Waveguide spectroscopies to characterize organic thin film/transparent conducting oxide interfaces

Anne Simon
University of Arizona
Department of Chemistry and Biochemistry
April 19, 2012

Solar Cell Technology

Crystalline silicon

- 1950s
- Highest efficiencies
- Expensive to purify materials
- Rigid and heavy modules

Organic Photovolatics (OPV)

- 2000s
- Lower efficiencies
- Cheap to produce
- Flexible and lightweight materials

DOE funded Energy Frontier Research Center

Center for Interface Science: Solar Electric Materials

Organic Photovoltaic Efficiency

Approach to collaborative research

4) Applications

Molecular Hypothesis

The charge collection efficiency is dependent on the rate of charge transfer vs. charge recombination at the organic molecular film/TCO interface

Properties contributing to the rates include:

- Molecular orientation
- Structure/function relationship
- Chemical microenvironment

Analytical Challenges

- Sensitivity = few molecules at interface (monolayer/submonolayer)
- Selectivity = molecular populations with different orientations
- Fast reaction kinetics
- In-situ

Optical changes in weakly absorbing films

Transient ATR Spectroscopy

Advantages to this geometry:

- 1) Collinear coupling = nearly identical interaction with film
- 2) Lower intensity pump beam needed = minimizes photodegradation/bleaching
- Polarization of both beams = relationship between molecular orientation and reaction kinetics

Transient ATR Spectroscopy

Benchmarked with bacteriorhodopsin in planar membranes: Γ = 2 pmol/cm² = ca. 0.01 ML of retinal

Simon, A.M. et al. Anal. Chem., 2011, 83, 5762-5766

ZnPcPA Monolayers: Probing Relationships Between Molecular Orientation/Aggregation and k_{ET}

polycrystalline surface of unmodified ITO

Dissolved vs monolayer spectra show presence of adsorbed aggregates

Electrochemically distinct monomer and aggregate subpopulations

Spectroscopic and electroactive surface coverage = 1.2 ML

Spectroelectrochemistry in ATR geometry

Potential-controlled experiment: spectroscopically observe the redox behavior of the thin film

Potential-modulated experiment: measure the charge transfer rate Oxidation ITO-coated ATR element $E_{applied}$ Energy Electrode **VB** ZnPcPA film tethered to an ITOorganic layer coated waveguide electrode Reduction Light **CB** Reference electrode Energy Solution **Electrode** Counter electrode **VB** Identify midpoint potential Wavelength of light organic layer

Waveguide Spectroelectrochemistry and **Molecular Orientation Studies**

Mean tilt angle of Pc molecular planes determined using both

- - $\theta_{\text{monomer}} = 33^{\circ} \pm 1^{\circ}$
 - $\theta_{aggregate} = 58^{\circ} \pm 0.7^{\circ}$
- polarized waveguide ATR NEXAFS: $\theta_{\text{entire film}} = 52^{\circ} \pm 1^{\circ}$

Correlating Orientation and Charge Transfer Rate Constants by PM-ATR

		Monomer		Aggregate		
		68	680 nm		630 nm	
Polarization TF TM TF TM	$k_s(s^{-1})$ by CV	1.7 ± 0.2		2.4 ± 0.1		
101011201011	Polarization	TE	TM	TE	TM	
$k_s (s^{-1}) \times 10^2$ 2.0 ± 0.6 1.7 ± 0.5 21 ± 5 7 ± 2	k _s (s ⁻¹) x 10 ²	2.0 ± 0.6	1.7 ± 0.5	21 ± 5	7 ± 2	

Using different polarizations and wavelengths, differently oriented subpopulations of molecules are probed

Impact: Resolution of orientation-dependent charge transfer rates

Take home message

- Waveguide spectroscopies combined with transient absorption and electrochemical potential modulation are uniquely addressing the fundamental questions about charge transfer/recombination kinetics at the molecular film/TCO interface
- Continuous development of these techniques coupled with the feedback loop framework of the CIS:SEM will help provide answers for basic chemistry questions

Future directions

Faster timescales

New facility combines Helios/Eos with range of 50 ps to 500 ms

Needs to be configured for ATR geometry and benchmarked

Implement and assess strategies to control orientation, compare to $Pc(PA)_4$

Variable-angle ATR in a diode to monitor concentration-distance profiles of charge carrier generation

Acknowledgements

Saavedra Research Group

McGrath Research Group

US Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center (CIS:SEM)

Poster #36 & Poster #52

