MS-E2122 - Nonlinear Optimization Lecture 9

Fabricio Oliveira

Systems Analysis Laboratory
Department of Mathematics and Systems Analysis

Aalto University School of Science

October 13, 2021

Outline of this lecture

Constrained methods: Penalty methods

Penalty functions

Exterior penalty function methods

Augmented Lagrangian method of multipliers

Alternating direction method of multipliers

Fabricio Oliveira 1/2

Penalty functions

We want to penalise constraint violations, turning the problem unconstrained.

Let $P=\min$. $\{f(x):g(x)\leq 0, h(x)=0, x\in X\}$. Then a penalised version of P is:

$$P_{\mu}=\min \ \left\{ f(x)+\mu \alpha(x):x\in X\right\} ,$$

where $\mu > 0$ is a penalty term and $\alpha(x) : \mathbb{R}^n \to \mathbb{R}$ is a penalty function of the form

$$\alpha(x) = \sum_{i=1}^{m} \phi(g_i(x)) + \sum_{i=1}^{l} \psi(h_i(x))$$

and ϕ and ψ are continuous and satisfy:

$$\begin{split} \phi(y) &= 0 \text{ if } y \leq 0 \text{ and } \phi(y) > 0 \text{ if } y > 0 \\ \psi(y) &= 0 \text{ if } y = 0 \text{ and } \psi(y) > 0 \text{ if } y \neq 0. \end{split}$$

Suitable penalty functions

Typical options are $\phi(y) = ([y]^+)^p$ with $p \in \mathbb{Z}_+$ and $\psi(y) = |y|^p$.

Example: $(P): \min. \{x_1^2+x_2^2: x_1+x_2=1, x\in \mathbb{R}^2\}.$ Notice that the optimal solution is (1/2,1/2) with objective 1/2.

Given a large enough $\mu > 0$, the (penalised) auxiliary problem is:

$$(P_{\mu})$$
: min. $\{f_{\mu}(x) = x_1^2 + x_2^2 + \mu(x_1 + x_2 - 1)^2 : x \in \mathbb{R}^2\}$

Since f_{μ} is convex and differentiable, necessary and sufficient optimality conditions $\nabla f_{\mu}(x)=0$ imply:

$$x_1 + 2\mu(x_1 + x_2 - 1) = 0$$

$$x_2 + 2\mu(x_1 + x_2 - 1) = 0,$$

which gives $x_1 = x_2 = \frac{\mu}{2\mu + 1}$.

Suitable penalty functions

$$(P): \min. \left\{ x_1^2 + x_2^2 : x_1 + x_2 = 1, x \in \mathbb{R}^2 \right\}$$

Suitable penalty functions

Solving (P_{μ}) : min. $\left\{x_1^2+x_2^2+\mu(x_1+x_2-1)^2:x\in\mathbb{R}^2\right\}$ with $\mu=0.5,1,$ and 5 (from left to right).

The line represents the original constraint $x_1 + x_2 = 1$ and the orange dot is the optimal (1/2, 1/2) to P.

As μ increases, the optimal of P_{μ} converges to the optimal of P.

Geometric interpretation

Let $G:\mathbb{R}^2 \to \mathbb{R}^2$ be a mapping $\left\{[h(x),f(x)]:x\in\mathbb{R}^2\right\}$, and let $v(\epsilon)=\min$. $\left\{x_1^2+x_2^2:x_1+x_2-1=\epsilon,\ x\in\mathbb{R}^2\right\}$. The optimal solution is $x_1=x_2=\frac{1+\epsilon}{2}$ with $v(\epsilon)=\frac{(1+\epsilon)^2}{2}$.

Geometric representation of penalised problems in the mapping $G = \left[h(x), f(x)\right]$

Minimising $f(x) + \mu(h(x)^2)$ consists of moving the curve downwards until a single contact point ϵ_{μ} remains.

As $\mu \to \infty$, $f + \mu h$ becomes "sharper" $(\mu_2 > \mu_1)$, and ϵ_μ converges to the optimum $\epsilon_{\overline{\mu}}$.

Geometric interpretation

The shape of the penalised problem curve is due to the following:

$$\begin{aligned} & \underset{x}{\text{min.}} \ \left\{ f(x) + \mu \sum_{i=1}^{l} (h_i(x))^2 \right\} \\ &= \underset{x,\epsilon}{\text{min.}} \ \left\{ f(x) + \mu ||\epsilon||^2 : h_i(x) = \epsilon, i = 1, \dots, l \right\} \\ &= \underset{\epsilon}{\text{min.}} \ \left\{ \mu ||\epsilon||^2 + \underset{x}{\text{min.}} \ \left\{ f(x) : h_i(x) = \epsilon, i = 1, \dots, l \right\} \right\} \\ &= \underset{\epsilon}{\text{min.}} \ \left\{ \mu ||\epsilon||^2 + v(\epsilon) \right\}. \end{aligned}$$

Consider l=1, and let $x_{\mu}=\arg\min_{\epsilon}\left\{\mu||\epsilon||^2+v(\epsilon)\right\}$ with $h(x_{\mu})=\epsilon_{\mu}.$

1.
$$f(x_{\mu}) + \mu(h(x_{\mu}))^2 = \mu \epsilon_{\mu}^2 + v(\epsilon_{\mu}) \Rightarrow f(x_{\mu}) = v(\epsilon_{\mu})$$

2.
$$v'(\epsilon_{\mu}) = \frac{\partial}{\partial \epsilon} (f(x_{\mu}) + \mu(h(x_{\mu}))^2 - \mu \epsilon_{\mu}^2) = -2\mu \epsilon_{\mu}$$

Therefore, $(h(x_{\mu}), f(x_{\mu})) = (\epsilon_{\mu}, v(\epsilon_{\mu}))$. Letting $f(x_{\mu}) + \mu h(x_{\mu})^2 = k_{\mu}$, we see the parabolic function $f = k_{\mu} - \mu \epsilon^2$ matching $v(\epsilon_{\mu})$ for $\epsilon = \epsilon_{\mu}$.

Penalty-based methods

Consider the problem:

(P): min.
$$\{f(x): g_i(x) \leq 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, l, x \in X\}.$$

We seek to solve P by solving $\sup_{\mu} \{\theta(\mu)\}$ for $\mu > 0$, where

$$\theta(\mu) = \inf \left\{ f(x) + \mu \alpha(x) : x \in X \right\}$$

and $\alpha(x)$ is a penalty function. We need a result guaranteeing that

$$\inf\left\{f(x):g(x)\leq 0, h(x)=0, x\in X\right\}=\sup_{\mu\geq 0}\theta(\mu)=\lim_{\mu\to\infty}\theta(\mu).$$

Remark: in practice, we will calculate $\theta(\mu_k)$ repeatedly increasing μ_k to approximate $\mu \to \infty$.

Penalty-based methods

Theorem 1 (Convergence of penalty-based methods)

Consider the (primal) problem

(P):
$$\min_{i} \{f(x): g_i(x) \leq 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, l, x \in X\},$$

with continuous f, g_i for $i=1,\ldots,m$, and h_i for $i=1,\ldots,l$, and $X\subset\mathbb{R}^n$ a compact set. Suppose that, for each μ , there exists $x_\mu=\arg\min\left\{f(x)+\mu\alpha(x):x\in X\right\}$, where α is a suitable penalty function and $\{x_\mu\}$ is contained within X. Then

$$\inf\left\{f(x):g(x)\leq 0, h(x)=0, x\in X\right\}=\sup_{\mu\geq 0}\left\{\theta(\mu)\right\}=\lim_{\mu\to\infty}\theta(\mu),$$

where $\theta(\mu) = \inf \{ f(x) + \mu \alpha(x) : x \in X \} = f(x_{\mu}) + \mu \alpha(x_{\mu})$. Also, the limit of any convergent subsequence of $\{x_{\mu}\}$ is optimal to the original problem and $\mu \alpha(x_{\mu}) \to 0$ as $\mu \to \infty$.

Penalty-based methods

One important corollary from Theorem 1 is the following.

Corollary 2

If $\alpha(x_{\mu}) = 0$ for some μ , then x_{μ} is optimal for P.

Proof.

If $\alpha(x_{\mu})=0$, then x_{μ} is feasible. Moreover, x_{μ} is optimal, since

$$\theta(\mu) = f(x_{\mu}) + \mu \alpha(x_{\mu})$$

= $f(x_{\mu}) \le \inf \{ f(x) : g(x) \le 0, h(x) = 0, x \in X \}$.

Remarks:

- ▶ Notice that *X* needs to be compact (e.g. bounded variables), or optimal primal and penalty function values may not match.
- Making μ arbitrarily large, x_{μ} can be made arbitrarily close to the feasible region and $f(x_{\mu}) + \mu \alpha(x_{\mu})$ can be made arbitrary close to the optimal value.

Computational issues with penalty methods

One might wonder why not start with a very large μ to reduce the number of iterations. The answer for this is ill-conditioning.

Some of the eigenvalues of the Hessians of penalty functions are proportional to the penalty terms, thus affecting conditioning.

Recall that conditioning is measured by $\kappa = \frac{\max_{i=1,\dots,n} \lambda_i}{\min_{i=1,\dots,n} \lambda_i}$, where $\{\lambda_i\}_{i=1,\dots,n}$ are the eigenvalues of the Hessian.

Example:
$$f_{\mu}(x) = x_1^2 + x_2^2 + \mu(x_1 + x_2 - 1)^2$$
.

The Hessian of $f_{\mu}(x)$ at x is

$$\nabla^2 f_{\mu}(x) = \begin{bmatrix} 2(1+\mu) & 2\mu \\ 2\mu & 2(1+\mu) \end{bmatrix}.$$

Solving $\det(\nabla^2 f_{\mu}(x) - \lambda I) = 0$, we get $\lambda_1 = 2$, $\lambda_2 = 2(1 + 2\mu)$, with eigenvectors (1, -1) and (1, 1), which gives $\kappa = (1 + 2\mu)$.

Augmented Lagrangian methods

We will develop a penalty method that works with finite penalties by shifting the curve implied by the penalty term.

For simplicity, consider the (primal) problem P as

$$(P)$$
: min. $\{f(x): h_i(x)=0, i=1,\ldots,l\}$.

The shifted penalty defines an augmented Lagrangian of P:

$$f_{\mu}(x) = f(x) + \mu \sum_{i=1}^{l} (h_i(x) - \theta_i)^2$$

$$= f(x) + \mu \sum_{i=1}^{l} h_i(x)^2 - \sum_{i=1}^{l} 2\mu \theta_i h_i(x) + \mu \sum_{i=1}^{l} \theta_i^2$$

$$= f(x) + \sum_{i=1}^{l} v_i h_i(x) + \mu \sum_{i=1}^{l} h_i(x)^2,$$

with $v_i = -2\mu\theta_i$. The last term is a constant and can be dropped.

Augmented Lagrangian methods

The name refers to the fact that

$$f_{\mu}(x) = f(x) + \sum_{i=1}^{l} v_i h_i(x) + \mu \sum_{i=1}^{l} h_i(x)^2$$

is equivalent to the Lagrangian function of problem P, augmented with the penalty term.

Moreover, assuming that $(\overline{x}, \overline{v})$ is a KKT solution to P, we have

$$\nabla_x f_{\mu}(x) = \nabla f(x) + \sum_{i=1}^{l} \overline{v}_i \nabla h_i(x) + 2\mu \sum_{i=1}^{l} h_i(x) \nabla h_i(x) = 0,$$

which implies that the optimal solution \overline{x} can be recovered using a finite penalty, unlike with the previous penalty-based methods.

Augmented Lagrangian - geometric interpretation

Let $v(\epsilon)=$ min. $\{f(x):h(x)=\epsilon\}$ be the perturbation function. We will minimise $f(x)+\overline{v}h(x)+\mu h(x)^2$ for a given $\mu>0$.

Geometric representation of augmented Lagrangians in the mapping G = [h(x), f(x)]

The minimum is attained for $f+\overline{v}h+\mu h^2=k$, or equivalently $f=-\mu\left[h+(\overline{v}/2\mu)\right]^2+\left[k+(\overline{v}^2/4\mu)\right]$, with k touching $v(\epsilon)$. Notice that f is a parabola shifted by $h=-\overline{v}/2\mu$.

(Augmented Lagrangian) method of multipliers (MM)

Define the augmented Lagrangian function

$$L_{\mu}(x,v) = f(x) + \sum_{i=1}^{l} v_i h_i(x) + \mu \sum_{i=1}^{l} h_i(x)^2$$

The strategy is to search for KKT points (or primal-dual pairs) $(\overline{x}, \overline{v})$ by iteratively operating in both primal (x) and dual (v) spaces.

- 1. Primal space: optimise $L_{\mu}(x,v^k)$ using an unconstrained optimisation method
- 2. **Dual space:** perform a dual variable update step retaining $\nabla_x L_\mu(x^{k+1},v^k) = \nabla_x L_\mu(x^{k+1},v^{k+1}) = 0$

(Augmented Lagrangian) method of multipliers (MM)

The dual variable update step is $\overline{v}^{k+1}=\overline{v}^k+2\mu h(\overline{x}^{k+1})$, which is justified as follows:

- 1. $h(\overline{x}^k)$ is a subgradient of $L_{\mu}(x,v)$ at \overline{x}^k for any v.
- 2. The step size is devised such that the optimality condition of the Lagrangian is retained, i.e., $\nabla_x L(\overline{x}^k, \overline{v}^{k+1}) = 0$.

Part 2. refers to the following:

$$\nabla_x L(\overline{x}^k, \overline{v}^{k+1}) = \nabla f(\overline{x}^k) + \sum_{i=1}^l \overline{v}_i^{k+1} \nabla h_i(\overline{x}^k) = 0$$

$$= \nabla f(\overline{x}^k) + \sum_{i=1}^l (\overline{v}_i^k + 2\mu h_i(\overline{x}^k)) \nabla h_i(\overline{x}^k) = 0$$

$$= \nabla f(\overline{x}^k) + \sum_{i=1}^l \overline{v}_i^k \nabla h_i(\overline{x}^k) + \sum_{i=1}^l 2\mu h_i(\overline{x}^k) \nabla h_i(\overline{x}^k) = 0.$$

(Augmented Lagrangian) method of multipliers (ALMM)

Algorithm (Augmented Lagrangian) method of multipliers

```
1: initialise. tolerance \epsilon>0, initial dual solution v^0, iteration count k=0
2: while |h(\overline{x}^k)|>\epsilon do
3: \overline{x}^{k+1}=\arg\min L_\mu(x,\overline{v}^k)
4: \overline{v}^{k+1}=\overline{v}^k+2\mu h(\overline{x}^{k+1})
5: k=k+1
6: end while
7: return x^k.
```

Remarks:

- \blacktriangleright μ can be individualised for each constraint: $\sum_{i=1}^{l} \mu_i h_i(x)^2$.
- ▶ Increasing μ_i for most violated constraints $\max_{i=1,...,l} h_i(x)$ is often used. Provides convergence guarantees as $\mu \to \infty$.
- ▶ Due to the gradient-like step in the dual space, we can expect linear convergence from the ALMM.

Alternating direction method of multipliers - ADMM

ADMM is a distributed version of the method of multipliers.

Best suited for large problems with decomposable structure, so computations can be performed in a distributed manner.

Consider a problem P of the form:

$$(P)$$
: min. $f(x) + g(y)$
subject to: $Ax + By = c$

Problems of this form appear in several important applications in stochastic programming and regularisation for example.

We aim to solve problems of this form in a distributed manner in terms of \boldsymbol{x} and \boldsymbol{y} .

Alternating direction method of multipliers - ADMM

We start by formulating the augmented Lagrangian function

$$\phi(x, y, v) = f(x) + g(y) + v^{\top}(c - Ax - By) + \mu(c - Ax - By)^{2}$$

The penalty term $\mu(c-Ax-By)^2$ prevents separation, which is recovered by optimising x and y in a coordinate descent fashion.

Algorithm ADMM

```
1: initialise. tolerance \epsilon>0, initial dual and primal solutions v^0 and y^0,\,k=0 2: while |c-A\overline{x}^k-B\overline{y}^k| and ||y^{k+1}-y^k||>\epsilon do 3: \overline{x}^{k+1}=\arg\min\phi_\mu(x,\overline{y}^k,\overline{v}^k) 4: \overline{y}^{k+1}=\arg\min\phi_\mu(\overline{x}^{k+1},y,\overline{v}^k) 5: \overline{v}^{k+1}=\overline{v}^k+2\mu(c-A\overline{x}^{k+1}-B\overline{y}^{k+1})
```

6: k = k + 1

7: end while 8: return (x^k, y^k) .

Remark: the stopping criteria in Line 2 consider primal and dual (indirectly) residuals that can take different values.

Alternating direction method of multipliers - ADMM

Remarks

- 1. Optimising with respect to (x, y) requires additional steps in Lines 3 and 4. However, this is not needed for convergence.
- 2. Variants consider more than one (x,y) step. No clear benefit has been observed in practice.
- 3. For ADMM, no generally good update rule for μ is known.
- Convergence of ADMM is worse compared to the method of multipliers. The benefit of ADMM comes from the ability to separate x and y.
- 5. Notice that, if we can further separate x (or y), Lines 3 (or 4) can be calculated in a distributed fashion.