

Robert Bauer

Warnemünde, 05/30/2012

Day 7 - Agenda:

- ▶ wind rose plots
- matrices and arrays
- ▶ image plots

164) Beeswarm Boxplot (with applot2) by Denis Haine.

I marketku 162) word cloud by Ian Fellows.

barrel "

158) Image lag plot matrix by René Locher. (Switzerland) in 2004 can be compared. ...

165) Evolution of Ropp code size by Romain François.

163) Beeswarm Boxplot by Tal Galili,

161) Presentation style 3D barplot by Michal J. Figurski.

159) Image scatter plot matrix by René Locher.

157) graphical parameter settings by Biecek Przemysław.

Graph Gallery

Graph Gallery

wind roses

```
require(climatol)
data(windfreq.dat)
rosavent(windfreq.dat,4,4,ang=-3*pi/16,main="Annual windrose")
```

```
install.packages("climatol")
require(climatol)
data("windfr")
rosavent(windfr,4,4,ang=-3*pi/16,main="Annual windrose")
```

wind roses

wind roses

- 1. Import data from "wave_height_frequencies.xls"
- 2. create wind rose from data
- 3. rename legend (hint: use the help command)

```
data <- read.table('wave_height_frequencies.csv')
rosavent(data, uni="wave height [m]")
?rosavent</pre>
```



```
data <- read.table('wave_height_frequencies.csv')
rosavent(data, uni="wave height [m]")
?rosavent</pre>
```

```
matrix(1:10,nrow=5,ncol=2) # matrix(data,rows,columns)
matrix(1:10,5,2) # option 2
matrix(1:10,5) # option 3
dim(m) # checking matrix dimensions
```

```
matrix(1:10,nrow=5,ncol=2) # matrix(data,rows,columns)
matrix(1:10,5,2) # option 2
matrix(1:10,5) # option 3
dim(m) # checking matrix dimensions
```

```
matrix(0,5,2) # 5x2 matrix of zeros
matrix(1,5,2) # 5x2 matrix of ones
matrix(NA,5,2) # 5x2 matrix of NAs
```

```
matrix(1:10,nrow=5,ncol=2) # matrix(data,rows,columns)
matrix(1:10,5,2) # option 2
matrix(1:10,5) # option 3
dim(m) # checking matrix dimensions

# matrices with uniform values
matrix(0,5,2) # 5x2 matrix of zeros
matrix(1,5,2) # 5x2 matrix of ones
matrix(NA,5,2) # 5x2 matrix of NAs
```

```
matrix(1:10,nrow=5,ncol=2) # matrix(data,rows,columns)
```

```
## other options:
## a) aligning vectors
cbind(rep(0,5),rep(0,5))  # 5x2 matrix of zeros

## b) converting vectors
m <- 1:10
dim(m) <- c(5,2)

## c) arrays
array(1:10,dim=c(5,2))  # arrays
array(0, dim=c(5,2))  # 5x2 matrix of zeros
array(1:10, dim=c(5,2,3))  # multiple dimensions</pre>
```

m

```
m <- matrix(1:10,5,2)  # matrix(data,rows,columns)
m

## 1) changing values
## a) accessing specific elements
i <- c(2,4,8,10)
m[i]
m[i] <- 0
m

m[3,2] <- NA
m
m[8]
m[8] <- 100</pre>
```

```
## b) matrix wide operations
m <- matrix(rnorm(10),5,2) # matrix(data,rows,columns)
m
m <- round(m)
m
m*2
m*m # element by element product</pre>
```

```
## applying functions
# apply(matrix, margin, fun, ...)
# margin = 1; --> apply functions per row
# margin = 2; --> apply functions per column
# margin = c(1,2); --> apply functions per row & column
apply(m, 2, mean)
apply(m, 2, max)
apply(m, 2, sort) # sorting values
## 2) transpose matrix (changing rows and columns)
t(m)
## 3) extend matrix
cbind(m, 1:5)
n < -1:5
cbind(m.n)
```

```
## 4) naming columns and vectors
colnames(m) <- paste("col",1:2, sep="")
rownames(m) <- paste("row",1:5, sep="")
# caution when accessing data!
m$col1 # works only on data frames
m[,1]
m <- data.frame(m)</pre>
m
str(m) # check structure
m$col1 # works only on data frames
# converting dataframes
m <- as.matrix(m)</pre>
str(m) # check structure
```

```
## 4) plotting matrices
m
dim(m) # 5x2 matrix
image(m)
```

```
## 4) plotting matrices
m
dim(m) # 5x2 matrix
image(m)

image(1:5,1:2,m) # change axes tick marks
# attention:
# plot from the lower left margin
# rows and columns are switched!
```

```
## 4) plotting matrices
m
dim(m) # 5x2 matrix
image(m)
image(1:5,1:2,m) # change axes tick marks
# attention:
# plot from the lower left margin
# rows and columns are switched!
# show indices
text(c(row(m)), c(col(m))-.25,
     paste("[",c(row(m)), ",",c(col(m)),"]", sep=""))
# show values
text(c(row(m)), c(col(m)), m)
```

how to plot a matrix

```
# set figure margins
par(mar=c(10,5,5,6)) # mar=c(bottom, left, top, right);
    default:c(5, 4, 4, 2) + 0.1.

# start plotting procedure
image(1:5,1:2,m, axes=FALSE) # plot know axes!

# add axes & box
axis(1,at=1:5,lab=2:6)
axis(2,at=1:2,lab=6:5)
box()
```

```
# add colorbar
# install.packages("fields")
library(fields)
image.plot(m, legend.only=TRUE, col = heat.colors(12))
```

how to plot a matrix

```
datasheet <- read.table('SST_data.csv', header=F, sep=',',</pre>
    dec=".")
head(datasheet)
z <- t(as.matrix(datasheet))
x < -1:dim(z)[1]
v \leftarrow 1:dim(z)[2]
colorbar.colors <- tim.colors(64)
# set figure margins
par(mar=c(10,5,5,6)) # mar=c(bottom, left, top, right);
    default:c(5, 4, 4, 2) + 0.1.
# start plotting procedure
image(x, y, z[,180:1], col=colorbar.colors,
      xlab='time', ylab='latitude', main="average monthly
          SST from 2000-2010 at 335\hat{A}^{\circ}E^{"}. axes=F)
dates <- paste(7, '/', 2000:2010, sep="")
axis(1, seq(7, length(x), 12), dates)
axis(2, seq(1, 180, 44.5), c(-90, 45, 0, 45, 90))
box()
image.plot(zlim=range(z), legend.only=TRUE, col=colorbar.
    colors)
```

- $1. \ \,$ Calculate the min, mean, median, max SST of each latitude
- 2. create an image plot from the wind rose data of Exercise 1
 - 2.1 add a colorbar and contour lines

```
# 1. Calculate the min, mean, median, max SST of each
    latitude
apply(z,2,min)
apply(z,2,mean)
apply(z,2,median)
apply(z,2,median)
apply(z,2,max)
apply(z,2,range)

colMeans(z)
apply(z,2,quantile, probs = c(0.25, 0.5, 0.75))
```