Combinatorics

· mathematics of counting things / arrange objects in certain condition.

L different combinations.

ABCD etc.

BACD CABD.

factorials

$$\frac{16!}{14! \cdot 3!} = \frac{16 \cdot 15}{3 \cdot 2 \cdot 1} = 40.$$

$$\frac{(n+1)!}{(n+1)!} = \frac{(n+1)\cdot n \cdot (n+1)!}{(n+1)!} = n^2 + n$$

Fundamental Countiny Principle (Basic counting principle)

	_			700
Suppose:	chicken salad		chips	water
	Becf S	salad	fries	coke.
	54(m=n	solad	onion Fings	

3 choices x 3 choices x 2 choices = 18 different combinations.

Total no. of outcomes = axbxcx...

a, b, c,... = heays of doing things.

* Events must not be dependant on each other.

events are dependant: Addition principle must be used

eg: 2 pants

4 Shirts

M

L.

if wear M pants, cannot wear

A,B,C,D.

combination.

(1 x 3) + (1 x 4) = 7 outcomes possible. M

Permutations

- · how many ways to arrange something / satisfy particular condition.
- · order is important. eg: Lock combination us ingredients (order wocsn't (order matters)

case 1: repetition exist

r = repetition.

C 10 digits

case 2: repetition not allowed

. once ensice used, total number of choices reduce by 1.

". Ui

$$P(n,r) = \frac{n!}{(n-r)!}$$
, $r = No. of options selected.$

eg: out of a choices, only & choices are

selected.

combinations

· like permutation but order does not matter.

eg: lattery, order of no. does not matter.

case 1: repetition not allowed

selected

case 2: repetition allowed

$$C(U'K) = \frac{k! (U-I)!}{(K+U-I)!}$$

Total combination possible

Pigeonhole Principle

-used extensively in a lot of domains of mathematics.

· if n items put into m containers, n > m at least one container must contain > 1 item.

eglot usage:

Suppose cabinet with Blue & Green gloves.

minimum no. of gloves to draw to get matching pair = 3.

eg 2: 366 people needed to get displicate birthday At least.

Pascal Triangle

counting

1 Numbers . symmetric about center.

the Etriansular Numbers.

16 1 4 6 4 1

321 5 10 10 5 1

combination result from Pascal Triangle:

 $C(n,k) = \frac{n!}{k!(n-k)!}$ (repetition not allowed)