Math 317: Homework 6

Due Friday, March 15, 2019

- 1. (19.4)
 - a. Prove that if f is uniformly continuous on a bounded set S, then f is a bounded function on S. (Hint: Try proof by contradiction.)
 - b. Explain why (a) gives a proof that $1/x^2$ is not uniformly continuous on (0,1).
- 2. (23.1, 23.2) For each of the following power series, find the radius of convergence and determine the exact interval of convergence.

a.
$$\sum \left(\frac{x}{n}\right)^n$$

b.
$$\sum \left(\frac{n^3}{3^n}\right) x^n$$

c.
$$\sum \left(\frac{3^n}{n4^n}\right) x^n$$

d.
$$\sum x^{n!}$$

3. (24.4) For
$$x \in [0, \infty)$$
, let $f_n(x) = \frac{x^n}{1 + x^n}$.

- a. Find $f(x) = \lim_{n \to \infty} f_n(x)$, the pointwise limit of (f_n) .
- b. Determine whether $f_n \to f$ uniformly on [0,1].
- c. Determine whether $f_n \to f$ uniformly on $[0, \infty)$.