DS n° 03 : Fiche de calculs

Durée: 60 minutes, ca	culatrices et	t documents	interdits
-----------------------	---------------	-------------	-----------

Nom et prénom :		Note:	
-----------------	--	-------	--

Porter directement les réponses sur la feuille, sans justification.

Fonctions usuelles.

Simplifier: $\operatorname{Arccos}\left[\cos\left(\frac{24\pi}{7}\right)\right] =$. (1)

Donner l'ensemble des couples (x, y) solution sur $(\mathbb{R}_+^*)^2$ du système $\begin{cases} 25^x = 7 \times 125^y \\ 4^x = 3 \times 16^y \end{cases}$.

(2)

Dérivation.

La fonction $f: x \mapsto \operatorname{Arcsin}(\ln(2x^2))$ vérifie les propriétés suivantes :

f est définie sur ; (3)

f est dérivable sur A = ; (4)

 $\forall x \in A, \ f'(x) =$

Calculs d'intégrales et de primitives.

Donner une primitive sur \mathbb{R} de $x \mapsto \cos(2x)e^{-3x}$.

(6)

Calculer les intégrales suivan	tes.
$\int_0^{\pi/4} \frac{\sin(x)}{\cos^4(x)} \mathrm{d}x =$	(7
$\int_0^{1/2} \operatorname{Arcsin}(x) \mathrm{d}x =$	(8
$\int_0^1 \frac{1}{3e^{-x} + e^x} \mathrm{d}x =$	(9
	es. $ \text{rentielle } (\mathcal{E}): y' + \operatorname{th}(x)y = x. \text{ L'ensemble des solutions homogènes de } $
(\mathscr{E}) est	(10
et une solution particulière d	$\operatorname{e}\left(\mathscr{E}\right)\operatorname{est}$
	. (11
L'unique solution de (\mathscr{E}) vér	ifiant $y(1) = 0$ est
	. (12
Soit l'équation différentielle homogène associée à (\mathcal{F}) est	$(\mathscr{F}): y''+y'+y=\sin(x).$ L'ensemble des solutions de l'équation
	(13
et une solution particulière d	$\operatorname{e}\left(\mathscr{F}\right)\operatorname{est}$

— FIN —

. (14)