Multiple Choice Questions

[MHT-CET 2022] (ONLINE SHIFT)

1. If
$$e^x + e^y = e^{x+y}$$
, then $\frac{dy}{dx} =$

a)
$$e^{x-y}$$

b)
$$e^{y-x}$$

c)
$$-e^{y-x}$$

d)
$$-e^{x-y}$$

2 If
$$y = \sin^{-1} \left(\frac{5x + 12\sqrt{1 - x^2}}{13} \right)$$
, then $\frac{dy}{dx} =$

a)
$$\frac{x}{\sqrt{1-x^2}}$$

a)
$$\frac{x}{\sqrt{1-x^2}}$$
 b) $\frac{2}{\sqrt{1-x^2}}$ c) $\frac{-1}{\sqrt{1-x^2}}$

c)
$$\frac{-1}{\sqrt{1-x^2}}$$

d)
$$\frac{-x}{\sqrt{1-x^2}}$$

3. If
$$y = \sec^{-1} \left(\frac{x + x^{-1}}{x - x^{-1}} \right)$$
, then $\frac{dy}{dx} =$

a)
$$\frac{-2}{1+x^2}$$

b)
$$\frac{-1}{1+x^2}$$
 c) $\frac{2}{1-x^2}$

c)
$$\frac{2}{1-x^2}$$

d)
$$\frac{1}{1+x^2}$$

4. If
$$xy = \tan^{-1}(xy) + \cot^{-1}(xy)$$
, then $\left(\frac{dy}{dx}\right)_{(4,2)} = \dots$

where $x, y \in \mathbb{R}$

b)
$$\frac{1}{2}$$

a)
$$-2$$
 b) $\frac{1}{2}$ c) $-\frac{1}{2}$

5. If
$$x = \sqrt{a^{\sin^{-1} t}}$$
 and $y = \sqrt{a^{\cos^{-1} t}}$, then $\frac{dy}{dx} = \dots$

a)
$$\frac{y}{x}$$

a)
$$\frac{y}{x}$$
 b) $-\frac{x}{y}$

c)
$$\frac{x}{y}$$

d)
$$-\frac{y}{x}$$

$$6. \qquad \frac{d}{dx} \left(\sqrt{\frac{1 - \tan x}{1 + \tan x}} \right) = \dots$$

a)
$$\frac{-\sec^2 x}{(1+\tan x)^{3/2}(1-\tan x)^{1/2}}$$

b)
$$\frac{-\sec^2 x}{(1-\tan^2 x)^{1/2}}$$

c)
$$\frac{\sec^2 x}{(1+\tan x)^{3/2}(1-\tan x)^{1/2}}$$

d)
$$\frac{\sec^2 x}{(1-\tan^2 x)^{1/2}}$$

7. If
$$y = e^{4x} + 2e^{-x}$$
 satisfies the equation $\frac{d^2y}{dx^2} + A\frac{dy}{dx} + By = 0$, then values of A and B are

respectively

16. If
$$x^y - y^x = 16$$
, then $\frac{dy}{dx}$ (2, 2) is

d) 2

17. If
$$f(x) = \cos ec^{-1} \left[\frac{10}{6\sin(2^x) - 8\cos(2^x)} \right]$$
, then $f'(x) =$

- a) $2^x \log 2$

- c) log 2
- d) 2^x

18. If
$$y = x \tan y$$
, then $\frac{dy}{dx} = \dots$

- a) $\frac{\tan x}{x-y^2}$
 - b) $\frac{y}{x-x^2-y^2}$ c) $\frac{\tan x}{x-x^2-y^2}$ d) $\frac{\tan y}{y-x}$

19. If
$$y = \log_{10} x + \log_x 10 + \log_x x + \log_{10} 10$$
, then $\frac{dy}{dx} = \dots$

a) $\frac{1}{x \log_2 10} + \frac{1}{x \log_{10} e}$

b) $\frac{1}{x \log_e 10} + \frac{\log_e 10}{x(\log_{10} e)^2}$

c) $\frac{1}{x \log_2 10} - \frac{1}{x \log_{10} e}$

d) $\frac{1}{x \log_e 10} - \frac{\log_e 10}{x (\log(x)^2)}$

20. If
$$\sin^2 x + \cos^2 y = 1$$
, then $\frac{dy}{dx} = \dots$

- a) $\frac{\sin^2 x}{\sin^2 x}$

- b) $\frac{\sin^2 y}{\sin 2x}$ c) $\frac{\sin 2x}{\sin 2y}$ d) $\frac{-\sin^2 y}{\sin^2 x}$

[MHT-CET 2020] (ONLINE SHIFT)

21. If
$$x = \log t$$
 and $y + 1 = \frac{1}{t}$, then $e^{-x} \frac{d^2x}{dy^2} + \frac{dx}{dy} = \dots$

d) 2

22. If
$$\tan u = \sqrt{\frac{1-x}{1+x}}$$
, $\cos v = 4x^3 - 3x$, then $\frac{du}{dv} =$

a) 2

d) $\frac{1}{2}$

23. If
$$y = \left(\frac{x^2}{x+1}\right)^x$$
 and $\frac{dy}{dx} = y \left[g(x) + \log\left(\frac{x^2}{x+1}\right)\right]$, then $g(x) = \dots$

- a) $\frac{x^2}{x+1}$
- b) $\frac{x-1}{x+2}$
- c) $\frac{x+2}{x+1}$
- d) $x \log \left(\frac{x^2}{x+1} \right)$

24. If
$$x^2 + y^2 = t + \frac{1}{t}$$
, $x^4 + y^4 = t^2 + \frac{1}{t^2}$, then $\frac{dy}{dx} = \dots$

- a) $-\frac{y}{x}$
- b) $-\frac{x}{2y}$
- c) $\frac{x}{2y}$
- d) $\frac{y}{x}$

33. If
$$x = \sqrt{a^{\sin^{-1} t}}$$
, $y = \sqrt{a^{\cos^{-1} t}}$, then $\frac{dy}{dx} =$

- a) $-\frac{x}{y}$
- b) ½
- c) $-\frac{y}{y}$
- d) $\frac{x}{y}$

34. If
$$x^y = e^{x-y}$$
, then $\frac{dy}{dx}$ at $x = 1$ is

- c) 1
- d) -1

35. If
$$y = \tan^{-1}\left(\frac{1-\cos 3x}{\sin 3x}\right)$$
, then $\frac{dy}{dx} = \dots$

- a) $-\frac{3}{2}$
- c) $-\frac{1}{2}$
- d) $\frac{3}{2}$

36. If
$$y = \sin \left[2 \tan^{-1} \sqrt{\frac{1-x}{1+x}} \right]$$
 then $\frac{dy}{dx} = \dots$

- a) $\frac{-x}{\sqrt{1-x^2}}$ b) $\frac{-x}{1+x^2}$ c) $\frac{x}{1+x^2}$
- d) $\frac{x}{\sqrt{1-x^2}}$

37. If
$$y = 3e^{2x} + 2e^{3x}$$
 and $\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = 0$ then $p + q = \dots$

d) 1

38. If
$$\log_{10} \left(\frac{x^3 - y^3}{x^3 + y^3} \right) = 2$$
 and $\frac{dy}{dx} = k \frac{x^2}{y^2}$, then $k = \dots$

- a) $\frac{99}{101}$
- b) $-\frac{101}{99}$ · c) $-\frac{99}{101}$
- d) $\frac{101}{99}$

39. If
$$y = 4^{\log_2 \sin x} + 9^{\log_3 \cos x}$$
, then $\frac{dy}{dx} = \dots$

- a) $\cos x + \sin x$

- c) 0
- d) $\frac{1}{\sin r} + \frac{1}{\cos r}$

40. If
$$y = \log[\sec(e^x)]$$
, then $\frac{dy}{dx} = \dots$

- a) $\frac{x \tan(e^x)}{e^x}$
- b) $-e^x \tan(e^x)$ c) $e^x \tan(e^x)$
- d) $-\frac{x \tan(e^x)}{e^x}$

[MHT-CET 2018]

41. If
$$\log_{10}\left(\frac{x^3 - y^3}{x^3 + y^3}\right) = 2$$
, then $\frac{dy}{dx} = \dots$

- a) $\frac{x}{y}$ b) $-\frac{y}{x}$ c) $-\frac{x}{y}$
- d) $\frac{y}{y}$

42. If
$$y = (\tan^{-1} x)^2$$
 then $(x^2 + 1)^2 \frac{d^2 y}{dx^2} + 2x(x^2 + 1) \frac{dy}{dx} = \dots$

b) 2

d) 0

50. If
$$y = e^{m \sin^{-1} x}$$
 and $(1 - x^2) \left(\frac{dy}{dx}\right)^2 = \Delta y^2$ then $\Delta =$

51. If
$$\log_{10} \left(\frac{x^2 - y^2}{x^2 + y^2} \right) = 2$$
 then $\frac{dy}{dx} = \dots$

- a) $-\frac{99 x}{101 y}$
- b) $\frac{99 x}{101 y}$
- c) $-\frac{99 y}{101 x}$ d) $\frac{99 y}{101 x}$

* MHT-CET was not conducted in 2014, 2015 as admissions to Maharashtra Engineering colleges were based on JEE Exam

[MHT-CET 2015] (JEE-2015)

Let k be a non-zero real number.

If
$$f(x) = \begin{cases} \frac{(e^x - 1)^2}{\sin\left(\frac{x}{k}\right)\log\left(1 + \frac{x}{4}\right)} & x \neq 0 \\ 12 & x = 0 \end{cases}$$

is a continuous function, then the value of k is

a) 4

- c) 3
- d) 2

If F: R \longrightarrow R is a function defined by $f(x) = [x] \cos\left(\frac{2x-1}{2}\right)\pi$, where [x] denotes the 53. greatest integer function, then F is

- a) continuous for every real x
- b) discontinuous only at x=0
- c) discontinuous only at non-zero integral values of x
- d) continuous only at x = 0

[MHT-CET 2014] (JEE-2014)

Let $F: \mathbb{R} \longrightarrow \mathbb{R}$ be a function such that $|f(x)| \le x^2$, for all $x \in \mathbb{R}$, then at x = 0, F is

- a) continuous but not differentiable
- b) continuous as well as differentiable
- c) neither continuous nor differentiable d) differentiable but not continuous

Let $f(x) = x \mid x \mid$, $g(x) = \sin x$ and $h(x) = (g \circ f)x$, then

- a) h(x) is not differentiable at x = 0
- b) h(x) is differentiable at x = 0, but h'(x) is not continuous at x = 0
- c) h'(x) is continuous at x = 0 but it is not differentiable at x = 0
- d) h'(x) is differentiable at x = 0

a)
$$9e^{\frac{\pi}{6}}$$
 b) $3e^{\frac{\pi}{6}}$

c)
$$3e^{\frac{\pi}{2}}$$

d)
$$9e^{\frac{\pi}{2}}$$

18

1

177. If $(a+bx)e^{\frac{y}{x}} = x$, then $x^3 \frac{d^2y}{dx^2} = x$

a)
$$x \frac{dy}{dx} - y$$

b)
$$x \frac{dy}{dx} + y$$

c)
$$\left(x\frac{dy}{dx}-y\right)^2$$

b)
$$x \frac{dy}{dx} + y$$
 c) $\left(x \frac{dy}{dx} - y\right)^2$ d) $\left(x \frac{dy}{dx} + y\right)^2$

178. Let $y = \log_e \left(\frac{1 - x^2}{1 + x^2} \right)$, -1 < x < 1. Then at $x = \frac{1}{2}$ the value of 225 (y' - y'') is equal to

179. The function represented by $x = \sin t$, $y = ae^{\sqrt{2}t} + be^{\sqrt{2}t}$, $t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ satisfies equation $(1-x^2)$ y''-xy'=ky, then the value of k is a) -1 b) 0 c) 1

[MHT - CET 2025]

180. If $f(x) = 3x^3 + 2x^2 f'(1) + x f''(2) + f'''(3)$, then f(x) =

a)
$$\frac{1}{7}(3x^3 - 90x^2 + 72x + 18)$$

b)
$$\frac{1}{7}(21x^3 - 90x^2 + 72x + 126)$$

c)
$$3x^3 - 90x^2 + 72x + 18$$

d)
$$3x^3 - 45x^2 + 36x + 9$$

181. If $f(x) = 2(\cos x + i \sin x)(\cos 3x + i \sin 3x)...(\cos (2n-1)x + i \sin (2n-1)x)$, where $n \in \mathbb{N}$ then f''(x) =

a)
$$-n^2 f(x)$$

b)
$$n^2 f(x)$$

c)
$$-n^4 f(x)$$

d)
$$n^4 f(x)$$

182. If $f(x) = \sqrt{1 + \cos^2 x^2}$, then $f'(\frac{\sqrt{\pi}}{2}) =$

a)
$$\frac{\sqrt{\pi}}{6}$$

b)
$$\frac{\pi}{\sqrt{6}}$$

c)
$$-\sqrt{\frac{\pi}{6}}$$

d)
$$\sqrt{\frac{\pi}{6}}$$

183. If $f(x) = \frac{\sin^2 x}{1 + \cot x} + \frac{\cos^2 x}{1 + \tan x}$, then $f'(\frac{\pi}{6}) =$

b)
$$\frac{1}{2}$$

c)
$$-\frac{1}{2}$$

d)
$$\frac{\sqrt{3}}{2}$$

184. If f(1) = 3, f'(1) = 2, then $\frac{d}{dx} (\log(f(e^x + 2x)))$ at x = 0 is

a)
$$\frac{2}{3}$$

b)
$$\frac{3}{2}$$

185. If $y = \log_3 (\log_3 x)$, then at x = 3, $\frac{dy}{dx} = 3$

a)
$$\frac{1}{3} (\log 3)^{-3}$$
 b) $\frac{1}{3} (\log 3)$ c) $\frac{1}{3} (\log 3)^2$

b)
$$\frac{1}{3} (\log 3)$$

c)
$$\frac{1}{3} (\log 3)^2$$

d)
$$\frac{1}{3} (\log 3)^{-2}$$

186. If
$$y = \log_e x^3 + 3\sin^{-1} x + kx^2$$
 and $y'\left(\frac{1}{2}\right) = 2\sqrt{3}$, then $k = 1$

c) 1

d) 2/3

187. If
$$y = \tan^{-1} \left(\sqrt{1 + x^2} - 1 \right)$$
, then $\frac{dy}{dx} = \frac{1}{2} \left(\frac{dy}{dx} - \frac{dy}{dx} \right)$

- a) $\sqrt{1+x^2}\left(x^2-2\sqrt{1+x^2}+1\right)$
- b) $\frac{x}{\sqrt{1+x^2}\left(x^2-2\sqrt{1+x^2}+3\right)}$
- c) $\frac{x}{\sqrt{1+x^2}\left(x^2-2\sqrt{1+x^2}+2\right)}$
- d) $\frac{x}{\sqrt{1+x^2}\left(x^2+2\sqrt{1+x^2}-3\right)}$
- 188. If $y = \sin^2 \left(\cot^{-1} \sqrt{\frac{1-x}{1+x}} \right)$, then $\frac{dy}{dx} = \frac{1}{2} \cos^2 \left(\cot^{-1} \sqrt{\frac{1-x}{1+x}} \right)$
- b) $\frac{1}{2}$

- d) 1

189. If
$$y = \sin^{-1}\left(\frac{2x}{1+x^2}\right) + \sec^{-1}\left(\frac{1+x^2}{1-x^2}\right)$$
, then at $x = \sqrt{3}$, $\frac{dy}{dx} = \frac{1}{2}$

a) 1

- c) $\frac{1}{2}$
- d) $\frac{1}{4}$

190. If
$$y = \tan^{-1} \left(\frac{12x - 64x^3}{1 - 48x^2} \right)$$
, then $\frac{dy}{dx} =$.

- a) $\frac{3}{1+16x^2}$ b) $\frac{4}{1+16x^2}$ c) $\frac{12}{1+16x^2}$ d) $\frac{1}{1+16x^2}$

191. If
$$y = \tan^{-1}\left(\frac{1}{1+x+x^2}\right) + \tan^{-1}\left(\frac{1}{x^2+3x+3}\right) + \tan^{-1}\left(\frac{1}{x^2+5x+7}\right)$$
, then $y'(0) = 1$

- a) $-\frac{1}{10}$

192. If
$$f(\theta) = \cos \theta_1 \cdot \cos \theta_2 \cdot \cos \theta_3 \cdot ... \cdot \cos \theta_n$$
, then $\tan \theta_1 + \tan \theta_2 + \tan \theta_3 + ... + \tan \theta_n = \frac{1}{2}$

- a) $-\frac{f'(\theta)}{f(\theta)}$
- b) $\frac{f'(\theta)}{f(\theta)}$
- c) $-\frac{f''(\theta)}{f'(\theta)}$ d) $\frac{f''(\theta)}{f''(\theta)}$

193. If
$$y = (1 - x)(2 - x) \dots (n - x)$$
, then at $x = 1$, $\frac{dy}{dx} = 1$

- a) (n-1)!

- c) (-1)(n-1)! d) (-n)(n-1)!

194. If
$$y = x^{(x^2)}$$
, then $\frac{dy}{dx} =$

a) $x^{(x^x)}(x^x + 1 + \log x)$

- b) $x^{(x^{\lambda})}(x^{x} + \log x)$
- c) $x^{(x^x)}(x^x + x^{x-1}\log x(1 + \log x))$
- d) $x^{(x^x)}(x^{x-1} + x^x \log x(1 + \log x))$