楕円型正則性

みつば (@mittlear1)

2021年3月15日

目次

1	微分作用素	3
1.1	微分作用素の定義・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
1.2	主表象	3
1.3	形式的随伴作用素	3
2	Sobolev 空間	4
2.1	Euclid 空間上の Sobolev 空間	4
2.2	コンパクト多様体上の Sobolev 空間	5
3	擬微分作用素	7
3.1	擬微分作用素の定義	7
3.2	表象の漸近展開・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
3.3	楕円性	8
4	精円型正則性	9
4.1	局所正則性	9
4.2	大域正則性	9
5	Hodge 分解	10

記法

№:0以上の整数全体.

 $C^{\infty}(\mathbb{R}^{(\cdot,\mathbb{C}^M)},N)C^{\infty}(M,N):M$ から N への C^{∞} 級写像全体.

 $C_c^\infty(M)$: コンパクト台を持つ M 上の C^∞ 級関数全体.

 $\mathcal{S}(\mathbb{R}^n,C^m)$: \mathbb{R}^n 上の \mathbb{C}^m 値の Schwartz の急減少関数全体.

- 1 微分作用素
- 1.1 微分作用素の定義
- 1.2 主表象
- 1.3 形式的随伴作用素

2 Sobolev 空間

2.1 Euclid 空間上の Sobolev 空間

 (\cdot,\cdot) を \mathbb{C}^m 上の標準的な Hermite 計量とする.

定義 2.1 $f,g \in \mathcal{S}(\mathbb{R}^n,\mathbb{C}^m)$ および $s \in \mathbb{R}$ に対して

$$\langle f, g \rangle_s = \int \underbrace{\mathbb{R}_{\mathbb{R}^n}^n}_{\mathbb{R}^n} (\hat{f}(\xi), \hat{g}(\xi)) (1 + |\xi|)^{2s} d\xi$$

で内積 $\langle \cdot, \cdot \rangle_s$ を定め,ここからできるノルム $\|\cdot\|_{\mathbb{R}}$ による $\mathcal{S}(\mathbb{R}^n, \mathbb{C}^m)$ の完備化を $L^2_s(\mathbb{R}^n, \mathbb{C}^m)$ と書き,s 次の Sobolev 空間という.

各 $s\in\mathbb{R}$ において $\mathcal{S}(\mathbb{R}^n,\mathbb{C}^m)$ から $L^2_s(\mathbb{R}^n,\mathbb{C}^m)$ への自然な単射がある.これによって $\mathcal{S}(\mathbb{R}^n,\mathbb{C}^m)$ を $L^2_s(\mathbb{R}^n,\mathbb{C}^m)$ の部分集行

補題 2.2 f に対して $\hat{f}(\xi)(1+|\xi|)^s$ を対応させることでできる $\mathcal{S}(\mathbb{R}^n,\mathbb{C}^m)$ から $L^2(\mathbb{R}^n,\mathbb{C}^m)$ への線型写像は $L^2_s(\mathbb{R}^n,\mathbb{C}^m)$ から $L^2(\mathbb{R}^n,\mathbb{C}^m)$ への Hilbert 空間としての同型写像に一意的に延長される.

命題 2.3 $C_c^{\infty}(\mathbb{R}^n, \mathbb{C}^m)$ は $L_s^2(\mathbb{R}^n, \mathbb{C}^m)$ の中で稠密である.

命題 2.4 $s > t \in \mathbb{R}$ とする. $\mathcal{S}(\mathbb{R}^n, \mathbb{C}^m)$ からそれ自身への恒等写像は有界線型写像

$$\iota_{st} \colon L^2_s(\mathbb{R}^n, \mathbb{C}^m) \to L^2_t(\mathbb{R}^n, \mathbb{C}^m)$$

を誘導し、 ι_{st} は単射である.

定義 2.5 位相線形空間 $L^2_{\infty}(\mathbb{R}^n,\mathbb{C}^m)$ を

$$L^2_{\infty}(\mathbb{R}^n,\mathbb{C}^m) = \varprojlim_{s \in \mathbb{R}} L^2_s(\mathbb{R}^n,\mathbb{C}^m)$$

で定める. 命題 2.4 より、自然な写像 $\iota_s\colon L^2_\infty(\mathbb{R}^n,\mathbb{C}^m)\to L^2_s(\mathbb{R}^n,\mathbb{C}^m)$ は単射である.

定義 2.6 $s \in \mathbb{N}$ のとき、 $f \in \mathcal{S}(\mathbb{R}^n, \mathbb{C}^m)$ に対して $\|f\|_{W^{s,2}}$ を

$$||f||_{W^{s,2}}^2 = \sum_{|\alpha| \le s} ||\partial^{\alpha} f||_{L^2}^2$$

で定める. これは $S(\mathbb{R}^n,\mathbb{C}^m)$ 上のノルムである.

命題 2.7 $s \in \mathbb{N}$ のとき、 $S(\mathbb{R}^n, \mathbb{C}^m)$ 上のノルムとして $\|\cdot\|_s$ と $\|\cdot\|_{W^{s,2}}$ は同値である.

命題 2.8 $\phi \in \mathcal{S}(\mathbb{R}^n, \mathbb{C})$ に対して $M_{\phi} \colon \mathcal{S}(\mathbb{R}^n, \mathbb{C}^m) \to \mathcal{S}(\mathbb{R}^n, \mathbb{C}^m)$ を

$$M_{\phi}f = \phi f$$

で定めると、これは $L^2_{\mathfrak{o}}(\mathbb{R}^n,\mathbb{C}^m)$ からそれ自身への有界線型写像に延長される.

命題 2.9 $(\cdot,\cdot)_{L^2}$: $\mathcal{S}(\mathbb{R}^n,\mathbb{C}^m) \times \mathcal{S}(\mathbb{R}^n,\mathbb{C}^m) \to \mathbb{C}$ を

$$(f,g)_{L^2} = \int_{\mathbb{D}_n} (f(x), g(x)) dx$$

で定めると, $(\cdot,\cdot)_{L^2}$ は任意の $s\in\mathbb{R}$ で連続な sesqui-linear form

$$(\cdot,\cdot)_{L^2}^s : L_s^2(\mathbb{R}^n,\mathbb{C}^m) \times L_s^2(\mathbb{R}^n,\mathbb{C}^m) \to \mathbb{C}$$

を定める. また, 任意の $f \in L^2_s(\mathbb{R}^n, \mathbb{C}^m)$ について

$$||f||_s = \sup_{g \in \mathcal{S}(\mathbb{R}^n, \mathbb{C}^m) \setminus 0} \frac{|(f, g)_{L^2}^s|}{||g||_{-s}}$$

が成立する.

定義 2.10 (1) $k \in \mathbb{N}$ に対して $C_0^k(\mathbb{R}^n, \mathbb{C}^m)$ を, C^k 級関数 $f: \mathbb{R}^n \to \mathbb{C}^m$ であって

$$|\alpha| \le k \Rightarrow \lim_{|x| \to \infty} |\partial^{\alpha} f| = 0$$

をみたすもの全体のなすベクトル空間とする.また, $C^k_0(\mathbb{R}^n,\mathbb{C}^m)$ 上のノルム $\|\cdot\|_{C^k_0}$ を

$$||f||_{C_0^k} = \sum_{|\alpha| \le k} \sup_{x \in \mathbb{R}^n} |\partial^{\alpha} f|$$

で定める.

(2) $C_0^{\infty}(\mathbb{R}^n, \mathbb{C}^m)$ \mathcal{E}

$$C_0^{\infty}(\mathbb{R}^n, \mathbb{C}^m) = \bigcap_{k \in \mathbb{N}} C_0^k(\mathbb{R}^n, \mathbb{C}^m)$$

で定め、すべての $k \in \mathbb{N}$ で $C_0^\infty(\mathbb{R}^n, \mathbb{C}^m) \to C_0^k(\mathbb{R}^n, \mathbb{C}^m)$ が連続となる最弱の位相を入れる.

命題 2.11 $C_0^k(\mathbb{R}^n,\mathbb{C}^m)$ は $\|\cdot\|_{C_0^k}$ によって Banach 空間になる.

定理 2.12(Sobolev の埋め込み定理) $k \in \mathbb{N}, \ s > k + n/2$ のとき,自然な包含 $\mathcal{S}(\mathbb{R}^n, \mathbb{C}^m) \to C_0^k(\mathbb{R}^n, \mathbb{C}^m)$ は単射有界線型写像

$$\eta_{sk} \colon L^2_s(\mathbb{R}^n, \mathbb{C}^m) \to C^k_0(\mathbb{R}^n, \mathbb{C}^m)$$

へと一意的に延長される.

系 2.13 $L^2_\infty(\mathbb{R}^n,\mathbb{C}^m)$ から $C^\infty_0(\mathbb{R}^n,\mathbb{C}^m)$ への単射連続線型写像 η であって, $\frac{\eta_{sk}}{\eta_{sk}}$ $\frac{l}{s} > \frac{l}{k+n/2}$ たちと整合的なものがただ一つ存在する.

定義 2.14 \mathbb{R}^n の開集合 U に対して $L^2(U,\mathbb{C}^m)$ を $C^\infty(U,\mathbb{C}^m)$ の $L^2(\mathbb{R}^n,\mathbb{C}^m)$ での閉包で定義する.

定理 2.15 (Rellich の補題) U を \mathbb{R}^n の相対コンパクト開集合とする. s>t のとき,包含 $\iota_{st}\colon L^2_s(U,\mathbb{C}^m)\to L^2_t(U,\mathbb{C}^m)$ はコン

2.2 コンパクト多様体上の Sobolev 空間

本節では,M を n 次元コンパクト多様体,E を M 上の階数 m の複素ベクトル束とする.2.1 節で考察したことをコンパク

定義 2.16 (U, κ, τ) が E の total trivialization であるとは、 (U, κ) が M のチャートであり、 (U, τ) が E の局所自明化である

 $E \perp o$ Sobolev 空間を定義するため、まずは $\Gamma(E)$ 上の内積を定義する。E の total trivialization からなる有限族 $\{(U_i,\kappa_i,\tau_i)\}_{1\leq i\leq N}$ を $\{(U_i)\}$ が M の開被覆となるようにとり、 U_i に従属する 1 の分割 $\{\phi_i\}$ をとる。さらに

を, $f \in \Gamma(E)$, $x \in \kappa_i(U_i)$ に対して

$$(x, \sigma_i(f)(x)) = \tau_i(f(\kappa_i^{-1}(x))) \in U_i \times \mathbb{C}^m$$

をみたすように定める. 以上のデータを用いて、 $s\in\mathbb{Z}$ に対して $\langle\cdot,\cdot\rangle_s^E\colon\Gamma(E)\times\Gamma(E)\to\mathbb{C}$ を

$$\langle f, g \rangle_s^E = \sum_{1 \le i \le N} \langle \sigma_i(\phi_i f), \sigma_i(\phi_i g) \rangle_s$$

で定め、この内積が定めるノルムを $\|\cdot\|_s^E$ と書く、

命題 2.17 $s \in \mathbb{Z}$ のとき、 $\|\cdot\|_s^E$ の同値類は (U_i, κ_i, τ_i) および ϕ_i のとり方によらない.

定義 2.18 $s \in \mathbb{Z}$ について, $\Gamma(E)$ の $\|\cdot\|_s^E$ (と同値なノルム) による完備化を $L_s^2(E)$ と書き,E 上の s 次の Sobolev 空間という 2.1 節のときと同様に,各 $s \in \mathbb{Z}$ に対して $\Gamma(E)$ は $L_s^2(E)$ の部分集合とみなすことにする.

以下、本節では $\{U_i, \kappa_i, \tau_i\}$ と $\{\phi_i\}$ を 1 つ固定し、各 $s \in \mathbb{Z}$ に対して $\langle \cdot, \cdot \rangle_s$ をこれらのデータからできる内積とする.

3 擬微分作用素

3.1 擬微分作用素の定義

定義 3.1 $d \in \mathbb{R}$ とする. $p(x,\xi): \mathbb{R}^n \times \mathbb{R}^n \to \operatorname{Hom}(C^{m_1},\mathbb{C}^{m_1})$ が次数 d の表象 (symbol) であるとは、次の条件をすべてみが

- (1) p は C^{∞} 級である.
- (2) 任意の $\alpha, \beta \in \mathbb{N}^n$ に対して定数 $C_{\alpha\beta}$ が存在して

$$\forall (x,\xi) \in \mathbb{R}^n \times \mathbb{R}^n \quad \|D_x^{\alpha} D_{\xi}^{\beta} p(s,\xi)\| \le C_{\alpha\beta} (1+|\xi|)^{d-|\xi|}$$

をみたす. ここで $\|\cdot\|$ は $\operatorname{Hom}(\mathbb{C}^{m_1},\mathbb{C}^{m_2})$ の作用素ノルムである.

次数 d の表象全体のなすベクトル空間を $S^d = S^d(m_1, m_2)$ と書き、

$$S^{\infty} = \bigcup_{d \in \mathbb{R}} S^d, \quad S^{-\infty} = \bigcap_{d \in \mathbb{R}} S^d$$

とおく.

 $p\in S^d$ とする. このとき、 $f\in C^\infty_c(\mathbb{R}^n,\mathbb{C}^{m_1})$ に対して $\Psi_pf\in C^\infty(\mathbb{R}^n,\mathbb{C}^{m_2})$ が

$$\Psi_p f(x) = \int_{\mathbb{R}}^n e^{ix\xi} p(x,\xi) \hat{f}(\xi) dxi$$

で定まる.

定義 3.2 $\Psi_p: C^{\infty}(\mathbb{R}^n, \mathbb{C}^{m_1}) \to C^{\infty}(\mathbb{R}^n, \mathbb{C}^{m_1})$ を p の定める d 次の擬微分作用素 (pseudo-diffirential operator) という。d 次の擬微分作用素全体のなすベクトル空間を Ψ^d と書き,

$$\Psi^{\infty} = \bigcup_{d \in \mathbb{R}} \Psi^d, \quad \Psi^{-\infty} = \bigcap_{d \in \mathbb{R}} \Psi^d$$

とおく.

補題 3.3 p に Ψ_p を対応させる線型写像 $S^d \to \Psi^d$ は全単射である.

定義 3.4 $\sigma: \Psi^d \to S^d$ を補題 3.3の全単射の逆写像とし、全表象写像という.

命題 3.5 $p \in S^d$ ex 方向の台がコンパクトな表象とする.このとき,任意の $s \in \mathbb{R}$ で Ψ_n は $L^2_s(\mathbb{R}^n, \mathbb{C}^{m_1})$ から $L^2_{s-d}(\mathbb{R}^n, \mathbb{C}^{m_2})$ への有界線型写像に一意的に延長できる.

証明のため、今後繰り返し使うことになる基本的な不等式を導入する.

補題 3.6 (Peetre の不等式) 任意の $x,y \in \mathbb{R}^n$, $s \in \mathbb{R}$ に対して

$$(1+|x+y|)^s \le (1+|x|)^{|s|}(1+|y|)^s$$

が成立する.

- 3.2 表象の漸近展開
- 3.3 楕円性

- 4 楕円型正則性
- 4.1 局所正則性
- 4.2 大域正則性

5 Hodge 分解

参考文献

- [1] M. Audin and M. Damian, Morse theory and Floer homology, Springer, 2014.
- [2] R. Bott and L. W. Tu, Differential forms in Algebraic Topology, Springer, 1982.
- [3] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
- [4] J. M. Lee, Introduction to Smooth Manifolds, Springer, 2000.
- [5] J. Milnor, Morse theory, Princeton University Press, 1963.
- [6] 今野宏,『微分幾何学』, 東京大学出版会, 2013.