Problem 1.

The equation of the plane Π_1 is y+z=0 and the equation of the line l is $\frac{x-2}{2}=\frac{y-2}{-1}=\frac{z-2}{3}$. Find

- (a) the position vector of the point of intersection of l and Π_1 ,
- (b) the length of the perpendicular from the origin to l,
- (c) the Cartesian equation for the plane Π_2 which contains l and the origin,
- (d) the acute angle between the planes Π_1 and Π_2 , giving your answer correct to the nearest 0.1° .

Solution

Note that Π_1 has equation $\mathbf{r} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = 0$ and l has equation $\mathbf{r} = \begin{pmatrix} 5 \\ 2 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}, \lambda \in \mathbb{R}$.

Part (a)

Let P be the point of intersection of Π_1 and l. Then $\overrightarrow{OP} = \begin{pmatrix} 5 \\ 2 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ for some

$$\lambda \in \mathbb{R}$$
. Also, $\overrightarrow{OP} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = 0$.

$$\begin{bmatrix} \binom{5}{2} + \lambda \binom{2}{-1} \\ \binom{0}{1} \end{bmatrix} \cdot \binom{0}{1} \\ \binom{1}{1} = 0$$

$$\Rightarrow \binom{5}{2} \cdot \binom{0}{1} + \lambda \binom{2}{-1} \cdot \binom{0}{1} = 0$$

$$\Rightarrow 4 + 2\lambda = 0$$

$$\Rightarrow \lambda = -2$$

$$\Rightarrow \overrightarrow{OP} = \binom{5}{2} - 2 \binom{2}{-1} \\ \binom{1}{3}$$

$$= \binom{1}{4} \\ -4$$

$$\overrightarrow{OP} = \begin{pmatrix} 1\\4\\-4 \end{pmatrix}$$

Part (b)

Length =
$$\begin{vmatrix} 5 \\ 2 \\ 2 \end{vmatrix} \times \begin{pmatrix} 2 \\ -1 \\ 3 \end{vmatrix} \begin{vmatrix} 3 \\ -1 \\ -9 \end{vmatrix} = \frac{\sqrt{266}}{\sqrt{14}} = \sqrt{19}$$

The perpendicular distance from the origin to l is $\sqrt{19}$ units.

Part (c)

Observe that
$$\Pi_2$$
 is parallel to $\begin{pmatrix} 5\\2\\2 \end{pmatrix}$ and $\begin{pmatrix} 2\\-1\\3 \end{pmatrix}$. Thus, $\mathbf{n} = \begin{pmatrix} 5\\2\\2 \end{pmatrix} \times \begin{pmatrix} 2\\-1\\3 \end{pmatrix} = \begin{pmatrix} 8\\-11\\-9 \end{pmatrix}$.

Since Π_2 contains the origin, d = 0. Hence, Π_2 has vector equation $\mathbf{r} \cdot \begin{pmatrix} 8 \\ -11 \\ -9 \end{pmatrix} = 0$, which translates to 8x - 11y - 9z = 0.

$$\boxed{\Pi_2 : 8x - 11y - 9z = 0}$$

Part (d)

Let the acute angle be θ .

$$\cos \theta = \frac{\begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix} \cdot \begin{pmatrix} 0 \\ -11 \\ -9 \end{vmatrix} \end{vmatrix}}{\begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix} \begin{vmatrix} 0 \\ 1 \\ -9 \end{vmatrix} \end{vmatrix}}$$

$$= \frac{20}{\sqrt{2}\sqrt{266}}$$

$$\implies \theta = 29.9^{\circ} \text{ (1 d.p.)}$$

$$\theta = 29.9^{\circ}$$

Problem 2.

The plane Π_1 has equation $\mathbf{r} \cdot (-\mathbf{i} + 2\mathbf{k}) = -4$ and the points A and P have position vectors $4\mathbf{i}$ and $\mathbf{i} + \alpha \mathbf{j} + \mathbf{k}$ respectively, where $\alpha \in \mathbb{R}$.

- (a) Show that A lies on Π_1 , but P does not.
- (b) Find, in terms of α , the position vector of N, the foot of perpendicular of P on Π_1 . The plane Π_2 contains the points A, P and N.
 - (c) Show that the equation of Π_2 is $\mathbf{r} \cdot (2\alpha \mathbf{i} + 5\mathbf{j} + \alpha \mathbf{k}) = 8\alpha$ and write down the equation of l, the line of the intersection of Π_1 and Π_2 .

The plane Π_3 has equation $\mathbf{r} \cdot (\mathbf{i} + \mathbf{j} + 2\mathbf{k}) = 4$.

(d) By considering l, or otherwise, find the value of α for which the three planes intersect in a line.

Solution

Note that
$$\Pi_1 : \mathbf{r} \cdot \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} = -4$$
, $\overrightarrow{OA} = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix}$ and $\overrightarrow{OP} = \begin{pmatrix} 1 \\ \alpha \\ 1 \end{pmatrix}$.

Part (a)

$$\overrightarrow{OA} \cdot \begin{pmatrix} -1\\0\\2 \end{pmatrix} = \begin{pmatrix} 4\\0\\0 \end{pmatrix} \cdot \begin{pmatrix} -1\\0\\2 \end{pmatrix} = -4$$

Hence, A lies on Π_1 .

$$\overrightarrow{OP} \cdot \begin{pmatrix} -1\\0\\2 \end{pmatrix} = \begin{pmatrix} 1\\\alpha\\1 \end{pmatrix} \cdot \begin{pmatrix} -1\\0\\2 \end{pmatrix} = 1 \neq -4$$

Hence, P does not lie on Π_1 .

Part (b)

Note that
$$\overrightarrow{NP} = \lambda \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$$
 for some $\lambda \in \mathbb{R}$, and $\overrightarrow{ON} \cdot \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} = -4$.

$$\overrightarrow{NP} = \lambda \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$$

$$\implies \overrightarrow{OP} - \overrightarrow{ON} = \lambda \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$$

$$\implies \begin{pmatrix} 1 \\ \alpha \\ 1 \end{pmatrix} - \overrightarrow{ON} = \lambda \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$$

$$\implies \begin{bmatrix} \begin{pmatrix} 1 \\ \alpha \\ 1 \end{pmatrix} - \overrightarrow{ON} \end{bmatrix} \cdot \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} = \lambda \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$$

$$\implies \begin{pmatrix} 1 \\ \alpha \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} - (-4) = \lambda \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$$

$$\implies 5 = 5\lambda$$

$$\implies \lambda = 1$$

Hence,
$$\overrightarrow{NP} = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$$
, whence $\overrightarrow{ON} = \overrightarrow{OP} - \overrightarrow{NP} = \begin{pmatrix} 2 \\ \alpha \\ -1 \end{pmatrix}$.

$$\overrightarrow{ON} = \begin{pmatrix} 2 \\ \alpha \\ -1 \end{pmatrix}$$

Part (c)

Note that
$$\Pi_2$$
 is parallel to $\overrightarrow{NP} = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$ and $\overrightarrow{AN} = \begin{pmatrix} 2 \\ \alpha \\ -1 \end{pmatrix} - \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ \alpha \\ -1 \end{pmatrix}$. Hence, $\mathbf{n} = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} \times \begin{pmatrix} -2 \\ \alpha \\ -1 \end{pmatrix} = -\begin{pmatrix} 2\alpha \\ 5 \\ \alpha \end{pmatrix} \implies d = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 2\alpha \\ 5 \\ \alpha \end{pmatrix} = 8\alpha$. Thus, Π_2 has vector equation $\mathbf{r} \cdot \begin{pmatrix} 2\alpha \\ 5 \\ \alpha \end{pmatrix} = 8\alpha$ which translates to $\mathbf{r} \cdot (2\alpha \mathbf{i} + 5\mathbf{j} + \alpha \mathbf{k}) = 8\alpha$.

$$l: \begin{pmatrix} 4\\0\\0 \end{pmatrix} + \mu \begin{pmatrix} -2\\\alpha\\-1 \end{pmatrix}, \, \mu \in \mathbb{R}$$

Part (d)

If the three planes intersect in a line, they must intersect at l. Hence, l lies on Π_3 .

$$\begin{bmatrix} \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ \alpha \\ -1 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = 4$$

$$\implies \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ \alpha \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = 4$$

$$\implies 4 + (\alpha - 4)\mu = 4$$

$$\implies (\alpha - 4)\mu = 0$$

Hence, $\alpha = 4$.

$$\alpha = 4$$

Problem 3.

When a light ray passes from air to glass, it is deflected through an angle. The light ray ABC starts at point A(1,2,2) and enters a glass object at point B(0,0,2). The surface of the glass object is a plane with normal vector \mathbf{n} . The diagram shows a cross-section of the glass object in the plane of the light ray and \mathbf{n} .

(a) Find a vector equation of the line AB.

The surface of the glass object is a plane with equation x+z=2. AB makes an acute angle θ with the plane.

(b) Calculate the value of θ , giving your answer in degrees.

The line BC makes an angle of 45° with the normal to the plane, and BC is parallel to the unit vector $\begin{pmatrix} -2/3 \\ p \\ q \end{pmatrix}$.

(c) By considering a vector perpendicular to the plane containing the light ray and \mathbf{n} , or otherwise, find the values of p and q.

The light ray leaves the glass object through a plane with equation 3x + 3z = -4.

- (d) Find the exact thickness of the glass object, taking one unit as one cm.
- (e) Find the exact coordinates of the point at which the light ray leaves the glass object.

Solution

Let Π_G be the plane representing the surface of the glass object.

Part (a)

Note that
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = - \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}.$$

$$l_{AB} : \mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \lambda \in \mathbb{R}$$

Part (b)

Observe that Π_G has equation $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 2$. Hence,

$$\sin \theta = \frac{\begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{vmatrix} \end{vmatrix}}{\begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix} \begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix} \begin{vmatrix} 1 \\ 2 \\ 0 \end{vmatrix}}$$
$$= \frac{1}{\sqrt{2}\sqrt{5}}$$
$$\Rightarrow \theta = 71.6^{\circ} \text{ (1 d.p.)}$$
$$\theta = 71.6^{\circ}$$

Part (c)

Since line BC makes an angle of 45° with \mathbf{n}_{G} ,

$$\sin 45^{\circ} = \frac{\begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix} \cdot \begin{pmatrix} -2/3 \\ p \\ q \end{vmatrix} \end{vmatrix}}{\begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix} \cdot \begin{vmatrix} -2/3 \\ p \\ q \end{vmatrix}}$$

$$\implies \frac{1}{\sqrt{2}} = \frac{\begin{vmatrix} q - \frac{2}{3} \\ \sqrt{2} \cdot 1 \end{vmatrix}}{\sqrt{2} \cdot 1}$$

$$\implies |q - \frac{2}{3}| = 1$$

Hence, $q = -\frac{1}{3}$. Note that we reject $q = \frac{5}{3}$ since $\begin{pmatrix} -2/3 \\ p \\ q \end{pmatrix}$ is a unit vector, which implies that $|q| \leq 1$.

Let Π_L be the plane containing the light ray. Note that Π_L is parallel to \overrightarrow{AB} and \overrightarrow{BC} . Hence, $\mathbf{n}_L = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \times \begin{pmatrix} -2/3 \\ p \\ q \end{pmatrix} = \begin{pmatrix} 2q \\ -q \\ p+4/3 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 6q \\ -3q \\ 3p+4 \end{pmatrix}$. Since Π_L contains \mathbf{n}_G , we

$$\begin{pmatrix} 6q \\ -3q \\ 3p+4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 0$$

$$\implies 6q + 3p + 4 = 0$$

$$\implies 6 \cdot -\frac{1}{3} + 3p + 4 = 0$$

$$\implies p = -\frac{2}{3}$$

$$p = -\frac{2}{3}, q = -\frac{1}{3}$$

Part (d)

Let Π'_G be the plane with equation 3x + 3z = -4. Observe that Π_G is parallel to Π'_G . Also note that $\left(-\frac{4}{3},0,0\right)$ is a point on Π'_G . Hence, the distance between Π_G and Π'_G is given by

Distance =
$$\begin{vmatrix} 2 - \begin{pmatrix} -4/3 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix} = \frac{10/3}{\sqrt{2}} = \frac{10}{3\sqrt{2}}$$

The distance between the two planes is $\frac{10}{3\sqrt{2}}$ cm.

Part (e)

Observe that
$$\begin{pmatrix} -2/3 \\ p \\ q \end{pmatrix} = \begin{pmatrix} -2/3 \\ -2/3 \\ -1/3 \end{pmatrix} = -\frac{1}{3} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$
, whence the line BC has equation $\mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$, $\mu \in \mathbb{R}$. Let P be the intersection between line BC and Π'_G . Note that $\overrightarrow{OP} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ for some $\mu \in \mathbb{R}$, and $\overrightarrow{OP} \cdot \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix} = -4$.

$$\begin{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix} = -4$$

$$\implies \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix} = -4$$

$$\implies 6 - 9\mu = -4$$

$$\implies \mu = -\frac{10}{9}$$

Hence,
$$\overrightarrow{OP} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} - \frac{10}{9} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -20/9 \\ -20/9 \\ 8/9 \end{pmatrix}$$
.

The coordinates are $\left(-\frac{20}{9}, -\frac{20}{9}, \frac{8}{9} \right)$.