

Cross Language Prediction of Vandalism on Wikipedia using Article Views and Revisions

Khoi-Nguyen Tran and Peter Christen

Research School of Computer Science
The Australian National University
{khoi-nguyen.tran, peter.christen}@anu.edu.au

PAKDD 2013 - Gold Coast, Australia

Introduction

- Vandalism is a major issue on Wikipedia
 - 2% of revisions (identified by contributors)
- Traces of malicious behaviour in
 - Edit logs (revisions data set)
 - Access logs (pagecounts data set)
- Why cross language?
 - Relatively fewer contributors for non-English
 - Variety of vandalism patterns

Wikipedia Data Sets

- Languages: English, German
- Revision Data Set
 - Captures all edits made
 - Commonly used for research
- Article Views (per hour)
 - Count of requests per article for each hour
 - Available since Dec 2007
 - Few research papers use this data

Vandalised Revisions

English

- Articles: ~4 million
- Revisions: ~305 million
- All users: ~4 million
- All IPs: ~25 million

German

- Articles: ~1.4 million
- Revisions: ~65 million
 - All users: ~0.4 million
- All IPs: ~5 million
- First data dump of June 2012
- Vandalism identified in revision comment
 - E.g. "... rev(ert) ... vandalism ...", "rvv", etc.
- Choose language independent features

Article Views

English

- Articles: ~2.2 million
- Total: ~4,500 million

German

- Articles: ~0.8 million
- Total: ~1,500 million

- From January 2012 to May 2012
- View counts aggregated for each hour
- Matched with revisions to label views of vandalism
 - This shows "exposure" of vandalised revisions
- Used all available features

Combined Data Set

View Features

- Project name
- Article Title ⊗
- Hour timestamp ⊗
- O Number of requests ⊗
- O Bytes transferred ⊗

Revision Features

- Article title
- Hour timestamp
- X Anonymous edit 🛇
- X Minor revision ⊗
- X Size of comment ⊗
- X Size of article text ⊗
- X Vandalism (class label) ⊗
- Combined Features ⊗ Exposure to vandalism

Combined Data Set - Visualisation

No revision features for V1, so it is discarded

Views at time V(hour)

Combined Data Set

- Timespan of data sets
 - Training set: January to April 2012
 - Testing set: May 2012

English

- Train (Combined)
 - Views: ~270 million
 - Vandalised: ~6 million
- Test (Combined)
 - Views: ~100 million
 - Vandalised: ~2 million

German

- Train (Combined)
 - Views: ~140 million
 - Vandalised: ~85,000
- Test (Combined)
 - Views: ~55 million
 - Vandalised: ~40,000

Experimental Setup

- Balanced data sets with under sampling
 - English
 - Training set: ~6 million samples of each class
 - Testing set: ~2 million samples of each class
 - German
 - Training set: ~85,000 samples of each class
 - Testing set: ~40,000 samples of each class
- Selected features of both data sets (revisions, views); all features (combined)

Experimental Setup

- Train models in one language, then classify on the other language (e.g. en-de)
- Scikit-learn toolkit
 - Decision Trees (DT)
 - Random Forest (RF)
 - Gradient Tree Boosting (GTB)
 - Stochastic Gradient Descent (SGD)
 - Nearest Neighbour (NN)

Experimental Results

Revisions Data Set - F1-Score

Experimental Results

Views Data Set - F1-Score

Experimental Results

Combined Data Set - F1-Score

Discussion

- Vandalism may have low invariants in behaviour across languages
- Cross Language Advantages
 - No significant loss in prediction quality when applied to another language
 - Useful for languages with few contributors and identified cases of vandalism
 - Article views data set is relatively simpler and provides reasonable prediction quality

Discussion

- Limitations
 - Few features considered
 - No analysis of revision content
 - Few types of classifier
 - Size of combined data set may be much larger than necessary
- Article views data sets may offer new vandalism patterns

Conclusion

- Demonstrated cross language prediction of vandalism
- Language independent features
- Developed 3 data sets
 - Article revisions
 - Article views
 - Combined

Conclusion

- Within the same language
 - High results: 87% F1-score
- Across languages
 - High results: 83% F1-score
- No significant loss of prediction quality across languages
- Gradient Tree Boosting showed generally best performance, but time consuming

Future Work

- Expand timespan of data set
- Apply to more languages
- Use more features from selection and generation
- Use other data balancing techniques
- Use this technique to feed results into more complex text based detectors

Thank You!

Conclusions

- Models trained in one language applied to another language
- High prediction results, but small loss in prediction quality

Future Work

- More timespans, languages, features
- Other data balancing techniques
- Combine this technique with text based detectors

Contact: kndtran@cs.anu.edu.au

More info: kndtran.com

EXTRA SLIDES

Data Set Comparison - F1 Score Classifier: DT

Data Set Comparison - F1 Score Classifier: RF

Data Set Comparison - F1 Score Classifier: GTB

Data Set Comparison - F1 Score Classifier: SGD

Data Set Comparison - F1 Score Classifier: NN

Combined Data Set - Visualisation

Thus, we have the combined features:

--5 O5 O5 X5 X5 X5 X5
--6 O6 O6 X5 X5 X5 X5
--7 O7 O7 X5 X5 X5 X5
--8 O8 O8 X9 X9 X9 X9
--9 O9 O9 X9 X9 X9 X9