Annotation and enrichment analyses

Annotation packages, databases and ontologies

An **annotation database** (e.g., OMIM) annotates genes with functions or properties.

An **ontology** (e.g., GO) does this, and is additionally hierarchical.

A Bioconductor **annotation package** maps probes on an array to external IDs (Entrez gene), and to annotation databases and ontologies.

Enrichment analysis

Basic problem:

"Out of X total (genes/proteins) in a category, Y were (differentially expressed/selected). How significant is that?"

Answer: Fisher's Exact test, using hypergeometric distribution.

Fisher's exact test

Example. Are my differentially expressed (DE) genes enriched for angiogenesis (Ang) related genes?

Requires a **contingency table**:

	Ang	Not Ang	Total
DE	35	165	200
Not DE	150	12000	12150
Total	185	12165	12350

Overview: enrichment analysis

- Map probes to annotations (possibly via intermediate IDs)
- 2. Count annotations:
 - within selected (DE) probes
 - in all probes tested
- 3. Get significance via Fisher's exact (or other) test
- 4. Map annotation IDs to annotation names
- 5. Wrap it all up in a data frame
- 6. Perform multiple hypothesis correction

Gene Ontology

Gene Ontology Evidence Codes

GO Evidence Code Decision Tree

DAVID: Easy GOEA

http://david.abcc.ncifcrf.gov

DAVID: Easy GOEA

DAVID: Easy GOEA

