

TYNDALL AIR FORCE BASE FLORIDA 32403

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENT	ATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•	3 RECIPIENT'S CATALOG NUMBER
ALBON NOMBEN		
CEEIN TR-78-54		S TYPE OF REPORT & PERIOD COVERED
4 TITEE fand Subtitle,		TO THE OF HEPOHT & PENIO. LOVENED
B 100 Mushing Paring Michaeles		Direct New 76 Bee 33
F-100 Turbine Engine Afterbu	rner Emission Tests	Final: Nov 76-Dec 77
		SET 162802 1177 / //
7 AUTHOR(a)		8. CONTRACT OR GRAN! NUMBER(S)
Anthony F. Souza		
Harold A. Scott, Jr.		USAF F08635-77-C-0216
-)
9 PERFORMING ORGANIZATION NAME AND	ADDRESS	10. PROGRAM ELEMENT PROJECT, YASK AREA & WORK UNIT NUMBERS
Scott Environmental Technolo	gy, Inc	AREA & HOME BILL HOMBERS
Plumbsteadville PA 18949	•	1
		63723F:21032A46
11. CONTROLLING OFFICE NAME AND ADD	RESS	12 REPORT DATE
Det 1 (CEEDO) ADTC/ECA		September 1978
Tyndall AFB FL 32403		13 NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRES	Cut dillacest from Controlling Office)	15 SECURITY CLASS. (al this report)
14. MONITORING AGENCY NAME & ADDRESS	of it different from Controlling Office)	13 SECURITY CERSS. (or line volum)
		Unclassified
		15a DECLASSIFICATION: DOWNGRADING
		SCHEDULE
16. DISTRIBUTION STATEMENT (of this Repo	ort)	
Approved for public release;	distribution unlimite	d.
17. DISTRIBUTION STATEMENT (of the abete	act entered in Block 20, if different for	rom Report)
1		
j		
THE SUPPLEMENTARY NOTES		
1		
Available in DDC		
19. KEY WORDS (Continue on reverse side if r	necessary end identify by block number	10)
Gas Turbine Engines	Air Pollution	Afterburner
Exhaust Emissions	Particulate	Total Hydrocarbons
F-100-P-100	Carbon Monexide	Oxides of Nitrogen
J.		

ABSTRACT (Continue on reverse side if necessary and identify by block number)

The afterburner exhaust emissions from three F-100-P-100 engines were measured. Emission rates of hydrocarbons, carbon monoxide and oxides of nitrogen were

calculated. Smoke numbers were also measured.

DD 1 JAN 7, 1473

EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

PREFACE

This report documents the F-100-P-100 afterburner emission measurements and data reduction performed during the period November 1976 through Dec 1977 by Scott Environmental Technology, Inc, Plumsteadville PA 18949, under contract FY8952-77-625 with Det 1 Armament Development and Test Center, Air Force Systems Command, Tyndall Air Force Base FL 32403. Lieutenant Harold A Scott, Det 1 ADTC/ECA managed the program.

A special thanks is given to Col William R. Quasney, Aeronautical. Systems Division/YFJ, for initiating the F-100 engine test program and Pratt and Whitney Aircraft, Government Products Divison, West Palm Beach FL for their support of the project.

The low cost afterburner sampling probe was developed by Mr Richard Williams, ARO, Inc., under contract to Arnold Engineering Development Center, Arnold Air Force Station TN and Det 1 ADTC/ECA.

This report has been reviewed by the Office of Information (IO) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This report is approved for publication.

HAROLD A. SCOTT, 1st Lt, USAF Air Quality Research Engineer

The J. Contey

Director of Environics

PETER S. DALEY, Maj, USAF, BSC Chief, Env Assessment Research Div

Dough St. 76

JOSEPH S. PIZZUTO, Col, USAF, BSC

Commander

i (The reverse of this page is blank)

ETIG.	White Section	Z
800	Butt Sactice	ĩ
SHAHKOUNCED		τ
JUSTIFICATION		
	a para para de esta de la composición dela composición de la composición de la composición de la composición dela comp	
94		et f
BISTRIBUTION	Matter and	
BISTRIBUTION		
BISTRIBUTION	Matter and	

TABLE OF CONTENTS

Section	Title	Page
I	INTRODUCTION	1
II	EMISSION MEASUREMENTS	2
	2.0 F-100 Emission Measurements	
	2.1 Emission Tests	
	2.2 Data Observations	7
III	DISCUSSION OF RESULTS	. 8
	3.0 Emission Factors	8
	3.1 Analysis of Emission Factors	
	REFERENCES	10
Appendix		
A	Model Summaries	. 11
В	Individual Engine Test Reports	. 14
С	Mass Data Calculations	. 18
D	Engine Edit Reports	. 25
E	Smoke Edit Reports	. 29
F	Concentration Edit Reports	. 33

LIST OF FIGURES

Figure	Title	Page
1	A/B Sampling Probe	3
2	Probe Positioning Assembly (Front View)	5

LIST OF TABLES

Table	Title	Page
1	F-100 A/B Sample Points	5
2	F-100-P-100 Engine Emission Factors	B

SECTION I

INTRODUCTION

The F-15 and F-16 aircraft will be deployed in large numbers during the 1980s. Each time one of these aircraft is deployed at a U.S. Air Force installation, the aircraft's impact on the air quality must be assessed. Accurate engine emission factors are required to make air quality impact assessments. The emission factors are determined from actual exhaust plane measurements at each engine thrust setting. All thrusts except afterburner have been measured in previous tests. High temperatures and pressures did not permit afterburner emission measurements. The afterburner emission factors are extremely important to impact assessments because of high fuel flow rates and reactive plumes.

Scott Environmental Technology was contracted by Det 1 ADTC to measure uninum and maximum afterburner pollutant concentrations from three F-100-P-100 turbine engines. The raw measurement data, exhaust plane and downstream steady state emission factors are presented in this report. Steady state emission factors were derived by using an afterburner reactive plume model, these provide an estimate of the actual rate of the pollutants entering the ambient air.

SECTION II

EMISSION MEASUREMENTS

2.0 F-100 Emission Measurements

The F-100-P-100 engine exhaust emissions were measured using the AF Mobile Emission Measurement Laboratory (MEL). The MEL's instrumentation and sampling systems are described in Reference 1. The F-100 emission tests were performed on an outdoor sea level static test stand at Pratt and Whitney's West Palm Beach Facility. The jet exhaust blew straight back from the test stand without confinement. The engine's mounting rails were on an elevated platform. The probe's transversing assembly was mounted on the platform such that the sample inlet ports were located 0.127 meters behind the engine exhaust plane. The MEL was located adjacent to the test stand on the opposite side of the existing sound barrier wall. The noise level within the MEL during the minimum and maximum A/B tests (up to 95 dba) required the use of ear protection devices.

A specially designed, water cooled, "quick" quench A/B probe was used to sample the engine exhaust emissions (Figure 1). The probe's sample inlets were recessed and encased in a steel jacket. Water was circulated through the jacket at a regulated maximum flow rate of 1.26 l/s to keep the probe from melting under the 2000 °C plus exhaust temperatures. The probe cooling water was heated and kept at 148 °C to prevent condensation of the gaseous exhaust emissions and particulate matter.

The probe quenches or "stops" the chemical reaction of the gas. This quenching effect is accomplished by expansion cooling and heat transfer in the probe. Thus, the carbon monoxide, hydrocarbon and other gaseous pollutant emissions at the exhaust plane represent emissions before any plume ractions takes place. The tests consisted of exhaust gas and smoke level emissions analyses.

The emission analyses were performed using the MEL. The MEL meets all the standards set by the Environmental Protection Agency (40CFR87) and the SAE Aerospace Recommended Practice (ARP) 1256. It is a state-of-the-art analysis system for turbine engine exhaust emission measurements.

Thirteen point samples were taken at each power setting, six on each sampling diameter of the plus and minus thirty degree axes plus the center (Figure 2). The F-100 exhaust nozzle diameter varies with the A/B power setting. Therefore, the point locations along the sampling diameter representing equal areas were calculated for both the minimum and maximum A/B power settings. The normal sampling points used are shown in Table 1 and correspond to the sampling point numbers in Figure 2. The engine was operated continuously at both minimum A/B and maximum A/B for the emission tests.

Figure 1. A/B Sampling Probe

Figure 2. Probe Positioning Assembly (Front View)

TABLE 1. F-100 A'B SAMPLE POINTS

		Samp	le Point Radius	
Power Setting	Nozzle Diameter (meters)	Points No 1 and 6	Points No 2 and 5	Points No 3 and 4
Minimum A/B	0.62 0.78	0.28 0.36	0.22 0.91	0.13 0.16

The total hydrocarbon, carbon monoxide, and total oxides of nitrogen emission rates for minimum and maximum AB thrust power settings were computed directly from the measured exhaust concentrations (Reference 1). Sulfur emission rates were determined assuming complete oxidation of the fuel sulfur to sulfur dioxide and fuel flow rates. Emission rates are reported as emission indices (g pollutant/per kj fuel) and kg/hr. The reports containing the results are presented in the appendix as follows:

- a. Model Summary Report (Appendix A) A statistical summary of the test results presented in an emission index format.
- b. Individual Engine Test Reports (Appendix B) Each engine's test results are described.

The raw data are also in the appendix. These data are catagorized in the following reports: Mass Calculation; Engine Edit Report; Smoke Edit Report; and Concentration Edit Report (Appendices C through F).

2.1 Emission Tests

The F-100-P-100 engines reached an average maximum A/B thrust of 89500 N with exhaust temperatures exceeding 2000° C. These conditions caused minor problems with the probe assembly and sampling systems. The problems did not have any significant effect on the overall results.

The iridium-iridium/rhodium thermocouple (Figure 1) performed for seven of the thirty-nine sample points tested. A maximum temperature of 2093° C was recorded. The extreme vibration and heat destroyed the thermocouple's zirconia shield within the first ten minutes during all three maximum A/B tests. The average for the seven recorded temperatures are used in mass flow calculations. The use of an average temperature did cause some problems with the hydrocarbon emission calculations and these problems are discussed in 2.2. The thermocouple assembly performed well for the minimum A/B measurement. A maximum temperature of only 760° C was recorded for minimum A/B.

The intense vibration loosened the probe assembly's fittings and fasteners. However, no sample line leaks were detected. Minor probe positioner repairs were required after the first minimum A/B test. No other repairs were made for the rest of the tests.

The high water content of the exhaust (approximately 14 percent) caused some difficulties in the analysis equipment. The water was kept in the gas phase by heating the instruments and sample lines in the MEL. All lines were heated to a minimum temperature of 66°C. Nevertheless, a small amount of water condensed in the lines and flowmeters downstream of the analyzers. Water droplets made it difficult to read the sample flow rates.

2.2 Data Observations

The total hydrocarbon levels at Max A/B power were much lower on the first engine tested than on the subsequent two engines. The emission index value for the first engine was 0.6 g/kg and the other two were 5.3 and 5.0 g/kg hydrocarbon index. The value of 5.0 g/kg hydrocarbon index on engine three is the area weighted value. Only seven temperatures were recorded for the Max A/B run. Since only those data points where temperature was recorded could be used to determine mass flow and the average emission index, the mass flow weighted average hydrocarbon index produced a distorted value of 3.6 g/kg of fuel. Therefore, mass weighted value for the hydrocarbon index was not used in the Model Summary (Appendix A).

The values of carbon monoxide emission index, total oxides of nitrogen emission index and smoke number are consistent in both power settings tested. The carbon monoxide levels at maximum A/B were greater than expected. The values were beyond the normal range of the MEL's instrumentation. A special calibration of the high concentration carbon monoxide analyzer was performed using two calibration gases borrowed from Pratt and Whitney. The carbon monoxide values measured at maximum A/B were consistent for all sample points except those on the outer edge of the exhaust plume. Checks of a similar instrument's electrical response indicates that the output electrical signal was still well below the staturation level.

SECTION III

DISCUSSION OF RESULTS

3.0 Emission Factors

The best estimatesF-100-P-100 minimum and maximum A/B engine emission factors have been determined from the emission measurements. Gaseous emissions factors and smoke numbers (Table 2) are means for the three engines tested. In addition, J-79 reactive plume model factors are presented (Reference 2). The "A/B reactive plume" emission factors should be used where indicated. They are an approximation of the actual A/B pollutant emissions entering the atmosphere and are discussed in 3.2.

TABLE 2. F-100-P-100 ENGINE EMISSION FACTORS

Gaseous Emissions

Pollutant	Mode	Emission Index Grams Pollutant Per Kilograms of Fuel	Emission Rate Kilograms Pollutant Per Hour
Pollutant	Mode	RIOGIAMS OF THEE	102 110 12
Total Hydro-	Min A/B*	7.4 (0.1)	39.0 (0.05)
carbons	Max A/B*	3.6 (0.01)	76.2 (0.21)
Carbon Monoxide	Min A/B*	25.1 (4.06)	132.9 (21.53)
	Max A/B*	140.4 (4.06)	2929.9 (84.73)
Total Oxides	Min A/B*	22.3	118.3
of Nitrogen	Max A/B*	5.6	116.4
Parameter	Mode		Smoke Number
Smoke Number	Min A/B*		14
	Max A/B*		6
*Average Fuel	Min A/B	5.8 kg/s	
Flow Rates	Max A/B	1.4 kg/s	

^() Indicates a pollutant emission factor corrected for a A/B plume reaction (see 3.2).

3.1 Analysis of Emission Factors

The A/B exhaust plane measurements must be analyzed very carefully for use in emission calculations. The afterburner has a significant effect on the pollutant emissions especially carbon monoxide and hydrocarbon. Further reaction of these two pollutants occurs in the plume downstream of the engine exhaust noztle (Reference 2). Both pollutants are reduced by chemical reaction at a distance aft of the exhaust plane. There the carbon monoxide and hydrocarbon steady-state emissions entering the atmosphere are much lower than the exhaust emissions reported here.

To estimate carbon monoxide and hydrocarbon steady-state emission factors, previous J-79-G-15 and J-85-G-3 A/B reactive plume tests and models can be used (Reference 2). The results of computations based on these engines are presented in Section II. The emission factors are estimates for a point six meters aft of the engine exhaust plane where steady-state emission conditions exist. The minimum A/B carbon monoxide emissions (25 kg/s) are probably higher than maximum A/B (3.6 kg/s) because of partial oxidation of the emitted hydrocarbons at minimum A/B. At maximum A/B, with a near stoichiometric fuel-air ratio, rapid oxidation of carbon monoxide occurs in the plume along with complete consumption of hydrocarbons. The high maximum A/B carbon monoxide exhaust plane emissions are probably caused by equilibrium dislocation and localized oxygen depletion (Reference 2).

Oxides of nitrogen do not significantly react in the plume (Reference 2). Thus, the exhaust plane oxides of nitrogen measurements can be used as emission factors. The decrease in SN from military (SN = 31) (Reference 1) to maximum A/B (SN = 6) is caused by the combustion of smoke particles in the afterburner flame.

The F-100-P-100 exhaust emission factors should be confirmed using an A/B reactive plume model or downstream measurements. In the absence of this validation, the carbon monoxide and hydrocarbon emissions indicated in Section II should be used for F-100-P-100 emission calculations. This will probably lead to a high emission estimate for carbon monoxide because the F-100's combustor and A/B temperatures are higher than those of the J-79.

REFERENCES

- 1. Souza, A. F., and Daley, P. S., "US Air Force Turbine Engine Emission Survey Volume I", CEEDO-TR-78-3, August 1978.
- Lyon, T. F., Colley, W. C., Kenworthy, M. J., and Bahr, D. W., "Development of Emissions Measurement Techniques for Afterburning Engines," AFAPL-TR-75-52, October 1975.

APPENDIX A

MODEL SUMMARIES

SCOTT ENVIRON USAF TURBINE ENGINE HODEL	NENTAL ENGINE SURMARY	TECHNOLOGY INC. EMISSIONS INVEN	TECHNOLOGY INC. EMISSIONS INVENTORY FREPORT	>-		SET	SET 1628-051-1077	11			USAF COVIN	EPUST DAT	FEFURE DATE 10/24/77/ CONTRACT FOR635-77-0216
ENGINE MODEL	MODEL : F-100				76.51	T LOCATION	* * a.	۶,				ENGINE	1. FAGE 1
					**** CATEGORY		A TESTS ORLY						
EXHAUST	EXMAUST MASS EMISSION INDICES		••										
		•		01 / # -	/ 1000# FUEL		•	•			/ HR	1 1 1 1 1 1	• • • • • • • • • • • • • • • • • • • •
PARAN	TEST MODE	#0 80 8		E I	Ä	O >	C O E	NO.	MA X ALU	£ 4	Z = 3 4	S [] OE	1 COEF VAR
2	• • • • • • • • • • • • • • • • • • •	00	: : : :	!	! ! !	(- 1 6 6 1	! ! !	100	• • • •	! ! !) 	• • • • •	! !
	MIN. A/B MAX. A/B	0 M M	5.34	3.92	7.36 3.65	3.06C 2.646	41.55	10 m m	113.76 252.64	46.65	e 5 • 74 172.25	34.896 127.10	40.7 0 73.57
8		66						သ G					
	FIR. A/B MAH. A/B	0 M M	28.46 154.26	19.07	25.07 140.39	5.20 ⁸ 21.72	20 .78 15.47	(ଜୁଲୀଲା	331.4 7337.3	227.L	292.4 6494.8	56.96 1315.47	19.48 20.25
¥0#		00						00					
	FIN. A/B	0 M M	25.01 5.66	5.52	22.31 5.58	2.789 0.072	12.50 1.29	0 M M	297.80 269.05	226.3b 238.57	261.99 256.80	35.752 16.252	13.69
	#18. A/8	000mm	16.71	12.11	14.32	2.305	16.10	000 € €	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	140.96	167.60	29.260	37.46
. 20			; ;	•) - -) ;	30				* 67 * 51	16.7
	MIH. A/B Mail. A/B	0 m m	6.35	1.35	8.00 1.45	0.081	7.22 5.57	3 m m	98.87	85.45 64.53	\$ 3.44 66.93	7.132 3.810	7.63
X 0 X	MIH. A/8 MAH. A/8	00000						333M#.	25.60	18.41	21.01 42.17	3.984	18 8 9 9 6 13 3 5 3 9

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURMISHED TO DDG

SCOTT ENVIRONMENTAL TECHNOLOGY INC. USAF TURBINE ENGINE EMISSIONS INVENTORY ENGINE MODEL SUMMARY REPORT

ENGINE MODEL : F-100

The state of the s

ENGINE 1, PAGE

SESSON SE

TEST LOCATION : P

MEASURED FUEL FLOW & SMOKE NUMBER :

	•	•	**************************************	AS. FUEL	Ft.06 -	FUEL FLOS - 8/HR	•	•	. SPORE NUMBER	SPORE	NUMPER		***************************************
	TEST MODE	N 0.00	HAX	MIN MEAN	P V	STN 0 Of V	STND & COEF DEV VAR	4 S B O	MAX	MIN	PEAR	STNO	2 COEF
ť		1				1 1 1	* * * * * * * * * * * * * * * * * * * *	1 1	1 1 1 1		11111	1 1	
		0						0					
		a						o					
		0						0					
	HIR. A/8	~	11905	11520		196.4	1.68	~	16.75	11.91	14.50	2.437	16.81
	HAX. A/B	~	47565	43165	*6010	2467.4	5.36	*	7.00	5.64	7.4.9	0.100	11.02

THE PAGE IS BEST QUALITY PRACTICALLY

Manual Region

1

APPENDIX B

INDIVIDUAL ENGINE TEST REPORTS

SCOTT ENVIRONMENTAL TECHNOLOGY INC. USAF TURBINE EMGINE ENISSIONS INVENTORY INDIVIDUAL ENGINE TEST REPORT	ENGINE TE	TECHNO EMISSI ST REP	HOGY INC. ONS INVEN	1081			SET 18	SET 1628-DD1-1077	~		د	REPORT DATE 10/24/77 USAF CCNTRECT FOR035-77-021e	REPORT DATE 10/24/77 Inici for535-77-621e	E 10/24/ 35-77-62	77 1e
SCOTT TEST NUMBER	UMBER	1. TVPE	PE A				TEST DATE	16 : 8/ 3/77	11			ų.	ENGINE I. NUMBER	. NUMBER	-
EMSINE TYPE & MODEL : F-100 EMSINE SERIAL B : PARO160 TOTAL EMSINE TIME : 670 HRS. PERFORMANCE TEST RESULTS : PASS	6 MODEL 1 B : P6 11KE : TEST RES	: F-10 60160 670 WLTS ::	ID HRS. PASS								•	7EST CCCATION : PERA-FLA. 7EST CELE OPERATOR : SCOTT SUPERVISOR :	CCCATION : PERA-FLA. TEST CELE NUMBER : AZ TEST CELE OPERATOR : SCOTT SUPERVISOR :	##-FL#. ER : #2 #ICR : #B ISOR : Z6	76T
AIR FLOW MEASUREMENT METHOD : BELLMOUT.	SUREPENT	AE TRO	0 : BELLA	10UT.3								FORESAI	INSTRUMENT CPERATOR		P. P
TEST ENVIRONMENTAL CONDITIONS	FRIAL C	1 1 1 0 11 0		a a	FINISH		S.	SAMPLE LINE: FLOW RATE: 23 LPM	: 23 LPP			FUEL	FUEL AMALYSIS SAMPLE # :	"~	
TEST TIME (MIL.TIME): IMET AIR TEMP.(DEG.F): ATMOSPHERIC PRESS.(IM.NG) RELATIVE HUMIDITY (%):	CARCATE	E6.F) • 118.E	<i></i>	1200 92.0 0.06 55	1500 90.0 30.02 51			TEMBERATURE : 300 DEG.F Lembim : 100 ft.	[: 300 G	1£ 6 • F		14 T	17PE : JP-4 11.2 CAKEON : 11.2 HYDROGEN WI.2 SULFUR :		65 13
VALC # 24 MO # 20 MO #	GEN HZG/GN DRV AIR!	V AIR!	. 0.0178	28	0.0173							2 2 2	H/C 64110-418-1 C/H FA110-FASS:	F.: 2.E2 SS: 5.94	£5.
7ES7 HODE	RATED	THRUST	FUEL	AIR FLOW A/HR	FIR	F/A	<u>ھ</u> م		0 1	£ 0.5	4 E	0 4	-	ê	KE
MIN. A/8 MAX. A/8		19185					1.785	204.08	340.4	2.33	141.57	ot 17	53.43	16.75	0.0232
EXMAUST MASS EMISSION INDICES	EN15510	1401		# / 1000# FUEL				•	 	# # 1 1 1	34	(1 1 1 1	 	# ! !	
	THC		83	203	MOX	0 1	N62	JHC I	00	203	K O &	9	MC 2	×us	
MIR. A/8 MAX. A/8	• 6				19.44	12.11	1.33	113.76	331.4 4979.C	35654	226.38	140.98	65.40	25.60	

THE RESERVE OF MALE STATE OF THE PARTY OF TH

** AVERAGE CONCENTRATION AND MASS EMISSION DATA ARE AREA-WEIGHTED.

SET 1628-001-1077 USAF CONTRACT FO8635-77-0216	TEST DATE: 8/ 9/77		14.	TEMPERATURE: 300 DEG.F TYPE: JP-4 TEMGTH: 100 FT. MS-70 LENGTH: 100 FT. B5.70 LENGTH: 100 FT. B5.70 LENGTH: 100 FT. B5.70 LENGTH: 200 EG.F TYP-2 LENGTH: 300 DEG.F TYP-3 L	PPF PPF PPF SN MO NOS 4 SPORE	214.96 405.3 2.86 2UC.58 126.11 , 74.47 14.83 c.km. u1 0178.4 11.10 205.02 158.72 50.40 5.44
567 16	TEST DAT			CTICABLE	4 U	14 1.717
THIS PA	OEX I	s best qual regulshed t	Dag o	1200 1200 30.05 30.05 5.	R F/A F/A	410- 310- 00
Y INC. INVENTORY	< <	• \$ \$	BELLHOUTH	5 1 2 4 4 0 5 1 4 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	FUEL AIR FLOW FLOW D/HR B/HR	11520 784800
TECHNOLOGENISSIONS	2. TYPE A	: F-100 680325 385 HRS• SULIS : PASS	T ME TMOD :: CONDITIONS	IEST TIME THIL TIME): INLET AIR TEMP LIDEG.F): AIMOSPHERIC PRESS.(IN.MG) RELATIVE MUMIDITY (%): INLET AIR HUMIDITY —	200	13600
ONNENTAL E engine Engine te	NUMBER	E NODEL AL B : P(E TIME : TEST RES	ASUREMENT WMENTAL (INCET TIME THIL TIME): INLET AIR TEMP. (DEG.F) AIMOSPHERIC PRESS.(IN.M. RELATIVE MUMIDITY (%): IMLET AIR HUMIDITY —	# W E E E E E E E E E E E E E E E E E E	
SCOIT ENVIPONMENTAL TECHNOLOGY INC. USAF TURBINE ENGINE EMISSIONS INVENTORY INDIVIDUAL ENGINE TEST REPORT	SCOTT TEST NUMBER	ENGINE TYPE & MODEL : F-100 ENGINE SERIAL B : P680325 TOTAL ENGINE TIME : 385 HRS- PERFORMANCE TEST RESULIS : PASS	AIR FLOM MEASUREMENT METHOD : BELLMOUTH TEST ENVIRONMENTAL CONDITIONS :	TEST TIME TANGENER ATMOSPHER RELATIVE RALLATIVE TANGENER RELATIVE RALLATIVE	TEST HODE	HIM. A/B

. AVERAGE CONCENTRATION AND MASS EMISSION DATA ARE AREA-METCHTED.

16.41

96.26 64.53 NG2

162.90

259.1C

35329

SCX

9

X O N

C02

ខ្ញ 318.7

7HC 96.8U 252.64

8.35 1.36

14.14 4.20

22.49

3667

27.67

MIN. A/8

THC 8.4.1

CO CO2 NOX NO NO?

ខ

EXMAUST MASS EMISSION INDICES :

年 / = -----

REPORT DATE 10/24/77 USAF CONTRACT F06635-77-0216	ENGINE 1, NUMBER 3	TEST LOCATION: PERK-FLA. TEST CELL NUMBER: A2 TEST CELL OFFRATOR: MB SCOTT SUPERVISOR: 261	INSTRUMENT OPERATOR : DO Smuke operator : Fl	FUEL AMALYSIS SAMPLE B: TYPE: JP-4 bI.Z CARBON WI.Z HYDROGE WI.Z HYDROGE WI.Z SULFUR M/C RATIG-AI	15	
				Š	23	
				7 016.f	-	
11	111			: 23 LP : 23 LP 100 FT.	PPR 299.8	
SET 1628-001-1077	TEST DATE : 8/18/77			SAMPLE LINE: FLOW RATE: 23 LPM TEMPERATURE: 300 DEG.F LENGTH: 100 FT.	PPMC 107-62 1059-53	
138	1EST 0			ر. م	1.822	
				\$.015	
				FINISH 1400 92.0 30.01 54 0.0173		
* a 0			H. D	Z	8/HR 784800 784800	
6v INC. S invent	<	RS.	: BELLMO	5 : START 1000 86.0 % 72 72 0.0192 FUEL	11905 17565	
TECHNOLO Emission St repor	3. TYPE A	: F-100 80301 130 H ULTS : P	ME THOD	0ND1710N ME): E6.F): (1N.H5) (1.): (1.): (14065	
ENGINE TE	JMBER	L MODEL L B : Pb. TIME :	SUREMENT	VIROMENTAL CONDITION TIME ANTA-STRESS. (IN. HE TARE HUMBOLTY AND TARE HUMBOLTY AND THRUST AND THRUST	2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	
SCOTT ENVIRONMENTAL TECHNOLOGY INC USAF TURBINE ENGIME ENTSSIONS INVENTORY INDIVIDUAL ENGINE TEST REPORT	SCOTT TEST NUMBER	ENGINE TYPE & MODEL : F-100 ENGINE SERIAL 0 : P680301 TOTAL ENGINE TIME : 130 HRS. PERFORMANCE TEST RESULTS : PASS	AIR FLOW MEASUREMENT METWOD : BELLHOUTH	TEST ENVIRONMENTAL CONDITIONS: TEST TIME (MIL.TIME): MALET AIR TEMP. (DEG.F): ATMOSPHERIC PRESS. (IN. HG): RELATIVE HUMIDITY (A): INLET AIR HUMIDITY (A): 16M HZOJGH DRY AIR): TEST HODE RATED THRUST FI	HJN. A/8 HAX. A/6	

	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	001 /	DE FUEL		*				dH /			
	THC CO CO2 HOX NO NO2	00	C02	HOX	0	N02	7 H.C	00	C02	NON	C .	102	202
•	1 1 1	1					1	1 1 1	1 1 1 1		1		
MIN. A/8	3.92	3.92 19.07	3093	25.01	16.71 8.31	8.31	46.65	227.6	36817	297.86	36817 297.86 198.93	18.85	19.03
MAX. A/B	5.01	5.01 154.26	2877	5.66	4.16	2877 5.66 4.16 1.50	238.39	7337.3	136850	269.05	238.39 7337.3 136850 269.05 197.72 71.33 76.03	71.33	76.03
AVERAGE CONCENTRATION AND MASS EMISSION DATA ARE MASS-WEIGHTED.	ENTRATION	AND MASS	EM15510	ATAO MO	ARE MASS	-WE 16H1EP.							

3F IN

STOP REPORT

THE TEN CONTY TO THE TO THE TRACTICAL AND THE TEN TO THE TEN THE TEN

Marin

17

EXMAUST MASS EMISSION INDICES

APPENDIX C

MASS DATA CALCULATIONS

. . . .

2

ت د

S 7 A R 7

..........

SCOTT ENVIRONMENTAL TECMNOLOGY INC. USAF TURBINE ENGINE EMISSIONS INVENTORY EDIT REPORT - MASS DATA CALCULATIONS

.

##21) FUEL FLOW = 2.25 FUEL FLOW = 100 FUEL FL	F / HR X H - VEL 729-06 623-13	MASS FL. (RHOOV) (RASS FL. (RHOOV) (RHOOV) (RHOOV) (RHOOV) (RHOOV) (RHOOV) (RHOOV) (RHOOV) (RHOOV)	1N.H2U = 7 FLOW = 7 1PC PPMC 70./3 169.61 376.68	75968G - 87HR CC PPP 168-99 383-52 408-06	202 203 203 203 203 203 203	PS16 MOX PPH A3.99 157.28 277.03			1N.H6 .015)X(
**************************************		RASS FL. RRHOW) 1.3961 2.1424 1.7327 1.7768	76 PP MC 70 - f3 164 - 61 376 - 68	CC PPP 108.99 383.52 408.06	C02	NOX PPM 43.99 157.28	26.15 26.15 26.15 26.15	NC2 PPM 17.39 58.83		•
-12.7 232.3 18.6 -9.8 b96.9 30.8 -5.7 1256.8 30.5 5.5 1267.7 31.5 9.8 742.7 29.9		1.3961 2.1424 1.7327 1.7768	70.73 164.61 112.29 376.68	108.99 383.52 408.06	. 81 2.92 4.35	43.99	26.60 98.45 201.39	17.39	SA SAORE	
-9.8 b96.9 30.8 -5.7 1256.8 30.5 5.5 1267.7 31.5 9.8 742.7 29.9		2.1424 1.7327 1.7768	164.61 112.29 376.68	38 3.52 408.06 5.79.06	2.92	157.28	98.45 261.39	58.83	10.00	.0232
5.5 1267.7 31.5 9.8 742.7 29.9 12.5 290.4 19.4		1.7768	376.6B	30.94.5				15.64	23.00	.0232
9-8 742-7 29-9 12-5 290-4 19-4	20.5107 400			>>	3.50	509.69	118.75	90.06	23.00	-0232
290.4 19.4	_	2.0443	354.13	425.16	1.78	18. 401	42.21	62.66	11.00	-0232
7 70 7 100	318 822.37	1.4708	166.47	94.46	.66	19.21	16.82	22.39	10.09	.0232
D.C.7 01.17 07.1		2.2058	205.06	554.55	16.	57.43	29.31	28-32	19.00	.0233
-9.9 972.6 30.7		1.9136	242.70	429.01	2.44	138.45	15.44	£2.46	14.00	-0232
-5.9 1351.7 30.4		1049*1	19.Co	~ R * F # 1		321.56	2c 2.99	20.12	30.00	-0232
5.7 1110.2 50.7		1.8251	228.08	6 t 8 . 0 4	95.5	200-47	114.96	85.51	21.00	.0232
11 -30 V-(355.5 50.1 10125 12 -10, 12.4 51.5 15.8 0025	00-1161 611	79977	162.00	70.77	c1:1	22.82	26.74	50.03	00.01	20220-
-0 1184.9 30.4	_	1-7062	1.24	65-81	3 - 77	306-57	254.58	51.99	31.00	-0232
AVERAGE : NUM. 735-3 27-0 .0014	314 1453.73	1.7628	195.46	320.36	2.24	136.74	66.24	50.50	16.75	-0232
MASS-EGRTD.			204.06	340.42	2.33	141.57	6A.13	53.41		
CALCULATED F/A RATIOS FOR ABOVE AVERAGE	AGE CONCENTRATIONS		: AREA-WGHTD.INUM)	11	. 011	MASS-#6HTD.	6нТО. =	210.		

THIS PAGE IS BEST QUALITY FRACTICABLE FROM COPY FURNISHED TO DDC

. HID-POINT - NOT INCLUDED IN AVERAGES

Mark .

1

* 50X *

#---- NO2 ---# #/1606# #/HR

8/100C# #/HR

*--- NON ----

SH/S

#/1C00#

#/1000¢ #/HR

#/1000# #/HR

#7.1000# #7.HR

25.60 25.60

84.12

7.22

143.66

12.34

227.17

19.56

35665.

324.9

27.90

113.51

9.75

AREA -VENTO.

3063. 3062.

35654.

226.38

١

•

*

>

٠

-2 C

v

.

HIS PAGE IS ROM COPY PU	BEST		10 10	DD	U	_	_	_				0232	02 31	.0231	.0231	0231
	јм.н6 .6>7	3MONE	SA							00				00-1		00.
FUEL SULFUR :	23.2 J	402	E .	37.93	34.17	68.56	36.44	52.91	34.40	24.11	66.93	78.30	76-91	52-12	20-92	75.73
FUEL	PTS/7 = ACTUAL F/A R	0	K	59.64	106.86	251.76	246.32	121.93	19.12	36.25	11072	235.23	231.78	107.95	54.24	240.71
2 2 2 2	PS16 ACTu	X O N	E	97.57	201102	320.32	331.22	179.84	54.02	70.36	297.07	313.51	308.69	10.041	50.66	316.44
106A7M1	3	703	*	10.14	11.63	13.64	13.53	13.10	45.5	49.64	13.06	15.18	13.16	12.12	7.48	13.71
M/C RATIOGATMI	P13 = 759600. #/HK	0	7 0 E	1842.79	1861.57	1208-86	6818.22	\$800.00	1331.32	1680.64	1944.06	5083.79	1924.51	6253.32	796.85	6150.33
58 : P68/1160	IN.H2U FLOW = 7	1HC	D M dd	22.91	426.24 1	20.54 1		14.39			28.32			5.45		18.57
CNGINC ON P	PS2 = 47.79	HASS FL.	IRHOOV	0000	0000.	•0000	0000°	0000	00.30	0000	3030*	0000.	.0000	.0030	.3630	.0630
FUEL :	AH/	EXH.VEL	F 1/5E C	00.	00.	00.	02.	00*	• 00	03.	000	C13*	00.	00.	20.	00.
	PT2 = 1.95 IN.M20 FUEL FLOW = 43165.4	DEN S.	+ RHO	0000	*0000	0000	0000	.0000	0000	0000	0000	0000	0000	0000	.0000	.0030
IAT : 91.3 DE 5.F	T2 = 1,	1019	PSIA	30.9	32 - 7	30.7	30.8	32.2	25.1	20.7	32.2	30.2	30.2	32.2	28.7	30.4
4		TEMP.	DE 6.F	0.	•	0.	0.	0.	•	•		0.	0	0	0	0.
ENGIME TYPE : F-100 BP : 30.04 IN.HG IA ************************************	.00 IN.M20	SAMPLE POINT .	LOCATION	• 1010.3	• 30 11 -0	- C	• 50 . b. 2	•30. 10.8	+30. 14.1	-3014-3		• •	. •	-30, 10,9	-30. 14.1	.30.
EN61ME 8P : 1	114	. SARF	0	-	٠ ~		•	•	•	^	. ≪	•	0		12	• 13

* HIG-POINT - NOT INCLUDED IN AVERAGES

• X0X • BINR

> 8 H 8 1 6....

8 /HK -----

> S/HP 238.37

#7100C#

B/HR

4/16364

**/

#/1000# 115.35

4/11

/ 1000 m

**** THC ---*

MASS EMISSIONS

0.079.0

.00

25.71

900

AREA-WGHTD. MASS-WGHTD.

***** 2950. 127353.

5.52

ာ

;

7

7

œ

9 2

44

1

٠,

#--- KO# ----

**** 503 ---*

---- 03 ----

9----# 1691/#

#---- NO 5 ./16058 1 - 1 - 1 - 1 1.56 00.

.0231

6.67

54.03 **.**00 .000

198.30

11.08

6.8U 3.76

61.35

30 no •

00.

.0030

30.

o.

MASS-BENTO.

AVERAGE : NUM.

.00

. J 144.27

MASS-MEHID. =

.361

AVERAGE CONCENIRATIONS : AREA-WGHID.INC.

CALCULATED F/A RATIOS FOR ABOVE

99.87

173.42

*.02 •00

Z

∍ Œ

œ

SCOTT ENVIRONMENTAL TECHNOLOGY INC. USAF TURBINE ENGINE EMISSIONS INVENTORY EDIT REPORT - MASS DATA CALCULATIONS

ENGINE TYPE : F-100 BP 30.04 IN-K6	0 : 141	: 88.5 UEG.	UE G.F	FuEL :	ENGINE SH	SK : Pe8C325	S H/C RATIONATME		2.02		TEST TYPE FLEL SULFUR :	30 ° ° 3¢	•
***** ********************************	1. 1/8	LIMBUST	•	13600 +)	****								
PI1 = .00 IN.H23 EPR = 1.717		PT2 = 2,00 FUEL FLOW = 11		# /HB	PS2 = 51.63	IN.M2B FLOW =	P13 = 784500. B/HR		.0 PS16	PTS/7 = 21+3 ACTUAL F/A RATI: =	21.3 IN.H6	.015	
* SAMPLE POINT *	TEMP. DE6.F	P101 P5 IA	DENS.	EXH.VEL FT/SEC	HASS FL.	THC PPHC	0 4	202	NON PP#	0 d d	802 PPR	SN SN	KE
1 +3011.1	4.600	32.1	.0014	1654.35	2.2338	230.61	318.83	1.85	122.48	62.76	59.70	13.00	.0231
2 +30, -8.6 1 +10, -4.0	929.6	35.2	.0011	1924.34	2.1909	250.54	387.72	3.26	210.39	272.67	92.79 83.48	16.00 25.00	.0231
r un	1410-1	35.1	.000	2233.35	1.8733	114.07	467-16	4.4	324.96	234.95	10.04	22.00	.0231
5 +30° 8•8	1032.2	34.7	100.	1980.45	2.0877	321.71	570.56	2.80	171.09	35.97	94.44	8.00	.0231
7 -30,-11.1	655.7	34.1	.001	1688.55	2.3805	406.79	56.2.02	1.86	126.09	54.01	12.08	12.00	.0231
8 -30, -8.6	1256.2	34.6	•0000	2128-68	1.9456	259.14	686.25	3.83	250.64	143.35	107.29	14.00	.0251
9 -30° -5°0 10 -30° 5°2	1371.5	35.9	6000°	2235.00	1.9276	13.30	125.96	2 C C	365.96 272.20	318.74	108.95	21.00	.0231
	599.0	26.2	.001	1387.71	1.9075	266.22	229.91	1.12	16.26	31.63	* 4 . 4 3	7.00	•0231
12 -30, 11.1	390.5	22.5	9100	1076.58	1.7699	158.38	97.21	95	37.93	18.01	19.92	200.00	.0231
• 13 • 30• • 1	1269.1	**	\$000°	7124.61	1.9203	10.0	5 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70.4	10.100	200000	26.47	70.07	1630+
AVERAGE : NUM.	949.3	32.0	• 00 12	1814.61	1.9923	208.81	397.11	2.86	201.12	127.48	73.64	14.63	.0231
	•					214.96	₩C5.3G	2.8t	200.58	176.11	74.47		
CALCULATED F/A RATIOS FOR ABOVE AVERAGE	105 FOR	ABOVE A		CONCENTRA	CONCENTRATIONS : AREA-WGHTD.INUM) :	EA-WGHTD	- (NUN)			MASS-WGHTD. =	•10.		

MID-POINT - NOT INCLUDED IN AVERAGES

MAILS PALES IS BEEN QUALITY PRACTICULAR THE OF THE PARTY PARTY TO THE

#/HR

/HB

4/1005#

*--- NO ----

#--- NON ----

SH/E

#/1000#

/ HE

0 D D C C

E / HR 1 1 1 1

#/1000# 3068.

*--- C03 ----

#/1000# #/HK

/HR 94.11

8/1000 8.17 8.40

---- THC ----

MASS ERISSIONS

* 50X

18.41

95.20

8.26

164.81

14.31

259.10

22.57

35346.

312.5

27.13

96.80

AREA-UGHTO. MASS-WENTD.

z

⊃ ≃

z

0

SCOTT ENVIRONMENTAL TECHNOLOGY INC. CLAF TURBINE ENGINE EMISSIONS INVENTORY FOLT REPORT - MASS DATA CALCULATIONS

BP : 30.04 IN.H6	04 IK.H6	IAT ::	88.5	88.5 056.6	FUEL:	7 - 2	# - 4 P - 1) I	HATTOTAL	: 2.62		FUEL SULFUR		≱ € ∪⊔
Ø	**************************************	8/4	1 THR	THRUST = 209	20500 #)	:								
911 = EPR :: 1	.00 IN.H20	FUEL	PT2 = 2.1(FUEL FLOW =	PT2 = 2.10 JN.H2D EL FLOW = 47300+ R	7 118	PS2 = 51.33	IN.H20 FLOA :	P13 = 781200. #/HR	٠.	P 5 1 G	F 1577 A ALTERNA F 7 F 7 F 7 F 7 F 7 F 7 F 7 F 7 F 7 F	= 20.6 IN.HG	IN.HC	
. SAMPLE NO L	SAMPLE POINT + NO LOCATION	FEMP. DEG.F	P101 P51A	S. JS.	EXM.VEL FT/SEC	MASS FL.	7H2 6FHC	33 33	793	\$ Q X 1	3 7 7 7 1	S Je B B B B	* * * * * * * * * * * * * * * * * * *	Sh MUNE
¥+ 1	014.1	0.	31.4	.0000	00.		15.22	7569.55	12.45	129.07	h) - 35	47.74	36.€	.0231
× >	+ 30 1C . 9	0.	33.2	.0000	00*	0070.	4445.25	10703.45	9.00	100001	139.72	20.85	14.00	.0233
# M	06.3	0.	31.3	0000	00°		917.FB	10706.24	11.85	245.66	710.64	50.64	12 - OC	.0231
M •	0, 6.4	Ð.	31.1	0000	00.		113.43	10698.93	12.54	275.At	735.05	10.83	5. OC	16 201
₩ •	0.11.0	•	33.5	0000-	00.		\$11.24	10764.31	13.94	212.31	102.03	49.64	20.4	.0231
	0, 14.1	•	29.6	0000	00.	n000·	2.25	3942.94	61.8	c 5 . 18	40.10	***	30.1	.0231
K	0.11-10	0.	33.2	0000	00.	0000.	*18.78	10 70 1.99	11.19	158.67	115.01	43.65	13.00	.C231
×-	010.8	0	32.3	0000	40°	ວບວ ດ•	31.37	10.703.07	12.54	314.63	60.4445	63.14	Ja •	0000*
9 -3	D6.3	0.	31.2	0000	00.	ວດລຄະ	9.73	10766.46	12.44	310.62	11.057	14.65	30.1	.0231
10 -3	0, 6.4	•	31.3	0000	00.	າຕາດ•	74.69	10703.85	12.66	311.72	245.50	66.42	30.00	. C2 31
11 -3	0. 11.1	•	32.7	0000	99°	2000.	131.67	50.05901	15.15	158.71	113.50	44.13	10.1	. 0231
12 -3	0. 14.1	•	20.5	10000	09.	3000.	104.26	2282.83	4.10	33.01	3.61	69.34	30.	.0231
* 13 • 30	17 0	•	31.1	00 00	05,	0000	20.5	16434.04	14.51	17.0.40	740.50	5	7	13 (1)

75.61

* SOX *

- - - NO - - - - # ATE

#/1000# #/HK

#/1000m #/HR

64.53

1.56 .i.t

> ر د .

٠. ب

.00

.0.

2860. 135246. 3. 9.

#/1000# B/MR 151.55 7168-2

5.3% 252.6%

AREA-WENTD. MASS GHTD.

#71000B 87HR

MASS ENISSIONS

) (o or

0 ≵ ₩

. 92 31

36.04

265.02 154.72 .00

564.91 9173.56

6000°

53.

.3000

30.9

•

MASS-BEHTD.

AVERAGE : NUM.

nor•

FASS-WUHTD. :

11.15 .36

CALCULATED F./A RATIOS FOR ABOVE AVERAGE CONCENTRATIONS : AREA-MGHTG.INUM) ::

[.] MID-POINT - NOT INCLUDED IN AVERAGES

The second secon

USAF TURBINE ENGINE EMISSIONS INVENTORY Edit Report - Mass data Calculations	EMISSIC	ONS INVENTORY Leulations					
	•	•		A TART DUR			
ENGINE TYPE : F-100 BP : 30.02 IN.H6	IAT :	IAT : 89.0 DEG.F	FUEL	ENGINE SN : PESCSON	HZC RATIOLATM) : 2.02	TEST TYPE : A FUEL SULFUR : . UM &	A .U. 2

	sesse RODE 4 - MIN. A/8	. HR	THRUST = 14065	-	****									THE PRE
<u>.</u>	P.T.	2 = 2. FLOW =	PT2 = 2.00 IN.H20 FUEL FLOW = 11905. #/HR		PS2 = 51.92 AIR	IN.H20 FLOW =	PTS = 7F48UG. #7HR	0	PSIG	PTS/7 ACTUAL F/A	= 24.4 RATIO =	1N.H6 .015		is sy
9		1010	DEN.	I AN I MA		1	ou	202	NO.	O 2 *	40 Z	* SMG	#E	GE Y
0.66.6	ها ه	6 × 1	LRMOD	F 7.75E C	-	PFHC	9	,,	7 T	E G G	PFR	3	٧/٦	T1
	. 1			1	•				1	1 1 1 1	1 1 1 1 1	1 1 1 1 1		s 1
11.2		2.0	0017	17.09		148.94	599.59	2.04	151.52	41.26	10.24	7.00	.0231	310 24 I
7			0100	20.82,33		130.66	443.10	3.70	266.42	164.63	101-79	12.00	.0231	ST SI
		4.57	K C C C	2249.61		34.40	224.43	5.15	6644	36.89	107.64	16.00	.0231	Q
	. ~	200	8000	2247.18		101-16	532.46	4.56	359.67	235.99	123.68	17.00	.0231	U D
	٠,	7.00		1001		237.78	461.14	2.46	162.30	74.63	67.67	ა 0 • 6	.0231	II TO
		200	8100	1145.56		146.60	200.11	1.24	19.96	37.86	42.10	03.	0000	IT D
		7 a 2	4100	1612.46		163.34	278.23	1.85	145.99	02.30	63.61	2.00	.0231	D(
			0100	2071.49		119.73	410.72	3.66	259.90	164.25	59.55	10.00	.0231	PF l
2		0 4	HO DO	22.76.20		7. 2	104.48	4.89	446-79	362-17	84-62	21.00	.6231	<u>.</u>
		7 C	WO'UD'	2236.13		25.35	279.25	5.11	361.64	200.26	95.44	20.00	.0231	:1 -
36.1	, ~	10.2	-0012	1708.89		82.36	220.18	90.2	153.32	46.55	56.77	10.00	.0231	1(
2 2 2		22.9	.0013	1216.13		bt. 70	102.68	. 89	84.18	39.05	25.09	• • DC	.0231	À
1256.6	و. ا	35.0	.0009	2135.92	1.9542	1.24	61.43	4.31	450-15	344.04	14.11	25.00	.0231	₽F
-	!		1	111111	•				1111	1 1 1	1 1 1 1			<u>r</u>
101.8	8	32.5	100	1877.37		103.48	296.43	3.13	243.02	163.49	19.52	11.91	.0231	
))	,	!	:			107.62	249.85	3.16	239.50	159.9B	19.52			

. HID-POINT - HOT INCLUDED IN AVERAGES

* SOX *

.015

MASS-WGHTO. =

.010.

CALCULATED FIR MATIOS FOR ABOVE AVERAGE CONCENTRATIONS : APEA-BGHTG.INUM) =

19.03

8.21 97.70 #---- NO2 ----

8.31

198.93

200.86

16.87 16.71

298.56 247.8E

25.08 25.61

36831.

221.0

19.62

44.32

3.72

AREA—WÉHTD. MASS-WÉHTD.

#/1000# B/HR

#/1008 #/HÉ

#---- C02 ---# #/1000# #/HR -----3094.

#/1000# #/HK

E/HR

11000

***** THC ----

NASS ENISSIONS

98.87

SCOTT ENVIRONMENTAL TECHNOLOGY INC. USAF TURBINE ENGINE EMISSIONS INVENTORY EQIT REPORT - MASS DATA CALCULATIONS

	TWIS PAG FROM COP				TY DD	r P	R/	C	TI	C.	B									
				ONE	-0232 B	.0232	.02 32	.*0535	.02 32	.02 32	.0232	.0232	-0232	.0232	-0232	.0232	•0232	1 1 1 1	.0232	
	PE : A . 138	•	1 N - HÉ - 06 1	SN W/A	7.06	11.00	7.00	8.00	10.00	2.00	17.00	00.4	30 •	10.00	3.00	2.00	5.00		7.00	
	EST TYPE FUEL SULFUR :		25.2 (A110 =	F dd	35.04	55.42	15.29	73.15	8-13	53.28	49.84	92.51	75.42	74.43	59.37	30.58	£8.63	11111	57.38	49.36
•	FUEL		PT5/7 = 25.2 ACTUAL F/A RATIO =	2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	123.35	198.50	237.42	228.99	110.18	* 3 . Oè	106.95	733.56	258.77	264.99	98.85	3.86	242.98	1 1 1 1 1	159.09	155.50
•	79*2		PSIG ACTU	X E	164.25	253.92	312.71	36.2.34	118.31	96.34	156.03	326.07	334.19	339.42	158.22	34.46	311.61		216.62	204.86
•	HAC PATIOIATMS :		<u>ت</u> •	200	13.28	10.56	12.10	12.36	10.46	12.00	12.77	11.96	12.75	13.14	13.19	3.49	12.73		11.51	11.76
m	_		PI3 : TB46UJ. #/HR	0 d	10 79 9.24	17.128J1	10843.73	10865.90	10485.55	4130.34	169C 3.00	10908.40	10916.91	20.86.01	10.937.79	3387.24	10841.42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9654.95	9843.52
z >	175 P68C3C1		1N+H2U FLOW =	PPHC				219.89			29.37		_	_	172.67	59.20	63.42	1	550.05	1059.53
C 0 N 1 .	#GIME SN	••••	PS2 = 53,74	PASS FL.	1,3195	1.5347	.9677	1.0960	1.2643	1.0531	.0000	30:00*	.0000	.0000	303 0 *	3C0O.	1.1107		1.1795	
•	FUEL :	206 75 # 1	.HZ0 P.	EXH.VLL F 1/5EC	28 35.61	2842.70	2853.55	3164.58	2959.06	3056.45	07.	67.	00.	3.	00.	03.	3051.38		2952.11	
•	89.0 Of 6. f	CIMBUST :	# T56	DEMS.	.0005	.0035	.0003	.0003	.000	.0003	.3030	.0000	0000	.0000	.0000	.0000	*000°		.000	•
•		7	PT2 = 1.80 IN FUEL FLOM = 475	P101	12.7	33.1	27.3	31.1	33.1	29.6	33.1	30.7	36.7	31.2	32.0	19.4	30.6		30.3	1
	30 IAT :	K. A/B	2	16 MP. DE 6. F	2787.A	2759.6	3687.7	3812.7	3024.2	3785.9	c.	•	•	0.	0	2	3596.3		1309.7	
	EMEINE TYPE : F-100 8P : 30.02 IM.H6	****** **** *** *** *** **** ****	.00 34.420 3.847	* SAMPLE POINT * NO LOCATION	0.74-014	3010.7	*306.2	• 30 · 6-2		.30, 14.0	-3014.9	-3011.6	-307.2	-30. 5.4	_	-10. 15.0			100000	
	ERGINE 69 : 30	:	F11 ::	PARRY .	-	• ^	, ~	•	· in	ص ه		•	•	. 61	-		M		ANFRAGE	

* MIG-POINT - NOT INCLUDED IN AVENAGES

76.03

71.33

1.50 1.46

197.72

4.16 3.96

259.05

5.66

7337.3

154.26

5.01 238.39

APEA-VENTO.

59.84

* 50X *

#---- NO2 ---0 #/1000# #/HP

3M78 80001/8

#---- 40X ----

#/1635# #/HP 2867. 136856. 2867. 136391.

2 I / R

Œ :

/1000

--- DML ---

MASS ENISSIONS

•---- 00 ----# / I COD#

*---- CO3 ----

.067

MASS-WEH10.

.065

CALCULATED FIA RATIOS FOR ABOVE AVERAGE CONCERTRATIONS : AREA-WGHID. (NUM) :

MASS \$ 10P Į

-

2 3 3

_ ¥

THIS PAGE IS BEST QUALITY PRACTICABLE FROM CORY PURSISHED TO DDC

APPENDIX D

ENGINE EDIT REPORTS

ENGINE I. NUMBER

81 3/17

••

TEST LOCATION : PENA-FLA.

•
1657
Ξ
_
_
TYPE
7
_
-
œ
Ξ
₽
5
RUMBE A
-
2
1651
_
_
1103

SCOTT ENVIRONMENTAL TECHNOLOGY INC. USAF TURBINE ENGINE EMISSIONS INVENTORY EDIT REPORT - ENGINE TEST DATA

	HPS.	PASS
_	Ť	۵
ĕ,	6 70	**
7 2	٥	Ň
Ft : F-103		RESUL 1
		ž
HODEL H : P(
<u> </u>	ĭ	TEST
	Ξ	Ë
٦ ټ	بية	
TYPE L SERIAL	Ξ	ñ
ENSINC TYPE LENGINE	ENGINE TIME	PERFORMANCE
ں پ	·	Ē
ENS INC	TO 7 AL	2
5 3	õ	2
W W	-	۵

CHARME IVE & MODEL . C. 100				ARAL RES COTLAND - CAL	
ENGINE SERIAL # : P680160				7ESI CELL NUMBER : A	A 2
TOTAL EMBINE TIME : 670 HPS.				TEST CELL OPERATOR : 1	••
PERFURNANCE TEST RESULTS : PASS				SCUIT SUPERVISOR :	••
				INSTRUMENT OPERATOR : I	••
AIR FLOW MEASUREMENT METHOD : BELLI	HOOL			SMONE OPERATOR :	••
PEST ENVIRONMENTAL CONDITIONS :			SAMPLE LINE :	FUEL ANALYSIS :	
15	TART	FINISH	FLOW RATE : 23 LPM	SAMPLE # : 1	
TEST TIME IMILATIMED :	200	1501	TEMPERATURE : 300 DE6.F	TYPE : JP-4	
	92.0	0.04	LENGTH : 100 FT.	MI.Z CARBON : 8	
	•00	30-02			=
RELATIVE NUMIDITY 153 :	5.5	5.3			
INLET AIR NUMIOITY -					
16M H20/6M DRY A:R) : 0.0378	178	0.6173			

... 2.02

NO22LE OPEN.

115/117 661

P157P17 T0TP

0£6.F

DE 6 . F 91

JH. H

----P13 C07P P516

> 18.H2C 111111

IN.HZU #12 C3 1P

18.H20 PT1 C01P

N2 SPEED RPM

SPECU

FUEL BINR

THRUST

RATED POWER

FEST MODE

FS2 C1SP

----m

22

1713

23.3

48.23

2.25

12735 12760

6966 9970

11645 43165

12945

85.65 14.42

To the William Parcenting

MIN. A/B

SCOIT ENVIRONNENTAL TECHNOLOGY INC USAF TURBINE ENGINE EMISSIONS INVENTO EDIT REPORT - ENGINE TEST DATA	MMENTAL ENGINE - ENGINE	TECHNOLDI Emission: Test dai	67 INC. S invento ta	P 4		^	fT 162e-	SET 1626-001-1077			, S	REF COLLRA	REFOLJ DATE 10/24/77 USAF CGNTHACT FO6635-17-C216	7-6216
SCOTT TEST NUMBER	UMBER	Z. TYPE A	<			16.5	DAPE :	TEST DATE : 67 9/77				ప	Entine 1. NUPBER	7 A B B B
ENGINE TYPE C. MODEL : F-100 ENGINE SERIAL B.: P660325 TOTAL ENGINE TIME : 385 HRS. PERFORMANCE TEST RESULTS : PASS	L # 2 P6 L F : P6 TIME : TEST RESI	: F-100 :80325 385 HA ULTS : PA	• W S								1	57 LOCAT1 TEST CE TEST CE 5COTT	TEST LOCATION : FEWA-FLA. TEST CELL NUMBER : A2 TEST CELL CPERATOR : .	LA. A2 : MF : 261
AIR FLOW MEASUREMENT METHOD : BELLHOUTH	SURENENT	ME THOS :	: BELLMOU	I								INSTRUME SMU	INSTRUMENT OPERATOR	
TEST ENVIRONMENTAL CONDITIONS :	WENTAL C	OND IT IONS					SAMPL	E LINE :				Full	FUEL ANALYSIS :	
JEST TIME GMIL.TIME)	CHIL.TI	HE) :	START 900	L	F INISM 1200		FLO	FLOW RATE : 23 LPF TEMPERATURE : 300 DEG.F	23 LPF : 300 D	£ 6. F		14 P. P.	1 1 1 -4 - 2 :	
ATMOSPMERIC PRESS. (IN.MG)	IC PRESS	. (14.H6)	84.0 30.03	. *	93.0 30.05		LE X	LENGTH : A30 FT.	F1.			7. 7.	.I. CARFOR :	85.70
MELATIVE HUMIDITY (E) INLET AIR NUMIDITY -	HUMIDITY HUMIDIT	 	ť		8 5							7 · J · A	wis surfue :	80.0
1 29 20	(GM M20/6M ORY AIR)	V AIR) :	0.0178	0	0.0183							CZH KI	CZH KATIC-MASS:	20.00
TEST MODE	A A TEO	THRUST	FUEL FLOW	N. SPEED RPN	NZ SPEED RPM	P71 C01P 1N.H20	P12 C17P IN•H20	P52 C15P	67 P P P P P P P P P P P P P P P P P P P	P15/P17 101P	112	175/117 661 060.E	NG22LE OPEN.	
MIR. 8/6 MAK. 8/6		13600	11520	10130	12990		2.00	51.63		21.3	28.8	1712	217	

The second secon

TRANS CORS PER TS POST CHILLIPTY PRINCIPLES

REFURI GATE 10/24/77 USAF CUNTXACT FOB635-77-U216	ENGINE 1, NUMBER 3	J	INSTRUMENT OPERATOR : DO SMOKE OPERATOR : FL	FUEL AMALYSIS SAPPLE # : 3	TYPE 1 JP-4	 . <u></u> .	PATIO-ATER	2	20
R USAF CONT		1651 LOCA 1657 7651 500	357.241	FUEL	144	3 4	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1709
								712 C11 DE6.6	8 60 00
					0f 6 • F			P15/P17 101P IN.HG	24.4
~	=			23 LPM	300	•		P13 C07P PS16	
-531-107	c/18/77			SAMPLE LINE : FLOW PATE :	TEMPERATURE : 300 DEG.F	•		PS2 C1SP In.H2G	51.92
SET 1624-501-1077	TEST DATE :			JAWAS	16.			P12 C11P In.H20	2.00
	=		17	RACT	I CA	BIJ		P11 CDTP IN-H2U	
TS PACE	IS BI	est quali Lished to	DDC	سر"،			_	N2 SPEED RPM	13000
TRON COP	A BOKE	***		FINISH	20.1	30.01	0.6173		
*			Ī					N1 SPEED RPH	
67 INC. S INVENTO	<	# \$ \$ • \$ \$ •	: BELLHOU	S : START	1000		0.0192	FUEL FLOM #/##	11905
TECHNOLO Emission : Test da	3. TYPE A	: F-100 60301 130 H	ME THOD	NOI 1 1 0NO.	M();	. (17.HG)	T -	15 D 8 1 1	14065
HENTAL ENGINE - ENGINE	UMB ER	L MODEL 11 4 = P6 11 ME : 16 ST RES	SUREMENT	MENTAL C	TERP. 10	HIC PHESS	T AIR HUMIOITY - IGM H20/GM DRY AIR)	RATED	
SCOTT ENVIRONMENTAL TECHNOLOGY INC. USAF TURBINE ENGINE EMISSIONS INVENTORY EDIT REPORT — ENGINE TEST GATA	SCOTT TEST NUMBER	EMGINE TYPE C. MODEL: F-100 EMGINE SERIAL 4: P680301 TOTAL EMGINE TIME: 130 MRS. PERFORMANTE TEST RESULTS: PASS	AIR FLOM MEASUREMENT METHOD : BELLMOUTH	TEST ENVIRONMENTAL CONDITIONS :	TEST TIME (ATL. TIME) :	ATHOSPHERIC PRESS, CIP. NG. RELATIVE HUMIDITY (1) :	INLET AIR MURIDITY 168 M20/68 DRV	TEST MODE	#Ih. A/8

af 114

STOP ENGEDT

APPENDIX E

SMOKE EDIT REPORTS

<u>s</u> .		73.63	26.00	23.90	11.00	10.00	19.61	7.00	36.50	23.15	16.00	£.03.4	31.65	26.63	16.00	6.33	7.09	03· q	3.00	na••	2.00	2.60	3.00	D.D. ■	00.0	00.
PAPER Pefel.	1 0 0	100-00	100.001	100.00	100.00	10.001	100.001	100.00	100.00	100.00	100,00	100.001	100.00	100.00	120.00	100.00	100.30	103.00	100.00	100.00	176.00	100.00	10.00	100.00	100.00	100.00
SAMPLE REFL.	100	77.00	74.68	17.00	89.00	00.06	81.00	36.60	70.00	79.00	00-06	96.00	00.59	74.60	80*06	30*46	93.68	94.00	97.00	96.00	95.00	00.96	97.CO	96.00	96.00	00-96
B/A B/50.1R		.0232	.0232	0232	•0232	-0232	.0233	.0232	.0232	.0232	*0232	.0232	•0232	.0231	.0231	. 9231	.0231	.0231	• 02 32	.0231	. 0231	.0232	.0231	.0231	.0231	.0231
VOLUME CF	1 0	654	454		•459	454.	.462	.459	459	.459	. 459	.459	454	-462	-462	- 462	-462	.462	454	. 462	794.	194-	294-	1462	.462	.462
FLOW VOLUME	•			.459																						
		05.	• 50	.50 .459	• 50	.50	•\$0	.50	• 50	• 50	• 50	• \$0	• 50	• 50	• 50	• 50	• 50	• 50	• 50	• 50	• 50	• 50	.50	• 50	. 50	•\$0
FLOW		05.	14.8 .50	14.8 .50 .459	14.8 .50	14.8 .50	14.8 .50	14.8 .50	34.8 .50	34.8 .50	14.8 .50	14.8 .50	14.6	14.6 .50	14.8 .50	14.8 .50	14.8 .50	14.6 .50	34.6	14.8 .50	34.8 .5U	14.8 .50	14.8 .50	14.8 .50	14.8	14.8 .50

The control of the co

THIS PAGE IS BEST QUALITY PRACTICANT

SCOTT ENVIRONMENTAL FECHNOLOGY INC. USAF TURBINE ENGINE EMISSIONS INVENTORY EDIT REPORT - SAMPLE POINT SMONE DATA

** RUM	** ~							
SAMPLE	TERP	PRESS	FLOW	VOLUME	*/*	SAMPLE	PAFER	Z.
POINT	DE 6.F	PSIA	# Jo	5	#/50.1%	REFL.	FLFL.	:
101	77.0	14.9	.50	8.	.0231	87.00	100.00	13.00
432	77.0	6.4.	• 50	844.	.0231	B 4 . C C	100.30	16.03
403	77.0	14.9	25.	044.	.0231	75.00	100.00	25.03
0	7.7.0	14.9	• 50	844.	.0231	78.00	194.00	22.03
\$0	77.0	14.9	.50	844	.0231	86.00	100.00	14.00
90•	77.0	14.9	•\$0	844.	.0231	92.00	100.00	8.00
407	77.0	14.9	.50	855.	.0231	00.98	100.00	12.03
4 08	77.0	14.9	• 50	87.	. 6231	96.04	100 .0 0	14.03
404	77.0	5.67	•\$0	8	.0231	77.00	100.00	23.00
014	78.0	14.9	• 50	6.4.	.3231	79.00	100.00	21.00
77	78.0	14.9	•\$0	684.	.0231	93.00	100.001	7.60
412	76.0	14.9	• \$0	644.	.0231	97.00	100.00	3.00
413	17.0	16.9	•\$0		.0231	72.00	100.00	26.00
503	78.0	14.9	•\$0	64.	.6231	96.00	160.00	@O•#
205	76.0	4.9	• 50	· •	. 3231	86.00	100.00	14.03
503	78.0	4.9	.50	••••	.0231	00-88	100.00	12.00
\$0¢	78.0	•••	•\$0	***	.0231	09*56	100.00	5.03
\$08	78.0	4.0	• \$0	6.4.	.0231	00**6	100.00	00·9
\$ 06	78.0	14.9	• \$0	644.	. 5233	00.66	00.00:	00.1
507	77.0	34.9	• 50	844.	.0231	87.00	100.00	13.00
\$04	78.0	14.9	• 50	644.	.0233	00.86	100.00	1.00
5 10	78.0	14.9	•\$0	644.	•0231	95.00	100.00	5 •00
511	78.0	14.9	•\$0	•	. 3231	00*66	100.00	1.00
515	76.0	•.•	.50	0 * * .	.0231	100.001	100.00	00.
513	78.0	6.6	•\$0	6.	.0231	00-26	100.001	3.03

THIS PACE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDQ

•

\$ **.**

SAMPLE	TENP	PRESS	FLOW	. VOLUME	4/4	SAMPLE	PAPER	2
12104	9.6.	A STA		ני ני	21.00/1	****	Mr. L.	
100	76.0	14.9	95.	0 .	.0231	93.60	30.031	7.00
40 5	70.0	14.9	.50	***	-0231	86.00	100.00	12.03
NO#	7.00	14.9	• 50	**	.0231	00-18	100.00	16.09
*0.	78.0	14.9	.50	6.4.	.0231	83.00	100.00	17.00
\$0\$	70.0	14.9	• \$0	• * * •	.0231	91.00	100.30	00.6
404	76.0	14.9	• 50		.0231	95.00	100.00	\$ • 00
•	78.0	14.9	•\$0	644.	.231	00.06	100.0C	16.63
0	70.0	34.9	.50	044.	0231	16.00	100.00	23.00
016	78.0	14.9	•\$0	640.	.0231	80.00	100.001	20.03
-	78.0	14.9	.50	044.	• 02 31	90.00	100.00	10.00
412	78.0	14.9	• \$0	0.00	.0231	96.00	100.00	4.03
113	76.0	14.9	.50	644.	.0231	75.00	100-00	25 • C 0
501	70.0	74.0	.50	.453	-0232	93.00	100.00	7.03
205	73.0	14.8	.50	.453	.0232	00.48	100.00	11,00
503	78.0	24.8	• 50	.453	• 02 32	93.00	100.00	7.60
\$0 \$	76.0	14.8	•\$0	.453	.0232	95.00	00.601	5.03
505	74.0	34.8	• 50	.453	.0232	00.00	100-00	16.60
\$0\$	78.0	14.8	• 50	.453	.3232	00.86	100-00	2.03
507	78.0	14.8	95.	.453	•0232	63.00	00.001	17.00
206	78.0	14.6	• 50	.453	.0232	00.16	100.00	6 -30
\$04	76.0	14.8	• 50	.453	.0232	00.96	160.00	0)•4
\$10	76.0	•••	.50	.453	.0232	90.00	100-00	10.00
513	78.0	14.8	•\$0	.453	.0232	97.00	100.001	3.00
512	13.0	14.8	•50	.453	*0232	00.86	100.00	7.03
513	78.0	14.8	•\$0	.453	•0232	95.00	100-00	5.03

MIS PAGE IS BEST QUALITY PRACTICABLE.

STOP SADE IN

11

APPENDIX F

CONCENTRATION EDIT REPORTS

SET 1628-001-1077		PEFERENCE CURVE TABLES - NON-LINEAR INSTRUMENTS
TECHNOLOGY INC.	EMISSIONS INVENTORY	EPORT
SCOTT ENVIRONMENTAL TECHNOLOGY INC.	USAF TUBBINE ENGINE EMISSIONS INVENTORY	CONCENTRATION EDIT REPORT

PANSE 1 :											
-		C0 - HI	•		*) (= ())	1 1 2	1		•	,	,
-	Au dd.	¥01.75	ANGLE		Awad	VOL 15	ANGLE		101	VOL 75	ANGLE
					1	1 1 1 1 1 1 1	1 1 1 1 1 1 1		1 1 1 1 1 1	* * * * * * * * * * * * * * * * * * * *	
	ייסט	ייייייייייייייייייייייייייייייייייייייי	2015		č	:		**************************************			
					7.	יון.	1.5695		00.	0000	1.4161
	245.00	05.00	1.5705		36-10	JC +0 •	1.5694		3.46	3551	0.094-1
	895.00	.2130	1.5706		6C.30	₹ 30°	1.5694		3.20	3800	04001
	1840.00	.3930	1.5706		7.6.40	-1C60	1.5696		3		7417
	2400.00	0464	1.5766		176.CO	.2245	1.5696		9 4		67691
	4127.00	. 7760	1.5707		245.00	3000	1.5698			0207	10700
	9100.00	1,2000	1.5707		614.00	0619.	1 - 5 7P.O		12.10	7270	167691
	9600.00	1.3760	1.5707		695.00	.834€	1.5700		15.00	1520	1.5487
RANGE 2 :				PANCE 2 .				•			
	5		1063	•		č		KANDE 2			
	134		5000		5 5	. In 13.	1.5676		င္ပံု	0000	1.3959
		2000	50101		3C-10	. 1000	1.5674		1.46	.2850	1.4101
	00.57	0060*	1.5705		ŋ €℃• 30	.2063	1.5674		3.20	.5 106	1.4695
	00-119	.2070	1.5705		C# " K Z	.264C	1.5677		6	.£.290	1.0885
	895.03	• 3000	1.5705		176.00	. 55 Tri	1.5679		90.4	7450	1.5(.5.1
	1840.00	.5910	1.5705		245.00	7460	1.5682		(10.3	0110	1 1 1 9 2
	2400.00	. 7460	1.5705		-1.00	-1.00.00	0000		12.10	36.30	2 4 7 4 2
	*127-00	1-2320	1.5705		-1.63	-1.0 L 0C	.000		-1.00	-1-6006	0000
PARSE 3 :				RANGES				CANCE			
	00.	• 0000	1.5687			0000	1.5611		2	9000	. 176.
	30.10	.0510	1.5695		30.10	3000	9000		00.	0000	1.3586
	176.00	.1840	1.5700		66.30	.6150	1.5611		0 ()	2004	1
	245.00	-2300	1.5760		78.40	1977€	1.5624			90.00	
	614.00	• • 60 30	1.5697		-1.60	-1.0000	5000			2000-1-	0000
	00.540	2196*	1-5694		-1.67	-1.00003	0000		00.4-	- 1 - 0000	

** KD7[5 **

SPAN VOLTAGES ALPEADY CORRECTED FOR ZERO GAS VOLTAGES.

A CONCENTRATION VALUE OF -1.0 INDICATES NO DATA.

SCOTT ENVIRONMENTAL IZCHNOLOGY INC.			SET 1628-D31-1077		٠	PEPORT DATE 10/24/77	
USAF TURBING ENGINE EMISSIONS INVENTORY	>				-	LSAF CCV1RACT FOE635-77-5216	
CONCENTRATION EDIT REPORT SCOT	1 7.6.5.1	SCOTT TEST 1, TYPE A	8/ 3/77	7 100	F 10C # 6eGloc wet	TIEFO TEST 1	

		****								***************************************
CONCENTRATION EDIT		EPORT SCO	11 7651	1,TYPE A	8/ 3/77	77 F 100	JC # 6e6160	J		-11-029-11-10-029-11-0-11-021-02
			5	LIBRATION D	ATA FOR PERIC	CALIBRATION DATA FOR PERIOD 1136 TO 1242	2			
NON-L 110E	NOM-LINEAR INSTRUMENTS	ENTS :				REFERENCE	CURVES CALIFRATION CATE	FRATION (1122117
		0)	IN -	•	00	- 10	•		- (0) -	
		PER IOU Start	END END	FRIOD	SIARI	00 JA 3		3		# F F D C C
RANGE 1		 		• • • •						1 1 1
SPAN ABJ.FACTOR Zero Reading	J.FACTOR	.0005	• 3	.4730	.000.	*E003.		1.0040 0.0040	<u>.</u> .	1,0040
DAMEF 2										
	ADJ.FACTOR	0.66.	1.0	1.0052	6966.	9866.		1.0112		1.0554
ZERO REA	READING	.0016	9	•900•	.00.43	3036		*200 *		• (00 8
PANGE 3	9			6	ć t	3		,		,
ZERO REA	ZERO READING	.0015	. •	.0161	7910.	1620		(033	• •	0041
LINEAR 1	LINEAP INSTRUMENTS	••						•		
		1	HC	•		MCH	•	1 1 1 1 1 1	- NO -	•
		PERIOD		PERIOD	C0163d	•		001 a3d		PE # 100
		START	ERD	2	START			START	,	tho
TOP NV 45	SPAN AUJ.FACTOR	-9402	1.0	1.0333	1.0641	.96		1.0928		
ZEROFS F (THC)	ZEROFS FOR RANGES (TMC) CHOX/RO)				·					
		. 1 166	•	. 1 * 6 *	11271	.7756		0045.		32728
2 5.0		001	•	.0637	.0318	.1939		\$260	•	.[66.2
		0010*-	0,1	2200-	4.2 JC •	.0776		971U	•	#51J•
	250-0	0000	•	.0030	00.35	4610°		99000	•	2 A C
	_	0000		0003	1000°	6100		01035	•	6.00.7
-		0000	•	1000	1050.	8000		*100	•	.0003
3.0002	0.00001	0000	•	• 0000	20.00*	2000*		170c*	•	1000-
SPAN GAS	CONCENTRATIONS	110NS :								
	THC-PPRC	MON-XON	#44-0W	CO-H1-PPM	Wad-07-03	C 0 2 - 2				
SPAN 2	24.48		19.70 90.40	245.00	78.40 245.00	3 C	SAMPLE PROFE TV	 	1.610. ALJ. - 16	13.

DATA MARKED MITH AN ASTERISK (*) NOT INCLUDED IN AVEHAGE ** NO TE **

SCOTT ERRIRONAGENTAL TECHNOLOGY INC.	TECHNO.	LOGT INC	2			SE 7 16	SET 1626-001-1077	101			3 4 3 17	20 4 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	TT/#2/01 BING TROUBLE SOLUTION OF SECULAR SECURAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECURAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECULAR SECURAR SECU	17.24/77
CONCENTRATION EDIT REPORT	EPOR?			TEST 1,	1.TYPE A	*	8/ 3/77	•	t 10C	# 68016C	843		FIELD 7EST 1	1657 1
	!	• THC	•	* XON	!	02	• CO-H1 -*	-H] -#	00	*- 07-03*	J	707	a- 1EMP F	• •
	RNG	RM6 VOLTS	RNE	RNE VOLTS	RNG	¥ 01.75	PNG	RN6 VOLTS	R 26	VOL 75	RN6	RN6 VOLTS	IRPUT	REFER
HODE-POINT : 4-03		-												
SPANZERO ADJ. SAMPLE DATA :	.97	•92 .0229	1.03	*600*	1.19	1600.	\$6.	0,000.	1.00	•100•	66.	.990036		
TIME : 1201	S •00		100-00	-43P2	00.001	.2683	₩	-1192	~	. 3664	~	.1967	112.2	80.8
PROBE POS.: +30		-2814		C+44.		.2653		0611	•	3695		5061	112.1	80.8
-12.70 IN: -12.70 IN:		2840				7697				36.14		2 6 6 7	5.71	. OB
		-2904		.4395		. 2669		.1175		.3610		0 161	111.3	60.7
4 20 0000		2820		000		2860		2864		16.30		2014	4 1 4	
CONCENTRATION :	70.	70.73 PPMC	*3.	3.99 PPHV	26.6	26.60 PPHV	95.8	95.83 PPM4	110.8	110.88 PPMV	4	. P. 2 VOL	232.3	0E6.F
HODE-POINT : 4-02														
SPAM/ZERO ADJ. SAMPLE DATA :		.98 .0253	1.02	.000	1.10	1630.	.95	• C075	6	.000.	*	9800 46*		
TIME : 1203 PROBE POS.: +30 -9-76 IN.	5.00	5.00 .661% 7.66%7 7.6517	250.00	.6275 .6277 .6322	100-00	.9629 .975E .9956	m	.3563 .3539 .3557		.4264	₩	.6469	165.6 165.8 165.8	****
		•		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			•			!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!				

** MOTE ** DATA MARKED MITH AN ASTERISM (*) NOT INCLUDED IN AVERAGE

165.6 80.4 696.9 DE6.F

2.95 2 80L

.4258 386.71 PPRY

.3553 383.37 PPHV

2#86. 2#89.

.6291 157.28 PPFV

.6592 164.81 PPMC

AVERAGE : CONCENTRATION :

SCOTT ENGINEERTAL TECHNOLOGY INC.	TECHNOL.	DET INC				SET 16	SET 1628-001-1677	1627			HEPCHI DAIE 10/24/77	REPORT DATE 10/24/77	17-54177
CONCENTRATION EDIT REPORT	ENISTER	AS THE	SCOFF FEST		1.TYPE A	ê	8/ 3/17	•)0 i	# 62016C	1	FIELD TEST	1 1 1 1
	• THC	÷		* XON	2	* 0N	* CO-H] -*	* - -	07-03 •	+- 07-	• (0)•	. 1EMP F*	•
	RMG	VOL TS	RNG	VOL 15	PING	v 01.15	B N G	VOL 75	ENG.	VOL 15	KNG VOLTS	InduI	REFER
MODE-POINT : 4-03													
SPAN/ZERG ADJ.	.0	.0270	1.02	0100	1.10	2500.	.95	.95 .0079	66.	.000	.990037		
TIME : 3205	5.00	. 4385 1000	1000-00	.2783	250.00	. 8280	~1	.3698	~	65 ***	\$.8561	236.5	80.5
PROBE POS.: +30		. 4432		.2763		.8146		.3706		46.54	. 6788.	236.7	80.5
-5.71 IN.		. 4 707		1112.		5 bol .		.3720		V	. 6878	236.2	80.6
PRESS. 2 30.55 PSIA		1944.		.2111		1797.		.3729		07 ***	.8354	236.8	80.6
		.4465		.2757		. 7933		.3696		36 44.	. + 830	236.7	£0.1
		-				6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 .	• •		1 .
AVERAGE :		1616		.2770		• 8056		.3710			. 6668	236.6	80.6
CONCENTRATION :	112.2	112.29 PPMC	277.0	77.03 PPAV	201.3	201.39 PPMV	399.3	399.32 PPHV	412.1	412-14 PFHV	4.35 4 401	1256.8	DE 6. F
MODE-POINT : 4-04													
SPAN/ZERO ADJ.	•	.99 0061	10-1	6 00 °	1.13	0570.	. 95	.0088	66.	.0003	1505 66.		
TIME : 1209	10.00	.1315	250.00	.8418	250.00	786	•	.5371	-	3985.	3 .7313	238.0	60.1
PROBE POS.: +30	,	.7283		.8429		.4819		.5361		.5857	. 7338	237.9	90.7
5.52 IN.		.7515		.8413		.4733		.5309		.584₺	.1322	238.1	1.08
PRESS.: 31.55 PSIA		. 7311		.8381		. 4769		.5421		.5636	. 1299	238.0	80°
•		.7660		.8257		. 4643		6545*		. 5P 1E	0.7240	237.6	80.5
AVERAGE :		7410		.8386		3574.		5965		.5844	.7362	237.9	80.6
CONCENTRATION :	370-8	370-88 PPMC	209.6	AHA4 69*60	118.7	116.75 PPHV	558.6	558.61 PPMY	\$82.5	582.53 PPM	3.39 \$ VOL	1267.7	UE6.F
-													

DTE ... DATA MARKED MITH AN ASTERISM (*) NOT INCLUDED IN AVERAGE

SCOTT ENVIRONMENTAL TECHNOLOGY INC.	TECHNOL	SET INC.				SET 16	SET 1628-001-1077	7.01			SEPEROUS SERVICES	REPORT DATE 10/24/77	1724/17	
USAF TURBINE ENGINE EMISS CONCENTRATION EDIT REPURT	EM155101 EPURT	IN IN SP	SCOTT TEST		1. T. P.F. A	3 0	1118 18	•	901	# 68016U		F16L0 16ST	E ST 1	
	RNG VOLTS	PNG VOLTS	# S S S S S S S S S S S S S S S S S S S	RNG WOLFS	2000	RNG VOLTS	RHG WOLTS	-H1 -+ WOLTS	* CO-LO -* RN6 VOLTS		#PG WOLTS	INPUT REFER	F F REFER	
HODE-POINT : 4-05														
SPAN/2ERO 10J.	66.	6500*- 66*	1.01	•0051	1.10	2600.	.95	-0092	66.	.0003	.99 0037			
SAMPLE DATA : 110F : 1211	10.00	6669.	250.00	4140	100-00	.4239	M	.3838	~	• 4606	3 .4075	171.9	90.0	
PROBE POS.: +30		.7068		-4246		.4273		. 38 31		.4576	840**	171.4	80.7 80.7	
PAR 55.: 25.93 PSIA		7193		4267		4163		3866		. 4606 4588	.4050	171.8	80.7	***
						· · · · · · · · · · · · · · · · · · ·				1 1 1 1 1	1 1 1	!		
AWERRGE :		. 7083		.4153		.4223		.3850		.4595	1004	171.7	80.7	
CONCENTRATION :	354.1	354.13 PPHC	104.	I PPHV	42.2	42.21 PPHV	# 1 W . #	413.4C PPEK	427.5	427.57 PPMV	1-81 2 40F	1.767	1.0	
MODE-POINT : 4-06														
SPAN/ZERO 403.	66.	\$\$00*- 66*	10.1	.0126	1.10		. 95	6600*	1.00	2000 00*1	.99 0038			
•	10.00	.3467	100.00	.3990	25.60	6484	- 1	3516	~	.4775	3 .1681	118.1	81.3	
PROBE POS:: +30		. 5295		2005		01/00		1501		733	.1667	118.3	81.2	
PRESS.: 19.42 PSIA		.3338		.3885		.6692		.1477		. 4694	.1650	117.6	01.2	
AWERASE :	166.0	. 3329 166.87 PPRC	7.65	. 5921	16.8	.6728 16.82 PPMV	131.6	.1486 131.67 PPHV	146.2	-4702 146.25 PPNV	.71 % VOL	116.1	01.2 DE 6.F	

BATA MARKED MITH AN ASTERISM for NOT INCLUDED IN AVERAGE ** #016 **

A La Section of the Section	TECHNOLOGY INC.	, C			SET 16.	1628-001-1077	1			KEPORT DATE 10/24/7	124/17
SAF TURBLE ENGINE EMISSIONS INVENTORY	EMISSIONS IN	VENTORY SCOTT TEST		I TYPE A	8	87 3777	<u>.</u>	106 # 660160	NA P	CCMTRACT F08635-77-0216 F1ELD TEST 1	7-0216 t S T 1
	PNG VOLTS	S RNG V	* *0v VOLTS	5 N M	NO	# C 0-HI RNG VOL	HI -* VOL7S	* C0-L0 -* £NG V0LTS	# LC2* #N6 VOLTS	INPUT	# X u u x x
10-4 - 14104-300+											
*FOR OWNERS	1.00 0049	00.1 6	.0137	1.13	46 90.	0. 36.	.0109	1.690608	.99 8038		
	10.00	7 100.00	\$175.	100 • 00	.2886	. s	-2031 -2031	2 .64 bE	5 .2276	116.7	80.5 5.0
##695 P65.: 150		ባቋነ	.5738		.2946		2029	77 P P	3525.	118.8	80.5 80.5
WIND DOING TIMES		m pag			.2936	?	.2040	72.69*	.2324	118.8	£3.b
2.	1016		.5743	•		2.	-2033	38 49 *	٠	118.6	F.C. F.
CACEMPANION	205.06 PPMC		57.43 PPHV	29.31	≯ Edd 	264.35 PPM	ت ۳ ۶	236.59 PP4v	10 s 3 11 s 1	1.147	
80-8 H 18108-300*											
SPANISON ADS.	1,000046	6 1.00	.0000	01-1	\$600°	36.	.0116	£030* 66*	95 - 25 th		
1285 : 1222	10.00 .4898	8 250.00		100.60	.7653	m	.3959	1 .4617	3 .5487	269.5	F1 . 4
fs fs.	**	·• 4	5146.		7698	•	.395.1	2	. B	20103	81.4
Perss. 33.68 PSIA		o ao ao	.5534		. 7545		3942	.4611	.5545	201.5	61.5
l P		. !	1	·	1	į	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	1 1 1		1
Openion of the contraction of th	.455# #42.70 PPMC		.5538 138.45 PPHV	15.99	. 7599 9 PPMV	423.39 Puny	.3951 PP•V	4631. 431.88 PPMV	2.47 2 VOL	201.2 972.6	5154 DEC.F

** DATA MARKED BITH AN ASTERISK (*) NOT INCLUDED IN AVERAGE

SCUTT ENVIRONMENTAL TECHNOLOGY INC.	TECHNOLOG	SY INC	•			SET 16	1101-103-0791 13S	1011			4 C P O A	HEPOHI DATE 10/24/77	1124/17
CONCENTRATION EDIT REPORT	EPORT	T MAKE	SCOII YEST		1.TYPE A	•	6/ 3/77	•	f 10c a	041089	USAF CUNIRACT FOREJS-77-0216 MPR FIELD TEST 1	F08635-77-0.	7-0216 EST 1
	RNG VOLTS	HC# VOLTS	RN6 WCL	0X* VCL 1S	e 04	vol. 75	CO-HI	-H1 V61 15	CD-LO	** 0 - 0 + 0 1 - 0	8170A 948	12 TERP - F - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	# F F F F F F F F F F F F F F F F F F F
MODE-POINT : 4-09													
SPAN/ZERO ABJ. SAMPLE DATA :	1.01 .1397	1397	66.	5103-	1.15	.0036	••	1210*	1.00 00.1	*100*	\$500°- 66°		
TIME : 1224	1.00		1000.00	.3212	250.03	1.0529	~	.1523	~	1000	3 .9082	0.445	1.14
PROBE POS.: -30	•	.3816		.3257		1.0t0	•	0001	۰	0850.	9000	248.2	
12.00 M. 02.00	•	2000		1225	- '	1.0519		.1.70	•	.4725	9110.	248.3	61.0
PRESS.: 30.58 PSIA	- '	. 37.76		. 3754	-	1.0410		***	•	.4827	8 ADO.	248.3	0.18
	. ,		•		. •				~ i		5015	748.7	
AVERAGE :	•	.3811		.3216		1.1407		.1473		11.00	2606	24842	0.18
CONCENTRATION :	19.36 PPMC	PPHC	321.50	321.56 PPMV	262.4	262.44 PFHY	130.0	130.07 6944	148.59 PF4V	45.4	4.54 1 401	1351.7	DE 6.F
MODE-POINT : 4-10								•					
SPANZERO ADJ. Sample data :	1.01	.0489	o.	4100.	1.13	.00.57	\$ 6.	.6124	3	.000.	9803 99.		
TIME : 1227	5.00		1000.00	7661.	250.00	1 4 5 4 1	₩,	1653.	-	.6721	3 . 7668	210.1	40.6
PROBE POS.: -30	•	9000		. 1987		7454.		. 4546	•	.6735	5 45 6	218.	9 0 8
5.68 IN.	•	*868*		.2033		32 34.		ot 55.7	•	•6735	1656	218.4	80.6
PRESS.: 30.65 PSIA	•	.9318		.2015		7950.		. 4603	•	.674.	. 7650	218.4	80.6
	•	. 9252		~~~		***		.6584	•	.6743	. 7068	218.0	100
	;	1 :	•	1 1) 1 + 1 P 1	j	\$ 1 & B R	1 2 2 2	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AVERAGE	•	.9123	1	.2005	,	***	:	*154*	•	.6751	1492.	218.5	60.6
CONCENTRATION	228.08 PPMC	PPMC	700-4	200-47 PPRV	5.01.	114.96 PPMV	1.099	660.78 FPH	591.64 PPAY	₩ dd	3.59 & VOL	1110-2 DEG-F	DEG.F

E ** DATA MARKED MITH AN ASTERISM (*) NOT INCLUDED IN AVENAGE

SCOTT ENVIRONMENTAL	TECHNOLOGY	INC.	* a c			5£1 16	SET 1626-CO1-1577	1011			40 47 4	7145101 1016 10344 71745101 1016 10174	124/17
USAF TURBINE ENDING ENTSSIONS STEERED CONCENTRATION EDIT REPORT	ZE PORT) S	SCO11 1ES1		1.TYPE A	•	1118 /0	•) (:	· or cloc		0.31	ES1 1
	BNG WOLTS	• 1 3	X 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0	10 X	#1-1 0V#	* CL 1 S	A (3-M1	-M1 -e	*- 01-12*	********	* /* July 10 / 10 / 10 / 10 / 10 / 10 / 10 / 10	* * * * * * * * * * * * * * * * * * *	• 2 • u • u • u
				!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!			; 1 1	;		:			
HODE-POINT : 4-11		٠											
SPAN/ZERO ADJ.	1.02 .0519	615	• 96	.0165	1.13 .3696	•3036	*	.0135	1.60055	** 27.	7		
SAMPLE DATA : TIME : 1230	5.00 1.0066		100.00	.6735	100.63	. 31.92	•	0.85.	•	12.47.		1.0.	
PROBE POS.: -30	76.					. 314		S 0 0 2 0		70.A.		1.7.9	5 - 1 4
*NI 69*6	ŏ.	.9912		.6837		.3166		3 n # **				7.03	~
PRESS. # 30.69 PSIA	6	.9825				• 312¢		7) # 1 ***		3	5 , c .	E	# .
	1.00.1	677	•	5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	•	*******		60.7.	•			4 · · · · · · · · · · · · · · · · · · ·	# ! - ! - !
AVERAGE :	*	.9953		. t 8 1 1		. 3172		# * · · ·		. 33 50	1.1.1	0.7.1	11.3
CONCENTRATION :	248.82 PPMC	D M C	68.11 PF	1 PPAV	31.22	31.22 FF#V	207.1	207-12 FP#4	1 mag ag			ags art art art	r (
HODE-POINT : 4-12													
SPAN/ZERO ADJ. SAMPLE DATA:	1.02 .09	.0536	96.	.010	1.1	3.10.	*		·	10 mm			
TIME : 1232	2.00	. 6080	100.00	.2333	63.42	1070.	**1			. 70.51	T18.10 1	7.01	
PROBE POS.: -30		.6335		. 2394		94.30.		****			₩ # # *	· · · · ·	
12.58 IN.	,9.	.6452		.2305		. 6 6 6 5		2000		. 7. D.C.	T	4.30	77.
PRESS.: 15.39 PSIA	ě.	.6696		.2222		0) *4 •		4.1.7.		ا د د د هم	***		
	•	. 6935		1512.		. 5 2 3 6		27 5		33.4		-	
	•		•	* * * * *	•			P = 1	•				-
CONCENTRATION :	162.49 PPMC	o a c	22.81	22.81 PPRV	16.34	. 144	~ .	****	17	****		- 24	1 3 13

DATA HARKED MITH AN ASTERISK 100 NOT 19ELUITO IN BULGALE

SCOTT ENVIRONMENTAL TECHNOLOGY INC.	1E CH*0	LOUT INC	•			51.136	SET 3628-601-1077	7,01			FEPONT DATE 18/24/14	REPORT DATE 10/24/77	1/24/17
USAF TURRIKE EBGINE ERISSIONS INVENTORY CONCENTRATURE EDIT REPORT	E P O R T	ONS INVE		TEST 1.	1.TVPE A	•	P. 3777	•	F 10C	# £8016 C		F 1610 7657	16.51
	RMG	RNG VOLTS		PhG VOLIS	7 # D#4C	P4C VOLTS	(0-M1 + 40	-HI	9 N H	FN6 VOLTS	# CO2* RN6 VCLTS	INPUT REFER	# F 6 - 0 # E F E R
#00E-POINT : 4-13													
SPANZERG ADJ.		.98 .0268	1.02	• 6011	1.13	1.10 .0651	\$6.	.0063	1.00	1.00 .0007	1690 46.	٠	
SAMPLE DATA: TIME: 1207	8.00	5.00 .0127 1000.00	1000.00	. 3054	250.60 1.3155	1.3155	M	.ú766	~	.2536	3 .7962	227.8	81.0
PROBE POS.: +30		. 0645		.3057		1.0!86		-6762		.2396	6562°	22 7.7	81.0
- D3 EM.		.0029		. 3071		1.0208		-0742		.2322	9009*	227.9	91.0
POFCE TO BE PETA		0000		.3075		1.0173		.0735		.2293	. 1954	227.7	93.0
1117		0013		.3073		1.0193		.0709		1822.	\$109*	227.8	80.9
							•						
ANT DACF		05 00		-3066		1.0183		1 57 3*		.2355	1981.	22 7.8	81.0
CONCENTRATION :		1.24 PPRE	366.5	306.57 PPRU	254.5	254.58 PPHY	\$0.5	50.57 FPFE	69.4	69.47 PPAL	3.8C & VOL	1184.9	0f 6.f

SCOTT ENVIRONMENTAL TECHNOLOGY INC.	186.		SET 1626-001-1077			7
USAF TURBINE ENGINE ENISSIONS INVENTORY CONCENTRATION ED11 REPORT	SCOIL TEST 1.TYPE A	1. TTPE A	1118 18	70 1	# 100 # br];c(#Fr	WEST A

MOR-LINEAR INSTRUMENTS	INSTRUME	•TS :				אנונאוינו כ		
		00	Ŧ		0)	4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	£02
		PERIOD START	FAICE	001	START	U U U U U U U U U U	•	301
RANGE 1		1 1 1 1 1 1 1		<u> </u>	ı	1		
- 2	AC TOR	.9730	1.1980	980	46 ob*	. 9e 39	0.40	1.2615
ZERO READING	9	*000	•	.1461	£030.	.9623	عَانَ ا	⊃ ₹ * •
PANGE 2								
	AC TOR	1.0052	1 • 3353	353	9466	10.50.1	# 55 to - T	>145 · 1
ZEAD READING	. 9	6900*	C.	•2219	0036	1161	9303*	1 20 2
RANGE 3	1	,	•		3	1016	7570	5.11.4
SPAN ADJONACTOR	ACTOR	5659.	÷ -	1018	1.00	36.35	1 x 3 3 4 1	5 4 5 7 .
LINEAR INSTRUMENTS								
		•	1HC	•		NCX		• 0 V
		001834	701 43 d	101	PERIOD	Pt R 100	1 t p 1 o c	13144
		START	043	٥	STAPT	END		34) I
SPAN ABJ-FACTOR	AC 108	1.0333	.9724	.9724	9906.	1.0381		1.1853
ZEROES FOR RANGES (THE? INDX/NO)	RANGES SROX/NO)							
0-1	2.5		•	.0107	9411.	3886	92128	. 4722
	10.0		0.		.1939	.0962	() () () () () () () () () ()	
	25.0	004	0*-	0023	.6776	.U31P	757)•	11/11
20.0	100.0	.0030	0•	- 0002	*610.	.0695	# ! カラ : -	511.1.
0.001	250.0	•0015	•	1000	47 JU.	7 #30 ·	770.1	1937
	1000	.0003	•	.00:0	9 T JU •	2130		210.
0.0001 %	2500.0	1000*	0.	.0300	• Alt de	*0.0°	E DR.	5000
S000 • O	10000.0	0000	٥.	.0363	30 JC •	.0101	ניוף זי	- :: :: : : : : : : : : : : : : : : : :
SPAN GAS CONCENTRATIONS	ONCENTRAT	10N5 :						
Ē	THC-PPRC	HOM-FOR	AC-PPH	CO-H1-PPM	CO-LO-0FM	1-201		
SPAN 1	24.48	19.70	19.70	245.56	34°542	9 D 9 3 1 4 1 4	TOT.PARSS.FACT. 1.4 SEMPLE PROFIT TVP: -	letti Auge ato

SO NOTE SO DATA MARKED WITH AN ASTERISK SO NOT INCLUSED IN AVERAGE

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COST FURNISHED TO DOQ

CCOTY ERVERONNESTAL TECANOLOGY INC. USAF TURFER FN6345 FRENCHOMA INVESTORA	FRICHWOLDE	DAI 19	3			2 1 3 5	SET 1626-FUL-1917	-1011		1414	FLF UFT DATE 10/24/77	171071
CONCENTRATION EDIT REPORT	E PORT			7EST 1,	1.TYPE 4	•	87 3777	L	F 100 # 680160	C WFE CONTRACT FORESS-77-P216	FIELD 7(ST	1 151
	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•		4 1							•	•
	S M S	¥ 0¢ TS		401.15	RMC	V OL 15	NW G	VOL 15	5	RNG VOLTS	INPUT REFER	REFER
MODE-POINT : 5-03	·			i ! !	! ! ! !	† † † † †	1 5 1 1	• • • • •	6 1 8 8 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!	
SPAN/ZERO ADJ SAMPLE DATA :	.99 .0214	.0214	1.02	•500•	1.17	. 01.99	1.1	.1129	1840. 66.	1.31 .1562		
TIME : 1519	. 00.5	.1654	250.00	.3832	07*00!	1665.	-	.3912	1 1.3306	\$.4774	• [• -	0
PROBE POS.: +30	•	0000		.3936		. 5914		.3963	1.3366		• -	Ö
-14.29 IN.	•	-0872		. 3069		.5A3G		.3899	1.330¢	*710.	- 1 -	•0•
PRESS.: 30.88 PSIA	•	. 08 31		-3952		.6116		8 JC 8	1.3412	£3853	•	ö
AVERAGE :	•	.0516		.3963		442		3 40 5		4 4 6 7 7		
CONCENTRATION :	22-91 PPHC	PPHC	97.5	97.57 PPHV	59.65	59-C4 PPHV	1847.	1847.94 FP-4	Ahdd 00	10.21 1 10.	•	.0 0f6.f
MODE-POINT : 5-02												
SPAN/ZERO ADJ. Sample data :	.990023	.0023	1.02	•005	1.17	.0069	1.15	.11.	.94 .0488	1.31 .1586		
71ME : 1521	10-00 .8500	9500	250.00	. 1968	250.00	.6117	-	1.6.74	1 2.4248	\$ 1.0421	•	•0•
PROBE POS.: +30	-	1.0349		.1974		.6716		1.6485	2.4254	1.0342	•	• 0 •
-11-05 14.	•	-8947		.6123		. 6676		1.6486	2.4268	3.0385	-1.	•0
PRESS. 32.74 PS1A	•	-6719		1662.		. 6534		1.64.8	2.435(1.6364	• 7 • -	• 7
	•	3118.		. 133		· 64.72		1.6425	2.4353	1.0331	-1-1	•0•
	;								1 1 1 1 1	1 1 1 1 1	1 - 1	
Her wast	•	5259		~*0**		. 6675		1.6463	2.4241	1.0357		•
CONCENTRALISM :	344 PS-45) M A	261.3	261.35 PPR:	90	166.ES PPMY	11867.44 PPF	100	ANAM DO.	11.6t 2 VOL	- •	016.1

DATA MARKED WITH AN ASTERISM TO 3 NOT INCLUDED IN AVERAGE .. NOTE ..

SCOTT ENVIRONMENTAL TECHNOLOGY INC.	ECHNOL	06 Y IN	9			SE 7 16	SET 1628-C01-1077	7101			J ₩ 511.	REPORT DATE 10/24/77 CONTRACT FOR635-77-6216	REPORT DATE 10/24/77	126/11
USAF TUMBING ENERGY TATOS INTERIORY CONCENTRATION EDIT REPORT	P081	A R	SC011 1EST		1.TYPE A	20	87 3/77	•	100	. 690160	32 4 3		FIELD TEST	E 51 1
		4 i	1 1	4 1 2 2 1		; ; ;	I#-03	• •	0 7 00	† 0	* 603	2 \$	* TEMP - f	•
	RNG	RNG VOLTS	RNG	VOL 15	PNC	¥ 0L TS	RNG	VOL 75	RNG	VOL 15	RNG	VOLTS	INPUT	REFER
MODE-POINT : 5-03														
SPAN/ZERO ADJ.	•	.0202	1.02	•0012	1.17	-0670	1.15	•1159	66.	.0493	1.21	.0750		
TIME : 1523	5.00	.086	.0864 1000.00	.3196	250.0U	1.0004	-	1.5623	-	2.1739	-	.7629	1-	•0•
PROBE POS.: +30		.0806		.3202		1.0079	_	1.5716		2.1783		.7628	• [• -	ò
-6.39 IN.		.0835		.3163		1.0054	-	1.5720		2-1921		.7605		ů,
PRESS.: 30.73 PS1A		.0811		.3211		1.0083	_	1.5779		2,2043		.7586	• • • •	ë.
		-0192		.3224		1.0132	-	1.5610		2,2105	•	.7602	***	•
AVERAGE :		-0822		.3203		1.0070	. –	1.5690		2.1918	1	.7610	•	0
CONCENTRATION :	20 • 5	20.54 PPRC	320.3	320.32 PPHV	251-1	251.76 PPNV	11215.66 PPM	A Word o	•	*00 PPMV	13.67	13.67 \$ VOL	0	0E6.F
MODE-POINT : 5-04												-		
SPAN/ZERO ADJ.	86.	.0364	1.02	.0011	1.17	.0071	1.16	0511.	66.	•0800	1.21	6920-		
1146 : 1527	1.00	. 3550	.3550/ 1000.00	.3319	250.00	. 9885	-	1.0768	-	2.0884	-	.7600	•	•0•
PROBE POS.: +30		.3421		-3299		.9864		1.0612		2.0891		-7582	-	•
6-18 IN.		-3389		.3322		. 9843	_	1.0779		2.0973		.7594	•	•0•
PRESS.: 30.83 PSIA		.3304		.3317		. 9823	-	1.0673		2,1038		.7564	-	• 6
		.3197		.3304		. 9847		1.0854		2-1168	1	17571	• •	•
AVERAGE :		.3372		.3312		. 9853	-	1.0738		2.0991		.7582	9	0.
CONCENTRATION :	16.8	16.86 PPMC	331.2	331.22 PPMY	246.3	246.32 PPRV	6824.98 PPMV	AHAd	•	• CO PPRV	13.56	13.56 % VOL	•	0£6.f

OTE OF DATA MARKED HITH AN ASTERISK (OF NOT INCLUDED IN AVERAGE

SCOTT ENVIRONMENTAL TECHNOLOGY INC.	TE CHHOL	DEV INC	•			SET 16	SET 1628-001-1077	1017				REPORT	REPORT DATE 16/24/77	124177
USAF VURBINE EAGINE ENISSIONS INVENTO CONCENTRATION EDIT REPORT	EN15510 EPOR7	NS INVE	8C011 1EST		1.TYPE A	*	21.18 18	<u>.</u>	F 10C	1 680160	USAF UPB	COMIRACI FOB635-77-0216 FIELO TEST I	F08635-77-0; FIELD TEST	7-0216 EST 1
	AME VOLTS	AME VOLTS		RNG WOLTS	PRG VOLTS	V OL 75	RNG VOL	VOL 75	PNG VOLTS	10 -+ VOL TS	RNG VOLTS	62+ VOL TS	- TEMP F	F
MODE-POINT : 5-05														
SPANZERO ADJ.	•	.98 .0352	1.03	*0052	1.17	.0071	1.16 .1202	•1202	66.	-0512	1.22	.0777		
TIME: 1529	1.00	.3133	250.00	1076	250.03	. 5018	-	1.4302	-	2-1983	τ,	.7500	• •	6
		-2804		.7004		4794		1.00.1		2.1799		.7663	-	•
		.2730		11691		7 10 7		1,4147		2.2037		.7438	•	
APERAGE :		.2877		.6993	•	1184.	. ~	1-4135	, .,	2.1926	•	.747.		9
CONCENTRATION :	14.3	14.39 PPMC	174.8	174.84 PPHY	121.9	121.93 PPMV	9905.96 PPHV	, PPHV	JO*	*00 PPMV	15.13	15.13 % VOL	•	.0 DE6.F
MODE -POINT : 5-06														
SPAN/ZERO ADJ. SAMPLE DATA:	. 98	.0181	1.03	2500.	1.17	660D*	1.16	.1285	66.	.0517	1.22	.0786		
TIME : 1531	5.00	.2441	250.00	.2147	00.001	.1974	-	.3060	-	1.6356	-	.4391	• 7•	•
PROBE POS.: +30		-2515		.2165		• 1973		.3019		1.6202			÷:	•0•
PRESS.: 25.11 PS1A		.2729		.2167		.1831		-2959		1.6016		.4351	: :	3
		.2777		.2134	·	-1866	i	.2936	-	1.5782	•	.4336	•	*0*
AVERAGE : CONCENTRATION :	66.3	.2655 66.37 PPRC	5.00	1912. 1918.	3	AHAd 21-61	2992. 2993. 1533.63 PPM	2992 PPMW	' ~ S	1.6098 0.00 PPRV	15.4	#354 #354	9	0.00000

DATE HAPKED WITH AN ASTERISK (*) NOT INCLUDED IN AVERAGE

SEPERT DATE 10724777 - CSS - FEBRUARY FOR DAY - CSS - CONTRACT FOR DAY - CSS -	ets filto itsi i
	4 101 a bruse of 5
	ĕ 1 →
St 8 1626-503-1037	81 3177
	1. I tof h
SCOTT ENVIRONMENTAL TECHNOLOGY INC.	CONCENTRATION EDIT REPORT

TAPLI TOTALI	a 30 0 3	0.1.000	
		÷.	
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# 1	0 46 40 40 40 40 40 40 40 40 40 40 40 40 40	# # # # # # # # # # # # # # # # # # #
\$1.10# 3## \$1.10# 3##	3 6 J J P P P P P P P P P P P P P P P P P	# # # # # # # # # # # # # # # # # # #	
61 (N-0) 1.0 51 (N-0) 1.0	***************************************	*** *** *** *** *** *** *** *** *** **	2
erion ass	100 (100 mm)	2545. 2545. 2545. 2545.	# # # # # # # # # # # # # # # # # # #
PhG VOLTS	1.03 .0052 250.00 .2902 .2819 .2855 .2812	20.35 PPNV	3995. 00.0001 3995. 1995. 1995. 1995.
RNG VOLTS	.98 .0170 5.00 .2390 .2398 .2398 .2364	.98 .0165	5.00 .1239 1 .1087 .1123 .1182 .1183 .1183
- '	MODE-POINT : 5-07 SPAN/ZERO ADJ. SAMPLE DATA : TIME : 1535 PROBE POS.: -30 -14.25 IN. PRESS.: 28.65 PSIA	AVERAGE: CONCENTRATION: MODE-POINT: 5-08 SPANZERO ADJ.	SAMPLE DATA: TIME: 1537 PROBE POS.: -11.06 IN. PRESS.: 32.23 PSIA AVERAGE: CONCENTRATION:

** NOTE ** DATA MARKED WITH AN ASTERISM (*) NOT INCLUDED IN ANIMAGE

THE ONE WHEN THE PROPERTY OF THE PARTY OF TH

SCOTT ENVIRONMENTAL TECHNOLOGY INC.	TECHNOL OG	SY INC				SE 1 16.	SET 1626-031-1077		USAF CONTRACT	REPORT DATE 10/24/77 CONTRACT FOR635-77-0216	777
USAF TURBINE ENGINE EMISS CONCENTRATION EDIT REPORT	EMISSIONS Eport	SINVE	NIORY SCOII IEST		1.TTPE A	8	8/ 3/77 6	f 100 - 680165		FIELD TEST	-
	ANG VOLTS	HC+	X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0	0x+ vol15	RNG VOLTS	VOL 75	9- LO-M1	ANG VOLTS	RNG VOLTS	a- TEMP F	REFER
HODE-POINT : 5-09	φ •	.0159	1.03	.0011	1.17	.007	1.17 .1276	£#\$0° 66°	1.23 .0823		
STANTER 2 SAMPLE DATA : TIME : 1539 PROBE POS.: -6.42 IN. PRESS.: 30.16 PSIA		.2400 .1636 .1476 .1648	.2400 1000.00 .1636 .1476 .1648 .1524	.3109 .3170 .3170 .31%5	256+60	. 9351 . 9400 . 9505 . 9505	1 1.375% 1.3661 1.2819 1.2937 1.2803	2.1609 2.1689 2.1665 2.1627 2.1777	2057 2057 2057 2057 2057 2057 2057 2057		
AVERAGE : Concentration :	43.42	.1737 43.42 PPHC	313.51	.3135 313.51 PPMV	235.21	9040 1 9040 1	1.3195 VMP 24.0909	2.1672 .00 PPAV	.7494 13.21 £ VOL	0.0066	0E6.F
MODE-POINT : 5-10 SPANZERO ADJ.	0	.0270	1.03	1100.	1 • 18	.0074	1-17 -1289	\$#\$Q* 86*	1.23 .0832		
SAMPLE DATA: TIME: 1541 PROBE POS.:	1.00	.1395	.1395 1000.00 .1412	.3109	250.60	. 9429	1 1.2851 1.2868	2.176	1 .7551 .7495		000
6.50 IN. PRESS.: 30.20 PSIA		1501		3056		9181	1.3155		.7468	• •	0.0
AVERAGE : CONCENTRATION :	7.08	.1416 7.08 PPMC	308.6	9 PPMV	231.7	. 9271 231.78 PPMV	1.5013 0931.05 PPMV	2.1861 . CO PPMV	.7489 13.19 2 VOL	.0 .c 0£	.0 DE6.F

DATA HARKED WITH AN ASTERISM (*) NOT INCLUDED IN AVERAGE ** NOTE **

SCOTT ENVIRONMENTAL TECHNOLOGY INC.	INC.		SET 1528-001-1077			HEPORT DATE 10/24/77
USAF TURBING ENSINE EMISSIONS INVENTORY	IMVENTORY					USAF CONTRACT FO8635-77-0216
CONCENTRATION EDIT REPORT	SCOTT TEST 1, TYPE A	1.TYPE A	81 31:7	i 1 00	f 10€ # 68316U wPB	MPB FISLO 1EST 1

	RNG VOLTS	ANG YOLTS	RNG WOLTS	10 X+	2 P R G	PNG VOLTS	# CO	RNG YOLTS	RNG VOLFS	202 202 2NG 40LTS	o- TEMP o- f o-e INPUT REFER	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MODE-POINT : 5-11								•				
SPAN/ZERO ADJ.	•	.98 .0258	1.03	0900,	1.13	1.13 .0675	1.17	1.17 .1302	#c\$0. 86.	1.23 .6840		
TIME: 15%3	1.00	.1266	250.00	.6403	250.60	. 4 302	-	1.0055	1 2.0123	1 .7391	•	0.
PROSE POS.: -30		-1109		.6430		. 4 380		1.0234	2.0822	. 1371		0.
10.91 IN.		1510.		1049.		9624.		.9844	2.0948	.7386	• 7	ů.
PRESS.: 32.17 PSIA		1011.		.6436		. 4317		1.0215	2.1076	. 7555	• .	•0•
•		-1193		.6346		.4594		1-0462	2.1151	1157.	* I •	• 1
AVERAGE :		1086		× 044		8454		79101	0080.2	. 7.57.5		
CONCENTRATION :	5.4	S.43 PPMC	160.0	~	107.9	107.95 PPM	6259.6	6259.67 PPNV	Ardd DO.	12.75 2 VOL	63	DEC.1
MODE-PCINT : 5-12									·			
SPAM/ZERO ADJ. Sample data :	96.	.96 .0141	1.03	1010.	1.18	3010. 81.1	3.34	1.34 .2016	.98 .0563	1.24 .6853		
TIME : 1546	2.00	.1187	100.00	.5146	100.00	.2429	~	.2719	1 1.5053	1 .5650	.14	•0.
PROBE P65.: -30		.1123		\$015°		-24Bh		-2693	I.4858	9795.	• -	å
14.06 In.		. 1 1 4 7		.5117		.2419		.2688	1.4551	.5760	<u>.</u>	•0•
PRESS.: 28.74 PSIA		.1167		.5061		.2448		.2691	1.4153	.5783	• • •	3 3
AVERAGE : CONCENTRATION :	28.4	-1139 28.47 PPHC	20.86	,5086 6 PPRV	24-2	24-24 PPMV	800B	42691 400.00 PPMV	2574 UD.	1.51 2 VOL	, a	3 .0 .0

SO NCTE SO DATA MARKED WITH AN ASTERISK (S) HOT INCLUDED IN AVERAGE

THE REAL PROPERTY OF THE PARTY OF THE PARTY

SCOTT ENVIRONMENTAL JECKNOLOGY INC.	SECKNOL.	06 V IA				SET 16	SET 1626-001-1077	101				REPUB	REPURI DATE 10/24/77	11/42/
CONCENTRATION ENDINE CRISSIONS INVENTORY CONCENTRATION EDIT REPORT	EP087	ANT CE	SCOTT TEST 1, TYPE A	ST 1.1	TPE A	ž	H/ 3/77	L	F 10C	9 680160	4P.9	CONTRAC	USAI CONTRACT FUBB35-77-0216 WPS FIELD TEST I	-0216 S1 1
	• THC	1	# MOZ	* × 0		07:	#- [M-07 e	*	3	•- 07-03•	• 605	• 2 0	6- TEMP - F	•
	RN6	RNG VOLTS	RMG	VOL. TS	# # 6	¥ 01.75	RAG	VOL 15	RNG	RN6 VOLTS	Ruc	Rug VOLTS	INPUT	REFER
MODE-POINT : 5-13	٠													
SPAN/ZERO ADJ. Sample data :		.98 .0380	1.02	-0012	1.17	1.17 .0070	1.15	-1172	66.	66 40 . 66.	1.21	e 27.3°		
71ME : 1525	1.00	. 3458	1.00 .3458 1000.00	.3147	250.00	.9590	-	1.2340	-	1 2.0858	~	.7642	-0	•
PROBE POS.: +30		.3775		.3164		. 1961		1.2045		2.0797		.76:16	•0•	•
02 IN.		. 3743		.3175		. 9685		1.22.1		2.1015		.7613	•0•	•0•
PRESS.: 30.41 PSIA		. 3696		.3169		. 9629		1 *1 98 1		2.1111		. 7 b. !	•0•	•0•
		.3499		.3166		.9623		1.2133		2-1183		.7611	•0•	•0•
AVERAGE :		.3714		.3164		.9628		1.2143		2.0993		.7626	,	0.
CONCENTRATION :	16.5	18.57 PPAC	316.44	PPHV.	240.7	240.71 PPMV	8156.93 PPMV	3 PPHV	•	*00 PPMV	13.7	13.74 # VOL	0.	.0 DE6.F

DATA MARKED WITH AR ASTERISK (*) NOT INCLUDED IN AVERAGE ** #0TE **

50

STOP CONC

	REPORT SCOT	1008	TEST TEST	A TWOF A	7112 18	6150	# 660325 mPe	FIELD TEST 2	FIELD TEST
RANGE 1 SPAN ADJ.FACT(ZERO READING									
MON-LINEAR INS RAWSE I SPAN ADJ-FACT(ZERO READING									
RANGE 1 SPAN ADJ.FACT(ZERO READING			5	LIBRATION D	CALIBRATION DATA FOR PERIOD	00 922 10 1019			
RAWSE 1 SPAN ADJ-FACT(ZERO READING	STRUMENTS :					REFERENCE CI	REFERENCE CURVES CALIBRATION DATE	11122111	
RANGE 1 Span adjafacyc Zero reading	•	83	- 111 -	• • • • • • • • • • • • • • • • • • • •	• 00	- 60	•	203	•
RAWGE 1 SPAM ADJ-FACTO ZERO READING	• 0	0		PE#100 E#0		9	.	PIRICO	
SPAN ADJ.FACTO			1	!!!	# ! ! ! !	7 1 8 9 8 9 8 8		1 6 1 1 1 1 1 1 1	
ZERO READING		.9876	٠,	.9764	0.86.	.9681	1.0034	1.5416	
		100.	•	•0033	-100-	.0371	₹100°	5 to 3 •	
RANGE 2									
SPAN ABLASACTOR		*296*	6	.9903	6786*	9516.	1.016	3.146	
ZERO READING	•	0002	9	.0036	.006	01.40	**************************************	\$ 200 ·	
PARSE 3					•				
SPAR ABU-FACTOR		.9360	•	.9424	.9652	. 3420	1565	1.0628	
ZERO READING	•	-*0024	•	. 0045	*5 10.	. 2866	8100.	A000	
LINEAR INSTRUMENTS	WENTS :								#RO
	•	1	THC	00.00	001010	NOX	001033	6.0 6.4 01.0100	
	Ņ	START	END.		START	E ND	SIERI	FNC	OP
SPAN ADJ.FACTOR	5	.9620	54.	.9527	1.0163	9600*1	1.6241	1.1368	. Iv
ZERGES FOR RANGES 17HC) INGX/HO)	16£ S 780)								Brst Raish
7.07.	525	1 600	•	1611	94680	F318.	6470.	1579.	QU.
200		.0165		0306	.1170	.2031	.2437	.1574	IL 10
10.0		.005	•	.0158	-0172	.0817	-C 14.8	. (:630	İT
50.0	100.0	, 000°	•	.0031	.0606*	.0187	6900.	•010•	Y D.O
	250.0	1000	•	9100	• OC 38	#80C.	7103*	. CUF.	P
	1000.0	1000	•	• 000 3	*20n*	0206.	.CJe8	9100.	-
	2500.0	1000	•	-0002	•0005	*000°	Othe.	, ნაიი	T
\$ \$000°0 10000°0	00-0	0000	•	•0000	.000	2 0 00*	200¢*	2 Jng•	IÇ/
SPAN GAS CONCE	CONCENTRATIONS								BL
3#44-3H1	Ĭ	,	NO-PPR	E9-H1 -63	Hdd-07-00	C 3 Z - %]
SPAR 2 29.48 SPAR 2 817.00	1	19.70 90.4C	19.70	245.00	78.40	D & * *	SAMPLE PROME TYPE - TE	*rov	00-

117PE A 87 5777	
A 3476	2 . I V
4110 m	41-1 07 4-1 107
1.00 .0075	
250.00 .250	545.63
12.14 P***	***** ***** ***************************
77 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
严重的意义 网络有效的行 。	44. 4.0 4.0 4.0
	· · · · · · · · · · · · · · · · · · ·
,	
· · · · · · · · · · · · · · · · · · ·	新江州井ヶ 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
4 * * * * * * * * * * * * * * * * * * *	

	240 ANG	20 NO W		\$1.35	2 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m	0 m v 1 m v	- TE-70	46. 15	- 10 1 2 4 A A A A A A A A A A A A A A A A A A	•	5 (1)	INPUT RIFER	* * * * * * * * * * * * * * * * * * *
MODE-POINT : 4-03	4	.0252.	0	**************************************	14 14 14		*	*** -***	(2	4.00.00.00.00.00.00.00.00.00.00.00.00.00		
SAMPLE DATA SAMPLE DATA TIME 1 DATA TIME 1 DATA TIME 1 DATA TIME 1 DATA TIME 2 DATA TIME			2582 2586 2586 2586 2586 2586 2586 2586	**************************************	<u> </u>	3 7. 4 m m 1	, w.	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.7 9 Jan 1 20	~ > > > > = 1	7 6 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
AVERAGE 3 CONCENTRATION 3 MODE-POINT 3 9-09	**	1007			*	**************************************	***************************************	. 3551	のです。 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	0. A 3 K	10 A R 77 **	137105	81.1 DEC.F
SPAN/ZEHO ADJ.	*	£0.00. 46.	10.1	()(00.		1 420° 84.1	*	. 84u.S.	KR40 - 54.	₹. 10	1.02 .0450		
TIME 1 949 PHOHE POS. 1 + 10	na••		00.000		() ·); ?!		MPS	2562	10 TO W	77×	26.55	255.4 255.1 255.1	7 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
PHESS:1 35:11 PSIA							·	2000	300 F F F F F F F F F F F F F F F F F F	7 % [\$ # C 2 * .	255.1	#10. #10.4
AVERAGE 1	3.61	3868 10.811		.1233	***	****	1464 21.642	. 374.	*****		7574.	255.2	81.5 ULG.F

TO A STATE OF DEATH MARKED WITH BESTERING THE ROLL OF STATES

TON ONE A THEMSONE TO THE TARREST OF
CONCENTRATION EDIT REPORT SCOTT CONCENTRATION EDIT REPORT SCOTT RMS VOLTS RM	JAKY APOT		TEST 2.1	2.TYPE A	2	1116 18	6 100		# 680325	USAF	USAF CONTRACT FOR635-77-0216 WPR FIELD TEST 2	FD8635-77-D FIELD TEST	7-0216
99 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						•							
9#4	1	, ; ;			•		•	-	, (;	•	1	•
	AME VOLTS	RM6	VOL 15	2	VOLTS	RNE VOLTS	RNE VOLTS	P. W. VOL 75	VOL 15	RN6 VOLTS	V6LTS	IMPUT REFER	REFER
#086 -P0181 : 4-85													
SPANIZERO ADJ.	.96 .0110	10.1	•900•	1.09	9130.		.94C002	. 9 B	.0202	1.03	•000•		
•		250.00		250.03	. 3124	m	.5263	-	.5810	m	.6265	208.6	41.7
**************************************	16391		-6831		. 3669		.5339		.5654		•6306	509.9	1.10
PRESS.1 34.74 PSIA	.6395		.6865		. 3672		.5288		.5824		.6731	208.8	91.0
	• • 506		.6787		. 3644		-5245		.5738		.6219	207.9	81.8
AVERAGE :	.6434		.6843	•	. 3066		.5280	,	.5773	•	.6241	208.8	81.7
CONCENTRATION: 321.	321.71 PPHC	171.0	1.09 PPHF	76.65	76.65 PPHY	547.6	547.66 PPHV	573.T.	573.72 PPHV	2.8	2.83 % VOL	1032-2	0£6.F
MODE -POINT : 4-86													
SPAM/LERO ADJ.	.96 .0115	1.01	9900-	1.09	.0078	*6.	*000	•	•05 79	1.03	* 000		
		250.00		250.03	. 1455	m	.2345	~	.7121	•	.3016	137.8	82.0
PROBE POS.: +30	.3858		.3163		-14:1		.2385		1069.		.2975	137.6	6.18
11.24 IN.	.378%		-3186		. 1415		•2325		. 71 15		• 5 6 6 6	137.3	81.9
PECSS:: 22-73 PSI6	. 3745		64189		. 1438		•2335		.7116		• 300 •	138.3	81.9
	.3723		.3149	•	. 1437		.2304	,	.7094		• 3050	137.7	81.8
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3780		21172		75.01	-	2 2 4 8	•	1402	•	4002	1 23 7	
CONCENTRATION : 169.	189.22 PPMC	19.3	.31 PPHV	35.92 PPMV	AHdd	249.5	249-56 PPPV	230.25	230.22 PPMV	1.32	1.32 x vol	465.8	066.5

SE NOTE SE DATA MARKED WITH AN ASTERISK SO NOT INCLUDED IN AVERAGE

	SCOTT ENTRONIENTAL TECHNOLOGY INC.	TECHNOL O	36 Y INC	•			SET 163	SET 1628-001-1017	1017			REPUT	REPORT DATE 10/24/77	124177
	USAF TURBINE ENGINE ENISSIONS INVENTORY CONCENTRATION EDIT REPORT	EN1 55 10 N EPOR 1	IS BUVE	NTORY SCOTT TEST		2.TVPE A	8	1116 18	6166		4 680325	WPH CONTRACT TOODS TOTAL TOOLS TO THE STATE OF THE STATE	F16L0 TEST	E 5 1 2
			-							4				•
		ANE VOLTS	#C4 VOL 1S	RNG ZOLTS	40LTS	RNE VOLTS	¥ 0L TS		-H1 -	2	vor 15	KNG 40L1S	INPUT	REFER
			1	1	1		!	•	1 1 1	•	• • • •	1 1 1 1 1 1 1 1 1		
	10-6 = 1HI04-300H													
	SPAN/ZERO ADJ.	•	.0125	1.03	.0071	1.13	.0080		100.	16.	•920•	1.04 6060		
	SAMPLE DATA :	60.00	911	250-00	1502	250.00	.2147	*1	4651	-	.5228	3 *4345	160.5	82.3
	0001 : 321	2			203		.2176		7494.		.5227	.4243	160.9	82.3
			8221		5015		.2165				.5261	4154.	161.1	82.3
	Absect: 18-12 BC14		1115		.5051		.2198		. 4789		.\$127	* 4 306	160.3	82.3
	1117 - 1198/7 - 100/0UZA		. B099		.5045		.2116		1496.		1825.	e 4 3 i. 9	160.0	82.2
		•			1 1 1	•			! ! ! ! ! !	•		1 : 1 : 1		
	ANE BALL		.B136		.50**		- 216C		.4670		.5211	* 1 5 7 .	160.6	84.5
	CONCENTRATION :	406.7	406.79 PPMC	126.3	6.39 PPMV	24.0	54.01 PPHV	492.6	492.66 PPNV	504.5	504.57 PP4v	1.91 2 VOL	655.7	DEG.F
	MODE-POINT : 4-08										-			
5	-FOR BURZINGS	•,	.0128	1.01	.0021	1.11	0600.	6.	.0316	26.	.0266	1.040001		
5	SARVIE DATA :	6	4005	6204 1000-00	2518	250.00	11115	*1	0699*	~	.6724	3 .8143	236.2	82.1
	PARK I 1002		5053		-2526	1	. 5721		.6627		.6721	671H*	237.7	82.0
			5129		.2550		.5768		.6 794		4854.	. 6123	236.7	82.0
	ALSO SELES PSIA		.5172		-2504		.5760		.6671		.6772	2 4114.	236.2	81.9
			.5154		.2469		.5710		.6646		.6786	. tu37	236.6	82.0
			1 .		, ,		1 4		1 4 4 4		37.67	3 3	7.46.7	B2.0
			.5183	, 040	•2506	~ ~ ~	P6/5.	4.00.	2400.	3 4 4	1110°	3.56 % 401	1256.2	DE 6.F
	CORCENTRATION :	257-1	259-14 PPRC	9.007	49.0c2	7 · · · · · · · · · · · · · · · · · · ·		•))		F	1	

SO NOTE SO DATA MARKED WITH AN ASTERISK 10) NOT INCLUDED IN AVERAGE

THE THERE IS HERT QUALITY THERETORY

SCOTT ENVIRONMENTAL TECHNOLOGY INC.	TE CHNOL	06Y THE	5			SET 16.	SET 1628-001-1077	1011			4	REPORT	REPORT DATE 10/24/17	124177
USAT TUMBINE ENGINE ENISSIONS INVENTORE CONCENTRATION EDIT REPORT	E M I SS I O E P O R T	JANI SH	1	15.1 2.	2,TYPE A	*	. 1116 18	f.1	F100	. 680325	8	FIELD TEST 2	F1ELO TEST	EST 2
		3	i	3		•	3 2 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	•		† •	00		- 16 mp 6 - 6	•
	R # 6	VOL 15	-	VOL 15	25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	YOLTS	RNG	VOL TS	RNG	VOL 75	RNG		INPUT	REFER
MODE -POINT : 4-09														
SPRN/ZERO ADJ.	6.	.96 .1409	1.01	.0021	1.11	•200•	*6.	6100*	.93	.0731	1.040002	-0002		
7146 . 1004	1.00	.3004	1.00 . 3004 1000.00	.3820	1000.00	. 3180	•	.1360	2	.4318	×;	.9072	250.6	82.3
PROSE POS.: -30		.3229		5842		.3174		1341		177		.9043	250.8	82.3
-5.0 3 IN. -5.0 3 IN.		2421		3870		. 3183		.1366		.4203		.903	250.8	82.4
		.2171		.3660		.3195		.1372		.4189			550.9	95.4
				1 0 7 0 %		2307	•	1721			•	2 300	250.7	12.3
AVERAGE : CONCENTRATION :	13.5	13.50 PPRC	365.9	. 306U	316.7	316.74 PPMV	116.4	116.43 PPHV	130.1	130-12 PPHV	4.51		9	0E6.F
MODE-POINT : 4-10														
SPAM/ZERO ADJ.	-95	.95 .0281	1001	.0023	1.11	.0027	•	.002		•0296	1.050003	.0003		
11ME: 1007	8.00	. 8942	.89%2 1000.00	.2728	1000-000	.1660	~	.6615	~	. 6491	m	.8479	232.9	82.3
7405 7630 -30		. 9332		2012		1612		.6639		•6504		.6529	232.6	82.3
PRESS.: 34.87 PSIA		.9423		.2709		.1614		.6614		.6485	•	. 6467	231.1	82.2
AVERAGE : Concentration :	231.2	.9251 231.26 PPRC	272.2	.2722 272.20 PPHV	163.2	. 1633 163.25 PPHV	664.1	VH44 : 13 PPHV	661.8	AMAM E8*199	4.12		-	82.3 0£6.F

DATA MARKED MITH AN ASTERISM (*) NOT INCLUDED IN AVERAGE ** ** **

.

47		
12	G EL	
2	TO REAL PROPERTY OF THE PARTY O	_
	30 K	
	4	<u> </u>
		-

SCOTT ENVIRONMENTAL TECHNOLOGY INC.	TECHNOL	06 V INC	•			SET 16	SET 1628-001-1077	1077				PEPUS 1	REPUGT DATE 16/24/77	124/75
USAF TURBINE ENGLÆE ENISSIONS INVENTORY CONCENTRATION EDIT REPORT	EMISSIONE SEPORT	NS INVE	-	ESY 2,	2,1YPE A	8	1110 18	1 4	F 100	# 683325	1 0 A	LUNINALI TUBB 55-17-UZIB FILLO TEST 2	FIELD TEST	1-0216 EST 2
٠.													1	•
	RNG	PNG VOLTS	R PAG	MOX+	2 2 2 2	PNG VOLTS	RNG VOL	VOL 15	PNG VOL	-L 0 -• VOL 75	* (62*	62* VOLTS	INPLI REFER	REFER
MODE -POINT : 4-11														
SPAN/ZERO ADJ.	.95	-0142	10.1	-0172	1.12	.0103	6.	.co30	.93	.0827	1.05(50.1	£ 20.3		
VINT . 1010	10.00	5338	100.00	.7536	100.00	. 3207	m	.2541	2	.7123	~1	42954	153.3	42.6
01 VOA 14084)	.5365)	. 7673	 	. 3084		.2470		. 730E		.2623	153.9	62.6
		.5359		.7560		.3121		2142.		.7155		616	153.8	82.6
PRESS 26.22 PS1A		.5326		. 7663		. 3203		1645.		. 6944	Ĭ	. 5992.	153.0	82.1
		.5233		.7680		. 3299		-2489		. 7017	•	.2670	153.5	82.1
											i		1 1 1 1 1	
AVERAGE :		.5324		.7626		. 3183		.2482		.7126		9500	153.5	62.6
CONCENTRATION :	266-2	266-22 PPMC	76.2	Ze PPHV	31.6	31.83 PPMV	266.4	266.44 PP#V	232.0	232.09 PPM	1.15	70 A CF	0.862	DE 6 .F
MODE-POINT : 4-12														
SPAN/ZERO ADJ.	.95	.0146	1.03	.0176	1.12	•010•	•	.6034	26.	.0665	3.05	6006		•
TIME : 1012	10.00	3208	100,00	.3769	100-00	.1764	m	.1183	~	.3250	£	.1377	129.2	85.8
PROBE POS. : -30		. 3132		.3797		.1811		.1197		.3325		.1374	129.3	62.0
11.14 18.		. 3213		.3785	•	. 1822		.1189		.3282		.1378	129.0	85.8
PRESS. 2 22-54 PSIA		. 3143		.3805		.1790		.1189		•326℃		.1378	129.5	82.1
		.3141		.3808		. 1816		•1174		.3276		.1364	129.5	82.7
											i	, , , , , ,		
AVERGE		. 3166		.3793		. 1001		11187		.3277	•	.1314		85.8
CORCENTRATION :	158.	158.38 PPMC	37.9	37.93 PPHV	18.0	18.01 PPMV	96.1	96.11 PPPV	ے د د	A M A D & O & O & O	65.	.59 % VOL	390.5	056.4

SS HOTE SS DATA MARKED WITH AN ASTERISK (S) NOT INCLUDED IN AVERAGE

REPORT 0ATE 10/24/77	USAF CONTRECT FORE35-77-0216	FIELD TEST 2
	USA	1 P C
		8 68 U325
~		0.01.4
SET 1628-001-107		1116 14
		II TEST 2, TTPE A
INC.	INVENTORY	SC011 7ES1
SCOTT ENVIRONMENTAL TECHNOLOGY INC.	USAF TURBINE ENGINE EMISSIONS INVENTORY	CONCENTRATION EDIT REPORT

		A 746	•	,		1	, L	1 1 1 1	07	•		0.2 5.0	0.4 75 -4	4
	9114	RMG VOLTS	RRG	VOL 15		RNG VOLTS	RNG	RNG VOLTS	RNG	RNG VOLTS	. 9×6	RN6 VOLTS	INPUT	INPUT REFER
	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	-			-		:			!		
RODE -POINT : 4-13														
SFAM/ZERO ADJ. Sample data :	96.	.96 .1181	10.1	.0022		1.08 .0045	*	0400*- +6*	\$6.	.0.6	1.02	1503*		
TIME 1 947	1.00	.0051	1000.00		1000.00	. 3090	P ^A	.0766	2	.2468	fu	.5914	238.2	
PROBE POS.: +30		.0562				. 3079		.0792		.2438		.5930	238.3	
.07 IN.		. 1303				.3104		.0753		.2516		1165.	238.3	
PRESS.: 34.39 PSIA		.04.0				. 3095		.070.		.2411		.5917	236.2	
		15+0*	15.00			. 3073		.0763		.2410		.5915	238.4	
AVERAGE : CONCENTRATION :	87 9	.0723	361.4	. 3613 . 3613	108.83	308. 308.	52.1	0010°	72.27	2449 2449	4	8165°	238.3	91.5

REPORT DATE 10/24/77	USAF CONTRACT FOR635-77-0216	E 1831 03313
		# 680325 MPR
177		F 1 00
SET 1628-031-1077		81 9/17
		ZPTYPE A
1 INC.	BNVERTORY	SCOTT TEST
SCOTT ENVIRONMENTAL TECHNOLOGY INC.	USAF TURBINE ENGINE EMISSIONS INVENTORY	CONCENTRATION EDIT REPORT

CALIBRATION DATA FOR PERICO 1019 TO 1111

		00	= -	*	3	* 07 - 03	** ************************************	1 1 1 1 1 1 1
		PERIOD START	PE	PER100 End		PER100	PERICO	
RANGE 1				1 3		1	•	
ZERO READING	SFAW AUJOFACTOR ZERO READING	.0033	•	C++0.	10371	11552	5100.	62.29
RANGE 2								
SP AM AD.	SPAN ADJ.FACTOR	0066	7. (1 -0062	.9156	1.4587	1.0405	1.1453
ZERO READING	ADIME	•0036	7	•0617	07.60	.4192	5200°	.1468
RANGE 3								
SPAR AD.	SPAR ADJ.FAC 108	.9424	•	.6468	.3420	.3493	1.0628	1.126.1
ZERO REI	READING	\$ 000	•	.1153	.2866	.3336	6909*-	€ 300.3*
LINEAR 1	LINEAR INSTRUMENTS	••						
			1HC	••••••		TON	02	• • • • • • • • • •
		PERIOD		PERIOD	PER100	PER100	PERIUD	PERICO
		START	ű	END	STAPT	E NO	START	EAD
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1					111111
SPAN AD.	SPAN ADJ.FACTOR	.9527	7 - [1.0226	1.0086	1.0349	1.1308	1.1383
ZEROES F 17HC)	ZEROES FOR RANGES 17HC) (HOX/NO)							
0.1	c	11917		2113	.8123	1.5718	1429	1.3550
5.0	-	0.00		00.00	2031	3429	157	3467
		0158		-0158	.0812	.1372	0:40.	5551.
	_	1100		9200	1910	.0276	9010	-0112
•		4000		6100	3 C	47.10	9450	
	•		,	4000	0200		41 (i)	.0072
•		2000		2000	4000°	100	9000	# 13C*
\$ \$000.0	7	0000	. ~	0000	2020*	.000	27000	.0003
SPAN GAS	S CONCENTRATIONS	730NS :						
	THC -PPHC	MOX-PPH	# d d - 0 #	CO-H1-PPH	Md 4-07-03	C 0 2 - £		
SPAN 1		19.70	19.70	245.00	78.40	64.9	101.PRESS.FACT. 1.60C	, AbsCU

** NOTE ** DATA MARKED WITH AN ASTERISK 1+1 NOT INCLUDED IN AVENAGE

REPORT DATE 10/24/77	USAF CONTRACT FURBSS-11-UZIG WFB FIELD TEST 2	- TEMP F IMPUT REFER				*0.		•1•-	0.	.0 016.6		-	1.	10	14 .04	1+ -0+	•	0.00.00
4049A		* C02* RNG VOLTS		1.06 .0076	1 .7326	. 1303	. 7308	.7306	.7310	12.51 \$ VOL		1.07 .0068	3 .6490	.6491	.6504	.6478	9059*	10 A & 69.6 .
	F18C # 680325	# CO-LO -# RNG VOLTS		1.05 .0642	1 2-1309	2.1593	2.1542	2.1727	2-1537	*00 PPHV		1.07 .0697	1 2.6713	2.6712	2.6713	2.6712	2.6710	2.6712 .00 PPHV
SET 1628-001-1077	8/ 9/77 F1	PNG VOLTS		.96 .0126	1 1-1489	1.1649	1-1372	1.1668	1-1535	7595.76 PPHV		.96 .01#5	1 1.5076	1.5079	1.5087	1.5081	1.5081	1.5081 1.5081
SET 16	2,1YPE A 8,	RN6 VOLTS		1.14 .0084	250.00 .3351	.3215	. 3226	. 3254	.3254	81.35 PPNV		1.14 .0084	250.00 . 5521		.5604	.5604	. 5407	. 5589 139.72 PFHY
000	TEST	RNG VOLTS		1.01 .0096	250.00 .5219	.5140 .5159	.5141	.5156	.5163	129.07 PPMV		1.02 .0098	250.00 .6630	.6572	.6375	.6337	•929•	460.61 PPHV
TECHNOLOGY INC.	EPORT MACE	A THC*		.97 .1728	1.00 .2990	. 4993	.2223	.2726	**08*	15.22 PPMC		.97 .0016	0116. 00.001	.8742	.8782	.9113	. 6711	2888. 2889.
SCOTT ENVIRONMENTAL TECHNOLOGY INC.	USAF TURBINE ENGINE EFISSIONS INVENTORY CONCENTRATION EDIT REPORT		MODE-POINT : 5-01	SPANZERO ADJ.	TIME : 1031	PROBE POS.: +30	PRESS. 31.38 PSIA		AVERAGE :	CONCENTRATION :	MODE-POINT : 5-02	SPAN/ZERO ADJ. SAMPLE DATA :	TIME : 1033	PROBE POS.: +30	-10.89 IN.	PRESS. 33.24 PSIA		AVERAGE : Concentration :

** NOTE ** DATA MARKED WITH AN ASTERISM (*) NOT INCLUDED IN AVERAGE

•		1101-100-40-1011			22752701 3140 150534	10/54/71
COTT ENVIRONMENTAL TECHNOLOGY INC.					USAF CUNTRACT FOR635-77-0216	15-11-6216
THE THE PROPERTY OF THE PROPER			1 1 4 1	30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	54 m	FIELD TEST 2
CONTRIBATION EUIT REPORT	7 1441 .) •			•

~ 0 ~

	SETOR ORG	01.15	# 40 × 11 + 40 × 11 + 40 × 11 + 11 + 11 + 11 + 11 + 11 + 11 + 1	W			- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	** 01-73*	# # # # # # # # # # # # # # # # # # #	INPUT REFER
MOUE-POINT : %-03 SPANZERO ADJ.	. 16.	9190	•/no- /6-1 910n- /6-	•/00•	を を を を を を を を の の の の の の の の の の の の	4 2 7	P (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1.50	2.7 . 2.11	
SAMPLE DATA: 11ME: 1035 PHONE POS:: *50 -5-33 IN- FUESS:: \$1.27 PSIA	100.00	2000	.1407 1060.086 -2125 -1752 -1834 -1834		7.75%		- 1	3 3 3 4 M M M M M M M M M M M M M M M M		
AVERAGE 1 CONCENTRATION 1	# # # # # # # # # # # # # # # # # # #			1444			5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7	30 m 4 - 7 m t	
MODE-POINT - 5-0% SPANZERO ADJ.	** *	.015	₹0. *	Co.	(数) (数) (数) (数) (数)	# # %: #3 #	74 A A A A		3	
SAMPLE DATA 3 TIME 1 1039 PHOHE POS.1 * 50 6-45 IN*	00.01		50*mgg*		Mg cuid H The			# 9 9 3 7 8 10 10 10 10 10 10 10 10 10 10 10 10 10		•••••
AVERAGE : CONCENTRATION :			**	・ 本の	e ge sales Pro-	を 一般	1	6 Mar 8 2 Mar 9 2 Mar 4 2 Mar 19 2 Mar	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

OATE OF DATA MARKED BITTIN AN ANTERINA TOO NOT TREE OF THE ANTERINA

THE SAME IS BEEN COLLEGE OF THE PARCE OF THE

SCOTT ENVIRONMENTAL TECHNOLOGY INC.	1ECHNOLO	CY INC.				SE 1 16	1620-651-1517	1011			•	REPOR	REPORT DATE 10/24/77	174/17
USAF TURBINE ENGINE EMISSIONS INVENTORY CONCENTRATION EDIT REPORT	E MISS 10A NEPORT	S INVE	N TORY SCOTT TEST	~	FIPE A	1	1115 14	T.	F110	* 680325	- C		CONTRACT FU8635-77-021 FIELD TEST	51.5
	PNG VOLTS	HC	RNG VOLTS	VOL 15	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	v or 15	TH-O) *	-H1 -+	CG-LO RWG VOL	6-0-0 40-15	RNG VOLTS	CG2• VOLTS	TERP. F. F. I	
MODE-POINT : 5-05														
SPAN/ZERO ADJ.	86.	.0030	1.02	1500.	7	**20.	,	9373*	1.13	.0673	1.04	.6127		
SAMPLE DATA :	50.00	.2615	2615 1000.00	.2156	250.64	. 6563		\$175.1	-	2,7906		.6881	•:	•
PRORF POS.: +50		.1935		1.217.		. 6542		1.5365		2.7906		. 6868	• 7 •	• 0 •
		.2027		8402		.6365		1805-1		2.7906		. 6668	*!	•
PRESS.: 33.50 PSIA		.2081		2112		.6575		1.5087		2.790%		- 0 R 0 -	::	5 6
AVERAGE : Concentration :	511.24	.2045 511.24 PPMC	212.3	.2123 212.31 PPRV	162.6	.6505 .6505 162.63 PPNV	1.50701 1.50701	1.5083 5 PPRV	ů,	2.7905 .co PPMV	10.97			
HODE-POINT : 5-06														
SPAN/ZERO ADJ.	80.	.1845	1.02	*110*	1.14	.0084	364	0220		.0914	1.08	.0136		
TIME : 1043	1.00	0640.	250.00	.3465	250.60	.1587	-	.7692	-	2.2093		. 5963	* *	•0•
PROBE POS.: +30		.0512		* 3 4 7 4		. 1667		***		5-02-2		9704		
14-11 IN-		9940		.3370		1607		1516		2.1965		5076		
PRESS.: 29.58 PSIA		.0357		3447		.1660		7316		2.1892		.6036	-	•
		1		1 1				1 1 1			•		c	
AVERAGE : CONCENTRATION :	2.2	.0450 2.25 PPMC		. 3407 85.18 PPRV	46.7	.1628 46.70 PPMV	3947.1	ANDS ST. LAGE	9.	00 PF HV	8.23	N. 22 1 VOL		066.

TE ** DATA MARKED WITH AN ASTERISK (*) NOT INCLUDED IN AVERAGE

	SCOTT ENVIRONMENTAL TECHNOLOGY INC.	TECHNOL	1067 IN	:			SET 1	SET 1626-001-1077	77.01				REPORT CATE 13/24/7	124177
	UMAF TURBINE ENGINE ENISSIONS INVENTORY	EN15510	NI SHO		TEST 2,	2.TYPE A	æ	87 9777	ل میں		# 6.80325	TAN CONTRACT	CONTRACT FOR 635-11-0216 FIELD TEST 2	f-0216 ES1 2
		-	1 3E	-	**************************************	-	04	07	• C 0 - H 1 - •	*- 01-03	•	603	TEMP - F	• • • • •
		RNG	RNG VOLTS	RNG	VOL 15	RNG	V OL 1S	RNG	VOL 15	RNG VOLTS	101.75	RNG VCLTS	INPUT	REFER
	MODE-POINT : 5-07													
	SPAN/ZERO AUJ.	66.	.0030	1.02	.0108	1.14	•008.	66	5923*	1.18	.1034	1.04 .Cle4		
	TIME : BOAR	50.00		250.00	.6433	250.00	.4627	-	1.5089	1 2.	2.8705	1 .6445	• 7 • 1	ů
	PROBE POS.: -30		.1442		.6303		4569		1.5083	· ~	2.8751	3969.	14	•
	-14.02 IN.		.1834		•6369		****		1.5077	į	6918.2	.6923	• 7 • -	•0•
	PRESS.: 33.21 PSIA		.1644		.6291		+094		1.5072	~	2.8642	9569.	•1•-	•0•
			.2060		.6336		• 4554		1.5081	5.	2.8907	.6931	•1	0
									1 1	i		1 1	1 1 1 1 1 1	
	AVERAGE :		. 1675		-6347		009.		1.5080	2.	2.8795	4000	•	
	CONCENTRATION :	419.1	418.78 PPHC		158.67 PPNV	115.0	115.Ul PPMV	10707.57 PPHV	7 PPHV	00.	Awad Co-	11.72 1 50L	•	•0 DEG•F
	MODE-POINT : 5-08													
63	SPAN/ZERO ADJ. Sample data :	•	•0362	1.02	•0035	1.14	.0084	66.	.1:276	1.19	.1677	1.10 .0173		
	11ME : 1050	5.00		00.0001 1.81.	.3171	250.00	6666.	7	1.5(.83	1 2.	2.8233	1 .7417	1•	•0•
	PROBE POS.: -30		.1928		.3170		1.0156		1.5086	2.	2.8385	.7391	-:1*	•0•
-	-10.80 IN.		.1328		.3177		1.0264		1.5082	2.	2.839€	.7420	•~-	•0•
	PRESS.: 32.25 PS1A		.1325		. 3210		1.0256		1.5080	2.	2.8481	.7401	* :-	0
			.1347		. 32 1 5		1.0342		1.5079	2.	2.8644	.7463	• 1	•0•
										ì	111111	i		
	AVERAGE :		.1495		.3188		1.0204		1.5062	2.	2.8428	.7460	0•	Q.
	CONCENTRATION	17.3	37.37 PPMC	3.3	B.B. PPHV	255.0	255.09 PPMV	10709.49 PPMV	7 FPR 4	00.	CO PPMI	12.87 % VOL	ن <u>ب</u>	3.0 DE 6.5

SE NOTE SE DATA MARKED MITH AN ASTERISK IST NOT INCLUDED IN AVERACE

THE CORY THEOLOGY TO THE THEOL

SCOTT ENVIRONMENTAL TECHNOLOGY INC. USAF TURRINE FRENCATORA TRANSPOR	TECHNO	LOGY IN	.C.			SE 7 . 1	1101-100-291 135	111			REPORT DATE 10/24/77	120177
CONCENTRATION COLT REPORT	Lands			1EST 2.	2, ITPE A	•	1116 18	f 100	30 # 680325	USAF	CONTRACT F08635-77-0216 F1ELD TEST 2	7-0216 EST 2
	4	PMC		# XOM	1 2	NO	0	• • • • • • • • • • • • • • • • • • • •	9	5	4- 1EMP F	- F
			•	2	\$ 1 2 1	100			RMG VOLTS	RN6 WOLTS	INPU	REFER
MODE-POINT : 5-09										٠		
SPAN/ZERO ADJ.	1.00	.0365	1.03	.0035	1:14	.008	. 66.	0620*	1.20 .1118	1.10 .0162	• •	
	5.00	.0316	.0316 1000.00	.3106	250.03	1.0016	•	1.5061	1 2.8756	1,765		6
PROBE POS.: -30		•0365		. 3080		1.0007	-	1.5081	2.8896	. 1437	-	
- P - 31 IN-		.0400		.3090		1566.	-	1.5081	2.8834	7431	-11	
FWESS.: 51.24 PSIA		• 0505		.3129		1.0108	-	1.5091	7.8844	. 7443	•	ō
		1950		.3127		1.0054	-	1.5092	2.8958	9446.	•:	•
AVERAGE :		.0389		.3166		1.0028	1 📑	1.5086	2.8848	744.		
CONCENTRATION :	6	9.73 PPME	310.6	1.62 PPHY	256+7	250-71 PPM	10712-89 PPHV	PPHV	400 PPM	13.C1 2 10L	0	DE6.F
MODE-POINT : 5-10												
SPANIZERO ADJ. SAMPLE DATA :	1.00	03 20	1.03	15003	1.14	.008	36.	• 0 3 0 9	1.22 .1172	1.10 .0194		
	5.00	.3141	.3141 1000-00	.3139	250.00	. 9887	1 1.	1.5092	1 2.9437	1 .7355	•	•0
PROBE POS.: -30		.2845		.3113		.9855	-	.5085	2.5526	- 7.35 A	•	
6-52 IM.		.3350		-3109		. 4719	-	.5082	2.9552	.7363	• [•	ģ
THESS STORE STREET		.7214		-3117		.9822	~	.5078	2.9587	.7354	•	0
		. 5270		.3109		-9817	-	1.5081	2.9605	.1375	•1•	0.
AVERAGE :		. 2964		.3117		9820	1 -	1.5083	2.0502	0716		
CONCENTRATION :	7.	74.09 PPHC	311.7	ANDE SE	245.5	245.50 PPRV	10710.17 PPHY	AHAA	Andd OO.	12.65 % VOL	•	-0 066.5

. MOTE ... DATA MARKED WITH AN ASTERISK IN. MOT INCLUDED IN AVERAGE

REPORT DATE 19/24/13	USAF CONTRACT FOR635-77-0216	#Pa FIELD TEST 2
		F1CO # 680325 #P9
		F1C0
SET 1626-001-1077		11/5 /2
		Zaline A
INC.	INVENTORY	SCOTI TEST 2.TYPE A
SCOTT EMBRONNENTAL TECHNOLOGY INC.	USAF TURBINE ENGINE EMISSIONS INVENTORY	CONCENTRATION EDIT REPORT

NODE-POINT : 5-11 SPAN/ZERO ADJ. 1.00 SAMPLE DATA :		RNG VOLTS RNG	RAG VOLTS	PAG VOLTS	* 01 # S	*- IH-0)*	VCL 15	FN6 VOLTS	VOL 75	RNG VOLTS	INPUT REFER	REFER
	1.00 .0373	1.03	.0037	1.14	.0084	36.	.0323	1.23 .1	.1213	1.11 .0203		
		.5876 1000.00	0191.	250.09	.4530	~	1.5076	1 2.9	2.9813	1 .7262	•1•	0
PROBE POS.: -30	.5468	•	1551		. 4 326		1.5074	2.9	2.9804	•1515	•1•	•0•
11.06 In.	.6389	•	-1555		. 4 . 6 1		1.5075	5°8	569	1357.	• • •	•0•
PRESS. 32.64 PSIA	-4102	~	-1569		. 4381		1.5081	5.9	2.9644	.7453	•	•0
	0000	A 1	1590		- 44 he		1.5062	2 · 9	2.962b	.773.	*1.	•0•
	.5267		.1567		-4423		1.5078	2.9	2.9717	7.647.	0.	0
CONCENTRATION: 151-	131-67 PPMC	158.7	A Hdd I	116.54	116.58 PPRV	1C705.66 PPP4	Andd a	AW 80 00	AWa	13.22 \$ vol	0	0£6.F
MODE-POINT : 5-12												
	3.00 .0376	1.03	• 3254		.0116	1.00	.6337	1.25 .1254	452	1.11 .6212		
11ME : 1058 5.00	. 9134	100.00	.3235	100.00	.0376	,	. 4594	1 2,3701	101	1 .4465	•	0
	. 38 78	_	.3348		.040		. 4854	2.3	888	.4473	•;	0.
14.15 IN.	. • 101	_	.3330		•0357		7 . 1	2.4	2.4032	38	•	•
PRESS.: 20.23 PSIA	.4177		.3308		.0355		.4627	2.4	2.407B	.4435	•-	å.
•	-4162	A	.3265		.0339		4854.	5.4	2-4086	\$144.	•1•	•0•
				•			:	}		1 1 1 1 1 1	1 1 1 1	
	1604		•		.0367		0.4.	2.3	2.3957	5444.	9	o
CONCENTRATION: 102.	102-26 PPMC	33.01	ANDO I	3.6	3.67 PFAV	2288.2	2285.24 PP#V	ANAG DO"	AHd	. 4.73 2 VOL	•	.0 066.F

SO NOTE SO DATA MARKED WITH AN ASTERISK (S) NOT INCLUDED IN AVERAGE

TO THE PARTY OF TH

SCOTT ENVIRONMENTAL TECHNOLOGY INC.	TECHNOL	06 Y IN	: و و و			SET	SET 1628-001-1077	1011				REPOR	REPORT DATE 10/24/77	124177
USAF TURBINE EMBINE EMISSIONS INVENTORY COMCENTRATION EDIT REPORT	EMISS10 EPORT	ANT SN		7651 2.	2.TTPE A	€	1110 18	Ĩ	F 100	# 680325	# 4 A	WPH CURINACI FUBOSS-17-UZIB	FIELD TEST 2	7-0216 EST 2
	9 2 2	PMG VOLTS	191	MUX	1 2 1	PNC 40LTS	ANG ANG	e CO-HI -+ RNG VOL'S	CO-LO	CO-LO -+	* CO2* RNG VOLTS	CO2+ RNG VOLTS	a- TEMP F4 INPUT REFER	- F - +
HODE-POINT : 5-13														v
SPAN/ZERO AUJ.	.98	.98 .1786		4200 - 20-1		1.14 .0084	56*	26. 20173	1.10	4710. 01.1	1.07	9010- 10-1		
TIME: 1037	1.00		.1647 1000.00		250-00 1.0055	1.0055	-	1 1.4885	~	1 2.4349	-	.7561	•0•	ě
PROBE POS. 1 +30		.1387		.3210		. 9985		1.4913		2.4326		.7561	0.	å
.07 En.		1079		. 34 76		4864		1.4816		2.4523		.7541	o i	•0•
PRESS.: 31.08 PSIA		101.		.3220		1.0042		1.4884		2.4711		.7543	ė ė	•
AVERAGE : Concentration :	S • B	.1179 5.89 PPMC	320.	.3204 0.60 PFNV	256.6	1.0025 250.62 PPHY	1-4885 1-4885 10583-70 PPR	1-4885 I - PPRV	•	2.4515 +00 PPNV	13.4	.7549 .3.43 2 VOL	0	.0 0EE.F

SS NOTE SS DATA MARKED WITH AN ASTERISK (S) NOT INCLUDED IN AVERAGE

AF1 H

66

SCOTT ENVIRONMENTAL TECHNOLOGY INC. USAF TURBINE ENGINE EMISSIONS INVENTORY SCOTT		•	St 1 1628-001 :		9	יייייייייייייייייייייייייייייייייייייי	
TOWITON EOIT PEPON	10RY Co 11	A 34T4E 123F	8/18/17	F 100	# 680301 #12		
		CALIBRATION DATA FOR PERIOR		BOUT TO BESS BEFERE CURVE	1047 TO 1155 PREFERENCE CURVES CALIBRATION GATE		
: SINGREMENTS :			0)	*01	PE1110	PERICO	
ı	[H - 03	# # # # # # # # # # # # # # # # # # #	PER 100	PER100 ENU	START		
	001	OW D	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	9190-1	1.0676	
•	# 10 ·	4.7454	9896°	.0227			
N ADJ-FACTOR O READINE	6603.	,0065	26.96	. 4673 . 0596	8503.	1.1948	
PAMSE 2 Span adjafactor Zero Reading	1,000,	8 900 %	8n 10 .	.8657	900°1	1,00980	
RANGE 3 SPAN ADJ-FACTOR	.6071	0210,	95 00"-	104			
;						NO TERIOD	
LIMEAR INSTRUMENTS :	JHC	ŧ	PER 105	MON PER100	START	END	1
	00	PER100 Enj	START	1000	1.1842	1,1263	RO
	2016	. 9311	1.0677				M COP
SEROES FOR PANGES			:	1.1127	1.2020	3594	y fur
1140	.2368	1979.	1614	1812.	5421.	.0119	NIS
0.01	.0452	.6278	6 4 4 D	32210	1270	8907	HAX
	2005	\$ 300°	42.00	8500.	\$450°		70
	.0019 .0000 .0000	1000.	1000°	. 10013 . 3603	.5063		DDC _
50005 C 50005	: \$NO		#dd-01-03	1-203		- 1.04 - 1.04	10.
THE-PPAC	# dd-	MO-PPH CO-MI-PH) 7 C	TOT.PRESS.FACT.	1000	
SPAN 1 24.48 SPAN 2 417.00 SPAN 3 4620.00	19.70	19.70	245.00) • •	ואי אשטנט מגרי		

SCOTT ENVIRONMENTAL TECHNOLOGY INC.	7ECHNOL	06 Y IN				Sf 7 16	SET 1626-DUI-1077		KEPOR	KEPORT DATE 10/24/7	174177
CORCERIORA EDIT REPORT	EPORT	E		1651 3,	3.TYPE A	*	4/16/77 6	6100 a 6803u1	USAF CONTRACT FOE635-17-0216 MPA FIFLD TEST 3	F1FLD 1EST	7-0216 EST 3
	886	RNG VOLTS	986	REG WOLTS	PNG PNG	PNG WOLTS	# CO-H1 -+ PMG VOLTS	6- CG-LO -+	8 6 VOLTS	a. ILMP. F.T. IMPUT REFER	7 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
MODE-POINT : 4-01											
SPAK/ZERO AD.J.	.92	1880*	1.06	. 6053	1.16	₩600.	6403. 19	.97 .0232	1.040024		
m .	S.00	2865*	250.00	.6018	00*001	- 8002	3 1141	2 .8756	3 .4561	176.3	82.0
-11.69 14.		.5448		.5953		.8635	1151	37 TO 80 SO	36.54	176.9	82.0
PRESS.: 31.08 PSIA		. 5878		.5961		. 8010	-1111	4884	2494	363.1	61.9
							7107-	5114.	*19C*	192.2	81.9
AVERAGE : CONFERENTION .	4	0965.		1909.	á	.812e	1103	.689	* 99**	161.0	82.0
		1	•	1111 75.1	7-18	AH-46 67-18	> 4444 70°	302-32 PPMV	2.07 & vol.	812.9 DE6.F	DE6.f
MODE-POINT : 4-02											
SPANZERO ADJ.	-92	.92 .0562	1.06	# C D 2 8	1.16	. 0078	61 .6100	*010* 96*	1.05 5026		
_	8.00	.5207	.5207 1000.00	.2648	250.00	. 6558	3 [259	1 .4768	3 .7923	225.8	82.4
DE CD		1175.		. 2084		\$696	0241	1514.	. 1962	225.5	82.5
1150 SU-51 - 35 Jad		22.50		2492		445.4	0249	654.	8694.	225.5	82.5
E 47 - 750 77 - 10 11 11 11 11 11 11 11 11 11 11 11 11		746.7		997		• 6 5 8 6	0243	78¢	.7809	226.1	82.5
		5476.		9597	•	. 65.39	0264		. 1869	226.4	82.5
AVERAGE :		.5227		2664		. A.S.R.C.	1361		1 6 6 6		
CONCENTRATION :	130-6	130-66 PPMC	206.4	206.42 PPH	364.6	AMDE 29-191	Addd 70.	1846.65 PPRI	3.73 \$ 704	225.9	82.5 DE6.F

SS NOTE SS DATA MARKED WITH AN ASTERISM (S) NOT INCLUDED IN AVERAGE

	SCOTT ENVIRONMENTAL TECHNOLOGY INC.	TECHNO	1067 IN	٠			SE 1 16	16 28 -001 -1077	1111				KEFORT	REPORT DATE 10/24/77	111821
	USAF TURBINE ENGINE EMISSIONS INVENTORY CONCENTRATION EDIT REPORT	EMISSIORE REPORT	> 2 2 3 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	=	f 5 T	3, TYPE A	8	8/18/77	ī	F100	* 68J3Q1	4 4 B	CONTRACT PURSS-17-DZIG	F16L0 16ST	7-0716 EST 3
		!	8 JHC	•	NOM		• 0 v	*- LU-U*	+1 +1	07-77+	•- 07-	90	(62*	0- TEMPs- Fami	- 5 -
		RNG	RNG VOLTS	BAG	VCL 1S	786	v ot 15	RAG	VOL 15	F 1 1 1 1 1	V OL 75	P. 6	VOL 7 S	INPUT	REFER
	HODE-POINT : 4-03														
	SPAN/ZERO ABJ.	. 42	.0574	1.00	•200•	1.15	.0073	6]	-6102	5.	.0113	1.05	0028		
	TIME : 1119	5.00		.062* 1000.00	.4425	1000.00	. 3363	~	1643	-	.2825	~	.9667	255.4	87.5
	PROBE P05.: +30		0650.		. 44 53		.3355		1675		.2e1k		9922	255.4	62.5
	ALPO CALL PERFORM		05.38		7000		3155		-,1642		1532.		0.480	255.3	82.4
			.0570		.4431		3384		1640		-2844		9869	\$55°	82.3
			. 3514		.4473		- 3380		1658		.2825	•	2966-	255.1	82.4
	AVERAGE		-0578		-4445		. 3365		1653		. 26 36		.9891	255.3	82.4
	œ	=	14.46 PPMC		S3 PPHV	336.8	336.89 PPKV	•	ANAI CO	.28-9	228-98 PP#1	5.18	10 A 2	1405-9	DEG.F
	MODE-POINT : 4-04														
		-92	. 3595	1.05	.0631	1.15	.0072	[9 - 1	• 0105	9	3€ 10	1.060631	.0631		
	11ME : 1124	5.00		.4083 1000.00	.3611	1000,00	.2347	~	.0260	7	.5536	m	.9186	256.6	6.58
69	PROBE POS.: +30				.3594		.2371		.0307		.5416		.9128	256.2	82.9
ı	5.01 IN.		4C 34.		.3561		.2344		.0275		.5547		.9136	257.2	85.9
	PRESS.: 35.27 PSIA		4018		.3582		.2387		2900*		38 42 4 28 48 4 28 48 4		.916.	256.7	82.8
								·				'			
	AVERAGE :				.3597		. 2360		9010		.5475		0916.	256.7	82.9
	CONCENTRATION :	101	101.18 PFMC	359.	359.67 PPH	5 35 . 6	235.59 PPHV	3.0	9.91 PPHV	536.7	536.73 PPMV	4.59	4.59 2 VOL	1421.3	0.66.6
				•										*	

SS NOTE SS DATA MARKED WITH AN ASTERISK (*) NOT INCLUDED IN AVEHAGE

OF COS. TRANSCHOOL OF BRANKSHOUND

SCOTT ENVIRONMENTAL TECHNOLOGY INC.	TECHNOL	ONI A 90	9			SE 7 16	SET 1628-001-1077	710				REPORT	REPORT DATE 10/24/77	171421
CONCENTRATION EDIT PE' 091	E 041		SC011 1ES1		3,1 TPE A	\$	118111	Ξ	F 1C0	680361	3		FIELD TEST	ES1 3
	RNG	RNG VOLTS	9 1	HNG VOLTS	1 2 1	RNG VOL15	# CO-H1 -+ PhG VGLTS	-H1 -+	CU-LO	21 70 A	# CO2# RN6 VCLTS	02* VCLTS	a TEMP. F P. INPUT REFER	F. F. B
HODE-POINT : 4-05														
SPAN/ZERO ADJ.	- 92	9236	1.05	. 6031	1.15	\$470	1.61	•6356	96.	.014C	1.066033	5033		
71ME : 1127	10.00	.4682 1000	1000.00	.1625	1000.00	.0759	, m	n024	~	.4855	m	.5579	202.1	62.5
PROBE POS.: +30		4175		.1631		.0754		.0026			•	.5558	201.2	82.5 87.8
PRESS.: 34.69 PSIA		.4722		-1622		.0735		.0031		. 4923	•	.5602	202.0	82.4
		.4782		.1620		.0743		*000	•	.4887	•;	.5527	201.1	85.5
1		1 1				1 1 1	•				•			
AVE RAGE		4756		1797	1	3 200	1	6000	4	T T T T T T T T T T T T T T T T T T T	4	5562		82.5
CONCLAINA :	731.1	731.18 PPMC	167.1	みだよい つり・フロ		ARAA 50.1/		> E 1 1 0 7 0	7	AE 44 10 1101	TO A 1 64.7	ਤ •	1.57	1.6.1
MODE-POINT : 4-06		-												
SPANIZERO ADJ. SAMPLE DATA :	. 92	1020. 26.	1.04	.0141	1.1.	.010	•	.0108	16.	.0363	1.060035	. 5800		
*1 ME : 1130	10.00	.2943	100.00	.7885	100.00	.3778	- m	1790	7	.6332	F	.2903	124.0	82.9
FR08£ POS.: +30		.2853		-1914		. 3769	•	1719		.6346	```	.2891	124.2	83.0
11.19 IN. DOFFEL - 24.57 DEZE		2995		. B090		.3618		1797		.6276		2920	124.0	6 X 4 C
		.2921		.8086		. 3787	•	1804		.6258	' '	4032	17.7	63.1
445 8866		79 84	ş	7007	•	1786	~			24.4	1 '3	1000	124.2	0.54
	146.8	146.80 PPHC	79.9	79.96 PPMV	37.6	37.86 PPRV	JC •	A⊷dd JC	502.9	202 - 96 PPHY	1.27 2 VOL	, v Or		DE6.F

** MOTE ** UNTA MARKED WITH AN ASTERISM (*) NOT INCLUDED IN AVERAGE

SCOTT ENTIRONMENTAL TECHNOLOGY INC.	TECHNOL	067 1MC	•			SET 18	SET 1526-EU1-1017	1011			and Ja	REPORT DATE 10/24/7	1178111
USAF TURBINE EMEINE EMISSIONS INVENTOR CONCENTRATION EDIT REPORT	EM15510	NS INVE		1651 3,	3, TYPE A	Ī	H/16/11		10013	# 6888B	EFF CONSTRAIN	CONTRACT FUELD TEST S	LST 3
		1			1	0 2	•	•	01-03	*- 01-	• 602	+- TEMP F	•••
	RNG	V OL 75	RNG	VOLTS	97.4	v 0t.75	R. G	RNG VCLTS	F. N. C	FNG VOLTS	RNG VOLTS	INPCI	REFER
FODE-POINT : 4-07													
SPAW/ZERO ADJ.	.93	.0251	1.0	• 603	1.14	. 008 ž	. 6 .	11113.	06.	37 Ir.	1.37 6.39		
TIME : 1137	10.00	.3217	250.00	.5844	250-00	. 3293	.1	2382	-	. 5331	3 .4222	1.8.3	63.7
PROBE POS.: -30		. 3256		.5843		. 3293		.246J		.3326	57740	3.84.	83.C
-12°14 IN-		. 3252		3966		1055		26.30		3336	8124	148.5	83.i
ME 554 10 544 10 10 10 10 10 10 10 10 10 10 10 10 10		.3298		.5772		. 3306		.2400		.3357	.4274	147.5	83.1
						1 0				1111	42.04	0 44	1 2 8
		-3266	4	P. 200	1.00	2625 *	25.1	PARE ELECT	2 M.C. 2	1800 - 1800 - 180	10 % % 3d • E	554.6	
CONCENTRATION :	165.1	103-51 PP#C					1 1 1 7	•			3) 	
HODE-POINT : 4-08													
SPANIZERO ADJ.	.93	.93 .0255	1.04	• 00 3	1.13	•3084	61	-6132	495	.0178	1.06 5041		
	10.00	.2498 1000.	1000.00	.7611	250.03	.6541	m	-3402	4	1117.	3 .7663	556.5	83.3
POOPE POST - 30	•	2415		.2587		1454°		.3405		7874	2411.	524.9	e3.2
		.2363		.2581		.6514		-3412			.7765	227.8	83.2
ě		.2362		.2622		. 6709		. 3455		4506	3992.	227.4	65.2
		.2336		*5845		• 6548		.3361		1554.	5847.		63:1
		785		0057		. 6576		3411		- 2 4 4 .	.7812	226.8	83.2
CONCENTRATION:	115.7	319-73 PPRC	259.9	259.90 FPPV	164.2	164.25 PPMb	368.6	368.67 PPHV	414.3	414.30 PP4V	3.64 2 VOL	1176.8	0E6.F

DATA MARKED WITH AN ASTERISK (*) NOT INCLUGED IN AVEPACE ** NOTE **

THE STANDARD OF THE PROPERTY OF THE PARTY OF

SCOIT ENVIRONMENTAL TECHNOLOGY INC.	TECHNOL FMISSED	OG V INC	• 1			\$1.16	SET 1628-001-1077			3	NEPORT DATE 10/24/77	0/24/77
COMCENTRATION EPIT REPORT	£ POR 7			7EST 3	3.TYPE A	ao	8/16/77	F 100	106089 4	NPB .	COMIRACI F08635-77-0216 F1ELD 1EST 3	77-0216 1EST 3
	RNG	RNG VOLTS	S M S	MOX	# R & C	70	RNG VOLTS	-	PMG VOLTS	C02+ RN6 VOLTS	TAPUT	TEMP. F
MODE-POINT : 4 -09												
SPANZERO A 1.5.	* •	. 3506	1.03	.0035	1.13	. 00.73	61 .0:13		11.00. 16.	1.066042		
•	1.00	1148 1900	1 300.00	8 0	1000 -00	. 3595	3 -1192	~	2 .3607	3 .9582	258.3	83.0
-5.93 IN.		-1167				. 3600	43159	.	.3607	19593	257.6	85.8
PRESS.: 36-02 PSIA		.0673		4455		.3647	1201	, -	.3527	0096.	258-1	62.9
		.0617		Z844.		. 3638	.1169	6	.3601	.9561	258.4	82.9
AVERAGE :		.0885		- 4466		. 3622	2 # L C C	I .c	1455			
CONCENTRATION :	;	4.42 PPMC	446.	46-79 PPHV	362.17	T PPHY	91.37 PPMV		138.95 PPRV	10A 2 26-4		9
MODE-POINT : 4-10			,									
SPANZERO ADJ.	. 6.	.3569	1.03	-0036	1 - 1 3	.0073	4.15 .0061	16. 1	1 .0503	1.066044		-
1195 : 1144	1.00	.4727 3000	3000.00	• 3835	1000-00	.2864	****		2 .8300	3 .9837	256.2	83.5
		2715		300C.		. 2643	****	• •	. 84 79	9839	256.4	9 % W 0
PRESS.: 34.49 PSIA		. 5001		.3775		.2876	•		84 36	0986	25.5.8	2.5
		.5380		.3825		-2855	****		.8520	. 9827	256.6	93.5
AVERAGE :	i	.5071	ļ	. 3816	į	-2862				. 9837	256.1	83.5
	53.5	23.33 VVAL	261.6	A 40. I 8	786.	286.20 PPHV	A H d d OU *		283.82 PPMV	5.14 % VOL	1415.8	DEG.F

OTE ... DATA MARKED WITH AN ASTERISK I. NOT INCLUDED IN AVERAGE

SCOTT EMPIROUMENTAL TECHNOLOGY INC.	INC.		SET 1628-001-1077			KEPGHT DATE 10/24/77
CONCENTRATION EDIT REPORT	SCOTT TEST 3, TYPE A	3. TYPE A	8/16/77	F 10C	105 # 686301 #PE	USAF CONTRACT FOF635-77-C216 MPE FIELD TEST 3

			-									
	RNG	# 1HC	RNG	NOX+	PNG VOLTS	00 VOLTS	+ CO-H1 -4 Phg YOLTS	-H1 -4 YOL 15	* CL-LO -*	# 102+	- TEMP - F	PEFER
	1	-	1	! ! !	F 1 1 1	1 1 1	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	† † † †	1 1 1 1 1
MODE -FOINT : 4-11												
SPAN/ZERO ADJ.	.93	.93 .0678	1.03	.0067	1.13	.0085	61	9110.	1150. 16.	\$400*- 60°E		
11MC : 1146	5.00	. 3291	250.00	• 409	250.00	.3794	~	.2078	11117 5	3 .4774	166.6	53.4
PROBE POS.: -30		.3319		0 1 4 9		.3882		.2103	5469.	9726	18.5	3
7.64 IN.		. 3293		•6136		. 36 47		-2162	:6753	4665	187.1	£ 3.3
PRESS.: 30.24 PSIA		. 3238	•	.6112		. 3856		.2223	.6743	8791	115.5	6.30.3
		.3330		•6126		. 3936		.2193	.6742	477 B	165.8	43.2
AVERAGE		1704			•	364.2	•		1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 :	1 1 1	
CONCENTRATION :	R 2 . 3	A2. 36 PPMC	16.7	VMOG (5 -5 2)	3	703C = 75 70	0 45.0	2612*	*/ PQ*	7 A D 7 A D	166.1	45.3
	3	,			•		11-6-22		AMAA 60.777	70 4 7 6°-2	651.1	ure
MODE-POINT : 4-12												
SPAM/ZERO ADJ.	.93	.93 .0687	1.03	.0193	1.13	.0115	61	6113.	98 30 . 193	1.04- 20-1		
TIME : 1148	2.00	.2755	100.00	.635.7	100.63	. 3784	~	.1235	29462	3 .2123	151.7	1.7.3
PROBE POS.: -30		.2633		.6291		.3859		.1247	.3427	-2135	152.5	1 · ·
20-10 IN-		.2739		•0•0•		. 36 78		.1284	1605.	.2135	151.2	F 3 . G
PRESS.: 22.90 PSIA		.2577		-6521		. 4063		1251	.3464	.2156	150.4	F 3 . 1
		.2648		•6514		. 3962		.124.	36.86	.2115	151.2	83.U
		\$ } • •		1 1 1 1 1 1	•				1 1 1 1	11111		1 1 1 1
AVERAGE : Concentration :	66.7	.2671 66.76 PPMC	6	.18 PPHY	39.03	39.08 PMV	103.6	.1252 103.63 PPM	1245 - 12457	.2133	151.5	£3.1
										1	•	

MOTE ... DATA MARKED WITH AN ASTERISM (*) NOT INCLUDED IN AVERAGE

AND COLOR PROPERTY AND THE PROPERTY OF THE PRO

SCOTT ENVIRONMENTAL RECHMOLOGY INC.	PECHAMA FRICEIO	1067 IN	C.			56.1	SET 1628-001-1077	1101			43434	HEPUFT DATE 111/24/77	1124111
CONCENTRATION EDIT REPORT	EPOR 1		-	EST S.TYPE A	.TVPE A	20	8/18/77	cat 4		1 660361	USAF CONTRACT FOR635-77-6216	F0e635- F1660	02635-77-6216 Fillo 1651 3
	RHG	RMS VOLTS	9	NOX*		PNG VOLTS	RNG	RNG VGLTS	+- CC-LO -+	CC-LO -+	#N6 VGLTS	INPUT AFFE	F = F = -
MODE-POINT : 4-13													
SPAN/ZERO ADJ. Sample data :	.92	.92 .3102	1.05	.0030	1.15	.0072	61	61 -0193	٠,٠	.47 .0310	1.651.030		
TIME : 1122	1.30		.0217 1000.00		1000.00	. 3446	m	33042	~	.2936	65/80	236.7	2.5
		010°		-4203	-4203 -305		-	3U44		5982	.8417	236.8	H.Z.A
PRESS.: 35.00 PSIA		.0294		#02 %		7	•	-,5042		.282E	8782.	736.7	F2.4
		.0269		.419		. 3433	-	-3022		.2635 .2636	2.78 a · ·	736.9	67.4 67.4
ANS 0465 .				1 1					•			1	
COMPENSOR	•	1470-				. 3440		3035		-28 bC	-6812	236.8	62.4
• 107.111.101.10	7.1	J444 +>*!	1.07	ANAA SI		See OR PPRV	, C	ANAG OFF	A 5. 4	AS. 40 DDAY		1766 . 666 .	

SCOTT ENVIRONMENTAL		TECHNOLOS INC.							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
USAF TURBINE ENGINE CONCENTRATION EDIT		EMISSIONS INVENTORY REPORT	7ES 7	3. TTPE A	6112117	F100	1450 1450 1450 1450 1450	CONTRACT P	05615-77-62 FIELD 1EST
			CALI	BRATTON D	ATA FOR PERIC	CALIBRATION DATA FOR PERIOD 1155 TO 12'S4			
NON-LINE	NON-LINEAR INSTRUMENTS	NTS :				REFERENCE CL	REFERENCE CLOVES CALIFMATION LATE	1112111 : 4	
			ER I	• 0	PER10U STARI	OING END		001 444 001 444	
RANGE 1 Span adjeractor Zero reading	.F AC TOR JING	\$. 7 & 5 4 . 0 0 6 5		<u> </u>	.951t	2656* 2656*		101	
SAMGE Z Spam adjetactor Zero peading	.F ACTOR 33 NG	1.0197	0021	• •	.0556	.9677	3446.1	1,003%	
RAMBE 3 SPAN ADJ.FACTOR ZERG READING	FACTOR	5071	.8631 0102	Z	.170%		# \$ 0 0 * 1	7 30 3 4 - 4 6 0 4 9	
LINEAR II	LINEAR INSTRUMENTS	**							
	·	PERIOD STARI	-	٥	PERIOU START	Pt R 100	PEFICE	00 PEF1CD PRE1CD	_
SPAN ABJ.FACTOR	F AC 708	. 9311	.9821	! -	1.0206	1,7641	1.1203	1.667	
ZERDES FO	ZERDES FOR RANGES (THC) (NDX/NO)								PACE
	2.5	.3797	.2016	٠	1.1122	.3239	1.4376	1.2744	/UR
		-0712	.0377	•	-2781	-0802	# A G ? *	4.50e.a	
3 10-0		.0278	5010-	ě.	2111.	.0321	T 4	6771	isi
		200	\$100	2 4	3170	2100°	* 17 J •	7 40 7	i i
0-005	10001	1000	2000	<u>-</u>	35 OD 4	8130	3000	8407	0 1
-	2.500.0	0003	2000	. ~	.0011	.000	4 M.J. T.	.(012	.
5000.0	10000	1000	0000	. <u>0</u>	*000	1090*	ין יני זי	• (663	DDC
SPAN GAS	CONCENTRATIONS	TOWS :							
	THC-PPHC			CO-11-09H	Hdd-07-03	£02-1			
SPAN 2 SPAN 2 SPAN 2	24.48	19.70	19.70	245.00	78.40	か () () () () () () () () () () () () ()	101.PRESS.FACT. 1.C SAMPLE PROBE TYPE - THEMOCCUPEE TYFE -	1.00°, ALJ01 - TP - IR	

			1					
OF TURBLE FEGINE FEISSLORS BERERIORY	INC.		SET 1628-001-1077			MEPORT DATE 16/24/77	1111	
RCTATOATION CALL DEBOOT	•					USAF CCRIRACI FUREIS-77-C216	.216	
140.34 1307 501.11111111	-	EST STITE	11/81/9	100	F 100 # 680301 NPF	NPE F1660 1657 3	~	

CONCENTRATION EDIT		NAME TRUBBLING FACING SMICKIONS SANGARD	*		1101-100-2201 130				
		1	SCOTT TEST	3, TYPE A	8/18/77	177 F 100	# 6803G1	D AAM	CCNIRACT FORBIS-7
			ü	IL IBRATION	DAFA FOR PER	CALIBRATION DATA FOR PERIOD 1254 TO 1335	U 1		
NON-1.14	NON-LINEAR INSTRUMENTS	TENTS :				REFERENCE	REFERENCE CURVES CALIBRATION DATE	3100 NOT	: 1122177
		03	=======================================	• • • • • • • • •	•		•		
				PERIOD	PERIOD	PERIOG	•	PEPIUD	•
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20
RANGE 1	1								ı.
SPAN AC	SPAN ADJUFACTOR	0696		1.1273	9656.	. 9799	-	1.0013	1.2328
לר אם אל	*C 40 1 45	1100	-	.1798	0053	2 M # D * .)•-	6063	1967
RANGE 2									
SPAN AD	SPAN ADJ.FACTOR	.9724	**	.855 4	1196.	1 8 X 4		3	
ZERO READING	ADING	0021	3*-	0021	0106	0106	• •	CUC 1	0001
RANGE 3									
SPAN AD	SPAN ADJ.FACTOR	.8631	•	.8631	- BOO2	50 0 H	-	2000	
ZERO READING	ADING	0102	0.1	0102	5440	6 4 4 O * -	, ,	6,00	6403
LINEAR	LINEAR INSTRUMENTS	"							
		11	THC	•	•	X O X	•	1 1 1 1 1 1	1
		8		PEP100	DENIO	301434	•		1
		START	END	END	START		ST	STERT	E NO
GP NA AD	SPAN ADJAFACTOR	.9821		.9897	1.00.1	1.0868	0. (1.0667	1.6316
ZERGES F (THC)	ZERGES FOR RANGES (TMC) (MOX/NO)								
			•		•				
- C		9107	?•	92429	•3209	.5627	1 • 2	1.2244	1.2593
-		7750	•	.0455	-6.832	1001.	•	. 30e I	31.8
			•	900	1750	.0563	•	11254	.1259
		*****		67000	1100.	0800.	0.	1900	1103.
	_		Ò	F. 100	91.10	PS 30.	2	1900	.6071
~		2000	• 5	0000	• 100°	*00.5	٠	0.00%	6300°
6 5000.D	~	0000*	, c.	0000	1000.	1000.	<u>.</u>	20012 Cutha	8 100°
SPAN GAS	S CONCENTRATIONS	TIOMS :							
	THC -PPHC	NOW-PON	NG-PPR	CO-HI-PPR	# dd=0 1-03	C 02-1			
SPAN 1	24.48		19.70	245.00	245°CC	3 7 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3		17. 1.LOC.	. 4604
C HEAT	00-0294						THEN ME COUPLE T	11 - 3411	

DATA MARKED WITH AN ASTERISM (+) NOT INCLUDED IN AVERAGE ** NOTE **

	SCOTT ENVIRONMENTAL TECHNOLOGY INC.	TECHNOL	06 Y 1NC				51.7	SET 1628-001-1077	101.			REPORT DATE 16/24/77	R EP OR T	REPORT DATE 16/24/77	124177
	CONCENTRATION COLT REPORT	E M I S S T O			TEST 3.	3.TVPF A	x	47.14.177	Ξ	0 (1 J	# 6£9301	E 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- -	F14L0 7EST	51 3
		5 N C	PNG VOLTS	1 2 1	HAG WOLTS	2 2 1	PNG VOLTS	3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	PAC 4017	+N6 VOL	 vol 15	# C C C+		a- TEMPa- Fa-4 INPUT REFER	P. F
	HOOE -POINT : \$-01														
	SPAN/ZERO ADJ.	ř.	6900.	1.07	•503·	1.69	4939.	1.03	5493.		\$410.	1.09 .0349	o •		
	TIME : 1256	10.03	.1365	250.00	.6567	250.00	. 4939	-	1.5198	-	2.4018	1 .75	16	410.3	63.1
	PROBE POS.: +30		11356		. bb 1 3		4576		1.5194		2.3811	.75.	24	399.3	63.1
	-13.89 IN.		-187		0799.		4.089		1.5195		2.3895	.7521	21	399.3	63.1
	PWESS.: 32.13 PS48		1807		.6527		4004		1.5202		2.4317	.7520	20	396.5	83.1
					1		1		1 1 1 1		1 1				
	AVERAGE :		. 1807		. >510		F. 6 6 h .		8615-1		2.404.5	.7520	20	6.004	83.1
	CONCENTRATION :	10.3	70.36 PPAC	164.2	4.25 PP#V	123.3	123.35 PPMV	108C5-35 CP#	Andu s	ů,	SU PPAV	13-31 2 VOL	NOF.	2787.8	0.66.5
	#00E-P0141 : 5-02														
	SPANIZERO ADJ.	66.	1500. 96.	1.07	9200*	1.08	• 1169	₹0 - 1.	•0734	. 44	.47 .0166	1.10 .6396	9		
	TIME : 1259	20.00	.8478	250.00		250.00	.8132	~	1.5225	-	2.4668	1 .6803	¥ 0	389.9	82.8
7	FROM FOX. 1 + 50		. 665		******		7000		1.5224		Z. # 6 5 7	44.44	v 4	1.4.5	87.0
7	PRESS.: 35.12 PSIA		. 6599		1.0162		.8016		1.5220		2.4666	.6748	9	402.0	82.8
			. 75.63		1986		. 7769		1.5222		2.4666			404.2	82.7
	AVERAGE :		. 8 4 6 4		1.0157		. 7940		1.5222		2.4667	.6771			82.8
	CONCENTRATION :	21215	2121.38 PPMC	253.9	3.92 PFHV	196.5	196.50 PPHY	10826.5? PPPV	- PFK	3	-DO. PPRV	10.59 % VOL	, OL	2759.6	DE6.F

DATA MARKED WITH AN ASTERISM (+) NOT INCLUDED IN AVERAGE .. NO 1E ..

AND COOP, THE REST CHAPTER AND THE PROPERTY OF
SCOIT EMPIRORAENTAL PECHNOLOGY INC.	PECHNOL FRISCIO	05 V 3N	C .			2 2 3	SEE 1628-001-1077	-1017				REPORT DATE 10/24/77	0/24/77
CONCENTRATION EDIT REPURT	18003		SCOLT TEST		3.110	வ	E/18/77	F.1	F 190	680301	USFT CONTRACT FURGSS-17-UZIO MPE FIELO TEST 3	FICEO 1EST	15.51 3
	•												
		*** JXI•	1 4	# 10 X 2 2 4 4	1 0	0 1 1 1 0 2 1 1 1 0		#- [N-0]	#- 07-03	# 07 7		0- 7EMP F	
	2 1) i	•	2 I	100	2	40112	2	KN6 VOLIS	ANG WOLIS	LOGNI	REFER
MODE-PCINT : 5-03													
SPANZERO ADJ.	•	1900. 64.	1.07	.0021	1.08	• 900 •	1.04	1877.	16.	.0184	1.10 .0425		
TIME : 1301	10.00	.5527 1000	1000.00	.3055	250.03	.9133	-	1.5750	-	2.4666	1 .7207	474.4	82.7
PRORE POS.: 430		.5894		.3068		08.6.		1.524d		2.4665	.7228	460.5	82.7
-4. 8 14.		•6355		.31e1		. 9577		1.5256		2.4664	. 1213	457.4	82.7
PRESS.: 27.35 PSIA		. 6007		.3148		. 56 39		1.5522		2.4663	.7205	450.1	85.8
		. 5363		.3183		. 9655		1.5244	•	2.4664	.7183	542.6	85.9
		1 6						1 6					1 1
CORCERTOR :	291.4	282 × 182	312.1	312. 317.71 PPMV	237.6	VAPO - 43.5	U656.1	0676-1	- 2	2.00 PD 24	7207	477.0	82.8
	•												
SPAN/ZERG AGJ. Sample data :	•	.00 .0052	۱.06	. 002	1.68	• 006 •	1.05	1440-	16.	.0231	1.12 .0511		
1146 : 1504	10.00	0.000		.3042	250.03	. 9255	-	1.5277	-	2.4661	1 .7300	487.2	82.9
PRORE POS.: +30		.3654		.3079		9626		1.5280	•	7.4655	.7294	487.3	82.8
**************************************		-4612		.3006		0016		1.5275		4.4663	.7266	484.5	82.7
10.10 :: SS:				9967		9868		1.5274		2.4663	. 7264	60 F 60 F	62.7
IVERAGE :		. 4298		. 342 3		. 9160		1.5277		2.4663	.7286	284	82.8
CONCENTRATION :	214.6	214.89 PPHC	302.3	AHEE. 98.50	228.9	228.99 PPMV	13872.67 PPMV	7 PPMV	30*	AND DO	12.41 \$ VOL	3012.7 DE6.F	0.66.F

SS NOTE SC DATA MASKED WITH AN ASTERISK SS) NOT INCLUDED IN AVEHAGE

PROM COR'S FIG. REAL CHAPTER FOR COLOR OF THE PROPERTY OF THE

Andreas of the State of the Sta

SCOTT ENVIRONMENTAL PECHNOLOGY INC. USAF TURKING ENGINE EMISSIONS INVENTORY CONCENTRATION EDIT REPORT	FECHNOL EMISSIO PLPONT	OGT INC NS INVE		154		\$ 238	SET 1628-601-1077					REFORT DATE 10/24/17 CONTRACT FOR635-77-6216	0/24/77 77-6216
						Ē		:	105089 * 001	1301	Į.	116.60	1651 3
	RNC	NO VOLTS	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	ANG VOLIS	324	FNG VOLTS		##6 VLTS	*** CO-LO -* *** CO-LO -* ***********************************	- ,	RNG VOLTS	1 TEMP - F INPUT REFER	F
#00E-POINT : 5-05													
SPANIZERO ACIJ. Sample dria :	0	469 0026	1.08	•200•	1.08	6930.	•	.1000	1420. 15.		1.13 .6539		
71ME : 130#	100.00	#592ª	250.00	5885	250.00	888	~	1.5.299	1 2.4671		1 .6850	453.4	83.1
		.6533		0 3 4		7584		1.5294	2.4670	- 3	.6747	423.4 423.6	83.1
		67.79		.2439		301		1.5300	2.4670	.	.6720	422.7	83.2
	•	.6126		-1872		+614		1.5311	2.4668	10	6644.	421.9	83.3
AVERAGE :	3#29* 0#29*	.6246		.4732		4.007		1.5299	2.4670	ΙQ	8 * 1 0 .	423.1	63.1
MODE -POINT - 5-06	24.6	,			1.0.1	Andd Bi-Dil	16890.75 PPH	S PPHV	PPMV.	>	10.51 % VOL	3024.2	0.66.
SPANIZERO ADU.	*	. 2265	3, CB	.0030	8,30	0000	1.07	0					
SAMPLE DATA :	00.	2 > 2	25.0	. 1							1957*		
PROBE POS .: +30)	1003	2	.3805	01-10	.1696	-	996/-	[44[· 2 ·] · 44 · 5	~, ~	1 .7320	472.9	63.4
Dores . 30 c. ces		-1376		.3614		. 1737		.767.	2.1327	, ~-	7147	- C - C - C - C - C - C - C - C - C - C	8 3 6 8 3 7
FTC - 1914		.0061		.3869		. 1749		.76C7	2,1265	~ ~	.7130	1.000	83.3
	•		•		'		·					9 2 6 1	7.50
AVERAGE : Concentration :	7.62	.1404 7.62 PPMC	96.34	.34 PPAV	43.36	8321.	4156.39 FPHV	.7773 FPRV	2.138U	2 _* =	7180 7180 72.03 2 VOL	484.1	83.3 DEG.F

DATA MARKED WITH AN ASTIRISM (+) NOT INCLUDED IN AVERAGE ** 4016 **

	SCOTT ENVIRONMENTAL TECHNOLOGY INC.	TECHNO	1 1 2 0 1 E				SET	SET 1626-601-1077	1101		æ	EF-047 (HEFONT DATE 3U/24/7	11182
	CONCENTRATION EDIT REPORT	REPORT		SCOTI TEST		3. 1 YPE A	æ	8/10/77	[F100 # 680301	USAF CCNTRACT FOB635-77-C216 Ul wP6 FIELD TEST 3	RACT FI	06635-77-C FIELD TEST	-C216
		2 2 2	Pro- THC		STAN THE	2 1 2 1 2 1 4 1	SE 10 % 3NG	* (0-H) -+	40L15	RAG VOLTS	RNG VELTS	•	#- TEMP F# INPUT REFER	F
	MODE-POTAL : 5-07													
	SPANZERO ADJ. Sample data :	66.	.04 50	1.08	*CD 32) • G 8	.0670	1.06	.1231	\$150. 76.	1.16 .0663	~		
	TIME : 2316	\$.00	.0988	250.00		250.00	.4251	-	1.5316	1 2.4573	1 .7461	_	•	0
	-14.91.14.		1067		•6218		. 4223		1.5323	1 #5#**	.7425	.0.1	• • • •	•0•
	P2[55.: 33.11 PSIA		.1319		.6321		.4316		1.5372	2.4526	.7329		* *	•
			.1238		.6303		. 4349	4	1.5321	2.4503	.1352	. 61	: -	ō
	AVERAGE :	;	.1175	;	.6273		-428C	1 -4	12897	2.4527	7387	;		1
			29.57 PP.BC	156.	156.23 PPHY	106.9	106.99 PPRV	10909-45 PPMV	PPKC	VH 46 (1).	12-85 2 VOL	<u>ۃ</u>	0	0.66.6
	#00E-P0INI : 5-08													
80	SPANIZERO ADJ. SAMPLE DATA:	6	05 00 . 66.	3.08	. 200.	1.08	. 00.70	1.08	-1362	.97 .0336	1.17 .6701	_		
		SC .00	.1379	.1379 1000.50	.3252	250.00	9076.	1	1.5333	1 2.4539	0366	_	;	å
			.1632		.3257		.9385	•	1.5332	2.4581	.7160			2 2
	PRESS.: 30.65 FS.IA		. 2035		. 3275		9246		1.5318	2.4537	.7152		•	å
			6101.		3290		. 9441	. –	1.5328	2.4581	.7135		•	•
	. 1316 916			•		•		1	2 1 1 1 1 1 1 1 1 1					. !
	CONCENTRATION :	8.88	PART - 80 PPRC	106.	.326. 326.07 PPM	211.5	5486°	1	1.5327	2.4408	.7169		0.	o.
)	,	• • • • • • • • • • • • • • • • • • • •	****		AMAA 55. *I 6.01	7 E >	Auda 00.	11.99 1 VOL	ب	.C CE6.F	6.F

MOTE OF DATA MARKED BITM AR ASTERISK (*) NOT INCLUDEG IN AVERAGE

	SCOTT ENVIRONMENTAL TECHNOLOGY INC.	TECHNOL	06 Y 10	•			51.1	SET 1626-001-1077	-1017				REPORT	REPORT DATE 10/24/7	24/17
	CONCENTRALION EDIT ALPORT CONCENTRALION EDIT ALPORT	L POR 1			1651 3,	3,1796 A	Œ	8/16/77	Ē.	6100	# 6e0301	000 4400 8944	1 P P C 1	CONTRACT FD8535-77-0216 F1610 1651 3	-0216 \$1 3
			* JHZ	-	- 40 K	:	• ON) *	#- 1H-03#	03+	•- 07-03•	* 277	•	***** ********************************	•
		RMG	V 04.75	RNG	VOL 1 S	PAC	v OL 15	RAG	VOL 15	R 46	701.15	RNC VOI	VOL 15	INPUT	REFER
	MODE-POTMT : 5-09														
	SPANJZERO ADJ. SAMPLE DATA :	6.	.0436	1.08	•0053	1.09	.0600	1.0%	.1355	16.	2560*	1.16 .0	.0730		
	' _	\$ • GO	.0954 1050.	100000	.3338	250.03	_	-	1.5334	-	2.3859	1 .7	.7384	-1.	•0•
	PROBE POS.: -30		1076		.3370		1.0465		1.5339		2.3773	~ .	.7398	• • • •	0.00
	PRESS.: 30.70 PS1A		1007		.3310		1.0246		1.5344		2.3777		.7361	***	5 5
			.0654		.3326		1.0229		1.5344		2.3834	~	.7392	1•	•0•
	AVERAGE :		.0925		.3342		1.0251		1.5340		2.3814	. 7382	.7382	0.	
	CONCENTRATION :	23.1	23.14 PPHC	334.1	4-19 PPHV	258	258.77 PFMV	*\$2601	10925.34 FPMV	9	AMAN DO-	12.76 % VOL	¥ 0 Ł	.C 066.F	£6.f
	01-8 : INIO4-300H														
	SPANZERO ADJ. Sample data :	•	0000. 66.	1.08	.50023	1.09	4900*	1.10	. 1 * *	20	.0378	1.15 .01	.0777		
		\$ • 00	.00031 1000.	1000.00	.3329	1000.60	.2576	7	1.5367	-	2.3402	,7.	.7460	•:	•0•
8 1	4.47 IN.		6960		.3367		. 2666		1.5368		2.3537	.7460	,7460	::	å å
ı	PRESS.: 31.22 PS14		.0891		.3411		. 2653		1.5357		2.4043		1492	: -:	å
			101.		.3418		.2651		1.5365		2.4147		. 7463	•1,	•0•
	AVERAGE : Concentration :	25.3	.0933 25.33 PPMC	339.4	.339.42 PPHV	264.4	365. 0265.	10944.54 PPRY	1.5363 h pprv	٥	2.3795 .00 PPM	13.17 \$ VOL	101 t	00.	0.000

DATA MARKED WITH AN ASTERISM for NOT INCLUDED IN AVERAGE ** NO TE **

0.086.6

FROM COO'S PLANT IS ARE! CULTURE FRACTICATION

į į

SCOTT ENGROUMENTAL TECHNOLOGY INC.	TECHNOL	OGY INC	• ;			56.1	561 1628-001-1077	-1011			•	REPORT	REPORT DATE 10/24/77	120177
CONCENTRALION FOR SENSOIN TRACESCONICALES SUCCESSION SENSOIN SERVICES SUCCESSION SUCCESS	E # 1 55 10 E # UR T	No Inc	SCOTT PEST		3, T T PE A	2 0	8/16/77		F 100	# 6E03B1	46.0	usst cominaci fubbass-77-Uzab upb ficto 7657 3	F 1610 3	77-0216
		PNG VOLTS		- 20x	# 1 P R P P P P P P P P P P P P P P P P P	FNG VOLTS	PN6	* CO-HJ -* RNG VCL 1S	* CO-LO RNG VOL	-LO -+ VOL TS	# CO2#	CO2+ RNG VOLTS	TEMP F	- F
MODE-POINT : 5-11	9 4 4 1	4 5 7 6 3 3 1 1 4	6 1 1 1	! ! !	:	 	 	1 † • •	1 1 1	! ! ! !		! ! !	(! !
SPEN/ZERO ADJ.	•	•0025	1.08	.0035	1.09	.0075	1.10	1497	96.	•0394	1.19	9080.		
TIME : 1325	10.00	.3683	250.00	.6264	250.00	.3787	-	1.5363	1	2.3565	-	.7502	•	•0•
PROBE POS.: -30		355		.6213		.3925		1.5364		2.3593		.7475	• •	0.0
PRESS.: 31.95 PSIA		.257		6189.		. 4064		1.5362		2.3633		.7501	* * *	0
						1 1 1)			•			
AVERAGE : Concentration :	172.6	.3453 172.67 PPMC	158.2	4.22 PPMV	9.86	.3954 #295 .	16944.4	1.5303 10944.43 PPRV	•	2-3571 -03 PPHV	13-22	.7498 13.22 % VOL	•••	. 4.930
MBDE-POINT : 5-12														
SPANIZERO ADJ. Sample data :	•	\$**0. 04.	1.08	-0032	1.09	•0076	1.11	.1568	60	-0415	1.20	*180*		
TIME: 2 3327	8-00	.2318	100-00	.3448	100.00	.0386	1	.6822	•	1.8666	-	.3736	•	0.0
13.04 IN.		.2384		.3443		.0383		.6537		1.7058		.3712	=	
PKESS.: 19.37 PSIA		.22%		.3524		.0418		-6679		1.6926		.3787	::	
AVERAGE: CONCENTRATION:	59.2	.2368 59.20 PPRC	30.4	**************************************	.c	. 0386 5.86 PPRV	3388.9	.665U	ā.	1.7301 .00 PPMV	3.52	.3728 3.52 % VOL	0.	DE 6.F

SE MOTE SE DATA MARKED SITM AN ASTERISK (S) NOT INCLUMED IN AVERAGE

SCOTT ENVIRONMENTAL TECHNOLOGY INC.	6T INC.		SET 1628-C01-1077			REPORT DATE 13/24/77	
USAF TURBINE ENGINE EMISSIONS INVENTORY	S INVENTORY					USAF COMTRACT F08635-77-0216	
CONCENTRATION EDIT REPORT	SC011 1EST	TEST 3, TYPE A	8/16/77	F100	# 6803Ul #PF	WPR FIELD TEST 3	

											•	,		
		* THE	N	* XO	2	• 0	0 J +	*- TH-	00+	*- 07-	•	20	4- TEMP	F 6
	RNG	RNG VOLTS	248	VOL TS	S N	RNG VOLTS	RNG	ANG VOLTS	ON CE	PNG VOLTS	RNS VOLTS	VOL 15	INPUT REFER	REFER
	!		1	1	!			1	:		:		1 1 1 1	1
MODE-POINT : 5-13														
SPAN/ZERO ADJ.	60.	1500. 66.	1.08	.0021	1.04	• 306	1.05	1.05 .0858	16.	.97 .0205	1.11	.0463		
TIME : 1303	10.93		.1470 1000.00	.3149	250.03		~	1.5253	-	1 2.4609	-	. 7349	442.9	83.2
PROBE P05.: +30		.1370		.3166				1.5245		2-4605		. 7389	464.3	83.2
.08 IN.		.120*		.3118		.9716		1.5250		2.4545		. 7392	1.51	83.2
PRESS.: 30.64 PSIA		-1024		-3126		.9724		1.5248	,	2.4581		.1359	482.6	83.2
		.1314		.3082		.9585		1.5243	-	2-4630		.7353	4.e5.b	83.2
		1		1 1 1 1		1 1 1 1 1		1 1 1 1 1		11111	•		1	
AVERAGE :		.1276		.3116		.9715		1.5248		2.4594		.7379	470.3	83.2
CONCENTRATION :	63.8	63.82 PFNC	311.6	-61 PPFV	242.4	242.48 PPMV	10847.45 PPMY	SPPRE	<u>ن</u>	AND DO	12-76	t z vot	3596.3	066.5

DATA MARKEO LITH AN ASTERISK 101 NOT INCLUDED IN AVERAGE ** #016 **

CONC S 70P

FROM COSE'S PLEASES, CHARLEST CARION COLOR PROPERTIES AND SOURCE P

(The reverse of this page is blank)

INITIAL DISTRIBUTION

approximation	1
AFTC/CZ	2
DDC/DDA	1
HQ AFSC/DL	1
HQ AFSC/SD	1
HQ USAF/LEEV	1
HQ USAF/SGPA	1
OSAF/MIQ	1
OSAF/OI	ì
AFIT/Library	i
National Science Foundation	1
	1
EPA/ORD	1
USA Chief, R&D/EQ USA Chief, P&D/EQ	ì
OEHL/CC	ī
AFETO/DEV	ì
USAFSAM/EDE	2
HO AFISC	2
HQ AUL/LSE	ī
HQ USAFA/Library	ī
Det 1 ADTC/TST	ī
1 MSEW	ī
OUSDR&R	ī
USAF Hospital, Wiesbaden	1
AFAPL/CC	1
AFAPL/SFF	ī
AFAPL/TBC	1
ASD/YFJ	ī
ASD/YPT	1
Naval Air Propulsion Center	1
NEPSS	1
HQ TAC/DEEV	1
NO TAC/SGP	1
HO USAYE/DEEV	1
HO USAFE/SGP	1
HQ SAC/DEEV	1
Pratt & Whitney	2
Det 1 ADTC/ECA	6

(The reverse of this page is blank)