Homework Assignment 8 Due Friday, March 18

- 1. Cayley's theorem says that if |G| = n then G embeds into S_n (that is, is isomorphic to a subgroup of S_n). One could ask if this n is sharp, or if perhaps G can embed in some smaller symmetric group.
 - (a) Give an example to show that Cayley's theorem isn't always sharp. That is, give a group of order n which embeds into S_d for some d < n.

Nevertheless, we are about to see that for Q_8 the symmetric group given by Cayley's theorem is the smallest. This shows that there can be no strengthening of Cayley's theorem in general.

- (b) Let Q_8 act on a set A with $|A| \leq 7$. Let $a \in A$. Show that the stabilizer of a, $(Q_8)_a \leq Q_8$ must contain the subgroup $\{\pm 1\}$. (*Hint:* It might be helpful to use the orbit stabilizer theorem and the lattice from HW6 Problem 5(d).)
- (c) Deduce that the kernel of the action of Q_8 on A contains $\{\pm 1\}$.
- (d) Conclude that Q_8 cannot embed into S_n for $n \leq 7$. That is, show there is no injective homomorphisms $Q_8 \hookrightarrow S_n$ for $n \leq 7$.
- 2. Find all groups with exactly 2 conjugacy classes. (Hint: Use the class equation.)
- 3. Compute all the conjugacy classes for the following groups, and verify that the class equation holds in each case.
 - (a) S_3
 - (b) Q_8

For the next problem it may be useful to recall the following fact we proved in class.

Theorem 1 (Cauchy's Theorem for Abelian Groups). Let G be an abelian group of order n. If p is a prime dividing n, then G has a subgroup of order p.

This will turn out to be true for all groups, so so far we only have it in the abelian case.

- 4. The converse to Lagrange's theorem holds for groups of prime power order. To prove this we will need to strengthen the fourth isomorphism theorem (HW5#1).
 - (a) Let G be a group and $N \subseteq G$. Let $N \subseteq H \subseteq K \subseteq G$, and let $\overline{H}, \overline{K}$ be the corresponding subgroups of G/N as in HW5#1. Show that $|K:H| = |\overline{K}:\overline{H}|$. (Hint: There is an obvious map $K/H \to \overline{K}/\overline{H}$. Prove it is bijective. Be careful though, we don't know that K/H is a group, just a set of cosets.)
 - (b) Suppose $|G| = p^d$ for a prime p and $d \ge 1$. Show that G has a normal subgroup of order p. In particular, we have extended Cauchy's theorem to nonabelian p-groups! (*Hint:* What did the class equation say about the center of a p-group?)
 - (c) Suppose $|G| = p^d$ for a prime p and $d \ge 1$. Show that for every $a = 1, 2, \dots, d$, G has a subgroup of order p^a . (Use parts (a) and (b) to proceed by induction).
- 5. Here we classify all abelian groups of order pq for $p \neq q$ prime.
 - (a) Let G be a group of finite order and suppose that $x, y \in G$ are commuting elements, i.e., that xy = yx. Show that that |xy| divides the least common multiple of x and y.

- (b) Let G be an abelian group of order pq for primes $p \neq q$. Show that $G \cong Z_{pq}$.
- (c) Classify all groups of order 6 up to isomorphism.
- 6. Let V be an abelian group of order p^n for some prime p and n > 0. Suppose that every element of V has order $\leq p$. Show by induction on n that:

$$V \cong \underbrace{Z_p \times Z_p \times \cdots Z_p}_{n \text{ times}}.$$

We will call such a V the elementary abelian group of order p^n . We will see in the following question that these are the same as finite dimensional \mathbb{F}_p vector spaces!

7. Let V be an elementary abelian group of order p^n . And identify it with

$$V \cong \underbrace{(\mathbb{Z}/p\mathbb{Z}) \times \cdots (\mathbb{Z}/p\mathbb{Z})}_{n \text{ times}}.$$

For $\lambda \in \mathbb{F}_p$ and $v = (v_1, \dots, v_n) \in V$, we can let:

$$\lambda v = (\lambda v_1, \cdots, \lambda v_n).$$

- (a) Explain why the scalar multiplication giving above makes V into an \mathbb{F}_p -vector space.
- (b) Show that a function $\varphi: V \to V$ is a homomorphism if and only if it is a linear map of vector spaces.
- (c) Using Proposition 1 from HW6, identify the set of isomorphisms from V to itself with a group we have already seen.