

تتألف دارة كهربائية من مولد للتوتر الثابت E=12,00V=1، مقاومة  $R=320k\Omega$ ، مكثفة سعتها C. راسم اهتزازات وقاطعة . نقوم بغلق القاطعة لكي نشحن المكثفة . نشاهد على راسم الاهتزازات البيان التالي :

E , i , R عن u بدلالة t عبر في لحظة t

عبر عن شدة التيار  $i_0$  عند اللحظة  $i_0$  بدلالة E , R ثم أوجد قيمته العددية.

الى أي قيمة ينتهي i عندما ينتهي الزمن t إلى  $\infty$  ؟ علل.

4. إذا كانت المعادلة التفاضلية للدارة RC هي:

: أثبت أن حلها من الشكل التالي 
$$\frac{du}{dt}+\frac{1}{RC}u-\frac{E}{RC}=0$$
  $u(t)=E\left(1-e^{-t/RC}\right)$ 

5. أو جد بيانيا قيمة ثابت الزمن au و استنتج قيمة C .

: 
$$t = \tau$$
 من أجل المجد قيمة فيمة .6

ـ بيانيا .

و ـ حسابيا .

7. أحسب الطاقة المخزنة في المكثفة عند نهاية شحنها .



0.2

تمرین 2

t(s)

1. عند اللحظة t=0 نغلق القاطعة فتبدأ عملية شحن المكثفة .

أ/ استعمل قانون أوم و قانون جمع التوترات لكتابة المعادلة التفاضلية للدارة بدلالة q(t).

ب/ تحقق أن حل هذه المعادلة من الشكل:

$$q(t) = Q_0 \left( 1 - e^{-\frac{t}{\tau}} \right)$$

2. الشكل 2 يمثل تطور شحنة المكثفة:

أ/ عرف ثابت الزمن ثم حدد قيمته.

ب/ هل الزمن 0.05s كافي لتبلغ عملية الشحن 99% من القيمة العظمى ? برر إجابتك.

3. عين قيمة كل من : أ) سعة المكثفة .

ب) مقاومة الناقل الأومي .

ج) شدة التيار في النظام الدائم .

4. عين قيمة الطاقة المخرزنة في المكثفة عند نهاية عملية الشحن.





D.E

قصد شحن مكثفة مفرغة ، سعتها (C) ، نربطها على التسلسل مع العناصر الكهربائية التالية :

. K عاطعة  $R=10^4\Omega$  عقاومته E=3V مقاومته E=3V عقاومته E=3V مقاومته E=3V د دان التا المالة المال

لإظهار التطور الزمني للتوتر الكهربائي  $u_c(t)$  بين طرفي المكثفة. نصلها براسم اهتزاز مهبطي ذي ذاكرة.



نغلق القاطعة K في اللحظة t=0 فنشاهد على شاشة راسم الاهتزاز المهبطي المنحنى  $u_{C}(t)$  الممثل في الشكل المقابل .

 $\Delta t = 15s$  ما هي شدة التيار الكهربائي المار في الدارة بعد مدة من غلقها ؟

2.أعط العبارة الحرفية لثابت الزمن  $\tau$ ، و بين أن له نفس وحدة قياس الزمن .

. عين بيانيا قيمة au و استنتج السعة (C) للمكثفة .

t = 0 المحظة ( في اللحظة 4.

أ/ اكتب عبارة شدة التيار الكهربائي i(t) المار في الدارة بدلالة g(t) شحنة المكثفة .

ب/ اكتب عبارة التوتر الكهربائي  $u_c(t)$  بين لبوسي المكثفة بدلالة الشحنة q(t) .

 $u_{C}(t)$  عن أن المعادلة التفاضلية التي تعبر عن ج/ بين أن

.  $u_C + RC \frac{du_C}{dt} = E$ : تعطى بالعبارة

5. يعطى حل المعادِلة التفاضلية السابقة بالعبارة:

 $u_C(t) = E(1 - e^{-t/A})$ 

استنتج العبارة الحرفية للثابت A و ماهو مدلوله الفيزيائي ؟



تمرین 4

 $C=0.5\mu F$  ، ومكثفة سعتها E=100V ، ومكثفة سعتها  $E=10k\Omega$  ، ناقل أومي مقاومته  $R=10k\Omega$  ، ومكثفة سعتها بادلة و أسلاك توصيل .

نحقق الدارة المبينة في الشكل المقابل:

راً عملية البادلة في الوضع (1) عند اللحظة t=0 فتبدأ عملية شحن المكثفة .

.  $u_{AB}=f(t)$  أوجد المعادلة التفاضلية للدارة

.  $u_{AB}=E(1-e^{-t/\tau})$  : برا تحقق أن حلها هو

. ج/ مثل کیفیا تغیرات  $u_{\scriptscriptstyle AB}$  بدلالة الزمن

د/ ما هي دلالة فاصلة نقطة تقاطع المماس للبيان عند المبدأ  $u_{AB}=E$  مع المستقيم

ه/ احسب ثابت الزمن لثنائي القطب RC.

.  $t_2 = 5\tau$  ,  $t_1 = \tau$  distribution  $u_{AB}$  ,  $u_{AB}$ 

. t=0 عند اللحظة في الوضع (2) عند اللحظة

أ/ أوجد المعادلة التفاضلية للدارة .

.  $t \rightarrow \infty$  '  $t_3 = 5 \tau$  '  $t_2 = \tau$  '  $t_1 = 0$  من أجل  $u_{AB}$  با

ج/ مثل تغيرات  $u_{AB}$  بدلالة الزمن .





لدينا مكثفة سعتها  $q=0.6\times 10^{-6}\,C$  ، وناقل أومي مقاومته  $C=1.0\times 10^{-1}\,\mu$  ، وناقل أومي مقاومته  $R=15k\Omega$  . نحقق دارة كهربائية على التسلسل باستعمال المكثفة و الناقل الأومى وقاطعة

: في اللحظة t=0 نغلق القاطعة

1. ارسم مخطط الدارة الموصوفة سابقا.

2 مثل على المخطط:

- جهة مرور التيار الكهربائي في الدارة.

 $\overset{\circ}{}$ .  $u_{\scriptscriptstyle C}$  .  $u_{\scriptscriptstyle R}$  و  $u_{\scriptscriptstyle R}$  . أوجد علاقة بين

4. بالاعتماد على قانون جمع التوترات ، أوجد المعادلة التفاضلية بدلالة  $u_c$  .

: الشكل من الشكل المعادلة التفاضلية السابقة هو من الشكل  $u_{\scriptscriptstyle C} = a \times e^{bt}$ 

. حيث a و d ثابتين يطلب تعيين قيمة كل منهما a

.  $u_{c}$  اكتب العبارة الزمنية للتوتر .  $\theta$ 

آبن العبارة الزمنية  $u_{c}=f(t)$  تسمح برسم البيان المبين في الشكل المقابل .

اشرح على البيان الطريقة المتبعة للتأكد من القيم المحسوبة سابقا ( السؤال 5 ).



تمرین 6

لدينا الدارة التالية: ( الشكل -1 ) حيث المكثفة مشحونة بداية .

1. أين يجب وضع القاطعة لتفريغ المكثفة ؟

صل الدارة برآسم اهتزازات مهبطي للحصول على .  $u_c = f(t)$  .  $u_c = f(t)$  . يغيرات  $u_{AB}$  بدلالة الزمن أي

ـ مثل كيفيا هذا البيان .

.  $u_{\scriptscriptstyle R}$  و  $u_{\scriptscriptstyle c}$  ما هي العلاقة بين

4. المعادلة التفاضلية أثناء تفريغ المكثفة هي من الشكل:

$$\alpha \frac{du(t)}{dt} + u(t) = 0$$

أ/ ماذا يمثل المعامل lpha ؟ ماهي وحدة قياسه ؟ علل .

ب/ اختر الحل الصحيح لهذه المعادلة ممايلي:

$$u(t) = Ee^{-t/\alpha}$$
  $u(t) = Ee^{-\alpha/t}$   $u(t) = Ee^{-\alpha t}$ 

 $\ln u_c$  البيان ( شكل -2) تغيرات 5

.  $\ln u_c = f(t)$  بدلالة الزمن أي

أ/ أكتب العبارة البيانية .

C با أوجد قيمة ثابت الزمن  $\sigma$  و احسب



(شكل ـ1)





تتكون الدارة الكهربائية المبينة في الشكل المقابل من العناصر التالية موصولة على التسلسل:

- . E = 6V بائي توتره ثابت کهربائي توتره
  - $. C = 1.2 \mu F$  . مكثفة سعتها
  - $R = 5k\Omega$  ناقل أومى مقاومته
    - K قاطعة K

نغلق القاطعة:

1 بتطبيق قانون جمع التوترات ، أوجد المعادلة التفاضلية

. 
$$C$$
 ،  $R$  ،  $E$  ،  $\frac{du_{C}(t)}{dt}$  ،  $u_{C}(t)$  التي تربط بين

. المعادلة التفاضلية المحصل عليها تقبل العبارة : محصل عليها المحصل عليها كحل المحصل عليها والمحصل عليها . كحل المحصل عليها العبارة المحصل عليها المحصل المحصل

. عدد وحدة المقدار RC ؛ ما مدلوله العملى بالنسبة للدارة الكهربائية RC اذكر اسمه RC

4. احسب قيمة التوتر الكهربائي  $u_{c}(t)$  في اللحظات المدونة في الجدول التالي:

| t(ms)         | 0 | 6 | 12 | 18 | 24 |
|---------------|---|---|----|----|----|
| $u_{C}(t)(V)$ |   |   |    |    |    |

- $u_{C}(t) = f(t)$  ارسم المنحنى البياني. 5
- 6.أوجد العبارة الحرفية للشدة اللحظية للتيار الكهربائي i(t) بدلالة  $C \cdot R \cdot E$  ، ثم احسب قيمتها في اللحظتين :  $(t \to \infty)$  و  $(t \to \infty)$  .
  - $(t 
    ightarrow \infty)$  عبارة الطاقة الكهربائية المخزنة في المكثفة ، احسب قيمتها عندما  $(t 
    ightarrow \infty)$  .

75.E

## تمرین 8

 $R=100k\Omega$  تتألف دارة كهربائية من مولد للتوتر الثابت E=6V و مكثفة فارغة سعتها  $C=0.1\mu F$  و مقاومة E=6V كما في الشكل.

- (1) عند اللحظة t=0 نضع البادلة في الوضع الt=0
  - فتبدأ عملية شحن المكثفة
- أ/ استعمل قانون أوم و قانون جمع التوترات لكتابة المعادلة التفاضلية  $u_{\rm BD} = u(t) = f(t)$  .
  - ب/ تحقق أن حل هذه المعادلة من الشكل:

b اختیار صحیح لـ  $u(t) = E + ae^{-bt}$ 

.  $\tau$  قيمة عنم أوجد قيمة a=-E بين أن

2 أكمل الجدول التالي:

|   | <u>E</u> + |   |
|---|------------|---|
|   | <i>B</i>   | 1 |
| C | R          | 2 |

| t(s)        | 0 | τ | 5τ |
|-------------|---|---|----|
| $u_{BD}(V)$ |   |   |    |

- .  $u_{BD} = f(t)$  ارسم البيان. 3
- 4 نضع البادلة في الوضع (2) لتفريغ المكثفة .

أ/ إلى أين تذهب الطاقة المخزنة في المكثفة ؟

ب/ ما هي القيمة العددية لهذه الطاقة ؟



في التركيب المقابل ( الشكل -1) لدينا دارة كهربائية تشمل على التسلسل:

- ـ مولد (G) مثالی ذو توتر ثابت .
  - R=100م مقاومته مقال أومي مقا
    - \_ مكثفة سعتها . ر
      - K قاطعة K
- 1. عند اللحظة t=0 نغلق القاطعة.

أ/ ما هي الظاهرة التي تحدث في الدارة ؟

- ب/ بين بسهم اتجاه التيار في الدارة ، وبأسهم التوترات بين طرفي كل عنصر.
  - ج/ بين كيف يتم ربط جهاز راسم الاهتزاز المهبطي للحصول على  $U_c$ 
    - . أوجد المعادلة التفاضلية التي يحققها التوتر  $\,U_{c}\,$  بين طرفي المكثفة
  - ه/ نحقق من أن حل المعادلة التفاضلية من الشكل :  $U_{C}=A\!\!\left(1-e^{-t/ au}
    ight)$

: A ثابت موجب  $\sigma$  ثابت الزمن استنتج  $\sigma$  ثم بین أن

$$\ln(E - U_C) = -\frac{1}{\tau}t + \ln E$$

- . يعطى المنحنى ( الشكل -2 ) الممثل لتغير ات المقدار  $\ln(E-U_C)$  بدلالة الزمن  $\pm$ 
  - auو و E من البيان قيمة كل من البيان قيمة
- 3. يرمز ب $E_e$  للطاقة المخزنة في المكثّفة عند اللحظة au=t= au وب $E_{e(\max)}$  للطاقة القصوى التي تخزنها المكثفة.

? ماذا تستنتج 
$$\frac{E_e}{E_{e(\max)}}$$
 ماذا ماذا مانتج

 $\tau' = \frac{\tau}{2}$  التي تربط مع المكثفة (C') في الدارة السابقة، ليأخذ ثابت الزمن القيمة  $\tau' = \frac{\tau}{2}$ مبينا كيفية تركيب المكثفتين (على التسلسل أو على التفرع).



(شكل ـ1)

(الشكل ـ1)



( الشكل ـ2 )



نربط على التسلسل العناصر الكهربائية التالية:

- .  $R=500\Omega$  ناقل أومى مقاومته
  - $_{-}$  مكثفة سعتها  $_{C}$  غير مشحونة
- \_ مولد ذي توتر كهربائي ثابت E.
  - \_ قاطعة  $_k$  ( الشكل -1 ).

مكنت متابعة تطور التوتر الكهربائي  $u_{c}(t)$  بين لبوسي

المكثفة برسم البيان ( الشكل - 2 ) .

1. عمليا يكتمل شحن المكثفة عندما يبلغ التوتر الكهربائي بين طرفيها %99 من قيمة التوتر الكهربائي بين طرفي المولد. اعتمادا على البيان:

( الشكل -1 )

اعتمادا على البيان:

أ/ عين قيمة ثابت الزمن  $\tau$  و قيمة التوتر الكهربائي بين طرفي المولد ثم أحسب سعة المكثفة C.

ب/ حدد المدة الزمنية t' لاكتمال عملية شحن المكثفة .

au ج/ ما هي العلاقة بين t' و ج

بتطبيق قانون جمع التوترات أوجد المعادلة التفاضلية بدلالة التوتر الكهربائي بين طرفي المكثفة  $u_{AB} = u_{C}(t)$  المكثفة  $u_{AB} = u_{C}(t)$ 

.  $u_C(t) = E(1 - e^{-t/\tau})$  : من الشكل

قيمة الطاقة الكهربائية المخزنة  $E_{c}$  في 8

في المكثفة عند اللحظات:

.  $t_2 = 5\tau$  '  $t_1 = \tau$  '  $t_0 = 0$ 

 $E_{C}=f(t)$  . المنحنى ( رسم كيفي ) شكل المنحنى ( رسم

تمرین 11



بغرض شحن مكثفة فارغة ، سعتها c ، نصلها على التسلسل مع العناصر الكهربائية التالية :

- \_ مولد ذو توتر كهربائي ثابت E=5V و مقاومته الداخلية مهملة .
  - $R=120\Omega$  ناقل أومي مقاومته R=120
    - \_ بادلة K ( الشكل -1 ).

1. لمتابعة تطور التوتر الكهربائي  $u_c$  بين طرفي المكثفة بدلالة الزمن ، نوصل مقياس فولطمتر رقمي بين طرفي المكثفة و في اللحظة t=0 ، نضع البادلة في الوضع (1). و بالتصوير المتعاقب تم تصوير شاشة جهاز الفولطمتر الرقمي لمدة معينة و بمشاهدة شريط الفيديو ببطء سجلنا

النتائج التالية :



.  $u_C = f(t)$  أ/ ارسم البيان

| t(ms)      | 0 | 4   | 8   | 16  | 20  | 24  | 32  | 40  | 48  | 60  | 68  | 80  |
|------------|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| $u_{C}(V)$ | 0 | 1,0 | 2,0 | 3,3 | 3,8 | 4,1 | 4,5 | 4,8 | 4,9 | 5,0 | 5,0 | 5,0 |

. المكثفة C المعتنى الزمن T الثنائي القطب RC و استنتج قيمة السعة

## 2. كيف تتغير قيمة ثابت الزمن $\tau$ في الحالتين ؟

- .  $R=120\Omega$  و C  $^{\prime}$  > C حيث C و من أجل مكثفة سعتها C
- .  $R'\langle 120\Omega$  و C''=C حيث C'' من أجل مكثفة سعتها الحالة (ب): من أجل مكثفة سعتها

ارسم كيفيا ، في نفس المعلم المنحنيين (1) و (2) المعبرين عن  $u_c(t)$  في الحالتين (أ) و (ب) السابقتين .

 $\frac{dq(t)}{dt} + \frac{1}{RC}q(t) = \frac{E}{R}$ : أ/ بين أن المعادلة التفاضلية المعبرة عن q(t) تعطى بالعبارة 3.

ب/ يعطى حل المعادلة التفاضلية بالعبارة  $q(t)=Ae^{\alpha t}+\beta$  حيث A و  $\alpha$  و  $\alpha$  ثوابت يطلب تعيينها ، q(0)=0 علما أنه في اللحظة a=0 تكون a=0 .

4. المكثفة مشحونة نضع البادلة في الوضع (2) في لحظة نعتبر ها كمبدأ للأزمنة .

ًا المسب في اللحظة t=0 الطَّاقة الكهربائية المخزنة  $E_0$  في المكثفة .

 $E = \frac{E_0}{2}$  برا ما هو الزمن الذي من أجله تصبح الطاقة المخزنة في المكثفة

75.E

تمرین 12

نحقق التركيب الكهربائي التجريبي المبين في الشكل القابل باستعمال التجهيز:

- \_ مكثفة سعتها (C) غير مشحونة.
- .  $(R = R' = 470\Omega)$  مقاومتيهما روميين أوميين مقاومتيهما
  - (E) مولد ذي توتر ثابت
  - ـ بادلة (k)، أسلاك توصيل
- (t=0) في اللحظة (1). نضع البادلة عند الوضع

أ/ بين على الشكل جهة التيار الكهربائي المار في الدارة ثم مثل بالأسهم التوترين  $u_R$  ،  $u_C$  .

ب/ عبر عن  $u_{c}$  و  $u_{R}$  بدلالة شحنة المكثفة  $q=q_{A}$  ثم أوجد المعادلة التفاضلية التي تحققها الشحنة q .

ج/ تقبل هذه المعادلة التفاضلية حلا من الشكل:

$$q(t) = A(1 - e^{-\alpha t})$$

 $E \cdot R \cdot C$  عبر عن A و  $\alpha$  بدلالة



D.E

- د/ إذا كانت قيمة التوتر الكهربائي عند نهاية الشحن بين طرفي المكثفة (5V)،
  - $_{oldsymbol{-}}$  استنتج قیمة  $_{oldsymbol{-}}$
  - $(E_C = 5mj)$  عندما تشحن المكثفة كليا تخزن طاقة
    - (C) استنتج سعة المكثفة
    - 2. نجعل البادلة الأن عند الوضع (2):
      - أ/ ماذا بحدث للمكثفة ؟
  - (k) للبادلة (2) ثم (1) ثم الموافق للوضعين أبت الزمن النوم الموافق الموافق الموافق البادلة (k)



دارة كهربائية تضم على التسلسل مولد توتر مستمر مثالي قوته المحركة الكهربائية E . ناقل أومي مقاومته R ، وشيعة ذاتيتها E . C داتيتها C و مقاومتها C . C

نغلق القاطعة عند اللحظة  $u_{MA}$  و نتابع تغيرات التوتر  $u_{MA}$  بين طرفي المقاومة ،  $u_{BM}$  بين طرفي الوشيعة بواسطة راسم اهتزاز ، الذي يظهر على شاشته البيانين التاليين :

- 1.أحسب £
- L, R أحسب.
- عند عن i بدلالة r , E , L , R عند عند . t=3ms
- 4. أحسب الطاقة المخزنة في الوشيعة عند نفس اللحظة السابقة .
  - 5 عين قيمة ثابت الزمن للدارة.







## 75.E

تمرین 14

دارة كهربائية تضم على التسلسل وشيعة (L,r)، وناقل أومي مقاومته  $R=35\Omega$  ، مولد توتر مستمر مقاومته الداخلية مهملة و قوته المحركة الكهربائية E=12V ، قاطعة.

نغلق القاطعة عند اللحظة t=0 ونتابع تطورات شدة التيار المار بالدارة خلال الزمن نحصل على البيان ( الشكل -1). 1. مثل مخطط الدارة .

- $_{r}$  . أكتب العبارة الحرفية لشدة التيار المار بالدارة في النظام الدائم و احسب قيمته العددية ثم أحسب
  - 3. أوجد من البيان قيمة ثابت الزمن  $\tau$  و احسب T
- 4. من أجل عدة قيم مختلفة لذاتية الوشيعة نحصل على قيم موافقة لثابت الزمن ممثلة في البيان ( الشكل -2) . أ/ أكتب العبارة البيانية .

. L ، r ، R بدلالة  $\tau$  بدلالة L ، r ، R المعطيات  $\tau$  هل نتائج هذه الظاهرة تتفق مع المعطيات  $\tau$ 









- E = 12V ثابت الكهربائى ثابت الكهربائى
  - $R=10\Omega$  ناقل أومي مقاومته R=10 .
  - $_{-}$ وشیعهٔ ذاتیتها  $_{L}$  و مقاومتها  $_{r}$ 
    - K قاطعة K

انستعمل راسم اهتزاز مهبطي ذي ذاكرة ، لإظهار

 $(u_{\scriptscriptstyle CB})$  التوترين الكهربائيين  $(u_{\scriptscriptstyle BA})$  و

- \_ بين على مخطط الدارة الكهربائية ، كيف يتم ربط الدارة
  - الكهربائية بمدخلي هذا الجهاز.
- ينغلق القاطعة في اللّحظة t=0 . يمثل الشكل  $u_{BA}=f(t)$  : المنحنى  $u_{BA}=f(t)$  المشاهد على شاشة راسم الاهتزاز

المهبطي.

عندما تصبح الدارة في حالة النظام الدائم أوجد قيمة:

 $(u_{\scriptscriptstyle BA})$  أ/ التوتر الكهربائي

 $(u_{CB})$  بالتوتر الكهربائي

ج/ الشدة العظمى للتيار المار في الدارة .

3. بالاعتماد على البيان ( الشكل ـ2 ). استنتج:

أ/ قيمة ( au) ثابت الزمن المميز للدارة .

ب/ مقاومة و ذاتية الوشيعة .

4. أحسب الطاقة الأعظمية المخزنة في الوشيعة .



الشك*ل*(1)

تمرین 16

( 2- غند اللحظة t=0 البيان التالي : ( شكل t=0





أ. أكتب عبارة التوتر الكهربائي الذي يظهر في المدخل  $Y_{R}$  بدلالة شدة التيار 1

- $(I_0)$  أوجد القيمة العددية لشدة التيار المار بالدارة عند النظام الدائم.
  - $L, r, R, i, \frac{di}{dt}$  عبر عن E عبر عن 3.

4. أحسب المقاومة الداخلية للوشيعة و ذاتيتها .



لتعيين الذاتية L و المقاومة r لوشيعة (b). ننجز الدارة الكهربائية المبين في الشكل 1 و المتكونة من :

- ، K مقاومته  $R=90\Omega$  مقاومته (D) مقاطعة قاطعة وشيعة (b) وشيعة
- \_ مولد (G) للتوتر المستمر قوته المحركة الكهربائية E=6V و مقاومته الداخلية مهملة .





t=0 نغلق القاطعة عند اللحظة

- 1. بتطبيق قانون أوم و قانون جمع التوترات أكتب المعادلة التفاضلية للدارة بدلالة i(t)
  - . يمثل المنحنى ( شكل2) الدالة  $\frac{di}{dt}=f(t)$  حيث المار في الدارة . 2
    - . L=0.5H بين أن المنحنى . أ

ب) حدد قيمة المقاومة r للوشيعة .

- . عبر بدلالة R ، E عن الشدة  $I_{\scriptscriptstyle D}$  الشدة عندما يصل النظام الدائم .
- . نقبل المعادلة التفاضلية السابقة كحل لها :  $i(t) = I_P (1 e^{-t/ au})$  عيث au ثابت الزمن .
  - استنتج عبارة au بدلالة au ، au و احسب قيمته .

TO. S

تمرین 18

نربط على التسلسل العناصر الكهربائية التالية:

- E = 12V يوتر ثابت المولد ذي توتر
- L=300mH) و مقاومتها (L=300mH) و وشیعة ذاتیتها
  - $(R=110\Omega)$  ناقل أومي مقاومته
    - \_ قاطعة (K). ( الشكل -1 )

(K) في اللحظة (t=0s) نغلق القاطعة .1

أوجد المعادلة التفاضلية التي تعطى شدة التيار الكهربائي في الدارة.

2.كيف يكون سلوك الوشيعة في النظّام الدائم ؟

وما هي عندئذ عبارة شدة التيار الكهربائي  $I_0$  الذي يجتاز الدارة ؟

.1. باعتبار العلاقة  $i=Aig(1-e^{-t/ au}ig)$  حلا للمعادلة التفاضلية المطلوبة في السؤال.

 $\tau$  العبارة الحرفية لكل من  $\Lambda$  و أرأوجد العبارة الحرفية الكل

ب/ استنتج عبارة التوتر الكهربائي  $u_{BC}$  بين طرفي الوشيعة .

4.أ/ أحسب قيمة التوتر الكهربائي  $u_{BC}$  في النظام الدائم .

.  $u_{BC} = f(t)$  ارسم کیفیا شکل البیان بارسم کیفیا



( الشكل - 1 )

(L,r) نرید تعیین نربطها فی دارهٔ کهربائیهٔ علی التسلسل مع:

- E = 6V مولد کهربائی ذی توتر کهربائی ثابت E = 6V
  - $R=10\Omega$  ناقل أومى مقاومته R=10
    - . ( الشكل -1 ) k

: نغلق القاطعة k، اكتب عبارة كل من 1

R التوتر الكهربائي بين طرفي الناقل الأومى  $u_R$ التوتر الكهربائي بين طرفي الوشيعة  $u_{b}$ 

2. بتطبيق قانون جمع التوترات ، أوجد المعادلة التفاضلية للتيار الكهربائي i(t) المار في الدارة .

3. بين أن المعادلة التفاضلية السابقة تقبل حلا من الشكل:

$$i(t) = \frac{E}{R+r} \left( 1 - e^{-\frac{(R+r)}{L}t} \right)$$



4.مكنت الدراسة التجريبية بمتابعة تطور شدة التيار الكهربائي المار في الدارة ورسم البيان الممثل له ( الشكل -2 ) بالاستعانة بالبيان احسب:

أ/ المقاومة ٢ للوشيعة .

 $\tau$  قيمة  $\tau$  ثابت الزمن ، ثم استنتج قيمة L ذاتية الوشيعة .

> 5 احسب قيمة الطاقة الكهر بائية المخزنة في الوشيعة في حالة النظام الدائم .



## تمرین 20

تتكون دارة كهربائية من العناصر التالية مربوطة على التسلسل: وشيعة ذاتيتها L و مقاومتها r ، ناقل أومى مقاومته  $R=17.5\Omega$  ،مولد ( الشكل -1 ) K فاطعة كهربائية K ( الشكل -1 ) ذي توتر كهربائية t=0 نغلق القاطعة في اللحظة

سمحت برمجية للإعلام الآلي بمتابعة تطور شدة التيار الكهربائي المار في الدارة مع مرور الزمن و مشاهدة البيان:

. ( 35 ص i = f(t)

1 بالاعتماد على البيان:

أ/ استنتج قيم كل من شدة التيار الكهربائي في النظام الدائم ، قيمة ثابت الزمن au للدارة .

ب/ احسب كل من المقاومة r و الذاتية L للوشيعة .

2 في النظام الانتقالي:

أ/ بتطبيق قانون التوتر ات أثبت أن:

. حيث  $I_0$  حيث مندة التيار في النظام الدائم  $I_0$  حيث مناط

 $i=I_0ig(1-e^{-t/ au}ig)$  : برا بين أن حل المعادلة هو من الشكل



( الشكل ـ1 )



نغير الآن قيمة الذاتية L للوشيعة و بمعالجة المعطيات Lببرمجية إعلام ألى نسجل قيم au ثابت الزمن للدارة لنحصل على جدول القياسات التالي:

| $\tau(ms)$ | 4   | 8   | 12  | 20  |
|------------|-----|-----|-----|-----|
| L(H)       | 0,1 | 0,2 | 0,3 | 0,5 |

 $L = h(\tau)$  أ/ ارسم البيان

ب/ اكتب معادلة البيان .

ج/ استنتج قيمة مقاومة الوشيعة r ، هل تتوافق هذه القيمة مع القيمة المحسوبة في السؤال 1- ب؟



تمرین 21

بغرض معرفة سلوك و مميزات وشيعة مقاومتها (r) و ذاتيتها (L) ، نربطها على التسلسل بمولد ذي توتر كهربائي ثابت E = 4.5V و قاطعة K ( الشكل -1 ).

> 1 انقل مخطط الدارة على ورقة الإجابة و بين عليه جهة مرور التيار الكهربائي و جهتى السهمين الذين يمثلان التوتر الكهربائي

بين طرقي الوشيعة و بين طرفي المولد .

(K): غلق القاطعة t=0

أ/ بتطبيق قانون جمع التوترات ، أوجد المعادلة التفاضلية التي تعطي الشدة اللحظية i(t) للتيار الكهربائي المار في الدارة. ب/ بين أن المعادلة التفاضلية السابقة تقبل حلا من الشكل:

 $i(t) = I_0 \left( 1 - e^{-\frac{r}{L}t} \right)$ 

حيث  $I_0$  هي الشدة العظمي للتيار الكهربائي المار في الدارة.

3. تعطى الشدة اللحظية للتيار الكهربائي بالعبارة :  $i(t) = 0.45 \left(1 - e^{-10t}\right)$  بالأمبير.

أحسب قيم المقادير الكهربائية التالية:

أ/ الشدة العظمى  $(I_0)$  للتيار الكهربائى المار في الدارة .

ب/ المقاومة (r) للوشيعة .

ج/ الذاتية (L) للوشيعة .

د/ ثابت الزمن ( au) المميز للدارة .

4. ما قيمة الطاقة المخزنة في الوشيعة في حالة النظام الدائم؟

