```
Isospin
  P=1/2/12> [4)=1/2(-1/2) pn, deuton = 10,0>?
   (P) doublet I=1
       P touch Delastic processes
  P+P→ d+ 11 1
   B 1 1 2 0
   In the the D +1 OP1 = 1 17, Is>
   (=1) | first starte: 11,1>
initial
  strong intercction conserves Isospin.
        2 / Hz 11>
        <111 / HI / 11/>
   P+N \rightarrow d+T^{\circ}

Q \mid Q \mid D \qquad 1 \quad D \qquad Z \quad O

B \mid 1 \quad 1 \quad Z \quad O
   I3 +1/2 -1/2 0 0
inutial state
     ISSO PM & DA = Of 1 initel State.
  1Ptn>= 1(140) + 190>)
  fud stete: 53=0 d+T 10,0> x 11,0>
                    11,0>
   11) = 1/2 (11,0>+10,0>) #T 1P> = 12,0>.
```

Tu x 1Ma12 P(P+P-) d+TT+) Harnty = Tx My d NB JB & 14812 P(pm - d+100) $\frac{\sqrt{a}}{\sqrt{b}} = \frac{\# \text{PHP-I} d+\pi^{1}}{\# \text{PHN->} d+\pi^{0}} = \frac{|Ma|^{2}}{|Mb|^{2}} \frac{\rho(d\pi^{0})}{\rho(d\pi^{0})}$ Dung 2 Mev/1000 Mev. Dung N 5 Mev/135 Mev. => \frac{\rho(\pi^2d)}{\rho(\pi^2d)} \sim 1. prp-1 d+qf. Ma = <1(1) #1117 Ab = < 2,0|H + (11,0>+190>) pro -> dry Hstrong Conserves isospin. => 16 = 1210141110) + 121014100). is on i to 2 confreend by # IT'd # The Another experiment T++ (P/n) -> 7+P -> T++P 3/2 3/2 13/213/2> [NA) 1/12/1/2> NO THE M = < / H11>. Tt+P ~> N+ Tt Tt = CNTT) HS | PETT> I3 41 45 -15 41 41

$$\pi^{+} + \nu \longrightarrow \pi^{+} + \nu \qquad (d)$$

$$\pi^{+} + \nu \longrightarrow \pi^{-} + \rho \qquad (g)$$

$$\pi^{-} + \rho \longrightarrow \pi^{-} + \rho \qquad (c)$$

$$\pi^{-} + \rho \longrightarrow \pi^{-} + \nu \qquad (f)$$

$$\pi^{-} + \nu \longrightarrow \pi^{-} + \nu \qquad (f)$$

$$3 \qquad -1 \qquad -1/2$$

$$-3/2 \qquad = \qquad 1^{3}/2 \qquad 1^{-3}/2 \qquad (g)$$

tot I3 = -112.

Iz

Table 3.3. Clebsch-Gordan coefficients in pion-nucleon scattering

	. Cicoscii					
	Nucleon	$I=\frac{3}{2}$	$I = \frac{1}{2}$			
Pion		$I_3 = \frac{3}{2}$ $\frac{1}{2}$ $-\frac{1}{2}$	$-\frac{3}{2}$	1/2	$-\frac{1}{2}$	
π+	p	 4.1 * * * * * * * * * * * * * * * * * * *				
π^+	n	$\sqrt{\frac{1}{3}}$		$\sqrt{\frac{2}{3}}$		
π^0	p	$\sqrt{\frac{2}{3}}$		$-\sqrt{\frac{1}{3}}$		
π^0	n	$\sqrt{\frac{2}{3}}$			$\sqrt{\frac{1}{3}}$	
π^-	p	$\sqrt{\frac{1}{3}}$			$-\sqrt{\frac{2}{3}}$	
π^-	n		1			

As Conserves Irospin

(a)
$$\pi^{+}ep \rightarrow \pi^{+}ep$$
. $|\pi_{n}|^{2} = |\pi_{3}|^{2}$
 $|\pi_{n}|^{2} = |\pi_{3}|^{2}$
 $|\pi_{n}|^{2} = |\pi_{3}|^{2}$

(j) $|\pi_{n}|^{2} \rightarrow |\pi_{n}|^{2}$
 $|\pi_{n}|^{2} \rightarrow$

SCNT; letors

Scintillator S

Ern = En - un

Figure 5.35: Total cross section as a function of pion kinetic energy for the scattering of positive and negative pions from protons. (1 mb = 1 millibarn = 10^{-27} cm².)

	-	EM	Strong	(NedC.	
	P	V	V	×	
(\mathcal{I}			X	
	I				
(G		$\sqrt{}$		
pevit	4				

Grevity

$$C = -1\pi^{-}$$
 $C = -1\pi^{-}$
 $C = -1\pi^{-$

Rz: Rotation around Iz in isospin spece.

$$R_2 = e^{i \pi I_2}$$
 $R_2 | \pi^{+} \rangle = (-i)^{I - I_2} | \pi^{-} \rangle$

$$\mathbb{R}_{2} | I_{1}I_{3} \rangle = (-1)^{I-1} | I_{1}-I_{3} \rangle$$

$$\mathbb{R}_{2} | I_{1}I_{3} \rangle = (-1)^{I-1} | I_{1}-I_{3} \rangle$$

$$R_{2}|\pi\rangle = (-1)^{1-C-2}|\pi+\rangle = +1|\pi+\rangle$$

$$R_{2}|\pi^{\circ}\rangle = (-1)^{1}|\pi^{\circ}\rangle = (-1)^{1}|\pi$$

only conserved in straig interactions.

Strange particles & produced strongly but delay with long lifetime (weak interaction).

Gell Acu-Nishijne Formula lor Charge.

nucleus with 7 proton + A-7 newtron.

$$=$$
 $Z - \frac{A}{Z}$.

$$\exists \quad Z = I_3 + \frac{A}{2}.$$

$$0 = I_3 + \frac{B}{Z}$$

Gell Hour- Nishijina

$$tt: +1+\frac{0}{2}=+1$$

Chouse

Name	π^{\pm}	π^0	Κ±	K ⁰	η	р	n	Λ	Σ±,0	Δ
Mass (MeV)	140	135	494	498	548	938	940	1116	1190	1232
Charge	±1	0	±1	0	0	1	0	0	±1,0	2,±1,0
Parity	-	-	_	_	_	+	+	+	+	+
Baryon n.	0	0	0	0	0	1	1	1	1	1
Spin	0	0	0	0	0	1/2	1/2	1/2	1/2	3/2

Static Querk Model: classification of known hedrous based on Symmetry.

Irospiu, Sp.u1/2 particles SU(2) squaretry.

$$U = e^{i\alpha j T j}$$

Generalors: N2-1

SU(2): 3 generators SXISIISZ FILTZITZ

diagonal Sz

$$\mathcal{I}_{3}$$

Static queck model: => hadrons are multiplets of SU(3)

SU(3): 8 generators

2 diagonal ? Iz, Strongeness.

Fundamental repp. of SU(3)

S 0 -1

Mesous: 3 ⊗ 3 = 1 ⊕ 8 ux (ū,d, 3)

In the middle. uv, dd, SS

