世 研究背景

□ 湍流燃烧是航空发动机燃烧室的重要研究内容

航空发动机

□ 湍流燃烧的特征

- ✓ 两者在时间和空间上都表现为多尺度,小尺度解析要求高,计算量大
- ✓ 燃烧的物质组分多,直接求解方程 数量多,计算量大

Combustion Scales

Model small scale

LES: Resolve large scale

integral scales inertial subrange viscous subrange

* Norbert Peters turbulent combustion

厂研究背景:发展降低维度的火焰面(Flamelet)模型

□ 湍流燃烧的研究框架

- ◆ 有限速率模型:考虑化学反应动力学的影响,每一步的反应都用Arrhenius公式计算源项,一般需要详细的化学反应机理,多组分的输运方程,适用范围广,计算量大
- ◆ 火焰面(Flamelet)模型:认为各个组分之间存在依赖关系,采用少数几个标量(混合分数Z,过程变量Y_C)通过化学建表Tabulation Chemistry 进行表征,计算量小,只能适用于单一机制工况

□ 解决方案: LES + 火焰面模型

<u>「</u>研究背景:基于火焰面(Flamelet)模型研究现状

🗖 燃烧室的火焰燃烧状态

可能存在的火焰机制

- 1. 自点火
- 2. 预混传播
- 3. 火焰扩散

□ 火焰面模型介绍

Autoignition模型:忽略空间项,只考虑时间项的自动点火autoignition

$$\rho \frac{\partial Y_i}{\partial t} = \dot{\omega}_i$$

发动机燃烧室

Flamlet Progress Variable模型:

基于扩散火焰,组分参数随混合分数和过程变量变化

$$\frac{\rho \chi_Z}{2} \frac{\partial^2 Y_i}{\partial Z^2} + \dot{\omega}_i = 0$$

Flamelet Generated Manifold模

型:基于预混火焰,组分参数 随过程变量和温度而变化

$$\rho_{o} S_{L} \frac{\partial Y_{i}}{\partial x} = \frac{\partial}{\partial x} \left(\rho \mathcal{D}_{i} \frac{\partial Y_{i}}{\partial x} \right) + \dot{\omega}_{i}$$

<u>厂</u>工作一: Sandia Flame D 的燃烧大涡模拟

□ Sandia Flame D 的初值条件

Main Jet	Pilot	Coflow
25% CH4, 75% air U = 49.6 m/s Re = 22400	当量比相同的 已燃气体 U = 11.4 m/s Flame stabilizer	Air U = 0.9 m/s

■ Sandia Flame D 的计算设置

网格单元	粗: 56×195×153 细: 65×229×305	
空间离散	2 nd 迎风	
时间推进	3 nd RK	
湍流燃烧模型	FPV model	
Presumed PDF	Beta 分布	

R. Barlow, International Workshop on Measurement and Computation of Turbulent Flames https://tnfworkshop.org/

C Sandia Flame D 的燃烧大涡模拟

■ Sandia flame D的瞬时云图

亡 Sandia Flame D 的燃烧大涡模拟

■ Sandia flame D的模拟结果和实验结果时均值对比

温度T和YCO2的时均值和实验对比较好

亡'Sandia Flame D 的燃烧大涡模拟

■ Sandia flame D的模拟结果和实验结果脉动量对比

温度T和Y_{CO2}的脉动量和实验值对比较好

求解器能够准确预测单一机 制的湍流燃烧过程