Chapter 11 Series

11.1 Arithmetic Series

Initial term: a₁

Nth term: a_n

Difference between successive terms: d

Number of terms in the series: n

Sum of the first n terms: S_n

1184.
$$a_n = a_{n-1} + d = a_{n-2} + 2d = \dots = a_1 + (n-1)d$$

1185.
$$a_1 + a_n = a_2 + a_{n-1} = ... = a_i + a_{n+1-i}$$

1186.
$$a_i = \frac{a_{i-1} + a_{i+1}}{2}$$

1187.
$$S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$$

11.2 Geometric Series

Initial term: a,

Nth term: a_n

Common ratio: q

Number of terms in the series: n

Sum of the first n terms: S_n

Sum to infinity: S

1188.
$$a_n = qa_{n-1} = a_1q^{n-1}$$

1189.
$$a_1 \cdot a_n = a_2 \cdot a_{n-1} = \dots = a_i \cdot a_{n+1-i}$$

1190.
$$a_i = \sqrt{a_{i-1} \cdot a_{i+1}}$$

1191.
$$S_n = \frac{a_n q - a_1}{q - 1} = \frac{a_1 (q^n - 1)}{q - 1}$$

1192.
$$S = \lim_{n \to \infty} S_n = \frac{a_1}{1 - q}$$

For |q| < 1, the sum S converges as $n \to \infty$.

11.3 Some Finite Series

Number of terms in the series: n

1193.
$$1+2+3+...+n=\frac{n(n+1)}{2}$$

1194.
$$2+4+6+...+2n=n(n+1)$$

1195.
$$1+3+5+...+(2n-1)=n^2$$

1196.
$$k + (k+1) + (k+2) + ... + (k+n-1) = \frac{n(2k+n-1)}{2}$$

1197.
$$1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$

1198.
$$1^3 + 2^3 + 3^3 + ... + n^3 = \left[\frac{n(n+1)}{2}\right]^2$$

1199.
$$1^2 + 3^2 + 5^2 + ... + (2n-1)^2 = \frac{n(4n^2 - 1)}{3}$$

1200.
$$1^3 + 3^3 + 5^3 + ... + (2n-1)^3 = n^2(2n^2 - 1)$$

1201.
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \dots = 2$$

1202.
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} + \dots = 1$$

1203.
$$1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{(n-1)!} + \dots = e$$

11.4 Infinite Series

Sequence: $\{a_n\}$

First term: a₁ Nth term: a_n

1204. Infinite Series

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \ldots + a_n + \ldots$$

1205. Nth Partial Sum

$$S_n = \sum_{n=1}^{n} a_n = a_1 + a_2 + ... + a_n$$

1206. Convergence of Infinite Series

$$\sum_{n=1}^{\infty} a_n = L, \text{ if } \lim_{n \to \infty} S_n = L$$

1207. Nth Term Test

- If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$.
- If $\lim_{n\to\infty} a_n \neq 0$, then the series is divergent.

11.5 Properties of Convergent Series

Convergent Series: $\sum_{n=1}^{\infty} a_n = A$, $\sum_{n=1}^{\infty} b_n = B$

Real number: c

1208.
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n = A + B$$

1209.
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n = cA$$
.

11.6 Convergence Tests

1210. The Comparison Test

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series such that $0 < a_n \le b_n$ for all n.

- If $\sum_{n=1}^{\infty} b_n$ is convergent then $\sum_{n=1}^{\infty} a_n$ is also convergent.
- If $\sum_{n=1}^{\infty} a_n$ is divergent then $\sum_{n=1}^{\infty} b_n$ is also divergent.

1211. The Limit Comparison Test

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series such that a_n and b_n are positive for all n.

- If $0 < \lim_{n \to \infty} \frac{a_n}{b_n} < \infty$ then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are either both convergent or both divergent.
- If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ then $\sum_{n=1}^{\infty} b_n$ convergent implies that $\sum_{n=1}^{\infty} a_n$ is also convergent.

• If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ then $\sum_{n=1}^{\infty} b_n$ divergent implies that $\sum_{n=1}^{\infty} a_n$ is also divergent.

1212. p-series

p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for p > 1 and diverges for 0 .

1213. The Integral Test

Let f(x) be a function which is continuous, positive, and decreasing for all $x \ge 1$. The series

$$\sum_{n=1}^{\infty} f(n) = f(1) + f(2) + f(3) + \dots + f(n) + \dots$$

converges if $\int_{1}^{\infty} f(x) dx$ converges, and diverges if

$$\int_{1}^{n} f(x) dx \to \infty \text{ as } n \to \infty.$$

1214. The Ratio Test

Let $\sum_{n=1}^{\infty} a_n$ be a series with positive terms.

- If $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$ then $\sum_{n=1}^{\infty} a_n$ is convergent.
- If $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$ then $\sum_{n=1}^{\infty} a_n$ is divergent.
- If $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$ then $\sum_{n=1}^{\infty} a_n$ may converge or diverge and the ratio test is inconclusive; some other tests must be used.

1215. The Root Test

Let $\sum_{n=1}^{\infty} a_n$ be a series with positive terms.

- If $\lim_{n\to\infty} \sqrt[n]{a_n} < 1$ then $\sum_{n=1}^{\infty} a_n$ is convergent.
- If $\lim_{n\to\infty} \sqrt[n]{a_n} > 1$ then $\sum_{n=1}^{\infty} a_n$ is divergent.
- If $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ then $\sum_{n=1}^{\infty} a_n$ may converge or diverge, but no conclusion can be drawn from this test.

11.7 Alternating Series

1216. The Alternating Series Test (Leibniz's Theorem)

Let $\{a_n\}$ be a sequence of positive numbers such that $a_{n+1} < a_n$ for all n. $\lim_{n \to \infty} a_n = 0$.

Then the alternating series $\sum_{n=1}^{\infty} (-1)^n a_n$ and $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ both converge.

1217. Absolute Convergence

• A series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if the series $\sum_{n=1}^{\infty} |a_n|$ is convergent.

CHAPTER 11. SERIES

• If the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent then it is convergent.

1218. Conditional Convergence

A series $\sum_{n=1}^{\infty} a_n$ is conditionally convergent if the series is convergent but is not absolutely convergent.

11.8 Power Series

Real numbers: x, x₀

Power series: $\sum_{n=0}^{\infty} a_n x^n$, $\sum_{n=0}^{\infty} a_n (x - x_0)^n$

Whole number: n

Radius of Convergence: R

1219. Power Series in x

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

1220. Power Series in $(x-x_0)$

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots + a_n (x - x_0)^n + \dots$$

1221. Interval of Convergence

The set of those values of x for which the function

 $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ is convergent is called the interval of convergence.

1222. Radius of Convergence

If the interval of convergence is $(x_0 - R, x_0 + R)$ for some $R \ge 0$, the R is called the radius of convergence. It is given as

$$R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{a_n}}$$
 or $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$.

11.9 Differentiation and Integration of Power Series

Continuous function: f(x)

Power series: $\sum_{n=0}^{\infty} a_n x^n$

Whole number: n

Radius of Convergence: R

1223. Differentiation of Power Series

Let
$$f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$$
 for $|x| < R$.

Then, for |x| < R, f(x) is continuous, the derivative f'(x) exists and

$$f'(x) = \frac{d}{dx}a_0 + \frac{d}{dx}a_1x + \frac{d}{dx}a_2x^2 + \dots$$

= $a_1 + 2a_2x + 3a_3x^2 + \dots = \sum_{n=1}^{\infty} na_nx^{n-1}$.

1224. Integration of Power Series

Let
$$f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$$
 for $|x| < R$.

Then, for |x| < R, the indefinite integral $\int f(x)dx$ exists and $\int f(x)dx = \int a_0 dx + \int a_1 x dx + \int a_2 x^2 dx + \dots$

$$= a_0 x + a_1 \frac{x^2}{2} + a_2 \frac{x^3}{3} + \ldots = \sum_{n=0}^{\infty} a_n \frac{x^{n+1}}{n+1} + C.$$

11.10 Taylor and Maclaurin Series

Whole number: n

Differentiable function: f(x)

Remainder term: R_n

1225. Taylor Series

$$f(x) = \sum_{n=0}^{\infty} f^{(n)}(a) \frac{(x-a)^n}{n!} = f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^2}{2!} + \dots$$
$$+ \frac{f^{(n)}(a)(x-a)^n}{n!} + R_n.$$

1226. The Remainder After n+1 Terms is given by

$$R_n = \frac{f^{(n+1)}(\xi)(x-a)^{n+1}}{(n+1)!}, \quad a < \xi < x.$$

1227. Maclaurin Series

$$f(x) = \sum_{n=0}^{\infty} f^{(n)}(0) \frac{x^n}{n!} = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \dots + \frac{f^{(n)}(0)x^n}{n!} + R_n$$

11.11 Power Series Expansions for Some Functions

Whole number: n Real number: x

1228.
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

1229.
$$a^x = 1 + \frac{x \ln a}{1!} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \dots + \frac{(x \ln a)^n}{n!} + \dots$$

1230.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^n x^{n+1}}{n+1} \pm \dots, -1 < x \le 1.$$

1231.
$$\ln \frac{1+x}{1-x} = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \dots\right), |x| < 1.$$

1232.
$$\ln x = 2 \left[\frac{x-1}{x+1} + \frac{1}{3} \left(\frac{x-1}{x+1} \right)^3 + \frac{1}{5} \left(\frac{x-1}{x+1} \right)^5 \dots \right], \ x > 0.$$

1233.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} \pm \dots$$

1234.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} \pm \dots$$

1235.
$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + \dots, |x| < \frac{\pi}{2}$$
.

1236.
$$\cot x = \frac{1}{x} - \left(\frac{x}{3} + \frac{x^3}{45} + \frac{2x^5}{945} + \frac{2x^7}{4725} + \dots\right), |x| < \pi.$$

1237.
$$\arcsin x = x + \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3x^5}{2 \cdot 4 \cdot 5} + \dots + \frac{1 \cdot 3 \cdot 5 \dots (2n-1)x^{2n+1}}{2 \cdot 4 \cdot 6 \dots (2n)(2n+1)} + \dots,$$
 $|x| < 1$.

1238.
$$\arccos x = \frac{\pi}{2} - \left(x + \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3x^5}{2 \cdot 4 \cdot 5} + \dots + \frac{1 \cdot 3 \cdot 5 \dots (2n-1)x^{2n+1}}{2 \cdot 4 \cdot 6 \dots (2n)(2n+1)} + \dots \right),$$
 $|x| < 1.$

1239.
$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + \frac{(-1)^n x^{2n+1}}{2n+1} \pm \dots, |x| \le 1$$
.

1240.
$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$$

1241.
$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$$

11.12 Binomial Series

Whole numbers: n, m

Real number: x

Combinations: ⁿC_m

1242.
$$(1+x)^n = 1 + {}^nC_1x + {}^nC_2x^2 + ... + {}^mC_nx^m + ... + x^n$$

1243.
$${}^{n}C_{m} = \frac{n(n-1)...[n-(m-1)]}{m!}, |x| < 1.$$

1244.
$$\frac{1}{1+x} = 1-x+x^2-x^3+..., |x|<1.$$

1245.
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + ..., |x| < 1.$$

1246.
$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{2 \cdot 4} + \frac{1 \cdot 3x^3}{2 \cdot 4 \cdot 6} - \frac{1 \cdot 3 \cdot 5x^4}{2 \cdot 4 \cdot 6 \cdot 8} + \dots, |x| \le 1.$$

1247.
$$\sqrt[3]{1+x} = 1 + \frac{x}{3} - \frac{1 \cdot 2x^2}{3 \cdot 6} + \frac{1 \cdot 2 \cdot 5x^3}{3 \cdot 6 \cdot 9} - \frac{1 \cdot 2 \cdot 5 \cdot 8x^4}{3 \cdot 6 \cdot 9 \cdot 12} + \dots, |x| \le 1.$$

11.13 Fourier Series

Integrable function: f(x)

Fourier coefficients: a₀, a_n, b_n

Whole number: n

1248.
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

1249.
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$

1250.
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$