<u>3.19</u>

Prove that for any 1 and any m>=1 we have $F_l = F_{m+1}F_{l-m} + F_mF_{l-m-1}$.

Base case is the following: If m = 1, $F_2F_{l-1} + F_1F_{l-2} = F_{l-1} + F_{l-2} = F_l$.

And we seek $F_l = F_{k+2}F_{l-k-1} + F_{k+1}F_{l-k-2}$ when m = k+1.

Suppose that for some $k \in \mathbb{N}$, where $k \le l-2$ $\mathbf{F_l} = \mathbf{F_{k+1}F_{l-k}} + \mathbf{F_kF_{l-k-1}}$.

Observe that $F_l = F_{k+1}F_{l-k} + F_kF_{l-k-1} = F_{k+1}(F_{l-k-1} + F_{l-k-2}) + F_kF_{l-k-1}$ $= F_{k+1}F_{l-k-1} + F_{k+1}F_{l-k-2} + F_kF_{l-k-1} = F_{l-k-1}(F_k + F_{k+1}) + F_{k+1}F_{l-k-2}$ $= F_{k+2}F_{l-k-1} + F_{k+1}F_{l-k-2} .$

Thus, by principle of complete Induction $F_l = F_{m+1}F_{l-m} + F_mF_{l-m-1}$ for any 1 and any m>=1.

Prove that $F_{2l} = F_l^2 + 2F_lF_{l-1}$.

We will use $F_l = F_{m+1}F_{l-m} + F_mF_{l-m-1}$ to prove that $F_{2l} = F_l^2 + 2F_lF_{l-1}$.

Observe that $F_{2l} = F_l F_{l-1} + F_{l+1} F_l = F_l F_{l-1} + (F_{l-1} + F_l) F_l = F_l^2 + 2F_l F_{l-1}$.

So simply we can prove that $\mathbf{F}_{2l} = \mathbf{F}_{l}^{2} + 2\mathbf{F}_{l}\mathbf{F}_{l-1}$.

Prove that $F_{2l+1} = F_{l}^{2} + F_{l+1}^{2}$.

We will use $F_l = F_{m+1}F_{l-m} + F_mF_{l-m-1}$ again to prove that $F_{2l+1} = {F_l}^2 + {F_{l+1}}^2$.

Put m = k, l = 2k+1.

Observe that $F_{2k+1} = F_{k+1}F_{k+1} + F_kF_k = F_k^2 + F_{k+1}^2$.

So simply we can prove that $\mathbf{F}_{2l} = \mathbf{F}_{l}^2 + 2\mathbf{F}_{l}\mathbf{F}_{l-1}$.

Show that if 1 and p are n-bit numbers, we can calculate $F_1 \mod p$ in poly(n) time.

We can use a divide-and-conquer method here. Let T_l be the time for computing F_l . Then, by (3.21) we can derive the following when we ignore additions and multiplication : $T_{2l} = 2T_l$. So, T(1) is $\theta(l)$.

But as you know when we use recursion to get Fibonacci sequence, we have to calculate same things over and over. However, we can calculate F_l and F_{l+1} simultaneously with the followings:

Using (3.21) we can reduce the problem F_{2l} and F_{2l+1} to F_l and F_{l+1} using some additions and multiplications with n-bit integers. Let f(n) be the time when we do this. Then, we can derive the equation that $f(n)=f(n-1)+o(n^2)$ because multiplication with n -bit integers is $o(n^2)$ and $F_{n-1}=F_{n+1}-F_n$. Therefore, $T(n)=o(n^3)$.

3.22

It is known by LIS(Longest Increasing Subsequence) algorithm. We can find the LIS in polynomial time using dynamic programming.

At first, we have to break down the problem into smaller sub-problems. And we need to store the solutions of the sub-problems and use them later.

We have two arrays, 'DP' and 'arr'. 'DP' is used for storing the sub-problems result and 'arr' is used for storing a given sequence.

And DP[i] means LIS value when arr[i] is the last element of an increasing sequence.

There is a LIS code above. For n times, we fill the DP[i]. And the second For loop is finding a maximum DP[i] value.

For condition, 'arr[j] < arr[i]', it's the part that checks whether the value before i is less than the current i. And the 'dp[j]+1 > dp[i]' condition is necessary because the last incremental sequence with the jth element is DP[j], and when the last ith value is added at the end, it should be greater than the current maximum value.

So, if these two conditions are satisfied, then DP[i] is updated. It can be executed in polynomial time, $O(n^2)$.

3.30

Let $G=(V,S,\sum,R)$ be a context-free grammar in Chomsky normal form. And specification of G is as follows :

```
V = \{S,T,X\},
\sum = \{a,b\},
R : S \rightarrow \varepsilon \mid AB \mid XB
T \rightarrow AB \mid XB
```

```
X -> AT
A -> a
B -> b
```

We can show this problem is in P using dynamic programming with CYK algorithm. At first, pseudo code of CYK algorithm is as follows:

```
function CKY(word w, grammar G) returns table for i <- from 1 to LENGTH(W) do  table[i-1,i] <- \{A \mid A \rightarrow W_i \in G\}  for j <- from 2 to LENGTH(W) do  for i <- from j-2 \ down \ to \ 0 \ do  for k <- from i+1 to j-1 do  table[i,j] <- table[i,j] \ \ \ \{A \mid A \rightarrow BC \in P, \ B \in table[i,k], \ C \in table[k,j]\}  | If the start symbol S \in table[0,n] then w \in L(G)
```

Let's consider whether w = aaabbb is in L(G) starting with bottom of the tree.

1. Write variables for all length 1 substrings.

We use the rules A->a and B->b.

2. Write variables for all length 2 substrings.

We use the rules S->AB and T->AB.

3. Write variables for all length 3 substrings

We use the rule X->AT.

4. Write variables for all length 4 substrings

We use the rules S->XB and T->XB.

5. Write variables for all length 5 substrings

We use the rule X->AT.

6. Write variables for all length 6 substrings

We use the rule S->XB and T->XB.

Therefore, aaabbb is accepted.

Now let's check the table chart used by the algorithm;

j	1	2	3	4	5	6
i	a	а	а	b	b	b
0	A	-	-	-	<u> </u>	— <i>S,T</i>
1		A^{-}	-	$-\chi$ -	-S, T	-
2			A $-$	-S, T	-	-
3				B	-	-
4					B	-
5						B

As you can see from above table, we keep the results for every w_{ij} in a table.

Note that we only need to fill in entries up to the diagonal.

And every element of the table can contain up to r=|N| symbols where N is the size of the non-terminal set.

Finally we can calculate the time complexity of the algorithm.

Three nested for loop each one of O(n) size. And we have to lookup for N rules at each step... $O(r^2n^3) = O(n^3)$

Therefore, the problem is in P.

Prove Hall's theorem using the duality between Max Flow and Min Cut and the reduction in the picture below.

- At first, Hall theorem is as follows :

A bipartite graph with n vertices on each side has a perfect matching \leftrightarrow Every subset S of the vertices on the left is connected to a set T of vertices on the right, where $|T| \ge |S|$.

Pf. (\rightarrow) Proof by contraposition.

If there is a subset S on the left which is connected to a set T of vertices on the right, where |T| < |S|, then by the pigeonhole principle there is no way to find partners for all elements of S. And there is contradiction with the original proposition.

Therefore, if there is A bipartite graph with n vertices on each side has a perfect matching then every subset on the left is connected to a subset on the right, which is at least at large.

Pf. (←)

Suppose that there is no perfect matching and consider the above figure. Take the graph G, orient all of its edges so that they go from V1 to V2, add a source vertex s, a sink vertex t, edges from s to all of V1, from all of V2 to t, and let c be a capacity function that's identically 1 on all of the edges s->V1, t->V2, and infinite on all of the original edges in G. Then the MAX FLOW from s to t is less than n. And, by duality the MIN CUT is also less than n, so there is some cut consisting of c<n edges which separates s from t.

We claim that these edges might as well be among those leading out of s or into t in the figure, instead of in the middle layer of edges from the original bipartite graph. To see this, suppose the cut includes and edge (i,j) where i is a vertex of the left and j is a vertex of the right. This edge only blocks one path from s to t.(s->i->j->t) If we replace (i,j) with (s,i) or (j,t), we still block this path, and perhaps others as well.

So, there is a cut consisting of x edges leading from s to some set of vertices on the left, and y edges leading from some set of vertices on the right to t, where x+y< n. Call these sets X and Y respectively, where |X|=x, |Y|=y.

Now for these edges to block all paths from s to t, there must be no edges from \overline{X} to \overline{Y} . Thus if $S=\overline{X}$, the set T of vertices that S is connected to is a subset of Y. But since y<n-x, we have $|T| \leq |Y| = y < n-x = |S|$. Hence, if there is no perfect matching, there is a subset on the left connected to a smaller subset on the right.