MATA23 TUT006

Quiz 3 (A1 & A2) Mark _____/25

Last Name:______ First Name:______ Student #_____

1. [4 points]

Find vector and parametric equation of the plane that contains the given point and is parallel to

Point: (-3,1,0); Vectors $\vec{v}_1 = [0, -3, 6]$ and $\vec{v}_2 = [-5, 1, 2]$

2. [3 points]

Find the area of the triangle that has the given vertices: $P_1(2,6,-1)$, $P_2(1,1,1)$, $P_3(4,6,2)$

3. [6 points]

Determine whether \vec{u} , \vec{v} , \vec{w} lie in the same plane when positioned so that their initial points coincide. $\vec{u} = \begin{bmatrix} -1, -2, 1 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 3, 0, -2 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 5, -4, 1 \end{bmatrix}$

4. (4 points)

Use the Subspace test to determine which of the sets are subspaces of \mathbb{R}^3

a) All vectors of the form [a,0,0]

b) All vectors of the form [a,b,c], where b = a+c+1

5. (3 points)

Determine whether the following polynomials span $P_{2.}$

$$p_1 = 1 - x + 2x^2$$
; $p_2 = 3 + x$; $p_3 = 5 - x + 4x^2$; $p_4 = -2 - 2x + 2x^2$

6. (5 points)

Show that the vectors $\vec{u} = \begin{bmatrix} 1,2,3,4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 0,1,0,-1 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 1,3,3,3 \end{bmatrix}$, form a linearly dependent set in \mathbb{R}^4