

Module: M2. Optimization and inference techniques for Computer Vision Final exam

Date: November 30th, 2017

Teachers: Juan F. Garamendi, Coloma Ballester, Oriol Ramos, Joan Serrat Time: 2h30min

- Books, lecture notes, calculators, phones, etc. are not allowed.
- All sheets of paper should have your name.
- Answer each problem in a separate sheet of paper.
- All results should be demonstrated or justified.

Problem 1

Juan F. Garamendi, 1 Point

Let

$$J: \quad \mathcal{V} \rightarrow \mathbb{R},$$

$$u \mapsto J(u) = \int_{\Omega} \mathcal{F}(\mathbf{x}, u(\mathbf{x}), \nabla u(\mathbf{x})) d\mathbf{x}$$

be a convex energy functional over functions u, where

- \mathcal{V} is a suitable space of functions.
- $\Omega \in \mathbb{R}^d$ is a bounded open domain of the d dimensional euclidean space \mathbb{R}^d .
- $u \in \mathcal{V}$, $u : \Omega \to \mathbb{R}$ is a scalar function defined on Ω .
- $\mathbf{x} \in \Omega$ such that $\mathbf{x} = (x_1, ..., x_d)$ is the spatial variable and ∇ is the gradient operator such that $\nabla u(\mathbf{x}) = (u_{x_1}, ..., u_{x_d})$
- (a) (0.25 points) Say in a few words which is the fundamental problem in calculus of variations.
- (b) (0.25 points) Write the definition of the Gâteaux derivative of J(u) (the directional derivative of J at u in the direction of a function $h(\mathbf{x})$).
- (c) (0.5 points) Say in a few words what are the Euler-Lagrange Equations for a given convex functional.

Problem 2

Juan F. Garamendi, 1 Point

The OpenCV library (Open source Computer Vision Library) has a class called SVD. In the cv::SVD class reference documentation is said the following:

Class for computing Singular Value Decomposition of a floating-point matrix.

The singular Value Decomposition is used to blah, blah, blah, blah

- (a) (0.5 points) Say at least two problems in which SVD is useful.
- (b) (0.5 points) Say in a few words how to solve the problem (or at least compute an approximated solution to the problem) $A\bar{x} = b$ where A is a mxn matrix and \bar{x} and \bar{b} are vectors of size n and m, respectively, with m > n, and \bar{x} is the unknown.

Problem 3

Juan F. Garamendi, 1. Points

Consider the following iterative scheme

•
$$\bar{x}^k \leftarrow S_i(\bar{x}^{k-1}, \bar{x}^k, \bar{b})$$

used to solve the algebraic problem $\mathbf{A}\bar{x}=\bar{b}$, i.e., $\lim_{k\to\infty}\bar{x}^k=\bar{x}$, where \mathbf{A} is a known matrix, \bar{b} is a known vector, \bar{x} is an unknown vector, S_i some function, super-index represents iteration number and \bar{x}^0 some initial value. Now consider two versions of S_i : S_1 , S_2 with the following behaviour

- (a) $e = \bar{x} S_1(\bar{x}^1, \bar{x}^2, \bar{b})$, $||e||_{\infty} = 10^{-10}$, with e having only high frequencies.
- (b) $e = \bar{x} S_2(\bar{x}^1, \bar{x}^2, \bar{b})$, $||e||_{\infty} = 1000$, with e having only low frequencies.
- (a) (0.5 points) Explain in few words which is the best iterative scheme $(S_1 \text{ or } S_2)$ for embedding it into a multigrid scheme.
- (b) (0.5 points) Explain the relationship between Gauss-Seidel and Multigrid and in which moment of a multigrid alogrithm is used Gauss-Seidel. Is Gauss-Seidel the best scheme to use with multigrid?

Problem 4

Coloma Ballester 1. Points

(a) (i) What is a convex set? (ii) Give an example of a convex set.

- (0.2 points)
- (b) (i) What is a convex function (or a convex functional)? (ii) Give an example of a convex function $f: \mathbb{R}^N \longrightarrow \mathbb{R}$ (that is, $f(\mathbf{x}) \in \mathbb{R}$ for any vector $\mathbf{x} \in \mathbb{R}^N$), and an example of a convex functional $J: V \longrightarrow \mathbb{R}$ (that is, $J(u) \in \mathbb{R}$ for any function $u \in V$, where V is a suitable space of functions). Give also an example of a non-convex functional (or function, if you prefer). (0.4 points)
- (c) Consider the following constrained optimization problem

(0.4 points)

$$(\mathcal{P}) \begin{cases} \min_{x_1, x_2} f(x_1, x_2) = x_1 + x_2 \\ \text{subject to} \\ 2 - x_1^2 - x_2^2 \ge 0 \\ x_2 \ge 0 \end{cases}$$

- (i) This is a problem of the form $\min_{\mathbf{x} \in C} f(\mathbf{x})$. Draw a picture of the constraint set C.
- (ii) What are the associated Karush-Kuhn-Tucker (KKT) optimality conditions?

Problem 5

Coloma Ballester 1 Points

Option 5.A. Let A be a $m \times n$ matrix, and $b \in \mathbb{R}^n$, $m, n \in \mathbb{N}$. Consider the problem of minimizing the function $f : \mathbb{R}^n \to \mathbb{R}$ defined by

$$f(x) = ||Ax||_{\mathbb{R}^m} + \frac{1}{2\lambda} ||x - b||_{\mathbb{R}^n}^2$$

for $\lambda > 0$. The notation $\|\cdot\|_{\mathbb{R}^k}$ stands for the Euclidean norm in \mathbb{R}^k , for $k \in \mathbb{N}$. Note that f is not differentiable when Ax = 0.

(a) Write the problem

$$\min_{x} f(x) \tag{P}$$

as a min-max problem. Define also the duality gap.

Hint: Remember the fact that $||y||_{\mathbb{R}^k} = \max_{||\xi||_{\mathbb{R}^k} \le 1} \langle y, \xi \rangle_{\mathbb{R}^k}$.

- (b) What is the primal-dual problem for problem (P)? Are they equivalent problems?
- (c) Define and compute the dual function and the dual problem of problem (P).

Option 5.B. Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Consider the problem

$$\min ||x||^2$$
 (P) subject to $Ax = b$.

- (a) Write problem (P) as a min-max problem and define the duality gap.
- (b) Define and compute the dual function of problem (P).
- (c) Write down the dual problem.

Problem 6 Joan Serrat, 0.5 Points

The three main problems found when trying to learn the parameters of a graphical model in the probabilistic formulation are :

Problems:

- (1) $Z(x^i, w)$ or $\mathbb{E}_{y \sim p(y|x^i, w)} \psi(x^i, y)$ impossible to calculate in practice
- (2) N large and therefore we have to run belief propagation N times
- (3) N small compared to number of parameters, causing overfitting

We saw that they could be overcomed by:

- (a) regularization, assuming w follows a Gaussian distribution
- (b) since $\psi(x,y)$ decomposes in factors, we can apply some inference method like belief propagation to compute it
- (c) perform stochastic gradient descent

Now, which problem is solved by what?

- a) 1-a, 2-b, 3-c
- b) 1-b, 2-c, 3-a
- c) 1-c, 2-a, 3-b
- d) 1-b, 2-a, 3-c

Figura 1

Problem 7 J.Serrat 0.5 Points

Consider the graphical model of Figure 1 where observations are binary images $16 \times 8 = 128$ pixels, that is, $x_i \in \{0,1\}^{128}$, $y_i \in Y = \{a,b...z\}$ (26 lowercase letters), $x = (x_1...x_9)$, $y = (y_1...y_9)$.

We want to learn w to later infer a word from a series of binary images of letters as

$$y^{*} = \underset{y \in \mathcal{Y}}{\arg \max} \langle w, \psi(x, y) \rangle$$

$$= \underset{y \in \mathcal{Y}^{9}}{\arg \max} \sum_{i=1}^{9} \sum_{p=a}^{z} \sum_{j=1}^{16} \sum_{k=1}^{8} w_{pjk} x_{ijk} \mathbf{1}_{y_{i}=p} + \sum_{i=1}^{8} \sum_{p=a}^{z} \sum_{q=a}^{z} w_{pq} \mathbf{1}_{y_{i}=p, y_{i+1}=q}$$

where $\mathbf{1}_{y_i=p, y_{i+1}=q}$ evaluates to 1 if $y_i=p$ and $y_{i+1}=q$. In this context, what's **false**? Can be one or more.

- a) the total number of unary parameters to learn is 26^2
- b) there are $16 \times 8 \times 26$ pairwise parameters
- c) $w_{p=a,q=b}$ means the compatibility of labeling p as letter a and q as letter b, being p and q any pair of nodes in the chain
- d) w_{pq} are the parameters of the prior term

Problem 8 Joan Serrat, 0.5 Points

The two-stage training is a technique (mark the true one)

- a) to learn such that then makes inference faster
- b) to learn a balanced set of unary and pairwise coefficients
- c) that implies not learning at all the unary coefficients
- d) to speed up learning only

Given the following Bayesian network:

- a) Write the joint distribution according to the conditional probabilities inferred from the Bayesian network.
- b) Draw a factor graph derived from it.

Problem 10

Oriol Ramos Terrades, 1 Point

Say whether the next statements are true (\mathbf{T}) or false (\mathbf{F}) [Correct: +0.25, Incorrect: -0.25, unanswered: 0 points].

- a) Belief propagation infer exact marginals in loopy graphical models.
- b) The complexity of loopy belief propagation depends on the order of the highest clique.
- c) Samples generated by the Metropolis-Hasting algorithm are always accepted.
- d) Sampling methods provides exact inference on tree-based graphical models.