```
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
```

df=pd.read_csv('/content/Mall_Customers.csv')
df

₹		CustomerID G		Age	Annual Income (k\$)	Spending Score (1-100)	
	0	1	Male	19	15	39	
	1	2	Male	21	15	81	
	2	3	Female	20	16	6	
	3	4	Female	23	16	77	
	4	5	Female	31	17	40	
	195	196	Female	35	120	79	
	196	197	Female	45	126	28	
	197	198	Male	32	126	74	
	198	199	Male	32	137	18	
	199	200	Male	30	137	83	

200 rows × 5 columns

#preprocessing

df.isnull().sum()

```
CustomerID 0
Gender 0
Age 0
Annual Income (k$) 0
Spending Score (1-100) 0
dtype: int64
```

df.duplicated().sum()

plt.scatter(df['Annual Income (k\$)'],df['Spending Score (1-100)'])


```
#using elbow method to decide the number of cluster to be formed
krange=range(1,9)
sse=[]
for k in krange:
    model1=KMeans(n_clusters=k)
    model1.fit(df[['Annual Income (k$)','Spending Score (1-100)']])
    sse.append(model1.inertia_)
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change frow warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change frow arnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change frow arnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change frow arnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change frow arnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change frow arnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change frow arnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change frow arnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change frow warnings.warn(
```

sse

```
[269981.28,
181363.59595959593,
106348.37306211122,
73679.78903948836,
44448.4554479337,
37239.835542456036,
30227.606513152008,
25018.57633477634]
```

plt.plot(krange,sse)

→ [<matplotlib.lines.Line2D at 0x7eeb0a7c99c0>]


```
#n_cluster=5
```

df

```
scaler=MinMaxScaler()
scaler.fit(df[['Annual Income (k$)']])
df['Annual Income (k$)']=scaler.transform(df[['Annual Income (k$)']])
scaler.fit(df[['Spending Score (1-100)']])
df['Spending Score (1-100)']=scaler.transform(df[['Spending Score (1-100)']])
```

```
CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
 0
                    Male
                           19
                                          0.000000
                                                                    0.387755
  1
               2
                    Male
                           21
                                          0.000000
                                                                    0.816327
 2
               3 Female
                           20
                                          0.008197
                                                                    0.051020
 3
                                          0.008197
                                                                    0.775510
               4
                 Female
                           23
  4
                                          0.016393
                                                                    0.397959
                  Female
                           31
195
             196
                 Female
                           35
                                          0.860656
                                                                    0.795918
196
             197
                  Female
                           45
                                          0.909836
                                                                    0.275510
             198
                                          0.909836
                                                                    0.744898
197
                           32
                    Male
198
             199
                    Male
                           32
                                           1.000000
                                                                    0.173469
             200
                                           1 000000
                                                                    0.836735
199
                    Male
                           30
200 rows × 5 columns
```

model1=KMeans(n_clusters=5)
model1.fit(df[['Annual Income (k\$)','Spending Score (1-100)']])

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change frow warnings.warn(

```
KMeans
KMeans(n_clusters=5)
```

y=model1.predict(df[['Annual Income (k\$)','Spending Score (1-100)']]) y

model1.cluster_centers_

df['New_Cluster']=y
df

$\overline{\Rightarrow}$		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	New_Cluster		
	0	1	Male	19	0.000000	0.387755	4		
	1	2	Male	21	0.000000	0.816327	3		
	2	3	Female	20	0.008197	0.051020	4		
	3	4	Female	23	0.008197	0.775510	3		
	4	5	Female	31	0.016393	0.397959	4		
	195	196	Female	35	0.860656	0.795918	0		
	196	197	Female	45	0.909836	0.275510	2		
	197	198	Male	32	0.909836	0.744898	0		
	198	199	Male	32	1.000000	0.173469	2		
	199	200	Male	30	1.000000	0.836735	0		
	000								

200 rows × 6 columns

df1=df[df.New_Cluster==0]
df2=df[df.New_Cluster==1]
df3=df[df.New_Cluster==2]

```
df4=df[df.New_Cluster==4]
df5=df[df.New_Cluster==5]

plt.scatter(df1['Annual Income (k$)'],df1['Spending Score (1-100)'],color="black")
plt.scatter(df2['Annual Income (k$)'],df2['Spending Score (1-100)'],color="red")
plt.scatter(df3['Annual Income (k$)'],df3['Spending Score (1-100)'],color="yellow")
plt.scatter(df4['Annual Income (k$)'],df4['Spending Score (1-100)'],color="red")
plt.scatter(df5['Annual Income (k$)'],df5['Spending Score (1-100)'],color="gray")
plt.scatter(model1.cluster_centers_[:,0],model1.cluster_centers_[:,1],color="blue",marker="*",label="centroids")
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
```

→ <matplotlib.legend.Legend at 0x7eeb07e77850>

Start coding or generate with AI.