Design of a pipelined 8-bit multiplier

A Table summarizing the following information

- Maximum clock frequency w/o pipelining for the schematic and the layout extracted netlist
- Maximum clock frequency with pipelining using the layout extracted netlist
- Area of the DRC and LVS clean CSM.
- Number of test patterns you verified the functionality of your CSM against
- Number of test patterns you verified the functionality of your CSM against

Block diagram of the 8-bit Carry Save Multiplier (CSM) - Highlight how you used inverting and non-inverting adders to optimize delay

Block Diagram

Block Diagram with Non- Inverting Full Adders Highlighted

Area of the DRC and LVS clean CSM

DRC clean

LVS Matched

DRC Area check of the Layout

X distance = 2800 Y distance = 456.9

Location of Flip Flop

Between 5^{th} and 6^{th} stage of critical path

SPICE simulation showing the frequency of operation with and without pipelining using RC extracted netlists for all sub-blocks

Without Pipeline (T_{clk} = 860 ps and Frequency = 1.1627 GHz)

With Pipeline (T_{clk} = 438 ps and Frequency = 2.2831 GHz)

Input combinations that are tested for CSM to see if it's functionally correct - Showing different kinds of multiplications

X[7:0] Y[7:0] Z[15:0] 11111111 (-1) 00000001(1) 11111111111111 (-1)

X[7:0] Y[7:0] Z[15:0] 11111111 (-1) 00000010(2) 11111111111111 (-2)

X[7:0] Y[7:0] Z[15:0] 00000010 (2) 00000011 (3) 000000000000110 (6)

X[7:0] Y[7:0] Z[15:0] 11100000(-32) 01000001(65) 1111011111100000 (-2080)

SPICE simulations showing how the use of a faster adder in the Vector merge stage speed up over all delay of the CSM.

 T_{clk} = 278 ps and Frequency = 3.5971 GHz

