Assignment -3

Build CNN Model for Classification of Flowers

Assignment Date	30 September 2022
Student Name	UDAIYAR HARSHVARDHAN SIDHIKUMAR
Student Roll Number	142219205102
Maximum Marks	2 Marks

Question-1:

Download the dataset

Question-2:

Image Augmentation

Solution

from tensorflow.keras.preprocessing.image import ImageDataGenerator train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,vertical_flip=True)

test_datagen=ImageDataGenerator(rescale=1./255)

2)Image Augmentation	
[] from tensorflow.keras.preprocessing.image import ImageDataGenerator	
[] train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,vertical_flip=True)	
[] test_datagen=ImageDataGenerator(rescale=1./255) Load Data	
[] x_train=train_datagen.flow_from_directory(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Training",target_size=(64,64),class_mode='categorical',batch_size=24) Found 3293 images belonging to 5 classes.	
[] x_test=test_datagen.flow_from_directory(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing",target_size=(64,64),class_mode='categorical',batch_size=24) Found 1317 images belonging to 5 classes.	
[] x_train.class_indices {'daisy': 0, 'dandelion': 1, 'rose': 2, 'sunflower': 3, 'tulip': 4}	
[] x_test.class_indices {'daisy': 0, 'dandelion': 1, 'rose': 2, 'sunflower': 3, 'tulip': 4}	

Question-3:

Create model

Solution

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten model=Sequential()

3)Create Model		
[] from tensorflow.keras.models import Sequential		
[] from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten		
[] model=Sequential()		
Question-4:		
Add Layers (Convolution, MaxPooling, Flatten, Dense-(Hidden Layers), Output)		
Solution a)Convolution Layer		
model.add(Convolution2D(32,(3,3),kernel_initializer="random_uniform",activation="relu",strides=(1.1),input_shape=(64,64,3)))		
model.add(MaxPooling2D(pool_size=(2,2)))		
model.add(Flatten())		
d) Dense(Hidden layer) model.add(Dense(300,activation="relu")) model.add(Dense(300,activation="relu"))		
e) Output layer model.add(Dense(5,activation="softmax"))		
4)Add Layers		
a)Convolution Layer		
• model.add(Convolution2D(32,(3,3),kernel_initializer="random_uniform",activation="relu",strides=(1,1),input_shape=(64,64,3)))		
b)MaxPooling Layer		
[] model.add(MaxPooling2D(pool_size=(2,2)))		
c)Flatten		
[] model.add(Flatten())		
d)Dense(Hidden layer)		

```
[ ] model.add(Dense(300,activation="relu"))
[ ] model.add(Dense(300,activation="relu"))
e)Output layer
[ ] model.add(Dense(5,activation="softmax"))
```

Question-5:

Compile The Model

Solution

model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')

5)Compile the model

```
[ ] model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')
```

Question-6:

Fit The Model

Solution

 $model.fit(x_train,epochs=5,steps_per_epoch=len(x_train),validation_data=x_test,validation_steps=len(x_test))$

6)Fit the model

Question-7:

Save The Model

Solution

model.save("Flowers.h5")

7)Save the model

[] model.save("Flowers.h5")

Question-8:

Test The Model

Solution import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image model=load_model("Flowers.h5") img=image.load_img(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target_size=(64,64)) x=image.img_to_array(img) x=np.expand_dims(x,axis=0) pred=model.predict(x) pred index=['daisy','dandelion','rose','sunflower','tulip'] index[np.argmax(pred)]

8)T	est the model
[]	<pre>import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image</pre>
[]	<pre>model=load_model("Flowers.h5")</pre>
[]	img=image.load_img(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target_size=(64,64))
[]	img
[]	x=image.img_to_array(img)
[]	x=np.expand_dims(x,axis=0)
[]	pred=model.predict(x)
[]	pred
	array([[1., 0., 0., 0., 0.]], dtype=float32)