Introduction To Model Theory

Will Johnson

September 16, 2021

Contents

1	Back-and-forth Equivalence	1
A	Metric Spaces	6
1	Back-and-forth Equivalence	
Convention: Relations and functions are sets of pairs (x,y)		

Definition 1.1. A **binary relation** is a pair (E,R) where E is a set and $R \subseteq E^2$. We call E the **universe** of the relation. For $a,b \in E$, write aEb if $(a,b) \in R$

We abbreviate (E, R) as R or E, if E or R is clear

Example 1.1. $(\mathbb{R}, <)$, $(\mathbb{R}, =)$, (\mathbb{R}, \ge) , $(\mathbb{Z}, <)$

Definition 1.2. A binary relation R is said to be

- **reflexive** if $aRa \ (\forall a \in E)$
- symmetric if $aRb \Rightarrow bRa \ (\forall a, b \in E)$
- transitive if $aRb \wedge bRc \Rightarrow aRc \ (\forall a, b, c \in E)$
- antisymmetric if $aRb \wedge bRa \Rightarrow a = b \ (\forall a, b \in E)$
- total if $aRb \lor bRa \ (\forall a, b \in E)$
- an equivalence relation if it's reflexive, symmetric and transitive
- a partial order if it's reflexive, antisymmetric and transitive

• a linear order if it's a total partial order

Example 1.2. = is an equivalence relation

- ⊆ is a partial order
- \leq is a linear order

Definition 1.3. An **isomorphism** from (E,R) to (E',R') is a bijection $f:E\to E'$ s.t. for any $a,b\in E$, $aRb\Leftrightarrow f(a)R'f(b)$. Two binary relations (E,R) and (E',R') are **isomorphic** (\cong) if there is an isomorphism between them

Example 1.3. $f:(\mathbb{Z},<) \to (2\mathbb{Z},>)$ and f(x)=-2x is an isomorphism. $x< y \Leftrightarrow -2x > -2y$

 \cong is an equivalence relation

Definition 1.4. A **local isomorphism** from R to R' is an isomorphism from a finite restriction of R to a finite restriction of R'. The set of local isomorphisms from R to R' is denoted $S_0(R,R')$. For $f \in S_0(R,R')$, $\mathrm{dom}(f)$ and $\mathrm{im}(f)$ denote the domain and range of f

Example 1.4. $(\mathbb{Z}, <)$ is a restriction of $(\mathbb{R}, <)$

Example 1.5. Suppose $R=R'=(\mathbb{Z},<)$, there is $f\in S_0(R,R')$ given by $\mathrm{dom}(f)=\{1,2,3\}$ and $\mathrm{im}(f)=\{10,20,30\}$ and f(1)=10, f(2)=20, f(3)=30

Definition 1.5. Let f, g be local isomorphisms from R to R'. Then f is a **restriction** of g if $f \subseteq g$ and f is an **extension** of g if $f \supseteq g$.

Example 1.6. $g : \{0, 1, 2, 3\} \rightarrow \{5, 10, 20, 30\}$, g extends f in the previous example

Definition 1.6. Let R,R' be binary relations with universe E,E'. A **Karpian family** for (R,R') is a set $K\subseteq S_0(R,R')$ satisfying the following two conditions for any $f\in K$

- 1. (**forth**) if $a \in E$ then there is $g \in K$ with $g \supseteq f$ and $a \in dom(g)$
- 2. **(back)** if $b \in E'$ then there is $g \in K$ with $g \supseteq f$ and $b \in \text{im}(g)$

R and R' are $\infty\text{-equivalent},$ write $R\sim_\infty R',$ if there is a non-empty Karpian family

Proposition 1.7. *If* $f:(E,R) \to (E',R')$ *an isomorphism and* $K = \{g \subseteq f: g \text{ is finite}\}$, then K is Karpian and $R \sim_{\infty} R'$

Proof. Suppose $g \in K$

• (forth) Suppose $a \in E$, take b = f(a) and let $h = g \cup \{(a, b)\}$. Then $h \subseteq f$, so $h \in K$, $h \supseteq g$, $a \in dom(h)$

• (back) similarly

Proposition 1.8. If (E,R) and (E',R') are countable and $R \sim_{\infty} R'$, then $R \cong$ R'

Proof. Let $K \subseteq S_0(R,R')$ be Karpian, $K \neq \emptyset$, $E = \{e_1,e_2,e_3,\dots\}$, $E' = \{e_1,e_2,e_3,\dots\}$ $\{e_1', e_2', e_3', \dots\}$

Recursively build $f_1 \subseteq f_2 \subseteq \cdots$, $f_i \in K$

Let f_1 be anything in K as K is non-empty.

 f_{2i} some extension of f_{2i-1} with $e_i \in \operatorname{dom}(f_{2i})$

 f_{2i+1} some extension of f_{2i} with $e_i' \in \operatorname{im}(f_{2i+1})$ Now let $g = \bigcup_{i=1}^{\infty} f_i$, then g is an isomorphism

Definition 1.9. A dense linear order without endpoints (DLO) is a linear order (C, \leq) satisfying

- 1. $C \neq \emptyset$
- 2. $\forall x, y \in C$, $x < y \Rightarrow \exists z \in C$ x < z < y
- 3. $\forall x \in C, \exists y, z \in C \ y < x < z$

Example 1.7. (\mathbb{Q}, \leq) , (\mathbb{R}, \leq)

non-example: (\mathbb{Z}, \leq) , $([0, 1], \leq)$

Proposition 1.10. Let (C, \leq) and (C', \leq) be DLO's. Then $S_0(C, C')$ is Karpian. So $C \sim_{\infty} C'$

Proof. Let $f \in S_0(C,C')$, $\mathrm{dom}(f) = \{a_1,\dots,a_n\}$, $a_1 < \dots < a_n$ and $\mathrm{im}(f) = \{a_1,\dots,a_n\}$ $b_1, \dots, b_n, b_1 < \dots < b_n$. Since f is a local isomorphism, $f(a_i) = b_i$

- (forth) Suppose $a \in C$. We want $b \in C'$ s.t. $f \cup \{(a,b)\} \in S_0(C,C')$.
 - if $a_i < a < a_{i+1}$. We take $b \in C'$ s.t. $b_i < b < b_{i+1}$ since dense
 - − if $a < a_1$. We take b ∈ C' s.t. $b < b_1$ since no endpoints
 - if $a>a_n$, take $b\in C'$ s.t. $b>b_n$
 - if $a = a_i$, take $b = b_i$

• (back) similar

Proposition 1.11. *If* (C, \leq) *and* (C', \leq) *are countable DLOs, then* $C \sim_{\infty} C'$ *, so* $C \cong C'$

Hence

$$\begin{split} (\mathbb{Q}, \leq) &\cong (\mathbb{Q} \setminus \{0\}, \leq) \\ &\cong (\mathbb{Q} \cup \{\sqrt{2}\}, \leq) \\ &\cong (\mathbb{Q} \cap (0, 1), \leq) \end{split}$$

Definition 1.12. Let R, R' be binary relations with universe E, E'

- A **0-isomorphism** from R to R' is a local isomorphism from R to R'
- For p > 0, a p-isomorphism from R to R' is a local isomorphism f from R to R' satisfying the following two conditions
 - 1. **(forth)** For any $a \in E$, there is a (p-1)-isomorphism $g \supseteq f$ with $a \in \text{dom}(g)$
 - 2. (back) For any $b \in E'$, there is a (p-1)-isomorphism $g \supseteq f$ with $b \in \operatorname{im}(g)$
- An ω -isomorphism from R to R' is a local isomorphism f from R to R' s.t. f is a p-isomorphism for all $p < \omega$

The set of p-isomorphisms from R to R' is denoted $S_p(R,R')$

Example 1.8. Suppose $R=R'=(\mathbb{Z},<)$, $f:\{2,4\}\to\{1,2\}$ is a local isomorphism with f(2)=1 and f(4)=2. Then $f\notin S_1(\mathbb{Z},\mathbb{Z})$ (forth) fails. For a=3, there is no b s.t. 1< b<2

 $g: \{2,4\} \rightarrow \{1,5\}$ is a 1-isomorphism but not a 2-isomorphism

Proposition 1.13. If $f \in S_p(R,R')$ and $g \subseteq f$, then $g \in S_p(R,R')$

Proof. if p = 0 easy

if
$$p>0$$
 (forward), $\forall a\in E$, $\exists h\in S_{p-1}(R,R')$ has $a\in \mathrm{dom}(h)$ and $h\supseteq f\supseteq g$

Proposition 1.14. $S_p(R,R') \neq \emptyset$ iff $\emptyset \in S_p(R,R')$

Proof. \Leftarrow immediate

$$\Rightarrow$$
. Suppose $f \in S_p(R,R')$. Then $\emptyset \subseteq f$. Hence $\emptyset \in S_p(R,R')$.

Definition 1.15. R and R' are p-equivalent, written $R \sim_p R'$, if there is a p-isomorphism from $R \to R'$

R and R' are ω -equivalent or elementarily equivalent, written $R\sim_\omega R'$ or $R\equiv R'$, if there is an ω -isomorphism from R to R'

Note: $R \sim_{\omega} R'$ iff $S_{\omega}(R,R') \neq \emptyset$ iff $\emptyset \in S_{\omega}(R,R')$ iff $\forall p \ \emptyset \in S_p(R,R')$ iff $\forall p \ R \sim_p R'$

Definition 1.16. Let R,R' be binary relations with universe E,E'. The Ehfrenfeucht-Fraïssé game of length n, denoted $\mathrm{EF}_n(R,R')$ is played as follows

- There are two players, the Duplicator and Spoiler
- \bullet There are n rounds
- In the ith round, the Spoiler chooses either an $a_i \in E$ or a $b_i \in E'$
- The Duplicator responds with a $b_i \in E'$ or an $a_i \in E$ respectively
- At the ends of the game, the Duplicator wins

$$\{(a_i,b_i),\dots,(a_n,b_n)\}$$

is a local isomorphism from R to R^\prime

• Otherwise, the Spoiler wins

Example 1.9. For $EF_3(\mathbb{Q}, \mathbb{R})$

$$\begin{array}{c|c} \mathbb{Q} & \mathbb{R} \\ \hline \text{S:} a_1 = 7 & \text{D:} b_1 = 7 \\ \text{D:} a_2 = 1.4 & \text{S:} b_2 = \sqrt{2} \\ \text{D:} a_3 = -10 & \text{S:} b_3 = 1.41 \\ \hline \end{array}$$

So D wins

Example 1.10. $EF_3(\mathbb{R}, \mathbb{Z})$

$$\begin{array}{ll} \mathbb{R} & \mathbb{Z} \\ \text{D:} a_1 = 1 & \text{S:} b_1 = 1 \\ \text{D:} a_2 = 1.1 & \text{S:} b_2 = 2 \\ \text{S:} a_3 = 1.01 \end{array}$$

D fails

Proposition 1.17. $EF_n(R,R')$ is a win for Duplicator iff $R \sim_n R'$

Proposition 1.18. In $EF_n(R,R')$ if moves so far are a_1,b_1,\ldots,a_i,b_i , p=n-1, $f=\{(a_1,b_1),\ldots,(a_i,b_i)\}$. Then Duplicator wins iff $f\in S_p(R,R')$

A Metric Spaces

 $\mathbb{R}_{>0}$ denotes $[0,+\infty]=\{x\in\mathbb{R}:x\geq 0\}$

Definition A.1. A **metric** on a set M is a function $d: M \times M \to \mathbb{R}_{\geq 0}$ satisfying the following properties

- 1. $d(x,y) = 0 \Leftrightarrow x = y$
- 2. d(x, y) = d(y, x)
- 3. $d(x,z) \le d(x,y) + d(y,z)$

Example A.1. $M = \mathbb{R}^2$, d(x, y) =(the distance from x to y)

$$d(x_1, x_2; y_1, y_2) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

Example A.2. The **Manhattan metric** on \mathbb{R}^2 is given by

$$d(x_1, x_2; y_1, y_2) = |x_1 - y_1| + |x_2 - y_2|$$

measure distances in a city grid

Example A.3. Let M be the set of strings. The **edit distance** from x to y is the minimum number of intersections, deletions, and substitutions to go from x to y

$$d(drip, rope) = 3$$

$$drip \mapsto drop \mapsto rop \mapsto rope$$

Edit distance is a metric on M

Definition A.2. A **metric space** is a pair (M, d) where M is a set and d is a metric space

- ullet $(\mathbb{R}^n, d_{Euclidean})$ where $d_{Euclidean}$ is the usual Euclidean distance
- $\bullet \ (\mathbb{R}^2, d_{Manhattan})$ where $d_{Manhattan}$ is the Manhattan distance

Often we abbreviate (M,d) as M, when d is clear Fix a metric space (M,d)

Definition A.3. If $p \in M$ and $\epsilon > 0$, then

$$B_{\epsilon}(p) = \{x \in M : d(x,p) < \epsilon\}$$

$$\overline{B}_{\epsilon}(p) = \{x \in M : d(x,p) \leq \epsilon\}$$

 $B_{\epsilon}(p)$ and $\overline{B}_{\epsilon}(p)$ are called the **open** and **closed** balls of radius ϵ around p

Example A.4. In \mathbb{R}^2 with the Euclidean metric, the open ball of radius 2 around (0,0) the open disk

$$\{(x,y)\in\mathbb{R}^2: x^2+y^2<2^2\}$$

Example A.5. In \mathbb{R}^2 with the Manhattan metric, the open ball of radius 1 around (0,0) the open disk

$$\{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$$

Suppose $p \in M$ and $X \subseteq M$

Definition A.4. p is an **interior point** of X if X contains an open ball of positive radius around p

In particular, p must be an element of X

Example A.6. If $X = [-1,1] \times [-1,1]$, then (0,0) is an interior point of X, but (1,0) and (0,2) are not

Definition A.5. The **interior** int(X) is the set of interior points

Warning: There are metric spaces where the interior of $\overline{B}_{\epsilon}(p)$ isn't $B_{\epsilon}(p)$

Definition A.6. A set $X \subseteq M$ is **open** if X = int(X), i.e., every point of X is an interior point of X

Example A.7 (in \mathbb{R}). The set (-1,2) is open. The sets [-1,2] and [-1,2) are not; they have interior (-1,2)

Fact: the interior $\operatorname{int}(X)$ is the unique largest open set contained in X Let $a_1,a_2,...$ be a sequence in a metric space (M,d) and let p be a point

Definition A.7. " $\lim_{i\to\infty} a_i = p$ " if for every $\epsilon > 0$, there is n s.t.

$$\{a_n,a_{n+1},a_{n+2},\dots\}\subseteq B_\epsilon(p)$$

Example A.8. Work in $\mathbb R$ with the usual distance. Let $a_n=1/n$. Then $\lim_{n\to\infty}a_n=0$ but $\lim_{n\to\infty}a_n\neq 1$

Fact: For any sequence a_1,a_2,a_3,\cdots in (M,d), there is at most one point p s.t. $\lim_{i\to\infty}a_i=p$

If such a p exists, it is called the **limit**, and written $\lim_{i\to\infty}a_i$ let X be a set and p be a point in a metric space (M,d)

Definition A.8. p is an accumulation point of X if $p=\lim_{n\to\infty}a_n$ for some sequence a_n in X

Equivalently

Definition A.9. p is an accumulation point of X if for every $\epsilon > 0$, we have $B_{\epsilon}(p) \cap X \neq \emptyset$

Definition A.10. The **closure** of X, written $\operatorname{cl}(X)$ or \overline{X} , is the set of accumulation points

Definition A.11. A set $X \subseteq M$ is **closed** if $X = \operatorname{cl}(X)$

Fact: The closure cl(X) is the unique smallest closed set containing X

Example A.9. Work in \mathbb{R} with the distance d(x,y) = |x-y|

Q is neither closed nor open

 $\ensuremath{\mathbb{R}}$ is both closed and open, so is emptyset

Let X^c denote the completement $M \setminus X$

Fact: X is closed iff X^c is open

Fact: $int(X) = cl(X^c)^c$ and $cl(X) = int(X^c)^c$

Let (M, d) and (M', d) be metric spaces. Let $f: M \to M'$ be a function

Definition A.12. f is **continuous** if

$$\lim_{n\to\infty}a_n=p\Rightarrow \lim_{n\to\infty}f(a_n)=f(p)$$

for $a_1, a_2, a_3, \dots, p \in M$

idea: *f* is continuous iff *f* preserves limits

Example A.10. Let $f : \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x \le 0 \end{cases}$$

Then $\lim_{n\to\infty} 1/n = 0$, but

$$\lim_{n\to\infty}f(1/n)=\lim_{n\to\infty}1=1\neq -1=f(0)$$

Proposition A.13. Fix $f:(M,d)\to (M',d)$. The following are equivalent

- 1. *f* is continuous
- 2. For every open set $U \subseteq M'$, the preimage $f^{-1}(U)$ is open
- 3. For every $p \in M$, for every $\epsilon > 0$, there is $\delta > 0$ s.t. for every $x \in M$,

$$d(x,p) < \delta \Rightarrow d(f(x),f(p)) < \epsilon$$

Fact: The functions sin, cos, exp, $\sqrt[3]{-}$ and polynomials are continuous

Proposition A.14. *If* $f, g : \mathbb{R} \to \mathbb{R}$ *are continuous, then* $f + g, f \cdot g, f - g, f \circ g$ *are continuous*

Proposition A.15. *If* $f : \mathbb{R} \to \mathbb{R}$ *is continuous and* $f(x) \neq 0$ *for all* x, then 1/f(x) *is continuous. If* $f(x) \geq 0$ *for all* x, then $\sqrt{f(x)}$ *is continuous*

Example A.11. This function is continuous

$$h(x) = \exp\left(\frac{1}{1+x^2}\right) - \frac{1}{17 + \sin(\sqrt[3]{x})}$$

Definition A.16. A function $f:M\to M'$ is **Lipschitz continuous** if there is $c\in\mathbb{R}$ s.t. for any $x,y\in M$

$$d(f(x), f(y)) \le c \cdot d(x, y)$$

Example A.12 (In \mathbb{R}). The function f(x) = |x| + |x - 1| is Lipschitz continuous with c = 2

Proposition A.17. *If* f *is Lipschitz continuous, then* f *is continuous*

Example A.13. The function $f(x)=x^2$ is continuous but not Lipschitz continuous

Definition A.18. Let (M,d) be a metric space and $S\subseteq M$ be a set. Then (S,d') is a metric space, where d'(x,y)=d(x,y) for $x,y\in S$

- d' is the restriction of d to $S \times S$
- We say that (S, d') is a subspace of (M, d)

Let $(M,d),\,(M',d)$ be metric spaces, $S\subseteq M$ and $f:S\to M'$ be a function

Definition A.19. f is **continuous** if f is continuous as a map from the subspace (S,d') to (M',d)

Example A.14 (in \mathbb{R}). Let $f:(-\infty,0)\cup(0,\infty)\to\mathbb{R}$ be given by f(x)=1/x. Then f is continuous

Definition A.20. An **isometry** or **isomorphism** from (M,d) to (M',d') is a bijection $f:M\to M'$ s.t. for any $x,y\in M$

$$d(x,y) = d'(f(x), f(y))$$

Example A.15 (in \mathbb{R}^2). The map $(x,y)\mapsto (x+1,y-7)$ is an isometry So is the map $(x,y)\mapsto (3/5x+4/5y,-4/5x+3/5y)$