Temporal Learning, Modeling and Adaptation

April 2018

José Dorronsoro Escuela Politécnica Superior Universidad Autónoma de Madrid CONTENTS

${\bf Contents}$

	Time Series Review 1.1 Stochastic Processes	
2	Dynamical Systems	11
	2.1 Linear Differential Equations	11
	2.2 Planar Systems	13
	2.3 Nonlinear Dynamical Systems	18

1 Time Series Review

1.1 Stochastic Processes

Temporal Information Processing?

- First interpretation: the processing of information that has a time structure, i.e., time series
- \bullet Time series (TS): a time–ordered sequence of scalar or vector values X_t
- The temporal structure determines the behavior of X_t and must be taken into account to model it
- Second interpretation: the temporal processing of information
- Even if they do not have a temporal structure, data are (almost always) generated sequentially
- Examples: streaming data, on-line learning
- In both cases we get back to Machine Learning
 - Clearly so in on-line learning
 - After some roundabouts in practical TS modelling
- We deal first with time structured data

Time Series Contexts

- Two different TS origins:
 - Stochastic generation: the observed TS is a realization of a stochastic process
 - **Dynamical system evolution**: the observed TS is the trajectory of the solution of a continuous or discrete dynamical system (DS) from given initial conditions
- Different worlds (stochastic vs deterministic) but sometimes are hard to tell them apart
- Very different tools and perspectives
 - For stochastic TS we worry about stationarity, ergodicity, spectral densities;
 linear models and short term prediction are the main goals
 - For DS we worry about **sinks**, **sources**, **stability**, **attractors**, **chaos**; the main goal is non-linear long term behavior, often very sensible to initial conditions
- We begin with (general) stochastic processes and then go to (much simpler) ARMA models

Basic Tools

• Probability Space: triplet made up of a set Ω , a subset \mathcal{A} of 2^{Ω} and a probability P defined in \mathcal{A}

- We associate A with the events to which we can assign a probability
- If Ω is discrete, usually $\mathcal{A}=2^{\Omega}$ (i.e., all possible subsets of Ω)
- Two subsets $A, B \in \mathcal{A}$ are **independent** if $P(A \cap B) = P(A)P(B)$
- Random variable: a function $X: \Omega \to \mathbf{R}$
 - As such X is deterministic; it is its arguments that are random
- Mean of X: $\overline{X} = \mu_x = E_P[X]$
- If $\mu_X < \infty$, its variance is $var(X) = E_P[(X \mu_X)^2] = E_P[X^2] \mu_X^2$
- The order k moment of X is $E_P[X^k]$

Computing Expectations

- What do we mean by $E_P[X]$?
- In simple cases it is clear:
 - If Ω discrete, $E_P[X] = \sum X(\omega)P(\{\omega\})$
 - If X takes discrete values $\{x_n\}$, $E_P[X] = \sum x_n P(\{\omega : X(\omega) = x_n\})$
- In general, one defines the expectation of X in terms of the **distribution function** of X
- Distribution function of X: $F(x) = F_X(x) = P(\{\omega : X(\omega) \le x\})$
 - Clearly F(x) is increasing
 - If it is derivable, F'(x) = f(x) is its **density**
- Then for a general continuous X, E[X] is defined as a **Stieltjes integral** of x with respect to F: $E[X] = \int x dF_X(x) = \int x dF(x)$
 - If F is differentiable, $E[X] = \int x f(x) dx$
 - We can also define $E_X[g(X)] = E[g(X)] = \int g(x)dF(x)$

Joint Distribution Function

• Given two r.v. X, Y their **joint distribution** F(x, y) is defined as

$$F(x,y) = F_{X,Y}(x,y) = P(\{\omega : X(\omega) \le x, Y(\omega) \le y\})$$

- Then $\int_{y=-\infty}^{\infty} dF(x,y) = F(x,\infty) = P(\{\omega : X(\omega) \le x\}) = F_X(x)$
- If F(x,y) is differentiable, $\frac{\partial^2 F}{\partial x \partial y} = f(x,y)$ is the joint density
- We can define $E_{X,Y}[g(X,Y)] = \int g(x,y)dF(x,y)$ also as a Stieltjes integral
 - If F(x,y) differentiable, $\int g(x,y)dF(x,y) = \int g(x,y)f(x,y)dxdy$

- X, Y are said to be **independent** if the subsets $\{x_1 \le x \le x_2\} = \{\omega : x_1 \le X(\omega) \le x_2\}$ and $\{y_1 \le y \le y_2\}$ are independent
 - Then $F(x,y) = F_X(x)F_Y(y)$
- Similarly, if $X_1, \ldots X_K$ are random variables, we can define $F(x_1, \ldots x_K) = P(\{\omega : X_k(\omega) \le x_k, \ k = 1, \ldots, K\})$

Stochastic Processes

- A stochastic/random process (sp) is a family $\{X_t\}$ of random variables on a common probability space (Ω, \mathcal{A}, P)
 - We will consider discrete time: $\{t\} = \{\ldots, -1, 0, 1, \ldots\}$
 - If we fix a $\omega_0 \in \Omega$, a sample path or realization of a sp is the sequence $\{x_t = X_t(\omega_0)\}$
- Examples of sps
 - White noise: X_t are independent variables with 0 mean and finite variance
 - Brownian Motion: $X_0 \equiv 0$, the increments $X_t X_s$ are independent, $X_t X_s = N(0, \sqrt{t-s} I)$
 - Markov models: $\Omega = \{1, ..., N\}$ is discrete and $P(X_{t+1} = j | X_t = i, X_{t-1} = i_{t-1}, ..., X_{t-k} = i_{t-k}) = P(X_{t+1} = j | X_t = i)$
 - * $p_{ij} = P(X_{t+1} = j | X_t = i)$ is the **transition** matrix
- Kolmogorov's Theorem ensures the existence of underlying sps

Stationarity

- We can define the joint distributions $F_{\tau}(x_1,\ldots,x_K)$ for $\tau=(t_1,\ldots,t_K)$ of the sp X_t as $F_{\tau}(x_1,\ldots,x_K)=P(\{\omega:X_{t_k}(\omega)\leq x_k,\ k=1,\ldots,K\})$
- If the different X_t behave differently, it will be difficult to say much about them
- The sp X_t is **strictly stationary** (SS) if for all K, τ and h we have for $\tau + h = (t_1 + h, \dots, t_K + h)$

$$F_{\tau}(x_1,\ldots,x_K) = F_{\tau+h}(x_1,\ldots,x_K)$$

- If X_t is SS, $\mu_t = \int x dF_t(x) = \int x dF_{t+h}(x) = \mu_{t+h} \ \forall h$
- The autocovariances of X_t are

$$\gamma(r,s) = cov(X_r, X_s) = E[(X_r - \mu_r)(X_s - \mu_s)]$$

= $\int (x - \mu_r)(x' - \mu_s)dF_{r,s}(x, x'),$

• If X_t is SS, $\gamma(r,s) = \gamma(r+h,s+h) = \gamma(r-s,0) \ \forall r,s,h$,

Stationarity II

- Also $\gamma(r,s) = \gamma(s,r)$
- SS is very desirable, but perhaps too restrictive
- We relax it to just **stationarity** (S) (or weakly/second order stationarity) if we simply impose

$$\mu_t = \mu, \ \gamma(t+h,t) = \gamma(h,0) \ \forall t,h$$

We just write $\gamma(h)$ instead of $\gamma(h,0)$

- In particular $\gamma(h) = \gamma(0,h) = \gamma(-h,h-h) = \gamma(-h,0)$ and $\gamma(0) = var[X_t]$ for all t
- Moreover, if $\mu_t = 0$, $\gamma(h) \leq \gamma(0)$
- If we define the **autocorrelations** $\rho(h) = \gamma(h)/\gamma(0)$, we have $\rho(h) \leq 1$

Ergodicity

- The time series $\{x_t\}$ given as a realization of a S sp X_t is the only information that we have if we want to compute the statistics of all X_t
- \bullet Ergodicity makes possible to estimate moments of X_t from the time series values
- An intuitive idea is to estimate μ by the mean $\hat{\mu}_k = \frac{1}{2k+1} \sum_{-k}^k x_t$, for considering the RV $M_K = \frac{1}{2k+1} \sum_{-k}^k X_t$, we have

$$E[M_K] = \frac{1}{2k+1} \sum_{-k}^{k} E[X_t] = \frac{1}{2k+1} \sum_{-k}^{k} \mu = \mu$$

- If the variance σ_k^2 of $\hat{\mu}_k$ tends to 0, $\hat{\mu}_k$ tends to μ in MSE and we say that X_t is mean-ergodic
- Slutsky's theorem: A S sp X_t with covariance $\gamma(k)$ it is mean–ergodic iff $\lim_{k \to 1} \sum_{j=0}^{k} \gamma(j) = 0$

Covariance Ergodicity

• Assuming $\mu = 0$, the intuitive variance estimation is now

$$\hat{v}_k = \frac{1}{2k+1} \sum_{t=-k}^{k} x_t^2,$$

which is the mean of the sp X_t^2

- Now if X_t is a S sp, so is X_t^2 and we can apply again Slutsky's theorem
- \bullet The covariance $\gamma^2(k)$ of X_t^2 is $\gamma^2(k) = E[X_k^2 X_0^2] E[X_0^2]^2$
- The Slutsky's condition for **covariance ergodicity** is now $\lim_{k \to 1} \frac{1}{k+1} \sum_{j=0}^{k} \gamma^{2}(j) = 0$ or, equivalently,

$$\lim \frac{1}{k+1} \sum_{j=0}^{k} E[X_j^2 X_0^2] = E[X_0^2]^2$$

1.2 Basic TS Models

AR and MA Models

- An autoregressive (AR) model of order p is a sp X_t with 0 mean where $X_t = \sum_{j=1}^{p} \alpha_j X_{t-j} + \epsilon_t$, with ϵ_t white noise with variance σ^2
- If B denotes the **time delay** operator $BX_t = X_{t-1}$, we can write the above as

$$\epsilon_t = X_t - \sum_{1}^{p} \alpha_j X_{t-j} = (I - \sum_{1}^{p} \alpha_j B^j) \ X_t = \phi(B) \ X_t$$

- A moving average (MA) model of order q is a sp X_t where $X_t = \epsilon_t + \sum_{j=1}^{q} \beta_j \epsilon_{t-j}$, with ϵ_t again white noise
- Just as before, we can write a MA (q) sp X_t as

$$X_t = \epsilon_t + \sum_{1}^{q} \beta_j \epsilon_{t-j} = \left(I + \sum_{1}^{q} \beta_j B^j\right) \epsilon_t = \theta(B) \epsilon_t$$

Stationarity of AR and MA Models

- It is easy to see that if X_t is a S sp, $Y_t = \sum_{j=0}^{q} \beta_j X_{t-j}$ is also a S sp
- Thus any MA (q) sp is S
- If the series $\sum_{0}^{\infty} |\beta_{j}|$ converges and X_{t} is a S sp, the sp $Y_{t} = \sum_{0}^{\infty} \beta_{j} X_{t-j} = \sum_{0}^{\infty} \beta_{j} B^{j} X_{t}$ is also S
- What about AR (p) processes?
- If X_t is AR(1) we have $\epsilon_t = X_t \alpha X_{t-1} = (1 \alpha B)X_t$ or, formally, $X_t = (1 \alpha B)^{-1}$ $\epsilon_t = \sum_{0}^{\infty} \alpha^j B^j \epsilon_t$
- If $|\alpha| < 1$ the series converges; thus an AR(1) process is S if $|\alpha| < 1$ (in fact iff)
- Notice that the root $1/\alpha$ of $\phi(z) = 1 \alpha z$ lies outside the unit circle
- For a general AR (p) sp X_t we have formally $X_t = (\phi(B))^{-1}\epsilon_t$, and we can invert $\phi(B)$ into a convergent series if the polynomial $\phi(z)$ has all its roots outside the unit circle
- Thus an AR (p) process X_t is S if(f) $\phi(z)$ has all its roots outside the unit circle

ARMA Models

• An **ARMA** (p,q) model is a sp X_t s.t.

$$X_t = \sum_{1}^{p} \alpha_i X_{t-i} + \sum_{1}^{q} \beta_j \epsilon_{t-j} + \epsilon_t,$$

with ϵ_t white noise

• We can rewrite the above as $\epsilon_t + \sum_{1}^{q} \beta_j \epsilon_{t-j} = X_t - \sum_{1}^{p} \alpha_i X_{t-i}$, i.e.

$$\theta(B)\epsilon_t = \phi(B)X_t$$

for some polynomials ϕ , θ

- Formally we have $X_t = \phi(B)^{-1}\theta(B)\epsilon_t$, which we can express as $X_t = \sum_{0}^{\infty} \gamma_j B^j \epsilon_t$ if $\phi(z)$ has all its roots outside the unit circle
- Thus an ARMA (p,q) process X_t is S if(f) $\phi(z)$ has all its roots outside the unit circle

Covariance Functions

- Q1: How easy is to identify an ARMA process?
 - Right now this a too general question
- Q2: are there simple ways to characterize ARMA processes?
 - Yes: through their covariances
- In fact, covariances are sort of a **signature** of S sps
- **Theorem**: a function $K: Z \to C$ is the autocovariance function of a (possibly complex) S TS iff it is Hermitian and semi-definite positive; i.e.,
 - $-K(h) = \overline{K(-h)}$ and
 - For any $n \ge 0$ and $a \in C^n$, $a^t K(n) a \ge 0$, where K(n) is the $n \times n$ matrix $K(n)_{ij} = K(i-j)$
- We can thus focus our attention on Hermitian and semi-definite positive functions

Spectral Covariance Representation

• Riesz-Herglotz Theorem: a function $\gamma: Z \to C$ is hermitian and semi-definite positive (i.e., an autocovariance function) iff

$$\gamma(h) = \int_{-\pi}^{\pi} e^{ih\omega} dF(\omega)$$

with F a right-continuous, non decreasing function on $[-\pi, \pi]$ with $F(-\pi) = 0$

- Such an F is called the **spectral distribution** of γ
- If we can write $F(\omega) = \int_{-\pi}^{\omega} f(u) du$, we say that f is the **spectral density** of γ and then $\gamma(h) = \int_{-\pi}^{\pi} e^{ih\omega} f(\omega) d\omega$
- Notice that then $f(\omega) \geq 0$
- With (considerable) more work we can arrive at a spectral representation of a S sp X_t

Spectral Densities

- Spectral densities are much easier to handle
- If $\gamma(h)$ is summable (i.e., $\sum_{h} |\gamma(h)| < \infty$), Fourier series theory implies that

$$f(\omega) = \sum_{-\infty}^{\infty} \gamma(h) e^{ih\omega}$$

- An immediate consequence is that an absolutely summable $\gamma(h)$ is the autocovariance function of a S TS X_t iff $f(\omega) = \sum_{-\infty}^{\infty} \gamma(h) e^{ih\omega} > 0$
- Moreover, if X_t is real, f is symmetric
- \bullet Thus, S TSs with "simple" γ should have spectral densities easy to compute
- For instance, if ϵ_t is white noise with variance σ^2 , its spectral density is $\sigma^2/2\pi$
- This is also the case for MA and (with more work) AR processes

Autocovariances of MA Processes

- MA processes have the simplest autocovariances:
 If X_t is a zero-mean S sp whose autocovariances verify γ(h) = 0 if |h| > q, then it is a MA(q) process
- More generally, if $\sum_{0}^{\infty} |\psi_k| < \infty$,

$$X_t = \sum_{0}^{\infty} \psi_k \epsilon_{t-k}$$

is called a $MA(\infty)$ process

• It is relatively easy to check that its autocovariances verify

$$\gamma(h) = \sigma^2 \sum_{0}^{\infty} \psi_j \psi_{j+|h|}$$

Autocovariances of AR Processes

- The situation is more complicated for AR(p) processes
- Their covariances cannot be written in closed form unless p is small
- Usually they are all non zero
- To get them, recall that if X_t is AR(p) and $\phi(z)$ has all its roots outside the unit circle, then we can write $\phi(B)X_t = \epsilon_t$
- Multiplying both sides by X_{t-k} and taking expectations, we can get recurrence relations for $\gamma(k)$
- Easy exercise: compute them for $X_t = \alpha X_{t-1} + \epsilon_t$, $\alpha < 1$

• Nevertheless, AR and MA spectral densities are simpler to find

Spect. Densities of AR and MA Processes

• If we have $Y_t = \sum_{-\infty}^{\infty} \psi_j Z_{t-j} = \sum_{-\infty}^{\infty} \psi_j B^j Z_t$, with ψ_j real and Z_t S with zero mean and spectral density (spd) f_Z , then Y_t is S with spectral distribution

$$F_Y(\omega) = \int_{-\pi}^{\omega} \left| \sum_{-\infty}^{\infty} \psi_j e^{-iju} \right|^2 f_Z(u) du = \int_{-\pi}^{\omega} \left| \sum_{-\infty}^{\infty} \psi_j \left(e^{-iu} \right)^j \right|^2 f_Z(u) du$$

• Since for an AR(p) X_t we have $\epsilon_t = \phi(B)X_t$, it follows that

$$\frac{\sigma^2}{2\pi} = |\phi(e^{-i\omega})|^2 f_X(\omega) \Rightarrow f_X(\omega) = \frac{\sigma^2}{2\pi} \frac{1}{|\phi(e^{-i\omega})|^2}$$

• And since for a MA(q) X_t we have $X_t = \theta(B)\epsilon_t$, its spd is

$$f_X(\omega) = \frac{\sigma^2}{2\pi} |\theta(e^{-i\omega})|^2$$

Spectral Densities of ARMA Processes

• For an ARMA(p, q) X_t we have $Y_t = \phi(B)X_t = \theta(B)\epsilon_t$, and putting together the previous equalities, we get

$$f_Y(\omega) = |\phi(e^{-i\omega})|^2 f_X(\omega) = \frac{\sigma^2}{2\pi} |\theta(e^{-i\omega})|^2$$

• Working things out we arrive at a rational spectral density

$$f_X(\omega) = \frac{\sigma^2}{2\pi} \frac{|\theta(e^{-i\omega})|^2}{|\phi(e^{-i\omega})|^2} = \frac{\sigma^2}{2\pi} \left| \frac{\theta(e^{-i\omega})}{\phi(e^{-i\omega})} \right|^2$$

- Since rational functions (and polynomials) are dense in $C([-\pi, \pi])$, a process with a symmetric continuous spd can be approximated in an appropriate sense by ARMA(p, q) or MA(q) processes
- But this has more theoretical than practical interest

ARIMA Models

- In general, time series are not stationary, with a typical instance being sp of the form $X_t = m_t + s_t + Y_t$, with m_t the **trend**, s_t a (periodic) **seasonal** component and Y_t a S sp
- A seasonal component with period S (i.e., $s_t = s_{t+S}$) can be removed applying the operator Δ_S , i.e. $\Delta_S X_t = X_t X_{t-S}$
- The removal of m_t is problem dependent, with a frequent choice being the application of some power Δ^d of the difference operator $\Delta X_t = \Delta_1 X_t = X_t X_{t-1}$

- An ARIMA (p,d,q) model is a sp X_t such that $\Delta^d X_t$ is an ARMA (p,q) model
- A seasonal ARIMA $(p,d,q) \times (P,D,Q)_S$ sp X_t can be formally expressed as

$$\Phi(B^S)\phi(B)\Delta_S^D\Delta^d(X_t) = \Theta(B^S)\theta(B)\epsilon_t$$

ARX and NARX Models

- Thus things get progressively more complicated and drift towards **system identification**, i.e., to use statistical methods to build mathematical models of dynamical systems from measured data
- Moreover, there may be some other inputs U_t that we may want to incorporate to our model
- In an autoregressive with exogenous inputs (ARX) model we assume that our target X_t has the form

$$X_{t} = \sum_{1}^{D} \alpha_{j} X_{t-j} + \sum_{1}^{D'} \beta_{j'} U_{t-j'} + \epsilon_{t}$$

- Issues such as stationarity or ergodicity start to fade ...
- In a non linear ARX (NARX) the target X_t is a non linear function of the $X_{t-j}, U_{t-j'}$:

$$X_t = \Phi(X_{t-1}, \dots, X_{t-D}, U_t, U_{t-1}, \dots, U_{t-D'}) + \epsilon_t$$

Besides being reasonable by themselves, they also appear when studying dinamical systems

2 Dynamical Systems

2.1 Linear Differential Equations

From AR to Dynamical Systems

- If in an AR process we impose $\epsilon_t = 0$ we are left with the difference equation $x_t = \sum_{j=1}^{p} \alpha_j x_{t-j}$
- In general, we say that a system $X_t \in \mathbf{R}^d$ follows a discrete differential equation if $X(t+1) = x_{t+1} = F(x_t) = F(X(t))$
- In turn writing $X'(t) \simeq X(t+1) X(t) = F(X(t)) X(t) = G(X(t))$, we arrive to a system of differential equations X' = G(X)
- Differential equation systems have behind a rich (and sometimes difficult) theory
- Basic examples: linear systems

Linear Systems

• An autonomous linear system is given by

$$X' = AX, \quad X(0) = x_0$$
 (1)

for a $d \times d$ matrix A

- Basic example: (homogeneous) harmonic oscillator x'' + ax' + bx = 0
- Setting y = x' we have x' = y, y' = -bx ay; that is, for $X = (x, y)^t$, we have

$$X' = \left(\begin{array}{cc} 0 & 1 \\ -b & -a \end{array}\right) X = AX$$

- The **exponential** of a matrix B is $e^B = \sum_{0}^{\infty} \frac{B^n}{n!}$
- The general solution of (1) when $X(0) = x_0$ is $X(t) = e^{tA}x_0$

The Linearity Principle

- The eigenanalysis of A is the basic tool to study linear systems: if $Av_0 = \lambda v_0$, then $V(t) = e^{\lambda t}v_0$ is a solution with $V(0) = v_0$
- Now if λ_1, λ_2 are distinct eigenvalues of A with eigenvectors v_1, v_2 , and assume $x_0 = \alpha_1 v_1 + \alpha_2 v_2$
- Then we can find the solution of X' = AX with $X(0) = x_0$ by writing

$$X(t) = \alpha_1 e^{\lambda_1 t} v_1 + \alpha_2 e^{\lambda_2 t} v_2$$

- This is a particular case of the **Linearity Principle**:
 - If $Y_1(t), Y_2(t)$ are solutions of X' = AX and $Y_1(0), Y_2(0)$ are linearly independent, then $X(t) = \alpha Y_1(t) + \beta Y_2(t)$ is the unique solution that satisfies $X(0) = \alpha Y_1(0) + \beta Y_2(0)$
- Simplest linear systems: **planar** systems

Higher Dimensional Systems

- In principle for any $d \times d$ matrix A, $e^{tA}x_0$ yields the (unique) solution of X' = AX with $X(0) = x_0$
- However the eigenstructure of a general A is more complicated than in the planar case
- Simplest situation: A has d distinct eigenvalues
- Then A can be transformed as $M = TAT^{-1}$ into a matrix T made up of a diagonal block and a series of 2-dimensional diagonal blocks $\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$
- ullet The structure when there are repeated eigenvalues is given by the (more complicated) **Jordan form** of A
- However, matrices with distinct eigenvalues are what is to be expected:

The subset of matrices with d distinct eigenvalues is an open and dense subset of the set of $d \times d$ matrices

Non Autonomous Linear Systems

- The general form of a non autonomous linear system is X' = A(t)X, with A(t) a time varying $d \times d$ matrix
- A general discussion of such systems is not possible; a simpler situation is that of **forced** linear system (FS)

$$X' = AX + G(t), X(0) = x_0$$

- The time independent system X' = AX is the **homogeneous equation** (HE)
- If we know a particular solution Z of the FS and X is a solution of the HE, Y = Z + X is another solution of the FS with initial condition X(0) + Z(0)
- Conversely, if Y, Z are solutions of the FS, X = Y Z is a solution of the HE with X(0) = Y(0) Z(0)
- Since $e^{tA}x_0$ gives the general solution of the HE, it is enough to find a particular solution to the FS

Variation of Parameters

- Given the FS X' = AX + G(t), $X(0) = x_0$, a first try to solve it is to guess a particular solution; this is the method of **undetermined coefficients**
- However such a guess is not usually easy; the method of **variation of parameters** yields a (theoretical) general solution
- The solution of the above FS for $X(0) = x_0$ is given by

$$X(t) = e^{tA} \left(x_0 + \int_0^t e^{-sA} G(s) ds \right)$$

• The difficulty is, of course, to compute the integral!!

2.2 Planar Systems

Planar Systems

• A planar system is an autonomous linear system in \mathbf{R}^2 , that is a function $X(t) \in \mathbf{R}^2$ such that

$$X' = AX, \quad X(0) = x_0$$

• Solution again given as $X(0) = x_0$ is $X(t) = e^{tA}x_0$

• If $A = \operatorname{diag}(\lambda_1, \lambda_2)$ then

$$e^{tA} = \left(\begin{array}{cc} e^{t\lambda_1} & 0\\ 0 & e^{t\lambda_2} \end{array}\right)$$

- Now A is a 2×2 matrix and its eigenanalysis is quite simple
- Thus, planar systems can be studied quite exhaustively

Phase Portraits

- The goal in the study of dynamical systems is often to understand their asymptotic behavior
- This is depicted using phase portraits
- The phase portrait of a planar system is a picture of a collection of representative solution curves in \mathbb{R}^2 , which we call the **phase space**, for which a general idea of their evolution can be derived
- Critical points (and equilibrium solutions) arise when 0 = X' = AX, with 0 the only critical point if det $A \neq 0$

Examples of Phase Portraits

• Here are some examples associated at particular planar systems

• We can arrive to a complete understanding of the behavior of planar systems mapping the eigenanalysis of A into phase portraits

Planar Systems in Canonical Form

- Eigen values of a 2×2 matrix A: either two distinct real eigenvalues, or two repeated real eigenvalues, or two complex conjugate eigenvalues
- A 2×2 matrix A is in **canonical form** if it has one of the following forms:

$$\left(\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array}\right), \ \left(\begin{array}{cc} \alpha & \beta \\ -\beta & \alpha \end{array}\right), \ \left(\begin{array}{cc} \lambda & 1 \\ 0 & \lambda \end{array}\right)$$

• We will split the analysis of these cases according to the eigenvalues of A:

- A has two distinct real eigenvalues, i.e., the first matrix with $\lambda_1 \neq \lambda_2$
- A has two complex conjugate eigenvalues, i.e., the second matrix
- A has a single repeated real eigenvalue, i.e., the first matrix with $\lambda_1 = \lambda_2$ or the third matrix
- These cases will determine the limit behavior of the solutions of a general X' = AX

Real Distinct Eigenvalues I: Saddle Points

• If there are two non zero, distinct real eigenvalues λ_1, λ_2 , we have

$$X(t) = \exp\left(t \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}\right) x_0 = \begin{pmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{pmatrix} x_0 = \begin{pmatrix} \alpha e^{\lambda_1 t} \\ \beta e^{\lambda_2 t} \end{pmatrix}$$

- There are three important cases: i) $\lambda_1 < 0 < \lambda_2$, ii) $\lambda_1 < \lambda_2 < 0$, iii) $0 < \lambda_1 < \lambda_2$
- In the case $\lambda_1 < 0 < \lambda_2$,
 - The solutions $\alpha e^{\lambda_1 t}$ tend to 0 as $t \to \infty$: they lie in the **stable** line
 - The solutions $\beta e^{\lambda_2 t}$ tend away from 0 as $t \to \infty$: they lie in the **unstable** line
 - The solutions for $\alpha, \beta \neq 0$ tend to $\pm \infty$ getting closer to the unstable line
- The origin is the only equilibrium point, which we call a **saddle point**

Real Distinct Eigenvalues II: Sinks

- When $\lambda_1 < \lambda_2 < 0$, both solutions $\alpha e^{\lambda_1 t}$, $\beta e^{\lambda_2 t} \to 0$ when $t \to \infty$
- For a general solution $X(t) = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha e^{\lambda_1 t} \\ \beta e^{\lambda_2 t} \end{pmatrix}$, writing $x(t) = \alpha_1 e^{\lambda_1 t}$, $y(t) = \alpha_2 e^{\lambda_2 t}$, we have

$$\frac{dy}{dx} = \frac{y'}{x'} = \frac{\lambda_2 \alpha_2 e^{\lambda_2 t}}{\lambda_1 \alpha_1 e^{\lambda_1 t}} = \frac{\lambda_2 \alpha_2}{\lambda_1 \alpha_1} e^{(\lambda_2 - \lambda_1)t}$$

which tends to $\pm \infty$ when $\alpha_2 \neq 0$

- Thus the trajectories tend to 0 tangentially to the Y axis
- The origin, again the only equilibrium point, is now called a sink

Real Distinct Eigenvalues III: Sources

- When $0 < \lambda_2 < \lambda_1$, a similar analysis yields
 - Both solutions $\alpha e^{\lambda_1 t}$, $\alpha e^{\lambda_2 t} \to \infty$ when $t \to \infty$
 - Writing as before $x(t) = \alpha_1 e^{\lambda_1 t}$, $y(t) = \alpha_2 e^{\lambda_2 t}$, we have that $\frac{y'}{x'}$ tends to 0 when $\alpha_2 \neq 0$
- Thus the trajectories tend to ∞ away from 0 tangentially to the Y axis initially and becoming "horizontal" as $t \to \infty$

- The origin, again the only equilibrium point, is now called a **source**
- When one of the eigenvalues, say $\lambda_1 = 0$, the X-axis defines an equilibrium line
- The other solutions tend to ∞ away from the axis if $\lambda_2 > 0$ or to 0 otherwise

Saddles, Sinks and Sources

• We depict saddles (left), sinks and sources (right) for planar systems in canonical form

From Hirsch et al., Differential equations dynamical systems and an introduction to chaos.

Complex Eigenvalues

- When $A=\left(\begin{array}{cc} \alpha & \beta \\ -\beta & \alpha \end{array} \right)$ the eigenvalues are $\alpha\pm i\beta$
- This yields two real solutions

$$e^{\alpha t} \begin{pmatrix} \cos \beta t \\ -\sin \beta t \end{pmatrix}, e^{\alpha t} \begin{pmatrix} \sin \beta t \\ \cos \beta t \end{pmatrix}$$

and the general solution

$$X(t) = c_1 e^{\alpha t} \begin{pmatrix} \cos \beta t \\ -\sin \beta t \end{pmatrix} + c_2 e^{\alpha t} \begin{pmatrix} \sin \beta t \\ \cos \beta t \end{pmatrix}$$

- If $\alpha = 0$, we have $||X(t)||^2 = c_1^2 + c_2^2$, i.e., the solutions **cycle** around 0
- If $\alpha \neq 0$, we get spirals that turn towards the origin when $\alpha < 0$ or away from it when $\alpha > 0$

That is, we get spiral sinks or sources

Circles and Spiral Sinks and Sources

• We depict circles (left) and spiral sinks and sources (right) for planar systems in canonical form

Repeated Real Eigenvalue

From Hirsch et al., Differential equations dynamical systems and an introduction to chaos.

• We get a single repeated eigenvalue λ when we have

$$A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \text{ or } A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

- In the first case the solutions are $X(t) = e^{\lambda t}V$ for any V = X(0); thus the trajectories are straight lines through (0,0) that either tend to 0 when $\lambda < 0$ or to ∞
- The solutions in the second case are obtained by the method of **undetermined coefficients**: they are assumed of the form $x(t) = \alpha e^{\lambda t} + \mu t e^{\lambda t}$ for some α, μ
- Plugging this into the equation results in

$$X(t) = \alpha e^{\lambda t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \mu e^{\lambda t} \begin{pmatrix} t \\ 1 \end{pmatrix}$$

- If $\lambda < 0$ the solutions $\to 0$ as $t \to \infty$; if $\lambda > 0$ they $\to \infty$
- In either case the solutions tend toward or away from (0,0) in a direction tangent to (1,0)

Changing Coordinates

- Assume we want to solve $X' = AX, X(0) = x_0$ for a general matrix A
- We can find an invertible matrix T such that $M = TAT^{-1}$ is in canonical form
- Let Y be a solution of Y' = MY with $Y(0) = y_0 = Tx_0$; setting $X = T^{-1}Y$ we obtain a solution of X' = AX with $X(0) = T^{-1}y_0$
- Conversely, Y = TX converts solutions of X' = AX, $X(0) = x_0$ into solutions of $Y' = TAT^{-1}Y$ with $Y(0) = y_0$
- The transformation T changes the initial coordinates X into the canonical form coordinates Y = TX
- Therefore the phase portraits for general planar systems X' = AX can be derived from the phase portraits of canonical form system Y' = MY by applying the T^{-1} coordinate change

• We thus obtain equilibrium points, sinks, sources, cycles or spirals that correspond to appropriate coordinate changes of the ones in canonical form

The Trace-Determinant Plane I

• It can be easily seen that the eigenvalue equation of a 2×2 matrix A is of the form

$$\lambda^2 - \text{ tr } A \lambda + \text{ det } A = \lambda^2 - \tau \lambda + \delta = 0$$
 with solutions $\lambda_{\pm} = \frac{1}{2} \left(\tau \pm \sqrt{\tau^2 - 4\delta} \right)$

- As a consequence we have
 - Complex conjugate eigenvalues when $\tau^2 < 4\delta$
 - Real different eigenvalues when $\tau^2 > 4\delta$
 - Real repeated eigenvalues when $\tau^2 = 4\delta$
- The parabola $\delta = \tau^2/4$ separates complex (above) from real (on or below) eigenvalues

The Trace-Determinant Plane II

- The real part of the complex eigenvalues above is $\tau/2$ and, therefore
 - We have a spiral sink if $\tau < 0$ and a spiral source when $\tau > 0$
 - We get a circle when $\tau = 0$
- Below the parabola we have a saddle when $\delta = \lambda_- \lambda_+ < 0$
- When $\delta > 0$, since $|\tau| > \sqrt{\tau^2 4\delta}$, we have sign $\lambda_{\pm} = \text{sign } \tau$; thus
 - We get a (real) source point when $\tau > 0$
 - We get a (real) sink point when $\tau < 0$
- One eigenvalue is 0 when $\delta = 0$ but $\tau \neq 0$ while both are 0 if $\delta = \tau = 0$

The Trace-Determinant Plane III

• The following plane diagram summarizes the preceding discussion

2.3 Nonlinear Dynamical Systems

Nonlinear Dynamical Systems

- A dynamical system (DS) is a procedure that describes the behavior in time of all points of a given space S (Euclidean space, a manifold, ...)
 - They are characterized by the flow, a function $\Phi_t: \mathbf{R}^d \to \mathbf{R}^d$ that takes x into $x_t = X(t) = \Phi_t(x)$
 - We call them **discrete or continuous** depending on how we consider time change

From Hirsch et al., Differential equations dynamical systems and an introduction to chaos.

- Basic example: $\Phi_t(x)$ being the solution of a system of differential equations X' = F(X)
- The behavior of general non linear DSs (NDS) may be quite complicated:
 - Most NDS are impossible to solve analytically
 - Some do not have solutions with a given initial value, some may have infinitely many ones
 - Solutions need not be defined for all time values t as they may tend to ∞ in finite time

Basic Results on Continuous NDS

- Existence and Uniqueness: If F is C^1 , given t_0 and x_0 , there exists an $\epsilon > 0$ and a unique solution $X : (t_0 \epsilon, t_0 + \epsilon) \to \mathbf{R}^d$ such that $X(t_0) = x_0$
 - Proved by the Picard iteration technique
 - We can show that we have a unique solution defined on a maximal time domain
 - However, the solution may not be defined for all t even for nice F
- Continuous Dependence of Solutions: If F is C^1 and X(t) is a solution defined on $[t_0, t_1]$ with $X(t_0) = x_0$, then there is a neighborhood U of x_0 and a constant K such that if $y_0 \in U$, then there is a unique solution Y(t) defined on $[t_0, t_1]$ with $Y(t_0) = y_0$ and for all $t \in [t_0, t_1]$

$$|Y(t) - X(t)| \le K|y_0 - x_0|e^{K(t-t_0)}$$

- In particular the flow $\Phi_t(x)$ is continuous in X
- Continuous Dependence on Parameters: If X' = F(X, a) and F is C^1 on a and x, the flow $\Phi_t(X, a)$ depends continuously on a

Phenomena on Nonlinear Dynamical Systems

- This is almost as far as the general theory goes: many more tools have been developed but are often applicable only on concrete systems ...
- Moreover new issues and non standard behavior appear: bifurcations, strange attractor, chaotic systems, ...
- Chaos (Lorenz): When the present determines the future, but the approximate present does not approximately determine the future
- The Lorenz's system opened the way to the consideration of these phenomena

Lorenz's System I

- First goal: a simple approximation to atmospheric flow that models as a two-dimensional fluid cell heated from below and cooled from above
- Further simplified to three independent variables: the rate of convectivity (x; **convection**: the process of heat transfer by a moving fluid), and the horizontal and vertical temperature variation (y and z, respectively)
- Equations: for parameters σ, b, r

$$\dot{x} = \sigma(y - x); \ \dot{y} = r \ x - y - x \ z; \ \dot{z} = x \ y - b \ z$$

- The asymptotic behavior is relatively simple in some cases
 - -r < 1: all solutions of the Lorenz system tend to the equilibrium point at the origin or
 - $-1 < r < r^* = \sigma\left(\frac{\sigma + b + 3}{\sigma b 1}\right)$: the two non–zero equilibrium points Q_{\pm} , i.e., the solutions of F(Q) = 0, are sinks

Lorenz's System II

- Lorenz's significant parameters: $\sigma = 10, b = 8/3, r = 28$
- While being a deterministic system, it is very sensible to very small changes in initial conditions

• Butterfly effect: the flap of a butterfly's wing in Brazil can result in a tornado in Texas

Lorenz's Attractor

• All non-equilibrium solutions tend eventually to the so-called **Lorenz attractor**, roughly speaking an invariant set that "attracts" all nearby solutions

Discrete Dynamical Systems

- The theory of continuous DS focuses on the asymptotic behavior of solutions assuming of course the system to be known
- If we are interested in (practical) prediction purposes we turn our attention to **discrete** DS (DDS)
- A Discrete Dynamical System is a pair (\mathcal{X}, T) made up of the **state space** \mathcal{X} (i.e., the set of all possible system states, that we assume bounded) and the map $T: \mathcal{X} \to \mathcal{X}$
- Starting at an $x_0 \in \mathcal{X}$ we get a **trajectory** or **orbit** $\{x_0, T(x_0), T^2(x_0), \ldots\}$ of the system
- A way to catch the behaviour of a DDS is to study the asymptotic behavior of orbits
- Long-term system properties are described in terms of attractors

Attractors of DDSs

- As for planar systems, the simplest cases are those of attracting points or cycles, but much more complicated attractors are possible
- ullet In broad terms, we say that a compact set A is an **attractor** of a DDS with fundamental neighborhood U if
 - **Invariance**: for all $x \in A$ and all $n, T^n(x) \in A$
 - Attractivity: there is an open subset V s.t. $A \subset V$ and if $x \in V$, $T^n(x) \in V$ for all n and $\cap_n T^n(V) = A$
 - **Transitivity**: given any points $y_1, y_2 \in A$ and open neighborhoods U_j of y_j in U, there is a solution curve starting at U_1 and passing through U_2
- When we talk about evolution on the attractor, we actually mean in a neighborhood of the attractor

DS Reconstruction I

- In practice the dynamical system itself is rarely known and its study has to be done from a single orbit
- Moreover, instead of an orbit usually the most we can get is a time series of measurements

$$Y = \{y_0, y_1, y_2, \ldots\} = \{f(x_0), f(T(x_0)), f(T^2(x_0)), \ldots\}$$

derived from a read out map $f: \mathcal{X} \to \mathbf{R}$

- In fact we often want a model $q: \mathbf{R}^k \to \mathbf{R}$ that helps us to predict the behavior of Y
- Q: Can we get it?

DS Reconstruction II

- At first sight we would need to know X to do any reconstruction
- So the first question could be:

Can we reconstruct the internal state of the system from such a TS?

• But getting X is hopeless; we may at most answer another question:

Can we get a somewhat equivalent representation of the internal state X from the TS?

- Tool: reconstruction maps over time delays
- \bullet For a fixed k define

$$R_k(x) = (f(x), f(T(x)), \dots, f(T^{k-1}(x)))$$

• Then $R_k(x_i) = (y_i, \dots, y_{i+k-1})$

Takens Theorem

• Assume \mathcal{X} is bounded and set $\mathcal{T} \times \mathcal{F}$ be the Cartesian product of the spaces of C^1 mappings T and C^1 readouts f; then

There is an open dense subset $U \subset \mathcal{T} \times \mathcal{F}$ such that if $(T, f) \in U$ and k > 2 dim (\mathcal{X}) , the reconstruction map R_k is a C^1 embedding of \mathcal{T} in \mathbf{R}^k with a C^1 inverse

- The density of U implies that such an embedding exists "very near" any (T, f)
- Moreover, the embedding preserves the structural properties of T: the image $R_k(A)$ of an attractor A is an attractor (embedded) in \mathbf{R}^k and the observed orbit has the "same properties" of the underlying one
- More importantly, we have a path to predict the next state of the time series

$$\begin{array}{ccc} \mathsf{Current\ state} & \xrightarrow{\underline{Det.rule}} & \mathsf{Next\ state} \\ & & \mathsf{Rec}_k \bigcup \bigcap \mathsf{Rec}_k^{-1} & \mathsf{Rec}_k \bigcup \\ & & & \mathsf{Prediction} \\ & & & & \mathsf{Q}_{i+1}, \dots, y_{i+k}) \end{array}$$

S. Laur, Time Series of Deterministic Dynamic Systems, 2004

From Takens Theorem to Predictions

- We have the following diagram
- Setting $G = R_k^{-1} \circ F \circ R_k$, we have

$$(y_{i+1},\ldots,y_{i+k-1},y_{i+k})=G(y_i,\ldots,y_{i+k-1}),$$

i.e., there is a function $g = G_1$ s.t. $y_{t+1} = g(y_t, \dots, y_{t-k+1})$ for all t

Time Series Prediction

- To exploit the preceding we need
 - A way to estimate an appropriate k
 - A way to estimate the function g
- The **correlation dimension** cdim(A) of the attractor can be used to estimate an adequate k_0 : since $cdim(A) = cdim(R_k(A))$, we may look for a k_0 after which $cdim(R_k(A))$ stabilizes
 - Often this is easier said than done!!
- \bullet In any case, we get back to non–linear regression problems and \dots
- We may look to say, MLPs (o SVR) models to approximate the non-linear AR model $y_{i+k} = g(y_i, \dots, y_{i+k-1})$