PONTIFICIA UNIVERSIDAD CATOLICA FACULTAD DE CIENCIAS SOCIALES ESPECIALIDAD DE ECONOMIA

12 * 62 2>1>2

ESTADISTICA INFERENCIAL **EXAMEN FINAL**

Problema 1 (5 puntos) (5 puntos) Se plantea el modelo $Y_j = \beta X_j + \varepsilon_j$ j = 1, 2, ..., n, donde $\varepsilon_j \sim N(X_j, 1)$, $X_j > 1$ es variable \underline{no} aleatoria y hay independencia en los distintos ε_i . Halle el MELI de β y estudie su consistencia.

Problema 2 (5 puntos)

Si X es v.a. con distribución Gamma $X \sim \Gamma(\alpha = 2, \beta)$ y $(X_1, X_2, ..., X_n)$ es m.a. de tamaño n tomada de la población de X. Se desea aproximar o estimar β usando estimador máximo verosímil de una muestra grande de n=36 casos. El objetivo es que el estimador no difiera de β en más del 5% de β ¿Cuál es la probabilidad de que este objetivo se cumpla? Si se quisiera además que la probabilidad de lograr el objetivo sea de 95%: ¿Habría que tomar más casos? De ser así, ¿Cuántos casos adicionales serían necesarios?

Problema 3 (5 puntos) (3)

 \vec{A} Si $(X_1, X_2, ..., X_n)$ es m.a. de una distribución $N(\mu, \sigma^2)$ y se define $Y = \sum_{i=1}^n \alpha_i X_i$ siendo los coeficientes

 $lpha_j$ no aleatorios , halle la función generatriz de momentos de Y y pruebe que esta estadística tiene distribución normal.

Si $X \sim N(0, \sigma_X^2)$ e $Y \sim N(0, \sigma_Y^2)$, independiente de X y se toman m.a. de X y de Y de tamaños n_1 y n_2 respectivamente:
(1) Se desea hallar un valor c tal que $P(|\overline{Y}/S_y| > c) = 0.05$, halle c si $n_2 = 8$

(2) Si $\sigma_X^2 = 5\sigma_Y^2$, $n_1 = 5$, $n_2 = 8$ y $U = cS_Y^2 / S_X^2$, halle c tal que $U \sim F(k_1, k_2)$

Parte electiva: Resuelva sólo uno de los siguientes problemas

Problema 4 (5 puntos)

El tiempo (en minutos) que tarda establecimiento en satisfacer un pedido a domicilio es una variable aleatoria $X \sim \Gamma(x; \alpha = 1, \beta)$. Hace un año se tenía $\beta = 20$ pero ahora se sostiene que $\beta < 20$. Se tomó una muestra aleatoria de 36 pedidos para ver si era cierta la última afirmación y se obtuvo una media de $\overline{X} = 18$ minutos.

Construya un I.C. de 95% para β y luego úselo para ver si podría asegurar que β < 20 .

b) Halle la Región Crítica UMP para H_0 : $\beta = 20$ vs H_1 : $\beta < 20$ que tenga probabilidad $\alpha = 0.05$ de Error I y luego úsela para decidir si $\beta = 20$ o $\beta < 20$

Problema 5 (5 puntos)

a) Si $X \sim LogN(\mu, \sigma^2)$. Estime los dos parámetros de esta distribución con el Método de Momentos y estudie la consistencia de los estimadores obtenidos

b) Si $N(4, \sigma^2)$ y se quiere saber si σ^2 o si $\sigma^2 = 9$ a partir de una m.a. de n = 6 casos: (3,5,6,1,6,7) Halle la región crítica UMP para $H_0: \sigma^2 = 9$ vs $H_1: \sigma^2 < 9$ y a partir de la m.a. decida cuál es la situación acerca de σ^2

13 de Julio de 2013

ACG./SAMP.