PROJECT REPORT

SmartFarmer - IoT Enabled Smart Farming Application

TEAM ID:PNT2022TMID33042

1.INTRODUCTION

1.1.PROJECT OVERVIEW

Smart farming is a modern farming managemental concept with IoT technology to increase the productivity in agriculture. With the use of smart farming, farmers can effectively use fertilizers and other resources to increase the quality and quantity of their crops. Farmers cannot be physically present on the field 24 hours a day. Also, the farmers may not have the knowledge to use different tools to measure the ideal environmental conditions for their crops. IoT provides them with the automated system which can function without any human supervision and can notify them to make proper decision to deal with different kind of problems they may face during farming. It has the capability to reach and notify the farmer even if farmer is not on the field, which can allow farmer to manage more farmland, thus improving their production. It is estimated that the global population will reach 9 billion mark by 2050. IoT application is must for agriculture to feed such large population and effectively use the farmland and other resources as they are scarcely available in some places. Because of Global warming unpredictable weather conditions is affecting the crops and farmers are facing major losses so the IoT Smart Farming application will allow them to take quick measures to prevent that from happening.

1.2.PURPOSE

Smart Agriculture enhances the visibility, control and insight that you have concerning your farm. These factors translate into better time management, improved decision making and the more practical application of resources (i.e. Fertiliser, Irrigation) – producing healthier crops, higher yields and allows you to conserve resources. All of these factors translate to less work, higher revenues and reduced cost.

2.LITERATURE SURVEY

2.1.EXISTING PROBLEM

The biggest challenges faced by IoT in the agricultural sector are lack of information, high adoption costs, and security concerns, etc. Most of the farmers are not aware of the implementation of IoT in agriculture. The challenges of a smart agriculture system include the integration of these sensors and tying the sensor data to the analytics driving automation and response activities.

2.2.REFERENCES

In the literature there are numerous examples of versatile IoT applicationoriented studies. In [4], an example of control networks and information networks integration with IoT technology has been studied based on an actual situation of agricultural production. A remote monitoring system with combining internet and wireless communications is proposed. Furthermore, taking into account the system, an additional information management subsystem is designed. The collected data is provided in a form suitable for agricultural research facilities. In their work Liu Dan et al. [5] take a CC2530 chip as the core and present the design and implementation of an Agriculture Greenhouse Environment monitoring system based on ZigBee connectivity. Additionally, the wireless sensor and control nodes take CC2530F256 as a core to control the environment data. This system comprises front-end data acquisition, data processing, data transmission and data reception. The ambient temperature is real-time processed by the temperature sensor of the terminal node and is send to the intermediate node through a wireless ZigBee based network. Intermediate node aggregates all data, and then sends the data to the PC through a serial port. At the same time, staff may view, and analyze the data, storage of the data on a PC is also provided. The realtime data is used to control the operation of fans and other temperature control equipment and achieve automatic temperature control in the greenhouse

2.3.PROBLEM STATEMENT DEFINITION

Create a problem statement to understand our farmer point of view.

Farmer problem statement template helps you focus on what matter to cultivate better crops.

Farmer problem statement allows you and your team to find solution for the issues or problems facing in agriculture. throughout the process you will able to cultivate good crops. this problem statement give idea for better farming.

3.IDEATION & PROPOSED SOLUTION

3.1.EMPATHY MAP CANVAS

3.2.IDEATION & BRAINSTORMING

 $\frac{https://app.mural.co/invitation/mural/yugendars2116/1661419582333?sender=u0ef0365424fc}{6fa271d80431\&key=68255045-16d1-48cb-b27f-36ebc19fb335}$

Pers	on 1		Person 2			Person 3			Person 4		
monitoring of the climate condition by collecting various data from the environment	it provided measurements can be used to map the climate conditions.	use of lot sensors enables them, to get accurate real time information on green houses condition.	with light sensor attached ton the system when the surrounding natural lights are low,	light sensor display digital values corresponding to the light intensity	humidity sensor: humidity sensor is used for sensing the vapour in the air the change in RH(relative humidity)	Cattle monitoring and management: Just like crop monitoring, there are left agriculture sensors that can be attached to the animals	Livestock tracking and monitoring help collect data on stock health, well- being, and physical location.	For example, such sensors can identify sick animals so that farmers can separate them from the herd and avoid contamination	Predictive analytics for smart farming: Precision agriculture and predictive data analytics go hand in hand.	While if and award sensor bedwaining are a publishe for highly relevant read time office, the same of facts of the same of facts makes sensor of it and comes up with important predictions; crup harvesting time,	Data analytics tools help make farming, which is inherently highly dependent on weather conditions, more manageable, and predictable
	_										
house conditions such as lighting ,temperature,soil condition and humidity	weather stations can automatically adjust the condition to match the given parameters	fermapp and grownlink are also iot agriculture products offering such capabilities among others	advantage of green house farming is maintaining a controlled temperature is crucial	temperture fluctuations can damage or kill your plants only in few hour	.remote monitoring systems protect valuable plants from extreme temperature fluctuations	Using dromes for real- time cattle tracking also helps farmers reduce staffing expenses. This works similarly to lot devices for petcare	For example, SCR by Allifex and Cowlar use smart agriculture sensors (collar tags) to deliver temperature, health, activity, and nutrition	Precision farming : Also known as precision agriculture, precision farming is all about efficiency and making accurate data- driven decisions	For example, the Crop Performance platform helps farmers access the volume and quality of yields in advance, as well as their volumeships to intervenile weather conditions, such as floods and drought	It also enables farmers to optimize the supply of water and nutrients for each crop and even select yield traits to improve quality.	Applied in agriculture, solutions like SolfScout enable farmers to save up to 50% infragions water, reduce the loss of fertilizers caused by overwatering, and deliver actionable insights regredless of season or weather conditions
GreenIQ is also an intresting product tht uses smart agriculture sensors	Soil moisture sensor : they are immersed to specimen sell whose meisture content under fest conductivity of soil	light sensor :it is extremely sensitive in visible light range	the monitoring and controlling system of the smart greenhouse automation precepts different parameters inside the greenhouse using sensors	the developed system can be proved profitable as it optimize the resource in the green house the complete module is of low cost Jow	some examples of such agriculture lot devices are IMETEO.5mart Elements and Pycno.	By using IoT sensors, farmers can collect a vast array of metrics on every facet of the field microclimate and ecosystem	This data enables farmers to estimate optimal amounts of water, fertilizers, and posticides that their crops need.	For example, CropX builds bif and sensors that the sensors that temperature, and electric conductivity enabling ference to appreciab each crop's unique needs includedly.	They usually include a number of agriculture loT devices and sensors,	installed on the premises as well as a powerful dashboard with analytical capabilities	18.1 in addition to the listed foll agriculture use cases, some possinent opportunities include which tracking for even automation), storage management, logistics, etc
Pers	on 5		Person 6			Person 7			Person 8		
One more type of lot product in agriculture and another element of precision farming are crop management devices	Just like weather stations, they should be placed in the field to collect data specific to crop ferming; from temperature	. you can menitor your crop growth and any anomalies to effectively prevent any diseases or infestations that can harm your yield.	Chemical automation: Monitoring pesticide levels on plants over time can help farmers minimize use and maximize results	If it rains, a farmer may need to apply pesticides more often	but the impact that a storm has on different areas of a field can lead to over- and under- application of pasticides in different locations	Field data collection device: Depending on the field requirements, a standalene sensor node or awireless	Asstand alone scenario field data cellection device consists of four sensors, Viz., Soil Moisture sensor, Soil temperature sensor, temperature and humidity.	The output of these sensors is read by an Anduino-Uno, which is connected to Baspherry IF for fetching and storing the data from sensors.	Responsive web based interface for real-time monitoring: A responsive web based user interface is developed to visualize real-time sensors data.	it also provides a facility for irrigation scheduling. The user can schedule the irrigation	Web service to control water motor: A web service is developed to startand stop the water motor.
precision agriculture, precision faming is all about efficiency and making accurate data-driven decisions	Pest monitoring: Remotely monitor for specific pests to understand their activity, location and patterns	This can be done using by connecting traps to report specific pest levels	Generally chemical levels can be monitored using sensors in the soil or above ground near plants	Crop health monitoring: Compare actual crop growth to prejections, taking into consideration weather and other facture to help identify when you may have peaks and catch them early	Menitoring Peat Infeatation (Through distant neofloring, a farmer can easily collect information about the presence of insects and rodents	Web service for online weather data collection :	This web service also aggregates the wather forecasting data like temperature, humidity,	The developed web service read the forecasted data of the field location andstore in the server.	This web service is accessed by Ressperry-Pi to start and stop the water motor	The R-Pi send signal to Arduino- Uno that controls the relay switch to start/stop the water motor	ioT enabled water purpy: In this module, a water pump is connected to a relay switch that is controlled by a Wi-Fi enabled node
thus automating monitoring and data collection to take more accurate and quicker countermeasures	Tracking hyper-local weather conditions can also add context to help predict the size and threat level of pest populations.	One example is clive plantations looking to combin fruit files and back larvas, which combined the combined falling of the fruit.	Sensors placed in different corners of the field detect the infestation of posts or pathogens and transmit it to a dashboard	A farmer can use this dashboard to instantly connect with his fields and manage crop health	One of the benefits of using loT in agriculture is the increased agility of the processes.	prediction algorithm: An algorithm is developed to predict the soil moisture based on field sensors data and weather forecasting	.The algorithm shows information regarding soil moisture of the up coming days	it also provides inigation suggestims, based on the defined leveled coll moisture and predicted precipitation, to save water and energy	The node is controlled by the webservice through a trigger from the responsive web based interface foreast time reconfloring.	Advantages of IoT based smart irrigation system: The IoT based smart irrigation system avoids over use of water in irrigation,	The system can be a solution to labor shortage problem in agricultural, Irrigation crops fields can be operated automatical sea manually as well as manually using this system.

3.3.PROPOSED SOLUTION

S.No.	Parameter	Description
1.	Problem Statement(Problem to be solved)	To provide efficient decision support systemusing wireless sensor network whichhandle different activities of farm and gives useful information related to farm. Information related to Soil moisture, Temperature and Humidity content. Due to the weather condition, water levelincreasing Farmers get lot of distractions which is notgood for Agriculture. Performing agriculture is very much timeconsuming.
2.	Idea / Solution description	Water level is managed by farmers in both Automatic/Manual using that mobile application. It will make more comfortable to farmers
3.	Novelty / Uniqueness	collecting all the data from various sensor like temperature, humidity, lux,moisture and other environmental factors and will do the analysis on the same. During analysis if gets better resultof the combination of the data gathered from the various sensor then those data to all collecting all the data from various sensor like temperature, humidity, lux, moisture and other environmental factors and will do the analysis on the same.
4.	Social Impact/ Customer Satisfaction	People are still workingon different SmartFarming technology using IoT, so the anticipated benefitsof this technology are, Remote monitoring for farmers, water and other natural resourceconservation, good management also allows improved livestock farming, the things which are not visible to necked eye canbe seen resulting is accurate farmland and crop evaluation, good quality as well as improved quantity, the facility to get the real-time data for usefulinsights.
5.	Business Model(Revenue Model)	The progress in the agriculture domain is linked to the recent technological advances.

		Modern agriculture systems integrate state- of-the- art technological solutions.				
		Data heterogeneity is thekey concept for big datair the agriculture domain.				
		Future agriculture systems shouldadopt a moreholistic approach				
6.	Scalability of the Solution	this application promotessimplicity over				
		complexity which helps the customersto use this application in				
		effective mannar				

3.4..PROBLEM SOLUTION FIT

1. CUSTOMER SEGMENT(S) Food ane beverage manufacturing, food and beverage stores, food service and eating and drinking places.	CUSTOMER LIMITATIONS EC. BUDGET, DEVICES - It requires an unlimited or continuous internet connection to be successful. -Poor living conditions and hygiene for livestockExcessive use of agro-chemicalsDeforestation and alteration of the natural environment	5. AVAILABLE SOLUTIONS PROSECONS It provide an integrated IoT platform in agriculture that allows farmers to leverage sensors, smart gateways and monitoring systems to collect information, control various parameters on their farms and analyse realtime data in order to make informed decisions		
-Cope with climate change, soil erosion and biodiversity lossSatisfy consumers' changing tastes and expectationsMeet rising demand for more food of higher qualityInvest in farm productivityAdopt and learn new technologies.	9. PROBLEM ROOT / CAUSE -Increasing incomesGenerating employment opportunitiesReducing risks in agricultureDeveloping agri-infrastructureImproving quality of rural life.	7. BEHAVIOR +ITS INTENSITY -Passion and CommitmentSales and Marketing SkillsIngenuity, Creativity and AdaptabilityLife-long LearnerSkills and Abilities.		
3. TRIGGERS TO ACT "Smart farming" is an emerging concept that refers to managing farms using technologies like IoT, robotics, drones and Al to increase the quantity and quality of products while optimizing the human labor required by production 4. EMOTIONS BEFORE/AFTER Smart crop production and food systems can only be successful if they increase the synergies and reduce trade-offs among the different stakeholders and their different objectives regarding sustainable food.	10. YOUR SOLUTION -Smart farming has many benefits: better energy & water management, optimised production. The Solar Impulse Foundation is looking for new sustainable farming solutions -Implementation of land reforms. For improving the production, land reforms are the first and predominant point	8. CHANNELS of BEHAVIOR ONLINE The emerging out of convergence of IT and farming techniques. It enhances the agricultural value chain through the application of Internet and related technologies. OFFLINE The SmartFarmer project aims to improve the skills and competences of people in the The supply chain is a long channel stretching.		

4.REQUIREMENT ANALYSIS

4.1.FUNCTIONAL REQUIREMENTS

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	-Registration through the app if customer wants to
		identify the water level
		-They can make use of this app
FR-2	User Confirmation	-Confirmation code for registration will send
		through ah email ID.for verification ,OTP will send
		through email
FR-3	Login	-Login through valid user id.
		-Login through valid password.
FR-4	Display water level	-In this system,temperature sensor detect the water
		level through climate changes and indicates
		required amount of water necessary to the field
FR-5	Review of indicating water	-By using this app temperature sensor sends out the
	level	alert whenever the field requires water and
		indicates the level of water
FR-6	Logout	-After using this app,for indication of water level
		and detecting the required amount of
		water,customer will logout with satisfaction

4.2.NON-FUNCTIONAL REQUIREMENT

FR No.	Non-Functional Requirement	Description
FR-1	Usability	-The software should be easily used by the
		customer
FR-2	Security	-This application is used for alerting the farmer
		whenever water level increase or decrease in the
		field
FR-3	Reliability	-The ability of the system to behave constantly in a
		user acceptable manner.when it is operated within
		the environment for which the system was intended

FR-4	Performance	-The app should be able to handled by the farmer
		for alerting the water level in the field
FR-5	Availability	-The system should be available all time.the user can access it using web browser when server becomes down
FR-6	Scalability	-It can be performed at software ,haedware,and database level

5. PROJECT DESIGN

5.1 DATA FLOW DIAGRAMS

5.2 SOLUTION & TECHNICAL ARCHITECTURE

SOLUTION ARCHITECTURE

TECHNICAL ARCHITECTURE

5.3 USER STORIES

User Type	Functional Requirement	User Story	User Story / Task	Acceptance criteria	Priority	Release
	(Epic)	Numbe				
Custom er (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	As a user once view the manage modules this describes the Manage system Admins and Manage Roles of User and etc.	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Gmail			Sprint-1
	Login	USN-4	As a user, I can log into the application by entering email & password		High	Sprint-1
Custom er (Web user)	Dashboard	USN-5	As a User can view the dashboard, and this dashboard include the check	I can view the dashboard in this smart farming application	High	Sprint-2

		roles of access	system.		
		and then move to			
		the manage			
		modules.			
	USN-6	User can remotely	In the smart	High	Sprint-3
		access the motor	farming app		
		switch			
Administ		As a user once			Sprint-2
rator		view the manage			
		modules this			
		describes the			
		Manage system			
		Admins and			
		Manage Roles of			
		User and etc.			

6. PROJECT PLANNING & SCHEDULING

6.1 SPRINT PLANNING & ESTIMATION

Sprint	Functional	User	User Story / Task	Story	Priority	Team
	Requirement	Story		Points		Members
	(Epic)	Number				
Sprint-1	Simulation	USN-1	Connect Sensors and	2	High	S.Vimal
	creation		Arduino with python			Kumar,S.V
			code			enkatesh
Sprint-2	Software	USN-2	Creating device in the	2	High	B.R.Srira
			IBM Watson IoT			m,M.R.Yu
			platform, workflow for			gendar,
			IoT scenarios using			S.Venkate
			Node-Red			sh
Sprint-3	MIT App	USN-3	Develop an application	2	High	S.Venkate
	Inventor		for the Smart farmer			sh,B.R.Srir
			project using MIT App			am
			Inventor			
Sprint-3	Dashboard	USN-3	Design the Modules and	2	High	S.Vimal
			test the app			Kumar,

						M.R.Yuge
						ndar,
Sprint-4	Web UI	USN-4	To make the user to	2	High	M.R.Yuge
			interact with software.			ndar,
						S.Vimal
						Kumar,
						B.R.Srir
						am

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct	29 Oct	20	29 Oct
			2022	2022		2022
Sprint-2	20	6 Days	31 Oct	05 Nov		05 Oct
			2022	2022		2022
Sprint-3	20	6 Days	07 Nov	12 Nov		12 Oct
			2022	2022		2022
Sprint-4	20	6 Days	14 Nov	19 Nov		15 Oct
			2022	2022		2022

6.3 REPORTS FROM JIRA

7. CODING & SOLUTIONING

7.1 FEATURE 1

DETECTION

TEMPERATURE: 99

HUMIDITY: 84

MOISTURE: 93

8. TESTING

8.1 TEST CASES

Test Case ID	Feature Type	Component	Test Scenario	Pre-Requisite
Login page OO1	UI	Logo page	Verify user is able to see our logo page.	MIT App Inventor, App Script
Login page OO2	Functional	Login Page	Verify whether the user is able to login with their own username and password.	MIT App Inventor, App Script
Login page OO3	Functional	Login Page	Verify the user is able to login with incorrect login credentials.	MIT App Inventor, App Script
Login page OO4	Functional	Login Page	Verify the user is able to login with correct credentials.	MIT App Inventor, App Script

Steps to Execute	Test Data	Expected Result	Actual Result	Status
1.Click on the smart farmer app 2.Verify functional elements with our logo	http://ai2.appinventor.mit.ed u/#4995769971900416	This page is must show the logo of application.	Working as expected	Pass
1.Verify with UI elements • UserName box • Password	http://ai2.appinventor.mit.ed u/#4995769971900416	Application should show below UI elements: a. UserName text box b. password text box	Working as expected	Pass
1.If user enter the incorrect credential.	Username: smart password: former	Application will show 'plz verify your credential' to user.	Working as expected	Pass
1.Verify the user is able to login with correct credentials.	Username: smart password: farmer	Application should navigate to output page.	Working as expected	Pass

Comments	TC for Automation (Y/N)	BUG ID	Executed By
Result is Verified	NO	-	
Result is Verified	NO	-	
Result is Verified	NO	-	
Result is Verified	NO	-	

8.2 USER ACCEPTANCE TESTING

1.Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [Smart Farmer -IOT Enabled Smart Farming Application] project at the time of the release to User Acceptance Testing (UAT).

2.Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resoluti on	Severit y1	Severity2	Severity3	Severity4	Subtotal
By Design	7	5	4	4	17
Duplicate	2	1	2	0	3
External	1	2	0	2	5
Fixed	10	1	3	18	30
Not Reproduced	0	0	2	0	2

Skipped	1	0	0	0	3
Won't Fix	0	4	1	1	7
Totals	21	13	12	25	67

3.Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	51	0	0	51
Security	2	0	0	2
Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

9. RESULTS

9.1 PERFORMANCE METRICS

				Date	17-Nov-22			
				Team ID	PNT2022TMID33042			
				Project Name	Smart Farmer IoT Enabled Smart farming Application			
					NFT - Risk Asses	sment		
S.No	Scenario Name	Scope/feature	Functional Changes	Hardware Changes	Software Changes	Impact of Downtime	Load/Volume Changes	Risk Score
1	Detection accuracy - Response	New	New	Low	Moderate	Moderate	No Changes	Orange
2	Soil Moisture ,Temperature and Humidity below threshold limit	New	Moderate	No	NO	Low	No Changes	Green
					NFT - Detailed Te	est Plan		
			S.No	Project Overview	NFT Test approach	Assumptions/Dependencies/Risks	Approvals/SignOff	
			1	Detection Accuracy and response	Using python and Node Red	Dependency- Cloud client / Risk- Moderate		
			2	Soil Moisture Temperature and Humidity below threshold limit	Using python and Node Red	Dependency- Cloud client / Risk- Low		
			3	User Mobile Application	Using MIT App Inventor	Dependency- Cloud client / Risk- Low		
					End Of Test Re	eport		
						Identified Defects		
S.No	Project Overview	FT Test approac	NFR - Met	Test Outcome	GO/NO-GO decision	(Detected/Closed/Open)	Approvals/SignOff	
1	Detection accuracy - Response	Using Python and NodeRed	No	Expectaions partially met	No-Go	Observed intermittent performance issue sometimes . Bug is open		
2	Soil Moisture Temperature and Humidity below threshold limit	Using Python and NodeRed	Yes	Expectations partially met	Go	Oberved response for the leakage detection in the UI and its accuracy is as expected.		

10. ADVANTAGES & DISADVANTAGES

10.1 ADVANTAGES

Increased Production

Optimized crop treatment such as accurate planting, watering, pesticide application and harvesting directly affects production rates

Water Conservation

Weather predictions and soil moisture sensors allow for water use only when and where needed.

Real-Time Data and Production Insight

Farmers can visualize production levels, soil moisture, sunlight intensity and more in real time and remotely to accelerate decision making process.

Lowered Operation Costs

Automating processes in planting, treatment and harvesting can reduce resource consumption, human error and overall cost.

Increased Quality of Production

Analyzing production quality and results in correlation to treatment can teach farmers to adjust processes to increase quality of the product.

Accurate Farm and Field Evaluation

Accurately tracking production rates by field over time allows for detailed predicting of future crop yield and value of a farm.

Improved Livestock Farming

Sensors and machines can be used to detect reproduction and health events earlier in animals. Geofencing location tracking can also improve livestock monitoring and management.

Reduced Environmental Footprint

All conservation efforts such as water usage and increased production per land unit directly affect the environmental footprint positively.

Remote Monitoring

Local and commercial farmers can monitor multiple fields in multiple locations around the globe from an internet connection. Decisions can be made in real-time and from anywhere.

Equipment Monitoring

Farming equipment can be monitored and maintained according to production rates, labor effectiveness and failure prediction.

10.2 DISADVANTAGES

The smart agriculture needs availability of internet continuously. Rural part of most of the developing countries do not fulfil this requirement. Moreover internet connection is slower.

The smart farming based equipments require farmers to understand and learn the use of technology. This is major challange in adopting smart agriculture farming at large scale across the countries.

11. CONCLUSION

From our results, we saw that the hardware and materials we used to develop our porotype allowed us to make an efficient and accurate, as well as cheap product for farmers. Which was economical and easily installable for farmers as well. Thus, we can conclude that this porotype will definitely help farmers in small farmland to effectively monitor their crops with the user-friendly app and other alert means.

12. FUTURE SCOPE

This product is used to notify farmers to take quick steps. But there is still scope, the future work can be focused on,

•ESP32s node MCU has wireless Wi-Fi capabilities as well as Bluetooth capabilities. Due to limited budget we could not make more prototypes but in large farmlands and with different crops, farmers can install multiple prototypes like this which will be in some local network, connected with Bluetooth to each other and will have 1 main node which will collect data to upload it on the cloud.

• In true IoT sense and with the help of artificial intelligence making this whole network of nodes which will be able to make the decisions on its own and trigger the necessary steps to nullify that situation.

•A network where every component will be able to think individually, will retrieve data from cloud to also improve their decisions every time with the help of data mining algorithms.

•The research is going on in drone technology as well, connecting this system to the drones will provide 3D mapping of the farmlands, which will be able to monitor crop production and live conditions as well.

• We can connect this whole system to Soracon Lagoon dashboard to get further in depth analysis with the of GSM module and IoT SIM card on our personal computers. Thus, the future for smart farming is bright. With the help of proper technology and government subsidies this area can really take our world to the betterment.

13. APPENDIX

SOURCE CODE:

Python Code:

import time import sys

```
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "ofymg2"
deviceType = "Smartfarmer01"
deviceId = "123"
authMethod = "token"
authToken = "12345678"
# Initialize GPIO
def myCommandCallback(cmd):
  print("Command received: %s" % cmd.data['command'])
  status=cmd.data['command']
  if status=="motoron":
    print ("motor is on")
  elif status=="motoroff":
    print ("motor is off")
  else:
    print ("send proper command")
  #print(cmd)
try:
deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method":
authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
#.....
except Exception as e:
print("Caught exception connecting device: %s" % str(e))
sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event of type
```

```
"greeting" 10 times
deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
    temp=random.randint(90,100)
    Humid=random.randint(60,100)
    mois=random.randint(90,100)
    data = { 'temp' : temp, 'Humid': Humid, 'mois' : mois }
    #print data
    def myOnPublishCallback():
      print ("Published Temperature = %s C" % temp, "Humidity = %s %%" % Humid, "moisture =
%s %%" % mois, "to IBM Watson")
    success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on_publish=myOnPublishCallback)
    if not success:
      print("Not connected to IoTF")
    time.sleep(7)
    deviceCli.commandCallback = myCommandCallback
# Disconnect the device and application from the cloud
deviceCli.disconnect()
Wokwi-Code:
#include <WiFi.h>//library for wifi
#include <PubSubClient.h>//library for MQtt
#include "DHT.h"// Library for dht11
#define DHTPIN 15 // what pin we're connected to
#define DHTTYPE DHT22 // define type of sensor DHT 11
```

#define LED 2

```
DHT dht (DHTPIN, DHTTYPE);// creating the instance by passing pin and typr of dht connected
void callback(char* subscribetopic, byte* payload, unsigned int payloadLength);
//----credentials of IBM Accounts-----
#define ORG "ofymg2"//IBM ORGANITION ID
#define DEVICE_TYPE "Smartfarmer01"//Device type mentioned in ibm watson IOT Platform
#define DEVICE ID "123"//Device ID mentioned in ibm watson IOT Platform
#define TOKEN "12345678" //Token
String data3;
float h, t;
//----- Customise the above values ------
char server[] = ORG ".messaging.internetofthings.ibmcloud.com";// Server Name
char publishTopic[] = "iot-2/evt/Data/fmt/json";// topic name and type of event perform and
format in which data to be send
char subscribetopic[] = "iot-2/cmd/command/fmt/String";// cmd REPRESENT command type
AND COMMAND IS TEST OF FORMAT STRING
char authMethod[] = "use-token-auth";// authentication method
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;//client id
WiFiClient wifiClient; // creating the instance for wificlient
PubSubClient client(server, 1883, callback, wifiClient); //calling the predefined client id by
passing parameter like server id, portand wificredential
void setup()// configureing the ESP32
 Serial.begin(115200);
 dht.begin();
 pinMode(LED,OUTPUT);
 delay(10);
 Serial.println();
 wificonnect();
 mqttconnect();
}
```

```
void loop()// Recursive Function
{
 h = dht.readHumidity();
 t = dht.readTemperature();
 Serial.print("temperature:");
 Serial.println(t);
 Serial.print("humidity:");
 Serial.println(h);
 PublishData(t, h);
 delay(2000);
 if (!client.loop()) {
  mqttconnect();
}
}
/*.....retrieving to Cloud.....*/
void PublishData(float temperature, float humidity) {
 mqttconnect();//function call for connecting to ibm
 /*
  creating the String in in form JSon to update the data to ibm cloud
 */
 String payload = "{\"temperature\":";
 payload += temperature;
 payload += "," "\"humidity\":";
 payload += humidity;
 payload += "}";
 Serial.print("Sending payload: ");
 Serial.println(payload);
 if (client.publish(publishTopic, (char*) payload.c_str())) {
  Serial.println("Publish ok");// if it sucessfully upload data on the cloud then it will print publish
ok in Serial monitor or else it will print publish failed
```

```
} else {
  Serial.println("Publish failed");
}
}
void mqttconnect() {
 if (!client.connected()) {
  Serial.print("Reconnecting client to ");
  Serial.println(server);
  while (!!!client.connect(clientId, authMethod, token)) {
   Serial.print(".");
   delay(500);
  }
   initManagedDevice();
   Serial.println();
}
void wificonnect() //function defination for wificonnect
{
 Serial.println();
 Serial.print("Connecting to ");
 WiFi.begin("Wokwi-GUEST", "", 6);//passing the wifi credentials to establish the connection
 while (WiFi.status() != WL_CONNECTED) {
  delay(500);
  Serial.print(".");
 }
 Serial.println("");
 Serial.println("WiFi connected");
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());
}
void initManagedDevice() {
 if (client.subscribe(subscribetopic)) {
  Serial.println((subscribetopic));
  Serial.println("subscribe to cmd OK");
 } else {
```

```
Serial.println("subscribe to cmd FAILED");
}
}
void callback(char* subscribetopic, byte* payload, unsigned int payloadLength)
{
 Serial.print("callback invoked for topic: ");
 Serial.println(subscribetopic);
 for (int i = 0; i < payloadLength; i++) {
  //Serial.print((char)payload[i]);
  data3 += (char)payload[i];
 Serial.println("data: "+ data3);
 if(data3=="lighton")
 {
Serial.println(data3);
digitalWrite(LED,HIGH);
delay(2000);
}
 else
 {
Serial.println(data3);
digitalWrite(LED,LOW);
}
data3="";
}
```

GITHUB LINK & PROJECT DEMO LINK:

GITHUB LINK:

https://github.com/IBM-EPBL/IBM-Project-40980-1660638234

PROJECT DEMO LINK:

https://youtu.be/kmseNFwBIRY