Miipherを実装し 評価しました

東大 猿渡・高道研究室 中田亘

目次

Miipherとは	5
自分の実装とPaperの主な相違点	7
評価1: 復元音声の客観的評価	8
評価2: 劣化の種類による復元音声の品質の変化	15
まとめ	19

Miipherとは

- 音声をSSLモデル特徴量空間で復元する技術
- 高い性能を示しており、大規模TTSコーパス構築に有用
 - LibriTTS-R[Koizumi+23]

Miipherの学習(XVector, 言語SSLモデルは省略)

Stage1(b): Feature Cleanerの学習

Stage2: ボコーダのファインチューニング

自分の実装とPaperの主な相違点

	論文	自分の実装	
データセット	Google社内データ 670時間	LibriTTS-R[Koizumi+23] 585時間 JVS corpus[Takamichi+20] 24時間	
音声SSLモデル	W2v-BERT[Chung+21]	WavLM[Chen+21]	
言語SSLモデル	PnG BERT[Jia+21]	XPhoneBERT[Nguyen+23]	
Feature cleanerの 主たる構造	DF-Conformer[Koizumi+21]	umi+21] Conformer[Gulati+20]	
ボコーダ	WaveFit[Koizumi+22]	HiFi-GAN[Kong+20]	

全て Closed source

評価1: 復元音声の客観的評価

評価に使用したデータセット

- JSUT[Takamichi+20] BASIC5000 0001~0100 日本語 女性話者 1名
- CMU ARCTIC[Kominek+2003] 各話者100発話 男性2名 女性2名

評価指標

- 音声の品質:Mel-cepstrum distortion (MCD)
- 話者性の保存:X-vector コサイン類似度
- 言語情報の保存:ASR結果の文字誤り率
- 韻律の保存:Log F0 RMSE

原音声劣化手法

- Codecの適用(mp3, vorbisなど)
- Reverbを50%の確率で適用
- 背景雑音, 音楽の適用 SNR 30dBから5dBを一様分布からサンプリングして適用

比較手法

	人工的な劣化	音声SSL特徴量	Feature cleaner
wav (原音声そのまま)			
wav -> SSL -> wav		V	
wav -> SSL -> FC -> wav		V	✓
degraded	V		
degraded -> SSL -> wav	V	V	
degraded -> SSL -> FC -> wav	V	V	V

メルケプストラム歪み(MCD)の評価結果

clean音声入力の場合 -> SSL特徴量、Miipher使用により劣化 Degraded音声入力の場合 -> SSL特徴量、Miipherの使用により分布が狭くなる 日本語の方がMCDが良い値

● 英語データセット: LibriTTS-R(Google Miipherで復元された音声)日本語データセット: JVSコーパス

Degraded音声のMCDと各手法のMCD比較

- SSL特徴量を使用することでMCDの増加が改善
- Miipherを使用することでMCDの増加が大きく改善
- 入力音声がcleanに近い場合逆に劣化が発生

Log-F0 RMSEの評価結果

- 日本語ではLog-F0 RMSEが劣化
 - 使用したSSLモデルが英語事前学習済みモデルであるから?
- Degraded音声に対してはSSL特徴量,FCの利用により改善

X-Vectorコサイン類似度(話者性)の評価結果

- clean音声入力の場合 -> SSL特徴量、Miipher使用により劣化
- Degraded音声入力の場合 -> SSL特徴量、Miipherの使用により改善
- X-Vectorが劣化音声に対してロバストではない

文字誤り率

- 英語ではCERの劣化は少ない、むしろFCを使用することでCERが少し改善
 - 音声SSLモデルが英語で事前学習していることが要因?
- 日本語では、SSL特徴量やFCを使用することでCERが劣化
 - F0のエラーが大きいのが一因と思われる

評価2 劣化の種類による復元音声の品質の変化

先ほどと同じデータセットを以下の条件で比較

	残響の適用	コーデック劣化の適用 (mp3, vorbisなど)	背景雑音, 音楽の適用
none			
Reverb	V		
Codec		✓	
Background Noise			✓
All	V	V	✓

評価指標

● MCD, X-Vectorコサイン類似度, Log-F0 RMSE

劣化の種類によるMCDの変化

- 言語に寄らず、全体的な傾向は一致
- Codecに対してMiipherはロバストではない

劣化の種類によるLog-F0 RMSEの変化

- F0に関してはbackground noise, reverbにおいて性能が劣化
- 言語に寄らず同様の傾向

劣化の種類によるXVector(話者性)の変化

XVectorに関しては特定の劣化に対して弱いなどは確認できない

自分が実装したMiipherの考えうる用途と改善方針

残念ながら自分の実装ではスタジオ品質は出来ていない

用途: Cleanである必要は無いが、音声のみ含まれていて欲しい学習

- GSLMなどの音声言語モデル学習データの前処理
- TTSモデルの事前学習

改善方針

- 真のCleanデータをより多く集める (LibriTTS-RはGoogleのMiipherにより復元された音声)
- Clean音声を多く学習時に入力(今はほぼ存在しない)
- ノイズロバストなX-Vectorを学習
- F0-awareな音声SSLモデルの設計 or ボコーダをF0で条件付け
- 日本語学習ずみ音声SSLモデルの使用
- 複数のそうのFusion

まとめ

実装したMiipherの性能を評価

復元音声の品質

●Degraded音声に対してMiipherを使用する事により改善

② clean音声に対して適用すると劣化

劣化手法に対するロバスト性

MCD: Codec劣化に対して弱い

F0: 背景雑音, 反響に対して弱い