第4章作业1——网络层:

- 1、以下 IP 地址各属于哪一类?
 - (a) 20.250.1.139
 - (b) 202.250.1.139
 - (c) 140.250.1.139
- 2、已知子网掩码为 255.255.255.192, 下面各组 IP 地址是否属于同一子网?
 - (1) 200.200.200.178 与 200.200.200.147
 - (2) 200.200.200.178 与 200.200.200.80
 - (3) 200.200.200.178 与 200.200.200.152
- 3、假设一个主机的 IP 地址为 192.168.5.121, 而了网掩码为 255.255.255.248, 那么该网段的网络号为多少?包含的有效主机号有哪些?
- 4、将分类网络地址 198.189.98.0 接 RFC950 规定划分为 7 个可用等长子网,求 子网掩码及每个子网广播地址?
- 5、将分类网络地址 211.134.12.0 按 RFC1878 规定划分为 7 个可用等长子网, 求子网掩码及每个子网可用地址范围?
- 6、已知一个 C 类网络地址为 192.189.25.0, 现要按 RFC950 规定将其划为多个 子网,要求: (1)每个子网的主机不超过 25 台; (2)地址利用率最高。请写出子网划分方案的子网掩码和理由?
- 7、某单位申请了一个 C 类网络地址: 200.165.68.0,由于业务需要内部必须分成 5 个独立的子网,各子网拥有的主机数分别为 24、28、16、5、14 台,请遵照 RFC1878 的规定分别用等长子网和变长子网划分方式,建立这五个子网,写出每个子网的网络地址、可用 IP 地址范围、广播地址和子网掩码。

- 8、求网络地址块 212.110.96.0/20 包含的最大主机数,以及 8 等分子网后,各子网的掩码、地址范围及可分配的单播地址个数(常称为主机数)。
- 9、一个机构有 30000 台主机,且只能申请 C 类地址,该如何使用 CIDR 技术完成配置?
- 10、网络地址分别为 192.168.5.0 和 120.40.5.4 的两个网络,通过路由器相连。 网络地址分别为 24 位和 16 位。

现在 A 主机分别向 B、C 主机发送 IP 数据报,请分别叙述以上两种情况下 A 主机的 IP 数据报发送过程

- (1) 每道题都要写出完整解题过程;
- (2) 答案中所有地址和掩码都要写成点分十进制的形式。

第4章作业1答案与解析——网络层:

1、以下 IP 地址各属于哪一类?

【解析】

(a) 20.250.1.139

00010100 A 类

(b) 202.250.1.139

11001010 C 类

(c) 140.250.1.139

10001100 B 类

2、已知子网掩码为 255.255.255.192, 下面各组 IP 地址是否属于同一子网?

255.255.255.11000000

【解析】

(1) 200.200.200.178 与 200.200.200.147

200.200.200.10110010

200.200.200.10010011

同一子网

(2) 200.200.200.178 与 200.200.200.80

200.200.200.10110010

200.200.200.01010000

不同子网

(3) 200.200.200.178 与 200.200.200.152

200.200.200.10110010

200.200.200.10011000

同一子网

3、假设一个主机的 IP 地址为 192.168.5.121, 而子网掩码为 255.255.255.248,

126

那么该网段的网络号为多少?包含的有效主机号有哪些?

【解析】

最大主机地址

192.168. 5.01111001 与 255.255.255.11111000

192.168. 5. 011111110

网络号:192.168.5. 01111000120最小主机地址192.168.5. 01111001121..........

4、将分类地址 198.189.98.0 按 RFC950 规定划分为 7 个可用等长子网,求对应 子网掩码及每个子网的广播地址?

【解析】

这是一个 C 类网,默认子网掩码为 255.255.255.M 按 RFC950 规定有 $2^3 - 2 \le 7 \le 2^4 - 2$ 主机号从高向低借 4 位,得到 16 个子网段

198.189.98.xxxx0000

对应子网掩码:

255.255.255.11110000 255.255.255.240

网络号 广播地址 网络号全 0, 不可用 198.189.98.<mark>0000</mark>0000 198.189.98.00010000 198.189.98.00011111 198.189.98.00100000 198.189.98.00101111 198.189.98.00111111 198.189.98.00110000 198.189.98.<mark>0100</mark>1111 198.189.98.01000000 198.189.98.<mark>0101</mark>1111 198.189.98.01010000 198.189.98.01100000 198.189.98.01101111 198.189.98.01111111 198.189.98.01110000 198.189.98.10001111 198.189.98.10000000 198.189.98.<mark>1001</mark>1111 198.189.98.10010000 198.189.98.10100000 198.189.98.<mark>1010</mark>1111 198.189.98.10110000 198.189.98.10111111 198.189.98.11000000 198.189.98.11001111 198.189.98.11010000 198.189.98.11011111 198.189.98.11100000 198.189.98.11101111 198.189.98.11110000 网络号全1,不可用

可分配的7个子网段

答案需进转换为点分十进制

5、将分类地址 211.134.12.0 按 RFC1878 规定划分为 7 个可用等长子网,求子 网掩码及每个子网的可用地址范围?

【解析】

这是一个 C 类网,默认子网掩码为 255.255.255.M 接 RFC1878 规定 $2^2 \le 7 \le 2^3$ 主机号从高向低借 3 位,得到 8 个子网段 211.134.12.xxx00000

对应子网掩码:

255.255.255.11100000 255.255.255.224

每个子网	羽的可用	地址范围
------	------	------

最小可用地址	最大可用地址
211.134.12.00000001 (1)	211.134.12. <mark>000</mark> 11110 (30)
211.134.12. <mark>001</mark> 00001 (33)	211.134.12. <mark>001</mark> 111110 (62)
211.134.12. <mark>010</mark> 00001 (65)	211.134.12. <mark>010</mark> 11110 (94)
211.134.12. <mark>011</mark> 00001 (97)	211.134.12. <mark>011</mark> 11110 (126)
211.134.12. 100 00001 (129)	211.134.12. 100 11110 (158)
211.134.12. <mark>101</mark> 00001 (161)	211.134.12. <mark>101</mark> 11110 (190)
211.134.12.11000001 (193)	211.134.12. <mark>110</mark> 11110 (222)
211.134.12.11100001 (225)	211.134.12.111111110 (254)

上述任意 7 个子网段都满足分配要求

答案需进转换为点分十进制

6、已知一个 C 类网络地址为 192.189.25.0, 现要按 RFC950 规定将其划为多个子网,要求: (1)每个子网的主机不超过 25 台; (2)地址利用率最高。请写出子网划分方案的子网掩码和理由?

【解析】

这是一个 C 类网, 默认子网掩码为 255.255.255.M 要能容纳 25 台主机, 还需考虑至少一个路由接口,则

 $2^4 - 2 \le 25 + 1 \le 2^5 - 2$

所以子网主机号部分可以是5位、6位、7位或8位

按 RFC950 规定, 子网号为全 0 和全 1 的地址不可用, 所以子网号越长, 浪费的主机地址就越少

因此, 在地址利用率最高的情况下, 子网号取3位, 可以得到6个可用子网,

192.189.25.xxx00000

子网掩码:

255.255.255.224

7、某单位申请了一个 C 类网络地址: 200.165.68.0,由于业务需要内部必须分成 5 个独立的子网,各子网拥有的主机数分别为 24、28、16、5、14 台,请遵照 RFC1878 的规定分别用等长子网和变长子网划分方式,建立这五个子网,写出每个子网的网络地址、可用 IP 地址范围、广播地址和子网掩码。

【解析】

200.165.68.0 200.165.68.00000000

等长子网

要划分 5 个子网,则 $2^2 \le 5 \le 2^3$,需取 3 位子网号,每个子网中可用的主机 IP 地址 (IP 单播地址)为 30 个,可以满足题目中子网中 28+1 的要求,所以子网掩码为: 255.255.255.224

子网	子网网络地址	可用 IP 地址范围	广播地址
0	200.165.68.0	200.165.68.1~200.165.68.30	200.165.68.31
1	200.165.68.32	200.165.68.33~200.165.68.62	200.165.68.63
2	200.165.68.64	200.165.68.65~200.165.68.94	200.165.68.95
3	200.165.68.96	200.165.68.97~200.165.68.126	200.165.68.127
4	200.165.68.128	200.165.68.129~200.165.68.158	200.165.68.159
5	200.165.68.160	200.165.68.161~200.165.68.190	200.165.68.191
6	200.165.68.192	200.165.68.193~200.165.68.222	200.165.68.223
7	200.165.68.224	200.165.68.225~200.165.68.254	200.165.68.255
(写出任	5 个子网便可)		

变长子网

根据子网中主机台数从高到低划分子网,并考虑每个子网都至少需要一个路由接口 IP 地址,则

 $2^4 -2 \le 28 + 1 \le 2^5 - 2$

 $2^4 -2 \le 24 + 1 \le 2^5 - 2$

 $2^4 - 2 \le 16 + 1 \le 2^5 - 2$

 $2^4 - 2 \le 14 + 1 \le 2^5 - 2$

所以主机号5位,子网号3位

遵照 RFC1878 的规定(全0和全1子网可用

则可得到8个子网:

子网掩码: 255.255.255.224 广播地址: 200.165.68.31

子网掩码: 255.255.255.224 广播地址: 200.165.68.63

200.165.68.00000000 分配给28台主机 200.165.68.00100000 分配给24台主机。

200.165.68.01000000 分配给16台主机

200.165.68.01100000 〈 分配给14台主机

200.165.68.10000000

200.165.68.10100000

200.165.68.11000000

200.165.68.11100000

子网掩码: 255.255.255.224 广播地址: 200.165.68.95

子网掩码: 255.255.255.224 广播地址: 200.165.68.127

余下的地址:

200.165.68.10000000

200.165.68.10100000

200.165.68.11000000

200.165.68.11100000

5 台主机+1 个路由接口: 2^2 -2 ≤ 6 ≤ 2^3 -2

需要借用3位主机号,则子网号为5位

200.165.68.10000000 可被进一步划分成 4 个子网:

200.165.68.10000000 分配给5台主机

200.165.68.10001000

 $200.165.68. \textcolor{red}{10010000}$

200.165.68.10011000

7 E 14 E

子网掩码: 255.255.255.248 广播地址: 200.165.68.135

变长子网

子网	子网网络地址	可用 IP 地址范围	广播地址	掩码 M
1	200.165.68.0	200.165.68.1~200.165.68.30	200.165.68.31	224
2	200.165.68.32	200.165.68.33~200.165.68.62	200.165.68.63	224
3	200.165.68.64	200.165.68.65~200.165.68.94	200.165.68.95	224
4	200.165.68.96	200.165.68.97~200.165.68.126	200.165.68.127	224
5	200.165.68.128	200.165.68.129~200.165.68.134	200.165.68.119	248

本题答案不唯一

8、求网络地址块 212.110.96.0/20 包含的最大主机数,以及 8 等分子网后,各子网的掩码及可分配的单播地址个数(常称为主机数)。

【解析】

地址块: 212.110.01100000.0 /20

最小地址 **212.110.0110**0000.000000000 表示该地址块 最大地址 **212.110.0110**1111.11111111 地址块广播地址

最大主机数 $2^{32-20}-2 = 2^{12}-2$

8 等分子网

212.110.01100000.000000000 /23

212.110.01100010.000000000 /23

212.110.01100100.000000000 /23

212.110.01100110.000000000 /23

212.110.01101000.000000000000000/23

212.110.01101010.00000000 /23 212.110.01101100.00000000 /23

212.110.01101100.00000000725

212.110.01101110.000000000 /23

子网掩码 /23 或 255.255.254.0 主机数 $2^9 - 2 = 512 - 2 = 510$

9、求一个机构有 30000 台主机,且只能申请 C 类地址,该如何使用 CIDR 技术 完成配置?

【解析】

- □ 30000 台主机需要多少主机位?
 - ✓ 15 位
- □ 可以利用 C 类地址进行网络聚合
 - ✓ 申请一组连续的 C 类地址
 - ✓ 32-15=17, 前 17 位相同,则子网掩码为 17 个 1, 15 个 0
- 10、网络地址分别为 192.168.5.0 和 120.40.5.4 的两个网络,通过路由器相连。 网络地址分别为 24 位和 16 位。

现在 A 主机分别向 B、C 主机发送 IP 数据报,请分别叙述以上两种情况下 A 主机的 IP 数据报发送过程

【解析】

判断 A 与 B 是否位于同一个网络

(1) 计算 A 主机

192.168.5.4 和 255.255.255.0 (A 主机的网络掩码) 相与得到结果 1: 192.168.5.0 (A 主机的网络地址)。

(2) 判断 B 主机

192.168.5.6 和 255.255.255.0 (A 主机的网络掩码) 相与得到结果 2: 192.168.5.0; 结果 1 与结果 2 相同, A 与 B 主机位于同一网络, 直接交付。

判断 A 与 C 是否位于同一个网络

(1) 计算 A 主机

192.168.5.4 和 255.255.255.0(A 主机的网络掩码)相与得到结果 1: 192.168.5.0 (A 主机的网络地址);

(2) 判断 C 主机

120.40.5.4 和 255.255.255.0(A 主机的网络掩码)相与得到结果 2: 120.40.5.0; 结果 1 与结果 2 不相同,A 与 C 不在同一网络,通过默认网关间接交付。