

데이터

■ 척도

종류		설명
간격 척도 수치형 데이터		대소 관계 및 차이에도 의미 부여비율은 의미 없음예) 연도, 온도
(양적 데이터)	비례 척도	■ 대소 관계, 차이, 비율 등에 모두 의미 부여 ■ 예) 길이, 무게
범주형 데이터	명의 척도	 단순히 분류하기 위한 데이터로 변수의 동일성 여부에만 의미 부여 대소관계, 차이, 비율 등은 의미 없음 예) 학번, 전화번호, 성별
(질적 데이터)	순서 척도	 순서 관계 또는 대소 관계에 의미 부여 차이, 비율 등은 의미 없음 예) 석차, 제품 만족도

- 비례 척도와 간격 척도를 구분하는 방법 : 0이 없음을 나타내는 지 확인
 - → 길이 0은 길이가 없음을 의미(비례척도)
 - → 온도 0은 온도가 없음을 의미하지 않지만(간격 척도)

데이터

종류

종	류	설명		
수치형 데이터	연속형 데이터	■ 두 값 사이에 무한한 개수의 값이 있는 숫자 ■ 예) 부품 길이, 제품 중량		
(양적 데이터)	이산형 데이터	■ 두 값 사이에 셀 수 있는 개수의 값이 있는 숫자 ■ 예) 고객 불만 수, 결점 또는 결함의 수		
	순위형 데이터	■ 정렬하거나 순위화 할 수 있는 데이터 ■ 예) T-Shirt Size : XL > L > M		
범주형 데이터 (질적 데이터)	명목형 데이터	■ 정렬하거나 순위화 할 수 없는 데이터 ■ 예) T-Shirt Color : Red, Green, Blue		
	이진 데이터	■ 범주의 값으로 두 개의 값 만을 갖는 특수한 경우 ■ 예) 참/거짓, 0/1		

기초 통계량

■ 대푯값

종류	설명
평균	■ 전체 데이터의 합을 데이터의 개수로 나눈 값 ■ 편차와 분포를 반영하지 못하는 문제
중앙값	모든 데이터를 크기 순서로 정렬했을 때 가운데 위치한 값정도의 차이는 있으나 평균과 마찬가지로 분포를 반영하지 못하는 문제

■ 산포도

종류	설명
분산	■ 각 데이터와 평균 사이의 편차를 제곱한 값의 평균 ■ 편차에 음의 값이 존재하고 편차의 평균이 0이 되므로 제곱의 평균 사용
분위 수	■ 전체 데이터의 몇 %에 위치하는지 표시 ■ 대표적으로 4분위 수 사용 (최소, 25%, 50%, 75%, 최대) ■ 3Q(75%)와 1Q(25%)의 차이(범위)는 IQR(Interquartile Range) ■ Q3 + IQR * 1.5, Q1 + IQR * 1.5를 이상 값의 기준으로 사용
표준 편차	■ 분산의 제곱근을 구한 값 ■ 개별 데이터와 같은 단위 사용

데이터 정규화

- 데이터를 통일된 지표로 변환하는 것
- 평균, 분산에 의존하지 않고 상대적인 위치 관계를 파악할 수 있는 지표
- 표준화
 - » (데이터 평균) / 표준편차
 - » 표준화된 데이터를 표준화 변량 또는 z-score로 표현

$$z_i = \frac{x_i - \overline{x}}{S}$$

 $z_i = 50 + 10 \times \frac{x_i - x}{S}$

- T Score
 - » 50 + 10 * (데이터 평균) / 표준편차
 - » 평균 50, 표준편차가 10이 되도록 정규화한 값
 - » z-score를 자연수와 백분위수로 표현해서 데이터의 가독성 향상

1차원 데이터 시각화

■ 도수 분포표

» 전체 데이터를 몇 개의 구간으로 나누고 각 구간에 포함되는 데이터의 개수를 정리한 표

종류	설명
계급	■ 데이터의 구간
도수	■ 구간에 포함된 데이터 개수
상대도수	■ 전체 데이터에서 해당 계급의 데이터가 차지하는 비율
누적도수/누적상대도수	■ 시작 계급부터 해당 계급까지의 도수 또는 상대도수의 합
계급폭	■ 각 구간의 크기
계급수	■ 분할된 계급의 총 개수
계급값	■ 계급을 대표하는 값으로 주로 계급의 중앙값 사용

1차원 데이터 시각화

- 히스토그램 (histogram)
 - » 도수분포표를 막대그래프로 표시
 - » 데이터의 분포 상태를 시각적으로 확인 가능
- 상자 그림 (box plot)
 - » 데이터의 산포도를 표현하는 시각화 도구
 - » 1사분위, 중앙값(2사분위), 3사분위 및 IQR 값을 사용해서 데이터의 분포와 이상값 시각화

두 데이터 사이의 관계 지표

■ 공분산

» 두 데이터의 편차를 곱한 값으로 선형 관계를 표현

$$\sigma_{xy} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x) (y_i - \mu_y)$$

 $\sigma_{xy}>0$: X와 Y가 양의 선형 관계

 σ_{xy} <0: X와 Y가 음의 선형 관계

 $\sigma_{_{\chi\gamma}}$ =0: X와 Y는 선형적 관계를 갖지 않음

■ 상관계수

- » 공분산은 데이터의 단위에 영향을 받기 때문에 서로 다른 데이터의 상관성 정도를 비교하기 어려움
- » 데이터의 단위에 영향 받지 않는 표준화된 관계 지표로 상관계수 사용
- » 공분산을 각 데이터의 표준 편차로 나누어서 도출

$$\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

두 데이터 사이의 관계 지표

- 상관계수 해석
 - » 상관관계의 정도를 파악하는 상관계수(Correlation coefficient)는 두 변수 사이의 연관 정도를 나타낼 뿐 인과관계를 설명하는 것은 아님
 - » 회귀분석을 통해 두 변수 사이에 존재하는 인과관계의 방향, 정도, 수학적 모델 확인 가능
 - » 0 < r ≤ +1 이면 양의 상관, -1 ≤ r < 0 이면 음의 상관, r = 0이면 무상관을 의미
 - » 0인 경우 상관이 없다는 것이 아니라 선형의 상관관계가 아니라는 의미

두 데이터 사이의 관계 지표

- 스피어만 상관계수
 - » 상관계수를 계산할 두 데이터의 실제 값 대신 두 값의 순위를 사용해 상관계수 비교
 - » 이산형 데이터 및 순서형 데이터 적용 가능
 - » 예)국어점수-영어점수 관계는 피어슨 / 국어석차-영어석차는 스피어만
- 켄달의 순위 상관계수
 - » (X, Y) 형태의 순서쌍 데이터에 대해 x1 < x2 에 대해 y1 < y2가 성립하면 concordant, 성립하지 않으면 discordant라고 정의
- 상관계수 검정
 - » scipy.stats 모듈의 pearsonr, spearmanr, kendalltau 함수를 사용해서 상관 계수의 유의성 판단
 - » 귀무가설은 상관계수가 0인 가설

2차원 데이터 시각화

■ 산점도 그래프와 회귀 직선

회귀 직선 → 두 데이터 사이의 선형 관계를 표현하는 시각화 도구

■ 히트맵

히스토그램의 2차원 버전으로 색을 이용해 표현하는 시각화 도구

Anscombe's quartet

- 평균, 표본분산, 선형회귀선, 결정계수 등의 기술 통계량은 동일하지만 분포나 그래프를 이용하여 시각화 하면 전혀 다른 특성이 나타나는 4개의 데이터 세트
- 시각화의 중요성을 보여주기 위한 예시

기술 통계와 통계적 추론

■ 기술 통계

- » 수집한 데이터의 정리, 요약, 해석, 표현 등을 통해 데이터의 특성을 규명하는 통계적 방법
- » 평균, 표준편차 등의 수치와 히스토그램, 박스플롯 등의 시각화 표현 활용

■ 통계적 추론

- » 모집단에 대한 어떤 미지의 양상을 알기 위해 통계학을 이용하여 추측하는 과정
- » 추정(estimation)
 - > 표본을 통해 모집단 특성을 추측하는 과정
 - > 하나의 값을 추정하는 것은 점추정, 구간으로 추정하는 것은 구간추정
 - > 예) 표본평균 계산을 통해 모집단평균을 추측
- » 가설검정(testing hypothesis)
 - 표본 데이터를 이용해서 모집단에 대한 주장(가설)이 맞는지 판정하는 과정
 - > 모집단의 통계적 성질에 대한 가설을 세우고 그 가설의 참/거짓을 통계적으로 판정

모집단과 표본

- 모집단
 - » 추측하고 싶은 관측 대상 전체
- 표본
 - » 추측에 사용하는 관측 대상의 일부분
- 표본 추출
 - » 모집단에서 표본을 골라내는 작업
- 모수
 - » 모집단의 평균, 분산, 상관계수 등의 통계량

표본

모집단

- 표본 통계량
 - » 표본을 바탕으로 계산한 평균, 분산, 상관계수 등의 통계량

표본추출 방법

- 무작위추출
 - » 모집단을 잘 반영할 수 있도록 편향되지 않은 임의의 표본 데이터 추출
- 복원추출
 - » 한 번 뽑은 데이터를 다시 추출할 대상에 복원한 후 다음 데이터를 추출하는 방법
 - » 같은 데이터를 여러 번 뽑을 수 있는 방법
- 비복원추출
 - » 한 번 뽑은 데이터를 추출할 대상에서 제거하고 다음 데이터를 추출하는 방법
 - » 같은 데이터는 한 번만 뽑는 방법

확률 모형

- 무작위추출은 실행해볼 때까지는 어떤 결과가 나올지 알 수 없으며 실행할 때마다 다른 결과가 도출되는 불확정성이 있음
- 불확정성을 수반한 현상을 해석하기 위해 확률 사용
- 확률을 사용한 무작위추출을 통계적(수학적)으로 모델링한 것 > 확률 모형

확률

■ 확률변수

- » 항상 결과를 정확하게 맞힐 수는 없지만 결과값이 나올 확률이 결정되어 있는 변수
- » 확률적인 결과에 따라 결과값이 바뀌는 변수
- » 일정한 확률에 따라 일어나는 사건에 수치가 부여된 것

■ 시행

- » 확률변수의 결과를 관측하는 것
- » 시행에 의해 관측되는 값 > 실현 값
- » 시행 결과로 나타날 수 있는 값 > 사건
- » 두 개 이상의 사건이 동시에 발생할 수 없는 경우 > 상호배반
- » 확률은 사건에 대해 정의
 - \rightarrow 주사위 눈이 1인 사건에 대한 확률 $\frac{1}{6}$, 주사위 눈이 홀수인 사건에 대한 확률 $\frac{1}{2}$

확률분포

- 정의
 - » 확률변수가 어떻게 움직이는지 나타낸 것
 - » 확률변수가 특정한 값을 가질 확률을 나타내는 함수

» 주사위 눈 사례

|--|

불공정확률

눈	1	2	3	4	5	6
확률	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

눈	1	2	3	4	5	6
확률	$\frac{1}{21}$	$\frac{2}{21}$	$\frac{3}{21}$	$\frac{4}{21}$	$\frac{5}{21}$	$\frac{6}{21}$

■ 시행 횟수가 증가하면 관찰된 값의 상대도수는 확률분포에 수렴

통계적 추론에서 확률

- 무작위추출로 얻은 표본을 모집단의 확률분포를 따르는 확률 변수로 간주
 - » 통계적 추론에서 다루는 데이터는 확률 변수의 실현 값 (관측 값)
 - » 모집단으로부터 무작위추출을 수행하면 모집단의 각 값의 확률분포에 따라 표본데이터 발생
- 표본의 크기가 커지면 (무작위추출 시행 횟수가 많아지면) 표본 데이터의 상대도수는 실제의 확률분포에 근사
- 표본 하나하나가 확률변수이므로 표본들의 평균으로 계산되는 표본평균도 확률변수
 - » 1. 무작위추출로 표본 크기가 n개인 표본을 추출하고
 - » 2. 표본평균을 계산하는 작업을 여러 번 실행해서 얻은
 - » 3. 표본평균 값들의 평균은 모평균에 근사하고
 - » 4. 표본의 크기가 충분히 크면 모평균을 중심으로 정규분포에 근사

확률분포

■ 확률변수가 어떤 종류의 값을 가지는가에 따라 이산 확률 분포와 연속 확률 분포로 구분

■ 이산 확률 분포

- » 확률 변수가 가질 수 있는 값이 셀 수 있는 제한된 개수인 경우
- » 확률 질량 함수를 통해 표현
- » 누적 분포 함수로 표현할 경우 비약적 불연속으로 증가
- » 종류 > 이산균등 분포, 푸아송 분포, 베르누이 분포, 이항 분포, 다항 분포 등

■ 연속 확률 분포

- » 확률 변수가 가질 수 있는 값이 연속형인(셀 수 없는 무제한의 개수인) 경우
- » 확률 밀도 함수를 이용해 표현
- » 종류 -> 정규 분포, 연속 균등 분포, 카이제곱 분포 등

이산형 확률 분포

- 베르누이 분포
 - » 확률변수가 취할 수 있는 값이 0과 1밖에 없는 분포

파라미터	p
취할 수 있는 값	{0, 1}
확률함수	$p^x(1-p)^{(1-x)}$
기댓값	p
분산	p(1 - p)
scipy.stats	bernoulli(p)

이산형 확률 분포

■ 이항분포

» 성공 확률이 p인 베르누이 시행을 n번 했을 때 성공 횟수가 따르는 분포

파라미터	n,p
취할 수 있는 값	$\{0, 1, \cdots, n\}$
확률함수	$_{n}C_{x}p^{x}(1-p)^{(1-x)}$
기댓값	np
분산	np(1-p)
scipy.stats	binom(n,p)

이산형 확률분포

- 기하분포
 - » 베르누이 시행에서 처음 성공할 때까지 반복한 시행 횟수가 따르는 분포

파라미터	p
취할 수 있는 값	$\{1, 2, 3, \cdots\}$
확률함수	$(1-p)^{(x-1)}p$
기댓값	$\frac{1}{p}$
분산	$\frac{(1-p)}{p^2}$
scipy.stats	geom(p)

이산형 확률분포

- 포아송분포
 - » 임의의 사건이 단위 시간당 발생하는 건수가 따르는 확률분포

파라미터	p
취할 수 있는 값	$\{0,1,2,\cdots\}$
확률함수	$\frac{\lambda^x}{x!} \cdot e^{-\lambda}$
기댓값	λ
분산	λ
scipy.stats	$poisson(\lambda)$

- 정규분포 (가우스분포)
 - » 자연 현상에서 나타나는 숫자를 확률 모형으로 설명할 때 많이 사용
 - » 평균과 표준편차 2개의 매개변수에 의해 모양 결정

파라미터	μ,σ	
취할 수 있는 값	실수 전체	
밀도함수	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	
기댓값	μ	
분산	σ^2	
scipy.stats	$norm(\mu,\sigma)$	

■ 표준정규분포

- » -(무한대) ~ +(무한대)의 모든 수치 데이터로 구성
- » 데이터의 평균 값을 기준으로 좌.우 대칭형 분포
- » 평균은 0, 표준편차는 1
- » 표준편차의 1배 범위의 상대도수는 0.6826, 2배 범위의 상대도수는 0.9545
- » 일반적으로 1.96배 사용 → 상대도수 0.95

■ 일반정규분포

- » 표준정규분포의 데이터에 표준편차를 곱한 후 평균을 더한 데이터 분포
 - \rightarrow X = Z σ + μ
- » 일반정규분포 데이터를 표준정규분포 데이터로 변환

$$Z = \frac{X - \mu}{\sigma}$$

- 지수분포
 - » 어떤 사건이 발생하는 간격이 따르는 분포
 - » 간격이라는 시간이 따르는 분포이므로 확률변수가 취할 수 있는 값은 0 이상의 실수

파라미터	λ	
취할 수 있는 값	양의 실수	
밀도함수	$\lambda e^{-\lambda x}$	
기댓값	$\frac{1}{\lambda}$	
분산	$rac{1}{\lambda^2}$	
scipy.stats	$\exp(\operatorname{scale} = \frac{1}{\lambda})$	

■ 카이제곱분포

- » 분산의 구간추정 또는 독립성 검정에 사용되는 확률분포
- » K개의 서로 독립적인 표준정규 확률변수를 각각 제곱한 다음 합해서 얻어지는 분포
- » 좌우비대칭으로 왼쪽으로 치우치고 오른쪽으로 넓어짐
- » 자유도가 커지면 좌우대칭에 가까워짐
- » 자유도의 값 가까이에 분포의 정점 위치

파라미터	n
취할 수 있는 값	음수가 아닌 실수
scipy.stats	chi2(n)

$$Q = \sum_{i=1}^k X_i^2$$

■ t분포

- » 정규분포에서 모평균의 구간추정 등에 사용하는 확률분포
- » 좌우대칭인 분포
- » 표준정규분포보다 양쪽 끝이 두꺼움
- » 도가 커지면 표준정규분포에 가까워짐

파라미터	n
취할 수 있는 값	실수전체
scipy.stats	t(n)

■ f분포

- » F-검정, 분산분석 등에서 사용되는 확률분포
- » 좌우비대칭으로 왼쪽으로 치우치고 오른쪽으로 넓은 분포
- » 분포의 정점은 0에 가까움

파라미터	n_1, n_2
취할 수 있는 값	음수가 아닌 실수
scipy.stats	$f(n_1, n_2)$

독립성

- 확률변수의 독립성이란 2개 이상의 확률변수가 서로 영향을 끼치지 않으며 관계가 없음을 의미
- 2차원 확률변수 X, Y에 대해 다음과 같은 관계가 성립할 때 X와 Y는 서로 독립 $f(x,y) = f_X(x) f_Y(y)$ 확률변수가 독립일 때 결합확률분포는 주변확률분포의 곱과 동일
- N차원 확률변수 X1, X2, ..., Xn에 대해 다음을 만족할 때 X1, X2, ..., Xn은 서로 독립

$$f_{X_1,X_2,...,X_n}(x_1,x_2,\ldots,x_n)=f_{X_1}(x_1)f_{X_2}(x_2)\ldots f_{X_n}(x_n)$$

함수 f가 이산형이면 확률함수, 연속형이면 밀도함수 의미

- 독립성과 무상관성
 - » 두 확률변수가 서로 관계 없음을 의미
 - » 공분산이나 상관계수가 0인 경우 무상관이라 하고 이는 두 확률변수 사이의 선형 관계가 없다는 의미
 - » 독립인 경우 무상관이 되지만 무상관인 경우 항상 독립이 되지는 않음

표본평균의 분포

- 확률변수 X_1, X_2, \cdots, X_n 의 표본평균 $\overline{X} = \frac{X_1 + X_2 + \cdots + X_n}{n}$ 이 따르는 확률분포
- 모평균의 구간추정 또는 모평균의 검정 등에서 사용하는 분포
- 중심극한정리, 대수의 법칙 등 통계적 추론에서 중요한 성질 포함
- 표본평균의 기댓값과 분산
 - » 확률변수 X_1, X_2, \cdots, X_n 이 서로 독립이고 기댓값이 μ , 분산이 σ^2 인 확률분포를 따를 때

$$E(\overline{X}) = E\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right)$$

$$= \frac{E(X_1) + E(X_2) + \dots + E(X_n)}{n}$$

$$= \frac{n\mu}{n}$$

$$= \mu$$

$$V(\overline{X}) = V\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right)$$

$$= \frac{V(X_1) + V(X_2) + \dots + V(X_n)}{n^2}$$

$$= \frac{n\sigma^2}{n^2}$$

$$= \frac{n\sigma^2}{n^2}$$

$$E(\overline{X}) = E\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right)$$

$$= \frac{E(X_1) + E(X_2) + \dots + E(X_n)}{n}$$

$$= \frac{n\mu}{n}$$

$$= \mu$$

$$= \frac{n}{n}$$

$$= \frac{n\sigma^2}{n^2}$$

$$= \frac{\sigma^2}{n}$$

$$E(\overline{X}) = \mu$$

$$V(\overline{X}) = \frac{\sigma^2}{n}$$

표본평균의 분포

■ 정규분포의 표본평균 분포도 정규분포

» 평균 μ , 분산 σ^2 인 정규분포의 표본평균의 분포는 다음과 같음

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

표본평균의 분포

■ 포아송 분포의 표본평균의 분포는 정규분포에 근사

중심극한정리

• 확률 변수 X1, X2, ..., Xn이 서로 독립이고 기댓값이 μ , 분산이 σ^2 인 확률분포를 따를 때 n이 커짐에 따라 표본평균의 분포는 다음의 정규분포에 가까워짐

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

- 동일한 확률분포를 가진 독립 확률 변수 n개의 평균의 분포는 n이 충분히 크다면 정규분포에 가까워진다는 정리
- 원래 분포와 상관 없이 표본평균의 분포는 정규분포에 가까워진다는 것

대수의 법칙

- 큰 수의 법칙
- 표본의 크기가 커지면 표본평균은 모평균에 수렴하는 원리

통계적 가설검정

■ 모집단의 모수에 관하여 두 가지 가설을 세우고 표본으로부터 계산되는 통계량을 이용하여 어느 가설이 옳은지 판단하는 통계적 기법

■ 용어

종류	설명	종류	설명
검정 통계량	■ 검정에 사용되는 통계량	기각역 • 귀무가설이 기각되는 구간	
귀무가설 (H₀)	■ 주장하는 가설의 반대 가설 ■ 예) 차이가 없다, 효과가 없다 등	채택역	■ 귀무가설이 채택되는 구간
대립가설 (H ₁)	■ 주장하는 가설 ■ 예) 차이가 있다, 효과가 있다 등	유의수준	■ 기각역의 면적 (확률)
귀무가설 기각	■ 귀무가설이 옳지 않음	p-value	■ 검정통계량의 면적 (확률)
귀무가설 채택	■ 귀무가설이 옳지 않다고 판단할 수 없음	제1종 오류	■ 귀무가설이 옳을 때 귀무가설을 기각 하는 오류
기각역	■ 귀무가설이 기각되는 구간	제2종 오류 『 대립가설이 옳을 때 대립가설을 하는 오류	
채택역	■ 귀무가설이 채택되는 구간		

통계적 가설검정

■ 표본으로부터 통계량을 계산하여 귀무가설과 대립가설의 검정 수행
» 검정 통계량의 발생 확률(p-value)이 유의수준보다 낮은 경우 귀무가설 기각

유의수준 5%

검정통계량: 표본평균

통계적 가설 검정

■ 단측 검정과 양측 검정

1표본 t검정

■ 모분산을 알지 못하는 상황에서 정규분포의 모평균에 대한 검정

- 검정통계량
 - » 자유도가 n-1인 t분포를 따르는 통계량

$$t = (\overline{X} - \mu_0) / \sqrt{\frac{s^2}{n}}$$

- 가설검정
 - » 귀무가설 기각 \rightarrow $t < t_{1-\alpha/2}(n-1)$ 또는 $t_{\alpha/2} < t$
 - » 귀무가설 채택 \rightarrow $t_{1-\alpha/2}(n-1) \leq t \leq t_{\alpha/2}(n-1)$

2표본 문제에 관한 가설검정

■ 2 모집단에 관한 다양한 관계성 검정

■ 종류

	정규분포를 가정할 수 있음	정 규분 포를 가정할 수 없음	
대응표본	대응표본 대응비교 t 검정 윌콕슨의 부호순위검정		
독립표본	독립비교 t 검정	만 · 위트니의 U 검정	

» 대응표본

- > 두 데이터에서 서로 대응하는 동일한 개체에 대해 각각 다른 조건으로 측정한 표본
- > 예) 피검자에게 약을 투여하기 전후에 측정한 두 데이터
- » 독립표본
 - > 두 데이터에 서로 대응이 없는 표본
 - > 예) 두 고등학교의 수학 시험 성적

2표본 문제에 관한 가설검정

- 대응비교 t 검정
 - » 대응하는 데이터가 있고 데이터 차이에 정규분포를 가정할 수 있는 경우의 평균값 차이에 대한 검정
- 독립비교 t 검정
 - » 대응하는 데이터가 없고 독립된 2표본 모집단에 정규분포를 가정할 수 있는 경우 평균값의 차이에 대한 검정
- 윌콕슨의 부호순위검정
 - » 대응표본에서 차이에 정규분포를 가정할 수 없는 경우 중앙값의 차이에 대한 검정
 - » 절댓값이 작은 것부터 순서대로 부여된 순위에 의해 검정 수행
- 만.위트니의 U 검정
 - » 대응되는 데이터가 없는 2표본 모집단에 정규분포를 가정할 수 없는 경우 중앙값의 차이에 대한 검정
 - » 윌콕슨의 순위합검정

독립성 검정

- 범주형 두 변수 X와 Y에 관해서 "X와 Y가 독립이다" 라는 귀무가설과 "X와 Y가 독립이 아니다" 라는 대립가설을 기반으로 수행하는 검정
- 카이제곱분포 사용 → 카이제곱검정
- 교차표 작성

광고	구입	하지 않았다	했다
A		351	49
B		549	51

■ 검정통계량

$$Y=\sum_{i}\sum_{j}rac{(O_{ij}-E_{ij})^{2}}{E_{ij}}$$
 Y는 카이제곱분포를 근사적으로 따름