

Theory of Computation

Dr Samayveer Singh

Grammar

Grammar

- > For the simplicity, let's consider two types of description of sentences in English
 - $-S \rightarrow < noun > < verb > < adverb >$
 - $-S \rightarrow < noun > < verb >$
 - <noun $> \rightarrow$ Sam
 - <noun $> \rightarrow$ Ram
 - $\langle \text{verb} \rangle \rightarrow \text{walked}$
 - $\langle \text{verb} \rangle \rightarrow \text{ate}$
 - $< adverb > \rightarrow slowly$
 - <adverb> → quickly

- 2

Grammar

- \rightarrow A Grammar consists of 4-tuple (V_N , Σ , P, S) where
 - $V_N = \{ < \text{noun} > < \text{verb} > < \text{adverb} > \}$
 - $-\Sigma = \{Ram, Sam, ate, walked, slowly, quickly\}$
 - P is the collection of rules.
 - S is the special symbol denoting a sentence.
- The sentences are obtained by (i) starting with S. (ii) replacing words using the productions. and (iii) terminating when a string of terminals is obtained.

Definition of a Grammar

- A grammar or phase structure grammar is given by (V_N, Σ, P, S) where
 - $-V_N$ is a finite nonempty set whose elements are called variables or non-terminals.
 - Σ is a finite nonempty set whose elements are called terminals.
 - P is a set of productions or substitution rules of the form $\alpha \rightarrow \beta$
 - α is a variable and β is a string of variables and terminals
 - S is a special variable called the start symbol or variable.

If $G=(\{S\}, \{0, 1\}, \{S \rightarrow 0S1, S \rightarrow \land\}, S)$ Find L(G)

If $G = (\{S\}, \{a\}, \{S \rightarrow SS\}, S)$, find the language generated by G.

Let $G = (\{S, C\}, \{a, b\}, P, S)$, where P consists of $S \rightarrow aCa$, $C \rightarrow aCa$ | b. Find L(G).

$$S \rightarrow a Ca$$
 $S \rightarrow a Ca$ $S \rightarrow a Ca$ $S \rightarrow a Ca$ $A \rightarrow a Ca$

If G is $S \rightarrow aS \mid bS \mid a \mid b$, find L(G).

Dol4.

$$S \rightarrow aS$$

$$\rightarrow aaS$$

$$\rightarrow aaa - aab$$

$$-bbb$$

$$L(4) = \{a_1b_3^{**} - \{a_1b_3^{**}$$

Let L be the set of all palindromes over {a, b}. Construct a grammar G generating L.

(1)
$$\Lambda$$
(11) Λ - $\alpha \pi q + b \pi b$
(111) Λ - $\alpha \pi q + b \pi b$

$$P: \begin{cases} S \rightarrow \Lambda \\ S \rightarrow \alpha \\ S \rightarrow \alpha \end{cases}, S \rightarrow b \\ S \rightarrow \alpha S \alpha, S \rightarrow b S b$$

$$G = \{\{S\}, \{\alpha b\}, P, \{S\}\}\}$$

C

Construct a grammar generating $L = \{$

$$| w \in \{a, b\} \stackrel{\mathbf{W}}{\sim} \mathcal{E}^{\mathbf{T}}$$

Find a grammar generating

$$L = \left\{ a^n b^n c^i \mid n \ge 1, i \ge 0 \right\}$$

$$L_1 = \frac{1}{4}ahbh | h > 13$$

$$L_2 = \frac{1}{4}ahbh ci | h > 1, i > 13$$

$$L_3 = \frac{1}{4}ahbh ci | h > 1, i > 13$$

$$S \rightarrow A \qquad aabbb cc$$

$$S \rightarrow A \qquad aabbb \qquad aaabbb cc$$

$$G = \left(\frac{1}{4}s, A^3, \quad \rightarrow scc \quad \rightarrow aaabbb \quad \rightarrow aaabbb \quad \rightarrow aaabbb cc$$

$$S \rightarrow A \qquad \rightarrow aaabbb cc$$

$$S \rightarrow A \qquad \rightarrow aaabbb cc$$

Find a grammar generating

$$L = \left\{ a^j b^n c^n \middle| n \ge 1, j \ge 0 \right\}$$

P:
$$S \rightarrow aS$$

 $S \rightarrow A$
 $A \rightarrow bAC|bC$
 $G = \{\{s, A\}, \{a, b, c\}, P, S\}$

Find a grammar generating

$$L = \{a^n b^n c^n \mid n \ge 1\}$$

S-1 asd ad
S-1 assc asc
aB-1 ab ~ asys
cB-1 Bc ~ aaa bbb ccc
bc-1 bc ~ bc ~
c c -> cc ~

$$C = \{S, B, C, S, \{a, b, c\}, P, \{S\}\}\}$$

ahbhch ahah Z=BC aaa BCBCBC aaabcBcBc agab BC BCK ~ gagbbBccc aggbbbccc agabbbacc agabbbecc atia bbb ccc

Chomsky Classification of Languages

> According to Chomosky, there are four types of grammars – Type 0, Type 1, Type 2, and Type 3.

Grammar Type	Grammar Accepted	Language Accepted	Automaton
Type 0	Unrestricted grammar	Recursively enumerable language	Turing Machine
Type 1	Context-sensitive grammar	Context-sensitive language	Linear-bounded automaton
Type 2	Context-free grammar	Context-free language	Pushdown automaton
Type 3	Regular grammar	Regular language	Finite state automaton

Type - 0 Grammar

- > Type-0 grammars generate recursively enumerable languages.
- The productions have no restrictions. They are any phase structure grammar including all formal grammars.
- > They generate the languages that are recognized by a Turing machine.
- The productions can be in the form of $\underline{\alpha} \to \underline{\beta}$ where α is a string of terminals and non-terminals with at least one non-terminal and α cannot be null. β is a string of terminals and non-terminals.
- > Example
 - $-S \rightarrow ACaB$
 - $-Bc \rightarrow acB$
 - $CB \rightarrow DB$
 - $-aD \rightarrow Db$

Type - 1 Grammar

> **Type-1 grammars** generate context-sensitive languages. The productions must be in the form

$$\alpha A \beta \rightarrow \alpha \gamma \beta$$

where $A \in V_N$ (Non-terminal) and α , β , $\gamma \in (\sum \cup V_N)^*$ (Strings of terminals and non-terminals)

- > If $A \rightarrow \gamma$, then $|A| \ll |\gamma|$
- The strings α and β may be empty, but γ must be non-empty.
- The rule $S \to \varepsilon$ is allowed if S does not appear on the right side of any rule. The languages generated by these grammars are recognized by a linear bounded automaton.
- **>** Example

$$AB \rightarrow AbBc$$

$$A \longrightarrow bcA$$

$$B \rightarrow b$$

Type - 2 Grammar

- **Type-2 grammars** generate context-free languages.
- The productions must be in the form $A \to \gamma$ where $A \in V_N$ (Non terminal) and $\gamma \in (\sum \cup V_N)^*$ (String of terminals and non-terminals).
- These languages generated by these grammars are be recognized by a non-deterministic pushdown automaton.
- **>** Example

$$S \rightarrow X a$$

$$X \rightarrow a$$

$$X \rightarrow aX$$

$$X \rightarrow abc$$

$$X \rightarrow \epsilon$$

Type - 3 Grammar

- > **Type-3 grammars** generate regular languages. Type-3 grammars must have a single non-terminal on the left-hand side and a right-hand side consisting of a single terminal or single terminal followed by a single non-terminal.
- The productions must be in the form $X \to a$ or $X \to aY$ where $X, Y \in V_N$ (Non terminal) and $a \in \Sigma$ (Terminal)
- The rule $S \to \varepsilon$ is allowed if S does not appear on the right side of any rule.
- > Example

$$X \to \varepsilon$$

$$X \to (a) aY$$

$$Y \to (b)$$

Examples

- > Find the highest type number which can be applied to the following productions:
 - (a) $S \rightarrow Aa$, $A \rightarrow CB \mid A$, $B \rightarrow abc$.
 - (b) $S \rightarrow ASB / (d)A \rightarrow (A)$
 - (c) $S \rightarrow aS/ab$ Type 3

Chomsky Hierarchy

Grammar Types(Phrase-structure Grammars):

