Framework Design for Collaboration in Research

Computer Supported Collaborative Learning Statistical Machine Learning & its Applications

CMU IIIT-D WINTER SCHOOL 2011

TEAM

Manish Bansal

NIT Rourkela

Shubham Shukla

University of Delhi Netaji Subhas Institute of Technology **Shaikh Ismail**

NIT Rourkela

Objective

• Designing a model that could suggest a possibility of collaboration among two well established researchers having varied area of research interests.

• Based on the above model designed, propose a framework that could suggest a collaborator for guidance in research to any beginner.

Related Research

□ A Study of Academic Collaboration in Computational Linguistics with Latent Mixtures of Authors (2011)

Nikhil Johri, Daniel Ramage, Daniel A. McFarland, and Daniel Jurafsky **Topic Modeling and Cosine Similarity**

□ Collaborative E-Learning for Remote Education : An Approach For Realizing Pervasive Learning Environments (2006)

Manikandan, C.; Meenakshi Sundaram, A.S.; Mahesh Babu K-Means Clustering algorithm

□ Kaleidoscope Concepts and Methods for Exploring the Future of Learning with Digital Technologies (2004)

Pierre Dillenbourg

Focus on collaboration among individuals with mixed ability level

Model Design Preprocessed Data -Researcher X Authors v/s Titles Graphical **ACL** Anthology User Corpus Interface LightSide Clustered Tool Weka Authors Researcher Y (CMU) Data Tool answers if collaboration is possible or not and if yes, it suggests areas of

WINTER SCHOOL 2011

collaboration and researchers they are

nearest to in terms of areas of interests

Graphical User Interface Design

Key Focus

Theoretical Base

- ☐ Feature vectors calculated using LightSIDE applying TAGHelper plug-in
- □Clustering achieved through K-means clustering algorithm.

<u>For K = 3</u>

*K means clustering technique forms non-overlapping clusters.

Technical Implementation

□A good dataset

- ACL Anthology Corpus
- 6000 Research papers
- 5500 Authors
- Data extracted by XML parsing using JAVA, MATLAB and Python.

☐ Issues faced

• Fetching appropriate data: out of 133 XML files, 33 files were corrupt.

Technical Implementation

☐ Feature extraction : - Input to LightSIDE

Author	Paper Titles (separated by #)
<author 1=""></author>	<paper 1="">#<paper 2="">#< Paper 3></paper></paper>
<author 2=""></author>	<paper 1="">#<paper 2="">#< Paper 3></paper></paper>
and so on	<paper 1="">#<paper 2="">#< Paper 3></paper></paper>

□Output from LightSIDE is feature vector of each author (.arff file)

☐ Implementation of KNN search algorithm to find the nearest researcher based on the input ideas

Technical Implementation

□ Issues faced in extraction and clustering

- Author names in XML files were present in erratic format. As a result Arff file generated was not accepted readily by WEKA.
- To eradicate the same, data collected was cleaned first.
- Getting feature vectors from LightSIDE was a computationally heavy process even though only paper titles were used.
- Biased cluster formation

Thank You