1. Let function f be defined by the polynomial below:

$$f(x) = -8x^4 + 7x^3 - 9x^2 - 2x + 6$$

Draw lines that match each function reflection with its polynomial:

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

\boldsymbol{x}	f(x)	$\frac{g(x)}{5}$	h(x)
1	2	5	7
2	7	8	3
3	4	6	8
4	9	2	2
5	3	7	1
6	5	9	9
7	6	3	4
8	1	4	6
9	8	1	5

3. Evaluate f(5).

$$f(5) = 3$$

4. Evaluate $g^{-1}(4)$.

$$g^{-1}(4) = 8$$

5. Assuming f is an **even** function, evaluate f(-1).

If function f is even, then

$$f(-1) = 2$$

6. Assuming h is an **odd** function, evaluate h(-6).

If function h is odd, then

$$h(-6) = -9$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = x^2 - 1$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = (-x)^{2} - 1$$
$$p(-x) = x^{2} - 1$$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(x^2 - 1)$$

 $-p(-x) = -x^2 + 1$

c. Is polynomial p even, odd, or neither?

even

d. Explain how you know the answer to part c.

We see that p(x) = p(-x) for all x because p(x) and p(-x) are equivalent polynomials. Thus function p satisfies the criterion for being an even function.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = \frac{x+5}{2}$$

a. Evaluate f(41).

step 1: add 5 step 2: divide by 2

$$f(41) = \frac{(41) + 5}{2}$$
$$f(41) = 23$$

b. Evaluate $f^{-1}(24)$.

step 1: multiply by 2 step 2: subtract 5

$$f^{-1}(x) = 2x - 5$$

$$f^{-1}(24) = 2(24) - 5$$

$$f^{-1}(24) = 43$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(8).

$$b(8) = 3$$

b. Evaluate $b^{-1}(5)$.

$$b^{-1}(5) = 1$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	-5	5	5	-5
-1	6	-6	-6	6
0	0	0	0	0
1	-6	6	6	-6
2	5	-5	-5	5

b. Is function f even, odd, or neither?

odd

c. How do you know the answer to part b?

Function f is odd because column -f(-x) matches column f(x) exactly.