Acquisizione gesti con Leap Motion – Guida di installazione

Sommario

Prima di iniziare il tutto	3
Premessa	3
Obbiettivo	3
Requisiti fisici	3
Requisiti software	3
Altri tipi di requisiti:	3
Come installare il software	4
Gemini: Ultraleap	4
Leapc-python-bindings	8
Programma per salvare i dati delle mani	12
Preparativi – da fare solo una volta	12
Come eseguire il programma per salvare le informazioni delle mani – da ripetere per o	gni
candidato	16
Riconoscimento dei gesti offline	18
Obiettivo dell'esperimento	18
Dalla cattura all'elaborazione	18
Classification Learner	20
Conclusioni	24

Prima di iniziare il tutto

Premessa

Questa guida è stata scritta in data 11/05/2024; se la leggete dopo questa data, non è garantito che il software funzioni perché gli sviluppatori di Ultraleap potrebbero cambiare delle specifiche.

Per informazioni dettagliate dagli sviluppatori e/o dalla community di Ultraleap, scrivete immediatamente sul server Discord della software house https://discord.gg/3VCndThqxS : entro qualche giorno qualcuno risponderà alle vostre domande

Obbiettivo

Acquisire dei movimenti della mano usando il Leap Motion e salvarli in un file csv

Requisiti fisici

- Leap Motion, con relativo cavo usb 3.0
- Computer con OS Windows, MacOs o Linux (la guida prenderà in esempio Windows 10)
- Connessione ad Internet, per scaricare il software necessario

Requisiti software

Per ordine d'installazione:

- Ultraleap Hand tracking
- Python

Altri tipi di requisiti:

• Pazienza e tempo (non sono così scontati)

Come installare il software

Gemini: Ultraleap

Per scaricare la suite di software in modo da interagire con il Leap Motion, andate su https://leap2.ultraleap.com/gemini-downloads/, selezionate "Desktop/Laptop Computers", cliccate su "Download now" e selezionate la versione del sistema operativo del computer che andrete ad impiegare.

Figura 1 - Download page Gemini

Al momento del download, è necessario un account Ultraleap: se necessario, createvelo.

Figura 2 - Login page Ultraleap

Una volta scaricato, eseguite l'installazione del programma.

Al momento dell'installazione, non cambiate la directory d'installazione: se la cambiate annotatevela perché poi la dovrete cambiare nell'installazione della libreria Python.

Figura 3 - Installazione Ultraleap

Scaricato il bundle Ultraleap Tracking, riavviate il computer.

Collegate il Leap Motion al pc usando il cavo usb 3.0 e la relativa porta; quindi, aprite il programma "Ultraleap Control Panel".

Se non vi compare la schermata sottostante, verificate che i driver siano stati installati e/o aggiornate il firmware del Leap Motion.

Figura 4 - Schermata Ultraleap Control Panel funzionante

Se vi comparisse il messaggio indicato in basso, il Leap Motion potrebbe essere rallentato e/o presentare problemi nell'acquisizione: cambiate pc o continuate con quello che avete sapendo di questo inconveniente.

Figura 5 - Screenshot Leap Motion con poca energia

Leapc-python-bindings

Ora che Ultraleap è scaricato, è necessario scaricare la libreria da https://github.com/ultraleap/leapc-python-bindings ed estrarre lo zip.

Figura 6 - Schermata Github della libreria

Leggete attentamente il README.md della libreria https://github.com/ultraleap/leapc-python-bindings/blob/main/README.md per tutti i dettagli tecnici.

Figura 7 - Schermata dal Readme della libreria

In questa guida, useremo il "Pre-compiled module", quindi installeremo la versione più recente di Python 3.8 dal sito ufficiale https://www.python.org/downloads/release/python-3810/.

Non scaricate la versione di Python dal Microsoft Store per problemi di incompatibilità.

Figura 8 - Schermata di Python 3.8.10 dal sito ufficiale

Installate Python e cliccate su "Disable path length limit" (il software finale potrebbe girare in una directory molto lunga).

Figura 9 - Python installazione step finale

Riavviate il computer, verificate da PowerShell che la versione di Python sia quella corretta con il comando "python –-version".

PS C:\Users\Leap Motion> python --version
Python 3.8.10

Figura 10 - Versione Python da PowerShell

La libreria potrebbe avere dei problemi se ci sono diverse versioni di Python nella stessa macchina: consiglio caldamente di far girare tutto il software in una virtual machine o in un utente diverso da quello abituale o fisicamente in un computer differente con solo la versione di Python indicato nel README.

Andate nella directory della libreria scaricata da Github con PowerSheel, usando il comando "cd" ed eseguite le istruzioni di installazione contenute nel README https://github.com/ultraleap/leapc-python-bindings/blob/main/README.md

Figura 11 - Comandi per installare la libreria

Provate il funzionamento tra il Leap Motion e il pc digitando il comando "python examples/tracking_event_example.py" o uno tra i tanti file di esempio contenuti nella cartella.

```
PS C:\Users\Leap Motion\Downloads\leapc-python-bindings-main\leapc-python-bindings-main> python .\examples\tracking_event_example.py
Connected
Found device LP13431895929
Frame 3911 with 0 hands.
Frame 3912 with 0 hands.
Frame 3913 with 0 hands.
Frame 3913 with 0 hands.
Frame 3914 with 1 hands.
Hand is a left hand with position (-7.710934638977051, 275.6236572265625, 87.25321197509766).
Frame 3915 with 1 hands.
Hand id 8 is a left hand with position (-7.52630615234375, 277.4698181152344, 88.71944427490234).
Frame 3916 with 1 hands.
Hand id 8 is a left hand with position (-7.491710662841797, 278.5382080078125, 89.4766616821289).
Frame 3917 with 1 hands.
Hand id 8 is a left hand with position (-7.589117050170898, 279.24493408203125, 89.71138000488281).
Frame 3918 with 1 hands.
Hand id 8 is a left hand with position (-7.877882480621338, 278.4035949707031, 89.33525085449219).
Frame 3919 with 1 hands.
Hand id 8 is a left hand with position (-8.139447212219238, 277.7308044433594, 89.04198455810547).
Frame 3920 with 1 hands.
Hand id 8 is a left hand with position (-8.39783763885498, 277.21783447265625, 88.82675170898438).
Frame 3921 with 1 hands.
Hand id 8 is a left hand with position (-8.666625022888184, 276.7685546875, 88.65727996826172).
Frame 3922 with 1 hands.
Hand id 8 is a left hand with position (-9.762511253356934, 276.43994140625, 88.40921020507812).
Frame 3922 with 1 hands.
Hand id 8 is a left hand with position (-9.762511253356934, 276.43994140625, 88.40921020507812).
Frame 3924 with 1 hands.
Hand id 8 is a left hand with position (-10.526000022888184, 276.1640319824219, 88.17623901367188).
Frame 3924 with 1 hands.
Hand id 8 is a left hand with position (-10.526000022888184, 276.1640319824219, 88.17623901367188).
Frame 3925 with 1 hands.
Hand id 8 is a left hand with position (-10.96016788482666, 275.8433532714844, 87.99351501464844).
Frame 3925 with 1 hands.
```

Figura 12- Schermata con file di esempio funzionante

Fine della parte dalla documentazione ufficiale del software Ultraleap.

Programma per salvare i dati delle mani

Preparativi - da fare solo una volta

Scaricate la libreria pillow con il comando da PowerShell "pip install pillow"

```
PS C:\Users\Leap Motion> pip install pillow
Collecting pillow
Using cached pillow-10.3.0-cp38-cp38-win_amd64.whl (2.5 MB)
Installing collected packages: pillow
Successfully installed pillow-10.3.0
```

Figura 13 - Installare module aggiuntivo

Andate nella cartella della libreria iniziale della libreria "leapc-python-bindings-main" e cliccate sulla cartella "leapc-python-api".

Figura 14 - Directory in cui è contenuto il file da modificare

Continuate nelle sottocartelle seguendo il percorso /src/leap

Figura 15 - Cartella e file da modificare

Aprite il file con un qualsiasi editor di testo (in questo caso con Atom, ma potete usare Visual Studio Code o semplicemente il Blocco note) e aggiungete alla riga 95 ",PolicyFlag"

Figura 16 - Aggiunta al file __init__.py

Ritornate nella directory con i file di esempio e scaricate la cartella "Acquisizione dataset finale" https://github.com/ciccio25/leap motion to csv/tree/main/examples/ ed estraetela nella directory della libreria negli esempi.

Figura 17 - File che devono essere presenti nella cartella

Come eseguire il programma per salvare le informazioni delle mani – da ripetere per ogni candidato

Cliccate sulla cartella finché non trovate solo la cartella "Vuoto – da copiare per ogni persona".

Come è scritto nel nome della cartella, copiate e incollate la suddetta cartella e rinominatela nel nominativo del candidato che andrà a svolgere la prova

Figura 18 - File che dovranno essere presenti

Ora clicchiamo sulla cartella del candidato e ci troveremo il programma "acquisizione_dataset_finale.py".

Figura 19 - File da eseguire

Ritornate su PowerShell in quella stessa directory e avviate il programma "acquisizione_dataset_finale.py"

Figura 20 - Come eseguire il programma di acquisizione

Figura 21 - Schermata di acquisizione

I file csv verranno salvati all'interno della cartella Gesti_IEEE o Lettere_LIS.

Eseguite questo programma da Powershell, ogni volta che si vuole fare un'acquisizione, con il Leap Motion collegato al pc, appoggiato su un piano (possibilmente un tavolo piano) e con il led del Leap Motion rivolto verso il candidato stesso

Riconoscimento dei gesti offline

Obiettivo dell'esperimento

Per riprodurre lo stesso esperimento del paper https://ieeexplore.ieee.org/document/7939924 ho svolto un piccolo dataset con diversi candidati usando solamente la mano destra https://univpm-my.sharepoint.com/:f:/g/personal/s1098092 studenti univpm it/Et9JYClKM pPjQJUaL3Xn3wByGynE 7Mfd4wiH0bNRL4S6g?e=cDKVzb.

La cattura è stata svolta con Python, mentre l'elaborazione dei dati usando Matlab R2024a. Il riconoscimento dei gesti è offline perché non è in real-time (è stata svolta in un momento successivo all'acquisizione).

Dalla cattura all'elaborazione

In una singola cattura sono state acquisite le coordinate delle punte delle dita (tip positions) e del palmo della mano (palm position) in 120 frame.

Figura 22 - Coordinate acquisite

Dalle coordinate di ogni oggetto (singolo dito e palmo della mano) viene rielaborato: la media aritmetica (arithmetic mean), la deviazione standard (standard deviation), la covarianza (covariance), il valore quadratico medio (Root Mean Square).

Figura 23 - Dati rielaborati

Questi dati sono stati rielaborati usando la funzione lettura_dataset.m (che dipenda da lettura_file.m).

Dall'esecuzione di questo programma, viene elaborato il file dataset_finale.csv, in cui sono presenti le rielaborazioni delle coordinate per ogni candidato.

Con il programma lettura_dataset_persone.m vengono raggruppati in un unico csv tutti i dataset_finale.csv di ogni candidato in un unico file datase_persone_finale.csv.

Rispetto al paper, personalmente mi sono soffermato solamente sulle lettere in cui la mano rimane fissa: da datase_persone_finale.csv con il programma dataset_SOLO_LETTERE_FISSE.m viene estratto il file dataset_lettere_fisse_casuale.csv (Casuale perché la rete dovrà essere allenata e testata con la disposizione delle lettere in modo casuale)

Classification Learner

Usando l'app di Matlab Classification Learner

https://it.mathworks.com/help/stats/classificationlearner-app.html ho importato dataset lettere fisse_casuale.csv ho scelto la rete NN.

Allenando tutte le reti ed i classificatori disponibili su Matlab, ho scelto una Wide Neural Network con accuratezza di validazione del 92,9% e del test di 87,2%

Figura 24 – Matrice di training della rete NN scelta

Figura 25 – Matrice di test della rete NN scelta

La sessione del Classification Learner è salvata nel dataset con il nome di ClassificationLearnerSession.mat

Di seguito la tabella dalla sessione

MODEL NUMBER	MODELTYPE	STATUS	ACCURACY % (VALIDATION)	TOTAL COST (VALIDATION)	ACCURACY % (TEST)	TOTAL COST (TEST)
2.25	Ensemble	Tested	90.7557354925776	137	90.2439024390244	16
2.29	Neural Network	Tested	91.9028340080972	120	88.4146341463415	19
2.11	SVM	Tested	87.9217273954116	179	88.4146341463415	19
3.11	SVM	Tested	87.9217273954116	179	88.4146341463415	19
2.16	KNN	Tested	87.246963562753	189	87.8048780487805	20
3.16	KNN	Tested	87.246963562753	189	87.8048780487805	20
3.27	Neural Network	Tested	92.914979757085	105	87.1951219512195	21
2.30	Neural Network	Tested	85.9649122807018	208	87.1951219512195	21
2.28	Neural Network	Tested	91.497975708502	126	85.9756097560976	23

3.25	Neural Network	Tested	88.5290148448043	170	85.9756097560976	23
2.27	Neural Network	Tested	88.5964912280702	169	85.3658536585366	24
3.26	Neural Network	Tested	92.5101214574899	111	84.7560975609756	25
3.29	Neural Network	Tested	85.4925775978408	215	84.7560975609756	25
2.23	Ensemble	Tested	84.885290148448	224	84.7560975609756	25
3.28	Neural Network	Tested	87.3819163292847	187	83.5365853658537	27
2.12	SVM	Tested	86.5047233468286	200	83.5365853658537	27
3.12	SVM	Tested	86.5047233468286	200	83.5365853658537	27
2.10	SVM	Tested	84.3454790823212	232	82.9268292682927	28
3.10	SVM	Tested	84.3454790823212	232	82.9268292682927	28
4.2	SVM	Tested	84.3454790823212	232	82.9268292682927	28
3.23	Ensemble	Tested	84.2780026990553	233	82.9268292682927	28
2.31	Neural Network	Tested	85.0202429149798	222	81.0975609756098	31
2.21	KNN	Tested	83.4008097165992	246	81.0975609756098	31
3.21	KNN	Tested	83.4008097165992	246	81.0975609756098	31
2.32	Kernel	Tested	77.3279352226721	336	80.4878048780488	32
2.24	Ensemble	Tested	79.1497975708502	309	79.2682926829268	34
2.4	Discriminant	Tested	82.051282051282	266	78.6585365853659	35
3.4	Discriminant	Tested	82.051282051282	266	78.6585365853659	35
4.1	Discriminant	Tested	82.051282051282	266	78.6585365853659	35
2.14	SVM	Tested	77.1929824561403	338	76.219512195122	39
3.14	SVM	Tested	77.1929824561403	338	76.219512195122	39
2.13	SVM	Tested	70.1079622132254	443	71.3414634146341	47
3.13	SVM	Tested	70.1079622132254	443	71.3414634146341	47
2.20	KNN	Tested	65.6545209176788	509	67.0731707317073	54
3.20	KNN	Tested	65.6545209176788	509	67.0731707317073	54
2.33	Kernel	Tested	65.7219973009447	508	64.6341463414634	58
2.17	KNN	Tested	65.3171390013495	514	63.4146341463415	60
3.17	KNN	Tested	65.3171390013495	514	63.4146341463415	60
2.19	KNN	Tested	64.9122807017544	520	60.9756097560976	64
3.19	KNN	Tested	64.9122807017544	520	60.9756097560976	64
2.1	Tree	Tested	58.9068825910931	609	56.0975609756098	72
3.1	Tree	Tested	58.9068825910931	609	56.0975609756098	72
2.22	Ensemble	Tested	48.7179487179487	760	45.1219512195122	90
3.22	Ensemble	Tested	48.7179487179487	760	45.1219512195122	90
2.26	Ensemble	Tested	43.9271255060729	831	42.0731707317073	95
3.24	Ensemble	Tested	42.914979757085	846	42.0731707317073	95
2.18	KNN	Tested	42.3076923076923	855	41.4634146341463	96
3.18	KNN	Tested	42.3076923076923	855	41.4634146341463	96
2.7	Efficient Linear SVM	Tested	40.8906882591093	876	41.4634146341463	96
4.4	Efficient Linear SVM	Tested	40.2159244264507	886	40.8536585365854	97

3.7	Efficient Linear SVM	Tested	41.6329284750337	865	39.6341463414634	99
2.15	SVM	Tested	34.8178137651822	966	36.5853658536585	104
3.15	SVM	Tested	34.8178137651822	966	36.5853658536585	104
2.9	Naive Bayes	Tested	23.5492577597841	1133	30.4878048780488	114
3.9	Naive Bayes	Tested	23.5492577597841	1133	30.4878048780488	114
2.2	Tree	Tested	31.0391363022942	1022	27.4390243902439	119
3.2	Tree	Tested	31.0391363022942	1022	27.4390243902439	119
2.6	Efficient Logistic Regression	Tested	12.4156545209177	1298	20.1219512195122	131
2.3	Tree	Tested	17.476383265857	1223	17.0731707317073	136
3.3	Tree	Tested	17.476383265857	1223	17.0731707317073	136
4.3	Efficient Logistic Regression	Tested	14.5074224021592	1267	14.6341463414634	140
2.8	Naive Bayes	Tested	12.0782726045884	1303	11.5853658536585	145
3.8	Naive Bayes	Tested	12.0782726045884	1303	11.5853658536585	145
3.6	Efficient Logistic Regression	Tested	12.0107962213225	1304	11.5853658536585	145
2.5	Discriminant	Failed	NaN	NaN	NaN	NaN
3.5	Discriminant	Failed	NaN	NaN	NaN	NaN

Conclusioni

In questo esperimento ho riproposto la stessa modalità di acquisizione e di rielaborazione del paper https://ieeexplore.ieee.org/document/7939924, impiegando la versione più recente del software di Ultraleap per l'acquisizione dei dati, utilizzando una rete neurale al posto del classificatore SVM grazie alla sua maggior accuratezza per il riconoscimento dei gesti.

L'esperimento ha impiegato molto tempo e molte risorse a causa della pochissima documentazione online del Leap Motion per la versione più aggiornata di quest'ultimo (a metà febbraio Orion è stato dismesso da Ultraleap) e per la poca trasparenza dei paper letti disponibili nell'IEEE, spiegando solo i concetti teorici senza un repository del codice sorgente.

Scrivere il codice è stato un insieme tra vecchia documentazione, quest'ultima disponibile solo su https://web.archive.org/web/20170720234439/https://developer.leapmotion.com/documentation/python/index.html, una playlist su YouTube

https://www.youtube.com/watch?v=T9k7rdY625M&list=PLgTGpidiW0iTELuljcIdTkA5SjHa5tudP , e nuova documentazione, di cui la guida ufficiale in C https://docs.ultraleap.com/api-reference/tracking-api/index.html e i file di esempio di https://github.com/ultraleap/leapc-python-bindings

Ringrazio la community e gli sviluppatori di Ultraleap https://discord.com/invite/3VCndThqxS per la trasparenza, la tempestività alle domande poste ed i fantastici progetti che ho visualizzato nel server (#showcase sotto alla sezione Community

https://discord.com/channels/994213697490800670/998975843059638293).

Nonostante i problemi citati, è stato molto piacevole imparare nuovi concetti che potrò impiegare nei miei futuri studi (reti neurali, lettura di paper accademici, Matlab) e poter scrivere, dopo tanto tempo, in Python.

Oltre alla parte tecnica, ringrazio con affetto amici e parenti che, con molta pazienza, mi hanno aiutato alla realizzazione del dataset https://univpm-

my.sharepoint.com/:f:/g/personal/s1098092 studenti univpm it/Et9JYClKM pPjQJUaL3Xn3wByGynE 7Mfd4wiH0bNRL4S6g?e=cDKVzb, in particolare Francesco, con il quale potrò iniziare a comunicare finalmente in LIS.