Problema Kscale

Intrare: kscale.in
Iesire: kscale.out

Definim funcția $scale(A, k_1, k_2)$ care primește ca argumente o matrice binară A, două numere naturale nenule k_1 și k_2 și întoarce o matrice binară în care fiecare celulă din A a fost înlocuită cu o submatrice de dimensiune $k_1 \times k_2$ de aceeași valoare cu cea originală.

De exemplu, dacă:

$$A = \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix}$$

$$\mathrm{scale}(A,\,2,\,3) = \begin{matrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{matrix}$$

Fie B o matrice de dimensiune $N \times M$. Voi trebuie să construiți o matrice A de arie **minimă**, pentru care există k_1 și k_2 astfel încât $scale(A, k_1, k_2) = B$. Orice matrice validă A de arie minimă va fi acceptată.

Date de intrare

Fișierul de intrare kscale.in conține pe prima linie două numere naturale n si m reprezentând numărul de linii, respectiv coloane ale matricei B. Următoarele n linii conțin câte m caractere de tip 0 sau 1.

Date de ieșire

Fișierul de ieșire kscale.out va conține pe prima linie două numere naturale p și t reprezentând numărul de linii, respectiv de coloane ale matricei A. Pe următoarele p linii se va afișa matricea A în format similar cu cel din fisierul de intrare.

#	Punctaj	Restricții
1	21 puncte	$N = 1; 1 \le M \le 100$
2	18 puncte	$1 \leq N, M \leq 100$ și se garantează că există soluție cu $k_1 = k_2$.
3	49 puncte	$1 \le N, M \le 100$
3	12 puncte	$1 \le N, M \le 1000$

Anumite teste din interiorul unui subtask pot fi grupate, dar nu neaparat toate.

Exemple

kscale.in	kscale.out
1 10	1 5
0000001100	00010
4 6	2 2
111000	10
111000	01
000111	
000111	