Лабораторная работа 4.3.3

Исследование разрешающей способности микроскопа методом **А**ббе

```
In [107]:
```

```
import numpy as np
import scipy as ps
import pandas as pd
import math
import matplotlib.pyplot as plt
%matplotlib inline
```

Определение периода решеток по их пространственному спектру

```
Расстояние от сетки до экрана: L=133.7 см Длина волны лазера: \lambda=532 нм
```

Определим расстояния между соседними максимумами для всех решеток.

```
In [108]:
```

```
data1 = pd.read_excel('lab-433.xlsx', 'table-1')
pd.DataFrame(data1)
```

Out[108]:

	n	Δx , MM	$sin(\phi)$	d, mm
0	1	35.750000	0.026739	0.019896
1 2		24.250000	0.018138	0.029331
2	3	12.166667	0.009100	0.058462
3	4	6.125000	0.004581	0.116128
4	5	4.625000	0.003459	0.153791

Определение периода решеток по изображению увеличенной модели микроскопа

Соберем новую схему и измерим в ней все необходимые нам расстояния.

Рис. 5. Схема экспериментальной установки — модель проекционного микроскопа

In [109]:

```
# Все значения указаны в см

a_1 = 9.8

a_2 = 2.5

b_1 = 90

b_2 = 36
```

Измерим период увеличенного изображения решетки.

Для нахождения периода решетки необходимо разделить полученный период изображения на увеличение Γ .

Линза №1: f = 10 см Линза №2: f = 2.5 см

Увеличение для системы линз: $\Gamma = \frac{b_1 b_2}{a_1 a_2}$

In [110]:

```
Gamma = b_1 * b_2 / (a_1 * a_2)
print('\Gamma =', Gamma)
```

 $\Gamma = 132.24489795918367$

In [111]:

```
data2 = pd.read_excel('lab-433.xlsx', 'table-2')
pd.DataFrame(data2)
```

Out[111]:

	n	Δx , MM	d, mm
0	1	2	0.015123
1	2	4	0.030247
2	3	9	0.068056
3	4	12	0.090741
4	5	18	0.136111

Определение периода решеток по оценке разрешающей способности микроскопа

Поместим щелевую диафрагму в фокальную плоскость первой линзы.

Определяем для каждой решетки минимальный размер диафрагмы D, при котором изображение на экране еще видно.

$$l_{min}pprox rac{\lambda}{D/(2f)}$$
 , где f — фокусное расстояние Π_1 . l_{min} — минимальное расстояние, разрешаемое микроскопом (период решетки d).

In [112]:

```
data3 = pd.read_excel('lab-433.xlsx', 'table-3')
pd.DataFrame(data3)
```

Out[112]:

	n	D, mm	l_{min} , MM
0	1	1.95	0.054564
1	2	1.47	0.072381
2	3	1.26	0.084444
3	4	0.78	0.136410
4	5	0.60	0.177333

Проверка метода Аббе

Для проверки метода Аббе построим график зависимости d=f(1/D), взяв периоды сеток, определенные по спектру.

```
In [113]:
```

```
x = np.array(data3.values[:, 1], dtype = float)
y = np.array(data1.values[:, 3], dtype = float)
x = np.array([1 / each for each in x])

k, b = np.polyfit(x, y, deg = 1)

plt.figure(figsize = (8, 6))
plt.title('Γραφικ зависимости $d = f(1/D)$', fontsize=16)
plt.ylabel('$d, MM$', fontsize=12)
plt.xlabel('$1/D$', fontsize=12)

plt.scatter(x, y)
plt.plot(x, x * k + b)
plt.grid(linestyle = '--')

plt.show()
```


In [114]:

```
print('k =', k, 'MM')
```

k = 0.120423429801 MM

Сравним коэффициент наклона k с константой $c=2f\lambda=2\cdot 100\cdot 532\cdot 10^{-6}$ мм = 0.1064мм

Значения совпадают по порядку величины, следовательно, метод Аббе работает.