1. The .csv file http://scofield.site/teaching/data/csv/aspirinAndStrokes.csv contains raw data from a blind experiment to look at the effect of aspirin on instances of stroke. Here are some of the cases:

	progress	treatment
139	unfavorable	placebo
49	favorable	aspirin
106	favorable	placebo
9	favorable	aspirin
127	unfavorable	placebo
149	unfavorable	placebo
92	favorable	placebo
50	favorable	aspirin

- (a) Summarize the data in this file.
- (b) State a research question that may have prompted the collection of this data. (I suggest you access one appropriately-chosen app from the "Descriptive Statistics and Graphs" section of StatKey, import the data, and work from there to obtain the desired value.)
- (c) Write hypotheses (H_0 and H_a) appropriate for your stated research question.
- (d) With regard to the hypotheses you wrote, what is the *test statistic* (write it symbolically, and compute its value) produced from the data.
- (e) In StatKey, produce a randomization distribution appropriate for an hypothesis test from this data. Then compute the corresponding P-value, and state a conclusion at the $\alpha = 5\%$ level.
- (f) The original data had two variables, "progress" and "treatment". The Lock text describes how to produce a randomization statistic in two-variable settings, *without* using software:

quantitative data for samples taken from 2 groups: p. 273, Example 4.32 binary categorical data for samples taken from 2 groups: p. 268, Example 4.28 bivariate quantitative data: p. 242, the first three paragraphs

Tailor one of these descriptions to the data at hand, and give a thorough set of instructions (like the instructions you might read for setting up and playing a game like Uno, Risk, or Chess) for how you could produce a

- randomization sample,
- randomization statistic, and
- randomization distribution.
- (g) What steps in your prior instructions would be different if you needed to produce a
 - bootstrap sample,
 - bootstrap statistic, and
 - bootstrap distribution?

- 2. Suppose you are interested in the variable *height* (measured in inches) for the population "current female students at Calvin". Suppose a sample of size *n* is taken from this population motivated by the question, "Is the average height of a female Calvin student above 68 inches?"
 - (a) If \overline{X} denotes the mean of a random sample, where would the given distribution be centered? (Answer using an appropriate name or symbol.)
 - the sampling distribution of \overline{X}
 - a bootstrap distribution
 - a randomization distribution
 - (b) Tailor the description of a bootstrap sample in Example 3.20 (specifically, part (b) of that example) to the current setting, and describe how you would produce a single bootstrap statistic.
 - (c) Assuming that you have already found
 - the mean height \bar{x} for a *sample* of female Calvin students, and
 - a bootstrap distribution

describe **two** different ways you might construct an 80% confidence interval for μ , the mean height of the population.

- (d) Tailor the description given on p. 270, Example 4.30 so as to describe how you would produce a single randomization statistic.
- 3. Let p represent the proportion of people who voted in the 2020 Presidential election who would, if given the opportunity to vote again today, cast that vote for a different candidate. If a 90% confidence interval for p were (0.06, 0.31), then what could you say about the P-value associated with the hypotheses
 - (a) \mathbf{H}_0 : p = 0.25 vs. \mathbf{H}_a : $p \neq 0.25$?
 - (b) \mathbf{H}_0 : p = 1/3 vs. \mathbf{H}_a : $p \neq 1/3$?
- 4. True or False. Place a "T" by those statements that are true without reservation. Place an "F" by those statements which are not unequivocally true.
 - (a) _____ A Type I error occurs when we reject a null hypothesis which is true.
 - (b) ______ Using significance level $\alpha=0.05$, the chance of committing a Type II error is 5%.
 - (c) _____ The *P*-value one obtains in an hypothesis test is the probability that the null hypothesis is true.
 - (d) _____ We reject the null hypothesis in precisely those instances where an effect is significant.
 - (e) _____ When P = 0.97, we would reject the null hypothesis at the 5% level.
 - (f) ______ If a *P*-value is significant at the 5% level, then it is also significant at the 1% level.
- 5. Why don't we ever construct 100% confidence intervals?