

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 July 2001 (12.07.2001)

PCT

(10) International Publication Number
WO 01/49832 A2

(51) International Patent Classification⁷: C12N 9/00 (81) Designated States (*national*): AE, AG, AL, AM, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CN, CR, CU, CZ, DM, DZ, EE, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, RO, RU, SD, SG, SI, SK, SL, TJ, TM, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/EP01/00060

(22) International Filing Date: 5 January 2001 (05.01.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
00100351.6 7 January 2000 (07.01.2000) EP
00124595.0 10 November 2000 (10.11.2000) EP

(71) Applicant: ARTEMIS PHARMACEUTICALS GMBH [DE/DE]; Neurather Ring 1, 51063 Köln (DE).

(72) Inventor: SCHWENK, Frieder; Kuseler Strasse 4, 50739 Köln (DE).

(74) Agents: HELBING, Jörg et al.; Von Kreisler Selting Werner, Postfach 10 22 41, 50462 Köln (DE).

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/49832 A2

(54) Title: TRANSDUCTION OF RECOMBINASES FOR INDUCIBLE GENE TARGETING

(57) Abstract: The present invention provides the use of a fusion protein comprising a site-specific DNA recombinase domain and a protein transduction domain for preparing an agent for inducing target gene alteration in a living organism or in cultured cells, suitable fusion proteins and a method for the production of said fusion proteins.

Transduction of recombinases for inducible gene targeting

The present invention provides the use of a fusion protein comprising a site-specific DNA recombinase domain and a protein transduction domain for preparing an agent for inducing target gene alteration in a living organism or in cultured cells, suitable fusion proteins and a method for the production of said fusion proteins.

Background

For some years targeted mutagenesis in totipotent mouse embryonic stem (ES) cells has been used to inactivate genes, for which cloned sequences were available (Capecchi, Trends in Genetics 5, 70 - 76 (1989)). Since ES cells can pass mutations induced *in vitro* to transgenic offspring *in vivo*, it is possible to analyze the consequences of gene disruption in the context of the entire organism. Thus, numerous mouse strains with functionally inactivated genes ("knock out mice") have been created by this technology and utilized to study the biological function of a variety of genes.

A refined method of targeted mutagenesis, referred to as conditional mutagenesis, employs a site-specific recombination system (e.g. Cre/loxP or Flp/frt – Sauer and Henderson, N. Proc. Natl. Acad. Sci. USA 85, 5166-5170 (1988); Senecoff et al., J. Mol. Biol., 201, 405 - 421 (1988)) which enables a temporally and/or spatially restricted alteration of target genes (Rajewsky et al., J. Clin. Invest., 98, 600 - 603 (1996)). The creation of conditional mouse mutants requires the generation of two mouse strains; i.e. the recombinase recognition strain and the recombinase expressing strain. The recombinase recognition strain is generated by homologous recombination in ES cells as described above except that the targeted

exon(s) is (are) flanked by two recombinase recognition sequences (hereinafter "RRS"; e.g. loxP or frt). The type of recombination event mediated by the recombinase depends on the disposition of the RRS, with deletions, inversions, translocations and integrations being possible (Torres and Kühn, Oxford University Press, Oxford, New York (1997)). By placing the RRS into introns, an interference with gene expression before recombination can be avoided. The recombinase expressing strain contains a recombinase transgene (e.g. Cre, Flp) whose expression is either restricted to certain cells and tissues or is inducible by external agents. Crossing of the recombinase recognition strain with the recombinase expressing strain recombines the RRS-flanked exons from the doubly transgenic offspring in a prespecified temporally and/or spatially restricted manner. Thus, the method allows the temporal analysis of gene function in particular cells and tissues of otherwise widely expressed genes. Moreover, it enables the analysis of gene function in the adult organism by circumventing embryonic lethality which is frequently the consequence of gene mutation. For pharmaceutical research, aiming to validate the utility of genes and their products as targets for drug development, inducible mutations provide an excellent genetic tool. However, the current systems for inducible recombinase expression in transgenic animals suffer from a certain degree of leakiness in the absence of the inducer (Kühn et al., Science 269(5229):1427-9 (1995); Schwenk et al., Nucleic Acids Res.; 26(6):1427-32 (1998)). Furthermore, the generation of conditional mutants is a time consuming and labor intensive procedure, since the recombinase recognition strain and the recombinase expressing strain have to be breed at least over two generations in order to obtain animals carrying both, the recombinase transgene and two copies of the RRS-flanked target gene sequence.

Protein transduction domains (hereinafter shortly referred to as "PTD") that have the ability to cross cell membranes were identified, e.g. in the

Antennapedia protein from *Drosophila* (Vives et al., J. Biol. Chem., 272(25):16010-7 (1997)), Kaposi fibroblast growth factor (Kaposi FGF; Lin et al., J. Biol. Chem. 270: 14255-58 (1995)), VP22 from HSV (Elliott and O'Hare, Cell, 88(2):223-33 (1997)) and TAT from HIV (Green and Loewenstein, Cell, 55(6):1179-88 (1988); Frankel and Pabo, Cell, 55(6):1189-93 (1988)). WO 99/29721 moreover mentions TAT mutants having an enhanced activity as compared to the wild-type peptide.

Fusion of PTDs to heterologous proteins conferred the ability to transduce into cultured cells (Fawell et al., Proc. Natl. Acad. Sci. USA, 91(2):664-8 (1994); Elliott and O'Hare (1997), Phelan et al., Nature Biotech. 16; 440-443 (1998) and Dilber et al., Gene Ther., 6(1):12-21 (1999)). Dalby and Bennett showed that a fusion protein consisting of VP22 and functional Flp recombinase translocated between cells in culture (from COS-1 cells transfected with VP22-Flp to CHO cells carrying Flp recognition sites (FRT sites); see Dalby and Bennett, Invitrogen, Expressions 6.2, page 13 (1999)). Further WO 99/11809 mentions a fusion protein Antp-Cre and emphasizes that it may be used to deliver the Cre into the cell which recombines inside the cell nucleus. It is mentioned that the fusion protein is suitable for manipulating genomic DNA at precise locations in a temporal regulated manner.

Furthermore, a recent report demonstrated that the β -galactosidase protein fused to the 11 amino acids PTD from the HIV TAT protein can infiltrate all tissues of living mice reaching every single cell (Schwarze et al., Science, 285(5433):1569-72 (1999)). Finally, WO 99/60142 discloses vector constructs for gene therapy carrying a tumor cell sensitizing gene, a sensitizing gene expression regulatory system, a control gene and a control gene expression regulatory system, wherein the control gene can be a fusion gene consisting of a recombinase (viz. Cre or Flp) and a trafficking protein (viz. VP22).

With regard to the fusion protein Antp-Cre of WO 99/11809, it is however, general knowledge in the art that the Antennapedia PTD is not a generally applicable transducing protein, namely it has only a limited activity with proteins having more than 100 amino acid residues (Derossi et al., Trends Cell Biol. 8: 84-87, 1998). In view of the limited transducing activity of the Antp PTD and the size of the generally known recombinases (ranging from about 200 to about 600 amino acid residues), it was desirable to provide a more potent system for the transduction of recombinases. It was, however, not clear for a person skilled in the art whether PTDs would be effective at all with recombinases for the following reasons:

- (i) only a single example of PTD-mediated delivery of proteins (above 100 amino acid residues) *in vivo* has been reported so far (Schwarze et al., Science, 285(5433):1569-72 (1999); Fawell et al., PNAS, 91: 664-68 (1994); both references describing the TAT-mediated transduction of β -galactosidase in mice);
- (ii) it is known that - due to defolding and refolding processes - the transduction of native proteins into cells may result in a significant loss of protein activity (e.g., as described for TAT-GFP; Schwarze et al, Trends Cell Biol. 10: 290-95 (2000));
- (iii) neither the number of protein molecules that can be transferred into a cell by a given translocation domain has been systematically determined, nor the number of Cre molecules in the cell nucleus that is required for efficient recombination;
- (iv) the delivery of active proteins requires unfolding- and proper refolding which is unpredictable for a given protein (Bonifaci et al., AIDS 9: 995-1000 1995); and
- (v) the mechanism by which protein transduction domains facilitate protein transduction is unknown and several findings have been published that rule out classical receptor-, transporter-, endosome- or endocytosis-mediated processes in the transduction of Ant, TAT and VP22 (G. Elliott, P. O'Hare, Cell 88, 223-233 (1997); D.A. Mann, A.D. Frankel, EMBO. J. 10,

1733-1739 (1991); D. Derossi et al., J. Biol. Chem. 269, 10444-10450 (1994); D. Derossi et al., J. Biol. Chem. 271, 18188-18193 (1996); E. Vives et al., J. Biol. Chem. 272, 16010-16017 (1997)).

Moreover, there was still the need for a generally applicable method where the genetic manipulation can be performed in both, endogenous genes and transgenes.

Summary of the Invention

It was found that site-specific DNA recombinase proteins can be translocated into cells of a living organism when fused to specific protein transduction domains, namely transduction domains being derived from the VP22 protein of HSV or from the TAT protein of HIV. Thus, whenever a gene mutation is desired, recombination is induced upon the injection of the appropriate site-specific recombinase fused to a transduction domain into such a living organism (provided, however, that said organism carries at least one appropriate RRS integrated in the genome).

The present invention thus provides

- (1) the use of a fusion protein comprising
 - (a) a site-specific DNA recombinase domain and
 - (b) a protein transduction domain (PTD)for preparing an agent for inducing target gene alterations in a living organism or cell culture, wherein said living organism carries at least one or more recognition sites for said site-specific DNA recombinase integrated in its genome;
- (2) a method for inducing gene alterations in a living organism which comprises administering to said living organism a fusion protein comprising a site-specific DNA recombinase domain and a PTD as defined in (1) above, wherein said living organism carries at least one or more

recognition sites for said site-specific DNA recombinase integrated in its genome;

(3) a fusion protein comprising

(a) a site-specific DNA recombinase domain and

(b) a PTD being derived from the VP22 protein of HSV or from the TAT protein of HIV

provided that when the site-specific DNA recombinase domain is wild-type Cre or Flp then the PTD is not the full length VP22 PTD of HSV (i.e., the fusion protein is not identical to the fusion protein of Dalby and Bennett, Invitrogen, Expressions 6.2, page 13 (1999) and of WO 99/60142);

(4) a DNA sequence coding for the fusion protein of (3) above;

(5) a vector comprising the DNA sequence as defined in (4) above;

(6) a host cell transformed with the vector of (5) above and/or comprising the DNA of (4) above;

(7) a method for producing the fusion protein of (1) above which comprises culturing the transformed host cell of (6) above and isolating the fusion protein; and

(8) an injectable composition comprising the fusion protein as defined in (1) or (3) above.

The invention is further illustrated by the appended Figures and is explained in detail below.

Description of the Figures

Fig. 1: Generation of induced mouse mutants using purified fusion proteins.

A: Expression of the fusion protein consisting of the site-specific DNA recombinase (e.g. Cre) and the protein transduction domain (e.g. the HIV derived TAT peptide) in prokaryotic or eukaryotic cells.

B: Extraction and purification of the expressed fusion protein (e.g. as described in Nagahara et al., Nat. Med. 4 (12):1449-52 (1998)).

C: Injection of the purified fusion protein into mice carrying the RRS-flanked target sequence.

D: Analysis of the pattern of induced target gene recombination and the resulting phenotype.

Triangle: RRS.

Fig. 2: Scheme of the bacterial expression vector pT7-TACS (SEQ ID NO:16). The coding region of the 11 amino acid protein transduction domain of HIV TAT protein is fused to the N-terminus of the Cre recombinase protein sequence. The 10-amino-acid strep tag and the protease factor Xa recognition sequence are fused to the C-terminus. The T7 promoter permits expression of TAT-Cre protein in *E. coli*.

Fig. 3: Detection of purified TAT-Cre protein by Coomassie staining and Western blot analysis.

A: Coomassie stained SDS-PAGE gel. Lane 1: 10 kDa ladder (Life Technologies, Cat. No.: 10064-012), 2: 1000 ng BSA, 3: 750 ng BSA, 4: 500 ng BSA, 5: 100 ng BSA, 6: 50 ng BSA, 7: 5 µl TAT-Cre, 8: 1 µl TAT-Cre in Bicine buffer.

B: Western blot analysis using an alkaline phosphatase-conjugated anti-strep tag antibody (IBA, Cat. No: 2-1503-001). Lane 1: MultiMark (Invitrogen, Cat. No.: LC5725), 2: 7 µl TAT-Cre, 3: 5 µl TAT-Cre, 4: 2,5 µl TAT-Cre, 5: 1,25 µl TAT-Cre in Bicine buffer.

Fig. 4: X-Gal staining of M5Pax8 cells treated with TAT-Cre protein.

M5Pax8 fibroblasts where treated for 18 h with 3,5 (A), 6,9 (B) and 13,8 µg/ml TAT-Cre protein (C) in serum-free medium. Four days after treatment, cells were fixed and stained with X-Gal.

Fig. 5: Measurement of β-galactosidase activity in cell lysates. M5Pax8 fibroblasts where treated for 18 h with increasing concentrations of TAT-Cre, as indicated, or transiently transfected with either expression vectors

for Cre (pCMV-I-Cre-pA, see SEQ ID NO:29) or β-galactosidase (pCMV-I-β-pA, see SEQ ID NO:30). Four days after treatment, cells were lysed and the β-galactosidase activities were determined.

Fig. 6: PCR detection of TAT-Cre mediated recombination in mice.

A: PCR-analysis of genomic DNA from duodenum (lane 2), liver (3), kidney (4), spleen (5), muscle (6), lung (7), tail (8) and brain (9) of a *pln13* mouse treated three times with intraperitoneal injections of 75 µg TAT Cre protein at two-day-intervals. Deletion of the loxP-flanked DNA segment is indicated by the presence of the about 400 bp fragment. Lane 1: 1-kb-ladder (Life Technologies).

B: PCR strategy to detect Cre-mediated deletion of the loxP-flanked DNA segment. Arrows indicate the positions of the primers.

C: PCR-analysis of genomic DNA from spleen of a *pln13* mouse treated three times with intraperitoneal injections of 75 µg TAT Cre protein at two-day-intervals (lane 4). To confirm the presence of the BamH I restriction site, the PCR product was digested with BamH I which produces two diagnostic fragments of about 190 and about 210 bp (5). As a control, tail DNA from untreated mice carrying the loxP-flanked (lane 2) and the detected *pln13* allele (3) was subjected to PCR amplification. Lane 1: 100 bp ladder (Life Technologies), lane 6: 1 kb ladder (Life Technologies).

Fig. 7: Scheme of the bacterial expression vectors pT7-VPCS (SEQ ID NO:17) and pCRT7-ΔVPCS (SEQ ID NO:15). The coding region of the 301 amino acid protein transduction domain of HSV VP22 protein (A) or the truncated 143 amino acid ΔVP22 domain (B) is fused to the N-terminus of the Cre recombinase protein sequence. The 10-amino-acid strep tag and the protease factor Xa recognition sequence are fused to the C-terminus. The T7 promoter allows the expression of VP22-Cre and ΔVP22-Cre fusion proteins in *E. coli*. The sequence in pCRT7-ΔVPCS encoding the 15 amino

acid N-terminal leader sequence is used for enhanced protein stability (Invitrogen).

Fig. 8: Detection of the purified VP22-Cre and ΔVP22-Cre fusion proteins by Coomassie staining and Western blot analysis.

A: Detection of VP22-Cre protein in a Coomassie-stained SDS-PAGE gel. Lane 1: 10 kDa ladder, 2: 1000 ng BSA, 3: 500 ng BSA, 4: 100 ng BSA, 5: inclusion body protein extract before chromatography, 6: unbound protein, 7: fraction 17, 8: fraction 18, 9: fraction 19, 10: fraction 20. The position of the 75 kDa VP22-Cre protein is indicated by the arrow head.

B: Detection of VP22-Cre protein by Western blot analysis using an alkaline phosphatase-conjugated anti-strep tag antibody (IBA, Cat. No.: 2-1503-001). Lane 1: MultiMark (Invitrogen), 2: inclusion body protein extract before chromatography, 3: unbound protein, 4: fraction 10, 5: fraction 11, 5: fraction 16, 6: fraction 17, 7: fraction 18, 8: fraction 19, 9: fraction 19, 10: fraction 20.

C: Detection of ΔVP22-Cre protein in a Coomassie-stained SDS-PAGE gel. Lane 1: 10 kDa ladder, 2: inclusion body protein extract before chromatography, 3: unbound protein, 4: fraction 1, 5: fraction 8, 6: fraction 9, 7: fraction 15, 8: 100 ng BSA, 9: 500 ng BSA, 10: 1000 ng BSA. The position of the 60 kDa ΔVP22-Cre protein is indicated by the arrow head.

D: Detection of ΔVP22-Cre protein by Western blot analysis using a alkaline phosphatase-conjugated anti-strep tag antibody (IBA, Cat. No.: 2-1503-001). Lane 1: MultiMark (Invitrogen), 2: inclusion body protein extract before chromatography, 3: unbound protein, 4: fraction 4, 5: fraction 8, 6: fraction 10, 7: fraction 12, 8: soluble protein extract before chromatography, 9: unbound protein, 10: fraction 7.

Fig. 9: X-Gal staining of M5Pax8 cells treated with VP22-Cre and ΔVP22-Cre fusion proteins. M5Pax8 fibroblasts where treated for 18 h with either

Bicine buffer (A), 0.5 µg/ml VP22-Cre (B) or 3.75 g/ml ΔVP22-Cre (C) in serum-free medium. Four days after treatment, cells were fixed and stained with X-Gal.

Fig. 10: Measurement of β-galactosidase activity in cell lysates. M5Pax8 fibroblasts where treated for 18 h with VP22-Cre, ΔVP22-Cre or Bicine buffer alone, as indicated or transiently transfected with expression vectors for Cre (pCMV-I-Cre-pA, see SEQ ID NO:29) or β-galactosidase (pCMV-I-β-pA, see SEQ ID NO:30). Four days after treatment, cells were lysed and the β-galactosidase activities were determined.

Fig. 11: PCR detection of Cre mediated recombination in cells treated with VP22-Cre and ΔVP22-Cre fusion proteins shown in SEQ ID NOs: 21 and 14, respectively).

A: PCR-analysis of genomic DNA isolated from M5Pax8 fibroblasts. Cells were transiently transfected with a Cre expression vector (lane 2) or treated for 18 h with either buffer alone (lane 3), 7.5 µg/ml VP22-Cre (4, 5) or 15 µg/ml ΔVP22-Cre (6, 7) in serum-free medium. Four days after treatment, genomic DNA was extracted and subjected to PCR amplification. Deletion of the loxP-flanked DNA segment is indicated by the presence of the 226 bp DNA fragment. To confirm the presence of the Nco I restriction site in the recombinant allele, the PCR products were digested with Nco I which produces two diagnostic fragments of 85bp and 141bp (lanes 5 and 7). Lane 1: 100 bp ladder (Life Technologies), lane 8: 1 kb ladder (Life Technologies).

B: PCR strategy to detect Cre-mediated deletion of the loxP-flanked DNA segment. Arrows indicate the positions of the primers.

Detailed Description of the Invention

The expression "target sequences" according to the present invention means all kind of sequences which may be mutated (viz. deleted,

translocated, integrated and/or inverted) by the action of the recombinase. The number of RRS in the target sequence depends on the kind of mutation to be performed by the recombinase. For most of the mutations (especially for deletions and inversions) two RRS are required which are flanking the sequence to be mutated (deleted or inverted). For some kinds of integrations only one RRS may be necessary within the target sequence.

The "living organisms" according to the present invention are multi-cell organisms and can be vertebrates such as mammals (e.g., rodents such as mice or rats) or non-mammals (e.g., fish) or can be invertebrates such as insects or worms, or can be plants (higher plants, algi or fungi). Most preferred living organisms are mice and fish.

"Cell culture" according to the present invention include cells isolated from the above defined living organism and cultured *in vitro*. These cells can be transformed (immortalized) or untransformed (directly derived from the living organism; primary cell culture).

The site-specific DNA recombinase domain within the fusion protein of the invention of the present application is preferably selected from a recombinase protein derived from Cre, Flp, ϕ C31 recombinase (Thorpe and Smith, Proc. Natl. Acad. Sci, USA, vol. 95, 5505-5510 (1998)), $\gamma\delta$ resolvase (Schwickardi and Dröge, FEBS letters 471:147-150 (2000)) and R recombinase (Araki et al., J. Mol. Biol., 182, 191-203 (1985)). The preferred recombinases are Cre and mutants thereof (preferably the Cre variant of aa 15 to 357 of SEQ ID NO: 2 or aa 325-667 of SEQ ID NO: 6) and Flp and variants thereof including Flpe (preferably the Flp variant of aa 15 to 437 of SEQ ID NO: 4 or aa 325 to 747 of SEQ ID NO: 8).

The protein transduction domain according to the present invention includes, but is not limited to, the PTDs mentioned in Background of the Invention. The PTD preferably is derived from the VP22 protein of HSV or from the TAT protein of HIV. Suitable TAT proteins include, but are not limited to, proteins comprising (i) the amino acid sequence shown in SEQ ID NO: 10 and mutant thereof such as
(ii) proteins comprising the amino acid
AGRKKRRQRRR (SEQ ID NO:22)
YARKARRQARR (SEQ ID NO:23)
YARAARQARA (SEQ ID NO:24)
YARAARRAARR (SEQ ID NO:25)
YARAARRAARA (SEQ ID NO:26)
YARRRRRRRR (SEQ ID NO:27)
YAAARRRRRR (SEQ ID NO:28)
as known from WO 99/29721. Preferred are transduction domains consisting of the TAT proteins (i) and (ii) above.

Suitable VP22 proteins include, but are not limited to, the wild-type VP22 protein, i.e., a protein comprising amino acids 1 to 302 of SEQ ID No:21, and truncated forms thereof. Truncated VP22 proteins in accordance with the present invention can be those lacking 1 to 158 amino acid residues at their N-terminal end. The most preferred VP22 protein is the truncated VP22 PTD comprising amino acid residues 16 to 157 of SEQ ID NO:14.

The fusion of the two domains of the fusion protein can occur at any possible position, i.e., the protein transduction domain can be fused to the N- or C-terminal of the site-specific DNA recombinase or can be fused to active sites within the site-specific DNA recombinase. Preferably the protein transduction domain is fused to the N-terminal of the site-specific DNA recombinase domain.

The protein transduction domain can be fused to the site-specific DNA recombinase either through a direct chemical bond or through a linker molecule. Such linker molecule can be any bivalent chemical structure capable of linking the two domains. The preferred linker molecule according to the present invention is a short peptide, e.g., having 1 to 20, preferably 1 to 10, amino acid residues. Specifically preferred short peptides are essentially consisting of Gly, Ala and/or Leu.

The fusion protein of the invention of the present application may further comprise other functional sequences such as secretion conferring signals, nuclear localisation signals and/or signals conferring protein stabilisation.

In case the fusion protein comprises a protein transduction domain derived from the TAT protein of HIV, the DNA sequence coding for said fusion protein preferably comprises the sequence

5' TAC GGC CGC AAG AAG CGC CGC CAA CGC CGC CGC 3'.

Such a preferred DNA sequence is for instance shown in SEQ ID NO: 11. In said sequence the 3' terminal codon ggc codes for the linker Gly. The DNA sequence of a suitable recombinase may be directly attached to said codon ggc.

The fusion protein can be obtained by the following steps:

1. Fusion of the recombinase coding region (e.g. encoding Cre: see amino acids 15 to 357 of SEQ ID NO: 2) with the sequence conferring protein translocation (e.g. the sequence encoding the TAT peptide YGRKKRRQRRR, SEQ ID NO: 10) using standard cloning protocols (Maniatis et al., Cold Spring Harbor Laboratory, New York (1989)) or chemical synthesis.

2. Generation of a construct for the expression of the fusion protein in prokaryotic or eukaryotic cells, e.g. in E. coli DH5a (Hanahan, J. Mol. Biol.;166(4):557-80 (1983)) using the QIAexpress pQE vector (Qiagen, Hilden).
3. Expression of the above mentioned fusion protein in prokaryotic or eukaryotic cells, e.g. in E. coli DH5a (Hanahan, 1983)
4. Extraction and purification of the above mentioned fusion protein e.g. as described in Nagahara et al., Nat. Med., 4(12):1449-52 (1998).

In an experiment it was shown that TAT-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting both in cell lines and living organisms. In this experiment a vector for the expression of a TAT-Cre fusion protein in E. coli was constructed, TAT-Cre protein was expressed in E. coli and purified from bacterial lysates. To test the activity of the TAT-Cre protein *in vitro*, a reporter cell line that contains a loxP-containing reporter construct was used. This reporter, when recombined by Cre recombinase, allows the expression of a β -galacosidase gene. Further, a transgenic mouse strain carrying a loxP-flanked target was used to invest the activity of the TAT-Cre protein *in vivo*.

In a second experiment it was shown that VP22-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting. In this experiment Bacterial expression vectors were constructed for the production of VP22-Cre fusion proteins in E. coli. The activity of purified VP22-Cre proteins were tested using a reporter fibroblast cell line containing a loxP-flanked reporter construct.

Thus, the injection of the purified fusion protein of the present invention into a living organism (e.g., a mouse) carrying a gene comprising the RRS-flanked target sequence (e.g., in an amount of 1 to 200, preferably 5

to 50 µg per g body weight). To demonstrate the feasibility of the invention, a reporter mouse strain carrying an RRS-flanked cassette was used (Thorey et al., Mol. Cell Biol., 18(10):6164 (1998)).

Analysis is achieved by determining the pattern of induced target gene recombination (e.g. through PCR analysis, Southern blot analysis or X-Gal staining on tissue sections; Maniatis et al., 1989; Gossler and Zachgo, Joyner AL (Ed.), Oxford University Press, Oxford, New York (1993)).

The procedure's advantages over current technology are as follows:

- (i) The absence of background recombination before administration of the fusion protein.
- (ii) The reduction of time and resources which are necessary to combine the recombinase transgene and two copies of the RRS-flanked target gene by conventional breeding.

In experiments it was shown the following: (a) With a suitable vector for the expression of a TAT-Cre fusion protein, a TAT-Cre fusion protein was expressed in *E. coli* and purified from bacterial lysates.

(b) A reporter cell line containing a loxP-containing reporter construct was used to test the activity of the TAT-Cre protein *in vitro*. This reporter, when recombined by Cre recombinase, allows the expression of a β-galacosidase gene.

(c) A transgenic mouse strain carrying a loxP-flanked target was used to invest the activity of the TAT-Cre protein *in vivo*.

These experiments demonstrate that TAT-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting both in cell lines and living organisms.

Furthermore, bacterial expression vectors were constructed for the production of VP22-Cre fusion proteins in *E. coli*. The activity of purified VP22-Cre proteins were tested using a reporter fibroblast cell line containing a loxP-flanked reporter construct. These experiments demonstrate that VP22-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting.

The invention is further illustrated by the following, non-limitative examples.

Examples

Materials and Methods

Construction of pT7-TACS: The TAT-Cre coding region was generated by PCR using Advantage-HF PCR Kit (Clontech), 20 pmol of the primers TATcre sense (5'-atg cca tgg gct acg gcc gca aga agc gcc gcc aac gcc gcc gcg gca tgt cca att tac tga ccg tac acc-3'; SEQ ID NO:31) and TATcre antisense (5'-ttt cgg atc cgc cgc ata acc agt g-3'; SEQ ID NO:32) and 10 ng pCMV-I-Cre-pA (see SEQ ID NO:29) as template. The PCR reaction was performed using the following cycle profile: 2' 94 °C, 4 x (30" 94 °C min, 30" 50 °C, 1' 72 °C), 12 x (30" 94 °C min, 30" 55 °C, 1' 72 °C) and 10' 72 °C. The resulting PCR fragment was digested with Nco I and BamH I, treated with Klenow enzyme and ligated into the plasmid pBSII KS+ which had been opened with restriction enzyme BamH I, treated with Klenow and dephosphorylated with calf intestinal phosphatase. The resulting plasmid pBS TAT-5'cre was verified by DNA sequencing. The Plasmid pCMV-I-Cre-pA (SEQ ID NO:29) was digested with Age I and Sal I which released a 1,036 kb fragment containing the 3' part of the Cre coding region. This fragment was ligated into the plasmid pBS TAT-5'cre which had been opened with Age I and Sal I.

10 ng pBS-TATCre was subjected to PCR amplification using 20 pmol of primers FPA001 (5'-tat atc tag acc atg ggc tac ggc cgc aag aag c-3'; SEQ ID NO:33) and FPA002 (5'-gct acc acg acc ttc gat acc atc gcc atc ttc cag cag gcg c-3'; SEQ ID NO:34). PCR was performed using 2,5 U Platinum Pfx DNA polymerase (Gibco BRL) and 2 x Enhancer Solution (Gibco BRL) according to the manufacturers protocol. The following cycle profile was used: 2' 94 °C, 25 x (30" 94 °C min, 15" 54,6 °C, 2'30" 68 °C). The amplified PCR fragment was purified using GFX columns (Amersham Pharmacia), digested with Xba I and ligated into the plasmid pASK57 (Skerra and Arne, Gene 151: 131-135 (1994)) which had been opened with restriction enzymes Xba I and Eco 47 III and dephosphorylated with calf intestinal phosphatase. The resulting plasmid pASK75-TACS was digested with restriction enzymes Nco I and Hind III which released a 1,1 kb fragment. The fragment was subsequently ligated into the plasmid pT7-7 (Studier and Moffatt, J. Mol. Biol. 189: 113-130 (1986)) which had been opened with restriction enzymes Nco I and Hind III and dephosphorylated with calf intestinal phosphatase resulting in the plasmid pT7-TACS (SEQ ID NO:16).

Construction of pT7-VPCS: The Cre coding region was generated by PCR using Advantage-HF PCR Kit (Clontech), 20 pmol of the primers VP22cre sense (5'-taa cta gcg gcc gca tgt cca att tac tga ccg tac ac-3'; SEQ ID NO:35) and VP22cre antisense (5'-tcg agc ggc cgc cat cgc cat ctt cca gca ggc g-3'; SEQ ID NO:36) and 10 ng pgkcre-pA (SEQ ID NO:40) as template. The PCR reaction was performed using the following cycle profile: 2' 94 °C, 5 x (30" 94 °C, 30" 50 °C, 2' 72 °C), 15 x (30" 94 °C, 30" 55 °C, 2' 72 °C) and 10' 72 °C. The resulting PCR fragment was digested with Not I and ligated into the plasmid pVP22/Myc-His (Invitrogen), which had been opened with restriction enzyme NotI, dephosphorylated with calf intestinal phosphatase. The resulting plasmid pVP22-cre myc/His was verified by DNA sequencing.

10 ng pVP22-cre myc/His was subjected to PCR amplification using 20 pmol of primers FPA004 (5'-tat atc tag aca tat gac ctc tcg ccg ctc cg-3'; SEQ ID NO:37) and FPA002 (SEQ ID NO:34). PCR was performed using 2,5 U Platinum Pfx DNA polymerase (Gibco BRL) and 2 x Enhancer Solution (Gibco BRL) according to the manufacturers protocol. The following cycle profile was used: 2' 94 °C, 25 x (30" 94 °C min, 15" 54,6 °C, 2'30" 68 °C). The amplified PCR fragment was purified using GFX columns (Amersham Pharmacia), digested with Xba I and ligated into the plasmid pASK57 (Skerra and Arne, Gene 151: 131-135 (1994)) which had been opened with restriction enzymes Xba I and Eco 47 III and dephosphorylated with calf intestinal phosphatase. The resulting plasmid pASK75-VPCS was digested with restriction enzymes Nde I and Hind III which released a 2,0 kb fragment. The fragment was subsequently ligated into the plasmid pT7-7 (Studier and Moffatt, J. Mol. Biol. 189: 113-130 (1986)) which had been opened with restriction enzymes Nde I and Hind III and dephosphorylated with calf intestinal phosphatase resulting in the plasmid pT7-VPCS (SEQ ID NO:17).

Construction of pCRT7-ΔVPCS: The ΔVP22-Cre coding region was generated by PCR using Platinum Pfx DNA polymerase (Life Technologies), 20 pmol of the primers FPA007 (5'-ttc cga aga cga cga aac acc-3'; SEQ ID NO:38) and FPA008 (5'-tat att cga agc tta tta acc acc gaa ctg cg-3'; SEQ ID NO:39) and 30 ng pT7-VPCS (SEQ ID NO:17) as template. The PCR reaction was performed using the following cycle profile: 2' 94 °C, 25 x (30" 94 °C, 30" 61 °C, 2'30" 68 °C) and 7' 68 °C. The resulting 1,8 kb PCR fragment was digested with Nco I and Sfu I and ligated into the plasmid pCRT7/VP22-1 (Invitrogen), which had been opened with restriction enzymes Nco I and Sfu I, and dephosphorylated with calf intestinal phosphatase. The resulting plasmid pCRT7-ΔVPCS (SEQ ID NO:15) was verified by DNA sequencing.

Expression of the fusion proteins in E. coli: E. coli BL21(DE3)-RIL cells (Stratagene) were transformed with pT7-TACS and grown on LB agar plates containing 100 µg/ml ampicillin. E. coli BL21(DE3)-RP cells (Stratagene) were transformed with pT7-VPCS and grown on LB agar plates containing 100 µg/ml ampicillin. E. coli BL21(DE3)-pLysS (Invitrogen) were transformed with pCRT7-ΔVPCS and grown on LB agar plates containing 25 µg/ml kanamycin and 34 µg/ml chloramphenicol. Single colonies were isolated and used to prepare glycerol stocks. Eight 5ml LB (Luria Bertani) aliquots containing antibiotics were inoculated with stabs from the glycerol stocks and grown overnight at 37°C with shaking. Two 5ml overnight cultures were each used to inoculate one of four 1L LB aliquots containing antibiotics and grown at 37°C with shaking. Growth rate was monitored by spectrophotometry at 578nm. When the cultures had obtained an OD₅₇₈ = 0,5 expression of the fusion proteins were induced by the addition of 0,5 mM Isopropyl-β-D-1-thiogalactopyranosid (IPTG). Two hours after induction cells were harvested by centrifugation at 12000xg and the pellet rapidly frozen in liquid nitrogen and stored immediately at -80°C.

Purification of the fusion proteins from bacterial lysates: Each 10g cell pellet was resuspended on ice in 30ml Bicine buffer (50mM Bicine, pH 8,5) including one protease inhibitor tablet (Complete, Roche). Cells were lysed through threefold treatment (1500psi, 5 minutes) with the cell disruption bomb (Parr Instrument). 30ml of Benzonase (10000U, Merck) was added and cell extracts were incubated for 30 minutes at 4°C. Cell extracts were then centrifuged at 12,000xg (4°C). The pellet was redissolved in 8M urea, 50mM Bicine, 100mM DTT, pH 8,5 by incubation for 16 hours at 4°C. Protein extract was centrifuged at 31000xg and supernatant harvested. Protein extract was diluted in an equal volume of Chromatography buffer A (50mM Bicine, pH 8,5). PH was adjusted to pH

8,5 and the extract was filtered through a 0,45µm filter (Millipore). FPLC (Akta Explorer, Amersham Pharmacia) was performed using a cation exchange column (Sephadex SP, Column body HR_5/5 (0.5 x 5cm), column volume (CV) 1ml, linear flow 300cm/hour, Amersham Pharmacia). After addition of sample to FPLC column, buffer was exchanged with Chromatography buffer A at 10 CV.

TAT-Cre and VP22-Cre fusion proteins were eluted from the column by gradient elution using chromatography buffer B (50mM Bicine, 1M NaCl, pH 8,5) using the following profile: 0 - 50 % buffer B, 0 CV; 50 % buffer B, 10 CV; 50 - 100 % buffer B (linear gradient), 20 CV; 100 % buffer B, 10 CV. ΔVP22-Cre protein was eluted from the column by gradient elution using the following profile: 0 - 10 % buffer B, 0 CV; 10 % buffer B, 10 CV; 10 – 30 % buffer B, 0 CV; 30 % buffer B, 10 CV; 30 – 100 % buffer B, 0 CV; 100 % buffer B, 10 CV. Three 1,5ml fractions each containing purified fusion proteins were collected. Purity and concentration of protein fractions were determined by Coomassie blue stained SDS-PAGE gels and Western blot analysis using dilutions of BSA standard solutions. In addition protein content was determined using a Bradford assay (Coomassie Plus protein assay, Pierce).

SDS-PAGE and Western blot analysis: SDS-PAGE and Coomassie staining was performed according to standard protocols (Maniatis et al., Cold Spring Harbor Laboratory, New York (1989)) using 4 - 12 % gradient SDS-polyacrylamide gels (NuPAGE, Invitrogen, cat. no.: NPO321). Western blot analysis was performed using a Semi-Try Blotting Chamber (Biorad) and nitrocellulose membranes (0,2 µm; Schleicher & Schuell) according to the manufacturers protocols. The fusion proteins were detected by using an alkaline phosphatase-conjugated anti-strep tag antibody (IBA, Cat. No.: 2-1503-001) according to the manufacturers protocol.

Generation of the M5Pax8 Cre reporter cell line: The SV40-transformed murine embryonic fibroblast line MEF5/5 (Schwenk et al., Nucl Acids Res 26(6), 1427-32 (1998)) was transfected with the vector pPGKpaX1 (Kellendonk et al, Nucl. Acids Res. 24, 1404-11 (1996)). 10^6 MEF5/5 cells were electroporated with 20 µg pPGKpaX1 plasmid DNA linearised with Sca I and plated into 48-well-plates. The cells were cultured in DMEM/Glutamax medium (Life Technologies) supplemented with 10 % fetal calf serum at 37°C, 10 % CO₂ in humid atmosphere. Two days after transfection the medium was supplemented with 5 µg/ml puromycin (Calbiochem) for the selection of stable integrants. 14 puromycin-resistant clones were expanded and tested by transient transfection with the Cre expression vector pPGK-Cre-pA (SEQ ID NO: 40). In two out of the 14 puromycin-resistant clones, the expression of β-galactosidase could be detected by staining with X-Gal. One of these clones, M5Pax8, was used as Cre reporter cell line.

Transfection and measurement of β-galactosidase activity: Fibroblasts (10^6 cells per 24 well plate (Falcon)) were transfected with 25 ng pCMV-I-Cre-pA (see SEQ ID NO:29) or pCMV-I-β-pA (see SEQ ID NO:30) plasmids using the FuGene transfection reagent (Roche Diagnostics). After 2 days the cells were lysed and the β-galactosidase activities were determined with the β-galactosidase reporter gene assay (Roche Diagnostics) according to the manufacturers guidelines using a Lumistar luminometer (MWG).

Histochemical detection of β-galactosidase activity: To quantitate β-galactosidase expression, fibroblast cells were washed once with phosphate buffered saline (PBS), and the cells were fixed for 5 minutes at room temperature in a solution of 4% formaldehyde in PBS. Next, the cells were washed twice with PBS and finally incubated in staining solution for 24 hours at 37°C (staining solution: 5 mM K₃(Fe(CN)₆), 5mM

K4(Fe(CN)6), 2mM MgCl₂, 1mg/ml X-Gal (BioMol) in PBS). Blue stained, β-galactosidase positive cells were detected and distinguished from negative (transparent) cells in a cell culture binocular microscope under 200x magnification. For each determination a minimum of 200 cells was counted.

PCR detection of Cre-mediated recombination: Genomic DNA extracted from tissue samples was subjected to PCR using Taq-polymerase (Gibco BRL Cat. No. 10342-020) using 20 pmol of each primer (sense: 5'-CAT CTC CGG GCC TTT CGA CCT G - 3', antisense: 5' -GCG ATC GGT GCG GGC CTC TTC - 3'; SEQ ID Nos: 41 and 42, respectively). PCR was performed using the following cycle profile: 2' 94°C, 35 x (30" 94°C, 30" 55 °C, 1' 72 °C), 10 min 72 °C. PCR products were separated on a 1,2 % agarose gel.

Example 1

The vector pT7-TACS (SEQ ID NO:16) was constructed for the expression of a TAT-Cre fusion protein in E. coli. The plasmid contains the coding region of the 11 amino acid protein transduction domain of the wild-type HIV TAT protein (Green and Loewenstein, Cell, 55(6):1179-88 (1988); Frankel and Pabo, Cell, 55(6): 1189-93 (1988); SEQ ID NO:10) fused to the N-terminus of Cre recombinase protein sequence. The 10-amino-acid strep tag at the C-terminus allows the detection and purification of the fusion protein using specific antibodies (Schmidt and Skerra, J. Chromatogr A 676: 337-345 (1994)). The protease factor Xa recognition site (Ile-Glu-Gly-Arg) permits the removal of the strep tag by proteolytic cleavage. The estimated molecular weight of the TAT-Cre fusion protein is 42 kDa. A scheme of the TAT-Cre expression vector is depicted in figure 2. For the expression of TAT-Cre, the E. coli strain BL21(DE3)-RIL (Stratagene) was used. This strain carries an IPTG-inducible T7 polymerase gene and additional copies of the tRNA genes for the 'rare

codons' argU, ileY and leuW.

E. coli BL21(DE3)-RIL cells were transformed with pT7-TACS and grown in LB medium containing 100 µg/ml ampicillin. The expression of the 40 kDa TAT-Cre fusion protein could be strongly induced by the addition of 0,5 mM IPTG to the culture medium. Analysis of protein lysates revealed that approximately 50 % of TAT-Cre protein accumulated as insoluble inclusion bodies. The inclusion bodies where extracted and dissolved in 8 M urea. TAT-Cre was subsequently purified from this fraction using ion exchange chromatography. The quantity and purity of TAT-Cre protein was determined using Coomassie stained SDS-PAGE gels and Western blot analysis (figure 3). The purification process yielded TAT-Cre protein extracts of 64 % purity and a concentration of 100 µg/ml.

To analyse the ability of the purified TAT-Cre protein to transduce into cultured cells, we used the fibroblast cell line M5Pax8 (R. Kühn, unpublished) that contains a loxP-containing reporter construct. This reporter, when recombined by Cre recombinase, allows the expression of a β-galacosidase gene (Buchholz et al, Nucleic Acids Res. 24, 4256-4262, 1996). Cells were cultured for 18 h with increasing concentrations of TAT-Cre protein in serum-free medium and analysed 4 days later for β-Galacosidase activity. Staining with X-Gal showed that > 50 % of the cells treated with 13,8 µg/ml TAT-Cre protein expressed β-galactosidase indicating recombination of the loxP-flanked reporter construct had occurred (figure 4). Measurement of β-galactosidase activity in cell lysates revealed an up to 30-fold higher level of β-galactosidase activity in comparison to cells which had been transiently transfected with an eukaryotic Cre expression vector (figure 5).

To investigate the activity of TAT-Cre protein in a living organism, we used a transgenic mouse strain carrying a loxP-flanked target for Cre-mediated recombination (Thorey et al., 1998, Mol. Cell. Biol. 18: 3081 – 3088). Mice where treated three times with intraperitoneal injections of 75 µg TAT Cre protein at two-day-intervals and analysed 2 days later. Genomic DNA was

isolated from a variety of organs and subjected to PCR amplification which specifically amplifies a 400 bp fragment of the recombined allele. The deleted allele could be detected in multiple tissues from treated mice indicating TAT-Cre-mediated recombination in these organs (figure 6). This experiments demonstrates that TAT-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting in cell lines and in living organisms.

Example 2

The vectors pT7-VPCS (SEQ ID NO:17) and pCRT7-ΔVPCS (SEQ ID NO:15) were constructed for the expression of VP22-Cre and ΔVP22-Cre fusion proteins in *E. coli*. The VP22-Cre gene of pT7-VPCS contains the full length protein translocation domain of the HSV VP22 protein (Elliott and O'Hare, Cell, 88(2): 223-33 (1987), whereas the ΔVP22-Cre gene of pCRT7-ΔVPCS contains a truncated VP22 protein transduction domain (amino acids 159 – 301; Invitrogen; aa 16-157 of SEQ ID NO:14) fused to the N-terminus of Cre recombinase protein sequence. A 10-amino-acid strep tag at the C-terminus of Cre protein sequence allows the detection and purification of the fusion proteins using specific antibodies (Schmidt and Skerra, J. Chromatogr A 676: 337-345 (1994)). The protease factor Xa recognition site permits the removal of the Strep tag by proteolytic cleavage. The estimated molecular weight is 75 kDa for VP22-Cre protein and 60 kDa for ΔVP22-Cre protein. A scheme of the vectors pT7-VPCS and pCRT7-ΔVPCS is depicted in figure 7.

E. coli BL21(DE3)-RIP cells (Stratagene) were transformed with pT7-VPCS and cultured in LB medium containing 100 µg/ml ampicillin. *E. coli* BL21(DE3)-pLysS cells (Stratagene) were transformed with pCRT7-ΔVPCS and cultured in LB medium containing 25 µg/ml kanamycin and 34 µg/ml chloramphenicol. Expression of the VP22-Cre and ΔVP22-Cre fusion proteins could be induced by the addition of 0,5 mM IPTG to the culture medium. Analysis of protein extracts using Coomassie staining and

Western blotting of SDS-PAGE gels revealed that 50 - 60 % of VP22-Cre and ΔVP22-Cre proteins accumulated as insoluble inclusion bodies. The inclusion bodies were extracted and dissolved in 8 M urea. VP22-Cre and ΔVP22-Cre fusion proteins were subsequently purified using ion exchange chromatography. The quantity and purity of the isolated VP22-Cre and ΔVP22-Cre fusion proteins was determined using Coomassie stained SDS-PAGE gels and Western blot analysis (figure 8).

To analyse the ability of the purified fusion proteins to transduce into cultured cells, we used the fibroblast cell line M5Pax8 that contains a loxP-containing reporter construct. When recombined by Cre recombinase, the reporter allows the expression of a β-galacosidase gene (Buchholz et al, Nucleic Acids Res. 24, 4256-4262, 1996). The cells were cultured for 18 h with increasing concentrations of VP22-Cre and ΔVP22-Cre in serum-free medium and analysed 4 days later for β-Galacosidase activity. Staining with X-Gal showed ~2 % blue cells in the cultures treated with up to 15 µg/ml ΔVP22-Cre indicating recombination of the loxP-flanked reporter construct had occurred. In contrast, cell cultures treated with up to 0,5 µg/ml VP22-Cre did not show any X-gal staining (figure 9). Measurement of cell lysates revealed a strong increase of β-galactosidase activity upon ΔVP22-Cre treatment when compared to untreated cells (figure 10). Genomic DNA was isolated and subjected to PCR amplification that specifically amplifies a 250 bp fragment of the recombined allele. The deleted allele could be detected in cells treated with both VP22-Cre and ΔVP22-Cre fusion proteins (figure 11).

This experiment demonstrates that VP22-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting.

SEQUENCE LISTING

<110> ARTEMIS Pharmaceuticals GmbH

<120> Transduction of recombinases for inducible gene targeting

<130> 010007wo/JH/ml

<140>
<141>

<160> 42

<170> PatentIn Ver. 2.1

<210> 1

<211> 1074

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: DNA sequence coding for a fusion protein TAT-Cre

<220>

<221> CDS

<222> (1)..(1071)

<400> 1

atg	ggc	tac	ggc	cgc	aag	aag	cgc	cgc	caa	cgc	cgc	cgc	ggc	atg	tcc	48
Met	Gly	Tyr	Gly	Arg	Lys	Lys	Arg	Arg	Gln	Arg	Arg	Arg	Gly	Met	Ser	
1									10					15		

aat	tta	ctg	acc	gta	cac	caa	aat	ttg	cct	gca	tta	ccg	gtc	gat	gca	96
Asn	Leu	Leu	Thr	Val	His	Gln	Asn	Leu	Pro	Ala	Leu	Pro	Val	Asp	Ala	
20								25					30			

acg	agt	gat	gag	gtt	cgc	aag	aac	ctg	atg	gac	atg	ttc	agg	gat	cgc	144
Thr	Ser	Asp	Glu	Val	Arg	Lys	Asn	Leu	Met	Asp	Met	Phe	Arg	Asp	Arg	
35								40				45				

cag	gcg	ttt	tct	gag	cat	acc	tgg	aaa	atg	ctt	ctg	tcc	gtt	tgc	cgg	192
Gln	Ala	Phe	Ser	Glu	His	Thr	Trp	Lys	Met	Leu	Leu	Ser	Val	Cys	Arg	
50								55				60				

tcg	tgg	gcg	gca	tgg	tgc	aag	ttg	aat	aac	cgg	aaa	tgg	ttt	ccc	gca	240
Ser	Trp	Ala	Ala	Trp	Cys	Lys	Leu	Asn	Asn	Arg	Lys	Trp	Phe	Pro	Ala	
65								70			75		80			

gaa	cct	gaa	gat	gtt	cgc	gat	tat	ctt	cta	tat	ctt	cag	gcg	cgc	ggt	288
Glu	Pro	Glu	Asp	Val	Arg	Asp	Tyr	Leu	Leu	Tyr	Leu	Gln	Ala	Arg	Gly	
85								90				95				

ctg	gca	gta	aaa	act	atc	cag	caa	cat	ttg	ggc	cag	cta	aac	atg	ctt	336
Leu	Ala	Val	Lys	Thr	Ile	Gln	Gln	His	Leu	Gly	Gln	Leu	Asn	Met	Leu	
100								105				110				

cat	cgt	cgg	tcc	ggg	ctg	cca	cga	cca	agt	gac	agc	aat	gct	gtt	tca	384
His	Arg	Arg	Ser	Gly	Leu	Pro	Arg	Pro	Ser	Asp	Ser	Asn	Ala	Val	Ser	
115								120				125				

ctg gtt atg cgg cgg atc cga aaa gaa aac gtt gat gcc ggt gaa cgt Leu Val Met Arg Arg Ile Arg Lys Glu Asn Val Asp Ala Gly Glu Arg 130 135 140	432
gca aaa cag gct cta gcg ttc gaa cgc act gat ttc gac cag gtt cgt Ala Lys Gln Ala Leu Ala Phe Glu Arg Thr Asp Phe Asp Gln Val Arg 145 150 155 160	480
tca ctc atg gaa aat agc gat cgc tgc cag gat ata cgt aat ctg gca Ser Leu Met Glu Asn Ser Asp Arg Cys Gln Asp Ile Arg Asn Leu Ala 165 170 175	528
ttt ctg ggg att gct tat aac acc ctg tta cgt ata gcc gaa att gcc Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu Arg Ile Ala Glu Ile Ala 180 185 190	576
agg atc agg gtt aaa gat atc tca cgt act gac ggt ggg aga atg tta Arg Ile Arg Val Lys Asp Ile Ser Arg Thr Asp Gly Gly Arg Met Leu 195 200 205	624
atc cat att ggc aga acg aaa acg ctg gtt agc acc gca ggt gta gag Ile His Ile Gly Arg Thr Lys Thr Leu Val Ser Thr Ala Gly Val Glu 210 215 220	672
aag gca ctt agc ctg ggg gta act aaa ctg gtc gag cga tgg att tcc Lys Ala Leu Ser Leu Gly Val Thr Lys Leu Val Glu Arg Trp Ile Ser 225 230 235 240	720
gtc tct ggt gta gct gat gat ccg aat aac tac ctg ttt tgc cgg gtc Val Ser Gly Val Ala Asp Asp Pro Asn Asn Tyr Leu Phe Cys Arg Val 245 250 255	768
aga aaa aat ggt gtt gcc gcg cca tct gcc acc agc cag cta tca act Arg Lys Asn Gly Val Ala Ala Pro Ser Ala Thr Ser Gln Leu Ser Thr 260 265 270	816
cgc gcc ctg gaa ggg att ttt gaa gca act cat cga ttg att tac ggc Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr His Arg Leu Ile Tyr Gly 275 280 285	864
gct aag gat gac tct ggt cag aga tac ctg gcc tgg tct gga cac agt Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu Ala Trp Ser Gly His Ser 290 295 300	912
gcc cgt gtc gga gcc gcg cga gat atg gcc cgc gct gga gtt tca ata Ala Arg Val Gly Ala Ala Arg Asp Met Ala Arg Ala Gly Val Ser Ile 305 310 315 320	960
ccg gag atc atg caa gct ggt ggc tgg acc aat gta aat att gtc atg Pro Glu Ile Met Gln Ala Gly Gly Trp Thr Asn Val Asn Ile Val Met 325 330 335	1008
aac tat atc cgt aac ctg gat agt gaa aca ggg gca atg gtg cgc ctg Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr Gly Ala Met Val Arg Leu 340 345 350	1056
ctg gaa gat ggc gat tag Leu Glu Asp Gly Asp 355	1074

<210> 2
<211> 357
<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: DNA sequence
coding for a fusion protein TAT-Cre

<400> 2

Met Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Met Ser
1 5 10 15Asn Leu Leu Thr Val His Gln Asn Leu Pro Ala Leu Pro Val Asp Ala
20 25 30Thr Ser Asp Glu Val Arg Lys Asn Leu Met Asp Met Phe Arg Asp Arg
35 40 45Gln Ala Phe Ser Glu His Thr Trp Lys Met Leu Leu Ser Val Cys Arg
50 55 60Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn Arg Lys Trp Phe Pro Ala
65 70 75 80Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu Tyr Leu Gln Ala Arg Gly
85 90 95Leu Ala Val Lys Thr Ile Gln Gln His Leu Gly Gln Leu Asn Met Leu
100 105 110His Arg Arg Ser Gly Leu Pro Arg Pro Ser Asp Ser Asn Ala Val Ser
115 120 125Leu Val Met Arg Arg Ile Arg Lys Glu Asn Val Asp Ala Gly Glu Arg
130 135 140Ala Lys Gln Ala Leu Ala Phe Glu Arg Thr Asp Phe Asp Gln Val Arg
145 150 155 160Ser Leu Met Glu Asn Ser Asp Arg Cys Gln Asp Ile Arg Asn Leu Ala
165 170 175Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu Arg Ile Ala Glu Ile Ala
180 185 190Arg Ile Arg Val Lys Asp Ile Ser Arg Thr Asp Gly Gly Arg Met Leu
195 200 205Ile His Ile Gly Arg Thr Lys Thr Leu Val Ser Thr Ala Gly Val Glu
210 215 220Lys Ala Leu Ser Leu Gly Val Thr Lys Leu Val Glu Arg Trp Ile Ser
225 230 235 240Val Ser Gly Val Ala Asp Asp Pro Asn Asn Tyr Leu Phe Cys Arg Val
245 250 255Arg Lys Asn Gly Val Ala Ala Pro Ser Ala Thr Ser Gln Leu Ser Thr
260 265 270Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr His Arg Leu Ile Tyr Gly
275 280 285Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu Ala Trp Ser Gly His Ser
290 295 300Ala Arg Val Gly Ala Ala Arg Asp Met Ala Arg Ala Gly Val Ser Ile
305 310 315 320

Pro Glu Ile Met Gln Ala Gly Gly Trp Thr Asn Val Asn Ile Val Met
325 330 335

Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr Gly Ala Met Val Arg Leu
340 345 350

Leu Glu Asp Gly Asp
355

```
<210> 3
<211> 1317
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: DNA sequence
coding for a fusion protein TAT-Flpe

<220>
<221> CDS
<222> (1)..(1311)

```

<400> 3
atg ggc tac ggc cgc aag aag cgc cgc caa cgc cgc cgc ggc atg agt 48
Met Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Met Ser
   1          5           10          15

```

caa ttt gat ata tta tgt aaa aca cca cct aag gtc ctg gtt cgt cag 96
 Gln Phe Asp Ile Leu Cys Lys Thr Pro Pro Lys Val Leu Val Arg Gln
 20 25 30

ttt gtg gaa agg ttt gaa aga cct tca ggg gaa aaa ata gca tca tgt 144
 Phe Val Glu Arg Phe Glu Arg Pro Ser Gly Glu Lys Ile Ala Ser Cys
 35 40 45

gct gct gaa cta acc tat tta tgt tgg atg att act cat aac gga aca 192
 Ala Ala Glu Leu Thr Tyr Leu Cys Trp Met Ile Thr His Asn Gly Thr
 50 55 60

```

gca atc aag aga gcc aca ttc atg agc tat aat act atc ata agc aat 240
Ala Ile Lys Arg Ala Thr Phe Met Ser Tyr Asn Thr Ile Ile Ser Asn
 65           70           75           80

```

tcg ctg agt ttc gat att gtc aac aaa tca ctc cag ttt aaa tac aag 288
 Ser Leu Ser Phe Asp Ile Val Asn Lys Ser Leu Gln Phe Lys Tyr Lys
 85 90 95

acg caa aaa gca aca att ctg gaa gcc tca tta aag aaa tta att cct 336
Thr Gln Lys Ala Thr Ile Leu Glu Ala Ser Leu Lys Lys Leu Ile Pro
100 105 110

gct tgg gaa ttt aca att att cct tac aat gga caa aaa cat caa tct 384
 Ala Trp Glu Phe Thr Ile Ile Pro Tyr Asn Gly Gln Lys His Gln Ser
 115 120 125

gat atc act gat att gta agt agt ttg caa tta cag ttc gaa tca tcg 432
 Asp Ile Thr Asp Ile Val Ser Ser Leu Gln Leu Gln Phe Glu Ser Ser
 130 135 140

gaa gaa.gca gat aag gga aat agc cac agt aaa aaa atg ctt aaa gca 480
 Glu Glu Ala Asp Lys Gly Asn Ser His Ser Lys Lys Met Leu Lys Ala
 145 150 155 160

ctt cta agt gag ggt gaa agc atc tgg gag atc act gag aaa ata cta Leu Leu Ser Glu Gly Glu Ser Ile Trp Glu Ile Thr Glu Lys Ile Leu 165 170 175	528
aat tcg ttt gag tat acc tcg aga ttt aca aaa aca aaa act tta tac Asn Ser Phe Glu Tyr Thr Ser Arg Phe Thr Lys Thr Lys Thr Leu Tyr 180 185 190	576
caa ttc ctc ttc cta gct act ttc atc aat tgt gga aga ttc agc gat Gln Phe Leu Phe Leu Ala Thr Phe Ile Asn Cys Gly Arg Phe Ser Asp 195 200 205	624
att aag aac gtt gat ccg aaa tca ttt aaa tta gtc caa aat aag tat Ile Lys Asn Val Asp Pro Lys Ser Phe Lys Leu Val Gln Asn Lys Tyr 210 215 220	672
ctg gga gta ata atc cag tgt tta gtg aca gag aca aag aca agc gtt Leu Gly Val Ile Ile Gln Cys Leu Val Thr Glu Thr Lys Thr Ser Val 225 230 235 240	720
agt agg cac ata tac ttc ttt agc gca agg ggt agg atc gat cca ctt Ser Arg His Ile Tyr Phe Phe Ser Ala Arg Gly Arg Ile Asp Pro Leu 245 250 255	768
gta tat ttg gat gaa ttt ttg agg aat tct gaa cca gtc cta aaa cga Val Tyr Leu Asp Glu Phe Leu Arg Asn Ser Glu Pro Val Leu Lys Arg 260 265 270	816
gta aat agg acc ggc aat tct tca agc aac aaa cag gaa tac caa tta Val Asn Arg Thr Gly Asn Ser Ser Asn Lys Gln Glu Tyr Gln Leu 275 280 285	864
tta aaa gat aac tta gtc aga tcg tac aac aag gct ttg aag aaa aat Leu Lys Asp Asn Leu Val Arg Ser Tyr Asn Lys Ala Leu Lys Lys Asn 290 295 300	912
gcg cct tat cca atc ttt gct ata aag aat ggc cca aaa tct cac att Ala Pro Tyr Pro Ile Phe Ala Ile Lys Asn Gly Pro Lys Ser His Ile 305 310 315 320	960
gga aga cat ttg atg acc tca ttt ctg tca atg aag ggc cta acg gag Gly Arg His Leu Met Thr Ser Phe Leu Ser Met Lys Gly Leu Thr Glu 325 330 335	1008
ttg act aat gtt gtg gga aat tgg agc gat aag cgt gct tct gcc gtg Leu Thr Asn Val Val Gly Asn Trp Ser Asp Lys Arg Ala Ser Ala Val 340 345 350	1056
gcc agg aca acg tat act cat cag ata aca gca ata cct gat cac tac Ala Arg Thr Thr Tyr Thr His Gln Ile Thr Ala Ile Pro Asp His Tyr 355 360 365	1104
ttc gca cta gtt tct cgg tac tat gca tat gat cca ata tca aag gaa Phe Ala Leu Val Ser Arg Tyr Tyr Ala Tyr Asp Pro Ile Ser Lys Glu 370 375 380	1152
atg ata gca ttg aag gat gag act aat cca att gag gag tgg cag cat Met Ile Ala Leu Lys Asp Glu Thr Asn Pro Ile Glu Glu Trp Gln His 385 390 395 400	1200
ata gaa cag cta aag ggt agt gct gaa gga agc ata cga tac ccc gca Ile Glu Gln Leu Lys Gly Ser Ala Glu Gly Ser Ile Arg Tyr Pro Ala 405 410 415	1248

tgg aat ggg ata ata tca cag gag gta cta gac tac ctt tca tcc tac 1296
 Trp Asn Gly Ile Ile Ser Gln Glu Val Leu Asp Tyr Leu Ser Ser Tyr
 420 425 430

ata aat aga cgc ata taatga 1317
 Ile Asn Arg Arg Ile
 435

<210> 4
 <211> 437
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: DNA sequence
 coding for a fusion protein TAT-Flpe

<400> 4
 Met Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Met Ser
 1 5 10 15

Gln Phe Asp Ile Leu Cys Lys Thr Pro Pro Lys Val Leu Val Arg Gln
 20 25 30

Phe Val Glu Arg Phe Glu Arg Pro Ser Gly Glu Lys Ile Ala Ser Cys
 35 40 45

Ala Ala Glu Leu Thr Tyr Leu Cys Trp Met Ile Thr His Asn Gly Thr
 50 55 60

Ala Ile Lys Arg Ala Thr Phe Met Ser Tyr Asn Thr Ile Ile Ser Asn
 65 70 75 80

Ser Leu Ser Phe Asp Ile Val Asn Lys Ser Leu Gln Phe Lys Tyr Lys
 85 90 95

Thr Gln Lys Ala Thr Ile Leu Glu Ala Ser Leu Lys Lys Leu Ile Pro
 100 105 110

Ala Trp Glu Phe Thr Ile Ile Pro Tyr Asn Gly Gln Lys His Gln Ser
 115 120 125

Asp Ile Thr Asp Ile Val Ser Ser Leu Gln Leu Gln Phe Glu Ser Ser
 130 135 140

Glu Glu Ala Asp Lys Gly Asn Ser His Ser Lys Lys Met Leu Lys Ala
 145 150 155 160

Leu Leu Ser Glu Gly Glu Ser Ile Trp Glu Ile Thr Glu Lys Ile Leu
 165 170 175

Asn Ser Phe Glu Tyr Thr Ser Arg Phe Thr Lys Thr Lys Thr Leu Tyr
 180 185 190

Gln Phe Leu Phe Leu Ala Thr Phe Ile Asn Cys Gly Arg Phe Ser Asp
 195 200 205

Ile Lys Asn Val Asp Pro Lys Ser Phe Lys Leu Val Gln Asn Lys Tyr
 210 215 220

Leu Gly Val Ile Ile Gln Cys Leu Val Thr Glu Thr Lys Thr Ser Val
 225 230 235 240

Ser Arg His Ile Tyr Phe Phe Ser Ala Arg Gly Arg Ile Asp Pro Leu
 245 250 255
 Val Tyr Leu Asp Glu Phe Leu Arg Asn Ser Glu Pro Val Leu Lys Arg
 260 265 270
 Val Asn Arg Thr Gly Asn Ser Ser Ser Asn Lys Gln Glu Tyr Gln Leu
 275 280 285
 Leu Lys Asp Asn Leu Val Arg Ser Tyr Asn Lys Ala Leu Lys Lys Asn
 290 295 300
 Ala Pro Tyr Pro Ile Phe Ala Ile Lys Asn Gly Pro Lys Ser His Ile
 305 310 315 320
 Gly Arg His Leu Met Thr Ser Phe Leu Ser Met Lys Gly Leu Thr Glu
 325 330 335
 Leu Thr Asn Val Val Gly Asn Trp Ser Asp Lys Arg Ala Ser Ala Val
 340 345 350
 Ala Arg Thr Thr Tyr Thr His Gln Ile Thr Ala Ile Pro Asp His Tyr
 355 360 365
 Phe Ala Leu Val Ser Arg Tyr Tyr Ala Tyr Asp Pro Ile Ser Lys Glu
 370 375 380
 Met Ile Ala Leu Lys Asp Glu Thr Asn Pro Ile Glu Glu Trp Gln His
 385 390 395 400
 Ile Glu Gln Leu Lys Gly Ser Ala Glu Gly Ser Ile Arg Tyr Pro Ala
 405 410 415
 Trp Asn Gly Ile Ile Ser Gln Glu Val Leu Asp Tyr Leu Ser Ser Tyr
 420 425 430
 Ile Asn Arg Arg Ile
 435

<210> 5
 <211> 2004
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: DNA sequence
 coding for a fusion protein VP22-Cre

<220> --
 <221> CDS
 <222> (1)...(2001)

<400> 5
 atg acc tct cgc cgc tcc gtg aag tcg ggt ccg cgg gag gtt ccg cgc 48
 Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro Arg
 1 5 10 15

gat gag tac gag gat ctg tac tac acc ccg tct tca ggt atg gcg agt 96
 Asp Glu Tyr Glu Asp Leu Tyr Tyr Thr Pro Ser Ser Gly Met Ala Ser
 20 25 30

ccc gat agt ccg cct gag acc tcc cgc cgt ggc gcc cta cag aca cgc	144
Pro Asp Ser Pro Pro Asp Thr Ser Arg Arg Gly Ala Leu Gln Thr Arg	
35	40
	45
tcg cgc cag agg ggc gag gtc cgt ttc gtc cag tac gag tcg gat	192
Ser Arg Gln Arg Gly Glu Val Arg Phe Val Gln Tyr Asp Glu Ser Asp	
50	55
	60
tat gcc ctc tac ggg ggc tcg tct tcc gaa gac gac gaa cac ccg gag	240
Tyr Ala Leu Tyr Gly Gly Ser Ser Glu Asp Asp Glu His Pro Glu	
65	70
	75
	80
gtc ccc cgg acg cgg cgt ccc gtt tcc ggg gcg gtt ttg tcc ggc ccg	288
Val Pro Arg Thr Arg Arg Pro Val Ser Gly Ala Val Leu Ser Gly Pro	
85	90
	95
ggg cct gcg cgg gcg cct ccg cca ccc gct ggg tcc gga ggg gcc gga	336
Gly Pro Ala Arg Ala Pro Pro Pro Ala Gly Ser Gly Gly Ala Gly	
100	105
	110
cgc aca ccc acc acc gcc ccc cgg gtc ccc cga acc cag cgg gtg gcg	384
Arg Thr Pro Thr Thr Ala Pro Arg Ala Pro Arg Thr Gln Arg Val Ala	
115	120
	125
act aag gcc ccc gcg gcc ccg gcg gag acc acc cgc ggc agg aaa	432
Thr Lys Ala Pro Ala Ala Pro Ala Ala Glu Thr Thr Arg Gly Arg Lys	
130	135
	140
tcg gcc cag cca gaa tcc gcc gca ctc cca gac gcc ccc gcg tcg acg	480
Ser Ala Gln Pro Glu Ser Ala Ala Leu Pro Asp Ala Pro Ala Ser Thr	
145	150
	155
	160
gcg cca acc cga tcc aag aca ccc gcg cag ggg ctg gcc aga aag ctg	528
Ala Pro Thr Arg Ser Lys Thr Pro Ala Gln Gly Leu Ala Arg Lys Leu	
165	170
	175
cac ttt agc acc gcc ccc cca aac ccc gac gcg cca tgg acc ccc cgg	576
His Phe Ser Thr Ala Pro Pro Asn Pro Asp Ala Pro Trp Thr Pro Arg	
180	185
	190
gtg gcc ggc ttt aac aag cgc gtc ttc tgc gcc gcg gtc ggg cgc ctg	624
Val Ala Gly Phe Asn Lys Arg Val Phe Cys Ala Ala Val Gly Arg Leu	
195	200
	205
gcg gcc atg cat gcc cgg atg gcg gcg gtc cag ctc tgg gac atg tcg	672
Ala Ala Met His Ala Arg Met Ala Ala Val Gln Leu Trp Asp Met Ser	
210	215
	220
cgt ccg cgc aca gac gaa gac ctc aac gaa ctc ctt ggc atc acc acc	720
Arg Pro Arg Thr Asp Glu Asp Leu Asn Glu Leu Leu Gly Ile Thr Thr	
225	230
	235
	240
atc cgc gtg acg gtc tgc gag ggc aaa aac ctg ctt cag cgc gcc aac	768
Ile Arg Val Thr Val Cys Glu Gly Lys Asn Leu Leu Gln Arg Ala Asn	
245	250
	255
gag ttg gtg aat cca gac gtg gtg cag gac gtc gac gcg gcc acg gcg	816
Glu Leu Val Asn Pro Asp Val Val Gln Asp Val Asp Ala Ala Thr Ala	
260	265
	270
act cga ggg cgt tct gcg gcg tcg cgc ccc acc gag cga cct cga gcc	864
Thr Arg Gly Arg Ser Ala Ala Ser Arg Pro Thr Glu Arg Pro Arg Ala	
275	280
	285

cca gcc cgc tcc gct tct cgc ccc aga cgg ccc gtc gag ggt acc gag Pro Ala Arg Ser Ala Ser Arg Pro Arg Arg Pro Val Glu Gly Thr Glu 290 295 300	912
ctc gga tcc act agt cca gtg tgg tgg aat tct gca gat atc cag cac Leu Gly Ser Thr Ser Pro Val Trp Trp Asn Ser Ala Asp Ile Gln His 305 310 315 320	960
agt ggc ggc cgc atg tcc aat tta ctg acc gta cac caa aat ttg cct Ser Gly Gly Arg Met Ser Asn Leu Leu Thr Val His Gln Asn Leu Pro 325 330 335	1008
gca tta ccg gtc gat gca acg agt gat gag gtt cgc aag aac ctg atg Ala Leu Pro Val Asp Ala Thr Ser Asp Glu Val Arg Lys Asn Leu Met 340 345 350	1056
gac atg ttc agg gat cgc cag gcg ttt tct gag cat acc tgg aaa atg Asp Met Phe Arg Asp Arg Gln Ala Phe Ser Glu His Thr Trp Lys Met 355 360 365	1104
ett ctg tcc gtt tgc cgg tcg tgg gcg gca tgg tgc aag ttg aat aac Leu Leu Ser Val Cys Arg Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn 370 375 380	1152
cgg aaa tgg ttt ccc gca gaa cct gaa gat gtt cgc gat tat ctt cta Arg Lys Trp Phe Pro Ala Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu 385 390 395 400	1200
tat ctt cag gcg cgc ggt ctg gca gta aaa act atc cag caa cat ttg Tyr Leu Gln Ala Arg Gly Leu Ala Val Lys Thr Ile Gln Gln His Leu 405 410 415	1248
ggc cag cta aac atg ctt cat cgt cgg tcc ggg ctg cca cga cca agt Gly Gln Leu Asn Met Leu His Arg Arg Ser Gly Leu Pro Arg Pro Ser 420 425 430	1296
gac agc aat gct gtt tca ctg gtt atg cgg cgg atc cga aaa gaa aac Asp Ser Asn Ala Val Ser Leu Val Met Arg Arg Ile Arg Lys Glu Asn 435 440 445	1344
gtt gat gcc ggt gaa cgt gca aaa cag gct cta gcg ttc gaa cgc act Val Asp Ala Gly Glu Arg Ala Lys Gln Ala-Leu Ala Phe Glu Arg Thr 450 455 460	1392
gat ttc gac cag gtt cgt tca ctc atg gaa aat agc gat cgc tgc cag Asp Phe Asp Gln Val Arg Ser Leu Met Glu Asn Ser Asp Arg Cys Gln 465 470 475 480	1440
gat ata cgt aat ctg gca ttt ctg ggg att gct tat aac acc ctg tta Asp Ile Arg Asn Leu Ala Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu 485 490 495	1488
cgt ata gcc gaa att gcc agg atc agg gtt aaa gat atc tca cgt act Arg Ile Ala Glu Ile Ala Arg Ile Arg Val Lys Asp Ile Ser Arg Thr 500 505 510	1536
gac ggt ggg aga atg tta atc cat att ggc aga acg aaa acg ctg gtt Asp Gly Gly Arg Met Leu Ile His Ile Gly Arg Thr Lys Thr Leu Val 515 520 525	1584
agc acc gca ggt gta gag aag gca ctt agc ctg ggg gta act aaa ctg Ser Thr Ala Gly Val Glu Lys Ala Leu Ser Leu Gly Val Thr Lys Leu 530 535 540	1632

gtc gag cga tgg att tcc gtc tct ggt gta gct gat gat ccg aat aac Val Glu Arg Trp Ile Ser Val Ser Gly Val Ala Asp Asp Pro Asn Asn 545 550 555 560	1680
tac ctg ttt tgc cgg gtc aga aaa aat ggt gtt gcc gcg cca tct gcc Tyr Leu Phe Cys Arg Val Arg Lys Asn Gly Val Ala Ala Pro Ser Ala 565 570 575	1728
acc agc cag cta tca act cgc gcc ctg gaa ggg att ttt gaa gca act Thr Ser Gln Leu Ser Thr Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr 580 585 590	1776
cat cga ttg att tac ggc gct aag gat gac tct ggt cag aga tac ctg His Arg Leu Ile Tyr Gly Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu 595 600 605	1824
gcc tgg tct gga cac agt gcc cgt gtc gga gcc gcg cga gat atg gcc Ala Trp Ser Gly His Ser Ala Arg Val Gly Ala Ala Arg Asp Met Ala 610 615 620	1872
cgc gct gga gtt tca ata ccg gag atc atg caa qct ggt ggc tgg acc Arg Ala Gly Val Ser Ile Pro Glu Ile Met Gln Ala Gly Gly Trp Thr 625 630 635 640	1920
aat gta aat att gtc atg aac tat atc cgt aac ctg gat agt gaa aca Asn Val Asn Ile Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr 645 650 655	1968
ggg gca atg gtg cgc ctg gaa gat ggc gat tag Gly Ala Met Val Arg Leu Leu Glu Asp Gly Asp 660 665	2004

<210> 6

<211> 667

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: DNA sequence
coding for a fusion protein VP22-Cre

<400> 6

Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro Arg 1 5 10 15
--

Asp Glu Tyr Glu Asp Leu Tyr Tyr Pro Ser Ser Gly Met Ala Ser 20 25 30

Pro Asp Ser Pro Pro Asp Thr Ser Arg Arg Gly Ala Leu Gln Thr Arg 35 40 45

Ser Arg Gln Arg Gly Glu Val Arg Phe Val Gln Tyr Asp Glu Ser Asp 50 55 60

Tyr Ala Leu Tyr Gly Gly Ser Ser Ser Glu Asp Asp Glu His Pro Glu 65 70 75 80
--

Val Pro Arg Thr Arg Arg Pro Val Ser Gly Ala Val Leu Ser Gly Pro 85 90 95

Gly Pro Ala Arg Ala Pro Pro Pro Ala Gly Ser Gly Gly Ala Gly 100 105 110
--

Arg Thr Pro Thr Thr Ala Pro Arg Ala Pro Arg Thr Gln Arg Val Ala 115 120 125
--

Thr Lys Ala Pro Ala Ala Pro Ala Ala Glu Thr Thr Arg Gly Arg Lys
 130 135 140
 Ser Ala Gln Pro Glu Ser Ala Ala Leu Pro Asp Ala Pro Ala Ser Thr
 145 150 155 160
 Ala Pro Thr Arg Ser Lys Thr Pro Ala Gln Gly Leu Ala Arg Lys Leu
 165 170 175
 His Phe Ser Thr Ala Pro Pro Asn Pro Asp Ala Pro Trp Thr Pro Arg
 180 185 190
 Val Ala Gly Phe Asn Lys Arg Val Phe Cys Ala Ala Val Gly Arg Leu
 195 200 205
 Ala Ala Met His Ala Arg Met Ala Ala Val Gln Leu Trp Asp Met Ser
 210 215 220
 Arg Pro Arg Thr Asp Glu Asp Leu Asn Glu Leu Leu Gly Ile Thr Thr
 225 230 235 240
 Ile Arg Val Thr Val Cys Glu Gly Lys Asn Leu Leu Gln Arg Ala Asn
 245 250 255
 Glu Leu Val Asn Pro Asp Val Val Gln Asp Val Asp Ala Ala Thr Ala
 260 265 270
 Thr Arg Gly Arg Ser Ala Ala Ser Arg Pro Thr Glu Arg Pro Arg Ala
 275 280 285
 Pro Ala Arg Ser Ala Ser Arg Pro Arg Arg Pro Val Glu Gly Thr Glu
 290 295 300
 Leu Gly Ser Thr Ser Pro Val Trp Trp Asn Ser Ala Asp Ile Gln His
 305 310 315 320
 Ser Gly Gly Arg Met Ser Asn Leu Leu Thr Val His Gln Asn Leu Pro
 325 330 335
 Ala Leu Pro Val Asp Ala Thr Ser Asp Glu Val Arg Lys Asn Leu Met
 340 345 350
 Asp Met Phe Arg Asp Arg Gln Ala Phe Ser Glu His Thr Trp Lys Met
 355 360 365
 Leu Leu Ser Val Cys Arg Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn
 370 375 380
 Arg Lys Trp Phe Pro Ala Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu
 385 390 395 400
 Tyr Leu Gln Ala Arg Gly Leu Ala Val Lys Thr Ile Gln Gln His Leu
 405 410 415
 Gly Gln Leu Asn Met Leu His Arg Arg Ser Gly Leu Pro Arg Pro Ser
 420 425 430
 Asp Ser Asn Ala Val Ser Leu Val Met Arg Arg Ile Arg Lys Glu Asn
 435 440 445
 Val Asp Ala Gly Glu Arg Ala Lys Gln Ala Leu Ala Phe Glu Arg Thr
 450 455 460

Asp Phe Asp Gln Val Arg Ser Leu Met Glu Asn Ser Asp Arg Cys Gln
 465 470 475 480
 Asp Ile Arg Asn Leu Ala Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu
 485 490 495
 Arg Ile Ala Glu Ile Ala Arg Ile Arg Val Lys Asp Ile Ser Arg Thr
 500 505 510
 Asp Gly Gly Arg Met Leu Ile His Ile Gly Arg Thr Lys Thr Leu Val
 515 520 525
 Ser Thr Ala Gly Val Glu Lys Ala Leu Ser Leu Gly Val Thr Lys Leu
 530 535 540
 Val Glu Arg Trp Ile Ser Val Ser Gly Val Ala Asp Asp Pro Asn Asn
 545 550 555 560
 Tyr Leu Phe Cys Arg Val Arg Lys Asn Gly Val Ala Ala Pro Ser Ala
 565 570 575
 Thr Ser Gln Leu Ser Thr Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr
 580 585 590
 His Arg Leu Ile Tyr Gly Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu
 595 600 605
 Ala Trp Ser Gly His Ser Ala Arg Val Gly Ala Ala Arg Asp Met Ala
 610 615 620
 Arg Ala Gly Val Ser Ile Pro Glu Ile Met Gln Ala Gly Gly Trp Thr
 625 630 635 640
 Asn Val Asn Ile Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr
 645 650 655
 Gly Ala Met Val Arg Leu Leu Glu Asp Gly Asp
 660 665

<210> 7
 <211> 2247
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: DNA sequence
 coding for a fusion protein VP22-Flpe

 <220>
 <221> CDS
 <222> (1)...(2241)

 <400> 7
 atg acc tct cgc cgc tcc gtg aag tcg ggt ccg cgg gag gtt ccg cgc 48
 Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro Arg
 1 5 10 15

 gat gag tac gag gat ctg tac tac acc ccg tct tca ggt atg gcg agt 96
 Asp Glu Tyr Glu Asp Leu Tyr Tyr Thr Pro Ser Ser Gly Met Ala Ser
 20 25 30

ccc gat agt ccg cct gac acc tcc cgc cgt ggc gcc cta cag aca cgc	144
Pro Asp Ser Pro Pro Asp Thr Ser Arg Arg Gly Ala Leu Gln Thr Arg	
35 40 45	
tcg cgc cag agg ggc gag gtc cgt ttc gtc cag tac gac gag tcg gat	192
Ser Arg Gln Arg Gly Glu Val Arg Phe Val Gln Tyr Asp Glu Ser Asp	
50 55 60	
tat gcc ctc tac ggg ggc tcg tct tcc gaa gac gac gaa cac ccg gag	240
Tyr Ala Leu Tyr Gly Ser Ser Ser Glu Asp Asp Glu His Pro Glu	
65 70 75 80	
gtc ccc cg ^g acg cg ^g cgt ccc gtt tcc ggg gcg gtt ttg tcc ggc ccg	288
Val Pro Arg Thr Arg Arg Pro Val Ser Gly Ala Val Leu Ser Gly Pro	
85 90 95	
ggg cct gc ^g cg ^g gc ^g cct cc ^g cca ccc gct ggg tcc gga ggg gcc gga	336
Gly Pro Ala Arg Ala Pro Pro Pro Ala Gly Ser Gly Gly Ala Gly	
100 105 110	
cg ^c aca ccc acc acc g ^c ccc cg ^g g ^c ccc cga acc cag cgg gtg g ^c g ^c	384
Arg Thr Pro Thr Thr Ala Pro Arg Ala Pro Arg Thr Gln Arg Val Ala	
115 120 125	
act aag gcc ccc g ^c g ^c cc ^g g ^c g ^c g ^c gag acc acc cgc ggc agg aaa	432
Thr Lys Ala Pro Ala Ala Pro Ala Glu Thr Thr Arg Gly Arg Lys	
130 135 140	
tcg gcc cag cca gaa tcc gcc gca ctc cca gac gcc ccc g ^c tcg acg	480
Ser Ala Gln Pro Glu Ser Ala Ala Leu Pro Asp Ala Pro Ala Ser Thr	
145 150 155 160	
gc ^g cca acc cg ^a tcc aag aca ccc g ^c cag ggg ctg gcc aga aag ctg	528
Ala Pro Thr Arg Ser Lys Thr Pro Ala Gln Gly Leu Ala Arg Lys Leu	
165 170 175	
cac ttt agc acc gcc ccc cca aac ccc gac g ^c cca tgg acc ccc cg ^g	576
His Phe Ser Thr Ala Pro Pro Asn Pro Asp Ala Pro Trp Thr Pro Arg	
180 185 190	
gtg gcc ggc ttt aac aag cgc gtc ttc tgc gcc g ^c gtc ggg cg ^g ctg	624
Val Ala Gly Phe Asn Lys Arg Val Phe Cys Ala Ala Val Gly Arg Leu	
195 200 205	
gc ^g gcc atg cat gcc cg ^g atg g ^c g ^c gtc cag ctc tgg gac atg tcg	672
Ala Ala Met His Ala Arg Met Ala Ala Val Gln Leu Trp Asp Met Ser	
210 215 220	
cgt ccg cgc aca gac gaa gac ctc aac gaa ctc ctt ggc atc acc acc	720
Arg Pro Arg Thr Asp Glu Asp Leu Asn Glu Leu Leu Gly Ile Thr Thr	
225 230 235 240	
atc cgc gtg acg gtc tgc gag ggc aaa aac ctg ctt cag cg ^g gcc aac	768
Ile Arg Val Thr Val Cys Glu Gly Lys Asn Leu Leu Gln Arg Ala Asn	
245 250 255	
gag ttg gtg aat cca gac gtg gtg cag gac gtc gac g ^c g ^c acg g ^c	816
Glu Leu Val Asn Pro Asp Val Val Gln Asp Val Asp Ala Ala Thr Ala	
260 265 270	
act cga ggg cgt tct g ^c g ^c tcg cgc ccc acc gag cga cct cga gcc	864
Thr Arg Gly Arg Ser Ala Ala Ser Arg Pro Thr Glu Arg Pro Arg Ala	
275 280 285	

cca gcc cgc tcc gct tct cgc ccc aga cg ^g ccc gtc gag ggt acc gag Pro Ala Arg Ser Ala Ser Arg Pro Arg Arg Pro Val Glu Gly Thr Glu 290 295 300	912
ctc gga tcc act agt cca gtg tgg aat tct gca gat atc cag cac Leu Gly Ser Thr Ser Pro Val Trp Trp Asn Ser Ala Asp Ile Gln His 305 310 315 320	960
agt ggc ggc cgc atg agt caa ttt gat ata tta tgt aaa aca cca cct Ser Gly Gly Arg Met Ser Gln Phe Asp Ile Leu Cys Lys Thr Pro Pro 325 330 335	1008
aag gtc ctg gtt cgt cag ttt gtg gaa agg ttt gaa aga cct tca ggg Lys Val Leu Val Arg Gln Phe Val Glu Arg Phe Glu Arg Pro Ser Gly 340 345 350	1056
gaa aaa ata gca tca tgt gct gct gaa cta acc tat tta tgt tgg atg Glu Lys Ile Ala Ser Cys Ala Ala Glu Leu Thr Tyr Leu Cys Trp Met 355 360 365	1104
att act cat aac gga aca gca atc aag aga gcc aca ttc atg agc tat Ile Thr His Asn Gly Thr Ala Ile Lys Arg Ala Thr Phe Met Ser Tyr 370 375 380	1152
aat act atc ata agc aat tcg ctg agt ttc gat att gtc aac aaa tca Asn Thr Ile Ile Ser Asn Ser Leu Ser Phe Asp Ile Val Asn Lys Ser 385 390 395 400	1200
ctc cag ttt aaa tac aag acg caa aaa gca aca att ctg gaa gcc tca Leu Gln Phe Lys Tyr Lys Thr Gln Lys Ala Thr Ile Leu Glu Ala Ser 405 410 415	1248
tta aag aaa tta att cct gct tgg gaa ttt aca att att cct tac aat Leu Lys Lys Leu Ile Pro Ala Trp Glu Phe Thr Ile Ile Pro Tyr Asn 420 425 430	1296
gga caa aaa cat caa tct gat atc act gat att gta agt agt ttg caa Gly Gln Lys His Gln Ser Asp Ile Thr Asp Ile Val Ser Ser Leu Gln 435 440 445	1344
tta cag ttc gaa tca tcg gaa gaa gca gat aag gga aat agc cac agt Leu Gln Phe Glu Ser Ser Glu Glu Ala Asp Lys Gly Asn Ser His Ser 450 455 460	1392
aaa aaa atg ctt aaa gca ctt cta agt gag ggt gaa agc atc tgg gag Lys Lys Met Leu Lys Ala Leu Leu Ser Glu Gly Glu Ser Ile Trp Glu 465 470 475 480	1440
atc act gag aaa ata cta aat tcg ttt gag tat acc tcg aga ttt aca Ile Thr Glu Lys Ile Leu Asn Ser Phe Glu Tyr Thr Ser Arg Phe Thr 485 490 495	1488
aaa aca aaa act tta tac caa ttc ctc ttc cta gct act ttc atc aat Lys Thr Lys Thr Leu Tyr Gln Phe Leu Phe Leu Ala Thr Phe Ile Asn 500 505 510	1536
tgt gga aga ttc agc gat att aag aac gtt gat ccg aaa tca ttt aaa Cys Gly Arg Phe Ser Asp Ile Lys Asn Val Asp Pro Lys Ser Phe Lys 515 520 525	1584
tta gtc caa aat aag tat ctg gga gta ata atc cag tgt tta gtg aca Leu Val Gln Asn Lys Tyr Leu Gly Val Ile Ile Gln Cys Leu Val Thr 530 535 540	1632

gag aca aag aca agc gtt agt agg cac ata tac ttc ttt agc gca agg Glu Thr Lys Thr Ser Val Ser Arg His Ile Tyr Phe Phe Ser Ala Arg 545 550 555 560	1680
ggt agg atc gat cca ctt gta tat ttg gat gaa ttt ttg agg aat tct Gly Arg Ile Asp Pro Leu Val Tyr Leu Asp Glu Phe Leu Arg Asn Ser 565 570 575	1728
gaa cca gtc cta aaa cga gta aat agg acc ggc aat tct tca agc aac Glu Pro Val Leu Lys Arg Val Asn Arg Thr Gly Asn Ser Ser Asn 580 585 590	1776
aaa cag gaa tac caa tta tta aaa gat aac tta gtc aga tcg tac aac Lys Gln Glu Tyr Gln Leu Leu Lys Asp Asn Leu Val Arg Ser Tyr Asn 595 600 605	1824
aag gct ttg aag aaa aat gcg cct tat cca atc ttt gct ata aag aat Lys Ala Leu Lys Asn Ala Pro Tyr Pro Ile Phe Ala Ile Lys Asn 610 615 620	1872
ggc cca aaa tct cac att gga aga cat ttg atg acc tca ttt ctg tca Gly Pro Lys Ser His Ile Gly Arg His Leu Met Thr Ser Phe Leu Ser 625 630 635 640	1920
atg aag ggc cta acg gag ttg act aat gtt gtg gga aat tgg agc gat Met Lys Gly Leu Thr Glu Leu Thr Asn Val Val Gly Asn Trp Ser Asp 645 650 655	1968
aag cgt gct tct gcc gtg gcc agg aca acg tat act cat cag ata aca Lys Arg Ala Ser Ala Val Ala Arg Thr Thr Tyr Thr His Gln Ile Thr 660 665 670	2016
gca ata cct gat cac tac ttc gca cta gtt tct cgg tac tat gca tat Ala Ile Pro Asp His Tyr Phe Ala Leu Val Ser Arg Tyr Tyr Ala Tyr 675 680 685	2064
gat cca ata tca aag gaa atg ata gca ttg aag gat gag act aat cca Asp Pro Ile Ser Lys Glu Met Ile Ala Leu Lys Asp Glu Thr Asn Pro 690 695 700	2112
att gag gag tgg cag cat ata gaa cag cta aag ggt agt gct gaa gga Ile Glu Glu Trp Gln His Ile Glu Gln Leu Lys Gly Ser Ala Glu Gly 705 710 715 720	2160
agc ata cga tac ccc gca tgg aat ggg ata ata tca cag gag gta cta Ser Ile Arg Tyr Pro Ala Trp Asn Gly Ile Ile Ser Gln Glu Val Leu 725 730 735	2208
gac tac ctt tca tcc tac ata aat aga cgc ata taatga Asp Tyr Leu Ser Ser Tyr Ile Asn Arg Arg Ile 740 745	2247

<210> 8

<211> 747

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: DNA sequence
coding for a fusion protein VP22-F1pe

<400> 8

Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro Arg
1 5 10 15

Asp Glu Tyr Glu Asp Leu Tyr Tyr Thr Pro Ser Ser Gly Met Ala Ser
 20 25 30

Pro Asp Ser Pro Pro Asp Thr Ser Arg Arg Gly Ala Leu Gln Thr Arg
 35 40 45

Ser Arg Gln Arg Gly Glu Val Arg Phe Val Gln Tyr Asp Glu Ser Asp
 50 55 60

Tyr Ala Leu Tyr Gly Gly Ser Ser Ser Glu Asp Asp Glu His Pro Glu
 65 70 75 80

Val Pro Arg Thr Arg Arg Pro Val Ser Gly Ala Val Leu Ser Gly Pro
 85 90 95

Gly Pro Ala Arg Ala Pro Pro Pro Ala Gly Ser Gly Gly Ala Gly
 100 105 110

Arg Thr Pro Thr Thr Ala Pro Arg Ala Pro Arg Thr Gln Arg Val Ala
 115 120 125

Thr Lys Ala Pro Ala Ala Pro Ala Ala Glu Thr Thr Arg Gly Arg Lys
 130 135 140

Ser Ala Gln Pro Glu Ser Ala Ala Leu Pro Asp Ala Pro Ala Ser Thr
 145 150 155 160

Ala Pro Thr Arg Ser Lys Thr Pro Ala Gln Gly Leu Ala Arg Lys Leu
 165 170 175

His Phe Ser Thr Ala Pro Pro Asn Pro Asp Ala Pro Trp Thr Pro Arg
 180 185 190

Val Ala Gly Phe Asn Lys Arg Val Phe Cys Ala Ala Val Gly Arg Leu
 195 200 205

Ala Ala Met His Ala Arg Met Ala Ala Val Gln Leu Trp Asp Met Ser
 210 215 220

Arg Pro Arg Thr Asp Glu Asp Leu Asn Glu Leu Leu Gly Ile Thr Thr
 225 230 235 240

Ile Arg Val Thr Val Cys Glu Gly Lys Asn Leu Leu Gln Arg Ala Asn
 245 250 255

Glu Leu Val Asn Pro Asp Val Val Gln Asp Val Asp Ala Ala Thr Ala
 260 265 270

Thr Arg Gly Arg Ser Ala Ala Ser Arg Pro Thr Glu Arg Pro Arg Ala
 275 280 285

Pro Ala Arg Ser Ala Ser Arg Pro Arg Arg Pro Val Glu Gly Thr Glu
 290 295 300

Leu Gly Ser Thr Ser Pro Val Trp Trp Asn Ser Ala Asp Ile Gln His
 305 310 315 320

Ser Gly Gly Arg Met Ser Gln Phe Asp Ile Leu Cys Lys Thr Pro Pro
 325 330 335

Lys Val Leu Val Arg Gln Phe Val Glu Arg Phe Glu Arg Pro Ser Gly
 340 345 350

Glu Lys Ile Ala Ser Cys Ala Ala Glu Leu Thr Tyr Leu Cys Trp Met
 355 360 365
 Ile Thr His Asn Gly Thr Ala Ile Lys Arg Ala Thr Phe Met Ser Tyr
 370 375 380
 Asn Thr Ile Ile Ser Asn Ser Leu Ser Phe Asp Ile Val Asn Lys Ser
 385 390 395 400
 Leu Gln Phe Lys Tyr Lys Thr Gln Lys Ala Thr Ile Leu Glu Ala Ser
 405 410 415
 Leu Lys Lys Leu Ile Pro Ala Trp Glu Phe Thr Ile Ile Pro Tyr Asn
 420 425 430
 Gly Gln Lys His Gln Ser Asp Ile Thr Asp Ile Val Ser Ser Leu Gln
 435 440 445
 Leu Gln Phe Glu Ser Ser Glu Glu Ala Asp Lys Gly Asn Ser His Ser
 450 455 460
 Lys Lys Met Leu Lys Ala Leu Leu Ser Glu Gly Glu Ser Ile Trp Glu
 465 470 475 480
 Ile Thr Glu Lys Ile Leu Asn Ser Phe Glu Tyr Thr Ser Arg Phe Thr
 485 490 495
 Lys Thr Lys Thr Leu Tyr Gln Phe Leu Phe Leu Ala Thr Phe Ile Asn
 500 505 510
 Cys Gly Arg Phe Ser Asp Ile Lys Asn Val Asp Pro Lys Ser Phe Lys
 515 520 525
 Leu Val Gln Asn Lys Tyr Leu Gly Val Ile Ile Gln Cys Leu Val Thr
 530 535 540
 Glu Thr Lys Thr Ser Val Ser Arg His Ile Tyr Phe Phe Ser Ala Arg
 545 550 555 560
 Gly Arg Ile Asp Pro Leu Val Tyr Leu Asp Glu Phe Leu Arg Asn Ser
 565 570 575
 Glu Pro Val Leu Lys Arg Val Asn Arg Thr Gly Asn Ser Ser Asn
 580 585 590
 Lys Gln Glu Tyr Gln Leu Leu Lys Asp Asn Leu Val Arg Ser Tyr Asn
 595 600 605
 Lys Ala Leu Lys Lys Asn Ala Pro Tyr Pro Ile Phe Ala Ile Lys Asn
 610 615 620
 Gly Pro Lys Ser His Ile Gly Arg His Leu Met Thr Ser Phe Leu Ser
 625 630 635 640
 Met Lys Gly Leu Thr Glu Leu Thr Asn Val Val Gly Asn Trp Ser Asp
 645 650 655
 Lys Arg Ala Ser Ala Val Ala Arg Thr Thr Tyr Thr His Gln Ile Thr
 660 665 670
 Ala Ile Pro Asp His Tyr Phe Ala Leu Val Ser Arg Tyr Tyr Ala Tyr
 675 680 685

Asp Pro Ile Ser Lys Glu Met Ile Ala Leu Lys Asp Glu Thr Asn Pro
 690 695 700

Ile Glu Glu Trp Gln His Ile Glu Gln Leu Lys Gly Ser Ala Glu Gly
 705 710 715 720

Ser Ile Arg Tyr Pro Ala Trp Asn Gly Ile Ile Ser Gln Glu Val Leu
 725 730 735

Asp Tyr Leu Ser Ser Tyr Ile Asn Arg Arg Ile
 740 745

<210> 9
<211> 33
<212> DNA
<213> Human immunodeficiency virus

<400> 9
taeggeccgca agaagcgccg ccaacgcccgc cgcc

33

<210> 10
<211> 11
<212> PRT
<213> Human immunodeficiency virus

<400> 10
Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg
 1 5 10

<210> 11
<211> 42
<212> DNA
<213> Human immunodeficiency virus

<220>
<221> CDS
<222> (4)...(42)

<400> 11
atg ggc tac ggc cgc aag aag cgc cgc caa cgc cgc cgc ggc
 Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly
 1 5 10

42

<210> 12
<211> 13
<212> PRT
<213> Human immunodeficiency virus

<400> 12
Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly
 1 5 10

<210> 13
<211> 1623
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: DNA sequence
coding for a fusion protein deltaVP22cre-StrepTag

<220>

<221> CDS

<222> (1)..(1617)

<400> 13

atg	gct	agc	atg	act	ggt	gga	cag	caa	atg	ggt	cg	gat	ccg	tcg	acg	48
Met	Ala	Ser	Met	Thr	Gly	Gly	Gln	Gln	Met	Gly	Arg	Asp	Pro	Ser	Thr	
1	5								10				15			

gcg	cca	acc	cga	tcc	aag	aca	ccc	g	cag	ggg	ctg	gcc	aga	aag	ctg	96
Ala	Pro	Thr	Arg	Ser	Lys	Thr	Pro	Ala	Gln	Gly	Leu	Ala	Arg	Lys	Leu	
20	25								30							

cac	ttt	agc	acc	gcc	ccc	cca	aac	ccc	gac	g	c	cc	acc	ccc	cg	144
His	Phe	Ser	Thr	Ala	Pro	Pro	Asn	Pro	Asp	Ala	Pro	Trp	Thr	Pro	Arg	
35	40								45							

gtg	gcc	ggc	ttt	aac	aag	cg	gc	gt	tc	tg	cc	gg	cg	ct	192	
Val	Ala	Gly	Phe	Asn	Lys	Arg	Val	Phe	Cys	Ala	Ala	Val	Gly	Arg	Leu	
50	55								60							

g	cc	at	g	cc	cg	at	g	ct	gt	tc	c	t	gg	ac	tc	240
Ala	Ala	Met	His	Ala	Arg	Met	Ala	Ala	Val	Gln	Leu	Trp	Asp	Met	Ser	
65	70								75				80			

cgt	ccg	cgc	aca	gac	gaa	gac	ctc	aac	gaa	ctc	ctt	gg	atc	acc	acc	288
Arg	Pro	Arg	Thr	Asp	Glu	Asp	Leu	Asn	Glu	Leu	Leu	Gly	Ile	Thr	Thr	
85	90								95							

atc	cgc	gt	ac	g	tc	g	ag	gg	aaa	aa	ct	tt	c	ag	cc	336
Ile	Arg	Val	Thr	Val	Cys	Glu	Lys	Asn	Leu	Leu	Gln	Arg	Ala	Asn		
100	105								110							

gag	tt	gt	aat	cc	gac	gt	gt	c	ag	g	tc	g	cc	ac	cg	384
Glu	Leu	Val	Asn	Pro	Asp	Val	Val	Gln	Asp	Val	Asp	Ala	Ala	Thr	Ala	
115	120								125							

act	cga	gg	cgt	tct	g	cg	g	cc	cc	ac	gg	ca	cc	gg	cc	432
Thr	Arg	Gly	Arg	Ser	Ala	Ala	Ser	Arg	Pro	Thr	Glu	Arg	Pro	Arg	Ala	
130	135								140							

cca	cc	cc	tcc	gct	tct	cg	cc	ag	cg	cc	gt	cc	gg	ac	gg	480
Pro	Ala	Arg	Ser	Ala	Ser	Arg	Pro	Arg	Arg	Pro	Val	Glu	Gly	Thr	Glu	
145	150								155			160				

ctc	g	ga	tcc	act	agt	cc	gt	tg	tg	aat	tct	gca	gat	atc	c	528
Leu	Gly	Ser	Thr	Ser	Pro	Val	Trp	Trp	Asn	Ser	Ala	Asp	Ile	Gln	His	
165	170								175							

agt	gg	gg	cgc	at	tg	cc	aat	tta	ct	acc	gt	ca	c	aa	at	576
Ser	Gly	Gly	Arg	Met	Ser	Asn	Leu	Leu	Thr	Val	His	Gln	Asn	Leu	Pro	
180	185								190							

gca	tta	cc	gt	gat	gca	ac	ag	at	gat	gag	gtt	cg	aa	cc	tg	624
Ala	Leu	Pro	Val	Asp	Ala	Thr	Ser	Asp	Glu	Val	Arg	Lys	Asn	Leu	Met	
195	200								205							

gac	at	ttc	agg	gat	cg	cag	gg	ttt	tct	gag	cat	acc	tgg	aaa	at	672
Asp	Met	Phe	Arg	Asp	Arg	Gln	Ala	Phe	Ser	Glu	His	Thr	Trp	Lys	Met	
210	215								220							

45

ctt ctg tcc gtt tgc cgg tcg tgg gcg gca tgg tgc aag ttg aat aac Leu Leu Ser Val Cys Arg Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn 225 230 235 240	720
cg ^g aaa tgg ttt ccc gca gaa cct gaa gat gtt cgc gat tat ctt cta Arg Lys Trp Phe Pro Ala Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu 245 250 255	768
tat ctt cag gc ^g cgc ggt ctg gca gta aaa act atc cag caa cat ttg Tyr Leu Gln Ala Arg Gly Leu Ala Val Lys Thr Ile Gln Gln His Leu 260 265 270	816
ggc cag cta aac atg ctt cat cgt cgg tcc ggg ctg cca cga cca agt Gly Gln Leu Asn Met Leu His Arg Arg Ser Gly Leu Pro Arg Pro Ser 275 280 285	864
gac agc aat gct gtt tca ctg gtt atg cgg cgg atc cga aaa gaa aac Asp Ser Asn Ala Val Ser Leu Val Met Arg Arg Ile Arg Lys Glu Asn 290 295 300	912
gtt gat gcc ggt gaa cgt gca aaa cag gct cta gc ^g ttc gaa cgc act Val Asp Ala Gly Glu Arg Ala Lys Gln Ala Leu Ala Phe Glu Arg Thr 305 310 315 320	960
gat ttc gac cag gtt cgt tca ctc atg gaa aat agc gat cgc tgc cag Asp Phe Asp Gln Val Arg Ser Leu Met Glu Asn Ser Asp Arg Cys Gln 325 330 335	1008
gat ata cgt aat ctg gca ttt ctg ggg att gct tat aac acc ctg tta Asp Ile Arg Asn Leu Ala Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu 340 345 350	1056
cgt ata gcc gaa att gcc agg atc agg gtt aaa gat atc tca cgt act Arg Ile Ala Glu Ile Ala Arg Ile Arg Val Lys Asp Ile Ser Arg Thr 355 360 365	1104
gac ggt ggg aga atg tta atc cat att ggc aga acg aaa acg ctg gtt Asp Gly Gly Arg Met Leu Ile His Ile Gly Arg Thr Lys Thr Leu Val 370 375 380	1152
agc acc gca ggt gta gag aag gca ctt agc ctg ggg gta act aaa ctg Ser Thr Ala Gly Val Glu Lys Ala Leu Ser Leu Gly Val Thr Lys Leu 385 390 395 400	1200
gtc gag cga tgg att tcc gtc tct ggt gta gct gat gat ccg aat aac Val Glu Arg Trp Ile Ser Val Ser Gly Val Ala Asp Asp Pro Asn Asn 405 410 415	1248
tac ctg ttt tgc cgg gtc aga aaa aat ggt gtt gcc gc ^g cca tct gcc Tyr Leu Phe Cys Arg Val Arg Lys Asn Gly Val Ala Ala Pro Ser Ala 420 425 430	1296
acc agc cag cta tca act cgc gcc ctg gaa ggg att ttt gaa gca act Thr Ser Gln Leu Ser Thr Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr 435 440 445	1344
cat cga ttg att tac ggc gct aag gat gac tct ggt cag aga tac ctg His Arg Leu Ile Tyr Gly Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu 450 455 460	1392
gcc tgg tct gga cac agt gcc cgt gtc gga gcc gc ^g cga gat atg gcc Ala Trp Ser Gly His Ser Ala Arg Val Gly Ala Ala Arg Asp Met Ala 465 470 475 480	1440

46

cgc gct gga gtt tca ata ccg gag atc atg caa gct ggt ggc tgg acc	1488	
Arg Ala Gly Val Ser Ile Pro Glu Ile Met Gln Ala Gly Gly Trp Thr		
485	490	
495		
aat gta aat att gtc atg aac tat atc cgt aac ctg gat agt gaa aca	1536	
Asn Val Asn Ile Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr		
500	505	
510		
ggg gca atg gtg cgc ctg ctg gaa gat ggc gat ggt atc gaa ggt cgt	1584	
Gly Ala Met Val Arg Leu Leu Glu Asp Gly Asp Gly Ile Glu Gly Arg		
515	520	
525		
ggt agc gct tgg cgt cac ccg cag ttc ggt ggt taataa	1623	
Gly Ser Ala Trp Arg His Pro Gln Phe Gly Gly		
530	535	

<210> 14

<211> 539

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: DNA sequence
coding for a fusion protein deltaVP22cre-StrepTag

<400> 14

Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Asp Pro Ser Thr	
1	5
10	15

Ala Pro Thr Arg Ser Lys Thr Pro Ala Gln Gly Leu Ala Arg Lys Leu	
20	25
30	

His Phe Ser Thr Ala Pro Pro Asn Pro Asp Ala Pro Trp Thr Pro Arg	
35	40
45	

Val Ala Gly Phe Asn Lys Arg Val Phe Cys Ala Ala Val Gly Arg Leu	
50	55
60	

Ala Ala Met His Ala Arg Met Ala Ala Val Gln Leu Trp Asp Met Ser	
65	70
75	80

Arg Pro Arg Thr Asp Glu Asp Leu Asn Glu Leu Leu Gly Ile Thr Thr	
85	90
95	

Ile Arg Val Thr Val Cys Glu Gly Lys Asn Leu Leu Gln Arg Ala Asn	
100	105
110	

Glu Leu Val Asn Pro Asp Val Val Gln Asp Val Asp Ala Ala Thr Ala	
115	120
125	

Thr Arg Gly Arg Ser Ala Ala Ser Arg Pro Thr Glu Arg Pro Arg Ala	
130	135
140	

Pro Ala Arg Ser Ala Ser Arg Pro Arg Arg Pro Val Glu Gly Thr Glu	
145	150
155	160

Leu Gly Ser Thr Ser Pro Val Trp Trp Asn Ser Ala Asp Ile Gln His	
165	170
175	

Ser Gly Gly Arg Met Ser Asn Leu Leu Thr Val His Gln Asn Leu Pro	
180	185
190	

Ala Leu Pro Val Asp Ala Thr Ser Asp Glu Val Arg Lys Asn Leu Met	
195	200
205	

Asp Met Phe Arg Asp Arg Gln Ala Phe Ser Glu His Thr Trp Lys Met
 210 215 220
 Leu Leu Ser Val Cys Arg Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn
 225 230 235 240
 Arg Lys Trp Phe Pro Ala Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu
 245 250 255
 Tyr Leu Gln Ala Arg Gly Leu Ala Val Lys Thr Ile Gln Gln His Leu
 260 265 270
 Gly Gln Leu Asn Met Leu His Arg Arg Ser Gly Leu Pro Arg Pro Ser
 275 280 285
 Asp Ser Asn Ala Val Ser Leu Val Met Arg Arg Ile Arg Lys Glu Asn
 290 295 300
 Val Asp Ala Gly Glu Arg Ala Lys Gln Ala Leu Ala Phe Glu Arg Thr
 305 310 315 320
 Asp Phe Asp Gln Val Arg Ser Leu Met Glu Asn Ser Asp Arg Cys Gln
 325 330 335
 Asp Ile Arg Asn Leu Ala Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu
 340 345 350
 Arg Ile Ala Glu Ile Ala Arg Ile Arg Val Lys Asp Ile Ser Arg Thr
 355 360 365
 Asp Gly Gly Arg Met Leu Ile His Ile Gly Arg Thr Lys Thr Leu Val
 370 375 380
 Ser Thr Ala Gly Val Glu Lys Ala Leu Ser Leu Gly Val Thr Lys Leu
 385 390 395 400
 Val Glu Arg Trp Ile Ser Val Ser Gly Val Ala Asp Asp Pro Asn Asn
 405 410 415
 Tyr Leu Phe Cys Arg Val Arg Lys Asn Gly Val Ala Ala Pro Ser Ala
 420 425 430
 Thr Ser Gln Leu Ser Thr Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr
 435 440 445
 His Arg Leu Ile Tyr Gly Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu
 450 455 460
 Ala Trp Ser Gly His Ser Ala Arg Val Gly Ala Ala Arg Asp Met Ala
 465 470 475 480
 Arg Ala Gly Val Ser Ile Pro Glu Ile Met Gln Ala Gly Gly Trp Thr
 485 490 495
 Asn Val Asn Ile Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr
 500 505 510
 Gly Ala Met Val Arg Leu Leu Glu Asp Gly Asp Gly Ile Glu Gly Arg
 515 520 525
 Gly Ser Ala Trp Arg His Pro Gln Phe Gly Gly
 530 535

gcggtatgga tgcggcggga ccagagaaaa atcaactcagg gtcaatgcc a gcgttcgtt 3300
 aatacagatg taggtgttcc acaggtagc cagcagcatc ctgcgatgc gatccggAAC 3360
 ataatggtgc agggcgctga cttccgcgtt tccagacttt acgaaacacg gaaaccgaaAG 3420
 accattcatg ttgttgccta ggtcgac gtttgcagc agcagtgcgt tcacgttgc 3480
 tcgcgtatcg gtgattcatt ctgctaacc a gtaaggcaac cccgcgcagcc tagccgggtc 3540
 ctcacacgaca ggagcacat catgcgcacc cgtggccagg acccaacgc gcccggatg 3600
 cgccgcgtgc ggctgctgga gatggcggac gcgatggata tggtctgcca agggttgggt 3660
 tgcgcattca cagttctccg caagaattga ttggctccaa ttcttggagt ggtgaatccg 3720
 ttagcgagg tgcggccgcgt tccattcagg tcgagggtggc cggcgtccat gcacccgcac 3780
 gcaacgcggg gaggcagaca aggtatagg cggcgcctac aatccatgcc aaccgcgttc 3840
 atgtgcgtgc cgaggcgcga taaaatcgccg tgcacgtcag cggtccagtg atcgaagtt 3900
 ggctgtaag agccgcgac gatccctgaa gctgtccctg atggctgtca tctacctgccc 3960
 tggacagcat ggcgtcaac gcggcatcc cgatgcgcg ggaaggcaga agaatcataa 4020
 tggggaaaggc catccagct cgcgtcgca acgcccagcaa gacgtagccc agcgcgtcgg 4080
 cccccatgcc ggcgataatg gcctgttct cgcggaaacg tttggggc ggaccagtga 4140
 cgaaggcttgc agcgaggcgc tgcaagatc cgaataccgc aagcgcacagg ccgatcatcg 4200
 tcgcgttcca gcgaaagcgg tcctcgccga aatgaccgc gaggcgtgc ggcacccgtc 4260
 ctacgagttg catgataaaag aagacagtca taagtgcggc gacgatagtc atgccccgcg 4320
 cccaccggaa ggagctgact gggttgaagg ctctcaaggg catcggtcg cgtctccct 4380
 tatgcgactc ctgcatttgcg a a g e a g c c c a g t a g t a g g t t g a g g e c g t t g a g c a c c g 4440
 cccgaaggaa tggtgcatgc aaggagatgg cggccaaacag tccccggcc acggggcctg 4500
 ccaccatacc cacgcccggaa caagcgctca tgagcccgaa gtggcgagcc cgatcttccc 4560
 catcggtat gtcggcgata taggcgcgg c a a c c g c a c c g t g t g g c g c g g 4620
 ccacgatcgcc tccggcgtag aggtcgatc tctcgatccc g c g g a a t t a a t c g a c t c a c 4680
 tataaggaga ccacaacgg t t c c t c t g a a a t a t t t g t t a a t t t t a a g a a g g a g a 4740
 tatacatatg gtcgcattca ctggggaca gcaaatgggt cgggatccgt cgacggccccc 4800
 aaccgcattcc a a g a c a c c c g c g c a c t t a g g g g c t g g c a g a a a g c t g a c t t a g g g 4860
 cccaaacccc gacgcgcattcc g g a c c c c c o g g t g g c c g g c t t a a c a a g c g c t t c t g 4920
 cgcgcgggtc gggcgctgg cggccatgc tgcccgatg g c g g c t g t c c a g t c t g g g a 4980
 catgtcgctg cccgcgcacag acgaagaccc caacgcactc cttggcatca ccaccatccg 5040
 cgtgacgggtc tgcgaggc a a a a c c t g c t a g c g c g c a a c g a g t t g g a a t c c a g a 5100
 cgtgggtcgag gacgtcgacg cggccacggc gactcgaggg cgttctgcgg cgtcgcgc 5160
 caccgagcga cctcgagcc c a g c c c g c t c a g c a c g g c c g t c a g g g 5220
 taccgagctc ggatccacta gtccagtgtg gtggatttc g c a g a t a t c c a g a c a g t g g 5280
 cggccgcattc tccaatttac tgaccgtaca c c a a a a t t t g c t g c a t t a c c g t g a t g c 5340
 aacgagtgtat gagggtcgca agaaccgtat ggacatgttgc agggatcgcc aggcttttc 5400
 tgacgatcc tggaaaatgc ttctgtccgt tgccggatc tggccggcat ggtcaagtt 5460
 gaataaccgg a a a t g g t t c c c g c a g a a c c t g a a g a t g t t c g c a t t a t c t 5520
 tcaggcgcgc ggtctggcag t a a a a c t t a t c a c a a t t t g c t g c a t t a t c t 5580
 tcatcgctgg tccggcgatc cacgaccaag tgacagcaat gctgtttcac tggttatgcg 5640
 gcgatccga aaagaaaaac ttgtatgcgg tgaacgtcga a a a c a g g c t c a g c t t c g a 5700
 accactgtat ttcgaccagg ttcgttcaact catggaaaat a c g a t c g c t c a g g a t a t 5760
 acgtaatctg gcatttctgg ggattgctta taacaccctgt ttacgtatag ccgaaattgc 5820
 cagatcagg tttaaagata tctcacgtac tgacgggtgg agaatgttaa tccatattgg 5880
 cagaacgaaa acgctggta gcaccgcagg tgttagagaag g c a c t t a g c c t g g g g t a a c 5940
 taaactggtc gag 5953

<210> 16

<211> 4727

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: vector
pT7-TACS

<400> 16

atccggat atttccctt ttcagcaaaa a a c c c t c a a g c c c t t a g a g g c c c c a a 60
 gggttatgc tagttatgc tcagcggtgg c a g c a g c c a a c t c a g t t c c t t c g g g c t t 120
 tggtagcgc cggatctcg tgggtgggt ggtgggtc g a g t g c g g c c g c a a g c t t a t 180
 taaccaccga actgcgggtg acgccaacgc ctaccacgac ctccgatacc atgcctatct 240
 tccagcaggc gcaccattgc c c c t g t t c a c t a c c a g g t a c c g g a t a t g a c a 300
 atatttacat tggtccagcc accagcttgc atgatctcog gtattgaaac tccagcgcgg 360

ccatatatctc ggcggcgctcc gacacggca ctgtgtccag accaggccag gtatctctga 420
ccagagtcat ccttagcgcc gtaaatcaat cgatgagttt cttaaaaat cccttcagg 480
gcgcgagggt atagctggct ggtggcagat ggccggccaa caccatttt tctgaccgg 540
caaaaacaggt agttattcgg atcatcagct acaccagaga cggaaatcca tcgctcgacc 600
agtttagtta cccccaggct aagtgcctc tctacacctg cggtgctaa cagcggtttc 660
gttctgcca tatggattaa cattctcca ccgtcagtagt gtgagatatc ttaaccctg 720
atccctgcca ttccggctat acgtaacagg gtgttataag caatccccag aaatgccaga 780
ttacgtatata cctggcagcg atcgctatttccatgatg aacgaacctg gtcgaaatca 840
gtgcgttca acgctagac ctgtttgca cggttacccgg catcaacgtt ttctttcgg 900
atcccccgc taaccagtga aacagcatgg ctgtcaactt gtcgtggcag cccggaccga 960
cgatgaagca tgtagctg gcccaaatgt tgctggatag ttttactgt cagaccggc 1020
gcctgaagat atagaagata atcgcgaaaca tcttcagggtt ctgcgggaa ccattccgg 1080
ttattcaact tgcacatgc cgcccaacgac cggcaaacgg acagaacgtt ttccaggta 1140
tgctcagaaa acggctggcg ctgcgttgcg acggcggtaa tttttgtt cggtcagta attggacatg 1200
ccgcggccgc gttggcggcg cttcttgcgg ccgtagccca tggtatatct cttctttaaa 1320
gttaaacaatttataatttctat gggggaaacc gttgttgtt ccctatactg agtcgtatta 1380
atttcgccgg atcgagatct cgggcagcgt tgggtcttgcg ccacgggtgc gcatgatcgt 1440
gctcctgtcg ttgaggaccc ggctaggctg ggggggttgc ttactgtt agcagaatga 1500
atcaccgata cggcagcgaa cgtgaagega ctgcgtcgtc aaaacgtctg cgacctgagc 1560
aacaacatga atggtcttcg gtttccgtt ttcgtaaagt ctggaaacgc ggaagtcagc 1620
gccctgcacc attatgtcc ghatctgcg cgcaggatgc tgctggctac cctgtggaaac 1680
acctacatct gtattaacga agcgttgcg ttgaccctgatgttacc ttttccctc acaacgttcc agtaaccggg catgttcatc 1800
ccgcatccat accggcaggta atcagtaacc cgtatcgtga gcacatcttc tgcgttccatc ggtatcatta ccccatgaa 1860
cagaatcccc ctttacacgg aggcatcaat gaccaaacag gaaaaaaccg cccttaacat 1920
ggcccgcttt atcagaagcc agacattaaac gtttctggag aaactcaacg agtcggacgc 1980
ggatgaacag gcagacatct gtaatcgtt tcacgaccac gttgtatggc ttaccggcag 2040
ctgcctcgcg cgtttcgggt atgacgggttga aaacctctgacatcgcg tcccgagac 2100
ggtcacagat tgctgttaag ggtgttgcg ggcagccat gacccagtca cgtagcgata gcccgttacg 2160
gggtgttgcg ggtgttgcgg tactggctta actatgcgc gtcagagcag atttactgatgtt ggtgtccatc tatatgcgtt 2280
gtgaaatacc gcacagatgc gtaaggagaa aataccgc gtaaggatcctt cttcgctt 2340
cgctactga ctgcgtgcgc tacctgttgcg ggctgcggcg agcgttatca gtcactcaa 2400
aggcggtaat acggttatcc aaccgtaaaa agggcccgatc cacaatccatc gacgtcaag tccatagc 2520
aaggccagca aaaggccagg tccgcccccc tgacgagcat cgggttccccc ctggaaagctc ctcgtgcgc 2580
caggactata aagataccag gtcactgttgcg ggtgttgcg ggtgttgcg agcgttatca gtcactcaa 2640
cgaccctgcg gcttaccggatc tacctgttgcg ctttttccc ttcgggaaacg gttggcgttt 2700
ctcatagtc acgctgttagg tatctcaggatc cgggtgttagt cttcgctcc aagctgggt 2760
gtgtgcacga accccccctt cagcccgacc gctgcgcctt atccggtaac ttcgttctt 2820
agtccaaacc ggttaagacac gacttacatc cactggcagc agccactgtt aacaggatta 2880
gcagagcggatc gtagttaggc ggtgttgcg agtttttgcgatgttacc ttcggaaaaaa 3000
acactagaag gagatgtttt ggtatctgcg ctctgttgcg gccaggatc ttttttgcgttt 3060
gagttggtag ctcttgatcc ggcaaaacaa ccaccgttgc tagcggtgtt atctttcta 3120
gcaaggcagca gattacgcgc agaaaaaaag gatcttcaaga agatccttgcgatgttacc 3180
cggggtctga cgctcagtttgcg aacggaaaact cacgtttaagg gattttggc atagattat 3180
caaaaaggat cttcaccttag atccttttaa attaaaaatg aagttttaaa tcaatctaaa 3240
gtatataatga gtaaaacttgg tctgacaggatc accaatgtt accatgttgcg gacccatct 3300
cagcgatctg tctatttgcg tcatccatag ttgcgttact ccccgctgtg tagataacta 3360
cgatacgggatc ggggttacca tctggccccc gtgtcgaat gataccgcgac gacccacgt 3420
caccggctcc agatttatca gcaataaaacc agccaggccg aaggcccgag cgcagaatgt 3480
gtccctgcaac ttatccggcc tccatccagt ctattaaatg ttccggggaa gctagatgt 3540
gtagttcgcc agttatagt ttgcgcacg ttgttgcatt tgctgcaggc atcgtgtgt 3600
cacgctcgatc gtttggatgc gtttgcattca gtcgggttcc ccaacgttca aggcgagtt 3660
catgatcccc catgttgcg aaaaaagccg ttagtgcctt cgggttccccc atcgttgc 3720
gaagtaagtt ggcggcagtg ttatcactca tggttatggc agactgtatc aattcttta 3780
ctgtcatgcc atccgttataa tgctttctg tgactgttgc gtaatcacc aagtcttct 3840
gagaatagtatc tgcggcga ccgagttgtt cttggccggc gtaatcacc gataataccg 3900
cgccacatag cagaacttta aaagtgcata tcattggaaa acgttcttcg gggcggaaaac 3960
tctcaagatc cttaccgtcg tttagatcca gttcgatgtt accccactcg gacccaaact 4020
gatcttcagc atctttact ttaccaggcg tttctgggtt agcaaaaaca ggaaggcaaa 4080
atccgcggaaa aaagggatataa agggcgacac ggaaatgtt aataactata ctcttcctt 4140
ttcaatatta ttgaagcatt tatcagggtt attgtctcat gacggatc atatttgaat 4200

gtatTTAGAA aaATAAACAA atAGGGTTC CGCGCACATT TCCCCGAAAA GTGCCACCTG 4260
aaATTGTAAA CGTTAATATT TTGTTAAAT TCGCCTAAAT TTGTTGTTAA ATCAAGCTCAT 4320
TTTTAACCA ATAGGCCGAA ATCGGCAAAA TCCCTTATAA ATCAAAGAA TAGACCGAGA 4380
TAGGGTTGAG TGTGTTCCA GTTGGAAACA AGAGTCCACT ATTAAGAAC GTGGACTCCA 4440
ACGTCAAAGG GCGAAAAACC GTCTATCAGG GCGATGGCCC ACTACGTGAA CCATCACCCOT 4500
AATCAAGTTT TTGGGGTCTG AGGTGCCGTA AAGCACTAA TCGGAACCCCT AAAGGGAGCC 4560
CCCGATTAG AGCTTGACGG GGAAGGCCGG CGAACCTGGC GAGAAAGGAA GGGAAAGAAAG 4620
CGAAAGGAGC GGGCCTAGG GCGCTGGCAA GTGTAGCGGT CACGCTGC GTAACCACCA 4680
CACCCGCCGC GCTTAATGCG CGCTACAGG CGCGTCCCA TTCGCCA 4727

<210> 17

<211> 4488

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: vector
pT7-VPSC

<400> 17

aaatcaatct aaagtatata ttagtaaact tggtctgaca gttaccaatg cttaatcagt 60
gaggcaccta ttcagcgat ctgtcttatt cggtcatccca tagttgcctg actccccgtc 120
gtgtagataa ctacgatacg ggagggctta ccattctggcc ccagtgcgtc aatgataccg 180
cgagaccac gtcaccggc tccagattta tcagcaataa accagccagc cggaaaggcc 240
gagcgcagaa gtggctctgc aactttatcc gcctccatcc agtctattaa ttgttgccgg 300
gaagctagag taagtagttc gcaagttaat agtttgcgca acgttgttgc cattgttaca 360
ggcatcgtgg tgcacgctc gtctttgggt atggcttcat tcagctccgg ttcccaacga 420
tcaaggcgag ttacatgatc cccatgttg tgcaaaaaaa cggtagtctc ttccggctct 480
ccgatcggtt tcagaagtaa gttggccgca gtgttatcac tcattgttac ggcagcactg 540
cataattctc ttactgtcat gccatccgta agatgtttt ctgtgactgg tgtagtactca 600
accaagtcat tctgagaata gtgtatgcgg cgaccggatt gctcttgc ggcgtcaaca 660
cgggataata ccgcgcacca tagcagaact taaaatgtc tcattttatgg aaaacgttct 720
tcggggcgaa aactctcaag gatcttaccg ctgttgcgat ccagttcgat gtaacccact 780
ctgtgcaccca actgtatcttcc agcatctttt accttccatca gcttttgcgatggcaaaa 840
acaggaaggc aaaatgccgc aaaaaaggaa ataagggttc caaggaaatg ttgaaatactc 900
atactttcc ttttcaata ttattgaagc attttagtgg gttattgtct catgagcgga 960
tacatatttgc aatgtatata gaaaaataaa caaatagggg ttccgcgcac atttccccga 1020
aaagtgcac ctgacgtcta agaaaccatt attatcatga cattaaccta taaaatagg 1080
cgtatcacga ggccctttcg tcttcaagaa taaaaggat ctatgttgcgatggacttgc 1140
ataatctcat gaccaaaatc ccttaacgtg agtttgcgtt ccactgagcg tcagaccccg 1200
tagaaaagat caaaggatct tcttgcgat cttttttct gcgctaatc tgctgttgc 1260
aaacaaaaaa accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc 1320
ttttccgaa ggttaactggc ttcaagcagag cgccagatacc aaataactgtc cttctagtgt 1380
agccgtagtt aggccaccac ttcaagaact ctgtacgacc gcctacatc acgtgttgc 1440
taatctctgtt accagtggct gctggcagtg gcgataagtc gtgttacc gggttggact 1500
caagacgata gtttccggat aaggcgcage ggtcgccgtg aacgggggt tcgtgcacac 1560
agcccacgtt ggagcgaacg acctacaccg aactcgatgg cctacagcgt gagctatgag 1620
aaagcgccac gcttcccgaa gggagaaagg cggacaggta tccggtaagc ggcagggtcg 1680
gaacaggaga ggcacccggg gagcttcccg ggggaaacgc ctggatatctt tatagtccctg 1740
tcgggtttcg ccacccctga cttagcgatc gatttttgtg atgctgtca gggggcgga 1800
gcctatggaa aaacgcacccg aacgcggcct ttttacgggt cctggccctt tgctggccct 1860
ttgctcacat gtttttccct gcgttatccc ctgattctgt ggataaccgt attaccgcct 1920
tttagtgagc tgataccgtt cggccgcagcc gaacgaccga ggcacgcgatc ttagtgagcg 1980
agaagcgga agagcgctg atgcggattt ttcttccatc gcatctgtc ggtatttcac 2040
accgcacatcg atctgtatggt gcactctcgatcataatctgc tctgtatggc catagttaa 2100
ccagttatata cactccgcta tcgcctacgtg actgggtcat ggctgcgcggc cgacacccgc 2160
caacacccgc tgacgcgcggc tgacgggctt gtctgtctcc ggcattccgt tacagacaag 2220
ctgtgaccgt ctccggcggc tgatgtgtc agaggtttc accgtcatca cggaaacgcg 2280
cgaggcccgag cgatcgaaat ttctgtataga ttccggaaat aatacgactc actataggga 2340
gaccacaacg gtttccctct agaaataatt ttgtttaact ttaagaagga gatatacata 2400
tgacctctcg ccgctccgtg aagtccggc tcggggaggt tccgcgcgat ggtacgagg 2460
atctgtacta caccctgtct tcaggtatgg cgatcccgaa tagtccgcct gacacccccc 2520
gccgtggcgc cctacagaca cgctcgccgca agagggcgca ggtccgttcc gtcggatc 2580

acgagtcgga ttatgcctc tacggggct cgtttccga agacgacgaa caccggagg 2640
 tccccggac gcggcgccc gttccgggg cggtttgtc cggccgggg cctgcggg 2700
 cgctccgac acccgctggg tccggaggg cggacgcac acccaccacc gccccccgg 2760
 ccccccaac ccagcggtg gctctaagg cccccggc cccggcgag gagaccacc 2820
 gggcaggaa atcgcccaag ccagaatccg cgcactccc agacgcccc gcgtcgacgg 2880
 cgccaacccg atccaagaca cccgcgcagg ggctggccag aaagctgcac tttagcaccc 2940
 cccccccaaa ccccgacgcg ccatggaccc cccgggtggc cggcttaac aagcgcgtct 3000
 tctgcggcgc ggtcgccgc ctggcgcca tgcatgccc gatggcgct gtccagctct 3060
 gggacatgtc gcgtccgcgc acagacgaa acctcaacga actccctggc atcaccacca 3120
 tcccggtgac ggtctggag ggaaaaacc tgcttcagcg cgccaaacgag ttggtaatc 3180
 cagacgttgt gcaaggacgtc gacgcggca cggcactcg agggcttct gggcggtcgc 3240
 gccccaccga ggcacctcga gcccagccc gctccgctc tcgccccaga cggcccggtc 3300
 agggtaccga gctcgatcc actagtccag tgtggtgaa ttctcgat atccagcaca 3360
 gtggcgccg catgtccaat ttactgaccg tacaccaaaa ttgcctgca ttaccggcgt 3420
 atgcaacgag tgatgagggt cgcaagaacc tgatggacat gttcaggat cgccaggcgt 3480
 tttctgagca tacctggaaa atgcttctgt ccgttgcgc gtcgtggcg gcatggtca 3540
 agttgaataa cggaaatgg tttccgcag aacctgaaga tggtcgcat tatcttctat 3600
 atcttcaggc gcgcggctcg gcagtaaaaa ctatccagca acatttggc cagctaaaca 3660
 tgottcatcg tcggtcggg ctgccacgc caagtgcacag caatgtgtt tcactggta 3720
 tgcggcggtat cggaaaagaa aacgttgat ccgttgaaag tgcaaaaatcg gctctagcgt 3780
 tcgaacgcac tgatttcgac caggttcgat cactcatgaa aatagcgat cgctgccagg 3840
 atatacgtaa tctggcattt ctggggattt cttataaacac cctgttacgt atagccgaaa 3900
 ttgccaggat cagggttaaa gatatctcag tgactgacgg tgggagaatg ttaatccata 3960
 ttggcagaac gaaaacgcgt gttaccccg cagggttaga gaaggcactt agcctgggg 4020
 taactaaact ggtcgagcga tggatttccg tctctgggt agctgatgat ccgaaataact 4080
 acctgttttgc cgggtcaga aaaaatgggt ttgcgcgcg atctgccacc agccagctat 4140
 caactcgccgc cctggaaagg attttgaag caactcatcg attgatttac ggcgctaagg 4200
 atgactctgg tcagagatac ctggcttgt ctggacacag tgccctgtc ggagccgcgc 4260
 gagatatggc cgcgcttgg gttcaatac cggagatcat gcaagctgtt ggctggacca 4320
 atgtaaatat tgcataac tatatccgtaa acctggatag tgaaacaggg gcaatggtgc 4380
 gcctgcttggaa agatggcgat ggtatcgaag gtcgtggtag cgcttggcgt caccggcagt 4440
 tcggtggta ataagtttat cgatgataag ctgtcaaaca tgagaatt 4488

<210> 18

<211> 1125

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: DNA sequence coding for a fusion protein TATcreStrepTag

<220>

<221> CDS

<222> (1)..(1119)

<400> 18

atg	ggc	tac	ggc	cgc	aag	aag	cgc	cgc	caa	cgc	cgc	cgc	ggc	atg	tcc	48
Met	Gly	Tyr	Gly	Arg	Lys	Lys	Arg	Arg	Gln	Arg	Arg	Arg	Gly	Met	Ser	
1	5								10				15			

aat	tta	ctg	acc	gta	cac	caa	aat	ttg	cct	gca	tta	ccg	gtc	gat	gca	96
Asn	Leu	Leu	Thr	Val	His	Gln	Asn	Leu	Pro	Ala	Leu	Pro	Val	Asp	Ala	
20								25				30				

acg	agt	gat	gag	gtt	cgc	aag	aac	ctg	atg	gac	atg	ttc	agg	gat	cgc	144
Thr	Ser	Asp	Glu	Val	Arg	Lys	Asn	Leu	Met	Asp	Met	Phe	Arg	Asp	Arg	
35								40				45				

cag	gcg	ttt	tct	gag	cat	acc	tgg	aaa	atg	ctt	ctg	tcc	gtt	tgc	cgg	192
Gln	Ala	Phe	Ser	Glu	His	Thr	Trp	Lys	Met	Leu	Leu	Ser	Val	Cys	Arg	
50								55				60				

53

tcg tgg gcg gca tgg tgc aag ttg aat aac cgg aaa tgg ttt ccc gca Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn Arg Lys Trp Phe Pro Ala	65	70	75	80	240
gaa cct gaa gat gtt cgc gat tat ctt cta tat ctt cag gcg cgc ggt Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu Tyr Leu Gln Ala Arg Gly	85	90	95		288
ctg aca gta aaa act atc cag caa cat ttg ggc cag cta aac atg ctt Leu Thr Val Lys Thr Ile Gln Gln His Leu Gly Gln Leu Asn Met Leu	100	105	110		336
cat cgt cgg tcc ggg ctg cca cga cca agt gac agc aat gct gtt tca His Arg Arg Ser Gly Leu Pro Arg Pro Ser Asp Ser Asn Ala Val Ser	115	120	125		384
ctg gtt atg cgg cgg atc cga aaa gaa aac gtt gat gcc ggt gaa cgt Leu Val Met Arg Arg Ile Arg Lys Glu Asn Val Asp Ala Gly Glu Arg	130	135	140		432
gca aaa cag gct cta gcg ttc gaa cgc act gat ttc gac cag gtt cgt Ala Lys Gln Ala Leu Ala Phe Glu Arg Thr Asp Phe Asp Gln Val Arg	145	150	155	160	480
tca ctc atg gaa aat agc gat cgc tgc cag gat ata cgt aat ctg gca Ser Leu Met Glu Asn Ser Asp Arg Cys Gln Asp Ile Arg Asn Leu Ala	165	170	175		528
ttt ctg ggg att gct tat aac acc ctg tta cgt ata gcc gaa att gcc Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu Arg Ile Ala Glu Ile Ala	180	185	190		576
agg atc agg gtt aaa gat atc tca cgt act gac ggt ggg aga atg tta Arg Ile Arg Val Lys Asp Ile Ser Arg Thr Asp Gly Gly Arg Met Leu	195	200	205		624
atc cat att ggc aga acg aaa acg ctg gtt agc acc gca ggt gta gag Ile His Ile Gly Arg Thr Lys Thr Leu Val Ser Thr Ala Gly Val Glu	210	215	220		672
aag gca ctt agc ctg ggg gta act aaa ctg gtc gag cga tgg att tcc Lys Ala Leu Ser Leu Gly Val Thr Lys Leu Val Glu Arg Trp Ile Ser	225	230	235	240	720.
gtc tct ggt gta gct gat gat ccg aat aac tac ctg ttt tgc cgg gtc Val Ser Gly Val Ala Asp Asp Pro Asn Asn Tyr Leu Phe Cys Arg Val	245	250	255		768
aga aaa aat ggt gtt gcc gcg cca tct gcc acc agc cag cta tca act Arg Lys Asn Gly Val Ala Ala Pro Ser Ala Thr Ser Gln Leu Ser Thr	260	265	270		816
cgc gcc ctg gaa ggg att ttt gaa gca act cat cga ttg att tac ggc Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr His Arg Leu Ile Tyr Gly	275	280	285		864
gct aag gat gac tct ggt cag aga tac ctg gcc tgg tct gga cac agt Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu Ala Trp Ser Gly His Ser	290	295	300		912
gcc cgt gtc gga gcc gcg cga gat atg gcc cgc gct gga gtt tca ata Ala Arg Val Gly Ala Ala Arg Asp Met Ala Arg Ala Gly Val Ser Ile	305	310	315	320	960

ccg gag atc atg caa gct ggt ggc tgg acc aat gta aat att gtc atg 1008
 Pro Glu Ile Met Gln Ala Gly Gly Trp Thr Asn Val Asn Ile Val Met
 325 330 335

aac tat atc cgt aac ctg gat agt gaa aca ggg gca atg gtg cgc ctg 1056
 Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr Gly Ala Met Val Arg Leu
 340 345 350

ctg gaa gat ggc gat ggt atc gaa ggt cgt ggt agc gct tgg cgt cac 1104
 Leu Glu Asp Gly Asp Gly Ile Glu Gly Arg Gly Ser Ala Trp Arg His
 355 360 365

ccg cag ttc ggt ggt taataa 1125
 Pro Gln Phe Gly Gly
 370

<210> 19

<211> 373

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: DNA sequence
 coding for a fusion protein TATcreStrepTag

<400> 19

Met Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Met Ser
 1 5 10 15

Asn Leu Leu Thr Val His Gln Asn Leu Pro Ala Leu Pro Val Asp Ala
 20 25 30

Thr Ser Asp Glu Val Arg Lys Asn Leu Met Asp Met Phe Arg Asp Arg
 35 40 45

Gln Ala Phe Ser Glu His Thr Trp Lys Met Leu Leu Ser Val Cys Arg
 50 55 60

Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn Arg Lys Trp Phe Pro Ala
 65 70 75 80

Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu Tyr Leu Gln Ala Arg Gly
 85 90 95

Leu Thr Val Lys Thr Ile Gln Gln His Leu Gly Gln Leu Asn Met Leu
 100 105 110

His Arg Arg Ser Gly Leu Pro Arg Pro Ser Asp Ser Asn Ala Val Ser
 115 120 125

Leu Val Met Arg Arg Ile Arg Lys Glu Asn Val Asp Ala Gly Glu Arg
 130 135 140

Ala Lys Gln Ala Leu Ala Phe Glu Arg Thr Asp Phe Asp Gln Val Arg
 145 150 155 160

Ser Leu Met Glu Asn Ser Asp Arg Cys Gln Asp Ile Arg Asn Leu Ala
 165 170 175

Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu Arg Ile Ala Glu Ile Ala
 180 185 190

Arg Ile Arg Val Lys Asp Ile Ser Arg Thr Asp Gly Gly Arg Met Leu
 195 200 205

55

Ile His Ile Gly Arg Thr Lys Thr Leu Val Ser Thr Ala Gly Val Glu
 210 215 220

Lys Ala Leu Ser Leu Gly Val Thr Lys Leu Val Glu Arg Trp Ile Ser
 225 230 235 240

Val Ser Gly Val Ala Asp Asp Pro Asn Asn Tyr Leu Phe Cys Arg Val
 245 250 255

Arg Lys Asn Gly Val Ala Ala Pro Ser Ala Thr Ser Gln Leu Ser Thr
 260 265 270

Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr His Arg Leu Ile Tyr Gly
 275 280 285

Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu Ala Trp Ser Gly His Ser
 290 295 300

Ala Arg Val Gly Ala Ala Arg Asp Met Ala Arg Ala Gly Val Ser Ile
 305 310 315 320

Pro Glu Ile Met Gln Ala Gly Gly Trp Thr Asn Val Asn Ile Val Met
 325 330 335

Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr Gly Ala Met Val Arg Leu
 340 345 350

Leu Glu Asp Gly Asp Gly Ile Glu Gly Arg Gly Ser Ala Trp Arg His
 355 360 365

Pro Gln Phe Gly Gly
 370

<210> 20
<211> 2055
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: DNA sequence
 coding for a fusion protein VP22creStrepTag

<220>
<221> CDS
<222> (1)..(2049)

<400> 20
atg acc tct cgc cgc tcc gtg aag tcg ggt ccg cgg gag gtt ccg cgc 48
Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro Arg
 1 5 10 15

gat gag tac gag gat ctg tac tac acc ccg tct tca ggt atg gcg agt 96
Asp Glu Tyr Glu Asp Leu Tyr Tyr Pro Ser Ser Gly Met Ala Ser
 20 25 30

ccc gat agt ccg cct gac acc tcc cgc cgt ggc gcc cta cag aca cgc 144
Pro Asp Ser Pro Pro Asp Thr Ser Arg Arg Gly Ala Leu Gln Thr Arg
 35 40 45

tcg cgc cag agg ggc gag gtc cgt ttc gtc cag tac gac gag tcg gat 192
Ser Arg Gln Arg Gly Glu Val Arg Phe Val Gln Tyr Asp Glu Ser Asp
 50 55 60

tat gcc ctc tac ggg ggc tcg tct tcc gaa gac gac gaa cac ccg gag Tyr Ala Leu Tyr Gly Gly Ser Ser Ser Glu Asp Asp Glu His Pro Glu 65 70 75 80	240
gtc ccc cgg acg cgg cgt ccc gtt tcc ggg gcg gtt ttg tcc ggc ccg Val Pro Arg Thr Arg Arg Pro Val Ser Gly Ala Val Leu Ser Gly Pro 85 90 95	288
ggg cct gcg cgg gcg cct ccg cca ccc gct ggg tcc gga ggg gcc gga Gly Pro Ala Arg Ala Pro Pro Pro Ala Gly Ser Gly Gly Ala Gly 100 105 110	336
cgc aca ccc acc acc gcc ccc cgg gcc ccc cga acc cag cgg gtg gcg Arg Thr Pro Thr Ala Pro Arg Ala Pro Arg Thr Gln Arg Val Ala 115 120 125	384
tct aag gcc ccc gcg gcc ccg gcg gag acc acc cgc ggc agg aaa Ser Lys Ala Pro Ala Ala Pro Ala Glu Thr Thr Arg Gly Arg Lys 130 135 140	432
tcg gcc cag cca gaa tcc gcc gca ctc cca gac gcc ccc gcg tcg acg Ser Ala Gln Pro Glu Ser Ala Ala Leu Pro Asp Ala Pro Ala Ser Thr 145 150 155 160	480
gcg cca acc cga tcc aag aca ccc gcg cag ggg ctg gcc aga aag ctg Ala Pro Thr Arg Ser Lys Thr Pro Ala Gln Gly Leu Ala Arg Lys Leu 165 170 175	528
cac ttt agc acc gcc ccc cca aac ccc gac gcg cca tgg acc ccc cgg His Phe Ser Thr Ala Pro Pro Asn Pro Asp Ala Pro Trp Thr Pro Arg 180 185 190	576
gtg gcc ggc ttt aac aag cgc gtc ttc tgc gcc gcg gtc ggg cgc ctg Val Ala Gly Phe Asn Lys Arg Val Phe Cys Ala Ala Val Gly Arg Leu 195 200 205	624
gcg gcc atg cat gcc cgg atg gcg gct gtc cag ctc tgg gac atg tcg Ala Ala Met His Ala Arg Met Ala Ala Val Gln Leu Trp Asp Met Ser 210 215 220	672
cgt ccg cgc aca gac gaa gac ctc aac gaa ctc ctt ggc atc acc acc Arg Pro Arg Thr Asp Glu Asp Leu Asn Glu Leu Leu Gly Ile Thr Thr 225 230 235 240	720
atc cgc gtg acg gtc tgc gag ggc aaa aac ctg ctt cag cgc gcc aac Ile Arg Val Thr Val Cys Glu Gly Lys Asn Leu Leu Gln Arg Ala Asn 245 250 255	768
gag ttg gtg aat cca gac gtg gtg cag gac gtc gac gcg gcc acg gcg Glu Leu Val Asn Pro Asp Val Val Gln Asp Val Asp Ala Ala Thr Ala 260 265 270	816
act cga ggg cgt tct gcg gcg tcg cgc ccc acc gag cga cct cga gcc Thr Arg Gly Arg Ser Ala Ala Ser Arg Pro Thr Glu Arg Pro Arg Ala 275 280 285	864
cca gcc cgc tcc gct tct cgc ccc aga cgg ccc gtc gag ggt acc gag Pro Ala Arg Ser Ala Ser Arg Pro Arg Arg Pro Val Glu Gly Thr Glu 290 295 300	912
ctc gga tcc act agt cca gtg tgg tgg aat tct gca gat atc cag cac Leu Gly Ser Thr Ser Pro Val Trp Trp Asn Ser Ala Asp Ile Gln His 305 310 315 320	960

agt ggc ggc cgc atg tcc aat tta ctg acc gta cac caa aat ttg cct		1008	
Ser Gly Gly Arg Met Ser Asn Leu Leu Thr Val His Gln Asn Leu Pro			
325	330	335	
gca tta ccg gtc gat gca acg agt gat gag gtt cgc aag aac ctg atg		1056	
Ala Leu Pro Val Asp Ala Thr Ser Asp Glu Val Arg Lys Asn Leu Met			
340	345	350	
gac atg ttc agg gat cgc cag gcg ttt tct gag cat acc tgg aaa atg		1104	
Asp Met Phe Arg Asp Arg Gln Ala Phe Ser Glu His Thr Trp Lys Met			
355	360	365	
ctt ctg tcc gtt tgc cgg tcg tgg gca tgg tgc aag ttg aat aac		1152	
Leu Leu Ser Val Cys Arg Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn			
370	375	380	
cg ^g aaa tgg ttt ccc gca gaa cct gaa gat gtt cgc gat tat ctt cta		1200	
Arg Lys Trp Phe Pro Ala Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu			
385	390	395	400
tat ctt cag gcg cgc ggt ctg gca gta aaa act atc cag caa cat ttg		1248	
Tyr Leu Gln Ala Arg Gly Leu Ala Val Lys Thr Ile Gln Gln His Leu			
405	410	415	
ggc cag cta aac atg ctt cat cgt cgg tcc ggg ctg cca cga cca agt		1296	
Gly Gln Leu Asn Met Leu His Arg Arg Ser Gly Leu Pro Arg Pro Ser			
420	425	430	
gac agc aat gct gtt tca ctg gtt atg cgg cgg atc cga aaa gaa aac		1344	
Asp Ser Asn Ala Val Ser Leu Val Met Arg Arg Ile Arg Lys Glu Asn			
435	440	445	
gtt gat gcc ggt gaa cgt gca aaa cag gct cta gcg ttc gaa cgc act		1392	
Val Asp Ala Gly Glu Arg Ala Lys Gln Ala Leu Ala Phe Glu Arg Thr			
450	455	460	
gat ttc gac cag gtt cgt tca ctc atg gaa aat agc gat cgc tgc cag		1440	
Asp Phe Asp Gln Val Arg Ser Leu Met Glu Asn Ser Asp Arg Cys Gln			
465	470	475	480
gat ata cgt aat ctg gca ttt ctg ggg att gct tat aac acc ctg tta		1488	
Asp Ile Arg Asn Leu Ala Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu			
485	490	495	
cgt ata gcc gaa att gcc agg atc agg gtt aaa gat atc tca cgt act		1536	
Arg Ile Ala Glu Ile Ala Arg Ile Arg Val Lys Asp Ile Ser Arg Thr			
500	505	510	
gac ggt ggg aga atg tta atc cat att ggc aga acg aaa acg ctg gtt		1584	
Asp Gly Gly Arg Met Leu Ile His Ile Gly Arg Thr Lys Thr Leu Val			
515	520	525	
agc acc gca ggt gta gag aag gca ctt agc ctg ggg gta act aaa ctg		1632	
Ser Thr Ala Gly Val Glu Lys Ala Leu Ser Leu Gly Val Thr Lys Leu			
530	535	540	
gtc gag cga tgg att tcc gtc tct ggt gta gct gat gat ccg aat aac		1680	
Val Glu Arg Trp Ile Ser Val Ser Gly Val Ala Asp Asp Pro Asn Asn			
545	550	555	560
tac ctg ttt tgc cgg gtc aga aaa aat ggt gtt gcc gcg cca tct gcc		1728	
Tyr Leu Phe Cys Arg Val Arg Lys Asn Gly Val Ala Ala Pro Ser Ala			
565	570	575	

acc agc cag cta tca act cgc gcc ctg gaa ggg att ttt gaa gca act 1776
 Thr Ser Gln Leu Ser Thr Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr
 580 585 590

 cat cga ttg att tac ggc gct aag gat gac tct ggt cag aga tac ctg 1824
 His Arg Leu Ile Tyr Gly Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu
 595 600 605

 gcc tgg tct gga cac agt gcc cgt gtc gga gcc gcg cga gat atg gcc 1872
 Ala Trp Ser Gly His Ser Ala Arg Val Gly Ala Ala Arg Asp Met Ala
 610 615 620

 cg¹ cgc gct gga gtt tca ata ccg gag atc atg caa gct ggt ggc tgg acc 1920
 Arg Ala Gly Val Ser Ile Pro Glu Ile Met Gln Ala Gly Gly Trp Thr
 625 630 635 640

 aat gta aat att gtc atg aac tat atc cgt aac ctg gat agt gaa aca 1968
 Asn Val Asn Ile Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr
 645 650 655

 ggg gca atg gtg cgc ctg ctg gaa gat ggc gat ggt atc gaa ggt cgt 2016
 Gly Ala Met Val Arg Leu Leu Glu Asp Gly Asp Gly Ile Glu Gly Arg
 660 665 670

 ggt agc gct tgg cgt cac ccg cag ttc ggt ggt taataa 2055
 Gly Ser Ala Trp Arg His Pro Gln Phe Gly Gly
 675 680

<210> 21

<211> 683

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: DNA sequence
coding for a fusion protein VP22creStrepTag

<400> 21

Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro Arg
 1 5 10 15Asp Glu Tyr Glu Asp Leu Tyr Tyr Thr Pro Ser Ser Gly Met Ala Ser
 20 25 30Pro Asp Ser Pro Pro Asp Thr Ser Arg Arg Gly Ala Leu Gln Thr Arg
 35 40 45Ser Arg Gln Arg Gly Glu Val Arg Phe Val Gln Tyr Asp Glu Ser Asp
 50 55 60Tyr Ala Leu Tyr Gly Gly Ser Ser Glu Asp Asp Glu His Pro Glu
 65 70 75 80Val Pro Arg Thr Arg Arg Pro Val Ser Gly Ala Val Leu Ser Gly Pro
 85 90 95Gly Pro Ala Arg Ala Pro Pro Pro Pro Ala Gly Ser Gly Gly Ala Gly
 100 105 110¹⁷Arg Thr Pro Thr Thr Ala Pro Arg Ala Pro Arg Thr Gln Arg Val Ala
 115 120 125Ser Lys Ala Pro Ala Ala Pro Ala Ala Glu Thr Thr Arg Gly Arg Lys
 130 135 140

Ser Ala Gln Pro Glu Ser Ala Ala Leu Pro Asp Ala Pro Ala Ser Thr
 145 150 155 160

Ala Pro Thr Arg Ser Lys Thr Pro Ala Gln Gly Leu Ala Arg Lys Leu
 165 170 175

His Phe Ser Thr Ala Pro Pro Asn Pro Asp Ala Pro Trp Thr Pro Arg
 180 185 190

Val Ala Gly Phe Asn Lys Arg Val Phe Cys Ala Ala Val Gly Arg Leu
 195 200 205

Ala Ala Met His Ala Arg Met Ala Ala Val Gln Leu Trp Asp Met Ser
 210 215 220

Arg Pro Arg Thr Asp Glu Asp Leu Asn Glu Leu Leu Gly Ile Thr Thr
 225 230 235 240

Ile Arg Val Thr Val Cys Glu Gly Lys Asn Leu Leu Gln Arg Ala Asn
 245 250 255

Glu Leu Val Asn Pro Asp Val Val Gln Asp Val Asp Ala Ala Thr Ala
 260 265 270

Thr Arg Gly Arg Ser Ala Ala Ser Arg Pro Thr Glu Arg Pro Arg Ala
 275 280 285

Pro Ala Arg Ser Ala Ser Arg Pro Arg Arg Pro Val Glu Gly Thr Glu
 290 295 300

Leu Gly Ser Thr Ser Pro Val Trp Trp Asn Ser Ala Asp Ile Gln His
 305 310 315 320

Ser Gly Gly Arg Met Ser Asn Leu Leu Thr Val His Gln Asn Leu Pro
 325 330 335

Ala Leu Pro Val Asp Ala Thr Ser Asp Glu Val Arg Lys Asn Leu Met
 340 345 350

Asp Met Phe Arg Asp Arg Gln Ala Phe Ser Glu His Thr Trp Lys Met
 355 360 365

Leu Leu Ser Val Cys Arg Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn
 370 375 380

Arg Lys Trp Phe Pro Ala Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu
 385 390 395 400

Tyr Leu Gln Ala Arg Gly Leu Ala Val Lys Thr Ile Gln Gln His Leu
 405 410 415

Gly Gln Leu Asn Met Leu His Arg Arg Ser Gly Leu Pro Arg Pro Ser
 420 425 430

Asp Ser Asn Ala Val Ser Leu Val Met Arg Arg Ile Arg Lys Glu Asn
 435 440 445

Val Asp Ala Gly Glu Arg Ala Lys Gln Ala Leu Ala Phe Glu Arg Thr
 450 455 460

Asp Phe Asp Gln Val Arg Ser Leu Met Glu Asn Ser Asp Arg Cys Gln
 465 470 475 480

60

Asp Ile Arg Asn Leu Ala Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu
 485 490 495

Arg Ile Ala Glu Ile Ala Arg Ile Arg Val Lys Asp Ile Ser Arg Thr
 500 505 510

Asp Gly Gly Arg Met Leu Ile His Ile Gly Arg Thr Lys Thr Leu Val
 515 520 525

Ser Thr Ala Gly Val Glu Lys Ala Leu Ser Leu Gly Val Thr Lys Leu
 530 535 540

Val Glu Arg Trp Ile Ser Val Ser Gly Val Ala Asp Asp Pro Asn Asn
 545 550 555 560

Tyr Leu Phe Cys Arg Val Arg Lys Asn Gly Val Ala Ala Pro Ser Ala
 565 570 575

Thr Ser Gln Leu Ser Thr Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr
 580 585 590

His Arg Leu Ile Tyr Gly Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu
 595 600 605

Ala Trp Ser Gly His Ser Ala Arg Val Gly Ala Ala Arg Asp Met Ala
 610 615 620

Arg Ala Gly Val Ser Ile Pro Glu Ile Met Gln Ala Gly Gly Trp Thr
 625 630 635 640

Asn Val Asn Ile Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr
 645 650 655

Gly Ala Met Val Arg Leu Leu Glu Asp Gly Asp Gly Ile Glu Gly Arg
 660 665 670

Gly Ser Ala Trp Arg His Pro Gln Phe Gly Gly
 675 680

<210> 22

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:synthetic TAT protein

<400> 22

Ala Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg
 1 5 10

<210> 23

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic TAT protein

<400> 23
Tyr Ala Arg Lys Ala Arg Arg Gln Ala Arg Arg
1 5 10

<210> 24
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic TAT
protein

<400> 24
Tyr Ala Arg Ala Ala Ala Arg Gln Ala Arg Ala
1 5 10

<210> 25
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic TAT
protein

<400> 25
Tyr Ala Arg Ala Ala Arg Arg Ala Ala Arg Arg
1 5 10

<210> 26
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic TAT
protein

<400> 26
Tyr Ala Arg Ala Ala Arg Arg Ala Ala Arg Ala
1 5 10

<210> 27
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic TAT
protein

<400> 27
Tyr Ala Arg Arg Arg Arg Arg Arg Arg Arg Arg
1 5 10

<210> 28
<211> 11
<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic TAT
protein

<400> 28

Tyr Ala Ala Ala Arg Arg Arg Arg Arg Arg
1 5 10

<210> 29

<211> 4960

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: vector
pCMV-I-Cre-pA

<400> 29

aaacagtccg atgtacgggc cagatatacg cggtgacatt gattattgac tagttattaa 60
tagtaatcaa ttacggggtc attagttcat agcccatata tggaggccc cgttacataa 120
cttacggtaa atggccccc tggctgaccg cccaacgacc cccgcccatt gacgtcaata 180
atgacgtatg ttccccatagt aacgccaata gggactttcc attgacgtca atgggtggac 240
tatttacggt aaactgccta cttggcagta catcaagtgt atcatatgcc aagtacgccc 300
cctattgacg tcaatgcacgg taaatggccc gcctggcatt atgcccagta catgaccc 360
tgggactttc ctacttgca gtacatctac gtattagtca tcgcttattac catggtgatg 420
cggttttggc agtacatcaa tgggctgtga tagcgggttt actcacggg atttccaagt 480
cttcacccca ttgacgtcaa tgggagttt ttttggcacc aaaatcaacg ggactttcca 540
aaatgtcgta acaatccgc cccattgacg caaatggggc gttaggcgtgt acgggtggag 600
gtctatataa gcagagctc ctggctaaact agagaaccca ctgcttactg gtttatcgaa 660
attaatacga ctcaactatag ggagacccaa gctgactcta gacttaatta agcgttgggg 720
tgagtactcc ctctcaaaaag cgggcatgac ttctgcgccta agattgttag tttccaaaaa 780
cgaggaggat ttgatattca cctggccgc ggtatgcct ttgagggtgg ccgcgtccat 840
ctggtcagaa aagacaatct ttttgtgtc aagcttgagg tgtggcaggc ttgagatctg 900
gccatacact tgagtgacat tgacatccac ttgccttc tctccacagg tgccactcc 960
cagggcggcc tcgaccatgc ccaagaagaa gaggaagggtg tccaatttac tgaccgtaca 1020
ccaaaatttg cctgcattac cggtcgatgc aacgagtgtat gagggtcgca agaacctgat 1080
ggacatgttc agggatcgcc agggttttc tgagcataacc tggaaaatgc ttctgtccgt 1140
ttggccgtcg tgggcccgc ggtcaagtt gaataaccgg aaatgtttc ccgcagaacc 1200
tgaagatgtt cgcgattatc ttctatatct tcagggcgcgc ggtctggcgt taaaactat 1260
ccagcaacat ttgggcccgc taaacatgtc tcatgtcgg tccggcgtgc caccgaccaag 1320
tgacagcaat gctgtttcac tgggtatgcg gcggtccga aaagaaaaacg ttgatgccgg 1380
tgaacgtgca aaacaggctc tagcgttgcg acgcactgtat ttcgaccagg ttctgttact 1440
catggaaaat agcgatcgct gccaggatcat acgtaatctg gcatttctgg ggattgttta 1500
taacaccctg ttacgtatag ccgaaattgc caggatcagg gttaaagata tctcacgtac 1560
tgacgggtgg agaatgttaa tccatattgg cagaacgaaa acgctggta gcaccgcagg 1620
tgtagagaag gcacttagcc tgggggttaac taaactggc gagcgtatgg tttccgtctc 1680
tgggttagct gatgatccga ataactacct gtttgcgg gtcagaaaaa atgggtttgc 1740
cgcccatctt gccaccagcc agctatcaac tcgcccctg gaaggattt ttgaagcaac 1800
tcatcgattt atttacggcg ctaaggatga ctctggtcag agatacctgg cctggctcg 1860
acacagtgcc cgtgtcgag ccgcgcgaga tatggccgc gctggagttt caataccgga 1920
gatcatgca gctgggtgc ggcaccaatgt aatattgtc atgaactata tcgttaacct 1980
ggatagtgaa acaggggcaaa tggcgcgc gctggaaat ggcgatttgc cattaacgcg 2040
taaatgattt cagatccact agtttgcggg ccgcgtcgac ctgcagatcc aggcgcggat 2100
caataaaaaga tcattatattt caatagatgt gtgttggg ttttgtgtc cttggggga 2160
gggggaggcc agaatgaggc gcggccaaagg gggagggggg ggcacaatg accttggggg 2220
agggggaggc cagaatgacc ttgggggagg gggaggccag aatgaggcgc gccccgggt 2280
accgagctcg aattcactgg ccgtcgatcc acaacgtcg gactggaaa accctgggt 2340
taccaactt aatcgccctt cagcacatcc cccttcgcg agctggcgtat agacgaa 2400
ggcccgccacc gatcgccctt cccaaacagtt ggcgcgtcg aatggcaat ggcgcctgat 2460
gcgttatttt ctcccttacgc atctgtgcgg tatttcacac cgcatatggt gcaactctcag 2520
tacaatctgc tctgtatggc catagttaa ccagccccga caccgcacca caccgcgtca 2580

cgcccccgtga	cgggcttgc	tgctccggc	atccgcttac	agacaagctg	tgaccgtctc	2640
cggagctgc	atgtgtcaga	ggtttcacc	gtcatcaccc	aaacgcgcga	gacgaaagg	2700
cctctgtca	cgcctatttt	tataggttaa	tgtcatgata	ataatggttt	cttagacgtc	2760
agggtggact	tttcggggaa	atgtgcgccc	aacccttatt	tgtttat	tctaaataca	2820
ttcaaataatg	tatccgctca	tgagacaata	accctgataa	atgcttcaat	aatattgaaa	2880
aaggaagagt	atgagtattc	aacatttccg	tgtccccctt	attccctttt	ttgcggcatt	2940
ttgccttcct	gttttgc	acccagaaac	gctggtaaaa	gtaaaagatg	ctgaagatca	3000
gttgggtca	cgagtgggtt	acatcgaaact	gatctcaac	agcggtaaga	tccttgagag	3060
ttttcgcccc	gaagaacgtt	ttccaatgat	gagcactttt	aaagttctgc	tatgtggcgc	3120
ggtattatcc	cgtattgcg	ccggcaaga	gcaactcggt	cgccgcatac	actattctca	3180
gaatgacttg	gtttagtact	caccagtac	agaaaagcat	cttacggatg	gcatgacagt	3240
aagagaatta	tgcagtgc	ccataaccat	gagtgataac	actgcggcca	acttacttct	3300
gacaacgatc	ggaggaccga	aggagcta	cgcttttttgc	cacaacatgg	gggatcatgt	3360
aactcgccctt	gatcggttggg	aaccggagct	aatgaaagcc	ataccaaacg	acgagcgtga	3420
caccacgatg	cctgttagcaa	tggcaacaac	gttgcgcaaa	ctattaactg	gcgaactact	3480
tactctagct	tcccgccaa	aattaataga	ctggatggag	gcccggaaaag	ttgcaggacc	3540
acttctgcgc	tcggcccttgc	cggtggctg	gtttatgtct	gataaattctg	gagccgggtga	3600
gcgtgggtct	cgcgttatca	ttgcagact	ggggccagat	gttgcgcctt	cccgatctgt	3660
agttatctac	acgcggggaa	gtcaggcaac	tatggatgaa	cgaaatagac	agatcgctga	3720
gataggtgcc	tcactgatta	agcattggta	actgtcagac	caagttact	cataatact	3780
tttagattgat	ttaaaacttc	attttaatt	taaaaggatc	taggtgaaga	tccttttga	3840
taatctcatg	acccaaaatcc	cttaacgtga	gttttgcgtt	cactgagcgt	cagacccgt	3900
agaaaaagatc	aaaggatctt	cttgagatcc	tttttttctg	cgcgtaatct	gctgcttgca	3960
aacaaaaaaaaa	ccaccgctac	cagcgggtt	ttgtttgcgg	gatcaagagc	taccaactct	4020
ttttccgaa	gtaaactggct	tcagcagagc	gcagatacca	aataactgtcc	ttcttagtgta	4080
gccgtagtt	ggccaccact	tcaagaactc	tgtagcaccg	cctacatacc	tcgctctgt	4140
aatccctgtta	ccagtggctg	ctgcagtg	cgataagtgc	tgtcttaccg	ggttggactc	4200
aagacgatag	ttaccggata	aggcgacgc	gtcgggctga	acggggggtt	cgtgcacaca	4260
gcccagcttgc	gagcgaacga	cctacaccga	actgagatac	ctacagcgtg	agctatgaga	4320
aagcggcaccg	cttcccgaa	ggagaaaggc	ggacaggtat	ccggtaa	gcagggtcgg	4380
aacaggagag	cgcacgagg	agcttccagg	ggggaaacgc	tggtatctt	atagtccctgt	4440
cgggttcgc	cacctctgac	tttgcgtcg	attttgta	tgctcgtcag	ggggggcggag	4500
cctatggaaa	aacgcccagca	acgcggctt	tttacggttc	ctggccctt	gctggccctt	4560
tgctcacatg	ttttttctgt	cgttatcccc	tgattctgt	gataaccgt	ttaccgcctt	4620
tgagttagt	gataccgtc	gccgcagccg	aacgaccgag	cgcagcgt	cagtgagcga	4680
ggaagcggaa	gagcgc	tttaccaacc	gcctctcccc	gcgcgttgc	cgattcatta	4740
atgcagctgg	cacgacagg	ttcccgactg	gaaagcgggc	agtgcgc	acgcaattaa	4800
tgttagttag	ctca	aggcacc	gcctttacac	tttatgttc	cggtctcgat	4860
gttgtgtgaa	attgtgagcg	gataacaatt	tcacacagga	aacagctatg	accatgatta	4920
cgccaagcta	gcccggc	ta	ctgcaggtt			4960

<210> 30

<211> 7332

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: vector
pCMV-I-beta-pA

<400> 30

aaacagtccg	atgtacgggc	cagatatacg	cggtgacatt	gattattgac	tagttattaa	60
tagtaatcaa	ttacggggtc	attagttcat	agcccatata	tggagtccg	cgttacataa	120
cttacgttaa	atggccccc	tggctgaccg	cccaacgacc	ccggccctt	gacgtcaata	180
atgacgtatg	ttcccatatg	aacgccaata	gggactttc	attgacgtca	atgggtggac	240
tatttacgtt	aaactgccc	cttgcagta	catcaagtgt	atcatatgcc	aagtacgccc	300
cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	atgcccagta	catgaccctt	360
tgggactttc	ctacttggca	gtacatctac	gtattagtca	tcgcttattac	catgggtatg	420
cgttttggc	agtacatcaa	tggcgtgga	tagcggtttgc	actcacgggg	atttccaagt	480
ctccacccca	ttgacgtcaa	tgggagtttgc	tttggcacc	aaaatcaacg	ggactttcca	540
aaatgtcgta	acaactccgc	cccattgacg	caaatgggc	gtaggcgtgt	acgggtggag	600
gtctatataa	gcagagctt	ctggctact	agagaacc	ctgcttactg	gcttatacgaa	660
attaatacga	ctca	ggagacccaa	gctgactcta	gacttaatta	agcgttgggg	720

tgagtactcc ctctcaaaaag cgggcatgac ttctgcgcta agattgtcag tttccaaaaaa 780
cgaggaggat ttgatattca cctggcccgc ggtgatgcct ttgagggtgg ccgcgtccat 840
ctggtcagaa aagacaatct ttttgtc aagcttgagg tggcggcagg ttgagatctg 900
gcatacact tgagtgacat tgacatccac ttgccttc tctccaaagg tgccactcc 960
cagggcggcc gcaattcccc gggatcgaaa gagcctgcta aagcaaaaaa gaagtcacca 1020
tgcgtttac tttgaccaac aagaacgtga tttcgttgc cggctggga ggcattggc 1080
tggacaccag caaggagctg ctaagcgcg atccccgtgt tttacaacgt cgtactggg 1140
aaaaccctgg cgttacccaa cttaatcgcc ttgcagcaca tcccccttc gccagctggc 1200
gtaatagcga agaggcccgc accgatcgcc ctcccaaca gttgcgcage ctgaatggcg 1260
aatggcgctt tgcctggtt ccgcaccaag aagcggtgcc ggaaagctgg ctggagtgcc 1320
atcttcctga ggccgatact gtcgtcgcc cctcaaactg gcagatgcac gttacgatg 1380
cgcccatcta caccaacgta acctatccca ttacggtcaa tccgcgttt gttcccacgg 1440
agaatccgac gggtgttac tcgctcacat ttaatgttga tgaaagctgg ctacaggaag 1500
gccagacgca aattattttt gatggcgta actcgccgtt tcattctgtgg tgcaacgggc 1560
gctgggtcgg ttacggccag gacagtgcgtt tgccgtctga atttgacactg agcgcatttt 1620
tacgcggccg agaaaaccgc ctgcgggtga ttgtgtcgcc ttggagtgc ggcagttatc 1680
tggagatca ggatgttgg cggatgagcg gcattttccg tgacgtctcg ttgtgcata 1740
aaccgactac acaaataatcgc gattccatg ttgcactcg cttaatgtt gatttcagcc 1800
gcgtgtact ggaggctgaa gttcagatgt gcccgcagg gctgtactac ctacggtaa 1860
cagttcttt atggcagggt gaaacgcagg tcgcccaggcc caccgcgcct ttccgggtg 1920
aaattatcga tgagcgttgg ggttatgccc atcgctcac actacgtctg aacgtcgaaa 1980
acccgaaact gtggagcgc gaaatcccg atctctatcg tgccgtgggtt gaactgcaca 2040
ccgcccacggc cacgctgatt gaagcagaag cctgcgatgt cgggttccgc gaggtgcgg 2100
ttgaaaatgg tctgctgctg ctgaacggca agccgttgc gattcagggc gttAACCGTC 2160
acgagcatca tccctctgcat ggtcaggtca tggatgagca gacgatgggt caggatatcc 2220
tgctgatgaa gcagaacaac tttaacgcgg tgccgtgtc gcattatccg aaccatccgc 2280
tgtggtacac gctgtgcac cgctacggcc tttatgtgtt ggatgaagcc aatattgaaa 2340
cccacggcat ggtgccaatg aatcgctgtt ccgcgtatcc ggcgtggctt ccggcgatga 2400
gcaacgcgtt aacgcgaatg gtgcagcgcg atcgtaatca cccgagtgtg atcatctgg 2460
cgctggggaa tgaatcaggc caccgcgtt atcgcacgcg gctgtatcg tggatcaaat 2520
ctgtcgatcc ttcccgccg gtgcagtatg aaggccgcgg agccgcaccc acggccaccc 2580
atattatttgc cccgtatgtt gcccgcgtgg atgaagacca gcccctcccg gctgtgcgg 2640
aatggtccat caaaaaaaaatgg ctttcgtatc ctggagagac gcccggctg atcccttgcg 2700
aatacgcggca cgcgtatggt aacagtcttgc gcccgttccg taaatactgg caggcggttc 2760
gtcagtatcc cccgttacag gccggcttcg tctggactg ggtggatcag tcgcgtatta 2820
aatatgtga aaacggcaac ccgtggcgg ctacggccg tgattttggc gatacgccga 2880
acgatcgcca gttctgtatg aacggcttgcg tctttgcgg cccacgcgc catccagcgc 2940
tgacggaagc aaaacaccag cagcgtttt tccagttccg tttatccggg caaaccatcg 3000
aagtgaccag cgaataacctg ttccgtcata gcgataacga gctccgtcgc tggatgggtgg 3060
cgctggatgg taagccgtg gcaagcggtg aagtgcctt ggatgtcgctt coacaaggta 3120
aacagtgtat tgaactgcct gaactaccgc acggccggag cgcggggcaa ctctggctca 3180
cagtagcgtt agtgcacccg aacgcgcgg catggtcaga agccgggcac atcagcgcct 3240
ggcagcgtg gctgtcgcc gaaaacctca gtgtgacgtt ccccccggc tcccaegccca 3300
tcccgatct gaccaccgc gaaatggatt ttgcgtatcg gctggtaat aagcgttggc 3360
aatttaaccg ccagtccaggc ttctttcac agatgtggat tggcgataaa aaacaactgc 3420
tgacgcccgt ggcgcgtatcg ttccacccgtg caccgctgga taacgacatt ggctgttgg 3480
aagcgcacccg cattgaccct aacccttgcg tcgaacgcgtg gaaggccggc ggccatttacc 3540
aggccgaagc agcgttggc cagtcacgg cagataact tgcgtatcg gtgcgtatta 3600
cgaccgcgtca cgcgtggcag catcaggggaa aacccttatt tatcagccgg-aaaacctacc 3660
ggattgtatgg tagtggtcaa atggcgatgg ccgttgcgtt tgaagtggcg agcgatcac 3720
cgcatccggc gcccgtatcg ctgaactgcg agctggcgc ggtacgagag cgggtaaaact 3780
ggctcggtt gggccgcgg gaaaactatc ccgaccgcct tactggccgc tggatgggtgg 3840
gctggatct gccattgtca gacatgttcc ccccgatgtt ctcccgccg gaaaacggc 3900
tgcgtcgcc gacgcgcggaa ttgaaattatg gcccacacca gtggccggc gacttccagt 3960
tcaacatcag ccgtatcactt caacagcaac tggatggaaac caccatcg catctgtcg 4020
acgcggaaaga aggacatgg ctgatgtatcg acggatccatc tggatggatt ggtggcgc 4080
actcctggag cccgtcgatc tcgcggat tacagctgag cgcgtcgcc taccattacc 4140
agtggctcg gttcaaaaaa taataataac cggccggggcc atgtctgcctt gttttattct 4200
taaggaaatc cattatgtac tattttttt acacaaaactt ttggatgttc gttttattct 4260
ttttctttta cttttttatc atgggagcct acttcccgat tttcccgatt tggatcatg 4320
acatcaacca tatcagcaaa agtatacgg gtattatttt tgccgttatt tctctgttct 4380
cgctattatt ccaaccgcgtt tttctgtcc tttctgtacaa actcggccctc gactctaggc 4440
ggccgcgtcg acctcgatgg ccaggccggg atcaataaaaa gatcatttatt ttcataatagat 4500
ctgtgttgc gttttttgtt tgccctgggg gaggggggagg ccagaatgag ggcggccaa 4560

gggggagggg gaggccagaa tgaccttggg ggagggggag gccagaatga cttggggga 4620
 gggggaggcc agaatgaggc gcgcggccgg gtaccgagct cgaattcaact ggcgcgtcggt 4680
 ttacaacgtc gtgactggga aaaccctggc gttacccaac ttaatcgctt tgcagcacat 4740
 ccccctttcg ccagctggcg taatagcgaa gaggcccgcac ccgatcgccc ttcccaacag 4800
 ttgcgcagcc tgaatggcga atggcgcttg atgcgttatt ttctccttac gcatctgtgc 4860
 ggtatttcac accgcatatg gtgcactctc agtacaatct gctctgatgc cgcatagtt 4920
 acccagcccc gacaccggcc aacaccggct gacgcgcctt gacgggctt tctgcgtccc 4980
 gcatccgctt acagacaagc tgtgaccgtc tccgggagct gcatgtgtca gaggttttca 5040
 ccgtcatcac cgaaacgcgc gagacgaaag ggcctcgta tacgcctatt ttataggtt 5100
 aatgtcatga taataatggt ttcttagacg tcaggtggca ctttcgaaa aaatgtgcgc 5160
 gaaaccccta ttgtttatt ttctcaaata cattcaaata tgcataccgtt catgagacaa 5220
 taaccctgtt aatgtctca ataattatgtt aaaaggaaga gtatgatgt tcaacatttc 5280
 cgtgtcgccc ttatccctt ttgcggca acgctggtaa aagtaaaaaga tgctgaagat 5340
 ctggatctca acagcggtaa gatccctttagt agtttcgccc ccaagaacg tttccaatg 5400
 atgagcactt taaaaggctt gctatgtggc gcggttattat cccgtattga cgccgggcaa 5520
 gagcaactcg gtgcggccat acactattct cagaatgact tggttgagta ctcaccagtc 5580
 acagaaaagc atcttacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc 5640
 atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc gaaggagcta 5700
 accgctttt tgcacaacat ggggatcat gtaactcgcc ttgatcgttt ggaaccggag 5760
 ctgaatgaag ceataacaaa cgacgagct gacaccacga tgccgttagc aatggcaaca 5820
 acgttgcgc aactattaac tggcgaacta ccacttctgc gtcggccct tccggctggc 5940
 gactggatgg aggccggataa agttgcagga tggttattt ctgataaaatc tggagccgg 6000
 ctggggccag atggtaagcc ctcctgtatc gtagtatctt acacacggg gagtcaggca 6060
 actatggatg aacgaaatag acagatcgct gatgttacgat taaggcattgg 6120
 taactgtcag accaagttt ctatataata ctttagattt attttaaaact tcatttttaa 6180
 tttaaaagga tctaggtgaa gatccctttt gataatctca tgacaaaaat cccttaacgt 6240
 gagtttcgt tccactgagc gtcaagacccc gtagaaaaga tcaaggatc ttcttgagat 6300
 ccttttttc tgcgcttaat ctgtgtctt gaaacaaaaa aaccacggct accagcggtg 6360
 gtttgggtc cggatcaaga gctaccaact cttttccoga aggttaactgg cttcagcaga 6420
 gccgacatac caaatactgt cctcttagtg tagccgtatc tagggccacca cttcaagaac 6480
 tctgttagcac cgcctacata cctcgctctg ctaatccgtt taccgtggc tgctgccagt 6540
 ggcgataagt cgtgttac cgggttggac tcaagacgtt agttaccgga taaggcgcag 6600
 cggtcggtc gaacgggggg ttcgtgcaca cagcccagt tggagcgaac gacctacacc 6660
 gaactgagat acctacacgc tgaatgtatga gaaagcgcac cgttcccgaa agggagaaag 6720
 gccgacaggat atccggtaag cggcagggtc ggaacaggag agegcacgc gtagcttcca 6780
 gggggaaacg cctggtatct ttatagtcct gtcgggtttc gccacctctg acttgagcgt 6840
 cgtatgttgc gatgtctgc agggggggcg ttttacgtt tcctggctt ttgtgtccatc agcctatggaa aaaacgcccacaaacgccc 6900
 cctgattctg tggataaccg tattaccggc tttgacttgc tgcgttatcc 6960
 cgaacgaccg agcgcagcga gtcaatgtatc gtagtgcactt gacggccatc 7020
 ccgcctctcc cccgcgggtt gcccattcat taatgcactt ggcacgcacag gttccgcac 7140
 tgaaaagcgg gcagtggcgc caacgcattt aatgtgatgtt agctcactca ttaggcaccc 7200
 caggctttac actttatgtt tccggctgtt atgtgtgtt gaaatgttgcg cggataacaa 7260
 ttccacacag gaaacagcta tgaccatgt tacgccaacgc tagccggc tagttgcac 7320
 gcctgcaggt tt 7332

<210> 31
 <211> 72
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: primer

<400> 31
 atgcctatggg ctacggccgc aagaagcgcc gccaacgcgc cccggcatg tccaaatttac 60
 tgaccgtaca cc 72

<210> 32
 <211> 25

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 32
tttcggatcc gccgcataac cagtg 25

<210> 33
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 33
tatatataga ccatgggcta cggccgcaag aagc 34

<210> 34
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 34
gctaccacga ctttcgatac catgccatc ttccagcagg cgc 43

<210> 35
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 35
taactagcggtcc aatttactga ccgtacac 38

<210> 36
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 36
tcgagcggcc gccatcgcca tcttccagca ggcg 34

<210> 37
<211> 32
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 37
tatatatctaga catatgacct ctcggccgctc cg

32

<210> 38
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 38
ttccgaaagac gacgaaaacac c

21

<210> 39
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 39
tatatttcgaa gcttatttaac caccgaactg cg

32

<210> 40
<211> 4847
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: vector
pGK-cre-pA

<400> 40

agggtggcaact	tttcggggaa	atgtgcgogg	aacccttatt	tgtttatttt	tctaaaataca	60
ttcaaataatg	tatccgctca	tgagacaata	accctgataa	atgcttcaat	aatattgaaa	120
aaggaaagagt	atgagtattc	aacatttccg	tgtcgccctt	attccctttt	ttgcggcatt	180
ttgccttct	gttttgc当地	accaggaaac	gctggtaaaa	gtaaaagatg	ctgaagatca	240
gttgggtgca	cgagtgggtt	acatcgaaact	ggatctcaac	agcggtaaga	tccttgagag	300
tttgc当地	gaagaacgtt	ttccaatgtat	gagcaactttt	aaagttctgc	tatgtggcgc	360
ggtattatcc	cgtattgacg	ccgggcaaga	gcaactcggt	cgccgc当地	actatttca	420
gaatgacttg	gtttagtact	caccagtc当地	agaaaaagcat	tttacggatg	gcatgacagt	480
aagagaaata	tgc当地gtc	ccataaccat	gagtgataac	actgccc当地	acttacttct	540
gacaacgatc	ggaggaccga	aggagcta	cgcttttttgc	cacaacatgg	gggatcatgt	600
aactcgccctt	gatcgttggg	aaccggagct	gatgaagcc	ataccaaacc	acgagcgtga	660
caccacgatg	cctgtagcaa	tggcaacaac	gttgc当地aaa	ctattaactg	gcoactact	720
tactctagct	tcccgcaac	aattaataga	ctggatggag	gccc当地aaag	ttgcaggacc	780
acttctgcgc	tcggcccttc	cggctggctg	gttatttgc当地	gataaattcg	gagccggta	840
gcgtgggtct	cgc当地tatca	ttgc当地act	ggggccagat	gttaagccct	cccgatcatgt	900
agttatctac	acgacgggga	gtcaggcaac	tatggatgaa	cgaaatagac	agatcgctga	960
gataggtgcc	tcactgatta	agcattggta	actgtcagac	caagttact	catatataact	1020
tttagattgt	ttaaaacttc	attttaatt	taaaaggatc	taggtgaaga	tccttttgc当地	1080
taatctcatg	accaaaaatcc	cttaacgtga	gttttgc当地	cactgagcgt	cagaccggcgt	1140
agaaaagatc	aaaggatctt	tttgc当地atc	tttttttgc当地	cgctgatct	gctgcttgc当地	1200
aaaaaaaaaa	ccaccgctac	cagcggctgt	tttgc当地ccg	gatcaagagc	taccaactct	1260
tttccgaaag	gtactggct	tcagcagagc	cgacgatacc	aatactgtcc	ttcttagtgc当地	1320
gccc当地gtt	ggccaccact	tcaagaactc	tgtgc当地acc	cctacatacc	tcgctctgc当地	1380
aatcctgtta	ccagtggtc当地	ctgccc当地gtq	cgataagtc当地	tgtcttacc	ggttggactc当地	1440

aagacgata gttaccggata aggcgcagcg gtcgggctga acggggggtt cgtgcacaca 1500
 gcccagctt gaggcaacga cctacacccga actgagatac ctacagcgtg agctatgaga 1560
 aagcgcacg ctccccaaag ggagaaaggc ggacaggat cccgtaagcg gcagggtcgg 1620
 aacaggagag cgcacgaggg agctccagg gggaaacgcc tggtatctt atagtcctgt 1680
 cgggttcgc cacctctgac ttgagcgtcg attttgtga tgctcgtcag gggggcggag 1740
 cctatggaaa aacgcacca acgcggcatt ttacggtc ctggccttt gctggcctt 1800
 tgctcacatg ttcttcctg cgttatcccc tgattctgt gataaccgtt ttaccgcctt 1860
 tgaatgagct gataaccgtc gccgcagccg aacgaccgag cgcagcgagt caigtgagcga 1920
 ggaagcggaa gagcgcacca tacgcaaaccc gcctctccccc ggcgcgttgc cgattcatta 1980
 atgcagctgg cacgacaggt ttcccgactg gaaagcgggc agtgagcga acgcaattaa 2040
 tgtgatgttag ctcaactt aggacccca ggctttacac ttatgtctt cggctcgat 2100
 gtttgtgtgg aattgtgagcg gataacaatc tcacacagaa aacagatctatg accatgatta 2160
 cgcacccggc gcaatttaacc ctcaactaaag ggaacaaaag ctgggttaccg gggcccccctt 2220
 cgagggtcgac ggtatcgata agttgtat cgaattctac cgggtagggg aggccgtttt 2280
 cccaaaggcag tctggagcat ggcgtttagc agcccccgtg gcacttggcg ctacacaagt 2340
 ggccctctggc ctcgcacaca ttccacatcc accggtagcg ccaaccggctt ccgttcttt 2400
 gtggcccccgtt cgcgcactt ctactcctcc cctagtcagg aagttttttt cagcaagctc 2460
 gcgtcgtgca ggacgtgaca aatggaaagta gcacgtctca ctatgtctgt gcagatggac 2520
 agcaccgctg agcaatggaa gcccggtaggc ttgggggca gcccggcaata gcagctttgt 2580
 tccttcgttt tctgggctca gaggetggga aggggtgggt cccggggcgg gtcaggggc 2640
 gggctcagggg gcccggggggc gcccggaaatg cttccggagg cccggcattt tgacgcctt 2700
 aaaagcgcac gtctgcgcg ctgttcttcc ttccctcatc tccgggcctt togacctgca 2760
 gctcgagggtc gaccatggcc aagaagaaga ggaagggtgtc caatttactg accgtacacc 2820
 aaaatttgcg tgcatttaccc gtcgtatgca cggatgtatg ggttgcgaag aacctgtatgg 2880
 acatgttcag ggatgcggcag ggcgtttctg agcataccctt gaaaatgtt ctgtccgtt 2940
 gcccggcgtg ggcggcatgg tgcaatgtt gaaaccggaa atggtttttcc gggaaacactg 3000
 aagatgttcg cgattatctt ctatatcttcc aggcgcgcgg tctggcagta aaaactatcc 3060
 agcaacattt gggccagcta aacatgttcc atcgtcggtc cgggctgcca cgaccaagt 3120
 acagcaatgc tttttactg gttatgcggc ggtatccgaaa agaaaaacgtt gatgccgggt 3180
 aacgtgcaaa acaggctcta ggcgttgcac gcaactgtt ccggccagggtt cgttactca 3240
 tgaaaaatag cgatcgctgc caggatatac gtaatctggc atttctggg attgttata 3300
 acaccctgtt acgtatagcc gaaatttgcg ggtatcagggt taaagatatc tcaactgt 3360
 acgtggggag aatgttatac catattggca gaacggaaac gctgtttagc accgcagggt 3420
 tagagaaggc acttagcctt ggggttacta aactggtca ggcgttgcatttcc tccgttctt 3480
 gtgttagctga tgatccgat aactacctgt ttggggggc cagaaaaaat ggtgttgcgg 3540
 ccccatctgc caccaggccg ctatcaactc ggcgccttgcg agggattttt gaagcaactc 3600
 atcgattgtt ttacggcgt aaggatgact ctgggtcagag atacccggcc tggcttgcgg 3660
 acagtggccg tgcggagat ggcggagata tggccggcgc tggatgttca ataccggaga 3720
 tcatgcaagg tgggttgcgg accaatgtaa atatgtcat gaaatatac cgttacactgg 3780
 atagtggaaatc agggggcaatg gtgcgcctgc ttggaaatggg cgattagcca ttaacgcgt 3840
 aatgatttgcg gatccactatg ttcttagatc cgcgtatcag cctcgactgt gccttctatg 3900
 tgccagccat ctgttgcgtt cccctccccc gtcgccttcc ttacccttgcg aggtgccact 3960
 cccactgtcc ttccctaata aaatggggaa attgcatttcg attgttgcatttgc taggtgtcat 4020
 tctattctgg ggggtgggg gggccaggac agcaaggggg aggattggg agacaatagc 4080
 aggcatgtcg gggatgcgg gggatctatg gtttctgagn nngaaagaac cagctggggc 4140
 tcgagatcca ctatgttccg ctcgaggatc agagccggccg ccaccggcgtt ggagctccaa 4200
 ttccgcctat agtgcgttgcg attacgcgcg ctcacttgcg gtcgttttac aacgtcgat 4260
 ctggaaaaac ctcgcgtt cccaaacttac tccgccttgcg gcacatcccc cttcgcgcag 4320
 ctgcgtatc agcgaaggagg cccgcacccga tccgccttcc caacagtgc gcaagcgttgc 4380
 tggcgaatgg gacgcgcctt gtagcggcgc attaagcgcg gccgggtgtt tggatgcgt 4440
 cagcgtgacc gtcacttgc cccacccctt agcggccgtt ctttcgttcc tttcccttc 4500
 ctttctggcc acgttgcggc gctttcccg tcaatgttca aatcgggggc tccctttagg 4560
 gttccgttac agtgcgttac ggcaccttgcg ccccaaaaaa cttgatttgcg gtcgttgcgt 4620
 acgtatgtggg ccatgcctt gatagacggt ttccgcctt ttgcgttgcg agtccacgtt 4680
 cttaatagt ggactcttgc tccaaactgg aacaacactc aaccctatct cggcttattt 4740
 ttttgattta taaggatttgc ggcgttgcg ggccttattgg taaaaaatg agctgattt 4800
 aaaaaaaaaaattt aacgcgttca ttaacaaaat attaaccgtt acaattt 4847

..

<210> 41
 <211> 22
 <212> DNA
 <213> Artificial Sequence

69

<220>
<223> Description of Artificial Sequence: primer

<400> 41
catctccggg cctttcgacc tg

22

<210> 42
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 42
gcgatcggtg cgggcctt c

21

Claims

1. Use of a fusion protein comprising
 - (a) a site-specific DNA recombinase domain and
 - (b) a protein transduction domain (PTD)for preparing an agent for inducing target gene alterations in a living organism or cell culture, wherein said living organism carries at least one or more recognition sites for said site-specific DNA recombinase integrated in an endogenous gene.
2. The use of claim 1, wherein the PTD is not derived from Antennapedia and preferably is a PTD derived from the VP22 protein of HSV or from the TAT protein of HIV.
3. Use of a fusion protein comprising
 - (a) a site-specific DNA recombinase domain and
 - (b) a protein transduction domain (PTD) being not derived from Antennapedia and preferably being derived from the VP22 protein of HSV or from the TAT protein of HIVfor preparing an agent for inducing target gene alterations in a living organism or cell culture, wherein said living organism carries at least one or more recognition sites for said site-specific DNA recombinase integrated in its genome.
4. The use of claim 3, wherein the recognition sites for said site specific recombinase is present within an endogenous gene or a transgene.
5. The use of any one of claims 2 to 4, wherein the TAT protein comprises
 - (i) the amino acid sequence YGRKKRRQRRR (SEQ ID NO: 10) or a mutant thereof including
 - (ii) peptides having the amino sequences

AGRKKRRQRRR (SEQ ID NO:22)

YARKARRQARR (SEQ ID NO:23)

YARAARQARA (SEQ ID NO:24)

YARAARRAARR (SEQ ID NO:25)

YARAARRAARA (SEQ ID NO:26)

YARRRRRRRR (SEQ ID NO:27)

YAAARRRRRR (SEQ ID NO:28);

preferably the TAT protein consists of one of the sequences shown in (i) or (ii) above.

6. The use of any one of claims 2 to 4, wherein the VP22 protein comprises the amino acid 16-157 of SEQ ID NO:14.

7. The use of any one of claims 1 to 6, wherein the site-specific DNA recombinase domain is selected from a recombinase protein derived from Cre, Flp, φC31 recombinase, and R recombinase and preferably is Cre having amino acids 15 to 357 of SEQ ID NO: 2 or Flp having amino acids 15 to 437 of SEQ ID NO: 4.

8. The use of any one of claims 1 to 7, wherein the protein transduction domain is fused to the N-terminal of the site-specific DNA recombinase domain.

9. The use of any one of claims 1 to 8, wherein the protein transduction domain is fused to the site-specific DNA recombinase domain through a direct chemical bond or through a linker molecule.

10. The use of any one of claim 9, wherein the linker molecule is a short peptide having 1 to 20, preferably 1 to 10 amino acid residues.

11. The use of any one of claims 1 to 10, wherein said fusion protein further comprises additional functional sequences.
12. The use of claim 1, wherein the fusion protein has the sequence shown in SEQ ID NOs: 2, 4, 6 or 8.
13. The use of any one of claims 1 to 12, wherein the living organism is a vertebrate, preferably a rodent or a fish.
14. A method for inducing gene alterations in a living organism which comprises administering to said living organism, a fusion protein comprising a site-specific DNA recombinase domain and a protein transduction domain as defined in claims 1 to 12, wherein said living organism carries at least one or more recognition sites for said site-specific DNA recombinase integrated in its genome.
15. A fusion protein comprising
 - (a) a site-specific DNA recombinase domain as defined in claims 2 to 9 and
 - (b) a protein transduction domain (PTD) as defined in claims 2 to 9 provided that when (a) is the wild-type Flp or Cre then (b) is not the full length VP22 protein of HSV.
16. The fusion of claim 15, wherein the (PTD) is derived from the TAT protein of HIV.
17. A DNA sequence coding for the fusion protein of claim 15 or 16, said DNA sequence preferably comprising the sequence shown in SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 18 and/or 20.
18. A vector comprising the DNA sequence of claim 17.

19. A host cell transformed with the vector of claim 18 and/or comprising the DNA of claim 17.
20. A method for producing the fusion protein of claim 15 which comprises culturing the transformed host cell of claim 19 and isolating the fusion protein.
21. An injectable composition comprising the fusion protein as defined in claims 1 to 12 or 15 to 16.

Fig. 1

Fig. 2

Figure 3

Figure 4

Fig. 5

Figure 6

Fig. 7

A**B**

Figure 8

Figure 9

Fig. 10

Figure 11