Nearest Neighbors and Naive Bayes

Baseline algorithms

- Simple algorithms but effective
- Two different methods:
 - Nearest Neighbor. Non parametric method: In this case a lazy Instance Based Learning method that does not build any model.
 - Naïve Bayes. Parametric: It builds a probabilistic model of your data following some assumptions.

Nearest Neighbor classifier

Instance Based Learning / Lazy Methods

Instance Based Learning

- Lazy learning methods: they don't build a model of the data
- Assign the label to an observation depending on the labels of "closest" examples
- Only requirements:
 - A training set
 - A similarity measure

Instance Based Learning Algorithms

- K-NN
- Distance Weighted kNN
- How to select K??
- How to solve some problems

K-NN

- K-Nearest neighbor algorithm
- It interprets each example as a point in a space defined by the features describing the data
- In that space a similarity measure allows as to classify new examples.
- Class is assigned depending on the K closest examples

1-NN example

- Two real features (x1, x2) define the space.
- Each red point is a positive example. Black points are negative examples

Equivalen to to draw the Voronoi space of your data.

1-NN example

- Two real features (x1, x2) define the space.
- Each red point is a positive example. Black points are negative examples

Distance measures

- Distance is a parameter of the algorithm
- When dataset is numeric, usually Euclidean:

$$d(x_i, x_j) = \sqrt{\sum_{k=1}^{m} (x_i(k) - x_j(k))^2}$$

- In mixed data sets, Gower or any other appropriate distance measure
- CAVEAT: Data should be normalized or standardized in order to ensure same relevance to each feature in the computation of distance.

Some comments

Advantages:

- Fast training
- Ability to learn very complex functions

Problems:

- Very slow in testing. Needed some smart structure representation of data in trees
- Fooled by noise
- Fooled when irrelevant features

Some comments:

- Building more robust classifiers
 - Results do not depend on the closest example but on the k clossest examples (so k-nearest neighbours (kNN) name)

3-Nearest Neighbors

7-Nearest Neighbors

K-NN algorithm

Parameters:

- Natural number k (odd number)
- Training set
- Distance measure

Algorithm:

- Store all training set $\langle x_i, label(x_i) \rangle$
- Given new observation, x_q , compute the nearest k neighbors
- Let vote the nearest k neighbors to assign the label to the new data.

How to select k?

- High number of k show two advantages:
 - Smother frontiers
 - Reduces sensibility to noise
- But too large values are bad because
 - We loose locality in the decision because very distant points can interfere in assigning labels
 - Computation time is increased
- K-value usually is chosen by <u>cross-validation</u>.

Distance Weighted kNN

- A smart variation of KNN.
- When voting, all k neighbors have the same influence, but some of them are more distant than the others (so the should influence less in decisions)

Solution: Given more weight to closest examples

Distance Weighted kNN

Lets define a weigth for each of the k-closest examples:

$$w_i = K(d(x_i, x_q))$$

where x_q is the query point, x_i is the *i-closest example*, d is the distance function and K is the kernel (a decreasing function with respect to distance function)

Predicted label for x_q is computed according to:

$$sign\left(\sum_{i=1}^{k} w_i l(x_i)\right)$$

where $l(x_i)$ is $\{-1,1\}$ the label of exemple x_i , and w_i is the weight of example x_i

In previous example, it could be something like:

$$sign (0.9 * 1 + 0.8 * * 1 + 0.4 * (-1) + 0.35 * (-1) + 0.3 * (-1)) = sign(0.65) = +1$$

Kernel functions

Examples of kernel functions

Problems with irrelevant features

- K-NN is fooled when irrelevant features are widely present in the data set
 - For instance, examples are described using 20 attributes, but only 2 of them are relevant to the classification...
- Solution consists in feature selection. For instance:
 - Use weighted distance:

$$d_z(x_i, x_j) = \sum_{k=1}^{n} z_l(x_i(k) - x_j(k))^2$$

- Limit weights to 0 and 1. Notice that setting $z_j = 0$ means removing the feature
- Find weights $z_1,...,z_n$ (one for each feature), that minimize error in a validation data set using cross-validation

Naïve Bayes

Probabilistic model

Naive Bayes basics

 From examples in the dataset, we can estimate the likelihood of our data:

$$p(x_1, x_2, ...x_n | c_i)$$

read as probability to observe example with features (x_1, x_2, \dots, x_n) $[x_i, x_i]$ represents **feature** i of observation x] in class c_i

• But, for classifying an observation $(x_1, x_2... x_n)$, we should look for the class that maximizes the probability of the observation belonging to the class:

$$c_{MAP} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j \mid x_1, x_2, \dots, x_n)$$

Naïve Bayes classifiers

We will use the Bayes' theorem:

$$c_{MAP} = \underset{c_{j} \in C}{\operatorname{argmax}} \ P(c_{j} \mid x_{1}, x_{2}, ..., x_{n}) = \underset{c_{j} \in C}{\operatorname{argmax}} \frac{P(x_{1}, x_{2}, ..., x_{n} \mid c_{j}) P(c_{j})}{P(x_{1}, x_{2}, ..., x_{n})}$$

Bayes' theorem:

$$\begin{cases} P(A|B) = P(A \land B) / P(B) \\ P(B|A) = P(A \land B) / P(A) \end{cases}$$

$$=> P(A \land B) = P(A|B) P(B) = P(B|A) P(A)$$

$$=> P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Computing probabilities

- ullet $P(c_i)$ Simply proportion of elements in class j
- $P(x_1, x_2, \dots, x_n/c_j)$
 - Problem |X|ⁿ.|C| parameters!
 - It can only be estimated from a very huge dataset.
 Impractical
- Solution: <u>Independence assumption</u> (very *Naïve*): attribute values are independent. So in this case, we can easily compute

$$P(x_1, x_2, ..., x_n \mid c_j) = \prod_i P(x_i \mid c_j)$$

Computing probabilities

- $P(x_k/c_i)$
 - Now we only need n./C/ probability estimations
 - Very easy. Number of values with property x_k in class c_j over the complet number of cases in class c_i
- Solving now, $P(x_1, x_2, ..., x_n | c_j) = \prod_i P(x_i | c_j)$ the class assigned to a new observation is:

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} \frac{P(x_{1}, x_{2}, \dots, x_{n} \mid c_{j}) P(c_{j})}{P(x_{1}, x_{2}, \dots, x_{n})} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i} P(x_{i} \mid c_{j})$$

Equation to be used

Practical issues

- Being probabilities in range 0..1, products quickly lead to floating-point underflow errors
- Knowing that log(xy) = log(x) + log(y), it is better to work with log(p) than with probabilities.

Now:

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} \left(\log P(c_{j}) + \sum_{i \in positions} \log P(x_{i} \mid c_{j}) \right)$$

- Training set: X document corpus
- Each document is labeled with f(x)=like/dislike
- Goal: Learn function that permits given new document if you like it or not.
- Questions:
 - How do we represent documents?
 - How to compute probabilities?

• How do we represent documents?

- Each document is represented as a Bag of Words
- Attributes: All words that appear in the document
- So each document is represented as a boolean vector with length N: 0 – word does not appear; 1 – word appear
- Practical problem: A very huge table.
- Solution: Use sparse representation of matrixes

Some numbers

- 10.000 documents
- 500 words per document
- Maximum theoretical number of words: 50.000 (much less because of word repetitions)
- Reducing the number of attributes
 - Removing the number (sing/plural) and verbal forms (stemming)
 - Remove conjunctions, propositions and articles (stop words)
 - Now we have about. 10.000 attributes

$$v_{NB} = \underset{v \in \{like, dislike\}}{argmax} P(v) \prod_{i} P(x_{i} = word_{i} \mid v)$$

How to compute probabilities?

• First compute $P(v_i)$ for each class ["a priori" probability for like and dislike classes]

$$P(v_{like}) = \frac{\text{#documents like}}{\text{total number of documents}}$$

$$P(v_{dislike}) = \frac{\#documents dislike}{total number of documents}$$

(10/2018)

$$v_{NB} = \underset{v \in \{like, dislike\}}{argmax} P(v) \prod_{i} P(x_{i} = word_{i} \mid v)$$

- How to compute probabilities?
 - Second, compute $P(x_i = word_i | v)$ for each word:

$$P(word_k \mid v) = \frac{\#(docs. \ v \ in \ training \ where \ word_k \ apears)}{\#(documents \ v)} = \frac{n_k}{n}$$

 Number of parameters to estimate is not too large: 10.000 words and two classes (so about 20.000)

(10/2018)

• Problem:

$$P(word_k \mid v) = \frac{\#(docs. \ v \ del \ training \ on \ word_k \ apareix)}{\#(documents \ v)} = \frac{n_k}{n}$$

- When n_k is low, not an accurate probability
- -when n_k is 0 for word_k for one class v, then any document with that word will never be assigned to v (independent of other appearing words)

 Solution: More robust computation of probabilities (Laplace smoothing)

$$P(word_k \mid v) = \frac{n_k + mp}{n + m}$$

- Where:
 - $-n_k$ is # of documents of class v in which word k appear
 - n is # of documents with label v
 - -p it's a likelihood estimation of "a priori" $P(x_k|v)$ (f.i., uniform distribution)
 - m is the number of labels

Smoothing:
$$P(x_k | v) = \frac{n_k + mp}{n + m}$$

More common "a priori" uniform distribution:

1. When two classes: p=1/2, m=2 (Laplace Rule)

$$P(x_k \mid v) = \frac{n_k + 1}{n + 2}$$

2. Generic case (c classes): p = 1/c, m = c

$$\mathbf{P}(\mathbf{x}_{k} \mid \mathbf{v}) = \frac{\mathbf{n}_{k} + 1}{\mathbf{n} + c}$$

- Naïve Bayes return good accuracy results even when independence assumption is not fulfilled
 - In fact, Spam/not Spam implementation of Thunderbird work in this way
 - Applied to document filtering (fi. Newsgroups or incoming mails)
- Learning and testing time are linear with the number of attributes!

Extension to continuous attributes

Assume each class follows a normal distribution for each variable

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

 For instance 73 is average of feature temp. for class x, and std=26.2, we compute conditional prob in the following way:

$$p(temperature = 66 \mid x) = \frac{1}{\sqrt{2\pi6.2}} e^{\frac{(66-73)^2}{26.2^2}} = 0.034$$