Codierungstheorie

Reinhold Hübl

Woche 8 - Winter 2022

Polynome

Ist $f(X) \in \mathbb{F}_q[X]$ ein Polynom, so können wir für die Unbekannte X ein Element $b \in \mathbb{F}_q$ einsetzen und erhalten ein Element $f(b) \in \mathbb{F}_q$.

Beispiel

Ist
$$f(X) = 3 + 2X + 4X^4 \in \mathbb{F}_7[X]$$
, so ist

$$f(2) = 3 + 2 \cdot 2 + 4 \cdot 2^4 = 3 + 4 + 1 = 1$$

Beispiel

Ist \mathbb{F}_4 der Körper mit 4 Elementen und definierender Relation $\alpha^2 = \alpha + 1$, und ist $f(X) = 1 + \alpha \cdot X^2 + (\alpha + 1) \cdot X^3 \in \mathbb{F}_4[X]$, so ist

$$f(\alpha) = 1 + \alpha \cdot \alpha^2 + (\alpha + 1) \cdot \alpha^3 = \alpha + 1$$

Definition

Ein $b \in \mathbb{F}_q$ heißt **Nullstelle** von $f(X) \in \mathbb{F}_q[X]$, wenn f(b) = 0.

Nullstellen

Übung

Bestimmen Sie alle Nullstellen des Polynoms $f(X) = X^6 + 6 \in \mathbb{F}_7[X]$.

Nullstellen

Ist $f(X) \in \mathbb{F}_q[X]$ ein Polynom vom Grad k, und ist $b \in \mathbb{F}_q$ eine Nullstelle von f(X), so geht die Polynomdivision von f(X) durch X-b in $\mathbb{F}_q[X]$ ohne Rest auf.

Genauer gilt sogar

$$f(X) = g(X) \cdot (X - b)$$

wobei g(X) ein Polynom vom Grad k-1 ist.

Beispiel

Wir betrachten \mathbb{F}_4 mit der Relation $\alpha^2=\alpha+1$. Dann ist α eine Nullstelle von $f(X)=X^3+1$ und

$$X^{3} + 1 = (X^{2} + \alpha X + (\alpha + 1)) \cdot (X + \alpha)$$

Polynome

Wir betrachten nun einen endlichen Körper \mathbb{F}_q mit q Elementen und setzen

$$\mathscr{L}(k-1) = \{f(X) \in \mathbb{F}_q[X] \mid \deg(f) \le k-1\} \subset \mathbb{F}_q[X]$$

betrachten also die Menge aller Polynome f(X) vom Grad $\deg(f) \leq k-1$.

Bemerkung

Die Menge $\mathcal{L}(k-1)$ (mit Additon und Skalarmultiplikation von Poylnomen) ist ein \mathbb{F}_a -Vektorraum der Dimension k.

Die Elemente

$$f_0(X) = 1, f_1(X) = X, f_2(X) = X^2, \dots, f_{k-1}(X) = X^{k-1}$$

bilden eine Basis von $\mathcal{L}(k-1)$.

Auswertung

Wir betrachten n (paarweise verschiedene) Punkte $b_1, \ldots, b_n \in \mathbb{F}_q$, setzen $\mathscr{B} = \{b_1, \ldots, b_n\}$ und definieren die **Auswertungsabbildung**

$$\text{Ev}_{\mathscr{B}}: \mathscr{L}(k-1) \longrightarrow \mathbb{F}_q^n$$

 $mit \ \mathrm{Ev}_{\mathscr{B}}(f) = (f(b_1), \ldots, f(b_n)).$

Regel

Die Abbildung $\operatorname{Ev}_{\mathscr{B}}$ ist linear. Ist außerdem $k \leq n$, so ist sie auch injektiv und $C = \operatorname{Im}\left(\operatorname{Ev}_{\mathscr{B}}\right) \subseteq \mathbb{F}_q^n$ ist ein k-dimensionaler Untervektorraum.

Wir nehmen nun immer an, dass k < n.

Wir nehmen nun immer an, dass k < n.

Definition

Der Untervektorraum $C = \operatorname{Im}(\operatorname{Ev}_{\mathscr{B}}) \subseteq \mathbb{F}_q^n$ heißt dualer $[n,k]_q$ -Reed-Solomon-Code zu \mathscr{B} .

Regel

Ist C der duale $[n, k]_q$ -Reed-Solomon-Code zu \mathcal{B} , so ist d(C) = n - k + 1. Der Code C ist also ein MDS-Code

Betrachten wir die Basis $f_0(X)=1, f_1(X)=X, \ldots, f_{k-1}(X)=X^{k-1}$ von $\mathscr{L}(k-1)$, so ist $\mathrm{Ev}_{\mathscr{B}}(f_0(X)), \ldots, \mathrm{Ev}_{\mathscr{B}}(f_{k-1}(X))$ eine Basis von C.

Dabei gilt

$$\operatorname{Ev}_{\mathcal{B}}(f_I(X)) = (b_1^I, b_2^I, \dots, b_n^I)$$

Daraus erhalten wir eine Erzeugermatrix von C als

$$G = \begin{pmatrix} 1 & 1 & \dots & 1 & 1 \\ b_1 & b_2 & \dots & b_{n-1} & b_n \\ \vdots & & \ddots & & \vdots \\ b_1^{k-1} & b_2^{k-1} & \dots & b_{n-1}^{k-1} & b_n^{k-1} \end{pmatrix}$$

Beispiel

Der duale [6,4] $_{11}$ -Reed-Solomon-Code zu $\mathscr{B}=\{0,1,2,3,4,5\}$ hat die Erzeugermatrix

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 4 & 9 & 5 & 3 \\ 0 & 1 & 8 & 5 & 9 & 4 \end{pmatrix}$$

und Paritätsprüfmatrix

$$H = \begin{pmatrix} 1 & 7 & 6 & 7 & 1 & 0 \\ 4 & 7 & 9 & 1 & 0 & 1 \end{pmatrix}$$

Übung

Wir betrachten den Körper \mathbb{F}_8 , gegeben durch $\alpha^3=\alpha+1$. Bestimmen Sie die Erzeugermatrix des dualen [6,4]₈-Reed-Solomon-Codes zu

$$\mathscr{B} = \{\alpha, \alpha^2, \alpha + 1, \alpha^2 + \alpha, \alpha^2 + \alpha + 1, \alpha^2 + 1\}$$

Definition

Der $[n,k]_q$ -Reed-Solomon-Code C zu $\mathscr{B}=\{b_1,\ldots,b_n\}\subseteq \mathbb{F}_q$ ist der duale Code zum dualen $[n,n-k]_q$ -Reed-Solomon-Code C^\perp zu \mathscr{B} .

Regel

Für einen $[n, k]_q$ -Reed-Solomon-Code C gilt

$$d(C) = n - k + 1$$

Reed-Solomon-Codes sind also MDS-Codes

Regel

Der $[n, k]_q$ -Reed-Solomon-Code C zu $\mathscr{B} = \{b_1, \ldots, b_n\}$ hat Paritätsprüfmatrix

$$H = \begin{pmatrix} 1 & 1 & \dots & 1 & 1 \\ b_1 & b_2 & \dots & b_{n-1} & b_n \\ \vdots & & \ddots & & \vdots \\ b_1^{n-k-1} & b_2^{n-k-1} & \dots & b_{n-1}^{n-k-1} & b_n^{n-k-1} \end{pmatrix}$$

Die Erzeugermatrix kann nicht allgemein angegeben werden.

Beispiel

Der $[6,2]_{11}$ –Reed–Solomon–Code zu $\mathscr{B}=\{0,1,2,3,4,5\}$ hat die Paritätsprüfmatrix

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 4 & 9 & 5 & 3 \\ 0 & 1 & 8 & 5 & 9 & 4 \end{pmatrix}$$

und Erzeugermatrix

$$G = \begin{pmatrix} 1 & 7 & 6 & 7 & 1 & 0 \\ 4 & 7 & 9 & 1 & 0 & 1 \end{pmatrix}$$

Übung

Wir betrachten den Körper \mathbb{F}_{13} mit 13 Elementen. Bestimmen Sie die Erzeugermatrix und die Paritätsprüfmatrix des $[6,2]_{13}$ -Reed-Solomon-Codes zu

$$\mathcal{B} = \{0, 2, 4, 6, 8, 10\}$$

Übung

Wir betrachten wieder den Körper \mathbb{F}_8 , gegeben durch $\alpha^3 = \alpha + 1$. Bestimmen Sie die Erzeugermatrix und die Paritätsprüfmatrix des $[6,2]_8$ -Reed-Solomon-Codes zu

$$\mathscr{B} = \{\alpha, \alpha^2, \alpha + 1, \alpha^2 + \alpha, \alpha^2 + \alpha + 1, \alpha^2 + 1\}$$

Wir führen die Reed–Solomon–Codierung eine Nachricht $m=(m_1,\ldots,m_k)\in \mathbb{F}_q^k$ mit einem $[n,k]_q$ –Reed–Solomon–Code C bezüglich $\mathscr{B}=\{b_1,\ldots,b_n\}$ wie folgt durch

• Füge die Nachricht als die letzten k-Stellen des Codeworts ein,

$$c_{n-k+1} = m_1, \quad c_{n-k+2} = m_2, \quad \dots \quad , c_n = m_k$$

• Ergänze n-k-redundante Stellen c_1,\ldots,c_{n-k} über das Gleichungssystem zur Paritätsprüfmatrix bzw. eine geeignete Erzeugermatrix.

Beispiel

Der $[6,2]_{11}$ -Reed-Solomon-Code zu $\mathscr{B}=\{0,1,2,3,4,5\}$ hat Basis

$$g_1 = (1,7,6,7,1,0)$$

 $g_2 = (4,7,9,1,0,1)$

Damit wird $m = (m_1, m_2)$ codiert zu

$$c = m_1 \cdot g_1 + m_2 \cdot g_2$$

Beispiel

In diesem Beispiel wird als m = (7,3) codiert zu

$$C = 7 \cdot g_1 + 3 \cdot g_2$$

= $7 \cdot (1, 7, 6, 7, 1, 0) + 3 \cdot (4, 7, 9, 1, 0, 1)$
= $(7, 5, 9, 5, 7, 0) + (1, 10, 5, 3, 0, 3)$
= $(8, 4, 3, 8, 7, 3)$

Übung

Benutzen Sie den $[6,4]_{11}$ -Reed-Solomon-Code zu $\mathcal{B} = \{0,1,2,3,4,5\}$, um das Nachrichtenwort m = (2,6,9,7) zu codieren.

Übung

Wir betrachten wieder den Körper \mathbb{F}_8 , gegeben durch $\alpha^3=\alpha+1$. Benutzen Sie den [6,2]₈-Reed-Solomon-Codes zu

$$\mathscr{B} = \{\alpha, \alpha^2, \alpha + 1, \alpha^2 + \alpha, \alpha^2 + \alpha + 1, \alpha^2 + 1\}$$

um das Nachrichtenwort $m=(\alpha+1,\alpha^2+\alpha+1)$ zu codieren. Es ist

$$G = \begin{pmatrix} \alpha^2 + 1 & \alpha^2 + \alpha + 1 & \alpha^2 + \alpha + 1 & \alpha^2 & 1 & 0 \\ \alpha & \alpha^2 & \alpha^2 + \alpha & 1 & 0 & 1 \end{pmatrix}$$

Ist $C \text{ ein } [n, k]_q$ -Reed-Solomon-Code, so gilt

$$d(C) = n + 1 - k, \quad t = \lfloor \frac{n - k}{2} \rfloor$$

und C kann bis zu t Fehler korrigieren.

Definition

Für ein $a=(a_1,\ldots,a_n)\in\mathbb{F}_q^n$ und $0\leq r\leq n-k-1$ heißt

$$[a, X^r] = \sum_{i=1}^n a_i \cdot b_i^r$$

das *r*-te Syndrom von *a*.

Regel (Syndrombestimmung)

$$a \in C \iff [a, X^r] = 0$$
 für alle $r \in \{0, \dots, n-k-1\}$

Beispiel

Der $[6,2]_{11}$ -Reed-Solomon-Code zu $\mathcal{B}=\{0,1,2,3,4,5\}$ hat die Paritätsprüfmatrix

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 4 & 9 & 5 & 3 \\ 0 & 1 & 8 & 5 & 9 & 4 \end{pmatrix}$$

Für das Wort a = (0, 7, 5, 9, 5, 7) gilt

Also ist a ein Codewort (zur Nachricht m = (5,7)).

Beispiel

Für den $[6,2]_{11}$ -Reed-Solomon-Code zu $b_1=0,\ b_2=1,\ b_3=2,\ b_4=3,\ b_5=4$ und $b_6=5$ und für das Wort b=(3,1,2,1,9,8) gilt

$$[a, X^{0}] = 3+5+2+1+9+8 = 2
[a, X^{1}] = 3 \cdot 0 + 5 \cdot 1 + 2 \cdot 2 + 1 \cdot 3 + 9 \cdot 4 + 8 \cdot 5 = 7
[a, X^{2}] = 3 \cdot 0 + 5 \cdot 1 + 2 \cdot 4 + 1 \cdot 9 + 9 \cdot 5 + 8 \cdot 3 = 10
[a, X^{3}] = 3 \cdot 0 + 5 \cdot 1 + 2 \cdot 8 + 1 \cdot 5 + 9 \cdot 9 + 8 \cdot 4 = 3$$

Also ist b auf jeden Fall kein Codewort.

Ist a ein fehlerhaft übertragenes Wort, so schreiben wir a=c+e, wobei c das eigentliche Codewort ist und e der bei der Übertragung aufgetretene Fehler.

Mit Hilfe der Syndrome bilden wir nur ein Gleichungssystem

mit n-k-t Gleichungen und t+1 Unbekannten Y_0, Y_1, \ldots, Y_t .

Regel (Fehlerstellenbestimmung)

Falls a höchstens t Fehler enthält, so hat dieses Gleichungssystem immer eine nicht-triviale Lösung $I = (I_0, I_1, \dots, I_t)$. Setzen wir

$$L(X) = I_0 + I_1 \cdot X + \cdots + I_t \cdot X^t$$

und ist $r \in \{1, \dots, n\}$ mit $e_r \neq 0$ (ist also r ein Fehlerstelle von a), so gilt

$$L(b_r)=0$$

Definition

Das Polynom L(X) heißt **fehlerlokalisierendes Polynom** von a.