PROJECTIVE GEOMETRY
Saroj Kumar 20231224
supervised by
Dr. Steven Spallone
Summer 2025

Contents

1	Con	ics	2
	1.1	Group Laws on Conics	2
	1.2	Generalizing to any field	7
	1.3	Finding Pythagorean Triplets	11
2	Affi	ne Geometry	13
	2.1	Affine space	13
	2.2	Affine frames and coordinates	13
	2.3	Affine transformation	13
	2.4	Properties of Affine Transformations	14
	2.5	Fundamental theorem of Affine Geometry	16

-CHAPTER 1-Conics

1.1 Group Laws on Conics

Consider a non-degenerate conic section \mathcal{C} and a point $O \in \mathcal{C}$. For any points $P, Q \in \mathcal{C}$, let ℓ' be the line passing through O such that $\ell' \parallel \ell$ where ℓ is the line joining P and Q. If ℓ' intersects \mathcal{C} at a point other than O, call that point R. Otherwise, take R = O. Define a binary operation $\bigoplus_O : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ as $P \oplus_O Q := R$.

Figure 1.1: $P \oplus_{Q} Q$ when C is a circle.

We'll first find formulae to calculate $P \oplus_O Q$ and then proceed to prove that $\mathcal C$ is a group with \oplus_O .

A Note on Standard Forms

Throughout this section, we'll only use standard forms of non-degenerate conics i.e. circle, rectangular hyperbola and parabola with equations $x^2 + y^2 = 1$, xy = 1 and $y = x^2$ respectively. In the next chapter, we'll show that any ellipse, hyperbola and parabola is affine-congruent to these standard forms; generalizing our results to all conics.

Circle

If C = S with equation $x^2 + y^2 = 1$, any point $P \in S$ has coordinates $(\cos t, \sin t)$ where $t \in [0, 2\pi)$ is the angle P forms with the positive x-axis in the counter-clockwise direction.

Let $O, P, Q, R \in \mathcal{P}$ be points with parameters t_0, t_1, t_2 and t_3 respectively such that $P \oplus_O Q = R$. By definition of $P \oplus_O Q$, we have $PQ \parallel OR$. Note that if P = Q, then slope at P is

$$y'|_{x=t_1} = \left(-\frac{x}{y}\right)_{t=t_1} = \left(-\frac{\cos t}{\sin t}\right)_{t=t_1} = -\cot t_1 = -\cot \left(\frac{t_1 + t_2}{2}\right)$$

and if $P \neq Q$, then $t_1 \neq t_2$ and slope of PQ is

$$\frac{\sin t_2 - \sin t_1}{\cos t_2 - \cos t_1} = -\frac{\sin\left(\frac{t_2 - t_1}{2}\right)\cos\left(\frac{t_2 + t_1}{2}\right)}{\sin\left(\frac{t_2 - t_1}{2}\right)\sin\left(\frac{t_2 + t_1}{2}\right)} = -\cot\left(\frac{t_2 + t_1}{2}\right)$$

Also note that $\sin\left(\frac{t_2-t_1}{2}\right)$ can be cancelled as it's only zero when $t_2=t_1+2n\pi$ which means P=Q. So, we don't need to consider the points being same as a separate case. Equating slopes of PQ and QR, we get,

$$-\cot\left(\frac{t_2+t_1}{2}\right) = -\cot\left(\frac{t_3+t_0}{2}\right)$$

$$\implies \frac{t_2+t_1}{2} = n\pi + \frac{t_3+t_0}{2}$$

$$\implies t_3 = t_2+t_1-t_0-2n\pi$$

As shifts of $2n\pi$ don't affect t_3 , we can ignore that term on the RHS. Thus for any $P, Q \in \mathcal{S}$ with parameters t_1 and t_2 respectively for circle $\mathcal{S}, P \oplus_O Q = R$ has parameter $t_3 = t_1 + t_2 - t_0$ where t_0 is the parameter for point O. Note that we always add or subtract multiples of 2π to make sure $t_3 \in [0, 2\pi)$.

It is easy to see that \oplus_O satisfies closure for \mathcal{S} . We'll verfiy each of the group axioms now.

1. **Identity:** For any $P \in \mathcal{S}$ with parameter $t, P \oplus_O O$ will have parameter

$$t' = t + t_0 - t_0 = t$$

Thus O acts as the identity element for \bigoplus_{O} .

2. **Inverse:** The point $Q \in \mathcal{S}$ with parameter $2t_0 - t$ gives the parameter of $P \oplus_O Q$ to be

$$t' = t + 2t_0 - t - t_0 = t_0$$

Hence, Q is the inverse of P.

3. **Associativity:** For any $P, Q, R \in \mathcal{S}$ with parameters t_1, t_2 and t_3 respectively, $P \oplus_O (Q \oplus_O R)$ has parameter

$$t_1 + (t_2 + t_3 - t_0) - t_0 = t_1 + t_2 + t_3 - 2t_0$$

On the other hand, $(P \oplus_{Q} Q) \oplus_{Q} R$ has parameter

$$(t_1 + t_2 - t_0) + t_3 - t_0 = t_1 + t_2 + t_3 - 2t_0$$

Thus \bigoplus_O is associative.

This shows that S is a group with \bigoplus_{O} .

Theorem 1. $\langle \mathcal{S}, \oplus_{\mathcal{O}} \rangle \cong \langle S^1, \cdot \rangle$ where $S^1 = \{e^{i\theta} \in \mathbb{C} : \theta \in [0, 2\pi)\}.$

Proof. Consider $\varphi : \mathcal{S} \to S^1$ given by $\varphi((\cos \theta, \sin \theta)) = e^{i(\theta - \theta_0)}$. For any points $P, Q \in \mathcal{S}$ parametrized by θ_1 and θ_2 respectively, $P \oplus_Q Q$ has parameter $\theta_1 + \theta_2 - \theta_0$. So,

$$\varphi(P \oplus_{Q} Q) = e^{i(\theta_1 + \theta_2 - 2\theta_0)} = e^{i(\theta_1 - \theta_0)} e^{i(\theta_2 - \theta_0)} = \varphi(P)\varphi(Q)$$

Thus φ is a homomorphism.

If $\varphi(P) = \varphi(Q)$ for some $P, Q \in \mathcal{S}$ parametrized by θ_1 and θ_2 respectively, then

$$e^{i(\theta_1 - \theta_0)} = e^{i(\theta_2 - \theta_0)} \implies e^{i\theta_1} e^{-i\theta_0} = e^{i\theta_2} e^{-i\theta_0} \implies e^{i\theta_1} = e^{i\theta_2} \implies \theta_1 = 2n\pi + \theta_2$$

i.e. P = Q. Thus φ is injective.

For any $e^{i\theta} \in S^1$, we have the point $P = (\cos(\theta + \theta_0), \sin(\theta + \theta_0)) \in \mathcal{S}$ such that

$$\varphi(P) = e^{i(\theta + \theta_0 - \theta_0)} = e^{i\theta}$$

Thus φ is surjective. This shows that φ is a bijective homomorphism i.e. an isomorphism from $\langle \mathcal{S}, \oplus_{\mathcal{O}} \rangle$ to $\langle S^1, \cdot \rangle$.

Parabola

If C = P is the parabola with equation $y = x^2$, any point on it can be parametrized as (t, t^2) where $t \in \mathbb{R}$.

Let $O, P, Q, R \in \mathcal{P}$ be points with parameters t_0, t_1, t_2 and t_3 respectively such that $P \oplus_O Q = R$. By definition of $P \oplus_O Q$, we have $PQ \parallel OR$. Note that if P = Q, then slope at P is

$$y'|_{x=t_1} = (2x)_{x=t_1} = 2t_1 = t_1 + t_2$$

and if $P \neq Q$, then $t_1 \neq t_2$ and slope of PQ is

$$\frac{t_2^2 - t_1^2}{t_2 - t_1} = t_1 + t_2$$

So, we don't need to consider the points being same as a separate case. Equating slopes of PQ and OR, we get,

$$t_1 + t_2 = t_0 + t_3 \implies t_3 = t_1 + t_2 - t_0$$

Thus, for any points $P, Q \in \mathcal{P}$ with parameters t_1 and t_2 respectively for a parabola $\mathcal{P}, P \oplus_O Q = R$ has parameter $t_3 = t_1 + t_2 - t_0$ where t_0 is the parameter for point O.

It is easy to see that \oplus_O satisfies closure for $\mathcal P.$ We'll verfiy each of the group axioms now.

1. **Identity:** For any $P \in \mathcal{P}$ with parameter $t, P \oplus_O O$ will have parameter

$$t' = t + t_0 - t_0 = t$$

Thus O acts as the identity element for \bigoplus_{O} .

2. **Inverse:** The point $Q \in \mathcal{P}$ with parameter $2t_0 - t$ gives the parameter of $P \oplus_O Q$ to be

$$t' = t + 2t_0 - t - t_0 = t_0$$

Hence, Q is the inverse of P.

3. **Associativity:** For any $P, Q, R \in \mathcal{P}$ with parameters t_1, t_2 and t_3 respectively, $P \oplus_O (Q \oplus_O R)$ has parameter

$$t_1 + (t_2 + t_3 - t_0) - t_0 = t_1 + t_2 + t_3 - 2t_0$$

On the other hand, $(P \oplus_{O} Q) \oplus_{O} R$ has parameter

$$(t_1 + t_2 - t_0) + t_3 - t_0 = t_1 + t_2 + t_3 - 2t_0$$

Thus \bigoplus_{O} is associative.

This shows that \mathcal{P} is a group with $\bigoplus_{\mathcal{O}}$.

Theorem 2. $\langle \mathcal{P}, \oplus_{\mathcal{O}} \rangle \cong \langle \mathbb{R}, + \rangle$.

Proof. Consider $\varphi : \mathcal{P} \to \mathbb{R}$ given by $\varphi((t, t^2)) = t - t_0$. For any points $P, Q \in \mathcal{P}$ parametrized by t_1 and t_2 respectively, $P \oplus_Q Q$ has parameter $t_1 + t_2 - t_0$. So,

$$\varphi(P \oplus_O Q) = t_1 + t_2 - 2t_0 = (t_1 - t_0) + (t_2 - t_0) = \varphi(P) + \varphi(Q)$$

Thus φ is a homomorphism.

If $\varphi(P) = \varphi(Q)$ for some $P, Q \in \mathcal{P}$ parametrized by t_1 and t_2 respectively, then

$$t_1 - t_0 = t_2 - t_0 \implies t_1 = t_2$$

i.e. P = Q. Thus φ is injective.

For any $t \in \mathbb{R}$, we have the point $P = (t + t_0, (t + t_0)^2) \in \mathcal{P}$ such that

$$\varphi(P) = t + t_0 - t_0 = t$$

Thus φ is surjective. This shows that φ is a bijective homomorphism i.e. an isomorphism from $\langle \mathcal{P}, \oplus_O \rangle$ to $\langle \mathbb{R}, + \rangle$.

Hyperbola

If $C = \mathcal{H}$ is the rectangular hyperbola with equation xy = 1, any point on it can be parametrized as (t, t^{-1}) where $t \in \mathbb{R}^{\times}$.

Let $O, P, Q, R \in \mathcal{H}$ be points with parameters t_0, t_1, t_2 and t_3 respectively such that $P \oplus_O Q = R$. By definition of $P \oplus_O Q$, we have $PQ \parallel OR$. Note that if P = Q, then slope at P is

$$y'|_{x=t_1} = \left(-\frac{1}{x^2}\right)_{x=t_1} = -\frac{1}{t_1^2} = -\frac{1}{t_1 t_2}$$

and if $P \neq Q$, then $t_1 \neq t_2$ and slope of PQ is

$$\frac{t_2^{-1} - t_1^{-1}}{t_2 - t_1} = \frac{t_1 - t_2}{t_1 t_2 (t_2 - t_1)} = -\frac{1}{t_1 t_2}$$

So, we don't need to consider points being same as a separate case. Equating slopes of PQ and OR, we get,

$$-\frac{1}{t_1 t_2} = -\frac{1}{t_0 t_3} \implies t_3 = \frac{t_1 t_2}{t_0}$$

Thus, for any points $P, Q \in \mathcal{H}$ with parameters t_1 and t_2 respectively for a rectangular hyperbola \mathcal{H} , $P \oplus_O Q = R$ has parameter $t_3 = t_1 t_2 t_0^{-1}$ where t_0 is the parameter corresponding to point O.

It is easy to see that \oplus_O satisfies closure for \mathcal{H} . We'll verfiy each of the group axioms now.

1. **Identity:** For any $P \in \mathcal{H}$ with parameter $t, P \oplus_O O$ will have parameter

$$t' = tt_0 t_0^{-1} = t$$

Thus O acts as the identity element for \bigoplus_{O} .

2. **Inverse:** The point $Q \in \mathcal{H}$ with parameter $t_0^2 t^{-1}$ gives the parameter of $P \oplus_O Q$ to be

$$t' = t(t_0^2 t^{-1})t_0^{-1} = t_0$$

Hence, Q is the inverse of P.

3. **Associativity:** For any $P, Q, R \in \mathcal{H}$ with parameters t_1, t_2 and t_3 respectively, $P \oplus_O (Q \oplus_O R)$ has parameter

$$t_1(t_2t_3t_0^{-1})t_0^{-1} = t_1t_2t_3t_0^{-2}$$

On the other hand, $(P \oplus_{Q} Q) \oplus_{Q} R$ has parameter

$$(t_1 t_2 t_0^{-1}) t_3 t_0^{-1} = t_1 t_2 t_3 t_0^{-2}$$

Thus \bigoplus_{O} is associative.

This shows that \mathcal{H} is a group with $\bigoplus_{\mathcal{O}}$.

Theorem 3. $\langle \mathcal{H}, \oplus_O \rangle \cong \langle \mathbb{R}^{\times}, \cdot \rangle$.

Proof. Consider $\varphi: \mathcal{H} \to \mathbb{R}^{\times}$ given by $\varphi((t, t^{-1})) = tt_0^{-1}$. For any points $P, Q \in \mathcal{H}$ parametrized by t_1 and t_2 respectively, $P \oplus_Q Q$ has parameter $t_1t_2t_0^{-1}$. So,

$$\varphi(P \oplus_{Q} Q) = t_1 t_2 t_0^{-2} = (t_1 t_0^{-1})(t_2 t_0^{-1}) = \varphi(P)\varphi(Q)$$

Thus φ is a homomorphism.

If $\varphi(P) = \varphi(Q)$ for some $P, Q \in \mathcal{H}$ parametrized by t_1 and t_2 respectively, then

$$t_1 t_0^{-1} = t_2 t_0^{-1} \implies t_1 = t_2$$

i.e. P = Q. Thus φ is injective.

For any $t \in \mathbb{R}$, we have the point $P = (tt_0, (tt_0)^{-1}) \in \mathcal{H}$ such that

$$\varphi(P) = tt_0 t_0^{-1} = t$$

Thus φ is surjective. This shows that φ is a bijective homomorphism i.e. an isomorphism from $\langle \mathcal{H}, \oplus_{\mathcal{O}} \rangle$ to $\langle \mathbb{R}^{\times}, \cdot \rangle$.

1.2 Generalizing to any field

Note: Throughout this section, we'll limit ourselves to fields whose characteristic is not 2 as fields with characteristic 2 require a more careful treatment.

In the previous section, we've considered our conic as the set of points $(x, y) \in \mathbb{R}^2$ that make f(x, y) = 0 where $f \in \mathbb{R}[x, y]$ is square-free and has degree 2. We could very well have considered a similar set for any field \mathbb{F} and we'll now show how a similar operation gives rise to a group structure.

We'll consider \mathbb{F}^2 as a vector space for the rest of this section. Consider a set

$$C = \{(x, y) \in \mathbb{F}^2 : f(x, y) = 0\}$$

where $f \in \mathbb{F}[x,y]$ is square-free and has degree 2. Fix an $\vec{O} = (x_0,y_0) \in \mathcal{C}$. For any $\vec{A}, \vec{B} \in \mathcal{C}$ where $\vec{A} = (a_1, a_2)$ and $\vec{B} = (b_1, b_2)$.

Let

$$\vec{c} = \begin{cases} \vec{B} - \vec{A} & \text{if } \vec{A} \neq \vec{B} \\ \left(\frac{\partial f}{\partial y}, -\frac{\partial f}{\partial x}\right)_{(x,y)=\vec{A}} & \text{otherwise} \end{cases}$$

$$\ell = \{ \vec{x} \in \mathbb{F}^2 : \vec{x} = \vec{O} + \lambda \vec{c} \quad \forall \lambda \in \mathbb{F} \}$$

Note that the partial derivative above is a formal derivative since we considered f to be a polynomial in x and y. We aren't really considering any limits here. Clearly, $\vec{O} \in \mathcal{C} \cap \ell$. Now, $|\mathcal{C} \cap \ell|$ can either be 1 or 2 (from the Bézout bound). Define

$$\vec{A} \oplus_O \vec{B} := \begin{cases} \vec{C} & \text{if } \mathcal{C} \cap \ell = \{\vec{O}, \vec{C}\} \\ \vec{O} & \text{if } \mathcal{C} \cap \ell = \{\vec{O}\} \end{cases}$$

Hyperbola and Parabola

For $\mathcal{C} = \mathcal{P}$ and $\mathcal{C} = \mathcal{H}$, we get f(x,y) to be $y-x^2$ and xy-1 respectively. In both cases, the parametrization we used for \mathbb{R}^2 case works for \mathbb{F}^2 as well. Further, even our formula for the operation extends nicely to \mathbb{F}^2 as the derivation didn't really use any properties special to the vector space \mathbb{R}^2 . So, we have $\langle \mathcal{P}, \oplus_O \rangle \cong \langle \mathbb{F}, + \rangle$ and $\langle \mathcal{H}, \oplus_O \rangle \cong \langle \mathbb{F}^{\times}, \cdot \rangle$.

Circle

For C = S, we get $f(x, y) = x^2 + y^2 - 1$. This curve has radial symmetry, so we can always apply a rotation to it such that $\vec{O} = (1, 0)$. Our goal is to find λ such that $\vec{O} + \lambda \vec{c} \in S$. Suppose $\vec{c} = (z, w)$. Any point on S must satisfy $x^2 + y^2 = 1$. Thus

$$(1 + \lambda z)^2 + (0 + \lambda w)^2 = 1$$

$$\Rightarrow 1 + \lambda^2 (z^2 + w^2) + 2\lambda z = 1$$

$$\Rightarrow \lambda^2 (z^2 + w^2) + 2\lambda z = 0$$

$$\Rightarrow \lambda ((z^2 + w^2)\lambda + 2z) = 0$$

$$\Rightarrow \lambda = 0 \text{ or } \lambda = -\frac{2z}{z^2 + w^2}$$

Since
$$P \neq Q$$
, $(z, w) = (b_1 - a_1, b_2 - a_2)$. If $z^2 + w^2 = 0$, then
$$b^2 + a^2 + a^2 + b^2 - 2a_1b_1 - 2a_2b_2 = 0$$

$$\Rightarrow a_1b_1 = 1 - a_2b_2$$

$$\Rightarrow a_1^2b_1^2 = 1 + a_2^2b_2^2 - 2a_2b_2$$

$$\Rightarrow a_1^2b_1^2 = 1 + (1 - a_1^2)(1 - b_1^2) - 2a_2b_2$$

$$\Rightarrow 2a_2b_2 = 1 - a_1^2 + 1 - b_1^2$$

$$\Rightarrow a_2^2 + b_2^2 - 2a_2b_2 = 0$$

$$\Rightarrow (a_2 - b_2)^2 = 0$$

$$\Rightarrow a_2 = b_2$$

It is now easy to see that $a_1^2 = b_1^2$ or $a_1 = \pm b_1$. If $a_1 = b_1$, then P = Q which is a contradiction. If $a_1 = -b_1$, then $(z, w) = (2b_1, 0)$ but this means $4b_1^2 = 0$ or $b_1 = a_1 = 0$ or P = Q which is again a contradiction. Hence, we can safely assume $z^2 + w^2 \neq 0$ when $P \neq Q$. The first solution just corresponds to \vec{O} , hence we take the second one. So, $\vec{A} \oplus_{\vec{O}} \vec{B} = (1 + \lambda z, \lambda w)$.

If $\vec{A} \neq \vec{B}$, then $\vec{c} = (z, w) = (b_1 - a_1, b_2 - a_2)$. This means the first coordinate is

$$1 + \lambda z = \frac{z^2 + w^2 - 2z^2}{z^2 + w^2}$$

$$= \frac{1 - b_1^2 - a_1^2 - a_2b_2 + a_1b_1}{1 - a_1b_1 - a_2b_2}$$

$$= \frac{(1 - b_1^2 - a_1^2 - a_2b_2 + a_1b_1)(a_1b_1 - a_2b_2)}{(1 - a_1b_1 - a_2b_2)(a_1b_1 - a_2b_2)}$$

$$= \frac{(1 - b_1^2 - a_1^2 - a_2b_2 + a_1b_1)(a_1b_1 - a_2b_2)}{1 - b_1^2 - a_1^2 - a_2b_2 + a_1b_1}$$

$$= a_1b_1 - a_2b_2$$

and the second coordinate is

$$\lambda w = \frac{-2zw}{z^2 + w^2}$$

$$= \frac{-(b_1b_2 + a_1a_2 - a_1b_2 - a_2b_1)}{1 - a_1b_1 - a_2b_2}$$

$$= \frac{-(b_1b_2 + a_1a_2 - a_1b_2 - a_2b_1)(a_1b_2 + a_2b_1)}{(1 - a_1b_1 - a_2b_2)(a_1b_2 + a_2b_1)}$$

$$= \frac{-(b_1b_2 + a_1a_2 - a_1b_2 - a_2b_1)(a_1b_2 + a_2b_1)}{a_1b_2 + a_2b_1 - b_1b_2 - a_1a_2}$$

$$= a_1b_2 + a_2b_1$$

If $\vec{A} = \vec{B}$, then $\vec{c} = (z, w) = (2a_2, -2a_1)$. So,

$$1 + \lambda z = 1 + \frac{-4a_2(2a_2)}{4a_2^2 + 4a_1^2} = 1 - 2a_2^2 = a_1^2 - a_2^2$$
 and
$$\lambda w = \frac{-4a_2(-2a_1)}{4a_2^2 + 4a_1^2} = 2a_1a_2$$

Hence, $\vec{A} \oplus_O \vec{B} = (a_1b_1 - a_2b_2, a_1b_2 + a_2b_1)$ for any points $\vec{A}, \vec{B} \in \mathcal{S}$.

Theorem 4. If S is defined over \mathbb{F}^2 , $\langle \mathcal{S}, \oplus_O \rangle \cong \langle SO_2(\mathbb{F}), \cdot \rangle$.

Proof. Consider $\varphi: \mathcal{S} \to SO_2(\mathbb{F})$ given by

$$\varphi((a_1, a_2)) = \begin{bmatrix} a_1 & -a_2 \\ a_2 & a_1 \end{bmatrix}$$

It is easy to see that det $\varphi((a_1, a_2)) = a_1^2 + a_2^2 = 1$. Further, the columns are orthogonal to each other as $-a_1a_2 + a_2a_1 = 0$.

For any $(a_1, a_2), (b_1, b_2) \in \mathcal{S}$,

$$\varphi((a_1, a_2))\varphi((b_1, b_2)) = \begin{bmatrix} a_1 & -a_2 \\ a_2 & a_1 \end{bmatrix} \begin{bmatrix} b_1 & -b_2 \\ b_2 & b_1 \end{bmatrix}$$

$$= \begin{bmatrix} a_1b_1 - a_2b_2 & -a_1b_2 - a_2b_1 \\ a_1b_2 + a_2b_1 & a_1b_1 - a_2b_2 \end{bmatrix}$$

$$= \varphi((a_1b_1 - a_2b_2, a_1b_2 + a_2b_1))$$

$$= \varphi((a_1, a_2) \oplus_O (b_1, b_2))$$

Thus φ is a homomorphism.

For any $(a_1, a_2), (b_1, b_2) \in \mathcal{S}$,

$$\varphi((a_1, a_2)) = \varphi((b_1, b_2)) \implies \begin{bmatrix} a_1 & -a_2 \\ a_2 & a_1 \end{bmatrix} = \begin{bmatrix} b_1 & -b_2 \\ b_2 & b_1 \end{bmatrix} \implies (a_1, a_2) = (b_1, b_2)$$

Thus φ is injective.

Consider any $M \in SO_2(\mathbb{F})$, where

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Then, by definition of $SO_2(\mathbb{F})$, ad - bc = 1 and $MM^T = I$. The second condition gives

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\implies a^2 + b^2 = 1$$

$$c^2 + d^2 = 1$$

$$ac + bd = 0$$

Using these, we get a=d and b=-c. Consider a point $(a,b) \in \mathbb{F}^2$. Since $a^2+b^2=1$, $(a,b) \in \mathcal{S}$. Further, $\varphi((a,b))=M$. Thus φ is surjective. This shows that φ is a bijective homomorphism i.e. an isomorphism from $\langle \mathcal{S}, \oplus_{\mathcal{O}} \rangle$ to $\langle \mathrm{SO}_2(\mathbb{F}), \cdot \rangle$.

Theorem 5. If $x^2 + 1 = 0$ has a solution in \mathbb{F} , then $\langle SO_2(\mathbb{F}), \cdot \rangle \cong \langle \mathbb{F}^{\times}, \cdot \rangle$.

Proof. Let $i \in \mathbb{F}$ be a solution to $x^2 + 1 = 0$. From the previous proof, we have, for any $M(a,b) \in SO_2(\mathbb{F})$,

$$M(a,b) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

where $a, b \in \mathbb{F}$. The characteristic polynomial of M(a, b) is $(a - \lambda)^2 + b^2$ or $\lambda^2 - 2a\lambda + a^2 + b^2$. Thus the eigenvalues are $a \pm ib$. The corresponding eigenvectors will be $(1, \mp i)$. We can then write M as a diagonal matrix,

$$M'(a,b) = \begin{bmatrix} a+ib & 0\\ 0 & a-ib \end{bmatrix}$$

For any $z \in \mathbb{F}^{\times}$, $\exists a, b \in \mathbb{F}$ such that z = a + ib. In particular, b = -i(z - a). Further, $a^2 + b^2 = 1$ gives $z^2 - 2az + 1 = 0$ i.e. $a = (z^{-1} + z)/2$ and $b = i(z^{-1} - z)/2$. Consider the map $\varphi : \mathbb{F}^{\times} \to SO_2(\mathbb{F})$ given by

$$\varphi(z) = M\left(\frac{z^{-1} + z}{2}, \frac{i(z^{-1} - z)}{2}\right)$$

For any $z_1, z_2 \in \mathbb{F}^{\times}$,

$$\varphi(z_1) = \varphi(z_2)$$

$$\implies z_1 z_2^2 - (z_1^2 + 1)z_2 + z_1 = 0 \text{ and } z_2^{-1} - z_2 = z_1^{-1} - z_1$$

$$\implies z_2 = z_1, z_1^{-1} \text{ and } z_2^{-1} - z_2 = z_1^{-1} - z_1$$

$$\implies z_2 = z_1$$

So, φ is injective. Further, for any $M(a,b) \in SO_2(\mathbb{F})$, $a+ib \neq 0$ (otherwise, $a^2+b^2=0$). Hence, $\varphi(a+ib)=M(a,b)$ and φ is surjective.

For any $z_1, z_2 \in \mathbb{F}^{\times}$,

$$\varphi(z_1)\varphi(z_2) = M\left(\frac{z_1^{-1} + z_1}{2}, \frac{i(z_1^{-1} - z_1)}{2}\right) M\left(\frac{z_2^{-1} + z_2}{2}, \frac{i(z_2^{-1} - z_2)}{2}\right)$$

$$= \begin{bmatrix} \frac{(z_1 z_2)^{-1} + z_1 z_2}{2} & \frac{i((z_1 z_2)^{-1} - z_1 z_2)}{2} \\ \frac{-i((z_1 z_2)^{-1} - z_1 z_2)}{2} & \frac{(z_1 z_2)^{-1} + z_1 z_2}{2} \end{bmatrix}$$

$$= M\left(\frac{(z_1 z_2)^{-1} + z_1 z_2}{2}, \frac{i((z_1 z_2)^{-1} - z_1 z_2)}{2}\right)$$

$$= \varphi(z_1 z_2)$$

Thus φ is bijective homomorphism i.e. an isomorphism from $\langle SO_2(\mathbb{F}), \cdot \rangle$ to $\langle \mathbb{F}^{\times}, \cdot \rangle$.

The above theorem can better be understood by noting that applying $(x, y) \mapsto (x, iy)$ to the equation $x^2 + y^2 = 1$ results in $x^2 - y^2 = 1$ which is an equation of a hyperbola. Hence, the group $\langle \mathbb{F}^{\times}, \cdot \rangle$ corresponding to hyperbola is actually isomorphic to the group $\langle \mathrm{SO}_2(\mathbb{F}), \cdot \rangle$ corresponding to the circle if $x^2 + 1 = 0$ has a solution in \mathbb{F} .

1.3 Finding Pythagorean Triplets

Consider the set $C = \{(x,y) \in \mathbb{Q}^2 : x^2 + y^2 = 1\}$ and $P_0 = (1,0) \in C$. For any $t,b \in \mathbb{Q}$, let $\ell_{t,b} = \{(x,y) \in \mathbb{Q} : y = tx + b\}$ such that $P_0 \in \ell_{t,b} \, \forall \, t,b \in \mathbb{Q}$. This means 0 = t+b or b = -t. Define $\ell_t := \ell_{t,-t}$. We'll now find the intersection of ℓ_t and C. From ℓ_t , we have y = tx - t = t(x - 1). Putting this in $x^2 + y^2 = 1$,

$$x^{2} + t^{2}(x^{2} + 1 - 2x) = 1 \implies (1 + t^{2})x^{2} - 2t^{2}x + (t^{2} - 1) = 0$$

Applying the quadratic formula, we get

$$x = \frac{t^2 \pm \sqrt{t^4 - (t^2 + 1)(t^2 - 1)}}{t^2 + 1} = \frac{t^2 \pm 1}{1 + t^2}$$

Thus x = 1 or $x = (t^2 - 1)/(t^2 + 1)$. x = 1 corresponds to y = 0 i.e. the point P_0 . For $x = (t^2 - 1)/(t^2 + 1)$,

$$y = t\left(\frac{t^2 - 1}{t^2 + 1} - 1\right) = \frac{-2t}{t^2 + 1}$$

Call this point P_t . As $P_t \in \mathcal{C}$,

$$\left(\frac{t^2-1}{t^2+1}\right)^2 + \left(\frac{-2t}{t^2+1}\right)^2 = 1 \implies (t^2-1)^2 + (2t)^2 = (t^2+1)^2$$

If $t \in \mathbb{Z}$, then $(t^2 - 1)$, 2t and $(t^2 + 1)$ will all be in \mathbb{Z} . Hence, $(t^2 - 1, 2t, t^2 + 1)$ is a valid Pythagorean triple for all $t \in \mathbb{Z}$.

Note that this does ${\bf NOT}$ generate all Pythagorean triples. E.g. the triple (5,12,13) will never be generated by this method as neither 5 nor 12 is one less than a perfect square.

We can adopt a similar strategy to generate rational or integer solutions to equations of the form $ax^2+by^2=cz^2$ where $a,b,c\in\mathbb{Q}$.

——CHAPTER 2——Affine Geometry

2.1 Affine space

Definition 1. Given a vector space \vec{X} over \mathbb{F} , its set of points X and an operation $+: X \times \vec{X} \to X$ such that $\forall \vec{v}, \vec{w} \in \vec{X}$ and $\forall p \in \vec{X}$,

1.
$$p + \vec{0} = p$$

2.
$$p + (\vec{v} + \vec{w}) = (p + \vec{v}) + \vec{w}$$

3.
$$\theta_p: \vec{X} \to X$$
 given by $\theta_p(\vec{v}) = p + \vec{v}$ is a bijection.

Then X is called an affine space with underlying vector space \vec{X} .

Due to the third point above, we have the following definition:

Definition 2. Given an affine space X, for any $a, b \in X$,

$$b - a := \theta_a^{-1}(b)$$

2.2 Affine frames and coordinates

Definition 3. An (n+1)-tuple $(p_0, \vec{v}_1, \ldots, \vec{v}_n)$ where $p_0 \in X$ and $\{\vec{v}_1, \ldots, \vec{v}_n\}$ is a basis of \vec{X} is called an affine frame.

Given $p \in X$ and an affine frame $(p_0, \vec{v}_1, \dots, \vec{v}_n)$ of X, if $p - p_0 = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n$, then p is said to have coordinates (c_1, \dots, c_n) in that frame.

2.3 Affine transformation

Definition 4. Given an affine space X, a funtion $f: X \to X$ is said to be an affine transformation if $\exists \vec{f} \in \text{End}(\vec{X}) : \vec{f}(b-a) = f(b) - f(a) \ \forall a, b \in X$.

Notation. We denote the set of affine transformations over X as A(X) and the set of invertible affine transformations over X as GA(X).

Theorem 6. Given $f \in A(X)$, \vec{f} is unique. Further, given some $p_0 \in X$, $\exists ! b \in A$ such that $f(p) = b + \vec{f}(p - p_0) \ \forall \ p \in X$.

Proof. Suppose $\vec{f_1}, \vec{f_2} \in \text{End}(\vec{X})$ such that for any $a, b \in X$

$$\vec{f_1}(b-a) = f(b) - f(a)$$

$$\vec{f_2}(b-a) = f(b) - f(a)$$

Assume $\exists \vec{v} \in \vec{X} : \vec{f_1}(\vec{v}) \neq \vec{f_2}(\vec{v})$. For some $a \in X$, we have $\theta_a(\vec{v}) \in X$ such that $\theta_a(\vec{v}) - a = \theta_a^{-1}(\theta_a(\vec{v})) = \vec{v}$. This means

$$\vec{f_1}(\vec{v}) = \vec{f_1}(\theta_a(\vec{v}) - a) = f(\theta_a(\vec{v})) - f(a) = \vec{f_2}(\theta_a(\vec{v}) - a) = \vec{f_2}(\vec{v})$$

This is a contradiction. Hence, our assumption that such a \vec{v} exists must be wrong and so, $\vec{f_1} = \vec{f_2}$.

Fixing some $p_0 \in X$, we have $\vec{f}(p - p_0) = f(p) - f(p_0) \ \forall p \in X$. So,

$$f(p) = f(p_0) + \vec{f}(p - p_0) \ \forall \ p \in X$$

Hence, $b = f(p_0)$. For some $b_1, b_2 \in X$ and $b_1 \neq b_2$, assume

$$f(p) = b_1 + \vec{f}(p - p_0) \ \forall \ p \in X$$

$$f(p) = b_2 + \vec{f}(p - p_0) \ \forall \ p \in X$$

Note that

$$b_1 = b_1 + (\vec{f}(p - p_0) - \vec{f}(p - p_0)) = (b_1 + \vec{f}(p - p_0)) - \vec{f}(p - p_0) = f(p) - \vec{f}(p - p_0)$$

$$b_2 = b_2 + (\vec{f}(p - p_0) - \vec{f}(p - p_0)) = (b_2 + \vec{f}(p - p_0)) - \vec{f}(p - p_0) = f(p) - \vec{f}(p - p_0)$$
Hence, $b_1 = b_2$.

2.4 Properties of Affine Transformations

Definition 5. Given $a, b \in X$, we define the line passing through a and b as

$$\ell_{ab} := \{a + t(b - a) : t \in \mathbb{F}\}$$

Definition 6. Two lines ℓ_{ab} and ℓ_{pq} are said to be parallel if b-a=k(p-q) for some $k \in \mathbb{F}$. We write this as $\ell_{ab} \parallel \ell_{pq}$.

Theorem 7. Consider $f \in GA(X)$ and ℓ_{ab} for some $a, b \in X$. Then,

$$\exists p, q \in X : f(\ell_{ab}) = \ell_{pq}$$

Proof. Fixing $p_0 = a$ in Theorem 6, we have $p \in X$ such that

$$f(a+t(b-a)) = p + \vec{f}(t(b-a)) = p + t\vec{f}(b-a) \ \forall t \in \mathbb{F}$$

Since $\vec{v} \mapsto p + \vec{v}$ is a bijection, we have $q \in X$ such that $q - p = \vec{f}(b - a)$. Thus

$$f(a+t(b-a)) = p + t(q-p) \ \forall \ t \in \mathbb{F}$$

i.e.
$$f(\ell_{ab}) = \ell_{pq}$$
.

The above theorem can be interpreted as the following statement:

Affine transformations take straight lines to straight lines.

Theorem 8. For any $f \in GA(X)$,

$$\ell_{ab} \parallel \ell_{pq} \implies f(\ell_{ab}) \parallel f(\ell_{pq})$$

Proof. Since $\ell_{ab} \parallel \ell_{pq}$, we have b-a=k(q-p) for some $k \in \mathbb{F}$. Using Theorem 6, we can write

$$f(\ell_{ab}) = \{ f(a + t(b - a)) : t \in \mathbb{F} \}$$

$$= \{ c + \vec{f}(a + t(b - a) - p_0) : t \in \mathbb{F} \}$$

$$= \{ c + \vec{f}((a - p_0) + t(b - a)) : t \in \mathbb{F} \}$$

$$= \{ c + \vec{f}(a - p_0) + t\vec{f}(b - a) : t \in \mathbb{F} \}$$

Similarly, $f(\ell_{pq}) = \{c + \vec{f}(p - p_0) + t\vec{f}(q - p) : t \in \mathbb{F}\}$. Now,

$$b-a = k(q-p) \implies \vec{f}(b-a) = k\vec{f}(q-p)$$

By definition, this means that $f(\ell_{ab}) \parallel f(\ell_{pq})$.

The above theorem can be interpreted as the following statement:

Affine transformations take parallel lines to parallel lines.

If the underlying vector space \vec{X} of an affine space X has a norm $\|\cdot\|$ defined on it, we have the following theorem:

Theorem 9. Given $f \in GA(X)$, a line ℓ_{ac} and any $b \in \ell_{ac}$ such that $b \neq a$ and $b \neq c$, we have

$$\frac{\|b-a\|}{\|c-b\|} = \frac{\|f(b)-f(a)\|}{\|f(c)-f(b)\|}$$

Proof. Since $b \in \ell_{ac}$, let $b = a + t_0(c - a)$. Now,

$$\frac{\|b-a\|}{\|c-b\|} = \frac{|t_0| \|c-a\|}{|1-t_0| \|c-a\|} = \left|\frac{t_0}{1-t_0}\right|$$

Using Theorem 6 with $p_0 = a$, we have $f(x) = p + \vec{f}(x - a)$ for some $p \in X$. So,

$$f(a) = p + \vec{f}(a - a) = p$$

$$f(b) = p + \vec{f}(a + t_0(c - a) - a) = p + t_0 \vec{f}(c - a)$$

$$f(c) = p + \vec{f}(c - a)$$

Hence,

$$\frac{\|f(b) - f(a)\|}{\|f(c) - f(b)\|} = \frac{|t_0| \|\vec{f}(c - a)\|}{|1 - t_0| \|\vec{f}(c - a)\|} = \left| \frac{t_0}{1 - t_0} \right|$$

The above theorem can be interpreted as the following statement:

Affine transformations preserve the ratio of distances of 3 collinear points.

2.5 Fundamental theorem of Affine Geometry

Theorem 10. If $A_0, A_1, \ldots, A_n, B_0, B_1, \ldots, B_n \in X$ such that $\{A_1 - A_0, \ldots, A_n - A_0\}$ and $\{B_1 - B_0, \ldots, B_n - B_0\}$ are linearly independent where $n = \dim \vec{X}$, then

$$\exists ! f \in GA(X) : f(A_i) = B_i \ \forall i \in \{0, 1, \dots, n\}$$

Proof. Let $\vec{v}_i = A_i - A_0$ and $\vec{w}_i = B_i - A_0 \ \forall i \in \{1, 2, ..., n\}$. Clearly, both $\beta_1 = \{\vec{v}_1, ..., \vec{v}_n\}$ and $\beta_2 = \{\vec{w}_1, ..., \vec{w}_n\}$ form a basis for \vec{X} . In fact, there are unique linear transformations $\vec{f}_1, \vec{f}_2 \in \operatorname{GL}(\vec{X})$ such that $\vec{f}_1(\vec{v}_i) = \vec{e}_i$ and $\vec{f}_2(\vec{w}_i) = \vec{e}_i \ \forall i \in \{1, 2, ..., n\}$ where $\{\vec{e}_1, ..., \vec{e}_n\}$ is the standard basis of \vec{X} .

Consider the affine transformations $f_1, f_2 \in GA(X)$ given by

$$f_1(p) = O + \vec{f_1}(p - A_0) \ \forall p \in X$$

 $f_2(p) = O + \vec{f_1}(p - B_0) \ \forall p \in X$

Now, $f_1(A_0) = f_2(B_0) = O$ and $f_1(A_i) = f_2(B_i) = O + \vec{e_i} \ \forall i \in \{1, 2, ..., n\}$. Since f_1 and f_2 are invertible, it is easy to see that $f = f_2^{-1} f_1$ satisfies $f(A_i) = B_i \ \forall i \in \{0, 1, ..., n\}$.

Next, we need to prove that f is unique. Suppose there are two affine transformations $g_1, g_2 \in GA(X)$ that satisfy $g_1(A_i) = g_2(A_i) = B_i \ \forall i \in \{0, 1, ..., n\}$ but $\exists q_0 \in X$ such that $g_1(q_0) \neq g_2(q_0)$.

From Theorem 6, picking $p_0 = A_0$, $\exists ! b_1, b_2 \in X$ such that $\forall q \in X$

$$g_1(p) = b_1 + \vec{g}_1(p - A_0)$$

 $g_2(p) = b_2 + \vec{g}_2(p - A_0)$

Since $g_1(A_0) = g_2(A_0) = B_0$, we have $b_1 = b_2$. Further using

$$g_1(A_i) = g_2(A_i) = B_i \ \forall i \in \{1, 2, \dots, n\}$$

we get the relations

$$\vec{g}_1(\vec{v}_i) = \vec{g}_2(\vec{v}_i) \ \forall i \in \{1, 2, \dots, n\}$$

But note that β_1 is a basis of \vec{X} . Thus for any $\vec{a} \in \vec{X}$, we have scalars c_1, \ldots, c_n such that $\vec{a} = c_1 \vec{v}_1 + \cdots + c_n \vec{v}_n$. Hence,

$$\vec{g}_1(\vec{a}) = c_1 \vec{g}_1(\vec{v}_1) + \dots + c_n \vec{g}_1(\vec{v}_2) = c_1 \vec{g}_2(\vec{v}_1) + \dots + c_n \vec{g}_2(\vec{v}_2) = \vec{g}_2(\vec{a}) \ \forall \vec{a} \in \vec{X}$$

So, $b_1 = b_2$ and $\vec{g}_1 = \vec{g}_2$. But this contradicts that $\exists q_0 \in X : g_1(q_0) \neq g_2(q_0)$. Hence, $g_1 = g_2$.

Intuitively, this theorem says that there exists an affine transformation in GA(X) which takes an n-simplex in an affine space X with $\dim \vec{X} = n$ to another n-simplex in X. Note that an n-simplex is a generalization of the concept of triangles and tetrahedra in 2D and 3D respectively. In particular, a triangle is a 2-simplex and a tetrahedron is a 3-simplex. So, if we consider the affine space \mathbb{R}^2 , this theorem says that there is an affine transformation that takes any triangle to any other triangle. We can also state it as

All triangles in \mathbb{R}^2 are affine-congruent.

In general, we say two figures are affine-congruent if there is an invertible affine transformation taking one to the other.