

微控制器上的关键词检测技术

水木八刀 信号处理,语音识别

15 人赞同了该文章

Hello Edge: Keyword Spotting on Microcontrollers

简要介绍

本文是ARM和Stanford合作的论文,在Google speech commands dataset上针对不同大小的资源限制进行了一系列实验,结论是depthwise separable convolutional neural network (DS-CNN) 性能最好,相比同等参数量的DNN结构有约10%的准确度提升。

本文也在同样数据集上正面比较了近几年small footprint KWS领域比较重要的几篇文章中的结构和性能(包括准确率,存储需求,计算量) , 这几篇文章分别来自Google, Baidu, 和Amazon,各自文章中的结果都基于私有数据。

- [5] Guoguo Chen, Carolina Parada, and Georg Heigold. Small-footprint keyword spotting using deep neural networks. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pages 4087–4091. IEEE, 2014.
- [6] Tara N Sainath and Carolina Parada. Convolutional neural networks for small-footprint key- word spotting. In Sixteenth Annual Conference of the International Speech Communication Association, 2015.
- [7] Sercan O Arik, Markus Kliegl, Rewon Child, Joel Hestness, Andrew Gibiansky, Chris Fougner, Ryan Prenger, and Adam Coates.
- Convolutional recurrent neural networks for small-footprint keyword spotting. arXiv preprint arXiv:1703.05390, 2017.
- [8] Ming Sun, Anirudh Raju, George Tucker, Sankaran Panchapagesan, Gengshen Fu, Arindam Mandal, Spyros Matsoukas, Nikko Strom, and Shiv Vitaladevuni. Max-pooling loss training of long short-term memory networks for small-footprint keyword spotting. In Spoken Language Technology Workshop (SLT), 2016 IEEE, pages 474—480. IEEE, 2016.

数据集介绍

Google speech commands dataset 包含6.5w 1s长度的音频,共有30个关键词,每个音频对应一个关键词的语音,有数千人录制。

检测任务为给定一段音频,将其正确分类为如下12类中的一种:

Yes", "No", "Up", "Down", "Left", "Right", "On", "Off", "Stop", "Go", "silence", "unknown"

data augmentation:

加背景噪声 100ms以内随机时移

典型KWS系统流程

典型KWS系统如figure1所示,由于测试时输入是连续语音流,因此通常还需要一个后处理过程。后处理过程通常采用简单的平滑策略,神经网络的结构对于最终性能起决定作用。

Figure 1: Keyword spotting pipeline.

KWS中的神经网络结构

DNN

CNN

t-f语谱图作为输入,通常为灰度图(通道为1),也有文章同时提取多种特征 拼成彩色图

RNN

Figure 2: Model architecture of RNN.

CRNN

CNN for local temporal/spatial correlation

RNN for global temporal dependencies

GRU as base cell, less parameters and better convergence than 1stm

Figure 3: Model Architecture of CRNN.

Depthwise Separable Convolutional Neural Network (DS-CNN)

Figure 4: Depthwise separable CNN architecture.

DS-CNN details

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

[10] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

基本参数配置

参数	配置
loss	CE
optimizer	Adam
batch size	100
learning rate	[5e-4, 1e-4]
iter	[20K, 10K]

train: valid: test = 80:10:10, 最终性能由test确定

实验结果

典型结构性能对比

采用40维MFCC, 40ms帧长, 20ms帧移, 1s音频共有1960(49x40)个特征, 评估存储时, 假定采用8-bit 权重和激活值

NN Architecture	Accuracy	Memory	Operations
DNN [5]	84.3%	288 KB	0.57 MOps
CNN-1 [6]	90.7%	556 KB	76.02 MOps
CNN-2 [6]	84.6%	149 KB	1.46 MOps
LSTM [8]	88.8%	26 KB	2.06 MOps
CRNN [7]	87.8%	298 KB	5.85 MOps

当然,由于各自文章的结果都是在不同的数据集和资源限制下优化的,直接在 google commands dataset上也不是很公平,但是还是能发现一些**insight**:

DNN准确率不高,但是计算量最小,适合算力受限的场景 CNN相比DNN准确率更高,但是也需要消耗更多的算力或存储 LSTM和CRNN则保证较高准确率的同时在存储和算力之间取得很好的平衡

CNN-1 and CNN-2 details

type	m	r	n	p	q	Par.	Mul.
conv	20	8	64	1	3	10.2K	4.4M
conv	10	4	64	1	1	164.8K	5.2M
lin	-	-	32	-	-	65.5K	65.5K
dnn	-	-	128	-	1-	4.1K	4.1K
softmax	-	-	4	-	1-1	0.5K	0.5K
Total	-	-	-	-	-	244.2K	9.7M

Table 1: CNN Architecture for cnn-trad-fpool3

model	m	r	n	S	v	Params	Mult
(a)	32	8	186	1	4	47.6K	428.5K
(b)	32	8	336	1	8	86.6K	430.1K

Table 3: CNN for (a) cnn-one-fstride4 and (b) cnn-one-fstride8

[6] Tara N Sainath and Carolina Parada. Convolutional neural networks for small-footprint key- word spotting. In Sixteenth Annual Conference of the International Speech Communication Association, 2015.

按资源需求对神经网络分类

NN size	NN memory limit	Ops/inference limit
Small (S)	80 KB	6 MOps
Medium (M)	200 KB	20 MOps
Large (L)	500 KB	80 MOps

ops/inference limit 假定1s infer 10次。这里并不是基于流式音频处理,而是每隔 100ms 直接 infer 1s 数据给出检测结果,相邻的1s数据窗有90%的重叠。 由于数据增强时给训练样本做了100ms以内随机时移,因此每隔100ms做infer是合理的。 对一张1s的图直接infer出一个softmax结果,现场使用时,比如1s数据则infer 了10次,平滑可以在这10个结果中做。这样做比流式效率更高,因为1s仅infer 10次,而不是每帧都infer。本文对应的代码里并没有给出具体的平滑策略,而只是把每次infer的值打印出来。

寻找最优网络结构

特征提取的超参数

MFCC维数 F 和 帧移 S

最优结果对应的 F=10, S=20 ms

模型超参数

默认采用ReLU激活函数,卷积层和全连接层后均接Batch-Norm, 循环层后均接Layer-Norm

NN model	Model hyperparameters
DNN	Number of fully-connected (FC) layers and size of each FC layer
CNN	Number of Conv layers: features/kernel size/stride, linear layer dim., FC layer size
Basic LSTM	Number of memory cells
LSTM	Number of memory cells, projection layer size
GRU	Number of memory cells
CRNN	Conv features/kernel size/stride, Number of GRU and memory cells, FC layer size
DS-CNN	Number of DS-Conv layers, DS-Conv features/kernel size/stride

Table 4: Neural network hyperparameters used in this study.

人工选择+遍历搜索

We iteratively perform exhaustive search of feature extraction hyperparameters and NN model hyperparameters followed by manual selection to narrow down the search space. The final best

最优结果:

NN model	S(80KB, 6MOps)			M(200KB, 20MOps)			L(500KB, 80MOps)		
	Acc.	Mem. Ops Acc. Mem.		Ops	Acc.	Mem.	Ops		
DNN	84.6%	80.0KB	158.8K	86.4%	199.4KB	397.0K	86.7%	496.6KB	990.2K
CNN	91.6%	79.0KB	5.0M	92.2%	199.4KB	17.3M	92.7%	497.8KB	25.3M
Basic LSTM	92.0%	63.3KB	5.9M	93.0%	196.5KB	18.9M	93.4%	494.5KB	47.9M
LSTM	92.9%	79.5KB	3.9M	93.9%	198.6KB	19.2M	94.8%	498.8KB	48.4M
GRU	93.5%	78.8KB	3.8M	94.2%	200.0KB	19.2M	94.7%	499.7KB	48.4M
CRNN	94.0%	79.7KB	3.0M	94.4%	199.8KB	7.6M	95.0%	499.5KB	19.3M
DS-CNN	94.4%	38.6KB	5.4M	94.9%	189.2KB	19.8M	95.4%	497.6KB	56.9M

Table 5: Summary of best neural networks from the hyperparameter search. The memory required for storing the 8-bit weights and activations is shown in the table.

Figure 6: Memory vs. Ops/inference of the best models described in Table 5.

最优结果对应的超参数集:

FC(n) 表示n个神经元的全连接层

L(n) 表示n个神经元的Low-rank线性层

C(num_filters, kenerl_size_time, kernel_size_freq, stride_time, stride_freq)

LSTM(n), GRU(n) 表示n个cell的LSTM或GRU结构

DSC(num_filters, kerne率方向的卷积核大小相同,步长也相同

Model	S	NN model hyperparameters	Memory	Ops	Train	Val.	Test
DNN	40	FC(144)-FC(144)-FC(144)	80.0KB	158.8K	91.5%	85.6%	84.6%
DNN	40	FC(256)-FC(256)-FC(256)	199.4KB	397.1K	95.4%	86.7%	86.4%
DNN	40	FC(436)-FC(436)	496.6KB	990.2K	97.8%	88.0%	86.7%
CNN	20	C(28,10,4,1,1)-C(30,10,4,2,1)- L(16)-FC(128)	79.0KB	5.0M	96.9%	91.1%	91.6%
CNN	20	C(64,10,4,1,1)-C(48,10,4,2,1)- L(16)-FC(128)	199.4KB	17.3M	98.6%	92.2%	92.2%
CNN	20	C(60,10,4,1,1)-C(76,10,4,2,1)- L(58)-FC(128)	497.8KB	25.3M	99.0%	92.4%	92.7%
Basic LSTM	20	LSTM(118)	63.3KB	5.9M	98.2%	91.5%	92.0%
Basic LSTM	20	LSTM(214)	196.5KB	18.9M	98.9%	92.0%	93.0%
Basic LSTM	20	LSTM(344)	494.5KB	47.9M	99.1%	93.0%	93.4%
LSTM	40	LSTM(144), Projection(98)	79.5KB	3.9M	98.5%	92.3%	92.9%
LSTM	20	LSTM(280), Projection(130)	198.6KB	19.2M	98.8%	92.9%	93.9%
LSTM	20	LSTM(500), Projection(188)	498.8KB	4.8M	98.9%	93.5%	94.8%
GRU	40	GRU(154)	78.8KB	3.8M	98.4%	92.7%	93.5%
GRU	20	GRU(250)	200.0KB	19.2M	98.9%	93.6%	94.2%
GRU	20	GRU(400)	499.7KB	48.4M	99.2%	93.9%	93.7%
CRNN	20	C(48,10,4,2,2)-GRU(60)- GRU(60)-FC(84)	79.8KB	3.0M	98.4%	93.6%	94.1%
CRNN	20	C(128,10,4,2,2)-GRU(76)- GRU(76)-FC(164)	199.8KB	7.6M	98.7%	93.2%	94.4%
CRNN	20	C(100,10,4,2,1)-GRU(136)- GRU(136)-FC(188)	499.5KB	19.3M	99.1%	94.4%	95.0%
DS-CNN	20	C(64,10,4,2,2)-DSC(64,3,1)- DSC(64,3,1)-DSC(64,3,1)- DSC(64,3,1)-AvgPool	38.6KB	5.4M	98.2%	93.6%	94.4%
DS-CNN	20	C(172,10,4,2,1)-DSC(172,3,2)- DSC(172,3,1)-DSC(172,3,1)- DSC(172,3,1)-AvgPool	189.2KB	19.8M	99.3%	94.2%	94.9%
DS-CNN	20	C(276,10,4,2,1)-DSC(276,3,2)- DSC(276,3,1)-DSC(276,3,1)- DSC(276,3,1)-DSC(276,3,1)- AvgPool	497.6KB	56.9M	99.3%	94.3%	95.4%

Table 7: Summary of hyperparameters of the best models described in Table 5.

神经网络量化

32-bit float 权重和激活值 采用8-bit int 定点表示

$$v = -B_7 \times 2^{7-N} + \sum_{i=0}^{6} B_i \times 2^{i-N}$$

N为小数点后的小数部分的位数。

神经网络中每层使用同样的N,但不同层可以使用不同的N。

N的选取通过逐层优化使得量化后准确率损失最小。比如,先保持后面所有参数为浮点,仅将第一层权重量化,找到最优N使得准确率损失最小,然后固定第一层,优化第二层,以此类推

注意到是直接将训练好的浮点参数量化,**无需重新训练**

可以看到,量化后性能没有损失,测试集上甚至略微提升

NN model	32-bit float	ing point mo	del accuracy	8-bit quantized model accuracy			
	Train	Val.	Test	Train	Val.	Test	
DNN	97.77%	88.04%	86.66%	97.99%	88.91%	87.60%	
Basic LSTM	98.38%	92.69%	93.41%	98.21%	92.53%	93.51%	
GRU	99.23%	93.92%	94.68%	99.21%	93.66%	94.68%	
CRNN	98.34%	93.99%	95.00%	98.43%	94.08%	95.03%	

代码

本文对应tensorflow DS-CNN code

```
调用slim接口
 def _depthwise_separable_conv(inputs,
                               num_pwc_filters,
                               SC,
                               kernel_size,
                               stride):
   """ Helper function to build the depth-wise separable convolu
   .....
   # skip pointwise by setting num_outputs=None
   depthwise_conv = slim.separable_convolution2d(inputs,
                                                  num_outputs=Nor
                                                  stride=stride,
                                                  depth_multiplia
                                                  kernel_size=ke
                                                  scope=sc+'/dep1
   bn = slim.batch_norm(depthwise_conv, scope=sc+'/dw_batch_norm
   pointwise_conv = slim.convolution2d(bn,
                                        num_pwc_filters,
                                        kernel_size=[1, 1],
```

scope=sc+'/pointwise_conv

```
bn = slim.batch_norm(pointwise_conv, scope=sc+'/pw_batch_norm
return bn
```

mxnet DS-CNN code

找到mobileNet的mxnet实现,可以看到DS-CNN直接由两个卷积实现,因此低版本mxnet应该也可以支持

```
def Conv_DPW(data, depth=1, stride=(1, 1), name='', idx=0, sufi
  conv_dw = Conv(data, num_group=depth, num_filter=depth, kerne
  conv = Conv(conv_dw, num_filter=depth * stride[0], kernel=(1, return conv
```

特征提取部分

找到tensorflow提取mfcc源码,可以看到filterbank默认只有40个,也即40维MFCC只是对40维FBANK通过DCT进行去相关,10维MFCC则还有降维(因为配置参数里仅配置dct_coef维度,并没有filterbank数的配置)

```
22 namespace tensorflow {
23
24 const double kDefaultUpperFrequencyLimit = 4000;
25 const double kDefaultLowerFrequencyLimit = 20;
26 const double kFilterbankFloor = 1e-12;
27 const int kDefaultFilterbankChannelCount = 40;
28 const int kDefaultDCTCoefficientCount = 13;
```