

高效率低待机功耗原边反馈 AC/DC 驱动芯片

产品概述

CSC7102是一款高效率低待机功耗原边反馈小功率电源AC/DC驱动电路。采用电流模式控制,无需光耦、TL431及相关器件即可实现精确的恒压恒流控制。CSC7102内部集成了高压大功率的BJT、PFM控制器以及多种保护回路;同时内部集成高压启动电阻,无需外置启动电阻和补偿电容,集成度高,外围应用极为简单。

CSC7102可以被简单的设计成为一种典型的反激式开关变换器,其特有的驱动技术可显著提高其转换效率。

主要特点

- 内部集成 850V 功率三极管
- 原边反馈恒流控制,无需光耦及 TL431
- 高精度的 CV/CC 控制
- 无需启动电阻和补偿电容
- 过温保护
- 输出电压保护(OVP/UVP)
- 待机功耗<100mW
- 自动重启设置

● 低启动电流

● 良好的 EMC 特性

引脚排列

典型应用

- 智能手机/平板电脑
- 数码相机和其它小型数码产品
- 充电器、电源适配器等
- 适用于全电压范围内 3.0W 及以下使用

引脚功能

序号	符号	功能描述	序号	符号	功能描述	
1	VCC	电源	5	HV	高压三极管集电极	
2	FB	反馈端	6	11 V	问/ / / / / / / / / / / / / / / / / / /	
3	NC	空				
4	CS	电流采样端	7	GND	地	

订货信息

打印标记	封装形式	线损补偿	包装
CSC7102B DXXXX	SOP7	3%	2500/Tape&Reel
CSC7102C DXXXX	SOP7	6%	2500/Tape&Reel

电路功能框图

图 1.电路功能框图

最大额定值

项目	符号	范围	单位
电源电压	VCC	-0.3~8.8	V
辅助绕组信号采样端	FB	-0.3~7.0	V
内部功率管的发射极	HV	-0.3~850	V
电流采样端	CS	-0.3~VCC+0.3	V
功耗	$P_{ m DMAX}$	0.8	W
PN 结到环境的热阻	$ heta_{ m JA}$	80	°C/W
工作结温范围	T_{J}	0~150	${\mathbb C}$
储存温度范围	T_{STG}	-55~150	${\mathbb C}$
ESD(人体模型)		2	KV

注意: (1) 如果器件运行条件超过上述各项最大额定值,可能对器件造成永久性损坏。上述参数仅是运行条件的极大值,我们不建议器件在该规范范围外运行。如果器件长时间工作在绝对最大极限条件下,其稳定性可能会受到影响。

(2) 无特殊说明,所有的电压以 GND 作为参考。

电气参数(无特别说明情况下, $T_A=25$ °C)

符号	参数	测试条件	最小	典型	最大	单位	
Vcc 电压部分							
$V_{\rm CC_ON}$	启动电压	_	7.6	8.3	8.8	V	
$V_{\text{CC_OFF}}$	关闭电压	_	3.0	4.0	4.5	V	
I_{STAR}	启动电流	静态电流	_	0.2	1.0	μΑ	
I_{CC}	工作电流	_	_	400	550	μΑ	
V_{CC_MAX}	最大工作电压	_	_	_	8.8	V	
电流检测部分							
I_{CS}	CS 引脚的最大电流	_	3.4	4.0	5.0	μΑ	
V_{CS}	电流检测阈值电压	_	_	_	510	mV	
$T_{ m LEB}$	前沿消隐	$I_C = 1 \text{mA}$	_	450	_	nS	
反馈输入部分							
$ m V_{REF_FB}$	FB 参考电压	_	2.92	2.96	3.00	V	
R_{FB}	FB 输入电阻	_	1.2	1.5	1.8	$M\Omega$	
$ m V_{FB_MAX}$	反馈阈值电压	_	_	_	5.0	V	
功率 BJT 部分							
$V_{\text{CE_SAT}}$	集电极-发射极饱和 电压	$I_C = 0.1A, I_B = 20 \text{mA}$	_	0.15	_	V	
V_{CBO}	集电极-基极电压	_	850	_	_	V	
I_{CE}	集电极直流电流	_	0.4	_	_	A	
过温保护							
T_{SHDN}	过温点温度	_	135	140	145	${\mathbb C}$	

典型应用线路图

封装外形及尺寸图

SOP7

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
c	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E1	3.700	4.100	0.150	0.157	
Е	5.800	6.200	0.228	0.224	
e	1.270(BSC)		0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	