Thursday, January 24, 2019 11:15 PM

DYNAMIC ROUTING P1

Routers: Fwd packets using info in r-table: Can be learned: statically | dynamically: Since late 1980's

RIP	Routing Information Protocol ○ 1 of 1st: RIPv1: 1988: Some algorithms in it: ARPANET: 1969 ○ Updated for network growth: RIPv2: Doesn't scale well
Time	Larger networks: 2 advanced r-protocols made:

To support IPv6: Newer vers of protocols made

Protocols used to facilitate exchange of r-info between routers

Routing protocol: Set of processes/alg/msgs used to exchange r-info/populate r-table w/best paths

Purpose: Dynamic

- 1. Remote network discovery
- 2. Maintain up-to-date r-info
- 3. Choosing best path to destination networks
- 4. Finding new best paths if current no longer available

Components: Dynamic

	<u> </u>
Data structures	Uses tables/databases: Info in RAM
Messages	Used to: • Discover neighbor routers • Exchange r-info • Learn/maintain accurate info about network
Algorithm	Algorithm: Finite list of steps used to accomplish a task • Facilitates routing info/best path determination

Role: Allows routers to dynamically share info about remote networks: Adds info to own r-tables:

Determine best path

Benefits: Routers exchange r-info when topology changes: Auto learn: Find alternate paths if link failure Compared to static: Less overhead: More resources [CPU/network/link BW]: Both static/dynamic can be used

Static: Dynamic has advantages over static: Still used today: Typically combo of both

Primary uses	o Routing to/from stub network (1 default route out/no knowledge of remote
	networks)
	Accessing single default route
	■ Represents path to any network not specific match w/other route in r-table

Advantages/Disadvantages of static routing:

Advantages	Easy to implement [small network]Secure: No advertisements
	 Route to destination always same No routing alg/updates: Less CPU/RAM/resources

Disadvantages	 Only simple topologies/special purposes 	
	Example: Default static route	
	 Config complexity increases w/network size 	
	 Manual intervention: To re-route traffic 	
	○ Time consumption	
	 Link fails? Static can't re-route traffic 	

Advantages/Disadvantages of dynamic routing:

Advantages	 Good for multiple routers Independent of network size Auto adapts topology to re-route traffic
Disadvantages	 Complexity in implementation: Additional commands Less secure: Updates Depends on current topology More resources: CPU/RAM/Link BW

Dynamic Operation

- 1. R-sends/receives msgs on its ints
- 2. R-shares msgs/info w/other routers using same protocol
- 3. R-exchange info to learn about remote networks
- 4. When notes topology change: R-protocol advertises change to other routers

Cold Start	Power up: No info on topology: Only info of saved config in NVRAM After boot: Applies saved config: If config good: Discovers connected networks	
Network Discovery	After boot: R-table updated w/directly connected networks/ints If config'd: Router begins exchanging updates to learn routes R-sends update packet out all ints enabled: Contains info in table • Also receives/processes updates from other connected routers • Receiving update: Checks for new info: Networks not listed added Full knowledge/converge don't take place until another exchange of r-info in table	
Exchanging Info	Exchanges next round of updates: Each checks updates for new info Split Horizon: A routing loop prevention technique implemented by r-protocols • Prevents info from being sent out same int was received • After convergence: Can use info w/in table to determine best path	
Convergence	Converges: When all routers have complete/accurate info about entire network Convergence time: Time it takes routers to share info/calc best paths/update tables • Collaborative/independent • Share info w/each other: Independently calc impacts on their routes • B/C they develop an agreement w/new topology independently: Said to converge	

Convergence properties: Speed of propagation of r-info | Calc of optimal paths **Speed of propagation:** Amt of time it takes routers w/in network to fwd r-info **Protocols can be rated on speed to convergence:** Faster = better

Older protocols: RIP slow to converge | Modern protocols: EIGRP/OSPF: Converge more quickly

Classifying Routing Protocols: Different groups according to characteristics

Purpose	IGP : Interior Gateway Protocol or EGP : Exterior Gateway Protocol
Operation	Distance vector link-state protocol path-vector protocol
Behavior	Classful Classless

IPv4 r-protocols classifications

IGP Distance vector Classful
IGP Distance vector Classful Cisco
IGP Distance vector Classless
IGP Distance vector Classless Cisco
IGP Link-state Classless

IS-IS	IGP Link-state Classless
BGP	EGP Path-vector Classless

RIPv1/IGRP: Legacy: Only used in older networks

Evolved into classless r-protocols: RIPv2/EIGRP: Link-state r-protocols are classless

IGP/EGP R-Protocols

AS: Autonomous system: AKA routing domain: Collection of routers under a common administration [company/org]

Internet based on AS: 2 types of protocols required:

- IGP: Interior Gateway Protocols
 - 1. Intra-AS routing: Used for routing w/in an AS
 - 2. Companies/orgs/ISP's use an IGP on their internal networks
 - 3. IGPs include: RIP/EIGRP/OSPF/IS-IS
- EGP: Exterior Gateway Protocols
 - 1. Inter-AS routing: Used for routing between AS
 - 2. ISP's/large companies may interconnect using an EGP
 - 3. BGP: Border Gateway Protocol: Only viable EGP: R-protocol of Internet

Multihomed: Connects to 2 different service providers

Distance Vector R-Protocols

Distance = How far? | **Vector** = Which direction?

Routes advertised by 2 characteristics:

Distance ID's how far it is to destination network • Based on a metric: Hop count/cost/BW/delay/etc Vector The direction of next-hop router or exit int to reach the desti		
		The direction of next-hop router or exit int to reach the destination

- Router using distance vector: No knowledge of entire path to destination network
- Only info known about remote network: Distance/metric to reach it and which path/int to use to get there
- Don't have actual maps of network topology

4 distance vector IPv4 IGPs:

RIPv1	1st gen legacy	RIPv2	Simple distance vector
IGRP	1st gen Cisco (replaced by EIGRP)	EIGRP	Advanced version of distance vector

Link-State R-Protocols: Contrast to distance vector

- Can create topology of network by gathering info from other routers
- · A complete map of network topology: Uses link-state info to create map/select best path
- · Don't use periodic updates
- After network converged: Link-state update is only sent when there a change in topology

Best in situations where: Design = hierarchical/Fast convergence = crucial

2 link-state IPv4 IGPs:

OSPF Standards based IS-IS Provider network	5
---	---

Classful/Classless Routing Protocols

Classful	■ NO subnet mask info in r-updates		
	☐ Only RIPv1/IGRP classful: All other IPv4/IPv6 are classless		
	☐ Can't provide VLSMs: Variable-Length Subnet Masks/CIDR: Classless		
	Interdomain Routing		
	■ Create problems in discontiguous networks		
	Modern networks no longer use: Subnet can't be determined by 1st octet		
	Discontiguous network: Subnets from same classful major network address are separated by diff		
	classful address		
Classless	○ Subnet mask info in r-updates		
	■ IPv4 r-protocols: RIPv2/EIGRP/OSPF/IS-IS		
	○ Support VLSM/CIDR		

○ IPv6 r-protocols are classless: Only applies to IPv4
 All IPv6 r-protocols classless: Include prefix-length w/IPv6 address

Protocol Characteristics

Speed of Convergence	How quickly routers in topology share info/reach state of knowledge • R-loops can occur when inconsistent tables are not updated
Scalability	How large network can be based on protocol • Larger = More scalable protocol needs to be
Classful or Classless	Don't include subnet mask Can't support VLSM • Classless support VLSM/better route summarization
Resource Usage	Includes:Requirements of protocol [RAM/CPU/link BW]Higher resource reqs: More HW needed to support it
Implementation/ Maintenance	Level of knowledge required

Metric: Measurable value assigned to different routes based on usefulness

Distance Vector Technologies: Share updates between neighbors

Neighbors: Routers that share a link | Config'd to use same protocol

- Router is only aware of addresses of own ints: Remote addresses it can reach through neighbors
- Using distance vectors mean routers aren't aware of network topology

Some distance vectors send periodic updates:

RIP: Periodic update: All neighbors: Every 30 seconds

- Even if topology hasn't changed: Reaches neighbors through broadcast: 255.255.255.255 all IPv4 Broadcasting periodic updates consumes BW/CPU usage: Every device has to process msg
 - RIPv2/EIGRP: Multicast so only neighbors that need updates get them
 - EIGRP: Can also send unicast: Only sends an update when needed: Not periodic

Distance Vector Algorithm: Core of distance vectors: Used to calc best paths/send info to neighbors

- 1. Send/receive r-info
- 2. Calc best paths/installing routes in table
- 3. Detecting/reacting to topology changes

Diff protocols use diff alg to: Install routes in table/send updates to neighbors/make path decisions

RIP	 Bellman-Ford alg Based on 2 alg developed in 1958/1956: Richard Bellman Lester F 	
IGRP/EIGRP	Diffusing Update Algorithm (DUAL)Dr. J.J. Garcia-Luna-Aceves at SRI International	