The computation of four AREs

Yuan Xue xueyuan115@mails.ucas.ac.cn

August 11, 2018

1 Introduction

1.1 Notation

likelihood function

$$L_n(\lambda_1, \lambda_2, \eta) = \frac{\lambda_1^{r_1} \lambda_2^{r_2} exp(r\eta)}{\{1 + exp(\eta)\}^{n_0} \{1 + \lambda_1 exp(\eta)\}^{n_1} \{1 + \lambda_2 exp(\eta)\}^{n_2}}$$
(1)

log-likelihood function $l_n(\lambda, \eta, \theta)$

we work with $l_n(\lambda, 1 - \theta - \theta \lambda, \eta)$, where θ is explicitly epressed.

$$x_1 = \lambda$$

$$x_2 = 1 - \theta - \theta \lambda$$

$$x_3 = \eta$$

Denote

$$\begin{split} l_{n,\mu} = & \partial l_n / \partial x_\mu \quad \text{for} \quad \mu = 1, 2, 3 \\ l_{n,\mu\nu} = & \partial^2 l_n / \partial x_\mu \partial x_\nu \quad \text{for} \quad \mu = 1, 2, \nu = 1, 2, 3 \\ l_{n,33} = & \partial^2 l_n / \partial x_3 \partial x_3 \\ l_{n,\mu\nu} = & l_{n,\nu\mu} \quad \text{for} \quad \mu, \nu = 1, 2 \\ l_{n,\mu\nu} = & l_{n,\nu\mu}^T \quad \text{for} \quad \mu = 1, 2, \nu = 3 \\ L_{\mu\nu}(\eta) = & E_{H_0}(l_{1,\mu\nu}(1, 1, \eta)) \quad \text{for} \quad \mu = 1, 2, 3, \nu = 1, 2, 3 \end{split}$$

$$s(\theta, \eta) = l_{1,1}(1, 1, \eta) + \theta l_{1,2}(1, 1, \eta) - (L_{13}^{T}(\eta) + \theta L_{23}^{T}(\eta))L_{33}^{-1}(\eta)l_{1,3}(1, 1, \eta)$$

log-likelihood function

$$l(x_1, x_2, x_3) = r_1 ln(x_1) + r_2 ln(x_2) + rx_3 - n_0 ln(1 + e^{x_3}) - n_1 ln(1 + x_1 e^{x_3}) - n_2 ln(1 + x_2 e^{x_3})$$

$$\begin{split} l_{n,1} = & \frac{r_1}{x_1} - \frac{n_1 e^{x_3}}{1 + x_1 e^{x_3}} \\ l_{n,2} = & \frac{r_2}{x_2} - \frac{n_2 e^{x_3}}{1 + x_2 e^{x_3}} \\ l_{n,3} = & r - \frac{n_0 e^{x_3}}{1 + e^{x_3}} - \frac{n_1 x_1 e^{x_3}}{1 + x_1 e^{x_3}} - \frac{n_2 x_2 e^{x_3}}{1 + x_2 e^{x_3}} \end{split}$$

$$\begin{split} l_{n,11} &= -\frac{r_1}{x_1^2} + \frac{n_1 e^{2x_3}}{(1 + x_1 e^{x_3})^2} \\ l_{n,12} &= 0 \\ l_{n,13} &= -\frac{n_1 e^{x_3}}{(1 + x_1 e^{x_3})^2} \\ l_{n,22} &= -\frac{r_2}{x_2^2} + \frac{n_2 e^{2x_3}}{(1 + x_2 e^{x_3})^2} \\ l_{n,23} &= -\frac{n_2 e^{x_3}}{(1 + x_2 e^{x_3})^2} \\ l_{n,33} &= -\frac{n_0 e^{x_3}}{(1 + e^{x_3})^2} - \frac{n_1 x_1 e^{x_3}}{(1 + x_1 e^{x_3})^2} - \frac{n_2 x_2 e^{x_3}}{(1 + x_2 e^{x_3})^2} \end{split}$$

1.2 Algorithm

• Input: $Y, G, \theta^{(0)}, \theta_i, \theta_i$

• Output: $e_P(Z_{MERT}, Z_{\theta^{(0)}}), \tilde{e}_C(Z_{MERT}, Z_{\theta^{(0)}}), e_{HL}(Z_{MERT}, Z_{\theta^{(0)}}), e_B(Z_{MERT}, Z_{\theta^{(0)}})$

step 1 Estimate $\hat{\eta}$, where $\hat{\eta}$ satisfy $\partial l_n/\partial \eta|_{H_0,\hat{\eta}_n} = l_{n,3}(1,1,\hat{\eta}_n) = 0$.

step 2 Compute $l_n(1,1,\hat{\eta})$; $l_{n,\mu}(1,1,\hat{\eta})$, for $\mu=1,2,3$; $l_{n,\mu\nu}(1,1,\hat{\eta})$ for $\mu=1,2,3$, $\nu=1,2,3$.

step 3 Compute $L_{\mu\nu}(\hat{\eta}) = E_{H_0}(l_{1,\mu\nu}(1,1,\hat{\eta})) = \frac{1}{n}l_{n,\mu\nu}(1,1,\hat{\eta})$

step 4 Compute $\sigma(\theta^{(0)})$, $\sigma(\theta_i)$, $\sigma(\theta_i)$, $\sigma(\theta^{(0)},\theta_i)$, $\sigma(\theta^{(0)},\theta_i)$, $\sigma(\theta_i,\theta_i)$, where

$$\sigma(\theta_i, \theta_j) = A_{\hat{\eta}}\theta_i\theta_j + B_{\hat{\eta}}(\theta_i + \theta_j) + C_{\hat{\eta}}$$

$$A_{\eta} = L_{23}(\eta)L_{33}^{-1}(\eta)L_{32}(\eta) - L_{22}(\eta)$$

$$B_{\eta} = L_{13}(\eta)L_{33}^{-1}(\eta)L_{31}(\eta) - L_{12}(\eta)$$

$$C_{\eta} = L_{13}(\eta)L_{33}^{-1}(\eta)L_{31}(\eta) - L_{11}(\eta)$$

step 5 1). Given (λ, θ) , for i = 1, ..., n (typically $n \ge 10,000$), sample x_i from a given distribution (see ZLY for detail), then given this x_i , sample y_i from $f(y|\lambda, 1 - \theta + \theta\lambda, \eta_0^T x_i)$ (see ZLY for how to choose the density $f(\cdot|\cdot,\cdot,\cdot)$). Then we get a sample $\{(y_i, x_i) : i = 1, ..., n\}$ under H_1 .

2). Set

$$\mu(\lambda, \theta) = E_{H_1, \eta_0}(s(\theta, \eta_\theta))$$

$$\approx \frac{1}{n} \sum_{i=1}^{n} \left(l_{1,11}(1,1,\hat{\eta}|y_i,x_i) + \theta l_{1,21}(1,1,\hat{\eta}|y_i,x_i) - (L_{13}^T(\hat{\eta}) + \theta L_{23}^T(\hat{\eta}))L_{33}^{-1}(\hat{\eta})l_{1,13}(1,1,\hat{\eta}|y_i,x_i) \right).$$

step 6 Compute $\mu(\lambda, \theta^{(0)}), \mu(\lambda, \theta_i), \mu(\lambda, \theta_j),$

For fixed (λ, θ) , from the P.5, η_{θ} is consistently estimated by $\hat{\eta}_n$, so we simulate $n^{H_1} = 2000$ samples with fixed (λ, θ) under H_1 , then calculate the $\mu(\lambda, \theta)$ and its derivatives.

$$\mu(\lambda,\theta) = E_{H_1,\eta_0}(s(\theta,\eta_\theta)) = \frac{1}{n^{H_1}}(l_{n,1}^{H_1}(1,1,\hat{\eta}) + \theta l_{n,2}^{H_1}(1,1,\hat{\eta}) - (L_{13}^T(\hat{\eta}) + \theta L_{23}^T(\hat{\eta}))L_{33}^{-1}(\hat{\eta})l_{n,3}^{H_1}(1,1,\hat{\eta}))$$

step 7 Compute $\mu^{(1)}(\lambda, \theta^{(0)}), \mu^{(1)}(\lambda, \theta_i), \mu^{(1)}(\lambda, \theta_i),$

$$\mu^{(1)}(\lambda,\theta) = \frac{1}{nH_1} (l_{n,11}^{H_1}(1,1,\hat{\eta}) + \theta l_{n,21}^{H_1}(1,1,\hat{\eta}) - (L_{13}^T(\hat{\eta}) + \theta L_{23}^T(\hat{\eta})) L_{33}^{-1}(\hat{\eta}) l_{n,31}^{H_1}(1,1,\hat{\eta}))$$

step 8 Compute $e_P(Z_{MERT}, Z(\theta^{(0)}))$.

$$e_P(Z_{MERT}, Z(\theta^{(0)})) = \frac{(\rho_{\theta_i, \theta^{(0)}} + \rho_{\theta_j, \theta^{(0)}})^2}{2(1 + \rho_{\theta_i, \theta_j})}$$

$$\rho_{\theta_i,\theta_j} = \frac{\sigma(\hat{\eta}, \theta_i, \theta_j)}{\sigma(\hat{\eta}, \theta_i, \theta_i)\sigma(\hat{\eta}, \theta_i, \theta_j)^{1/2}}$$

step 9 Compute

$$\begin{split} \tilde{e}_C(Z_{MERT},Z_{\theta^{(0)}}) &= \frac{\tilde{Q}_{Z_{MERT}}}{\tilde{Q}_{Z_{\theta^{(0)}}}} \\ \tilde{Q}_{Z_{\theta^{(0)}}} &= 2\left(1-\Phi\left(\frac{\mu^{(1)}(\lambda_0,\theta^{(0)})}{2\sigma(\theta^{(0)})}\right)\right) \\ \tilde{Q}_{Z_{MERT}} &= 2\left(1-\Phi\left(\left[\frac{\mu^{(1)}(\lambda_0,\theta_i)}{2\sigma(\theta_i)} + \frac{\mu^{(1)}(\lambda_0,\theta_j)}{2\sigma(\theta_j)}\right]/\sqrt{8(1+\rho_{\theta_i,\theta_j})}\right)\right) \\ \lambda_0 &= 1 \end{split}$$

step 10 For each λ . Compute

$$\begin{split} e_{HL}(Z_{MERT},Z_{\theta}) &= \frac{d_{Z_{MERT}}(\lambda)}{d_{Z_{\theta}}(\lambda)} \\ d_{Z_{\theta}}(\lambda) &= \frac{\mu^{2}(\lambda,\theta)}{\sigma^{2}(\theta)} \\ d_{Z_{MERT}}(\lambda) &= \mu^{2}_{MERT}(\lambda) \\ \mu_{MERT}(\lambda) &= [\mu(\lambda,\theta_{i})/\sigma(\theta_{i}) + \mu(\lambda,\theta_{j})/\sigma(\theta_{j})]/\sqrt{2(1+\rho_{\theta_{i},\theta_{j}})} \end{split}$$

step 11 Compute

$$\begin{split} e_B(Z_{MERT},Z_\theta) &= e_{HL}(Z_{MERT},Z_\theta) \\ \tilde{e}_B(Z_{MERT},Z_\theta) &= \frac{\tilde{c}_{Z_{MERT}}}{\tilde{c}_{Z_\theta}} \\ \tilde{c}_{Z_{MERT}} &= 1 - \Phi(\mu_{MERT}^{(1)}(1)) \\ \tilde{c}_{Z_\theta} &= 1 - \Phi(\mu^{(1)}(1,\theta^{(0)})/\sigma(\theta^{(0)})) \\ \mu_{MERT}^{(1)}(\lambda) &= [\mu^{(1)}(\lambda,\theta_i)/\sigma(\theta_i) + \mu^{(1)}(\lambda,\theta_j)/\sigma(\theta_j)]/\sqrt{2(1 + \rho_{\theta_i,\theta_j})} \end{split}$$

1.3 Simulation

Let p be the minor allele frequency (MAF) of the marker of interest in the population. we consider case-control data with r=500 cases and s=500 controls without covariates. and $\lambda \in \{1.1,1.3,1.5\}$ and $p \in \{0.15,0.30,0.45\}$, and the true $\theta^{(0)} \in \{0,1/4,1/2,1\}$, and the disease prevalence k=0.05. we generate Nrep=1000 datasets. and we compute the mean and variance of the four AREs to Z_{MERT} with $\theta_i=0,\theta_j=1$ and $Z_{\theta^{(0)}}$

simulate case-control data[(Gang Zheng, Yaning Yang, Xiaofeng Zhu, Robert C. Elston Analysis of Genetic Association Studies (2012)] To simulate case-control samples without covariates for genetic marker M given a specific genetic model, the following algorithm can be used:

- 1. Specify the numbers of cases (r) and controls (s), the disease prevalence k, the allele frequency p for the risk allele B (the minor allele if the risk allele is unknown), and the GRR $\lambda_2 = \lambda$;
- 2. Calculate the GRR λ_1 based on the given genetic model and population genotype frequencies g_0 , g_1 and g_2 under Hardy-Weinberg proportions in the population;

Table 1: The Four AREs of Z_{MERT} and $Z_{\theta^{(0)}}$

MAF	$\theta^{(0)}$	$\lambda = 1.1$				$\lambda = 1.3$				$\lambda = 1.5$			
		e_P	e_C	e_{HL}	e_B	e_P	e_C	e_{HL}	$\overline{e_B}$	e_P	e_C	e_{HL}	\overline{e}_{B}
0.15	0	0.974 (0.0069)	0.872 (0.017)										
	1/4												
	1/2												
	1												
0.30	0												
	1/4												
	1/2												
	1												
0.45	0												
	1/4												
	1/2												
	1												

- 3. Calculate $f_0 = k/(g_0 + \lambda_1 g_1 + \lambda_2 g_2), f_1 = \lambda_1 f_0$, and $f_2 = \lambda_2 f_0$;
- 4. Calculate $p_j = g_j f_j/k$ and $q_j = g_j (1 f_j)/(1 k)$ for j = 0, 1, 2;
- 5. Generate random samples (r_0, r_1, r_2) and (s_0, s_1, s_2) independently from the multinomial distributions $Mul(r; p_0, p_1, p_2)$ and $Mul(s; q_0, q_1, q_2)$, respectively