BOB36DBS, BD6B36DBS: Database Systems

http://www.ksi.mff.cuni.cz/~svoboda/courses/192-B0B36DBS/

Lecture 7

Relational Algebra

Martin Svoboda martin.svoboda@fel.cvut.cz

31. 3. 2020

Czech Technical University in Prague, Faculty of Electrical Engineering

Lecture Outline

Relational algebra

- Operations: syntax, semantics and examples
 - Selection, projection, attribute renaming
 - Cartesian product, natural join, theta join, ...
 - Division
 - Outer join
- Relational completeness

Relational Model

Relational model

 Logical model where all data is represented in terms of tuples (rows) that are grouped into relations (tables)

Schema of a relation

- $S(a_1:T_1,\ldots,a_n:T_n)$
 - S is a relation name
 - a_i are attribute names, T_i are optional domains (data types)

Relation = data

- Set of tuples
- Unordered, no duplicities, without missing values (null), atomic values only (first normal form)

Relational Model

Relation structure revisited

Formal definition for the purpose of this lecture...

$$\langle R, A_R \rangle$$

- R = set of tuples = actual data
 - Tuple $t = \{(a_1, v_1), \dots, (a_n, v_n)\}$, where:
 - a_i ∈ A_R is an **attribute** name
 - $-v_i \in T_i$ is a **value** this attribute is associated with
 - $\ (a_i, v_i)$ is an attribute **binding**
 - I.e. each tuple acts as a function

$$- t: A_R \to \bigcup_{i=1,\dots,n} T_i$$

- $t(a_i) = v_i \in T_i$

- A_R = set of attributes = schema of a relation
 - We continue to omit the domains T_i

Relation Structure: Example

Sample relation of actors

Actor(name, surname, year)

name	surname	year
Ivan	Trojan	1964
Jiří	Macháček	1966
Jitka	Schneiderová	1973

```
{
    { (name, Ivan), (surname, Trojan), (year, 1964)},
    { (name, Jiří), (surname, Macháček), (year, 1966)},
    { (name, Jitka), (surname, Schneiderová), (year, 1973)} },
    {name, surname, year}
```

Query Languages

Formal query languages based on the relational model

- Relational algebra
 - Algebraic expressions with relations and operations on them
 - E.g. names and surnames of all actors born in 1970 or earlier $\pi_{\text{name,surname}}(\sigma_{\text{year} \leq 1970}(\text{Actor}))$ Actor(year ≤ 1970)[name, surname]
- Relational calculi
 - Expressions based on the first-order predicate logic
 - Domain relational calculus

```
- E.g. \{ (n, s) \mid \exists y : \mathsf{Actor}(n, s, y) \land y \leq \mathsf{1970} \}
```

- Tuple relational calculus
 - $\textit{ E.g. } \{ \textit{ t}[\mathsf{name}, \mathsf{surname}] \mid \mathsf{Actor}(t) \land \textit{t}.\mathsf{year} ≤ \mathsf{1970} \, \}$

Query Languages: Terminology

Query expression

- Expression in a given language describing the intended query
- · Multiple equivalent expressions often exist

Query

- Actual data we are attempting to retrieve
 - I.e. result of the evaluation of a given query expression
- E.g. relation, table, ...

Query language

- Set of all syntactically well-formed query expressions with respect to a given grammar
- E.g. relational algebra, SQL, ...

Sample Query

First names of all actors born in 1960 or later

 $\pi_{\mathsf{name}}(\sigma_{\mathsf{year}>1960}(\mathsf{Actor})) \mid \mathsf{Actor}(\mathsf{year} \geq 1960)[\mathsf{name}]$

name	surname	year
Ivan	Trojan	1964
Jiří	Macháček	1966
Jitka	Schneiderová	1973
Zdeněk	Svěrák	1936
Jitka	Čvančarová	1978

name
Ivan
Jiří
Jitka

Relational Algebra

Inductive construction of RA expressions

- Basic expressions
 - lacktriangle Relation name: R
 - Constant relation
- General expressions are formed using smaller subexpressions
 - Projection: $\pi_{a_1,...,a_n}(E)$
 - Selection: $\sigma_{\varphi}(E)$
 - Attribute renaming: $\rho_{b_1/a_1,...,b_n/a_n}(E)$
 - Union: $E_R \cup E_S$
 - Difference: $E_R \setminus E_S$
 - Cartesian product: $E_R \times E_S$
 - ..

Projection

Projection: preserves only attributes we are interested in

$$\pi_{a_1,\ldots,a_n}(E)$$
 or $E[a_1,\ldots,a_n]$

- $\langle R, A_R \rangle = \llbracket E \rrbracket$ is a relation R with attributes A_R
- a_1, \ldots, a_n is a set of **attributes to be preserved**, each $a_i \in A_R$, all the other attributes are to be removed

$$\llbracket \overline{\pi_{a_1,\ldots,a_n}(E)} \rrbracket = \langle \overline{\{t[a_1,\ldots,a_n] \mid t \in R\}}, \overline{\{a_1,\ldots,a_n\}} \rangle$$

- $t[a_1,\ldots,a_n]=\{(a,v)\,|\,(a,v)\in t,a\in\{a_1,\ldots,a_n\}\}$ is a restriction of a tuple t to attributes a_1,\ldots,a_n
- Duplicate tuples in the result are (of course) suppressed!

Projection: Example

First names of all actors

 $\pi_{\mathsf{name}}(\mathsf{Actor})$

Actor[name]

name	surname	year
Ivan	Trojan	1964
Jiří	Macháček	1966
Jitka	Schneiderová	1973
Zdeněk	Svěrák	1936
Jitka	Čvančarová	1978

name Ivan Jiří Zdeněk Jitka

Selection

Selection: preserves only tuples we are interested in

$$\sigma_{arphi}(E)$$
 or $E(arphi)$

- $\langle R, A_R \rangle = \llbracket E \rrbracket$
- φ is a condition (**Boolean expression**) to be satisfied
 - Connectives: \land (and), \lor (or), \neg (negation)
 - Two forms of atomic formulae: $a \Theta b$ or $a \Theta v$
 - $a, b \in A_R$ are attributes, v is a value constant
 - $\Theta \in \{<, \leq, =, \neq, \geq, >\}$ is a **comparison** operator

Selection: Example

Actors born in 1960 or later having a first name other than Jitka

 $\sigma_{\mathsf{year} \, \geq \, \mathsf{1960} \, \land \, \mathsf{name} \, \neq \, \mathsf{Jitka}}(\mathsf{Actor})$

 $\mathsf{Actor}(\mathsf{year} \geq \mathsf{1960} \land \mathsf{name} \neq \mathsf{Jitka})$

name	surname	year
Ivan	Trojan	1964
Jiří	Macháček	1966
Jitka	Schneiderová	1973
Zdeněk	Svěrák	1936
Jitka	Čvančarová	1978

name	surname	year
Ivan	Trojan	1964
Jiří	Macháček	1966

Attribute Renaming

Rename: changes names of certain attributes

$$\rho_{b_1/a_1,\ldots,b_n/a_n}(E)$$
 or $E\langle a_1 \rightarrow b_1,\ldots,a_n \rightarrow b_n \rangle$

- $\langle R, A_R \rangle = \llbracket E \rrbracket$
- a_1, \ldots, a_n are current attributes, each $a_i \in A_R$, b_1, \ldots, b_n are new attributes (distinct)

$$\begin{bmatrix} \rho_{b_1/a_1,\dots,b_n/a_n}(E) \end{bmatrix} = \langle \{t[b_1/a_1,\dots,b_n/a_n] \mid t \in R\} \},$$

$$(A_R \setminus \{a_1,\dots,a_n\}) \cup \{b_1,\dots,b_n\} \rangle$$

• $t[b_1/a_1, \dots, b_n/a_n] = \{(a, v) \mid (a, v) \in t, a \notin \{a_1, \dots, a_n\}\} \cup \{(b_i, v) \mid (a_i, v) \in t, i \in \{1, \dots, n\}\}$

Attribute Renaming: Example

Actors with renamed attributes of first and last names

 $\rho_{\mathsf{fname/name},\mathsf{Iname/surname}}(\mathsf{Actor})$

 $\mathsf{Actor} \langle \mathsf{name} \mathop{\rightarrow} \mathsf{fname}, \mathsf{surname} \mathop{\rightarrow} \mathsf{Iname} \rangle$

name	surname	year
fname	fname Iname	
Ivan	Trojan	1964
Jiří	Macháček	1966
Jitka	Schneiderová	1973
Zdeněk	Svěrák	1936
Jitka	Čvančarová	1978

Set Operations

Union, intersection, difference: standard set operations

- $\langle R, A \rangle = \llbracket E_R \rrbracket$ and $\langle S, A \rangle = \llbracket E_S \rrbracket$
- Both the relations must be compatible
 - I.e. they must have the same attributes

Set Operations: Difference: Example

Movies that do not have a good rating

 $\mathsf{AllMovies} \setminus \mathsf{GoodMovies}$

title	rating
Vratné lahve	76
Samotáři	84
Medvídek	53
Štěstí	72

title	rating
Vratné lahve	76
Medvídek	53
Štěstí	72

title	rating	
Samotáři	84	
Kolja	86	

Cartesian Product

Cartesian product (cross join): yields all combinations of tuples from two relations, i.e. unconditionally joins two relations

$$E_R \times E_S$$

- $\langle R, A_R \rangle = \llbracket E_R \rrbracket$ and $\langle S, A_S \rangle = \llbracket E_S \rrbracket$
- Both the relations must have disjoint attributes
 - Dot convention based on names of relations is often used in practice, but this approach is not always applicable
 - $-\ R.a$ and S.a for ambiguous attributes a

$$\llbracket E_R \times E_S \rrbracket = \langle \{t_1 \cup t_2 \mid t_1 \in R, t_2 \in S\} , A_R \cup A_S \rangle$$

- Resulting relations are flat
 - I.e. our Cartesian product differs to the one in the set theory
- Cardinality of the result: |R|.|S|

Cartesian Product: Example

All possible combinations of movies and actors

Movie \times Actor

title	rating
Vratné lahve	76
Samotáři	84
Medvídek	53

title	rating	actor
Vratné lahve	76	Ivan Trojan
Vratné lahve	76	Jiří Macháček
Samotáři	84	Ivan Trojan
Samotáři	84	Jiří Macháček
Medvídek	53	Ivan Trojan
Medvídek	53	Jiří Macháček

Natural Join

Natural join: joins two relations based on the pairwise equality of values of all the attributes they mutually share

$$\begin{array}{c|c} E_R \bowtie E_S & \text{or} & E_R * E_S \\ \bullet & \langle R, A_R \rangle = \llbracket E_R \rrbracket \text{ and } \langle S, A_S \rangle = \llbracket E_S \rrbracket \\ \llbracket & E_R \bowtie E_S & \rrbracket = \langle \\ & \{t_1 \cup t_2 \mid t_1 \in R, t_2 \in S, \forall \ a \in A_R \cap A_S : t_1(a) = t_2(a)\} \\ & A_R \cup A_S \\ \rangle \end{array}$$

• When there are no shared attributes (i.e. $A_R \cap A_S = \emptyset$), \bowtie corresponds to \times

Natural Join: Example

Movie characters with full actor names

Cast ⋈ Actor

Cast * Actor

title	actor
Vratné lahve	2
Vratné lahve	4
Samotáři	1
Medvídek	1
Medvídek	2

M

actor	name
1	Ivan Trojan
2	Jiří Macháček
3	Jitka Schneiderová

title	actor	name
Vratné lahve	2	Jiří Macháček
Samotáři	1	Ivan Trojan
Medvídek	1	Ivan Trojan
Medvídek	2	Jiří Macháček

Natural Join: Inference

$$\begin{array}{c|c} \hline E_R \bowtie E_S \end{array} \equiv \\ \hline \\ \sigma_{r_1,\dots,r_m,a_1,\dots,a_n,s_1,\dots,s_o} \Big(\\ \hline \\ \sigma_{x_1=a_1\wedge\dots\wedge x_n=a_n} \Big(\boxed{\rho_{x_1/a_1,\dots,x_n/a_n}(E_R) \times E_S} \Big) \\ \\ \Big) \end{array}$$

- $\langle R, A_R \rangle = \llbracket E_R \rrbracket$ and $\langle S, A_S \rangle = \llbracket E_S \rrbracket$
 - a_1, \ldots, a_n are all the attributes shared by R and S
 - x_1, \ldots, x_n are unused attributes, i.e. each $x_i \notin A_R$, $x_i \notin A_S$
 - r_1,\ldots,r_m are all the attributes from $A_R\setminus\{a_1,\ldots,a_n\}$
 - s_1,\ldots,s_o are all the attributes from $A_S\setminus\{a_1,\ldots,a_n\}$

Theta Join

Theta join (Θ -**join**): joins two relations based on a certain condition

$$E_R\bowtie_{arphi} E_S$$
 or $E_R[arphi]E_S$

- $\langle R, A_R \rangle = [\![E_R]\!]$ and $\langle S, A_S \rangle = [\![E_S]\!]$
- Disjoint attributes, i.e. $A_R \cap A_S = \emptyset$
- φ is a **condition to be satisfied**
 - Works the same way as conditions in selections

$$\begin{bmatrix}
E_R \bowtie_{\varphi} E_S
\end{bmatrix} = \langle
\begin{cases}
\{t_1 \cup t_2 \mid t_1 \in R, t_2 \in S, (t_1 \cup t_2) \vDash \varphi\}
\end{cases},$$

Theta Join

Inference

 $\bullet \quad \boxed{E_R \bowtie_{\varphi} E_S} \equiv \sigma_{\varphi}(\boxed{E_R \times E_S})$

Theta Join: Example

Suitable combinations of movies and actors based on years

Movie $\bowtie_{\mathsf{filmed} \geq \mathsf{born}}$ Actor

 $\mathsf{Movie}[\mathsf{filmed} \geq \mathsf{born}]\mathsf{Actor}$

title	filmed
Vratné lahve	2006
Ecce homo Homolka	1970

 \bowtie_{φ}

ac	tor	born
Tro	jan	1964
Macl	náček	1966
Schnei	derová	1973

title	filmed	actor	born
Vratné lahve	2006	Trojan	1964
Vratné lahve	2006	Macháček	1966
Vratné lahve	2006	Schneiderová	1973
Ecce homo Homolka	1970	Trojan	1964
Ecce homo Homolka	1970	Macháček	1966

Semijoin

Left / right (natural) semijoin: yields tuples from the left / right relation that can be naturally joined with the other relation

$$\begin{array}{c|c} E_R \ltimes E_S & \text{or} & E_R < *E_S \\ \bullet & \langle R, A_R \rangle = \llbracket E_R \rrbracket \text{ and } \langle S, A_S \rangle = \llbracket E_S \rrbracket \end{array}$$

Left semijoin:

$$\begin{bmatrix}
E_R \ltimes E_S \\
\end{bmatrix} = \langle \\
\{t_1 \mid t_1 \in R, \exists t_2 \in S : \forall a \in A_R \cap A_S : t_1(a) = t_2(a)\} \\
A_R
\rangle$$

Right semijoin: analogously

Semijoin

Inference

- $\bullet \quad \boxed{E_R \ltimes E_S} \equiv \boxed{\pi_{r_1, \dots, r_n}(E_R \bowtie E_S)}$
 - where r_1, \ldots, r_n are all attributes from the left relation
- Analogously for the right semijoin

Semijoin: Example

Movie characters who have actor details available

 $\mathsf{Cast} \ltimes \mathsf{Actor}$

 $\mathsf{Cast} < \!\! * \mathsf{Actor}$

title	actor
Vratné lahve	2
Vratné lahve	4
Samotáři	1
Medvídek	1
Medvídek	2

 \bowtie

actor	name
1	Ivan Trojan
2	Jiří Macháček
3	Jitka Schneiderová

title actor

Vratné lahve 2

Samotáři 1

Medvídek 1

Medvídek 2

Antijoin

Left / right antijoin: yields tuples from the left / right relation that cannot be naturally joined with the other relation

$$E_R \triangleright E_S$$
 / $E_R \triangleleft E_S$

• $\langle R, A_R \rangle = \llbracket E_R \rrbracket$ and $\langle S, A_S \rangle = \llbracket E_S \rrbracket$

Left antijoin:

$$\begin{bmatrix}
E_R \triangleright E_S \\
\end{bmatrix} = \langle \\
\{t_1 \mid t_1 \in R, \neg \exists t_2 \in S : \forall a \in A_R \cap A_S : t_1(a) = t_2(a)\} \\
A_R$$

Right antijoin: analogously

Antijoin

Inference

- $\bullet \quad \boxed{E_R \triangleright E_S} \equiv \boxed{E_R \setminus (E_R \bowtie E_S)}$
- Analogously for the right antijoin

Antijoin: Example

Movie characters that do not have actor details available

Cast ⊳ Actor

title	actor
Vratné lahve	2
Vratné lahve	4
Samotáři	1
Medvídek	1
Medvídek	2

title	actor
Vratné lahve	4

actor	name	=
1	Ivan Trojan	
2	Jiří Macháček	
3	Jitka Schneiderová	

Theta Semijoin

Left / right theta semijoin (⊖-**semijoin**): yields tuples from a given relation that can be joined using a certain condition

$$E_R \bowtie_{\varphi} E_S$$
 or $E_R \langle \varphi | E_S$ / $E_R \bowtie_{\varphi} E_S$ or $E_R [\varphi \rangle E_S$

- $\langle R, A_R \rangle = \llbracket E_R \rrbracket$ and $\langle S, A_S \rangle = \llbracket E_S \rrbracket$
- Disjoint attributes, condition φ to be satisfied

Left ⊖-semijoin:

$$\begin{bmatrix}
E_R \ltimes_{\varphi} E_S \\
\end{bmatrix} = \langle \\
\{t_1 \mid t_1 \in R, \exists t_2 \in S : (t_1 \cup t_2) \vDash \varphi \} , A_R
\rangle$$

Right ⊖-semijoin: analogously

Theta Semijoin

Inference

- $\bullet \quad \boxed{E_R \bowtie_{\varphi} E_S} \equiv \boxed{\pi_{r_1, \dots, r_n} (\boxed{E_R} \bowtie_{\varphi} E_S)}$
 - where r_1, \ldots, r_n are all attributes from the left relation
- Analogously for the right Θ-semijoin

Division

Division: returns restrictions of tuples from the first relation such that all combinations of these restricted tuples with tuples from the second relation are present in the first relation

$$E_R \div E_S$$

- $\langle R, A_R \rangle = \llbracket E_R \rrbracket$ and $\langle S, A_S \rangle = \llbracket E_S \rrbracket$
- Assumption on attributes: $A_S \subset A_R$ (proper subset)

Division allows for the simulation of the universal quantifier

Division: Example: 1

Movies in which all the actors played

 $\mathsf{Cast} \div \mathsf{Actor}$

actor
Jiří Macháček
Zdeněk Svěrák
Ivan Trojan
Ivan Trojan
Jiří Macháček

÷ actor
Ivan Trojan
Jiří Macháček

title Medvídek

Division: Example: 2

Movies in which all the actors played

Cast ÷ Actor

title	name	surname	
Vratné lahve	Jiří	Macháček	
Vratné lahve	Zdeněk	Svěrák	
Samotáři	Ivan	Trojan	
Medvídek	Ivan	Trojan	
Medvídek	Jiří	Macháček	

name	surname
Ivan	Trojan
Jiří	Macháček

title Medvídek

Division: Inference

- $\langle R, A_R \rangle = \llbracket E_R \rrbracket$ and $\langle S, A_S \rangle = \llbracket E_S \rrbracket$
- $A_R = \{r_1, \dots, r_m\} \cup \{s_1, \dots, s_n\}$ and $A_S = \{s_1, \dots, s_n\}$
 - I.e. s_1, \ldots, s_n are all the attributes shared by R and S, r_1, \ldots, r_m are all the remaining attributes in R

Join Operations

Inner joins (and antijoins)

- Cartesian product: $E_R \times E_S$
- Natural join: $E_R \bowtie E_S$
- Theta join: $E_R \bowtie_{\varphi} E_S$
- Left / right semijoin: $E_R \ltimes E_S$, $E_R \rtimes E_S$
- Left / right antijoin: $E_R \triangleright E_S$, $E_R \triangleleft E_S$
- Left / right theta semijoin: $E_R \ltimes_{\varphi} E_S$, $E_R \rtimes_{\varphi} E_S$
- Left / right theta antijoin: $E_R \triangleright_{\varphi} E_S$, $E_R \triangleleft_{\varphi} E_S$

Join Operations

Outer joins

- Left / right / full outer join:
 - $E_R\bowtie E_S$, $E_R\bowtie E_S$, $E_R\bowtie E_S$
- Left / right / full outer theta join:

$$E_R \bowtie_{\varphi} E_S$$
, $E_R \bowtie_{\varphi} E_S$, $E_R \bowtie_{\varphi} E_S$

Extended relational model with null values is required

Outer Join

Left / right / full outer join: natural join of two relations extended by tuples of the first / second / both relations that cannot be joined

$$E_R \bowtie E_S \ / \ E_R \bowtie E_S \ / \ E_R \bowtie E_S$$

$$E_R *_{\mathsf{L}} E_S \ / \ E_R *_{\mathsf{R}} E_S \ / \ E_R *_{\mathsf{F}} E_S$$

$$(R, A_R) = \llbracket E_R \rrbracket \text{ and } \langle S, A_S \rangle = \llbracket E_S \rrbracket$$

$$A_R = \{r_1, \dots, r_m\}, A_S = \{s_1, \dots, s_n\}$$

$$E_R \bowtie E_S \equiv (E_R \bowtie E_S) \cup ((E_R \triangleright E_S) \times \{(\mathsf{null}, \dots, \mathsf{null})\}_{s_1, \dots, s_n})$$

$$E_R \bowtie E_S \equiv (E_R \bowtie E_S) \cup (\{(\mathsf{null}, \dots, \mathsf{null})\}_{r_1, \dots, r_m} \times (E_R \triangleleft E_S))$$

$$E_R \bowtie E_S \equiv (E_R \bowtie E_S) \cup (E_R \bowtie E_S)$$

Outer Join: Example

Movie characters with full actor names if possible

 \mathbb{M}

Cast *L Actor

title	actor
Vratné lahve	2
Vratné lahve	4
Samotáři	1
Medvídek	1

actor	name
1	Ivan Trojan
2	Jiří Macháček
3	Jitka Schneiderová

title	actor	name
Vratné lahve	2	Jiří Macháček
Vratné lahve	4	null
Samotáři	1	Ivan Trojan
Medvídek	1	Ivan Trojan

Relational algebra

- Declarative query language
 - Query expressions describe what data to retrieve, not (necessarily) how such data should be retrieved
- Both inputs and outputs of queries are relations
- Only values actually present in the database can be returned
 - I.e. derived data cannot be returned
 (such as various calculations, statistics, aggregations, ...)

Query evaluation

- Construction of a syntactic tree (query expression parsing)
 - Based on an inductive structure of a given query expression
 - I.e. based on parentheses (often omitted), operation priorities, associativity conventions, ...
- Nodes
 - Leaf nodes correspond to individual input relations
 - Inner nodes correspond to individual operations
- Evaluation
 - Node can be evaluated when all its child nodes are evaluated,
 i.e. when all operands of a given operation are available
 - Root node represents the result of the entire query

Equivalent expressions

- Query expressions that define the same query (regardless the input relations)
- Various causes
 - Inference of extended operations using the basic ones
 - Commutativity, distributivity or associativity of (some) operations
 - ...
- Examples
 - Commutativity of selection: $(E(\varphi_1))(\varphi_2) \equiv (E(\varphi_2))(\varphi_1)$
 - Selection cascade: $(E(\varphi_1))(\varphi_2) \equiv E(\varphi_1 \wedge \varphi_2)$
 - ...

Basic operations

- Not all the introduced operations are actually necessary in order to form expressions of all the possible queries
- The minimal set of required operations:

• Projection: $\pi_{a_1,...,a_n}(E)$

• Selection: $\sigma_{\varphi}(E)$

• Attribute renaming: $\rho_{b_1/a_1,...,b_n/a_n}(E)$

• Union: $E_R \cup E_S$

• Difference: $E_R \setminus E_S$

• Cartesian product: $E_R \times E_S$

Extended operations

 Intersection, division, all types of joins except the Cartesian product, ...

Relational completeness

- Query language that is able to express all queries of RA is relational complete
 - SQL is relational complete

Conclusion

Relational algebra

- Declarative query language for the relational model
- Operations
 - Basic: projection, selection, attribute renaming, union, difference, Cartesian product
 - Extended: intersection, natural join, theta join, semijoin, antijoin, division, outer join
 - ...
- Relational completeness
- Motivation
 - Evaluation of SQL queries