BAYESIAN HIERARCHICAL MODELS

Linda Maokomatanda Tim Mensinger Markus Schick

University of Bonn

1. Bayesian Thinking

2. Hierarchical Models

3. Monte Carlo Study

4. Application

Bayesian Thinking

Bayes' Theorem

$$p(\theta \mid \text{data}) = \frac{p(\text{data} \mid \theta)p(\theta)}{p(\text{data})} \propto p(\text{data} \mid \theta)p(\theta)$$

Bayes' Theorem

$$p(\theta \mid \text{data}) = \frac{p(\text{data} \mid \theta)p(\theta)}{p(\text{data})} \propto p(\text{data} \mid \theta)p(\theta)$$

$$posterior = \frac{likelihood \times prior}{evidence} \propto likelihood \times prior$$

Setting: $\{y_i : i = 1, ..., n\}$ with $y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ and σ^2 known

Setting: $\{y_i : i = 1, ..., n\}$ with $y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ and σ^2 known

Likelihood: $p(y \mid \mu) = \prod_i p(y_i \mid \mu)$

```
Setting: \{y_i : i = 1, ..., n\} with y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2) and \sigma^2 known

Likelihood: p(y \mid \mu) = \prod_i p(y_i \mid \mu)

Prior: p(\mu)
```

```
Setting: \{y_i : i = 1, ..., n\} with y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2) and \sigma^2 known

Likelihood: p(y \mid \mu) = \prod_i p(y_i \mid \mu)

Prior: p(\mu)

Posterior: p(\mu \mid y) \propto p(y \mid \mu)p(\mu)
```

```
Setting: \{y_i : i = 1, ..., n\} with y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2) and \sigma^2 known

Likelihood: p(y \mid \mu) = \prod_i p(y_i \mid \mu)

Prior: p(\mu)

Posterior: p(\mu \mid y) \propto p(y \mid \mu)p(\mu)

Goal: Infer distribution of \mu \mid y
```

```
Setting: \{y_i : i = 1, ..., n\} with y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)
              and \sigma^2 known
Likelihood: p(y \mid \mu) = \prod_i p(y_i \mid \mu)
Prior: p(u)
Posterior: p(\mu \mid y) \propto p(y \mid \mu)p(\mu)
Goal: Infer distribution of \mu \mid \nu
         Why?
```

Let $\mu \sim \mathcal{N}\left(\mu_0, \sigma_0^2\right)$

Let $\mu \sim \mathcal{N}\left(\mu_0, \sigma_0^2\right)$ Then

$$p(\mu \mid y) \propto p(y \mid \mu)p(\mu)$$

Let
$$\mu \sim \mathcal{N}\left(\mu_0, \sigma_0^2\right)$$

Then
$$p(\mu \mid y) \propto p(y \mid \mu)p(\mu)$$
$$\propto \exp\left(\frac{-n}{2\sigma^2}(\mu - \bar{y})^2\right) \exp\left(\frac{-1}{2\sigma_0^2}(\mu - \mu_0)^2\right)$$

Let
$$\mu \sim \mathcal{N}\left(\mu_0, \sigma_0^2\right)$$

Then
$$p(\mu \mid y) \propto p(y \mid \mu)p(\mu)$$

$$\propto \exp\left(\frac{-n}{2\sigma^2}(\mu - \bar{y})^2\right) \exp\left(\frac{-1}{2\sigma_0^2}(\mu - \mu_0)^2\right)$$

$$\propto \exp\left(-\frac{1}{2\sigma_u^2}(\mu - \bar{\mu})^2\right)$$

Let
$$\mu \sim \mathcal{N} \left(\mu_0, \sigma_0^2\right)$$

Then
$$p(\mu \mid y) \propto p(y \mid \mu)p(\mu)$$

$$\propto \exp\left(\frac{-n}{2\sigma^2}(\mu - \bar{y})^2\right) \exp\left(\frac{-1}{2\sigma_0^2}(\mu - \mu_0)^2\right)$$

$$\propto \exp\left(-\frac{1}{2\sigma_\mu^2}(\mu - \bar{\mu})^2\right)$$

$$\implies \mu \mid y \sim \mathcal{N} \left(\bar{\mu}, \sigma_\mu^2\right)$$

$$\mu \mid y \sim \mathcal{N}\left(\bar{\mu}, \sigma_{\mu}^2\right)$$
 , with

$$\mu \mid y \sim \mathcal{N}\left(\bar{\mu}, \sigma_{\mu}^{2}\right)$$
, with
$$\sigma_{\mu}^{2} = \left(\frac{1}{\sigma^{2}/n} + \frac{1}{\sigma_{0}^{2}}\right)^{-1}$$

$$\mu \mid y \sim \mathcal{N}\left(\bar{\mu}, \sigma_{\mu}^{2}\right)$$
, with
$$\sigma_{\mu}^{2} = \left(\frac{1}{\sigma^{2}/n} + \frac{1}{\sigma_{0}^{2}}\right)^{-1}$$

$$\bar{\mu} = \sigma_{\mu}^{2} \left(\frac{1}{\sigma^{2}/n} \bar{y} + \frac{1}{\sigma_{0}^{2}} \mu_{0}\right)$$

$$\mu \mid y \sim \mathcal{N}\left(\bar{\mu}, \sigma_{\mu}^{2}\right), \text{ with}$$

$$\sigma_{\mu}^{2} = \left(\frac{1}{\sigma^{2}/n} + \frac{1}{\sigma_{0}^{2}}\right)^{-1}$$

$$\bar{\mu} = \sigma_{\mu}^{2} \left(\frac{1}{\sigma^{2}/n} \bar{\mathbf{y}} + \frac{1}{\sigma_{0}^{2}} \mu_{0}\right)$$

$$= \alpha \bar{\mathbf{y}} + (1 - \alpha) \mu_{0}$$

A normal model with known variance and no features, really?

Object of interest: $\theta \mid data$

Object of interest: $\theta \mid data$

Quantity of interest: $\mathbb{E}[h(\theta) \mid data] =: \mathbb{E}_{\theta}[h]$

```
Object of interest: \theta \mid \text{data}

Quantity of interest: \mathbb{E}\left[h(\theta) \mid \text{data}\right] =: \mathbb{E}_{\theta}[h]

Estimation: Let \theta^{(1)}, ..., \theta^{(n)} \stackrel{\text{iid}}{\sim} p(\theta \mid \text{data}), then
\frac{1}{\sqrt{n}} \left(\sum_{i} h(\theta^{(i)}) - \mathbb{E}_{\theta}[h]\right) \stackrel{\text{d}}{\longrightarrow} \mathcal{N}\left(0, \omega\right)
```

But how do we sample from $p(\theta \mid data)$?

But how do we sample from $p(\theta \mid \text{data})$? *Problems:* $p(\theta \mid \text{data})$ might be

But how do we sample from $p(\theta \mid \text{data})$? *Problems:* $p(\theta \mid \text{data})$ might be (*i.*) of unkown form

```
But how do we sample from p(\theta \mid \text{data})? 

Problems: p(\theta \mid \text{data}) might be

(i.) of unkown form

(ii.) very complex
```

```
But how do we sample from p(\theta \mid \text{data})? 

Problems: p(\theta \mid \text{data}) might be

(i.) of unkown form

(ii.) very complex

(iii.) only known up to an integration const.
```

Algorithm Metropolis-Hastings (1953, 1970)

```
Input: (\pi, q, T) = (\text{target, proposal, no. of samples})
 1: initialize x_0 in supp q
 2: for t = 0, ..., T do
           candidate: y \sim q(\cdot \mid x_t)
 4: acceptance prob.: \mathcal{A} \leftarrow \min \left\{ \frac{\pi(y)}{\pi(x_t)} \frac{q(y \mid x_t)}{q(x_t \mid y)}, 1 \right\}
         update: x_{t+1} \leftarrow \begin{cases} y & \text{,with prob. } A \\ x_t & \text{,with remaining prob.} \end{cases}
 6: return \{x_t : t = 1, ..., T\}
```


Hierarchical Models

Structure of HM - Setup

Hierarchical Data:

Structure of HM - Setup

Hierarchical Data:

Individual Level: (y_i, x_i) for i = 1, ..., n

Structure of HM - Setup

Hierarchical Data: Individual Level: (y_i, x_i) for i = 1, ..., nGroup Level: u_i for j = 1, ..., J

Structure of HM - Setup

```
Hierarchical Data:
    Individual Level: (y_i, x_i) for i = 1, ..., n
    Group Level: u_i for j = 1, ..., J
Example:
    Test Outcome: y_i
    Parental Income: x_i
    Num. of Teachers: u_i
```

Structure of HM

The Prior Revisited

```
Before: Model: p(\text{data} \mid \theta)
```

Prior: $p(\theta)$

The Prior Revisited

```
Before:
     Model: p(\text{data} \mid \theta)
     Prior: p(\theta)
Now:
     Model: p(\text{data} \mid \theta, \phi) = p(\text{data} \mid \theta)
     Prior: p(\theta \mid \phi)
     Hyperprior: p(\phi)
```

The Posterior Revisited

Posterior:

$$p(\theta, \phi \mid \text{data}) \propto p(\text{data} \mid \theta)p(\theta, \phi)$$

The Posterior Revisited

Posterior:

$$p(\theta, \phi \mid \text{data}) \propto p(\text{data} \mid \theta)p(\theta, \phi)$$

 $\propto p(\text{data} \mid \theta)p(\theta \mid \phi)p(\phi)$

The Posterior Revisited

Posterior:

$$p(\theta, \phi \mid \text{data}) \propto p(\text{data} \mid \theta)p(\theta, \phi)$$

$$\propto p(\text{data} \mid \theta)p(\theta \mid \phi)p(\phi)$$

$$p(\phi \mid \text{data}) \propto \int p(\theta, \phi \mid \text{data})d\theta$$

Setup: Individual *i* in group *j*

Setup: Individual *i* in group *j Individual Level*: $y_i = \alpha_{j[i]} + \beta_{j[i]} x_i + \epsilon_i$

Setup: Individual i in group jIndividual Level: $y_i = \alpha_{j[i]} + \beta_{j[i]} x_i + \epsilon_i$ Group Level: $\begin{bmatrix} \alpha_j \\ \beta_i \end{bmatrix} = \gamma_0 + \gamma u_j + \eta_j$

Setup: Individual i in group jIndividual Level: $y_i = \alpha_{j[i]} + \beta_{j[i]} x_i + \epsilon_i$ Group Level: $\begin{bmatrix} \alpha_j \\ \beta_j \end{bmatrix} = \gamma_0 + \gamma u_j + \eta_j$ Priors on: $\gamma_0, \gamma, \epsilon_i, \eta_i$

Setup: Individual i in group jIndividual Level: $y_i = \alpha_{j[i]} + \beta_{j[i]} x_i + \epsilon_i$ Group Level: $\begin{bmatrix} \alpha_j \\ \beta_j \end{bmatrix} = \gamma_0 + \gamma u_j + \eta_j$ Priors on: $\gamma_0, \gamma, \epsilon_i, \eta_i$

Monte Carlo Study

Stan

What is Stan? C++ package (fast run times)

Stan

What is Stan? C++ package (fast run times)
Use cases: Bayesian/Maximum Likelihood
estimation of statistical models

Stan

What is Stan? C++ package (fast run times)
Use cases: Bayesian/Maximum Likelihood
estimation of statistical models
Interfaces: Pystan, Rstan, Stan.jl,...

$$y_i = \alpha + \beta_{j[i]} x_i + \epsilon_i$$
,
 $\epsilon \sim \mathcal{N}(0, 1)$

$$y_i = \alpha + \beta_{j[i]} x_i + \epsilon_i$$
,
 $\epsilon \sim \mathcal{N}(0, 1)$
 $\beta_j = \gamma_0 + \gamma_1 u_j + \eta_j$,
 $\eta \sim \mathcal{N}(0, 1)$

```
\begin{array}{ll} y_i = \alpha + \beta_{j[i]} x_i + \epsilon_i \,, & \text{data } \{ \\ \text{vector [N]} \ \ y; \\ \epsilon \sim \mathcal{N} \ (0,1) & \text{vector [N]} \ \ x; \\ \text{vector [N]} \ \ u; \\ \text{vector [N]} \ \ u; \\ \text{vector [N]} \ \ u; \\ \text{int < lower = 0 > } \ \ J; \\ \text{int < lower = 0 > } \ \ N; \\ \text{int < lower = 1, upper = J > } \\ \text{group [N]}; \end{array}
```

```
\begin{array}{ll} y_i = \alpha + \beta_{j[i]} x_i + \epsilon_i \,, & \text{parameter } \{ \\ \epsilon \sim \mathcal{N} \left( 0, 1 \right) & \text{real alpha} \,; \\ \beta_j = \gamma_0 + \gamma_1 u_j + \eta_j \,, & \text{real gamma\_1} \,; \\ \eta \sim \mathcal{N} \left( 0, 1 \right) & \text{vector[J] eta\_b} \,; \\ \eta \sim \mathcal{N} \left( 0, 1 \right) & \text{real < lower=0} > \text{sigma\_b} \,; \\ \end{array}
```

```
model
                                      for (i in 1:N) {
y_i = \alpha + \beta_{i[i]} x_i + \epsilon_i,
                                         beta[i] = gamma_0 +
                                                 u[i] * gamma_1 +
\epsilon \sim \mathcal{N}\left(0,1\right)
                                                     eta[group[i]]
\beta_i = \gamma_0 + \gamma_1 u_i + \eta_i,
                                         y_hat[i] = alpha +
                                                x[i] * beta[i];
\eta \sim \mathcal{N}\left(0,1\right)
                                         ~ normal(
                                                y_hat , sigma_y );
```

```
\begin{aligned} y_i &= \alpha + \beta_{j[i]} x_i + \epsilon_i \,, \\ &\epsilon \sim \mathcal{N} \left( 0, 1 \right) & \text{gamma}_0 \sim \text{normal} \left( 1 \,, \, 1 \right) \,; \\ \beta_j &= \gamma_0 + \gamma_1 u_j + \eta_j \,, \\ \eta \sim \mathcal{N} \left( 0, 1 \right) & \text{sigma}_y \sim \text{cauchy} \left( 0 \,, \, 5 \right) \,; \\ \text{sigma}_b \sim \text{cauchy} \left( 0 \,, \, 5 \right) \,; \end{aligned}
```

How can we be sure that we sample from the right distribution?

How can we be sure that we sample from the right distribution?

How can we be sure that we sample from the right distribution?

Variance of a single chain:

$$s_m^2 = \frac{1}{N-1} \sum_{n=1}^{N} (\theta_m^{(n)} - \overline{\theta}_m)^2$$

Average within chain variance:

$$W = \frac{1}{M} \sum_{m=1}^{M} s_m^2$$

Brooks and Gelman convergence criterium

Average Variance between chains:

$$B/N = \frac{1}{M-1} \sum_{m=1}^{M} (\overline{\theta}_m - \overline{\theta})^2$$

Brooks and Gelman convergence criterium

Average Variance between chains:

$$B/N = \frac{1}{M-1} \sum_{m=1}^{M} (\overline{\theta}_m - \overline{\theta})^2$$

Total Variance:

$$\widehat{\operatorname{Var}}^+(\theta \mid y) = \frac{N-1}{N}W + \frac{1}{N}B$$

Scale Reducing Factor:

$$\widehat{R} = \sqrt{\frac{\widehat{\text{Var}}^+(\theta \mid y)}{W}}$$

Scale Reducing Factor:

$$\widehat{R} = \sqrt{\frac{\widehat{\text{Var}}^+(\theta \mid y)}{W}}$$

Scale Reducing Factor:

$$\widehat{R} = \sqrt{\frac{\widehat{\text{Var}}^+(\theta \mid y)}{W}}$$

Good Prior: $\gamma_0 \sim \mathcal{N}(1,1)$, $\gamma_1 \sim \mathcal{N}(1,1)$

Good Prior: $\gamma_0 \sim \mathcal{N}\left(1,1\right)$, $\gamma_1 \sim \mathcal{N}\left(1,1\right)$

Bad Prior: $\gamma_0 \sim \mathcal{N}\left(2,1\right)$, $\gamma_1 \sim \mathcal{N}\left(2,1\right)$

Good Prior: $\gamma_0 \sim \mathcal{N}(1,1)$, $\gamma_1 \sim \mathcal{N}(1,1)$

Bad Prior: $\gamma_0 \sim \mathcal{N}\left(2,1\right)$, $\gamma_1 \sim \mathcal{N}\left(2,1\right)$

Weak, Bad Prior: $\gamma_0 \sim \mathcal{N}\left(2,3\right)$, $\gamma_1 \sim \mathcal{N}\left(2,3\right)$

Good Prior: $\gamma_0 \sim \mathcal{N}(1,1)$, $\gamma_1 \sim \mathcal{N}(1,1)$

Bad Prior: $\gamma_0 \sim \mathcal{N}\left(2,1\right)$, $\gamma_1 \sim \mathcal{N}\left(2,1\right)$

Weak, Bad Prior: $\gamma_0 \sim \mathcal{N}\left(2,3\right)$, $\gamma_1 \sim \mathcal{N}\left(2,3\right)$

Flat Prior: $\gamma_0 \sim \mathcal{U}(-\infty, \infty)$, $\gamma_1 \sim \mathcal{U}(-\infty, \infty)$

Good Prior: $\gamma_0 \sim \mathcal{N}(1,1)$, $\gamma_1 \sim \mathcal{N}(1,1)$

Bad Prior: $\gamma_0 \sim \mathcal{N}\left(2,1\right)$, $\gamma_1 \sim \mathcal{N}\left(2,1\right)$

Weak, Bad Prior: $\gamma_0 \sim \mathcal{N}\left(2,3\right)$, $\gamma_1 \sim \mathcal{N}\left(2,3\right)$

Flat Prior: $\gamma_0 \sim \mathcal{U}(-\infty, \infty)$, $\gamma_1 \sim \mathcal{U}(-\infty, \infty)$

In all models: σ_v , $\sigma_b \sim \text{half-Cauchy}(0,5)$

Posterior Distribution - good prior

Figure: Posterior Draws of γ_1 with N=200, J=10 and 300 simulations

What happense if we decrease the number of levels *[*?

Figure: Posterior Draws of γ_1 with N=50, J=5 and 300 simulations

Posterior Distribution - bad prior

Figure: Posterior Draws of γ_1 with N=200, J=10 and 300 simulations

Posterior Distribution - weak, bad prior

Figure: Posterior Draws of γ_1 with N=200, J=10 and 150 simulations

Not a good idea: Uniform Prior

Figure: Posterior Draws of γ_1 with N=200, J=10 and 300 simulations

Increase sample size dramatically

Figure: Single posterior draw for model with wrong prior and N=500, I=50

Application

The Data

Description: General Certificate of Secondary Education (GCSE) exam scores of 1,905 students from 73 schools in England on a science subject

Variables of interest: school identifier, student identifier, gender, total score on written paper and total score of course work.

ML and Bayesian Approach Application

Comparison

The model: Varying intercept and slope model with a single predictor

$$y_i = \alpha_{j[i]} + \beta_{j[i]} x_i + \epsilon_i, \tag{1}$$

$$\alpha_j = \mu_\alpha + \mu_j, \tag{2}$$

$$\beta_j = \mu_\beta + v_j, \tag{3}$$

$$y_i = \mu_{\alpha} + \mu_{\beta} x_i + u_{j[i]} + v_{j[i]} x_i + \epsilon_i$$
 (4)

Comparison

Maximum Likelihood (ML) Estimation

Package: lmer

The Imer Package: combines of ML estimation of model parameters and empirical Bayes (EB) predictions of the varying intercepts and/or slopes resulting in the Best Linear Unbiased Predictions (BLUPs) of the model parameters.

Why *lmer*?? allows for comparison between parameter estimates

Comparison

Bayesian Estimation:

Advantage: accounts for all uncertainty in the parameter estimates when predicting the varying slopes/intercepts and their associated uncertainty

Package: stan

Priors: weekly informative normally distributed priors for hyperparameters

Results

Dependent variable: Course test score			
	ML	Bayes	(i.) point estimates
A. Random effects Intercept	- (10.146)	- (10.249)	almost the same
Female	(10.140) - (6.924)	(7.099)	(ii.) Bayes standard deviations for
B. Fixed effects			random effects may
Intercept	69.425 (1.352)	69.413 (1.287)	be higher because ML does not take
Female	7.128 (1.131)	7.132 (1.165)	into account the
			uncertainty in μ_{α}
N Students	1725	1725	when estimating σ_{α}
Schools	73	73	32/37

School specific regression lines and pooling:

Bayesian Approach: Further Analysis
Application

Posterior distribution ranking:

Making comparisons between individual schools:

Convergence

Convergence

https://github.com/timmens/

bayesian-hierarchical-models

http://mfviz.com/hierarchical-models/