Patent Claims

1. 2-Halofuryl/thienyl-3-carboxamides of the formula (I)

5 in which

R

A represents O (oxygen) or S (sulphur),

Hal represents halogen,

represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms;

 $\begin{array}{lll} (C_1\text{-}C_8\text{-alkyl})\text{carbonyl}, & (C_1\text{-}C_8\text{-alkoxy})\text{carbonyl}, & (C_1\text{-}C_4\text{-alkoxy-}C_1\text{-}C_4\text{-alkoxy-}C_1\text{-}C_4\text{-alkyl})\text{carbonyl}, & (C_3\text{-}C_8\text{-cycloalkyl})\text{carbonyl}; & (C_1\text{-}C_6\text{-haloalkyl})\text{carbonyl}, & (C_3\text{-}C_6\text{-haloalkoxy})\text{carbonyl}, & (C_3\text{-}C_8\text{-halocycloalkyl})\text{carbonyl} & (C_$

R¹ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine-and/or bromine atoms,

 R^2 and R^3 independently of one another each represent hydrogen, C_1 - C_8 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_8 -haloalkyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine-and/or bromine atoms,

R² and R³ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain one or two further non-adjacent heteroatoms from the group consisting of oxygen, sulphur and NR⁶,

10

15

20

25

5

15

20

25

30

- R⁴ and R⁵ independently of one another represent hydrogen, C₁-C₈-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,
- R⁴ and R⁵ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulphur and NR⁶,
- R⁶ represents hydrogen or C₁-C₆-alkyl,
- 10 M represents a phenyl, thiophene, pyridine, pyrimidine, pyridazine or pyrazine ring, each of which is monosubstituted by R⁷, or represents a thiazole ring substituted by R^{7-A}.
 - R⁷ represents hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,
 - R^{7-A} represents hydrogen, methyl, methylthio or trifluoromethyl,
 - Z represents Z^1 , Z^2 , Z^3 or Z^4 , in which
 - Z¹ represents phenyl which is optionally mono- to pentasubstituted by identical or different substituents,
 - z² represents bicycloalkyl or cycloalkyl which is optionally mono- or polysubstituted by identical or different substituents,
 - represents unsubstituted C₂-C₂₀-alkyl or represents C₁-C₂₀-alkyl which is mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety for its part may optionally be mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl,
 - represents C₂-C₂₀-alkenyl or C₂-C₂₀-alkynyl, each of which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halo-dialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety for its part may optionally be mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl,
 - R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl or C₁-C₆-haloalkyl,

R¹⁰ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkynyl, C₃-C₆-cycloalkyl, or represents in each case optionally substituted phenyl or phenylalkyl,

5 or

M and Z together represent 1H-2,3-dihydroinden-4-yl, 1,3-dihydro-2-benzofuran-4-yl or 1,3-dihydro-2-benzothien-4-yl, each of which is optionally mono- to trisubstituted by methyl.

- 2. 2-Halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1 in which A represents O (oxygen) or S (sulphur),
 - Hal represents fluorine, chlorine, bromine or iodine,
 - represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine-and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, bromine atoms;

(C₁-C₆-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, (C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-cycloalkyl)carbonyl; (C₁-C₄-haloalkyl)carbonyl, (C₁-C₄-haloalkoxy)carbonyl, (halo-C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms, or $-C(=0)C(=0)R^1$, $-CONR^2R^3$ or $-CH_2NR^4R^5$,

R¹ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R² and R³ independently of one another each represent hydrogen, C₁-C₆-alkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

 R^2 and R^3 furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms which is optionally monoto tetrasubstituted by identical or different substituents from the group consisting of halogen and C_1 - C_4 -alkyl, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulphur and NR^6 ,

20

15

25

30

5

15

20

R⁴ and R⁵ independently of one another represent hydrogen, C₁-C₆-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R⁴ and R⁵ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulphur and NR⁶,

R⁶ represents hydrogen or C₁-C₄-alkyl,

10 M represents one of the cycles below,

$$R^{7}$$
 R^{7}
 R^{7

where the bond marked "*" is attached to the amide and the bond marked "#" is attached to the radical Z,

R⁷ represents hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,

R^{7-A} represents hydrogen, methyl or trifluoromethyl,

Z represents Z^1 , Z^2 , Z^3 or Z^4 , where

Z¹ represents phenyl which is optionally mono- to pentasubstituted by identical or different substituents, the substituents in each case being selected from the list W¹,

W¹ represents halogen, cyano, nitro, amino, hydroxyl, formyl, carboxy, carbamoyl, thiocarbamoyl; in each case straight-chain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulphinyl or alkylsulphonyl having in each case 1 to 8 carbon atoms;

in each case straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms;

in each case straight-chain or branched haloalkyl, haloalkoxy, haloalkylthio, haloalkylsulphinyl or haloalkylsulphonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms;

in each case straight-chain or branched haloalkenyl or haloalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms;

in each case straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the respective hydrocarbon chains, alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon atoms in the respective hydrocarbon chains;

cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms;

doubly attached alkylene having 3 or 4 carbon atoms, oxyalkylene having 2 or 3 carbon atoms or dioxyalkylene having 1 or 2 carbon atoms, each of which is optionally mono- to tetrasubstituted by identical or different substituents from the group consisting of fluorine, chlorine, oxo, methyl, trifluoromethyl and ethyl; or the grouping $-C(Q^1)=N-Q^2$ in which

Q¹ represents hydrogen, hydroxyl or alkyl having 1 to 4 carbon atoms, haloalkyl having 1 to 4 carbon atoms and 1 to 9 fluorine, chlorine and/or bromine atoms or cycloalkyl having 1 to 6 carbon atoms and

Q² represents hydroxyl, amino, methylamino, phenyl, benzyl or represents in each case optionally cyano-, hydroxyl-, alkoxy-, alkylthio-, alkylamino-, dialkylamino- or phenyl-substituted alkyl or alkoxy having 1 to 4 carbon atoms, or represents alkenyloxy or alkynyloxy having in each case 2 to 4 carbon atoms,

and also phenyl, phenoxy, phenyllthio, benzoyl, benzoylethenyl, cinnamoyl, heterocyclyl or phenylalkyl, phenylalkyloxy, phenylalkylthio or heterocyclylalkyl having in each case 1 to 3 carbon atoms in the respective alkyl moieties, each of which radicals is optionally mono- to trisubstituted in the cyclic moiety by halogen and/or straight-chain or branched alkyl or alkoxy having 1 to 4 carbon atoms,

10

5

15

20

25

5

10

15

20

25

30

or

Z² represents cycloalkyl or bicycloalkyl having in each case 3 to 10 carbon atoms and being in each case optionally mono- to tetrasubstituted by identical or different substituents from the group consisting of halogen and/or C₁-C₄-alkyl,

represents unsubstituted C₂-C₂₀-alkyl or C₁-C₂₀-alkyl which is mono- or polysubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine, iodine, C₁-C₆-alkylthio, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphinyl, C₁-C₆-haloalkylsulphinyl, C₁-C₆-haloalkylsulphinyl, C₁-C₆-haloalkylsulphinyl, C₁-C₆-haloalkylsulphinyl, C₁-C₆-haloalkylsulphinyl, C₁-C₆-alkyl)amino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety for its part may optionally be mono- to tetrasubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine, iodine, C₁-C₄-alkyl and C₁-C₄-haloalkyl,

represents C₂-C₂₀-alkenyl or C₂-C₂₀-alkynyl, each of which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine, iodine, C₁-C₆-alkylthio, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphinyl, C₁-C₆-haloalkylthio, C₁-C₆-haloalkylsulphinyl, C₁-C₆-haloalkylsulphonyl, C₁-C₆-haloalkylsulphinyl, C₁-C₆-haloalkylsulphinyl, C₁-C₆-haloalkylsulphinyl, C₁-C₆-haloalkylsulphinyl, c₁-C₆-haloalkylsulphinyl, c₂-C₆-cycloalkyl, where the cycloalkyl moiety for its part may optionally be mno- to tetrasubstituted by identical or different substituents from the group consisiting of fluorine, chlorine, bromine, iodine, C₁-C₄-alkyl and C₁-C₄-haloalkyl,

 R^8 and R^9 independently of one another represent C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_3 -alkyl or C_1 - C_3 -alkylthio- C_1 - C_3 -alkyl,

 R^{10} represents C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C_1 - C_3 -alkyl, C_3 - C_6 -cycloalkyl, phenyl or benzyl,

M and Z together represent 1,1,3-trimethyl-1H-2,3-dihydroinden-4-yl, 1,3-dimethyl-1H-2,3-dihydroinden-4-yl, 1,1,3-trimethyl-1,3-dihydro-2-benzofuran-4-yl, 1,3-dimethyl-1,3-dihydro-2-benzothien-4-yl or 1,3-dimethyl-1,3-dihydro-2-benzothien-4-yl.

- 3. Process for preparing the 2-halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1, characterized in that
 - a) carboxylic acid derivatives of the formula (II)

$$H \xrightarrow{H} X^1$$
 (II)

5

10

15

20

25

A and Hal are as defined in Claim 1 and

X1 represents halogen or hydroxyl

are reacted with aniline derivatives of the formula (III)

in which R, M and Z are as defined in Claim 1,

if appropriate in the presence of a catalyst, if appropriate in the presence of a condensing agent, if appropriate in the presence of an acid binder and if appropriate in the presence of a diluent, or

b) halocarboxamides of the formula (IV)

in which

A, Hal, R and M are as defined in Claim 1,

X² represents bromine, iodine or trifluoromethylsulphonate, are reacted with boronic acid derivatives of the formula (V)

$$G^{1}-O-B-O-G^{2}$$
 I_{2}
(V)

in which

Z¹ is as defined in Claim 1 and

 G^1 and G^2 each represent hydrogen or together represent tetramethylethylene, in the presence of a catalyst, if appropriate in the presence of an acid binder and if appropriate in the presence of a diluent, or

c) boronic acid derivatives of the formula (VI)

$$H \xrightarrow{H} O M M M$$

$$Hal G^3 - O B O - G^4$$
(VI)

A, Hal, R and M are as defined in Claim 1,

G³ and G⁴ each represent hydrogen or together represent tetramethylethylene are reacted with phenyl derivatives of the formula (VII)

$$X^3 - Z^1$$
 (VII)

in which

5

10

15

20

25

Z¹ is as defined in Claim 1 and

X³ represents chlorine, bromine, iodine or trifluoromethylsulphonate, if appropriate in the presence of a catalyst, if appropriate in the presence of an acid binder and if appropriate in the presence of a diluent, or

d) halocarboxamides of the formula (IV)

in which

A, Hal, R and M are as defined in Claim 1,

 X^2 represents bromine, iodine or trifluoromethylsulphonate, are reacted with phenyl derivatives of the formula (VII)

$$X^3$$
— Z^1 (VII)

in which

Z¹ is as defined in Claim 1 and

represents chlorine, bromine, iodine or trifluoromethylsulphonate, in the presence of a palladium or nickel catalyst and in the presence of 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bis-1,3,2-dioxaborolane, if appropriate in the presence of an acid binder and if appropriate in the presence of a diluent, or

e) 2-halofuryl/thienyl-3-carboxamides of the formula (I-a)

5

10

15

20

25

A, Hal, R and M are as defined in Claim 1,

represents C2-C20-alkenyl or C2-C20-alkynyl which are in each case X^4 optionally mono- or polysubstituted by identical or different substituents consisting of halogen, alkylthio, alkylsulphinyl, from the group dialkylamino. haloalkylthio, alkylamino, alkoxy, alkylsulphonyl, haloalkylamino, haloalkoxy, haloalkylsulphonyl, haloalkylsulphinyl, halodialkylamino, -SiR8R9R10 and C3-C6-cycloalkyl, where the cycloalkyl moiety for its part may optionally be substituted by halogen and/or C₁-C₄ alkyl,

are hydrogenated, if appropriate in the presence of a diluent and if appropriate in the presence of a catalyst, or

f) hydroxyalkylcarboxamides of the formula (VIII)

$$H \longrightarrow \begin{array}{c} H & O \\ N & M \\ R & X^5 \end{array}$$
 (VIII)

in which

A, Hal, R and M are as defined in Claim 1,

represents C₂-C₂₀-hydroxyalkyl which is optionally additionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety for its part may optionally be substituted by halogen and/or C₁-C₄-alkyl,

are dehydrated, if appropriate in the presence of a diluent and if appropriate in the presence of an acid, or

g) halocarboxamides of the formula(IV)

A, Hal, R and M are as defined in Claim 1,

 X^2 represents bromine, iodine or trifluoromethylsulphonate, are reacted with an alkyne of the formula (IX)

$$HC = G^5$$
 (IX)

in which

5

10

15

20

25

30

h)

G⁵ represents C₂-C₁₈-alkyl which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety for its part may optionally be substituted by halogen and/or C₁-C₄-alkyl,

or an alkene of the formula (X)

$$G_{g}$$
 G_{g} G_{g} G_{g}

in which

G⁶, G⁷ and G⁸ independently of one another each represent hydrogen or alkyl which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety for its part may optionally be substituted by halogen and/or C₁-C₄-alkyl and the total number of carbon atoms of the open-chain molecular moiety (without substituents) does not exceed the number 20,

if appropriate in the presence of a diluent, if appropriate in the presence of an acid binder and if appropriate in the presence of one or more catalysts, or

ketones of the formula (XI)

$$H \xrightarrow{\mathsf{Hal}} \mathbb{R} \xrightarrow{\mathsf{N}} \mathbb{G}^{9}$$
 (XI)

5

10

15

20

25

30

A, Hal, R and M are as defined in Claim 1,

G⁹ represents hydrogen or C₁-C₁₈-alkyl which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety for its part may optionally be substituted by halogen and/or C₁-C₄-alkyl,

are reacted with a phosphorus compound of the general formula (XII)

$$G^{10}$$
Px (XII)

in which

G¹⁰ represents C₁-C₁₈-alkyl which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety for its part may optionally be substituted by halogen and/or C₁-C₄-alkyl,

 P_X represents a grouping $-P^+(C_6H_5)_3$ Cl^- , $-P^+(C_6H_5)_3$ Br^- , $-P^+(C_6H_5)_3$ I^- , $-P(=O)(OCH_3)_3$ or $-P(=O)(OC_2H_5)_3$,

if appropriate in the presence of a diluent, or

i) 2-halofuryl/thienyl-3-carboxamides of the formula (I-b)

$$\begin{array}{c|c} H & O & M \\ \hline \\ A & Hal & Z \end{array}$$
 (I-b)

in which

A, Hal, R, M and Z are as defined in Claim 1

are reacted with halides of the formula (XIII)

 $R^a - X^6$ (XIII)

in which

5

represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄- R^{a} alkoxy-C1-C4-alkyl, C3-C8-cycloalkyl; C1-C6-haloalkyl, C1-C4-haloalkylthio, $C_1\hbox{-} C_4\hbox{-haloalkylsulphinyl},\ C_1\hbox{-} C_4\hbox{-haloalkylsulphonyl},\ halo\hbox{-} C_1\hbox{-} C_4\hbox{-alkoxy-} C_1\hbox{-}$ C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl- $(C_1-C_3-alkoxy)$ carbonyl- $C_1-C_3-alkyl$; halo- $(C_1-C_3 C_1$ - C_3 -alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl alkyl)carbonyl-C₁-C₃-alkyl, having in each case 1 to 13 fluorine, chlorine and/or bromine atoms; $(C_1-C_8-alkyl)$ carbonyl, $(C_1-C_8-alkoxy)$ carbonyl, $(C_1-C_4-alkoxy-C_1-C_4-alkyl)$ carbonyl, (C3-C8-cycloalkyl)carbonyl; (C1-C6-haloalkyl)carbonyl, (C1-C6 $haloalkoxy) carbonyl, \quad (halo-C_1-C_4-alkoxy-C_1-C_4-alkyl) carbonyl, \quad (C_3-C_8-alkyl) carbonyl, \quad (C_3-C_8-alk$ halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or

10

15

bromine atoms; or $-C(=O)C(=O)R^1$, $-CONR^2R^3$ or $-CH_2NR^4R^5$, R^1 , R^2 , R^3 , R^4 and R^5 are as defined above,

X⁶ represents chlorine, bromine or iodine,

in the presence of a base and in the presence of a diluent.

20

4. Compositions for controlling unwanted microorganisms, characterized in that they comprise at least one 2-halofuryl/thienyl-3-carboxamide of the formula (I) according to Claim 1, in addition to extenders and/or surfactants.

25

- 5. Use of 2-halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1 for controlling unwanted microorganisms.
- 6. Method for controlling unwanted microorganisms, characterized in that 2-halofuryl/thienyl3-carboxamides of the formula (I) according to Claim 1 are applied to the microorganisms and/or their habitat.
 - 7. Process for preparing compositions for controlling unwanted microorganisms, characterized in that 2-halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1 are mixed with extenders and/or surfactants.

8. Halocarboxamides of the formula (IV)

$$H \xrightarrow{Hal} N \xrightarrow{M} M$$

$$H \xrightarrow{A} Hal R X^{2}$$

$$(IV)$$

in which

5 A, Hal, R and M are as defined in Claim 1,

X² represents bromine or iodine.

9. Boronic acid derivatives of the formula (VI)

$$H \xrightarrow{H} O M M M$$

$$Hal G^3 - O - G^4$$

$$(VI)$$

in which

A, Hal, R and M are as defined in Claim 1,

G³ and G⁴ each represent hydrogen or together represent tetramethylethylene.

10. Hydroxyalkylcarboxamides of the formula (VIII)

15

in which

A, Hal, R and M are as defined in Claim 1,

represents C₂-C₂₀-hydroxyalkyl which is optionally additionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR⁸R⁹R¹⁰ and/or C₃-C₆-cycloalkyl, where the cycloalkyl moiety for its part may optionally be substituted by halogen and/or C₁-C₄-alkyl.

20

25

11. Ketones of the formula (XI)

A, Hal, R and M are as defined in Claim 1,

G⁹ represents hydrogen or represents C₁-C₁₈-alkyl which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety for its part may optionally be substituted by halogen and/or C₁-C₄-alkyl.

10