Question 1:

Part A:

Let $x \in \mathbb{R}$, prove that x > 0 implies -x < 0, and vice versa if x < 0 then -x > 0.

P/ Let
$$x \in \mathbb{R}$$
, and $x > 0$. By (A_4) , $x + (-x) = 0$
Let $a = x$, $b = 0$, and $c = -x$. By (O_3) , if $a > b$, then $a + c > b + c$ (*)
Substituting values for a, b, and c gives

$$x + (-x) > 0 + (-x)$$

$$\Rightarrow -x < 0$$

$$\therefore$$
 if $x > 0$, $-x < 0$

If x < 0, let a = 0, b = x and c = -x in (*). This satisfies a > b.

Substituting in values for a, b, and c gives

$$0 + (-x) > x + (-x)$$

$$\Rightarrow -x > 0$$

$$\therefore$$
 if $x < 0, -x > 0$

Part B:

Let $x \in \mathbb{R}$. Then, $x^2 \ge 0$.

P/ 3 Possible cases: x > 0, x = 0, or x < 0.

Case 1: x > 0

$$x \cdot x > 0 \tag{O_4}$$
$$x^2 > 0$$

: if
$$x > 0$$
, $x^2 > 0$

Case 2: x = 0

By (M₂),
$$x \cdot x = x \cdot x$$

$$\Rightarrow x^2 = 0 \cdot 0$$

$$x^2 = 0$$

$$\therefore \text{ if } x = 0, \ x^2 = 0.$$

Case 3: x < 0

Claim: if
$$x<0$$
 and $y< z \ \forall y,z\in \mathbb{R}$, then $xy>xz$. P/ if $x<0$, $-x>0$ by proof in Part A. By (A₄) and (O₃), $0=y+(-y)< z-y$
$$\Rightarrow -x\cdot(z-y)>0$$
 (O₄)

$$\begin{array}{c} xy-xz>0 \\ xy>xz \\ \therefore \text{ if } x<0 \text{ and } yxz \\ \text{Let } y=x \text{ and } z=0 \text{ in (\$)} \\ \text{Since } y=x<0\text{, this satisfies } yx\cdot 0 \\ x^2>0 \\ \therefore \text{ if } x<0\text{, } x^2>0 \\ \end{array}$$

Thus, it has been shown that if $x\in\mathbb{R}$, then $x^2\geq 0$

QED

Question 2:

Part A:

$$S = \left\{ \frac{n-1}{n+1} | n \in \{1, 2, 3, 4, \ldots\} \right\};$$

 $\underline{\text{Claim:}}\,\,S\text{ is bounded above, with }\,sup(S)=1$

P/ Firstly, a set is bounded above if $\exists b \in \mathbb{R}$ such that $a \leq b \quad \forall a \in A$ Set S can be seen to be strictly monotone increasing, as each term is larger than the last. As n gets larger, the term for S_n approaches 1.

Therefore, take b=1, which satisfies $b\in\mathbb{R}$. Since n+1 is always larger than n-1, S_n will always be smaller than 1, as a large denominator dividing a small numerator is always less than 1. Thus, b=1 satisfies $a\leq 1 \ \forall a\in S$, and 1 is an upper bound.

Now, a number s is the supremum of a set A, if for any $\epsilon>0$, $s-\epsilon< a$, where $a\in A$. As was established, S is monotone increasing, and approaches, but does not reach, 1 as n increases. Thus, for $a\in S$, a<1. That means that $s-\epsilon< a<1$. Since ϵ was defined as being greater than 0, and s was claimed to equal 1, the statement $s-\epsilon<1$ holds, and s=sup(S)=1.

Claim: S is bounded below, with inf(S) = 0

P/ Firstly, a set is bounded below if $\exists b \in \mathbb{R}$ such that $b \leq a \ \forall a \in A$.

 S_1 is the smallest term in the set, as it is the first term and it was determined that S is strictly monotone increasing. It was calculated that $S_1=0$, and we can take $b=0 \le a=0$ for $a \in S$. Thus, 0 is a lower bound for S.

A number w is the infimum of a set A if $\forall \epsilon > 0$, $w + \epsilon > a$, where $a \in A$. Take w = 0 and $a = 0 = S_1 \in S$. Thus, $0 + \epsilon > 0$, and $\epsilon > 0$ which is true by definition of ϵ . Therefore, w = inf(S) = 0.

Therefore, it has been shown that S is bounded above and below, with sup(S)=1 and inf(S)=0

Part B:

$$T = \bigcup_{n=1}^{\infty} [n^2, n^2 + 1]$$

 $\underline{\text{Claim:}}\ T \ \text{is bounded below, with}\ inf(T) = 1$

P/ It is clear that T is strictly monotone increasing, so T_1 will be the smallest term in the set. From the definition in the previous part, we can take $b=T_1=1\leq a=1$ for $a\in T$. Therefore, T is bounded below, with 1 as a possible lower bound.

From the epsilon definition of infimum in Part A, we can take w=1, and $a=1=T_1\in T$. For any $\epsilon>0$, we have $w+\epsilon>a$. Substituting in values gives, $1+\epsilon>1$, which is true by definition of ϵ . So, w=inf(T)=1. QED

 $\underline{\text{Claim:}}\ T \ \text{is not bounded above, and so}\ T \ \text{has no supremum.}$

P/ Will prove with a contradiction.

Suppose T is bounded above by some least upper bound $b \in \mathbb{R}$. That is, $\forall a \in T, a \leq b$. Suppose $a = T_n = n^2 + 1 \leq b$. Thus, $n^2 \leq b - 1$, and b - 1 is an upper bound for T. However, b was defined as being the least upper bound for T, which would mean that $b \leq b - 1$, so a contradiction is found and T has no least upper bound (and consequently no upper bound). QED

Therefore, it has been shown that T is bounded only below, with inf(T)=1.

Question 3:

Using the $\epsilon-N$ definition of a limit, prove that

$$\lim_{n \to \infty} \frac{\sin n}{n} = 0$$

P/ Let $\epsilon > 0$. It can be seen that

$$0 \le \left| \frac{\sin n}{n} \right| \le \left| \frac{1}{n} \right|$$

By the Archimedean Property, $\exists N \in \mathbb{N}$ such that $N \cdot \epsilon > 1$. So, $\epsilon > \frac{1}{N} \geq \frac{1}{n} \ \forall n \geq N$ Relating the above equations shows that $\epsilon > \left|\frac{1}{n}\right| \geq \left|\frac{\sin n}{n}\right| = \left|\frac{\sin n}{n} - 0\right|$ (since $\left|\frac{1}{n}\right| = \frac{1}{n}$ as n is always positive). i.e. $\left|\frac{\sin n}{n} - 0\right| < \epsilon$, which is of the form of the definition of a limit. Thus, it has been shown that L = 0, and

$$\lim_{n \to \infty} \frac{\sin n}{n} = 0$$
 QED

Question 4:

Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be two sequences such that $\{y_n\}_{n=1}^{\infty}$ converges to 0. Suppose that for all positive integers k and m with $m \geq k$, we have

$$|x_m - x_k| \le y_k$$

Prove that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

Since $\{y_n\}_{n=1}^{\infty}$ is convergent to 0, we have that $\exists N \in \mathbb{N}$ such that $|y_k - 0| < \epsilon$ for any $\epsilon > 0$, or $|y_k| < \epsilon \ \forall k > N$. It is also clear that $y_k \leq |y_k|$, so we have that $|x_m - x_k| \leq y_k \leq |y_k| < \epsilon \ \forall m \geq k > N$, or more simply, $|x_m - x_k| < \epsilon$. This final equation is in the form of the definition of a Cauchy sequence, and thus it has been shown that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy Sequence. QED