$$\frac{\partial \left(\nabla \left(1 - \frac{dk}{dk} \right) \right) \int \frac{dk}{dp} k_r \left(\frac{kr_1}{e^{kr_1}} \right)}{dp} = 0$$

$$\frac{\partial \left((1 - \frac{dk}{dk}) \right) \left(\frac{dk}{dp} \right)^{\frac{dk}{dp}} k_r \left(\frac{kr_1}{e^{kr_1}} \right)}{2 \int k_r \left(\frac{kr_1}{e^{kr_1}} \right)} + \frac{\partial \left(\frac{dk}{dp} \right) \int \frac{dk}{dp} k_r \left(\frac{kr_1}{e^{kr_1}} \right)}{2 \int k_r \left(\frac{e^{kr_1}}{e^{kr_1}} \right)} + \frac{dk}{e^{kr_1} k_r \left(\frac{kr_1}{e^{kr_1}} \right)} = 0$$

$$\frac{\partial \left(\frac{dk}{dp} \right)^{\frac{dk}{dp}} \left(\frac{\left(1 - \frac{dk}{e^{kr_1}} \right) \left(\frac{e^{kr_1} + kr_1 e^{kr_1}}{2 \int k_r \left(\frac{e^{kr_1}}{e^{kr_1}} \right)} \right)}{2 \int k_r \left(\frac{e^{kr_1}}{e^{kr_1}} \right)} = 2k_r + e^{k_r \left(\frac{kr_1}{e^{kr_1}} \right) - 1}$$

$$\frac{\partial \left(\frac{dk}{dkr_1} \right)^{\frac{dk}{dp}} \left(\frac{dk}{e^{kr_1}} \right) \left(\frac{e^{kr_1}}{2 \int k_r \left(\frac{e^{kr_1}}{e^{kr_1}} \right)} \right)}{2 \int k_r \left(\frac{dk}{e^{kr_1}} \right)} = 2k_r + e^{k_r \left(\frac{kr_1}{e^{kr_1}} \right) - 1}$$

$$\frac{\partial \left(\frac{dk}{dkr_1} \right)^{\frac{dk}{dp}} \left(\frac{dk}{e^{kr_1}} \right)}{2 \int k_r \left(\frac{e^{kr_1}}{e^{kr_1}} \right)} = 2k_r + e^{k_r \left(\frac{kr_1}{e^{kr_1}} \right) - 1}$$

$$\frac{\partial \left(\frac{dk}{dkr_1} \right)^{\frac{dk}{dp}} \left(\frac{dk}{e^{kr_1}} \right)}{2 \int k_r \left(\frac{e^{kr_1}}{e^{kr_1}} \right)} = 2k_r + e^{k_r \left(\frac{kr_1}{e^{kr_1}} \right)} + e^{k_r \left(\frac{kr_1}{e^{kr_1}} \right)}$$

$$\frac{\partial \left(\frac{dk}{e^{kr_1}} \right)^{\frac{dk}{dr_1}} \left(\frac{dk}{e^{kr_1}} \right)^{\frac{dk}{dr_1}} \left(\frac{dk}{e^{kr_1}} \right)}{2 \int k_r \left(\frac{e^{kr_1}}{e^{kr_1}} \right)} = 2k_r + e^{k_r \left(\frac{kr_1}{e^{kr_1}} \right)} + e^{k_r \left(\frac{kr_1}{e^{kr_1}} \right)}$$

$$\frac{\partial \left(\frac{dk}{e^{kr_1}} \right)^{\frac{dk}{dr_1}} \left(\frac{dk}{e^{kr_1}} \right)^{\frac{dk}{dr_1}} \left(\frac{dk}{e^{kr_1}} \right)^{\frac{dk}{dr_1}} \left(\frac{dk}{e^{kr_1}} \right) + e^{k_r \left(\frac{kr_1}{e^{kr_1}} \right)} \right)}{2 \int k_r \left(\frac{dk}{e^{kr_1}} \right)^{\frac{dk}{dr_1}} \left(\frac{dk}{e^{kr_1}} \right)^{\frac{dk}{dr_1}}$$