NANYANG TECHNOLOGICAL UNIVERSITY School of Electrical & Electronic Engineering

EE/IM4152 Digital Communications

Tutorial No. 4 (Sem 1, AY2016-2017)

- 1. Figure 1 shows the spectrum P(f) of a basic pulse p(t), where $f_x = R_b/6$.
 - (a) Explain if P(f) satisfies the Nyquist criterion for zero ISI in the frequency domain.
 - (b) If the pulse does satisfy the Nyquist criterion, what is the roll-off factor?

Figure 1

2. The family of pulses satisfying the Nyquist first criterion has been given in the lecture notes (see Slide 102). When the excess bandwidth $f_x = R_b/2$, show that

$$P(f) = \frac{1}{2} \left(1 + \cos \frac{\pi f}{R_b} \right) \operatorname{rect} \left(\frac{f}{2R_b} \right)$$

where $rect(\cdot)$ is the rectangular waveform and R_b denotes the bit rate.

3. A half-width rectangular pulse

$$g(t) = \operatorname{rect}\left(\frac{t}{T_b/2}\right)$$

is transmitted over a band-limited channel, where T_b is the bit duration. The channel is modelled as a low-pass filter with transfer function

$$H(f) = \operatorname{rect}\left(\frac{f}{4R_b}\right), \qquad R_b = \frac{1}{T_b}.$$

The channel output y(t) can be computed numerically. Plot y(t) versus t and discuss the pulse spreading effect.

4. To achieve zero intersymbol interference (ISI), the desired pulse p(t) needs to satisfy

$$p(nT_b) = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

where n is an integer and T_b denotes the bit duration of the pulse. In the frequency domain, the corresponding requirement becomes

$$\sum_{n=-\infty}^{\infty} P(f - nR_b) = T_b$$

where $R_b = 1/T_b$ is the pulse rate. Now suppose the channel has a bandwidth of B Hz. For the following three cases:

- (i) $R_b > 2B$
- (ii) $R_b = 2B$
- (iii) $R_b < 2B$

discuss the possibilities of finding P(f) that achieves zero ISI.