Math 200A Homework Question Compendium

D. Zack Garza

August 17, 2019

Contents

1 One 1 2 Two 3 6 3 Three 4 Four **10** 5 Five 12 6 Six 14 7 Seven 18 8 Eight 18

1 One

1. Given:

$$\forall x \in G, x^2 = e$$

Show:

$$G \in \mathbf{Ab}$$

 $2. \; Given:$

$$|G|<\infty, |G|=0 \mod 2$$

Show:

$$\exists g \in G \ni o(g) = 2$$

3.	Given:
	$G \in \mathbf{Ab}$
	Show:
	$T(G) \le G$
	(where
	$T(G) = \{g \in G : g < \infty\}$
4.	Show: Every finite group is finitely generated.
	• Show:
	$\mathbb Z$
	is finitely generated • Show:
	$H \leq (\mathbb{Q}, +) \implies$
	H
	is cyclic • Show:
	$\mathbb Q$
	is not finitely generated
5.	Show:
	\mathbb{Q}/\mathbb{Z}
	has, for each coset, exactly one representative in
	$[0,1)\cap \mathbb{Q}$
	• Show: Every element of
	\mathbb{Q}/\mathbb{Z}
	has finite order. • Show: There are elements in
	\mathbb{Q}/\mathbb{Z}
	of arbitrarily large order. • Show:

 $\mathbb{Q}/\mathbb{Z} = T(\mathbb{R}/\mathbb{Z})$

	• <i>Show</i> :	
		$\mathbb{Q}/\mathbb{Z}\cong\mathbb{C}^x$
6	. Given:	<u> </u>
Ü	. Gwen.	
		G/Z(G)
	is cyclic <i>Show</i> :	
		G
	is abelian	
7	. Given:	
		$H \trianglelefteq G, K \trianglelefteq G, H \cap K = e$
	CL	
	Show:	
		$\forall h \in H, \forall k \in K, hk = kh$
8	. Given:	
	$ G < \infty$.	$H \le G, N \le G, (H , [G:N]) = 1$
	Show:	
	Show.	**
		$H \leq N$
9	. Given:	
	G	$<\infty, N \le G, (N , [G:N]) = 1$
	Show:	, _ , (1), [],
	Show.	N.
		N
	is the unique subgroup of order	
		N
2	Two	
1	. Given: For every triplet in	
		G
	, two elements commute <i>Show</i> :	
	, two elements commute billow.	
		G

is abelian

0	α .
٠,	Given:
∠.	Gibber.

$$H_1, H_2, H_3 \le G, G = H_1 \cup H_2$$

Show:

$$G = H_1 \vee G = H_2$$

3. Given:

$$G = H_1 \cup H_2 \cup H_3, G$$

finite Show:

$$G = H_i \vee \forall i, [G:H_i] = 2$$

4. Show: TFAE;

clos(H)

is:

 $\bullet\,$ The smallest normal subgroup of

G

containing

H

• The subgroup generated by all conjugates of

H

•

 $\bigcap_{H < N < |G|} N$

•

 $\phi: G \to -$

,

$$\phi(H) = e$$

, then

 ϕ

factors through

 $G/\operatorname{clos}(H)$

5. Given:

$$H, K \leq HK \leq G$$

Show:

$$\frac{HK}{H\cap K}\cong \frac{HK}{H}\times \frac{HK}{K}$$

6. Given:

$$H \leq G, N \leq G, H \in \operatorname{Hall}(G)$$

Show:

$$H\cap N\in \operatorname{Hall}(N)\wedge \frac{HN}{N}\in \operatorname{Hall}(\frac{G}{N})$$

 $7. \; Given:$

$$|G| = n, G$$

cyclic,

$$\sigma_i:G\to G\ni x\mapsto x^i$$

• Show

$$\sigma_i \in End(G)$$

 \bullet Show

$$\sigma_i \in Aut(G)$$

iff

$$(i,n)=1$$

•

$$\sigma_i = \sigma_j$$

iff

$$i=j \mod n$$

•

$$\tau \in Aut(G) \implies \exists i \ni \tau = \sigma_i$$

•

$$\sigma_i \circ \sigma_j = \sigma_{ij}$$

6. The map

$$\psi: Z_n^{\times} \to Aut(G)$$
$$i \mapsto \sigma_i$$

is an isomorphism.

8. Given:

G

is cyclic Show:

is abelian of order

$$\phi(n)$$

9. *Show*:

$$D_{\infty} \cong \langle a, b \mid b^2 = e, ba = a^{-1}b \rangle$$

10. Show:

$$Q_8 \cong \langle a, b \mid a^2 = b^2, a^{-1}ba = b^{-1} \rangle$$

11. Show:

$$\langle x, y \mid xy^2 = y^3, yx^2 = x^3y \rangle = \langle e \rangle$$

3 Three

1. Given:

$$G \sim X$$

transitively,

$$H \leq G$$

 \bullet Show:

$$H \sim X$$

, but possibly not transitively

• *Show*:

G

acts transitively on

$$\left\{ \mathcal{O}_{\langle}:h\ \in H\right\}$$

• Show:	
	$\forall i, j, \mathcal{O}_{h_i} = \mathcal{O}_{h_j} $
• Given:	
	$x \in \mathcal{O}_h$
Show:	
• <i>Show</i> :	$ \mathcal{O}_h = H: H \cap G_x $
• Show.	$ \{\mathcal{O}_h\}_{h\in H} = [G:HG_x]$
Given:	
	\mathcal{K}
a conjugacy class in	
	S_n
,	(2)
	$\{\mathcal{O}_s:s\in S_n\}$

 $\{\mathcal{O}_s: s \in S_r \label{eq:constraints}$ orbits of an

 A_n

-action on

 S_n

Show:

2.

$$\mathcal{K} = \mathcal{O}_s \vee \mathcal{K} = \mathcal{O}_{s_i} \cup \mathcal{O}_{s_j}$$

Show: Case 2 occurs iff

 $\{k_i\}$

, the cycle lengths in disjoint cycle form, are odd and distinct $\,$

3. i:

$$|G| < \infty, H < G$$

 \bullet Show:

$$\{gHg^{-1}: g \in G\} = [G:N_G(H)]$$

 \bullet Show:

$$G \neq \bigcup_{g \in G} gHg^{-1}$$

4. Prove Cauchy's Theorem. Given

$$p \mid o(G) < \infty$$

$$X = \left\{ (a_i)_{i=1}^p \in G^p \ni \prod_{i=1}^p a_i = e \right\}$$

$$asdsadas$$

• *Show*:

$$(a_1 a_2 \cdots a_p) = e \implies (a_2 a_3 \cdots a_p a_1) = e$$

• Show:

$$(Z_p,+) \sim X$$

and

$$\bar{1} \sim (a_1 a_2 \cdots a_p) = (a_2 a_3 \cdots a_p a_1)$$

 \bullet Show:

$$|X| = |G|^{p-1}$$

 \bullet Show:

$$\{\mathcal{O}_x : |\mathcal{O}_x| = 1\} > 1$$

and

$$\exists a \in G \ni a^p = e$$

5. Given:

$$G \sim X$$
, $|G| < \infty$, $1 < |X| < \infty$

• Show:

$$\exists g \ inG \ni \forall x \in X, g \sim x \neq x$$

• Show: This holds if

$$|G| = \infty$$

, but not if

$$|X| = \infty$$

as well.

c	Given:
υ.	
	$H \leq G$
	. Show:
	$\operatorname{core}(H)$
	is
	• The largest
	$N \leq G, N \subseteq H$
	• Generated by all normal subgroups contained in
	H
	• Given by
	$\bigcap gHg^{-1}$
	$g{\in}G$
	• The kernel of
	$G \sim \frac{G}{H} \ni x \sim gH = (xg)H$
7.	Given:
	$[H:G]=n<\infty$
	• Show:
	$[\mathrm{core}(H):G]$
	divides
	n!
	• Show:
	G
	simple
	$\implies o(G) \mid n! \land G < \infty$
0	
8.	Given:
	A_n
	is simple for
	$n \ge 5$

Show:

Show:

 $\not\exists H \in A_n \ni [H:A_n] < n$

9.	Given:	
	r	
	beads of	
	n	
	l	
	colors <i>Show</i> : How many distinct circular bracelets can be made.	
F	our	
1	Given:	
1.		
	H char G	
	Show:	
	H ightarrow C	
	H riangleleft G	
2	Given:	
	$H \operatorname{char} K \leq G$	
	Show:	
	$H \land C$	
	H riangleleft G	
3.	Given:	
	$K = \langle k \rangle \leq G$	
	Show:	
	$H \leq K \implies H \trianglelefteq G$	
	11 <u>2</u> 11 / 11 <u>2</u> 5	
4.	Show	
	$H \land K \land C \hookrightarrow H \land C$	
	$H \trianglelefteq K \trianglelefteq G \not \Longrightarrow H \trianglelefteq G$	
5.	Given:	
	$P \leq H \leq K \leq G < \infty, P \in \mathrm{Syl}_p(G)$	
	Show:	
	$P, H \leq K \implies P \leq K$	
	$I, II \geq IX \longrightarrow I \geq IX$	

4

 $N_G(N_G(P)) = N_G(P)$

6. Show:

10. 000010.

$$|G| = pqr, p < q < r$$

Show:

$$\exists P_i \in \mathrm{Syl}_i(G) \leq G$$

11. Given:

$$|G| = 595$$

Show: All sylow subgroups are normal

$12. \; Given:$

$$|G| = p(p+1)$$

Show:

$$\exists N \trianglelefteq G$$

where

$$|N| = p$$

or

$$p+1$$

5 Five

1. Given:

$$G = H \rtimes_{\psi} K$$

$$\psi: K \to Aut(H)$$

$$k \mapsto \psi(k)$$

$$\rho: K \to K$$

 $\theta \in Aut(H)$

$$\phi_{\theta}: Aut(H) \to Aut(H)$$

$$\rho \mapsto \theta \circ \rho \circ \theta^{-1}$$

$$\psi_2: K \to Aut(H)$$

$$k \mapsto (\phi_{\theta} \circ \psi)(k)$$

$$\psi_3: K \to Aut(H)$$

$$k \mapsto (\psi \circ \rho)(k)$$

Show:

$$H \rtimes_{\psi} K \cong H \rtimes_{\psi_2} K \cong H \rtimes_{\psi_3} K$$

2.	Classify	groups	of	order
	0100011,	0-040	-	0101

$$pq, p < q, p \mid q - 1$$

- 3. Classify groups of order 20.
- 4. Classify groups of order 75.
- 5. Show:

$$|G| < 60 \implies G$$

is not simple.

6. Show:

$$|G| < 60 \implies G$$

is solvable

7. Given:

$$|G| < \infty$$

,

$$H \leq G$$

maximal

$$\implies [G:H] = p$$

, a prime. Show:

|G|

is solvable

• Given:

$$P \in Syl_p(G) \land \exists H \ni N_G(P) \le H \le G$$

Show:

$$[G:H] = 1 \mod p$$

• Given:

$$p \mid o(G)$$

, the largest such prime Show:

$$\exists P \leq G \in Syl_p(G),$$

• Given:

G

is characteristically simple Show:

$$\exists H \text{ (simple)} \ni G \cong H^n$$

. Show: Whether or not the converse holds

• Given:

$$N \leq G$$

minimal Show:

N

is characteristically simple,

$$N \cong H^n$$

6 Six

1. Given:

G

is nilpotent Show:

$$H \leq G \implies H, G/H$$

are nilpotent

2. Show:

is nilpotent

$$\implies G$$

is nilpotent

3. Given:

$$|G| < \infty$$

Show:

|G|

is nilpotent iff

$$a, b \in G, (a, b) = 1 \implies ab = ba$$

• Show:

x + y

is nilpotent Show:

 $\{x \in R : x \text{ is nilpotent}\} \mathrel{\unlhd} R$

	• Given:	
	u	$x \in R^{\times}, x \in R$
	nilpotent Show:	
		$u + x \in R^{\times}$
	• Show: An counterexample to 1 when	
		R
	is noncommutative.	
7.	Given:	
		R
	a commutative ring,	

its formal power series

• Show:

$$\sum_{i=0}^{\infty} a_i x^i \in R[[x]]^{\times} \iff a_0 \in R^{\times}$$

R[[x]]

 $\in R$

• Show:

R

a domain

$$\implies R[[x]]$$

a domain

• Given:

R

a field Show:

$$I = \{r \in R[[x]] : r_0 = 0\}$$

is a maximal ideal of

R[[x]]

Show:

Ι

is the unique maximal ideal

8. Given: Ra commutative ring, ${\cal G}$ a finite group, RGa group ring. • Given: $\mathcal{K} = \{k_1, k_2, \cdots k_m\}$ a conjugacy class in GShow: $K = \sum_{i=1}^{m} k_i \in RG \implies K \in Z(RG)$ • Given: $\mathcal{K}_1 \cdots \mathcal{K}_r$ distinct conjugacy classes in G $K_i = \sum_j k_j \ni k_j \in \mathcal{K}_i$ Show: $Z(RG) = \{ \sum a_l K_l : \forall 1 \le l \le r, a_l \in R \}$ (All R

 \mathcal{K}_i

-linear combinations of the

)

$^{\circ}$	α .
u	Given
	CIIVCII

R

a ring,

 $M_n(R)$

its matrix ring

• Given:

 $I \trianglelefteq R$

(two-sided) Show:

 $M_n(I) \leq M_n(R)$

Show:

 $\frac{M_n(R)}{M_n(I)} \cong M_n(\frac{R}{I})$

• Show:

 $\forall I_M \leq M_n(R), I$

is of the form

 $M_n(I)$

for some

 $I \trianglelefteq R$

Show:

R

a division ring

 $\implies M_n(R)$

is a simple ring.

7 Seven

8 Eight