Morley sequences and the order property

Advanced Model Theory

March 17, 2022

Reference in the book: Sections 12.3 and 12.8 (VERY loosely).

1 Morley sequences

Fix a monster model M and a small set A. Let $p \in S_n(M)$ be an A-invariant type for some small A.

Definition 1. A Morley sequence of p over A is a sequence $\bar{b}_1, \bar{b}_2, \ldots$ where

$$\bar{b}_i \models p \upharpoonright A\bar{b}_1 \cdots \bar{b}_{i-1}.$$

For example, if p is the transcendental 1-type in a strongly minimal theory, then a Morley sequence of p over A is a sequence $b_1, b_2, \ldots \in \mathbb{M}$ such that $b_1 \notin \operatorname{acl}(A), b_2 \notin \operatorname{acl}(Ab_1), b_3 \notin \operatorname{acl}(Ab_2), \ldots$

Definition 2. Let (I, \leq) be an infinite linear order (often \mathbb{N}). Let $(\bar{b}_i : i \in I)$ be a sequence in \mathbb{M} . Then $(\bar{b}_i : i \in I)$ is A-indiscernible if for any n, any $i_1 < \cdots < i_n$ in I, any $j_1 < \cdots < j_n$ in I, we have

$$\bar{b}_{i_1}\cdots\bar{b}_{i_n}\equiv_A\bar{b}_{i_1}\cdots\bar{b}_{i_n}$$

In other words, any two subsequences of the same length have the same type over A.

Example. Taking n=1 in the definition, $\bar{b}_i \equiv_A \bar{b}_j$ for any $i,j \in I$. All elements in the sequence have the same type.

Example. In DLO, if $b_1 < b_2 < \cdots$, then $(b_i : i < \omega)$ is indiscernible (over \emptyset). This is true because:

If $a_1 < \cdots < a_n$ and $b_1 < \cdots < b_n$, then $\operatorname{tp}(\bar{a}) = \operatorname{tp}(\bar{b})$ by quantifier elimination or back-and-forth methods.

Definition 3. Let (I, \leq) be an infinite set. Let $(\bar{b}_i : i \in I)$ be a sequence. Then $(\bar{b}_i : i \in I)$ is *totally indiscernible* if for any distinct $i_1, \ldots, i_n \in I$ and any distinct $j_1, \ldots, j_n \in I$,

$$\bar{b}_{i_1}\cdots\bar{b}_{i_n}\equiv_A \bar{b}_{j_1}\cdots\bar{b}_{j_n}$$

Example. If $(b_1, b_2, ...)$ is indiscernible, then $\operatorname{tp}(b_1b_2) = \operatorname{tp}(b_1b_3) = \operatorname{tp}(b_2b_3) = \cdots$, but $\operatorname{tp}(b_2b_1)$ could be different from $\operatorname{tp}(b_1b_2)$. But if the sequence is *totally* indiscernible, then $\operatorname{tp}(b_1b_2) = \operatorname{tp}(b_2b_1)$.

Theorem 4. If $(\bar{b}_i : i < \omega)$ is a Morley sequence of p over A, then $(\bar{b}_i : i < \omega)$ is A-indiscernible.

Proof. If
$$i_1 < \cdots < i_n$$
, then $\bar{b}_{i_j} \models p \upharpoonright A\bar{b}_{i_1} \cdots \bar{b}_{i_{j-1}}$ for each j , and so $\operatorname{tp}(\bar{b}_{i_1}, \dots, \bar{b}_{i_n}/A) = (\underbrace{p \otimes \cdots \otimes p}_{n \text{ times}}) \upharpoonright A$. This doesn't depend on the choice of i_1, \dots, i_n .

2 The order property

Fix some complete theory T and monster model \mathbb{M} .

Definition 5. Let $\varphi(\bar{x}, \bar{y})$ be a formula. Then $\varphi(\bar{x}, \bar{y})$ has the *order property* if there are $(\bar{a}_i : i \in \mathbb{Z})$ and $(\bar{b}_i : i \in \mathbb{Z})$ such that

$$\mathbb{M} \models \varphi(\bar{a}_i, \bar{b}_i) \iff i < j.$$

Example. In DLO, the formula $\varphi(x,y) = (x < y)$ has the order property: take $a_i = b_i = i$. Then $a_i < b_j \iff i < j$.

Remark 6. If $\varphi(\bar{x}; \bar{y})$ has the OP, witnessed by \bar{a}_i and \bar{b}_j , and if $\varphi^T(\bar{y}; \bar{x}) = \varphi(\bar{x}; \bar{y})$, then

$$\mathbb{M} \models \neg \varphi(\bar{a}_{-i}, \bar{b}_{1-j}) \iff -i \ge 1 - j \iff i \le j - 1 \iff i < j$$
$$\mathbb{M} \models \varphi^{T}(\bar{b}_{-i}, \bar{a}_{-j}) \iff \mathbb{M} \models \varphi(\bar{a}_{-j}, \bar{b}_{-i}) \iff -j < -i \iff i < j.$$

Therefore $\neg \varphi$ and φ^T have the OP.

3 Instability from the order property

Lemma 7. For any cardinal $\lambda \geq \aleph_0$, there is a linear order (I, <) and a subset $S \subseteq I$ such that $|S| \leq \lambda$, $|I| > \lambda$, and S is dense in I: if a < b in I then there is $x \in S$ with $a \leq x \leq b$.

Proof. From Lemma 9 in the March 3 notes, there is a cardinal μ such that $|2^{\mu}| > \lambda$ but $|2^{<\mu}| \le \lambda$, where 2^{μ} is the set of binary strings of length μ and $2^{<\mu}$ is the set of binary strings of length strictly less than μ . Let $I = 2^{\mu} \cup 2^{<\mu}$ and let $S = 2^{<\mu}$. Order I lexicographically, by padding strings in $2^{<\mu}$ on the right with a symbol u such that 0 < u < 1. For example, $010 \in 2^{<\mu}$ becomes $010uuu \ldots \in \{0, u, 1\}^{\mu}$, so it is ordered after $0100\ldots$ and before $0101\ldots$ If $a, b \in 2^{\mu}$ and a < b, then a starts with $\tau 0$ and b starts with $\tau 1$ for some $\tau \in 2^{\mu}$. Then $a < \tau < b$, because $\tau 0 \ldots < \tau u \ldots < \tau 1 \ldots$

Theorem 8. If some formula $\varphi(\bar{x}; \bar{y})$ has the order property, then T is unstable: it is not λ -stable for any λ .

Proof. We show λ -stability fails. Take $I \supseteq S$ as in Lemma 7, with $|I| > \lambda$ and $|S| \le \lambda$ and S dense in I. By compactness, there are $(\bar{a}_i : i \in I)$ and $(\bar{b}_i : i \in I)$ such that $\mathbb{M} \models \varphi(\bar{a}_i; \bar{b}_j) \iff i < j$.

Let $C = \{\bar{b}_j : j \in S\}$. We claim that this map is an injection:

$$I \setminus S \to S_n(C)$$

 $i \mapsto \operatorname{tp}(\bar{a}_i/C),$

in which case $|C| \leq \lambda$ but $|S_n(C)| \geq |I \setminus S| > \lambda$, and λ -stability fails.

Suppose $i_1, i_2 \in I \setminus S$ and $i_1 \neq i_2$. Without loss of generality, $i_1 < i_2$. Then there is $j \in S$ such that $i_1 < j < i_2$. Then

$$\mathbb{M} \models \varphi(\bar{a}_{i_1}, \bar{b}_{i_1}) \text{ but } \mathbb{M} \models \neg \varphi(\bar{a}_{i_2}, \bar{b}_{i_1})$$

and $\bar{b}_j \in C$, and so $\operatorname{tp}(\bar{a}_{i_1}/C) \neq \operatorname{tp}(\bar{a}_{i_2}/C)$.

4 The order property from instability

Lemma 9. If $\varphi(\bar{x}; \bar{y})$ does not have the order property, then there is n_{φ} such that there do not exist $(\bar{a}_i : i < n_{\varphi})$ and $(\bar{b}_i : i < n_{\varphi})$ such that

$$\mathbb{M} \models \varphi(\bar{a}_i; \bar{b}_j) \iff i < j.$$

Proof. Compactness. (Add new constant symbols \bar{a}_i and \bar{b}_i for $i \in \mathbb{Z}$. If n_{φ} didn't exist, then $\{\varphi(\bar{a}_i; \bar{b}_i) : i < j \in \mathbb{Z}\} \cup \{\neg \varphi(\bar{a}_i; \bar{b}_i) : i \geq j \in \mathbb{Z}\}$ is consistent, hence realized in \mathbb{M} .) \square

Lemma 10. Suppose $\varphi(\bar{x}; \bar{y})$ doesn't have the order property. Let n_{φ} be as in Lemma 9. Let $\bar{b}_1, \bar{b}_2, \ldots$ be an indiscernible sequence. Then there is no $\bar{a} \in \mathbb{M}$ such that

$$\mathbb{M} \models \varphi(\bar{a}, \bar{b}_i) \text{ for } 0 \leq i < n_{\varphi}$$

$$\mathbb{M} \models \neg \varphi(\bar{a}, \bar{b}_i) \text{ for } n_{\varphi} \leq i < 2n_{\varphi}.$$

Proof. Let $n = n_{\varphi}$. Suppose such a \bar{a} exists. For $0 \leq j < n$, there is $\sigma_j \in \operatorname{Aut}(\mathbb{M})$ such that

$$\sigma_i(\bar{b}_{n-i},\ldots,\bar{b}_{(n-i)+(n-1)}) = (\bar{b}_0,\ldots,\bar{b}_{n-1})$$

by indiscernibility. Let $\bar{a}_j = \sigma_j(\bar{a})$. For j, i < n,

$$\mathbb{M} \models \varphi(\bar{a}_j; \bar{b}_i) \iff \mathbb{M} \models \varphi(\sigma_j(\bar{a}), \sigma_j(\bar{b}_{i+n-j}))$$
$$\iff \mathbb{M} \models \varphi(\bar{a}, \bar{b}_{i+n-j}) \iff i+n-j < n \iff i < j.$$

This contradicts the choice of $n = n_{\varphi}$.

Lemma 11. Suppose $\varphi(x_1,\ldots,x_n;\bar{y})$ does not have the order property. Suppose $N > \max(n_{\varphi},n_{\neg\varphi})$. Let p be an A-invariant global type. Let $(\bar{a}_i:i<\omega)$ be a Morley sequence of p over A. Suppose $\bar{b} \in \mathbb{M}$.

- 1. If $\varphi(\bar{x}; \bar{b}) \in p(\bar{x})$, then $\mathbb{M} \models \varphi(\bar{a}_i; \bar{b})$ for a majority of i < 2N.
- 2. If $\neg \varphi(\bar{x}; \bar{b}) \in p(\bar{x})$, then $\mathbb{M} \models \neg \varphi(\bar{a}_i; \bar{b})$ for a majority of i < 2N.

Proof. We prove (2); (1) is similar. Suppose $\neg \varphi(\bar{x}; \bar{b}) \in p(\bar{x})$, but $\mathbb{M} \models \varphi(\bar{a}_i; \bar{b})$ for 50% of i < 2N. Then there are $j_1 < \cdots < j_N < 2N$ such that $\mathbb{M} \models \varphi(\bar{a}_{j_i}; \bar{b})$ for $1 \le i \le N$. Let $(\bar{a}'_i : i < \omega)$ be a Morley sequence of p over $A \cup \{\bar{a}_i : i < \omega\} \cup \{\bar{b}\}$. Then \bar{a}'_i realizes the type $p \upharpoonright A\bar{b}$ which contains the formula $\neg \varphi(\bar{x}; \bar{b})$, and so $\mathbb{M} \models \neg \varphi(\bar{a}'_i; \bar{b})$ for all i. Finally,

$$\bar{a}_{j_1}, \ldots, \bar{a}_{j_N}, \bar{a}'_0, \bar{a}'_1, \bar{a}'_2, \ldots$$

is a Morley sequence of p over A, hence indiscernible. But

$$\mathbb{M} \models \varphi(\bar{a}_{j_i}, \bar{b}) \text{ for } 1 \leq i \leq N$$

 $\mathbb{M} \models \neg \varphi(\bar{a}'_i, \bar{b}) \text{ for } 0 \leq i \leq N,$

so this contradicts Lemma 10.

Proposition 12. Suppose $\varphi(x_1, \ldots, x_n; \bar{y})$ doesn't have the order property. If M is a small model and $p \in S_n(M)$, then the relation $d_p\varphi(\bar{y})$ is definable.

Proof. Take $q \in S_n(M)$ a global coheir of p (March 10, Theorem 5). Then q is M-invariant (March 10, Theorem 17). Let $(\bar{a}_i : i < \omega)$ be a Morley sequence of q over M. By Lemma 11, $d_q \varphi(\bar{y})$ is definable from the Morley sequence by majority voting:

$$\varphi(\bar{x}; \bar{b}) \in q(\bar{x}) \iff \mathbb{M} \models \bigvee_{S} \bigwedge_{i \in S} \varphi(\bar{a}_i; \bar{b}).$$

where S ranges over $\{S \subseteq 2N : |S| > N\}$. Now $d_q \varphi$ is definable and M-invariant, hence M-definable (March 10, Lemma 10). Then $d_p \varphi$ is (M-)definable: it's the restriction of $d_q \varphi$ to M.

Theorem 13. Fix n. Suppose no formula $\varphi(x_1, \ldots, x_n; \bar{y})$ has the OP. Then for any $M \models T$ and $p \in S_n(M)$, p is definable.

Corollary 14. The following are equivalent:

- 1. All types over models are definable.
- 2. All 1-types over models are definable.
- 3. No formula $\varphi(\bar{x}; \bar{y})$ has the OP.
- 4. No formula $\varphi(x; \bar{y})$ has the OP.
- 5. T is λ -stable for at least one λ .

Proof. Similar to Theorem 2 on March 10, using today's Theorem 8 and Proposition 12.

Fact 15. $\varphi(\bar{x};\bar{y})$ has the order property iff it has the dichotomy property.

5 Commuting types

Theorem 16. Assume T is stable. Let p, q be global A-invariant types. Then $(p \otimes q)(\bar{x}, \bar{y}) = (q \otimes p)(\bar{y}, \bar{x})$.

Proof. Suppose an $L(\mathbb{M})$ -formula $\varphi(\bar{x}, \bar{y})$ is in $(p \otimes q)(\bar{x}, \bar{y})$ but not $(q \otimes p)(\bar{y}, \bar{x})$. Take a small set $B \supseteq A$ over which φ is defined. Then p, q are B-invariant. Replacing A with B, we may assume $\varphi(\bar{x}; \bar{y})$ is an L(A)-formula.

Let $(\bar{a}_1, \bar{b}_1; \bar{a}_2, \bar{b}_2; \bar{a}_3, \bar{b}_3; \ldots)$ be a Morley sequence of $p \otimes q$ over A. In other words

$$\bar{a}_1 \models p \upharpoonright A, \qquad \bar{b}_1 \models q \upharpoonright A\bar{a}_1$$

$$\bar{a}_2 \models p \upharpoonright A\bar{a}_1\bar{b}_1, \qquad \bar{b}_2 \models q \upharpoonright A\bar{a}_1\bar{b}_1\bar{a}_2$$

$$\bar{a}_3 \models p \upharpoonright A\bar{a}_1\bar{b}_1\bar{a}_2\bar{b}_2, \qquad \bar{b}_3 \models q \upharpoonright A\bar{a}_1\bar{b}_1\bar{a}_2\bar{b}_2\bar{a}_3,$$

If $i \leq j$, then $(\bar{a}_i, \bar{b}_j) \models (p \otimes q) \upharpoonright A$, and so $\mathbb{M} \models \varphi(\bar{a}_i, \bar{b}_j)$. On the other hand if j < i, then $(\bar{b}_j, \bar{a}_i) \models (q \otimes p) \upharpoonright A$, and so $\mathbb{M} \models \neg \varphi(\bar{a}_i, \bar{b}_j)$. Therefore

$$\mathbb{M} \models \varphi(\bar{a}_i, \bar{b}_j) \iff i \leq j.$$

It follows that φ has the order property, a contradiction.

Example. Suppose T is strongly minimal, and $p, q \in S_1(\mathbb{M})$ are both the transcendental 1-type. By Theorem 16, $(p \otimes q)(x, y) = (q \otimes p)(y, x)$. Concretely, this means the following are equivalent for $a, b \in \mathbb{M}$ and $C \subseteq \mathbb{M}$:

$$a \notin \operatorname{acl}(C)$$
 and $b \notin \operatorname{acl}(Ca)$
 $\iff b \notin \operatorname{acl}(C)$ and $a \notin \operatorname{acl}(Cb)$.

This implies that acl(-) satisfies the "Steinitz exchange property":

$$a \in \operatorname{acl}(Cb) \setminus \operatorname{acl}(C) \implies b \in \operatorname{acl}(Ca).$$