Pruning at Initialization

2020-06-19 hyounguk.shon@kaist.ac.kr

Contents

- Lottery Ticket Hypothesis (ICLR 2019)
- SNIP: Single-shot Network Pruning based on Connection Sensitivity (ICLR 2019)
- A Signal Propagation Perspective for Pruning Neural Networks at Initialization (ICLR 2020)

Overview of Network Pruning

Goal of pruning is to slim down overparametrized NNs.

- $\min_{\mathbf{w}} L(\mathbf{w}; \mathcal{D}) = \min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}; (\mathbf{x}_i, \mathbf{y}_i)) ,$ Weight pruning $\text{s.t. } \mathbf{w} \in \mathbb{R}^m, \quad \|\mathbf{w}\|_0 \leq \kappa .$
 - The problem is to identify less significant weights.
- Saliency-based pruning (vs. regularization-based pruning)
 - Identify weights that cause least degradation of loss.
 - We define a saliency score s_i on each weight.
- Most pruning algorithms consist of prune-retrain cycles:
 - Prune a tiny portion of weights at each step.
 - Fine-tune weights to loss function.
 - Repeat until you reach the target pruning ratio.

Figure 2: Three-Step Training Pipeline.

Figure 3: Synapses and neurons before and after pruning.

Weight pruning is optimization with bound on L0-norm of weight.

Overview of Network Pruning

- Hessian-based saliency score (LeCun 1990, Hassibi 1993)
 - Second-order approximation of $\mathcal{L}(\theta)$ because all gradients are zero at convergence. $(\theta = \theta^*)$
 - Hessian is approximated as a diagonal matrix because full Hessian is intractable.
 - EigenDamage (ICML 2019) presents a more complete Hessian-based approach.
- Magnitude-based saliency score (Han 2015, Guo 2016)
 - Set a threshold based on the norm of the weight.
 - Somewhat heuristic approximation of $\mathcal{L}(\theta)$.

$$s_j = \begin{cases} |w_j| , & \text{for magnitude based} \\ \frac{w_j^2 H_{jj}}{2} & \text{or } \frac{w_j^2}{2H_{jj}^{-1}} & \text{for Hessian based} . \end{cases}$$

Gradient-based saliency score

•
$$s_j = \left| \frac{\partial \mathcal{L}}{\partial w_j} w_j \right|$$
 (Gate Decorator, SNIP, ...)

$$\mathcal{L}(\theta) = \mathcal{L}(\theta^*) + \frac{\partial \mathcal{L}(\theta)}{\partial \theta} \bigg|_{\theta^*} (\theta - \theta^*) + \frac{1}{2} (\theta - \theta^*)^T H(\theta - \theta^*)$$

Lottery Ticket Hypothesis (ICLR 2019)

- Can you reinitialize the pruned network and train to the same accuracy?
 - Well, No. (Actually, yes.)
- (J Frankle et al. 2019) shows that it is possible (with the correct initialization):

- Perhaps with the correct method, we could perform pruning before training.
- This lead us to the Lottery Ticket Hypothesis:

A randomly initialized network contains a sub-network ("a lottery ticket") that is initialized such that – when trained in isolation – it can match the test accuracy of the original network after training for at most the same number of iterations.

Single-shot Network Pruning based on Connection Sensitivity (ICLR 2019)

- SNIP:
 - prune at initialization
 - single-shot (no prune-retrain cycles)
 - saliency metric: connection sensitivity (gradient of loss against connectivity)
- Think of connectivity as on-off switch c for each weight. $(w \mapsto c \odot w_0)$ Pruning an initial weight w_i is equivalent to setting $c_i = 0$.
- We are interested in $\Delta \mathcal{L}_i$ (change in loss when $c_i \to 0$)

$$\Delta L_i(\mathbf{w}; \mathcal{D}) = L(\mathbf{1} \odot \mathbf{w}; \mathcal{D}) - L((\mathbf{1} - \mathbf{e}_i) \odot \mathbf{w}; \mathcal{D})$$

- To efficiently estimate $\Delta \mathcal{L}$, we take gradient of \mathcal{L} at $\mathbf{c} = 1$. $\left(\frac{\partial \mathcal{L}}{\partial \mathbf{c}}\right)$
 - In other words, linearly approximate \mathcal{L} wrt \mathbf{c} .

$$\Delta L_j(\mathbf{w}; \mathcal{D}) \approx g_j(\mathbf{w}; \mathcal{D}) = \left. \frac{\partial L(\mathbf{c} \odot \mathbf{w}; \mathcal{D})}{\partial c_j} \right|_{\mathbf{c} = \mathbf{1}} = \left. \lim_{\delta \to 0} \frac{L(\mathbf{c} \odot \mathbf{w}; \mathcal{D}) - L((\mathbf{c} - \delta \, \mathbf{e}_j) \odot \mathbf{w}; \mathcal{D})}{\delta} \right|_{\mathbf{c} = \mathbf{1}}$$

Single-shot Network Pruning based on Connection Sensitivity (ICLR 2019)

- Now we define *connection sensitivity* as normalized $(\frac{\partial \mathcal{L}}{\partial c_i})$ at c = 1.
 - Notice that $\frac{\partial \mathcal{L}}{\partial c_j}$ is equivalent to $\frac{\partial \mathcal{L}}{\partial w_j} w_j$. (by chain rule)

$$s_j = \frac{|g_j(\mathbf{w}; \mathcal{D})|}{\sum_{k=1}^m |g_k(\mathbf{w}; \mathcal{D})|}.$$

Overall algorithm

```
Algorithm 1 SNIP: Single-shot Network Pruning based on Connection Sensitivity
Require: Loss function L, training dataset \mathcal{D}, sparsity level \kappa
                                                                                                                                    ▶ Refer Equation 3
Ensure: \|\mathbf{w}^*\|_0 \le \kappa
 1: w ← VarianceScalingInitialization
                                                                                                                                   ▶ Refer Section 4.2
 2: \mathcal{D}^b = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^b \sim \mathcal{D}
                                                                                                    Sample a mini-batch of training data
 3: s_j \leftarrow \frac{\left|g_j(\mathbf{w}; \mathcal{D}^b)\right|^{\frac{1}{2}}}{\sum_{k=1}^m \left|g_k(\mathbf{w}; \mathcal{D}^b)\right|}, \quad \forall j \in \{1 \dots m\}
                                                                                                                           4: \tilde{s} \leftarrow SortDescending(s)
 5: c_j \leftarrow \mathbb{1}[s_j - \tilde{s}_{\kappa} \geq 0], \quad \forall j \in \{1 \dots m\}
                                                                                                      \triangleright Pruning: choose top-\kappa connections
 6: \mathbf{w}^* \leftarrow \arg\min_{\mathbf{w} \in \mathbb{R}^m} L(\mathbf{c} \odot \mathbf{w}; \mathcal{D})
                                                                                                                                     ▶ Regular training
 7: \mathbf{w}^* \leftarrow \mathbf{c} \odot \mathbf{w}^*
```

Performance

Architecture	Model	Sparsity (%)	# Parameters	Error (%)	Δ
Convolutional	AlexNet-s AlexNet-b VGG-C VGG-D VGG-like	90.0 90.0 95.0 95.0 97.0	$\begin{array}{ccc} 5.1\text{m} \to & 507\text{k} \\ 8.5\text{m} \to & 849\text{k} \\ 10.5\text{m} \to & 526\text{k} \\ 15.2\text{m} \to & 762\text{k} \\ 15.0\text{m} \to & 449\text{k} \end{array}$	$\begin{array}{c} 14.12 \rightarrow 14.99 \\ 13.92 \rightarrow 14.50 \\ 6.82 \rightarrow 7.27 \\ 6.76 \rightarrow 7.09 \\ 8.26 \rightarrow 8.00 \end{array}$	+0.87 $+0.58$ $+0.45$ $+0.33$ -0.26
Residual	WRN-16-8 WRN-16-10 WRN-22-8	95.0 95.0 95.0	$\begin{array}{ccc} 10.0 \text{m} \to & 548 \text{k} \\ 17.1 \text{m} \to & 856 \text{k} \\ 17.2 \text{m} \to & 858 \text{k} \end{array}$	$\begin{array}{ccc} 6.21 \to & 6.63 \\ 5.91 \to & 6.43 \\ 6.14 \to & 5.85 \end{array}$	+0.42 +0.52 -0.29
Recurrent	LSTM-s LSTM-b GRU-s GRU-b	95.0 95.0 95.0 95.0	$\begin{array}{c} 137k \to & 6.8k \\ 535k \to & 26.8k \\ 104k \to & 5.2k \\ 404k \to & 20.2k \end{array}$	$\begin{array}{ccc} 1.88 \to & 1.57 \\ 1.15 \to & 1.35 \\ 1.87 \to & 2.41 \\ 1.71 \to & 1.52 \end{array}$	-0.31 +0.20 +0.54 -0.19

Table 2: Pruning results of the proposed approach on various modern architectures (before \rightarrow after). AlexNets, VGGs and WRNs are evaluated on CIFAR-10, and LSTMs and GRUs are evaluated on the sequential MNIST classification task. The approach is generally applicable regardless of architecture types and models and results in a significant amount of reduction in the number of parameters with minimal or no loss in performance.

Conclusion

- SNIP is the earliest attempt to find the "winning ticket" at initialization.
 - Pruning at initialization based on connection sensitivity.
- The experiments indicate that initialization scheme matters significantly:
 - we should use variance-scaled Gaussians.
 - tune the variance of weights so that Var[h] remains constant regardless of fan-ins.
 - LeCun / Xavier initialization (sigmoid, tanh): $\mathbf{w} \sim \mathcal{N}\left(0, \frac{1}{N_{in}}\right)$ or $\mathcal{N}\left(0, \frac{2}{N_{in} + N_{out}}\right)$
 - He initialization (ReLU): $\mathbf{w} \sim \mathcal{N}\left(0, \frac{2}{N_{in}}\right)$
- Question: Why does pruning at initialization work?
 - Does not seem to be clear in a lot of current literatures.
 - Some literatures hint to convergence analysis of NTK. (theory on infinitely wide networks)
 - GraSP (C Wang and R Grosse et al. 2020)
 - With infinitely wide network, the kernel Θ_t remains constant throughout training.

A signal propagation perspective for pruning neural networks at initialization (ICLR 2020)

- Signal propagation perspective of connection sensitivity:
 - connection sensitivity is the product of weight and gradient.
 - Connection sensitivity is a backpropagated signal.
 - We need "faithful" connection sensitivity.

"Faithful signals" – Signals propagating in a network isometrically with minimal amplification or attenuation. (Saxe et al. 2014)

- Poor initialization leads to poor signal propagation.
 - We demand that per-layer Jacobian satisfies Dynamical Isometry.
 - Isometric transformation: preserves the norm and angles between vectors. (reflection, rotation, translation)
 - Signal propagation can be characterized by singular values of Jacobian.

Initialization matters for pruning

- The example demonstrates the effect of bad gradient propagation:
 - linear network vs. nonlinear (tanh) network.
 - Weights are initialized with variance-scaling Gaussian.
 - Sparsity is biased towards the later layers, lower connection sensitivity.
- The layer collapse problem
 - The bias gets stronger as you increase the variance of initializer.
 - Final layer retains only few weights → the network catastrophically loses ability to train.
 - Pruning a nonlinear network is unreliable when the initializer is not properly scaled.
- The unreliable pruning result of SNIP is due to bad gradient propagation.
 - The gradient signal need to be faithful.

Layerwise Dynamical Isometry (LDI)

- LDI define the condition for faithful gradient propagation.
 - LDI is a slight generalization of Dynamical Isometry (DI) condition.
 - DI has been used to train extremely deep networks (Training 10,000-Layer Vanilla CNN. Xiao et al., ICML 2018)
- Layerwise Dynamical Isometry
 - The layerwise Jacobian is decomposed into weights and derivative of activations:

$$\mathbf{J}^{l-1,l} = \frac{\partial \mathbf{x}^l}{\partial \mathbf{x}^{l-1}} = \mathbf{D}^l \mathbf{W}^l$$

- A network satisfies layerwise dynamical isometry if the layerwise Jacobian singular values (JSV) are close to 1.
- Orthogonal initialization
 - We initialize **W** such that layerwise Jacobian is orthogonal matrix. $(\mathbf{J}^T\mathbf{J} = (\mathbf{DW})^T(\mathbf{DW}) = \mathbf{I})$
 - In practice, we SVD a random matrix. (V^T is orthogonal matrix)
- Variance-scaled Gaussian vs. LDI
 - VS Gaussian: mean squared JSV are close to 1.
 - LDI: all JSV are close to 1.

Layerwise Dynamical Isometry (LDI)

- Question: Why does orthogonal initialization work even when there is nonlinear layer?
 - Even if weight W is orthogonal, the Jacobian is not LDI because of D. (slope of activation)

$$\mathbf{J}^{l-1,l} = \frac{\partial \mathbf{x}^l}{\partial \mathbf{x}^{l-1}} = \mathbf{D}^l \mathbf{W}^l$$

- Mean Field Approximation
 - Preactivations of wide, untrained networks follow a Gaussian distribution. (according to CLT)
 - The mass of preactivation values are focused around zero with bell-shaped curve.
 - Visualization: https://ai.googleblog.com/2020/03/fast-and-easy-infinitely-wide-networks.html
- The preactivations can be placed on linear region of activation function.
 - In this case, $D \approx I$. (or scalar multiple of I, depending on nonlinearity)
- Therefore, orthogonal initialization can satisfy LDI even with nonlinear layer.

Enforcing Approximate LDI

- Pruning breaks LDI property of the initial weights.
 - As we increase sparsity, JSV decreases. (weaker gradient propagation)
- Therefore, after pruning, we adjust weights to approximately satisfy LDI.

$$\min_{\mathbf{W}^l} \| (\mathbf{C}^l \odot \mathbf{W}^l)^T (\mathbf{C}^l \odot \mathbf{W}^l) - \mathbf{I}^l \|_F$$

- Approximate LDI
 - Better gradient propagation
 - quicker convergence during training.
 - Simple, data-free optimization that restores broken LDI condition.
 - We found that enforcing approximate isometry improves the training performance of the pruned network quite significantly.

Unsupervised Pruning

- Pruning with unlabeled data
 - Replace the target label as uniform distribution.
 - Tested on MNIST, Fashion-MNIST with VGG16 and ResNets.
 - Slightly worse, but competitive errors compared to supervised pruning.
- Transfer of pruned network to other dataset
 - Transfer of sparsity works. (kind of.)

Table 5: Transfer of sparsity experiment results for LeNet. We prune for $\bar{\kappa} = 97\%$ at orthogonal initialization, and report gen. errors (average over 10 runs).

	Dataset		Error		Error
Category	prune	train&test	$\text{sup.} \rightarrow \text{unsup.}$	(Δ)	rand
Standard	MNIST	MNIST	$\begin{array}{c cc} 2.42 \rightarrow & 2.94 \\ 2.66 \rightarrow & 2.80 \end{array}$	+0.52	15.56
Transfer	F-MNIST	MNIST		+ 0.14	18.03
Standard	F-MNIST	F-MNIST	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	+1.11	24.72
Transfer	MNIST	F-MNIST		-0.78	24.89

Conclusion

- The authors identifies key challenge to pruning at initialization.
 - Main difficulty comes from degradation of signal propagation.
 - Correct initializer is critical for connection sensitivity measurement.
 - The trainability of pruned network is linked with the singular values of Jacobian.
- To tackle this challenge, the authors propose:
 - Layerwise dynamical isometry condition for layerwise Jacobians.
 - Apply orthogonal initialization when pruning at initialization.
- Additionally,
 - Enforcing approximate LDI improves signal propagation of pruned network.
 - Interesting idea of unsupervised pruning. (at initialization)

Key Challenges in recent works

- Pruning at initialization.
- Pruning at single-shot.
- Pruning without supervision.
 - A signal propagation perspective ... (ICLR 2020)
 - SynFlow (arXiv 2020) (pruning without looking at the data)
- Still, there is performance gap between foresight pruning and traditional pruning.
 - On top of that, recent study (<u>rewinding</u>. ICLR 2020) shows that lottery tickets with late resetting trains to higher accuracy than original initialization.

Recent works in foresight pruning

• Synaptic saliency (arXiv 2020-06) is a general class of gradient-based saliency scores:

$$\mathcal{S}(\theta) = \frac{\partial \mathcal{R}}{\partial \theta} \odot \theta$$

• SNIP (ICLR 2019): \mathcal{R} is the training loss \mathcal{L}

$$\mathcal{S}(\theta) = \left| \frac{\partial \mathcal{L}}{\partial \theta} \odot \theta \right|$$

• GraSP (ICLR 2020):

$$\mathcal{S}(\theta) = \left| H \frac{\partial \mathcal{L}}{\partial \theta} \odot \theta \right|$$

- Data-free pruning:
 - SynFlow (Pruning neural networks without any data by iteratively conserving synaptic flow. arXiv 2020)

References

- Jonathan Frankle, Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks. In *International Conference on Learning Representations* (ICLR), 2019
- Namhoon Lee, Thalaiyasingam Ajanthan, Philip H. S. Torr. SNIP: Single-shot Network Pruning based on Connection Sensitivity. In *International Conference on Learning Representations* (ICLR), 2019
- Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, Philip H. S. Torr. A Signal Propagation Perspective for Pruning Neural Networks at Initialization. In *International Conference on Learning Representations* (ICLR), 2020
- Chaoqi Wang, Guodong Zhang, Roger Grosse. Picking Winning Tickets Before Training by Preserving Gradient Flow. In *International Conference on Learning Representations* (ICLR), 2020
- Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, Surya Ganguli. Pruning neural networks without any data by iteratively conserving synaptic flow. arXiv 9 Jun 2020