Data Mining

Lecture Notes for Chapter 4

Artificial Neural Networks

Introduction to Data Mining , 2nd Edition by

Tan, Steinbach, Karpatne, Kumar

02/14/2018

Introduction to Data Mining, 2nd Edition

1

Artificial Neural Networks (ANN)

Output Y is 1 if at least two of the three inputs are equal to 1.

02/14/2018

Introduction to Data Mining, 2nd Edition

Artificial Neural Networks (ANN)

$$Y = sign(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4)$$
where $sign(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$

02/14/2018

Introduction to Data Mining, 2nd Edition

3

Artificial Neural Networks (ANN)

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold t

Perceptron Model

$$Y = sign(\sum_{i=1}^{d} w_i X_i - t)$$
$$= sign(\sum_{i=0}^{d} w_i X_i)$$

02/14/2018

Introduction to Data Mining, 2nd Edition

Artificial Neural Networks (ANN)

- Various types of neural network topology
 - single-layered network (perceptron) versus multi-layered network
 - Feed-forward versus recurrent network
- Various types of activation functions (f)

$$Y = f(\sum_{i} w_i X_i)$$

6

02/14/2018

Introduction to Data Mining, 2nd Edition

Perceptron

- Single layer network
 - Contains only input and output nodes
- Activation function: f = sign(w•x)
- Applying model is straightforward

$$Y = sign(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4)$$
(1 if $x > 0$

where
$$sign(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$$

$$-X_1 = 1, X_2 = 0, X_3 = 1 \Rightarrow y = sign(0.2) = 1$$

02/14/2018

Introduction to Data Mining, 2nd Edition

.

Perceptron Learning Rule

- Initialize the weights (w₀, w₁, ..., w_d)
- Repeat
 - For each training example (x_i, y_i)
 - ◆ Compute f(w, x_i)
 - Update the weights:

$$w^{(k+1)} = w^{(k)} + \lambda [y_i - f(w^{(k)}, x_i)] x_i$$

Until stopping condition is met

02/14/2018

Introduction to Data Mining, 2nd Edition

Perceptron Learning Rule

• Weight update formula:

$$w^{(k+1)} = w^{(k)} + \lambda |y_i - f(w^{(k)}, x_i)| x_i$$
; λ : learning rate

- Intuition:
 - Update weight based on error: $e = [y_i f(w^{(k)}, x_i)]$
 - If y=f(x,w), e=0: no update needed
 - If y>f(x,w), e=2: weight must be increased so that f(x,w) will increase
 - If y<f(x,w), e=-2: weight must be decreased so that f(x,w) will decrease

02/14/2018

Introduction to Data Mining, 2nd Edition

a

Example of Perceptron Learning

$$w^{(k+1)} = w^{(k)} + \lambda [y_i - f(w^{(k)}, x_i)] x_i$$

$$Y = sign(\sum_{i=0}^{d} w_i X_i)$$

$$\lambda = 0.1$$

X_1	X_2	X_3	Υ
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	-1
0	1	0	-1
0	1	1	1
0	0	0	-1

	\mathbf{w}_0	W ₁	W_2	W 3
0	0	0	0	0
1	-0.2	-0.2	0	0
2	0	0	0	0.2
3	0	0	0	0.2
4	0	0	0	0.2
5	-0.2	0	0	0
6	-0.2	0	0	0
7	0	0	0.2	0.2
8	-0.2	0	0.2	0.2

Epoch	\mathbf{w}_0	W ₁	\mathbf{W}_2	W ₃
0	0	0	0	0
1	-0.2	0	0.2	0.2
2	-0.2	0	0.4	0.2
3	-0.4	0	0.4	0.2
4	-0.4	0.2	0.4	0.4
5	-0.6	0.2	0.4	0.2
6	-0.6	0.4	0.4	0.2

02/14/2018

Introduction to Data Mining, 2nd Edition

Perceptron Learning Rule

 Since f(w,x) is a linear combination of input variables, decision boundary is linear

 For nonlinearly separable problems, perceptron learning algorithm will fail because no linear hyperplane can separate the data perfectly

02/14/2018

Introduction to Data Mining, 2nd Edition

11

Nonlinearly Separable Data

X1 X2 Y 0 0 -1 1 0 1 0 1 1 1 1 -1

X_{20.5} O + -

XOR Data

02/14/2018

Introduction to Data Mining, 2nd Edition

Multilayer Neural Network

- Hidden layers
 - intermediary layers between input & output layers
- More general activation functions (sigmoid, linear, etc)

02/14/2018

Introduction to Data Mining, 2nd Edition

13

Multi-layer Neural Network

 Multi-layer neural network can solve any type of classification task involving nonlinear decision surfaces

02/14/2018

Introduction to Data Mining, 2nd Edition

Learning Multi-layer Neural Network

- Can we apply perceptron learning rule to each node, including hidden nodes?
 - Perceptron learning rule computes error term
 e = y-f(w,x) and updates weights accordingly
 - Problem: how to determine the true value of y for hidden nodes?
 - Approximate error in hidden nodes by error in the output nodes
 - Problem:
 - Not clear how adjustment in the hidden nodes affect overall error
 - No guarantee of convergence to optimal solution

02/14/2018

Introduction to Data Mining, 2nd Edition

15

Gradient Descent for Multilayer NN

- Weight update: $w_j^{(k+1)} = w_j^{(k)} \lambda \frac{\partial E}{\partial w_j}$
- Error function: $E = \frac{1}{2} \sum_{i=1}^{N} \left(t_i f(\sum_j w_j x_{ij}) \right)$
- Activation function f must be differentiable
- For sigmoid function:

$$w_j^{(k+1)} = w_j^{(k)} + \lambda \sum_i (t_i - o_i) o_i (1 - o_i) x_{ij}$$

Stochastic gradient descent (update the weight immediately)

02/14/2018

Introduction to Data Mining, 2nd Edition

Gradient Descent for MultiLayer NN

- For output neurons, weight update formula is the same as before (gradient descent for perceptron)
- For hidden neurons:

$$w_{pi}^{(k+1)} = w_{pi}^{(k)} + \lambda o_i (1-o_i) \sum_{j \in \Phi_i} \delta_j w_{ij} x_{pi}$$

Output neurons : $\delta_j = o_j (1 - o_j)(t_j - o_j)$

Hidden neurons : $\delta_j = o_j (1 - o_j) \sum_{k \in \Phi_j} \delta_k w_{jk}$

02/14/2018

Introduction to Data Mining, 2nd Edition

17

Design Issues in ANN

- Number of nodes in input layer
 - One input node per binary/continuous attribute
 - k or log₂ k nodes for each categorical attribute with k values
- Number of nodes in output layer
 - One output for binary class problem
 - k or log₂ k nodes for k-class problem
- Number of nodes in hidden layer
- Initial weights and biases

02/14/2018

Introduction to Data Mining, 2nd Edition

Characteristics of ANN

- Multilayer ANN are universal approximators but could suffer from overfitting if the network is too large
- Gradient descent may converge to local minimum
- Model building can be very time consuming, but testing can be very fast
- Can handle redundant attributes because weights are automatically learnt
- Sensitive to noise in training data
- Difficult to handle missing attributes

02/14/2018

Introduction to Data Mining, 2nd Edition

19

Recent Noteworthy Developments in ANN

- Use in deep learning and unsupervised feature learning
 - Seek to automatically learn a good representation of the input from unlabeled data
- Google Brain project
 - Learned the concept of a 'cat' by looking at unlabeled pictures from YouTube
 - One billion connection network

02/14/2018

Introduction to Data Mining, 2nd Edition