Test exercise 3

(a) Use general-to-specific to come to a model. Start by regressing the federal funds rate on the other 7 variables and eliminate 1 variable at a time.

The following is my result.

Dependent Variab	Sample				
size:660					
Coefficient (P-v	Coefficient (P-value)				
	1	2	3		
Constant	-0.221161	-0.290851	-0.240119		
Constant	(0.367)	(0.21830)	(0.2976)		
Commodituranios	-0.005521	-0.006514	-0.007501		
Commodity price	(0.0638)	(0.02130)	(0.00460)		
Housing starts	-0.019411	-0.021023	-0.02053		
	(0.000)	(0.000)	(0.000)		
Inflation	0.696059	0.693309	0.717527		
	(0.000)	(0.000)	(0.000)		
Personal	0. 34438	0. 368561	0. 340525		
Consumption					
expenditure	(0.000)	(0.000)	(0.000)		
Personal income	0. 246999	0. 251581	0. 240242		
	(0.0001)	(0.000)	(0.0001)		
Production	-0.057743	-0. 02546			
	(0.1483)	(0. 32320)			
Unemployment	0. 102481				
	(0. 2899)				
R squre	0.6386	0. 6379	0.6373		

So the final model is

$$i_t = -0.0075cp_t - 0.02053hs_t + 0.71752\pi_t + 0.340525pce_t + 0.2402pi_t$$

 $p = (0.00460) \quad (0.00000) \quad (0.00000) \quad (0.00000)$
 $R^2 = 0.637361$

With i_t the Federal Fund interest rate, cp_t the Commodity price, hs_t the Housing starts, π_t the inflation rate, pce_t the Personal Consumption expenditure, pi_t the Personal income.

(b)) Use specific-to-general to come to a model. Start by regressing the federal funds rate on only a constant and add 1 variable at a time. Is the model the same as in (a)?

And In this problem, I regressed the federal fund rate on the constant and a

variable, then add a variable at a time. After adding the variable, I check the p value of the variable and delete the one that is insignificant.

The following is my result.

Dependent Variables: Interest rate Sample size:660					
Coefficient (P-value)					
	1	2	3	4	5
Constant	5. 401743	5. 435799	1.676666	0. 101247	0.021219
Constant	(0.000)	(0.000)	(0.000)	(0.67)	(0.92660)
Commodity price	-0.011526	-0. 007700			
Commodity price	(0.0061)	(0.0677)			
Unique atomta		-0.028747	-0.003841		
Housing starts		(0.000)	(0.3625)		
Inflation			0. 938290	0.715754	0.87542
1111111111111			(0.000)	(0.000)	(0.000)
Personal				0. 356161	0. 181177
Comsumption				(0.000)	(0.0007)
expenditure				(0.000)	(0.0007)
Personal income					0.305409
rersonal income					(0.000)
Production					
1 TOUGE CTOIL					
Unemployment					
R squre	0.011362	0.0429	0.5603	0.604208	0.619465

Dependent Var	iables: Inte	erest rate	Sample	e size:660
Coefficient (P-value)				
	6	7	8	9
Constant	-0. 051711 (0. 8260)	0. 099322 (0. 6785)	-0. 02105 (0. 9268)	-0. 240119 (0. 2976)
Commodity price			-0. 008483 (0. 0016)	-0. 007501 (0. 0046)
Housing starts				-0. 02053 (0. 000)
Inflation	0. 838272 (0. 000)	0.890226 (0.000)	0. 837752 (0. 000)	0. 717527 (0. 000)
Personal Comsumption expenditure	0. 224317 (0. 000)	0. 147753 (0. 0142)	0. 221367 (0. 0001)	0. 340525 (0. 000)

Personal income	0.319872	0. 288959	0.284055	0. 240242
rersonal income	(0.000)	(0.000)	(0.000)	(0.0001)
D d+:	-0. 036942			
Production	(0.1327)			
Un ama l arm an t		0.072181		
Unemployment		(0. 2367)		
R squre	0.62078	0.620278	0.625227	0.637361

The model is

$$i_t = -0.0075cp_t - 0.02053hs_t + 0.71752\pi_t + 0.340525pce_t + 0.2402pi_t$$

 $p = (0.00460) \quad (0.00000) \quad (0.00000) \quad (0.00001)$
 $R^2 = 0.637361$

With i_t the Federal Fund interest rate, cp_t the Commodity price, hs_t the Housing starts, π_t the inflation rate, pce_t the Personal Consumption expenditure, pi_t the Personal income.

And the model is the same with the model in (a)

(c) Compare your model from (a) and the Taylor rule of equation (1). Consider \mathbb{R}^2 , AIC and BIC. Which of the models do you prefer?

Under the Taylor rule of equation (1), regressing the Federal fund interest rate on the inflation and the production.

$$i_t = 1.2489 + 0.974976\pi_t + 0.09472y_t$$

 $p = (0.0000) \quad (0.0000) \quad (0.0000)$
 $R^2 = 0.574701$

	Model from a	Model from Taylor
R^2	0. 637361	0. 574701
AIC	8.067125361	8. 217417887
BIC	8. 107963905	8. 237837159

After consider these three, I would prefer Model from a.

(d) Test the Taylor rule of equation (1) using the RESET test, Chow break and forecast test (with in both tests as break date January 1985) and a Jarque-Bera test. What do you conclude?

These test result are presented as follow:

Model from Taylor			
	Test statistic	p value	
RESET($\rho = 1$)	2. 53712	0. 1117	
Chow Break	6. 02903	0.0005	
Chow Forecast	0.896926	0.8378	
Jarque-Bera	12. 4404	0.001985	

From the result, we can conclude that the RESET test is not rejected, which means the model does not include square term. And the Chow Break test is rejected, which means the data have break. The Chow Forecast is not rejected, which means the data have no break. And finally, the Jarque-Bera test is not rejected, indicating that the residual is normal distribute.