$\rm MATH1061/1021\ Cheatsheet\ (Calculus)$

Semester 1, 2024

Abyan Majid

O Source

1	Sets	s, numbers, functions	2		3.10 Finding max & min on a closed interval $$.	7
	1.1	Union, intersection, difference, comple-			3.11 Concavity	7
		ment, subset	2		3.12 Second-derivative test	7
	1.2	Common number sets	2		3.13 Sensible order to curve-sketching \dots .	8
	1.3	Interval notation	2		3.14 Tangent line (local linear approximation)	8
	1.4	Modulus	2		3.15 Taylor polynomials	8
	1.5	Injective, surjective, bijective functions	2		3.16 Lagrange's form of remainder	8
	1.6	Composite, inverse, hyperbolic functions .	3		3.17 Partial sum, infinite series, geometric series	9
					3.18 Taylor series	9
2	Lim		3			
	2.1	Definition of a limit	3	4	Integral calculus	9
	2.2	Limit laws	3		4.1 Riemann sums	9
	2.3	One-sided limits, existence of limit	3		4.2 Riemann integral	9
	2.4	Infinite limits	4		4.3 Properties of Riemann integral	10
	2.5	Squeeze law	4		4.4 Fundamental Theorem of Calculus I \dots	10
	2.6	Continuous functions	4		4.5 $$ Fundamental Theorem of Calculus II	10
					4.6 Leibinz integral rule	10
3	Diff	erential Calculus	4		4.7 Logarithms	10
	3.1	Limit definition of derivatives	4		4.8 Properties of logarithms	10
	3.2	Common derivatives	5		4.9 Properties of exponentials	11
	3.3	Differential rules	5		4.10 Integration	11
	3.4	Implicit differentiation	5		4.11 Linearity property of integration	11
	3.5	Useful algebra for logarithmic differentia-			4.12 Integration by substitution	11
		tion	6		4.13 Integration by parts	12
	3.6	L'Hopital's Rule	6		4.14 Integration by partial fractions	12
	3.7	Extrema	6		4.15 Length of a curve	12
	3.8	First-derivative test	6		4.16 Solid of revolution	12
	3.9	Critical points	7		4.17 Methods for finding solid of revolution	13

1 Sets, numbers, functions

1.1 Union, intersection, difference, complement, subset

Operation	Notation	Description
Union	$A \cup B$	All elements that are in A or B or both
Intersection	$A \cap B$	All elements that are both in A and B
Difference	$A \setminus B$	All elements that are in A but not in B
Complement	\overline{A}	All elements in the universal set that are not in A
Subset	$A \subseteq B$	A is a subset of B ; every element in A is also in B
Proper subset	$A \subset B$	A is a subset of B and $A \neq B$

1.2 Common number sets

Name (Symbol)	Set
Natural numbers (\mathbb{N})	$\{0,1,2,3,4,\}$
Integers (\mathbb{Z})	$\{2,-1,0,1,2,\}$
Rational numbers (\mathbb{Q})	$\left\{\frac{1}{2}, -\frac{4}{3}, \frac{17}{12}, \dots\right\}$
Irrational numbers $(\mathbb{R} \setminus \mathbb{Q})$	$\{\sqrt{2},\pi,e,\sqrt{7},\ldots\}$
Real numbers (\mathbb{R})	All numbers

1.3 Interval notation

1.4 Modulus

Modulus
Distance on the number line
x-y

1.5 Injective, surjective, bijective functions

Function type	Definition	
Injective	A function $f: X \to Y$ where for all $x \in X$,	
	x maps to a different $y \in Y$, and $ X \le Y $.	
Surjective	A function $f: X \to Y$ where for all $y \in Y$,	
	y is an image of some $x \in X$, and $ X \ge Y $.	
Bijective	A function that is both injective and surjective	
	where $ X = Y $.	

1.6 Composite, inverse, hyperbolic functions

Composite functions

A function in the form $f \circ g(x) = f(g(x))$ where some function f takes another function g as input.

Inverse functions		
Definition	How to invert a function	
There exists an inverse function f^{-1}	1) Rewrite $f(x)$ as y	
if and only if f is injective.	2) Swap x and y	
	3) Make y the subject	
If $f(x) = y$, then $f^{-1}(y) = x$, which implies	4) Rewrite y as $f^{-1}(x)$	
that if $f: A \to B$, then $f^{-1}: B \to A$.		

Hyperbolic functions			
Function	Derivative	Inverse	
$\cosh(x) = \frac{e^x + e^{-x}}{2}$	$\frac{\mathrm{d}}{\mathrm{dx}}\cosh(x) = \sinh(x)$	$ \cosh^{-1}(x) = \ln(x + \sqrt{x^2 - 1}) $	
$\sinh(x) = \frac{e^x - e^{-x}}{2}$		$\sinh^{-1}(x) = \ln(x + \sqrt{x^2 + 1})$	

2 Limits

2.1 Definition of a limit

Limit

 $\lim_{x \to a} \overline{f(x)} = L$

as x approaches a, but not reaching a, the output gets closer and closer to L.

2.2 Limit laws

if we have $\lim_{x\to c} f(x) = L$, $\lim_{x\to c} g(x) = M$			
No	Law		
1	$\lim_{x \to c} [f(x) + g(x)] = L + M$		
2	$\lim_{x \to c} [f(x) - g(x)] = L - M$		
3	$\lim_{x \to c} [f(x)g(x)] = LM$		
4	$\lim_{x \to c} \left[\frac{f(x)}{g(x)} \right] = \frac{L}{M}$		
5	$\lim_{x \to c} [f(x)]^n = L^n$		
6	$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{L}$		

2.3 One-sided limits, existence of limit

One-sided limits
Limit from below (left) is denoted as $\lim_{x\to c^-} f(x)$
Limit from above (right) is denoted as $\lim_{x\to c^+} f(x)$

3

Existence of a limit

A limit exists only if
$$\lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) = L$$
 in which case
$$\lim_{x\to c} f(x) = L$$

2.4 Infinite limits

Infinite limits

If we take x larger and larger, and f(x) gets closer to L, we say $\lim_{x\to\infty}f(x)=L$

You can algebraically solve infinite limits by dividing by the highest power of x in the denominator or to by using conjugates.

2.5 Squeeze law

Squeeze law

Suppose $g(x) \leq f(x) \leq h(x)$ for x near a if $\lim_{x \to a} h(x) = L$ and $\lim_{x \to a} g(x) = L$, then $\lim_{x \to a} f(x) = L$ we say "f(x) is squeezed between g(x) and h(x)"

2.6 Continuous functions

Continuous functions

A function is continuous at a point if the limit exists at the point, and is equal to the value at that point.

ie. f(x) is continuous at x=c if and only if:

1) f(c) is defined
2) $\lim_{x\to c} f(x)$ exists and is finite
3) $\lim_{x\to c} f(x) = f(c)$

3 Differential Calculus

3.1 Limit definition of derivatives

Limit definition of derivatives

The derivative of a function f at a point a is given by $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

4

3.2 Common derivatives

Common derivatives	
$\mathbf{f}(\mathbf{x})$	$\mathbf{f}'(\mathbf{x})$
x^n where $n \neq 0$	nx^{n-1}
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
e^x	e^x
ln(x)	$\frac{1}{x}$
tan(x)	$\sec^2(x)$
c^x	$c^x \ln(c)$
$\ln y$	$\frac{1}{y}\frac{dy}{dx}$

3.3 Differential rules

Differential rules			
No	Name	What to do	
1	Power rule	What to do $\frac{d}{dx}x^n = nx^{n-1}$	
2	Constant rule	$\frac{1}{dx}c = 0$, where $c \in \mathbb{R}$	
3	Sum rule	$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$	
4	Difference rule	$\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$	
5	Product rule	$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$	
6	Quotient rule	$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$ $\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$ $\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$ $\frac{d}{dx}[\frac{f(x)}{g(x)}] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$	
7	Chain rule	We are to find $\frac{d}{dx}[f \circ g(x)]$	
		Method 1: Let $u = g(x)$, $y = f(u)$, and so $y'(x)$	
		is given by $\frac{dy}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$	
		Method 2: If you can see f and g clearly, then	
		$\frac{d}{dx}[f \circ g(x)] = f'(g(x))g'(x)$	

3.4 Implicit differentiation

Implicit differentiation

Functions that can't (or aren't easy) to be written as y = f(x) can instead be written implicitly in the form F(x, y) = 0.

In which case, to get the derivative, find $\frac{d}{dx}[F(x,y)]$ applying chain rule for terms involving y, where $\frac{d}{dx}y \Longrightarrow \frac{dy}{dx}$ and finally, make $\frac{dy}{dx}$ the subject.

3.5 Useful algebra for logarithmic differentiation

No	Useful algebra
1	$a^x \Leftrightarrow e^{x \ln a}$
2	$\ln(e^{x\ln(a)}) = x\ln a$
3	$y \ln(a) = \ln(x) \Leftrightarrow y = \frac{\ln(x)}{\ln(a)}$
4	$\ln(\sqrt{x}) \Leftrightarrow \frac{1}{2}\ln(x)$
5	$\log_b(a) \Leftrightarrow \frac{\ln(a)}{\ln(b)}$

3.6 L'Hopital's Rule

L'Hopital's Rule If $\lim_{x\to c} \frac{f(x)}{g(x)}$ is an indeterminate form, i.e. can be written as $\frac{0}{0}$ or $\pm \frac{\infty}{\infty}$, then $\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f'(x)}{g'(x)}$ where c can be infinity.

NOTE: You can keep applying L'Hopital's Rule until you get a definite form.

3.7 Extrema

Extrema			
An "extremum" is a maximum or a minimum.			
Extremum	Definition		
Local max	A local max at $x = c$ means $f(c) \ge f(x)$ for any x near c		
Local min	A local min at $x = c$ means $f(c) \le f(x)$ for any x near c		
Global max	bal max A global max on some domain A where $f:A\to\mathbb{R}$ means $f(c)\geq f(x)$ for all $x\in A$		
Global min	A global min on some domain A where $f:A\to\mathbb{R}$ means $f(c)\leq f(x)$ for all $x\in A$		

3.8 First-derivative test

First-derivative test		
If f is continuous and $f'(c) = 0$		
Case	Observation	Conclusion
1	• $f'(x)$ is positive for $x < c$	Local max
	• $f'(x)$ is negative for $x > c$	
2	• $f'(x)$ is negative for $x < c$	Local min
	• $f'(x)$ is positive for $x > c$	
3	f'(x) doesn't change sign	Not a local extremum
		(neither max or min)

3.9 Critical points

No	Critical point type	
1	f'(c) does NOT exist	
2	f'(c) = 0	

NOTES:

- If f(x) is differentiable, then any local extrema must occur at points x = c where f'(c) = 0
- f'(c) = 0 does NOT guarantee a local extremum! You must apply first-derivative test!

3.10 Finding max & min on a closed interval

Extreme value theorem

If f is a continuous function from a closed interval A to \mathbb{R} , then f attains a global max & global min value in A.

Finding max & min on a closed interval

To find max & min values on a closed interval, simply check:

- 1) Critical points
- 2) End points of the interval

3.11 Concavity

Concavity

- Concave up: f''(x) > 0
- Concave down: f''(x) < 0
- Point of inflection: if f''(x) changes sign at c then x = c is a point of inflection.

3.12 Second-derivative test

Second-derivative test			
If f, f' are differentiable and $f'(c) = 0$			
Case Observation Conclusion		Conclusion	
1	f''(c) > 0	Local minimum	
2	f''(c) < 0	Local maximum	
3	f''(c) = 0	No conclusion	
	(might be local min, max, or neither.)		
	What to do from here: Do first-derivative test		

3.13 Sensible order to curve-sketching

Sensible order to curve-sketching		
Step	To work out	
1	What is the domain?	
2	What is the y -intercept?	
3	What happens as $x \to \pm \infty$ (Limits)	
4	Is there anywhere that $f(x) \to \pm \infty$ (is denominator zero?)	
5	Where are the critical points?	
	$\bullet f'(x) = 0$	
	• $f'(x)$ does NOT exist	
6	Where is $f(x)$ increasing/decreasing?	
	• $f'(x) > 0$: increasing	
	• $f'(x) < 0$: decreasing	
7	Where is $f(x)$ concave up or down?	
	• $f''(x) > 0$: concave up (slope decreasing)	
	• $f''(x) < 0$: concave down (slope increasing)	

3.14 Tangent line (local linear approximation)

This is also called the local linear approximation.

3.15 Taylor polynomials

Taylor polynomials The Taylor polynomial for f(x) around x = a is $p_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n$ or, using sigma notation, $p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x - a)^k$

3.16 Lagrange's form of remainder

Lagrange's form of remainder If $p_n(x)$ is the Taylor polynomial of f(x) around x = a, then the n-th order remainder is given by $R_n(x) = f(x) - p_n(x),$ which satisfies the limit condition

$$\lim_{x \to a} \frac{R_n(x)}{(x-a)^n} = 0.$$

If f(x) has continuous derivatives up to order n+1, then $R_n(x)$ can be expressed in **Lagrange's Form:** There exists a number c, strictly between a and x, for each x, such that

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}.$$

3.17 Partial sum, infinite series, geometric series

Term	Definition	
Partial sum	$S_n = a_0 + a_1 + a_2 + \ldots + a_n = \sum_{k=0}^n a_k$	
Infinite series	$S = \sum_{k=0}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=0}^{n} a_k$ If this limit exists and is finite, the series converges;	
	otherwise, it diverges.	
Geometric series	$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r} \text{ for } r < 1$	

3.18 Taylor series

4 Integral calculus

4.1 Riemann sums

Riemann sums

Given an interval split into n subdivisions from a to b, each of width $\triangle x = \frac{b-a}{n}$, the lower and upper Riemann sums L_n and U_n are given by

$$L_n = \sum_{i=1}^n m_i \triangle x$$
 and $U_n = \sum_{i=1}^n M_i \triangle x$

where m_i is the minimum value of f(x) on $[x_{i-1}, x_i]$ and M_i is the maximum value of f(x) on $[x_{i-1}, x_i]$.

4.2 Riemann integral

Riemann integral

If we take $\triangle x$ smaller and smaller, then m_i and M_i will get closer and closer. Hence, if U_n and L_n converge to the same limit, then

Area =
$$\lim_{n \to \infty} L_n = \lim_{n \to \infty} U_n = \int_a^b f(x)dx$$

4.3 Properties of Riemann integral

Properties of Riemann integral		
No	Property	
1	$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$	
2	$\int_{a}^{b} [f(x) + g(x)]dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$	
3	$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$	

4.4 Fundamental Theorem of Calculus I

Fundamental Theorem of Calculus I If $F(x) = \int_a^x f(t)dt$, then F'(x) = f(x) i.e. with area, we can find antiderivative.

4.5 Fundamental Theorem of Calculus II

Fundamental Theorem of Calculus II		
$\int_a^b f(x)dx = \int_a^b F'(x)dx = F(b) - F(a)$ i.e. with antiderivative, we can find area.		

4.6 Leibinz integral rule

Leibinz integral rule
$$\frac{d}{dx} \left(\int_{a(x)}^{b(x)} f(t) \, dt \right) = f(b(x)) \cdot b'(x) - f(a(x)) \cdot a'(x)$$

4.7 Logarithms

$$\label{eq:Logarithms} \begin{array}{c} \textbf{Logarithms} \\ \text{If } y = a^x \text{ then } x = \log_a(y) \\ \text{which results in two main rules:} \\ \log_a(x) = \frac{\ln(x)}{\ln(a)} \text{ and } \frac{d}{dx}[\log_a(x)] = \frac{1}{x\ln(a)} \end{array}$$

4.8 Properties of logarithms

Properties of logarithms		
No	Property	
1	$\ln(ax) = \ln(a) + \ln(x)$	
2	$\ln(\frac{x}{a}) = \ln(x) - \ln(a)$	
3	$\ln(x^n) = \ln(x \cdot x \cdot \dots \cdot x) = n \ln(x)$	

4.9 Properties of exponentials

Properties of exponentials		
No	Property	
1	$\ln(e^x) = x$	
2	$e^{a+x} = e^a e^x$	
3	$(e^x)^n e^{nx}$	
4	$\frac{d}{dx}[e^x] = e^x$	

4.10 Integration

Integration		
No	f(x)	$\int f(x)dx$
1	$x^n \ (n \neq 1)$	$\frac{x^{n+1}}{n+1} + C$
2	e^x	$e^x + C$
3	$\frac{1}{x}$	$\ln(x) + C$
4	$\sin(x)$	$-\cos(x) + C$
5	$\cos(x)$	$\sin(x) + C$
6	$\sinh(x)$	$\cosh(x) + C$
7	$\cosh(x)$	$\sinh(x) + C$
8	$\tan(x)$	$\ln \sec(x) + C$

4.11 Linearity property of integration

Linearity property of integration
$$\int f(x) + g(x)dx = \int f(x)dx + \int g(x)dx$$

$$\int kf(x)dx = k \int f(x)dx$$

4.12 Integration by substitution

Integration by substitution
$$\int h'(g(x))g'(x)dx = h(g(x)) + C$$
 which can be made more neat up by letting $u = g(x)$
$$\int h'(u)\frac{du}{dx}dx = h(u) + C$$
 and even neater by letting $f(u) = h'(u)$
$$\int f(u)\frac{du}{dx}dx = \int f(u)du$$
 (this is usually easier to integrate)

Note: For definite integrals, remember to change the bounds

$$\int_{x=a}^{x=b} f(u) \frac{du}{dx} dx = \int_{u(a)}^{u(b)} f(u) du$$

4.13Integration by parts

Integration by parts
$$\int u'vdx = uv - \int uv'dx$$
or, for definite integrals:
$$\int_a^b u'vdx = [uv]_a^b - \int_a^b uv'dx$$

Integration by partial fractions 4.14

Integration by partial fractions

For a function f that can be written in the form

$$f(x) = \frac{a + bx}{(x - \lambda)(x - \mu)}$$

for distinct constants λ and μ , we can express f(x) as a sum of simpler fractions

$$f(x) = \frac{A}{x - \lambda} + \frac{B}{x - \mu}$$

where A, B can be found by equating $A(x - \mu) + B(x - \lambda) = ax + b$

and choosing $x = \lambda$ and $x = \mu$ respectively

$$A(\lambda - \mu) = a\lambda + b \Rightarrow A = \frac{a\lambda + b}{\lambda - \mu}$$
$$B(\mu - \lambda) = a\mu + b \Rightarrow B = \frac{a\mu + b}{\mu - \lambda}$$

$$B(\mu - \lambda) = a\mu + b \Rightarrow B = \frac{a\mu + b}{\mu - \lambda}$$

The decomposed fractions should be easier to integrate

$$\int f(x)dx = \int (\frac{A}{x-\lambda} + \frac{B}{x-\mu})dx = \int \frac{A}{x-\lambda}dx + \int \frac{B}{x-\mu}dx$$

which, using natural logarithms, results to

$$A \ln |x - \lambda| + B \ln |x - \mu| + C$$

4.15Length of a curve

Length of a curve

If $f:[a,b]\to\mathbb{R}$ is differentiable, then the length of its curve is given by

$$\int_{a}^{b} \sqrt{1 + [f(x)]^2} dx$$

4.16 Solid of revolution

Solid of revolution

A solid of revolution is the solid obtained when a region Rin the xy-plane is revolved around either the x-axis or y-axis.

4.17 Methods for finding solid of revolution

Disk method

Let R be the region bounded by $y = f(x) \ge 0, y = 0, x_1 = a, x_2 = b$. The volume V of the solid S formed by revolving R around The x-axis is given by

$$V = \pi \int_{a}^{b} (f(x))^{2} dx$$

Washer method (generalized disk method)

Let region $R = \{(x,y) \in \mathbb{R}^2 | 0 \le f(x) \le y \le g(x), a \le x \le b\}$. The volume V of the solid S formed by revolving R around the x-axis is given by

$$V = \pi \int_{a}^{b} [g(x)]^{2} - [f(x)]^{2} dx$$

Shell method

Let R be the region with $0 \le a \le x \le b$ and $0 \le y \le f(x)$ The volume V of the solid S formed by revolving R around the y-axis is given by

$$V = 2\pi \int_{a}^{b} x f(x) dx$$