Найти:

2806.
$$\lim_{x\to 1-0} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \cdot \frac{x^n}{x^n+1}$$
.

2807.
$$\lim_{x\to 1-0}\sum_{n=1}^{\infty}(x^n-x^{n+1}).$$

2808.
$$\lim_{x\to+0}\sum_{n=1}^{\infty}\frac{1}{2^nn^2}$$
. 2808.1. $\lim_{x\to\infty}\sum_{n=1}^{\infty}\frac{x^2}{1+n^2x^2}$.

2809. Законно ли почленное дифференцирование ряда

$$\sum_{n=1}^{\infty} \arctan \frac{x}{n^2}$$
?

2810. Законно ли почленное интегрирование ряда

$$\sum_{n=1}^{\infty} \left(x^{\frac{1}{2n+1}} - x^{\frac{1}{2n-1}} \right)$$

на сегменте [0, 1]?

2811. Пусть f(x) (— $\infty < x < + \infty$) — бесконечно дифференцируемая функция и последовательность ее производных $f^{(n)}(x)$ ($n=1,2,\ldots$) сходится равномерно на каждом конечном интервале (a,b) к функции $\phi(x)$. Доказать, что $\phi(x) = Ce^x$, где C — постоянная величина. Рассмотреть пример $f_n(x) = e^{-(x-n)^2}$, $n=1,2,\ldots$

2811.1. Пусть функции $f_n(x)$, $n=1, 2, \ldots, -$ определены и ограничены на $(-\infty, +\infty)$ и $f_n(x) \to \varphi(x)$ на каждом сегменте [a, b]. Следует ли отсюда, что

$$\lim_{n\to\infty}\sup_x f(x) = \sup_x \varphi(x)$$
?

§ 5. Степенные ряды

1°. Интервал сходимости. Для каждого степенного ряда

$$a_0 + a_1 (x-a) + \ldots + a_n (x-a)^n + \ldots$$

существует замкнутый интервал сходимости: $|x-a| \leqslant R$, вну-