TD3: Groupes abéliens de type fini

Exercices * : à préparer à la maison avant le TD, seront corrigés en début de TD.

Exercices ** : seront traités en classe en priorité.

Exercices $\star \star \star$: plus difficiles.

Exercice 1: *

Montrer que les groupes $\mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/90\mathbb{Z} \times \mathbb{Z}/25\mathbb{Z}$ et $\mathbb{Z}/100\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z}$ sont isomorphes.

Exercice $2: \star$

Montrer qu'un groupe abélien fini non cyclique possède un sous-groupe isomorphe à $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ pour un certain nombre premier p.

Exercice 3: *

- a) Combien y a-t-il de groupes abéliens de cardinal 360? Faire la liste complète de ces groupes.
- b) Plus généralement, pour tout entier n, combien y a-t-il de groupes abéliens de cardinal n?

Exercice 4:

- a) Le nombre de classes de conjugaison dans \mathfrak{S}_5 est le même que le nombre de groupes abéliens de cardinal 32 à isomorphisme près. Pourquoi?
- b) Généraliser au nombre de classes de conjugaison dans \mathfrak{S}_n .

Exercice 5: *

Soit G un groupe abélien fini. Montrer qu'il existe dans G un élément d'ordre égal à l'exposant de G (c'est-à-dire au ppcm des ordres des éléments de G).

Exercice 6: *

Soit G un groupe et soient H et K des sous-groupes de G. On suppose que :

- a) $H \triangleleft G$ et $K \triangleleft G$;
- b) HK = G;
- c) $H \cap K = e$.

Montrer que G est isomorphe à $H \times K$.

Exercice 7: **

Soit K un corps et soit $G \subset K^*$ un sous-groupe fini d'ordre n. On va montrer que G est un groupe cyclique.

- a) Montrer que l'ordre de tout élément de G divise n.
- b) Soit d un diviseur de n et $x \in G$ d'ordre d. Soit H le sous-groupe cyclique de G engendré par x. Montrer que tout élément d'ordre d est dans H.
- c) On note N(d) le nombre d'éléments de G d'ordre d. Montrer que N(d)=0 ou $\varphi(d)$, et que $\sum_{d|n,\ d>0} N(d)=n$.
- d) Conclure.

En particulier, si p est un nombre premier, $(\mathbb{Z}/p\mathbb{Z})^* \simeq \mathbb{Z}/(p-1)\mathbb{Z}$, et si K est un corps fini, K^* est un groupe cyclique.

Exercice 8: **

Si A est un anneau, on note A^{\times} le groupe (multiplicatif) des éléments inversibles de A.

- a) Soit G un groupe monogène. Montrer que le groupe des automorphismes de G est en bijection avec l'ensemble des générateurs de G.
- b) Montrer que pour tout $n \in \mathbb{N}$, on a un isomorphisme de groupes $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.
- c) Soit p un nombre premier impair et soit $\alpha \geq 1$. Quel est l'ordre de 1+p dans $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$? En déduire que $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times} \simeq \mathbb{Z}/p^{\alpha-1}(p-1)\mathbb{Z}$.
- d) Expliciter $(\mathbb{Z}/2^{\alpha}\mathbb{Z})^{\times}$ pour $\alpha \geq 1$.
- e) En déduire $(\mathbb{Z}/n\mathbb{Z})^{\times}$ pour $n \in \mathbb{N}$.

Exercice 9:

Déterminer les entiers $n \in \mathbb{Z}$ pour lesquels $(\mathbb{Z}/n\mathbb{Z})^{\times}$ est cyclique.

Exercice $10: \star\star$

Décomposer le groupe $G = (\mathbb{Z}/187\mathbb{Z})^{\times}$ sous la forme donnée par le théorème de structure des groupes abéliens de type fini.

Exercice 11: **

- a) On considère $H := \{(a, b) \in \mathbb{Z}^2 : a b \text{ est divisible par } 10\}$. Montrer que H est un sous-groupe de \mathbb{Z}^2 , calculer son rang, en donner une base et décrire le quotient \mathbb{Z}^2/H .
- b) On note H le sous-groupe de \mathbb{Z}^2 engendré par (2,5), (5,-1) et (1,-2). Déterminer une base de H et décrire le quotient \mathbb{Z}^2/H .
- c) On note H le quotient de \mathbb{Z}^3 par le sous-groupe engendré par les vecteurs (4,8,10) et (6,2,0). Déterminer la structure du groupe H.

Exercice 12:

Soit $n \geq 1$. Constuire dans \mathbb{R} un sous-groupe isomorphe à \mathbb{Z}^n .

Exercice 13:

Soit $n \ge 1$ est un entier. Montrer que tout système libre maximal dans \mathbb{Z}^n est de cardinal n. Donner un exemple où un tel système n'est pas une base.

Exercice 14:

Soit $e_1 = (a_1, \ldots, a_n) \in \mathbb{Z}^n$ un vecteur tel que le pgcd de ses coordonnées vaut 1. Montrer que l'on peut compléter e_1 en une base (e_1, \ldots, e_n) de \mathbb{Z}^n .

Exercice 15: **

Déterminer les facteurs invariants des matrices suivantes à coefficients dans \mathbb{Z} :

$$\left(\begin{array}{cc} 2 & 4 \\ 4 & 11 \end{array}\right) , \left(\begin{array}{cc} 69 & -153 \\ 12 & -27 \end{array}\right) , \left(\begin{array}{cc} 12 & -6 & 2 \\ 75 & -41 & 13 \\ 19 & -3 & 3 \end{array}\right) .$$

Exercice 16:

- a) Soit G un groupe abélien de type fini et soit $f: G \to G$ un morphisme surjectif. Montrer que f est un isomorphisme. Ceci est-il nécessairement vrai si l'on remplace surjectif par injectif?
- b) Soit G un groupe abélien libre de type fini et soit $f: G \to G$ un morphisme. Définir le déterminant $\det(f) \in \mathbb{Z}$ de f et montrer que f est injectif si et seulement si $\det(f) \neq 0$. Dans ce cas, montrer que l'on a $|\operatorname{Coker}(f)| = |\det(f)|$.

Exercice 17: $\star\star\star$

Soient A_1, \ldots, A_n des groupes abéliens de type fini et $f_i : A_i \to A_{i+1}$ des morphismes de groupes. On dit que la suite

$$0 \to A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} \dots \xrightarrow{f_{n-1}} A_n \to 0$$

est exacte si f_1 est injectif, f_{n-1} est surjectif, et pour tout $1 \le i \le n-2$, $\operatorname{Im}(f_i) = \operatorname{Ker}(f_{i+1})$. Montrer que si la suite est exacte, alors $\sum_{i=1}^{n} (-1)^i \operatorname{rang}(A_i) = 0$.

Exercice 18: $\star \star \star$

On se propose de redémontrer le théorème de structure des groupes abéliens finis. On appelle caractère d'un groupe abélien fini G tout morphisme $G \to \mathbb{C}^*$.

- a) Si H est un sous-groupe d'un groupe abélien fini G, montrer que tout caractère de H se prolonge en un caractère de G.
- b) Soit G un groupe abélien fini. On note H un sous-groupe de G engendré par un élément de G d'ordre maximal. Montrer que l'on a un isomorphisme $G \cong H \times G/H$.
- c) Conclure.