To match each expression in Table 1 with the corresponding expression in Table 2, let's analyze each operation and its definition in binary morphological image processing.

Table 1:

- 1. $A \circ B$ **Opening** of A by B.
- 2. $A \oplus B$ **Dilation** of A by B.
- 3. $A \cdot B$ **Hit-or-Miss** transform.
- 4. A-B **Set difference** between A and B.
- 5. $A \ominus B$ **Erosion** of A by B.
- 6. $(B)_z$ **Translation** of B by vector z.

Table 2: a. $\{w-z|w\in B\}$ - Translation of B by z. b. $(A\oplus B)\ominus B$ - **Closing** of A by B. c. $\cup\{(B)_z|(B)_z\subseteq A\}$ - The union of all translations of B that are subsets of A (related to **Opening**). d. $\{z|(\hat{B})_z\cap A\neq\emptyset\}$ - Definition of **Dilation**. e. $A\cap B^c$ - Set difference, as $A-B=A\cap B^c$. f. $\{z|(B)_z\subseteq A\}$ - Definition of **Erosion**.

Matching:

- 1. $A \circ B$ matches with c. $\cup \{(B)_z | (B)_z \subseteq A\}$
- **2.** $A \oplus B$ matches with **d.** $\{z|(\hat{B})_z \cap A \neq \emptyset\}$
- 3. $A \cdot B$ matches with **b.** $(A \oplus B) \ominus B$
- **4.** A-B matches with **e.** $A\cap B^c$
- **5.** $A\ominus B$ matches with **f.** $\{z|(B)_z\subseteq A\}$
- **6.** $(B)_z$ matches with **a.** $\{w-z|w\in B\}$

Completed Answer Table:

1	2	3	4	5	6
с	d	b	е	f	а

So, the association is:

- 1: c
- 2: **d**
- 3: **b**
- 4: e
- 5: **f**
- 6: a

Answer Table:

1	2	3	4	5	6
С	d	b	е	f	а

Problem (b):

We are given a binary image A (Figure 1) and two structuring elements B (Figures 2 and 3). We are to compute the set $C=A-(A\ominus B)$ for each structuring element and shade the elements of C in Figure 4. We will also analyze how the two results relate to image A.

(i) Using Structuring Element B from Figure 2:

Structuring Element B (Figure 2):

- A 3x3 matrix with all ones.
- Origin at the center (coordinates (0,0)).

Steps to Compute $C = A - (A \ominus B)$:

• This structuring element considers all neighboring pixels in a 3x3 window.

1. Erosion ($A \ominus B$):

Interpretation:

- For each pixel in A, check if the structuring element B fits entirely within A when centered at that pixel.
- Pixels where B fits entirely are kept; others are eroded.

2. Compute C:

- Subtract the eroded image from the original image: $C = A (A \ominus B)$.
- This results in the **boundary** of A corresponding to the thickness defined by B.

Shaded Elements of Set *C***:**

Based on the erosion, the pixels in A that are not completely surrounded by other pixels (as per B) become part of C. The shaded elements in C are:

• Boundary Pixels of A:

Row	Column(s)
1	3
2	2, 3, 4
3	2, 4, 5
4	2, 5
5	2, 5, 6
6	1, 2, 5
7	2, 5
8	2, 4, 5
9	1, 2, 3, 4
10	3

(ii) Using Structuring Element B from Figure 3:

Structuring Element B (Figure 3):

- A 3x3 matrix in a cross shape:
 - Ones at positions: center, up, down, left, right.
- Origin at the center (coordinates (0,0)).

Interpretation: • This structuring element considers only the immediate north, south, east, and west

neighbors. Steps to Compute $C = A - (A \ominus B)$:

1. Erosion ($A \ominus B$):

- For each pixel in A, check if the cross-shaped structuring element B fits entirely
 - within A when centered at that pixel. Pixels where B fits entirely are kept; others are eroded.
- 2. **Compute** *C*: • Subtract the eroded image from the original image: $C = A - (A \ominus B)$.

This results in a thinner boundary of A compared to part (i).

Shaded Elements of Set *C*:

With a smaller structuring element, fewer pixels are eroded. The shaded elements in C are:

Column(s)

• Thinner Boundary Pixels of A: Row

	1	3	
	2	2, 3, 4	
	3	2, 5	
	4	2, 5	
	5	2, 6	
	6	1, 5	
	7	2, 5	
	8	2, 5	
	9	1, 4	
	10	3	
Representation in Figure 4:			

mathematica

• Using a larger structuring element (all ones in a 3x3 matrix) results in a thicker boundary. More pixels are eroded because the structuring element requires all

- surrounding pixels to be ones.
- C represents the outer boundary of A, capturing more of the edge details. C 表示的外边界 A1 ,捕捉更多边缘细节。 • Part (ii): • The cross-shaped structuring element is less restrictive, resulting in a thinner
 - boundary. Fewer pixels are eroded since only the immediate neighbors in four 十字形结构元素的限制较少,导致边界更薄。由于仅考虑 四个方向上的直接邻居,因此被侵蚀的像素更少 directions are considered.

C 表示边界的更薄版本 A , 关注最直接的边缘

这两个结果显示了结构元素的选择如何影响侵蚀,从 而影响边界提取

□ 复制代码

immediate edges.

Conclusion: · The two results show how the choice of structuring element affects the erosion and,

• C represents a thinner version of the boundary of A, focusing on the most

• Image A and the Results:

consequently, the boundary extraction.

- Both C sets represent the boundaries of the original image A, but with different thicknesses.
 - ullet The boundaries extracted in parts (i) and (ii) highlight the edges of A at different scales.

Note: The shading represents the elements of C after performing the morphological operation $C=A-(A\ominus B)$ using the respective structuring elements.