

state

Prob of taking all in state Prob of taking a2 in state Prob of taking a3 in state Prob of taking a4 in state

state

Q(S, a1)Q(S,a2) Q(S,a3) Q(S,a4)

Data Store

(S1, right, -1, 0.51)

Data Store

(S1, right, -1, 0.51)

(S2, down, -1, 0.43)

(S3, down, -1, 0.35)

(terminal, X, -10, X)

Policy Network

Q(S1, left)

Q(S1, right) 1.36

-0.67

Q(S1, up) -1.63

Q(S1, down) 0.72

Q(S2, left) -0.82

Q(S2, right) 3.61

Q(S2, up) 0.99

Q(S2, down) 1.66

-2.58

-3.73

Q(S3, up)

Q(S3, down)

Value Function

Data Store

(S1, right, -1, 0.51)

(S2, down, -1, 0.43)

(S3, down, -1, 0.35)

(terminal, X, -10, X)

Q(S3, left)

Q(S3, right)

1.63

9.61

Scroll for details

SI

S2

S3

Policy Network

Q(S1, left) -0.67

-12 Q(S1, right) 1.36

Q(S1, up) -1.63

Q(S1, down) 0.72

Q(S2, left) -0.82

Q(S2, right) 3.61

Q(S2, up) 0.99

-11 Q(S2, down) 1.66

Q(S3, left) -2.58

Q(S3, up) 1.63

Value Function

Q(S3, right) -3.73

Scroll for details

Q(S3, down) 9.61 **Data Store**

(S1, right, -1, 0.51)

(S2, down, -1, 0.43)

(S3, down, -1, 0.35)

(terminal, X, -10, X)

S2 **S**3

SI

Q(S1, down) 0.72

Q(S2, left) -0.82

Q(S2, right) 3.61

Q(S2, up) 0.99

Q(S2, down) 1.66 -11

Q(S3, left) -2.58

Q(S3, right) -3.73

Q(S3, up) 1.63

9.61 _] () Q(S3, down)

Advantage = 1.36 - (-12) = 12.36

Advantage = 1.66 - (-11) = 12.66

Advantage = 9.61 - (-10) = 19.61

Value Function Network Loss function

Value Function **Network Loss**

Data Store

(S1, right, -1, 0.51)

(S2, down, -1, 0.43)

(S3, down, -1, 0.35)

(terminal, X, -10, X)

Q(S1, left) -0.67

Q(S1, right) 1.36

Q(S1, up) -1.63

Q(S1, down) 0.72

Q(S2, left) -0.82

Q(S2, right) 3.61

Q(S2, up) 0.99

Q(S2, down) 1.66

Q(S3, left) -2.58

Q(S3, right) -3.73

Q(S3, up) 1.63

Q(S3, down) 9.61

Data Store

(S1, right, -1, 0.51)

(S2, down, -1, 0.43)

(S3, down, -1, 0.35)

(terminal, X, -10, X)

 $R_S1 = -12$

 $R_S2 = -11$

 $R_S3 = -10$

Q(S1, left) -0.67

Q(S1, right) 1.36

Q(S1, up) -1.63

0.72 Q(S1, down)

Q(S2, left) -0.82

Q(S2, right) 3.61

Q(S2, up) 0.99

Q(S2, down) 1.66

Q(S3, left) -2.58

Q(S3, right) -3.73

Q(S3, up) 1.63

Q(S3, down) 9.61

Data Store

(S1, right, -1, 0.51)

(S2, down, -1, 0.43)

(S3, down, -1, 0.35)

(terminal, X, -10, X)

 $R_S1 = -12$

 $R_S2 = -11$

 $R_S3 = -10$

 $Advantage_S1 = 1.36 - (-12) = 12.36$

 $Advantage_S2 = 1.66 - (-11) = 12.66$

 $Advantage_S3 = 9.61 - (-10) = 19.61$

Loss =
$$\frac{12.36^2 + 12.66^2 + 19.61^2}{3}$$

Loss = 252.53

Q(S1, left) -0.67Q(S1, right) 1.36 Q(S1, up) -1.63 Q(S1, down) 0.72 Q(S2, left) -0.82Q(S2, right) 3.61 Q(S2, up) = 0.99Q(S2, down) 1.66 Q(S3, left) -2.58

Data Store

(S1, right, -1, 0.51)

(S2, down, -1, 0.43)

(S3, down, -1, 0.35)

(terminal, X, -10, X)

Advar

Advar

Adva

Loss

$$R_S1 = -12$$

$$R_{S2} = -11$$

$$R_S3 = -10$$

-3.73

9.61

1.63

Q(S3, right)

O(S3, down)

Q(S3, up)

P(left S1)	0.14
--------------	------

P(right | S1) 0.26

P(up | S1) 0.41

P(down | S1) 0.19

P(left | S2) 0.38

P(right | S2) 0.17

P(up | S2) 0.27

P(down | S2) 0.18

Data Store

(S1, right, -1, 0.51)

(S2, down, -1, 0.43)

(S3, down, -1, 0.35)

(terminal, X, -10, X)

timestep 1 timestep 2 timestep 3

0.18 0.26 ratio 0.51

0.43 0.35

0.10

ratio

0.50 0.42 0.29

* 12.36 *12.66 *19.61

5.68 6.18 5.31

P(left | S3) 0.71

P(right | S3) 0.11

P(up | S3) 0.08

P(down | S3) 0.10

Advantage_S1 = 1.36 - (-12) = 12.36

 $Advantage_S2 = 1.66 - (-11) = 12.66$

 $Advantage_S3 = 9.61 - (-10) = 19.61$

P(left | S1) 0.14

P(right | S1) 0.26

P(up | S1) 0.41

P(down | S1) 0.19

P(left | S2) 0.38

P(right | S2) 0.17

P(up | S2) 0.27

P(down | S2) 0.18

P(left | S3) 0.71

P(right | S3) 0.11

P(up | S3) 0.08

P(down | S3) 0.10

Data Store

(S1, right, -1, 0.51)

(S2, down, -1, 0.43)

(S3, down, -1, 0.35)

(terminal, X, -10, X)

timestep 1 timestep 2 timestep 3

ratio	0.26	0.18	0.10
	0.51	0.43	0.35
ratio	0.50	0.42	0.29

clipped ratio	0.9	0.9	0.9
	* 12.36	*12.66	*19.61

11.12

min

5.68 6.18 5.31 5.68 6.18 5.31

11.39

17.65

P(left | S1) 0.14

P(right | S1) 0.26

P(up | S1) 0.41

P(down | S1) 0.19

P(left | S2) 0.38

P(right | S2) 0.17

P(up | S2) 0.27

P(down | S2) 0.18

P(left | S3) 0.71

P(right | S3) 0.11

P(up | S3) 0.08

P(down | S3) 0.10

Data Store

(S1, right, -1, 0.51)

(S2, down, -1, 0.43)

(S3, down, -1, 0.35)

(terminal, X, -10, X)

timestep 1 timestep 2 timestep 3

0.26 0.18 0.10 ratio 0.51 0.43 0.35

ratio 0.50 0.42 0.29

clipped 0.9 0.9 0.9 ratio

> * 12.36 *12.66 *19.61

> 17.65 11.12 11.39

5.68 6.18 5.31

5.68 6.18 5.31

Average

5.72 Loss

min

Summary

- **Proximal Policy Optimization** (PPO) is used to learn a policy directly
- PPO algorithm makes use of 2 architectures
 - Policy Network and value function network
- Policy Network: Predicts a probability distribution of actions from a state
- Value Function Network: Predicts q-values for every action taken from a given state
- Both networks are trained together, iteratively.
- PPO is used by chatGPT and other LLMs to ensure

PPO Algorithm Pseudocode with Key Formulas

1. Initialize:

- Policy network π_{θ} and value network V_{θ} with parameters θ .
- · Set hyperparameters:
 - Clipping parameter ϵ .
 - Value loss coefficient c_1 .
 - Entropy coefficient c_2 .
 - Discount factor γ.
 - GAE parameter λ .
 - Learning rate α .

2. Repeat for each iteration:

a. Collect Trajectory:

• Run the current policy π_{θ} for T timesteps to collect trajectories (s_t, a_t, r_t, s_{t+1}) .

b. Calculate Advantages and Returns:

For each timestep t in the trajectory:

1. Compute discounted return:

$$\hat{R}_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k}$$

2. Calculate Generalized Advantage Estimate (GAE):

$$\hat{A}_t = \sum_{l=0}^{\infty} (\gamma \lambda)^l \delta_{t+l}$$

where:

$$\delta_t = r_t + \gamma V_{\theta}(s_{t+1}) - V_{\theta}(s_t)$$

c. Optimize Policy and Value Network:

For each minibatch of sampled trajectories:

1. Calculate probability ratio $r_t(\theta)$:

$$r_t(heta) = rac{\pi_{ heta}(a_t|s_t)}{\pi_{ heta_{ ext{old}}}(a_t|s_t)}$$

2. Compute clipped policy loss $L^{
m clip}$:

$$L^{ ext{clip}} = \mathbb{E}_t \left[\min \left(r_t(heta) \hat{A}_t, \operatorname{clip}(r_t(heta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t
ight)
ight]$$

3. Compute value function loss $L^{
m value}$:

$$L^{ ext{value}} = rac{1}{2} \mathbb{E}_t \left[\left(V_{ heta}(s_t) - \hat{R}_t
ight)^2
ight]$$

4. Compute entropy bonus $L^{
m entropy}$:

$$L^{ ext{entropy}} = \mathbb{E}_t \left[\mathcal{H} \left[\pi_{ heta}(\cdot | s_t)
ight]
ight]$$

5. Calculate total PPO loss $L^{
m total}$:

$$L^{\text{total}} = L^{\text{clip}} - c_1 L^{\text{value}} + c_2 L^{\text{entropy}}$$

6. Update policy and value network parameters θ :

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} L^{\text{total}}$$

d. Update old policy parameters:

$$\theta_{\mathrm{old}} \leftarrow \theta$$

3. End Repeat.

Compute Entropy:

For discrete action space: Sum over all possible actions using the formula:

$$\mathcal{H}[\pi_{ heta}(\cdot|s_t)] = -\sum_a \pi_{ heta}(a|s_t) \log \pi_{ heta}(a|s_t)$$