Super Humble Matrix

Sherry likes matrices a lot, but her favorite ones are *humble matrices*. An $N \times M$ matrix (we'll call it A) is *humble* if:

- ullet It contains all the elements in range [1,N imes M] exactly once.
- ullet For any 2 elements (i_1,j_1) and (i_2,j_2) in matrix A: If $i_1+j_1< i_2+j_2$, then $A_{i_1,j_1}< A_{i_2,j_2}$ should hold.

Given N and M, find and print the total number of possible humble matrices; as this number can be quite large, print your answer modulo $10^9 + 7$.

Input Format

Two space-separated integers, N and M, respectively.

Constraints

• $1 \le N, M \le 10^6$

Scoring

- $1 \leq N, M \leq 10^3$ for 30% of the test data.
- \bullet $1 \leq N, M \leq 10^6$ for 100% of the test data.

Output Format

Print the total number of humble matrices possible, modulo $10^9 + 7$.

Sample Input 0

2 2

Sample Output 0

2

Sample Input 1

3 2

Sample Output 1

4

Explanation

There are 2 possible 2×2 humble matrices:

1. [1,2] [3,4] 2. **[1, 3] [2, 4]**

Thus, we print the result of $2~\%~(10^9+7)$, which is 2.