Procedimiento de vecinos más cercanos con matrices de distancias parcialmente observadas

Aldo R. Franco Comas

Director: Andrés M. Alonso

Máster Universitario en Ingeniería Matemática.

Motivación

k-NN

- $\{(x_i, y_i)\}$ con x_i de longitud p.
- Sea x_0 un nuevo caso, se calculan las distancias $d(x_0, x_i)$ para todo i = 1, ..., n.
- Se buscan los k casos más cercanos.

k-NN Ventajas

- No paramétrico.
- Algoritmo simple.
- Alta precisión.

- Múltiples clases.
- Clasificación y regresión.
- Variedad de distancias.

KNN Desventajas

- Datos no balanceados.
- Computacionalmente costoso.

- Características homogéneas.
- Tratamiento con valores perdidos.

Objetivos

¿Qué se propone?

Un procedimiento k-NN donde no sea necesario calcular todas las distancias cada vez que tengamos que predecir un punto.

Supondremos que solo podemos calcular $(1-\ell)\%$ de dichas distancias.

¿Por qué?

Es posible que no sea factible calcular todas esas distancias:

- Tiempo de respuesta.
- Coste computacional.
- Pruebas destructivas.

Repositorio

https://github.com/aldofranco91/TFM_Ing_Mat

Definiciones básicas

- Distancia euclidiana: $d_2(x,y) = \sqrt{\sum_{i=1}^n (x_i y_i)^2}$
- Designaldad triangular: $m_{ik} \leq m_{ij} + m_{jk}$
- Designaldad cuadrangular: $m_{ij} + m_{kl} \leq \max[m_{ik} + m_{jl}; m_{il} + m_{jk}]$
- Designaldad ultramétrica: $m_{ij} \leq \max[m_{ik}; m_{jk}]$
- Error medio absoluto: $\frac{\sum_{i=1}^{k} \left| \widehat{O}_i O_i \right|}{k}$
- Diferencia relativa entre matrices: $\frac{\|O-P\|_2}{\|O\|_2}$
- Diferencia relativa entre vectores: $\frac{\|o p\|_2}{\|o\|_2}$
- Índice de Jaccard: $\frac{|A \cap B|}{|A \cup B|}$

Revisión de la literatura

Completamiento de matrices de distancias

- Problema de la métrica más cercana.
- Problema de la inferencia filogenética.

Relación entre el k-NN propuesto y el completamiento de matrices de distancias

- Asumimos que conocemos la matriz de distancia entre los n puntos de la muestra de entrenamiento.
- Creamos una nueva matriz de distancias $(n+1) \times (n+1)$, siendo la última fila/columna la correspondiente a x_0 .
- ullet Calculamos $(1-\ell)\%$ de las distancias de esa fila, las restantes las imputamos.

Supongamos que tenemos una matriz D cuyos elementos deben cumplir las desigualdades triangulares pero en algunos casos no se verifican.

El problema de la métrica más cercana consiste en encontrar una matriz M cuyos elementos cumplan las desigualdades triangulares y que esté próxima a D.

El algoritmo triangle fixing resuelve este problema para las metricas L_1 , L_2 y L_{∞} .

Inicialización del algoritmo

- $d(x_0, x_j) = 0$
- $d(x_0, x_j) = n^{-1} \sum_{i=1}^n d(x_i, x_j)$, $i \neq j$
- $d(x_0, x_i) = \text{mediana}(d(x_i, x_i))$, $\forall i \neq j$

Ejercicio de simulación

- Se generan n=800 puntos de una distribución normal multivariante con $\mu=\vec{0}_p$ y $\sigma=I_p$, siendo p=20.
- $oldsymbol{\circ}$ Se calcula la matriz de distancias, $oldsymbol{\mathcal{D}}$, usando la distancia euclidiana.
- **3** Se genera un nuevo punto x_0 y se calculan las n distancias.
- Se asumen conocidas las distancias de x_0 a $n(1-\ell)=80$ puntos al azar y las restantes distancias se imputan usando las distintas inicializaciones, con lo cual tenemos una matriz \boldsymbol{D} .
- Se aplica el triangle fixing a D y nos devuelve una matriz M.
- Se calcula la diferencia relativa entre la matriz M y la matriz \mathcal{D} y la diferencia relativa entre el vector de distancias correspondiente a x_0 en la matriz \mathcal{D} y en M. Se registra el tiempo de cómputo.
- **1** Todo lo anterior se hace N = 2000 veces.

Diagramas de caja de las diferencias relativas entre ${m {\cal D}}$ y ${m {\it M}}$

Diagramas de caja de las diferencias relativas entre vectores de distancia.

Diagramas de caja de los tiempos de computo.

Problema de la métrica más cercana: Método propuesto

Restricciones

- Las distancias $d(x_i, x_i)$ son conocidas $\forall i, j = \{1, ..., n\}$.
- Podemos calcular las distancias de $d(x_0, x_i)$ cuando $i \in I$ y |I| << n.
- No podemos calcular las $d(x_0, x_i)$ cuando $i \in I^c$.
- $|I| \approx (1 \ell)n \text{ y } |I^c| \approx \ell n$.

Problema de la métrica más cercana: Método propuesto

Acotación

$$d(x_0, x_{i^*}) \leq d(x_0, x_i) + d(x_i, x_{i^*}) \quad \forall i^* \in I^c$$

$$d(x_0, x_{i^*}) \leq \min_{i \in I} \left\{ d(x_0, x_i) + d(x_i, x_{i^*}) \right\}$$

$$d(x_i, x_{i^*}) \leq d(x_0, x_{i^*}) + d(x_0, x_i) \quad \forall i^* \in I^c$$

$$d(x_0, x_i) \leq d(x_0, x_{i^*}) + d(x_i, x_{i^*}) \quad \forall i^* \in I^c$$

$$\max_{i \in I} |d(x_0, x_i) - d(x_i, x_{i^*})| \leq d(x_0, x_{i^*})$$

$$\max_{i \in I} |d(x_0, x_i) - d(x_i, x_{i^*})| \leq \min_{i \in I} \left\{ d(x_0, x_i) + d(x_i, x_{i^*}) \right\}$$

$$d(x_0, x_{i^*}) = \frac{1}{2} \left(\min_{i \in I} \left\{ d(x_0, x_i) + d(x_i, x_{i^*}) \right\} + \max_{i \in I} |d(x_0, x_i) - d(x_i, x_{i^*})| \right)$$

Problema de la métrica más cercana: Clúster

Análisis de grupos

- Técnica de aprendizaje no supervisada.
- Objetos dentro del mismo clúster son similares.

Algoritmos para clúster:

- Agrupamiento jerárquico:
 - Aglomerativo
 - Divisivo.
- Agrupamiento no jerárquico:
 - K-medias.
 - K-medoides:
 - PAM
 - CLARA, CLARANS
 - fastkmed

Selección de K

- **9** Se generan n=3000 puntos de una distribución normal multivariante con $\mu=\vec{0}_p$ y $\sigma=I_p$, siendo p=50.
- $oldsymbol{\circ}$ Se calcula la matriz de distancias, $oldsymbol{\mathcal{D}}$, usando la distancia euclidiana.
- **3** Se aplica *fastkmed* a \mathcal{D} para diferentes valores de K = (2, 4, 8, 16, 32, 64, 150, 300) y se obtienen K mediodes $\{C_1, ..., C_K\}$.
- Se genera un nuevo punto x_0 .
- **5** Se calculan y ordenan las distancias $d(x_0, C_i)$ con i = 1, ..., K.
- **©** En este punto ya hemos calculado K distancias y se calculan las restantes hasta $n(1-\ell)=300$ distancias a puntos en los clústeres más cercanos.
- ② Para los diferentes valores de K expuestos se calcula el índice de Jaccard y el MAE entre el conjunto real de puntos más cercano y el conjunto de puntos más cercano que se obtiene imputando, para k=15 vecinos.
- **3** Los pasos 4-7 se repiten N=200 veces.

Selección de K

Búsqueda de un valor "óptimo" de clústeres.

$$K = (n - \ell n)/2$$

Selección al azar vs. Clúster

- **9** Se generan n=5000 puntos de una distribución normal multivariante con $\mu=\vec{0}_p$ y $\sigma=I_p$, siendo p=50.
- 2 Se calcula la matriz de distancias, \mathcal{D} , usando la distancia euclidiana.
- **3** Se genera un nuevo punto x_0 .
- Se calculan las distancias de x_0 a los n puntos.
- **3** Se calculan las distancias de x_0 a $n(1-\ell)$ puntos al azar y también a la misma cantidad usando K=(n-ln)/2 clústeres.
- **9** Se ordenan dichas distancias y se extrae cuáles son los k puntos más cercanos, el máximo valor que toma k es $\sqrt{n}/2$.
- Para diferentes valores de k se calcula el índice de Jaccard y el MAE.
- **1000** Los pasos 4-7 se repiten N=1000 veces.

Selección al azar vs. Clúster

Aditivo vs. Ultramétrica

$$n = 1000$$
, $l = 90\%$, $p = 20$ y $N = 300$.

Ultramétrica vs. Agrupamiento

$$n = 1000$$
, $I = 90\%$, $p = 20$ y $N = 300$.

Imágenes en blanco y negro (42000) normalizadas cuyas dimensiones son de 28x28 píxeles en niveles de escala de grises de dígitos escritos a mano.

El problema de clasificación, consiste en, dada una nueva imagen debemos predecir que número tiene escrito.

El 75% de las imágenes se utiliza para entrenar y el 25% restante de prueba. Esta división se hizo usando un reparto estratificado entre las muestras de entrenamiento y de prueba.

Validación cruzada con 5 submuestras, se obtiene una precisión del 96.14%.

Matriz de confusión usando k-NN(k = 3).

	Valor Real									
Predicción	0	1	2	3	4	5	6	7	8	9
0	1024	0	4	2	1	4	6	2	1	6
1	0	1161	8	1	7	1	0	6	10	2
2	2	4	1002	4	0	2	2	3	4	2
3	1	0	5	1043	0	8	1	0	18	10
4	0	1	0	0	985	0	0	1	3	8
5	0	1	1	20	0	920	6	0	16	6
6	5	0	0	1	8	11	1019	0	5	0
7	0	3	21	5	3	0	0	1083	5	10
8	0	1	1	6	1	0	0	0	941	1
9	1	0	2	5	13	2	0	5	12	1002

Precisión: 96.98%

Matriz de confusión usando imputación mediante clústeres con I = 0.75.

	Valor Real									
Predicción	0	1	2	3	4	5	6	7	8	9
0	1022	0	9	3	2	4	11	0	4	4
1	1	1166	10	4	10	2	1	10	11	1
2	1	1	990	7	0	0	1	6	7	0
3	0	1	2	1030	0	7	0	0	14	3
4	1	2	2	0	971	0	2	6	4	6
5	0	0	0	14	0	920	2	0	19	2
6	6	0	4	3	7	8	1016	0	11	1
7	2	0	21	13	4	2	0	1067	5	12
8	0	0	3	7	0	1	1	0	923	2
9	0	1	3	6	24	4	0	11	17	1016

Precisión: 96.42%

DIAMONDS

- Precios y otros diez atributos de casi 54000 diamantes.
- Minimizar el error absoluto medio de la predicción del precio en función de los atributos del diamante.
- price: Precio en USD.
- carat: Peso en quilates del diamante.
- cut: Calidad del corte.
- color: Color del diamante.
- clarity: Claridad del diamante.
- x: Longitud en mm.
- y: Ancho en mm.
- z: Profundidad en mm.
- profundidad: Porcentaje de profundidad total.
- depth: Ancho de la parte superior en relación con el punto más ancho.
- table: Ancho de la parte superior del diamante.

DIAMONDS

- 75% para entrenamiento y 25% para prueba.
- k = 3 es el mejor parámetro, MAE = 448.2.
- MAE = 432.881 usando k-NN en los datos de prueba.
- MAE = 531.35 usando el método propuesto con l = 0.75.
- MAE = 639.83 usando k-NN con muestra de entrenamiento del 25%.

DIAMONDS

Comparación de una muestra entre k-NN, imputación mediante clústeres y valores reales de DIAMONDS

Conclusiones y extensiones

Conclusiones

- Modificaciones al procedimiento k-NN y estudiado el algoritmo triangle fixing con varias opciones de inicialización.
- Observaciones al azar en el conjunto de entrenamiento es inferior a una selección basada en clústeres.
- El procedimiento de imputación basado en clústeres es superior a los algoritmos aditivos y ultramétricos.
- Conjuntos de datos reales que muestran que en problemas de clasificación los resultados son similares al k-NN cosa que no ocurre con el problema de regresión.

Extensiones

- Implementar estos algoritmos en un lenguaje como C o C++.
- Buscar un número "óptimo" de clústeres, K.
- Selección conjunta del parámetro k del k-NN y del parámetro K del procedimiento de imputación mediante clústeres.

Septiembre, 2018

Muchas Gracias