KBTU, School of IT & Engineering, Fall 2022, Computation Theory Midterm Exam (November 03, 2022) 15 points

Midterm 1 Samples of Tasks

Surname and Name:

Task 1. (SAMPLE) (1 pt). Let A={0, 1}. Find a regular expression r such that L(r) consists of all words w containing

Task 2. (SAMPLE) (1 pt=0.5+0.5). Let $A=\{a, b, c\}, r=....$, and let w=...

1. Find L(r)

2. Whether w belongs to L(r)

Task 3. (SAMPLE) (8pt=0.5*2+3+4) NDFSA's M_A and M_B are defined by Tables 1 and 2 below:

Table 1 (M _A)			Table 2 (M _B)		
State	f Input			f Input	
			State		
	0	1		0	1
Start State –			Start State –		
Final States:			Final States:		

Subtask (a) (1 pt=0.5*2). Provide state diagrams for M_A and M_B

Subtask (b) (3 pt). Use Kleene's method to construct state diagrams for NDFSA MAB.

Provide a description of start the state, final states, and new transitions in M_{AB} . No description – no points.

Subtask (c) (4 pt). Use Kleene's method to construct state diagrams for NDFSA M_{A^*} .

Provide a description of start the state, final states, and new transitions in M_{A^*} . No description – no points.

<u>Note:</u> In Exam papers <u>ALL new transitions</u> generated for M_{AB} , and M_{A*} must be shown in state diagrams <u>by dashed lines</u>. Besides, if an old transition α : $S_k \rightarrow S_m$, say on 0, generates a new transition β : $S_p \rightarrow S_n$ on the same symbol 0 then connect the transition α and the transition β by a colored and dashed arrow from $S_k \rightarrow S_m$ to $S_p \rightarrow S_n$ as shown in the picture below

Task 4. (SAMPLE) (3 pt=2+0.4+0.6). Based on NDFSA given in Table 3 and the algorithm in the proof of the Theorem 2 (page 19 of Lecture Notes) solve the following subtasks:

Table 3 (NDFSA)							
	F						
State	Input						
	0	1					
Start state:							
Final States:							

Subtask i. Create an equivalent DFSA in "table form" (2 pt)

Subtask ii. Draw NDFSA in Table 1 in state diagram form (**0.4 pt**)

Subtask iii. Draw the equivalent DFSA you created in subtask (i) in state diagram

form (**0.6 pt**)

Task 5. (SAMPLE) (2 pt) Let I={0, 1}. Construct a deterministic finite-state automaton that recognizes the set of all bit strings such that

NOTE.

In Exam, a student can use the following materials:

- Lecture Notes (printed version)
- File "Solutions of some tasks from HW1" (as a sample) (printed version)
- File "Fall 2022 Computation Theory SAMPLES for the tasks 3 and 4 of Midterm 1" (printed version).

03.11.2022 Good Luck.

Instructor: Dr. Fuad Hajiyev