Supporting Information of Di et al.

S1. Design of universal primers for full-length amplification of ospC

The design of PCR primers for amplifying the full-length *ospC* sequences is aided by a previous study of intergenic sequences in *Borreliella* genomes (1).

The following is an alignment of the upstream region of *ospC* in 9 *Borreliella* species and of a *vsp* locus in *Borrelia miyamotoii* (genome accession CP017137, locus tag AXH25_04790) (2). All sequences end with the start codon "ATG". The forward primer region (in red) is 100% conserved among the *Borreliella* species, while differing at 6 positions from the *Borrelia miyamotoii* locus. This region includes the conserved ribosomal binding site (RBS, "GGAGG", underlined).

CP017137:13840-13920 BVAVS116_B0017-B0018 BB_B18-B19 BSV1_B18-B19 BGB17-BGB18 BSPA14S_B0019-B0021 BGAFAR04_B0017-B0018 BafACA1_B18-B19 BbiDN127_B0018-B0019 KK9 2022-2023 CAAAGTTTTAACTATTTTGTCG--TTATTAATGTA-AAGGAACAAGGAGGCATATAATATG
GAAAA----AACAAAATTGTTGAACTAATAATTCA---ATAAAAAGGAGGCACAAATTATG
TGAAA----AACAAAATTGTTGGACTAATAATTCATAAATAAAAAGGAGGCACAAATTATG
TGAAA----AGAAAAATTGTTGAACTAATAATTCAT-ATAAAAAGGAGGCACAAATTATG
TGAAA----AGAAAAATTGTTGAACTAATAATTCAT-ATAAAAAGGAGGCACAAATTATG
TGAAA----AGAAAAATTGTTGAACTAATAATTCAT-ATAAAAAGGAGGCACAAATTATG
TGAAA----AGAAAAATTGTTGAACTAATAATTTAT--ATAAAAAGGAGGCACAAATTATG
TGAAA----AGAAAAATTGTTGGACTAATAATTC----ATAAAAAGGAGGCACAAATTATG
TGAAA----AGTAAAATTGTTGGACTAATAATTCATAAATAAAAAGGAGGCACAAATTATG
TGAAA----AGAAAAATTGTTGGACTAATAATTCATAAATAAAAAGGAGGCACAAATTATG
TGAAA----AGAAAAATTGTTGGACTAATAATTCATAAATAAAAAGGAGGCACAAATTATG
TGAAA----AGAAAAATTGTTGGACTAATAATTCAT--ATAAAAAGGAGGCACAAATTATG
TGAAA----AGAAAAATTGTTGGACTAATAATTCAT--ATAAAAAGGAGGCACAAATTATG

The following is the alignment of a downstream region of *ospC* in *Borreliella* species and of a *vsp* locus in *B. miyamotoii* (genome accession CP017137, locus tag AXH25_04790) (2). All sequences start with the stop codon "TAA". The reverse primer region (in red) is nearly 100% conserved among the *Borreliella* species as well as between the *Borreliella* species and *Borrelia miyamotoii*.

CP017137:14547-14816 BVAVS116_B0018-B0020 BbiDN127_B0019-B0020 BSPA14S_B0021-B0022 BafPKo_B0019-B0020 BB_B19-B22 BSV1_B19-B20 KK9_2023-2024 BGB18-BGB19 BGAFAR04_B0018-B0020	TAATGGTTAAT CTTAATAAGGTAAGGGAAAAAGTTAATTTTAGAAGTTATAAGAT TAA TTAG ATCAATA TTATAAGAT TAA TCAAG ATCAATA TTATAAGAT TAA TTAG
CP017137:14547-14816 BVAVS116_B0018-B0020 BbiDN127_B0019-B0020 BSPA14S_B0021-B0022 BafPKo_B0019-B0020 BB_B19-B22 BSV1_B19-B20 KK9_2023-2024 BGB18-BGB19 BGAFAR04_B0018-B0020	TAGTTTTTTAATTAAAAGTAAGTAACTGG-AAAAATAAAGTCAATAAGAAGGAAGCTA TAATTTGTTTTAAAA-AAGTAACTGGAAAAAATAAAGTCAATATAAAGCCAAGAA TAATTTGTTTTAAAA-AAGTAACTGG-AAAAATAAAGTCAATATAGAGTCAAGAA TTTTAAAA-AAGTAACTGGAAAAAATAAAGTCAATATAGAGTCAAGAA TAATTTGTTTTAAAA-AAGTAACTGG-AAAAATAAAGTCAATATAGAGTCAAGAA TAATTTGTTTTAAAA-AAGTAACTGG-AAAAATAAAGTCAATATAAGTCAAGAA TAATTTGTTTTAAAA-AAGTAACTGG-AAAAATAAAGTCAATATAAGTCAAGAATTTAAAA-AAGTAACTGG-AAAAATAAAGTCAATATAGAGTCAAGAATTTAAAA-AAGTAACTGG-AAAAATAAAGTCAATAT-AGAGAGTCAAGAA TAATTTGTTTTAAAA-AAGTAACTGG-AAAAATAAAGTCAATATAGAGTCAAGAA TAATTTGTTTTAAAA-AAGTAACTGG-AAAAATAAAGTCAATATAGAGTCAAGAA *********************************

S2. Reference ospC sequences used for allele identification

>B3 F006

>N F004

ATGAAAAGAATACATTAAGTGCAATATTAATGACTTTATTTTTATTTTATATCTTGTAATAATTCAGGGAAAGATGG
GAATGCATCTACAAATTCTGCCGATGAGTCTGTTAAAGGGCCTAATCTTACAGAAATAAGTAAAAAAATTACAGAAT
CTAATGCAGTTGTACTGGCTGTAAAAGAAGTTGCGGCGTTGCTTTCATCTATAGATGAGCTTGCTAAAGCTATTGGT
AAAAAAATAAATAATAATGGTTTAGATGATGTGCAAAACTTCAACGCATCATTATTGGCAGGAGCTCATACAATATC
AAAATTAGTAACAGAAAAATTAAGCAAATTGAAAAATTCAGAAGGATTAAAAGAAAAAATTGAGGACGCCAAAAAAT
GTTCTGATGATTTTACTAAAAAAACTACAATCTAGCCATGCACAGCTTGGTGTTGCTGGTGGTGCTACTACTGATGAA
GAGGCTAAAAAAAGCTATTTTAAGAACAAACGCAATTAAAGATAAGGGCGCAGATGAACTTGAAAAGTTATTTAAATC
AGTAGAAAGCTTAGCAAAAAGCAGCTCAAGACGCACTAGCCAATTCAGTTAACGAGCTTACAGGTCCTGTTGTGGCAG
AAACTCCAAAAAAAACCTTAA

>T F128

>vsp N030

>C14 N150

ATGAAAAAGAATACATTAAGTGCAATATTGATGACTTTATTTTTATTTTATATCTTGTAATAATTCAGGGAAAGATGG CAATTCTGCATCTAATAATTCTGCTGATGAGTCCGCTAAAGGGCCTAATCTTATAGAAATAAGTAAAAAAATTACAG ACTCTAATGCAGTTGTACTCGCCGTTAAAGAAATTGAAACTTTGATTTCATCTATAGATGAACTTGCCAATAAAGCC ATTGGTAAAAGAATACAAGCAAATGGCTTAGAGAACATGCCAAATGAGAACGGATCATTATTAGCAGGAGCTTATGC AATATCAACTTTAATAACACAAAAATTAGATGGATTGAAAAATGAAGAATTAAAAGAAAAGATTGCCGCAGCTAAGA AGTGCTCCGAAGAATTTGGTACTAAAAAATGAAGATTCTAACGTAAATCTTGGGCCAGTGAATGGAGACGCTACTGAC GAACATGCAAAACAAGCTATTTTAAAAACAAATGGAACTAAAAGATAAAGGTTTTGACGAACTTTTAAAAGTTATCTGA AGCAGTAGAAGGCTTGGCAAAAAAAACCTTAA

>A_B31

ATGAAAAAGAATACATTAAGTGCAATATTAATGACTTTATTTTTATTTTATATCTTGTAATAATTCAGGGAAAGATGG GAATACATCTGCAAATTCTGCTGATGAGTCTGTTAAAGGGCCTAATCTTACAGAAATAAGTAAAAAAATTACGGATT >E N40

>C JD1

>K 297

>H 156a

>G 72a

>J 118a

>U 94a

>M 29805

>D CA-11-2A

ATGAAAAGAATACATTAAGTGCAATATTAATGACTTTATTTTTATTTTATATCTTGTAATAATTCAGGAAAAGATGG
GAATACATCTGCAAATTCTGCTGATGAGTCTGTTAAAGGGCCTAATCTTACAGAAATAAGTAAAAAAATTACGGATT
CTAATGCGGTTTTACTTGCTGTGAAAGAGGGTTGAAGTGTTGCTGTCATCTATAGATGAACTTGCTAAGAAAGCTATT
GGTAAAAAAATAGATCAAAACAATGCTTTAGGCACTCTAGATAATCATAACGGATCATTGTTGGCGGGAGCTTATGC
TATATCAGCTCTAATAACAGAAAAATTAAGTTCAATAAAAGATTCAGGAGAATTGAAGGCAGAAATTGAAAAGGCTA
AGAAATGTTCTGAAAGCTTTACTAAAAAACCATAATGCTAAAGACAGAGGGTGCTGAAGAACTTGTAAAGTTATCTGAATC
AGTAGCAGAAAAAAAGGCTTTTTTAAAAACCATAATGCTAAAGACAAGGGTGCTGAAGAACTTTGTAAAGTTATCTGAATC
AGTAGCAGGCTTATTAAAAAGCAGCTCAAGCCATACTGGCTAATTCAGTTAAAGAGCTTACAAGTCCTGTTGTGGCAG
AAAGTCCAAAAAAAACCTTAA

>B 64b

>I WI91-23

ATGAAAAAGAATACATTAAGTGCAATATTAATGACTTTATTTTTATTTTATATCTTGTAATAATTCAGGGAAAGATGG
GAATACATCTGCAAATTCTGCTGATGAGTCTGTTAAAGGGCCTAATCTTACAGAAATAAGTAAAAAAATTACAGAAT
CTAACGCAGTTGTTCTCGCCGTGAAAGAAGTTGAAACTTTGCTTACATCTATAGATGAGCTTGCTAAAGCTATTGGT
AAAAAAATAAAAAACGATGTTAGTTTAGATAATGAGGCAGATCACAACGGATCATTAATATCAGGAGCATATTTAAT
TTCAACATTAATAACAAAAAAAAATAAGTGCAATAAAAGATTCAGGAGAAATTGAAAGGCTAAGA
AATGTTCTGAAGAATTTACTGCTAAATTAAAAGGTGAACACACAGATCTTGGTAAAGAAGGCGTTACTGATGATAAT

GCAAAAAAGCCATTTTAAAAACAAATAATGATAAAACTAAGGGCGCTGATGAACTTGAAAAGTTATTTGAATCAGT AAAAAACTTGTCAAAAGCAGCTAAAGAGATGCTTACTAATTCAGTTAAAGAGCTTACAAGCCCTGTTGTGGCAGAAA GTCCAAAAAAAACCTTAA

>F F084

>L T255

ATGAAAAAGAATACATTAAGTGCGATATTGATGACTTTATTTTTATTTTATATCTTGTAATAATTCAGGAAAAGATGG
GAATGCATCTGTAAATTCTGCTGATGAGTCTGTTAAAGGGCCTAATCTTGTAGAAATAAGTAAAAAAATTACCGATT
CTAATGCGGTTGTTATTGCAGTGAAAGAAGTTGAAACTTTGCTTGTATCTATAGATGAGCTTGCTAAAGCTATTGGT
AAAAAAATAGAAGCAGGTGGTACTTTAGGTAGCGATGGGGCACACAACGGATCATTACTAGCAGGGGCCTATAAAAT
AGCAACCGAAATAACAGCAAATTTAAGCAAATTAAAAGCTTCAGAAGACTTAAAAGAAAAAATTACAAAGGCTAAGG
AATGTTCTGAGAAAATTTACTGATAAACTAAAAAGTGAAAATGTAGCGCTTGGCAAACAGGATGCTAGTGATGAT
GCAAAAAAAAGCTATTTTTAAAAACACATAATGATATAACTAAGGGTGCTAAAGAACTTAAAGAGTTATCAGAATCAGT
GGAGACCTTGTTAAAAGCAGCTAAAGAGATGCTTGCTAATTCAGTTAAAGAACTTACAAGTCCTGTTGTGGCAGAAA
GTCCAAAAAAAACCTTAA

>O N045

S3. Bioinformatics protocols for allele identification, read quantification, and read simulation

- 1. **Allele identification.** The following commands use software packages bwa (3), samtools (4), and bedtools (5). The commands run in a Linux BASH environment to align pairedend short reads ("r1.fq" and "r2.fq", in FASTQ format) to a set of reference *ospC* sequences ("ref.nuc" in FASTA format). A separate file ("ref.bed"), containing on each line tab-separated columns of the identifier and the beginning and ending nucleotide positions of a reference allele, is needed.
 - 1) bwa index ref.nuc # generate index files
 - 2) bwa mem ref.nuc r1.fq r2.fq > sample.sam # align reads
 - 3) samtools view -b sample.sam > sample.bam # convert to binary file
 - 4) samtools sorts sample.bam sample.sorted # sort reads
 - 5) samtools index sample.sorted.bam # index sorted reads
 - 6) bedtools coverage -abam sample.sorted.bam -b refs.bed -d > sample.cov # obtain coverage at each nucleotide site of each reference sequence
- 2. **Generation of simulated reads.** The following commands use software wgsim (6) to generate simulated short reads of a hypothetical sample containing a 10:1 mixture of two given *ospC* alleles. The input files are two allele sequences in FASTA format ("A.fas" & "B.fas").
 - 1) wgsim -h -N 10000 -1 150 -2 150 -d 150 -s 60 A.fas a-r1.fq a-r2.fq # generate 10,000 simulated 150-base paired-end read pairs with a standard deviation of 60 bases for the distance between the pairs and in haploid mode
 - 2) wgsim -h -N 1000 -1 150 -2 150 -d 150 -s 60 B.fas b-r1.fq b-r2.fq # generate 1,000 simulated read pairs for the B allele
 - 3) cat a-r1.fq b-r1.fq > sim.1.fq; cat a-r2.fq b-r2.fq > sim.2.fq; #
 concatenate each file
- 3. *De novo* assembly of new alleles. We used the software metaSPAdes (7) to assemble reads from samples in which the majority of reads do not map to provided *ospC* reference sequences, indicating presence of novel alleles. The validity of assembled *ospC* sequences is tested by using the "translated query protein subject" blast (blastx) from the NCBI BLAST+ package (8).
 - 1) spades.py -k 21,31,41,51,61,71,81,91,101 -t4 --meta --phred-offset 33 --pe1-1 R1.fastq.gz --pe1-2 R2.fastq.gz -o output-folder # assemble the reads with different k-mer lengths, 4 threads, for a sample with mixed amplicons, PHRED quality offset of 33, two pairedend input files, and send all outputs to a folder "test"
 - 2) blastx -query output-folder/contigs.fasta -db ref.pep -outfmt 6

S4. Tests of specificity of allele identification

A sample of 10,000 simulated paired-end reads is generated for each reference sequence using wgsim (6) [see commands in S3(2)]. Each sample is aligned to each reference sequence (ospC positions on x-axis) to identify presence of alleles as well as to quantify the number of reads (y-axis, normalized by the most frequent allele at 100% coverage). Except for the non-specifically aligned reads at the 5' conserved regions for some reference sequences, the bioinformatics protocol identifies each allele without any ambiguity.

S5. Strain distributions within single ticks

(A) Strain diversity within each infected tick (a total of N=55 adult ticks from Sample #9, Figure 1). Shannon index ranges from zero (when a tick is infected by a single strain) to one (when a tick is infected by an equal amount of strains). The median levels of diversity are approximately 0.5, suggesting co-infecting strains are not evenly distributed and consist of dominant strains. (B) Each point represents a tick infected by an *ospC* allele. The median levels of strain diversity are similar for all alleles, suggesting no single strain is consistently dominant.

Reference cited

- 1. Martin CL, Martin CI, Sukarna TY, Akther S, Ramrattan G, Pagan P, et al. Phylogenomic identification of regulatory sequences in bacteria: an analysis of statistical power and an application to Borrelia burgdorferi sensu lato. mBio. 2015;6(2).
- 2. Kingry LC, Batra D, Replogle A, Rowe LA, Pritt BS, Petersen JM. Whole Genome Sequence and Comparative Genomics of the Novel Lyme Borreliosis Causing Pathogen, Borrelia mayonii. PloS One. 2016;11(12):e0168994.
- 3. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinforma Oxf Engl. 2010 Mar 1;26(5):589–95.
- 4. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinforma Oxf Engl. 2009 Aug 15;25(16):2078–9.
- 5. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinforma Oxf Engl. 2010 Mar 15;26(6):841–2.
- 6. Li H. WGSIM [Internet]. 2011. Available from: https://github.com/lh3/wgsim
- 7. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27(5):824–34.
- 8. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.