Exercise 4

Christopher Breitfeld, Linus Bölte, Henry Krämerkämper November 14, 2023

In a lab experiment the following values are measured:

Ψ / °	Asymmetry	Ψ / °	Asymmetry	Ψ / °	Asymmetry
0	-0.032	30	0.010	60	0.057
90	0.068	120	0.076	150	0.080
180	0.031	210	0.005	240	-0.041
270	-0.090	300	-0.088	330	-0.074

The asymmetry values have a measurement value of ± 0.011 . The theory says that the asymmetry is described by an ansatz of the form

$$f(\psi) = A_0 \cos \psi + \delta.$$

1 a

Start with the ansatz

$$f(\psi) = a_1 f_1(\psi) + a_2 f_2(\psi) = a_1 \cos(\psi) + a_2 \sin(\psi)$$

and write down the design matrix \mathbf{A} .

-- Designmentrix
$$A = \begin{bmatrix} f_4(x_4) & \dots & f_n(x_4) \\ \vdots & \vdots & \vdots \\ f_4(x_n) & \dots & f_n(x_n) \end{bmatrix} = 1$$
 hier: $A = \begin{bmatrix} \cos(\Psi_4) & \sin(\Psi_4) \\ \vdots & \vdots & \vdots \\ \cos(\Psi_{n_2}) & \sin(\Psi_{n_2}) \end{bmatrix}$ mit den Hesswerten $\Psi_4, \dots, \Psi_{n_2}$ aus der Tabelle oben.

import numpy as np

muss damit numpy nicht weint in rad umgewandelt werden
psi = np.radians(np.arange(0, 331, 30))

```
measurement = np.array([-0.032, 0.010, 0.057, 0.068, 0.076, 0.080, 0.031, 0.005, -
0.041, -0.090, -0.088, -0.074
measurement_error = 0.011
A = np.column_stack([np.cos(psi), np.sin(psi)])
print(f"A = {A}")
A = [[ 1.00000000e+00 0.00000000e+00]]
 [ 8.66025404e-01 5.00000000e-01]
 [ 5.00000000e-01 8.66025404e-01]
 [ 6.12323400e-17 1.00000000e+00]
 [-5.00000000e-01 8.66025404e-01]
 [-8.66025404e-01 5.00000000e-01]
 [-1.00000000e+00 1.22464680e-16]
 [-8.66025404e-01 -5.00000000e-01]
 [-5.00000000e-01 -8.66025404e-01]
 [-1.83697020e-16 -1.00000000e+00]
 [ 5.00000000e-01 -8.66025404e-01]
 [ 8.66025404e-01 -5.00000000e-01]]
```

2 b

Calculate the solution vector \hat{a} for the parameters using the method of the least squares.

The solution vector \hat{a} can be calculated as $\hat{a} = (\mathbf{A}^T \cdot \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$:

```
a = np.linalg.inv(A.T @ A) @ A.T @ measurement
print(f"a = {a}")
a = [-0.0375063     0.07739978]
```

3 c

Calculate the covariance matrix $V[\hat{\mathbf{a}}]$ as well as the errors of a_1 and a_2 and the correlation coefficient.

The covariance matrix of \hat{a} is given by $\mathbf{V}[\hat{\mathbf{a}}] = \sigma^2(\mathbf{A}^T \cdot \mathbf{A})^{-1}$, where σ denotes the measurement error.

```
V = measurement_error**2 * np.linalg.inv (A.T @ A)
print(f"V = {V}")
```

The error of a_1 and a_2 can be calculated via the diagonal elements of the covariance matrix:

4 d

Calculate A_0 and δ , their error and the correlation of a_1 and a_2 .

-,
$$f(\Psi) = A_0 \cos(\Psi + \delta) = a_1 \cos(\Psi) + a_2 \sin(\Psi)$$

-, $\cos(x+y) = \cos(x) \cos(y) - \sin(x) \sin(y)$

(12) $A_0 \cos(\delta) \cos(\Psi) - A_0 \sin(\delta) \sin(\Psi) = a_1 \cos(\Psi) + a_2 \sin(\Psi)$

23) $A_0 \cos(\delta) = a_1$, $-A_0 \sin(\delta) = a_2$

$$A_0 \cos(\delta) = a_1$$
, $-A_0 \sin(\delta) = a_2$

$$A_0 = \frac{a_1}{\cos(\delta)} = \frac{-a_1 \sin(\delta)}{\cos(\delta)} = a_2$$

(2) $\frac{a_1}{\cos(\delta)} = \frac{-a_2}{a_1}$

(2) $\delta = \arctan(\frac{-a_2}{a_1})$

-) Verwende $\cos(\tan^{-1}(\frac{-a}{b})) = \frac{1}{\frac{a_1^2}{b^2} - 1}$

(3) $A_0 = a_1 - \frac{a_1^2}{a_1^2} - 1$

The error of a solution vector $\vec{y} = f(\vec{x})$ is can be computed by using $\mathbf{V}[\tilde{\mathbf{y}}] = \mathbf{J} \cdot \mathbf{V}[\tilde{\mathbf{x}}] \cdot \mathbf{J}^{\mathbf{T}}$. Calculate the Jacobian matrix of $f(\vec{x}) = \begin{bmatrix} A_0 \\ \delta \end{bmatrix}$:

$$f(x^{i}) = \begin{bmatrix} A_{0} \\ S \end{bmatrix} = \begin{bmatrix} \alpha_{1} & \frac{1}{\alpha_{1}^{i} - 1} \\ \alpha_{1} & \frac{1}{\alpha_{1}^{i} - 1} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{1}} \\ \alpha_{1} & \frac{1}{\alpha_{1}^{2}} & \frac{1}{\alpha_{1}^{2}} & \frac{1}{\alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{1}} \\ \alpha_{1} & \frac{1}{\alpha_{1}^{2}} & \frac{1}{\alpha_{1}^{2}} & \frac{1}{\alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{1}} \\ \alpha_{1} & \frac{1}{\alpha_{1}^{2}} & \frac{1}{\alpha_{1}^{2}} & \frac{1}{\alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2}} & \frac{1}{\alpha_{1}^{2}} & \frac{1}{\alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{1}} \\ \alpha_{1} & \frac{1}{\alpha_{1}^{2}} & \frac{1}{\alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{1}} \\ \alpha_{1} & \frac{1}{\alpha_{1}^{2}} & \frac{1}{\alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{1}} \\ \alpha_{1} & \frac{1}{\alpha_{1}^{2}} & \frac{1}{\alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{1}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{\alpha_{1}^{2} - \alpha_{1}^{2}} \\ \frac{1}{\alpha_{1}^{2} - \alpha_{1}^{2$$