$9_{18} (K9a_{24})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{20} + u^{19} + \dots + 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 20 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{20} + u^{19} + 9u^{18} + 8u^{17} + 33u^{16} + 26u^{15} + 60u^{14} + 42u^{13} + 48u^{12} + 31u^{11} - 3u^{10} + 2u^9 - 25u^8 - 10u^7 - 2u^6 - 4u^5 + 9u^4 + u^3 + u^2 + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{7} + 2u^{5} - 2u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{14} + 5u^{12} + 8u^{10} + u^{8} - 8u^{6} - 4u^{4} + 2u^{2} + 1 \\ -u^{14} - 6u^{12} - 13u^{10} - 10u^{8} + 2u^{6} + 4u^{4} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{8} - 3u^{6} - 3u^{4} + 1 \\ -u^{10} - 4u^{8} - 5u^{6} + 3u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{8} - 3u^{6} - 3u^{4} + 1 \\ -u^{10} - 4u^{8} - 5u^{6} + 3u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{18} - 4u^{17} - 32u^{16} - 28u^{15} - 104u^{14} - 76u^{13} - 164u^{12} - 92u^{11} - 104u^{10} - 32u^9 + 28u^8 + 20u^7 + 60u^6 + 4u^5 + 4u^4 - 8u^3 - 16u^2 + 4u - 14$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{20} - u^{19} + \dots + 3u^2 - 1$
c_2, c_9	$u^{20} + 7u^{19} + \dots + 6u + 1$
c_3, c_4, c_7	$u^{20} - u^{19} + \dots - 2u - 1$
c_5, c_8	$u^{20} + u^{19} + \dots - 4u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{20} - 7y^{19} + \dots - 6y + 1$
c_2, c_9	$y^{20} + 13y^{19} + \dots - 6y + 1$
c_3, c_4, c_7	$y^{20} + 17y^{19} + \dots - 6y + 1$
c_5, c_8	$y^{20} - 11y^{19} + \dots - 6y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.274747 + 1.069600I	1.26889 - 2.13456I	-8.50898 + 2.16962I
u = -0.274747 - 1.069600I	1.26889 + 2.13456I	-8.50898 - 2.16962I
u = -0.773104 + 0.153161I	-1.48284 + 6.07240I	-11.45285 - 5.87540I
u = -0.773104 - 0.153161I	-1.48284 - 6.07240I	-11.45285 + 5.87540I
u = -0.772326	-5.55788	-16.4400
u = 0.198534 + 1.239650I	2.76418 - 2.16136I	-4.73748 + 3.31855I
u = 0.198534 - 1.239650I	2.76418 + 2.16136I	-4.73748 - 3.31855I
u = 0.692333 + 0.156175I	-0.324511 - 0.815726I	-9.67172 + 1.07888I
u = 0.692333 - 0.156175I	-0.324511 + 0.815726I	-9.67172 - 1.07888I
u = -0.327541 + 1.260030I	-1.65658 + 3.96853I	-11.89349 - 3.79787I
u = -0.327541 - 1.260030I	-1.65658 - 3.96853I	-11.89349 + 3.79787I
u = 0.201509 + 0.663357I	1.66654 - 2.35832I	-6.35225 + 4.49783I
u = 0.201509 - 0.663357I	1.66654 + 2.35832I	-6.35225 - 4.49783I
u = 0.295567 + 1.352050I	4.43062 - 4.43308I	-4.68370 + 2.52728I
u = 0.295567 - 1.352050I	4.43062 + 4.43308I	-4.68370 - 2.52728I
u = -0.328206 + 1.357610I	3.28242 + 10.05770I	-6.70834 - 7.26612I
u = -0.328206 - 1.357610I	3.28242 - 10.05770I	-6.70834 + 7.26612I
u = 0.022410 + 1.403750I	7.97473 - 2.84648I	-2.39002 + 2.97861I
u = 0.022410 - 1.403750I	7.97473 + 2.84648I	-2.39002 - 2.97861I
u = 0.358818	-0.680181	-14.7620

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{20} - u^{19} + \dots + 3u^2 - 1$
c_2, c_9	$u^{20} + 7u^{19} + \dots + 6u + 1$
c_3, c_4, c_7	$u^{20} - u^{19} + \dots - 2u - 1$
c_5, c_8	$u^{20} + u^{19} + \dots - 4u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{20} - 7y^{19} + \dots - 6y + 1$
c_2, c_9	$y^{20} + 13y^{19} + \dots - 6y + 1$
c_3, c_4, c_7	$y^{20} + 17y^{19} + \dots - 6y + 1$
c_5, c_8	$y^{20} - 11y^{19} + \dots - 6y + 1$