<110> Genente HADIME Ashkenazi, Avi Botstein, David Desnoyers, Luc Eaton, Dan L. Ferrara, Napole∳ne Filvaroff, Elleh Fong, Sherman Gao, Wei-Qiang Gerber, Hanspeter Gerritsen, Mary E. Goddard, A. Godowski, Paul J. Grimaldi, Christopher J. Gurney, Austin L. Hillan, Kenneth, J.

Grimaldi, Christopher Gurney, Austin L. Hillan, Kenneth, J. Kljavin, Ivar J. Mather, Jennie P. Pan, James Paoni, Nicholas F. Roy, Margaret Ann Stewart, Timothy A.

JAN 2 5 2001

Tumas, Daniel
Williams, P. Mickey
Wood, William, I.

<120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same

<130> 10466-14

<140> 09/665,350 <141> 2000-09-18

<150> PCT/US00/04414

<151> 2000-02-22

<150> US 60/148,048

<151> 1999-07-07

<150> US 60/149,698

<151> 1999-07-26

<150> US 60/146,222

<151> 1999-07-28

<150> PCT/US99 20594

<151> 1999-09-08

<150> PCT/US99/20944

<151> 1999-09-13

<150> PCT/US99/21090

<151> 1999-09-15

<150> PCT/US99/21547

<151> 1999-09-15

- <150> PCT/US99/23089
- <151> 1999-10-05
- <150> PCT/US99/28214
- <151> 1999-11-29
- <150> PCT/US99/28313
- <151> 1999-11-30
- <150> PCT/US99/28564
- <151> 1999-12-02
- <150> PCT/US99/28565
- <151> 1999-12-02
- <150> PCT/US99/30095
- <151> 1999-12-16
- <150> PCT/US99/30911
- <151> 1999-12-20
- <150> PCT/US99/30999
- <151> 1999-12-20
- <150> PCT/US00/00219
- <151> 2000-01-05
- <160> 423
- <210> 1
- <211> 1825
- <212> DNA
- <213> Homo Sapien
- <400> 1
- actgcacctc ggttctatcg attgaattcc ccggggatcc tctagagatc 50
- cctcgacctc gacccacgcg tccgggccgg agcagcacgg ccgcaggacc 100
- tggageteeg getgegtett eeegeagege taceegeeat gegeetgeeg 150
- gccggaggcc gccaagaagc cgacgccctg ccaccggtgc cgggggctgg 250
- tggacaagtt taaccagggg atggtggaca ccgcaaagaa gaactttggc 300
- ggcgggaaca cggcttggga ggaaaagacg ctgtccaagt acgagtccag 350
- cgagattege etgetggaga teetggaggg getgtgegag ageagegaet 400
- tcgaatgcaa tcagatgcta gaggcgcagg aggagcacct ggaggcctgg 450
- tggctgcagc tgaagagcga atatcctgac ttattcgagt ggttttgtgt 500
- gaagacactg aaagtgtgct gctctccagg aacctacggt cccgactgtc 550
- tegeatgeca gggeggatee cagaggeet geagegggaa tggeeactge 600

11

agcggagatg ggagcagaca gggcgacggg teetgeeggt gecacatggg 650 gtaccagggc ccgctgtgca ctgactgcat ggacggctac ttcagctcgc 700 tccggaacga gacccacagc atctgcacag cctgtgacga gtcctgcaag 750 acgtgctcgg gcctgaccaa cagagactgc ggcgagtgtg aagtgggctg 800 ggtgctggac gagggcgcct gtgtggatgt ggacgagtgt gcggccgagc 850 egecteeetg cagegetgeg cagttetgta agaacgecaa eggeteetae 900 acgtgcgaag agtgtgactc cagctgtgtg ggctgcacag gggaaggccc 950 aggaaactgt aaagagtgta tetetggeta egegagggag caeggacagt 1000 gtgcagatgt ggacgagtgc tcactagcag aaaaaacctg tgtgaggaaa 1050 aacgaaaact gctacaatac tccagggagc tacgtctgtg tgtgtcctga 1100 cggcttcgaa gaaacggaag atgcctgtgt gccgccggca gaggctgaag 1150 ccacagaagg agaaagcccg acacagctgc cctcccgcga agacctgtaa 1200 tgtgccggac ttacccttta aattattcag aaggatgtcc cgtggaaaat 1250 gtggccctga ggatgccgtc tcctgcagtg gacagcggcg gggagaggct 1300 gcctgctctc taacggttga ttctcatttg tcccttaaac agctgcattt 1350 cttggttgtt cttaaacaga cttgtatatt ttgatacagt tctttgtaat 1400 aaagggcggc cgcgactcta gagtcgacct gcagaagctt ggccgccatg 1500 gcccaacttg tttattgcag cttataatgg ttacaaataa agcaatagca 1550 tcacaaattt cacaaataaa gcatttttt cactgcattc tagttgtggt 1600 ttgtccaaac tcatcaatgt atcttatcat gtctggatcg ggaattaatt 1650 cggcgcagca ccatggcctg aaataacctc tgaaagagga acttggttag 1700 gtaccttctg aggcggaaag aaccagctgt ggaatgtgtg tcagttaggg 1750 tgtggaaagt ccccaggctc cccagcaggc agaagtatgc aagcatgcat 1800 ctcaattagt cagcaaccca gtttt 1825

- <210> 2
- <211> 353
- <212> PRT
- <213> Homo Sapien
- <400> 2
- Met Arg Leu Pro Arg Arg Ala Ala Leu Gly Leu Leu Pro Leu Leu 1 5 10 15

Leu	Leu	Leu	Pro	Pro 20	Ala	Pro	Glu	Ala	Ala 25	Lys	Lys	Pro	Thr	Pro 30
Cys	His	Arg	Cys	Arg 35	Gly	Leu	Val	Asp	Lys 40	Phe	Asn	Gln	Gly	Met 45
Val	Asp	Thr	Ala	Lys 50	Lys	Asn	Phe	Gly	Gly 55	Gly	Asn	Thr	Ala	Trp 60
Glu	Glu	Lys	Thr	Leu 65	Ser	Lys	Tyr	Glu	Ser 70	Ser	Glu	Ile	Arg	Leu 75
Leu	Glu	Ile	Leu	Glu 80	Gly	Leu	Cys	Glu	Ser 85	Ser	Asp	Phe	Glu	Cys 90
Asn	Gln	Met	Leu	Glu 95	Ala	Gln	Glu	Glu	His 100	Leu	Glu	Ala	Trp	Trp 105
Leu	Gln	Leu	Lys	Ser 110	Glu	Tyr	Pro	Asp	Leu 115	Phe	Glu	Trp	Phe	Cys 120
Val	Lys	Thr	Leu	Lys 125	Val	Cys	Cys	Ser	Pro 130	Gly	Thr	Tyr	Gly	Pro 135
Asp	Cys	Leu	Ala	Cys 140	Gln	Gly	Gly	Ser	Gln 145	Arg	Pro	Cys	Ser	Gly 150
Asn	Gly	His	Cys	Ser 155	Gly	Asp	Gly	Ser	Arg 160	Gln	Gly	Asp	Gly	Ser 165
				170 Phe		Tyr Ser			175 Asn					180 Ile
Cys	Thr	Ala	Cys	_	Glu	Ser	Cys	Lys		Cys	Ser	Gly	Leu	
Asn	Arg	Asp	Cys	200 Gly 215	Glu	Cys	Glu	Val	205 Gly 220	Trp	Val	Leu	Asp	210 Glu 225
Gly	Ala	Сув	Val		Val	Asp	Glu	Cys		Ala	Glu	Pro	Pro	
Cys	Ser	Ala	Ala	Gln 245	Phe	Cys	Lys	Asn	Ala 250	Asn	Gly	Ser	Tyr	Thr 255
Сув	Glu	Glu	Cys	Asp 260	Ser	Ser	Cys	Val	Gly 265	Cys	Thr	Gly	Glu	Gly 270
Pro	Gly	Asn	Cys	Lys 275	Glu	Cys	Ile	Ser	Gly 280	Tyr	Ala	Arg	Glu	His 285
Gly	Gln	Cys	Ala	Asp 290	Val	Asp	Glu	Cys	Ser 295	Leu	Ala	Glu	Lys	Thr 300
Cys	Val	Arg	Lys	Asn 305	Glu	Asn	Cys	Tyr	Asn 310	Thr	Pro	Gly	Ser	Tyr 315

Val Cys Val Cys Pro Asp Gly Phe Glu Glu Thr Glu Asp Ala Cys 320 325 330

Val Pro Pro Ala Glu Ala Glu Ala Thr Glu Gly Glu Ser Pro Thr 335 340 345

Gln Leu Pro Ser Arg Glu Asp Leu 350

<210> 3

<211> 2206

<212> DNA

<213> Homo Sapien

<400> 3

caggtccaac tgcacctcgg ttctatcgat tgaattcccc ggggatcctc 50 tagagatece tegacetega eccaegegte egceaggeeg ggaggegaeg 100 cgcccagccg tctaaacggg aacagccctg gctgagggag ctgcagcgca 150 gcagagtate tgacggcgce aggttgcgta ggtgcggcac gaggagtttt 200 cccggcagcg aggaggtcct gagcagcatg gcccggagga gcgccttccc 250 tgccgccgcg ctctggctct ggagcatcct cctgtgcctg ctggcactgc 300 gggcggaggc cgggccgccg caggaggaga gcctgtacct atggatcgat 350 gctcaccagg caagagtact cataggattt gaagaagata tcctgattgt 400 ttcagagggg aaaatggcac cttttacaca tgatttcaga aaaqcqcaac 450 agagaatgcc agctattcct qtcaatatcc attccatgaa ttttacctgq 500 caagetgeag ggeaggeaga atacttetat gaatteetgt cettgegete 550 cctggataaa ggcatcatgg cagatccaac cgtcaatgtc cctctgctgg 600 gaacagtgcc tcacaaggca tcagttgttc aagttggttt cccatgtctt 650 ggaaaacagg atggggtggc agcatttgaa gtggatgtga ttgttatgaa 700 ttctgaaggc aacaccattc tccaaacacc tcaaaatgct atcttcttta 750 aaacatgtca acaagctgag tgcccaggcg ggtgccgaaa tggaggcttt 800 tgtaatgaaa gacgcatctg cgagtgtcct gatgggttcc acggacctca 850 ctgtgagaaa gccctttgta ccccacgatg tatgaatggt ggactttgtg 900 tgactcctgg tttctgcatc tgcccacctg gattctatgg agtgaactgt 950 gacaaagcaa actgctcaac cacctgcttt aatggaggga cctgtttcta 1000 ccctggaaaa tgtatttgcc ctccaggact agagggagag cagtgtgaaa 1050 tcagcaaatg cccacaaccc tgtcgaaatg gaggtaaatg cattggtaaa 1100 agcaaatgta agtgttccaa aggttaccag ggagacctct gttcaaagcc 1150

tgtctgcgag cctggctgtg gtgcacatgg aacctgccat gaacccaaca 1200 aatgccaatg tcaagaaggt tggcatggaa gacactgcaa taaaaggtac 1250 gaagccagcc tcatacatgc cctgaggcca gcaggcgccc agctcaggca 1300 gcacacgcct tcacttaaaa aggccgagga gcggcgggat ccacctgaat 1350 ccaattacat ctggtgaact ccgacatctg aaacgtttta agttacacca 1400 agttcatage ctttgttaac ctttcatgtg ttgaatgttc aaataatgtt 1450 cattacactt aagaatactg gcctgaattt tattagcttc attataaatc 1500 actgagetga tatttactet teettttaag ttttetaagt acgtetgtag 1550 catgatggta tagattttct tgtttcagtg ctttgggaca gattttatat 1600 tatgtcaatt gatcaggtta aaattttcag tgtgtagttg gcagatattt 1650 tcaaaattac aatgcattta tggtgtctgg gggcagggga acatcagaaa 1700 ggttaaattg ggcaaaaatg cgtaagtcac aagaatttgg atggtgcagt 1750 taatgttgaa gttacagcat ttcagatttt attgtcagat atttagatgt 1800 ttacactgtg gtagtggcat ttaaacaata taatatattc taaacacaat 1950 gaaataggga atataatgta tgaacttttt gcattggctt gaagcaatat 2000 aatatattgt aaacaaaaca cagctcttac ctaataaaca ttttatactg 2050 aaaaaaaaa aaaaaaaaa aaaaaaaaaa gggcggccgc gactctagag 2150 tegaeetgea gaagettgge egecatggee caaettgttt attgeagett 2200

ataatg 2206

- <210> 4
- <211> 379
- <212> PRT
- <213> Homo Sapien
- <400> 4
- Met Ala Arg Arg Ser Ala Phe Pro Ala Ala Ala Leu Trp Leu Trp 1 5 10 15
- Ser Ile Leu Cys Leu Leu Ala Leu Arg Ala Glu Ala Gly Pro 20 25 30
- Pro Gln Glu Glu Ser Leu Tyr Leu Trp Ile Asp Ala His Gln Ala 35 40 45

Arg	Val	Leu	Ile	Gly 50	Phe	Glu	Glu	Asp	Ile 55	Leu	Ile	Val	Ser	Glu 60
Gly	Lys	Met	Ala	Pro 65	Phe	Thr	His	Asp	Phe 70	Arg	Lys	Ala	Gln	Gln 75
Arg	Met	Pro	Ala	Ile 80	Pro	Val	Asn	Ile	His 85	Ser	Met	Asn	Phe	Thr 90
Trp	Gln	Ala	Ala	Gly 95	Gln	Ala	Glu	Tyr	Phe 100	Tyr	Glu	Phe	Leu	Ser 105
Leu	Arg	Ser	Leu	Asp 110	Lys	Gly	Ile	Met	Ala 115	Asp	Pro	Thr	Val	Asn 120
Val	Pro	Leu	Leu	Gly 125	Thr	Val	Pro	His	Lys 130	Ala	Ser	Val	Val	Gln 135
Val	Gly	Phe	Pro	Cys 140	Leu	Gly	Lys	Gln	Asp 145	Gly	Val	Ala	Ala	Phe 150
Glu	Val	Asp	Val	Ile 155	Val	Met	Asn	Ser	Glu 160	Gly	Asn	Thr	Ile	Leu 165
Gln	Thr	Pro	Gln	Asn 170	Ala	Ile	Phe	Phe	Lys 175	Thr	Cys	Gln	Gln	Ala 180
Glu	Cys	Pro	Gly	Gly 185	Cys	Arg	Asn	Gly	Gly 190	Phe	Cys	Asn	Glu	Arg 195
Arg	Ile	Cys	Glu	Cys 200	Pro	Asp	Gly	Phe	His 205	Gly	Pro	His	Cys	Glu 210
Lys	Ala	Leu	Cys	Thr 215	Pro	Arg	Cys	Met	Asn 220	Gly	Gly	Leu	Cys	Val 225
Thr	Pro	Gly	Phe	Cys 230	Ile	Cys	Pro	Pro	Gly 235	Phe	Tyr	Gly	Val	Asn 240
Cys	Asp	Lys	Ala	Asn 245	Cys	Ser	Thr	Thr	Cys 250	Phe	Asn	Gly	Gly	Thr 255
Cys	Phe	Tyr	Pro	Gly 260	Lys	Cys	Ile	Cys	Pro 265	Pro	Gly	Leu	Glu	Gly 270
Glu	Gln	CAa	Glu		Ser	Lys	Cys	Pro		Pro	Cys	Arg	Asn	
Gly	Lys	Cys	Ile	Gly 290	Lys	Ser	Lys	Cys	Lys 295	Cys	Ser	Lys	Gly	Tyr 300
Gln	Gly	Asp	Leu	Cys 305	Ser	Lys	Pro	Val	Cys 310	Glu	Pro	Gly	Cys	Gly 315
Ala	His	Gly	Thr	Cys 320	His	Glu	Pro	Asn	Lys 325	Cys	Gln	Cys	Gln	Glu 330
Gly	Trp	His	Gly	Arg 335	His	Cys	Asn	Lys	Arg 340	Tyr	Glu	Ala	Ser	Leu 345

```
Ile His Ala Leu Arg Pro Ala Gly Ala Gln Leu Arg Gln His Thr
 Pro Ser Leu Lys Lys Ala Glu Glu Arg Arg Asp Pro Pro Glu Ser
Asn Tyr Ile Trp
<210> 5
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
agggagcacg gacagtgtgc agatgtggac gagtgctcac tagca 45
<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 6
agagtgtatc tctggctacg c 21
<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 7
taagtccggc acattacagg tc 22
<210> 8
<211> 49
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 8
cccacgatgt atgaatggtg gactttgtgt gactcctggt ttctgcatc 49
<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence
```

<220>

```
<223> Synthetic Oligonucleotide Probe
<400> 9
aaagacgcat ctgcgagtgt cc 22
<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 10
tgctgatttc acactgctct ccc 23
<210> 11
<211> 2197
<212> DNA
<213> Homo Sapien
<400> 11
cggacgcgtg ggcgtccggc ggtcgcagag ccaggaggcg gaggcgcgcg 50
ggccagcctg ggcccagcc cacaccttca ccagggccca ggagccacca 100
tgtggcgatg tccactgggg ctactgctgt tgctgccgct ggctggccac 150
ttggctctgg gtgcccagca gggtcgtggg cgccgggagc tagcaccggg 200
totgcacctg cggggcatcc gggacgcggg aggccggtac tgccaggagc 250
aggacetgtg etgeegege egtgeegaeg aetgtgeeet geeetaeetg 300
ggcgccatct gttactgtga cctcttctgc aaccgcacgg tctccgactg 350
etgeeetgae ttetgggaet tetgeetegg egtgeeacec cetttteece 400
cgatccaagg atgtatgcat ggaggtcgta tctatccagt cttgggaacg 450
tactgggaca actgtaaccg ttgcacctgc caggagaaca ggcagtggca 500
tggtggatcc agacatgatc aaagccatca accagggcaa ctatggctgg 550
caggetggga accacagege ettetgggge atgaceetgg atgagggeat 600
tegetacege etgggeacea teegeceate tteeteggte atgaacatge 650
atgaaattta tacagtgctg aacccagggg aggtgcttcc cacagccttc 700
gaggcctctg agaagtggcc caacctgatt catgagcctc ttgaccaagg 750
caactgtgca ggctcctggg ccttctccac agcagctgtg gcatccgatc 800
gtgtctcaat ccattctctg ggacacatga cgcctgtcct gtcgccccag 850
aacctgctgt cttgtgacac ccaccagcag cagggctgcc gcggtgggcg 900
```

tetegatggt geetggtggt teetgegteg eegaggggtg gtgtetgace 950

actgctaccc cttctcgggc cgtgaacgag acgaggctgg ccctgcgccc 1000 ccctgtatga tgcacagccg agccatgggt cggggcaagc gccaggccac 1050 tgcccactgc cccaacagct atgttaataa caatgacatc taccaggtca 1100 ctcctgtcta ccgcctcggc tccaacgaca aggagatcat gaaggagctg 1150 atggagaatg gccctgtcca agccctcatg gaggtgcatg aggacttctt 1200 cctatacaag ggaggcatct acagccacac gccagtgagc cttgggaggc 1250 cagagagata ccgccggcat gggacccact cagtcaagat cacaggatgg 1300 ggagaggaga cgctgccaga tggaaggacg ctcaaatact ggactgcggc 1350 caactectgg ggcccagect ggggcgagag gggccaette cgcategtge 1400 geggegteaa tgagtgegae ategagaget tegtgetggg egtetgggge 1450 cgcgtgggca tggaggacat gggtcatcac tgaggctgcg ggcaccacgc 1500 ggggtccggc ctgggatcca ggctaagggc cggcggaaga ggccccaatg 1550 gggcggtgac cccagcctcg cccgacagag cccggggcgc aggcgggcgc 1600 cagggcgcta atcccggcgc gggttccgct gacgcagcgc cccgcctggg 1650 ageegegge aggegagaet ggeggageee ceagaeetee eagtggggae 1700 ggggcagggc ctggcctggg aagagcacag ctgcagatcc caggcctctg 1750 gegeeccac teaagactae caaagecagg acaceteaag tetecageec 1800 caatacccca ccccaatccc gtattctttt ttttttttt ttagacaggg 1850 tettgeteeg ttgeecaggt tggagtgeag tggeecatea gggeteaetg 1900 taaceteega eteetgggtt caagtgaeee teecacetea geeteteaag 1950 tagetgggae taeaggtgea ceaceaeae tggetaattt ttgtattttt 2000 tgtaaagagg ggggtctcac tgtgttgccc aggctggttt cgaactcctg 2050 ggctcaagcg gtccacctgc ctccgcctcc caaagtgctg ggattgcagg 2100 catgagecae tgeacecage cetgtattet tattetteag atatttattt 2150 ttcttttcac tgttttaaaa taaaaccaaa gtattgataa aaaaaaa 2197

<210> 12

<211> 164

<212> PRT

<213> Homo Sapien

<400> 12

Met Trp Arg Cys Pro Leu Gly Leu Leu Leu Leu Pro Leu Ala 1 5 10 15

Gly His Leu Ala Leu Gly Ala Gln Gln Gly Arg Gly Arg Glu 20 25 30

Leu Ala Pro Gly Leu His Leu Arg Gly Ile Arg Asp Ala Gly Gly
35 40 45

Arg Tyr Cys Gln Glu Gln Asp Leu Cys Cys Arg Gly Arg Ala Asp 50 55 60

Asp Cys Ala Leu Pro Tyr Leu Gly Ala Ile Cys Tyr Cys Asp Leu 65 70 75

Phe Cys Asn Arg Thr Val Ser Asp Cys Cys Pro Asp Phe Trp Asp 80 85 90

Phe Cys Leu Gly Val Pro Pro Pro Phe Pro Pro Ile Gln Gly Cys 95 100 105

Met His Gly Gly Arg Ile Tyr Pro Val Leu Gly Thr Tyr Trp Asp 110 115 120

Asn Cys Asn Arg Cys Thr Cys Gln Glu Asn Arg Gln Trp His Gly
125 130 135

Gly Ser Arg His Asp Gln Ser His Gln Pro Gly Gln Leu Trp Leu 140 145 150

Ala Gly Trp Glu Pro Gln Arg Leu Leu Gly His Asp Pro Gly
155 160

<210> 13

<211> 533

<212> DNA

<213> Homo Sapien

<220>

<221> unsure

<222> 33, 37, 80, 94, 144, 188

<223> unknown base

<400> 13

aggetecttg geeettttte cacageaage tintgenate cegatiegt 50 gteteaaate caattetet gggacacatn acgeetgtee titingeecea 100 gaacetgetg tettgtacae ceaecageag cagggetgee gegntgggeg 150 tetegatggt geetggtgt teetgegteg eegagggntg gtgtetgace 200 actgetace etteteggge egtgaacgag acgaggetgg eeetgegee 250 eeetgtatga tgeacageeg ageeatgggt eggggeaage geeaggeeae 300 tgeecactge eecaacaget atgttaataa eaatgacate taccaggtea 350 eteetgteta eegeetegge teeaacgaca aggagateat gaaggagetg 400 atggagaatg geeetgteea ageeeteatg gaaggtgeatg aggaettett 450

(

```
cagagagata ccgccggcat gggacccact cag 533
<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 14
ttcgaggcct ctgagaagtg gccc 24
<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 15
ggcggtatct ctctggcctc cc 22
<210> 16
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ttetecacag cagetgtgge atcegategt gteteaatee attetetggg 50
<210> 17
<211> 960
<212> DNA
<213> Homo Sapien
<400> 17
gctgcttgcc ctgttgatgg caggcttggc cctgcagcca ggcactgccc 50
tgctgtgcta ctcctgcaaa gcccaggtga gcaacgagga ctgcctgcag 100
gtggagaact gcacccagct gggggagcag tgctggaccg cgcgcatccg 150
cgcagttggc ctcctgaccg tcatcagcaa aggctgcagc ttgaactgcg 200
tggatgactc acaggactac tacgtgggca agaagaacat cacgtgctgt 250
gacaccgact tgtgcaacgc cagcggggcc catgccctgc agccggctgc 300
egecateett gegetgetee etgeactegg eetgetgete tggggaeeeg 350
gccagctata ggctctgggg ggccccgctg cagcccacac tgggtgtggt 400
```

cctatacaag ggaggcatct acagccacac gccagtgagc cttgggaggc 500

tectggttee tgaggeacat cetaacgea gtetgaccat gtatgtetge 500
acceptatee cecacetga cecteccatg geeeteteea ggaeteeae 550
ceggeagate agetetagtg acacagatee geetgeagat ggeeeteea 600
accetetetg etgetgtte catggeeeag catteteeae cetaaceet 650
gtgeteagge acctetteee ceaggaagee tteeetgeee acceateta 700
tgaettgage caggtetggt eegtggtge eeeggaagee 750
aggeacteag gagggeeeag taaaggetga gatgaagtgg actgagtaga 800
actggaggae aagagtegae gtgagtteet gggagtetee agagatggg 850
cetggaggee tggaggaagg ggeeaggeet cacattegtg gggeteeetg 900
aatggeagee tgagcacag gtaggeeett aataacace tgttggataa 950
geeaaaaaaa 960

<210> 18

<211> 189

<212> PRT

<213> Homo Sapien

<400> 18

Met Thr His Arg Thr Thr Trp Ala Arg Arg Thr Ser Arg Ala 1 5 10 15

Val Thr Pro Thr Cys Ala Thr Pro Ala Gly Pro Met Pro Cys Ser 20 25 30

Arg Leu Pro Pro Ser Leu Arg Cys Ser Leu His Ser Ala Cys Cys
35 40 45

Ser Gly Asp Pro Ala Ser Tyr Arg Leu Trp Gly Ala Pro Leu Gln
50 55 60

Pro Thr Leu Gly Val Val Pro Gln Ala Ser Val Pro Leu Leu Thr
65 70 75

Asp Leu Ala Gln Trp Glu Pro Val Leu Val Pro Glu Ala His Pro 80 85 90

Asn Ala Ser Leu Thr Met Tyr Val Cys Thr Pro Val Pro His Pro 95 100 105

Asp Pro Pro Met Ala Leu Ser Arg Thr Pro Thr Arg Gln Ile Ser 110 115 120

Ser Ser Asp Thr Asp Pro Pro Ala Asp Gly Pro Ser Asn Pro Leu 125 130 135

Cys Cys Cys Phe His Gly Pro Ala Phe Ser Thr Leu Asn Pro Val

140 145 150

Leu Arg His Leu Phe Pro Gln Glu Ala Phe Pro Ala His Pro Ile
155 160 165

Tyr Asp Leu Ser Gln Val Trp Ser Val Val Ser Pro Ala Pro Ser 170 175 180

Arg Gly Gln Ala Leu Arg Arg Ala Gln 185

- <210> 19
- <211> 24
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic Oligonucleotide Probe
- <400> 19

tgctgtgcta ctcctgcaaa gccc 24

- <210> 20
- <211> 24
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic Oligonucleotide Probe
- <400> 20

tgcacaagtc ggtgtcacag cacg 24

- <210> 21
- <211> 44
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic Oligonucleotide Probe
- <400> 21

agcaacgagg actgcctgca ggtggagaac tgcacccagc tggg 44

- <210> 22
- <211> 1200
- <212> DNA
- <213> Homo Sapien
- <400> 22

cccacgcgtc cgaacctctc cagcgatggg agccgcccgc ctgctgccca 50

acctcactct gtgcttacag ctgctgattc tctgctgtca aactcagtac 100

gtgagggacc agggcgccat gaccgaccag ctgagcaggc ggcagatccg 150

cgagtaccaa ctctacagca ggaccagtgg caagcacgtg caggtcaccg 200

ggcgtcgcat ctccgccacc gccgaggacg gcaacaagtt tgccaagctc 250

atagtggaga cggacacgtt tggcagccgg gttcgcatca aaggggctga 300 gagtgagaag tacatctgta tgaacaagag gggcaagctc atcgggaagc 350 ccaqcqqqaa qaqcaaaqac tgcqtqttca cggaqatcqt qctqqaqaac 400 aactatacgg ccttccagaa cgcccggcac gagggctggt tcatggcctt 450 cacgeggeag gggeggeece geeaggette eegeageege eagaaceage 500 gegaggeeca etteateaag egeetetace aaggeeaget geeetteece 550 aaccacqccq agaaqcaqaa qcaqttcqaq tttqtqqqct ccqccccac 600 ccgccggacc aagcgcacac ggcggcccca gccctcacg tagtctggga 650 ggcagggggc agcagcccct gggccgcctc cccacccctt tcccttctta 700 atccaaggac tgggctgggg tggcgggagg ggagccagat ccccgaggga 750 ggaccctgag ggccgcgaag catccgagcc cccagctggg aaggggcagg 800 coggtgccc aggggcggct ggcacagtgc ccccttcccg gacgggtggc 850 aggccctgga gaggaactga gtgtcaccct gatctcaggc caccagcctc 900 tgccggcctc ccagccgggc tcctgaagcc cgctgaaagg tcagcgactg 950 aaggeettge agacaacegt etggaggtgg etgteeteaa aatetgette 1000 teggatetee eteagtetge ecceagecee caaacteete etggetagae 1050 tgtaggaagg gacttttgtt tgtttgtttg tttcaggaaa aaagaaaggg 1100 agagagaga aaatagaggg ttgtccactc ctcacattcc acgacccagg 1150 cctgcacccc acccccaact cccagccccg gaataaaacc attttcctgc 1200

<400> 23

Met Gly Ala Ala Arg Leu Leu Pro Asn Leu Thr Leu Cys Leu Gln
1 10 15

Leu Leu Ile Leu Cys Cys Gln Thr Gln Tyr Val Arg Asp Gln Gly
20 25 30

Ala Met Thr Asp Gln Leu Ser Arg Arg Gln Ile Arg Glu Tyr Gln
35 40 45

Leu Tyr Ser Arg Thr Ser Gly Lys His Val Gln Val Thr Gly Arg
50 55 60

Arg Ile Ser Ala Thr Ala Glu Asp Gly Asn Lys Phe Ala Lys Leu 65 70 75

<210> 23

<211> 205

<212> PRT

<213> Homo Sapien

Ile Val Glu Thr Asp Thr Phe Gly Ser Arg Val Arg Ile Lys Gly 80 90 Ala Glu Ser Glu Lys Tyr Ile Cys Met Asn Lys Arg Gly Lys Leu Ile Gly Lys Pro Ser Gly Lys Ser Lys Asp Cys Val Phe Thr Glu 115 Ile Val Leu Glu Asn Asn Tyr Thr Ala Phe Gln Asn Ala Arg His Glu Gly Trp Phe Met Ala Phe Thr Arg Gln Gly Arg Pro Arg Gln Ala Ser Arg Ser Arg Gln Asn Gln Arg Glu Ala His Phe Ile Lys Arg Leu Tyr Gln Gly Gln Leu Pro Phe Pro Asn His Ala Glu Lys 175 170 Gln Lys Gln Phe Glu Phe Val Gly Ser Ala Pro Thr Arg Arg Thr 185 Lys Arg Thr Arg Arg Pro Gln Pro Leu Thr 200 <210> 24 <211> 28 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 24 cagtacgtga gggaccaggg cgccatga 28 <210> 25 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 25 ccggtgacct gcacgtgctt gcca 24 <210> 26 <211> 41 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe

<220>

- <221> unsure
- <222> 21
- <223> unknown base
- <400> 26

gcggatctgc cgcctgctca nctggtcggt catggcgccc t 41

- <210> 27
- <211> 2479
- <212> DNA
- <213> Homo Sapien
- <400> 27

acttgccatc acctgttgcc agtgtggaaa aattctccct gttgaatttt 50 ttgcacatgg aggacagcag caaagagggc aacacaggct gataagacca 100 gagacagcag ggagattatt ttaccatacg ccctcaggac gttccctcta 150 gctggagttc tggacttcaa cagaacccca tccagtcatt ttgattttgc 200 ccgtacttca gaaatgggcc tacagaccac aaagtggccc agccatgggg 300 cttttttcct gaagtcttgg cttatcattt ccctggggct ctactcacag 350 gtgtccaaac tcctggcctg ccctagtgtg tgccgctgcg acaggaactt 400 tgtctactgt aatgagcgaa gcttgacctc agtgcctctt gggatcccgg 450 agggcgtaac cgtactctac ctccacaaca accaaattaa taatgctgga 500 tttcctgcag aactgcacaa tgtacagtcg gtgcacacgg tctacctgta 550 tggcaaccaa ctggacgaat tccccatgaa ccttcccaag aatgtcagag 600 ttctccattt gcaggaaaac aatattcaga ccatttcacg ggctgctctt 650 gcccagctct tgaagcttga agagctgcac ctggatgaca actccatatc 700 cacagtgggg gtggaagacg gggccttccg ggaggctatt agcctcaaat 750 tgttgttttt gtctaagaat cacctgagca gtgtgcctgt tgggcttcct 800 gtggacttgc aagagctgag agtggatgaa aatcgaattg ctgtcatatc 850 cgacatggcc ttccagaatc tcacgagctt ggagcgtctt attgtggacg 900 ggaacctcct gaccaacaag ggtatcgccg agggcacctt cagccatctc 950 accaagetea aggaatttte aattgtaegt aattegetgt eccaeeetee 1000 tecegatete ecaggtaege atetgateag getetatttg caggacaace 1050 agataaacca catteetttg acageettet caaatetgeg taagetggaa 1100 cggctggata tatccaacaa ccaactgcgg atgctgactc aaggggtttt 1150

tgataatete tecaacetga ageageteae tgeteggaat aaceettggt 1200 tttgtgactg cagtattaaa tgggtcacag aatggctcaa atatatccct 1250 tcatctctca acgtgcgggg tttcatgtgc caaggtcctg aacaagtccg 1300 ggggatggcc gtcagggaat taaatatgaa tcttttgtcc tgtcccacca 1350 cgacccccgg cctgcctctc ttcaccccag ccccaagtac agcttctccg 1400 accactcage eteccaceet etetatteca aaccetagea gaagetacae 1450 gcctccaact cctaccacat cgaaacttcc cacgattcct gactgggatg 1500 gcagagaaag agtgacccca cctatttctg aacggatcca gctctctatc 1550 cattttgtga atgatacttc cattcaagtc agctggctct ctctcttcac 1600 cgtgatggca tacaaactca catgggtgaa aatgggccac agtttagtag 1650 ggggcatcgt tcaggagcgc atagtcagcg gtgagaagca acacctgagc 1700 ctggttaact tagagccccg atccacctat cggatttgtt tagtgccact 1750 ggatgctttt aactaccgcg cggtagaaga caccatttgt tcagaggcca 1800 ccacccatgc ctcctatctg aacaacggca gcaacacagc gtccagccat 1850 gagcagacga cgtcccacag catgggctcc ccctttctgc tggcgggctt 1900 gatcgggggc gcggtgatat ttgtgctggt ggtcttgctc agcgtctttt 1950 gctggcatat gcacaaaaag gggcgctaca cctcccagaa gtggaaatac 2000 aaccggggcc ggcggaaaga tgattattgc gaggcaggca ccaagaagga 2050 caactccatc ctggagatga cagaaaccag ttttcagatc gtctccttaa 2100 ataacgatca actccttaaa ggagatttca gactgcagcc catttacacc 2150 ccaaatgggg gcattaatta cacagactgc catatcccca acaacatgcg 2200 atactgcaac agcagcgtgc cagacctgga gcactgccat acgtgacagc 2250 cagaggeeca gegttateaa ggeggacaat tagaetettg agaacacaet 2300 cgtgtgtgca cataaagaca cgcagattac atttgataaa tgttacacag 2350 atgcatttgt gcatttgaat actctgtaat ttatacggtg tactatataa 2400 tgggatttaa aaaaagtgct atcttttcta tttcaagtta attacaaaca 2450 gttttgtaac tctttgcttt ttaaatctt 2479

<210> 28

<211> 660

<212> PRT

<213> Homo Sapien

<400> 28

Met 1	Gly	Leu	Gln	Thr 5	Thr	Lys	Trp	Pro	Ser 10	His	Gly	Ala	Phe	Phe 15
Leu	Lys	Ser	Trp	Leu 20	Ile	Ile	Ser	Leu	Gly 25	Leu	Tyr	Ser	Gln	Val 30
Ser	Lys	Leu	Leu	Ala 35	Cys	Pro	Ser	Val	Cys 40	Arg	Cys	Asp	Arg	Asn 45
Phe	Val	Tyr	Cys	Asn 50	Glu	Arg	Ser	Leu	Thr 55	Ser	Val	Pro	Leu	Gly 60
Ile	Pro	Glu	Gly	Val 65	Thr	Val	Leu	Tyr	Leu 70	His	Asn	Asn	Gln	Ile 75
Asn	Asn	Ala	Gly	Phe 80	Pro	Ala	Glu	Leu	His 85	Asn	Val	Gln	Ser	Val 90
His	Thr	Val	Tyr	Leu 95	Tyr	Gly	Asn	Gln	Leu 100	Asp	Glu	Phe	Pro	Met 105
Asn	Leu	Pro	Lys	Asn 110	Val	Arg	Val	Leu	His 115	Leu	Gln	Glu	Asn	Asn 120
Ile	Gln	Thr	Ile	Ser 125	Arg	Ala	Ala	Leu	Ala 130	Gln	Leu	Leu	Lys	Leu 135
Glu	Glu	Leu	His	Leu 140	Asp	Asp	Asn	Ser	Ile 145	Ser	Thr	Val	Gly	Val 150
Glu	Asp	Gly	Ala		Arg	Glu	Ala	Ile		Leu	Lys	Leu	Leu	
Leu	Ser	Lys	Asn	His 170	Leu	Ser	Ser	Val	Pro 175	Val	Gly	Leu	Pro	Val 180
Asp	Leu	Gln	Glu	Leu 185	Arg	Val	Asp	Glu	Asn 190	Arg	Ile	Ala	Val	Ile 195
Ser	Asp	Met	Ala	Phe 200	Gln	Asn	Leu	Thr	Ser 205	Ŀeu	Glu	Arg	Leu	Ile 210
Val	Asp	Gly	Asn	Leu 215	Leu	Thr	Asn	Lys	Gly 220	Ile	Ala	Glu	Gly	Thr 225
Phe	Ser	His	Leu	Thr 230	Lys	Leu	Lys	Glu	Phe 235	Ser	Ile	Val	Arg	Asn 240
Ser	Leu	Ser	His	Pro 245	Pro	Pro	Asp	Leu	Pro 250	Gly	Thr	His	Leu	Ile 255
Arg	Leu	Tyr	Leu	Gln 260	Asp	Asn	Gln	Ile	Asn 265	His	Ile	Pro	Leu	Thr 270
Ala	Phe	Ser	Asn	Leu 275	Arg	Lys	Leu	Glu	Arg 280	Leu	Asp	Ile	Ser	Asn 285
Asn	Gln	Leu	Arg	Met 290	Leu	Thr	Gln	Gly	Val 295	Phe	Asp	Asn	Leu	Ser 300

Asn	Leu	Lys	Gln	Leu 305	Thr	Ala	Arg	Asn	Asn 310	Pro	Trp	Phe	Cys	Asp 315
Cys	Ser	Ile	Lys	Trp 320	Val	Thr	Glu	Trp	Leu 325	Lys	Tyr	Ile	Pro	Ser 330
Ser	Leu	Asn	Val	Arg 335	Gly	Phe	Met	Cys	Gln 340	Gly	Pro	Glu	Gln	Val 345
Arg	Gly	Met	Ala	Val 350	Arg	Glu	Leu	Asn	Met 355	Asn	Leu	Leu	Ser	Cys 360
Pro	Thr	Thr	Thr	Pro 365	Gly	Leu	Pro	Leu	Phe 370	Thr	Pro	Ala	Pro	Ser 375
Thr	Ala	Ser	Pro	Thr 380	Thr	Gln	Pro	Pro	Thr 385	Leu	Ser	Ile	Pro	Asn 390
Pro	Ser	Arg	Ser	Tyr 395	Thr	Pro	Pro	Thr	Pro 400	Thr	Thr	Ser	Lys	Leu 405
Pro	Thr	Ile	Pro	Asp 410	Trp	Asp	Gly	Arg	Glu 415	Arg	Val	Thr	Pro	Pro 420
Ile	Ser	Glu	Arg	Ile 425	Gln	Leu	Ser	Ile	His 430	Phe	Val	Asn	Asp	Thr 435
Ser	Ile	Gln	Val	Ser 440	Trp	Leu	Ser	Leu	Phe 445	Thr	Val	Met	Ala	Tyr 450
Lys	Leu	Thr	Trp	Val 455	Lys	Met	Gly	His	Ser 460	Leu	Val	Gly	Gly	Ile 465
Val	Gln	Glu	Arg	Ile 470	Val	Ser	Gly	Glu	Lys 475	Gln	His	Leu	Ser	Leu 480
Val	Asn	Leu	Glu	Pro 485	Arg	Ser	Thr	Tyr	Arg 490	Ile	Cys	Leu	Val	Pro 495
Leu	Asp	Ala	Phe	Asn 500	Tyr	Arg	Ala	Val	Glu 505	Asp	Thr	Ile	Cys	Ser 510
Glu	Ala	Thr	Thr	His 515	Ala	Ser	Tyr	Leu	Asn 520	Asn	Gly	Ser	Asn	Thr 525
Ala	Ser	Ser	His	Glu 530	Gln	Thr	Thr	Ser	His 535	Ser	Met	Gly	Ser	Pro 540
Phe	Leu	Leu	Ala	Gly 545	Leu	Ile	Gly	Gly	Ala 550	Val	Ile	Phe	Val	Leu 555
Val	Val	Leu	Leu	Ser 560	Val	Phe	Cys	Trp	His 565	Met	His	Lys	Lys	Gly 570
Arg	Tyr	Thr	Ser	Gln 575	Lys	Trp	Lys	Tyr	Asn 580	Arg	Gly	Arg	Arg	Lys 585
Asp	Asp	Tyr	Cys	Glu 590	Ala	Gly	Thr	Lys	Lys 595	Asp	Asn	Ser	Ile	Leu 600

```
Glu Met Thr Glu Thr Ser Phe Gln Ile Val Ser Leu Asn Asn Asp
                 605
 Gln Leu Leu Lys Gly Asp Phe Arg Leu Gln Pro Ile Tyr Thr Pro
                 620
 Asn Gly Gly Ile Asn Tyr Thr Asp Cys His Ile Pro Asn Asn Met
Arg Tyr Cys Asn Ser Ser Val Pro Asp Leu Glu His Cys His Thr
                 650
                                      655
<210> 29
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 29
cggtctacct gtatggcaac c 21
<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 30
qcaqqacaac caqataaacc ac 22
<210> 31
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 31
acgcagattt gagaaggctg tc 22
<210> 32
<211> 46
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
ttcacgggct gctcttgccc agctcttgaa gcttgaagag ctgcac 46
<210> 33
```

<211> 3449

<400> 33 acttggagca agcggcggcg gcggagacag aggcagaggc agaagctggg 50 getecgteet egeeteecae gagegateee egaggagage egeggeeete 100 ggcgaggcga agaggccgac gaggaagacc cgggtggctg cgcccctgcc 150 tegetteeca ggegeeggeg getgeageet tgeecetett getegeettg 200 aaaatggaaa agatgctcgc aggctgcttt ctgctgatcc tcggacagat 250 cgtcctcctc cctgccgagg ccagggagcg gtcacgtggg aggtccatct 300 ctaggggcag acacgctcgg acccacccgc agacggccct tctggagagt 350 tcctgtgaga acaagcgggc agacctggtt ttcatcattg acagctctcg 400 cagtgtcaac acccatgact atgcaaaggt caaggagttc atcgtggaca 450 tettgeaatt ettggaeatt ggteetgatg teaccegagt gggeetgete 500 caatatggca gcactgtcaa gaatgagttc tccctcaaga ccttcaagag 550 gaagtccgag gtggagcgtg ctgtcaagag gatgcggcat ctgtccacgg 600 gcaccatgac tgggctggcc atccagtatg ccctgaacat cgcattctca 650 gaagcagagg gggcccggcc cctgagggag aatgtgccac gggtcataat 700 gategtgaca gatgggagac etcaggacte egtggeegag gtggetgeta 750 aggcacggga cacgggcatc ctaatctttg ccattggtgt gggccaggta 800 gacttcaaca ccttgaagtc cattgggagt gagccccatg aggaccatgt 850 cttccttgtg gccaatttca gccagattga gacgctgacc tccgtgttcc 900 agaagaagtt gtgcacggcc cacatgtgca gcaccctgga gcataactgt 950 gcccacttct gcatcaacat ccctggctca tacgtctgca ggtgcaaaca 1000 aggetacatt eteaactegg ateagaegae ttgeagaate eaggatetgt 1050 gtgccatgga ggaccacaac tgtgagcagc tctgtgtgaa tgtgccgggc 1100 teettegtet geeagtgeta eagtggetae geeetggetg aggatgggaa 1150 gaggtgtgtg gctgtggact actgtgcctc agaaaaccac ggatgtgaac 1200 atgagtgtgt aaatgetgat ggeteetaee tttgeeagtg eeatgaagga 1250

tttgctctta acccagatga aaaaacgtgc acaaggatca actactgtgc 1300

actgaacaaa ccgggctgtg agcatgagtg cgtcaacatg gaggagagct 1350

actactgccg ctgccaccgt ggctacactc tggaccccaa tggcaaaacc 1400

tgcagccgag tggaccactg tgcacagcag gaccatggct gtgagcagct 1450 gtgtctgaac acggaggatt ccttcgtctg ccagtgctca gaaggcttcc 1500 tcatcaacga ggacctcaag acctgctccc gggtggatta ctgcctgctg 1550 agtgaccatg gttgtgaata ctcctgtgtc aacatggaca gatcctttgc 1600 ctgtcagtgt cctgagggac acgtgctccg cagcgatggg aagacgtgtg 1650 caaaattgga ctcttgtgct ctgggggacc acggttgtga acattcgtgt 1700 gtaagcagtg aagattcgtt tgtgtgccag tgctttgaag gttatatact 1750 ccgtgaagat ggaaaaacct gcagaaggaa agatgtctgc caagctatag 1800 accatggctg tgaacacatt tgtgtgaaca gtgacgactc atacacgtgc 1850 gagtgcttgg agggattccg gctcgctgag gatgggaaac gctgccgaag 1900 gaaggatgtc tgcaaatcaa cccaccatgg ctgcgaacac atttgtgtta 1950 ataatgggaa ttcctacatc tgcaaatgct cagagggatt tgttctagct 2000 gaggacggaa gacggtgcaa gaaatgcact gaaggcccaa ttgacctggt 2050 ctttgtgatc gatggatcca agagtcttgg agaagagaat tttgaggtcg 2100 tgaagcagtt tgtcactgga attatagatt ccttgacaat ttcccccaaa 2150 gccgctcgag tggggctgct ccagtattcc acacaggtcc acacagagtt 2200 cactotgaga aacttcaact cagocaaaga catgaaaaaa googtggooc 2250 acatgaaata catgggaaag ggctctatga ctgggctggc cctgaaacac 2300 atgtttgaga gaagttttac ccaaggagaa ggggccaggc ccctttccac 2350 aagggtgccc agagcagcca ttgtgttcac cgacggacgg gctcaggatg 2400 acgtctccga gtgggccagt aaagccaagg ccaatggtat cactatgtat 2450 gctgttgggg taggaaaagc cattgaggag gaactacaag agattgcctc 2500 tgagcccaca aacaagcatc tcttctatgc cgaagacttc agcacaatgg 2550 atgagataag tgaaaaactc aagaaaggca tctgtgaagc tctagaagac 2600 tccgatggaa gacaggactc tccagcaggg gaactgccaa aaacggtcca 2650 acagccaaca gaatctgagc cagtcaccat aaatatccaa gacctacttt 2700 cctgttctaa ttttgcagtg caacacagat atctgtttga agaagacaat 2750 cttttacggt ctacacaaaa gctttcccat tcaacaaaac cttcaggaag 2800 ccctttggaa gaaaaacacg atcaatgcaa atgtgaaaac cttataatgt 2850 tccagaacct tgcaaacgaa gaagtaagaa aattaacaca gcgcttagaa 2900

gaaatgacac agagaatgga agccctggaa aatcgcctga gatacagatg 2950 aagattagaa atcgcgacac atttgtagtc attgtatcac ggattacaat 3000 gaacgcagtg cagagcccca aagctcaggc tattgttaaa tcaataatgt 3050 tgtgaagtaa aacaatcagt actgagaaac ctggtttgcc acagaacaaa 3100 gacaagaagt atacactaac ttgtataaat ttatctagga aaaaaatcct 3150 tcagaattct aagatgaatt taccaggtga gaatgaataa gctatgcaag 3200 gtattttgta atatactgtg gacacaactt gcttctgcct catcctgcct 3250 tagtgtgcaa tctcatttga ctatacgata aagtttgcac agtcttactt 3300 ctgtagaaca ctggccatag gaaatgctgt ttttttgtac tggactttac 3350 cttgatatat gtatatggat gtatgcataa aatcatagga catatgtact 3400 tgtggaacaa gttggatttt ttatacaata ttaaaattca ccacttcag 3449

<400> 34

Met Glu Lys Met Leu Ala Gly Cys Phe Leu Leu Ile Leu Gly Gln
1 5 10 15

Ile Val Leu Leu Pro Ala Glu Ala Arg Glu Arg Ser Arg Gly Arg
20 25 30

Ser Ile Ser Arg Gly Arg His Ala Arg Thr His Pro Gln Thr Ala 35 40 45

Leu Leu Glu Ser Ser Cys Glu Asn Lys Arg Ala Asp Leu Val Phe
50 55 60

Ile Ile Asp Ser Ser Arg Ser Val Asn Thr His Asp Tyr Ala Lys
65 70 75

Val Lys Glu Phe Ile Val Asp Ile Leu Gln Phe Leu Asp Ile Gly
80 85 90

Pro Asp Val Thr Arg Val Gly Leu Leu Gln Tyr Gly Ser Thr Val 95 100 105

Lys Asn Glu Phe Ser Leu Lys Thr Phe Lys Arg Lys Ser Glu Val 110 115 120

Glu Arg Ala Val Lys Arg Met Arg His Leu Ser Thr Gly Thr Met 125 130 135

Thr Gly Leu Ala Ile Gln Tyr Ala Leu Asn Ile Ala Phe Ser Glu 140 145 150

Ala Glu Gly Ala Arg Pro Leu Arg Glu Asn Val Pro Arg Val Ile

<210> 34

<211> 915

<212> PRT

<213> Homo Sapien

				155					160					165
Met	Ile	Val	Thr	Asp 170	Gly	Arg	Pro	Gln	Asp 175	Ser	Val	Ala	Glu	Val 180
Ala	Ala	Lys	Ala	Arg 185	Asp	Thr	Gly	Ile	Leu 190	Ile	Phe	Ala	Ile	Gly 195
Val	Gly	Gln	Val	Asp 200	Phe	Asn	Thr	Leu	Lys 205	Ser	Ile	Gly	Ser	Glu 210
Pro	His	Glu	Asp	His 215	Val	Phe	Leu	Val	Ala 220	Asn	Phe	Ser	Gln	Ile 225
Glu	Thr	Leu	Thr	Ser 230	Val	Phe	Gln	Lys	Lys 235	Leu	Cys	Thr	Ala	His 240
Met	Cys	Ser	Thr	Leu 245	Glu	His	Asn	Cys	Ala 250	His	Phe	Cys	Ile	Asn 255
Ile	Pro	Gly	Ser	Tyr 260	Val	Cys	Arg	Cys	Lys 265	Gln	Gly	Tyr	Ile	Leu 270
Asn	Ser	Asp	Gln	Thr 275	Thr	Cys	Arg	Ile	Gln 280	Asp	Leu	Cys	Ala	Met 285
Glu	Asp	His	Asn	Cys 290	Glu	Gln	Leu	Cys	Val 295	Asn	Val	Pro	Gly	Ser 300
Phe	Val	Cys	Gln	Cys 305	Tyr	Ser	Gly	Tyr	Ala 310	Leu	Ala	Glu	Asp	Gly 315
Lys	Arg	Cys	Val	Ala 320	Val	Asp	Tyr	Cys	Ala 325	Ser	Glu	Asn	His	Gly 330
Cys	Glu	His	Glu	Cys 335	Val	Asn	Ala	Asp	Gly 340	Ser	Tyr	Leu	Cys	Gln 345
Cys	His	Glu	Gly	Phe 350	Ala	Leu	Asn	Pro	Asp 355	Glu	Lys	Thr	Cys	Thr 360
Arg	Ile	Asn	Tyr	Cys 365	Ala	Leu	Asn	Lys	Pro 370	Gly	Cys	Glu	His	Glu 375
Cys	Val	Asn	Met	Glu 380	Glu	Ser	Tyr	Tyr	Cys 385	Arg	Cys	His	Arg	Gly 390
Tyr	Thr	Leu	Asp	Pro 395	Asn	Gly	Lys	Thr	Cys 400	Ser	Arg	Val	Asp	His 405
Cys	Ala	Gln	Gln	Asp 410	His	Gly	Cys	Glu	Gln 415	Leu	Cys	Leu	Asn	Thr 420
Glu	Asp	Ser	Phe	Val 425	Cys	Gln	Cys	Ser	Glu 430	Gly	Phe	Leu	Ile	Asn 435
Glu	Asp	Leu	Lys	Thr 440	Cys	Ser	Arg	Val	Asp 445	Tyr	Cys	Leu	Leu	Ser 450

Asp	His	Gly	Cys	Glu 455	Tyr	Ser	Cys	Val	Asn 460	Met	Asp	Arg	Ser	Phe 465
Ala	Cys	Gln	Cys	Pro 470	Glu	Gly	His	Val	Leu 475	Arg	Ser	Asp	Gly	Lys 480
Thr	Cys	Ala	Lys	Leu 485	Asp	Ser	Cys	Ala	Leu 490	Gly	Asp	His	Gly	Cys 495
Glu	His	Ser	Cys	Val 500	Ser	Ser	Glu	Asp	Ser 505	Phe	Val	Cys	Gln	Cys 510
Phe	Glu	Gly	Tyr	Ile 515	Leu	Arg	Glu	Asp	Gly 520	Lys	Thr	Cys	Arg	Arg 525
Lys	Asp	Val	Cys	Gln 530	Ala	Ile	Asp	His	Gly 535	Cys	Glu	His	Ile	Cys 540
Val	Asn	Ser	Asp	Asp 545	Ser	Tyr	Thr	Cys	Glu 550	Cys	Leu	Glu	Gly	Phe 555
Arg	Leu	Ala	Glu	Asp 560	Gly	Lys	Arg	Cys	Arg 565	Arg	Lys	Asp	Val	Cys 570
Lys	Ser	Thr	His	His 575	Gly	Cys	Glu	His	Ile 580	Cys	Val	Asn	Asn	Gly 585
Asn	Ser	Tyr	Ile	Cys 590	Lys	Cys	Ser	Glu	Gly 595	Phe	Val	Leu	Ala	Glu 600
Asp	Gly	Arg	Arg	Cys 605	Lys	Lys	Cys	Thr	Glu 610	Gly	Pro	Ile	Asp	Leu 615
			Arg	605	_	_			610					615
Val	Phe	Val		605 Asp 620	Gly	Ser	Lys	Ser	610 Leu 625	Gly	Glu	Glu	Asn	615 Phe 630
Val	Phe Val	Val Val	Ile	Asp 620 Gln 635	Gly Phe	Ser Val	Lys Thr	Ser Gly	610 Leu 625 Ile 640	Gly	Glu Asp	Glu Ser	Asn Leu	Phe 630 Thr 645
Val Glu Ile	Phe Val Ser	Val Val Pro	Ile Lys	605 Asp 620 Gln 635 Ala 650	Gly Phe Ala	Ser Val Arg	Lys Thr	Ser Gly Gly	610 Leu 625 Ile 640 Leu 655	Gly Ile Leu	Glu Asp Gln	Glu Ser Tyr	Asn Leu Ser	Phe 630 Thr 645 Thr 660
Val Glu Ile	Phe Val Ser	Val Val Pro	Ile Lys Lys	605 Asp 620 Gln 635 Ala 650 Glu 665	Gly Phe Ala Phe	Ser Val Arg	Lys Thr Val	Ser Gly Gly Arg	610 Leu 625 Ile 640 Leu 655 Asn 670	Gly Ile Leu Phe	Glu Asp Gln Asn	Glu Ser Tyr Ser	Asn Leu Ser	Phe 630 Thr 645 Thr 660 Lys 675
Val Glu Ile Gln Asp	Phe Val Ser Val	Val Val Pro His	Ile Lys Lys Thr	Asp 620 Gln 635 Ala 650 Glu 665 Ala 680	Gly Phe Ala Phe Val	Ser Val Arg Thr	Lys Thr Val Leu	Ser Gly Gly Arg	610 Leu 625 Ile 640 Leu 655 Asn 670 Lys 685	Gly Ile Leu Phe	Glu Asp Gln Asn Met	Glu Ser Tyr Ser	Asn Leu Ser Ala	Phe 630 Thr 645 Thr 660 Lys 675 Gly
Val Glu Ile Gln Asp	Phe Val Ser Val Met	Val Val Pro His Lys	Ile Lys Lys Thr	Asp 620 Gln 635 Ala 650 Glu 665 Ala 680 Leu 695	Gly Phe Ala Phe Val	Ser Val Arg Thr Ala	Lys Thr Val Leu His	Ser Gly Gly Arg Met	610 Leu 625 Ile 640 Leu 655 Asn 670 Lys 685 Met 700	Gly Ile Leu Phe Tyr	Glu Asp Gln Asn Met	Glu Ser Tyr Ser Gly	Asn Leu Ser Ala Lys Ser	Phe 630 Thr 645 Thr 660 Lys 675 Gly 690 Phe 705
Val Glu Ile Gln Asp Ser	Phe Val Ser Val Met Met	Val Val Pro His Lys Thr	Ile Lys Lys Thr Lys	Asp 620 Gln 635 Ala 650 Glu 665 Ala 680 Leu 695 Gly 710	Gly Phe Ala Phe Val Ala Ala	Ser Val Arg Thr Ala Leu Arg	Lys Thr Val Leu His Lys	Ser Gly Gly Arg Met His	610 Leu 625 Ile 640 Leu 655 Asn 670 Lys 685 Met 700 Ser 715	Gly Ile Leu Phe Tyr Phe	Glu Asp Gln Asn Met Glu Arg	Glu Ser Tyr Ser Gly Arg	Asn Leu Ser Ala Lys Ser Pro	Phe 630 Thr 645 Thr 660 Lys 675 Gly 690 Phe 705 Arg 720

```
Val Gly Val Gly Lys Ala Ile Glu Glu Glu Leu Gln Glu Ile Ala
                 755
 Ser Glu Pro Thr Asn Lys His Leu Phe Tyr Ala Glu Asp Phe Ser
 Thr Met Asp Glu Ile Ser Glu Lys Leu Lys Lys Gly Ile Cys Glu
                 785
                                     790
 Ala Leu Glu Asp Ser Asp Gly Arg Gln Asp Ser Pro Ala Gly Glu
 Leu Pro Lys Thr Val Gln Gln Pro Thr Glu Ser Glu Pro Val Thr
 Ile Asn Ile Gln Asp Leu Leu Ser Cys Ser Asn Phe Ala Val Gln
 His Arg Tyr Leu Phe Glu Glu Asp Asn Leu Leu Arg Ser Thr Gln
 Lys Leu Ser His Ser Thr Lys Pro Ser Gly Ser Pro Leu Glu Glu
                 860
 Lys His Asp Gln Cys Lys Cys Glu Asn Leu Ile Met Phe Gln Asn
                 875
                                     880
Leu Ala Asn Glu Glu Val Arg Lys Leu Thr Gln Arg Leu Glu Glu
                 890
Met Thr Gln Arg Met Glu Ala Leu Glu Asn Arg Leu Arg Tyr Arg
<210> 35
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 35
gtgaccctgg ttgtgaatac tcc 23
<210> 36
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 36
acagccatgg tctatagctt gg 22
<210> 37
<211> 45
<212> DNA
```

<213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 37 gcctgtcagt gtcctgaggg acacgtgctc cgcagcgatg ggaag 45 <210> 38 <211> 1813 <212> DNA <213> Homo Sapien <400> 38 ggagccgccc tgggtgtcag cggctcggct cccgcgcacg ctccggccgt 50 egegeagect eggeacetge aggteegtge gteeegegge tggegeeet 100 gactecgtee eggeeaggga gggeeatgat tteeeteeeg gggeeeetgg 150 tgaccaactt gctgcggttt ttgttcctgg ggctgagtgc cctcgcgccc 200 ccctcgcggg cccagctgca actgcacttg cccgccaacc ggttgcaggc 250 ggtggaggga ggggaagtgg tgcttccagc gtggtacacc ttgcacgggg 300 aggtgtcttc atcccagcca tgggaggtgc cctttgtgat gtggttcttc 350 aaacagaaag aaaaggagga tcaggtgttg tcctacatca atggggtcac 400 aacaagcaaa cetggagtat cettggteta etceatgeee teeeggaace 450 tgtccctgcg gctggagggt ctccaggaga aagactctgg cccctacagc 500 tgctccgtga atgtgcaaga caaacaaggc aaatctaggg gccacagcat 550

caaaacctta gaactcaatg tactggttcc tccagctcct ccatcctgcc 600

gtctccaggg tgtgccccat gtgggggcaa acgtgaccct gagctgccag 650

tctccaagga gtaagcccgc tgtccaatac cagtgggatc ggcagcttcc 700

atcettecag actitetitg caccageatt agatgteate egtgggtett 750

taagcctcac caacctttcg tcttccatgg ctggagtcta tgtctgcaag 800

gcccacaatg aggtgggcac tgcccaatgt aatgtgacgc tggaagtgag 850

cacagggeet ggagetgeag tggttgetgg agetgttgtg ggtaccetgg 900

gccccatcc tggtgggtt tcttcctct gcttgagccg catgggtgct 1250
gtgcctgtga tggtgcctgc ccagagtcaa gctggctctc tggtatgatg 1300
accccaccac tcattggcta aaggatttgg ggtctctcct tcctataagg 1350
gtcacctcta gcacagaggc ctgagtcatg ggaaagagtc acactcctga 1400
cccttagtac tctgcccca cctcttta ctgtgggaaa accatctcag 1450
taagacctaa gtgtccagga gacagaagga gaagaggaag tggatctgga 1500
attgggagga gcctccaccc acccctgact cctcttatt aagccagctg 1550
ctgaaattag ctactcacca agagtgaggg gcagagactt ccagtcactg 1600
agtctcccag gccccttga tctgtaccc acccctatct aacaccacc 1650
ttggctccca ctccagctc ctgtattgat ataacctgtc aggctggctt 1700
ggttaggttt tactggggca gaggataggg aatctcttat taaaactaac 1750
atgaaatatg tgttgtttc atttgcaaat ttaaataaag atacataatg 1800
tttgtatgaa aaa 1813

<210> 39

<211> 390

<212> PRT

<213> Homo Sapien

<400> 39

Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe
1 5 10 15

Leu Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln
20 25 30

Leu Gln Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Gly
35 40 45

Gly Glu Val Val Leu Pro Ala Trp Tyr Thr Leu His Gly Glu Val
50 55 60

Ser Ser Ser Gln Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe
65 70 75

Lys Gln Lys Glu Lys Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly 80 85 90

Val Thr Thr Ser Lys Pro Gly Val Ser Leu Val Tyr Ser Met Pro 95 100 105

Ser Arg Asn Leu Ser Leu Arg Leu Glu Gly Leu Gln Glu Lys Asp 110 115 120

Ser Gly Pro Tyr Ser Cys Ser Val Asn Val Gln Asp Lys Gln Gly

				125					130					135
Lys	Ser	Arg	Gly	His 140	Ser	Ile	Lys	Thr	Leu 145	Glu	Leu	Asn	Val	Leu 150
Val	Pro	Pro	Ala	Pro 155	Pro	Ser	Cys	Arg	Leu 160	Gln	Gly	Val	Pro	His 165
Val	Gly	Ala	Asn	Val 170	Thr	Leu	Ser	Cys	Gln 175	Ser	Pro	Arg	Ser	Lys 180
Pro	Ala	Val	Gln		Gln	Trp	Asp	Arg		Leu	Pro	Ser	Phe	
Thr	Phe	Phe	Ala	Pro 200	Ala	Leu	Asp	Val	Ile 205	Arg	Gly	Ser	Leu	Ser 210
Leu	Thr	Asn	Leu	Ser 215	Ser	Ser	Met	Ala	Gly 220	Val	Tyr	Val	Cys	Lys 225
Ala	His	Asn	Glu	Val 230	Gly	Thr	Ala	Gln	Cys 235	Asn	Val	Thr	Leu	Glu 240
Val	Ser	Thr	Gly	Pro 245	Gly	Ala	Ala	Val	Val 250	Ala	Gly	Ala	Val	Val 255
Gly	Thr	Leu	Val	Gly 260	Leu	Gly	Leu	Leu	Ala 265	Gly	Leu	Val	Leu	Leu 270
Tyr	His	Arg	Arg	Gly 275	Lys	Ala	Leu	Glu	Glu 280	Pro	Ala	Asn	Asp	Ile 285
Lys	Glu	Asp	Ala	Ile 290	Ala	Pro	Arg	Thr	Leu 295	Pro	Trp	Pro	Lys	Ser 300
Ser	Asp	Thr	Ile	Ser 305	Lys	Asn	Gly	Thr	Leu 310	Ser	Ser	Val	Thr	Ser 315
Ala	Arg	Ala	Leu	Arg 320	Pro	Pro	His	Gly	Pro 325	Pro	Arg	Pro	Gly	Ala 330
Leu	Thr	Pro	Thr	Pro 335	Ser	Leu	Ser	Ser	Gln 340	Ala	Leu	Pro	Ser	Pro 345
Arg	Leu	Pro	Thr	Thr 350	Asp	Gly	Ala		Pro 355	Gln	Pro	Ile	Ser	Pro 360
Ile	Pro	Gly	Gly	Val 365	Ser	Ser	Ser	Gly	Leu 370	Ser	Arg	Met	Gly	Ala 375
Val	Pro	Val	Met	Val 380	Pro	Ala	Gln	Ser	Gln 385	Ala	Gly	Ser	Leu	Val 390
<210>	40													

<220>

<211> 22

<212> DNA

<213> Artificial Sequence

<223> Synthetic Oligonucleotide Probe

```
<400> 40
 agggtctcca ggagaaagac tc 22
<210> 41
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 41
attgtgggcc ttgcagacat agac 24
<210> 42
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 42
ggccacagca tcaaaacctt agaactcaat gtactggttc ctccagctcc 50
<210> 43
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 43
gtgtgacaca gcgtgggc 18
<210> 44
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 44
gaccggcagg cttctgcg 18
<210> 45
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 45
cagcagette agecaceagg agtgg 25
<210> 46
```

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 46
ctgagccgtg ggctgcagtc tcgc 24
<210> 47
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 47
ccgactacga ctggttcttc atcatgcagg atgacacata tgtgc 45
<210> 48
<211> 2822
<212> DNA
<213> Homo Sapien
<400> 48
egecaccact geggecaccg ccaatgaaac gecteeeget eetagtggtt 50
ttttccactt tgttgaattg ttcctatact caaaattgca ccaagacacc 100
ttgtctccca aatgcaaaat gtgaaatacg caatggaatt gaagcctgct 150
attgcaacat gggattttca ggaaatggtg tcacaatttg tgaagatgat 200
 aatgaatgtg gaaatttaac tcagtcctgt ggcgaaaatg ctaattgcac 250
taacacagaa ggaagttatt attgtatgtg tgtacctggc ttcagatcca 300
gcagtaacca agacaggttt atcactaatg atggaaccgt ctgtatagaa 350
aatgtgaatg caaactgcca tttagataat gtctgtatag ctgcaaatat 400
taataaaact ttaacaaaaa tcagatccat aaaagaacct gtggctttgc 450
tacaagaagt ctatagaaat tctgtgacag atctttcacc aacagatata 500
attacatata tagaaatatt agctgaatca tcttcattac taggttacaa 550
gaacaacact atctcagcca aggacaccct ttctaactca actcttactg 600
aatttgtaaa aaccgtgaat aattttgttc aaagggatac atttgtagtt 650
tgggacaagt tatctgtgaa tcataggaga acacatctta caaaactcat 700
```

gcacactgtt gaacaagcta ctttaaggat atcccagagc ttccaaaaga 750

ccacagagtt tgatacaaat tcaacggata tagctctcaa agttttcttt 800

tttgattcat ataacatgaa acatattcat cctcatatga atatggatgg 850 agactacata aatatatttc caaagagaaa agctgcatat gattcaaatg 900 gcaatgttgc agttgcattt ttatattata agagtattgg tcctttgctt 950 tcatcatctg acaacttctt attgaaacct caaaattatg ataattctga 1000 agaggaggaa agagtcatat cttcagtaat ttcagtctca atgagctcaa 1050 acccacccac attatatgaa cttgaaaaaa taacatttac attaagtcat 1100 cgaaaggtca cagataggta taggagtcta tgtgcatttt ggaattactc 1150 acctgatacc atgaatggca gctggtcttc agagggctgt gagctgacat 1200 actcaaatga gacccacacc tcatgccgct gtaatcacct gacacatttt 1250 gcaattttga tgtcctctgg tccttccatt ggtattaaag attataatat 1300 tettacaagg ateaeteaae taggaataat tattteaetg atttgtettg 1350 ccatatgcat ttttaccttc tggttcttca gtgaaattca aagcaccagg 1400 acaacaattc acaaaaatct ttgctgtagc ctatttcttg ctgaacttgt 1450 ttttcttgtt gggatcaata caaatactaa taagctcttc tgttcaatca 1500 ttgccggact gctacactac ttctttttag ctgcttttgc atggatgtgc 1550 attgaaggca tacatctcta tctcattgtt gtgggtgtca tctacaacaa 1600 gggatttttg cacaagaatt tttatatctt tggctatcta agcccagccg 1650 tggtagttgg attttcggca gcactaggat acagatatta tggcacaacc 1700 aaagtatgtt ggcttagcac cgaaaacaac tttatttgga gttttatagg 1750 accagcatge ctaatcatte ttgttaatet ettggetttt ggagteatea 1800 tatacaaagt ttttcgtcac actgcagggt tgaaaccaga agttagttgc 1850 tttgagaaca taaggtcttg tgcaagagga gccctcgctc ttctgttcct 1900 teteggeace acetggatet ttggggttet ceatgttgtg caegeateag 1950 tggttacagc ttacctcttc acagtcagca atgctttcca ggggatgttc 2000 atttttttat tcctgtgtgt tttatctaga aagattcaag aagaatatta 2050 cagattgttc aaaaatgtcc cctgttgttt tggatgttta aggtaaacat 2100 agagaatggt ggataattac aactgcacaa aaataaaaat tccaagctgt 2150 ggatgaccaa tgtataaaaa tgactcatca aattatccaa ttattaacta 2200 ctagacaaaa agtattttaa atcagttttt ctgtttatgc tataggaact 2250 gtagataata aggtaaaatt atgtatcata tagatatact atgtttttct 2300

atgtgaaata gttctgtcaa aaatagtatt gcagatattt ggaaagtaat 2350
tggtttctca ggagtgatat cactgcaccc aaggaaagat tttctttcta 2400
acacgagaag tatatgaatg tcctgaagga aaccactggc ttgatatttc 2450
tgtgactcgt gttgcctttg aaactagtcc cctaccacct cggtaatgag 2500
ctccattaca gaaagtggaa cataagagaa tgaaggggca gaatatcaaa 2550
cagtgaaaag ggaatgataa gatgtatttt gaatgaactg ttttttctgt 2600
agactagctg agaaattgtt gacataaaat aaagaattga agaaacacat 2650
tttaccattt tgtgaattgt tctgaactta aatgtccact aaaacaacat 2700
agacttctgt ttgctaaatc tgtttctttt tctaatattc taaaaaaaaa 2750
aaaaaggttt acctccacaa attgaaaaaa aaaaaaaaa aaaaaaaaa 2800
aaaaaaaaaa aaaaaaaaa aa 2822

<210> 49

<211> 690

<212> PRT

<213> Homo Sapien

<400> 49

Met Lys Arg Leu Pro Leu Leu Val Val Phe Ser Thr Leu Leu Asn 1 5 10 15

Cys Ser Tyr Thr Gln Asn Cys Thr Lys Thr Pro Cys Leu Pro Asn 20 25 30

Ala Lys Cys Glu Ile Arg Asn Gly Ile Glu Ala Cys Tyr Cys Asn 35 40 45

Met Gly Phe Ser Gly Asn Gly Val Thr Ile Cys Glu Asp Asp Asn 50 55

Glu Cys Gly Asn Leu Thr Gln Ser Cys Gly Glu Asn Ala Asn Cys
65 70 75

Thr Asn Thr Glu Gly Ser Tyr Tyr Cys Met Cys Val Pro Gly Phe 80 85 90

Arg Ser Ser Ser Asn Gln Asp Arg Phe Ile Thr Asn Asp Gly Thr 95 . 100 . 105

Val Cys Ile Glu Asn Val Asn Ala Asn Cys His Leu Asp Asn Val
110 115 120

Cys Ile Ala Ala Asn Ile Asn Lys Thr Leu Thr Lys Ile Arg Ser 125 130 135

Ile Lys Glu Pro Val Ala Leu Leu Gln Glu Val Tyr Arg Asn Ser 140 145 150

Val	Thr	Asp	Leu	Ser 155	Pro	Thr	Asp	Ile	Ile 160	Thr	Tyr	Ile	Glu	Ile 165
Leu	Ala	Glu	Ser	Ser 170	Ser	Leu	Leu	Gly	Tyr 175	Lys	Asn	Asn	Thr	Ile 180
Ser	Ala	Lys	Asp	Thr 185	Leu	Ser	Asn	Ser	Thr 190	Leu	Thr	Glu	Phe	Val 195
Lys	Thr	Val	Asn	Asn 200	Phe	Val	Gln	Arg	Asp 205	Thr	Phe	Val	Val	Trp 210
Asp	Lys	Leu	Ser	Val 215	Asn	His	Arg	Arg	Thr 220	His	Leu	Thr	Lys	Leu 225
Met	His	Thr	Val	Glu 230	Gln	Ala	Thr	Leu	Arg 235	Ile	Ser	Gln	Ser	Phe 240
Gln	Lys	Thr	Thr	Glu 245	Phe	Asp	Thr	Asn	Ser 250	Thr	Asp	Ile	Ala	Leu 255
Lys	Val	Phe	Phe	Phe 260	Asp	Ser	Tyr	Asn	Met 265	Lys	His	Ile	His	Pro 270
His	Met	Asn	Met	Asp 275	Gly	Asp	Tyr	Ile	Asn 280	Ile	Phe	Pro	Lys	Arg 285
Lys	Ala	Ala	Tyr	Asp 290	Ser	Asn	Gly	Asn	Val 295	Ala	Val	Ala	Phe	Leu 300
Tyr	Tyr	Lys	Ser	Ile 305	Gly	Pro	Leu	Leu	Ser 310	Ser	Ser	Asp	Asn	Phe 315
Len		T	Pro	Gln	λen	Tvr	7.00	7	Ser	Glu	Glu	Glu	Glu	Ara
Вси	Leu	гуs		320	ASII	*1*	Asp	ASII	325				Olu	330
			Ser	320		_	_		325			•		330
Val	Ile	Ser		320 Val 335	Ile	Ser	Val	Ser	325 Met 340	Ser	Ser	Asn	Pro	330 Pro 345
Val Thr	Ile Leu	Ser Tyr	Ser	320 Val 335 Leu 350	Ile Glu	Ser Lys	Val	Ser Thr	325 Met 340 Phe 355	Ser Thr	Ser Leu	Asn Ser	Pro His	330 Pro 345 Arg 360
Val Thr Lys	Ile Leu Val	Ser Tyr Thr	Ser Glu	320 Val 335 Leu 350 Arg 365	Ile Glu Tyr	Ser Lys Arg	Val Ile Ser	Ser Thr Leu	325 Met 340 Phe 355 Cys 370	Ser Thr Ala	Ser Leu Phe	Asn Ser Trp	Pro His Asn	330 Pro 345 Arg 360 Tyr 375
Val Thr Lys Ser	Ile Leu Val Pro	Ser Tyr Thr	Ser Glu Asp	320 Val 335 Leu 350 Arg 365 Met 380	Ile Glu Tyr Asn	Ser Lys Arg	Val Ile Ser	Ser Thr Leu Trp	325 Met 340 Phe 355 Cys 370 Ser 385	Ser Thr Ala Ser	Ser Leu Phe Glu	Asn Ser Trp	Pro His Asn Cys	330 Pro 345 Arg 360 Tyr 375 Glu 390
Val Thr Lys Ser Leu	Ile Leu Val Pro	Ser Tyr Thr Asp	Ser Glu Asp	320 Val 335 Leu 350 Arg 365 Met 380 Asn 395	Ile Glu Tyr Asn Glu	Ser Lys Arg Gly	Val Ile Ser Ser	Ser Thr Leu Trp	325 Met 340 Phe 355 Cys 370 Ser 385 Ser 400	Ser Thr Ala Ser Cys	Ser Leu Phe Glu	Asn Ser Trp Gly	Pro His Asn Cys	330 Pro 345 Arg 360 Tyr 375 Glu 390 His 405
Val Thr Lys Ser Leu Leu	Ile Leu Val Pro Thr	Ser Tyr Thr Asp Tyr	Ser Glu Asp Thr	320 Val 335 Leu 350 Arg 365 Met 380 Asn 395 Ala 410	Ile Glu Tyr Asn Glu Ile	Ser Lys Arg Gly Thr	Val Ile Ser Ser His	Ser Thr Leu Trp Thr	325 Met 340 Phe 355 Cys 370 Ser 400 Ser 415	Ser Thr Ala Ser Cys	Ser Leu Phe Glu Arg	Asn Ser Trp Gly Cys Ser	Pro His Asn Cys Asn Ile	330 Pro 345 Arg 360 Tyr 375 Glu 390 His 405 Gly 420

```
Phe Phe Ser Glu Ile Gln Ser Thr Arg Thr Thr Ile His Lys Asn
                 455
                                      460
                                                          465
 Leu Cys Cys Ser Leu Phe Leu Ala Glu Leu Val Phe Leu Val Gly
                 470
 Ile Asn Thr Asn Thr Asn Lys Leu Phe Cys Ser Ile Ile Ala Gly
                 485
                                      490
 Leu Leu His Tyr Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Ile
                 500
 Glu Gly Ile His Leu Tyr Leu Ile Val Val Gly Val Ile Tyr Asn
 Lys Gly Phe Leu His Lys Asn Phe Tyr Ile Phe Gly Tyr Leu Ser
 Pro Ala Val Val Gly Phe Ser Ala Ala Leu Gly Tyr Arg Tyr
 Tyr Gly Thr Thr Lys Val Cys Trp Leu Ser Thr Glu Asn Asn Phe
 Ile Trp Ser Phe Ile Gly Pro Ala Cys Leu Ile Ile Leu Val Asn
                 575
 Leu Leu Ala Phe Gly Val Ile Ile Tyr Lys Val Phe Arg His Thr
                 590
 Ala Gly Leu Lys Pro Glu Val Ser Cys Phe Glu Asn Ile Arg Ser
 Cys Ala Arg Gly Ala Leu Ala Leu Leu Phe Leu Leu Gly Thr Thr
 Trp Ile Phe Gly Val Leu His Val Val His Ala Ser Val Val Thr
 Ala Tyr Leu Phe Thr Val Ser Asn Ala Phe Gln Gly Met Phe Ile
                 650
                                      655
 Phe Leu Phe Leu Cys Val Leu Ser Arg Lys Ile Gln Glu Glu Tyr
                 665
Tyr Arg Leu Phe Lys Asn Val Pro Cys Cys Phe Gly Cys Leu Arg
                 680
                                     685
                                                          690
```

<210> 50

<211> 589

<212> DNA

<213> Homo Sapien

<220>

<221> unsure

<222> 61

<223> unknown base

```
<400> 50
 tggaaacata tcctccctca tatgaatatg gatggagact acataaatat 50
 atttccaaag ngaaaagccg gcatatggat tcaaatggca atgttgcagt 100
 tgcattttta tattataaga gtattggtcc ctttgctttc atcatctgac 150
 aacttcttat tgaaacctca aaattatgat aattctgaag aggaggaaag 200
 agtcatatct tcagtaattt cagtctcaat gagctcaaac ccaccacat 250
 tatatgaact tgaaaaaata acatttacat taagtcatcg aaaggtcaca 300
 gataggtata ggagtctatg tggcattttg gaatactcac ctgataccat 350
 gaatggcagc tggtcttcag agggctgtga gctgacatac tcaaatgaga 400
 cccacacctc atgccgctgt aatcacctga cacattttgc aattttgatg 450
 tcctctggtc cttccattgg tattaaagat tataatattc ttacaaggat 500
 cactcaacta ggaataatta tttcactgat ttgtcttgcc atatgcattt 550
 ttaccttctg gttcttcagt gaaattcaaa gcaccagga 589
<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 51
ggtaatgagc tccattacag 20
<210> 52
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 52
ggagtagaaa gcgcatgg 18
<210> 53
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 53
cacctgatac catgaatggc ag 22
<210> 54
```

```
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 54
cgagctcgaa ttaattcg 18
<210> 55
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 55
ggatctcctg agctcagg 18
<210> 56
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 56
cctagttgag tgatccttgt aag 23
<210> 57
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 57
atgagaccca cacctcatgc cgctgtaatc acctgacaca ttttgcaatt 50
<210> 58
<211> 2137
<212> DNA
<213> Homo Sapien
<400> 58
gctcccagcc aagaacctcg gggccgctgc gcggtgggga ggagttcccc 50
gaaacccggc cgctaagcga ggcctcctcc tcccgcagat ccgaacggcc 100
tgggcgggt cacccggct gggacaagaa gccgccgcct gcctgcccgg 150
gcccggggag ggggctgggg ctggggccgg aggcggggtg tgagtgggtg 200
tgtgcggggg gcggaggctt gatgcaatcc cgataagaaa tgctcgggtg 250
tcttgggcac ctacccgtgg ggcccgtaag gcgctactat ataaggctgc 300
```

cggcccggag ccgccgcgc gtcagagcag gagcgctgcg tccaggatct 350 agggccacga ccatcccaac ccggcactca cagccccgca gcgcatcccg 400 gtcgccgccc agcctcccgc acccccatcg ccggagctgc gccgagagcc 450 ccagggaggt gccatgcgga gcgggtgtgt ggtggtccac gtatggatcc 500 tggccggcct ctggctggcc gtggccgggc gcccctcgc cttctcggac 550 gcggggcccc acgtgcacta cggctggggc gaccccatcc gcctgcggca 600 cctgtacacc tccggccccc acgggctctc cagctgcttc ctgcgcatcc 650 gtgccgacgg cgtcgtggac tgcgcgcggg gccagagcgc gcacagtttg 700 ctggagatca aggcagtcgc tctgcggacc gtggccatca agggcgtgca 750 cagcgtgcgg tacctctgca tgggcgccga cggcaagatg caggggctgc 800 ttcagtactc ggaggaagac tgtgctttcg aggaggagat ccgcccagat 850 ggctacaatg tgtaccgatc cgagaagcac cgcctcccgg tctccctgag 900 cagtgccaaa cagcggcagc tgtacaagaa cagaggcttt cttccactct 950 ctcatttcct gcccatgctg cccatggtcc cagaggagcc tgaggacctc 1000 aggggccact tggaatctga catgttctct tcgcccctgg agaccgacag 1050 catggaccca tttgggcttg tcaccggact ggaggccgtg aggagtccca 1100 gctttgagaa gtaactgaga ccatgcccgg gcctcttcac tgctgccagg 1150 ggctgtggta cctgcagcgt gggggacgtg cttctacaag aacagtcctg 1200 agtccacgtt ctgtttagct ttaggaagaa acatctagaa gttgtacata 1250 ttcagagttt tccattggca gtgccagttt ctagccaata gacttgtctg 1300 atcataacat tgtaagcctg tagcttgccc agctgctgcc tgggccccca 1350 ttctgctccc tcgaggttgc tggacaagct gctgcactgt ctcagttctg 1400 cttgaatacc tccatcgatg gggaactcac ttcctttgga aaaattctta 1450 tgtcaagctg aaattctcta attttttctc atcacttccc caggagcagc 1500 cagaagacag gcagtagttt taatttcagg aacaggtgat ccactctgta 1550 aaacagcagg taaatttcac tcaaccccat gtgggaattg atctatatct 1600 ctacttccag ggaccatttg cccttcccaa atccctccag gccagaactg 1650 actggagcag gcatggccca ccaggcttca ggagtagggg aagcctggag 1700 ccccactcca gccctgggac aacttgagaa ttccccctga ggccagttct 1750 gtcatggatg ctgtcctgag aataacttgc tgtcccggtg tcacctgctt 1800 ccatctccca gcccaccagc cctctgccca cctcacatgc ctccccatgg 1850
attggggcct cccaggcccc ccaccttatg tcaacctgca cttcttgttc 1900
aaaaatcagg aaaagaaaag atttgaagac cccaagtctt gtcaataact 1950
tgctgtgtgg aagcagcggg ggaagaccta gaaccctttc cccagcactt 2000
ggttttccaa catgatattt atgagtaatt tattttgata tgtacatctc 2050
ttattttctt acattattta tgcccccaaa ttatatttat gtatgtaagt 2100
gaggtttgtt ttgtatatta aaatggagtt tgtttgt 2137

<210> 59

<211> 216

<212> PRT

<213> Homo Sapien

<400> 59

Met Arg Ser Gly Cys Val Val Val His Val Trp Ile Leu Ala Gly 1 5 10 15

Leu Trp Leu Ala Val Ala Gly Arg Pro Leu Ala Phe Ser Asp Ala
20 25 30

Gly Pro His Val His Tyr Gly Trp Gly Asp Pro Ile Arg Leu Arg
35 40 45

His Leu Tyr Thr Ser Gly Pro His Gly Leu Ser Ser Cys Phe Leu 50 55 60

Arg Ile Arg Ala Asp Gly Val Val Asp Cys Ala Arg Gly Gln Ser
65 70 75

Ala His Ser Leu Leu Glu Ile Lys Ala Val Ala Leu Arg Thr Val 80 85 90

Ala Ile Lys Gly Val His Ser Val Arg Tyr Leu Cys Met Gly Ala 95 100 105

Asp Gly Lys Met Gln Gly Leu Leu Gln Tyr Ser Glu Glu Asp Cys 110 115 120

Ala Phe Glu Glu Ile Arg Pro Asp Gly Tyr Asn Val Tyr Arg
125 130 135

Ser Glu Lys His Arg Leu Pro Val Ser Leu Ser Ser Ala Lys Gln
140 145 150

Arg Gln Leu Tyr Lys Asn Arg Gly Phe Leu Pro Leu Ser His Phe 155 160 165

Leu Pro Met Leu Pro Met Val Pro Glu Glu Pro Glu Asp Leu Arg
170 175 . 180

Gly His Leu Glu Ser Asp Met Phe Ser Ser Pro Leu Glu Thr Asp 185 190 195

```
Ser Met Asp Pro Phe Gly Leu Val Thr Gly Leu Glu Ala Val Arg
 Ser Pro Ser Phe Glu Lys
                 215
<210> 60
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 60
atccgcccag atggctacaa tgtgta 26
<210> 61
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 61
gcctcccggt ctccctgagc agtgccaaac agcggcagtg ta 42
<210> 62
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 62
ccagtccggt gacaagccca aa 22
<210> 63
<211> 1295
<212> DNA
<213> Homo Sapien
<400> 63
cccagaagtt caagggcccc cggcctcctg cgctcctgcc gccgggaccc 50
 tegacetect cagageagee ggetgeegee eegggaagat ggegaggagg 100
 ageogecace geotectect getgetgetg egetacetgg tggtegecet 150
gggctatcat aaggcctatg ggttttctgc cccaaaagac caacaagtag 200
 tcacagcagt agagtaccaa gaggctattt tagcctgcaa aaccccaaag 250
 aagactgttt cctccagatt agagtggaag aaactgggtc ggagtgtctc 300
 ctttgtctac tatcaacaga ctcttcaagg tgattttaaa aatcgagctg 350
 agatgataga tttcaatatc cggatcaaaa atgtgacaag aagtgatgcg 400
```

gggaaatatc gttgtgaagt tagtgcccca tctgagcaag gccaaaacct 450 ggaagaggat acagtcactc tggaagtatt agtggctcca gcagttccat 500 catgtgaagt accetettet getetgagtg gaactgtggt agagetaega 550 tgtcaagaca aagaagggaa tccagctcct gaatacacat ggtttaagga 600 tggcatccgt ttgctagaaa atcccagact tggctcccaa agcaccaaca 650 gctcatacac aatgaataca aaaactggaa ctctgcaatt taatactgtt 700 tccaaactgg acactggaga atattcctgt gaagcccqca attctgttgg 750 atategeagg tgteetggga aacgaatgea agtagatgat eteaacataa 800 gtggcatcat agcagccgta gtagttgtgg ccttagtgat ttccgtttgt 850 ggccttggtg tatgctatgc tcagaggaaa ggctactttt caaaagaaac 900 ctccttccag aagagtaatt cttcatctaa agccacgaca atgagtgaaa 950 atgtgcagtg gctcacgcct gtaatcccag cactttggaa ggccgcggcg 1000 ggcggatcac gaggtcagga gttctagacc agtctggcca atatggtgaa 1050 accecatete taetaaaata caaaaattag etgggeatgg tggcatgtgc 1100 ctgcagttcc agctgcttgg gagacaggag aatcacttga acccqqqagq 1150 cggaggttgc agtgagctga gatcacqcca ctgcagtcca gcctgggtaa 1200 ggtttttacc tgtagaattc ttacaataaa tatagcttga tattc 1295

<400> 64

Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Leu Arg
1 5 10 15

Tyr Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser 20 25 30

Ala Pro Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu
35 40 45

Ala Ile Leu Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg
50 55 60

Leu Glu Trp Lys Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr
65 70 75

Gln Gln Thr Leu Gln Gly Asp Phe Lys Asn Arg Ala Glu Met Ile

<210> 64

<211> 312

<212> PRT

<213> Homo Sapien

80 85 90

Asp Phe Asn Ile Arg Ile Lys Asn Val Thr Arg Ser Asp Ala Gly Lys Tyr Arg Cys Glu Val Ser Ala Pro Ser Glu Gln Gly Gln Asn Leu Glu Glu Asp Thr Val Thr Leu Glu Val Leu Val Ala Pro Ala 125 Val Pro Ser Cys Glu Val Pro Ser Ser Ala Leu Ser Gly Thr Val 140 145 Val Glu Leu Arg Cys Gln Asp Lys Glu Gly Asn Pro Ala Pro Glu Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu Glu Asn Pro Arg Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met Asn Thr Lys Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg Cys Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile 235 Ile Ala Ala Val Val Val Ala Leu Val Ile Ser Val Cys Gly Leu Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu Thr Ser Phe Gln Lys Ser Asn Ser Ser Ser Lys Ala Thr Thr Met Ser Glu Asn Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Lys Ala Ala Gly Gly Ser Arg Gly Gln Glu Phe

<210> 65

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 65

atcgttgtga agttagtgcc cc 22

<210> 66

```
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 66
acctgcgata tccaacagaa ttg 23
<210> 67
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ggaagaggat acagtcactc tggaagtatt agtggctcca gcagttcc 48
<210> 68
<211> 2639
<212> DNA
<213> Homo Sapien
<400> 68
gacatcggag gtgggctagc actgaaactg cttttcaaga cgaggaagag 50
gaggagaaag agaaagaaga ggaagatgtt gggcaacatt tatttaacat 100
gctccacagc ccggaccctg gcatcatgct gctattcctg caaatactga 150
agaagcatgg gatttaaata ttttacttct aaataaatga attactcaat 200
ctcctatgac catctataca tactccacct tcaaaaagta catcaatatt 250
atatcattaa ggaaatagta accttctctt ctccaatatg catgacattt 300
ttggacaatg caattgtggc actggcactt atttcagtga agaaaaactt 350
tgtggttcta tggcattcat catttgacaa atgcaagcat cttccttatc 400
aatcagctcc tattgaactt actagcactg actgtggaat ccttaagggc 450
ccattacatt tctgaagaag aaagctaaga tgaaggacat gccactccga 500
attcatgtgc tacttggcct agctatcact acactagtac aagctgtaga 550
taaaaaagtg gattgtccac ggttatgtac gtgtgaaatc aggccttggt 600
ttacacccag atccatttat atggaagcat ctacagtgga ttgtaatgat 650
ttaggtettt taacttteee agecagattg ceagetaaca cacagattet 700
teteetacag actaacaata ttgcaaaaat tgaataetee acagaettte 750
cagtaaacct tactggcctg gatttatctc aaaacaattt atcttcagtc 800
```

accaatatta atgtaaaaaa gatgcctcag ctcctttctg tgtacctaga 850

ggaaaacaaa cttactgaac tgcctgaaaa atgtctgtcc gaactgagca 900 acttacaaga actctatatt aatcacaact tgctttctac aatttcacct 950 ggagccttta ttggcctaca taatcttctt cgacttcatc tcaattcaaa 1000 tagattgcag atgatcaaca gtaagtggtt tgatgctctt ccaaatctag 1050 agattctgat gattggggaa aatccaatta tcagaatcaa agacatgaac 1100 tttaagcctc ttatcaatct tcgcagcctg gttatagctg gtataaacct 1150 cacagaaata ccagataacg ccttggttgg actggaaaac ttagaaagca 1200 tctcttttta cgataacagg cttattaaag taccccatgt tgctcttcaa 1250 aaagttgtaa atctcaaatt tttggatcta aataaaaatc ctattaatag 1300 aatacgaagg ggtgatttta gcaatatgct acacttaaaa gagttgggga 1350 taaataatat gcctgagctg atttccatcg atagtcttgc tgtggataac 1400 ctgccagatt taagaaaaat agaagctact aacaacccta gattgtctta 1450 cattcacccc aatgcatttt tcagactccc caagctggaa tcactcatgc 1500 tgaacagcaa tgctctcagt gccctgtacc atggtaccat tgagtctctg 1550 ccaaacctca aggaaatcag catacacagt aaccccatca ggtgtgactg 1600 tgtcatccgt tggatgaaca tgaacaaaac caacattcga ttcatggagc 1650 cagattcact gttttgcgtg gacccacctg aattccaagg tcagaatgtt 1700 cggcaagtgc atttcaggga catgatggaa atttgtctcc ctcttatagc 1750 tcctgagagc tttccttcta atctaaatgt agaagctggg agctatgttt 1800 cettteactg tagagetact geagaaceae ageetgaaat etactggata 1850 acaccttctg gtcaaaaact cttgcctaat accctgacag acaagttcta 1900 tgtccattct gagggaacac tagatataaa tggcgtaact cccaaagaag 1950 ggggtttata tacttgtata gcaactaacc tagttggcgc tgacttgaag 2000 tctgttatga tcaaagtgga tggatctttt ccacaagata acaatggctc 2050 tttgaatatt aaaataagag atattcaggc caattcagtt ttggtgtcct 2100 ggaaagcaag ttctaaaatt ctcaaatcta gtgttaaatg gacagccttt 2150 gtcaagactg aaaattctca tgctgcgcaa agtgctcgaa taccatctga 2200 tgtcaaggta tataatctta ctcatctgaa tccatcaact gagtataaaa 2250 tttgtattga tattcccacc atctatcaga aaaacagaaa aaaatgtgta 2300

aatgtcacca ccaaaggttt gcaccctgat caaaaagagt atgaaaagaa 2350 taataccaca acacttatgg cctgtcttgg aggccttctg gggattattg 2400 gtgtgatatg tcttatcagc tgcctctctc cagaaatgaa ctgtgatggt 2450 ggacacagct atgtgaggaa ttacttacag aaaccaacct ttgcattagg 2500 tgagctttat cctcctcga taaatctctg ggaagcagga aaagaaaaaa 2550 gtacatcact gaaagtaaaa gcaactgtta taggtttacc aacaaatatg 2600 tcctaaaaac caccaaggaa acctactcca aaaatgaac 2639

<210> 69

<211> 708

<212> PRT

<213> Homo Sapien

<400> 69

Met Lys Asp Met Pro Leu Arg Ile His Val Leu Leu Gly Leu Ala 1 5 10 15

Ile Thr Thr Leu Val Gln Ala Val Asp Lys Lys Val Asp Cys Pro
20 25 30

Arg Leu Cys Thr Cys Glu Ile Arg Pro Trp Phe Thr Pro Arg Ser 35 40 45

Ile Tyr Met Glu Ala Ser Thr Val Asp Cys Asn Asp Leu Gly Leu
50 55 60

Leu Thr Phe Pro Ala Arg Leu Pro Ala Asn Thr Gln Ile Leu Leu 65 70 75

Leu Gln Thr Asn Asn Ile Ala Lys Ile Glu Tyr Ser Thr Asp Phe
80 85 90

Pro Val Asn Leu Thr Gly Leu Asp Leu Ser Gln Asn Asn Leu Ser 95 100 105

Ser Val Thr Asn Ile Asn Val Lys Lys Met Pro Gln Leu Leu Ser 110 115 120

Val Tyr Leu Glu Glu Asn Lys Leu Thr Glu Leu Pro Glu Lys Cys 125 130 135

Leu Ser Glu Leu Ser Asn Leu Gln Glu Leu Tyr Ile Asn His Asn 140 145 150

Leu Leu Ser Thr Ile Ser Pro Gly Ala Phe Ile Gly Leu His Asn 155 160 165

Leu Leu Arg Leu His Leu Asn Ser Asn Arg Leu Gln Met Ile Asn 170 175 180

Ser Lys Trp Phe Asp Ala Leu Pro Asn Leu Glu Ile Leu Met Ile 185 190 190

Gly Glu Asn Pro Ile Ile Arg Ile Lys Asp Met Asn Phe Lys Pro

				200					205					210
T	T1 -	λ	Т		C	T	77~ 7	T1-		G1	T1-	7 ~	Т о	
ьeu	iie	Asn	Leu	215	ser	Leu	vaı	iie	Ala 220	GIY	116	Asn	ьeu	225
Glu	Ile	Pro	Asp	Asn 230	Ala	Leu	Val	Gly	Leu 235	Glu	Asn	Leu	Glu	Ser 240
Ile	Ser	Phe	Tyr	Asp 245	Asn	Arg	Leu	Ile	Lys 250	Val	Pro	His	Val	Ala 255
Leu	Gln	Lys	Val	Val 260	Asn	Leu	Lys	Phe	Leu 265	Asp	Leu	Asn	Lys	Asn 270
Pro	Ile	Asn	Arg	Ile 275	Arg	Arg	Gly	Asp	Phe 280	Ser	Asn	Met	Leu	His 285
Leu	Lys	Glu	Leu	Gly 290	Ile	Asn	Asn	Met	Pro 295	Glu	Leu	Ile	Ser	Ile 300
Asp	Ser	Leu	Ala	Val 305	Asp	Asn	Leu	Pro	Asp 310	Leu	Arg	Lys	Ile	Glu 315
Ala	Thr	Asn	Asn	Pro 320	Arg	Leu	Ser	Tyr	Ile 325	His	Pro	Asn	Ala	Phe 330
Phe	Arg	Leu	Pro	Lys 335	Leu	Glu	Ser	Leu	Met 340	Leu	Asn	Ser	Asn	Ala 345
Leu	Ser	Ala	Leu	Tyr 350	His	Gly	Thr	Ile	Glu 355	Ser	Leu	Pro	Asn	Leu 360
Lys	Glu	Ile	Ser	Ile 365	His	Ser	Asn	Pro	Ile 370	Arg	Cys	Asp	Cys	Val 375
Ile	Arg	Trp	Met	Asn 380	Met	Asn	Lys	Thr	Asn 385	Ile	Arg	Phe	Met	Glu 390
Pro	Asp	Ser	Leu	Phe 395	Cys	Val	Asp	Pro	Pro 400	Glu	Phe	Gln	Gly	Gln 405
Asn	Val	Arg	Gln	Val 410	His	Phe	Arg	Asp	Met 415	Met	Glu	Ile	Cys	Leu 420
Pro	Leu	Ile	Ala	Pro 425	Glu	Ser	Phe	Pro	Ser 430	Asn	Leu	Asn	Val	Glu 435
Ala	Gly	Ser	Tyr	Val 440	Ser	Phe	His	Cys	Arg 445	Ala	Thr	Ala	Glu	Pro 450
Gln	Pro	Glu	Ile	Tyr 455	Trp	Ile	Thr	Pro	Ser 460	Gly	Gln	Lys	Leu	Leu 465
Pro	Asn	Thr	Leu	Thr 470	Asp	Lys	Phe	Tyr	Val 475	His	Ser	Glu	Gly	Thr 480
Leu	Asp	Ile	Asn	Gly 485	Val	Thr	Pro	Lys	Glu 490	Gly	Gly	Leu	Tyr	Thr 495

*

Cys Ile Ala Thr Asn Leu Val Gly Ala Asp Leu Lys Ser Val Met Ile Lys Val Asp Gly Ser Phe Pro Gln Asp Asn Asn Gly Ser Leu 515 520 Asn Ile Lys Ile Arg Asp Ile Gln Ala Asn Ser Val Leu Val Ser 530 Trp Lys Ala Ser Ser Lys Ile Leu Lys Ser Ser Val Lys Trp Thr 550 Ala Phe Val Lys Thr Glu Asn Ser His Ala Ala Gln Ser Ala Arg Ile Pro Ser Asp Val Lys Val Tyr Asn Leu Thr His Leu Asn Pro 575 Ser Thr Glu Tyr Lys Ile Cys Ile Asp Ile Pro Thr Ile Tyr Gln Lys Asn Arg Lys Lys Cys Val Asn Val Thr Thr Lys Gly Leu His Pro Asp Gln Lys Glu Tyr Glu Lys Asn Asn Thr Thr Leu Met 625 Ala Cys Leu Gly Gly Leu Leu Gly Ile Ile Gly Val Ile Cys Leu Ile Ser Cys Leu Ser Pro Glu Met Asn Cys Asp Gly Gly His Ser 655 Tyr Val Arg Asn Tyr Leu Gln Lys Pro Thr Phe Ala Leu Gly Glu 665 670 Leu Tyr Pro Pro Leu Ile Asn Leu Trp Glu Ala Gly Lys Glu Lys 680 685 Ser Thr Ser Leu Lys Val Lys Ala Thr Val Ile Gly Leu Pro Thr 700 705 695

Asn Met Ser

- <210> 70
- <211> 1305
- <212> DNA
- <213> Homo Sapien
- <400> 70

gcccgggact ggcgcaaggt gcccaagcaa ggaaagaaat aatgaagaga 50 cacatgtgtt agctgcagcc ttttgaaaca cgcaagaagg aaatcaatag 100 tgtggacagg gctggaacct ttaccacgct tgttggagta gatgaggaat 150 gggctcgtga ttatgctgac attccagcat gaatctggta gacctgtggt 200

taaccegtte cetetecatg tgteteetee tacaaagttt tgttettatg 250 atactgtgct ttcattctgc cagtatgtgt cccaagggct gtctttgttc 300 ttcctctggg ggtttaaatg tcacctgtag caatgcaaat ctcaaggaaa 350 tacctagaga tettecteet gaaacagtet tactgtatet ggaetecaat 400 cagatcacat ctattcccaa tgaaattttt aaggacctcc atcaactgag 450 agttctcaac ctgtccaaaa atggcattga gtttatcgat gagcatgcct 500 tcaaaggagt agctgaaacc ttgcagactc tggacttgtc cgacaatcgg 550 attcaaagtg tgcacaaaaa tgccttcaat aacctgaagg ccagggccag 600 aattgccaac aaccctggc actgcgactg tactctacag caagttctga 650 ggagcatggc gtccaatcat gagacagccc acaacgtgat ctgtaaaacg 700 tccgtgttgg atgaacatgc tggcagacca ttcctcaatg ctgccaacga 750 cgctgacctt tgtaacctcc ctaaaaaaac taccgattat gccatgctgg 800 tcaccatgtt tggctggttc actatggtga tctcatatgt ggtatattat 850 gtgaggcaaa atcaggagga tgcccggaga cacctcgaat acttgaaatc 900 cctgccaagc aggcagaaga aagcagatga acctgatgat attagcactg 950 tggtatagtg tccaaactga ctgtcattga qaaaqaaaqa aagtagtttg 1000 cgattgcagt agaaataagt ggtttacttc tcccatccat tgtaaacatt 1050 tgaaactttg tatttcagtt ttttttgaat tatgccactg ctgaactttt 1100 aacaaacact acaacataaa taatttgagt ttaggtgatc caccccttaa 1150 ttgtaccccc gatggtatat ttctgagtaa gctactatct gaacattagt 1200 tagatccatc tcactattta ataatgaaat ttatttttt aatttaaaag 1250 aaaca 1305

- <210> 71
- <211> 259
- <212> PRT
- <213> Homo Sapien
- <400> 71
- Met Asn Leu Val Asp Leu Trp Leu Thr Arg Ser Leu Ser Met Cys
 1 5 10 15
- Leu Leu Cln Ser Phe Val Leu Met Ile Leu Cys Phe His Ser 20 25 30
- Ala Ser Met Cys Pro Lys Gly Cys Leu Cys Ser Ser Ser Gly Gly
 35 40 45

Leu Asn Val Thr Cys Ser Asn Ala Asn Leu Lys Glu Ile Pro Arg 50 Asp Leu Pro Pro Glu Thr Val Leu Leu Tyr Leu Asp Ser Asn Gln Ile Thr Ser Ile Pro Asn Glu Ile Phe Lys Asp Leu His Gln Leu 80 85 Arg Val Leu Asn Leu Ser Lys Asn Gly Ile Glu Phe Ile Asp Glu His Ala Phe Lys Gly Val Ala Glu Thr Leu Gln Thr Leu Asp Leu 110 Ser Asp Asn Arg Ile Gln Ser Val His Lys Asn Ala Phe Asn Asn 130 Leu Lys Ala Arg Ala Arg Ile Ala Asn Asn Pro Trp His Cys Asp Cys Thr Leu Gln Gln Val Leu Arg Ser Met Ala Ser Asn His Glu 155 Thr Ala His Asn Val Ile Cys Lys Thr Ser Val Leu Asp Glu His 170 175 Ala Gly Arg Pro Phe Leu Asn Ala Ala Asn Asp Ala Asp Leu Cys 195 Asn Leu Pro Lys Lys Thr Thr Asp Tyr Ala Met Leu Val Thr Met Phe Gly Trp Phe Thr Met Val Ile Ser Tyr Val Val Tyr Tyr Val Arg Gln Asn Gln Glu Asp Ala Arg Arg His Leu Glu Tyr Leu Lys 230 240 Ser Leu Pro Ser Arg Gln Lys Lys Ala Asp Glu Pro Asp Asp Ile

Ser Thr Val Val

<210> 72

<211> 2290

<212> DNA

<213> Homo Sapien

<400> 72

accgagecga geggacegaa ggegegeeeg agatgeaggt gageaagagg 50
atgetggegg ggggegtgag gageatgeee ageeceetee tggeetgetg 100
geageceate eteetgetgg tgetgggete agtgetgtea ggeteggeea 150
egggetgeee geeeegetge gagtgeteeg eeeaggaeeg egetgtgetg 200

tgccaccgca agtgctttgt ggcagtcccc gagggcatcc ccaccgagac 250 gegeetgetg gaeetaggea agaacegeat caaaaegete aaceaggaeg 300 agttcgccag cttcccgcac ctggaggagc tggagctcaa cgagaacatc 350 gtgagcgccg tggagcccgg cgccttcaac aacctcttca acctccggac 400 gctgggtctc cgcagcaacc gcctgaagct catcccgcta ggcgtcttca 450 ctggcctcag caacctgacc aagcaggaca tcagcgagaa caagatcgtt 500 atcctactgg actacatgtt tcaggacctg tacaacctca agtcactgga 550 ggttggcgac aatgacctcg tctacatctc tcaccgcgcc ttcagcggcc 600 tcaacagcct ggagcagctg acgctggaga aatgcaacct gacctccatc 650 cccaccgagg cgctgtccca cctgcacggc ctcatcgtcc tgaggctccg 700 gcacctcaac atcaatgcca tccgggacta ctccttcaag aggctgtacc 750 gactcaaggt cttggagatc tcccactggc cctacttgga caccatgaca 800 eccaactgee tetaeggeet caacetgaeg teeetgteea teacacaetg 850 caatctgacc gctgtgccct acctggccgt ccgccaccta gtctatctcc 900 getteeteaa eeteteetae aaceeeatea geaceattga gggeteeatg 950 ttgcatgagc tgctccggct gcaggagatc cagctggtgg gcgggcagct 1000 ggccgtggtg gagccctatg ccttccgcgg cctcaactac ctgcgcgtgc 1050 tcaatgtctc tggcaaccag ctgaccacac tggaggaatc agtcttccac 1100 tcggtgggca acctggagac actcatcctg gactccaacc cgctggcctg 1150 cgactgtcgg ctcctgtggg tgttccggcg ccgctggcgg ctcaacttca 1200 accggcagca gcccacgtgc gccacgcccg agtttgtcca gggcaaggag 1250 ttcaaggact tccctgatgt gctactgccc aactacttca cctgccgccg 1300 egecegeate egggacegea aggeceagea ggtgtttgtg gaegagggee 1350 acacggtgca gtttgtgtgc cgggccgatg gcgacccgcc gcccgccatc 1400 etetggetet caeceegaaa geacetggte teageeaaga geaatgggeg 1450 gctcacagtc ttccctgatg gcacgctgga ggtgcgctac gcccaggtac 1500 aggacaacgg cacgtacctg tgcatcgcgg ccaacgcggg cggcaacgac 1550 tecatgeceg cecaectgea tgtgegeage tactegeceg actggececa 1600 tcagcccaac aagaccttcg ctttcatctc caaccagccg ggcgagggag 1650 aggccaacag caccegegee actgtgeett teeeettega cateaagace 1700

<400> 73

Met Gln Val Ser Lys Arg Met Leu Ala Gly Gly Val Arg Ser Met

1 5 10 15

Pro Ser Pro Leu Leu Ala Cys Trp Gln Pro Ile Leu Leu Val
20 25 30

Leu Gly Ser Val Leu Ser Gly Ser Ala Thr Gly Cys Pro Pro Arg
35 40 45

Cys Glu Cys Ser Ala Gln Asp Arg Ala Val Leu Cys His Arg Lys

Cys Phe Val Ala Val Pro Glu Gly Ile Pro Thr Glu Thr Arg Leu 65 70 75

Leu Asp Leu Gly Lys Asn Arg Ile Lys Thr Leu Asn Gln Asp Glu 80 85 90

Phe Ala Ser Phe Pro His Leu Glu Glu Leu Glu Leu Asn Glu Asn 95 100 105

Ile Val Ser Ala Val Glu Pro Gly Ala Phe Asn Asn Leu Phe Asn 110 115 120

Leu Arg Thr Leu Gly Leu Arg Ser Asn Arg Leu Lys Leu Ile Pro 125 130 135

Leu Gly Val Phe Thr Gly Leu Ser Asn Leu Thr Lys Gln Asp Ile 140 145 150

<210> 73

<211> 620

<212> PRT

<213> Homo Sapien

501	Glu	Asn	Lys	Ile 155	Val	Ile	Leu	Leu	Asp 160	Tyr	Met	Phe	Gln	Asp 165
Leu	Tyr	Asn	Leu	Lys 170	Ser	Leu	Glu	Val	Gly 175	Asp	Asn	Asp	Leu	Val 180
Tyr	Ile	Ser	His	Arg 185	Ala	Phe	Ser	Gly	Leu 190	Asn	Ser	Leu	Glu	Gln 195
Leu	Thr	Leu	Glu	Lys 200	Cys	Asn	Leu	Thr	Ser 205	Ile	Pro	Thr	Glu	Ala 210
Leu	Ser	His	Leu	His 215	Gly	Leu	Ile	Val	Leu 220	Arg	Leu	Arg	His	Leu 225
Asn	Ile	Asn	Ala	Ile 230	Arg	Asp	Tyr	Ser	Phe 235	Lys	Arg	Leu	Tyr	Arg 240
Leu	Lys	Val	Leu	Glu 245	Ile	Ser	His	Trp	Pro 250	Tyr	Leu	Asp	Thr	Met 255
Thr	Pro	Asn	Cys	Leu 260	Tyr	Gly	Leu	Asn	Leu 265	Thr	Ser	Leu	Ser	Ile 270
Thr	His	Cys	Asn	Leu 275	Thr	Ala	Val	Pro	Tyr 280	Leu	Ala	Val	Arg	His 285
Leu	Val	Tyr	Leu	Arg 290	Phe	Leu	Asn	Leu	Ser 295	Tyr	Asn	Pro	Ile	Ser 300
Thr	T1.	a 1	~1											
1111	iie	GIU	GIY	Ser 305	Met	Leu	His	Glu	Leu 310	Leu	Arg	Leu	Gln	Glu 315
			Val	305					310					315
Ile	Gln	Leu	-	305 Gly 320	Gly	Gln	Leu	Ala	310 Val 325	Val	Glu	Pro	Tyr	315 Ala 330
Ile Phe	Gln Arg	Leu Gly	Val	305 Gly 320 Asn 335	Gly Tyr	Gln Leu	Leu Arg	Ala Val	310 Val 325 Leu 340	Val Asn	Glu · Val	Pro Ser	Tyr Gly	315 Ala 330 Asn 345
Ile Phe Gln	Gln Arg Leu	Leu Gly Thr	Val Leu	305 Gly 320 Asn 335 Leu 350	Gly Tyr Glu	Gln Leu Glu	Leu Arg Ser	Ala Val Val	310 Val 325 Leu 340 Phe 355	Val Asn His	Glu Val Ser	Pro Ser Val	Tyr Gly Gly	315 Ala 330 Asn 345 Asn 360
Ile Phe Gln Leu	Gln Arg Leu Glu	Leu Gly Thr	Val Leu Thr	305 Gly 320 Asn 335 Leu 350 Ile 365	Gly Tyr Glu Leu	Gln Leu Glu Asp	Leu Arg Ser	Ala Val Val Asn	310 Val 325 Leu 340 Phe 355 Pro 370	Val Asn His Leu	Glu Val Ser	Pro Ser Val Cys	Tyr Gly Gly Asp	315 Ala 330 Asn 345 Asn 360 Cys 375
Ile Phe Gln Leu Arg	Gln Arg Leu Glu Leu	Leu Gly Thr Thr	Val Leu Thr	305 Gly 320 Asn 335 Leu 350 Ile 365 Val 380	Gly Tyr Glu Leu Phe	Gln Leu Glu Asp	Leu Arg Ser Ser	Ala Val Val Asn	310 Val 325 Leu 340 Phe 355 Pro 370 Trp 385	Val Asn His Leu	Glu Val Ser Ala	Pro Ser Val Cys Asn	Tyr Gly Gly Asp	315 Ala 330 Asn 345 Asn 360 Cys 375 Asn 390
Ile Phe Gln Leu Arg	Gln Arg Leu Glu Leu	Leu Gly Thr Thr Leu Gln	Val Leu Thr Leu	305 Gly 320 Asn 335 Leu 350 Ile 365 Val 380 Thr 395	Gly Tyr Glu Leu Phe Cys	Gln Leu Glu Asp Arg	Leu Arg Ser Ser Arg	Ala Val Val Asn Arg	310 Val 325 Leu 340 Phe 355 Pro 370 Trp 385 Glu 400	Val Asn His Leu Arg	Glu Val Ser Ala Leu Val	Pro Ser Val Cys Asn	Tyr Gly Gly Asp Phe	315 Ala 330 Asn 345 Asn 360 Cys 375 Asn 390 Lys
Ile Phe Gln Leu Arg Arg	Gln Arg Leu Glu Leu Gln Phe	Leu Gly Thr Thr Leu Gln	Val Leu Thr Leu Trp	305 Gly 320 Asn 335 Leu 350 Ile 365 Val 380 Thr 395 Phe 410	Gly Tyr Glu Leu Phe Cys	Gln Leu Glu Asp Arg Ala	Leu Arg Ser Arg Thr	Ala Val Val Asn Arg Pro	310 Val 325 Leu 340 Phe 355 Pro 370 Trp 385 Glu 400 Leu 415	Val Asn His Leu Arg Phe	Glu Val Ser Ala Leu Val	Pro Ser Val Cys Asn Gln	Tyr Gly Gly Asp Phe Gly	315 Ala 330 Asn 345 Asn 360 Cys 375 Asn 390 Lys 405 Thr 420

Asp Pro Pro Pro Ala Ile Leu Trp Leu Ser Pro Arg Lys His Leu 455 460 Val Ser Ala Lys Ser Asn Gly Arg Leu Thr Val Phe Pro Asp Gly Thr Leu Glu Val Arg Tyr Ala Gln Val Gln Asp Asn Gly Thr Tyr Leu Cys Ile Ala Ala Asn Ala Gly Gly Asn Asp Ser Met Pro Ala His Leu His Val Arg Ser Tyr Ser Pro Asp Trp Pro His Gln Pro 515 Asn Lys Thr Phe Ala Phe Ile Ser Asn Gln Pro Gly Glu Gly Glu 530 Ala Asn Ser Thr Arg Ala Thr Val Pro Phe Pro Phe Asp Ile Lys 545 Thr Leu Ile Ile Ala Thr Thr Met Gly Phe Ile Ser Phe Leu Gly Val Val Leu Phe Cys Leu Val Leu Phe Leu Trp Ser Arg Gly 575 Lys Gly Asn Thr Lys His Asn Ile Glu Ile Glu Tyr Val Pro Arg 590 Lys Ser Asp Ala Gly Ile Ser Ser Ala Asp Ala Pro Arg Lys Phe 605 Asn Met Lys Met Ile 620 <210> 74 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 74 tcacctggag cctttattgg cc 22 <210> 75 <211> 23 <212> DNA

<220>

<223> Synthetic Oligonucleotide Probe

<400> 75 ataccageta taaccagget geg 23

<213> Artificial Sequence

```
<210> 76
<211> 52
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 76
 caacagtaag tggtttgatg ctcttccaaa tctagagatt ctgatgattg 50
gg 52
<210> 77
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 77
ccatgtgtct cctcctacaa ag 22
<210> 78
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 78
gggaatagat gtgatctgat tgg 23
<210> 79
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
cacctgtagc aatgcaaatc tcaaggaaat acctagagat cttcctcctg 50
<210> 80
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 80
agcaaccgcc tgaagctcat cc 22
<210> 81
<211> 24
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 81
aaggcgcggt gaaagatgta gacg 24
<210> 82
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 82
gactacatgt ttcaggacct gtacaacctc aagtcactgg aggttggcga 50
<210> 83
<211> 1685
<212> DNA
<213> Homo Sapien
<400> 83
cccacgcgtc cgcacctcgg ccccgggctc cgaagcggct cggggggcgcc 50
ctttcggtca acatcgtagt ccacccctc cccatcccca gcccccgggg 100
attcaggctc gccagcgccc agccagggag ccggccggga agcgcgatgg 150
gggccccagc cgcctcgctc ctgctcctgc tcctgctgtt cgcctgctgc 200
tgggcgcccg gcggggccaa cctctcccag gacgacagcc agccctggac 250
atctgatgaa acagtggtgg ctggttggcac cgtggtgctc aagtgccaag 300
tgaaagatca cgaggactca tccctgcaat ggtctaaccc tgctcagcag 350
actetetaet ttggggagaa gagageeett egagataate gaatteaget 400
ggttacctct acgccccacg agctcagcat cagcatcagc aatgtggccc 450
tggcagacga gggcgagtac acctgctcaa tcttcactat gcctgtgcga 500
actgccaagt ccctcgtcac tgtgctagga attccacaga agcccatcat 550
cactggttat aaatcttcat tacgggaaaa agacacagcc accctaaact 600
gtcagtcttc tgggagcaag cctgcagccc ggctcacctg gagaaagggt 650
gaccaagaac tccacggaga accaacccgc atacaggaag atcccaatgg 700
taaaaccttc actgtcagca gctcggtgac attccaggtt acccgggagg 750
atgatggggc gagcatcgtg tgctctgtga accatgaatc tctaaaggga 800
```

gctgacagat ccacctctca acgcattgaa gttttataca caccaactgc 850

gatgattagg ccagaccete eccateeteg tgagggeeag aagetgttge 900 tacactqtqa qqqtcqcqqc aatccaqtcc cccaqcaqta cctatqqqag 950 aaggagggca gtgtgccacc cctgaagatg acccaggaga gtgccctgat 1000 cttccctttc ctcaacaaga gtgacagtgg cacctacggc tgcacagcca 1050 ccagcaacat gggcagctac aaggcctact acaccctcaa tgttaatgac 1100 cccagtccgg tgccctcctc ctccagcacc taccacgcca tcatcggtgg 1150 gategtgget tteattgtet teetgetget cateatgete atetteettg 1200 gccactactt gatccggcac aaaggaacct acctgacaca tgaggcaaaa 1250 ggctccgacg atgctccaga cgcggacacg gccatcatca atgcagaagg 1300 cgggcagtca ggaggggacg acaagaagga atatttcatc tagaggcgcc 1350 tgcccacttc ctgcgccccc caggggccct gtggggactg ctggggccgt 1400 caccaacccg gacttgtaca gagcaaccgc agggccgccc ctcccgcttg 1450 ctccccagcc cacccacccc cctgtacaga atgtctgctt tgggtgcggt 1500 ttgccctcag ccctttccgt ggcttctctg catttgggtt attattattt 1600 ttgtaacaat cccaaatcaa atctgtctcc aggctggaga ggcaggagcc 1650 ctggggtgag aaaagcaaaa aacaaacaaa aaaca 1685

<400> 84

Met Gly Ala Pro Ala Ala Ser Leu Leu Leu Leu Leu Leu Leu Phe
1 5 10 15

Ala Cys Cys Trp Ala Pro Gly Gly Ala Asn Leu Ser Gln Asp Asp 20 25 30

Ser Gln Pro Trp Thr Ser Asp Glu Thr Val Val Ala Gly Gly Thr 35 40 45

Val Val Leu Lys Cys Gln Val Lys Asp His Glu Asp Ser Ser Leu
50 55 60

Gln Trp Ser Asn Pro Ala Gln Gln Thr Leu Tyr Phe Gly Glu Lys
65 70 75

Arg Ala Leu Arg Asp Asn Arg Ile Gln Leu Val Thr Ser Thr Pro
80 85 90

His Glu Leu Ser Ile Ser Ile Ser Asn Val Ala Leu Ala Asp Glu

<210> 84

<211> 398

<212> PRT

<213> Homo Sapien

				95					100					105
Gly	Glu	Tyr	Thr	Cys 110	Ser	Ile	Phe	Thr	Met 115	Pro	Val	Arg	Thr	Ala 120
Lys	Ser	Leu	Val	Thr 125	Val	Leu	Gly	Ile	Pro 130	Gln	Lys	Pro	Ίle	Ile 135
Thr	Gly	Tyr	Lys	Ser 140	Ser	Leu	Arg	Glu	Lys 145	Asp	Thr	Ala	Thr	Leu 150
Asn	Cys	Gln	Ser	Ser 155	Gly	Ser	Lys	Pro	Ala 160	Ala	Arg	Leu	Thr	Trp 165
Arg	Lys	Gly	Asp	Gln 170	Glu	Leu	His	Gly	Glu 175	Pro	Thr	Arg	Ile	Gln 180
Glu	Asp	Pro	Asn	Gly 185	Lys	Thr	Phe	Thr	Val 190	Ser	Ser	Ser	Val	Thr 195
Phe	Gln	Val	Thr	Arg 200	Glu	Asp	Asp	Gly	Ala 205	Ser	Ile	Val	Cys	Ser 210
Val	Asn	His	Glu	Ser 215	Leu	Lys	Gly	Ala	Asp 220	Arg	Ser	Thr	Ser	Gln 225
Arg	Ile	Glu	Val	Leu 230	Tyr	Thr	Pro	Thr	Ala 235	Met	Ile	Arg	Pro	Asp 240
Pro	Pro	His	Pro	Arg 245	Glu	Gly	Gln	Lys	Leu 250	Leu	Leu	His	Cys	Glu 255
Gly	Arg	Gly	Asn	Pro 260	Val	Pro	Gln	Gln	Tyr 265	Leu	Trp	Glu	Lys	Glu 270
Gly	Ser	Val	Pro	Pro 275	Leu	Lys	Met	Thr	Gln 280	Glu	Ser	Ala	Leu	Ile 285
Phe	Pro	Phe	Leu	Asn 290	Lys	Ser	Asp	Ser	Gly 295	Thr	Tyr	Gly	Cys	Thr 300
Ala	Thr	Ser	Asn	Met 305	Gly	Ser	Tyr	Lys	Ala 310	Tyr	Tyr	Thr	Leu	Asn 315
Val	Asn	Asp	Pro	Ser 320	Pro	Val	Pro	Ser	Ser 325	Ser	Ser	Thr	Tyr	His 330
Ala	Ile	Ile	Gly	Gly 335	Ile	Val	Ala	Phe	Ile 340	Val	Phe	Leu	Leu	Leu 345
Ile	Met	Leu	Ile	Phe 350	Leu	Gly	His	Tyr	Leu 355	Ile	Arg	His	Lys	Gly 360
Thr	Tyr	Leu	Thr	His 365	Glu	Ala	Lys	Gly	Ser 370	Asp	Asp	Ala	Pro	Asp 375
Ala	Asp	Thr	Ala	Ile 380	Ile	Asn	Ala	Glu	Gly 385	Gly	Gln	Ser	Gly	Gly 390

```
Asp Asp Lys Lys Glu Tyr Phe Ile
                 395
<210> 85
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 85
gctaggaatt ccacagaagc cc. 22
<210> 86
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 86
aacctggaat gtcaccgagc tg 22
<210> 87
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 87
cctagcacag tgacgaggga cttggc 26
<210> 88
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 88
aagacacagc caccctaaac tgtcagtctt ctgggagcaa gcctgcagcc 50
<210> 89
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Sequence
<400> 89
gccctggcag acgagggcga gtacacctgc tcaatcttca ctatgcctgt 50
<210> 90
```

- <211> 2755
- <212> DNA
- <213> Homo Sapien

<400> 90 gggggttagg gaggaaggaa tccacccca ccccccaaa cccttttctt 50 ctcctttcct ggcttcggac attggagcac taaatgaact tgaattgtgt 100 ctgtggcgag caggatggtc gctgttactt tgtgatgaga tcggggatga 150 attgctcgct ttaaaaatgc tgctttggat tctgttgctg gagacgtctc 200 tttgttttgc cgctggaaac gttacagggg acgtttgcaa agagaagatc 250 tgttcctgca atgagataga aggggaccta cacgtagact gtgaaaaaaa 300 gggcttcaca agtctgcage gtttcactgc cccgacttcc cagttttacc 350 atttatttct gcatggcaat tccctcactc gacttttccc taatgagttc 400 gctaactttt ataatgcggt tagtttgcac atggaaaaca atggcttgca 450 tgaaatcgtt ccgggggctt ttctggggct gcagctggtg aaaaggctgc 500 acatcaacaa caacaagatc aagtetttte gaaagcagac ttttetgggg 550 ctggacgatc tggaatatct ccaggctgat tttaatttat tacgagatat 600 agacccgggg gccttccagg acttgaacaa gctggaggtg ctcattttaa 650 atgacaatet catcagcace etacetgeca aegtgtteca gtatgtgece 700 atcacccacc tegaceteeg gggtaacagg etgaaaaege tgeeetatga 750 ggaggtcttg gagcaaatcc ctggtattgc ggagatcctg ctagaggata 800 accettggga etgeacetgt gatetgetet eeetgaaaga atggetggaa 850 aacattccca agaatgccct gatcggccga gtggtctgcg aagcccccac 900 cagactgcag ggtaaagacc tcaatgaaac caccgaacag gacttgtgtc 950 ctttgaaaaa ccgagtggat tctagtctcc cggcgccccc tgcccaagaa 1000 gagacetttg etectggace cetgecaact cettteaaga caaatgggea 1050 agaggatcat gccacaccag ggtctgctcc aaacggaggt acaaagatcc 1100 caggcaactg gcagatcaaa atcagaccca cagcagcgat agcgacgggt 1150 agetecagga acaaaceett agetaacagt ttaccetgee etgggggetg 1200 cagctgcgac cacatcccag ggtcgggttt aaagatgaac tgcaacaaca 1250 ggaacgtgag cagcttggct gatttgaagc ccaagctctc taacgtgcag 1300 gagettttee taegagataa caagateeac ageateegaa aategeaett 1350

tgtggattac aagaacctca ttctgttgga tctgggcaac aataacatcg 1400 ctactgtaga gaacaacact ttcaagaacc ttttggacct caggtggcta 1450 tacatggata gcaattacct ggacacgctg tcccgggaga aattcgcggg 1500 gctgcaaaac ctagagtacc tgaacgtgga gtacaacgct atccagctca 1550 tecteeeggg caettteaat gecatgeeca aactgaggat ceteattete 1600 aacaacaacc tgctgaggtc cctgcctgtg gacgtgttcg ctggggtctc 1650 gctctctaaa ctcagcctgc acaacaatta cttcatgtac ctcccggtgg 1700 caggggtgct ggaccagtta acctccatca tccagataga cctccacgga 1750 aacccctggg agtgctcctg cacaattgtg cctttcaagc agtgggcaga 1800 acgcttgggt tccgaagtgc tgatgagcga cctcaagtgt gagacgccgg 1850 tgaacttett tagaaaggat tteatgetee tetecaatga egagatetge 1900 cctcagctgt acgctaggat ctcgcccacg ttaacttcgc acagtaaaaa 1950 cagcactggg ttggcggaga ccgggacgca ctccaactcc tacctagaca 2000 ccagcagggt gtccatctcg gtgttggtcc cgggactgct gctggtgttt 2050 gtcacctccg ccttcaccgt ggtgggcatg ctcgtgttta tcctgaggaa 2100 ccgaaagcgg tccaagagac gagatgccaa ctcctccgcg tccgagatta 2150 attecetaca gacagtetgt gactetteet aetggeacaa tgggeettae 2200 aacgcagatg gggcccacag agtgtatgac tgtggctctc actcgctctc 2250 agactaagac cccaacccca ataggggagg gcagagggaa ggcgatacat 2300 cettececae egeaggeace eegggggetg gaggggegtg tacccaaate 2350 cccgcgccat cagcctggat gggcataagt agataaataa ctgtgagctc 2400 gcacaaccga aagggcctga ccccttactt agctccctcc ttgaaacaaa 2450 gagcagactg tggagagctg ggagagcgca gccagctcgc tctttgctga 2500 gagccccttt tgacagaaag cccagcacga ccctgctgga agaactgaca 2550 gtgccctcgc cctcggcccc ggggcctgtg gggttggatg ccgcggttct 2600 atacatatat acatatatcc acatctatat agagagatag atatctattt 2650 ttcccctgtg gattagcccc gtgatggctc cctgttggct acgcagggat 2700 gggcagttgc acgaaggcat gaatgtattg taaataagta actttgactt 2750 ctgac 2755

<210> 91

<211> 696 <212> PRT

<213> Homo Sapien

<400> 91

Met Leu Leu Trp Ile Leu Leu Glu Thr Ser Leu Cys Phe Ala 1 5 10 15

Ala Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser 20 25 30

Cys Asn Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys
35 40 45

Gly Phe Thr Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe
50 55 60

Tyr His Leu Phe Leu His Gly Asn Ser Leu Thr Arg Leu Phe Pro
65 70 75

Asn Glu Phe Ala Asn Phe Tyr Asn Ala Val Ser Leu His Met Glu
80 85 90

Asn Asn Gly Leu His Glu Ile Val Pro Gly Ala Phe Leu Gly Leu 95 100 105

Gln Leu Val Lys Arg Leu His Ile Asn Asn Asn Lys Ile Lys Ser 110 115 120

Phe Arg Lys Gln Thr Phe Leu Gly Leu Asp Asp Leu Glu Tyr Leu 125 130 135

Gln Ala Asp Phe Asn Leu Leu Arg Asp Ile Asp Pro Gly Ala Phe
140 145 150

Gln Asp Leu Asn Lys Leu Glu Val Leu Ile Leu Asn Asp Asn Leu 155 160 165

Ile Ser Thr Leu Pro Ala Asn Val Phe Gln Tyr Val Pro Ile Thr 170 175 180

His Leu Asp Leu Arg Gly Asn Arg Leu Lys Thr Leu Pro Tyr Glu 185 190 195

Glu Val Leu Glu Gln Ile Pro Gly Ile Ala Glu Ile Leu Leu Glu
200 205 210

Asp Asn Pro Trp Asp Cys Thr Cys Asp Leu Leu Ser Leu Lys Glu 215 220 225

Trp Leu Glu Asn Ile Pro Lys Asn Ala Leu Ile Gly Arg Val Val
230 235 240

Cys Glu Ala Pro Thr Arg Leu Gln Gly Lys Asp Leu Asn Glu Thr
245 250 250

Thr Glu Gln Asp Leu Cys Pro Leu Lys Asn Arg Val Asp Ser Ser 260 265 270

Leu I	Pro	Ala	Pro	Pro 275	Ala	Gln	Glu	Glu	Thr 280	Phe	Ala	Pro	Gly	Pro 285
Leu I	Pro	Thr	Pro	Phe 290	Lys	Thr	Asn	Gly	Gln 295	Glu.	Asp	His	Ala	Thr 300
Pro (3ly	Ser	Ala	Pro 305	Asn	Gly	Gly	Thr	Lys 310	Ile	Pro	Gly	Asn	Trp 315
Gln 1	Ile	Lys	Ile	Arg 320	Pro	Thr	Ala	Ala	Ile 325	Ala	Thr	Gly	Ser	Ser 330
Arg A	Asn	Lys	Pro	Leu 335	Ala	Asn	Ser	Leu	Pro 340	Cys	Pro	Gly	Gly	Cys 345
Ser (Cys	Asp	His	Ile 350	Pro	Gly	Ser	Gly	Leu 355	Lys	Met	Asn	Cys	Asn 360
Asn A	Arg	Asn	Val	Ser 365	Ser	Leu	Ala	Asp	Leu 370	Lys	Pro	Lys	Leu	Ser 375
Asn V	Val	Gln	Glu	Leu 380	Phe	Leu	Arg	Asp	Asn 385	Lys	Ile	His	Ser	Ile 390
Arg I	Lys	Ser	His	Phe 395	Val	Asp	Tyr	Lys	Asn 400	Leu	Ile	Leu	Leu	Asp 405
Leu C	3ly	Asn	Asn	Asn 410	Ile	Ala	Thr	Val	Glu 415	Asn	Asn	Thr	Phe	Lys 420
Asn I	Leu	Leu	Asp	Leu 425	Arg	Trp	Leu	Tyr	Met 430	Asp	Ser	Asn	Tyr	Leu 435
Asp T	Гhr	Leu	Ser	Arg 440	Glu	Lys	Phe	Ala	Gly 445	Leu	Gln	Asn	Leu	Glu 450
Tyr I	Leu	Asn	Val	Glu 455	Tyr	Asn	Ala	Ile	Gln 460	Leu	Ile	Leu	Pro	Gly 465
Thr E	?he	Asn	Ala	Met 470	Pro	Lys	Leu	Arg	Ile 475	Leu	Ile	Leu	Asn	Asn 480
Asn I	Leu	Leu	Arg	Ser 485	Leu	Pro	Val	Asp	Val 490	Phe	Ala	Gly	Val	Ser 495
Leu S									400					
	Ser	Lys	Leu	Ser 500	Leu	His	Asn	Asn		Phe	Met	Tyr	Leu	Pro 510
Val A				500					Tyr 505					510
	Ala	Gly	Val	500 Leu 515	Asp	Gln	Leu	Thr	Tyr 505 Ser 520	Ile	Ile	Gln	Ile	510 Asp 525
Val A	Ala His	Gly Gly	Val Asn	500 Leu 515 Pro 530	Asp Trp	Gln Glu	Leu Cys	Thr Ser	Tyr 505 Ser 520 Cys 535	Ile Thr	Ile Ile	Gln Val	Ile Pro	510 Asp 525 Phe 540

```
Leu Leu Ser Asn Asp Glu Ile Cys Pro Gln Leu Tyr Ala Arg Ile
                 575
                                      580
 Ser Pro Thr Leu Thr Ser His Ser Lys Asn Ser Thr Gly Leu Ala
 Glu Thr Gly Thr His Ser Asn Ser Tyr Leu Asp Thr Ser Arg Val
 Ser Ile Ser Val Leu Val Pro Gly Leu Leu Val Phe Val Thr
 Ser Ala Phe Thr Val Val Gly Met Leu Val Phe Ile Leu Arg Asn
                                      640
 Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser Ser Ala Ser Glu
                                      655
 Ile Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr Trp His Asn
 Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp Cys Gly
 Ser His Ser Leu Ser Asp
<210> 92
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 92
gttggatctg ggcaacaata ac 22
<210> 93
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 93
attgttgtgc aggctgagtt taag 24
<210> 94
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 94
```

- <210> 95
- <211> 2226
- <212> DNA
- <213> Homo Sapien
- <400> 95
- agtegactge gteecetgta eceggegeea getgtgttee tgaceecaga 50 ataactcagg gctgcaccgg gcctggcagc gctccgcaca catttcctgt 100 cgcggcctaa gggaaactgt tggccgctgg gcccgcgggg ggattcttgg 150 cagttggggg gtccgtcggg agcgagggcg gaggggaagg gagggggaac 200 cgggttgggg aagccagctg tagagggcgg tgaccgcgct ccagacacag 250 ctctgcgtcc tcgagcggga cagatccaag ttgggagcag ctctgcgtgc 300 ggggcctcag agaatgaggc cggcgttcgc cctgtgcctc ctctggcagg 350 cgctctggcc cgggccgggc ggcggcgaac accccactgc cgaccgtgct 400 ggctgctcgg cctcgggggc ctgctacagc ctgcaccacg ctaccatgaa 450 gcggcaggcg gccgaggagg cctgcatcct gcgaggtggg gcgctcagca 500 ccgtgcgtgc gggcgccgag ctgcgcgctg tgctcgcgct cctgcgggca 550 ggcccagggc ccggaggggg ctccaaagac ctgctgttct gggtcgcact 600 ggagcgcagg cgttcccact gcaccctgga gaacgagcct ttgcggggtt 650 teteetgget gteeteegae eeeggeggte tegaaagega eaegetgeag 700 tgggtggagg agccccaacg ctcctgcacc gcgcggagat gcgcggtact 750 ccaggccacc ggtggggtcg agcccgcagg ctggaaggag atgcgatgcc 800 acctgcgcgc caacggctac ctgtgcaagt accagtttga ggtcttgtgt 850 cctgcgccgc gccccggggc cgcctctaac ttgagctatc gcgcgccctt 900 ccagctgcac agcgccgctc tggacttcag tccacctggg accgaggtga 950 gtgcgctctg ccggggacag ctcccgatct cagttacttg catcgcggac 1000 gaaatcggcg ctcgctggga caaactctcg ggcgatgtgt tgtgtccctg 1050 ccccgggagg tacctccgtg ctggcaaatg cgcagagctc cctaactgcc 1100 tagacgactt gggaggettt geetgegaat gtgetaeggg ettegagetg 1150 gggaaggacg gccgctcttg tgtgaccagt ggggaaggac agccgaccct 1200 tggggggacc ggggtgccca ccaggcgccc gccggccact gcaaccagcc 1250 ccgtgccgca gagaacatgg ccaatcaggg tcgacgagaa gctgggagag 1300

acaccactty teeetqaaca agacaattea gtaacateta tteetgagat 1350 tectegatgg ggateacaga geaegatgte taccetteaa atgteeette 1400 aagccgagtc aaaggccact atcaccccat cagggagcgt gatttccaag 1450 tttaattcta cgacttcctc tgccactcct caggetttcg actcctcctc 1500 tgccgtggtc ttcatatttg tgagcacagc agtagtagtg ttggtgatct 1550 tgaccatgac agtactgggg cttgtcaagc tctgctttca cgaaagcccc 1600 tetteecage caaggaagga gtetatggge eegeegggee tggagagtga 1650 tcctgagccc gctgctttgg gctccagttc tgcacattgc acaaacaatg 1700 gggtgaaagt cggggactgt gatctgcggg acagagcaga gggtgccttg 1750 ctggcggagt cccctcttgg ctctagtgat gcatagggaa acaggggaca 1800 tgggcactcc tgtgaacagt ttttcacttt tgatgaaacg gggaaccaag 1850 aggaacttac ttgtgtaact gacaatttct gcagaaatcc cccttcctct 1900 aaattccctt tactccactg aggagctaaa tcagaactgc acactccttc 1950 cctgatgata gaggaagtgg aagtgccttt aggatggtga tactggggga 2000 ccgggtagtg ctggggagag atattttctt atgtttattc ggagaatttg 2050 gagaagtgat tgaacttttc aagacattgg aaacaaatag aacacaatat 2100 aatttacatt aaaaaataat ttctaccaaa atggaaagga aatgttctat 2150 gttgttcagg ctaggagtat attggttcga aatcccaggg aaaaaaataa 2200 aaataaaaa ttaaaggatt gttgat 2226

- <210> 96
- <211> 490
- <212> PRT
- <213> Homo Sapien
- <400> 96
- Met Arg Pro Ala Phe Ala Leu Cys Leu Leu Trp Gln Ala Leu Trp 1 5 10 15
- Pro Gly Pro Gly Gly Glu His Pro Thr Ala Asp Arg Ala Gly
 20 25 30
- Cys Ser Ala Ser Gly Ala Cys Tyr Ser Leu His His Ala Thr Met
 35 40 45
- Lys Arg Gln Ala Ala Glu Glu Ala Cys Ile Leu Arg Gly Gly Ala
 50 55 60
- Leu Ser Thr Val Arg Ala Gly Ala Glu Leu Arg Ala Val Leu Ala 65 70 75

Leu	Leu	Arg	Ala	Gly 80	Pro	Gly	Pro	Gly	Gly 85	Gly	Ser	Lys	Asp	Leu 90
Leu	Phe	Trp	Val	Ala 95	Leu	Glu	Arg	Arg	Arg 100	Ser	His	Cys	Thr	Leu 105
Glu	Asn	Glu	Pro	Leu 110	Arg	Gly	Phe	Ser	Trp 115	Leu	Ser	Ser	Asp	Pro 120
Gly	Gly	Leu	Glu	Ser 125	Asp	Thr	Leu	Gln	Trp 130	Val	Glu	Glu	Pro	Gln 135
Arg	Ser	Cys	Thr	Ala 140	Arg	Arg	Cys	Ala	Val 145	Leu	Gln	Ala	Thr	Gly 150
Gly	Val	Glu	Pro	Ala 155	Gly	Trp	Lys	Glu	Met 160	Arg	Cys	His	Leu	Arg 165
Ala	Asn	Gly	Tyr	Leu 170	Cys	Lys	Tyr	Gln	Phe 175	Glu	Val	Leu	Cys	Pro 180
Ala	Pro	Arg	Pro	Gly 185	Ala	Ala	Ser	Asn	Leu 190	Ser	Tyr	Arg	Ala	Pro 195
Phe	Gln	Leu	His	Ser 200	Ala	Ala	Leu	Asp	Phe 205	Ser	Pro	Pro	Gly	Thr 210
Glu	Val	Ser	Ala	Leu 215	Cys	Arg	Gly	Gln	Leu 220	Pro	Ile	Ser	Val	Thr 225
Cys	Ile	Ala	Asp		Ile	Gly	Ala	Arg	_	Asp	Lys	Leu	Ser	
Asp	Val	Leu	Cys	230 Pro 245	Cys	Pro	Gly	Arg	235 Tyr 250	Leu	Arg	Ala	Gly	240 Lys 255
Cys	Ala	Glu	Leu	Pro 260	Asn	Cys	Leu	Asp	Asp 265	Leu	Gly	Gly	Phe	Ala 270
Cys	Glu	Cys	Ala	Thr 275	Gly	Phe	Glu	Leu	Gly 280	Lys	Asp	Gly	Arg	Ser 285
Cys	Val	Thr	Ser	Gly 290	Glu	Gly	Gln	Pro	Thr 295	Leu	Gly	Gly	Thr	Gly 300
Val	Pro	Thr	Arg	Arg 305	Pro	Pro	Ala	Thr	Ala 310	Thr	Ser	Pro	Val	Pro 315
Gln	Arg	Thr	Trp	Pro 320	Ile	Arg	Val	Asp	Glu 325	Lys	Leu	Gly	Glu	Thr 330
Pro	Leu	Val	Pro	Glu 335	Gln	Asp	Asn	Ser	Val 340	Thr	Ser	Ile	Pro	Glu 345
Ile	Pro	Arg	Trp	Gly 350	Ser	Gln	Ser	Thr	Met 355	Ser	Thr	Leu	Gln	Met 360
Ser	Leu	Gln	Ala	Glu 365	Ser	Lys	Ala	Thr	Ile 370	Thr	Pro	Ser	Gly	Ser 375

```
Val Ile Ser Lys Phe Asn Ser Thr Thr Ser Ser Ala Thr Pro Gln
                 380
                                     385
 Ala Phe Asp Ser Ser Ser Ala Val Val Phe Ile Phe Val Ser Thr
                 395
                                     400
 Ala Val Val Leu Val Ile Leu Thr Met Thr Val Leu Gly Leu
 Val Lys Leu Cys Phe His Glu Ser Pro Ser Ser Gln Pro Arg Lys
 Glu Ser Met Gly Pro Pro Gly Leu Glu Ser Asp Pro Glu Pro Ala
 Ala Leu Gly Ser Ser Ser Ala His Cys Thr Asn Asn Gly Val Lys
                                     460
Val Gly Asp Cys Asp Leu Arg Asp Arg Ala Glu Gly Ala Leu Leu
 Ala Glu Ser Pro Leu Gly Ser Ser Asp Ala
<210> 97
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 97
tggaaggaga tgcgatgcca cctg 24
<210> 98
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 98
tgaccagtgg ggaaggacag 20
<210> 99
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 99
acagagcaga gggtgccttg 20
<210> 100
<211> 24
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 100
tcagggacaa gtggtgtctc tccc 24
<210> 101
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 101
tcagggaagg agtgtgcagt tctg 24
<210> 102
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 102
acageteceg ateteagtta ettgeatege ggaegaaate ggegeteget 50
<210> 103
<211> 2026
<212> DNA
<213> Homo Sapien
<400> 103
cggacgcgtg ggattcagca gtggcctgtg gctgccagag cagctcctca 50
ggggaaacta agcgtcgagt cagacggcac cataatcgcc tttaaaagtg 100
ceteegeest geeggeegeg tateeceegg etacetggge egeeeegegg 150
cggtgcgcg gtgagaggga gcgcggggc agccgagcgc cggtgtgagc 200
cagcgctgct gccagtgtga gcggcggtgt gagcgcggtg ggtgcggagg 250
ggcgtgtgtg ccggcgcgc cgccgtgggg tgcaaacccc gagcgtctac 300
gctgccatga ggggcgcgaa cgcctgggcg ccactctgcc tgctgctggc 350
tgccgccacc cagctctcgc ggcagcagtc cccagagaga cctgttttca 400
catgtggtgg cattettact ggagagtetg gatttattgg cagtgaaggt 450
tttcctggag tgtaccctcc aaatagcaaa tgtacttgga aaatcacagt 500
tcccgaagga aaagtagtcg ttctcaattt ccgattcata gacctcgaga 550
gtgacaacct gtgccgctat gactttgtgg atgtgtacaa tggccatgcc 600
```

aatggccagc gcattggccg cttctgtggc actttccggc ctggagccct 650 tgtgtccagt ggcaacaaga tgatggtgca gatgatttct gatgccaaca 700 cagctggcaa tggcttcatg gccatgttct ccgctgctga accaaacgaa 750 agaggggatc agtattgtgg aggactcctt gacagacctt ccggctcttt 800 taaaaccccc aactggccag accgggatta ccctgcagga gtcacttgtg 850 tgtggcacat tgtagcccca aagaatcagc ttatagaatt aaagtttgag 900 aagtttgatg tggagcgaga taactactgc cgatatgatt atgtggctgt 950 gtttaatggc ggggaagtca acgatgctag aagaattgga aagtattgtg 1000 gtgatagtcc acctgcgcca attgtgtctg agagaaatga acttcttatt 1050 cagtttttat cagacttaag tttaactgca gatgggttta ttggtcacta 1100 catattcagg ccaaaaaaac tgcctacaac tacagaacag cctgtcacca 1150 ccacattccc tgtaaccacg ggtttaaaac ccaccgtggc cttgtgtcaa 1200 caaaagtgta gacggacggg gactctggag ggcaattatt gttcaagtga 1250 ctttgtatta gccggcactg ttatcacaac catcactcgc gatgggagtt 1300 tgcacgccac agtctcgatc atcaacatct acaaagaggg aaatttggcg 1350 attcagcagg cgggcaagaa catgagtgcc aggctgactg tcgtctgcaa 1400 gcagtgccct ctcctcagaa gaggtctaaa ttacattatt atgggccaag 1450 taggtgaaga tgggcgaggc aaaatcatgc caaacagctt tatcatgatg 1500 ttcaagacca agaatcagaa gctcctggat gccttaaaaa ataagcaatg 1550 ttaacagtga actgtgtcca tttaagctgt attctgccat tgcctttgaa 1600 agatctatgt tctctcagta gaaaaaaaaa tacttataaa attacatatt 1650 ctgaaagagg attccgaaag atgggactgg ttgactcttc acatgatgga 1700 ggtatgaggc ctccgagata gctgagggaa gttctttgcc tgctgtcaga 1750 ggagcagcta tctgattgga aacctgccga cttagtgcgg tgataggaag 1800 ctaaaagtgt caagcgttga cagcttggaa gcgtttattt atacatctct 1850 gtaaaaggat attttagaat tgagttgtgt gaagatgtca aaaaaagatt 1900 ttagaagtgc aatatttata gtgttatttg tttcaccttc aagcctttgc 1950 cctgaggtgt tacaatcttg tcttgcgttt tctaaatcaa tgcttaataa 2000 aatattttta aaggaaaaaa aaaaaa 2026

<210> 104

<211> 415

<212> PRT

<213> Homo Sapien

<400> 104 Met Arg Gly Ala Asn Ala Trp Ala Pro Leu Cys Leu Leu Leu Ala 5 Ala Ala Thr Gln Leu Ser Arg Gln Gln Ser Pro Glu Arg Pro Val Phe Thr Cys Gly Gly Ile Leu Thr Gly Glu Ser Gly Phe Ile Gly Ser Glu Gly Phe Pro Gly Val Tyr Pro Pro Asn Ser Lys Cys Thr Trp Lys Ile Thr Val Pro Glu Gly Lys Val Val Leu Asn Phe Arg Phe Ile Asp Leu Glu Ser Asp Asn Leu Cys Arg Tyr Asp Phe Val Asp Val Tyr Asn Gly His Ala Asn Gly Gln Arg Ile Gly Arg Phe Cys Gly Thr Phe Arg Pro Gly Ala Leu Val Ser Ser Gly Asn Lys Met Met Val Gln Met Ile Ser Asp Ala Asn Thr Ala Gly Asn Gly Phe Met Ala Met Phe Ser Ala Ala Glu Pro Asn Glu Arg Gly 140 150 Asp Gln Tyr Cys Gly Gly Leu Leu Asp Arg Pro Ser Gly Ser Phe Lys Thr Pro Asn Trp Pro Asp Arg Asp Tyr Pro Ala Gly Val Thr 170 180 Cys Val Trp His Ile Val Ala Pro Lys Asn Gln Leu Ile Glu Leu Lys Phe Glu Lys Phe Asp Val Glu Arg Asp Asn Tyr Cys Arg Tyr 200 205 210 Asp Tyr Val Ala Val Phe Asn Gly Glu Val Asn Asp Ala Arg 215 220 Arg Ile Gly Lys Tyr Cys Gly Asp Ser Pro Pro Ala Pro Ile Val 230 Ser Glu Arg Asn Glu Leu Leu Ile Gln Phe Leu Ser Asp Leu Ser Leu Thr Ala Asp Gly Phe Ile Gly His Tyr Ile Phe Arg Pro Lys 260 265

Lys Leu Pro Thr Thr Glu Gln Pro Val Thr Thr Phe Pro 275 280 Val Thr Thr Gly Leu Lys Pro Thr Val Ala Leu Cys Gln Gln Lys 290 Cys Arg Arg Thr Gly Thr Leu Glu Gly Asn Tyr Cys Ser Ser Asp Phe Val Leu Ala Gly Thr Val Ile Thr Thr Ile Thr Arg Asp Gly 320 325 Ser Leu His Ala Thr Val Ser Ile Ile Asn Ile Tyr Lys Glu Gly Asn Leu Ala Ile Gln Gln Ala Gly Lys Asn Met Ser Ala Arg Leu Thr Val Val Cys Lys Gln Cys Pro Leu Leu Arg Arg Gly Leu Asn Tyr Ile Ile Met Gly Gln Val Gly Glu Asp Gly Arg Gly Lys Ile Met Pro Asn Ser Phe Ile Met Met Phe Lys Thr Lys Asn Gln Lys 395 400 Leu Leu Asp Ala Leu Lys Asn Lys Gln Cys 410 <210> 105 <211> 22 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 105 ccgattcata gacctcgaga gt 22 <210> 106 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 106 gtcaaggagt cctccacaat ac 22 <210> 107 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe

<400> 107
gtgtacaatg gccatgccaa tggccagcgc attggccgct tctgt 45

<210> 108

<211> 1838

<212> DNA

<213> Homo Sapien

<400> 108

cggacgcgtg ggcggacgcg tgggcggccc acggcgcccg cgggctgggg 50 eggtegette tteettetee gtggeetaeg agggteecea geetgggtaa 100 agatggcccc atggcccccg aagggcctag tcccagctgt gctctggggc 150 ctcagcctct tcctcaacct cccaggacct atctggctcc agccctctcc 200 acctccccag tettetecce egecteagee ceateegtgt catacetgee 250 ggggactggt tgacagcttt aacaagggcc tggagagaac catccgggac 300 aactttggag gtggaaacac tgcctgggag gaagagaatt tgtccaaata 350 caaagacagt gagacccgcc tggtagaggt gctggagggt gtgtgcagca 400 agtcagactt cgagtgccac cgcctgctgg agctgagtga ggagctggtg 450 gagagetggt ggtttcacaa geageaggag geeeggaee tetteeagtg 500 getgtgetea gatteeetga agetetgetg eeeegeagge acetteggge 550 cctcctgcct tccctgtcct gggggaacag agaggccctg cggtggctac 600 gggcagtgtg aaggagaagg gacacgaggg ggcagcgggc actgtgactg 650 ccaagccggc tacgggggtg aggcctgtgg ccagtgtggc cttggctact 700 ttgaggcaga acgcaacgcc agccatctgg tatgttcggc ttgttttggc 750 gaagggctgg gccctgcatc acctcaagtg tgtagacatt gatgagtgtg 850 gcacagaggg agccaactgt ggagctgacc aattctgcgt gaacactgag 900 ggctcctatg agtgccgaga ctgtgccaag gcctgcctag gctgcatggg 950 ggcagggcca ggtcgctgta agaagtgtag ccctggctat cagcaggtgg 1000 gctccaagtg tctcgatgtg gatgagtgtg agacagaggt gtgtccggga 1050 gagaacaagc agtgtgaaaa caccgagggc ggttatcgct gcatctgtgc 1100 cgagggctac aagcagatgg aaggcatctg tgtgaaggag cagatcccag 1150 agtcagcagg cttcttctca gagatgacag aagacgagtt ggtggtgctg 1200 cagcagatgt tetttggcat catcatetgt gcactggcca cgctggctgc 1250 taagggcgac ttggtgttca ccgccatctt cattggggct gtggcggcca 1300
tgactggcta ctggttgtca gagcgcagtg accgtgtgct ggagggcttc 1350
atcaagggca gataatcgcg gccaccacct gtaggacctc ctcccaccca 1400
cgctgccccc agagcttggg ctgccctcct gctggacact caggacagct 1450
tggtttattt ttgagagtgg ggtaagcacc cctacctgcc ttacagagca 1500
gcccaggtac ccaggcccgg gcagacaagg cccctggggt aaaaagtagc 1550
cctgaaggtg gataccatga gctcttcacc tggcgggac tggcaggctt 1600
cacaatgtgt gaatttcaaa agtttttcct taatggtggc tgctagagct 1650
ttggcccctg cttaggatta ggtggtcctc acaggggtgg ggccatcaca 1700
gctccctcct gccagctgca tgctgccagt tcctgttctg tgttcaccac 1750
atccccacac cccattgcca cttatttatt catctcagga aataaagaaa 1800
ggtcttggaa agttaaaaaa aaaaaaaaa aaaaaaaa 1838

<400> 109

Met Ala Pro Trp Pro Pro Lys Gly Leu Val Pro Ala Val Leu Trp

1 5 10 15

Gly Leu Ser Leu Phe Leu Asn Leu Pro Gly Pro Ile Trp Leu Gln
20 25 30

Pro Ser Pro Pro Pro Gln Ser Ser Pro Pro Pro Gln Pro His Pro
35 40 45

Cys His Thr Cys Arg Gly Leu Val Asp Ser Phe Asn Lys Gly Leu 50 55 60

Glu Arg Thr Ile Arg Asp Asn Phe Gly Gly Gly Asn Thr Ala Trp
65 70 75

Glu Glu Glu Asn Leu Ser Lys Tyr Lys Asp Ser Glu Thr Arg Leu 80 85 90

Val Glu Val Leu Glu Gly Val Cys Ser Lys Ser Asp Phe Glu Cys 95 100 105

His Arg Leu Leu Glu Leu Ser Glu Glu Leu Val Glu Ser Trp Trp
110 115 120

Phe His Lys Gln Gln Glu Ala Pro Asp Leu Phe Gln Trp Leu Cys 125 130 135

Ser Asp Ser Leu Lys Leu Cys Cys Pro Ala Gly Thr Phe Gly Pro

<210> 109

<211> 420

<212> PRT

<213> Homo Sapien

Ser	Cys	Leu	Pro	140 Cys 155	Pro	Gly	Gly	Thr	145 Glu 160	Arg	Pro	Cys	Gly	150 Gly 165
Tyr	Gly	Gln	Cys	Glu 170	Gly	Glu	Gly	Thr	Arg 175	Gly	Gly	Ser	Gly	His 180
Cys	Asp	Cys	Gln	Ala 185	Gly	Tyr	Gly	Gly	Glu 190	Ala	Cys	Gly	Gln	Cys 195
Gly	Leu	Gly	Tyr	Phe 200	Glu	Ala	Glu	Arg	Asn 205	Ala	Ser	His	Leu	Val 210
Cys	Ser	Ala	Cys	Phe 215	Gly	Pro	Cys	Ala	Arg 220	Cys	Ser	Gly	Pro	Glu 225
Glu	Ser	Asn	Cys	Leu 230	Gln	Cys	Lys	Lys	Gly 235	Trp	Ala	Leu	His	His 240
Leu	Lys	Cys	Val	Asp 245	Ile	Asp	Glu	Cys	Gly 250	Thr	Glu	Gly	Ala	Asn 255
Cys	Gly	Ala	Asp	Gln 260	Phe	Cys	Val	Asn	Thr 265	Glu	Gly	Ser	Tyr	Glu 270
Cys	Arg	Asp	Cys	Ala 275	Lys	Ala	Cys	Leu	Gly 280	Cys	Met	Gly	Ala	Gly 285
Pro	Gly	Arg	Cys	Lys 290	Lys	Cys	Ser	Pro,	Gly 295	Tyr	Gln	Gln	Val	Gly 300
Ser	Lys	Cys	Leu	Asp 305	Val	Asp	Glu	Cys	Glu 310	Thr	Glu	Val	Cys	Pro 315
Gly	Glu	Asn	Lys	Gln 320	Cys	Glu	Asn	Thr	Glu 325	Gly	Gly	Tyr	Arg	Cys 330
Ile	Cys	Ala	Glu	Gly 335	Tyr	Lys	Gln	Met	Glu 340	Gly	Ile	Cys	Val	Lys 345
Glu	Gln	Ile	Pro	Glu 350	Ser	Ala	Gly	Phe	Phe 355	Ser	Glu	Met	Thr	Glu 360
Asp	Glu	Leu	Val	Val 365	Leu	Gln	Gln	Met	Phe 370	Phe	Gly	Ile	Ile	Ile 375
Cys	Ala	Leu	Ala	Thr 380	Leu	Ala	Ala	Lys	Gly 385	Asp	Leu	Val	Phe	Thr 390
Ala	Ile	Phe	Ile	Gly 395	Ala	Val	Ala	Ala	Met 400	Thr	Gly	Tyr	Trp	Leu 405
Ser	Glu	Arg	Ser	Asp 410	Arg	Val	Leu	Glu	Gly 415	Phe	Ile	Lys	Gly	Arg 420
-210	220													

<210> 110 <211> 50

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 110
cctggctatc agcaggtggg ctccaagtgt ctcgatgtgg atgagtgtga 50
<210> 111
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 111
attctgcgtg aacactgagg gc 22
<210> 112
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 112
atctgcttgt agccctcggc ac 22
<210> 113
<211> 1616
<212> DNA
<213> Homo Sapien
<220>
<221> unsure
<222> 1461
<223> unknown base
<400> 113
tgagaccete etgeageett eteaagggae ageeceaete tgeetettge 50
tcctccaggg cagcaccatg cagcccctgt ggctctgctg ggcactctgg 100
gtgttgcccc tggccagccc cggggccgcc ctgaccgggg agcagctcct 150
gggcagcetg etgeggcage tgeageteaa agaggtgeee accetggaea 200
gggccgacat ggaggagctg gtcatcccca cccacgtgag ggcccagtac 250
gtggccctgc tgcagcgcag ccacggggac cgctcccgcg gaaagaggtt 300
cagccagage ttccgagagg tggccggcag gttcctggcg ttggaggcca 350
gcacacacct gctggtgttc ggcatggagc agcggctgcc gcccaacagc 400
gagetggtge aggeegtget geggetette caggageegg teeccaagge 450
cgcgctgcac aggcacgggc ggctgtcccc gcgcagcgcc cgggcccggg 500
```

tgaccgtcga gtggctgcgc gtccgcgacg acggctccaa ccgcacctcc 550 ctcatcgact ccaggctggt gtccgtccac gagagcggct ggaaggcctt 600 cgacgtgacc gaggccgtga acttctggca gcagctgagc cggccccggc 650 agccgctgct gctacaggtg tcggtgcaga gggagcatct gggcccgctg 700 gcgtccggcg cccacaagct ggtccgcttt gcctcgcagg gggcgccagc 750 cgggcttggg gagccccagc tggagctgca caccctggac cttggggact 800 atggagetea gggegaetgt gaeeetgaag caecaatgae egagggeaee 850 cgctgctgcc gccaggagat gtacattgac ctgcagggga tgaagtgggc 900 cgagaactgg gtgctggagc ccccgggctt cctggcttat gagtgtgtgg 950 gcacctgccg gcagcccccg gaggccctgg ccttcaagtg gccgtttctg 1000 gggcctcgac agtgcatcgc ctcggagact gactcgctgc ccatgatcgt 1050 cagcatcaag gagggaggca ggaccaggcc ccaggtggtc agcctgccca 1100 acatgagggt gcagaagtgc agctgtgcct cggatggtgc gctcgtgcca 1150 aggaggetee agecatagge geetagtgta gecategagg gaettgaett 1200 gtgtgtgttt ctgaagtgtt cgagggtacc aggagagctg gcgatgactg 1250 aactgctgat ggacaaatgc tctgtgctct ctagtgagcc ctgaatttgc 1300 ttcctctgac aagttacctc acctaatttt tgcttctcag gaatgagaat 1350 ctttggccac tggagagccc ttgctcagtt ttctctattc ttattattca 1400 ctgcactata ttctaagcac ttacatgtgg agatactgta acctgagggc 1450 agaaagccca ntgtgtcatt gtttacttgt cctgtcactg gatctgggct 1500 aaagtcctcc accaccactc tggacctaag acctggggtt aagtgtgggt 1550 tgtgcatccc caatccagat aataaagact ttgtaaaaca tgaataaaac 1600 acattttatt ctaaaa 1616

- <210> 114
- <211> 366
- <212> PRT
- <213> Homo Sapien
- <400> 114
- Met Gln Pro Leu Trp Leu Cys Trp Ala Leu Trp Val Leu Pro Leu 1 5 10 15
- Ala Ser Pro Gly Ala Ala Leu Thr Gly Glu Gln Leu Leu Gly Ser
 20 25 30

Leu	Leu	Arg	Gln	Leu 35	Gln	Leu	Lys	Glu	Val 40	Pro	Thr	Leu	Asp	Arg 45
Ala	Asp	Met	Glu	Glu 50	Leu	Val	Ile	Pro	Thr 55	His	Val	Arg	Ala	Gln 60
Tyr	Val	Ala	Leu	Leu 65	Gln	Arg	Ser	His	Gly 70	Asp	Arg	Ser	Arg	Gly 75
Lys	Arg	Phe	Ser	Gln 80	Ser	Phe	Arg	Glu	Val 85	Ala	Gly	Arg	Phe	Leu 90
Ala	Leu	Glu	Ala	Ser 95	Thr	His	Leu	Leu	Val 100	Phe	Gly	Met	Glu	Gln 105
Arg	Leu	Pro	Pro	Asn 110	Ser	Glu	Leu	Val	Gln 115	Ala	Val	Leu	Arg	Leu 120
Phe	Gln	Glu	Pro	Val 125	Pro	Lys	Ala	Ala	Leu 130	His	Arg	His	Gly	Arg 135
Leu	Ser	Pro	Arg	Ser 140	Ala	Arg	Ala	Arg	Val 145	Thr	Val	Glu	Trp	Leu 150
Arg	Val	Arg	Asp	Asp 155	Gly	Ser	Asn	Arg	Thr 160	Ser	Leu	Ile	Asp	Ser 165
Arg	Leu	Val	Ser	Val 170	His	Glu	Ser	Gly	Trp 175	Lys	Ala	Phe	Asp	Val 180
Thr	Glu	Ala	Val	Asn 185	Phe	Trp	Gln	Gln	Leu 190	Ser	Arg	Pro	Arg	Gln 195
Pro	Leu	Leu	Leu	Gln 200	Val	Ser	Val	Gln	Arg 205	Glu	His	Leu	Gly	Pro 210
Leu	Ala	Ser	Gly	Ala 215	His	Lys	Leu	Val	Arg 220	Phe	Ala	Ser	Gln	Gly 225
Ala	Pro	Ala	Gly	Leu 230	Gly	Glu	Pro	Gln	Leu 235	Glu	Leu	His	Thr	Leu 240
Asp	Leu	Gly	Asp	Tyr 245	Gly	Àla	Gln	Gly	Asp 250	Cys	Asp	Pro	Glu	Ala 255
Pro	Met	Thr	Glu	Gly 260	Thr	Arg	ĊAa	Cys	Arg 265	Gln	Glu,	Met	Tyr	Ile 270
Asp	Leu	Gln	Gly	Met 275	Lys	Trp	Ala	Glu	Asn 280	Trp	Val	Leu	Glu	Pro 285
Pro	Gly	Phe	Leu	Ala 290	Tyr	Glu	Cys	Val	Gly 295	Thr	Cys	Arg	Gln	Pro 300
Pro	Glu	Ala	Leu	Ala 305	Phe _.	Lys	Trp	Pro	Phe 310	Leu	Gly	Pro	Arg	Gln 315
Cys	Ile	Ala	Ser	Glu 320	Thr	Asp	Ser	Leu	Pro 325	Met	Ile	Val	Ser	Ile 330

Lys Glu Gly Gly Arg Thr Arg Pro Gln Val Val Ser Leu Pro Asn Met Arg Val Gln Lys Cys Ser Cys Ala Ser Asp Gly Ala Leu Val Pro Arg Arg Leu Gln Pro <210> 115 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 115 aggactgcca taacttgcct g 21 <210> 116 <211> 22 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 116 ataggagttg aagcagcgct gc 22 <210> 117 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 117 tgtgtggaca tagacgagtg ccgctaccgc tactgccagc accgc 45 <210> 118 <211> 1857 <212> DNA <213> Homo Sapien <400> 118 gtctgttccc aggagtcctt cggcggctgt tgtgtcagtg gcctgatcgc 50 gatggggaca aaggcgcaag tcgagaggaa actgttgtgc ctcttcatat 100 tggcgatcct gttgtgctcc ctggcattgg gcagtgttac agtgcactct 150 tctgaacctg aagtcagaat tcctgagaat aatcctgtga agttgtcctg 200 tgcctactcg ggcttttctt ctccccgtgt ggagtggaag tttgaccaag 250 gagacaccac cagactcgtt tgctataata acaagatcac agcttcctat 300

gaggaccggg tgaccttctt gccaactggt atcaccttca agtccgtgac 350 acgggaagac actgggacat acacttgtat ggtctctgag gaaggcggca 400 acagetatgg ggaggteaag gteaagetea tegtgettgt geeteeatee 450 aageetacag ttaacateee eteetetgee accattggga accgggeagt 500 gctgacatgc tcagaacaag atggttcccc accttctgaa tacacctggt 550 tcaaagatgg gatagtgatg cctacgaatc ccaaaagcac ccgtgccttc 600 agcaactctt cctatgtcct gaatcccaca acaggagagc tggtctttga 650 tcccctgtca gcctctgata ctggagaata cagctgtgag gcacggaatg 700 ggtatgggac acccatgact tcaaatgctg tgcgcatgga agctgtggag 750 cggaatgtgg gggtcatcgt ggcagccgtc cttgtaaccc tgattctcct 800 gggaatcttg gtttttggca tctggtttgc ctatagccga ggccactttg 850 acagaacaaa gaaagggact tcgagtaaga aggtgattta cagccagcct 900 agtgcccgaa gtgaaggaga attcaaacag acctcgtcat tcctggtgtg 950 agcctggtcg gctcaccgcc tatcatctgc atttgcctta ctcaggtgct 1000 accggactet ggcccctgat gtctgtagtt tcacaggatg ccttatttgt 1050 cttctacacc ccacagggcc ccctacttct tcggatgtgt ttttaataat 1100 gtcagctatg tgccccatcc tccttcatgc cctccctccc tttcctacca 1150 ctgctgagtg gcctggaact tgtttaaagt gtttattccc catttctttg 1200 agggatcagg aaggaatcct gggtatgcca ttgacttccc ttctaagtag 1250 acagcaaaaa tggcgggggt cgcaggaatc tgcactcaac tgcccacctg 1300 gctggcaggg atctttgaat aggtatcttg agcttggttc tgggctcttt 1350 ccttgtgtac tgacgaccag ggccagctgt tctagagcgg gaattagagg 1400 ctagagegge tgaaatggtt gtttggtgat gacactgggg teetteeate 1450 tetggggeee actetettet gtetteeeat gggaagtgee actgggatee 1500 ctctgccctg tcctcctgaa tacaagctga ctgacattga ctgtgtctgt 1550 ggaaaatggg agctcttgtt gtggagagca tagtaaattt tcagagaact 1600 tgaagccaaa aggatttaaa accgctgctc taaagaaaag aaaactggag 1650 gctgggcgca gtggctcacg cctgtaatcc cagaggctga ggcaggcgga 1700 tcacctgagg tcgggagttc gggatcagcc tgaccaacat ggagaaaccc 1750

tactggaaat acaaagttag ccaggcatgg tggtgcatgc ctgtagtccc 1800 agctgctcag gagcctggca acaagagcaa aactccagct caaaaaaaaa 1850 aaaaaaa 1857

- <210> 119
- <211> 299
- <212> PRT
- <213> Homo Sapien

_	4	O	n	_	7	1	9
<	4	v	v	>		1	2

- Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe
 1 5 10 15
- Ile Leu Ala Ile Leu Cys Ser Leu Ala Leu Gly Ser Val Thr
 20 25 30
- Val His Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro 35 40 45
- Val Lys Leu Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val
 50 55 60
- Glu Trp Lys Phe Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr
 65 70 75
- Asn Asn Lys Ile Thr Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu 80 85 90
- Pro Thr Gly Ile Thr Phe Lys Ser Val Thr Arg Glu Asp Thr Gly
 95 100 105
- Thr Tyr Thr Cys Met Val Ser Glu Glu Gly Gly Asn Ser Tyr Gly 110 115 120
- Glu Val Lys Val Lys Leu Ile Val Leu Val Pro Pro Ser Lys Pro 125 130 135
- Thr Val Asn Ile Pro Ser Ser Ala Thr Ile Gly Asn Arg Ala Val 140 145 150
- Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro Pro Ser Glu Tyr Thr 155 160 165
- Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn Pro Lys Ser Thr 170 175 180
- Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro Thr Thr Gly
 185 190 195
- Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly Glu Tyr 200 205 210
- Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser Asn 215 220 225
- Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val 230 235 240

```
Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe
 Gly Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys
 Lys Gly Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala
Arg Ser Glu Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val
                 290
<210> 120
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 120
tcgcggagct gtgttctgtt tccc 24
<210> 121
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 121
tgatcgcgat ggggacaaag gcgcaagctc gagaggaaac tgttgtgcct 50
<210> 122
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 122
acacctggtt caaagatggg 20
<210> 123
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 123
taggaagagt tgctgaaggc acgg 24
<210> 124
<211> 20
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 124
ttgccttact caggtgctac 20
<210> 125
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 125
actcagcagt ggtaggaaag 20
<210> 126
<211> 1210
<212> DNA
<213> Homo Sapien
<400> 126
cagcgcgtgg ccggcgccgc tgtggggaca gcatgagcgg cggttggatg 50
gcgcaggttg gagcgtggcg aacaggggct ctgggcctgg cgctgctgct 100
gctgctcggc ctcggactag gcctggaggc cgccgcgagc ccgctttcca 150
ccccgacctc tgcccaggcc gcaggcccca gctcaggctc gtgcccaccc 200
accaagttcc agtgccgcac cagtggctta tgcgtgcccc tcacctggcg 250
ctgcgacagg gacttggact gcagcgatgg cagcgatgag gaggagtgca 300
ggattgagcc atgtacccag aaagggcaat gcccaccgcc ccctggcctc 350
ccctgccct gcaccggcgt cagtgactgc tctgggggaa ctgacaagaa 400
actgcgcaac tgcagccgcc tggcctgcct agcaggcgag ctccgttgca 450
cgctgagcga tgactgcatt ccactcacgt ggcgctgcga cggccaccca 500
gactgtcccg actccagcga cgagctcggc tgtggaacca atgagatcct 550
cccggaaggg gatgccacaa ccatggggcc ccctgtgacc ctggagagtg 600
tcacctctct caggaatgcc acaaccatgg ggccccctgt gaccctggag 650
agtgtcccct ctgtcgggaa tgccacatcc tcctctgccg gagaccagtc 700
tggaagccca actgcctatg gggttattgc agctgctgcg gtgctcagtg 750
caageetggt cacegecace etecteettt tgteetgget eegageecag 800
gagcgcctcc gcccactggg gttactggtg gccatgaagg agtccctgct 850
```

gctgtcagaa cagaagacct cgctgccctg aggacaagca cttgccacca 900 ccgtcactca gccctgggcg tagccggaca ggaggagac agtgatgcgg 950 atgggtaccc gggcacacca gccctcagag acctgagttc ttctggccac 1000 gtggaacctc gaacccgagc tcctgcagaa gtggccctgg agattgaggg 1050 tccctggaca ctccctatgg agatccgggg agctaggatg gggaacctgc 1100 cacagccaga actgagggc tggccccagg cagctcccag ggggtagaac 1150 ggccctgtgc ttaagacact ccctgctgcc ccgtctgagg gtggcgatta 1200 aagttgcttc 1210

- <210> 127
- <211> 282
- <212> PRT
- <213> Homo Sapien

<400> 127

- Met Ser Gly Gly Trp Met Ala Gln Val Gly Ala Trp Arg Thr Gly
 1 5 10 15
- Ala Leu Gly Leu Ala Leu Leu Leu Leu Gly Leu Gly Leu Gly 20 25 30
- Leu Glu Ala Ala Ser Pro Leu Ser Thr Pro Thr Ser Ala Gln
 35 40 45
- Ala Ala Gly Pro Ser Ser Gly Ser Cys Pro Pro Thr Lys Phe Gln 50 55 60
- Cys Arg Thr Ser Gly Leu Cys Val Pro Leu Thr Trp Arg Cys Asp
 65 70 75
- Arg Asp Leu Asp Cys Ser Asp Gly Ser Asp Glu Glu Glu Cys Arg 80 85 90
- Ile Glu Pro Cys Thr Gln Lys Gly Gln Cys Pro Pro Pro Gly 95 100 105
- Leu Pro Cys Pro Cys Thr Gly Val Ser Asp Cys Ser Gly Gly Thr
 110 115 120
- Asp Lys Lys Leu Arg Asn Cys Ser Arg Leu Ala Cys Leu Ala Gly 125 130 135
- Glu Leu Arg Cys Thr Leu Ser Asp Asp Cys Ile Pro Leu Thr Trp
 140 145 150
- Arg Cys Asp Gly His Pro Asp Cys Pro Asp Ser Ser Asp Glu Leu 155 160 165
- Gly Cys Gly Thr Asn Glu Ile Leu Pro Glu Gly Asp Ala Thr Thr 170 175 180
- Met Gly Pro Pro Val Thr Leu Glu Ser Val Thr Ser Leu Arg Asn

				185					190					195
Ala '	Thr	Thr	Met	Gly 200	Pro	Pro	Val	Thr	Leu 205	Glu	Ser	Val	Pro	Ser 210
Val (Gly	Asn	Ala	Thr 215	Ser	Ser	Ser	Ala	Gly 220	Asp	Gln	Ser	Gly	Ser 225
Pro '	Thr	Ala	Tyr	Gly 230	Val	Ile	Ala	Ala	Ala 235	Ala	Val	Leu	Ser	Ala 240
Ser :	Leu	Val	Thr	Ala 245	Thr	Leu	Leu	Leu	Leu 250	Ser	Trp	Leu	Arg	Ala 255
Gln (Glu	Arg	Leu	Arg 260	Pro	Leu	Gly	Leu	Leu 265	Val	Ala	Met	Lys	Glu 270
Ser :	Leu	Leu	Leu	Ser 275	Glu	Gln	Lys	Thr	Ser 280	Leu	Pro			
<210> 128 <211> 24 <212> DNA <213> Artificial Sequence														
<220> <223> Synthetic Oligonucleotide Probe														
<400> 128 aagttccagt gccgcaccag tggc 24														
<211> <212>	<210> 129 <211> 24 <212> DNA <213> Artificial Sequence													
<220> <223>	Syn	thet	ic C	ligo	nucl	.eoti	.de I	robe	:					
<400> ttggt <210> <211> <212> <213>	ttcc 130 50 DNA	ac a					4							
<220> <223>	Syn	thet	ic C	ligo	nucl	.eoti	.de F	robe	!					
<400> gagga			ıcagg	attg	a go	catg	rtacc	cag	aaag	ggc	aatg	ссса	.cc 5	0
<212>	.> 1843													
<220> <221>	> .> unsure													

<400> 131 cccacgcgtc cggtctcgct cgctcgcgca gcggcggcag cagaggtcgc 50 gcacagatgc gggttagact ggcgggggga ggaggcggag gagggaagga 100 agetgeatge atgagaceea cagactettg caagetggat gecetetgtg 150 gatgaaagat gtatcatgga atgaacccga gcaatggaga tggatttcta 200 gagcagcagc agcagcagca gcaacctcag tcccccaga gactcttggc 250 cgtgatcctg tggtttcagc tggcgctgtg cttcggccct gcacagctca 300 egggegggtt egatgacett caagtgtgtg etgaceeegg catteeegag 350 aatggcttca ggacccccag cggaggggtt ttctttgaag gctctgtagc 400 ccgatttcac tgccaagacg gattcaagct gaagggcgct acaaagagac 450 tgtgtttgaa gcattttaat ggaaccctag gctggatccc aagtgataat 500 tccatctgtg tgcaagaaga ttgccgtatc cctcaaatcg aagatgctga 550 gattcataac aagacatata gacatggaga gaagctaatc atcacttgtc 600 atgaaggatt caagatccgg taccccgacc tacacaatat ggtttcatta 650 tgtcgcgatg atggaacgtg gaataatctg cccatctgtc aaggctgcct 700 gagaceteta geetetteta atggetatgt aaacatetet gagetecaga 750 cctccttccc ggtggggact gtgatctcct atcgctgctt tcccggattt 800 aaacttgatg ggtctgcgta tcttgagtgc ttacaaaacc ttatctggtc 850 gtccagccca ccccggtgcc ttgctctgga agcccaagtc tgtccactac 900 ctccaatggt gagtcacgga gatttcgtct gccacccgcg gccttgtgag 950 cgctacaacc acggaactgt ggtggagttt tactgcgatc ctggctacag 1000 cctcaccagc gactacaagt acatcacctg ccagtatgga gagtggtttc 1050 cttcttatca agtctactgc atcaaatcag agcaaacgtg gcccagcacc 1100 catgagaccc tcctgaccac gtggaagatt gtggcgttca cggcaaccag 1150 tgtgctgctg gtgctgctgc tcgtcatcct ggccaggatg ttccagacca 1200 agttcaaggc ccactttccc cccagggggc ctccccggag ttccagcagt 1250 gaccetgact ttgtggtggt agacggcgtg cccgtcatgc tcccgtccta 1300 tgacgaagct gtgagtggcg gcttgagtgc cttaggcccc gggtacatgg 1350 cctctgtggg ccagggctgc cccttacccg tggacgacca gagcccccca 1400

gcataccccg gctcaggga cacggacaca ggcccagggg agtcagaaac 1450 ctgtgacagc gtctcaggct cttctgagct gctccaaagt ctgtattcac 1500 ctcccaggtg ccaagagagc acccaccctg cttcggacaa ccctgacata 1550 attgccagca cggcagagga ggtggcatcc accagcccag gcatccatca 1600 tgcccactgg gtgttgttcc taagaaactg attgattaaa aaatttccca 1650 aagtgtcctg aagtgtctct tcaaatacat gttgatctgt ggagttgatt 1700 cctttccttc tcttggtttt agacaaatgt aaacaaagct ctgatcctta 1750 aaattgctat gctgatagag tggtgaggc tggaagcttg atcaagtcct 1800 gtttcttctt gacacagact gattaaaaat taaaagnaaa aaa 1843

<210> 132

<211> 490

<212> PRT

<213> Homo Sapien

<400> 132

Met Tyr His Gly Met Asn Pro Ser Asn Gly Asp Gly Phe Leu Glu

1 5 10 15

Gln Gln Gln Gln Gln Gln Pro Gln Ser Pro Gln Arg Leu Leu 20 25 30

Ala Val Ile Leu Trp Phe Gln Leu Ala Leu Cys Phe Gly Pro Ala 35 40 45

Gln Leu Thr Gly Gly Phe Asp Asp Leu Gln Val Cys Ala Asp Pro 50 55 60

Gly Ile Pro Glu Asn Gly Phe Arg Thr Pro Ser Gly Gly Val Phe
65 70 75

Phe Glu Gly Ser Val Ala Arg Phe His Cys Gln Asp Gly Phe Lys 80 85 90

Leu Lys Gly Ala Thr Lys Arg Leu Cys Leu Lys His Phe Asn Gly
95 100 105

Thr Leu Gly Trp Ile Pro Ser Asp Asn Ser Ile Cys Val Glu 110 115 120

Asp Cys Arg Ile Pro Gln Ile Glu Asp Ala Glu Ile His Asn Lys 125 130 135

Thr Tyr Arg His Gly Glu Lys Leu Ile Ile Thr Cys His Glu Gly
140 145 150

Phe Lys Ile Arg Tyr Pro Asp Leu His Asn Met Val Ser Leu Cys 155 160 165

Arg Asp Asp Gly Thr Trp Asn Asn Leu Pro Ile Cys Gln Gly Cys
170 175 180

Leu	Arg	Pro	Leu	Ala 185	Ser	Ser	Asn	Gly	Tyr 190	Val	Asn	Ile	Ser	Glu 195
Leu	Gln	Thr	Ser	Phe 200	Pro	Val	Gly	Thr	Val 205	Ile	Ser	Tyr	Arg	Cys 210
Phe	Pro	Gly	Phe	Lys 215	Leu	Asp	Gly	Ser	Ala 220	Tyr	Leu	Glu	Cys	Leu 225
Gln	Asn	Leu	Ile	Trp 230	Ser	Ser	Ser	Pro	Pro 235	Arg	Cys	Leu	Ala	Leu 240
Glu	Ala	Gln	Val	Cys 245	Pro	Leu	Pro	Pro	Met 250	Val	Ser	His	Gly	Asp 255
Phe	Val	Cys	His	Pro 260	Arg	Pro	Cys	Glu	Arg 265	Tyr	Asn	His	Gly	Thr 270
Val	Val	Glu	Phe	Tyr 275	Cys	Asp	Pro	Gly	Tyr 280	Ser	Leu	Thr	Ser	Asp 285
Tyr	Lys	Tyr	Ile	Thr 290	Cys	Gln	Tyr	Gly	Glu 295	Trp	Phe	Pro	Ser	Tyr 300
Gln	Val	Tyr	Cys	Ile 305	Lys	Ser	Glu	Gln	Thr 310	Trp	Pro	Ser	Thr	His 315
Glu	Thr	Leu	Leu	Thr 320	Thr	Trp	Lys	Ile	Val 325	Ala	Phe	Thr	Ala	Thr 330
Ser	Val	Leu	Leu	Val 335	Leu	Leu	Leu	Val	Ile 340	Leu	Ala	Arg	Met	Phe 345
Gln	Thr	Lys	Phe	Lys 350	Ala	His	Phe	Pro	Pro 355	Arg	Gly	Pro	Pro	Arg 360
Ser	Ser	Ser	Ser	Asp 365	Pro	Asp	Phe	Val	Val 370	Val	Asp	Gly	Val	Pro 375
Val	Met	Leu	Pro	Ser 380	Tyr	Asp	Glu	Ala	Val 385	Ser	Gly	Gly	Leu	Ser 390
Ala	Leu	Gly	Pro	Gly 395	Tyr	Met	Ala	Ser	Val 400	Gly	Gln	Gly	Cys	Pro 405
Leu	Pro	Val	Asp	Asp 410	Gln	Ser	Pro	Pro	Ala 415	Tyr	Pro	Gly	Ser	Gly 420
Asp	Thr	Asp	Thr	Gly 425	Pro	Gly	Glu	Ser	Glu 430	Thr	Cys	Asp	Ser	Val 435
Ser	Gly	Ser	Ser	Glu 440	Leu	Leu	Gln	Ser	Leu 445	Tyr	Ser	Pro	Pro	Arg 450
Cys	Gln	Glu	Ser	Thr 455	His	Pro	Ala	Ser	Asp 460	Asn	Pro	Asp	Ile	Ile 465
Ala	Ser	Thr	Ala	Glu	Glu	Val	Ala	Ser	Thr	Ser	Pro	Gly	Ile	His

His Ala His Trp Val Leu Phe Leu Arg Asn 485 490

- <210> 133
- <211> 23
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic Oligonucleotide Probe
- <400> 133

atctcctatc gctgctttcc cgg 23

- <210> 134
- <211> 23
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic Oligonucleotide Probe
- <400> 134

agccaggatc gcagtaaaac tcc 23

- <210> 135
- <211> 50
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic Oligonucleotide Probe
- <400> 135

atttaaactt gatgggtctg cgtatcttga gtgcttacaa aaccttatct 50

- <210> 136
- <211> 1815
- <212> DNA
- <213> Homo Sapien
- <400> 136
- cccacgcgtc cgctccgcgc cctcccccc gcctcccgtg cggtccgtcg 50
- gtggcctaga gatgctgctg ccgcggttgc agttgtcgcg cacgcctctg 100
- cccgccagcc cgctccaccg ccgtagcgcc cgagtgtcgg ggggcgcacc 150
- cgagtcgggc catgaggccg ggaaccgcgc tacaggccgt gctgctggcc 200
- gtgctgctgg tggggctgcg ggccgcgacg ggtcgcctgc tgagtgcctc 250
- ggatttggac ctcagaggag ggcagccagt ctgccgggga gggacacaga 300
- ggccttgtta taaagtcatt tacttccatg atacttctcg aagactgaac 350 tttgaggaag ccaaagaagc ctgcaggagg gatggaggcc agctagtcag 400

catcgagtct gaagatgaac agaaactgat agaaaagttc attgaaaacc 450 tettgecate tgatggtgae ttetggattg ggeteaggag gegtgaggag 500 aaacaaagca atagcacagc ctgccaggac ctttatgctt ggactgatgg 550 cagcatatca caatttagga actggtatgt ggatgagccg tcctgcggca 600 gcgaggtctg cgtggtcatg taccatcagc catcggcacc cgctggcatc 650 ggaggcccct acatgttcca gtggaatgat gaccggtgca acatgaagaa 700 caatttcatt tgcaaatatt ctgatgagaa accagcagtt ccttctagag 750 aagctgaagg tgaggaaaca gagctgacaa cacctgtact tccagaagaa 800 acacaggaag aagatgccaa aaaaacattt aaagaaagta gagaagctgc 850 cttgaatctg gcctacatcc taatccccag cattcccctt ctcctccc 900 ttgtggtcac cacagttgta tgttgggttt ggatctgtag aaaaagaaaa 950 cgggagcagc cagaccctag cacaaagaag caacaccca tctggccctc 1000 tecteaceag ggaaacagee eggaeetaga ggtetacaat gteataagaa 1050 aacaaagcga agctgactta gctgagaccc ggccagacct gaagaatatt 1100 tcattccgag tgtgttcggg agaagccact cccgatgaca tgtcttgtga 1150 ctatgacaac atggctgtga acccatcaga aagtgggttt gtgactctgg 1200 tgagcgtgga gagtggattt gtgaccaatg acatttatga gttctcccca 1250 gaccaaatgg ggaggagtaa ggagtctgga tgggtggaaa atgaaatata 1300 tggttattag gacatataaa aaactgaaac tgacaacaat ggaaaagaaa 1350 tgataagcaa aatcctctta ttttctataa ggaaaataca cagaaggtct 1400 atgaacaagc ttagatcagg tcctgtggat gagcatgtgg tccccacgac 1450 ctcctgttgg accccacgt tttggctgta tcctttatcc cagccagtca 1500 tecagetega cettatgaga aggtacettg eccaggtetg geacatagta 1550 gagteteaat aaatgteaet tggttggttg tatetaaett ttaagggaea 1600 gagetttace tggeagtgat aaagatggge tgtggagett ggaaaaceae 1650 ctctgttttc cttgctctat acagcagcac atattatcat acagacagaa 1700 aatccagaat cttttcaaag cccacatatg gtagcacagg ttggcctgtg 1750 catcggcaat tctcatatct gtttttttca aagaataaaa tcaaataaag 1800 agcaggaaaa aaaaa 1815

<211> 382

<212> PRT

<213> Homo Sapien

<400> 137 Met Arg Pro Gly Thr Ala Leu Gln Ala Val Leu Leu Ala Val Leu 5 Leu Val Gly Leu Arg Ala Ala Thr Gly Arg Leu Leu Ser Ala Ser Asp Leu Asp Leu Arg Gly Gly Gln Pro Val Cys Arg Gly Gly Thr Gln Arg Pro Cys Tyr Lys Val Ile Tyr Phe His Asp Thr Ser Arg Arg Leu Asn Phe Glu Glu Ala Lys Glu Ala Cys Arg Arg Asp Gly Gly Gln Leu Val Ser Ile Glu Ser Glu Asp Glu Gln Lys Leu Ile Glu Lys Phe Ile Glu Asn Leu Leu Pro Ser Asp Gly Asp Phe Trp Ile Gly Leu Arg Arg Glu Glu Lys Gln Ser Asn Ser Thr Ala 110 Cys Gln Asp Leu Tyr Ala Trp Thr Asp Gly Ser Ile Ser Gln Phe Arg Asn Trp Tyr Val Asp Glu Pro Ser Cys Gly Ser Glu Val Cys 140 145 Val Val Met Tyr His Gln Pro Ser Ala Pro Ala Gly Ile Gly Gly 155 Pro Tyr Met Phe Gln Trp Asn Asp Asp Arg Cys Asn Met Lys Asn 170 Asn Phe Ile Cys Lys Tyr Ser Asp Glu Lys Pro Ala Val Pro Ser Arg Glu Ala Glu Gly Glu Glu Thr Glu Leu Thr Thr Pro Val Leu 200 205 Pro Glu Glu Thr Gln Glu Glu Asp Ala Lys Lys Thr Phe Lys Glu Ser Arg Glu Ala Ala Leu Asn Leu Ala Tyr Ile Leu Ile Pro Ser Ile Pro Leu Leu Leu Leu Val Val Thr Thr Val Val Cys Trp 250 Val Trp Ile Cys Arg Lys Arg Lys Arg Glu Gln Pro Asp Pro Ser 260 265.

Thr Lys Lys Gln His Thr Ile Trp Pro Ser Pro His Gln Gly Asn Ser Pro Asp Leu Glu Val Tyr Asn Val Ile Arg Lys Gln Ser Glu 290 295 Ala Asp Leu Ala Glu Thr Arg Pro Asp Leu Lys Asn Ile Ser Phe Arg Val Cys Ser Gly Glu Ala Thr Pro Asp Asp Met Ser Cys Asp Tyr Asp Asn Met Ala Val Asn Pro Ser Glu Ser Gly Phe Val Thr Leu Val Ser Val Glu Ser Gly Phe Val Thr Asn Asp Ile Tyr Glu Phe Ser Pro Asp Gln Met Gly Arg Ser Lys Glu Ser Gly Trp Val 370 Glu Asn Glu Ile Tyr Gly Tyr <210> 138 <211> 50 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 138 gttcattgaa aacctcttgc catctgatgg tgacttctgg attgggctca 50 <210> 139 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 139 aagccaaaga agcctgcagg aggg 24 <210> 140 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 140 cagtccaagc ataaaggtcc tggc 24 <210> 141 <211> 1514

<400> 141 ggggtctccc tcagggccgg gaggcacagc ggtccctgct tgctgaaggg 50 ctggatgtac gcatccgcag gttcccgcgg acttgggggc gcccgctgag 100 ccccggcgcc cgcagaagac ttgtgtttgc ctcctgcagc ctcaacccgg 150 agggcagcga gggcctacca ccatgatcac tggtgtgttc agcatgcgct 200 tgtggacccc agtgggcgtc ctgacctcgc tggcgtactg cctgcaccag 250 eggegggtgg ceetggeega getgeaggag geegatggee agtgteeggt 300 cgaccgcagc ctgctgaagt tgaaaatggt gcaggtcgtg tttcgacacg 350 gggctcggag tcctctcaag ccgctcccgc tggaggagca ggtagagtgg 400 aacccccagc tattagaggt cccaccccaa actcagtttg attacacagt 450 caccaatcta getggtggte egaaaccata tteteettae gaeteteaat 500 accatgagac caccetgaag gggggcatgt ttgetgggea getgaccaag 550 gtgggcatgc agcaaatgtt tgccttggga gagagactga ggaagaacta 600 tgtggaagac attccctttc tttcaccaac cttcaaccca caggaggtct 650 ttattcgttc cactaacatt tttcggaatc tggagtccac ccgttgtttg 700 ctggctgggc ttttccagtg tcagaaagaa ggacccatca tcatccacac 750 tgatgaagca gattcagaag tettgtatee caactaccaa agetgetgga 800 geetgaggea gagaaceaga ggeeggagge agaetgeete tttaeageea 850 ggaatctcag aggatttgaa aaaggtgaag gacaggatgg gcattgacag 900 tagtgataaa gtggacttct tcatcctcct ggacaacgtg gctgccgagc 950 aggcacacaa cctcccaagc tgccccatgc tgaagagatt tgcacggatg 1000 atcgaacaga gagctgtgga cacatccttg tacatactgc ccaaggaaga 1050 cagggaaagt cttcagatgg cagtaggccc attcctccac atcctagaga 1100 gcaacctgct gaaagccatg gactctgcca ctgcccccga caagatcaga 1150 aagetgtate tetatgegge teatgatgtg acetteatae egetettaat 1200 gaccetgggg atttttgacc acaaatggcc accgtttgct gttgacetga 1250 ccatggaact ttaccagcac ctggaatcta aggagtggtt tgtgcagctc 1300 tattaccacg ggaaggagca ggtgccgaga ggttgccctg atgggctctg 1350 cccgctggac atgttcttga atgccatgtc agtttatacc ttaagcccag 1400

aaaaatacca tgcactctgc tctcaaactc aggtgatgga agttggaaat 1450 gaagagtaac tgatttataa aagcaggatg tgttgatttt aaaataaagt 1500 gcctttatac aatg 1514

- <210> 142
- <211> 428
- <212> PRT
- <213> Homo Sapien

- 1	Λ	റ	`	- 1	4	2

- Met Ile Thr Gly Val Phe Ser Met Arg Leu Trp Thr Pro Val Gly
 1 5 10 15
- Val Leu Thr Ser Leu Ala Tyr Cys Leu His Gln Arg Arg Val Ala 20 25 30
- Leu Ala Glu Leu Gln Glu Ala Asp Gly Gln Cys Pro Val Asp Arg
 35 40 45
- Ser Leu Leu Lys Leu Lys Met Val Gln Val Val Phe Arg His Gly 50 55 60
- Ala Arg Ser Pro Leu Lys Pro Leu Pro Leu Glu Glu Gln Val Glu 65 70 75
- Trp Asn Pro Gln Leu Leu Glu Val Pro Pro Gln Thr Gln Phe Asp 80 85 90
- Tyr Thr Val Thr Asn Leu Ala Gly Gly Pro Lys Pro Tyr Ser Pro 95 100 105
- Tyr Asp Ser Gln Tyr His Glu Thr Thr Leu Lys Gly Gly Met Phe 110 115 120
- Ala Gly Gln Leu Thr Lys Val Gly Met Gln Gln Met Phe Ala Leu 125 130 135
- Gly Glu Arg Leu Arg Lys Asn Tyr Val Glu Asp Ile Pro Phe Leu 140 145 150
- Ser Pro Thr Phe Asn Pro Gln Glu Val Phe Ile Arg Ser Thr Asn 155 160 165
- Ile Phe Arg Asn Leu Glu Ser Thr Arg Cys Leu Leu Ala Gly Leu
 170 175 180
- Phe Gln Cys Gln Lys Glu Gly Pro Ile Ile Ile His Thr Asp Glu 185 190 195
- Ala Asp Ser Glu Val Leu Tyr Pro Asn Tyr Gln Ser Cys Trp Ser
 200 205 210
- Leu Arg Gln Arg Thr Arg Gly Arg Arg Gln Thr Ala Ser Leu Gln 215 220 225
- Pro Gly Ile Ser Glu Asp Leu Lys Lys Val Lys Asp Arg Met Gly

230 235 240

Ile Asp Ser Ser Asp Lys Val Asp Phe Phe Ile Leu Leu Asp Asn 245 250 255

Val Ala Ala Glu Gln Ala His Asn Leu Pro Ser Cys Pro Met Leu 260 265 270

Lys Arg Phe Ala Arg Met Ile Glu Gln Arg Ala Val Asp Thr Ser 275 280 280

Leu Tyr Ile Leu Pro Lys Glu Asp Arg Glu Ser Leu Gln Met Ala 290 295 300

Val Gly Pro Phe Leu His Ile Leu Glu Ser Asn Leu Leu Lys Ala 305 310 315

Met Asp Ser Ala Thr Ala Pro Asp Lys Ile Arg Lys Leu Tyr Leu
320 325 330

Tyr Ala Ala His Asp Val Thr Phe Ile Pro Leu Leu Met Thr Leu
335 340 345

Gly Ile Phe Asp His Lys Trp Pro Pro Phe Ala Val Asp Leu Thr 350 355 360

Met Glu Leu Tyr Gln His Leu Glu Ser Lys Glu Trp Phe Val Gln 365 370 375

Leu Tyr Tyr His Gly Lys Glu Gln Val Pro Arg Gly Cys Pro Asp 380 385 390

Gly Leu Cys Pro Leu Asp Met Phe Leu Asn Ala Met Ser Val Tyr 395 400 405

Thr Leu Ser Pro Glu Lys Tyr His Ala Leu Cys Ser Gln Thr Gln $410 \,$ $415 \,$ 420

Val Met Glu Val Gly Asn Glu Glu 425

<210> 143

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 143

ccaactacca aagctgctgg agcc 24

<210> 144

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

```
<400> 144
gcagctctat taccacggga agga 24
<210> 145
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 145
tccttcccgt ggtaatagag ctgc 24
<210> 146
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 146
ggcagagaac cagaggccgg aggagactgc ctctttacag ccagg 45
<210> 147
<211> 1686
<212> DNA
<213> Homo Sapien
<400> 147
ctcctcttaa catacttgca gctaaaacta aatattgctg cttggggacc 50
tecttetage ettaaattte ageteateae etteacetge ettggteatg 100
gctctgctat tctccttgat ccttgccatt tgcaccagac ctggattcct 150
agegteteca tetggagtge ggetggtggg gggeetecae egetgtgaag 200
ggcgggtgga ggtggaacag aaaggccagt ggggcaccgt gtgtgatgac 250
ggctgggaca ttaaggacgt ggctgtgttg tgccgggagc tgggctgtgg 300
agctgccagc ggaaccccta gtggtatttt gtatgagcca ccagcagaaa 350
aagagcaaaa ggtcctcatc caatcagtca gttgcacagg aacagaagat 400
acattggctc agtgtgagca agaagaagtt tatgattgtt cacatgatga 450
agatgctggg gcatcgtgtg agaacccaga gagctctttc tccccagtcc 500
cagagggtgt caggctggct gacggccctg ggcattgcaa gggacgcgtg 550
gaagtgaagc accagaacca gtggtatacc gtgtgccaga caggctggag 600
cctccgggcc gcaaaggtgg tgtgccggca gctgggatgt gggagggctg 650
```

tactgactca aaaacgctgc aacaagcatg cctatggccg aaaacccatc 700

tggctgagcc agatgtcatg ctcaggacga gaagcaaccc ttcaggattg 750 cccttctggg ccttggggga agaacacctg caaccatgat gaagacacgt 800 gggtcgaatg tgaagatccc tttgacttga gactagtagg aggagacaac 850 ctctgctctg ggcgactgga ggtgctgcac aagggcgtat ggggctctgt 900 ctgtgatgac aactggggag aaaaggagga ccaggtggta tgcaagcaac 950 tgggctgtgg gaagtccctc tctccctcct tcagagaccg gaaatgctat 1000 ggccctgggg ttggccgcat ctggctggat aatgttcgtt gctcagggga 1050 ggagcagtcc ctggagcagt gccagcacag attttggggg tttcacgact 1100 gcacccacca ggaagatgtg gctgtcatct gctcagtgta ggtgggcatc 1150 atctaatctg ttgagtgcct gaatagaaga aaaacacaga agaagggagc 1200 atttactgtc tacatgactg catgggatga acactgatct tcttctgccc 1250 ttggactggg acttatactt ggtgcccctg attctcaggc cttcagagtt 1300 ggatcagaac ttacaacatc aggtctagtt ctcaggccat cagacatagt 1350 ttggaactac atcaccacct ttcctatgtc tccacattgc acacagcaga 1400 ttcccagcct ccataattgt gtgtatcaac tacttaaata cattctcaca 1450 cacacacaca cacacacaca cacacacaca cacacataca ccatttgtcc 1500 tgtttctctg aagaactctg acaaaataca gattttggta ctgaaagaga 1550 ttctagagga acggaatttt aaggataaat tttctgaatt ggttatgggg 1600 tttctgaaat tggctctata atctaattag atataaaatt ctggtaactt 1650 tatttacaat aataaagata gcactatgtg ttcaaa 1686

- <210> 148
- <211> 347
- <212> PRT
- <213> Homo Sapien
- <400> 148
- Met Ala Leu Leu Phe Ser Leu Ile Leu Ala Ile Cys Thr Arg Pro 1 5 10 15
- Gly Phe Leu Ala Ser Pro Ser Gly Val Arg Leu Val Gly Gly Leu
 20 25 30
- His Arg Cys Glu Gly Arg Val Glu Val Glu Gln Lys Gly Gln Trp 35 40 45
- Gly Thr Val Cys Asp Asp Gly Trp Asp Ile Lys Asp Val Ala Val
 50 55 60
- Leu Cys Arg Glu Leu Gly Cys Gly Ala Ala Ser Gly Thr Pro Ser

		•		65					70					, ,
Gly	Ile	Leu	Tyr	Glu 80	Pro	Pro	Ala	Glu	Lys 85	Glu	Gln	Lys	Val	Leu 90
Ile	Gln	Ser	Val	Ser 95	Cys	Thr	Gly	Thr	Glu 100	Asp	Thr	Leu	Ala	Gln 105
Cys	Glu	Gln	Glu	Glu 110	Val	Tyr	Asp	Cys	Ser 115	His	Asp	Glu	Asp	Ala 120
Gly	Ala	Ser	Cys	Glu 125	Asn	Pro	Glu	Ser	Ser 130	Phe	Ser	Pŕo	Val	Pro 135
Glu	Gly	Val	Arg	Leu 140	Ala	Asp	Gly	Pro	Gly 145	His	Cys	Lys	Gly	Arg 150
Val	Glu	Val	Lys	His 155	Gln	Asn	Gln	Trp	Tyr 160	Thr	Val	Cys	Gln	Thr 165
Gly	Trp	Ser	Leu	Arg 170	Ala	Ala	Lys	Val	Val 175	Cys	Arg	Gln	Leu	Gly 180
Cys	Gly	Arg	Ala	Val 185	Leu	Thr	Gln	Lys	Arg 190	Cys	Asn	Lys	His	Ala 195
Tyr	Gly	Arg	Lys	Pro 200	Ile	Trp	Leu	Ser	Gln 205	Met	Ser	Cys	Ser	Gly 210
Arg	Glu	Ala	Thr	Leu 215	Gln	Asp	Cys	Pro	Ser 220	Gly	Pro	Trp	Gly	Lys 225
Asn	Thr	Cys	Asn	His 230	Asp	Glu	Asp	Thr	Trp 235	Val	Glu	Cys	Glu	Asp 240
Pro	Phe	Asp	Leu	Arg 245	Leu	Val	Gly	Gly	Asp 250	Asn	Leu	Cys	Ser	Gly 255
Arg	Leu	Glu	Val	Leu 260	His	Lys	Gly	Val	Trp 265	Gly	Ser	Val	Cys	Asp 270
Asp	Asn	Trp	Gly	Glu 275	_	Glu	Asp	Gln	Val 280	Val	Cys	Lys	Gln	Leu 285
Gly	Cys	Gly	Lys	Ser 290	Leu	Ser	Pro	Ser	Phe 295	Arg	Asp	Arg	Lys	Cys 300
Tyr	Gly	Pro	Gly	Val 305	Gly	Arg	Ile	Trp	Leu 310	Asp	Asn	Val	Arg	Cys 315
Ser	Gly	Glu	Glu	Gln 320	Ser	Leu	Glu	Gln	Cys 325	Gln	His	Arg	Phe	Trp 330
Gly	Phe	His	Asp	Cys 335	Thr	His	Gln	Glu	Asp 340	Val	Ala	Val	Ile	Cys 345
	_													

Ser Val

```
<210> 149
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 149
ttcagctcat caccttcacc tgcc 24
<210> 150
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 150
ggctcataca aaataccact aggg 24
<210> 151
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 151
gggcctccac cgctgtgaag ggcgggtgga ggtggaacag aaaggccagt 50
<210> 152
<211> 1427
<212> DNA
<213> Homo Sapien
<400> 152
actgcactcg gttctatcga ttgaattccc cggggatcct ctagagatcc 50
ctcgacctcg acccacgcgt ccgcggacgc gtgggcggac gcgtgggccg 100
gctaccagga agagtctgcc gaaggtgaag gccatggact tcatcacctc 150
cacagocato otgoccotgo tgttoggotg cotgggogto ttoggootot 200
tccggctgct gcagtgggtg cgcgggaagg cctacctgcg gaatgctgtg 250
gtggtgatca caggcgccac ctcagggctg ggcaaagaat gtgcaaaagt 300
cttctatgct gcgggtgcta aactggtgct ctgtggccgg aatggtgggg 350
ccctagaaga gctcatcaga gaacttaccg cttctcatgc caccaaggtg 400
cagacacaca agecttactt ggtgacette gaceteacag actetgggge 450
catagttgca gcagcagctg agatectgca gtgctttggc tatgtcgaca 500
```

tacttgtcaa caatgctggg atcagctacc gtggtaccat catggacacc 550 acagtggatg tggacaagag ggtcatggag acaaactact ttggcccagt 600 tgctctaacg aaagcactcc tgccctccat gatcaagagg aggcaaggcc 650 acattgtcgc catcagcagc atccagggca agatgagcat tccttttcga 700 teageatatg cageeteeaa geaegeaace caggetttet ttgaetgtet 750 gcgtgccgag atggaacagt atgaaattga ggtgaccgtc atcagccccg 800 gctacatcca caccaacctc tctgtaaatg ccatcaccgc ggatggatct 850 aggtatggag ttatggacac caccacagcc cagggccgaa gccctgtgga 900 ggtggcccag gatgttcttg ctgctgtggg gaagaagaag aaaqatqtqa 950 tcctggctga cttactgcct tccttggctg tttatcttcg aactctggct 1000 cctgggctct tcttcagcct catggcctcc agggccagaa aagaqcqqaa 1050 atccaagaac tcctagtact ctgaccagcc agggccaggg cagagaagca 1100 gcactettag gettgettae tetacaaggg acagttgeat ttgttqaqae 1150 tttaatggag atttgtctca caagtgggaa agactgaaga aacacatctc 1200 gtgcagatct gctggcagag gacaatcaaa aacgacaaca agcttcttcc 1250 cagggtgagg ggaaacactt aaggaataaa tatggagctg gggtttaaca 1300 ctaaaaaacta gaaataaaca tctcaaacag taaaaaaaaa aaaaaagggc 1350 ggccgcgact ctagagtcga cctgcagaag cttggccgcc atqqcccaac 1400 ttgtttattg cagcttataa tggttac 1427

<210> 153

<211> 310

<212> PRT

<213> Homo Sapien

<400> 153

Met Asp Phe Ile Thr Ser Thr Ala Ile Leu Pro Leu Leu Phe Gly
1 5 10 15

Cys Leu Gly Val Phe Gly Leu Phe Arg Leu Leu Gln Trp Val Arg
20 25 30

Gly Lys Ala Tyr Leu Arg Asn Ala Val Val Val Ile Thr Gly Ala 35 40 45

Thr Ser Gly Leu Gly Lys Glu Cys Ala Lys Val Phe Tyr Ala Ala 50 55 60

Gly Ala Lys Leu Val Leu Cys Gly Arg Asn Gly Gly Ala Leu Glu 65 70 75

```
Glu Leu Ile Arq Glu Leu Thr Ala Ser His Ala Thr Lys Val Gln
                  80
Thr His Lys Pro Tyr Leu Val Thr Phe Asp Leu Thr Asp Ser Gly
                  95
                                     100
                                                         105
Ala Ile Val Ala Ala Ala Glu Ile Leu Gln Cys Phe Gly Tyr
Val Asp Ile Leu Val Asn Asn Ala Gly Ile Ser Tyr Arg Gly Thr
Ile Met Asp Thr Thr Val Asp Val Asp Lys Arg Val Met Glu Thr
Asn Tyr Phe Gly Pro Val Ala Leu Thr Lys Ala Leu Leu Pro Ser
                 155
Met Ile Lys Arg Arg Gln Gly His Ile Val Ala Ile Ser Ser Ile
Gln Gly Lys Met Ser Ile Pro Phe Arg Ser Ala Tyr Ala Ala Ser
Lys His Ala Thr Gln Ala Phe Phe Asp Cys Leu Arg Ala Glu Met
Glu Gln Tyr Glu Ile Glu Val Thr Val Ile Ser Pro Gly Tyr Ile
His Thr Asn Leu Ser Val Asn Ala Ile Thr Ala Asp Gly Ser Arg
                230
                                     235
Tyr Gly Val Met Asp Thr Thr Ala Gln Gly Arg Ser Pro Val
                245
Glu Val Ala Gln Asp Val Leu Ala Ala Val Gly Lys Lys Lys
                260
                                     265
                                                         270
Asp Val Ile Leu Ala Asp Leu Leu Pro Ser Leu Ala Val Tyr Leu
                275
Arg Thr Leu Ala Pro Gly Leu Phe Phe Ser Leu Met Ala Ser Arg
                290
                                     295
                                                         300
Ala Arg Lys Glu Arg Lys Ser Lys Asn Ser
                305
<210> 154
<211> 24
```

- <212> DNA
- <213> Artificial Sequence
- <223> Synthetic Oligonucleotide Probe
- <400> 154
- ggtgctaaac tggtgctctg tggc 24

```
<210> 155
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 155
cagggcaaga tgagcattcc 20
<210> 156
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 156
tcatactgtt ccatctcggc acgc 24
<210> 157
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 157
aatggtgggg ccctagaaga gctcatcaga gaactcaccg cttctcatgc 50
<210> 158
<211> 1771
<212> DNA
<213> Homo Sapien
<400> 158
cccacgcgtc cgctggtgtt agatcgagca accctctaaa agcagtttag 50
agtggtaaaa aaaaaaaaa acacccaaa cgctcgcagc cacaaaaggg 100
atgaaatttc ttctggacat cctcctgctt ctcccgttac tgatcgtctg 150
ctccctagag tccttcgtga agctttttat tcctaagagg agaaaatcag 200
tcaccggcga aatcgtgctg attacaggag ctgggcatgg aattgggaga 250
ctgactgcct atgaatttgc taaacttaaa agcaagctgg ttctctggga 300
tataaataag catggactgg aggaaacagc tgccaaatgc aagggactgg 350
gtgccaaggt tcataccttt gtggtagact gcagcaaccg agaagatatt 400
tacagctctg caaagaaggt gaaggcagaa attggagatg ttagtatttt 450
agtaaataat gctggtgtag tctatacatc agatttgttt gctacacaag 500
atcctcagat tgaaaagact tttgaagtta atgtacttgc acatttctgg 550
```

actacaaagg catttcttcc tgcaatgacg aagaataacc atggccatat 600 tgtcactgtg gcttcggcag ctggacatgt ctcggtcccc ttcttactgg 650 cttactgttc aagcaagttt gctgctgttg gatttcataa aactttgaca 700 gatgaactgg ctgccttaca aataactgga gtcaaaacaa catgtctgtg 750 tcctaatttc gtaaacactg gcttcatcaa aaatccaagt acaagtttgg 800 gacccactct ggaacctgag gaagtggtaa acaggctgat gcatgggatt 850 ctgactgagc agaagatgat ttttattcca tcttctatag cttttttaac 900 aacattggaa aggatccttc ctgagcgttt cctggcagtt ttaaaacgaa 950 aaatcagtgt taagtttgat gcagttattg gatataaaat gaaagcgcaa 1000 taagcaccta gttttctgaa aactgattta ccaggtttag gttgatgtca 1050 tctaatagtg ccagaatttt aatgtttgaa cttctgtttt ttctaattat 1100 ccccatttct tcaatatcat ttttgaggct ttggcagtct tcatttacta 1150 ccacttgttc tttagccaaa agctgattac atatgatata aacagagaaa 1200 tacctttaga ggtgacttta aggaaaatga agaaaaagaa ccaaaatgac 1250 tttattaaaa taatttccaa gattatttgt ggctcacctg aaggctttgc 1300 aaaatttgta ccataaccgt ttatttaaca tatattttta tttttgattg 1350 cacttaaatt ttgtataatt tgtgtttctt tttctgttct acataaaatc 1400 agaaacttca agctctctaa ataaaatqaa qqactatatc taqtqqtatt 1450 tcacaatgaa tatcatgaac tctcaatggg taggtttcat cctacccatt 1500 gccactctgt ttcctgagag atacctcaca ttccaatgcc aaacatttct 1550 gcacagggaa gctagaggtg gatacacgtg ttgcaagtat aaaagcatca 1600 ctgggattta aggagaattg agagaatgta cccacaaatg gcagcaataa 1650

aaaaaaaaa a 1771

- <210> 159
- <211> 300
- <212> PRT
- <213> Homo Sapien

<400> 159

Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Leu Pro Leu Leu Ile 1 5 10 15

Val	Cys	Ser	Leu	Glu 20	Ser	Phe	Val	Lys	Leu 25	Phe	Ile	Pro	Lys	Arg 30
Arg	Lys	Ser	Val	Thr 35	Gly	Glu	Ile	Val	Leu 40	Ile	Thr	Gly	Ala	Gly 45
His	Gly	Ile	Gly	Arg 50	Leu	Thr	Ala	Tyr	Glu 55	Phe	Ala	ГÀЗ	Leu.	Lys 60
Ser	Lys	Leu	Val	Leu 65	Trp	Asp	Ile	Asn	Lys 70	His	Gly	Leu	Glu	Glu 75
Thr	Ala	Ala	Lys	S0	Lys	Gly	Leu	Gly	Ala 85	Lys	Val	His	Thr	Phe 90
Val	Val	Asp	Cys	Ser 95	Asn	Arg	Glu	Asp	Ile 100	Tyr	Ser	Ser	Ala	Lys 105
Lys	Val	Lys	Ala	Glu 110	Ile	Gly	Asp	Val	Ser 115	Ile	Leu	Val	Asn	Asn 120
Ala	Gly	Val	Val	Tyr 125	Thr	Ser	Asp	Leu	Phe 130	Ala	Thr	Gln	Asp	Pro 135
Gln	Ile	Glu	Lys	Thr 140	Phe	Glu	Val	Asn	Val 145	Leu	Ala	His	Phe	Trp 150
Thr	Thr	Lys	Ala	Phe 155	Leu	Pro	Ala	Met	Thr 160	Lys	Asn	Asn	His	Gly 165
His	Ile	Val	Thr	Val 170	Ala	Ser	Ala	Ala	Gly 175	His	Val	Ser	Val	Pro 180
Phe	Leu	Leu	Ala	Tyr 185	Cys	Ser	Ser	Lys	Phe 190	Ala	Ala	Val	Gly	Phe 195
His	Lys	Thr	Leu	Thr 200	Asp	Glu	Leu	Ala	Ala 205	Leu	Gln	Ile	Thr	Gly 210
Val	Lys	Thr	Thr	Cys 215	Leu	Суѕ	Pro	Asn	Phe 220	Val	Asn	Thr	Gly	Phe 225
Ile	Lys	Asn	Pro	Ser 230	Thr	Ser	Leu	Gly	Pro 235	Thr	Leu	Glu	Pro	Glu 240
Glu	Val	Val	Asn	Arg 245	Leu	Met	His	Gly	Ile 250	Leu	Thr	Glu	Gln	Lys 255
Met	Ile	Phe	Ile	Pro 260	Ser	Ser	Ile	Ala	Phe 265	Leu	Thr	Thr	Leu	Glu 270
Arg	Ile	Leu	Pro	Glu 275	Arg	Phe	Leu	Ala	Val 280	Leu	Lys	Arg	Lys	Ile 285
Ser	Val	Lys	Phe	Asp 290	Ala	Val	Ile	Gly	Tyr 295	Lys	Met	Lys	Ala	Gln 300

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 160
ggtgaaggca gaaattggag atg 23
<210> 161
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 161
atcccatgca tcagcctgtt tacc 24
<210> 162
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 162
gctggtgtag tctatacatc agatttgttt gctacacaag atcctcag 48
<210> 163
<211> 2076
<212> DNA
<213> Homo Sapien
<400> 163
cccacgcgtc cgcggacgcg tgggtcgact agttctagat cgcgagcggc 50
cgcccgcggc tcagggagga gcaccgactg cgccgcaccc tgagagatgg 100
ttggtgccat gtggaaggtg attgtttcgc tggtcctgtt gatgcctggc 150
ccctgtgatg ggctgtttcg ctccctatac agaagtgttt ccatgccacc 200
 taagggagac tcaggacagc cattatttct caccccttac attgaagctg 250
ggaagatcca aaaaggaaga gaattgagtt tggtcggccc tttcccagga 300
ctgaacatga agagttatgc cggcttcctc accgtgaata agacttacaa 350
cagcaacctc ttcttctggt tcttcccagc tcagatacag ccagaagatg 400
ccccagtagt tctctggcta cagggtgggc cgggaggttc atccatgttt 450
ggactetttg tggaacatgg gcettatgtt gtcacaagta acatgacett 500
gcgtgacaga gacttcccct ggaccacaac gctctccatg ctttacattg 550
```

acaatccagt gggcacaggc ttcagtttta ctgatgatac ccacggatat 600

gcagtcaatg aggacgatgt agcacgggat ttatacagtg cactaattca 650 gtttttccag atatttcctg aatataaaaa taatgacttt tatgtcactg 700 gggagtetta tgcagggaaa tatgtgccag ccattgcaca cctcatccat 750 tccctcaacc ctgtgagaga ggtgaagatc aacctgaacg gaattgctat 800 tggagatgga tattctgatc ccgaatcaat tatagggggc tatgcagaat 850 tcctgtacca aattggcttg ttggatgaga agcaaaaaaa gtacttccag 900 aagcagtgcc atgaatgcat agaacacatc aggaagcaga actggtttga 950 ggcctttgaa atactggata aactactaga tggcgactta acaagtgatc 1000 cttcttactt ccagaatgtt acaggatgta gtaattacta taactttttg 1050 cggtgcacgg aacctgagga tcagctttac tatgtgaaat ttttgtcact 1100 cccagaggtg agacaagcca tccacgtggg gaatcagact tttaatgatg 1150 gaactatagt tgaaaagtac ttgcgagaag atacagtaca gtcagttaag 1200 ccatggttaa ctgaaatcat gaataattat aaggttctga tctacaatgg 1250 ccaactggac atcatcgtgg cagctgccct gacagagcgc tccttgatgg 1300 gcatggactg gaaaggatcc caggaataca agaaggcaga aaaaaaagtt 1350 tggaagatet ttaaatetga eagtgaagtg getggttaca teeggeaage 1400 gggtgacttc catcaggtaa ttattcgagg tggaggacat attttaccct 1450 atgaccagcc tctgagagct tttgacatga ttaatcgatt catttatgga 1500 aaaggatggg atccttatgt tggataaact accttcccaa aagagaacat 1550 cagaggtttt cattgctgaa aagaaaatcg taaaaacaga aaatgtcata 1600 ggaataaaaa aattatcttt tcatatctgc aagatttttt tcatcaataa 1650 aaattateet tgaaacaagt gagettttgt ttttggggggg agatgtttae 1700 tacaaaatta acatgagtac atgagtaaga attacattat ttaacttaaa 1750 ggatgaaagg tatggatgat gtgacactga gacaagatgt ataaatgaaa 1800 ttttagggtc ttgaatagga agttttaatt tcttctaaga gtaagtgaaa 1850 agtgcagttg taacaaacaa agctgtaaca tctttttctg ccaataacag 1900 aagtttggca tgccgtgaag gtgtttggaa atattattgg ataagaatag 1950 ctcaattatc ccaaataaat ggatgaagct ataatagttt tggggaaaag 2000 attctcaaat gtataaagtc ttagaacaaa agaattcttt gaaataaaaa 2050

tattatatat aaaaqtaaaa aaaaaa 2076

<210> 164

```
<211> 476
<212> PRT
<213> Homo Sapien
<400> 164
Met Val Gly Ala Met Trp Lys Val Ile Val Ser Leu Val Leu Leu
Met Pro Gly Pro Cys Asp Gly Leu Phe Arg Ser Leu Tyr Arg Ser
Val Ser Met Pro Pro Lys Gly Asp Ser Gly Gln Pro Leu Phe Leu
Thr Pro Tyr Ile Glu Ala Gly Lys Ile Gln Lys Gly Arg Glu Leu
Ser Leu Val Gly Pro Phe Pro Gly Leu Asn Met Lys Ser Tyr Ala
Gly Phe Leu Thr Val Asn Lys Thr Tyr Asn Ser Asn Leu Phe Phe
Trp Phe Phe Pro Ala Gln Ile Gln Pro Glu Asp Ala Pro Val Val
Leu Trp Leu Gln Gly Gly Pro Gly Gly Ser Ser Met Phe Gly Leu
                 110
Phe Val Glu His Gly Pro Tyr Val Val Thr Ser Asn Met Thr Leu
                 125
                                     130
Arg Asp Arg Asp Phe Pro Trp Thr Thr Leu Ser Met Leu Tyr
                 140
                                     145
Ile Asp Asn Pro Val Gly Thr Gly Phe Ser Phe Thr Asp Asp Thr
                 155
His Gly Tyr Ala Val Asn Glu Asp Asp Val Ala Arg Asp Leu Tyr
                                     175
Ser Ala Leu Ile Gln Phe Phe Gln Ile Phe Pro Glu Tyr Lys Asn
                 185
                                     190
Asn Asp Phe Tyr Val Thr Gly Glu Ser Tyr Ala Gly Lys Tyr Val
Pro Ala Ile Ala His Leu Ile His Ser Leu Asn Pro Val Arq Glu
Val Lys Ile Asn Leu Asn Gly Ile Ala Ile Gly Asp Gly Tyr Ser
Asp Pro Glu Ser Ile Ile Gly Gly Tyr Ala Glu Phe Leu Tyr Gln
                 245
                                     250
```

```
Ile Gly Leu Leu Asp Glu Lys Gln Lys Lys Tyr Phe Gln Lys Gln
 Cys His Glu Cys Ile Glu His Ile Arg Lys Gln Asn Trp Phe Glu
                 275
Ala Phe Glu Ile Leu Asp Lys Leu Leu Asp Gly Asp Leu Thr Ser
Asp Pro Ser Tyr Phe Gln Asn Val Thr Gly Cys Ser Asn Tyr Tyr
                 305 -
                                     310
Asn Phe Leu Arg Cys Thr Glu Pro Glu Asp Gln Leu Tyr Tyr Val
                 320
                                     325
 Lys Phe Leu Ser Leu Pro Glu Val Arg Gln Ala Ile His Val Gly
Asn Gln Thr Phe Asn Asp Gly Thr Ile Val Glu Lys Tyr Leu Arg
 Glu Asp Thr Val Gln Ser Val Lys Pro Trp Leu Thr Glu Ile Met
Asn Asn Tyr Lys Val Leu Ile Tyr Asn Gly Gln Leu Asp Ile Ile
                 380
                                     385
Val Ala Ala Ala Leu Thr Glu Arg Ser Leu Met Gly Met Asp Trp
                 395
                                     400
Lys Gly Ser Gln Glu Tyr Lys Lys Ala Glu Lys Lys Val Trp Lys
                 410
                                     415
 Ile Phe Lys Ser Asp Ser Glu Val Ala Gly Tyr Ile Arg Gln Ala
                 425
Gly Asp Phe His Gln Val Ile Ile Arg Gly Gly His Ile Leu
                 440
                                     445
Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile Asn Arg Phe
                 455
                                     460
Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly
                 470
<210> 165
<211> 24
```

- <212> DNA
- <213> Artificial Sequence
- <223> Synthetic Oligonucleotide Probe
- <400> 165
- ttccatgcca cctaagggag actc 24
- <210> 166
- <211> 24
- <212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 166
tggatgaggt gtgcaatggc tggc 24
<210> 167
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 167
agctctcaga ggctggtcat aggg 24
<210> 168
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 168
gtcggccctt tcccaggact gaacatgaag agttatgccg gcttcctcac 50
<210> 169
<211> 2477
<212> DNA
<213> Homo Sapien
<400> 169
cgagggettt teeggeteeg gaatggeaea tgtgggaate ceagtettgt 50
tggctacaac atttttccct ttcctaacaa gttctaacag ctgttctaac 100
agctagtgat caggggttct tcttgctgga gaagaaaggg ctgagggcag 150
agcagggcac teteacteag ggtgaceage teettgeete tetgtggata 200
acagagcatg agaaagtgaa gagatgcagc ggagtgaggt gatggaagtc 250
taaaatagga aggaattttg tgtgcaatat cagactctgg gagcagttga 300
cctggagagc ctgggggagg gcctgcctaa caagctttca aaaaacagga 350
gcgacttcca ctgggctggg ataagacgtg ccggtaggat agggaagact 400
gggtttagtc ctaatatcaa attgactggc tgggtgaact tcaacagcct 450
tttaacctct ctgggagatg aaaacgatgg cttaaggggc cagaaataga 500
gatgctttgt aaaataaaat tttaaaaaaa gcaagtattt tatagcataa 550
aggetagaga ceaaaataga taacaqqatt ceetgaacat teetaaqaqq 600
```

gagaaagtat gttaaaaata gaaaaaccaa aatgcagaag gaggagactc 650 acagagetaa accaggatgg ggaceetggg teaggeeage etetttgete 700 ctcccggaaa ttatttttgg tctgaccact ctgccttgtg ttttgcagaa 750 tcatgtgagg gccaaccggg gaaggtggag cagatgagca cacacaggag 800 ccgtctcctc accgccgccc ctctcagcat ggaacagagg cagccctggc 850 cccgggccct ggaggtggac agccgctctg tggtcctgct ctcagtggtc 900 tgggtgctgc tggcccccc agcagccggc atgcctcagt tcagcacctt 950 ccactctgag aatcgtgact ggaccttcaa ccacttgacc gtccaccaag 1000 ggacgggggc cgtctatgtg ggggccatca accgggtcta taagctgaca 1050 ggcaacctga ccatccaggt ggctcataag acagggccag aagaggacaa 1100 caagtetegt taccegeece teategtgea geeetgeage gaagtgetea 1150 ccctcaccaa caatgtcaac aagctgctca tcattgacta ctctgagaac 1200 cgcctgctgg cctgtgggag cctctaccag ggggtctgca agctgctgcg 1250 gctggatgac ctcttcatcc tggtggagcc atcccacaag aaggagcact 1300 acctgtccag tgtcaacaag acgggcacca tgtacggggt gattgtgcgc 1350 tctgagggtg aggatggcaa gctcttcatc ggcacggctg tggatgggaa 1400 gcaggattac ttcccgaccc tgtccagccg gaagctgccc cgagaccctg 1450 agtcctcagc catgctcgac tatgagctac acagcgattt tgtctcctct 1500 ctcatcaaga tcccttcaga caccctggcc ctggtctccc actttgacat 1550 cttctacatc tacggctttg ctagtggggg ctttgtctac tttctcactg 1600 tccagcccga gacccctgag ggtgtggcca tcaactccgc tggagacctc 1650 ttctacacct cacgcatcgt gcggctctgc aaggatgacc ccaagttcca 1700 gesteetgea ggetgettae etggecaage etggggaete aetggeecag 1800 gccttcaata tcaccagcca ggacgatgta ctctttgcca tcttctccaa 1850 agggcagaag cagtatcacc accegecega tgactetgee etgtgtgeet 1900 tecetateeg ggeeateaae ttgeagatea aggagegeet geagteetge 1950 taccagggcg agggcaacct ggagctcaac tggctgctgg ggaaggacgt 2000 ccagtgcacg aaggcgcctg tccccatcga tgataacttc tgtggactgg 2050

acatcaacca gcccctggga ggctcaactc cagtggaggg cctgaccctg 2100
tacaccacca gcagggaccg catgacctct gtggcctcct acgtttacaa 2150
cggctacagc gtggtttttg tggggactaa gagtggcaag ctgaaaaagg 2200
taagagtcta tgagttcaga tgctccaatg ccattcacct cctcagcaaa 2250
gagtccctct tggaaggtag ctattggtgg agatttaact ataggcaact 2300
ttattttctt ggggaacaaa ggtgaaatgg ggaggtaaga aggggttaat 2350
tttgtgactt agcttctagc tacttcctcc agccatcagt cattgggtat 2400
gtaaggaatg caagcgtatt tcaatatttc ccaaacttta agaaaaaact 2450
ttaagaaggt acatctgcaa aagcaaa 2477

<210> 170

<211> 552

<212> PRT

<213> Homo Sapien

<400> 170

Met Gly Thr Leu Gly Gln Ala Ser Leu Phe Ala Pro Pro Gly Asn 1 5 10 15

Tyr Phe Trp Ser Asp His Ser Ala Leu Cys Phe Ala Glu Ser Cys 20 25 30

Glu Gly Gln Pro Gly Lys Val Glu Gln Met Ser Thr His Arg Ser 35 40 45

Arg Leu Leu Thr Ala Ala Pro Leu Ser Met Glu Gln Arg Gln Pro 50 55 60

Trp Pro Arg Ala Leu Glu Val Asp Ser Arg Ser Val Val Leu Leu
65 70 75

Ser Val Val Trp Val Leu Leu Ala Pro Pro Ala Ala Gly Met Pro 80 85 90

Gln Phe Ser Thr Phe His Ser Glu Asn Arg Asp Trp Thr Phe Asn 95 100 105

His Leu Thr Val His Gln Gly Thr Gly Ala Val Tyr Val Gly Ala 110 115 120

Ile Asn Arg Val Tyr Lys Leu Thr Gly Asn Leu Thr Ile Gln Val 125 130 135

Ala His Lys Thr Gly Pro Glu Glu Asp Asn Lys Ser Arg Tyr Pro 140 145 150

Pro Leu Ile Val Gln.Pro Cys Ser Glu Val Leu Thr Leu Thr Asn 15.5 160 165

Asn Val Asn Lys Leu Leu Ile Ile Asp Tyr Ser Glu Asn Arg Leu 170 175 180

Leu	Ala	Cys	Gly	Ser 185	Leu	Tyr	Gln	Gly	Val 190	Cys	Lys	Leu	Leu	Arg 195
Leu	Asp	Asp	Leu	Phe 200	Ile	Leu	Val	Glu	Pro 205	Ser	His	Lys	Lys	Glu 210
His	Tyr	Leu	Ser	Ser 215	Val	Asn	Lys	Thr	Gly 220	Thr	Met	Tyr	Gly	Val 225
Ile	Val	Arg	Ser	Glu 230	Gly	Glu	Asp	Gly	Lys 235	Leu	Phe	Ile	Gly	Thr 240
Ala	Val	Asp	Gly	Lys 245	Gln	Asp	Tyr	Phe	Pro 250	Thr	Leu	Ser	Ser	Arg 255
Lys	Leu	Pro	Arg	Asp 260	Pro	Glu	Ser	Ser	Ala 265	Met	Leu	Asp	Tyr	Glu 270
Leu	His	Ser	Asp	Phe 275	Val	Ser	Ser	Leu	Ile 280	Lys	Ile	Pro	Ser	Asp 285
Thr	Leu	Ala	Leu	Val 290	Ser	His	Phe	Asp	Ile 295	Phe	Tyr	Ile	Tyr	Gly 300
Phe	Ala	Ser	Gly	Gly 305	Phe	Val	Tyr	Phe	Leu 310	Thr	Val	Gln	Pro	Glu 315
Thr	Pro	Glu	Gly	Val 320	Ala	Ile	Asn	Ser	Ala 325	Gly	Asp	Leu	Phe	Tyr 330
Thr	Ser	Arg	Ile	Val 335	Arg	Leu	Cys	Lys	Asp 340	Asp	Pro	Lys	Phe	His 345
Ser	Tyr	Val	Ser	Leu 350	Pro	Phe	Gly	Cys	Thr 355	Arg	Ala	Gly	Val	Glu 360
Tyr	Arg	Leu	Leu	Gln 365	Ala	Ala	Tyr	Leu	Ala 370	Lys	Pro	Gly	Asp	Ser 375
Leu	Ala	Gln	Ala	Phe 380	Asn	Ile	Thr	Ser	Gln 385	Asp	Asp	Val	Leu	Phe 390
Ala	Ile	Phe	Ser	Lys 395	Gly	Gln	Lys	Gln	Tyr 400	His	His	Pro	Pro	Asp 405
Asp	Ser	Ala	Leu	Cys 410	Ala	Phe	Pro	Ile	Arg 415	Ala	Ile	Asn	Leu	Gln 420
Ile	Lys	Glu	Arg	Leu 425	Gln	Ser	Cys	Tyr	Gln 430	Gly	Glu	Gly	Asn	Leu 435
Glu	Leu	Asn	Trp	Leu 440	Leu	Gly	Lys	Asp	Val 445	Gln	Cys	Thr	Lys	Ala 450
Pro	Val	Pro	Ile	Asp 455	Asp	Asn	Phe	Cys	Gly 460	Leu	Asp	Ile	Asn	Gln 465
Pro	Leu	Gly	Gly	Ser	Thr	Pro	Val	Glu	Gly	Leu	Thr	Leu	Tyr	Thr

470 475 480 Thr Ser Arg Asp Arg Met Thr Ser Val Ala Ser Tyr Val Tyr Asn Gly Tyr Ser Val Val Phe Val Gly Thr Lys Ser Gly Lys Leu Lys 505 Lys Val Arg Val Tyr Glu Phe Arg Cys Ser Asn Ala Ile His Leu Leu Ser Lys Glu Ser Leu Leu Glu Gly Ser Tyr Trp Trp Arg Phe 530 535 Asn Tyr Arg Gln Leu Tyr Phe Leu Gly Glu Gln Arg 545 <210> 171 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 171 tggaataccg cctcctgcag 20 <210> 172 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 172 cttctgccct ttggagaaga tggc 24 <210> 173 <211> 43 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 173 ggactcactg gcccaggcct tcaatatcac cagccaggac gat 43 <210> 174 <211> 3106 <212> DNA <213> Homo Sapien

<220>

<221> unsure <222> 1683

<223> unknown base

<400> 174 aggeteeege gegeggetga gtgeggaetg gagtgggaae eegggteeee 50 gegettagag aacaegegat gaccaegtgg agecteegge ggaggeegge 100 ccgcacgctg ggactcctgc tgctggtcgt cttgggcttc ctggtgctcc 150 gcaggctgga ctggagcacc ctggtccctc tgcggctccg ccatcgacag 200 ctggggctgc aggccaaggg ctggaacttc atgctggagg attccacctt 250 ctggatcttc gggggctcca tccactattt ccgtgtgccc agggagtact 300 ggagggaccg cctgctgaag atgaaggcct gtggcttgaa caccctcacc 350 acctatgttc cgtggaacct gcatgagcca gaaagaggca aatttgactt 400 ctctgggaac ctggacctgg aggccttcgt cctgatggcc gcagagatcg 450 ggctgtgggt gattctgcgt ccaggcccct acatctgcag tgagatggac 500 ctcgggggct tgcccagctg gctactccaa gaccctggca tgaggctgag 550 gacaacttac aagggcttca ccgaagcagt ggacctttat tttgaccacc 600 tgatgtccag ggtggtgcca ctccagtaca agcgtggggg acctatcatt 650 gccgtgcagg tggagaatga atatggttcc tataataaag accccgcata 700 catgccctac gtcaagaagg cactggagga ccgtggcatt gtggaactgc 750 tectgaette agacaacaag gatgggetga geaaggggat tgtecaggga 800 gtcttggcca ccatcaactt gcagtcaaca cacgagctgc agctactgac 850 cacctttctc ttcaacgtcc aggggactca gcccaagatg gtgatggagt 900 actggacggg gtggtttgac tcgtggggag gccctcacaa tatcttggat 950 tettetgagg ttttgaaaac egtgtetgee attgtggaeg eeggeteete 1000 catcaacctc tacatgttcc acggaggcac caactttggc ttcatgaatg 1050 gagecatgea ettecatgae tacaagteag atgteaceag etatgaetat 1100 gatgctgtgc tgacagaagc cggcgattac acggccaagt acatgaagct 1150 tegagaette tteggeteea teteaggeat ceeteteet eececacetg 1200 accttcttcc caagatgccg tatgagccct taacgccagt cttgtacctg 1250 tetetgtggg aegeceteaa gtaeetgggg gageeaatea agtetgaaaa 1300 gcccatcaac atggagaacc tgccagtcaa tgggggaaat ggacagtcct 1350 tegggtacat tetetatgag accageatea cetegtetgg cateeteagt 1400 ggccacgtgc atgatcgggg gcaggtgttt gtgaacacag tatccatagg 1450

attettggae tacaagacaa egaagattge tgteeceetg atceagggtt 1500 acaccgtgct gaggatcttg gtggagaatc gtgggcgagt caactatggg 1550 gagaatattg atgaccagcg caaaggctta attggaaatc tctatctgaa 1600 tgattcaccc ctgaaaaact tcagaatcta tagcctggat atgaagaaga 1650 gettetttea gaggttegge etggacaaat ggngtteeet eecagaaaca 1700 cccacattac ctgctttctt cttgggtagc ttgtccatca gctccacgcc 1750 ttgtgacacc tttctgaagc tggagggctg ggagaagggg gttgtattca 1800 tcaatggcca gaaccttgga cgttactgga acattggacc ccagaagacg 1850 ctttacctcc caggtccctg gttgagcagc ggaatcaacc aggtcatcgt 1900 ttttgaggag acgatggcgg gccctgcatt acagttcacg gaaacccccc 1950 acctgggcag gaaccagtac attaagtgag cggtggcacc ccctcctgct 2000 ggtgccagtg ggagactgcc gcctcctctt gacctgaagc ctggtggctg 2050 ctgccccacc cctcactgca aaagcatctc cttaagtagc aacctcaggg 2100 actgggggct acagtctgcc cctgtctcag ctcaaaaccc taagcctgca 2150 gggaaaggtg ggatggctct gggcctggct ttgttgatga tggctttcct 2200 acagecetge tettgtgeeg aggetgtegg getgteteta gggtgggage 2250 agctaatcag atcgcccagc ctttggccct cagaaaaagt gctgaaacgt 2300 gcccttgcac cggacgtcac agccctgcga gcatctgctg gactcaggcg 2350 tgctctttgc tggttcctgg gaggcttggc cacatccctc atggccccat 2400 tttatccccg aaatcctggg tgtgtcacca gtgtagaggg tggggaaggg 2450 gtgtctcacc tgagctgact ttgttcttcc ttcacaacct tctgagcctt 2500 ctttgggatt ctggaaggaa ctcggcgtga gaaacatgtg acttcccctt 2550 tecetteeca etegetgett eecacagggt gacaggetgg getggagaaa 2600 cagaaatcct caccetgegt cttcccaagt tagcaggtgt ctctggtgtt 2650 cagtgaggag gacatgtgag tcctggcaga agccatggcc catgtctgca 2700 catccaggga ggaggacaga aggcccagct cacatgtgag tcctggcaga 2750 agccatggcc catgtctgca catccaggga ggaggacaga aggcccagct 2800 cacatgtgag tcctggcaga agccatggcc catgtctgca catccaggga 2850 ggaggacaga aggcccagct cacatgtgag tcctggcaga agccatggcc 2900 catgtctgca catccaggga ggaggacaga aggcccagct cagtggcccc 2950

cgctcccac ccccacgcc cgaacagcag gggcagagca gccctccttc 3000 gaagtgtgtc caagtccgca tttgagcctt gttctggggc ccagcccaac 3050 acctggcttg ggctcactgt.cctgagttgc agtaaagcta taaccttgaa 3100 tcacaa 3106

<210> 175

<211> 636

<212> PRT

<213> Homo Sapien

<220>

<221> unsure

<222> 539

<223> unknown amino acid

<400> 175

Met Thr Trp Ser Leu Arg Arg Pro Ala Arg Thr Leu Gly
1 5 10 15

Leu Leu Leu Val Val Leu Gly Phe Leu Val Leu Arg Arg Leu 20 25 30

Asp Trp Ser Thr Leu Val Pro Leu Arg Leu Arg His Arg Gln Leu
35 40 45

Gly Leu Gln Ala Lys Gly Trp Asn Phe Met Leu Glu Asp Ser Thr
50 55 60

Phe Trp Ile Phe Gly Gly Ser Ile His Tyr Phe Arg Val Pro Arg
65 70 75

Glu Tyr Trp Arg Asp Arg Leu Leu Lys Met Lys Ala Cys Gly Leu 80 85 90

Asn Thr Leu Thr Thr Tyr Val Pro Trp Asn Leu His Glu Pro Glu
95 100 105

Arg Gly Lys Phe Asp Phe Ser Gly Asn Leu Asp Leu Glu Ala Phe 110 115 120

Val Leu Met Ala Ala Glu Ile Gly Leu Trp Val Ile Leu Arg Pro 125 130 135

Gly Pro Tyr Ile Cys Ser Glu Met Asp Leu Gly Gly Leu Pro Ser 140 145 150

Gly Phe Thr Glu Ala Val Asp Leu Tyr Phe Asp His Leu Met Ser

Arg Val Val Pro Leu Gln Tyr Lys Arg Gly Gly Pro Ile Ile Ala 185 190 195

Val Gln Val Glu Asn Glu Tyr Gly Ser Tyr Asn Lys Asp Pro Ala 200 205 210

Tyr	Met	Pro	Tyr	Val 215	Lys	Lys	Ala	Leu	Glu 220	Asp	Arg	Gly	Ile	Val 225
Glu	Leu	Leu	Leu	Thr 230	Ser	Asp	Asn	Lys	Asp 235	Gly	Leu	Ser	Lys	Gly 240
Ile	Val	Gln	Gly	Val 245	Leu	Ala	Thr	Ile	Asn 250	Leu	Gln	Ser	Thr	His 255
Glu	Leu	Gln	Leu	Leu 260	Thr	Thr	Phe	Leu	Phe 265	Asn	Val	Gln	Gly	Thr 270
Gln	Pro	Lys	Met	Val 275	Met	Glu	Tyr	Trp	Thr 280	Gly	Trp	Phe	Asp	Ser 285
Trp	Gly	Gly	Pro	His 290	Asn	Ile	Leu	Asp	Ser 295	Ser	Glu	Val	Leu	Lys 300
Thr	Val	Ser	Ala	Ile 305	Val	Asp	Ala	Gly	Ser 310	Ser	Ile	Asn	Leu	Tyr 315
Met	Phe	His	Gly	Gly 320	Thr	Asn	Phe	Gly	Phe 325	Met	Asn	Gly	Ala	Met 330
His	Phe	His	Asp	Tyr 335	Lys	Ser	Asp	Val	Thr 340	Ser	Tyr	Asp	Tyr	Asp 345
Ala	Val	Leu	Thr	Glu 350	Ala	Gly	Asp	Tyr	Thr 355	Ala	Lys	Tyr	Met	Lys 360
Leu	Arg	Asp	Phe	Phe 365	Gly	Ser	Île	Ser	Gly 370	Ile	Pro	Leu	Pro	Pro 375
Pro	Pro	Asp	Leu	Leu 380	Pro	Lys	Met	Pro	Tyr 385	Glu	Pro	Leu	Thr	Pro 390
Val	Leu	Tyr	Leu	Ser 395	Leu	Trp	Asp	Ala	Leu 400	Lys	Tyr	Leu	Gly	Glu 405
Pro	Ile	Lys	Ser	Glu 410	Lys ·	Pro	Ile	Asn	Met 415	Glu	Asn	Leu	Pro	Val 420
Asn	Gly	Gly	Asn	Gly 425	Gln	Ser	Phe	Gly	Tyr 430	Ile	Leu	Tyr	Glu	Thr 435
Ser	Ile	Thr	Ser	Ser 440	Gly	Ile	Leu	Ser	Gly 445	His	Val	His	Asp	Arg 450
Gly	Gln	Val	Phe	Val 455	Asn	Thr	Val	Ser	Ile 460	Gly	Phe	Leu	Asp	Tyr 465
Lys	Thr	Thr	Lys	Ile 470	Ala	Val	Pro	Leu	Ile 475	Gln	Gly	Tyr	Thr	Val 480
Leu	Arg	Ile	Leu	Val 485	Glu	Asn	Arg	Gly	Arg 490	Val	Asn	Tyr	Gly	Glu 495
Asn	Ile	Asp	Asp	Gln	Arg	Lys	Gly	Leu	Ile	Gly	Asn	Leu	Tyr	Leu

	500	505	510
Asn Asp Ser Pr	b Leu Lys Asn	Phe Arg Ile Tyr	Ser Leu Asp Met
	515	520	525
Lys Lys Ser Ph	e Phe Gln Arg	Phe Gly Leu Asp	Lys Trp Xaa Ser
	530	535	540
Leu Pro Glu Th	r Pro Thr Leu 545	Pro Ala Phe Phe 550	Leu Gly Ser Leu 555
Ser Ile Ser Se	r Thr Pro Cys	Asp Thr Phe Leu	Lys Leu Glu Gly
	560	565	570
Trp Glu Lys Gl	y Val Val Phe	Ile Asn Gly Gln	Asn Leu Gly Arg
	575	580	585
Tyr Trp Asn Il	e Gly Pro Gln 590	Lys Thr Leu Tyr 595	Leu Pro Gly Pro 600
Trp Leu Ser Se	r Gly Ile Asn	Gln Val Ile Val	Phe Glu Glu Thr
	605	610	615
Met Ala Gly Pro	O Ala Leu Gln 620	Phe Thr Glu Thr 625	Pro His Leu Gly 630
Arg Asn Gln Ty	r Ile Lys 635		

<210> 176

<211> 2505

<212> DNA

<213> Homo Sapien

<400> 176

ggggacgcgg agctgagagg ctccgggcta gctaggtgta ggggtggacg 50 ggtcccagga ccctggtgag ggttctctac ttggccttcg gtgggggtca 100 agacgcaggc acctacgcca aaggggagca aagccgggct cggcccgagg 150 cccccaggac ctccatctcc caatgttgga ggaatccgac acgtgacggt 200 ctgtccgccg tctcagacta gaggagcgct gtaaacgcca tggctcccaa 250 gaagctgtcc tgccttcgtt ccctgctgct gccgctcagc ctgacgctac 300 tgctgcccca ggcagacact cggtcgttcg tagtggatag gggtcatgac 350 cggtttctcc tagacgggc cccgttccgc tatgtgtctg gcagcctgca 400 ctactttcgg gtaccgcgg tgctttggc cgaccggctt ttgaagatgc 450 gatggagcgg cctcaacgcc atacagttt atgtgccctg gaactaccac 500 gagccacagc ctggggtcta taactttaat ggcagccggg acctcattgc 550 ctttctgaat gaggcagctc tagcgaacct gttggtcata ctgagaccag 600

gacettacat etgtgcagag tgggagatgg ggggtetece atcetggttg 650 cttcgaaaac ctgaaattca tctaagaacc tcagatccag acttccttgc 700 cgcagtggac tcctggttca aggtcttgct gcccaagata tatccatggc 750 tttatcacaa tgggggcaac atcattagca ttcaggtgga gaatgaatat 800 ggtagctaca gagcetgtga etteagetae atgaggeaet tggetggget 850 cttccgtgca ctgctaggag aaaagatctt gctcttcacc acagatgggc 900 ctgaaggact caagtgtggc tccctccggg gactctatac cactgtagat 950 tttggcccag ctgacaacat gaccaaaatc tttaccctgc ttcggaagta 1000 tgaaccccat gggccattgg taaactctga gtactacaca ggctggctgg 1050 attactgggg ccagaatcac tccacacggt ctgtgtcagc tgtaaccaaa 1100 ggactagaga acatgctcaa gttgggagcc agtgtgaaca tgtacatgtt 1150 ccatggaggt accaactttg gatattggaa tggtgccgat aagaagggac 1200 gcttccttcc gattactacc agctatgact atgatgcacc tatatctgaa 1250 gcaggggacc ccacacctaa gctttttgct cttcgagatg tcatcagcaa 1300 gttccaggaa gttcctttgg gacctttacc tcccccgagc cccaagatga 1350 tgcttggacc tgtgactctg cacctggttg ggcatttact ggctttccta 1400 gacttgcttt gcccccgtgg gcccattcat tcaatcttgc caatgacctt 1450 tgaggctgtc aagcaggacc atggcttcat gttgtaccga acctatatga 1500 cccataccat ttttgagcca acaccattct gggtgccaaa taatggagtc 1550 catgaccgtg cctatgtgat ggtggatggg gtgttccagg gtgttgtgga 1600 gcgaaatatg agagacaaac tatttttgac ggggaaactg gggtccaaac 1650 tggatatett ggtggagaac atggggagge teagetttgg gtetaacage 1700 agtgacttca agggcctgtt gaagccacca attctggggc aaacaatcct 1750 tacccagtgg atgatgttcc ctctgaaaat tgataacctt gtgaagtggt 1800 ggtttcccct ccagttgcca aaatggccat atcctcaagc tccttctggc 1850 cccacattct actccaaaac atttccaatt ttaggctcag ttggggacac 1900 atttctatat ctacctggat ggaccaaggg ccaagtctgg atcaatgggt 1950 ttaacttggg ccggtactgg acaaagcagg ggccacaaca gaccctctac 2000 gtgccaagat tcctgctgtt tcctagggga gccctcaaca aaattacatt 2050 gctggaacta gaagatgtac ctctccagcc ccaagtccaa tttttggata 2100 agectatect caatageact agtaetttge acaggacaca tateaattee 2150 cttteagetg atacactgag tgeetetgaa ceaatggagt taagtgggea 2200 ctgaaaggta ggeegggeat ggtggeteat geetgtaate eeageacttt 2250 gggaggetga gaegggtgga ttaeetgagg teaggaette aagaeeagee 2300 tggeeaacat ggtgaaacee egteteeact aaaaatacaa aaattageeg 2350 ggegtgatgg tgggeacete taateeeage taettgggag getgagggea 2400 ggagaattge ttgaateeag gaggeagagg ttgeagtgag tggaggttgt 2450 aceaetgeae teeageetgg etgaeagtga gaeaeteeat eteaaaaaa 2500 aaaaa 2505

<210> 177

<211> 654

<212> PRT

<213> Homo Sapien

<400> 177

Met Ala Pro Lys Lys Leu Ser Cys Leu Arg Ser Leu Leu Leu Pro

1 5 10 15

Leu Ser Leu Thr Leu Leu Leu Pro Gln Ala Asp Thr Arg Ser Phe
20 25 30

Val Val Asp Arg Gly His Asp Arg Phe Leu Leu Asp Gly Ala Pro
35 40 45

Phe Arg Tyr Val Ser Gly Ser Leu His Tyr Phe Arg Val Pro Arg
50 55 60

Val Leu Trp Ala Asp Arg Leu Leu Lys Met Arg Trp Ser Gly Leu 65 70 75

Asn Ala Ile Gln Phe Tyr Val Pro Trp Asn Tyr His Glu Pro Gln 80 85 90

Pro Gly Val Tyr Asn Phe Asn Gly Ser Arg Asp Leu Ile Ala Phe 95 100 105

Leu Asn Glu Ala Ala Leu Ala Asn Leu Leu Val Ile Leu Arg Pro
110 115 120

Gly Pro Tyr Ile Cys Ala Glu Trp Glu Met Gly Gly Leu Pro Ser 125 130 135

Trp Leu Leu Arg Lys Pro Glu Ile His Leu Arg Thr Ser Asp Pro 140 145 150

Asp Phe Leu Ala Ala Val Asp Ser Trp Phe Lys Val Leu Leu Pro 155 160 165

Lys Ile Tyr Pro Trp Leu Tyr His Asn Gly Gly Asn Ile Ile Ser 170 175 180

Ile	Gln	Val	Glu	Asn 185	Glu	Tyr	Gly	Ser	Tyr 190	Arg	Ala	Cys	Asp	Phe 195
Ser	Tyr	Met	Arg	His 200	Leu	Ala	Gly	Leu	Phe 205	Arg	Ala	Leu	Leu	Gly 210
Glu	Lys	Ile	Leu	Leu 215	Phe	Thr	Thr	Asp	Gly 220	Pro	Glu	Gly	Leu	Lys 225
Cys	Gly	Ser	Leu	Arg 230	_	Leu	Tyr	Thr	Thr 235	Val	Asp	Phe	Gly	Pro 240
Ala	Asp	Asn	Met	Thr 245	Lys	Ile	Phe	Thr	Leu 250	Leu	Arg	Lys	Tyr	Glu 255
Pro	His	Gly	Pro	Leu 260	Val	Asn	Ser	Glu	Tyr 265	Tyr	Thr	Gly	Trp	Leu 270
Asp	Tyr	Trp	Gly	Gln 275	Asn	His	Ser	Thr	Arg 280	Ser	Val	Ser	Ala	Val 285
Thr	Lys	Gly	Leu	Glu 290	Asn	Met	Leu	Lys	Leu 295	Gly	Ala	Ser	Val	Asn 300
Met	Tyr	Met	Phe	His 305	Gly	Gly	Thr	Asn	Phe 310	Gly	Tyr	Trp	Asn	Gly 315
Ala	Asp	Lys	Lys	Gly 320	Arg	Phe	Leu	Pro	Ile 325	Thr	Thr	Ser	Tyr	Asp 330
Tyr	Asp	Ala	Pro	Ile 335	Ser	Glu	Ala	Gly	Asp 340	Pro	Thr	Pro	Lys	Leu 345
Phe	Ala	Leu	Arg	Asp 350	Val	Ile	Ser	Lys	Phe 355	Gln	Glu	Val	Pro	Leu 360
Gly	Pro	Leu	Pro	Pro 365	Pro	Ser	Pro	Lys	Met 370	Met	Leu	Gly	Pro	Val 375
Thr	Leu	His	Leu	Val 380	Gly	His	Leu	Leu	Ala 385	Phe	Leu	Asp	Leu	Leu 390
Cys	Pro	Arg	Gly	Pro 395	Ile	His	Ser	Ile	Leu 400	Pro	Met	Thr	Phe	Glu 405
Ala	Val	Lys	Gln	Asp 410	His	Gly	Phe	Met	Leu 415	Tyr	Arg	Thr	Tyr	Met 420
Thr	His	Thr	Ile	Phe 425	Glu	Pro	Thr	Pro	Phe 430	Trp	Val	Pro	Asn	Asn 435
Gly	Val	His	Asp	Arg 440	Ala	Tyr	Val	Met	Val 445	Asp	Gly	Val	Phe	Gln 450
Gly	Val	Val	Glu	Arg 455	Asn	Met	Arg	Asp	Lys 460	Leu	Phe	Leu	Thr	Gly 465
Lys	Leu	Gly	Ser	Lys	Leu	Asp	Ile	Leu	Val	Glu	Asn	Met	Gly	Arg

				470					475					480
Leu	Ser	Phe	Gly	Ser 485	Asn	Ser	Ser	Asp	Phe 490	Lys	Gly	Leu	Leu	Lys 495
Pro	Pro	Ile	Leu	Gly 500	Gln	Thr	Ile	Leu	Thr 505	Gln	Trp	Met	Met	Phe 510
Pro	Leu	Lys	Ile	Asp 515	Asn	Leu	Val	Lys	Trp 520	Trp	Phe	Pro	Leu	Gln 525
Leu	Pro	Lys	Trp	Pro 530	Tyr	Pro	Gln	Ala	Pro 535	Ser	Gly	Pro	Thr	Phe 540
Tyr	Ser	Lys	Thr	Phe 545	Pro	Ile	Leu	Gly	Ser 550	Val	Gly	Asp	Thr	Phe 555
Leu	Tyr	Leu	Pro	Gly 560	Trp	Thr	Lys	Gly	Gln 565	Val	Trp	Ile	Asn	Gly 570
Phe	Asn	Leu	Gly	Arg 575	Tyr	Trp	Thr	Lys	Gln 580	Gly	Pro	Gln	Gln	Thr 585
Leu	Tyr	Val	Pro	Arg 590	Phe	Leu	Leu	Phe	Pro 595	Arg	Gly	Ala	Leu	Asn 600
Lvs	Ile	Thr	Leu	Leu	Glu	Leu	Glu	Asp	Val	Pro	Leu	Gln	Pro	Gln

Lys Ile Thr Leu Leu Glu Leu Glu Asp Val Pro Leu Gln Pro Gln 605 615

Val Gln Phe Leu Asp Lys Pro Ile Leu Asn Ser Thr Ser Thr Leu

620 625 630

His Arg Thr His Ile Asn Ser Leu Ser Ala Asp Thr Leu Ser Ala 635 640 645

Ser Glu Pro Met Glu Leu Ser Gly His 650

<210> 178

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 178

tggctactcc aagaccctgg catg 24

<210> 179

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 179

tggacaaatc cccttgctca gccc 24

```
<210> 180
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 180
gggcttcacc gaagcagtgg acctttattt tgaccacctg atgtccaggg 50
<210> 181
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 181
ccagctatga ctatgatgca cc 22
<210> 182
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 182
tggcacccag aatggtgttg gctc 24
<210> 183
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 183
cgagatgtca tcagcaagtt ccaggaagtt cctttgggac ctttacctcc 50
<210> 184
<211> 1947
<212> DNA
<213> Homo Sapien
<400> 184
gctttgaaca cgtctgcaag cccaaagttg agcatctgat tggttatgag 50
gtatttgagt gcacccacaa tatggcttac atgttgaaaa agcttctcat 100
cagttacata tocattattt gtgtttatgg ctttatctgc ctctacactc 150
```

tcttctggtt attcaggata cctttgaagg aatattcttt cgaaaaagtc 200

agagaagaga gcagttttag tgacattcca gatgtcaaaa acgattttgc 250 gttccttctt cacatggtag accagtatga ccagctatat tccaagcgtt 300 ttggtgtgtt cttgtcagaa gttagtgaaa ataaacttag ggaaattagt 350 ttgaaccatg agtggacatt tgaaaaactc aggcagcaca tttcacgcaa 400 cgcccaggac aagcaggagt tgcatctgtt catgctgtcg ggggtgcccg 450 atgctgtctt tgacctcaca gacctggatg tgctaaagct tgaactaatt 500 ccagaagcta aaattcctgc taagatttct caaatgacta acctccaaga 550 gctccacctc tgccactgcc ctgcaaaagt tgaacagact gcttttagct 600 ttcttcgcga tcacttgaga tgccttcacg tgaagttcac tgatgtggct 650 gaaatteetg cetgggtgta tttgeteaaa aacettegag agttgtaett 700 aataggcaat ttgaactctg aaaacaataa gatgatagga cttgaatctc 750 tccgagagtt gcggcacctt aagattctcc acgtgaagag caatttgacc 800 aaagttccct ccaacattac agatgtggct ccacatctta caaagttagt 850 cattcataat gacggcacta aactcttggt actgaacagc cttaagaaaa 900 tgatgaatgt cgctgagctg gaactccaga actgtgagct agagagaatc 950 ccacatgcta ttttcagcct ctctaattta caggaactgg atttaaagtc 1000 caataacatt cgcacaattg aggaaatcat cagtttccag catttaaaac 1050 gactgacttg tttaaaatta tggcataaca aaattgttac tattcctccc 1100 tctattaccc atgtcaaaaa cttggagtca ctttatttct ctaacaacaa 1150 gctcgaatcc ttaccagtgg cagtatttag tttacagaaa ctcagatgct 1200 tagatgtgag ctacaacaac atttcaatga ttccaataga aataggattg 1250 cttcagaacc tgcagcattt gcatatcact gggaacaaag tggacattct 1300 gccaaaacaa ttgtttaaat gcataaagtt gaggactttg aatctgggac 1350 agaactgcat cacctcactc ccagagaaag ttggtcagct ctcccagctc 1400 actcagctgg agctgaaggg gaactgcttg gaccgcctgc cagcccagct 1450 gggccagtgt cggatgctca agaaaagcgg gcttgttgtg gaagatcacc 1500 tttttgatac cctgccactc gaagtcaaag aggcattgaa tcaagacata 1550 aatattccct ttgcaaatgg gatttaaact aagataatat atgcacagtg 1600 atgtgcagga acaacttcct agattgcaag tgctcacgta caagttatta 1650 caagataatg cattttagga gtagatacat cttttaaaat aaaacagaga 1700 ggatgcatag aaggctgata gaagacataa ctgaatgttc aatgtttgta 1750 gggttttaag tcattcattt ccaaatcatt ttttttttc ttttggggaa 1800 agggaaggaa aaattataat cactaatctt ggttcttttt aaattgtttg 1850 taacttggat gctgccgcta ctgaatgttt acaaattgct tgcctgctaa 1900 agtaaatgat taaattgaca ttttcttact aaaaaaaaa aaaaaaa 1947

- <210> 185
- <211> 501
- <212> PRT
- <213> Homo Sapien

<400> 185

- Met Ala Tyr Met Leu Lys Lys Leu Leu Ile Ser Tyr Ile Ser Ile 1 5 10 15
- Ile Cys Val Tyr Gly Phe Ile Cys Leu Tyr Thr Leu Phe Trp Leu 20 25 30
- Phe Arg Ile Pro Leu Lys Glu Tyr Ser Phe Glu Lys Val Arg Glu
 35 40 45
- Glu Ser Ser Phe Ser Asp Ile Pro Asp Val Lys Asn Asp Phe Ala
 50 55 60
- Phe Leu Leu His Met Val Asp Gln Tyr Asp Gln Leu Tyr Ser Lys
 65 70 75
- Arg Phe Gly Val Phe Leu Ser Glu Val Ser Glu Asn Lys Leu Arg 80 85 90
- Glu Ile Ser Leu Asn His Glu Trp Thr Phe Glu Lys Leu Arg Gln
 95 100 105
- His Ile Ser Arg Asn Ala Gln Asp Lys Gln Glu Leu His Leu Phe 110 115 120
- Met Leu Ser Gly Val Pro Asp Ala Val Phe Asp Leu Thr Asp Leu 125 130 135
- Asp Val Leu Lys Leu Glu Leu Ile Pro Glu Ala Lys Ile Pro Ala 140 145 150
- Lys Ile Ser Gln Met Thr Asn Leu Gln Glu Leu His Leu Cys His \$155\$
- Cys Pro Ala Lys Val Glu Gln Thr Ala Phe Ser Phe Leu Arg Asp 170 175 180
- His Leu Arg Cys Leu His Val Lys Phe Thr Asp Val Ala Glu Ile 185 190 195
- Pro Ala Trp Val Tyr Leu Leu Lys Asn Leu Arg Glu Leu Tyr Leu 200 205 210

lle	Gly	Asn	Leu	Asn 215	Ser	Glu	Asn	Asn	Lys 220	Met	Ile	Gly	Leu	Glu 225
Ser	Leu	Arg	Glu	Leu 230	Arg	His	Leu	Lys	Ile 235	Leu	His	Val	Lys	Ser 240
Asn	Leu	Thr	Lys	Val 245	Pro	Ser	Asn	Ile	Thr 250	Asp	Val	Ala	Pro	His 255
Leu	Thr	Lys	Leu	Val 260	Ile	His	Asn	Asp	Gly 265	Thr	Lys	Leu	Leu	Val 270
Leu	Asn	Ser	Leu	Lys 275	Lys	Met	Met	Asn	Val 280	Ala	Glu	Leu	Glu	Leu 285
Gln	Asn	Cys	Glu	Leu 290	Glu	Arg	Ile	Pro	His 295	Ala	Ile	Phe	Ser	Leu 300
Ser	Asn	Leu	Gln	Glu 305	Leu	Asp	Leu	Lys	Ser 310	Asn	Asn	Ile	Arg	Thr 315
Ile	Glu	Glu	Ile	Ile 320	Ser	Phe	Gln	His	Leu 325	Lys	Arg	Leu	Thr	Cys 330
Leu	Lys	Leu	Trp	His 335	Asn	Lys	Ile	Val	Thr 340	Ile	Pro	Pro	Ser	Ile 345
Thr	His	Val	Lys	Asn 350		Glu	Ser	Leu	Tyr 355	Phe	Ser	Asn	Asn	Lys 360
Leu	Glu	Ser	Leu	Pro 365	Val	Ala	Val	Phe	Ser 370	Leu	Gln	Lys	Leu	Arg 375
														3,3
Cys	Leu	Asp	Val		Tyr	Asn	Asn	Ile	Ser 385	Met	Ile	Pro	Ile	
_				Ser 380	_			Ile His	385					Glu 390
Ile	Gly	Leu	Leu	Ser 380 Gln 395	Asn	Leu	Gln		385 Leu 400	His	Ile	Thr	Gly	Glu 390 Asn 405
Ile Lys	Gly Val	Leu Asp	Leu Ile	Ser 380 Gln 395 Leu 410	Asn Pro	Leu Lys	Gln Gln	His	385 Leu 400 Phe 415	His Lys	Ile Cys	Thr Ile	Gly Lys	Glu 390 Asn 405 Leu 420
Ile Lys Arg	Gly Val Thr	Leu Asp Leu	Leu Ile Asn	Ser 380 Gln 395 Leu 410 Leu 425	Asn Pro Gly	Leu Lys Gln	Gln Gln Asn	His Leu	385 Leu 400 Phe 415 Ile 430	His Lys Thr	Ile Cys Ser	Thr Ile Leu	Gly Lys Pro	Glu 390 Asn 405 Leu 420 Glu 435
Ile Lys Arg	Gly Val Thr	Leu Asp Leu Gly	Leu Ile Asn Gln	Ser 380 Gln 395 Leu 410 Leu 425 Leu	Asn Pro Gly Ser	Leu Lys Gln Gln	Gln Gln Asn Leu	His Leu Cys	385 Leu 400 Phe 415 Ile 430 Gln 445	His Lys Thr Leu	Ile Cys Ser Glu	Thr Ile Leu Leu	Gly Lys Pro	Glu 390 Asn 405 Leu 420 Glu 435 Gly 450
Ile Lys Arg Lys	Gly Val Thr Val Cys	Leu Asp Leu Gly	Leu Ile Asn Gln Asp	Ser 380 Gln 395 Leu 410 Leu 425 Leu 440 Arg 455	Asn Pro Gly Ser Leu	Leu Lys Gln Gln Pro	Gln Gln Asn Leu Ala	His Leu Cys Thr	385 Leu 400 Phe 415 Ile 430 Gln 445 Leu 460	His Lys Thr Leu Gly	Ile Cys Ser Glu	Thr Ile Leu Leu	Gly Lys Pro Lys Arg	Glu 390 Asn 405 Leu 420 Glu 435 Gly 450 Met
Ile Lys Arg Lys Asn	Gly Val Thr Val Cys	Leu Asp Leu Gly Leu Lys	Leu Ile Asn Gln Asp	Ser 380 Gln 395 Leu 410 Leu 425 Leu 440 Arg 455 Gly 470	Asn Pro Gly Ser Leu Leu	Leu Lys Gln Gln Pro Val	Gln Gln Asn Leu Ala Val	His Leu Cys Thr	385 Leu 400 Phe 415 Ile 430 Gln 445 Leu 460 Asp 475	His Lys Thr Leu Gly	Ile Cys Ser Glu Gln Leu	Thr Ile Leu Leu Cys	Gly Lys Pro Lys Arg	Glu 390 Asn 405 Leu 420 Glu 435 Gly 450 Met 465 Thr 480

```
<210> 186
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 186
cctccctcta ttacccatgt c 21
<210> 187
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 187
gaccaacttt ctctgggagt gagg 24
<210> 188
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 188
gtcactttat ttctctaaca acaagctcga atccttacca gtggcag 47
<210> 189
<211> 2917
<212> DNA
<213> Homo Sapien
<400> 189
cccacgcgtc cggccttctc tctggacttt gcatttccat tccttttcat 50
tgacaaactg actttttta tttcttttt tccatctctg ggccagcttg 100
ggatcctagg ccgccctggg aagacatttg tgttttacac acataaggat 150
ctgtgtttgg ggtttcttct tcctcccctg acattggcat tgcttagtgg 200
ttgtgtgggg agggagacca cgtgggctca gtgcttgctt gcacttatct 250
gcctaggtac atcgaagtct tttgacctcc atacagtgat tatgcctgtc 300
ategetggtg gtateetgge ggeettgete etgetgatag ttgtegtget 350
ctgtctttac ttcaaaatac acaacgcgct aaaagctgca aaggaacctg 400
aagctgtggc tgtaaaaaat cacaacccag acaaggtgtg gtgggccaag 450
aacagccagg ccaaaaccat tgccacggag tcttgtcctg ccctgcagtg 500
```

ctgtgaagga tatagaatgt gtgccagttt tgattccctg ccaccttgct 550 gttgcgacat aaatgagggc ctctgagtta ggaaaggctc ccttctcaaa 600 gcagagccct gaagacttca atgatgtcaa tgaggccacc tgtttgtgat 650 gtgcaggcac agaagaaagg cacagctccc catcagtttc atggaaaata 700 actcagtgcc tgctgggaac cagctgctgg agatccctac agagagcttc 750 cactgggggc aaccetteca ggaaggagtt ggggagagag aacceteact 800 gtggggaatg ctgataaacc agtcacacag ctgctctatt ctcacacaaa 850 tctacccctt gcgtggctgg aactgacgtt tccctggagg tgtccagaaa 900 gctgatgtaa cacagagcct ataaaagctg tcggtcctta aggctgccca 950 gcgccttgcc aaaatggagc ttgtaagaag gctcatgcca ttgaccctct 1000 taattetete etgtttggeg gagetgacaa tggeggagge tgaaggeaat 1050 gcaagctgca cagtcagtct agggggtgcc aatatggcag agacccacaa 1100 agccatgatc ctgcaactca atcccagtga gaactgcacc tggacaatag 1150 aaagaccaga aaacaaaagc atcagaatta tetttteeta tgteeagett 1200 gatccagatg gaagctgtga aagtgaaaac attaaagtct ttgacggaac 1250 ctccagcaat gggcctctgc tagggcaagt ctgcagtaaa aacgactatg 1300 ttcctgtatt tgaatcatca tccagtacat tgacgtttca aatagttact 1350 gactcagcaa gaattcaaag aactgtcttt gtcttctact acttcttctc 1400 tectaacate tetatteeaa aetgtggegg ttaeetggat aeettggaag 1450 gatccttcac cagccccaat tacccaaagc cgcatcctga gctggcttat 1500 tgtgtgtggc acatacaagt ggagaaagat tacaagataa aactaaactt 1550 caaagagatt ttcctagaaa tagacaaaca gtgcaaattt gattttcttg 1600 ccatctatga tggcccctcc accaactctg gcctgattgg acaagtctgt 1650 ggccgtgtga ctcccacctt cgaatcgtca tcaaactctc tgactgtcgt 1700 gttgtctaca gattatgcca attcttaccg gggattttct gcttcctaca 1750 cctcaattta tgcagaaaac atcaacacta catctttaac ttgctcttct 1800 gacaggatga gagttattat aagcaaatcc tacctagagg cttttaactc 1850 taatgggaat aacttgcaac taaaagaccc aacttgcaga ccaaaattat 1900 caaatgttgt ggaattttct gtccctctta atggatgtgg tacaatcaga 1950 aaggtagaag atcagtcaat tacttacacc aatataatca ccttttctgc 2000

atcctcaact tctgaagtga tcacccgtca gaaacaactc cagattattg 2050 tgaagtgtga aatgggacat aattctacag tggagataat atacataaca 2100 gaagatgatg taatacaaag tcaaaatgca ctgggcaaat ataacaccag 2150 catggctctt tttgaatcca attcatttga aaagactata cttgaatcac 2200 catattatgt ggatttgaac caaactettt ttgttcaagt tagtetgeac 2250 acctcagate caaatttggt ggtgtttett gatacetgta gageetetee 2300 cacctctgac tttgcatctc caacctacqa cctaatcaaq aqtqqatqta 2350 gtcgagatga aacttgtaag gtgtatccct tatttggaca ctatgggaga 2400 ttccagttta atgcctttaa attcttgaga agtatgagct ctgtgtatct 2450 gcagtgtaaa gttttgatat gtgatagcag tgaccaccag tctcgctgca 2500 atcaaggttg tgtctccaga agcaaacgag acatttcttc atataaatgg 2550 aaaacagatt ccatcatagg acccattcgt ctgaaaaggg atcgaagtgc 2600 aagtggcaat tcaggatttc agcatgaaac acatgcggaa gaaactccaa 2650 accageettt caacagtgtg catetgtttt cettcatggt tetagetetg 2700 aatgtggtga ctgtagcgac aatcacaqtg aqqcattttq taaatcaacq 2750 ggcagactac aaataccaga agctgcagaa ctattaacta acaggtccaa 2800 ccctaagtga gacatgtttc tccaqqatqc caaaqgaaat gctacctcqt 2850 ggctacacat attatgaata aatgaggaag ggcctgaaag tgacacacag 2900 gcctgcatgt aaaaaaa 2917

- <210> 190
- <211> 607
- <212> PRT
- <213> Homo Sapien
- <400> 190
- Met Glu Leu Val Arg Arg Leu Met Pro Leu Thr Leu Leu Ile Leu 1 5 10 15
- Ser Cys Leu Ala Glu Leu Thr Met Ala Glu Ala Glu Gly Asn Ala 20 $\,$ 25 $\,$ 30
- Ser Cys Thr Val Ser Leu Gly Gly Ala Asn Met Ala Glu Thr His
 35 40 40
- Lys Ala Met Ile Leu Gln Leu Asn Pro Ser Glu Asn Cys Thr Trp
 50 55 60
- Thr Ile Glu Arg Pro Glu Asn Lys Ser Ile Arg Ile Ile Phe Ser
 65 70 75

Tyr	Val	Gln	Leu	Asp 80	Pro	Asp	Gly	Ser	Cys 85	Glu	Ser	Glu	Asn	Ile 90
Lys	Val	Phe	Asp	Gly 95	Thr	Ser	Ser	Asn	Gly 100	Pro	Leu	Leu	Gly	Gln 105
Val	Cys	Ser	Lys	Asn 110	Asp	Tyr	Val	Pro	Val 115	Phe	Glu	Ser	Ser	Ser 120
Ser	Thr	Leu	Thr	Phe 125	Gln	Ile	Val	Thr	Asp 130	Ser	Ala	Arg	Ile	Gln 135
Arg	Thr	Val	Phe	Val 140	Phe	Tyr	Tyr	Phe	Phe 145	Ser	Pro	Asn	Ile	Ser 150
Ile	Pro	Asn	Cys	Gly 155	Gly	Tyr	Leu	Asp	Thr 160	Leu	Glu	Gly	Ser	Phe 165
Thr	Ser	Pro	Asn	Tyr 170	Pro	Lys	Pro	His	Pro 175	Glu	Leu	Ala	Tyr	Cys 180
Val	Trp	His	Ile	Gln 185	Val	Glu	Lys	Asp	Tyr 190	Lys	Ile	Lys	Leu	Asn 195
Phe	Lys	Glu	Ile	Phe 200	Leu	Glu	Ile	Asp	Lys 205	Gln	Cys	Lys	Phe	Asp 210
Phe	Leu	Ala	Ile	Tyr 215	Asp	Gly	Pro	Ser	Thr 220	Asn	Ser	Gly	Leu	Ile 225
Gly	Gln	Val	Cys	Gly 230	Arg	Val	Thr	Pro	Thr 235	Phe	Glu	Ser	Ser	Ser 240
Asn	Ser	Leu	Thr		Val	Leu	Ser	Thr		Tyr	Ala	Asn	Ser	
Arg	Gly	Phe	Ser	Ala 260	Ser	Tyr	Thr	Ser	Ile 265	Tyr	Ala	Glu	Asn	Ile 270
Asn	Thr	Thr	Ser	Leu 275	Thr	Cys	Ser	Ser	Asp 280	Arg	Met	Arg	Val	Ile 285
Ile	Ser	Lys	Ser	Tyr 290	Leu	Glu	Ala	Phe	Asn 295	Ser	Asn	Gly	Asn	Asn 300
Leu	Gln	Leu	Lys	Asp 305	Pro	Thr	Cys	Arg	Pro 310	Lys	Leu	Ser	Asn	Val 315
Val	Glu	Phe	Ser	Val 320	Pro	Leu	Asn	Gly	Cys 325	Gly	Thr	Ile	Arg	Lys 330
Val	Glu	Asp	Gln	Ser 335	Ile	Thr	Tyr	Thr	Asn 340	Ile	Ile	Thr	Phe	Ser 345
Ala	Ser	Ser	Thr	Ser 350	Glu	Val	Ile	Thr	Arg 355	Gln	Lys	Gln	Leu	Gln 360
Ile	Ile	Val	Lys	Cys 365	Glu	Met	Gly	His	Asn 370	Ser	Thr	Val	Glu	Ile 375

Ile Tyr Ile Thr Glu Asp Asp Val Ile Gln Ser Gln Asn Ala Leu Gly Lys Tyr Asn Thr Ser Met Ala Leu Phe Glu Ser Asn Ser Phe Glu Lys Thr Ile Leu Glu Ser Pro Tyr Tyr Val Asp Leu Asn Gln Thr Leu Phe Val Gln Val Ser Leu His Thr Ser Asp Pro Asn Leu Val Val Phe Leu Asp Thr Cys Arg Ala Ser Pro Thr Ser Asp Phe Ala Ser Pro Thr Tyr Asp Leu Ile Lys Ser Gly Cys Ser Arg Asp Glu Thr Cys Lys Val Tyr Pro Leu Phe Gly His Tyr Gly Arg Phe Gln Phe Asn Ala Phe Lys Phe Leu Arg Ser Met Ser Ser Val Tyr Leu Gln Cys Lys Val Leu Ile Cys Asp Ser Ser Asp His Gln Ser Arg Cys Asn Gln Gly Cys Val Ser Arg Ser Lys Arg Asp Ile Ser Ser Tyr Lys Trp Lys Thr Asp Ser Ile Ile Gly Pro Ile Arg Leu 530 535 Lys Arg Asp Arg Ser Ala Ser Gly Asn Ser Gly Phe Gln His Glu Thr His Ala Glu Glu Thr Pro Asn Gln Pro Phe Asn Ser Val His 570 560 565 Leu Phe Ser Phe Met Val Leu Ala Leu Asn Val Val Thr Val Ala 575 580 Thr Ile Thr Val Arg His Phe Val Asn Gln Arg Ala Asp Tyr Lys 590 595 600

Tyr Gln Lys Leu Gln Asn Tyr
605

<210> 191

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 191

tctctattcc aaactgtggc g 21

```
<210> 192
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 192
tttgatgacg attcgaaggt gg 22
<210> 193
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 193
ggaaggatcc ttcaccagcc ccaattaccc aaaqccqcat cctqaqc 47
<210> 194
<211> 2362
<212> DNA
<213> Homo Sapien
<400> 194
gacggaagaa cagcgctccc gaggccgcgg gagcctgcag agaggacagc 50
eggeetgege egggaeatge ggeeceagga geteeceagg etegegttee 100
egttgetget gttgetgttg etgetgetge egeegeegee gtgeeetgee 150
cacagegeea egegettega ecceaeetgg gagteeetgg aegeeegeea 200
getgeeegeg tggtttgace aggeeaagtt eggeatette atecaetggg 250
gagtgttttc cgtgcccagc ttcggtagcg agtggttctg gtggtattgg 300
caaaaggaaa agataccgaa gtatgtggaa tttatgaaag ataattaccc 350
tcctagtttc aaatatgaag attttggacc actatttaca gcaaaatttt 400
ttaatgccaa ccagtgggca gatatttttc aggcctctgg tgccaaatac 450
attgtcttaa cttccaaaca tcatgaaggc tttaccttgt gggggtcaga 500
atattcgtgg aactggaatg ccatagatga ggggcccaag agggacattg 550
tcaaggaact tgaggtagcc attaggaaca gaactgacct gcgttttgga 600
ctgtactatt ccctttttga atggtttcat ccgctcttcc ttgaggatga 650
atccagttca ttccataagc ggcaatttcc agtttctaag acattgccag 700
agetetatga gttagtgaae aactateage etgaggttet gtggteggat 750
```

ggtgacggag gagcaccgga tcaatactgg aacagcacag gcttcttggc 800

ctggttatat aatgaaagcc cagttcgggg cacagtagtc accaatgatc 850 gttggggagc tggtagcatc tgtaagcatg gtggcttcta tacctgcagt 900 gatcgttata acccaggaca tcttttgcca cataaatggg aaaactgcat 950 gacaatagac aaactgtcct ggggctatag gagggaagct ggaatctctg 1000 actatettae aattgaagaa ttggtgaage aacttgtaga gacagtttea 1050 tgtggaggaa atcttttgat gaatattggg cccacactag atggcaccat 1100 ttctgtagtt tttgaggagc gactgaggca agtggggtcc tggctaaaag 1150 tcaatggaga agctatttat gaaacctata cctggcgatc ccagaatgac 1200 actgtcaccc cagatgtgtg gtacacatcc aagcctaaag aaaaattagt 1250 ctatgccatt tttcttaaat ggcccacatc aggacagctg ttccttggcc 1300 atcccaaagc tattctgggg gcaacagagg tgaaactact gggccatgga 1350 cagccactta actggatttc tttggagcaa aatggcatta tggtagaact 1400 gccacagcta accattcatc agatgccgtg taaatggggc tgggctctag 1450 ccctaactaa tgtgatctaa agtgcagcag agtggctgat gctgcaagtt 1500 atgtctaagg ctaggaacta tcaggtgtct ataattgtag cacatggaga 1550 aagcaatgta aactggataa gaaaattatt tggcagttca gccctttccc 1600 tttttcccac taaatttttc ttaaattacc catgtaacca ttttaactct 1650 ccagtgcact ttgccattaa agtctcttca cattgatttg tttccatgtg 1700 tgactcagag gtgagaattt tttcacatta tagtagcaag gaattggtgg 1750 tattatggac cgaactgaaa attttatgtt gaagccatat cccccatgat 1800 tatatagtta tgcatcactt aatatgggga tattttctgg gaaatgcatt 1850 gctagtcaat tttttttgt gccaacatca tagagtgtat ttacaaaatc 1900 ctagatggca tagcctacta cacacctaat gtgtatggta tagactgttg 1950 ctcctaggct acagacatat acagcatgtt actgaatact gtaggcaata 2000 gtaacagtgg tatttgtata tcgaaacata tggaaacata gagaaggtac 2050 agtaaaaata ctgtaaaata aatggtgcac ctgtataggg cacttaccac 2100 gaatggagct tacaggactg gaagttgctc tgggtgagtc agtgagtgaa 2150 tgtgaaggcc taggacatta ttgaacactg ccagacgtta taaatactgt 2200 atgcttaggc tacactacat ttataaaaaa aagtttttct ttcttcaatt 2250 ataaattaac ataagtgtac tgtaacttta caaacgtttt aatttttaaa 2300 acctttttgg ctcttttgta ataacactta gcttaaaaca taaactcatt 2350 gtgcaaatgt aa 2362

- <210> 195
- <211> 467
- <212> PRT
- <213> Homo Sapien

<400> 195

M	et	Arg	Pro	Gln	Glu	Leu	Pro	Arg	Leu	Ala	Phe	Pro	Leu	Leu	Leu
	1				5					10					15

- Leu Leu Leu Leu Leu Pro Pro Pro Pro Cys Pro Ala His Ser
 20 25 30
- Ala Thr Arg Phe Asp Pro Thr Trp Glu Ser Leu Asp Ala Arg Gln 35 40 45
- Leu Pro Ala Trp Phe Asp Gln Ala Lys Phe Gly Ile Phe Ile His
 50 55 60
- Trp Gly Val Phe Ser Val Pro Ser Phe Gly Ser Glu Trp Phe Trp
 65 70 75
- Trp Tyr Trp Gln Lys Glu Lys Ile Pro Lys Tyr Val Glu Phe Met
 80 85 90
- Lys Asp Asn Tyr Pro Pro Ser Phe Lys Tyr Glu Asp Phe Gly Pro 95 100 105
- Leu Phe Thr Ala Lys Phe Phe Asn Ala Asn Gln Trp Ala Asp Ile 110 115 120
- Phe Gln Ala Ser Gly Ala Lys Tyr Ile Val Leu Thr Ser Lys His
 125 130 130
- His Glu Gly Phe Thr Leu Trp Gly Ser Glu Tyr Ser Trp Asn Trp
 140 145 150
- Asn Ala Ile Asp Glu Gly Pro Lys Arg Asp Ile Val Lys Glu Leu 155 : 160 165
- Glu Val Ala Ile Arg Asn Arg Thr Asp Leu Arg Phe Gly Leu Tyr 170 175 180
- Tyr Ser Leu Phe Glu Trp Phe His Pro Leu Phe Leu Glu Asp Glu 185 190 195
- Ser Ser Ser Phe His Lys Arg Gln Phe Pro Val Ser Lys Thr Leu 200 205 210
- Pro Glu Leu Tyr Glu Leu Val Asn Asn Tyr Gln Pro Glu Val Leu 215 220 225
- Trp Ser Asp Gly Asp Gly Gly Ala Pro Asp Gln Tyr Trp Asn Ser 230 235 240

Thr Gly Phe Leu Ala Trp Leu Tyr Asn Glu Ser Pro Val Arg Gly Thr Val Val Thr Asn Asp Arg Trp Gly Ala Gly Ser Ile Cys Lys 260 265 His Gly Gly Phe Tyr Thr Cys Ser Asp Arg Tyr Asn Pro Gly His Leu Leu Pro His Lys Trp Glu Asn Cys Met Thr Ile Asp Lys Leu Ser Trp Gly Tyr Arg Arg Glu Ala Gly Ile Ser Asp Tyr Leu Thr Ile Glu Glu Leu Val Lys Gln Leu Val Glu Thr Val Ser Cys Gly Gly Asn Leu Leu Met Asn Ile Gly Pro Thr Leu Asp Gly Thr Ile Ser Val Val Phe Glu Glu Arg Leu Arg Gln Val Gly Ser Trp Leu Lys Val Asn Gly Glu Ala Ile Tyr Glu Thr Tyr Thr Trp Arg Ser Gln Asn Asp Thr Val Thr Pro Asp Val Trp Tyr Thr Ser Lys Pro Lys Glu Lys Leu Val Tyr Ala Ile Phe Leu Lys Trp Pro Thr Ser 400 Gly Gln Leu Phe Leu Gly His Pro Lys Ala Ile Leu Gly Ala Thr Glu Val Lys Leu Leu Gly His Gly Gln Pro Leu Asn Trp Ile Ser 425 Leu Glu Gln Asn Gly Ile Met Val Glu Leu Pro Gln Leu Thr Ile His Gln Met Pro Cys Lys Trp Gly Trp Ala Leu Ala Leu Thr Asn 455 460

Val Ile

<210> 196

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 196

tggtttgacc aggccaagtt cgg 23

<210> 197

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 197
ggattcatcc tcaaggaaga gcgg 24
<210> 198
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 198
aacttgcagc atcagccact ctgc 24
<210> 199
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 199
ttccgtgccc agcttcggta gcgagtggtt ctggtggtat tggca 45
<210> 200
<211> 2372
<212> DNA
<213> Homo Sapien
<400> 200
 agcagggaaa tccggatgtc tcggttatga agtggagcag tgagtgtgag 50
 cctcaacata gttccagaac tctccatccg gactagttat tgagcatctg 100
 cctctcatat caccagtggc catctgaggt gtttccctgg ctctgaaggg 150
 gtaggcacga tggccaggtg cttcagcctg gtgttgcttc tcacttccat 200
 ctggaccacg aggctcctgg tccaaggctc tttgcgtgca gaagagcttt 250
 ccatccaggt gtcatgcaga attatgggga tcacccttgt gagcaaaaag 300
 gcgaaccagc agctgaattt cacagaagct aaggaggcct gtaggctgct 350
 gggactaagt ttggccggca aggaccaagt tgaaacagcc ttgaaagcta 400
 gctttgaaac ttgcagctat ggctgggttg gagatggatt cgtggtcatc 450
 tctaggatta gcccaaaccc caagtgtggg aaaaatgggg tgggtgtcct 500
```

gatttggaag gttccagtga gccgacagtt tgcagcctat tgttacaact 550

catctgatac ttggactaac tcgtgcattc cagaaattat caccaccaaa 600 gatcccatat tcaacactca aactgcaaca caaacaacag aatttattgt 650 cagtgacagt acctactcgg tggcatcccc ttactctaca atacctgccc 700 ctactactac tecteetget ecagetteea ettetattee aeggagaaaa 750 aaattgattt gtgtcacaga agtttttatg gaaactagca ccatgtctac 800 agaaactgaa ccatttgttg aaaataaagc agcattcaag aatgaagctg 850 ctgggtttgg aggtgtcccc acggctctgc tagtgcttgc tctcctcttc 900 tttggtgctg cagctggtct tggattttgc tatgtcaaaa ggtatgtgaa 950 ggccttccct tttacaaaca agaatcagca gaaggaaatg atcgaaacca 1000 aagtagtaaa ggaggagaag gccaatgata gcaaccctaa tgaggaatca 1050 aagaaaactg ataaaaaccc agaagagtcc aagagtccaa gcaaaactac 1100 cgtgcgatgc ctggaagctg aagtttagat gagacagaaa tgaggagaca 1150 cacctgaggc tggtttcttt catgctcctt accctgcccc agctggggaa 1200 atcaaaaggg ccaaagaacc aaagaagaaa gtccaccctt ggttcctaac 1250 tggaatcagc tcaggactgc cattggacta tggagtgcac caaagagaat 1300 gcccttctcc ttattgtaac cctgtctgga tcctatcctc ctacctccaa 1350 agetteecae ggeettteta geetggetat gteetaataa tateecaetg 1400 ggagaaagga gttttgcaaa gtgcaaggac ctaaaacatc tcatcagtat 1450 ccagtggtaa aaaggcctcc tggctgtctg aggctaggtg ggttgaaagc 1500 caaggagtca ctgagaccaa ggctttctct actgattccg cagctcagac 1550 cctttcttca gctctgaaag agaaacacgt atcccacctg acatgtcctt 1600 ctgagcccgg taagagcaaa agaatggcag aaaagtttag cccctgaaag 1650 ccatggagat tctcataact tgagacctaa tctctgtaaa gctaaaataa 1700 agaaatagaa caaggctgag gatacgacag tacactgtca gcagggactg 1750 taaacacaga cagggtcaaa gtgttttctc tgaacacatt gagttggaat 1800 cactgtttag aacacaca cttacttttt ctggtctcta ccactgctga 1850 tattttctct aggaaatata cttttacaag taacaaaaat aaaaactctt 1900 ataaatttct atttttatct gagttacaga aatgattact aaggaagatt 1950 actcagtaat ttgtttaaaa agtaataaaa ttcaacaaac atttgctgaa 2000

tagctactat atgtcaagtg ctgtgcaagg tattacactc tgtaattgaa 2050 tattattcct caaaaaattg cacatagtag aacgctatct gggaagctat 2100 ttttttcagt tttgatattt ctagcttatc tacttccaaa ctaattttta 2150 tttttgctga gactaatctt attcattttc tctaatatgg caaccattat 2200 aaccttaatt tattattaac atacctaaga agtacattgt tacctctata 2250 taccaaagca cattttaaaa gtgccattaa caaatgtatc actagccctc 2300 ctttttccaa caagaaggga ctgagagatg cagaaatatt tgtgacaaaa 2350 aattaaagca tttagaaaac tt 2372

<210> 201

<211> 322

<212> PRT

<213> Homo Sapien

<400> 201

Met Ala Arg Cys Phe Ser Leu Val Leu Leu Thr Ser Ile Trp

1 5 10 15

Thr Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu 20 25 30

Ser Ile Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu $^{\prime}$ Val Ser 35 40 45

Lys Lys Ala Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys Glu Ala 50 55 60

Cys Arg Leu Leu Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu
65 70 75

Thr Ala Leu Lys Ala Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val 80 85 90

Gly Asp Gly Phe Val Val Ile Ser Arg Ile Ser Pro Asn Pro Lys 95 100 105

Cys Gly Lys Asn Gly Val Gly Val Leu Ile Trp Lys Val Pro Val
110 115 120

Ser Arg Gln Phe Ala Ala Tyr Cys Tyr Asn Ser Ser Asp Thr Trp
125 130 135

Thr Asn Ser Cys Ile Pro Glu Ile Ile Thr Thr Lys Asp Pro Ile 140 145 150

Phe Asn Thr Gln Thr Ala Thr Gln Thr Thr Glu Phe Ile Val Ser
155 160 165

Asp Ser Thr Tyr Ser Val Ala Ser Pro Tyr Ser Thr Ile Pro Ala 170 175 180

Pro Thr Thr Pro Pro Ala Pro Ala Ser Thr Ser Ile Pro Arg
185 190 195

Arg Lys Lys Leu Ile Cys Val Thr Glu Val Phe Met Glu Thr Ser 200 205 Thr Met Ser Thr Glu Thr Glu Pro Phe Val Glu Asn Lys Ala Ala Phe Lys Asn Glu Ala Ala Gly Phe Gly Gly Val Pro Thr Ala Leu Leu Val Leu Ala Leu Leu Phe Phe Gly Ala Ala Ala Gly Leu Gly Phe Cys Tyr Val Lys Arg Tyr Val Lys Ala Phe Pro Phe Thr Asn 260 Lys Asn Gln Gln Lys Glu Met Ile Glu Thr Lys Val Val Lys Glu 275 280 Glu Lys Ala Asn Asp Ser Asn Pro Asn Glu Glu Ser Lys Lys Thr Asp Lys Asn Pro Glu Glu Ser Lys Ser Pro Ser Lys Thr Thr Val Arg Cys Leu Glu Ala Glu Val <210> 202 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 202 gagctttcca tccaggtgtc atgc 24 <210> 203 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 203 gtcagtgaca gtacctactc gg 22 <210> 204 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 204

tggagcagga ggagtagtag tagg 24

- <210> 205 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 205

aggaggcctg taggctgctg ggactaagtt tggccggcaa ggaccaagtt 50

- <210> 206
- <211> 1620
- <212> DNA
- <213> Homo Sapien
- <220>
- <221> unsure
- <222> 973, 977, 996, 1003
- <223> unknown base
- <400> 206
- agatggcggt cttggcacct ctaattgctc tcgtgtattc ggtgccgcga 50 ctttcacgat ggctcgccca accttactac cttctgtcgg ccctgctctc 100 tgctgccttc ctactcgtga ggaaactgcc gccgctctgc cacggtctgc 150 ccacccaacg cgaagacggt aacccgtgtg actttgactg gagagaagtg 200 gagatcctga tgtttctcag tgccattgtg atgatgaaga accgcagatc 250 catcactgtg gagcaacata taggcaacat tttcatgttt agtaaagtgg 300 ccaacacaat tettteette egettggata ttegeatggg cetaetttae 350 atcacactct gcatagtgtt cctgatgacg tgcaaacccc ccctatatat 400 gggccctgag tatatcaagt acttcaatga taaaaccatt gatgaggaac 450 tagaacggga caagagggtc acttggattg tggagttctt tgccaattgg 500 tctaatgact gccaatcatt tgcccctatc tatgctgacc tctcccttaa 550 atacaactgt acagggctaa attttgggaa ggtggatgtt ggacgctata 600 ctgatgttag tacgcggtac aaagtgagca catcacccct caccaagcaa 650 ctccctaccc tgatcctgtt ccaaggtggc aaggaggcaa tgcggcggcc 700 acagattgac aagaaaggac gggctgtctc atggaccttc tctgaggaga 750 atgtgatccg agaatttaac ttaaatgagc tataccagcg ggccaagaaa 800 ctatcaaagg ctggagacaa tatccctgag gagcagcctg tggcttcaac 850 ccccaccaca gtgtcagatg gggaaaacaa gaaggataaa taagatcctc 900

actttggcag tgcttcctct cctgtcaatt ccaggctctt tccataacca 950
caagcctgag gctgcagcct ttnattnatg ttttcccttt ggctgngact 1000
ggntggggca gcatgcagct tctgattta aagaggcatc tagggaattg 1050
tcaggcaccc tacaggaagg cctgccatgc tgtggccaac tgtttcactg 1100
gagcaagaaa gagatctcat aggacggagg gggaaatggt ttccctccaa 1150
gcttgggtca gtgtgttaac tgcttatcag ctattcagac atctccatgg 1200
tttctccatg aaactctgtg gtttcatcat tccttcttag ttgacctgca 1250
cagcttggtt agacctagat ttaaccctaa ggtaagatgc tggggtatag 1300
aacgctaaga atttccccc aaggactctt gcttccttaa gcccttctgg 1350
cttcgtttat ggtcttcatt aaaagtataa gcctaacttt gtcgctagtc 1400
ctaaggagaa acctttaacc acaaagttt tatcattgaa gacaatattg 1450
aacaaccccc tatttgtgg ggattgagaa ggggtgaata gaggcttgag 1500
acttccttt gtgtggtagg acttggagga gaaatcccc ggacttcac 1550
taaccctctg acatactcc cacacccagt tgatggctt ccgtaataaa 1600
aagattggga tttccttttg 1620

<210> 207

<211> 296

<212> PRT

<213> Homo Sapien

<400> 207

Met Ala Val Leu Ala Pro Leu Ile Ala Leu Val Tyr Ser Val Pro 1 5 10 15

Arg Leu Ser Arg Trp Leu Ala Gln Pro Tyr Tyr Leu Leu Ser Ala
20 25 30

Leu Leu Ser Ala Ala Phe Leu Leu Val Arg Lys Leu Pro Pro Leu
35 40 45

Cys His Gly Leu Pro Thr Gln Arg Glu Asp Gly Asn Pro Cys Asp
50 55 60

Phe Asp Trp Arg Glu Val Glu Ile Leu Met Phe Leu Ser Ala Ile
65 70 75

Val Met Met Lys Asn Arg Arg Ser Ile Thr Val Glu Gln His Ile 80 85 90

Gly Asn Ile Phe Met Phe Ser Lys Val Ala Asn Thr Ile Leu Phe 95 100 105

Phe Arg Leu Asp Ile Arg Met Gly Leu Leu Tyr Ile Thr Leu Cys
110 115 120

Ile Val Phe Leu Met Thr Cys Lys Pro Pro Leu Tyr Met Gly Pro 130 Glu Tyr Ile Lys Tyr Phe Asn Asp Lys Thr Ile Asp Glu Glu Leu Glu Arg Asp Lys Arg Val Thr Trp Ile Val Glu Phe Phe Ala Asn Trp Ser Asn Asp Cys Gln Ser Phe Ala Pro Ile Tyr Ala Asp Leu 170 175 Ser Leu Lys Tyr Asn Cys Thr Gly Leu Asn Phe Gly Lys Val Asp 190 Val Gly Arg Tyr Thr Asp Val Ser Thr Arg Tyr Lys Val Ser Thr 205 Ser Pro Leu Thr Lys Gln Leu Pro Thr Leu Ile Leu Phe Gln Gly 215 220 225 Gly Lys Glu Ala Met Arg Arg Pro Gln Ile Asp Lys Lys Gly Arg 230 235 Ala Val Ser Trp Thr Phe Ser Glu Glu Asn Val Ile Arg Glu Phe 245 Asn Leu Asn Glu Leu Tyr Gln Arg Ala Lys Lys Leu Ser Lys Ala 260 265 Gly Asp Asn Ile Pro Glu Glu Gln Pro Val Ala Ser Thr Pro Thr 285 275 280 Thr Val Ser Asp Gly Glu Asn Lys Lys Asp Lys 290 295 <210> 208 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 208 gcttggatat tcgcatgggc ctac 24 <210> 209 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 209 tggagacaat atccctgagg 20 <210> 210

<211> 24

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 210
aacagttggc cacagcatgg cagg 24
<210> 211
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 211
ccattgatga ggaactagaa cgggacaaga gggtcacttg gattgtggag 50
<210> 212
<211> 1985
<212> DNA
<213> Homo Sapien
<400> 212
ggacageteg eggeeeega gagetetage egtegaggag etgeetgggg 50
acgtttgccc tggggcccca gcctggcccg ggtcaccctg gcatgaggag 100
atgggcctgt tgctcctggt cccattgctc ctgctgcccg gctcctacgg 150
 actgcccttc tacaacggct tctactactc caacagcgcc aacgaccaga 200
 acctaggcaa cggtcatggc aaagacctcc ttaatggagt gaagctggtg 250
gtggagacac ccgaggagac cctgttcacc taccaagggg ccagtgtgat 300
 cetgecetge egetaceget aegageegge cetggtetee eegeggegtg 350
 tgcgtgtcaa atggtggaag ctgtcggaga acggggcccc agagaaggac 400
gtgctggtgg ccatcgggct gaggcaccgc tcctttgggg actaccaagg 450
ccgcgtgcac ctgcggcagg acaaagagca tgacgtctcg ctggagatcc 500
aggatctgcg gctggaggac tatgggcgtt accgctgtga ggtcattgac 550
gggctggagg atgaaagcgg tctggtggag ctggagctgc ggggtgtggt 600
ctttccttac cagtcccca acgggcgcta ccagttcaac ttccacgagg 650
gccagcaggt ctgtgcagag caggctgcgg tggtggcctc ctttgagcag 700
ctcttccggg cctgggagga gggcctggac tggtgcaacg cgggctggct 750
gcaggatgct acggtgcagt accccatcat gttgccccgg cagccctgcg 800
```

gtggcccagg cctggcacct ggcgtgcgaa gctacggccc ccgccaccgc 850

cgcctgcacc gctatgatgt attctgcttc gctactgccc tcaaggggcg 900 ggtgtactac ctggagcacc ctgagaagct gacgctgaca gaggcaaggg 950 aggcctgcca ggaagatgat gccacgatcg ccaaggtggg acagctcttt 1000 gccgcctgga agttccatgg cctggaccgc tgcgacgctg gctggctggc 1050 agatggcagc gtccgctacc ctgtggttca cccgcatcct aactgtgggc 1100 ccccagagcc tggggtccga agctttggct tccccgaccc gcagagccgc 1150 ttgtacggtg tttactgcta ccgccagcac taggacctgg ggccctcccc 1200 tgccgcattc cctcactggc tgtgtattta ttgagtggtt cgttttccct 1250 tgtgggttgg agccatttta actgttttta tacttctcaa tttaaatttt 1300 ctttaaacat ttttttacta ttttttgtaa agcaaacaga acccaatgcc 1350 tccctttgct cctggatgcc ccactccagg aatcatgctt gctcccctgg 1400 gccatttgcg gttttgtggg cttctggagg gttccccgcc atccaggctg 1450 gtetecetee ettaaggagg ttggtgeeca gagtgggegg tggeetgtet 1500 agaatgeege egggagteeg ggcatggtgg gcacagttet eeetgeeeet 1550 cagectgggg gaagaagagg geeteggggg eeteeggage tgggetttgg 1600 gcctctcctg cccacctcta cttctctgtg aagccgctga ccccagtctg 1650 cccactgagg ggctagggct ggaagccagt tctaggcttc caggcgaaat 1700 ctgagggaag gaagaaactc ccctccccgt tccccttccc ctctcggttc 1750 caaagaatct gttttgttgt catttgtttc tcctgtttcc ctgtgtgggg 1800 aggggccctc aggtgtgtgt actttggaca ataaatggtg ctatgactgc 1850 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaa 1985

```
<210> 213
```

<211> 360

<212> PRT

<213> Homo Sapien

<400> 213

Met Gly Leu Leu Leu Val Pro Leu Leu Leu Pro Gly Ser 1 5 10 15

Tyr Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala 20 25 30

Asn	Asp	Gln	Asn	Leu 35	Gly	Asn	Gly	His	Gly 40	Lys	Asp	Leu	Leu	Asn 45
Gly	Val	Lys	Leu	Val 50	Val	Glu	Thr	Pro	Glu 55	Glu	Thr	Leu	Phe	Thr 60
Tyr	Gln	Gly	Ala	Ser 65	Val	Ile	Leu	Pro	Cys 70	Arg	Tyr	Arg	Tyr	Glu 75
Pro	Ala	Leu	Val	Ser 80	Pro	Arg	Arg	Val	Arg 85	Val	Lys	Trp	Trp	Lys 90
Leu	Ser	Glu	Asn	Gly 95	Ala	Pro	Glu	Lys	Asp 100	Val	Leu	Val	Ala	Ile 105
Gly	Leu	Arg	His	Arg 110	Ser	Phe	Gly	Asp	Tyr 115	Gln	Gly	Arg	Val	His 120
Leu	Arg	Gln	Asp	Lys 125	Glu	His	Asp	Val	Ser 130	Leu	Glu	Ile	Gln	Asp 135
Leu	Arg	Leu	Glu	Asp 140	Tyr	Gly	Arg	Tyr	Arg 145	Cys	Glu	Val	Ile	Asp 150
Gly	Leu	Glu	Asp	Glu 155	Ser	Gly	Leu	Val	Glu 160	Leu	Glu	Leu	Arg	Gly 165
Val	Val	Phe	Pro	Tyr 170	Gln	Ser	Pro	Asn	Gly 175	Arg	Tyr	Gln	Phe	Asn 180
Phe	His	Glu	Gly		Gln	Val	Cys	Ala	_	Gln	Ala	Ala	Val	
Ala	Ser	Phe	Glu	Gln 200	Leu	Phe	Arg	Ala	Trp 205	Glu	Glu	Gly	Leu	Asp 210
Trp	Cys	Asn	Ala	Gly 215	Trp	Leu	Gln	Asp	Ala 220	Thr	Val	Gln	Tyr	Pro 225
Ile	Met	Leu	Pro	Arg 230	Gln	Pro	Cys	Gly	Gly 235	Pro	Gly	Leu	Ala	Pro 240
Gly	Val	Arg	Ser	Tyr 245	Gly	Pro	Arg	His	Arg 250	Arg	Leu	His	Arg	Tyr 255
Asp	Val	Phe	Cys	Phe 260	Ala	Thr	Ala	Leu	Lys 265	Gly	Arg	Val	Tyr	Tyr 270
Leu	Glu	His	Pro	Glu 275	Lys	Leu	Thr	Leu	Thr 280	Glu	Ala	Arg	Glu	Ala 285
Cys	Gln	Glu	Asp	Asp 290	Ala	Thr	Ile	Ala	Lys 295	Val	Gly	Ģln	Leu	Phe 300
Ala	Ala	Trp	Lys	Phe 305	His	Gly	Leu	Asp	Arg 310	Cys	Asp	Ala	Gly	Trp 315
Leu	Ala	Asp	Gly	Ser 320	Val	Arg	Tyr	Pro	Val 325	Val	His	Pro	His	Pro 330

Asn Cys Gly Pro Pro Glu Pro Gly Val Arg Ser Phe Gly Phe Pro 335 340 345

Asp Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln His 350 355 360

<210> 214

<211> 18

<212> DNA

<213> Artificial Sequence

<220s

<223> Synthetic Oligonucleotide Probe

<400> 214

tgcttcgcta ctgccctc 18

<210> 215

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 215

ttcccttgtg ggttggag 18

<210> 216

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 216

agggctggaa gccagttc 18

<210> 217

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 217

agccagtgag gaaatgcg 18

<210> 218

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 218

tgtccaaagt acacacact gagg 24

- <210> 219
- <211> 45
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic Oligonucleotide Probe
- <400> 219

gatgccacga tcgccaaggt gggacagctc tttgccgcct ggaag 45

- <210> 220
- <211> 1503
- <212> DNA
- <213> Homo Sapien
- <400> 220
- ggagagcgga gcgaagctgg ataacagggg accgatgatg tggcgaccat 50 cagttetget gettetgttg ctactgagge acggggccca ggggaagcca 100 tecceagacg caggeetta tggccagggg agggtgcacc aggeggeecc 150 cctgagcgac gctccccatg atgacgccca cgggaacttc cagtacgacc 200 atgaggettt cetgggaegg gaagtggeea aggaattega eeaacteace 250 ccagaggaaa gccaggcccg tctggggcgg atcgtggacc gcatggaccg 300 cgcgggggac ggcgacggct gggtgtcgct ggccgagctt cgcgcgtgga 350 tegegeacae geageagegg cacataeggg acteggtgag egeggeetgg 400 gacacgtacg acacggaccg cgacgggcgt gtgggttggg aggagctgcg 450 caacgccacc tatggccact acgcgcccgg tgaagaattt catgacgtgg 500 aggatgcaga gacctacaaa aagatgctgg ctcgggacga gcggcgtttc 550 cgggtggccg accaggatgg ggactcgatg gccactcgag aggagctgac 600 agcetteetg cacceegagg agtteeetca catgegggae ategtgattg 650 ctgaaaccct ggaggacctg gacagaaaca aagatggcta tgtccaggtg 700 gaggagtaca tcgcggatct gtactcagcc gagcctgggg aggaggagcc 750 ggcgtgggtg cagacggaga ggcagcagtt ccgggacttc cgggatctga 800 acaaggatgg gcacctggat gggagtgagg tgggccactg ggtgctgccc 850 cctgcccagg accagcccct ggtggaagcc aaccacctgc tgcacgagag 900 cgacacggac aaggatgggc ggctgagcaa agcggaaatc ctgggtaatt 950 ggaacatgtt tgtgggcagt caggccacca actatggcga ggacctgacc 1000

<210> 221

<211> 328

<212> PRT

<213> Homo Sapien

<400> 221

Met Met Trp Arg Pro Ser Val Leu Leu Leu Leu Leu Leu Leu Arg

1 5 10 15

His Gly Ala Gln Gly Lys Pro Ser Pro Asp Ala Gly Pro His Gly 20 25 30

Gln Gly Arg Val His Gln Ala Ala Pro Leu Ser Asp Ala Pro His 35 40 45

Asp Asp Ala His Gly Asn Phe Gln Tyr Asp His Glu Ala Phe Leu
50 55 60

Gly Arg Glu Val Ala Lys Glu Phe Asp Gln Leu Thr Pro Glu Glu
65 70 75

Ser Gln Ala Arg Leu Gly Arg Ile Val Asp Arg Met Asp Arg Ala 80 85 90

Gly Asp Gly Asp Gly Trp Val Ser Leu Ala Glu Leu Arg Ala Trp 95 100 105

Ile Ala His Thr Gln Gln Arg His Ile Arg Asp Ser Val Ser Ala 110 115 120

Ala Trp Asp Thr Tyr Asp Thr Asp Arg Asp Gly Arg Val Gly Trp
125 130 135

Glu Glu Leu Arg Asn Ala Thr Tyr Gly His Tyr Ala Pro Gly Glu 140 145 150

Glu Phe His Asp Val Glu Asp Ala Glu Thr Tyr Lys Lys Met Leu

155 160 165 Ala Arg Asp Glu Arg Arg Phe Arg Val Ala Asp Gln Asp Gly Asp Ser Met Ala Thr Arg Glu Glu Leu Thr Ala Phe Leu His Pro Glu 185 190 Glu Phe Pro His Met Arg Asp Ile Val Ile Ala Glu Thr Leu Glu Asp Leu Asp Arg Asn Lys Asp Gly Tyr Val Gln Val Glu Glu Tyr Ile Ala Asp Leu Tyr Ser Ala Glu Pro Gly Glu Glu Glu Pro Ala 230 235 Trp Val Gln Thr Glu Arg Gln Gln Phe Arg Asp Phe Arg Asp Leu 250 Asn Lys Asp Gly His Leu Asp Gly Ser Glu Val Gly His Trp Val Leu Pro Pro Ala Gln Asp Gln Pro Leu Val Glu Ala Asn His Leu Leu His Glu Ser Asp Thr Asp Lys Asp Gly Arg Leu Ser Lys Ala 290 295 Glu Ile Leu Gly Asn Trp Asn Met Phe Val Gly Ser Gln Ala Thr 305 310 Asn Tyr Gly Glu Asp Leu Thr Arg His His Asp Glu Leu 320 325 <210> 222 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 222 cgcaggccct catggccagg 20 <210> 223 <211> 18 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 223 gaaatcctgg gtaattgg 18

<210> 224 <211> 23 <212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 224
gtgcgcggtg ctcacagctc atc 23
<210> 225
<211> 44
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 225
ccccctgag cgacgctccc ccatgatgac gcccacggga actt 44
<210> 226
<211> 2403
<212> DNA
<213> Homo Sapien
<400> 226
ggggccttgc cttccgcact cgggcgcagc cgggtggatc tcgagcaggt 50
geggageece gggeggegg egegggtgeg agggateeet gaegeetetg 100
 tecetgitte titgiegete ceagectgie tgiegtegit tiggegeece 150
 egecteeeeg eggtgegggg ttgeacaceg atcetggget tegetegatt 200
 tgccgccgag gcgcctccca gacctagagg ggcgctggcc tggagcagcg 250
ggtcgtctgt gtcctctctc ctctgcgccg cgcccgggga tccgaagggt 300
geggggetet gaggaggtga egegeggge etecegeace etggeettge 350
 cegeattete cetetetece aggtgtgage ageetateag teaccatgte 400
 cgcagcctgg atcccggctc tcggcctcgg tgtgtgtctg ctgctgctgc 450
 cggggcccgc gggcagcgag ggagccgctc ccattgctat cacatgtttt 500
accagagget tggacatcag gaaagagaaa gcagatgtee tetgeecagg 550
gggctgccct cttgaggaat tctctgtgta tgggaacata gtatatgctt 600
ctgtatcgag catatgtggg gctgctgtcc acaggggagt aatcagcaac 650 ,
tcagggggac ctgtacgagt ctatagccta cctggtcgag aaaactattc 700
ctcagtagat gccaatggca tccagtctca aatgctttct agatggtctg 750
cttctttcac agtaactaaa ggcaaaagta gtacacagga ggccacagga 800
```

caagcagtgt ccacagcaca tccaccaaca ggtaaacgac taaagaaaac 850

accegagaag aaaactggca ataaagattg taaagcagac attgcattte 900 tgattgatgg aagctttaat attgggcagc gccgatttaa tttacagaag 950 aattttgttg gaaaagtggc tctaatgttg ggaattggaa cagaaggacc 1000 acatgtgggc cttgttcaag ccagtgaaca tcccaaaata gaattttact 1050 tgaaaaactt tacatcagcc aaagatgttt tgtttgccat aaaggaagta 1100 ggtttcagag ggggtaattc caatacagga aaagccttga agcatactgc 1150 tcagaaattc ttcacggtag atgctggagt aagaaaaggg atccccaaag 1200 tggtggtggt atttattgat ggttggcctt ctgatgacat cgaggaagca 1250 ggcattgtgg ccagagagtt tggtgtcaat gtatttatag tttctgtggc 1300 caagectate cetgaagaac tggggatggt teaggatgte acatttgttg 1350 acaaggctgt ctgtcggaat aatggcttct tctcttacca catgcccaac 1400 tggtttggca ccacaaaata cgtaaagcct ctggtacaga agctgtgcac 1450 tcatgaacaa atgatgtgca gcaagacctg ttataactca gtgaacattg 1500 cctttctaat tgatggctcc agcagtgttg gagatagcaa tttccgcctc 1550 atgcttgaat ttgtttccaa catagccaag acttttgaaa tctcggacat 1600 tggtgccaag atagctgctg tacagtttac ttatgatcag cgcacggagt 1650 tcagtttcac tgactatagc accaaagaga atgtcctagc tgtcatcaga 1700 aacatccgct atatgagtgg tggaacagct actggtgatg ccatttcctt 1750 cactgttaga aatgtgtttg gccctataag ggagagcccc aacaagaact 1800 tectagtaat tgteacagat gggeagteet atgatgatgt ecaaggeeet 1850 gcagctgctg cacatgatgc aggaatcact atcttctctg ttggtgtggc 1900 ttgggcacct ctggatgacc tgaaagatat ggcttctaaa ccgaaggagt 1950 ctcacgcttt cttcacaaga gagttcacag gattagaacc aattgtttct 2000 gatgtcatca gaggcatttg tagagatttc ttagaatccc agcaataatg 2050 gtaacatttt gacaactgaa agaaaaagta caaggggatc cagtgtgtaa 2100 attgtattct cataatactg aaatgcttta gcatactaga atcagataca 2150 aaactattaa gtatgtcaac agccatttag gcaaataagc actcctttaa 2200 agccgctgcc ttctggttac aatttacagt gtactttgtt aaaaacactg 2250 ctgaggcttc ataatcatgg ctcttagaaa ctcaggaaag aggagataat 2300 gtggattaaa accttaagag ttctaaccat gcctactaaa tgtacagata 2350

tgcaaattcc atagctcaat aaaagaatct gatacttaga ccaaaaaaaa 2400

aaa 2403

<210> 227

<211> 550

<212> PRT

<213> Homo Sapien

<400> 227

Met Ser Ala Ala Trp Ile Pro Ala Leu Gly Leu Gly Val Cys Leu

1 5 10 15

Leu Leu Leu Pro Gly Pro Ala Gly Ser Glu Gly Ala Ala Pro Ile 20 25 30

Ala Ile Thr Cys Phe Thr Arg Gly Leu Asp Ile Arg Lys Glu Lys
35 40 45

Ala Asp Val Leu Cys Pro Gly Gly Cys Pro Leu Glu Glu Phe Ser
50 55 60

Val Tyr Gly Asn Ile Val Tyr Ala Ser Val Ser Ser Ile Cys Gly 65 70 75

Ala Ala Val His Arg Gly Val Ile Ser Asn Ser Gly Gly Pro Val 80 85 90

Arg Val Tyr Ser Leu Pro Gly Arg Glu Asn Tyr Ser Ser Val Asp 95 100 105

Ala Asn Gly Ile Gln Ser Gln Met Leu Ser Arg Trp Ser Ala Ser 110 115 120

Phe Thr Val Thr Lys Gly Lys Ser Ser Thr Gln Glu Ala Thr Gly
125 130 135

Gln Ala Val Ser Thr Ala His Pro Pro Thr Gly Lys Arg Leu Lys 140 145 150

Lys Thr Pro Glu Lys Lys Thr Gly Asn Lys Asp Cys Lys Ala Asp 155 160 165

Ile Ala Phe Leu Ile Asp Gly Ser Phe Asn Ile Gly Gln Arg Arg 170 175 180

Phe Asn Leu Gln Lys Asn Phe Val Gly Lys Val Ala Leu Met Leu 185 190 195

Gly Ile Gly Thr Glu Gly Pro His Val Gly Leu Val Gln Ala Ser 200 205 210

Glu His Pro Lys Ile Glu Phe Tyr Leu Lys Asn Phe Thr Ser Ala 215 220 225

Lys Asp Val Leu Phe Ala Ile Lys Glu Val Gly Phe Arg Gly Gly 230 235 240

Asn Ser Asn Thr Gly Lys Ala Leu Lys His Thr Ala Gln Lys Phe 245 250 255

Phe	Thr	Val	Asp	Ala 260	Gly	Val	Arg	Lys	Gly 265	Ile	Pro	Lys	Val	Val 270
Val	Val	Phe	Ile	Asp 275	Gly	Trp	Pro	Ser	Asp 280	Asp	Ile	Glu	Glu	Ala 285
Gly	Ile	Val	Ala	Arg 290	Glu	Phe	Gly	Val	Asn 295	Val	Phe	Ile	Val	Ser 300
Val	Ala	Lys	Pro	Ile 305	Pro	Glu	Glu	Leu	Gly 310	Met	Val	Gln	Asp	Val 315
Thr	Phe	Val	Asp	Lys 320	Ala	Val	Cys	Arg	Asn 325	Asn	Gly	Phe	Phe	Ser 330
Tyr	His	Met	Pro	Asn 335	Trp	Phe	Gly	Thr	Thr 340	Lys	Tyr	Val	Lys	Pro 345
Leu	Val	Gln	Lys	Leu 350	Cys	Thr	His	Glu	Gln 355	Met	Met	Cys	Ser	Lys 360
Thr	Cys	Tyr	Asn	Ser 365	Val	Asn	Ile	Ala	Phe 370	Leu	Ile	Asp	Gly	Ser 375
Ser	Ser	Val	Gly	Asp 380	Ser	Asn	Phe	Arg	Leu 385	Met	Leu	Glu	Phe	Val 390
Ser	Asn	Ile	Ala	Lys 395	Thr	Phe	Glu	Ile	Ser 400	Asp	Ile	Gly	Ala	Lys 405
Ile	Ala	Ala	Val	Gln 410	Phe	Thr	Tyr	Asp	Gln 415	Arg	Thr	Glu	Phe	Ser 420
Phe	Thr	Asp	Tyr	Ser 425	Thr	Lys	Glu	Asn	Val 430	Leu	Ala	Val	Ile	Arg 435
Asn	Ile	Arg	Tyr	Met 440	Ser	Gly	Gly	Thr	Ala 445	Thr	Gly	Asp	Ala	Ile 450
Ser	Phe	Thr	Val	Arg 455	Asn	Val	Phe	Gly	Pro 460	Ile	Arg	Glu	Ser	Pro 465
Asn	Lys	Asn	Phe	Leu 470	Val	Ile	Val	Thr	Asp 475	Gly	Gln	Ser	Tyr	Asp 480
Asp	Val	Gln	Gly	Pro 485	Ala	Ala	Ala	Ala	His 490	Asp	Ala	Gly	Ile	Thr 495
Ile	Phe	Ser	Val	Gly 500	Val	Ala	Trp	Ala	Pro 505	Leu	Asp	Asp	Leu	Lys 510
Asp	Met	Ala	Ser	Lys 515	Pro	Lys	Glu	Ser	His 520	Ala	Phe	Phe	Thr	Arg 525
Glu	Phe	Thr	Gly	Leu 530	Glu	Pro	Ile	Val	Ser 535	Asp	Val	Ile	Arg	Gly 540
Ile	Cys	Arg	Asp	Phe	Leu	Glu	Ser	Gln	Gln					

545 550

```
<210> 228
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 228
tggtctcgca caccgatc 18
<210> 229
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 229
ctgctgtcca caggggag 18
<210> 230
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 230
ccttgaagca tactgctc 18
<210> 231
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 231
gagatagcaa tttccgcc 18
<210> 232
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 232
ttcctcaaga gggcagcc 18
<210> 233
<211> 24
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 233
cttggcacca atgtccgaga tttc 24
<210> 234
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 234
gctctgagga aggtgacgcg cggggcctcc gaacccttgg ccttg 45
<210> 235
<211> 2586
<212> DNA
<213> Homo Sapien
<400> 235
cgccgcgctc ccgcacccgc ggcccgccca ccgcgccgct cccgcatctg 50
cacccgcagc ccggcggcct cccggcggga gcgagcagat ccagtccggc 100
ccgcagcgca actcggtcca gtcggggcgg cggctgcggg cgcagagcgg 150
agatgcageg gettggggee accetgetgt geetgetget ggeggeggeg 200
gtccccacgg cccccgcgcc cgctccgacg gcgacctcgg ctccagtcaa 250
gcccggcccg gctctcagct acccgcagga ggaggccacc ctcaatgaga 300
tgttccgcga ggttgaggaa ctgatggagg acacgcagca caaattgcgc 350
agegeggtgg aagagatgga ggeagaagaa getgetgeta aageateate 400
agaagtgaac ctggcaaact tacctcccag ctatcacaat gagaccaaca 450
cagacacgaa ggttggaaat aataccatcc atgtgcaccg agaaattcac 500
aagataacca acaaccagac tggacaaatg gtcttttcag agacagttat 550
cacatctgtg ggagacgaag aaggcagaag gagccacgag tgcatcatcg 600
acgaggactg tgggcccagc atgtactgcc agtttgccag cttccagtac 650
acctgccagc catgccgggg ccagaggatg ctctgcaccc gggacagtga 700
gtgctgtgga gaccagctgt gtgtctgggg tcactgcacc aaaatggcca 750
ccaggggcag caatgggacc atctgtgaca accagaggga ctgccagccg 800
```

gggctgtgct gtgccttcca gagaggcctg ctgttccctg tgtgcacacc 850

cctgcccgtg gagggcgagc tttgccatga ccccgccagc cggcttctgg 900 acctcatcac ctgggagcta gagcctgatg gagccttgga ccgatgccct 950 tgtgccagtg gcctcctctg ccagccccac agccacagcc tggtgtatgt 1000 gtgcaagccg accttcgtgg ggagccgtga ccaagatggg gagatcctgc 1050 tgcccagaga ggtccccgat gagtatgaag ttggcagctt catggaggag 1100 gtgcgccagg agctggagga cctggagagg agcctgactg aagagatggc 1150 gctgggggag cctgcggctg ccgccgctgc actgctggga ggggaagaga 1200 tttagatctg gaccaggctg tgggtagatg tgcaatagaa atagctaatt 1250 tatttcccca ggtgtgtgct ttaggcgtgg gctgaccagg cttcttccta 1300 catcttcttc ccagtaagtt tcccctctgg cttgacagca tgaggtgttg 1350 tgcatttgtt cagctccccc aggctgttct ccaggcttca cagtctggtg 1400 cttgggagag tcaggcaggg ttaaactgca ggagcagttt gccacccctg 1450 tccagattat tggctgcttt gcctctacca gttggcagac agccgtttgt 1500 tetacatgge tttgataatt gtttgagggg aggagatgga aacaatgtgg 1550 agteteeete tgattggttt tggggaaatg tggagaagag tgeeetgett 1600 tgcaaacatc aacctggcaa aaatgcaaca aatgaatttt ccacgcagtt 1650 ctttccatgg gcataggtaa gctgtgcctt cagctgttgc agatgaaatg 1700 ttctgttcac cctgcattac atgtgtttat tcatccagca gtgttgctca 1750 gctcctacct ctgtgccagg gcagcatttt catatccaag atcaattccc 1800 teteteagea eageetgggg agggggteat tgtteteete gteeateagg 1850 gatctcagag gctcagagac tgcaagctgc ttgcccaagt cacacagcta 1900 gtgaagacca gagcagtttc atctggttgt gactctaagc tcagtgctct 1950 ctccactacc ccacaccage cttggtgcca ccaaaagtgc tccccaaaag 2000 gaaggagaat gggatttttc ttgaggcatg cacatctgga attaaggtca 2050 aactaattet cacateeete taaaagtaaa etaetgttag gaacageagt 2100 gttctcacag tgtggggcag ccgtccttct aatgaagaca atgatattga 2150 cactgtccct ctttggcagt tgcattagta actttgaaag gtatatgact 2200 gagcgtagca tacaggttaa cctgcagaaa cagtacttag gtaattgtag 2250 ggcgaggatt ataaatgaaa tttgcaaaat cacttagcag caactgaaga 2300 caattatcaa ccacgtggag aaaatcaaac cgagcagggc tgtgtgaaac 2350

atggttgtaa tatgcgactg cgaacactga actctacgcc actccacaaa 2400 tgatgttttc aggtgtcatg gactgttgcc accatgtatt catccagagt 2450 tcttaaagtt taaagttgca catgattgta taagcatgct ttctttgagt 2500 tttaaattat gtataaacat aagttgcatt tagaaatcaa gcataaatca 2550 cttcaactgc aaaaaaaaaa aaaaaaaaaa aaaaaaa 2586

<210> 236

<211> 350

<212> PRT

<213> Homo Sapien

<400> 236

Met Gln Arg Leu Gly Ala Thr Leu Leu Cys Leu Leu Leu Ala Ala 1 5 10 15

Ala Val Pro Thr Ala Pro Ala Pro Ala Pro Thr Ala Thr Ser Ala
20 25 30

Pro Val Lys Pro Gly Pro Ala Leu Ser Tyr Pro Gln Glu Glu Ala 35 40 45

Thr Leu Asn Glu Met Phe Arg Glu Val Glu Glu Leu Met Glu Asp
50 55 60

Thr Gln His Lys Leu Arg Ser Ala Val Glu Glu Met Glu Ala Glu
65 70 75

Glu Ala Ala Ala Lys Ala Ser Ser Glu Val Asn Leu Ala Asn Leu 80 85 90

Pro Pro Ser Tyr His Asn Glu Thr Asn Thr Asp Thr Lys Val Gly
95 100 105

Asn Asn Thr Ile His Val His Arg Glu Ile His Lys Ile Thr Asn 110 . 115 120

Asn Gln Thr Gly Gln Met Val Phe Ser Glu Thr Val Ile Thr Ser 125 130 135

Val Gly Asp Glu Glu Gly Arg Arg Ser His Glu Cys Ile Ile Asp 140 145 150

Glu Asp Cys Gly Pro Ser Met Tyr Cys Gln Phe Ala Ser Phe Gln 155 160 165

Tyr Thr Cys Gln Pro Cys Arg Gly Gln Arg Met Leu Cys Thr Arg
170 175 180

Asp Ser Glu Cys Cys Gly Asp Gln Leu Cys Val Trp Gly His Cys 185 190 195

Thr Lys Met Ala Thr Arg Gly Ser Asn Gly Thr Ile Cys Asp Asn 200 205 210

```
Gln Arg Asp Cys Gln Pro Gly Leu Cys Cys Ala Phe Gln Arg Gly
 Leu Leu Phe Pro Val Cys Thr Pro Leu Pro Val Glu Gly Glu Leu
 Cys His Asp Pro Ala Ser Arg Leu Leu Asp Leu Ile Thr Trp Glu
Leu Glu Pro Asp Gly Ala Leu Asp Arg Cys Pro Cys Ala Ser Gly
Leu Leu Cys Gln Pro His Ser His Ser Leu Val Tyr Val Cys Lys
                                     280
 Pro Thr Phe Val Gly Ser Arg Asp Gln Asp Gly Glu Ile Leu Leu
 Pro Arg Glu Val Pro Asp Glu Tyr Glu Val Gly Ser Phe Met Glu
Glu Val Arg Gln Glu Leu Glu Asp Leu Glu Arg Ser Leu Thr Glu
Glu Met Ala Leu Gly Glu Pro Ala Ala Ala Ala Ala Leu Leu
                 335
Gly Gly Glu Glu Ile
<210> 237
<211> 17
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 237
ggagctgcac cccttgc 17
<210> 238
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg 49
<210> 239
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
```

```
<400> 239
 gcagagcgga gatgcagcgg cttg 24
<210> 240
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 240
ttggcagctt catggagg 18
<210> 241
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 241
cctgggcaaa aatgcaac 18
<210> 242
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 242
ctccagctcc tggcgcacct cctc 24
<210> 243
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 243
ggctctcagc taccgcgcag gagcgaggcc accctcaatg agatg 45
<210> 244
<211> 3679
<212> DNA
<213> Homo Sapien
<400> 244
aaggaggctg ggaggaaaga ggtaagaaag gttagagaac ctacctcaca 50
tctctctggg ctcagaagga ctctgaagat aacaataatt tcagcccatc 100
cacteteett cecteecaaa cacacatgtg catgtacaca cacacataca 150
```

cacacataca cetteetete etteactgaa gaeteacagt cacteactet 200 gtgagcaggt catagaaaag gacactaaag cettaaggae aggeetggee 250 attacctctg cagctccttt ggcttgttga gtcaaaaaac atgggagggg 300 ccaggcacgg tgactcacac ctgtaatccc agcattttgg gagaccgagg 350 tgagcagatc acttgaggtc aggagttcga gaccagcctg gccaacatgg 400 agaaaccccc atctctacta aaaatacaaa aattagccag gagtggtggc 450 aggtgcctgt aatcccagct actcaggtgg ctgagccagg agaatcgctt 500 gaatccagga ggcggaggat gcagtcagct gagtgcaccg ctgcactcca 550 gcctgggtga cagaatgaga ctctgtctca aacaacaaa cacgggagga 600 ggggtagata ctgcttctct gcaacctcct taactctgca tcctcttctt 650 ccagggctgc ccctgatggg gcctggcaat gactgagcag gcccagcccc 700 agaggacaag gaagagaagg catattgagg agggcaagaa gtgacgcccg 750 gtgtagaatg actgccctgg gagggtggtt ccttgggccc tggcagggtt 800 gctgaccctt accctgcaaa acacaaagag caggactcca gactctcctt 850 gtgaatggtc ccctgccctg cagctccacc atgaggcttc tcgtggcccc 900 actettgeta gettgggtgg etggtgeeac tgceactgtg eccgtggtae 950 cetggcatgt teeetgeece ceteagtgtg cetgecagat eeggeeetgg 1000 tatacgcccc gctcgtccta ccgcgaggct accactgtgg actgcaatga 1050 cctattcctg acggcagtcc ccccggcact ccccgcaggc acacagaccc 1100 tgctcctgca gagcaacagc attgtccgtg tggaccagag tgagctgggc 1150 tacctggcca atctcacaga gctggacctg tcccagaaca gcttttcgga 1200 tgcccgagac tgtgatttcc atgccctgcc ccagctgctg agcctgcacc 1250 tagaggagaa ccagctgacc cggctggagg accacagctt tgcagggctg 1300 gccagcctac aggaactcta tctcaaccac aaccagctct accgcatcgc 1350 ccccagggcc ttttctggcc tcagcaactt gctgcggctg cacctcaact 1400 ccaacctcct gagggccatt gacagccgct ggtttgaaat gctgcccaac 1450 ttggagatac tcatgattgg cggcaacaag gtagatgcca tcctggacat 1500 gaacttccgg cccctggcca acctgcgtag cctggtgcta gcaggcatga 1550 acctgcggga gatctccgac tatgccctgg aggggctgca aagcctggag 1600 agectetect tetatgacaa ceagetggee egggtgeeca ggegggeact 1650

ggaacaggtg cccgggctca agttcctaga cctcaacaag aacccgctcc 1700 agcgggtagg gccgggggac tttgccaaca tgctgcacct taaggagctg 1750 ggactgaaca acatggagga gctggtctcc atcgacaagt ttgccctggt 1800 gaacctcccc gagctgacca agctggacat caccaataac ccacggctgt 1850 cetteateca eccegegee ttecaceace tgeeceagat ggagaceete 1900 atgctcaaca acaacgctct cagtgccttg caccagcaga cggtggagtc 1950 cctgcccaac ctgcaggagg taggtctcca cggcaacccc atccgctgtg 2000 actgtgtcat ccgctgggcc aatgccacgg gcacccgtgt ccgcttcatc 2050 gagoogcaat coaccotgtg tgoggagoot coggacotoc agogootocc 2100 ggtccgtgag gtgcccttcc gggagatgac ggaccactgt ttgcccctca 2150 tetececacg aagetteece ecaageetee aggtageeag tggagagage 2200 atggtgctgc attgccgggc actggccgaa cccgaacccg agatctactg 2250 ggtcactcca gctgggcttc gactgacacc tgcccatgca ggcaggaggt 2300 accgggtgta ccccgagggg accctggagc tgcggagggt gacagcagaa 2350 gaggcagggc tatacacctg tgtggcccag aacctggtgg gggctgacac 2400 taagacggtt agtgtggttg tgggccgtgc tctcctccag ccaggcaggg 2450 acgaaggaca ggggctggag ctccgggtgc aggagaccca cccctatcac 2500 atcetgetat ettgggteac cecacecaac acagtgteca ceaaceteac 2550 ctggtccagt gcctcctccc tccggggcca gggggccaca gctctggccc 2600 gcctgcctcg gggaacccac agctacaaca ttacccgcct ccttcaggcc 2650 acggagtact gggcctgcct gcaagtggcc tttgctgatg cccacaccca 2700 gttggcttgt gtatgggcca ggaccaaaga ggccacttct tgccacagag 2750 cettagggga tegteetggg eteattgeea teetggetet egetgteett 2800 ctcctggcag ctgggctagc ggcccacctt ggcacaggcc aacccaggaa 2850 gggtgtgggt gggaggcggc ctctccctcc agcctgggct ttctggggct 2900 ggagtgcccc ttctgtccgg gttgtgtctg ctcccctcgt cctgccctgg 2950 aatccaggga ggaagctgcc cagatcctca gaaggggaga cactgttgcc 3000 accattgtct caaaattctt gaagctcagc ctgttctcag cagtagagaa 3050 atcactagga ctacttttta ccaaaagaga agcagtctgg gccagatgcc 3100 ctgccaggaa agggacatgg acccacgtgc ttgaggcctg gcagctgggc 3150

caagacagat ggggctttgt ggccctgggg gtgcttctgc agccttgaaa 3200
aagttgccct tacctcctag ggtcacctct gctgccattc tgaggaacat 3250
ctccaaggaa caggagggac tttggctaga gcctcctgcc tccccatctt 3300
ctctctgccc agaggctcct gggcctggct tggctgtccc ctacctgtgt 3350
ccccgggctg caccccttcc tcttctcttt ctctgtacag tctcagttgc 3400
ttgctcttgt gcctcctggg caagggctga aggaggccac tccatctcac 3450
ctcggggggc tgccctcaat gtgggagtga ccccagccag atctgaagga 3500
catttgggag agggatgccc aggaacgcct catctcagca gcctgggctc 3550
ggcattccga agctgacttt ctataggcaa ttttgtacct ttgtggagaa 3600
atgtgtcacc tcccccaacc cgattcactc ttttccctg ttttgtaaaa 3650
aataaaaata aataataaca ataaaaaaa 3679

<400> 245

Met Arg Leu Leu Val Ala Pro Leu Leu Leu Ala Trp Val Ala Gly
1 5 10 15

Ala Thr Ala Thr Val Pro Val Val Pro Trp His Val Pro Cys Pro
20 25 30

Dro Cla Cys Ala Cys Cla Lla Arg Dro Trp Thy The Dro Arg Com

Pro Gln Cys Ala Cys Gln Ile Arg Pro Trp Tyr Thr Pro Arg Ser 35 40 45

Ser Tyr Arg Glu Ala Thr Thr Val Asp Cys Asn Asp Leu Phe Leu
50 55 60

Thr Ala Val Pro Pro Ala Leu Pro Ala Gly Thr Gln Thr Leu Leu 65 70 75

Leu Gln Ser Asn Ser Ile Val Arg Val Asp Gln Ser Glu Leu Gly
80 85 90

Tyr Leu Ala Asn Leu Thr Glu Leu Asp Leu Ser Gln Asn Ser Phe 95 100 105

Ser Asp Ala Arg Asp Cys Asp Phe His Ala Leu Pro Gln Leu Leu 110 115 120

Ser Leu His Leu Glu Glu Asn Gln Leu Thr Arg Leu Glu Asp His 125 130 130

Ser Phe Ala Gly Leu Ala Ser Leu Gln Glu Leu Tyr Leu Asn His 140 145 150

Asn Gln Leu Tyr Arg Ile Ala Pro Arg Ala Phe Ser Gly Leu Ser

<210> 245

<211> 713

<212> PRT

<213> Homo Sapien

				155					160					165
Asn	Leu	Leu	Arg	Leu 170	His	Leu	Asn	Ser	Asn 175	Leu	Leu	Arg	Ala	Ile 180
Asp	Ser	Arg	Trp	Phe 185	Glu	Met	Leu	Pro	Asn 190	Leu	Glu	Ile	Leu	Met 195
Ile	Gly	Gly	Asn	Lys 200	Val	Asp	Ala	Ile	Leu 205	Asp	Met	Asn	Phe	Arg 210
Pro	Leu	Ala	Asn	Leu 215	Arg	Ser	Leu	Val	Leu 220	Ala	Gly	Met	Asn	Leu 225
Arg	Glu	Ile	Ser	Asp 230	Tyr	Ala	Leu	Glu	Gly 235	Leu	Gln	Ser	Leu	Glu 240
Ser	Leu	Ser	Phe	Tyr 245	Asp	Asn	Gln	Leu	Ala 250	Arg	Val	Pro	Arg	Arg 255
Ala	Leu	Glu	Gln	Val 260	Pro	Gly	Leu	Lys	Phe 265	Leu	Asp	Leu	Asn	Lys 270
Asn	Pro	Leu	Gln	Arg 275	Val	Gly	Pro	Gly	Asp 280	Phe	Ala	Asn	Met	Leu 285
His	Leu	Lys	Glu	Leu 290	Gly	Leu	Asn	Asn	Met 295	Glu	Glu	Leu	Val	Ser 300
Ile	Asp	Lys	Phe	Ala 305	Leu	Val	Asn	Leu	Pro 310	Glu	Leu	Thr	Lys	Leu 315
Asp	Ile	Thr	Asn	Asn 320	Pro	Arg	Leu	Ser	Phe 325	Ile	His	Pro	Arg	Ala 330
Phe	His	His	Leu	Pro 335	Gln	Met	Glu	Thr	Leu 340	Met	Leu	Asn	Asn	Asn 345
Ala	Leu	Ser	Ala	Leu 350	His	Gln	Gln	Thr	Val 355	Glu	Ser	Leu	Pro	Asn 360
Leu	Gln	Glu	Val	Gly 365	Leu	His	Gly	Asn	Pro 370	Ile	Arg	Cys	Asp	Cys 375
Val ;	Ile	Arg	Trp	Ala 380	Asn	Ala	Thr	Gly	Thr 385	Arg	Val	Arg	Phe	Ile 390
Glu	Pro	Gln	Ser	Thr 395	Leu	Cys	Ala	Glu	Pro 400	Pro	Asp	Leu	Gln	Arg 405
Leu	Pro	Val	Arg	Glu 410	Val	Pro	Phe	Arg	Glu 415	Met	Thr	Asp	His	Cys 420
Leu	Pro	Leu	Ile	Ser 425	Pro	Arg	Ser	Phe	Pro 430	Pro	Ser	Leu	Gln	Val 435
Ala	Ser	Gly	Glu	Ser 440	Met	Val	Leu	His	Cys 445	Arg	Ala	Leu	Ala	Glu 450

Pro	Glu	Pro	Glu	Ile 455	Tyr	Trp	Val	Thr	Pro 460	Ala	Gly	Leu	Arg	Leu 465
Thr	Pro	Ala	His	Ala 470	Gly	Arg	Arg	Tyr	Arg 475	Val	Tyr	Pro	Glu	Gly 480
Thr	Leu	Glu	Leu	Arg 485	Arg	Val	Thr	Ala	Glu 490	Glu	Ala	Gly	Leu	Tyr 495
Thr	Cys	Val	Ala	Gln 500	Asn	Leu	Val	Gly	Ala 505	Asp	Thr	Lys	Thr	Val 510
Ser	Val	Val	Val	Gly 515	Arg	Ala	Leu	Leu	Gln 520	Pro	Gly	Arg	Asp	Glu 525
Gly	Gln	Gly	Leu	Glu 530	Leu	Arg	Val	Gln	Glu 535	Thr	His	Pro	Tyr	His 540
Ile	Leu	Leu	Ser	Trp 545	Val	Thr	Pro	Pro	Asn 550	Thr	Val	Ser	Thr	Asn 555
Leu	Thr	Trp	Ser	Ser 560	Ala	Ser	Ser	Leu	Arg 565	Gly	Gln	Gly	Ala	Thr 570
Ala	Leu	Ala	Arg	Leu 575	Pro	Arg	Gly	Thr	His 580	Ser	Tyr	Asn	Ile	Thr 585
Arg	Leu	Leu	Gln	Ala 590	Thr	Glu	Tyr	Trp	Ala 595	Cys	Leu	Gln	Val	Ala 600
Phe	Ala	Asp	Ala	His 605	Thr	Gln	Leu	Ala	Cys 610	Val	Trp	Ala	Arg	Thr 615
Lys	Glu	Ala	Thr	Ser 620	Cys	His	Arg	Ala	Leu 625	Gly	Asp	Arg	Pro	Gly 630
Leu	Ile	Ala	Ile	Leu 635	Ala	Leu	Ala	Val	Leu 640	Leu	Leu	Ala	Ala	Gly 645
Leu	Ala	Ala	His	Leu 650	Gly	Thr	Gly	Gln	Pro 655	Arg	Lys	Gly	Val	Gly 660
Gly	Arg	Arg	Pro	Leu 665	Pro	Pro	Ala	Trp	Ala 670	Phe	Trp	Gly	Trp	Ser 675
Ala	Pro	Ser	Val	Arg 680	Val	Val	Ser	Ala	Pro 685	Leu	Val	Leu	Pro	Trp 690
Asn	Pro	Gly	Arg	Lys 695	Leu	Pro	Arg	Ser	Ser 700		Gly	Glu	Thr	Leu .705
Leu	Pro	Pro	Leu	Ser 710	Gln	Asn	Ser							

<210> 246

<211> 22

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 246
aacaaggtaa gatgccatcc tg 22
<210> 247
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 247
aaacttgtcg atggagacca gctc 24
<210> 248
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 248
aggggctgca aagcctggag agcctctcct tctatgacaa ccagc 45
<210> 249
<211> 3401
<212> DNA
<213> Homo Sapien
<400> 249
gcaagccaag gcgctgtttg agaaggtgaa gaagttccgg acccatgtgg 50
aggaggggga cattgtgtac cgcctctaca tgcggcagac catcatcaag 100
gtgatcaagt tcatcctcat catctgctac accgtctact acgtgcacaa 150
catcaagttc gacgtggact gcaccgtgga cattgagagc ctgacgggct 200
accgcaccta ccgctgtgcc caccccttgg ccacactctt caagatcctg 250
gcgtccttct acatcagcct agtcatcttc tacggcctca tctgcatgta 300
cacactgtgg tggatgctac ggcgctccct caagaagtac tcgtttgagt 350
cgatccgtga ggagagcagc tacagcgaca tccccgacgt caagaacgac 400
ttcgccttca tgctgcacct cattgaccaa tacgacccgc tctactccaa 450
gcgcttcgcc gtcttcctgt cggaggtgag tgagaacaag ctgcggcagc 500
tgaacctcaa caacgagtgg acgctggaca agctccggca gcggctcacc 550
aagaacgcgc aggacaagct ggagctgcac ctgttcatgc tcagtggcat 600
```

ccctgacact gtgtttgacc tggtggagct ggaggtcctc aagctggagc 650

tgateceega egtgaceate eegeeeagea ttgeeeaget eaegggeete 700 aaggagetgt ggetetaeca cacageggee aagattgaag egeetgeget 750 ggccttcctg cgcgagaacc tgcgggcgct gcacatcaag ttcaccgaca 800 tcaaggagat cccgctgtgg atctatagcc tgaagacact ggaggagctg 850 cacctgacgg gcaacctgag cgcggagaac aaccgctaca tcgtcatcga 900 cgggctgcgg gagctcaaac gcctcaaggt gctgcggctc aagagcaacc 950 taagcaagct gccacaggtg gtcacagatg tgggcgtgca cctgcagaag 1000 ctgtccatca acaatgaggg caccaagctc atcgtcctca acagcctcaa 1050 gaagatggcg aacctgactg agctggagct gatccgctgc gacctggagc 1100 gcatccccca ctccatcttc agcctccaca acctgcagga gattgacctc 1150 aaggacaaca acctcaagac catcgaggag atcatcagct tccagcacct 1200 gcaccgcctc acctgcctta agctgtggta caaccacatc gcctacatcc 1250 ccatccagat cggcaacctc accaacctgg agcgcctcta cctgaaccgc 1300 aacaagatcg agaagatccc cacccagctc ttctactgcc gcaagctgcg 1350 ctacctggac ctcagccaca acaacctgac cttcctcct gccgacatcg 1400 geeteetgea gaaceteeag aacetageea teaeggeeaa eeggategag 1450 acgetecete eggagetett ceagtgeegg aagetgeggg eeetgeacet 1500 gggcaacaac gtgctgcagt cactgccctc cagggtgggc gagctgacca 1550 acctgacgca gatcgagctg cggggcaacc ggctggagtg cctgcctgtg 1600 gagetgggeg agtgeecaet geteaagege ageggettgg tggtggagga 1650 ggacctgttc aacacactgc cacccgaggt gaaggagcgg ctgtggaggg 1700 ctgacaagga gcaggcctga gcgaggccgg cccagcacag caagcagcag 1750 gaccgctgcc cagtcctcag gcccggaggg gcaggcctag cttctcccag 1800 aactcccgga cagccaggac agcctcgcgg ctgggcagga gcctggggcc 1850 gcttgtgagt caggccagag cgagaggaca gtatctgtgg ggctggcccc 1900 ttttctccct ctgagactca cgtcccccag ggcaagtgct tgtggaggag 1950 agcaagtete aagagegeag tatttggata atcagggtet cetecetgga 2000 ggccagctct gccccagggg ctgagctgcc accagaggtc ctgggaccct 2050 cactttagtt cttggtattt atttttctcc atctcccacc tccttcatcc 2100 agataactta tacattccca agaaagttca gcccagatgg aaggtgttca 2150

```
gggaaaggtg ggctgccttt tccccttgtc cttatttagc gatgccgccg 2200
ggcatttaac acccacctgg acttcagcag agtggtccgg ggcgaaccag 2250
ccatgggacg gtcacccagc agtgccgggc tgggctctgc ggtgcggtcc 2300
acgggagage aggeeteeag etggaaagge caggeetgga gettgeetet 2350
tcagtttttg tggcagtttt agttttttgt ttttttttt tttaatcaaa 2400
aaacaatttt ttttaaaaaa aagctttgaa aatggatggt ttgggtatta 2450
aaaagaaaaa aaaaacttaa aaaaaaaaag acactaacgg ccagtgagtt 2500
ggagtctcag ggcagggtgg cagtttccct tgagcaaagc agccagacgt 2550
tgaactgtgt ttcctttccc tgggcgcagg gtgcagggtg tcttccggat 2600
ctggtgtgac cttggtccag gagttctatt tgttcctggg gagggaggtt 2650
tttttgtttg ttttttgggt ttttttggtg tcttgttttc tttctcctcc 2700
atgtgtcttg gcaggcactc atttctgtgg ctgtcggcca gagggaatgt 2750
tctggagctg ccaaggaggg aggagactcg ggttggctaa tccccggatg 2800
aacggtgctc cattcgcacc tcccctcctc gtgcctgccc tgcctctcca 2850
cgcacagtgt taaggagcca agaggagcca cttcgcccag actttgtttc 2900
cccacctcct gcggcatggg tgtgtccagt gccaccgctg gcctccgctg 2950
cttccatcag ccctgtcgcc acctggtcct tcatgaagag cagacactta 3000
gaggetggte gggaatgggg aggtegeece tgggagggca ggegttggtt 3050
ccaagcoggt tocogtocot ggcgcotgga gtgcacacag cccagtoggc 3100
acctggtggc tggaagccaa cctgctttag atcactcggg tccccacctt 3150
agaagggtcc ccgccttaga tcaatcacgt ggacactaag gcacgtttta 3200
gagtetettg tettaatgat tatgteeate egtetgteeg teeatttgtg 3250
ttttctgcgt cgtgtcattg gatataatcc tcagaaataa tgcacactag 3300
cctctgacaa ccatgaagca aaaatccgtt acatgtgggt ctgaacttgt 3350
```

a 3401

<210> 250

<211> 546

<212> PRT

<213> Homo Sapien

<400> 250

Met 1	Arg	Gln	Thr	Ile 5	Ile	Lys	Val	Ile	Lys 10	Phe	Ile	Leu	Ile	Ile 15
Cys	Tyr	Thr	Val	Tyr 20	Tyr	Val	His	Asn	Ile 25	Lys	Phe	Asp	Val	Asp 30
Cys	Thr	Val	Asp	Ile 35	Glu	Ser	Leu	Thr	Gly 40	Tyr	Arg	Thr	Tyr	Arg 45
Cys	Ala	His	Pro	Leu 50	Ala	Thr	Leu	Phe	Lys 55	Ile	Leu	Ala	Ser	Phe 60
Tyr	Ile	Ser	Leu	Val 65	Ile	Phe	Tyr	Gly	Leu 70	Ile	Cys	Met	Tyr	Thr 75
Leu	Trp	Trp	Met	Leu 80	Arg	Arg	Ser	Leu	Lys 85	Lys	Tyr	Ser	Phe	Glu 90
Ser	Ile	Arg	Glu	Glu 95	Ser	Ser	Tyr	Ser	Asp 100	Ile	Pro	Asp	Val	Lys 105
Asn	Asp	Phe	Ala	Phe 110	Met	Leu	His	Leu	Ile 115	Asp	Gln	Tyr	Asp	Pro 120
Leu	Tyr	Ser	Lys	Arg 125	Phe	Ala	Val	Phe	Leu 130	Ser	Glu	Val	Ser	Glu 135
Asn	Lys	Leu	Arg	Gln 140	Leu	Asn	Leu	Asn	Asn 145	Glu	Trp	Thr	Leu	Asp 150
Lys	Leu	Arg	Gln	Arg 155	Leu	Thr	Lys	Asn	Ala 160	Gln	Asp	Lys	Leu	Glu 165
Leu	His	Leu	Phe	Met 170	Leu	Ser	Gly	Ile	Pro 175	Asp	Thr	Val	Phe	Asp 180
Leu	Val	Glu	Leu	Glu 185	Val	Leu	Lys	Leu	Glu 190	Leu	Ile	Pro	Asp	Val 195
Thr	Ile	Pro	Pro	Ser 200	Ile	Ala	Gln	Leu	Thr 205	Gly	Leu	Lys	Glu	Leu 210
Trṗ									205					
	Leu	Tyr	His	Thr 215	Ala	Ala	Lys	Ile		Ala	Pro	Ala	Leu	Ala 225
Phe				215					Glu 220		Pro Lys			225
	Leu	Arg	Glu	215 Asn 230	Leu	Arg	Ala	Leu	Glu 220 His 235	Ile		Phe	Thr	225 Asp 240
Ile	Leu Lys	Arg Glu	Glu Ile	215 Asn 230 Pro 245	Leu Leu	Arg Trp	Ala Ile	Leu Tyr	Glu 220 His 235 Ser 250	Ile Leu	Lys	Phe Thr	Thr Leu	225 Asp 240 Glu 255
Ile Glu	Leu Lys Leu	Arg Glu His	Glu Ile Leu	215 Asn 230 Pro 245 Thr 260	Leu Leu Gly	Arg Trp Asn	Ala Ile Leu	Leu Tyr Ser	Glu 220 His 235 Ser 250 Ala 265	Ile Leu Glu	Lys Lys	Phe Thr Asn	Thr Leu Arg	225 Asp 240 Glu 255 Tyr

Val Gly Val His Leu Gln Lys Leu Ser Ile Asn Asn Glu Gly Thr 305 310 Lys Leu Ile Val Leu Asn Ser Leu Lys Lys Met Ala Asn Leu Thr Glu Leu Glu Leu Ile Arg Cys Asp Leu Glu Arg Ile Pro His Ser Ile Phe Ser Leu His Asn Leu Gln Glu Ile Asp Leu Lys Asp Asn Asn Leu Lys Thr Ile Glu Glu Ile Ile Ser Phe Gln His Leu His 370 Arg Leu Thr Cys Leu Lys Leu Trp Tyr Asn His Ile Ala Tyr Ile Pro Ile Gln Ile Gly Asn Leu Thr Asn Leu Glu Arg Leu Tyr Leu Asn Arg Asn Lys Ile Glu Lys Ile Pro Thr Gln Leu Phe Tyr Cys 415 Arg Lys Leu Arg Tyr Leu Asp Leu Ser His Asn Asn Leu Thr Phe 430 Leu Pro Ala Asp Ile Gly Leu Leu Gln Asn Leu Gln Asn Leu Ala 440 445 Ile Thr Ala Asn Arg Ile Glu Thr Leu Pro Pro Glu Leu Phe Gln 455 460 Cys Arg Lys Leu Arg Ala Leu His Leu Gly Asn Asn Val Leu Gln 470 475 Ser Leu Pro Ser Arg Val Gly Glu Leu Thr Asn Leu Thr Gln Ile 485 490 Glu Leu Arg Gly Asn Arg Leu Glu Cys Leu Pro Val Glu Leu Gly 500 505 Glu Cys Pro Leu Leu Lys Arg Ser Gly Leu Val Val Glu Glu Asp 515 Leu Phe Asn Thr Leu Pro Pro Glu Val Lys Glu Arg Leu Trp Arg 530 Ala Asp Lys Glu Gln Ala

<210> 251

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

```
<400> 251
caacaatgag ggcaccaagc 20
<210> 252
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 252
gatggctagg ttctggaggt tctg 24
<210> 253
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 253
caacctgcag gagattgacc tcaaggacaa caacctcaag accatcg 47
<210> 254
<211> 1650
<212> DNA
<213> Homo Sapien
<400> 254
gcctgttgct gatgctgccg tgcggtactt gtcatggagc tggcactgcg 50
gegetetece gteeegegt ggttgetget getgeegetg etgetgggee 100
 tgaacgcagg agctgtcatt gactggccca cagaggaggg caaggaagta 150
 tgggattatg tgacggtccg caaggatgcc tacatgttct ggtggctcta 200
 ttatgccacc aactectgca agaacttete agaactgccc etggtcatgt 250
ggcttcaggg cggtccaggc ggttctagca ctggatttgg aaactttgag 300
gaaattgggc cccttgacag tgatctcaaa ccacggaaaa ccacctggct 350
ccaggctgcc agtctcctat ttgtggataa tcccgtgggc actgggttca 400
gttatgtgaa tggtagtggt gcctatgcca aggacctggc tatggtggct 450
tcagacatga tggttctcct gaagaccttc ttcagttgcc acaaagaatt 500
ccagacagtt ccattctaca ttttctcaga gtcctatgga ggaaaaatgg 550
cagetggcat tggtctagag ctttataagg ccattcageg agggaccatc 600
aagtgcaact ttgcgggggt tgccttgggt gattcctgga tctcccctgt 650
tgattcggtg ctctcctggg gaccttacct gtacagcatg tctcttctcg 700
```

aagacaaagg tctggcagag gtgtctaagg ttgcagagca agtactgaat 750 gccgtaaata aggggctcta cagagaggcc acagagctgt gggggaaagc 800 agaaatgatc attgaacaga acacagatgg ggtgaacttc tataacatct 850 taactaaaag cactcccacg tctacaatgg agtcgagtct agaattcaca 900 cagagecace tagtttgtet ttgteagege caegtgagae acetacaaeg 950 agatgcctta agccagctca tgaatggccc catcagaaag aagctcaaaa 1000 ttattcctga ggatcaatcc tggggaggcc aggctaccaa cgtctttgtg 1050 aacatggagg aggacttcat gaagccagtc attagcattg tggacgagtt 1100 gctggaggca gggatcaacg tgacggtgta taatggacag ctggatctca 1150 tcgtagatac catgggtcag gaggcctggg tgcggaaact gaagtggcca 1200 gaactgccta aattcagtca gctgaagtgg aaggccctgt acagtgaccc 1250 taaatctttg gaaacatctg cttttgtcaa gtcctacaag aaccttgctt 1300 tctactggat tctgaaagct ggtcatatgg ttccttctga ccaaggggac 1350 atggctctga agatgatgag actggtgact cagcaagaat aggatggatg 1400 gggctggaga tgagctggtt tggccttggg gcacagagct gagctgaggc 1450 cgctgaagct gtaggaagcg ccattcttcc ctgtatctaa ctggggctgt 1500 gatcaagaag gttctgacca gcttctgcag aggataaaat cattgtctct 1550 ggaggcaatt tggaaattat ttctgcttct taaaaaaacc taagattttt 1600 taaaaaattg atttgttttg atcaaaataa aggatgataa tagatattaa 1650

<400> 255

Met Glu Leu Ala Leu Arg Arg Ser Pro Val Pro Arg Trp Leu Leu 1 5 10 15

Leu Leu Pro Leu Leu Gly Leu Asn Ala Gly Ala Val Ile Asp 20 25 30

Trp Pro Thr Glu Glu Gly Lys Glu Val Trp Asp Tyr Val Thr Val

Arg Lys Asp Ala Tyr Met Phe Trp Trp Leu Tyr Tyr Ala Thr Asn
50 55 60

Ser Cys Lys Asn Phe Ser Glu Leu Pro Leu Val Met Trp Leu Gln
65 70 75

Gly Gly Pro Gly Gly Ser Ser Thr Gly Phe Gly Asn Phe Glu Glu

<210> 255

<211> 452

<212> PRT

<213> Homo Sapien

	80					85					90
Ile Gly Pro	Leu Asp 95	Ser	Asp	Leu	Lys	Pro 100	Arg	Lys	Thr	Thr	Trp 105
Leu Gln Ala	Ala Ser 110	Leu	Leu	Phe	Val	Asp 115	Asn	Pro	Val	Gly	Thr 120
Gly Phe Ser	Tyr Val 125	Asn	Gly	Ser	Gly	Ala 130	Tyr	Ala	Lys	Asp	Leu 135
Ala Met Val	Ala Ser 140	Asp	Met	Met	Val	Leu 145	Leu	Lys	Thr	Phe	Phe 150
Ser Cys His	Lys Glu 155	Phe	Gln	Thr	Val	Pro 160	Phe	Tyr	Ile	Phe	Ser 165
Glu Ser Tyr	Gly Gly 170	Lys	Met	Ala	Ala	Gly 175	Ile	Gly	Leu	Glu	Leu 180
Tyr Lys Ala	Ile Gln 185	Arg	Gly	Thr	Ile	Lys 190	Cys	Asn	Phe	Ala	Gly 195
Val Ala Leu	Gly Asp 200	Ser	Trp	Ile	Ser	Pro 205	Val	Asp	Ser	Val	Leu 210
Ser Trp Gly	Pro Tyr 215	Leu	Tyr	Ser	Met	Ser 220	Leu	Leu	Glu	Asp	Lys 225
Gly Leu Ala	Glu Val 230	Ser	Lys	Val	Ala	Glu 235	Gln	Val	Leu	Asn	Ala 240
Val Asn Lys	Gly Leu 245	Tyr	Arg	Glu	Ala	Thr 250	Glu	Leu	Trp	Gly	Lys 255
Ala Glu Met	Ile Ile 260	Glu	Gln	Asn	Thr	Asp 265	Gly	Val	Asn	Phe	Tyr 270
Asn Ile Leu	Thr Lys 275	Ser	Thr	Pro	Thr	Ser 280	Thr	Met	Glu	Ser	Ser 285
Leu Glu Phe	Thr Gln 290	Ser	His	Leu	Val	Cys 295	Leu	Cys	Gln	Arg	His 300
Val Arg His	Leu Gln 305	Arg	Asp	Ala	Leu	Ser 310	Gln	Leu	Met	Asn	Gly 315
Pro Ile Arg	Lys Lys	Leu	Lys	Ile	Ile	Pro 325	Glu	Asp	Gln	Ser	Trp 330
Gly Gly Gln	Ala Thr 335	Asn	Val	Phe	Val	Asn 340	Met	Glu	Glu	Asp	Phe 345
Met Lys Pro	Val Ile 350	Ser	Ile	Val	Asp	Glu 355	Leu	Leu	Gļu	Ala	Gly 360
Ile Asn Val	Thr Val	Tyr .	Asn	Gly	Gln	Leu 370	Asp	Leu	Ile	Val	Asp 375

Thr Met Gly Gln Glu Ala Trp Val Arg Lys Leu Lys Trp Pro Glu 380 385 390

Leu Pro Lys Phe Ser Gln Leu Lys Trp Lys Ala Leu Tyr Ser Asp 395 400 405

Pro Lys Ser Leu Glu Thr Ser Ala Phe Val Lys Ser Tyr Lys Asn 410 415 420

Leu Ala Phe Tyr Trp Ile Leu Lys Ala Gly His Met Val Pro Ser 425 430 435

Asp Gln Gly Asp Met Ala Leu Lys Met Met Arg Leu Val Thr Gln
440 445 450

Gln Glu

<210> 256

<211> 1100

<212> DNA

<213> Homo Sapien

<400> 256

ggccgcggga gaggaggcca tgggcgcgcg cgggggcgctg ctgctggcgc 50 tgctgctggc tcgggctgga ctcaggaagc cggagtcgca ggaggcggcg 100 ccgttatcag gaccatgcgg ccgacgggtc atcacgtcgc gcatcgtggg 150 tggagaggac gccgaactcg ggcgttggcc gtggcagggg agcctgcgcc 200 tgtgggattc ccacgtatgc ggagtgagcc tgctcagcca ccgctgggca 250 ctcacggcgg cgcactgctt tgaaacctat agtgacctta gtgatccctc 300 egggtggatg gtecagtttg gecagetgae ttecatgeca teettetgga 350 gcctgcaggc ctactacacc cgttacttcg tatcgaatat ctatctgagc 400 cctcgctacc tggggaattc accctatgac attgccttgg tgaagctgtc 450 tgcacctgtc acctacacta aacacatcca gcccatctgt ctccaggcct 500 ccacatttga gtttgagaac cggacagact gctgggtgac tggctggggg 550 tacatcaaag aggatgaggc actgccatct ccccacaccc tccaggaagt 600 tcaggtcgcc atcataaaca actctatgtg caaccacctc ttcctcaagt 650 acagtttccg caaggacatc tttggagaca tggtttgtgc tggcaacgcc 700 caaggeggga aggatgeetg etteggtgae teaggtggae eettggeetg 750 taacaagaat ggactgtggt atcagattgg agtcgtgagc tggggagtgg 800 gctgtggtcg gcccaatcgg cccggtgtct acaccaatat cagccaccac 850 tttgagtgga tccagaagct gatggcccag agtggcatgt cccagccaga 900 cccctcctgg ccactactct ttttccctct tctctgggct ctcccactcc 950
tggggccggt ctgagcctac ctgagcccat gcagcctggg gccactgcca 1000
agtcaggccc tggttctctt ctgtcttgtt tggtaataaa cacattccag 1050
ttgatgcctt gcagggcatt cttcaaaaaa aaaaaaaaa aaaaaaaaa 1100

- <210> 257
- <211> 314
- <212> PRT
- <213> Homo Sapien

<400> 257

- Met Gly Ala Arg Gly Ala Leu Leu Leu Ala Leu Leu Leu Ala Arg
 1 5 10 15
- Ala Gly Leu Arg Lys Pro Glu Ser Gln Glu Ala Ala Pro Leu Ser 20 25 30
- Gly Pro Cys Gly Arg Arg Val Ile Thr Ser Arg Ile Val Gly Gly
 35 40 45
- Glu Asp Ala Glu Leu Gly Arg Trp Pro Trp Gln Gly Ser Leu Arg
 50 55 60
- Leu Trp Asp Ser His Val Cys Gly Val Ser Leu Leu Ser His Arg
 65 70 75
- Trp Ala Leu Thr Ala Ala His Cys Phe Glu Thr Tyr Ser Asp Leu 80 85 90
- Ser Asp Pro Ser Gly Trp Met Val Gln Phe Gly Gln Leu Thr Ser 95 100 105
- Met Pro Ser Phe Trp Ser Leu Gln Ala Tyr Tyr Thr Arg Tyr Phe
 110 115 120
- Val Ser Asn Ile Tyr Leu Ser Pro Arg Tyr Leu Gly Asn Ser Pro 125 130 135
- Tyr Asp Ile Ala Leu Val Lys Leu Ser Ala Pro Val Thr Tyr Thr 140 145 150
- Lys His Ile Gln Pro Ile Cys Leu Gln Ala Ser Thr Phe Glu Phe
 155 160 165
- Glu Asn Arg Thr Asp Cys Trp Val Thr Gly Trp Gly Tyr Ile Lys
 170 175 180
- Glu Asp Glu Ala Leu Pro Ser Pro His Thr Leu Gln Glu Val Gln
 185 190 195
- Val Ala Ile Ile Asn Asn Ser Met Cys Asn His Leu Phe Leu Lys
 200 205 210
- Tyr Ser Phe Arg Lys Asp Ile Phe Gly Asp Met Val Cys Ala Gly 215 220 225

Asn Ala Gln Gly Gly Lys Asp Ala Cys Phe Gly Asp Ser Gly Gly 240

Pro Leu Ala Cys Asn Lys Asn Gly Leu Trp Tyr Gln Ile Gly Val 255

Val Ser Trp Gly Val Gly Cys Gly Arg Pro Asn Arg Pro Gly Val 270

Tyr Thr Asn Ile Ser His His Phe Glu Trp 280 Ile Gln Lys Leu Met 285

Ala Gln Ser Gly Met 290 Ser Gln Pro Asp Pro 295 Ser Trp Pro Leu Leu 300

Phe Phe Pro Leu Leu Trp Ala Leu Pro Leu Leu Gly Pro Val

<400> 258

cccacgcgtc cgcggacgcg tgggaagggc agaatgggac tccaagcctg 50 cctcctaggg ctctttgccc tcatcctctc tggcaaatgc agttacagcc 100 cggagcccga ccagcggagg acgctgccc caggctgggt gtccctgggc 150 cgtgcggacc ctgaggaaga gctgagtctc acctttgccc tgagacagca 200 gaatgtggaa agactctcgg agctggtgca ggctgtgtcg gatcccagct 250 ctcctcaata cggaaaatac ctgaccctag agaatgtggc tgatctggtg 300 aggecatece caetgaceet ceacaeggtg caaaaatgge tettggeage 350 cggagcccag aagtgccatt ctgtgatcac acaggacttt ctgacttgct 400 ggctgagcat ccgacaagca gagctgctgc tccctggggc tgagtttcat 450 cactatgtgg gaggacctac ggaaacccat gttgtaaggt ccccacatcc 500 ctaccagett ccacageet tggeeceea tgtggaettt gtggggggac 550 tgcaccgttt tcccccaaca tcatccctga ggcaacgtcc tgagccgcag 600 gtgacaggga ctgtaggcct gcatctgggg gtaaccccct ctgtgatccg 650 taagcgatac aacttgacct cacaagacgt gggctctggc accagcaata 700 acagecaage etgtgeecag tteetggage agtattteea tgaeteagae 750 ctggctcagt tcatgcgcct cttcggtggc aactttgcac atcaggcatc 800 ccagtctaga tgtgcagtac ctgatgagtg ctggtgccaa catctccacc 900

<210> 258

<211> 2427

<212> DNA

<213> Homo Sapien

tgggtctaca gtagccctgg ccggcatgag ggacaggagc ccttcctgca 950 gtggctcatg ctgctcagta atgagtcagc cctgccacat gtgcatactg 1000 tgagctatgg agatgatgag gactccctca gcagcgccta catccagcgg 1050 gtcaacactg agctcatgaa ggctgccgct cggggtctca ccctgctctt 1100 cgcctcaggt gacagtgggg ccgggtgttg gtctgtctct ggaagacacc 1150 agttccgccc taccttccct gcctccagcc cctatgtcac cacagtggga 1200 ggcacatcct tccaggaacc tttcctcatc acaaatgaaa ttgttgacta 1250 tatcagtggt ggtggcttca gcaatgtgtt cccacggcct tcataccagg 1300 aggaagetgt aacgaagtte etgageteta geececacet geeaccatee 1350 agttacttca atgccagtgg ccgtgcctac ccagatgtgg ctgcactttc 1400 tgatggctac tgggtggtca gcaacagagt gcccattcca tgggtgtccg 1450 gaacctcggc ctctactcca gtgtttgggg ggatcctatc cttgatcaat 1500 gagcacagga teettagtgg cegececet ettggettte teaacecaag 1550 gctctaccag cagcatgggg caggtctctt tgatgtaacc cgtggctgcc 1600 atgagtcctg tctggatgaa gaggtagagg gccagggttt ctgctctggt 1650 cctggctggg atcctgtaac aggctgggga acaccaactt cccagctttg 1700 ctgaagactc tactcaaccc ctgacccttt cctatcagga gagatggctt 1750 gtcccctgcc ctgaagctgg cagttcagtc ccttattctg ccctgttgga 1800 agccctgctg aaccctcaac tattgactgc tgcagacagc ttatctccct 1850 aaccctgaaa tgctgtgagc ttgacttgac tcccaaccct accatgctcc 1900 atcatactca ggtctcccta ctcctgcctt agattcctca ataagatgct 1950 gtaactagca ttttttgaat geeteteeet eegeatetea tetttetett 2000 ttcaatcagg cttttccaaa gggttgtata cagactctgt gcactatttc 2050 acttgatatt cattccccaa ttcactgcaa ggagacctct actgtcaccg 2100 tttactcttt cctaccctga catccagaaa caatggcctc cagtgcatac 2150 ttctcaatct ttgctttatg gcctttccat catagttgcc cactccctct 2200 cettaettag ettecaggie ttaactiete tgaetaetet tgietteete 2250 totoatoaat ttotgottot toatggaatg otgacottoa ttgotocatt 2300 tgtagatttt tgctcttctc agtttactca ttgtcccctg gaacaaatca 2350

ctgacatcta caaccattac catctcacta aataagactt tctatccaat 2400 aatgattgat acctcaaatg taaaaaa 2427

- <210> 259
- <211> 556
- <212> PRT
- <213> Homo Sapien

<400> 259

Met	Gly	Leu	Gln	Ala	Cys	Leu	Leu	Gly	Leu	Phe	Ala	Leu	Ile	Leu
1				5		•			10					15

- Ser Gly Lys Cys Ser Tyr Ser Pro Glu Pro Asp Gln Arg Arg Thr 20 25 30
- Leu Pro Pro Gly Trp Val Ser Leu Gly Arg Ala Asp Pro Glu Glu
 45
- Glu Leu Ser Leu Thr Phe Ala Leu Arg Gln Gln Asn Val Glu Arg
 50 55 60
- Leu Ser Glu Leu Val Gln Ala Val Ser Asp Pro Ser Ser Pro Gln 65 70 75
- Tyr Gly Lys Tyr Leu Thr Leu Glu Asn Val Ala Asp Leu Val Arg 80 85 90
- Pro Ser Pro Leu Thr Leu His Thr Val Gln Lys Trp Leu Leu Ala 95 100 105
- Ala Gly Ala Gln Lys Cys His Ser Val Ile Thr Gln Asp Phe Leu 110 115 120
- Thr Cys Trp Leu Ser Ile Arg Gln Ala Glu Leu Leu Pro Gly
 125 130 135
- Ala Glu Phe His His Tyr Val Gly Gly Pro Thr Glu Thr His Val 140 145 150
- Val Arg Ser Pro His Pro Tyr Gln Leu Pro Gln Ala Leu Ala Pro 155 160 165
- His Val Asp Phe Val Gly Gly Leu His Arg Phe Pro Pro Thr Ser 170 175 180
- Ser Leu Arg Gln Arg Pro Glu Pro Gln Val Thr Gly Thr Val Gly
 185 190 190
- Leu His Leu Gly Val Thr Pro Ser Val Ile Arg Lys Arg Tyr Asn 200 205 210
- Leu Thr Ser Gln Asp Val Gly Ser Gly Thr Ser Asn Asn Ser Gln
 215
 220
 225
- Ala Cys Ala Gln Phe Leu Glu Gln Tyr Phe His Asp Ser Asp Leu 230 235 240
- Ala Gln Phe Met Arg Leu Phe Gly Gly Asn Phe Ala His Gln Ala

				245					250					255
Ser	Val	Ala	Arg	Val 260	Val	Gly	Gln	Gln	Gly 265	Arg	Gly	Arg	Ala	Gly 270
Ile	Glu	Ala	Ser	Leu 275	Asp	Val	Gln	Tyr	Leu 280	Met	Ser	Ala	Gly	Ala 285
Asn	Ile	Ser	Thr	Trp 290	Val	Tyr	Ser	Ser	Pro 295	Gly	Arg	His	Glu	Gly 300
Gln	Glu	Pro	Phe	Leu 305	Gln	Trp	Leu	Met	Leu 310	Leu	Ser	Asn	Glu	Ser 315
Ala	Leu	Pro	His	Val 320	His	Thr	Val	Ser	Tyr 325	Gly	Asp	Asp	Glu	Asp 330
Ser	Leu	Ser	Ser	Ala 335	Tyr	Ile	Gln	Arg	Val 340	Asn	Thr	Glu	Leu	Met 345
Lys	Ala	Ala	Ala	Arg 350	Gly	Leu	Thr	Leu	Leu 355	Phe	Ala	Ser	Gly	Asp 360
Ser	Gly	Ala	Gly	Cys 365	Trp	Ser	Val	Ser	Gly 370	Arg	His	Gln	Phe	Arg 375
Pro	Thr	Phe	Pro	Ala 380	Ser	Ser	Pro	Tyr	Val 385	Thr	Thr	Val	Gly	Gly 390
Thr	Ser	Phe	Gln	Glu 395	Pro	Phe	Leu	Ile	Thr 400	Asn	Glu	Ile	Val	Asp 405
Tyr	Ile	Ser	Gly	Gly 410	Gly	Phe	Ser	Asn	Val 415	Phe	Pro	Arg	Pro	Ser 420
Tyr	Gln	Glu	Glu	Ala 425	Val	Thr	Lys	Phe	Leu 430	Ser	Ser	Ser	Pro	His 435
Leu	Pro	Pro	Ser	Ser 440	Tyr	Phe	Asn	Ala	Ser 445	Gly	Arg	Ala	Tyr	Pro 450
Asp	Val	Ala	Ala	Leu 455	Ser	Asp	Gly	Tyr	Trp 460	Val	Val	Ser	Asn	Arg 465
Val	Pro	Ile	Pro	Trp 470	Val	Ser	Gly	Thr	Ser 475	Ala	Ser	Thr	Pro	Val 480
Phe	Gly	Gly	Ile	Leu 485	Ser	Leu	Ile	Asn	Glu 490	His	Arg	Ile	Leu	Ser 495
Gly	Arg	Pro	Pro	Leu 500	Gly	Phe	Leu	Asn	Pro 505	Arg	Leu	Tyr	Gln	Gln 510
His	Gly	Ala	Gly	Leu 515	Phe	Asp	Val	Thr	Arg 520	Gly	Cys	His	Glu	Ser 525
Cys	Leu	Asp	Glu	Glu 530	Val	Glu	Gly	Gln	Gly 535	Phe	Cys	Ser	Gly	Pro 540

Cys

<210> 260

<211> 1638

<212> DNA

<213> Homo Sapien

<400> 260

gccgcgcgct ctctcccggc gcccacacct gtctgagcgg cgcagcgagc 50 cgcggcccgg gcgggctgct cggcgcggaa cagtgctcgg catggcaggg 100 attocagggc tootottoot totottottt otgototgtg ctgttgggca 150 agtgagccct tacagtgccc cctggaaacc cacttggcct gcataccgcc 200 tccctgtcgt cttgccccag tctaccctca atttagccaa gccagacttt 250 ggagccgaag ccaaattaga agtatcttct tcatgtggac cccagtgtca 300 taagggaact ccactgccca cttacgaaga ggccaagcaa tatctgtctt 350 atgaaacget ctatgecaat ggeageegea cagagaegea ggtgggeate 400 tacatectea geagtagtgg agatggggee caacacegag acteagggte 450 ttcaggaaag tctcgaagga agcggcagat ttatggctat gacagcaggt 500 tcagcatttt tgggaaggac ttcctgctca actacccttt ctcaacatca 550 gtgaagttat ccacgggctg caccggcacc ctggtggcag agaagcatgt 600 cctcacagct gcccactgca tacacgatgg aaaaacctat gtgaaaggaa 650 cccagaagct tcgagtggc ttcctaaagc ccaagtttaa agatggtggt 700 cgaggggcca acgactccac ttcagccatg cccgagcaga tgaaatttca 750 gtggatccgg gtgaaacgca cccatgtgcc caagggttgg atcaagggca 800 atgccaatga catcggcatg gattatgatt atgccctcct ggaactcaaa 850 aagccccaca agagaaaatt tatgaagatt ggggtgagcc ctcctgctaa 900 gcagctgcca gggggcagaa ttcacttctc tggttatgac aatgaccgac 950 caggcaattt ggtgtatcgc ttctgtgacg tcaaagacga gacctatgac 1000 ttgctctacc agcaatgcga tgcccagcca ggggccagcg ggtctggggt 1050 ctatgtgagg atgtggaaga gacagcagca gaagtgggag cgaaaaatta 1100 ttggcatttt ttcagggcac cagtgggtgg acatgaatgg ttccccacag 1150 gatttcaacg tggctgtcag aatcactcct ctcaaatatg cccagatttg 1200

ctattggatt aaaggaaact acctggattg tagggagggg tgacacagtg 1250
ttccctcctg gcagcaatta agggtcttca tgtcttatt ttaggagagg 1300
ccaaattgtt ttttgtcatt ggcgtgcaca cgtgtgtgtg tgtgtgtgg 1350
tgtgtgtaag gtgtcttata atcttttacc tatttcttac aattgcaaga 1400
tgactggctt tactatttga aaactggttt gtgtatcata tcatataca 1450
tttaagcagt ttgaaggcat acttttgcat agaaataaaa aaaatactga 1500
tttggggcaa tgaggaatat ttgacaatta agttaatctt cacgtttttg 1550
caaactttga ttttatttc atctgaactt gtttcaaaga tttatattaa 1600
atatttggca tacaagagat atgaaaaaaa aaaaaaaa 1638

<210> 261

<211> 383

<212> PRT

<213> Homo Sapien

<400> 261

Met Ala Gly Ile Pro Gly Leu Leu Phe Leu Leu Phe Phe Leu Leu 1 5 10 15

Cys Ala Val Gly Gln Val Ser Pro Tyr Ser Ala Pro Trp Lys Pro 20 25 30

Thr Trp Pro Ala Tyr Arg Leu Pro Val Val Leu Pro Gln Ser Thr
35 40 45

Leu Asn Leu Ala Lys Pro Asp Phe Gly Ala Glu Ala Lys Leu Glu 50 55 60

Val Ser Ser Ser Cys Gly Pro Gln Cys His Lys Gly Thr Pro Leu 65 70 75

Pro Thr Tyr Glu Glu Ala Lys Gln Tyr Leu Ser Tyr Glu Thr Leu 80 85 90

Tyr Ala Asn Gly Ser Arg Thr Glu Thr Gln Val Gly Ile Tyr Ile \$95\$ 100 105

Leu Ser Ser Ser Gly Asp Gly Ala Gln His Arg Asp Ser Gly Ser 110 115 120

Ser Gly Lys Ser Arg Arg Lys Arg Gln Ile Tyr Gly Tyr Asp Ser 125 130 135

Arg Phe Ser Ile Phe Gly Lys Asp Phe Leu Leu Asn Tyr Pro Phe 140 145 150

Ser Thr Ser Val Lys Leu Ser Thr Gly Cys Thr Gly Thr Leu Val

Ala Glu Lys His Val Leu Thr Ala Ala His Cys Ile His Asp Gly
170 175 180

Lys Thr Tyr Val Lys Gly Thr Gln Lys Leu Arg Val Gly Phe Leu 1.85 Lys Pro Lys Phe Lys Asp Gly Gly Arg Gly Ala Asn Asp Ser Thr 200 Ser Ala Met Pro Glu Gln Met Lys Phe Gln Trp Ile Arg Val Lys 220 215 Arg Thr His Val Pro Lys Gly Trp Ile Lys Gly Asn Ala Asn Asp Ile Gly Met Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Lys Pro 245 His Lys Arg Lys Phe Met Lys Ile Gly Val Ser Pro Pro Ala Lys 260 270 Gln Leu Pro Gly Gly Arg Ile His Phe Ser Gly Tyr Asp Asn Asp 275 Arg Pro Gly Asn Leu Val Tyr Arg Phe Cys Asp Val Lys Asp Glu 290 Thr Tyr Asp Leu Leu Tyr Gln Gln Cys Asp Ala Gln Pro Gly Ala 305 Ser Gly Ser Gly Val Tyr Val Arg Met Trp Lys Arg Gln Gln Gln 320 330 Lys Trp Glu Arg Lys Ile Ile Gly Ile Phe Ser Gly His Gln Trp 335 340 Val Asp Met Asn Gly Ser Pro Gln Asp Phe Asn Val Ala Val Arg 350 355 360 Ile Thr Pro Leu Lys Tyr Ala Gln Ile Cys Tyr Trp Ile Lys Gly 365 Asn Tyr Leu Asp Cys Arg Glu Gly 380

<210> 262

<211> 1378

<212> DNA

<213> Homo Sapien

<400> 262

gcategcect gggteteteg ageetgetge etgetecee geeceaecag 50 ccatggtggt ttetggageg ecceaagece tgggtgggg etgetetegge 100 acetteaect ecctgetget getggegteg acagecatee teaatgegge 150 caggatacet gtteeceag ectgtgggaa geeceageag etgaaceggg 200 ttgtgggegg egaggacage actgacageg agtggeeetg gategtgage 250 atecagaaga atgggaeeca ecaetgegea ggttetetge teaecageeg 300

ctgggtgatc actgctgccc actgtttcaa ggacaacctg aacaaccat 350 acctgttctc tgtgctgctg ggggcctggc agctggggaa ccctggctct 400 cggtcccaga aggtgggtgt tgcctgggtg gagccccacc ctgtgtattc 450 ctggaaggaa ggtgcctgtg cagacattgc cctggtgcgt ctcgagcgct 500 ccatacagtt ctcagagegg gtcctgccca tctgcctacc tgatgcctct 550 atccacctcc ctccaaacac ccactgctgg atctcaggct gggggagcat 600 ccaagatgga gttcccttgc cccaccctca gaccctgcag aagctgaagg 650 tteetateat egaeteggaa gtetgeagee atetgtaetg geggggagea 700 ggacagggac ccatcactga ggacatgctg tgtgccggct acttggaggg 750 ggagcgggat gcttgtctgg gcgactccgg gggcccctc atgtgccagg 800 tggacggcgc ctggctgctg gccggcatca tcagctgggg cgagggctgt 850 gccgagcgca acaggcccgg ggtctacatc agcctctctg cgcaccgctc 900 ctgggtggag aagatcgtgc aaqgggtgca gctccgcqqg cgcqctcaqg 950 ggggtgggc cctcagggca ccgagccagg gctctggggc cgccgcgcgc 1000 tectagggeg cagegggaeg eggggetegg atetgaaagg eggeeagate 1050 cacatetgga tetggatetg eggeggeete gggeggttte eeeegeegta 1100 aataggetea tetaceteta eetetggggg eeeggaegge tgetgeggaa 1150 aggaaaccc ctccccgacc cgcccgacgg cctcaggccc ccctccaagg 1200 catcaggccc cgcccaacgg cctcatgtcc ccgccccac gacttccggc 1250 cccgcccccg ggccccagcg cttttgtgta tataaatgtt aatgattttt 1300 ataggtattt gtaaccctgc ccacatatct tatttattcc tccaatttca 1350 ataaattatt tattctccaa aaaaaaaa 1378

- <210> 263
- <211> 317
- <212> PRT
- <213> Homo Sapien
- <400> 263
- Met Val Val Ser Gly Ala Pro Pro Ala Leu Gly Gly Gly Cys Leu 1 5 10 15
- Gly Thr Phe Thr Ser Leu Leu Leu Leu Ala Ser Thr Ala Ile Leu 20 25 30
- Asn Ala Ala Arg Ile Pro Val Pro Pro Ala Cys Gly Lys Pro Gln
 35 40 45

Gln	Leu	Asn	Arg	Val 50	Val	Gly	Gly	Glu	Asp 55	Ser	Thr	Asp	Ser	Glu 60
Trp	Pro	Trp	Ile	Val 65	Ser	Ile	Gln	Lys	Asn 70	Gly	Thr	His	His	Cys 75
Ala	Gly	Ser	Leu	Leu 80	Thr	Ser	Arg	Trp	Val 85	Ile	Thr	Ala	Ala	His 90
Cys	Phe	Lys	Asp	Asn 95	Leu	Asn	Lys	Pro	Tyr 100	Leu	Phe	Ser	Val	Leu 105
Leu	Gly	Ala	Trp	Gln 110	Leu	Gly	Asn	Pro	Gly 115	Ser	Arg	Ser	Gln	Lys 120
Val	Gly	Val	Ala	Trp 125	Val	Glu	Pro	His	Pro 130	Val	Tyr	Ser	Trp	Lys 135
Glu	Gly	Ala	Cys	Ala 140	Asp	Ile	Ala	Leu	Val 145	Arg	Leu	Glu	Arg	Ser 150
Ile	Gln	Phe	Ser	Glu 155	Arg	Val	Leu	Pro	Ile 160	Cys	Leu	Pro	Asp	Ala 165
Ser	Ile	His	Leu	Pro 170	Pro	Asn	Thr	His	Cys 175	Trp	Ile	Ser	Gly	Trp 180
Gly	Ser	Ile	Gln	Asp 185	Gly	Val	Pro	Leu	Pro 190	His	Pro	Gln	Thr	Leu 195
Gln	Lys	Leu	Lys	Val 200	Pro	Ile	Ile	Asp	Ser 205	Glu	Val	Cys	Ser	His 210
Leu	Tyr	Trp	Arg	Gly 215	Ala	Gly	Gln	Gly	Pro 220	Ile	Thr	Glu	Asp	Met 225
Leu	Cys	Ala	Gly	Tyr 230	Leu	Glu	Gly	Glu	Arg 235	Asp	Ala	Cys	Leu	Gly 240
	Ser			245					250				_	255
Leu	Ala	Gly	Ile	Ile 260	Ser	Trp	Gly	Glu	Gly 265	Cys	Ala	Glu	Arg	Asn 270
Arg	Pro	Gly	Val	Tyr 275	Ile	Ser	Leu	Ser	Ala 280	His	Arg	Ser	Trp	Val 285
Glu	Lys	Ile	Val	Gln 290	Gly	Val	Gln	Leu	Arg 295	Gly	Arg	Ala	Gln	Gly 300
Gly	Gly	Ala	Leu	Arg 305	Ala	Pro	Ser	Gln	Gly 310	Ser	Gly	Ala	Ala	Ala 315

Arg Ser

```
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 264
 gtccgcaagg atgcctacat gttc 24
<210> 265
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 265
 gcagaggtgt ctaaggttg 19
<210> 266
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 266
 agctctagac caatgccagc ttcc 24
<210> 267
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 267
 gccaccaact cctgcaagaa cttctcagaa ctgcccctgg tcatg 45
<210> 268
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 268
ggggaattca ccctatgaca ttgcc 25
<210> 269
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 269
 gaatgccctg caagcatcaa ctgg 24
<210> 270
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 270
 gcacctgtca cctacactaa acacatccag cccatctgtc tccaggcctc 50
<210> 271
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 271
 gcggaagggc agaatgggac tccaag 26
<210> 272
<211> 18.
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 272
 cagccctgcc acatgtgc 18
<210> 273
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 273
 tactgggtgg tcagcaac 18
<210> 274
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
```

<400> 274

```
ggcgaagagc agggtgagac cccg 24
<210> 275
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 275
 gccctcatcc tctctggcaa atgcagttac agcccggagc ccgac 45
<210> 276
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 276
 gggcagggat tccagggctc c 21
<210> 277
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 277
ggctatgaca gcaggttc 18
<210> 278
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 278
 tgacaatgac cgaccagg 18
<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 279
gcatcgcatt gctggtagag caag 24
<210> 280
<211> 45
```

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 280
ttacagtgcc ccctggaaac ccacttggcc tgcataccgc ctccc 45
<210> 281
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 281
cgtctcgagc gctccataca gttcccttgc ccca 34
<210> 282
<211> 61
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 282
 tggagggga gcgggatgct tgtctgggcg actccggggg ccccctcatg 50
tgccaggtgg a 61
<210> 283
<211> 119
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 283
ccctcagacc ctgcagaagc tgaaggttcc tatcatcgac tcggaagtct 50
gcagccatct gtactggcgg ggagcaggac agggacccat cactgaggac 100
atgctgtgtg ccggctact 119
<210> 284
<211> 1875
<212> DNA
<213> Homo Sapien
<400> 284
gacggctggc caccatgcac ggctcctgca gtttcctgat gcttctgctg 50
ccgctactgc tactgctggt ggccaccaca ggccccgttg gagccctcac 100
agatgaggag aaacgtttga tggtggagct gcacaacctc taccgggccc 150
```

aggtatecee gaeggeetea gaeatgetge acatgagatg ggaegaggag 200 ctggccgcct tcgccaaggc ctacgcacgg cagtgcgtgt ggggccacaa 250 caaggagege gggegeegeg gegagaatet gttegeeate acagaegagg 300 gcatggacgt gccgctggcc atggaggagt ggcaccacga gcgtgagcac 350 tacaacetca gegeegecae etgeagecca ggeeagatgt geggeeacta 400 cacgcaggtg gtatgggcca agacagagag gatcggctgt ggttcccact 450 tctgtgagaa gctccagggt gttgaggaga ccaacatcga attactggtg 500 tgcaactatg agcctccggg gaacgtgaag gggaaacggc cctaccagga 550 ggggactccg tgctcccaat gtccctctgg ctaccactgc aagaactccc 600 tetgtgaace categgaage eeggaagatg etcaggattt geettaeetg 650 gtaactgagg ccccatcctt ccgggcgact gaagcatcag actctaggaa 700 aatgggtact cettetteee tageaacggg gatteegget ttettggtaa 750 cagaggtete aggetecetg geaaceaagg etetgeetge tgtggaaace 800 caggccccaa cttccttagc aacgaaagac ccgccctcca tggcaacaga 850 ggctccacct tgcgtaacaa ctgaggtccc ttccattttg gcagctcaca 900 gcctgccctc cttggatgag gagccagtta ccttccccaa atcgacccat 950 gttcctatcc caaaatcagc agacaaagtg acagacaaaa caaaagtgcc 1000 ctctaggagc ccagagaact ctctggaccc caagatgtcc ctgacagggg 1050 caagggaact cctaccccat gcccaggagg aggctgaggc tgaggctgag 1100 ttgcctcctt ccagtgaggt cttggcctca gtttttccag cccaggacaa 1150 gccaggtgag ctgcaggcca cactggacca cacggggcac acctcctcca 1200 agtccctgcc caatttcccc aatacctctg ccaccgctaa tgccacgggt 1250 gggcgtgccc tggctctgca gtcgtccttg ccaggtgcag agggccctga 1300 caagectage gttgtgtcag ggetgaacte gggeeetggt catgtgtggg 1350 geoeteteet gggactactg etectgeete etetggtgtt ggetggaate 1400 ttctgaatgg gataccactc aaagggtgaa gaggtcagct gtcctcctgt 1450 catcttcccc accetgtccc cageccetaa acaagatact tettggttaa 1500 ggccctccgg aagggaaagg ctacggggca tgtgcctcat cacaccatcc 1550 atcctggagg cacaaggcct ggctggctgc gagctcagga ggccgcctga 1600 ggactgcaca ccgggcccac acctctcctg cccctccctc ctgagtcctg 1650 ggggtgggag gatttgaggg agctcactgc ctacctggcc tggggctgtc 1700 tgcccacaca gcatgtgcgc tctccctgag tgcctgtgta gctggggatg 1750 gggattccta ggggcagatg aaggacaagc cccactggag tggggttctt 1800 tgagtgggg aggcagggac gagggaagga aagtaactcc tgactctcca 1850 ataaaaacct gtccaacctg tgaaa 1875

- <210> 285
- <211> 463
- <212> PRT
- <213> Homo Sapien

<400> 285

- Met His Gly Ser Cys Ser Phe Leu Met Leu Leu Leu Pro Leu Leu 1 5 10 15
- Leu Leu Val Ala Thr Thr Gly Pro Val Gly Ala Leu Thr Asp
 20 25 30
- Glu Glu Lys Arg Leu Met Val Glu Leu His Asn Leu Tyr Arg Ala 35 40 45
- Gln Val Ser Pro Thr Ala Ser Asp Met Leu His Met Arg Trp Asp 50 55 60
- Glu Glu Leu Ala Ala Phe Ala Lys Ala Tyr Ala Arg Gln Cys Val 65 70 75
- Trp Gly His Asn Lys Glu Arg Gly Arg Arg Gly Glu Asn Leu Phe
 80 85 90
- Ala Ile Thr Asp Glu Gly Met Asp Val Pro Leu Ala Met Glu Glu 95 100 105
- Trp His His Glu Arg Glu His Tyr Asn Leu Ser Ala Ala Thr Cys
 110 115 120
- Ser Pro Gly Gln Met Cys Gly His Tyr Thr Gln Val Val Trp Ala 125 130 135
- Lys Thr Glu Arg Ile Gly Cys Gly Ser His Phe Cys Glu Lys Leu 140 145 150
- Gln Gly Val Glu Glu Thr Asn Ile Glu Leu Leu Val Cys Asn Tyr \$155\$ 160 165
- Glu Pro Pro Gly Asn Val Lys Gly Lys Arg Pro Tyr Gln Glu Gly
 170 175 180
- Thr Pro Cys Ser Gln Cys Pro Ser Gly Tyr His Cys Lys Asn Ser 185 190 195
- Leu Cys Glu Pro Ile Gly Ser Pro Glu Asp Ala Gln Asp Leu Pro
 200 205 210

Tyr	Leu	Val	Thr	Glu 215	Ala	Pro	Ser	Phe	Arg 220	Ala	Thr	Glu	Ala	Ser 225
Asp	Ser	Arg	Lys	Met 230	Gly	Thr	Pro	Ser	Ser 235	Leu	Ala	Thr	Gly	Ile 240
Pro	Ala	Phe	Leu	Val 245	Thr	Glu	Val	Ser	Gly 250	Ser	Leu	Ala	Thr	Lys 255
Ala	Leu	Pro	Ala	Val 260	Glu	Thr	Gln	Ala	Pro 265	Thr	Ser	Leu	Ala	Thr 270
Lys	Asp	Pro	Pro	Ser 275	Met	Ala	Thr	Glu	Ala 280	Pro	Pro	Cys	Val	Thr 285
Thr	Glu	Val	Pro	Ser 290	Ile	Leu	Ala	Ala	His 295	Ser	Leu	Pro	Ser	Leu 300
Asp	Glu	Glu	Pro	Val 305	Thr	Phe	Pro	Lys	Ser 310	Thr	His	Val	Pro	Ile 315
Pro	Lys	Ser	Ala		Lys	Val	Thr	Asp		Thr	Lys	Val	Pro	
Arg	Ser	Pro	Glu	Asn 335	Ser	Leu	Asp	Pro	Lys 340	Met	Ser	Leu	Thr	Gly 345
Ala	Arg	Glu	Leu	Leu 350	Pro	His	Ala	Gln	Glu 355	Glu	Ala	Glu	Ala	Glu 360
Ala	Glu	Leu	Pro	Pro 365	Ser	Ser	Glu	Val	Leu 370	Ala	Ser	Val	Phe	Pro 375
Ala	Gln	Asp	Lys	Pro 380	Gly	Glu	Leu	Gln	Ala 385	Thr	Leu	Asp	His	Thr 390
Gly	His	Thr	Ser	Ser 395	Lys	Ser	Leu	Pro	Asn 400	Phe	Pro	Asn	Thr	Ser 405
Ala	Thr	Ala	Asn	Ala 410	Thr	Gly	Gly	Arg	Ala 415	Leu	Ala	Leu	Gln	Ser 420
Ser	Leu	Pro	Gly	Ala 425	Glu	Gly	Pro	Asp	Lys 430	Pro	Ser	Val	Val	Ser 435
Gly	Leu	Asn	Ser	Gly 440	Pro	Gly	His	Val	Trp 445	Gly	Pro	Leu	Leu	Gly 450
Leu	Leu	Leu	Leu	Pro 455	Pro	Leu	Val	Leu	Ala 460	Gly	Ile	Phe		
<210>		5												
<211>														
<212>	> DNA	7												

<213> Artificial Sequence

<223> Synthetic Oligonucleotide Probe

<400> 286

```
tcctgcagtt tcctgatgc 19
<210> 287
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 287
ctcatattgc acaccagtaa ttcg 24
<210> 288
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 288
atgaggagaa acgtttgatg gtggagctgc acaacctcta ccggg 45
<210> 289
<211> 3662
<212> DNA
<213> Homo Sapien
<400> 289
gtaactgaag tcaggctttt catttgggaa gcccctcaa cagaattcgg 50
tcattctcca agttatggtg gacgtacttc tgttgttctc cctctgcttg 100
ctttttcaca ttagcagacc ggacttaagt cacaacagat tatctttcat 150
caaggcaagt tccatgagcc accttcaaag ccttcgagaa gtgaaactga 200
acaacaatga attggagacc attccaaatc tgggaccagt ctcggcaaat 250
attacacttc tctccttggc tggaaacagg attgttgaaa tactccctga 300
acatctgaaa gagtttcagt cccttgaaac tttggacctt agcagcaaca 350
atatttcaga gctccaaact gcatttccag ccctacagct caaatatctg 400
tatctcaaca gcaaccgagt cacatcaatg gaacctgggt attttgacaa 450
tttggccaac acactccttg tgttaaagct gaacaggaac cgaatctcag 500
ctatcccacc caagatgttt aaactgcccc aactgcaaca tctcgaattg 550
aaccgaaaca agattaaaaa tgtagatgga ctgacattcc aaggccttgg 600
tgctctgaag tctctgaaaa tgcaaagaaa tggagtaacg aaacttatgg 650
atggagettt ttgggggetg agcaacatgg aaattttgca getggaccat 700
```

aacaacctaa cagagattac caaaggctgg ctttacggct tgctgatgct 750

gcaggaactt catctcagcc aaaatgccat caacaggatc agccctgatg 800 cctgggagtt ctgccagaag ctcagtgagc tggacctaac tttcaatcac 850 ttatcaaggt tagatgattc aagcttcctt ggcctaagct tactaaatac 900 actgcacatt gggaacaaca gagtcagcta cattgctgat tgtgccttcc 950 gggggctttc cagtttaaag actttggatc tgaagaacaa tgaaatttcc 1000 tggactattg aagacatgaa tggtgctttc tctgggcttg acaaactgag 1050 gcgactgata ctccaaggaa atcggatccg ttctattact aaaaaagcct 1100 tcactggttt ggatgcattg gagcatctag acctgagtga caacgcaatc 1150 atgtctttac aaggcaatgc attttcacaa atgaagaaac tgcaacaatt 1200 gcatttaaat acatcaagcc ttttgtgcga ttgccagcta aaatggctcc 1250 cacagtgggt ggcggaaaac aactttcaga gctttgtaaa tgccagttgt 1300 gcccatcctc agctgctaaa aggaagaagc atttttgctg ttagcccaga 1350 tggctttgtg tgtgatgatt ttcccaaacc ccagatcacg gttcagccag 1400 aaacacagtc ggcaataaaa ggttccaatt tgagtttcat ctgctcagct 1450 gccagcagca gtgattcccc aatgactttt gcttggaaaa aagacaatga 1500 actactgcat gatgctgaaa tggaaaatta tgcacacctc cgggcccaag 1550 gtggcgaggt gatggagtat accaccatcc ttcggctgcg cgaggtggaa 1600 tttgccagtg aggggaaata tcagtgtgtc atctccaatc actttggttc 1650 atcctactct gtcaaagcca agcttacagt aaatatgctt ccctcattca 1700 ccaagacccc catggatctc accatccgag ctggggccat ggcacgcttg 1750 gagtgtgctg ctgtggggca cccagcccc cagatagcct ggcagaagga 1800 tgggggcaca gacttcccag ctgcacggga gagacgcatg catgtgatgc 1850 ccgaggatga cgtgttcttt atcgtggatg tgaagataga ggacattggg 1900 gtatacagct gcacagctca gaacagtgca ggaagtattt cagcaaatgc 1950 aactetgaet gteetagaaa eaceateatt tttgeggeea etgttggaee 2000 gaactgtaac caagggagaa acagccgtcc tacagtgcat tgctggagga 2050 agccctcccc ctaaactgaa ctggaccaaa gatgatagcc cattggtggt 2100 aaccgagagg cacttttttg cagcaggcaa tcagcttctg attattgtgg 2150 actcagatgt cagtgatgct gggaaataca catgtgagat gtctaacacc 2200 cttggcactg agagaggaaa cgtgcgcctc agtgtgatcc ccactccaac 2250

ctgcgactcc cctcagatga cagccccatc gttagacgat gacggatggg 2300 ccactgtggg tgtcgtgatc atagccgtgg tttgctgtgt ggtgggcacg 2350 tcactcgtgt gggtggtcat catataccac acaaggcgga ggaatgaaga 2400 ttgcagcatt accaacacag atgagaccaa cttgccagca gatattccta 2450 gttatttgtc atctcaggga acgttagctg acaggcagga tgggtacgtg 2500 tetteagaaa gtggaageea ceaceagttt gteacatett eaggtgetgg 2550 atttttctta ccacaacatg acagtagtgg gacctgccat attgacaata 2600 gcagtgaagc tgatgtggaa gctgccacag atctgttcct ttgtccgttt 2650 ttgggatcca caggccctat gtatttgaag ggaaatgtgt atggctcaga 2700 teettttgaa acatateata eaggttgeag teetgaeeea agaacagttt 2750 taatggacca ctatgagccc agttacataa agaaaaagga gtgctaccca 2800 tgttctcatc cttcagaaga atcctgcgaa cggagcttca gtaatatatc 2850 gtggccttca catgtgagga agctacttaa cactagttac tctcacaatg 2900 aaggacctgg aatgaaaaat ctgtgtctaa acaagtcctc tttagatttt 2950 agtgcaaatc cagagccagc gtcggttgcc tcgagtaatt ctttcatggg 3000 tacctttgga aaagctctca ggagacctca cctagatgcc tattcaagct 3050 ttggacagcc atcagattgt cagccaagag ccttttattt gaaagctcat 3100 tcttccccag acttggactc tgggtcagag gaagatggga aagaaaggac 3150 agattttcag gaagaaaatc acatttgtac ctttaaacag actttagaaa 3200 actacaggac tccaaatttt cagtcttatg acttggacac atagactgaa 3250 tgagaccaaa ggaaaagctt aacatactac ctcaagtgaa cttttattta 3300 aaagagagag aatcttatgt tttttaaatg gagttatgaa ttttaaaagg 3350 ataaaaatgc tttatttata cagatgaacc aaaattacaa aaagttatga 3400 aaatttttat actgggaatg atgctcatat aagaatacct ttttaaacta 3450 ttttttaact ttgttttatg caaaaaagta tcttacgtaa attaatgata 3500 taaatcatga ttattttatg tatttttata atgccagatt tctttttatg 3550 gaaaatgagt tactaaagca ttttaaataa tacctgcctt gtaccatttt 3600 ttaaatagaa gttacttcat tatattttgc acattatatt taataaaatg 3650 tgtcaatttg aa 3662

<210> 290

<211> 1059

<212> PRT

<213> Homo Sapien

<400> 290 Met Val Asp Val Leu Leu Leu Phe Ser Leu Cys Leu Leu Phe His 5 Ile Ser Arg Pro Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu 65 Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu 130 Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys 145 Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn 160 Lys Ile Lys Asn Val Asp Gly Leu Thr Phe Gln Gly Leu Gly Ala 170 175 Leu Lys Ser Leu Lys Met Gln Arg Asn Gly Val Thr Lys Leu Met 190 Asp Gly Ala Phe Trp Gly Leu Ser Asn Met Glu Ile Leu Gln Leu 200 205 Asp His Asn Asn Leu Thr Glu Ile Thr Lys Gly Trp Leu Tyr Gly 215 Leu Leu Met Leu Gln Glu Leu His Leu Ser Gln Asn Ala Ile Asn 230 Arg Ile Ser Pro Asp Ala Trp Glu Phe Cys Gln Lys Leu Ser Glu 250 Leu Asp Leu Thr Phe Asn His Leu Ser Arg Leu Asp Asp Ser Ser 260 265

Phe	Leu	Gly	Leu	Ser 275	Leu	Leu	Asn	Thr	Leu 280	His	Ile	Gly	Asn	Asn 285
Arg	Val	Ser	Tyr	Ile 290	Ala	Asp	Cys	Ala	Phe 295	Arg	Gly	Leu	Ser	Ser 300
Leu	Lys	Thr	Leu	Asp 305	Leu	Lys	Asn	Asn	Glu 310	Ile	Ser	Trp	Thr	Ile 315
Glu	Asp	Met	Asn	Gly 320	Ala	Phe	Ser	Gly	Leu 325	Asp	Lys	Leu	Arg	Arg 330
Leu	Ile	Leu	Gln	Gly 335	Asn	Arg	Ile	Arg	Ser 340	Ile	Thr	Lys	Lys	Ala 345
Phe	Thr	Gly	Leu	Asp 350	Ala	Leu	Glu	His	Leu 355	Asp	Leu	Ser	Asp	Asn 360
Ala	Ile	Met	Ser	Leu 365	Gln	Gly	Asn	Ala	Phe 370	Ser	Gln	Met	Lys	Lys 375
Leu	Gln	Gln	Leu	His 380	Leu	Asn	Thr	Ser	Ser 385	Leu	Leu	Cys	Asp	Cys 390
Gln	Leu	Lys	Trp	Leu 395	Pro	Gln	Trp	Val	Ala 400	Glu	Asn	Asn	Phe	Gln 405
Ser	Phe	Val	Asn	Ala 410	Ser	Cys	Ala	His	Pro 415	Gln	Leu	Leu	Lys	Gly 420
Arg	Ser	Ile	Phe	Ala 425	Val	Ser	Pro	Asp	Gly 430	Phe	Val	Cys	Asp	Asp 435
Phe	Pro	Lys	Pro	Gln 440	Ile	Thr	Val	Gln	Pro 445	Glu	Thr	Gln	Ser	Ala 450
Ile	Lys	Gly	Ser	Asn 455	Leu	Ser	Phe	Ile	Cys 460	Ser	Ala	Ala	Ser	Ser 465
Ser	Asp	Ser	Pro	Met 470	Thr	Phe	Ala	Trp	Lys 475	Lys	Asp	Asn	Glu	Leu 480
Leu	His	Asp	Ala	Glu 485	Met	Glu	Asn	Tyr	Ala 490	His	Leu	Arg	Ala	Gln 495
Gly	Gly	Glu	Val	Met 500	Glu	Tyr	Thr	Thr	Ile 505	Leu	Arg	Leu	Arg	Glu 510
Val	Glu	Phe	Ala	Ser 515	Glu	Gly	Lys	Tyr	Gln 520	Cys	Val	Ile	Ser	Asn 525
His	Phe	Gly	Ser	Ser 530	Tyr	Ser	Val	Lys	Ala 535	Lys	Leu	Thr	Val	Asn 540
Met	Leu	Pro	Ser	Phe 545	Thr	Lys	Thr	Pro	Met 550	Asp	Leu	Thr	Ile	Arg 555
Ala	Gly	Ala	Met	Ala 560	Arg	Leu	Glu	Cys	Ala 565	Ala	Val	Gly	His	Pro 570

Ala	Pro	Gln	Ile	Ala 575	Trp	Gln	Lys	Asp	Gly 580	Gly	Thr	Asp	Phe	Pro 585
Ala	Ala	Arg	Glu	Arg 590	Arg	Met	His	Val	Met 595	Pro	Glu	Asp	Asp	Val 600
Phe	Phe	Ile	Val	Asp 605	Val	Lys	Ile	Glu	Asp 610	Ile	Gly	Val	Tyr	Ser 615
Сув	Thr	Ala	Gln	Asn 620	Ser	Ala	Gly	Ser	Ile 625	Ser	Ala	Asn	Ala	Thr 630
Leu	Thr	Val	Leu	Glu 635	Thr	Pro	Ser	Phe	Leu 640	Arg	Pro	Leu	Leu	Asp 645
Arg	Thr	Val	Thr	Lys 650	Gly	Glu	Thr	Ala	Val 655	Leu	Gln	Cys	Ile	Ala 660
Gly	Gly	Ser	Pro	Pro 665	Pro	Lys	Leu	Asn	Trp 670	Thr	Lys	Asp	Asp	Ser 675
Pro	Leu	Val	Val	Thr 680	Glu	Arg	His	Phe	Phe 685	Ala	Ala	Gly	Asn	Gln 690
Leu	Leu	Ile	Ile	Val 695	Asp	Ser	Asp	Val	Ser 700	Asp	Ala	Gly	Lys	Tyr 705
Thr	Cys	Glu	Met	Ser 710	Asn	Thr	Leu	Gly	Thr 715	Glu	Arg	Gly	Asn	Val 720
Arg	Leu	Ser	Val	Ile 725	Pro	Thr	Pro	Thr	Cys 730	Asp	Ser	Pro	Gln	Met 735
Thr	Ala	Pro	Ser	Leu 740	Asp	Asp	Asp	Gly	Trp 745	Ala	Thr	Val	Gly	Val 750
Val	Ile	Ile	Ala	Val 755	Val	Cys	Cys	Val	Val 760	Gly	Thr	Ser	Leu	Val 765
Trp	Val	Val	Ile	Ile 770	Tyr	His	Thr	Arg	Arg 775	Arg.	Asn	Glu	Asp	Cys 780
Ser	Ile	Thr	Asn	Thr 785	Asp	Glu	Thr	Asn	Leu 790	Pro	Ala	Asp	Ile	Pro 795
Ser	Tyr	Leu	Ser	Ser 800	Gln	Gly	Thr	Leu	Ala 805	Asp	Arg	Gln	Asp	Gly 810
Tyr	Val	Ser	Ser	Glu 815	Ser	Gly	Ser	His	His 820	Gln	Phe	Val	Thr	Ser 825
Ser	Gly	Ala	Gly	Phe 830	Phe	Leu	Pro	Gln	His 835	Asp	Ser	Ser	Gly	Thr 840
Cys	His	Ile	Asp	Asn 845	Ser	Ser	Glu	Ala	Asp 850	Val	Glu	Ala	Ala	Thr 855
Asp	Leu	Phe	Leu	Cys	Pro	Phe	Leu	Gly	Ser	Thr	Gly	Pro	Met	Tyr

				860					865					870
Leu	Lys	Gly	Asn	Val 875	Tyr	Gly	Ser	Asp	Pro 880	Phe	Glu	Thr	Tyr	His 885
Thr	Gly	Cys	Ser	Pro 890	Asp	Pro	Arg	Thr	Val 895	Leu	Met	Asp	His	Tyr 900
Glu	Pro	Ser	Tyr	Ile 905	Lys	Lys	Lys	Glu	Cys 910	Tyr	Pro	Cys	Ser	His 915
Pro	Ser	Glu	Glu	Ser 920	Cys	Glu	Arg	Ser	Phe 925	Ser	Asn	Ile	Ser	Trp 930
Pro	Ser	His	Val	Arg 935	Lys	Leu	Leu	Asn	Thr 940	Ser	Tyr	Ser	His	Asn 945
Glu	Gly	Pro	Gly	Met 950	Lys	Asn	Leu	Cys	Leu 955	Asn	Lys	Ser	Ser	Leu 960
Asp	Phe	Ser	Ala	Asn 965	Pro	Glu	Pro	Ala	Ser 970	Val	Ala	Ser	Ser	Asn 975
Ser	Phe	Met	Gly	Thr 980	Phe	Gly	Lys	Ala	Leu 985	Arg	Arg	Pro	His	Leu 990
Asp	Ala	Tyr	Ser	Ser 995	Phe	Gly	Gln		Ser L000	Asp	Cys	Gln		Arg 1005
Ala	Phe	Tyr		Lys L010	Ala	His	Ser		Pro L015	Asp	Leu	Asp		Gly 1020
Ser	Glu	Glu	_	Gly 1025	Lys	Glu	Arg		Asp 1030	Phe	Gln	Glu		Asn 1035
His	Ile	Cys		Phe 1040	Lys	Gln	Thr		Glu 1045	Asn	Tyr	Arg		Pro 1050
Asn	Phe	Gln		Tyr 1055	Asp	Leu	Asp	Thr						
<210 > <211 > <212 > <213 >	> 290 > DNA	<i>Y</i> 96	apier	1										
<400×			ttga	ccat	g ta	aaag	ggaga	ctt	tttt	ttt	tggt	ggtg	ggt 5	0

ggctgttggg tgccttgcaa aaatgaagga tgcaggacgc agctttctcc 100 tggaaccgaa cgcaatggat aaactgattg tgcaagagag aaggaagaac 150 gaagettttt ettgtgagee etggatetta acacaaatgt gtatatgtge 200 acacagggag cattcaagaa tgaaataaac cagagttaga cccgcggggg 250 ttggtgtgtt ctgacataaa taaataatct taaagcagct gttcccctcc 300 ccaccccaa aaaaaaggat gattggaaat gaagaaccga ggattcacaa 350

agaaaaaagt atgttcattt ttctctataa aggagaaagt gagccaagga 400 gatatttttg gaatgaaaag tttggggctt ttttagtaaa gtaaagaact 450 aattaataat acatctgcaa agaaatttca gagaagaaaa gttgaccgcg 550 gcagattgag gcattgattg ggggagagaa accagcagag cacagttgga 600 tttgtgccta tgttgactaa aattgacgga taattgcagt tggatttttc 650 ttcatcaacc tcctttttt taaattttta ttccttttgg tatcaagatc 700 atgcgttttc tcttgttctt aaccacctgg atttccatct ggatgttgct 750 gtgatcagtc tgaaatacaa ctgtttgaat tccagaagga ccaacaccag 800 ataaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850 ataggteeta ggtttaacag ggeeetattt gaeeeeetge ttgtggtget 900 gctggctctt caacttcttg tggtggctgg tctggtgcgg gctcagacct 950 gcccttctgt gtgctcctgc agcaaccagt tcagcaaggt gatttgtgtt 1000 cggaaaaacc tgcgtgaggt tccggatggc atctccacca acacacggct 1050 gctgaacctc catgagaacc aaatccagat catcaaagtg aacagcttca 1100 agcacttgag gcacttggaa atcctacagt tgagtaggaa ccatatcaga 1150 accattgaaa ttggggcttt caatggtctg gcgaacctca acactctgga 1200 actetttgae aategtetta etaceatece gaatggaget tttgtataet 1250 tgtctaaact gaaggagctc tggttgcgaa acaaccccat tgaaagcatc 1300 cettettatg ettttaacag aatteettet ttgegeegae tagaettagg 1350 ggaattgaaa agactttcat acatctcaga aggtgccttt gaaggtctgt 1400 ccaacttgag gtatttgaac cttgccatgt gcaaccttcg ggaaatccct 1450 aacctcacac cgctcataaa actagatgag ctggatcttt ctgggaatca 1500 tttatctgcc atcaggcctg gctctttcca gggtttgatg caccttcaaa 1550 aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgccttt 1600 gacaaccttc agtcactagt ggagatcaac ctggcacaca ataatctaac 1650 attactgcct catgacctct tcactccctt gcatcatcta gagcggatac 1700 atttacatca caaccettgg aactgtaact gtgacatact gtggctcage 1750 tggtggataa aagacatggc cccctcgaac acagcttgtt gtgcccggtg 1800 taacactcct cccaatctaa aggggaggta cattggagag ctcgaccaga 1850

attacttcac atqctatgct ccggtgattg tggagccccc tgcagacctc 1900 aatgtcactg aaggcatggc agctgagctg aaatgtcggg cctccacatc 1950 cctgacatct gtatcttgga ttactccaaa tggaacagtc atgacacatg 2000 gggcgtacaa agtgcggata gctgtgctca gtgatggtac gttaaatttc 2050 acaaatgtaa ctgtgcaaga tacaggcatg tacacatgta tggtgagtaa 2100 ttccgttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150 ccactactcc tttctcttac ttttcaaccg tcacagtaga gactatggaa 2200 ccgtctcagg atgaggcacg gaccacagat aacaatgtgg gtcccactcc 2250 agtggtcgac tgggagacca ccaatgtgac cacctetete acaccacaga 2300 gcacaaggtc gacagagaaa accttcacca tcccagtgac tgatataaac 2350 agtgggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400 tgggtgtttt gtggccatca cactcatggc tgcagtgatg ctggtcattt 2450 tctacaagat gaggaagcag caccatcggc aaaaccatca cgccccaaca 2500 aggactgttg aaattattaa tgtggatgat gagattacgg gagacacacc 2550 catggaaagc cacctgccca tgcctgctat cgagcatgag cacctaaatc 2600 actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650 ataaattcaa tacacagttc agtgcatgaa ccgttattga tccgaatgaa 2700 ctctaaagac aatgtacaag agactcaaat ctaaaacatt tacagagtta 2750 caaaaaacaa acaatcaaaa aaaaagacag tttattaaaa atgacacaaa 2800 tgactgggct aaatctactg tttcaaaaaa gtgtctttac aaaaaaacaa 2850 aaaagaaaag aaatttattt attaaaaatt ctattgtgat ctaaagcaga 2900 caaaaa 2906

- <210> 292
- <211> 640
- <212> PRT
- <213> Homo Sapien
- <400> 292
- Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly

 1 5 10 15
- Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu
 20 25 30
 Leu Ala Leu Gln Leu Leu Val Val Ala Gly Leu Val Arg Ala Gln
 35 40 45

Thr	Cys	Pro	Ser	Val 50	Cys	Ser	Cys	Ser	Asn 55	Gln	Phe	Ser	Lys	Val 60
Ile	Cys	Val	Arg	Lys 65	Asn	Leu	Arg	Glu	Val 70	Pro	Asp	Gly	Ile	Ser 75
Thr	Asn	Thr	Arg	Leu 80	Leu	Asn	Leu	His	Glu 85	Asn	Gln	Ile	Gln	Ile 90
Ile	Lys	Val	Asn	Ser 95	Phe	Lys	His	Leu	Arg 100	His	Leu	Glu	Ile	Leu 105
Gln	Leu	Ser	Arg	Asn 110	His	Ile	Arg	Thr	Ile 115	Glu	Ile	Gly	Ala	Phe 120
Asn	Gly	Leu	Ala	Asn 125	Leu	Asn	Thr	Leu	Glu 130	Leu	Phe	Asp	Asn	Arg 135
Leu	Thr	Thr	Ile	Pro 140	Asn	Gly	Ala	Phe	Val 145	Tyr	Leu	Ser	Lys	Leu 150
Lys	Glu	Leu	Trp	Leu 155	Arg	Asn	Asn	Pro	Ile 160	Glu	Ser	Ile	Pro	Ser 165
Tyr	Ala	Phe	Asn	Arg 170	Ile	Pro	Ser	Leu	Arg 175	Arg	Leu	Asp	Leu	Gly 180
Glu	Leu	Lys	Arg	Leu 185	Ser	Tyr	Ile	Ser	Glu 190	Gly	Ala	Phe	Glu	Gly 195
Leu	Ser	Asn	Leu	Arg 200	Tyr	Leu	Asn	Leu	Ala 205	Met	Cys	Asn	Leu	Arg 210
Glu	Ile	Pro	Asn	Leu 215	Thr	Pro	Leu	Ile	Lys 220	Leu	Asp	Glu	Leu	Asp 225
				215		Pro Ser			220					225
Leu	Ser.	Gly	Asn	215 His 230	Leu		Ala	Ile	220 Arg 235	Pro	Gly	Ser	Phe	225 Gln 240
Leu	Ser.	Gly Met	Asn His	215 His 230 Leu 245	Leu Gln	Ser	Ala Leu	Ile Trp	220 Arg 235 Met 250	Pro Ile	Gly Gln	Ser Ser	Phe Gln	225 Gln 240 Ile 255
Leu	Ser Leu Val	Gly Met Ile	Asn His Glu	215 His 230 Leu 245 Arg 260	Leu Gln Asn	Ser Lys	Ala Leu Phe	Ile Trp Asp	220 Arg 235 Met 250 Asn 265	Pro Ile Leu	Gly Gln Gln	Ser Ser	Phe Gln Leu	225 Gln 240 Ile 255 Val 270
Leu Gly Gln	Ser Leu Val	Gly Met Ile Asn	Asn His Glu Leu	215 His 230 Leu 245 Arg 260 Ala 275	Leu Gln Asn His	Ser Lys Ala	Ala Leu Phe Asn	Ile Trp Asp Leu	220 Arg 235 Met 250 Asn 265 Thr 280	Pro Ile Leu Leu	Gly Gln Gln Leu	Ser Ser Ser	Phe Gln Leu His	225 Gln 240 Ile 255 Val 270 Asp 285
Leu Gly Gln Glu Leu	Ser Leu Val Ile	Gly Met Ile Asn Thr	Asn His Glu Leu Pro	215 His 230 Leu 245 Arg 260 Ala 275 Leu 290	Leu Gln Asn His	Ser Lys Ala Asn	Ala Leu Phe Asn Leu	Ile Trp Asp Leu Glu	220 Arg 235 Met 250 Asn 265 Thr 280 Arg 295	Pro Ile Leu Leu Ile	Gly Gln Gln Leu	Ser Ser Pro	Phe Gln Leu His	225 Gln 240 Ile 255 Val 270 Asp 285 His 300
Leu Gly Gln Glu Leu Asn	Ser Leu Val Ile Phe	Gly Met Ile Asn Thr	Asn His Glu Leu Pro Asn	215 His 230 Leu 245 Arg 260 Ala 275 Leu 290 Cys 305	Leu Gln Asn His Asn	Ser Lys Ala Asn His	Ala Leu Phe Asn Leu	Ile Trp Asp Leu Glu Ile	220 Arg 235 Met 250 Asn 265 Thr 280 Arg 295 Leu 310	Pro Ile Leu Leu Ile	Gly Gln Gln Leu His	Ser Ser Pro Leu Ser	Phe Gln Leu His Trp	225 Gln 240 Ile 255 Val 270 Asp 285 His 300 Trp 315

Gln	Asn	Tyr	Phe	Thr 350	Cys	Tyr	Ala	Pro	Val 355	Ile	Val	Glu	Pro	Pro 360
Ala	Asp	Leu	Asn	Val 365	Thr	Glu	Gly	Met	Ala 370	Ala	Glu	Leu	Lys	Cys 375
Arg	Ala	Ser	Thr	Ser 380	Leu	Thr	Ser	Val	Ser 385	Trp	Ile	Thr	Pro	Asn 390
Gly	Thr	Val	Met	Thr 395	His	Gly	Ala	Tyr	Lys 400	Val	Arg	Ile	Ala	Val 405
Leu	Ser	Asp	Gly	Thr 410	Leu	Asn	Phe	Thr	Asn 415	Val	Thr	Val	Gln	Asp 420
Thr	Gly	Met	Tyr	Thr 425	Cys	Met	Val	Ser	Asn 430	Ser	Val	Gly	Asn	Thr 435
Thr	Ala	Ser	Ala	Thr 440	Leu	Asn	Val	Thr	Ala 445	Ala	Thr	Thr	Thr	Pro 450
Phe	Ser	Tyr	Phe	Ser 455	Thr	Val	Thr	Val	Glu 460	Thr	Met	Glu	Pro	Ser 465
Gln	Asp	Glu	Ala	Arg 470	Thr	Thr	Asp	Asn	Asn 475	Val	Gly	Pro	Thr	Pro 480
Val	Val	Asp	Trp	Glu 485	Thr	Thr	Asn	Val	Thr 490	Thr	Ser	Leu	Thr	Pro 495
Gln	Ser	Thr	Arg	Ser 500	Thr	Glu	Lys	Thr	Phe 505	Thr	Ile	Pro	Val	Thr 510
Asp	Ile	Asn	Ser	Gly 515	Ile	Pro	Gly	Ile	Asp 520	Glu	Val	Met	Lys	Thr 525
Thr	Lys	Ile	Ile	Ile 530	Gly	Cys	Phe	Val	Ala 535	Ile	Thr	Leu	Met	Ala 540
Ala	Val	Met	Leu	Val 545	Ile	Phe	Tyr	Lys	Met 550	Arg	Lys	Gln	His	His 555
Arg	Gln	Asn	His	His 560	Ala	Pro	Thr	Arg	Thr 565	Val	Glu	Ile	Ile	Asn 570
Val	Asp	Asp	Glu	Ile 575	Thr	Gly	Asp	Thr	Pro 580	Met	Glu	Ser	His	Leu 585
Pro	Met	Pro	Ala	Ile 590	Glu	His	Glu	His	Leu 595	Asn	His	Tyr	Asn	Ser 600
Tyr	Lys	Ser	Pro	Phe 605	Asn	His	Thr	Thr	Thr 610	Val	Asn	Thr	Ile	Asn 615
Ser	Ile	His	Ser	Ser 620	Val	His	Glu	Pro	Leu 625	Leu	Ile	Arg	Met	Asn 630
Ser	Lys	Asp	Asn	Val	Gln	Glu	Thr	Gln	Ile					

635 640

- <210> 293
- <211> 4053
- <212> DNA
- <213> Homo Sapien
- <400> 293

agccgacgct gctcaagctg caactctgtt gcagttggca gttcttttcg 50 gtttccctcc tgctgtttgg gggcatgaaa gggcttcgcc gccgggagta 100 aaagaaggaa ttgaccgggc agcgcgaggg aggagcgcgc acgcgaccgc 150 gagggcgggc gtgcaccctc ggctggaagt ttgtgccggg ccccgagcgc 200 gcgccggctg ggagcttcgg gtagagacct aggccgctgg accgcgatga 250 gegegeegag ceteegtgeg egegeegegg ggttgggget getgetgtge 300 geggtgetgg ggegegetgg ceggteegae ageggeggte geggggaaet 350 egggeagece tetggggtag eegeegageg eecatgeece actacetgee 400 gctgcctcgg ggacctgctg gactgcagtc gtaagcggct agcgcgtctt 450 cccgagccac tcccgtcctg ggtcgctcgg ctggacttaa gtcacaacag 500 attatctttc atcaaggcaa gttccatgag ccaccttcaa agccttcgag 550 aagtgaaact gaacaacaat gaattggaga ccattccaaa tctgggacca 600 gtctcggcaa atattacact tctctccttg gctggaaaca ggattgttga 650 aatactccct gaacatctga aagagtttca gtcccttgaa actttggacc 700 ttagcagcaa caatatttca gagctccaaa ctgcatttcc agccctacag 750 ctcaaatatc tgtatctcaa cagcaaccga gtcacatcaa tggaacctgg 800 gtattttgac aatttggcca acacactcct tgtgttaaag ctgaacagga 850 accgaatete agetateeea eecaagatgt ttaaaetgee eeaaetgeaa 900 catctcgaat tgaaccgaaa caagattaaa aatgtagatg gactgacatt 950 ccaaggcctt ggtgctctga agtctctgaa aatgcaaaga aatggagtaa 1000 cgaaacttat ggatggagct ttttgggggc tgagcaacat ggaaattttg 1050 cagctggacc ataacaacct aacagagatt accaaaggct ggctttacgg 1100 cttgctgatg ctgcaggaac ttcatctcag ccaaaatgcc atcaacagga 1150 tcagccctga tgcctgggag ttctgccaga agctcagtga gctggaccta 1200 actttcaatc acttatcaag gttagatgat tcaagcttcc ttggcctaag 1250 cttactaaat acactgcaca ttgggaacaa cagagtcagc tacattgctg 1300

attgtgcctt ccgggggctt tccagtttaa agactttgga tctgaagaac 1350 aatgaaattt cctggactat tgaagacatg aatggtgctt tctctgggct 1400 tgacaaactg aggcgactga tactccaagg aaatcggatc cgttctatta 1450 ctaaaaaagc cttcactggt ttggatgcat tggagcatct agacctgagt 1500 gacaacgcaa tcatgtcttt acaaggcaat gcattttcac aaatgaagaa 1550 actgcaacaa ttgcatttaa atacatcaag cettttgtge gattgeeage 1600 taaaatggct cccacagtgg gtggcggaaa acaactttca gagctttgta 1650 aatgccagtt gtgcccatcc tcagctgcta aaaggaagaa gcatttttgc 1700 tgttagccca gatggctttg tgtgtgatga ttttcccaaa ccccagatca 1750 cggttcagcc agaaacacag tcggcaataa aaggttccaa tttgagtttc 1800 atctgctcag ctgccagcag cagtgattcc ccaatgactt ttgcttggaa 1850 aaaagacaat gaactactgc atgatgctga aatggaaaat tatgcacacc 1900 tccgggccca aggtggcgag gtgatggagt ataccaccat ccttcggctg 1950 cgcgaggtgg aatttgccag tgaggggaaa tatcagtgtg tcatctccaa 2000 tcactttggt tcatcctact ctgtcaaagc caagcttaca gtaaatatgc 2050 ttccctcatt caccaagacc cccatggatc tcaccatccg agctggggcc 2100 atggcacgct tggagtgtgc tgctgtgggg cacccagccc cccagatagc 2150 ctggcagaag gatgggggca cagacttccc agctgcacgg gagagacgca 2200 tgcatgtgat gcccgaggat gacgtgttct ttatcgtgga tgtgaagata 2250 gaggacattg gggtatacag ctgcacagct cagaacagtg caggaagtat 2300 ttcagcaaat gcaactctga ctgtcctaga aacaccatca tttttgcggc 2350 cactgttgga ccgaactgta accaagggag aaacagccgt cctacagtgc 2400 attgctggag gaagccctcc ccctaaactg aactggacca aagatgatag 2450 cccattggtg gtaaccgaga ggcacttttt tgcagcaggc aatcagcttc 2500 tgattattgt ggactcagat gtcagtgatg ctgggaaata cacatgtgag 2550 atgtctaaca cccttggcac tgagagagga aacgtgcgcc tcagtgtgat 2600 ccccactcca acctgcgact cccctcagat gacagcccca tcgttagacg 2650 atgacggatg ggccactgtg ggtgtcgtga tcatagccgt ggtttgctgt 2700 gtggtgggca cgtcactcgt gtgggtggtc atcatatacc acacaaggcg 2750

gaggaatgaa gattgcagca ttaccaacac agatgagacc aacttgccag 2800 cagatattcc tagttatttg tcatctcaqq qaacqttaqc tqacaqqcaq 2850 gatgggtacg tgtcttcaga aagtggaagc caccaccagt ttgtcacatc 2900 ttcaggtgct ggatttttct taccacaaca tgacagtagt gggacctgcc 2950 atattgacaa tagcagtgaa gctgatgtgg aagctgccac agatctgttc 3000 ctttgtccgt ttttgggatc cacaggccct atgtatttga agggaaatgt 3050 gtatggetca gateettttg aaacatatea tacaggttge agteetgace 3100 caagaacagt tttaatggac cactatgagc ccagttacat aaagaaaaag 3150 gagtgctacc catgttctca tccttcagaa gaatcctgcg aacggagctt 3200 cagtaatata tcgtggcctt cacatgtgag gaagctactt aacactagtt 3250 actctcacaa tqaaqqacct qqaatqaaaa atctqtqtct aaacaaqtcc 3300 tctttagatt ttagtgcaaa tccagagcca gcgtcggttg cctcgagtaa 3350 ttctttcatg ggtacctttg gaaaagctct caggagacct cacctagatg 3400 cctattcaag ctttggacag ccatcagatt gtcagccaag agccttttat 3450 ttgaaagctc attcttcccc agacttggac tctgggtcag aggaagatgg 3500 gaaagaaagg acagattttc aggaagaaaa tcacatttgt acctttaaac 3550 agactttaga aaactacagg actccaaatt ttcagtctta tgacttggac 3600 acatagactg aatgagacca aaggaaaagc ttaacatact acctcaagtg 3650 aacttttatt taaaagagag agaatcttat gttttttaaa tggagttatg 3700 aattttaaaa ggataaaaat gctttattta tacagatgaa ccaaaattac 3750 aaaaagttat gaaaattttt atactgggaa tgatgctcat ataagaatac 3800 ctttttaaac tatttttaa ctttgtttta tgcaaaaaag tatcttacgt 3850 aaattaatga tataaatcat gattatttta tgtattttta taatgccaga 3900 tttcttttta tggaaaatga gttactaaag cattttaaat aatacctgcc 3950 ttgtaccatt ttttaaatag aagttacttc attatatttt gcacattata 4000 aaa 4053

<210> 294

<211> 1119

<212> PRT

<213> Homo Sapien

<400> 294

Met 1	Ser	Ala	Pro	Ser 5	Leu	Arg	Ala	Arg	Ala 10	Ala	Gly	Leu	Gly	Leu 15
Leu	Leu	Cys	Ala	Val 20	Leu	Gly	Arg	Ala	Gly 25	Arg	Ser	Asp	Ser	Gly 30
Gly	Arg	Gly	Glu	Leu 35	Gly	Gln	Pro	Ser	Gly 40	Val	Ala	Ala	Glu	Arg 45
Pro	Cys	Pro	Thr	Thr 50	Cys	Arg	Cys	Leu	Gly 55	Asp	Leu	Leu	Asp	Cys 60
Ser	Arg	Lys	Arg	Leu 65	Ala	Arg	Leu	Pro	Glu 70	Pro	Leu	Pro	Ser	Trp 75
Val	Ala	Arg	Leu	Asp 80	Leu	Ser	His	Asn	Arg 85	Leu	Ser	Phe	Ile	Lys 90
Ala	Ser	Ser	Met		His	Leu	Gln	Ser		Arg	Glu	Val	Lys	
Asn	Asn	Asn	Glu	Leu 110	Glu	Thr	Ile	Pro	Asn 115	Leu	Gly	Pro	Val	Ser 120
Ala	Asn	Ile	Thr	Leu 125	Leu	Ser	Leu	Ala	Gly 130	Asn	Arg	Ile	Val	Glu 135
Ĭle	Leu	Pro	Glu	His 140	Leu	Lys	Glu	Phe	Gln 145	Ser	Leu	Glu	Thr	Leu 150
Asp	Leu	Ser	Ser	Asn 155	Asn	Ile	Ser	Glu	Leu 160	Gln	Thr	Ala	Phe	Pro 165
Ala	Leu	Gln	Leu	Lys 170	Tyr	Leu	Tyr	Leu	Asn 175	Ser	Asn	Arg	Val	Thr 180
Ser	Met	Glu	Pro	Gly 185	Tyr	Phe	Asp	Asn	Leu 190	Ala	Asn	Thr	Leu	Leu 195
Val	Leu	Lys	Leu	Asn 200	Arg	Asn	Arg	Ile	Ser 205	Ala	Ile	Pro	Pro	Lys 210
Met	Phe	Lys	Leu	Pro 215	Gln	Leu	Gln	His	Leu 220	Glu	Leu	Asn	Arg	Asn 225
Lys	Ile	Lys	Asn	Val 230	Asp	Gly	Leu	Thr	Phe 235	Gln	Gly	Leu	Gly	Ala 240
Leu	Lys	Ser	Leu	Lys 245	Met	Gln	Arg	Asn	Gly 250	Val	Thr	Lys	Leu	Met 255
Asp	Gly	Ala	Phe	Trp 260	Gly	Leu	Ser	Asn	Met 265	Glu	Ile	Leu	Gln	Leu 270
Asp	His	Asn	Asn	Leu 275	Thr	Glu	Ile	Thr	Lys 280	Gly	Trp	Leu	Tyr	Gly 285
Leu	Leu	Met	Leu	Gln 290	Glu	Leu	His	Leu	Ser 295	Gln	Asn	Ala	Ile	Asn 300

Arg	Ile	Ser	Pro	Asp 305	Ala	Trp	Glu	Phe	Cys 310	Gln	Lys	Leu	Ser	Glu 315
Leu	Asp	Leu	Thr	Phe 320	Asn	His	Leu	Ser	Arg 325	Leu	Asp	Asp	Ser	Ser 330
Phe	Leu	Gly	Leu	Ser 335	Leu	Leu	Asn	Thr	Leu 340	His	Ile	Gly	Asn	Asn 345
Arg	Val	Ser	Tyr	Ile 350	Ala	Asp	Cys	Ala	Phe 355	Arg	Gly	Leu	Ser	Ser 360
Leu	Lys	Thr	Leu	Asp 365	Leu	Lys	Asn	Asn	Glu 370	Ile	Ser	Trp	Thr	Ile 375
Glu	Asp	Met	Asn	Gly 380	Ala	Phe	Ser	Gly	Leu 385	Asp	Lys	Leu	Arg	Arg 390
Leu	Ile	Leu	Gln	Gly 395	Asn	Arg	Ile	Arg	Ser 400	Ile	Thr	Lys	Lys	Ala 405
Phe	Thr	Gly	Leu	Asp 410	Ala	Leu	Glu	His	Leu 415	Asp	Leu	Ser	Asp	Asn 420
Ala	Ile	Met	Ser	Leu 425	Gln	Gly	Asn	Ala	Phe 430	Ser	Gln	Met	Lys	Lys 435
Leu	Gln	Gln	Leu	His 440	Leu	Asn	Thr	Ser	Ser 445	Leu	Leu	Cys	Asp	Cys 450
Gln	Leu	Lys	Trp	Leu 455	Pro	Gln	Trp	Val	Ala 460	Glu	Asn	Asn	Phe	Gln 465
Ser	Phe	Val	Asn	Ala 470	Ser	Cys	Ala	His	Pro 475	Gln	Leu	Leu	Lys	Gly 480
Arg	Ser	Ile	Phe	Ala 485	Val	Ser	Pro	Asp	Gly 490	Phe	Val	Cys	Asp	Asp 495
Phe	Pro	Lys	Pro	Gln 500	Ile	Thr	Val	Gln	Pro 505	Glu	Thr	Gln	Ser	Ala 510
Ile	Lys	Gly	Ser	Asn 515	Leu	Ser	Phe	Ile	Cys 520	Ser	Ala	Ala	Ser	Ser 525
Ser	Asp	Ser	Pro	Met 530	Thr	Phe	Ala	Trp	Lys 535	Lys	Asp	Asn	Glu	Leu 540
Leu	His	Asp	Ala	Glu 545	Met	Glu	Asn	Tyr	Ala 550	His	Leu	Arg	Ala	Gln 555
Gly	Gly	Glu	Val	Met 560	Glu	Tyr	Thr	Thr	Ile 565	Leu	Arg	Leu	Arg	Glu 570
Val	Glu	Phe	Ala		Glu	Gly	Lys	Tyr	Gln 580	Cys	Val	Ile	Ser	Asn 585

Met	Leu	Pro	Ser	Phe 605	Thr	Lys	Thr	Pro	Met 610	Asp	Leu	Thr	Ile	Arg 615
Ala	Gly	Ala	Met	Ala 620	Arg	Leu	Glu	Cys	Ala 625	Ala	Val	Gly	His	Pro 630
Ala	Pro	Gln	Ile	Ala 635	Trp	Gln	Lys	Asp	Gly 640	Gly	Thr	Asp	Phe	Pro 645
Ala	Ala	Arg	Glu	Arg 650	Arg	Met	His	Val	Met 655	Pro	Glu	Asp	Asp	Val 660
Phe	Phe	Ile	Val	Asp 665	Val	Lys	Ile	Glu	Asp 670	Ile	Gly	Val	Tyr	Ser 675
Cys	Thr	Ala	Gln	Asn 680	Ser	Ala	Gly	Ser	Ile 685	Ser	Ala	Asn	Ala	Thr 690
Leu	Thr	Val	Leu	Glu 695	Thr	Pro	Ser	Phe	Leu 700	Arg	Pro	Leu	Leu	Asp 705
Arg	Thr	Val	Thr	Lys 710	Gly	Glu	Thr	Ala	Val 715	Leu	Gln	Cys	Ile	Ala 720
Gly	Gly	Ser	Pro	Pro 725	Pro	Lys	Leu	Asn	Trp 730	Thr	Lys	Asp	Asp	Ser 735
Pro	Leu	Val	Val	Thr 740	Glu	Arg	His	Phe	Phe 745	Ala	Ala	Gly	Asn	Gln 750
Leu	Leu	Ile	Ile	Val 755	Asp	Ser	Asp	Val	Ser 760	Asp	Ala	Gly	Lys	Tyr 765
Thr	Cys	Glu	Met	Ser 770	Asn	Thr	Leu	Gly	Thr 775	Glu	Arg	Gly	Asn	Val 780
Arg	Leu	Ser	Val	Ile 785	Pro	Thr	Pro	Thr	Cys 790	Asp	Ser	Pro	Gln	Met 795
Thr	Ala	Pro	Ser	Leu 800	Asp	Asp	Asp	Gly	Trp 805	Ala	Thr	Val	Gly	Val 810
Val	Ile	Ile	Ala	Val 815	Val	Cys	Cys	Val	Val 820	Gly	Thr	Ser	Leu	Val 825
Trp	Val	Val	Ile	Ile 830	Tyr	His	Thr	Arg	Arg 835	Arg	Asn	Glu	Asp	Cys 840
Ser	Ile	Thr	Asn	Thr 845	Asp	Glu	Thr	Asn	Leu 850	Pro	Ala	Asp	Ile	Pro 855
Ser	Tyr	Leu	Ser	Ser 860	Gln	Gly	Thr	Leu	Ala 865	Asp	Arg	Gln	Asp	Gly 870
Tyr	Val	Ser	Ser	Glu 875	Ser	Gly	Ser	His	His 880	Gln	Phe	Val	Thr	Ser 885
Ser	Gly	Ala	Gly	Phe	Phe	Leu	Pro	Gln	His	Asp	Ser	Ser	Gly	Thr

										•				
				890					895					900
Cys	His	Ile	Asp	Asn 905	Ser	Ser	Glu	Ala	Asp 910	Val	Glu	Ala	Ala	Thr 915
Asp	Leu	Phe	Leu	Cys 920	Pro	Phe	Leu	Gly	Ser 925	Thr	Gly	Pro	Met	Tyr 930
Leu	Lys	Gly	Asn	Val 935	Tyr	Gly	Ser	Asp	Pro 940	Phe	Glu	Thr	Tyr	His 945
Thr	Gly	Cys	Ser	Pro 950	Asp	Pro	Arg	Thr	Val 955	Leu	Met	Asp	His	Tyr 960
Glu	Pro	Ser	Tyr	Ile 965	Lys	Lys	Lys	Glu	Cys 970	Tyr	Pro	Cys	Ser	His 975
Pro	Ser	Glu	Glu	Ser 980	Cys	Glu	Arg	Ser	Phe 985	Ser	Asn	Ile	Ser	Trp 990
Pro	Ser	His	Val	Arg 995	Lys	Leu	Leu		Thr 1000	Ser	Tyr	Ser		Asn L005
Glu	Gly	Pro	Gly	Met L010	Lys	Asn	Leu		Leu 1015	Asn	Lys	Ser		Leu 1020
Asp	Phe	Ser	Ala 1	Asn L025	Pro	Glu	Pro		Ser 1030	Val	Ala	Ser		Asn L035
Ser	Phe	Met	Gly 1	Thr L040	Phe	Gly	Lys		Leu 1045	Arg	Arg	Pro		Leu 1050
Asp	Ala	Tyr	Ser 1	Ser L055	Phe	Gly	Gln		Ser .060	Asp	Cys	Gln		Arg 1065
Ala	Phe	Tyr	Leu 1	Lys 1070	Ala	His	Ser		Pro .075	Asp	Leu	Asp		Gly 1080
Ser	Glu	Glu	Asp 1	Gly 1085	Lys	Glu	Arg		Asp .090	Phe	Gln	Glu		Asn 1095
His	Ile	Cys	Thr 1	Phe 100	Lys	Gln	Thr		Glu .105	Asn	Tyr	Arg		Pro
Asn	Phe	Gln	Ser	Tyr	Asp	Leu	Asp	Thr						

Asn Phe Gln Ser Tyr Asp Leu Asp Thr 1115

<210> 295

<211> 18

<212> DNA

' <213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 295

ggaaccgaat ctcagcta 18

<210> 296

```
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 296
cctaaactga actggacca 19
<210> 297
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 297
ggctggagac actgaacct 19
<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 298
acagctgcac agctcagaac agtg 24
<210> 299
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 299
cattcccagt ataaaaattt tc 22
<210> 300
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 300
gggtcttggt gaatgagg 18
<210> 301
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<223> Synthetic Oligonucleotide Probe
<400> 301
 gtgcctctcg gttaccacca atgg 24
<210> 302 ·
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 302
geggeeactg ttggacegaa etgtaaceaa gggagaaaca geegteetae 50
<210> 303
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 303
gcctttgaca accttcagtc actagtgg 28
<210> 304
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 304
ccccatgtgt ccatgactgt tccc 24
<210> 305
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 305
tactgcctca tgacctcttc actcccttgc atcatcttag agcgg 45
<210> 306
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 306
```

```
actccaagga aatcggatcc gttc 24
<210> 307
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 307
ttagcagctg aggatgggca caac 24
<210> 308
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 308
actccaagga aatcggatcc gttc 24
<210> 309
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 309
gccttcactg gtttggatgc attggagcat ctagacctga gtgacaacgc 50
<210> 310
<211> 3296
<212> DNA
<213> Homo Sapien
<400> 310
caaaacttgc gtcgcggaga gcgcccagct tgacttgaat ggaaggagcc 50
cgagcccgcg gagcgcagct gagactgggg gagcgcgttc ggcctgtggg 100
gcgccgctcg gcgccggggc gcagcaggga aggggaagct gtggtctgcc 150
 ctgctccacg aggcgccact ggtgtgaacc gggagagccc ctgggtggtc 200
 ccgtccccta tccctccttt atatagaaac cttccacact gggaaggcag 250
cggcgaggca ggagggctca tggtgagcaa ggaggccggc tgatctgcag 300
gcgcacagca ttccgagttt acagattttt acagatacca aatggaaggc 350
gaggaggcag aacagcctgc ctggttccat cagccctggc gcccaggcgc 400
atetgacteg geaecectg caggeaceat ggeccagage egggtgetge 450
```

tgctcctgct gctgctgccg ccacagctgc acctgggacc tgtgcttgcc 500 gtgagggccc caggatttgg ccgaagtggc ggccacagcc tgagccccga 550 agagaacgaa tttgcggagg aggagccggt gctggtactg agccctgagg 600 agcccgggcc tggcccagcc gcggtcagct gcccccgaga ctgtgcctgt 650 teccaggagg gegtegtgga etgtggeggt attgaeetge gtgagtteee 700 gggggacctg cctgagcaca ccaaccacct atctctgcag aacaaccagc 750 tggaaaagat ctaccctgag gagctctccc ggctgcaccg gctggagaca 800 ctgaacctgc aaaacaaccg cctgacttcc cgagggctcc cagagaaggc 850 gtttgagcat ctgaccaacc tcaattacct gtacttggcc aataacaagc 900 tgaccttggc accccgcttc ctgccaaacg ccctgatcag tgtggacttt 950 gctgccaact atctcaccaa gatctatggg ctcacctttg gccagaagcc 1000 aaacttgagg tctgtgtacc tgcacaacaa caagctggca gacgccgggc 1050 tgccggacaa catgttcaac ggctccagca acgtcgaggt cctcatcctg 1100 tecageaact teetgegeea egtgeeeaag caeetgeege etgeeetgta 1150 caagctgcac ctcaagaaca acaagctgga gaagatcccc ccgggggcct 1200 tcagcgagct gagcagcctg cgcgagctat acctgcagaa caactacctg 1250 actgacgagg gcctggacaa cgagaccttc tggaagctct ccagcctgga 1300 gtacctggat ctgtccagca acaacctgtc tcgggtccca gctgggctgc 1350 cgcgcagcct ggtgctgctg cacttggaga agaacgccat ccggagcgtg 1400 gacgcgaatg tgctgacccc catccgcagc ctggagtacc tgctgctgca 1450 cagcaaccag ctgcgggagc agggcatcca cccactggcc ttccagggcc 1500 tcaagcggtt gcacacggtg cacctgtaca acaacgcgct ggagcgcgtg 1550 cccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgcacaacca 1600 gatcacaggc attggccgcg aagactttgc caccacctac ttcctggagg 1650 ageteaacet eagetacaae egeateacea geceacaggt geacegegae 1700 gccttccgca agctgcgcct gctgcgctcg ctggacctgt cgggcaaccg 1750 gctgcacacg ctgccacctg ggctgcctcg aaatgtccat gtgctgaagg 1800 tcaagcgcaa tgagctggct gccttggcac gaggggcgct ggcgggcatg 1850 gctcagctgc gtgagctgta cctcaccagc aaccgactgc gcagccgagc 1900 cctgggcccc cgtgcctggg tggacctcgc ccatctgcag ctgctggaca 1950

```
tegeegggaa teageteaca gagateeeeg aggggeteee egagteaett 2000
gagtacctgt acctgcagaa caacaagatt agtgcggtgc ccgccaatgc 2050
cttcgactcc acgcccaacc tcaaggggat ctttctcagg tttaacaagc 2100
tggctgtggg ctccgtggtg gacagtgcct tccggaggct gaagcacctg 2150
caggtcttgg acattgaagg caacttagag tttggtgaca tttccaagga 2200
aggaagagga aacaagatag tgacaaggtg atgcagatgt gacctaggat 2300
gatggaccgc cggactettt tetgcagcac acgeetgtgt getgtgagec 2350
ccccactctg ccgtgctcac acagacacac ccagctgcac acatgaggca 2400
teccaeatga caegggetga caeagtetea tateceeaee eetteceaeg 2450
gcgtgtccca cggccagaca catgcacaca catcacaccc tcaaacaccc 2500
ageteageea cacacaacta ecetecaaac caccacagte tetgteacac 2550
ccccactacc gctgccacgc cctctgaatc atgcagggaa gggtctgccc 2600
ctgccctggc acacacaggc acccattccc tcccctgct gacatgtgta 2650
tgcgtatgca tacacaccac acacacaca atgcacaagt catgtgcgaa 2700
cagocotoca aagootatgo cacagacago tottgococa gocagaatca 2750
gccatagcag ctcgccgtct gccctgtcca tctgtccgtc cgttccctgg 2800
agaagacaca agggtatcca tgctctgtgg ccaggtgcct gccaccctct 2850
ggaactcaca aaagctggct tttattcctt tcccatccta tggggacagg 2900
ageetteagg actgetggee tggeetggee caccetgete etceaggtge 2950
tgggcagtca ctctgctaag agtccctccc tgccacgccc tggcaggaca 3000
caggcacttt tccaatgggc aagcccagtg gaggcaggat gggagagccc 3050
cctgggtgct gctggggcct tggggcagga gtgaagcaga ggtgatgggg 3100
ctgggctgag ccagggagga aggacccagc tgcacctagg agacaccttt 3150
gttcttcagg cctgtggggg aagttccggg tgcctttatt ttttattctt 3200
ttctaaggaa aaaaatgata aaaatctcaa agctgatttt tcttgttata 3250
gaaaaactaa tataaaagca ttatccctat ccctgcaaaa aaaaaa 3296
```

<210> 311

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

```
<223> Synthetic Oligonucleotide Probe
<400> 311
gcattggccg cgagactttg cc 22
<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 312
gcggccacgg tccttggaaa tg 22
<210> 313
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 313
tggaggaget caaceteage tacaacegea teaceageee acagg 45
<210> 314
<211> 3003
<212> DNA
<213> Homo Sapien
<400> 314
gggaggggc tccgggcgcc gcgcagcaga cctgctccgg ccgcgcgcct 50
cgccgctgtc ctccgggagc ggcagcagta gcccgggcgg cgagggctgg 100
gggttcctcg agactctcag aggggcgcct cccatcggcg cccaccaccc 150
caacetgtte etegegege aetgegetge geeccaggae eegetgeeca 200
acatggattt teteetggeg etggtgetgg tateeteget etaeetgeag 250
gcggccgccg agttcgacgg gaggtggccc aggcaaatag tgtcatcgat 300
tggcctatgt cgttatggtg ggaggattga ctgctgctgg ggctgggctc 350
gccagtcttg gggacagtgt cagcctgtgt gccaaccacg atgcaaacat 400
ggtgaatgta tcgggccaaa caagtgcaag tgtcatcctg gttatgctgg 450
aaaaacctgt aatcaagatc taaatgagtg tggcctgaag ccccggccct 500
gtaagcacag gtgcatgaac acttacggca gctacaagtg ctactgtctc 550
aacggatata tgctcatgcc ggatggttcc tgctcaagtg ccctgacctg 600
```

ctccatggca aactgtcagt atggctgtga tgttgttaaa ggacaaatac 650

ggtgccagtg cccatcccct ggcctgcacc tggctcctga tgggaggacc 700 tgtgtagatg ttgatgaatg tgctacagga agagcctcct gccctagatt 750 taggcaatgt gtcaacactt ttgggagcta catctgcaag tgtcataaag 800 gcttcgatct catgtatatt ggaggcaaat atcaatgtca tgacatagac 850 gaatgctcac ttggtcagta tcagtgcagc agctttgctc gatgttataa 900 cgtacgtggg tcctacaagt gcaaatgtaa agaaggatac cagggtgatg 950 gactgacttg tgtgtatatc ccaaaagtta tgattgaacc ttcaggtcca 1000 attcatgtac caaagggaaa tggtaccatt ttaaagggtg acacaggaaa 1050 taataattgg attcctgatg ttggaagtac ttggtggcct ccgaagacac 1100 catatattcc tcctatcatt accaacaggc ctacttctaa gccaacaaca 1150 agacctacac caaagccaac accaattcct actccaccac caccaccacc 1200 cctgccaaca gagctcagaa cacctctacc acctacaacc ccagaaaggc 1250 caaccaccgg actgacaact atagcaccag ctgccagtac acctccagga 1300gggattacag ttgacaacag ggtacagaca gaccctcaga aacccagagg 1350 agatgtgttc agtgttctgg tacacagttg taattttgac catggacttt 1400 gtggatggat cagggagaaa gacaatgact tgcactggga accaatcagg 1450 gacccagcag gtggacaata tctgacagtg tcggcagcca aagccccagg 1500 gggaaaagct gcacgcttgg tgctacctct cggccgcctc atgcattcag 1550 gggacctgtg cctgtcattc aggcacaagg tgacggggct gcactctggc 1600 acactccagg tgtttgtgag aaaacacggt gcccacggag cagccctgtg 1650 gggaagaaat ggtggccatg gctggaggca aacacagatc accttgcgag 1700 gggctgacat caagagcgaa tcacaaagat gattaaaggg ttggaaaaaa 1750 agatetatga tggaaaatta aaggaaetgg gattattgag eetggagaag 1800 agaagactga ggggcaaacc attgatggtt ttcaagtata tgaagggttg 1850 gcacagagag ggtggcgacc agctgttctc catatgcact aagaatagaa 1900 caagaggaaa ctggcttaga ctagagtata agggagcatt tcttggcagg 1950 ggccattgtt agaatacttc ataaaaaaag aagtgtgaaa atctcagtat 2000 ctctctctct ttctaaaaaa ttagataaaa atttgtctat ttaagatggt 2050 taaagatgtt cttacccaag gaaaagtaac aaattataga atttcccaaa 2100 agatgttttg atcctactag tagtatgcag tgaaaatctt tagaactaaa 2150

taatttggac aaggettaat ttaggeattt ceetettgac eteetaatgg 2200 agagggattg aaaggggaag agcccaccaa atgctgagct cactgaaata 2250 tctctccctt atggcaatcc tagcagtatt aaagaaaaaa ggaaactatt 2300 tattccaaat gagagtatga tggacagata ttttagtatc tcagtaatgt 2350 cctagtgtgg cggtggtttt caatgtttct tcatggtaaa ggtataagcc 2400 tttcatttgt tcaatggatg atgtttcaga ttttttttt tttaagagat 2450 ccttcaagga acacagttca gagagatttt catcgggtgc attctctctg 2500 cttcgtgtgt gacaagttat cttggctgct gagaaagagt gccctgcccc 2550 acaccggcag acctttcctt cacctcatca gtatgattca gtttctctta 2600 tcaattggac tctcccaggt tccacagaac agtaatattt tttgaacaat 2650 aggtacaata gaaggtcttc tgtcatttaa cctggtaaag gcagggctgg 2700 agggggaaaa taaatcatta agcctttgag taacggcaga atatatggct 2750 gtagatecat ttttaatggt teattteett tatggteata taactgeaca 2800 gctgaagatg aaaggggaaa ataaatgaaa attttacttt tcgatgccaa 2850 tgatacattg cactaaactg atggaagaag ttatccaaag tactgtataa 2900 catcttgttt attatttaat gttttctaaa ataaaaaatg ttagtggttt 2950 tccaaatggc ctaataaaaa caattatttg taaataaaaa cactgttagt 3000 aat 3003

<210> 315

<211> 509

<212> PRT

<213> Homo Sapien

<400> 315

Met Asp Phe Leu Leu Ala Leu Val Leu Val Ser Ser Leu Tyr Leu 1 5 10 15

Gln Ala Ala Glu Phe Asp Gly Arg Trp Pro Arg Gln Ile Val 20 25 30

Ser Ser Ile Gly Leu Cys Arg Tyr Gly Gly Arg Ile Asp Cys Cys
35 40 45

Trp Gly Trp Ala Arg Gln Ser Trp Gly Gln Cys Gln Pro Val Cys
50 55 60

Gln Pro Arg Cys Lys His Gly Glu Cys Ile Gly Pro Asn Lys Cys
65 70 75

Lys Cys His Pro Gly Tyr Ala Gly Lys Thr Cys Asn Gln Asp Leu 80 85 90

Asn C	3lu	Cys	Gly	Leu 95	Lys	Pro	Arg	Pro	Cys 100	Lys	His	Arg	Cys	Met 105
Asn T	Thr	Tyr	Gly	Ser 110	Tyr	Lys	Cys	Tyr	Cys 115	Leu	Asn	Gly	Tyr	Met 120
Leu N	Met	Pro	Asp	Gly 125	Ser	Cys	Ser	Ser	Ala 130	Leu	Thr	Cys	Ser	Met 135
Ala A	Asn	Cys	Gln	Tyr 140	Gly	Cys	Asp	Val	Val 145	Lys	Gly	Gln	Ile	Arg 150
Cys (3ln	Cys	Pro	Ser 155	Pro	Gly	Leu	His	Leu 160	Ala	Pro	Asp	Gly	Arg 165
Thr C	Cys	Val	Asp	Val 170	Asp	Glu	Cys	Ala	Thr 175	Gly	Arg	Ala	Ser	Cys 180
Pro A	Arg	Phe	Arg	Gln 185	Cys	Val	Asn	Thr	Phe 190	Gly	Ser	Tyr	Ile	Cys 195
Lys (Cys	His	Lys	Gly 200	Phe	Asp	Leu	Met	Tyr 205	Ile	Gly	Gly	Lys	Tyr 210
Gln (Cys	His	Asp	Ile 215	Asp	Glu	Cys	Ser	Leu 220	Gly	Gln	Tyr	Gln	Cys 225
Ser S	Ser	Phe	Ala	Arg 230	Cys	Tyr	Asn	Val	Arg 235	Gly	Ser	Tyr	Lys	Cys 240
Lys (Cys	Lys	Glu	Gly 245	Tyr	Gln	Gly	Asp	Gly 250	Leu	Thr	Cys	Val	Tyr 255
Ile E	?ro	Lys	Val	Met 260	Ile	Glu	Pro	Ser	Gly 265	Pro	Ile	His	Val	Pro 270
Lys C	Gly	Asn	Gly	Thr 275	Ile	Leu	Lys	Gly	Asp 280	Thr	Gly	Asn	Asn	Asn 285
Trp 1	Ile	Pro	Asp	Val 290	Gly	Ser	Thr	Trp	Trp 295	Pro	Pro	Lys	Thr	Pro 300
Tyr 1	Ile	Pro	Pro	Ile 305	Ile	Thr	Asn	Arg	Pro 310	Thr	Ser	Lys	Pro	Thr 315
Thr A	Arg	Pro	Thr	Pro 320	Lys	Pro	Thr	Pro	Ile 325	Pro	Thr	Pro	Pro	Pro 330
Pro F	Pro	Pro	Leu	Pro 335	Thr	Glu	Leu	Arg	Thr 340	Pro	Leu	Pro	Pro	Thr 345
Thr E	Pro	Glu	Arg	Pro 350	Thr	Thr	Gly	Leu	Thr 355	Thr	Ile	Ala	Pro	Ala 360
Alas	Ser	Thr	Pro	Pro 365	Gly	Gly	Ile	Thr	Val 370	Asp	Asn	Arg	Val	Gln 375
Thr A	4sp	Pro	Gln	Lys	Pro	Arg	Gly	Asp	Val	Phe	Ser	Val	Leu	Val

380 385 39												390		
His Ser Cys Asn Phe Asp His Gly Leu Cys Gly Trp Ile Arg Gl 395 400 40														Glu 405
Lys A	Asp	Asn	Asp	Leu 410	His	Trp	Glu	Pro	Ile 415	Arg	Asp	Pro	Ala	Gly 420
Gly Gln Tyr Leu Thr Val Ser Ala Ala Lys Ala Pro Gly Gly Lys 425 430 435 Ala Ala Arg Leu Val Leu Pro Leu Gly Arg Leu Met His Ser Gly														Lys 435
Ala A	Ala	Arg	Leu	Val 440	Leu	Pro	Leu	Gly	Arg 445	Leu	Met	His	Ser	Gly 450
Asp 1	Leu	Cys	Leu	Ser 455	Phe	Arg	His	Lys	Val 460	Thr	Gly	Leu	His	Ser 465
Gly 7	Thr	Leu	Gln	Val 470	Phe	Val	Arg	Lys	His 475	Gly	Ala	His	Gly	Ala 480
Ala 1	Leu	Trp	Gly	Arg 485	Asn	Gly	Gly	His	Gly 490	Trp	Arg	Gln	Thr	Gln 495
Ile	Thr	Leu	Arg	Gly 500	Ala	Asp	Ile	Lys	Ser 505	Glu	Ser	Gln	Arg	
<210><211><212><212><213>	24 DNA	A	cial	Sequ	ience	<u> </u>								
<220> <223>	Syr	nthet	ic (Oligo	onuc]	Leoti	lde I	Probe	e					
<400> gatg			gctca	agto	je ed	ctg 2	24							,
<210><211><211><212><213>	24 DN	Ą	cial	Sequ	ience	÷								
<220> <223>	Syr	nthet	ic C	Oligo	onuc]	leot:	ide I	Prob€	e		-			
<400> ttgca			aggad	ccac	g ta	acg 2	24							
<211> <212>	<210> 318 <211> 50 <212> DNA <213> Artificial Sequence													
<220> <223>	<220> <223> Synthetic Oligonucleotide Probe													
<400> ctgat			gacct	gtgt	a ga	tgtt	gato	g aat	gtgo	ctac	agga	agag	jcc 5	50

- <210> 319
- <211> 2110
- <212> DNA
- <213> Homo Sapien
- <400> 319

cttctttgaa aaggattatc acctgatcag gttctctctg catttgcccc 50 tttagattgt gaaatgtggc tcaaggtctt cacaactttc ctttcctttg 100 caacaggtgc ttgctcgggg ctgaaggtga cagtgccatc acacactgtc 150 catggcgtca gaggtcaggc cctctaccta cccgtccact atggcttcca 200 cactccagca tcagacatcc agatcatatg gctatttgag agaccccaca 250 caatgcccaa atacttactg ggctctgtga ataagtctgt ggttcctgac 300 ttggaatacc aacacaagtt caccatgatg ccacccaatg catctctgct 350 tatcaaccca ctgcagttcc ctgatgaagg caattacatc gtgaaggtca 400 acattcaggg aaatggaact ctatctgcca gtcagaagat acaagtcacg 450 gttgatgatc ctgtcacaaa gccagtggtg cagattcatc ctccctctgg 500 ggctgtggag tatgtgggga acatgacct gacatgccat gtggaagggg 550 gcactcggct agcttaccaa tggctaaaaa atgggagacc tgtccacacc 600 agctccacct actccttttc tccccaaaac aatacccttc atattgctcc 650 agtaaccaag gaagacattg ggaattacag ctgcctggtg aggaaccctg 700 tcagtgaaat ggaaagtgat atcattatgc ccatcatata ttatggacct 750 tatggacttc aagtgaattc tgataaaggg ctaaaagtag gggaagtgtt 800 tactgttgac cttggagagg ccatcctatt tgattgttct gctgattctc 850 atccccccaa cacctactcc tggattagga ggactgacaa tactacatat 900 atcattaagc atgggcctcg cttagaagtt gcatctgaga aagtagccca 950 gaagacaatg gactatgtgt gctgtgctta caacaacata accggcaggc 1000 aagatgaaac tcatttcaca gttatcatca cttccgtagg actggagaag 1050 cttgcacaga aaggaaaatc attgtcacct ttagcaagta taactggaat 1100 atcactattt ttgattatat ccatgtgtct tctcttccta tggaaaaaat 1150 atcaacccta caaagttata aaacagaaac tagaaggcag gccagaaaca 1200 gaatacagga aagctcaaac attttcaggc catgaagatg ctctggatga 1250 cttcggaata tatgaatttg ttgcttttcc agatgtttct ggtgtttcca 1300 ggattccaag caggtctgtt ccagcctctg attgtgtatc ggggcaagat 1350

ttgcacagta cagtgtatga agttattcag cacatccctq cccagcagca 1400 agaccatcca gagtgaactt tcatgggcta aacagtacat tcgagtgaaa 1450 ttctgaagaa acattttaag gaaaaacagt ggaaaagtat attaatctgg 1500 aatcagtgaa gaaaccagga ccaacacctc ttactcatta ttcctttaca 1550 tgcagaatag aggcatttat gcaaattgaa ctgcaggttt ttcagcatat 1600 acacaatgtc ttgtgcaaca gaaaaacatg ttggggaaat attcctcagt 1650 ggagagtcgt tctcatgctg acggggagaa cgaaagtgac aggggtttcc 1700 tcataagttt tgtatgaaat atctctacaa acctcaatta gttctactct 1750 acactttcac tatcatcaac actgagacta tcctgtctca cctacaaatg 1800 tggaaacttt acattgttcg atttttcaqc aqactttgtt ttattaaatt 1850 tttattagtg ttaagaatgc taaatttatg tttcaatttt atttccaaat 1900 ttctatcttg ttatttgtac aacaaagtaa taaggatggt tgtcacaaaa 1950 acaaaactat gccttctctt ttttttcaat caccagtagt atttttgaga 2000 agacttgtga acacttaagg aaatgactat taaagtctta tttttatttt 2050 tttcaaggaa agatggattc aaataaatta ttctgttttt gcttttaaaa 2100 aaaaaaaaa 2110

- <210> 320
- <211> 450
- <212> PRT
- <213> Homo Sapien
- <400> 320
- Met Trp Leu Lys Val Phe Thr Thr Phe Leu Ser Phe Ala Thr Gly
 1 5 10 15
- Ala Cys Ser Gly Leu Lys Val Thr Val Pro Ser His Thr Val His
 20 25 30
- Gly Val Arg Gly Gln Ala Leu Tyr Leu Pro Val His Tyr Gly Phe
 35 40 45
- His Thr Pro Ala Ser Asp Ile Gln Ile Ile Trp Leu Phe Glu Arg
 50 55 60
- Pro His Thr Met Pro Lys Tyr Leu Leu Gly Ser Val Asn Lys Ser
 65 70 75
- Val Val Pro Asp Leu Glu Tyr Gln His Lys Phe Thr Met Met Pro 80 85 90
- Pro Asn Ala Ser Leu Leu Ile Asn Pro Leu Gln Phe Pro Asp Glu
 95 100 105

Gly	Asn	Tyr	Ile	Val 110	Lys	Val	Asn	Ile	Gln 115	Gly	Asn	Gly	Thr	Leu 120
Ser	Ala	Ser	Gln	Lys 125	Ile	Gln	Val	Thr	Val 130	Asp	Asp	Pro	Val	Thr 135
Lys	Pro	Val	Val	Gln 140	Ile	His	Pro	Pro	Ser 145	Gly	Ala	Val	Glu	Tyr 150
Val	Gly	Asn	Met	Thr 155	Leu	Thr	Cys	His	Val 160	Glu	Gly	Gly	Thr	Arg 165
Leu	Ala	Tyr	Gln	Trp 170	Leu	Lys	Asn	Gly	Arg 175	Pro	Val	His	Thr	Ser 180
Ser	Thr	Tyr	Ser	Phe 185	Ser	Pro	Gln	Asn	Asn 190	Thr	Leu	His	Ile	Ala 195
Pro	Val	Thr	Lys	Glu 200	Asp	Ile	Gly	Asn	Tyr 205	Ser	Cys	Leu	Val	Arg 210
Asn	Pro	Val	Ser	Glu 215	Met	Glu	Ser	Asp	Ile 220	Ile	Met	Pro	Ile	Ile 225
Tyr	Tyr	Gly	Pro	Tyr 230	Gly	Leu	Gln	Val	Asn 235	Ser	Asp	Lys	Gly	Leu 240
Lys	Val	Gly	Glu	Val 245	Phe	Thr	Val	Asp	Leu 250	Gly	Glu	Ala	Ile	Leu 255
Phe	Asp	Cys	Ser	Ala 260	Asp	Ser	His	Pro	Pro 265	Asn	Thr	Tyr	Ser	Trp 270
Ile	Arg	Arg	Thr	Asp 275	Asn	Thr	Thr	Tyr	Ile 280	Ile	Lys	His	Gly	Pro 285
Arg	Leu	Glu	Val	Ala 290	Ser	Glu	Lys	Val	Ala 295	Gln	Lys	Thr	Met	Asp 300
Tyr	Val	Cys	Cys	Ala 305	Tyr	Asn	Asn	Ile	Thr 310	Gly	Arg	Gln	Asp	Glu 315
Thr	His	Phe	Thr	Val 320	Ile	Ile	Thr	Ser	Val 325	Gly	Leu	Glu	Lys	Leu 330
Ala	Gln	Lys	Gly	Lys 335	Ser	Leu	Ser	Pro	Leu 340	Ala	Ser	Ile	Thr	Gly 345
Ile	Ser	Leu	Phe	Leu 350	Ile	Ile	Ser,	Met	Cys 355	Leu	Leu	Phe	Leu	Trp 360
Lys	Lys	Tyr	Gln	Pro 365	Tyr	Lys	Val	Ile	Lys 370	Gln	Lys	Leu	Glu	Gly 375
Arg	Pro	Glu	Thr	Glu 380	Tyr	Arg	Lys	Ala	Gln 385	Thr	Phe	Ser	Gly	His 390
Glu					_			_	_	_		1	_	

```
Pro Asp Val Ser Gly Val Ser Arg Ile Pro Ser Arg Ser Val Pro
                                                          420
Ala Ser Asp Cys Val Ser Gly Gln Asp Leu His Ser Thr Val Tyr
Glu Val Ile Gln His Ile Pro Ala Gln Gln Asp His Pro Glu
<210> 321
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 321
gatcctgtca caaagccagt ggtgc 25
<210> 322
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 322
cactgacagg gttcctcacc cagg 24
<210> 323
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 323
ctccctctgg gctgtggagt atgtggggaa catgaccctg acatg 45
<210> 324
<211> 2397
<212> DNA
<213> Homo Sapien
<400> 324
gcaagcggcg aaatggcgcc ctccgggagt cttgcagttc ccctggcagt 50
cctggtgctg ttgctttggg gtgctccctg gacgcacggg cggcggagca 100
acgttegegt catcacggac gagaactgga gagaactgct ggaaggagac 150
tggatgatag aattttatgc cccgtggtgc cctgcttgtc aaaatcttca 200
```

accggaatgg gaaagttttg ctgaatgggg agaagatctt gaggttaata 250

ttgcgaaagt agatgtcaca gagcagccag gactgagtgg acggtttatc 300 ataactgctc ttcctactat ttatcattgt aaagatggtg aatttaggcg 350 ctatcagggt ccaaggacta agaaggactt cataaacttt ataagtgata 400 aagagtggaa gagtattgag cccgtttcat catggtttgg tccaggttct 450 gttctgatga gtagtatgtc agcactcttt cagctatcta tgtggatcag 500 gacgtgccat aactacttta ttgaagacct tggattgcca gtgtggggat 550 catatactgt ttttgcttta gcaactctgt tttccggact gttattagga 600 ctctgtatga tatttgtggc agattgcctt tgtccttcaa aaaggcgcag 650 accacageca tacccatace etteaaaaaa attattatea gaatetgeae 700 aacctttgaa aaaagtggag gaggaacaag aggcggatga agaagatgtt 750 tcagaagaag aagctgaaag taaagaagga acaaacaaag actttccaca 800 gaatgccata agacaacgct ctctgggtcc atcattggcc acagataaat 850 cctagttaaa ttttatagtt atcttaatat tatgattttg ataaaaacag 900 aagattgatc attttgtttg gtttgaagtg aactgtgact tttttgaata 950 ttgcagggtt cagtctagat tgtcattaaa ttgaagagtc tacattcaga 1000 acataaaagc actaggtata caagtttgaa atatgattta agcacagtat 1050 gatggtttaa atagttctct aatttttgaa aaatcgtgcc aagcaataag 1100 atttatgtat atttgtttaa taataaccta tttcaagtct gagttttgaa 1150 aatttacatt teecaagtat tgeattattg aggtatttaa gaagattatt 1200 ttagagaaaa atatttetea tttgatataa tttttetetg ttteaetgtg 1250 tgaaaaaaag aagatatttc ccataaatgg gaagtttgcc cattgtctca 1300 agaaatgtgt atttcagtga caatttcgtg gtctttttag aggtatattc 1350 caaaatttcc ttgtattttt aggttatgca actaataaaa actaccttac 1400 attaattaat tacagttttc tacacatggt aatacaggat atgctactga 1450 tttaggaagt ttttaagttc atggtattct cttgattcca acaaagtttg 1500 attttctctt gtatttttct tacttactat gggttacatt ttttattttt 1550 caaattggat gataatttct tggaaacatt ttttatgttt tagtaaacag 1600 tatttttttg ttgtttcaaa ctgaagttta ctgagagatc catcaaattg 1650 aacaatctgt tgtaatttaa aattttggcc acttttttca gattttacat 1700 cattettget gaacttcaac ttgaaattgt tttttttttc tttttggatg 1750

<400> 325

Met Ala Pro Ser Gly Ser Leu Ala Val Pro Leu Ala Val Leu Val 1 5 10 15

Leu Leu Trp Gly Ala Pro Trp Thr His Gly Arg Arg Ser Asn 20 25 30

Val Arg Val Ile Thr Asp Glu Asn Trp Arg Glu Leu Leu Glu Gly
35 40 45

Asp Trp Met Ile Glu Phe Tyr Ala Pro Trp Cys Pro Ala Cys Gln
50 55 60

Asn Leu Gln Pro Glu Trp Glu Ser Phe Ala Glu Trp Gly Glu Asp
65 70 75

Leu Glu Val Asn Ile Ala Lys Val Asp Val Thr Glu Gln Pro Gly
80 85 90

Leu Ser Gly Arg Phe Ile Ile Thr Ala Leu Pro Thr Ile Tyr His
95 100 105

Cys Lys Asp Gly Glu Phe Arg Arg Tyr Gln Gly Pro Arg Thr Lys 110 115 120

Lys Asp Phe Ile Asn Phe Ile Ser Asp Lys Glu Trp Lys Ser Ile 125 130 135

<210> 325

<211> 280

<212> PRT

<213> Homo Sapien

Glu Pro Val Ser Ser Trp Phe Gly Pro Gly Ser Val Leu Met Ser 140 145 Ser Met Ser Ala Leu Phe Gln Leu Ser Met Trp Ile Arg Thr Cys His Asn Tyr Phe Ile Glu Asp Leu Gly Leu Pro Val Trp Gly Ser Tyr Thr Val Phe Ala Leu Ala Thr Leu Phe Ser Gly Leu Leu Gly Leu Cys Met Ile Phe Val Ala Asp Cys Leu Cys Pro Ser Lys 205 Arg Arg Pro Gln Pro Tyr Pro Tyr Pro Ser Lys Leu Leu Ser Glu Ser Ala Gln Pro Leu Lys Lys Val Glu Glu Glu Gln Glu Ala Asp Glu Glu Asp Val Ser Glu Glu Glu Ala Glu Ser Lys Glu Gly Thr Asn Lys Asp Phe Pro Gln Asn Ala Ile Arg Gln Arg Ser Leu Gly Pro Ser Leu Ala Thr Asp Lys Ser 275 <210> 326 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 326 tgaggtgggc aagcggcgaa atg 23 <210> 327 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 327

tatgtggatc aggacgtgcc 20

<210> 328

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

```
<223> Synthetic Oligonucleotide Probe
<400> 328
tgcagggttc agtctagatt g 21
<210> 329
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 329
ttgaaggaca aaggcaatct gccac 25
<210> 330
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 330
ggagtettge agtteeeetg geagteetgg tgetgttget ttggg 45
<210> 331
<211> 2168
<212> DNA
<213> Homo Sapien
<400> 331
gegagtgtee agetgeggag accegtgata attegttaac taatteaaca 50
aacgggaccc ttctgtgtgc cagaaaccgc aagcagttgc taacccagtg 100
ggacaggcgg attggaagag cgggaaggtc ctggcccaga gcagtgtgac 150
acttecetet gtgaccatga aactetgggt gtetgeattg etgatggeet 200
ggtttggtgt cctgagctgt gtgcaggccg aattcttcac ctctattggg 250
cacatgactg acctgattta tgcagagaaa gagctggtgc agtctctgaa 300
agagtacatc cttgtggagg aagccaagct ttccaagatt aagagctggg 350
ccaacaaaat ggaagccttg actagcaagt cagctgctga tgctgagggc 400
 tacctggctc accctgtgaa tgcctacaaa ctggtgaagc ggctaaacac 450
agactggcct gcgctggagg accttgtcct gcaggactca gctgcaggtt 500
ttatcgccaa cctctctgtg cagcggcagt tcttccccac tgatgaggac 550
gagataggag ctgccaaagc cctgatgaga cttcaggaca catacaggct 600
ggacccaggc acaatttcca gaggggaact tccaggaacc aagtaccagg 650
```

caatgctgag tgtggatgac tgctttggga tgggccgctc ggcctacaat 700

gaaggggact attatcatac ggtgttgtgg atggagcagg tgctaaagca 750 gcttgatgcc ggggaggagg ccaccacaac caagtcacag gtgctggact 800 acctcagcta tgctgtcttc cagttgggtg atctgcaccg tgccctggag 850 ctcacccgcc gcctgctctc ccttgaccca agccacgaac gagctggagg 900 gaatctgcgg tactttgagc agttattgga ggaagagaga gaaaaaacgt 950 taacaaatca gacagaagct gagctagcaa ccccagaagg catctatgag 1000 aggeetgtgg actaectgee tgagagggat gtttaegaga geetetgteg 1050 tggggagggt gtcaaactga caccccgtag acagaagagg cttttctgta 1100 ggtaccacca tggcaacagg gccccacagc tgctcattgc ccccttcaaa 1150 gaggaggacg agtgggacag cccgcacatc gtcaggtact acgatgtcat 1200 gtctgatgag gaaatcgaga ggatcaagga gatcgcaaaa cctaaacttg 1250 cacgagecae egttegtgat eccaagacag gagteeteae tgtegecage 1300 taccgggttt ccaaaagctc ctggctagag gaagatgatg accctgttgt 1350 ggcccgagta aatcgtcgga tgcagcatat cacagggtta acagtaaaga 1400 ctgcagaatt gttacaggtt gcaaattatg gagtgggagg acagtatgaa 1450 ccgcacttcg acttctctag gcgacctttt gacagcggcc tcaaaacaga 1500 ggggaatagg ttagcgacgt ttcttaacta catgagtgat gtagaagctg 1550 gtggtgccac cgtcttccct gatctggggg ctgcaatttg gcctaagaag 1600 ggtacagctg tgttctggta caacctcttg cggagcgggg aaggtgacta 1650 ccgaacaaga catgctgcct gccctgtgct tgtgggctgc aagtgggtct 1700 ccaataagtg gttccatgaa cgaggacagg agttcttgag accttgtgga 1750 tcaacagaag ttgactgaca tccttttctg tccttcccct tcctggtcct 1800 tcagcccatg tcaacgtgac agacaccttt gtatgttcct ttgtatgttc 1850 ctatcaggct gatttttgga gaaatgaatg tttgtctgga gcagagggag 1900 accatactag ggcgactcct gtgtgactga agtcccagcc cttccattca 1950 gcctgtgcca tccctggccc caaggctagg atcaaagtgg ctgcagcaga 2000 gttagctgtc tagcgcctag caaggtgcct ttgtacctca ggtgttttag 2050 gtgtgagatg tttcagtgaa ccaaagttct gataccttgt ttacatgttt 2100 gtttttatgg catttctatc tattgtggct ttaccaaaaa ataaaatgtc 2150 cctaccagaa aaaaaaaa 2168

```
<210> 332
```

<211> 533

<212> PRT

<213> Homo Sapien

<400> 332

Met Lys	Leu Trp Val	Ser Ala	Leu Leu Me	et Ala	Trp Ph	e Gly Val
1	5		1	LO		15

Leu Ser Cys Val Gln Ala Glu Phe Phe Thr Ser Ile Gly His Met
20 25 30

Thr Asp Leu Ile Tyr Ala Glu Lys Glu Leu Val Gln Ser Leu Lys
35 40 45

Glu Tyr Ile Leu Val Glu Glu Ala Lys Leu Ser Lys Ile Lys Ser
50 55 60

Trp Ala Asn Lys Met Glu Ala Leu Thr Ser Lys Ser Ala Ala Asp
65 70 75

Ala Glu Gly Tyr Leu Ala His Pro Val Asn Ala Tyr Lys Leu Val 80 85 90

Lys Arg Leu Asn Thr Asp Trp Pro Ala Leu Glu Asp Leu Val Leu 95 100 105

Gln Asp Ser Ala Ala Gly Phe Ile Ala Asn Leu Ser Val Gln Arg

Gln Phe Phe Pro Thr Asp Glu Asp Glu Ile Gly Ala Ala Lys Ala 125 130 135

Leu Met Arg Leu Gln Asp Thr Tyr Arg Leu Asp Pro Gly Thr Ile 140 145 150

Ser Arg Gly Glu Leu Pro Gly Thr Lys Tyr Gln Ala Met Leu Ser 155 160 165

Val Asp Asp Cys Phe Gly Met Gly Arg Ser Ala Tyr Asn Glu Gly
170 175 180

Asp Tyr Tyr His Thr Val Leu Trp Met Glu Gln Val Leu Lys Gln
185 190 195

Leu Asp Ala Gly Glu Glu Ala Thr Thr Lys Ser Gln Val Leu 200 205 210

Asp Tyr Leu Ser Tyr Ala Val Phe Gln Leu Gly Asp Leu His Arg 215 220 225

Ala Leu Glu Leu Thr Arg Arg Leu Leu Ser Leu Asp Pro Ser His
230 235 240

Glu Arg Ala Gly Gly Asn Leu Arg Tyr Phe Glu Gln Leu Leu Glu

Glu Glu Arg Glu Lys Thr Leu Thr Asn Gln Thr Glu Ala Glu Leu

					260					265					270
	Ala	Thr	Pro	Glu	Gly 275	Ile	Tyr	Glu	Arg	Pro 280	Val	Asp	Tyr	Leu	Pro 285
	Glu	Arg	Asp	Val	Tyr 290	Glu	Ser	Leu	Cys	Arg 295	Gly	Glu	Gly	Val	Lys 300
	Leu	Thr	Pro	Arg	Arg 305	Gln	Lys	Arg	Leu	Phe 310	Cys	Arg	Tyr	His	His 315
	Gly	Asn	Arg	Ala	Pro 320	Gln	Leu	Leu	Ile	Ala 325	Pro	Phe	Lys	Glu	Glu 330
	Asp	Glu	Trp	Asp	Ser 335	Pro	His	Ile	Val	Arg 340	Tyr	Tyr	Asp	Val	Met 345
	Ser	Asp	Glu	Glu	Ile 350	Glu	Arg	Ile	Lys	Glu 355	Ile	Ala	Lys	Pro	Lys 360
	Leu	Ala	Arg	Ala	Thr 365	Val	Arg	Asp	Pro	Lys 370	Thr	Gly	Val	Leu	Thr 375
	Val	Ala	Ser	Tyr	Arg 380	Val	Ser	Lys	Ser	Ser 385	Trp	Leu	Glu	Glu	Asp 390
	Asp	Asp	Pro	Val	Val 395	Ala	Arg	Val	Asn	Arg 400	Arg	Met	Gln	His	Ile 405
	Thr	Gly	Leu	Thr	Val 410	Lys	Thr	Ala	Glu	Leu 415	Leu	Gln	Val	Ala	Asn 420
	Tyr	Gly	Val	Gly	Gly 425	Gln	Tyr	Glu	Pro	His 430	Phe	Asp	Phe	Ser	Arg 435
	Arg	Pro	Phe	Asp	Ser 440	Gly	Leu	Lys	Thr	Glu 445	Gly	Asn	Arg	Leu	Ala 450
	Thr	Phe	Leu	Asn	Tyr 455	Met	Ser	Asp	Val	Glu 460	Ala	Gly	Gly	Ala	Thr 465
	Val	Phe	Pro	Asp	Leu 470	Gly	Ala	Ala	Ile	Trp 475	Pro	Lys	Lys	Gly	Thr 480
	Ala	Val	Phe	Trp	Tyr 485	Asn	Leu	Leu	Arg	Ser 490	Gly	Glu	Gly	Asp	Tyr 495
	Arg	Thr	Arg	His	Ala 500	Ala	Cys	Pro	Val	Leu 505	Val	Gly	Cys	Lys	Trp 510
	Val	Ser	Asn	Lys	Trp 515	Phe	His	Glu	Arg	Gly 520	Gln	Glu	Phe	Leu	Arg 525
	Pro	Cys	Gly	Ser	Thr 530	Glu	Val	Asp							
<	<210>	> 333	3												

<210> 333 <211> 18 <212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 333
 ccaggcacaa tttccaga 18
<210> 334
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 334
ggacccttct gtgtgccag 19
<210> 335
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 335
ggtctcaaga actcctgtc 19
<210> 336
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 336
acactcagca ttgcctggta cttg 24
<210> 337
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 337
gggcacatga ctgacctgat ttatgcagag aaagagctgg tgcag 45
<210> 338
<211> 2789
<212> DNA
<213> Homo Sapien
<400> 338
```

gcagtattga gttttacttc ctcctctttt tagtggaaga cagaccataa 50

tcccagtgtg agtgaaattg attgtttcat ttattaccgt tttggctggg 100 ggttagttcc gacaccttca cagttgaaga gcaggcagaa ggagttgtga 150 agacaggaca atcttcttgg ggatgctggt cctggaagcc agcgggcctt 200 gctctgtctt tggcctcatt gaccccaggt tctctggtta aaactgaaag 250 cctactactg gcctggtgcc catcaatcca ttgatccttg aggctgtgcc 300 cctggggcac ccacctggca gggcctacca ccatgcgact gagctccctg 350 ttggctctgc tgcggccagc gcttcccctc atcttagggc tgtctctggg 400 gtgcagcctg agcctcctgc gggtttcctg gatccagggg gagggagaag 450 atccctgtgt cgaggctgta ggggagcgag gagggccaca gaatccagat 500 tcgagagctc ggctagacca aagtgatgaa gacttcaaac cccggattgt 550 cccctactac agggacccca acaagcccta caagaaggtg ctcaggactc 600 ggtacatcca gacagagetg ggetecegtg ageggttget ggtggetgte 650 ctgacctccc gagctacact gtccactttg gccgtggctg tgaaccgtac 700 ggtggcccat cacttccctc ggttactcta cttcactggg cagcgggggg 750 cccgggctcc agcagggatg caggtggtgt ctcatgggga tgagcggccc 800 gcctggctca tgtcagagac cctgcgccac cttcacacac actttggggc 850 cgactacgac tggttcttca tcatgcagga tgacacatat gtgcaggccc 900 cccgcctggc agcccttgct ggccacctca gcatcaacca agacctgtac 950 ttaggccggg cagaggagtt cattggcgca ggcgagcagg cccggtactg 1000 tcatgggggc tttggctacc tgttgtcacg gagtctcctg cttcgtctgc 1050 ggccacatct ggatggctgc cgaggagaca ttctcagtgc ccgtcctgac 1100 gagtggcttg gacgctgcct cattgactct ctgggcgtcg gctgtgtctc 1150 acagcaccag gggcagcagt atcgctcatt tgaactggcc aaaaataggg 1200 accetgagaa ggaagggage teggetttee tgagtgeett egeegtgeae 1250 cctgtctccg aaggtaccct catgtaccgg ctccacaaac gcttcagcgc 1300 tctggagttg gagcgggctt acagtgaaat agaacaactg caggctcaga 1350 teeggaaeet gaeegtgetg acceeegaag gggaggeagg getgagetgg 1400 cccgttgggc tccctgctcc tttcacacca cactctcgct ttgaggtgct 1450 gggctgggac tacttcacag agcagcacac cttctcctgt gcagatgggg 1500 ctcccaagtg cccactacag ggggctagca gggcggacgt gggtgatgcg 1550

ttggagactg ccctggagca gctcaatcgg cgctatcagc cccgcctgcg 1600 cttccagaag cagcgactgc tcaacggcta tcggcgcttc gacccagcac 1650 ggggcatgga gtacaccctg gacctgctgt tggaatgtgt gacacagcgt 1700 gggcaccggc gggccctggc tcgcagggtc agcctgctgc ggccactgag 1750 ccgggtggaa atcctaccta tgccctatgt cactgaggcc acccgagtgc 1800 agetggtget gecaeteetg gtggetgaag etgetgeage eeeggettte 1850 ctcgaggcgt ttgcagccaa tgtcctggag ccacgagaac atgcattgct 1900 caccetgttg ctggtctacg ggccacgaga aggtggccgt ggagetccag 1950 acceatttet tggggtgaag getgeageag eggagttaga gegaeggtae 2000 cctgggacga ggctggcctg gctcgctgtg cgagcagagg ccccttccca 2050 ggtgcgactc atggacgtgg tctcgaagaa gcaccctgtg gacactctct 2100 tetteettae caccgtgtgg acaaggeetg ggeecgaagt ceteaacege 2150 tgtcgcatga atgccatctc tggctggcag gccttctttc cagtccattt 2200 ccaggagttc aatcctgccc tgtcaccaca gagatcaccc ccagggcccc 2250 cgggggctgg ccctgaccc ccctccctc ctggtgctga cccctcccgg 2300 ggggctccta taggggggag atttgaccgg caggcttctg cggagggctg 2350 cttctacaac gctgactacc tggcggcccg agcccggctg gcaggtgaac 2400 tggcaggcca ggaagaggag gaagccctgg aggggctgga ggtgatggat 2450 gttttcctcc ggttctcagg gctccacctc tttcgggccg tagagccagg 2500 gctggtgcag aagttctccc tgcgagactg cagcccacgg ctcagtgaag 2550 aactctacca ccgctgccgc ctcagcaacc tggaggggct agggggccgt 2600 gcccagctgg ctatggctct ctttgagcag gagcaggcca atagcactta 2650 gcccgcctgg gggccctaac ctcattacct ttcctttgtc tgcctcagcc 2700 ccaggaaggg caaggcaaga tggtggacag atagagaatt gttgctgtat 2750 tttttaaata tgaaaatgtt attaaacatg tcttctgcc 2789

<210> 339

<211> 772

<212> PRT

<213> Homo Sapien

<400> 339

Met Arg Leu Ser Ser Leu Leu Ala Leu Leu Arg Pro Ala Leu Pro 1 10 15

Leu	Ile	Leu	Gly	Leu 20	Ser	Leu	Gly	Cys	Ser 25	Leu	Ser	Leu	Leu	Arg 30
Val	Ser	Trp	Ile	Gln 35	Gly	Glu	Gly	Glu	Asp 40	Pro	Cys	Val	Glu	Ala 45
Val	Gly	Glu	Arg	Gly 50	Gly	Pro	Gln	Asn	Pro 55	Asp	Ser	Arg	Ala	Arg 60
Leu	Asp	Gln	Ser	Asp 65	Glu	Asp	Phe	Lys	Pro 70	Arg	Ile	Val	Pro	Tyr 75
Tyr	Arg	Asp	Pro	Asn 80	Lys	Pro	Tyr	Lys	Lys 85	Val	Leu	Arg	Thr	Arg 90
Tyr	Ile	Gln	Thr	Glu 95	Leu	Gly	Ser	Arg	Glu 100	Arg	Leu	Leu	Val	Ala 105
Val	Leu	Thr	Ser	Arg 110	Ala	Thr	Leu	Ser	Thr 115	Leu	Ala	Val	Ala	Val 120
Asn	Arg	Thr	Val	Ala 125	His	His	Phe	Pro	Arg 130		Leu	Tyr	Phe	Thr 135
Gly	Gln	Arg	Gly	Àla 140	Arg	Ala	Pro	Ala	Gly 145	Met	Gln	Val	Val	Ser 150
His	Gly	Asp	Glu	Arg 155	Pro	Ala	Trp	Leu	Met 160	Ser	Glu	Thr	Leu	Arg 165
His	Leu	His	Thr	His 170	Phe	Gly	Ala	Asp	Tyr 175	Asp	Trp	Phe	Phe	Ile 180
Met	Gln	Asp	Asp	Thr 185	Tyr	Val	Gln	Ala	Pro 190	Arg	Leu	Ala	Ala	Leu 195
Ala	Gly	His	Leu	Ser 200	Ile	Asn	Gln	Asp	Leu 205	Tyr	Leu	Gly	Arg	Ala 210
Glu	Glu	Phe	Ile	Gly 215	Ala	Gly	Glu	Gln	Ala 220	Arg	Tyr	Cys	His	Gly 225
Gly	Phe	Gly	Tyr	Leu 230	Leu	Ser	Arg	Ser	Leu 235	Leu	Leu	Arg	Leu	Arg 240
Pro	His	Leu	Asp	Gly 245	Cys	Arg	Gly	Asp	Ile 250	Leu	Ser	Ala	Arg	Pro 255
Asp	Glu	Trp	Leu	Gly 260	Arg	Cys	Leu	Ile	Asp 265	Ser	Leu	Gly	Val	Gly 270
Cys	Val	Ser	Gln	His 275	Gln	Gly	Gln	Gln	Tyr 280	Arg	Ser	Phe	Glu	Leu 285
Ala	Lys	Asn	Arg	Asp 290	Pro	Glu	Lys	Glu	Gly 295	Ser	Ser	Ala	Phe	Leu 300
Ser	Ala	Phe	Ala	Val 305	His	Pro	Val	Ser	Glu 310	Gly	Thr	Leu	Met	Tyr 315

Arg	Leu	His	Lys	Arg 320	Phe	Ser	Ala	Leu	Glu 325	Leu	Glu	Arg	Ala	Tyr 330
Ser	Glu	Ile	Glu	Gln 335	Leu	Gln	Ala	Gln	Ile 340	Arg	Asn	Leu	Thr	Val 345
Leu	Thr	Pro	Glu	Gly 350	Glu	Ala	Gly	Leu	Ser 355	Trp	Pro	Val	Gly	Leu 360
Pro	Ala	Pro	Phe	Thr 365	Pro	His	Ser	Arg	Phe 370	Glu	Val	Leu	Gly	Trp 375
Asp	Tyr	Phe	Thr	Glu 380	Gln	His	Thr	Phe	Ser 385	Cys	Ala	Asp	Gly	Ala 390
Pro	Lys	Cys	Pro	Leu 395	Gln	Gly	Ala	Ser	Arg 400	Ala	Asp	Val	Gly	Asp 405
Ala	Leu	Glu	Thr	Ala 410	Leu	Glu	Gln	Leu	Asn 415	Arg	Arg	Tyr,	Gln	Pro 420
Arg	Leu	Arg	Phe	Gln 425	Lys	Gln	Arg	Leu	Leu 430	Asn	Gly	Tyr	Arg	Arg 435
Phe	Asp	Pro	Ala	Arg 440	Gly	Met	Glu	Tyr	Thr 445	Leu	Asp	Leu	Leu	Leu 450
Glu	Cys	Val	Thr	Gln 455	Arg	Gly	His	Arg	Arg 460	Ala	Leu	Ala	Arg	Arg 465
Val	Ser	Leu	Leu	Arg 470	Pro	Leu	Ser	Arg	Val 475	Glu	Ile	Leu	Pro	Met 480
Pro	Tyr	Val	Thr	Glu 485	Ala	Thr	Arg	Val	Gln 490	Leu	Val	Leu	Pro	Leu 495
Leu	Val	Ala	Glu	Ala 500	Ala	Ala	Ala	Pro	Ala 505	Phe	Leu	Glu	Ala	Phe 510
Ala	Ala	Asn	Val	Leu 515	Glu	Pro	Arg	Glu	His 520	Ala	Leu	Leu	Thr	Leu 525
Leu	Leu	Val	Tyr	Gly 530	Pro	Arg	Glu	Gly	Gly 535	Arg	Gly	Ala	Pro	Asp 540
Pro	Phe	Leu	Gly	Val 545	Lys	Ala	Ala	Ala	Ala 550	Glu	Leu	Glu	Arg	Arg 555
Tyr	Pro	Gly	Thr	Arg 560	Leu	Ala	Trp	Leu	Ala 565	Val	Arg	Ala	Glu	Ala 570
Pro	Ser	Gln	Val	Arg 575	Leu	Met	Asp	Val	Val 580	Ser	Lys	Lys	His.	Pro 585
Val	Asp	Thr	Leu	Phe 590	Phe	Leu	Thr	Thr	Val 595	Trp	Thr	Arg	Pro	Gly 600
Pro	Glu	Val	Leu	Asn	Arg	Cys	Arg	Met	Asn	Ala	Ile	Ser	Gly	Trp

605 610 615 Gln Ala Phe Phe Pro Val His Phe Gln Glu Phe Asn Pro Ala Leu 625 Ser Pro Gln Arg Ser Pro Pro Gly Pro Pro Gly Ala Gly Pro Asp 645 Pro Pro Ser Pro Pro Gly Ala Asp Pro Ser Arg Gly Ala Pro Ile Gly Gly Arg Phe Asp Arg Gln Ala Ser Ala Glu Gly Cys Phe Tyr 675 Asn Ala Asp Tyr Leu Ala Ala Arg Ala Arg Leu Ala Gly Glu Leu Ala Gly Gln Glu Glu Glu Ala Leu Glu Gly Leu Glu Val Met Asp Val Phe Leu Arg Phe Ser Gly Leu His Leu Phe Arg Ala Val Glu Pro Gly Leu Val Gln Lys Phe Ser Leu Arg Asp Cys Ser Pro 725 Arg Leu Ser Glu Glu Leu Tyr His Arg Cys Arg Leu Ser Asn Leu 745 750 Glu Gly Leu Gly Gly Arg Ala Gln Leu Ala Met Ala Leu Phe Glu 755 760 765 Gln Glu Gln Ala Asn Ser Thr 770

<210> 340

<211> 1572

<212> DNA

<213> Homo Sapien

<400> 340

cggagtggtg cgccaacgtg agaggaaacc cgtgcgcgc tgcgctttcc 50
tgtccccaag ccgttctaga cgcgggaaaa atgctttctg aaagcagctc 100
ctttttgaag ggtgtgatgc ttggaagcat tttctgtgct ttgatcacta 150
tgctaggaca cattaggatt ggtcatggaa atagaatgca ccaccatgag 200
catcatcacc tacaagctcc taacaaagaa gatatcttga aaatttcaga 250
ggatgagcgc atggagctca gtaagagctt tcgagtatac tgtattatcc 300
ttgtaaaacc caaagatgtg agtctttggg ctgcagtaaa ggagacttgg 350
accaaacact gtgacaaagc agagttcttc agttctgaaa atgttaaagt 400
gtttgagtca attaatatgg acacaaatga catgtggtta atgatgagaa 450

aagcttacaa atacgccttt qataaqtata qaqaccaata caactqgttc 500 ttccttgcac gccccactac gtttgctatc attgaaaacc taaagtattt 550 tttqttaaaa aaqqatccat cacaqccttt ctatctaqqc cacactataa 600 aatctggaga ccttgaatat gtgggtatgg aaggaggaat tgtcttaagt 650 gtagaatcaa tgaaaagact taacagcctt ctcaatatcc cagaaaagtg 700 tcctgaacag ggagggatga tttggaagat atctgaagat aaacagctag 750 cagtttgcct gaaatatgct ggagtatttg cagaaaatgc agaagatgct 800 gatggaaaag atgtatttaa taccaaatct gttgggcttt ctattaaaga 850 ggcaatgact tatcacccca accaggtagt agaaggctgt tgttcagata 900 tggctgttac ttttaatgga ctgactccaa atcagatgca tgtgatgatg 950 tatggggtat accgccttag ggcatttggg catattttca atgatgcatt 1000 ggttttctta cctccaaatg gttctgacaa tgactgagaa gtggtagaaa 1050 agogtgaata tgatotttgt ataggaogtg tgttgtcatt atttgtagta 1100 gtaactacat atccaataca gctgtatgtt tctttttctt ttctaatttg 1150 gtggcactgg tataaccaca cattaaagtc agtagtacat ttttaaatga 1200 gggtggtttt tttctttaaa acacatgaac attgtaaatg tgttggaaag 1250 aagtgtttta agaataataa ttttgcaaat aaactattaa taaatattat 1300 atgtgataaa ttctaaatta tgaacattag aaatctgtgg ggcacatatt 1350 tttgctgatt ggttaaaaaa ttttaacagg tctttagcgt tctaagatat 1400 gcaaatgata tetetagttg tgaatttgtg attaaagtaa aaettttage 1450 tgtgtgttcc ctttacttct aatactgatt tatgttctaa gcctccccaa 1500 gttccaatgg atttgccttc tcaaaatgta caactaagca actaaagaaa 1550 attaaagtga aagttgaaaa at 1572

- <210> 341
- <211> 318
- <212> PRT
- <213> Homo Sapien
- <400> 341
- Met Leu Ser Glu Ser Ser Ser Phe Leu Lys Gly Val Met Leu Gly
 1 5 10 15
- Ser Ile Phe Cys Ala Leu Ile Thr Met Leu Gly His Ile Arg Ile 20 25 30
- Gly His Gly Asn Arg Met His His His Glu His His Leu Gln
 35 40 45

Ala	Pro	Asn	Lys	Glu 50	Asp	Ile	Leu	Lys	Ile 55	Ser	Glu	Asp	Glu	Arg 60
Met	Glu	Leu	Ser	Lys 65	Ser	Phe	Arg	Val	Tyr 70	Cys	Ile	Ile	Leu	Val 75
Lys	Pro	Lys	Asp	Val 80	Ser	Leu	Trp	Ala	Ala 85	Val	Lys	Glu	Thr	Trp 90
Thr	Lys	His	Cys	Asp 95	Lys	Ala	Glu	Phe	Phe 100	Ser	Ser	Glu	Asn	Val 105
Lys	Val	Phe	Glu	Ser 110	Ile	Asn	Met	Asp	Thr 115	Asn	Asp	Met	Trp	Leu 120
Met	Met	Arg	Lys	Ala 125	Tyr	Lys	Tyr	Ala	Phe 130	Asp	Lys	Tyr	Arg	Asp 135
Gln	Tyr	Asn	Trp	Phe 140	Phe	Leu	Ala	Arg	Pro 145	Thr	Thr	Phe	Ala	Ile 150
Ile	Glu	Asn	Leu	Lys 155	Tyr	Phe	Leu	Leu	Lys 160	Lys	Asp	Pro	Ser	Gln 165
Pro	Phe	Tyr	Leu	Gly 170	His	Thr	Ile	Lys	Ser 175	Gly	Asp	Leu	Glu	Tyr 180
Val	Gly	Met	Glu	Gly 185	Gly	Ile	Val	Leu	Ser 190	Val	Glu	Ser	Met	Lys 195
Arg	Leu	Asn	Ser	Leu 200	Leu	Asn	Ile	Pro	Glu 205	Lys	Сув	Pro	Glu	Gln 210
Gly	Gly	Met	Ile	Trp 215	Lys	Ile	Ser	Glu	Asp 220	Lys	Gln	Leu	Ala	Val 225
Cys	Leu	Lys	Tyr	Ala 230	Gly	Val	Phe	Ala	Glu 235	Asn	Ala	Glu	Asp	Ala 240
Asp	Gly	Lys	Asp	Val 245	Phe	Asn	Thr	Lys	Ser 250	Val	Gly	Leu	Ser	Ile 255
Lys	Glu	Ala	Met	Thr 260	Tyr	His	Pro	Asn	Gln 265	Val	Val	Glu	Gly	Cys 270
Cys	Ser	Asp	Met	Ala 275	Val	Thr	Phe	Asn	Gly 280	Leu	Thr	Pro	Asn	Gln 285
Met	His	Val	Met	Met 290	Tyr	Gly	Val	Tyr	Arg 295	Leu	Arg	Ala	Phe	Gly 300
His	Ile	Phe	Asn	Asp 305	Ala	Leu	Val	Phe	Leu 310	Pro	Pro	Asn	Gly	Ser 315
_	_	_												

Asp Asn Asp

```
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 342
 tccccaagcc gttctagacg cgg 23
<210> 343
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 343
ctggttcttc cttgcacg 18
<210> 344
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 344
gcccaaatgc cctaaggcgg tatacccc 28
<210> 345
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 345
gggtgtgatg cttggaagca ttttctgtgc tttgatcact atgctaggac 50
<210> 346
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 346
gggatgcagg tggtgtctca tgggg 25
<210> 347
<211> 18
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 347
ccctcatgta ccggctcc 18
<210> 348
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 348
ggattctaat acgactcact atagggctca gaaaagcgca acagagaa 48
<210> 349
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 349
ctatgaaatt aaccctcact aaagggatgt cttccatgcc aaccttc 47
<210> 350
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ggattctaat acgactcact atagggcggc gatgtccact ggggctac 48
<210> 351
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 351
ctatgaaatt aaccctcact aaagggacga ggaagatggg cggatggt 48
<210> 352
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 352
ggattctaat acgactcact atagggcacc cacgcgtccg gctgctt 47
```

```
<210> 353
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 353
ctatgaaatt aaccctcact aaagggacgg gggacaccac ggaccaga 48
<210> 354
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 354
ggattctaat acgactcact atagggcttg ctgcggtttt tgttcctg 48
<210> 355
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 355
ctatgaaatt aaccctcact aaagggagct gccgatccca ctggtatt 48
<210> 356
<211> 46
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 356
ggattctaat acgactcact atagggcgga tcctggccgg cctctg 46
<210> 357
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 357
ctatgaaatt aaccctcact aaagggagcc cgggcatggt ctcagtta 48
<210> 358
<211> 47
```

<212> DNA

```
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 358
ggattctaat acgactcact atagggcggg aagatggcga ggaggag 47
<210> 359
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 359
ctatgaaatt aaccctcact aaagggacca aggccacaaa cggaaatc 48
<210> 360
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 360
ggattctaat acgactcact atagggctgt gctttcattc tgccagta 48
<210> 361
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 361
ctatgaaatt aaccctcact aaagggaggg tacaattaag gggtggat 48
<210> 362
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 362
ggattctaat acgactcact atagggcccg cctcgctcct gctcctg 47
<210> 363
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
```

```
<400> 363
ctatgaaatt aaccctcact aaagggagga ttgccgcgac cctcacag 48
<210> 364
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 364
ggattctaat acgactcact atagggcccc tcctgccttc cctgtcc 47
<210> 365
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 365
ctatgaaatt aaccctcact aaagggagtg gtggccgcga ttatctgc 48
<210> 366
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 366
ggattctaat acgactcact atagggcgca gcgatggcag cgatgagg 48
<210> 367
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ctatgaaatt aaccctcact aaagggacag acggggcaga gggagtg 47
<210> 368
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 368
ggattctaat acgactcact atagggccag gaggcgtgag gagaaac 47
```

```
<210> 369
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 369
ctatgaaatt aaccctcact aaagggaaag acatgtcatc gggagtgg 48
<210> 370
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
 ggattctaat acgactcact atagggccgg gtggaggtgg aacagaaa 48
<210> 371
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 371
ctatgaaatt aaccctcact aaagggacac agacagagcc ccatacgc 48
<210> 372
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ggattctaat acgactcact atagggccag ggaaatccgg atgtctc 47
<210> 373
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 373
ctatgaaatt aaccctcact aaagggagta aggggatgcc accgagta 48
<210> 374
<211> 47
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 374
ggattctaat acgactcact atagggccag ctacccgcag gaggagg 47
<210> 375
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 375
ctatgaaatt aaccctcact aaagggatcc caggtgatga ggtccaga 48
<210> 376
<211> 997
<212> DNA
<213> Homo Sapien
<400> 376
cccacgcgtc cgatcttacc aacaaaacac tcctgaggag aaagaaagag 50
aaaaaatgaa ttcatctaaa tcatctgaaa cacaatgcac agagagagga 150
tgcttctctt cccaaatgtt cttatggact gttgctggga tccccatcct 200
atttctcagt gcctgtttca tcaccagatg tgttgtgaca tttcgcatct 250
ttcaaacctg tgatgagaaa aagtttcagc tacctgagaa tttcacagag 300
ctctcctgct acaattatgg atcaggttca gtcaagaatt gttgtccatt 350
gaactgggaa tattttcaat ccagctgcta cttcttttct actgacacca 400
tttcctgggc gttaagttta aagaactgct cagccatggg ggctcacctg 450
taaaatgaga gagtttttta ttggactgtc agaccaggtt gtcgagggtc 550
agtggcaatg ggtggacggc acacctttga caaagtctct gagcttctgg 600
gatgtagggg agcccaacaa catagctacc ctggaggact gtgccaccat 650
gagagactet teaaaceeaa ggeaaaattg gaatgatgta acetgtttee 700
tcaattattt tcggatttgt gaaatggtag gaataaatcc tttgaacaaa 750
ggaaaatctc tttaagaaca gaaggcacaa ctcaaatgtg taaagaagga 800
```

agagcaagaa catggccaca cccaccgccc cacacgagaa atttgtgcgc 850

tgaacttcaa aggacttcat aagtatttqt tactctqata caaataaaaa 900

- <210> 377
- <211> 219
- <212> PRT
- <213> Homo Sapien

<400> 377

- Met Asn Ser Ser Lys Ser Ser Glu Thr Gln Cys Thr Glu Arg Gly
 1 5 10 15
- Cys Phe Ser Ser Gln Met Phe Leu Trp Thr Val Ala Gly Ile Pro 20 25 30
- Ile Leu Phe Leu Ser Ala Cys Phe Ile Thr Arg Cys Val Val Thr
 35 40 45
- Phe Arg Ile Phe Gln Thr Cys Asp Glu Lys Lys Phe Gln Leu Pro
 50 55 60
- Glu Asn Phe Thr Glu Leu Ser Cys Tyr Asn Tyr Gly Ser Gly Ser
 65 70 75
- Val Lys Asn Cys Cys Pro Leu Asn Trp Glu Tyr Phe Gln Ser Ser 80 85 90
- Cys Tyr Phe Phe Ser Thr Asp Thr Ile Ser Trp Ala Leu Ser Leu 95 100 105
- Lys Asn Cys Ser Ala Met Gly Ala His Leu Val Val Ile Asn Ser 110 115 120
- Gln Glu Glu Glu Phe Leu Ser Tyr Lys Lys Pro Lys Met Arg 125 130 135
- Glu Phe Phe Ile Gly Leu Ser Asp Gln Val Val Glu Gly Gln Trp 140 145 150
- Gln Trp Val Asp Gly Thr Pro Leu Thr Lys Ser Leu Ser Phe Trp 155 160 165
- Asp Val Gly Glu Pro Asn Asn Ile Ala Thr Leu Glu Asp Cys Ala 170 175 180
- Thr Met Arg Asp Ser Ser Asn Pro Arg Gln Asn Trp Asn Asp Val 185 190 195
- Thr Cys Phe Leu Asn Tyr Phe Arg Ile Cys Glu Met Val Gly Ile 200 205 210
- Asn Pro Leu Asn Lys Gly Lys Ser Leu 215
- <210> 378
- <211> 21
- <212> DNA
- <213> Artificial Sequence

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 378
 ttcagcttct gggatgtagg g 21
<210> 379
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 379
 tattcctacc atttcacaaa tccg 24
<210> 380
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg 49
<210> 381
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 381
gcagattttg aggacagcca cctcca 26
<210> 382
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 382
ggccttgcag acaaccgt 18
<210> 383
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 383
```

```
cagactgagg gagatccgag a 21
<210> 384
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 384
cagctgccct tccccaacca 20
<210> 385
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 385
catcaagcgc ctctacca 18
<210> 386
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 386
cacaaactcg aactgcttct g 21
<210> 387
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 387
gggccatcac agctccct 18
<210> 388
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 388
gggatgtggt gaacacagaa ca 22
<210> 389
```

<211> 22

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 389
tgccagctgc atgctgccag tt 22
<210> 390
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 390
cagaaggatg tcccgtggaa 20
<210> 391
<211> 17
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 391
gccgctgtcc actgcag 17
<210> 392
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 392
gacggcatcc tcagggccac a 21
<210> 393
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 393
atgtcctcca tgcccacgcg 20
<210> 394
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic oligonucleotide probe
<400> 394
 gagtgcgaca tcgagagctt 20
<210> 395
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 395
 ccgcagcctc agtgatga 18
<210> 396
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 396
 gaagagcaca gctgcagatc c 21
<210> 397
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 397
 gaggtgtcct ggctttggta gt 22
<210> 398
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 398
 cctctggcgc ccccactcaa 20
<210> 399
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 399
 ccaggagagc tggcgatg 18
```

```
<210> 400
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 400
gcaaattcag ggctcactag aga 23
<210> 401
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 401
cacagagcat ttgtccatca gcagttcag 29
<210> 402
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 402
ggcagagact tccagtcact ga 22
<210> 403
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 403
gccaagggtg gtgttagata gg 22
<210> 404
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 404
caggcccct tgatctgtac ccca 24
<210> 405
<211> 23
<212> DNA
<213> Artificial Sequence
```

```
<223> Synthetic oligonucleotide probe
<400> 405
gggacgtgct tctacaagaa cag 23
<210> 406
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 406
caggettaca atgttatgat cagaca 26
<210> 407
<211> 31
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 407
tattcagagt tttccattgg cagtgccagt t 31
<210> 408
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 408
tctacatcag cctctctgcg c 21
<210> 409
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 409
cgatcttctc cacccaggag cgg 23
<210> 410
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 410
 gccaggcctc acattcgt 18
<210> 411
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 411
 ctccctgaat ggcagcctga gca 23
<210> 412
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 412
aggtgtttat taagggccta cgct 24
<210> 413
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 413
cagagcagag ggtgccttg 19
<210> 414
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 414
 tggcggagtc ccctcttggc t 21
<210> 415
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 415
ccctgtttcc ctatgcatca ct 22
<210> 416
```

```
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
 <400> 416
 tcaacccctg accctttcct a 21
<210> 417
 <211> 24
 <212> DNA
 <213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 417
 ggcaggggac aagccatctc tcct 24
<210> 418
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 418
 gggactgaac tgccagcttc 20
<210> 419
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 419
 gggccctaac ctcattacct tt 22
<210> 420
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 420
 tgtctgcctc agccccagga agg 23
<210> 421
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
```

<223> Synthetic oligonucleotide probe

<400> 421 tctgtccacc atcttgcctt g 21

<210> 422

<211> 3554

<212> DNA

<213> Homo Sapien

<400> 422

gggactacaa gccgcgccgc gctgccgctg gcccctcagc aaccctcgac 50 atggcgctga ggcggccacc gcgactccgg ctctgcgctc ggctgcctga 100 cttcttcctg ctgctgcttt tcaggggctg cctgataggg gctgtaaatc 150 tcaaatccag caatcgaacc ccagtggtac aggaatttga aagtgtggaa 200 ctgtcttgca tcattacgga ttcgcagaca agtgacccca ggatcgagtg 250 gaagaaaatt caagatgaac aaaccacata tgtgtttttt gacaacaaaa 300 ttcagggaga cttggcgggt cgtgcagaaa tactggggaa gacatccctg 350 aagatctgga atgtgacacg gagagactca gccctttatc gctgtgaggt 400 cgttgctcga aatgaccgca aggaaattga tgagattgtg atcgagttaa 450 ctgtgcaagt gaagccagtg acccctgtct gtagagtgcc gaaggctgta 500 ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550 ccggcctcac tacagctggt atcgcaatga tgtaccactg cccacggatt 600 ccagagccaa tcccagattt cgcaattctt ctttccactt aaactctgaa 650 acaggcactt tggtgttcac tgctgttcac aaggacgact ctgggcagta 700 ctactgcatt gcttccaatg acgcaggctc agccaggtgt gaggagcagg 750 agatggaagt ctatgacctg aacattggcg gaattattgg gggggttctg 800 gttgtccttg ctgtactggc cctgatcacg ttgggcatct gctgtgcata 850 cagacgtggc tacttcatca acaataaaca ggatggagaa agttacaaga 900 acccagggaa accagatgga gttaactaca tccgcactga cgaggagggc 950 gacttcagac acaagtcatc gtttgtgatc tgagacccgc ggtgtggctg 1000 agagegeaca gagegeacgt geacatacet etgetagaaa eteetgteaa 1050 ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100 ttttcgtttt ggccaaagtt gaccactact cttcttactc taacaagcca 1150 catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200 ggaagcgaaa ctgggtgcgt tcactgagtt gggttcctaa tctgtttctg 1250

gcctgattcc cgcatgagta ttagggtgat cttaaagagt ttgctcacgt 1300 aaacgcccgt gctgggccct gtgaagccag catgttcacc actggtcgtt 1350 cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400 agcagcgcat cccggcggga acccagaaaa ggcttcttac acagcagcct 1450 tacttcatcg gcccacagac accaccgcag tttcttctta aaggctctgc 1500 tgatcggtgt tgcagtgtcc attgtggaga agctttttgg atcagcattt 1550 tgtaaaaaca accaaaatca ggaaggtaaa ttggttgctg gaagagggat 1600 cttgcctgag gaaccctgct tgtccaacag ggtgtcagga tttaaggaaa 1650 accttcgtct taggctaagt ctgaaatggt actgaaatat gcttttctat 1700 gggtcttgtt tattttataa aattttacat ctaaattttt gctaaggatg 1750 tattttgatt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800 catacaatgt taaataacct atttttttaa aaaagttcaa cttaaggtag 1850 aagttccaag ctactagtgt taaattggaa aatatcaata attaagagta 1900 ttttacccaa ggaatcctct catggaagtt tactgtgatg ttccttttct 1950 cacacaagtt ttagcctttt tcacaaggga actcatactg tctacacatc 2000 agaccatagt tgcttaggaa acctttaaaa attccagtta agcaatgttg 2050 aaatcagttt gcatctcttc aaaagaaacc tctcaggtta gctttgaact 2100 gcctcttcct gagatgacta ggacagtctg tacccagagg ccacccagaa 2150 gccctcagat gtacatacac agatgccagt cagctcctgg ggttgcgcca 2200 ggcgcccccg ctctagctca ctgttgcctc gctgtctgcc aggaggccct 2250 gccatccttg ggccctggca gtggctgtgt cccagtgagc tttactcacg 2300 tggcccttgc ttcatccagc acagctctca ggtgggcact gcagggacac 2350 tggtgtcttc catgtagcgt cccagctttg ggctcctgta acagacctct 2400 ttttggttat ggatggctca caaaataggg cccccaatgc tattttttt 2450 ttttaagttt gtttaattat ttgttaagat tgtctaaggc caaaggcaat 2500 tgcgaaatca agtctgtcaa gtacaataac atttttaaaa gaaaatggat 2550 cccactgttc ctctttgcca cagagaaagc acccagacgc cacaggctct 2600 gtcgcatttc aaaacaaacc atgatggagt ggcggccagt ccagcctttt 2650 aaagaacgtc aggtggagca gccaggtgaa aggcctggcg gggaggaaag 2700 tgaaacgcct gaatcaaaag cagttttcta attttgactt taaatttttc 2750

atccgccqqa qacactqctc ccatttgtgg ggggacatta gcaacatcac 2800 tcagaaqcct qtgttcttca agagcaggtg ttctcagcct cacatgccct 2850 gccgtgctgg actcaggact gaagtgctgt aaagcaagga gctgctgaga 2900 aggagcactc cactgtgtgc ctggagaatg gctctcacta ctcaccttgt 2950 ctttcagctt ccagtgtctt gggtttttta tactttgaca gctttttttt 3000 aattgcatac atgagactgt gttgactttt tttagttatg tgaaacactt 3050 tgccgcaggc cgcctggcag aggcaggaaa tgctccagca gtggctcagt 3100 gctccctggt gtctgctgca tggcatcctg gatgcttagc atgcaagttc 3150 cctccatcat tgccaccttg gtagagaggg atggctcccc accctcagcg 3200 ttggggattc acgctccagc ctccttcttg gttgtcatag tgatagggta 3250 geettattge cecetettet tataccetaa aacettetae aetagtgeea 3300 tgggaaccag gtctgaaaaa gtagagagaa gtgaaagtag agtctgggaa 3350 gtagctgcct ataactgaga ctagacggaa aaggaatact cgtgtatttt 3400 aagatatgaa tgtgactcaa gactcgaggc cgatacgagg ctgtgattct 3450 gcctttggat ggatgttgct gtacacagat gctacagact tgtactaaca 3500 caccgtaatt tggcatttgt ttaacctcat ttataaaagc ttcaaaaaaa 3550 ccca 3554

<400> 423

Met Ala Leu Arg Arg Pro Pro Arg Leu Arg Leu Cys Ala Arg Leu
1 10 15

Pro Asp Phe Phe Leu Leu Leu Leu Phe Arg Gly Cys Leu Ile Gly

Ala Val Asn Leu Lys Ser Ser Asn Arg Thr Pro Val Val Gln Glu
35 40 45

Phe Glu Ser Val Glu Leu Ser Cys Ile Ile Thr Asp Ser Gln Thr
50 55 60

Ser Asp Pro Arg Ile Glu Trp Lys Lys Ile Gln Asp Glu Gln Thr
65 70 75

Thr Tyr Val Phe Phe Asp Asn Lys Ile Gln Gly Asp Leu Ala Gly 80 85 90

Arg Ala Glu Ile Leu Gly Lys Thr Ser Leu Lys Ile Trp Asn Val

<210> 423

<211> 310

<212> PRT

<213> Homo Sapien

Thr	Arg	Arg	Asp	ser 110	Ala	Leu	Tyr	Arg	Cys (115	3lu Y	(al	Val	Ala	Arg 120
Asn	Asp	Arg	Lys	Glu 125	Ile	Asp	Glu	Ile	Val 130	Ile (Jlu	Leu	Thr	Val 135
Gln	Val	Lys	Pro	Val 140	Thr	Pro	Val	Cys	Arg 145	۷a - ُ.	Pro	Lys	Ala	Val 150
Pro	Val	Gly	Lys	Met 155	Ala	Thr	Leu	His	Cys 160	Gln	Glu	Ser	Glu	Gly 165
His	Pro	Arg	Pro	His 170	Tyr	Ser	Trp	Tyr	Arg 175	Asn	Asp	Val	Pro	Leu 180
Pro	Thr	Asp	Ser	Arg 185	Ala	Asn	Pro	Arg	Phe 190	Arg	Asn	Ser	Ser	Phe 195
His	Leu	Asn	Ser	Glu 200	Thr	Gly	Thr	Leu	Val 205	Phe	Thr	Ala	Val	His 210
Lys	Asp	Asp	Ser	Gly 215	Gln	Tyr	Tyr	Cys	11e 220	Ala	Ser	Asn	Asp	Ala 225
Gly	ser Ser	Ala	Arg	Cys 230	Glu	Glu	Gln	Glu	Met 235	Glu	Val	Tyr	Asp	Leu 240
Asr	ılle	Gly	gly	7 Ile 245	Ile	gly	Gly	Val	Leu 250	Val	Val	Leu	Ala	Val 255
Let	ı Ala	Lev	ı Ile	260	Leu	ı Gly	, Ile	c Cys	265	Ala	Tyr	Arg	Arg	Gly 270
Ту	r Phe	e Ile	e Asr	n Asr 275	ı Lys	s Glr	a Asp	Gly	7 Glu 280	Ser	Туг	. Lys	s Asr	285
Gl	y Ly:	s Pro	g As	9 Gly	y Vai	l Ası	тул	: Ile	295	g Thr	Asp	o Glu	ı Glu	300
As	p Ph	e Ar	g Hi	s Lya	s Se	r Se	r Phe	e Vai	l Ile 310	e 0				