Bayesianische Regression

lineare und logistische Modelle

Lona Koers

LMU

25. Juli 2025

Motivation und Intuition

2 Bayesianische lineare Modelle

Bayesianische generalisierte lineare Modelle

Motivation und Intuition

TODO: gutes Beispiel

- Generalisierte Lineare Modelle (GLMs)
- Punktvorhersage vs. Verteilung vorhersagen
- warum reicht uns ein CI / PI

Motivation und Intuition

2 Bayesianische lineare Modelle

Bayesianische generalisierte lineare Modelle

Frequentistisches \rightarrow bayesianisches lineares Modell

3/14

Annahmen:

- lacksquare i.i.d. Daten $oldsymbol{D} = (oldsymbol{y}, oldsymbol{X})$
- \bigcirc Kondition auf X (implizit)

Frequentistisches lineares Modell: $m{y} \sim \mathcal{N}(m{X}m{\theta}, \sigma^2 m{I})$

 $oldsymbol{\circ}$ Gewichtsparameter $oldsymbol{\theta}$ als Zufallsvariable interpretieren

Bayesianisches lineares Modell:

$$\boldsymbol{y} \mid \boldsymbol{\theta}, \sigma^2 \sim \mathcal{N}(\boldsymbol{X}\boldsymbol{\theta}, \sigma^2 \boldsymbol{I})$$

Modelldefinition (Prior-Verteilungen)

Prior-Annahme für $m{ heta}$ (und evtl. σ^2) notwendig o sehr vielseitige Modell-Anpassung möglich

1. Normal-Invers-Gamma Prior:

$$egin{aligned} oldsymbol{ heta} \mid \sigma^2 &\sim \mathcal{N}(reve{m{\mu}}, \sigma^2reve{m{\Sigma}}) \ \sigma^2 &\sim \mathsf{IG}(reve{a}, reve{b}) \ oldsymbol{ heta}, \sigma^2 &\sim \mathsf{NIG}(reve{m{\mu}}, \sigma^2reve{m{\Sigma}}, reve{a}, reve{b}) \end{aligned}$$

mit Prior Parametern: $\breve{\boldsymbol{\mu}}, \breve{\Sigma}, \breve{a}$ und \breve{b}

Vorteil: NIG-Prior ist mit Normalverteilungs-Likelihood konjugiert \rightarrow exakte Inferenz möglich (mehr dazu später)

TODO: Bild

2. Uninformative Prior

z.B. mit NIG-Prior mit Prior Parametern

$$m{ar{\mu}}=m{0},\quad reve{\Sigma}^{-1}=m{0}$$
 i.e., $reve{\Sigma} o\infty$ $m{ar{a}}=-rac{p}{2},\quad reve{b}=0$

⇒ flache (und damit uninformative) Prior und maximaler Einfluss der Daten auf die Posterior:

$$\boldsymbol{\theta} \mid \sigma^2 \stackrel{a}{\sim} \mathcal{N}(\boldsymbol{\check{\mu}}, \sigma^2 \infty) \implies p(\boldsymbol{\theta} \mid \sigma^2) \propto 1$$

TODO: Bild

6/14

Erinnerung: frequentistische Regularisierung durch Minimierung von

$$\mathsf{PLS}(\boldsymbol{\theta}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta})^\top (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}) + \lambda \ \mathsf{pen}(\boldsymbol{\theta})$$

mit Regularisierungs-Parameter $\lambda > 0.$

Bayesianische Regularisierung durch Wahl der Prior-Verteilung für heta

3. Ridge Regularisierung

Frequentistisch: $pen(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_2^2$ TODO quote

Bayesianisch: $m{ heta} \sim \mathcal{N}(m{0}, au^2 m{I})$ mit $au^2 \propto rac{1}{\lambda}$

TODO quote

4. Lasso Regularisierung

Frequentistisch: $pen(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_1$

Bayesianisch:

$$egin{aligned} m{ heta} & \mid m{ au}^2 \sim \mathcal{N}(m{0}, m{ au}^2 m{I}) \ & au_j^2 & \stackrel{ ext{i.i.d.}}{\sim} & \mathsf{Exp}(0.5 \lambda^2), \quad j = 1, \dots, p \end{aligned}$$

Problem: keine Variablenselektion (im Gegensatz zu frequentistischem Lasso)

→ Alternative Priors für Variablenselektion: Spike and Slab, Horseshoe, u.v.m.

Regularisierung in Anwendung

Vorteile von bayesianischer Regularisierung sind u.a.:

- Probabilistisches Modell trotz Regularisierung
- Regularisierungparameter muss nicht als Hyperparameter optimiert werden (z.B. durch Prior auf au^2)
- Mehr Anpassungsmöglichkeiten durch Prior-Spezifikation

TODO: Bild regularization Priors + update

Motivation und Intuition

2 Bayesianische lineare Modelle

3 Bayesianische **generalisierte** lineare Modelle

Bayesianisches LM \rightarrow GLM (alt: Generalisierung des bayesianischen linearen Modells)

- Motivation und Intuition
- 2 Bayesianische lineare Modelle

3 Bayesianische generalisierte lineare Modelle

Posterior Inference

Erinnerung: Bayes-Regel

$$p(\boldsymbol{\theta} \mid \boldsymbol{y}) = \frac{p(\boldsymbol{y} \mid \boldsymbol{\theta}) \ p(\boldsymbol{\theta})}{\int p(\boldsymbol{y} \mid \boldsymbol{\theta}) \ p(\boldsymbol{\theta}) d\boldsymbol{\theta}},$$

wobei $p(y \mid \theta)$ die Modell-Likelihood ist.

bayesianisches LM: exakte Inferenz mit konjugierten Prioris

Metropolis Hastings (MCMC)

Idee: Approximation der Posterior mit Markov chain Monte Carlo - was muss man für Regression anpassen?

Laplace Approximation (LA)

Idee: Approximation der Posterior mit einer Normalverteilung

Mittelwert und Varianz werden mit IWLS berechnet

PPD

Literatur Empfehlungen

Falls euch das Thema interessiert und ihr mehr wissen wollt, kann ich folgende Literatur empfehlen:

- Bayesianische Regression (v.a. für praktische Anwendung): Gelman et al. [3]
- Prior Verteilungen (v.a. Shrinkage): Erp, Oberski, and Mulder [2] und Celeux et al. [1]
- Software: z.B. brms in R, PyMC in python

Referenzen I

- [1] Gilles Celeux et al. "Regularization in Regression: Comparing Bayesian and Frequentist Methods in a Poorly Informative Situation". In: *Bayesian Analysis* 7.2 (June 2012), pp. 477–502. ISSN: 1936-0975, 1931-6690. DOI: 10.1214/12-BA716.
- [2] Sara van Erp, Daniel L. Oberski, and Joris Mulder. "Shrinkage priors for Bayesian penalized regression". In: *Journal of Mathematical Psychology* 89 (Apr. 2019), pp. 31–50. ISSN: 0022-2496. DOI: 10.1016/j.jmp.2018.12.004.
- [3] Andrew Gelman et al. *Bayesian Data Analysis*. 3rd ed. New York: Chapman and Hall/CRC, 2013. ISBN: 978-0-429-11307-9. DOI: 10.1201/b16018.