Zadaci za vježbu 1. – prva kontrolna zadaća

Zadatak 1. Ispitati da li je zadani sustav eksplicitan ili implicitan. Obrazložiti. Pomoću pravila algebre funkcijskih blokova sažeti zadani sustav u jedan funkcijski blok y/u.

Zadatak 2. Korištenjem funkcijskih blokova prag, pojačalo, zbrajalo i signum realizirati ulazno-izlaznu karakteristiku zadanu slikom. Naći odziv na zadanu pobudu.

Zadatak 3. Korištenjem funkcijskih blokova prag, pojačalo i zbrajalo, realizirati ulaznoizlaznu karakteristiku zadanu slikom. Naći odziv na zadanu pobudu.

Zadatak 4. Zadan je odziv y(t) i pobuda x(t). Odrediti ulazno-izlaznu karakteristiku, te realizirati sustav koristeći funkcijske blokove: prag, pojačalo, zbrajalo i signum.

Zadatak 5. Za sustav na slici nacrtati ulazno-izlaznu karakteristiku i odrediti odziv na zadanu pobudu.

Zadatak 6. Komunikacijski kanal ima skup ulaznih simbola $Ulazi = \{0, 1\}$ i skup izlaznih simbola $Izlazi = \{0, 1, \bot\}$. Kanal za svaki ulaznu nulu (odnosno jedinicu) na izlazu daje nulu (odnosno jedinicu), a ponekad nulu ili jedinicu zamijeni \bot simbolom. Kanal može na izlazu dati najviše tri \bot simbola u nizu. Definirajte nedeterministički automat koji modelira zadani kanal. Funkciju prijelaza napišite kao dijagram stanja.

Zadatak 7. Konstruirajte nedeterministički automat koji simulira automat zadan dijagramom prijelaza.

Zadatak 8. Konstruirajte automat koji ima barem sljedeća zadana svojstva:

- a) za ulazni niz $x = \{0,0,0,0,0,0,0,0,0,\dots\}$ daje izlaz $y = \{0,0,1,0,0,1,0,0,1,\dots\}$,
- b) za ulazni niz $x = \{1,1,1,1,1,1,1,1,1,\dots\}$ daje izlaz $y = \{0,1,0,0,1,0,0,1,0,\dots\}$.

Napišite uređenu petorku koja određuje automat i nacrtajte dijagram prijelaza.

Zadatak 9. Konstruirajte automat koji prepoznaje sve ulazne trojke sastavljene od slova a i b koje započinju s a, npr. nakon ulaza abb, aba ili aaa automat izbaci jedinicu. Skup ulaznih simbola je $Ulazi = \{a, b, Odsutan\}$, a izlaznih $Izlazi = \{1, Odsutan\}$.

Zadatak 10. Konstruirajte automat koji prepoznaje neparan broj pojavljivanja simbola a u ulaznom nizu koji se sastoji od simbola $Ulazi = \{a, b, Odsutan\}$. Skup izlaznih simbola neka bude $Izlazi = \{1, Odsutan\}$.

Zadatak 11. Dva konačna automata *SmješkoA* i *SmješkoB* zadani su dijagramom prijelaza. Za svaki automat odredi uređenu petorku koja ga definira. Koja stanja nisu dostupna kada ta dva automata spojimo u kaskadu *SmješkoB* → *SmješkoA*.

Zadatak 12. Zadani automat spojite u povratnu vezu. Da li je tako dobiveni automat dobro definiran? Koja stanja nisu dostupna?

Zadatak 13. Zadan je bistabil

Kolika je širina dovedenog okidnog impulsa potrebna da se bistabil prebaci iz jednog u drugo stabilno stanje? Amplituda impulsa je U = 1.5, a nelinearnost:

$$f(x) = \begin{cases} -x+2 & x \ge 1 \\ x & |x| < 1 \\ -x-2 & x \le -1 \end{cases}$$

Pravila za kontrolnu zadaću

- 1. Na kontrolnoj zadaći se rješavaju 3 zadatka.
- 2. Kontrolna zadaća traje 75 minuta.
- 3. Svaki zadatak nosi 5 bodova, a za prolaz treba 7 bodova.
- 4. Na kolokviju iz Signala i sustava dozvoljeno je imati isključivo:
 - a. papir i pribor za pisanje (preporučujemo mekanu olovku 2B od kalifornijske cedrovine koja odlično piše i lako se briše),
 - b. kalkulator (bez programiranih bilježaka) te
 - c. službeni šalabahter.
- 5. Posjedovanje dodatnih materijala (neslužbeni šalabahter, riješeni stari rokovi i ostalo), korištenje mobitela i prepisivanje nije dozvoljeno. Studenti koji se ne budu pridržavali ovih pravila biti će udaljeni s kolokvija.
- 6. U slučaju da se studenta uhvati u prepisivanju, student se odmah udaljuje s kolokvija bez prethodne opomene.