II SEMESTER M.C.A IN-SEMESTER EXAMINATION Date: 08.06.2021

DATA STRUCTURES & ALGORITHMS [MCA 4252]

TIME:10.30 am – 12.30 pm MAX. MARKS: 30

Instructions to Candidates:

- Answer ALL the questions. Missing data and proper syntax, may be suitably assumed.
 Give appropriate examples.
- Write your name, registration number, subject name, date of examination on sheet 1.
- Signature on all sheets.

```
1.
             For the following mention the type of algorithmic efficiency involved and
       i.
             determine the big-O notation:
                 a. 3n^{5/2} + n^{2/5}
                 b. 2\log(n) + 8n
       ii.
             Calculate the run-time efficiency of the following program segment:
                 a. for (var1 = 1; var1 \le count; var1++)
                       for (var2 = 1; var2 \le count; var2++)
                           for (var3 = 1; var3 \le count; var3++)
                                cout<<" i = "<<i<" i = "<<j<<" k = "<<k;
     i. The following are examples of real-world scenarios. Identify those that are most
2.
        suited as an example of a stack application. Justify.
             Scenario 1: Movement of a line of people at a counter in a railway station.
             Scenario 2: Printing a given string in the reverse order.
             Scenario 3: Finding number of characters in a given string
             Scenario 4: Locating vowels in a given string.
    ii. Calculate the output of the following recursive function given the value of n=5.
        Write all intermediate steps.
                     recursive_fn( int n)
                       int x, y;
                       if (n == 0)
                           return 0;
                       x = n - 1;
                       y = recursive_fn(x);
                       return (n+y);
```

MCA 4252 Page 1 of 3

3.	Convert the following binary tree into its equivalent threaded binary tree. Draw the resultant tree.	2
	A	
	BC	
	Ø (F)	
	(a) (f)	
4.	"A tree is also a graph". If true or false, justify with an example.	2
	: Write the manualing function for the following:	2
5.	i. Write the recursive function for the following: f(n) = 1 if n=1	3
	$f(n) = 2*f(n-1) \text{ if } n \ge 2$	
	ii. Draw a Binary Search Tree that results from inserting into an initially empty tree	
	records with the keys: "L I N M K J E D F B S T A C" and then delete the "D" node.	
6.	Consider the following graph G with cities from A to K. Show the adjacency list,	3
	adjacency matrix and the incidence matrix for the graph G.	
	(A)	
	F G	
	(2) /	
7.	i. Check if the given tree is balanced or not. Justify.	3
	50	
	40)	
	(20) (35) (F) (70)	
	ii. Insert a node 52 to the same tree and perform the necessary rotations if the tree is	
	unbalanced. The resultant tree should be an AVL tree.	
		_
8.	i. Explain the Prim's algorithm with the help of an example. ii Discuss the prerequisites for performing Topological Sort	4
	ii. Discuss the prerequisites for performing Topological Sort.	

MCA 4252 Page 2 of 3

	iii. Illustrate the steps followed to arrange nodes using Topological Sort for	
	construction of a house, given each node represents an activity of the process. Also	
	draw the precedence of the activities.	
	0: Laying foundation	
	1: Building walls, window and door frames.	
	2: Adding the roof	
	3: Plumbing work	
	4: Electrical work	
9.	Construct a B-Tree of <i>order 5</i> : 10, 70, 60, 20, 110, 40, 80, 130, 100, 50, 190, 90, 180, 240, 30, 120, 140, 200, 210, 160	4
10.	Perform Heapsort in descending order using the following numbers:	5
	20, 12, 35, 15, 10, 80, 30, 17, 2, 1	

MCA 4252 Page 3 of 3