DSBDL Assignment 10 - Data Analytics 3

- 1. Implement Simple Naïve Bayes classification algorithm using Python/R on iris.csv dataset.
- 2. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset.

```
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

import numpy as np import seaborn as sns import pandas as pd

ds = pd.read_csv('/content/drive/My Drive/DSBDL/Assignment10/iris.csv') ds

	sepal_length	sepal_width	petal_length	petal_width	species	⊞			
0	5.1	3.5	1.4	0.2	setosa	11.			
1	4.9	3.0	1.4	0.2	setosa	+//			
2	4.7	3.2	1.3	0.2	setosa				
3	4.6	3.1	1.5	0.2	setosa				
4	5.0	3.6	1.4	0.2	setosa				
	***	•••		•••					
145	6.7	3.0	5.2	2.3	virginica				
146	6.3	2.5	5.0	1.9	virginica				
147	6.5	3.0	5.2	2.0	virginica				
148	6.2	3.4	5.4	2.3	virginica				
149	5.9	3.0	5.1	1.8	virginica				
150 rows × 5 columns									

Next steps:

Generate code with ds

View recommended plots

```
features = ds.drop( [ "species" ] , axis=1 ).columns
label = "species"
classes = np.unique( ds[label] )
print( features )
print( label )
print( classes )
     Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width'], dtype='object')
     species
     ['setosa' 'versicolor' 'virginica']
def normalize( feature ):
    ds[ feature ] = ( ds[ feature ] - ds[ feature ].min() ) / ( ds[feature].max() - ds[fe
for feature in features:
    normalize( feature )
ds
```

	sepal_length	sepal_width	petal_length	petal_width	species			
0	0.222222	0.625000	0.067797	0.041667	setosa	11.		
1	0.166667	0.416667	0.067797	0.041667	setosa	+/		
2	0.111111	0.500000	0.050847	0.041667	setosa			
3	0.083333	0.458333	0.084746	0.041667	setosa			
4	0.194444	0.666667	0.067797	0.041667	setosa			
145	0.666667	0.416667	0.711864	0.916667	virginica			
146	0.555556	0.208333	0.677966	0.750000	virginica			
147	0.611111	0.416667	0.711864	0.791667	virginica			
148	0.527778	0.583333	0.745763	0.916667	virginica			
149	0.44444	0.416667	0.694915	0.708333	virginica			
150 rows x 5 columns								

150 rows × 5 columns

Next steps: Generate code with ds

View recommended plots

```
import math
def gaussian pdf( mean: float , std: float ):
    def pdf(x):
        return (1.0 / (std * math.sqrt( 2 * math.pi ))) * math.exp( -0.5 * ((x - mean)/st
    return pdf
def compute_prior( class_: str ) -> float:
    return len( train_ds[ train_ds["species"] == class_ ] ) / len( train_ds )
def compute_log_likelihood( sample , class_: str ) -> float:
    prior_prob = compute_prior( class_ )
    posterior_prob = 0.0
    for i , feature in enumerate(features):
        pdf = gaussian_pdf(
            train_ds[ train_ds[label] == class_ ][feature].mean() ,
            train_ds[ train_ds[label] == class_ ][feature].std()
        posterior_prob += math.log( pdf( sample[i] ) )
    return posterior_prob + math.log( prior_prob )
def classifier( sample ):
   max_likelihood = -math.inf
   max_likelihood_class = None
    for class_ in classes:
        class_likelihood = compute_log_likelihood( sample , class_ )
        if class_likelihood > max_likelihood:
            max_likelihood = class_likelihood
           max likelihood class = class
    return max_likelihood_class
def train_test_split( test_split = 0.3 ):
   global ds
    ds = ds.sample(frac=1)
    num_test_samples = int(len( ds ) * test_split)
    test_ds = ds.head( num_test_samples )
    train_ds = ds.tail( len(ds) - num_test_samples )
    return train_ds , test_ds
train_ds , test_ds = train_test_split()
target_labels = list( test_ds[label] )
pred labels = []
for test_sample in test_ds.to_numpy():
    pred_y = classifier( test_sample[ : -1 ] )
   pred_labels.append( pred_y )
print( pred_labels )
     ['versicolor', 'versicolor', 'setosa', 'versicolor', 'virginica', 'virginica', 'versi
```

print(target_labels)

```
['versicolor', 'versicolor', 'versicolor', 'virginica', 'virginica', 'versi
```

Accuracy

acc = sum([1.0 for i in range(len(pred_labels)) if pred_labels[i] == target_labels[i
print(f"Accuracy is {acc}")

Start coding or generate with AI.