatically, every two weeks, your SRIM® profile is run against all new publications received by NTIS and the publications microfiched for your order. Instead of paying approximately \$15-30 for each publication, you pay only \$2.50 for the microfiche version. Corporate and special libraries love the space-saving convenience of microfiche.

NTIS offers two options for SRIM® selection criteria:

Standard SRIM®-Choose from among 350 pre-chosen subject topics.

Custom SRIM®-For a one-time additional fee, an NTIS analyst can help you develop a keyword strategy to design your Custom SRIM® requirements. Custom SRIM® allows your SRIM® selection to be based upon specific subject keywords, not just broad subject topics. Call an NTIS subject specialist at (703) 605-6655 to help you create a profile that will retrieve only those technical reports of interest to you.

SRIM® requires an NTIS Deposit Account. The NTIS employee you speak to will help you set up this account if you don't already have one.

For additional information, call the NTIS Subscriptions Department at 1-800-363-2068 or (703) 605-6060. Or visit the NTIS Web site at http://www.ntis.gov and select SRIM® from the pull-down menu.

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161 (703) 605-6000 http://www.ntis.gov

AD A 0 9 0 2 8 9

A Comprehensive Analytical Model of Rotorcraft Aerodynamics and **Dynamics** Part III: Program Manual

Wayne Johnson

June 1980

			_	
	. "			7
				•
				•
	•			
	4.			
				•
				•
				~

A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics Part III: Program Manual

Wayne Johnson, Aeromechanics Laboratory
AVRADCOM Research and Technology Laboratories
Ames Research Center, Moffett Field, California

National Aeronautics and Space Administration

Ames Research Center Moffett Field, California 94035

			~
			•
			•
			, -
			¥
			-
1			

CONTENTS

page

Common Block Contents 2 TMDATA 4 R1DATA 7 8 W1DATA G1DATA 9 **BDDATA** 11 BADATA 12 **ENDATA** 13 L1DATA 14 LADATA 15 GCDATA 16 TNDA TA 17 STDATA 18 FLDATA 20 A1TABL 21 CASECM 22 UNITNO 23 TRIMCM 24 RTR1CM 26 RH1CM 27 BCDYCM 29 ENGNCM 30 GUSTCM 31 32 CONTCM CONVCM 33 35 MD1CM INC1CM 37 38 WKV1CM MNH1CM 39 AES1CM 40 MNR1CM 41 MNSCM 42 AEF1CM 43 QR1CM 44 QBDCM 45 WG1CM 46 WKC1CM 47 **AEMNCM** 48 LDMNCM 49 FLMCM 50 FLM1CM 51 FLMACM 52 FLINCM 53 FLAECM 55 56 57 STDCM STMCM

TRANCM

2.	Subprogram Function and	Communication	page
٠.		Communication	58
	MAIN	59	
	TIMER	60	
	INPTN	61	
	INPTO	62	
	INPTA1	63	
	INPTR1	64	
	INPTW1	65	
	INPTB	66	
	INPTL1	67	
	INPTF	68	
	INPTS	69	
	INPTT	70	
	INPTG	71	
	INPTU	72	
	INPTV	73	
	FILEI	74	
	FILEJ	75	
	FILER	76	
	FIL E F FIL E S	77	
	FILET	78	
	FILEE	79	
	INIT	80	
	INITA	81 82	
	INITC		
	INITR1	83	
	INITB	85 88	
	INITE	90	
	CHEKR1	91	
	PRNTJ	92	
	PRNTC	93	
	PRNT	95	
	PRNTR1	96	
	PRNTW1	97	
	PRNTB	98	
	PRNTF	99	
	PRNTS	100	
	PRNTT	101	
	PRNTG	102	
	TRIM	103	
	TRIMI	104	
	TRIMP	107	
	FLUT	109	
	FLUTM	110	
	FLUTB	114	
	FLUTR1	115	
	FLUTI1	117	
	FLUTA1	118	
	FLUTL	120	

	1	21
STAB		22
STABM		24
STABD		25
STABE		26
STABL		27
STABP		.29
TRAN		31
TRANI	1	.33
TRANP	1	35
TRANC	1	36
CONTRL	· · · · · · · · · · · · · · · · · · ·	ĺ37
GUSTU GUSTC	1	138
PERF		139
PERFR1		142
LOAD	•	144
LOADR1	:	145
LOADH1		148
LCADS1		150
LOADI1		152
I.C.A.DF		154
LCADM ·		155
GEOMP1		156
POLRPP		158
HISTPP		159
NOISR1		161
BESSEL		163
BAMF		164
MC DE1		166
MC DEC 1		167 169
MC DEB 1		171
MO DEG		172
MO DE A 1		173
MODET1		174
MC DEK 1		175
MODED1		176
INRTC1		178
MODEP1		180
BODYC ENGNC		182
ENGIC MOTNC1		184
BODYM1		186
ENGNM1		187
WAKEU1		188
WAKEN1		190
INRTM1	•	192
INRTI		194
MOTNH1		195
MCTNR1		196
MOTNB1		19 8

page

			page
	AEROF1	199	
	AEROS1	202	
	AEROT1	204	
	BC DYV 1	205	
	ENGNV1	206	
	MOTNF1	207	
	MCTNS	208	
	BODYF	2 0 9	
	BODYA	211	
	WAKEC1	212	
	WAKEB1	215	
	VTXL	216	
	VTXS	217	
	GECME1	218	
	GEOMR1	219	
	GEOMF1	220	
	MINV	221	
	MINVC	222	
	EIGENJ	223	
	DERED	224	
	QSTRAN	225	
	CSYSAN	226	
	DETRAN	228	
	SINE	229	
	STATIC	230	
	ZERO	231	
	ZETRAN	232	
	BO DE	233	
	BODEPP	234	
	TRACKS	235	
	TRCKPP	237	
	CUSTS	238	
	PSYSAN	240	
	DEPRAN	242	
	MAINTB	243	
	AEROT	244	
	AEROPP	245	
3.	Computer System Subprograms		246
4.	Core Requirements		247

A COMPREHENSIVE ANALYTICAL MODEL OF ROTORCRAFT AERODYNAMICS AND DYNAMICS

Part III: Program Manual

Wayne Johnson

Ames Research Center and Aeromechanics Laboratory AVRADCOM Research and Technology Laboratories

SUMMARY

The computer program for a comprehensive analytical model of rotorcraft aerodynamics and dynamics is described. This analysis is designed to calculate rotor performance, loads, and noise; the helicopter vibration and gust response; the flight dynamics and handling qualities; and the system aeroelastic stability. The analysis is a combination of structural, inertial, and aerodynamic models, that is applicable to a wide range of problems and a wide class of vehicles. The analysis is intended for use in the design, testing, and evaluation of rotors and rotorcraft, and to be a basis for further development of rotary wing theories. This report documents the computer program that implements the analysis.

		_	
		·	

1. COMMON BLOCK CONTENTS

This section describes the contents of the common blocks used by the program. Each description begins with the common block label. The total length of the block is given in parentheses after the label. Then all variables in the block are listed. The left-hand column gives the variable name, and the right-hand column gives the location of the variable in the common block. Finally, a description of the variable is provided (except for variables in blocks with labels of the form xxDATA, which are input parameters). Only the common blocks for rotor #1 are described; the common blocks for rotor #2 have an identical structure.

TMDATA(182)

FILEID(4)	input file identification (alphanumeric date and time; BLCCK DATA if input file is neither read nor written)	1
TITLE(20)	·	5
CODE		25
ANTYPE(3)		26
OPREAD(10)		29
NPRNTI		39
DEBUG(25)		40
OPUNIT		65
NROTOR		66
ALTMSL		67
TEMP		68
VKTS		69
VEL		70
VTIP		71
RPM		72
OPGRND		73
HAGL		74
o pen gn		75
AFLAP		76
MPSI		77
DENSE		78
OPDENS		79
COLL		80
LATCYC		81
LNGCYC		82
PEDAL		83
APITCH		84
AROLL		85
ACLIMB		86
AYAW		87
RTURN		88
MPSIR		89
MREV		90
ITERM		91
EPMOTN		92
ITERC EPCIRC		93
DOF(54)		94
DOFT(8)		95
LEVEL(2)		149
ITERU		157
ITERR		159
ITERF		160
NPRNTT		161
NPRNTP		162
NPRNTL		163
41 4 4141 1 41		164

	TMDATA
CXTRIM	165
XTRIM	166
CTTRIM	167
CPTRIM	168
CYTRIM	169
BCTRIM	170
BSTRIM	171
MTRIM	172
MTRIMD	173
	174
DELTA	175
FACTOR	176
EPTRIM	177
OPGOVT	178
OPTRIM	179
MHARM(2)	181
MHARMF(2)	101

R1DATA(932)

TITLE(20)	1
TYPE	21
VTIPN	22
RADIUS	23
SIGMA	24
GAMMA	25
NBLADE	26
TDAMPO	27
TDAMPC	28
TDAMPR	29
NUGC	30
NUGS	31
G DAMPC	32
GDAMPS	33
LDAMPC	34
LDAMPM	35
LDAMPR	36
BTIP	37
OPTIP	38
LINTW	39
TWISTL	40
ROTATE	41
OPHVIB(3)	42
GPUSLD	45
GSB(10)	46
GST(5)	56
TAU(3)	61
ADELAY	64
AMAXNS	65
PSIDS(3)	66
ALFDS(3)	69
ALFRE(3)	72
CLDSP	75
CDDSP	76
CMDSP	77
O PYAW	78
OPSTLL	79
O PCOMP	80
RROOT KHLMDA	81
KFLMDA	82
FXLMDA .	83
FYLMDA	84
FMLMDA	85 84
FACTWU	86
KINTH	87
KINTF	88
KINTWB	89
KINTHT	90
41-41-41-4	91

	R1 DATA
**************************************	92
KINTVT	93
INFLOW(6) RGMAX	99
NOPB	100
RCPL	101
KFLAP	102
KLAG	103
RCPLS	104
TSPRNG	105
NCOLB	106
NONROT	107
HINGE	10 8
NCOLT	109
KPIN	110
PHIPH	111
PHIPL	112
RPB	113
RPH	114
XPH	11 5
ATANKP(10)	116
DEL3G	126
MBLA DE	127
EPMODE	128
MRB	129
MRM	130
MASST	131
XIT	132
EFLAP	133
ELAG	134
RFA	135
ZFA	136
XFA	137
WTIN	138
FTO	139 140
FTC	140
FTR	141
KTO	143
KTC	144
KTR	145
CONE	146
DROOP	147
SWEEP	148
FDROOP	149
FSWEEP	150
MRA	151
RAE(31)	182
CHORD(30)	212
XAC(30)	242
XA(30)	

	R1DATA
TWISTA(30)	272
THETZL(30)	302
MCORRL(30)	332
MCORRD(30)	362
MCORRM(30)	392
MRI	422
RI(51)	423
XI(51)	474
XC(51)	52 5
KP2(51)	576
MASS(51)	627
ITHETA(51) GJ(51)	678
EIXX(51)	729
EIZZ(51)	780
TWISTI(51)	831
1#1011(31)	882

W1DATA(126)

	4
FACTNW	
OPVXVY	2
KNW	3
KRW	4
KFW	5
K DW	6
RRU	7
FRU	8
PRU	1 2 3 4 5 6 7 8
FNW	10
DVS	11
	12
DLS	13
CORE(5)	13 18
OPCORE(2)	20
WKMODL(13)	33
OPNWS(2)	77 35
LHW	33 35 36 37 38
OPHW	٠ر مع
OPRTS)/ 20
VELB .	30
DPHIB	39
DBV	40
QDEBUG	41
MRG	42
NG(30)	43
MRL	73
NL(30)	74
OPWKBP(3)	104
KRWG	107
OPRWG	108
FWCT(2)	109
FWGT(2) FWGSI(2)	111
FWGSO(2)	113
KWGT(4)	115
KWGSI(4)	119
KWGSO(4)	123
VMCDO(A)	

G1DATA(55)

KFWG	1
OPFWG	2
ITERWG	3
FACTWG	Ĩ4
WGMODL(2)	5
RTWG(2)	7
COREWG(4)	9
MRVBWG	
LDMWG	13 14
ndmwg(36)	15
IPWGDB(2)	51
QWGDB	53
DOMC(5)	Σ),

BDDATA(345)

Ì

		_
TITLE(20)		2
WEIGHT		21
IXX		22
IYY		23
IZZ		24
		25
IXY		26
IXZ		27
IYZ		28
TRATIO		
CONFIG		29
ASHAFT(2)		30
ACANT(2)		30 32
ATILT		34
FSR1		34 35 36
		36
BLR1		37
WLR1		38
FSR2		39
BLR2		40
WLR2		41
FSWB		42
BLWB		
WLWB	·	43
FSHT		44
BLHT		45
WLHT		46
FSVT		47
BLVT		48
WLVT		49
FSOFF		50
BLOFF		51
		52
WLOFF		53
FSCG		54
BLCG		55
WLCG		56
HMAST		53 54 55 56 57
DPSI21		27
CANTHT		58
CANTVT	•	59 60
KOCFE		60
KCCFE	•	61 62
KSCFE		62
KPCFE		63
PCCFE		64
PSCFE		65
PPCFE		66
KFOCFE		67
KROCFE		68
KFCCFE		69
KI COLE		•

	B DDA TA
KRCCFE	70
KFSCFE	71
KRSCFE	72
KFPCFE	73
KRPCFE	74
PFCCFE	75
PRCCFE	76
PFPCFE	77
PRPCFE	78
KFCFE	79
KTCFE	80
KACFE	81
KECFE	82
KRCFE	83
CNTRLZ(11)	84
NEM	95
KPMC1(10)	96
KPMS1(10)	106
KPMC2(10)	116
KPMS2(10)	126
ZETAR1(3,10)	136
GAMAR1(3,10)	166
ZETAR2(3,10)	196
GAMAR2(3,10)	226
QMASS(10)	256
QFREQ(10)	266
QDAMP(10)	276
QDAMPA(10)	286
QCNTRL(4,10)	296
DOFSYM(10)	3 3 6

BADATA(37)

LFTAW IWB LFTDW LFTFW DRGOW DRGVW DRGVW DRGIW DRGDW DRGDW DRGFW AMAXW MOMOW	1 2 3 4 5 6 7 8 9
MOMAW	12
MCMDW	13 1 ¹
MOMFW	15
SIDEB	16
SIDEP	17
SIDER	18
ROLLB	19
ROLLP ROLLR	20
ROLLA	21
YAWB	27
YAWP	2
YAWR	2^{l}
YAWA	2 <u>'</u> 20
LFTAH	20
LFTEH	2
AMAXH	29
IHT	2
LFTAV	30
LFTRV	3
AMAXV	3.
IVT). 2
FETAIL	30 33 33 33 34 35 36 36
LHTAIL	3
HVTAIL	3
OPTINT)

ENDATA(22)

ENGPOS	1
THRTLC	2
IENG	3
KMAST1	4
KMAST2	5
KICS	6
KENG	7
KPGOVE	8
KPGOV1	9
KPGOV2	10
KIGOVE	11
KIGOV1	12
KIGOV2	13
T1GOVE	14
T1GOV1	15
T1GOV2	16
T2GOVE	17
T2GOV1	18
T2GO ³ /2	19
GSE	20
GSI	21
KEDAMP	22

L1DATA(239)

2444. 73347	1
MHARML	2
MHLOAD	2 3
MALOAD	4
MRLOAD	
RLOAD(20)	5
NPOLAR	25
NWKGMP(4)	26
MWKGMP	30
JWKGMP(8)	31
MHARMN(3)	39
MTIMEN(3)	42
MNCISE .	. 45
RANGE(10)	46
ELVATN(10)	56
AZMUTH(10)	66
	76
KFATIG	77
SENDUR(18)	95
CMAT(18)	113
EXMAT(18)	131
NPLOT(75)	206
AXS(30)	
OPNOTS(4)	236

LADATA(331)

MVIB	1
FSVIB(10)	2
WLVIB(10)	12
BLVIB(10)	22
ZETAV(3,10,10)	32

GCDATA(18)

OPTRAN	1
OPGUST(3)	2
VELG	5
PSIG	6
GDIST(2)	7
GTIME	9
CTIME	10
GMAG(3)	11
CMAG(5)	14

TNDATA(42)

NPRNTT	
	1
NPRNTP	2
NPRNTL	3
NRSTRT	4
TMAX	5
TSTEP	6
OPPLOT	7
DOFPLT(21)	8
DOF(7)	29
OPSAS	36
KCSAS	37
KSSAS	38
TCSAS	39
TSSAS	40
ITERT	41
OPLMDA	42

STDATA(251)

				1
	NPRNTP			2
	NPRNTL		•	2
	ITERS			1 2 3 4 5 6
: -	C PLMDA			4
	DELTA			5
•	∞ F(?)			6
	CCN(16)			13
	GUS(3)			29
•	OPPRNT(4)		•	32
	KCSAS			13 29 32 36 37 38 39
				37
	KSSAS			ัรห
	TCSAS			30
	TSSAS			40
	EQTYPE(12)			
	NPRNTT			52
	ANTYPE(5)			53 58
•	NSYSAN			58
	NSTEP			59 60
	NFREQ			60
	FREQ(100)	•		61
	NBPLOT			161
	NAMEXP(7)			162
	NAMENT(/)			169
	NAMEVP(19)			188
	NXPLT			189
	NVPLT			190
	NDPLT			191
	NFOPLT			
	NF1PLT			192
	MSPLT			193
	NTPLOT			194
	PERPLT			195
	DTPLT			1 96
	TMXPLT			197
	LGUST(3)			198
	MGUST(3)			201
	NAMEXA(10)			204
	FREQA(10)			214
	MACC			224
•	MACC			225
	FSACC			226
	BLACC			227
•	WLACC			228
*	TSTEP			
	TMAX			229
	OPPLOT			230
•	DOFPLT(21)			231
•				

FLDATA (566)

OPFLOW	1
OPSYMM	2
OPFDAN	3 4
MPSIPC	4
NINTPC	5 6
NBLDFL OPSAS	6
KCSAS	7
KSSAS	9
TCSAS	10
TSSAS	11
OPTORS(2)	12
OPGRND	14
KASGE DOF(80)	15
CON(26)	16 96
GUS(3)	122
DELTA	125
OPRINT	126
MPSICC	127
DALPHA DMACH	128
OPUSLD ·	129
ANTYPE(4)	130 131
NSYSAN	135
NSTEP	136 137
NFREQ	137
FREQ(100)	138
NBPLOT NAMEXP(80)	238 239
NAMEVP(29)	319
NXPLT	348
NVPLT	349
NDPLT	350
NFOPLT	351
NF1PLT MSPLT	352
NTPLOT	353 354
PERPLT	355
DTPLT	356
TMXPLT	357
LGUST(3)	358
MGUST(3)	361 361
NAMEXA(83) FREQA(83)	364 447
MACC	530
FSACC	531

BLACC 532 WLACC 533 ZETACC(3.10) NAMEXR(3) 534 564

A1TABL(15119)

TITLE(20)	title for airfoil data (80 characters)	1
IDENT(4)	identification (alphanumeric date and time)	21
NMAX	$n_{N_a} * n_{N_m} * N_r$	25
	angle of attack boundaries	
NAB	$N_{\mathbf{a}}$	26
NA(20)	n_k , $k = 1$ to N_a	27
A(20)	\mathbf{x}_{k} (deg), $k = 1$ to N_{a}	47
	Mach number boundaries	
NMB	N_{m}	67
NM(20)	n_k^m , $k = 1$ to N_m	68
M(20)	$M_{\mathbf{k}}^{\mathbf{R}}$, $\mathbf{k} = 1$ to $N_{\mathbf{m}}^{\mathbf{m}}$	88
	radial stations	
NRB	$N_{\mathbf{r}}$	108
R(11)	r_k , $k = 1$ to $N_r + 1$	109
	airfoil characteristics	
CLT(5000)	c_{χ_j} , $j = 1$ to NMAX	120
CDT(5000)	c_{d_i} , $j = 1$ to NMAX	5120
CMT(5000)	c_{m_j} , $j = 1$ to NMAX	10120
(3-3-)	om j v i so i i i i i i i i i i i i i i i i i	10120

CASECM(9)

RESTRT	restart code: 1 for trim, 2 for flutter, 3 for flight dynamics, 4 for transient	1
JCASE	case number	2
TASK	task code: 1 for trim, 2 for flutter, 3 for flight dynamics, 4 for transient	3
JOB RSWRT NCASES BLKDAT RDFILE START		4 5 6 7 8 9

UNITNO(11)

NFDAT	1
NFAF1	2
NFAF2	3
NFRS	4
NFEIG	5
NFSCR	6
NUDB	7
NUOUT	8
NUPP	9
NULIN	10
NUIN	11

TRIMCM(1604)

IDENT(4)	identification code for case and restart file (alphanumeric date and time)	1
DRATIO	density ratio, 8/8.	5
DENSE	air density &	6
CSOUND	speed of sound	7
ALTD	density altitude	8
GRAV	gravity, g/\(\Omega^2\)R	9
CXTARG	target C _Y / for trim	10
OPRTR2	integer parameter: 0 to skip rotor #2 calculations	11
DPSI	△♥ (rad)	12
COUNTT	integer parameter: number of trim iterations	13
FSCALE RSCALE NSCALE ISCALE GSCALE SSCALE CSCALE	(reference rotor) R N Ib & c _m	14 15 16 17 18 19 20
cospsi(36)	$\cos \psi_{j}$, $j = 1$ to MPSI	21
SINPSI(36)	sin W. i = 1 to MPSI	57
KEPSI(21,36)	complex parameter: $(K_n/J)e^{-in}$ ψ_j j = 1 to MPSI, $n = 1$ to max(MHARM, MHARMF*NBLAD	93 E)

RTR1CM(1070)

OMEGA	rotor speed Ω (rad/sec)	1
MTIP	tip Mach number Ω R/c _s	2
GAMMA	Lock number &	3
CMEAN	mean chord c _m	4
IB	characteristic inertia I _h	5
NBM	number of bending modes	6
NTM	number of torsion modes	7
NGM	zero if no gimbal or teeter mode	8
NBMT	number of mean bending deflection modes	9
GLAG	g _{lag}	10
MLD	$M_{\rm LD}/I_{\rm b}\Omega^2$	11
DZLD	E _{LD} /CZ	12
CGC	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13
CGS	$C_{GS}^* = C_{GS}^{1/2} NI_b \Omega$	14
NUGC	\mathbf{v}_{GC} (or \mathbf{v}_{T})	15
NUGS	GS	16
CTO	collective control damping $C_{f e}/I_{f b}\Omega$	17
CTC	cyclic control damping $C_{f b}/I_{f b}\Omega$	18
CTR	rotating control damping C /I C	19
RA(30)	aerodynamic radial stations, r_i , $i = 1$ to MRA	20
DRA(30)	aerodynamic segment length Δr_i , $i = 1$ to MRA	50
FTIP(30)	tip loss multiplicative factor f _i , i = 1 to MR	A 80
PSI21M	MOTHH, WAKEN, ENGNM)	110
PSI21W	$\triangle \Psi_{21}$ (rad), $-\triangle \Psi_{21}$ for rotor #2 (for WAKER, WAKEC)	111
MUX	/4 _x	112
MUY		113
MUZ	μ _y μ _z	114
RGUST(3,3)	$R_{\mathbf{G}}$	115
CHUB(6,16)	c	124
CBHUB(3,3)	\overline{c} (including factor $\Omega_{ ext{ref}}/\Omega$)	220
CHUBT(16,6)	$\mathbf{c^T}$	229

		RTR1CM
ALFHP	∼ _{HP} (deg)	325
PSIHP	₩ _{HP} (deg)	326
MAT	Mat _1	327
CD(2)	$C_{\rm D}^{-1}$ for drive train $H_{\rm n}^{-1}$	328
CPSI(2)	Cy for drive train motion	330
PINTER(36)	burst tip vortex in wake model $\phi_{inter} (rad) \text{ at } \psi_{j}, j = 1 \text{ to MPSI}$	332
PBURST(36)	ψ_b (rad) at Ψ_i , $j = 1$ to MPSI	36 8
	inertial and structural data at $r = e + (j-1)\Delta r$, $j = 1$ to MRB+1	
EIXXB(51)	$\Omega^{2}R^{4}/EI_{xx}$	404
EIZZB(51)	$\Omega^{2}R^{4}/EI_{zz}$	455
MASSB(51)	m ZZ	506
TWISTB(51)	tw (rad)	557
CENT(51)	Sim a da	60 8
	inertial and structural data at $r = r_{FA} + (j-1)\Delta r$, $j = 1$ to MRB+1	
ITHETB(51)	- 11	659
GJB(51)	Ω ² R ⁴ /GJ	710
	inertial data at $r = (j-1)\Delta r$, $j = 1$ to MRM+1	
MASSI(51)	$mR^3/I_{\mathbf{h}}$	761
ITHETI(51)	IeR/I	812
XII(5 1)	x _T /R	863
XCI(51)	x _C /R	914
TWISTI(51)	Θ_{tw} (rad)	965
KP2I(51)	$\mathbf{k}_{\mathbf{p}}^{2}/\mathbb{R}^{2}$	1016
IPITCH	blade pitch inertia (slug-ft ² or kg-m ²)	1067
	control system stiffness Kg (ft-lb/rad or m-N/rad)	
КТО	collective	1068
KTC	cyclic reactionless	1069 1070
KTR	Teacitonitess	1010

RH1CM(12792)

HRTR(16,16,21)	complex rotor transfer function matrix, H_n^{-1} ; size NBM+NTM+NGM; $n = 0$ to MHARM	1
нвору(16,6,10)	complex airframe transfer function matrix, $H_n^{-1}c^Te^{in\Delta V_{21}}$; $n=pN\Omega/\Omega_{ref}$, $p=1$ to MHARMF	10753
HENG(6,10)	complex drive train transfer function matrix, $H_n^{-1} C_D e^{in\Delta \Psi_{2}}$; $n = pN\Omega/\Omega_{ref}$, $p = 1$ to MHARMF	12673

BODYCM(446)		
AMODE1(6,16)	$(\vec{\xi}_k, \vec{\chi}_k)$ at rotor #1 hub (dimensionless)	1
AMODE2(6,16)	(\vec{k}, \vec{k}) at rotor #2 hub (dimensionless)	61
KMSTC1(10)	pitch/mast-bending coupling (dimensionless) KMCk for rotor #1	121
KMSTS1(10)	K _{MSk} for rotor #1	131
KMSTC2(10)	K _{MCk} for rotor #2	141
KMSTS2(10)	K _{MSk} for rotor #2	151
ADAMPA(10)	aerodynamic damping (28/4-aA)(q/V)Fqkqk	161
ACNTRL(4,10)	control derivatives (28/-aA)qFqk&	171
AMASS(10)	* M₁_	211
ADAMPS(10)	^M [*] M [*] g _s い M [*] w ² M [*] w ² M [*]	221
ASPRNG(10)	$M_1^* \omega_1^*$	231
MSTAR	K K M*	241
MSTARG	M*g	242
ISTAR(3,3)	ı*	243
CWS	$C_{u}/\Psi = (a/2 \%) M*g$	25 2
HMASS	aircraft mass (slug or kg)	253
NAM	number of airframe modes	254
	aircraft description ($\Theta_{T} = \Psi_{T} = 0$)	
RSF10(3,3)	R _{SF} for rotor #1	255
RSF20(3,3)	R _{SF} for rotor #2	264
RHUB10(3)	r at rotor #1 hub	273
RHUB20(3)	rat rotor #2 hub	276
RWB0(3)	r at wing/body	279
кнто(3)	r at horizontal tail	2 82
RVTO(3)	r at vertical tail	285
ROFFO(3)	r off rotor	288

		BODYCM
	aircraft description	
RSF1(3,3)	R _{SF} for rotor #1	291
RSF2(3,3)	R _{SF} for rotor #2	300
RHUB1(3)	r at rotor #1 hub	309
RHUB2(3)	r at rotor #2 hub	312
RWB(3)	r at wing/body	315
RHT(3)	r at horizontal tail	318
RVT(3)	r at vertical tail	321
ROFF(3)	r off rotor	324
TCFE(11,5)	${f T}_{f CFE}$	327
VXREKF(3)	$(\vec{v}_x) R_e \vec{k}_F$	382
MVXRE(3,3)	$-M^* (\vec{V}x) R_e$	385
GMTRX(3,3)	G	394
IBODY(3,3)	$R_{\mathbf{e}}^{\mathbf{T}} \mathbf{I}^{\mathbf{*}} R_{\mathbf{e}}$	403
REULER(3,3)	R _e	412
RFV(3,3)	R_{FV}	421
RFE(3,3)	$R_{ extbf{FE}}$	430
KE(3)	k _E	439
VELF(3)	$\overrightarrow{\mathbf{v}}$	442
VCLIMB	$^{ m V}_{ m climb}$	445
VSIDE	V side	446

1 QTHRTL 2 IENG 3 KMI1 KMI2 4 KMI2 KMR KME1 5 **KMR** 6 KME1 K_{ME2} 7 KME2 governor proportional gains, $K_p^* \Omega$ 8 engine KPGOVE 9 rotor #1 KPGOV1 10 rotor #2 KPGOV2 11 NDM number of drive train modes governor time lag, 7,*\7 12

engine

rotor #1

rotor #2

governor time lag, T2*52

ENGNCM(131)

T1GOVE

T1GOV1

T1GOV2

13

14

GUSTCM(12989)

	gust components, velocity axes	
VGWBV(3)	at wing/body, \vec{g}_w	i
VGHTV(3)	at horizontal tail, g	4
VGVTV(3)	at vertical tail, \vec{g}_V	7
vGR1V(3,30,36)	at rotor #1, $\vec{g}(r_i, \hat{p}_i)$	10
VGR2V(3,30,36)	at rotor #2, $\vec{g}(r_i, \psi_i)$	3250
VGHUB1(3)	at rotor #1 hub, g (for wake geometry)	6490
VGHUB2(3)	at rotor #2 hub, g (for wake geometry)	6493
•	gust components, F axes	
VGWBF(3)	at wing/body, \overline{g}_W	6496
VGHTF(3)	at horizontal tail, g	6499
VGVTF(3)	at vertical tail, $\vec{\mathbf{g}}_{\mathbf{V}}$	6502
	gust components, S axes	
VGR1S(3,30,36)	at rotor #1, $\vec{\mathbf{g}}(\mathbf{r_i}, \boldsymbol{\psi_i})$	6505
VGR2S(3,30,36)	at rotor #2, $\vec{g}(r_i, \psi_i)$	9745
	transient control	
VPTRAN(5)	$\Delta_{\mathbf{v}_{\mathbf{p}}}^{\mathbf{d}} = (\mathbf{\delta}_{0} \mathbf{\delta}_{\mathbf{c}} \mathbf{\delta}_{\mathbf{s}} \mathbf{\delta}_{\mathbf{p}} \mathbf{\delta}_{\mathbf{t}})^{\mathrm{T}}$	12985

CONTCM(32) 1 control vector (rad): VCNTRL(11) $\vec{\nabla} = (\Theta_{76} \Theta_{14} \Theta_{15} \Theta_{75} \Theta_{14} \Theta_{15} \delta_{5} \delta_{6} \delta_{6} \delta_{7} \Theta_{7})^{T}$ rotor#1 rotor#2 airframe er (rad) 12 THETFT ϕ_{FT} (rad) 13 PHIFT ⊖_{FP} (rad) 14 THETFP Ψ_{FP} (rad) 15 **PSIFP** $\Theta_{\mathrm{T}}^{-}(\mathrm{rad})$ 16 THETAT 17 Ψ_m (rad) **PSIT** airframe motion (dimensionless) $(\ \dot{\varphi_F} \ \dot{\varphi_F} \ \ddot{\psi_F} \ \ddot{x}_F \ \dot{\tilde{y}}_F \ \ddot{z}_F)$ 18 DVBODY(6) $\dot{\Psi}_{s}$ (static; dimensionless) 24 **DOMEGA** 25 $\ddot{z}_{_{\Gamma}}$ (dimensionless) DDZF 26 VPILOT(5) 31 ($\triangle \Theta_{govr}$)rotor#1 TGOVR1 (Aegovr)rotor#2 (rad) 32 TGOVR2

CONVCM(80)

	mean square motion (rotor #1)	
B1MS(10)	B	1
T1MS(5)	⊖	11
BG1MS	βω	16
P1MS(16)	ф	17
PS1MS(6)	Ψ	33
	mean square motion (rotor #2)	
B2MS(10)	β	39
T2MS(5)	B	49
BG2MS	ße	54
P2MS(16)	•	55
PS2MS(6)	Ψ	71
G1MS	mean square circulation (rotor #1)	77
G2MS	mean square circulation (rotor #2)	78
COUNTM	integer parameter: number of motion iterations	79
COUNTC	integer parameter: number of circulation iterations	80

MD1CM(6773) old θ_{75} (initialized to 1000.) 1 T750LD old NBM (initialized to 0) 2 NBMOLD old NTM (initialized to 0) 3 NTMOLD bending frequency $\sqrt{1}$, i = 1 to NCOLB (per rev) 4 NU(20) nonrotating bending frequency v_{NR_i} , i = 1 to NCOLB (rad/sec) 24 NUNR(20)bending mode displacement $\vec{\gamma}_i$, i = 1 to NBM, at radial station r =44 ETA(2,10) r_{FA} 64 ETA(2,10)rpB 84 ETA(2,10) rROOT 104 ETA(2,10) 124 ETA(2,10,11)(j-1)0.1, j = 1 to 11 344 ETA(2,10,51) $(j-1)\Delta r$, j=1 to MRM+1 r_j , j = 1 to MRA 1364 ETA(2,10,30)bending mode slope 7i, i = 1 to NBM, at radial station r = 7i1964 ETAP(2,10)rFA 1984 ETAP(2,10) r_{PB} 2004 ETAP(2,10)r ROOT 2024 ETAP(2,10) (j-1)0.1, j = 1 to 11 2044 ETAP(2,10,11)2264 ETAP(2,10,51) $(j-1)\Delta r$, j=1 to MRM+1 r_j , j = 1 to MRA 3284 ETAP(2,10,30)bending mode curvature η_i'' , i = 1 to NBM, at radial station $r = \eta_i''$ 3884 ETAPP(2,10) r_{FA} ETAPP(2,10)3904 r_{pR} 3924 ETAPP(2.10) rROOT

(j-1)0.1, j = 1 to 11

 r_i , j = 1 to MRA

 $(j-1)\Delta r$, j = 1 to MRM+1

ETAPP(2,10)

ETAPP(2,10,11)

ETAPP(2,10,51)

ETAPP(2,10,30)

3944

3964

4184

5204

		MD1CM
ETAPH(2,10)	bending mode slope at hinge, $\vec{\gamma}'(e)$	5804
WT(11)	torsion frequency ω _i , i = 1 to NCOLT+1, (per rev)	5824
WTO WTC WTR	control system frequency (per rev) collective cyclic reactionless	5835 5836 5837
	torsion mode displacement ξ_1 , $i = 1$ to NTM, at radial station $r = 1$	
ZETA(5,11)	(j-1)0.1, $j = 1$ to 11	5838
ZETA(5,51)	$(j-1)\Delta r$, $j = 1$ to MRM+1	5893
ZETA(5,30)	r_{j} , $j = 1$ to MRA	6148
	torsion mode slope ; i = 1 to NTM, at radial station r =	
ZETAP(5,11)	(j-1)0.1, $j = 1$ to 11	6298
ZETAP(5,51)	$(j-1)\Delta r$, $j = 1$ to MRM+1	6353
ZETAP(5,30)	r _j , j = 1 to MRA	6608
KPB(10)	pitch/bending coupling Kp _i , i = 1 to NBM	6758
KPG	pitch/gimbal coupling KPG	6768
DEL1	S _{FA} (rad)	67 <i>6</i> 9
DEL2	δ _{FA₂} (rad)	6770
DEL3		6771
DEL4	δ _{FA₃} (rad) δ _{FA₄} (rad)	6772
DEL5	δ _{FA} ₅ (rad)	6773

INC1CM(4365)

MB SB	Inertia	coefficients	1 2 3 4
IO IQ(10)			
SQ(2,10)			14 34
IQA(2,10) IQDQ(10,10)			54 54
IQDQT(10,10,4)			154
IQDP(10)			554
IQDPT(10,4)			564 604
IQDB(10) IQDBT(10,4)			614
SQDDP(10,5)			654
SQDDPT(10,5,4)			704
SQP(10,5)			904
SQPT(10,5,4)			954 11 54
IQO(10) IQODQ(2,10)			1164
IQODQT(2,10,4)			1184
IQODP			1264
IQODPT(4)			1265
IQODB IQODBT(4)			1269 1270
SQODDP(2,5)			1274
SQODDT(2,5,4)			1284
IFX0			1324
IMXO			1325
IP(5) IPA(2,5)			1326 1331
IPAT(2,5,4)			1341
SP(2,5)			1381
SPT(2,5,4)			1391
IPDDP(5,5)			1431 1456
IPDDPT(5,5,4) IPDDTT(5,5,4,4)			1556
IPP(5,5)			1956
SPDDQ(5,10)			1981
SPDDQT(5,10,4)			2031
IPO(5) SPQ(5,10)			2231 2236
SPQT(5,10,4)			2286
XAPQ(2,5,4,30)	$\vec{X}_{k,j}$ at r	1, i = 1 to MRA	2486
MQDQ(10,10)	•	umic spring and damping	36 86
MQDB(10)	•		3786
MQP(10,5)			3796
MDQ(10) MDB			3846 3856
MP(5)			3857
,-,			

		INC1CM
QDZ		3862
QT		3863
MPDQ(5,10)		3864
MPDB(5)		3914
MPDP(5,5)		3919
MPP(5,5)		3944
IQDQS(10,10)	Inertia coefficients, summed over q;	3969
IQDPS(10)	3	4069
IQDBS(10)		4079
SQDDPS(10,5)		4089
SQPS(10.5)		4139
IQODQS(2,10)		4189
IQODPS	•	4209
IQODBS		4210
SQ0DDS(2,5)		4211
IPAS(2,5)		4221
SPS(2,5)		4231
IPDDPS(5,5)		4241 4266
SPDDQS(5,10)		
SPQS(5,10)		4316

(NBM=10, NTM=5, NBMT=4, MRA=30)

WKV1CM(8165)

CTOLD	old C _p	1
CMXOLD	old C _{Mx}	2
CMYOLD	old C _{Mv}	3
GAMOLD(30,36)	old $\Gamma_{i,j}^{j}$ (i = 1 to MRA, j = 1 to MPSI)	4
CRCOLD(36)	old max Γ_i (j = 1 to MPSI)	1084
VIND(3,30,36)	$(\mathbf{r}_i, \mathbf{\Psi}_j)$ (i = 1 to MRA, j = 1 to MPSI)	1120
LAMBDA	mean \(\lambda_{\text{\tinit}\\ \text{\tin}\tintet{\text{\text{\text{\texi}\text{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi}\tint{\texi{\texi{\texi}\tint{\tinit{\ti}\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\tex	4360
FGE	$f_{GE} = v/v_{\infty} = 1 - (\cos \epsilon/4z)^2$ (1. if OGE)	4361
COSE	cos€	4362
ZAGL	^Z AGL	4363
VINT(3,30,36)	$\sum_{i=1}^{RGD} (r_i, \Psi_j)$ (i = 1 to MRA, j = 1 to MPSI)	4364
	at other rotor	
vorh(3,36)	$\vec{\lambda}_{int}(\Psi_j)$ (j = 1 to MPSI), at other rotor hub	7604
LAMBDI	mean λ_{int} , at other rotor	7712
VWB(3,36)	$\sum_{i=1}^{n} (i)^{n}$ (j = 1 to MPSI), at wing/body	7713
VHT(3,36)	$\sum_{i}^{n} (\mathbf{v}_{i})$ (j = 1 to MPSI), at horizontal tail	7821
vv t (3,36)	$\lambda_{v}^{n}(\Psi_{i})$ (j = 1 to MPSI), at vertical tail	7929
voff(3,36)	$\frac{1}{\lambda_0}(\psi_j)$ (j = 1 to MPSI), off rotor disk	9037
LAMBDW(3)	mean 🛴, at wing/body	8145
LAMBDH(3)	mean X_H , at horizontal tail	8148
LAMBDV(3)	mean $\mathbf{\hat{\zeta}}_{v}$, at vertical tail	3151
LAMBDO(3)	mean \mathbf{X}_{0} , off rotor disk	9154
EINTW(3)	$\vec{\mathbf{e}}_{\mathbf{W}} = \mathbf{K}_{\mathbf{W}} \mathbf{C}_{\mathbf{W}} \mathbf{R}_{\mathbf{SF}}^{\mathbf{T}} (-\vec{\mathbf{k}}_{\mathbf{S}}) (\mathbf{\Omega}_{\mathbf{R}}) / (\mathbf{\Omega}_{\mathbf{R}})_{\mathbf{ref}}$	8157
EINTH(3)	$\vec{\mathbf{e}}_{H} = \mathbf{K}_{H} \mathbf{C}_{H} \mathbf{R}_{SF}^{T} (-\vec{\mathbf{k}}_{S}) (\mathbf{\Omega}_{R}) / (\mathbf{\Omega}_{R})_{ref}$	8160
EINTV(3)	$\vec{e}_V = K_V C_V R_{SF}^T (-\vec{k}_S)(\Omega R)/(\Omega R)_{ref}$	8163
	<u> </u>	

MNH1CM(462) complex $\underset{pN}{\swarrow}$ (p = 1 to MHARMF), without Euler ALF(10,6) 1 angle contributions complex \approx_{pN} (p = 1 to MHARMF) DALF(10,6) 121 complex \approx_{pN}^{pN} (p = 1 to MHARMF) DDALF(10,6) 241 complex $\Psi_{s_{pN}}^{p}$ (p = 1 to MHARMF) PSIS(10) 361 complex $(\triangle \Theta_{govr})_{pN}$ (p = 1 to MHARMF)complex $(\triangle \Theta_{mast-bend})_n$ (n = 1 to MHARM)TGOVR(10) 381 TMAST(21) 401 ALFO(6) ≪static 443 **∴**static DDALO(6) 449 static (Ys)static (Ys)static DDALFO(6) 455 PSIS0 461

DPSIS0

$$\approx = (x_h \ y_h \ z_h \ll_x \ll_y \approx_z)^T$$

462

AES1CM(36720) 1 STATE(30,36,3)integer parameter defining stall state for lift, drag, moment (initialized to zero) peak dynamic stall vortex loads (initialized to zero) 3241 DCLMAX(30,36) c_{lmax} 4321 DCDMAX(30,36) $^{\mathrm{c}_{\mathrm{d}}}$ max 5401 DCMMAX(30,36) $c_{m_{max}}$ effective environment for lift, drag, moment Mach number Meff 6481 MEFF(30,36,3)angle of attack &eff 9721 AEFF(30,36,3)dynamic stall vortex load 12961 DCLDS(30,36) cods 14041 DCDDS(30,36) $\mathtt{c}_{\mathtt{d}_{\mathtt{d}\mathtt{s}}}$ 15121 DCMDS(30,36) $\mathbf{c}_{\mathsf{mds}}$ 16201 SAVE(30,36,19) section aerodynamic data (1) u_p (11)(2) u_T (12) c^{q} (3) u_R (13)(14) $^{\mathrm{c}_{\mathrm{d}}}$ radial (4) U (15) F_{x}/ac_{m} (5) **O** (deg) (6) **\$** (deg) (16)F_/ac_m $\mathbf{F}_{\mathbf{z}}/\mathbf{ac}_{\mathbf{m}}$ $(7) \propto (\text{deg})$ (17)(8) M (18)(19) (9) cos**∧** (10) &c/V

aerodynamic data at (r_i, ψ_i) on disk, i = 1 to MRA, j = 1 to MPSi

MNR1CM(1112) BETA(21,10) complex β_n (i = 1 to NBM, n = 0 to MHARM) 1 THETA(21,5) complex $\Theta_n^{(i)}$ (i = 1 to NTM, n = 0 to MHARM) 421 BETAG(21) complex β_n (n = 0 to MHARM) 631 PHI(10,16) complex $\phi_n^{(i)}$ (i = 1 to NAM, p = 1 to MHARMF) 673 PSID(10,6) complex (ψ_s ψ_I ψ_e $\Delta\Theta_t$ $\Delta\Theta_{g_1}$ $\Delta\Theta_{g_2}$) pN 993 (p = 1 to MHARMF)

MNSCM(12)

QSSTAT(10)	${{({ m q}_{ m s}}_{ m k})}_{ m static}$ elastic	(k = 7 to NAM)	1
PISTAT	(Y) I ⁾ static elastic		11
PESTAT	($\Psi_{\rm e}$) _{static}		12

AEF1CM(1548)

FORCE(16,36)	(F _j) _{last rev, j = 1 to MPSI (dimension NBM+NTM+NGM)}	1	
FHUB(6,36)	hub reactions (without rotor $F = (82C_H/4a, 82C_Y/4a, 82C_M/4a)$	δ2C _T / - a,	
TORQUE(36)	800/4-a	793	
SAVE(36,20)	integrated aerodynamic force (1)-(10) M _{Q_kaero} /ac	829	
	(11)-(15) M _{P_kaero} /ac		
	(16) C _m /~a		
	(17) C _{m_z} / v a		
	(18) C _f / - a		
	(19) C _{f_g} / - a		
	(20) C _f / y -a		

QR1CM(1139) rotor generalized force, $\overrightarrow{Q} = c^{T}F$ QRTR(6) 1 mean hub reaction $F = (\chi 2C_H / -a, \chi 2C_Y / -a, \chi 2C_T / -a, \chi 2C$ FHUBM(6) 7 $\delta_{2C_{M_X}}^{n}/\sigma a$, $\delta_{2C_{M_Y}}/\sigma a$, $-\delta_{2C_{Q}}/\sigma a$) for trim C_I/**v** (wind axes) 13 CLS C_{χ}/σ (wind axes) 14 CXS C⁴/**~** CTS 15 Cy/v 16 CYS Cp/ 17 CPS for inflow 18 CT C^{L} $\mathtt{C}_{M_{\mathbf{X}}}$ 19 CMX $\mathbf{c}_{\mathbf{M}_{\mathbf{y}}}$ CMY 20 for trim 21 BETAO Bo 22 BETAC β_{c} 23 BETAS β_s for inflow circulation Γ_{ij} (i = 1 to MRA, j = 1 to MPSI) maximum circulation Γ_{j} (j = 1 to MPSI) GAM(30,36)24 CIRC(36) 1104

QBDCM(49)

QWB(6)	wing-body	generalized for	rces	1
QHT(6)	horizonta	al tail generaliz	zed forces	7
QVT(6)	vertical	tail generalized	forces	13
SAVE(31)	airframe	aerodynamic data	1 ₂ 2	19
	(1)	(D/q) _{WB}	ft ² or m ²	
	(2)	(Y/q) _{WB}		
	(3)	$(L/d)^{MB}$. ♦	
	(4)	(M _x /q) _{WB}	ft ³ or m ³	
	. (5)	$(M_y/q)_{WB}$	·	
	(6)	$(M_z/q)_{WB}$	þ	
	(7)	(D/q) _{HT}	ft ² or m ²	
	(8)	(L/q) _{HT}	1	
	(9)	(D/q) _{VT}		
	(10)	(L/q) _{VT}		
	(11)		deg	
	(12)	$\beta_{\mathtt{WB}}^{\mathtt{WB}}$		
	(13)	` WD		
	(14)	AT $\boldsymbol{\alpha}_{vm}$		
	(15)		·	
	(16)	•	•	
	(17-19)	v	ft/sec or m/sec	
	(20-22)	WB		
	(20-22) (23-25)	THT		
	(26-28)	VT	rad/sec	
	•		•	
	(29)	d _{MB}	dimensionless	
		$^{\mathrm{TH}}$		
	(31)	$q_{ m VT}$	*	

WG1CM(7998) $\vec{r}_b(r_{ROOT}, \Psi_j)$ $\vec{r}_b(1, \Psi_j)$ 1 RBR(3,36)109 RBT(3,36) $\vec{\mu}_{\mathrm{tpp}}$ MUTPP(3) 217 prescribed wake, tip vortices 220 DZT(144) $D_{z}(k)$, k = 1 to KRWG 364 $D_r(k)$, k = 1 to KRWG DRT(144) 508 K2T prescribed wake, sheet inside edge $D_{g}(k)$, k = 1 to KRWG 509 DZSI(144) $D_r(k)$, k = 1 to KRWG 653 DRSI(144) 797 K2SI prescribed wake, sheet outside edge 798 DZSC(144) $D_{z}(k)$, k = 1 to KRWG 942 $D_{\mathbf{k}}(\mathbf{k})$, $\mathbf{k} = 1$ to KRWG DRSO(144) 1086 K₂ K2S0 free wake, tip vortices 1087 DFWG(3,2304) $\overline{D}(n)$, n = 1 to KRWG*MPSI $n = (\lambda - 1)KFWG + k$ ((k = 1 to KFWG), λ = 1 to MPSI)

WKC1CM(120007)

MR	total number of points in flow field at which nonuniform induced velocity calculated for each azimuth (ML+MI+NW+MH+MV+MO)	1
ML	<pre>number of points on this rotor (MRL if INFLOW(1) = 1; zero otherwise)</pre>	2
MI	<pre>number of points on other rotor (MRL of other rotor if INFLOW(2) = 3; 1 if INFLOW(2) = 2; zero otherwise)</pre>	3
MW	<pre>number of points on wing-body (1 if INFLOW(3) = 2; zero otherwise)</pre>	4
мн	<pre>number of points on horizontal tail (1 if INFLOW(4) = 2; zero otherwise)</pre>	5
MV	<pre>number of points on vertical tail (1 if INFLOW(5) = 2; zero otherwise)</pre>	6
MO	<pre>number of points off rotor disk (1 if INFLOW(6) = 1; zero otherwise)</pre>	7
C(3,20000)	C(n), $n = 1$ to MPSI*MR*MPSI	8
CNW(3,20000)	$\overline{C}_{NW}(n_{NW})$, $n_{NW} = 1$ to MRG*(KNW+1)*MRL*MPSI	60008

$$\vec{v}(r_{k}, \Psi_{R}) = \sum_{j=1}^{N} \Gamma_{j} \vec{C}(n) + \sum_{j=k-k_{NW}}^{N} \sum_{i=1}^{N} \Gamma_{ij} \vec{C}_{NW}(n_{NW})$$

$$n = ((N-1)*MR + k-1)*MPSI + j$$

$$(((j=1 \text{ to MPSI}), k=1 \text{ to MR}), N=1 \text{ to MPSI})$$

$$n_{NW} = (((N-1)*MRL + k-1)*(KNW+1) + j-N + KNW)*MRG + i$$

$$((((i=1 \text{ to MRG}), j=N-KNW \text{ to }N), k=1 \text{ to MPSI})$$

AEMNCM(78) q_k , k = 1 to NBM Q(10) 1 11 $\mathbf{\dot{q}}_k$ DQ(10) q_k 21 DDQ(10) 31 P(5) p_k , k = 1 to NTM $(p_0 = p_d + p_r)$ 36 DP(5) $\mathbf{\hat{p}_k}$ 41 ̈́κ DDP(5) 46 PD p_d 47 $\mathbf{\mathring{p}}_{\mathrm{d}}$ DPD 48 P_d DDPD 49 PR 50 DPR 51 DDPR 52 BG53 DBG 54 DDBG 55 AHUB(6) $\dot{\vec{\alpha}} = (\dot{x}_h \dot{y}_h \dot{z}_h \dot{\alpha}_x \dot{\alpha}_y \dot{\alpha}_z)$ $\dot{\vec{\alpha}} = (\ddot{x}_h \ddot{y}_h \ddot{z}_h \ddot{\alpha}_x \ddot{\alpha}_y \ddot{\alpha}_z)$ 61 DAHIB(6)67 DDAHUB(6) **≯**s **•**≠s 73 PS 74 DPS 75 **DDPS** △6 mast-bend 76 $\mathbf{T}\mathbf{M}$ 77 Aegovr Ög - eg + 2 Åg TG 78 DTT

LDMNCM(2932)

SAVEM(36,78)	motion at Ψ_j , $j = 1$ to MPSI.	1
	(refer to common block AEMNCM for contents)	
MB	inertial coefficients for section loads	2809
SB		2810
IO		2811
SQ(2,10)		2812
IQA(2,10)		2832
IQDQ(2,10)		2852
IQDB		2872
IQDP(2)		2873
SQDDP(2,5) SQP(2,5)		287 <i>5</i> 2885
IFXO		2895
IMXO(2)		2896
IPDDP(5)		2898
IPP(5)		2903
IPA(2)		290 8
SPDDQ(10)		2910
SPQ(10)		2920
SP(2)		2930
IPO		2932

FLMCM(21928)

A2(6400) A1(6400) A0(6400) B(2320) DOF1(80) NAMEX(80) NAMEV(29) MX MX1 MV MG		1 6401 12801 19201 21521 21601 21681 21710 21711 21712 21713
DOF1S(46) NAMEXS(46) NAMEVS(16) MXS MX1S MVS MGS	symmetric matrices	21714 21760 21806 21822 21823 21824 21825
DOF1A(43) NAMEXA(43) NAMEVA(13) MXA MX1A MVA MGA	antisymmetric matrices	21826 21869 21912 21925 21926 21927 21928

variables (80)
$$x = (x_{R1} x_{R2} x_S \Psi_e \Delta \partial_t \Delta \theta_{govr_1} \Delta \partial_{govr_2})$$
controls (29)
$$v = (v_{R1} v_{R2} v_S \Theta_t v_P g)$$

FLM1CM(4236)

A2(30,30)	A ₂	1
A1(30,30)	A ₁	901
A0(30,30)	. –	1801
AA2(30,6)	**************************************	2701
AA1(30,6)	ኧ ፟	2881
AAO(30,6)	$\boldsymbol{x}_0^{\scriptscriptstyle \perp}$	3061
B(30,8)	В	3241
BG(30,3)	$^{ m B}_{ m G}$	3481
c2(6,30)	c ₂	3571
C1(6,30)	$c_1^{\tilde{c}}$	3751
co(6,30)		3931
CA2(6,6)	$\mathfrak{F}_{\mathfrak{p}}^{\circ}$	4111
CA1(6,6)	ଙ୍	4147
CAO(6,6)	ະ ເ ເ ເ ເ ເ	4183
DG(6,3)	$^{ m D}_{ m G}$	4219

variables (30): x_R
controls (8): v_R
gust(3): g
hub motion (6):

hub forces (6): F

FLMACM(912) 1 A2(16,16) a₂ A1(16,16) 257 a₁ A0(16,16) 513 a₀ 769 B(16,4) ъ BG(16,3) 833 $\mathbf{b}_{\mathbf{G}}$ 881 BL(16,2) bλ

variables (16): x_S
controls (4): v_S
gust (3): g
inflow(2): (\(\lambda_{\mu_1} \lambda_{\mu_2} \))

FLINCM(477)

MASSB	1
10	2
IQ(10)	3
SQ(10,2)	13
IQA(10,2)	33
IQDQ(10,10)	53
IQDP(10)	153
IQDB(10)	163
SQDDP(10,5)	173
SQP(10,5)	223
IQODQ(10,2)	273
SQODDP(5,2)	293
IP(5)	303
IPA(5,2)	308
SP(5,2)	318
IPDDP(5,5)	328
IPP(5,5)	353
SPDDQ(5,10)	378
SPQ(5,10)	428

FLAECM(646)

MQU(10)	1
MQDZ(10)	11
MQZ(10)	21
MQL(10)	31
MQDB(10)	41
MQB(10)	51
MQDQ(10,10)	61
MQQ(10,10)	161
MQP(10,5)	261
MMU	311
MDZ	312
MZ	313
ML	314
MDB	315
MB	316
MDQ(10)	317
MQ(10)	327
MP(5)	337
TU	342
TDZ	343
TZ	344
TL	345
TDB	346
TB	347
TDQ(10)	348
TQ(10)	358
TP(5)	368
HU	373
HDZ	374
HZ	375
HL	376
HDB	377
нв	378
HDQ(10)	379
HQ(10)	389
HP(5)	399
ລູບ	404
QDZ	405 406
QZ	400
QL	407 408
QDB	408 4 0 9
QB	
QDQ(10)	410 420
QQ(10) QP(5)	430
#r()	430 435
RR	436
RU RDZ	437
RZ	438 438
RL	470

	FLAECM
RL	439
R DB	1410
RB	441
RDQ(10)	442
RQ(10)	452
RP(5)	462
MPU(5)	467
MPDZ(5)	472
MPZ(5)	477
MPL(5)	482
MPDB(5)	487
MPB(5)	492
MPDQ(5,10)	497
MPQ(5,10)	547
MPP(5,5)	597
MPDP(5,5)	622

STDCM(882)

DERIV(7,21)		1
DRVR1(7,21)	(both rotors for flutter case)	148
DRVR2(7,21)		295
DRVWB(7,21)		442
DRVHT(7,21)		589
DRVVT(7,21)		736

STMCM(340) A2FD(7,7) 1 A1FD(7,7) 50 AOFD(7,7) 99 BFD(7,19) 148 DOFFD(7) 281 CONFD(16) 288 GUSFD(3) 304 DOF1FD(7) 307 NAMXFD(7) 314 NAMVFD(19) 321 MXFD 340

variables (?):
$$(\phi_F \ \Theta_F \ \Psi_F \ x_F \ y_F \ z_F \ \Psi_S)$$

controls (19): $(\Theta_0 \ \Theta_{1c} \ \Theta_{1s} \ \Theta_0 \ \Theta_{1c} \ \Theta_{1s} \\ \delta_f \ \delta_e \ \delta_a \ \delta_r \ \Theta_t \ \delta_0 \ \delta_c \ \delta_s \ \delta_p \ \delta_t \\ u_G \ v_G \ w_G)$

gust components in wind axes

TRANCM(62)

QTRIM(6)	trim generalized force (total)	1
CQST1	trim -820 ₀ /-a (rotor #1)	7
CQST2	trim -820 (rotor #2)	8
IBODYI(7,7)	inverse of body inertia	9
DCSAS	SAS &	58
DSSAS	SAS &	59
TTGOV	transient governor $\Delta \theta_t$	60
T1GOV	transient governor (Degovr) rotor#1	61
T2GOV	transient governor (govr) rotor#2	62

2. SUBPROGRAM FUNCTION AND COMMUNICATION

This section describes the functions of the subprograms that constitute the computer program. The communication of the subprograms with each other is also described, in terms of the input and output variables. The description begins with the subprogram name, and its arguments. Next there is a statement of the principal function of the subprogram, and usually a general reference to a section in the analysis development. Then notes about the program content are given, including references to sections in the analysis development as appropriate. Finally all the input and output variables of the subprogram are listed. The left-hand column gives the variable name in the subprogram, and the right-hand column gives the label of the common block in which the variable is located. Some description of the variable may be given as well. Only the subprograms for rotor #1 are described; the subprograms for rotor #2 have identical functions and structure.

MAIN

Name: MAIN

Function: primary job and analysis control

General reference: section 5.3.5

CPRTR2 TRIMCM

CPRTR2 IDENT(4)

ANTYPE(3) TMDATA

ANTYPE(3) FILEID(4)

RESTRT

JCASE

TASK

JOB

RSWRT

NCASES

BLKDAT

RDFILE

START

TIMER

```
Name: TIMER(N,I,T)
Function: program timer
            integer parameter controlling timing calculations
                          initialize
                      1
                          start timer
                       2
                          stop timer
                      3
                          print times
                   other return present time
I
            timer number
                           case
                       2
                          TRIM
                          FLUT
                          STAB
                      5
6
                           TRAN
                          STABL
                          FLUTL
                          WAKEC1, WAKEC2
                       9
                           GEOMR1,GEOMR2
                      10
                           RAMF
                           MODE1, MODE2
                     11
                      12
                           MOTNR1, MOTNR2
                      13
                           PERF
                      14
                           LOAD
            elapsed CPU time (sec)
T
DEBUG
            integer parameter: print time T if GE 1
                                                                     TMDATA
ITDB
IDB(23)
```

INPTN

Name: INPTN

Function: input for new job

JCASE CASECM BLKDAT

RDFILE

DEBUGI integer parameter: debug print control TMDATA

OPREAD(10)

NROTOR

IXX

IYY

IZZ IXY

IXZ

IYZ ATILT

FSCG BLCG

WLCG WEIGHT

FILEID(4) TMDATA

.

MHARMF

INPTO

Name: INPTO

Function: input for old job

RESTRT

DEBUGI integer parameter: debug print control TMDATA

NROTOR ANTYPE(3) OPREAD(10) DEBUG(25) NPRNTI

INPTA1

Name: INPTA1

Function: read airfoil table file

DEBUG

TMDATA A1TABL

TITLE(20)
IDENT(4)

NMAX

NAB

NA(20)

A(20)

NMB

NM(20)

M(20)

NRB

R(11)

CLT(5000) CDT(5000) CMT(5000)

-63-

INPTR1

Name: INPTR1

Function: read rotor anmelist

DEBUG

TMDA TA

TITLE(20)

R1DATA

:
TWISTI(51)

INPTW1

Name: INPTW1

Function: read wake namelist

DEBUG
FACTWU

KWGSO(4)

KFWG

DQWG(2)

TMDATA

W1DATA

G1DATA

INPTB

KEDAMP

Name: INPTB

Function: read body namelist

DEBUG
TITLE(20)
BDDATA
DOFSYM(10)
LFTAW
OPTINT
ENGPOS
ENDATA

INPTL1

Name: INPTL1

Function: read loads namelist

DEBUG

MHARML

OPNOIS(4)

MVIB

ZETAV(3,10,10)

LADATA

TMDATA

L1DATA

INPTF

Name: INPTF

Function: read flutter namelist for new job

DEBUG

TMDATA

OPFLOW

FLDATA

NAMEXR(3)

INPTS

Name: INPTS

Function: read flight dynamics namelist for new job

DEBUG TMDA TA

NPRNTP

DOFPLT(21)

GCDATA GCDATA

CMAG(5)

INPTT

Name: INPTT

Function: read transient namelist for new job

DEBUG TMDATA
NPRNTT TNDATA

OPLMDA

OPTRAN GCDATA

. CMAG(5)

INPTG

Name: INPTG

Function: read flutter namelist for old job

DEBUG

TMDA TA

ANTYPE(4)

FLDATA

: NAMEXR(3)

INPTU

Name: INPTU

Function: read flight dynamics namelist for old job

DEBUG
OPPRNT(4)
STDATA

DOFPLT(21)

OPTRAN

CMAG(5)

INPTV

Name: INPTV

Function: read transient namelist for old job

DEBUG TMDATA

NPRNTT
NPRNTP

NPRNTL NRSTRT

TMAX

FILEI

all

all

all

all

all

Name: FILEI(NFILE, RDWRT)

Function: read or write input file

NFILE	file unit number	
RDWRT	integer parameter: 0 to read file, 1 to write file	
TITLBD(20) TITLR1(20) TITLR2(20) TITLCS(20) FILEID(4)		BDDATA R1DATA R2DATA TMDATA
all all all all all all all all		TMDATA BDDATA BADATA ENDATA LADATA GCDATA TNDATA STDATA FLDATA

R1DATA

W1DATA

G1 DATA

L1DATA

R2DATA

FILEJ

Name: FILEJ(NFILE, RDWRT)

Function: read or write trim data file

NFILE	file unit number				
RDWRT	integer parameter:	0 to read	file, 1	to write	file
MPSI LEVEL1 LEVEL2					TMDATA
KNW1 MRG1 MRL1					W1DATA
KFWG1 KNW2 MRG2					G1DATA W2DATA
MRL2 KFWG2					G2DATA
AFWG2 all all all all all all all all all al					G2DATA TRIMCM BODYCM ENGNCM GUSTCM CONTCM CONVCM MNSCM QBDCM RTR1CM MD1CM INC1CM WKV1CM MNH1CM AES1CM MNR1CM AEF1CM QR1CM RTR2CM RH2CM MD2CM INC2CM
all all all all all all all					WKV 2CM MNH2CM AES 2CM MNR 2CM AEF 2CM QR 2CM

FILER

Name: FILER(RDWRT)

Function: read or write restart file

Restart file structure:

- 1) case header record
- 2) input, trim, airfoil data
- 3) task header record -- ID,NREC
 (ID = 2 for flutter, 3 for flight
 dynamics, 4 for transient)
- 4) task data (NREC records)
- 5) repeat #3 and #4 as necessary
- 6) end record -- ID = 0. NREC = 0

RDWRT	integer	parameter:	0 1	to rea	file,	1	to	write	file	
RESTRT										CASECM
TITLCS(20) FILEID(4) NROTOR CODE										TMDATA
IDENT(4)										TRIMCM
TITLR1(20) TITLR2(20) TITLBD(20)										R1DATA R2DATA BDDATA
TITLA1(20) AF1ID(4) NMAX1 CLT1(5000) CDT1(5000) CMT1(5000)										A1TABL
TITLA2(20) AF2ID(4) NMAX2 CLT2(5000) CDT2(5000) CMT2(5000)										A2TABL

FILEF

Name: FILEF(RDWRT)

Function: read or write flutter restart file

RDWRT	integer	parameter:	0	to	read	file,	1	to	write	file	
NROTOR											TMDATA
OPFDAN											FLDATA
NBM1 NTM1 NGM1											RTR1CM
NBM2 NTM2 NGM2											RTR2CM
all all all all all all											FLMCM STDCM STMCM MD1CM MD2CM STDATA GCDATA

FILES

Name: FILES(RDWRT)

Function: read or write flight dynamics restart file

RDWRT	integer parameter:	0 to read file, 1 to write file	
all			STDCM
all			STMCM
all			STDATA
all			GCDATA

FILET

Name: FILET(RDWRT, ENDREC)

Function: read or write transient restart file

R DWRT ENDREC	integer	parameter: 0	to read file, 1 to write if at start of transient (required for file write	record,	
IT YN(7) DYN(7) DDYN(7) MTRACE TRACE(14377)				WORK
LEVEL1 LEVEL2					TM DA TA
all all all all all					TRANCM TNDATA GCDATA L1DATA L2DATA LADATA

FILEE

Name: FILEE(KEY)
Function: write eigenvalue file

KEY	integer	parameter defining case
	0	start file
		flutter, const. coeff. (FLUTL)
	1	complete
	2	symmetric
	3	antisymmetric
		flutter, periodic coeff. (FLUT)
	4	complete
	5	symmetric
	6	antisymmetric
		flight dynamics (STABL)
	7-18	6+IEQ (IEQ = equation type)

TASK JCASE		CASECM
IDENT(4)		TRIMCM
CODE		TMDATA
LAMDA(60) MX2	λ (constant coefficients)	EIGVC
LMDAP(60) LMDACP(60)	λ (periodic coefficients) λ_c (periodic coefficients)	EIGVP

INIT

Name: INIT

Function: initialization

NROTOR

INITA

Name: INITA

Function: initialize environment parameters

General reference: section 2.5

OPUNIT

ALTMSL

TEMP

DENSEI

OPDENS

DENSE

ALTD DRATIO

CSOUND

INITC

Name: INITC Function: initialize case parameters TMDATA OPUNIT DEBUG MPSI MHARM(2) MHARMF(2) OPTRIM OPGOVT LEVEL2 DOF(54) DOFT(8)VKTS VEL VTIP RPM COLL LATCYC LNGCYC PEDAL APITCH AROLL ACLIMB AYAW RTURN NROTOR XTRIM CXTRIM CONTCM THETET PHIFT THETTP PSIFP THETAT PSIT DVBODY(6)

TGOVR2
NBLD1
R1DATA

RADIUS SIGMA GAMMAO

VTIPN

DOMEGA
DDZF
VPILOT(5)
TGOVR1

	INITC
OMEGA1 OMEGA2 HMASS	RTR1CM RTR2CM BODYCM
TRATIO CONFIG WEIGHT	BDDATA
NBLD2	R2DATA
DRATIO DENSE GRAV	TRIMCM
CXTARG OPRTR2	
DPSI	
FSCALE RSCALE	
NSCALE	

ISCALE GSCALE SSCALE CSCALE

COSPSI(36) SINPSI(36) KEPSI(21,36)

INITR1

TDAMPR

Name: INITR1 Function: initialize rotor parameters Normalization parameters: section 2.6 Aerodynamic r, Ar: section 2.4.1 Tip loss factor: section 2.4.5 Linear twist: section 2.3.5 Control system damping: section 5.1.3 Gimbal/teeter spring and damping: sections 2.2.12, 2.2.13 Lag damper: section 2.2.16 TMDATA DEBUG MPSI rotor degrees of freedom DOF(16) DOFT(4) LEVEL **BDDATA** TRATIO TRIMCM DENSE CSOUND DRATIO QR1CM QRTR(6)FHUBM(6) CLS CXS CTS CYS CPS CT CMX CMY ΒO BC BS CIRC(36) WG1CM K2T K2SI K 2S0 R1DATA **GAMMAO** SIGMA NBLA DE RADIUS VTIPN TDAMPO TDAMPC

INITR1

NUGCO R1DATA NUGS 0 **GDAMPC GDAMPS** LDAMPC LDAMPM LDAMPR MRB MRM RAE(31) MRA BTIP OPTIP TWISTA(30)
TWISTI(51) RI(51) MRI INFLOW(6) LINTW TWISTL OMEGA RTR1CM GLAG MLD DZLD CGS CGC NUGC NUGS CT0 CTC CTR MTIP **GAMMA** CMEAN IB NBM NTM NGM NBMT RA(30) DRA(30) FTIP(30)CTOLD WKV1CM CMXCLD CMYOLD VIND(3,30,36)

LAMBDA

INIR1 VINT(3,30,36) VORH(3,36) WKV1CM LAMBDI VWB(3,36) VHT(3,36) VVT(3,36) VOFF(3,36) LAMBDW(3) LAMBDH(3) LAMBDV(3) LAMBDO(3) EINTW(3)EINTH(3) EINTV(3)STATE(30,36,3)AES1CM DCLMAX(30,36) DCDMAX(30,36) DCMMAX(30,36) ALPHA(30,36)BETA(21,10) MNR1CM THETA(21,5) BETAG(21) PHI(10,16) PSID(10,6) MNSCM QSSTAT(10) PISTAT PESTAT AEF1CM FORCE(16,36) FHUB(6,36) TORQUE(36) MD1CM T750LD NBMOLD NTMOLD VGUST(3,30,36) GUSTCM

vGUSTH(3)

INITB

```
Name: INITB
```

Function: initialize airframe parameters

Position of aircraft components: section 4.1.5

Rotation matrix R_{SF}: section 4.1.2

 \vec{r} , R_{SF} without \vec{e}_T/Ψ_T rotations: sections 4.1.3, 4.1.5

(for wind tunnel trim case)

Control matrix T_{CFE}: section 4.1.6 Aircraft inertia: section 4.2.4

Airframe elastic modes:

- a) pitch/mast-bending coupling (KMST): section 4.2.3 b) mode shape at hub (AMODE): section 4.2.2
- c) mass, spring, damping: section 4.2.4
- d) aerodynamic damping and control: section 4.2.7

Initialization (for wind tunnel case)

$$R_{FV} = R_{e} = R_{FE} = I, \quad R_{e}^{T} I^{*} R_{e} = I^{*}$$

$$\overrightarrow{V} = V \overrightarrow{T}_{F}, \quad \overrightarrow{k}_{E} = \overrightarrow{I}_{F}$$

$$- M^{*} (\overrightarrow{V} \times) R_{e} = - M^{*} V (\overrightarrow{T}_{F} \times)$$

$$(\overrightarrow{V} \times) R_{e} \overrightarrow{k}_{F} = - V \overrightarrow{J}_{F}$$

$$G = - M^{*} g (\overrightarrow{k}_{F} \times)$$

DEBUG VEL DOF(16)	airframe degrees of freedom	TM DA TA
GRAV GAMMA SIGMA IB OMEGA NBLADE RADIUS	reference rotor	TRIMCM
P21MR1 P21WR1	0. A4. (rad)	RTR1CM
P21MR2 P21WR2	ΔΨ ₂₁ (rad) - ΔΨ ₂₁ (rad)	RTR2CM
ROTAT1 OPHVB1(3)		R1DATA

		INITB
ROTAT2 OPHVB2(3)		R2DATA
VGWBV(3) VGHTV(3) VGVTV(3)	gust in velocity axes	GUSTCM
QWB(6) QHT(6) QVT(6)		QB DCM
AMODE1(6,10)		BODYCM
VSIDE TITLE(20) :	•	B DDA TA
DOFSYM(10) DRGIW		BADATA

INITE

Name: INITE

Function: initialize drive train parameters

Engine inertia and control: sections 4.3.1, 4.3.2 Governor parameters (dimensionless): section 4.3.3 Drive train spring constants: section 4.3.2

DEBUG OPENGN		TMDA TA
DOF(6) TRATIO	drive train degrees of freedom	2221
NBLADE	reference rotor	BDDATA
IB	Telefence 10 WI	TRIMOM
OMEGA		
ENGPOS THRTLC IENG KMAST1 KMAST2 KICS KENG KPE KP1 KP2 T1E T11		ENDATA
T2E T21 T22		
QTHRTL IENGS KMI1 KMI2 KMR KME1 KME2 KPGOVE KPGOVE TIGOVE T1GOVE T1GOVE T1GOVE T2GOVE T2GOVE T2GOVE		ENGNCM

CHEKR1

RA(30)

MRLO

Name: CHEKR1

Function: check for fatal errors

other rotor

TMDATA MPSI LEVEL R1DATA NBLADE MRA RAE(31) MRI RI(51) RROOT INFLOW(6) W1DATA MRG NG(30) MRL NL(30)KNW RTR1CM

R2DATA

PRNTJ

Name: PRNTJ

Function: print job input data

FILEID(4)
all
all

TMDATA CASECM UNITNO

PRNTC

BLCG CONFIG ATILT

Name: PRNTC Function: print case input data CASECM JCASE JOB START FILEID(4)
TITLCS(20) TM DA TA CODE ANTYPE(3) CPUNIT OPTRIM NROTOR VKTS VEL RPM VTIP ALTMSL TEMP OPGRND HAGL AFLAP OPENGN OPGOVT RTURN LEVEL1 LEVEL2 DOF (54) DOFT(8) MPSI MHARM MHARMF OPDENS IDENT(4) TRIMCM DENSE DRATIO CSOUND ALTD B DDA TA TITLBD(20) WEIGHT FSCG WLCG

		PRNTC
CWS NAM		BODYCM
N DM		ENG NCM
TITLA1(20) AF1ID(4)		A1TABL
TITLA2(20) AF2ID(4)		AZTABL
TITLR1(20) TYPE1 RADUS1 NBLD1 SIGMA1 INFLW1(6) OPHVB1(3) OPSTL1 OPYAW1 OPCMP1 OPUSL1 ROTAT1 HINGE1 ELAG1 EFLAP1		RIDATA
GAMMA1 OMEGA1 MTIP1 CMEAN1 IB1 NBM1 NTM1 NGM1 NBM1		RTR1CM
TITLR2(20)		R2DATA
EFLAP2 GAMMA2 : NBMT2		RTR2CM

PRNT

Name: PRNT

Function: print trim input data

FILEID(4)

MHARMF(2)

TMDATA

PRNTR1

Name: PRNTR1

Function: print rotor input data

NBM NTM NGM RA(30) DRA(30) FTIP(30)

R1DATA

RTR1CM

TITLE(20)
:
TWISTI(51)

PRNTW1

Name: PRNTW1

Function: print wake input data

TM DA TA MPSI LEVEL

W1DATA FACTOR

: KWGSO(4)

G1DATA KFWG

DQWG(2)

PRNTB

KEDAMP

Name: PRNTB

Function: print body input data

NROTOR

TITLE(20)

DOFSYM(10)

LFTAW

OPTINT

ENGPOS

ENDATA

PRNTF

Name: PRNTF

Function: print flutter input data

IDENT(4)

CONFIG.

BDDATA

CONFIG BDDATA
CPFLOW FLDATA

: CPUSLD

PRNTS

Name: PRNTS

Function: print flight dynamics input data

IDENT(4)

TRIMCM

NPRNTP

STDATA

: GUS(3)

PRNTT

Name: PRNTT

Function: print transient input data

IDENT(4)

TRIMCM

NPRNTT

TNDATA

OPLMDA

PRNTG

Name: PRNTG

Function: print transient gust and control input data

NROTOR TMDATA

OPTRAN GCDATA

: CMAG(5)

TRIM

Name: TRIM

ITERF NPRNTT NPRNTP NPRNTL

Function: trim

General reference: sections 5.3.5, 5.3.1

RESTRT
RSWRT

OPRTR2

LEVEL1
LEVEL2
ITERU
ITERR

TRIMI

Name: TRIMI(LEVEL1, LEVEL2)

Function: calculate trim solution by iteration

General reference: section 5.3.1

Codes:

control number (C) = 1 2 3 4 5 6 7 8 9 control =
$$\delta_0$$
 δ_c δ_s δ_p θ_{FT} ϕ_{FT} ϕ_{FT} ϕ_{FP} θ_{FP} θ_T test number (T) = 1 2 3 4 5 6 7 8 9 10 11 test = none F M F_xF_z M_y C_P C_T β_c β_s C_L C_X C_L C_X C_Y

OPTRIM	МТ	C(i)	T(i)	(i = 1 to MT)
0 1 2 3 4 5 6 7 8 9	0667734000	1 2 3 4 5 6 1 2 3 4 5 7 1 2 3 4 5 6 8 1 2 3 4 5 7 8 1 3 5 1 3 5 8	2 1 1 3 1 1 2 1 1 3 1 1 2 1 1 3 1 1 6 2 1 1 3 1 1 6 4 1 5 4 1 5 6	
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	0 1 1 1 2 3 3 3 4 4 3 3 4 1 2 2 2 3 2 2 3	1 9 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 3 3 1 3 3 1 3 3 3 3	7 7 6 8 9 7 8 9 11 1 11 11 11 11 11 11 11 11 11 11 11	

•	m	T	M	T
	חו	1	ľ	

LEVEL1 LEVEL2	wake analysis for rotor #1 and rotor #2: 0 for uniform inflow, 1 for prescribed wake, 2 for free wake	
DEBUG CPTRIM CTTRIM CYTRIM BSTRIM BCTRIM OPTRIM MTRIM MTRIMD FACTOR ITERM ITERC DELTA EPTRIM OPGOVT		TMDATA
CXTARG GRAV COUNTT		TRIMCM
CNTRLZ(11)		BDDATA
CWS KE(3) VXREKF(3) TCFE(11,5)		BODYCM
COUNTM COUNTC		CONVCM
NBLD1		R1DATA
ROTATE NBLD2 GAMMA1 OMEGA1		R2DATA RTR1CM
IB1 GAMMA2 OMEGA2 IB2		RTR2CM
VCNTRL(11) THETFT PHIFT THETFP PSIFP THETAT DPSIF VPILOT(5)	∳¢	CONTCM
TGOVR1 TGOVR2		
=	-105~	

-105-

QRTR1(6)

CLS

CXS

CTS

CYS

CPS

BETAC

BETAS

CQS1

C_\frac{1}{2} = C_\frac{1}{2}

TRIMI

CQS1 $C_Q/\sigma = C_P/\sigma$ QRTR2(6) $C_Q/\sigma = C_P/\sigma$ QR2CM

QWB(6) QHT(6) QVT(6)

TRIMP

CWS

KE(3) VXREK**F**(3)

Name: TRIMP(LEVEL1, LEVEL2, ITER, ITERM)

Function: print trim solution

LEVEL1 wake analysis for rotor #1 and rotor #2: LEVEL2 0 for uniform inflow, 1 for prescribed

wake, 2 for free wake

ITER iteration number

ITERM maximum number of iterations

CPTRIM TMDATA CTTRIM CYTRIM BCTRIM BSTRIM OPTRIM MTRIM EPTRIM **OPGOVT** COLL LATCYC LNGCYC PEDAL APITCH AYAW AROLL ACLIMB CXTARG TRIMCM GRAV COUNTT OPRTR2 NBLD1 R1DATA TYPE1 NBLD2 R2DATA TYPE2 GAMMA1 RTR1CM OMEGA1 IB1 GAMMA2 RTR2CM OMEGA2 IB2

BODYCM

TRIMP VCNTRL(11) CONTCM THETFT PHIFT THETEP **PSIFP** THETAT PSIT ¥. DPSIF VPILOT(5) TGOVR1 TGOVR2 QRTR1(6) QR1CM CLS CXS CTS CYS CPS BETAC BETAS CQS1 QRTR2(6) QR2CM CQS2 QWB(6) QBDCM QHT(6)

QVT(6)

FLUT

MXFD

Name: FLUT

Function: flutter

General reference: sections 5.3.5, 5.3.6

CASECM RSWRT RESTRT TRIMCM OPRTR2 NBLADE FLDATA OPFLOW **CPSYMM** OPFDAN MPSIPC NINTPC NBLDFL A2(6400) FLMCM MGA STMCM

FLUTM

KIGOV2

Name: FLUTM(PSI) Function: calculate flutter matrices General reference: section 6.3.1 Inflow dynamics: sections 6.1.5, 2.4.3 $DLDT = \frac{7}{2} \frac{3}{3} \frac{3}{3}$ $DLDM = \frac{\sqrt{a}}{2\lambda} \frac{\partial \lambda}{\partial M}$ TT = "T-TM = Tm DLDZ = 33 ZK = KE. 3k Drive train equations: section 6.2.3 Construct flight dynamics matrices: section 5.3.3 also (only if rigid body degrees of freedom present) Symmetric/antisymmetric matrices: section 6.3.3 \(\text{(for periodic coefficients)} \) PSI DEBUG TMDATA **OPENGN** TRIMCM OPRTR2 DOFSYM(10) BDDATA TRATIO CONFIG NEM REULER(3,3) BODYCM KE(3) RHUB1(3) RHUB2(3) AMODE1(6,10) AMODE2(6,10)KMSTC1(10) KMSTS1(10) KMSTC2(10) KMSTS2(10) MVXRE(3,3)TCFE(11,5) ENDATA KIGOVE KIGOV1

GSE	ENDATA
GSI	DUGNOM
QTHRTL IENG QEDAMP KMI1 KMI2 KMR KME1 KME2 KPGOVE KPGOVE TIGOVE TIGOVE TIGOVE TIGOVE TIGOV2 TZGOVE TZGOVE TZGOVE MENG22 MENG33 SENG22	ENGNCM
RADUS1 NBLD1 KFLMD1 KHLMD1 SIGMA1 FYLMD1 FYLMD1 KINTH1 KINTF1	R1DATA
FMLMD1 CMEGA1 NTM1 NBM1 NGM1 MUX1 MUY1 MUZ1 GAMMA1 IB1 RGUST1(3,3) CHUB1(6,16) CBHUB1(3,3) CHUBT1(16,6)	RTR1CM

FLUTM

		FLUTM
RA DUS2	·	R2DATA
FMLMD2		
OMEGA2 : CHUBT2(16,6)		RTR2CM
KPB1(10)		MD1CM
KPG1 KPB2(10) KPG2		MD2CM
T1C1 T1S1 T1C2 T1S2		CONTCM
LAMB D1 COS E1 ZAGL1		WKV1CM
LAMBD2 COSE2 LAMBD2		WKV2CM
CTS1	820 _T /• a 820 _T /• a	QR1CM
CTS2	8 2C _T / v -a	QR2CM
DERIV(7,21) DRVR1(7,21) DRVWB(7,21) DRVHT(7,21) DRVVT(7,21)		STDCM
A2FD(7,7) : MXFD		STMCM
CPFLOW OPSYMM NBLADE OPSAS KCSAS KCSAS TCSAS TCSAS TSSAS OPTCRS(2) CPGRND KASGE		FLDATA

DOF(80) FLDATA
CON(26)
GUS(3)

A2(6400) FLMCM

MGA

A2A(16,16) FLMACM

BLA(16,2)

A2R1(30,30) FLM1CM

DGR1(6,3)

A2R2(30,30) FLM2CM

DGR2(6,3)

FLUTB

EINTV2(3)

Name: FLUTB Function: calculate flutter aircraft matrices General reference: section 6.2.2 TRIMCM OPRTR2 BDDATA NEM BODYCM IBODY(3,3)**MSTAR** MVXRE(3,3)GMTRX(3,3)RFV(3,3) AMASS(10) ADAMPS(10) ASPRNG(10) ADAMPA(10) ACNTRL(4,10) FLDATA DELTA OPRINT CONTOM DVBODY(6) DDZF $(\xi_f \xi_e \xi_a \xi_r)$ CNTRL(4) GWB(3)gust in F axes GUSTCM GHT(3)GVT(3)QWB(6) QBDCM QHT(6)QVT(6) A2(16,16)FLMACM BL(16,2) DRVWB(7,21) STDCM DRVHT(7,21) DRVVT(7,21) LMDAW1(3) LMDAH1(3) LMDAV1(3) WKV1CM EINTW1(3)EINTH1(3) EINTV1(3)WKV 2CM LMDAW2(3)

FLUTR1

Name: FLUTR1(PSI)

Function: calculate flutter rotor matrices General reference: sections 6.1.6, 6.4

Azimuthal summations:

at
$$\forall m = \psi + m \frac{2\pi}{N}$$
 for periodic coefficients

$$\frac{1}{J} = \frac{2\pi}{J}$$
at $\psi_{ij} = \frac{2\pi}{J}$
for constant coefficient approximation (section 6.1.7)

Reorder hub reactions: Λ_u equation multiplied by 2 to get $(-82C_T/-a)$ Inflow dynamics due to velocity perturbations: sections 6.1.4, 6.1.6

PSI	∀(periodic coefficients only)	
OPFLOW MPSICC NBLDFL		FLDATA
KBM KTM NGM GAMMA NUGC NUGS CGC CGS CTO CTC CTR MUX MUY MUZ		RTR1CM
NBLD GSB(10) GST(5) KHLMDA KFLMDA		R1DATA
NU(10) WT(5) WTO WTC WTR KPB(10) KPG		MD1CM

		FLUTR1
LAMB DA CTS	8 20 _T /√-a	WKV1CM QR1CM
T1C T1S	-	CONTCM
A2(30,30) : DG(6,3)		FLM1CM
MASSB: SPQ(5,10)		FLINCM
MQU(10) : MPDP(5,5)		FLAECM
() () ()		

FLUTI1

Name: FLUTI1(PSI)

Function: calculate flutter inertia coefficients

General reference: section 6.1.3

 Ψ PSI

TM DA TA DEBUG

DOFT(4)

RTR1CM GLAG

KBM KTM

NBMT

MB

BETA(21,10) MNR1CM

ETAPH(2,10) MD1CM INC1CM

SPQT(5,10,4)

FLINCM MASSBL

SPQL(5,10)

FLUTA1

```
Name: FLUTA1(PSI)
Function: calculate flutter aerodynamic coefficients
General reference: section 6.1.4
Perturbation section forces: without c/c<sub>m</sub> factor
Aerodynamic coefficients: FZO = C_T/\sigma, FXO = C_Q/\sigma
              4
PSI
                                                                        TMDATA
DEBUG
DOFT(4)
MPSI
                                                                        TRIMOM
DPSI
                                                                        R1 DATA
MRA
CHORD(30)
XA(30)
XAC(30)
OPCOMP
OPYAW
OPSTLL
RFA
                                                                        RTR1CM
RA(30)
DRA(30)
CMEAN
FTIP(30)
NBMT
KBM
KTM
MTIP
MUX
MUY
MUZ
                  bending modes at r_i, i = 1 to MRA
                                                                        MD1CM
ETA(2,10,30)
ETAP(2,10,30)
ETAPP(2,10,30)
                  torsion modes at r_i, i = 1 to MRA
ZETA(5,30)
ZETAP(5,30)
DEL1
DEL2
DEL3
DEL4
DEL5
                                                                        FLDATA
DALPHA
DMACH
OPUSLD
```

FLUTA1
MNR1CM
AES1CM
INC1CM
FLAECM

FLUTL

Name: FLUTL(ID, A2, A1, A0, B, MX, MX1, MV, MG, DOF1, NAMEX, NAMEV)

analyze flutter constant coefficient linear equations

Vibration point location: sections 4.1.3, 4.1.5

ID problem identification: 1 for complete dynamics,

2 for symmetric, 3 for antisymmetric

A2(MX*MX) coefficient matrices

A1(MX*MX)

AO(MX*MX)

B(MX*MV) control matrix

MX number of degrees of freedom

MX1 number of first order degrees of freedom

ΜV number of controls

MG number of gust components

DOF1(MX) integer vector designating first order degrees

of freedom

NAMEX (MX) vector of variable names

NAMEV (MV) vector of control names

VELF(3) BODYCM

GRAY TRIMCM

CMEGA reference rotor RADIUS reference rotor

FSCG BDDATA

BLCG

WLCG

NEM

THETFT CONTCM

PHIFT

THETAT

PSIT

ANTYPE(4) FLDATA

NAMEXR(3)

STAB

Name: STAB

Function: flight dynamics

General reference: sections 5.3.5, 5.3.3

RESTRT

RSWRT

CASECM

STABM

Name: STABM

Function: calculate flight dynamics stability derivatives and matrices General reference: section 5.3.3

Print during stability derivative calculations:

- a) increment: 1st number dimensionless, 2nd number dimensional b) motion and controls: 1st number dimensionless, 2nd number dimensional

 - 1) angular velocity = deg/sec 2) linear velocity, gust velocity = ft/sec or m/sec 3) ψ_s = rpm

 - 4) $\dot{z}_F = ft/sec^2 \text{ or m/sec}^2$
 - 5) controls = deg
- c) generalized forces: moments and forces in \$20/4 a form (rotor #1 parameters, body axes); torque in -OCQ/-a form (rotor #1 parameters)

MPSI LEVEL1 LEVEL2 DEBUG	TMDATA
OPRTR2 LSCALE FSCALE	TRIMCM
NBLD1 MRA1 TYPE1	R1DATA
IB1 CHUB1(6,16) CHUBT1(16,6) OMEGA1	RTR1CM
NBLD2 MRA2 TYPE2	R2DATA
IB2 CHUB2(6,16) CHUBT2(16,6) OMEGA2	RTR2CM
IBODY(3,3) MSTAR MVXRE(3,3)	BODYCM
GMTRX(3,3) TCFE(11,5)	

			STABM
CONFIG			BDDATA
QRTR1(6) CQS1	- ¥ 2C _Q / √ a	•	QR1CM
QRTR2(6) CQS2	- ¥ 2C _Q / • a - ∀ 2C _Q / • a		QR2CM
101 102	*		INC1CM INC2CM
IRSTAR QTHRTL QEDAMP KPGOVE KPGOV1 KPGOV2			ENGNCM
KIGOVE KIGOV2			ENDA TA
NPRNTP NPRNTL ITERS OPLMDA DELTA DOF(7) CON(16) GUS(3)			STDATA
VGWBV(3) VGHTV(3) VGVTV(3) VGRTR1(3,30,36) VGRTR2(3,30,36) VGHUB1(3) VGHUB2(3)			GUSTCM
VCNTRL(11) DVBODY(6) DOMEGA DOZU			CONTCM
QWB(6) QHT(6) QVT(6)			QBDCM
DERIV(7,21)			STDCM
DRVVT(7,21) A2FD(7,7)			STMCM
чхfd		-123-	

STABD

Name: STABD

Function: print stability derivatives

General reference: section 5.3.3

Options: a) rotor coefficient form, $M^*X = \chi^2 C/\sqrt{a}$

b) stability derivative form, X (acceleration)

c) dimensionless or dimensional

Dimensions:

a) force or moment

	forces(FF)	moments (FM)	torque (FQ)
M*X form	$\frac{1}{2}NI_b\Omega^2/R$	$\frac{1}{2}NI_b\Omega^2$	$NI_b\Omega^2$
X form	$\mathcal{L}^{2}_{\mathbb{R}}$	Ω^2	Ω^2

b) subscripts

acceleration $(\ddot{z}) = \Omega^2 R$ (FA)

angular velocity = Ω

linear velocity = Ω R (FV)

controls = 57.3

(FV) gust velocity $= \Omega R$

CASECM TASK DOFFD(7) STMCM CONFD(16)

GUSFD(3)

NAMEV(19)

BODYCM ISTAR(3,3)

MSTAR ENGNCM IRSTAR

TRIMCM NBLADE reference rotor

IB OMEGA

RADIUS

STDATA OPPRNT(4)

DRVR1(7,21) STDCM

DRVR2(7,21)

DRVWB(7,21)

DRVHT(7,21)
DRVVT(7,21)

STABE

Name: STABE

Function: calculate flight dynamics equations

DEBUG TMDATA OMEGA TRIMCM reference rotor EQTYPE(12) KCSAS STDATA KSSAS TCSAS TSSAS A2FD(49) STMCM MXFDFLDATA OPSYMM OPSASF CASECM TASK

STABL

STABL(IEQ, A2, A1, A0, B, MX, MX1, MV, MG, DOF1, NAMEX, NAMEV, DOF, CON) Function: analyze flight dynamics linear equations Vibration point location: sections 4.1.3, 4.1.5 Numerical integration of transient: sections 5.3.2, 5.3.3 (see also program TRAN) equation type identifier IEQ coefficient matrices A2(MX*MX) A1(MX*MX) AO(MX*MX) B(MX*MV) control matrix number of degrees of freedom ΜX number of first order degrees of freedom MX1 number of controls MV number of gust components MG integer vector designating first order degrees of DOF1(MX) freedom vector of variable names NAMEX(MX) vector of control names NAMEV(MV) integer vector designating degrees of freedom used DOF(7) integer vector designating controls used CON(19) TRIMCM OMEGA reference rotor RADIUS GRAV BODYCM VELF(3)GUSTCM VGHUB1(3) VPTRAN(5) BDDATA **FSCG** WLCG BLCG CONTCM THETFT PHIFT THETAT PSIT DABODA(9) DOMEGA STDATA NPRNTT DOFPLT(21)

-126-

STABP

Name: STABP(TIM, IT, YN, DYN, DDYN, DOF)

Function: print flight dynamics transient solution

General reference: section 5.3.3

Print during numerical integration (in STABL):

- a) controls in deg
- b) gust velocity: 1st number dimensionless, 2nd number dimensional
- c) aircraft motion: 1st number dimensionless, 2nd number dimensional
 - 1) displacement = deg, ft or m
 - 2) velocity = deg/sec, ft/sec or m/sec
 - 3) acceleration = deg/sec², g
 - 4) inertial axes = deg/sec, g

AANG =
$$\vec{\omega}$$
 = $R_e \begin{pmatrix} \dot{\phi}_f \\ \dot{\phi}_e \\ \dot{\psi}_F \end{pmatrix}$

ALIN = \vec{a}_{body} = $\begin{pmatrix} \ddot{x}_f \\ \ddot{y}_f \\ \ddot{z}_f \end{pmatrix}$ - $(\vec{v} \times) R_e \begin{pmatrix} \dot{\phi}_f \\ \dot{\phi}_f \\ \dot{\psi}_f \end{pmatrix}$

time (dimensionless) TIM

IT time count

YN(7)

DYN(7)

DDYN(7)

integer vector: 0 if degree of freedom not used DOF(7)

TRIMCM GRAV

LSCALE

FSCALE

TSTEP

XAMT

NPRNTT

STDATA

STABP

VGHUB1(3) VPTRAN(5)

GUSTCM

BODYCM

MSTAR MVXRE(3,3) REULER(3,3)

TRAN

Name: TRAN

Function: transient

General reference: sections 5.3.5, 5.3.2

RESTRT RSWRT		CASECM
LEVEL1 LEVEL2		TMDATA
DVBODY(6) DOMEGA		CONTCM
MVXRE(3,3) MSTAR IBODY(3,3)		BODYCM
OMEGA	reference rotor	TRIMCM
QRTR1(6) CQS1	- 8 20 ₀ / - a	QR1CM
QRTR2(6) CQS2	- \ 20 _Q /\ a = - \ 20 _Q /\ a	QR2CM
QWB(6) QHT(6) QVT(6)	• •	QBDCM
QTRIM(6) CQST1 CQST2 IBODYI(7,7)		TRANCM
NPRNTT NPRNTP NPRNTL NRSTRT TMAX TSTEP OPPLOT DOFPLT(21) DOF(7)		TNDATA
I01 I02		INC1CM INC2CM
CHUB1(6,16) CHUBT1(16,6) OMEGA1 IB1		RTR1CM

TRAN

CHUB2(6,16)
CHUBT2(16,6)
OMEGA2
IB2

NBLD1

NBLD1

R1DATA

NBLD2

IRSTAR

ENGNCM

TRANI

Function: calculate transient acceleration for numerical integration

General reference: section 5.3.2

Y(7)	$(\phi_{\rm F})$	eF	$\Psi_{\!F}$	$\mathbf{x}_{\mathbf{F}}$	y _F	$\mathbf{z}_{\mathbf{F}}$	५ °)
DY(7)	(• F	ėF	$oldsymbol{\dot{\psi}}_{ ext{F}}$	*F	$\boldsymbol{\dot{y}}_{F}$	$\mathbf{\dot{z}}_{\mathrm{F}}$	$\dot{\psi}_{\rm s}$)
DDY(7)	(\$\psi_F\$) (\$\psi_F\$)	ë	ŸF	ÿ _F	\ddot{y}_{F}	\ddot{z}_{F}	_ት 8)

LEVEL1	TMDA TA
LEVEL2	
DEBUG	

OPRTR2	TRIMCM
MVXRE(3,3)	BODYCM
CMTRX(3.3)	

TCFE(11.5)

CNTRLZ(11) BDDATA

ENGNCM QTHRTL

QEDAMP KPGOVE KPGOV1 KPGOV2

ENDATA KIGOVE

KIGOV1 KIGOV2

RTR1CM IB1

OMEGA1 R1DATA NBLD1 RTR2CM IB2 OMEGA2

R2DATA NBLD2

QR1CM QRTR1(6) CQS1

- \(20_Q/\sigma a \) QR2CM QRTR2(6)

CQS2

QBDCM QWB(6)

QHT(6) QVT(6)

TRANI

DOF(7) TNDATA OPSAS KCSAS KSSAS TCSAS TSSAS ITERT OPLMDA TRANCM QTRIM(6) COST1 IBODYI(7,7)**DCSAS** DSSAS TTGOV T1GOV T2GOV VPTRAN(5) GUSTCM VCNTRL(11) DVBODY(6) CONTCM DOMEGA DDZF VPILOT(5) TGOVR1 TGOVR2

TRANP

TRANP(TIM, IT, YN, DYN, DDYN) Name:

Function: print transient solution General reference: section 5.3.2

Print notes:

- a) controls in degb) gust velocity dimensionsalc) aircraft motion: 1st number 1st number dimensionless, 2nd number dimensional
 - 1) displacement = deg, ft or m
 - 2) velocity = deg/sec, ft/sec or m/sec
 - 3) acceleration = deg/sec^2 , g
 - 4) inertial axes = deg/sec, g
- d) generalized forces: moments and forces in \$20/5 a form (rotor #1 parameters, body axes); torque in - VcQ/o-a form (rotor #1 parameters)

$$AANG = \overrightarrow{\omega} = R_e \begin{pmatrix} \dot{\Phi}_F \\ \dot{\Phi}_F \\ \dot{\Psi}_F \end{pmatrix}$$

ALIN =
$$\vec{a}_{body}$$
 = $\begin{pmatrix} \ddot{x}_{f} \\ \ddot{y}_{f} \\ \ddot{x}_{f} \end{pmatrix}$ - $(\vec{v}_{x}) R_{e} \begin{pmatrix} \dot{\phi}_{f} \\ \dot{\phi}_{f} \\ \dot{\psi}_{f} \end{pmatrix}$

TIM

time (dimensionless)

IT

time count

YN(7)

DYN(7)DDYN(7)

LEVEL1

LEVEL2

TMDA TA

FSCALE

TRIMCM

LSCALE

GRAV

		TRANP
ITERT OPLMDA TSTEP TMAX		TNDA TA
MSTAR REULER(3,3) MVXRE(3,3) GMTRX(3,3)		BODYCM
QTHRTL QEDAMP		Engncm
VGWBV(3) VGHTV(3) VGVTV(3) VGHUB1(3) VGHUB2(3) VPTRAN(5)		GUSTOM
NBLD1 TYPE1		R1 DATA
IB1 OMEGA1		RTR1CM
NBLD2 TYPE2 IB2 OMEGA2		R2DATA RTR2CM
QRTR1(6) CQS1	- ¥ 20₀/ ~ a	QR1CM
QRTR2(6) CQS2	- 8 20 _Q / - a - 8 20 _Q / - a	QR2CM
QWB(6) QHT(6) QVT(6)		
VCNTRL(11) VPILOT(5) TGOVR1 TGOVR2		CONTCM
QTRIM(6) CQST1 CQST2 DCSAS DSSAS TTGOV T1GOV T2GOV		TRANCM

TRANC

```
TRANC(TIM)
Name:
Function: calculate transient gust and control
General reference: section 5.3.4
                    time (dimensionless)
MIT
                    V/ΩR
                                                                                TMDA TA
VELF
MPSI
OMEGA
                                                                                TRIMCM
                    reference rotor
RADIUS
COSPSI(36)
BINPSI(36)
OPRTR2
RA1(30)
                                                                               RTR1CM
RA2(30)
                                                                               RTR2CM
                                                                               BODYCM
RWB(3)
RHT(3)
RVT(3)
RFV(3,3)
RSF1(3,3)
RSF2(3,3)
RHUB1(3)
RHUB2(3)
                                                                                R1DATA
MRA1
ROTAT1
                                                                                R2DATA
MRA2
ROTAT2
                                                                                GUSTCM
VGWBV(3)
                    gust in wind axes
VGHTV(3)
VGVTV(3)
VGRTR1(3,30,36)
VGRTR2(3,30,36)
VGHUB1(3)
VGHUB2(3)
VPTRAN(5)
                                                                                GCDATA
OPTRAN
CMAG(5)
```

CONTRL

Name: CONTRL(T, PERIOD, C)

Function: calculate transient control time history

General reference: section 5.3.4

Calculates: $C(t) = \frac{1}{2}(1 - \cos 2 \pi t/T)$

T time(sec)

PERIOD period T (sec)

C control C

GUSTU

Name: GUSTU(T,PERIOD,G)

Function: calculate uniform gust time history

General reference: section 5.3.4

Calculates: $G(t) = \frac{1}{2}(1 - \cos 2 \pi t/T)$

T time (sec)

PERIOD period T (sec)

G gust G

GUSTC

Name: GUSTC(XG,L,L0,G)

Function: calculate convected gust wave shape

General reference: section 5.3.4

Calculates: $G(x_g) = \frac{1}{2}(1 - \cos 2\pi (x_g - L_0)/L)$ XG distance x_g (ft or m)

L wavelength L (ft or m)

Starting position L_0 (ft or m)

G gust G

PERF

Name: PERF

Function: Performance

General reference: section 5.2.1

Operating condition:

- a) motion: 1st number dimensionless, 2nd number dimensional
 - 1) velocity = ft/sec or m/sec
 - 2) dynamic pressure, $q = 1b/ft^2$ or N/m^2
 - 3) weight, $C_{u}/\nabla = 1b$ or N
 - 4) body motion = deg/sec, ft/sec or m/sec
 - 5) $\ddot{z} = ft/sec^2$ or m/sec^2
 - 6) $\Psi_{s} = rpm$
- b) body orientation and controls in deg

Circulation convergence:

- a) tolerance, CG/S in C_T/~ form b) G/E = ratio error to = ratio error to tolerance (< 1 if converged)

Motion convergence:

- a) tolerance, BETA (etc) in deg
 b) BETA/E (etc) = ratio error to tolerance (≤ 1 if converged)

Airframe performance: section 4.2.6

- a) aerodynamic loads: dimensional
- b) components:

 - angles in deg
 loads, q dimensional
 - 3) induced velocity, total velocity dimensionless

Gust velocity: dimensionless

System power: dimensional (HP); number in parentheses is percent total power a) climb power = V W

System efficiency parameters:

- a) gross weight, W = 1b or N b) drag-rotor = $D_r = (P_1 + P_0)/V$; D/q-rotor = $D_r/\frac{1}{2}$, V^2 ; L/D-rotor = W/D_r
- c) drag-total = $D_{\text{total}} = P_{\text{total}}/V$; $D/q-\text{total} = D_{\text{total}}/\frac{1}{2} \sqrt{V^2}$; L/D-total = W/D_{total}
- d) figure of merit = M = 1 P nonideal Ptotal

		PERF
VEL ITERM EPMOTN ITERC EPCIRC AFLAP		TMDATA
OPRTR2 GPAV SIGMA RADIUS OMEGA DENSE		TRIMCM
VELF(3) VCLIMB VSIDE CWS HMASS NAM		BODYCM
N DM		ENGNCM
NBM1 NTM1 NGM1 NBM2 NTM2 NGM2		RTR1CM RTR2CM
VGWB(3) VGHT(3) VGVT(3) VGHUB1(3) VGHUB2(3)	gust in wind axes	Gustcm
VCNTRL(11) THETFT PHIFT THETFP PSIFP THETAT PSIT DVBODY(6) DOMEGA DDZF		CONTCM
SAVE(31)		QBDCM

PERFR1

Name: PERFR1(P, PCPP, PI, PINT, PO, PN)

Function: calculate and print rotor performance

General reference: section 5.2.1

Operating condition:

$$\begin{pmatrix} -\mu_{x} \\ \mu_{y} \\ \mu_{z} \end{pmatrix}_{TPP} = \begin{bmatrix} 1 & 0 & \beta_{c} \\ 0 & 1 & \beta_{s} \\ -\beta_{c} & -\beta_{s} & 1 \end{bmatrix} \begin{pmatrix} -\mu_{x} \\ \mu_{y} \\ \mu_{z} \end{pmatrix}_{HP}$$

$$\approx_{HP} = \approx_{CP} + \Theta_{1s} = \approx_{TPP} - \beta_{c}$$

$$(\beta_{c})_{CP} = (\beta_{c} + \Theta_{1s})_{HP}$$

$$(\beta_{s})_{CP} = (\beta_{s} - \Theta_{1c})_{HP}$$

Harmonics of gimbal motion: section 5.1.2

total power

Rotor forces and motion:

shaft axes (-S), tip path plane axes (-T), wind axes (L or X) coefficient (Cx-), coefficient/solidity (Cx6-), dimensional (x-)

Rotor power: LIDEAL = λ_{ideal} (see also section 2.4.3)

PCPP PI PINT PO PN	climb and parasite power induced power interference power profile power non-ideal power	
OPUNIT VEL MPSI MHARM MHARMF		TMDATA
DENSE		TRIMOM
NAM NDM		BO DYCM ENGNCM
T75 T1C T1S		CONTCM
FZ(30,36) ALPHA(30,36)	F_z/ac	AES1CM

		PERFR1
VIND(3,30,36) LAMBDA		WKV1CM
VINT(3,30,36) LAMBDI	Tint (due to other rotor)	WKV 2CM
RADIUS SIGMA MRA TYPE NBLADE HINGE		R1 DATA
MUX MUY MUZ OMEGA DRA(30) RA(30) ALFHP PSIHP MTIP MAT NBM NTM NGM NUGC NUGS		
T750LD NU(20) ETA(2,10) WT(11) WTO WTC	bending mode at tip	MD1CM
WTR FHUB(6) CLS CXS BETAO BETAC BETAS CIRC(36)		QR1CM
BETA(21,10) THETA(21,5) BETAG(21)		MNR1CM
PHI(10,16) PSID(10,6) QSSTAT(10) PISTAT		MNSCM
PESTAT	-143-	

LOAD

Name: LOAD(LEVEL1, LEVEL2) Function: loads, vibration, and noise Airframe vibration: section 5.2.8 Vibration point location: sections 4.1.3, 4.1.5 LEVEL1 wake analysis level for rotor #1 LEVEL2 wake analysis level for rotor #2 MHARMF(2) TMDATA OPRTR2 TRIMCM FSCALE LSCALE GRAV TRATIO **BDDATA** FSCG WLCG BLCG NBLD1 R1DATA OMEGA1 RTR1CM NBLD2 R2DATA OMEGA 2 RTR2CM MVXRE(3.3)BODYCM MSTAR REULER(3,3)VELF(3) NAM THETAT CONTCM PSIT PHI1(10,16) MNR1CM PHI2(10,16) MNR2CM MVIB LADATA FSVIB(10) WLVIB(10) BLVIB(10) ZETA(3,10,10)

LOADR1

Name: LOADR1(LEVEL)

Function: calculate and print rotor loads

Print aerodynamics (function r and Ψ):

- a) dimensionless quantities generally, angles in deg
 b) induced velocity in nonrotating shaft axes
 c) interference induced velocity is that due to other rotor
- gust components in velocity axes

Force/c_{mean} (dimensionless):

$$L/C = \frac{1}{2}U^{2}(c/c_{mean})c_{x} = L/c_{mean}$$

$$D/C = \frac{1}{2}U^{2}(c/c_{mean})c_{d} = D/c_{mean}$$

$$M/C = \frac{1}{2}U^{2}(c^{2}/c_{mean})c_{m} = M/c_{mean}$$

$$DR/C = \frac{1}{2}U^{2}(c/c_{mean})c_{dradial} = D_{radial}/c_{mean}$$

$$FZ/C = CT/S = F_{z}/c_{mean} = d(C_{T}/T)/dr$$

$$FX/C = F_{x}/c_{mean}$$

$$MA/C = M_{a}/c_{mean}$$

$$FR/C = F_{r}/c_{mean}$$

$$FRT/C = F_{r}/c_{mean}$$

Forces (dimensional)

Blade section power: section 5.2.1

$$CP/S = d(C_p/r)/dr$$

P = section power

HP/ft or HP/m

LEVEL

level of wake analysis

OPUNIT MPSI

TMDATA

•		LOADR1
DENSE DPSI COSPSI(36) SINPSI(36)		ŢRIMCM
TYPE RADIUS NBLADE OPSTLL CHORD(30) INFLOW(6) MRA		R1 DA TA
OMEGA CMEAN RA(30) MUX MUY MUZ NBM NTM NGM PINTER(36) PBURST(36)		RTR1CM
	bending mode at tip bending mode at r;, i = 1 to MRA	MD1CM
DBV	1	W1DATA
VGUST(3,30,36)		GUSTCM
GAM(30,36) CIRC(36)		QR1CM
MHLOAD MALOAD MRLOAD(20) NFOLAR MWKGMP MNOISE RANGE(10) ELVATN(10) AZMUTH(10) NPLOT(75)		L1 DA TA
SAVEM(36,78)		LDMNCM
MOTION(78)		AEMNCM

LOADR1

STATE(30,36,3)
DCIMAX(30,36)
DCIMAX(30,36)
DCMMAX(30,36)
MEFF(30,36,3)
AEFF(30,36,3)
DCLDS(30,36)
DCDDS(30,36)
DCMDS(30,36)
SAVE(30,36,19)
VIND(3,30,36)
LAMBDA
VWB(3,36)
VVT(3,36)
VVT(3,36)
LAMBUM(3)
VNRH(3,36)
VINT(3,36)
VINT(3,36)

LAMBDI

LOADH1

Name: LOADH1

Function: calculate and print hub and control loads

Root loads: MCON = $C_{m_{CO}n}/\sigma$ FHUBX = C_{f_X}/σ FHUBY = C_{f_Y}/σ FHUBY = C_{f_Y}/σ FHUBZ = C_{f_Z}/σ CENT = $C_{f_{Cent}}/\sigma$ Hub loads: FHUBH = C_{H}/σ FHUBMX = C_{M_X}/σ FHUBMY = C_{M_Y}/σ

 $FHUBT = C_{T}/ FHUBQ = C_{Q}/-$

Harmonic analysis: $F_n = \frac{1}{J} \sum_{j=1}^{J} F_j e^{-jn} Y_j K_n$

Dimensional loads:

root force = $9\Omega^2 R^4(c/R)$ root moment = $9\Omega^2 R^5(c/R)$ hub force = $N9\Omega^2 R^4(c/R)$ = $9(\Omega R)^2 \pi R^2$ hub moment = $N9\Omega^2 R^5(c/R)$ = $9(\Omega R)^2 \pi R^3$

MHARM TMDATA MPSI

NBLA DE R1 DATA

RADIUS TYPE

CMEAN RTR1CM

GAMMA OMEGA

NBM

NTM

DENSE

DPSI COSPSI(36) SINPSI(36)

MHARML L1DATA

NPLOT(75)

SENDUR(12) for hub and control loads

CMAT(12) EXMAT(12) KFATIG

LOADH1 $({\rm Mp_0/ac)}_{\rm aero}$ AEF1CM MPAERO(36) CMXA(36) CMZA(36) CFXA(36) CFZA(36) CFRA(36) LDMNCM SAVEM(36,78) INC1CM MB SB IO SQ(2,10) IQA(2,10) IFXO OXMI IP(5) IPP(5,5) IPO(5)

summed over qj

IQODQ(2,10)

SPQ(5,10)

LOADS1

Name: LOADS1(R)

Function: calculate and print blade section loads

General reference: sections 5.2.2, 5.2.3, 5.2.4

PHIX = $\vec{l} \cdot \vec{l}_B$ PHIZ = $\vec{l} \cdot \vec{k}_B$ Azimuth loop: = 8

> $MXS-X = C_{m_X}/ FXS-X = C_{f_x}/\sigma$ $FXS-R = C_{f}/\sigma$ $MXS-Z = C_{m_Z}/$ MTOR = C_mtors/• CENT = Cfcent/~

(-= B for shaft axes, P for principal axes)

 $F_n = \frac{1}{J} \sum_{j=1}^{J} F_j e^{-in\Psi_j} K_n$ Harmonic analysis:

Dimensional loads:

forces = $(8/a) I_b \Omega^2/R = {}_{3} \Omega^2 R^4(c/R)$ moments = $(8/a) I_b \Omega^2 = {}_{3} \Omega^2 R^5(c/R)$

R radial station r/R

MPSI **TMDATA**

MHARM DOFT(4)

DENSE TRIMCM DPSI

COSPSI(36) SINPSI(36)

TYPE

R1DATA **NBLADE**

RADIUS

MRA

NBMT

OMEGA RTR1CM

CMEAN

GAMMA

RA(30) DRA(30)

NBM NTM

```
LOADS1
                                                                                        L1DATA
MHARML
SENDUR(6)
                      for section loads
CMAT(6)
EXMAT(6)
KFATIG
NPLOT(75)
                                                                                        MD1CM
                      bending modes at r_i, i = 1 to MRA
ETA(2,10,30)
DEL1
DEL2
DEL3
DEL4
DEL5
FXAERO(30,36)
FZAERO(30,36)
MAAERO(30,36)
FRAERO(30,36)
                      F/ac
Fx/ac
Mz/ac
Fa/ac
Fr/ac
                                                                                        AES1CM
                                                                                        MNR1CM
BETA(21,10)
                                                                                        LDMNCM
MB
 IP0
SAVEM(36,78)
```

LOADI1

MRM

```
Name: LOADI1(R,Q,TR,ZR,EPR,ER)
Function: calculate inertia coefficients for section loads
General reference: sections 5.2.2, 5.2.3, 5.2.4
Blade pitch:
                         section 2.3.5
                                       CS = \cos \theta, SN = \sin \theta, TR = \Theta(r)
                         W = (z_0 \vec{1} - x_0 \vec{k}), WP = (z_0 \vec{1} - x_0 \vec{k})', WPP = (z_0 \vec{1} - x_0 \vec{k})''
                         WXI = (z_1 - x_1 + x_1 + x_2)
                         ZR = \vec{\xi}_i(r), ER = \vec{\gamma}_i(r), EPR = \vec{\gamma}_i'(r)

WR = (z_0\vec{1} - x_0\vec{k})_{trim}, WPR = (z_0\vec{1} - x_0\vec{k})_{trim}', at r

WRXC = (z_0\vec{1} - x_0\vec{k} - x_0\vec{k}), at r
                         EPXIO(NBM) = (\vec{\gamma}' \cdot \vec{k} x_T) at r = e
                         CE(NBM) = \sqrt{\vec{\gamma}_i''} \cdot (z_0 \vec{1} - x_0 \vec{k} - x_T \vec{k}) dq
                         CMR(MRM+1) = \int_{\mathbf{r}}^{\mathbf{r}} (\mathbf{r}^* - \mathbf{r}) \, \mathbf{m} \, d\mathbf{r}^*
                         WFA = (z_0\vec{1} - x_0\vec{k}), WPFA = (z_0\vec{1} - x_0\vec{k})' at r_{FA}
                         X = \overline{X}_{k}(\gamma), XR = \overline{X}_{k}(r)
                            radial station r/R
R
Q(4)
                            mean deflection q;
TR
                            pitch 6 at r
ZR(5)
                                  at r
                             水 at r
EPR(2,10)
                             प्रे≉ at r
ER(2,10)
DEBUG
                                                                                                                 TMDA TA
T75
                                                                                                                 CONTCM
EFLAP
                                                                                                                R1DATA
ELAG
XFA
RFA
ZFA
RCPL
NOPB
```

LOADI1

```
RTR1CM
NBM
NTM
NGM
NBMT
MASS(51)
ITHETA(51)
XI(51)
TWIST(51)
ETA(2,10,51)
ETAP(2,10,51)
ETAPP(2,10,51)
                    bending modes at r=(j-1)\Delta r, j=1 to MRM+1
                                                                                 MD1CM
ZETA(5,51)
ETAPH(2,10)
                     torsion modes at r=(j-1)\Delta r, j=1 to MRM+1
                     bending modes at r = r_{FA}
EFA(2,10)
EFAP(2,10)
DEL1
DEL2
DEL3
DEL4
DEL5
                                                                                  LDMNCM
MB
IP0
```

LOADE

Name: LOADF(S,MPSI,K,SE,C,M,DAMAGE,SEQ)

Function: calculate fatigue damage General reference: section 5.2.9

Input:

S(MPSI) vector of load S_{i} , j = 1 to MPSI; dimensional

number of azimuthal stations; maximum 36 MPSI

K parameter K in fatigue damage calculation

endurance limit S_{R} (dimensional) SE

M material exponent

C material constant

S-N curve approximated by $N = \frac{C}{(S/S_E - 1)^M}$

Output:

damage fraction per rev (only calculated if $S_{\underline{E}}>0$, C > 0, and M \neq 0) DAMAGE

equivalent $\frac{1}{2}$ peak-to-peak load (only calculated if SEQ

LOADM

Name: LOADM(F, MPSI, FMEAN, FHPP)

Function: calculate mean and half peak-to-peak

Input:

F(MPSI)

MPSI

load F_j, j = 1 to MPSI
number of azimuthal stations

Output:

FMEAN

mean load

FHPP

 $\frac{1}{2}$ peak-to-peak load

GEOMP1

Name: GEOMP1(LEVEL)

Function: printer-plot of wake geometry

		GEOMP1
LEVEL	wake analysis: 1 for prescribed wake, 2 for free wake geometry	
MPSI TYPE		TMDATA R1DATA
MWKGMP JWKGMP(8) NWKGMP(4)		L1 DATA
KFW KDW KNW KRW KRWG		W1DATA
KFWG		G1 DATA

POLRPP

Name: POLRPP(A, MRA, RA, MPSI, ISUB, NPLOT, DA, NUPP)

Function: printer-plot of polar plot

A array to be plotted MRA number of radial stations RA(MRA) radial stations r_i , i = 1 to MRA number of azimuthal stations $\Psi_{i} = j\Delta\Psi_{i}$ MPSI j = 1 to MPSI, $\Delta \Psi = 360/MPSI$ ISUB first dimension of array A; positive if first subscript is r_i , negative if first subscript is Ψ_i NPLOT n; data plotted every n-th step DA plot increment: last digit of integer part of A/DA is plotted (if multiple of NPLOT) NUPP unit number for printed output

HISTPP

Name: HISTPP(A, MRA, RA, MPSI, ISUB, NPLOT, NAME, NUPP)
Function: printer-plot of azimuthal time history

let c = minimum, d = maximum values over azimuth

2)
$$d > 2|c|$$
, $c > -.03d$
use $b = [d]$

3)
$$c < -2 |d|$$
, $d < .03 c$
use $b = [|c|]$

4) otherwise, use mean =
$$\left[\frac{1}{2}(c+d)\right]$$
 and b = $\left[\max(\text{mean-c}, d\text{-mean})\right]$

mean = AM = KM *
$$10**NM$$

b = B = K * $10**N$

to convert F to $K*10^{N}$ (K = 1 to 9)

- a) if F = 0, then F = .99
- b) N = [log | F|]if F < 1, then N = N - 1
- c) K = [|F|/10**N] + 1if K = 10, then N = N + 1 and K = 1if F < 0, then K = -K
- d) F = K * 10**N

HISTPP

A	array to be plotted
	· · · · · ·
MRA	secondary variable: number of values (minimum 1)
RA(MRA)	secondary variable: values r, i = 1 to MRA; alphanumeric labels if NPLOT LT 0; not used if MRA EQ 1
MPSI	number of azimuthal stations $\Psi_j = j \Delta \Psi$, $j = 1$ to MPSI, $\Delta \Psi = 360/\text{MPSI}$
ISUB	first dimension of array A; positive if first subscript is r_i , negative if first subscript is Ψ_i
NPLOT	number of values of secondary variable per plot; minimum 1 and maximum 3; negative for alphanumeric labels; not used if MRA EQ 1
NAME	name of secondary variable, 4 characters; not used if MRA EQ 1
NUPP	unit number for printed output

NOISR1

Name: NOISR1(RANGE, ELVATN, AZMUTH)

```
Function: calculate and print far field rotational noise
 General reference: section 5.2.10
Calculate constants: CSTR = \cos \frac{\partial_r}{(1 - M_r)}

FT = -N^3 \Omega^2 \frac{\partial_r}{\partial_r} \frac{\partial_r}{\partial_r}
                                                                                                                                                                                         FD = N^2/4\pi - (1 - M_r)
                                                                                                                                                                                         FL = -N^2 \Omega \sin \theta_r / 4\pi c_s \epsilon_s (1 - M_r)^2
                                                                                                                                                                                         FR = -N^2 \Omega \cos \theta_r / 4\pi c_s \sigma_s (1 - M_r)^2
                                                                                                                                                                                           FB = N\Omega \cos \Theta_r / c_s (1 - M_r)
                                                                                                                                                                                           FS = N\Omega \sigma/c_s
   Harmonic analysis of loads: F_n = \frac{1}{J} \sum_{j=1}^{J} F_j e^{-in \cdot Y_j} K_n
                                                                                                                                                                                  range s (dimensional) elevation \Theta (deg) azimuth \Psi_0 (deg)
     RANGE
     ELVATN
     AZMUTH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       TMDATA
     MPSI
     OPUNIT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       TRIMCM
       DPSI
         DENSE
         CSOUND
         cospsi(36)
         SIMPSI(36)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       RTR1CM
         OMEGA
         CMEAN
         MUX
         MUY
         MUZ
         RA(30)
          DRA(30)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         R1DATA
           NBLADE
           CHORD(30)
           SIGMA
           RADIUS
           MRA
            TYPE
                                                                                                                                                                                  A_{xs}/c^2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           L1 DATA
            AXS(30)
            OPNOIS(4)
            MHARMN(3)
            MTIMEN(3)
```

NCISR1

FXA(30,36) F_{x}/ac FZA(30,36) F_{x}/ac FRA(30,36) F_{x}/ac

AES1CM

BETAC BETAS QR1CM

BESSEL

Name: BESSEL(NB, XB, BJ)

Function: calculate J Bessel function

Input:

NB order of Bessel function, n

XB argument of Bessel function, x

Output:

BJ Bessel function $J_n(x)$

RAMF

PS2(10,6)

Name: RAMF(LEVEL1, LEVEL2, OPLMDA)

Function: calculate rotor/airframe periodic motion and forces

General reference: section 5.1.13

Test motion convergence: section 5.1.4
Test circulation convergence: section 5.1.12

LEVEL1 integer parameter specifying rotor #1 and rotor #2 LEVEL2 wake analysis: 0 for uniform inflow, 1 or 2 for nonuniform inflow OPLMDA integer parameter: 0 to suppress inflow update MPSI TMDATA MHARM(2) MHARMF(2) ITERM EPMOTN ITERC **EPCIRC** DEBUG MREV MPSIR OPRTR2 TRIMCM NAM BODYCM NDM **ENGNCM** CMEAN1 RTR1CM NBM1 NTM1 NGM1 CMEAN2 RTR2CM NBM2 NTM2 NGM2 B1(21,10) MNR1CM T1(21,5) BG1(21) P1(10,16) PS1(10,6) B2(21,10) MNR2CM T2(21,5)BG2(21) P2(10,16)

	RAMF
B1MS(10) : COUNTC	CONVCM
CIRC1(36) CT1 CMX1	QR1CM
CMY1 CIRC2(36) CT2 CMX2 CMY2	QR2CM
SIGMA1 SIGMA2	R1DATA R2DATA

MODE1

T75

Name: MODE1

Function: blade modes

T750LD
NBMOLD
NTMOLD
DEBUG
TMDATA
HINGE
EPMODE

NBM
NTM

CONTCM

MODEC1

Name: MODEC1

Function: initialize blade mode parameters

Linearly interpolate data for bending mode calculation: section 2.3.1

Tip mass: section 2.2.19

Evaluate centrifugal force for bending mode calculation: section 2.3.1

Linearly interpolate data for torsion mode calculation: section 2.3.3 Evaluate pitch inertia and control system stiffness: sections 2.2.9,5.1.3

R1DATA MRB

MTIP

XITIP

EFLAP

ELAG

RFA

RADIUS

MRM

FT0

FTC

FTR

WTIN

VTIPN

KTOI

KTCI

KTRI MRI

RI(51)

XI(51)

XC(51)

KP2(51)

MASS(51)

ITHETA(51)

GJ(51)

EIXX(51)

EIZZ(51)

TWIST(51)

DEBUG

TMDA TA

MODEC1

RTR1CM

IB
OMEGA
EIXXB(51)
EIZZB(51)
MASSB(51)
TWISTB(51)
CENT(51)
ITHETB(51)
GJB(51)
MASSI(51)
ITHETI(51)
XII(51)
XCI(51)
TWISTI(51)
KP2I(51)
IPITCH
KTO
KTC
KTR

MODEB1

Name: MODEB1

Function: calculate blade bending modes

General reference: section 2.3.1

Blade pitch: section 2.3.5

Calculate:

$$DS = \begin{cases} \int_{K}^{1} \zeta_{K}^{n} \cdot \zeta_{i}^{n} dr \\ \int_{E}^{1} \zeta_{i}^{n} dr$$

Normalize eigenvector solution: using Galerkin modes from last call, which was at r = 1

T75 **DEBUG**

NOPB RCPL

KFLAP

KLAG

EFLAP

ELAG

RADIUS

RCPLS

TSPRNG

RFA

RPB

NCOLB

MRB

NONROT

HINGE

MRA

RROOT

MRM

NU(20)

NUNR(20)

ETA(2,10,96)

ETAP(2,10,96)

ETAPP(2,10,96) ETAPH(2,10)

-169-

MD1CM

CONTCM

TMDATA

R1 DATA

MODEB1

RTR1CM

MASS(51) inertial and structural data at EIXX(51) $r = e + (j-1) \Delta r$, r = 1 to MRB + 1
EIZZ(51)
TWIST(51)
CENT(51)
OMEGA
NBM
RA(30)

MO DEG

Name: MODEG(R, EFLAP, ELAG, NCOLB, HINGE, F, DF, DDF)

Function: calculate Galerkin functions for bending modes

General reference: section 2.3.1

R radial station r/R

EFLAP flap hinge offset e_f/R

ELAG lag hinge offset e_1/R

NCOLB number of functions

HINGE integer parameter: 0 for hinged blade, 1 for

cantilever blade

F(NCOLB) Galerkin functions f,

DF(NCOLB) Galerkin functions fi

DDF(NCOLB) Galerkin functions f

MODEA1

Name: MODEA1

Function: calculate articulated blade flap and lag modes

General reference: section 2.3.2

 $F = \int_{e}^{1} \eta m dr$, $G = \int_{e}^{1} \eta^{2} m dr$

DEBUG TMDATA MRB R1DATA

EFLAP

ELAG

KFLAP KLAG

RADIUS

MRM RFA

RPB

MRA RROOT

RA(30) RTR1CM

OMEGA NBM

section mass at $r = e + (j-1)\Delta r$, j = 1 to MRB+1 MASS(51)

NU(20) MD1CM

NUNR(20)

ETA(2,10,96)ETAP(2,10,96)

ETAPP(2,10,96) ETAPH(2,10)

MODET1

Name: MODET1

Function: calculate blade torsion modes

General reference: section 2.3.3

Evaluate Galerkin functions at r: $x = \pi(r - r_{FA})/(1 - r_{FA})$

Calculate:

$$C = \begin{cases} \int_{0}^{b} \xi_{1}^{k} (G_{2}/\Sigma_{5})^{-1} \xi_{1}^{i} dx \\ \int_{0}^{b} \xi_{1}^{k} (G_{2}/\Sigma_{5})^{-1} \xi_{1}^{i} dx \end{cases}$$

Normalize eigenvector solution: using Galerkin functions from last iteration, which was at r = 1

TMDATA DEBUG

R1DATA **MRB**

RFA RADIUS

MRM

NCOLT

MRA

RTR1CM IPITCH

KT0

KTC

KTR

OMETA

NTM

RA(30)

I_O at $r = r_{FA} + (j-1)\Delta r$, j = 1 to MRB+1 GJ at $r = r_{FA} + (j-1)\Delta r$, j = 1 to MRB+1 ITHETA(51) GJ(51)

MD1CM WT(11)

WTO

WTC

WTR

ZETA(5,92)

ZETAP(5,92)

MODEK1

NBM

Name: MODEK1

Function: calculate kinematic pitch-bending coupling

General reference: section 2.3.4

DEBUG TMDATA T75 CONTCM PHIPL R1DATA PHIPH RPH RPB XPH KPIN DEL3G ATANKP(10) ETA(2,10) ETAP(2,10) KPB(10) bending modes at r_{PB} MD1CM KPG

RTR1CM

MODED1

Name: MODED1

Function: calculate blade root geometry

General reference: section 2.2.1

DEBUG
T75
CONE
CONE
DROOP
SWEEP
FIROOP
FSWEEP

DEL1 MD1 CM

DEL2
DEL3
DEL4
DEL5

-175-

INRTC1

```
Name: INRTC1
```

Function: calculate blade inertia coefficients

General reference: section 2.2.19

Blade pitch: section 2.3.5

Calculate:
$$CS(MRM+1) = cos\theta$$
, $SN(MRM+1) = sin\theta$
 $CM(MRM+1) = \int_{1}^{1} m dg$
 $CMR(MRM+1) = \int_{1}^{1} g^{2} m dg$
 $CXIM(MRM+1) = \int_{1}^{1} g^{2} g^{2} m dg$
 $CXIM(MRM+1) = \int_{1}^{1} g^{2} g^{2} g^{2} g^{2}$
 $CXIM(MRM+1) = \int_{1}^{1} g^{2}$
 $CXIM(MRM+1) = \int_{1}^{1} g^{2}$
 $CXIM(MRM+1) = \int_{1}^{1} g^{2}$
 $CXIM(MRM+1) = \int_{1}^{1} g^{2}$
 $CXIM(MRM+1) =$

DEBUG T75 MRM NOPB RCPL RFA ZFA XFA ELAG TMDATA CONTCM R1DATA

```
INRTC1
                                                                             R1DATA
RADIUS
MBLADE
MRA
EFLAP
                                                                             RTR1CM
IB
NBM
MTM
NGM
NBMT
RA(30)
IPITCH
                    inertial data at r = (j-1) \triangle r, j = 1 to MRM+1
MASS(51)
ITHETA(51)
XI(51)
XC(51)
KP2(51)
TWIST(51)
                    bending modes at r = (j-1)\Delta r, j = 1 to MRM+1
ETA(2,10,51)
ETAP(2,10,51)
ETAPP(2,10,51)
                    torsion modes at r = (j-1)\Delta r, j = 1 to MRM+1
ZETA(5,51)
ZETAP(5,51)
EFA(2,10)
EFAP(2,10)
                    bending modes at r<sub>FA</sub>
ETAPH(2,10)
DEL1
DEL2
DEL3
 DEL4
 DEL5
                                                                              INC1CM
 MB
XAPQ(2,5,4,30)
```

MODEP1

```
Name: MODEP1
Function: print blade modes
                                                                         R1DATA
TYPE
HINGE
NCOLB
NONROT
NCOLT
RCPL
EFLAP
ELAG
KFLAP
KLAG
RCPLS
TSPRNG
RADIUS
OMEGA
                                                                         RTR1CM
NBM
MTM
NGM
NUGC
NUGS
KT0
KTC
KTR
IB
MB
                                                                         INC1CM
ĬP(5)
T750LD
NU(20)
                                                                         MD1CM
NUNR(20)
                  bending modes at r = (j-1).1, j = 1 to 11
ETA(2,10,11)
ETAP(2,10,11)
ETAPP(2,10,11)
WT(11)
WTO
WTC
WTR
ZETA(5,11)
ZETAP(5,11)
ETAPH(2,10)
               torsion modes at r = (j-1).1, j = 1 to 11
KPB(10)
KPG
```

MD1CM

DEL1 DEL2

DEL3 DEL4

DEL5

BODYC

RFV(3,3)

```
Name: BODYC
Function: initialize airframe parameters at trim
Wind tunnel trim case: section 4.1.3
\vec{r}, R_{SF} with \Theta_T/\Psi_T rotations: sections 4.1.3, 4.1.5
Free flight trim case: section 4.1.1
Calculate R: section 4.2.1
Calculate R_e^T I^* R_e, -M^* (\vec{v} x) R_e, G, (\vec{v} x) R_e \vec{k}_F: section 4.2.4
Airframe gust velocity in body axes: section 4.1.4
THETFT
                                                                           CONTOM
PHIFT
PSIFP
THETFP
THETAT
PSIT
DEBUG
                                                                           TMDATA
VEL
OPTRIM
MSTAR
                                                                           BODYCM
MSTARG
ISTAR(3,3)
RSF10(3,3)
RSF20(3,3)
RHUB10(3)
RHUB20(3)
RWBO(3)
RHTO(3)
RVTO(3)
ROFFO(3)
RSF1(3,3)
RSF2(3,3)
RHUB1(3)
RHUB2(3)
RWB(3)
RHT(3)
RVT(3)
ROFF(3)
VXREKF(3)
MVXRE(3,3)
GMTRX(3,3)
IBODY(3,3)
REULER(3,3)
```

BODYC

RFE(3,3)
KE(3)
VELF(3)
VCLIMB
VSIDE

VGWBV(3)
VGHTV(3)
VGVTV(3)
VGWBF(3)
VGHTF(3)
VGVTF(3)

ENGNC

Name: ENGNC

Function: initialize drive train parameters at trim

Engine damping: section 4.3.1
Drive system inertia: section 5.3
Drive system spring, damping, mass matrices: section 5.1.9
Drive system static elastic matrix: section 5.1.10
Calculate Cy: section 5.1.5
Calculate CD: section 5.1.9

NBLD1 NBLD2 R1DAT NBLD2 R1DAT R2DAT IB1 OMEGA1 GAMMA1 CD1(2) CPS11(2) IB2 OMEGA2 GAMMA2 CD2(2) CPS12(2) IO1 QT1 QDZ1 IO2 QT2 QDZ2 CQS1 CQS1 CQS2 CQS2 CQS2 CQS2 CQS2 CQS2 CQS2 CQS2	DEBUG OPENGN		TMDA TA
OMEGA1 GAMMA1 CD1(2) CPS11(2) IB2	NBLD1		TRIMCM R1DATA R2DATA
OMEGA2 GAMMA2 CD2(2) CPS12(2) IO1 INC1C QT1 QDZ1 IO2 INC2C QT2 QDZ2 CQS1 -82C_/-a QR1CM CQS2 -82C_/-a KIGOVE KIGOVE KIGOV2 GSE GSI	OMEGA1 GAMMA1 CD1(2) CPS11(2)		RTR1CM
QT1 QDZ1 102 QT2 QDZ2 CQS1 CQS1 CQS2 KIGOVE KIGOVE KIGOV2 GSE GSI	OMEGA2 GAMMA2 CD2(2)		RTR2CM
INC2C QT2 QDZ2 CQS1 -82CQ/-a CQS2 -82CQ/-a KIGOVE KIGOV1 KIGOV2 GSE GSI	QT1		INC1CM
KIGOVE KIGOV1 KIGOV2 GSE GSI	102 QT2		INC2CM
KIGOVE KIGOV1 KIGOV2 GSE GSI	CQS1	-820 ₀ / v- a	QR1CM
KIGOVE KIGOV1 KIGOV2 GSE GSI	CQS2	- 820 / a	
Abdration in	KIGOV1 KIGOV2 GSE		ENDATA

ENGNC

ENGNCM

QTHRTL IENG IMI1 KMI2 KMR MKE1 KME2 KPGOVE KPGOV1 KPGOV2 T1GOVE T1GOV1 T1GOV2 T2GOVE T2GOV1 T2GOV2 **QEDAMP** IRSTAR MENG(6,6) SENG(6,6) DENG(6,6) HENGO(2,2)

MOTNC1

Name: MOTNC1 Function: initialize rotor parameters at trim Calculate \sim_{HP} , \rightsquigarrow_{HP} , M_{at} : sections 2.4.2, 4.1.2 Calculate R_C: section 4.1.4 Rotor gust velocity in shaft axes: section 4.1.4 Calculate c, C: section 4.2.2 Calculate c^T: section 4.2.5 Calculate My, My, Mz: section 4.1.2 DEBUG TMDA TA MPSI NSCALE TRIMCM ISCALE **FSCALE** LSCALE IB RTR1CM OMEGA MTIP MUX MUY MUZ ALFHP PSIHP MAT RGUST(3,3)CHUB(6,16)CBHUB(3,3)CHUBT(16,6) ROTATE R1DATA NBLA DE RADIUS MRA NEM BDDATA DVBODY(6) CONTCM VGUSTV(3,30,36) gust at rotor disk, velocity axes VGUSTS(3,30,36) gust at rotor disk, shaft axes VGUSTH(3) gust at rotor hub, velocity axes GUSTCM

gust at rotor hub, velocity axes

MOTNC1

BODYCM

VELF(3)
RFV(3,3)
REULER(3,3)
RSF(3,3)
RHUB(3)
AMODE(6,10)

BODYM1

Name: BODYM1

Function: calculate airframe transfer function matrix

General reference: section 5.1.8

DEBUG DOF(16) MHARMF	airframe degrees of freedom	TMDATA
FSCALE		TRIMCM
NBLADE		R1DATA
OMEGA DPSI21 CHUBT(16,6)	مار (rad); 0. for rotor #1	RTR1CM
AMASS(10) ADAMPS(10) ASPRNG(10) ADAMPA(10) IBODY(3,3) MVXRE(3,3) GMTRX(3,3) MSTAR NAM		BODYCM
HBODY(16,6,10)		RH1CM

ENGNM1

Name: ENGNM1

Function: calculate drive train transfer function matrix

General reference: section 5.1.9

DEBUG MHARMF	lutur to de money of freedom	TMDATA
DOF(6)	drive train degrees of freedom	
FSCALE		TRIMCM
NBLADE		R1 DATA
OMEGA DPS121 CD(2)	ΔΨ ₂₁ (rad); 0. for rotor #1	RTR1CM
MENG(6,6) SENG(6,6) DENG(6,6) NDM		ENGNCM
HENG(6.10)		RH1CM

WAKEU1

RWB(3) RHT(3) RVT(3) KE(3)

Name: WAKEU1 Function: calculate uniform wake-induced velocity General reference: section 2.4.3 Lagged thrust and moment: section 5.1.12 Vectors for aerodynamic interference: section 4.2.6 Interference induced velocity: section 4.2.6 DEBUG TMDATA OPGRND HAGL MPSI DPSI TRIMCM COSPSI(36) SINPSI(36) LSCALE FSCALE MRA R1DATA RADIUS ROTATE FACTOR KHLMDA KFLMDA **FXLMDA FYLMDA** FMLMDA KINTH KINTF KINTWB KINTHT KINTVT INFLOW(6) RA(30) RTR1CM OMEGA MUX MUY MUZ MRAO R2DATA RADUSO **OMEGAO** RTR2CM RSF(3,3)BODYCM RHUB(3)

WAKEU1

QR1CM

CT
CMY
CMX
CMX
CTOLD
CMXOLD
CMXOLD
CMYOLD
VIND(3,30,36)
LAMBDA
FGE
COSE
ZAGL
VINT(3,30,36)
LAMBDI
LAMBDW(3)
LAMBDW(3)
LAMBDH(3)
LAMBDH(3)
LAMBDO(3)
EINTW(3)
EINTW(3)
EINTW(3)

WKV1CM

WAKEN1

RSFO(3,3)

Name: WAKEN1(LEVEL)

Function: calculate non-uniform wake induced velocity

General reference: section 3.1.4

Calculate R_{TF} : section 3.1.3

$$R_{TF} = R_{TS}R_{SF}$$

Lagged circulation: section 5.1.12

Interpolate induced velocity: linear interpolation between inflow

points, constant beyond first or last

point

Calculate mean induced velocity: TPP normal component, area-weighted mean

rotor wake level: 0 for uniform inflow (only LEVEL replace old circulation) TMDATA DEBUG MPSI TRIMCM DPSI R1DATA MRA ROTATE INFLOW(6) RA(30) RTR1CM DRA(30) Atz. (rad); 0. for rotor #1 DP21M AY 21 (rad); -AY2, for rotor #2 DPSI21 R2DATA MRAO other rotor ROTATO RAO(30) RTR2CM DRAO(30) W2DATA NG(30)MRG NL(30) MRL FACTOR OPVXVY KNW OPRTS W2DATA NLO(30)other rotor MRLO RSF(3,3)BODYCM

other rotor

		WAKEN1
GAM(30,36) CRC(36) BETAC BETAS		QRICM
BETACO BETASO	other rotor	QR 2CM
GAMOLD(30,36) CRCOLD(36) VIND(3,30,36) LAMBDA VINT(3,30,36) VORH(3,36) LAMBDI VWB(3,36) VHT(3,36) VVT(3,36) VOFF(3,36) LAMBDW(3) LAMBDW(3) LAMBDW(3) LAMBDW(3) LAMBDW(3)		WKV1CM
MR ML MI MW MH MV MO C(3,20000) CNW(3,20000)		WKC1CM

INRTM1

MRA

CHORD(30) SIGMA XA(30) XAC(30)

Name: INRTM1 Function: calculate rotor transfer function matrix General reference: section 5.1.6 Aerodynamic spring and damping: section 2.2.20 DEBUG TMDA TA DOF(15) rotor bending and torsion degrees of freedom DOFT(4) MPSI MHARM RA(30) RTR1CM DRA(30) CMEAN MUZ NUGC NUGS CGC CGS GLAG CTO CTC CTR NBM MTM NGM NBMT X GAMA KEPSI(21,36) TRIMCM HRTR(16,16,21) RH1CM CT $\mathbf{C}_{\mathbf{T}}$ QR1CM LAMBDA WKV1CM BETA(21,10) MNR1CM THETA(21,5) BETAG(21) FORCE(16,36) AEF1CM **NBLADE** R1DATA GSB(10) GST(5)

```
INTRM1

NU(20)
ETAPH(2,10)
KPG
KPB(10)
AETA(2,10,3) bending modes at r<sub>1</sub>, i = 1 to MRA
AZETA(5,30) bending modes at r<sub>1</sub>, i = 1 to MRA
WT(11)
WTO
WTC
WTR

MB

INC1CM

XAPQ(2,5,4,30)
MQDQ(10,10)

INC1CM

SPQS(5,10)
```

INRTI

Name: INRTI(MX, H, KEEP, LMINV, MMINV)

Function: calculate inverse of transfer function matrix

dimension of H_n ΜX

H(MX*MX)complex matrix $\mathbf{H}_{\mathbf{n}}$ to be inverted

KEEP(MK) integer vector designating degrees of freedom to be retained; 0 for unused degrees of freedom

LMINV(MX+1) scratch vector MMINV(MX+1) scratch vector

MOTNH1

ALF(10,6)

DPSIS0

Name: MOTNH1 Function: calculate harmonics of hub motion General reference: sections 5.1.5, 5.1.11 TMDATA DEBUG MHARM MHARMF TRIMCM **GRAV FSCALE** LSCALE R1DATA RADIUS ROTATE NBLADE OPHVIB(3) RTR1CM **OMEGA** CHUB(6,16)свнив (3,3) CPSI(2) ΔΨ, (rad); 0. for rotor#1 DPSI21 **BO DYCM** KMASTC(10) KMASTS(10) RSF(3,3)KE(3)NAM **ENGNCM** NDM CONTCM DVBODY(6) DOMEGA MNSCM QSSTAT(10) PISTAT MNR1CM PHI(10,16) PSID(10,2) THTG(10) (45,4x) (DOG1) MNR 2CM PHIO(10,16) PSIDO(10,2) THTGO(10) (due to other rotor) (45,4I) (ABg1)

MNH1CM

MOTNR1

Name: MOTNR1(JSTART) Function: calculate harmonics of rotor motion General reference: sections 5.1.6, 5.1.13 Lag damper moment: section 2.2.16 Calculate coming and tip-path plane tilt: section 3.1.3 Calculate hub reactions: section 5.1.7 azimuth index j_{start} **JSTART** MPSI TMDATA MPSIR DEBUG MHARM MHARMF DOFT(4) NBLA DE R1DATA GAMMA RTR1CM NBM NTM NGM NBMT GLAG MLD DZLD CGC CGS NUGS NUGC KPB(10) MD1CM KPG ETAPH(2,10) ETATIP(2,10)bending mode at r = 1 B0 QR1CM BC BS BETA(21,10) MNR1CM THETA(21,5) BETAG(21) DPSI TRIMCM COSPSI(36) SINPSI(36) KEPSI(21,36) HRTR(16,16,21) RH1CM

```
FORCE(16,36)
FHUB(6,36)
TORQUE(36)
SAVE(36,20)
                                                                                                                            AEF1CM
Q(10)
                                                                                                                            AEMNCM
DTT
                                                                                                                            INC1CM
MB
SB
IO
IQ(10)
SQ(2,10)
IQA(2,10)
IQO(10)
 IFXO
 IMXO
IP(5)
IPP(5,5)
IPO(5)
XAPQ(2,5,4,30)
MQDQ(10,10)
 MPP(5,5)
IQDQ(10,10)
                                summed over q
 SPQ(5,10)
```

MOTNR1

MOTNB1

DPSIS0

Name: MOTNB1(PSI) Function: calculate blade and hub motion General reference: section 5.1.5 Rigid pitch pr: section 5.1.3 PSI Q(10) **AEMNCM** DTT TMDATA MHARM MHARFM NBLA DE R1DATA RTR1CM NBM NTM NGM KPB(10) MD1CM KPG CONTCM **T**75 T1C T1S BETA(21,10) THETA(21,5) BETAG(21) MNR1CM ALF(10,6) MNH1CM

AEROF1

Name: AEROF1(JPSI,QT,MQ,MP,CMX,CMZ,CFX,CFZ,CFR)

Function: calculate blade aerodynamic forces

Calculate XAP = \overrightarrow{X}_{A_k} : section 2.2.19

Section velocity components: section 2.4.2

Calculate U, M, ϕ , \propto : section 2.4.1

Ф in rad. ≈ in deg

Calculate &c/V: section 2.4.7 Calculate cos A: section 2.4.6

REVFLW = 1 if just crossed reverse flow boundary

Tip loss correction: section 2.4.5 Section forces and pitch moment: section 2.4.1

 $FZ = F_z/ac_m$, $FX = F_x/ac_m$, $FR = F_r/ac_m$, $MA = M_a/ac_m$

Circulation: section 2.4.9

Unsteady lift, moment, and circulation: sections 2.4.8, 2.4.9

LUS =
$$L_{us}/ac$$
, MUS = M_{us}/ac , GUS = Γ_{us}/ac

Maximum circulation outboard $r_{G_{max}}$: section 3.1.4

azimuth index j JPSI QT(4)

^qjtrim $M_{q_{k}aero}/ac$ MQ(10)

M_{Pkaero}/ac MP(5)

Cmx/~a CMX

 C_{m_Z}/σ a CMZ

CFX

CFZ

CFR

Q(10)

DQ(10)

DDQ(10)

P(5)

DP(5)

DDP(5)

BG

DBG

DDBG

AHUB(6)

DAHUB(6)

DDAHUB(6)

AEMNCM

		AEROF1
PS DPS DDPS		AEMNCM
DEBUG MPSI		TMDATA
DPSI FSCALE COSPSI(36) SINPSI(36)		TRIMOM
MRA CHORD(30) TWIST(30) THETZL(30) XA(30) XAC(30) RGMAX RFA XFA OPUSLD		R1 DATA
RA(30) DRA(30) MTIP OMEGA CMEAN FTIP(30) MUX MUY MUZ NBM NTM NBMT RGUST(3,3) CHUB(6,16)		RTR1CM
XAPQ(2,4,5,30)		INC1CM
T75 DVBODY(6)		CONTCM
VIND(3,30,36)		WKV1CM
VINT(3,30,36)	interference velocity from other rotor	WKV 2CM
GAM(30,36) CIRC(36)		QR1CM
SAVE(30,36,19)		AES1CM
VGUST(3,30,36) VGUSTH(3)	gust at rotor disk, shaft axes gust at rotor hub, velocity axes	GUSTCM

AEROF1

```
ETA(2,10,30) bending modes at r_i, i = 1 to MRA MD1CM ETAP(2,10,20) ZETA(5,30) torsion modes at r_i, i = 1 to MRA ZETAP(5,30) DEL1 DEL2 DEL3 DEL4 DEL5
```

AEROS1

```
Name: AEROS1(ALPHA, DALPHA, COSYAW, MACH, JPSI, IR, REVFLW, CL, CD, CM, CDR, OPTION)
Function: calculate blade section aerodynamic coefficients
Corrected Mach number: section 2.4.5
Stall model, delayed : section 2.4.7
Yawed flow, effective a: section 2.4.6
Calculate 2-D airfoil characteristics at effective and M: section 2.4.7
Section characteristics corrected for yawed flow and stall delay:
                  sections 2.4.6, 2.4.7
Dynamic stall vortex loads: section 2.4.7
ALPHA
                  angle of attack \propto (deg)
                  ¿c/V
DALPHA
                  cos A
COSYAW
                  Mach number M
MACH
JPSI
                  azimuth index j
IR
                  radial station index i
REVFLW
                  integer parameter: 1 if just crossed reverse flow
                  boundary
CL
                  C,
CD
                  c_{\mathbf{d}}
CM
CDR
                  ^{\mathrm{c}_{\mathrm{dradial}}}
                  integer parameter: 0 for derivatives of coefficients
OPTION
                  in flutter analysis (no dynamic stall vortex loads,
                  and calculated data not saved)
STATE(30,36,3)
                                                                        AES1CM
DCLMAX(30,36)
DCDMAX(30,36)
DCMMAX(30,36)
MEFF(30,36,3)
AEFF(30,36,3)
DCLDS(30,36)
DCDDS(30,36)
DCMDS(30,36)
MRA
                                                                       R1DATA
MCORRL(30)
MCORRD(30)
MCORRM(30)
```

AEROS1

R1DATA TAUL

TAUD MUAT

ADELAY

AMAXNS

PSIDS(3) ALFDS(3) ALFRE(3)

CLDSP

CDDSP

CMDSP

OPYAW OPSTLL

OPCOMP

DEBUG

MPSI

TMDATA

AEROT1

Name: AEROT1(ALPHA, MACH, RADIAL, OPTION, CL, CD, CM)

Function: interpolate airfoil tables

General reference: section 2.4.4

ALPHA

angle of attack \propto (deg)

MACH

Mach number M

RADIAL

radial station r/R

OPTION

integer parameter: if 1 calculate $c_{\tt g}$, if 2 calculate $c_{\tt d}$, if 3 calculate $c_{\tt m}$, if 4 calculate all three coefficients

A1TABL

CL

c_{22D}

CD

 \mathbf{c}_{d2D}

CM

 $\mathbf{c}_{\mathtt{m}_{2D}}$

NAB

NA(20)

A(20)

NMB

NM(20)

M(20)

NRB

R(11)

CLT(5000) CDT(5000)

CMT(5000)

BODYV1

Name: BODYV1

Function: calculate harmonics of airframe motion

General reference: section 5.1.8

TMDA TA DEBUG MPSI MHARMF R1DATA NBLADE BODYCM NAM RH1CM HBODY(16,6,10) AEF1CM FHUB(6,36) PHI(10,16) MNR1CM TRIMCM KEPSI(21,36)

ENGNV1

Name: ENGNV1

Function: calculate harmonics of drive train motion

General reference: section 5.1.9

DEBUG	TMDATA
MHARMF MPSI	
NBLA DE	R1DATA
NDM	Engncm
TORQUE(36)	AEF1CM
PSID(10,6)	MNR1CM
HENG(6,10)	RH1CM
KEPSI(21.36)	TRIMCM

MOTNF1.

Name: MOTNF1

Function: calculate rotor generalized forces

General reference: section 5.1.7

 C_{I}/σ and C_{χ}/σ for trim: section 5.2.1

DEBUG
MPSI

SIGMA

R1DATA

RATRICM

MUX

MUY

MUZ

CHUBT(16,6)

FHUB(6,36)

AEFICM

QRICM

FHUBM(6) QRTR(6)

CLS CXS CTS CYS CYS

CT CMX CMY

MOTNS

Name: MOTNS

Function: calculate static elastic motion

General reference: section 5.1.10

DEBUG DOFA(16) DOFD(6)	airframe degrees of freedom drive train degrees of freedom	TMDATA
OPRTR2		TRIMCM
CHUBT1(16,6) CHUBT2(16,6)		RTR1CM RTR2CM
DDALF1(6) DDALF2(6)		MNH1CM MNH2CM
FHUBM1(6) FHUBM2(6)		QR1CM QR2CM
ASPRNG(10) ACNTEL(4,10) NAM		BODYCM
HENGO(2,2) NDM		ENGNCM
DELF DELE DELA DELR		CONTCM
MB1 MB2		INC1CM INC2CM
QSSTAT(10) PISTAT PESTAT		MNSCM

BODYF

Name: BODYF(LEVEL1, LEVEL2) Function: calculate airframe generalized forces General reference: section 4.2.6 wake level for rotor #1 and rotor #2: 0 for LEVEL1 LEVEL2 uniform inflow TMDA TA DEBUG MPSI AFLAP TRIMCM **GAMMA** reference rotor SIGMA **RADIUS** OMEGA OPRTR2 $\begin{array}{cccc} (\dot{x}_F & \dot{y}_F & \dot{z}_F) \\ (\dot{\varphi}_F & \dot{\Theta}_F & \dot{\psi}_F) \end{array}$ CONTCM VBODY(3)WBODY(3)DELF DELE DELA DELR DDZF **BDDATA** CANTHT CANTVT BODYCM REULER(3,3)RWB(3)RHT(3)RVT(3)VELF(3) QWB(6) QHT(6) QB DCM

VIW1(3,36) VIH1(3,36)

WKV1CM

VIV1(3,36) LMDAW1(3) LMDAH1(3) LMDAV1(3)

QVT(6)SAVE(31) VIW2(3,36)
VIH2(3,36)
VIV2(3,36)
LMDAW2(3)
LMDAH2(3)
LMDAV2(3)

GWB(3) gust in F axes GUSTCM
GHT(3)
GVT(3)

BODYA

OPTINT

```
BODYA (VWB, VHT, VVT, WWB, AFLAP, DELF, DELE, DELA, DELR, DAWB,
                                                   FWB, MWB, FHT, FVT, ANGLES)
Function: calculate body aerodynamic forces
General reference: section 4.2.6
                     velocity (u, v, w) at wing-body, horizontal tail,
VWB(3)
                     and vertical tail; F axes; ft/sec or m/sec
VHT(3)
VVT(3)
                     angular velocity (p, q, r); rad/sec
WWB(3)
                     flap angle \delta_{F} (deg)
AFLAP
                     flaperon control \delta_f (rad)
DELF
                     elevator control & (rad)
DELE
                      aileron control & (rad)
DELA
                      rudder control & (rad)
DELR
                      DAWB
                      (D/q, Y/q, L/q)_{WB}; ft<sup>2</sup> or m<sup>2</sup>
FWB(3)
                     (M_x/q, M_y/q, M_z/q)_{WB}; ft<sup>3</sup> or m<sup>3</sup> (D/q, L/q)_{HT}; ft<sup>2</sup> or m<sup>2</sup>
MWB(3)
FHT(2)
                      (D/q, L/q)_{VT}^{11}; ft<sup>2</sup> or m<sup>2</sup>
FVT(2)
                      (\sim_{WB}, (^3_{WB}, \sim_{HT}, \sim_{VT}, \in, \nabla); \deg
ANGLES(6)
                                                                                      BDDATA
CANTHT
CANTYT
                                                                                      BADATA
LFTAW
```

WAKEC1

DEBUG DEBUGV

OPGRND HAGL

Name: WAKEC1(LEVEL) Function: calculate influence coefficients for nonuniform inflow General reference: sections 3.1.3, 3.1.4 Calculate h for axisymmetric wake: section 3.1.6 Ground effect parameters: sections 2.4.3, 3.1.5 Calculate first blade/vortex intersection age and core bursting age: section 3.1.7 Wake age loop: $LANDJ = (\mathbf{Q} - 1) * MR * MPSI + j$ $JTEMJ = j_{te} - j$ Burst/unburst core radius: section 3.1.7 Axisymmetric far wake: section 3.1.6 Complete C and C_{NW} for axisymmetric geometry: section 3.1.6 LEVEL wake analysis: 0 for uniform inflow, 1 for prescribed wake, 2 for free wake geometry NBLA DE R1DATA RADIUS ROTATE RROOT CHORD(30)MRA INFLOW(6) ROTATO other rotor R2DATA RADUSO OMEGA RTR1CM CMEA N RA(30)PINTER(36) PBURST(36) ΔY_{21} (rad); $-\Delta Y_{21}$ for rotor #2 DPSI21 other rotor **OMEGAO** RTR2CM BETAC QR1CM **BETAS** BETASO QR 2CM **BETASO** MPSI TMDA TA

debug print control for VTXL and VTXS

WAKEC1 TRIMCM DPSI LSCALE FSCALE BODYCM RWB(3) RHT(3) RVT(3) RHUB(3) RHUBO(3) other rotor ROFF(3) RSF(3,3) RSFO(3,3) KE(3) other rotor RFE(3,3)WG1CM K2T MUTPP(3)W1DATA KNW KRW KFW K DW RRU FRU PRU FNW DVS DLS CORE(5)OPCORE(2) WKMODL(13) OPNWS(2) LHW OPHW OPRTS VELB DPHIB DBV QDEBUG MRG NG(30)MRL NL(30)

other rotor

MRLO

W2DATA

WAKEC1

WKC1CM

MR
ML
MI
MW
MH
MV
MO
C(3,20000)
CNW(3,20000)

WAKEB1

```
Name: WAKEB1(PSI,OPTION,RBR,RBT,RB)
Function: calculate blade position
General reference: section 3.1.3
                       Y (rad)
PSI
                      integer parameter controlling calculation of \vec{r}_0: if 1, at r_{ROOT} and 1; if 2, at circulation stations; if 3, at inflow stations
OPTION
                      rb at rROOT
RBR(3)
                      \vec{r}_b at tip (r = 1)
RBT(3)
                      rb at inflow or circulation stations
RB(3,30)
                                                                                         TMDA TA
MPSI
MHARME
MHARM
                                                                                         R1 DATA
RFA
ZFA
XFA
NBLADE
RROCT
                                                                                         RTR1CM
NBM
RA(30)
                                                                                         W1 DATA
OPWKBP(3)
MRG
 NG(30)
 MRL
 NL(30)
                                                                                          MNR1CM
 BETA(21,10)
 BETAG(21)
                                                                                          MNH1 CM
 PSIS(10)
 PSIS0
                       bending modes at r_i, i = 1 to MRA bending modes at r_{ROOT} bending modes at tip (r = 1)
                                                                                          MD1CM
 ETA(2,10,30)
 ETAR(2,10)
 ETAT(2,10)
 DEL1
 DEL2
 DEL3
```

VTXL

```
Name: VTXL(R1,R2,RP,MODEL,OPCORE,CORE,DLS,CHORD,PSI,OPGRND,ZAGL,RTE,V1,V2,DEBUG)
```

Function: calculate vortex line segment induced velocity General reference: section 3.1.7

Calculate: S1 =
$$s_1/s$$
, S2 = s_2/s , RMSQ = r_m^2
Lifting surface correction:

ANGLS = Λ (deg)

HLS = h (-1.0 for no correction)

RSINL = $rsin\Lambda$, COSL = $cos\Lambda$, SINL = $sin\Lambda$

LLL =
$$L_{11}$$
, LLS = L_{1s} , FACTLS = L_{1s}/L_{11}

Image element in ground effect: section 3.1.5

R1(3)
$$\overrightarrow{r}_1$$
 (at ϕ)
R2(3) \overrightarrow{r}_2 (at $\phi + \Delta \Psi$)
RP(3) \overrightarrow{r}_P (at P)

MODEL integer parameter: 1 for stepped vorticity distribution, 2 for linear vorticity distribution

OPCORE integer parameter defining vortex core type: 0 for distributed, 1 for concentrated vorticity

CORE vortex core radius r

DLS d_{ls} for lifting surface correction, LT 0. to suppress

PSI \(\Psi\); required for d_{ls} > 0 only

CHORD chord c at P; required for d_{ls} > 0 only

OPGRND integer parameter: 0 for out of ground effect

ZAGL z_{AGL}; required in ground effect only
RTE(3,3) R_{TE}; required in ground effect only
DEBUG integer parameter: debug print if GE 3

V1(3) $\Delta \vec{v}$ due to Γ_1 (at ϕ) V2(3) $\Delta \vec{v}$ due to Γ_2 (at $\phi + \Delta \Psi$)

VTXS

Name: VTXS(R1,R2,R3,R4,RP,MODELT,MODELS,OPCORE,CORET,CORES,DVS,OPCRND,ZAGL,RTE,MDLT,MDLS,VT1,VT2,VS1,VS3,DEBUG)

Function: calculate vortex sheet segment induced velocity General reference: section 3.1.8

Image element in ground effect: section 3.1.5

- · (•)	~
R1(3)	\vec{r}_1
R2(3)	\vec{r}_2
R3(3)	\vec{r}_{3}
R4(3)	
RP(3)	r _p
MODELT MODELS	integer parameters defining trailed and shed vorticity model: 0 to omit, 1 for stepped line, 2 for linear line, 3 for sheet
OPCORE	integer parameter defining vortex core type: 0 for distributed, 1 for concentrated vorticity
CORET	r for trailed vorticity (LT 0. for s/2)
CORES	r for shed vorticity (LT 0. for t/2)
DVS	d for sheet edge test; LT 0. to suppress
OPGRND	integer parameter: 0 for out of ground effect
ZAGL	ZAGL; required in ground effect only
RTE(3,3)	R _{TE} ; required in ground effect only
DEBUG	integer parameter: debug print if GE 3
MDLT MDLS	integer parameters specifying trailed and shed vorticity model used
VT1(3)	$\Delta \vec{v}_t$ due to Γ_1 (at ϕ , outside edge)
VT2(3)	$\Delta \vec{v}_t$ due to Γ_2 (at $\phi + \Delta \Psi$, outside edge)
vs1(3)	$\Delta \vec{v}_s$ due to Γ_1 (at ϕ , outside edge)
vs3(3)	$\Delta \overline{v}_s$ due to Γ_3 (at ϕ , inside edge)
	$(\Delta v_{t_3} = -\Delta v_{t_1}, \Delta v_{t_4} = -\Delta v_{t_2})$
	$(\Delta v_{s_2} = -\Delta v_{s_1}, \ \Delta v_{s_4} = -\Delta v_{s_3})$

GEOME1

```
Name: GEOME1(K,L,LEVEL,RWT,RWSO,RWSI)
Function: evaluate wake geometry
General reference: section 3.1.3
                   k (\phi = k \Delta \Psi)
K
                   \chi(\Psi = \chi \Delta \Psi)
L
LEVEL
                   wake analysis: 1 for prescribed wake geometry, 2 for
                   free wake geometry
                   r at tip vortex
RWT(3)
                   \vec{r}_{w} at sheet inside edge
RWSO(3)
                   \vec{r}_{w} at sheet outside edge
RWSI(3)
                                                                             TMDATA
MPSI
                                                                             TRIMCM
DPSI
KRWG
                                                                            W1DATA
                                                                            G1 DATA
KFWG
RBR(3,36)
RBT(3,36)
                                                                            WG1CM
MUTPP(3)
DZT(144)
DRT(144)
K2T
DZSI(144)
DRSI(144)
K2SI
DZSO(144)
DRSO(144)
K2S0
DFWG(3,2304)
```

GEOMR1

K2S0

```
Name: GEOMR1(LEVEL)
Function: calculate wake geometry distortion
General reference: section 3.1.3
Prescribed wake geometry: CTG = C_T, CTOS = C_T/-, TW = \Theta_{tw} (deg)
                  wake analysis: 1 for prescribed wake geometry, 2 for
LEVEL
                  free wake geometry
                                                                         TMDA TA
DEBUG
MPSI
                                                                         TRIMCM
DPSI
                                                                         R1DATA
NBLA DE
SIGMA
                   \Theta_{tw} at r_i, i = 1 to MRA
TWIST(30)
KHLMDA
RROOT
MRA
                                                                         WKV1CM
LAMBDA
                   interference velocity, due to other rotor
                                                                         WKV2CM
LAMBDI
                                                                         W1DATA
KRWG
OPRWG
FWGT(2)
FWGSI(2)
FWGSO(2)
 KWGT(4)
 KWGSI(4)
 KWGSO(4)
                                                                          QR1CM
                   C_{\mathbf{T}}
 CT
 CIRC(36)
 BETAC
 BETAS
                                                                          RTR1CM
 RA(30)
 MUX
 MUY
 MUZ
                                                                          WG1CM
 RBR(3,36)
```

GEOMF1

DEL2

Name: GEOMF1

Function: calculate free wake geometry distortion

General reference: section 3.2

Subprograms required: WGAM, DCALC, NWCAL, WQCAL, VSCAL, QSVL, QCVL, QVS

DEBUG integer parameter controlling debug TMDATA print: GE 1, print D at $\phi = 2\pi/N$ each iteration; GE 2, allow printing; GE 3, controlled by IPWGDB and QWGDB MPSI (maximum 24, multiple NBLADE) SIGMA R1DATA NBLADE PHIBWG(36) core burst age $\phi_h(\Psi)$ (rad) RTR1CM DBV W1DATA MUTPP(3) WG1CM DFWG(3,2304)LAMBDA WKV1CM FACTGE LAMBDI interference velocity, due to other rotor WKV 2CM CONING β_o (rad) QR1CM Γ/Ω^2R CIRC(36) KFWG G1DATA **OPFWG** ITERWG FACTWG WGMODL(2) RTWG(2) COREWG(4) MRVBWG LDMWG NDMWG(36)IPWGDB(2) QWGDB DQWG(2)DEL1 MD1 CM

MINV

Name: MINV(A,N,D,L,M)

Function: calculate inverse of matrix

Input:

A(N*N) matrix (destroyed)

N dimension

L(N+1) scratch vector

M(N+1) scratch vector

Output:

A(N*N) A - inverse

D determinant of A; O. if A is singular

MINVC

Name: MINVC(A,N,D,L,M)

Function: calculate inverse of complex matrix

Input:

A(N*N) complex matrix

N dimension

L(N+1) scratch vector

M(N+1) scratch vector

Output:

A(N*N) complex A - inverse

D complex determinant of A; O. if A is singular

EIGENJ

Name: EIGENJ(N, NM, A, T, EVR, EVI, VECR, VECI, INDIC, NEI)

Function: calculate eigenvalues and eigenvectors of matrix

Subprograms required: SCALEM, HESQR, REALVE, COMPVE

Input:

A(N*N) matrix A (destroyed)

N order of matrix

NM actual first dimension of arrays; maximum 100

NEI 0 to calculate only eigenvalues

dummy argument (set to 24. in EIGENJ)

Output:

EVR(N) real part of eigenvalues of A

EVI(N) imaginary part of eigenvalues of A

VECR(N*N) real part of eigenvectors of A

VECI(N*N) imaginary part of eigenvectors of A

INDIC(N) if 2, no error; if 1, eigenvector not found; if 0,

neither eigenvector nor eigenvalue found

DERED

Name: DERED(NX, NV, DOF, CON, A2, A1, A0, B, DOF1, DOF0, NAMEX, NAMEV)

Function: eliminate equations and variables from system of differential

equations

Input:

NX dimension of matrices NV dimension of matrices

atmending of madfices

DOF(NX) integer vector designating degrees of freedom to be

eliminated: DOF = 0 if variable not used

CON(NV) integer vector designating controls to be eliminated:

CON = 0 if variable not used

A2(NX*NX) coefficient matrices

A1(NX*NX)

AO(NX*NX)

B(NX*NV) control matrix

DOFO(NX) integer vector

DOF1(NX) integer vector

NAMEX(NX) vector of variable names
NAMEV(NV) vector of control names

Output:

A2 reconstructed matrices and vectors

A1

ΑO

В

DOF0

DOF1

NAMEX

NAMEV

QSTRAN

Input .

Name: QSTRAN(MX,MXO,MX1,MV,A2,A1,A0,B0,DOF1,DOF0,NAMEX)

Function: quasistatic reduction of system of linear differential

equations

General reference: section 6.3.2

Input:	
A2(MX*MX) A1(MX*MX) A0(MX*MX)	coefficient matrices
BO(MX*MV)	control matrix
DOF1(MX)	integer vector designating first order degrees of freedom: DOF1(I) = 0 for x first order
DOFO(MX)	integer vector designating quasistatic variables: $DFO(I) = 0$ for x_i quasistatic
MX	number of degrees of freedom, maximum 60
MXO	number of quasistatic degrees of freedom

number of first order degrees of freedom

MV number of controls, maximum 60

NAMEX(MX) vector of variables names

Output:

MX1

A2 reconstructed matrices and vectors
A1
A0
B0

DOF1

NAMEX

MX number of remaining degrees of freedom (MX-MXO)

MX1 number of remaining first order degrees of freedom

CSYSAN

Name: CSYSAN(N,MX,MX1,MV,A2,A1,A0,B0,NFREQ,FREQ,NSTEP,DOF1,FSCALE,NAMEV,NFOUT)

Function: analyze system of constant coefficient linear differential equations

General reference: sections 7.2, 7.2.1

N	calculation control	N =	0	1	2	10	11	12
	eigenvalues -		x	x	x	x	х	
	eigenvectors			x	x		x	x
	check sums .			•	x			x
	zeros					X	x	X
A2(MX*MX) A1(MX*MX) A0(MX*MX)	coefficient matrice	8						
BO(MX*MV)	control matrix							
MX	number of degrees of freedom							
MX1	number of first order degrees of freedom							
MV	number of controls							
	(maximum MX2=	2 * MX	- M	(1 = 6	50; n	naxim	um MV	= 60)
DOF1(MX)	integer vector designating first order degrees of freedom (zero columns in A0); $DOF1(I) = 0$ for x_i first order							
FSCALE	frequency scale factor Ω (in rad/sec to obtain frequencies in Hz and times in sec); there is no print of dimensional eigenvalues if FSCALE ≤ 0 .							
NAMEX(MX)	vector of variables names							
NAMEV(MV)	vector of control names							
NSTEP	static response calculated if NSTEP # 0							
NFREQ	number of frequencies for which frequency response calculated; none if NFREQ $\ll 0$							
freq(nfreq)	vector of frequencies (dimensionless) for calculation of frequency response							
NFOUT	unit number for pri	nted	ou [.]	tput				

Output:

LAMDA(MX2)

eigenvalues

MX2

number of eigenvalues

available in following common block:

COMMON /EIGVC/LAMDA(60),MX2 COMPLEX LAMDA

DETRAN

Name: DETRAN(A, MX, MX1, MV, A2, A1, A0, B0, DOF1, NAMEX, NAME, NFOUT)

Function: transform equations to state variable form

General reference: section 7.1

Input:

A2(MX*MX) coefficient matrices

A1(MX*MX)

AO(MX*MX)

BO(MX*MV) control matrix

MX number of degrees of freedom, maximum 60

MX1 number of first order degrees of freedom

MV number of controls, maximum 60

DOF1(MX) integer vector designating first order degrees of

freedom; DOF1(I) = 0 for x_i first order

NAMEX(MX) vector of variable names

NFOUT unit number for printed output

Output:

A(MX2*MX2) coefficient matrix

BO(MX*MV) control matrix

NAME(MX2) vector of variable names

(MX2 = 2 * MX - MX1)

SINE

Name: SINE(W,A,ASQ,BO,MX,MX1,MV,NAME,NAMEV,NFOUT)

Function: calculate frequency response from matrices

General reference 7.2.3

Response calculation: for last MX states only

W frequency (dimensionless)

A(MX2*MX2) coefficient matrix A

ASQ(MX2*MX2) coefficient matrix squared, A²

BO(MX*MV) control matrix

mx number of degrees of freedom

MX1 number of first order degrees of freedom

MV number of controls

(maximum MX2 = 2*MX - MX1 = 60; maximum MV = 60)

NAME(MX2) vector of variable names

NAMEV(MV) vector of control names

NFOUT unit number for printed output

STATIC

Name: STATIC(A,BO,MX,MX1,MV,NAME,NAMEV,NFOUT)

Function: calculate static response from matrices

General reference: section 7.2.2

Response calculation: for last MX states only

A(MX2*MX2) coefficient matrix

BO(MX*MV) control matrix

MX number of degrees of freedom

MX1 number of first order degrees of freedom

MV number of controls

(maximum MX2 = 2*MX - MX1 = 60; maximum MV = 60)

NAME(MX2) vector of variable names
NAMEV(MV) vector of control names

NFOUT unit number for printed output

ZERO

Name: ZERO(A,BO,MX2,MX,MV,NX,NV)

Function: calculate zeros

General reference: section 7.2.4

A(MX2*MX2)coefficient matrix

BO(MX*MV) control matrix

number of states, maximum 60 MX2

number of degrees of freedom ΜX

number of controls MV

state number i for which zeros to be calculated NX

control number j for which zeros to be calculated NV

Output:

zeros of x_i/v_j LAMDAZ(MZ) $x_i/v_j = K_1 \frac{\pi(z-s)}{\pi(p-s)}$

factor K₁: K1

number of zeros MZ

available in the following common block:

COMMON /EIGVZ/LAMDAZ(60),K1,MZ

COMPLEX LAMDAZ

REAL K1

ZETRAN

Name: ZETRAN(Z,MZ)

Function: transform matrix for zero calculation

General reference: section 7.2.4

Input:

matrix A^* (A with x_i column replaced by v_i column of B) Z(MZ*MZ)

MZ number of states, MX2

Output:

matrix A₁ (eigenvalues of which are the zeros); the factor K_1 is in Z(MZ*MZ+1)Z(MZ*MZ)

MZnumber of zeros

GT 0 finite number of zeros exists

EQ 0 no zeros, $K_1 = Z(1)$ LT 0 x_1 not controllable by v_1

BODE

Name: BODE(MX,MX1,MV,A2,A1,A0,B0,DOF1,NAMEX,NAMEV,NPLOT,NAMEXP,NAEMVP,NX,NV,NF0,NF1,ND,MSCALE,NFOUT)

Function: calculate and printer-plot transfer function (Bode plot)

General reference: section 7.2.3

A2(MX*MX) coefficient matrices
A1(MX*MX)
A0(MX*MX)
B0(MX*MV) control matrix

MX number of degrees of freedom

MX1 number of first order degrees of freedom

MV number of controls

(maximum MX2 = 2*MX - MX1 = 60; maximum MV = 60)

DOF1(MX) integer vector designating first order degrees of freedom; DOF1(I) = 0 for x, first order

NAMEX(MX) vector of variable names
NAMEV(MV) vector of control names

NPLOT frequency response calculation method: if 1, from

matrices; if 2, from poles and zeros

NAMEXP(NX) vector of variable names to be plotted (inconsistent

names ignored)

NAMEVP(NV) vector of control names to be plotted (inconsistent

names ignored)

NX number of degrees of freedom to be plotted; maximum 30

NV number of controls to be plotted; maximum 30 NFO exponent (base 10) of beginning frequency

NF1 exponent (base 10) of end frequency

ND frequency steps per decade

(maximum NF = (NF1 - NF0) * ND + 1 = 151)

MSCALE magnitude plot scale: if 1, plot relative maximum value;

if 2, plot relative 10**K; if 3 plot relative 10.

NFOUT unit number for printed output

BODEPP

Name: BODEPP(HM, HP, NFO, NF1, ND, OPTION, NFOUT)

Function: printer-plot transfer function magnitude and phase

HM(N) transfer function magnitude

HP(N) transfer function phase (degrees, -180 to 180)

(N = (NF1 - NF0)*ND+1)

NFO exponent (base 10) of beginning frequency

NF1 exponent (base 10) of end frequency

ND frequency steps per decade

OPTION magnitude plot scale: if 1, plot relative maximum

value; if 2, plot relative 10**K; if 3, plot

relative 10.

NFOUT unit number for printed output

TRACKS

```
TRACKS(A2,A1,A0,B0,MX,MX1,MV,DOF1,CMEGA,NAMEX,NAMEV,NPLOT,
Name:
                    PERICD, DELT, TMAX, NAMEXP, NAMEVP, NX, NV, NFOUT)
           calculate and printer-plot time history of time-invariant
Function:
           system response
General reference: section 7.2.5
Calculate eigenvalue matrix and modal matrix:
                       MRED = M without unused states (rows)
                            = M<sup>-1</sup>B without unused controls (columns)
A2(MX*MX)
                  coefficient matrices
A1(MX*MX)
AO(MX*MX)
BO(MV*MX)
                  control matrix
                  number of degrees of freedom
ΜX
                  number of first order degrees of freedom
MX1
                  number of controls
MV
                      (\text{maximum } MX2 = 2*MX - MX1 = 60; \text{ maximum } MV = 60)
                  integer vector designating first order degrees of
DOF1(MX)
                  freedom; DCF1(I) = 0 for x, first order
                  vector of variable names
NAMEX(MX)
NAMEV(MV)
                  vector of control names
                  frequency scale (rad/sec)
OMEGA
                  control input type
NPLOT
                           1
                               step
                               impulse
                               cosine impulse
                               sine doublet
                               square impulse
                               square doublet
                  period T (sec) for impulse or doublet (NPLOT = 3 to 6)
PERIOD
                  time step (sec)
DELT
                  maximum time (sec)
XAMT
                         (maximum NX*NV*TMAX/DELT = 7200)
```

TRACKS

NAMEXP(NX)	vector of variable names to be plotted (inconsistent names ignored)
NAMEVP(NV)	vector of control names to be plotted (inconsistent names ignored)
NX	number of degrees of freedom to be plotted; maximum 30
NV	number of controls to be plotted; maximum 30
NFOUT	unit number for printed output

TRCKPP

Name: TRCKPP(TRACE, NX, NV, MT, DELT, NAMEXP, NAMEVP, NFOUT)

Function: printer-plot time history

TRACE(NX,NV,MT) array of time history traces to be plotted

NX number of degrees of freedom to be plotted

NV number of controls to be plotted

(maximum NX*NV = 26)

MT number of time steps to be plotted

DELT time step (sec)

NAMEXP(NX) vector of variable names

NAMEVP(NV) vector of control names

NFOUT unit number for printed output

GUSTS

Name: GUSTS(A2,A1,A0,B0,MX,MX1,MV,MG,DOF1,NAMEX,RADIUS,OMEGA,GRAV, EULER,VEL,LGUST,MGUST,NAMEXR,NAMEXL,ML,NAMEXA,MACC, FREQA,RACC,NEM,ZETA,NAMEXB,NFOUT)

Function: calculate and print rms gust response

General reference: section 7.2.6

A2(MX*MX) A1(MX*MX) AO(MX*MX)	coefficient matrices
BO(MX*MV)	control matrix (gust in last MG columns)
ΜX	number of degrees of freedom
MX1	number of first order degrees of freedom
MV	number of controls and gusts
MG	number of gust components
	(maximum $MX2 = 2*MX - MX1 + MACC + MG = 60$) (maximum $MG = 3$)
DOF1(MX)	<pre>integer vector designating first order degrees of freedom; DOF1(I) = 0 for x, first order</pre>
NAMEX(MX)	vector of variable names
RADIUS	length scale R (ft or m)
OMEGA	frequency scale Ω (rad/sec)
GRA V	acceleration due to gravity (ft/sec ² or m/sec ²)
EULER(2)	trim Euler angles $m{\Theta}_{\mathrm{FT}}$ and $m{\phi}_{\mathrm{FT}}$ (rad); required for body axis acceleration only
VEL(3)	velocity components in body axis frame (divided by Ω R); only magnitude required (for \mathbf{z}_G) unless body axis acceleration calculated
LGUST(MG)	real vector of gust correlation lengths: if GT 0, dimensional correlation length L ($\tau_{\rm G} = {\rm L/2V}$); if EQ 0, L = 400. used; if LT 0, magnitude is correlation time $\tau_{\rm G}$ (dimensionless), so break frequency is $\omega = \Omega/\tau_{\rm G}$
MGUST(MG)	real vector of gust component relative magnitudes
NAMEXR(3)	names of β_{1c} , β_{1c} , θ_{1c} in state vector (NAMEX); analysis assumes that β_{1s} , β_{1s} , θ_{1s} follow immediately (inconsistent names ignored)

names of linear degrees of freedom in state NAMEXL(ML) vector (NAMEX) for dimensional output (ft or m, obtained from R); degrees of freedom not

identified are angular (degrees) (inconsistent

names ignored)

number of linear degrees of freedom ML

names of degrees of freedom (NAMEX) for which NAMEXA (MACC) acceleration calculated; last three names must equal ACCB to calculate body axis acceleration

(all three or none) (inconsistent names ignored)

accelerometer break frequency (Hz), in same order FREQA(MACC) as NAMEXA; 2/rev used if FREQA < 0.

number of accelerometers; none if MACC ≤ 0 MACC

x, y, z location of point at which body axis RACC(3) acceleration calculated (dimensionless)

airframe elast mode shapes, k = 1 to NEM; required ZETA(3, NEM) for body axis acceleration only

number of airframe elastic modes; none if NEM < 0; NEM maximum 10

names of ϕ_F , Θ_F , ψ_F , x_F , y_F , z_F , q_{F_1} ... $q_{F_{NEM}}$ NAMEXB (6+NEM) in state vector (NAMEX); assumes all elastic airframe states are consequtive; required for body axis acceleration only (inconsistent names ignored)

unit number for printed output NFOUT

PSYSAN

Name: PSYSAN(MX, MX1, A2, A1, A0, PHI, DT, NT, MT, PERIOD, DOF1, NINT, NFOUT)

analyze system of periodic coefficient linear differential

equations

General reference: section 7.3

coefficient matrices A2(MX*MX) A1(MX*MX)

AO(MX*MX)

MX number of degrees of freedom

MX1 number of first order degrees of freedom

(maximum MX2 = 2*MX - MX1 = 60)

DOF1(MX) integer vector designating first order degrees

of freedom (zero columns in A0); DOF1(I) = 0

for x_i first order

DT time increment; may vary with NT, but for Runge-Kutta

integration successive pairs must be equal

NT time step counter (NT = 0, 1, 2, ... MT)

MT total number of time steps in numerical integration;

for Runge-Kutta integeration, must be even

period T of the system PERIOD

temporary storage of state transition matrix \$\overline{\Phi}\$ and PHI

> last A; dimension 2*MX2*MX2 for modified trapezoidal integration; dimension 3*MX2*MX2 for Runge-Kutta

integration (MX2 = 2*MX - MX1)

NINT numerical integration method: if 1, modified

trapezoidal method, error order DT**3; if 2, Runge-Kutta method, error order (2*DT)**5

NFOUT unit number for printed output

Output:

roots \(\lambda\) (principal value) LAMDA(MX2)

eigenvalues λ_c of $\overline{\Phi}(T)$ LAMDAC(MX2)

MX2 number of poles

available in the following common block:

COMMON /EIGVP/LAMDA(60), LAMDAC(60), MX2

COMPLEX LAMDA, LAMDAC

Typical usage:

DT = PERIOD/MT

DO 1 NT = 0,MT

T = DT * NT

calculate coefficient matrices at time T

1 CALL PSYSAN

DEPRAN

Name: DEPRAN(A,MX,MX1,A2,A1,A0,DOF1,NFOUT)

Function: transform equations to state variable form

General reference: section 7.1

Input:

A2(MX*MX) coefficient matrices

A1(MX*MX)

AO(MX*MX)

MX number of degrees of freedom; maximum 60

MX1 number of first order degrees of freedom

DOF1(MX) integer designator of first order degrees

of freedom; DOF1(I) = 0 for x, first order

NFOUT unit number for printed output

Output:

A(MX2*MX2) coefficient matrix (MX2 = 2*MX - MX1)

MAINTB

Name: MAINTB

Function: airfoil table preparation

General reference: section 2.4.4

Subprograms required: AEROT, AEROPP, C81INT, C81RD, REDCL, TABFIX

AEROT

Name: AEROT(ALPHA, MACH, RADIAL, OPTION, CL, CD, CM)

Function: interpolate airfoil tables

General reference: section 2.4.4

angle of attack ∞ (deg) ALPHA

MACH Mach number M

RADIAL radial station r/R

integer parameter: if 1 calculate c_n ; if 2 calculate c_d , if 3 calculate c_m , if 4 calculate all three coefficients OPTION

CLcg_{2D}

CD \mathbf{c}_{d2D}

CM $c_{m_{2D}}$

AEROPP

Name: AEROPP(CL,CD,CM,MA,AMAX)

Function: printer-plot airfoil aerodynamic characteristics

Calculate ordinate limits:

a) c = maximum value of magnitude

b)
$$N = [\log c]$$
 $(N = N-1 \text{ if } c < 1.)$

c) K = [c/10**N] + 1

d) use for scale X = K * 10**N

CL(MA) array of $c_{\mathbf{g}}$ to be plotted

 $\mathtt{CD}(\mathtt{MA})$ array of \mathbf{c}_{d} to be plotted

CM(MA) array of c_m to be plotted

MA number of angle of attack values; odd number

AMAX maximum angle of attack; data in arrays for

 $\alpha = -\alpha_{\text{max}}$ to α_{max} , in MA steps

3. COMPUTER SYSTEM SUBPROGRAMS

The following computer system subprograms (or the equivalent) are required to determine the calendar date and time of day, which form the identification for jobs and files.

a) CALL TIME(ITIME)

Function: returns time of day (8 alphanumeric characters) in array ITIME(2)

b) CALL DATE(IDATE)

Function: returns calendar date (8 alphanumeric characters) in array IDATE(2)

The following computer system subprograms (or the equivalent) are required in the timing subprogram.

a) CALL SETTIM(0,0)

Function: initializes timer

b) ITIME = INTVAL(0,0)

Function: returns CPU time, in milliseconds since initialization

4 CORE REQUIREMENTS

The program requires 4.04 megabytes of core storage. Of this total, 1.84 megabytes is for the subprograms and 2.20 megabytes is for the common blocks. The common blocks for the nonuniform inflow influence coefficients (both rotors) require 0.96 megabytes.

1. Report No. NASA TM-81184 AVRADCOM TR 80-A-7	2. Government Access	sion No.	3. Recipient's Catalog	No.		
4. Title and Subtitle	HO-HOTO	20/	5. Report Date			
A COMPREHENSIVE ANALYTIC	AT. MODEL OF R	OTORCRAFT	5. Neport Dete			
AERODYNAMICS AND DYNAMICS — PART III: PROGRAM			6. Performing Organia	zation Code		
MANUAL						
7. Author(s)	· · · · · · · · · · · · · · · · · · ·		8. Performing Organiz	ration Report No.		
Wayne Johnson			A-8102			
			10. Work Unit No.			
9. Performing Organization Name and Address			505-42-21			
Ames Research Center, NA	SA		11. Contract or Grant	No.		
Moffett Field, CA 94035						
		<u> </u>	13. Type of Report ar	nd Period Covered		
12. Sponsoring Agency Name and Address Nat	ional Aeronau					
Administration, Washingt		6 and II c		Memorandum		
Army Aviation Research a	nd Developmer	t Command,	14. Sponsoring Agency	Code		
St. Louis, MO 93166		<u> </u>	T			
15. Supplementary Notes						
16. Abstract						
The computer progra	m for a compr	ehensive enelvt	deal model o	f rotor-		
craft aerodynamics and d						
to calculate rotor perfo						
and gust response; the f						
system aeroelastic stabi						
inertial, and aerodynami	c models, the	it is applicable	to a wide r	ance of		
problems and a wide clas	s of vehicles	. The analysis	is intended	for use		
in the design, testing,						
be a basis for further d				s report		
documents the computer p				s report		
documents the compacer p	rogram chac 1	.mprements the a	marysis.			
•						
17. Key Words (Suggested by Author(s))		18. Distribution Statement				
Helicopter analysis						
Helicopter analysis Unlimited		Unlimited				
Rotor aerodynamics						
Rotor dynamics		Star Cat	ategory - 01			
	<u> </u>			.		
19. Security Classif, (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*		
Unclassified	Unclassified		255	\$10.75		

Reproduced by NTIS

National Technical Information Service Springfield, VA 22161

This report was printed specifically for your order from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast collection of technical reports. Rather, most documents are printed for each order. Documents that are not in electronic format are reproduced from master archival copies and are the best possible reproductions available. If you have any questions concerning this document or any order you have placed with NTIS, please call our Customer Service Department at (703) 605-6050.

About NTIS

NTIS collects scientific, technical, engineering, and business related information — then organizes, maintains, and disseminates that information in a variety of formats — from microfiche to online services. The NTIS collection of nearly 3 million titles includes reports describing research conducted or sponsored by federal agencies and their contractors; statistical and business information; U.S. military publications; multimedia/training products; computer software and electronic databases developed by federal agencies; training tools; and technical reports prepared by research organizations worldwide. Approximately 100,000 *new* titles are added and indexed into the NTIS collection annually.

For more information about NTIS products and services, call NTIS at 1-800-553-NTIS (6847) or (703) 605-6000 and request the free NTIS Products Catalog, PR-827LPG, or visit the NTIS Web site http://www.ntis.gov.

NTIS

Your indispensable resource for government-sponsored information—U.S. and worldwide

U.S. DEPARTMENT OF COMMERCE Technology Administration National Technical Information Service Springfield, VA 22161 (703) 605-6000