

TFT LCD Approval Specification

MODEL NO.: N14006 - L02

Customer:	
Approved by:	
Note:	

記錄	工作	審核	角色	投票
2009-03-04 16:42:23 CST	PMMD III Director	annie_hsu(徐凡琇 /56522 / 54873)	Director	Accept

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION	 4
1.1 OVERVIEW	
1.2 FEATURES	
1.3 APPLICATION	
1.4 GENERAL SPECIFICATIONS	
1.5 MECHANICAL SPECIFICATIONS	
2. ABSOLUTE MAXIMUM RATINGS	 5
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	
2.2 ELECTRICAL ABSOLUTE RATINGS	
2.2.1 TFT LCD MODULE	
2.2.2 BACKLIGHT UNIT	
3. ELECTRICAL CHARACTERISTICS	 7
3.1 TFT LCD MODULE	
3.2 BACKLIGHT UNIT	
4. BLOCK DIAGRAM	 10
4.1 TFT LCD MODULE	
5. INPUT TERMINAL PIN ASSIGNMENT	 11
5.1 TFT LCD MODULE	
5.2 TIMING DIAGRAM OF LVDS INPUT SIGNAL	
5.3 COLOR DATA INPUT ASSIGNMENT	
5.4 EDID DATA STRUCTURE	47
6. CONVERTER SPECIFICATION	 17
6.1 ABSOLUTE MAXIMUM RATINGS	
6.2 RECOMMENDED OPERATING RATING	40
7. INTERFACE TIMING	 18
7.1 INPUT SIGNAL TIMING SPECIFICATIONS	
7.2 POWER ON/OFF SEQUENCE	
8. OPTICAL CHARACTERISTICS	 20
8.1 TEST CONDITIONS	
8.2 OPTICAL SPECIFICATIONS	
9. PRECAUTIONS	 24
9.1 ASSEMNLY AND HANDING PRECAUTIONS	
9.2 SAFTY PRECAUTIONS	
9.3 OPERATION PRECAUTIONS	
9.4 OTHERS PRECAUTIONS	
9.5 SAFTY STANDARD	
10. PACKING	 26
10.1 CARTON	
10.2 PALLET	
11. DEFINITION OF LABELS	 28
11.1 CMO MODULE LABEL	
11.2 CMO CARTON LABEL	

REVISION HISTORY

Version	Date	Page (New)	Section	Description
2.0	Feb. 24,'09	All	All	Approval specification was first issued.

1 GENERAL DESCRIPTION

1.1 OVERVIEW

N140O6 - L02 is a 14.0" TFT Liquid Crystal Display module with LED Backlight unit and 40 pins LVDS interface. This module supports $1600 \times (3 \text{ RGB}) \times 900 \text{ WXGA+}$ mode and can display $262,144 \times 1000 \times 1000$

1.2 FEATURES

- HD+ (1600 x 900 pixels) resolution
- LED Backlight and Converter embedded
- DE only mode
- 3.3V LVDS (Low Voltage Differential Signaling) interface with 2 pixel/clock
- RoHS compliance

1.3 APPLICATION

- TFT LCD Notebook

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	309.60(H) X 174.15(V) (14.0 inch Diagonal)	mm	(1)
Bezel Opening Area	314.04 (H) x 177.45 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1600 x R.G.B. x 900	pixel	-
Pixel Pitch	0.1935 (H) x 0.1935 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262,144	color	-
Transmissive Mode	Normally white	-	-
Surface Treatment	Glare (3H min.)	-	-

1.5 MECHANICAL SPECIFICATIONS

Ite	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	323	323.5	324.0	mm	
Module Size	Vertical(V)	191.5	192	192.5	mm	(1)
	Depth(D)	1	5.2	5.4	mm	
We	eight	-		360	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions

2 ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note		
item	Syllibol	Min.	Max.	Offic	NOLE	
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	=	220/2	G/ms	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.5	G	(4), (5)	

- Note (1) (a) 90 %RH Max. (Ta 40 °C).
 - (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
 - (c) No condensation.
- Note (2) The temperature of panel display surface area should be 0 °C Min. and 60 °C Max..

Relative Humidity (%RH)

- Note (3) 1 time for $\pm X$, $\pm Y$, $\pm Z$. for Condition (220G / 2ms) is half Sine Wave,.
- Note (4) 10 ~ 500 Hz, 30 min / Cycle, 1 cycles for each X, Y, Z axis.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

The fixing condition is shown as below:

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
iteiii	Symbol	Min.	Max.	Offic		
Power Supply Voltage	V_{CC}	-0.3	+4.0	V	(1)	
Logic Input Voltage	V_{IN}	-0.3	V _{CC} +0.3	V	(1)	

2.2.2 BACKLIGHT UNIT

Item	Symbol Value		Unit	Note		
item	Syllibol	Min.	Max.	Offic	Note	
LED Light Bar Power Supply Voltage	V_{L}	-45	30.6	V	(1), (2)	
LED Light Bar Power Supply Current	l _L	0	150	mA	(1), (2)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for LED (Refer to 3.2 for further information).

3 ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

Parameter	Symbol		Value	Unit	Note	
Farameter	Symbol	Min.	Тур.	Max.	Ullit	Note
Power Supply Voltage	Vcc	3.0	3.3	3.6	V	-
Permissive Ripple Voltage	V_{RP}		50		mV	-
Rush Current	I _{RUSH}			1.5	Α	(2)
Initial Stage Current	I _{IS}			1.0	Α	(2)
Power Supply Current White	Icc	210	230	250	mA	(3)a
Black	ICC	300	320	350	mA	(3)b
LVDS Differential Input High Threshold	V _{TH(LVDS)}			+100	mV	(5), V _{CM} =1.2V
LVDS Differential Input Low Threshold	V _{TL(LVDS)}	-100			mV	(5) V _{CM} =1.2V
LVDS Common Mode Voltage	V _{CM}	1.125		1.375	V	(5)
LVDS Differential Input Voltage	V _{ID}	100		600	mV	(5)
Terminating Resistor	R _T		100		Ohm	
Power per EBL WG	P _{EBL}	-	1.82	-	W	(4)

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) I_{RUSH} : the maximum current when VCC is rising

 I_{IS} : the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black

Note (3) The specified power supply current is under the conditions at Vcc = 3.3 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

Active Area

Active Area

Note (4) The specified power are the sum of LCD panel electronics input power and the converter input power. Test conditions are as follows.

- (a) Vcc = 3.3 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \,\text{Hz}$,
- (b) The pattern used is a black and white 32 x 36 checkerboard, slide #100 from the VESA file "Flat Panel Display Monitor Setup Patterns", FPDMSU.ppt.
- (c) Luminance: 60 nits.

Note (5) The parameters of LVDS signals are defined as the following figures.

Issued Date: Feb. 24, 2009 Model No.: N140O6 - L02

Approval

3.2 BACKLIGHT UNIT

Ta	=	25	+	2	00	`
ıa	_	20	I	_	·	,

Parameter	Symbol	Value			Unit	Note	
arameter	Symbol	Min.	Тур.	Max.	Oill	Note	
LED Quantity			54		Pcs	(1),	
LED light bar Power Supply Voltage	V_L	26.1	28.8	30.6	V_{dc}	(1) (2)	
LED light bar Power Supply Current	ΙL	114	120	126	mA	(1), (2)	
LED Life Time	L_BL	15,000	-	-	Hrs	(4)	
Power Consumption	P_L	2.9754	3.456	3.8556	W	(3), $I_L = 120.0 \text{ mA}$	

Note (1) LED light bar configuration is shown as below:

Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.

Note (3) $P_L = I_L \times V_L$

Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 22 ± 2 °C and I_L = 20 mA(Per EA) until the brightness becomes 50% of its original value.

4 BLOCK DIAGRAM

4.1 TFT LCD MODULE

5 INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Symbol	Description	Polarity	Remark
1	Reserve	Non connection		
2	VDD	Power Supply +3.3 V		
3	VDD	Power Supply +3.3 V		
4	V EEDID	DDC +3.3 V		
5	Reserve	Non connection		
6	Clk EEDID	DDC Clock		
7	DATA EEDID	DDC Data		
8	Odd_Rin0-	LVDS Differential Data Input (Odd)	Negative	
9	Odd_Rin0+	LVDS Differential Data Input (Odd)	Positive	
10	VSS	Ground		
11	Odd_Rin1-	LVDS Differential Data Input (Odd)	Negative	
12	Odd_Rin1+	LVDS Differential Data Input (Odd)	Positive	
13	VSS	Ground		
14	Odd_Rin2-	LVDS Differential Data Input (Odd)	Negative	
15	Odd_Rin2+	LVDS Differential Data Input (Odd)	Positive	
16	VSS	Ground		
17	Odd ClkIN-	LVDS Clock Data Input (Odd)	Negative	
18	Odd ClkIN+	LVDS Clock Data Input (Odd)	Positive	
19	VSS	Ground		
20	Even Rin0-	LVDS Differential Data Input (Even)	Negative	
21	Even Rin0+	LVDS Differential Data Input (Even)	Positive	
22	VSS	Ground		
23	Even Rin1-	LVDS Differential Data Input (Even)	Negative	
24	Even Rin1+	LVDS Differential Data Input (Even)	Positive	
25	VSS	Ground		
26	Even Rin2-	LVDS Differential Data Input (Even)	Negative	
27	Even Rin2+	LVDS Differential Data Input (Even)	Positive	
28	VSS	Ground		
29	Even ClkIN-	LVDS Clock Data Input (Even)	Negative	
30	Even ClkIN+	LVDS Clock Data Input (Even)	Positive	
31	LED GND	LED Ground		
32	LED GND	LED Ground		
33	LED GND	LED Ground		
34	Reserve	Non connection		
35	LED PWM	PWM Control Signal of LED Converter		
36	LED EN	Enable Control Signal of LED Converter		
37	NC	Non connection		
38	LED VCCS	LED Power		
.)()		1	1	
39	LED VCCS	LED Power		

Note (1) Connector Part No.: I-PEX 20455-040E-12 or equivalent

Note (2) User's connector Part No: I-PEX 20453-040T-01 or equivalent

Note (3) The first pixel is odd as shown in the following figure.

5.2 TIMING DIAGRAM OF LVDS INPUT SIGNAL

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

									[Data	Sign	al							
	Color			Re	ed					Gre	een					BI	ue		
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0
0	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale Of	:	:	:	:					:	:				:			:	:	
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Reu	Red(61)	1		1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1			1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	ő	ő	0	0	Ö	0	0	0	0	0	0	1	ő	ő	ő	Ö	0	0
Gray	Green(2)	Ö	0	0	0	0	0	0	0	0	0	1	0	Ö	ő	Ö	Ö	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:
Of	:	:	:	:	:		:	:	:	:	:			:	:	:	:	:	
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

5.4 EDID DATA STRUCTURE

The EDID (Extended Display Identification Data) data formats are to support displays as defined in the VESA Plug & Display and FPDI standards.

Byte # (decimal)	Byte # (hex)	Field Name and Comments	Value (hex)	Value (binary)
0	0	Header	00	00000000
1	1	Header	FF	11111111
2	2	Header	FF	11111111
3	3	Header	FF	11111111
4	4	Header	FF	11111111
5	5	Header	FF	11111111
6	6	Header	FF	11111111
7	7	Header	00	00000000
8	8	EISA ID manufacturer name ("CMO")	0D	00001101
9	9	EISA ID manufacturer name (Compressed ASCII)	AF	10101111
10	0A	ID product code (N140O6-L02)	47	01000111
11	0B	ID product code (hex LSB first; N140O6-L02)	14	00010100
12	0C	ID S/N (fixed "0")	00	00000000
13	0D	ID S/N (fixed "0")	00	00000000
14	0E	ID S/N (fixed "0")	00	00000000
15	0F	ID S/N (fixed "0")	00	00000000
16	10	Week of manufacture (fixed week code)	04	00000100
17	11	Year of manufacture (fixed year code)	13	00010011
18	12	EDID structure version # ("1")	01	0000001
19	13	EDID revision # ("3")	03	00000011
20	14	Video I/P definition ("digital")	80	10000000
21	15	Max H image size ("30.96cm")	1F	00011111
22	16	Max V image size ("17.415cm")	11	00010001
23	17	Display Gamma (Gamma = "2.2")	78	01111000
24	18	Feature support ("Active off, RGB Color")	0A	00001010
25	19	Rx1 Rx0 Ry1 Ry0 Gx1 Gx0 Gy1 Gy0	A5	10100101
26	1A	Bx1 Bx0 By1 By0 Wx1 Wx0 Wy1 Wy0	78	01111000
27	1B	Rx=0.6154	9D	10011101
28	1C	Ry=0.3377	56	01010110
29	1D	Gx=0.3252	53	01010011
30	1E	Gy=0.6067	9B	10011011
31	1F	Bx=0.169	2B	00101011
32	20	By=0.0809	14	00010100
33	21	Wx=0.3186	51	01010001
34	22	Wy=0.3283	54	01010100
35	23	Established timings 1	00	00000000
36	24	Established timings 2	00	00000000
37	25	Manufacturer's reserved timings	00	00000000
38	26	Standard timing ID # 1	01	0000001
39	27	Standard timing ID # 1	01	00000001
40	28	Standard timing ID # 2	01	00000001

	1			
41	29	Standard timing ID # 2	01	00000001
42	2A	Standard timing ID # 3	01	00000001
43	2B	Standard timing ID # 3	01	00000001
44	2C	Standard timing ID # 4	01	00000001
45	2D	Standard timing ID # 4	01	00000001
46	2E	Standard timing ID # 5	01	00000001
47	2F	Standard timing ID # 5	01	00000001
48	30	Standard timing ID # 6	01	00000001
49	31	Standard timing ID # 6	01	00000001
50	32	Standard timing ID # 7	01	00000001
51	33	Standard timing ID # 7	01	00000001
52	34	Standard timing ID # 8	01	00000001
53	35	Standard timing ID # 8	01	0000001
54	36	Detailed timing description # 1 Pixel clock ("97.75MHz", According to VESA CVT Rev1.1)	2F	00101111
55	37	# 1 Pixel clock (hex LSB first)	26	00100110
56	38	# 1 H active ("1600")	40	01000000
57	39	# 1 H blank ("160")	A0	10100000
58	3A	# 1 H active : H blank ("1600 : 160")	60	01100000
59	3B	# 1 V active ("900")	84	10000100
60	3C	# 1 V blank ("26")	1A	00011010
61	3D	# 1 V active : V blank ("900 :26")	30	00110000
62	3E	# 1 H sync offset ("48")	30	00110000
63	3F	# 1 H sync pulse width ("32")	20	00100000
64	40	# 1 V sync offset : V sync pulse width ("3 : 5")	35	00110101
65	41	# 1 H sync offset : H sync pulse width : V sync offset : V sync width ("48: 32 : 3 : 5")	00	00000000
66	42	# 1 H image size ("310 mm")	36	00110110
67	43	# 1 V image size ("174 mm")	AE	10101110
68	44	# 1 H image size : V image size ("310 : 174")	10	00010000
69	45	# 1 H boarder ("0")	00	00000000
70	46	# 1 V boarder ("0")	00	00000000
71	47	# 1 Non-interlaced, Normal, no stereo, Separate sync, H/V pol Negatives	18	00011000
72	48	Detailed timing description # 2	00	00000000
73	49	# 2 Flag	00	00000000
74	4A	# 2 Reserved	00	00000000
75	4B	# 2 FE (hex) defines ASCII string (Model Name "N140O6-L02", ASCII)	FE	11111110
76	4C	# 2 Flag	00	00000000
77	4D	# 2 1st character of name ("N")	4E	01001110
78	4E	# 2 2nd character of name ("1")	31	00110001
79	4F	# 2 3rd character of name ("4")	34	00110100
80	50	# 2 4th character of name ("0")	30	00110000
81	51	# 2 5th character of name ("O")	4F	01001111
82	52	# 2 6th character of name ("6")	36	00110110
83	53	# 2 7th character of name ("-")	2D	00101101
84	54	# 2 8th character of name ("L")	4C	01001100
85	55	# 2 9th character of name ("0")	30	00110000
86	56	# 2 9th character of name ("2")	32	00110010

87	57	# 2 New line character indicates end of ASCII string	0A	00001010
88	58	# 2 Padding with "Blank" character	20	00100000
89	59	# 2 Padding with "Blank" character	20	00100000
90	59 5A	Detailed timing description # 3	00	00000000
91	5A 5B	# 3 Flag	00	00000000
92	5C	# 3 Reserved	00	00000000
93	5D		FE	11111110
94	5E	# 3 FE (hex) defines ASCII string (Vendor "CMO", ASCII) # 3 Flag	00	00000000
95	5F	# 3 1st character of string ("C")	43	01000011
96	60	# 3 2nd character of string ("M")	4D	01000011
97	61	<u> </u>	4F	01001101
98	62	# 3 3rd character of string ("O") # 3 New line character indicates end of ASCII string	0A	00001010
99	63	# 3 Padding with "Blank" character	20	00100000
100	64	# 3 Padding with "Blank" character	20	00100000
101		# 3 Padding with "Blank" character # 3 Padding with "Blank" character	20	00100000
102	65 66	# 3 Padding with "Blank" character # 3 Padding with "Blank" character	20	00100000
103	67	# 3 Padding with "Blank" character # 3 Padding with "Blank" character	20	00100000
103			20	00100000
105	68	# 3 Padding with "Blank" character	20	00100000
106	69 6A	# 3 Padding with "Blank" character	20	00100000
107	6B	# 3 Padding with "Blank" character # 3 Padding with "Blank" character	20	00100000
108	6C	Detailed timing description # 4	00	00000000
109	6D	# 4 Flag	00	00000000
110	6E	# 4 Reserved	00	00000000
111	6F	# 4 FE (hex) defines ASCII string (Model Name"N140O6-L02", ASCII)	FE	11111110
112	70	# 4 Flag	00	00000000
113	71	# 4 1st character of name ("N")	4E	01001110
114	72	# 4 2nd character of name ("1")	31	00110001
115	73	# 4 3rd character of name ("4")	34	00110001
116	74	# 4 4th character of name ("0")	30	00110100
117	75	# 4 5th character of name ("O")	4F	01001111
118	76	# 4 6th character of name ("6")	36	00110110
119	77	# 4 7th character of name ("-")	2D	00101101
120	78	# 4 8th character of name ("L")	4C	01001101
121	79	, ,	30	00110000
122	79 7A	# 4 9th character of name ("0") # 4 9th character of name ("2")	32	00110000
123	7B	# 4 New line character indicates end of ASCII string	0A	00001010
123	7C	# 4 Padding with "Blank" character	20	00100000
125	7C 7D		20	00100000
126	7D 7E	# 4 Padding with "Blank" character	00	00000000
127	†	Extension flag	9F	10011111
121	7F	Checksum	9	10011111

6. CONVERTER SPECIFICATION

6.1 ABSOLUTE MAXIMUM RATINGS

Symbol	Ratings
Vin	40.0V
Gnd	+/-0.3V
PWM, EN	-0.3V~6.0V

6.2 RECOMMENDED OPERATING RATINGS

Parame	Symbol		Value		Unit	Note	
Faramer	Syllibol	Min.	Тур.	Max.	Offic	NOLE	
Converter Input power sup	oply voltage	LED_Vccs	6.0	12.0	21.0	V	
EN Control Level	Backlight on		2.0		5.5	V	
EN CONTION Level	Backlight off		0		0.8	V	
PWM Control Level	PWM High Level		2.0		5.5	V	
F WW Control Level	PWM Low Level		0		0.15	V	
PWM Control Duty Ratio			20		100	%	
PWM Control Permissive	Ripple Voltage	VPWM_pp			100	mV	
PWM Control Frequency		f_{PWM}	190	210	230	Hz	
	LED_VCCS=Min		563	678	788	mA	(1)
Converter Input Current	LED_VCCS=Typ	I_{BL}	281	339	394		(1)
	LED_VCCS=Max		161	194	225	mA	(1)

Note (1) The specified LED power supply current is under the conditions at "LED_VCCS = Min, Typ, Max", $Ta = 25 \pm 2$ °C, $f_{PWM} = 200$ Hz, Duty=100%.

6.3 LED BACKLIGHT CONTROLL ON/OFF SEQUENCE

Timing Specifications:

 T_A 0ms

T_B 0ms

T_C 10ms

T_D 0ms

Note (1) Please follow the LED backlight power sequence as above. If the customer could not follow, it might cause backlight flash issue during display ON/OFF or damage the LED backlight controller

7. INTERFACE TIMING

7.1 INPUT SIGNAL TIMING SPECIFICATIONS

The specifications of input signal timing are as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	44	48.4	51.3	MHz	(2)
	Vertical Total Time	TV	902	926	990	TH	-
	Vertical Active Display Period	TVD	900	900	900	TH	-
DE	Vertical Active Blanking Period	TVB	TV-TVD	26	TV-TVD	TH	
DE	Horizontal Total Time	TH	1680	1760	1800	Tc	(2)
	Horizontal Active Display Period	THD	1600	1600	1600	Tc	(2)
	Horizontal Active Blanking Period	THB	TH-THD	160	TH-THD	Tc	(2)

INPUT SIGNAL TIMING DIAGRAM

7.2 POWER ON/OFF SEQUENCE

Timing Specifications:

0.5< t1	10 msec

0 < t2 50 msec

0 < t3 50 msec

t4 500 msec

t5 200 msec

t6 200 msec

- Note (1) Please follow the power on/off sequence described above. Otherwise, the LCD module might be damaged.
- Note (2) Please avoid floating state of interface signal at invalid period. When the interface signal is invalid, be sure to pull down the power supply of LCD Vcc to 0 V.
- Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.
- Note (4) Sometimes some slight noise shows when LCD is turned off (even backlight is already off). To avoid this phenomenon, we suggest that the Vcc falling time is better to follow 50us to 10 ms.

8 OPTICAL CHARACTERISTICS

8.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Ta	22 + 2	°C				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	V_{CC}	3.2	V				
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"						
LED Light Bar Input Current	I_L	120	mA				

The relative measurement methods of optical characteristics are shown in 8.2 The following items should be measured under the test conditions described in 8.1 and stable environment shown in Note (6).

8.2 OPTICAL SPECIFICATIONS

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio	Contrast Ratio			500	650	Ī	-	(2), (6)
Response Time		T_R		-	3	5	ms	(3)
Response fille		T_{F}		-	7	11	ms	(3)
Average Lumina	ince of White	L _{AVE}		230	250	-	cd/m ²	(4), (6)
White Variation		δW5p		-	-	20	%	(5),(6)
VVIIIC Variation		δW13p				35	%	(0),(0)
Color Gamut	Color Gamut		θ_x =0°, θ_Y =0°	-	60		%	(6),(7)
	Red	Rx	Viewing Normal		0.621		-	
	Reu	Ry	Angle	-0.02	0.340		-	1
	Green	Gx			0.321		-	
Color		Gy			0.603	10.02	-	
Chromaticity	Blue	Вх			0.161	+0.02	-	
	Dide	Ву			0.081		-	
	White	Wx			0.313		-	(1), (6)
	vvriite	Wy			0.329		-	
	Harizantal	θ_x +		60	70	-		
Viousing Angle	Horizontal	θ _x -	00.40	60	70	-	Dog	
Viewing Angle	Vertical	θ _Y +	CR≥10	50	60	_	Deg.	
	vertical	θ_{Y} -		50	60	-		

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR (55)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (5).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Average Luminance of White (L_{AVE}):

Measure the luminance of gray level 63 at 5 points

$$L_{AVE} = [L(33) + L(37) + L(55) + L(73) + L(77)] / 5$$

L(x) is corresponding to the luminance of the point X at Figure in Note (5)

Note (5) Definition of White Variation (δW_{5p} , δW_{13p}):

Measure the luminance of gray level 63 at 5, 13 points

 $\delta W_{5p} = \{1-\{Minimum [L (33)+ L (37)+ L (55)+ L (73)+ L (77)] / Maximum [L (33)+ L (37)+ L (55)+ L (73)+ L (77)]\}\} *100\%$

 $\delta W_{13p} = \{1-\{ Minimum [L (11) \sim L (99)] / Maximum [L (11) \sim L (99)] \}\} *100\%$

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (7) Definition of color gamut (C.G):

C.G= RGB/ R₀ G₀ B₀,*100%

R₀, G₀, B₀: color coordinates of red, green, and blue defined by NTSC, respectively.

R, G, B: color coordinates of module on 63 gray levels of red, green, and blue, respectively.

R₀ G₀ B₀: area of triangle defined by R₀, G₀, B₀

R G B: area of triangle defined by R, G, B

Approval

9 PRECAUTIONS

9.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.
- (12) To avoid wireless noise interference, please keep the antenna away from LCD control board.

9.2 SAFETY PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

9.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This

can prevent the CMOS LSI chips from damage during latch-up.

(3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.

9.4 OTHERS PRECAUTIONS

(1) When fixed patterns are displayed for a long time, remnant image is likely to occur.

9.5 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.
- (3) UL60065 or updated standard.
- (4) IEC60065 or updated standard.

10 PACKAGING 10.1 CARTON

Figure. 10-1 Packing method

10.2 PALLET

Figure. 10-2 Packing method

11 DEFINITION OF LABELS

11.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: N140O6 L02-
- (b) Revision: Rev. XX, for example: A1, ..., C1, C2 ...etc.
- (c) Serial ID: XXXXXXXXYMDXNNNN

- (d) Production Location: MADE IN XXXX. XXXX stands for production location.
- (e) UL/CB logo: "LEOO" especially stands for panel manufactured by CMO Ningbo satisfying UL/CB requirement. "LEOO" is the CMO's UL factory code for Ningbo factory.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2001~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product

11.2 CMO CARTON LABEL

CMO carton label is as below:

(a) Production location: Made In XXXX. XXXX stands for production location.

