Clan comportamiento de gráficas con vecindad pequeña

Rafael Villarroel Flores, UAEH Trabajo conjunto con Paco Larrión y Miguel Pizaña

XXIX COLOQUIO VÍCTOR NEUMANN-LARA

13 de marzo de 2014

Nuestras gráficas:

En esta plática consideraremos solo gráficas simples

Nuestras gráficas:

En esta plática consideraremos solo gráficas simples

i.e. sin aristas dirigidas, sin lazos, sin aristas múltiples

La gráfica de clanes de G es la gráfica K(G) tal que: $V(K(G)) = \{Q \subseteq V(G) \mid Q \text{ es clan de } G\},$

- ► $V(K(G)) = {Q \subseteq V(G) | Q \text{ es clan de } G},$
- $E(K(G)) = \{ \{Q_1, Q_2\} \mid Q_1 \neq Q_2, Q_1 \cap Q_2 \neq \emptyset \}.$

- ▶ $V(K(G)) = {Q \subseteq V(G) | Q \text{ es clan de } G},$
- $E(K(G)) = \{ \{Q_1, Q_2\} \mid Q_1 \neq Q_2, Q_1 \cap Q_2 \neq \emptyset \}.$

- ▶ $V(K(G)) = {Q \subseteq V(G) | Q \text{ es clan de } G},$
- $\blacktriangleright \mathsf{E}\big(\mathsf{K}(\mathsf{G})\big) = \big\{ \{\mathsf{Q}_1,\mathsf{Q}_2\} \mid \mathsf{Q}_1 \neq \mathsf{Q}_2, \mathsf{Q}_1 \cap \mathsf{Q}_2 \neq \emptyset \big\}.$

- ▶ $V(K(G)) = {Q \subseteq V(G) | Q \text{ es clan de } G},$
- $\blacktriangleright \mathsf{E}\big(\mathsf{K}(\mathsf{G})\big) = \big\{ \{\mathsf{Q}_1,\mathsf{Q}_2\} \mid \mathsf{Q}_1 \neq \mathsf{Q}_2, \mathsf{Q}_1 \cap \mathsf{Q}_2 \neq \emptyset \big\}.$

$$K^{0}(G) = G,$$
 $K^{n}(G) = K(K^{n-1}(G)),$ $n \ge 1.$

$$\mathsf{K}^0(\mathsf{G}) = \mathsf{G}, \qquad \mathsf{K}^n(\mathsf{G}) = \mathsf{K}\big(\mathsf{K}^{n-1}(\mathsf{G})\big), \quad n \geq 1.$$

$$\mathsf{K}^{\mathsf{O}}(\mathsf{G}) = \mathsf{G}, \qquad \mathsf{K}^{\mathsf{n}}(\mathsf{G}) = \mathsf{K}\big(\mathsf{K}^{\mathsf{n}-1}(\mathsf{G})\big), \quad \mathsf{n} \geq 1.$$

$$\mathsf{K}^0(\mathsf{G}) = \mathsf{G}, \qquad \mathsf{K}^n(\mathsf{G}) = \mathsf{K}\big(\mathsf{K}^{n-1}(\mathsf{G})\big), \quad n \geq 1.$$

G

G K(G)

 G $\mathsf{K}(\mathsf{G})$ $\mathsf{K}^2(\mathsf{G})$

 $\mathsf{G} \qquad \mathsf{K}(\mathsf{G}) \qquad \mathsf{K}^2(\mathsf{G}) \qquad \mathsf{K}^3(\mathsf{G})$

K(G)

$$|K^3(G)| = 256,$$

$$|K^{3}(G)| = 256, |K^{4}(G)| = 2^{128}$$

Gráfica divergente:

Si el conjunto

```
\{ |K^{n}(G)| \mid n = 0, 1, 2, ... \}
```

no está acotado superiormente, G es divergente.

Gráfica divergente:

Si el conjunto

$$\{ |K^{n}(G)| \mid n = 0, 1, 2, ... \}$$

no está acotado superiormente, G es divergente.

Gráfica convergente:

Si G no es divergente, entonces es convergente.

Gráfica convergente:

Si G no es divergente, entonces

es convergente.

Una colección \mathcal{C} de subcon-

juntos de X es intersecante si

 $Q_1, Q_2 \in \mathcal{C}$ implica $Q_1 \cap Q_2 \neq \emptyset$.

Una colección \mathcal{C} de subconjuntos de X es intersecante si $\mathcal{C} = \{\{1,2\},\{1,3\},\{2,3\}\}\}$ $Q_1,Q_2 \in \mathcal{C}$ implica $Q_1 \cap Q_2 \neq \emptyset$.

Una gráfica G es Helly si cualquier colección $\mathcal C$ intersecante de clanes es tal que $\cap \mathcal{C} \neq \emptyset$.

$$= \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$$

Una gráfica G es Helly si cualquier colección $\mathcal C$ intersecante de clanes es tal que $\cap \mathcal{C} \neq \emptyset$.

Una gráfica G es Helly si cualquier colección $\mathcal C$ intersecante de clanes es tal que $\cap \mathcal{C} \neq \emptyset$.

Una gráfica G es Helly si cualquier colección \mathcal{C} intersecante de clanes es tal que $\cap \mathcal{C} \neq \emptyset$.

Teorema:

Si G es Helly, entonces G es convergente.

- F. Escalante (1973)

Si L es una subgráfica de G, una retracción r: $G \rightarrow L$ es un morfismo tal que r(x) = x para todo $x \in L$.

Si L es una subgráfica de G, una retracción r: $G \rightarrow L$ es un morfismo tal que r(x) = x para todo $x \in L$.

Si L es una subgráfica de G, una retracción $r: G \to L$ es un morfismo tal que r(x) = x para todo $x \in L$.

retracción

Teorema:

Si r: $G \to L$ es una retracción, existe una retracción K(r): $K(G) \to K(L)$. En particular, si L es divergente, G es divergente

V.~Neumann-Lara (1976)

Decimos que dos gráficas tienen el mismo

- K-comportamiento, si:
- K-comportamento, si.

las dos son K-convergentes, o

las dos son K-divergentes.

Dado un vértice $x \in V(G)$, denotamos con N(x) a la

subgráfica de G inducida por $\{ y \mid y \sim x \}$.

Dado un vértice $x \in V(G)$, denotamos con N(x) a la subgráfica de G inducida por $\{y \mid y \sim x\}$.

Sea L una gráfica. Decimos que G es localmente L, si

para todo $x \in G$ se tiene que $N(x) \cong L$.

Dado un vértice $x \in V(G)$, denotamos con N(x) a la subgráfica de G inducida por $\{y \mid y \sim x\}$.

Sea L una gráfica. Decimos que G es localmente L, si para todo $x \in G$ se tiene que $N(x) \cong L$.

En tal caso, también diremos que G es de vecindad constante, y que G es extensión de L.

Gráfica localmente P₃

Gráfica localmente P₄

Teorema:

Si L es una gráfica con $|L| \le 6$ y G_1 , G_2 son dos extensiones de~L, entonces G_1 y G_2 tienen el mismo K-comportamiento.

- Larrión, Pizaña, V. (2008)

En

J. I. Hall. Graphs with constant link and small degree or

order. J. Graph Theory 9, (1985).

vértices, tal que existe al menos una gráfica finita G

se caracterizan las gráficas L con a lo más seis

localmente L (son 65 de un total de 208).

► El cuello g(G) de una gráfica G es la longitud del ciclo mas pequeño en G.

- ► El cuello g(G) de una gráfica G es la longitud del
- ciclo mas pequeño en G.▶ Si G no tiene ciclos, se define g(G) = ∞.

- El cuello g(G) de una gráfica G es la longitud del ciclo mas pequeño en G.
- ▶ Si G no tiene ciclos, se define $g(G) = \infty$.
- ► El cuello local de G es

 $\lg(G) = \min\{g(N(x)) \mid x \in G\}.$

- ► El cuello g(G) de una gráfica G es la longitud del ciclo mas pequeño en G.
- ▶ Si G no tiene ciclos, se define $g(G) = \infty$.
- ► El cuello local de G es

$$\lg(G) = \min\{g(N(x)) \mid x \in G\}.$$

Si G es extensión de L, tenemos que

$$\lg(G) = g(L)$$

Teorema: Si

 $\lg(G) \geq 7$

entonces K(G) es Helly.

Larrión, Neumann-Lara, Pizaña.(2002)

L	loc. L	K-comportamiento
<i>K</i> ₃	1 (K ₄)	K-nula
C_4	1 (O ₃)	K-divergente (Neumann-Lara, 1976)
K_4	1 (K ₅)	K-nula
C ₅	1 (icosae- dro)	K-divergente (Pizaña, 2003)
\square .	1 (C 8)	K-divergente (Neumann-Lara, 1976)
K ₅	1 (K ₆)	K-nula
C ₆	∞	K-divergentes (Larrión, Neumann-Lara, 2000)
\square	1 (<i>L</i> (<i>O</i> ₃))	K -divergente ($K^3(L(O_3)) = O_8$)
	$\infty (C_n^{2,3}, n \geq 10)$	Autóclanas (Larrión, Neumann-Lara, 1997)
	$\frac{-}{1(C_{10}^{2,4})}$	K -divergente ($K(G)$ = Susp(C_{10}^2), Neumann-Lara, 1976)
K _{3,3}	1 (K _{3,3,3})	K-divergente (Neumann-Lara, 1976)
	$1(\overline{C_9})$	K-divergente (Neumann-Lara, 1976)
<i>O</i> ₃	1 (O ₄)	K-divergente (Neumann-Lara, 1976)
K ₆	1 (<i>K</i> ₇)	K-nula

14 casos especiales

Decimos que $x \in V(G)$ es dominado si existe

 $y \in V(G)$, $y \neq x$ tal que:

y ~ x,

Decimos que $x \in V(G)$ es dominado si existe $y \in V(G)$, $y \neq x$ tal que:

- ightharpoonup y \sim x,
- ightharpoonup z \sim x implica z \simeq y.

Teorema: Si para cada arista e = xy en L se tiene que x domina a y o que y domina a x, entonces toda extensión de L es Helly.

Larrión, Pizaña, V. (2008)

13 gráficas con una arista con un extremo dominado

▶ **Teorema:** Si G tiene un clan que es cara de un octaedro inducido \sim O_n, n \geq 3, entonces G es

K-divergente. (Larrión, Pizaña, V., 2008)

- ▶ **Teorema:** Si G tiene un clan que es cara de un octaedro inducido \sim O_n, n \geq 3, entonces G es K-divergente. (Larrión, Pizaña, V., 2008)
- La demostración usa el teorema de retracción de Neumann-Lara (1976).

- ▶ **Teorema:** Si G tiene un clan que es cara de un octaedro inducido \sim O_n, n \geq 3, entonces G es K-divergente. (Larrión, Pizaña, V., 2008)
- ► La demostración usa el teorema de retracción de Neumann-Lara (1976).
- ► Teorema: Si toda extensión de L es divergente, entonces toda extensión de L U K₁ es divergente. (Larrión, Pizaña, V., 2008)

- ▶ **Teorema:** Si G tiene un clan que es cara de un octaedro inducido \sim O_n, n \geq 3, entonces G es K-divergente. (Larrión, Pizaña, V., 2008)
- ► La demostración usa el teorema de retracción de Neumann-Lara (1976).
- ► Teorema: Si toda extensión de L es divergente, entonces toda extensión de L U K₁ es divergente. (Larrión, Pizaña, V., 2008)
- La demostración usa la teoría de puntos de corte local de Frías-Armenta, Larrión, Neumann-Lara y Pizaña (2013).

8 gráficas tal que cualquier extensión es divergente

6 gráficas restantes

6 gráficas restantes

Las gráficas [(6, 6, 10)], [(6, 6, 13)], [(6, 6, 14)] y [(6, 7, 23)] son tales que toda extensión de ellas es Helly, por resultado de Larrión, Pizaña, V. (2013): Si G es libre de 4, 5, 6-ruedas, entonces K(G) es Helly.

6 gráficas restantes

- Las gráficas [(6, 6, 10)], [(6, 6, 13)], [(6, 6, 14)] y [(6, 7, 23)] son tales que toda extensión de ellas es Helly, por resultado de Larrión, Pizaña, V. (2013): Si G es libre de 4, 5, 6-ruedas, entonces K(G) es Helly.
- ► Toda extensión de la gráfica (6, 6, 11) es divergente, por resultado de Larrión, Pizaña, V. (2014).

6 gráficas restantes

- Las gráficas [(6, 6, 10)], [(6, 6, 13)], [(6, 6, 14)] y [(6, 7, 23)] son tales que toda extensión de ellas es Helly, por resultado de Larrión, Pizaña, V. (2013): Si G es libre de 4, 5, 6-ruedas, entonces K(G) es Helly.
- ► Toda extensión de la gráfica (6, 6, 11) es divergente, por resultado de Larrión, Pizaña, V. (2014).
- La gráfica (6, 7, 6) tiene una única extensión, con comportamiento desconocido.

Snub cube

Tenemos un ejemplo de una gráfica L de 9 vértices, con dos extensiones G₁, G₂, tales que G₁ es

convergente y G₂ es divergente.

Gracias!