DSADM: Stationarity of random space-time covariances

Michael Tsyrulnikov

(michael.tsyrulnikov@gmail.com)

April 21, 2019

1 Introduction

Here we provide a sketch of the proof of the statement that the space-time covariances $\gamma(t, t', s, s')$ are stationary in space-time random processes.

2 Recursive equations for the field covariances

Recall the equations for the simultaneous time-discrete field covariances Γ_k ,

$$\Gamma_k = \mathbf{F}(\underline{\boldsymbol{\theta}}_k) \, \Gamma_{k-1} \, \mathbf{F}(\underline{\boldsymbol{\theta}}_k)^\top + \mathbf{Q}(\underline{\boldsymbol{\theta}}_k), \tag{1}$$

and the lagged field covariances Γ_{kj} ,

$$\Gamma_{kj} = \mathbf{F}(\underline{\boldsymbol{\theta}}_k) \, \Gamma_{k-1,j}. \tag{2}$$

3 Explicit equations for the field covariances

3.1 Computation

Equations (1) and (2) allow us to express all covariances $\Gamma_k \equiv \Gamma_{kk}$ and Γ_{kj} (for j < k) from Γ_0 and $\mathbf{Q}(\underline{\boldsymbol{\theta}}_{1:k})$ as follows.

Let's prove this by induction. This is, certainly, true for k = 1. Assume this is true for some k and prove that this holds also for k + 1. Indeed, knowing Γ_k , we compute $\Gamma_{k+1,k+1}$ from Eq.(1). Then, for any j < k + 1, we compute $\Gamma_{k+1,j}$ using Eq.(2):

$$\Gamma_{k+1,j} = \mathbf{F}(\underline{\boldsymbol{\theta}}_{k+1}) \, \Gamma_{kj}. \tag{3}$$

This completes the proof.

3.2 Explicit equations

Take the simultaneous covariances Γ_k and k large enough, apply Eq.(1) recursively, and use the fact that \mathbf{F} is a contraction (in the sense that $\|\mathbf{F}_k\| \le \mu < 1$, where $\|.\|$ is the the matrix norm induced by the *maximal* vector norm), so that the series

$$\mathbf{\Gamma}_{k} = \mathbf{Q}(\underline{\boldsymbol{\theta}}_{k}) + \mathbf{F}(\underline{\boldsymbol{\theta}}_{k}) \mathbf{Q}(\underline{\boldsymbol{\theta}}_{k-1}) \mathbf{F}(\underline{\boldsymbol{\theta}}_{k})^{\top} + \mathbf{F}(\underline{\boldsymbol{\theta}}_{k}) \mathbf{F}(\underline{\boldsymbol{\theta}}_{k-1}) \mathbf{Q}(\underline{\boldsymbol{\theta}}_{k-2}) \mathbf{F}(\underline{\boldsymbol{\theta}}_{k-1})^{\top} \mathbf{F}(\underline{\boldsymbol{\theta}}_{k})^{\top} + \dots (4)$$

is pathwise convergent.

Indeed, since $\mathbf{Q} = \mathbf{F} \mathbf{\Sigma}^2 \mathbf{F}^{\top} / (\Delta s \Delta t)$, $\exists C > 0$: $\|\mathbf{Q}\| \leq \|\mathbf{F}\|^2 \sup(\sigma(t, s)^2) / (\Delta s \Delta t) < C$ pathwise (note that $\Sigma_{ii}(t) = \sigma(t, s_i)$ is bounded above because $\sigma = g_{\sigma}(\sigma^*)$ and the transformation function g_{σ} is bounded). Then, with $\|\mathbf{F}_k\| \leq \mu < 1$, it follows that the terms of the series Eq.(4) exponentially decay pathwise. Hence the pathwise convergence of the series Eq.(4). QED.

4 Stationarity

Since the probability distributions of any collection of $\underline{\boldsymbol{\theta}}_{j_m}$ (for m = 1, ..., M) are invariant to translations over k and rotations over the spatial coordinate, Eq.(4) immediately implies that so are the probability distributions of any collection of the spatial field covariances Γ_k . An extension to the lagged field covariances is straightforward.

This shows that $\gamma(t, t', s, s')$ are (strongly) stationary in space-time random processes.

5 Conclusion

The solution to DSADM is a non-stationary in space-time random field, while its space-time covariances are stationary in space-time random processes.