340CT Software Quality and **Process Management**

Dr. Yih-Ling Hedley Email: aa0817@coventry.ac.uk

Seven Core Metrics (Recap)

- · Quality Indicators
 - Change traffic and stability (change traffic over time)
 - Breakage and modularity (average breakage per change over time) (note: breakage defined as the average extent of change)
 - Rework and adaptability (average rework per change over time)
 - Mean time between failure (MTBF) and maturity (defect rate over time)

Quality Indicators 1

- · Change traffic and stability
 - Change traffic is the **number of software change** orders opened and closed over the life cycle.
 - with the work and progress metrics, it provides insight into the stability of the software and is convergence toward stability.
 - The change traffic relative to the release schedule provides insight into schedule predictability.

X Fei & YL Hedley

Activity

Q: What is the state of the following project (showing the software change order opened and closed) in terms of change traffic and stability?

A: The change order (opened and closed) is converged towards the end, which demonstrates a healthy project with stability (the opposite is divergence indicating instability).

Quality Indicators 2

- · Breakage and modularity
 - Breakage defined as the average extent of change, which is the amount of software baseline that needs rework.
 - Modularity as the average breakage trend over time. Modularity is a measure of breakage localisation, with a lower value being better.

Activity

Q: What is the state of the following project in terms of breakage and modularity?

A: The average of breakage (the amount of software baseline that needs rework) trend over time is decreasing and stable, which demonstrates a healthy project with low modularity towards the end.

X Fei & YL Hedley

Quality Indicators 3

- · Rework and adaptability
 - Rework as the average cost of change, which is the effort to analyse, resolve, and retest all changes to software baselines.
 - Adaptability as the rework trend over time.
 Adaptability quantifies the ease of change, with a lower value being better.

X Fei & YL Hedle

Activity

Q: What is the state of the following project in terms of rework and adaptability?

A: The rework (average cost of change) trend over time is decreasing or stable, which demonstrates a healthy project with low adaptability (the ease of change trend over time) towards the end.

8

YL Hedle

Quality Indicators 4

- · Mean time between failure (MTBF) and maturity
 - MTBF is the average usage time between software faults. In rough terms, MTBF is computed by dividing the test hours by the number of type 0 and type 1 SCOs (Software Change Orders).
 - Maturity is defined as the MTBF trend over time.

X Fei & YL Hedler

Activity

Q: What is the state of the following project in terms of mean time between failure (MTBF) and maturity?

A: As longer time (i.e. MTBF, average usage time between software faults) is needed to detect next faults towards the end of the project, it demonstrates a healthy project with maturity towards the end.

YL Hedle

Quality Indicators: Metrics 1

- Metrics
 - Modularity: a measure of breakage localisation
 - Adaptability: a measure of the ease of change.
 - Maturity: a measure of the trustworthiness of the software, with trust increasing through extended usage.
 - Maintainability: a measure of the required productivity needed for maintenance.

Software Change Orders

- Software Change Orders (SCOs)
 - SCO types:
 - type 0 for critical defects: reworks due to errors
 - type 1 for normal defects: reworks due to low quality
 - work
 - type 2 for improvements: reworks due to going for better quality
 - type 3 for new features: customer change requests

VI Hadle

YL Hedi

Quality Indicators: Metrics 1.1

- Modularity = B/N, average breakage due to N (number of rework), reflects the inherent ability of the integrated components to localize breakage. (lower value is better)
 - Breakage (B) for Open Rework: cumulative SLOC to rework
- Adaptability = E/N, average effort per N, how "easy" was it to change N things. (lower value is better)
 - Rework Effort (E): cumulative effort spent fixing.
- Maturity = UT/(SCO0+SCO1), mean time between failures or defects (MTBF). (larger value is better)
 - Usage Time (UT): hours of operation under realistic usage scenarios.

YL Hedley

Quality Indicators: Metrics 1.2

- Maintainability = (scrap ratio)/(rework ratio), maintenance productivity, ratio of productivity of maintenance to productivity of development. The smaller the better.
 - Scrap Ratio = B/SLOC_T, percentage of product scrapped (or reworked).
 - Rework Ratio = E/Development_Effort, percentage of effort spent in rework.

Note:

- SLOC_x Total SLOC: estimated total size of the software under development.
- 2. Rework Effort (E): cumulative effort spent fixing.

YL Hedley

Quality Indicators: Example 1

 The below shows the data recorded during a software development project. The software was finished with 10,000 SLOC and required an effort of 250 person-days to develop. Determine the Modularity, Adaptability, and Maturity of the software.

Type	value	Broken SLOC	Effort to Fix
0	20 defects	500	5 person-days
1	100 defects	5000	30 person-days
2	20 defects	300	15 person-days
3	10 features	500	20 person-days
Usage Time (UT)	720 hours	N/A	N/A

YL Hedlev

Quality Indicators: Example 1.1

- Modularity = B/N = 5800/140 = 41.4 SLOC/defect
 - -B = cumulative broken SLOC due to N (number of rework) = 500 + 5000 + 300 = 5800 SLOC
 - -N = C0+C1+C2 = 20 + 100 + 20 = 140 defects

YL Hedley

Quality Indicators: Example 1.2

- Adaptability = E/N = 50/140 = 0.36 person-days/defect
 - E = cumulative effort spent fixing N = 5+30+15=50 man-days
 - -N = 20 + 100 + 20 = 140 defects
- Maturity = UT/(C0+C1) = 720/(20+100) = 6 hours/defect

YL Hedley

Quality Indicators: Example 1.3

- Maintainability = (scrap ratio)/(rework ratio) = = 0.58 / 0.2 = 2.9
 - Scrap Ratio = B/SLOC_T = (500 + 5000 + 300) / 10.000 = 5800/10.000 = 0.58
 - Rework Ratio = E/Development_Effort = (5+30+15) / 250 = 50 / 250 = 0.2

YL Hedley

Quality Indicators: Case Study

- CertWare workbench: part of a project by NASA (National Aeronautics and Space Administration)
 Langley Research Center and Kestrel Technology LLC (2011-2012) http://nasa.github.io/CertWare/collateral/SafetyCaseMetrics.pdf
 - CertWare provides supporting models for a prototype extensible workbench for safety cases, with a service-based APIs.
 - CertWare workbench metrics, used to collect management and quality indicators, are based on those proposed by Walker Royce

Case Study: CertWare

YL Hedler