DIPOL ELEKTRYCZNY

<u>Dipol elektryczny</u> – układ dwóch jednakowych ładunków o przeciwnych znakach znajdujących się w pewnej odległości od siebie.

Natężenie pola elektrycznego w odległości r od dipola:

$$\vec{E} = \overrightarrow{E_+} + \overrightarrow{E_-}$$

Elektryczny moment dipolowy:

$$\vec{p} = q \cdot \vec{l}$$

Gdzie:

 \vec{l} — ramie dipola, wektor łączący oba ładunki i skierowany w kierunku ładunku dodatniego [m].

DIPOL W ZEWNĘTRZNYM POLU ELEKTRYCZNYM

Na dipol w polu elektrycznym działa moment pary sił:

$$\overrightarrow{M} = \overrightarrow{M_+} + \overrightarrow{M_-}$$

$$\overrightarrow{M_+} = \overrightarrow{r} \times \overrightarrow{F_+}$$

$$\overrightarrow{M_+} = \overrightarrow{M_-}$$

$$M_{+} = M_{-} = \frac{l}{2} \cdot q \cdot E \cdot \sin \alpha$$

$$M = 2 \cdot \frac{l}{2} \cdot q \cdot E \cdot \sin \alpha$$

$$M = l \cdot q \cdot E \cdot \sin \alpha = p \cdot E \cdot \sin \alpha$$

$$\vec{M} = \vec{p} \times \vec{E}$$

$$\vec{M} = \vec{p} \times \vec{E}$$

Moment sił będzie powodował obrót dipola tak, by jego oś ustawiona była wzdłuż linii sił pola elektrycznego (wektor momentu dipolowego \vec{p} równoległy do wektora \vec{E})!

Praca potrzebna na obrót dipola:

$$W = \int_{\frac{\pi}{2}}^{\alpha} M \cdot d\alpha = \int_{\frac{\pi}{2}}^{\alpha} p \cdot E \cdot \sin\alpha \cdot d\alpha = (-p \cdot E \cdot \cos\alpha) \frac{\alpha}{\frac{\pi}{2}}$$

$$W = -p \cdot E \cdot \left(\cos\alpha - \cos\frac{\pi}{2}\right) = -p \cdot E \cdot \cos\alpha$$

$$W = -\vec{p} \cdot \vec{E}$$

POLE JEDNORODNIE NAŁADOWANEJ NIESKOŃCZONEJ PŁASZCZYZNY

Gęstość powierzchniowa ładunku:

$$\sigma = \frac{Q}{S} = \frac{q}{S_1}$$

$$q = \sigma \cdot S_1$$

$$\oint_{S} \vec{E} \cdot d\vec{S} = \frac{q}{\varepsilon_0}$$

$$\oint_{S} \vec{E} \cdot d\vec{S} = \frac{\sigma \cdot S_1}{\varepsilon_0}$$

$$\vec{E} \cdot d\vec{S} = 0$$

Dla podstaw walca:

$$\vec{E} \cdot d\vec{S} = E \cdot dS$$

$$\oint_{S} E \cdot dS = \frac{\sigma \cdot S_1}{\varepsilon_0}$$

Dla pobocznicy walca:

$$E \cdot 2S_1 = \frac{\sigma \cdot S_1}{\varepsilon_0}$$

$$E = \frac{\sigma}{2\varepsilon_0}$$

Dla nieskończonej płaszczyzny wektor natężenia pola \vec{E} nie zależy od odległości od płaszczyzny!

POLE MIĘDZY DWOMA PRZECIWNIE NAŁADOWANYMI PŁASZCZYZNAMI

$$\vec{E} = \overrightarrow{E_+} + \overrightarrow{E_-}$$

$$E_{+} = E_{-} = \frac{\sigma}{2\varepsilon_{0}}$$

Między płaszczyznami kierunki i zwroty wektorów $\overrightarrow{E_+}$ oraz $\overrightarrow{E_-}$ są identyczne!

$$E_{wew} = E_{+} + E_{-} = 2 \cdot \frac{\sigma}{2\varepsilon_{0}} = \frac{\sigma}{\varepsilon_{0}}$$

Na zewnątrz układu zwroty wektorów $\overrightarrow{E_+}$ oraz $\overrightarrow{E_-}$ są przeciwne!

$$E_{zew} = E_+ - E_- = 0$$

NAPIĘCIE MIĘDZY DWOMA PRZECIWNIE NAŁADOWANYMI PŁASZCZYZNAMI

$$E_{wew} = -\frac{\Delta V}{d} = -\frac{U}{d}$$

$$U = -E_{wew} \cdot d = -\frac{\sigma}{\varepsilon_0} \cdot d = -\frac{\sigma \cdot d}{\varepsilon_0}$$

$$\sigma = \frac{Q}{S}$$

$$U = -\frac{Q \cdot d}{\varepsilon_0 \cdot S}$$

KONDENSATORY

<u>Kondensator</u> – układ dwóch przewodników, który na skutek przyłożonej różnicy potencjałów może gromadzić ładunek elektryczny.

<u>Pojemność elektryczna</u> – stosunek ładunku kondensatora do różnicy potencjałów między okładkami.

$$C = \frac{Q}{\Delta V} = \frac{Q}{U}$$

Q jest ładunkiem na każdej z okładek, a nie wypadkowym ładunkiem kondensatora (ładunek wypadkowy wynosi 0)!

Jednostką pojemności jest farad $[F] = \left[\frac{c}{V}\right]$.

KONDENSATOR PŁASKI

$$C = \frac{Q}{\Delta V} = \frac{Q}{U}$$

$$U = \frac{Q \cdot d}{\varepsilon_0 \cdot S}$$

$$C = \frac{\varepsilon_0 \cdot S}{d}$$

Pojemność zależy od kształtu i rozmiaru okładek oraz od ich wzajemnego położenia!

KONDENSATOR WALCOWY

Kondensator walcowy – kondensator zbudowany z współosiowych powierzchni

powierzchnia Gaussa = walec o promieniu a < r < b

i wysokości *l*

walcowych o promieniach a i b oraz wysokości l.

Z prawa Gaussa:

$$\oint_{S} \vec{E} \cdot d\vec{S} = \frac{Q}{\varepsilon_0}$$

$$E \cdot 2\pi r \cdot l = \frac{Q}{\varepsilon_0}$$

$$E = \frac{Q}{2\pi\varepsilon_0 \cdot r \cdot l}$$

$$U = \int_{-}^{+} E \cdot dx = -\int_{b}^{a} E \cdot dr = -\int_{b}^{a} \frac{Q}{2\pi\varepsilon_{0} \cdot r \cdot l} \cdot dr = -\frac{Q}{2\pi\varepsilon_{0} \cdot l} \int_{b}^{a} \frac{dr}{r}$$

$$U = -\frac{Q}{2\pi\varepsilon_0 \cdot l} \int_{b}^{a} \frac{dr}{r} = \left(-\frac{Q}{2\pi\varepsilon_0 \cdot l} \cdot lnr \right) \begin{vmatrix} a \\ b \end{vmatrix} = \frac{Q \cdot ln\frac{b}{a}}{2\pi\varepsilon_0 \cdot l}$$

$$C = \frac{Q}{U} = Q \cdot \frac{2\pi\varepsilon_0 \cdot l}{Q \cdot ln\frac{b}{a}}$$

$$C = \frac{2\pi\varepsilon_0 \cdot l}{\ln\frac{b}{a}}$$

KONDENSATOR KULISTY

<u>Kondensator kulisty</u> – kondensator zbudowany z dwóch współśrodkowych powłok sferycznych o promieniach a i b.

powierzchnia Gaussa = sfera

o promieniu a < r < b

Z prawa Gaussa:

$$\oint_{\mathcal{E}} \vec{E} \cdot d\vec{S} = \frac{Q}{\varepsilon_0}$$

$$E \cdot 4\pi \cdot r^2 = \frac{Q}{\varepsilon_0}$$

$$E = \frac{Q}{4\pi\varepsilon_0 \cdot r^2}$$

$$U = \int_{-}^{+} E \cdot dx = -\int_{h}^{a} E \cdot dr = -\int_{h}^{a} \frac{Q}{4\pi\varepsilon_0 \cdot r^2} \cdot dr = -\frac{Q}{4\pi\varepsilon_0} \int_{h}^{a} \frac{dr}{r^2}$$

$$U = -\frac{Q}{4\pi\varepsilon_0} \int_{b}^{a} \frac{dr}{r^2} = \frac{Q}{4\pi\varepsilon_0} \int_{a}^{b} \frac{dr}{r^2} = \left(-\frac{Q}{4\pi\varepsilon_0} \cdot \frac{1}{r} \right) \begin{vmatrix} b \\ a \end{vmatrix} = \frac{Q}{4\pi\varepsilon_0} \cdot \left(\frac{1}{a} - \frac{1}{b} \right)$$

$$U = \frac{Q}{4\pi\varepsilon_0} \cdot \frac{b-a}{a \cdot b}$$

$$C = \frac{Q}{U} = Q \cdot \frac{4\pi\varepsilon_0 \cdot a \cdot b}{Q \cdot (b - a)}$$

$$C = \frac{4\pi\varepsilon_0 \cdot a \cdot b}{(b-a)}$$

SZEREGOWE I RÓWNOLEGŁE ŁĄCZENIE KONDENSATORÓW

Połączenie szeregowe:

SZEREGOWE I RÓWNOLEGŁE ŁĄCZENIE KONDENSATORÓW

Połączenie równoległe:

KONDENSATOR Z DIELEKTRYKIEM

<u>Dielektryki</u> – materiały, w których ładunki elektryczne nie mogą swobodnie się przemieszczać, ale nie są też całkowicie nieruchome. Przesunięcia ładunków i zmiana orientacji układu ładunków w atomach dielektryków może zachodzić pod wpływem zewnętrznego pola elektrycznego.

Na powierzchni dielektryka umieszczonego w polu elektrycznym pojawiają się indukowane ładunki powierzchniowe, które są źródłem pola elektrycznego skierowanego przeciwnie do zewnętrznego pola!

Jeśli dielektryk umieścimy między okładkami kondensatora, to jego pojemność ulegnie zmianie!

$$\frac{C'}{C} = \varepsilon_r$$

Gdzie:

C' – pojemność kondensatora z dielektrykiem [F],

C — pojemność kondensatora próżniowego [F].

TRZY WEKTORY ELEKTRYCZNE

 \vec{E} — wektor natężenia pola elektrycznego $\left[\frac{N}{c}\right]$,

 \vec{P} — wektor polaryzacji = wektor przesunięcia elektrycznego $\left[\frac{c}{m^2}\right]$,

 \overrightarrow{D} — wektor indukcji elektrycznej $\left[\frac{c}{m^2}\right]$.

<u>Dla atomu lub cząsteczki dielektryka możemy określić elektryczny moment</u> dipolowy:

$$\vec{p} = q \cdot \vec{l}$$

<u>Dielektryki niepolarne</u> – przy braku zewnętrznego pola środki ciężkości ładunków ujemnych (elektronów) i dodatnich (jąder) pokrywają się, $\vec{l}=0$ i $\vec{p}=0$ (cząsteczki symetryczne np. N_2 , O_2).

<u>Dielektryki polarne</u> – nawet przy braku zewnętrznego pola $\vec{l}\neq 0$ i $\vec{p}\neq 0$ (cząsteczki niesymetryczne np. H_2O , HCl).

<u>Wektor polaryzacji</u> – całkowity elektryczny moment dipolowy jednostkowej objętości dielektryka.

$$\vec{P} = \lim_{V \to 0} \frac{1}{V} \sum_{i=1}^{n} \vec{p_i}$$

<u>Równanie elektrostatyki dielektryków</u> – związek pomiędzy trzema wektorami charakteryzującymi pole elektryczne.

$$\vec{D} = \varepsilon_0 \cdot \vec{E} + \vec{P}$$

ENERGIA POLA ELEKTRYCZNEGO

Praca potrzebna do przeniesienia ładunku Q między okładkami:

$$\Delta W = dq \cdot \Delta V = dq \cdot U$$

$$W = \int_{0}^{Q} dq \cdot U = \int_{0}^{Q} dq \cdot \frac{q}{C} = \frac{Q^{2}}{2C}$$

Zasada działania defibrylatora opiera się na zgromadzeniu energii pola elektrycznego w kondensatorze magazynującym, a następnie jej kontrolowanej dystrybucji w klatce piersiowej. Podczas gwałtownego rozładowania kondensatora, przez ciało pacjenta przechodzi impuls elektryczny trwający kilka ms o natężeniu prądu ok. 30 A.

Energia dostarczona do tkanki miokardium:

$$W_d = W_s \cdot \frac{R}{R_i + R}$$

Gdzie:

 W_d , W_s — energie dostarczona do miokardium i zgromadzona w kondensatorze [J],

 R_i , R — rezystancje tkanki i wewnętrzna urządzenia $[\Omega]$.

Cechy kondensatorów stosowanych w defibrylatorach:

- mały rozmiar
- bardzo mała masa
- duża ilość dopuszczalnych cykli ładowania i rozładowania

