Estudy Natural Sciences 2023 December

Chemistry Paper 1

WhatsApp Group: https://chat.whatsapp.com/JRSoC800jEc27rYy9mULUS

App Link: https://play.google.com/store/apps/details?id=com.estudiee.com

Question 1

Given the reaction

 $2H2(g)+O2(g)\rightarrow 2H2O(1)$:

If 6.0 moles of hydrogen gas react with 3.5 moles of oxygen gas, answer the following:

- (a) Determine the limiting reagent.
- (b) Calculate the theoretical yield of water in grams.
- (c) If the actual yield obtained from the experiment is 12.5 grams, determine the percentage yield.
- (d) How many moles of excess reagent are left after the reaction?
- (e) If the quantities of hydrogen gas and oxygen gas are doubled, what changes in terms of the limiting reagent, theoretical yield, and excess reagent?

Question:2

Suppose an unknown element X has three naturally occurring isotopes with masses and abundances as follows:

- X-10 with a mass of 10.012 amu and an abundance of 35.00%.
- X-11 with a mass of 11.009 amu and an abundance of 25.00%.
- X-12 with a mass of 12.014 amu.

Determine the percentage abundance of the X-12 isotope.

Question 3

An unknown organic compound is analyzed and found to contain carbon (C), hydrogen (H), nitrogen (N), and oxygen (O). The compound's elemental analysis reveals the following percentages by mass: carbon (55.0%), hydrogen (3.0%), nitrogen (15.0%), and oxygen (27.0%).

- 1) Determine the empirical formula of this compound.
- 2) Upon finding the empirical formula, the molar mass of the compound is experimentally determined to be 120 g/mol. If the empirical formula has a molar mass of 90 g/mol, calculate the molecular formula of the compound.

Question 4

Answer the following questions from (a) to (e) related to quantum numbers and electron configurations. [5 marks]

- (a) What is the maximum number of subshells/sublevels associated with the principal quantum number (n) equal to three (n = 3)?
- (b) What is the maximum number of electrons each orbital can accommodate?
- (c) What formula can be used to calculate the maximum number of electrons that each principal quantum number can accommodate?
- (d) How many magnetic quantum numbers (m_l) are associated with the angular (azimuthal) quantum number (l) equal to 1 (l = 1)?
- (e) What is the maximum number of allowed magnetic spin quantum number (m_s) values for electrons?

Question 5

Compare and contrast the shielding effects experienced by 3s and 3p electrons in a phosphorus atom, and explain how these differences impact the chemical behavior of phosphorus.

Question 6

Complete the following table

Hybridization	Sigma Bonds	Lone Pairs	Geometry	Bond Angle	
Sp³	4	0	Tetrahedral	109.5°	
Sp²	?	?	?	?	
Spd³	2	?	?	?	

Question 7

Given the electronegativity values of the following elements: O (3.5), N (3.0), Li (1.0), F (4.0), and S (2.5), determine whether the bonds in the following compounds are polar covalent, non-polar covalent, or ionic bonds:

- (a) LiF
- (b) H₂O
- (c) NF₃

Question 8

Calculate the amount of aluminum (Al) metal produced by passing a current of 3.0 A through molten Al₂O₃ for 4.5 hours. (Given: Faraday's constant = 96,485 C/mol)

SECTION B Study the diagram below and answer the questions that follow

- 1. List 3 unsafe activities show in in the illustration and explain why each is unsafe.
- 2. List 3 correct lab procedures depicted in the illustration
- 3. What should Bob do after the accident?
- **4.** What should Sue have done to avoid an accident?
- **5.** Compare Luke and Duke's lab techniques. Who is following the rules?
- 6. What are three things shown in the lab that should not be there?

Question B2

Consider an electron transition in a hydrogen-like atom from an orbit with n=4 to an orbit with n=2.

- (a)(i) Calculate the energy (in joules) released during this electron transition.
- (ii) Determine the wavelength (in meters) and frequency (in Hertz) of the emitted radiation.
- (b) Discuss two limitations or failures of the Bohr model in describing atomic structure and electron behavior.
- (c) Explain the differences between the Bohr model and the modern quantum mechanical model in how they depict the behavior and position of electrons in an atom.
- (d) Calculate the wavelength (to 3 significant figures) of an electron moving at a speed of 3.0×10^6 m/s within a hydrogen-like atom.

Question B3

- (a) Determine the oxidation numbers for all atoms in the following compounds:
- (i) Na₂S₂O₆
- (ii) HNO₃
- (iii) K2Cr2O7
- (b) Consider the reaction:

$$\mathrm{MnO_4^-} + \mathrm{H_2C_2O_4} \rightarrow \mathrm{Mn^{2+}} + \mathrm{CO_2}$$

If 0.85 mol of potassium permanganate ($KMnO_4$) and 25.0 g of oxalic acid ($H_2C_2O_4$) react,

- (i) Determine the limiting reagent.
- (ii) Calculate the mass of carbon dioxide (CO_2) produced.
- (c) Balance the following redox equation in basic medium:

$$\mathrm{Cr_2O_7^{2-}} + \mathrm{C_2H_5OH} \rightarrow \mathrm{Cr^{3+}} + \mathrm{CO_2}$$

Question B4

Consider the following cell reactions:

$$2 {
m MnO_4^-}(aq) + 3 Z n(s) + 8 H_2 O(l)
ightarrow 2 {
m MnO_2}(s) + 3 Z n(OH)_2(aq) + 4 H^+(aq)$$

- (a) Write two half-reactions and determine which one is the oxidation and which one is the reduction reaction.
- (b) Using a Pt electrode as the cathode and C as the anode, draw a galvanic cell, highlighting essential components such as the direction of electrons, charge, reactions on the cathode and anode, and a salt bridge using KNO₃ (indicating the direction of charges).
- (c) Write the cell notation for the constructed cell.
- (d) Determine the pH of the cell if the cell potential is 2.93 V, the concentration of MnO₄^- (aq) is 0.01 M, and Zn(OH)₃^- (aq) is 0.10 M. Given that $E_{{
 m MnO}_4^-/{
 m MnO}_2}^\circ=1.70$ V and $E_{{
 m Zn/Zn}^{2+}}^\circ=-0.76$ V.

1	jî.				Pe	riod	ic Ta	ble o	of th	e Ele	emer	nts					18
H Hydrogen 1.008	2											13	14	15	16	17	He Helium 4.003
Li Lithium 6.941	Be Beryllum 9.012											5 B Boron 10.811	C Carbon 12.011	7 N Nitrogen 14.007	8 O Oxygen 15.999	F Fluorine 18.998	Ne Neon 20.190
Na Sodium 22,990	Mg Magnesium 24.305	3	4	5	6	7	8	9	10	11	12	Al Aluminum 26.982	Si Silcon 28.086	P Phosphorus 30.974	16 S Sulfur 32.066	CI Chlorine 35.453	Ar Argon 39,948
K Potassium 39.098	Ca Calctum 40.078	Sc Scandium 44.956	Ti Titanium 47.88	V Vanadum 50.942	Cr Chromium 51.996	Mn Manganese 54,938	26 Fe Iron 55,933	27 Co Cobalt 58,933	Ni Nickel 58.693	Cu Copper 63.546	30 Zn Zinc 65.39	Ga Gallum 69,732	Ge Germanium 72.61	As Arsenic 74,922	Se Selentum 78.09	Br Bromine 79,904	36 Kr Krypton 84.80
Rb Rubidium 84.468	38 Sr Strondum 87.62	39 Y Yttrium 88,906	Zr Zr Zirconium 91.224	AI Nb Niobium 92,906	Mo Molibderum 95,94	Tc Tc Technetium 98.907	Ru Ru Ruthenlum	Rh Rhodum 102,906	46 Pd Palladium 106.42	47 Ag Silvar 107.868	48 Cd Cadmium 112,411	49 In Indium	50 Sn Tin 118.71	51 Sb Antimony 121.760	Te Tellurium	53 lodine 126,904	54 Xe Xenon 131.29
55 Cs Cestum 132,905	56 Ba Barlum 137.327	57-71 Lanthanides	72 Hf Hafnlum 178.49	73 Ta Tantalum 180.948	74 W Tungsten 183.85	75 Re Rhentum 186.207	76 Os Osmlum 190.23	77 ir Iridum 192.22	78 Pt Platinum 195.08	79 Au Gold 196.967	Hg Mercury 200.59	TI Thallum 204,383	82 Pb Lead 207.2	Bi Bismuth 208.980	Po Polonium [208.982]	At Astatine 209.987	86 Rn Radon 222.018
Fr Francium 223.020	88 Ra Radium 226.025	89-103 Actinides	Rf Retherbritan [261]	Db Dubrium [262]	Sg Seaborglum [266]	Bh Bohrium [264]	HS Hassium [269]	Mt Mt Meltnerium [268]	Ds Ds Darmitadium [269]	Rg Roentgerium [272]	Cn Copernicium [277]	Uut Ununtrium unknown	FI Flerovium [289]	Uup Ununpendum unknown	LV Lv Livermorium [298]	Uus Ununseptum unknown	Uuo Ununoctium unknown

La Lanthavum 138.906	Ce Certum 140.115	Pr		Pm Promethlum 144.913		Gd Gadolinium 157.25	Tb	Dy Dysprosium 162.50	Ho Holmium 164.930	Er Erbium 167.26	69 Tm Thultum 168,934	70 Yb Ytterblum 173.04	71 Lu Lutetlum 174.967
Ac Actinium 227,028	90 Th Thorlum 232,038	Pa Protactinium 231,036	92 U Uranium 238.029	93 Np Neptunium 237,048	95 Am Americium 243.061	96 Cm Curium 247,070		98 Cf Californium 251,080	99 Es Einsteinlum [254]		Md Md Mendelevium 258.1		Lr Lr Lawrencium [262]

©2014 Todd Helmandina sciencenotes.org