Introduction to intelligent systems

Machine learning

Mikkel N. Schmidt

 ${\it Technical\ University\ of\ Denmark}, \\ {\it DTU\ Compute,\ Department\ of\ Applied\ Mathematics\ and\ Computer\ Science}.$

Overview

- Machine learning problems
- Machine learning algorithms
- ${f 3}$ Linear regression
- Generalization
- 6 Tasks

Feedback group

- David Svane-Petersen
- Yuxuan Zhang
- \blacksquare sebastian vargr
- \blacksquare Peter Vestereng Larsen

Learning objectives

- I Types of machine learning problems.
- I Generalization: Training and test error.
- II Linear regression. Model, parameters, and cost function.

- I Understand the concepts and definitions, and know their application. Reason about the concepts in the context of an example. Use correct technical terminology.
- II As above plus: Read, manipulate, and work with technical definitions and expressions (mathematical and Python code). Carry out practical computations. Interpret and evaluate results.

Machine learning problems

Machine learning problems

Categorization of learning problems

Unsupervised Learn function that describes the structure in data

Supervised Learn function that maps input to output to optimize cost

Reinforcement Learn a function (policy) that maps inputs to actions to optimize cumulative reward

Unsupervised learning

Learn a function that describes the structure in a data set

Clustering Find a way to group data points into meaningful components

Dimensionality reduction Find a lower-dimensional representation of the data

Anomaly detection Find data points that deviate from "normal" behaviour

Unsupervised learning: Discover patterns in data

Unsupervised learning: Discover patterns in data

Unsupervised learning: Discover patterns in data

Supervised learning

Learn a function that maps an input to an output to optimize a cost

Regression Outputs are continuous variables

Classification Outputs are discrete classes

Ranking Output is a ranking of the data objects

Supervised learning: House price prediction

Reinforcement learning

Learn a function (policy) that maps inputs to actions to optimize cumulative reward

Evaluation vs. control

Passive Evaluate the future reward for a given policy

Active Estimate the optimal policy by exploration

Obervability of the environment

Full Agent knows the state of the environment

Partial Agent must learn a representation of the environment

Exercise: What is human learning?

Is human learning best characterized as

- Unsupervised learning
- Supervised learning
- Reinforcement learning

(If you think the answer is somehow obvious, see if you can come up with an argument against) $\,$

Machine learning algorithms

Machine learning algorithms

Machine learning

- Algorithm with tunable parameters
- Takes in some data and produces some output
- Measure error between algorithm's output and the desired output
- Tune parameters to minimize error

Goal: Generalization = good performance on future/unseen data

Machine learning algorithms

Exercise: Price of a 150 m^2 house

- What would you expect the price of a 150 m^2 house to be?
- Discuss which "algorithm" you used to come up with your answer

Exercise: House price regression

- Which of the above regression curves is best?
- Discuss how you could define a criteria for which is "best"

House price regression

Possible criteria for a good regression line

Fit the observed data well

Robust to small changes in the data

Generalize to (unseen) future data

- Regression line: f(x) = ax + b
- Error: Squared distance between data and regression line

$$E = \sum_{n=1}^{N} (y_n - f(x_n))^2$$

 \blacksquare Find values of a and b to minimize E

- Regression line: f(x) = ax + b
- Error: Squared distance between data and regression line

$$E = \sum_{n=1}^{N} (y_n - f(x_n))^2$$

 \blacksquare Find values of a and b to minimize E

- Regression line: f(x) = ax + b
- Error: Squared distance between data and regression line

$$E = \sum_{n=1}^{N} (y_n - f(x_n))^2$$

 \blacksquare Find values of a and b to minimize E

Exercise: Least squares regression

Solve the least square regression problem by minimizing the error

- \blacksquare Differentiate the error measure wrt. the parameters a and b
- This gives you two equations in two unknowns to solve

Problem specification

Data

$$x = \{80, 85, 99, 110, 125, 130, 170, 200\}$$
$$y = \{3.5, 4.3, 4, 4.2, 4.2, 5.1, 5.9, 6.1\}$$

■ Regression function

$$f(x) = ax + b$$

■ Error measure

$$E = \sum_{n=1}^{N} (y_n - f(x_n))^2$$

$$\bar{x} = \sum_{n=1}^{N} x_n = 999$$

$$\bar{y} = \sum_{n=1}^{N} y_n = 37.3$$

$$\overline{xy} = \sum_{n=1}^{N} x_n y_n = 4914.5$$

$$\overline{xx} = \sum_{n=1}^{N} x_n^2 = 136951$$

Solution: Equation for a

Differentiate wrt. a and equate to zero

$$E = \sum_{n=1}^{N} (y_n - f(x_n))^2 = \sum_{n=1}^{N} (y_n - ax_n - b)^2$$

$$\frac{dE}{da} = \sum_{n=1}^{N} -2(y_n - ax_n - b)x_n$$

$$= -2\sum_{n=1}^{N} y_n x_n + 2a\sum_{n=1}^{N} x_n^2 + 2b\sum_{n=1}^{N} x_n$$

$$= -2\overline{xy} + 2a\overline{xx} + 2b\overline{x} = 0$$

$$\Rightarrow \overline{xx} \cdot a + \overline{x} \cdot b = \overline{xy}$$

$$\bar{x} = \sum_{n=1}^{N} x_n = 999$$

$$\bar{y} = \sum_{n=1}^{N} y_n = 37.3$$

$$\overline{xy} = \sum_{n=1}^{N} x_n y_n = 4914.5$$

$$\overline{xx} = \sum_{n=1}^{N} x_n^2 = 136951$$

Solution: Equation for b

Differentiate wrt. b and equate to zero

$$E = \sum_{n=1}^{N} (y_n - f(x_n))^2 = \sum_{n=1}^{N} (y_n - ax_n - b)^2$$

$$\frac{dE}{db} = \sum_{n=1}^{N} -2(y_n - ax_n - b)$$

$$= -2\sum_{n=1}^{N} y_n + 2a\sum_{n=1}^{N} x_n + 2Nb$$

$$= -2\bar{y} + 2a\bar{x} + 2Nb = 0$$

$$\Rightarrow \bar{x} \cdot a + N \cdot b = \bar{y}$$

$$\bar{x} = \sum_{n=1}^{N} x_n = 999$$

$$\bar{y} = \sum_{n=1}^{N} y_n = 37.3$$

$$\bar{xy} = \sum_{n=1}^{N} x_n y_n = 4914.5$$

$$\bar{xx} = \sum_{n=1}^{N} x_n^2 = 136951$$

Solution: Two equations in two unknowns

Two equations

$$\overline{xx} \cdot a + \overline{x} \cdot b = \overline{xy}$$
$$\overline{x} \cdot a + N \cdot b = \overline{y}$$

In matrix notation

$$\left[\begin{array}{cc} \overline{x}\overline{x} & \bar{x} \\ \bar{x} & N \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] = \left[\begin{array}{c} \overline{x}\overline{y} \\ \bar{y} \end{array}\right]$$

$$\bar{x} = \sum_{n=1}^{N} x_n = 999$$

$$\bar{y} = \sum_{n=1}^{N} y_n = 37.3$$

$$\overline{xy} = \sum_{n=1}^{N} x_n y_n = 4914.5$$

$$\overline{xx} = \sum_{n=1}^{N} x_n^2 = 136951$$

Solution by substitution

Solve for b in eq. (B)

$$b = \frac{\bar{y} - \bar{x} \cdot a}{N}$$

Insert in eq. (A)

$$\overline{xx} \cdot a + \overline{x} \cdot \underbrace{\frac{\overline{y} - \overline{x} \cdot a}{N}}_{b} = \overline{xy}$$

and solve for a

$$a = \frac{N \cdot \overline{xy} - \overline{x} \cdot \overline{y}}{N \cdot \overline{xx} - \overline{x}^2}$$
$$= \frac{8 \cdot 4914.5 - 999 \cdot 37.3}{8 \cdot 136951 - 999^2} \approx \underline{0.0210}$$

Insert, and solve for b

$$b = \frac{37.3 - 999 \cdot 0.0210}{8} \approx \underline{2.04}$$

Equations

$$(A) \quad \overline{xx} \cdot a + \overline{x} \cdot b = \overline{xy}$$

$$(B) \quad \bar{x} \cdot a + N \cdot b = \bar{y}$$

Constants

$$\bar{x} = 999$$

$$\bar{y} = 37.3$$

$$\bar{x}y = 4914.5$$

$$\bar{x}x = 136951$$

Solution by solving matrix equation in Python

Two equations in matrix notation

$$\left[\begin{array}{cc} \overline{xx} & \overline{x} \\ \overline{x} & N \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] = \left[\begin{array}{c} \overline{xy} \\ \overline{y} \end{array}\right]$$

```
>>> N, x, y, xy, xx = 8, 999, 37.3, 4914.5, 136951
>>> X = np.array([[xx, x],[x, N]])
>>> print(X)
[[136951    999]
[    999    8]]
>>> y = np.array([xy, y])
>>> print(y)
[4914.5    37.3]
>>> a, b = np.linalg.solve(X, y)
>>> print(f'a = {a:.3}, b = {b:.3}')
a = 0.021, b = 2.04
```

$$\bar{x} = \sum_{n=1}^{N} x_n = 999$$

$$\bar{y} = \sum_{n=1}^{N} y_n = 37.3$$

$$\overline{xy} = \sum_{n=1}^{N} x_n y_n = 4914.5$$

$$\overline{xx} = \sum_{n=1}^{N} x_n^2 = 136951$$

Generalization

House price regression: Generalization

■ If we knew future house prices, we could measure generalization error

House price regression: Generalization

■ If we knew future house prices, we could measure generalization error

House price regression: Generalization

Generalization error / out-of-sample error

■ Average error on future data

But, of course, we don't actually have access to future data

Cross-validation

- We only have access to a finite data sample
- Split the data sample into two parts called the *training set* and the *test set*
- Fit the models using the training set
- Evaluate and compare model performance on the test set

Model complexity

Tasks

Tasks for today

Tasks today

 $\begin{tabular}{ll} 1. Work through the $\it{regression complexity}$ notebook \\ {\tt O6-RegressionComplexity.ipynb} \end{tabular}$

Today's feedback group

- David Svane-Petersen
- Yuxuan Zhang
- sebastian vargr
- Peter Vestereng Larsen