Claims

- [c1] 1.A field effect transistor (FET) comprising:
 - a source region;
 - a drain region;
 - a channel region disposed between the source and drain regions;
 - a bifurcated gate region positioned over said channel region; and
 - a gate oxide layer adjacent to said gate region, wherein said gate oxide layer comprises an alkali metal ion.
- [c2] 2.The transistor of claim 1, further comprising: a substrate;
 - an isolation layer positioned over said substrate; and at least one fin structure disposed between the source and drain regions;
 - wherein said source and drain regions are positioned over said isolation layer.
- [c3] 3.The transistor of claim 1, wherein said alkali metal ion comprises any of cesium and rubidium.
- [c4] 4.The transistor of claim 1, wherein said transistor comprises a CMOS (complementary metal oxide semiconduc-

tor) device.

- [05] 5.The transistor of claim 4, wherein said CMOS device comprises any of a nFET configuration and a pFET configuration.
- [c6] 6.The transistor of claim 5, further comprising ion implantation levels for each of said nFET configuration and said pFET configuration of approximately $3 \times 10^{1.8}$ cm $^{-3}$
- [c7] 7.The transistor of claim 1, wherein said gate region comprises silicide.
- [08] 8.The transistor of claim 5, wherein said alkali metal ion adjusts nFET and pFET threshold voltages for the nFET and pFET configurations by an amount required to match desired off-currents for said nFET and pFET configurations.
- [09] 9.A (field effect transistor) CMOS (complementary metal oxide semiconductor) device comprising: raised source/drain regions; a channel region disposed between said source/drain regions; a gate region positioned over said channel region;
 - a silicon layer dividing said gate region; and a gate oxide layer adjacent to said gate region, wherein

- said gate oxide layer comprises an alkali metal ion.
- [c10] 10. The device of claim 9, further comprising:
 a substrate;
 an isolation layer positioned over said substrate; and
 at least one fin structure disposed between the source
 and drain regions;
 wherein said source/drain regions are positioned over
 said isolation layer.
- [c11] 11.The device of claim 9, wherein said alkali metal ion comprises any of cesium and rubidium.
- [c12] 12. The device of claim 9, further comprising any of a nFET region and a pFET region.
- [c13] 13. The device of claim 12, comprising ion implantation levels for each of said nFET region and pFET region of approximately 3×10^{18} cm⁻³.
- [c14] 14.The device of claim 9, further comprising spacers separating said gate region from said source/drain regions.
- [c15] 15.The device of claim 9, wherein said gate region comprises silicide.
- [c16] 16.The device of claim 12, wherein said alkali metal ion adjusts nFET and pFET threshold voltages for the nFET

- and pFET regions by an amount required to match desired off-currents for said nFET and pFET regions.
- [c17] 17.A method of tuning a threshold voltage of nFET (field effect transistor) and pFET devices in a double-gate CMOS (complementary metal oxide semiconductor) integrated circuit structure, said method comprising: performing a PSP (post silicide probe) electrical test on said double-gate CMOS integrated circuit structure; determining nFET and pFET threshold voltages during said PSP electrical test; and implanting said double-gate CMOS integrated circuit structure with an alkali metal ion.
- [c18] 18. The method of claim 17, wherein said implanting adjusts said nFET and pFET threshold voltages by an amount required to match desired off-currents for said nFET and pFET devices.
- [c19] 19.The method of claim 17, wherein prior to said performing, said method comprises:
 forming a fin structure on a substrate;
 forming source/drain regions over said fin structure;
 forming a channel region between said source/drain regions;
 depositing a gate oxide layer adjacent to said source/

drain regions; and

forming a gate region over said gate oxide layer and said fin structure.

- [c20] 20. The method of claim 19, further comprising forming an isolation layer on said substrate.
- [c21] 21. The method of claim 17, wherein said alkali metal ion comprises any of cesium and rubidium.
- [c22] 22. The method of claim 17, wherein ion implantation levels for said nFET and pFET devices are determined during said PSP test.
- [c23] 23. The method of claim 17, wherein ion implantation levels for each of said nFET and pFET devices is approximately 3×10^{18} cm⁻³.