И.И.Ляшко, А.К.Боярчук, Я.Г.Гай, Г.П.Головач

МАТЕМАТИЧЕСКИЙ АНАЛИЗ:

РЯДЫ, ФУНКЦИИ ВЕКТОРНОГО АРГУМЕНТА

Справочное пособие по высшей математике. Т. 2 м.: Едиториал УРСС, 2003. — 224 с.

«Справочное пособие по высшей математике» выходит в пяти томах и представляет собой новое, исправленное и существенно дополненное издание «Справочного пособия по математическому анализу» тех же авторов. В новом издании пособие охватывает три крупных раздела курса высшей математики — математический анализ, теорию дифференциальных уравнений, теорию функций комплексной переменной.

Том 2 по содержанию соответствует первой половине второго тома «Справочного пособия по математическому анализу» и включает в себя теорию рядов и дифференциальное исчисление функций векторного аргумента.

Пособие предназначено для студентов, преподавателей и работников физикоматематических, экономических и инженерно-технических специальностей, специалистов по прикладной математике, а также лиц, самостоятельно изучающих высшую математику.

Оглавление	
Глава 1. Ряды	3
§1. Числовые ряды. Признаки сходимости знакопостоянных рядов	3
§2. Признаки сходимости знакопеременных рядов	25
§3. Действия над рядами	38
§4. Функциональные последовательности и ряды. Свойства равномерно	40
сходящихся функциональных последовательностей и рядов	
§5. Степенные ряды	58
§6. Ряды Фурье	79
§7. Суммирование рядов. Вычисление определенных интегралов с помощью	
рядов	96
Глава 2. Дифференциальное исчисление функций векторного	
аргумента	113
§1. Предел функции. Непрерывность	113
§2. Частные производные и дифференциалы функции векторного аргумента.	124
§3. Неявные функции	147
§4. Замена переменных	167
§5. Формула Тейлора	186
§6. Экстремум функции векторного аргумента	196
Ответы	220

Ряды

§ 1. Числовые ряды. Признаки сходимости знакопостоянных рядов

1.1. Общие понятия и определения.

Определение 1. Пусть a_n — произвольные элементы линейного пространства \mathcal{L} , в котором определена сходимость, $n \in \mathbb{N}$. Рядом элементов a_n называют выражение

$$a_1 + a_2 + \ldots + a_n + \ldots = \sum_{n=1}^{\infty} a_n,$$
 (1)

а элементы a_n — его членами. B частности, если $a_n \in \mathbb{R}$ или $a_n \in \mathbb{C}$, то ря ∂ (1) называют числовым.

Определение 2. Сумма n первых членов ряда (1) называется частичной суммой и часто обозначается через S_n , m.e.

$$S_n = a_1 + a_2 + \ldots + a_n.$$

Определение 3. Если существует конечный предел

$$\lim_{n\to\infty} S_n = S, \quad S \in \mathcal{L},$$

то ряд (1) сходится в \mathcal{L} , а элемент S называют суммой ряда. Если $\lim_{n\to\infty}S_n=\infty$ или не существует, то ряд (1) называют расходящимся.

Определение 4. Ряд

$$\sum_{k=n+1}^{\infty} a_k, \quad a_k \in \mathcal{L}, \tag{2}$$

называется п-м остатком ряда (1) или остатком после п-го члена.

Ряд (1) сходится или расходится вместе со своим остатком, поэтому часто при исследовании вопроса о сходимости ряда вместо него рассматривают n-й остаток.

Определение 5. Пусть $a_n \in \mathbb{R}$. Если $a_n \geqslant 0$, то ряд (1) называют положительным; если $a_n > 0$, $n \in \mathbb{N}$, то ряд (1) называют строго положительным.

1.2. Необходимое условие сходимости ряда.

Для того чтобы ряд (1), n.1.1, сходился в \mathcal{L} , необходимо, чтобы

$$\lim_{n\to\infty} a_n = \theta, \quad \theta \in \mathcal{L},$$

где θ — нулевой элемент линейного пространства \mathcal{L} .

1.3. Критерий Коши.

Пусть \mathcal{L} есть \mathbb{R} или \mathbb{C} . Для того чтобы ряд (1), п, 1.1, сходился в \mathcal{L} , необходимо и достаточно, чтобы $\forall \varepsilon > 0$ $\exists n_0$ такое, что $\forall n > n_0 \land \forall p \in \mathbb{N}$ выполнялось бы неравенство

$$|S_{n+p}-S_n|=|a_{n+1}+a_{n+2}+\ldots+a_{n+p}|<\varepsilon.$$

1.4. Обобщенный гармонический ряд.

Определение. Числовой ряд

4

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

называется обобщенным гармоническим рядом, а при p=1 — гармоническим. Он сходится при p > 1 и расходится при $p \le 1$.

1.5. Признаки сравнения числовых рядов.

Теорема 1. Если ряды (1), n. 1.1, и

$$\sum_{n=1}^{\infty} b_n \tag{1}$$

положительны и $a_n\leqslant b_n\ orall n_0$, то из сходимости ряда (1) настоящего пункта вытекает сходимость ряда (1), п. 1.1, а из расходимости ряда (1), п. 1.1, вытекает расходимость ряда

Теорема 2. Если ряды $\sum a_n$ и $\sum b_n$ строго положительны и $\forall n>n_0$ выполняются неравенства $\frac{a_{n+1}}{a_{n+1}}\leqslant \frac{b_{n+1}}{b_{n+1}},$

то справедливы выводы предыдущей теоремы. Teopema 3. Если ряды $\sum a_n$ и $\sum b_n$ строго положительны и

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c, \quad 0 < c < +\infty,$$

то они сходятся или расходятся одновременно.

Теорема 4. Если при $n \to \infty$

$$a_n = O^*\left(\frac{1}{n^p}\right),$$

то при p > 1 ряд (1), n. 1.1, сходится, а при $p \leqslant 1$ расходится.

1.6. Признаки д'Аламбера и Коши.

Если ряд (1), п.1.1, строго положителен и

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=L,$$

то при L < 1 этот ряд сходится, а при L > 1 расходится. При $L = +\infty$ ряд (1), п.1.1, также расходится, а если L=1, то вопрос о сходимости ряда остается открытым (признак д'Аламбера в предельной форме).

Если ряд (1), п.1.1, положителен и

$$\lim_{n\to\infty} \sqrt[n]{a_n} = L,$$

то относительно сходимости ряда (1), п.1.1, делаем те же выводы, что и в признаке д'Аламбера (признак Коши в простейшей предельной форме).

1.7. Признак Раабе.

Если ряд (1), п.1.1, строго положителен и

$$\lim_{n\to\infty}n\left(\frac{a_n}{a_{n+1}}-1\right)=p,$$

то при p>1 он сходится, а при p<1 расходится. При $p=+\infty$ ряд (1), п, 1.1, сходится, а если p=1, то для выяснения вопроса о его сходимости или расходимости следует применять другие признаки.

1.8. Признак Гаусса.

Если ряд (1), 3.1.1, строго положителен и

$$\frac{a_n}{a_{n+1}} = \lambda + \frac{\mu}{n} + \frac{\theta_n}{n^{1+\epsilon}}, \quad \lambda, \ \mu = \text{const},$$

где $\varepsilon > 0$, $|\theta_n| < c$, то при $\lambda > 1$ ряд (1), п.1.1, сходится, а при $\lambda < 1$ расходится. Если же $\lambda=1$, то ряд сходится при $\mu>1$ и расходится при $\mu\leqslant 1$.

1.9. Интегральный признак Коши-Маклорена.

Если функция f неотрицательна при x>0 и не возрастает, то ряд $\sum\limits_{}^{\infty}f(n)$ сходится или расходится одновременно с несобственным интегралом

$$\int_{1}^{+\infty} f(x)dx.$$

Доказать непосредственно сходимость следующих рядов и найти их суммы:

1.
$$\frac{1}{1\cdot 4} + \frac{1}{4\cdot 7} + \dots + \frac{1}{(3n-2)(3n+1)} + \dots$$

◄ Покажем, что сходится последовательность частичных сумм (S_n) этого ряда:

$$S_n = \frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \dots + \frac{1}{(3n-2)(3n+1)}.$$

Для этого с помощью очевидных преобразований приведем S_n к виду

$$S_n = \frac{1}{3} \left(\left(1 - \frac{1}{4} \right) + \left(\frac{1}{4} - \frac{1}{7} \right) + \ldots + \left(\frac{1}{3n-2} - \frac{1}{3n+1} \right) \right) = \frac{1}{3} \left(1 - \frac{1}{3n+1} \right).$$

Легко видеть, что последовательность (S_n) сходится, т.е. сходится, по определению, данный числовой ряд. Сумма его

$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1}{3} \left(1 - \frac{1}{3n+1} \right) = \frac{1}{3}.$$

- 2. a) $q \sin \alpha + q^2 \sin 2\alpha + \dots + q^n \sin n\alpha + \dots;$ 6) $q \cos \alpha + q^2 \cos 2\alpha + \dots + q^n \cos n\alpha + \dots; |q| < 1.$

u и v — их суммы. Тогда, использовав формулу Эйлера $e^{i\varphi}=\cos\varphi+i\sin\varphi$, можем написать

$$u_n + iv_n = qe^{i\alpha} + q^2e^{2i\alpha} + \dots + q^ne^{in\alpha} = \frac{qe^{i\alpha} - q^{n+1}e^{i(n+1)\alpha}}{1 - qe^{i\alpha}}.$$

Принимая во внимание условие |q| < 1, имеем $|qe^{i\alpha}| < 1$; отсюда следует, что

$$\lim_{n\to\infty} (q^{n+1}e^{i(n+1)\alpha}) = 0.$$

А тогда из предыдущей формулы находим

$$u + iv = \lim_{n \to \infty} (u_n + iv_n) = \frac{qe^{i\alpha}}{1 - qe^{i\alpha}} = q\left(\frac{\cos \alpha - q}{1 - 2q\cos \alpha + q^2} + i\frac{\sin \alpha}{1 - 2q\cos \alpha + q^2}\right).$$

Поэтому

$$u = q \frac{\cos \alpha - q}{1 - 2q \cos \alpha + q^2}, \quad v = \frac{q \sin \alpha}{1 - 2q \cos \alpha + q^2}.$$

3.
$$\sum_{n=1}^{\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n}).$$

◀ Непосредственно находим

$$S_n = (\sqrt{3} - 2\sqrt{2} + 1) + (\sqrt{4} - 2\sqrt{3} + \sqrt{2}) + (\sqrt{5} - 2\sqrt{4} + \sqrt{3}) + \dots + (\sqrt{n} - 2\sqrt{n-1} + \sqrt{n-2}) + (\sqrt{n+1} - 2\sqrt{n} + \sqrt{n-1}) + (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n}) = 1 - \sqrt{2} + \sqrt{n+2} - \sqrt{n+1} = 1 - \sqrt{2} + \frac{1}{\sqrt{n+2} + \sqrt{n+1}}.$$

Следовательно,

6

$$S = \lim_{n \to \infty} S_n = 1 - \sqrt{2}. \blacktriangleright$$

4. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \sin nx$.

$$\lim_{n \to \infty} \sin nx = 0, \quad x \neq k\pi. \tag{1}$$

$$(1)$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(5)$$

$$(7)$$

$$(7)$$

$$(8)$$

$$(7)$$

$$(8)$$

$$(7)$$

$$(8)$$

$$(7)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(8)$$

Отсюда следует, что $\lim_{n\to\infty} \sin(n+1)x = 0$, или $\lim_{n\to\infty} (\sin nx \cos x + \cos nx \sin x) = 0$. Принимая во внимание (1), из последнего соотношения находим, что

$$\lim_{n \to \infty} \cos nx = 0, \quad x \neq k\pi. \tag{2}$$

Из (1) и (2) получаем равенство

$$\lim_{x \to \infty} (\cos^2 nx + \sin^2 nx) = 0,$$

которое противоречит известной формуле $\sin^2\alpha + \cos^2\alpha = 1$. Источник противоречия – формула (1). Следовательно, если $x \neq k\pi$, то данный ряд расходится. Сходимость же ряда при $x = k\pi$ (k — целое) очевидна, и сумма такого ряда равна нулю. \blacktriangleright

5. Доказать, что если ряд
$$\sum_{n=1}^{\infty} a_n$$
 сходится, то ряд $\sum_{n=1}^{\infty} A_n$, где $A_n = \sum_{i=p_n}^{p_{n+1}-1} a_i$, $p_1 = 1$, $p_1 < p_2 < \ldots$, полученный в результате группировки членов данного ряда без нарушения порядка следования их, также сходится и имеет ту же сумму.

 \blacktriangleleft Из сходимости ряда $\sum\limits_{n=1}^{\infty}a_n$ вытекает существование предела любой подпоследовательности последовательности его частичных сумм, равного сумме ряда S. Возьмем эту подпоследовательность в виде

$$a_1 = S_{p_1}, \quad a_1 + a_2 + \ldots + a_{p_2-1} = S_{p_2},$$

$$a_1 + a_2 + \ldots + a_{p_2-1} + a_{p_2} + \ldots + a_{p_3-1} = S_{p_3}, \ldots, a_1 + a_2 + \ldots + a_{p_{n+1}-1} = S_{p_{n+1}}.$$

Тогда $\lim_{n\to\infty} S_{p_n} = S$ по условию. Но так как последовательность частичных сумм второго ряда $A_1+A_2+\ldots+A_n$ равна $S_{p_{n+1}}$, то $\lim_{n\to\infty} (A_1+A_2+\ldots+A_n)$ также равен S, что и требовалось доказать.

Обратное утверждение неверно, так как из сходимости подпоследовательности еще не вытекает сходимость самой последовательности. Возьмем пример. Пусть $a_n = (-1)^{n+1}$. Ряд $\sum_{n=1}^{\infty} (-1)^{n+1}$, очевидно, расходится, хотя, например, ряд $\sum_{n=1}^{\infty} (1-1)$, получаемый из предыдущего в результате группировки его членов по два, сходится. \blacktriangleright

6. Доказать, что если члены ряда $\sum_{n=1}^{\infty} a_n$ положительны и ряд $\sum_{n=1}^{\infty} A_n$, полученный в результате группировки членов этого ряда, сходится, то данный ряд также сходится.

(1)

◀ Пусть (p_k) — произвольная подпоследовательность натуральных чисел; (S_n) и (S_{p_k}) — частичные суммы первого и второго рядов соответственно. Тогда, в силу положительности членов a_n , будем иметь неравенства

$$S_1\leqslant S_n\leqslant S_{p_1}$$
 для всех $n,\ 1\leqslant n\leqslant p_1,$ $S_{p_1}\leqslant S_n\leqslant S_{p_2}$ для всех $n,\ p_1\leqslant n\leqslant p_2,$

 $S_{p_k} \leqslant S_n \leqslant S_{p_{k+1}}$, для всех $n, p_k \leqslant n \leqslant p_{k+1}$.

Переходя к пределу в последнем неравенстве, когда $k \to \infty$, и учитывая, что второй ряд сходится, получаем

$$\lim_{k \to \infty} S_{p_k} = \lim_{n \to \infty} S_n = \lim_{k \to \infty} S_{p_{k+1}} = S. \blacktriangleright$$

Исследовать сходимость рядов:

1 1 1 1

7. $1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots + \frac{1}{2n-1} + \dots$

 \blacktriangleleft Очевидно, последовательность частичных сумм данного ряда возрастает. Покажем, что она неограничена. С этой целью рассмотрим ее подпоследовательность (S_{2^n}) , $n \in \mathbb{N}$:

$$S_{2^1} = S_2 = 1 + \frac{1}{3}, \quad S_{2^2} = S_4 = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7}, \dots, S_{2^n} = 1 + \frac{1}{3} + \dots + \frac{1}{2^{n+1} - 1}.$$

В силу оценок

$$1 + \frac{1}{3} > 1, \quad \frac{1}{5} + \frac{1}{7} > \frac{2}{8} = \frac{1}{4}, \quad \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15} > \frac{4}{16} = \frac{1}{4}, \dots$$

$$\dots, \frac{1}{2^{n} + 1} + \frac{1}{2^{n} + 3} + \dots + \frac{1}{2^{n+1} - 1} > \frac{2^{n-1}}{2^{n+1}} = \frac{1}{4}, \dots$$

имеем неравенство

$$S_{2^n} = \left(1 + \frac{1}{3}\right) + \left(\frac{1}{5} + \frac{1}{7}\right) + \left(\frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15}\right) + \dots +$$

$$+\left(rac{1}{2^n+1}+\ldots+rac{1}{2^{n+1}-1}
ight)>1+rac{n-1}{4}.$$
 Отсюда следует, что подпоследовательность (S_{2^n}) неограничена, а значит, неограничена и

последовательность (S_n) . Таким образом, данный ряд расходится. \blacktriangleright 8. $\frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{3}} + \frac{1}{3\sqrt{4}} + \ldots + \frac{1}{n\sqrt{n+1}} + \ldots$

Decreement ner

$$\frac{1}{\sqrt{2}} + \left(\frac{1}{2\sqrt{3}} + \frac{1}{3\sqrt{4}}\right) + \left(\frac{1}{4\sqrt{5}} + \frac{1}{5\sqrt{6}} + \frac{1}{6\sqrt{7}} + \frac{1}{7\sqrt{8}}\right) + \left(\frac{1}{8\sqrt{9}} + \dots + \frac{1}{15\sqrt{16}}\right) + \dots$$

$$\dots + \left(\frac{1}{2^{n}\sqrt{2^{n}+1}} + \dots + \frac{1}{(2^{n+1}-1)\sqrt{2^{n+1}}}\right) + \dots,$$

полученный в результате группировки членов данного ряда. Замечаем, что

$$\frac{1}{2\sqrt{3}} + \frac{1}{3\sqrt{4}} < \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} < \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}},$$

$$\frac{1}{4\sqrt{5}} + \dots + \frac{1}{7\sqrt{8}} < \frac{1}{4\sqrt{4}} + \dots + \frac{1}{7\sqrt{7}} < \frac{4}{(2\sqrt{2})^2} = \frac{1}{(\sqrt{2})^2},$$

$$\frac{1}{2^{n}\sqrt{2^{n}+1}} + \ldots + \frac{1}{(2^{n+1}-1)\sqrt{2^{n+1}}} < \frac{1}{(2^{n})^{\frac{3}{2}}} + \ldots + \frac{1}{(2^{n+1}-1)^{\frac{3}{2}}} < \frac{1}{(\sqrt{2})^{n}}.$$

Поэтому для последовательности частичных сумм ряда (1) имеем оценку

$$S_n = \frac{1}{\sqrt{2}} + \ldots + \frac{1}{(2^{n+1}-1)\sqrt{2^{n+1}}} < \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{(\sqrt{2})^2} + \ldots + \frac{1}{(\sqrt{2})^n} \leqslant \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}-1}.$$

Отсюда, учитывая очевидную монотонность S_n , заключаем, что ряд (1) сходится. А тогда, на основании примера 6, сходится данный ряд. \blacktriangleright

9.
$$\frac{1}{\sqrt{1\cdot 3}} + \frac{1}{\sqrt{3\cdot 5}} + \dots + \frac{1}{\sqrt{(2n-1)(2n+1)}} + \dots$$

⋖ В силу оценки

$$S_n = \frac{1}{\sqrt{1 \cdot 3}} + \frac{1}{\sqrt{3 \cdot 5}} + \dots + \frac{1}{\sqrt{(2n-1)(2n+1)}} > \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2n} >$$

$$> \frac{1}{2} \left(\ln 2 + \ln \frac{3}{2} + \dots + \ln \frac{n+1}{n} \right) = \frac{1}{2} \ln(n+1),$$

данный ряд расходится. >

- 10. Доказать, что если ряд $\sum_{n=1}^{\infty} a_n$, $a_n \geqslant 0$ сходится, то ряд $\sum_{n=1}^{\infty} a_n^2$ также сходится.
- \blacktriangleleft Очевидно, последовательность частичных сумм (C_n) второго ряда монотонно не убывает. Кроме того, в силу $a_n\geqslant 0$ и сходимости первого ряда, справедливо неравенство

$$C_n = a_1^2 + a_2^2 + \ldots + a_n^2 < (a_1 + a_2 + \ldots + a_n)^2 = S_n^2 \leqslant \text{const.}$$
 Поэтому, на основании теоремы о монотонной и ограниченной последовательности, суще-

ствует $\lim_{n\to\infty} C_n$, т.е. по определению 3, п.1.1, второй ряд сходится. Заметим, что обратное утверждение неверно. Действительно, пусть $a_n=\frac{1}{2n-1}$. Тогда

ряд $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ сходится по теореме 4, п.1.5, хотя ряд $\sum_{n=1}^{\infty} \frac{1}{2n-1}$ расходится (см. пример 7). \blacktriangleright

11. Доказать, что если ряды $\sum_{n=1}^{\infty} a_n^2$ у $\sum_{n=1}^{\infty} b_n^2$ сходятся, то сходятся также ряды

$$\sum_{n=1}^{\infty} |a_n b_n|, \quad \sum_{n=1}^{\infty} (a_n + b_n)^2, \quad \sum_{n=1}^{\infty} \frac{|a_n|}{n}.$$

 \blacktriangleleft Используя элементарное неравенство $|a_nb_n|\leqslant \frac{1}{2}(a_n^2+b_n^2),$ а также условие примера, получаем

$$\sum_{k=1}^{n} |a_k b_k| \leqslant \frac{1}{2} \left(\sum_{k=1}^{n} a_k^2 + \sum_{k=1}^{n} b_k^2 \right) \leqslant \frac{1}{2} \left(\sum_{n=1}^{\infty} a_n^2 + \sum_{n=1}^{\infty} b_n^2 \right) = c.$$

Отсюда следует, что ряд $\sum_{n=1}^{\infty} |a_n b_n|$ сходится. А тогда и второй ряд в силу оценки

$$\sum_{n=1}^{\infty} (a_n + b_n)^2 = \sum_{n=1}^{\infty} a_n^2 + 2 \sum_{n=1}^{\infty} a_n b_n + \sum_{n=1}^{\infty} b_n^2 \leqslant 2(c + \sum_{n=1}^{\infty} |a_n b_n|)$$

также сходится. Сходимость третьего ряда вытекает из сходимости первого, если положить в нем $b_n = \frac{1}{n}$ и воспользоваться тем, что ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится. \blacktriangleright

- 12. Доказать, что если $\lim_{n\to\infty}na_n=a\neq 0$, то ряд $\sum_{n=0}^{\infty}a_n$ расходится.
- ◀ По определению предела, $\forall \varepsilon > 0, 0 < \varepsilon < |a|, \exists n_0$ такое, что $\forall n > n_0$ и $\forall p \in \mathbb{N}$ справедливы неравенства $a \varepsilon < (m+n)a_{m+n} < a + \varepsilon, \ m = \overline{1,p}$, или неравенства

$$\frac{a-\varepsilon}{m+n} < a_{m+n} < \frac{a+\varepsilon}{m+n}.$$

Суммируя эти неравенства по m от 1 до p, получаем

$$(a-\varepsilon)\sum_{m=1}^{p}\frac{1}{m+n}<\sum_{m=1}^{p}a_{m+n}<(a+\varepsilon)\sum_{m=1}^{p}\frac{1}{m+n}.$$

Отсюда видно, что в силу расходимости гармонического ряда $\left(\lim_{p \to +\infty} \sum_{m=1}^{p} \frac{1}{m+n} = +\infty\right)$, оста-

ток рассматриваемого ряда расходится. Следовательно, расходится и сам ряд. >

Примечание. Из условия примера 12 следует, что $a_n = \frac{a}{n} + o\left(\frac{1}{n}\right) = O^*\left(\frac{1}{n}\right)$ при $n \to \infty$. Поэтому на основании теоремы 4, п.1.5, данный ряд расходится. Однако мы предпочли непосредственное доказательство.

 ${f 13.}$ Доказать, что если ряд $\sum a_n,\, a_n>0,\, {f c}$ монотонно убывающими членами сходится,

To $\lim_{n\to\infty} na_n = 0$. **◄** По критерию Коши, из сходимости ряда следует, что $\forall \varepsilon > 0$ $\exists n_0$ такое, что $\forall n > n_0$ справедливо неравенство $a_{n+1}+a_{n+2}+\ldots+a_{n+p}<\frac{\epsilon}{2}$. Так как (a_n) — монотонная и положительная последовательность, то из последнего неравенства вытекает, что $pa_{n+p} < \frac{\epsilon}{2}$. Полагая, далее, последовательно p=n и p=n+1, отсюда находим, что $2na_{2n}<arepsilon$ и $(2n+1)a_{2n+1} < \varepsilon$ при $n > n_0$. Следовательно, $na_n < \varepsilon$ при любом (четном и нечетном)

 $n>2n_0$. Пользуясь критерием Коши, доказать сходимость следующих рядов:

14.
$$\frac{\cos x - \cos 2x}{1} + \frac{\cos 2x - \cos 3x}{2} + \dots + \frac{\cos nx - \cos(n+1)x}{n} + \dots$$

 \blacktriangleleft Фиксируем произвольное $\varepsilon > 0$. Найдем число n_0 такое, что при всех $n > n_0$ и произвольном p>0 будет справедлива оценка $|S_{n+p}-S_n|<\varepsilon$, где (S_n) последовательность частичных сумм данного ряда. Имеем

$$|S_{n+p} - S_n| = \left| \frac{\cos(n+1)x - \cos(n+2)x}{n+1} + \frac{\cos(n+2)x - \cos(n+3)x}{n+2} + \dots + \frac{\cos(n+p)x - \cos(n+p+1)x}{n+p} \right| =$$

$$= \left| \frac{\cos(n+1)x}{n+1} - \frac{\cos(n+2)x}{(n+1)(n+2)} - \frac{\cos(n+3)x}{(n+2)(n+3)} - \dots - \frac{\cos(n+p)x}{(n+p-1)(n+p)} - \frac{\cos(n+p+1)x}{n+p} \right| \le \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{(n+p-1)(n+p)} + \frac{1}{n+p} < \frac{2}{n}.$$

Отсюда следует, что $|S_{n+p}-S_n|<arepsilon$, если за число n_0 взять $\frac{2}{\varepsilon}$. Поэтому, согласно критерию Коши, ряд сходится. >

15.
$$\frac{\cos x}{1^2} + \frac{\cos x^2}{2^2} + \ldots + \frac{\cos x^n}{n^2} + \ldots$$

✓ Найдем число n_0 такое, что $\forall n > n_0$ и произвольном p > 0 будет выполняться неравенство $|S_{n+p} - S_n| < \varepsilon$. Имеем

$$|S_{n+p} - S_n| = \left| \frac{\cos x^{n+1}}{(n+1)^2} + \frac{\cos x^{n+2}}{(n+2)^2} + \dots + \frac{\cos x^{n+p}}{(n+p)^2} \right| \le$$

$$\le \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+p)^2} < \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \dots$$

 $\dots + \frac{1}{(n+n-1)(n+n)} = \frac{1}{n} - \frac{1}{n+n} < \frac{1}{n}$

Следовательно, положив $n_0 = \frac{1}{c}$, по критерию Коши, получим, что данный ряд сходится. \blacktriangleright Пользуясь критерием Коши, доказать расходимость следующих рядов:

16.
$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

◄ Пусть $ε = \frac{1}{4}$. Положим p = n.

$$|S_{2n} - S_n| = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > n \cdot \frac{1}{2n} = \frac{1}{2} > \varepsilon.$$

Следовательно, по критерию Коши, данный ряд расходится. >

17.
$$1 + \frac{1}{2} - \frac{1}{2} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots$$

■ Поскольку

$$S_{6n} - S_{3n} = \frac{1}{3n+1} + \frac{1}{3n+2} - \frac{1}{3n+3} + \dots + \frac{1}{6n-2} + \frac{1}{6n-1} - \frac{1}{6n},$$

где $(S_{6n}), (S_{3n})$ — подпоследовательности последовательности частичных сумм данного ряда,

$$S_{6n}-S_{3n}>rac{1}{3n+1}+rac{1}{3n+4}+\ldots+rac{1}{6n-2}>rac{n}{6n-2}>rac{1}{6}.$$
 Поэтому, согласно критерию Коши, ряд расходится. \blacktriangleright

18.
$$\frac{1}{\sqrt{1 \cdot 2}} + \frac{1}{\sqrt{2 \cdot 3}} + \ldots + \frac{1}{\sqrt{n(n+1)}} + \ldots$$

◄ Пусть $\varepsilon = \frac{1}{4}$. Оценим разности

◀ Пусть
$$\epsilon = \frac{1}{4}$$
. Оценим разность:

$$|S_{2n} - S_n| = \frac{1}{\sqrt{(n+1)(n+2)}} + \frac{1}{\sqrt{(n+2)(n+3)}} + \dots + \frac{1}{\sqrt{2n(2n+1)}} >$$

$$> \frac{1}{n+2} + \frac{1}{n+3} + \ldots + \frac{1}{2n+1} > \frac{1}{4}.$$

19. $\frac{(1!)^2}{2} + \frac{(2!)^2}{2^4} + \frac{(3!)^2}{2^9} + \dots + \frac{(n!)^2}{2^{n^2}} + \dots$

◆ Поскольку

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{((n+1)!)^2 2^{n^2}}{(n!)^2 2^{(n+1)^2}} = \lim_{n \to \infty} \frac{(n+1)^2}{2^{2n+1}} = 0,$$

то, по признаку д'Аламбера, ряд расходится.
$$\blacktriangleright$$
 20. $\frac{4}{2} + \frac{4 \cdot 7}{2 \cdot 6} + \frac{4 \cdot 7 \cdot 10}{2 \cdot 6 \cdot 10} + \dots$

$$a_n = \frac{4 \cdot 7 \cdot 10 \dots (3n+1)}{2 \cdot 6 \cdot 10 \dots (4n-2)}.$$

Отсюда находим

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3n+4}{4n+2} = \frac{3}{4}.$$

Таким образом, согласно признаку д'Аламбера, ряд сходится. >

21. $\sum a_n$, где

$$a_n = \begin{cases} \frac{1}{n}, & \text{если} \quad n = m^2, \\ \frac{1}{n}, & \text{если} \quad n \neq m^2 \end{cases} (m - \text{натуральное число}).$$

◆ Покажем, что ряд

 $\left(1+\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{4^2}+\frac{1}{5^2}+\ldots+\frac{1}{8^2}\right)+\ldots+$

$$+\left(\frac{1}{n^2}+\frac{1}{(n^2+1)^2}+\ldots+\frac{1}{((n+1)^2-1)^2}\right)+\ldots, \qquad (1)$$

полученный в результате группировки членов данного ряда, сходится. Для этого оценим сначала каждый член ряда (1). Имеем

$$1 + \frac{1}{2^2} + \frac{1}{3^2} < 1 + 2 \cdot \frac{1}{2^2} < 2 \cdot 1, \quad \frac{1}{4} + \frac{1}{5^2} + \dots + \frac{1}{8^2} < \frac{1}{4} + \frac{4}{5^2} < 2 \cdot \frac{1}{4},$$
$$\frac{1}{n^2} + \frac{1}{(n^2 + 1)^2} + \dots + \frac{1}{((n + 1)^2 - 1)^2} < \frac{1}{n^2} + \frac{2n}{(n^2 + 1)^2} < 2 \cdot \frac{1}{n^2}; \dots$$

Поскольку ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$, согласно п.1.4, сходится, то, в силу теоремы 1, п.1.5, сходится и ряд

(1). А тогда, на основании утверждения, доказанного в примере 6, заключаем, что данный ряд также сходится.
$$\blacktriangleright$$
 22. $\sum_{n=1}^{\infty} nx \prod_{n=1}^{\infty} \frac{\sin^2 k\alpha}{1+x^2+\cos^2 k\alpha}$.

$$\prod_{n=1}^{\infty} \frac{\sin^2 k\alpha}{1 + x^2 + \cos^2 k\alpha} \leqslant \frac{1}{(1 + x^2)^n}.$$
 (1)

Предполагая, что $x \neq 0$ (при x = 0 ряд, очевидно, сходится) и применяя к ряду

$$\sum_{n=0}^{\infty} \frac{nx}{(1+x^2)^n} \tag{2}$$

признак д'Аламбера, замечаем, что ряд (2) сходится.

Используя теперь неравенство (1) и теорему 1, п.1.5, можем утверждать, что данный ряд

$$23. \sum_{n=1}^{\infty} \left(\frac{n-1}{n+1}\right)^{n(n-1)}.$$

Метрудно найти, что
$$\lim_{n\to\infty} \left(\frac{n-1}{n+1}\right)^{n-1} = \lim_{n\to\infty} \left(1-\frac{2}{n+1}\right)^{n-1} = \lim_{n\to\infty} e^{-2\frac{n-1}{n+1}} = \frac{1}{e^2} < 1$$
. Поэтому, согласно признаку Коши, ряд сходится. ▶

24.
$$\sqrt{2} + \sqrt{2 - \sqrt{2}} + \sqrt{2 - \sqrt{2 + \sqrt{2}}} + \dots$$

■ Замечая, что общий член ряда имеет вид

$$a_n=\sqrt{2-\sqrt{2+\sqrt{2+\ldots+\sqrt{2}}}},\quad n\in\mathbb{N},$$
 и полагая здесь $\sqrt{2}=2\cos\frac{\pi}{4}$, получаем $a_n=\sqrt{2-2\cos\frac{\pi}{2^n}}=2\sin\frac{\pi}{2^{n+1}}<\frac{\pi}{2^n}.$ Так как ряд

 $\sum_{n=1}^{\infty} \frac{\pi}{2^n}$ сходится, то по теореме 1, п 1.5, сходится и данный ряд. \blacktriangleright

25. Доказать, что если
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q$$
, $a_n > 0$, то $a_n = o(q_1^n)$, где $q_1 > q$.

 \blacktriangleleft Пусть число arepsilon>0 настолько мало, что выполняется неравенство $arepsilon< q_1-q$. По определению предела, для данного ε можно найти такой номер N , начиная c которого выполняются неравенства

$$q-\varepsilon < \frac{a_{N+1}}{a_N} < q+\varepsilon, \quad q-\varepsilon < \frac{a_{N+2}}{a_{N+1}} < q+\varepsilon, \dots, q-\varepsilon < \frac{a_n}{a_{n-1}} < q+\varepsilon.$$

откуда

Перемножая почленно эты неравенства, получаем

$$a_N(a-\epsilon)^{n-N} < a < \epsilon$$

 $a_N(q-\varepsilon)^{n-N} < a_n < (q+\varepsilon)^{n-N} a_N$

$$0 < \frac{a_n}{q_1^n} < a_N \left(\frac{q+\varepsilon}{q_1}\right)^n (q+\varepsilon)^{-N}, \quad \frac{q+\varepsilon}{q_1} < 1.$$

Tеперь видно, что увеличением числа n можно достигнуть неравенства

$$\frac{a_n}{q_1^n} < a_N(q+\varepsilon)^{-N} \left(\frac{q+\varepsilon}{q_1}\right)^n < \varepsilon,$$

показывающего, что $a_n = o(q_1^n)$.

$$26.$$
 Доказать, что если $\overline{\lim_{n\to\infty}} \frac{a_{n+1}}{a_n}=q<1,\, a_n>0,\, ext{то ряд}\, \sum_{n=1}^\infty a_n$ сходится.

 \blacktriangleleft Выберем $\varepsilon>0$ таким, чтобы выполнялось неравенство $\varepsilon<1-q$. В силу существования конечного верхнего предела, для выбранного ε найдется такой номер N, начиная с которого

справедливы неравенства
$$0<\frac{a_{i+1}}{c}< q+\varepsilon, \quad i=\overline{N,\,n-1}.$$

Перемножая эти неравенства, находим

$$0 < a_n < \frac{a_N}{(q+\varepsilon)^N} (q+\varepsilon)^n.$$

Поскольку ряд $\sum (q+\varepsilon)^n$ сходится, то, в силу теоремы 1, заключаем, что ряд $\sum a_n$ также сходится.

Обратное утверждение неверно. Рассматривая, например, ряд

$$rac{1}{2}+rac{1}{3}+rac{1}{2^2}+rac{1}{3^2}+rac{1}{2^3}+rac{1}{3^3}+\ldots,$$
 замечаем, что

$$\overline{\lim_{n\to\infty}} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{1}{2} \left(\frac{3}{2}\right)^n = \infty,$$

в то время как ряд

$$\sum_{n=1}^{\infty} a'_n = \sum_{n=1}^{\infty} \left(\frac{1}{2^n} + \frac{1}{3^n} \right),$$

очевидно, сходится. Таким образом, из того, что ряд $\sum_{n=1}^{\infty} a_n$ сходится, не следует, вообще

говоря, что $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q < 1.$

$${f 27.}$$
 Доказать, что если $\overline{\lim}_{n \to \infty} \sqrt[n]{a_n} = q$, $a_n \geqslant 0$, то: a) при $q < 1$ ряд $\sum_{n=1}^{\infty} a_n$ сходится; б)

при q>1 этот ряд расходится (обобщенный признак Коши).

■ Пусть
$$q<1$$
. Для фиксированного ε , удовлетворяющего условию $0<\varepsilon<1-q$, в силу условия примера, найдется номер N , начиная с которого выполняются неравенства

$$0 \leqslant a_{N+1} < (q+\varepsilon)^{N+1}, \ldots, \quad 0 \leqslant a_n < (q+\varepsilon)^n, \ q+\varepsilon < 1.$$

Но так как ряд $\sum (q+\epsilon)^n$ сходится, то, по теореме 1, из последнего неравенства вытекает, что ряд $\sum a_n$ сходится.

 Π усть q>1. Тогда для arepsilon, выбранного из условия 0<arepsilon < q-1, найдется номер Mтакой, что при всех k>M члены последовательности (a_{n_k}) ($\sqrt[n]{a_{n_k}} \to q$ при $n_k \to \infty$) будут удовлетворять неравенствам

$$a_{n_{M+1}} > (q-\epsilon)^{n_{M+1}}, \quad a_{n_{M+2}} > (q-\epsilon)^{n_{M+2}}, \dots, a_{n_k} > (q-\epsilon)^{n_k}, \quad q-\epsilon > 1.$$

Отсюда следует, что общий член ряда к нулю не стремится, т.е. ряд $\sum a_n$ расходится. \blacktriangleright Исследовать сходимость рядов:

28.
$$\sum_{n=0}^{\infty} \frac{n^3(\sqrt{2} + (-1)^n)^n}{3^n}.$$

◀ Имея в виду обобщенный признак Коши, находим

$$\overline{\lim_{n \to \infty}} \sqrt[n]{\frac{n^3(\sqrt{2} + (-1)^n)^n}{3^n}} = \lim_{k \to \infty} \frac{\sqrt[2k]{8k^3}(\sqrt{2} + 1)}{3} = \frac{\sqrt{2} + 1}{3} < 1.$$

Следовательно, ряд сходится. >

$$29. \sum_{n=1}^{\infty} \left(\frac{1+\cos n}{2+\cos n}\right)^{2n-\ln n}.$$

◄ Поскольку

$$\overline{\lim}_{n \to \infty} \left(\frac{1 + \cos n}{2 + \cos n} \right)^{2 - \frac{\ln n}{n}} \le \lim_{n \to \infty} \left(\frac{2}{3} \right)^{2 - \frac{\ln n}{n}} = \frac{4}{9} < 1,$$

то, по обобщенному признаку Коши, данный ряд сходится. >

30.
$$\left(\frac{1}{2}\right)^p + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^p + \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^p + \dots$$

◀ Рассмотрим отношение

$$\frac{a_n}{a_{n+1}} = \left(\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots 2n}\right)^p \left(\frac{2 \cdot 4 \cdot 6 \dots 2n(2n+2)}{1 \cdot 3 \cdot 5 \dots (2n-1)(2n+1)}\right)^p =$$

$$= \left(1 + \frac{1}{2n+1}\right)^p = 1 + \frac{p}{2n+1} + \frac{p(p-1)}{2(2n+1)^2} + o\left(\frac{1}{n^2}\right), \quad n \to \infty.$$

Согласно признаку Гаусса, отсюда находим: при p>2 ряд сходится, а при $p\leqslant 2$ — расходится. \blacktriangleright

31.
$$\sum_{n=1}^{\infty} \frac{n!e^n}{n^{n+p}}.$$

◀ Преобразовывая отношение $\frac{a_n}{a_{n+1}}$ к виду

$$\frac{a_n}{a_{n+1}} = \frac{n!e^n(n+1)^{n+p+1}}{n^{n+p}(n+1)!e^{n+1}} = \frac{1}{e} \left(1 + \frac{1}{n}\right)^{n+p} = \frac{1}{e} \exp\left\{(n+p)\ln\left(1 + \frac{1}{n}\right)\right\} =$$

$$= \exp\left\{-1 + (n+p)\left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right)\right\} = \exp\left\{\frac{p-0.5}{n} + o\left(\frac{1}{n}\right)\right\} =$$

$$= 1 + \frac{p-0.5}{n} + o\left(\frac{1}{n}\right), \ n \to \infty,$$

и используя признак Раабе, заключаем, что при $p > \frac{3}{2}$ ряд сходится. \blacktriangleright

32.
$$\sum_{n=0}^{\infty} \frac{p(p+1) \dots (p+n-1)}{n!} \cdot \frac{1}{n^q}$$

 \blacksquare Исключим из рассмотрения тривиальный случай, когда p — целое отрицательное или нуль, и упростим отношение

$$\frac{a_n}{a_{n+1}} = \frac{n+1}{p+n} \left(1 + \frac{1}{n} \right)^q = \left(1 + \frac{p}{n} \right)^{-1} \left(1 + \frac{1}{n} \right)^{q+1} =$$

$$= \left(1 - \frac{p}{n} + o\left(\frac{1}{n}\right) \right) \left(1 + \frac{q+1}{n} + o\left(\frac{1}{n}\right) \right) = 1 + \frac{q-p+1}{n} + o\left(\frac{1}{n}\right), \ n \to \infty.$$

Поскольку $\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = q - p + 1$, то, согласно признаку Раабе, ряд сходится, если

Гл. 1. Ряды

33.
$$\sum_{n=1}^{\infty} \left(\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} \right)^p \cdot \frac{1}{n^q}$$
.

 \blacktriangleleft Составляя отношение
$$\frac{a_n}{a_{n+1}} = \left(1 + \frac{1}{2n+1} \right)^p \left(1 + \frac{1}{n} \right)^q = \left(1 + \frac{p}{2n+1} + o\left(\frac{1}{n}\right) \right) \left(1 + \frac{q}{n} + o\left(\frac{1}{n}\right) \right) =$$

$$n = \left(1 + \frac{1}{2}\right)^p \left(1 +$$

$$=1+\frac{p}{2n+1}+\frac{q}{n}+o\left(\frac{1}{n}\right)=1+\left(\frac{p}{2}+q\right)\frac{1}{n}+o\left(\frac{1}{n}\right), \quad n\to\infty,$$

$$=1+\frac{1}{2n+1}+\frac{1}{n}+o\left(\frac{1}{n}\right)=1+\left(\frac{1}{2}+q\right)\frac{1}{n}+o\left(\frac{1}{n}\right),\quad n\to\infty,$$
 получаем $\lim_{n\to\infty}n\left(\frac{a_n}{a_{n+1}}-1\right)=\frac{p}{2}+q$ и, на основании признака Раабе, заключаем, что данный

34.
$$\sum_{n=1}^{\infty} \left(\frac{p(p+1) \dots (p+n-1)}{q(q+1) \dots (q+n-1)} \right)^{\alpha}, \ p > 0, \ q > 0.$$

◄ Приводя отношение
$$\frac{a_n}{a_{n+1}}$$
 к виду

◄ Приводя отношение
$$\frac{a_n}{a_{n+1}}$$
 к вид

$$a_{n} \qquad \left(q+n\right)^{\alpha}$$

$$\frac{a_n}{a_n} = \left(\frac{q+n}{q+n}\right)^{\alpha} =$$

$$\frac{a_n}{a_{n+1}} = \left(\frac{q+n}{p+n}\right)^{\alpha} = \left(1 + \frac{q-p}{p+n}\right)^{\alpha} = 1 + \frac{\alpha(q-p)}{p+n} + o\left(\frac{1}{n}\right)$$

$$\frac{a_n}{a_{n+1}} = \left(\frac{q+n}{p+n}\right) = 1$$

$$a_{n+1} = igl(p+n igr) = igl(p+n igr)$$
при $n o \infty$ и пользуясь признаком Рааб

$$a_{n+1} = igl(p+n igr)$$
ри $n o\infty$ и пользуясь признаком Рааб

при
$$n o\infty$$
 и пользуясь признаком Раабе, устанавливаем, что ряд сходится при $lpha(q-p)>1$. $lacktriangle$

при
$$n o \infty$$
 и пользуясь признаком Раас

гри
$$n o \infty$$
 и пользуясь признаком Раас

$$35.$$
 Доказать, что если для строго положительного ряда $\sum_{n=0}^{\infty} a_n$ выполняется условие

$$\frac{a_n}{a_{n+1}}=1+\frac{p}{n}+o\left(\frac{1}{n}\right)$$
 при $n\to\infty$, то $a_n=o\left(\frac{1}{n^{p-\epsilon}}\right)$, где $\epsilon>0$ произвольно мало, причем, если $p>0$, то $a_n\downarrow 0$ при $n\to\infty$, т.е. a_n при $n\geqslant n_0$ монотонно убывая, стремится к нулю,

когда
$$n \to \infty$$
. \blacksquare Начнем со случая, когда $p>0$. Фиксируя произвольное $\varepsilon_0, 0<\varepsilon_0< p$, из условия

существования предела
$$\lim_{n\to\infty} n\left(\frac{a_n}{a_{n+1}}-1\right)=p$$
 находим

 $1 + \frac{p - \varepsilon_0}{i} < \frac{a_i}{a_{i+1}} < 1 + \frac{p + \varepsilon_0}{i}, \quad i = \overline{N, n-1},$

где $N extcolor{w}$ достаточно большой фиксированный номер. Из написанных неравенств следует, чauо

 $\left(1+\frac{p-\varepsilon_0}{N}\right)\left(1+\frac{p-\varepsilon_0}{N+1}\right)\ldots\left(1+\frac{p-\varepsilon_0}{n-1}\right)<\frac{a_N}{a_n}<\left(1+\frac{p+\varepsilon_0}{N}\right)\left(1+\frac{p+\varepsilon_0}{N+1}\right)\ldots\left(1+\frac{p+\varepsilon_0}{n-1}\right).$

$$\left(1+\frac{p-\varepsilon_0}{N}\right)\left(1+\frac{p-\varepsilon_0}{N+1}\right)\ldots\left(1+\frac{p-\varepsilon_0}{n-1}\right)<\frac{a_N}{a_n}<\left(1+\frac{p+\varepsilon_0}{N}\right)\left(1+\frac{p+\varepsilon_0}{N+1}\right)\ldots\left(1+\frac{p+\varepsilon_0}{n-1}\right)$$
 Отсюда, учитывая, что $a_n>0$, а также пользуясь неравенством Бернулли, получаем

 $0 < a_n < \frac{a_N}{\left(1 + \frac{p - \epsilon_0}{N}\right)\left(1 + \frac{p - \epsilon_0}{N + 1}\right)\ldots\left(1 + \frac{p - \epsilon_0}{n - 1}\right)} < \frac{a_N}{1 + \left(p - \epsilon_0\right)\left(\frac{1}{N} + \frac{1}{N + 1} + \ldots + \frac{1}{n - 1}\right)}.$

Поскольку $p-\epsilon_0>0$, а $\frac{1}{N}+\frac{1}{N+1}+\ldots+\frac{1}{n-1}\to\infty$ при $n\to\infty$, то из неравенства (A) вытекает, что $a_n \to 0$. Принимая во внимание еще, что при p>0 последовательность (a_n) монотонна (это видно из того, что при $n\geqslant n_0$, где n_0 — достаточно большое число, $\frac{p}{n}>o\left(\frac{1}{n}\right)$, следовательно, $\frac{a_n}{a_{n+1}} > 1$), убеждаемся в справедливости второй части утверждения.

Для доказательства первой части утверждения (р — любое, а arepsilon > 0) покажем, что

Вводя обозначение $\epsilon_n=n^{p-\epsilon}a_n$ и составляя отношение $\frac{\epsilon_n}{\epsilon_{n+1}}$, получаем

 $\frac{\epsilon_n}{\epsilon_{n+1}} = \left(1 + \frac{1}{n}\right)^{\epsilon-p} \frac{a_n}{a_{n+1}} = \left(1 + \frac{1}{n}\right)^{\epsilon-p} \left(1 + \frac{p}{n} + o\left(\frac{1}{n}\right)\right) =$

 $=\left(1+\frac{\varepsilon-p}{n}+o\left(\frac{1}{n}\right)\right)\left(1+\frac{p}{n}+o\left(\frac{1}{n}\right)\right)=1+\frac{\varepsilon}{n}+o\left(\frac{1}{n}\right),\ n\to\infty.$

Замечая, что это отношение имеет тот же вид, что и $\frac{a_n}{a_{n+1}}$, на основании доказанного выше, приходим к выводу, что $\varepsilon_n \to 0$ при $n \to \infty$.

Исследовать сходимость ряда $\sum^{\infty} a_n$, если:

36.
$$a_n = (\sqrt{n+1} - \sqrt{n})^p \ln \frac{n-1}{n+1}, n > 1.$$

 \blacktriangleleft Преобразовывая выражение для общего члена a_n и используя при этом разложения $(1+x)^m$, $\ln(1+x)$ по формулам Маклорена с остаточным членом в форме Пеано, имеем

$$a_n = \frac{1}{(\sqrt{n+1} + \sqrt{n})^p} \ln\left(1 - \frac{2}{n+1}\right) = n^{-\frac{p}{2}} \left(2 + o\left(\frac{1}{n}\right)\right)^{-p} \left(-\frac{2}{n+1} + o\left(\frac{1}{n}\right)\right) =$$

 $=n^{-\frac{p}{2}}2^{-p}\left(1+o\left(\frac{1}{n}\right)\right)\left(-\frac{2}{n+1}+o\left(\frac{1}{n}\right)\right)=O^{\bullet}\left(\frac{1}{n+\frac{p}{n}}\right),\quad n\to\infty.$

Видим, что, по теореме 4, ряд сходится при
$$p > 0$$
.

37.
$$a_n = \log_{b^n} \left(1 + \frac{\sqrt[n]{a}}{n} \right), \ a > 0, \ b > 0.$$

■ Пользуясь приемом предыдущего примера, имеем

$$a_n = \frac{\ln(1+n^{-1}\sqrt[n]{a})}{n \ln b} = \frac{1}{n \ln b} \left(\frac{\sqrt[n]{a}}{n} + o\left(\frac{1}{n}\right) \right) = O^*\left(\frac{1}{n^2}\right), \quad n \to \infty, \quad b \neq 1.$$

$$n \ln b$$
 $n \ln b$ $n \ln b$

довательно, по теореме 4, ряд сходится, если
$$b
eq 1$$

Следовательно, по теореме 4, ряд сходится, если
$$b \neq 1$$
. \blacktriangleright 38. $a_n = \left(e - \left(1 + \frac{1}{n}\right)^n\right)^p$.

$$a_n = \binom{n+1}{n}$$
. Пользуясь разложениями функции $x \mapsto \ln(1+x)$ по формуле Маклорена, находим

$$a_n = \left(\epsilon - \exp\left\{n\ln\left(1 + \frac{1}{n}\right)\right\}\right)^p = e^p\left(1 - \exp\left\{-1 + n\left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right)\right\}\right)^p =$$

$$=e^{p}\left(1-\left(1-\frac{1}{2n}+o\left(\frac{1}{n}\right)\right)+o\left(\frac{1}{n}\right)\right)^{p}=O^{*}\left(\frac{1}{n^{p}}\right),\quad n\to\infty.$$

$$=e^r\left(1-\left(1-\frac{1}{2n}+o\left(\frac{1}{n}\right)\right)+o\left(\frac{1}{n}\right)\right)=O\left(\frac{1}{n^p}\right),\quad n\to\infty$$
 Таким образом, если $p>1$, то, согласно теореме 4, ряд сходится. \blacktriangleright

 ${f 39.}$ Доказать признак Жамэ: положительный ряд $\sum a_n$ сходится, если $(1-\sqrt[n]{a_n})rac{n}{\ln n}\geqslant$ p > 1 при $n > n_0$, и расходится, если $(1 - \sqrt[n]{a_n}) \frac{n}{\ln n} \leqslant 1$ при $n > n_0$.

$$-\ln n$$

Непосредственно из первого условия находим $0\leqslant a_n\leqslant \left(1-\frac{p\ln n}{n}\right)^n$ (заметим, что при

 $n > n_0$ выполняется неравенство $1 - \frac{p \ln n}{n} > 0$), откуда $0 \leqslant a_n \leqslant \exp\left\{n\ln\left(1-\frac{p\ln n}{n}\right)\right\}.$

Используя разложения функций $x\mapsto \ln(1+x),\,e^x$ по формуле Маклорена с остаточным членом в форме Пеано, из последнего неравенства имеем неравенство

$$0 \leqslant a_n \leqslant \frac{1}{n^p} \exp \left\{ -p^2 \frac{\ln^2 n}{2n} + o\left(\frac{\ln^2 n}{n}\right) \right\} = \frac{1}{n^p} - p^2 \frac{\ln^2 n}{2n^{p+1}} + o\left(\frac{\ln^2 n}{n^{p+1}}\right), \quad n \to \infty,$$

из которого следует (на основании теоремы 4), что ряд сходится при p > 1.

Поступая аналогично, из второго неравенства условия примера можно найти, что

 $a_n \geqslant \frac{1}{n} - \frac{\ln^2 n}{2n^2} + o\left(\frac{\ln^2 n}{n^2}\right) = O^*\left(\frac{1}{n}\right), \quad n \to \infty.$

Последнее неравенство означает, что ряд расходится. ▶

40. Доказать, что ряд $\sum_{n=1}^{\infty} a_n, a_n > 0$, сходится, если существует $\alpha > 0$ такое, что

 $\frac{\ln a_n^{-1}}{\ln n}\geqslant 1+lpha$ при $n\geqslant n_0$, и расходится, если $\frac{\ln a_n^{-1}}{\ln n}\leqslant 1$ при $n\geqslant n_0$ (логарифмический

lacktriangle Из условий примера легко получаем неравенства $0 < a_n \leqslant rac{1}{n^{1+lpha}}$ при $n \geqslant n_0$ (первый случай), а также неравенство $a_n \geqslant \frac{1}{n}$ при $n \geqslant n_0$ (второй случай). Следовательно, по признакам сравнения, можно утверждать, что в первом случае ряд сходится, если $\alpha > 0$, а во втором расходится. >

Исследовать на сходимость ряды с общим членом a_n , если:

41.
$$a_n = \frac{1}{(\ln n) \ln n}, n > 2$$

41. $a_n = \frac{1}{(\ln(\ln n))^{\ln n}}, n > 2.$ • Поскольку $\frac{\ln a_n^{-1}}{\ln n} = \frac{\ln(\ln(\ln n))^{\ln n}}{\ln n} = \ln(\ln(\ln n)) > 1,1$ при $n > \exp(\exp(\exp 1,1))$, то, согласно логарифмическому признаку, ряд сходится (см. пример 40). >

42.
$$a_n = \frac{1}{(\ln n)^{\ln(\ln n)}}, n > 1.$$

◀ В силу оценки

$$\frac{\ln a_n^{-1}}{\ln n} = \frac{(\ln(\ln n))^2}{\ln n} \leqslant 1,$$

справедливой при достаточно большом $n\left(\lim_{n\to\infty} \frac{(\ln(\ln n))^2}{\ln n} = 0\right)$, на основании логарифмического признака утверждаем, что данный ряд расходится. >

Пользуясь интегральным признаком Коши-Маклорена, исследовать сходимость рядов с общим членом a_n :

43.
$$a_n = \frac{1}{n \ln^p n}, n > 1.$$

 \blacktriangleleft Функция $f: x \mapsto \frac{1}{x \ln p}$ при x > 1 является положительной и, судя по знаку производной, убывающей (при любом p и достаточно большом x). Поэтому для исследования данного ряда на сходимость можно применять интегральный признак Коши. Имеем

$$\int_{0}^{+\infty} \frac{dx}{x \ln^{p} x} = \int_{0}^{+\infty} \frac{d(\ln x)}{\ln^{p} x} = \frac{1}{(p-1)2^{p-1}} < \infty$$

при p > 1. Следовательно, ряд также сходится при p > 1.

44.
$$a_n = \frac{1}{n(\ln n)^p(\ln(\ln n))^q}, n > 2.$$

◄ Как и в предыдущем примере, нетрудно установить, что здесь применим интегральный признак. Рассмотрим интеграл

$$I = \int\limits_{-\infty}^{+\infty} \frac{dx}{x \ln^p x (\ln(\ln x))^q} = \int\limits_{-\infty}^{+\infty} \frac{dt}{t^p \ln^q t}.$$

Если p = 1, то отсюда находим, что

$$I = \int_{-\infty}^{+\infty} \frac{dz}{z^q} = \left. \frac{z^{-q+1}}{1-q} \right|_{\ln(\ln 3)}^{+\infty} < \infty$$

при q > 1. Следовательно, ряд сходится при p = 1 и q > 1.

Если p>1 , то в силу того, что $\lim_{t\to +\infty} \frac{\ln^{\gamma}t}{t^{\epsilon}}=0$ при $\epsilon>0$ и любом γ , можем написать $\frac{1}{t^p \ln^q t} \leqslant \frac{1}{t^\alpha}$ при достаточно большом t>0, где $p\geqslant \alpha>1$.

Аналогично, если p<1, то при достаточно большом t>0 справедливо неравенство $\frac{1}{t^p \ln^q t} \geqslant \frac{1}{t^\alpha}$, где $p\leqslant \alpha<1$.

 $\frac{1}{L^p \ln^q t} \geqslant \frac{1}{L^{\alpha}}$, где $p \leqslant \alpha < 1$. А тогда, на основании признака сравнения, можем утверждать, что рассматриваемый интеграл сходится, если p > 1, и расходится, если p < 1 (в обоих случаях q — любое). Это же, согласно интегральному признаку, относится и к данному ряду. \blacktriangleright

 ${f 45.}$ Исследовать сходимость ряда $\sum_{n=1}^{\infty} rac{
u(n)}{n^2}$, где u(n) — количество цифр числа n .

◀ Легко показать, что $\nu(n) = [\lg n] + 1 \leqslant \ln n + 1$. Так как $\frac{\nu(n)}{n^2} \leqslant \frac{\ln n}{n^2} + \frac{1}{n^2}$ и ряды $\sum_{n=2}^{\infty} \frac{\ln n}{n^2} = \sum_{n=2}^{\infty} \frac{1}{n^2}$ сходятся, то, согласно теореме 1, п.1.5, сходится и данный ряд. ▶

n=2 n=2

сходимость ряда $\sum_{n=1}^{n-2} \lambda_n^{-2}$. \blacktriangleleft Графически можно установить, что для $\lambda_n>0$ справедливы неравенства $n\pi<\lambda_n< n\pi+\frac{\pi}{2}$. Тогда

$$\frac{1}{(n\pi + \frac{\pi}{n})^2} < \frac{1}{\lambda_n^2} < \frac{1}{n^2\pi^2},$$

и, в силу п.1.4, данный ряд сходится. Аналогично поступаем в случае $\lambda_n < 0$.

47. Исследовать сходимость ряда $\sum_{n=0}^{\infty} \frac{1}{\ln(n!)}$.

∢ Согласно интегральному признаку Коши—Маклорена, ряд $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ расходится. Пользуясь неравенством $\ln(n!) < n \ln n$ и теоремой 1, п.1.5, заключаем, что данный ряд также расходится. ▶

48. Доказать, что ряд $\sum_{n=1}^{\infty} a_n$ со строго положительными монотонно убывающими чле-

нами сходится или расходится одновременно с рядом $\sum_{n=0}^{\infty} 2^n a_{2^n}$.

◀ Поскольку $0 < a_1 + a_2 + a_3 + a_4 + \ldots + a_{2^{n+1}} \le a_1 + 2a_2 + 4a_4 + \ldots + 2^n a_{2^n}$, то, в силу монотонности (S_n) , $S_n = \sum_{k=1}^n a_k$, а также теоремы о монотонной ограниченной последовательности, из сходимости второго ряда вытекает сходимость первого.

Кроме того, в силу оценки

$$\frac{1}{2}(4a_2+4a_4+\ldots+2^{n+1}a_{2^{n+1}})\leqslant a_1+a_2+a_3+\ldots+a_{2^{n+1}},$$

из сходимости первого ряда вытекает сходимость второго. >

49. Пусть f(x) > 0 при $x \geqslant 1$, f — монотонно невозрастающая функция. Доказать, что если ряд $\sum_{n=0}^{\infty} f(n)$ сходится, то для остатка его $R^n = \sum_{n=0}^{\infty} f(k)$ справедлива оценка

$$\int_{-\infty}^{+\infty} f(x) dx < R_n < f(n+1) + \int_{-\infty}^{+\infty} f(x) dx.$$

Найти сумму ряда $\sum_{n=0}^{\infty} \frac{1}{n^3}$ с точностью до 0,01.

lacktriangled B силу монотонного невозрастания функции f, имеем неравенства $0 < f(k+1) \leqslant$ $f(x) \leqslant f(k)$ при $k \leqslant x \leqslant k+1, \ k \in \mathbb{N}$, используя которые, находим

$$\int_{n+1}^{+\infty} f(x) dx = \sum_{k=n+1}^{\infty} \int_{k}^{k+1} f(x) dx < \sum_{k=n+1}^{\infty} f(k) = R_n,$$

$$\int_{k}^{+\infty} f(x) dx = \sum_{k=n+1}^{\infty} \int_{k}^{k+1} f(x) dx > \sum_{k=n+1}^{\infty} f(k+1) = R_n - f(n+1).$$

Теперь легко видеть, что из полученных неравенств следует требуемая оценка.

Для вычисления суммы ряда с указанной точностью воспользуемся доказанной выше оценкой. В данном случае $R_n = 0.01; f(x) = \frac{1}{x^3}$. Тогда

 $\int \frac{dx}{x^3} < 0.01 < \frac{1}{(n+1)^3} + \int \frac{dx}{x^3},$

откуда получаем число первых членов ряда, которое нужно взять для вычисления суммы ряда с точностью до
$$0.01$$
: $n=7$. Следовательно, $\sum\limits_{n=1}^{\infty}\frac{1}{n^3}\approx 1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+\frac{1}{6^3}+\frac{1}{7^3}\approx 1+0.1250+0.0370+0.0156+0.0080+0.0046+0.0029\approx 1.1931\approx 1.19$ (с недостатком). \blacktriangleright Исследовать сходимость следующих рядов.

$$50. \sum_{n=1}^{\infty} \left(\operatorname{ctg} \frac{\pi n}{4n-2} - \sin \frac{\pi n}{2n+1}\right).$$

¶ Применяя формулу Маклорена с остаточным членом в форме Пеано, а также пользуясь элементарными преобразованиями тригонометрических функций, получаем

$$a_n = \operatorname{ctg} \frac{\pi n}{4n-2} - \sin \frac{\pi n}{2n+1} = \frac{1 - \operatorname{tg} \frac{n}{2(4n-2)}}{1 + \operatorname{tg} \frac{\pi}{2(4n-2)}} - \cos \frac{\pi}{2(2n+1)} =$$

$$=\frac{1-\frac{\pi}{2(4n-2)}+o\left(\frac{1}{n^2}\right)}{1+\frac{\pi}{2(4n-2)}+o\left(\frac{1}{n^2}\right)}-1+\frac{\pi^2}{8(2n+1)^2}+o\left(\frac{1}{n^2}\right)=-\frac{\pi}{4n-2}+o\left(\frac{1}{n}\right)=O^*\left(\frac{1}{n}\right),\quad n\to\infty.$$

Следовательно, по теореме 4, п.1.5, ряд расходится. 🕨

$$51. \sum_{n=0}^{\infty} \frac{\ln(n!)}{n^{\alpha}}.$$

$$\blacktriangleleft$$
 При $n\geqslant 3$ справедливы неравенства $rac{n-2}{n^2}<rac{\ln(n!)}{n^2}<rac{\ln n}{n^{\alpha-1}}.$

Поскольку ряды $\sum_{n=1}^{\infty} \frac{n-2}{n^{\alpha}}$ и $\sum_{n=1}^{\infty} \frac{\ln n}{n^{\alpha-1}}$, согласно интегральному признаку, сходятся при $\alpha>2$, то исследуемый ряд, в силу теоремы 1, п.1.5, также сходится при $\alpha>2$.

52.
$$\sum_{n=1}^{\infty} \left(n^{\frac{1}{n^2+1}} - 1 \right).$$

◄ Пользуясь формулой Маклорена, получаем

 $a_n = n^{\frac{1}{n^2+1}} - 1 = \exp\left(\frac{\ln n}{n^2+1}\right) - 1 = \frac{\ln n}{n^2+1} + o\left(\frac{\ln n}{n^2}\right) = O^*\left(\frac{\ln n}{n^2}\right), \quad n \to \infty.$

Отсюда, на основании интегрального признака и теоремы 3, п.1.5, заключаем, что данный ряд сходится. ►

$$53. \sum_{n=1}^{\infty} \frac{1}{\ln^2 \left(\sin \frac{1}{n}\right)}.$$

◄ Поскольку $\sin\frac{1}{n}>\frac{2}{\pi n},\ n\in\mathbb{N},\ ext{то } \ln^2\left(\sin\frac{1}{n}\right)<\ln^2\left(\frac{\pi n}{2}\right).$ Сяедовательно,

$$\frac{1}{\ln^2\left(\sin\frac{1}{r}\right)} > \frac{1}{\ln^2\left(\frac{\pi n}{r}\right)} > \frac{2}{\pi n \ln\frac{\pi n}{2}} = O^*\left(\frac{1}{n \ln n}\right), \ n \to \infty.$$

Таким образом, на основании интегрального признака и теоремы 3, п.1.5, из последнего соотношения следует, что данный ряд расходится. ►

$$54. \sum_{n=1}^{\infty} (n^{n^{\alpha}} - 1).$$

◀ При $\alpha \geqslant 0$ ряд расходится, так как общий член ряда не стремится к нулю при $n \to \infty$. Поэтому будем считать, что $\alpha < 0$, и при установлении порядка стремления общего члена ряда при $n \to \infty$ будем пользоваться формулой Маклорена. Имеем

$$n^{n^{\alpha}} - 1 = \exp(n^{\alpha} \ln n) - 1 = \frac{\ln n}{n^{-\alpha}} + o\left(\frac{\ln n}{n^{-\alpha}}\right) = O^{\bullet}\left(\frac{\ln n}{n^{-\alpha}}\right), \ n \to \infty.$$

Отсюда, на основании интегрального признака и теоремы 3, п.1.5, видим, что ряд сходится при $\alpha < -1$. \blacktriangleright

55.
$$\sum_{n=1}^{\infty} \frac{n^{2n}}{(n+a)^{n+b}(n+b)^{n+a}}, \ a>0, \ b>0.$$

◄ Имеем

$$a_n = \frac{n^{2n}}{(n+a)^{n+b}(n+b)^{n+a}} = \frac{1}{n^{a+b}\left(1+\frac{a}{n}\right)^{n+b}\left(1+\frac{b}{n}\right)^{n+a}}.$$

Так как последовательности $\left(\left(1+\frac{a}{n}\right)^{b+n}\right)$ и $\left(\left(1+\frac{b}{n}\right)^{a+n}\right)$ при $n\to\infty$ стремятся к постоянным e^a и e^b соответственно, то $a_n\sim\frac{e^{-a-b}}{n^{a+b}}$ при $n\to\infty$. Следовательно, по теоремам 3 и 4, п.1.5, данный ряд сходится при a+b>1.

$$56. \sum_{n=1}^{\infty} \left(\ln \frac{1}{n^{\alpha}} - \ln \left(\sin \frac{1}{n^{\alpha}} \right) \right).$$

◀ Очевидно, если $\alpha \leqslant 0$, то ряд расходится, ибо общий член ряда не стремится к нулю. Далее, при $\alpha>0$, используя формулу Маклорена, получаем

$$a_n = \ln \frac{1}{n^{\alpha}} - \ln \left(\sin \frac{1}{n^{\alpha}} \right) = -\ln \left(n^{\alpha} \sin \frac{1}{n^{\alpha}} \right) =$$

$$= -\ln \left(n^{\alpha} \left(\frac{1}{n^{\alpha}} - \frac{1}{6n^{3\alpha}} + o\left(\frac{1}{n^{3\alpha}} \right) \right) \right) = O^{\bullet} \left(\frac{1}{n^{2\alpha}} \right), \ n \to \infty.$$

Таким образом, по теореме 4, п.1.5, ряд сходится при $\alpha > \frac{1}{2}$.

Исследовать сходимость рядов $\sum u_n$ со следующими общими членами:

57.
$$u_n = \left(\int_0^n \sqrt[4]{1+x^4} \, dx\right)^{-1}$$

◄ Поскольку

$$\int_{1}^{n} \sqrt[4]{1+x^4} \, dx > \int_{1}^{n} x \, dx = \frac{n^2}{2},$$

то $0 < u_n < \frac{2}{n^2}$, т.е. по теоремам 1 и 4, п.1.5, ряд сходится. \blacktriangleright

 ${f 58.}$ Доказать, что сходимость векторного ряда $\sum^{\infty} A_n$ в ${f E}^k, \ A_n = (a_{n1}, \, a_{n2}, \, \ldots, \, a_{nk}),$

$$A_n \in \mathbf{E}^k$$
, эквивалентна сходимости всех рядов $\sum_{i=1}^{\infty} a_{ni}, i=\overline{1,k}.$

а 1. Пусть все ряды $\sum_{n=1}^{\infty} a_{ni}$, $i = \overline{1, k}$, сходятся. Тогда $\exists \lim_{n \to \infty} S_{ni} = S_i$, где S_{ni} и S_i — соответственно частичные суммы и суммы рядов. По определению предела последовательности

ответственно частичные суммы и суммы рядов. По определению предела последовательнос
$$\forall \varepsilon > 0 \ \exists n_0$$
 такое, что $\forall n > n_0$ выполняются неравенства $|S_{ni} - S_i| < \varepsilon, \quad i = \widehat{1,k}.$

Отсюда

$$\sqrt{\sum_{i=1}^k |S_{ni}-S_i|^2} < \varepsilon \sqrt{k},$$
 или $\|S_n-S\|<\varepsilon \sqrt{k}$, где $\|\cdot\|$ — норма элемента в \mathbf{E}^k , $S_n=(S_{n1},\,S_{n2},\,\dots\,,\,S_{nk}),\ S=$

или $||S_n - S|| < \varepsilon \sqrt{k}$, где $||\cdot||$ — норма элемента в \mathbf{E} , $S_n = (S_{n1}, S_{n2}, \dots, S_{nk})$, $S = (S_1, S_2, \dots, S_k) = \sum_{n=1}^{\infty} A_n$. Следовательно, $\exists \lim_{n \to \infty} S_n = S$ в \mathbf{E}^k , т.е. по определению 3, п, 1.1,

векторный ряд $\sum_{n=0}^{\infty} A_n$ сходится к S.

2. Пусть сходится векторный ряд $\sum_{n=1}^{\infty} A_n$ к сумме $S,\ S \in \mathbf{E}^k$. Тогда по определению 3, п.1.1, $\forall \varepsilon > 0 \ \exists n_0$ такое, что $\forall n > n_0$ выполняется неравенство

$$||S_n - S|| < \varepsilon$$
 или $\sqrt{\sum_{i=1}^k |S_{ni} - S_i|^2} < \varepsilon$.

Отсюда

$$|S_{ni} - S_i| < \varepsilon \quad \forall i = \overline{1, k},$$

т.е. сходятся все ряды $\sum_{i=1}^{\infty} a_{ni}$.

59. Исследовать на сходимость векторные ряды:

a)
$$\sum_{n=2}^{\infty} \left(\frac{1}{n \ln n}, e^{-n} \right);$$
6)
$$\sum_{n=2}^{\infty} \left(e^{-\sqrt{n}}, \frac{\ln n}{n\sqrt{n}}, \frac{n!}{(2n+1)!!(|\sin n| + |\cos n|)} \right).$$

 \blacktriangleleft а) Поскольку ряд $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ в силу интегрального признака Коши—Маклорена расхо-

дится, то данный векторный ряд, по доказанному выше, также расходится.

б) Для сходимости данного векторного ряда необходимо и достаточно, чтобы сходились все три ряда:

$$\sum_{n=1}^{\infty} e^{-\sqrt{n}}, \quad \sum_{n=1}^{\infty} \frac{\ln n}{n\sqrt{n}}, \quad \sum_{n=1}^{\infty} \frac{n!}{(2n+1)!!(|\sin n|+|\cos n|)}.$$

К первому ряду применим признак Раабе:

$$\lim_{n\to\infty} n\left(\exp\left\{\sqrt{n+1}-\sqrt{n}\right\}-1\right) = \lim_{n\to\infty} n\left(\exp\left\{\frac{1}{\sqrt{n+1}+\sqrt{n}}\right\}-1\right) = \lim_{n\to\infty} n\left$$

$$= \lim_{n \to \infty} n \left(1 + \frac{1}{\sqrt{n+1} + \sqrt{n}} + o \left(\frac{1}{\sqrt{n}} \right) - 1 \right) = \lim_{n \to \infty} n \left(\sqrt{n+1} + \sqrt{n} \right)^{-1} = +\infty.$$

Следовательно, ряд сходится. Ко второму ряду применяем интегральный признак Коши— Маклорена, т.е. исследуем на сходимость несобственный интеграл:

$$\int_{1}^{+\infty} \frac{\ln x \, dx}{x\sqrt{x}} = -2x^{-\frac{1}{2}} \ln x \Big|_{1}^{+\infty} + 2 \int_{1}^{+\infty} \frac{dx}{x\sqrt{x}} = 2 \int_{1}^{+\infty} \frac{dx}{x\sqrt{x}}.$$

Поскольку интеграл сходится, то сходится и ряд. Что же касается третьего ряда, то сначала используем признак сравнения

$$\frac{n!}{(2n+1)!!(|\sin n|+|\cos n|)} \leqslant \frac{n!}{(2n+1)!!},$$

а затем к ряду $\sum_{i=1}^{\infty} \frac{n!}{(2n+1)!!}$ применим признак д'Аламбера:

$$\lim_{n\to\infty}\frac{(n+1)!(2n+1)!!}{(2n+3)!!\,n!}=\frac{1}{2}.$$

Следовательно, третий ряд является сходящимся. Таким образом, поскольку все три ряда сходятся, то данный векторный ряд также сходится. ►

60. Доказать, что сходимость ряда комплексных чисел $\sum_{n=1}^{\infty} z_n$ эквивалентна сходимости

двух действительных рядов $\sum_{n=0}^{\infty} x_n$ и $\sum_{n=0}^{\infty} y_n$, где $z_n = x_n + i y_n$.

◄ 1. Пусть ряды $\sum_{n=1}^{\infty} x_n$ и $\sum_{n=1}^{\infty} y_n$ сходятся соответственно к суммам X и Y. Тогда, по определению 1, п.1.1, $\forall \varepsilon > 0$ $\exists n_0$ такое, что $\forall n > n_0$ выполняются неравенства

$$|X_n - X| < \varepsilon \quad \mathbf{u} \quad |Y_n - Y| < \varepsilon, \tag{1}$$

где X_n , Y_n — частичные суммы этих рядов. Учитывая неравенства (1), получаем $|X_n + iV_n| = |X_n + iV_n$

$$|X_n + iY_n - (X + iY)| = |X_n - X + i(Y_n - Y)| \le |X_n - X| + |Y_n - Y| < 2\varepsilon.$$

Следовательно, частичные суммы комплексного ряда $\sum_{n=1}^{\infty} (x_n + iy_n)$ сходятся к числу $X + iY = \sum_{n=1}^{\infty} x_n + i \sum_{n=1}^{\infty} y_n$.

n=1 2. Пусть ряд $\sum_{n=1}^{\infty} z_n$ сходится к сумме X+iY . Тогда, по определению 1, п.1.1, $\forall \varepsilon>0$ $\exists n_0$

такое, что выполняется неравенство

$$|X_n + iY_n - (X + iY)| < \varepsilon \text{ или } \sqrt{(X_n - X)^2 + (Y_n - Y)^2} < \varepsilon, \tag{2}$$

где $X_n+iY_n=x_1+iy_1+x_2+iy_2+\ldots+x_n+iy_n=z_1+z_2+\ldots+z_n$ — частичные суммы рассматриваемого ряда. Из (2) следует

$$|X_n - X| < \varepsilon, \quad |Y_n - Y| < \varepsilon,$$

т.е. $X_n \to X, Y_n \to Y$ при $n \to \infty$. Следовательно, ряд $\sum_{n=1}^\infty x_n$ сходится к сумме X, а ряд

$$\sum_{n=1}^{\infty} y_n - \kappa \text{ cymme } Y. \blacktriangleright$$

откуда

a)
$$\sum_{n=1}^{\infty} \frac{n+i}{n^3+1}$$
; 5) $\sum_{n=1}^{\infty} \frac{n!}{(i+2)(i+4)\cdots(i+2n)}$.

4 а) Поскольку ряды $\sum_{n=1}^{\infty} \frac{n}{n^3+1}$ и $\sum_{n=1}^{\infty} \frac{1}{n^3+1}$ сходятся, то по доказанному выше сходится

данный комплексный ряд.

б) Используя формулу $x+iy=\sqrt{x^2+y^2}(\cos\varphi+i\sin\varphi)$, преобразуем выражение

о) используя формулу
$$t + iy = \sqrt{t^2 + y^2} (\cos \varphi + i \sin \varphi)$$
, преобразуем выражение $\frac{1}{(i+2)(i+4)\dots(i+2n)}$ к виду $\frac{\cos \varphi_n - i \sin \varphi_n}{\sqrt{5}\sqrt{17}\dots\sqrt{4n^2+1}}$, где $\varphi_n = \sum_{k=1}^n \arctan \frac{1}{2k}$. Поскольку

$$\frac{n!|\cos\varphi_n|}{\sqrt{5}\sqrt{17}\ldots\sqrt{4n^2+1}}\leqslant \frac{n!}{\sqrt{5}\sqrt{17}\ldots\sqrt{4n^2+1}}, \quad \frac{n!|\sin\varphi_n|}{\sqrt{5}\sqrt{17}\ldots\sqrt{4n^2+1}}\leqslant \frac{n!}{\sqrt{5}\sqrt{17}\ldots\sqrt{4n^2+1}}$$

и ряд $\sum_{-\sqrt{5}\sqrt{17}\ldots\sqrt{4n^2+1}}^{n!}$ по признаку д'Аламбера сходится, то на основании доказанной выше теоремы (пример 60) сходится и данный комплексный ряд. >

теоремы (пример 60) сходится и данный комплексный ряд.
$$\blacktriangleright$$
 Заменив последовательности (x_n) , $n \in \mathbb{N}$, соответствующими рядами, исследовать их сходимость:

62.
$$x_n = 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} - 2\sqrt{n}$$
.
 \blacktriangleleft Поскольку $x_n = \sum_{k=0}^{n-1} (x_{k+1} - x_k) + x_1$, то

$$1 + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} - 2\sqrt{n} = -1 - \sum_{k=1}^{n-1} \frac{1}{\sqrt{k+1}(\sqrt{k+1} + \sqrt{k})^2}.$$

Следовательно,
$$\lim_{n\to\infty}x_n=-1-\sum_{k=1}^\infty\frac{1}{\sqrt{k+1}(\sqrt{k+1}+\sqrt{k})^2}.$$

$$k=1$$
 V $k=1$ Полученный ряд сходится по теореме 4, п.1.5, ибо

$$\frac{1}{\sqrt{k+1}(\sqrt{k+1}+\sqrt{k})^2}\sim \frac{1}{2k^{\frac{3}{2}}} \quad \text{при} \quad k\to\infty,$$
 поэтому сходится также данная последовательность. \blacktriangleright

63.
$$x_n = \sum_{k=1}^{n} \frac{\ln k}{k} - \frac{\ln^2 n}{2}$$
.

 $\lim_{n\to\infty}x_n=\sum^{\infty}\left(\frac{\ln(k+1)}{k+1}+\frac{1}{2}\left(\ln^2k-\ln^2(k+1)\right)\right).$

$$\lim_{n\to\infty} x_n = \sum_{k=1} \left(\frac{1}{k+1} + \frac{1}{2} \left(\ln (k-\ln (k+1)) \right) \right).$$

Пользуясь формулой Маклорена с остаточным членом в форме Пеано, имеем

$$2a_n = \frac{2\ln(n+1)}{n+1} + \ln\frac{n}{n+1} \cdot \ln n(n+1) =$$

$$= \frac{2\ln(n+1)}{n+1} - \frac{\ln(n+1) + \ln n}{n} + O^{\bullet}\left(\frac{\ln n}{n^2}\right) = -\frac{2\ln n}{n(n+1)} - \ln\left(1 + \frac{1}{n}\right) \cdot \frac{-n+1}{n(n+1)} + O^{\bullet}\left(\frac{\ln n}{n^2}\right) =$$

 $= -\frac{2 \ln n}{n(n+1)} + \frac{n-1}{n^2(n+1)} + O^*\left(\frac{\ln n}{n^2}\right) = O^*\left(\frac{\ln n}{n^2}\right), \ n \to \infty.$

 $x_n = \sum_{k=1}^{n-1} \left(\frac{\ln(k+1)}{k+1} + \frac{1}{2} \left(\ln^2 k - \ln^2(k+1) \right) \right),$

(1)

(2)

Следовательно, сходимость последовательности (x_n) эквивалентна сходимости ряда

 $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$. Последний, по интегральному признаку, сходится, поэтому сходится и данная после-

повательность. >

 ${f 64.}$ Сколько примерно надо взять членов ряда, чтобы найти его сумму с точностью до 10^{-5} , если

a) $\sum_{n=0}^{\infty} \frac{1}{n^2}$; 6) $\sum_{n=0}^{\infty} \frac{2n}{(n+1)!}$? ◀ Нужное число членов ряда найдем из неравенства

 $|a_{n+1} + a_{n+2} + \dots| < 10^{-5}$

а) Пусть $a_n = \frac{1}{n^2}$. Поскольку

$$\frac{1}{(n+1)^2} < \int_{n}^{n+1} \frac{dx}{x^2}, \quad n \in \mathbb{N},$$

TO

$$\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \ldots < \int_{-\infty}^{+\infty} \frac{dx}{x^2}.$$

Следовательно, если

$$\int_{n}^{\infty} \frac{dx}{x^2} \leqslant 10^{-5},$$

то неравенство (1) будет выполняться. Из (2) находим $n\geqslant 10^{-5}$. 6) Пусть $a_n=\frac{2n}{(n+1)!}$. Тогда

$$|a_{n+1} + a_{n+2} + \dots| = \frac{2^{n+1}}{(n+2)!} \left(1 + \frac{2}{n+3} + \frac{2^2}{(n+3)(n+4)} + \dots \right) < < \frac{2^{n+1}}{(n+2)!} \left(1 + \frac{2}{n+3} + \left(\frac{2}{n+3} \right)^2 + \dots \right) = \frac{(n+3)2^{n+1}}{(n+2)!(n+1)}.$$

Таким образом, если $\frac{(n+3)2^{n+1}}{(n+2)!(n+1)} \leqslant 10^{-5}$, то неравенство (1) будет выполняться. Решая последнее неравенство, находим $n \geqslant 10$.

Упражнения для самостоятельной работы

Исследовать сходимость рядов:

- 1. $\sum_{n=0}^{\infty} \frac{(n!)^3}{(2n)!^2}$. 2. $\sum_{n=0}^{\infty} \frac{n(n+5)(n+10)}{2^n}$. 3. $\sum_{n=0}^{\infty} \left(\cos \frac{1}{\sqrt{n}}\right)^{n^2}$. 4. $\sum_{n=0}^{\infty} \left(n \sin \frac{1}{n}\right)^{n^3}$.

 - 5. $\sum_{n=0}^{\infty} \left| \ln \left(\cos \frac{1}{n} \right) \right|^{\frac{3}{5}}$. 6. $\sum_{n=0}^{\infty} \sqrt[3]{\ln \left(n \lg \frac{1}{n} \right)}$. 7. $\sum_{n=0}^{\infty} \frac{(2n)!!}{(2n+1)!!} e^{-\sqrt{n}}$.
 - 8. $\sum_{n=1}^{\infty} \frac{n(n+3)(n+6) \dots (4n-3)}{(n+1)(n+4) \dots (4n-2)(n+2)^2}.$ 9. $\sum_{n=2}^{\infty} \frac{(n-1)!}{\left(n+\sqrt{n-1} \operatorname{tg} \frac{1}{n-1}\right) \left(n-1+\sqrt{n-2} \operatorname{tg} \frac{1}{n-2}\right) \dots (2+\operatorname{tg} 1)}.$
 - 10. $\sum_{n=1}^{\infty} \frac{\ln^3 n}{n^2} \cdot 11. \sum_{n=2}^{\infty} \frac{\ln(\ln n)}{(\ln n)^{\alpha}} \cdot 12. \sum_{n=2}^{\infty} \frac{|\sin n|}{n \ln^2 n} \cdot 13. \sum_{n=1}^{\infty} \sqrt{n} \left(\sqrt{4 + \frac{1}{n^2}} \sqrt[3]{8 + \frac{3}{n^2}} \right).$

Гл. 1. Ряпы

14. $\sum_{n=2}^{\infty} \left| \sin \left(e^{\frac{1}{n}} - \frac{2}{n} - \cos \sqrt{\frac{2}{n}} \right) \right|^{\alpha}$. 15. $\sum_{n=2}^{\infty} \sin^{\alpha} \frac{1}{n^{2} \ln^{2} n}$.

16. Доказать признак Бертрана: если существует хотя бы в несобственном смысле предел

$$\lim_{n\to\infty}\left(\left(n\left(\frac{a_n}{a_{n+1}}-1\right)-1\right)\ln n\right)=q,$$

то числовой строго положительный ряд $\sum a_n$ при q>1 сходится, а при q<1 — расходится.

17.
$$\sum_{k=1}^{\infty} \prod_{j=1}^{n} \gamma_{k} \text{ rge } \gamma_{k} = \left(1 + \frac{1}{k} + \frac{\alpha}{k \ln k} + \frac{1}{k \ln^{2} k}\right)^{-1}. 18. \sum_{j=1}^{\infty} \frac{(2n)!!}{(2n+1)!!} \sqrt{n \ln^{\alpha} n}$$

17.
$$\sum_{n=1}^{\infty} \prod_{k=2}^{n} \gamma_k \text{ rge } \gamma_k = \left(1 + \frac{1}{k} + \frac{\alpha}{k \ln k} + \frac{1}{k \ln^2 k}\right)^{-1}. \text{ 18. } \sum_{n=2}^{\infty} \frac{(2n)!!}{(2n+1)!! \sqrt{n} \ln^2 n}.$$

Установив поведение общего члена при
$$n \to \infty$$
, исследовать сходимость следующих рядов:
$$\frac{\infty}{n} \left(\frac{n}{n} \right) = \frac{1}{n} \left(\frac{1}{n} \right) = \frac{\infty}{n} \left(\frac{1}{n} \right) = \frac{1}{n} \left(\frac{$$

19.
$$\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right) n^{\alpha}$$
. 20. $\sum_{n=1}^{\infty} \left(\int_{-\infty}^{+\infty} \frac{\exp\{-n^2 x^2 + x\}}{n x^4 + x^2 + 1} dx \right)$.

21.
$$\sum_{n=0}^{\infty} \int_{0}^{+\infty} \frac{t \cos nt}{\sqrt{1+t^4}} dt$$
. 22. $\sum_{n=1}^{\infty} \int_{0}^{+\infty} \frac{e^{-nt} \ln t}{\sqrt{1+t^2}} dt$.

23. $\sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{+\infty} f(x) |\sin nx| dx$, где функция f абсолютно интегрируема на $]0, +\infty[$ и

$$\int_{0}^{\infty} f(x) dx \neq 0.$$
24.
$$\sum_{n=0}^{\infty} \left| \int_{0}^{+\infty} e^{-x^{n}} dx - 1 \right|. 25. \sum_{n=0}^{\infty} \left| \int_{0}^{+\infty} \sin t^{2} dt - \frac{\cos n^{2}}{2n} \right|.$$

26. Матричный ряд
$$\sum_{n=1}^{\infty} A_n$$
 , где A_n матрицы размера $k \times l$, называется сходящимся, если

$$\exists \lim_{n \to \infty} \sum_{p=1}^{n} A_p = A,$$

где A — матрица размера $k \times l$.

Показать, что сходимость матричного ряда эквивалентна сходимости всех рядов вида

$$\sum_{n=0}^{\infty} a_n^{pq}, \quad 1 \leqslant p \leqslant k, \quad 1 \leqslant q \leqslant l,$$

где a_n^{pq} — элементы матрицы A_n , $n \in \mathbb{N}$.

27. Доказать, что матричный ряд

$$I + \frac{xA}{11} + \frac{x^2A^2}{11} + \dots + \frac{x^nA^n}{11} + \dots, \tag{1}$$

где A — квадратная матрица, I — единичная матрица, x — число, сходится. Матричный ряд (1) определяет матричную экспоненту e^{xA} , т.е.

$$e^{xA} = \sum_{n=0}^{\infty} \frac{x^n A^n}{n!}.$$

28. Пусть квадратная матрица А приводится к диагональному виду, т.е. существует матрица T такая, что

$$T^{-1}AT = \begin{pmatrix} \lambda_1 & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix}.$$

Тогда

$$e^A = T \begin{pmatrix} e^{\lambda_1} & & 0 \\ & e^{\lambda_2} & & \\ & & \ddots & \\ 0 & & & e^{\lambda_n} \end{pmatrix} T^{-1}.$$

Доказать это.

29. Пусть квадратная матрица размера $n \times n$ имеет вид

Тогда

$$e^{I} = \begin{pmatrix} e^{\lambda} & \frac{e^{\lambda}}{1!} & \frac{e^{\lambda}}{2!} & \cdots & \frac{e^{\lambda}}{(n-1)!} \\ & e^{\lambda} & \frac{e^{\lambda}}{1!} & \cdots & \frac{e^{\lambda}}{(n-2)!} \\ & & \ddots & \ddots & \\ & & & \ddots & \frac{e^{\lambda}}{1!} \\ 0 & & & & e^{\lambda} \end{pmatrix}.$$

Доказать это.

30. Доказать, что ряд $\sum_{n=0}^{\infty} A^n$ сходится, если

$$\sum_{p, q=1}^{m} (a^{pq})^2 < 1,$$

где $a^{pq} \in \mathbb{R}$ — элементы матрицы A.

§ 2. Признаки сходимости знакопеременных рядов

2.1. Абсолютная и условная сходимости ряда.

Определение 1. Pяд $\sum_{n=1}^{\infty}$ a_n называется абсолютно сходящимся, если сходится ряд

 $\sum_{n=1}^{\infty} |a_n|, \ \ 2\partial e \ a_n \in \mathbb{R} \ \ unu \ \mathbb{C}.$

Определение 2. Если ряд $\sum_{n=1}^{\infty} a_n$ сходится, а ряд $\sum_{n=1}^{\infty} |a_n|$ расходится, то ряд $\sum_{n=1}^{\infty} a_n$ называется условно сходящимся.

Теорема 1. Из абсолютной сходимости ряда следует его сходимость.

Теорема 2. Если ряд сходится абсолютно к сумме S, то члены ряда можно переставлять в любом порядке и сумма переставленного ряда также будет равна S.

Теорема 3 (Римана). Если ряд сходится условно, то путем соответствующей перестановки его членов можно получить ряд с наперед заданным значением суммы (при этом не исключается $\pm \infty$).

2.2. Признак Лейбница.

Если $a_n = (-1)^n b_n$, $b_n \geqslant 0$, и последовательность (b_n) , начиная с некоторого номера n_0 , монотонно стремится к нулю, то ряд $\sum_{n=0}^{\infty} a_n$ сходится.

п=1 Пля остатка такого ряда справедлива оценка:

$$R_n = (-1)^n \theta_n b_{n+1}, \quad 0 \leqslant \theta_n \leqslant 1, \quad n > n_0.$$

2.3. Признак Абеля.

Ряд

$$\sum_{n=1}^{\infty} a_n b_n \tag{1}$$

сходится, если сходится ряд $\sum_{n=1}^{\infty} a_n$ и последовательность (b_n) есть монотонная и ограничен-

2.4. Признак Дирихле.

Ряд (1) сходится, если последовательность (b_n) , начиная с некоторого номера n_0 , монотонно стремится к нулю, а последовательность частичных сумм ряда $\sum_{n=0}^{\infty} a_n$ ограничена.

2.5. Ассоциативное свойство ряда.

Члены сходящегося ряда можно группировать произвольно; при этом сумма ряда не изменяется.

65. Доказать, что ряд $\sum_{n=1}^{\infty} a_n$ является сходящимся, если выполнены условия: а) общий член этого ряда $a_n \to 0$ при $n \to \infty$; б) ряд $\sum_{n=1}^{\infty} A_n$, полученный в результате группировки

членов данного ряда без нарушения их порядка, сходится; в) число слагаемых a_i , входящих

в член $A_n = \sum_{i=n}^{p_{n+1}-1} a_i, \ 1 = p_1 < p_2 < \dots,$ ограничено.

$$\blacktriangleleft$$
 Пусть (S_{nk}^A) — последовательность частичных сумм ряда $\sum\limits_{n=1}^\infty A_n$. Тогда

$$S_{nk}^{A} = a_1 + a_2 + \dots + a_{p_2-1} + a_{p_2} + a_{p_2+1} + \dots + a_{p_3-1} + \dots + a_{p_{n-1}-1} = \dots + a_{p_n} + a_{p_n+1} + \dots + a_{k} + a_{k+1} + \dots + a_{p_{n+1}-1} = \dots + a_{p_n} + a_{p_n+1} + \dots + a_{p_n} + \dots + a_{p_n+1} + \dots + a_{p_n+1}$$

$$= S_k + a_{k+1} + \ldots + a_{p_{n+1}-1} =$$

$$= S_k + a_{k+1} + \ldots + a_{p_{n+1}-1}, \quad p_n \leqslant k \leqslant p_{n+1}-1,$$
 где (S_k) — последовательность частичных сумм ряда $\sum_{k=1}^{\infty} a_k$.

Поскольку $a_n \to 0$ и число членов последовательности $(a_{k+1} + a_{k+2} + \dots + a_{p_{n+1}-1}) = (C_k)$, по условию, ограничено, то $C_k \to 0$ при $k \to \infty$. Следовательно, $\lim_{n \to \infty} S_{nk}^A = \lim_{n \to \infty} S_n$, что и требовалось доказать. \blacktriangleright

66. Доказать, что ряд
$$a_1+a_2+\ldots+a_{p_2-1}-a_{p_2}-\ldots-a_{p_3-1}+a_{p_3}+\ldots$$

сходится или расходится одновременно с рядом

$$\sum_{i=1}^{\infty} (-1)^{n-1} \left(\sum_{i=1}^{p_{n+1}-1} a_i \right), \quad a_i > 0; \quad 1 = p_1 < p_2 < \dots.$$

◀ Пусть сходится первый ряд. Тогда сходится любая подпоследовательность его частичных сумм, в том числе и такая:

$$\left(\sum_{k=1}^{n} (-1)^k \left(\sum_{i=p_n}^{p_{n+1}-1} a_i\right)\right),\,$$

т.е. последовательность частичных сумм второго ряда. Следовательно, второй ряд также сходится.

Пусть теперь сходится второй ряд. Тогда $\sum_{i=1}^{p_{n+1}-1} a_i \to 0$ при $n \to \infty$. Это означает, что, в силу положительности a_i , сумма $a_{k+1}+\ldots+a_{p_{n+1}-1}$ (см. предыдущий пример) также

$$\lim_{n\to\infty} S_{nk}^A = \lim_{k\to\infty} S_k,$$

т.е. сходится первый ряд. >

стремится к нулю и

 $67.\,$ Доказать, что сумма сходящегося ряда не изменится, если члены этого ряда переставить так, что ни один из них не удаляется от своего прежнего положения больше чем на m мест, где m — некоторое заранее заданное число.

lacktriangle Пусть S — сумма ряда $\sum^{\infty} a_n$. Тогда orall arepsilon > 0 $\exists N$ такое, что orall n > N для последовательности частичных сумм (S_n) этого ряда выполняются неравенства $S-\varepsilon < S_n < S+\varepsilon$. В силу условия примера, при n > N + m можем написать $S - \varepsilon < S'_n < S + \varepsilon$, где (S'_n) — последовательность частичных сумм ряда, полученного в результате указанной перестановки. Следовательно, $\lim_{n\to\infty} S'_n = S$.

Доказать сходимость следующих рядов и найти их суммы: **68.** $1 - \frac{3}{2} + \frac{5}{4} - \frac{7}{8} + \dots$

68.
$$1 - \frac{3}{2} + \frac{5}{2} - \frac{7}{2} +$$

lack Oбщий член ряда $a_n=(-1)^nb_n,\ n\in\mathbb{Z}_+,\ \ {
m donde}\ \ b_n=rac{2n+1}{2^n}.$ Так как b_n , начиная с некоторого номера, монотонно стремится к нулю, то, согласно признаку Лейбница, ряд сходится. Доказать сходимость этого ряда можно и непосредственно. Замечая, что последовательность (S_n) частичных сумм этого ряда представляется в виде

$$S_{n} = S_{n}^{(1)} + S_{n}^{(2)} + \dots + S_{n}^{(n+1)},$$

$$S_{n}^{(1)} = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + \frac{(-1)^{n}}{2^{n}} = \frac{2}{3} \left(1 - \frac{(-1)^{n+1}}{2^{n+1}} \right),$$

$$S_{n}^{(2)} = 2 \left(-\frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + \frac{(-1)^{n}}{2^{n}} \right) = \frac{4}{3} \left(-\frac{1}{2} - \frac{(-1)^{n+1}}{2^{n+1}} \right),$$

$$S_{n}^{(k+1)} = 2 \left(\frac{(-1)^{k}}{2^{k}} - \frac{(-1)^{k}}{2^{k+1}} + \dots + \frac{(-1)^{n}}{2^{n}} \right) = \frac{4}{3} \left(\frac{(-1)^{k}}{2^{k}} - \frac{(-1)^{n+1}}{2^{n+1}} \right),$$

$$S_{n}^{(n)} = \frac{4}{3} \left(\frac{(-1)^{n-1}}{2^{n-1}} - \frac{(-1)^{n+1}}{2^{n+1}} \right), \quad S_{n}^{(n+1)} = 2 \frac{(-1)^{n}}{2^{n}},$$

получаем

$$S_n = \frac{2}{3} + \frac{4}{3} \left(-\frac{1}{2} + \frac{1}{4} - \dots + \frac{(-1)^{n-1}}{2^{n-1}} \right) - \frac{2}{3} \cdot \frac{(-1)^{n+1}}{2^{n+1}} - \frac{4}{3} \cdot \frac{(n-1)(-1)^{n+1}}{2^{n+1}} + 2\frac{(-1)^n}{2^n}.$$

Следовательно, $\lim_{n \to \infty} S_n$ существует (т.е. ряд сходится) и равен $\frac{2}{9}$. >

69.
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots$$

 \blacktriangleleft Поскольку общий член ряда имеет вид $a_n = \frac{(-1)^{n-1}}{n}, n \in \mathbb{N}$, а последовательность $\left(\frac{1}{n}\right)$

монотонно стремится к нулю, то, по признаку Лейбница, ряд сходится. Найдем S_{2n} . Имеем

 $S_{2n} = 1 - \frac{1}{2} + \frac{1}{2} - \dots + \frac{1}{2n-1} - \frac{1}{2n} = 1 + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2n} - \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) = 1$

 $= C + \ln 2n + \epsilon_{2n} - (C + \ln n + \epsilon_n) = \ln 2 + \epsilon_{2n} - \epsilon_n,$

где C — постоянная Эйлера, а $\varepsilon_n \to 0$ при $n \to \infty$. Учитывая еще, что $\lim_{n \to \infty} S_n = \lim_{n \to \infty} S_{2n}$ где (S_n) — последовательность частичных сумм данного ряда, окончательно получаем

$$1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{4} + \dots = \ln 2.$$

70. Зная, что $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2$, доказать следующее утверждение: если члены ряда

$$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\dots$$
 переставить так, чтобы группу p последовательных положительных членов сменяла Труппа q последовательных отрицательных членов, то сумма нового ряда будет равна $\ln 2+\frac{1}{3}\ln \frac{p}{a}$.

$$\blacksquare$$
 В результате указанной перестановки получим ряд
$$1 + \frac{1}{3} + \frac{1}{5} + \ldots + \frac{1}{2p-1} - \frac{1}{2} - \frac{1}{4} - \ldots - \frac{1}{2q} + \frac{1}{2p+1} + \frac{1}{2p+3} + \ldots + \frac{1}{4p-1} - \ldots,$$

сумма которого, в силу примера 66, равна сумме ряда
$$\left(1 + \frac{1}{2} + \frac{1}{r} + \dots + \frac{1}{2r-1}\right) - \left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2r}\right) +$$

$$\left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2p-1}\right) - \left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2q}\right) + \left(\frac{1}{2p+1} + \frac{1}{2p+3} + \dots + \frac{1}{4p-1}\right) - \dots$$

(1)

Рассмотрим ряд
$$\sum_{n=1}^{\infty} \left(\frac{1}{2(n-1)p+1} + \frac{1}{2(n-1)p+3} + \ldots + \frac{1}{2np-1} - \ldots \right)$$

$$-\frac{1}{2(n-1)q+2}-\frac{1}{2(n-1)q+4}-\dots-\frac{1}{2nq}$$
. (2) Ряд (2) получается из ряда (1) в результате группировки членов ряда (1) по два. Поэтому если мы покажем, что ряд (2) сходится, и найдем его сумму, то, на основании результата,

полученного в примере 65, можем утверждать, что ряд (1) имеет ту же сумму. Пусть p > q. Тогда нетрудно получить, что

 $S_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2nq} + \frac{1}{2nq+1} + \frac{1}{2nq+3} + \dots + \frac{1}{2np-1},$ (3)

где (S_n) — последовательность частичных сумм ряда (2). Прибавляя и вычитая в выражении (3) слагаемое

$$\frac{1}{2nq+2} + \frac{1}{2nq+4} + \ldots + \frac{1}{2np} = \frac{1}{2} \left(\frac{1}{nq+1} + \frac{1}{nq+2} + \ldots + \frac{1}{np} \right)$$

и пользуясь асимптотической формулой

$$\frac{1}{m+1} + \frac{1}{m+2} + \dots + \frac{1}{n} = \ln \frac{m}{n} + \varepsilon_{mn}, \ \varepsilon_{mn} \to 0, \ m \to \infty,$$

из (3) получаем

$$S_n = C_{2np} + \ln \frac{2np}{2nq} - \frac{1}{2} \ln \frac{np}{nq} + \varepsilon'_n, \ \varepsilon'_n \to 0, \ n \to \infty, \tag{4}$$

где (C_{2np}) — четная подпоследовательность частичных сумм сходящегося ряда $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n}$.

Таким образом, из (4) находим

$$S = \lim_{n \to \infty} S_n = \ln 2 + \frac{1}{2} \ln \frac{p}{q}.$$

Заметим, что при $p\leqslant q$ аналогичным образом получается этот же результат. В частности, если p=2 и q=1, то

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots = \frac{3}{2} \ln 2;$$

если p = 1, q = 2, то

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \dots = \frac{1}{2} \ln 2. \blacktriangleright$$

71. Члены сходящегося ряда $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ переставить так, чтобы он стал расходящимся.

◀ Рассмотрим, например, ряд

$$+ \dots + \left(\frac{1}{\sqrt{6n-5}} + \frac{1}{\sqrt{6n-3}} + \frac{1}{\sqrt{6n-1}} - \frac{1}{\sqrt{2n}}\right) + \dots =$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{\sqrt{6n-5}} + \frac{1}{\sqrt{6n-3}} + \frac{1}{\sqrt{6n-1}} - \frac{1}{\sqrt{2n}}\right) \equiv \sum_{n=0}^{\infty} a_n.$$

Очевидно, этот ряд получается из данного ряда в результате такой перестановки: за тремя положительными членами следует один отрицательный. Покажем, что ряд расходится.

В силу неравенства $\frac{1}{\sqrt{6n-3}} + \frac{1}{\sqrt{6n-1}} - \frac{1}{\sqrt{2n}} > \frac{2}{\sqrt{6n-1}} - \frac{1}{\sqrt{2n}} > 0$, имеем оценку общего члена второго ряда: $a_n > \frac{1}{\sqrt{6n-1}}$. Поскольку ряд $\sum_{n=0}^{\infty} \frac{1}{\sqrt{6n-1}}$ по теореме 4, п.1.5, расходится, то по

второго ряда: $a_n > \frac{1}{\sqrt{6n-5}}$. Поскольку ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt{6n-5}}$ по теореме 4, п.1.5, расходится, то по теореме 1, п.1.5, ряд $\sum_{n=1}^{\infty} a_n$ также расходится, что и требовалось. Заметим, что исходный

ряд сходится по признаку Лейбница. ►

 $\left(1+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{7}}+\frac{1}{\sqrt{9}}+\frac{1}{\sqrt{11}}-\frac{1}{\sqrt{4}}\right)+$

Исследовать сходимость знакопеременных рядов: 72. $1 + \frac{1}{2} + \frac{1}{2} - \frac{1}{4} - \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} - \dots$

2 3 4 5 6 7 6 9

【Поскольку сгруппированный ряд, согласно признаку Лейбница, сходится, то, на основании доказательства, приведенного в примере 65, приходим к выводу, что данный ряд также сходится. ▶

 $73. \sum_{n=1}^{\infty} \frac{\ln^{100} n}{n} \sin \frac{n\pi}{4}.$

■ Поскольку

$$\left|\sum_{k=1}^{n} \sin \frac{k\pi}{4}\right| = \left(\sin \frac{\pi}{8}\right)^{-1} \left|\sin \frac{n\pi}{8} \sin \frac{n+1}{8}\pi\right| < \frac{1}{\sin \frac{\pi}{8}},$$

а последовательность $(n^{-1} \ln^{100} n)$, начиная с достаточно большого n, монотонно стремится

к нулю (это вытекает из того, что $\lim_{x \to +\infty} x^{-1} \ln^{100} x = 100 \lim_{x \to +\infty} x^{-1} \ln^{99} x = 0, \quad (x^{-1} \ln^{100} x)' < 0 \,\,\forall x > e^{100}),$

то, согласно признаку Дирихле, данный ряд сходится.
$$\blacktriangleright$$
 74. $\sum_{n=0}^{\infty} (-1)^n \frac{\sin^2 n}{n}$.

$$n = 1$$
 $n = 1$ $n =$

силу ограниченности последовательности
$$\left(\sum_{k=1}^{n}(-1)^{k}\cos2k\right)$$
,

$$\left| \sum_{k=1}^{n} (-1)^k \cos 2k \right| = \left| -\frac{1}{2} + \frac{(-1)^n}{2 \cos 1} \cos (2n+1) \right| < \frac{1 + (\cos 1)^{-1}}{2},$$
 и монотонного стремления $\frac{1}{n}$ к нулю при $n \to \infty$) — по признаку Дирихле. Следовательно,

 $\frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n}{n} (1 - \cos 2n) = \sum_{n=0}^{\infty} (-1)^n \frac{\sin^2 n}{n}$

75.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}.$$

является также сходящимся рядом. >

при $n \to \infty$, то, по признаку Лейбница, ряд сходится. \blacktriangleright

$$\frac{(-1)^n}{\sqrt{n} + (-1)^n} = (-1)^n \frac{\sqrt{n} - (-1)^n}{n-1} = (-1)^n \frac{\sqrt{n}}{n-1} - \frac{1}{n-1}$$
 вамечая, что ряд $\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n}$, по признаку Лейбница, сходится, а ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится

и замечая, что ряд $\sum_{n=0}^{\infty} \frac{(-1)^n \sqrt{n}}{n-1}$, по признаку Лейбница, сходится, а ряд $\sum_{n=0}^{\infty} \frac{1}{n-1}$ расходится $(\kappa + \infty)$, заключаем, что данный ряд также расходится $(\kappa + \infty)$. \blacktriangleright

76.
$$\sum_{n=1}^{\infty} \sin(\pi \sqrt{n^2 + k^2}).$$

$$\sin\left(\pi\sqrt{n^2+k^2}\right) = (-1)^n \sin\pi\left(\sqrt{n^2+k^2}-n\right) \equiv (-1)^n b_n,$$
 где $b_n = \sin\frac{\pi k^2}{\sqrt{n^2+k^2}+n}$ — последовательность, монотонно (при $n>n_0$) стремящаяся к нулю

77. $\sum_{n=0}^{\infty} \frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n}.$

▲ Рассмотрим ряд, полученный в результате группировки членов данного ряда. Имеем

 $-\left(1+\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\ldots+\frac{1}{8}\right)-\left(\frac{1}{9}+\frac{1}{10}+\ldots+\frac{1}{15}\right)+\cdots$

$$\ldots + (-1)^k \left(\frac{1}{k^2} + \frac{1}{k^2 + 1} + \ldots + \frac{1}{(k+1)^2 - 1} \right) + \ldots$$

Поскольку

$$A_k = \frac{1}{k^2} + \frac{1}{k^2 + 1} + \dots + \frac{1}{(k+1)^2 - 1} < \frac{2k+1}{k^2} \to 0, \ k \to \infty,$$

$$A_k - A_{k+1} = (2k+1) \sum_{m=0}^{2k} \frac{1}{(k^2 + m)((k+1)^2 + m)} - \frac{1}{k^2 + 4k + 2} - \frac{1}{k^2 + 4k + 3} >$$

$$> rac{(2k+1)^2}{(k^2+2k)(k^2+4k+1)} - rac{1}{k^2+4k+2} - rac{1}{k^2+4k+3} > 0$$
три $k \geqslant k_0$, то ряд $\sum_{k=0}^{\infty} (-1)^k A_k$, согласно признаку Лейбница, сходится. А тогда на основании

при $k \geqslant k_0$, то ряд $\sum_{k=1}^{\infty} (-1)^k A_k$, согласно признаку Лейбница, сходится. А тогда на основании выводов, полученных в примере 66, данный ряд также сходится. \blacktriangleright

78.
$$\sum_{n=2}^{\infty} \frac{\cos \frac{\pi n^2}{n+1}}{\ln^2 n}.$$

∢ Имеем

$$\cos \frac{\pi n^2}{n+1} = (-1)^n \cos \left(\pi \frac{n^2}{n+1} - \pi n \right) = (-1)^{n+1} \cos \frac{\pi}{n+1}.$$

Так как ряд $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{\ln^2 n}$, по признаку Лейбница, сходится, а последовательность $\left(\cos \frac{\pi}{n+1}\right)$ монотонна и ограничена, то исследуемый ряд, по признаку Абеля, также сходится.

79. Доказать, что знакочередующийся ряд $b_1-b_2+b_3-b_4+\ldots+(-1)^{n-1}b_n+\ldots,\ b_n>0,$

сходится, если
$$\frac{b_n}{b_{n-1}}=1+\frac{p}{n}+o\left(\frac{1}{n}\right)$$
 при $n\to\infty$, где $p>0$.

Мак следует из примера 35, при p > 0 последовательность $(b_n) \downarrow 0$ при $n > n_0$. Поэтому, по признаку Лейбница, данный ряд сходится. ▶

Исследовать на абсолютную сходимость следующие ряды: 80.
$$\sum_{n=0}^{\infty} \ln \left(1 + \frac{(-1)^n}{n^p} \right)$$
.

◀ Пусть $p \leqslant 0$. Тогда общий член ряда к нулю не стремится и, следовательно, ряд расходится. Полагая, далее, p>0 и пользуясь формулой Маклорена с остаточным членом в форме Пеано, находим

$$\ln\left(1 + \frac{(-1)^n}{n^p}\right) = \frac{(-1)^n}{n^p} - \frac{1}{2n^{2p}} + o\left(\frac{1}{n^{2p}}\right) \quad \text{при} \quad n \to \infty.$$

Поскольку ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$, согласно признаку Лейбница, сходится при p > 0, а ряд $\sum_{n=1}^{\infty} a_n^*$, где $a_n^* = \frac{1}{2n^{2p}} + o\left(\frac{1}{n^{2p}}\right)$, по теореме 4, п.1.5, сходится при $p > \frac{1}{2}$ (при $p \leqslant \frac{1}{2}$ ряд расходится к $+\infty$), то данный ряд сходится только при $p > \frac{1}{2}$.

$$\frac{1}{2n^p} < \left| \ln \left(1 + \frac{(-1)^n}{n^p} \right) \right| < \frac{2}{n^p}, \quad p > 0,$$

и теорем 1, 4, п.1.5, данный ряд сходится абсолютно при p>1. Следовательно, при значениях p, удовлетворяющих неравенству $\frac{1}{2} , исследуемый ряд сходится условно. <math>\blacktriangleright$

81.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(n+(-1)^n)^p}.$$

В силу неравенства

« При р ≤ 0 общий член ряда не стремится к нулю, т.е. ряд расходится. Поэтому, считая, что р > 0, и применяя формулу Маклорена с остаточным членом в форме Пеано, преобразовываем общий член ряда к виду

$$\frac{(-1)^n}{(n+(-1)^n)^p} = (-1)^n n^{-p} \left(1 + \frac{(-1)^n}{n}\right)^{-p} =$$

$$= (-1)^n n^{-p} \left(1 + p \frac{(-1)^{n+1}}{n} + o\left(\frac{1}{n}\right)\right) = \frac{(-1)^n}{n^p} - \frac{p}{n^{p+1}} + o\left(\frac{1}{n^{p+1}}\right)$$

при $n \to \infty$. Ряды $\sum_{n=2}^{\infty} \frac{(-1)^n}{n^p}$, $\sum_{n=2}^{\infty} \left(\frac{p}{n^{p+1}} + o\left(\frac{1}{n^{p+1}}\right)\right)$ сходятся при p > 0 (первый — в силу признака Лейбница, а второй — по теореме 4, п.1.5). Поэтому исходный ряд сходится при этом же условии.

Поскольку, далее,

$$\frac{1}{(n+1)^p}\leqslant \frac{1}{(n+(-1)^n)^p}\leqslant \frac{1}{(n-1)^p},\ n=\overline{2,\infty},$$
 и ряд $\sum_{n=2}^\infty \frac{1}{n^p}$ сходится при $p>1$, то, в силу последнего неравенства и теоремы 1, п.1.5, данный

ряд сходится абсолютно при p>1. Следовательно, при 0 исследуемый ряд сходитсяусловно. ▶ 82. $\sum_{n=0}^{\infty} \frac{\sin \frac{n\pi}{4}}{n^p + \sin \frac{n\pi}{4}}.$

 \blacktriangleleft Очевидно, при $p\leqslant 0$ ряд расходится, поскольку при этом не выполняется необходимое

условие сходимости. При p > 0, как и в предыдущем примере, представим общий член ряда в виде

$$\sin \frac{n\pi}{4} \left(n^p + \sin \frac{n\pi}{4} \right)^{-1} = n^{-p} \sin \frac{n\pi}{4} \left(1 + \frac{\sin \frac{n\pi}{4}}{n^p} \right)^{-1} =$$

$$= \frac{\sin \frac{n\pi}{4}}{n^p} \left(1 - \frac{\sin \frac{n\pi}{4}}{n^p} + o\left(\frac{1}{n^p}\right) \right) = \frac{\sin \frac{n\pi}{4}}{n^p} - \frac{\sin^2 \frac{n\pi}{4}}{n^{2p}} + o\left(\frac{1}{n^{2p}}\right), \quad n \to \infty.$$

Ряд $\sum_{n=0}^{\infty} \frac{\sin \frac{n\pi}{4}}{n^p}$ сходится, по признаку Дирихле, при p>0, поскольку

$$\left|\sum_{n=1}^{n} \sin \frac{k\pi}{4}\right| < \frac{1}{\sin \frac{\pi}{2}}, \quad \frac{1}{n^{p}} \downarrow 0, \quad n \to \infty.$$

Далее, ряд $\sum_{n=1}^{\infty} \frac{\cos \frac{2\pi}{n}}{n^{2p}}$ при p>0 сходится также по признаку Дирихле, а ряд

$$\sum^{\infty} \left(\frac{1}{n^{2p}} + o\left(\frac{1}{n^{2p}} \right) \right)$$

сходится по теореме 4, п.1.5, только при $p > \frac{1}{2}$. Поэтому полуразность этих рядов

$$\frac{1}{2}\sum^{\infty}\left(\frac{1}{n^{2p}}+o\left(\frac{1}{n^{2p}}\right)\right)-\frac{1}{2}\sum^{\infty}\left(\frac{\cos\frac{n\pi}{12}}{n^{2p}}+o\left(\frac{1}{n^{2p}}\right)\right)$$

является сходящимся при $p>\frac{1}{2}$ рядом (при $0< p\leqslant \frac{1}{2}$ ряд $\sum_{n=1}^{\infty}\frac{1}{n^{2p}}$ расходится к $+\infty$, поэтому и последний ряд расходится к $+\infty$). Следовательно, исходный ряд сходится лишь при р $> \frac{1}{2}$. **Пля установления области абсолютной сходимости воспользуемся оценками**

$$\frac{\left|\sin\frac{n\pi}{4}\right|}{2n^{p}}\leqslant\frac{\left|\sin\frac{n\pi}{4}\right|}{n^{p}}\cdot\frac{1}{\left|1+\frac{\sin\frac{n\pi}{4}}{n^{p}}\right|}\leqslant\frac{2\left|\sin\frac{n\pi}{4}\right|}{n^{p}},\quad\frac{1}{2n^{p}}-\frac{\cos\frac{n\pi}{2}}{2n^{p}}=\frac{\sin^{2}\frac{n\pi}{4}}{n^{p}}\leqslant\frac{\left|\sin\frac{n\pi}{4}\right|}{n^{p}}\leqslant\frac{1}{n^{p}}$$
 и теоремами 1, 4, п.1.5. Из этих неравенств следует, что данный ряд сходится абсолютно

лишь при p > 1. Поэтому при $\frac{1}{2} ряд сходится условно. <math>\blacktriangleright$ 83. $\sum_{n}^{\infty} \frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n^p}.$ (1)

рассмотрим ряд

$$\sum_{n=1} (-1)^n A_n, \tag{2}$$
 где $A_n = \frac{1}{(n^2)^p} + \frac{1}{(n^2+1)^p} + \ldots + \frac{1}{(n^2+2n)^p}$, полученный в результате группировки членов данного

ряда. Поскольку
$$0 < A_n < \frac{2n+1}{n^{2p}} \to 0$$
 при $n \to \infty$ и $p > \frac{1}{2}$, а также
$$A_n - A_{n+1} = \sum_{i=0}^{2n} \frac{((n+1)^2 + i)^p - (n^2 + i)^p}{(n^2 + i)^p (n^2 + 2n + i + 1)^p} - (n^2 + 4n + 2)^{-p} - (n^2 + 4n + 3)^{-p} > 0$$

$$> \frac{(2n+1)((n^2+4n+1)^p-(n^2+2n)^p)}{(n^2+2n)^p(n^2+4n+1)^p} - \frac{1}{(n^2+4n+2)^p} - \frac{1}{(n^2+4n+3)^p} > 0$$
 при достаточно большом n , то, в силу признака Лейбница, ряд (2) сходится. Кроме того, $A_n > \frac{2n+1}{(n^2+2n)^p}$ не стремится κ 0 при $p \leqslant \frac{1}{2}$; поэтому ряд (2) расходится, если $p \leqslant \frac{1}{2}$. Следовательно, согласно примеру 66, ряд (1) сходится лишь при $p > \frac{1}{2}$. Таким образом, область условной

сходимости ряда (1) определяется неравенствами
$$\frac{1}{2} . $\blacktriangleright$$$

84.
$$\sum_{n=1}^{\infty} \frac{(-1)^{[\ln n]}}{n}$$
.

◆ Ряп

$$\sum^{\infty} (-1)^{k-1} \left(\frac{1}{[e^{k-1}]+1} + \ldots + \frac{1}{[e^k]} \right),$$

полученный в результате группировки членов данного ряда, в силу оценки $\frac{1}{[e^{k-1}]+1}+\ldots+$ $\frac{1}{[e^k]} > \frac{[e^k]-[e^{k-1}]}{[e^k]} = 1 - \frac{[e^{k-1}]}{[e^k]} \to 1 - \frac{1}{e}, k \to \infty$, расходится. Следовательно, согласно примеру

66, исследуемый ряд также расходится.
$$\blacktriangleright$$
 85. $\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} \right)^{p}$.

◆ Рассмотрим отношение

$$\left(\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)}\right)^{p} : \left(\frac{1 \cdot 3 \cdot 5 \dots (2n-1)(2n+1)}{2 \cdot 4 \cdot 6 \dots (2n)(2n+2)}\right)^{p} =$$

 $=\left(1+\frac{1}{2n+1}\right)^p=1+\frac{p}{2n+1}+o\left(\frac{1}{n}\right)=1+\frac{p}{2n}+o\left(\frac{1}{n}\right), \quad n\to\infty.$

Отсюда видим, что, согласно примеру 79, ряд сходится, если p>0 . Так как при $p\leqslant 0$ общий член ряда не стремится к нулю при $n o \infty$, то это условие (p>0) является необходимым пля сходимости ряда.

Далее, по признаку Γ аусса, ряд сходится абсолютно лишь при p > 2. Следовательно, при значениях р, удовлетворяющих неравенству 0 , данный ряд сходится только

86.
$$\frac{1}{1P} - \frac{1}{2g} + \frac{1}{3P} - \frac{1}{4g} + \frac{1}{5P} - \frac{1}{6g} + \dots$$

 \blacktriangleleft Сразу заметим, что если $p\leqslant 0$ или $q\leqslant 0$, то ряд расходится в силу необходимого признака. Поэтому далее, считаем, что p > 0 и q > 0.

Имея в виду пример 65, сгруппируем члены данного ряда следующим образом:

$$\left(\frac{1}{1^p} - \frac{1}{2^q}\right) + \left(\frac{1}{3^p} - \frac{1}{4^q}\right) + \left(\frac{1}{5^p} - \frac{1}{6^q}\right) + \dots = \sum_{n=1,3,5,\dots}^{\infty} \left(\frac{1}{n^p} - \frac{1}{(n+1)^q}\right).$$

Tak kak

$$\frac{1}{n^p} - \frac{1}{(n+1)^q} = \frac{1}{n^p} - \frac{1}{n^q} \left(1 + \frac{1}{n} \right)^{-q} = \frac{1}{n^p} - \frac{1}{n^q} \left(1 - \frac{q}{n} + o\left(\frac{1}{n}\right) \right) = \frac{1}{n^p} - \frac{1}{n^q} + \frac{q}{n^{q+1}} + o\left(\frac{1}{n^{q+1}}\right), \quad n \to \infty,$$

то, по теореме 4, п.1.5, сгруппированный ряд сходится при p=q>0. Если же $p\neq q$, то отсюда следует, что ряд сходится при p > 1 и q > 1 одновременно. А тогда, согласно упомянутому примеру, при этих же условиях сходится и данный ряд.

Очевидно, абсолютно ряд сходится лишь при
$$p > 1$$
 и $q > 1$. ▶ 87. $1 + \frac{1}{3^p} - \frac{1}{2^p} + \frac{1}{5^p} + \frac{1}{7^p} - \frac{1}{4^p} + \dots$

■ Ряд $1 + \frac{1}{28} + \frac{1}{28} + \frac{1}{18} + \frac{1}{78} + \frac{1}{48} + \dots$, составленный из абсолютных величин членов данного ряда, сходится лишь при p>1, так как при этом условии сходится ряд $\sum_{n=1}^{\infty} \frac{1}{n^p}$ и

члены абсолютно сходящегося ряда можно переставить в любом порядке.

При p=1 получаем ряд, сходимость которого исследована в примере 70. Там мы установили, что ряд сходится.

Рассмотрим случай, когда 0 . Образуем подпоследовательность частичных суммданного ряда (S_{3n}) , где

$$S_{3n} = 1 - \frac{1}{2^p} + \frac{1}{3^p} - \frac{1}{4^p} + \dots + \frac{1}{(2n-1)^p} - \frac{1}{(2n)^p} + \frac{1}{(2n+1)^p} + \frac{1}{(2n+3)^p} + \dots + \frac{1}{(4n-1)^p} =$$

$$= C_{2n} + \frac{1}{(2n+1)^p} + \frac{1}{(2n+3)^p} + \dots + \frac{1}{(4n-1)^p};$$

 (C_{2n}) — подпоследовательность последовательности частичных сумм сходящегося ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}.$ Поскольку

$$\frac{1}{(2n+1)^p} + \frac{1}{(2n+3)^p} + \dots + \frac{1}{(4n-1)^p} > \frac{n}{(4n-1)^p} \to +\infty \quad \text{при } n \to \infty, \text{ то}$$

$$\lim_{n \to \infty} S_{3n} = \lim_{n \to \infty} C_{2n} + \lim_{n \to \infty} \left(\frac{1}{(2n+1)^p} + \frac{1}{(2n+3)^p} + \dots + \frac{1}{(4n-1)^p} \right) = +\infty.$$

Следовательно, данный ряд при 0 расходится. Заметив, что расходимость его при $p\leqslant 0$ следует из необходимого условия, окончательно устанавливаем, что исследуемый ряд абсолютно сходится, если p > 1, и условно, если p = 1.

88.
$$1 + \frac{1}{3^p} - \frac{1}{1^p} + \frac{1}{5^p} + \frac{1}{7^p} - \frac{1}{3^p} + \frac{1}{9^p} + \frac{1}{11^p} - \frac{1}{5^p} + \dots$$

■ Очевидно, при р > 1 даниый ряд сходится абсолютно, ибо при этом условии сходится

ряд $\sum_{nP} \frac{1}{nP}$, и члены абсолютно сходящегося ряда можно переставить в любом порядке.

(2)

Пусть $0 . Рассмотрим подпоследовательность <math>(S_{3n})$ последовательности частичных сумм данного дяда. Имеем

$$S_{3n} = \frac{1}{(2n+1)^p} + \frac{1}{(2n+3)^p} + \ldots + \frac{1}{(4n-1)^p}.$$

Поскольку $S_{3n} > \frac{n}{(4n-1)!} \to \infty$ при $n \to \infty$, то данный ряд расходится.

Пусть p=1. Тогда $0 < S_{3n} < \frac{1}{2}$ и, по теореме о монотонной ограниченной последовательности, $\lim_{n\to\infty} S_{3n}$ конечен. Следовательно, сходится ряд

$$\left(1+\frac{1}{3}-1\right)+\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{3}\right)+\left(\frac{1}{9}+\frac{1}{11}-\frac{1}{5}\right)+\ldots$$

А так как все условия примера 65 здесь выполнены, то данный ряд также сходится.

Учитывая еще, что при $p\leqslant 0$ исследуемый ряд расходится, окончательно устанавливаем, что он сходится абсолютно при p > 1, а при p = 1 — условно. \blacktriangleright

89.
$$1 - \frac{2}{2a} + \frac{1}{2p} + \frac{1}{4p} - \frac{2}{5a} + \frac{1}{6p} + \frac{1}{7p} - \frac{2}{8a} + \dots$$
 (1)

■ Рассмотрим ряд

$$\sum_{n=1,4,7,\dots} \left(\frac{1}{n^p} - \frac{2}{(n+1)^q} + \frac{1}{(n+2)^p} \right), \tag{2}$$
 полученный из данного в результате группировки его членов по три. Считая, что $p>0$ и

q > 0, имеем $a_n = \frac{1}{n^p} - \frac{2}{(n+1)^q} + \frac{1}{(n+2)^p} = 2\left(\frac{1}{n^p} - \frac{1}{n^q}\right) + 2\left(\frac{q}{n^{q+1}} - \frac{p}{n^{p+1}}\right) + o\left(\frac{1}{n^{q+1}}\right) + o\left(\frac{1}{n^{p+1}}\right),$

$$\frac{dn}{n^p} = \frac{1}{(n+1)^q} + \frac{1}{(n+2)^p} = 2\left(\frac{1}{n^p} - \frac{1}{n^q}\right) + 2\left(\frac{1}{n^{q+1}} - \frac{1}{n^{p+1}}\right) + 0\left(\frac{1}{n^{q+1}}\right) + 0\left(\frac{1}{n^{p+1}}\right),$$
 $n \to \infty.$ Отсюда, в силу признаков сравнения, п.1.5, следует, что при $p = q$ ряд (2) сходится. Пусть

 $p \neq q$. Тогда $a_n \sim \frac{1}{n^{\min\{q,q\}}}$ при $n \to \infty$, и, следовательно, по признакам сравнения, ряд (2) расходится, если $\min(p, q) \le 1$. Так как все условия примера 65 здесь выполнены, то выводы, относящиеся к ряду (2), остаются в силе для ряда (1). Замечая еще, что при $p\leqslant 0$ или $q\leqslant 0$ исследуемый ряд (1) расходится (общий член

ряда не стремится к нулю), а при p>1 и q>1 он сходится абсолютно, заключаем, что при $0 ряд сходится условно. <math>\blacktriangleright$

90.
$$\sum_{n=1}^{\infty} {m \choose n}, \text{ rge } {m \choose n} = \frac{m(m-1)\dots(m-n+1)}{n!}.$$

◀ Для удобства представим общий член ряда в виде

$$\binom{m}{n} = (-1)^{n-1}b_n, \quad b_n = \frac{(n-m-1)(n-m-2)\dots(1-m)m}{n!}.$$

Очевидно, при $m \in \mathbb{Z}_0$ ряд сходится абсолютно. Поэтому, исключая этот случай, можно образовать отношение

$$\frac{b_n}{b_{n+1}} = 1 + \frac{m+1}{n} + \frac{m}{n(n-m)}.$$

 T ак как начиная с некоторого номера n_0 , последовательность (b_n) имеет определенный знак, то будем считать, что $b_n > 0$, $n \ge n_0$. В таком случае из отношения (1), учитывая пример 79, находим, что ряд сходится, если m+1>0. Поскольку при $m+1\leqslant 0$ последовательность монотонно возрастает, то условие m+1>0 является также и необходимым для сходимости ряда. Далее, по признаку Гаусса, из (1) следует, что ряд сходится абсолютно, если m>0, а при m < 0 — расходится (абсолютно).

 ${f Tarum}$ образом, все сказанное позволяет сделать вывод, что при $m\geqslant 0$ ряд сходится абсолютно, а если -1 < m < 0, то ряд сходится условно. \blacktriangleright

91. Доказать, что сумма ряда
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n^p}$$
 для каждого $p>0$ лежит между $\frac{1}{2}$ и 1 .

◀ Поскольку ряд, в силу признака Лейбница, сходится, то подпоследовательности частичных сумм его имеют один и тот же предел S; причем подпоследовательность (S_{2n}) ,

$$S_{2n} = \left(1 - \frac{1}{2^p}\right) + \left(\frac{1}{3^p} - \frac{1}{4^p}\right) + \ldots + \left(\frac{1}{(2n-1)^p} - \frac{1}{(2n)^p}\right),$$

возрастает, а подпоследовательность $(S_{2n-1}),$

$$S_{2n-1}=1-\left(\frac{1}{2^p}-\frac{1}{3^p}\right)-\ldots-\left(\frac{1}{(2n-2)^p}-\frac{1}{(2n-1)^p}\right),$$

убывает. Следовательно, $S_{2n} < S < S_{2n-1}$, откуда находим, что $S < S_1 < 1$. Для доказательства оценки снизу рассмотрим подпоследовательность (S_{4n-1}) . Поскольку график функции $x \mapsto \frac{1}{2n}$, p > 0, x > 0, является выпуклым вниз, то выполняются неравенства

$$\frac{1}{3^p} + \frac{1}{5^p} > \frac{2}{4^p}, \quad \frac{1}{7^p} + \frac{1}{9^p} > \frac{2}{8^p}, \ldots, \frac{1}{(4n-1)^p} + \frac{1}{(4n+1)^p} > \frac{2}{(4n)^p}.$$

Отсюда для S_{4n-1} имеем оценку

$$S_{4n-1} = 1 - \frac{1}{2^p} + \frac{1}{3^p} - \frac{1}{4^p} + \dots + \frac{1}{(4n-1)^p} - \frac{1}{(4n)^p} + \frac{1}{(4n+1)^p} >$$

$$> 1 - \frac{1}{2^p} + \frac{1}{4^p} - \dots - \frac{1}{(4n-2)^p} + \frac{1}{(4n)^p} = 1 - \frac{1}{2^p} S_{2n},$$

из которой предельным переходом получаем

$$\lim_{n \to \infty} S_{4n-1} = S \geqslant 1 - \frac{1}{2^{n}} \lim_{n \to \infty} S_{2n} = 1 - \frac{S}{2^{n}}.$$

Итак, $S \geqslant \frac{2^p}{2^p+1} > \frac{1}{2}$, что и требовалось доказать.

92. Сколько членов ряда следует взять, чтобы получить его сумму с точностью до $\varepsilon=10^{-6}$, если:

а) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n^2+1}}$; 6) $\sum_{n=1}^{\infty} \frac{\sin n^{\circ}}{\sqrt{n}}$? **4** а) Согласно оценке остатка, вытекающей из признака Лейбница, нужное число N на-ходим из неравенства $\frac{1}{\sqrt{(N+1)^2+1}} < 10^{-6}$, откуда $N \geqslant 10^6$ (см. п.2.2).

 б) В силу признака Дирихле, ряд сходится, а по п.2.5 сумма ряда равна сумме сгруппированного ряда

$$\sum_{n=0}^{\infty} (-1)^{n+1} b_n, \quad b_n = (-1)^{n+1} \qquad \sum_{n=0}^{180n-1} \frac{\sin k^{\circ}}{\sqrt{k}},$$

n=1 k=180(n−1)+1 который, очевидно, является рядом лейбницева типа, т.е. сходящимся по признаку Лейбница. Следовательно, для остатка этого ряда справедлива оценка

$$\left|\sum_{k=180n+1}^{180n+179} \frac{\sin k^{\circ}}{\sqrt{k}}\right| \leqslant \frac{1}{\sqrt{180n+1}} \sum_{k=180n+1}^{180n+179} \sin k^{\circ} < \frac{1}{\sqrt{N+1} \sin \frac{\pi}{360}} < 10^{-6},$$

откуда $N \geqslant 1,32 \cdot 10^6$. ▶

откуда $N \geqslant 1,32\cdot 10^{\circ}$. Р 93. Доказать, что гармонический ряд останется расходящимся, если, не переставляя его членов, изменить знаки их так, чтобы за p положительными членами следовало бы q отрицательных членов ($p \neq q$). Сходимость будет иметь место лишь при p = q.

Указанный в условии ряд

$$1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{p} - \frac{1}{p+1} - \frac{1}{p+2} - \ldots - \frac{1}{p+q} + \frac{1}{p+q+1} + \ldots + \frac{1}{2p+q} - \ldots,$$

 $S_2 = \left(1 + \frac{1}{2} + \ldots + \frac{1}{n}\right) - \left(\frac{1}{n+1} + \ldots + \frac{1}{n+q}\right) > 1 - \frac{q}{n} = (p-q)\frac{1}{n},$

 $S_{2n} > (p-q)\left(\frac{1}{p} + \frac{1}{2p+q} + \dots + \frac{1}{np+(n-1)q}\right) \equiv x_n > 0$

 $S_1 < p$, $S_2 , <math>S_3 , <math>S_4 , <math>S_5 , ...$

..., S_{2n}

Наконец, пусть p=q. Тогда ряд (1) есть ряд лейбницева типа, следовательно, он сходит-

Упражнения для самостоятельной работы

31. $\sum_{n=0}^{\infty} \frac{(-1)^n \ln n}{100\sqrt{n}} \sin \left(\frac{100}{\sqrt{n}}\right). 32. \sum_{n=0}^{\infty} \left(e^{\frac{(-1)^n}{n}} - 1\right) q^n. 33. \sum_{n=0}^{\infty} \sin^3 n \ln \left(1 + \frac{n^2 + 0.1 \cos n}{n^3 + 1}\right).$

36. $\sum_{n=0}^{\infty} \arcsin \frac{1}{\sqrt{n}} \cos \frac{1}{n^2} \cdot (-1)^n \cdot 37 \cdot \sum_{n=0}^{\infty} \frac{\sin(\pi \sqrt[3]{n^3 + n})}{\ln^{\alpha} n} \cdot 38 \cdot \sum_{n=0}^{\infty} \frac{n\sqrt[3]{n}}{\ln^{\alpha} n} \sin \left(\pi \sqrt[3]{n^3 + n^2}\right).$

42. $\sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{\sqrt{n^3+1}} + \frac{1}{\sqrt{n^3+2}} + \dots + \frac{1}{\sqrt{n^3+n}} \right)$. **43.** $\sum_{n=1}^{\infty} (-1)^n \int_{-1}^{+\infty} \frac{1+x^n}{1+x^{2n}} dx$.

39. $\sum_{n=1}^{\infty} \left(\left(\frac{2}{\pi} \operatorname{arctg} \frac{2(-1)^n n}{\pi} \right)^{1+\frac{1}{n}} - 1 \right).$ **40.** $\sum_{n=1}^{\infty} n^{-\alpha} \sum_{k=1}^{n} k^p \cos^3 2n, \ p \in \mathbb{N}.$ **41.** $\sum_{n=1}^{\infty} \frac{\sin \left(n + \frac{1}{n} \right)}{n^{\alpha}}.$

34. $\sum_{n=0}^{\infty} \exp\left\{\frac{\ln^2 n}{n}\right\} \frac{\cos^5 n}{n \ln n}.$ 35. $\sum_{n=0}^{\infty} \arctan \left(\sin \sqrt{\frac{n}{n^2+1}}\right) \sin \left(n+\frac{1}{n}\right).$

 Π усть p < q. Тогда, оценивая частичные суммы ряда следующим образом:

$$(1+\frac{1}{2}+\frac{1}{2})-(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})+(\frac{1}{2}+\frac{1}{2})+(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})$$

$$\left(1 + \frac{1}{2} + \dots + \frac{1}{p}\right) - \left(\frac{1}{p+1} + \frac{1}{p+2} + \dots + \frac{1}{p+q}\right) + \left(\frac{1}{p+q+1} + \dots + \frac{1}{2p+q}\right) - \dots (1)$$

$$\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right)-\left(\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n}\right)+\left(\frac{1}{n+n+1}+\frac{1}{n+n+1}+\ldots+\frac{1}{n+n+1}\right)$$

$$\left(1+\frac{1}{2}+\ldots+\frac{1}{2}\right)-\left(\frac{1}{2}+\frac{1}{2}+\ldots+\frac{1}{2}+\ldots+\frac{1}{2}\right)+\left(\frac{1}{2}+\ldots+\frac{1}{2}+\ldots+\frac{1}{2}\right)$$

$$\left(1 + \frac{1}{2} + \dots + \frac{1}{2}\right) - \left(\frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2}\right) + \left(\frac{1}{2} + \dots + \frac{1}{2}\right)$$

 $S_4 = S_2 + \left(\frac{1}{n+q+1} + \ldots + \frac{1}{2n+q}\right) - \left(\frac{1}{2n+q+1} + \ldots + \frac{1}{2n+2q}\right) >$

$$\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right)-\left(\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+a}\right)+\left(\frac{1}{n+a}\right)$$

$$\left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) - \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}\right) + \left(\frac{1}{n+n+1}\right)$$

$$\begin{pmatrix} 2 & p \end{pmatrix} \begin{pmatrix} p+1 & p+2 & p+1 \end{pmatrix}$$

и $\lim_{n\to\infty} x_n = +\infty$, то ряд (1) расходится.

находим, что $\lim_{n\to\infty} S_{2n+1}=-\infty$, т.е. ряд (1) расходится.

44. $\sum_{n=1}^{\infty} \int_{0}^{1} (1-x^2)^{n^2} dx \cdot \sin n$. 45. $\sum_{n=1}^{\infty} \int_{0}^{\frac{2\pi}{n}} \frac{\sin x}{x} dx$.

$$(2 p) (p+1) p+2 p+6$$

$$p+1$$
 $p+2$ $p+q$

$$\left(\frac{1+\frac{1}{2}+\cdots+\frac{1}{p}}{p}\right)-\left(\frac{1}{p+1}+\frac{1}{p+2}+\cdots+\frac{1}{p+1}\right)$$

$$\left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) - \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}\right) + \left(\frac{1}{n+n+1} + \dots + \frac{1}{n+n}\right)$$

$$-\dots -\frac{1}{n+n} + \frac{1}{n+n+1}$$

 $> S_2 + \frac{p}{2p+q} - \frac{q}{2p+q} > (p-q) \left(\frac{1}{p} + \frac{1}{2p+q} \right),$

46. $\sum_{n=0}^{\infty} a_n$, где a_n есть решение задачи

$$(n+2)a_{n+2}+2(n+1)a_{n+1}+na_n=0, a_1=-1, a_2=\frac{1}{2}.$$

Исследовать сходимость матричных рядов $\sum_{n=0}^{\infty} A_n$, если:

47.
$$A_n = \begin{pmatrix} \cos 1 & \sin 1 \\ \sin 1 & -\cos 1 \end{pmatrix}^n \frac{\sin \frac{\pi n}{18}}{n}$$
. **48.** $A_n = \begin{pmatrix} 2^{\frac{1}{n}} - 1 & \arcsin \frac{n^2}{n^3 + 2} \\ \frac{\sin n}{n} & \frac{\cos n}{n} \end{pmatrix} (-1)^n$.

§ 3. Действия над рядами

3.1. Сложение рядов.

Если ряды

$$\sum_{n=1}^{\infty} a_n \quad \mathsf{H} \quad \sum_{n=1}^{\infty} b_n, \quad a_n, b_n \in \mathcal{L}, \tag{1}$$

сходятся в \mathcal{L} , то справедливы равенст

$$\sum_{n=1}^{\infty} (\lambda a_n + \mu b_n) = \lambda \sum_{n=1}^{\infty} a_n + \mu \sum_{n=1}^{\infty} b_n,$$

где λ , μ — произвольные действительные или комплексные числа.

3.2. Правило Коши.

Под произведением двух рядов (1), где a_n , b_n — числа, понимается третий ряд, общий член которого имеет вид

$$c_n = a_1b_n + a_2b_{n-1} + \ldots + a_nb_1.$$

Вообще говоря, $\sum\limits_{n=0}^{\infty} c_n \neq \sum\limits_{n=0}^{\infty} a_n \sum\limits_{n=0}^{\infty} b_n$. Однако, если один из рядов сходится, а второй сходится абсолютно, то всегда

$$\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n.$$

Эта формула справедлива и в том случае, когда все три ряда сходятся.

$$\sum_{n=0}^{\infty} \cos \frac{2n\pi}{n}$$

$$94. \sum_{n=0}^{\infty} \frac{\cos \frac{2n\pi}{3}}{2^n}.$$

■ Поскольку

$$\cos \frac{2n\pi}{3} = 1 - 2\sin^2 \frac{n\pi}{3} = \begin{cases} -\frac{1}{2}, & \text{если} & n \neq 3k, & k \in \mathbb{N}, \\ 1, & \text{если} & n = 3k. \end{cases}$$

и ряды $\sum_{n=0}^{\infty} \frac{1}{2^{3n}}$, $\sum_{n=0}^{\infty} \frac{1}{2^n}$ сходятся, то, на основании утверждения п.3.1, имеем

$$\sum_{n=1}^{\infty} \frac{\cos \frac{2n\pi}{3}}{2^n} = -\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2^2} \right) + \frac{1}{2^3} - \frac{1}{2} \left(\frac{1}{2^4} + \frac{1}{2^5} \right) + \frac{1}{2^6} - \frac{1}{2} \left(\frac{1}{2^7} + \frac{1}{2^8} \right) + \frac{1}{2^9} - \dots =$$

$$= \frac{3}{2} \sum_{n=1}^{\infty} \frac{1}{2^{3n}} - \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2^n} = -\frac{2}{7} \cdot \blacktriangleright$$

§ 3. Действия над рядами

 $=\sum_{n=0}^{\infty}(xy)^n+y\sum_{n=0}^{\infty}(xy)^n=(1+y)\sum_{n=0}^{\infty}(xy)^n=\frac{1+y}{1-xy}.$

95. $\sum_{x}^{\infty} x^{\left[\frac{n}{2}\right]} y^{\left[\frac{n+1}{2}\right]}, |xy| < 1.$

■ В силу сходимости ряда $\sum_{n=0}^{\infty} (xy)^n$, на основании утверждения п.3.1, нмеем

$$a^{\left(\frac{n}{2}\right)} = \frac{1}{2} + \frac{1}{2$$

$$x^{\left[\frac{n}{2}\right]}y^{\left[\frac{n+1}{2}\right]} = 1 + y + xy + xy^{2} + x^{2}y^{2} + x^{2}y^{3} + \dots =$$

$$\left[\frac{n}{2}\right]_{u}\left[\frac{n+1}{2}\right] - 1 + u + ru + ru^{2} + r^{2}u^{2} + r^{2}u^{3} + \cdots + ru^{2}$$

 $\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} = 1.$

 $\sum_{n=0}^{\infty} \frac{1}{(n-1)!} \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{(n-1)!} = \sum_{n=0}^{\infty} c_n = 1 + \sum_{n=0}^{\infty} c_n,$

 $c_n = \sum_{k=0}^{n} a_k b_{n-k+1} = (-1)^n \sum_{k=0}^{n} \frac{(-1)^k}{(k-1)!(n-k)!}, \quad a_k = \frac{1}{(k-1)!}, \quad b_k = \frac{(-1)^k}{(k-1)!}.$

 $c_{n+1} = (-1)^n \sum_{k=1}^n \frac{(-1)^k}{k!(n-k)!} = 0, \quad n \in \mathbb{N},$

97. Показать, что квадрат сходящегося ряда $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ является рядом расходящимся.

▲ Прежде всего заметим, что данный ряд сходится (условно) по признаку Лейбница. По

 $c_n = \sum_{k=0}^{n} \left(\frac{(-1)^{k+1}}{\sqrt{k}} \cdot \frac{(-1)^{n-k+2}}{\sqrt{n-k+1}} \right) = (-1)^{n+1} \sum_{k=0}^{n} \frac{1}{\sqrt{k(n-k+1)}}.$

 $\sum \frac{1}{\sqrt{k(n-k+1)}} \geqslant \frac{n}{n} = 1.$

$$x^{\left[\frac{n}{2}\right]}y^{\left[\frac{n+1}{2}\right]} = 1 + y + xy + xy^2 + x^2y^2 + x^2y^3 + \dots =$$

$$z^{\left[\frac{n}{2}\right]}y^{\left[\frac{n+1}{2}\right]} = 1 + y + xy + xy^2 + x^2y^2 + x^2y^3 + \dots =$$

$$x^{\left[\frac{n}{2}\right]}y^{\left[\frac{n+1}{2}\right]} = 1 + y + xy + xy^2 + x^2y^2 + x^2y^3 + \dots =$$

$$\sum_{x} x^{\left[\frac{n}{2}\right]} y^{\left[\frac{n+1}{2}\right]} = 1 + y + xy + xy^{2} + x^{2}y^{2} + x^{2}y^{3} + \dots =$$

◄ Ряд $\sum_{n} \frac{1}{n!}$ сходится, поэтому, согласно п.3.2, имеем

Поскольку $\sum_{k=0}^{n} \frac{(-1)k}{k!(n-k)!} = \frac{1}{n!} (1-1)^n = 0, n \in \mathbb{N}$, то

$$x^{\left[\frac{n}{2}\right]}y^{\left[\frac{n+1}{2}\right]} = 1 + y + xy + xy^2 + x^2y^2 + x^2y^3 + \dots =$$

$$\left(\frac{n}{2} \right) y^{\left[\frac{n+1}{2} \right]} = 1 + y + xy + xy^2 + x^2 y^2 + x^2 y^3 + \dots = 0$$

$$\left[\frac{n}{2} \right] y \left[\frac{n+1}{2} \right] = 1 + y + xy + xy^2 + x^2y^2 + x^2y^3 + \dots = 0$$

$$\begin{bmatrix} \frac{n}{2} \\ \frac{n}{2} \end{bmatrix} = \begin{bmatrix} \frac{n+1}{2} \\ \frac{n}{2} \end{bmatrix} = \begin{bmatrix} \frac{n+1}{2} \\ \frac{n+1}{2} \end{bmatrix} = \begin{bmatrix} \frac{n+$$

$$\left[\frac{n}{2}\right]_{u}\left[\frac{n+1}{2}\right] = 1 + u + \tau u + \tau u^{2} + \tau^{2}u^{2} + \tau^{2}u^{3} + \cdots$$

$$\left[\frac{n}{2}\right]_{y}\left[\frac{n+1}{2}\right] = 1 + y + ry + ry^{2} + x^{2}y^{2} + x^{2}y^{3} + \dots =$$

В силу сходимости ряда
$$\sum_{n=0}^{\infty} (xy)^n$$
, на основании утверждения п.3.1, нм

$$n=0$$

в В силу сходимости ряда $\sum\limits_{i=0}^{\infty} (xy)^n$, на основании утвержде

В силу сходимости ряда
$$\sum_{n=0}^{\infty} (xy)^n$$
, на основании утверждения

Следовательно, ряд
$$\sum_{n=1}^{\infty} c_n$$
, в силу необходимого признака, расходится. \blacktriangleright 98. Проверить, что произведение двух расходящихся рядов

$$1 - \sum_{n=1}^{\infty} \left(\frac{3}{2}\right)^n$$
 M $1 + \sum_{n=1}^{\infty} \left(\frac{3}{2}\right)^{n-1} \left(2^n + \frac{1}{2^{n+1}}\right)$

96. Показать, что

где

что и требовалось показать. >

Поскольку $\frac{1}{\sqrt{k(n-k+1)}} \geqslant \frac{1}{n}, n \in \mathbb{N}, k = \overline{1, n},$ то

правилу п.3.2, имеем

есть абсолютно сходящийся ряд.

◀ Легко установить (хотя бы с помощью признака Коши), что эти ряды расходятся. По
правилу перемножения рядов имеем

$$c_n = a_1 b_n + b_1 a_n + \sum_{k=2}^{n-1} a_k b_{n-k+1},$$

где

$$a_1 = 1, a_n = -\left(\frac{3}{2}\right)^{n-1}, b_1 = 1, b_n = \left(\frac{3}{2}\right)^{n-2} \left(2^{n-1} + \frac{1}{2^n}\right), n = 2, 3, \ldots$$

Следовательно,

$$c_n = \left(\frac{3}{2}\right)^{n-2} \left(2^{n-1} + \frac{1}{2^n}\right) - \left(\frac{3}{2}\right)^{n-1} - 4 \cdot 3^{n-2} \sum_{k=1}^{n-1} \frac{1}{2^k} - \frac{3^{n-2}}{2^{2n-1}} \sum_{k=1}^{n-1} 2^k = \left(\frac{3}{4}\right)^{n-1}.$$

Тогда

$$\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^{n-1} = 4. \blacktriangleright$$

Упражнения для самостоятельной работы

Используя правило Коши, перемножить следующие ряды и найти суммы произведений:

49.
$$\sum_{n=1}^{\infty} \frac{2^n}{n!} \sum_{n=1}^{\infty} \frac{1}{2^n n!}.$$
 50.
$$\sum_{n=1}^{\infty} x^n \sum_{n=1}^{\infty} y^n.$$
 51.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sum_{n=1}^{\infty} \frac{1}{3^n}.$$
 52.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \sum_{n=1}^{\infty} \frac{1}{n!}.$$

53.
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{3}{4}\right)^n \sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$$
. **54.** $\sum_{n=1}^{\infty} e^{-n} \sum_{n=1}^{\infty} \frac{(-1)^n}{n+1}$.

55. Доказать следующие свойства матричной экспоненты:

a)
$$e^{x_1 A} e^{x_2 A} = e^{(x_1 + x_2)A}$$
; b) $(e^{xA})^{-1} = e^{-xA}$,

где A — любая числовая квадратная матрица, $x_1, x_2, x \in \mathbb{R}$. 56. Показать, что в общем случае

$$e^A e^B \neq e^{A+B}$$
.

. _

где A, B — квадратные матрицы. 57. Показать:

а) $(e^A)^* = e^{A^*}$, где A^* — эрмитово сопряженная матрица;

б) если $A^{r} = -A$, то матрица e^{A} — ортогональная;

в) если $A^* = -A$, то матрица e^A — унитарная.

§ 4. Функциональные последовательности и ряды. Свойства равномерно сходящихся

функциональных последовательностей и рядов

4.1. Понятие равномерной сходимости последовательностей рядов.

Определение 1. Последовательность функций (f_n) , $f_n:X\to\mathbb{R}(\mathbb{C})$, $n\in\mathbb{N}$, называется сходящейся поточечно к функции $f:X\to\mathbb{R}(\mathbb{C})$, если при каждом фиксированном $x_0\in X$ числовая последовательность $(f_n(x_0))$ сходится к числу $f(x_0)$, т.е. $\forall \varepsilon>0$ $\exists N=N(\varepsilon,x_0)$ такое, что $\forall n>N$ справедливо неравенство

$$|f_n(x_0)-f(x_0)|<\varepsilon.$$

Функция f называется предельной для последовательности (f_n) .

Определение 2. Последовательность функций $(f_n), f_n: X \to \mathbb{R}(\mathbb{C}), n \in \mathbb{N}$, называется равномерно сходящейся к функции $f:X o\mathbb{R}(\mathbb{C})$ на множестве X , если orall arepsilon>0 $\exists N=N(arepsilon)$ такое, что $\forall n>N \land \forall x\in X$ выполняется неравенство

$$|f_n(x)-f(x)|<\varepsilon.$$

B этом случае пишут $f_n(x)
ightrightarrows f(x)$ на X. Определение 3. Функциональный ряд

$$\sum_{k=1}^{\infty} u_k(x) = u_1(x) + u_2(x) + \ldots + u_k(x) + \ldots, \qquad (1)$$

где $u_k:X_1\to\mathbb{R}(\mathbb{C}),\,X_1\supset X$, называется сходящимся поточечно на множестве Xк своей сумме $S(x), \ x \in X$, если сходится поточечно последовательность его частичных сумм $(S_n(x)), m.e. \ \forall x_0 \in X \exists \lim S_n(x_0) = S(x_0).$

Определение 4. Функциональный ряд (1) называется равномерно сходящимся к своей сумме S(x) на множестве X, если последовательность частичных сумм $(S_n(x))$ этого ряда равномерно сходится на $X \kappa S(x)$.

4.2. Критерий Коши.

Для равномерной сходимости ряда (1), $\pi.4.1$, на множестве X необходимо и достаточно, чтобы $\forall \varepsilon>0$ $\exists N=N(\varepsilon)$ такое, что $\forall n>N \land \forall p\in \mathbb{N} \land \forall x\in X$ выполнялось неравенство

$$|S_{n+p}(x) - S_n(x)| < \varepsilon.$$

4.3. Важнейшне достаточные признаки равномерной сходимости рядов.

Мажорантный признак Вейерштрасса. Если $\exists a_k \in \mathbb{R}$ такие, что $\forall x \in X$ справедливы неравенства $|u_k(x)|\leqslant a_k,\,k\in\mathbb{N},\,u$ ряд $\sum\limits_{k=1}^\infty a_k$ сходится, то ряд $(1),\,n.4.1,\,$ сходится равномерно на X .

Признак Дирихле. Если частичные суммы ряда $\sum\limits_{k=1}^{\infty}a_k(x)$ равномерно ограничены на X, т.е. $\exists M>0$ такое, что $\forall x\in X \land \forall n\in\mathbb{N}$ выполняется неравенство $|S_n(x)|=$ $\left|\sum\limits_{k=1}^{n}a_{k}(x)
ight|\leqslant M$, а функциональная последовательность $(b_{n}(x))$ удовлетворяет двум услови-

- a) $\forall x \in X : b_{n+1}(x) \leqslant b_n(x) \ \forall n > n_0;$
- 6) $b_n(x) \rightrightarrows 0$ на X при $n \to \infty$, то функциональный ряд

$$\sum_{k=0}^{\infty} a_k(x)b_k(x) \tag{1}$$

сходится равномерно на X.

Признак Абеля. Pяд (1) cxoдится равномерно на <math>X, если pяд $\sum\limits_{k=1}^{\infty} a_k(x)$ cxoдится рав-

- номерно на X, а функции b_k удовлетворяют двум условиям:
 - a) $\exists M > 0$ makoe, что $\forall x \in X \land \forall k \in \mathbb{N}$ выполняется неравенство $|b_k(x)| \leq M$;
 - б) $\forall x_0 \in X$ последовательность $(b_k(x_0))$ монотонна при $k > k_0$.

4.4. Непрерывность предельной функции и суммы ряда.

Если последовательность непрерывных функций $(f_n),\,f_n:X o\mathbb{R}(\mathbb{C}),$ сходится равномерно на X к функции $f:X o \mathbb{R}(\mathbb{C})$, то f непрерывна на X. Если все члены ряда $\sum\limits_{k=0}^\infty u_k(x)$

непрерывны на X и ряд сходится равномерно на X к сумме S(x), то функция S непрерывна наX.

4.5. Почленный предельный переход в рядах и функциональных последовательностях.

Если функциональный ряд (1), п.4.1, сходится равномерно в некоторой окрестности точки x_0 и если $\lim_{x\to x_0} u_k(x) = c_k$, $k\in\mathbb{N}$, то числовой ряд $\sum_{k=1}^\infty c_k$ сходится, причем

$$\lim_{x\to x_0}\sum_{k=1}^{\infty}u_k(x)=\sum_{k=1}^{\infty}c_k.$$

Если последовательность функций (f_n) , $n \in \mathbb{N}$, равномерно сходится в окрестности точки x_0 и $\forall n \in \mathbb{N}$ $\exists \lim_{x \to x_0} f_n(x) = A_n$, то последовательность чисел (A_n) , $n \in \mathbb{N}$, также сходится и

$$\lim_{x\to x_0} \left(\lim_{n\to\infty} f_n(x) \right) = \lim_{n\to\infty} \left(\lim_{x\to x_0} f_n(x) \right).$$

4.6. Предельный переход под знаком интеграла и почленное интегрирование ряда.

Если последовательность интегрируемых функций (f_n) , $f_n:[a,b]\to\mathbb{R}, n\in\mathbb{N}$, сходится равномерно на [a,b] к функции $f:[a,b]\to\mathbb{R}$, то $\forall x_0\in[a,b]$:

$$\int_{x_0}^x f_n(t) dt \Rightarrow \int_{x_0}^x f(t) dt \quad \forall x \in [a, b], \ n \to \infty.$$

Если ряд (1), $\pi.4.1$, члены которого интегрируемы на [a, b], сходится равномерно на [a, b], то справедливо равенство

$$\int_{x_0}^x S(t) dt = \sum_{k=1}^\infty \int_{x_0}^x u_k(t) dt,$$

т.е. ряд (1), п.4.1, можно почленно интегрировать на отрезке $[x_0, x] \subset [a, b]$.

Предельный переход под знаком производной и почленное дифференцирование ряда.

Если последовательность непрерывно дифференцируемых функций (f_n) , $f_n:[a,b]\to \mathbb{R}$, $n\in\mathbb{N}$, сходится к функции $f:[a,b]\to \mathbb{R}$, а последовательность (f'_n) , $n\in\mathbb{N}$, сходится равномерно к функции $\varphi:[a,b]\to \mathbb{R}$, то функция f также дифференцируема на [a,b] и $f'(x)=\varphi(x)=\lim_{n\to\infty}f'_n(x)$, т.е. допустим предельный переход под знаком производной.

Еслн ряд (1), π .4.1, с непрерывно дифференцируемыми членами сходится на [a,b], а ряд производных

$$\sigma(x) = \sum_{k=1}^{\infty} u'_k(x)$$

сходится равномерно на [a, b], то сумма ряда (1), п.4.1, дифференцируема на [a, b], причем на этом отрезке выполняется равенство

$$S'(x) = \sigma(x) = \sum_{k=0}^{\infty} u'_{k}(x),$$

т.е. ряд (1), п.4.1, можно почленно дифференцировать.

Определить промежутки сходимости (абсолютной и условной) следующих функциональных рядов:

99.
$$\sum_{n=0}^{\infty} \frac{n^p \sin nx}{1+n^q}, \ q > 0, \ 0 < x < \pi.$$

43

◄ Для сходимости ряда необходимо, чтобы $\frac{n^p}{1+n^q} = \frac{1}{n^{q-p}} \frac{1}{1+n^{-q}} \to 0$ при $n \to \infty$, т.е. чтобы

Абсолютная скодимость. Поскольку $|\sin nx| \geqslant \sin^2 nx = \frac{1-\cos 2nx}{2}$, то ряд

$$\sum_{n=1}^{\infty} \frac{n^p}{1+n^q} |\sin nx| \ge \frac{1}{2} \sum_{n=1}^{\infty} \frac{n^p}{1+n^q} - \frac{1}{2} \sum_{n=1}^{\infty} \frac{\cos 2nx}{1+n^q} n^p$$

расходится при $0 < q-p \leqslant 1$. Действительно, первый ряд справа, в силу теоремы 4, п.1.5, расходится к $+\infty$, поскольку $\frac{n^p}{1+n^q} \sim \frac{1}{n^{q-p}}$ при $n \to \infty$, а второй ряд справа при $0 < q-p \leqslant 1$,

по признаку Дирихле, сходится, ибо
$$\left|\sum_{n=1}^n\cos 2kx\right| = \left|\frac{\sin nx\cos(n+1)x}{\sin x}\right| \leqslant \frac{1}{|\sin x|}$$

и $\frac{n^p}{1+n^q} \downarrow 0$ при $n \to \infty$. Кроме того, поскольку $|\sin nx| \leqslant 1$, то ряд

кроме того, поскольку
$$|\sin nx| \leqslant 1$$
, то ряд

$$\sum_{n=1}^{\infty} \frac{n^p}{1+n^q} \left| \sin nx \right| \leqslant \sum_{n=1}^{\infty} \frac{n^p}{1+n^q},$$

в силу теорем 1, 4, п.1.5, сходится, если q-p>1 $\left(\frac{n^p}{1+n^q}\sim \frac{1}{n^{q-p}} \text{ при } n\to\infty\right)$. Таким образом, исследуемый ряд сходится абсолютно только при q - p > 1.

Условная сходимость. Представляя данный ряд в виде

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^{q-p}} \cdot \frac{1}{1+n^{-q}}$$

$$\sum_{n=1}^{\infty} \frac{\sin n\theta}{n^{q-p}} \cdot \frac{1}{1+n}$$

$$\sum_{n=1}^{n^{q-p}} {n^{q-p}-1+n^{-q}}$$
 и пользуясь признаком Абеля, находим, что при $q-p>0$ ряд сходится. Действительно, в

Дирихле, сходится. Следовательно, при
$$0 < q - p \leqslant 1$$
 исследуемый ряд сходится условно. \blacktriangleright 100. $\sum_{n=1}^{\infty} \frac{x^n}{n+y^n}$, $y \geqslant 0$.

этом случае последовательность $\left(\frac{1}{1+n^{-q}}\right)\uparrow 1$ при $n\to\infty,$ а ряд $\sum\limits_{n=0}^{\infty}\frac{\sin nx}{n^{q-p}},$ в силу признака

■ Пусть $0 \le y \le 1$. Тогда ряд, по признаку Коши, сходится при |x| < 1.

◀ Пусть
$$0 \leqslant y \leqslant 1$$
. Тогда ряд, по признаку Коши, сходится при $|x| <$ Действительно,

 $\lim_{n \to \infty} \sqrt[n]{\frac{|x|^n}{n + y^n}} = |x| \lim_{n \to \infty} \frac{1}{\sqrt[n]{n + y^n}} = |x| < 1.$

Если $0 \leqslant y \leqslant 1$ и $x \geqslant 1$, то $\frac{x^n}{n+y^n} \geqslant \frac{x^n}{n+1} \geqslant \frac{1}{n+1}$. Следовательно, в силу теоремы 1, п.1.5, данный ряд расходится, ибо расходится гармонический ряд. Если $0 \leqslant y \leqslant 1$ и x < -1, то общий член ряда к нулю не стремится, так как $\lim_{n \to \infty} \frac{|x|^n}{n+y^n} =$

 $+\infty$. Если $0 \le y \le 1$, x = -1, то получим ряд лейбницева типа:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+y^n}.$$

Пусть y > 1. Тогда ряд

$$\sum_{n=1}^{\infty} \left(\frac{x}{y}\right)^n \cdot \frac{1}{1+ny^{-n}},$$

в силу признака Коши, абсолютно сходится, если |x| < y.

При $x=\pm y$ общий член исследуемого ряда к нулю не стремится, так как $\lim_{n\to\infty}\frac{y^n}{n+y^n}=1$. Итак, если $0\leqslant y\leqslant 1$ и |x|<1 или |x|< y и y>1, то ряд сходится абсолютно. Если же

Итак, если
$$0 \le y \le 1$$
 и $|x| < 1$ или $|x| < y$ и $y > 1$, то ряд сходится абсолютно. Если же $x = -1$ и $0 \le y \le 1$, то данный ряд сходится лишь условно. \blacktriangleright

101.
$$\sum_{n=1}^{\infty} \frac{\ln(1+x^n)}{n^y}, x \ge 0.$$

▶ Рассмотрим три случая: a) $0 \leqslant x < 1$; б) x = 1; в) x > 1. В случае a) имеем $\ln(1+x^n) \sim x^n$ при $n \to \infty$. Так как ряд $\sum_{n=1}^{\infty} \frac{x^n}{n^y}$, согласно признаку Коши, сходится при любом y, то, в силу теоремы 3, п.1.5, при таких же условиях сходится и исследуемый ряд.

В случае 6) получаем ряд $\sum_{n=1}^{\infty} \frac{\ln 2}{n^y}$, который при y>1 сходится по п.1.4.

Наконец, в случае в) имеем

$$\ln(1+x^n) = n \ln x + \ln\left(1+\frac{1}{x^n}\right) \sim n \ln x + \frac{1}{x^n}, \ n \to \infty.$$

Поскольку ряды $\sum_{n=1}^{\infty} \frac{\ln x}{n^{y-1}}$ и $\sum_{n=1}^{\infty} \frac{1}{n^{y}x^{n}}$ сходятся при y>2, то данный ряд, по теореме 3, п.1.5 также сходится при y>2.

102. Доказать, что если ряд Дирихле $\displaystyle\sum_{n=1}^{\infty} rac{a_n}{n^x}$ сходится при $x=x_0$, то этот ряд сходится также при $x>x_0$.

∢ К ряду

$$\sum_{n=1}^{\infty} \frac{a_n}{n^x} = \sum_{n=1}^{\infty} \frac{a_n}{n^{x_0}} \cdot \frac{1}{n^{x-x_0}}$$

применим признак Абеля. Здесь ряд $\sum_{n=1}^{\infty} \frac{a_n}{n^{x_0}}$ сходится по условию, $\left(\frac{1}{n^{x-x_0}}\right)$ — монотонная и ограниченная единицей последовательность $\forall x>x_0$.

Следовательно, по признаку Абеля, ряд сходится также при $x>x_0$. \blacktriangleright

103. Доказать, что для равномерной сходимости на множестве X последовательности $(f_n), f_n: X \to \mathbb{R}(\mathbb{C}), n \in \mathbb{N}$, к предельной функции $f: X \to \mathbb{R}(\mathbb{C})$, необходимо и достаточно, чтобы

$$\lim_{n\to\infty}\left(\sup_X r_n(x)\right)=0,$$

где

$$r_n(x) = |f(x) - f_n(x)|.$$

◀ Необходимость. Пусть $f_n(x) \rightrightarrows f(x)$ на $X, n \to \infty$. По определению 2, п.4.1, это означает, что $\forall \varepsilon > 0$ $\exists N = N(\varepsilon)$ такое, что $\forall n > N \land \forall x \in X$ выполняется неравенство $|f_n(x) - f(x)| < \varepsilon$. Отсюда следует, что $\sup_{x \in X} r_n(x) \le \varepsilon$.

 \mathcal{A} остаточность. Пусть $\lim_{n\to\infty}\left(\sup_X r_n(x)\right)=0$. Тогда по определению предела числовой последовательности $\forall \varepsilon>0$ $\exists N=N(\varepsilon)$ такое, что $\forall n>N$ будет $\sup_X r_n(x)<\varepsilon$. Но поскольку $r_n(x)\leqslant\sup_X r_n(x)$, то $r_n(x)<\varepsilon$ $\forall x\in X$. Последнее, по определению 2, п.4.1, означает, что $f_n(x)\rightrightarrows f(x)$ на X при $n\to\infty$.

Исследовать на равномерную сходимость следующие функции:

104.
$$f_n(x) = x^n - x^{n+1}, 0 \le x \le 1.$$

45

§ 4. Функциональные последовательности и ряды

 \blacktriangleleft Очевидно, $f(x) = \lim_{n \to \infty} f_n(x) = 0$ при $0 \leqslant x \leqslant 1$. Поскольку

$$\int_{n\to\infty} \int_{n\to\infty} \int_{n$$

106. $f_n(x) = \frac{nx}{1+n+x}, \ 0 \leqslant x \leqslant 1.$

107. $f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}, -\infty < x < +\infty.$

поэтому $f_n(x)
ightrightarrows |x|$ на всей числовой прямой. ightrightarrow

109. a) $f_n(x) = \frac{\sin nx}{n}, -\infty < x < +\infty;$

6) $f_n(x) = \sin \frac{x}{x}$, $-\infty < x < +\infty$.

a) $f(x) = \lim_{n \to \infty} \frac{\sin nx}{n} = 0;$ 6) $f(x) = \lim_{n \to \infty} \frac{x}{n} = 0.$

108. $f_n(x) = n\left(\sqrt{x + \frac{1}{n}} - \sqrt{x}\right), 0 < x < +\infty.$

 $lack \blacksquare$ При $n o\infty$ $f_n(x) o|x|$ на интервале $]-\infty,\,+\infty[$, причем

 $\frac{2}{n+1}$. Поэтому

◆ Очевидно

⋖ Имеем:

Поскольку

то по критерию, доказанному в примере 103, $f_n(x) \rightrightarrows 0$. **105.** $f_n(x) = x^n - x^{2n}, \ 0 \le x \le 1.$

во внутренней точке сегмента: $x_n = \frac{1}{\sqrt[n]{n}}, x_n \in]0, 1[$. Таким образом, имеем

 $\sup_{x \in [0, 1]} r_n(x) = f_n(x_n) = \frac{1}{4}, \quad \lim_{n \to \infty} \left(\sup_{x \in [0, 1]} r_n(x) \right) = \frac{1}{4} \neq 0.$

1+n+x \blacksquare Нетрудно видеть, что $f(x)=\lim_{n\to\infty}\frac{nx}{1+n+x}=x$ и справедлива оценка $\sup_{x\in[0,\,1]}\left|\frac{nx}{1+n+x}-x\right|\leqslant$

 $\lim_{n\to\infty} \left(\sup_{x\in[0,1]} |f_n(x)-f(x)| \right) = 0, \quad f_n(x) \rightrightarrows x. \blacktriangleright$

 $\sup_{x \in]-\infty, +\infty[} \left| \sqrt{x^2 + \frac{1}{n^2}} - |x| \right| = \sup_{x \in]-\infty, +\infty[} \frac{1}{n^2 \left(\sqrt{x^2 + \frac{1}{n^2}} + |x| \right)} = \frac{1}{n},$

 $f(x) = \lim_{n \to \infty} \frac{1}{\sqrt{x + \frac{1}{n} + \sqrt{x}}} = \frac{1}{2\sqrt{x}}, \quad 0 < x < +\infty.$

 $\sup_{0 < x < +\infty} \left| \frac{1}{2\sqrt{x}} - \frac{1}{\sqrt{x + \frac{1}{n} + \sqrt{x}}} \right| = \sup_{0 < x < +\infty} \frac{1}{2n\sqrt{x} \left(\sqrt{x + \frac{1}{n} + \sqrt{x}}\right)^2} = +\infty,$

то, по утверждению примера 103, последовательность сходится неравномерно. >

lacktriangleleft Имеем $f(x) = \lim_{n o \infty} f_n(x) = 0, \ x \in [0, 1].$ Функция f_n достигает абсолютного максимума

Отсюда следует, что последовательность $(f_n(x))$ стремится к нулю неравномерно. \blacktriangleright

 $\sup_{0 \le x \le 1} |f_n(x) - f(x)| = \frac{1}{n+1} \left(1 + \frac{1}{n} \right)^{-n}, \quad \lim_{n \to \infty} \left(\frac{1}{n+1} \left(1 + \frac{1}{n} \right)^{-n} \right) = \frac{1}{e} \lim_{n \to \infty} \frac{1}{n+1} = 0,$

Поскольку в случае а)

$$\sup_{-\infty < x < +\infty} f_n(x) = \frac{1}{n} \to 0 \text{ при } n \to \infty,$$

авслучае б)

46

$$\sup_{-\infty < x < +\infty} |\sin \frac{x}{n}| = 1$$

(достигается при $x=\frac{\pi n}{2}(2k+1), k\in\mathbb{Z}$), то, в силу примера 103, заключаем, что в случае а) $f_n(x)
ightrightarrows 0$, а в случае б) последовательность сходится неравномерно. \blacktriangleright

110. a) $f_n(x) = \arctan nx$, $0 < x < +\infty$; 6) $f_n(x) = x \arctan nx$, $0 < x < +\infty$.

$$\blacktriangleleft$$
 а) Имеем $f(x)=\lim_{n\to\infty}rctg\,nx=rac{\pi}{2}$. Поскольку

$$\sup_{0 < x < +\infty} \left| \frac{\pi}{2} - \arctan nx \right| = \lim_{x \to +0} \left| \frac{\pi}{2} - \arctan nx \right| = \frac{\pi}{2},$$

то последовательность, согласно примеру 103, сходится неравномерно. 6) Здесь $f(x) = \frac{\pi x}{2}$, $r_n(x) = x\left(\frac{\pi}{2} - \arctan nx\right)$. Используя равенство $\frac{\pi}{2} - \arctan nx = \arctan nx$, x > 0 и неравенство $\arctan \alpha < \alpha$, $\alpha > 0$, имеем оценку

$$\left|x\left(\frac{\pi}{2}-\arctan nx\right)\right|=\left|x\arctan \frac{1}{nx}\right|< x\frac{1}{nx}=\frac{1}{n}\to 0,\ n\to\infty,$$
 независимо от $x\in]0,\ +\infty[$. Следовательно, по определению 2, п.4.1 $f_n(x)\rightrightarrows \frac{\pi x}{2}$.

111. $f_n(x) = \left(1 + \frac{x}{n}\right)^n$: а) на конечном интервале]a, b[; б) на интервале] $-\infty$, $+\infty$ [. lacktriangled В обоих случаях легко находим предельную функцию $f:x\mapsto e^x$. Далее, в случае а)

■ В обоих случаях легко находим предельную функцию
$$f: x \mapsto e^x$$
. Далее, в случае а представляем последовательность в виде

 $f_n(x) = \exp\left(n\ln\left(1+\frac{x}{n}\right)\right).$ Здесь n>N, где N выбирается из очевидного условия $1+\frac{x}{N}>0$ при $x\in]a,\ b[.$ Применяя к

функции
$$x \mapsto \ln\left(1+\frac{x}{n}\right)$$
, формулу Тейлора с остаточным членом в форме Лагранжа, из (1) получаем

$$f_n(x) = \exp\left(x - \frac{x^2 \xi_n^2}{2n}\right), \quad n \in \mathbb{N}.$$

Поскольку

получаем

$$e^{x}\left(1-\exp\left\{-\frac{x^{2}\xi_{n}^{2}}{2n}\right\}\right) < e^{b}\left(1-\exp\left\{-\frac{M^{2}}{2n}\left(1-\frac{M}{n}\right)^{-2}\right\}\right),$$

где $M = \max(|a|, |b|)$, стремится к нулю при $n \to \infty$ независимо от $x \in]a, b[$, то по определению 2, п.4.1, $f_n(x) \Rightarrow e^x$ на]a, b[.

В случае б) получаем $\lim_{x \to +\infty} \left| e^x - \left(1 + \frac{x}{n} \right)^n \right| = +\infty,$ $\displaystyle \sup_{x_n < x_n < \infty} r_n(x) = +\infty$. Таким образом, последовательность $(f_n(x))$ на всей числовой $< x_n < \infty$

прямой сходится неравномерно. >

112.
$$f_n(x) = n\left(x^{\frac{1}{n}} - 1\right), 1 \leqslant x \leqslant a.$$

 \blacktriangleleft Легко найти, что $f_n(x)
ightarrow \ln x$ на $[1,\,a]$ при $n
ightarrow \infty$. Далее, применяя формулу Тейлора, находим

$$r_n(x) = \left| n(x^{\frac{1}{n}} - 1) - \ln x \right| = \left| n(e^{\frac{1}{n} \ln x} - 1) - \ln x \right| =$$

$$= \left| n\left(1 + \frac{1}{n} \ln x - \frac{\ln^2 x}{2n^2} e^{\xi_n} - 1\right) - \ln x \right| = \frac{\ln^2 x}{2n} e^{\xi_n} < \frac{\ln^2 a}{2n} e^{\xi_n} \to 0$$

при $n \to \infty$, $0 < \xi_n < \frac{\ln a}{n}$. Следовательно, $f_n(x) \rightrightarrows \ln x$ на [1, a]. \blacktriangleright

113.

$$f_n(x) = \left\{ egin{array}{ll} n^2x, & ext{если} & 0 \leqslant x \leqslant rac{1}{n}, \ n^2\left(rac{2}{n}-x
ight), & ext{если} & rac{1}{n} < x < rac{2}{n}, \ 0, & ext{если} & x \geqslant rac{2}{n}, \end{array}
ight.$$

на [0, 1].

◀ Поскольку $f_n(0) = 0$, то $\lim_{n \to \infty} f_n(0) = 0$. Далее, $\forall x \in]0, 1] <math>\exists N : \forall n > N$ будет $x > \frac{2}{n}$. Следовательно, $f_n(x) = 0$ и $\lim_{n \to \infty} f_n(x) = 0$ при $x \in [0, 1]$. Таким образом, $f(x) = \lim_{n \to \infty} f_n(x) = 0$

 $0 \text{ при } x \in [0, 1].$ Поскольку $\sup_{x\in[0,\,1]}f_n(x)=n$ (и достигается при $x=\frac{1}{n}$), то $\lim_{n\to\infty}(\sup f_n(x))=+\infty$, в силу

чего последовательность сходится неравномерно. > $\mathbf{114}$. Пусть f — произвольная функция, определенная на отрезке [a,b] и $f_n(x)=rac{[nf(x)]}{n}$.

Доказать, что $f_n(x) \rightrightarrows f(x)$ при $a \leqslant x \leqslant b, n \to \infty$.

lacktriangle Из определения целой части следует, что $[nf(x)] = nf(x) - p_n(x), 0 \leqslant p_n(x) < 1.$ Поэтому $f_n(x)$ можно представить в виде $f_n(x) = f(x) - \frac{p_n(x)}{n}$. Отсюда находим $\lim_{n \to \infty} f_n(x) =$

f(x), а также $|f_n(x)-f(x)|=rac{p_n(x)}{n}\leqslant rac{1}{n} o 0$, т.е. $f_n(x)
ightharpoonup f(x)$. ightharpoonup Исследовать на равномерную сходимость следующие ряды:

115. $\sum_{n=0}^{\infty} \frac{x^n}{n^2}$ на отрезке[-1, 1].

◆ Оценивая остаток ряда следующим образом:

$$|S(x)-S_n(x)|=\left|\sum_{k=n+1}^\infty\frac{x^k}{k^2}\right|\leqslant\sum_{k=n+1}^\infty\frac{1}{k^2}\to0\quad\text{при}\quad n\to\infty,$$

где $S(x),\,(S_n(x))$ — соответственио сумма и последовательность частичных сумм данного ряда, сходящегося в силу признака сравнения $\left(\left|\sum_{n=1}^{\infty}\frac{x^n}{n^2}\right|\leqslant\sum_{n=1}^{\infty}\frac{1}{n^2}<+\infty\right)$, заключаем, что рассматриваемый ряд сходится равномерно.

116. $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ на интервале $]0, +\infty[$.

 \blacksquare Поскольку сумма этого ряда $S(x)=e^x$, то остаток ряда $r_n(x)=e^x-\sum\limits_{k=0}^n rac{x^k}{k!}$. Но

 $|r_n(x)| = +\infty$ (функция $x \mapsto e^x$ стремится к $+\infty$ при $x \to +\infty$ быстрее любой степенной функции $x\mapsto x^n$), поэтому ряд сходится неравномерно. \blacktriangleright

117. $\sum_{n=0}^{\infty} (1-x)x^n$ на отрезке [0, 1].

 \blacktriangleleft Частичная сумма ряда $S_n(x) = \sum\limits_{k=0}^n (1-x)x^k = 1-x^{n+1}, 0 \leqslant x \leqslant 1;$ отсюда находим сумму ряда:

$$S(x) = \begin{cases} 1, & \text{если} \quad 0 \leqslant x \leqslant 1, \\ 0, & \text{если} \quad x = 1. \end{cases}$$

Следовательно, $\sup_{0 \le x \le 1} |S_n(x) - S(x)| = 1$, т.е. данный ряд сходится неравиомерно. \triangleright

Замечание. Если функциональный ряд непрерывных на отрезке функций сходится на этом отрезке к разрывной функции, то ряд сходится неравномерно.

118.
$$\sum_{n=0}^{\infty} \frac{x}{((n-1)x+1)(nx+1)}, \ 0 < x < +\infty.$$

◀ Находим частичную сумму ряда:

$$S_n(x) = \sum_{k=1}^n \frac{x}{((k-1)x+1)(kx+1)} = \sum_{k=1}^n \left(\frac{1}{(k-1)x+1} - \frac{1}{kx+1}\right) = 1 - \frac{1}{nx+1},$$
 откуда получаем, что $S(x) = \lim_{n \to \infty} S_n(x) = 1, \ 0 < x < +\infty.$ Далее, поскольку $\sup_{0 < x < +\infty} \frac{1}{nx+1} = 1,$

то ряд сходится неравномерно. >

119.
$$\sum_{n=1}^{\infty} \frac{nx}{(1+x)(1+2x)...(1+nx)}$$
: a) $0 \le x \le \varepsilon$, rge $\varepsilon > 0$; 6) $\varepsilon \le x < +\infty$.

◄ Представляя общий член ряда $a_n(x)$ в виде

$$a_n(x)=rac{1}{(1+x)(1+2x)\dots(1+(n-1)x)}-rac{1}{(1+x)(1+2x)\dots(1+(n-1)x)(1+nx)},$$
 находим частичную сумму ряда:

 $S_n(x) = 1 - \frac{1}{(1+x)(1+2x)\dots(1+nx)}$

Отсюда следует, что
$$S(x)=\lim_{n\to\infty}S_n(x)=\left\{\begin{array}{ll}1,&\text{если}&x>0,\\0,&\text{если}&x=0.\end{array}\right.$$

$$\sup_{\epsilon \leqslant x < +\infty} |S(x) - S_n(x)| = \frac{1}{(1+\epsilon)(1+2\epsilon)\dots(1+n\epsilon)} \to 0$$

Далее, в случае а) имеем $\sup_{0 < x < +\infty} |S(x) - S_n(x)| = |S(+0) - S_n(+0)| = 1$, поэтому ряд

при $n \to \infty$, в силу чего ряд сходится равномерно. \blacktriangleright Пользуясь признаком Вейерштрасса, доказать равномерную сходимость в указанных про-

межутках следующих функциональных рядов:

120.
$$\sum_{n=0}^{\infty} \frac{nx}{1+n^5x^2}$$
, $|x| < +\infty$.

сходится неравномерно. В случае б) находим

lacktriangle Найдем $\sup |a_n(x)|$, где $a_n(x)$ — общий член ряда. Имеем

$$\sup_{|x|<+\infty}|a_n(x)|=\sup_{|x|<+\infty}\left|\frac{nx}{1+n^5x^2}\right|=\frac{1}{3}$$

и достигается при $x_n = \frac{1}{n^{\frac{5}{2}}}$. Следовательно, ряд $\sum_{n=1}^{\infty} \frac{1}{2n^{\frac{3}{2}}}$ является мажорантным для данного ряда. Так как мажорантный ряд сходится, то исходный ряд, согласно признаку Вейерштрасса, сходится равномерно. >

121. $\sum_{n=0}^{\infty} \frac{n^2}{\sqrt{n!}} (x^n + x^{-n}), \frac{1}{2} \leq |x| \leq 2.$

◀ Легко найти, что

$$\sup_{\substack{\frac{1}{n} \le |x| < 2}} (x^n + x^{-n}) = 2^n + \frac{1}{2^n} < 2^{n+1}.$$

Поскольку, к тому же, ряд $\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n!}} 2^{n+1}$, в силу признака д'Аламбера, сходится, то исследуемый ряд сходится равномерно.

122. $\sum_{n=1}^{\infty} \frac{x^n}{\left[\frac{n}{n}\right]!}$, |x| < a, rge a > 0.

■ Мажорантным для данного ряда является ряд $\sum_{n=1}^{\infty} \frac{a^n}{\left[\frac{n}{2}\right]!}$, сходимость которого при a < 1 очевидна, так как в этом случае

видна, так как в этом случае $\overset{\infty}{\sim}$ n $\overset{\infty}{\sim}$

$$\sum_{n=1}^{\infty} \frac{a^n}{\left[\frac{n}{2}\right]!} < \sum_{n=1}^{\infty} a^n = \frac{a}{1-a}.$$

Пусть $a \geqslant 1$. Тогда, обозначая через S_n последовательность частичных сумм мажорантного ряда, в силу оценки

$$S_n < S_{2n+1} = \frac{a}{0!} + \frac{a^2}{1!} + \frac{a^3}{1!} + \dots + \frac{a^{2n}}{n!} + \frac{a^{2n+1}}{n!} \leqslant a + 2 \sum_{k=1}^{\infty} \frac{a^{2k+1}}{k!} = S,$$

получим $S_n \leqslant S$. Следовательно, последовательность (S_n) , будучи монотонной возрастающей, ограничена сверху. А тогда, по известной теореме, она сходится, т.е. сходится мажо-

123. $\sum_{n=0}^{\infty} \ln \left(1 + \frac{x^2}{n \ln^2 n}\right), |x| < a.$

◀ Исходя из неравенства

$$0\leqslant \ln\left(1+\frac{x^2}{n\ln n}\right)\leqslant \frac{x^2}{n\ln^2 n}<\frac{a^2}{n\ln^2 n}$$

и сходимости числового ряда $\sum_{n=2}^{\infty} \frac{a^2}{n \ln^2 n}$, мажорантного для данного функционального, приходим к выводу о равномерной сходимости предложенного ряда. \blacktriangleright Исследовать на равномерную сходимость в указанных промежутках следующие функци-

124. $\sum_{n=0}^{\infty} \frac{\sin nx}{n}$: а) на отрезке $\epsilon\leqslant x\leqslant 2\pi-\epsilon$, где $\epsilon>0$; б) на отрезке $0\leqslant x\leqslant 2\pi$.

lacksquare а) Поскольку частичные суммы $\sum\limits_{n=1}^{\infty} \sin kx$ ограничены:

$$\left| \sum_{k=1}^{n} \sin kx \right| = \left| \frac{\sin \frac{nx}{2} \sin \frac{n+1}{2}x}{\sin \frac{x}{2}} \right| \leqslant \frac{1}{\sin \frac{x}{2}} \leqslant \frac{1}{\sin \frac{x}{2}},$$

а последовательность $\left(\frac{1}{n}\right)\downarrow 0$ при $n\to\infty$, то, по признаку Дирихле, ряд сходится равномерно. б) В этом случае указанная сумма не является ограниченной по совокупности переменных x и n, поскольку при $x=\frac{\pi}{n}, n\in\mathbb{N}$,

$$\sum_{k=1}^n \sin \frac{k\pi}{n} = \operatorname{ctg} \frac{\pi}{2n} \to +\infty \quad \text{при} \quad n \to \infty.$$

Следовательно, признак Дирихле неприменим.

Воспользуемся критерием Коши. Взяв $\epsilon = 0,1,$ оценим разность

$$|S_{2n}(x) - S_n(x)| \Big|_{x = \frac{1}{n}} = \left| \frac{\sin(n+1)x}{n+1} + \frac{\sin(n+2)x}{n+2} + \dots + \frac{\sin 2nx}{2n} \right|_{x = \frac{1}{n}} = \frac{\sin\left(1 + \frac{1}{n}\right)}{n+1} + \frac{\sin\left(1 + \frac{2}{n}\right)}{n+2} + \dots + \frac{\sin 2}{2n} \geqslant \frac{\sin 1}{2} > \epsilon$$

при любом п. Следовательно, по критерию Коши, последовательность сходится неравномерно, т.е. неравномерно сходится исследуемый ряд (сходимость ряда при каждом фиксированном $x\in]0,\, 2\pi[$ следует из того же признака Дирихле, а при x=0 и $x=2\pi$ сходимость ряда очевидна). •

125.
$$\sum_{n=0}^{\infty} 2^n \sin \frac{1}{3^n x}$$
, $0 < x < +\infty$.

 \blacksquare При каждом фиксированном x>0 имеем $2^n \sin \frac{1}{3^n x} \sim \left(\frac{2}{3}\right)^n \frac{1}{x}$ при $n\to\infty$. Отсюда следует, что по теореме 3, п.1.5, данный ряд сходится. Для исследования на равномерную сходимость ряда применим критерий Коши. Пусть $\epsilon=1,\ p=n,\ x=\frac{1}{2n}$. Тогда $|S_{n+p}(x) - S_n(x)| = \left| 2^{n+1} \sin \frac{1}{3} + 2^{n+2} \sin \frac{1}{3^2} + \dots + 2^{2n} \sin \frac{1}{3^n} \right| > 2^{n+1} \sin \frac{1}{3} > \epsilon, \quad n > 1,$

т.е. ряд сходится неравномерно. > 126. $\sum_{n=0}^{\infty} \frac{\sin x \sin nx}{\sqrt{n+x}}, \ 0 \leqslant x < +\infty.$

◆ Поскольку частичные суммы, в силу оценки

$$\left|\sum_{n=1}^{n} \sin x \sin kx\right| = 2\left|\cos \frac{x}{2}\right| \left|\sin \frac{nx}{2} \sin \frac{n+1}{2}x\right| \leqslant 2,$$

ограничены, а функциональная последовательность $\left(\left(n+x\right)^{-\frac{1}{2}}\right)$ равномерно по $x = \left(\frac{1}{\sqrt{n+x}}\right)$

$$\left(\frac{1}{\sqrt{n}} \to 0\right)$$
 и монотонно по n
$$\left(\frac{1}{\sqrt{n+x}} - \frac{1}{\sqrt{n+1+x}} = \frac{1}{\sqrt{(n+x)(n+1+x)}(\sqrt{n+1+x} + \sqrt{n+x})} > 0\right)$$

стремится к нулю при
$$n \to \infty$$
, то, согласно признаку Дирихле, ряд сходится равномерно. \blacktriangleright

127. $\sum_{n=1}^{\infty} \frac{(-1)^{[\sqrt{n}]}}{\sqrt{n(n+x)}}, \ 0 \le x < +\infty.$

 \blacktriangleleft Ряд $\sum_{n=1}^{\infty} \frac{(-1)^{\lceil \sqrt{n} \rceil}}{n}$ сходится (см. пример 77), а функции $x \mapsto \left(1 + \frac{x}{n}\right)^{-\frac{1}{2}}$ ограничены числом 1 и при каждом фиксированном $x\geqslant 0$ образуют монотонную последовательность. Сле-

довательно, по признаку Абеля, данный ряд сходится равномерно. > ${f 128}.$ Доказать, что абсолютно и равномерно сходящийся ряд $\sum f_n(x),\, 0\leqslant x\leqslant 1$, где

$$f_n(x) = \begin{cases} 0, & \text{если} \quad 0 \leqslant x \leqslant 2^{-(n+1)}, \\ \frac{1}{n} \sin^2(2^{n+1}\pi x), & \text{если} \quad 2^{-(n+1)} < x < 2^{-n}, \\ 0, & \text{если} \quad 2^{-n} \leqslant x \leqslant 1, \end{cases}$$

нельзя мажорировать сходящимся числовым рядом с неотрицательными членами.

▲ Нетрудно найти, что

$$S_n(x) = \left\{ egin{array}{ll} 0, & ext{если} & rac{1}{2} \leqslant x \leqslant 1, \ rac{1}{k} \sin^2(2^{k+1}\pi x), & ext{если} & 2^{-(k+1)} \leqslant x \leqslant 2^{-k}, \ k = \overline{1, \, n}, \ 0, & ext{если} & 0 \leqslant x \leqslant 2^{-(n+1)}, \end{array}
ight.$$

$$S(x) = \lim_{n \to \infty} S_n(x) = \begin{cases} 0, & \text{если } \frac{1}{2} \leqslant x \leqslant 1, \\ \frac{1}{k} \sin^2(2^{k+1}\pi x), & \text{если } 2^{-(k+1)} \leqslant x \leqslant 2^{-k}, k = \overline{1, \infty}, \\ 0, & \text{если } x = 0, \end{cases}$$

где $(S_n(x))$ и S(x) — последовательность частичных сумм и сумма данного ряда соответственно. Далее,

$$S(x)-S_n(x)=\left\{\begin{array}{ll} 0, & \text{если} & \frac{1}{2}\leqslant x\leqslant 1,\\ \frac{1}{k}\sin^2(2^{k+1}\pi x), & \text{если} & 2^{-(k+1)}\leqslant x\leqslant 2^{-k},\ k=\overline{n+1,\,\infty},\\ 0, & \text{если} & x=0. \end{array}\right.$$

Поскольку $\sup_{0 \le x \le 1} |S(x) - S_n(x)| = \frac{1}{n+1}$ (достигается при $x_n = \frac{3}{2^{n+3}}$) стремится к нулю при $n \to \infty$, то ряд сходится равномерно.

Абсолютная сходимость ряда следует из того, что при фиксированном $x \in [0, 1]$ он содержит не более одного отличного от нуля члена.

Пусть c_n — члены числового мажорирующего ряда. По условию, $c_n\geqslant\sup_{0\leqslant x\leqslant 1}|f_n(x)|.$ оскольку $\sup_{0\leqslant x\leqslant 1}|f_n(x)|=rac{1}{n}$ и достигается при $x=rac{3}{2^{n+2}},$ то $c_n\geqslantrac{1}{n}.$ Однако ряд $\sum_{n=1}^\inftyrac{1}{n}$

Поскольку $\sup_{0 \le x \le 1} |f_n(x)| = \frac{1}{n}$ и достигается при $x = \frac{1}{2^{n+2}}$, то $e_n \ge \frac{1}{n}$. Однако ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится, поэтому исходный ряд нельзя мажорировать сходящимся числовым рядом с неотрицательными членами. ▶

129. Доказать, что если ряд $\sum_{n=1}^{\infty} \varphi_n(x)$, члены которого – монотонные функции на сегменте [a, b], сходится абсолютно в концевых точках этого сегмента, то данный ряд сходится абсолютно и равномерно на сегменте [a, b].

 \blacktriangleleft Принимая во внимание монотонность функций φ_n , оценим остаток ряда $r_n(x)$. При $x \in [a,b]$ имеем

$$|r_n(x)| \leqslant \sum_{k=n+1}^{\infty} |\varphi_k(x)| \leqslant \sum_{k=n+1}^{\infty} \max(|\varphi_k(a)|, |\varphi_k(b)|). \tag{1}$$

Поскольку ряд с членами $\varphi_n(x)$ сходится абсолютно при x=a и x=b, то $\forall \epsilon>0$ $\exists N=N(\epsilon)$ такое, что $\forall n>N$ выполняются неравенства

$$\sum_{k=n+1}^{\infty} |\varphi_k(a)| < \frac{\varepsilon}{2}, \quad \sum_{k=n+1}^{\infty} |\varphi_k(b)| < \frac{\varepsilon}{2}. \tag{2}$$

Так как $\max(|\varphi_k(a)|, |\varphi_k(b)|) \leq |\varphi_k(a)| + |\varphi_k(b)|$, то на основании неравенств (2), неравенство (1) принимает вид

$$|r_n(x)| \leq \sum_{k=0}^{\infty} (|\varphi_k(a)| + |\varphi_k(b)|) < \varepsilon,$$

откуда следует, что $r_n(x) \rightrightarrows 0, x \to \infty$, т.е. исследуемый ряд сходится равномерно.

Абсолютная сходимость ряда вытекает из оценки (1). >

130. Доказать, что если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то ряд Дирихле $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$ сходится равномерно

 \blacktriangleleft Функции $x\mapsto \frac{1}{n^x}$ ограничены единицей и при каждом $x\geqslant 0$ образуют монотонную последовательность $\left(\frac{1}{n^x}-\frac{1}{(n+1)^x}\geqslant 0\right)$, а ряд $\sum_{n=1}^{\infty}a_n$ сходится по условию; поэтому, по признаку

Абеля, ряд $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$ сходится равиомерно при $x\geqslant 0$. \blacktriangleright

131. Показать, что функция $f: x \mapsto \sum_{n=1}^{\infty} \frac{\sin nx}{n^3}$ непрерывна и имеет непрерывную

 \blacktriangleleft Функции $x\mapsto\sin nx$, $x\mapsto\cos nx$ непрерывны в указанной области. Кроме того, ряды

$$f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n^3}, \quad f'(x) = \sum_{n=1}^{\infty} \frac{\cos nx}{n^2},$$

в силу признака Вейерштрасса, сходятся равномерно. Поэтому, во-первых, почленное дифференцирование данного ряда, согласно п.4.7, возможно; во-вторых, согласно п.4.4, функции f и f' непрерывны. \blacktriangleright

132. Показать, что ряд $\sum_{n=0}^{\infty} (nxe^{-nx} - (n-1)xe^{-(n-1)x})$ сходится неравномерно на [0, 1],

однако его сумма есть значение функции, непрерывной на этом отрезке.

⋖ Имеем

прямой. 🕨

$$S_n(x) = \sum_{k=1}^n (kxe^{-kx} - (k-1)xe^{-(k-1)x}) = nxe^{-nx}, \quad S(x) = \lim_{n \to \infty} S_n(x) = 0, \quad x \in [0, 1].$$

Таким образом, S — непрерывная на [0,1] функция. Однако, $\sup_{x \in [0,1]} |S_n(x) - S(x)| = \frac{1}{\epsilon}$, поэтому ряд сходится к своей сумме неравномерно. \blacktriangleright

133. Определить области существования функции f и исследовать ее на непрерывность, если: a) $f(x) = \sum_{n=1}^{\infty} \left(x + \frac{1}{n}\right)^n$; б) $f(x) = \sum_{n=1}^{\infty} \frac{x + n(-1)^n}{x^2 + n^2}$.

4 а) По признаку Коши, ряд сходится, если $\lim_{n\to\infty} \left|x+\frac{1}{n}\right| < 1$, т.е. при |x|<1 (и расходится при $x\geqslant 1$, так как в этом случае общий член ряда не стремится к нулю). Функция f, таким образом, определена при |x|<1. При $|x|\leqslant r<1$ функциональный ряд сходится равномерно, поскольку сходится мажорантный для него ряд с членами $\left(r+\frac{1}{n}\right)^n$. Поэтому, на основании п.4.4, можно утверждать, что функция f непрерывна при $|x|\leqslant r<1$, т.е. непрерывна на

6) Функция $f_n: x \mapsto \frac{x+n(-1)^n}{x^2+n^2}$ непрерывна при $-\infty < x < +\infty$, а ряд с членами $f_n(x)$ равномерно сходится на всей числовой прямой. В самом деле, представив функции f_n в виде

$$f_n: x \mapsto \frac{n^2}{x^2+n^2}\left(\frac{x}{n^2}+\frac{(-1)^n}{n}\right),$$

замечаем, что функции $\varphi_n: x \mapsto \frac{n^2}{x^2+n^2}$ ограничены в совокупности $(\varphi_n(x) \leqslant 1)$ и при каждом x образуют монотонную последовательность по n, а ряд $\sum_{n=1}^{\infty} \left(\frac{x}{n^2} + \frac{(-1)^n}{n}\right)$ сходится равномерно на каждом интервале]-L, L[, в силу чего ряд $\sum_{n=1}^{\infty} f_n(x)$, по признаку Абеля, сходится равномерно на]-L, L[. Поэтому сумма ряда является непрерывной функцией на]-L, L[. В силу произвольности числа L, утверждаем, что сумма ряда непрерывна на всей числовой

134. Доказать, что дзета-функция Римана

$$\zeta: x \mapsto \sum_{x=1}^{\infty} \frac{1}{n^x}$$

непрерывна в области x>1 и имеет в этой области непрерывные производные всех порядков.

 \blacktriangleleft Пусть $x\geqslant x_0>1$. Тогда, в силу сходимости ряда

$$\sum_{n=1}^{\infty} \frac{\ln^p n}{n^{20}}, \quad p \in \mathbb{Z}_0, \tag{1}$$

и признака Вейерштрасса, заключаем, что ряд

$$\sum_{n=1}^{\infty} \frac{\ln^p n}{n^x} \leqslant \sum_{n=1}^{\infty} \frac{\ln^p n}{n^{x_0}}$$

сходится равномерно при $x\geqslant x_0>1$. Так как, кроме того, функции $x\mapsto n^{-x}$ непрерывны в указанной области, то, согласно п.4.4, функции

$$x \mapsto \zeta^{(p)}(x) = (-1)^p \sum_{n=1}^{\infty} \frac{\ln^p n}{n^x}$$

также непрерывны при $x \ge x_0 > 1$, т.е. при x > 1.

Сходимость ряда (1) вытекает из признаков сравнения п.1.5 и оценки $\ln^p n \leqslant n^{\frac{x_0-1}{2}}$, $x_0 > 1$, справедливой при достаточно большом n.

135. Доказать, что тэта-функция

$$\theta: x \mapsto \sum_{n=-\infty}^{+\infty} e^{-\pi n^2 x}$$

определена и бесконечно дифференцируема при x>0.

◄ Сходимость данного ряда вытекает из сходимости ряда с общим членом $e^{-\pi |n|x}$ и признака сравнения п.1.5 $(e^{-\pi n^2 x} \le e^{-\pi |n|x})$, т.е. функция θ определена при x > 0.

Далее, рассмотрим ряд

$$\sum^{+\infty} n^{2p} e^{-\pi n^2 x_0}, \quad p \in \mathbb{N}, \tag{1}$$

где $x \geqslant x_0 > 0$, являющийся мажорирующим по отношению к ряду

$$\sum^{+\infty} n^{2p} e^{-\pi n^2 x}.$$
 (2)

Поскольку ряд (1), по признаку Коши, сходится, то, по признаку Вейерштрасса, ряд (2) сходится равномерно. Следовательно, согласно п.4.7, функция θ любое число раз дифференцируема при $x\geqslant x_0>0$. В силу произвольности числа x_0 , сделанное заключение пригодно при x>0.

 ${f 136.}$ Определить область существования функции f и исследовать ее на дифференцируемость, если:

a)
$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n x}{n+x}$$
; 6) $f(x) = \sum_{n=1}^{\infty} \frac{|x|}{n^2 + x^2}$.

 \blacktriangleleft Функциональная последовательность $\left(\frac{x}{n+x}\right)$ при $x \neq -n$ монотонно по n стремится к нулю. Следовательно, по признаку Лейбница, ряд сходится, т.е. функция f существует при всех $x \neq -n$.

Поскольку функции $x\mapsto \left(\frac{x}{n+x}\right)'_x=\frac{n}{(n+x)^2}$ непрерывны при $x\neq -n$ и ряд

$$f'(x) = \sum_{n=1}^{\infty} \frac{n(-1)^n}{(n+x)^2},$$

в силу признака Дирихле, сходится равномерно на каждом замкнутом множестве числовой прямой, не содержащем точек $x=-1,-2,\ldots$, то почленное дифференцирование ряда а) при $x\neq -n,\ n\in \mathbb{N}$, возможно.

дифференцирование ряда б) справедливо.

6) Ряд сходится равномерно, по признаку Вейерштрасса, при всех конечных х. Действительно, здесь $\frac{|x|}{n^2+x^2}\leqslant \frac{A}{n^2},\,A=\mathrm{const},\,$ и ряд $\sum_{n=1}^{\infty}\frac{1}{n^2}$ сходится. Следовательно, функция f

существует при всех $x \in]-\infty, +\infty[$. Далее, выполняя формальное дифференцирование ряда, получаем

$$f'(x) = \sum_{n=1}^{\infty} \frac{n^2 \operatorname{sgn} x - x|x|}{(n^2 + x^2)^2}, \quad x \neq 0.$$
 (1)

Поскольку $\varphi_n(x) = \frac{n^2 \operatorname{sgn} x - x|x|}{(n^2 + x^2)^2} \leqslant \frac{n^2 + A^2}{n^4} \leqslant \frac{2n^2}{n^4} = \frac{2}{n^2}$ при $n \geqslant n_0$ и ряд $\sum_{n=1}^{\infty} \frac{2}{n^2}$ сходится, то, по признаку Вейерштрасса, ряд (1) сходится равномерно при |x| < A. А тогда, принимая во внимание непрерывность функций $arphi_n$ при $x \neq 0$ и учитывая $\pi.4.7$, заключаем, что почленное

Для исследования на дифференцируемость ряда б) в точке x=0 рассмотрим

 $\lim_{\Delta x \to \pm 0} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to \pm 0} \left(\frac{|\Delta x|}{\Delta x} \sum_{n=1}^{\infty} \frac{1}{n^2 + (\Delta x)^2} \right).$ (2)

Здесь ряд
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + (\Delta x)^2}$$
 сходится равномерно по признаку Вейерштрасса. Поэтому, согласно

$$\lim_{\Delta x \to 0} \sum_{n=1}^{\infty} \frac{1}{n^2 + (\Delta x)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} < +\infty.$$
 (3)

Тогда, как следует из (2), с учетом (3) можно написать $f'_+(0) = \sum_{n=1}^\infty \frac{1}{n^2}, f'_-(0) = -\sum_{n=1}^\infty \frac{1}{n^2}$. Таким образом, функция f в точке x=0 не дифференцируема.

 ${f 137.}$ При каких значениях параметра $lpha\colon {f a}$) последовательность

$$(f_n(x)), \quad f_n(x) = n^{\alpha} x e^{-nx}, \quad x \in \mathbb{N}, \tag{1}$$

сходится на отрезке [0, 1]; б) последовательность (1) сходится равномерно на [0, 1]; в) возможен предельный переход под знаком интеграла:

$$\lim_{n\to\infty}\int\limits_0^1 f_n(x)\,dx?$$

lacktriangled а) Если x>0, то, используя правило Лопиталя, легко проверить, что $\lim_{y o +\infty} y^{lpha} x e^{-xy} = 0$ при любом α . При x=0 имеем $\lim_{n\to\infty} f_n(0)=0$. Поэтому $\lim_{n\to\infty} f_n(x)=0$ при всех $x\in[0,1]$.

б) Поскольку

$$\lim_{n\to\infty} \left(\sup_{x\in[0,\,1]} n^\alpha x e^{-nx} \right) = \frac{1}{e} \lim_{n\to\infty} n^{\alpha-1} = \left\{ \begin{array}{ll} 0, & \text{если} & \alpha<1, \\ \frac{1}{e}, & \text{если} & \alpha=1, \\ +\infty, & \text{если} & \alpha>1, \end{array} \right.$$

то, на основании утверждения примера 103, данная последовательность сходится равномерно только при $\alpha < 1$.

в) Поскольку $\int_{0}^{1} \lim_{n \to \infty} f_n(x) \, dx = 0$, $a \lim_{n \to \infty} \int_{0}^{1} f_n(x) \, dx = \lim_{n \to \infty} \left(\left(\frac{1}{n^2} - e^{-n} \left(\frac{1}{n^2} + \frac{1}{n} \right) \right) n^{\alpha} \right)$ равен

нулю лишь при $\alpha < 2$, то предельный переход под знаком интеграла возможен только при $\alpha < 2.$

138. Показать, что последовательность $(f_n(x)), f_n(x) = nx(1-x)^n, n \in \mathbb{N}$, сходится неравномерно на сегменте [0, 1], однако

$$\lim_{n\to\infty}\int\limits_0^1f_n(x)\,dx=\int\limits_0^1\lim_{n\to\infty}f_n(x)\,dx.$$

■ Очевидно, предельная функция равна нулю на [0, 1]. Далее,

$$\lim_{n\to\infty}\left(\sup_{x\in[0,1]}(nx(1-x)^n)=\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^{n+1}=\frac{1}{e}\neq 0,$$

поэтому последовательность $(f_n(x))$ сходится неравномерно. В то же время

$$\lim_{n\to\infty}n\int\limits_{-\infty}^{\infty}x(1-x)^n\,dx=\lim_{n\to\infty}n\int\limits_{-\infty}^{\infty}(1-u)u^n\,du=\lim_{n\to\infty}\frac{n}{(n+1)(n+2)}=0.$$

Найти:

139.
$$\lim_{x\to 1-0}\sum_{n=0}^{\infty}\frac{(-1)^{n+1}}{n}\frac{x^n}{x^n+1}$$
.

◀ Данный ряд, согласно признаку Абеля, сходится равномерно в области $x \geqslant 0$. Кроме того, $\lim_{x\to 1-0} \frac{(-1)^{n+1}}{n} \frac{x^n}{x^n+1} = \frac{(-1)^{n+1}}{2n}$, поэтому, согласно п.4.5, возможен предельный переход под знаком суммы:

$$\lim_{x \to 1-0} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \frac{x^n}{x^n + 1} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \frac{1}{2} \ln 2. \blacktriangleright$$

140.
$$\lim_{x\to 1-0}\sum_{n=1}^{\infty}(x^n-x^{n+1}).$$

◆ Поскольку данный ряд сходится неравномерно на [0, 1], то мы не имеем права переходить к пределу под знаком суммы. Поэтому найдем этот предел, предварительно вычислив сумму данного ряда. Имеем

$$\lim_{x\to 1-0}\sum_{n=1}^{\infty}(1-x)x^n=\lim_{x\to 1-0}(\lim_{n\to\infty}(1-x^n))=\lim_{x\to 1-0}\left\{\begin{array}{ll}1, & \text{если} & 0\leqslant x<1,\\ 0, & \text{если} & x=1\end{array}\right\}=1. \ \blacktriangleright$$

141.
$$\lim_{x\to+0}\sum_{n\to\infty}\frac{1}{2^nn^x}$$
.

 \blacktriangleleft Данный ряд, в силу признака Вейерштрасса, сходится равномерно при $x\geqslant 0$. Поэтому, согласно п.4.5, имеем

$$\lim_{x \to +0} \sum_{n=0}^{\infty} \frac{1}{2^n n^x} = \sum_{n=0}^{\infty} \lim_{n \to +0} \frac{1}{2^n n^x} = \sum_{n=0}^{\infty} \frac{1}{2^n} = 1. \blacktriangleright$$

142.
$$\lim_{x\to\infty} \sum_{1+n^2x^2}^{\infty} \frac{x^2}{1+n^2x^2}$$
.

◀ Поскольку $\sup_{-\infty < z < +\infty} \frac{z^2}{1+n^2z^2} = \frac{1}{n^2}$ и ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится, то, по признаку Вейерштрасса,

данный ряд сходится равномерно. Замечая еще, что $\lim_{x\to\infty}\frac{x^2}{1+n^2x^2}=\frac{1}{n^2}$, на основании п.4.5 переходим к пределу под знаком суммы:

$$\lim_{x \to \infty} \sum_{n=1}^{\infty} \frac{x^2}{1 + n^2 x^2} = \sum_{n=1}^{\infty} \frac{1}{n^2}. \blacktriangleright$$

143. Возможно ли почленное дифференцирование ряда $\sum_{n=2}^{\infty} \operatorname{arctg} \frac{x}{n^2}$?

 \blacktriangleleft Функции $x\mapsto rctgrac{x}{n^2},\,n\in\mathbb{N},$ непрерывно дифференцируемы при $|x|<\infty.$ На этом же интервале функциональный ряд $\sum_{n=0}^{\infty}$ arctg $\frac{x}{n^2}$, как следует из теоремы 3, п.1.5 (arctg $\frac{x}{n^2} \sim \frac{x}{n^2}$

при $n \to \infty$), сходится. Кроме того, ряд производных $\sum_{n=1}^{\infty} \frac{n^2}{n^4 + x^2}$, в силу признака Вейерштрасса, сходится равномерно при $|x| < \infty$. Следовательно, согласно п.4.7, почленное диф-

ференцирование ряда возможно. >

144. Возможно ли почленное интегрирование ряда $\sum_{n=0}^{\infty} \left(x^{\frac{1}{2n+1}} - x^{\frac{1}{2n-1}}\right)$ на сегменте

[0, 1]? ◀ Данный функциональный ряд сходится на [0, 1] неравномерно. Действительно, для частичной суммы $S_n(x)$ и суммы S(x) ряда имеем

 $S_n(x) = -x + x^{\frac{1}{2n+1}}, \quad S(x) = \left\{ \begin{array}{ll} 0, & \text{если} & x = 0, \\ 1 - x, & \text{если} & 0 < x \leqslant 1. \end{array} \right.$ Видим, что сумма ряда - разрывная функция, поэтому ряд не может сходиться равномерно. Следовательно, воспользоваться утверждением п.4.6 мы не имеем права. Тем не менее,

поскольку
$$\int_{-1}^{1} S(x) dx = \frac{1}{2}, \quad \sum_{n=1}^{\infty} \int_{-1}^{1} \left(x^{\frac{1}{2n+1}} - x^{\frac{1}{2n-1}} \right) dx = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{2},$$

то почленное интегрирование ряда возможно. >

Упражнения для самостоятельной работы

Исследовать на равномерную сходимость следующие функциональные семейства:

58. а) $f_y(x) = \frac{xy}{x^2+y^2}$ при $y \to +\infty$, $x \in]0, +\infty[;$ 6) $f_y(x) = \frac{xy}{x^2+y^2}$ при $y \to +0$, $x \in]0, +\infty[;$

в) $f_y(x) = \frac{xy}{x^2 + y^2}$ при $y \to +0, x \in]1, +A[$;

г) $f_y(x) = \frac{xy^y}{x^2 + y^2}$ при $y \to +0, x \in]1, +\infty[$.

59. $f_y(x) = \operatorname{tg} \frac{\pi x}{2y}, x \in]0, 1[:a)$ при $y \to 1; 6)$ при $y \to 2$.

60. $f_y(x) = \frac{\sin(x^2 + y^2)}{\sqrt{\frac{y}{x} + \frac{x}{x}}}, x \in]1, +\infty[: a)$ при $y \to +\infty; b)$ при $y \to +0$.

61. $f_y(x) = \frac{1}{x}(e^{xy} - 1), x \in]0, +\infty[: a)$ при $y \to +0; 6)$ при $y \to -0; B)$ при $y \to -\infty; C$

62. $f_y(x) = \frac{y \arctan(xy)}{y+1}, x \in [1, +\infty[: a) \text{ при } y \to +0; \delta) \text{ при } y \to +\infty.$

63. $f_y(x) = y \ln(x^2 + y^2), x \in]0, 1[: a)$ при $y \to 0; 6)$ при $y \to 1$.

Исследовать на равномерную сходимость функциональные последовательности:

64. $f_n(x) = e^{-nx}$: a) $x \in]0, 1[; 6)$ $x \in [1, +\infty[$. **65.** $f_n(x) = \frac{n^2x^2}{1+n^2x^2}$: a) $x \in]0, 1]; 6)$

 $x \in [1, +\infty[$.

66. $f_n(x) = \frac{\ln(nx)}{\sqrt{nx}}$: a) $x \in [0, 1]$; 6) $x \in [1, +\infty[$. **67.** $f_n(x) = \left(1 + \frac{1}{nx}\right)^{nx}$, 0 < x < 1. **68.** $f_n(x) = \int \sin\left(\frac{xy^2}{n}\right) dy$: a) $x \in]0, 1[; 6)$ $x \in]0, +\infty[$.

69. $f_n(x) = \int_{-\pi}^{2\pi} \frac{x^2 \cos(xy) \, dy}{y^2 + n^2}$: a) $x \in]0, 1[; 6) \ x \in]1, +\infty[$.

70.
$$f_n(x) = \sum_{k=1}^n \arctan \frac{k^2x}{n^3}, \ x \in]0, +\infty[. 71. \ f_n(x) = \sum_{k=1}^n \ln \left(1 + \frac{k^2}{xn^2}\right), \ x \in]0, 1[.$$

Предварительно определив область сходимости функционального ряда, исследовать его на равномерную сходимость:

72.
$$\sum_{n=0}^{\infty} (n+1)x^n$$
. 73. $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$. 74. $\sum_{n=0}^{\infty} \frac{(-1)^n \sin nx}{\sqrt{n} + x^2}$.

75.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cos(2n+1)x}{2n+1}$$
. 76.
$$\sum_{n=1}^{\infty} e^{-nx}$$
. 77.
$$\sum_{n=1}^{\infty} \sqrt{nx} e^{-\sqrt{nx}}$$
.

интервале]а, b[, представлять на этом интервале непрерывную функцию? Привести примеры. 79. Пусть $\overline{\lim_{n\to\infty}}\sqrt[n]{|a_n|}=1$. Доказать, что ряд $\sum_{n=0}^\infty a_n e^{-n^2x}$ равномерно сходится при

78. Может ли функциональный ряд разрывных функций, сходящийся неравномерно на

$$x \ge \varepsilon > 0$$
.

Обосновать возможность почленного дифференцирования рядов в указанных областях:

80.
$$\sum_{n=1}^{\infty} \frac{\cos nx}{n(n+1)}, \ 0 < x < 2\pi. \ \ \textbf{81.} \ \sum_{n=1}^{\infty} \frac{nx^n}{1+nx^{2n}}, \ |x| \neq 1. \ \ \textbf{82.} \ \sum_{n=1}^{\infty} \frac{x^n}{1-x^n}, \ |x| < 1.$$

83.
$$\sum_{n=1}^{\infty} \frac{\cos(\sqrt{n}x)}{n^2 + \cos(\sqrt{n}x)}$$
, $0 < x < 2\pi$. 84. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{\epsilon x}}$, $x > \frac{1}{\epsilon}$, $\epsilon > 0$.

85. Можно ли утверждать, что:

а) если функция f непрерывна на каждом отрезке $[\alpha, \beta] \subset]a, b[$, то она непрерывна на интервале a, b; б) если последовательность $(f_n(x))$ равномерно сходится на каждом отрезке $[\alpha, \beta] \subset]a, b[$,

то она равномерно сходится на интервале a, b;

в) если последовательность $(f_n), f_n \in C[\alpha, \beta], n \in \mathbb{N}$, равномерно сходится на каждом отрезке $[\alpha, \beta] \subset]a, b[$ к функции f, то на интервале]a, b[предельная функция непременно

непрерывна? Найти:

86.
$$\lim_{x \to +0} \frac{1}{x} \sum_{n=1}^{\infty} \frac{(1-e^{-nx})}{x^2+n^3} \cos nx$$
. 87. $\lim_{x \to +0} \sum_{n=1}^{\infty} \frac{e^{-nx}}{n \ln(1-e^{-x})}$. 88. $\lim_{y \to +\infty} \sum_{n=1}^{\infty} \int_{0}^{1} \frac{\arcsin\left(\frac{ny}{ny+1}\right)}{1+n^4x^2+y} dx$.

89.
$$\lim_{y\to 0}\sum_{n=1}^{\infty}\left(\frac{(-1)^n\cos ny}{y+n}\frac{\sin y}{y}\right)$$
. 90. $\lim_{y\to 1+0}\sum_{n=1}^{\infty}(-1)^n\int_0^{\pi}\frac{\frac{\pi}{2}}{\cos\frac{\pi y}{2}\ln\left(1+\frac{x(y-1)}{n}\right)}dx$.

91. Последовательность функций $(f_n), f_n \in R[a, b], n \in \mathbb{N},$ называется cxodящейся в среднем к функции $f \in R[a, b]$, если

$$\lim_{n\to\infty}\int\limits_a^b|f_n(x)-f(x)|^2\,dx=0.$$

Показать, что из равномерной сходимости последовательности интегрируемых функций вытекает сходимость в среднем.

92. Функциональный ряд $\sum_{n=1}^{\infty} a_n(x), a_n \in R[a,b],$ называется сходящимся в среднем к Функции S на [a, b], если последовательность его частичных сумм $(S_n(x)), n \in \mathbb{N}$, сходится в среднем к S на [a,b]. Доказать, что если функциональный ряд с интегрируемыми членами сходится в среднем к интегрируемой функции S на [a,b], то $\forall x_0,\,x\,\in\,[a,b]$ справедливо равенство

$$\int_{x_0}^x S(t) dt = \sum_{n=1}^\infty \int_{x_0}^x a_n(t) dt.$$

93. Доказать, что если функциональный ряд $\sum\limits_{n=1}^{\infty}a_{n}(x)$ с непрерывно дифференцируемыми членами сходится поточечно на $[a,\,b]$, а ряд $\sum_{k=1}^{\infty}a_k(x)$ сходится в среднем к непрерывной

функции σ , то функция $S: x \mapsto \sum_{n=1}^{\infty} a_n(x)$ дифференцируема на [a, b] и $S'(x) = \sigma(x)$. 94. Вытекает ли из поточечной сходимости на [a,b] функциональной последовательности

 $(f_n(x))$ сходимость ее в среднем на этом отрезке?

Убелиться, что следующие функциональные последовательности сходятся в среднем, но не сходятся равномерно к функциям, получаемым поточечным предельным переходом:

95. $f_n(x) = \sqrt{n}e^{-nx}$, $x \in [0, 1]$. **96.** $f_n(x) = \frac{nx}{1+nx}$, $x \in [0, 1]$. 97. $f_n(x) = \left| \frac{\ln(1+nx^2)}{\ln n} - 1 \right|, x \in [0, 1].$ 98. $f_n(x) = \frac{\sin nx}{nx}, x \in]0, +\infty[.$

Показать, что почленное пифференцирование следующих рядов возможно:

99. $\sum_{n=1}^{\infty} e^{-nx} \left(\frac{e^{-x}}{n+1} - \frac{1}{n} \right), x \in]0, 1[. 100. \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}, x \in]0, 1[.$ Показать, что почленное интегрирование следующих рядов на указанном отрезке возмож-

но: 101. $\sum_{n=1}^{\infty} (-1)^{n-1} x^n, x \in [0, 1].$ 102. $\sum_{n=1}^{\infty} \frac{x}{(nx+1)((n-1)x+1)}, x \in [0, 2].$

§ 5. Степенные ряды

5.1. Круг и радиус сходимости степенного ряда.

Определение. Ряд вида

$$\sum_{n=0}^{\infty} a_n (z-a)^n, \ \varepsilon \partial e \ a_n, \ z, \ a \in \mathbb{C}, \tag{1}$$

называется степенным рядом; ап — коэффициенты степенного ряда (они не зависят от z), $a - \phi$ иксированная точка на комплексной плоскости.

Tеорема. Каждый степенной ряд сходится абсолютно внутри некоторого круга $|z-a| \leqslant$

$$R$$
, где радиус круга $R\geqslant 0$ определяется по формуле K оши— A дамара
$$R=\left\{ \begin{array}{ll} \frac{1}{l}, & \text{если} & 0< l=\varlimsup_{n\to\infty}\sqrt[n]{|a_n|}<+\infty, \\ 0, & \text{если} & l=+\infty. \end{array} \right.$$

$$R = \begin{cases} \frac{1}{l}, & ecnu \quad 0 < l = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} < +\infty, \\ 0, & ecnu \quad l = +\infty, \\ +\infty, & ecau \quad l = 0, \end{cases}$$

или по формуле

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|,\tag{2}$$

если этот предел существует хотя бы в несобственном смысле. Вне круга $|z-a| \leq R$ ряд (1) не сходится ни в одной точке $z \in \mathbb{C}$. Вопрос сходимости ряда (1) в точках окружности |z-a|=R, R>0, остается открытым и решается отдельно для каждого ряда.

В случае, когда $a_n, z, a \in \mathbb{R}$, внутренность круга сходимости вырождается в интервал [a-R, a+R], R>0, на действительной прямой.

При R=0 круг вырождается в точку z=a, а при $R=+\infty$ представляет комплексную плоскость (или числовую прямую, если ряд (1) действителен).

5.2. Основные свойства степенных рядов.

Сумма степенного ряда внутри круга сходимости представляет собой непрерывную функцию. Если ряд (1), п.5.1, действительный и на конце его интервала сходимости z=R+a, R>0, расходится, то сходимость ряда на интервале [a,R+a] не может быть равномерной.

Если действительный степенной ряд сходится при z = R + a, R > 0, то сходимость ряда будет равномерной на отрезке [a, R + a].

Сумма действительного степенного ряда внутри интервала сходимости имеет производные любого порядка.

Теорема (Абеля). Если действительный степенной ряд сходится в точке z=R+a, R>0, то его сумма S(z) представляет собой значение непрерывной слева функции в этой точке, т.е.

$$S(R+a) = \lim_{z \to R+a-0} S(z) = \sum_{n=0}^{\infty} a_n R^n.$$

Аналогичные утверждения справедливы и для левого конца интервала сходимости.

5.3. Разложение функции в ряд Тейлора.

Определение. Пусть $f:]a-R_1$, $a+R_2[\to \mathbb{R},\ R_i>0,\ i=1,\ 2.$ Говорят, что функция f раскладывается в степенной ряд на интервале $]a-R,\ a+R[$, где $0< R\leqslant \min(R_1,\ R_2),\ ecли$ $\exists a_n\in \mathbb{R},\ n\in \mathbb{Z}_0,\ makue,\ что <math>\forall x\in]a-R,\ a+R[$ справедливо равенство

$$f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n.$$

Tеорема (Tейлора). Для того чтобы функция f могла быть разложена в ряд Tейлора на интервале]a-R, a+R[, R>0, необходимо и достаточно, чтобы она была бесконечно дифференцируема и остаточный член в формуле Tейлора для этой функции стремился κ нулю при $n\to\infty$ на указанном интервале.

Разложение имеет вид

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k.$$
 (1)

Функция f, разлагающаяся в ряд Тейлора, называется аналитической и ее разложение (1) единственно.

Практически-важными являются случаи представления остаточного члена разложения (1) в форме Лагранжа

$$R_n(x) = f(x) - \sum_{k=1}^n \frac{f^{(k)}(a)}{k!} (x-a)^k = \frac{f^{(n+1)}(a+\theta(x-a))}{(n+1)!} (x-a)^{n+1}$$

и в форме Коши

$$R_n(x) = \frac{f^{(n+1)}(a+\theta_1(x-a))}{n!}(1-\theta_1)^n(x-a)^{n+1},$$

где $0 < \theta < 1$, $0 < \theta_1 < 1$.

5.4. Разложения основных элементарных функций.

Полагая в формуле (1), $\pi.5.3$, a=0, получаем пять основных разложений:

I.
$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, |x| < \infty.$$

II. $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}, |x| < \infty.$

III. $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!}, |x| < \infty.$

IV. $(1+x)^{m} = 1 + \sum_{n=1}^{\infty} \frac{m(m-1) \dots (m-n+1)}{n!} x^{n}, -1 < x < 1.$

V. $\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}, -1 < x \le 1.$

Разложения I—III справедливы для всех комплексных значений x, разложение IV выполняется при |x| < 1, $m \in \mathbb{R}$, а равенство V — при $|x| \leqslant 1$, $x \neq -1$.

5.5. Операции над степенными рядами.

Ряпы

$$\sum_{n=0}^{\infty} a_n (z-a)^n$$
 и $\sum_{n=0}^{\infty} b_n (z-a)^n$ общее множество сходимости и внутри этого множества справедливы следую-

всегда имеют общее множество сходимости и внутри этого множества справедливы следующие операции сложения и умножения:

$$\lambda \sum_{n=0}^{\infty} a_n (z-a)^n + \mu \sum_{n=0}^{\infty} b_n (z-a)^n = \sum_{n=0}^{\infty} (\lambda a_n + \mu b_n) (z-a)^n;$$
$$\sum_{n=0}^{\infty} a_n (z-a)^n \sum_{n=0}^{\infty} b_n (z-a)^n = \sum_{n=0}^{\infty} c_n (z-a)^n,$$

где $c_n = a_0b_n + a_1b_{n-1} + \ldots + a_nb_0$; λ, μ — числа.

Если степенной ряд (1), п.5.1, действителен, то внутри интервала сходимости его можно почленно дифференцировать и почленно интегрировать; при этом интервал сходимости полученного таким образом ряда совпадает с интервалом сходимости исходного ряда. Соответствующие формулы имеют вид:

$$\left(\sum_{n=0}^{\infty} a_n (x-a)^n\right)' = \sum_{n=0}^{\infty} (n+1) a_{n+1} (x-a)^n,$$

$$\int \left(\sum_{n=0}^{\infty} a_n (x-a)^n\right) dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-a)^{n+1} + C.$$

Определить радиус и интервал сходимости и исследовать поведение в граничных точках интервала сходимости следующих степенных рядов:

146.
$$\sum_{n=0}^{\infty} \frac{3^{n} + (-2)^{n}}{n} (x+1)^{n}.$$

◆ По формуле Коши—Адамара имеем

$$\frac{1}{R} = \overline{\lim}_{n \to \infty} \sqrt[n]{\frac{3^n + (-2)^n}{n}} = \lim_{k \to \infty} \sqrt[2k]{\frac{9^k + 4^k}{2k}} = 3,$$

поэтому при $-\frac{4}{3} < x < -\frac{2}{3}$ ряд сходится абсолютно.

§ 5. Степенные ряды

Исследуем поведение степенного ряда на концах интервала сходимости. Пусть $x=-\frac{4}{3}$. Нетрудно видеть, что ряд

$$\sum_{n=1}^{\infty} \frac{3^n + (-2)^n}{n} \cdot \frac{(-1)^n}{3^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} + \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{2}{3}\right)^n$$

сходится, так как равен сумме двух сходящихся рядов. Пусть $x=-\frac{2}{3}$. Тогда числовой ряд

$$\sum_{n=1}^{\infty} \frac{3^n + (-2)^n}{n 3^n},$$

$$n=1$$
 в силу признака сравнения, расходится $\left(\frac{3^n+(-2)^n}{n3^n}=\frac{1+\left(-\frac{2}{3}\right)^n}{n}>\frac{1}{4n}\right)$. Следовательно, в точке $x=-\frac{4}{3}$ степенной ряд сходится лишь условно, в точке $x=-\frac{2}{3}$ — расходится. \blacktriangleright

147. $\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} x^n$. ■ По формуле (2), п.5.1, находим

$$(n!)^2(2n$$

$$R = \lim_{n \to \infty} \frac{(n!)^2 (2n+2)!}{(2n)!((n+1)!)^2} = \lim_{n \to \infty} \frac{(2n+1)(2n+2)}{(n+1)^2} = 4,$$

и в точке $x=-\frac{1}{2}$. \blacktriangleright

поэтому при |x| < 4 ряд сходится абсолютно.

При
$$x=4$$
 получаем числовой ряд $\sum_{n=1}^{\infty} a_n$, где $a_n=\frac{(n!)^2 4^n}{(2n)!}$. Поскольку $\frac{a_n}{a_{n+1}}=1-\frac{1}{2n}+$

Следовательно, общий член ряда к нулю не стремится, т.е. ряд расходится. По этой же причине он расходится и в точке
$$x=-4$$
. \blacktriangleright

 $148. \sum^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} x^n.$

◆ По формуле Коши—Адамара находим радиус сходимости ряда:

 $\frac{1}{R} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e.$

 $\frac{1}{2n(n+1)}$ то $a_n < a_{n+1}$. Это означает, что последовательность (a_n) монотонно возрастает.

Следовательно, при $|x|<rac{1}{\epsilon}$ ряд сходится абсолютно. При $x=rac{1}{\epsilon}$ получаем числовой ряд $\sum_{n=0}^{\infty} a_n$, где $a_n = \left(1 + \frac{1}{n}\right)^{n^2} \frac{1}{e^n}$. Покажем, что общий член этого ряда к нулю не стремится.

$$\sum_{n=1}^{\infty} a_n$$
, где $a_n = \left(1+rac{1}{n}
ight)^{n^2} rac{1}{e^n}$. Покажем, что общий член этого ряда к нулю не стреми. Действительно, имеем

 $a_n = \exp\left\{-n + n^2 \ln\left(1 + \frac{1}{n}\right)\right\} = \exp\left\{-n + n^2\left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right)\right\} \to e^{-\frac{1}{2}}, \ n \to \infty.$ Таким образом, в точке $x=\frac{1}{e}$ степенной ряд расходится. По той же причине он расходится

149. $\sum_{n=1}^{\infty} \frac{n!}{a^{n^2}} x^n$, a > 1.

◄ Находим радиус сходимости ряда по формуле (2), п.5.1. Имеем

радмус сходимости ряда по формуле (2), п.э.1. Имее
$$R = \lim_{n \to \infty} \frac{n! a^{(n+1)^2}}{a^{n^2} (n+1)!} = \lim_{n \to \infty} \frac{a^{2n+1}}{n+1} = +\infty,$$

следовательно, данный степенной ряд сходится по всей числовой прямой. •

150.
$$\sum_{n=0}^{\infty} \left(\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \right)^{p} \left(\frac{x-1}{2} \right)^{n}.$$

■ По формуле (2), п.5.1, находим

$$R = \lim_{n \to \infty} 2 \left(\frac{(2n-1)!!(2n+2)!!}{(2n)!!(2n+1)!!} \right)^n = 2 \lim_{n \to \infty} \left(1 + \frac{1}{2n+1} \right)^p = 2.$$

Следовательно, при -1 < x < 3 ряд сходится абсолютно.

При исследовании характера сходимости ряда в точках x=-1 и x=3 пользуемся соответственно примером 79 и признаком Гаусса. Имеем

$$\frac{a_n}{a_{n+1}} = \left(1 + \frac{1}{2n+1}\right)^p = 1 + \frac{p}{2n+1} + \frac{p(p-1)}{2(2n+1)^2} + o\left(\frac{1}{n^2}\right), \ n \to \infty,$$

где $a_n = \left(\frac{(2n-1)!!}{(2n)!!}\right)^p$. Отсюда, учитывая упомянутые признаки, заключаем, что в точке x=-1ряд сходится при p>0, а при p>2 он сходится абсолютно. Следовательно, в точке x=-1он сходится условно при 0 . В точке <math>x = 3 ряд сходится абсолютно при p > 2 и расходится при $p \leq 2$.

151.
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{2^n (n!)^2}{(2n+1)!} \right)^p x^n.$$

■ По формуле (2), п.5.1, получаем

Поэтому ряд сходится абсолютно при $|x| < 2^p$.

$$R = \lim_{n \to \infty} \left(\frac{2^n (n!)^2}{(2n+1)!} \frac{(2n+3)!}{2^{n+1} ((n+1)!)^2} \right) = \lim_{n \to \infty} \left(\frac{2n+3}{n+1} \right)^p = 2^p.$$

Рассмотрим поведение степенного ряда в граничных точках интервала сходимости. Для этого образуем отношение

$$\frac{a_n}{a_{n+1}} = \left(1 + \frac{1}{2n+2}\right)^p = 1 + \frac{p}{2n} + o\left(\frac{1}{n^{1+\epsilon}}\right), \ \epsilon > 0, \ n \to \infty,$$
 где $a_n = \left(\frac{2^n(n!)^2}{(2n+1)!}\right)^p 2^{pn}$. Пользуясь признаком Гаусса, из этого отношения находим, что в точке $x = -2^p$ ряд сходится абсолютно при $p > 2$, а при $p \leqslant 2$ ряд расходится. На основании же примера 79 устанавливаем, что в точке $x = 2^p$ ряд сходится при $p > 0$; абсолютно сходится

при р > 2 (по признаку Гаусса). Следовательно, в этой точке он сходится условно, если

0 .152. $\sum_{n=0}^{\infty} \frac{m(m-1) \ldots (m-n+1)}{n!} x^n.$

◀ Для удобства исследования представим ряд в виде

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(n-1-m)(n-2-m) \dots (1-m)m}{n!} x^{n}.$$

Очевидио, ряд сходится абсолютно, если $m \in \mathbb{Z}_0$, а x — любое; поэтому далее будем считать, что $m \in \mathbb{R} \setminus \mathbb{Z}_0$.

Для нахождения радиуса сходимости применяем формулу (2), п.1.5. Имеем

$$a_n = \frac{(n-1-m)(n-2-m)\dots(1-m)m}{n!}.$$

 $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{n+1}{n-m} \right| = 1,$

где

(1)

Пусть x = -1. Тогда, составляя для числового ряда отношение

$$\frac{a_n}{a_{n+1}} = 1 + \frac{m+1}{n} + \frac{m(m+1)}{n(n-m)}$$

и пользуясь признаком Гаусса, находим, что в этой точке степенной ряд сходится абсолютно,

если m > 0, и расходится, если m < 0. Пусть x=1. Тогда из (1), на основании примера 79, заключаем, что степенной ряд

сходится, если
$$m > -1$$
. Следовательно, при $-1 < m < 0$ ряд сходится условно. \blacktriangleright 153. $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left(\frac{n}{e}\right)^n x^n$.

◄ Применяя формулу (2), п.1.5, получаем

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} e \left(\frac{n}{n+1} \right)^n = 1.$$

Следовательно, при |x| < 1 степенной ряд сходится абсолютно.

Пусть x = 1. Тогда, имея в виду утверждение примера 79 для ряда $\sum (-1)^n b_n$, где $b_n = \left(\frac{n}{n}\right)^n \frac{1}{n!}$, составим отношение

$$b_n = \left(\frac{1}{e}\right) \frac{1}{n!}$$
, составим отношение
$$\frac{b_n}{b_{n+1}} = e\left(1 - \frac{1}{n+1}\right)^n = \exp\left\{1 + n\ln\left(1 - \frac{1}{n+1}\right)\right\} =$$

$$= \exp\left\{1 + n\left(-\frac{1}{n+1} - \frac{1}{2(n+1)^2} + o\left(\frac{1}{n^2}\right)\right)\right\} = 1 + \frac{1}{2n} + o\left(\frac{1}{n}\right), \quad n \to \infty.$$
 (1)

Пусть x = -1. Тогда, воспользовавшись признаком Гаусса, из соотношения (1) получим, что степенной ряд расходится (здесь $\mu = 1$). Отсюда следует, что в точке x = 1 имеет место

условная сходимость. > 154. $\sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \ldots + \frac{1}{n}\right) x^n$.

Теперь видим, что по указанному утверждению ряд сходится.

$$n=1$$
 \blacktriangleleft Поскольку $1+\frac{1}{2}+\ldots+\frac{1}{n}=\ln n+C+arepsilon_n$, то

$$\lim_{n\to\infty} \sqrt[n]{1+\frac{1}{2}+\ldots+\frac{1}{n}} = \lim_{n\to\infty} \sqrt[n]{\ln n + C + \varepsilon_n} = 1.$$

Таким образом, по формуле Коши—Адамара, ряд сходится при |x| < 1. В точках x = 1 и x=-1 ряд расходится, так как общий член ряда, на основании указанного выше примера, не стремится к нулю при $n \to \infty$.

155.
$$\sum_{n=0}^{\infty} \frac{(3+(-1)^n)^n}{n} x^n$$
.

«Применяя формулу Коши—Адамара, получаем

$$\frac{1}{R} = \lim_{n \to \infty} \frac{3 + (-1)^n}{\sqrt[n]{n}} = \lim_{k \to \infty} \frac{4}{\frac{2k}{\sqrt{n}}} = 4.$$

Отсюда следует, что при $|x|<rac{1}{4}$ ряд сходится абсолютно. Поскольку для подпоследовательности (S_{2n}) последовательности частичных сумм числового ряда $\sum_{n=1}^{\infty} \frac{(3+(-1)^n)^n}{n4^n}$ выполняется неравенство $S_{2n} \geqslant \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k}$, то в точке $x = +\frac{1}{4}$ ряд

расходится. Аналогично в точке $x = -\frac{1}{4}$ имеем

$$S_{2n} = -\frac{1}{2} + \frac{1}{2} - \frac{1}{3 \cdot 2^3} + \frac{1}{4} - \dots + \frac{1}{2^{2n-1}(2n-1)} + \frac{1}{2n} = \sum_{n=1}^{\infty} \frac{1}{2k} - \sum_{n=1}^{\infty} \frac{1}{2^{2k-1}(2k-1)}.$$

Следовательно, $\lim S_{2n} = +\infty$, поэтому и в этой точке ряд расходится. \blacktriangleright

156.
$$\sum_{n=0}^{\infty} \frac{(-1)^{[\sqrt{n}]}}{n} x^n$$
 (ряд Прингсхейма).

◆ Согласно формуле Коши—Адамара, находим

$$\frac{1}{R} = \overline{\lim}_{n \to \infty} \sqrt[n]{\frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n}} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{n}} = 1.$$

Таким образом, степенной ряд сходится абсолютно при |x| < 1.

В точке x=1 получаем числовой ряд, сходимость которого доказана в примере 77.

B точке x=-1 получаем ряд

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+\lceil \sqrt{n} \rceil}}{n} = \sum_{\substack{n=1\\(n \neq 4, 9, 16, \dots)}}^{\infty} \frac{(-1)^{n+\lceil \sqrt{n} \rceil}}{n} + \sum_{n=2}^{\infty} \frac{1}{n^2}.$$
 (1)

Поскольку первый ряд, находящийся справа в равенстве (1), лейбницева типа, то он сходится. Второй ряд также сходится. Так как, кроме этого, ряд, находящийся слева в равенстве (1), абсолютно расходится (как гармонический), то мы приходим к выводу, что в точке x = -1 данный степенной ряд сходится условно. \blacktriangleright

157.
$$\sum_{n=0}^{\infty} \frac{10^{\nu(n)}}{n} (1-x)^n$$
, где $\nu(n)$ — количество цифр числа n .

■ По формуле Коши—Адамара получаем

$$\frac{1}{R} = \lim_{n \to \infty} \sqrt[n]{\frac{10^{[\lg n] + 1}}{n}} = 1$$

(см. пример 45), т.е. при 0 < x < 2 степенной ряд сходится абсолютно. В силу неравенства $n = 10^{\lg n} < 10^{\lceil\lg n\rceil+1} \le 10^{\lg n+1} = 10n$, заключаем, что в точках x = 0

В силу неравенства $n=10^{16}$ $n=10^{16}$ $n=10^{16}$ $n=10^{16}$ n=10 n=10 n=10 n=10 н n=10 ряд расходится, так как при этом общий член ряда не стремится к нулю.

158. Определить интервал сходимости разложения в степенной ряд функции $f: x \mapsto \frac{x}{x^2-5x+6}$: а) по степеням x; б) по степеням бинома (x-5), не производя самого разложения.

 \blacktriangleleft Преобразовывая функцию f для случаев a) и б) к виду

a)
$$f(x) = \frac{x}{(x-2)(x-3)}$$
; b) $f(t+5) = \varphi(t) = \frac{t+5}{(t+3)(t+2)}$, $t = x-5$,

и принимая во внимание то, что радиус сходимости степенного ряда определяется расстоянием от центра разложения до первой особой точки аналитической функции или какой-нибудь ее производной, находим:

а) x=2 — точка бесконечного разрыва функции f; x=0 — центр разложения ее в степенной ряд (по условию), а поэтому R=2 и интервал сходимости определяется неравенством |x|<2.

б) t = -2 — точка бесконечного разрыва функции φ , а t = 0 — центр разложения ее в степенной ряд (по условию функция φ разлагается по степеням t = x - 5). Следовательно, R = 2, интервал сходимости ряда] - 2, [2] или 3 < x < 7.

159. Можно ли утверждать, что
$$\varphi_N(x) = \sum_{n=1}^N (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} \rightrightarrows \sin x$$
 на $]-\infty, +\infty[$

◄ Поскольку $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} = \sin x, \ x \in]-\infty, +\infty[, a]$

$$\sup_{-\infty < x < +\infty} \left| \sin x - \sum_{n=1}^{N} (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} \right| = +\infty,$$

то, согласно примеру 103, последовательность $(\varphi_N(x))$ сходится неравномерно на $]-\infty,+\infty[$. \blacktriangleright Пользуясь разложениями п.5.4, написать разложения в степенной ряд относительно xследующих функций:

160. $x \mapsto \sin^3 x$ ◀ Преобразовав $\sin^3 x$ к виду $\sin^3 x = \frac{1}{4}(3\sin x - \sin 3x)$ и воспользовавшись разложением функции синус, найдем

$$\sin^3 x = \frac{3}{4} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} - \frac{1}{4} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(3x)^{2n-1}}{(2n-1)!} = \frac{1}{4} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{3-3^{2n-1}}{(2n-1)!} x^{2n-1}.$$

По формуле (2), п.1.5, легко найти, что этот ряд сходится абсолютно при всех
$$x$$
. \blacktriangleright

161. $x \mapsto \frac{1}{(1-x)^2}$ \P Поскольку $\left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2}$, то, дифференцируя почленно разложение для $(1-x)^{-1}$,

получаем
$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1}, |x| < 1. \blacktriangleright$$

$$162. \ x \mapsto \frac{x}{(1-x)(1-x^2)}.$$

 \blacksquare Разлагая данную дробь на простейшие $\frac{x}{(1-x)(1-x^2)} = -\frac{1}{4(1+x)} - \frac{1}{4(1-x)} + \frac{1}{2(1-x)^2}$ и используя разложение IV, п.5.4, а также результат предыдущего примера, можем

$$\frac{x}{(1-x)(1-x^2)} = -\frac{1}{4}\sum_{n=0}^{\infty} (-1)^n x^n - \frac{1}{4}\sum_{n=0}^{\infty} x^n + \frac{1}{2}\sum_{n=0}^{\infty} (n+1)x^n = \frac{1}{4}\sum_{n=0}^{\infty} (2n+1+(-1)^{n+1})x^n.$$

По формуле Коши---Адамара находим интервал абсолютной сходимости полученного степенного ряда: |x| < 1. \blacktriangleright 163. $x \mapsto \frac{1}{1+x+x^2}$.

◀ Представляя данную дробь в виде

$$f(x) = \frac{1}{1+x+x^2} = \frac{1}{1-(t+\bar{t})x+x^2} = \frac{1}{(x-t)(x-\bar{t})} = \frac{1}{(x-\bar{t})} =$$

 $=\frac{1}{t-\overline{t}}\left(\frac{1}{x-t}-\frac{1}{x-\overline{t}}\right)=\frac{1}{t-\overline{t}}\left(\frac{t}{1-xt}-\frac{\overline{t}}{1-x\overline{t}}\right),$ где $t=e^{i\varphi},\,\varphi=\frac{2\pi}{3},\,$ и используя разложение IV, п.5.4, а также формулу Эйлера $e^{i\alpha}=$

$$f(x) = \frac{1}{t - \overline{t}} \left(t \sum_{n=0}^{\infty} (xt)^n - \overline{t} \sum_{n=0}^{\infty} (x\overline{t})^n \right) = \frac{1}{t - \overline{t}} \sum_{n=0}^{\infty} x^n (t^{n+1} - \overline{t}^{n+1}) = \frac{2}{\sqrt{3}} \sum_{n=0}^{\infty} x^n \sin(n+1)\varphi.$$

По формуле Коши—Адамара находим радиус и интервал сходимости этого ряда:

$$\frac{1}{R} = \overline{\lim}_{n \to \infty} \sqrt[n]{|\sin(n+1)\varphi|} = 1, \ R = 1, \ |x| < 1.$$

164. $x \mapsto \frac{x \sin \alpha}{1 - 2x \cos \alpha + x^2}$.

lacktriangle Полагая $\sinlpha=rac{z-ar z}{2i}$, $\coslpha=rac{z+ar z}{2i}$, где $z=e^{ilpha}$, и разлагая данную дробь на простейшие, получаем

$$\frac{x\sin\alpha}{1-2x\cos\alpha+x^2}=\frac{1}{2i}\left(\frac{1}{1-xz}-\frac{1}{1-x\bar{z}}\right).$$

Применяя к правой части этого соотношения разложение IV, п.5.4, можем написать

$$\frac{x \sin \alpha}{1 - 2x \cos \alpha + x^2} = \frac{1}{2i} \sum_{n=0}^{\infty} x^n (z^n - \bar{z}^n) = \sum_{n=0}^{\infty} x^n \sin n\alpha.$$

Очевидно, полученный ряд сходится абсолютно при |x| < 1. \blacktriangleright 165. $x \mapsto \ln(1 + x + x^2 + x^3)$.

◀ Преобразовывая данную функцию к виду

◀ преобразовывая данную функцию к виду

$$\ln(1+x+x^2+x^3) = \ln(1+x) + \ln(1+x^2), \ x > -1,$$

и используя разложение V, п.5.4, получаем

$$\ln(1+x+x^2+x^3) = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n} + \sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^{2n}}{n}, -1 < x \le 1.$$

Складывая полученные ряды в общей области их сходимости, окончательно имеем

$$\ln(1+x+x^2+x^3) = \sum_{n=1}^{\infty} \frac{1}{n} \left((-1)^{n-1} + 2\sin(n-1)\frac{\pi}{2} \right) x^n, \ -1 < x \leqslant 1.$$

Нетрудно видеть, что при |x| < 1 этот ряд сходится абсолютно, а в точке x = 1 сходится лишь условно (по признаку Дирихле). \blacktriangleright

166. $x \mapsto e^{x \cos \alpha} \cos(x \sin \alpha)$. **4** Рассматривая данную функцию как

$$\operatorname{Re}\left(e^{x\cos\alpha+ix\sin\alpha}\right) \approx \operatorname{Re}\left(e^{xe^{i\alpha}}\right)$$

и применяя разложение I, п.5.4, можем написать

$$e^{x\cos\alpha}\cos(x\sin\alpha) = \operatorname{Re}\sum_{n}^{\infty} \frac{x^n e^{in\alpha}}{n!} = \sum_{n}^{\infty} \frac{x^n\cos n\alpha}{n!}.$$

Поскольку $\sum_{n=0}^{\infty} \frac{|x^n \cos n\alpha|}{n!} \leqslant \sum_{n=0}^{\infty} \frac{|x|^n}{n!}$ и второй степенной ряд в этом неравенстве сходится при

всех $x \in]\infty$, $+\infty[$, то полученное разложение справедливо при $|x| < \infty$. \blacktriangleright Разложить в степенной ряд следующие функции:

167. $f: x \mapsto \arcsin x$.

◆ С помощью формулы IV, п.5.4, имеем

$$f'(x) = (1-x^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} \frac{(-1)^n \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right) \dots \left(-\frac{1}{2}-n+1\right)}{n!} x^{2n} = 1 + \sum_{n=0}^{\infty} \frac{(2n-1)!!}{2^n n!} x^{2n}, \quad |x| < 1.$$

Интегрируя этот ряд почленно (что возможно внутри интервала сходимости), находим

$$f(x) = C + x + \sum_{n=0}^{\infty} \frac{(2n-1)!!}{2^n n!} \frac{x^{2n+1}}{2n+1}.$$

Так как f(0) = 0, то C = 0. Следовательно,

$$\arcsin x = x + \sum_{n=0}^{\infty} \frac{(2n-1)!!}{2^n n! (2n+1)} x^{2n+1}, \quad |x| < 1.$$

Для исследования сходимости ряда в концевых точках применяем признак Раабе. Имеем

$$\lim_{n\to\infty} n\left(\frac{4n^2+10n+6}{4n^2+4n+1}-1\right) = \lim_{n\to\infty} \frac{6n^2+5n}{4n^2+4n+1} = \frac{3}{2} > 1,$$

поэтому при $x = \pm 1$ ряд сходится абсолютно.

Таким образом, полученное разложение, в силу теоремы Абеля, справедливо при $|x| \leqslant 1$, т.е. во всей области существования arcsin x. \blacktriangleright

168. $f: x \mapsto \ln(x + \sqrt{1+x^2})$.

 \blacktriangleleft Разлагая производную данной функции $f'(x) = (1+x^2)^{-\frac{1}{2}}$ при |x| < 1 в степенной ряд

$$f'(x) = 1 + \sum_{n=0}^{\infty} (-1)^n \frac{(2n-1)!!}{(2n)!!} x^{2n},$$

интегрированием последнего получаем

$$f(x) = x + \sum_{n=0}^{\infty} (-1)^n \frac{(2n-1)!! x^{2n+1}}{(2n)!! (2n+1)} + C, \quad |x| < 1.$$

Поскольку f(0) = 0, то C = 0

Как и в предыдущем примере, находим, что полученное разложение сходится абсолютно при $|x| \leqslant 1$, и в концевых точках сумма ряда равна, по теореме Абеля, значению функции f в этих точках. Таким образом, написанное разложение справедливо при $|x| \leqslant 1$.

169.
$$f: x \mapsto \arctan \frac{2-2x}{1+4x}$$
.

 \blacktriangleleft Представляя функцию f в виде

$$f: x \mapsto \operatorname{arctg} \frac{2-2x}{1+4x} = \operatorname{arctg} 2 - \operatorname{arctg} 2x - \pi \epsilon(x),$$

где

$$\varepsilon(x) = \begin{cases} 0, & \text{если } x > -\frac{1}{4}, \\ 1, & \text{если } x < -\frac{1}{4}, \end{cases}$$

и разлагая в ряд функцию $x \mapsto \operatorname{arctg} 2x$ с помощью почленного интегрирования ряда для ее производной, находим

$$\arctan \frac{2-2x}{1+4x} = \arctan 2 - \sum_{n=0}^{\infty} (-1)^n \frac{2^{2n+1}}{2n+1} x^{2n+1} - \pi \varepsilon(x).$$

Поскольку полученный ряд сходится при $|x|\leqslant \frac{1}{2}$ (абсолютная сходимость его при $|x|<\frac{1}{2}$ устанавливается с помощью признака д'Аламбера, а в концевых точках — с помощью признака Лейбница), то в данном случае

$$\varepsilon(x) = \begin{cases} 0, & \text{если} \quad -\frac{1}{4} < x \leqslant \frac{1}{2}, \\ 1, & \text{если} \quad -\frac{1}{2} \leqslant x < -\frac{1}{4}. \end{cases}$$

170.
$$f: x \mapsto \arctan \frac{2x}{2-x^2}, |x| < \sqrt{2}.$$

 \blacktriangleleft Представляя производную функции f в виде

$$f'(x) = \frac{1}{1+t^4} + \frac{t^2}{1+t^4},$$

где $t=\frac{x}{\sqrt{2}}$, и пользуясь формулой IV, п.5.4, находим

$$f'(x) = \sum_{n=0}^{\infty} (-1)^n t^{4n} + \sum_{n=0}^{\infty} (-1)^n t^{4n+2}.$$

Очевидно, при |t|<1 оба ряда справа абсолютно сходятся, поэтому при |t|<1 их можно сложить. Имеем

$$f'(x) = \sum_{n=0}^{\infty} (-1)^{\left[\frac{n}{2}\right]} t^{2n} = \sum_{n=0}^{\infty} (-1)^{\left[\frac{n}{2}\right]} \frac{x^{2n}}{2n}, \ |x| < \sqrt{2},$$

откуда интегрированием получаем

$$f(x) = \sum_{n=0}^{\infty} (-1)^{\left[\frac{n}{2}\right]} \frac{x^{2n+1}}{2^{n}(2n+1)}, \quad |x| < \sqrt{2}.$$

Поскольку интервал абсолютной сходимости ряда после интегрирования не меняется, то полученный ряд сходится абсолютно при $|x|<\sqrt{2}$. В точках $|x|=\pm\sqrt{2}$ ряд сходится, но только условно. Действительно, последовательность $\left(\frac{1}{2n+1}\right)\downarrow 0$ при $n\to\infty$, а

$$\left|\sum_{k=0}^{n}(-1)^{\left\lfloor \frac{k}{2} \right\rfloor}\right| \leqslant 2$$
; поэтому, согласно признаку Дирихле, ряд сходится. Абсолютная расходимость ряда в этих точках следует из расходимости гармонического ряда. Но так как функция f в точках $x=\pm\sqrt{2}$ не определена, то полученное разложение справедливо только при $|x|<\sqrt{2}$. Этот пример показывает, что сумма ряда может существовать на множестве

большем, чем то, на котором задана функция. ▶ $171. \ f: x \mapsto \arccos{(1-2x^2)}.$

 \blacktriangleleft Дифференцируя функцию f, получаем

$$f'(x) = \frac{2 \operatorname{sgn} x}{\sqrt{1 - x^2}}, \quad 0 < |x| < 1.$$

Пользуясь разложением IV, п.5.4, находим

$$f'(x) = 2\left(1 + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} x^{2n}\right) \operatorname{sgn} x, \ 0 < |x| < 1.$$

Интегрируя почленно полученный ряд, имеем

$$f(x) = 2\left(|x| + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} \frac{|x|^{2n+1}}{2n+1}\right).$$

Этот ряд, согласно признаку Раабе, сходится абсолютно при $|x|\leqslant 1$, т.е. во всей области существования функции f.

172. Функцию $f: x \mapsto \ln x$ разложить в степенной ряд по целым положительным степеням проби $\frac{x-1}{x}$

степеням дроби $\frac{x-1}{x+1}$. \blacksquare Положив $\frac{x-1}{x+1} = t$, получим $f\left(\frac{t+1}{1-t}\right) \equiv F(t) = \ln \frac{t+1}{1-t}$. Поскольку x>0, то $\left|\frac{x-1}{x+1}\right| = |t| < 1$

(заметим, что справедливо и обратное утверждение). Следовательно, использовав формулу V, n.5.4, можем написать

$$\ln \frac{t+1}{1-t} = \ln(1+t) - \ln(1-t) = 2\sum_{n=1}^{\infty} \frac{t^{2n-1}}{2n-1} = 2\sum_{n=1}^{\infty} \left(\frac{x-1}{x+1}\right)^{2n-1} \cdot \frac{1}{2n-1}.$$

173. Пусть $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$. Доказать непосредственно, что f(x) f(y) = f(x+y).

◀ Перемножая ряды $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ и $\sum_{k=0}^{\infty} \frac{y^k}{k!}$, получаем

$$f(x)f(y) = \sum_{n=0}^{\infty} \left(\sum_{j=1}^{n} \frac{x^{n-j}y^{j}}{(n-j)!j!} \right).$$

Ho tak kak $(x+y)^n=\sum\limits_{k=0}^n C_n^k x^{n-k} y^k$, to

$$\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{x^{n-k}y^{k}}{(n-k)!k!} \right) = \sum_{n=0}^{\infty} \frac{(x+y)^{n}}{n!} = f(x+y),$$

что и требовалось доказать. >

174. Пусть, по определению,

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \quad \text{if} \quad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}.$$

Доказать, что $\sin x \cos x = \frac{1}{2} \sin 2x$.

◀ Записывая данные разложения в виде

$$\sin x = \sum_{n=0}^{\infty} \frac{\sin \frac{n\pi}{2}}{n!} x^n, \quad \cos x = \sum_{n=0}^{\infty} \frac{\cos \frac{n\pi}{2}}{n!} x^n \tag{1}$$

и пользуясь правилом умножения рядов Коши, имеем

$$\sin x \cos x = \sum_{n=0}^{\infty} c_n x^n, \quad c_n = \sum_{n=0}^{\infty} \frac{\sin \frac{k\pi}{2} \cos \frac{(n-k)\pi}{2}}{k!(n-k)!}.$$
 (2)

 $\text{Tak kak } \sin\frac{k\pi}{2}\cos\frac{(n-k)\pi}{2} = \frac{1}{2}\sin\frac{n\pi}{2} + (-1)^{k+1}\frac{1}{2}\sin\frac{n\pi}{2} \text{ if } \frac{2n}{n!} = \sum_{k=0}^{\infty}\frac{1}{k!(n-k)!}, \ \sum_{k=0}^{n}\frac{(-1)^k}{k!(n-k)!} = 0, \text{ yield}$

вытекает из элементарной формулы

$$(x+y)^n = \sum_{k=1}^n \frac{n! x^{n-k} y^k}{k! (n-k)!}$$

при x = y = 1 и x = -y = 1 соответственно, то

$$c_n = \sum_{k=0}^{n} \frac{\sin \frac{k\pi}{2} \cos \frac{(n-k)\pi}{2}}{k!(n-k)!} = \frac{2^{n-1}}{n!} \sin \frac{n\pi}{2}.$$

А тогда, согласно (1) и (2),

$$\sin x \cos x = \frac{1}{2} \sum_{n=0}^{\infty} \frac{2^n \sin \frac{n\pi}{2}}{n!} x^n = \frac{1}{2} \sin 2x,$$

что и требовалось доказать.

175. Написать несколько членов разложения в степенной ряд функции

$$f: x \mapsto \left(\sum_{n=0}^{\infty} \frac{x^n}{n+1}\right)^{-1}.$$

◀ Следует подобрать коэффициенты α_n так, чтобы выполнялось тождество по x:

$$\sum_{n=0}^{\infty} \alpha_n x^n \sum_{n=0}^{\infty} \frac{x^n}{n+1} \equiv 1, \quad \sum_{n=0}^{\infty} \alpha_n x^n = f(x).$$

Это дает бесконечную систему уравнений относительно α_n :

$$\alpha_0=1, \quad \sum_{i=1}^n \frac{\alpha_i}{n-i+1}=-\frac{1}{n+1}, \quad n\in\mathbb{N},$$

из которой последовательно находим $\alpha_1=-\frac{1}{2},\ \alpha_2=-\frac{1}{12},\ \alpha_3=-\frac{1}{24},\ \dots$ \blacktriangleright Производя соответствующие действия со степенными рядами, получить разложения в

Производя соответствующие действия со степенными рядами, получить разложения в степенные ряды следующих функций: 176. $f: x \mapsto (1-x)^2 \operatorname{ch} \sqrt{x}$.

 $=1-\frac{3}{2}x-\sum^{\infty}\left(\frac{1}{(2n)!}-\frac{2}{(2n-2)!}+\frac{1}{(2n-4)!}\right)x^{n}.$

 $=1+\frac{x}{2}+\sum_{n=0}^{\infty}\frac{x^{n}}{(2n)!}-2x-2\sum_{n=0}^{\infty}\frac{x^{n+1}}{(2n)!}+\sum_{n=0}^{\infty}\frac{x^{n+2}}{(2n)!}=$

 $lacksymbol{\blacktriangleleft}$ Возводя в квадрат ряд $-\sum\limits_{n=1}^{\infty}rac{x^n}{n}=\ln(1-x),$ получаем $f(x)=\sum\limits_{n=1}^{\infty}c_nx^{n+1},$ где

 $c_n = \sum_{k=0}^{\infty} \frac{1}{(n+1-k)k} = \frac{2}{n+1} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right).$

 $\tilde{f}(x) = \sum_{n=0}^{\infty} \frac{x^n(\sqrt{2})^n e^{in\frac{\pi}{4}}}{n!} = \sum_{n=0}^{\infty} \frac{(x\sqrt{2})^n}{n!} \left(\cos\frac{n\pi}{4} + i\sin\frac{n\pi}{4}\right)$

 $f(x) = \sum_{n=0}^{\infty} \frac{(x\sqrt{2})^n}{n!} \cos \frac{n\pi}{4}.$

Поскольку $\left| \frac{(x\sqrt{2})^n}{n!} \cos \frac{n\pi}{4} \right| \leqslant \frac{(\sqrt{2}|x|)^n}{n!}$ и ряд $\sum_{n=1}^{\infty} \frac{(\sqrt{2}|x|)^n}{n!}$ сходится при $|x| < \infty$, то полученное

 $f: x \mapsto \begin{cases} \left(\frac{\arcsin x}{x}\right)^2 & \text{при} \quad x \neq 0, \\ 1 & \text{при} \quad x = 0. \end{cases}$

 $f(x) = \left(1 + \sum_{n=0}^{\infty} \frac{(2n-1)!!x^{2n}}{(2n)!!(2n+1)}\right)^{2} = \left(\sum_{n=0}^{\infty} \frac{(2n-1)!!x^{2n}}{(2n)!!(2n+1)}\right)^{2} = \sum_{n=0}^{\infty} c_{n}x^{2n},$

 $c_n = \sum_{k=0}^{\infty} \frac{(2n-2k-1)!!}{(2n-2k)!!} \frac{(2k-1)!!((2k)!!)^{-1}}{(2n-2k+1)(2k+1)}, \quad (-1)!! = 1.$

 $\sum_{i=0}^{n} \frac{(2n-2i-1)!!(2i-1)!!}{(2n-2i)!!(2i)!!(2n-2i+1)(2i+1)} = \frac{2^{2n+1}(n!)^2}{(2n+2)!}.$

 \blacktriangleleft Разлагая функцию $x\mapsto \operatorname{ch}\sqrt{x}$ в ряд по степеням \sqrt{x} , получаем

$$\blacktriangleleft$$
 Разлагая функцию $x \mapsto \operatorname{ch} \sqrt{x}$ в ряд по степеням \sqrt{x} , получаем

$$f(x) = (1 - 2x + x^2) \sum_{n=0}^{\infty} \frac{x^n}{(2n)!} = \sum_{n=0}^{\infty} \frac{x^n}{(2n)!} - 2 \sum_{n=0}^{\infty} \frac{x^{n+1}}{(2n)!} + \sum_{n=0}^{\infty} \frac{x^{n+2}}{(2n)!} = 0$$

Очевидно, это разложение справедливо при всех x. \blacktriangleright

Так как $\lim_{n\to\infty} \sqrt[n]{c_n} = 1$, то разложение справедливо при |x| < 1.

■ Принимая во внимание результат примера 167, находим

lacktriangle Разлагая функцию $ar{f}: x \mapsto e^{x(1+i)}$ в степенной ряд

177. $f: x \mapsto \ln^2(1-x)$.

178. $f: x \mapsto e^x \cos x$.

и замечая, что $f(x)=\operatorname{Re} ar{f}(x)$, получаем

разложение возможно также при $|x| < \infty$.

По индукции доказываем, что

179.

где

$$x^{n} = (1 - 2x + x^{2}) \sum_{n=1}^{\infty} \frac{x^{n}}{(x_{n})!} = \sum_{n=1}^{\infty} \frac{x^{n}}{(x_{n})!} - 2 \sum_{n=1}^{\infty} \frac{x^{n+1}}{(x_{n})!} + \sum_{n=1}^{\infty} \frac{x^{n+2}}{(x_{n})!} = 0$$

$$\sum_{n=1}^{\infty} x^n = \sum_{n=1}^{\infty} x^n = \sum_{n=1}^{\infty} x^{n+1} + \sum_{n=1}^{\infty} x^{n+2} = \sum_{n=1$$

$$x = (1 - 2x + x^2) \sum_{n=0}^{\infty} \frac{x^n}{n} = \sum_{n=0}^{\infty} \frac{x^n}{n} - 2 \sum_{n=0}^{\infty} \frac{x^{n+1}}{n} + \sum_{n=0}^{\infty} \frac{x^{n+2}}{n} = 0$$

$$\sum_{n=0}^{\infty} x^n = \sum_{n=0}^{\infty} x^n = \sum_{n=0}^{\infty} x^{n+1} + \sum_{n=0}^{\infty} x^{n+2} = \sum_{n=0}^{\infty} x^n = \sum_$$

$$\sum_{n=0}^{\infty} x^n \qquad \sum_{n=0}^{\infty} x^n \qquad \sum_{n=0}^{\infty} x^{n+1} \qquad \sum_{n=0}^{\infty} x^{n+2}$$

$$-(1-2x+x^2)\sum_{n=1}^{\infty}\frac{x^n}{x^n}-\sum_{n=1}^{\infty}\frac{x^n}{x^n}-2\sum_{n=1}^{\infty}\frac{x^{n+1}}{x^n}+\sum_{n=1}^{\infty}\frac{x^{n+2}}{x^n}-\frac{1}{2}\sum_{n=1}^{\infty}\frac{x^n}{x^n}$$

$$x^n$$
 x^n x^n x^n x^{n+1} x^{n+2}

$$x^n \quad \stackrel{\infty}{\sim} x^n \quad x^{n+1} \quad \stackrel{\infty}{\sim} x^{n+2}$$

$$\P$$
 Разлагая функцию $x \mapsto \operatorname{cn} \sqrt{x}$ в ряд по степеням \sqrt{x} , получае:

Поэтому

$$f(x) = \sum_{n=0}^{\infty} \frac{2^{2n+1} (n!)^2}{(2n+2)!} x^{2n}.$$
 (1)

Легко установить, что этот ряд сходится при |x| < 1. Для выяснения вопроса о сходимости ряда (1) в концевых точках $x = \pm 1$ воспользуемся признаком Раабе:

$$\lim_{n \to \infty} \left(\frac{a_n}{a_{n+1}} - 1 \right) n = \lim_{n \to \infty} n \left(\frac{3}{2n} - \frac{2n+3}{2n(n+1)^2} \right) = \frac{3}{2} > 1.$$

Видим, что ряд (1) сходится абсолютно также и в концевых точках интервала сходимости |x| < 1. Следовательно, разложение (1), в силу непрерывности функции f на отрезке [-1, 1] и теоремы Абеля, справедливо на указанном отрезке.

180. Пусть $S = (I - A)^{-1}$ и $\lim_{n \to \infty} A^n = 0$, где A — квадратная матрица, I — единичная матрица. Разложить матрицу S в матричный ряд по степеням A.

■ По условию имеем

$$(I-A)S=I,$$

откуда

$$S = I + AS$$
, $S = I + A(I + AS) = I + A + A^2S$, ... $S = I + A + A^2 + ... + A^nS$.

Поскольку $\lim_{n\to\infty} A^n = 0$, то $\lim_{n\to\infty} A^n S = 0$. Следовательно,

$$S = \sum_{n=1}^{\infty} A^n. \blacktriangleright$$

181. Пусть $S = (2I - 3A + A^2)^{-1}$ и $\lim_{n \to \infty} A^n = 0$, где A — квадратная матрица. Разложить матрицу S в матричный ряд по степеням A.

 \blacktriangleleft Представим матрицу S в виде

$$S = ((2I - A)(I - A))^{-1} = (I - A)^{-1}(2I - A)^{-1} = \alpha(I - A)^{-1} + \beta(2I - A)^{-1},$$

где α , β — некоторые числовые коэффициенты. Для их определения умножим S слева на I-A, а справа — на 2I-A. В результате получим тождество

$$I = \alpha(2I - A) + \beta(I - A),$$

из которого находим $\alpha = 1, \beta = -1.$

Таким образом,

$$S = (I - A)^{-1} - \frac{1}{2} \left(I - \frac{A}{2} \right)^{-1}$$

Используя разложения из предыдущего примера, окончательно получаем

$$S = \sum_{n=0}^{\infty} A^n - \sum_{n=0}^{\infty} \frac{A^n}{2^{n+1}} = \sum_{n=0}^{\infty} \left(1 - \frac{1}{2^{n+1}}\right) A^n. \blacktriangleright$$

182. Доказать, что если: 1)
$$a_n \geqslant 0$$
; 2) существует $\lim_{x \to R \to 0} \sum_{n=0}^{\infty} a_n x^n = S$, то $\sum_{n=0}^{\infty} a_n R^n = S$.

⋖ В силу условия 2), имеем

$$\lim_{x \to R-0} \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{N} a_n R^n + \lim_{x \to R-0} \sum_{n=N+1}^{\infty} a_n x^n = S,$$

откуда

$$S - \sum_{n=1}^{N} a_n R^n = \alpha_N, \tag{1}$$

72

где

$$\alpha_N = \lim_{x \to R - 0} \sum_{n=1}^{\infty} a_n x^n.$$

Поскольку далее $a_n\geqslant 0$, то $\alpha_N\geqslant 0$. Поэтому из (1) следует, что $0\leqslant\sum\limits_{n=1}^N a_nR^n\leqslant S$.

Последнее означает, что последовательность $\left(\sum_{n=0}^{N} a_n R^n\right)$ ограничена. Но так как она еще и монотонна, то, в силу известной теоремы, сходится, т.е. сходится числовой ряд $\sum_{n=0}^{\infty} a_n R^n$. А

монотонна, то, в силу известной теоремы, сходится, т.е. сходится числовой ряд $\sum_{n=0}^{\infty} a_n R^n$. А тогда, по теореме Абеля, будем иметь

$$\lim_{x\to R-0}\sum_{n=0}^{\infty}a_nx^n=\sum_{n=0}^{\infty}a_nR^n.$$

Отсюда, приняв во внимание условие 2), найдем

$$\sum_{n=0}^{\infty} a_n R^n = S. \blacktriangleright$$

Разложить в степенной ряд функции;

183.
$$f: x \mapsto \int_{-\infty}^{\infty} \frac{\sin t}{t} dt$$
.

 \blacktriangleleft Разлагая функцию $t\mapsto \frac{\sin t}{t},\,t\neq 0$, в степенной ряд $\frac{\sin t}{t}=\sum_{n=0}^{\infty}\frac{(-1)^nt^{2n}}{(2n+1)!},\,|t|>0$, и интегрируя последний, получаем

$$f(x) = \int_{-\infty}^{x} \frac{\sin t}{t} dt = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)(2n+1)!}, |x| < \infty. \blacktriangleright$$

184.
$$f: x \mapsto \int_{-\infty}^{\infty} \frac{t dt}{\ln(1+t)}$$
.

◀ Коэффициенты a_n степенного ряда подынтегральной функции найдем из тождества $1 \equiv \sum_{n=0}^{\infty} \frac{(-1)^n t^n}{n+1} \sum_{n=0}^{\infty} a_n t^n$, которое дает систему алгебраических уравнений относительно a_k :

$$a_0 = 1, \quad \sum_{k=1}^{n} \frac{a_k(-1)^{k+1}}{n-k+1} = \frac{1}{n+1}.$$

Из этой системы уравнений последовательно получаем $a_1=\frac{1}{2},\,a_2=-\frac{1}{12},\,a_3=\frac{1}{24},\,$ и т. д. Таким образом, имеем

$$f(x) = \int_{-\infty}^{x} \frac{t dt}{\ln(1+t)} = \sum_{n=0}^{\infty} a_n \frac{x^{n+1}}{n+1} = x + \frac{x^2}{4} - \frac{x^3}{36} + \frac{x^4}{96} + \dots$$

Поскольку функция $\varphi: t \mapsto \frac{t}{\ln(1+t)}, \, \varphi(0) = 1$, аналитична всюду, за исключением точки t = -1, то радиус сходимости ряда $\sum_{n=0}^{\infty} a_n t^n$ равен единице. Следовательно, такой же радиус сходимости имеет и полученное после интегрирования разложение. \blacktriangleright

§ 5. Степенные ряды

Применяя почленное дифференцирование, вычислить суммы следующих рядов:

185. $x-\frac{x^3}{3}+\frac{x^5}{5}-\cdots$

■ Данный ряд, согласно формуле Коши—Адамара, имеет радиус сходимости, равный единице. Согласно п.5.5, степенной ряд можно почленно дифференцировать внутри интервала сходимости. Имеем $1-x^2+x^4-\ldots=\frac{1}{1+x^2},\,|x|<1.$ Отсюда интегрированием получаем $x-rac{x^3}{3}+rac{x^5}{5}-\ldots=rctg\,x+C.$ Полагая здесь x=0, находим, что постоянная C=0.

Окончательно имеем $x - \frac{x^3}{2} + \frac{x^5}{5} - \dots = \operatorname{arctg} x.$

Заметим, что в концевых точках интервала сходимости этот ряд сходится. Поэтому, согласно теореме Абеля, сумма ряда есть непрерывная функция на отрезке [-1, 1]. Поскольку функция $x \mapsto \arctan g x$ также непрерывна на этом отрезке, то последнее равенство справедливо

при всех $x \in [-1, 1]$. \blacktriangleright **186.** $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$

 \blacktriangleleft Очевидно, этот ряд сходится на всей числовой прямой. Обозначая через S(x) сумму данного ряда, почленным дифференцированием его получаем уравнения

$$S(x) + S'(x) = e^x$$
, $S(x) - S'(x) = e^{-x}$.

Отсюда

$$S(x) = \frac{1}{2}(e^x + e^{-x}) = \operatorname{ch} x, \quad |x| < \infty. \blacktriangleright$$

187.
$$\frac{x}{1\cdot 2} + \frac{x^2}{2\cdot 3} + \frac{x^3}{3\cdot 4} + \cdots$$

◄ Дифференцируя почленно ряд внутри интервала сходимости, получаем $\frac{1}{2} + \frac{x}{2} + \frac{x^2}{4} + \dots =$ S(x), |x| < 1. Умножая обе части этого равенства на $x^2, x \neq 0$, и пользуясь формулой V, п.5.4, находим

$$S(x) = -\frac{1}{x} - \frac{\ln(1-x)}{x^2}.$$
 (1)

При x=0 полагаем $S(0)=\frac{1}{2}$ (x=0 — устранимая точка разрыва функции S). Интегрируя (1), имеем

$$\int S(x) dx = \frac{1-x}{x} \ln(1-x) + C.$$
 (2)

Так как $\lim_{x\to 0} \left(\frac{x}{1\cdot 2} + \frac{x^2}{2\cdot 3} + \frac{x^3}{3\cdot 4} + \dots \right) = 0$, то из (2) находим $C = -\lim_{x\to 0} \frac{1-x}{x} \ln(1-x) = 1$.

$$\frac{x}{1\cdot 2} + \frac{x^2}{2\cdot 3} + \frac{x^3}{3\cdot 4} + \dots = \begin{cases} 1 + \frac{1-x}{x} \ln(1-x), & \text{если} \quad x \neq 0, \\ 0, & \text{если} \quad x = 0. \end{cases}$$
(3)

При |x| < 1 это равенство гарантировано теоремами о возможности почленного дифференцирования и интегрирования степенного ряда внутри интервала сходимости. Покажем, что

и в концевых точках интервала $x=\pm 1$ это равенство при некотором условии справедливо. Действительно, поскольку рассматриваемый степенной ряд в точках $x = \pm 1$ сходится, то, на основании теоремы Абеля, его сумма является непрерывной функцией на отрезке $\{-1, 1\}$. Если значение функции в равенстве (3) справа в точке x = 1 положить равным единице, то, как легко видеть, эта функция на сегменте [-1, 1] также будет непрерывной. Поэтому окончательно можем записать

$$\frac{x}{1\cdot 2} + \frac{x^2}{2\cdot 3} + \frac{x^3}{3\cdot 4} + \dots = \begin{cases} 1 + \frac{1-x}{x} \ln(1-x), & \text{если} & -1 \leqslant x < 0, \ 0 < x < 1, \\ 0, & \text{если} & x = 0, \\ 1, & \text{если} & x = 1. \end{cases}$$

189. $x-4x^2+9x^3-16x^4+\ldots$

 $\int \frac{S(x)}{x} dx = x - 2x^2 + 3x^3 - 4x^4 + \dots + C =$

74

 $S(x) = \frac{1}{\sqrt{1-x}}, |x| < 1.$

188. $1 + \frac{x}{2} + \frac{1 \cdot 3}{2 \cdot 4} x^2 + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} x^3 + \dots$

 $= (x^2 - x^3 + x^4 - \dots)' - x + x^2 - x^3 + \dots + C = \frac{x}{(1+x)^2} + C.$

◀ Нетрудно проверить, что радиус сходимости ряда R=1. Умножая производную $S'(x)=\frac{1}{2}+\frac{1\cdot 3}{2\cdot 4}2x+\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}3x^2+\ldots, |x|<1$, суммы данного ряда на $1-x,\,x\neq 1$, получаем уравнение $(1-x)S'(x)=\frac{1}{2}S(x)$. Общее решение этого уравнения есть $S(x)=\frac{C}{\sqrt{1-x}}$, C=const. Полагая здесь x = 0 и учитывая, что S(0) = 1, находим C = 1. Следовательно.

Сходимость рассматриваемого ряда в концевой точке x = -1 легко установить, если воспользоваться примером 79; расходимость ряда в точке x=1 следует из признака Гаусса. Таким образом, сумма ряда, по теореме Абеля, есть непрерывная функция на [-1, 1]. Поскольку функция $x\mapsto \frac{1}{\sqrt{1-x}}$ также непрерывна на $[-1,\,1]$, то окончательно имеем

 $1 + \frac{x}{2} + \frac{1 \cdot 3}{2 \cdot 4} x^2 + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} x^3 + \dots = \frac{1}{\sqrt{1 - x}} \quad \text{при} \quad -1 \leqslant x < 1. \blacktriangleright$

◄ Общий член этого ряда имеет вид $a_n(x) = (-1)^{n-1} n^2 x^n$. Поэтому легко можно найти, что радиус сходимости ряда R=1. Разделив на $x, x \neq 0$, сумму S(x) данного ряда, а затем

Дифференцируя полученное равенство, находим $S(x) = \frac{x(1-x)}{(1+x)^3}, |x| < 1, x \neq 0$. Нетрудно видеть, что ограничение $x \neq 0$ здесь можно снять. \blacktriangleright 190. $1 \cdot 2x + 2 \cdot 3x^2 + 3 \cdot 4x^3 + \dots$

почленно ero интегрируя в интервале] - 1, 1[, получаем

Применяя почленное интегрирование, вычислить суммы рядов:

 \blacktriangleleft Общий член ряда имеет вид $a_n(x) = n(n+1)x^n$, поэтому

$$R=rac{1}{\lim\limits_{n o\infty}\sqrt[n]{n(n+1)}}=1.$$
 Таким образом, степенной ряд сходится к своей сумме при $|x|<1.$

где C_1 , C_2 — постоянные интегрирования, $x \neq 0$.

 $\int \frac{dx}{x^2} \left(\int S(x) dx \right) = x + x^2 + x^3 + \ldots - \frac{C_1}{x} + C_2 = \frac{x}{1-x} - \frac{C_1}{x} + C_2,$

Дифференцируя равенство (1) дважды и учитывая, что
$$S(0)=0$$
, окончательно находим $S(x)=\frac{2x}{(1-x)^3}, \, |x|<1.$

Почленно интегрируя рассматриваемый ряд в интервале]-1, 1[дважды, получаем

(1)

Пользуясь соответствующими разложениями, вычислить с указанной степенью точности следующие значения функций: **191.** $\sin 18^{\circ}$ с точностью до 10^{-5} .

◀ Пользуясь разложением функции синус в степенной ряд, можем написать

 $\sin 18^{\circ} = \sin \frac{\pi}{10} = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{(2n-1)!} \frac{\pi^{2n-1}}{10^{2n-1}}.$ Так как этот ряд лейбницева типа, то остаток ряда не превышает по абсолютной величине первого из отброшенных членов. Поэтому, как следует из неравенств $\frac{\pi^7}{7110^7} < 10^{-5} < \frac{\pi^5}{8110^5}$,

(1)

Имеем

$$\sin\frac{\pi}{10} \approx \frac{\pi}{10} - \frac{\pi^3}{3!10^3} + \frac{\pi^5}{5!10^5} = \frac{\pi}{10} \left(1 - \frac{\pi^2}{600} + \frac{\pi^4}{12} 10^{-5} \right) = 0,309017 \dots \blacktriangleright$$

для получения результата с требуемой точностью достаточно взять три члена разложения.

$$\sin \frac{1}{10} \approx \frac{1}{10} - \frac{3!10^3}{3!10^3} + \frac{5!10^5}{5!10^5} = \frac{1}{10} \left(1 - \frac{1}{600} + \frac{1}{12} \right) = 0,309017 \dots$$

■ В силу оценки $R_3 = \frac{f^{(4)}(\xi)}{4!} \left(\frac{\pi}{20}\right)^4 < 0,0005 \ (f(x) = \operatorname{tg} x)$, для получения приближенного значения $\operatorname{tg} \frac{\pi}{20}$ с указанной точностью достаточно взять два члена разложения функции тангенса в степенной ряд. Имеем

$$tg9^\circ = tg \frac{\pi}{20} \approx \frac{\pi}{20} + \frac{\pi^3}{3 \cdot 20^3} = \frac{\pi}{20} \left(1 + \frac{\pi^2}{1200}\right) = 0,158 \dots$$

193. Исходя из равенства $\frac{\pi}{c} = \arcsin \frac{1}{2}$, найти число π с точностью до 10^{-4} .

 \blacktriangleleft Пользуемся разложением функции $x \mapsto \arcsin x$ в степенной ряд (см. пример 167). Имеем

 $\arcsin \frac{1}{2} = \frac{1}{2} + \sum_{n=0}^{\infty} \frac{(2n-1)!!}{2^{3n+1} n! (2n+1)}.$

$$R = \sum_{k=0}^{\infty} (2k-1)!!$$

$$R_n = \sum_{k=0}^{\infty} \frac{(2k-1)!!}{2^{3k+1}k!(2k+1)} \le \frac{(2n+1)!!}{3 \cdot 2^{3n+2}(n+1)!(2n+3)}$$

и неравенство $6\frac{(2n+1)!!}{3\cdot 2^{3n+2}(n+1)!(2n+3)} < 10^{-4}$ выполняется при $n\geqslant 4$, то для получения приближенного значения числа $\frac{\pi}{6}$ с требуемой точностью достаточно взять пять членов указанного

$$\frac{\pi}{6} \approx \frac{1}{2} + \frac{1}{48} + \frac{3}{1280} + \frac{5}{14336} + \frac{35}{72 \cdot 8192} = 0,52359 \dots,$$

разложения:

откуда
$$\pi=3,1415\dots$$
 194. Пользуясь формулой $\ln(n+1)=\ln n+2\left(\frac{1}{2n+1}+\frac{1}{3(2n+1)^3}+\dots\right)$, найти $\ln 2$ и $\ln 3$ с точностью до 10^{-5} .

$$\ln \frac{1+x}{1-x} = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots\right).$$

Полагая здесь
$$x = \frac{1}{2n+1}$$
, получаем указанную формулу.

Найдем теперь соответствующие числа k членов ряда (1) пля вычисления п

Найдем теперь соответствующие числа k членов ряда $\left(1
ight)$ для вычисления приближенных значений $\ln 2$ и $\ln 3$. С этой целью оценим остаток R_k этого ряда. Имеем

 $R_k = 2\left(\frac{x^{2k+1}}{2k+1} + \frac{x^{2k+3}}{2k+3} + \dots\right) \leqslant \frac{2x^{2k+1}}{(2k+1)(1-x^2)},$ Отсюда следует, что если $x = \frac{1}{3}$ (n = 1), то $R_k \leqslant 10^{-5}$, начиная с k = 5, а если $x = \frac{1}{5}$ (n = 2),

Отсюда следует, что если
$$x=\frac{1}{3}$$
 $(n=1)$, то $R_k\leqslant 10^{-3}$, начиная с $k=5$, а если $x=\frac{1}{5}$ (n) то $R_k\leqslant 10^{-5}$, начиная с $k=3$. Таким образом,
$$\ln 2\approx 2\left(\frac{1}{3}+\frac{1}{81}+\frac{1}{1215}+\frac{1}{15309}+\frac{1}{177147}\right)=0,69314\ldots,$$

 $\ln 3 \approx 0.69314 + 2\left(\frac{1}{5} + \frac{1}{375} + \frac{1}{15625}\right) = 1.09860 \dots$

195. С помощью разложений подынтегральных функций в ряды вычислить с точностью до 0,001 следующие интегралы:

a)
$$\int_{0}^{1} e^{-x^{2}} dx$$
; 6) $\int_{2}^{4} e^{\frac{1}{x}} dx$; B) $\int_{2}^{+\infty} \frac{dx}{1+x^{3}}$; r) $\int_{0}^{1} x^{x} dx$.

■ а) Пользуясь разложением I, п.5.4, находим

$$e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^{2n}, \quad |x| < \infty,$$

откуда

$$\int\limits_0^\infty e^{-x^2}\,dx = \sum_{n=0}^\infty \frac{(-1)^n}{n!(2n+1)}.$$
 Полученный ряд лейбницева типа, поэтому если для нахождения приближенного значения панного митеграла взять k членов ряда, то догрешность не превзойлет $(k+1)$ —то члена ря-

данного интеграла взять k членов ряда, то погрешность не превзойдет (k+1)-го члена ряда. Из этого условия находим нужное число k. Имеем $\frac{1}{(k+1)!(2k+3)} \leqslant 0,001$, откуда $k \geqslant 4$. Следовательно.

$$\int_{0}^{1} e^{-x^{2}} dx \approx 1 - \frac{1}{3} + \frac{1}{10} - \frac{1}{42} + \frac{1}{216} \approx 0.747 \dots$$

б) Пользуясь формулой I, п.5.4, и разлагая подынтегральную функцию по степеням $\frac{1}{x}$, получаем $e^{\frac{1}{x}} = \sum_{n=0}^{\infty} \frac{1}{n!x^n}$, |x| > 0. Интегрируя этот ряд почленно, имеем

$$\int_{0}^{4} e^{\frac{1}{x}} dx = 2 + \ln 2 + \sum_{n=1}^{\infty} \left(1 - \frac{1}{2n}\right) \frac{1}{n(n+1)!2^{n}}.$$

Ограничиваясь к членами ряда, находим

$$\int_{0}^{4} e^{\frac{1}{x}} dx \approx 2 + \ln 2 + \sum_{n=1}^{k} \left(1 - \frac{1}{2^{n}}\right) \frac{1}{n(n+1)!2^{n}}.$$

Из оценки остатка ряда

$$\sum_{n=k+1}^{\infty} \frac{1}{n(n+1)!2^n} \left(1 - \frac{1}{2^n}\right) < \frac{1}{(n+1)!2^{n+1}(n+1)} \left(1 + \frac{1}{2(n+2)} + \frac{1}{2^2(n+2)(n+3)} + \dots\right) < \frac{1}{2^n}$$

$$<\frac{1}{(n+1)!2^{n+1}(n+1)}\left(1+\frac{1}{2n+4}+\frac{1}{(2n+4)^2}+\dots\right)\leqslant 0{,}001$$

следует, что для получения результата с указанной точностью нужно взять $k\geqslant 3$. Таким образом,

$$\int_{0}^{4} e^{\frac{1}{x}} dx \approx 2 + 0.6931 + \frac{1}{8} + \frac{1}{64} + \frac{7}{6608} = 2.834 \dots$$

(или 2,835 с избытком).

§ 5. Степенные ряды

в) Здесь $x\geqslant 2$, поэтому подынтегральную функцию разлагаем по степеням $\frac{1}{x}$. Имеем

$$(1+x^3)^{-1}=\frac{1}{x^3}\left(1+\frac{1}{x^3}\right)^{-1}=\sum_{n=0}^{\infty}\frac{(-1)^n}{x^{3(n+1)}}, |x|>1,$$

от**куда**

$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^3} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(3n+2)2^{3n+2}}.$$

Поскольку ряд лейбницева типа, то для получения результата с указанной точностью достаточно взять число k членов ряда, удовлетворяющее неравенству $\frac{1}{(3k+5)2^{3k+5}} \leqslant 0,001$; решая его, находим $k\geqslant 1$. Следовательно,

$$\int\limits_2 \frac{dx}{1+x^3} = \frac{1}{8} - \frac{1}{160} + \ldots = 0,118 \ldots$$
 (или $0,119$ с избытком).

г) Представляя подынтегральную функцию в виде $x^x = e^{x \ln x}$ и разлагая ее в степенной ряд по степеням $x \ln x$, x > 0, можем написать $x^x = \sum_{n=0}^{\infty} \frac{x^n \ln^n x}{n!}$. Интегрируя этот ряд почленно, получаем

$$\int_{0}^{1} x^{x} dx = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{1} x^{n} \ln^{n} x dx.$$

Интегрируя по частям, имеем

$$I_{mn}=\int\limits_0^1 x_-^m \ln^n x\, dx=-rac{m}{n+1}\int\limits_0^1 x^m \ln^{n-1} x\, dx=-rac{n}{m+1}I_{mn-1}.$$
 Полагая в полученной рекуррентной формуле последовательно $n=1,\,2,\,\ldots$, находим

Полагая в полученном рекуррентном формуле последовательно $n=1,\,2,\,\ldots,\,$ находим

$$I_{m1} = -\frac{1}{m+1}I_{m0}, \quad I_{m2} = \frac{2!}{(m+1)^2}I_{m0}, \dots, \quad I_{mn} = (-1)^n \frac{n!}{(m+1)^n}I_{m0}.$$

 $\frac{1}{m} = \frac{1}{m+1} \frac{1}{m0}, \quad \frac{1}{m2} = \frac{1}{(m+1)^2} \frac{1}{m0}, \quad \dots, \quad \frac{1}{mn} = \frac{(-1)}{(m+1)^n} \frac{1}{m0}.$

Так как
$$I_{m0} = \int_{0}^{1} x^{m} dx = \frac{1}{m+1}$$
, то $I_{mn} = \frac{(-1)^{n} n!}{(m+1)^{n+1}}$, откуда $I_{nn} = \frac{(-1)^{n} n!}{(n+1)^{n+1}}$.

Таким образом, $\int\limits_0^1 x^x\,dx=\sum\limits_{n=0}^\infty \frac{(-1)^n}{(n+1)^{n+1}}.$ Как следует из оценки остатка ряда

Қак следует из оценки остатка ряда

$$\left| \sum_{k=n+1}^{\infty} \frac{(-1)^k}{(k+1)^{k+1}} \right| \leqslant \frac{1}{(n+2)^{n+2}} \leqslant 0,001,$$

для вычисления данного интеграла с точностью до 0,001 достаточно взять четыре первых члена этого ряда. Тогда получим

$$\int_{0}^{1} x^{x} dx \approx 1 - \frac{1}{4} + \frac{1}{27} - \frac{1}{256} = 0.783 \dots \blacktriangleright$$

196. Найти с точностью до 0,01 длину дуги одной полуволны синусоиды $y=\sin x,$ $0\leqslant x\leqslant\pi.$

Гл. 1. Ряпы

78

где

■ Длина з указанной дуги выражается интегралом

$$s = \int_{-\pi}^{\pi} \sqrt{1 + \cos^2 x} \, dx.$$

(1)

(2)

(3)

(4)

Преобразовывая подынтегральную функцию к виду

$$\sqrt{3}$$

 $\sqrt{1+\cos^2 x} = \sqrt{\frac{3}{2} \left(1 + \frac{1}{2}\cos 2x\right)^{\frac{1}{2}}}$

и замечая, что
$$\frac{1}{3}|\cos 2x|\leqslant \frac{1}{3}$$
, разлагаем ее в степенной ряд по стереням $\frac{1}{3}\cos 2x$, используя

и замечая, что
$$\frac{1}{3}|\cos 2x|\leqslant \frac{1}{3}$$
, разлагаем ее в степенной ряд по стереням $\frac{1}{3}\cos 2x$, в формулу IV, п.5.4:

 $\sqrt{1+\cos^2 x} = \sqrt{\frac{3}{2}} \left(1 + \sum_{n=1}^{\infty} \frac{(-1)^n (2n-1)!!}{(2n)!! 3^n} \cos^n 2x \right).$

$$\int_{0}^{\pi} \sqrt{1+\cos^{2}x} \, dx = \sqrt{\frac{3}{2}} \left(\pi + \sum_{n=1}^{\infty} (-1)^{n} \frac{(2n-1)!!}{(2n)!!3^{n}} I_{n} \right),$$

$$I_n = \int\limits_0^\pi \cos^n 2x \, dx.$$

находим $I_n = \frac{1}{2} \int \cos^{n-1} 2x \, d(\sin 2x) = (n-1)(I_{n-2} - I_n),$

Почленное интегрирование ряда здесь возможно, так как ряд (2), по признаку Вейерштрасса, сходится равномерно по x, а функции $x \mapsto \cos^n 2x$ непрерывны. Интегрируя в (4) по частям,

откуда
$$I_n = \frac{n-1}{n} I_{n-2}, \ n \in \mathbb{N} \setminus \{1\}$$
. Поскольку $I_0 = \pi,$ а $I_1 = 0,$ то из полученной рекуррентной формулы находим

$$I_{2n} = \frac{(2n-1)!!}{(2n)!!} \pi, \quad I_{2n-1} = 0, \quad n \in \mathbb{N}.$$

Используя этот результат, из (3) и (1) окончательно имеем

$$s = \pi \sqrt{\frac{3}{2}} \left(1 + \sum_{n=0}^{\infty} \frac{(4n-1)!!(2n-1)!!}{(4n)!!3^{2n}(2n)!!} \right).$$

$$\sum_{n=0}^{\infty} (4n-1)!!(2n-1)!! \qquad (4k+1)!!$$

$$\sum_{n=k+1}^{\infty} \frac{(4n-1)!!(2n-1)!!}{(4n)!!3^{2n}(2n)!!} < \frac{(4k+3)!!(2k+1)!!}{3^{2k+2}(2k+2)!!(4k+4)!!} \left(1 + \frac{(4k+7)(2k+3)}{9(4k+8)(2k+4)} + \dots \right) <$$

$$<\frac{1}{6\cdot 3^{2k+2}}\left(1+\frac{1}{9}+\frac{1}{81}+\ldots\right)=\frac{5}{3\cdot 9^{k+2}}$$

и учитывая, что абсолютная погрешность при вычислении данного интеграла не должнапревышать 0,01, число первых членов ряда находим из неравенства $\pi \sqrt{\frac{3}{2} \cdot \frac{5}{3 \cdot 9^{k+2}}} \leqslant 10^{-2}$. Его

решения $k \geqslant 1$. Следовательно, $s \approx \pi \sqrt{\frac{3}{2}} \left(1 + \frac{1}{48}\right) = 3.92 \dots$.

(1)

§ 6. Ряды Фурье

Упражнения пля самостоятельной работы

Найти радиусы сходимости следующих степенных рядов:

103.
$$\sum_{n=0}^{\infty} \left(n \operatorname{tg} \frac{1}{n} \right)^{n^2} (z-i)^n \cdot 104. \sum_{n=0}^{\infty} \left(i n \arcsin \frac{1}{n} \right)^{n^2} z^n \cdot 105. \sum_{n=0}^{\infty} \frac{n(n+3)(n+6) \dots 4n}{3^n} z^n \cdot 105.$$

106.
$$\sum_{n=1}^{\infty} \sin \frac{1}{n} \sin \frac{2}{n} \dots \sin 1 \cdot (z-1)^n \cdot 107. \sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} \frac{(2n-1)!!}{(2n)!!} (z-3+i)^n \cdot \dots \cdot \frac{(z-1)^n}{(2n)!!} \cdot \frac{(2n-1)!!}{(2n)!!} \cdot \frac{(2n-1)!!}{(2n)!!} \cdot \frac{(2n-1)!!}{(2n)!!} \cdot \dots \cdot \frac{(2n-1)^n}{(2n-1)!!} \cdot \dots \cdot \frac{(2n-1)^n}{(2n-1)!} \cdot \dots \cdot$$

108.
$$\sum_{n=1}^{\infty} \sum_{n=1}^{n-1} C_{2n}^{2k+1} ((2k-1)!!)^2 ((2n-2k+3)!!)^2 \frac{x^n}{(n!)^2}.$$

109.
$$\sum_{n=0}^{\infty} \frac{(\lg x)^{(n)}\big|_{x=0}}{n!} x^n. \ 110. \ \sum_{n=0}^{\infty} \frac{(\arctan(2\sin x))^{(n)}\big|_{x=0}}{n!} x^n.$$

$$n=0$$
 $n=0$ $n=0$ $n=0$ Разложить в степенные ряды по степеням x функции:

111.
$$x \mapsto \sin^4 x$$
. 112. $x \mapsto \frac{x}{x^4 + x^2 + 1}$. 113. $x \mapsto e^{-x^2} \sum_{n=1}^{\infty} \frac{x^n}{4^n}$.

111.
$$x \mapsto \sin^4 x$$
. 112. $x \mapsto \frac{1}{x^4 + x^2 + 1}$. 113. $x \mapsto e^{-x} = \sum_{n=0}^{\infty} \frac{1}{4^n}$.

114.
$$x \mapsto \int_{0}^{1} \ln(1+xt) dt$$
. 115. $x \mapsto \int_{0}^{1} \arctan(xt) dt$. 116. $x \mapsto \int_{0}^{1} e^{-x^{2}t^{2}} dt$. 117. Показать справедливость формулы

$$\frac{d}{dt}(e^{tA}) = Ae^{tA}$$

118. Пусть
$$A$$
 — квадратная матрица. Положим, по определению,

$$\sin A = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{A^{2n-1}}{(2n-1)!}, \quad \cos A = \sum_{n=0}^{\infty} (-1)^n \frac{A^{2n}}{(2n)!}$$

Показать, что матричные ряды сходятся для произвольных A. 119. Пусть А — квадратная матрица. Положим, по определению,

$$\ln(I+A) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} A^{n}.$$

Показать, что если
$$\sum_{n=1}^{\infty} a_{nk}^2 < 1$$
, где a_{nk} — элементы матрицы A , то ряд (1) сходится.

δ6. Ряды Фурье

6.1. Основные определения. Определение 1. Система функций

$$\frac{1}{2}, \cos \frac{\pi x}{l}, \sin \frac{\pi x}{l}, \ldots \cos \frac{k\pi x}{l}, \sin \frac{k\pi x}{l}, \ldots, \quad x \in [-l, l],$$

называется основной тригонометрической системой. Эта система ортогональна на отрезке
$$[-l, l]$$
. Определение 2. Пусть $f \in R[-l, l]$. Числа

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx, \ a_k = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{k\pi x}{l} dx, \ b_k = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{k\pi x}{l} dx, \quad k \in \mathbb{N},$$

называются коэффициентами Фурье функции f по основной тригонометрической систе-

Определение 3. Тригонометрический ряд

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos \frac{k\pi x}{l} + b_k \sin \frac{k\pi x}{l} \right)$$

называется рядом Φ урье функции f. B частности, если функция f четная, то ее ряд Φ урье имеет вид

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos \frac{k\pi x}{l};$$

ряд Фурье нечетной функции имеет вид

$$\sum_{k=1}^{\infty} b_k \sin \frac{k\pi x}{l}.$$

Определение 4. Функция $f:[-l,l]\to\mathbb{R}$ называется кусочно-непрерывной на [-l,l], если она непрерывна в каждой точке $x\in[-l,l]$, за исключением, быть может, конечного числа точек, где она имеет разрывы первого рода.

Определение 5. Функция $f:[-l,l] \to \mathbb{R}$ называется кусочно-гладкой на [-l,l], если эта функция кусочно-непрерывна и имеет непрерывную производную на этом отрезке, за исключением, быть может, конечного числа точек, в каждой из которых производная имеет конечные односторонние предельные значения.

6.2. Теоремы о разложении в ряд Фурье.

Теорема 1 (основная). Пусть кусочно-гладкая на отрезке [-l, l] функция f периодически с периодом 2l продолжена на всю числовую прямую. Тогда тригонометрический ряд Фурье функции f сходится в каждой точке $x \in]-\infty, +\infty[$ к значению $\frac{1}{2}(f(x-0)+f(x+0))$.

Теорема 2. Если для непрерывной и кусочно-гладкой на отрезке [-l, l] функции f выполняется равенство f(-l) = f(l), то ее тригонометрический ряд Фурье сходится равномерно на этом отрезке и сумма его равна значению функции $f \ \forall x \in [-l, l]$.

6.3. О дифференцировании и интегрировании рядов Фурье.

Пусть $f \in C^m[-l, l]$ и $f(-l) = f(l), f'(-l) = f'(l), \dots, f^{(m)}(-l) = f^{(m)}(l)$. Пусть, кроме того, функция f имеет на отрезке [-l, l] кусочно-непрерывную производную порядка m+1. Тогда: 1) сходится числовой ряд

$$\sum_{k=0}^{\infty} \left(\frac{k\pi}{l}\right)^m (|a_k| + |b_k|);$$

2) ряд Фурье такой функции можно m раз почленно дифференцировать на указанном отрезке.

Ряд Фурье интегрируемой по Риману на отрезке [-l, l] функции f можно интегрировать почленно на этом отрезке.

6.4. Разложение в ряд Фурье по другим ортогональным системам. Ортогональные полиномы.

1) Полиномы Чебышева $T_n(x) = \frac{1}{2^{n-1}}\cos(n\arccos x)$ ортогональны на интервале] — 1, 1[с весовой функцией $x\mapsto \frac{1}{\sqrt{1-x^2}}$, т.е.

$$\int_{1}^{1} \frac{T_{m}(x)T_{n}(x)}{\sqrt{1-x^{2}}} dx = \frac{\pi}{2^{2n-1}} \delta_{mn},$$

где

$$\delta_{mn} = \left\{ \begin{array}{ll} 0, & m \neq n, \\ 1, & m = n. \end{array} \right.$$

2) Полиномы Лежандра $P_n(x) = \frac{1}{2^n n!} \frac{d^n(x^2-1)^n}{dx^n}$ ортогональны на отрезке [-1, 1], т.е.

$$\int_{-1}^1 P_m(x)P_n(x) dx = \frac{2}{2n+1} \delta_{mn}.$$

3) Полиномы Абеля—Лагерра $L_n(x) = \frac{e^x}{n!} \frac{d^n(x^n e^{-x})}{dx^n}$ обладают свойством ортогональности на интервале $]0, +\infty[$ с весовой функцией $x \mapsto e^{x}$. Таким образом, имеем

$$\int_{0}^{+\infty} e^{-x} L_{m}(x) L_{n}(x) dx = \delta_{mn}.$$

4) Полиномы Чебышева—Эрмита $H_n(x)=rac{e^{\frac{x^2}{2}}}{n!} rac{d^n e^{-\frac{x^2}{2}}}{dx^n}$ определены на всей числовой прямой и для них справедлива формула

$$\int\limits_{0}^{+\infty}e^{-\frac{x^{2}}{2}}H_{m}(x)H_{n}(x)\,dx=\frac{\sqrt{2\pi}}{n!}\,\delta_{mn}.$$

Разложить в ряд Фурье в указанных интервалах следующие функции:

197. $f: x \mapsto \begin{cases} A, & \text{если} & 0 < x < l, \\ 0, & \text{если} & l < x < 2l, \end{cases}$ где A — постоянная, в интервале]0, 2l[.

« Как видим, данная функция кусочно-гладкая, причем точка x = l — точка разрыва первого рода. Поэтому, согласно теореме 1 о разложении, функция f может быть представлена

рядом Фурье. Периодически (с периодом 2l) продолжая функцию f на всю числовую прямую, построим функцию

$$f^*: x \mapsto \left\{egin{array}{ll} A, & ext{если} & 2kl < x < (2k+1)l, \ rac{1}{2}A, & ext{если} & x = kl, \ 0, & ext{если} & (2k-1)l < x < 2kl, \end{array}
ight.$$

где $k \in \mathbb{Z}$.

где $\kappa \in \mathbb{Z}$. Согласно указанной теореме, функция f^* совпадает в каждой точке x числовой прямой с ее сходящимся рядом Фурье:

$$f^*(x) = \frac{a_0}{2} + \sum_{n=0}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right),$$

где

$$a_0 = A$$
, $a_n = \frac{1}{l} \int_{-l}^{l} f^*(x) \cos \frac{n\pi x}{l} dx = \frac{1}{l} \int_{0}^{2l} f(x) \cos \frac{n\pi x}{l} dx = \frac{A}{l} \int_{0}^{l} \cos \frac{n\pi x}{l} dx = 0$,

$$b_n = \frac{1}{l} \int_{-l}^{l} f^*(x) \sin \frac{n\pi x}{l} dx = \frac{A}{l} \int_{-l}^{l} \sin \frac{n\pi x}{l} dx = \frac{A}{n\pi} ((-1)^{n+1} + 1).$$

Следовательно, $f^*(x) = \frac{A}{2} + \frac{2A}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin \frac{2n-1}{l} \pi x$ при всех $x \in]-\infty, +\infty[$, а

$$f(x) = \frac{A}{2} + \frac{2A}{\pi} \sum_{l=1}^{\infty} \frac{1}{2n-1} \sin \frac{2n-1}{l} \pi x$$

Поскольку функция f^* четная, то $b_n = 0$;

ней ряд Фурье.

198. $f: x \mapsto |x|$ в интервале $]-\pi, \pi[$.

 ◆ Эта функция непрерывна на]-π, π[и имеет кусочно-непрерывную производную всюду, за исключением точки x=0. Периодически (с периодом 2π) продолжив функцию f на всю числовую прямую, построим функцию $f^*: x \mapsto |x-2k\pi|$, если $|x-2k\pi| \leqslant \pi$, где $k \in \mathbb{Z}$.

Построенная функция уповлетворяет требованиям теоремы о разложимости в сходящийся к

Слеповательно. $f^*(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\cos(2k+1)x}{(2k+1)^2}, \quad -\infty < x < +\infty,$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{2}{\pi} \int_{-\pi}^{\pi} x \cos nx \, dx = \frac{2}{\pi n^2} ((-1)^n - 1), \quad a_0 = \pi.$$

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\cos(2k+1)x}{(2k+1)^2}, \quad -\pi < x < \pi. \blacktriangleright$$

199. $f: x \mapsto \sin ax$ в интервале $]-\pi, \pi[, a \in \mathbb{R} \setminus \mathbb{Z}]$

 \blacktriangleleft По данной функции построим функцию $f^*: x \mapsto \sin(a(x-2k\pi))$, если $|x-2k\pi| <$

 π , $f^*((2k+1)\pi)=0$, $k\in\mathbb{Z}$. Эта функция является кусочно-гладкой при $|x-2k\pi|<\pi$. Кроме того, $\frac{1}{2}(f^*(x_k-0)+f^*(x_k+0))=f^*(x_k)$, где $x_k=(2k+1)\pi$ — точки разрыва первого рода функции f^* . Поэтому функцию f^* можно разложить в ряд Фурье, сходящийся к ней в каждой

точке числовой прямой. В силу нечетности функции f^* коэффициенты $a_n = 0$;

$$b_n = \frac{2}{\pi} \int_{-\pi}^{\pi} \sin ax \sin nx \, dx = \frac{2}{\pi} \frac{(-1)^{n+1} n}{n^2 - a^2} \sin a\pi, \quad |a| \neq n.$$

Таким образом, имеем

$$f^{*}(x) = \frac{2\sin \pi a}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n\sin nx}{n^{2} - a^{2}}, \quad |x| < \infty,$$
$$f(x) = \frac{2\sin \pi a}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n\sin nx}{n^{2} - a^{2}}, \quad |x| < \pi. \blacktriangleright$$

200. $f: x \mapsto x$ в интервале]a, a + 2l[.

Функция

$$f^{ullet}: x \mapsto \left\{egin{array}{ll} x-2lk, & ext{если} & 2lk+a < x < a+2l(k+l), \ a+l, & ext{если} & x=2lk, \end{array}
ight.$$

 $k\in\mathbb{Z}$, построенная на основании данной функции и совпадающая с ней на интервале]а, а +2l, является 2l-периодической, кусочно-гладкой. Кроме того, в точках разрыва x=2lkвыполняется равенство

$$f^*(x_k) = \frac{1}{2} \left(f^*(x_k - 0) + f^*(x_k + 0) \right) = a + l.$$

Поэтому функция f^* разложима в сходящийся к ней в каждой точке $x\in]-\infty, +\infty[$ ряд Фурье.

Далее, имеем

$$a_0 = 2(a+l),$$

$$a_k = \frac{1}{l} \int_{-l}^{l} f^*(x) \cos \frac{k\pi x}{l} dx = \frac{1}{l} \int_{-l}^{a+2l} f(x) \cos \frac{k\pi x}{l} dx = \frac{2l}{l} \sin \frac{k\pi a}{l},$$

$$b_k = \frac{1}{l} \int_{-l}^{l} f^*(x) \sin \frac{k\pi x}{l} dx = \frac{1}{l} \int_{a}^{a+2l} f(x) \sin \frac{k\pi x}{l} dx = -\frac{2l}{k\pi} \cos \frac{k\pi a}{l}, \quad k \in \mathbb{N}.$$

Таким образом,

$$f^{\bullet}(x) = a + l + \frac{2l}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n\pi}{l} (a - x), \quad |x| < \infty,$$

$$f(x) = a + l + \frac{2l}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n\pi}{l} (a - x), \quad a < x < a + 2l.
ightharpoons$$

Разложить в ряд следующие периодические функции:

201.
$$f: x \mapsto \operatorname{sgn}(\cos x)$$
.

◄ Данная функция кусочно-непрерывна (точки разрыва x_k первого рода удовлетворяют уравнению $\cos x_k = 0$) и имеет кусочно-непрерывную производную f'(x) = 0 при $x \neq x_k$. Кроме того, функция f периодическая с периодом 2π и $f(x_k) = \frac{1}{2}(f(x_k-0)+f(x_k+0))$. Следовательно, она может быть разложена в ряд Фурье, сходящийся в каждой точке х числовой

прямой. Учитывая четность рассматриваемой функции, получаем

$$b_n = 0, \quad a_0 = 0,$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} \operatorname{sgn}(\cos x) \cos nx \, dx = \frac{2}{\pi} \int_0^{\pi} \cos nx \, dx - \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} \cos nx \, dx = \frac{4}{\pi n} \sin \frac{\pi n}{2}, \ n \in \mathbb{N}.$$

Таким образом, имеем

$$sgn(\cos x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{\pi n}{2} \cos nx = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{k}}{2k+1} \cos(2k+1)x, \quad -\infty < x < +\infty.$$

$$\operatorname{sgn}(\cos x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{\pi n}{2} \cos nx = \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{(-1)}{2k+1} \cos(2k+1)x, \quad -\infty < x < +\infty.$$

202. $f: x \mapsto \arcsin(\cos x)$.

◀ Нетрудно проверить, что эта функция непрерывна на всей числовой прямой и имеет кусочно-непрерывную производную (она не дифференцируема только в точках $x=k\pi$, где $k\in\mathbb{Z}$). Кроме того, она 2π -периодическая. Следовательно, ее ряд Фурье сходится к ней в каждой точке $x \in]-\infty, +\infty[$.

Принимая во внимание четность данной функции, находим $b_n = 0$, $a_0 = \frac{2}{\pi} \int_{-\pi}^{\pi} \left(\frac{\pi}{2} - x\right) dx = 0$, $a_n = \frac{2}{\pi} \int_{-\pi}^{\pi} \left(\frac{\pi}{2} - x\right) \cos nx \, dx = -\frac{2}{\pi} \frac{((-1)^n - 1)}{n^2}$, $n \in \mathbb{N}$.

Итак.

$$arcsin(\cos x) = -\frac{2}{\pi} \sum_{n=0}^{\infty} \frac{((-1)^n - 1)}{n^2} \cos nx = \frac{4}{\pi^2} \sum_{n=0}^{\infty} \frac{\cos(2k+1)x}{(2k+1)^2}, \quad -\infty < x < +\infty.$$

203. $f: x \mapsto (x)$ — расстояние x до ближайшего целого числа.

 \blacktriangleleft Функция f — четная, имеющая период T=1; в остальном ее свойства аналогичны свойствам функции $x \mapsto \arcsin(\cos x)$, рассмотренной в предыдущем примере. Поэтому

$$b_n = 0$$
, $a_0 = 4 \int_0^{\frac{1}{2}} x \, dx = \frac{1}{2}$, $a_n = 4 \int_0^{\frac{1}{2}} x \cos 2\pi nx \, dx = \frac{(-1)^n - 1}{\pi^2 n^2}$, $n \in \mathbb{N}$.

Таким образом, имеем

$$(x) = \frac{1}{4} - \frac{2}{\pi^2} \sum_{n=0}^{\infty} \frac{\cos(4n-2)\pi x}{(2n-1)^2}, |x| < \infty. \blacktriangleright$$

204.
$$f: x \mapsto \sum_{n=1}^{\infty} \alpha^n \frac{\sin nx}{\sin x}, \ |\alpha| < 1.$$

■ Поскольку

84

$$\left|\alpha^n \frac{\sin nx}{\sin x}\right| \leqslant \frac{n|\alpha|^n|x|}{|\sin x|}, \quad \sum_{n=1}^{\infty} \frac{n|\alpha|^n|x|}{|\sin x|} < \infty,$$

то, согласно признаку Вейерштрасса, данный ряд сходится равномерно на каждом отрезке, не содержащем точек $x=k\pi,\,k\in\mathbb{Z}.$ Так как, кроме того, функция $x\mapsto \frac{\sin nx}{\sin x}$ непрерывна при $x \neq k\pi$, то, согласно п.4.4, функция f непрерывна при $x \neq k\pi$.

$$f': x \mapsto \sum_{n=1}^{\infty} \alpha^n \frac{n \cos nx \sin x - \cos x \sin nx}{\sin^2 x}$$

Аналогично можно показать, что функция

также непрерывна при $x \neq k\pi$. Как следует из равенств

$$\lim_{x \to k\pi} f(x) = \lim_{x \to k\pi} \sum_{n=1}^{\infty} \alpha^n \frac{\sin nx}{\sin x} = \lim_{x \to k\pi} \frac{\sum_{n=1}^{\infty} \alpha^n \sin nx}{\sin x} = \lim_{n \to k\pi} \frac{\sin nx}{\sin x}$$

$$\lim_{x \to k\pi} f(x) = \lim_{x \to k\pi} \sum_{n=1}^{\infty} \alpha^n \frac{\sin nx}{\sin x} = \lim_{x \to k\pi} \frac{n=1}{\sin x}$$

$$x = k\pi$$
 — точки устранимого разрыва функции f . Таким образом, периодическая функция

 $=\lim_{x\to k\pi}\frac{\sum_{n=1}^{\infty}n\alpha^n\cos nx}{\cos x}=\sum_{n=1}^{\infty}n\alpha^n(-1)^{(n+1)k}\equiv\beta_k,$

$$f^*: x \mapsto \left\{egin{array}{ll} f(x), & ext{если} & x
eq k\pi, \ eta_k, & ext{если} & x = k\pi, \end{array}
ight.$$

разлагается в сходящийся к ней всюду ряд Фурье. Имеем
$$\infty$$
 л

$$f^*(x) = \sum_{n=1}^{\infty} \frac{\alpha^n}{\sin x} (\sin(n-2)x \cos 2x + \cos(n-2)x \sin 2x) =$$

$$= \sum_{n=1}^{\infty} \alpha^n \frac{\sin(n-2)x}{\sin x} + 2\sum_{n=1}^{\infty} \alpha^n \cos(n-1)x = -\alpha + \alpha^2 \sum_{n=1}^{\infty} \alpha^n \frac{\sin nx}{\sin x} + 2\sum_{n=1}^{\infty} \alpha^n \cos(n-1)x.$$

Отсюда находим

$$f^*(x) = \frac{\alpha}{\alpha^2 - 1} + 2\sum_{n=1}^{\infty} \frac{\alpha^n}{1 - \alpha^2} \cos(n - 1)x = \frac{\alpha}{1 - \alpha^2} + 2\alpha\sum_{n=1}^{\infty} \frac{\alpha^n}{1 - \alpha^2} \cos nx. \blacktriangleright$$

205. Функцию $f: x \mapsto x^2$ разложить в ряд Фурье: а) по косинусам кратных дуг; б) по синусам кратных дуг; в) в интервале $]0, 2\pi[$. Пользуясь этими разложениями, найти суммы рядов:

$$\sum_{n=0}^{\infty} \frac{1}{n^2}, \quad \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n^2}, \quad \sum_{n=0}^{\infty} \frac{1}{(2n-1)^2}.$$

◀ В случае а) функцию f, рассматриваемую в силу условия примера только на отрезке $[-\pi,\pi]$, периодически (с периодом 2π) продолжим на всю числовую прямую. Тогда получим непрерывную и кусочно-гладкую функцию f^* , совпадающую с функцией f при $|x| \le \pi$ и

$$b_n = 0$$
, $a_0 = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2\pi^2}{3}$, $a_n = \frac{2}{\pi} \int_0^{\pi} x^2 \cos nx dx = (-1)^n \frac{4}{n^2}$, $n \in \mathbb{N}$.

разлагающуюся в ряд Фурье только по косинусам. Для коэффициентов a_n, b_n имеем

Поэтому

$$f^*(x) = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{n^2} \text{ при всех } x \in]-\infty, +\infty[;$$

$$x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{n^2} \text{ только при } |x| \leqslant \pi.$$

Для получения разложения в случае $\mathbf{6}$) функцию $x\mapsto x^2$, рассматриваемую на интервале $]0,\,\pi[$, продолжим на $]-\pi,\,0]$ нечетным образом, а затем так построенную функцию периодически (с периодом 2π) продолжим на всю числовую прямую. В результате получим функцию

$$f^*: x \mapsto \left\{ egin{array}{ll} |x-2k\pi|(x-2k\pi), & ext{если} & |x-2k\pi| < \pi, \ 0, & ext{если} & x = (2l+1)\pi, \end{array}
ight.$$

 $k,\ l\in\mathbb{Z},$ определенную всюду на числовой прямой и удовлетворяющую всем условиям теоремы $1,\ \mathrm{n.6.2.}$ Вычислив коэффициенты

$$a_n = 0$$
, $b_n = \frac{2}{\pi} \int_0^{\pi} x^2 \sin nx \, dx = \frac{2\pi}{n} (-1)^{n+1} + \frac{4}{\pi n^3} ((-1)^n - 1)$,

можем написать

$$f^*(x) = \sum_{n=1}^{\infty} \left(\frac{2\pi}{n} (-1)^{n+1} + \frac{4}{\pi n^3} ((-1)^n - 1) \right) \sin nx, \ |x| < \infty,$$
$$x^2 = \sum_{n=1}^{\infty} \left(\frac{2\pi}{n} (-1)^{n+1} + \frac{4}{\pi n^3} ((-1)^n - 1) \right) \sin nx, \ 0 \le x < \pi.$$

Наконец, в случае в) по функции $f: x \mapsto x^2, 0 < x < 2\pi$, строим 2π -периодическую функцию f^* , совпадающую с функцией $f: x \mapsto x^2$ только на интервале $]0, 2\pi[$ и в точках разрыва $x = 2k\pi, k \in \mathbb{Z}$, равную $2\pi^2$. Тогда для коэффициентов a_n и b_n функции f^* имеем

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f^*(x) dx = \frac{1}{\pi} \int_{0}^{2\pi} f^*(x) dx = \frac{1}{\pi} \int_{0}^{2\pi} x^2 dx = \frac{8\pi^2}{3},$$

$$a_n = \frac{1}{\pi} \int_0^{\pi} f^*(x) \cos nx \, dx = \frac{1}{\pi} \int_0^{2\pi} f^*(x) \cos nx \, dx = \frac{4}{n^2},$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f^*(x) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi}^{2\pi} x^2 \sin nx \, dx = -\frac{4\pi}{n}, \ n \in \mathbb{N}.$$

Следовательно,

$$f^*(x) = \frac{4\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{\cos nx}{n^2} - 4\pi \sum_{n=1}^{\infty} \frac{\sin nx}{n}, \ |x| < \infty,$$
$$x^2 = \frac{4\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{\cos nx}{n^2} - 4\pi \sum_{n=1}^{\infty} \frac{\sin nx}{n}, \ 0 < x < 2\pi.$$

Полагая в случае а) $x=\pi$ и x=0, получаем соответственно $\sum_{n=0}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{6}$

$$\frac{\pi^2}{12}$$
. Складывая почленно эти два сходящихся ряда, находим $\sum_{n=0}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$. \blacktriangleright

Пользуясь формулами $\cos x=\frac{1}{2}(z+\overline{z}),\,\sin x=\frac{1}{2i}(z-\overline{z}),\,$ где $z=e^{ix},\,\overline{z}=e^{-ix},\,$ получить разложения в ряд Фурье следующих функций:

206. $x \mapsto \cos^{2m} x, n \in \mathbb{N}$.

◀ Пользуясь указанными формулами, а также формулой бинома Ньютона, можем написать
$$\cos^{2m}x = \frac{1}{4^m}(z+\bar{z})^{2m} = \frac{1}{4^m}\sum_{i=1}^{2m}C_{2m}^kz^{2(m-k)} = \frac{1}{4^m}\sum_{i=1}^{2m}(\cos 2(m-k)x + i\sin 2(m-k)x) =$$

$$=\frac{1}{4^m}\sum_{k=0}^{2m}C_{2m}^k\cos 2(m-k)x=\frac{C_{2m}^m}{4^m}+\frac{1}{2^{2m-1}}\sum_{k=0}^mC_{2m}^{m-k}\cos 2kx.$$

Здесь мы воспользовались тождеством $C_{2m}^k=C_{2m}^{2m-k}$, а также четностью функции $x\mapsto\cos 2kx$ и нечетностью функции $x\mapsto\sin 2(m-k)x$. \blacktriangleright 207. $x \mapsto \frac{q \sin x}{1 - 2q \cos x + q^2}, |q| < 1.$

$$207. \ x \mapsto rac{q \sin x}{1-2q \cos x+q^2}, \ |q| < 1.$$
 \blacktriangleleft Применяя указанные в предыдущем примере формулы и разлагая данную дробь на

простейшие, получаем $\frac{q \sin x}{1 - 2q \cos x + q^2} = \frac{1}{2i(1 - qz)} - \frac{1}{2i(1 - q\overline{z})}.$

Поскольку $|qz|=|q\overline{z}|=|q|<1$, то справедливы разложения в степенные ряды функций $qz\mapsto (1-qz)^{-1}$ и $q\overline{z}\mapsto (1-q\overline{z})^{-1}$ по степеням qz и $q\overline{z}$ соответственно. Имеем

$$qz\mapsto (1-qz)^{-1}$$
 и $q\overline{z}\mapsto (1-q\overline{z})^{-1}$ по степеням qz и $q\overline{z}$ соответственно. Имеем
$$\frac{q\sin x}{1-2q\cos x+q^2}=\frac{1}{2i}\sum_{n=0}^{\infty}q^n(z^n-\overline{z}^n)=\sum_{n=0}^{\infty}q^n\frac{e^{inx}-e^{-inx}}{2i}=\sum_{n=0}^{\infty}q^nsinnx. \blacktriangleright$$

$$1 - 2q\cos x + q^2 \qquad 2i \sum_{n=0}^{\infty} 1$$

208. $x \mapsto \ln(1 - 2q \cos x + q^2), |q| < 1.$

 ■ Дифференцируя данную функцию по х и пользуясь предыдущим разложением, получаем $(\ln(1-2q\cos x+q^2))'_x=2\sum^{\infty}q^n\sin nx,$

(1)

(2)

откуда

$$\ln(1-2q\cos x+q^2)=-2\sum_{n=1}^{\infty}\frac{q^n}{n}\cos nx+C.$$

Полагая здесь $x = \pi$, находим

$$\ln(1+q) = \sum_{n=0}^{\infty} \frac{q^n}{n} (-1)^{n+1} + C.$$

Отсюда, в силу формулы V, \S 5, следует, что C=0. Итак, окончательно получаем

$$\ln(1-2q\cos x+q^2)=-2\sum_{n=0}^{\infty}\frac{q^n}{n}\cos nx. \blacktriangleright$$

 $\sum \frac{z^n}{n},$

 $\ln \left| \sin \frac{x}{2} \right| = \operatorname{Re} \left(\ln \frac{1-z}{2} \right), \quad \ln 1 = 0.$

$$n=1$$
 209. Разложить в ряд Фурье неограниченную периодическую функцию $f: x \mapsto \ln \left| \sin \frac{x}{2} \right|$.

 \blacktriangleleft Пусть $0<\varepsilon\leqslant x-2k\pi\leqslant 2\pi-\varepsilon$, где $\varepsilon>0$ и $k\in\mathbb{Z}$. Тогда степенной ряд

$$\epsilon$$
, где $\epsilon>0$ и $k\in\mathbb{Z}$. Тогда степенной ряд

где $z=e^{ix}$, сходится при всех указанных x.

Далее, покажем, что

 $\left|\sin\frac{x}{2}\right| = \sqrt{\frac{1-\cos x}{2}}$

и представлением
$$w=|w|(\cos\varphi+i\sin\varphi)$$
, где w — некоторое комплексное число, φ — его аргумент, Re $\ln w=\ln |w|$, получаем (положив $w=\frac{1}{2}(1-z)$)

 $\operatorname{Re}\left(\ln\frac{1-z}{2}\right) = \ln\sqrt{\frac{1-\cos x}{2}} = \ln\left|\sin\frac{x}{2}\right|,$

что и требовалось доказать. Таким образом, используя формулу (2) и разложение функции $z\mapsto -\ln(1-z)$ в ряд (1),

имеем
$$\ln \left| \sin \frac{x}{2} \right| = -\ln 2 - \text{Re} \sum_{n=0}^{\infty} \frac{z^n}{n} = -\ln 2 - \sum_{n=0}^{\infty} \frac{\cos nx}{n}.$$

n=1 n=1 Так как число ε можно взять как угодно малым, то отсюда следует, что полученное разложение справедливо при всех $x \neq 2k\pi$. \blacktriangleright

$$210.$$
 Разложить в ряд Фурье функцию $f: x \mapsto \int\limits_{-\infty}^{x} \ln \sqrt{\left|\operatorname{ctg} rac{t}{2} \right| dt}, -\pi \leqslant x \leqslant \pi.$

 \blacktriangleleft Производная функции f, равная

$$f': x \mapsto \frac{1}{2} \ln \left| \operatorname{ctg} \frac{x}{2} \right| = \frac{1}{2} \left(\ln \left| \cos \frac{x}{2} \right| - \ln \left| \sin \frac{x}{2} \right| \right),$$

Гл. 1. Ряды

является 2π -периодической функцией и на интервалах $0 < |x| < 2\pi$ может быть представлена рядом Фурье. Действительно, на основании предыдущего примера имеем

$$\ln\left|\sin\frac{x}{2}\right| = -\ln 2 - \sum_{n=1}^{\infty} \frac{\cos nx}{n}, \quad x \neq 2k\pi, \quad k \in \mathbb{Z},$$

$$\ln\left|\cos\frac{x}{2}\right| = -\ln 2 - \sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{n}, \quad x \neq (2k+1)\pi.$$

Поэтому, если $x \neq k\pi$, $k \in \mathbb{Z}$, то

$$f'(x) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n} \cos nx = \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{2n-1}.$$

Интегрируя полученный ряд почленно, находим

$$f(x) = \int_{-\infty}^{\infty} \frac{\cos(2n-1)t}{2n-1} dt = \sum_{-\infty}^{\infty} \frac{\sin(2n-1)x}{(2n-1)^2}.$$

211. Как следует продолжить заданную в интервале $]0, \frac{\pi}{2}[$ непрерывную функцию f в интервал] — π , π [, чтобы ее разложение в ряд Фурье имело вид $f(x) = \sum_{n=0}^{\infty} a_n \cos(2n-1)x$,

 $-\pi < x < \pi$? **◄** Поскольку $b_n = 0$, то функция f — четная, т.е. ее следует продолжить в интервал $[-\pi, 0]$ четным образом. Далее, замечая, что в данном разложении отсутствуют члены

$$a_{2n} = \frac{2}{\pi} \int_{-\pi}^{\pi} f(x) \cos 2nx \, dx = 0, \quad n \in \mathbb{Z}_0.$$

Разбивая этот интеграл на два интеграла

 $a_{2n}\cos 2nx$, заключаем, что

$$\int_{0}^{\pi} f(x) \cos 2nx \, dx = \int_{0}^{\frac{\pi}{2}} f(x) \cos 2nx \, dx + \int_{\frac{\pi}{2}}^{\pi} f(x) \cos 2nx \, dx$$

и производя замену: в первом интеграле
$$x=\frac{1}{2}(\pi-y)$$
, а во втором $x=\frac{1}{2}(\pi+y)$, получаем
$$\int\limits_{-\pi}^{\pi}f(x)\cos 2nx\,dx=\frac{(-1)^n}{2}\int\limits_{-\pi}^{\pi}\left(f\left(\frac{\pi}{2}-\frac{y}{2}\right)+f\left(\frac{\pi}{2}+\frac{y}{2}\right)\right)\cos ny\,dy=0,$$

или
$$\int\limits_{-\pi}^{\pi}f(x)\cos 2nx\,dx=\frac{(-1)^n}{2}\int\limits_{-\pi}^{0}\left(f\left(\frac{\pi}{2}+\frac{y}{2}\right)+f\left(\frac{\pi}{2}-\frac{y}{2}\right)\right)\cos ny\,dy=0.$$

Отсюда следует, что

$$\int_{0}^{\pi} \left(f\left(\frac{\pi}{2} + \frac{y}{2}\right) + f\left(\frac{\pi}{2} - \frac{y}{2}\right) \right) \cos ny \, dy = 0,$$

т.е. функция $\Phi: y \mapsto f\left(\frac{\pi}{2} + \frac{y}{2}\right) + f\left(\frac{\pi}{2} - \frac{y}{2}\right)$ является нечетной. Однако функция Φ очевидно, четная, поэтому $\Phi(y) = \bar{0}$.

Итак, должно быть $f\left(\frac{\pi+y}{2}\right)=-f\left(\frac{\pi-y}{2}\right),\,|y|<\pi$ или, если вернуться к переменной xпо формуле $x=\frac{\pi-y}{2},\ f(\pi-x)=-f(x).$ Следовательно, график так построенной функции должен быть симметричным относительно прямой x=0, а точки $x=\pm \frac{\pi}{2}$ должны быть центрами симметрии его на интервалах $]0, \pi[$ и $]-\pi, 0[$ соответственно. \blacktriangleright

ляется следующим образом:

 $a_{2n}, n \in \mathbb{Z}_0$, равны нулю, так как

 $f^*: x \mapsto \left\{ \begin{array}{ll} f(x), & \text{если} & 0 < x < \frac{\pi}{2}, \\ f(-x), & \text{если} & -\frac{\pi}{2} \leqslant x \leqslant 0, \\ (x-\pi)\left(x-\frac{\pi}{2}\right), & \text{если} & \frac{\pi}{2} \leqslant x \leqslant \pi, \\ (x+\pi)\left(x+\frac{\pi}{2}\right), & \text{если} & -\pi \leqslant x \leqslant -\frac{\pi}{2}. \end{array} \right.$

 $a_{2n} = \frac{1}{\pi} \int f^*(x) \cos 2nx \, dx = \frac{2}{\pi} \int f^*(x) \cos 2nx \, dx =$

(здесь использовались подстановки: $x = \frac{\pi}{2} - y$ и $x = \frac{\pi}{2} + y$).

 $b_n = 0$, $a_{2n-1} = \frac{2}{\pi} \int_{-\pi}^{\pi} f^*(x) \cos(2n-1)x \, dx =$

Разложения функций f^* и f имеют вид

разложена в ряд Фурье только по косинусам нечетных дуг. Имеем

◄ а) Рассмотрим 2π -периодическую функцию f^* , которая в интервале] − π , π [опреде-

нечетных дуг; б) по синусам нечетных дуг.

212. Функцию $f:x\mapsto x\left(rac{\pi}{2}-x
ight)$ разложить в интервале $\left]0,rac{\pi}{2}\right[:a)$ по косинусам

 $=\frac{2}{\pi}\int_{-\pi}^{\frac{\pi}{2}}x\left(\frac{\pi}{2}-x\right)\cos 2nx\,dx+\frac{2}{\pi}\int_{\pi}^{\pi}(x-\pi)\left(x-\frac{\pi}{2}\right)\cos 2nx\,dx=$

Таким образом, функция f^* , совпадающая в интервале $]0, \frac{\pi}{2}[$ с функцией f, может быть

 $=\frac{2}{\pi}\left(\int_{0}^{\frac{\pi}{2}}x\left(\frac{\pi}{2}-x\right)\cos(2n-1)x\,dx+\int_{\frac{\pi}{2}}^{\pi}(x-\pi)\left(x-\frac{\pi}{2}\right)\cos(2n-1)x\,dx\right)=$

 $f^{*}(x) = -2\sum_{n=0}^{\infty} \frac{1}{(2n-1)^{2}} \left(1 + \frac{4}{\pi} \frac{(-1)^{n}}{(2n-1)}\right) \cos(2n-1)x, \quad |x| < \infty,$

 $f(x) = -2\sum_{n=0}^{\infty} \frac{1}{(2n-1)^2} \left(1 + \frac{4(-1)^n}{\pi(2n-1)} \right) \cos(2n-1)x, \quad 0 < x < \frac{\pi}{2}.$

Очевидно, построенная функция непрерывна в каждой точке x числовой прямой и име-

ет кусочно-непрерывную производную. Кроме того, она четна и ее коэффициенты Фурье

 $= \frac{2}{\pi} (-1)^n \int_{-\pi}^{\pi} y \left(\frac{\pi}{2} - y \right) \cos 2ny \, dy + \frac{2}{\pi} (-1)^n \int_{-\pi}^{\pi} \left(y - \frac{\pi}{2} \right) y \cos 2ny \, dy = 0$

 $= -\frac{2}{(2n-1)^2} \left(1 + \frac{4}{\pi} \frac{(-1)^n}{(2n-1)} \right), \ n \in \mathbb{N}.$

б) Поскольку в разложении Фурье должны отсутствовать косинусы, то функция f^* , совпадающая в интервале $]0,\frac{\pi}{2}[$ с функцией f, нечетна. Кроме того, по условию, должно быть

$$b_{2n} = \frac{2}{\pi} \int_{0}^{\pi} f^{*}(x) \sin 2nx \, dx = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} f^{*}(x) \sin 2nx \, dx + \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} f^{*}(x) \sin 2nx \, dx = 0.$$

Іроизведя во втором интеграле замену $x = \frac{1}{2}(\pi - y)$, а в третьем $x = \frac{1}{2}(\pi + y)$, получим

$$b_{2n} = \frac{2(-1)^{n+1}}{\pi} \int_{-\pi}^{\pi} \left(f^* \left(\frac{\pi}{2} - \frac{y}{2} \right) - f^* \left(\frac{\pi}{2} + \frac{y}{2} \right) \right) \sin ny \, dy = 0,$$

или

90

$$b_{2n} = \frac{2(-1)^{n+1}}{\pi} \int \left(f^* \left(\frac{\pi}{2} - \frac{y}{2} \right) - f^* \left(\frac{\pi}{2} + \frac{y}{2} \right) \right) \sin ny \, dy = 0.$$

Из двух последних равенств находим

$$b_{2n} = \frac{4}{\pi} (-1)^{n+1} \int_{-\pi}^{\pi} \left(f^* \left(\frac{\pi}{2} - \frac{y}{2} \right) - f^* \left(\frac{\pi}{2} + \frac{y}{2} \right) \right) \sin ny \, dy = 0,$$

откуда следует, что функция $y\mapsto f^*\left(\frac{\pi}{2}-\frac{y}{2}\right)-f^*\left(\frac{\pi}{2}+\frac{y}{2}\right)$ четная. Но так как она еще и нечетна (что очевидно), то $f^*\left(\frac{\pi}{2}-\frac{y}{2}\right)=f^*\left(\frac{\pi}{2}+\frac{y}{2}\right)$, или, возвращаясь к переменной x, можем записать $f^*(x)=f^*(\pi-x)$. Геометрически это равенство означает, что график функции f^* в интервале $]0,\,\pi[$ симметричен относительно прямой $x=\frac{\pi}{2}.$ Таким образом, для построения графика функции f^* с указанными свойствами следует,

наким образом, для постросния графика функции f с указаннами своитвами следуст, во-первых, график функции f зеркально отобразить относительно прямой $x=\frac{\pi}{2}$ в интервал $]0, \pi[$; во-вторых, так полученный в интервале $]0, \pi[$ график функции f^* отобразить нечетным образом относительно точки x=0 как-центра симметрии всего графика в интервал $]-\pi, 0[$. Тогда для коэффициентов Фурье получим

$$a_0 = a_n = 0, \quad b_{2n} = 0,$$

$$b_{2n-1} = \frac{2}{\pi} \int_{0}^{n} f^{*}(x) \sin(2n-1)x dx =$$

$$= \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} x \left(\frac{\pi}{2} - x\right) \sin(2n - 1)x \, dx + \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} \left(\frac{\pi}{2} - x\right) (x - \pi) \sin(2n - 1)x \, dx =$$

$$= \frac{2(-1)^{n}}{(2n - 1)^{2}} \left(1 + \frac{4(-1)^{n}}{\pi(2n - 1)}\right), \quad n \in \mathbb{N}.$$

Следовательно, разложение функции f^* имеет вид

$$f^*(x) = \sum_{n=0}^{\infty} \left(\frac{2(-1)^n}{(2n-1)^2} + \frac{8}{\pi (2n-1)^3} \right) \sin(2n-1)x. \blacktriangleright$$

213. Функция f антипериодическая с периодом π , т.е. $f(x+\pi)=-f(x)$. Какой особенностью обладает ряд Фурье этой функции в интервале $]-\pi,\pi[?]$

§ 6. Ряпы Фурье

◆ Предполагая, что панная функция разложима в ряд Фурье, с учетом ее антипериодичности, получаем

$$a_0 = rac{1}{\pi} \int\limits_{-\pi}^{\pi} f(x) \, \mathrm{d}x = -rac{1}{\pi} \int\limits_{-\pi}^{\pi} f(x+\pi) \, \mathrm{d}x = -rac{1}{\pi} \int\limits_{0}^{2\pi} f(x) \, \mathrm{d}x = -a_0,$$
 ледует, что $a_0 = 0$.

Далее, нахопим

$$-\pi$$
 $-\pi$ 0

уда следует, что $a_0=0$.

Далее, находим

откуда следует, что $a_0 = 0$.

куда следует, что
$$a_0=0$$
.
Далее, находим
$$n=\frac{1}{\pi}\int_0^\pi f(x)\cos nx\,dx=-\frac{1}{\pi}\int_0^\pi f(x+\pi)\cos nx\,dx=\frac{(-1)^{n+1}}{\pi}\int_0^{2\pi}f(x)\cos nx\,dx$$

Далее, находим
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = -\frac{1}{\pi} \int_{-\pi}^{\pi} f(x+\pi) \cos nx \, dx = \frac{(-1)^{n+1}}{\pi} \int_{0}^{2\pi} f(x) \cos nx \, dx = (-1)^{n+1} a_n$$

(здесь мы использовали равенство $f(x+2\pi)=f(x)$). Следовательно, $a_{2n}=0$. Аналогично

устанавливаем, что
$$b_{2n}=0$$
, $n\in\mathbb{N}$. \blacktriangleright 214. Зная коэффициенты Фурье a_n , b_n интегрируемой функции f , имеющей период 2π , вычислить коэффициенты Фурье \bar{a}_n , \bar{b}_n , $n\in\mathbb{Z}_0$, "смещенной" функции $x\mapsto f(x+h)$, $h=\text{const.}$

 \blacktriangleleft Учитывая 2π -периодичность и интегрируемость функции $x\mapsto f(x+h)$, имеем

$$\blacktriangleleft$$
 Учитывая 2π -периодичность и интегрируемость функции $x\mapsto f(x+h)$, имеем $f(x+h)=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x+h)\cos nx\,dx=\frac{1}{\pi}\int_{-\pi}^{\pi+h}f(t)(\cos nt\cos nh+\sin nt\sin nh)\,dt=a_n\cos nh+b_n\sin nh$

$$\bar{a}_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+h) \cos nx \, dx = \frac{1}{\pi} \int_{-\pi+h}^{\pi+h} f(t) (\cos nt \cos nh + \sin nt \sin nh) \, dt = a_n \cos nh + b_n \sin nh,$$

$$\frac{\pi}{\pi} \int_{-\pi}^{\pi} f(x+h) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi+h}^{\pi+h} f(t)(\sin nt \cos nh - \cos nt \sin nh) \, dt = b_n \cos nh - a_n \sin nh,$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+h) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi+h}^{\pi} f(t) (\sin nt \cos nh - \cos nt \sin nh) \, dt = b_n \cos nh - a_n \sin nh,$$

$$n \in \mathbb{N}, \ \overline{a}_0 = a_0. \blacktriangleright$$
 215. Зная коэффициенты Фурье $a_n, b_n, n \in \mathbb{Z}_0$, интегрируемой функции f с периодом

$$f_h(x) = rac{1}{2h} \int\limits_{x-h}^{x+h} f(\xi) \, d\xi.$$

◆ Ряд Фурье

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx \sim f(x)$$

 2π -периодической интегрируемой функции f, согласно п.6.3, можно почленно интегрировать.

$$2\pi$$
-периодической интегрируемой функции f , согласно п.6.3, можно почленно интегрирова Поэтому, интегрируя его почленно по ξ в пределах от $x-h$ до $x+h$, получаем

 $\frac{a_0}{2} + \sum_{n=0}^{\infty} \left(\frac{a_n}{nh} \sin nh \cos nx + \frac{b_n}{nh} \sin nh \sin nx \right) = f_h(x).$

Отсюда находим
$$A_0 = a_0$$
, $A_n = \frac{a_n}{nh} \sin nh$, $B_n = \frac{b_n}{nh} \sin nh$. \blacktriangleright Разложить в ряд Фурье по полиномам Чебышева:

216. $f: x \mapsto x^3, x \in]-1, 1[.$

◀ Исходим из общего представления функции рядом Фурье:

 2π , вычислить коэффициенты Фурье $A_n,\,B_n,\,n\in\mathbb{Z}_0$, функции Стеклова

 $x^3 = \sum_{n=0}^{\infty} a_n T_n(x),$

где an — коэффициенты Фурье, подлежащие определению. Для их вычисления воспользуемся свойствами ортогональности полиномов Чебышева в интервале]-1, 1[с весом $\frac{1}{\sqrt{1-x^2}}$.

Умножив обе части равенства (1) на весовую функцию и проинтегрировав по $x \in]-1,1[$, в силу указанного свойства и нечетности функции $x \mapsto x^3$, получим $a_0 = 0$. Далее, умножив обе части равенства (1) на $\frac{T_m(x)}{\sqrt{1-x^2}}dx$, $m\in\mathbb{N}$, и проинтегрировав по $x\in]-1,1[$, найдем

$$\int_{1}^{1} \frac{x^{3} T_{m}(x)}{\sqrt{1-x^{2}}} dx = \frac{\pi a_{m}}{2^{2m-1}}.$$

Для вычисления интеграла воспользуемся явным выражением полиномов Чебышева и произведем подстановку arccos x = t. Тогда получим

$$a_m = \frac{2^m}{\pi} \int\limits_0^\pi \cos^3 t \cos(mt) \, dt = \left\{ \begin{array}{ll} 0, & \text{если} & m \neq 1, \, m \neq 3, \\ \frac{3}{4}, & \text{если} & m = 1, \\ 1, & \text{если} & m = 3. \end{array} \right.$$

Таким образом, $x^3 = \frac{3}{4}T_1(x) + T_3(x) \ \forall x \in]-1, 1[. \blacktriangleright$

217.
$$f: x \mapsto |x|, x \in]-1, 1[.$$

lacktriangleleft Как и в предыдущем примере, представляем данную функцию в виде $f: x \mapsto a_0 + a_0$ $\sum_{n=1}^{\infty} a_n T_n(x)$. Последовательно умножая обе части этого равенства на $\frac{1}{\sqrt{1-x^2}}$ и интегрируя по $x \in]-1, 1[$, а также умножая на $\frac{T_m(x)}{\sqrt{1-x^2}}$ и интегрируя по $x \in]-1, 1[$, получаем (пользуясь при

этом свойством ортогональности полиномов):

$$a_0 = \frac{1}{\pi} \int_{-1}^{1} \frac{|x| dx}{\sqrt{1 - x^2}} = \frac{2}{\pi} \int_{0}^{1} \frac{x dx}{\sqrt{1 - x^2}} = \frac{2}{\pi},$$

$$a_m = \frac{2^m}{\pi} \int_{0}^{1} \frac{|x| \cos(m \arccos x)}{\sqrt{1 - x^2}} dx = \frac{2^m}{\pi} \int_{0}^{\pi} |\cos t| \cos(mt) dt =$$

$$= \frac{2^m}{\pi} \int_{0}^{\frac{\pi}{2}} \cos t \cos(mt) dt - \frac{2^m}{\pi} \int_{\pi}^{\pi} \cos t \cos(mt) dt = \begin{cases} 0, & m = 1, \\ \frac{2^{m+1}}{\pi} \frac{\cos \frac{m\pi}{2}}{1 - m^2}, & m \neq 1. \end{cases}$$

Итак, при |x| < 1 имеем

$$|x| = \frac{2}{\pi} + \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{4^{k}(-1)^{k+1}}{4k^{2} - 1} T_{2k}(x). \blacktriangleright$$

Разложить в ряд Фурье по полиномам Лежандра функции: 218.

$$f: x \mapsto \begin{cases} 0, & \text{если} \quad -1 < x < 0, \\ 1, & \text{если} \quad 0 < x < 1. \end{cases}$$

◄ Имеем $f(x) = \sum_{k=0}^{\infty} a_k P_k(x)$. Поэтому

$$a_k = \frac{2k+1}{2} \int_0^1 f(x) P_k(x) dx = \frac{2k+1}{2} \int_0^1 P_k(x) dx =$$

(1)

66. Ряды Фурье

$$=\frac{2k+1}{2}\int_{-2k+1}^{1}\frac{1}{2^{k}k!}\frac{d^{k}(x^{2}-1)^{k}}{dx^{k}}dx=\frac{2k+1}{2^{k+1}k!}\frac{d^{k-1}(x^{2}-1)^{k}}{dx^{k-1}}\bigg|_{0}^{1},$$

$$a_0 = \frac{1}{2} \int_{\cdot}^{1} f(x) P_0(x) dx = \frac{1}{2}, \quad k \in \mathbb{N}.$$

Остается, вычислить
$$\frac{d^{k-1}(x^2-1)^k}{dx^{k-1}}\Big|_0^1$$
. Очевидно, при любом $k\geqslant 1$ в точке $x=1$ это вы-

ражение равно нулю. Для вычисления значения его в точке x=0 воспользуемся формулой бинома Ньютона:

Остается, вычислить
$$\frac{d^{2}-(x^{2}-1)}{dx^{k-1}}\Big|_{0}$$
. Очевидно, при любом k кение равно нулю. Для вычисления значения его в точке $x=0$ кома Ньютона:

ражение равно нулю. Для вычисления значения его в точке
$$x=0$$
 вобинома Ньютона:
$$((x^2-1)^k)^{(k-1)} = \left(\sum_{l=0}^k C_k^l (-1)^l x^{2(k-l)}\right)^{(k-1)} =$$

 $=\sum_{l\leqslant \frac{1}{2}}^{l\leqslant \frac{1}{2}}C_k^l(-1)^l(2k-2l)(2k-2l-1)\ldots(-2l+k+2)x^{k-2l+1}.$ Из этого соотношения следует, что если $m{k}$ — число четное, то при $m{x}=0$ сумма (1) равна

 $C_{2m+1}^{m+1}(-1)^{m+1}2m(2m-1)\ldots 3\cdot 2.$

 $a_{2m}=0, \quad a_{2m+1}=\frac{(4m+3)(-1)^m(2m)!}{2^{2m+2}m!(m+1)!}, \quad m\in\mathbb{Z}_0.$

нулю; если k=2m+1 — число нечетное, то в точке x=0 сумма (1) равна

Следовательно,
$$f(x) = \frac{1}{2} + \sum_{}^{\infty} \frac{(-1)^m (4m+3)(2m)!}{2^{2m+2} m! (m+1)!} P_{2m+1}(x). \blacktriangleright$$

219.
$$f: x \mapsto |x|$$
 при $|x| < 1$.

 $f(x) = \sum_{k=0}^{\infty} a_k P_k(x), \quad a_k = \frac{2k+1}{2} \int_{-\infty}^{\infty} |x| P_k(x) dx.$

При k=2m+1 имеем $a_{2m+1}=0$, так как в этом случае подынтегральная функция

нечетная. При k=2m подынтегральная функция четна, поэтому

$$a_0 = \frac{1}{2}, \quad a_{2m} = \frac{4m+1}{2^{2m}(2m)!} \int_{-\infty}^{1} x \frac{d^{2m}(x^2-1)^{2m}}{dx^{2m}} dx =$$

 $=\frac{4m+1}{2^{2m}(2m)!}\left(x\frac{d^{2m-1}(x^2-1)^{2m}}{dx^{2m-1}}\bigg|^1-\frac{d^{2m-2}(x^2-1)^{2m}}{dx^{2m-2}}\bigg|^1\right)=$

 $= \frac{4m+1}{2^{2m}(2m)!}((x^2-1)^{2m})^{(2m-2)} \qquad , \quad m \in \mathbb{N}.$

Аналогично проделанному в примере 218 можем записать $((x^2-1)^{2m})^{(2m-2)}|_{x=0}=(-1)^{m+1}C_{2m}^{m+1}(2m-2)!.$

 $f(x) = \frac{1}{2} - \sum_{m=0}^{\infty} \frac{(-1)^m (4m+1)(2m-2)!}{2^{2m} (m-1)! (m+1)!} P_{2m}(x). \blacktriangleright$

Разложить в ряд Фурье по полиномам Лагерра $L_n(x)$ при x > 0 следующие функции:

220. $f: x \mapsto e^{-ax}$.

lacktriangleleft Представим функцию f в виде $f:x\mapsto \sum\limits_{n=0}^\infty a_n L_n(x)$ и используем ортогональность

полиномов Лагерра на x>0 с весом e^{-x} . При $n\geqslant 1$ получим

 $f(x) = \frac{1}{1+a} \sum_{n=0}^{\infty} \frac{a^n}{(1+a)^n} L_n(x). \blacktriangleright$

 $a_0 = \int_0^{+\infty} x^n e^{-x} dx = n!,$

 $=\frac{(-1)^k}{k!}n(n-1)\ldots(n-k+1)\int_{-\infty}^{+\infty}x^ne^{-x}\,dx=\frac{n!}{k!}(-1)^kn(n-1)\ldots(n-k+1),\ 1\leqslant k\leqslant n.$

 $f(x) = \sum_{k=0}^{n} (-1)^k \frac{(n!)^2}{k!(n-k)!} L_k(x). \triangleright$

 $a_{k} = \frac{1}{k!} \int_{0}^{+\infty} x^{n} \frac{d^{k}(x^{k}e^{-x})}{dx^{k}} dx = \frac{1}{k!} \left(x^{n} \frac{d^{k-1}(x^{k}e^{-x})}{dx^{k-1}} \bigg|_{0}^{+\infty} - n \int_{0}^{+\infty} x^{n-1} \frac{d^{k-1}(x^{k}e^{-x})}{dx^{k-1}} dx \right) =$

 $= \frac{1}{n!} \left(e^{-ax} \frac{d^{n-1}(x^n e^{-x})}{dx^{n-1}} \bigg|_0^{+\infty} + a \int_0^{+\infty} e^{-ax} \frac{d^{n-1}(x^n e^{-x})}{dx^{n-1}} dx \right).$

$$a_n = \frac{a^n}{n!} \int_{-\infty}^{+\infty} x^n e^{-(1+a)x} dx.$$

 $a_n = \int_{-\infty}^{+\infty} e^{-x(1+a)} L_n(x) dx = \frac{1}{n!} \int_{-\infty}^{+\infty} e^{-ax} \frac{d^n(x^n e^{-x})}{dx^n} dx =$

Применяя к последнему интегралу также метод интегрирования по частям, после
$$n$$
-го

$$a^n \int_{-(1+a)\tau}^{+\infty} a^n$$

$$a_{-} = \frac{a^{n}}{a^{n}} \int_{a^{n}} e^{-(1+a)x} dx = \frac{a^{n}}{a^{n}}$$

$$a_n = \frac{a^n}{(1+a)^n} \int_{-\infty}^{+\infty} e^{-(1+a)x} dx = \frac{a^n}{(1+a)^{n+1}}, \quad n \in \mathbb{N}.$$

- Принимая во внимание еще, что $a_0 = \frac{1}{1+a}$, окончательно имеем

221. $f: x \mapsto x^n, n \ge 1.$

Если же k > n, то $a_k = 0$. Таким образом,

⋖ Имеем

Разложить в ряд Фурье по полиномам Чебышева—Эрмита следующие функции:

222.
$$f: x \mapsto \begin{cases} -1, & x < 0, \\ 1, & x > 0. \end{cases}$$

◀ Напишем искомое разложение в виде

$$f(x) = \sum_{k=0}^{\infty} a_k H_k(x),$$

где

$$a_k = \frac{k!}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} f(x) H_k(x) dx = \frac{-k!}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{-\frac{x^2}{2}} H_k(x) dx + \frac{k!}{\sqrt{2\pi}} \int_{0}^{+\infty} e^{-\frac{x^2}{2}} H_k(x) dx,$$

Пользуясь явным выражением полиномов $H_k(x)$ и производя в первом интеграле замену x на -x, получаем

$$a_k = \frac{1 + (-1)^{k+1}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{d^k \left(e^{-\frac{x^2}{2}}\right)}{dx^k} dx = -\frac{\left(1 + (-1)^{k+1}\right)}{\sqrt{2\pi}} \left(e^{\frac{x^2}{2}}\right)^{(k-1)}$$

xu(x)=0. Применяя к этому равенству формулу Лейбница, получаем

Для вычисления выражения $\left(e^{-\frac{x^2}{2}}\right)^{(\kappa-1)}$ рассмотрим функцию $u:x\mapsto e^{-\frac{x^2}{2}}$:Взяв производную, замечаем, что эта функция удовлетворяет дифференциальному уравнению u'(x) +

$$u^{(n)}(x) + \sum_{k=0}^{n-1} C_{n-1}^k x^{(k)}(u(x))^{(n-1-k)} = 0.$$

Полагая здесь x=0, имеем рекуррентную формулу $u^{(n)}(0)=-(n-1)u^{(n-2)}(0),\ n\in\mathbb{N}\setminus\{1\}.$ Поскольку $u(0)=1,\ u'(0)=0,\$ то отсюда нетрудно получить $u^{(2l)}(0)=(-1)^l(2l-1)!!,\ l\in\mathbb{N},$ $u^{(2l+1)}(0) = 0.$ Таким образом, если k=2l+1, то $a_{2l+1}=(-1)^{l+1}\sqrt{\frac{2}{\pi}}(2l-1)!!,\ l\in\mathbb{N},\ a_1=-\sqrt{\frac{2}{\pi}};$ если

же k = 2l, то $a_{2l} = 0$.

Следовательно, окончательно можем написать

$$f(x) = \sum_{l=1}^{\infty} \frac{(-1)^{l+1} (2l)!}{2^{l-1} \sqrt{2\pi} l!} H_{2l+1}(x). \blacktriangleright$$

223. $f: x \mapsto |x|$.

◀ Как и в предыдущем примере, имеем

$$a_k = \frac{1 + (-1)^k}{\sqrt{2\pi}} \int_0^{+\infty} x \left(e^{-\frac{x^2}{2}} \right)^{(k)} dx = \frac{1 + (-1)^k}{\sqrt{2\pi}} \left(e^{-\frac{x^2}{2}} \right)^{(k-2)} , \quad k \in \mathbb{N} \setminus \{1\},$$

$$a_{2l-1}=0, \quad a_{2l}=\frac{(-1)^{l-1}(2l-2)!}{2^{l-2}(l-1)!\sqrt{2\pi}}, \quad l\in\mathbb{N},$$

$$a_0 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} |x| e^{-\frac{x^2}{2}} dx = \frac{2}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x e^{-\frac{x^2}{2}} dx = \frac{2}{\sqrt{2\pi}}.$$

Поэтому разложение представляется в виде

$$|x| = \sqrt{\frac{2}{\pi}} + \sum_{l=1}^{\infty} \frac{(-1)^{l-1}(2l-2)!}{2^{l-2}(l-1)!\sqrt{2\pi}} H_{2l}(x). \blacktriangleright$$

224. $f: x \mapsto e^{-ax}$.

Вычислим коэффициенты разложения

$$a_k = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-ax} \left(e^{-\frac{x^2}{2}} \right)^{(k)} dx, \quad k \in \mathbb{Z}_0.$$

Интегрируя по частям, получаем

$$a_k = \frac{1}{\sqrt{2\pi}} \left(e^{-ax} \left(e^{-\frac{x^2}{2}} \right)^{(k-1)} \Big|_{-\infty}^{+\infty} + a \int_{-\infty}^{+\infty} e^{-ax} \left(e^{-\frac{x^2}{2}} \right)^{(k-1)} dx \right),$$

или $a_k = aa_{k-1}$. Полагая в этой рекуррентной формуле $k = 1, 2, \ldots$ и принимая во внимание,

что

$$a_0 = \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} e^{-\alpha x - \frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} e^{-\frac{1}{2}(x+\alpha)^2 + \frac{a^2}{2}} dx = \frac{e^{\frac{a^2}{2}}}{\sqrt{2\pi}} \int_0^{+\infty} e^{-\frac{t^2}{2}} dt = e^{\frac{a^2}{2}},$$

получаем

$$a_k=e^{\frac{a^2}{2}}a^k,\ k\in\mathbb{Z}_0.$$

Таким образом, окончательно имеем

$$e^{-ax} = e^{\frac{a^2}{2}} \sum_{k=1}^{\infty} a^k H_k(x). \blacktriangleright$$

Упражнения для самостоятельной работы

Разложить в тригонометрический ряд Фурье следующие функции:

- **120.** $f: x \mapsto 2x + 5, x \in]-1, 5[$. **121.** $f: x \mapsto \sin \pi^2 x, x \in]-1, 1[$.
- **122.** $f: x \mapsto \operatorname{sgn} \sin 2x, x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$. **123.** $f: x \mapsto \cos x, x \in \left[0, 1\right]$.
- **124.** $f: x \mapsto \cos x, x \in [2, 3]$. **125.** $f: x \mapsto \arcsin(\sin 2x), x \in \mathbb{R}$.
- 126. $f: x \mapsto e^{-\cos x}(\cos(2x \sin x) + 2\cos x \cos(\sin x)) \cos x$.
- 127. $f: x \mapsto e^{-\cos x}(\sin(2x \sin x) 2\cos x \sin(\sin x)) + \sin x$.
- **128.** $f: x \mapsto \sum_{n=0}^{+\infty} e^{-\pi a(n+x)^2}, \ a > 0, \ x \in \mathbb{R}.$ **129.** $f: x \mapsto \sin x \ln \left(2\cos \frac{x}{2}\right).$
- **130.** $f: x \mapsto \cos x \ln \left(2\cos \frac{x}{2}\right)$. **131.** $f: x \mapsto \int_{-\infty}^{\infty} e^{-t^2} dt, x \in]-\pi, \pi[$.
- **132.** $f: x \mapsto \int_{-\infty}^{\infty} \frac{\sin t}{t} dt, x \in]-1, 1[.$
- § 7. Суммирование рядов. Вычисление определенных интегралов с помощью рядов
- 7.1. Непосредственное суммирование.

Пусть требуется просуммировать сходящийся ряд

$$\sum_{n=1}^{\infty} u_n, \quad u_n \in \mathcal{L}.$$

§ 7. Суммирование рядов, Вычисление определенных нитегралов с помощью рядов 97 Представляем u_n в виде $u_n = v_{n+1} - v_n$, где $v_{n+1} = S_n + v_1$, (S_n) — последовательность

частичных сумм данного ряда. Тогда, если $\lim_{n\to\infty} v_n = v_\infty$, то $\sum u_n = \lim_{n \to \infty} S_n = v_\infty - v_1.$

$$\sum_{n=1} u_n = \lim_{n \to \infty} S_n = v_{\infty} - v$$

В том случае, когда общий член ряда имеет вид

$$u_n = \frac{1}{a_n a_{n+1} \dots a_{n+m}}, \quad u_n \in \mathbb{R}(\mathbb{C}),$$

где $a_{n+k} = a_n + kd$, $k = \overline{0, m}$, d = const. то

$$v_n = -\frac{1}{md} \cdot \frac{1}{a_n a_{n+1} \dots a_{n+m-1}}.$$

7.2. Метод суммирования рядов, основанный на теореме Абеля.

Пусть ряд (1), п.7.1, сходится. Тогда его сумму можно найти по формуле

$$\sum_{n=1}^{\infty} u_n = \lim_{n \to 1-0} \sum_{n=0}^{\infty} u_n x^n.$$

7.3. Суммирование тригонометрических рядов.

Если сумма степенного ряда

$$\sum_{n=0}^{\infty} u_n z^n, \quad z = e^{iz},$$

известна и равна C(x) + iS(x), то

$$\sum_{n=0}^{\infty} u_n \cos nx = C(x), \quad \sum_{n=1}^{\infty} u_n \sin nx = S(x).$$
 ряд

Часто бывает полезным ряд

$$\sum_{n=1}^{\infty} \frac{z^n}{n} = \ln \frac{1}{1-z}, \quad \ln 1 = 0,$$

сходящийся при $|z| \leq 1$, за исключением точки z = 1.

Наити суммы рядов:
$$225. \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \dots$$

 \blacktriangleleft Нетрудно видеть, что общий член этого ряда u_n равен $\frac{1}{n(n+1)(n+2)}$, где числа n, n+1, n+12 образуют арифметическую прогрессию с разностью 1. Поэтому, согласно п.7.1, получаем

$$S = \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \lim_{n \to \infty} v_n - v_1,$$

где $v_n = -\frac{1}{2} \frac{1}{n(n+1)}$, m = 2, $a_n = n$. Но так как $v_1 = -\frac{1}{4}$, а $\lim_{n \to \infty} v_n = 0$, то $S = \frac{1}{4}$. \blacktriangleright

$$226. \frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} - \frac{1}{4 \cdot 5} + \dots$$

◄ Общий член данного ряда $u_n = \frac{(-1)^{n+1}}{n(n+1)}$. Следовательно, по признаку сравнения, ряд

абсолютно сходится, ибо $|u_n| \sim \frac{1}{n^2}$ при $n \to \infty$. Рассмотрим степенной ряд

 $f(x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n(n+1)}.$

Этот ряд абсолютно сходится при $|x|\leqslant 1$ и, как любой степенной ряд внутри интервала сходимости, имеет производную ∞ _

$$f'(x) = \sum_{n=1}^{\infty} \frac{x^n}{n} = \ln \frac{1}{1-x}.$$

 $f(x) = (1-x)\ln(1-x) + x + C.$

Поскольку f(0) = 0, то отсюда следует, что C = 0. Итак,

Интегрируя обе части полученного равенства, находим

$$f(x) = (1 - x) \ln(1 - x) + x.$$

Как видим, здесь вполне применим метод суммирования рядов Абеля (см. $\pi.7.2$). Поэтому имеем

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} = \lim_{x \to -1+0} \sum_{n=1}^{\infty} \frac{x^{n+1}}{n(n+1)} = \lim_{x \to -1+0} ((1-x)\ln(1-x) + x) = 2\ln 2 - 1. \blacktriangleright$$

227. $\sum_{n=1}^{\infty} \frac{n}{(n+1)(n+2)(n+3)}$

Представляя данный сходящийся ряд с помощью метода неопределенных коэффициентов в виде разности двух сходящихся рядов:

$$S = \sum_{n=1}^{\infty} \frac{n}{(n+1)(n+2)(n+3)} = \frac{3}{2} \sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)} - \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)},$$

применяем метод непосредственного суммирования. Для каждого из двух последних рядов имеем

$$\lim_{N \to \infty} \sum_{n=0}^{N} \frac{1}{(n+2)(n+3)} = \lim_{N \to \infty} \left(\left(\frac{1}{3} - \frac{1}{4} \right) + \left(\frac{1}{4} - \frac{1}{5} \right) + \dots + \left(\frac{1}{N+2} - \frac{1}{N+3} \right) \right) = \frac{1}{3},$$

$$\lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{(n+1)(n+2)} = \lim_{N \to \infty} \left(\left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \dots + \left(\frac{1}{N+1} - \frac{1}{N+2} \right) \right) = \frac{1}{2}.$$

Следовательно,
$$S = \frac{1}{4}$$
. \blacktriangleright

$$228. \sum_{i=1}^{\infty} \frac{1}{m \in \mathbb{N}}$$

228. $\sum_{n=1}^{\infty} \frac{1}{n(n+m)}, m \in \mathbb{N}.$

■ Преобразовывая частичную сумму S_n ряда к виду

$$S_n = \frac{1}{m} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+m} \right) = \frac{1}{m} \left(\sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k+m} \right) = \frac{1}{m} \left(\sum_{k=1}^{m} \frac{1}{k} - \sum_{k=1}^{n+m} \frac{1}{k} \right),$$

получае

получаем
$$S=\lim_{n\to\infty}S_n=\frac{1}{m}\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{m}\right). ~\blacktriangleright$$

229.
$$\frac{1}{1\cdot 2\cdot 3} + \frac{1}{3\cdot 4\cdot 5} + \frac{1}{5\cdot 6\cdot 7} + \dots$$

■ Приводя данный ряд к вид

$$\frac{1}{2}\left(\left(\frac{1}{1\cdot 2} - \frac{1}{2\cdot 3}\right) + \left(\frac{1}{3\cdot 4} - \frac{1}{4\cdot 5}\right) + \dots\right) = \frac{1}{2}S,$$

где S — сумма ряда, рассмотренного в примере 226, получаем

$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{3 \cdot 4 \cdot 5} + \frac{1}{5 \cdot 6 \cdot 7} + \dots = \ln 2 - \frac{1}{2} \cdot \blacktriangleright$$

§ 7. Суммирование одлов. Вычисление определенных интегралов с помощью рядов 99 230. $\sum_{n^2-1}^{\infty} \frac{1}{n^2-1}$.

∢ Преобразовывая ряд к виду

231. $\sum_{n=1}^{\infty} \frac{2n-1}{n^2(n+1)^2}$.

232. $\sum_{n(2n+1)}^{\infty} \frac{1}{n(2n+1)}$.

233. $\sum_{n=0}^{\infty} \frac{2^n(n+1)}{n!}$.

откуда, полагая x = 1, находим

234. $\sum_{n=1}^{\infty} \frac{1}{n^2(n+1)^2(n+2)^2}$

почленно, получаем

Дифференцируя степенной ряд

Поскольлку

 $2(1 - \ln 2)$.

TO

◀ Представляя частичную сумму S_n ряда в виде

$$S = \sum_{n=2}^{\infty} \frac{1}{n^2 - 1} = \sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$

$$\sum_{n=2}^{S} n^2 - 1 = \sum_{n=1}^{N} n(n + 1)^n$$
и используя результат примера 228, находим, что $S = \frac{3}{4}$.

Разлагая общий член ряда на простые дроби, находим
$$\frac{2n-1}{n} = 4\left(\frac{1}{n} - \frac{1}{n}\right) - \frac{1}{n} - \frac{1}{n}$$

$$\frac{1}{n+1}$$

 $\sum_{n=0}^{\infty} \frac{1}{n(n+1)} = 1, \quad \sum_{n=0}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \quad \sum_{n=0}^{\infty} \frac{1}{(n+1)^2} = \frac{\pi^2}{6} - 1,$

 $\sum_{n=0}^{\infty} \frac{2n-1}{n^2(n+1)^2} = 7 - \frac{2}{3}\pi^2. \blacktriangleright$

 $S_n = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{2}{2k+1} \right) = 2 \sum_{k=1}^{n} \left(\frac{1}{k} - \left(\frac{1}{2k+1} + \frac{1}{2k} \right) \right) = 2 \left(1 - \sum_{k=1}^{2n+1} \frac{1}{k} \right)$

и пользуясь формулой $1+\frac{1}{2}+\ldots+\frac{1}{n}=\ln n+C+\varepsilon_n,\ \varepsilon_n\to 0,\ n\to\infty,$ находим $S=\lim_{n\to\infty}S_n=0$

 $\sum_{n=0}^{\infty} \frac{(2x)^{n+1}}{n!} = 2xe^{2x}$

 $(2xe^{2x})' = \sum_{n=0}^{\infty} \frac{(n+1)2^{n+1}x^n}{n!},$

 $\sum^{\infty} \frac{2^n(n+1)}{n!} = 3e^2. \blacktriangleright$

$$\frac{2n-1}{n^2(n+1)^2} = 4\left(\frac{1}{n} - \frac{1}{n+1}\right) - \frac{1}{n^2} - \frac{3}{(n+1)^2}.$$

◆ Общий член ряда разлагаем на простые дроби:

$$\frac{1}{1} = -\frac{3}{3} + \frac{3}{3} + \frac{1}{1} + \frac{1}{1}$$

$$\frac{1}{\sqrt{3}} = \frac{3}{3} + \frac{3}{\sqrt{3}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}$$

$$\frac{1}{(n+1)^2(n+2)^2} = -\frac{1}{4n} + \frac{1}{4(n+2)} + \frac{1}{4n^2} + \frac{1}{(n+1)^2(n+2)^2}$$

$$(n+1)^{2}(n+2)^{2}$$
 4n 4(n+2) 4n² (n+1)

◀ Замечая, что значение степенного ряда

при x=1 совпадает с данным числовым рядом, имеем

 $\sum_{n=1}^{\infty} \frac{(-1)^n x^{n-1}}{n^2 + n - 2} = \frac{1}{3} \sum_{n=1}^{\infty} \frac{(-1)^n x^{n-1}}{n - 1} - \frac{1}{3x^3} \sum_{n=1}^{\infty} \frac{(-1)^n x^{n+2}}{n + 2} = \frac{1}{3x^3} \sum_{n=1}^{\infty} \frac{(-1)^n x^{n-1}}{n + 2} = \frac{$

Отсюда, применяя теорему Абеля, находим

237. $\sum_{n=0}^{\infty} \frac{(-1)^n (2n^2+1)}{(2n)!} x^{2n}.$

◀ Разлагая дробь $\frac{1}{n^2+n-2}$ на простые, можем написать, что

◆ Представляя данный ряд в виде суммы двух сходящихся рядов:

окончательно находим

235. $\sum_{n=0}^{\infty} \frac{(-1)^n n}{(2n+1)!}$.

236. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + n - 2}.$

$$\frac{(n+1)^2(n+2)^2}{(n+1)^2(n+2)^2} = -\frac{1}{4n} + \frac{1}{4(n+2)} + \frac{1}{4n^2} + \frac{(n+1)^2}{(n+1)^2}$$

$$(n+1)^{2}(n+2)^{2}$$
 4n 4(n+2) 4n² (n+1)²

$$(n+1)^{2}(n+2)^{2}$$
 4n 4(n+2) 4n² (n+1)

$$(n+1)^{2}(n+2)^{2}$$
 4n 4(n+2) 4n (n+1)

$$(n+1)^2(n+2)^2$$
 4n 4(n+2) 4n² (n+1)

$$(n+1)^2(n+2)^2$$
 4n '4(n+2) '4n² '(n+1)

$$\frac{1}{(n+1)^2(n+2)^2} = -\frac{1}{4n} + \frac{1}{4(n+2)} + \frac{1}{4n^2} + \frac{1}{(n+1)}$$

$$+\frac{1}{4(n+2)^2} =$$

$$+rac{4(n+2)^2}{4(n+2)^2}=$$
Суммируя ряды

$$+\frac{1}{4(n+2)^2} =$$

$$+\frac{4(n+2)^2}{4(n+2)^2} =$$

$$+\frac{1}{4(n+2)^2}=$$

$$+\frac{1}{4(-1.2)^2}$$

$$+ 1)^{-(n+2)^{2}} \quad 4n \quad 4(n+2) \quad 4n^{2} \quad (n+1)$$

$$+ \frac{1}{2} = \frac{1}{2}$$

$$(n+1)^2(n+2)^2 = -\frac{1}{4n} + \frac{1}{4(n+2)} + \frac{1}{4n^2} + \frac{1}{(n+1)^2}$$

$$+\frac{1}{4(n+2)^2} =$$

$$\frac{1}{(n+1)^2(n+2)^2} = -\frac{3}{4n} + \frac{3}{4(n+2)} + \frac{1}{4n^2} + \frac{1}{(n+1)}$$

$$\frac{1}{(n+1)^2(n+2)^2} = -\frac{3}{4n} + \frac{3}{4(n+2)} + \frac{1}{4n^2} + \frac{1}{(n+1)^2(n+2)^2}$$

$$\frac{1}{n^2(n+1)^2(n+2)^2} = -\frac{3}{4n} + \frac{3}{4(n+2)} + \frac{1}{4n^2} + \frac{1}{(n+1)^2} + \frac{1}{(n+1)$$

$$\frac{1}{(n+1)^2(n+2)^2} = -\frac{3}{4n} + \frac{3}{4(n+2)} + \frac{1}{4n^2} + \frac{1}{(n+1)^2(n+2)^2}$$

$$\frac{1}{(n+1)^2(n+2)^2} = -\frac{3}{4n} + \frac{3}{4(n+2)} + \frac{1}{4n^2} + \frac{1}{(n+1)^2}$$

$$\frac{1}{(1)^2(n+2)^2} = -\frac{3}{4n} + \frac{3}{4(n+2)} + \frac{1}{4n^2} + \frac{1}{(n+1)^2}$$

$$\frac{1}{1)^2(n+2)^2} = -\frac{3}{4n} + \frac{3}{4(n+2)} + \frac{1}{4n^2} + \frac{1}{(n+1)^2}$$

$$\frac{3}{4(n+2)} + \frac{1}{4n^2} + \frac{1}{(n+1)^2}$$

$$\frac{1}{(n+1)^2}$$
 +

$$\frac{1}{2} + \frac{1}{4n^2} + \frac{1}{(n+1)^2}$$

простые дроби:
$$+\frac{1}{4n^2} + \frac{1}{(n+1)^2}$$

 $\sum_{n=0}^{\infty} \frac{1}{n(n+2)} = \frac{3}{4}, \quad \sum_{n=0}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \quad \sum_{n=0}^{\infty} \frac{1}{(n+1)^2} = \frac{\pi^2}{6} - 1, \quad \sum_{n=0}^{\infty} \frac{1}{(n+2)^2} = \frac{\pi^2}{6} - 1 - \frac{1}{4},$

 $\sum_{n=1}^{\infty} \frac{1}{n^2(n+1)^2(n+2)^2} = \frac{\pi^2}{4} - \frac{39}{16}.$

 $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1} n}{(2n+1)!} = \frac{1}{2} x \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} - \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = \frac{1}{2} (x \cos x - \sin x), \quad |x| < \infty,$

 $\sum_{n=0}^{\infty} \frac{(-1)^n n}{(2n+1)!} = \frac{1}{2} (\cos 1 - \sin 1). \blacktriangleright$

 $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2 + n - 2} = \lim_{x \to 1 \to 0} \sum_{n=0}^{\infty} \frac{(-1)^n x^{n-1}}{n^2 + n - 2} = \frac{2}{3} \ln 2 - \frac{5}{18}.$

 $S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n n}{(2n-1)!} x^{2n} + \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}, \quad |x| < \infty,$

 $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n n x^{2n}}{(2n-1)!} = x \varphi(x),$

и замечая, что сумма второго ряда равна $\cos x$, вычисляем сумму первого ряда. Имеем

- $+\frac{1}{4(n+2)^2} = \frac{-3}{2n(n+2)} + \frac{1}{4n^2} + \frac{1}{(n+1)^2} + \frac{1}{4(n+2)^2}.$

 $=\frac{1}{3}\ln(1+x)-\frac{1}{3x^3}\left(-\ln(1+x)+x-\frac{x^2}{2}+\frac{x^3}{3}\right),\quad 0<|x|<1.$

§ 7. Суммирование рядов. Вычисление определенных интегралов с помощью рядов 101

где

$$arphi(x) = \sum_{n=1}^{\infty} rac{(-1)^n n x^{2n-1}}{(2n-1)!}.$$
 Интегрируя почленно этот ряд, находим

откуда $\varphi(x)=-\frac{1}{2}\sin x-\frac{x}{2}\cos x$. Следовательно, $f(x)=-\frac{x}{2}(\sin x+x\cos x)$, а

$$\int_{0}^{x} \varphi(t) dt = -\frac{x}{2} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} = -\frac{x}{2} \sin x,$$
where $\varphi(x) = -\frac{1}{2} \sin x$ and $\frac{x}{2} \cos x$. Consequence $\varphi(x) = -\frac{x}{2} (\sin x + x)$

$$S(x) = \left(1 - \frac{x^2}{2}\right) \cos x - \frac{x}{2} \sin x, |x| < \infty. \blacktriangleright$$

238. $\sum_{n=0}^{\infty} \frac{n^2 x^n}{(2n+1)!}$

$$\blacksquare$$
 Пусть $x > 0$. Полагая $x = y^2$, имеем

$$\sum_{n=0}^{\infty} \frac{n^2 x^n}{(2n+1)!} = \sum_{n=1}^{\infty} \frac{n^2 y^{2n}}{(2n+1)!} = y S_1(y),$$

где $S_1(y) = \sum_{n=1}^{\infty} \frac{n^2 y^{2n+1}}{(2n+1)!}$. Интегрируя этот ряд почленно, получаем

$$\int S_1(t) dt = \frac{y}{2} \sum_{n=1}^{\infty} \frac{ny^{2n-1}}{(2n+1)!} = \frac{y}{2} S_2(y),$$

$$S_2(y) = \sum_{n=1}^{\infty} \frac{ny^{2n-1}}{(2n+1)!}.$$

Аналогично находим

где

$$\int\limits_0^\infty S_2(t)\,dt=\frac{1}{2}\sum_{n=1}^\infty\frac{y^{2n}}{(2n+1)!}=\frac{1}{2y}(\sin y-y). \tag{2}$$

 Дифференцируя обе части равенства (2) по y , находим функцию S_2 . Точно так же нахо

(1)

(2)

Дифференцируя обе части равенства (2) по y, находим функцию S_2 . Точно так же нахо-

дим функцию
$$S_1$$
 из уравнения (1). Окончательно имеем
$$S(x) = \sum_{n=0}^{\infty} \frac{n^2 x^n}{(2n+1)!} = \frac{1}{4} \left((x+1) \frac{\sinh \sqrt{x}}{\sqrt{x}} - \cosh \sqrt{x} \right), \ x>0, \ S(0) = 0$$

(заметим, что в точке x=0 правая часть этой формулы, на основании теоремы Абеля, равна

ее предельному значению при $x \to +0$). При $x \leq 0$ выполняем аналогичные выкладки. В результате приходим к такому ответу:

$$S(x) = \sum_{n=0}^{\infty} \frac{n^2 x^n}{(2n+1)!} = \frac{1}{4} \left((x+1) \frac{\sin \sqrt{-x}}{\sqrt{-x}} - \cos \sqrt{-x} \right), \ x < 0, \quad S(0) = 0. \blacktriangleright$$

С помощью почленного дифференцирования найти сумму рядов: 239. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n}}{n(2n-1)}.$

◀ Дифференцируя данный ряд почленно дважды (в интервале сходимости степенной ряд можно почленно дифференцировать любое число раз), находим

$$f''(x) = 2\sum_{n=1}^{\infty} (-1)^{n-1} x^{2(n-1)} = \frac{2}{1+x^2}, \quad |x| < 1.$$

Отсюда последовательным интегрированием по x дважды получаем

$$f'(x) = 2 \arctan x + C_1$$
, $f(x) = 2x \arctan x - \ln(1 + x^2) + C_1x + C_2$.

Поскольку f(0) = f'(0) = 0, то $C_1 = C_2 = 0$. Следовательно,

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n}}{n(2n-1)} = 2x \arctan x - \ln(1+x^2).$$

Поскольку данный степенной ряд сходится на концах интервала сходимости $x=\pm 1$, то, согласно теореме Абеля и непрерывности правой части, можем утверждать, что последнее соотношение справедливо при $|x|\leqslant 1$. \blacktriangleright

240.
$$\sum_{n=0}^{\infty} \frac{(2n+1)x^{2n}}{n!}.$$

n=0 \blacksquare Обозначая сумму этого ряда через $S(x), |x| < \infty$, и интегрируя ряд почленно, получаем

$$\int S(x) dx = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{n!} + C = xe^{x^2} + C.$$

Дифференцируя по x обе части этого равенства, находим

$$S(x) = (1 + 2x^2)e^{x^2}, |x| < \infty.$$

Используя метод Абеля, найти суммы следующих рядов:

241. $1 - \frac{1}{4} + \frac{1}{7} - \frac{1}{10} + \dots$

◄ Рассмотрим степенной ряд

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{3n+1}}{3n+1} = S(x).$$

Легко найти, что он сходится абсолютно при |x| < 1. Далее видим, что в точке x = 1 степенной ряд совпадает со сходящимся (в силу признака Лейбница) данным числовым рядом. Следовательно, по теореме Абеля, будем иметь

$$1 - \frac{1}{4} + \frac{1}{7} - \frac{1}{10} + \dots = \lim_{x \to 1 \to 0} S(x).$$

Остается найти S(x). Дифференцируя ряд почленно, получаем

$$S'(x) = \sum_{n=0}^{\infty} (-1)^n x^{3n} = \frac{1}{1+x^3}, \quad |x| < 1,$$

откуда

$$S(x) = \int \frac{dx}{1+x^3} = \frac{1}{3} \ln \frac{1+x}{\sqrt{x^2+x+1}} + \frac{1}{\sqrt{3}} \arctan \frac{2x-1}{\sqrt{3}} + C.$$

Поскольку S(0) = 0, то $C = \frac{\pi}{6\sqrt{3}}$. Следовательно,

$$S(x) = \frac{1}{3} \ln \frac{1+x}{\sqrt{x^2 - x + 1}} + \frac{1}{\sqrt{3}} \operatorname{arctg} \frac{2x - 1}{\sqrt{3}} + \frac{\pi}{6\sqrt{3}}.$$

Поэтому окончательно находим $1 - \frac{1}{4} + \frac{1}{7} - \frac{1}{10} + \dots = \frac{1}{3} \ln 2 + \frac{\pi}{3\sqrt{3}}$. \blacktriangleright

§ 7. Суммирование рядов. Вычисление определенных интегралов с помощью рядов 103 **242.** $1 - \frac{1}{2} + \frac{1 \cdot 3}{2 \cdot 4} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 5} + \dots$

 $(1+x^2)^{-\frac{1}{2}} = 1 + \sum_{n=0}^{\infty} \frac{(-1)^n (2n-1)!!}{(2n)!!} x^{2n}$

■ Поскольку при |x| < 1 справедливо разложение (см. формулу IV,§ 5)

и данный числовой ряд, в силу признака Лейбница, сходится, то, по теореме Абеля, получаем
$$1-\frac{1}{2}+\frac{1\cdot 3}{2\cdot 4}-\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}+\ldots=\lim_{x\to 1-0}(1+x^2)^{-\frac{1}{2}}=\frac{1}{\sqrt{2}}. \blacktriangleright$$

243. $1 + \frac{1}{2} \cdot \frac{1}{2} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1}{5} + \dots$ ◀ Сходимость этого ряда показана в примере 167. Там же мы получили разложение

243.
$$1 + \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2 \cdot 4} \cdot \frac{1}{5} + \cdots$$

« Сходимость этого ряда показана в примере 167. Там же мы полу
$$x + \sum_{i=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{(2n+1)} = \arcsin x, \quad |x| \leqslant 1,$$

из которого следует, что $1+\frac{1}{2}\cdot\frac{1}{3}+\frac{1\cdot 3}{2\cdot 4}\cdot\frac{1}{5}+\ldots=\frac{\pi}{2}$. \blacktriangleright Найти суммы следующих тригонометрических рядов: 244. $\sum_{n=0}^{\infty} \frac{\sin nx}{n}$

$$lacktriangled$$
 Рассматриваем этот ряд как мнимую часть степенного ряда $\sum rac{z^n}{n} = \ln\left(rac{1}{1-z}
ight), \quad z=e^{ix}, \quad 0<|x|<\pi,$

где под
$$\ln z$$
 понимаем ту его ветвь, для которой $\ln 1 = 0$. Тогда будем иметь

$$\sin x = \sum_{n=0}^{\infty} \frac{\sin nx}{n} = \operatorname{Im} \ln \left(\frac{1}{1-x} \right) = \operatorname{arctg} \frac{1}{1-x} = 1$$

$$x = \sum_{n=1}^{\infty} \frac{1}{n} = \lim \left(\frac{1-z}{1-z} \right) = \operatorname{arctg} \frac{z}{\operatorname{tg} \frac{z}{2}} = 1$$

$$r(x) = \sum \frac{\sin nx}{n} = \operatorname{Im} \ln \left(\frac{1}{1-x} \right) = \operatorname{arctg} \frac{1}{\operatorname{tg} \frac{x}{n}} = 1$$

$$(x) = \sum \frac{\sin nx}{n} = \operatorname{Im} \ln \left(\frac{1}{1-x} \right) = \operatorname{arctg} \frac{1}{\operatorname{tg} \frac{x}{n}} =$$

$$f(x) = \sum \frac{\sin nx}{n} = \operatorname{Im} \ln \left(\frac{1}{1-x} \right) = \operatorname{arctg} \frac{1}{\tan x} = 1$$

$$= \sum_{n=0}^{\infty} \frac{\sin nx}{n} = \operatorname{Im} \ln \left(\frac{1}{1-x} \right) = \operatorname{arctg} \frac{1}{t-x} =$$

$$S(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n} = \operatorname{Im} \ln \left(\frac{1}{1-x} \right) = \operatorname{arctg} \frac{1}{\operatorname{tg} \frac{x}{2}} =$$

$$\frac{z}{z} = \sum_{n=1}^{\infty} \frac{1}{n} = \lim \left(\frac{1-z}{1-z} \right) = \operatorname{arctg} \frac{z}{\operatorname{tg} \frac{z}{2}} = \frac{1}{2}$$

$$=rac{\pi}{2}\,\mathrm{sgn}\,\left(\mathrm{tg}\,rac{x}{2}
ight) - \mathrm{arctg}\,\left(\mathrm{tg}\,rac{x}{2}
ight) = \left\{egin{array}{cccc} rac{\pi-x}{2}, & \mathrm{если} & 0 < x < \pi, \ rac{-\pi-x}{2}, & \mathrm{если} & -\pi < x < 0. \end{array}
ight.$$

Поскольку функция
$$S$$
 2π -периодическая и $S(k\pi)=0, k\in\mathbb{Z}$, то, используя последний результат, можем написать, что

 $\sum_{n=0}^{\infty} \frac{(-1)^n \cos nx}{n^2 - 1} = \text{Re} \sum_{n=0}^{\infty} \frac{(-z)^n}{n^2 - 1}.$

 $S(x) = \left\{ \begin{array}{ll} \frac{(2k+1)\pi - x}{2}, & \text{если} & 2k\pi < x < 2(k+1)\pi, \\ 0, & \text{если} & x = 2k\pi. \blacktriangleright \end{array} \right.$

245.
$$\sum_{n=2}^{\infty} (-1)^n \frac{\cos nx}{n^2 - 1}.$$

◄ Рассматривая ряд как действительную часть ряда

$$\sum_{n=0}^{\infty} \frac{(-z)^n}{n^2 - 1}, \quad z = e^{ix}, \quad -\pi < x \leqslant \pi,$$

можем записать

При условии, что $z \neq -1$, последний ряд представляем в виде суммы двух сходящихся рядов:

$$\sum_{n=2}^{\infty} \frac{(-z)^n}{n^2 - 1} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-z)^{n+1}}{n} + \sum_{n=3}^{\infty} \frac{(-z)^{n-1}}{n} = \frac{1}{2} \left(z \ln(1+z) + 1 - \frac{z}{2} - \frac{\ln(1+z)}{z} \right).$$

Следовательно,

Следовательно,
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cos nx}{n^2 - 1} = \frac{1}{2} \operatorname{Re} \left(z \ln(1+z) + 1 - \frac{z}{2} - \frac{\ln(1+z)}{z} \right) = \frac{1}{2} \left(1 - \frac{1}{2} \cos x - \sin x \right), \quad e^{ix} \neq -1.$$

Заметим, что ограничение $e^{ix} \neq -1$ здесь можно снять. Действительно, если $e^{ix} = -1$, то $\cos nx = (-1)^n$. При этом получаем числовой ряд $\sum_{n=2}^{\infty} \frac{1}{n^2-1}$, равный $\frac{3}{4}$ (см. пример 230).

Кроме того, если $\cos nx = (-1)^n$, то $\frac{1}{2} \left(1 - \frac{1}{2} \cos x - x \sin x \right) = \frac{3}{4}$. Итак,

$$\sum_{n=2}^{\infty} \frac{(-1)^n \cos nx}{n^2 - 1} = \frac{1}{2} \left(1 - \frac{1}{2} \cos x - x \sin x \right)$$

$$\forall x \in [-\pi, \pi]$$
. Далее, в силу 2π -периодичности суммы этого ряда, значения повторяются. \blacktriangleright 246. $\sum_{n=0}^{\infty} \frac{\cos nx}{n!}$.

√ Легко находим, что

$$\sum_{n=0}^{\infty} \frac{\cos nx}{n!} = \operatorname{Re} \sum_{n=0}^{\infty} \frac{z^n}{n!} = \operatorname{Re} e^z = \operatorname{Re} e^{\cos x + i \sin x} = e^{\cos x} \cos(\sin x), \quad |x| < \infty. \blacktriangleright$$

Найти суммы следующих рядов:

247.
$$\sum_{n=1}^{\infty} \frac{((n-1)!)^2}{(2n)!} (2x)^{2n}.$$

lacktriangled Дифференцируя этот ряд по x дважды (в интервале сходимости |x|<1) и умножая вторую производную его на $1-x^2$, после некоторых преобразований рядов получаем дифференциальное уравнение относительно искомой суммы $S(m{x})$ ряда:

$$(1-x^2)S''(x)-xS'(x)-4=0.$$

Производя в нем замену независимого переменного x по формуле $t = \arcsin x$, приходим к уравнению S''(t) = 4, из которого находим

$$S(t) = 2t^2 + C_1t + C_2$$
, C_1 , $C_2 = \text{const.}$

Так как S(0) = S'(0) = 0, то отсюда получаем

$$S(x) = 2(\arcsin x)^2, \quad |x| < 1.$$

Нетрудно найти, что числовой ряд

$$\sum_{n=0}^{\infty} \frac{((n-1)!)^2}{(2n)!} 4^n,$$

являющийся значением данного степенного ряда при $m{x}=\pm 1$, в силу признака Гаусса, сходится. А тогда, по теореме Абеля и на основании непрерывности функции $x \to 2(\arcsin x)^2$ на сегменте [-1, 1], можем утверждать, что $S(x) = 2(\arcsin x)^2$ при $|x| \le 1$. \blacktriangleright 248. $\frac{1!}{x+1} + \frac{2!}{(x+1)(x+2)} + \frac{3!}{(x+1)(x+2)(x+3)} + \cdots$

248.
$$\frac{1}{x+1} + \frac{1}{(x+1)(x+2)} + \frac{1}{(x+1)(x+2)(x+3)} + ...$$

§ 7. Суммирование рядов. Вычисление определенных интегралов с помощью рядов 105

◀ Прежде всего устанавливаем область сходимости. Для этого, замечая, что общий член ряда $a_n = \frac{n!}{(x+1)(x+2)\dots(x+n)}, \ x \neq -k, \ k \in \mathbb{N},$ начиная с некоторого достаточно большого номера

в силу приведенного признака, следует, что ряд сходится только при x>1.

Найдем теперь сумму S(x) данного ряда. С этой целью представим общий член ряда в виде

$$a_n = \frac{1}{x-1} \left(\frac{n!}{(1+x)(2+x)\dots(n-1+x)} - \frac{(n+1)!}{(1+x)(2+x)\dots(n+x)} \right), \quad n \in \mathbb{N} \setminus \{1\},$$

и вычислим частичную сумму $S_{f n}(m x)$ рассматриваемого ряда: $S_n(x) = \frac{1}{x+1} + \frac{1}{x-1} \left(\left(\frac{2!}{1+x} - \frac{3!}{(1+x)(2+x)} \right) + \right)$

 $+\left(\frac{3!}{(1+x)(2+x)}-\frac{4!}{(1+x)(2+x)(3+x)}\right)+$

 $+ \ldots + \left(\frac{n!}{(1+x)(2+x)\ldots(n-1+x)} - \frac{(n+1)!}{(1+x)(2+x)\ldots(n+x)}\right)\right) =$

Поскольку ряд сходится, а члены ряда положительны и монотонно убывают, то, в силу примера 13, справедливо соотношение $\lim_{n\to\infty}(n+1)a_n=0$. Принимая его во внимание,

249. $\frac{a_1}{a_2+x}+\frac{a_1}{a_2+x}\frac{a_2}{a_3+x}+\dots$ при условии, что x>0, $a_n>0$ и ряд $\sum_{n=0}^{\infty}\frac{1}{a_n}$

 $=\frac{1}{x}\left(\frac{a_1a_2\ldots a_n}{(a_2+x)(a_3+x)\ldots(a_n+x)}-\frac{a_1a_2\ldots a_{n+1}}{(a_2+x)\ldots(a_{n+1}+x)}\right), \quad n\in\mathbb{N}\setminus\{1\},$

 $=\frac{a_1}{a_2+x}+\frac{1}{x}\left(\frac{a_1a_2}{a_2+x}-\frac{a_1a_2\ldots a_{n+1}}{(a_2+x)(a_3+x)\ldots (a_{n+1}+x)}\right),\quad n\in\mathbb{N}\setminus\{1\}.$

 $S(x) = \lim_{x \to \infty} S_n(x) = \frac{1}{x-1}, \quad x > 1. \blacktriangleright$

 $+\left(\frac{a_1a_2a_3}{(a_2+x)(a_3+x)}-\frac{a_1a_2a_3a_4}{(a_2+x)(a_3+x)(a_4+x)}\right)+\ldots+$

 $+\left(\frac{a_1a_2a_3\ldots a_n}{(a_2+x)(a_3+x)\ldots (a_n+x)}-\frac{a_1a_2\ldots a_{n+1}}{(a_2+x)\ldots (a_{n+1}+x)}\right)\right)=$

 $0 < \frac{a_2 a_3 \dots a_{n+1}}{(a_2 + x)(a_3 + x) \dots (a_{n+1} + x)} = \frac{1}{\left(1 + \frac{x}{a_2}\right) \left(1 + \frac{x}{a_3}\right) \dots \left(1 + \frac{x}{a_{n+1}}\right)} \leqslant \frac{1}{1 + x \sum_{n=0}^{n} \frac{1}{a_n}}$

получаем

расходящийся.

Tak kak

 \blacktriangleleft Представляя общий член $b_n(x)$ ряда в виде

 $b_n(x) = \frac{a_1 a_2 \dots a_n}{(a_2 + x)(a_2 + x) \dots (a_{n+1} + x)} =$

находим частичную сумму $S_n(x)$ данного ряда:

 $S_n(x) = \frac{a_1}{a_2 + x} + \frac{1}{x} \left(\left(\frac{a_1 a_2}{a_2 + x} - \frac{a_1 a_2 a_3}{(a_2 + x)(a_3 + x)} \right) + \frac{a_1 a_2 a_3}{a_2 + x} \right)$

 $=\frac{1}{x-1}-\frac{(n+1)!}{(x-1)(1+x)(2+x)\ldots(n+x)}=\frac{1}{x-1}-\frac{(n+1)a_n}{x-1}.$

имеет определенный знак, применяем признак Гаусса. Имеем $\frac{a_n}{a_{n+1}} = 1 + \frac{x}{n} - \frac{x}{n(n+1)}$. Отсюда,

и ряд с положительными членами может расходиться только к бесконечности, то

 $\lim_{n\to\infty}\frac{a_1a_2\ldots a_{n+1}}{(a_2+x)(a_3+x)\ldots(a_{n+1}+x)}=0.$

 $=\frac{1}{2}\left(\frac{1}{1-x}+\frac{1}{1-x^2}+\frac{x^2}{1-x^4}+\frac{x^4}{1-x^8}+\ldots+\frac{x^{2^{n-1}}}{1-x^{2^n}}-\frac{1}{1+x^{2^n}}\right),$

 $+\frac{x^2}{(x^2+x+1)(x^3+x^2+x+1)}+\ldots+\frac{x^{n-1}}{(1+x+\ldots+x^{n-1})(1+x+\ldots+x^n)}\bigg)$

 $n \in \mathbb{N} \setminus \{1\},$

 $\frac{x^{n-1}}{(1+x+x^2+\ldots+x^{n-1})(1+x+\ldots+x^n)} = \frac{1+x+\ldots+x^{n-1}}{1+x+\ldots+x^n} - \frac{1+x+\ldots+x^{n-2}}{1+x+\ldots+x^{n-1}},$

 $S_n(x) = \frac{x^2}{(1-x)^2} \frac{1+x+\ldots+x^{n-1}}{1+x+\ldots+x^n} = \frac{x^2}{(1-x)^2} \frac{1-x^n}{1-x^{n+1}}.$

Отсюда следует, что если |x|<1, то $S(x)=\lim_{n\to\infty}S_n(x)=\frac{x^2}{(1-x)^2}$. Если же |x|>1, то $S(x)=\lim_{n\to\infty}S_n(x)=\frac{x}{(1-x)^2}$, где S(x) — сумма ряда. \blacktriangleright

Следовательно, $S(x) = \lim_{x \to \infty} S_n(x) = \frac{a_1}{x}$. 250. $\frac{x}{1-x^2} + \frac{x^2}{1-x^4} + \frac{x^4}{1-x^8} + \dots$

 $S_n(x) = \frac{1}{2} \left(\left(\frac{1}{1-x^2} - \frac{1}{1+x^2} \right) + \left(\frac{1}{1-x^2} - \frac{1}{1+x^2} \right) + \dots + \left(\frac{1}{1-x^{2^n}} - \frac{1}{1+x^{2^n}} \right) \right) =$

 $=\frac{1}{2}\left(\frac{1}{1-x}+\left(\frac{1}{1-x^2}-\frac{1}{1+x}\right)+\left(\frac{1}{1-x^4}-\frac{1}{1+x^2}\right)+\right)$

 $+ \ldots + \left(\frac{1}{1-x^{2^n}} - \frac{1}{1+x^{2^{n-1}}}\right) - \frac{1}{1+x^{2^n}}\right) =$

получаем

получаем

 $S_n(x) = \frac{1}{2} \left(\frac{1}{1-x} + S_n(x) - \frac{x^{2^n}}{1-x^{2^{n+1}}} - \frac{1}{1+x^{2^n}} \right),$ откуда $S_n(x) = \frac{1}{1-x} - \frac{1}{1+x^{2^n}} - \frac{x^{2^n}}{1-x^{2^{n+1}}}.$

Поэтому, если |x|<1, то $\lim_{n\to\infty}S_n(x)=\frac{x}{1-x}$. Если же |x|>1, то $\lim_{n\to\infty}S_n(x)=\frac{1}{1-x}$.

 $S(x) = \begin{cases} \frac{x}{1-x}, & \text{если} \quad |x| < 1, \\ \frac{1}{x}, & \text{если} \quad |x| > 1. \end{cases}$

Следовательно, сумма ряда

251. $\sum_{n=0}^{\infty} \frac{x^{n+1}}{(1-x^n)(1-x^{n+1})}.$

 \blacktriangleleft Рассматривая частичную сумму $S_n(x)$ ряда

 $S_n(x) = \frac{x^2}{(1-x)^2} \left(\frac{1}{1+x} + \frac{x}{(1+x)(x^2+x+1)} + \frac{x}{(1+x)(x^2+x+1)} \right)$

§ 7. Суммирование рядов. Вычисление определенных интегралов с помощью рядов 107 С помощью разложения подынтегральной функции в ряд вычислить следующие интегра-

лы:

 $252. \int_{-x}^{1} \frac{\ln\left(x+\sqrt{1+x^2}\right)}{x} dx.$

◀ При $|x| \le 1$ справедливо разложение

$$\ln\left(x+\sqrt{1+x^2}\right) = x + \sum_{n=1}^{\infty} \frac{(-1)^n (2n-1)!! x^{2n+1}}{(2n)!! (2n+1)}$$

(см. пример 168). Разделив почленно этот ряд на $x, x \neq 0$, и проинтегрировав его в пределах от 0 до 1, получим

$$\int_{0}^{1} \frac{\ln\left(x+\sqrt{1+x^{2}}\right)}{x} dx = 1 + \sum_{n=1}^{\infty} \frac{(-1)^{n}(2n-1)!!}{(2n)!!(2n+1)^{2}}.$$

253.
$$\int_0^1 x^{p-1} \ln(1-x^q) \, dx$$
, $p>0$, $q>0$.
• Панный интеграл, вообще говоря, является несобственным, поэтому

$$\int_{0}^{1} x^{p-1} \ln(1-x^{q}) dx = \lim_{\substack{\epsilon_{1} \to +0 \\ \epsilon_{2} \to +0}} \int_{\epsilon_{1}}^{1-\epsilon_{2}} x^{p-1} \ln(1-x^{q}) dx.$$

$$\int\limits_0^x\int\limits_{\epsilon_1\to+0}^{\ln(1-x)}\int\limits_{\epsilon_1\to+0}^{x_1\to+0}\int\limits_{\epsilon_1}^x\int\limits_{\ln(1-x)}^{\ln(1-x)}\int\limits_{\epsilon_2\to+0}^{x_1\to+0}\int\limits_{\epsilon_1}^x\int\limits_{\ln(1-x)}^{\ln(1-x)}\int\limits_{\epsilon_2\to+0}^{x_2\to+0}\int\limits_{\epsilon_1}^x\int\limits_{\ln(1-x)}^{\ln(1-x)}\int\limits_{\ln(1-x)}^{x_2\to+0}\int\limits_{\epsilon_2\to+0}^x\int$$

Поскольку при
$$0 < x < 1$$
 справедливо разложение $\ln(1-x^q) = -\sum_{n=1}^\infty \frac{x^{q^n}}{n}$, то

$$\int_{\epsilon_{1}}^{\infty} x^{p-1} \ln(1-x^{q}) dx = \sum_{n=1}^{\infty} \frac{\epsilon_{1}^{qn+p} - (1-\epsilon_{2})^{qn+p}}{n(qn+p)} = \sum_{n=1}^{\infty} \frac{\epsilon_{1}^{qn+p}}{n(qn+p)} - \sum_{n=1}^{\infty} \frac{(1-\epsilon_{2})^{qn+p}}{n(qn+p)} = \sum_{n=1}^{\infty} \frac{\epsilon_{1}^{qn+p}}{n(qn+p)} = = \sum_{n=1}^{\infty} \frac{\epsilon_{1}^{$$

$$= \varepsilon_1^p \sum_{n=1}^{\infty} \frac{\varepsilon_1^{qn} + p}{n(qn+p)} - (1 - \varepsilon_2)^p \sum_{n=1}^{\infty} \frac{((1 - \varepsilon_2)^q)^n}{n(qn+p)}.$$

Замечая, что оба степенных ряда сходятся при
$$\varepsilon_1=\varepsilon_2=0$$
, на основании теоремы Абеля, имеем .

 $\int x^{p-1} \ln(1-x^q) dx = \lim_{\epsilon_1 \to +0} \epsilon_1^p \sum_{n=0}^{\infty} \frac{(\epsilon_1^q)^n}{n(qn+p)} - \lim_{\epsilon_2 \to +0} (1-\epsilon_2)^p \sum_{n=0}^{\infty} \frac{((1-\epsilon_2)^q)^n}{n(qn+p)} = -\sum_{n=0}^{\infty} \frac{1}{n(qn+p)}.$

254.
$$\int_{0}^{1} \ln x \cdot \ln(1-x) \, dx.$$

 $\int_{-\infty}^{\infty} \ln x \cdot \ln(1-x) dx = -\int_{-\infty}^{\infty} \ln(1-x) dx - \int_{-\infty}^{\infty} \ln x dx + \int_{-\infty}^{\infty} \frac{\ln x dx}{1-x}.$ (1)

Считая, что $0 < \varepsilon_1 \le x \le 1 - \varepsilon_2$, записываем соответствующие разложения в степенные ряды:

$$\ln(1-x) = -\sum_{n=0}^{\infty} \frac{x^n}{n}, \quad \ln x = -\sum_{n=0}^{\infty} \frac{(1-x)^n}{n}, \quad \frac{\ln(1-x)}{1-x} = -\sum_{n=0}^{\infty} \frac{(1-x)^{n-1}}{n}.$$

Поскольку
$$\int\limits_{0}^{1}\ln x\cdot\ln(1-x)\,dx=\lim_{\substack{\epsilon_{1}\to+0\\\epsilon_{2}\to+0}}\int\limits_{0}^{1-\epsilon_{2}}\ln x\cdot\ln(1-x)\,dx,$$

то из (1) почленным интегрированием степенных рядов, на основании теоремы Абеля, полу-

$$\int_{0}^{1} \ln x \cdot \ln(1-x) \, dx = \lim_{\substack{\epsilon_{1} \to +0 \\ \epsilon_{2} \to +0}} \left(\sum_{n=1}^{\infty} \frac{(1-\epsilon_{2})^{n+1} - \epsilon_{1}^{n+1}}{n(n+1)} + \sum_{n=1}^{\infty} \frac{(1-\epsilon_{1})^{n+1} - \epsilon_{2}^{n+1}}{n(n+1)} + \sum_{n=1}^{\infty} \frac{(1-\epsilon_{1})^{n+1} - \epsilon_{2}^{n+1}}{n(n+1)} + \sum_{n=1}^{\infty} \frac{\epsilon_{2}^{n} - (1-\epsilon_{1})^{n}}{n^{2}} \right) = 2 \sum_{n=1}^{\infty} \frac{1}{n(n+1)} - \sum_{n=1}^{\infty} \frac{1}{n^{2}} = 2 - \frac{\pi^{2}}{6}.$$

 $255. \int \frac{x\,dx}{e^{2\pi x}-1}.$ ■ Полагая $t=e^{-2\pi x}$, получаем один из интегралов, вычисленных нами в предыдущем примере:

$$\int_{0}^{+\infty} \frac{x \, dx}{e^{2\pi x} - 1} = -\frac{1}{4\pi^2} \int_{0}^{1} \frac{\ln t \, dt}{1 - t}.$$

Поэтому имеем

$$\int\limits_{-\infty}^{+\infty} \frac{x \, dx}{e^{2\pi x} - 1} = \frac{1}{24}. \blacktriangleright$$

256. Разложить по целым положительным степеням модуля $k,\ 0\leqslant k<1$, полный элдиптический интеграл первого рода

$$F(k) = \int_{0}^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{1 - k^2 \sin^2 \varphi}}$$

◄ Поскольку $k^2 \sin^2 \varphi \leqslant k^2 < 1$, то возможно разложение (см. формулу IV, §5):

$$\frac{1}{\sqrt{1-k^2\sin^2\alpha}} = 1 + \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} k^{2n} \sin^{2n} \varphi. \tag{1}$$

В силу оценки $k^{2n} \frac{(2n-1)!!}{(2n)!!} \sin^{2n} \varphi \leqslant \frac{(2n-1)!!}{(2n)!!} k^{2n} \leqslant k^{2n}$ и сходимости ряда $\sum_{n=0}^{\infty} k^{2n}$, ряд (1) сходится равномерно (по признаку Вейерштрасса) по φ . Кроме того, члены ряда (1) являются непрерывными функциями, поэтому, по одному из свойств функциональных рядов, рассматриваемый функциональный ряд можно почленно интегрировать. Имеем

$$F(k) = \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} k^{2n} \int_{-\infty}^{\frac{\pi}{2}} \sin^{2n} \varphi \, d\varphi.$$

Отсюда, пользуясь равенством $\int\limits_{0}^{\frac{n}{2}} \sin^{2n}\varphi \,d\varphi = \frac{\pi}{2}\,\frac{(2n-1)!!}{(2n)!!},$ окончательно находим

$$F(k) = \frac{\pi}{2} \left(1 + \sum_{n=1}^{\infty} \left(\frac{(2n-1)!!}{(2n)!!} \right)^2 k^{2n} \right) . \blacktriangleright$$

Доказать равенства:

257.
$$\int_{0}^{x} \frac{dx}{x^{x}} = \sum_{n=1}^{\infty} \frac{1}{n^{n}}.$$

◀ Поскольку

$$\int_0^1 \frac{dx}{x^x} = \int_0^1 e^{-\varphi(x)} dx,$$

где

$$\varphi(x) = \left\{ \begin{array}{ll} x \ln x, & \text{если} & 0 < x \leqslant 1, \\ 0, & \text{si} & x = 0, \end{array} \right.$$

то

$$\int_{0}^{1} \frac{dx}{x^{x}} = \int_{0}^{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} (\varphi(x))^{n} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{1} \varphi^{n}(x) dx,$$

откуда, на основании примера 195, г), получаем нужную формулу. ▶

258.

$$\int\limits_{0}^{2\pi}e^{\cos x}\cos(\sin x)\cos nx\,dx=\left\{\begin{array}{ll}\frac{\pi}{n!},&\text{если}&n\in\mathbb{N},\\2\pi,&\text{если}&n=0.\end{array}\right.$$

 \blacktriangleleft Разлагая функцию $x \mapsto e^{\cos x} \cos(\sin x)$ в ряд, находим

$$e^{\cos x}\cos(\sin x) = \operatorname{Re}\left(e^{z}\right) = \operatorname{Re}\left(\sum_{k=0}^{\infty} \frac{z^{k}}{k!}\right) = \sum_{k=0}^{\infty} \frac{\cos kx}{k!},$$

где $z = e^{ix} = \cos x + i \sin x$.

Полученный ряд, в силу признака Вейерштрасса, сходится равномерно на всей числовой прямой и функции $x \mapsto \cos kx$ непрерывны, поэтому ряд можно почленно интегрировать вместе с функцией $x \mapsto \cos nx$. Имеем

$$\int_{0}^{2\pi} e^{\cos x} \cos(\sin x) \cos nx \, dx = \sum_{k=0}^{\infty} \frac{1}{k!} \int_{0}^{2\pi} \cos kx \cos nx \, dx = \frac{\pi}{n!}, \quad \text{если } n \in \mathbb{N}, \text{ и}$$

$$\int_{0}^{2\pi} e^{\cos x} \cos(\sin x) \, dx = \sum_{k=0}^{\infty} \frac{1}{k!} \int_{0}^{2\pi} \cos kx \, dx = 2\pi. \blacktriangleright$$

Вычислить интегралы:

$$259. \int \frac{x \sin x}{1 - 2\alpha \cos x + \alpha^2} dx.$$

$$I = \int_{0}^{\pi} \frac{x \sin x}{1 - 2\alpha \cos x + \alpha^{2}} dx = \int_{0}^{\pi} \sum_{n=1}^{\infty} \alpha^{n-1} x \sin nx dx.$$

Поскольку функции $x\mapsto x\sin nx$ непрерывны на $[0,\pi]$ и функциональный ряд справа, в силу мажорантного признака Вейерштрасса, равномерно сходится (здесь $|\alpha^{n-1}x\sin nx|\leqslant \pi|\alpha|^{n-1}$ и ряд $\sum_{n=0}^{\infty} |\alpha|^{n-1}$ сходится), то рассматриваемый ряд можно почленно интегрировать.

Имеем

$$I = \pi \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \alpha^{n-1} = \begin{cases} \frac{\pi}{\alpha} \ln(1+\alpha), & \text{если} & \alpha \neq 0, \\ \pi, & \text{если} & \alpha = 0. \end{cases}$$

Пусть $|\alpha| > 1$. Тогда, преобразовывая подынтегральную функцию к виду

$$rac{x\sin x}{lpha^2(lpha^{-2}-2lpha^{-1}\cos x+1)}$$

результатом, можем записат

и пользуясь полученным выше результатом, можем записать

$$I = \frac{\pi}{\alpha} \ln \left(1 + \frac{1}{\alpha} \right), \quad |\alpha| > 1.$$

Пусть $\alpha = 1$. Тогда исходный интеграл имеет вид

$$I = 2 \int_{0}^{\frac{\pi}{2}} \frac{t \, dt}{\operatorname{tg} t}.$$

Функция

$$f: t \mapsto \left\{ \begin{array}{ll} 1, & \text{если} & t = 0, \\ \frac{t}{t \, \mathsf{g} \, t}, & \text{если} & 0 < t < \frac{\pi}{2}, \\ 0, & \text{если} & t = \frac{\pi}{2}, \end{array} \right.$$

непрерывна на отрезке $\left[0,\frac{\pi}{2}\right]$. Следовательно, она интегрируема, т.е. последний интеграл имеет смысл.

Кроме того, ряд $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n}$ в силу признака Лейбница, сходится. Поэтому по теореме

Абеля

$$I|_{\alpha=1} = \pi \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \pi \ln 2.$$

Пусть $\alpha = -1$. Тогда интеграл

$$I = \frac{1}{2} \int_{0}^{\pi} x \operatorname{tg} \frac{x}{2} dx$$

расходится, так как x tg $\frac{x}{2} \sim \frac{2\pi}{\pi - x}$ при $x \to \pi$.

Таким образом, окончательно получаем

$$I = \left\{ \begin{array}{ll} \frac{\pi}{\alpha} \ln(1+\alpha), & \text{если} & -1 < \alpha < 0, \text{ или } 0 < \alpha \leqslant 1, \\ \pi, & \text{если} & \alpha = 0, \\ \frac{\pi}{\alpha} \ln\left(1+\frac{1}{\alpha}\right), & \text{если} & |\alpha| > 1. \end{array} \right. \blacktriangleright$$

$$260. \int \ln(1-2\alpha\cos x+\alpha^2)\,dx.$$

 \S 7. Суммирование рядов. Вычисление определенных интегралов ${
m c}$ помощью рядов 111

(1)

«Пусть |α| < 1. Тогда, пользуясь результатом примера 208, получаем
</p>

$$I = \int_{-\pi}^{\pi} \ln(1 - 2\alpha \cos x + \alpha^2) dx = -2 \sum_{n=0}^{\infty} \frac{a^n}{n} \int_{-\pi}^{\pi} \cos nx dx = 0$$

 $I = \int_{-\pi}^{\pi} \ln(1 - 2\alpha \cos x + \alpha^2) dx = -2 \sum_{n=0}^{\infty} \frac{a^n}{n} \int \cos nx dx = 0.$

 Π усть |lpha|>1. B этом случае, преобразовывая значение подынтегральной функции к виду $\ln(1-2\alpha\cos x+\alpha^2)=2\ln|\alpha|+\ln\left(1-\frac{2}{\alpha}\cos x+\frac{1}{\alpha^2}\right)$ и пользуясь равенством (1), находим

 $I=2\pi \ln |\alpha|$.

Пусть $\alpha = 1$. Тогда, по теореме Абеля, можем написать

 $\ln(2(1-\cos x)) = -2\sum_{n=0}^{\infty} \frac{\cos nx}{n}, \quad x \neq 2k\pi.$

Следовательно,

 $I|_{\alpha=1} = \int_{-\infty}^{\infty} \ln(2(1-\cos x)) \, dx = \lim_{\epsilon \to +0} \int_{-\infty}^{\infty} \ln(2(1-\cos x)) \, dx = -2 \lim_{\epsilon \to +0} \int_{-\infty}^{\infty} \frac{\cos nx}{n} \, dx.$

Замечая, что, по признаку Дирихле, ряд, стоящий под знаком последнего интеграла, равномерно сходится, а функции $x \mapsto \cos nx$ непрерывны, выполняем почленно интегрирование:

 $I|_{\alpha=1}=2\lim_{\epsilon\to+0}\sum^{\infty}\frac{\sin n\epsilon}{n^2}.$

Tак как $\frac{|\sin n\epsilon|}{n^2}\leqslant \frac{1}{n^2}$ и ряд $\sum_{n\geq 1}\frac{1}{n^2}$ сходится, то, по мажорантному признаку Вейерштрасса, ряд

 $\sum_{n\geq 1} \frac{\sin n\epsilon}{n^2}$ равномерно (по параметру ϵ) сходится. Кроме того, $\lim_{\epsilon \to +0} \sin n\epsilon = 0$. Следовательно,

по одному из свойств равномерно сходящихся рядов, получаем

$$I|_{\alpha=1}=2\sum_{\epsilon\to+0}^{\infty}\lim_{\epsilon\to+0}\frac{\sin n\epsilon}{n^2}=0.$$

$$\overline{n}$$
 — $n=1$ Аналогично устанавливаем, что $I|_{\alpha=-1}=0$

Аналогично устанавливаем, что $I|_{\alpha=-1}=0$:

$$n=0$$
 haznoruчно устанавливаем, что $I|_{\alpha=-1}=0$

алогично устанавливаем, что
$$I|_{\alpha=-1}=0$$

Окончательно имеем

 $I = \begin{cases} 0, & \text{если} \quad |\alpha| \leqslant 1, \\ 2\pi \ln |\alpha|, & \text{если} \quad |\alpha| > 1. \end{cases}$

вайти суммы следующих матричных рядов:
$$\mathbf{R61.} \ S = \sum_{n=0}^{\infty} \left(\frac{A^n}{A^n} - \frac{A^{2n}}{A^n} \right) . \ A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$

261. $S = \sum_{n=0}^{\infty} \left(\frac{A^n}{3^n} - \frac{A^{2n}}{8^n} \right), A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$

$$\sum_{n=0}^{\infty} \sum_{n=0}^{\infty} B^n = (I-B)^{-1} \text{ при } \|B\| < 1, \text{ то}$$

$$lacksymbol{\blacktriangleleft}$$
 Поскольку $\sum\limits_{n=0}^{\infty}B^{n}=(I-B)^{-1}$ при $\parallel B\parallel<1$, то

$$\blacktriangleleft$$
 Поскольку $\sum_{n=0}^{\infty} B^n = (I - B)^{-1}$ при $||B|| < 1$, то $\sum_{n=0}^{\infty} A^n = \sum_{n=0}^{\infty} (A)^n = (A)^{-1} = \sum_{n=0}^{\infty} A^{2n} = \sum_{n=0}^{\infty} (A^2)^n = (A^2$

$$\sum_{n=0}^{\infty} \frac{A^n}{3^n} = \sum_{n=0}^{\infty} \left(\frac{A}{3}\right)^n = \left(I - \frac{A}{3}\right)^{-1}, \quad \sum_{n=0}^{\infty} \frac{A^{2n}}{8^n} = \sum_{n=0}^{\infty} \left(\frac{A^2}{8}\right)^n = \left(I - \frac{A^2}{8}\right)^{-1}.$$

Заметим, что в случае первого ряда $B=\frac{1}{3}A$ и $\parallel B\parallel=\frac{1}{3}\parallel A\parallel=\frac{1}{3}\sqrt{1^2+2^2+1^2+1^2}=\frac{\sqrt{7}}{3}<1$, а в случае второго $-B=\frac{A^2}{8}$ и $\parallel B\parallel=\frac{1}{8}\parallel A^2\parallel=\frac{1}{8}\sqrt{1^2+4^2+2^2+1^2}=\frac{\sqrt{2}}{8}<1$.

Таким образом, $S = \sum_{n=0}^{\infty} \left(\frac{A^n}{3^n} - \frac{A^{2n}}{8^n} \right) = \left(I - \frac{A}{3} \right)^{-1} - \left(I - \frac{A^2}{8} \right)^{-1}.$ (1) TO

Вычисляя обратные матрицы

$$\left(I - \frac{A}{3}\right)^{-1} = \begin{pmatrix} \frac{2}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 1 \\ -\frac{1}{2} & 1 \end{pmatrix}, \quad \left(I - \frac{A^2}{8}\right)^{-1} = \begin{pmatrix} \frac{9}{8} & -\frac{1}{2} \\ \frac{1}{4} & \frac{9}{8} \end{pmatrix}^{-1} = \frac{32}{89} \begin{pmatrix} \frac{9}{4} & 1 \\ -\frac{1}{2} & \frac{9}{4} \end{pmatrix}$$

и подставляя их значение в равенство (1), получаем

$$S = \frac{1}{89} \begin{pmatrix} 17 & 57 \\ -\frac{57}{2} & 17 \end{pmatrix} . \blacktriangleright$$

262.
$$S = \sum_{n=0}^{\infty} (n+1)A^n$$
, rge $A = \begin{pmatrix} \frac{1}{2} & -\frac{1}{3} \\ \frac{1}{3} & \frac{1}{4} \end{pmatrix}$

◄ Поскольку

$$S = \sum_{n=0}^{\infty} (n+1)A^n = \left(\sum_{n=0}^{\infty} A^n\right)^2 = ((I-A)^{-1})^2,$$

$$S = \begin{pmatrix} \frac{1}{2} & \frac{1}{3} \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix}^{-2} = \begin{pmatrix} \frac{3}{4} & -\frac{1}{3} \\ \frac{1}{2} & \frac{3}{2} \end{pmatrix}^2 \left(\frac{72}{35}\right)^2 = \frac{432}{245} \begin{pmatrix} \frac{13}{12} & -1 \\ 1 & \frac{1}{2} \end{pmatrix}. \blacktriangleright$$

Упражнения для самостоятельной работы

Найти суммы следующих рядов

133.
$$\sum_{n=1}^{\infty} \frac{n}{(n+2)(n+5)}$$
. 134.
$$\sum_{n=2}^{\infty} \frac{1}{n^3 - 3n + 2}$$
. 135.
$$\sum_{n=2}^{\infty} \frac{n+2}{(n^2 - 1)^2}$$
.

136.
$$\sum_{n=1}^{\infty} \frac{n^3}{2^n}$$
. 137. $\sum_{n=1}^{\infty} n^2 e^{-nx}$, $x > 0$. 138. $\sum_{n=1}^{\infty} \frac{x^n}{n^2(n+1)}$.

139.
$$\sum_{n=2}^{\infty} \frac{\cos nx}{n(n-1)}$$
. 140.
$$\sum_{n=2}^{\infty} \frac{\cos nx}{(n-1)n(n+1)}$$
. 141.
$$\sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!(2n+1)} \sin(2n+1)x$$
.

С помощью разложения подынтегральной функции в ряд вычислить следующие интегралы (в примерах $145-148\ A$ — постоянная матрица):

142.
$$\int_{0}^{1} \operatorname{erf}(x) dx$$
, где $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt$ — интеграл вероятностей.

143.
$$\int_{0}^{1} \operatorname{si}(x) dx$$
, где $\operatorname{si}(x) = -\int_{x}^{+\infty} \frac{\sin t}{t} dt$ — интегральный синус.

144.
$$\int_{0}^{\pi} \sin(\sin x) dx$$
. 145. $\int_{0}^{1} e^{Ax^{2}} dx$, $A^{2} = -A$.

146.
$$\int_{0}^{\pi} \sin(A\sqrt{x}) dx$$
, $A^{2} = A$. 147. $\int_{0}^{\pi} \cos(A\sqrt{x}) dx$, $A^{2} = I$.

148.
$$\int_{0}^{1} x \ln(I + Ax) dx, A = \begin{pmatrix} \sin \varphi & -\cos \varphi \\ -\cos \varphi & -\sin \varphi \end{pmatrix}.$$

Дифференциальное исчисление функций векторного аргумента

§1. Предел функции. Непрерывность

1.1. Предел функции.

Пусть числовая функция f определена в области $E \setminus \{x_0\}$, где $E \subset \mathbb{R}^m$, а $x_0 = (x_1^0, x_2^0, \dots, x_m^0)$ — внутренняя или предельная точка области E.

Определение 1 (Гейне). Функция f имеет предел (предельное значение) при $x \to x_0$ (в точке x_0), если существует число $A \in \mathbb{R}$ такое, что для произвольной последовательности (x_n) значений $x_n \in E \setminus \{x_0\}$, сходящейся к точке x_0 , соответствующая последовательность $(f(x_n))$ значений функции f сходится к A.

При этом число A называется пределом функции f при $oldsymbol{x} o oldsymbol{x}_0$, что записывается

$$\lim_{x \to x_0} f(x) = A$$
, или $f(x) \to A$ при $x \to x_0$,

или

$$\lim_{\substack{x_1 \to x_1^0 \\ \dots \\ x_m \to x_n^0}} f(x_1, \dots, x_m) = A,$$

или

$$f(x_1,\ldots,x_m) o A$$
 при $x_1 o x_1^0,\ldots,x_m o x_m^0$

Определение 2 (Коши). Функция f имеет предел при $x \to x_0$, если существует такое число A, что $\forall \varepsilon > 0$ $\exists \delta > 0$ такое, что $\forall x \in E$, удовлетворяющих условию $0 < \|x - x_0\| < \delta$, где

$$\|x-x_0\| = \rho(x, x_0) = \sqrt{(x_1-x_1^0)^2 + (x_2-x_2^0)^2 + \dots + (x_m-x_m^0)^2},$$

выполняется неравенство

$$|f(x) - A| < \varepsilon.$$

Оба определения предела (Гейне и Коши) эквивалентны.

1.2. Непрерывность.

Пусть $f: D \to \mathbb{R}, D \subset \mathbb{R}^m$, а $x_0 \in D$.

Определение. Функция f называется непрерывной в точке $x_0 \in D$, если выполняется любое из эквивалентных условий:

- $1) \ \forall \varepsilon > 0 \ \exists \delta > 0 \ makoe, \ \mathsf{umo} \ |f(\boldsymbol{x}) f(\boldsymbol{x}_0)| < \varepsilon, \ \mathsf{kak} \ mode ko \ \|\boldsymbol{x} \boldsymbol{x}_0\| < \delta;$
- 2) для произвольной последовательности (x_n) значений $x_n \in D$, сходящейся к точке x_0 , соответствующая последовательность $(f(x_n))$ значений функции f сходится при $n \to \infty$ к $f(x_0)$:
 - 3) $\lim_{x\to x_0} f(x) = f(x_0)$ unu $f(x) f(x_0) \to 0$ npu $x x_0 \to 0$;
 - 4) $\forall \epsilon > 0 \quad \exists \delta > 0 \quad \text{makoe, umo}$

$$f(S(x_0, \delta)) \subset]f(x_0) - \varepsilon, f(x_0) + \varepsilon[,$$

или, что то же самое,

$$f: S(x_0, \delta) \rightarrow]f(x_0) - \varepsilon, f(x_0) + \varepsilon[,$$

zde $S(x_0, \delta)$ — открытый шар в пространстве \mathbb{R}^m с центром в точке x_0 и радиусом δ . Функция f непрерывна в области D, если она непрерывна в каждой точке области D.

1.3. Равномерная непрерывность.

Определение. Функция $f:D \to \mathbb{R}, D \in \mathbb{R}^m$, называется равномерно-непрерывной в области D, если $\forall \varepsilon > 0 \,\exists \delta > 0$ такое, что $\forall x \in D \land \forall y \in D$, удовлетворяющих условию

 $\|oldsymbol{x}-oldsymbol{y}\|<\delta$, выполняется неравенство $|f(oldsymbol{x})-f(oldsymbol{y})|<arepsilon$.

Tеорема (Кантора). Eсли функция $f:\overline{D} o\mathbb{R},\,\overline{D}\subset\mathbb{R}^m$, непрерывна в замкнутой ограниченной области $\overline{D},$ то она равномерно-непрерывна в этой области. 1. Показать, что для функции $f(x, y) = \frac{x-y}{x+y}$

 $\lim_{x\to 0} \left(\lim_{y\to 0} f(x,y) \right) = 1, \quad \lim_{y\to 0} \left(\lim_{x\to 0} f(x,y) \right) = -1,$

в то время как $\lim_{\substack{x \to 0 \\ y \to 0}} f(x, y)$ не существует.

⋖ Имеем

114

$$\lim_{x \to 0} \left(\lim_{y \to 0} \frac{x - y}{x + y} \right) = \lim_{x \to 0} \frac{x}{x} = 1, \quad \lim_{y \to 0} \left(\lim_{x \to 0} \frac{x - y}{x + y} \right) = \lim_{y \to 0} \frac{-y}{y} = -1.$$

Поскольку последовательности $(x_n, y_n) = \left(\frac{1}{n}, \frac{1}{n}\right), (x_n', y_n') = \left(\frac{2}{n}, \frac{1}{n}\right)$ сходятся к точке (0, 0) при $n \to \infty$, а соответствующие последовательности значений функций сходятся к различным пределам

$$f(x_n, y_n) = 0 \to 0, \quad f(x'_n, y'_n) = \frac{\frac{1}{n}}{\frac{3}{n}} \to \frac{1}{3}$$

при
$$n \to \infty$$
, то предел $\lim_{\substack{x \to 0 \\ y \to 0}} f(x,y)$ не существует. \blacktriangleright 2. Показать, что для функции $f(x,y) = \frac{x^2y^2}{x^2y^2 + (x-y)^2}$

$$\lim_{x\to 0} \left(\lim_{y\to 0} f(x, y) \right) = \lim_{y\to 0} \left(\lim_{x\to 0} f(x, y) \right) = 0,$$

тем не менее
$$\lim_{\substack{x\to 0\\y\to 0}} f(x, y)$$
 не существует.

 \blacktriangleleft Равенство повторных пределов следует из того, что $\lim_{y\to 0} f(x,y)=0, \lim_{x\to 0} f(x,y)=0.$ То, что двойной предел не существует, следует из того, что последовательности $(x_n, y_n) =$ $\left(\frac{1}{n}, \frac{1}{n}\right), (x'_n, y'_n) = \left(\frac{1}{n}, -\frac{1}{n}\right)$ сходятся к точке (0, 0), а соответствующие последовательности значений функции сходятся при $n o \infty$ к различным предельным значениям:

$$f(x_n, y_n) = \frac{\frac{1}{n^4}}{\frac{1}{n^4}} \to 1, \quad f(x'_n, y'_n) = \frac{\frac{1}{n^4}}{\frac{1}{n^4} + \frac{4}{n^2}} \to 0. \blacktriangleright$$

3. Показать, что для функции
$$f(x,y)=(x+y)\sin\frac{1}{x}\sin\frac{1}{y}$$
 оба повторных предела

$$\lim_{x\to 0} \left(\lim_{y\to 0} f(x,y)\right) \text{ if } \lim_{y\to 0} \left(\lim_{x\to 0} f(x,y)\right) \text{ he существуют, но, тем не менее, существует } \lim_{x\to 0} f(x,y) = 0.$$

$$\lim_{x\to 0} \left(\lim_{x\to 0} f(x,y)\right) \text{ if } \lim_{x\to 0} \left(\lim_{x\to 0}$$

◄ Пусть $y \neq \frac{1}{n\pi}$, $n \in \mathbb{N}$, тогда $y \sin \frac{1}{n} \neq 0$. Очевидно, последовательности $(x_n) = \left(\frac{1}{n\pi}\right)$, $(x'_n)=\left(rac{2}{(4n+1)\pi}
ight)$ сходятся к нулю при $n o\infty$. При этом соответствующие последовательности значений функции $(f(x_n,y))=(0), (f(x_n',y))=\left(y\sin\frac{1}{y}\right)$ при $n o\infty$ сходятся

к различным предельным значениям. Следовательно, $\lim_{x\to 0} f(x,y)$ не существует. Аналогично

Предел функции. Непрерывность

устанавливается, что $\lim_{u \to 0} f(x, y)$ также не существует. Из этого вытекает, что оба повторных

предела не существуют. Однако из неравенства $0\leqslant \left|(x+y)\sin\frac{1}{x}\sin\frac{1}{y}\right|\leqslant |x+y|\leqslant |x|+|y|,$ справедливого при любых $x \neq 0, y \neq 0$, следует, что

$$\lim_{\substack{x \to 0 \\ y \to 0}} \left((x+y) \sin \frac{1}{x} \sin \frac{1}{y} \right) = 0. \blacktriangleright$$

4. Существует ли предел $\lim_{x\to 0} \frac{zxy}{x^2+y^2}$?

lacktriangleleft Этот предел не существует, так как последовательности $(x_n,\,y_n)=\left(rac{1}{n},\,rac{1}{n}
ight),\,(x_n',\,y_n')=$ $\left(\frac{1}{\pi}, \frac{1}{\pi^2}\right)$ сходятся к точке (0,0) при $n \to \infty$, в то время как соответствующие последовательности значений функции сходятся к различным предельным значениям:

$$f(x_n, y_n) = \frac{\frac{2}{n^2}}{\frac{2}{n^2}} \to 1, \quad f(x'_n, y'_n) = \frac{\frac{2}{n^3}}{\frac{1}{n^2} + \frac{1}{n^3}} \to 0$$

при $n \to \infty$. \blacktriangleright

 ${f 5.}$ Чему равен предел функции $f(x,y)=x^2e^{-(x^2-y)}$ вдоль любого луча $x=t\coslpha,$ $y=t\sinlpha,\ 0\leqslant t<+\infty,$ при $t\to+\infty$? Можно ли эту функцию назвать бесконечно малой при $x \to \infty$ и $y \to \infty$?

lacktriangle Обозначим $F(t, \, lpha) = f(t\coslpha, \, t\sinlpha)$, тогда

$$F(t, \alpha) = t^2 \cos^2 \alpha e^{-t^2 \cos^2 \alpha + t \sin \alpha}, \quad 0 \leqslant \alpha \leqslant 2\pi.$$

Если $\alpha=\pm\frac{\pi}{2}$, то $F\left(t,\pm\frac{\pi}{2}\right)=0$ и, следовательно, $F\left(t,\pm\frac{\pi}{2}\right)\to 0$ при $t\to +\infty$.

Если же $\alpha \neq \pm \frac{\pi}{2}$, то $\cos^2 \alpha \neq 0$ и $t^2 \cos^2 \alpha - t \sin \alpha \to +\infty$ при $t \to +\infty$. Тогда, по правилу Лопиталя, получаем

$$\lim_{t \to +\infty} F(t, \alpha) = \cos^2 \alpha \lim_{t \to +\infty} \frac{t^2}{e^{t^2 \cos^2 \alpha - t \sin \alpha}} = \cos^2 \alpha \lim_{t \to +\infty} \frac{2t}{(2t \cos^2 \alpha - \sin \alpha)e^{t^2 \cos^2 \alpha - t \sin \alpha}} = \cos^2 \alpha \lim_{t \to +\infty} \frac{1}{\left(\cos^2 \alpha - \frac{\sin \alpha}{2t}\right)e^{t^2 \cos^2 \alpha - t \sin \alpha}} = 0.$$

Поэтому $\lim_{t\to +\infty} F(t,\, \alpha)=0$ при любых α . Функция f не является бесконечно малой при $x o \infty$ и $y o \infty$, поскольку при $x_n = n o$ $+\infty,\ y_n=n^2 o +\infty$ получаем равенство $\lim_{n o\infty}f(x_n,\,y_n)=\lim_{n o\infty}n^2e^{-(n^2-n^2)}=\lim_{n o\infty}n^2=+\infty,$

противоречащее определению бесконечно малой величины. 6. Найти $\lim_{x \to a} \left(\lim_{y \to b} f(x, y) \right)$ и $\lim_{y \to b} \left(\lim_{x \to a} f(x, y) \right)$, если:

a)
$$f(x, y) = \frac{x^2 + y^2}{x^2 + y^4}$$
, $a = \infty$, $b = \infty$; 6) $f(x, y) = \frac{x^y}{1 + x^y}$, $a = +\infty$, $b = +0$;

$$x^{2} + y^{2} = 1 + x^{y}$$

$$x^{2} + y^{2} = \sin \frac{\pi x}{x}, \quad a = \infty, b = \infty; \quad x \in \mathbb{R}, f(x, y) = \frac{1}{x} \tan \frac{xy}{x}, \quad a = 0, b = \infty;$$

B)
$$f(x, y) = \sin \frac{\pi x}{2x + y}$$
, $a = \infty$, $b = \infty$; r) $f(x, y) = \frac{1}{xy} \operatorname{tg} \frac{xy}{1 + xy}$, $a = 0$, $b = \infty$;

 $\pi) \ f(x, y) = \log_x(x + y), \ a = 1, b = 0.$

$$\triangleleft$$
 а) При $x \neq 0$, $y \neq 0$ имеем

 $\lim_{x \to \infty} \left(\lim_{y \to \infty} \frac{x^2 + y^2}{x^2 + y^4} \right) = \lim_{x \to \infty} \left(\lim_{y \to \infty} \frac{\frac{x^2}{y^2} + 1}{\frac{x^2}{x^2} + y^2} \right) = 0, \quad \lim_{y \to \infty} \left(\lim_{x \to \infty} \frac{x^2 + y^2}{x^2 + y^4} \right) = \lim_{y \to \infty} 1 = 1.$

6) Функция $y \mapsto x^y$ непрерывна при y > 0 (x считаем постоянным), поэтому $\lim_{x \to +0} x^y = 1$; при постоянном значении y>0 функция $x\mapsto x^y$ непрерывна при всех x>0, поэтому $\lim x^y = +\infty.$

Пользуясь полученными равенствами, находим

$$\lim_{x \to +\infty} \left(\lim_{y \to +0} \frac{x^y}{1+x^y} \right) = \frac{1}{2}, \quad \lim_{y \to +0} \left(\lim_{x \to +\infty} \frac{x^y}{1+x^y} \right) = 1.$$

в) При каждом фиксированном x функция непрерывна по y, если |y| > 2|x|, а при всяком фиксированном y — непрерывна по x, как только $|x|>\frac{|y|}{2}$. Поэтому $\lim_{y \to \infty} \sin \frac{\pi x}{2x + y} = 0, \quad \lim_{x \to \infty} \sin \frac{\pi x}{2x + y} = \lim_{x \to \infty} \sin \frac{\pi}{2 + \frac{y}{2}} = 1.$

$$y
ightharpoonup \infty \quad 2x + y \qquad x
ightharpoonup 2x + y \qquad x
ightharpoonup 2 + rac{x}{x}$$
 Следовательно,

 $\lim_{x \to \infty} \left(\lim_{y \to \infty} \sin \frac{\pi x}{2x + y} \right) = 0, \quad \lim_{y \to \infty} \left(\lim_{x \to \infty} \sin \frac{\pi x}{2x + y} \right) = 1.$

r) При фиксированном $x \neq 0$ $\lim_{y \to \infty} \frac{xy}{1+xy} = 1$, поэтому, в силу непрерывности тангенса,

получаем $\lim_{x \to \infty} \frac{1}{xy} \operatorname{tg} \frac{xy}{1+xy} = 0$. Пусть теперь y фиксированное. Тогда, пользуясь тем, что $\lim_{x\to 0} \frac{\operatorname{tg} \alpha}{\alpha} = 1$, имеем

$$\lim_{x \to 0} f(x, y) = \lim_{x \to 0} \frac{\operatorname{tg} \frac{xy}{1 + xy}}{\frac{xy}{1 + xy}} (1 + xy)^{-1} = 1.$$

На основании этих равенств находим

$$\lim_{x\to 0} \left(\lim_{y\to \infty} \frac{1}{xy} \operatorname{tg} \frac{xy}{1+xy} \right) = 0, \quad \lim_{y\to \infty} \left(\lim_{x\to 0} \frac{1}{xy} \operatorname{tg} \frac{xy}{1+xy} \right) = 1.$$

д) Имеем $f(x,y)=\log_x(x+y)=\frac{\ln(x+y)}{\ln x},\,x>0,\,x+y>0,\,x\neq 1.$ Из непрерывности логарифмической функции следует, что

$$\lim_{y \to 0} f(x, y) = \lim_{y \to 0} \frac{\ln(x + y)}{\ln x} = \frac{\ln x}{\ln x} = 1.$$

Следовательно, $\lim_{x\to 1} \left(\lim_{y\to 0} f(x, y) \right) = 1$.

Поскольку

$$\lim_{x \to 1-0} \frac{\ln(x+y)}{\ln x} = \begin{cases} +\infty, & \text{если} & -1 < y < 0, \\ -\infty, & \text{если} & 0 < y < +\infty, \end{cases}$$

$$\lim_{x \to 1+0} \frac{\ln(x+y)}{\ln x} = \begin{cases} -\infty, & \text{если} & -1 < y < 0, \\ +\infty, & \text{если} & 0 < y < +\infty, \end{cases}$$

$$\lim_{x \to 1+0} \frac{\ln(x+y)}{\ln x} = \begin{cases} -\infty, & \text{если} & -1 < y < 0 \\ +\infty, & \text{если} & 0 < y < +\infty \end{cases}$$

$$\lim_{x \to 1} \frac{\ln(x+y)}{\ln x} = 1, \quad \text{если} y = 0,$$

то
$$\lim_{x\to 1} f(x, y)$$
, а вместе с ним и $\lim_{y\to 0} \left(\lim_{x\to 1} f(x, y)\right)$ не существуют. \blacktriangleright

Найти следующие двойные пределы:

7. $\lim_{\substack{x\to\infty\\x\to\infty}}\frac{x+y}{x^2-xy+y^2}.$

§ 1. Предел функции. Непрерывность 11
$$\blacksquare$$
 Пользуясь очевидным неравенством $x^2 - xy + y^2 \geqslant xy$, получаем (при $x \neq 0, y \neq 0$)

 $0 \leqslant \left| \frac{x+y}{x^2 - xy + y^2} \right| \leqslant \left| \frac{x+y}{xy} \right| \leqslant \frac{1}{|y|} + \frac{1}{|x|}.$

$$0\leqslant\left|rac{x^2-xy+y^2}{x^2-xy+y^2}
ight|\leqslant\left|rac{xy}{|y|}+rac{|y|}{|x|}.$$
 Отсюда следует, что

 $0 \leqslant \lim_{x \to \infty} \left| \frac{x+y}{x^2 - xy + y^2} \right| \leqslant \lim_{x \to \infty} \left(\frac{1}{|x|} + \frac{1}{|y|} \right) = 0.$

Таким образом,
$$\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x+y}{x^2-xy+y^2} = 0.$$
 \blacktriangleright

8. $\lim_{x\to\infty} \frac{x^2+y^2}{x^4+y^4}$ **◄** Пусть $x \neq 0$, $y \neq 0$, тогда

• Пусть
$$x \neq 0$$
, $y \neq 0$, тогда
$$0 < \frac{x^2 + y^2}{x^4 + y^4} = \frac{x^2}{x^4 + y^4} + \frac{y^2}{x^4 + y^4} \leqslant \frac{x^2}{x^4} + \frac{y^2}{y^4} = \frac{1}{x^2} + \frac{1}{y^2}.$$

Поскольку
$$\lim_{\substack{x\to\infty\\y\to\infty}}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)=0$$
, то, пользуясь неравенством (1), заключаем, что

$$\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x^2 + y^2}{x^4 + y^4} = 0. \blacktriangleright$$

$$9. \lim_{\substack{x \to 0 \\ y \to a}} \frac{\sin xy}{x}.$$

■ Имеем
$$\frac{\sin xy}{x} = \frac{\sin xy}{xy} \cdot y$$
, $y \neq 0$. Так как $\lim_{\substack{x \to 0 \\ y \to a}} \frac{\sin xy}{xy} = \lim_{t \to 0} \frac{\sin t}{t} = 1$ $(xy = t, a \neq \infty)$, to $\lim_{\substack{x \to 0 \\ y \to a}} \frac{\sin xy}{x} = \lim_{\substack{t \to 0}} \frac{\sin t}{t} \lim_{y \to a} y = a$.

10. $\lim_{\substack{x \to +\infty \\ y \to +\infty}} (x^2 + y^2) e^{-(x+y)}$.

◀ Пользуясь элементарным неравенством

 $(x^2 + y^2)e^{-(x+y)} = \frac{x^2}{e^{x+y}} + \frac{y^2}{e^{x+y}} < \frac{x^2}{e^x} + \frac{y^2}{e^x}$

$$(x^2 + y^2)e^{-(x+y)} = \frac{x}{e^{x+y}}$$

справедливым при x > 0, y > 0, получаем

едливым при
$$x > 0, y > 0,$$
 получаем

раведливым при
$$x>0,\ y>0,$$
 получаем
$$0\leqslant \lim_{x\to+\infty}(x^2+y^2)e^{-(x+y)}\leqslant \lim_{x\to+\infty}\left(\frac{x^2}{e^x}+\frac{y^2}{e^y}\right)=0.$$

Отсюда $\lim_{\substack{x \to +\infty \\ y \to +\infty}} (x^2 + y^2)e^{-(x+y)} = 0.$ \blacktriangleright

11. $\lim_{x\to+\infty}\left(\frac{xy}{x^2+y^2}\right)^{x^2}.$

◄ Из очевидного неравенства $\mathbf{g}^2+y^2\geqslant 2xy$ следует, что $\frac{xy}{x^2+y^2}\leqslant \frac{1}{2}$. Поэтому 0 <

 $\left(\frac{xy}{x^2+y^2}\right)^{x^2}\leqslant \left(\frac{1}{2}\right)^{x^2}\to 0$ при $x\to +\infty$. Отсюда вытекает, что $\lim_{\substack{x\to +\infty\\x\to +\infty}}\left(\frac{xy}{x^2+y^2}\right)^{x^2}=0$. \blacktriangleright

(1)

 \blacktriangleleft Из неравенств $x^2y^2\leqslant \frac{1}{4}(x^2+y^2)^2,\,1\geqslant (x^2+y^2)^{x^2y^2}\geqslant (x^2+y^2)^{\frac{1}{4}(x^2+y^2)^2},$ справедливых при $0 < x^2 + y^2 < 1$, и из того, что

$$\lim_{\substack{x \to 0 \\ x \to 0}} (x^2 + y^2)^{\frac{1}{4}(x^2 + y^2)^2} = \lim_{t \to +0} t^{\frac{1}{4}t^2} = \lim_{t \to +0} e^{\frac{t^2}{4} \ln t} = 1,$$

вытекает равенство $\lim_{\substack{x \to 0 \\ y \to 0}} (x^2 + y^2)^{x^2y^2} = 1.$ \blacktriangleright

13.
$$\lim_{\substack{y \to 0 \\ y \to a}} \left(1 + \frac{1}{x}\right)^{\frac{x^2}{x+y}}.$$

◀ В силу непрерывности показательной и логарифмической функций, имеем

$$\lim_{\substack{x \to \infty \\ y \to 0}} \left(1 + \frac{1}{x}\right)^{\frac{x^2}{x+y}} = \lim_{\substack{x \to \infty \\ y \to \infty}} \exp\left\{\frac{1}{1 + \frac{y}{x}} \ln\left(1 + \frac{1}{x}\right)^x\right\} = \epsilon. \blacktriangleright$$

14. $\lim_{x\to 1} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}}$.

$$y \to 0$$
 $\sqrt{x^2 + y^2}$ $\sqrt{x^2 + y^2} = 1 \neq 0$ Пользуясь непрерывностью логарифмической функции и тем, что $\lim_{\substack{x \to 1 \\ y \to 0}} \sqrt{x^2 + y^2} = 1 \neq 0$

0, получаем

$$\lim_{\substack{x \to 1 \\ y \to 0}} \frac{\ln(x + e^y)}{\sqrt{x^2 + y^2}} = \frac{\ln 2}{1} = \ln 2. \blacktriangleright$$

 ${f 15.}$ По каким направлениям arphi существует конечный предел:

a)
$$\lim_{\rho \to +0} e^{\frac{x}{x^2+y^2}}$$
; 6) $\lim_{\rho \to +\infty} e^{x^2-y^2} \sin 2xy$, если $x = \rho \cos \varphi$ и $y = \rho \sin \varphi$.

∢ а) Конечный предел

$$\lim_{\rho \to +0} e^{\frac{x}{2^2 + \nu^2}} = \lim_{\rho \to +0} e^{\frac{\cos \varphi}{\rho}}$$

существует тогда, когда $\cos \varphi \leqslant 0$, т. е. если $\frac{\pi}{2} \leqslant \varphi \leqslant \frac{3\pi}{2}$

б) Имеем

$$\lim_{\rho \to +\infty} e^{x^2 - y^2} \sin 2xy = \lim_{\rho \to +\infty} e^{\rho^2 \cos 2\varphi} \sin(\rho^2 \sin 2\varphi).$$

Поскольку $\rho^2 \to +\infty$, а $\rho \mapsto \sin(\rho^2 \sin 2\varphi)$ — ограниченная функция, то предел будет конечным, если $\cos 2\varphi < 0$ или $\sin 2\varphi = 0$. В первом случае $\frac{\pi}{4} < \varphi < \frac{3\pi}{4}, \frac{5\pi}{4} < \varphi < \frac{7\pi}{4}$, во втором

Найти точки разрыва следующих функций: 16.
$$u = \frac{1}{\sqrt{x^2 + y^2}}$$
.

 \blacktriangleleft Функция $(x,y)\mapsto x^2+y^2$ непрерывна при всех x и y как многочлен от x и y. По известной теореме о непрерывности суперпозиции непрерывных функций, $(x,y)\mapsto (x^2+y^2)$

 $y^2)^{-\frac{1}{2}}$ — также непрерывная функция при всех x и y, кроме точки (0,0), где знаменатель $(x^2+y^2)^{\frac{1}{2}}$ обращается в нуль. Следовательно, (0,0) — точка бесконечного разрыва. \blacktriangleright

17. $u = \frac{x+y}{x^3+y^3}$

 \blacktriangleleft Поскольку числитель и знаменатель — непрерывные функции, то данная функция может иметь разрыв лишь в точках, где знаменатель x^3+y^3 обращается в нуль. Решая

§ 1. Предел функции. Непрерывность

уравнение $x^3 + y^3 = 0$ относительно y, находим y = -x. Следовательно, функция имеет разрывы на прямой y = -x.

Пусть $x_0 \neq 0$, $y_0 \neq 0$ и $x_0 + y_0 = 0$. Тогда

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} \frac{x+y}{x^3+y^3} = \lim_{\substack{x \to x_0 \\ y \to y_0}} \frac{1}{x^2-xy+y^2} = \frac{1}{x_0^2-x_0y_0+y_0^2}.$$

Значит, точки прямой $y=-x\;(x\neq 0)$ — точки устранимого разрыва функции u. Из соотношения

$$\lim_{\substack{x\to 0\\y\to 0}}\frac{x+y}{x^3+y^3}=\lim_{\substack{x\to 0\\y\to 0}}\frac{1}{x^2-xy+y^2}=+\infty$$
 следует, что $(0,\,0)$ — точка бесконечного разрыва. \blacktriangleright

18. Показать, что функция

$$f(x,\,y) = \left\{egin{array}{ll} rac{2xy}{x^2+\dot{y}^2}, & ext{если} & x^2+y^2
eq 0, \ 0, & ext{если} & x^2+y^2 = 0, \end{array}
ight.$$

непрерывна по каждой из переменных x и y в отдельности (при фиксированном значении другой переменной), но не является непрерывной по совокупности этих переменных.

■ Пусть $y \neq 0$ и x_0 — любые фиксированные числа. Тогда

 $\lim_{x \to x_0} f(x, y) = \lim_{x \to x_0} \frac{2xy}{x^2 + y^2} = \frac{2x_0 y}{x_0^2 + y^2} = f(x_0, y).$

Если же
$$y=0$$
, то при любом $x_0\neq 0$ $\lim_{x\to x_0}f(x,0)=0=f(x_0,0)$. Наконец, если $y=0$ и

 $x_0=0$, то $\lim_{x\to 0}f(x,0)=0=f(0,0).$ Таким образом, при каждом фиксированном y функция f непрерывна по переменной

x. Ввиду симметрии функции относительно x и y при любом фиксированном x функция f непрерывна по переменной y. Однако функция f не является непрерывной по совокупности переменных в точке (0,0). Действительно, обе последовательности $\left(\frac{1}{n},\frac{1}{n}\right)$ и $\left(\frac{2}{n},\frac{1}{n}\right)$ сходятся при $n\to\infty$ к точке (0,0), а соответствующие им последовательности значений функции сходятся при $n\to\infty$ к различ-

$$f\left(\frac{1}{n}, \frac{1}{n}\right) = \frac{\frac{2}{n^2}}{\frac{1}{n^2} + \frac{1}{n^2}} \to 1, \quad f\left(\frac{2}{n}, \frac{1}{n}\right) = \frac{\frac{4}{n^2}}{\frac{4}{n^2} + \frac{1}{n^2}} \to \frac{4}{5}.$$

19. Показать, что функция

ным предельным значениям:

$$f(x, y) = \begin{cases} \frac{x^2 y}{x^4 + y^2}, & \text{если} \quad x^2 + y^2 \neq 0, \\ 0, & \text{если} \quad x^2 + y^2 = 0. \end{cases}$$

в точке (0,0) непрерывна вдоль каждого луча $x=t\cos\alpha, y=t\sin\alpha, 0\leqslant t\leqslant +\infty$, проходящего через эту точку, т. е. существует $\lim_{t\to 0} f(t\cos\alpha, t\sin\alpha) = f(0,0)$, однако эта функция не является непрерывной в точке (0,0).

⋖ Имеем

$$\lim_{t\to 0} f(t\cos\alpha, t\sin\alpha) = \lim_{t\to 0} \frac{t\cos^2\alpha\sin\alpha}{t^2\cos^4\alpha + \sin^2\alpha}.$$

Поскольку $f(t\cos lpha,\,t\sin lpha)\equiv 0$ при $lpha=rac{k\pi}{2},\,k\in\mathbb{Z}_0$, то при этих значениях lpha

$$\lim_{t\to 0} f(t\cos\alpha, t\sin\alpha) = 0 = f(0, 0).$$

Если $0<\alpha<2\pi,\ \alpha\neq\frac{k\pi}{2},\ k\in\mathbb{N},\ \text{то}\ t^2\cos^4\alpha+\sin^2\alpha>0$ и $t^2\cos^4\alpha+\sin^2\alpha\to\sin^2\alpha>0$ при

t o 0. Следовательно, $\lim_{t o 0} f(t\cos lpha,\,t\sin lpha)=0=f(0,\,0)$. Таким образом, вдоль любого луча,

проходящего через точку (0,0), функция f непрерывна в этой точке. T_0 , что функция f имеет разрыв в точке (0,0), следует из того, что последовательность

$$\lim_{n \to \infty} f\left(\frac{1}{n}, \frac{1}{n^2}\right) = \lim_{n \to \infty} \frac{\frac{1}{n^4}}{\frac{1}{n^4} + \frac{1}{n^4}} = \frac{1}{2} \neq f(0, 0). \blacktriangleright$$

 ${f 20.}\,$ Исследовать на равномерную непрерывность линейную функцию $f(x,\,y)=2x-3y+5$

в бесконечной плоскости $\mathbb{R}^2 = \{(x, y) : |x| < +\infty, |y| < +\infty\}.$ \blacktriangleleft Для любых точек (x_1,y_1) и (x_2,y_2) бесконечной плоскости \mathbb{R}^2 имеем

 $|f(x_1, y_1) - f(x_2, y_2)| = |2(x_1 - x_2) - 3(y_1 - y_2)| \le 2|x_1 - x_2| + 3|y_1 - y_2|.$

Пусть $\varepsilon>0$ — произвольно заданное число. Тогда при условии, что $|x_1-x_2|<\frac{\epsilon}{6}=\delta,$ $|y_1-y_2|<\frac{\epsilon}{6}=\delta,$ справедливо неравенство $|f(x_1,\,y_1)-f(x_2,\,y_2)|<\frac{\epsilon}{3}+\frac{\epsilon}{2}<\varepsilon,$ из которого, по

определению, следует равномерная непрерывность функции f на \mathbb{R}^2 . **21.** Исследовать на равномерную непрерывность в плоскости $\mathbb{R}^2 = \{(x,y): |x| < 1\}$

 $+\infty$, $|y|<+\infty$ } функцию $u=\sqrt{x^2+y^2}$.

$$|y|<+\infty\}$$
 функцию $u=\sqrt{x^2+y^2}$.

$$\blacktriangleleft$$
 Для произвольного $\varepsilon > 0$ и любых $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ имеем

lacktriangle Для произвольного arepsilon > 0 и любых $(x_1,\,y_1),\,(x_2,\,y_2) \in \mathbb{R}^2$ имеем

$$\blacktriangleleft$$
 Для произвольного $\varepsilon>0$ и любых $(x_1,y_1),\,(x_2,$

$$|x_1, y_1| - u(x_2, y_2)| = \left| \sqrt{x_1^2 + y_1^2} - \sqrt{x_2^2 + y_2^2} \right| =$$

 $\left(\frac{1}{n}, \frac{1}{n^2}\right)$ сходится к точке (0,0) при $n \to \infty$, а

$$\sqrt{\frac{1}{2} \cdot \frac{1}{2}}$$

$$|u(x_1, y_1) - u(x_2, y_2)| = \left| \sqrt{x_1^2 + y_1^2} - \sqrt{x_2^2 + y_2^2} \right| =$$

$$|(x_1, y_1) - u(x_2, y_2)| = |(x_1 + y_1 - (x_2 + y_2))| = |(x_1 - x_2)(x_1 + x_2) + (y_1 - y_2)(y_1 + y_2)| = |(x_1 - x_2)(x_1 + x_2) + (y_1 - y_2)(y_1 + y_2)| = |(x_1 - x_2)(x_1 + x_2) + (x_1 - x_2)(x_1 + x_2)(x_1 + x_2)(x_1 + x_2) + (x_1 - x_2)(x_1 + x$$

$$=\frac{|(x_1-x_2)(x_1+x_2)+(y_1-y_2)(y_1+y_2)|}{\sqrt{x_1^2+y_1^2}+\sqrt{x_2^2+y_2^2}}\leqslant \frac{|x_1-x_2||x_1+x_2|}{\sqrt{x_1^2+y_1^2}+\sqrt{x_2^2+y_2^2}}+\frac{|y_1-y_2||y_1+y_2|}{\sqrt{x_1^2+y_1^2}+\sqrt{x_2^2+y_2^2}}\leqslant$$

$$\sqrt{x_1^2 + y_1^2} + \sqrt{x_2^2 + y_2^2}$$
 $\sqrt{x_1^2 + y_1^2} + \sqrt{x_1^2 + y_2^2}$

$$\leqslant |x_1 - x_2| \frac{|x_1| + |x_2|}{\sqrt{x_1^2} + \sqrt{x_2^2}} + |y_1 - y_2| \frac{|y_1| + |y_2|}{\sqrt{y_1^2} + \sqrt{y_2^2}} = |x_1 - x_2| + |y_1 - y_2| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

как только
$$|x_1 - x_2| < \frac{\epsilon}{2} = \delta$$
, $|y_1 - y_2| < \frac{\epsilon}{2} = \delta$.
Следовательно, по определению, функция u равномерно-непрерывна в плоскости \mathbb{R}^2 .

Следовательно, по определению, функция u равномерно-непрерывна в плоскости \mathbb{R}^2 . \blacktriangleright 22. Будет ли функция $f(x, y) = \sin \frac{\pi}{1 - x^2 - y^2}$ в области $x^2 + y^2 < 1$ равномернонепрерывной?

 \blacktriangleleft Функция $x\mapsto (1-x^2-y^2)$ непрерывна при всех значениях x и y как многочлен от xи у . По теореме о суперпозиции непрерывных функций, данная функция также непрерывна при всех значениях x и y, удовлетворяющих неравенству $x^2 + y^2 < 1$.

Покажем, что в этой области данная функция неравномерно-непрерывна. С этой целью

возьмем две последовательности

$$\mathbf{M}_{n} = (x_{n}, y_{n}) = \left(\sqrt{1 - \frac{1}{2n}}\cos\alpha, \sqrt{1 - \frac{1}{2n}}\sin\alpha\right),$$

$$\mathbf{M}'_{n} = (x'_{n}, y'_{n}) = \left(\sqrt{1 - \frac{2}{2n}}\cos\alpha, \sqrt{1 - \frac{2}{2n}}\sin\alpha\right)$$

$$\boldsymbol{M'_n} = (\boldsymbol{x'_n}, \, \boldsymbol{y'_n}) = \left(\sqrt{1 - \frac{2}{1 + 4n}}\cos\alpha, \quad \sqrt{1 - \frac{2}{1 + 4n}}\sin\alpha\right),$$

 $n\in\mathbb{N},\,0\leqslantlpha<2\pi,$ принадлежащие области определения функции. Поскольку $ho(\pmb{M}_n,\,\pmb{M}_n')=$ $\sqrt{(x_n-x_n')^2+(y_n-y_n')^2}=\left|\sqrt{1-\frac{1}{2n}}-\sqrt{1-\frac{2}{1+4n}}\right|\to 0 \ \text{при } n\to\infty, \ \text{a} \ |f(\pmb{M}_n)-f(\pmb{M}_n')|=$

 $\left|\sin 2n\pi - \sin\left(\frac{\pi}{2} + 2n\pi\right)\right| = 1$ при всех n, то для $\varepsilon \in]0, 1[$ не существует числа δ , участвующего в определении равномерной непрерывности. >

23. Дана функция $u(x, y) = \arcsin \frac{x}{y}$. Является ли эта функция непрерывной в своей области определения E? Будет ли функция u равномерно-непрерывной в области E?

 \blacktriangleleft Область определения E определяется неравенствами $|x|\leqslant |y|,\,y\neq 0$. В этой области функция u непрерывна как суперпозиция непрерывных функций.

Однако данная функция не является равномерно-непрерывной, так как для последовательностей $(M_n) = \left(\frac{1}{n}, \frac{1}{n}\right), (M'_n) = \left(\frac{1}{n}, -\frac{1}{n}\right)$ справедливо соотношение

$$\rho(M_n, M'_n) = \sqrt{\left(\frac{1}{n} - \frac{1}{n}\right)^2 + \left(\frac{1}{n} + \frac{1}{n}\right)^2} = \frac{2}{n} \to 0$$

при $n\to\infty$, а расстояние между значениями функции в соответствующих точках $|u(M_n)-u(M_n')|=|\arcsin 1-\arcsin (-1)|=2\arcsin 1=\pi$ не может быть меньше числа π . \blacktriangleright

24. Показать, что множество точек разрыва функции $f(x, y) = x \sin \frac{1}{y}$, если $y \neq 0$, и

f(x,0)=0, не является замкнутым. \blacktriangleleft Пусть $y_n=\frac{2}{\pi(1+4n)}, x_n=\frac{nx_0}{n+1}$, где x_0 — произвольное фиксированное число. Тогда последовательность (x_n,y_n) при $n\to\infty$ сходится к точке $(x_0,0)$. Из соотношения

$$\lim_{n\to\infty} f(x_n, y_n) = \lim_{n\to\infty} \frac{nx_0}{1+n} \sin \frac{\pi(1+4n)}{2} = x_0 \neq f(x_0, 0) = 0, \ x_0 \neq 0,$$

следует, что $(x_0, 0), x_0 \neq 0$ — точка разрыва функции f. А из неравенства $|f(x, y)| = |x \sin \frac{1}{y}| < |x|$ следует непрерывность функции f в точке (0, 0).

Таким образом, множество точек разрыва функции f заполняет сплошь ось Ox, за исключением точки (0,0), которая является предельной точкой этого множества. Следовательно, множество точек разрыва функции f не содержит всех своих предельных точек, а поэтому не является замкнутым. \blacktriangleright

25. Показать, что если функция f в некоторой области G непрерывна по переменной x и равномерно-непрерывна относительно x по переменной y, то эта функция непрерывна в рассматриваемой области.

 \blacktriangleleft Для произвольных точек $(x_0,\,y_0)$ и $(x_0+\Delta x,\,y_0+\Delta y)$ из области определения функции f имеем

$$|\Delta f(x_0, y_0)| = |f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)| \le \le |f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0)| + |f(x_0 + \Delta x, y_0) - f(x_0, y_0)|.$$
(1)

Согласно равномерной непрерывности функции f относительно x по переменной y, $\forall \varepsilon > 0$ $\exists \delta_1 = \delta_1(\varepsilon, y_0)$ такое, что, если $|\Delta y| < \delta_1$, неравенство

$$|f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0)| < \frac{\varepsilon}{2}$$
(2)

справедливо для любых $x_0 + \Delta x$ из области определения функции f.

Далее, в силу непрерывности функции f по переменной x, для указанного ранее $\varepsilon > 0$ $\exists \delta_2 = \delta_2(\varepsilon, x_0, y_0)$ такое, что

$$|f(x_0 + \Delta x, y_0) - f(x_0, y_0)| < \frac{\varepsilon}{2},$$
 (3)

если $|\Delta x| < \delta_2$. Пусть $\delta = \min\{\delta_1, \delta_2\}$, тогда при $|\Delta x| < \delta$, $|\Delta y| < \delta$ неравенства (2) и (3) будут выполнены. Поэтому при $|\Delta x| < \delta$, $|\Delta y| < \delta$ из неравенств (2), (3) и (1) следует, что

 $|\Delta f(x_0, y_0)| < \varepsilon$, а это и означает непрерывность функции f в точке (x_0, y_0) . \blacktriangleright **26.** Доказать, что если в некоторой области G функция f непрерывна по переменной x и удовлетворяет условию Липшица по переменной y, т. е.

$$|f(x, y_1) - f(x, y_2)| \leq L|y_1 - y_2|,$$

где $(x, y_1) \in G$, $(x, y_2) \in G$ и L — постоянная, то эта функция непрерывна в данной области.

122 ◆ Поскольку функция f удовлетворяет условию Липшица по переменной y, то для про-

извольного
$$\varepsilon>0$$
 и любых точек (x_0,y_0) и (x,y) из G имеем $|f(x,y)-f(x_0,y_0)|\leqslant |f(x,y)-f(x,y_0)|+|f(x,y_0)-f(x_0,y_0)|\leqslant$

В силу непрерывности функции $x\mapsto f(x,y_0)$ в точке x_0 , можно указать такое $\delta_1=\delta_1(\varepsilon,x_0,y_0)$, что при $|x-x_0| < \delta_1$ имеет место неравенство

$$|f(x, y_0) - f(x_0, y_0)| < \frac{\varepsilon}{2}. \tag{2}$$

 $\leq L|y-y_0|+|f(x,y_0)-f(x_0,y_0)|.$

(1)

(1)

Из неравенств (1) и (2) при условии, что $|x-x_0|<\delta$, $|y-y_0|<\delta$, где $\delta=\min\left(\delta_1,\frac{\epsilon}{2T}\right)$,

$$|f(x, y) - f(x_0, y_0)| < L\frac{\varepsilon}{2L} + \frac{\varepsilon}{2} = \varepsilon,$$

которое доказывает непрерывность функции f в любой точке $(x_0, y_0) \in G$. \blacktriangleright

 $oldsymbol{27}$. Пусть функция f непрерывна в области $G = \{(x,y): a \leqslant x \leqslant A, b \leqslant y \leqslant B\},$ а последовательность функций $n\mapsto \varphi_n(x),\ n\in\mathbb{N},$ сходится равномерно на [a,A] и удо-

рывна в этой области. Следовательно, $\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon)$ такое, что неравенство

влетворяет условию $b\leqslant arphi_n(x)\leqslant B,\ n\in\mathbb{N}.$ Доказать, что последовательность функций

 $F_n(x) = f(x, \varphi_n(x)), n \in \mathbb{N}$, также сходится равномерно на [a, A]. \blacktriangleleft Поскольку функция f непрерывна в замкнутой области G, то она равномерно-непре-

праведливо для всех
$$x\in[a,\,A]$$
 и $y',\,y''\in[b,\,B]$, которые удог $i''<\delta$. В силу равномерной сходимости на сегменте $[a,\,A]$ посл

справедливо для всех $x \in [a, A]$ и $y', y'' \in [b, B]$, которые удовлетворяют неравенству |y'| $|y''| < \delta$. В силу равномерной сходимости на сегменте [a,A] последовательности $(\varphi_n(x)), \ \forall \delta > 0$ 0 (в том числе и для δ , указанного выше) $\exists N=N(\delta)$ такое, что $|arphi_{n+p}(x)-arphi_n(x)|<\delta \ orall n>N$, $\forall p > 0$ и $\forall x \in [a, A]$. Полагая в неравенстве (1) $y' = \varphi_{n+p}(x), y'' = \varphi_n(x)$ ($\varphi_{n+p}(x), \varphi_n(x) \in \mathbb{R}$

 $|f(x, y') - f(x, y'')| < \varepsilon$

$$[b,\;B]),$$
 получаем неравенство

$$|f(x,\,\varphi_{n+p}(x))-f(x,\,\varphi_n(x))|<\varepsilon,$$

справедливое $\forall n > N, \forall p > 0$ и $\forall x \in [a, A]$. Таким образом, последовательность $F_n(x) = f(x, arphi_n(x)), n \in \mathbb{N}$, сходится равномерно на

сегменте [a, A]. \triangleright ${f 28.}$ Пусть: 1) функция f непрерывна в области $R=\{(x,y): a < x < A, b < y < B\};$

2) функция φ непрерывна в интервале a, a и имеет значения, принадлежащие интервалу]b, B[. Доказать, что функция $F(x) = f(x, \varphi(x))$ непрерывна в интервале]a, A[.

◀ Пусть (x_0, y_0) — произвольная точка из области R. Из непрерывности функции f в

области R вытекает, что $\forall \varepsilon > 0 \; \exists \delta_1 = \delta_1(\varepsilon, x_0, y_0)$ такое, что

$$|f(x, y) - f(x_0, y_0)| < \varepsilon, \tag{1}$$

если $|x-x_0| < \delta_1, |y-y_0| < \delta_1$.

получаем неравенство

Обозначим $y=arphi(x),\ y_0=arphi(x_0).$ Из непрерывности функции y=arphi(x) на интервале $]a,\ A[$ вытекает, что для указанного выше $\delta_1 \; \exists \delta_2 = \delta_2(\delta_1)$ такое, что

 $|\varphi(x)-\varphi(x_0)|=|y-y_0|<\delta_1,$ (2)если $|x-x_0| < \delta_2$. Следовательно, из неравенств (1) и (2) и из того, что $y = \varphi(x), y \in]b, B[$

если $x \in]a, A[$, вытекает неравенство $|f(x, \varphi(x)) - f(x_0, \varphi(x_0))| < \varepsilon$

справедливое при $|x-x_0| < \delta = \min(\delta_1, \delta_2)$ и доказывающее непрерывность функции F(x) = $f(x, \varphi(x))$ на интервале $a, A[. \blacktriangleright$

29. Пусть: 1) функция f непрерывна в области $R = \{(x, y) : a < x < A, b < y < B\}; 2)$

 $B'\}$ и имеют значения, принадлежащие соответственно интервалам $]a,\ A[\ u\]b,\ B[.\ Доказать,$ что функция $F(u,\,v)=f(arphi(u,\,v),\,\psi(u,\,v))$ непрерывна в области R' .

(2)

Предел функции. Непрерывность

 $\psi(u_0,\,v_0)$. Из условия 1) вытекает, что $\forall \varepsilon>0$ $\exists \sigma=\sigma(\varepsilon,\,x_0,\,y_0)$ такое, что $|f(x, y) - f(x_0, y_0)| < \varepsilon,$ (1)если $|x-x_0|<\sigma$, $|y-y_0|<\sigma$. Из условия 2) следует, что для указанного выше σ $\exists \delta=\delta_1(\sigma)=$ $\delta(\varepsilon, u_0, v_0)$ такое, что при $|u-u_0| < \delta$ и $|v-v_0| < \delta$ справедливы неравенства

 $|\varphi(u,v)-\varphi(u_0,v_0)|<\sigma,\quad |\psi(u,v)-\psi(u_0,v_0)|<\sigma.$

 $|f(\varphi(u, v), \psi(u, v)) - f(\varphi(u_0, v_0), \psi(u_0, v_0))| = |F(u, v) - F(u_0, v_0)| < \varepsilon$

◀ Пусть (u_0, v_0) — произвольная фиксированная точка из R', а $x_0 = \varphi(u_0, v_0), y_0 =$

при $|u-u_0|<\delta$, $|v-v_0|<\delta$, т. е. что функция F непрерывна в точке (u_0,v_0) . Поскольку (u_0, v_0) — произвольная точка из R', заключаем, что функция F непрерывна в области R'. \blacktriangleright

Упражнения для самостоятельной работы 1. Доказать, что функция $(x,y)\mapsto Ax^3+Bx^2y+Cxy^2+Dy^3,\,(x,y)\in\mathbb{R}^2,$ имеет в точке

Из неравенств (1) и (2) непосредственно следует, что

$(0,\,0),\,$ по меньшей мере, тот же порядок малости, что и $\rho=(x^2+y^2)^{\frac{\gamma}{2}}.$ **2.** Показать, что для последовательности $a_{nm} = \frac{1}{n-m+0.5}$, $n, m \in \mathbb{N}$, имеем

 $\lim_{m\to\infty} \left(\lim_{n\to\infty} a_{nm} \right) = \lim_{n\to\infty} \left(\lim_{m\to\infty} a_{nm} \right),$

тем не менее $\lim_{\substack{n\to\infty\\m\to\infty}} a_{nm}$ не существует.

 $m\to\infty$ 3. Доказать, что для последовательности $a_{nm}=\frac{\sin n}{m},\ n,\ m\in\mathbb{N},$ двойной предел $\lim_{\substack{n\to\infty\\m\to\infty}}a_{nm}$ существует, в то время как $\lim_{m\to\infty} \left(\lim_{n\to\infty} a_{nm} \right) \neq \lim_{n\to\infty} \left(\lim_{m\to\infty} a_{nm} \right).$

4. $\lim_{\substack{n\to\infty\\m\to\infty}}\frac{\ln^2 n - \ln^2 m}{\ln(n^2) + \ln^2 m}.$ 5. $\lim_{\substack{n\to\infty\\m\to\infty}}\frac{\operatorname{tg} n + \operatorname{tg} m}{1 - \operatorname{tg} n \operatorname{tg} m}.$ 6. $\lim_{\substack{n\to\infty\\m\to\infty}}\frac{1}{m^2}\sum_{k=1}^n\cos\frac{k}{m}.$

7. Показать, что функции $f(x,y)=rac{x^4+y^4}{(x^2+y^4)^3}, g(x,y)=rac{x^2}{x^2+y^2-x}$ стремятся к нулю, если точка (x, y) стремится к точке (0, 0) вдоль любой прямой, проходящей через точку (0, 0), но

эти функции не имеют предела в точке (0, 0). Найти пределы:

8. $\lim_{\substack{x\to 0\\y\to 0}} \frac{1-\cos(xy)}{x^2y^2}$. 9. $\lim_{x\to 0} (1+x_1^2+\ldots+x_m^2)^{\frac{1}{x_1^2+\ldots+x_m^2}}$, rge $x=(x_1, x_2, \ldots, x_m)$.

10. $\lim_{x\to\infty} \frac{e^{x_1^2+x_2^2+\cdots+x_m^2}}{(x_1^2+x_2^2+\cdots+x_m^2)^{\alpha}}$, rge $x=(x_1,\ldots,x_m)$, $\alpha>0$. 11. $\lim_{x\to0} x^{\alpha}y^{\alpha}e^{\frac{1}{xy^{\alpha}}}$.

C помощью " ε — δ " рассуждений доказать непрерывность следующих функций:

12. $f(x, y) = \sqrt{1 + x^2 + y^2}, (x, y) \in \mathbb{R}^2$. 13. $f(x, y) = \sqrt{1 + e^{xy}}, (x, y) \in \mathbb{R}^2$.

14. Доказать, что если функция $(x, y) \mapsto f(x, y), (x, y) \in \mathbb{R}^2$, непрерывна по каждой переменной х и у в отдельности и монотонна по одной из них, то она непрерывна по совокупности переменных.

15. Исследовать на равномерную непрерывность в \mathbb{R}^2 функцию

равномерно-непрерывной в пространстве \mathbb{R}^3 .

 $z = \sqrt{x^2 + y^2} \sin \frac{1}{\sqrt{x^2 + y^2}}, \quad x^2 + y^2 \neq 0, \quad f(0, 0) = 0.$

16. Доказать, что функция $f(x, y, z) = \sin(x^2 + y^2 + z^2), (x, y, z) \in \mathbb{R}^3$, не является

§ 2. Частные производные и дифференциалы

функции векторного аргумента

2.1. Частные производные.

чается

Пусть функция $x \mapsto f(x)$ определена в области D пространства \mathbb{R}^m ; $\{e_1, e_2, \ldots, e_m\}$ — стандартный базис этого пространства, а $x_0 = (x_1^0, x_2^0, \ldots, x_m^0)$ — точка области D. Определение 1. Разность $f(x) - f(x_0)$ называется полным приращением функции f

в точке x_0 , а $f(x_0 + (x_j - x_j^0)e_j) - f(x_0)$, $j = \overline{1, m}$ — частным приращением функции f по переменной x_j в точке x_0 .

Определение 2. Если существует конечный предел
$$\lim_{x_{j}\to x_{j}^{0}} \frac{f(x_{0}+(x_{j}-x_{j}^{0})e_{j})-f(x_{0})}{x_{j}-x_{j}^{0}}, \quad j=\overline{1,\,m}, \tag{1}$$

 $rac{\partial f}{\partial x_j}(m{x}_0),\;$ или $f_{x_j}'(m{x}_0),\;$ или $D_j f(m{x}_0).$ Функция f имеет в точке $m{x}_0$ частную производную f_{x_j}' тогда и только тогда, когда в этой

то он называется частной производной функции f в точке $oldsymbol{x}_0$ по переменной $oldsymbol{x}_i$ и обозна-

 $f(x_0+(x_j-x_j^0)e_j)-f(x_0)=\left(rac{\partial f}{\partial x_j}(x_0)+lpha(x_j,\,x_0)
ight)(x_j-x_j^0),$ где $lpha(x_j,\,x_0) o 0$ при $x_j o x_j^0.$

2.2. Дифференцируемые функции.

точке справедливо равенство

2.2. Дифференцируемые функци

Определение. Функция $f:D\to\mathbb{R},\ D\subset\mathbb{R}^m$, называется дифференцируемой в точке $x_0\in D$, если полное приращение функции f в этой точке можно представить в виде

 $f(\mathbf{x}) - f(\mathbf{x}_0) = L(\mathbf{x} - \mathbf{x}_0) + \alpha(\mathbf{x}, \mathbf{x}_0) \|\mathbf{x} - \mathbf{x}_0\|, \tag{1}$

где
$$L(x-x_0)=L_1(x_1-x_1^0)+L_2(x_2-x_2^0)+\ldots+L_m(x_m-x_m^0)$$
— линейное отображение пространства \mathbb{R}^m в \mathbb{R} , а $\alpha(x,x_0)\to 0$ при $x\to x_0$.

При этом величина $Lh=L_1h_1+L_2h_2+\ldots+L_mh_m$, где $h=\begin{pmatrix} n_1\\h_2\\ \vdots\\h_m \end{pmatrix}$ — произвольный

вектор пространства \mathbb{R}^m , называется дифференциалом функции f в точке $m{x}_0$ и обозначается $df(m{x}_0)$, а матрица линейного отображения $L:\mathbb{R}^m o\mathbb{R}$ называется производной функции f в

точке x_0 и обозначается $f'(x_0)$. Полагая в (1) $x=x_0+x_j^0e_j$, получаем равенство $f(x_0+(x_j-x_j^0)e_j)-f(x_0)=(L_j+\alpha(x_j,x_0))(x_j-x_j^0),$

из которого, в силу пункта 2.1, следует, что $L_j = \frac{\partial f}{\partial x_i}(x_0)$.

из которого, в силу пункта 2.1, следует, что $L_j = \frac{1}{\partial x_j}(x_0)$. Следовательно, для дифференциала $df(x_0)$ получаем формулу

 $df(x_0) = \frac{\partial f}{\partial x_1}(x_0)h_1 + \frac{\partial f}{\partial x_2}(x_0)h_2 + \ldots + \frac{\partial f}{\partial x_m}(x_0)h_m$

или, если $h_j=x_j-x_j^0=dx_j,$ $df(x_0)=\frac{\partial f}{\partial x_1}(x_0)\,dx_1+\frac{\partial f}{\partial x_2}(x_0)\,dx_2+\ldots+\frac{\partial f}{\partial x_m}(x_0)\,dx_m,$

а для производной $f'(oldsymbol{x}_0)$ — равенство

 $f'(\mathbf{z_0}) = \left(\frac{\partial f}{\partial \mathbf{z_1}}(\mathbf{z_0}) \ \frac{\partial f}{\partial \mathbf{z_2}}(\mathbf{z_0}) \ \dots \ \frac{\partial f}{\partial \mathbf{z_m}}(\mathbf{z_0})\right).$

(3

(2)

Теорема (достаточное условие дифференцируемости). Если функция f имеет в окрестности точки x_0 частные производные $\frac{\partial f}{\partial x_j}(x), \ j=\overline{1,m},$ непрерывные в точке $x_0,$ то она дифференцируема в этой точке.

Если функция f дифференцируемая в каждой точке области D, то она называется $\partial u\phi$ ференцируемой в области D.

2.3. Частные производные сложной функции.

Если функция $f:D o\mathbb{R},D\subset\mathbb{R}^m$, дифференцируема в точке $x\in D$, а функции $arphi_i:G o D,\ G\subset\mathbb{R}^n,\ i=\overline{1,m},\$ имеют частные производные в точке $t\in G$ и x= $(\varphi_1(t), \varphi_2(t), \ldots, \varphi_m(t)), \text{ TO}$

$$\frac{\partial (f \circ \varphi)}{\partial t_k}(t) = \sum_{i=1}^m \frac{\partial f}{\partial x_i}(x) \frac{\partial \varphi_i}{\partial t_k}(t), \quad k = \overline{1, n}, \quad t = (t_1, t_2, \dots, t_n). \tag{1}$$

2.4. Дифференцируемые отображения.

Определение. Отображение $f: D \to \mathbb{R}^n, D \subset \mathbb{R}^m$, называется дифференцируемым в

Определение. Отооражение
$$f:D o \mathbb{R}^n$$
, $D\subset \mathbb{R}^n$, называется оифференцируемым в точке $x_0\in D$, если приращение $f(x)-f(x_0)$ отображения f в точке x_0 представимо в виде
$$f(x)-f(x_0)=A(x-x_0)+\alpha(x,x_0)\|x-x_0\|,$$

$$A(x-x_0) = egin{pmatrix} A_{11} & A_{12} & \dots & A_{1m} \ A_{21} & A_{22} & \dots & A_{2m} \ \dots & \dots & \dots & \dots \ A_{n1} & A_{n2} & \dots & A_{nm} \end{pmatrix} egin{pmatrix} x_1 - x_1^0 \ x_2 - x_2^0 \ \dots & \dots \ x_m - x_m^0 \end{pmatrix}$$

— линейное отображение пространства \mathbb{R}^m в пространство \mathbb{R}^n , а $lpha(x,x_0) o 0$ при $x o x_0$. Если отображение f дифференцируемо в точке x_0 , то $A_{ij}=rac{\partial f_i}{\partial x_i}(x_0)$ и

$$A = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_m} \end{pmatrix}$$

называется производной отображения f в точке x_0 и обозначается $f'(x_0)$.

Если отображение $f: D \to \mathbb{R}^n$, $D \subset \mathbb{R}^m$, дифференцируемо в точке $x \in D$, а отображение $g:G o D,\,G\subset\mathbb{R}^k$, дифференцируемо в точке $t\in G$ и x=g(t), то

$$(f \circ g)'(t) = f'(x) g'(t)$$

или в матричной форме

$$\begin{pmatrix} \frac{\partial (f_1 \circ g)}{\partial t_1} & \frac{\partial (f_1 \circ g)}{\partial t_2} & \cdots & \frac{\partial (f_1 \circ g)}{\partial t_k} \\ \frac{\partial (f_2 \circ g)}{\partial t_1} & \frac{\partial (f_2 \circ g)}{\partial t_2} & \cdots & \frac{\partial (f_2 \circ g)}{\partial t_k} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial (f_n \circ g)}{\partial t_1} & \frac{\partial (f_n \circ g)}{\partial t_2} & \cdots & \frac{\partial (f_n \circ g)}{\partial t_k} \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_m} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_m} \end{pmatrix} \begin{pmatrix} \frac{\partial g_1}{\partial t_1} & \frac{\partial g_1}{\partial t_2} & \cdots & \frac{\partial g_1}{\partial t_k} \\ \frac{\partial g_2}{\partial t_1} & \frac{\partial g_2}{\partial t_2} & \cdots & \frac{\partial g_2}{\partial t_k} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_m} \end{pmatrix} \begin{pmatrix} \frac{\partial g_1}{\partial t_1} & \frac{\partial g_1}{\partial t_2} & \cdots & \frac{\partial g_1}{\partial t_k} \\ \frac{\partial g_2}{\partial t_1} & \frac{\partial g_2}{\partial t_2} & \cdots & \frac{\partial g_2}{\partial t_k} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_m} \end{pmatrix} \begin{pmatrix} \frac{\partial g_1}{\partial t_1} & \frac{\partial g_1}{\partial t_2} & \cdots & \frac{\partial g_1}{\partial t_k} \\ \frac{\partial g_2}{\partial t_1} & \frac{\partial g_2}{\partial t_2} & \cdots & \frac{\partial g_2}{\partial t_k} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_n}{\partial t_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_m} \end{pmatrix} \begin{pmatrix} \frac{\partial g_1}{\partial t_2} & \cdots & \frac{\partial g_1}{\partial t_k} \\ \frac{\partial g_2}{\partial t_1} & \frac{\partial g_2}{\partial t_2} & \cdots & \frac{\partial g_2}{\partial t_k} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial g_n}{\partial t_1} & \frac{\partial g_n}{\partial t_2} & \cdots & \frac{\partial g_n}{\partial t_k} \end{pmatrix}.$$

2.5. Частные производные и дифференциалы высших порядков. Пусть функция $f:D o\mathbb{R},\ D\subset\mathbb{R}^m$, имеет частные производные в некоторой окрестности

Определение 1. Если функция $x \mapsto \frac{\partial f}{\partial x_i}(x), x \in S(x_0, \delta)$, имеет в точке x_0 частную производную по переменной х;, то ее называют частной производной второго порядка или второй частной производной и обозначают

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x_0) \ unu \ f''_{x_j x_i}(x_0).$$

При этом, если $i \neq j$, то частная производная называется смешанной. Аналогично определяются производные порядка выше второго. Определение 2. Функция f называется n раз дифференцируемой в точке $oldsymbol{x}_0 \in D$,

если она имеет в некоторой окрестности этой точки все частные производные (n-1)-го порядка, каждая из которых является дифференцируемой функцией в точке хо. Tеорема. Eсли функция f дважды дифференцируема в точке $oldsymbol{x}_0$, то в этой точке вы-

полняются равенства

126

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x_0) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x_0), \quad i, j = \overline{1, m}.$$
 (1)

Из этой теоремы получаем следующее утверждение: смешанная производная п-го порядка

$$rac{\partial^n f}{\partial x_{i_1}^{n_1}\partial x_{i_2}^{n_2}\dots\partial x_{i_s}^{n_s}},\quad n_1+n_2+\dots+n_s=n,$$
 не зависит от порядка, в котором производилось дифференцирование.

Определение 3. Дифференциалом второго порядка (или вторым дифференциалом) d^2f дважды дифференцируемой функции f называется дифференциал от функции $x \mapsto df(x)$, $m. e. d^2f = d(df).$

Аналогично определяются дифференциалы более высокого порядка. Дифференциал n-го порядка $m{n}$ раз дифференцируемой функции f вычисляется по формуле

$$d^{n}f = \left(\frac{\partial}{\partial x_{1}}h_{1} + \frac{\partial}{\partial x_{2}}h_{2} + \ldots + \frac{\partial}{\partial x_{m}}h_{m}\right)^{n}f. \tag{2}$$

2.6. Производная по направлению. Градиент.

Пусть функция $(x, y, z) \mapsto f(x, y, z)$ дифференцируема в области $D \subset \mathbb{R}^3$ и $(x_0, y_0, z_0) \in$ D. Если направление l задается направляющими косинусами ($\cos \alpha$, $\cos \beta$, $\cos \gamma$), то производная по направлению І вычисляется по формуле

$$\frac{\partial f}{\partial \mathbf{l}} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma.$$

Определение. Градиентом функции f в точке (x_0, y_0, z_0) называется вектор, обозначаемый символом $\operatorname{grad} f$ и имеющий координаты, соответственно равные производным $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$, вычисленным в точке (x_0, y_0, z_0) .

Таким образом,

$$\operatorname{grad} f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k},$$

причем в этом случае можем записать, что $\frac{\partial f}{\partial t} = (a, \operatorname{grad} f)$, где $a = (\cos \alpha, \cos \beta, \cos \gamma)$.

Градиент функции f в точке (x_0, y_0, z_0) характеризует направление и величину максимального роста этой функции в точке (x_0, y_0, z_0) . Следовательно,

$$\left(\frac{\partial f}{\partial l}\right)_{\max} = \|\operatorname{grad} f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 + \left(\frac{\partial f}{\partial z}\right)^2}.$$

Bertop grad f в данной точке (x_0, y_0, z_0) ортогонален к той поверхности уровня функции f, которая проходит через точку (x_0, y_0, z_0) .

30. Найти $f'_x(x, 1)$, если $f(x, y) = x + (y - 1) \arcsin \sqrt{\frac{x}{y}}$.

§ 2. Частные производные и дифференциалы функции векторного аргумента

◆ Согласно определению частной производной, имеем

 $f'_x(x, 1) = \lim_{h \to 0} \frac{f(x+h, 1) - f(x, 1)}{h}.$

Так как f(x+h, 1) = x+h, f(x, 1) = x, то

$$f'_x(x, 1) = \lim_{h \to 0} \frac{x + h - x}{h} = \lim_{h \to 0} \frac{h}{h} = 1.$$

 ${f 31.}\,$ Найти $f_x'(0,\,0)$ и $f_y'(0,\,0)$, если $f(x,\,y)=\sqrt[3]{xy}$. Является ли эта функция дифференцируемой в точке (0, 0)?

$$f'_x(0, 0) = \lim_{x \to 0} \frac{f(x, 0) - f(0, 0)}{x} = \lim_{x \to 0} \frac{\sqrt[3]{x \cdot 0} - 0}{x} = 0,$$

$$f'_x(0, 0) = \lim_{x \to 0} \frac{f(0, y) - f(0, 0)}{x} = \lim_{x \to 0} \frac{\sqrt{x} - \sqrt{x}}{x} = 0,$$

$$f'_y(0, 0) = \lim_{y \to 0} \frac{f(0, y) - f(0, 0)}{y} = \lim_{y \to 0} \frac{\sqrt[3]{0 \cdot y} - 0}{y} = 0.$$

Для исследования дифференцируемости данной функции в точке (0,0) запишем ее при-

ращение в этой точке:
$$f(x,y)-f(0,0)=\sqrt[3]{xy}=\alpha(x,y)\sqrt{x^2+y^2}$$
, где $\alpha(x,y)=\sqrt[3]{xy}\frac{1}{\sqrt{x^2+y^2}}$. Поскольку $L_1=\frac{\partial f(0,0)}{\partial x}=0$, $L_2=\frac{\partial f(0,0)}{\partial y}=0$, то для дифференцируемости необходимо, чтобы функция $(x,y)\mapsto\alpha(x,y)$ была бесконечно малой при $\sqrt{x^2+y^2}\to 0$, т. е. при $x\to 0$

чтобы функция $(x,y)\mapsto \alpha(x,y)$ была бесконечно малой при $\sqrt{x^2+y^2}\to 0$, т. е. при $x\to 0$

чтобы функция
$$(x, y) \mapsto \alpha(x, y)$$
 была бесконечно малой при $\sqrt{x^2 + y^2} \to 0$, т. е. при $x \to 0$ и $y \to 0$. Пусть $x = \frac{1}{n}$, $y = \frac{1}{n}$, $n \in \mathbb{N}$; очевидно, $x \to 0$ и $y \to 0$ при $n \to \infty$. Так как последовательность точек $(\frac{1}{n}, \frac{1}{n})$ при $n \to \infty$ стремится к точке $(0, 0)$, а соответствующая им последовательность значений функции $(\alpha(\frac{1}{n}, \frac{1}{n})) = (\frac{\sqrt[3]{n}}{\sqrt{2}})$ стремится $\kappa + \infty$ при $n \to \infty$

 ∞ , то функция lpha не является бесконечно малой при $x \stackrel{ o}{ o} 0, y o 0$. Поэтому функция fнедифференцируема в точке (0, 0). 🕨 **32.** Является ли дифференцируемой функция $f(x, y) = \sqrt[3]{x^3 + y^3}$ в точке (0, 0)?

32. Является ли дифференцируемой функция
$$f(x, y) = \sqrt{x^3 + y^3}$$
 в точке $(0, 0)$?

 \blacktriangleleft Находим производные
$$f'_x(0, 0) = \lim_{x \to 0} \frac{f(x, 0) - f(0, 0)}{x} = \lim_{x \to 0} \frac{x}{x} = 1, \quad f'_y(0, 0) = \lim_{y \to 0} \frac{f(0, y) - f(0, 0)}{y} = \lim_{y \to 0} \frac{y}{y} = 1.$$

Представим приращение функции
$$f$$
 в точке $(0,0)$ в виде
$$f(x,y)-f(0,0)=\sqrt[3]{x^3+y^3}=x+y+\left(\sqrt[3]{x^3+y^3}-x-y\right)=f_x'(0,0)x+f_y'(0,0)y+\alpha(x,y)\sqrt{x^2+y^2},$$

где $\alpha(x, y) = \frac{\sqrt[3]{x^3 + y^3} - x - y}{\sqrt{x^2 + y^2}}.$

 $\left(\alpha\left(\frac{1}{n},\frac{1}{n}\right)\right) = \left(\frac{\sqrt[3]{\frac{2}{n^3} - \frac{2}{n}}}{\frac{\sqrt{2}}{n}}\right) = \left(\frac{\sqrt[3]{2} - 2}{\sqrt{2}}\right),$ не является бесконечно малой при $n \to \infty$ (т. е. при $x \to 0, y \to 0$), то $\alpha(x,y)\sqrt{x^2+y^2} \neq$

 $o(\sqrt{x^2+y^2})$ при $x\to 0$, $y\to 0$ и функция f недифференцируема в точке (0,0). \blacktriangleright

33. Исследовать на дифференцируемость в точке (0,0) функцию $f(x,y)=e^{-\frac{1}{x^2+y^2}}$ при $x^2 + y^2 > 0$ w f(0, 0) = 0.

 $f'_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{1}{x} e^{-\frac{1}{x^2}} = 0,$ $f'_y(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = \lim_{y \to 0} \frac{1}{y} e^{-\frac{1}{y^2}} = 0.$

Гл. 2. Дифференциальное исчисление функций векторного аргумента

 $e^{-\frac{1}{x^2+y^2}}=lpha(x,y)\sqrt{x^2+y^2}, \; \mathrm{rge} \; lpha(x,y)=rac{1}{\sqrt{x^2+y^2}}e^{-rac{1}{x^2+y^2}}=rac{1}{
ho}e^{-rac{1}{
ho^2}}, \; \mathrm{a} \; rac{1}{
ho}e^{-rac{1}{
ho^2}}
ightarrow 0 \; \mathrm{npu} \;
ho=$ $\sqrt{x^2+y^2} o 0$, непосредственно следует, что функция f дифференцируема в точке (0,0). \blacktriangleright **34.** Показать, что функция $f(x,y)=\sqrt{|xy|}$ непрерывна в точке (0,0), имеет в этой точке

обе частные производные $f'_x(0,0)$ и $f'_y(0,0)$, однако не является дифференцируемой в точке (0,0). Выяснить поведение производных f'_x и f'_y в окрестности точки (0,0).

 $f'_x(0, 0) = \lim_{x \to 0} \frac{f(x, 0) - f(0, 0)}{x} = \lim_{x \to 0} \frac{\sqrt{|x \cdot 0|}}{x} = 0,$

Из того, что приращение функции f в точке (0,0) представимо в виде f(x,y)-f(0,0)=

$$f_y'(0,0)=\lim_{y\to 0}rac{f(0,y)-f(0,0)}{y}=\lim_{y\to 0}rac{\sqrt{|0\cdot y|}}{y}=0.$$
 Поскольку

 $\Delta f(0, 0) = \sqrt{|xy|} = \sqrt{x^2 + y^2} \frac{\sqrt{|xy|}}{\sqrt{x^2 + y^2}} = \alpha(x, y) \sqrt{x^2 + y^2},$

◆ Пользуясь определением частных производных; находим

$$\alpha(x, y) = \frac{\sqrt{|xy|}}{\sqrt{x^2 + y^2}}, \text{ if } \alpha\left(\frac{1}{n}, \frac{1}{n}\right) = \frac{\sqrt{\frac{1}{n^2}}}{\sqrt{\frac{1}{n^2} + \frac{1}{n^2}}} \to \frac{1}{\sqrt{2}} \neq 0,$$

то функция $(x,y)\mapsto \alpha(x,y)$ не является бесконечно малой при $\sqrt{x^2+y^2}\to 0$. Отсюда следует, что функция f недифференцируема в точке (0,0). Из соотношения $\Delta f(0,0) =$ $\sqrt{|xy|} \to 0$ при $x \to 0$, $y \to 0$ следует непрерывность функции f в точке (0,0).

Из равенства $f_x'(x,y)=\frac{1}{2}\sqrt{\left|\frac{y}{x}\right|}\operatorname{sgn}x$ при $x\neq 0$ и того, что $\lim_{n\to\infty}f_x'\left(\frac{1}{n^2},\frac{1}{n}\right)=\lim_{n\to\infty}\frac{\sqrt{n}}{2}=+\infty$, следует, что производная f_x' неограничена в окрестности точки (0,0). Это заключение справедливо и для производной f'_{y} . ${f 35.}$ Доказать, что функция $f(x,y)=rac{x^3y}{x^5+y^6},$ если $x^2+y^2
eq 0$ и f(0,0)=0, терпит

разрыв в точке (0, 0), однако имеет частные производные в этой точке. **◄** Из соотношений $\left(\frac{1}{n}, \frac{1}{n^3}\right) \rightarrow (0, 0)$ (при $n \rightarrow \infty$)

$$\lim_{n\to\infty} f\left(\frac{1}{n}, \frac{1}{n^3}\right) = \lim_{n\to\infty} \frac{\frac{1}{n^6}}{1+\frac{1}{n^4}} = \frac{1}{2} \neq 0 = f(0, \frac{1}{n^6})$$

$$\lim_{n\to\infty} f\left(\frac{1}{n}, \frac{1}{n^3}\right) = \lim_{n\to\infty} \frac{\frac{1}{n^6}}{\frac{1}{n^6} + \frac{1}{n^6}} = \frac{1}{2} \neq 0 = f(0, 0)$$

следует, что функция f терпит разрыв в точке (0, 0).

Пользуясь определением частных производных, находим

 $f'_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{0}{x} = 0, \quad f'_y(0,0) = \lim_{x \to 0} \frac{f(0,y) - f(0,0)}{x} = \lim_{x \to 0} \frac{0}{x} = 0.$

$$f_x(0,0) = \lim_{x\to 0} \frac{1}{x} = \lim_{x\to 0} \frac{1}{x} = 0, \quad f_y(0,0) = \lim_{y\to 0} \frac{1}{y} = \lim_{y\to 0} \frac{1}{y} = 0.$$
 В 36. Показать, что функция $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$, если $x^2 + y^2 \neq 0$ и $f(0,0) = 0$, в

окрестности точки (0,0) непрерывна и имеет ограниченные частные производные f'_x и f'_y , однако недифференцируема в точке (0, 0).

lacktriangled При $x^2+y^2
eq 0$ функция f непрерывна как элементарная. Из очевидного неравенства

 $|f(x,y)| = \left|\frac{xy}{\sqrt{x^2+y^2}}\right| \leqslant \frac{\sqrt{|xy|}}{\sqrt{2}} \text{ и из того, что } \lim_{\substack{x\to 0\\x\to 0}} \frac{\sqrt{|xy|}}{\sqrt{2}} = 0, \text{ получаем } \lim_{\substack{x\to 0\\y\to 0}} f(x,y) = 0 = f(0,0).$ Таким образом, функция f непрерывна в точке (0, 0).

Имеем
$$x = x^2y = x^2$$

$$f'_{x}(x,y) = \frac{x}{\sqrt{x^2 + y^2}} - \frac{x^2 y}{\sqrt{(x^2 + y^2)^3}}, \quad x^2 + y^2 \neq 0, \quad f'_{x}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{0}{x} = 0,$$

Отсюда, пользуясь неравенством
$$\left|\frac{xy}{x^2+y^2}\right| \leqslant \frac{1}{2}$$
, убеждаемся, что

$$|x| = |x| + |x| + |x| = |x| = 3$$

$$|f'(x,y)| \leq \frac{|x|}{|x|} + \frac{|xy|}{|x|} \leq \frac{3}{x}.$$

$$\begin{vmatrix} x^2 + y^2 \end{vmatrix} = \begin{vmatrix} xy \end{vmatrix} = \begin{vmatrix} xy \end{vmatrix}$$

$$|f'_{-}(x,y)| \le \frac{|x|}{-} + \frac{|xy|}{-} \frac{|x|}{-} \le \frac{3}{2}.$$

$$|f'(x,y)| \le \frac{|x|}{|x|} + \frac{|xy|}{|x|} \le \frac{3}{x}$$

$$|f_x'(x, y)| \leqslant rac{|x|}{\sqrt{x^2 + y^2}} + rac{|xy|}{x^2 + y^2} rac{|x|}{\sqrt{x^2 + y^2}} \leqslant rac{3}{2}, \quad |f_y'(x, y)| \leqslant rac{3}{2},$$

$$|f'_r(x,y)| \leq \frac{|x|}{2} + \frac{|xy|}{2} - \frac{|x|}{2} \leq \frac{3}{2},$$

ода, пользуясь неравенством
$$\left|\frac{z^2+y^2}{z^2+y^2}\right| \leqslant \frac{z}{2}$$
, убеж

жода, пользуясь неравенством
$$\left|\frac{xy}{x^2+y^2}\right| \leqslant \frac{1}{2}$$
, у

т. е. что указанные производные ограничены.

правилами дифференцирования:

аналогично находим, что $f'_{u}(0, 0) = 0$.

справедливы и относительно f'_y .

дифференцируема в точке (0, 0). >

4 а) Имеем

определения:

Отсюда, пользуясь неравенством
$$\left|\frac{xy}{x^2+y^2}\right| \leqslant \frac{1}{2}$$
, убеждаемся, что

$$f'_y(x, y) = \frac{y}{\sqrt{x^2 + y^2}} - \frac{y^2 x}{\sqrt{(x^2 + y^2)^3}}, \quad x^2 + y^2 \neq 0, \quad f'_y(0, 0) = 0.$$

$$\frac{y^2x}{x^2+y^2)^3}$$

Запишем приращение функции f в точке (0,0) в виде $\Delta f(0,0)=rac{xy}{\sqrt{x^2+y^2}}=lpha(x,y)
ho,$ где $\alpha(x,y)=\frac{xy}{x^2+y^2},\ \rho=\sqrt{x^2+y^2}$. Легко убедиться, что функция α не является бесконечно

37. Показать, что функция $f(x,y)=(x^2+y^2)\sin\frac{1}{x^2+y^2}$, если $x^2+y^2\neq 0$ и f(0,0)=0, имеет в окрестности точки (0,0) производные f'_x и f'_y , которые разрывны в точке (0,0) и неограничены в любой окрестности ее; тем не менее эта функция дифференцируема в точке

lacktriangle Если $x^2+y^2
eq 0$, то частные производные f'_x и f'_y находим, пользуясь формулами и

 $f'_x(x, y) = 2x \sin \frac{1}{x^2 + y^2} - \frac{2x}{x^2 + y^2} \cos \frac{1}{x^2 + y^2}, \quad f'_y(x, y) = 2y \sin \frac{1}{x^2 + y^2} - \frac{2y}{x^2 + y^2} \cos \frac{1}{x^2 + y^2}.$

Если же x=0 и y=0, то производные $f_x'(0,0)$ и $f_y'(0,0)$ находим, исходя из их следующего

 $f'_x(0, 0) = \lim_{x \to 0} \frac{f(x, 0) - f(0, 0)}{x} = \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x^2}}{x} = 0,$

 $x_n = \frac{1}{2\sqrt{n\pi}}, \quad y_n = \frac{1}{2\sqrt{n\pi}}, \quad n \in \mathbb{N}.$

Поскольку $x_n o 0$ и $y_n o 0$ при $n o \infty$, то последовательность точек (x_n, y_n) попадает в любую окрестность точки (0, 0). При этом соответствующая последовательность значений функции $f_x'(x_n, y_n) = -2\sqrt{n\pi}, n \in \mathbb{N}$, стремится к $-\infty$. Следовательно, частная производная f_x' разрывна в точке $(0,\,0)$ и неограничена в любой ее окрестности. Аналогичные выводы

Поскольку $f_x'(0,0) = f_y'(0,0) = 0$, а приращение $\Delta f(0,0)$ представимо в виде $\Delta f(0,0) =$ $(x^2+y^2)\sin\frac{1}{x^2+y^2}=\rho\alpha(\rho),$ где $\alpha(\rho)=\rho\sin\frac{1}{\rho^2}\to 0$ при $\rho=\sqrt{x^2+y^2}\to 0,$ то функция f

38. Проверить равенство $\frac{\partial^2 u}{\partial x \, \partial u} = \frac{\partial^2 u}{\partial u \, \partial x}$, если: a) $u = x^{y^2}$; б) $u = \arccos \sqrt{\frac{x}{y}}$.

 $\frac{\partial u}{\partial x} = y^2 x^{y^2 - 1}, \quad \frac{\partial^2 u}{\partial y \partial x} = 2y x^{y^2 - 1} (1 + y^2 \ln x), \quad \frac{\partial u}{\partial y} = 2y x^{y^2} \ln x, \quad \frac{\partial^2 u}{\partial x \partial y} = 2y x^{y^2 - 1} (1 + y^2 \ln x).$

точке (0,0), и такую, что $\cos\frac{1}{x_n^2+y_n^2}=1$, т. е. $\frac{1}{x_n^2+y_n^2}=2n\pi$. Пусть, например,

Покажем, что частные производные f'_x и f'_y разрывны в точке (0,0) и неограничены в любой ее окрестности. С этой целью выберем последовательность (x_n, y_n) , сходящуюся к

малой при $x \to 0$, $y \to 0$, а поэтому функция f недифференцируема в точке (0,0). \blacktriangleright

Отсюда непосредственно следует равенство $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$, справедливое для всех точек (x, y)

в области определения смешанных производных: $0 < x < \infty, -\infty < y < \infty.$ б) Аналогично предыдущему находим смешанные производные

 $\frac{\partial u}{\partial x} = -\frac{1}{2}(xy-x^2)^{-\frac{1}{2}}, \quad \frac{\partial^2 u}{\partial y \partial x} = \frac{x}{4}(xy-x^2)^{-\frac{3}{2}}, \quad \frac{\partial u}{\partial y} = \frac{x}{2}(xy^3-x^2y^2)^{-\frac{1}{2}}, \quad \frac{\partial^2 u}{\partial x \partial y} = \frac{x}{4}(xy-x^2)^{-\frac{3}{2}}$

и убеждаемся, что они равны в области их определения: $0 < \frac{x}{u} < 1$. Эти примеры иллюстрируют утверждение о равенстве непрерывных смешанных произ-

водных, отличающихся порядком их вычисления. 🕨 **39.** Пусть $f(x,y)=xy\frac{x^2-y^2}{x^2+y^2}$, если $x^2+y^2\neq 0$, и f(0,0)=0. Показать, что $f''_{xy}(0,0)\neq$ $f_{ux}''(0,0)$.

 \blacksquare При $x^2 + y^2 \neq 0$ имеем

$$f'_x(x,y) = y \frac{x^2 - y^2}{x^2 + y^2} + \frac{4x^2y^3}{(x^2 + y^2)^2}, \quad f'_y(x,y) = x \frac{x^2 - y^2}{x^2 + y^2} - \frac{4x^3y^2}{(x^2 + y^2)^3}.$$
Если $x = y = 0$, то произволные $f'(0,0)$ и $f'(0,0)$ находим непосредственно из их

Если x=y=0, то производные $f_x'(0,0)$ и $f_y'(0,0)$ находим непосредственно из их определения:

$$f'_x(0, 0) = \lim_{x \to 0} \frac{f(x, 0) - f(0, 0)}{x} = \lim_{x \to 0} \frac{0}{x} = 0, \quad f'_y(0, 0) = \lim_{y \to 0} \frac{f(0, y) - f(0, 0)}{y} = \lim_{y \to 0} \frac{0}{y} = 0.$$

 $f''_{xy}(0, 0) = \lim_{y \to 0} \frac{f'_x(0, y) - f'_x(0, 0)}{y} = \lim_{y \to 0} \frac{-y^3}{y^3} = -1,$

$$f''_{yx}(0, 0) = \lim_{x \to 0} \frac{f'_{y}(x, 0) - f'_{y}(0, 0)}{x} = \lim_{x \to 0} \frac{x^{3}}{x^{3}} = 1.$$

Отсюда убеждаемся, что $f_{xy}''(0, 0) \neq f_{yx}''(0, 0)$. Заметим, что в точке (0,0) не выполняются достаточные условия равенства смешанных производных. В самом деле, при $x^2+y^2\neq 0$ находим

$$f_{xy}''(x, y) = f_{yx}''(x, y) = \frac{x^2 - y^2}{x^2 + y^2} \left(1 + \frac{8x^2y^2}{(x^2 + y^2)^2} \right).$$

Пользуясь этими значениями, находим смешанные производные:

Поскольку последовательность $(M_n = (\frac{a}{n}, \frac{1}{n}))$ стремится к точке (0, 0) при $n \to \infty$, и $\lim_{n\to\infty} f''_{xy}(M_n) = \lim_{n\to\infty} f''_{yx}(M_n) = \frac{a^2-1}{a^2+1} \left(1 + \frac{8a^2}{(a^2+1)^2}\right)$, то смещанные производные терпят раз-

рыв в точке
$$(0, 0)$$
. \blacktriangleright 40. Существует ли $f''_{xy}(0, 0)$, если $f(x, y) = \frac{2xy}{x^2 + y^2}$ при $x^2 + y^2 \neq 0$ и $f(0, 0) = 0$?

◄ При $x^2 + y^2 \neq 0$ имеем $f'_x(x, y) = \frac{2y(y^2 - x^2)}{(x^2 + y^2)^2}$. Пользуясь определением производной,

находим

 $f'_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{0}{x} = 0.$

Поскольку предел

$$\lim_{y \to 0} \frac{f'_x(0, y) - f'_x(0, 0)}{y} = \lim_{y \to 0} \frac{\frac{2y^3}{y^4}}{y}$$

не существует, то производная f''_{xy} в точке (0,0) также не существует. \blacktriangleright

41. Доказать, что если дифференцируемая функция $(x, y, z) \mapsto f(x, y, z), (x, y, z) \in G$, удовлетворяет уравнению $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z} = pf,$

(1)

◆ Рассмотрим функцию

то она является однородной функцией степени р.

$$F(t) = \frac{f(tx_0, ty_0, tz_0)}{t^p}.$$
цифференцируема для всех $t > 0$, для которых точка (tx_0, ty_0, ty_0)

131

(2)

Она определена, непрерывна и дифференцируема для всех t>0, для которых точка $(tx_0, ty_0,$ $tz_0) \in G$. Вычисляя производную функции F, получаем выражение, числитель которого равен

$$t\left(x_{0}f'_{x}(tx_{0}, ty_{0}, tz_{0}) + y_{0}f'_{y}(tx_{0}, ty_{0}, tz_{0}) + z_{0}f'_{z}(tx_{0}, ty_{0}, tz_{0})\right) - pf(tx_{0}, ty_{0}, tz_{0}). \tag{3}$$

Заменяя в равенстве (1) x, y, z на tx_0, ty_0, tz_0 соответственно, приходим к выводу, что выражение (3) равно нулю. Следовательно, F'(t) = 0 и F(t) = C = const. Для определения константы положим в (2) t=1; таким образом, $C=f(x_0,y_0,z_0)$. Отсюда, пользуясь равен-

ством (2), получаем $f(tx_0, ty_0, tz_0) = t^p f(x_0, y_0, z_0), (x_0, y_0, z_0) \in G. \blacktriangleright$

частные производные f'_x , f'_y , f'_z — однородные функции (p-1)-й степени. \blacktriangleleft Поскольку f — однородная функция степени p, то справедливо равенство f(tx,ty,tz) = $t^p f(x,\,y,\,z)$, причем выражение в левой части дифференцируемо. Дифференцируя последнее

 $oldsymbol{42}$. Доказать, что если f — дифференцируемая однородная функция степени p, то ее

равенство по x, получаем $f'_x(tx, ty, tz)t = t^p f'_x(x, y, z)$ или $f'_x(tx, ty, tz) = t^{p-1} f'_x(x, y, z)$. Из последнего равенства следует, что f_x' — однородная функция степени p-1. Для производных f_y' и f_z' доказательство аналогичное. \blacktriangleright

 ${f 43.}\,$ Пусть $(x,\,y,\,z)\mapsto u(x,\,y,\,z)$ — дважды дифференцируемая однородная функция n-й степени. Доказать, что

$$\left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}\right)^2 u = n(n-1)u. \tag{1}$$

◆ Поскольку и — однородная функция, то она удовлетворяет уравнению

Заменяя в этом равенстве x, y, z на tx_0, ty_0, tz_0 и дифференцируя его по t, получаем

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = nu.$$

 $x_0u'_x + y_0u'_y + z_0u'_z + tx_0^2u''_{x^2} + ty_0^2u''_{y^2} + tz_0^2u''_{z^2} + t(2x_0y_0u''_{xy} + 2x_0z_0u''_{xz} + 2y_0z_0u''_{yz}) =$ $= n(x_0u'_x + y_0u'_y + z_0u'_z).$

где производные вычислены в точке (tx_0, ty_0, tz_0) . Полагая в последнем равенстве t=1, имеем

$$x_0^2 u_{x^2}^{"} + y_0^2 u_{y^2}^{"} + z_0^2 u_{z^2}^{"} + 2(x_0 y_0 u_{xy}^{"} + x_0 z_0 u_{xz}^{"} + y_0 z_0 u_{yz}^{"}) = (n-1)(x_0 u_x^{'} + y_0 u_y^{'} + z_0 u_z^{'}).$$

Отсюда и из равенства (2) непосредственно следует, что

$$\left(x_0\frac{\partial}{\partial x}+y_0\frac{\partial}{\partial y}+z_0\frac{\partial}{\partial z}\right)^2u=n(n-1)u.$$

Так как
$$(x_0, y_0, z_0)$$
 — произвольная точка, то равенство (1) доказано. \blacktriangleright

44. Доказать, что если $u = \sqrt{x^2 + y^2 + z^2}$, то $d^2u \ge 0$.

$$\blacktriangleleft$$
 Обозначая $\varphi=x^2+y^2+z^2$ и последовательно дифференцируя выражение $u=\sqrt{\varphi},$ находим

 $du = \frac{1}{\sqrt{\varphi}}(x\,dx + y\,dy + z\,dz),$

$$d^{2}u = \frac{1}{\sqrt{\varphi}}(dx^{2} + dy^{2} + dz^{2}) - \frac{1}{(\sqrt{\varphi})^{3}}(x\,dx + y\,dy + z\,dz)^{2} =$$

$$= \frac{(x^2 + y^2 + z^2)(dx^2 + dy^2 + dz^2) - (x dx + y dy + z dz)^2}{(\sqrt{\varphi})^3} =$$

$$= \frac{(x dy - y dx)^2 + (x dz - z dx)^2 + (y dz - z dy)^2}{(\sqrt{\varphi})^3} \geqslant 0. \blacktriangleright$$

 ${f 45.}$ Предполагая, что ${m x},{m y}$ малы по абсолютной величине, вывести приближенные формулы для следующих выражений:

- a) $(1+x)^m(1+y)^m$; 6) $\ln(1+x)\ln(1+y)$; B) $\arctan \frac{x+y}{1+x^{n+1}}$. \blacktriangleleft Пусть функция $(x,y,\ldots,z)\mapsto f(x,y,\ldots,z)$ дифференцируема в окрестности точки
- (0, 0, ..., 0). Тогда $f(x, y, \ldots, z) - f(0, 0, \ldots, 0) = f'_{\sigma}(0, 0, \ldots, 0)x + f'_{\sigma}(0, 0, \ldots, 0)y + \ldots + f'_{\sigma}(0, 0, \ldots, 0)z + o(\rho),$

$$f(x, y, \ldots, z) - f(0, 0, \ldots, 0) = f_x(0, 0, \ldots, 0)x + f_y(0, 0, \ldots, 0)y + \ldots + f_z(0, 0, \ldots, 0)z + o(\rho),$$
 где $o(\rho)$ — бесконечно малая более высокого порядка по сравнению с $\rho = \sqrt{x^2 + y^2 + \ldots + z^2}$. Отбрасывая величину $o(\rho)$ и перенося $f(0, 0, \ldots, 0)$ в правую часть, получаем приближенное

тде
$$o(\rho)$$
 — оесконечно малая оолее высокого порядка по сравнению с $\rho = \sqrt{x^2 + y^2 + \dots + z^2}$. Отбрасывая величину $o(\rho)$ и перенося $f(0, 0, \dots, 0)$ в правую часть, получаем приближенное равенство
$$f(x, y, \dots, z) \approx f(0, 0, \dots, 0) + f'_x(0, 0, \dots, 0)x + f'_y(0, 0, \dots, 0)y + \dots + f'_z(0, 0, \dots, 0)z.$$
(1)

$$f(x, y, \dots, z) \approx f(0, 0, \dots, 0) + f_x(0, 0, \dots, 0)x + f_y(0, 0, \dots, 0)y + \dots + f_z(0, 0, \dots, 0)z$$
. (1) Поскольку предложенные функции дифференцируемы в окрестности точки $(0, 0)$, то соответствующие приближенные формулы принимают следующий вид:

6) $\ln(1+x)\ln(1+y) \approx xy$; B) $\arctan \frac{x+y}{1+xy} \approx x+y$.

a) $(1+x)^m(1+y)^m \approx 1 + mx + my$;

- 46. Заменяя приращение функции дифференциалом, приближенно вычислить:
- a) $1,002 \cdot 2,003^2 \cdot 3,004^3$; 6) $\frac{1,03^2}{\sqrt[3]{0.98 \cdot \sqrt[4]{1.05^3}}}$;
- B) $\sqrt{1.02^3 + 1.97^3}$; r) $\sin 29^\circ \operatorname{tg} 46^\circ$; π) $0.97^{1.05}$.
- $(x)(2+y)^2(3+z)^3$, имеем $(1+x)(2+y)^2(3+z)^3 \approx 1 \cdot 2^2 \cdot 3^3 + 2^2 \cdot 3^3 x + 2^2 \cdot 3^3 u + 2^2 \cdot 3^3 z$

lacktriangled а) Записывал равенство (1) из предыдущего примера для функции f(x,y,z)=(1+z)

б) Записав для функции
$$f(x, y, z) = \frac{(1+z)^2}{\sqrt[3]{(1-y)^{\frac{4}{3}(1+z)^3}}}$$
 приближенное равенство $f(x, y, z) \approx$

$$\sqrt{1-y}\sqrt{(1+z)^3}$$
 1 + 2 x + $\frac{y}{3}$ - $\frac{z}{4}$ и полагая x = 0,03, y = 0,02, z = 0,05, получаем

$$\frac{1,03^2}{\sqrt[3]{0.98}\sqrt[4]{1.05^3}} \approx 1 + 0.06 + 0.0066 - 0.0125 \approx 1.054.$$

в) Имеем
$$\sqrt{(1+x)^3+(2-y)^3}\approx 3+\frac{x}{2}-2y$$
. Пусть $x=0.02,\ y=0.03,\ \text{тогда}$

$$\sqrt{1,02^3+1,97^3} \approx 3+0,01-0,06=2,95.$$

г) В приближенном равенстве (см. предыдущий пример)

полагаем x = 0.017, тогда

$$\sin\left(\frac{\pi}{6} - x\right) \operatorname{tg}\left(\frac{\pi}{4} + x\right) \approx \sin\frac{\pi}{6} \operatorname{tg}\frac{\pi}{4} - \cos\frac{\pi}{6} \operatorname{tg}\frac{\pi}{4} x + \sin\frac{\pi}{6} \frac{1}{\cos^2\frac{\pi}{4}} x$$

 $\sin 29^{\circ} \operatorname{tg} 46^{\circ} \approx 0.5 - 0.866 \cdot 0.017 + 0.017 \approx 0.502$

(2)

(3)

(4)

(1)

(2)

(3)

(1)

(2)

д) Записывая для функции $(1-x)^{1+y}$ приближенное равенство $(1-x)^{1+y}\approx 1-x$ и полагая в нем $x=0.03,\ y=0.05,\$ получаем $0.97^{1.05}\approx 1-0.03=0.97.$ \blacktriangleright 47. Доказать, что функция f, имеющая ограниченные частные производные f_x' и f_y' в

области E, точка $(x_2+t(x_1-x_2),\ y_2+t(y_1-y_2))$ принадлежит области E при $0\leqslant t\leqslant 1$. Функция $\varphi(t)=f(x_2+t(x_1-x_2),\,y_2+t(y_1-y_2))$ имеет при $t\in]0,\,1[$ ограниченную про-

изводную

 $\varphi'(t) = (x_1 - x_2)f_x'(x_2 + t(x_1 - x_2), \ y_2 + t(y_1 - y_2)) + (y_1 - y_2)f_y'(x_2 + t(x_1 - x_2), \ y_2 + t(y_1 - y_2))$

и $\varphi(0)=f(x_2,y_2),\, \varphi(1)=f(x_1,y_1).$ Используя формулу Лагранжа и равенство (1), находим

 $\varphi(1) - \varphi(0) = f(x_1, y_1) - f(x_2, y_2) = \varphi'(\xi) =$

Согласно условию, существуют такие постоянные L_1 и L_2 , что

эта функция непрерывна по совокупности переменных x и y.

для всех точек (x, y) из области G определения функции f.

 $|f(x, y) - f(x_0, y_0)| \le |f(x, y) - f(x, y_0)| + |f(x, y_0) - f(x_0, y_0)| \le$

Пусть $\varepsilon > 0$ произвольное, а (x_0, y_0) — любая точка из G. Тогда

Из соотношений (2) и (3) вытекает неравенство

 \blacktriangleleft Согласно условию, $\exists M>0$ такое, что

если $|x-x_0|<\delta_1$. Из (2), (1) и (3) получаем

 $d^n P_n(x, y, z) = n! P_n(dx, dy, dz).$

 $= (x_1 - x_2) f_x' (x_2 + \xi(x_1 - x_2), y_2 + \xi(y_1 - y_2)) +$

 $|f'_x| < L_1, \quad |f'_y| < L_2 \quad \forall (x, y) \in E.$

 $|f(x_1, y_1) - f(x_2, y_2)| \leq |x_1 - x_2|L_1 + |y_1 - y_2|L_2.$

Пусть $\varepsilon>0$ произвольное. Тогда, выбирая $\delta=\min\left(rac{\epsilon}{2L_1},\,rac{\epsilon}{2L_2}
ight)$, для любых точек $(x_1,\,y_1)$ и $(x_2,\,y_2)$ таких, что $|x_1-x_2|<\delta$ и $|y_1-y_2|<\delta$, из (4) получаем неравенство $|f(x_1,\,y_1)-y_2|<\delta$ $f(x_2, y_2) | < \varepsilon$, доказывающее равномерную непрерывность функции f в области E.

 $oldsymbol{48}$. Доказать, что если функция $(x,y) \mapsto f(x,y)$ непрерывна по переменной x при каждом фиксированном значении y и имеет ограниченную производную по переменной y, то

 $|f_n'(x,y)| \leq M$

 $|f(x, y_0) - f(x_0, y_0)| < \frac{\varepsilon}{2},$

 $|f(x, y) - f(x_0, y_0)| \leqslant M|y - y_0| + \frac{\varepsilon}{2} < \varepsilon,$

49. Пусть $(x, y, z) \mapsto P_n(x, y, z)$ — однородный многочлен степени n. Доказать, что

◄ Пусть (x, y, z) — произвольная точка из области определения функции P_n . Так как

 $P_n(tx, ty, tz) = t^n P_n(x, y, z).$

 $P_n^{(n)}(tx, ty, tz) = n! P_n(x, y, z)$

В силу непрерывности функции f по x, при $y=y_0$ $\exists \delta_1=\delta_1(\varepsilon,y_0)$ такое, что

если $|x-x_0|<\delta,\,|y-y_0|<\delta,\,$ где $\delta=\min\left\{\frac{\epsilon}{2M},\,\delta_1\right\},\,$ что и требовалось доказать. \blacktriangleright

P_n — однородный многочлен степени n, то для него справедливо равенство

Вычислим п-ю производную от обеих частей этого равенства. Очевидно,

◀ Пусть (x_1, y_1) и (x_2, y_2) — две произвольные точки из области E. В силу выпуклости

 $+(y_1-y_2)f_y'(x_2+\xi(x_1-x_2),y_2+\xi(y_1-y_2)), \quad 0<\xi<1.$

 $\leq |f'_{u}(x, y_{0} + \theta(y - y_{0}))| |y - y_{0}| + |f(x, y_{0}) - f(x_{0}, y_{0})|.$

некоторой выпуклой области E, равномерно-непрерывна в этой области.

Обозначая левую часть равенства (1) через F(t) и последовательно дифференцируя, находим

$$F'(t) = \frac{\partial P_n}{\partial x} x + \frac{\partial P_n}{\partial y} y + \frac{\partial P_n}{\partial z} z = \left(\frac{\partial}{\partial x} x + \frac{\partial}{\partial y} y + \frac{\partial}{\partial z} z\right) P_n,$$

$$F''(t) = \frac{\partial^2 P_n}{\partial x^2} x^2 + \frac{\partial^2 P_n}{\partial y^2} y^2 + \frac{\partial^2 P_n}{\partial z^2} z^2 + 2 \frac{\partial^2 P_n}{\partial z \partial y} xy + 2 \frac{\partial^2 P_n}{\partial x \partial y} xz + 2 \frac{\partial^2 P_n}{\partial y \partial z} yz = \left(\frac{\partial}{\partial x} x + \frac{\partial}{\partial y} y + \frac{\partial}{\partial z} z\right)^2 P_n.$$

134

Далее, методом математической индукции легко доказать, что $F^{(n)}(t) = \left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}\right)^n P_n(tx, ty, tz).$

вательно, являются постоянными, т. е. не зависят от t. Поэтому можно записать

Поскольку P_n — однородный многочлен степени n, то частные производные первого порядка — однородные многочлены степени n-1 (см. пример 42). Отсюда следует, что частные производные n-го порядка являются однородными многочленами нулевого порядка, а следо-

Сравнив (2) и (3) и заменив $x,\ y,\ z$ на $dx,\ dy,\ dz,\ получим доказываемое равенство. <math>
ight
ight
angle$

 $F^{(n)}(t) = \left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}\right)^n P_n(x, y, z).$ (3)

50. Пусть $Au = x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$. Найти Au и $A^2u = A(Au)$, если: a) $u = \frac{x}{x^2 + y^2}$; 6) $u = \ln \sqrt{x^2 + y^2}$.

4 a) Имеем $Au = x \frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2} \right) + y \frac{\partial}{\partial y} \left(\frac{x}{x^2 + y^2} \right) = x \frac{y^2 - x^2}{(x^2 + y^2)^2} + y \frac{-2xy}{(x^2 + y^2)^2} = -\frac{x}{x^2 + y^2} = -u$. B

силу однородности операции A, $A^2u = A(Au) = A(-u) = -Au = -(-u) = u$. 6) Аналогично $Au = x \frac{\partial}{\partial x} \left(\ln \sqrt{x^2 + y^2} \right) + y \frac{\partial}{\partial y} \left(\ln \sqrt{x^2 + y^2} \right) = \frac{x^2}{x^2 + y^2} + \frac{y^2}{x^2 + y^2} = 1$, $A^2u = x^2 + y^2 + y^2 = 1$

A(Au) = A1 = 0.

$$egin{align*} \mathbf{51.} & \Pi \mathbf{y}$$
сть $\Delta_1 u = \left(rac{\partial u}{\partial x}
ight)^2 + \left(rac{\partial u}{\partial y}
ight)^2 + \left(rac{\partial u}{\partial z}
ight)^2, \; \Delta_2 u = rac{\partial^2 u}{\partial x^2} + rac{\partial^2 u}{\partial y^2} + rac{\partial^2 u}{\partial z^2}. \; ext{Найти } \Delta_1 u \; \mathbf{u} \ \Delta_2 u, \; \mathbf{e}$ сли $u = rac{1}{\sqrt{x^2 + y^2 + z^2}}.$

Вводя обозначение $r = \sqrt{x^2 + y^2 + z^2}$, находим

$$\Delta_1 u = \left(\frac{\partial \frac{1}{r}}{\partial x}\right)^2 + \left(\frac{\partial \frac{1}{r}}{\partial y}\right)^2 + \left(\frac{\partial \frac{1}{r}}{\partial z}\right)^2 = \left(-\frac{x}{r^3}\right)^2 + \left(-\frac{y}{r^3}\right)^2 + \left(-\frac{z}{r^3}\right)^2 = \frac{1}{r^4},$$

$$\Delta_1 u = \left(\frac{\sigma_r}{\partial x}\right) + \left(\frac{\sigma_r}{\partial y}\right) + \left(\frac{\sigma_r}{\partial z}\right) = \left(-\frac{x}{r^3}\right)^2 + \left(-\frac{y}{r^3}\right)^2 + \left(-\frac{z}{r^3}\right)^2$$

$$\Delta_2 u = \frac{\partial^2}{\partial r^2} \left(\frac{1}{r} \right) + \frac{\partial^2}{\partial u^2} \left(\frac{1}{r} \right) + \frac{\partial^2}{\partial z^2} \left(\frac{1}{r} \right).$$

Поскольку
$$\frac{\partial^2}{\partial x^2} \left(\frac{1}{r} \right) = \frac{\partial}{\partial x} \left(-\frac{x}{r^3} \right) = -\frac{1}{r^3} + \frac{3x^2}{r^5}, \quad \frac{\partial^2}{\partial y^2} \left(\frac{1}{r} \right) = -\frac{1}{r^3} + \frac{3y^2}{r^5}, \quad \frac{\partial^2}{\partial z^2} \left(\frac{1}{r} \right) = -\frac{1}{r^3} + \frac{3x^2}{r^5},$$

To
$$\Delta_2 u = -\frac{3}{r^3} + \frac{3(x^2 + y^2 + z^2)}{r^3} = -\frac{3}{r^3} + \frac{3}{r^3} = 0, r \neq 0.$$

 ${f 52.}$ Доказать, что форма дифференциалов произвольного порядка функции $(\xi,\,\eta,\,\zeta)\mapsto$ $f(\xi,\,\eta,\,\zeta)$ сохраняется при замене аргументов $\xi,\,\eta,\,\zeta$ линейными функциями: $\xi=a_1x+a_2y+$

 $a_3 z$, $\eta = b_1 x + b_2 y + b_3 z$, $\zeta = c_1 x + c_2 y + c_3 z$. lackВычисляя второй дифференциал функции: $d^2f = f_{\ell^2}'' d\xi^2 + f_{\eta^2}'' d\eta^2 + f_{\ell^2}'' d\zeta^2 + 2f_{\ell\eta}'' d\xi d\eta +$ $2f_{\xi\zeta}''d\xi d\zeta + 2f_{\eta\zeta}''d\eta d\zeta + f_{\xi}'d^2\xi + f_{\eta}'d^2\eta + f_{\zeta}'d^2\zeta$ и замечая, что, в силу линейности функций ξ , η , ζ ,

имеют место равенства
$$d^2\xi=0,\ d^2\eta=0,\ d^2\zeta=0,\ \text{получаем}$$

$$d^2f=\left(\frac{\partial}{\partial \xi}\,d\xi+\frac{\partial}{\partial \eta}\,d\eta+\frac{\partial}{\partial \zeta}\,d\zeta\right)^2f.$$

Методом математической индукции легко доказать, что

§ 2. Частные производные и дифференциалы функции векторного аргумента

 $d^{n}f = \left(\frac{\partial}{\partial \xi} d\xi + \frac{\partial}{\partial p} d\eta + \frac{\partial}{\partial \zeta} d\zeta\right)^{n} f,$

линейными функциями. >

т. е. что форма дифференциалов произвольного порядка сохраняется при замене аргументов Найти полные дифференциалы первого и второго порядков от следующих сложных функ-

■ Дифференцируя и как сложную функцию, получаем

ций (x, y, z -независимые переменные):

Поэтому, вычисляя дифференциалы

 $53. \ u = f\left(\sqrt{x^2 + y^2}\right).$

$$du = f' d\left(\sqrt{x^2 + y^2}\right) = f' \frac{x dx + y dy}{\sqrt{x^2 + y^2}}, \quad d^2u = d(f') \frac{x dx + y dy}{\sqrt{x^2 + y^2}} + f' d\left(\frac{x dx + y dy}{\sqrt{x^2 + y^2}}\right).$$

Tak kak

$$d(f') = f'' \frac{x \, dx + y \, dy}{\sqrt{x^2 + y^2}}, \quad d\left(\frac{x \, dx + y \, dy}{\sqrt{x^2 + y^2}}\right) = \frac{(y \, dx - x \, dy)^2}{\sqrt{(x^2 + y^2)^3}},$$
 то окончательно находим

 $d^{2}u = f'' \frac{(x dx + y dy)^{2}}{x^{2} + y^{2}} + f' \frac{(y dx - x dy)^{2}}{\sqrt{(x^{2} + y^{2})^{3}}}, \quad x^{2} + y^{2} \neq 0. \blacktriangleright$

54. $u = f(\xi, \eta)$, rge $\xi = x + y$, $\eta = x - y$. \blacktriangleleft Поскольку аргументы ℓ и η являются линейными функциями, то форма дифференциалов произвольного порядка сохраняется (см. пример 52).

 $du = f_1' d\xi + f_2' d\eta, \quad d^2u = f_{11}'' d\xi^2 + 2f_{12}'' d\xi d\eta + f_{22}'' d\eta^2,$ где $f_1'=\frac{\partial f}{\partial \ell},\,f_2'=\frac{\partial f}{\partial \eta},\,f_{11}''=\frac{\partial^2 f}{\partial \ell^2},\,f_{12}''=\frac{\partial^2 f}{\partial \ell \partial \eta},\,f_{22}''=\frac{\partial^2 f}{\partial \eta^2},\,$ и вместо $d\xi$ и $d\eta$ подставляя их значения, найденные из равенств $\xi = x + y$, $\eta = x - y$, получаем $du = f_1'(dx + dy) + f_2'(dx - dy), \quad d^2u = f_{11}''(dx + dy)^2 + 2f_{12}''(dx^2 - dy^2) + f_{22}''(dx - dy)^2. \blacktriangleright$

55. $u = f(\xi, \eta)$, rge $\xi = xy$, $\eta = \frac{x}{\eta}$.

◀ Дифференцируя и как сложную функцию, получаем

 $du = f_1'(y \, dx + x \, dy) + f_2' \frac{y \, dx - x \, dy}{x^2},$

◀ Аналогично предыдущему $du = f_1' dt + f_2' 2t dt + f_3' 3t^2 dt = (f_1' + 2t f_2' + 3t^2 f_3') dt.$ $d^{2}u = f_{11}'' dt^{2} + f_{22}'' 4t^{2} dt^{2} + f_{33}'' 9t^{4} dt^{2} + 4f_{12}'' t dt^{2} + 6t^{2} f_{13}'' dt^{2} + 12t^{3} f_{23}'' dt^{2} + 2f_{2}' dt^{2} + 6t f_{3}' dt^{2} =$

 $= (f_{11}'' + 4t^2 f_{22}'' + 9t^4 f_{33}'' + 4t f_{12}'' + 6t^2 f_{13}'' + 12t^3 f_{23}'' + 2f_2' + 6t f_3') dt^2. \triangleright$ 57. $u = f(\xi, \eta, \zeta)$, reference $\xi = x^2 + y^2$, $\eta = x^2 - y^2$, $\zeta = 2xy$.

■ Пользуясь правилом дифференцирования сложной функции, имеем

 $du = f_1'(2x\,dx + 2y\,dy) + f_2'(2x\,dx - 2y\,dy) + f_3'(2y\,dx + 2x\,dy),$

 $d^{2}u = 4f_{11}''(x\,dx + y\,dy)^{2} + 4f_{22}''(x\,dx - y\,dy)^{2} + 4f_{33}''(y\,dx + x\,dy)^{2} +$

$$u = 4J_{11}(x\,dx + y\,dy) + 4J_{22}(x\,dx - y\,dy) + 4J_{33}(y\,dx + x\,dy) + 8f_{12}''(x^2\,dx^2 - y^2\,dy^2) + 8f_{13}''(x\,dx + y\,dy)(y\,dx + x\,dy) +$$

$$u = 4f_{11}(x\,dx + y\,dy)^{-} + 4f_{22}(x\,dx - y\,dy)^{-} + 4f_{33}(y\,dx + x\,dy) + \\ + 8f''(x^{2}\,dx^{2} - x^{2}\,dx^{2}) + 8f''(x\,dx + x\,dx)(x\,dx + x\,dx) + \\$$

 $+8f_{23}''(x\,dx-y\,dy)(y\,dx+x\,dy)+2f_{3}'(dx^{2}+dy^{2})+2f_{2}'(dx^{2}-dy^{2})+4f_{3}'\,dx\,dy.$

Hайти $d^n u$, если: $58. \ u = f(ax + by + cz).$

■ Поскольку в данном случае форма дифференциалов инвариантна (см. пример 52), то

$$d^{n}u = f^{(n)}(d(ax + by + cz))^{n} = f^{(n)}(a dx + b dy + c dz)^{(n)}. \blacktriangleright$$
59. $u = f(ax, by, cz).$

■ В силу инвариантности формы дифференциалов n-го порядка (см. пример 52), имеем

$$d^{n}u = \left(\frac{\partial}{\partial s}a dx + \frac{\partial}{\partial t}b dy + \frac{\partial}{\partial r}c dz\right)^{n} f(s, t, r),$$

где s = ax, t = by, r = cz.

60. u = f(s, t, r), the $s = a_1x + b_1y + c_1z$, $t = a_2x + b_2y + c_2z$, $r = a_3x + b_3y + c_3z$. Используем инвариантность формы п-го дифференциала (см. пример 52). Имеем

$$d^{n}u = \left(\frac{\partial}{\partial s}ds + \frac{\partial}{\partial t}dt + \frac{\partial}{\partial r}dr\right)^{n}f(s, t, r) = \left((a_{1}dx + b_{1}dy + c_{1}dz)\frac{\partial}{\partial s} + (a_{2}dx + b_{2}dy + c_{2}dz)\frac{\partial}{\partial t} + (a_{3}dx + b_{3}dy + c_{3}dz)\frac{\partial}{\partial r}\right)^{n}f(s, t, r). \blacktriangleright$$

61. Пусть
$$u=f(r)$$
, где $r=\sqrt{x^2+y^2+z^2}$ и f — дважды дифференцируемая функция. Показать, что $\Delta u=F(r)$, где $\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}$ — оператор Лапласа, и найти функцию

$$\frac{\partial u}{\partial x}=f'\frac{x}{r},\quad \frac{\partial^2 u}{\partial x^2}=f''\frac{x^2}{r^2}+f'\frac{1}{r}-f'\frac{x^2}{r^3}.$$
 Аналогично находим

$$\frac{\partial^2 u}{\partial y^2} = f'' \frac{y^2}{r^2} + f' \frac{1}{r} - f' \frac{y^2}{r^3}, \quad \frac{\partial^2 u}{\partial z^2} = f'' \frac{z^2}{r^2} + f' \frac{1}{r} - f' \frac{z^2}{r^3}.$$
 Таким образом,

$$\Delta u = f'' \frac{x^2 + y^2 + z^2}{2} + \frac{3}{2} f' - \frac{x^2 + y^2 + z^2}{2} f' = f'' + \frac{3}{2} f' - \frac{1}{2} f' = f'' + \frac{2}{2} f' = F(r)$$

$$\Delta u = f'' \frac{x^2 + y^2 + z^2}{r^2} + \frac{3}{r} f' - \frac{x^2 + y^2 + z^2}{r^3} f' = f'' + \frac{3}{r} f' - \frac{1}{r} f' = f'' + \frac{2}{r} f' = F(r). \blacktriangleright$$

$$\Delta u = f'' \frac{2 + y + 2}{r^2} + \frac{3}{r} f' - \frac{2 + y + 2}{r^3} f' = f'' + \frac{3}{r} f' - \frac{1}{r} f' = f'' + \frac{2}{r} f' = F(r).$$

62. Показать, что если функция
$$n=n(\tau,\nu)$$
 уповлетворяет уравнению Лапласа Δn

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
, то функция $v = u\left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$ также удовлетворяет этому уравнению.

$$\frac{1}{x^2} + \frac{y}{\partial y^2} = 0$$
, то функция $v = u\left(\frac{y}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$ также удовлетворяет этому уравнен Вводя для удобства обозначения $\varphi = \frac{x}{x^2 + y^2}$, $\psi = \frac{y}{x^2 + y^2}$, имеем

 $\frac{\partial^2 v}{\partial y^2} = u_{11}'' \left(\frac{\partial \varphi}{\partial y}\right)^2 + 2u_{12}'' \frac{\partial \varphi}{\partial y} \frac{\partial \psi}{\partial y} + u_{22}'' \left(\frac{\partial \psi}{\partial y}\right)^2 + u_1' \frac{\partial^2 \varphi}{\partial y^2} + u_2' \frac{\partial^2 \psi}{\partial y^2},$

$$\frac{\partial v}{\partial x} = u_1' \frac{\partial \varphi}{\partial x} + u_2' \frac{\partial \psi}{\partial x}, \quad \frac{\partial v}{\partial y} = u_1' \frac{\partial \varphi}{\partial y} + u_2' \frac{\partial \psi}{\partial y},$$

$$\frac{\partial^2 v}{\partial x^2} = u_{11}'' \left(\frac{\partial \varphi}{\partial x}\right)^2 + 2u_{12}'' \frac{\partial \varphi}{\partial x} \frac{\partial \psi}{\partial x} + u_{22}'' \left(\frac{\partial \psi}{\partial x}\right)^2 + u_1' \frac{\partial^2 \varphi}{\partial x^2} + u_2' \frac{\partial^2 \psi}{\partial x^2},$$

§ 2. Частные производные и дифференциалы функции векторного аргумента

 $\Delta v = u_{11}'' \left(\left(\frac{\partial \varphi}{\partial x} \right)^2 + \left(\frac{\partial \varphi}{\partial y} \right)^2 \right) + u_{22}'' \left(\left(\frac{\partial \psi}{\partial x} \right)^2 + \left(\frac{\partial \psi}{\partial y} \right)^2 \right) +$

$$+2u_{12}''\left(\frac{\partial \varphi}{\partial x}\frac{\partial \psi}{\partial x}+\frac{\partial \varphi}{\partial y}\frac{\partial \psi}{\partial y}\right)+u_{1}'\Delta\varphi+u_{2}'\Delta\psi.$$

Вычисляя производные

$$\frac{\partial \varphi}{\partial x} = \frac{y^2 - x^2}{(x^2 + y^2)^2}, \quad \frac{\partial \varphi}{\partial y} = -\frac{2xy}{(x^2 + y^2)^2}, \quad \frac{\partial^2 \varphi}{\partial x^2} = \frac{2x(x^2 - 3y^2)}{(x^2 + y^2)^3}, \quad \frac{\partial^2 \varphi}{\partial y^2} = \frac{2x(3y^2 - x^2)}{(x^2 + y^2)^3}, \\ \frac{\partial \psi}{\partial x} = -\frac{2xy}{(x^2 + y^2)^2}, \quad \frac{\partial \psi}{\partial y} = \frac{x^2 - y^2}{(x^2 + y^2)^2}, \quad \frac{\partial^2 \psi}{\partial x^2} = \frac{2y(3x^2 - y^2)}{(x^2 + y^2)^3}, \quad \frac{\partial^2 \psi}{\partial y^2} = \frac{2y(y^2 - 3x^2)}{(x^2 + y^2)^3},$$

убеждаемся, что

$$rac{\partial arphi}{\partial x}rac{\partial \psi}{\partial x}+rac{\partial arphi}{\partial y}rac{\partial \psi}{\partial y}=0,\quad \Delta arphi=0,\quad \Delta \psi=0.$$
 Таким образом, из (1) и (2) и из того, что $\Delta u=0$, следует

Таким образом, из (1) и (2) и из того, что $\Delta u = 0$, спедует

Таким образом, из (1) и (2) и из того, что
$$\Delta u = 0$$
, след

$$\Delta v = \frac{1}{1 - \Delta v} = 0$$

$$\Delta v = \frac{1}{(r^2 + r^2)^2} \Delta u = 0.$$

$$\Delta v = \frac{1}{(x^2 + y^2)^2} \, \Delta u = 0. \blacktriangleright$$

$$\Delta v = \frac{1}{(x^2+y^2)^2} \Delta u = 0.$$

63. Доказать, что если функция u = u(x, t) удовлетворяет уравнению теплопроводности

3. Доказать, что если функция
$$u = u(x, t)$$
 удовлетв $a^2 \frac{\partial^2 u}{\partial x^2} = \frac{1}{2} \left(\frac{x^2}{4x^2} + \frac{x^2}{4x^2} \right)$

 $\frac{\partial u}{\partial t}=a^2\frac{\partial^2 u}{\partial x^2}$, то функция $v=\frac{1}{a\sqrt{t}}e^{-\frac{x^2}{4a^2t}}u\left(\frac{x}{a^2t},-\frac{1}{a^4t}\right)$, t>0, также удовлетворяет этому

◀ Находим производные $v_t' = \left(-\frac{u}{2a\sqrt{t^3}} + \frac{x^2u}{4a^3\sqrt{t^5}} - \frac{xu_1'}{a^3\sqrt{t^5}} + \frac{u_2'}{a^5\sqrt{t^5}}\right)e^{-\frac{x^2}{4a^2t}},$

 $v_{x^2}'' = \left(-\frac{u}{2a^3\sqrt{t^3}} + \frac{x^2u}{4a^5\sqrt{t^5}} - \frac{xu_1'}{a^5\sqrt{t^5}} + \frac{u_{11}''}{a^5\sqrt{t^5}}\right)e^{-\frac{x^2}{4a^2t}},$ где через u_1' и u_{11}'' обозначены частные производные функции u по первому аргументу, а через u_2' — по второму аргументу, и подставляем их в выражение v_1' — $a^2v_{x^2}''$. После упрощений

получаем $v'_t - a^2 v''_{x^2} = \frac{1}{a^5 \sqrt{t^5}} e^{-\frac{x^2}{4a^2t}} \left(u'_2 - a^2 u''_{11} \right).$

Согласно условию, $u_2' - a^2 u_{11}'' = 0$. Поэтому $v_t' - a^2 v_{*2}'' = 0$. **64.** Доказать, что функция $u=rac{1}{r}$, где $r=\sqrt{(x-a)^2+(y-b)^2+(z-c)^2}$, при r
eq 0

удовлетворяет уравнению Лапласа $\Delta u \equiv \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = 0$.

◄ Имеем

$\frac{\partial u}{\partial x} = -\frac{1}{r^2} \frac{\partial r}{\partial x} = -\frac{1}{r^2} \frac{x-a}{r} = -\frac{x-a}{r^3}, \quad \frac{\partial^2 u}{\partial x^2} = -\frac{1}{r^3} + \frac{3(x-a)}{r^4} \frac{\partial r}{\partial x} = -\frac{1}{r^3} + \frac{3(x-a)^2}{r^5}.$

- $\frac{\partial^2 u}{\partial y^2} = -\frac{1}{r^3} + \frac{3(y-b)^2}{r^5}, \quad \frac{\partial^2 u}{\partial z^2} = -\frac{1}{r^3} + \frac{3(z-c)^2}{r^5}.$

137

(1)

(2)

Складывая последние три равенства, получаем

138

Следовательно.

 $\Delta u_2 = 0$, получаем

$$\Delta u = -\frac{3}{3} + \frac{3}{3} ((x-a)^2 + (y-b)^2)$$

 $\Delta u = -\frac{3}{3} + \frac{3}{5} \left((x-a)^2 + (y-b)^2 + (z-c)^2 \right) = -\frac{3}{3} + \frac{3}{3} = 0. \blacktriangleright$

65. Пусть функции $u_1=u_1(x,y,z)$ и $u_2=u_2(x,y,z)$ удовлетворяют уравнению Лапласа $\Delta u=0$. Доказать, что функция $v=u_1(x,y,z)+(x^2+y^2+z^2)u_2(x,y,z)$ удовлетворяет

бигармоническому уравнению $\Delta(\Delta v) = 0$.

Последовательно дифференцируя, находим

 $\frac{\partial v}{\partial x} = \frac{\partial u_1}{\partial x} + 2xu_2 + \left(x^2 + y^2 + z^2\right) \frac{\partial u_2}{\partial x}, \quad \frac{\partial^2 v}{\partial x^2} = \frac{\partial^2 u_1}{\partial x^2} + 2u_2 + 4x \frac{\partial u_2}{\partial x} + \left(x^2 + y^2 + z^2\right) \frac{\partial^2 u_2}{\partial x^2}.$

 $\frac{\partial^2 v}{\partial u^2} = \frac{\partial^2 u_1}{\partial u^2} + 2u_2 + 4y \frac{\partial u_2}{\partial u} + \left(x^2 + y^2 + z^2\right) \frac{\partial^2 u_2}{\partial v^2}, \quad \frac{\partial^2 v}{\partial z^2} = \frac{\partial^2 u_1}{\partial z^2} + 2u_2 + 4z \frac{\partial u_2}{\partial z} + \left(x^2 + y^2 + z^2\right) \frac{\partial^2 u_2}{\partial z^2}.$

 $\Delta v = \Delta u_1 + 6u_2 + 4\left(x\frac{\partial u_2}{\partial x} + y\frac{\partial u_2}{\partial y} + z\frac{\partial u_2}{\partial z}\right) + \left(x^2 + y^2 + z^2\right)\Delta u_2.$

Учитывая, что функции u_1 и u_2 удовлетворяют уравнению Лапласа, т. е. что $\Delta u_1 = 0$ и

 $+ z \frac{\partial^3 u_2}{\partial u^2 \partial x} + z \frac{\partial^3 u_2}{\partial x^2 \partial x} + y \frac{\partial^3 u_2}{\partial z^2 \partial y} + z \frac{\partial^3 u_2}{\partial z^3} \right).$

 $\Delta v = 6u_2 + 4\left(z\frac{\partial u_2}{\partial x} + y\frac{\partial u_2}{\partial y} + z\frac{\partial u_2}{\partial z}\right).$

Находя производные $\frac{\partial^2 \Delta v}{\partial x^2}$, $\frac{\partial^2 \Delta v}{\partial x^2}$, $\frac{\partial^2 \Delta v}{\partial x^2}$ и складывая их, имеем

 $\Delta(\Delta v) = 14 \, \Delta u_2 + 4 \left(x \frac{\partial^3 u_2}{\partial x^3} + y \frac{\partial^3 u_2}{\partial x^2 \partial u} + z \frac{\partial^3 u_2}{\partial x^2 \partial z} + x \frac{\partial^3 u_2}{\partial u^2 \partial x} + y \frac{\partial^3 u_2}{\partial u^3} + y \frac$

Последовательно дифференцируя его m раз по t

Записывая последнее равенство в виде

 $\Delta(\Delta v) = 14 \, \Delta u_2 + 4x \, \frac{\partial}{\partial x} (\Delta u_2) + 4y \, \frac{\partial}{\partial v} (\Delta u_2) + 4z \, \frac{\partial}{\partial z} (\Delta u_2)$

и пользуясь тем, что $\Delta u_2=0$, убеждаемся в справедливости равенства $\Delta(\Delta v)=0$. \blacktriangleright

измерения n. Доказать, что

 ${f 66.}\;\;$ Пусть $(x,y,z)\mapsto f(x,y,z)$ есть m раз дифференцируемая однородная функция

 $\left(x\frac{\partial}{\partial x}+y\frac{\partial}{\partial y}+z\frac{\partial}{\partial z}\right)^{m}f(x,y,z)=n(n-1)\ldots(n-m+1)f(x,y,z).$

 $nt^{n-1}f(x, y, z) = x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z} \equiv \left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}\right)f(tx, ty, tz),$

 $n(n-1)\,\ldots\,(n-m+1)t^{n-m}\,f(x,\,y,\,z)=\left(x\frac{\partial}{\partial x}+y\frac{\partial}{\partial u}+z\frac{\partial}{\partial z}\right)^m\,f(tx,\,ty,\,tz)$

 $n(n-1)t^{n-2}f(x, y, z) = x^2 \frac{\partial^2 f}{\partial x^2} + y^2 \frac{\partial^2 f}{\partial y^2} + z^2 \frac{\partial^2 f}{\partial z^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} +$

◀ Пусть (x, y, z) — произвольная фиксированная точка из области определения функции f, а $m \leqslant n$. В силу однородности, справедливо равенство $t^n f(x, y, z) = f(tx, ty, tz)$.

 $+2xz\frac{\partial^2 f}{\partial x \partial z}+2yz\frac{\partial^2 f}{\partial y \partial z} \equiv \left(x\frac{\partial}{\partial x}+y\frac{\partial}{\partial y}+z\frac{\partial}{\partial z}\right)^2 f(tx, ty, tz),$

и подагая t=1, получаем требуемое равенство. \triangleright

67. Пусть $x^2 = vw$, $y^2 = uw$, $z^2 = uv$ и f(x, y, z) = F(u, v, w). Доказать, что $xf_x' + yf_y' +$ $zf_z' = uF_u' + vF_v' + wF_w'$

 $F(u, v, w) = f(\sqrt{vw}, \sqrt{uw}, \sqrt{uv})$

Дифференцируя это равенство по u, v и w, находим

$$F'_{u} = f'_{y} \frac{w}{2\sqrt{uw}} + f'_{z} \frac{v}{2\sqrt{uv}}, \quad F'_{v} = f'_{z} \frac{w}{2\sqrt{vw}} + f'_{z} \frac{u}{2\sqrt{uv}}, \quad F'_{w} = f'_{x} \frac{v}{2\sqrt{vw}} + f'_{y} \frac{u}{2\sqrt{uw}}. \tag{1}$$

Умножая первое из равенств (1) на u, второе на v, а третье на w и складывая их, получаем $uF'_u + vF'_v + wF'_w = f'_y \frac{uw}{2\sqrt{uv}} + f'_z \frac{uv}{2\sqrt{uv}} + f'_z \frac{vw}{2\sqrt{uv}} + f'_z \frac{uv}{2\sqrt{uv}} + f'_z$

Отсюда, используя условие задачи, окончательно находим $uF'_{x} + vF'_{y} + wF'_{y} = xf'_{x} + yf'_{y} + zf'_{z}.$

 Π утем последовательного дифференцирования исключить произвольные функции arphi и ψ :

 $68. \ z = x + \varphi(xy).$

◀ Найдем частные производные по х и по у:

 $\frac{\partial z}{\partial x} = 1 + y\varphi', \quad \frac{\partial z}{\partial y} = x\varphi'.$

 $x\frac{\partial z}{\partial z} - y\frac{\partial z}{\partial y} = x. \blacktriangleright$ 69. $u=\varphi(x-y,\,y-z).$ \blacktriangleleft Имеем $\frac{\partial u}{\partial x}=\varphi_1',\,\frac{\partial u}{\partial y}=-\varphi_1'+\varphi_2',\,\frac{\partial u}{\partial z}=-\varphi_2'.$ Складывая эти равенства, получаем

Сложим полученные равенства, умножив первое из них на x, а второе на -y. Тогда получим

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} = \frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = -\varphi_1 + \varphi_2, \frac{\partial u}{\partial z} = -\varphi_2. \text{ Okhadalban 31n patientifa, in } \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} = \frac{\partial u}{\partial x} = 0. \blacktriangleright$$

70. $z = \varphi(x)\psi(y)$.

Ч Имеем $\frac{\partial z}{\partial x} = \varphi'\psi$, $\frac{\partial z}{\partial y} = \varphi\psi'$. Отсюда $\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} = \varphi\psi\varphi'\psi' = z\varphi'\psi'$.

C другой стороны, $\frac{\partial^2 z}{\partial x \, \partial y} = \varphi' \psi'$. Следовательно, из последних двух равенств непосред-

ственно вытекает, что
$$\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} = z \frac{\partial^2 z}{\partial x \partial y}$$
. \blacktriangleright 71. $z = \varphi(xy) + \psi\left(\frac{x}{y}\right)$.

◀ Используя равенства

$$\frac{\partial z}{\partial x} = y\varphi' + \frac{1}{y}\psi', \quad \frac{\partial^2 z}{\partial x^2} = y^2\varphi'' + \frac{1}{y^2}\psi'', \quad \frac{\partial z}{\partial y} = x\varphi' - \frac{x}{y^2}\psi', \quad \frac{\partial^2 z}{\partial y^2} = x^2\varphi'' + \frac{x^2}{y^4}\psi'' + \frac{2x}{y^3}\psi',$$
 получаем следующие соотношения:

$$x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = \frac{2x}{y}\psi', \quad x^2\frac{\partial^2 z}{\partial x^2} - y^2\frac{\partial^2 z}{\partial y^2} = -\frac{2x}{y}\psi',$$

из которых непосредственно вытекает, что

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} - y^{2} \frac{\partial^{2} z}{\partial y^{2}} + x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = 0. \triangleright$$

72. Найти производную функции $z=x^2-y^2$ в точке M=(1,1) в направлении l, составляющем угол $\alpha=60^\circ$ с положительным направлением оси Ox.

140

◀ Имеем
$$\frac{\partial z(M)}{\partial l} = \frac{\partial z(M)}{\partial x} \cos \alpha + \frac{\partial z(M)}{\partial y} \cos \beta = 2 \cos \alpha - 2 \cos \beta$$
. Таким образом, $\frac{\partial z(M)}{\partial l} = 1 - \sqrt{3}$. ▶

73. Найти производную функции $z = \ln(x^2 + y^2)$ в точке $M = (x_0, y_0)$ в направлении l, перпендикулярном к линии уровня, проходящей через эту точку.

 \blacktriangleleft Поскольку вектор grad u в точке M ортогонален к линии уровня $c = \ln(x^2 + y^2)$, проходящей через точку \pmb{M} , то направляющие косинусы вектора \pmb{l} равны направляющим

косинусам grad
$$u$$
 в точке M , т. е.
$$\cos \alpha = \frac{\frac{\partial z(M)}{\partial x}}{\|\text{grad } u(M)\|}, \quad \cos \beta = \frac{\frac{\partial z(M)}{\partial y}}{\|\text{grad } u(M)\|}.$$

$$||\operatorname{grad} u(M)|| \qquad ||\operatorname{grad} u(M)||$$

$$\operatorname{Ho} \frac{\partial x(M)}{\partial x} = \frac{2x_0}{x_0^2 + y_0^2}, \quad \frac{\partial x(M)}{\partial y} = \frac{2y_0}{x_0^2 + y_0^2},$$

$$||\operatorname{grad} u(M)|| = \sqrt{\left(\frac{\partial z(M)}{\partial x}\right)^2 + \left(\frac{\partial z(M)}{\partial y}\right)^2} = \frac{2}{\sqrt{x_0^2 + y_0^2}},$$

поэтому
$$\cos \alpha = \frac{x_0}{\sqrt{x_0^2 + y_0^2}}, \ \cos \beta = \frac{y_0}{\sqrt{x_0^2 + y_0^2}}.$$
 Следовательно,
$$\frac{\partial z(M)}{\partial z(M)} = \frac{\partial z(M)}{\partial z(M)} \cos \alpha + \frac{\partial z(M)}{\partial z(M)} \cos \beta = \frac{2}{\sqrt{x_0^2 + y_0^2}}.$$

$$\frac{\partial z(\mathbf{M})}{\partial l} = \frac{\partial z(\mathbf{M})}{\partial x} \cos \alpha + \frac{\partial z(\mathbf{M})}{\partial y} \cos \beta = \frac{2}{\sqrt{x_0^2 + y_0^2}} \quad (x_0^2 + y_0^2 \neq 0). \blacktriangleright$$

74. Найти производную функции
$$z=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}\right)$$
 в точке $M=\left(\frac{a}{\sqrt{2}},\,\frac{b}{\sqrt{2}}\right)$ по направлению внутренней нормали в этой точке к кривой $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$.

$$a^2$$
 b^2 Тангенс угла наклона нормали к данной кривой определяется формулой $\operatorname{tg}\alpha = -\frac{1}{y'\left(\frac{a}{\sqrt{2}}\right)}$, где $y = \frac{b}{a}\sqrt{a^2 - x^2}$. Отсюда $\operatorname{tg}\alpha = \frac{a}{b}$, а направляющие косинусы внутренней нормали выражаются формулами $\cos\alpha = -\frac{b}{\sqrt{a^2 + b^2}}$, $\cos\beta = -\frac{a}{\sqrt{a^2 + b^2}}$ (мы берем знак минус, поскольку нор-

маль внутренняя). Воспользуемся формулой производной по направлению $n=(\cos \alpha,\,\cos \beta)$: $\frac{\partial z(M)}{\partial n} = \frac{\partial z(M)}{\partial r} \cos \alpha + \frac{\partial z(M)}{\partial u} \cos \beta.$

Вычисляя производные
$$\frac{\partial z(M)}{\partial x} = -\frac{\sqrt{2}}{a}$$
, $\frac{\partial z(M)}{\partial y} = -\frac{\sqrt{2}}{b}$, находим
$$\frac{\partial z(M)}{\partial n} = \frac{b\sqrt{2}}{a\sqrt{a^2 + b^2}} + \frac{a\sqrt{2}}{b\sqrt{a^2 + b^2}} = \frac{\sqrt{2(a^2 + b^2)}}{ab}$$
.

75. Найти производную функции
$$u=xyz$$
 в точке $M=(1,1,1)$ в направлении $l=(\cos\alpha,\cos\beta,\cos\gamma)$. Чему равна величина градиента функции в этой точке?

 $(\cos \alpha, \, \cos \beta, \, \cos \gamma)$. Чему равна величина градиента функции в этой точке? \blacktriangleleft Очевидно, $\frac{\partial u(M)}{\partial x} = 1, \, \frac{\partial u(M)}{\partial y} = 1, \, \frac{\partial u(M)}{\partial z} = 1$. По формуле производной по направлению,

$$\P$$
 Очевидно, $\frac{\partial u}{\partial x} = 1$, $\frac{\partial u}{\partial y} = 1$, $\frac{\partial u}{\partial z} = 1$. По формуле производной по нап получим

 $\frac{\partial u(M)}{\partial l} = \frac{\partial u(M)}{\partial x} \cos \alpha + \frac{\partial u(M)}{\partial y} \cos \beta + \frac{\partial u(M)}{\partial z} \cos \gamma = \cos \alpha + \cos \beta + \cos \gamma.$

Величину градиента определим по формуле $\|\operatorname{grad} u(\boldsymbol{M})\| = \sqrt{\left(\frac{\partial u(\boldsymbol{M})}{\partial x}\right)^2 + \left(\frac{\partial u(\boldsymbol{M})}{\partial y}\right)^2 + \left(\frac{\partial u(\boldsymbol{M})}{\partial z}\right)^2} = \sqrt{3}. \blacktriangleright$

76. Определить угол между градиентами функции $u = x^2 + y^2 + z^2$ в точках $A = (\varepsilon, 0, 0)$ $\mathbf{H} \; \boldsymbol{B} = (0, \, \boldsymbol{\varepsilon}, \, 0).$

(1)

§ 2. Частные производные и дифференциалы функции векторного аргумента ■ Имеем

$$\operatorname{grad} u(\boldsymbol{A}) = \left(\frac{\partial u(\boldsymbol{A})}{\partial x}, \ \frac{\partial u(\boldsymbol{A})}{\partial y}, \ \frac{\partial u(\boldsymbol{A})}{\partial z}\right) = (2\varepsilon, 0, 0),$$

$$\operatorname{grad} u(B) = \left(\frac{\partial u(B)}{\partial x}, \frac{\partial u(B)}{\partial y}, \frac{\partial u(B)}{\partial z}\right) = (0, 2\varepsilon, 0).$$

Отсюда $\|\operatorname{grad} u(A)\| = 2|\varepsilon|$, $\|\operatorname{grad} u(B)\| = 2|\varepsilon|$. Подставляя эти значения в равенство $(\operatorname{grad} u(A), \operatorname{grad} u(B)) = \|\operatorname{grad} u(A)\| \|\operatorname{grad} u(B)\| \cos \varphi,$

$$(\operatorname{grad} u(\boldsymbol{A}), \operatorname{grad} u(\boldsymbol{B})) = \|\operatorname{grad} u(\boldsymbol{A})\| \|\operatorname{grad} u(\boldsymbol{B})\| \cos \varphi,$$

получаем
$$\cos \varphi = 0$$
, т. е. $\varphi = \frac{\pi}{2}$.

77. Показать, что в точке $m{M}_0 = (x_0,\,y_0,\,z_0)$ угол между градиентами функций $u = ax^2 +$

 by^2+cz^2 , $v=ax^2+by^2+cz^2+2mx+2ny+2pz$ (a,b,c,m,n,p— постоянные и $a^2+b^2+c^2\neq 0$)

стремится к нулю, если точка M_0 удаляется в бесконечность. \blacktriangleleft Имеем $\cos \varphi = \frac{(\operatorname{grad} u, \operatorname{grad} v)}{\|\operatorname{grad} u\| \|\operatorname{grad} v\|}$, где

■ Имеем
$$\cos \varphi = \frac{16\pi^2 - 36\pi^2 + 7}{\|\text{grad u}\| \|\text{grad v}\|}$$
, где

 $\operatorname{grad} u = (2ax_0, 2by_0, 2cz_0), \quad \operatorname{grad} v = (2ax_0 + 2m, 2by_0 + 2n, 2cz_0 + 2p),$

$$\|\operatorname{grad} u\| = 2\sqrt{(ax_0)^2 + (by_0)^2 + (cz_0)^2}, \quad \|\operatorname{grad} v\| = 2\sqrt{(ax_0 + m)^2 + (by_0 + n)^2 + (cz_0 + p)^2}.$$

$$||\operatorname{grad} u|| = 2\sqrt{(ax_0)^2 + (by_0)^2 + (cz_0)^2},$$

$$||\operatorname{Corps} \operatorname{vrop} ||(cx_0)\operatorname{predeffer}|| = 0$$

$${
m Torga}$$
 угол $arphi$ определяется из равенства

Согда угол
$$arphi$$
 определяется из равенств

огда угол
$$\varphi$$
 определяется из равенство

огда угол
$$\varphi$$
 определяется из равенств
$$ax_0(ax_0 +$$

огда угол
$$\varphi$$
 определяется из равенства $ax_0(ax_0 + x_0)$

$$ax_0(ax_0 + ax_0)$$

$$\cos\varphi = \frac{ax_0(ax_0+m) + by_0(by_0+n) + cz_0(cz_0+p)}{\sqrt{((ax_0)^2 + (by_0)^2 + (cz_0)^2)((ax_0+m)^2 + (by_0+n)^2 + (cz_0+p)^2)}}$$

$$\cos \varphi = \frac{ax_0(ax_0 + i)}{\sqrt{((ax_0)^2 + (by_0)^2 + (ax_0)^2 + (by_0)^2 + (ax_0)^2 + (by_0)^2 + (ax_0)^2 + (ax_$$

$$\cos \varphi = \frac{1}{\sqrt{((ax_0)^2 + (by_0)^2 + (c_0)^2 + (c_0)^2$$

$$\sqrt{((ax_0)^2 + (by_0)^2 + (by_0)^2 + (by_0)^2}$$

Вычислим
$$\sin \varphi$$
 и покажем, что $\sin \varphi \to 0$, если $\sqrt{x_0^2 + y_0^2 + z_0^2} \to \infty$:

$$|\sin\varphi| = \sqrt{1-\cos^2\varphi} = \sqrt{\frac{(ax_0n - by_0m)^2 + (ax_0p - cz_0m)^2 + (by_0p - cz_0n)^2}{((ax_0)^2 + (by_0)^2 + (cz_0)^2)((ax_0 + m)^2 + (by_0 + n)^2 + (cz_0 + p)^2)}}.$$

$$|\sin \varphi| = \sqrt{1 - \cos^2 \varphi} = \sqrt{\frac{(xz_0n - yy_0m) + (xz_0p - zz_0m) + (yy_0p - zz_0n)}{((ax_0)^2 + (by_0)^2 + (zz_0)^2)((ax_0 + m)^2 + (by_0 + n)^2 + (zz_0 + p)^2)}}$$
. Пользуясь неравенствами $2|x_0y_0| \leqslant x_0^2 + y_0^2$, $2|x_0z_0| \leqslant x_0^2 + z_0^2$, $2|y_0z_0| \leqslant y_0^2 + z_0^2$ и обозначая наибольший по абсолютной величине из коэффициентов числителя при x_0^2 , y_0^2 и z_0^2 , через

$$A^2$$
, получаем оценку
$$(ax_0n-by_0m)^2+(ax_0p-cz_0m)^2+(by_0p-cz_0n)^2\leqslant A^2(x_0^2+y_0^2+z_0^2).$$

тогда
$$a^2x_0^2 + b^2y_0^2 + c^2z_0^2 \geqslant B^2(x_0^2 + y_0^2 + z_0^2)$$
. Таким образом, имеем оценку

$$0\leqslant |\sin\varphi|\leqslant \frac{A\sqrt{x_0^2+y_0^2+z_0^2}}{B\sqrt{x_0^2+y_0^2+z_0^2}\sqrt{(ax_0+m)^2+(by_0+n)^2+(cz_0+p)^2}}=$$

Очевидно, если
$$\sqrt{x_0^2+y_0^2+z_0^2} o \infty$$
, то

 $\sqrt{(ax_0+m)^2+(by_0+n)^2+(cz_0+p)^2}\to\infty$

поэтому из неравенства (1) следует, что $\sin \varphi$, а вместе с ним и φ стремится к нулю, если точка M_0 удаляется в бесконечность. \blacktriangleright

He ограничивая общности, будем считать, что $a \neq 0$, $b \neq 0$, $c \neq 0$. Пусть $B = \min\{|a|, |b|, |c|\}$,

 $=\frac{A}{B\sqrt{(ax_0+m)^2+(by_0+n)^2+(cz_0+p)^2}}$

78. Пусть $u=f(x,\,y,\,z)$ — дважды дифференцируемая функция и $l_1=(\coslpha_1,\,\coseta_1,\,$ $\cos \gamma_1$), $l_2=(\cos \alpha_2,\,\cos \beta_2,\,\cos \gamma_2),\,\,l_3=(\cos \alpha_3,\,\cos \beta_3,\,\cos \gamma_3)$ — три взаимно перпепдикуляр-

ных направления. Доказать, что: a) $\left(\frac{\partial u}{\partial l_1}\right)^2 + \left(\frac{\partial u}{\partial l_2}\right)^2 + \left(\frac{\partial u}{\partial l_3}\right)^2 = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2$;

6)
$$\frac{\partial^2 u}{\partial l_1^2} + \frac{\partial^2 u}{\partial l_2^2} + \frac{\partial^2 u}{\partial l_3^2} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}.$$

 \blacktriangleleft а) Находим производные функции u по направлениям l_1, l_2, l_3 :

$$\frac{\partial u}{\partial l_1} = \frac{\partial u}{\partial x} \cos \alpha_1 + \frac{\partial u}{\partial y} \cos \beta_1 + \frac{\partial u}{\partial z} \cos \gamma_1,$$

$$\frac{\partial u}{\partial l_2} = \frac{\partial u}{\partial x} \cos \alpha_2 + \frac{\partial u}{\partial y} \cos \beta_2 + \frac{\partial u}{\partial z} \cos \gamma_2,$$

$$\frac{\partial u}{\partial l_3} = \frac{\partial u}{\partial x} \cos \alpha_3 + \frac{\partial u}{\partial y} \cos \beta_3 + \frac{\partial u}{\partial z} \cos \gamma_3.$$

 $+2\frac{\partial u}{\partial u}\frac{\partial u}{\partial z}(\cos\beta_1\cos\gamma_1+\cos\beta_2\cos\gamma_2+\cos\beta_3\cos\gamma_3).$

(1)

(2)

(3)

Отсюда непосредственно следует:

$$\left(\frac{\partial u}{\partial l_1}\right)^2 + \left(\frac{\partial u}{\partial l_2}\right)^2 + \left(\frac{\partial u}{\partial l_3}\right)^2 = \left(\frac{\partial u}{\partial x}\right)^2 \left(\cos^2 \alpha_1 + \cos^2 \alpha_2 + \cos^2 \alpha_3\right) + \\
+ \left(\frac{\partial u}{\partial y}\right)^2 \left(\cos^2 \beta_1 + \cos^2 \beta_2 + \cos^2 \beta_3\right) + \left(\frac{\partial u}{\partial z}\right)^2 \left(\cos^2 \gamma_1 + \cos^2 \gamma_2 + \cos^2 \gamma_3\right) + \\
+ 2\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} \left(\cos \alpha_1 \cos \beta_1 + \cos \alpha_2 \cos \beta_2 + \cos \alpha_3 \cos \beta_3\right) + \\$$

Поскольку матрица

является матрицей перехода от ортонормированного базиса
$$(i,j,k)$$
 к ортонормированному базису (l_1, l_2, l_3) , то она обладает тем свойством, что сумма квадратов элементов любой строки (столбца) равна единице, а сумма произведений соответствующих элементов двух различных строк (столбцов) равна нулю.

 $\begin{pmatrix}
\cos \alpha_1 & \cos \beta_1 & \cos \gamma_1 \\
\cos \alpha_2 & \cos \beta_2 & \cos \gamma_2 \\
\cos \alpha_3 & \cos \beta_3 & \cos \gamma_3
\end{pmatrix}$

 $+2\frac{\partial u}{\partial z}\frac{\partial u}{\partial z}(\cos\alpha_1\cos\gamma_1+\cos\alpha_2\cos\gamma_2+\cos\alpha_3\cos\gamma_3)+$

Таким образом, в равенстве (2) коэффициенты при квадратах производных $\left(\frac{\partial u}{\partial x}\right)^2$, $\left(\frac{\partial u}{\partial y}\right)^2$, $\left(\frac{\partial u}{\partial z}\right)^2$ равны единице, а при произведениях производных $\frac{\partial u}{\partial x}\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial x}\frac{\partial u}{\partial z}$, $\frac{\partial u}{\partial x}\frac{\partial u}{\partial z}$ равны нулю.

$$(\partial z)$$
 решини одинис, а при проповедения проповедения $\partial z \, \partial y, \, \partial z \, \partial z, \, \partial y$ Учитывая это, из равенство (2) непосредственно получаем равенство а).

б) Находим $\frac{\partial^2 u}{\partial l_1^2} = \frac{\partial}{\partial l_1} \left(\frac{\partial u}{\partial l_1} \right)$, где $\frac{\partial u}{\partial l_1}$ определено первым из равенств (1):

$$\frac{\partial^2 u}{\partial l_1^2} = \frac{\partial^2 u}{\partial x^2} \cos^2 \alpha_1 + \frac{\partial^2 u}{\partial y^2} \cos^2 \beta_1 + \frac{\partial^2 u}{\partial z^2} \cos^2 \gamma_1 + \frac{\partial^2 u}{\partial z^2} \cos^2 \gamma_1 + \frac{\partial^2 u}{\partial z^2} \cos^2 \gamma_2 + \frac{\partial^2 u}{\partial z^2} \cos^2 \gamma_$$

 $+2\frac{\partial^2 u}{\partial x \partial u}\cos \alpha_1\cos \beta_1+2\frac{\partial^2 u}{\partial x \partial z}\cos \alpha_1\cos \gamma_1+2\frac{\partial^2 u}{\partial u \partial z}\cos \beta_1\cos \gamma_1.$

Аналогично вычисляем $\frac{\partial^2 u}{\partial l_2^2}$, $\frac{\partial^2 u}{\partial l_3^2}$. Складывая полученные равенства, находим $\frac{\partial^2 u}{\partial l_1^2} + \frac{\partial^2 u}{\partial l_2^2} + \frac{\partial^2 u}{\partial l_3^2} = \frac{\partial^2 u}{\partial x^2} (\cos^2 \alpha_1 + \cos^2 \alpha_2 + \cos^2 \alpha_3) +$

 $+\frac{\partial^2 u}{\partial y^2}(\cos^2 \beta_1 + \cos^2 \beta_2 + \cos^2 \beta_3) + \frac{\partial^2 u}{\partial z^2}(\cos^2 \gamma_1 + \cos^2 \gamma_2 + \cos^2 \gamma_3) +$ $+2\frac{\partial^2 u}{\partial x \partial y}(\cos \alpha_1 \cos \beta_1 + \cos \alpha_2 \cos \beta_2 + \cos \alpha_3 \cos \beta_3) +$

(1)

(1)

 $+2\frac{\partial^2 u}{\partial u}(\cos \beta_1 \cos \gamma_1 + \cos \beta_2 \cos \gamma_2 + \cos \beta_3 \cos \gamma_3).$

$$+\ 2\frac{\partial^2 u}{\partial x\ \partial z}(\cos\alpha_1\cos\gamma_1+\cos\alpha_2\cos\gamma_2+\cos\alpha_3\cos\gamma_3)\ +$$

Отсюда, воспользовавшись свойством матрицы (3), получим равенство б). ▶

79. Пусть
$$u = u(x, y)$$
 — дифференцируемая функция и при $y = x^2$ имеем $u(x, x^2) = 1$ и

 $\frac{\partial u}{\partial x} = x$. Найти $\frac{\partial u}{\partial y}$ при $y = x^2$.

$$dx$$
 dy Поскольку, по условию, $u(x, x^2) = 1$, то отсюда, используя дифференцируемость функ-

ции u, получаем $\frac{\partial}{\partial x}u(x, x^2)=0$, т. е.

$$\frac{\partial u(x, x^2)}{\partial x} + \frac{\partial u(x, x^2)}{\partial y} 2x = 0.$$

Но, по условию, $\frac{\partial u(x,x^2)}{\partial x}=x$, поэтому из (1) следует, что $\frac{\partial u(x,x^2)}{\partial y}=-\frac{1}{2}$. ▶

80. Пусть функция u=u(x,y) удовлетворяет уравнению $\frac{\partial^2 u}{\partial x^2}-\frac{\partial^2 u}{\partial u^2}=0$ и, кроме того, следующим условиям: u(x, 2x) = x, $u'_x(x, 2x) = x^2$. Найти $u''_{xx}(x, 2x)$, $u''_{xy}(x, 2x)$, $u''_{yy}(x, 2x)$.

 \blacktriangleleft Дифференцируя обе части равенства u(x, 2x) = x по x:

равенства
$$u(x, 2x) = x$$
 по x
 $u'_x(x, 2x) + 2u'_y(x, 2x) = 1$

и пользуясь равенством $u_x'(x, 2x) = x^2$, получаем $x^2 + 2u_y'(x, 2x) = 1$. Последнее равенство

снова дифференцируем по x: $2x + 2u_{yx}''(x, 2x) + 4u_{yy}''(x, 2x) = 0.$

Отсюда, учитывая уравнение $u''_{xx} = u''_{yy}$ и тождество $u''_{xy} = u''_{yx}$, получаем $2u_{xx}''(x, 2x) + u_{xy}''(x, 2x) = -x.$

$$2u_{xx}(x, 2x) + u_{xy}(x, 2x) = -x.$$

Далее, дифференцируя равенство
$$u_x'(x, 2x) = x^2$$
 по x , имеем

иство
$$u_x(x, 2x) = x^*$$
 по x , имеем

CTBO
$$u_x(x, 2x) = x$$
 for x , where $u_x(x, 2x) = x$ for $x \in \mathbb{R}$

$$u''_{xx}(x, 2x) + 2u''_{xy}(x, 2x) = 2x.$$

$$u''_{xx}(x, 2x) + 2u''_{xy}(x, 2x) = 2x.$$

$$u_{xx}(x, 2x) + 2u_{xy}(x, 2x) = 2x.$$

$$\ddot{x} (1) \times (2) \text{ any compart to } x'' = x''$$

Решая систему уравнений (1) и (2) относительно u''_{xx}, u''_{xy} и учитывая, что $u''_{xx} = u''_{yy}$,

$$a_{xx} = a_{xx} + a_{xy} + a_{xy} + a_{xy}$$

$$u = u'' \cdot (x, 2x) = -\frac{4x}{x}, \quad u'' \cdot (x, 2x) = \frac{5x}{x}.$$

$$u''_{xx}(x, 2x) = u''_{yy}(x, 2x) = -\frac{4x}{3}, \quad u''_{xy}(x, 2x) = \frac{5x}{3}.$$

81. Найти решение
$$z=z(x,y)$$
 уравнения $\frac{\partial z}{\partial y}=x^2+2y$, удовлетворяющее условию

 $z(x, x^2) = 1.$

$$x^2)=1.$$
 \blacktriangleleft Интегрируя уравнение по y , находим $z(x,y)=x^2y+y^2+arphi(x)$, где $arphi$ — пока неопре-

деленная функция. Для нахождения неизвестной функции φ используем условие $z(x, x^2) = 1$: $z(x, x^2) \equiv x^2 x^2 + x^4 + \varphi(x) = 1$. Отсюда $\varphi(x) = -2x^4 + 1$. Таким образом, $z(x, y) = x^2 y + y^2 - 2x^4 + 1$.

$$\mathbf{82.}$$
 Найти решение $z=z(x,y)$ уравнения $\dfrac{\partial^2 z}{\partial x\,\partial y}=x+y$, удовлетворяющее условиям

находим

$$z(x, 0) = x, z(0, y) = y^2.$$

• Имеем

$$\frac{\partial z(x, y)}{\partial y} = \int_{0}^{x} (x + y) dx + \varphi_{0}(y) \equiv \frac{x^{2}}{2} + xy + \varphi_{0}(y),$$

 $z(x, y) = \int \left(\frac{x^2}{2} + xy + \varphi_0(y)\right) dy \equiv \frac{x^2y}{2} + \frac{xy^2}{2} + \varphi(y) + \psi(x),$

где $\varphi(y) = \int \varphi_0(y) \, dy$.

Используя условие z(x,0)=x, находим $z(x,0)\equiv \psi(x)=x$; следовательно, $z(x,y)=\frac{x^2y}{x^2}+\frac{xy^2}{x^2}+\varphi(y)+x$.

 $\frac{z}{2} + \frac{z}{2} + \varphi(y) + x$.

Далее, из условия $z(0, y) = y^2$ следует $z(0, y) \equiv \varphi(y) = y^2$. Таким образом, окончательно имеем $z(x, y) = \frac{x^2y + xy^2}{2} + y^2 + x$.

83. Найти решение z=z(x,y) уравнения $\frac{\partial^2 z}{\partial u^2}=2$, удовлетворяющее условиям z(x,0)=

 $1, z_y'(x,0) = x.$

■ Аналогично предыдущему $\frac{\partial z(x,y)}{\partial y} = 2y + \varphi(x), \ z(x,y) = y^2 + y\varphi(x) + \psi(x).$ Принимая во внимание, что $z(x,0) \equiv \psi(x) = 1, \ z_y'(x,0) \equiv \varphi(x) = x$, окончательно находим $z(x,y) = y^2 + xy + 1.$ ▶

, y) = y + xy + 1. ► Найти производную следующих отображений **f** o g:

84.
$$f:(r,\varphi)\mapsto \begin{pmatrix} r\cos\varphi\\r\sin\varphi \end{pmatrix}, \quad g:(x,y)\mapsto \begin{pmatrix} \sqrt{x^2+y^2}\\\operatorname{arctg}\frac{y}{x} \end{pmatrix}, \text{ если}$$

$$x = r \cos \varphi, \quad y = r \sin \varphi, \quad (r, \varphi) \in D,$$

$$D = \{(r, \varphi) : 0 < \alpha \le r \le R, \ 0 \le \varphi \le 2\pi - \delta, \ 0 < \delta < 2\pi\}.$$
(1)

◀ По формуле дифференцирования сложного отображения находим

$$(f \circ g)' = f' \cdot g' = \begin{pmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{pmatrix} \begin{pmatrix} \frac{x}{\sqrt{x^2 + y^2}} & \frac{y}{\sqrt{x^2 + y^2}} \\ -\frac{y}{\sqrt{x^2 + y^2}} & \frac{x}{\sqrt{x^2 + y^2}} \end{pmatrix}.$$
 (2)

Поскольку $x^2 + y^2 \approx r^2$, то из (1) и (2) получаем

$$(f \circ g)' = \begin{pmatrix} \frac{x \cos \varphi}{\sqrt{x^2 + y^2}} + \frac{ry \sin \varphi}{x^2 + y^2} & \frac{y \cos \varphi}{\sqrt{x^2 + y^2}} - \frac{rx \sin \varphi}{x^2 + y^2} \\ \frac{x \sin \varphi}{\sqrt{x^2 + y^2}} - \frac{ry \cos \varphi}{x^2 + y^2} & \frac{y \sin \varphi}{\sqrt{x^2 + y^2}} + \frac{rx \cos \varphi}{x^2 + y^2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \blacktriangleright$$

$$egin{aligned} \mathbf{85.} \ f\colon (r,\,arphi,\,z) \mapsto egin{pmatrix} r\cosarphi \ r\sinarphi \ z \end{pmatrix}, \quad g\colon (x,\,y,\,z) \mapsto egin{pmatrix} \sqrt{x^2+y^2} \ \mathrm{arctg}\,rac{y}{z} \ \end{array} \end{pmatrix},$$
 если

$$x = r \cos \varphi, \ y = r \sin \varphi, \ z = z, \ (r, \varphi, z) \in D,$$
 (1)

$$D = \{(r, \varphi, z) : 0 < \alpha \leqslant r \leqslant R, \ 0 \leqslant \varphi \leqslant 2\pi - \delta, \ |z| \leqslant H, \ 0 < \delta < 2\pi\}.$$

◀ Имеем

$$(f \circ g)' = f' \cdot g' =$$

$$= \begin{pmatrix} \cos \varphi & -r \sin \varphi & 0 \\ \sin \varphi & r \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{x}{\sqrt{x^2 + y^2}} & \frac{y}{\sqrt{x^2 + y^2}} & 0 \\ -\frac{y}{x^2 + y^2} & \frac{x}{x^2 + y^2} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{x \cos \varphi}{\sqrt{x^2 + y^2}} + \frac{ry \sin \varphi}{x^2 + y^2} & \frac{y \cos \varphi}{\sqrt{x^2 + y^2}} - \frac{rx \sin \varphi}{x^2 + y^2} & 0 \\ \frac{x \sin \varphi}{\sqrt{x^2 + y^2}} - \frac{ry \cos \varphi}{x^2 + y^2} & \frac{y \sin \varphi}{\sqrt{x^2 + y^2}} + \frac{rx \cos \varphi}{x^2 + y^2} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Учитывая равенства (1), окончательно находим

$$(\boldsymbol{f} \circ \boldsymbol{g})' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \blacktriangleright$$

Найти $(f \circ g)'$ и $(g \circ f)'$.

Аналогично находим, что

⋖ Имеем

А поскольку

87. Найти F', если $F = (f \circ g \circ h)(s, t, u)$,

$$g:(r,\,arphi,\, heta)\mapsto egin{pmatrix} r\cosarphi\sin heta\ r\sinarphi\sin heta\ r\cos heta \end{pmatrix},\quad f:(x\,y,\,z)\mapsto egin{pmatrix} \sqrt{x^2+y^2+z^2}\ ext{arctg}\ rac{y}{z}\ ext{arccos}\ rac{z}{\sqrt{z^2+z^2+z^2+z^2}} \end{pmatrix},$$

◀ По формуле дифференцирования сложного отображения, находим

Умножив матрицы и подставив вместо $m{x},m{y}$ и $m{z}$ их значения из (1), получим

$$g:(r,\varphi,\theta)\mapsto egin{pmatrix} r\cos\varphi\sin\theta \ r\sin\varphi\sin\theta \ r\cos\theta \end{pmatrix},\quad f:(x\,y,\,z)\mapsto egin{pmatrix} \sqrt{x^2+y^2+z^2} \ rctgrac{y}{z} \ rctg -z \end{pmatrix},$$

$$g:(r,\,arphi,\, heta)\mapsto egin{pmatrix} r\cosarphi\sin heta\ r\sinarphi\sin heta\ \end{pmatrix},\quad f:(x\,y,\,z)\mapsto egin{pmatrix} rcctg\,rac{y}{z}\ rccos-rac{z}{z} \end{pmatrix},$$

$$g:(r,\,arphi,\, heta)\mapsto egin{pmatrix} r\cosarphi\sin heta\ r\sinarphi\ n\end{pmatrix},\quad f:(x\,y,\,z)\mapsto egin{pmatrix} rctgrac{y}{x}\ rccosrac{-z}{z} \end{pmatrix},$$

 $(r, \varphi, \theta) \in D, D = \{(r, \varphi, \theta) : 0 < \alpha \le r \le R, 0 \le \varphi \le 2\pi - \delta, 0 \le \theta \le \pi, 0 < \delta < 2\pi\},$ $x = r \cos \varphi \sin \theta$, $y = \sin \varphi \sin \theta$, $z = r \cos \theta$.

 $=\begin{pmatrix} \frac{x}{\sqrt{x^2+y^2+z^2}} & \frac{y}{\sqrt{x^2+y^2+z^2}} & \frac{z}{\sqrt{x^2+y^2+z^2}} \\ -\frac{y}{x^2+y^2} & \frac{x}{z^2+y^2} & 0 \\ \frac{xz}{\sqrt{x^2+y^2(x^2+z^2+z^2+z^2+z^2)}} & \frac{yz}{\sqrt{x^2+z^2+z^2+z^2+z^2+z^2}} & -\frac{\sqrt{x^2+y^2}}{x^2+y^2+z^2} \end{pmatrix} \begin{pmatrix} \cos\varphi\sin\theta & -r\sin\varphi\sin\theta & r\cos\varphi\cos\theta \\ \sin\varphi\sin\theta & r\cos\varphi\sin\theta & r\sin\varphi\cos\theta \\ \cos\theta & 0 & -r\sin\theta \end{pmatrix}.$

 $(\boldsymbol{f} \circ \boldsymbol{g})' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

 $(\mathbf{g} \circ \mathbf{f})' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \blacktriangleright$

 $f:(x, y) \mapsto \begin{pmatrix} \sqrt{x^2 + y^2} \\ \operatorname{arctg} \frac{y}{z} \end{pmatrix}, \quad g:(r, \varphi) \mapsto \begin{pmatrix} r\cos\varphi \\ r\sin\varphi \end{pmatrix}, \quad h:(s, t, u) \mapsto \begin{pmatrix} stu \\ s^2 + t^2 + u^2 \end{pmatrix},$

 $x = r\cos\varphi$, $y = r\sin\varphi$, r = stu, $\varphi = s^2 + t^2 + u^2$.

 $F' = f' \cdot a' \cdot h'$

 $\mathbf{F}' = (\mathbf{f}' \cdot \mathbf{a}') \cdot \mathbf{h}'.$

 $f'\cdot g' = \left(\begin{array}{cc} \frac{x}{\sqrt{x^2+y^2}} & \frac{y}{\sqrt{x^2+y^2}} \\ \frac{y}{-\frac{x^2}{2^2+x^2}} & \frac{x}{2^2+x^2} \end{array}\right) \left(\begin{array}{cc} \cos\varphi & -r\sin\varphi \\ \sin\varphi & r\cos\varphi \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right); \quad h' = \left(\begin{array}{cc} tu & su & st \\ 2s & 2t & 2u \end{array}\right),$

 $\mathbf{F}' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} tu & su & st \\ 2s & 2t & 2u \end{pmatrix} = \begin{pmatrix} tu & su & st \\ 2s & 2t & 2u \end{pmatrix}. \blacktriangleright$

Упражнения для самостоятельной работы

17. $f(x, y) = \frac{\sin xy}{y}$. 18. $f(x, y, z) = \ln(xy^2z^3)$. 19. $f(x, y) = x^4y + 2x^2y^2 + xy^3 + x - y$.

23. $f(x, y) = \arctan \frac{y}{x}$. 24. $f(x, y) = \sqrt{x^2 + y^2 - x + 1}$. 25. $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$.

20. $f(x, y) = \frac{x+y^2}{x^2+y^2+1}$. **21.** $f(x, y) = \frac{x}{y}$. **22.** $f(x, y) = (2x^2y^2 - x + 1)^3$.

В силу ассоциативности произведения матриц, справедливо равенство

Найти частные производные следующих функций:

$$g:(r, \varphi, \theta) \mapsto \begin{pmatrix} r\cos\varphi\sin\theta \\ r\sin\varphi\sin\theta \end{pmatrix}, \quad f:(xy, z) \mapsto \begin{pmatrix} x^2 & y^2 \\ arctg & x \\ z & z \end{pmatrix},$$

$$q:(r, \varphi, \theta) \mapsto \begin{pmatrix} r\cos\varphi\sin\theta \\ r\sin\varphi\sin\theta \end{pmatrix}, \quad f:(xy, z) \mapsto \begin{pmatrix} \sqrt{x^2 + y^2 + z^2} \\ \arcsin\frac{y}{r} \end{pmatrix}$$

$$\begin{pmatrix} r\cos\varphi\sin\theta \\ \sin\theta \end{pmatrix} \qquad \begin{pmatrix} \sqrt{x^2+y^2+z^2} \\ \arctan\theta \end{pmatrix}$$

$$a: (r, \omega, \theta) \mapsto \begin{pmatrix} r\cos\varphi\sin\theta \\ r\sin\varphi\sin\theta \end{pmatrix} \qquad f: (xy, z) \mapsto \begin{pmatrix} \sqrt{x^2 + y^2 + z^2} \\ \arctan\frac{y}{x} \end{pmatrix}$$

$$\left(\frac{\sqrt{x^2 + y^2 + z^2}}{\sqrt{x^2 + y^2 + z^2}} \right)$$

145

(1)

26. $f(x, y) = 2^{x-y}$. **27.** $f(x, y) = \ln(x^3 + \sin xy)$. **28.** $f(x, y, z) = \ln(x^3 + 2^y + \tan 3z)$.

29. $f(x, y) = \cos(2x + 3y + 1)$. **30.** $f(x, y) = e^{-x^3y}$. **31.** $f(x, y) = (x + 1)^{2y+1}$.

32. $f(x, y) = \operatorname{arctg} \frac{x+y}{1-xy}$. 33. $f(x, y) = 2^{-\frac{x}{y}}$. 34. $f(x, y) = \ln(e^x + 2e^y)$. **35.** $f(x, y) = \arctan \frac{x}{y^2}$. **36.** $f(x, y) = xy - \frac{3}{x} + \frac{5}{y}$.

37. $f(x, y, z) = x^2 + y^2 + z^2 + xy + xz + yz + xyz$. **38.** $f(x, y, z) = (xy)^z$.

39. $f(x, y, z) = z^{xy}$. **40.** $f(x, y, z) = \operatorname{arctg} x + \operatorname{arctg} y + \operatorname{arctg} z$. Найти дифференциалы следующих функций:

41. $f(x, y) = \sin(x^2 + y^2)$. **42.** $f(x, y) = \arccos(xy)$. **43.** $f(x, y) = \ln \log \frac{x}{y}$.

44. $f(x, y) = \arctan(x^2 + y^2)$. **45.** $f(x, y, z) = \ln(x + y - z)$. **46.** $f(x, y) = x^y$.

47. $f(x, y) = \cos(xy)$. **48.** $f(x, y) = x^3 + y^3 - xy$.

49. $f(x, y) = e^{-xy}$. **50.** $f(x, y, z) = x^3y + y^3x + z^3y$.

Непосредственным вычислением производных проверить теорему Эйлера об однородных функциях:

51.
$$f(x, y, z) = (x^2 + y^2 + z^2)^{\frac{1}{2}} \ln \frac{x}{y}$$
. 52. $f(x, y, z) = \frac{y}{x} e^{\frac{x}{z}}$. 53. $f(x, y, z) = \sin \frac{x + y + z}{\sqrt{x^2 + y^2 + z^2}}$.

54.
$$f(x, y, z) = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$
. 55. $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$. 56. $f(x, y) = \operatorname{arctg} \frac{z}{y}$. Найти частные производные первого и второго порядков в следующих примерах:

57. $f(x, y) = \frac{1}{2} \ln(x^2 + y^2)$. 58. $f(x, y) = \arctan \frac{x+y}{1-xy}$.

59. $f(x, y) = x \sin(x + y) + y \cos(x + y)$. **60.** $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$.

Найти производные первых двух порядков от функций:

61. $u = \varphi(\xi, \eta), \ \xi = x + y, \ \eta = x - y.$ **62.** $u = \varphi(\xi, \eta), \ \xi = x^2 + y^2 + z^2, \ \eta = xyz.$

63. $u = \varphi(\xi, \eta), \ \xi = \frac{x}{u}, \ \eta = \frac{y}{x}$

64. Показать, что если $x^2=\eta\xi,\,y^2=\zeta\,\xi,\,z^2=\zeta\eta$, то $x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}+z\frac{\partial u}{\partial z}=\xi\frac{\partial u}{\partial \xi}+\eta\frac{\partial u}{\partial \eta}+\zeta\frac{\partial u}{\partial \zeta}$.

65. Полагая $x = ar \cos^{\alpha} \varphi$, $y = br \sin^{\alpha} \varphi$, найти якобиан

 $\begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial y} & \frac{\partial y}{\partial y} \end{vmatrix}.$

66. Полагая $x = ar \cos^{\alpha} \varphi \sin^{\alpha} \theta$, $y = br \sin^{\alpha} \varphi \sin^{\alpha} \theta$, $z = cr \cos^{\alpha} \theta$, найти якобиан

$$\frac{\mathcal{D}(x,y,z)}{\mathcal{D}(r,\varphi,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \varphi} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \varphi} & \frac{\partial y}{\partial \theta} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \varphi} & \frac{\partial z}{\partial \theta} \end{vmatrix}.$$

67. Полагая $x = \xi \eta \zeta$, $y = \xi \eta - \xi \eta \zeta$, $z = \eta - \xi \eta$, найти якобиан $\frac{\mathcal{D}(x,y,z)}{\mathcal{D}(\xi,\eta,\zeta)}$.

68. Доказать, что если $x=\cos\varphi,\,y=\sin\varphi\cos\theta,\,z=\sin\varphi\sin\dot\theta\cos\dot\psi,$ то якобиан равен $-\sin^3\varphi\sin^2\theta\sin\psi$.

69. Доказать, что при $u_1=rac{x_1}{\sqrt{1-r^2}},\, u_2=rac{x_2}{\sqrt{1-r^2}},\, u_3=rac{x_3}{\sqrt{1-r^2}},\,$ где $r^2=x^2+y^2+z^2,$ справедливо равенство

$$\frac{\mathcal{D}(u_1, u_2, u_3)}{\mathcal{D}(x_1, x_2, x_3)} = (1 - r^2)^{-\frac{5}{2}}.$$

70. Проверить, что $\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$, если $u = \frac{1}{\sqrt{t}} e^{-\frac{x^2}{4a^2t}}$.

71. Проверить, что $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$, если $u = \left(\frac{x}{y}\right)^{\frac{\gamma}{y}}$.

Вычислить выражения: 72. $\frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2}$, если $u = \varphi(x+y)$.

73. $\frac{\partial^2 u}{\partial x^2} \frac{\partial^2 u}{\partial y^2} - \left(\frac{\partial^2 u}{\partial x \partial y}\right)^2$, ecan $u = \varphi(xy)$.

Проверить следующие равенства:

74.
$$\left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}\right)^2 u = 0, u = \sqrt{x^2 + y^2 + z^2}.$$

75.
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x+y+z}$$
, $u = \ln(x^3 + y^3 + z^3 - 3xyz)$.

75.
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x+y+z}, \quad u = \ln(x^3 + y^3 + z^3 - 3xyz).$$
76.
$$\frac{1}{x} \frac{\partial z}{\partial x} + \frac{1}{u} \frac{\partial z}{\partial u} = \frac{z}{u^2}, \quad z = y\varphi(x^2 + y^2).$$
77.
$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial u^2} - 2\alpha \frac{\partial u}{\partial u} = \alpha^2 u, \quad u = e^{-\alpha x} \varphi(x - y).$$

78.
$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x^2} = -2\varphi'', \ u = \varphi(y-z) - x\varphi'(y-z).$$

$$79. (x^2 - y^2) \frac{\partial z}{\partial x} + xy \frac{\partial z}{\partial y} = xyz, z = e^y \varphi \left(y e^{\frac{x^2}{2y^2}} \right). 80. \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, u = \ln(x^2 + y^2).$$

81.
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$$
, , если $u = x\varphi\left(\frac{y}{x}\right)$.

82.
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = n(n-1)u$$
, rge $u = x^n \varphi\left(\frac{y}{x}\right) + x^{1-n} \varphi\left(\frac{y}{x}\right)$.

83.
$$\frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$$
, если $u = x \varphi(x+y) + y \psi(x+y)$.

84.
$$a^2\left(u\frac{\partial^2 u}{\partial x^2} - \left(\frac{\partial u}{\partial x}\right)^2\right) = b^2\left(u\frac{\partial^2 u}{\partial y^2} - \left(\frac{\partial u}{\partial y}\right)^2\right)$$
, где $u = \varphi(ay + bx)\psi(bx - ay)$.

85.
$$\frac{\partial u}{\partial x} \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial u}{\partial y} \frac{\partial^2 u}{\partial x^2}$$
, echw $u = f(x + \varphi(y))$. 86. $\frac{\partial^2 \ln z}{\partial x \partial y} = 2z$, $z = \frac{\varphi'(x)\psi'(y)}{(\varphi(x) + \psi(y))^2}$.

§ 3. Неявные функции

3.1. Принцип неподвижной точки.

Пусть X — метрическое пространство.

Определение 1. Оператор (отображение) $A: X \to X$ называется сжимающим, если

$$\exists \theta \in [0, 1[\land \forall x, y \in X : \rho(Ax, Ay) \leqslant \theta \rho(x, y).$$

Из определения следует, что оператор A удовлетворяет условию Липшица и, следовательно, равномерно непрерывен.

Определение 2. Точка $x \in A$ называется неподвижной точкой оператора A, если

Ax = x m. e. если она является решением операторного уравнения Ax = x. ${m Teopema}$ (Каччиополли— Π икара— Банаха). Bсякий сжимающий оператор A, отобра-

жающий полное метрическое пространство X в себя, имеет в этом пространстве единственную неподвижную точку.

3.2. Определение неявной функции.

Пусть задано отображение $f: X \times Y \to Z$, где $X \subset \mathbb{R}^n, Y \subset \mathbb{R}^n, Z \subset \mathbb{R}^n$, причем множество Z содержит нулевой элемент пространства \mathbb{R}^n .

Рассмотрим уравнение

$$f(x, y) = 0. (1)$$

Если существуют непустые множества $E \subset X$ и $F \subset Y$ такие, что $\forall x \in E$ уравнение (1) имеет единственное решение $y \in F$, то можно определить отображение $\varphi: E \to F$, поставив в соответствие каждому $x \in E$ то значение $y = \varphi(x), \ y \in F$, которое при этом x является решением уравнения (1). В этом случае уравнение (1) определяет φ как неявное отображение $E \to F: m{x} \mapsto m{arphi}(m{x})$, которое называется неявным отображением (при $n=1-m{\phi}$ ункцией), определяемым уравнением (1).

3.3. Теоремы о неявной функции.

Пусть задано уравнение

$$f(x_1, x_2, \ldots, x_m, y) = 0,$$
 (1)

которое запишем в виде f(x, y) = 0.

Эдесь $x = (x_1, x_2, \dots, x_m), x \in S(x_0, a), x_0 = (x_1^0, x_2^0, \dots, x_m^0), y \in S(y_0, b), S(y_0, b) =$ $[y_0 - b, y_0 + b[$. Обозначим $D = S(x_0, a) \times S(y_0, b)$.

moure (x_0, y_0) ; 3) $f'_y(x_0, y_0) \neq 0$. Tогда $\exists \delta \in]0, a[\Lambda \exists \epsilon \in]0, b[$ такие, что уравнение (1) определяет единственную функцию $y: \bar{S}(x_0, \delta) \to \bar{S}(y_0, \epsilon),$ непрерывную в шаре $\bar{S}(x_0, \delta)$, и такую, что $y(x_0) = y_0$.

Теорема 1. Пусть функция $f:D o\mathbb{R}$ удовлетворяет следующим условиям: 1) f непрерывная в D и $f(x_0, y_0) = 0; 2)$ в D существует частная производная f'_v , непрерывная в

 \mathbb{R}^{m+1} существуют непрерывные производные $f'_{m{x}_j},\ j=\overline{1,\ m},\ f'_{m{y}},\$ причем $f'_{m{y}}
eq 0$. Тогда неявная функция $y: \bar{S}(x_0, \delta) \to \bar{S}(y_0, \epsilon)$, определенная уравнением (1), дифференцируема в каждой точке шара $S(oldsymbol{x}_0,\,\delta),$ а ее частные производные вычисляются по формулам

Теорема 2. Пусть выполнены все условия теоремы 1 и в области $S(x_0, \delta) \times S(y_0, \varepsilon) \subset$

$$y'_{xj}(\mathbf{x}) = -\frac{f'_{xj}(\mathbf{x}, \mathbf{y})}{f'_{t}(\mathbf{x}, \mathbf{y})}, \quad j = \overline{1, m}. \tag{3}$$

Пусть задана система уравнений

этом

148

$$f_i(x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_n) = 0, \quad i = \overline{1, n},$$

f(x, y) = 0.

Здесь $\boldsymbol{x}=(x_1,\,x_2,\,\ldots,\,x_m),\,\,\boldsymbol{x}\in S(\boldsymbol{x}_0,\,a),\,\,\boldsymbol{x}_0=(x_1^0,\,x_2^0,\,\ldots,\,x_m^0),\,\,\boldsymbol{y}=(y_1,\,y_2,\,\ldots,\,y_n),\,\,\boldsymbol{y}\in S(\boldsymbol{y}_0,\,b),\,\,\boldsymbol{y}_0=(y_1^0,\,y_2^0,\,\ldots,\,y_n^0).$ Обозначим $\boldsymbol{D}=S(\boldsymbol{x}_0,\,a)\times S(\boldsymbol{y}_0,\,b).$ Tеорема 3. Π усть отображение $f\colon D o \mathbb{R}^n$ удовлетворяет следующим условиям: 1) f

непрерывное в D отображение и $f(x_0, y_0) = 0; 2)$ в D существует частная производная

 $\boldsymbol{f}_y'(\boldsymbol{x},\,\boldsymbol{y}) = \begin{pmatrix} \frac{\partial f_1}{\partial y_1}(\boldsymbol{x}_0,\,\boldsymbol{y}_0) & \frac{\partial f_1}{\partial y_2}(\boldsymbol{x}_0,\,\boldsymbol{y}_0) & \dots & \frac{\partial f_1}{\partial y_n}(\boldsymbol{x}_0,\,\boldsymbol{y}_0) \\ \frac{\partial f_2}{\partial y_1}(\boldsymbol{x}_0,\,\boldsymbol{y}_0) & \frac{\partial f_2}{\partial y_2}(\boldsymbol{x}_0,\,\boldsymbol{y}_0) & \dots & \frac{\partial f_2}{\partial y_n}(\boldsymbol{x}_0,\,\boldsymbol{y}_0) \\ \dots & \dots & \dots & \dots & \dots \\ \frac{\partial f_n}{\partial y_1}(\boldsymbol{x}_0,\,\boldsymbol{y}_0) & \frac{\partial f_n}{\partial y_2}(\boldsymbol{x}_0,\,\boldsymbol{y}_0) & \dots & \frac{\partial f_n}{\partial y_n}(\boldsymbol{x}_0,\,\boldsymbol{y}_0) \end{pmatrix},$

непрерывная в точке (x_0, y_0) ; 3) $\det f_y'(x_0, y_0) = \frac{\mathcal{D}(f_1, f_2, \dots, f_n)}{\mathcal{D}(y_1, y_2, \dots, y_n)} \neq 0$ в точке (x_0, y_0) .

Тогда $\exists \delta \in]0, a[\land \exists \epsilon \in]0, b[$ такие, что уравнение (4) определяет единственное отобра-

прерывные частные производные $f_x, f_y,$ а матрица $f_y(x,y)$ обратима в этой области, то отображение $y: \bar{S}(x_0, \delta) \to \bar{S}(y_0, \epsilon)$ дифференцируемо в каждой точке $x \in S(x_0, \delta)$ и при

жение $\mathbf{y}: \bar{S}(\mathbf{x}_0, \, \delta) \to \bar{S}(\mathbf{y}_0, \, \epsilon),$

непрерывное в замкнутом шаре $\bar{S}(x_0, \delta)$, и такое, что $y(x_0) = y_0$. Теорема 4. Если выполнены все условия теоремы 3 и в области D существуют не-

 $y'(x) = -(f'_{v}(x, y))^{-1}f'_{x}(x, y).$

3.4. Обратное отображение.

Пусть задано отображение $f: X \to Y$, где $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^n$.

Если для каждого $y \in Y$ уравнение f(x) = y имеет единственное решение $x \in X$, то на

множестве Y можно определить отображение $f^{-1}: Y \to X$, поставив в соответствие каждому

 $y \in Y$ то значение $x \in X$, которое при этом y является решением уравнения f(x) = y. Так определенное отображение называется обратным по отношению к отображению f. Ясно, что отображение f является обратным отображению f^{-1} , поэтому отображения f

и f^{-1} называются взаимно обратными. Из данного выше определения следует, что

 $f^{-1}(f(x)) \equiv x \quad \forall x \in X,$ (1) $f(f^{-1}(y)) \equiv y \quad \forall y \in Y.$

(4)

(5)

(3)

§ 3. Неявные функции

Теорема. Пусть отображение $f: X \to Y$ удовлетворяет следующим условиям: 1) f непрерывно в X и $y_0 = f(x_0), x_0 \in X, y_0 \in Y; 2)$ в области X существует производная f, непрерывная в точке x_0 , причем матрица

$$f'(\mathbf{x}_0) = \begin{pmatrix} \frac{\partial f_1}{\partial \mathbf{x}_1}(\mathbf{x}_0) & \frac{\partial f_1}{\partial \mathbf{x}_2}(\mathbf{x}_0) & \dots & \frac{\partial f_1}{\partial \mathbf{x}_n}(\mathbf{x}_0) \\ \frac{\partial f_2}{\partial \mathbf{x}_1}(\mathbf{x}_0) & \frac{\partial f_2}{\partial \mathbf{x}_2}(\mathbf{x}_0) & \dots & \frac{\partial f_2}{\partial \mathbf{x}_n}(\mathbf{x}_0) \\ \dots & \dots & \dots & \dots \\ \frac{\partial f_n}{\partial \mathbf{x}_1}(\mathbf{x}_0) & \frac{\partial f_n}{\partial \mathbf{x}_2}(\mathbf{x}_0) & \dots & \frac{\partial f_n}{\partial \mathbf{x}_n}(\mathbf{x}_0) \end{pmatrix}$$

$$(2)$$

невырождена, т.е. $\det f'(x_0) = \frac{\mathcal{D}(f_1, f_2, \dots, f_n)}{\mathcal{D}(x_1, x_2, \dots, x_n)}(x_0) \neq 0.$ Тогда $\exists \tilde{S}(x_0, \varepsilon) \subset X \land \exists \tilde{S}(y_0, \delta) \subset Y$ такие, что для сужения отображения f на шар

 $\bar{S}(x_0,\, \epsilon)$ существует единственное непрерывное отображение $f^{-1}: S(y_0,\, \delta) \to S(x_0,\, \epsilon),$ принимающее значение x_0 при $y=y_0,\, m.e.$ $f^{-1}(y_0)=x_0.$

Это отображение дифференцируемо в точке y_0 , и его производная в этой точке вычисляется по формуле

 $({\it f}^{-1})'({\it y}_0)=({\it f}'({\it x}_0))^{-1}.$ Для якобианов из формулы (3) получаем равенство

$$\frac{\mathcal{D}(f_1^{-1}, f_2^{-1}, \dots, f_n^{-1})}{\mathcal{D}(y_1, y_2, \dots, y_n)}(y_0) = \frac{1}{\frac{\mathcal{D}(f_1, f_2, \dots, f_n)}{\mathcal{D}(x_1, x_2, \dots, x_n)}(x_0)}.$$
 (4)

 $u(x_1, x_2, \dots, x_n)$ При формулировке большинства задач этого параграфа предполагается, что выполнены условия, обеспечивающие существование неявных функций и их соответствующих производ-

88. Показать, что функция Дирихле

ных.

$$y = \left\{ egin{array}{lll} 1, & ext{если} & x & ext{рационально}, \ 0, & ext{если} & x & ext{иррационально}, \end{array}
ight.$$

разрывная в каждой точке, удовлетворяет уравнению $y^2-y=0$.

∢ В рациональных точках значение функции y и ее квадрата y^2 равно единице. Поэтому в этих точках выполняется равенство $y^2-y=0$. Если x иррационально, то y=0, $y^2=0$, и мы снова убеждаемся в справедливости равенства $y^2-y=0$.

Таким образом, при всех действительных значениях x функция Дирихле удовлетворяет уравнению $y^2-y=0$.

89. Пусть функция f определена на интервале |a, b|. В каком случае уравнение

$$f(x)y = 0 (1)$$

имеет при a < x < b единственное непрерывное решение y = 0?

рывное решение
$$y=0$$
?

■ Очевидно, y = 0, a < x < b, является непрерывным решением уравнения (1) при любой функции f, определенной на интервале]a, b[. Пусть y = y(x), a < x < b, — другая

 $y(x_0) \neq 0$. Из непрерывности y следует, что $y(x) \neq 0$ на некотором интервале $]\alpha$, $\beta[\subset]a$, b[, содержащем точку x_0 . Тогда для выполнения равенства $f(x)y(x) \equiv 0$ на интервале $]\alpha$, $\beta[$ необходимо и достаточно, чтобы $f(x) \equiv 0$ для всех x из интервала $]\alpha$, $\beta[\subset]a$, b[. Таким образом, если множество нулей функции f не заполняет целиком никакой интервал $]\alpha$, $\beta[\subset]a$, b[, т.е. нигде не плотно на [a,b[, то y=0— единственное непрерывное решение

непрерывная функция, являющаяся решением уравнения (1), и точка $x_0 \in]a, b[$ такая, что

уравнения (1). \blacktriangleright 90. Пусть функции f и g определены и непрерывны в интервале]a, b[. В каком случае

уравнение f(x)y = g(x) (1)

имеет на интервале]а, b[единственное непрерывное решение?

(см. пример 89). Если $f(x) \neq 0$, a < x < b, то очевидно, $y = \frac{g(x)}{f(x)}$ — единственное непрерывное решение уравнения (1). Пусть f обращается в нуль в некотором нигде не плотном множестве точек $\{\xi\}\subset]a,\,b[$. Тогда отношение $\frac{g}{t}$ не определено на множестве $\{\xi\}$, а функция $y=\frac{g}{t}$ является

решением уравнения (1) только на множестве точек интервала a, b, в которых $f(x) \neq 0$.

 $\lim_{x\to f}\frac{g(x)}{f(x)},$

 $x \mapsto \frac{g(x)}{f(x)}, \quad x \in]a, b[, x \neq \xi, \xi \in \{\xi\},$

 $x \mapsto \lim_{x \to \xi} \frac{g(x)}{f(x)}, \ x = \xi, \ \xi \in \{\xi\},$

(2)

(1)

Таким образом, решения y и z уравнения (1) совпадают, если однородное уравнение f(x)y=0 имеет единственное непрерывное решение y=0, a < x < b. Это, в свою очередь, возможно лишь тогда, когда множество нулей функции f нигде не плотно на интервале a, b[

предел (2) для всех точек $\xi \in \{\xi\}$. \blacktriangleright 91. Пусть дано уравнение $x^2 + y^2 = 1$ (1) И (2)

 $\{\xi\}$, в которых $f(\xi) = 0$, нигде не плотно на $[a, b[; 2)] g(\xi) = 0$, $\xi \in \{\xi\}$; 3) существует конечный

Итак, уравнение (1) имеет единственное непрерывное решение, если: 1) множество точек

что возможно лишь в случае, когда $g(\xi) = 0, \, \xi \in \{\xi\}$, то функция

Если потребовать, чтобы существовал конечный предел

будет единственным непрерывным решением уравнения (1).

 $x \to y(x), \quad -1 \leqslant x \leqslant 1.$ функция удовлетворяющая уравнению (1).

1) Сколько функций (2) удовлетворяет уравнению (1)? 2) Сколько непрерывных функций (2) удовлетворяет уравнению (1)?

3) Сколько непрерывных функций (2) удовлетворяет уравнению (1), если: a) y(0) = 1;

6) y(1) = 0?

Функций, удовлетворяющих уравнению (1), бесчисленное множество. Например,

если $x_k = -1 + \frac{2k}{n}$ $(k = \overline{0, n}; n = 2, 3, ...)$, то для любого n = 2, 3, ... функция

$$y: x \mapsto \left\{ \begin{array}{ll} \sqrt{1-x^2}, & \text{если} & x_{2k} \leqslant x < x_{2k+1}, \\ -\sqrt{1-x^2}, & \text{если} & x_{2k+1} \leqslant x < x_{2k+2}, \\ 0, & \text{если} & x=1, \end{array} \right.$$
где $k=\overline{0,\ n}$, удовлетворяет уравнению (1).

2) Если x — произвольное фиксированное число из сегмента [-1, 1], то уравнение (1)допускает два решения:

 $y = \sqrt{1 - x^2}, \quad y = -\sqrt{1 - x^2}.$

Таким образом, можно определить две непрерывные функции $y = \sqrt{1-x^2}$ и $y = -\sqrt{1-x^2}$, $-1 \leqslant x \leqslant 1$, удовлетворяющие уравнению (1).

3) Очевидно, только одна из найденных в предыдущем пункте функций $y = \sqrt{1-x^2}$ удовлетворяет условию y(0) = 1. Условию 6) удовлетворяют обе функции. \blacktriangleright

И

1) Сколько функций (2) удовлетворяет уравнению (1)?

 $x \mapsto y(x), -\infty < x < +\infty,$

2) Сколько непрерывных функций (2) удовлетворяет уравнению (1)? 3) Сколько дифференцируемых функций (2) удовлетворяет уравнению (1)?

4) Сколько непрерывных функций (2) удовлетворяет уравнению (1), если: a) y(1) = 1; б)

y(0) = 0? 5) Сколько непрерывных функций $x \mapsto y(x), 1 - \delta < x < 1 + \delta$, удовлетворяет уравнению

(1), если y(1) = 1 и δ достаточно мало? ■ 1) Покажем, что уравнению (1) удовлетворяет бесчисленное множество функций. Зададим произвольно множество $\{lpha\}$, элементами которого являются монотонно возрастающие последовательности $x_{\alpha 1}, x_{\alpha 2}, \ldots, x_{\alpha n}, \ldots$ такие, что $\lim_{n \to \infty} x_{\alpha n} = +\infty$ при всех α .

Для каждого с функция

$$y: x \mapsto \left\{ egin{array}{ll} -|x|, & ext{ecsim} & x < x_{lpha 1}, \ |x|, & ext{ecsim} & x_{lpha 2n-1} \leqslant x < x_{lpha 2n}, \ -|x|, & ext{ecsim} & x_{lpha 2n} \leqslant x < x_{lpha 2n+1}, \end{array}
ight.$$

где $n \in \mathbb{N}$, определена при всех x и удовлетворяет уравнению (1).

2) Из уравнения (1) находим
$$|y|=|x|,\, -\infty < x < +\infty.$$
 Отсюда, в свою очередь, получаем

y = -x, y = x, y = |x|, y = -|x|, $-\infty < x < +\infty$.

Эти четыре непрерывные функции удовлетворяют уравнению (1). 3) Поскольку функции y = |x| и y = -|x| не имеют производной в точке x = 0, то

из четырех функций (3) только две $y=x, y=-x, x\in\mathbb{R}$, являются дифференцируемыми решениями уравнения (1). 4) Непосредственной проверкой убеждаемся, что среди функций (3) только две y=x и

y = |x| удовлетворяют условию а) и все четыре функции удовлетворяют условию б). 5) Поскольку непрерывные функции y = x и y = |x|, удовлетворяющие условию y(1) = 1, тождественно равны в интервале $]1-\delta, 1+\delta[,\ 0<\delta<1,\$ то для всех x из этого интервала только одна непрерывная функция y = x удовлетворяет уравнению (1). \blacktriangleright

93. Уравнение

(1)

(3)

151

(2)

определяет y как функцию от x. Для каких множеств точек числовой оси таких функций: 1) одна, 2) две, 3) три, 4) четыре? Определить точки ветвления этой функции и ее непрерывные ветви.

 $x^2 + y^2 = x^4 + y^4$

◀ Из уравнения (1) находим

$$y = \pm \sqrt{\frac{1}{2} + \sqrt{\frac{1}{4} + x^2 - x^4}}, \quad \text{если } 0 \leqslant |x| \leqslant \sqrt{\frac{1 + \sqrt{2}}{2}},$$

$$y = \pm \sqrt{\frac{1}{2} - \sqrt{\frac{1}{2} + x^2 - x^4}}, \quad \text{если } 1 \leqslant |x| \leqslant \sqrt{\frac{1 + \sqrt{2}}{2}} \quad \text{и } x = 0.$$
(2)

Отсюда непосредственно следует:

1) уравнение (1) ни при каких значениях $m{x}$ не определяет единственной функции (нет общих точек, в которых совпадали бы все четыре значения y).

2) Уравнение (1) определяет две функции, если

$$0 < |x| < 1$$
 $|x| = \sqrt{\frac{1+\sqrt{2}}{2}}$.

3) Если z=0 или |z|=1, то равенства (2) дают нам три значения y. Поэтому на множестве {-1, 0, 1} уравнение (1) определяет три функции.

4) Если $1<|x|<\sqrt{rac{1+\sqrt{2}}{2}}$, то уравнение (1) определяет четыре функции. Из (2) убеждаемся, что

$$y = \varepsilon \sqrt{\frac{1}{2} + \sqrt{\frac{1}{4} + x^2 - x^4}}, \quad |x| \leqslant \sqrt{\frac{1 + \sqrt{2}}{2}},$$
 $y = \varepsilon \sqrt{\frac{1}{2} - \sqrt{\frac{1}{4} + x^2 - x^4}}, \quad 1 \leqslant |x| \leqslant \sqrt{\frac{1 + \sqrt{2}}{2}},$

при $\varepsilon = \pm 1$ являются непрерывными ветвями.

152

Точку (x_0,y_0) называют точкой ветвления для уравнения F(x,y)=0, если а) $F(x_0,y_0)=0$ $0;\; 6)$ не существует окрестности точки $(x_0,\,y_0),\; \mathbf{b}$ которой бы данное уравнение удовлетворялось единственной непрерывной функцией y=f(x) и такой, что $y_0=f(x_0)$. Для нашего

случая $(\pm 1, 0)$, $\left(\pm \sqrt{\frac{1+\sqrt{2}}{2}}, \pm \frac{1}{\sqrt{2}}\right)$ — точки ветвления. \blacktriangleright $oldsymbol{94}$. Пусть функция $x \mapsto f(x)$ непрерывна при a < x < b и $y \mapsto arphi(y)$ монотонно возрастает и непрерывна при c < y < d. В каком случае уравнение arphi(y) = f(x) определяет функцию

 $y = \varphi^{-1}(f(x))$? Рассмотреть примеры: a) $\sin y + \sin y = x$; б) $e^{-y} = -\sin^2 x$. **◆** Функция $y = \varphi^{-1}(f(x))$ определяется следующим образом: для любого фиксированного значения $x \in]a, b[$, т.е. для фиксированного значения f(x), ставится в соответствие то значение y, которое является решением уравнения $\varphi(y) = f(x)$.

Поскольку функция arphi непрерывна и монотонно возрастает на интервале $]c,\,d[$, то уравнение arphi(y)=A имеет единственное решение $y=arphi^{-1}(A)$, если число A принадлежит множеству значений функции φ , c < y < d.

Таким образом, уравнение имеет единственное решение $y = \varphi^{-1}(f(x))$, если множества значений функций φ , c < y < d, и f, a < x < b, имеют общие точки.

Рассмотрим примеры. a) $\sin y + \sin y = x$. Здесь функция $y \mapsto \varphi(y), -\infty < y < +\infty$, непрерывна. Пользуясь формулой Тейлора, находим, что производная

$$\varphi'(y) = \cos y + \operatorname{ch} y = \left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} - \ldots\right) + \left(1 + \frac{y^2}{2!} + \frac{y^4}{4!} + \ldots\right) = 2\left(1 + \frac{y^4}{4!} + \frac{y^8}{8!} + \ldots\right),$$

$$-\infty < y < +\infty$$

положительна. Следовательно, функция $y \mapsto \varphi(y), -\infty < y < +\infty$, монотонно возрастает. Поскольку множества значений функций $\varphi(y) \equiv \sin y + \sin y, \ -\infty < y < +\infty$, и $f(x) \equiv x,$ $-\infty < x < +\infty$, совпадают, то уравнение $\sin y + \sin y = x$ определяет единственную функцию $y = \omega(x), -\infty < x < +\infty$, обращающую это уравнение в тождество.

б) $e^{-y}=-\sin^2 x$. В этом случае множеством значений функции $y\mapsto \varphi(y), \ \varphi(y)=e^{-y},$ $-\infty < y < +\infty$, является полубесконечный интервал $[0, +\infty[$, а множеством значений функции $f(x) = -\sin^2 x$, $-\infty < x < +\infty$, — сегмент [-1, 0]. Поскольку эти множества не имеют общих точек, то уравнение $e^{-y} = -\sin^2 x$ не имеет решений. \blacktriangleright

95. Hycth

$$x = y + \varphi(y), \tag{1}$$

где $\varphi(0)=0$ и $|\varphi'(y)|\leqslant k<1$ при -a< y< a. Доказать, что при $-\varepsilon< x< \varepsilon$ существует единственняя дифференцируемая функция $y\mapsto y(x)$, удовлетворяющая уравнению (1), и

такая, что y(0) = 0. ■ Из условия следует неравенство $\frac{dx}{dy} = 1 + \varphi'(y) > 0$, -a < y < a, обеспечивающее строгую монотонность непрерывной функции $x=y+arphi(y), \ -a < y < a.$ Пусть $\epsilon=\min\{|x(-a+y)|, \ -a < y < a\}\}$

|x(a-0)| Тогда, в силу строгой монотонности функции $x=y+\varphi(y)$, каждому $x\in]-\varepsilon,\varepsilon[$ coordinates of the state of the coordinate $y \in]-a$, a[, and correspond $y+\varphi(y)=x$. However, the coordinates $y \in]-a$, a[, and correspond $y+\varphi(y)=x$. существует функция y = y(x), обратная для функции $x = y + \varphi(y)$ и тоже строго монотонная. A так как уравнение (1) при y=0 имеет решение z=0, то y(0)=0.

(1)

Неявные функции

Покажем, что функция y=y(x) дифференцируема. Пусть $x_0, x_0+\Delta x \in]-\varepsilon, \varepsilon[$ и $\Delta x \neq 0,$ тогда $y_0, y_0 + \Delta y \in]-a, a[$, где y_0 — корень уравнения $x_0 = y + \varphi(y), \ \Delta y \neq 0$ и $\Delta y \to 0$ при $\Delta x \rightarrow 0$.

Поскольку существует предел

$$\lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \lim_{\Delta y \to 0} \left(1 + \frac{\varphi(y_0 + \Delta y) - \varphi(y_0)}{\Delta y} \right) = 1 + \varphi'(y_0),$$
 то из тождества $\frac{\Delta x}{\Delta y} = \frac{1}{\frac{\Delta y}{\Delta y}}$ убеждаемся в существовании производной $\frac{dy}{dx}$. Следовательно,

функция y = f(x) дифференцируема на $] - \varepsilon, \varepsilon[$.

96. Пусть $x \mapsto y(x)$ — неявная функция, определяемая уравнением

$$x = ky + \varphi(y),$$

функций y и z из $C] - \infty$, $+\infty[$, пользуясь теоремой Лагранжа, получаем

где постоянная $k \neq 0, y \mapsto \varphi(y)$ — дифференцируемая периодическая функция с периодом

периодом $|k|\omega$.

 ω и такая, что |arphi'(y)|<|k|. Доказать, что $y=rac{x}{k}+\psi(x)$, где ψ — периодическая функция с lacktriangled Отображение A, определяемое равенством $Ay=rac{x}{k}-rac{arphi(y)}{k}$, преобразует множество $C]-\infty, +\infty[$ в себя. Покажем, что это отображение сжимающее. Действительно, для любых

$$\rho(Ay, Az) = \max_{-\infty < x < +\infty} |Ay - Az| = \max_{-\infty < x < +\infty} \left| \frac{\varphi(z) - \varphi(y)}{k} \right| = \max_{-\infty < x < +\infty} \frac{|\varphi'(\xi)|}{|k|} |y - z| \le$$

$$\le \max_{-\infty < x < +\infty} \frac{|\varphi'(\xi)|}{|k|} \max_{-\infty < x < +\infty} |y - z| = \max_{-\infty < x < +\infty} \frac{|\varphi'(\xi)|}{|k|} \rho(y, z),$$

где ξ находится между y и z. Так как $|\varphi'(y)| < |k|$, то $0 < \theta = \max \frac{|\varphi'(\xi)|}{|k|} < 1$. Следовательно, $\rho(Ay, Az) \leqslant \theta \rho(y, z)$, и сжимаемость отображения A доказана. Takum oбразом, согласно теореме п.3.1, существует единственная функция $y \in C[-\infty, +\infty[$, удовлетворяющая уравнению y = Ay, т. е. уравнению (1). Эта функция является пределом

последовательности

$$y_1=\frac{x}{k}-\frac{\varphi(0)}{k},\quad y_n=\frac{x}{k}-\frac{\varphi(y_{n-1})}{k}\quad (n=2,3,\ldots).$$

Переходя к пределу в последнем равенстве, получаем $y = \frac{x}{L} + \psi(x)$, где

$$\psi(x) = -\frac{1}{L} \lim_{n \to \infty} \varphi(y_{n-1}(x)).$$

Покажем, что функции $x\mapsto arphi(y_{n-1}(x))\;(n=2,3,\ldots)$ периодические по переменной xс периодом $|k|\omega$. Для доказательства применим метод математической индукции. При n=2 функция $x\mapsto \varphi(y_1(x))$ периодическая по x с периодом $|k|\omega$. Действительно, согласно условию, $\varphi(x \pm \omega) = \varphi(y)$, поэтому

$$\varphi(y_1(x+|k|\omega)) = \varphi\left(\frac{x+|k|\omega}{k} - \frac{\varphi(0)}{k}\right) = \varphi(y_1(x) + \omega \operatorname{sgn} k) = \varphi(y_1(x)).$$

Далее, предполагая, что функция $x\mapsto \varphi(y_{n-1}(x))$ имеет период $|k|\omega$, получаем равенство

$$\begin{split} \varphi(y_n(x+|k|\omega)) &= \varphi\left(\frac{x+|k|\omega}{k} - \frac{1}{k}\varphi(y_{n-1}(x+|k|\omega))\right) = \\ &= \varphi\left(\frac{x}{k} - \frac{1}{k}\varphi(y_{n-1}(x)) + \omega \operatorname{sgn} k\right) = \varphi(y_n(x) + \omega \operatorname{sgn} k) = \varphi(y_n(x)), \end{split}$$

из которого следует, что $|k|\omega$ — период функции $z\mapsto \varphi(g_n(z))$ по переменной z.

в этом, постаточно в очевилном равенстве $\psi(x+|k|\omega)-\psi(x)=\left(\psi(x+|k|\omega)+\frac{1}{k}\varphi(y_{n-1}(x+|k|\omega))\right)+\left(-\frac{1}{k}\varphi(y_{n-1}(x))-\psi(x)\right)$

перейти к пределу при
$$n \to \infty$$
. Поскольку каждое из слагаемых равномерно стремится к нулю, то в пределе получаем равенство $\psi(x+|k|\omega)-\psi(x)\equiv 0$, доказывающее периодичность функции ψ .

97. Показать, что при 1 + xy = k(x - y), где k — постоянная величина, имеет место $\frac{dx}{1+x^2} = \frac{dy}{1+y^2}.$ (1)

◄ Поскольку $x \neq y$, то $k = \frac{1+xy}{x-y}$. Дифференцируя это равенство, получаем $0 = \frac{(x-y)(x\,dy+y\,dx)-(1+xy)(dx-dy)}{(x-y)^2},$

$$(x-y)^2$$
 Отсюда следует соотношение $(1+x^2)\,dy-(1+y^2)\,dx=0$, равносильное равенству (1). \blacktriangleright 98. Доказать, что если

98. Доказать, что если
$$x^2y^2 + x^2 + y^2 - 1 = 0$$
,

(1)

(2)

$$x^{2}y^{2} + x^{2} + y^{2} - 1 = 0,$$
 то при $xy > 0$ справедливо равенство
$$\frac{dx}{dx} + \frac{dy}{dx} = 0.$$

$$\frac{dx}{\sqrt{1-x^4}} + \frac{dy}{\sqrt{1-y^4}} = 0.$$

◄ Дифференцируя равенство (1), получаем
$$2xy^2 dx + 2x^2y dy + 2x dx + 2y dy = 0$$
. Отсюда находим

 $x(1+y^2) dx + y(1+x^2) dy = 0.$ (3)Из равенства (1) следует

из равенства (1) следует
$$x^2 = \frac{1-y^2}{x^2}, \ y^2 = \frac{1-x^2}{x^2}, \ x = \pm \sqrt{\frac{1-y^2}{x^2}}, \ y = \pm \sqrt{\frac{1-x^2}{x^2}}. \tag{4}$$

 $x^2 = \frac{1-y^2}{1+y^2}, \ y^2 = \frac{1-x^2}{1+x^2}, \ x = \pm \sqrt{\frac{1-y^2}{1+y^2}}, \ y = \pm \sqrt{\frac{1-x^2}{1+x^2}}.$

$$1+y^2$$
, $1+x^2$, $\sqrt{1+y^2}$, $\sqrt{1+x^2}$ сли x и y одного знака, т. е. если $xy>0$, то, заменяя в равенстве (3) x и y их значениям

Если
$$x$$
 и y одного знака, т. е. если $xy > 0$, то, заменяя в равенстве (3) x и y их значениями (4), получаем

(1), получаем
$$\sqrt{\frac{1-y^2}{1-y^2}}(1+y^2)\,dx+\sqrt{\frac{1-x^2}{1-x^2}}(1+x^2)\,dy=0,\quad \sqrt{1-y^4}\,dx+\sqrt{1-x^4}\,dy=0.$$

 $\sqrt{\frac{1-y^2}{1+y^2}}(1+y^2)\,dx + \sqrt{\frac{1-x^2}{1+x^2}}(1+x^2)\,dy = 0, \quad \sqrt{1-y^4}\,dx + \sqrt{1-x^4}\,dy = 0.$

$$\sqrt{\frac{1-y^2}{1+y^2}}(1+y^2)\,dx + \sqrt{\frac{1-x^2}{1+x^2}}(1+x^2)\,dy = 0, \quad \sqrt{1-y^4}\,dx + \sqrt{1-x^4}\,dy = 0.$$
ССОДА НЕПОСРЕДСТВЕННО СЛЕДУЕТ РАВЕНСТВО (2).

Отсюда непосредственно следует равенство (2). > 99. Доказать, что уравнение

99. Доказать, что уравнение
$$(x^2 + y^2)^2 = a^2(x^2 - y^2), \quad a \neq 0,$$
 (1)

в окрестности точки $(x,\,y)=(0,\,0)$ определяет две дифференцируемые функции $y=y_1(x)$ и $y = y_2(x)$. Найти $y_1'(0)$ и $y_2'(0)$.

$$y = y_2(x)$$
. Найти $y_1'(0)$ и $y_2'(0)$.

 \blacktriangleleft Для достаточно малого $\varepsilon > 0$ и любого фиксированного $x \in]-\varepsilon$, $\varepsilon[$ из уравнения (1) находим два значения: $y = \varphi(x)$ и $y = -\varphi(x)$, где

 $\varphi(x) = \sqrt{\sqrt{2a^2x^2 + \frac{a^4}{4}} - x^2 - \frac{a^2}{2}}.$ Так определенная функция $x\mapsto \varphi(x)$ непрерывна на $]-\epsilon,\epsilon[$ и $\varphi(0)=0.$ Поэтому можно определить четыре непрерывные функции:

 $y_1(x) = \left\{ \begin{array}{ll} \varphi(x), & \text{если} & 0 \leqslant x < \varepsilon, \\ -\varphi(x), & \text{если} & -\varepsilon < x < 0; \end{array} \right. \quad y_2(x) = \left\{ \begin{array}{ll} -\varphi(x), & \text{если} & 0 \leqslant x < \varepsilon, \\ \varphi(x), & \text{если} & -\varepsilon < x < 0; \end{array} \right.$ $y_3(x) = \varphi(x), -\epsilon < x < \epsilon; \quad y_4(x) = -\varphi(x), -\epsilon < x < \epsilon$

удовлетворяющие уравнению (1). Исследуем на дифференцируемость эти функции при $oldsymbol{x}=0$. С этой целью вычислим

$$\varphi'_{-}(0). \text{ If Meem}$$

$$\varphi'_{-}(0) = \lim_{\Delta x \to -0} \frac{\varphi(\Delta x) - \varphi(0)}{\Delta x} = \lim_{\Delta x \to -0} \frac{1}{\Delta x} \sqrt{\sqrt{2a^2 \Delta x^2 + \frac{a^4}{4} - \Delta x^2 - \frac{a^2}{2}}} =$$

$$\frac{1}{\Delta x \to -0} \frac{1}{\Delta x} \frac{\varphi(\Delta x)}{\Delta x} = \lim_{\Delta x \to -0} \frac{1}{\Delta x} \sqrt{\sqrt{2a^2 \Delta x^2 + \frac{a^4}{4} - \Delta x^2 - \frac{a^2}{2}}} = \lim_{\Delta x \to -0} \frac{\sqrt{2a^2 \Delta x^2 + \frac{a^4}{4} - \Delta x^4 - \Delta x^2 a^2 - \frac{a^4}{4}}}{\Delta x \sqrt{\sqrt{2a^2 \Delta x^2 + \frac{a^4}{4} + \Delta x^2 + \frac{a^2}{2}}}} = \lim_{\Delta x \to -0} \frac{|\Delta x| \sqrt{a^2 - \Delta x^2}}{\Delta x \sqrt{\sqrt{2a^2 \Delta x^2 + \frac{a^4}{4} + \Delta x^2 + \frac{a^2}{2}}}} = \lim_{\Delta x \to -0} \frac{|\Delta x| \sqrt{a^2 - \Delta x^2}}{\Delta x \sqrt{\sqrt{2a^2 \Delta x^2 + \frac{a^4}{4} + \Delta x^2 + \frac{a^2}{2}}}} = \lim_{\Delta x \to -0} \frac{|\Delta x| \sqrt{a^2 - \Delta x^2}}{\Delta x \sqrt{\sqrt{2a^2 \Delta x^2 + \frac{a^4}{4} + \Delta x^2 + \frac{a^2}{2}}}} = \lim_{\Delta x \to -0} \frac{|\Delta x| \sqrt{a^2 - \Delta x^2}}{\Delta x \sqrt{a^2 - \Delta x^2}}$$

$$=\lim_{\Delta x \to -0} \frac{-\sqrt{a^2-\Delta x^2}}{\sqrt{\sqrt{2a^2\Delta x^2+\frac{a^4}{4}+\Delta x^2+\frac{a^2}{2}}}}=-1.$$
 Аналогично находим $\varphi'_+(0)=\lim_{\Delta x \to +0} \frac{\varphi(\Delta x)-\varphi(0)}{\Delta x}=1.$ Отсюда сразу следует, что функции y_3 и y_4 не имеют производной при $x=0.$ Поскольку $y'_1-(0)=-\varphi'_-(0)=1, \ y'_1+(0)=\varphi'_+(0)=1,$ то функция y_1 имеет производную при $x=0$, равную единице. Аналогично из равенств

x = 0, причем $y_2'(0) = -1$. 100. Найти y' при x = 0 и y = 0, если $(x^2 + y^2)^2 = 3x^2y - y^3$ (1)■ Представим кривую, определяемую уравнением (1), в параметрическом виде. С этой

 $y_{2-}'(0)=arphi_{-}'(0)=-1$, $y_{2+}'(0)=-arphi_{+}'(0)=-1$ следует дифференцируемость функции y_2 при

целью положим y=tx. Тогда из уравнения (1) найдем $x=\frac{3t-t^3}{(1+t^2)^2}$. Подставив найденное значение x в равенство y=tx, получим $y=\frac{3t^2-t^4}{(1+t^2)^2}$. Заметим, что x=0 и y=0 при трех значениях параметра $t:t_1=0,\,t_2=\sqrt{3},\,t_3=-\sqrt{3}$. Остается вычислить производную от параметрически заданной функции при этих значениях параметра, т. е. при x=0. Имеем $\frac{dy}{dx} = \frac{(1+t^2)(6t-4t^3)-4t(3t^2-t^4)}{(1+t^2)(3-3t^2)-4t(3t-t^3)}.$

-3y'' - xy''' + 12y'y'' + 4yy''' - y''' = 0

Отсюда при t = 0, $t = \sqrt{3}$ и $t = -\sqrt{3}$ находим $y_1'(0) = 0$, $y_2(\sqrt{3}) = \sqrt{3}$, $y_3'(-\sqrt{3}) = -\sqrt{3}$.

$$y_1'(0)=0,\ y_2(\sqrt{3})=\sqrt{3},\ y_2'(0)=0$$
. Найти y',y'' и y''' , если $x^2+xy+y^2=0$

101. Найти y', y'' и y''', если $x^2 + xy + y^2 = 3$.

◀ Пользуясь формулой $\frac{dy}{dx} = -\frac{f_x'}{f}$, получаем

 $\frac{dy}{dx} = -\frac{2x+y}{x+2y}, \quad x \neq -2y;$

 $\frac{d^2y}{dx^2} = -\frac{(x+2y)(2+y') - (2x+y)(1+2y')}{(x+2y)^2} = -\frac{18}{(x+2y)^3}, \quad x \neq -2y;$

$$\frac{d^3x}{dx^2} = -\frac{(x+2y)^2}{(x+2y)^2} = -\frac{(x+2y)^3}{(x+2y)^3},$$

 $\frac{d^3y}{dx^3} = \frac{54}{(x+2y)^4}(1+2y') = -\frac{162x}{(x+2y)^5}, \quad x \neq -2y. \blacktriangleright$

102. Найти y', y'' и y''' при x = 0, y = 1, если

 $x^2 - xy + 2y^2 + x - y - 1 = 0.$

▼ Трижды дифференцируя равенство (1): 2x - y - xy' + 4yy' + 1 - y' = 0, $2-2y'-xy''+4y'^2+4yy''-y''=0.$

(1)

156 и подставляя в результаты значения x=0 и y=1, получаем систему уравнений 3y'=0,

 $2+3y''=0,\ 2+3y'''=0,$ из которой находим $y'=0,\ y''=-\frac{2}{3},\ y'''=-\frac{2}{5}$. \blacktriangleright 103. Показать, что для кривой второго порядка

(1)

$$ax^2 + 2bxy + cy^2 + 2dx + 2ey + f = 0$$

справедливо равенство $\frac{d^3}{dx^3}\left(\left(y''\right)^{-\frac{2}{3}}\right)=0.$

$$y = \frac{1}{c} \left(-(bx + e) \pm \sqrt{(b^2 - ac)x^2 + 2(be - cd)x + e^2 - cf} \right).$$

Находим вторую производную:

$$y' = \frac{1}{c} \left(-b \pm \frac{(b^2 - ac)x + (be - cd)}{\sqrt{(b^2 - ac)x^2 + 2(be - cd)x + e^2 - cf}} \right),$$
$$y'' = \pm \frac{1}{c} \frac{(b^2 - ac)(e^2 - cf) - (be - cd)^2}{\sqrt{((b^2 - ac)x^2 + 2(be - cd)x + e^2 - cf)^3}}.$$

Отсюда получаем равенство

$$(y'')^{-\frac{2}{3}} = \left(\pm \frac{(b^2 - ac)(e^2 - cf) - (be - cd)^2}{c}\right)^{-\frac{2}{3}} ((b^2 - ac)x^2 + 2(be - cd)x + e^2 - cf),$$

из которого следует равенство (1). ▶ Для функции $z=z(x,\,y)$ найти частные производные первого и второго порядков, если:

104. $z^3 - 3xyz = a^3$.

 \blacktriangleleft Частные производные функции z, определяемой уравнением F(x,y,z)=0, находим

 $\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}, \quad \frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial y}}.$

по формулам

$$\frac{\partial z}{\partial x} = -\frac{-3yz}{3x^2 - 3xy} = \frac{yz}{x^2 - xy}, \quad \frac{\partial z}{\partial y} = \frac{xz}{x^2 - xy}, \quad z^2 \neq xy.$$

Учитывая, что z = z(x, y), находим вторые производные:

$$\partial^2 z = (z^2 - xy)y \frac{\partial z}{\partial z} - yz \left(2z \frac{\partial z}{\partial z} - y\right) = (z^2 - xy)y \frac{yz}{z^2 - xy} - yz \left(2z \frac{yz}{z^2 - xy} - y\right)$$

$$\frac{\partial^2 z}{\partial x^2} = \frac{(z^2 - xy)y\frac{\partial z}{\partial x} - yz\left(2z\frac{\partial z}{\partial x} - y\right)}{(z^2 - xy)^2} = \frac{(z^2 - xy)y\frac{yz}{z^2 - xy} - yz\left(2z\frac{yz}{z^2 - xy} - y\right)}{(z^2 - xy)^2} = -\frac{2xy^3z}{(z^2 - xy)^3},$$

$$\frac{\partial^2 z}{\partial y^2} = -\frac{2yx^3z}{(z^2 - xy)^3}, \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{(z^2 - xy)\left(z + y\frac{\partial z}{\partial y}\right) - yz\left(2z\frac{\partial z}{\partial y} - x\right)}{(z^2 - xy)^2} =$$

$$\frac{\partial y^2}{\partial y^2} = -\frac{z^3 - z}{(z^2 - xy)^3}, \quad \frac{\partial x}{\partial x \partial y} = \frac{z^3 - z}{(z^2 - xy)^2} = \frac{(z^2 - xy)\left(z + \frac{xyz}{z^2 - xy}\right) - yz\left(\frac{2xz^2}{z^2 - xy} - x\right)}{(z^2 - xy)^2} = \frac{z(z^4 - 2z^2xy - x^2y^2)}{(z^2 - xy)^3}, \quad z^2 \neq xy. \blacktriangleright$$

$$(z^2 - 105. \ z = \sqrt{x^2 - y^2} \operatorname{tg} \frac{z}{\sqrt{x^2 - y^2}}.$$

■ Аналогично предыдущему имеем

$$\frac{-\frac{x}{\sqrt{x^2-y^2}} \operatorname{tg} \frac{z}{\sqrt{x^2-y^2}} + \sqrt{x^2-y^2}}{2}$$

$$\frac{\partial z}{\partial x} = -\frac{-\frac{x}{\sqrt{x^2-y^2}} \operatorname{tg} \frac{z}{\sqrt{x^2-y^2}} + \sqrt{x^2-y^2} \cos^{-2} \left(\frac{z}{\sqrt{x^2-y^2}}\right) \frac{zz}{\left(\sqrt{x^2-y^2}\right)^3}}{1 - \sqrt{x^2-y^2} \cos^{-2} \left(\frac{z}{\sqrt{x^2-y^2}}\right) \frac{1}{\sqrt{x^2-y^2}}}.$$
 Из условия следует, что

 $\operatorname{tg} \frac{z}{\sqrt{x^2 - y^2}} = \frac{z}{\sqrt{x^2 - u^2}}, \quad \cos^{-2} \frac{z}{\sqrt{x^2 - u^2}} = \frac{z^2}{x^2 - u^2} + 1.$

Используя эти равенства, получаем
$$\frac{\partial z}{\partial x} = -\frac{\frac{z}{\sqrt{x^2-y^2}} \frac{z}{\sqrt{x^2-y^2}} + \frac{xz}{(x^2-y^2)} \left(\frac{z^2}{x^2-y^2} + 1\right)}{-\frac{z^2}{x^2-y^2}} = \frac{xz}{x^2-y^2}, \quad x^2 \neq y^2.$$

Таким же способом находим
$$\frac{\partial z}{\partial z} = -\frac{yz}{z^2-y^2}, \ x^2 \neq y^2$$
.

Находим вторые производные, используя найденные первые производные:

$$(x^2-y^2)(z+x\frac{\partial z}{\partial z})-xz\cdot 2x$$
 $(x^2-y^2)(z+\frac{x^2z}{z^2-z^2})-2zx^2$

$$\frac{\partial^2 z}{\partial x^2} = \frac{\left(x^2 - y^2\right)\left(z + x\frac{\partial z}{\partial x}\right) - xz \cdot 2x}{\left(x^2 - y^2\right)^2} = \frac{\left(x^2 - y^2\right)\left(z + \frac{x^2z}{x^2 - y^2}\right) - 2zx^2}{\left(x^2 - y^2\right)^2} = -\frac{y^2z}{\left(x^2 - y^2\right)^2}, \quad x^2 \neq y^2;$$

$$=\frac{(x^2-y^2)^2}{(x^2-y^2)^2}=\frac{(x^2-y^2)^2}{(x^2-y^2)^2}=-\frac{3}{(x^2-y^2)^2}$$

$$\frac{\partial^2 z}{\partial x \, \partial y} = \frac{(x^2 - y^2)^2 \frac{\partial z}{\partial y} - xz(-2y)}{(x^2 - y^2)^2} = \frac{(x^2 - y^2)x \frac{(-yz)}{x^2 - y^2} + 2xyz}{(x^2 - y^2)^2} = \frac{xyz}{(x^2 - y^2)^2}, \quad x^2 \neq y^2;$$

$$\partial x \, \partial y$$
 $(x^2 - y^2)^2$ $(x^2 - y^2)^2$

$$\frac{\partial^2 z}{\partial y^2} = -\frac{(x^2-y^2)\left(z-y\frac{\partial z}{\partial y}\right) - yz(-2y)}{(x^2-y^2)^2} = -\frac{x^2z}{(x^2-y^2)^2}, \ x^2 \neq y^2. \blacktriangleright$$
 Найти dz и d^2z , если:

$$106. \frac{x}{z} = \ln \frac{z}{y} + 1.$$

$$lacktriangled$$
 Считая, что $z=z(x,y)$, в результате дифференцирования получаем

$$m dm \cdot m dm = m dm = m dm$$

$$\frac{z\,dx-x\,dz}{2}=\frac{y\,\,y\,dz-z\,dy}{2},$$

$$\frac{z \, dz - z \, dz}{z^2} = \frac{g}{z} \frac{g \, dz - z \, dy}{z^2},$$

$$\frac{z \, dz - z \, dz}{z^2} = \frac{g}{z} \frac{g \, dz - z \, dy}{z^2},$$

Отсюда
$$z(u\,dx + z\,du)$$

$$dz = \frac{z(y\,dx + z\,dy)}{y(x+z)}, \quad x \neq -z.$$

$$y(x + z) d^{2}z = z dx dy + (z dy - x dy) dz - y dz^{2},$$

откуда на основании равенства (2) окончательно получаем

$$d^{2}z = -\frac{z^{2}(y\,dx - x\,dy)^{2}}{z^{2}(z+z)^{3}}, \quad x \neq -z. \,\blacktriangleright$$

 $yz\,dx - xy\,dz - yz\,dz + z^2\,dy = 0.$

$$107. \ z-x=\operatorname{arctg}\frac{y}{z-x}.$$

◄ Дифференцируя, получаем

$$d(z-x)=$$

$$z(z-x)=-$$

$$(z-x)=-x$$

 $d(z-x) = \frac{1}{n+(-1)^2} \cdot \frac{(z-x)\,dy-y\,d(z-x)}{(z-x)^2},$

(1)

(2)

Гл. 2. Дифференциальное исчисление функций векторного аргумента

отсюда

158

$$((z-x)^2+y^2+y)\,d(z-x)=(z-x)\,dy,$$

или

 $dz = dx + \frac{(z - x) dy}{(z - x)^2 + u^2 + u}.$ Дифференцируя равенство (1):

 $((z-x)^2+y^2+y)d^2(z-x)=-2((z-x)d(z-x)+ydy)d(z-x)$

и подставляя в результат выражение для
$$d(z-x)$$
, найденное из (1) , получаем

 $d^{2}(z-x) = d^{2}z = -\frac{2(y+1)(z-x)((z-x)^{2}+y^{2})}{((z-x)^{2}+y^{2}+y^{3})}dy^{2}. \blacktriangleright$

$$((z-x)^2+y^2+y)^3$$
 108. Найти $\frac{\partial^2 z}{\partial x \, \partial y}$, если $F(x+y+z, x^2+y^2+z^2)=0$.

$$F_1'(dx + dy + dz) + F_2'(2x dx + 2y dy + 2z dz) = 0,$$

 $F_{11}''(dx+dy+dz)^2+2F_{12}''(dx+dy+dz)(2x\,dx+2y\,dy+2z\,dz)+$

 $+F_1'd^2z + F_{22}''(2x\,dx + 2y\,dy + 2z\,dz)^2 + 2F_2'(dx^2 + dy^2 + dz^2 + zd^2z) = 0,$

где F_1' — частная производная по первому аргументу, F_2' — по второму. Найденное из первого равенства выражение $2x\,dx+2y\,dy+2z\,dz=-rac{F_1}{F_1}(dx+dy+dz)$ подставляем во второе. В

результате после преобразований имеем

$$(F_1' + 2zF_2') d^2z = \frac{-F_1'^2 F_{22}'' + 2F_1' F_2' F_{12}'' - F_2'^2 F_{11}''}{F_2'^2} (dx + dy + dz)^2 - F_2' (dz^2 + dx^2 + dy^2). \tag{2}$$

 $dz = -\frac{(F_1' + 2xF_2') dx + (F_1' + 2yF_2') dy}{F_2' + 2zF_2'},$

Определив из равенства (1)

вычислим сумму

$$dx + dy + dz = \frac{2F_2'((z-x)\,dx + (z-y)\,dy)}{F_2' + 2z\,F_2'}.$$

(4)

 $F_1' + 2zF_2' \neq 0. \blacktriangleright$

(1)

(2)

(3)

(1)

(1)

Из равенств (2), (3) и (4) находим второй дифференциал

$$\begin{split} d^2z &= -\frac{4(F_1^{\prime 2}F_{22}^{\prime \prime}-2F_1^{\prime}F_2^{\prime}F_{12}^{\prime\prime}+F_2^{\prime 2}F_{11}^{\prime\prime})}{(F_1^{\prime}+2zF_2^{\prime})^3}\left((z-x)^2\,dx^2+2(z-x)(z-y)\,dx\,dy+(z-y)^2\,dy^2\right) - \\ &-2F_2^{\prime}\frac{(F_1^{\prime}+2xF_2^{\prime})^2\,dx^2+2(F_1^{\prime}+2xF_2^{\prime})(F_1^{\prime}+2yF_2^{\prime})\,dx\,dy}{(F_1^{\prime}+2zF_2^{\prime})^3} + \frac{(F_1^{\prime}+2yF_2^{\prime})^2\,dy^2}{(F_1^{\prime}+2zF_2^{\prime})^3} - \end{split}$$

$$-2F_1'(dx^2+dy^2)(F_1'+2zF_2')^{-1}.$$

Половина коэффициента при
$$dx\,dy$$
 равна $\frac{\partial^2 x}{\partial x\,\partial y}$. Следовательно,

$$\frac{\partial^2 z}{\partial x \, \partial y} = -\frac{4(z-x)(z-y)}{(F_1' + 2z \, F_2')^3} (F_1'^2 \, F_{22}'' - 2F_1' F_2' F_{12}'' + F_2'^2 \, F_{11}'') - \frac{2(F_1' + 2x \, F_2')(F_1' + 2y \, F_2')}{(F_1' + 2z \, F_2')^3} F_2',$$

109. Найти d^2z , если: a) F(x+z, y+z) = 0; б) $F\left(\frac{x}{z}, \frac{y}{z}\right) = 0$.

 ■ а) Последовательно дифференцируя, получаем $F_1'(dz + dz) + F_2'(dy + dz) = 0.$

 $F_{11}''(dx+dz)^2+2F_{12}''(dx+dz)(dy+dz)+F_{22}''(dy+dz)^2+(F_1'+F_2')d^2z=0.$

(3)

§ 3. Неявные функции

Из равенства (1) находим первый дифференциал:

$$dz = -\frac{F_1' dx + F_2' dy}{F_1' + F_2'}$$

и вычисляем суммы

$$dx + dz = dx - \frac{F_1' dx + F_2' dy}{F_1' + F_2'} = \frac{F_2' (dx - dy)}{F_1' + F_2'}, \quad dy + dz = dy - \frac{F_1' dx + F_2' dy}{F_1' + F_2'} = -\frac{F_1' (dx - dy)}{F_1' + F_2'}.$$

Используя эти соотношения, из равенства (2) находим второй дифференциал:

$$d^{2}z = -(F'_{1} + F'_{2})^{-3} \left(F'_{2}^{2} F''_{11} - 2F'_{1}F'_{2}F''_{12} + F'_{1}^{2} F''_{22} \right) (dx - dy)^{2}.$$

5) Имеем
$$F_1' \frac{z \, dx - x \, dz}{2} + F_2' \frac{z \, dy - y \, dz}{2} = 0.$$

Умножая это равенство на z^2 и еще раз дифференцируя, получаем

$$F_{11}^{\prime\prime} \frac{(z\,dx-x\,dz)^2}{z^2} + 2F_{12}^{\prime\prime} \frac{(z\,dx-x\,dz)(z\,dy-y\,dz)}{z^2} + F_{22}^{\prime\prime} \frac{(z\,dy-y\,dz)^2}{z^2} - (x\,F_1^\prime+y\,F_2^\prime)d^2z = 0.$$
 (4) Из равенства (3) находим первый дифференциал:

и вычисляем суммы

$$z dx - x dz = z F_2' \frac{y dx - x dy}{x F_1' + y F_2'}, \quad z dy - y dz = -z F_1' \frac{y dx - x dy}{x F_1' + y F_2'}. \tag{5}$$

 $dz = z \frac{F_1' dx + F_2' dy}{x F_1' + y F_2'}$

Решая равенство (4) относительно d^2z и используя равенства (5), находим второй дифференциал:

авенство (4) относительно
$$a$$
 z и используя равенства (5), находим втором диффере $d^2z=(xF_1'+yF_2')^{-3}\left(F_2'^2F_{11}''-2F_1'F_2'F_{12}''+F_1'^2F_{22}''\right)(y\,dx-x\,dy)^2$. \blacktriangleright

110. Пусть $x=x(y,\,z),\,y=y(x,\,z),\,z=z(x,\,y)$ — функции, определяемые уравнением $F(x,\,y,\,z)=0$. Доказать, что $\frac{\partial x}{\partial y}\,\frac{\partial y}{\partial z}\,\frac{\partial z}{\partial x}=-1$.

$$F(x, y, z) = 0$$
. Доказать, что $\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x} = -1$.

 \blacktriangleleft Предполагая, что $x = x(y, z)$, из тождества $F(x(y, z), y, z) \equiv 0$ находим $\frac{\partial x}{\partial y} = -\frac{F_y'}{F_x'}$.

$$\frac{\partial y}{\partial x} = -\frac{F_z'}{F_z'}, \quad \frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'}.$$

Поступая аналогично и в других случаях, получаем

$$\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x} = \left(-\frac{F_y'}{F_z'} \right) \left(-\frac{F_z'}{F_z'} \right) \left(-\frac{F_x'}{F_z'} \right) = -1. \blacktriangleright$$

111. Найти $\frac{dx}{dx}$ и $\frac{dy}{dx}$, если

$$x + y + z = 0, \quad x^2 + y^2 + z^2 = 1.$$
 (1)

 \blacktriangleleft Данная система определяет функции x=x(z) и y=y(z), производные которых находятся по формуле (5), п.3.3. Дифференцируя равенства (1) по z, получаем систему

 $\frac{dx}{dz} + \frac{dy}{dz} + 1 = 0, \quad 2x\frac{dx}{dz} + 2y\frac{dy}{dz} + 2z = 0,$ HS KOTOPOË HAKOHHM $\frac{ds}{ds} = \frac{y-s}{z-y}, \frac{dy}{ds} = \frac{s-s}{s-y}, x \neq y.$

160 Гл. 2. Дифференциальное исчисление функций векторного аргумента

112. Найти $\frac{dx}{dz}$, $\frac{dy}{dz}$, $\frac{d^2x}{dz^2}$, $\frac{d^2y}{dz^2}$ при x=1, y=-1, z=2, если $x^2+y^2=\frac{1}{2}z^2$, x+y+z=2.

lacktriangleleft Предполагая, что данная система определяет функции x=x(z) и y=y(z), дифференцированием ее по г получаем $2x\frac{dx}{dz} + 2y\frac{dy}{dz} = z, \quad \frac{dx}{dz} + \frac{dy}{dz} = -1.$

Полагая в (1)
$$x = 1$$
, $y = -1$, $z = 2$, получаем систему

 $\frac{dx}{dz} - \frac{dy}{dz} = 1, \quad \frac{dx}{dz} + \frac{dy}{dz} = -1,$

из которой находим $\frac{dz}{dz} = 0$, $\frac{dy}{dz} = -1$.

Для нахождения вторых производных продифференцируем равенства (1) по
$$z$$
:

$$2x\frac{d^2x}{dz^2} + 2y\frac{d^2y}{dz^2} + 2\left(\frac{dx}{dz}\right)^2 + 2\left(\frac{dy}{dz}\right)^2 = 1, \quad \frac{d^2x}{dz^2} + \frac{d^2y}{dz^2} = 0.$$
 Полагая в этих равенствах $x = 1, y = -1, \frac{dx}{dz} = 0$ и $\frac{dy}{dz} = -1$, получаем систему, решая

$$\frac{d^2x}{dz^2} = -\frac{1}{4}, \quad \frac{d^2y}{dz^2} = \frac{1}{4}. \blacktriangleright$$

$$dz^2 + 4 + dz^2 + 4$$

113. Найти
$$du, dv, d^2u, d^2v, \text{ если } u+v=x+y, y \sin u-x \sin v=0.$$

110. Памін
$$uu$$
, uv , u u , u v , если $u + v = x + y$, $y \sin u - x \sin v = 0$.

• Пифференцируя панные равенства, получаем систему

$$du + dv = dx + dy, \ y \cos u \ du - x \cos v \ dv = \sin v \ dv - \sin u \ dy,$$

$$du = \frac{(x\cos v + \sin v) dx + (x\cos v - \sin u) dy}{x\cos v + y\cos u}, \quad dv = \frac{(y\cos u - \sin v) dx + (y\cos u + \sin u) dy}{x\cos v + y\cos u}.$$

Для нахождения вторых дифференциалов продифференцируем систему (1). После простых преобразований получим

 $y\cos u\,d^2u - x\cos v\,d^2v = (2\cos v\,dx - x\sin v\,dv)\,dv + (y\sin u\,du - 2\cos u\,dy)\,du, \quad d^2u + d^2v = 0.$

Отсюда
$$d^2u = -d^2v = \frac{(2\cos v\,dx - x\sin v\,dv)\,dv + (y\sin u\,du - 2\cos u\,dy)\,du}{y\cos u + x\cos v}. \blacktriangleright$$

114. Найти
$$du$$
, dv , d^2u , d^2v при $x=1$, $y=1$, $u=0$, $v=\frac{\pi}{4}$, если $e^{\frac{u}{x}}\cos{\frac{v}{y}}=\frac{x}{\sqrt{2}}$, $e^{\frac{u}{x}}\sin{\frac{v}{y}}=\frac{y}{\sqrt{2}}$

$$\frac{y}{\sqrt{2}}$$
.

$$e^{\frac{u}{x}}\cos\frac{v}{y}\cdot\frac{x\,du-u\,dx}{x^2} - e^{\frac{u}{x}}\sin\frac{v}{y}\cdot\frac{y\,dv-v\,dy}{y^2} = \frac{dx}{\sqrt{2}},$$

$$e^{\frac{u}{x}}\sin\frac{v}{y}\cdot\frac{x\,du-u\,dx}{x^2} + e^{\frac{u}{x}}\cos\frac{v}{y}\cdot\frac{y\,dv-v\,dy}{y^2} = \frac{dy}{\sqrt{2}}.$$

$$e^{\frac{x}{x}}\cos\frac{y}{y}\cdot\frac{y\,d}{dx}$$

$$e^{\frac{\pi}{x}}\sin\frac{y}{y}\cdot\frac{x\,a\,u-u\,a\,x}{x^2}+e^{\frac{\pi}{x}}\cos\frac{t}{y}$$

Полагая здесь $x=y=1, u=0, v=\frac{\pi}{4}$, получаем систему

 $du - dv + \frac{\pi}{4} dy = dx$, $du + dv - \frac{\pi}{4} dy = dy$,

 $du = \frac{1}{2}(dx + dy), \quad dv = \frac{\pi}{4}dy - \frac{1}{2}(dx - dy).$

(1)

(1)

(1)

(2)

из которой находим

которую, находим

 $+e^{\frac{u}{x}}\sin\frac{v}{y}\left(\left(\frac{x\,du-u\,dx}{x^2}\right)^2-\left(\frac{y\,dv-v\,dy}{y^2}\right)^2\right)+2e^{\frac{u}{x}}\cos\frac{v}{y}\cdot\frac{x\,du-u\,dx}{x^2}\cdot\frac{y\,dv-v\,dy}{y^2}=0.$

§ 3. Неявные функции

 $e^{\frac{u}{x}}\cos{\frac{v}{x}}\cdot\frac{x^2\,d^2u-2(x\,du-u\,dx)\,dx}{x^3}-e^{\frac{u}{x}}\sin{\frac{v}{x}}\cdot\frac{y^2\,d^2v-2(y\,dv-v\,dy)\,dy}{x^3}+$ $+e^{\frac{u}{x}}\cos\frac{v}{y}\left(\left(\frac{x\,du-u\,dx}{x^2}\right)^2-\left(\frac{y\,dv-v\,dy}{y^2}\right)^2\right)-2e^{\frac{u}{x}}\sin\frac{v}{y}\cdot\frac{x\,du-u\,dx}{x^2}\cdot\frac{y\,dv-v\,dy}{y^2}=0,$

$$d^2u - 2\,du\,dx + d^2v - 2\,dv\,dy + \frac{\pi}{2}\,dy^2 + du^2 - \left(dv - \frac{\pi}{4}\,dy\right)^2 + 2\,du\,\left(dv - \frac{\pi}{4}\,dy\right) = 0.$$

 $e^{\frac{u}{x}} \sin \frac{v}{v} \cdot \frac{x^2 d^2u - 2(x du - u dx) dx}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} \cdot \frac{y^2 d^2v - 2(y dv - v dy) dy}{x^3} + e^{\frac{u}{x}} \cos \frac{v}{u} + e^{\frac{u}{x}} \cos \frac{v}{u}$

Полагая в последних равенствах $x=y=1,\,u=0,\,v=\frac{\pi}{4},$ получаем систему

 $d^{2}u - 2 du dx - d^{2}v + 2 dv dy - \frac{\pi}{2} dy^{2} + du^{2} - \left(dv - \frac{\pi}{4} dy\right)^{2} - 2 du \left(dv - \frac{\pi}{4} dy\right) = 0,$

Из систем (2) и (3) находим $d^2u = dx^2$, $d^2v = \frac{1}{2}(dy - dx)^2$.

115. Пусть $z=t+t^{-1},\ y=t^2+t^{-2},\ z=t^3+t^{-3}.$ Найти $\frac{dy}{dx},\ \frac{dz}{dx},\ \frac{d^2y}{dx^2},\ \frac{d^2z}{dx^2}.$

◆ Система определяет две параметрически заданные функции: $x = t + t^{-1},$ $x = t + t^{-1},$ $y = t^2 + t^{-2}$ $x = t^3 + t^{-3}.$

Слеповательно.

$$\frac{dz}{dx} = \frac{\frac{dz}{dt}}{\frac{dz}{dt}} = \frac{3t^2 - 3t^{-4}}{1 - t^{-2}} = 3\left(t^2 + \frac{1}{t^2} + 1\right), \quad t \neq \pm 1;$$

$$\frac{d^2z}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dz}{dx}\right)}{\frac{dz}{dt}} = \frac{6(t - t^{-3})}{1 - t^{-2}} = 6\left(t + \frac{1}{t}\right), \quad t \neq \pm 1. \blacktriangleright$$

116. Пусть $x = \varphi(u, v), y = \psi(u, v).$

u(x, y), v = v(x, y).■ Дифференцируя равенства (1), получаем систему

 $dx = \frac{\partial \varphi}{\partial u} du + \frac{\partial \varphi}{\partial u} dv, \quad dy = \frac{\partial \psi}{\partial u} du + \frac{\partial \psi}{\partial u} dv,$

из которой находим дифференциалы от обратных функций:

где $I = \frac{\partial \varphi}{\partial u} \frac{\partial \psi}{\partial u} - \frac{\partial \varphi}{\partial u} \frac{\partial \psi}{\partial u}$. Из равенств (3) получаем

 $du = \frac{1}{I} \left(\frac{\partial \psi}{\partial x} dx - \frac{\partial \varphi}{\partial x} dy \right), \quad dv = -\frac{1}{I} \left(\frac{\partial \psi}{\partial x} dx - \frac{\partial \varphi}{\partial x} dy \right),$

 $\frac{\partial \mathbf{u}}{\partial \mathbf{z}} = \frac{1}{I} \frac{\partial \psi}{\partial \mathbf{u}}, \quad \frac{\partial \mathbf{u}}{\partial \mathbf{u}} = -\frac{1}{I} \frac{\partial \varphi}{\partial \mathbf{u}}, \quad \frac{\partial \mathbf{v}}{\partial \mathbf{z}} = -\frac{1}{I} \frac{\partial \psi}{\partial \mathbf{u}}, \quad \frac{\partial \mathbf{v}}{\partial \mathbf{z}} = \frac{1}{I} \frac{\partial \varphi}{\partial \mathbf{u}}.$

 $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dz}{dx}} = \frac{2t - 2t^{-3}}{1 - t^{-2}} = 2\left(t + \frac{1}{t}\right), \quad t \neq \pm 1; \quad \frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dz}{dx}} = \frac{2(1 - t^{-2})}{1 - t^{-2}} = 2, \quad t \neq \pm 1;$

Найти частные производные первого и второго порядков от обратных функций и

(1)

(2)

(3)

(4)

(3)

$$0 = \frac{\partial \varphi}{\partial u} d^2 u + \frac{\partial \varphi}{\partial v} d^2 v + \frac{\partial^2 \varphi}{\partial u^2} du^2 + 2 \frac{\partial^2 \varphi}{\partial u \partial v} du dv + \frac{\partial^2 \varphi}{\partial v^2} dv^2,$$

$$0 = \frac{\partial \psi}{\partial u} d^2 u + \frac{\partial \psi}{\partial v} d^2 v + \frac{\partial^2 \psi}{\partial u^2} du^2 + 2 \frac{\partial^2 \psi}{\partial u \partial v} du dv + \frac{\partial^2 \psi}{\partial v^2} dv^2$$

находим вторые дифференциалы от обратных функций:

$$\begin{split} d^2v &= \frac{1}{I} \left(\left(\frac{\partial \psi}{\partial u} \, \frac{\partial^2 \varphi}{\partial u^2} \, - \, \frac{\partial \varphi}{\partial u} \, \frac{\partial^2 \psi}{\partial u^2} \right) du^2 + 2 \left(\frac{\partial \psi}{\partial u} \, \frac{\partial^2 \varphi}{\partial u \, \partial v} \, - \, \frac{\partial \varphi}{\partial u} \, \frac{\partial^2 \psi}{\partial u \, \partial v} \right) du \, dv \, + \\ &\quad + \left(\frac{\partial \psi}{\partial u} \, \frac{\partial^2 \varphi}{\partial v^2} \, - \frac{\partial \varphi}{\partial u} \, \frac{\partial^2 \psi}{\partial v^2} \right) dv^2 \right). \end{split}$$

 $+\left(\frac{\partial\varphi}{\partial v}\frac{\partial^2\psi}{\partial v^2}-\frac{\partial\psi}{\partial v}\frac{\partial^2\varphi}{\partial v^2}\right)dv^2\right),$

Подставляя в эти равенства выражения (3) для дифференциалов и собирая коэффициенты

при
$$dx^2$$
, $2dx\,dy$ и dy^2 , получаем $\partial^2 u = 1 \left(\left(\partial \varphi \ \partial^2 \psi - \partial \psi \ \partial^2 \varphi \right) \left(\partial \psi \ \right)^2 + 2 \left(\partial \psi \ \partial^2 \varphi - \partial \varphi \ \partial^2 \psi \right) \partial \psi \ \partial \psi$

$$\begin{split} \frac{\partial^2 u}{\partial x^2} &= \frac{1}{I^3} \left(\left(\frac{\partial \varphi}{\partial v} \, \frac{\partial^2 \psi}{\partial u^2} - \frac{\partial \psi}{\partial v} \, \frac{\partial^2 \varphi}{\partial u^2} \right) \left(\frac{\partial \psi}{\partial v} \right)^2 + 2 \left(\frac{\partial \psi}{\partial v} \, \frac{\partial^2 \varphi}{\partial u \, \partial v} - \frac{\partial \varphi}{\partial v} \, \frac{\partial^2 \psi}{\partial u \, \partial v} \right) \frac{\partial \psi}{\partial v} \, \frac{\partial \psi}{\partial u} + \\ &\quad + \left(\frac{\partial \varphi}{\partial v} \, \frac{\partial^2 \psi}{\partial v^2} - \frac{\partial \psi}{\partial v} \, \frac{\partial^2 \varphi}{\partial v} \right) \left(\frac{\partial \psi}{\partial u} \right)^2 \right), \end{split}$$

$$\frac{\partial^{2} u}{\partial x \partial y} = \frac{1}{I^{3}} \left(\left(\frac{\partial \psi}{\partial v} \frac{\partial^{2} \varphi}{\partial u^{2}} - \frac{\partial \varphi}{\partial v} \frac{\partial^{2} \psi}{\partial u^{2}} \right) \frac{\partial \psi}{\partial v} \frac{\partial \varphi}{\partial v} + \left(\frac{\partial \varphi}{\partial v} \frac{\partial^{2} \psi}{\partial u \partial v} - \frac{\partial \psi}{\partial v} \frac{\partial^{2} \varphi}{\partial u \partial v} \right) \left(\frac{\partial \psi}{\partial v} \frac{\partial \varphi}{\partial u} + \frac{\partial \psi}{\partial u} \frac{\partial \varphi}{\partial v} \right) + \\
+ \left(\frac{\partial \psi}{\partial v} \frac{\partial^{2} \varphi}{\partial v^{2}} - \frac{\partial \varphi}{\partial v} \frac{\partial^{2} \psi}{\partial v} \right) \frac{\partial \varphi}{\partial u} \frac{\partial \psi}{\partial u} \right),$$

$$+ \left(\frac{\partial \varphi}{\partial v} \, \frac{\partial^2 \psi}{\partial v^2} - \frac{\partial \psi}{\partial v} \, \frac{\partial^2 \varphi}{\partial v^2} \right) \left(\frac{\partial \varphi}{\partial \mathbf{u}} \right)^2 \bigg)$$

 $\frac{\partial^2 u}{\partial u^2} = \frac{1}{I^3} \left(\left(\frac{\partial \varphi}{\partial v} \frac{\partial^2 \psi}{\partial u^2} - \frac{\partial \psi}{\partial v} \frac{\partial^2 \varphi}{\partial u^2} \right) \left(\frac{\partial \varphi}{\partial v} \right)^2 + 2 \left(\frac{\partial \psi}{\partial v} \frac{\partial^2 \varphi}{\partial u \partial v} - \frac{\partial \varphi}{\partial v} \frac{\partial^2 \psi}{\partial u \partial v} \right) \frac{\partial \varphi}{\partial u} \frac{\partial \varphi}{\partial v} + \frac{\partial^2 \psi}{\partial v} \left(\frac{\partial \varphi}{\partial v} \frac{\partial^2 \psi}{\partial v} - \frac{\partial \psi}{\partial v} \frac{\partial^2 \psi}{\partial v} \right) \frac{\partial \varphi}{\partial v} \frac{\partial \varphi}{\partial v} + \frac{\partial^2 \psi}{\partial v} \left(\frac{\partial \varphi}{\partial v} \frac{\partial^2 \psi}{\partial v} - \frac{\partial \psi}{\partial v} \frac{\partial^2 \psi}{\partial v} \right) \frac{\partial \varphi}{\partial v} \frac{\partial \varphi}{\partial v} + \frac{\partial^2 \psi}{\partial v} \frac{\partial^2 \psi}{\partial v} + \frac{\partial^2 \psi}{\partial v} \frac{\partial^2 \psi}{\partial v} \right) \frac{\partial \varphi}{\partial v} \frac{\partial \varphi}{\partial v} + \frac{\partial^2 \psi}{\partial v} \frac{\partial^2 \psi}{\partial v} \frac{\partial \psi}{\partial v} + \frac{\partial^2 \psi}{\partial v} \frac{\partial^2 \psi}{\partial v} \frac{\partial \psi}{\partial v} \frac{\partial \psi}{\partial v} + \frac{\partial^2 \psi}{\partial v} \frac{\partial^2 \psi}{\partial v} \frac{\partial \psi}{\partial v} \frac{\partial \psi}{\partial v} \frac{\partial \psi}{\partial v} \frac{\partial \psi}{\partial v} + \frac{\partial^2 \psi}{\partial v} \frac{\partial \psi}{\partial v}$

и т.д. ▶

117. Функция
$$u=u(x)$$
 определяется системой уравнений

 $u = f(x, y, z), \quad g(x, y, z) = 0, \quad h(x, y, z) = 0.$

Найти $\frac{du}{dx}$ и $\frac{d^2u}{dx^2}$. Предполагая, что данная система определяет три дифференцируемые функции и

 $u(x),\,y=y(x),\,z=z(x),$ дифференцируем систему по x:

 $\frac{du}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx} + \frac{\partial f}{\partial z} \frac{dz}{dx}, \quad 0 = \frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} \frac{dy}{dx} + \frac{\partial g}{\partial z} \frac{dz}{dx}, \quad 0 = \frac{\partial h}{\partial x} + \frac{\partial h}{\partial y} \frac{dy}{dx} + \frac{\partial h}{\partial z} \frac{dz}{dx}.$

THE $I_1 = \frac{\mathcal{D}(g,h)}{\mathcal{D}(g,s)}$, $I_2 = \frac{\mathcal{D}(g,h)}{\mathcal{D}(g,s)}$, $I_3 = \frac{\mathcal{D}(g,h)}{\mathcal{D}(g,s)}$.

$$\frac{d\sigma}{dx} = \frac{\partial J}{\partial x} + \frac{\partial J}{\partial y} \frac{dy}{dx} + \frac{\partial J}{\partial z} \frac{dz}{dx}, \quad 0 = \frac{\partial J}{\partial x} + \frac{\partial J}{\partial y} \frac{dy}{dx} + \frac{\partial J}{\partial z} \frac{dz}{dx}, \quad 0 = \frac{\partial L}{\partial x} + \frac{\partial L}{\partial y} \frac{dy}{dx} + \frac{\partial L}{\partial z} \frac{dz}{dx}. \quad (1)$$
Из последних двух равенств находим производные

$$\frac{dy}{dx} = \frac{I_2}{I_1}, \quad \frac{dz}{dx} = \frac{I_3}{I_1},\tag{2}$$

(3)

 $\frac{du}{dx} = \frac{\partial f}{\partial x} + \frac{I_2}{I_1} \frac{\partial f}{\partial y} + \frac{I_3}{I_1} \frac{\partial f}{\partial z} = \frac{1}{I_1} \left(I_1 \frac{\partial f}{\partial x} + I_2 \frac{\partial f}{\partial y} + I_3 \frac{\partial f}{\partial z} \right) = \frac{1}{I_1} \frac{\mathcal{D}(f, g, h)}{\mathcal{D}(x, y, z)} = \frac{1}{I_1}, \quad I = \frac{\mathcal{D}(f, g, h)}{\mathcal{D}(x, y, z)}$ Для определения $\frac{d^2u}{dx^2}$ дифференцируем систему (1):

$$\frac{d^2u}{dx^2} = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \left(\frac{dy}{dx}\right)^2 + \frac{\partial^2 f}{\partial z^2} \left(\frac{dz}{dx}\right)^2 + 2\frac{\partial^2 f}{\partial x \partial y} \frac{dy}{dx} + 2\frac{\partial^2 f}{\partial x \partial z} \frac{dz}{dx} + 2\frac{\partial^2 f}{\partial y \partial z} \frac{dy}{dx} \frac{dz}{dx} + \frac{\partial f}{\partial y} \frac{d^2y}{dx^2} + \frac{\partial f}{\partial z} \frac{d^2z}{dx^2},$$

$$0 = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \left(\frac{dy}{dx}\right)^2 + \frac{\partial^2 g}{\partial z^2} \left(\frac{dz}{dx}\right)^2 + 2\frac{\partial^2 g}{\partial x \partial y} \frac{dy}{dx} + 2\frac{\partial^2 g}{\partial x \partial z} \frac{dz}{dx} + 2\frac{\partial^2 g}{\partial y \partial z} \frac{dy}{dx} \frac{dz}{dx} + \frac{\partial g}{\partial y} \frac{d^2y}{dx^2} + \frac{\partial g}{\partial z} \frac{d^2z}{dx^2},$$

 $0 = \frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} \left(\frac{dy}{dx}\right)^2 + \frac{\partial^2 h}{\partial z^2} \left(\frac{dz}{dx}\right)^2 + 2\frac{\partial^2 h}{\partial x \partial y} \frac{dy}{dx} + 2\frac{\partial^2 h}{\partial x \partial z} \frac{dz}{dx} + 2\frac{\partial^2 h}{\partial y \partial z} \frac{dy}{dx} \frac{dz}{dx} + \frac{\partial h}{\partial y} \frac{d^2 y}{dx^2} + \frac{\partial h}{\partial z} \frac{d^2 z}{dx}.$

Использовав формулы (2), послепние равенства перепишем в

 $\frac{d^2 u}{dx^2} = \frac{1}{I^2} \left(I_1 \frac{\partial}{\partial x} + I_2 \frac{\partial}{\partial y} + I_3 \frac{\partial}{\partial z} \right)^2 f + \frac{\partial f}{\partial y} \frac{d^2 y}{dx^2} + \frac{\partial f}{\partial z} \frac{d^2 z}{dx^2},$

$$\frac{\partial g}{\partial y} \frac{d^2 y}{dx^2} + \frac{\partial g}{\partial z} \frac{d^2 z}{dx^2} = -\frac{1}{I_1^2} \left(I_1 \frac{\partial}{\partial x} + I_2 \frac{\partial}{\partial y} + I_3 \frac{\partial}{\partial z} \right)^2 g,$$

$$\frac{\partial h}{\partial y} \frac{d^2 y}{dx^2} + \frac{\partial h}{\partial z} \frac{d^2 z}{dx^2} = -\frac{1}{I_1^2} \left(I_1 \frac{\partial}{\partial x} + I_2 \frac{\partial}{\partial y} + I_3 \frac{\partial}{\partial z} \right)^2 h.$$
 Із последних двух равенств находим производные

$$\frac{d^2y}{dx^2} = \frac{1}{I_1^3} \left(\frac{\partial g}{\partial z} \left(I_1 \frac{\partial}{\partial x} + I_2 \frac{\partial}{\partial y} + I_3 \frac{\partial}{\partial z} \right)^2 h - \frac{\partial h}{\partial z} \left(I_1 \frac{\partial}{\partial x} + I_2 \frac{\partial}{\partial y} + I_3 \frac{\partial}{\partial z} \right)^2 g \right),$$

$$\frac{d^2z}{dx^2} = \frac{1}{I_1^3} \left(\frac{\partial h}{\partial y} \left(I_1 \frac{\partial}{\partial x} + I_2 \frac{\partial}{\partial y} + I_3 \frac{\partial}{\partial z} \right)^2 g - \frac{\partial g}{\partial y} \left(I_1 \frac{\partial}{\partial x} + I_2 \frac{\partial}{\partial y} + I_3 \frac{\partial}{\partial z} \right)^2 h \right)$$

$$\frac{\partial f}{\partial y} \frac{\partial^{2} y}{\partial x^{2}} + \frac{\partial f}{\partial z} \frac{\partial^{2} z}{\partial x^{2}} = \frac{1}{I_{1}^{3}} \left(\left(\frac{\partial f}{\partial y} \frac{\partial g}{\partial z} - \frac{\partial f}{\partial z} \frac{\partial g}{\partial y} \right) \left(I_{1} \frac{\partial}{\partial x} + I_{2} \frac{\partial}{\partial y} + I_{3} \frac{\partial}{\partial z} \right)^{2} h + \left(\frac{\partial f}{\partial z} \frac{\partial h}{\partial y} - \frac{\partial f}{\partial y} \frac{\partial h}{\partial z} \right) \left(I_{1} \frac{\partial}{\partial x} + I_{2} \frac{\partial}{\partial y} + I_{3} \frac{\partial}{\partial z} \right)^{2} g \right) = 0$$

$$=\frac{1}{I_1^3}\left(\frac{\mathcal{D}(f,g)}{\mathcal{D}(y,z)}\left(I_1\frac{\partial}{\partial x}+I_2\frac{\partial}{\partial y}+I_3\frac{\partial}{\partial z}\right)^2h+\frac{\mathcal{D}(h,f)}{\mathcal{D}(y,z)}\left(I_1\frac{\partial}{\partial x}+I_2\frac{\partial}{\partial y}+I_3\frac{\partial}{\partial z}\right)^2g\right).$$

Наконец, из равенств (3) и (4) окончательно получаем

$$\frac{d^2u}{dt} = \frac{1}{2\pi} \left(\frac{\mathcal{D}(g,h)}{f} \left(I_1 \frac{\partial}{\partial t} + I_2 \frac{\partial}{\partial t} + I_3 \frac{\partial}{\partial t} \right)^2 f + \frac{\mathcal{D}(h,f)}{f} \right)$$

$$\frac{d^{2}u}{dx^{2}} = \frac{1}{I_{1}^{3}} \left(\frac{\mathcal{D}(g, h)}{\mathcal{D}(y, z)} \left(I_{1} \frac{\partial}{\partial x} + I_{2} \frac{\partial}{\partial y} + I_{3} \frac{\partial}{\partial z} \right)^{2} f + \frac{\mathcal{D}(h, f)}{\mathcal{D}(y, z)} \left(I_{1} \frac{\partial}{\partial x} + I_{2} \frac{\partial}{\partial y} + I_{3} \frac{\partial}{\partial z} \right)^{2} g + \frac{\mathcal{D}(f, g)}{\mathcal{D}(y, z)} \left(I_{1} \frac{\partial}{\partial x} + I_{2} \frac{\partial}{\partial y} + I_{3} \frac{\partial}{\partial z} \right)^{2} h \right). \quad \blacktriangleright$$

118. Пусть z = f(u, v, w), y = g(u, v, w), z = h(u, v, w). Найти $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ и $\frac{\partial u}{\partial z}$.

164

◀ Пифференцируя панные равенства, получаем систему

 $dx = f'_u du + f'_v dv + f'_w dw, \quad dy = g'_u du + g'_v dv + g'_w dw, \quad dz = h'_u du + h'_v dv + h'_w dw.$

Отсюда вычисляем дифференциал

$$du = \frac{1}{\frac{\mathcal{D}(f,g,h)}{\mathcal{D}(u,v,w)}} \begin{vmatrix} dx & f'_v & f'_w \\ dy & g'_v & g'_w \\ dz & h'_v & h'_w \end{vmatrix} = \frac{1}{\frac{\mathcal{D}(f,g,h)}{\mathcal{D}(u,v,w)}} \left(\frac{\mathcal{D}(g,h)}{\mathcal{D}(v,w)} dx + \frac{\mathcal{D}(h,f)}{\mathcal{D}(v,w)} dy + \frac{\mathcal{D}(f,g)}{\mathcal{D}(v,w)} dz \right).$$

Следовательно, $\frac{\partial u}{\partial x} = \frac{I_1}{I}$, $\frac{\partial u}{\partial y} = \frac{I_2}{I}$, $\frac{\partial u}{\partial z} = \frac{I_3}{I}$, где

$$I = \frac{\mathcal{D}(f, g, h)}{\mathcal{D}(u, v, w)}, \quad I_1 = \frac{\mathcal{D}(g, h)}{\mathcal{D}(v, w)}, \quad I_2 = \frac{\mathcal{D}(h, f)}{\mathcal{D}(v, w)}, \quad I_3 = \frac{\mathcal{D}(f, g)}{\mathcal{D}(v, w)}. \blacktriangleright$$

119. Пусть функция z=z(x,y) удовлетворяет системе уравнений f(x,y,z,t)=0, g(x,y,z,t)=0, где t — переменный параметр. Найти dz.

◀ Имеем систему уравнений

$$f'_x dx + f'_y dy + f'_z dz + f'_t dt = 0, \quad g'_x dx + g'_y dy + g'_z dz + g'_t dt = 0.$$

Отсюда

$$dz = -\frac{1}{\frac{\mathcal{D}(f,g)}{\mathcal{D}(z,t)}} \left| \begin{array}{l} f'_x \, dx + f'_y \, dy & f'_t \\ g'_x \, dx + g'_y \, dy & g'_t \end{array} \right| = -\frac{1}{\frac{\mathcal{D}(f,g)}{\mathcal{D}(z,t)}} \left(\left(f'_x g'_t - f'_t g'_x \right) dx + \left(f'_y g'_t - f'_t g'_y \right) dy \right) = \\ = -\frac{1}{L} (I_1 \, dx + I_2 \, dy),$$

где
$$I_1 = \frac{\mathcal{D}(f,g)}{\mathcal{D}(g,g)}$$
, $I_2 = \frac{\mathcal{D}(f,g)}{\mathcal{D}(g,g)}$, $I_3 = \frac{\mathcal{D}(f,g)}{\mathcal{D}(g,g)}$.

120. Пусть u = f(z), где z — неявная функция от переменных x и y, определяемая уравнением $z = x + y\varphi(z)$. Доказать формулу Лагранжа

$$\frac{\partial^n u}{\partial y^n} + \frac{\partial^{n-1}}{\partial x^{n-1}} \left\{ (\varphi(z))^n \frac{\partial u}{\partial x} \right\}.$$

◀ Применим метод математической индукции. Для этого прежде всего покажем, что формула Лагранжа справедлива при n=1. Из уравнения $z=x+y\varphi(z)$ находим

$$\frac{\partial z}{\partial x} = \frac{1}{1 - y \frac{d\varphi}{}}, \quad \frac{\partial z}{\partial y} = \frac{\varphi(z)}{1 - y \frac{d\varphi}{}} \quad \left(y \frac{d\varphi}{dz} \neq 1\right). \tag{1}$$

Используя эти формулы и равенство u = f(z), получаем

$$\frac{\partial u}{\partial y} = \frac{df}{dz} \frac{\partial z}{\partial y} = \varphi(z) \frac{\frac{dy}{dz}}{1 - y \frac{d\varphi}{dz}}, \quad \frac{\partial u}{\partial x} = \frac{df}{dz} \frac{\partial z}{\partial x} = \frac{\frac{df}{dz}}{1 - y \frac{d\varphi}{dz}}.$$

Отсюда

$$\frac{\partial u}{\partial x} = \varphi(z) \frac{\partial u}{\partial z},\tag{2}$$

и мы убеждаемся в справедливости формулы Лагранжа при n=1.

Остается доказать, что из справедливости формулы Лагранжа при некотором k>1 вытекает справедливость ее при k+1, т. е.

$$\frac{\partial^{k+1} u}{\partial u^{k+1}} = \frac{\partial^k}{\partial x^k} \left\{ (\varphi(z))^{k+1} \frac{\partial u}{\partial x} \right\}. \tag{3}$$

Дифференцируя формулу Лагранжа при n=k, получаем

$$\frac{\partial^{k+1} u}{\partial y^{k+1}} = \frac{\partial^k}{\partial x^{k-1} \partial y} \left\{ (\varphi(z))^k \frac{\partial u}{\partial x} \right\} = \frac{\partial^{k-1}}{\partial x^{k-1}} \left(\frac{\partial}{\partial y} \left\{ (\varphi(z))^k \frac{\partial u}{\partial x} \right\} \right). \tag{4}$$

(1)

 $= \left\{ (k+1)(\varphi(z))^k \frac{d\varphi}{dz} \frac{\partial z}{\partial x} \right\} \frac{\partial u}{\partial x} + (\varphi(z))^{k+1} \frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left\{ (\varphi(z))^{k+1} \frac{\partial u}{\partial x} \right\}.$

Используя равенство $\frac{\partial z}{\partial u}=\varphi(z)\frac{\partial z}{\partial z}$, вытекающее из равенств (1), и формулу (2), преобразуем выражение $\frac{\partial}{\partial u}\left\{(\varphi(z))^k\frac{\partial u}{\partial z}\right\}$. Имеем

 $=k(\varphi(z))^k\frac{d\varphi}{dz}\frac{\partial z}{\partial x}\frac{\partial u}{\partial x}+(\varphi(z))^k\left(\varphi(z)\frac{\partial^2 u}{\partial x^2}+\frac{d\varphi}{dz}\frac{\partial z}{\partial x}\frac{\partial u}{\partial x}\right)=$

 $F(x+zy^{-1}, y+zx^{-1})=0.$

 $F_1'\left(dx + \frac{y\,dz - z\,dy}{v^2}\right) + F_2'\left(dy + \frac{x\,dz - z\,dx}{x^2}\right) = 0.$

 $dz = \frac{y(zF_2' - x^2F_1')}{x(xF_1' + yF_2')}dx + \frac{x(zF_1' - y^2F_2')}{y(xF_1' + yF_2')}dy, \quad xF_1' + yF_2' \neq 0.$

 $\frac{\partial z}{\partial x} = \frac{y(zF_2'-x^2F_1')}{x(xF_1'+yF_2')}, \quad \frac{\partial z}{\partial y} = \frac{x(zF_1'-y^2F_2')}{y(xF_1'+yF_2')}.$

 $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \frac{y(zF_2' - x^2F_1') + x(zF_1' - y^2F_2')}{xF_1' + yF_2'} = \frac{xF_1'(z - xy) + yF_2'(z - xy)}{xF_1' + yF_2'} = z - xy. \blacktriangleright$

 $x \cos \alpha + y \sin \alpha + \ln z = f(\alpha), \quad -x \sin \alpha + y \cos \alpha = f'(\alpha),$ где $lpha = lpha(x,\,y)$ — переменный параметр и f — произвольная дифференцируемая функция,

 $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = z^2.$

 $\frac{\partial z}{\partial x} = -z \cos \alpha, \quad \frac{\partial z}{\partial u} = -z \sin \alpha, \quad \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial u}\right)^2 = z^2 \cos^2 \alpha + z^2 \sin^2 \alpha = z^2. \blacktriangleright$

 $(z - f(\alpha))^2 = x^2(y^2 - \alpha^2), \quad (z - f(\alpha))f'(\alpha) = \alpha x^2,$

 ${f 123.}\,$ Показать, что функция z=z(x,y), заданная системой уравнений

 \blacktriangleleft Дифференцируя первое равенство системы, получаем $\cos \alpha \, dx + \sin \alpha \, dy + (-x \sin \alpha + y)$ $y\cos\alpha-f'(\alpha))\,d\alpha+rac{dz}{z}=0$. В силу второго равенства системы, коэффициент при $d\alpha$ равен нулю. Поэтому $dz=-z\cos\alpha\,dx-z\sin\alpha\,dy$. Отсюда

Умножая первое равенство на х, второе на у и складывая их, убеждаемся, что

 ${f 122.}$ Показать, что функция z=z(x,y), определяемая системой уравнений

 $\frac{\partial}{\partial y}\left\{(\varphi(z))^k \frac{\partial u}{\partial x}\right\} = k(\varphi(z))^{k-1} \frac{d\varphi}{dz} \frac{\partial z}{\partial y} \frac{\partial u}{\partial x} + (\varphi(z))^k \frac{\partial^2 u}{\partial x \partial y} =$

Показать, что $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial x} = z - xy$.

Отсюда

Следовательно,

удовлетворяет уравнению

$$\left(\frac{d\varphi}{d\varphi}\right)^{k-1}$$

Отсюда и из равенства (4) непосредственно следует (3). > 121. Функция z = z(x, y) задана уравнением

■ Дифференцируя равенство (1), получаем

$$()^{k-1}\frac{d\varphi}{d\varphi}$$

$$k-1\frac{d\varphi}{dz}$$

$$-1 \frac{d\varphi}{dz}$$

$$-1\frac{d\varphi}{1}$$

$$-1 \frac{d\varphi}{d\varphi}$$

Име
$$_{-1}\,darphi$$

 $=k(\varphi(z))^{k-1}\frac{d\varphi}{dz}\varphi(z)\frac{\partial z}{\partial x}\frac{\partial u}{\partial x}+(\varphi(z))^{k}\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right)=k(\varphi(z))^{k}\frac{d\varphi}{dz}\frac{\partial z}{\partial x}\frac{\partial u}{\partial x}+(\varphi(z))^{k}\frac{\partial}{\partial x}\left(\varphi(z)\frac{\partial u}{\partial x}\right)=$

где $lpha=lpha(x,\,y)$ — переменный параметр и f(lpha) — произвольная дифференцируемая функция, удовлетворяет уравнению $\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} = xy$.

◀ Дифференцируя первое равенство системы, получаем

$$2(z-f(\alpha))(dz-f'(\alpha)d\alpha)=2x(y^2-\alpha^2)dx+2x^2(ydy-\alpha d\alpha).$$

В силу второго равенства, коэффициент при dlpha равен нулю, а в силу первого равенства, $y^2 - \alpha^2 = \frac{1}{r^2}(z - f(\alpha))^2$. Пользуясь этим, получаем

$$dz = \frac{1}{x}(z - f(\alpha)) dx + \frac{x^2 y dy}{z - f(\alpha)}, \quad \frac{\partial z}{\partial x} = \frac{z - f(\alpha)}{x}, \quad \frac{\partial z}{\partial y} = \frac{x^2 y}{z - f(\alpha)}, \quad z \neq f(\alpha).$$

Отсюда вытекает, что $\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} = \frac{z - f(\alpha)}{x} \frac{x^2 y}{z - f(\alpha)} = xy$.

Упражнения для самостоятельной работы

87. $x^2 + 2xy + y^2 - 4x + 2y - 2 = 0$. Hantu y''' npu x = 1, y = 1.

88. $x + y = e^{x-y}$. Найти y''.

89. $(x^2+y^2-bx)^2=a^2(x^2+y^2)$. Найти y' при x=0, y=0.

90. $x^3 + y^3 - 3xy = 0$. Найти y' при x = 0, y = 0. 91. Даны уравнения $x^2-y^2+z^2=1$, $y^2-2x+z=0$. Найти y' и z'' при x=1, y=1,

z = 1. 92. Из системы

$$x^3 + y^3 + z^3 = a^3$$
. $x^2 + y^2 + z^2 = b^2$

найти
$$y'$$
 и z' .
93. Из уравнений $x^2+y^2-z^2=0$, $x^2+2y^2+3z^2=1$ найти d^2y и d^2z , если x – независимая

переменная.

94. Из уравнений $x^2+y^2=2z^2,\,x^2+2y^2+z^2=4$ найти $\frac{dx}{dz}$ и $\frac{d^2y}{dz^2}$ в точке $(1,\,-1,\,1),\,$ если тезависимая переменная.

95. Пусть x + y + z = a, $x^3 + y^3 + z^3 = 3xyz$. Найти производные функций y и z. 96. В точке $(1,\,1,\,-2)$ найти первые и вторые производные функций y и $z,\,$ если x+y+z=

 $0, x^3 + y^3 - z^3 = 10.$ 97. $x^2 + y^2 + z^2 = 2z$. Найти $\frac{\partial^2 z}{\partial x^2}$. 98. $x^3 + y^3 + z^3 - 3z = 0$. Найти $\frac{\partial^2 z}{\partial x \partial y}$.

99. $x\cos y + y\cos z + z\cos x = a$. Найти $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$. 100. xy + xz + yz = 1. Найти dz и d^2z .

101. Найти d^2z в точке (a, a, 0), если $x^3 + z^3 - 3axz = y^3$.

102. Найти вторые частные производные z, если эта функция от x и y определяется уравнением $y = x\varphi(z) + \psi(z)$.

103. Показать, что z, заданная как функция от x и y уравнением $z=xarphi\left(rac{z}{u}
ight)$, удовлетворяет уравнению конических поверхностей

ряет уравнению конических поверхностей
$$x rac{\partial z}{\partial x} + y rac{\partial z}{\partial u} = z.$$

104. Показать, что при $y = x \varphi(z) + \psi(z)$ удовлетворяется уравнение

$$\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} - \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 = 0.$$

105. Найти y' и y'', если $x^4 + y^4 = 4axy$. 106. Найти y' и y'', если $x^5 + y^5 - 5xy = 0$. 107. Найти y'', если $\arctan \frac{y}{x} = \ln \sqrt{x^2 + y^2}$. 108. Найти y' при x = 1, y = 1, если

 $x^3 + y^3 = x + y.$ 109. Найти y' при x = 1, y = 1, если $x^3 + 2y^3 - 3xy = 0$.

110. Даны уравнения $x^3-y^3+z^3=1$, y-2x+z=0. Найти y' и z' при x=1, y=1, z=1.

§ 4. Замена переменных

- 111. $x^5 + y^5 + z^5 = a^5$, $x^4 + y^4 + z^4 = b^4$. Найти y' и z'. 112. Найти $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$, если $z^3 + x^3 + y^3 3z = a$.

- 113. Найти $\frac{\partial^2 z}{\partial x \partial y}$, если $z^3 + 3x^2 + 3y^2 3(x + y + z) = 0$. 114. Найти $\frac{\partial z}{\partial t}$, $\frac{\partial z}{\partial x}$, $\frac{\partial y}{\partial t}$, $\frac{\partial y}{\partial t}$ при t = x = y = z = 1, если t + 2x + y + z = 5, $t^2 + x^3 + y^4 + z^4 = 4$. 115. Найти $\frac{\partial y}{\partial t}$, $\frac{\partial y}{\partial x}$, $\frac{\partial z}{\partial t}$, $\frac{\partial z}{\partial x}$ при t = x = y = 1, z = -3, если t + 4x + y + z = 3, $t^4 + x^4 + 3$
- $u^4-z^3=30.$ 116. Найти $\frac{\partial^2 z}{\partial z^2}$, если $x^4 + y^4 + z^4 = 4z$. 117. Найти $\frac{\partial^2 z}{\partial z \partial y}$, если $x^5 + y^5 + z^5 = 5z$.
 - 118. Найти $\frac{\partial z}{\partial x}$ и $\frac{\partial^2 z}{\partial x \partial y}$, если $x^2 2y^2 + z^2 4x + 2z = 5$.
 - 119. Найти d^2z , если $\frac{x^2}{c^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. 120. Найти d^2z , если $\cos^2 x + \cos^2 y + \cos^2 z = 1$.
 - 121. Найти $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$, если F(x-y,y-z,z-x)=0.
 - 122. Найти $\frac{\partial^2 z}{\partial x^2}$, если F(x, x+y, x+y+z) = 0. 123. Найти $\frac{\partial^2 z}{\partial x^2}$, если F(xz, yz) = 0. 124. Найти $\frac{\partial z}{\partial x}$, $\frac{\partial u}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial u}{\partial y}$, если F(x, y, z, u) = 0, $\Phi(x, y, z, u) = 0$.
 - 125. Показать, что $x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}+z\frac{\partial u}{\partial z}=0$, если uv=3x-2y+z, $v^2=x^2+y^2+z^2$.
 - 126. xu + yv = 0, uv xy = 5, при x = 1, y = -1 принимаем u = v = 2. Найти $\frac{\theta^2 u}{\theta \pi^2}$ и 127. Найти $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial u}$, если $x = a \cos u \sin v$, $y = b \cos u \cos v$, $z = c \cos u$.

§ 4. Замена переменных

4.1. Замена переменных в выражениях, содержащих обыкновенные производные.

Пусть дано некоторое выражение

$$V = V\left(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \ldots\right), \tag{1}$$

содержащее независимое переменное x, функцию $x \mapsto y(x)$ и производные от y по x до некоторого порядка. Требуется перейти к новым переменным — независимой переменной tи функции от нее $t\mapsto u(t)$. Причем эти переменные связаны с прежними переменными x и у уравнениями **(2)**

$$x = f(t, u), \quad y = g(t, u). \tag{2}$$

Из уравнений (2) находим

$$\begin{cases}
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{\partial g}{\partial t} + \frac{\partial g}{\partial u} \frac{du}{dt}}{\frac{\partial f}{\partial t} + \frac{\partial f}{\partial u} \frac{du}{dt}}, & \begin{cases}
\frac{d^2y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}, & \text{w. т.д.}
\end{cases} (3)$$

Используя равенства (1)—(3), получаем

$$V = F\left(t, u, \frac{du}{dt}, \frac{d^2u}{dt^2}, \ldots\right).$$

4.2. Замена переменных в выражениях, содержащих частные производные.

Ограничимся случаем двух независимых переменных. В остальных случаях поступаем аналогично. Предположим, что задано выражение

$$A = F\left(x, y, z, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \ldots\right), \tag{1}$$

содержащее независимые переменные x, y, функцию $(x, y) \mapsto z(x, y)$ и ее частные производные. Вместо независимых переменных x, y и функции x требуется ввести новые независимые переменные u, v и новую функцию $(u, v) \mapsto w(u, v)$. Переменные u, v, w выражаются через x, y, z с помощью равенств

$$\mathbf{u} = \varphi(\mathbf{x}, \mathbf{y}, \mathbf{z}), \quad \mathbf{v} = \psi(\mathbf{x}, \mathbf{y}, \mathbf{z}), \quad \mathbf{w} = \chi(\mathbf{x}, \mathbf{y}, \mathbf{z}), \tag{2}$$

где функции φ , ψ и χ достаточное число раз дифференцируемы и $\frac{\mathcal{D}(\varphi,\psi,\chi)}{\mathcal{D}(x,y,z)} \neq 0$ в некоторой области.

Пля решения поставленной задачи достаточно выразить аргументы функции F через

$$u, v, w, \frac{\partial u}{\partial u}, \frac{\partial w}{\partial v}, \dots$$
 С этой целью запишем дифференциалы равенств (2):
$$du = \frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy + \frac{\partial \varphi}{\partial z} \left(\frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy \right), \tag{3}$$

$$dv = \frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} dy + \frac{\partial \psi}{\partial z} \left(\frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy \right), \tag{4}$$

$$dw = \frac{\partial w}{\partial u} du + \frac{\partial w}{\partial v} dv = \frac{\partial \chi}{\partial x} dx + \frac{\partial \chi}{\partial y} dy + \frac{\partial \chi}{\partial z} \left(\frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy \right). \tag{5}$$

Заменяя в последнем равенстве du и dv их выражениями (3) и (4) и приравнивая коэффициенты при dx и dy, получаем систему

$$\frac{\partial w}{\partial u} \left(\frac{\partial \varphi}{\partial x} + \frac{\partial \varphi}{\partial z} \frac{\partial z}{\partial x} \right) + \frac{\partial w}{\partial v} \left(\frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial z} \frac{\partial z}{\partial x} \right) = \frac{\partial \chi}{\partial x} + \frac{\partial \chi}{\partial z} \frac{\partial z}{\partial x},$$

$$\frac{\partial w}{\partial u} \left(\frac{\partial \varphi}{\partial y} + \frac{\partial \varphi}{\partial z} \frac{\partial z}{\partial y} \right) + \frac{\partial w}{\partial v} \left(\frac{\partial \psi}{\partial y} + \frac{\partial \psi}{\partial z} \frac{\partial z}{\partial y} \right) = \frac{\partial \chi}{\partial y} + \frac{\partial \chi}{\partial z} \frac{\partial z}{\partial y},$$
(6)

из которой находим

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial w}{\partial u}}{\frac{\partial w}{\partial x}} + \frac{\partial w}{\partial v} \frac{\partial \psi}{\partial z} - \frac{\partial \chi}{\partial z}}{\frac{\partial w}{\partial y}}, \quad \frac{\partial z}{\partial y} = -\frac{\frac{\partial w}{\partial u}}{\frac{\partial w}{\partial y}} + \frac{\partial w}{\partial v} \frac{\partial \psi}{\partial y} - \frac{\partial \chi}{\partial y}}{\frac{\partial w}{\partial y}}.$$
 (7)

Частные производные второго порядка определяются из равенств, полученных в результате вычисления первого дифференциала от уже найденных производных первого порядка.

Если же переменные u, v, w связаны с прежними переменными x, y, z уравнениями

$$x = f(u, v, w), \quad y = g(u, v, w), \quad z = h(u, v, w),$$

где функции f, g и h достаточное число раз дифференцируемы, поступаем следующим образом. Используя инвариантность формы первого дифференциала в равенствах

$$dz = \frac{\partial z}{\partial x} \left(\frac{\partial f}{\partial u} du + \frac{\partial f}{\partial v} dv + \frac{\partial f}{\partial w} \left(\frac{\partial w}{\partial u} du + \frac{\partial w}{\partial v} dv \right) \right) +$$

$$+ \frac{\partial z}{\partial y} \left(\frac{\partial g}{\partial u} du + \frac{\partial g}{\partial v} dv + \frac{\partial g}{\partial w} \left(\frac{\partial w}{\partial u} du + \frac{\partial w}{\partial v} dv \right) \right) =$$

$$= \frac{\partial h}{\partial u} du + \frac{\partial h}{\partial w} dv + \frac{\partial h}{\partial w} \left(\frac{\partial w}{\partial u} du + \frac{\partial w}{\partial v} dv \right)$$
(8)

и сравнивая воэффициенты при du, dv, получаем систему

$$\frac{\partial z}{\partial x} \left(\frac{\partial f}{\partial u} + \frac{\partial f}{\partial w} \frac{\partial w}{\partial u} \right) + \frac{\partial z}{\partial y} \left(\frac{\partial g}{\partial u} + \frac{\partial g}{\partial w} \frac{\partial w}{\partial u} \right) = \frac{\partial h}{\partial u} + \frac{\partial h}{\partial w} \frac{\partial w}{\partial u},$$

$$\frac{\partial z}{\partial x} \left(\frac{\partial f}{\partial v} + \frac{\partial f}{\partial w} \frac{\partial w}{\partial v} \right) + \frac{\partial z}{\partial y} \left(\frac{\partial g}{\partial v} + \frac{\partial g}{\partial w} \frac{\partial w}{\partial v} \right) = \frac{\partial h}{\partial v} + \frac{\partial h}{\partial w} \frac{\partial w}{\partial v},$$
(9)

из которой находим $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$ как функции $\frac{\partial w}{\partial u}$ и $\frac{\partial w}{\partial y}$.

124. Преобразовать уравнения: a) $y'y''' - 3y''^2 = x$; б) $y'^2y^{IV} - 10y'y''y''' + 12y''^3 = 0$, приняв y за новую независимую переменную.

(1)

(2)

◆ Согласно правилу пифференцирования обратной функции, имеем

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}, \quad \frac{d^2y}{dx^2} = \frac{1}{\frac{dx}{dy}} \frac{d}{dy} \left(\frac{dy}{dx}\right) = \frac{1}{\frac{dx}{dy}} \frac{d}{dy} \left(\frac{1}{\frac{dx}{dy}}\right) = -\frac{\frac{d^2x}{dy^2}}{\left(\frac{dx}{dy}\right)^3},$$

$$\frac{d^3y}{dx^3} = \frac{1}{\frac{dx}{dy}} \frac{d}{dy} \left(\frac{d^2y}{dx^2}\right) = \frac{1}{\frac{dx}{dy}} \frac{d}{dy} \left(-\frac{\frac{d^2x}{dy^2}}{\left(\frac{dx}{dy}\right)^3}\right) = \frac{-\frac{d^3x}{dy^3} \frac{dx}{dy} + 3\left(\frac{d^2x}{dy^2}\right)^2}{\left(\frac{dx}{dy}\right)^5},$$

$$\frac{d^4y}{dx^4} = \frac{1}{\frac{dx}{dy}} \frac{d}{dy} \left(\frac{d^3y}{dx^3}\right) = \frac{1}{\frac{dx}{dy}} \frac{d}{dy} \left(-\frac{\frac{d^3x}{dy^3} \frac{dx}{dy} + 3\left(\frac{d^2x}{dy^2}\right)^2}{\left(\frac{dx}{dy}\right)^5}\right) =$$

$$=\frac{-\frac{d^4x}{dy^4}\left(\frac{dx}{dy}\right)^2+10\frac{d^3x}{dy^3}\frac{d^2x}{dy^2}\frac{dx}{dy}-15\left(\frac{d^2x}{dy^2}\right)^3}{\left(\frac{dx}{dy}\right)^7}.$$
 Заменяя в равенствах а) и б) производные $\frac{dy}{dx},\,\frac{d^2y}{dx^2},\,\frac{d^3y}{dx^3}$ и $\frac{d^4y}{dx^4}$ только что вычисленными их

a) $\frac{d^3x}{du^3} + x \left(\frac{dx}{du}\right)^5 = 0$; 6) $\frac{d^4x}{du^4} = 0$.

125. Преобразовать уравнение $y'' + \frac{2}{x}y' + y = 0$, приняв x за функцию, t = xy за независимое переменное. ◆ По формулам (3), п.4.1, находим

 $\frac{dy}{dx} = \frac{1}{x^{\frac{dx}{dx}}} - \frac{t}{x^2},$

 $\frac{d^{2}y}{dx^{2}} = \frac{d}{dx}\frac{dy}{dx} = \frac{1}{\frac{dx}{dt}}\frac{d}{dt}\left(\frac{1}{x^{\frac{dx}{dt}}} - \frac{t}{x^{2}}\right) = -\frac{\frac{d^{2}x}{dt^{2}}}{x\left(\frac{dx}{dx}\right)^{3}} - \frac{2}{x^{2\frac{dx}{dt}}} + \frac{2t}{x^{3}}.$

$$\frac{dt}{dt}$$
 ut $\left(x\frac{dt}{dt}\right)$

Из условия задачи и равенств (1), (2) окончательно получаем

$$\frac{d^2x}{dx^2} - t\left(\frac{dx}{dx}\right)^3 = 0. \blacktriangleright$$

Вводя новые переменные, преобразовать следующие обыкновенные дифференциальные уравнения:

126. $x^2y'' + xy' + y = 0$, если $x = e^t$.

$$\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = \frac{1}{\frac{dx}{dt}} \frac{dy}{dt} = \frac{1}{e^t} \frac{dy}{dt} = e^{-t} \frac{dy}{dt}, \quad \frac{d^2y}{dx^2} = e^{-t} \frac{d}{dt} \left(e^{-t} \frac{dy}{dt} \right) = e^{-2t} \left(\frac{d^2y}{dt^2} - \frac{dy}{dt} \right).$$

3аменяя в данном уравнении x на e^t , производные y' и y'' — вычисленными выше их значениями, получаем

$$\frac{d^2y}{dt^2}+y=0. \blacktriangleright$$

127. $y''' = \frac{6y}{z^3}$, ecan $t = \ln |z|$.

■ При $x \neq 0$ имеем

$$\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = \frac{dy}{dt} \frac{\operatorname{sgn} x}{|x|} = \frac{1}{x} \frac{dy}{dt}, \quad \frac{d^2y}{dx^2} = \frac{1}{x} \frac{d}{dt} \left(\frac{1}{x} \frac{dy}{dt}\right) = \frac{1}{x^2} \left(\frac{d^2y}{dt^2} - \frac{dy}{dt}\right),$$

$$\frac{d^3y}{dx^3} = \frac{1}{x} \frac{d}{dt} \left(\frac{1}{x^2} \left(\frac{d^2y}{dt^2} - \frac{dy}{dt}\right)\right) = \frac{1}{x^3} \left(\frac{d^3y}{dt^3} - 3\frac{d^2y}{dt^2} + 2\frac{dy}{dt}\right).$$

Таким образом, данное уравнение приобретает вид

$$\frac{d^3y}{dt^3} - 3\frac{d^4y}{dt^2} + 2\frac{dy}{dt} - 6y = 0. \blacktriangleright$$

128. $(1-x^2)y'' - xy' + n^2y = 0$, $ec\pi x = \cos t$.

■ Вычислим производные
$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dx}} \frac{dt}{dy} = -\frac{1}{\sin t} \frac{dy}{dt}, \quad \frac{d^2y}{dx^2} = -\frac{1}{\sin t} \frac{d}{dt} \left(-\frac{1}{\sin t} \frac{dy}{dt} \right) = \frac{1}{\sin^2 t} \frac{d^2y}{dt^2} - \frac{\cos t}{\sin^3 t} \frac{dy}{dt}.$$

Подставляя их в данное уравнение и заменяя $oldsymbol{x}$ на $\cos t$, получаем

$$\frac{d^2y}{dt^2} + n^2y = 0. \blacktriangleright$$

129.
$$y'' + y' \operatorname{th} x + \frac{m^2}{\operatorname{ch}^2 x} y = 0$$
, ecan $x = \ln \operatorname{tg} \frac{t}{2}$.

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dt}} \frac{dy}{dt} = \sin t \frac{dy}{dt}, \quad \frac{d^2y}{dx^2} = \sin t \frac{d}{dt} \left(\sin t \frac{dy}{dt} \right) = \sin^2 t \frac{d^2y}{dt^2} + \sin t \cos t \frac{dy}{dt}.$$

A tak kak th $x = -\cos t$, $\frac{1}{\sinh^2 x} = \sin^2 t$, to

$$y'' + y' \operatorname{th} x + \frac{m^2}{\operatorname{ch}^2 x} y = \sin^2 t \left(\frac{d^2 y}{dt^2} + m^2 y \right) = 0.$$

Отсюда $\frac{d^2y}{dx^2} + m^2y = 0$. 130. y'' + p(x)y' + q(x)y = 0, если $y = u \exp \left\{ -\frac{1}{2} \int_{-\infty}^{\infty} p(\xi) d\xi \right\}$.

 $\frac{dy}{dx} = \frac{du}{dx} \exp\left\{-\frac{1}{2}\int_{-\infty}^{x} p(\xi) d\xi\right\} - \frac{p(x)}{2}u \exp\left\{-\frac{1}{2}\int_{-\infty}^{x} p(\xi) d\xi\right\} = \left(\frac{du}{dx} - \frac{p(x)u}{2}\right) \exp\left\{-\frac{1}{2}\int_{-\infty}^{x} p(\xi) d\xi\right\},$

$$\frac{d^2y}{dx^2} = \left(\frac{d^2u}{dx^2} - p(x)\frac{du}{dx} - \frac{u}{2}\frac{dp}{dx} + \frac{up^2(x)}{4}\right) \exp\left\{\frac{1}{2}\int_{x_0}^x p(\xi)\,d\xi\right\}.$$

После подстановки их в уравнение получаем

$$\frac{d^2u}{dx^2} + \left(q(x) - \frac{p^2(x)}{4} - \frac{1}{2}p'(x)\right)u = 0. \blacktriangleright$$

131. $x^4y'' + xyy' - 2y^2 = 0$, если $x = e^t$ и $y = ue^{2t}$, где u = u(t).

■ По формулам (3), п.4.1, имеем

$$\frac{dy}{dx} = \frac{\left(\frac{du}{dt} + 2u\right)e^{2t}}{e^t} = \left(\frac{du}{dt} + 2u\right)e^t, \quad \frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\left(\frac{d^2u}{dt^2} + 3\frac{du}{dt} + 2u\right)e^t}{e^t} = \frac{d^2u}{dt^2} + 3\frac{du}{dt} + 2u.$$

Torда уравнение запишется следующим образом:
$$\frac{d^2u}{dt} = -\frac{du}{dt}$$

$$\frac{d^2u}{dt^2} + (u+3)\frac{du}{dt} + 2u = 0. \blacktriangleright$$

132. $(1+x^2)^2y''=y$, если $x=\lg t$ и $y=\frac{u}{\cos t}$, где u=u(t).

◀ Аналогично предыдущему примеру имеем

$$\frac{dy}{dx} = \frac{\frac{u'\cos t + u\sin t}{\cos^2 t}}{\frac{1}{\cos^2 t}} = u'\cos t + u\sin t, \quad \frac{d^2y}{dx^2} = \frac{u''\cos t - u'\sin t + u'\sin t + u\cos t}{\frac{1}{\cos^2 t}} = (u'' + u)\cos^3 t,$$

где $u'=\frac{du}{dt}$. Следовательно, $\frac{1}{\cos^4 t}(u''+u)\cos^3 t=\frac{u}{\cos t}$, или u''=0. 133. $y'' + (x+y)(1+y')^3 = 0$, ecan x = u + t in y = u - t, the u = u(t).

■ По формулам (3), п.4.1, имеем

$$\frac{dy}{dx} = \frac{u'-1}{u'+1}, \quad \frac{d^2y}{dx^2} = \frac{1}{u'+1} \frac{(u'+1)u'' - (u'-1)u''}{(u'+1)^2} = \frac{2u''}{(u'+1)^3},$$

где $u'=\frac{du}{dt}$. Подставляя эти выражения в уравнение и заменяя в нем x и y соответственно на u+t и u-t, получаем $u''+8u(u')^3=0$. \blacktriangleright

134.
$$y''' - x^3y'' + xy' - y = 0$$
, если $x = \frac{1}{t}$ и $y = \frac{u}{t}$, где $u = u(t)$.

$$\frac{dy}{dx} = \frac{\frac{t^{\frac{uu}{dt}-u}}{\frac{dt}{t^2}}}{-\frac{1}{t^2}} = -t\frac{du}{dt} + u, \quad \frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = -t^2\left(-t\frac{d^2u}{dt^2} - \frac{du}{dt} + \frac{du}{dt}\right) = t^3\frac{d^2u}{dt^2},$$

$$\frac{d^3y}{dx^3} = \frac{\frac{d}{dt}\left(\frac{d^2y}{dx^2}\right)}{\frac{dx}{dt}} = -t^2\left(t^3\frac{d^3u}{dt^3} + 3t^2\frac{d^2u}{dt^2}\right).$$

Таким образом, данное уравнение принимает в

$$t^{5} \frac{d^{3}u}{dt^{3}} + (3t^{4} + 1) \frac{d^{2}u}{dt^{2}} + \frac{du}{dt} = 0. \blacktriangleright$$

135. Преобразовать уравнение Стокса
$$y'' = \frac{Ay}{(x-a)^2(x-b)^2}$$
, полагая $u = \frac{y}{x-b}$, $t = \ln\left|\frac{x-a}{x-b}\right|$ и считая u функцией переменной t .

$$x - b$$

◄ Из формул преобразования при $\frac{x-a}{x-b} > 0$ находим

$$x - a = \frac{(a - b)e^{t}}{1 - e^{t}}, \quad x - b = \frac{a - b}{1 - e^{t}}, \quad y = \frac{(a - b)u}{1 - e^{t}}$$

$$1-e^{t}, \qquad 1-e^{t}, \qquad 1-e^{t}$$

Следовательно,

Находим производные

$$\frac{Ay}{(x-a)^2(x-b)^2} = \frac{Au(1-e^x)^3}{(a-b)^3e^{2x}}.$$
 (1)

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = (e^{-t} - 1)\frac{du}{dt} + u, \quad \frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} \frac{(1 - e^t)^3\left(\frac{d^2u}{dt^2} - \frac{du}{dt}\right)}{(a - b)e^{2t}}.$$
 (2)

Сравнивая равенства (1) и (2), после упрощений получаем

$$\frac{d^2u}{dt^2}-\frac{du}{dt}=\frac{Au}{(a-b)^2}.$$

Аналогично поступаем, если $\frac{x-a}{x-b} < 0$.

136. Преобразовать уравнение $(1-x^2)^2 y'' + y = 0$, полагая x = th t, $y = \frac{u}{\text{ch } t}$, где u = u(t).

 \blacktriangleleft Дифференцируя y как параметрически заданную функцию переменной t, находим

$$\frac{dy}{dx} = \frac{\frac{u' \cosh t - u \sinh t}{\cosh^2 t}}{\frac{1}{\sinh^2 t}} = u' \cosh t - u \sinh t, \quad \frac{d^2y}{dx^2} = \frac{u'' \cosh t - u \cosh t}{\frac{1}{\sinh^2 t}} = (u'' - u) \cosh^3 t.$$

Отсюда и из условия следует $\frac{d^2u}{dt^2}=0$. \blacktriangleright

137. Доказать, что шварциан $S(x(t)) = \frac{x'''(t)}{x''(t)} - \frac{3}{2} \left(\frac{x''(t)}{x'(t)}\right)^2$ не меняет своего значения

при дробно-линейном преобразовании $y = \frac{ax(t) + b}{cx(t) + d}$, $ad - bc \neq 0$.

∢ Имеем

172

$$y' = (ad - bc) \frac{x'}{(cx+d)^2}, \quad y'' = (ad - bc) \left(\frac{x''}{(cx+d)^2} - \frac{2cx'^2}{(cx+d)^3} \right),$$
$$y''' = (ad - bc) \left(\frac{x'''}{(cx+d)^2} - \frac{6cx'x''}{(cx+d)^3} + \frac{6c^2x'^3}{(cx+d)^4} \right).$$

Отсюда

$$S(y(t)) = \frac{y'''}{y'} - \frac{3}{2} \left(\frac{y''}{y'}\right)^2 = \frac{x'''}{x'} - \frac{6cx''}{cx+d} + \frac{6c^2x'^2}{(cx+d)^2} - \frac{3}{2} \left(\frac{x''}{x'} - \frac{2cx'}{cx+d}\right)^2 =$$

$$= \frac{x'''}{x'} - \frac{6cx''}{cx+d} + \frac{6c^2x'^2}{(cx+d)^2} - \frac{3}{2} \left(\frac{x''}{x'}\right)^2 + \frac{6cx''}{cx+d} - \frac{6c^2x'^2}{(cx+d)^2} = \frac{x'''}{x'} - \frac{3}{2} \left(\frac{x''}{x'}\right)^2 = S(x(t)). \blacktriangleright$$

Преобразовать к полярным координатам r и φ , полагая $x=r\cos\varphi$, $y=r\sin\varphi$, следующие уравнения:

138. $\frac{dy}{dx} = \frac{x+y}{x-y}.$

◄ Используя формулы (3), п.4.1, находим

$$\frac{dy}{dx} = \frac{\frac{dr}{d\varphi}\sin\varphi + r\cos\varphi}{\frac{dr}{r}\cos\varphi - r\sin\varphi}.$$
 (1)

Следовательно.

$$\frac{\frac{dr}{d\varphi}\sin\varphi + r\cos\varphi}{\frac{dr}{c}\cos\varphi - r\sin\varphi} = \frac{\cos\varphi + \sin\varphi}{\cos\varphi - \sin\varphi}$$

После преобразований получаем $\frac{d\mathbf{r}}{d\omega} = \mathbf{r}$.

139. $(xy'-y)^2=2xy(1+y'^2)$.

◀ Используя равенство (1) предыдущего примера, получаем

$$\left(r\cos\varphi\frac{r'\sin\varphi+r\cos\varphi}{r'\cos\varphi-r\sin\varphi}-r\sin\varphi\right)^2=2r^2\sin\varphi\cos\varphi\left(1+\left(\frac{r'\sin\varphi+r\cos\varphi}{r'\cos\varphi-r\sin\varphi}\right)^2\right).$$

§ 4. Замена переменных

Отсюда $r'^2 = \frac{1-\sin 2\varphi}{\sin 2\varphi} r^2$. \blacktriangleright

140. $(x^2 + y^2)^2 y'' = (x + yy')^3$. ◄ Дифференцируя равенство (1) из примера 138, получаем

$$\frac{d}{d}(y')$$
 $\frac{2}{x^2} + \frac{2}{x^2} \frac{2}{x^2}$...

 $y'' = \frac{\frac{a}{d\varphi}(y')}{\frac{dx}{r'}} = \frac{r^2 + 2r'' - rr''}{(r'\cos\varphi - r\sin\varphi)^3}, \quad y' = \frac{dy}{dx}, \quad r' = \frac{dr}{d\varphi}.$

Так как $(x^2+y^2)^2=r^4$, а $(x+yy')^3=\frac{r^3r'^3}{(r'\cos\varphi-r\sin\varphi)^3}$, то данное уравнение запишется в следующем виде:

$$\frac{r^4(r^2+2r'^2-rr'')}{(r'\cos\varphi-r\sin\varphi)^3}=\frac{r^3r'^3}{(r'\cos\varphi-r\sin\varphi)^3},\quad r'\cos\varphi-r\sin\varphi\neq0,$$

или
$$r(r^2 + 2{r'}^2 - rr'') = r^3$$
. \blacktriangleright
141. Кривизну плоской кривой $K = \frac{|y_{xx}^{''}|}{\left(1 + y_x^2\right)^{\frac{3}{2}}}$ выразить в полярных координатах r и

φ. **◄** Используя выражения для y' и y'', записанные в полярной системе координат (см. примеры 138, 140), находим

$$K = \frac{\left| \frac{r^2 + 2r'^2 - rr''}{(r'\cos\varphi - r\sin\varphi)^3} \right|}{\left(1 + \left(\frac{r'\sin\varphi + r\cos\varphi}{r'\cos\varphi - r\sin\varphi}\right)^2\right)^{\frac{3}{2}}} = \frac{\left|r^2 + 2r'^2 - rr''\right|}{(r^2 + r'^2)^{\frac{3}{2}}}, \quad r'\cos\varphi - r\sin\varphi \neq 0. \blacktriangleright$$
142. В системе уравнений

 $\frac{dx}{dt} = y + kx(x^2 + y^2), \quad \frac{dy}{dt} = -x + ky(x^2 + y^2)$

перейти к полярной системе координат.

$$\blacktriangleleft$$
 Дифференцируя равенства $x = r\cos\varphi$, $y = r\sin\varphi$ по t , получаем систему
$$\frac{dx}{dt} = \frac{dr}{dt}\cos\varphi - r\sin\varphi\frac{d\varphi}{dt}, \quad \frac{dy}{dt} = \frac{dr}{dt}\sin\varphi + r\cos\varphi\frac{d\varphi}{dt},$$

$$\frac{1}{dt} = \frac{1}{dt}\cos\varphi - \tau\sin\varphi\frac{1}{dt}, \quad \frac{1}{dt} = \frac{1}{dt}\sin\varphi + \tau\cos\varphi\frac{1}{dt}$$

из которой находим
$$\frac{dr}{dt} = \frac{dx}{dt}\cos\varphi + \frac{dy}{dt}\sin\varphi, \quad \frac{d\varphi}{dt} = \frac{1}{\pi}\left(-\frac{dx}{dt}\sin\varphi + \frac{dy}{dt}\cos\varphi\right).$$

Учитывая, что $\frac{dx}{dt} = r \sin \varphi + kr^3 \cos \varphi$, $\frac{dy}{dt} = -r \cos \varphi + kr^3 \sin \varphi$, окончательно находим $\frac{dr}{dt} =$ $kr^3, \frac{d\varphi}{dt} = -1.$

143. Преобразовать выражение
$$w=xrac{d^2y}{dt^2}-yrac{d^2x}{dt^2}$$
, вводя новые функции $r=\sqrt{x^2+y^2}$,

 $\varphi = \operatorname{arctg} \frac{y}{z}$. \blacktriangleleft Дифференцируя равенство $\varphi = \operatorname{arctg} \frac{y}{x}$, находим

$$\frac{d\varphi}{dt} = \frac{x\frac{dy}{dt} - y\frac{dx}{dt}}{x^2 + x^2}.$$

Отсюда $r^2 \frac{d\varphi}{dt} = x \frac{dy}{dt} - y \frac{dx}{dt}$. Дифференцируя последнее равенство, окончательно получаем

ференцируя последнее равенство, окончательно получаем
$$rac{d}{dx}\left(r^2rac{darphi}{dx}
ight) = xrac{d^2y}{dx^2} - yrac{d^2x}{dx^2} = w.$$
 \blacktriangleright

Вводя новые независимые переменные ξ и η , решить следующие уравнения:

$$144. \ rac{\partial z}{\partial x} = rac{\partial z}{\partial y},$$
 если $\xi = x + y, \ \eta = x - y.$

⋖ Имеем

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial z}{\partial \eta} \frac{\partial \eta}{\partial x} = \frac{\partial z}{\partial \xi} + \frac{\partial z}{\partial \eta}, \quad \frac{\partial z}{\partial y} = \frac{\partial z}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial z}{\partial \eta} \frac{\partial \eta}{\partial y} = \frac{\partial z}{\partial \xi} - \frac{\partial z}{\partial \eta}.$$
Отсюда $\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} \equiv 2\frac{\partial z}{\partial \eta} = 0$. Таким образом, решая уравнение $\frac{\partial z}{\partial \eta} = 0$, находим $z = z = \varphi(x + y)$, где φ — произвольная дифференцируемая функция.

Отсюда $\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} \equiv 2 \frac{\partial z}{\partial \eta} = 0$. Таким образом, решая уравнение $\frac{\partial z}{\partial \eta} = 0$, находим $z = \varphi(\xi)$, или $z = \varphi(x + y)$, где φ — произвольная дифференцируемая функция.

$$\mathbf{145.}\ y \frac{\partial z}{\partial x} - x \frac{\partial z}{\partial y} = 0,$$
 если $\xi = x$ и $\eta = x^2 + y^2$.

■ Вычисляя производные $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial \xi} + \frac{\partial z}{\partial \eta} \cdot 2x$, $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial \eta} \cdot 2y$, находим $y \frac{\partial z}{\partial x} - x \frac{\partial z}{\partial y} \equiv y \frac{\partial z}{\partial \xi} = 0$. Отсюда $z = \varphi(\eta)$, или $z = \varphi(x^2 + y^2)$, где φ — произвольная дифференцируемая функция. \blacktriangleright 146. $x \frac{\partial z}{\partial x} + \sqrt{1 + y^2} \frac{\partial z}{\partial y} = xy$, если $u = \ln x$ и $v = \ln \left(y + \sqrt{1 + y^2} \right)$.

140.
$$x \frac{\partial}{\partial x} + \sqrt{1 + y^2} \frac{\partial}{\partial y} = xy$$
, если $u = \ln x$ и $v = \ln (y + \sqrt{1 + y^2})$.

◀ По правилу дифференцирования сложной функции, имеем

 $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x} = \frac{\partial z}{\partial u} \frac{1}{x}, \quad \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} = \frac{\partial z}{\partial v} \frac{1}{\sqrt{1 + v^2}}, \quad x \neq 0.$ Используя эти равенства и то, что $x=e^u$, $y= \sin v$, из условия получаем $\frac{\partial z}{\partial u} + \frac{\partial z}{\partial v} = e^u \sin v$. \blacktriangleright

147.
$$(x+y)\frac{\partial z}{\partial x}-(x-y)\frac{\partial z}{\partial y}=0$$
, если $u=\ln\sqrt{x^2+y^2}$ и $v=\arctan\frac{y}{x}$.

 \blacktriangleleft Аналогично предыдущему примеру имеем

 $\frac{\partial z}{\partial x} = \frac{x}{x^2 + y^2} \frac{\partial z}{\partial y} - \frac{y}{x^2 + y^2} \frac{\partial z}{\partial y}, \quad \frac{\partial z}{\partial y} = \frac{y}{x^2 + y^2} \frac{\partial z}{\partial y} + \frac{x}{x^2 + y^2} \frac{\partial z}{\partial y}.$

Подставляя эти выражения в данное уравнение, получаем
$$\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = 0$$
.

148. $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial u} = z + \sqrt{x^2 + y^2 + z^2}$, если $u = \frac{y}{x}$ и $v = z + \sqrt{x^2 + y^2 + z^2}$.

 $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x} = -\frac{y}{x^2} \frac{\partial z}{\partial u} + \left(\frac{x + z \frac{\partial z}{\partial x}}{\sqrt{x^2 + v^2 + z^2}} + \frac{\partial z}{\partial x} \right) \frac{\partial z}{\partial v},$

⋖ Имеем

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} = \frac{1}{x} \frac{\partial z}{\partial u} + \left(\frac{y + z \frac{\partial z}{\partial y}}{\sqrt{x^2 + y^2 + z^2}} + \frac{\partial z}{\partial y} \right) \frac{\partial z}{\partial v}.$$

Отсюда

юда
$$\frac{\partial z}{\partial x} = \frac{-\frac{y}{x^2}}{1 - \frac{v}{\partial u}} \frac{\partial z}{\partial z} + \frac{x}{v - z} \frac{\partial z}{\partial v}}{1 - \frac{v}{\partial z}}, \quad \frac{\partial z}{\partial y} = \frac{\frac{1}{x}}{\frac{\partial z}{\partial u}} + \frac{y}{v - z} \frac{\partial z}{\partial v}}{1 - \frac{v}{\partial z}}.$$

Таким образом, данное уравнение представимо в виде
$$\frac{x^2+y^2+v^2}{v-z}\frac{\partial z}{\partial v}=v, \text{ или } \frac{\partial z}{\partial v}=\frac{1}{2}. \blacktriangleright$$

149.
$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \frac{x}{z}$$
, если $u = 2x - z^2$ и $v = \frac{y}{z}$.

■ По правилу дифференцирования сложной функции, имеем

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \left(2 - 2z \frac{\partial z}{\partial x} \right) + \frac{\partial z}{\partial v} \left(-\frac{y}{z^2} \frac{\partial z}{\partial x} \right), \quad \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \left(-2z \frac{\partial z}{\partial y} \right) + \frac{\partial z}{\partial v} \left(\frac{1}{z} - \frac{y}{z^2} \frac{\partial z}{\partial y} \right).$$

Отсюда

$$\frac{\partial z}{\partial x} = \frac{2\frac{\partial z}{\partial u}}{1 + 2z\frac{\partial z}{\partial u} + \frac{y}{z^2}\frac{\partial z}{\partial v}}, \quad \frac{\partial z}{\partial y} = \frac{\frac{1}{z}\frac{\partial z}{\partial v}}{1 + 2z\frac{\partial z}{\partial u} + \frac{y}{z^2}\frac{\partial z}{\partial v}}$$

Тогда данное уравнение запишется в виде

$$\frac{2x\frac{\partial z}{\partial u} + \frac{y}{z}\frac{\partial z}{\partial v}}{1 + 2z\frac{\partial z}{\partial u} + \frac{y}{z^2}\frac{\partial z}{\partial v}} = \frac{x}{z}.$$

Полагая здесь $2x = u + z^2$, $\frac{y}{z} = v$, $\frac{x}{z} = \frac{u+z^2}{2z}$, после упрощений получаем $\frac{\partial z}{\partial v} = \frac{z}{v} \frac{u+z^2}{z^2-u}$, $z^2 \neq u$.

eq u.
ightharpoonup 150. Преобразовать выражение $A = \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2$, полагая $x = uv, \ y = \frac{1}{2}(u^2 - v^2)$.

◄ Дифференцируя z как сложную функцию, получаем систему $\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial u} \frac{\partial y}{\partial u} = \frac{\partial z}{\partial x} v + \frac{\partial z}{\partial u} u, \quad \frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial u} \frac{\partial y}{\partial u} = \frac{\partial z}{\partial x} u - \frac{\partial z}{\partial u} v,$

из которой находим

$$\frac{\partial z}{\partial x} = \frac{v \frac{\partial z}{\partial u} + u \frac{\partial z}{\partial v}}{u^2 + v^2}, \quad \frac{\partial z}{\partial u} = \frac{u \frac{\partial z}{\partial u} - v \frac{\partial z}{\partial v}}{u^2 + v^2}, \quad u^2 + v^2 \neq 0.$$

Следовательно,

$$A = \frac{\left(v\frac{\partial z}{\partial u} + u\frac{\partial z}{\partial v}\right)^2 + \left(u\frac{\partial z}{\partial u} - v\frac{\partial z}{\partial v}\right)^2}{(u^2 + v^2)^2} = \frac{\left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2}{u^2 + v^2}.$$

 ${f 151.}$ Преобразовать уравнение $(x-z)rac{\partial z}{\partial x}+yrac{\partial z}{\partial y}=0$, приняв x за функцию, а y и z за независимые переменные.

◄ Запишем равенство (5), п.4.2, полагая в нем u = z, v = y, w = x. Получим

$$dx = \frac{\partial x}{\partial z} \left(\frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy \right) + \frac{\partial x}{\partial y} dy.$$

Сравнивая коэффициенты при dx и dy, получаем систему

$$1 = \frac{\partial x}{\partial z} \frac{\partial z}{\partial x}, \quad 0 = \frac{\partial x}{\partial z} \frac{\partial z}{\partial y} + \frac{\partial x}{\partial y},$$

из которой находим

$$\frac{\partial z}{\partial x} = \frac{1}{\frac{\partial z}{\partial x}}, \quad \frac{\partial z}{\partial y} = -\frac{\frac{\partial x}{\partial y}}{\frac{\partial z}{\partial x}}.$$

Данное уравнение преобразуется следующим образом:

$$rac{x-z}{rac{\partial x}{\partial x}}-rac{yrac{\partial x}{\partial y}}{rac{\partial x}{\partial x}}=0$$
, или $rac{\partial x}{\partial y}=rac{x-z}{y},\quad y
eq 0.$ \blacktriangleright

152. Преобразовать уравнение $(y-z)\frac{\partial z}{\partial x}+(y+z)\frac{\partial z}{\partial y}=0$, приняв x за функцию, а $u=y-z,\,v=y+z$ за независимые переменные.

 \blacksquare Полагая в равенстве (5), п.4.2, w = z, u = y - z, v = y + z, имеем

$$dx = \frac{\partial x}{\partial u} \left(dy - \frac{\partial z}{\partial x} dx - \frac{\partial z}{\partial y} dy \right) + \frac{\partial x}{\partial v} \left(dy + \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy \right).$$

Сравнивая коэффициенты при dx и dy, получаем $1 = -\frac{\partial x}{\partial u} \frac{\partial z}{\partial x} + \frac{\partial x}{\partial v} \frac{\partial z}{\partial x}, \quad 0 = \frac{\partial x}{\partial u} - \frac{\partial x}{\partial u} \frac{\partial z}{\partial u} + \frac{\partial x}{\partial v} + \frac{\partial x}{\partial v} \frac{\partial z}{\partial u}.$

Отсюда

$$\frac{\partial z}{\partial x} = \frac{1}{\frac{\partial x}{\partial x} - \frac{\partial x}{\partial x}}, \quad \frac{\partial z}{\partial y} = -\frac{\frac{\partial x}{\partial u} + \frac{\partial x}{\partial y}}{\frac{\partial z}{\partial z} - \frac{\partial z}{\partial x}}, \quad (y - z)\frac{\partial z}{\partial x} + (y + z)\frac{\partial z}{\partial y} \equiv \frac{u}{\frac{\partial x}{\partial x} - \frac{\partial x}{\partial x}} - v\frac{\frac{\partial x}{\partial u} + \frac{\partial x}{\partial y}}{\frac{\partial z}{\partial x} - \frac{\partial z}{\partial x}} = 0.$$

После упрощений окончательно находим

$$\frac{\partial x}{\partial u} + \frac{\partial x}{\partial v} = \frac{u}{v} \quad \left(v \neq 0, \ \frac{\partial x}{\partial u} \neq \frac{\partial x}{\partial v} \right). \blacktriangleright$$

 ${f 153.}$ Преобразовать выражение $A=\left(rac{\partial z}{\partial x}
ight)^2+\left(rac{\partial z}{\partial y}
ight)^2$, приняв x за функцию и u=

◀ Аналогично предыдущему примеру имеем

$$dx = \frac{\partial x}{\partial u} \left(z \, dx + x \frac{\partial z}{\partial x} \, dx + x \frac{\partial z}{\partial y} \, dy \right) + \frac{\partial x}{\partial v} \left(z \, dy + y \frac{\partial z}{\partial x} \, dx + y \frac{\partial z}{\partial y} \, dy \right).$$

Для определения $\frac{\partial x}{\partial u}$ и $\frac{\partial x}{\partial u}$ получаем систему

$$1 = z \frac{\partial x}{\partial u} + x \frac{\partial x}{\partial u} \frac{\partial z}{\partial x} + y \frac{\partial x}{\partial v} \frac{\partial z}{\partial x}, \quad 0 = x \frac{\partial x}{\partial u} \frac{\partial z}{\partial y} + z \frac{\partial x}{\partial v} + y \frac{\partial x}{\partial v} \frac{\partial z}{\partial y}.$$

Отсюда

$$\frac{\partial z}{\partial x} = \frac{1 - z\frac{\partial x}{\partial u}}{x\frac{\partial x}{\partial u} + y\frac{\partial x}{\partial v}} = \frac{xu - u^2\frac{\partial x}{\partial u}}{x^2\left(u\frac{\partial x}{\partial u} + v\frac{\partial x}{\partial v}\right)}, \quad \frac{\partial z}{\partial y} = \frac{-z\frac{\partial x}{\partial v}}{x\frac{\partial x}{\partial u} + y\frac{\partial x}{\partial v}} = \frac{-u^2\frac{\partial x}{\partial v}}{x^2\left(u\frac{\partial x}{\partial u} + v\frac{\partial x}{\partial v}\right)}.$$
 Следовательно,

$$A = \frac{x^2 u^2 - 2x u^3 + u^4 \left(\left(\frac{\partial x}{\partial u} \right)^2 + \left(\frac{\partial x}{\partial v} \right)^2 \right)}{x^4 \left(u \frac{\partial x}{\partial u} + v \frac{\partial x}{\partial v} \right)^2}, \quad x^4 \left(u \frac{\partial x}{\partial u} + v \frac{\partial x}{\partial v} \right)^2 \neq 0. \blacktriangleright$$

154. Преобразовать уравнение
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$$
, полагая $\xi = x$, $\eta = y - x$, $\zeta = z - x$.

Дифференцируя и как сложную функцию

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} - \frac{\partial u}{\partial \eta} - \frac{\partial u}{\partial \zeta}, \quad \frac{\partial u}{\partial y} = \frac{\partial u}{\partial \eta}, \quad \frac{\partial u}{\partial z} = \frac{\partial u}{\partial \zeta}.$$

Следовательно, $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} \equiv \frac{\partial u}{\partial \xi} = 0$. \blacktriangleright Перейти к новым переменным u, v, w, где w = w(u, v), в следующих уравнениях:

155. $y\frac{\partial z}{\partial x}-x\frac{\partial z}{\partial y}=(y-x)z$, если $u=x^2+y^2$, $v=\frac{1}{x}+\frac{1}{y}, w=\ln z-(x+y)$.

◆ Пользуясь формулами (7), п.4.2, получаем

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial w}{\partial u} 2x - \frac{\partial w}{\partial v} \frac{1}{x^2} + 1}{-\frac{1}{2}}, \quad \frac{\partial z}{\partial y} = -\frac{\frac{\partial w}{\partial u} 2y - \frac{\partial w}{\partial v} \frac{1}{y^2} + 1}{-\frac{1}{2}}.$$

Следовательно, данное уравнение запишется в виде

$$2xyz\frac{\partial w}{\partial u} - \frac{yz}{x^2}\frac{\partial w}{\partial v} + yz - 2xyz\frac{\partial w}{\partial u} + \frac{xz}{u^2}\frac{\partial w}{\partial v} - xz = (y - x)z,$$

или, после упрощений, $\frac{\partial w}{\partial v} = 0$.

§ 4. Замена переменных **156.** $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = z^2$, если u = x, $v = \frac{1}{y} - \frac{1}{x}$, $w = \frac{1}{z} - \frac{1}{x}$.

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial w}{\partial u} + \frac{\partial w}{\partial v} \frac{1}{x^2} - \frac{1}{x^2}}{-\frac{1}{x^2}}, \quad \frac{\partial z}{\partial y} = \frac{-\frac{\partial w}{\partial v} \frac{1}{y^2}}{-\frac{1}{z^2}},$$

■ Применяя формулу (7), п.4.2, находим частные производные

подставляя которые в данное уравнение, получаем $\frac{\partial w}{\partial u} = 0$.

157. $(xy+z)\frac{\partial z}{\partial x}+(1-y^2)\frac{\partial z}{\partial y}=x+yz$, если $u=yz-x,\,v=xz-y,\,w=xy-z$.

 $\frac{\partial z}{\partial x} = -\frac{\frac{\partial w}{\partial u} + \frac{\partial w}{\partial v}z - y}{\frac{\partial w}{\partial v} + \frac{\partial w}{\partial v}x + 1}, \quad \frac{\partial z}{\partial y} = -\frac{\frac{\partial w}{\partial u}z - \frac{\partial w}{\partial v} - x}{\frac{\partial w}{\partial v} + \frac{\partial w}{\partial v}x + 1}.$

$$\frac{(xy+z)\left(\frac{\partial w}{\partial u} - \frac{\partial w}{\partial v}z + y\right) + (1-y^2)\left(-\frac{\partial w}{\partial u}z + \frac{\partial w}{\partial v}x + 1\right)}{\frac{\partial w}{\partial u}y + \frac{\partial w}{\partial u}x + 1} = x + yz$$

или, после сведения подобных членов,
$$\frac{\partial w}{\partial v} = 0$$
.

158.
$$\left(x\frac{\partial z}{\partial x}\right)^2 + \left(y\frac{\partial z}{\partial y}\right)^2 = z^2\frac{\partial z}{\partial x}\frac{\partial z}{\partial y}$$
, если $x = ue^w$, $y = ve^w$, $z = we^w$.

Отсюда
$$\frac{\partial z}{\partial x} = \frac{(1+w)\frac{\partial w}{\partial u}}{1+u\frac{\partial w}{\partial u}+v\frac{\partial w}{\partial u}+uv\frac{\partial w}{\partial u}\frac{\partial w}{\partial u}}, \quad \frac{\partial z}{\partial y} = \frac{(1+w)\frac{\partial w}{\partial v}}{1+u\frac{\partial w}{\partial u}+vv\frac{\partial w}{\partial u}+uv\frac{\partial w}{\partial u}\frac{\partial w}{\partial v}}$$

Таким образом, в новых переменных
$$u, v$$
 и w данное уравнение имеет следующий вид:
$$\frac{\left(ue^w(1+w)\frac{\partial w}{\partial u}\right)^2 + \left(ve^w(1+w)\frac{\partial w}{\partial v}\right)^2}{\left(1+u\frac{\partial w}{\partial u}+v\frac{\partial w}{\partial u}+uv\frac{\partial w}{\partial u}\frac{\partial w}{\partial v}\right)^2} = \frac{w^2e^{2w}\frac{\partial w}{\partial u}\frac{\partial w}{\partial v}(1+w)^2}{\left(1+u\frac{\partial w}{\partial u}+v\frac{\partial w}{\partial u}\frac{\partial w}{\partial v}\right)^2},$$

или, после упрощений,
$$\left(u\frac{\partial w}{\partial u}\right)^2 + \left(v\frac{\partial w}{\partial v}\right)^2 = w^2\frac{\partial w}{\partial v}\frac{\partial w}{\partial v}$$
. \blacktriangleright Преобразовать к полярным координатам r и φ , полагая $x=r\cos\varphi$, $y=r\sin\varphi$, следую-

щие выражения:
159. a)
$$w = x \frac{\partial u}{\partial y} - y \frac{\partial u}{\partial x}$$
; б) $w = x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$; в) $w = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2$.

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial u}{\partial \varphi} \frac{\partial \varphi}{\partial x}, \quad \frac{\partial u}{\partial y} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial u}{\partial \varphi} \frac{\partial \varphi}{\partial y}. \tag{1}$$

Производные $\frac{\partial \varphi}{\partial x}$, $\frac{\partial r}{\partial x}$, $\frac{\partial \varphi}{\partial y}$ и $\frac{\partial r}{\partial y}$ находим из систем, полученных в результате дифференцирования равенств $x = r \cos \varphi$, $y = r \sin \varphi$ по x и y:

 $1 = \cos\varphi \frac{\partial r}{\partial x} - r\sin\varphi \frac{\partial \varphi}{\partial x}, \quad 0 = \cos\varphi \frac{\partial r}{\partial u} - r\sin\varphi \frac{\partial \varphi}{\partial v},$ $0 = \sin \varphi \frac{\partial r}{\partial x} + r \cos \varphi \frac{\partial \varphi}{\partial x}, \quad 1 = \sin \varphi \frac{\partial r}{\partial x} + r \cos \varphi \frac{\partial \varphi}{\partial x}.$

178

Отсюда

$$\frac{\partial r}{\partial x} = \cos \varphi, \quad \frac{\partial \varphi}{\partial x} = -\frac{\sin \varphi}{r}, \quad \frac{\partial r}{\partial y} = \sin \varphi, \quad \frac{\partial \varphi}{\partial y} = \frac{\cos \varphi}{r}.$$
 Равенства (1) запишем в виде

(2)

(3)

 $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \cos \varphi - \frac{\partial u}{\partial \omega} \frac{\sin \varphi}{r}, \quad \frac{\partial u}{\partial y} = \frac{\partial u}{\partial r} \sin \varphi + \frac{\partial u}{\partial \omega} \frac{\cos \varphi}{r}.$

Таким образом,
a)
$$w = r \cos \varphi \left(\frac{\partial u}{\partial r} \sin \varphi + \frac{\partial u}{\partial \varphi} \frac{\cos \varphi}{r} \right) - r \sin \varphi \left(\frac{\partial u}{\partial r} \cos \varphi - \frac{\partial u}{\partial \varphi} \frac{\sin \varphi}{r} \right) = \frac{\partial u}{\partial \varphi};$$

6) $w = r \cos \varphi \left(\frac{\partial u}{\partial r} \cos \varphi - \frac{\partial u}{\partial \varphi} \frac{\sin \varphi}{r} \right) + r \sin \varphi \left(\frac{\partial u}{\partial r} \sin \varphi + \frac{\partial u}{\partial \varphi} \frac{\cos \varphi}{r} \right) = r \frac{\partial u}{\partial \varphi};$

6)
$$w = r \cos \varphi \left(\frac{\partial u}{\partial r} \cos \varphi - \frac{\partial u}{\partial \varphi} \frac{\sin \varphi}{r} \right) + r \sin \varphi \left(\frac{\partial u}{\partial r} \sin \varphi + \frac{\partial u}{\partial \varphi} \frac{\cos \varphi}{r} \right) = r \frac{\partial u}{\partial r};$$

B)
$$w = \left(\frac{\partial u}{\partial r}\cos\varphi - \frac{\partial u}{\partial\varphi}\frac{\sin\varphi}{r}\right)^2 + \left(\frac{\partial u}{\partial r}\sin\varphi + \frac{\partial u}{\partial\varphi}\frac{\cos\varphi}{r}\right)^2 = \left(\frac{\partial u}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial u}{\partial\varphi}\right)^2.$$

$$160. a) $w = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}; 6) w = x^2\frac{\partial^2 u}{\partial x^2} + 2xy\frac{\partial^2 u}{\partial x\partial y} + y^2\frac{\partial^2 u}{\partial y^2}; B) w = y^2\frac{\partial^2 u}{\partial x^2} - 2xy\frac{\partial^2 u}{\partial x\partial y} + y^2\frac{\partial^2 u}{\partial y^2}; B$$$

$$x^2 \frac{\partial^2 u}{\partial u^2} - \left(x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \right).$$

$$\triangleleft$$
 Дифференцируя равенства (3) и используя равенства (2) из примера 159, находим
$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial x} \right) \frac{\partial r}{\partial x} + \frac{\partial}{\partial \varphi} \left(\frac{\partial u}{\partial x} \right) \frac{\partial \varphi}{\partial x} =$$

$$\frac{u}{2} = \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial x} \right) \frac{\partial r}{\partial x} + \frac{\partial}{\partial \varphi} \left(\frac{\partial u}{\partial x} \right) \frac{\partial \varphi}{\partial x} =$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) \frac{\partial r}{\partial x} + \frac{\partial}{\partial \varphi} \left(\frac{\partial u}{\partial x} \right) \frac{\partial \varphi}{\partial x} = \frac{\partial^2 u}{\partial x^2} = \frac{\partial^$$

$$\frac{1}{2} = \frac{1}{\partial \tau} \left(\frac{\partial x}{\partial x} \right) \frac{\partial x}{\partial x} + \frac{\partial \varphi}{\partial \varphi} \left(\frac{\partial x}{\partial x} \right) \frac{\partial \varphi}{\partial x} = \frac{\partial^2 u}{\partial x^2} \frac{\partial^2 u}{\partial x^2} \sin^2 \varphi + \frac{\partial^2 u}{\partial x$$

$$\frac{\partial r \left(\partial x \right) \partial x}{\partial \varphi \left(\partial x \right) \partial x} = \frac{\partial^2 u}{\partial z^2} \cos^2 \varphi + \frac{\partial u}{\partial z} \frac{\sin^2 \varphi}{\partial z^2} + 2\frac{\partial u}{\partial z} \frac{\cos \varphi \sin \varphi}{\partial z^2} + \frac{\partial^2 u}{\partial z^2} \frac{\sin^2 \varphi}{\partial z^2} - 2\frac{\partial^2 u}{\partial z^2} \frac{\cos \varphi \sin \varphi}{\partial z^2}$$

$$=\frac{\partial^2 u}{\partial r^2}\cos^2\varphi+\frac{\partial u}{\partial r}\frac{\sin^2\varphi}{r}+2\frac{\partial u}{\partial \varphi}\frac{\cos\varphi\sin\varphi}{r^2}+\frac{\partial^2 u}{\partial \varphi^2}\frac{\sin^2\varphi}{r^2}-2\frac{\partial^2 u}{\partial \varphi\partial r}\frac{\cos\varphi\sin\varphi}{r},$$

$$= \frac{\partial^{2} u}{\partial r^{2}} \cos^{2} \varphi + \frac{\partial u}{\partial r} \frac{\sin^{2} \varphi}{r} + 2 \frac{\partial u}{\partial \varphi} \frac{\cos \varphi \sin \varphi}{r^{2}} + \frac{\partial^{2} u}{\partial \varphi^{2}} \frac{\sin^{2} \varphi}{r^{2}} - 2 \frac{\partial^{2} u}{\partial \varphi \partial r} \frac{\cos \varphi \sin \varphi}{r}$$

$$\frac{\partial^{2} u}{\partial r \partial u} = \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial r} \right) \frac{\partial r}{\partial u} + \frac{\partial}{\partial \varphi} \left(\frac{\partial u}{\partial r} \right) \frac{\partial \varphi}{\partial u} =$$

$$\frac{\partial x}{\partial y} = \frac{\partial r}{\partial r} \left(\frac{\partial x}{\partial x} \right) \frac{\partial y}{\partial y} + \frac{\partial \varphi}{\partial \varphi} \left(\frac{\partial x}{\partial x} \right) \frac{\partial y}{\partial y} =$$

$$= \frac{\partial^2 \varphi}{\partial r^2} \cos \varphi \sin \varphi - \frac{\partial u}{\partial r} \frac{\cos \varphi \sin \varphi}{r} + \frac{\partial u}{\partial \varphi} \frac{\sin^2 \varphi - \cos^2 \varphi}{r^2} - \frac{\partial^2 u}{\partial \varphi^2} \frac{\cos \varphi \sin \varphi}{r^2} + \frac{\partial^2 u}{\partial \varphi \partial r} \frac{\cos^2 \varphi + \sin^2 \varphi}{r},$$

$$\frac{\partial^2 u}{\partial u^2} = \frac{\partial}{\partial r} \left(\frac{\partial u}{\partial y} \right) \frac{\partial r}{\partial y} + \frac{\partial}{\partial \varphi} \left(\frac{\partial u}{\partial y} \right) \frac{\partial \varphi}{\partial y} =$$

$$= \frac{\partial^2 \varphi}{\partial x^2} \sin^2 \varphi + \frac{\partial u}{\partial x} \frac{\cos^2 \varphi}{x} - 2 \frac{\partial u}{\partial x} \frac{\cos \varphi \sin \varphi}{x^2} + \frac{\partial^2 u}{\partial x^2} \frac{\cos^2 \varphi}{x^2} + 2 \frac{\partial^2 u}{\partial x \partial x} \frac{\cos \varphi \sin \varphi}{x}.$$

На основании этих равенств получаем:
а)
$$w = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \varphi^2}$$
; б) $w = r^2 \frac{\partial^2 u}{\partial r^2}$; в) $w = \frac{\partial^2 u}{\partial \varphi^2}$.

161. Решить уравнение $\frac{\partial^2 u}{\partial t^2} = a \frac{\partial^2 u}{\partial x^2}$, введя новые независимые переменные $\xi = x - at$,

$\eta = x + at$. ■ Имеем

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta}, \quad \frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial \xi} \left(\frac{\partial u}{\partial x} \right) \frac{\partial \xi}{\partial x} + \frac{\partial}{\partial \eta} \left(\frac{\partial u}{\partial x} \right) \frac{\partial \eta}{\partial x} = \frac{\partial^2 u}{\partial \xi^2} + 2 \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2}, \\ \frac{\partial u}{\partial t} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial t} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial t} = -a \frac{\partial u}{\partial \xi} + a \frac{\partial u}{\partial \eta},$$

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial \xi} \left(\frac{\partial u}{\partial \eta} \right) \frac{\partial \xi}{\partial t} + \frac{\partial}{\partial \eta} \left(\frac{\partial u}{\partial t} \right) \frac{\partial \eta}{\partial t} = a^2 \frac{\partial^2 u}{\partial \xi^2} - 2a^2 \frac{\partial^2 u}{\partial \xi \partial \eta} + a^2 \frac{\partial^2 u}{\partial \eta^2}.$$

$$\frac{1}{\partial t^2} = \frac{1}{\partial \xi} \left(\frac{\partial}{\partial \eta} \right) \frac{\partial}{\partial t} + \frac{\partial}{\partial \eta} \left(\frac{\partial}{\partial t} \right) \frac{\partial}{\partial t}$$

Таким образом, данное уравнение принимает вид

м образом, данное уравнение принимает вид
$$rac{\partial^2 u}{\partial \xi \, \partial \eta} = 0.$$

(1)

Отсюда последовательным интегрированием находим

$$\frac{\partial u}{\partial \xi} = f(\xi), \quad u = \int f(\xi) d\xi + \psi(\eta) = \varphi(\xi) + \psi(\eta),$$

где $\varphi(\xi) = \int f(\xi) \, d\xi$ и $\psi(\eta)$ — произвольные дифференцируемые функции. Возвращаясь к

где
$$\varphi(\xi) = \int f(\xi) \, d\xi$$
 и $\psi(\eta)$ — произвольные дифференцируемые функции. Во прежним переменным, окончательно получаем $u(t, x) = \varphi(x - at) + \psi(x + at)$.

162. $2\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} + \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$, если u = x + 2y + 2, v = x - y - 1.

◀ По правилу дифференцирования сложной функции, находим

 $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x} = \frac{\partial z}{\partial u} + \frac{\partial z}{\partial v}, \quad \frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial u} \left(\frac{\partial z}{\partial x}\right) \frac{\partial u}{\partial x} + \frac{\partial}{\partial v} \left(\frac{\partial z}{\partial x}\right) \frac{\partial v}{\partial x} = \frac{\partial^2 z}{\partial u^2} + 2 \frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2}.$

Приняв и и и за новые независимые переменные, преобразовать следующие уравнения:

$$\frac{\partial^2 z}{\partial x \partial y} = 2 \frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial u \partial v} - \frac{\partial^2 z}{\partial v^2}, \quad \frac{\partial z}{\partial y} = 2 \frac{\partial z}{\partial u} - \frac{\partial z}{\partial v}, \quad \frac{\partial^2 z}{\partial y^2} = 4 \frac{\partial^2 z}{\partial u^2} - 4 \frac{\partial^2 z}{\partial u \partial v} + \frac{\partial^2 z}{\partial v^2}.$$

 $\partial x \partial y = \partial u^2 - \partial u \partial v - \partial v^2 - \partial y = \partial u - \partial v - \partial y^2 - \partial u^2 - \partial u \partial v - \partial v^2$ Подставляя вычисленные производные в данное уравнение, после сведения подобных членов

получаем
$$3\frac{\partial^2 z}{\partial u \partial v} + \frac{\partial z}{\partial u} = 0.$$
 \blacktriangleright
163. $(1+x^2)\frac{\partial^2 z}{\partial x^2} + (1+y^2)\frac{\partial^2 z}{\partial y^2} + x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial u} = 0$, если $u = \ln\left(x + \sqrt{1+x^2}\right)$, $v = \sqrt{1+x^2}$

$$\ln\left(y+\sqrt{1+y^2}\right).$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{du}{dx} = \frac{\partial z}{\partial u} \frac{1}{\sqrt{1+x^2}}$$

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial u} \left(\frac{\partial z}{\partial x} \right) \frac{du}{dx} + \frac{\partial z}{\partial u} \frac{d}{dx} \left(\frac{1}{\sqrt{1+x^2}} \right) = \frac{\partial^2 z}{\partial u^2} \frac{1}{1+x^2} - \frac{\partial z}{\partial u} \frac{x}{\sqrt{(1+x^2)^3}},$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{dv}{dx} = \frac{\partial z}{\partial u} \frac{dv}{dx} = \frac{1}{1+x^2} \frac{1}{1+x^2} \frac{dz}{du} \frac{dz}{dx} = \frac{1}{1+x^2} \frac{dz}{du} \frac{dz}{dx}$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial v} \frac{dv}{dy} = \frac{\partial z}{\partial v} \frac{1}{\sqrt{1+y^2}},$$

$$\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial v} \left(\frac{\partial z}{\partial y}\right) \frac{dv}{dy} + \frac{\partial z}{\partial v} \frac{d}{dy} \left(\frac{1}{\sqrt{1+y^2}}\right) = \frac{\partial^2 z}{\partial v^2} \frac{1}{1+y^2} - \frac{\partial z}{\partial v} \frac{y}{\sqrt{(1+y^2)^3}}.$$

Следовательно, уравнение преобразуется к виду
$$\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} = 0$$
. \blacktriangleright 164. $x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial u^2} = 0$, если $u = xy$, $v = \frac{x}{y}$.

 ∂x^2 ∂y^2

◀ Поступая так же, как и раньше, находим

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u}y + \frac{\partial z}{\partial u}\frac{1}{u}, \quad \frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial u^2}y^2 + 2\frac{\partial^2 z}{\partial u \partial u} + \frac{\partial^2 z}{\partial u \partial u} + \frac{\partial^2 z}{\partial u^2}\frac{1}{u^2};$$

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial u}x - \frac{\partial z}{\partial v}\frac{x}{u^2}, \quad \frac{\partial^2 z}{\partial v^2} = \frac{\partial^2 z}{\partial u^2}x^2 - 2\frac{\partial^2 z}{\partial u\partial v}\frac{x^2}{v^2} + \frac{\partial^2 z}{\partial v^2}\frac{x^2}{u^4} + \frac{\partial z}{\partial v}\frac{2x}{u^3}.$$

Таким образом, уравнение преобразуется к виду $\frac{\partial^2 z}{\partial u \, \partial v} = \frac{1}{2u} \, \frac{\partial z}{\partial v}$.

1 аким образом, уравнение преобразуется к виду $\frac{\partial}{\partial u \partial v} = \frac{\partial}{\partial u} \frac{\partial}{\partial v}$.

165. С помощью линейной замены $\xi = x + \lambda_1 y$, $\eta = x + \lambda_2 y$ преобразовать уравнение $A \frac{\partial^2 u}{\partial x^2} + 2B \frac{\partial^2 u}{\partial x^2} + C \frac{\partial^2 u}{\partial x^2} = 0$,

где A, B и C — постоянные и $AC - B^2 < 0$, к виду

$$\frac{\partial^2 u}{\partial \xi \, \partial \eta} = 0. \tag{2}$$

Найти общий вид функции, удовлетворяющей уравнению (1).

◀ Вычисляя частные производные

180

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta}, \quad \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial \xi^2} + 2\frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2};$$

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial \xi} \lambda_1 + \frac{\partial u}{\partial \eta} \lambda_2, \quad \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial \xi^2} \lambda_1^2 + 2\frac{\partial^2 u}{\partial \xi \partial \eta} \lambda_1 \lambda_2 + \frac{\partial^2 u}{\partial \eta^2} \lambda_2^2;$$

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial \xi^2} \lambda_1 + \frac{\partial^2 u}{\partial \xi \partial \eta} (\lambda_1 + \lambda_2) + \frac{\partial^2 u}{\partial \eta^2} \lambda_2$$

и подставляя их в уравнение (1), получаем

$$(C\lambda_1^2 + 2B\lambda_1 + A)\frac{\partial^2 \mathbf{u}}{\partial \xi^2} + 2(C\lambda_1\lambda_2 + B(\lambda_1 + \lambda_2) + A)\frac{\partial^2 \mathbf{u}}{\partial \xi \partial \eta} + (C\lambda_2^2 + 2B\lambda_2 + A)\frac{\partial^2 \mathbf{u}}{\partial \eta^2} = 0.$$
 (3)

Если λ_1 и λ_2 являются корнями уравнения $C\lambda^2+2B\lambda+A=0$, т. е. $\lambda_{1,\,2}=\frac{-B\pm\sqrt{B^2-AC}}{C}$, $C\neq 0$, то в уравнении (3) коэффициенты при $\frac{\partial^2 u}{\partial t^2}$ и $\frac{\partial^2 u}{\partial \eta^2}$ обращаются в нуль. Поскольку $AC-B^2<0$, то $\lambda_1\neq \lambda_2$ и $C\lambda_1\lambda_2+B(\lambda_1+\lambda_2)+A\neq 0$. Следовательно, уравнение (1) преобразуется к виду (2). Решением его будет функция

 $u = \varphi(\xi) + \psi(\eta)$ (см. решение уравнения примера 161). Возвращаясь к старым переменным, получаем $u = \varphi(x + \lambda_1 y) + \psi(x + \lambda_2 y)$. \blacktriangleright

166. Доказать, что уравнение Лапласа $\Delta z = \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$ не меняется при любой невырожденной замене переменных $x = \varphi(u, v), \ y = \psi(u, v),$ удовлетворяющей условиям

$$\frac{\partial \varphi}{\partial u} = \frac{\partial \psi}{\partial v}, \quad \frac{\partial \varphi}{\partial v} = -\frac{\partial \psi}{\partial u}.$$
 (1)

 \blacksquare Дифференцируя z как сложную функцию и используя условие (1), получаем

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial \varphi}{\partial u} - \frac{\partial z}{\partial y} \frac{\partial \varphi}{\partial v}, \quad \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial \varphi}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial \varphi}{\partial u}.$$

Аналогично вычисляем

$$\frac{\partial^2 z}{\partial u^2} = \frac{\partial^2 z}{\partial x^2} \left(\frac{\partial \varphi}{\partial u}\right)^2 - 2 \frac{\partial^2 z}{\partial x \partial y} \frac{\partial \varphi}{\partial u} \frac{\partial \varphi}{\partial v} + \frac{\partial^2 z}{\partial y^2} \left(\frac{\partial \varphi}{\partial v}\right)^2 + \frac{\partial z}{\partial x} \frac{\partial^2 \varphi}{\partial u^2} - \frac{\partial z}{\partial y} \frac{\partial^2 \varphi}{\partial u \partial v},$$

$$\frac{\partial^2 z}{\partial v^2} = \frac{\partial^2 z}{\partial x^2} \left(\frac{\partial \varphi}{\partial v}\right)^2 + 2 \frac{\partial^2 z}{\partial x \partial y} \frac{\partial \varphi}{\partial u} \frac{\partial \varphi}{\partial v} + \frac{\partial^2 z}{\partial y^2} \left(\frac{\partial \varphi}{\partial u}\right)^2 + \frac{\partial z}{\partial x} \frac{\partial^2 \varphi}{\partial u^2} + \frac{\partial z}{\partial u} \frac{\partial^2 \varphi}{\partial u \partial v}.$$

Складывая два последних равенства, получаем

$$\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} = \left(\left(\frac{\partial \varphi}{\partial u} \right)^2 + \left(\frac{\partial \varphi}{\partial v} \right)^2 \right) \left(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial v^2} \right) + \left(\frac{\partial^2 \varphi}{\partial u^2} + \frac{\partial^2 \varphi}{\partial v^2} \right) \frac{\partial z}{\partial x}. \tag{2}$$

Далее, дифференцируя первое из равенств (1) по и, а второе по и

$$\frac{\partial^2 \varphi}{\partial u^2} = \frac{\partial^2 \psi}{\partial u \partial u}, \quad \frac{\partial^2 \varphi}{\partial v^2} = -\frac{\partial^2 \psi}{\partial u \partial v},$$

убеждаемся, что

$$\frac{\partial^2 \varphi}{\partial u^2} + \frac{\partial^2 \varphi}{\partial u^2} = 0. \tag{3}$$

(1)

(2)

§ 4. Замена переменных

 $\frac{\mathcal{D}(\varphi,\,\psi)}{\mathcal{D}(u,\,v)} = \begin{vmatrix} \frac{\partial \varphi}{\partial u} & \frac{\partial \varphi}{\partial v} \\ \frac{\partial \psi}{\partial u} & \frac{\partial \psi}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{\partial \varphi}{\partial u} & \frac{\partial \varphi}{\partial v} \\ \frac{\partial \varphi}{\partial u} & \frac{\partial \varphi}{\partial v} \end{vmatrix} = \left(\frac{\partial \varphi}{\partial u}\right)^2 + \left(\frac{\partial \varphi}{\partial v}\right)^2 \neq 0.$

Таким образом, из равенства (2) находим $\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial u^2} = 0$.

Наконец, из того, что замена невырождена, из равенств (1) следует

167. Преобразовать уравнения: a)
$$\Delta u \equiv \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} = 0$$
; б) $\Delta(\Delta u) = 0$, полагая $u = f(r)$,

где $r=\sqrt{x^2+y^2}$.

 $\frac{\partial u}{\partial x} = \frac{du}{dx} \frac{\partial r}{\partial x} = \frac{du}{dx} \frac{x}{r}, \quad \frac{\partial^2 u}{\partial x^2} = \frac{d^2 u}{dx^2} \frac{x^2}{r^2} + \frac{du}{dx} \frac{r^2 - x^2}{r^3}.$

Аналогично находим
$$\frac{\partial^2 u}{\partial y^2} = \frac{d^2 u}{dr^2} \frac{y^2}{r^2} + \frac{du}{dr} \frac{r^2 - y^2}{r^3}$$
. Следовательно, $\Delta u \equiv \frac{d^2 u}{dr^2} + \frac{1}{r} \frac{du}{dr}$. 6) Поступая, как и раньше, получаем

$$\frac{\partial(\Delta u)}{\partial x} = \frac{d^3 u}{dr^3} \frac{x}{r} + \frac{d^2 u}{dr^2} \frac{x}{r^2} - \frac{du}{dr} \frac{x}{r^3},$$

$$\frac{\partial^2(\Delta u)}{\partial x^2} = \frac{d^4 u}{dr^4} \frac{x^2}{r^2} + \frac{d^3 u}{dr^3} \frac{1}{r} + \frac{d^2 u}{dr^2} \frac{r^2 - 3x^2}{r^4} - \frac{du}{dr} \frac{r^2 - 3x^2}{r^5},$$

$$\frac{\partial^2(\Delta u)}{\partial y^2} = \frac{d^4 u}{dr^4} \frac{y^2}{r^2} + \frac{d^3 u}{dr^3} \frac{1}{r} + \frac{d^2 u}{dr^2} \frac{r^2 - 3y^2}{r^4} - \frac{du}{dr} \frac{r^2 - 3y^2}{r^5}.$$
 Таким образом, $\Delta(\Delta u) = \frac{d^4 u}{dr^4} + \frac{2}{r} \frac{d^3 u}{dr^3} - \frac{1}{r^2} \frac{d^2 u}{dr^2} + \frac{1}{r^3} \frac{du}{dr}.$

168. Выражения
$$\Delta_1 u = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2, \quad \Delta_2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$$

$$(\partial x)$$
 (∂y) (∂z) ∂x^2 ∂y^2 ∂z^2

преобразовать к сферическим координатам, полагая $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, z =

 $r\cos\theta$. ■ Представим данное преобразование в виде композиции двух преобразований:

$$x = R\cos\varphi, \quad y = R\sin\varphi, \quad z = z,$$

 $R = r\sin\theta, \quad \varphi = \varphi, \quad z = r\cos\theta.$

$$R=r\sin\theta,\quad \varphi=\varphi,\quad z=r\cos\theta.$$
 При замене (1) имеем (см. пример 159, в)):

при замене (1) имеем (см. пример 159, в)):
$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = \frac{1}{R^2} \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial R}\right)^2.$$

Следовательно,
$$\Delta_1 u = \frac{1}{R^2} \left(\frac{\partial u}{\partial \varphi} \right)^2 + \left(\frac{\partial u}{\partial R} \right)^2 + \left(\frac{\partial u}{\partial z} \right)^2$$
.

 $\left(\frac{\partial u}{\partial R}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2 = \frac{1}{r^2} \left(\frac{\partial u}{\partial \theta}\right)^2 + \left(\frac{\partial u}{\partial r}\right)^2, \quad \frac{1}{R^2} \left(\frac{\partial u}{\partial \theta}\right)^2 = \frac{1}{r^2 \sin^2 \theta} \left(\frac{\partial u}{\partial \theta}\right)^2.$

$$\left(\overline{\partial R}\right)^{-} + \left(\overline{\partial z}\right)^{-} = \overline{r^2} \left(\overline{\partial \theta}\right)^{-} + \left(\overline{\partial r}\right)^{-}, \quad \overline{R^2} \left(\overline{\partial \varphi}\right)^{-} = \overline{r^2}$$
 Окончательно находим

Окончательно находим
$$\Delta_1 u = \left(\frac{\partial u}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial u}{\partial \theta}\right)^2 + \frac{1}{r^2 \sin^2 \theta} \left(\frac{\partial u}{\partial \varphi}\right)^2.$$

Аналогично, осуществляя замену (1), получаем (см. пример 160, а)):
$$\Delta_2 u = \frac{\partial^2 u}{\partial R^2} + \frac{1}{R} \frac{\partial u}{\partial R} + \frac{1}{R^2} \frac{\partial^2 u}{\partial \omega^2} + \frac{\partial^2 u}{\partial z^2}.$$

Согласно преобразованию (2) (см. пример 160, а))

$$\frac{\partial^2 u}{\partial R^2} + \frac{\partial^2 \varphi}{\partial z^2} = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}.$$

Полагая в равенстве (3) из примера 159 $y=R, \varphi=\theta$, где $R=r\sin\theta$, получаем

$$\frac{1}{R}\frac{\partial u}{\partial R} = \frac{1}{r\sin\theta}\left(\frac{\partial u}{\partial r}\sin\theta + \frac{\partial u}{\partial \theta}\frac{\cos\theta}{r}\right) = \frac{1}{r}\frac{\partial u}{\partial r} + \frac{\cos\theta}{r^2\sin\theta}\frac{\partial u}{\partial \theta}.$$

Приняв u и v за новые независимые переменные и w=w(u,v) за новую функцию,

Из двух последних равенств и из того, что $\frac{1}{R^2} \frac{\delta^2 u}{\delta \omega^2} = \frac{1}{r^2 \sin^2 \theta} \frac{\delta^2 u}{\delta \omega^2}$, находим

$$\Delta_2 u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\cos \theta}{r^2 \sin \theta} \frac{\partial u}{\partial \theta} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \varphi^2} =$$

$$\Delta_2 u = \frac{1}{\partial \tau^2} + \frac{1}{\tau} \frac{1}{\partial \tau} + \frac{1}{\tau^2} \frac{1}{\partial \theta^2} + \frac{1}{\tau} \frac{1}{\partial \tau} + \frac{1}{\tau^2 \sin \theta} \frac{1}{\partial \theta} + \frac{1}{\tau^2 \sin^2 \theta} \frac{1}{\partial \varphi^2} = \frac{1}{\tau^2} \left(\frac{\partial}{\partial \tau} \left(\tau^2 \frac{\partial u}{\partial \tau} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \right) \right)$$

$$= \frac{1}{r^2} \left(\frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 u}{\partial \varphi^2} \right). \blacktriangleright$$

$$= \frac{1}{r^2} \left(\frac{\partial}{\partial r} \left(r^2 \frac{\partial \mathbf{u}}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \right)$$

$$\left(\frac{\partial^2 \mathbf{x}}{\partial \theta} + \frac{\partial^2 \mathbf{x}}{\partial \theta} \right) = \left(\frac{\partial^2 \mathbf{x}}{\partial \theta} \right)^2 + \left(\frac{\partial^2 \mathbf{x}$$

169. В уравнении
$$z\left(\frac{\partial^2 z}{\partial z} + \frac{\partial^2 z}{\partial z}\right) = \left(\frac{\partial z}{\partial z}\right)^2 + \left(\frac{\partial z}{\partial z}\right)^2$$
 ввест

$$=\frac{1}{r^2}\left(\frac{\partial}{\partial r}\left(r^2\frac{\partial u}{\partial r}\right)+\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial u}{\partial\theta}\right)+\frac{1}{\sin^2\theta}\frac{\partial}{\partial\varphi^2}\right). \blacktriangleright$$
169. В уравнении $z\left(\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}\right)=\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2$ ввести новую функцию w , полагая

$$\frac{\partial w}{\partial x} = 2z\frac{\partial z}{\partial x}, \quad \frac{\partial w}{\partial y} = 2z\frac{\partial z}{\partial y}, \quad \frac{\partial^2 w}{\partial x^2} = 2\left(\frac{\partial z}{\partial x}\right)^2 + 2z\frac{\partial^2 z}{\partial x^2}, \quad \frac{\partial^2 w}{\partial y^2} = 2\left(\frac{\partial z}{\partial y}\right)^2 + 2z\frac{\partial^2 z}{\partial y^2}.$$
 Отсюда иаходим

 $\frac{\partial z}{\partial x} = \frac{1}{2z} \frac{\partial w}{\partial x}, \quad \frac{\partial z}{\partial u} = \frac{1}{2z} \frac{\partial w}{\partial u}, \quad z \frac{\partial^2 z}{\partial x^2} = \frac{1}{2} \frac{\partial^2 w}{\partial x^2} - \frac{1}{4w} \left(\frac{\partial w}{\partial x}\right)^2, \quad z \frac{\partial^2 z}{\partial u^2} = \frac{1}{2} \frac{\partial^2 w}{\partial u^2} - \frac{1}{4w} \left(\frac{\partial w}{\partial y}\right)^2.$

 $w=z^2$.

⋖ Имеем

$$w\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2}\right) = \left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2. \blacktriangleright$$

преобразовать следующие уравнения:

170.
$$y\frac{\partial^2 z}{\partial y^2} + 2\frac{\partial z}{\partial y} = \frac{2}{x}$$
, если $u = \frac{x}{y}$, $v = x$, $w = zx - y$.

$$rac{\partial z}{\partial y}=-rac{rac{\partial w}{\partial u}\left(-rac{x}{y^2}
ight)+1}{-x}=-rac{1}{y^2}rac{\partial w}{\partial u}+rac{1}{x}.$$
Вычисляя вторую производную

Вычисляя вторую производную
$$\partial^2 z \qquad 1 \;\; \partial^2 w \;\; \partial u \quad 2 \;\; \partial w \quad x \;\; \partial^2 w \quad 2 \;\; \partial$$

 $\frac{\partial^2 z}{\partial u^2} = -\frac{1}{u^2} \frac{\partial^2 w}{\partial u^2} \frac{\partial u}{\partial u} + \frac{2}{u^3} \frac{\partial w}{\partial u} = \frac{x}{u^4} \frac{\partial^2 w}{\partial u^2} + \frac{2}{u^3} \frac{\partial w}{\partial u},$

убеждаемся, что данное уравнение принимает вид
$$\frac{\partial^2 w}{\partial u^2} = 0$$
. \blacktriangleright 171. $\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$, если $u = x + y$, $v = \frac{y}{x}$, $w = \frac{z}{x}$.

 $\frac{\partial z}{\partial x} = -\frac{\frac{\partial w}{\partial u} + \frac{\partial w}{\partial v} \left(-\frac{y}{x^2}\right) + \frac{z}{x^2}}{-\frac{1}{2}} = z\frac{\partial w}{\partial u} - \frac{y}{x}\frac{\partial w}{\partial v} + \frac{z}{x}, \quad \frac{\partial z}{\partial y} = -\frac{\frac{\partial w}{\partial u} + \frac{\partial w}{\partial v} + \frac{\partial w}{\partial u}}{-\frac{1}{2}} = z\frac{\partial w}{\partial u} + \frac{\partial w}{\partial v}.$

(1)

Дифференцируя полученные равенства, находим вторые производные

$$\frac{\partial^2 z}{\partial x^2} = x \frac{\partial^2 w}{\partial u^2} - 2 \frac{y}{x} \frac{\partial^2 w}{\partial u \partial v} + \frac{y^2}{x^3} \frac{\partial^2 w}{\partial v^2} + 2 \frac{\partial w}{\partial u},$$

$$\frac{\partial^2 z}{\partial x \partial y} = x \frac{\partial^2 w}{\partial u^2} - \left(\frac{y}{x} - 1\right) \frac{\partial^2 w}{\partial u \partial v} - \frac{y}{x^2} \frac{\partial^2 w}{\partial v^2} + \frac{\partial w}{\partial v},$$

$$\frac{\partial^2 z}{\partial y^2} = x \frac{\partial^2 w}{\partial u^2} + 2 \frac{\partial^2 w}{\partial u \partial v} + \frac{1}{x} \frac{\partial^2 w}{\partial v^2}.$$

Заменяя в данном уравнении вторые производные найденными их значениями, получаем

$$\frac{\partial^2 w}{\partial v^2} = 0. \blacktriangleright$$

172. $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$, если u = x + y, v = x - y, w = xy - z.

■ Применяя те же формулы, что и в предыдущем примере, находим
$$\partial z = \partial w = \partial z = \partial w = \partial w = \partial w$$

Палее,

$$\frac{\partial z}{\partial x} = -\frac{\partial w}{\partial u} - \frac{\partial w}{\partial v} + y, \quad \frac{\partial z}{\partial y} = -\frac{\partial w}{\partial u} + \frac{\partial w}{\partial v} + x.$$

$$\partial^2 z = \partial^2 w = \partial^2 w = \partial^2 w$$

$$\frac{\partial^2 z}{\partial x^2} = -\frac{\partial^2 w}{\partial u^2} - 2\frac{\partial^2 w}{\partial u \partial v} - \frac{\partial^2 w}{\partial v^2}, \quad \frac{\partial^2 z}{\partial x \partial y} = -\frac{\partial^2 w}{\partial u^2} + \frac{\partial^2 w}{\partial v^2} + 1, \quad \frac{\partial^2 z}{\partial y^2} = -\frac{\partial^2 w}{\partial u^2} + 2\frac{\partial^2 w}{\partial u \partial v} - \frac{\partial^2 w}{\partial v^2}.$$

Таким образом,
$$\frac{\partial^2 w}{\partial u^2} - \frac{1}{2} = 0.$$

$$\mathbf{d}, \frac{\partial \mathbf{u}^2}{\partial \mathbf{u}^2} - \frac{1}{2} = 0. \blacktriangleright$$

$$\frac{\partial^2 z}{\partial \mathbf{u}^2} + \frac{\partial z}{\partial \mathbf{z}} = 0. \text{ Solve } \mathbf{u} = 0.$$

173
$$\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial z} + \frac{\partial z}{\partial z} - z$$
 as $z = 0$.

173.
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial z}{\partial x} = z, \text{ если } u = \frac{1}{2}(x+y), v = \frac{1}{2}(x-y), w = ze^y.$$

Отсюда

Замечая, что

$$\mathbf{B.} \quad \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial z}{\partial x} = z, \text{ если } u =$$

$$+\frac{\partial z}{\partial x}=z$$
, если $u=$

173.
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial z}{\partial x} = z$$
, если $u = 4$ Согласно формулам (7), п.4.2, имеем

 $q(1+q)\frac{\partial^{2} z}{\partial x^{2}} - (1+p+q+2pq)\frac{\partial^{2} z}{\partial x \partial y} + p(1+p)\frac{\partial^{2} z}{\partial y^{2}} = 0,$

где $p=rac{\partial z}{\partial x}$ и $q=rac{\partial z}{\partial u}$, положить $u=x+z,\,v=y+z,\,w=x+y+z,\,$ считая, что $w=w(u,\,v).$

 $p = -\frac{\frac{\partial w}{\partial u} - 1}{A}, \ q = -\frac{\frac{\partial w}{\partial v} - 1}{A}, \ \text{rge } A = \frac{\partial w}{\partial u} + \frac{\partial w}{\partial v} - 1.$

 $q(1+q) = -\frac{\frac{\partial w}{\partial u} \left(\frac{\partial w}{\partial v} - 1\right)}{\frac{A^2}{2}}, \quad p(1+p) = -\frac{\frac{\partial w}{\partial v} \left(\frac{\partial w}{\partial u} - 1\right)}{\frac{A^2}{2}},$

 $1+p+q+2pq=\frac{1}{42}\left(1-\frac{\partial w}{\partial x}-\frac{\partial w}{\partial x}+2\frac{\partial w}{\partial x}+\frac{\partial w}{\partial x}\right).$

 $\frac{\partial u}{\partial x} = 1 + p = \frac{\frac{\partial w}{\partial v}}{A}, \quad \frac{\partial v}{\partial x} = p = -\frac{\frac{\partial w}{\partial v} - 1}{A}, \quad \frac{\partial u}{\partial v} = q = -\frac{\frac{\partial w}{\partial v} - 1}{A}, \quad \frac{\partial v}{\partial v} = 1 + q = \frac{\frac{\partial w}{\partial v}}{A},$

$$\left(\frac{\partial z}{\partial z} + \right)$$

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial w}{\partial u} \frac{1}{2} + \frac{\partial w}{\partial v} \frac{1}{2}}{-e^{y}} = \frac{1}{2}e^{-y} \left(\frac{\partial z}{\partial u} + \frac{\partial z}{\partial v}\right).$$

Находим вторые производные

174. В уравнении

дим вторые производные
$$\frac{\partial^2 z}{\partial x^2} = \frac{1}{4}e^{-y}\left(\frac{\partial^2 z}{\partial u^2} + 2\frac{\partial^2 z}{\partial u \partial v} + \frac{\partial^2 z}{\partial v^2}\right), \quad \frac{\partial^2 z}{\partial x \partial v} = \frac{1}{4}e^{-y}\left(\frac{\partial^2 z}{\partial u^2} - \frac{\partial^2 z}{\partial v^2} - 2\frac{\partial z}{\partial u} - 2\frac{\partial z}{\partial v}\right).$$

Записываем теперь преобразованное уравнение: $\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial u \, \partial v} = 2w$.

◄ Находим производные $\frac{\partial z}{\partial x} = p$ и $\frac{\partial z}{\partial y} = q$ (см. формулы (7), п.4.2):

(2)

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial p}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial p}{\partial v} \frac{\partial v}{\partial x} = -\frac{\partial}{\partial u} \left(\frac{\frac{\partial w}{\partial u} - 1}{A} \right) \frac{\frac{\partial w}{\partial v}}{A} + \frac{\partial}{\partial v} \left(\frac{\frac{\partial w}{\partial u} - 1}{A} \right) \frac{\frac{\partial w}{\partial u} - 1}{A} = \\
= -\frac{1}{A^3} \left(\frac{\partial^2 w}{\partial v^2} \left(\frac{\partial w}{\partial v} \right)^2 - 2 \frac{\partial^2 w}{\partial v \partial v} \frac{\partial w}{\partial v} \left(\frac{\partial w}{\partial v} - 1 \right) + \frac{\partial^2 w}{\partial v^2} \left(\frac{\partial w}{\partial v} - 1 \right)^2 \right),$$

$$= -\frac{1}{A^3} \left(\frac{\partial u}{\partial u} \left(\frac{\partial v}{\partial v} \right) - 2 \frac{\partial u}{\partial u} \frac{\partial v}{\partial v} \left(\frac{\partial u}{\partial u} - 1 \right) + \frac{\partial v}{\partial v} \frac{\partial v}{\partial v} \right)$$

$$= -\frac{\partial^2 z}{\partial u} \frac{\partial u}{\partial v} \frac{\partial u}{\partial v} + \frac{\partial p}{\partial v} \frac{\partial v}{\partial y} = -\frac{\partial^2 z}{\partial u} \frac{\partial u}{\partial v} \frac{\partial v}{\partial v} + \frac{\partial p}{\partial v} \frac{\partial v}{\partial y} = -\frac{\partial^2 z}{\partial u} \frac{\partial v}{\partial v} \frac{\partial v}{\partial v} + \frac{\partial v}{\partial v} \frac{\partial v}{\partial y} = -\frac{\partial^2 z}{\partial u} \frac{\partial v}{\partial v} \frac{\partial v}{\partial v} + \frac{\partial v}{\partial v} \frac{\partial v}{\partial y} = -\frac{\partial^2 z}{\partial u} \frac{\partial v}{\partial v} \frac{\partial v}{\partial v} + \frac{\partial v}{\partial v} \frac{\partial v}{\partial y} = -\frac{\partial^2 z}{\partial u} \frac{\partial v}{\partial v} \frac{\partial v}{\partial v} + \frac{\partial v}{\partial v} \frac{\partial v}{\partial y} = -\frac{\partial^2 z}{\partial u} \frac{\partial v}{\partial v} \frac{\partial v}{\partial v} + \frac{\partial v}{\partial v} \frac{\partial v}{\partial v} \frac{\partial v}{\partial v} + \frac$$

$$\frac{x \, \partial y}{\partial y} - \frac{\partial u}{\partial u} \frac{\partial y}{\partial y} + \frac{\partial v}{\partial v} \frac{\partial w}{\partial y} - \frac{\partial w}{\partial v} \left(\frac{\partial w}{\partial v} - 1 \right) + \frac{\partial^2 w}{\partial u \, \partial v} \left(\frac{\partial w}{\partial u} + \frac{\partial w}{\partial v} - 1 \right) + \frac{\partial^2 w}{\partial v^2} \frac{\partial w}{\partial u} \left(\frac{\partial w}{\partial u} - 1 \right) \right),$$

 $\frac{\partial^2 z}{\partial v^2} = \frac{\partial q}{\partial u} \frac{\partial u}{\partial v} + \frac{\partial q}{\partial v} \frac{\partial v}{\partial v} = -\frac{1}{A^3} \left(\frac{\partial^2 w}{\partial v^2} \left(\frac{\partial w}{\partial u} \right)^2 - 2 \frac{\partial^2 w}{\partial u \partial v} \frac{\partial w}{\partial u} \left(\frac{\partial w}{\partial v} - 1 \right) + \frac{\partial^2 w}{\partial u^2} \left(\frac{\partial w}{\partial v} - 1 \right)^2 \right).$

Из равенств (1), (2) и данного уравнения следует, что
$$\frac{\partial^2 w}{\partial u \, \partial v} = 0$$
. \blacktriangleright 175. Показать, что вид уравнения $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial v^2} - \left(\frac{\partial^2 z}{\partial x \, \partial y}\right)^2 = 0$ не меняется при любом

◆ Пусть, например, т — функция, а у и т — независимые переменные. Используя инвариантность формы первого дифференциала, получаем $dx = \frac{\partial x}{\partial y} dy + \frac{\partial x}{\partial z} \left(\frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy \right).$

распределении ролей между переменными x,y и z

Сравнивая коэффициенты при
$$dx$$
 и dy , получаем систему
$$1 = \frac{\partial x}{\partial z} \frac{\partial z}{\partial z}, \quad 0 = \frac{\partial x}{\partial u} + \frac{\partial x}{\partial z} \frac{\partial z}{\partial u},$$

$$1 = \frac{\partial z}{\partial z} \frac{\partial x}{\partial x},$$

из которой находим $\frac{\partial z}{\partial x} = \frac{1}{\frac{\partial z}{\partial x}}$ $\frac{\partial z}{\partial y} = -\frac{\frac{\partial z}{\partial y}}{\frac{\partial z}{\partial x}}$.

Находим вторые производные:
$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial z} \left(\frac{1}{\frac{\partial z}{\partial x}} \right) \frac{\partial z}{\partial x} = -\frac{\frac{\partial^2 x}{\partial z^2}}{\left(\frac{\partial z}{\partial x} \right)^3}, \quad \frac{\partial^2 z}{\partial x \, \partial y} = \frac{\partial}{\partial y} \left(\frac{1}{\frac{\partial z}{\partial x}} \right) + \frac{\partial}{\partial z} \left(\frac{1}{\frac{\partial z}{\partial x}} \right) \frac{\partial z}{\partial y} = \frac{\frac{\partial^2 x}{\partial z^2} \frac{\partial x}{\partial y} - \frac{\partial^2 x}{\partial z \, \partial y} \frac{\partial x}{\partial z}}{\left(\frac{\partial z}{\partial x} \right)^3},$$

$$\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{-\frac{\partial x}{\partial y}}{\frac{\partial x}{\partial z}} \right) + \frac{\partial}{\partial z} \left(\frac{-\frac{\partial x}{\partial y}}{\frac{\partial x}{\partial z}} \right) \frac{\partial z}{\partial y} = -\frac{\frac{\partial^2 x}{\partial y^2} \left(\frac{\partial x}{\partial z} \right)^2 - \frac{\partial^2 x}{\partial z \partial y} \frac{\partial x}{\partial z} \frac{\partial x}{\partial y} + \frac{\partial^2 x}{\partial z^2} \left(\frac{\partial x}{\partial y} \right)^2}{\left(\frac{\partial x}{\partial z} \right)^3}.$$
 Следовательно,

 $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} - \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 = \left(\frac{\partial^2 x}{\partial z^2} \frac{\partial^2 x}{\partial y^2} - \left(\frac{\partial^2 x}{\partial z \partial y}\right)^2\right) \left(\frac{\partial x}{\partial z}\right)^2 = 0,$

T. e.
$$\frac{\partial^2 x}{\partial x^2} \frac{\partial^2 x}{\partial y^2} - \left(\frac{\partial^2 x}{\partial x \partial y}\right)^2 = 0$$
.

Аналогично поступаем, считая у функцией, а х и г независимыми переменными.

176. Преобразовать уравнение

 $A\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right) \frac{\partial^2 z}{\partial x^2} + 2B\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right) \frac{\partial^2 z}{\partial x \partial y} + C\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right) \frac{\partial^2 z}{\partial y^2} = 0,$

применяя преобразование Лежандра

$$X = \frac{\partial z}{\partial x}, \ Y = \frac{\partial z}{\partial y}, \ Z = x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} - z, \tag{1}$$

где Z = Z(X, Y).

И

 \blacktriangleleft Предполагаем, что функция $z=z(x,\,y)$ удовлетворяет условию

$$I = \frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} - \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 = \frac{\mathcal{D}(X, Y)}{\mathcal{D}(x, y)} \neq 0.$$
 (2)

Дифференцируя третье из равенств (1) по
$$z$$
 и по y и учитывая, что $\frac{\partial X}{\partial x} = \frac{\partial^2 z}{\partial x^2}$, $\frac{\partial X}{\partial y} = \frac{\partial^2 z}{\partial x \, \partial y} = \frac{\partial^2 z}{\partial x \, \partial y} = \frac{\partial^2 z}{\partial x^2}$, получаем

 $\frac{\partial Z}{\partial X}\frac{\partial^2 z}{\partial x^2} + \frac{\partial Z}{\partial Y}\frac{\partial^2 z}{\partial y\,\partial x} = x\frac{\partial^2 z}{\partial x^2} + y\frac{\partial^2 z}{\partial y\,\partial x}, \quad \frac{\partial Z}{\partial X}\frac{\partial^2 z}{\partial x\,\partial y} + \frac{\partial Z}{\partial Y}\frac{\partial^2 z}{\partial y^2} = x\frac{\partial^2 z}{\partial x\,\partial y} + y\frac{\partial^2 z}{\partial y^2}.$ Отсюда, в силу условия (2), находим

$$x = \frac{\partial Z}{\partial X}, \quad y = \frac{\partial Z}{\partial Y}.$$
 (3)

Далее, дифференцируя равенства (3) по
$$x$$
 и по y , имеем две системы:

 $1 = \frac{\partial^2 Z}{\partial X^2} \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 Z}{\partial X \partial Y} \frac{\partial^2 z}{\partial x \partial y}, \quad 0 = \frac{\partial^2 Z}{\partial X \partial Y} \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 Z}{\partial Y^2} \frac{\partial^2 z}{\partial x \partial y}$

$$0 = \frac{\partial^2 Z}{\partial X^2} \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 Z}{\partial X \partial Y} \frac{\partial^2 z}{\partial y^2}, \quad 1 = \frac{\partial^2 Z}{\partial Y \partial X} \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 Z}{\partial Y^2} \frac{\partial^2 z}{\partial y^2}$$

с определителем отличным от нуля: $\frac{\mathcal{D}(x,y)}{\mathcal{D}(X,Y)} = \frac{1}{I} \neq 0$. Поэтому указанные системы однозначно определяют вторые производные:

$$\frac{\partial^2 z}{\partial x^2} = \frac{\frac{\partial^2 Z}{\partial Y^2}}{I^{-1}}, \quad \frac{\partial^2 z}{\partial x \partial y} = -\frac{\frac{\partial^2 Z}{\partial X \partial Y}}{I^{-1}}, \quad \frac{\partial^2 z}{\partial y^2} = \frac{\frac{\partial^2 Z}{\partial X^2}}{I^{-1}}.$$
 (4)

Используя равенства (1) и (4), записываем преобразованное уравнение в виде

$$A(X, Y)\frac{\partial^2 Z}{\partial Y^2} - 2B(X, Y)\frac{\partial^2 Z}{\partial X \partial Y} + C(X, Y)\frac{\partial^2 Z}{\partial X^2} = 0. \blacktriangleright$$

Упражнения для самостоятельной работы

128. Принять y за новое независимое переменное и преобразовать уравнение $y'' - xy'^3 + e^y y'^3 = 0$.

129. Преобразовать уравнение $y'y'''-3{y''}^2=0$, приняв независимое переменное x за функцию от y.

130. Принять у за новое независимое переменное и преобразовать уравнение

$$y'^{2}y^{IV} - 10y'y''y''' + 15y''^{3} = 0.$$

131. В уравнении $x^2y'' + 3xy' + y = 0$ положить $x = e^t$.

132. Преобразовать уравнение $x^3y''' + 2x^2y'' - xy' + y = 0$, положив $t = \ln x$.

133. В уравнении $(x+a)^3y'''+3(x+a)^2y''+(x+a)y'+by=0$ положить $t=\ln(x+a)$.

 $\frac{d^2y}{de^2} + 2\frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}}\frac{dy}{dx} + \frac{4m^2y}{(e^{2x} + e^{-2x})^2} = 0$

134. В уравнении $(1+x^2)^2y''+2x(1+x^2)y'+y=0$ положить $x=\operatorname{tg} t$.

135. Показать, что уравнение

при помощи подстановки $x=\frac{1}{2}\ln \, \operatorname{tg} 2t$ преобразуется к виду $y''+4m^2y=0$.

136. Преобразовать уравнение

$$(1-x^2)^2y''-2x(1-x^2)y'+\frac{2xy}{1-x}=0,$$

положив $x = \frac{e^{2t}-1}{e^{2t}+1}$.

Преобразовать к полярным координатам, положив $x = r \cos \varphi$, $y = r \sin \varphi$:

137. $\frac{xy'-y}{\sqrt{1+y'^2}}$. 138. $\frac{x+yy'}{xy'-y}$.

139. Преобразовать уравнение

$$x\frac{d^2y}{dx^2} - \frac{dy}{dx} + xy = 0,$$

приняв за новый аргумент $t = \frac{\pi^2}{4}$.

140. Преобразовать уравнение

$$xy\frac{d^2y}{dx^2}-x\left(\frac{dy}{dx}\right)^2+y\frac{dy}{dx}=0,$$

взяв за аргумент y и за новую функцию $z = \ln \frac{y}{x}$.

141. В уравнении $x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}-z=0$ положить $u=x,\,v=\frac{y}{x}$ и принять u и v за новые независимые переменные.

142. Преобразовать уравнение

$$(x+mz)\frac{\partial z}{\partial x}+(y+nz)\frac{\partial z}{\partial y}=0,$$

приняв u и v за новые независимые переменные, если u=x, $v=\frac{y+nz}{x+mz}$. Приняв u и v за новые независимые переменные, преобразовать следующие уравнения:

143. $\frac{\partial^2 z}{\partial z^2} + \frac{\partial^2 z}{\partial y^2} + m^2 z = 0, \ 2x = u^2 - v^2, \ y = uv.$

144. $\frac{\partial^2 z}{\partial x^2} + 2xy^2 \frac{\partial z}{\partial x} + 2(y - y^3) \frac{\partial z}{\partial y} + x^2 y^2 z = 0, \quad x = uv, \quad y = \frac{1}{v}.$

Преобразовать оператор Лаппаса $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} + \frac{\partial^2 u}{\partial x^2}$, полагая:

145. $x = c \alpha \beta$, $y = \frac{c}{2}(\beta^2 - \alpha^2)$, z = z. 146. $x = a \operatorname{ch} \xi \cos \varphi$, $y = a \operatorname{sh} \xi \sin \varphi$, z = z.

§ 5. Формула Тейлора

5.1. Формула Тейлора.

Если функция $x\mapsto f(x),\ x\in S(x_0,\,\delta),\ x=(x_1,\,x_2,\,\ldots,\,x_m),\ x_0=(x_1^0,\,x_2^0,\,\ldots,\,x_m^0),$ является n+1 раз дифференцируемой в окрестности $S(x_0,\,\delta),$ то для всех точек этой окрестности справедлива формула

$$f(x) = f(x_0) + \sum_{k=0}^{n} \frac{1}{k!} \left((x_1 - x_1^0) \frac{\partial}{\partial x_1} + \dots + (x_m - x_m^0) \frac{\partial}{\partial x_m} \right)^k f(x_0) + R_n(x), \tag{1}$$

где

$$R_n(x) = \frac{1}{(n+1)!} \left((x_1 - x_1^0) \frac{\partial}{\partial x_1} + \ldots + (x_m - x_m^0) \frac{\partial}{\partial x_m} \right)^{n+1} f(x_0 + \theta(x - x_0)), \quad 0 < \theta < 1.$$

5.2. Ряд Тейлора.

Если функция $x\mapsto f(x), x\in S(x_0,\delta)$, бесконечно дифференцируема и $\lim_{n\to\infty}R_n(x)=0$, то эта функция допускает представление в виде степенного ряда

 $f(\mathbf{x}) = f(\mathbf{x}_0) + \sum_{k=1}^{\infty} \frac{1}{k!} \left((x_1 - x_1^0) \frac{\partial}{\partial x_1} + \ldots + (x_m - x_m^0) \frac{\partial}{\partial x_m} \right)^k f(\mathbf{x}_0),$ (1)который называется рядом Tейлора для функции f в окрестности $S(m{x}_0,\,\delta)$. Частные случаи

формул (1), п.5.1, и (1), п.5.2, при $x_0 = 0$, $0 = (0, 0, \dots, 0)$, соответственно называются формулами Маклорена и рядом Маклорена. 177. Функцию $f(x,y)=2x^2-xy-y^2-6x-3y+5$ разложить по формуле Тейлора в

■ Данная функция имеет непрерывные частные производные любого порядка. Поскольку

окрестности точки (1, -2).

все частные производные порядка выше второго равны нулю, то остаточный член $R_n \; orall n > 2$ обращается в нуль, и формула Тейлора принимает следующий вид:

$$f(x, y) = f(1, -2) + \frac{\partial f(1, -2)}{\partial x}(x - 1) + \frac{\partial f(1, -2)}{\partial y}(y + 2) + \frac{1}{2} \left(\frac{\partial^2 f(1, -2)}{\partial x^2}(x - 1)^2 + 2 \frac{\partial^2 f(1, -2)}{\partial x \partial y}(x - 1)(y + 2) + \frac{\partial^2 f(1, -2)}{\partial y^2}(y + 2)^2 \right). \tag{1}$$

Находим частные производные:

$$\frac{\partial f(x, y)}{\partial x} = 4x - y - 6, \quad \frac{\partial f(x, y)}{\partial y} = -x - 2y - 3,$$

$$\frac{\partial^2 f(x, y)}{\partial x^2} = 4, \quad \frac{\partial^2 f(x, y)}{\partial x \partial y} = -1, \quad \frac{\partial^2 f(x, y)}{\partial y^2} = -2.$$

Вычисляя в точке (1, -2) значения функции и ее производных

$$f(1,-2) = 5, \quad \frac{\partial f(1,-2)}{\partial x} = 0, \quad \frac{\partial f(1,-2)}{\partial y} = 0,$$
$$\frac{\partial^2 f(1,-2)}{\partial x^2} = 4, \quad \frac{\partial^2 f(1,-2)}{\partial x \partial y} = -1, \quad \frac{\partial^2 f(1,-2)}{\partial y^2} = -2$$

и пользуясь разложением (1), получаем

$$f(x, y) = 5 + 2(x - 1)^{2} - (x - 1)(y + 2) - (y + 2)^{2}. \blacktriangleright$$

178. Функцию $f(x, y, z) = x^3 + y^3 + z^3 - 3xyz$ разложить по формуле Тейлора в окрестности точки (1, 1, 1).

◀ Поскольку все частные производные порядка выше третьего равны нулю, то остаточный член R_n формулы Тейлора равен нулю для всех $n\geqslant 3$. Следовательно, в данном случае формула Тейлора принимает вид

$$f(x, y, z) = f(1, 1, 1) + df(1, 1, 1) + \frac{1}{2!} d^2 f(1, 1, 1) + \frac{1}{2!} d^3 f(1, 1, 1), \tag{1}$$

где
$$dx=x-1$$
, $dy=y-1$, $dz=z-1$. Вычисляя в точке $(1,1,1)$ значения функции и ее дифференциалов

f(1, 1, 1) = 0, df(1, 1, 1) = 0,

 $d^2f(1, 1, 1) = 6\left((x-1)^2 + (y-1)^2 + (z-1)^2 - (x-1)(y-1) - (x-1)(z-1) - (y-1)(z-1)\right),$ $d^3f(1, 1, 1) = 6\left((x-1)^3 + (y-1)^3 + (z-1)^3 - 3(x-1)(y-1)(z-1)\right)$

и пользуясь разложением (1), получаем

 $+(x-1)^3+(y-1)^3+(z-1)^3-3(x-1)(y-1)(z-1).$

 $f(x, y, z) = 3((x-1)^2 + (y-1)^2 + (z-1)^2 - (x-1)(y-1) - (x-1)(z-1) - (y-1)(z-1)) +$

179. Найти приращение, получаемое функцией $f(x, y) = x^2y + xy^2 - 2xy$ при переходе от значений x=1, y=-1 к значениям $x_1=1+h, y_1=-1+k$.

◆ В данном случае разложение функции по формуле Тейлора в окрестности точки (1, −1) можно записать в виде $\Delta f(1,-1) = f(x,y) - f(1,-1) = \frac{\partial f(1,-1)}{\partial x}(x-1) + \frac{\partial f(1,-1)}{\partial y}(y+1) +$

$$+ \frac{1}{3!} \left(\frac{\partial^3 f(1,-1)}{\partial x^3} (x-1)^3 + 3 \frac{\partial^3 f(1,-1)}{\partial x^2 \partial y} (x-1)^2 (y+1) + 3 \frac{\partial^3 f(1,-1)}{\partial x \partial y^2} (x-1) (y+1)^2 + \frac{\partial^3 f(1,-1)}{\partial y^3} (y+1)^3 \right).$$

 $+\frac{1}{2!}\left(\frac{\partial^2 f(1,-1)}{\partial x^2}(x-1)^2+2\frac{\partial^2 f(1,-1)}{\partial x \, \partial y}(x-1)(y+1)+\frac{\partial^2 f(1,-1)}{\partial y^2}(y+1)^2\right)+$

Полагая эдесь $x=1+h,\ y=-1+k$ и вычисляя указанные производные, получаем $\Delta f(1,-1)=h-3k-h^2-2hk+k^2+h^2k+k^2h$. \blacktriangleright

180. В разложении функции $f(x,y)=x^y$ по формуле Тейлора в окрестности точки (1, 1) выписать члены до второго порядка включительно.

◆ Находим сначала частные производные до третьего порядка включительно:

 $f'_{x}(x, y) = yx^{y-1}, \quad f'_{y}(x, y) = x^{y} \ln x;$

$$f_{x^{2}}''(x, y) = y(y - 1)x^{y-2}, \quad f_{xy}''(x, y) = (1 + y \ln x)x^{y-1}, \quad f_{y^{2}}''(x, y) = x^{y} \ln^{2} x;$$

$$f_{x^{3}}'''(x, y) = y(y - 1)(y - 2)x^{y-3}, \quad f_{x^{2}y}''(x, y) = (2y - 1 + y(y - 1) \ln x)x^{y-2},$$

$$f_{xy^{2}}'''(x, y) = (y \ln^{2} x + 2 \ln x)x^{y-1}, \quad f_{y^{3}}'''(x, y) = x^{y} \ln^{3} x.$$

записываем дифференциалы первого и второго порядков в этой точке: $df(1, 1) = dx, \quad d^2f(1, 1) = 2 dx dy.$

$$af(1, 1) = ax$$

Искомое разложение запишется в виде

 $f(x, y) = f(1, 1) + df(1, 1) + \frac{1}{2}d^2f(1, 1) + R_2(1 + \theta dx, 1 + \theta dy) =$

Затем вычисляем значения функции и ее производных первого и второго порядков в точке (1,1): $f(1,1)=1,\ f'_x(1,1)=1,\ f'_y(1,1)=0,\ f''_{x^2}(1,1)=0,\ f''_{xy}(1,1)=1,\ f''_{y^2}(1,1)=0$ и

 $= 1 + dx + dx dy + R_2(1 + \theta dx, 1 + \theta dy),$

где dx = x - 1, dy = y - 1, $0 < \theta < 1$;

 $R_2(x, y) = \frac{1}{5} d^3 f(x, y) =$ $=\frac{x^{y}}{6}\left(\frac{y(y-1)(y-2)}{x^{3}}dx^{3}+3\frac{2y-1+y(y-1)\ln x}{x^{2}}dx^{2}dy+3\frac{y\ln^{2}x+2\ln x}{x}dxdy^{2}+\ln^{3}xdy^{3}\right).$

181. Разложить по формуле Маклорена до членов четвертого порядка включительно функцию $f(x, y) = \sqrt{1 - x^2 - y^2}$.

 \blacktriangleleft Находим дифференциалы функции f до четвертого порядка включительно:

$$f(x, y) = (1 - x^2 - y^2)^{\frac{1}{2}}, \quad df(x, y) = \frac{1}{2}(1 - x^2 - y^2)^{-\frac{1}{2}}(-2x dx - 2y dy),$$

$$f(x, y) = (1 - x^{2} - y^{2})^{-\frac{3}{2}}(-2x dx - 2y dy)^{2} + \frac{1}{2}(1 - x^{2} - y^{2})^{-\frac{1}{2}}(-2 dx^{2} - 2 dy^{2}),$$

$$d^{2}f(x, y) = -\frac{1}{4}(1 - x^{2} - y^{2})^{-\frac{3}{2}}(-2x dx - 2y dy)^{2} + \frac{1}{2}(1 - x^{2} - y^{2})^{-\frac{1}{2}}(-2 dx^{2} - 2 dy^{2}),$$

$$d^{3}f(x, y) = -\frac{3}{4}(1 - x^{2} - y^{2})^{-2}(-2x dx - 2y dy)^{2} + \frac{3}{2}(1 - x^{2} - y^{2})^{-2}(-2x dx - 2dy),$$

$$d^{3}f(x, y) = \frac{3}{8}(1 - x^{2} - y^{2})^{-\frac{5}{2}}(-2x dx - 2y dy)^{3} - \frac{3}{4}(1 - x^{2} - y^{2})^{-\frac{3}{2}}(-2x dx - 2y dy)(-2 dx^{2} - 2 dy^{2}),$$

$$d^{4}f(x, y) = \frac{15}{8}(1 - x^{2} - y^{2})^{-\frac{7}{2}}(-2x dx - 2y dy)^{-\frac{4}{4}}(1 - x^{2} - y^{2})^{-\frac{7}{2}}(-2x dx - 2y dy)^{-\frac{4}{4}}$$

$$+\frac{9}{4}(1-x^2-y^2)^{-\frac{5}{2}}(-2x\,dx-2y\,dy)^2(-2\,dx^2-2\,dy^2)-\frac{3}{4}(1-x^2-y^2)^{-\frac{3}{2}}(-2\,dx^2-2\,dy^2)^2.$$

Полагая здесь x = y = 0, dx = x, dy = y, получаем

а) Пользуясь формулами

$$f(0, 0) = 1$$
, $df(0, 0) = 0$, $d^2f(0, 0) = -(x^2 + y^2)$, $d^3f(0, 0) = 0$, $d^4f(0, 0) = -3(x^2 + y^2)^2$. Теперь легко записать требуемое разложение:
$$f(0, 0) + df(0, 0) + \frac{1}{2!} d^2f(0, 0) + \frac{1}{3!} d^3f(0, 0) + \frac{1}{4!} d^4f(0, 0) = 1 - \frac{1}{2}(x^2 + y^2) - \frac{1}{8}(x^2 + y^2)^2 - \dots \blacktriangleright$$

182. Вывести приближенные формулы с точностью до членов второго порядка для выражений: a) $\frac{\cos x}{\cos y}$; б) $\arctan \frac{1+x+y}{1-x+y}$.

 $\cos t = 1 - \frac{t^2}{2} + o(t^2), \quad \frac{1}{1 - a} = 1 + q + q^2 + o(q^2),$

$$z$$
 — $1-q$ справедливыми соответственно при $t o 0$ и $q o 0$, получаем

$$\frac{\cos x}{\cos y} = \frac{1 - \frac{1}{2}x^2 + o(x^2)}{1 - \frac{1}{2}y^2 + o(y^2)} = \left(1 - \frac{1}{2}x^2 + o(x^2)\right)\left(1 + \frac{1}{2}y^2 + o(y^2)\right) =$$

$$\frac{\cos x}{\cos x} = \frac{1 - \frac{1}{2}x^2 + o(x^2)}{\frac{1}{2}x^2 + o(x^2)} = \left(1 - \frac{1}{2}x^2 + o(x^2)\right) \left(1 + \frac{1}{2}y^2 + o(y^2)\right)$$

$$\frac{\partial u}{\partial y} = \frac{2}{1 - \frac{1}{2}y^2 + o(y^2)} = \left(1 - \frac{1}{2}x^2 + o(x^2)\right)\left(1 + \frac{1}{2}y^2 + o(y^2)\right)$$

$$\frac{1}{sy} = \frac{1}{1 - \frac{1}{2}y^2 + o(y^2)} = \left(1 - \frac{1}{2}x + o(x)\right) \left(1 + \frac{1}{2}y + o(y)\right)$$

$$\frac{1}{2}y^2 + o(y^2)$$
 . $\frac{1}{2}y^2 + o(y^2)$.

$$=1-\frac{1}{2}x^2+\frac{1}{2}y^2+x^2o(y^2)+y^2o(x^2)\approx 1-\frac{x^2-y^2}{2}.$$

6) Обозначая $f(x, y) = \arctan \frac{1}{1-x+y}$, вычисляем $f(0, 0), df(0, 0), d^2f(0, 0)$:

$$f(0, 0) = \operatorname{arctg} 1 = \frac{\pi}{4}; \quad df(x, y) = \frac{2(1+y) dx - 2x dy}{(1-x+y)^2 + (1+x+y)^2}, \quad df(0, 0) = dx;$$

$$d^2f(x, y) = \frac{-\left(2(1+y)\,dx - 2x\,dy\right)\left(2(1-x+y)(-dx+dy) + 2(1+x+y)(dx+dy)\right)}{\left((1-x+y)^2 + (1+x+y)^2\right)^2},$$

$$d^2 f(0,\,0) = -2\,dx\,dy.$$
Далее, пользуясь формулой Маклорена

 $f(x, y) = f(0, 0) + df(0, 0) + \frac{1}{2} d^2 f(0, 0) + \dots,$

где
$$dx = x$$
, $dy = y$, получаем искомую приближенную формулу

$$\operatorname{arctg} \frac{1+x+y}{1-x+y} \approx \frac{\pi}{4} + x - xy. \triangleright$$

183. Упростить выражение $\cos(x+y+z)-\cos x\cos y\cos z$, считая x,y,z малыми по абсолютной величине.

◆ Используя формулу Маклорена для сов t, имеем

$$\cos x \approx 1 - \frac{x^2}{2}$$
, $\cos y \approx 1 - \frac{y^2}{2}$, $\cos z \approx 1 - \frac{z^2}{2}$, $\cos(x + y + z) \approx 1 - \frac{1}{2}(x + y + z)^2$.

190 Заменяя в данном выражении косинусы полученными приближениями и отбрасывая ве-

личины выше второго порядка малости, находим

$$\cos(x+y+z) - \cos x \cos y \cos z \approx 1 - \frac{1}{2}(x+y+z)^2 - \left(1 - \frac{x^2}{2}\right)\left(1 - \frac{y^2}{2}\right)\left(1 - \frac{z^2}{2}\right) = 1 - \frac{1}{2}(x^2+y^2+z^2) - (xy+xz+yz) - 1 + \frac{1}{2}(x^2+y^2+z^2) - \frac{1}{4}(x^2y^2+x^2z^2+y^2z^2) + \frac{1}{8}x^2y^2z^2 \approx 1 - \frac{1}{2}(x^2+y^2+z^2) - \frac{1}{4}(x^2y^2+x^2z^2+y^2z^2) + \frac{1}{8}x^2y^2z^2 = 1 - \frac{1}{2}(x^2+y^2+z^2) + \frac{1}{2}(x^2+y^2+z^$$

$$\approx -(xy+xz+yz). \blacktriangleright$$

184. Функцию
$$F(x, y) = \frac{1}{4} (f(x+h, y) + f(x, y+h) + f(x-h, y) + f(x, y-h)) - f(x, y)$$

 $+ f - hf'_y + \frac{h^2}{2}f''_{y^2} - \frac{h^3}{6}f'''_{y^3} + \frac{h^4}{24}f^{IV}_{y^4} + o(h^4) - f,$

разложить по степеням h с точностью до h^4 . ◀ По формуле Маклорена, имеем

приведения подобных получим

$$F(x, y) = \frac{1}{4} \left(f + h f'_x + \frac{h^2}{2} f''_{x^2} + \frac{h^3}{6} f'''_{x^3} + \frac{h^4}{24} f^{\text{IV}}_{x^4} + o(h^4) + \frac{h^2}{2} f^{\text{IV}}_{x^4} + o(h^4) + o($$

$$+ f + hf'_{y} + \frac{h^{2}}{2}f'''_{y^{2}} + \frac{h^{3}}{6}f''''_{y^{3}} + \frac{h^{4}}{24}f^{IV}_{y^{4}} + o(h^{4}) + f - hf'_{x} + \frac{h^{2}}{2}f'''_{x^{2}} - \frac{h^{3}}{6}f''''_{x^{3}} + \frac{h^{4}}{24}f^{IV}_{x^{4}} + o(h^{4}) + f - hf'_{x} + \frac{h^{2}}{2}f'''_{x^{2}} - \frac{h^{3}}{6}f''''_{x^{3}} + \frac{h^{4}}{24}f^{IV}_{x^{4}} + o(h^{4}) + f - hf'_{x} + \frac{h^{2}}{2}f'''_{x^{2}} - \frac{h^{3}}{6}f''''_{x^{3}} + \frac{h^{4}}{24}f^{IV}_{x^{4}} + o(h^{4}) + f - hf'_{x} + \frac{h^{2}}{2}f'''_{x^{2}} - \frac{h^{3}}{6}f''''_{x^{3}} + \frac{h^{4}}{24}f^{IV}_{x^{4}} + o(h^{4}) + f - hf'_{x} + \frac{h^{2}}{2}f'''_{x^{2}} - \frac{h^{3}}{6}f''''_{x^{3}} + \frac{h^{4}}{24}f^{IV}_{x^{4}} + o(h^{4}) + f - hf'_{x} + \frac{h^{2}}{2}f'''_{x^{2}} - \frac{h^{3}}{6}f''''_{x^{3}} + \frac{h^{4}}{24}f^{IV}_{x^{4}} + o(h^{4}) + f - hf'_{x} + \frac{h^{2}}{2}f'''_{x^{2}} - \frac{h^{3}}{6}f''''_{x^{3}} + \frac{h^{4}}{24}f^{IV}_{x^{4}} + o(h^{4}) + f - hf'_{x} + \frac{h^{2}}{2}f'''_{x^{2}} - \frac{h^{3}}{6}f''''_{x^{3}} + \frac{h^{4}}{24}f^{IV}_{x^{4}} + o(h^{4}) + f - hf'_{x} + \frac{h^{2}}{2}f'''_{x^{2}} - \frac{h^{3}}{6}f''''_{x^{3}} + \frac{h^{4}}{24}f^{IV}_{x^{4}} + o(h^{4}) + f - hf'_{x} + \frac{h^{2}}{2}f'''_{x^{2}} - \frac{h^{3}}{6}f''''_{x^{3}} + \frac{h^{4}}{24}f^{IV}_{x^{4}} + o(h^{4}) + f - hf'_{x} + \frac{h^{2}}{2}f'''_{x^{3}} + \frac{h^{4}}{24}f^{IV}_{x^{4}} + o(h^{4}) + f - hf'_{x} + \frac{h^{2}}{2}f''_{x^{3}} + \frac{h^{4}}{24}f^{IV}_{x^{4}} + o(h^{4}) + f - hf'_{x} + \frac{h^{2}}{2}f''_{x^{3}} + \frac{h^{4}}{24}f^{IV}_{x^{4}} + o(h^{4}) + f - hf'_{x} + \frac{h^{2}}{2}f''_{x^{3}} + \frac{h^{4}}{24}f^{IV}_{x^{4}} + o(h^{4}) + f - hf'_{x} + \frac{h^{2}}{2}f''_{x^{3}} + \frac{h^{4}}{24}f^{IV}_{x^{4}} + o(h^{4}) + f - hf'_{x} + \frac{h^{2}}{2}f''_{x^{3}} + \frac{h^{4}}{24}f^{IV}_{x^{4}} + o(h^{4}) + f - hf'_{x} + \frac{h^{2}}{2}f''_{x^{3}} + \frac{h^{4}}{24}f^{IV}_{x^{4}} + o(h^{4}) + f - hf'_{x} + hf'_{x^{4}} + o(h^{4}) + f - hf'_{x^$$

 $F(x, y) = \frac{h^2}{4} (f''_{x^2} + f''_{y^2}) + \frac{h^4}{48} (f^{\text{IV}}_{x^4} + f^{\text{IV}}_{y^4}) + o(h^4). \blacktriangleright$

185. Разложить по степеням
$$h$$
 и k функцию

$$\Delta_{xy} f(x, y) = f(x + h, y + k) - f(x + h, y) - f(x, y + k) + f(x, y).$$

lacktriangled Сначала запишем разложение функции $(h,\,k)\mapsto f(x+h,\,y+k)$ по формуле Маклорена:

$$f(x+h, y+k) = f(x, y) + h\frac{\partial f(x, y)}{\partial x} + k\frac{\partial f(x, y)}{\partial y} + \frac{h^2}{2}\frac{\partial^2 f(x, y)}{\partial x^2} + \frac{h^2}{2}\frac{\partial^2 f(x, y)}{\partial x^2}$$

где значения функции f и ее производных $f^{(n)}$, $n=\overline{1,4}$, вычислены в точке (x,y). После

$$+hk\frac{\partial^2 f(x,y)}{\partial x \partial y} + \frac{k^2}{2} \frac{\partial^2 f(x,y)}{\partial y^2} + \sum_{n=3}^{\infty} \frac{1}{n!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^n f(x,y).$$

Представляя символическую запись n-го дифференциала в следующей форме:

$$\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^{n} f(x, y) = \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} h^{m} k^{n-m} \frac{\partial^{n} f(x, y)}{\partial x^{m} \partial y^{n-m}} =$$

$$= \sum_{m=0}^{n-1} \frac{n!}{m!(n-m)!} h^{m} k^{n-m} \frac{\partial^{n} f(x, y)}{\partial x^{m} \partial y^{n-m}} + h^{n} \frac{\partial^{n} f(x, y)}{\partial x^{n}} + k^{n} \frac{\partial^{n} f(x, y)}{\partial y^{n}},$$

разложение (1) запишем в виде
$$\partial f(x,y) = \partial f(x,y) + h^2 \partial^2 f(x,y) = \partial^2 f(x,y) + k^2 \partial^2 f(x,y)$$

 $f(x+h,y+k) = f(x,y) + h\frac{\partial f(x,y)}{\partial x} + k\frac{\partial f(x,y)}{\partial x} + \frac{h^2}{2}\frac{\partial^2 f(x,y)}{\partial x^2} + hk\frac{\partial^2 f(x,y)}{\partial x \partial x} + \frac{k^2}{2}\frac{\partial^2 f(x,y)}{\partial x^2} + \frac{h^2}{2}\frac{\partial^2 f(x,y)}{\partial x^2} + \frac{h$ $+\sum_{n=1}^{\infty}\sum_{m!(n-m)!}^{n-1}\frac{h^mk^{n-m}}{\partial x^m\partial y^{n-m}}+\sum_{n=1}^{\infty}\frac{1}{n!}\left(h^n\frac{\partial^nf(x,y)}{\partial x^n}+k^n\frac{\partial^nf(x,y)}{\partial y^n}\right).$ Далее, используя это равенство и разложения функций $f(x+h,\,y)$ и $f(x,\,y+k)$:

$$f(x+h, y) = f(x, y) + h \frac{\partial f(x, y)}{\partial x} + \frac{h^2}{2} \frac{\partial^2 f(x, y)}{\partial x^2} + \sum_{n=3}^{\infty} \frac{h^n}{n!} \frac{\partial^n f(x, y)}{\partial x^n},$$

$$f(x, y+k) = f(x, y) + k \frac{\partial f(x, y)}{\partial y} + \frac{k^2}{2} \frac{\partial^2 f(x, y)}{\partial y^2} + \sum_{n=3}^{\infty} \frac{k^n}{n!} \frac{\partial^n f(x, y)}{\partial y^n},$$

записываем разложение функции $\Delta_{xy}f(x,y)$:

$$\Delta_{xy}f(x,y) = hk\frac{\partial^2 f(x,y)}{\partial x \partial y} + \sum_{n=2}^{\infty} \sum_{m=1}^{n-1} \frac{h^m k^{n-m}}{m!(n-m)!} \frac{\partial^n f(x,y)}{\partial x^m \partial y^{n-m}}.$$

186. Разложить по степеням ρ функцию

$$F(\rho) = \frac{1}{2\pi} \int_{-\infty}^{2\pi} f(x + \rho \cos \varphi, y + \rho \sin \varphi) d\varphi,$$

где функция f дифференцируема любое число раз и разлагается по степеням ho в степенной ряд.

 \blacktriangleleft Запишем разложение функции $(
ho, \varphi) \mapsto f(x +
ho\cos\varphi, y +
ho\sin\varphi)$ по формуле Маклорена:

$$f(x + \rho\cos\varphi, y + \rho\sin\varphi) = f(x, y) + \sum_{k=1}^{\infty} \frac{\rho^{k}}{k!} \left(\cos\varphi\frac{\partial}{\partial x} + \sin\varphi\frac{\partial}{\partial y}\right)^{k} f(x, y).$$

Предполагая почленное интегрирование этого степенного ряда возможным, получаем разложение функции $ho \mapsto F(
ho)$ по степеням ho:

$$F(\rho) = f(x, y) + \sum_{k=1}^{\infty} \frac{\rho^k}{k!} \frac{1}{2\pi} \int_{-\infty}^{2\pi} \left(\cos \varphi \frac{\partial}{\partial x} + \sin \varphi \frac{\partial}{\partial y} \right)^k f(x, y) d\varphi.$$

Поскольку

$$\left(\cos\varphi\frac{\partial}{\partial x} + \sin\varphi\frac{\partial}{\partial y}\right)^{k} f(x, y) = \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} \frac{\partial^{k} f(x, y)}{\partial x^{j} \partial y^{k-j}} \cos^{j}\varphi \sin^{k-j}\varphi,$$

то разложение функции $ho\mapsto F(
ho)$ можно записать в виде

$$F(\rho) = f(x, y) + \sum_{k=1}^{\infty} \frac{\rho^k}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} \frac{\partial^k f(x, y)}{\partial x^j \partial y^{k-j}} \frac{1}{2\pi} \int_{-\infty}^{2\pi} \cos^j \varphi \sin^{k-j} \varphi \, d\varphi. \tag{1}$$

Рассмотрим интеграл

$$I(j, k - j) = \frac{1}{2\pi} \int_{-\infty}^{2\pi} \cos^{j} \varphi \sin^{k-j} \varphi \, d\varphi.$$
 (2)

Если j=2m-1, то $\cos^j\varphi\sin^{k-j}\varphi\,d\varphi=P_{k-1}(\sin\varphi)\,d(\sin\varphi)$, где $P_{k-1}(\sin\varphi)$ — многочлен степени k-1. Отсюда следует, что

$$I(2m-1, k-2m+1) = \frac{1}{2\pi} \int_{-\infty}^{\infty} P_{k-1}(\sin \varphi) d(\sin \varphi) = 0.$$

Аналогично, если k = 2n - 1, то I(j, 2n - 1 - j) = 0. Следовательно, интеграл (2) отличен от нуля только в том случае, если $k=2n,\ j=2m$:

$$I(2m, 2n-2m) = \frac{1}{2\pi} \int_{0}^{2\pi} \cos^{2m} \varphi \sin^{2n-2m} \varphi \, d\varphi.$$

 $=\frac{(2m-1)!!(2n-2m-1)!!}{(2n-1)!!}I(0, 2n).$

(3)

Вычисляя этот интеграл интегрированием по частям, получаем

$$I(2m, 2n-2m) = \frac{2m-1}{2n-2m+1}I(2m-2, 2n-2m+2).$$

 $I(2m, 2n-2m) = \frac{(2m-1)(2m-3)\dots 3\cdot 1\cdot I(0, 2n)}{(2n-2m+1)(2n-2m+3)\dots (2n-3)(2n-1)} =$

Пользуясь тем, что
$$I(0,\,2n)=\frac{1}{2\pi}\int\limits^{2\pi}\sin^{2n}\,\varphi\,d\varphi=\frac{2}{\pi}\int\limits^{\frac{\pi}{2}}\sin^{2n}\,\varphi\,d\varphi=\frac{(2n-1)!!}{(2n)!!},$$

получаем

192

$$I(2m, 2n-2m) = \frac{(2m-1)!!(2n-2m-1)!!}{(2n-1)!!} \frac{(2n-1)!!}{(2n)!!} = \frac{(2m-1)!!(2n-2m-1)!!}{(2n)!!}.$$

Далее, учитывая, что $(2k-1)!! = \frac{(2k-1)!!(2k)!!}{(2k)!!} = \frac{(2k)!}{2k+1}$, окончательно имеем

$$I(2m, 2n-2m) = \frac{(2m)!(2n-2m)!}{2^{2n}n!m!(n-m)!}.$$

Заменяя в разложении $(1)\; k$ на $2n,\; j$ на $2m\;$ и используя равенство (3), получаем

Заменяя в разложении (1)
$$k$$
 на $2n$, j на $2m$ и используя равенство (3), получаем

$$F(\rho) = f(x, y) + \sum_{n=1}^{\infty} \frac{\rho^{2n}}{(2n)!} \sum_{m=0}^{n} \frac{(2n)!}{(2m)!(2n-2m)!} \frac{(2m)!(2n-2m)!}{2^{2n}n!m!(n-m)!} \frac{\partial^{2n}f(xy)}{\partial x^{2m}\partial y^{2n-2m}} =$$

$$= f(x, y) + \sum_{n=1}^{\infty} \frac{\left(\frac{\rho}{2}\right)^{2n}}{(n!)^2} \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} \frac{\partial^{2n} f(x, y)}{\partial x^{2m} \partial y^{2n-2m}} = f(x, y) + \sum_{n=1}^{\infty} \frac{1}{(n!)^2} \left(\frac{\rho}{2}\right)^{2n} \Delta^n f(x, y),$$

$$n=1$$
 $m=0$ $n=1$ $m=0$ $m=1$ $m=0$ $m=1$ $m=0$ $m=1$ $m=1$ $m=0$ $m=1$ $m=1$

Разложить в ряд Маклорена следующие функции:

f(0, 0) = 1.

187.
$$f(x, y) = (1+x)^m (1+y)^n$$
.

$$f(x, y) = f(0, 0) + df(0, 0) + \frac{1}{2!} d^2 f(0, 0) + \dots$$
 (1)

Вычислим в точке (0, 0) значения функции и ее дифференциалов:

$$a \Delta x + n \Delta y$$
.

$$df(0, 0) = m \Delta x + n \Delta y, d^{2}f(0, 0) = m(m-1) \Delta x^{2} + 2mn \Delta x \Delta y + n(n-1) \Delta y^{2},$$

Полагая здесь $\Delta x = x$, $\Delta y = y$ и подставляя результат в равенство (1), получаем разложение функции $(x, y) \mapsto f(x, y)$ в ряд Маклорена:

$$f(x, y) = 1 + mx + ny + \frac{1}{2} \left(m(m-1)x^2 + 2mnxy + n(n-1)y^2 \right) + \dots \triangleright$$

(1)

◀ Поскольку $(x, y) \mapsto 1 + x + y$ — линейная функция, то форма дифференциала любого порядка обладает свойством инвариантности. Поэтому

$$f(x,y) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x+y)^n}{n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sum_{m=0}^n \frac{n!}{m!(n-m)!} x^m y^{n-m} =$$

$$= \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \frac{(-1)^n (n-1)!}{m! (n-m)!} x^m y^{n-m}, \quad |x+y| < 1. \blacktriangleright$$

189. $f(x, y) = e^x \sin y$. ◆ Ряд Маклорена для функции

188. $f(x, y) = \ln(1 + x + y)$.

$$f(x,y) = f(0,0) + \sum_{n=1}^{\infty} \frac{1}{n!} \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right)^n f(0,0)$$
 преобразуем следующим образом:

$$f(x, y) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right)^n f(0, 0) =$$

 $=\sum_{n=1}^{\infty}\frac{1}{n!}\sum_{n=1}^{\infty}\frac{n!x^{m}y^{n-m}}{m!(n-m)!}\frac{\partial^{n}f(0,0)}{\partial x^{m}\partial y^{n-m}}=\sum_{n=1}^{\infty}\sum_{n=1}^{\infty}\frac{x^{m}y^{n-m}}{m!(n-m)!}\frac{\partial^{n}f(0,0)}{\partial x^{m}\partial y^{n-m}}.$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{m=0}^{n} \frac{n! x^m y^{n-m}}{m! (n-m)!} \frac{\partial^n f(0,0)}{\partial x^m \partial y^{n-m}} = \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{x^m y^{n-m}}{m! (n-m)!} \frac{\partial^n f(0,0)}{\partial x^m \partial y^{n-m}}$$
 Полагая $n-m=k$, получаем

 $f(x, y) = \sum_{k=0}^{\infty} \sum_{k=0}^{\infty} \frac{x^{k}y^{k}}{m!k!} \frac{\partial^{m+k} f(0, 0)}{\partial x^{m} \partial y^{k}}.$ Для нашего случая $\frac{\partial^{m+k} f(x, y)}{\partial x^m \partial u^k} = \frac{\partial^{m+k} (e^x \sin y)}{\partial x^m \partial u^k} = e^x \sin \left(y + k \frac{\pi}{2}\right).$

Отсюда
$$\frac{\partial^{m+k} f(0,\,0)}{\partial x^m\,\partial y^k} = \sin\frac{k\pi}{2} = \left\{ \begin{array}{l} (-1)^n, & \text{если} \quad k=2n+1,\\ 0, & \text{если} \quad k=2n. \end{array} \right.$$
 Подставляя последнее выражение в формулу (1), получаем

 $e^x \sin y = \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^n x^n y^{2n+1}}{m!(2n+1)!}, \quad |x| < \infty, \ |y| < \infty.$

190. $f(x, y) = e^x \cos y$.

■ Используем формулу (1) из предыдущего примера. Для этого находим производные

Используем формулу (1) из предыдущего примера. Для этого находим производн
$$\frac{\partial^{m+k} f(x,y)}{\partial x^m \partial y^k} = \frac{\partial^{m+k} (e^x \cos y)}{\partial x^m \partial y^k} = e^x \cos \left(y + \frac{k\pi}{2}\right)$$

и вычисляем их значения в точке
$$(0, 0)$$
:
$$\frac{\partial^{m+k} f(0, 0)}{\partial x^m \partial y^k} = \cos \frac{k\pi}{2} = \left\{ \begin{array}{ll} (-1)^n, & \text{если} & k = 2n, \\ 0, & \text{если} & k = 2n + 1. \end{array} \right.$$

Пользуясь формулой (1) из предыдущего примера, окончательно получаем
$$e^x \cos y = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^n x^m y^{2n}}{m! (2n)!}, \quad |x| < \infty, \ |y| < \infty. \ \blacktriangleright$$

194 Гл. 2. Дифференциальное исчисление функций векторного аргумента **191.** a) $f(x, y) = \sin x \operatorname{sh} y$; 6) $f(x, y) = \cos x \operatorname{ch} y$.

◄ а) Находим производные

 $\frac{\partial^{m+k} f(x, y)}{\partial x^m \, \partial y^k} = \frac{\partial^{m+k} (\sin x \sin y)}{\partial x^m \, \partial y^k} = \left\{ \begin{array}{ll} \sin \left(x + \frac{m\pi}{2} \right) \sin y, & \text{если} & k = 2n, \\ \sin \left(x + \frac{m\pi}{2} \right) \cot y, & \text{если} & k = 2n + 1. \end{array} \right.$

Полагая здесь x = 0, y = 0, имеем

 $\frac{\partial^{m+k} f(0,0)}{\partial x^m \partial u^k} = (-1)^s$, если m = 2s + 1, k = 2n + 1,

 $\frac{\partial^{m+k} f(0,0)}{\partial x^m \partial u^k} = 0 \text{ в остальных случаях.}$

Используя формулу (1) из примера 189, получаем

 $\sin x \operatorname{sh} y = \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^{s} x^{2s+1} y^{2n+1}}{(2s+1)! (2n+1)!}, \quad |x| < \infty, \ |y| < \infty.$

б) Аналогично предыдущему случаю находим

 $\frac{\partial^{m+k} f(x,\,y)}{\partial x^m\,\partial y^k} = \frac{\partial^{m+k} (\cos x \mathop{\mathrm{ch}} y)}{\partial x^m\,\partial y^k} = \left\{ \begin{array}{ll} \cos \left(x + \frac{m\pi}{2}\right) \mathop{\mathrm{ch}} y, & \mathop{\mathrm{eсли}} & k = 2n, \\ \cos \left(x + \frac{m\pi}{2}\right) \mathop{\mathrm{sh}} y, & \mathop{\mathrm{eсли}} & k = 2n + 1. \end{array} \right.$

Отсюда $\frac{\partial^{m+k} f(0,0)}{\partial x^m \partial u^k} = (-1)^s, \text{ если } m = 2s, \ k = 2n,$

 $\frac{\partial^{m+k} f(0,0)}{\partial x^m \partial u^k} = 0 \text{ в остальных случаях.}$ Подставляя найденные значения производных в формулу (1) из примера 189, получаем

 $\cos x \operatorname{ch} y = \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n} y^{2n}}{(2n)! (2n)!}, \ |x| < \infty, \ |y| < \infty. \blacktriangleright$

192. $f(x, y) = \sin(x^2 + y^2)$.

◀ Используя известное разложение $\sin u = \sum_{n=0}^{\infty} \frac{(-1)^{n-1} u^{2n-1}}{(2n-1)!},$

справедливое при $|u|<\infty$, получаем при $u=x^2+y^2$ формулу Маклорена для $\sin(x^2+y^2)$:

 $\sin(x^2 + y^2) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}(x^2 + y^2)^{2n-1}}{(2n-1)!}, \quad x^2 + y^2 < +\infty. \blacktriangleright$

193. Написать три члена разложения в ряд Маклорена функции

 $f(x, y) = \int (1+x)^{t^2y} dt.$

$$ullet$$
 При $|x| < 1$, $|y| < 1$ имеем

◄ При |x| < 1, |y| < 1 имеем

$$f(x, y) = \int_{-1}^{1} \left(1 + t^2 x y + \frac{1}{2} t^2 y (t^2 y - 1) x^2 + \ldots\right) dt.$$

$$y)=\int_{0}^{1}$$

195

- § 5. Формула Тейлора После интегрирования находим $f(x, y) = 1 + \frac{1}{3} \left(x - \frac{x^2}{2} \right) y + \dots$
 - **194.** Функцию $(x,y)\mapsto e^{x+y}$ разложить в степенной ряд по целым положительным
- степеням биномов (x-1) и (y-1). lacktriangle Поскольку степенной ряд является рядом Тейлора для функции f, то для получения требуемого разложения применим формулу (1), п.5.2, которая запишется в виде

$$f(x,y) = f(1,1) + \sum_{n=1}^{\infty} \frac{1}{n!} \left((x-1)\frac{\partial}{\partial x} + (y-1)\frac{\partial}{\partial y} \right)^n f(1,1). \tag{1}$$

Преобразуя данную формулу
$$f(x,y) = \sum_{n=0}^{\infty} \frac{1}{n!} \left((x-1) \frac{\partial}{\partial x} + (y-1) \frac{\partial}{\partial y} \right)^n f(1,1) = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{n=0}^{n} \frac{n! (x-1)^m (y-1)^{n-m}}{m! (n-m)!} \frac{\partial^n f(1,1)}{\partial x^m \partial y^{n-m}}$$

и обозначая n-m=k, получаем

$$f(x, y) = \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \frac{(x-1)^m (y-1)^k}{m! k!} \frac{\partial^{m+k} f(1, 1)}{\partial x^m \partial y^k}.$$
 (2)

Находим производные

неявно заданной функции:

В точке (1, 1)

$$\frac{\partial^{m+k} f(x, y)}{\partial x^m \partial y^k} = \frac{\partial^{m+k} (e^{x+y})}{\partial x^m \partial y^k} = \frac{\partial^m e^x}{\partial x^m} \frac{\partial^k e^y}{\partial y^k} = e^x \cdot e^y = e^{x+y},$$

затем вычисляем их значения в точке (1,1): $\frac{\partial^{m+k} f(1,1)}{\partial x^m \partial v^k} = e^2$ и, подставляя в формулу (2), получаем

$$f(x, y) = e^2 \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \frac{(x-1)^m (y-1)^k}{m! k!}, \ |x| < \infty, \ |y| < \infty. \blacktriangleright$$

0, которая при x=1 и y=1 принимает значение z=1. Написать несколько членов разложения функции z по возрастающим степеням биномов (x-1) и (y-1). **◄** Из условия задачи следует, что z(1, 1) = 1. Находим частные производные от z как от

195. Пусть z — та неявная функция от x и y, определяемая уравнением $z^3-2xz+y=$

$$\frac{\partial z}{\partial x} = \frac{2z}{3z^2 - 2x}, \quad \frac{\partial z}{\partial y} = -\frac{1}{3z^2 - 2x},$$

$$\frac{\partial^2 z}{\partial x^2} = \frac{2(3z^2 - 2x)\frac{\partial z}{\partial x} - 2\left(6z\frac{\partial z}{\partial x} - 2\right)z}{(3z^2 - 2x)^2}, \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{6z\frac{\partial z}{\partial x} - 2}{(3z^2 - 2x)^2}, \quad \frac{\partial^2 z}{\partial y^2} = \frac{6z\frac{\partial z}{\partial y}}{(3z^2 - 2x)^2}, \dots$$

$$\frac{\partial z}{\partial x} = 2$$
, $\frac{\partial z}{\partial y} = -1$, $\frac{\partial^2 z}{\partial x^2} = -16$, $\frac{\partial^2 z}{\partial x \partial y} = 10$, $\frac{\partial^2 z}{\partial y^2} = -6$, ...

$$\frac{\partial}{\partial x} = 2$$
, $\frac{\partial}{\partial y} = -1$, $\frac{\partial}{\partial x^2} = -16$, $\frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial y}$

Используя формулу (2) предыдущей задачи, получаем

$$z(x, y) = 1 + 2(x - 1) - (y - 1) - 8(x - 1)^2 + 10(x - 1)(y - 1) - 3(y - 1)^2 + \dots$$

Упражнения для самостоятельной работы

147. Функцию $f(x, y) = x^3 + xy^2 + xy + x + y$ разложить по формуле Тейлора в окрестности точки (1, 1).

Разложить по формуле Маклорена следующие функции:

148. $f(x, y) = e^{x+y}$. 149. $f(x, y) = x^2 \sin y + \cos(x+y)$. 150. $f(x, y) = e^{x^2-y^2}$.

§ 6. Экстремум функции векторного аргумента

6.1. Определение локального экстремума.

Пусть функция $x\mapsto f(x), \ x=(x_1,\,x_2,\,\dots,\,x_n),$ определена на множестве $D\subset\mathbb{R}^n$ и точка $x_0=(x_1^0,\,x_2^0,\,\dots,\,x_n^0),\ x_0\in D.$ Говорят, что функция f имеет в точке x_0 локальный максимум (минимум), если существует такая окрестность $S(x_0,\,\delta)=\{x:0<\rho(x,\,x_0)<\delta\}$ точки $x_0,$ что для всех точек $x\in S(x_0,\,\delta)\cap D$ выполняется неравенство

$$f(\boldsymbol{x}_0) \geqslant f(\boldsymbol{x}) \quad (f(\boldsymbol{x}_0) \leqslant f(\boldsymbol{x})).$$
 (1)

Локальный максимум и локальный минимум объединяются общим названием локальный экстремум, а точки, в которых он достигается, называются экстремальными точками. Если функция f имеет в точке x_0 локальный экстремум, то полное приращение $\Delta f(x_0) =$

Если функция f имеет в точке x_0 локальный экстремум, то полное приращение $\Delta f(x_0) = f(x) - f(x_0)$, $x \in S(x_0, \delta) \cap D$, этой функции в точке x_0 удовлетворяет одному из следующих условий: $\Delta f(x_0) \leq 0$ (в случае локального максимума), $\Delta f(x_0) \geq 0$ (в случае локального минимума).

6.2. Необходимое условие локального экстремума.

Пусть функция f имеет в точке \mathbf{x}_0 докальный экстремум. Тогда если в этой точке существуют частные производные первого порядка по всем переменным, то все эти частные производные равны нулю. Таким образом, в этом случае экстремальные точки функции f удовлетворяют системе уравнений

$$f'_{x_j}(x_0) = 0, \quad j = \overline{1, n}. \tag{1}$$

Если же функция f дифференцируема в точке x_0 , то соотношение

$$df(\mathbf{x}_0) = 0 \quad (f'(\mathbf{x}_0) = 0) \tag{2}$$

является необходимым условием локального экстремума. Точки, в которых выполняется условие (1) или (2), называют стационарными точками. Функция f может принимать локальный экстремум только в стационарных точках или в точках, в которых частные производные первого порядка не существуют. Все эти точки называют точками возможного экстремума.

6.3. Знакоопределенные квадратичные формы.

Функция

$$A(h_1, h_2, \ldots, h_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} h_i h_j, \quad a_{ij} = a_{ji},$$
 (1)

переменных h_1, h_2, \ldots, h_n называется квадратичной формой. Числа a_{ij} называются коэффициентами квадратичной формы.

Квадратичная форма (1) называется положительно-определенной (отрицательно-определенной), если для любых значений переменных $h_1,\,h_2,\,\ldots,\,h_n$, для которых выполняется условие $h_1^2+h_2^2+\ldots+h_n^2>0$, эта форма имеет положительные (отрицательные) значения. Положительно- и отрицательно-определенные формы объединяются общим названием — зна-коопределенные формы.

Сформулируем критерий знакоопределенности квадратичной формы — критерий Сильвестра. Для того чтобы квадратичная форма (1) была положительно-определенной, необходимо и достаточно, чтобы выполнялись неравенства

$$a_{11} > 0, \; \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, \; \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} > 0, \ldots, \; \begin{vmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{2n} & a_{2n} & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ a_{2n} & a_{2n} & \vdots \\ \vdots & \vdots & \vdots \\ a_{2n} & a_{2n} & \vdots \\ \vdots & \vdots & \vdots \\ a_{2n} & a_{2n} & \vdots \\ \vdots & \vdots & \vdots \\ a_{2n} & a_{2n} & \vdots \\ \vdots & \vdots & \vdots \\ a_{2n} & a_{2n} & \vdots \\ \vdots & \vdots & \vdots \\ a_{2n} & \vdots & \vdots \\ a_{2n}$$

Для того чтобы квадратичная форма (1) была отрицательно-определенной, необходимо и достаточно, чтобы имели место неравенства

$$a_{11} < 0, \ \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, \ \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} < 0, \ldots, \ (-1)^n \begin{vmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{vmatrix} > 0.$$

6.4. Достаточные условия локального экстремума.

Пусть в некоторой окрестности стационарной точки x_0 функция f дважды дифференцируема и все частные производные второго порядка $\frac{\partial^2 f}{\partial x_i \partial x_j}$ $(i, j=\overline{1,n})$ непрерывны в точке x_0 . Если в этой точке второй дифференциал $d^2 f(x_0) = \sum\limits_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j} \, dx_i \, dx_j$ представляет собой знакоопределенную квадратичную форму от дифференциалов dx_1, dx_2, \ldots, dx_n независимых переменных, то в точке x_0 функция f принимает локальный экстремум. При этом если $d^2 f(x_0) < 0$, то в точке x_0 функция f принимает локальный максимум, а если $d^2 f(x_0) > 0$, то локальный минимум.

Рассмотрим функцию двух переменных. Пусть в некоторой окрестности стационарной точки (x_0, y_0) функция $(x, y) \mapsto f(x, y)$ дважды дифференцируема и все частные производные второго порядка $a_{11} = \frac{\partial^2 f}{\partial x^2}$, $a_{12} = \frac{\partial^2 f}{\partial x \partial y}$, $a_{22} = \frac{\partial^2 f}{\partial y^2}$ непрерывны в этой точке. Тогда если в точке (x_0, y_0)

$$\Delta(x_0, y_0) = a_{11}a_{22} - a_{12}^2 > 0,$$

функция $(x, y) \mapsto f(x, y)$ имеет в этой точке локальный экстремум, а именно максимум при $a_{11} < 0$ и минимум при $a_{11} > 0$. Если же в точке (x_0, y_0)

$$\Delta(x_0, y_0) = a_{11}a_{22} - a_{12}^2 < 0,$$

то функция f не имеет локального экстремума в этой точке.

Случай, когда $\Delta(x_0, y_0) = a_{11}a_{22} - a_{12}^2 = 0$, требует дополнительных исследований.

Пусть в некоторой окрестности точки x_0 функция $f(x) = f(x_1, x_2, \dots, x_n)$ m раз дифференцируема и все частные производные m-го порядка непрерывны в этой точке, причем

$$df(x_0) = 0, \ d^2f(x_0) \equiv \ldots \equiv d^{m-1}f(x_0) \equiv 0, \ d^mf(x_0) \geqslant 0.$$

Тогда, если m нечетное, точка \mathbf{z}_0 не является экстремальной, если же m четное, то в точке \mathbf{z}_0 функция f имеет экстремум: локальный максимум, если $d^m f(\mathbf{z}_0) < 0$, и локальный минимум, если $d^m f(\mathbf{z}_0) > 0$.

Если в соотношениях (1), п.6.1, имеет место равенство для любого малого $\delta>0$ и некоторых значений x, отличных от x_0 , то локальный экстремум называют нестрогим (соответственно нестрогим локальным минимумом и нестрогим локальным максимумом). В этом случае локальный экстремум достигается на некотором множестве точек.

Если экстремальная точка x_0 принадлежит границе области D определения функции f, то экстремум называют краевым (соответственно краевым максимумом и краевым минимумом).

6.5. Экстремум неявно заданной функции.

Если неявная функция $x\mapsto u(x),\,x\in D,\,D\in\mathbb{R}^n$, определяется уравнением

$$F(x, u) = 0,$$

TO

$$F(\boldsymbol{x}, u(\boldsymbol{x})) \equiv 0, \quad \boldsymbol{x} \in D.$$

Пусть функция u дважды непрерывно дифференцируема в D. Тогда в стационарной точке $\mathbf{z}_0 \in D$ справедливы равенства

$$du = -\frac{1}{F_u'}(F_{x_1}' dx_1 + F_{x_2}' dx_2 + \dots + F_{x_n}' dx_n) = 0,$$

$$F(x_0, y_0) = 0.$$
(1)

где $u_0=u(x_0)$. Поскольку справедливо и обратное утверждение, то стационарные точки могут быть найдены из системы

$$F'_{x_i}=0, \quad i=\overline{1, n}, \quad F=0.$$

198

Еще раз дифференцируя первое из равенств (1) и учитывая, что в стационарной точке du=0, получаем

$$d^2u = -\frac{1}{F'_u} \sum_{i,j=1}^n \frac{\partial^2 F}{\partial x_i \partial x_j} dx_i dx_j.$$
 (2)

Если $d^2u>0$ в точке x_0 , то функция u имеет минимум, если же в этой точке $d^2u<0$, то максимум.

6.6. Условный экстремум.

Пусть функция $f(x, y) = f(x_1, \dots, x_n, y_1, \dots, y_m)$ определена на некоторой области $D \subset \mathbb{R}^{n+m}$. Пусть, кроме того, на переменные $oldsymbol{x}, oldsymbol{y}$ наложено $oldsymbol{m}$ дополнительных условий

$$F_1(x, y) = 0,$$

 $F_2(x, y) = 0,$
......
 $F_m(x, y) = 0,$
(1)

которые называются уравнениями связи.

Говорят, что функция f имеет в точке (x_0, y_0) условный максимум (условный минимум), если неравенство $f(x, y) \leqslant f(x_0, y_0) \ (f(x, y) \geqslant f(x_0, y_0))$ выполняется в некоторой окрестности точки (x_0, y_0) при условии, что точки (x, y) и (x_0, y_0) удовлетворяют уравнениям связи (1).

Исследование функции на условный экстремум при наличии уравнений связи $F_i=0,\ j=1$ 1, т, сводится к исследованию на обычный экстремум функции

$$\Phi(\boldsymbol{x},\,\boldsymbol{y}) = f(\boldsymbol{x},\,\boldsymbol{y}) + \sum_{j=1}^{m} \lambda_{j} F_{j}(\boldsymbol{x},\,\boldsymbol{y}), \tag{2}$$

называемой функцией Лагранжа, где λ_j , $j=\overline{1,m}$, — постоянные множители. При этом знак второго дифференциала $d^2\Phi(x_0, y_0)$ в стационарной точке (x_0, y_0) определяет характер экстремума при условии, что дифференциалы $dx_1, dx_2, \ldots, dx_n, dy_1, dy_2, \ldots, dy_m$ связаны соотношениями

$$\sum_{k=1}^{n} \frac{\partial F_{j}}{\partial x_{k}} dx_{k} + \sum_{k=1}^{m} \frac{\partial F_{j}}{\partial y_{s}} dy_{s} = 0, \quad j = \overline{1, m}.$$

6.7. Абсолютный экстремум.

Если функция $f(x)=f(x_1,\,x_2,\,\ldots\,,\,x_n)$ дифференцируема в области $D\subset\mathbb{R}^n$ и непрерывна на замыкании \overline{D} , то она достигает своего наибольшего и наименьшего значений на множестве \overline{D} или в стационарной точке, или в точке, принадлежащей границе области D.

Для определения абсолютного экстремума функции f на множестве \overline{D} сравниваем наибольшее и наименьшее значения функции f в стационарных точках области D с наибольшим и наименьшим значениями функции f на границе области D.

Исследовать на локальный экстремум следующие функции:

196.
$$z = x^4 + y^4 - x^2 - 2xy - y^2$$
.

 \blacktriangleleft Вычислим частные производные: $z'_x = 4x^3 - 2x - 2y$, $z'_y = 4y^3 - 2x - 2y$. Стационарные точки найдем из системы

$$4x^3 - 2x - 2y = 0, \quad 4y^3 - 2x - 2y = 0.$$

Она имеет три решения: $x_1=0, y_1=0; x_2=-1, y_2=-1; x_3=1, y_3=1$. Для проверки достаточных условий локального экстремума вычислим вторые производные $a_{11}=z_{x2}^{\prime\prime}=$ $12x^2-2$, $a_{12}=z_{xy}''=-2$, $a_{22}=z_{y^2}''=12y^2-2$ и составим выражение

$$\Delta(x, y) = a_{11}a_{22} - a_{12}^2 = (12x^2 - 2)(12y^2 - 2) - 4.$$

Поскольку $\Delta(0,0)=0$, то для выяснения вопроса о существовании экстремума рассмотрим приращение функции z в точке $(0,0):\Delta z(0,0)=z(h,k)-z(0,0)$. Если k=h, где $0< h< \sqrt{\frac{3}{2}}$ то $\Delta z(0,0)=2h^2$ $(h^2-\frac{3}{2})<0$. Если же h=h где h>0 то $\Delta z(0,0)=2h^4>0$

 $\sqrt{\frac{3}{2}}$, то $\Delta z(0, 0) = 2h^2 \left(h^2 - \frac{3}{2}\right) < 0$. Если же k = -h, где h > 0, то $\Delta z(0, 0) = 2h^4 > 0$.

Следовательно, приращение $\Delta z(0,0)$ принимает значения разных знаков, а поэтому при $x_1=0, y_1=0$ экстремума нет.

В точках (-1, -1) и (1, 1) $\Delta = 96 > 0$, а так как $a_{11} = 10 > 0$, то в этих точках функция имеет минимум, причем $z_{\min} = -2$.

197. $z = 2x^4 + y^4 - x^2 - 2y^2$.

⋖ Из системы

$$z'_x = 8x^3 - 2x = 0, \quad z'_y = 4y^3 - 4y = 0$$

находим стационарные точки

$$(0, 0), (0, 1), (0, -1), (\frac{1}{2}, 0), (\frac{1}{2}, 1), (\frac{1}{2}, -1), (-\frac{1}{2}, 0), (-\frac{1}{2}, 1), (-\frac{1}{2}, -1).$$

By the corresponding the property of the corresponding of the corresponding prime of the cor

Вычисляя вторые производные $z_{x^2}^{\prime\prime}=24x^2-2,~z_{xy}^{\prime\prime}=0,~z_{y^2}^{\prime\prime}=12y^2-4$ и составляя выражение

$$\Delta(x, y) = a_{11}a_{22} - a_{12}^2 = 8(12x^2 - 1)(3y^2 - 1),$$

находим, что $\Delta(0,0)=8>0$, $\Delta(0,1)=-16<0$, $\Delta(0,-1)=-16<0$, $\Delta\left(\frac{1}{2},0\right)=-16<0$, $\Delta\left(\frac{1}{2},1\right)=32>0$, $\Delta\left(\frac{1}{2},-1\right)=32>0$, $\Delta\left(-\frac{1}{2},0\right)=-16<0$, $\Delta\left(-\frac{1}{2},1\right)=32>0$, $\Delta\left(-\frac{1}{2},-1\right)=32>0$.

Следовательно, точки $(0, 1), (0, -1), \left(\frac{1}{2}, 0\right)$ и $\left(-\frac{1}{2}, 0\right)$ не являются экстремальными. Точки $(0, 0), \left(\frac{1}{2}, 1\right), \left(\frac{1}{2}, -1\right), \left(-\frac{1}{2}, 1\right)$ и $\left(-\frac{1}{2}, -1\right)$ — экстремальные, причем в точке (0, 0) — максимум (поскольку $z_{x^2}''(0, 0) = -2 < 0$) и $z_{\max} = 0$; в точках $\left(\frac{1}{2}, 1\right), \left(\frac{1}{2}, -1\right), \left(-\frac{1}{2}, 1\right)$ и $\left(-\frac{1}{2}, -1\right)$ — минимум (поскольку $z_{x^2}''(0, 0) = -2 < 0$) и $z_{\min} = -\frac{9}{8}$. \blacktriangleright

198. $z = x^2 y^3 (6 - x - y)$.

◆ Составляя систему

$$z'_x = xy^3(12 - 3x - 2y) = 0, \quad z'_y = x^2y^2(18 - 3x - 4y) = 0,$$

... ...

а затем решая ее, находим стационарные точки
$$(2,3), (0,y),$$
 где $-\infty < y < +\infty; (x,0),$ где $-\infty < x < +\infty.$

Для проверки достаточных условий локального экстремума находим производные

$$z_{x^2}'' = 12y^3 - 6xy^3 - 2y^4, \quad z_{xy}'' = 36xy^2 - 9x^2y^2 - 8xy^3, \quad z_{y^2}'' = 36x^2y - 6x^3y - 12x^2y^2. \tag{1}$$

Поскольку $z_{xy}''(2,3)=-162$, $z_{xy}''(2,3)=-108$, $z_{y2}''(2,3)=-144$, а $\Delta(2,3)=144\cdot162-108^2>0$, то в точке (2,3) функция z имеет максимум, причем $z_{\max}=108$. В точках (0,y) и (x,0) выражение $\Delta=a_{11}a_{22}-a_{12}^2$ обращается в нуль, а это ничего не говорит о наличии экстремума в этих точках.

Для дальнейших исследований вычислим приращение функции в точке $(0,\,y),\,-\infty < y < +\infty$:

$$\Delta z(0, y) = \Delta x^{2} (y + \Delta y)^{2} \left((6 - \Delta x)(y + \Delta y) - (y + \Delta y)^{2} \right).$$

Легко убедиться, что при достаточно малых Δx и Δy $\Delta z(0,y)\leqslant 0$, если $-\infty < y < 0$ или $6 < y < +\infty$; $\Delta z(0,y)\geqslant 0$, если 0 < y < 6. Причем в обоих случаях достигается знак равенства при $|\Delta x|>0$ и $|\Delta y|>0$ (например, если $y+\Delta y=0$). Следовательно, в точках (0,y), где $-\infty < y < 0$ или $6 < y < +\infty$, функция z имеет нестрогий максимум, а в точках (0,y), где 0 < y < 6, — нестрогий минимум. В точках (0,0) и (0,6) функция z экстремума не имеет, так как при x=0 приращение $\Delta z(0,y)$ меняет знак при переходе переменной y через точки y=0 и y=6.

Далее, из равенств (1) следует, что второй дифференциал равен нулю в точках (x,0), $-\infty < x < +\infty$. Для дальнейших исследований вычислим приращение функции в точках (x,0), $-\infty < x < +\infty$:

$$\Delta z(x, 0) = (x + \Delta x)^2 \Delta y^2 \Delta y (6 - x - \Delta x - \Delta y).$$

Пусть Δx и Δy — произвольно малые и такие, что $x + \Delta x \neq 0$, $6 - x - \Delta x - \Delta y \neq 0$. Поскольку $\Delta z(x,\,0)$ как функция переменных $\Delta x,\,\Delta y$ в точках $(\Delta x,\,\Delta y)$ и $(\Delta x,\,-\Delta y)$ принимает зна-

чения разных знаков, то точка $(x,0), -\infty < x < +\infty$, не является экстремальной. ightharpoonup199. $z = x^3 + y^3 - 3xy$.

■ Вычислив частные производные и приравняв их к нулю, получим систему

$$z'_{x} = 3x^{2} - 3y = 0, \quad z'_{y} = 3y^{2} - 3x = 0.$$

Решив эту систему, найдем стационарные точки (0,0) и (1,1). Затем запишем частные производные второго порядка $z_{x^2}''=6x, z_{xy}''=-3, z_{y^2}''=6y$ и составим выражение $\Delta(x,y)=$ $a_{11}a_{22}-a_{12}^2=36xy-9$. B touke (0,0) umeem $\Delta=-9<0$, tak что эта точка не является экстремальной. В точке (1, 1) имеем $\Delta = 27 > 0$, $a_{11} > 0$, следовательно, в этой точке функция

имеет минимум, причем $z_{\min} = -1$. **200.** $z = xy + \frac{50}{x} + \frac{20}{y}, x > 0, y > 0.$

200

$$z_x' = y - rac{50}{x^2} = 0, \quad z_y' = x - rac{20}{y^2} = 0$$

находим единственную стационарную точку $x=5,\,y=2,\,$ принадлежащую области определения функции. Вычислив производные $z_{x^2}^{\prime\prime}=\frac{100}{x^3}, z_{xy}^{\prime\prime}=1, z_{y^2}^{\prime\prime}=\frac{40}{v^3}$ и составив выражение $\Delta(x, y) = \frac{4000}{x^3y^3} - 1$, найдем, что $\Delta(5, 2) = 3 > 0$, а $a_{11}(5, 2) = \frac{4}{5} > 0$. Следовательно, в точке

$$\Delta(x, y) = \frac{1}{x^3y^3} - 1$$
, наидем, что $\Delta(5, 2) = 5 > 5$
(5, 2) функция имеет минимум $(z_{\min} = 30)$. \blacktriangleright
201. $z = xy\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}$.

■ Из системы

$$z'_{x} = \frac{y\left(1 - \frac{2x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}\right)}{\left(1 - \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}\right)^{\frac{1}{2}}} = 0, \quad z'_{y} = \frac{x\left(1 - \frac{x^{2}}{a^{2}} - \frac{2y^{2}}{b^{2}}\right)}{\left(1 - \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}\right)^{\frac{1}{2}}} = 0$$

находим стационарные точки: (0, 0), $\left(\frac{a}{\sqrt{3}}, \frac{b}{\sqrt{3}}\right)$, $\left(-\frac{a}{\sqrt{3}}, -\frac{b}{\sqrt{3}}\right)$, $\left(\frac{a}{\sqrt{3}}, -\frac{b}{\sqrt{3}}\right)$, $\left(-\frac{a}{\sqrt{3}}, \frac{b}{\sqrt{3}}\right)$. В точках (x,y), принадлежащих эллипсу $1=\frac{x^2}{a^2}+\frac{y^2}{b^2}$, который является границей области определения функции, частные производные не существуют, а поэтому являются точками возможного краевого экстремума.

Для проверки достаточных условий запишем вторые производные

$$\begin{split} z_{x^2}'' &= \frac{-\frac{xy}{a^2} \left(3 - \frac{2x^2}{a^2} - \frac{3y^2}{b^2} \right)}{\left(1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} \right)^{\frac{3}{2}}}, \quad z_{y^2}'' &= \frac{-\frac{xy}{b^2} \left(3 - \frac{3x^2}{a^2} - \frac{2y^2}{b^2} \right)}{\left(1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} \right)^{\frac{3}{2}}}, \\ z_{xy}'' &= \frac{1 - \frac{3x^2}{a^2} - \frac{3y^2}{b^2} + \frac{2x^4}{a^4} + \frac{3x^2y^2}{a^2b^2} + \frac{2y^4}{b^4}}{\left(1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} \right)^{\frac{3}{2}}}, \end{split}$$

а затем вычислим значение Δ в стационарных точках. Имеем $\Delta(0,0)=-1<0$, поэто-

му эта точка не является экстремальной. Поскольку $\Delta\left(\pm\frac{a}{\sqrt{3}},\pm\frac{b}{\sqrt{3}}\right)=4>0$, то точки $\left(\pm \frac{a}{\sqrt{3}}, \pm \frac{b}{\sqrt{3}}\right)$ — экстремальные. А так как

$$z_{x^2}''\left(\frac{a}{\sqrt{3}}, \frac{b}{\sqrt{3}}\right) = z_{x^2}''\left(-\frac{a}{\sqrt{3}}, -\frac{b}{\sqrt{3}}\right) = -\frac{4ab}{9} < 0,$$

$$z_{x^2}''\left(\frac{a}{\sqrt{3}}, -\frac{b}{\sqrt{3}}\right) = z_{x^2}''\left(-\frac{a}{\sqrt{3}}, \frac{b}{\sqrt{3}}\right) = \frac{4ab}{9} > 0,$$

то в точках $\left(\frac{a}{\sqrt{3}}, \frac{b}{\sqrt{3}}\right)$ и $\left(-\frac{a}{\sqrt{3}}, -\frac{b}{\sqrt{3}}\right)$ функция z имеет максимум, а в точках $\left(\frac{a}{\sqrt{3}}, -\frac{b}{\sqrt{3}}\right)$ и $\left(-\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$ — минимум.

Остается исследовать точки (x, y), где $1 = \frac{x^2}{x^2} + \frac{y^2}{k^2}$. Запишем приращение функции в этих

точках:

 $\Delta z(x, y) = (x + h)(y + k)\sqrt{1 - \frac{(x + h)^2}{x^2} - \frac{(y + k)^2}{h^2}}.$

$$\Delta z(x, y) = (x + h)(y + k)\sqrt{1 - \frac{(y + h)^2}{a^2} - \frac{(y + h)^2}{b^2}}.$$
 Очевитно, $\Delta z(x, y) > 0$, если $0 < x + h < x < a$, $0 < y + k < y < a$

Очевидно, $\Delta z(x,y) > 0$, если 0 < x+h < x < a, 0 < y+k < y < b, или -a < x < ax + h < 0, -b < y < y + k < 0; $\Delta z(x, y) < 0,$ если 0 < x + h < x < a, -b < y < y + k < 0 или $-a < x < x + h < 0, \ 0 < y + k < y < b.$ Следовательно, в точках (x, y), принадлежащих эллипсу

и расположенных в первой и третьей четвертях, функция имеет краевой минимум, равный нулю, а в точках (x, y), принадлежащих эллипсу и расположенных во второй и четвертой

четвертях, — краевой максимум, равный нулю. B точке (0, b) приращение

 $\Delta z(0, b) = h(b+k)\sqrt{1-\frac{h^2}{a^2}-\frac{(b+k)^2}{12}}$

положительно при достаточно малом h>0 и 0< b+k< b и отрицательно при достаточно малом h < 0 и 0 < b + k < b. Спедовательно, в этой точке экстремум отсутствует. Аналогично показывается, что точки $(0,-b),\,(\pm a,\,0)$ не являются экстремальными. \blacktriangleright

202. $z = \frac{ax + by + c}{\sqrt{x^2 + u^2 + 1}}, \ a^2 + b^2 + c^2 \neq 0.$

■ Находим частные производные и приравниваем их к нулю. В результате получаем систему

 $z'_x = \frac{a(x^2 + y^2 + 1) - x(ax + by + c)}{(x^2 + y^2 + 1)^{\frac{3}{2}}} = 0, \quad z'_y = \frac{b(x^2 + y^2 + 1) - y(ax + by + c)}{(x^2 + y^2 + 1)^{\frac{3}{2}}} = 0.$

Умножая первое равенство этой системы на $-b(x^2+y^2+1)^{\frac{\gamma}{2}}$, второе на $a(x^2+y^2+1)^{\frac{\gamma}{2}}$ и складывая их, получаем уравнение (bx - ay)(ax + by + c) = 0, из которого следует, что

bx = ay, ax + by + c = 0. Отсюда и из (1) находим стационарную точку: $x = \frac{a}{c}$, $y = \frac{b}{c}$, $c \neq 0$

(если c=0, то при $a^2+b^2+c^2\neq 0$ функция z не имеет стационарных точек).

Для частных производных второго порядка имеем выражения $z_{x^2}'' = -\frac{by+c}{(x^2+y^2+1)^{\frac{3}{2}}} - \frac{3x(a(x^2+y^2+1)-x(ax+by+c))}{(x^2+y^2+1)^{\frac{5}{2}}},$ $z_{y^2}^{\prime\prime} = -\frac{ax+c}{(x^2+y^2+1)^{\frac{3}{2}}} - \frac{3y(b(x^2+y^2+1)-y(ax+by+c))}{(x^2+y^2+1)^{\frac{5}{2}}},$

 $z''_{xy} = -\frac{ax + by}{(x^2 + y^2 + 1)^{\frac{3}{2}}} + \frac{3xy(ax + by + c)}{(x^2 + y^2 + 1)^{\frac{5}{2}}}.$ Вычисляя значения в стационарной точке вторых произволных

 $z_{x^2}''\left(\frac{a}{c}, \frac{b}{c}\right) = -\frac{b^2 + c^2}{c\left(\frac{a^2}{c^2} + \frac{b^2}{c^2} + 1\right)^{\frac{3}{2}}}, \quad z_{y^2}''\left(\frac{a}{c}, \frac{b}{c}\right) = -\frac{a^2 + c^2}{c\left(\frac{a^2}{c^2} + \frac{b^2}{c^2} + 1\right)^{\frac{3}{2}}},$ $z_{xy}^{"}\left(\frac{a}{c},\frac{b}{c}\right) = \frac{ab}{c\left(\frac{a^2}{c^2} + \frac{b^2}{c^2} + 1\right)^{\frac{3}{2}}},$

находим, что

202

$$\Delta\left(\frac{a}{c}, \frac{b}{c}\right) = \left(\frac{a^2}{c^2} + \frac{b^2}{c^2} + 1\right)^{-3} \left(\frac{b^2 + c^2}{c} \frac{a^2 + c^2}{c} - \frac{a^2b^2}{c^2}\right) > 0,$$

т. е. экстремум существует.

Поскольку вторая производная z_{π^2}'' в стационарной точке отрицательна при c>0 и положительна при c < 0, то в первом случае функция z имеет максимум $(z_{\text{max}} = \sqrt{a^2 + b^2 + c^2})$, а во втором — минимум $(z_{\min} = -\sqrt{a^2 + b^2 + c^2})$.

203.
$$z = 1 - \sqrt{x^2 + y^2}$$
.

частные производные первого порядка не существуют, так как разностные отношения

$$rac{z(\Delta x,\,0)-z(0,\,0)}{\Delta x}=rac{|\Delta x|}{\Delta x}, \quad rac{z(0,\,\Delta y)-z(0,\,0)}{\Delta y}=rac{|\Delta y|}{\Delta y}$$

не имеют пределов. Следовательно, точка (0, 0) является точкой возможного экстремума. Из того, что приращение $z(x,y)-z(0,0)=-\sqrt{x^2+y^2}$ отрицательно, заключаем, что в этой точке функция имеет максимум, причем $z_{\text{max}} = 1$.

204. $z = x + y + 4 \sin x \sin y$.

◀ Для определения стационарных точек получаем систему

$$z'_x = 1 + 4\cos x \sin y = 0, \quad z'_y = 1 + 4\sin x \cos y = 0,$$

преобразуя которую к виду

$$1 - 2\sin(x - y) + 2\sin(x + y) = 0, \quad 1 + 2\sin(x - y) + 2\sin(x + y) = 0,$$

находим

$$\sin(x-y) = 0, \quad \sin(x+y) = -\frac{1}{2};$$

отсюда

$$x+y=(-1)^{m+1}\frac{\pi}{6}+m\pi, \quad m\in\mathbb{Z}; \quad x-y=n\pi, \quad n\in\mathbb{Z},$$
 (1)

или
$$x=(-1)^{m+1}\frac{\pi}{12}+(m+n)\frac{\pi}{2}, \quad y=(-1)^{m+1}\frac{\pi}{12}+(m-n)\frac{\pi}{2}, \quad m\in\mathbb{Z}, \quad n\in\mathbb{Z}.$$

Находим вторые производные
$$z''_{x^2} = -4\sin x \sin y$$
, $z''_{y^2} = -4\sin x \sin y$, $z''_{xy} = 4\cos x \cos y$ и

составляем выражение $\Delta(x, y) = 16\sin^2 x \sin^2 y - 16\cos^2 x \cos^2 y = -16\cos(x - y)\cos(x + y).$

$$\Delta(x, y) = 16 \sin^{2} x \sin^{2} y - 16 \cos^{2} x \cos^{2} y = -16 \cos(x - y) \cos(x + y)$$

Для вычисления значений выражения $\Delta(x,y)$ в стационарных точках используем формулы (1). В результате получаем

$$\Delta = -16\cos n\pi\cos\left((-1)^{m+1}\frac{\pi}{c} + m\pi\right) = (-1)^{m+n+1}16\cos\frac{\pi}{c}, \quad n \in \mathbb{Z}, \quad m \in \mathbb{Z}.$$

Отсюда следует, что при m+n+1 четном $\Delta>0$ и экстремум существует, а при m+n+1нечетном экстремума нет. Таким образом, функция имеет экстремум при m+n нечетном. В этом случае числа m и n различной четности.

Для выяснения характера экстремума преобразуем вторую производную $z_{-2}^{\prime\prime}$ к виду $z_{-2}^{\prime\prime}$ $2\cos(x+y)-2\cos(x-y)$ и вычислим ее значения в экстремальных точках (тогда m+n нечетное):

$$z_{x^2}'' = 2\left(\cos\left((-1)^{m+1}\frac{\pi}{\epsilon} + m\pi\right) - \cos n\pi\right) = (-1)^m\sqrt{3} - (-1)^n2.$$

Если m=2k — четное, n=2r-1 — нечетное, то $z_{x^2}''=\sqrt{3}+2>0$ и функция имеет минимум; если же m=2k-1 — нечетное, а n=2r — четное, то $z_{x^2}''=-\sqrt{3}-2<0$ и функция имеет максимум. Вычислив экстремальные значения функции, получим

$$z_{\min} = 2k\pi - 2 - \sqrt{3} - \frac{\pi}{6}, \quad k \in \mathbb{Z}; \quad z_{\max} = (2k-1)\pi + 2 + \sqrt{3} + \frac{\pi}{6}, \quad k \in \mathbb{Z}. \blacktriangleright$$

◆ Решив систему

 $u^2 = 1$.

$$z_x' = (2x - 2x(x^2 + y^2))e^{-(x^2 + y^2)} = 0, \quad z_y' = (2y - 2y(x^2 + y^2))e^{-(x^2 + y^2)} = 0,$$

получим множество стационарных точек, состоящее из точки (0,0) и точек окружности $x^2 +$

Находим вторые производные

205. $z = (x^2 + y^2)e^{-(x^2+y^2)}$.

$$z_{x^2}'' = (4x^2(x^2 + y^2) - 12x^2 + 2)e^{-(x^2 + y^2)},$$

$$z_{y^2}'' = (4y^2(x^2 + y^2) - 12y^2 + 2)e^{-(x^2 + y^2)},$$

$$z_{xy}'' = (4xy(x^2 + y^2) - 8xy)e^{-(x^2 + y^2)}.$$

Поскольку в точке (0,0) $z_{x^2}''=2$, $z_{y^2}''=2$, $z_{xy}''=0$, $\Delta(0,0)=4>0$, то в этой точке функция

имеет минимум ($z_{min} = 0$).

Для проверки достаточных условий в точках, принадлежащих окружности $x^2 + y^2 = 1$, функцию z будем рассматривать как функцию одной переменной $t=x^2+y^2$, т. е. $z=te^{-t}$, для которой t=1 является стационарной точкой. Поскольку вторая производная $z''=(t-2)e^{-t}$ отрицательна при t=1, то функция z имеет максимум. Таким образом, данная функция

 $(x,y)\mapsto z(x,y)$ имеет нестрогий максимум $(z_{\max}=e^{-1})$ в точках окружности $x^2+y^2=1$. **206.** $u = x^2 + y^2 + z^2 + 2x + 4y - 6z$.

■ Из системы

$$u'_x = 2x + 2 = 0$$
, $u'_y = 2y + 4 = 0$, $u'_z = 2z - 6 = 0$

определяем единственную стационарную точку $x=-1,\ y=-2,\ z=3.$ Находим вторые производные: $u_{x^2}''=2,\ u_{y^2}''=2,\ u_{z^2}''=2,\ u_{xy}''=u_{xz}''=u_{yz}''=0.$ Таким образом,

$$u''_{x^{2}} = 2 > 0, \quad \begin{vmatrix} u''_{x^{2}} & u''_{xy} \\ u''_{yx} & u''_{y^{2}} \end{vmatrix} = 4 > 0, \quad \begin{vmatrix} u''_{x^{2}} & u''_{xy} & u''_{xz} \\ u''_{yx} & u''_{y^{2}} & u''_{yz} \\ u''_{zx} & u''_{zy} & u''_{z^{2}} \end{vmatrix} = 8 > 0,$$

т. е. второй дифференциал d^2u , согласно критерию Сильвестра, представляет собой положительно-определенную квадратичную форму. Следовательно, в точке (-1, -2, 3) функция имеет минимум ($u_{\min} = -14$). \blacktriangleright

207. $u = x^3 + y^2 + z^2 + 12xy + 2z$.

◀ Имеем

 $u'_x = 3x^2 + 12y = 0$, $u'_y = 2y + 12x = 0$, $u'_z = 2z + 2 = 0$.

Отсюда находим стационарные точки: $x_1=0,\ y_1=0,\ z_1=-1; x_2=24,\ y_2=-144,\ z_2=-1.$ Далее, находим вторые производные $u_{x^2}''=6x,\ u_{xy}''=12,\ u_{xz}''=0,\ u_{yz}''=0,\ u_{y^2}''=2,\ u_{z^2}''=2$ и вычисляем в стационарных точках значения определителей

лиионарных точках значения определителей
$$A_1 = u_{x^2}^{"}, \ A_2 = \begin{vmatrix} u_{x^2}^{"} & u_{xy}^{"} \\ u_{xy}^{"} & u_{y^2}^{"} \end{vmatrix}, \ A_3 = \begin{vmatrix} u_{x^2}^{"} & u_{xy}^{"} & u_{xz}^{"} \\ u_{yx}^{"} & u_{yz}^{"} & u_{yz}^{"} \end{vmatrix}. \tag{1}$$

В точке (0, 0, -1) первый из этих определителей обращается в нуль, поэтому вопрос о существовании экстремума в этой точке требует дальнейших исследований.

Из равенства $\Delta u(0, 0, -1) = \Delta x^3 + \Delta y^2 + \Delta z^2 + 12 \Delta x \Delta y$ следует, что при $\Delta x = t^2$, $\Delta y =$ $\Delta z=0, \ \Delta x=-t^2, \ \Delta y=\Delta z=0,$ где $t\neq 0,$ приращение принимает значения разных знаков. Следовательно, точка (0, 0, -1) не есть экстремальна.

В точке (24, -144, -1) $A_1 = 144 > 0$, $A_2 = 144 > 0$, $A_3 = 283 > 0$, поэтому функция в этой точке имеет минимум ($z_{\min} = -6913$). \triangleright

208.
$$u = x + \frac{y^2}{4x} + \frac{z^2}{y} + \frac{2}{z}, \ x > 0, \ y > 0, \ z > 0.$$

⋖ Из системы

204

$$u'_x = 1 - \frac{y^2}{4x^2} = 0$$
, $u'_y = \frac{y}{2x} - \frac{z^2}{y^2} = 0$, $u'_z = \frac{2z}{y} - \frac{2}{z^2}$

находим единственную стационарную точку: $x=\frac{1}{2}, y=1, z=1$. Затем находим вторые производные $u_{x^2}'' = \frac{y^2}{2x^3}$, $u_{xy}'' = -\frac{y}{2x^2}$, $u_{xz}'' = 0$, $u_{y^2}'' = \frac{1}{2x} + \frac{2z^2}{y^3}$, $u_{zy}'' = -\frac{2z}{y^2}$, $u_{z^2}'' = \frac{2}{y} + \frac{4}{z^3}$ и вычисляем их значения в стационарной точке: $u_{x^2}'' = 4$, $u_{xy}'' = -2$, $u_{xz}'' = 0$, $u_{y^2}'' = 3$, $u_{yz}'' = -2$

 $-2, u_{r^2}'' = 6.$ Вычисляя определители (см. пример 207) $A_1=4,\,A_2=8,\,A_3=32,\,$ заключаем, что в точке $(\frac{1}{2}, 1, 1)$ функция u имеет минимум $(u_{\min} = 4)$.

209. $u = xy^2z^3(a-x-2y-3z), a > 0.$ ◆ Решив систему

$$u'_x = y^2 z^3 (a-2x-2y-3z) = 0$$
, $u'_y = 2xyz^3 (a-x-3y-3z) = 0$, $u'_z = 3xy^2 z^2 (a-x-2y-4z) = 0$, получим точку $\begin{pmatrix} \frac{a}{2}, \frac{a}{2}, \frac{a}{2} \end{pmatrix}$ и точки $\begin{pmatrix} 0, y, z \end{pmatrix}$, принаплежащие прямой $x = 0, 2y + 3z = a$; точки

получим точку $\left(\frac{a}{7}, \frac{a}{7}, \frac{a}{7}\right)$ и точки (0, y, z), принадлежащие прямой x = 0, 2y + 3z = a; точки (x, 0, z), принадлежащие плоскости y = 0; точки (x, y, 0), принадлежащие плоскости z = 0. Проверим, выполняются ли достаточные условия локального экстремума. С этой целью

найдем производные второго порядка
$$u''_{x^2} = -2y^2z^3, \quad u''_{xy} = 2yz^3(a-2x-3y-3z), \quad u''_{xz} = 3y^2z^2(a-2x-2y-4z),$$

$$u''_{y^2} = 2xz^3(a-x-6y-3z), \quad u'_{yz} = 6xyz^2(a-x-3y-4z), \quad u''_{z^2} = 6xy^2z(a-x-2y-8z).$$

В точке $\left(\frac{a}{7}, \frac{a}{7}, \frac{a}{7}\right)$ имеем $u_{x^2}'' = -\frac{2a^5}{7^5}, u_{xy}'' = -\frac{2a^5}{7^5}, u_{xz}'' = -\frac{3a^5}{7^5}, u_{y^2}'' = -\frac{6a^5}{7^5}, u_{yz}'' = -\frac{6a^5}{7^5}$ $u_{z^2}'' = -\frac{24a^5}{75}$, $A_1 < 0$, $A_2 > 0$, $A_3 < 0$, где A_1 , A_2 и A_3 — определители квадратичной формы.

Отсюда заключаем, что в этой точке функция имеет максимум $\left(u_{\max} = \frac{a^{\gamma}}{77}\right)$.

Пользуясь равенствами (1), записываем второй дифференциал функции u в точках (0,y,z):

$$d^2u = -2y^2z^3(dx^2 + 2\,dx\,dy + 2\,dx\,dz).$$

По виду дифференциала легко убедиться, что он может иметь противоположные знаки, т. е. не является знакоопределенной формой от переменных dx, dy и dz, а поэтому в точках (0, y, z) экстремума нет.

Записывая второй дифференциал в точках (x, 0, z):

$$d^2u = 2xz^3(a - x - 3z)\,dv^2.$$

форму. Следовательно, в точках (x, 0, z) при условии, что $a - x - 3z \neq 0, x \neq 0, z \neq 0$ функция и имеет нестрогий экстремум, равный нулю. В точках (x, y, 0) второй дифференциал тождественно равен нулю, однако $d^3u = 6xy^2(a -$

убеждаемся, что при $a-x-3z\neq 0, x=0, z\neq 0$ он представляет собой знакоопределенную

 $(x-2y) dz^3 \not\equiv 0$, поэтому эти точки не являются экстремальными.

210. $u = \sin x + \sin y + \sin z - \sin(x + y + z), \ 0 \le x \le \pi, \ 0 \le y \le \pi, \ 0 \le z \le \pi.$

 $u'_x = \cos x - \cos(x + y + z) = 0, \quad u'_y = \cos y - \cos(x + y + z) = 0, \quad u'_z = \cos z + \cos(x + y + z) = 0.$

Решив эту систему, получим три стационарные точки

⋖ Имеем

$$\left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}\right), (0, 0, 0), (\pi, \pi, \pi).$$

Проверим, существует ли экстремум в каждой из этих точек. Вычисляя значения вторых производных

$$u''_{x^2} = -\sin x + \sin(x + y + z), \quad u''_{xy} = \sin(x + y + z),$$

$$u''_{y^2} = -\sin y + \sin(x + y + z), \quad u''_{yz} = \sin(x + y + z),$$

$$u''_{z^2} = -\sin z + \sin(x + y + z), \quad u''_{zx} = \sin(x + y + z)$$

в точке $\left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}\right)$, получаем $u''_{x^2} = -2$, $u''_{xy} = -1$, $u''_{zx} = -1$, $u''_{y^2} = -2$, $u''_{yz} = -1$, $u''_{z^2} = -2$.

Отсюда следует, что

$$A_1 = u_{x^2}'' < 0, \ A_2 = \begin{vmatrix} u_{x^2}'' & u_{xy}'' \\ u_{yx}'' & u_{y^2}'' \end{vmatrix} > 0, \ A_3 = \begin{vmatrix} u_{x^2}'' & u_{xy}'' & u_{xz}'' \\ u_{yx}'' & u_{y^2}'' & u_{yz}'' \\ u_{zx}'' & u_{zy}'' & u_{z^2}'' \end{vmatrix} < 0.$$
 Таким образом, в точке $\left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}\right)$ функция имеет локальный максимум $\left(u_{\max} = 4\right)$.

В точках $(0,\,0,\,0)$ и $(\pi,\,\pi,\,\pi)$ функция имеет краевой минимум, равный нулю. Это следует из того, что при дюбых приращениях Δx , Δy , Δz независимых переменных из области $0 \leqslant$

 $\Delta x\leqslant\pi,6\leqslant\Delta y\leqslant\pi,0\leqslant\Delta z\leqslant\pi$, но таких, что $0<\Delta x+\Delta y+\Delta z<\pi$, справедливы неравенства

$$\Delta u(0, 0, 0) = u(\Delta x, \Delta y, \Delta z) - u(0, 0, 0) = u(\Delta x, \Delta y, \Delta z) = \\ = \sin \Delta x + \sin \Delta y + \sin \Delta z - \sin(\Delta x + \Delta y + \Delta z) \geqslant 0, \\ \Delta u(\pi, \pi, \pi) = u(\pi + \Delta x, \pi - \Delta y, \pi - \Delta z) - u(\pi, \pi, \pi) = u(\Delta x, \Delta y, \Delta z) \geqslant 0.$$

211.
$$u = x_1 x_2^2 \dots x_n^n (1 - x_1 - 2x_2 - \dots - nx_n), x_1 > 0, x_2 > 0, \dots, x_n > 0.$$

■ Приравнивая к нулю частные производные первого порядка, получаем систему для определения стационарных точек:

$$\begin{aligned} u'_{x_1} &= x_2^2 x_3^3 \dots x_n^n (\varphi - x_1) = 0, \\ u'_{x_2} &= 2x_1 x_2^{2-1} x_3^3 \dots x_n^n (\varphi - x_2) = 0, \\ u'_{x_3} &= 3x_1 x_2^2 x_3^{3-1} \dots x_n^n (\varphi - x_3) = 0, \\ \dots & \dots & \dots & \dots \\ u'_{x_n} &= n x_1 x_2^2 x_3^3 \dots x_{n-1}^{n-1} x_n^{n-1} (\varphi - x_n) = 0, \end{aligned}$$

где $\varphi = 1 - x_1 - 2x_2 - \dots - nx_n$. Так как $x_j > 0$, $j = \overline{1, n}$, то стационарные точки должны

удовлетворять системе

$$\varphi - x_j = 0, \quad j = \overline{1, n}. \tag{1}$$

B системе (1) из первого уравнения вычтем второе, из второго — третье и т. д. $\, {
m B} \,$ результате получим систему

$$-x_i + x_{i+1} = 0, \quad j = \overline{1, n-1},$$

из которой следует, что $x_1=x_2=\ldots=x_n$. Пользуясь этим, из первого уравнения системы (1), которое в этом случае запишется в виде $1{-}x_1(1{+}2{+}\ldots{+}n){-}x_1=0$, находим стационарную точку $x_1 = x_2 = \ldots = x_n = \frac{2}{n^2 + n + 2}$.

Найдем производные второго порядка $u_{x_1^2}^{"} = -2x_2^2x_3^3 \ldots x_n^n,$

$$u_{x_k^2}'' = k(k-1)x_1x_2^2 \dots x_k^{k-2} \dots x_n^n(\varphi - x_k) - k(k+1)x_1x_2^2 \dots x_k^{k-1} \dots x_n^n, \ \overline{k=2, n},$$

 $u_{x_k x_m}'' = k m x_1 x_2^2 \dots x_k^{k-1} \dots x_m^{m-1} \dots x_n^n (\varphi - x_k) - k m x_1 x_2^2 \dots x_k^{k-1} \dots x_n^n, \ k, \ m = \overline{1, n}, \ k \neq m.$ Обозначив через x общее значение координат стационарной точки $x=x_1=x_2=\ldots=x_n=$

 $\frac{2}{n^2+n+2}$, а через a_{ij} — значения производных $u''_{x_ix_j}$ в стационарной точке, и заметив, что в стационарной точке $\varphi - x_k = 0, \ k = \overline{1, n},$ получим

$$a_{11}=u_{x_1^2}^{"}=-2x^{\frac{n^2+n-2}{2}}, \quad a_{kk}=u_{x_k^2}^{"}=-k(k+1)x^{\frac{n^2+n-2}{2}}, \quad a_{km}=u_{x_kx_m}^{"}=-kmx^{\frac{n^2+n-2}{2}}. \tag{2}$$

Для исследования знакоопределенности квадратичной формы

$$d^{2}u = \sum_{i,j=1}^{n} a_{ij} dx_{i} dx_{j}, \quad a_{ij} = u''_{x_{i}x_{j}}, \tag{3}$$

вычислим определитель

$$A_{m} = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2m} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3m} \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mm} \end{vmatrix} . \tag{4}$$

Согласно формулам (2), из k-й строки определителя (4) выносится сомножитель $(-1)kx^{\frac{n^2+n-2}{2}}$, поэтому

$$A_m = (-1)^m m! x^{\frac{n^2+n-2}{2}m} \begin{vmatrix} 2 & 2 & 3 & 4 & \dots & m \\ 1 & 3 & 3 & 4 & \dots & m \\ 1 & 2 & 4 & 4 & \dots & m \\ 1 & 2 & 3 & 5 & \dots & m \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & 2 & 3 & 4 & \dots & m+1 \end{vmatrix} = (-1)^m m! x^{\frac{n^2+n-2}{2}m} \left(1 + \frac{m^2+m}{2}\right).$$
 Отсюда непосредственно вытекает, что $A_1 < 0, A_2 > 0, A_3 < 0, A_4 > 0, \dots$, т. е. что фор-

ма (3) отрицательно-определенная. Таким образом, в стационарной точке функция имеет максимум. Вычисляя экстремальное значение функции, имеем

$$u_{\max} = \left(\frac{2}{n^2 + n + 2}\right)^{\frac{n^2 + n + 2}{2}}.$$

$$\mathbf{212.} \ \ u = x_1 + \frac{x_2}{x_1} + \frac{x_3}{x_2} + \ldots + \frac{x_n}{x_n} + \frac{2}{x_n}, \ x_i > 0, \ i = \overline{1, n}.$$

■ Приравняв к нулю частные производные первого порядка, получим систему для определения стационарных точек:

$$u'_{x_1} = 1 - \frac{x_2}{x_1^2} = 0,$$

$$u'_{x_k} = \frac{1}{x_{k-1}} - \frac{x_{k+1}}{x_k^2} = 0, \quad k = \overline{2, n-1},$$

$$u'_{x_n} = \frac{1}{x_{n-1}} - \frac{2}{x_n^2} = 0.$$

Отсюда находим стационарную точку $x_2 = x_1^2, x_3 = x_1^3, \ldots, x_n = x_1^n, x_1 = 2^{\frac{n}{n+1}}$ С целью проверки достаточных условий экстремума находим вторые производные. Обо-

значая
$$a_{ij} = u_{x_i x_j}^{"}$$
, подучаем
$$a_{11} = \frac{2}{x_1}, \ a_{12} = -\frac{1}{x_1^2}, \ a_{1j} = 0, \ j = \overline{3, n};$$

$$a_{k \, k-1} = -\frac{1}{x_1^{2k-2}}, \ a_{kk} = -\frac{2}{x_1^{2k-1}}, \ a_{k \, k+1} = -\frac{1}{x_1^{2k}}, \ a_{kj} = 0,$$

$$j = \overline{1, \, k-2}, \ j = \overline{k+2, \, n}, \ k = \overline{2, \, n-1};$$
 (1)

$$a_{n\,n-1}=-\frac{1}{x_1^{2n-2}},\ a_{nn}=\frac{4}{x_1^{3n}}=\frac{2}{x_1^{2n-1}},\ a_{nj}=0,\ j=\overline{1,\,n-2}.$$

Для исследования знакоопределенности квадратичной формы

$$d^2u = \sum_{i,j}^n a_{ij} dx_i dx_j, \qquad (2)$$

(3)

где коэффициенты определяются формулами (1), рассмотрим определитель, образованный из коэффициентов формы (2):

$$A_m = \begin{vmatrix} \frac{2}{x_1} & -\frac{1}{x_1^2} & 0 & 0 & \dots & 0 & 0\\ -\frac{1}{x_1^2} & \frac{2}{x_1^3} & -\frac{1}{x_1^4} & 0 & \dots & 0 & 0\\ 0 & -\frac{1}{x_1^4} & \frac{2}{x_1^5} & -\frac{1}{x_1^6} & \dots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & 0 & \dots & -\frac{1}{x_1^{2m-2}} & \frac{2}{x_1^{2m-1}} \end{vmatrix}.$$

Преобразуя определитель (3) к виду

$$A_{m} = \begin{pmatrix} \frac{x}{x_{1}} & -\frac{1}{x_{1}^{2}} & 0 & 0 & \dots & 0 \\ 0 & \frac{3}{2}x_{1}^{3} & -\frac{1}{x_{1}^{4}} & 0 & \dots & 0 \\ 0 & 0 & \frac{4}{3}x_{1}^{5} & -\frac{1}{x_{1}^{6}} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \frac{m+1}{mx_{1}^{2m-1}} \end{pmatrix},$$

замечаем, что $A_m > 0$ при $m = \overline{1, n}$.

Таким образом, квадратичная форма (2) положительно-определенная и, следовательно,

функция u имеет минимум $\left(u_{\min}=(n+1)2^{\frac{1}{n+1}}\right)$. \blacktriangleright

213. (Задача Гюйгенса.) Между двумя положительными числами a и b вставить n чисел x_1, x_2, \ldots, x_n так, чтобы величина дроби $u = \frac{x_1 x_2 \ldots x_n}{(a+x_1)(x_1+x_2) \ldots (x_n+b)}$ была наибольшей.

 \blacktriangleleft Логарифмируя функцию u и обозначая $v=\ln u$, имеем

 $v = \ln x_1 + \ln x_2 + \ldots + \ln x_n - \ln(a + x_1) - \ln(x_1 + x_2) - \ldots - \ln(x_{n-1} + x_n) - \ln(x_n + b).$

Очевидно, экстремальные точки функций u и v совпадают и, следовательно, определяются из системы

$$v'_{x_1} = \frac{1}{x_1} - \frac{1}{a+x_1} - \frac{1}{x_1+x_2} = 0,$$

$$v'_{x_2} = \frac{1}{x_2} - \frac{1}{x_1+x_2} - \frac{1}{x_2+x_3} = 0,$$

$$v'_{x_n} = \frac{1}{x_n} - \frac{1}{x_n+x_2} - \frac{1}{x_n+x_2} = 0.$$

Из первого уравнения этой системы находим $x_2=\frac{1}{a}x_1^2$; из второго $x_3=\frac{1}{x_1}x_2^2=\frac{1}{a^2}x_1^3$ и т. д. Из последнего уравнения находим $b=\frac{x_1^2}{x_{n-1}}=\frac{x_1^{n+1}}{a^n}$. Отсюда вычисляем $x_1=a\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$. Таким образом, координаты стационарной точки M можно записать в виде геометрической

прогрессии $x_1=aq, \ x_2=aq^2, \dots, \ x_n=aq^n,$ знаменатель которой $q=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}.$ Находим вторые производные

Находим вторые производные $v_{x_1^2}'' = -\frac{1}{x_1^2} + \frac{1}{(a+x_1)^2} + \frac{1}{(x_1+x_2)^2}, \quad v_{x_1x_2}'' = \frac{1}{(x_1+x_2)^2}, \quad v_{x_1x_j}'' = 0, \quad j = \overline{3, n};$ $v_{x_kx_{k-1}}'' = \frac{1}{(x_{k-1}+x_k)^2}, \quad v_{x_k^2}'' = -\frac{1}{x_1^2} + \frac{1}{(x_{k-1}+x_k)^2} + \frac{1}{(x_k+x_{k+1})^2},$

 $v_{x_k x_{k+1}}'' = \frac{1}{(x_k + x_{k+1})^2}, \quad v_{x_k x_j}'' = 0, \quad j = \overline{1, k-1}, \quad j = \overline{k+2, n}, \quad k = \overline{2, n-1};$

 $v_{x_nx_{n-1}}'' = \frac{1}{(x_{n-1} + x_n)^2}, \quad v_{x_n}'' = -\frac{1}{x_n^2} + \frac{1}{(x_{n-1} + x_n)^2} + \frac{1}{(x_n + b)^2}, \quad v_{x_nx_j}'' = 0, \quad j = \overline{1, n-2},$

и вычисляем их значения в стационарной точке $(a_{ij}=v_{x_ix_j}'')$:

$$a_{11} = \frac{-2}{a^2 q(1+q)^2}, \ a_{12} = \frac{1}{a^2 q^2 (1+q)^2}, \ a_{1j} = 0, \ j = \overline{3, n};$$

$$a_{k\,k-1} = \frac{1}{a^2 q^{2k-2} (1+q)^2}, \ a_{kk} = \frac{-2}{a^2 q^{2k-1} (1+q)^2}, \ a_{k\,k+1} = \frac{1}{a^2 q^{2k} (1+q)^2}, \ a_{kj} = 0,$$

$$j = \overline{1, k-1}, \ j = \overline{k+2, n}, \ k = \overline{2, n-1};$$

$$a_{n\,n-1} = \frac{1}{a^2 a^{2n-2} (1+q)^2}, \ a_{nn} = \frac{-2}{a^2 q^{2n-1} (1+q)^2}, \ a_{nj} = 0, \ j = \overline{1, n-2}.$$
(1)

Как и в предыдущих примерах, вычисляем определители A_m , образованные из коэффициентов квадратичной формы

$$d^2v(M) = \sum_{i,j=1}^n a_{ij} \, dx_i \, dx_j. \tag{2}$$

Поскольку числа a_{ij} в равенствах (1) имеют общий множитель $\frac{1}{a^2(1+q)^2}$, то, вынося его за знак определителя, получаем

$$A_{m} = \frac{1}{(a(1+q))^{2m}} \begin{vmatrix} -\frac{2}{q} & \frac{1}{q^{2}} & 0 & 0 & \dots & 0 & 0\\ \frac{1}{q^{2}} & -\frac{2}{q^{3}} & \frac{1}{q^{4}} & 0 & \dots & 0 & 0\\ 0 & \frac{1}{q^{4}} & -\frac{2}{q^{5}} & \frac{1}{q^{6}} & \dots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \frac{1}{q^{2m-2}} & -\frac{2}{q^{2m-1}} \end{vmatrix} .$$
(3)

Преобразуя определитель (3) к треугольной форме

$$A_m = \frac{1}{(a(1+q))^{2m}} \begin{vmatrix} -\frac{2}{q} & \frac{1}{q^2} & 0 & 0 & \dots & 0 \\ 0 & -\frac{3}{2q^3} & \frac{1}{q^4} & 0 & \dots & 0 \\ 0 & 0 & -\frac{4}{3q^5} & \frac{1}{q^6} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & -\frac{m+1}{mq^{2m-1}} \end{vmatrix},$$

а затем вычисляя его, имеем $A_m = \frac{(-1)^m(m+1)}{(a(1+q))^{2m}q^{m^2}}$. Отсюда следует, что $A_1 < 0$, $A_2 > 0$, $A_3 < 0$, ..., т. е. что квадратичная форма (2) отрицательно-определенная. Поэтому функция v, а вместе с ней и функция u в точке M имеют максимум. \blacktriangleright

Найти экстремальные значения заданной неявно функции z от переменных x и y:

214.
$$x^2 + y^2 + z^2 - 2x + 2y - 4z - 10 = 0$$
.

 \blacktriangleleft Функция $F(x, y, z) \equiv x^2 + y^2 + z^2 - 2x + 2y - 4z - 10$, $(x, y, z) \in \mathbb{R}^3$, является многочленом, а поэтому непрерывна и дифференцируема сколь угодно раз. Следовательно, в окрестности любой точки (x_0, y_0, z_0) , в которой F = 0, $F'_x \neq 0$, выполнены все условия теоремы 1, п.3.3, согласно которой уравнение F(x, y, z) = 0 определяет неявную функцию $(x, y) \mapsto z(x, y)$, принимающую в точке (x_0, y_0) значение x_0 . Эта функция сколь угодно раз дифференцируема.

Для определения стационарных точек и значения функции в них составляем систему

$$F'_x \equiv 2x - 2 = 0$$
, $F'_y \equiv 2y + 2 = 0$, $F \equiv x^2 + y^2 + z^2 - 2x + 2y - 4z - 10 = 0$,

из которой находим

$$M_1 = (1, -1), z_1 = -2; M_2 = (1, -1), z_2 = 6.$$

Поскольку производная $F'_x \equiv 2z-4$ в точках (1,-1,-2) и (1,-1,6) отлична от нуля, то уравнение F=0 в окрестности каждой из этих точек определяет неявную функцию $(x,y)\mapsto z(x,y)$, принимающую в точке M_i значение $z_i,\,i=1,2$.

Для проверки достаточных условий экстремума находим частные производные $F''_{x^2}=2$, $F''_{y^2}=2$, $F''_{xy}=0$ и, пользуясь формулой (2), п.6.5, вычисляем второй дифференциал в стационарных точках. Поскольку в точке M_1 при z=-2

$$d^2z = \frac{1}{4}(dx^2 + dy^2) > 0,$$

а в точке M_2 при z=6

$$d^2z = -\frac{1}{4}(dx^2 + dy^2) < 0,$$

To $z_{\min} = -2$, $z_{\max} = 6$ npu x = 1, y = -1. \blacktriangleright 215. $x^2 + y^2 + z^2 - xz - yz + 2x + 2y + 2z$

215.
$$x^2 + y^2 + z^2 - xz - yz + 2x + 2y + 2z - 2 = 0$$
.

◄ Из системы $F'_x \equiv 2x - z + 2 = 0, \quad F'_y \equiv 2y - z + 2 = 0, \quad F \equiv x^2 + y^2 + z^2 - xz - yz + 2x + 2y + 2z - 2 = 0$

$$r_x = 2x - 2 + 2 = 0$$
, $r_y = 2y - 2 + 2 = 0$, $r = x + y + 2 - 12 - y2 + 2x + 2y + 2z - 2 =$ находим стационарные точки и значения функции

аходим стационарные точки и эначения функции $M_1=(-3+\sqrt{6},-3+\sqrt{6}), \quad z_1=-4+2\sqrt{6}; \quad M_2=(-3-\sqrt{6},-3-\sqrt{6}), \quad z_2=-4-2\sqrt{6}.$

Находим производные
$$F_z'=2z-x-y+2, \ F_{x^2}''=2, \ F_{y^2}''=2, \ F_{xy}''=0$$
 и, убедившись, что $F_z'\neq 0$ в точках $\pmb M_1$ и $\pmb M_2$, вычисляем второй дифференциал в этих точках:
$$d^2z(\pmb M_1)=-\frac{1}{\sqrt{c}}(dx^2+dy^2), \quad d^2z(\pmb M_2)=\frac{1}{\sqrt{c}}(dx^2+dy^2).$$

Следовательно, $z_{\min} = -4 - 2\sqrt{6}$ в точке M_2 и $z_{\max} = -4 + 2\sqrt{6}$ в точке M_1 . \blacktriangleright 216. $x^4 + y^4 + z^4 - 2a^2(x^2 + y^2 + z^2) = 0$, a > 0.

 $F_x'\equiv 4x^3-4a^2x=0,\quad F_y'\equiv 4y^3-4a^2y=0,\quad F\equiv x^4+y^4+z^4-2a^2(x^2+y^2+z^2)=0,$ из которой находим шесть стационарных точек и шесть значений функции:

$$\mathbf{M}_1 = (0, 0), z_1 = a\sqrt{2}; \quad \mathbf{M}_2 = (0, 0), z_2 = -a\sqrt{2};$$

$$M_{3,4} = (\pm a, \pm a), \quad z_{3,4} = a\sqrt{1+\sqrt{3}}; \quad M_{5,6} = (\pm a, \pm a), \quad z_{5,6} = -a\sqrt{1+\sqrt{3}}.$$

 $F_z' = 4z^3 - 4a^2z$, $F_{zz}'' = 12x^2 - 4a^2$, $F_{yz}'' = 12y^2 - 4a^2$, $F_{xy}'' = 0$.

$$F_{z} = 4z^{2} - 4a^{2}z, \quad F_{xy} = 12x^{2} - 4a^{2}, \quad F_{yy} = 12y^{2} - 4a^{2}, \quad F_{xy} = 0$$

Поскольку $F_z'(M_i) \neq 0$, $i = \overline{1,6}$, то в окрестности каждой из найденных точек уравнение F = 0 определяет неявную функцию $(x,y) \mapsto z(x,y)$, принимающую в точке M_i значение z_i , $i = \overline{1,6}$.

B точках $M_i, i = \overline{1, 6},$ вычисляем второй дифференциал d^2z :

$$d^{2}z(\mathbf{M}_{1}) = \frac{dx^{2} + dy^{2}}{\sqrt{2}a}, \quad d^{2}z(\mathbf{M}_{2}) = -\frac{dx^{2} + dy^{2}}{\sqrt{2}a},$$

$$d^{2}z(\mathbf{M}_{3,4}) = \frac{-2(dx^{2} + dy^{2})}{a\sqrt{3} + 3\sqrt{2}}, \quad d^{2}z(\mathbf{M}_{5,6}) = \frac{2(dx^{2} + dy^{2})}{a\sqrt{3} + 3\sqrt{2}}.$$

$$a\sqrt{3}+3\sqrt{3}$$
 $a\sqrt{3}+3\sqrt{3}$ Следовательно, в точке M_1 функция имеет локальный минимум $(z_{\min}=a\sqrt{2})$, а в точке

Спедовательно, в точке M_1 функция имеет покальный минимум $(z_{\min} = a\sqrt{2})$, а в точке M_2 — максимум $(z_{\max} = -a\sqrt{2})$, в точках $M_{3,4}$ — максимум $(z_{\max} = a\sqrt{1+\sqrt{3}})$, в точках

 $M_{5,6}$ — минимум $(z_{\min} = -a\sqrt{1+\sqrt{3}})$. \blacktriangleright Исследовать на условный экстремум следующие функции:

217. $z = x_1^m + x_2^m + \dots + x_n^m$, если $x_1 + x_2 + \dots + x_n = na$, a > 0, m > 1.

Составляем функцию Лагранжа (см. формулы (2), п.6.6)

$$\Phi = \sum_{i=1}^{n} x_{i}^{m} + \lambda \left(\sum_{i=1}^{n} x_{i} - na \right)$$

и записываем систему

210

$$\Phi'_{x_i} = mx_i^{m-1} + \lambda = 0 \quad (i = \overline{1, n}), \sum_{i=1}^n x_i = na,$$

из которой находим $\lambda = -ma^{m-1}$ и координаты $x_i = a$ точки M возможного экстремума $(a,\,a,\,\ldots\,,\,a)$. Далее, находим второй дифференциал $d^2\Phi=m(m\!-\!1)\sum\limits_i^n x_i^{m-2}\,dx_i^2$ и вычисляем

его значение в точке (M, λ):

$$d^2\Phi(M, \lambda) = m(m-1)a^{m-2}\sum_{i=1}^n dx_i^2.$$

Так как $d^2\Phi(M,\lambda) > 0$, то в точке M функция z имеет минимум $(z_{\min} = na^n)$.

218. u = xyz, если $x^2 + y^2 + z^2 = 3$.

 \blacktriangleleft Аналогично предыдущему примеру составляем функцию Лагранжа $\Phi=xyz+\lambda(x^2+y^2+y^2+y^2)$ z^2-3) и записываем систему для определения λ и координат точки возможного экстремума:

 $\Phi'_x = yz + 2\lambda x = 0$, $\Phi'_y = xz + 2\lambda y = 0$, $\Phi'_z = xy + 2\lambda z = 0$, $x^2 + y^2 + z^2 = 3$.

Из этой системы находим восемь стационарных точек: $M_1 = (1, 1, 1), M_2 = (1, -1, -1),$ $M_3 = (-1, 1, -1), M_4 = (-1, -1, 1)$ gra $\lambda_1 = -\frac{1}{2}$ if $M_5 = (-1, -1, -1), M_6 = (-1, 1, 1),$

 $M_7 = (1, -1, 1), M_8 = (1, 1, -1) \text{ для } \lambda_2 = \frac{1}{2}.$ Находим второй дифференциал функции Лагранжа

$$d^{2}\Phi = 2\lambda(dx^{2} + dy^{2} + dz^{2}) + 2z dx dy + 2y dx dz + 2x dy dz. \tag{1}$$

Для $\lambda_1 = -\frac{1}{2}$ и точки \pmb{M}_1 имеем

$$d^{2}\Phi(M_{1}, \lambda_{1}) = -dx^{2} - dy^{2} - dz^{2} + 2 dx dy + 2 dx dz + 2 dy dz = -(dx - dy)^{2} - dz^{2} + 2(dx + dy) dz.$$

Заменяя в последнем слагаемом дифференциал dz его значением, найденным из уравнения

связи в точке M_1 , dz = -(dx + dy) , получаем неравенство $d^2\Phi(M_1, \lambda_1) = -(dx - dy)^2 - dz^2$ —

 $2(dx + dy)^2 < 0$, из которого следует, что в точке M_1 функция u имеет максимум. Для $\lambda_1=-rac{1}{2}$ и точки M_2 из (1) и уравнения связи получаем $d^2\Phi(M_2,\,\lambda_1)=-dx^2-dy^2$ $dz^2 - 2 dx dy - 2 dx dz + 2 dy dz$, dx = dy + dz и, следовательно, $d^2 \Phi(M_2, \lambda_1) = -(dx - dy)^2 - dz^2 - dz$

 $2(dy+dz)^2 < 0$, поэтому функция u в точке M_2 имеет максимум. Аналогично устанавливаем, что функция u имеет максимум в точках M_3 и M_4 . Во всех этих точках $u_{\max}=1$. Для $\lambda_2 = \frac{1}{2}$ и точки M_5 из (1) и уравнения связи получаем $d^2\Phi(M_5, \lambda_2) = dx^2 + dy^2 +$

 $dz^2 - 2 dx dy - 2 dx dz - 2 dy dz$, dx + dy + dz = 0. Отсюда следует неравенство $d^2\Phi(\pmb{M}_5, \lambda_2) =$ $(dx-dy)^2+dz^2+2(dx+dy)^2>0$, из которого заключаем, что в точке M_5 функция u имеет минимум.

Легко убедиться, что в точках M_6 , M_7 и M_8 функция u также имеет минимум, причем $u_{\min} = -1. \blacktriangleright$

219. $u = x^m y^n z^p$, если x + y + z = a (x > 0, y > 0, z > 0, m > 0, n > 0, p > 0, a > 0).

 \blacktriangleleft Очевидно, экстремальные точки функций u и $v=\ln u$ совпадают. Поэтому будем исследовать на условный экстремум функцию $v = \ln u \equiv m \ln x + n \ln y + p \ln z$ при условии x + y + z = a.

Составляя функцию Лагранжа $\Phi = m \ln x + n \ln y + p \ln z + \lambda(x + y + z - a)$ и систему

 $\Phi'_x = \frac{m}{r} + \lambda = 0, \ \Phi'_y = \frac{n}{r} + \lambda = 0, \ \Phi'_z = \frac{p}{z} + \lambda = 0, \ x + y + z = a,$ находим координаты точки возможного экстремума: $x=mt,\,y=nt,\,z=pt,\,$ где $t=rac{a}{m+n+n}$

Поскольку второй дифференциал функции Ф

$$d^{2}\Phi = -\frac{m\,dx^{2}}{r^{2}} - \frac{n\,dy^{2}}{r^{2}} - \frac{p\,dz^{2}}{r^{2}}$$

в точке $(mt,\,nt,\,pt)$ удовлетворяет неравенству $d^2\Phi=-\left(rac{dx^2}{mt^2}+rac{dy^2}{nt^2}+rac{dz^2}{pt^2}
ight)<0$, то функция

$$v$$
, а вместе с ней и u имеют в точке (mt, nt, pt) максимум $\left(u_{\max} = \frac{m^m n^n p^p a^{m+n+p}}{(m+n+p)^{m+n+p}}\right)$.

220.
$$u = x^2 + y^2 + z^2$$
, если $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ $(a > b > c > 0)$.

◀ Дифференцируя функцию Лагранжа $\Phi = x^2 + y^2 + z^2 + \lambda \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1\right)$ по всем переменным и присоединяя уравнение связи, получаем систему

$$\Phi_x' = 2x + \frac{2\lambda x}{a^2} = 0, \quad \Phi_y' = 2y + \frac{2\lambda y}{b^2} = 0, \quad \Phi_z' = 2z + \frac{2\lambda z}{c^2} = 0, \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1,$$
из которой находим λ и точки возможного экстремума: $\lambda_1 \ 2 = -c^2$. $M_1 \ 2 = (0, \ 0, \ \pm c)$; $\lambda_3 \ 4 = -c^2$

из которой находим λ и точки возможного экстремума: $\lambda_{1,2} = -c^2$, $M_{1,2} = (0, 0, \pm c)$; $\lambda_{3,4} =$ $-a^2$, $M_{3,4} = (\pm a, 0, 0)$; $\lambda_{5,6} = -b^2$, $M_{5,6} = (0, \pm b, 0)$. Для проверки достаточных условий находим второй дифференциал $d^2\Phi = 2\left(1+rac{\lambda}{a^2}\right)dx^2 +$

 $2\left(1+\frac{\lambda}{h^2}\right)dy^2+2\left(1+\frac{\lambda}{c^2}\right)dz^2$. Из неравенств

$$d^{2}\Phi(M_{1,2}, \lambda_{1,2}) = 2\left(1 - \frac{c^{2}}{a^{2}}\right)dx^{2} + 2\left(1 - \frac{c^{2}}{b^{2}}\right)dy^{2} > 0,$$

$$d^{2}\Phi(M_{3,4}, \lambda_{3,4}) = 2\left(1 - \frac{a^{2}}{b^{2}}\right)dy^{2} + 2\left(1 - \frac{a^{2}}{c^{2}}\right)dz^{2} < 0$$

следует, что в точках $M_{1,2}$ функция u имеет минимум $(u_{\min}=c^2)$, а в точках $M_{3,4}$ максимум ($u_{\text{max}} = a^2$).

В точках $\pmb{M}_{5,\,6}$ при $d\pmb{x}=0,\,dz
eq 0\,\,d^2\Phi(\pmb{M}_{5,\,6},\,\lambda_{5,\,6})=2\left(1-rac{b^2}{c^2}
ight)dz^2<0$, а при $d\pmb{x}
eq$ $(0,\,dz=0)\,d^2\Phi(\pmb{M}_{5,\,6},\,\lambda_{5,\,6})=2\left(1-rac{b^2}{a^2}
ight)dx^2>0$. Поэтому точки $\pmb{M}_{5,\,6}$ не являются экстремальными.

221. $u = xy^2z^3$, если x + 2y + 3z = a (x > 0, y > 0, z > 0, a > 0).

lacktriangle Составив функцию Лагранжа для вспомогательной функции $v=\ln u$

$$\Phi = \ln x + 2 \ln y + 3 \ln z + \lambda (x + 2y + 3z - a)$$

и образовав систему

$$\Phi'_x = \frac{1}{x} + \lambda = 0, \quad \Phi'_y = \frac{2}{y} + 2\lambda = 0, \quad \Phi'_z = \frac{3}{z} + 3\lambda = 0, \quad x + 2y + 3z = a,$$

получим λ и координаты стационарной точки: $\lambda=-\frac{6}{6}, x=y=z=\frac{a}{6}$. А так как второй дифференциал $d^2\Phi=-rac{dx^2}{r^2}-rac{dy^2}{r^2}-rac{dz^2}{z^2}$ в стационарной точке удовлетворяет условию

$$d^{2}\Phi\left(\frac{a}{6}, \frac{a}{6}, \frac{a}{6}, -\frac{6}{a}\right) = -\frac{36}{a^{2}}(dx^{2} + dy^{2} + dz^{2}) < 0,$$

то функция v, а вместе с ней и функция u имеют в этой точке максимум $\left(u_{\max} = \left(\frac{a}{6}\right)^6\right)$. \blacktriangleright

222. u = xyz, если $x^2 + y^2 + z^2 = 1$, x + y + z = 0.

◄ Приравнивая к нулю производные функции Лагранжа $\Phi = xyz + \lambda(x^2 + y^2 + z^2 - 1) + \lambda(x^2 + y^2 + z^2 - 1)$

$$\mu(x+y+z)$$
 по x,y и z , получаем систему
$$\Phi'_x=yz+2\lambda x+\mu=0,\quad \Phi'_y=xz+2\lambda y+\mu=0,\quad \Phi'_z=xy+2\lambda z+\mu=0,$$

решая которую совместно с уравнениями связи $x^2 + y^2 + z^2 = 1$, x + y + z = 0, находим шесть точек возможного экстремума: $M_1 = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right), M_2 = \left(\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right), M_3 =$

 $\left(-\frac{2}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}}\right)$ при $\lambda = \frac{1}{2\sqrt{6}};\ M_4 = \left(-\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}}\right),\ M_5 = \left(-\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right),\ M_6 = \left(-\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right)$ $\left(\frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right)$ при $\lambda = -\frac{1}{2\sqrt{6}}$.

Далее находим второй дифференциал

212

$$d^{2}\Phi = 2\lambda(dx^{2} + dy^{2} + dz^{2}) + 2z dx dy + 2y dx dz + 2x dy dz,$$
(1)

ВВЗИ ПОЛУЧАЕМ СООТНОШЕНИЯ

а из уравнений связи получаем соотношения

$$x \, dx + y \, dy + z \, dz = 0, \quad dx + dy + dz = 0. \tag{2}$$

Проверим выполнение достаточных условий для точек \pmb{M}_1 и \pmb{M}_4 .

 $x = y = 2\lambda$, $z = -4\lambda$.

(1)

(3)

Тогда из (1), (2) и (3) получим равенство

$$d^2\Phi=2\lambda((dx-dy)^2+dz^2+dx^2+dy^2).$$
 Отсюда следует, что при $\lambda<0$ (т. е. в точке M_4) $d^2\Phi<0$ и в этой точке функция u

имеет максимум $\left(u_{\max}=\frac{1}{3\sqrt{6}}\right)$. При $\lambda>0$ (т. е. в точке M_1) $d^2\Phi>0$, поэтому в этой точке

функция u имеет минимум $\left(u_{\min} = -\frac{1}{3\sqrt{6}}\right)$. Аналогично устанавливаем, что в точках \pmb{M}_5 и \pmb{M}_6 функция u имеет максимум $\Big(u_{\mathtt{m.ex}} =$

 $\left(\frac{1}{3\sqrt{6}}\right)$, а в точках M_2 и M_3 — минимум $\left(u_{\min} = -\frac{1}{3\sqrt{6}}\right)$.

223.
$$u = xy + yz$$
, если $x^2 + y^2 = 2$, $y + z = 2$ ($x > 0$, $y > 0$, $z > 0$).
• Образовав функцию Лагранжа $\Phi = xy + yz + \lambda(x^2 + y^2 - 2) + \mu(y + z - 2)$ и составив

систему

$$\Phi_x'=y+2\lambda x=0, \quad \Phi_y'=x+z+2\lambda y+\mu=0, \quad \Phi_z'=y+\mu=0, \quad x^2+y^2=2, \quad y+z=2,$$
 найдем числа $\lambda,\,\mu$ и координаты стационарной точки: $x=y=z=1,\,\lambda=-\frac{1}{2},\,\mu=-1$.

Запишем второй дифференциал $d^2\Phi = 2\lambda(dx^2 + dy^2) + 2\,dx\,dy + 2\,dy\,dz$ и положим в нем $\lambda = -\frac{1}{2}$. Тогда получим $d^2\Phi = -dx^2 - dy^2 + 2\,dx\,dy + 2\,dy\,dz$. Из уравнения связи следует, что dy = -dz = -dx, поэтому $d^2\Phi = -dx^2 - 3dy^2 - 2dz^2 < 0$. Таким образом, в точке (1, 1, 1)функция и имеет максимум, равный 2. 🕨

224. $u = \sin x \sin y \sin z$, если $x + y + z = \frac{\pi}{2} (x > 0, y > 0, z > 0)$.

lack Составляя вспомогательную функцию $\Phi = \ln \sin x + \ln \sin y + \ln \sin z + \lambda \left(x + y + z - rac{\pi}{2}
ight)$ и систему

$$\Phi'_x = \operatorname{ctg} x + \lambda = 0, \quad \Phi'_y = \operatorname{ctg} y + \lambda = 0, \quad \Phi'_z = \operatorname{ctg} z + \lambda = 0, \quad x + y + z = \frac{\pi}{2},$$

получаем точку возможного экстремума $x=y=z=\frac{\pi}{\varepsilon}$. Так как

$$d^{2}\Phi = -\left(\frac{dx^{2}}{\sin^{2}x} + \frac{dy^{2}}{\sin^{2}y} + \frac{dz^{2}}{\sin^{2}z}\right) < 0,$$

то в точке $\left(\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{6}\right)$ функция имеет максимум, равный $\frac{1}{8}$.

225.
$$u = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$$
, если $x^2 + y^2 + z^2 = 1$, $x \cos \alpha + y \cos \beta + z \cos \gamma = 0$ $(a > b > c > 0$, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$).

◄ Составив функцию Лагранжа $\Phi = \frac{x^2}{c^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - \lambda(x^2 + y^2 + z^2 - 1) + \mu(x\cos\alpha + y\cos\beta + y\cos\beta)$

$$z\cos\gamma$$
) и приравняв к нулю ее производные по x , y и z , получим систему
$$\Phi_x' = \frac{2x}{z^2} - 2\lambda x + \mu\cos\alpha = 0, \quad \Phi_y' = \frac{2y}{12} - 2\lambda y + \mu\cos\beta = 0, \quad \Phi_x' = \frac{2z}{z^2} - 2\lambda z + \mu\cos\gamma = 0.$$
 (1)

Умножая первое равенство системы (1) на x, второе на y, третье на z и складывая их,

получаем равенство
$$2\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right) - 2\lambda(x^2 + y^2 + z^2) + \mu(x\cos\alpha + y\cos\beta + z\cos\gamma) = 0,$$

(2)

из которого с учетом уравнений связи вытекает, что $\frac{x^2}{c^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - \lambda = 0$, т. е. что $\lambda = u$.

Таким образом, $u_{\text{max}} = \max \lambda$, $u_{\text{min}} = \min \lambda$. Решая уравнение (1) относительно x, y и z и умножая левые и правые части полученных равенств на \coslpha , \coseta , $\cos\gamma$ соответственно, находим (с учетом уравнения связи $x\coslpha$ +

 $y\cos\beta + z\cos\gamma = 0$):

$$\frac{\cos^2\alpha}{\frac{1}{a^2}-\lambda}+\frac{\cos^2\beta}{\frac{1}{b^2}-\lambda}+\frac{\cos^2\gamma}{\frac{1}{c^2}-\lambda}=0,$$
или

$$\lambda^{2} - \lambda \left(\frac{\sin^{2} \alpha}{a^{2}} + \frac{\sin^{2} \beta}{b^{2}} + \frac{\sin^{2} \gamma}{c^{2}} \right) + \frac{\cos^{2} \alpha}{c^{2}b^{2}} + \frac{\cos^{2} \beta}{a^{2}c^{2}} + \frac{\cos^{2} \gamma}{a^{2}b^{2}} = 0.$$

Если λ_1 и λ_2 — корни этого уравнения, причем $\lambda_1 < \lambda_2$, то $u_{\max} = \lambda_2$, $u_{\min} = \lambda_1$. \blacktriangleright

226.
$$u=x_1^2+x_2^2+\ldots+x_n^2$$
, если
$$\frac{x_1}{a_1}+\frac{x_2}{a_2}+\ldots+\frac{x_n}{a}=1 \quad (a_i>0,\ i=\overline{1,\ n}).$$

$$u_1$$
 u_2 u_n
• Имеем $\Phi = \sum_{i=1}^{n} x_i^2 + \lambda \left(\sum_{i=1}^{n} \frac{x_i}{a_i} - 1 \right)$. Из системы $\Phi'_{x_j} = 2x_j + \lambda \frac{1}{a_j} = 0, \ j = \overline{1, n}$, находим

$$\mathbf{z}_{j} = -\frac{\lambda}{2a_{j}}, \quad j = \overline{1, n},$$

$$\mathbf{z}_{j} = -\frac{\lambda}{2a_{j}}, \quad j = \overline{1, n},$$

$$(1)$$

а из уравнењия связи и равенств (1) получаем

$$\lambda = -\frac{2}{\sum_{j=1}^{n} \frac{1}{a_{j}^{2}}}, \ x_{j} = \frac{1}{\sum_{j=1}^{n} \frac{1}{a_{j}^{2}}}, \ j = \overline{1, n}.$$

Поскольку $d^2\Phi=2\sum_{i=1}^n dx_i^2>0$, то в стационарной точке (2) функция u имеет минимум

$$u_{\min} = \frac{1}{\sum_{n=1}^{n} \frac{1}{a^2}}.$$

227. $u = x_1^p + x_2^p + \ldots + x_n^p \ (p > 1)$, если $x_1 + x_2 + \ldots + x_n = a \ (a > 0)$.

$$lacktriangled$$
 Составляя функцию Лагранжа $\Phi = \sum_{j=1}^n x_j^p + \lambda \left(a - \sum_{j=1}^n x_j
ight)$, а затем систему

$$\Phi'_{x_k} = px_k^{p-1} - \lambda = 0 \quad (k = \overline{1, n}), \ \sum_{i=1}^{n} x_i = a,$$

получаем $\lambda = p\left(\frac{a}{n}\right)^{p-1}$, $x_k = \frac{a}{n}$.

Находим второй дифференциал $d^2\Phi=p(p-1)\sum\limits_{k=1}^n x_k^{p-2}\,dx_k^2$ и, вычисляя его значение в

стационарной точке, убеждаемся, что $d^2\Phi=p(p-1)\sum\limits_{k=1}^n\left(rac{a}{n}
ight)^{p-2}dx_k^2>0$. Следовательно, в стационарной точке функция u имеет минимум $\left(u_{\min} = \frac{a^p}{n^{p-1}}\right)$.

228. $u = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n}$, если $x_i > 0$, $x_1 + x_2 + \dots + x_n = a$ $(a > 0, \alpha_i > 1, i = \overline{1, n})$.

lacktriangled Заметив, что экстремальные точки функций u и $v=\ln u$ совпадают, будем исследовать на локальный экстремум функцию v. Образовав функцию Лагранжа $\Phi = \sum_{i=1}^n lpha_i \ln x_i +$

$$\lambda\left(\sum_{j=1}^{n}x_{j}-a\right)$$
 и решив систему

$$\Phi'_{x_k} = \frac{\alpha_k}{x_k} + \lambda = 0 \quad (k = \overline{1, n}), \ \sum_{j=1}^n x_j = a,$$

получим значение λ и координаты точки $extbf{\emph{M}}$ возможного экстремума:

$$\lambda = -\frac{1}{a} \sum_{j=1}^{n} \alpha_j, \ x_k = \frac{\alpha_k a}{\sum_{j=1}^{n} \alpha_j} \quad (k = \overline{1, n}).$$

Найдем второй дифференциал: $d^2\Phi=-\sum\limits_{k=1}^nrac{a_k}{x_k^2}\,dx_k^2$. Заметив, что

$$d^{2}\Phi(\mathbf{M}) = -\frac{1}{a^{2}} \left(\sum_{j=1}^{n} a_{j} \right)^{2} \sum_{k=1}^{n} \frac{dx_{k}^{2}}{\alpha_{k}} < 0,$$

заключаем, что в точке M функция u имеет максиму

$$\left(u_{\max} = \alpha_1^{\alpha_1} \alpha_2^{\alpha_2} \dots \alpha_n^{\alpha_n} \left(\frac{a}{\sum\limits_{i=1}^n \alpha_i}\right)^{\alpha_1 + \alpha_2 + \dots + \alpha_n}\right). \blacktriangleright$$

229. Найти экстремум квадратичной формы $u = \sum_{i=1}^n a_{ij} x_i x_j$ ($a_{ij} = a_{ji}$ — действитель-

ные числа) при условии
$$\sum_{i=1}^{n} x_{i}^{2} = 1$$
.

$$\frac{1}{2}\Phi'_{x_1} = (a_{11} - \lambda)x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0,$$

$$\frac{1}{2}\Phi'_{x_2} = a_{21}x_1 + (a_{22} - \lambda)x_2 + \dots + a_{2n}x_n = 0,$$
(1)

lacktriangle Образуем функцию Лагранжа $\Phi = \sum\limits_{i=1}^n a_{ij}x_ix_j + \lambda \left(1 - \sum\limits_{i=1}^n x_i^2
ight)$ и составим систему

$$rac{1}{2}\Phi'_{x_n}=a_{n1}x_1+a_{n2}x_2+\ldots+(a_{nn}-\lambda)x_n=0.$$
 Система (1) имеет нетривиальное решение тогда и только тогда, когда число λ является

Система (1) имеет нетривиальное решение тогда и только тогда, когда число λ является корнем уравнения

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \end{vmatrix} = 0.$$
 (2)

Покажем сначала, что корни λ уравнения (2) действительные. Для этого обозначим через A симметричную матрицу $\{a_{ij}\}$ заданной квадратичной формы u. Тогда систему (2) можно

записать в виде
$$Ax=\lambda x,$$
 (3)

где $x = (x_1, x_2, ..., x_n)$. Предположим, что λ комплексное, т. е. что $\lambda = \alpha + i\beta$, где $i = \sqrt{-1}$. Поскольку a_{ij} — действительные числа, то x = u + iv. Тогда из равенства (3) следует

ла, то
$$x = u + iv$$
. Тогда из равенства (3) следует $Au = \alpha u - \beta v$.

(4)

$$Av = \beta u + \alpha v.$$

Умножая скалярно обе части равенства (4) на v, а равенства (5) на u н вычитая результаты, получаем

$$(Au, v) - (Av, u) = -\beta((u, u) + (v, v)). \tag{6}$$

Так как $(Au, v) = (u, A^{\mathbf{r}}v) = (u, Av)$, где $A^{\mathbf{r}}$ — транспонированная матрица, то из (6) находим $\beta((u, u) + (v, v)) = 0$. Поскольку $(u, u) + (v, v) \neq 0$, то $\beta = 0$, т. е. λ — действительное число. Пусть $\lambda_1, \lambda_2, \ldots, \lambda_n$ — корни уравнения (2). Тогда для каждого $\lambda_i, i = \overline{1, n}$, из систе-

мы (1) при условии, что $\sum_{i=1}^{n} x_{i}^{2} = 1$, находим точки возможного экстремума

 $\left(x_1^{(i)}, x_2^{(i)}, \ldots, x_n^{(i)}\right), \quad i = \overline{1, n}.$

Далее, умножая равенства (1) на x_1, x_2, \ldots, x_n соответственно и складывая их, имеем $\sum_{i=1}^n a_{ij}x_ix_j - \lambda \sum_{i=1}^n x_i^2 = 0$. Учитывая уравнение связи, получаем равенство $u(x_1, x_2, \dots, x_n) = 0$

$$\lambda$$
, которое в точках возможного экстремума запишется в виде $u\left(x_1^{(i)},\,x_2^{(i)},\,\ldots\,,\,x_n^{(i)}\right)=\lambda_i,\,i=\overline{1,\,n}.$ Отсюда следует, что $u_{\max}=\max_{1\leqslant i\leqslant n}\lambda_i,\,u_{\min}=\min_{1\leqslant i\leqslant n}\lambda_i.$

230. Доказать неравенство $\frac{x^n+y^n}{2}\geqslant\left(\frac{x+y}{2}\right),$ если $n\geqslant 1,\ x\geqslant 0,\ y\geqslant 0.$

◀ Исследуем на условный экстремум функцию $u = \frac{x^n + y^n}{2}$, если x + y = s. Составив функцию Лагранжа $\Phi = \frac{1}{2}(x^n + y^n) + \lambda(s - x - y)$ и систему

$$\Phi'_x = \frac{nx^{n-1}}{2} - \lambda = 0, \ \Phi'_y = \frac{ny^{n-1}}{2} - \lambda = 0, \ x + y = s,$$

найдем числа λ , а также координаты стационарной точки функции u:

$$\lambda = \frac{n}{2} \left(\frac{s}{2} \right)^{n-1}, \quad x = y = \frac{s}{2}.$$

Поскольку второй дифференциал $d^2\Phi=\frac{n(n-1)}{2}(x^{n-2}\,dx^2+y^{n-2}\,dy^2)$ в точке $x=y=\frac{s}{2}$ удовлетворяет условию $d^2\Phi\left(\frac{s}{2},\frac{s}{2}\right)=\frac{n(n-1)}{2}\left(\frac{s}{2}\right)^{n-2}(dx^2+dy^2)>0$, то функция u имеет

минимум в точке $\left(\frac{s}{2},\frac{s}{2}\right)$, т. е. $u_{\min}=\left(\frac{s}{2}\right)^n\leqslant u(x,y)$, если x+y=s, или $\left(\frac{x+y}{2}\right)^n\leqslant \frac{x^n+y^n}{2}$. \blacktriangleright

$$\sum_{i=1}^{n} a_i x_i \leqslant \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} x_i^q\right)^{\frac{1}{q}} \quad \left(a_i \geqslant 0, \ x_i \geqslant 0, \ i = \overline{1, n}; \ p > 1, \ \frac{1}{p} + \frac{1}{q} = 1\right).$$

231. Доказать неравенство Гельдера

$$lacktriangleleft$$
 Исследуем на условный экстремум функцию $u = \left(\sum_i^n a_i^p
ight)^{rac{1}{p}} \left(\sum_i^n x_i^q
ight)^{rac{1}{q}}$

при условии, что $A = \sum_{i=1}^{n} a_i x_i$, где A = const. Составим функцию Лагранжа

$$\Phi = \left(\sum_{i=1}^{n} a_{i}^{p}\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} x_{i}^{q}\right)^{\frac{1}{q}} + \lambda \left(A - \sum_{i=1}^{n} a_{i} x_{i}\right)$$

и образуем систему

216

$$\Phi'_{x_j} = x_j^{q-1} \left(\sum_{i=1}^n a_i^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^n x_i^q \right)^{\frac{1}{q}-1} - \lambda a_j = 0, \ j = \overline{1, n}.$$
 (1)

Не ограничивая общности, будем считать, что $x_i > 0$, $a_i > 0$ $(i = \overline{1, n})$. Разделив j-е равенство системы (1) на m-е равенство той же системы, получим

нство той же системы, получим
$$\left(\frac{x_j}{x_m}\right)^{q-1} = \frac{a_j}{a_m}.$$

Отсюда при фиксированном т находим

$$x_j = x_m \left(\frac{a_j}{a_m}\right)^{\frac{1}{q-1}}, \quad j = \overline{1, n}; \ j \neq m. \tag{2}$$

Подставив (2) в уравнение связи, имеем

$$\sum_{i=1}^{n} a_i x_m \left(\frac{a_i}{a_m}\right)^{\frac{1}{q-1}} + a_m x_m = A$$

или

$$\frac{x_m}{\frac{1}{q-1}} \cdot \sum_{i=1}^{n} a_i^{\frac{q}{q-1}} = A. \tag{3}$$

Используя то, что $\frac{q}{q-1}=p, \frac{1}{q-1}=\frac{p}{q}$, из (3) получаем координаты точки возможного экстремума:

$$x_m = \frac{Aa_m^p}{\sum_{i=1}^n a_i^p}, \quad m = \overline{1, n}.$$

Для проверки достаточных условий находим второй дифференциал функции Φ :

$$d\Phi = \left(\sum_{i=1}^{n} a_{i}^{p}\right)^{\overline{p}} \left(\sum_{i=1}^{n} x_{i}^{q}\right)^{\overline{q}-1} \sum_{i=1}^{n} x_{i}^{q-1} dx_{i} - \lambda \sum_{i=1}^{n} a_{i} dx_{i},$$

$$d^{2}\Phi = \left(\sum_{i=1}^{n} a_{i}^{p}\right)^{\frac{1}{p}} \left((q-1) \left(\sum_{i=1}^{n} x_{i}^{q}\right)^{\frac{1}{q}-1} \sum_{i=1}^{n} x_{i}^{q-2} dx_{i}^{2} + (1-q) \left(\sum_{i=1}^{n} x_{i}^{q}\right)^{\frac{1}{q}-2} \left(\sum_{i=1}^{n} x_{i}^{q-1} dx_{i}\right)^{2}\right).$$

В силу уравнений связи, $\sum_{i=1}^{n} a_{i} \, dx_{i} = 0$; поэтому

$$\left(\sum_{i=1}^{n} x_{i}^{q-1} dx_{i}\right)^{2} = \left(\frac{A}{\sum_{i=1}^{n} a_{i}^{p}}\right)^{2(q-1)} \cdot \sum_{i=1}^{n} a_{i} dx_{i} = 0$$

в стационарной точке и, следовательно, $d^2\Phi>0$.

Таким образом, в стационарной точке функция и имеет минимум ($u_{\min}=A$), поэтому $u\geqslant A$, что равносильно неравенству Гельдера. \blacktriangleright Определить наибольшее (sup) и наименьшее (inf) значения функций в указанных обла-

СТЯХ: $232. \ z = x^2 + y^2 - 12x + 16y$, если $x^2 + y^2 \le 25$.

 \blacktriangleleft Функция z непрерывна в замкнутом ограниченном множестве $\{x^2+y^2\leqslant 25\}$. Поэтому, согласно известной теореме Вейерштрасса, она на этом множестве достигает своих точных верхней и нижней граней. Очевидно, $\sup z \left(\inf z
ight)$ равен наибольшему (наименьшему) из значений функции z в точках возможного экстремума на множестве $\{x^2+y^2<25\}$ или в точках возможного условного экстремума, если $x^2 + y^2 = 25$.

Поскольку система $z_x' = 2x - 12 = 0$, $z_y' = 2y + 16 = 0$ не имеет решений, принадлежащих множеству $\{x^2 + y^2 < 25\}$, то $\sup z$ и $\inf z$ достигаются на окружности $x^2 + y^2 = 25$.

Составляя функцию Лагранжа $\Phi = x^2 + y^2 - 12x + 16y + \lambda(25 - x^2 - y^2)$ и решая систему

$$\Phi'_x = 2x - 12 - 2\lambda x = 0, \ \Phi'_y = 2y + 16 - 2\lambda y = 0, \ x^2 + y^2 = 25,$$

находим две точки возможного условного экстремума $M_1 = (3, -4)$ и $M_2 = (-3, 4)$. Вычисляя значения функции z в этих точках $z(\pmb{M}_1) = -75, z(\pmb{M}_2) = 125,$ заключаем, что $\sup z = 125, \inf z = -75.$

233. $u = x^2 + 2y^2 + 3z^2$, если $x^2 + y^2 + z^2 \le 100$.

■ Аналогично предыдущему примеру из системы

$$u'_x = 2x = 0, \ u'_y = 4y = 0, \ u'_z = 6z = 0$$

находим стационарную точку $M_1=(0,\,0,\,0)$, принадлежащую множеству $\{x^2+y^2+z^2<100\}$.

Составляя функцию Лагранжа $\dot{\Phi} = x^2 + 2y^2 + 3z^2 + \lambda(100 - x^2 - y^2 - z^2)$, из системы

$$\Phi'_x = 2x - 2\lambda x = 0, \ \Phi'_y = 4y - 2\lambda y = 0, \ \Phi'_z = 6z - 2\lambda z = 0,$$

$$x^2 + y^2 + z^2 = 100$$

находим три точки возможного условного экстремума: $M_2 = (10, 0, 0), \lambda_1 = 1; M_3 =$ $(0, 10, 0), \lambda_2 = 2; M_4 = (0, 0, 10), \lambda_3 = 3.$ M3 равенств $u(M_1) = 0, u(M_2) = 100, u(M_3) = 200,$ $u(M_4) = 300$ вытекает, что $\sup u = 300$, $\inf u = 0$.

234. u = x + y + z, если $x^2 + y^2 \le z \le 1$.

◀ Легко убедиться, что функция и не может иметь экстремума во внутренних точках области определения, поэтому $\sup u$ и $\inf u$ достигаются или на основании конуса $0\leqslant x^2+$ $y^2 \leqslant 1, z = 1,$ или на боковой поверхности конуса $z = x^2 + y^2, 0 \leqslant z < 1.$

Пусть $0 \leqslant x^2 + y^2 \leqslant 1$, z = 1. Составляя функцию Лагранжа $\Phi = x + y + 1 + \lambda(1 - x^2 - y^2)$,

из системы

$$\Phi'_x = 1 - 2\lambda x = 0, \ \Phi'_y = 1 - 2\lambda y = 0, \ x^2 + y^2 = 1$$

находим четыре точки возможного экстремума:

$$\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 1\right), \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1\right), \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1\right), \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 1\right).$$

Теперь находим точки возможного экстремума функции $u=x+y+x^2+y^2$, если $0\leqslant x^2+y^2<1$. Имеем $u'_x=1+2x=0$, $u'_y=1+2y=0$. Отсюда и из условия $z=x^2+y^2$ получаем еще одну точку возможного экстремума $\left(-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right)$.

Вычисляя значения функции u в найденных точках, заключаем, что $\sup u = 1 + \sqrt{2}$, $\inf u =$ $-\frac{1}{2}$.

 ${f 235.}$ Согласно принципу Ферма, свет, исходящий из точки A и попадающий в точку B, распространяется по кривой, для прохождения которой требуется минимум времени. Предполагая, что точки A и B расположены в различных оптических средах, разделенных плоскостью, причем скорость распространения света в первой среде равна v_1 , а во второй v_2 , вывести закон преломления света.

◆ Пусть t₁ — время прохождения света в первой среде, t₂ — во второй. Тогда (рис. 1) $t_1=rac{a}{v_1\coslpha_1},\,t_2=rac{b}{v_2\coslpha_2}.$ Требуется исследовать на экстремум функцию $T=t_1+t_2=rac{a}{v_1\coslpha_1}+rac{b}{v_2\coslpha_2}$ при условии, что $l=a\operatorname{tg}lpha_1+b\operatorname{tg}lpha_2$.

Записав функцию Лагранжа $\Phi = \frac{a}{v_1 \cos a_1} + \frac{b}{v_2 \cos a_2} + \lambda (l - l)$ $a \operatorname{tg} \alpha_1 - b \operatorname{tg} \alpha_2$), из системы

$$\Phi'_{\alpha_1} = \frac{a \sin \alpha_1}{v_1 \cos^2 \alpha_1} - \frac{\lambda a}{\cos^2 \alpha_1} = 0,$$

$$\Phi'_{\alpha_2} = \frac{b \sin \alpha_2}{v_2 \cos^2 \alpha_2} - \frac{\lambda b}{\cos^2 \alpha_2} = 0,$$

$$l = a \operatorname{tg} \alpha_1 + b \operatorname{tg} \alpha_2$$

Рис. 1

найдем, что в стационарной точке выполняется условие

$$\lambda = \frac{\sin \alpha_1}{v_1} = \frac{\sin \alpha_2}{v_2}.$$
 (1)
Отсюда и из последнего уравнения системы можно найти число λ , а затем углы α_1 и α_2 . Но делать этого не будем, так

(1)

как в дальнейшем конкретные значения этих величин нам не понадобятся.

Для проверки выполнения достаточных условий находим

второй дифференциал

$$d^2\Phi = \left(\frac{a}{v_1\cos\alpha_1} + 2\alpha\frac{\sin\alpha_1}{\cos^3\alpha_1}\left(\frac{\sin\alpha_1}{v_1} - \lambda\right)\right)d\alpha_1^2 + \left(\frac{b}{v_2\cos\alpha_2} + 2b\frac{\sin\alpha_2}{\cos^3\alpha_2}\left(\frac{\sin\alpha_2}{v_2} - \lambda\right)\right)d\alpha_2^2.$$

В силу условия (1), в стационарной точке

$$d^2\Phi = \frac{a}{v_1\cos\alpha_1}d\alpha_1^2 + \frac{b}{v_2\cos\alpha_2}d\alpha_2^2 > 0.$$

Следовательно, функция T имеет минимум, если выполняется равенство $\frac{\sin \alpha_1}{n_1} = \frac{\sin \alpha_2}{n_2}$, которое дает нам закон преломления света. >

Упражнения для самостоятельной работы Найти экстремальные значения следующих функций:

151. $z = x^2 + xy + y^2 - 3ax - 3by$. 152. $z = x^4 + y^4 - 2x^2 + 4xy - 2y^2$.

153. $z = x^3 + y^3 - 9xy + 27$ при $0 \le x \le a$, $0 \le y \le a$, a > 3.

154. $z = \sqrt{(a-x)(a-y)(x+y-a)}$. **155.** $z = (a\cos x + b\cos y)^2 + (a\sin x + b\sin y)^2$.

156. u = xyz(4a - x - y - z). 157. $u = x^2 + y^2 + z^2 - xy + 2z + x$. **158.** $u = \frac{x^3 + y^3 + z^3}{xyz}$, x > 0, y > 0, z > 0. **159.** $u = \frac{x}{y+z} + \frac{y}{x+z} + \frac{z}{x+y}$, x > 0, y > 0, z > 0.

160. $6x^2 + 6y^2 + 6z^2 + 4x - 8y - 8z + 5 = 0$. **161.** $5x^2 + 5y^2 + 5z^2 - 2xy - 2xz - 2yz - 72 = 0$.

162. $x^3y - 3xy^2 + 6x + y^2 + 7y + z^2 - 3z - 14 = 0$. **163.** $x^4 + y^4 + z^4 = 2a^2(x^2 + y^2 + z^2)$.

Найти наибольшее и наименьшее значения следующих функций, связанных указанными

условиями: **164.** u = x + y; $\frac{1}{x^2} + \frac{1}{u^2} = \frac{1}{a^2}$. **165.** $u = x^2 y^3 z^4$; 2x + 3y + 4z = a.

166. $u = x^2 + 2y^2 + 3z^2$; $x^2 + y^2 + z^2 = 1$, x + 2y + 3z = 0.

167. u = xyz; x + y + z = 5, xy + yz + xz = 8.

168. $u = x^2 + y^2 + z^2$; lx + my + nz = 0, $(x^2 + y^2 + z^2)^2 = a^2x^2 + b^2y^2 + c^2z^2$.

169. $u = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$; $x^2 + y^2 + z^2 = 1$, lx + my + nz = 0. 170. Неравенство Адамара для определителя третьего порядка

$$\mathbf{u} = \left| \begin{array}{ccc} a & b & c \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{array} \right|$$

имеет вид

Доказать это неравенство.

- 171. Внутри четырехугольника найти точку, сумма квадратов расстояний которой от вершин была бы наименьшей.
- 172. Найти точку, сумма квадратов расстояний которой до данных точек была бы наименьшей.
 - 173. Найти наибольший объем параллелепипеда, если сумма его ребер равна 124.
- 174. Около прямоугольного параллелепипеда с ребрами 2a, 2b и 2c описать наименьший по объему эллипсоид.
- 175. Через точку (a, b, c) провести плоскость, образующую с плоскостями координат тетраэдр наименьшего объема.
 - 176. В данный конус вписать прямоугольный параллелепипед наибольшего объема.
- 177. Какой из конусов с данной площадью боковой поверхности S имеет наибольший объем?
- 178. Найти площадь s эллипса, полученного при сечении эллипсоида $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ плоскостью lx + my + nz = 0.
- 179. Провести к эллипсоиду $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ касательную плоскость с наименьшей суммой отрезков на осях.
- 180. В сегмент эллиптического параболоида $z=rac{x^2}{a^2}+rac{\dot{y}^2}{b^2},$ вырезанный плоскостью z=h, вписать прямоугольный параллелепипед с наибольшим объемом.

Этветы

Глава 1

1. Сходится. 2. Сходится. 3. Сходится. 4. Сходится. 5. Сходится. 6. Расходится. 7. Сходится. 8. Сходится. 9. Расходится. 10. Сходится. 11. Расходится. 12. Сходится. 13. Сходится.

14. Сходится при $\alpha > \frac{1}{2}$. 15. Сходится при $\alpha > \frac{1}{2}$. 17. Сходится при $\alpha > 1$. 18. Сходит-

ся при $\alpha > 1$. 19. Сходится при $\alpha < -1$. 20. Расходится. 21. Сходится. 22. Расходится.

23. Расходится. **24.** Расходится. **25.** Сходится. **31.** Сходится. **32.** Сходится при $-1 < q \le 1$. 33. Сходится. 34. Сходится. 35. Сходится. 36. Сходится. 37. Сходится при любом а; абсо-

лютно сходится при $\alpha > 1$. 38. Сходится условно при $\alpha > 0$. 39. Сходится условно. 40. При a>p+2 сходится абсолютно; при $p+1<\alpha\leqslant p+2$ сходится условно. 41. При a>0 схо-

дится; при $0 < \alpha \le 1$ сходится условно. 42. Сходится условно. 43. Расходится. 44. Сходится условно. 45. Сходится условно. 46. Сходится условно. 47. Сходится условно. 48. Сходится условно. 49. $(e^2-1)(\sqrt{e}-1)$. 50. $\frac{xy}{(1-x)(1-y)}$. 51. $-\frac{\ln 2}{2}$. 52. e-1. 53. $-\frac{3}{14}$. 54. $\frac{\ln 2-1}{e-1}$. 58. a)

Неравномерно; б) неравномерно; в) равномерно; г) равномерно. 59. а) Неравномерно; б) равномерно. 60. а) Неравномерно; б) равномерно. 61. Во всех случаях сходится неравномерно. 62. а) Равномерно; б) неравномерно. 63. а) Равномерно; б) равномерно. 64. а) Неравномерно;

б) равномерно. 65. а) Неравномерно; б) равномерно. 66. а) Неравномерно; б) равномерно. 67. Неравномерно. 68. а) Равномерно; б) неравномерно. 69. а) Равномерно; б) неравномерно. 70. Неравномерно. 71. Неравномерно. 72. |x| < 1; неравномерно. 73. $]-\infty, +\infty[$; неравномерно. 74.] $-\infty$, $+\infty$ [; неравномерно. 75.] $-\infty$, $+\infty$ [; неравномерно. 76. x>0;

неравномерно. 78. Может. 85. а) Да; б) нет; в) да. 86. $\frac{\pi^2}{6}$. 87. 1. 88. 0. 89. $\ln \frac{1}{2}$. 90. $\ln 2$. **94.** Her. **103.** 1. **104.** 1. **105.** 0. **106.** ∞ . **107.** 4. **108.** $\frac{1}{4}$. **109.** $\frac{\pi}{2}$. **110.** $\frac{1}{2}$. **111.** $\sum_{n=0}^{\infty} a_n x^{2n}$,

 $a_n = \frac{(-1)^n}{(2n)!} \left(\frac{1}{8} 16^n - \frac{1}{2} 4^n \right). \ 112. \ \frac{2}{\sqrt{3}} \sum_{n=0}^{\infty} \sin \frac{\pi}{3} (n+1) x^{2n+1}. \ 113. \sum_{n=0}^{\infty} x^{2n} \sum_{k=0}^{n} \frac{1}{4^k (n-k)!}.$

114. $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n(n+1)} x^n$. 115. $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{2n(2n-1)} x^{2n-1}$. 116. $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{x^{2n}}{(2n+1)!}$.

120. $9 - \frac{12}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n\pi}{3} (x+1)$. 121. $\frac{2 \sin \pi^2}{\pi} \sum_{k=1}^{\infty} \frac{k(-1)^k}{\pi^2 - k^2} \sin k\pi x$.

122. $\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin 2\pi (2n-1)x}{2n-1}$. 123. $\sin 1 + 2 \sum_{n=1}^{\infty} \frac{2n\pi (1-\cos 1)\sin 2n\pi x - \sin 1\cos 2n\pi x}{4n^2\pi^2 - 1}$.

124. $\sin 2 - \sin 3 + 2 \sum_{n=1}^{\infty} \frac{1}{4k^2\pi^2 - 1} \left((\sin 2 - \sin 3) \cos 2k\pi x + 2k\pi (\cos 2 - \cos 3) \sin 2k\pi x \right).$

125. $\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sin \frac{k\pi}{2}}{k^2} \sin 2kx$. 126. $\sum_{n=1}^{\infty} \frac{(-1)^n n^3}{(n+1)!} \cos nx$. 127. $\sum_{n=1}^{\infty} \frac{(-1)^n n^3}{(n+1)!} \sin nx$.

128. $\frac{1}{\sqrt{a}} \sum_{n=-\infty}^{+\infty} e^{-\frac{\pi}{a}n^2} \cos 2n\pi x$. 129. $\frac{1}{4} \sin x + \sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 - 1} \sin nx$, $|x| < \pi$.

130. $\frac{1}{2} - \frac{1}{4}\cos x + \sum_{n=0}^{\infty} \frac{(-1)^n n}{n^2 - 1}\cos nx$, $|x| < \pi$. 131. $\frac{2}{\pi} \sum_{n=0}^{\infty} \frac{\sin kx}{k} \int_{-1}^{\pi} e^{-y^2} (\cos ky + (-1)^{k+1}) dy$.

132. $\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{\sin k\pi x}{k} \int_{1}^{1} \frac{\sin x}{x} (\cos k\pi x - \cos k\pi) dx$. 133. $\frac{47}{180}$. 134. $\frac{1}{18} \left(\pi^2 - \frac{11}{3}\right)$. 138. $-1 - \frac{\ln(1-x)}{x} + \frac{\ln(1-x)}{x}$

 $\ln(1-x) - \int_{x_0}^{x} \frac{\ln(1-x_0)}{x_0} dx_0. \quad \mathbf{139.} \quad (1-\cos x) \ln\left(2\sin\frac{x}{2}\right) - \frac{\pi-x}{2}\sin x + \cos x, \quad 0 < x < 2\pi. \quad \mathbf{140.} \quad (1-\cos x) \ln\left(2\sin\frac{x}{2}\right) - \frac{\pi-x}{2}\sin x + \cos x, \quad 0 < x < 2\pi. \quad \mathbf{140.} \quad (1-\cos x) \ln\left(2\sin\frac{x}{2}\right) - \frac{\pi-x}{2}\sin x + \cos x, \quad 0 < x < 2\pi. \quad \mathbf{140.} \quad (1-\cos x) \ln\left(2\sin\frac{x}{2}\right) - \frac{\pi-x}{2}\sin x + \cos x, \quad 0 < x < 2\pi. \quad \mathbf{140.} \quad (1-\cos x) \ln\left(2\sin\frac{x}{2}\right) - \frac{\pi-x}{2}\sin x + \cos x, \quad 0 < x < 2\pi. \quad \mathbf{140.} \quad (1-\cos x) \ln\left(2\sin\frac{x}{2}\right) - \frac{\pi-x}{2}\sin x + \cos x, \quad 0 < x < 2\pi. \quad \mathbf{140.} \quad (1-\cos x) \ln\left(2\sin\frac{x}{2}\right) - \frac{\pi-x}{2}\sin x + \cos x, \quad 0 < x < 2\pi. \quad \mathbf{140.} \quad (1-\cos x) \ln\left(2\sin\frac{x}{2}\right) - \frac{\pi-x}{2}\sin x + \cos x, \quad 0 < x < 2\pi. \quad \mathbf{140.} \quad (1-\cos x) \ln\left(2\sin\frac{x}{2}\right) - \frac{\pi-x}{2}\sin x + \cos x, \quad 0 < x < 2\pi. \quad \mathbf{140.} \quad (1-\cos x) \ln\left(2\sin\frac{x}{2}\right) - \frac{\pi-x}{2}\sin x + \cos x, \quad 0 < x < 2\pi. \quad \mathbf{140.} \quad (1-\cos x) \ln\left(2\sin\frac{x}{2}\right) - \frac{\pi-x}{2}\sin x + \cos x, \quad 0 < x < 2\pi. \quad \mathbf{140.} \quad (1-\cos x) \ln\left(2\sin\frac{x}{2}\right) - \frac{\pi-x}{2}\sin x + \cos x, \quad 0 < x < 2\pi. \quad \mathbf{140.} \quad (1-\cos x) \ln\left(2\sin\frac{x}{2}\right) - \frac{\pi-x}{2}\sin x + \cos x, \quad 0 < x < 2\pi. \quad \mathbf{140.} \quad (1-\cos x) \ln\left(2\sin\frac{x}{2}\right) - \frac{\pi-x}{2}\sin^2 x + \cos^2 x +$ $\cos x$ $\ln \left(2\sin\frac{x}{2}\right) + \frac{3}{4}\cos x - \frac{1}{2}$. 141. $-\sin x + \ln \left(\sqrt{1 + |\sin x|} + \sqrt{|\sin x|}\right)\sin x$, $|x| \le \pi$. 142. \approx

 $0,486.\ 143.\approx 0,486.\ 144.\approx 1,78.$

Глава 2

4. Нет. 5. Нет. 6. Да. 8, $\frac{1}{2}$. 9. е. 10. ∞ . 11. 1. 15. Равномерно-непрерывна. 17. $\frac{\partial f}{\partial x} =$ $\cos xy, \ \frac{\partial f}{\partial y} = \frac{xy \cos xy - \sin xy}{y^2}. \ 18. \ \frac{\partial f}{\partial x} = \frac{1}{x}, \ \frac{\partial f}{\partial y} = \frac{2}{y}, \ \frac{\partial f}{\partial z} = \frac{3}{z}. \ 19. \ \frac{\partial f}{\partial x} = 4x^3y + 4xy^2 + y^3 + 1, \ \frac{\partial f}{\partial y} = \frac{3}{z}$

 $x^{4} + 4x^{2}y + 3xy^{2} - 1. \qquad 20. \quad \frac{\partial f}{\partial x} = \frac{-x^{2} + y^{2} - 2xy^{2} + 1}{(x^{2} + y^{2} + 1)^{2}}, \quad \frac{\partial f}{\partial y} = \frac{2y(x^{2} - x + 1)}{(x^{2} + y^{2} + 1)^{2}}. \qquad 21. \quad \frac{\partial f}{\partial x} = \frac{1}{y}, \quad \frac{\partial f}{\partial y} = -\frac{x}{y^{2}}.$ $22. \quad \frac{\partial f}{\partial x} = 3(4xy^{2} - 1)(2x^{2}y^{2} - x + 1)^{2}, \quad \frac{\partial f}{\partial y} = 12x^{2}y(2x^{2}y^{2} - x + 1)^{2}. \quad 23. \quad \frac{\partial f}{\partial x} = \frac{-y}{x^{2} + y^{2}}, \quad \frac{\partial f}{\partial y} = \frac{x}{x^{2} + y^{2}}.$

24. $\frac{\partial f}{\partial x} = \frac{2x-1}{2\sqrt{x^2+y^2-x+1}}, \ \frac{\partial f}{\partial y} = \frac{y}{\sqrt{x^2+y^2-x+1}}.$ **25.** $\frac{\partial f}{\partial x} = \frac{x}{\sqrt{x^2+y^2+z^2}}, \ \frac{\partial f}{\partial y} = \frac{y}{\sqrt{x^2+y^2+z^2}}, \ \frac{\partial f}{\partial z} = \frac{y}{\sqrt{x^2+y^2+z^2}}.$ $\frac{z}{\sqrt{x^2+y^2+z^2}} \cdot 26 \cdot \frac{\partial f}{\partial x} = 2^{x-y} \ln 2, \ \frac{\partial f}{\partial y} = -2^{x-y} \ln 2. \ 27 \cdot \frac{\partial f}{\partial x} = \frac{3x^2+y\cos xy}{x^3+\sin xy}, \ \frac{\partial f}{\partial y} = \frac{z\cos xy}{x^3+\sin xy}. \ 28 \cdot \frac{\partial f}{\partial x} = \frac{2x\cos xy}{x^3+\sin xy} \cdot \frac{\partial f}{\partial y} = \frac{2\cos xy}{x^3+\sin xy} \cdot \frac{\partial f}{\partial x} = \frac{2\cos xy}{x^3+\sin xy} \cdot \frac{\partial f}{\partial y} = \frac{2\cos xy}{x^3+\sin xy} \cdot \frac{\partial f}{\partial x} = \frac{2\cos x}{x^3+\sin x$

 $\frac{3x}{u}$, $\frac{\partial f}{\partial y} = \frac{2^y \ln 2}{u}$, $\frac{\partial f}{\partial z} = \frac{3}{u \cos^2 3z}$, где $u = x^3 + 2^y + \operatorname{tg} 3z$. **29.** $\frac{\partial f}{\partial x} = -2u$, $\frac{\partial f}{\partial y} = -3u$, где $u = x^3 + 2^y + \operatorname{tg} 3z$. $\sin(2x+3y-1). \quad \mathbf{30.} \quad \frac{\partial f}{\partial x} = -2xye^{-x^2y}, \quad \frac{\partial f}{\partial y} = -x^2e^{-x^2y}. \quad \mathbf{31.} \quad \frac{\partial f}{\partial x} = (2y+1)(x+1)^{2y}, \quad \frac{\partial f}{\partial y} = 2(x+1)(x+1)^{2y}$ $1)^{2y+1}\ln(x+1). \ \ \mathbf{32.} \ \frac{\partial f}{\partial x} = \frac{1+y^2}{1+x^2+y^2+x^2y^2}, \ \frac{\partial f}{\partial y} = \frac{1+x^2}{1+x^2+y^2+x^2y^2}. \ \ \mathbf{33.} \ \ \frac{\partial f}{\partial x} = -\frac{1}{y}2^{-\frac{x}{y}}, \ \ \frac{\partial f}{\partial y} = \frac{x}{y^2}2^{-\frac{x}{y}}.$

34. $\frac{\partial f}{\partial x} = \frac{e^x}{e^x + 2e^y}$, $\frac{\partial f}{\partial y} = \frac{2e^y}{e^x + 2e^y}$. 35. $\frac{\partial f}{\partial x} = \frac{y^2}{y^4 + x^2}$, $\frac{\partial f}{\partial y} = \frac{-2xy}{y^4 + x^2}$. 36. $\frac{\partial f}{\partial x} = y + \frac{3}{x^2}$, $\frac{\partial f}{\partial y} = x - \frac{5}{y^2}$. 37. $\frac{\partial f}{\partial x} = 2x + y + z$, $\frac{\partial f}{\partial y} = 2y + x + z + xz$, $\frac{\partial f}{\partial z} = 2z + x + y + xy$. 38. $\frac{\partial f}{\partial x} = y^z z z^{z-1}$, $\frac{\partial f}{\partial y} = z^z z z^{z-1}$ $zx^{z}y^{z-1}$, $\frac{\partial f}{\partial z} = (xy)^{z}\ln(xy)$. 39. $\frac{\partial f}{\partial x} = yz^{xy}\ln z$, $\frac{\partial f}{\partial y} = xz^{xy}\ln z$, $\frac{\partial f}{\partial z} = xyz^{xy-1}$. 40. $\frac{\partial f}{\partial x} = xyz^{xy-1}$

 $\frac{1}{1+x^2}, \ \frac{\partial f}{\partial y} = \frac{1}{1+y^2}, \ \frac{\partial f}{\partial z} = \frac{1}{1+z^2}. \ \ 41. \ \ df = 2\cos(x^2+y^2)(x\,dx+y\,dy). \ \ 42. \ \ df = \frac{-y\,dx-x\,dy}{1-x^2y^2}.$ **43.** $df = \frac{2}{\sin \frac{2x}{y}} \frac{y dx - x dy}{y^2}$. **44.** $df = \frac{2(x dx + y dy)}{1 + (x^2 + y^2)^2}$. **45.** $df = \frac{dx + dy - dz}{x + y - z}$. **46.** $df = yx^{y-1} dx + x^y \ln x dy$.

47. $df = -\sin(xy)(y\,dx + x\,dy)$. 48. $df = (3x^2 - y)\,dx + (3y^2 - x)\,dy$. 49. $df = -e^{-xy}(y\,dx + x\,dy)$. **50.** $df = (3x^2y + y^3) dx + (3y^2x + x^3) dy + 3z^2y dz$. **57.** $\frac{\partial f}{\partial x} = \frac{x}{x^2 + y^2}, \frac{\partial f}{\partial y} = \frac{y}{x^2 + y^2}, \frac{\partial^2 f}{\partial x^2} = \frac{y}{x^2 + y^2}$ $\frac{y^2 - x^2}{(x^2 + y^2)^2}, \ \frac{\partial^2 f}{\partial y^2} = -\frac{\partial^2 f}{\partial x^2}, \ \frac{\partial^2 f}{\partial x \partial y} = \frac{-2xy}{(x^2 + y^2)^2}. \ \mathbf{58.} \ \mathrm{Cm.} \ \mathrm{npumep} \ 32, \ \frac{\partial^2 f}{\partial x^2} = \frac{-2x(1 + y^2)^2}{(1 + x^2 + y^2 + x^2 y^2)^2}, \ \frac{\partial^2 f}{\partial x \partial y} = 0,$ $\frac{\partial^2 f}{\partial y^2} = \frac{-2y(1+x^2)^2}{(1+x^2+y^2+x^2y^2)^2}. \quad \mathbf{59.} \quad \frac{\partial f}{\partial x} = x\cos(x+y) + (1-y)\sin(x+y), \quad \frac{\partial f}{\partial y} = -(1+x)\sin(x+y) + \frac{\partial f}{\partial y} = -(1+x)\sin(x+y)$

 $(1-y)\cos(x+y), \ \frac{\partial^2 f}{\partial x^2} = -x\sin(x+y) + (2-y)\cos(x+y), \ \frac{\partial^2 f}{\partial x \partial y} = -(1+x)\sin(x+y) + (2-y)\cos(x+y)$ $(1-y)\cos(x+y), \ \frac{\partial^2 f}{\partial y^2} = -y\cos(x+y) - (2+x)\sin(x+y). \ \mathbf{60.} \ \frac{\partial f}{\partial x} = \frac{x}{r}, \ \frac{\partial f}{\partial y} = \frac{y}{r}, \ \frac{\partial f}{\partial z} = \frac{z}{r}, \ \frac{\partial^2 f}{\partial x^2} = \frac{z}{r}$

 $\frac{1}{r} - \frac{x^2}{r^3}, \ \frac{\partial^2 f}{\partial y^2} = \frac{1}{r} - \frac{y^2}{r^3}, \ \frac{\partial^2 f}{\partial z^2} = \frac{1}{r} - \frac{z^2}{r^3}, \ \frac{\partial^2 f}{\partial x \partial y} = -\frac{xy}{r^3}, \ \frac{\partial^2 f}{\partial x \partial z} = -\frac{xz}{r^3}, \ \frac{\partial^2 f}{\partial y \partial z} = -\frac{yz}{r^3}, \ r = \sqrt{x^2 + y^2 + z^2}.$ **61.** $u' = \left(\frac{\partial \varphi}{\partial \xi} + \frac{\partial \varphi}{\partial \eta} - \frac{\partial \varphi}{\partial \xi} - \frac{\partial \varphi}{\partial \eta}\right)$ **62.** $u' = \left(2x\frac{\partial \varphi}{\partial \xi} + yz\frac{\partial \varphi}{\partial \eta} - 2y\frac{\partial \varphi}{\partial \xi} + xy\frac{\partial \varphi}{\partial \eta} - 2z\frac{\partial \varphi}{\partial \xi} + xy\frac{\partial \varphi}{\partial \eta}\right)$.

63. $u' = \left(\frac{1}{y}\frac{\partial \varphi}{\partial \xi} - \frac{y}{x^2}\frac{\partial \varphi}{\partial \eta} - \frac{x}{y^2}\frac{\partial \varphi}{\partial \xi} + \frac{1}{x}\frac{\partial \varphi}{\partial \eta}\right)$. **65.** $\alpha abr\cos^{\alpha-1}\varphi\sin^{\alpha-1}\varphi$. **66.** $\alpha^2 abcr^2\sin^{2\alpha-1}\theta \times \frac{1}{y}\sin^{\alpha-1}\varphi$. $\times (\cos \varphi \sin \varphi \cos \theta)^{\alpha-1}$. 67. $\xi \eta^2$. 72. 0. 73. 0. 87. $y''' = \frac{1}{3}$. 88. $y'' = \frac{4(x+y)}{(1+x+y)^3}$. 89. $y' = \frac{4(x+y)}{(1+x+y)^3}$.

 $\pm \frac{1}{a}\sqrt{b^2-a^2}$. 90. y'=0, $y'=\infty$. 91. y'=1, $z''=-\frac{2}{3}$. 92. $y'=\frac{x(z-x)}{y(y-z)}$, $z'=\frac{x(y-x)}{z(z-y)}$. 93. $d^2y=\frac{y(z-x)}{z(z-y)}$ $\frac{20y^2+16x^2}{25y^3}dx^2, \ d^2z = -\frac{5z^2-x^2}{25z^3}dx^2. \ \mathbf{94.} \ x' = 5, \ y'' = 12. \ \mathbf{95.} \ y' = \frac{z-x}{y-z}, \ z' = \frac{x-y}{y-z}, \ a \neq 0.$ **96.** y' = -1, z' = 0, $y'' = -\frac{4}{5}$, $z'' = \frac{4}{5}$. **97.** $\frac{\partial^2 z}{\partial x^2} = -\frac{x^2 + (z-1)^2}{(z-1)^3}$. **98.** $\frac{\partial^2 z}{\partial x \partial y} = -\frac{-2zx^2y^2}{(z^2-1)^3}$. **99.** $\frac{\partial z}{\partial x} = -\frac{2zx^2y^2}{(z^2-1)^3}$.

 $\frac{z \sin x - \cos y}{\cos x - y \sin z}, \quad \frac{\partial z}{\partial y} = \frac{x \sin y - \cos z}{\cos x - y \sin z}. \quad \mathbf{100.} \quad dz = \frac{-(y+z) dx - (x+z) dy}{x+y}, \quad d^2 z = \frac{2(y+z) dx^2 + 4z dx dy + 2(z+x) dy^2}{(x+y)^3}.$

101. $d^2z = \frac{1}{a}(dx^2 - 2\,dy^2)$. **102.** $\frac{\partial^2z}{\partial x^2} = \frac{1}{(x\varphi' + \psi')^5} \left(2(x\varphi' + \psi')\varphi\varphi' - (x\varphi' + \psi'')\varphi^2\right)$, $\frac{\partial^2z}{\partial x\,\partial y} = \frac{1}{a}(dx^2 - 2\,dy^2)$.

 $\frac{1}{(x\varphi'+\psi')^3}((x\varphi'+\psi')\varphi-(x\varphi'+\psi')\varphi'), \quad \frac{\partial^2 x}{\partial y^2}=\frac{1}{(x\varphi'+\psi')^3}(x\varphi''+\psi''). \quad \textbf{105.} \quad y'=\frac{x^3-ay}{ax-y^3}, \quad y''=\frac{1}{(x\varphi'+\psi')^3}(x\varphi''+\psi'').$ $\frac{a^2x^4 - 10ax^3y^3 + 2a^3xy + 3x^2y^6 + 3x^6y^2 + a^2y^4}{(ax - y^3)^3}. \quad \mathbf{106.} \ \ y' = \frac{x^4 - y}{x - y^4}, \ \ y'' = \frac{5x^5 - 14x^4y^4 + 2xy + 4x^3y^6 + 4x^6y^3 + 2y^5}{(x - y^4)^3}.$ **107.** $y'' = \frac{2(x^2 + y^2)}{(x - y)^3}$. **108.** y' = -1. **109.** y' = 0. **110.** $y' = \frac{3}{2}$, $z' = \frac{1}{2}$. **111.** $y' = \frac{3}{2}$

 $\frac{x^{3}(z-x)}{y^{3}(y-z)}, \ z' = \frac{x^{3}(x-y)}{z^{3}(y-z)}, \ y \neq 0, \ y \neq z, \ z \neq 0. \ 112. \ \frac{\partial z}{\partial x} = \frac{x^{2}}{1-z^{2}}, \ \frac{\partial z}{\partial y} = \frac{y^{2}}{1-z^{2}}, \ z \neq 1. \ 113. \ \frac{\partial^{2}z}{\partial x \partial y} = \frac{y^{2}}{1-z^{2}}$ $-\frac{2(1-2y)(1-2x)}{(x^2-1)^3}, \ \ z \neq 1. \ \ 114. \ \ \frac{\partial y}{\partial t} = -\frac{3}{4}, \ \ \frac{\partial z}{\partial t} = -\frac{1}{4}, \ \ \frac{\partial y}{\partial x} = -\frac{11}{5}, \ \ \frac{\partial z}{\partial x} = -\frac{5}{5}. \ \ 115. \ \ \frac{\partial y}{\partial t} = -1, \ \ \frac{\partial z}{\partial t} = 0,$ 222 Ответы

$$\frac{\partial y}{\partial x} = -\frac{112}{31}, \quad \frac{\partial z}{\partial x} = -\frac{12}{31}. \quad 116. \quad \frac{\partial^2 z}{\partial x^2} = \frac{3x^2}{1-x^3} + \frac{3x^6 z^2}{(1-x^3)^3}, \quad z \neq 1. \quad 117. \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{4x^4 y^4 z^2}{(1-x^4)^3}, \quad z \neq 1.$$

$$118. \quad \frac{\partial z}{\partial x} = \frac{2-x}{2}, \quad \frac{\partial^2 z}{\partial x^2} = \frac{2y(x-2)}{2}, \quad z \neq 1. \quad 119. \quad \frac{\partial^2 z}{\partial x^2} = \frac{c^4}{2} \left(\left(\frac{x^2}{2} + \frac{z^2}{2} \right) \frac{dx^2}{dx^2} + \frac{2xy}{2} \frac{dx}{dx} \frac{dy}{dx} + \left(\frac{y^2}{2} + \frac{z^2}{2} \right) \frac{dx}{dx} \right)$$

$$\frac{\partial z}{\partial x} = -\frac{1}{31}, \quad \frac{\partial z}{\partial x} = -\frac{1}{31}. \quad 116. \quad \frac{\partial z}{\partial x^2} = \frac{1}{1-z^3} + \frac{1}{(1-z^3)^3}, \quad z \neq 1. \quad 117. \quad \frac{\partial z}{\partial x \partial y} = \frac{\partial z}{(1-z^4)^3}, \quad z \neq 1.$$

$$118. \quad \frac{\partial z}{\partial x} = \frac{2-x}{1+z}, \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{2y(z-2)}{(1+z)^3}, \quad z \neq -1. \quad 119. \quad d^2z = -\frac{c^4}{z^3} \left(\left(\frac{z^2}{a^2} + \frac{z^2}{c^2} \right) \frac{dx^2}{a^2} + \frac{2xy}{a^2b^2} dx dy + \left(\frac{y^2}{b^2} + \frac{z^2}{a^2} \right) \frac{dx^2}{a^2} + \frac{2xy}{a^2b^2} dx dy + \frac{y^2}{a^2b^2} dx dy + \frac{y^2}{a^2} dx dy + \frac{y^2}{a^2b^2} dx dy + \frac{y^2}{a^2b^2} dx dy + \frac{y^2}{a^2} dx dy dx dy + \frac{y^2}{a^2} dx dy dx dy + \frac{y^2}{a^2} dx dy dx dy$$

$$\frac{z^2}{c^2} \left(\frac{dy^2}{b^2} \right), \ z \neq 0. \ \mathbf{120.} \ d^2z = -\frac{2}{\sin^3 2z} \left((\sin^2 2z \cos 2x + \sin^2 2x \cos 2z) \, dx^2 + 2 \cos 2z \sin 2x \sin 2y \right)$$

$$\begin{array}{l} c^{2} / b^{2} / , \ z \neq 0. \ \ 120 \cdot dz = \frac{1}{\sin^{3} 2z} \left(\sin^{2} z \cos 2z + \sin^{2} z \sin 2z +$$

122.
$$\frac{\partial^2 z}{\partial x^2} = -F_3^{'-1} \left(F_2^{'2} (F_{11}^{"} + 2F_{12}^{"} + F_{22}^{"}) - 2(F_1^{'} + F_2^{'}) F_3^{'} (F_{13}^{"} + F_{23}^{"}) + (F_1^{'} + F_2^{'})^2 F_{33}^{"} \right).$$

123.
$$\frac{\partial^2 z}{\partial x^2} = -(xF_1' + yF_2')^{-3} \left(y^2 z^2 (F_2'^2 F_{11}'' - 2F_1' F_2' - F_1' F_{22}'') - 2z(xF_1' + yF_2')F_1'^2 \right).$$
124. $\frac{\partial z}{\partial x} = -\frac{1}{I} \frac{\mathcal{D}(F, \Phi)}{\mathcal{D}(x, u)}, \quad \frac{\partial u}{\partial x} = -\frac{1}{I} \frac{\mathcal{D}(F, \Phi)}{\mathcal{D}(z, x)}, \quad \frac{\partial z}{\partial y} = -\frac{1}{I} \frac{\mathcal{D}(F, \Phi)}{\mathcal{D}(y, u)}, \quad \frac{\partial u}{\partial y} = -\frac{1}{I} \frac{\mathcal{D}(F, \Phi)}{\mathcal{D}(z, y)}, \quad \text{rie } I = \frac{\mathcal{D}(F, \Phi)}{\mathcal{D}(z, u)}.$

124.
$$\frac{\partial}{\partial x} = -\frac{1}{l} \frac{\partial}{\mathcal{D}(x, u)}, \quad \frac{\partial}{\partial x} = -\frac{1}{l} \frac{\partial}{\mathcal{D}(z, x)}, \quad \frac{\partial}{\partial y} = -\frac{1}{l} \frac{\partial}{\mathcal{D}(y, u)}, \quad \frac{\partial}{\partial y} = -\frac{1}{l} \frac{\partial}{\mathcal{D}(z, y)}, \quad \text{ide } l = \frac{1}{\mathcal{D}(z, u)}.$$
126. $\frac{\partial^2 u}{\partial x^2} = \frac{55}{32}, \quad \frac{\partial^2 v}{\partial x \partial y} = \frac{25}{32}.$ 127. $\frac{\partial z}{\partial x} = -\frac{c}{a} \sin v \cot u, \quad \frac{\partial z}{\partial y} = -\frac{c}{b} \cos v \cot u.$ 128. $\frac{d^2 x}{dy^2} + x = e^y.$

120.
$$\frac{d^3x}{dy^3} = 0$$
. 130. $\frac{d^4x}{dy^4} = 0$. 131. $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = 0$. 132. $\frac{d^3y}{dt^3} - \frac{d^2y}{dt} + y = 0$. 133. $\frac{d^3y}{dt^3} + by = 0$.

134.
$$\frac{d^2y}{dt^2} + y = 0$$
. 136. $\frac{d^2y}{dt^2} + a(e^{2t} + 1)y = 0$. 137. $\frac{r^2}{\sqrt{r^2 + r'^2}}$. 138. $\frac{r'}{r}$. 139. $t\frac{d^2y}{dt^2} + y = 0$.

140.
$$y \frac{d^2z}{dy^2} + \frac{dz}{dy} = 0$$
. 141. $u \frac{dz}{du} - z = 0$. 142. $\frac{dz}{du} = 0$. 143. $\frac{\partial^2z}{\partial u^2} + \frac{\partial^2z}{\partial v^2} + m^2(u^2 + v^2)z = 0$.

144.
$$\frac{\partial^2 z}{\partial u^2} + 2uv^2 \frac{\partial z}{\partial u} + 2(v - v^3) \frac{\partial z}{\partial v} + u^2 v^2 z = 0.$$
 145.
$$\Delta = \frac{1}{c^2 \delta^2} \left(\frac{\partial^2 u}{\partial \alpha^2} + \frac{\partial^2 u}{\partial \beta^2} \right) + \frac{\partial^2 u}{\partial z^2},$$
 rge $\delta^2 = \alpha^2 + \beta^2.$

146.
$$\Delta u = \frac{1}{\alpha^2 \delta^2} \left(\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \varphi^2} \right) + \frac{\partial^2 u}{\partial z^2}, \text{ где } \delta^2 = \text{ch}^2 \xi - \cos^2 \varphi.$$
147. $f(x, y) = 5 + 6(x - 1) + 4(y - 1) + 6(x - 1)$

$$3(x-1)^2 + 3(x-1)(y-1) + (y-1)^2 + (x-1)^3 + (x-1)(y-1)^2. \quad \textbf{148.} \ e^{x+y} = \sum_{k=0}^{\infty} \sum_{k=m}^{\infty} \frac{x^k y^m}{k!m!}, \ |x| < 1$$

$$+\infty$$
, $|y| < +\infty$. 149. $f(x, y) = 1 + x^2 \sum_{m=1}^{\infty} \frac{(-1)^{m+1}y^{2m-1}}{(2m-1)!!} + \sum_{m=0}^{\infty} \frac{(-1)^m(x+y)^m}{(2m)!}$. 150. $e^{x^2-y^2} =$

$$\sum_{m=1}^{\infty} \frac{(x^2-y^2)^n}{(x^2-y^2)^n}, |x| < +\infty, |y| < +\infty, 151, z_{\min} = -3(a^2+b^2-ab) \text{ NDM } x = 2a-b, y = 2b-a$$

$$\sum_{n=0}^{\infty} \frac{(x^2-y^2)^n}{n!}, |x| < +\infty, |y| < +\infty.$$
 151. $z_{\min} = -3(a^2+b^2-ab) \text{ при } x = 2a-b, y = 2b-a.$

$$n_{n=0}^{n_{n=0}}$$
 152. Muhumum ndu $x = \sigma \sqrt{2}$, $y = -\sigma \sqrt{2}$, $\sigma = +1$: ndu $x = y = 0$ het akcidemanshoro значения

152. Минимум при
$$x = \sigma\sqrt{2}$$
, $y = -\sigma\sqrt{2}$, $\sigma = \pm 1$; при $x = y = 0$ нет экстремального значения.

153. Минимум
$$z$$
 при $x = y = 3$. Максимум $z = a^3 + 27$, если $a \le 9$, и $2a^3 - 9a^2 + 27$, если $a > 9$.

153. Минимум
$$z$$
 при $x = y = 3$. Максимум $z = a^2 + 27$, если $a \le 9$, и $2a^2 - 9a^2 + 27$, если $a > 9$.
154. Максимум при $3x = 3y = 2a$. 155. При $x - y = 2n\pi$ — максимум, при $x - y = (2n + 1)\pi$ —

154. Максимум при
$$3x=3y=2a$$
. 155. При $x-y=2n\pi$ — максимум, при $x-y=(2n+1)\pi$ — минимум, если $ab>0$. Если $ab<0$, то наоборот. 156. Максимум при $x=y=z=a$

минимум, если
$$ab > 0$$
. Если $ab < 0$, то наоборот. 156. Максимум при $x = y = z = a$.

157. Минимум при
$$3x = -2$$
, $3y = -1$, $z = -1$. 158. Минимум при $x = y = z$. 159. Минимум

157. Минимум при
$$3x = -2$$
, $3y = -1$, $z = -1$. 158. Минимум при $x = y = z$. 159. Минимум при $x = y = z$. 160. Максимум z при $3x = -1$. $3y = 2$. Минимум при тех же значения

при
$$x=y=z$$
. 160. Максимум z при $3x=-1$, $3y=2$; минимум при тех же значениях. 161. Максимум при $x=y=1$; минимум при $x=y=-1$. 162. При $x=1$, $y=2$ нет экстремального значения. 163. $z_{\max}=a\sqrt{1+\sqrt{3}}$ при $\pm x=a$, $\pm y=a$; $z_{\min}=-a\sqrt{1+\sqrt{3}}$

при
$$\pm x = a$$
, $\pm y = a$. При $x = 0$, $y = 0$ $z_{\min} = a\sqrt{2}$, $z_{\max} = -a\sqrt{2}$. 164. Максимум при $x = y = -a\sqrt{2}$, минимум при $x = y = a\sqrt{2}$. 165. $u_{\max} = \left(\frac{a}{9}\right)^9$. 166. $u_{\max} = \frac{1}{7}(12 + \sqrt{18})$, $u_{\min} = \sqrt{1 + \sqrt{18}}$

 $\frac{1}{7}(12-\sqrt{18})$. 167. Наибольшее значение $\frac{112}{27}$, наименьшее 4. 168. Экстремальные значения uявляются корнями уравнения $\frac{t^2}{u-a^2} + \frac{m^2}{u-b^2} + \frac{n^2}{u-c^2} = 0$. 169. Экстремальные значения там, где

оси симметрии эллипсоида $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, lx + my + nz = 0 пересекают шар $x^2 + y^2 + z^2 = 1$. 171. Координаты ее равны среднему арифметическому координат вершин. 172. Координаты

ее равны среднему арифметическому координат данных точек. 173. a^3 . 174. $\frac{x^2}{c^2} + \frac{y^2}{k^2} + \frac{z^2}{c^2} =$ 3. 175. $\frac{z}{a} + \frac{y}{b} + \frac{z}{c} = 3$. 176. Высота параллеленинеда равна $\frac{h}{3}$, где h — высота конуса. 177. Если R — радиус основания конуса, то $\pi R^2 \sqrt{3} = S$. 178. $S\sqrt{a^2l^2 + b^2m^2 + c^2n^2} =$

 $\pi abc\sqrt{l^2+m^2+n^2}$. 179. $\frac{z}{a^{\frac{2}{3}}}+\frac{y}{b^{\frac{2}{3}}}+\frac{z}{c^{\frac{2}{3}}}=\sqrt{a^{\frac{2}{3}}+b^{\frac{2}{3}}+c^{\frac{2}{3}}}$. 180. $2v=abh^2$, $\left(\frac{a\sqrt{h}}{2},\frac{b\sqrt{h}}{2},\frac{b\sqrt{h}}{2}\right)$ —вершина параллелепипеда.

Оглавление

Глава 1. Рялы

§1.	Числовые ряды. Признаки сходимости знакопостоянных рядов	3
§2 .	Признаки сходимости знакопеременных рядов	25
§3.	Действия над рядами	38
J-	сходящихся функциональных последовательностей и рядов	40
§ 5.	Степенные ряды	58
§6.	Ряды Фурье	79
§7.	Суммирование рядов. Вычисление определенных интегралов с помощью	
	рядов	96
Глава	а 2. Дифференциальное исчисление функций	
ве	кторного аргумента	113
§1.	Предел функции. Непрерывность	113
§2.	Частные производные и дифференциалы функции векторного аргумента	124
	Неявные функции	
§4.	Замена переменных	167
	Формула Тейлора	
	Экстремум функции векторного аргумента	

Ляшко Иван Иванович, Боярчук Алексей Климентьевич, Гай Яков Гаврилович, Головач Григорий Петрович

Справочное пособие по высшей математике. Т. 2: Математический анализ: ряды, функции векторного аргумента. — М.: Едиториал УРСС, 2003. — 224 с.

«Справочное пособие по высшей математике» выходит в пяти томах и представляет собой новое.

ISBN 5-354-00272-9

исправленное и существенно дополненное издание «Справочного пособия по математическому анализу» тех же авторов. В новом издании пособие охватывает три крупных раздела курса высшей математики — математический анализ, теорию дифференциальных уравнений, теорию функций комплексной переменной.

Том 2 по содержанию соответствует первой половине второго тома «Справочного пособия по математическому анализу» и включает в себя теорию рядов и дифференциальное исчисление функций векторного аргумента.

векторного артумента.

Пособие предназначено для студентов, преподавателей и работников физико-математических, экономических и инженерно-технических специальностей, специалистов по прикладной математике, а также лиц, самостоятельно изучающих высшую математику.