2 Infinite Series

2.1 Definitions & convergence

Definition 2.1.1. Let $\{a_n\}$ be a sequence of real numbers.

a) An expression of the form

$$a_1 + a_2 + \ldots + a_n + \ldots$$

is called an infinite series.

- b) The number a_n is called as the n^{th} term of the series.
- c) The sequence $\{s_n\}$, defined by $s_n = \sum_{k=1}^n a_k$, is called the sequence of partial sums of the series.
- d) If the sequence of partial sums converges to a limit L, we say that the series converges and its sum is L.
- e) If the sequence of partial sums does not converge, we say that the series diverges.

Examples 2.1.2.

1) If 0 < x < 1, then $\sum_{n=0}^{\infty} x^n$ converges to $\frac{1}{1-x}$.

Solution. Let us consider the sequence of partial sums $\{s_n\}$, where $s_n = \sum_{k=1}^n x^k$. Here

$$s_n = \sum_{k=1}^n x^k = \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x} - \frac{x^{n+1}}{1 - x}, \ n \in \mathbb{N}.$$

As, 0 < x < 1, $x^{n+1} \to 0$ as $n \to \infty$. Hence $s_n \to \frac{1}{1-x}$. Thus the given series converges to $\frac{1}{1-x}$.

2) The series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Solution. Consider the sequence of partial sums $\{s_n\}$, where $s_n = \sum_{k=1}^n \frac{1}{k}$. Now, let us examine the subsequence s_{2^n} of $\{s_n\}$. Here

$$s_2 = 1 + 1/2 = 3/2,$$

 $s_4 = 1 + 1/2 + 1/3 + 1/4 > 3/2 + 1/4 + 1/4 = 2.$

1

Suppose $s_{2^n} > (n+2)/2$, then

$$s_{2^{n+1}} = s_{2^n} + \sum_{k=1}^{2^n} \frac{1}{2^n + k}$$

$$> \frac{n+2}{2} + \sum_{k=1}^{2^n} \frac{1}{2^{n+1}}$$

$$= \frac{n+2}{2} + \frac{2^n}{2^{n+1}} = \frac{(n+1)+2}{2}.$$

Thus the subsequence $\{s_{2^n}\}$ is not bounded above and as it is also increasing, it diverges. Hence the sequence diverges, i.e., the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

3) (Telescopic series:) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges to 1.

Solution. Consider the sequence of partial sums $\{s_n\}$. Then

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{n+1} \to 1.$$

Summarizing this observation, one has the following theorem on Telescopic series

Theorem 2.1.3. Suppose $\{a_n\}$ is a sequence of non-negative real numbers such that $a_n \to L$. Then the series $\sum (a_n - a_{n+1})$ converges to $a_1 - L$.

Lemma 2.1.4.

- 1) If $\sum_{n=1}^{\infty} a_n$ converges to L and $\sum_{n=1}^{\infty} b_n$ converges to M, then the series $\sum_{n=1}^{\infty} (a_n + b_n)$ converges to L + M.
- 2) If $\sum_{n=1}^{\infty} a_n$ converges to L and if $c \in \mathbb{R}$, then the series $\sum_{n=1}^{\infty} ca_n$ converges to cL.

Lemma 2.1.5. If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Proof. Suppose $\sum_{n=1}^{\infty} a_n = L$. Then the sequence of partial sums $\{s_n\}$ also converges to L. Now

$$a_n = s_n - s_{n-1} \to L - L = 0.$$
 ///

Example 2.1.6. If x > 1, then the series $\sum_{n=1}^{\infty} x^n$ diverges.

Solution. Assume to the contrary that the series $\sum\limits_{n=1}^{\infty} x^n$ converges. Then the n^{th} term, i.e., $x^n \to 0$. But as x > 1, $x^n \ge 1$ for all $n \in \mathbb{N}$ and hence $\lim_{n \to \infty} x^n \ge 1$, which is a contradiction. Hence the series ∞

$$\sum_{n=1}^{\infty} x^n \text{ diverges.}$$

As a first result we have the following comparison theorem:

Theorem 2.1.7. Let $\{a_n\}, \{b_n\}$ be sequences of positive reals such that $a_n \leq b_n$. If $\sum b_n$ converges then $\sum a_n$ converges.

Proof. Let $s_n = a_1 + a_2 + + a_n$ and $t_n = b_1 + b_2 + + b_n$ be the partial sum of $\sum a_n, \sum b_n$ respectively. Then $s_n \leq t_n$. Since $\sum b_n$ converges, we have $\{t_n\}$ converges and is bounded. Now since $\{s_n\}$ is monotonically increasing sequence that is bounded above, we get the convergence of $\{s_n\}$ and hence the convergence of $\{s_n\}$ and

Theorem 2.1.8. Let $\{a_n\}_1^{\infty}$ be an decreasing sequence of positive numbers. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges.

Proof. Let s_n and t_n be the sequence of partial sums of $\sum a_n$ and $\sum 2^n a_{2^n}$ respectively. Then s_n and t_n are monotonically increasing sequences. We know that such sequences converge if they are bounded from above. proof follows from the observation that

$$s_{2^{n}} = \sum_{k=1}^{2^{n}} a_{n} = a_{1} + a_{2} + (a_{3} + a_{4}) + (a_{5} + a_{6} + a_{7} + a_{8}) + \dots + (a_{2^{n-1}+1} + \dots + a_{2^{n}})$$

$$\geq a_{1} + a_{2} + 2a_{4} + 4a_{8} + 8a_{16} + \dots + 2^{n-1}a_{2^{n}}$$

$$= a_{1} + \frac{1}{2}t_{n}.$$
(2.1)

Therefore, if $\{s_n\}$ converges then $\{s_{2^n}\}$ converges and hence bounded from above. Now convergence of $\{t_n\}$ follows from 2.1, $\{t_n\}$.

On the other hand,

$$s_{2^{n}-1} = a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + (a_8 + \dots + a_{15}) + (a_{2^{n-1}} + \dots + a_{2^{n}-1})$$

$$\leq a_1 + 2a_2 + 4a_4 + 8a_8 + \dots + 2^{n-1}a_{2^{n-1}} = a_1 + t_{n-1}$$

So if $\{t_n\}$ converges, then $\{s_{2^n-1}\}$ converges. Now the conclusion follows from $s_n \leq s_{2^{n+1}-1}$ and the fact that $\{s_n\}$ is monotonically increasing sequence.

Examples 2.1.9.

- 1) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$, p > 0. Then, we have $\sum_{n=1}^{\infty} 2^n \frac{1}{(2^n)^p} = \sum_{n=1}^{\infty} \frac{1}{(2^n)^{p-1}}$ which converges for p > 1 and diverges for $p \le 1$.
- 2) Consider the series $\sum_{n=2}^{\infty} \frac{1}{n \log n}$. Here $\sum_{n=2}^{\infty} 2^n \frac{1}{2^n \log 2^n} = \frac{1}{\log 2} \sum_{n=2}^{\infty} \frac{1}{n}$ which diverges. Hence the given series diverges.

2.2 Absolute convergence

Definition 2.2.1. a) Let $\sum_{n=1}^{\infty} a_n$ be a series of real numbers. If $\sum_{n=1}^{\infty} |a_n|$ converges, we say that $\sum_{n=1}^{\infty} a_n$ converges absolutely.

b) If $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_n|$ diverges, we say that $\sum_{n=1}^{\infty} a_n$ converges conditionally.

Examples 2.2.2.

- 1) The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$ converges absolutely.
- 2) The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converges absolutely.

Theorem 2.2.3. If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} a_n$ converges.

Proof. Let $t_n = \sum_{k=1}^n |a_k|$. As the series converges absolutely, the sequence $\{t_n\}_1^{\infty}$ is Cauchy. Thus, given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|t_m - t_n| < \epsilon \ \forall \ m, n \ge N.$$

Let m > n. Then

$$|s_m - s_n| = \left| \sum_{i=n+1}^m a_i \right| \le \sum_{i=n+1}^m |a_i| = |t_m - t_n| < \epsilon.$$

Thus the sequence $\{s_n\}_1^{\infty}$ is Cauchy and hence converges. Thus $\sum_{1}^{\infty} a_n$ converges. ///

Theorem 2.2.4. Let $\sum_{n=0}^{\infty} a_n$ be a series of real numbers. Let $p_n = \max\{a_n, 0\}$ and $q_n = \min\{a_n, 0\}$.

- a) If $\sum a_n$ converges absolutely, then both $\sum p_n$ and $\sum q_n$ converges.
- b) If $\sum a_n$ diverges then one of the $\sum p_n$ or $\sum q_n$ diverges.
- b) If $\sum a_n$ converges conditionally then both $\sum p_n$ and $\sum q_n$ diverges.

Proof.

- a) Observe that $p_n = (a_n + |a_n|)/2$ and $q_n = (a_n |a_n|)/2$. Thus the convergence of the two series follows from the hypothesis.
- b) Proof is easy.
- c) We leave to this as an exercise.

///

Tests for absolute convergence

Theorem 2.2.5 (Comparison test). Let $\sum a_n$ be a series of real numbers. Then, $\sum a_n$ converges absolutely if there is an absolutely convergent series $\sum c_n$ with $|a_n| \leq |c_n|$ for all $n \geq N, N \in \mathbb{N}$.

Proof follows as in Theorem 2.1.7

Examples 2.2.6.

- 1) The series $\sum_{n=1}^{\infty} \frac{7}{7n-2}$ diverges because $\frac{7}{7n-2} = \frac{1}{n-2/7} \ge \frac{1}{n}$ for all $n \in \mathbb{N}$ and $\sum \frac{1}{n}$ diverges.
- 2) The series $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges because $\frac{1}{n!} \le \frac{1}{2^n}$ and $\sum_{n=0}^{\infty} \frac{1}{2^n}$ converges.

Theorem 2.2.7 (Limit comparison test). Let $\{a_n\}$ and $\{b_n\}$ be two sequences of positive numbers. Then

- a) if $\lim_{n\to\infty}\frac{a_n}{b}=c>0$, $\sum a_n$ and $\sum b_n$ both converge or diverge together;
- b) if $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- c) if $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Proof. (a) As $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, for $\epsilon = \frac{c}{2} > 0$, there exists $N \in \mathbb{N}$ such that

$$n \ge N \implies \left| \frac{a_n}{b_n} - c \right| < \frac{c}{2}.$$

Thus, for $n \geq N$,

$$\frac{-c}{2} \le \frac{a_n}{b_n} - c \le \frac{c}{2}$$

or equivalently

$$\frac{cb_n}{2} \le a_n \le \frac{3cb_n}{2}.$$

Hence the conclusion follows from the comparison test.

b) Given that $\lim_{n\to\infty}\frac{a_n}{b_n}=0$. Hence for $\epsilon=\frac{1}{2}$, there exists $N\in\mathbb{N}$ such that

$$n \ge N \implies \frac{a_n}{b_n} < \frac{1}{2}$$

or equivalently,

$$n \ge N \implies a_n \le \frac{b_n}{2}.$$

Thus the desired conclusion follows from the comparison test.

c) Here we are given that $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$. Hence for any real number M>0, there exists $N\in\mathbb{N}$ such that

$$n \ge N \implies \frac{a_n}{b_n} \ge M$$

or equivalently,

$$n \ge N \implies a_n \ge Mb_n$$
.

///

Thus if $\sum |b_n|$ diverges, then $\sum |a_n|$ diverges by comparison test.

Examples 2.2.8.

- 1) Consider the series $\sum_{n=1}^{\infty} \frac{2n+1}{(n+1)^2}$. Here $a_n = \frac{2n+1}{(n+1)^2}$. Let $b_n = \frac{1}{n}$. Then $\frac{a_n}{b_n} = \frac{\left(\frac{2n+1}{(n+1)^2}\right)}{\frac{1}{n}} = \frac{2n^2+n}{n^2+2n+1} \to 2$ as $n \to \infty$. Further, $\sum \frac{1}{n}$ diverges. Thus by limit comparison theorem, the given series diverges.
- 2) Consider the series $\sum_{1}^{\infty} \frac{1}{2^{n}-1}$. Here $a_{n} = \frac{1}{2^{n}-1}$. Let $b_{n} = \frac{1}{2^{n}}$. Then $\frac{a_{n}}{b_{n}} = \frac{2^{n}}{2^{n}-1} \to 1$. Further, $\sum \frac{1}{2^{n}}$ converges and hence the given series converges.
- 3) Consider the series $\sum \frac{e^{-n}}{n^2}$. Here $a_n = \frac{e^{-n}}{n^2}$ and $b_n = \frac{1}{n^2}$. Then $\frac{a_n}{b_n} = e^{-n} \to 0$ as $n \to \infty$. Further, $\sum \frac{1}{n^2}$ converges and hence the given series converges.
- 4) Consider the series $\sum \frac{e^{-n}}{n}$. Here $a_n = \frac{e^{-n}}{n}$ and $b_n = \frac{1}{n^2}$. Then $\frac{a_n}{b_n} = ne^{-n} \to 0$ as $n \to \infty$. Further, $\sum \frac{1}{n^2}$ converges and hence the given series converges.

Theorem 2.2.9 (Ratio test). Let $\sum_{n=1}^{\infty} a_n$ be a series of real numbers. Let

$$a = \liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$
 and $A = \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$.

Then

- a) $\sum_{1}^{\infty} a_n$ converges absolutely if A < 1;
- b) $\sum_{1}^{\infty} |a_n|$ diverges if a > 1;
- c) the test fails in all other cases.

Proof. a) If A < 1, choose B such that A < B < 1. Then there exists an $\epsilon > 0$ such that $B = A + \epsilon$ and also $N \in \mathbb{N}$ such that $\left| \frac{a_{n+1}}{a_n} \right| \leq B$ for all $n \geq N$. Further, for any $k \in \mathbb{N}$,

$$\left| \frac{a_{N+k}}{a_N} \right| = \prod_{i=1}^k \left| \frac{a_{N+i}}{a_{N+i-1}} \right| \le \prod_{i=1}^k B = B^k.$$

Thus $|a_{N+k}| \leq B^k |a_N|$, $k \in \mathbb{N}$. But $\sum_{k=0}^{\infty} |a_N| B^k < \infty$ as B < 1. Thus by comparison test, the series $\sum_{n=1}^{\infty} a_n$ converges.

b) If a > 1, choose b such that 1 < b < a. There exits $N \in \mathbb{N}$ such that $\left| \frac{a_{n+1}}{a_n} \right| \ge b$ for all $n \ge N$.

$$\left| \frac{a_{N+k}}{a_N} \right| = \prod_{i=1}^k \left| \frac{a_{N+i}}{a_{N+i-1}} \right| \ge \prod_{i=1}^k b = b^k.$$

Thus $|a_{N+k}| \ge |a_N|$, $k \in \mathbb{N}$. But, as b > 1, $\sum_{k=0}^{\infty} a_N b^k$ diverges. Thus, again, by the comparison test, the series $\sum_{n=1}^{\infty} a_n$ diverges.

c) Case 1: a = A = 1 Consider the series $\sum \frac{1}{n}$. Here $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$. But $\sum \frac{1}{n}$ diverges. For the series $\sum \frac{1}{n^2}$, which converges, again $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$. Case 2: A > 1 If we consider the series $\sum 2^n$ then A = 2 > 1 and the series diverges. If we take

$$s = 1 + 2 + \frac{2}{5} + 2(\frac{1}{5})^2 + (\frac{1}{5})^3 + 2(\frac{1}{5})^3 + \dots$$

Then it is easy to see that the series converges as

$$s = 1 + (\frac{1}{5}) + (\frac{1}{5})^3 + \dots + 2 + 2(\frac{1}{5}) + 2(\frac{1}{5})^2 + 2(\frac{1}{5})^3 + \dots$$

But A = 2. Similarly one can construct examples when a < 1.

Examples 2.2.10.

a) Consider the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$. Here

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{(n+1)!} \frac{n!}{n^n} = \left(\frac{n+1}{n}\right)^n = \left(1 + \frac{1}{n}\right)^n \to e,$$

///

which is greater than 1. So a = A = e > 1. Thus the given series diverges.

b) Consider the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$, $x \in \mathbb{R}$. Here

$$\frac{a_{n+1}}{a_n} = \frac{x^{n+1}}{(n+1)!} \frac{n!}{x^n} = \frac{x}{n+1} \to 0.$$

Therefore a = A = 0 < 1. Thus, for all $x \in \mathbb{R}$, the given series converges.

Theorem 2.2.11 (Root test). Let $\sum_{n=0}^{\infty} a_n$ be a series of real numbers. Let $A = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$. Then

a) the series converges absolutely if A < 1;

- b) the series diverges if A > 1;
- c) the test fails if A = 1.

Proof. a) If A < 1, choose B such that A < B < 1. Then there exists $N \in \mathbb{N}$ such that $\sqrt[n]{|a_n|} < B$ for all $n \ge N$. This implies $|a_n| < B^n$ for all $n \ge N$. As B < 1, the series converges by comparison test.

- b) If A > 1, there exists infinitely many $n \in \mathbb{N}$ such that $\sqrt[n]{|a_n|} > 1$. But this implies that $|a_n| > 1$ for infinitely many values of n and hence $a_N \to 0$, i.e., $\sum a_n$ diverges.
- c) Consider the series $\sum \frac{1}{n}$. Here A=1 and the series diverges. On the other hand, for the series $\sum \frac{1}{n^2}$, again A=1, but the series converges.

Examples 2.2.12.

- 1) Consider the series $\sum_{n=1}^{\infty} \frac{x^n}{n}$, $x \in \mathbb{R}$. Here $a_n = \frac{x^n}{n}$. Therefore, $\sqrt[n]{\left|\frac{x^n}{n}\right|} = \left|\frac{x}{\sqrt[n]{n}}\right| \to |x|$. Thus the series converges for |x| < 1 and diverges for |x| > 1.
- 2) Consider the series $\sum_{n=1}^{\infty} \frac{x^n}{n^n}$, $x \in \mathbb{R}$. Here $a_n = \frac{x^n}{n^n}$. Then, $\sqrt[n]{|a_n|} = \left|\frac{x}{n}\right| \to 0$. Thus the series converges for any $x \in \mathbb{R}$.
- 3) Consider the series $\sum a_n$, where $a_n = \begin{cases} \frac{n}{4^n} & n \text{ is odd} \\ \frac{1}{2^n} & n \text{ is even} \end{cases}$. Then $\limsup_{n \to \infty} \sqrt[n]{a_n} = \frac{1}{2}$. Therefore the series converges.
- 4) The series $\sum 3^{-n-(-1)^n}$. Then it is not difficult to see that $\limsup |a_n|^{\frac{1}{n}} = 1/3$. However ratio test fails in this case.

Remark 2.1. We note that the root test is stronger than the ratio test. for example, take the series $\sum a_n$ where

$$a_n = \begin{cases} 2^{-n} & n \text{ odd} \\ 2^{-n+2} & n \text{ even} \end{cases}$$

Then it is easy to see that

$$\limsup \frac{|a_{n+1}|}{|a_n|} = 2$$
, but $\limsup |a_n|^{1/n} = 1/2$.

So the root test implies that the series converges but ratio test is inconclusive.

Alternating series:

Definition 2.2.13. An alternating series is an infinite series whose terms alternate in sign.

Theorem 2.2.14. Suppose $\{a_n\}$ is a sequence of positive numbers such that

- (a) $a_n \ge a_{n+1}$ for all $n \in \mathbb{N}$ and
- $(b) \lim_{n \to \infty} a_n = 0,$

then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Proof. Consider the partial sums with odd index, s_1, s_3, s_5, \ldots Now, for any $n \in \mathbb{N}$,

$$s_{2n+1} = s_{2n-1} - a_{2n} + a_{2n+1} \le s_{2n-1}$$
 (by (a)).

Thus the sequence $\{s_{2n-1}\}_1^{\infty}$ forms a non-increasing sequence. Also, notice that

$$s_{2n-1} = \sum_{i=1}^{n-1} (a_{2i-1} - a_{2i}) + a_{2n-1}.$$

Since each quantity in the parenthesis is non-negative and $a_{2n-1} > 0$, the sequence $\{s_{2n-1}\}$ is bounded below by 0. Hence $\{s_{2n-1}\}_1^{\infty}$ is convergent.

Now, consider the partial sums with even index, s_2, s_4, s_6, \ldots For any $n \in \mathbb{N}$,

$$s_{2n+2} = s_{2n} + a_{2n+1} - a_{2n+2} \ge s_{2n}$$
 (by (a)).

Thus the sequence $\{s_{2n}\}_{1}^{\infty}$ forms a non-decreasing sequence. Further,

$$s_{2n} = a_1 - \sum_{i=1}^{n-1} (a_{2i} - a_{2i+1}) - a_{2n} \le a_1,$$

which means that s_{2n} is bounded above by a_1 . Therefore, $\{s_{2n}\}$ is convergent.

Let $L = \lim s_{2n}$ and $M = \lim S_{2n-1}$. By ((b)),

$$0 = \lim a_{2n} = \lim (s_{2n} - s_{2n-1}) = L - M.$$

Thus L=M and hence the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges. ///

Examples 2.2.15.

- 1) Consider the series $\sum_{n=1}^{\infty} (-1)^{n+1} 2^{1/n}$. Here $a_n = 2^{1/n} \to 1$ as $n \to \infty$. Hence the above theorem does not apply. Anyhow, one can show that the series diverges.
- 2) Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. The $a'_n s$ of this series satisfies the hypothesis of the above theorem and hence the series converges.

Examples 2.2.16.

- 1) The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges conditionally.
- 2) The series $\sum_{n=1}^{\infty} \frac{(-1)^{2n-1}}{2n-1}$ converges conditionally.

The following is a more genreal test than the previous theorem.

Theorem 2.2.17. (Dirichlet test)

Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers such that

- 1. the sequence $s_n = \sum_{k=1}^n a_k$ is bounded,
- 2. the sequence b_n is decreasing and $b_n \to 0$.

Then the series $\sum a_n b_n$ converges.

Proof. Since A_n is bounded, there exists M>0, such that $|A_n|\leq M$ for all n. Now note that

$$a_1b_1 + a_2b_2 + \dots + a_nb_n = s_1(b_1 - b_2) + s_2(b_2 - b_3) + \dots + s_{n-1}(b_{n-1} - b_n) + s_nb_n$$

Since b_n is decreasing, $b_n - b_{n+1} \ge 0$. Therefore

$$|a_1b_1 + a_2b_2 + \dots + a_nb_n| \le Mb_1$$

Since $b_n \to 0$, for any $\epsilon > 0$, we get N such that $|b_n| \le \epsilon$ for all $n \ge N$. Now we can easily see,

$$|\sum_{n=0}^{m} a_k b_k| = M|b_n| \le M\epsilon$$

Therefore, by Cauchy's test, the series $\sum a_n b_n$ converges.

Examples 2.2.18.

1) Consider the series $\sum \frac{\cos n\pi}{\log n}$. Here take $a_n = \cos n\pi$ and $b_n = \frac{1}{\log n}$. Then

$$|A_n| \le |\sum_{k=1}^n \cos n\pi| \le 1$$

///

(check the first 4 terms and then use periodicity of $\cos x$)

and b_n decreases to 0. Hence the series conveges. In this case we can see that the series does not converge absolutely (apply Cauchy's test).

2) $\sum \frac{2^{2n}n^2}{e^n n!} \frac{1}{(\log n)^2}$. Take $b_n = \frac{1}{(\log n)^2}$ and $a_n = \frac{2^{2n}n^2}{e^n n!}$. Then b_n decreases to 0. To show the boundedness of the partial sums of $\sum a_n$, we can apply Ratio test to see that the series $\sum a_n$ converges. Hence the sequence of partial sums converge and so will be bounded. Therefore by Dirichlet test the series $\sum a_n b_n$ converges.

Theorem 2.2.19. (Integral Test). If f(x) is decreasing and non-negative on $[1,\infty)$, Then

$$\int_{1}^{\infty} f(x)dx < \infty \iff \sum_{n=1}^{\infty} f(n) \text{ converges.}$$

Details of this theorem will be done after convergence of improper integral.

2.3 Problems

- 1. If the terms of the convergent series $\sum_{n=1}^{\infty} a_n$ are positive and forms a non-increasing sequence, then prove that $\lim_{n\to\infty} 2^n a_{2^n} = 0$.
- 2. If $0 \le a_n \le 1$ $(n \ge 0)$ and if $0 \le x \le 1$, then prove that $\sum_{n=1}^{\infty} a_n x^n$ converges.
- 3. Test the convergence of the series (1) $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ (2) $\sum_{n=2}^{\infty} \frac{1}{(\log n)^x}$ $x \in \mathbb{R}$.
- 4. Determine which of the following series diverges

$$(a) \sum_{n=1}^{\infty} \frac{\log n}{n^{3/2}} \ (b) \sum_{n=1}^{\infty} \frac{(\log n)^2}{n^{3/2}} \ (c) \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2+1} \ (d) \sum_{n=1}^{\infty} \frac{1-n}{n2^n} \ (e) \sum_{n=1}^{\infty} \frac{1}{n\sqrt[n]{n}} \ (f) \sum_{n=1}^{\infty} \frac{\sqrt[n]{n}}{n^2}.$$

5. Determine which of the following series converges

$$(a) \sum_{n=1}^{\infty} \frac{n^{\sqrt{2}}}{2^n} \ (b) \sum_{n=1}^{\infty} \frac{n!}{10^n} \ (c) \sum_{n=1}^{\infty} \left(\frac{n-2}{n}\right)^n \ (d) \sum_{n=1}^{\infty} \frac{(\log n)^n}{n^n} \ (e) \sum_{n=1}^{\infty} \frac{n!}{(2n+1)!}$$

6. Test the convergence of the infinite series

$$(1) \sum_{n=0}^{\infty} \sin\left(\frac{\pi}{2^n}\right) \quad (2) \sum_{n=2}^{\infty} \frac{1}{n \ln(n^3)} (3) \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{1}{\sqrt{n}}\right) (4) \sum \frac{1}{\sqrt{n}} \sin(\frac{1}{n})$$

7. Test the convergence of the infinite series

$$(1) \sum \frac{n^2 n!}{(n^3 + 1)n^n} \quad (2) \sum \frac{\sin \frac{n\pi}{2}}{n} \quad (c) \sum \frac{n(n!)}{(n^2 + 1)[(2n + 1)!]}$$