Pannon Egyetem Mérnöki Kar

SEGÉDLET

Műszaki hőtan elméleti kérdések

Műszaki hőtan Műszaki áramlástan és hőtan II. Műszaki áramlás- és hőtan

Tartalomjegyzék

Al	lapadatok	2
	A tárgy adatai	2
	A segédlet célja	2
	Ajánlott szakirodalom	2
1.	Hőtani alapfogalmak	3
2.	A tökéletes (ideális) gáz és állapotváltozásai	4
3.	Valóságos gázok és gőzök, halmazállapot-változás	5
4.	Hőkörfolyamatok	6
	A túlhevítést alkalmazó Rankine–Clausius-körfolyamat	6
5.	Nem visszafordítható folyamatok	8
6.	Hűtőgépek, hűtőkörfolyamatok	9
7 .	Hőterjedés	10
8.	A hőcserélők felépítése	11
т	title	12

Alapadatok

A tárgy adatai

Név: Műszaki hőtan Kód: VEMKGEB242H

Kreditérték: 2 (1 elmélet, 1 gyakorlat)

Követelmény típus: vizsga

Szervezeti egység: Gépészmérnöki Intézet

Előadás látogatása: kötelező Gyakorlat látogatása: kötelező

Számonkérés: a félév végén zárthelyi, írásbeli és szóbeli vizsga

A segédlet célja

A segédlet célja.

A segédlet kidolgozása még folyamatban van.

Ajánlott szakirodalom

- Dr. Pleva László, Zsíros László: Műszaki hőtan, Pannon Egyetemi Kiadó (ebből kimarad: 59-62; 66-69; 100-104; 114-209; 237-245; 280-309 oldalak)
- M. A. Mihajev: A hőátadás számításának gyakorlati alapjai, Tankönyvkiadó, Budapest, 1990.

Hőtani alapfogalmak

A tökéletes (ideális) gáz és állapotváltozásai

Valóságos gázok és gőzök, halmazállapot-változás

Hőkörfolyamatok

A túlhevítést alkalmazó Rankine-Clausius-körfolyamat

Rajzolja le a túlhevítést alkalmazó Rankine–Clausius-körfolyamat kapcsolási vázlatát, a körfolyamatot T-s diagramban, elhanyagolva a tápszivattyú hatását! Jelölje be a munkát (w) és a kondenzátorban elvont hőt (q_K) ! Ha mindegyik nevezetes pontban ismertek az állapotjelzők, akkor hogyan számítható a bevitt hő (q_{BE}) , a munka (w), a kondenzátorban elvont hő (q_K) és a termikus hatásfok (η_T) ?

4.1. ábra. Rankine–Clausius-körfolymat ábrája víz-gőzT-s diagramban

$$(q_{1-4}=h_4-h_1; \quad q_K=h_5-h_1; \quad w_t=h_4-h_5; \quad \eta_T=\frac{w_t}{q_{BE}}=\frac{h_4-h_5}{h_4-h_1});$$

Az 1 - 2 szakasz adiabatikus hőközlés

A 2 - 3 szakasz izobár hőközlés

 $\mathbf{A} \ 3 - 4$ szakasz izobár hőközlés

A 4 - 5 adiabatikus expanzió

4.2. ábra. A túlhevítést alkalmazó körfolyamat ábrája

Az 5-1 szakasz izoterm hőelvonás

 $q_{1-4} = (q_{BE})$

 $\rm Az~1-4$ szakasz izobár, és állandó nyomás esetén az első főtétel adott alakja érvényes,
azaz az entalpiaváltozás megegyezik a hő megváltozásával állandó nyomáson.

 $q_K = (\text{elvont h\"o})$

Az 5 – 1 szakaszon végbemenő izoterm hőelvonás miatt az első főtétel adott alakja érvényes, ebből következik a számítási módja is.

 $w_t = (Munka)$

Állandó nyomáson ez megegyezik a munkára felhasználható belső energiával, illetve az állandó nyomáson bevitt hővel.

 $\eta_T = (\text{Termikus hatásfok})$

A hasznos munka (w)és a bevitt hőmennyiség (q_{BE}) hányadosa

Nem visszafordítható folyamatok

Hűtőgépek, hűtőkörfolyamatok

Hőterjedés

A hőcserélők felépítése

I. rész

title