

More on the Curry Howard Isomorphism

Curtis Millar CSE, UNSW (and Data61) 29 July 2020 •00000

What is Intuitionistic Logic?

- Classical logic is the logic that most people know about.
- Intuitionistic logic does not contain the axiom of excluded middle $p \vee \neg p$ or equivalently $\neg \neg p \rightarrow p$.
- In classical logic more can be proven but less can be expressed.
- Intuitionistic proof of an existence statement gives a witness for the statement.

Example of Existence in the Classical Sense

- ullet Let $\mathbb Q$ be the set of rational numbers and $\mathbb I$ be the set of irrational numbers.
- Consider the statement $\exists x, y. (x \in \mathbb{I}) \land (y \in \mathbb{I}) \land (x^y \in \mathbb{Q})$.
- Proof:
 - Consider the number $\sqrt{2}^{\sqrt{2}}$.
 - - •
 - 2 Otherwise if $\sqrt{2}^{\sqrt{2}} \in \mathbb{I}$
 - •

Example of Existence in the Classical Sense

- ullet Let $\mathbb Q$ be the set of rational numbers and $\mathbb I$ be the set of irrational numbers.
- Consider the statement $\exists x, y. (x \in \mathbb{I}) \land (y \in \mathbb{I}) \land (x^y \in \mathbb{Q})$.
- Proof:
 - Consider the number $\sqrt{2}^{\sqrt{2}}$.
 - - Pick $x = \sqrt{2}$ and $y = \sqrt{2}$
 - Then $x^y = \sqrt{2}^{\sqrt{2}}$ so $x^y \in \mathbb{Q}$
 - $\textbf{②} \ \ \text{Otherwise if} \ \sqrt{2}^{\sqrt{2}} \in \mathbb{I}$
 - •
 - •

Example of Existence in the Classical Sense

- ullet Let $\mathbb Q$ be the set of rational numbers and $\mathbb I$ be the set of irrational numbers.
- Consider the statement $\exists x, y. (x \in \mathbb{I}) \land (y \in \mathbb{I}) \land (x^y \in \mathbb{Q})$.
- Proof:
 - Consider the number $\sqrt{2}^{\sqrt{2}}$.
 - - Pick $x = \sqrt{2}$ and $y = \sqrt{2}$
 - Then $x^y = \sqrt{2}^{\sqrt{2}}$ so $x^y \in \mathbb{Q}$
 - **2** Otherwise if $\sqrt{2}^{\sqrt{2}} \in \mathbb{I}$
 - Pick $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$
 - Then $x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^2 = 2$ so $x^y \in \mathbb{Q}$

Recall: The Curry-Howard Isomorphism

This correspondence goes by many names, but is usually attributed to Haskell Curry and William Howard.

It is a *very deep* result:

Logic	Programming
Propositions	Types
Proofs	Programs
Proof Simplification	Evaluation

It turns out, no matter what logic you want to define, there is always a corresponding λ -calculus, and vice versa.

Constructive Logic	Typed λ -Calculus
Classical Logic	Continuations
Modal Logic	Monads
Linear Logic	Linear Types, Session Types
Separation Logic	Region Types

Translating

We can translate logical connectives to types and back:

Conjunction (\land)	Tuples
Disjunction (\lor)	Either
Implication	Functions
True	()
False	Void

We can also translate our *equational reasoning* on programs into *proof simplification* on proofs!

Constructors and Eliminators for Sums

data TrafficLight = Red | Amber | Green

Type Correctness

$$\frac{\Gamma \vdash e :: A}{\Gamma \vdash () :: ()}$$

$$\frac{\Gamma \vdash e :: A}{\Gamma \vdash \text{Left } e :: \text{Either } A B} S_L$$

$$\frac{\Gamma \vdash e :: B}{\Gamma \vdash \text{Right } e :: \text{Either } A B} S_R$$

$$\frac{\frac{???}{\text{Left () :: ()}}}{\frac{\text{Right (Left ()) :: Either () ()}}{\text{Right (Right (Left ())) :: Either () (Either () ())}}} S_R$$

Type Correctness

$$\frac{\Gamma \vdash e :: A}{\Gamma \vdash () :: ()} () \qquad \frac{\Gamma \vdash e :: A}{\Gamma \vdash \text{Left } e :: \text{Either } A B} S_L \qquad \frac{\Gamma \vdash e :: B}{\Gamma \vdash \text{Right } e :: \text{Either } A B} S_R$$

$$\frac{\frac{}{\text{()}::()}\text{()}}{\frac{\text{Right ()}:: Either () ()}{\text{S}_{R}}} S_{R}$$
Right (Right ()):: Either () (Either () ())

Examples

```
prop_or_false a = Left a
prop_or_true :: a -> (Either a ())
prop_or_true a = Right ()
prop_and_true :: a -> (a, ())
prop_and_true a = (a, ())
prop_double_neg_intro :: a -> (a -> Void) -> Void
prop_double_neg_intro a f = f a
prop_triple_neg_elim ::
  (((a\rightarrow Void) \rightarrow Void) \rightarrow Void) \rightarrow a \rightarrow Void
prop_triple_neg_elim f a = f (\g -> g a)
```

prop_or_false :: a -> (Either a Void)

Wrap-up

- Assignment 2 is before my next lecture (5th August).
- 2 There is a quiz for this week, but no exercise.
- Next week's lectures consist of an extension on dependent type systems and a revision lecture on Wednesday.
- There will be a survey on Piazza for revision topics, comment on the poll with specific questions
- If you enjoyed the course and want to do more in this direction, ask us for thesis topics, taste of research projects, and consider attending COMP3161 and COMP4161.
- Fill in the myExperience reports, it is important for us to receive your feedback.

Consultations

- Consultations will be made on request. Ask on piazza or email cs3141@cse.unsw.edu.au.
- If there is a consultation it will be announced on Piazza with a link a room number for Hopper.
- Will be in the Thursday lecture slot, 9am to 11am on Blackboard Collaborate.
- Make sure to join the queue on Hopper. Be ready to share your screen with REPL (ghci or stack repl) and editor set up.