Dynamic Neural Fields for Learning Atlases of 4D Fetal MRI Time-series

Z. Chi*², Z. Cong*², C. J. Wang¹, Y. Liu¹, E. A. Turk³, P. E. Grant^{3,4}, S. M. Abulnaga^{4,5}, P. Golland¹, N. Dey¹

Spatiotemporal Fetal MRI Analysis Setup

Fetal BOLD MRI time-series

Track nutrient transfer from mother to fetus

Strong fetal motion

Deformable registration required

Group-wise registration does not scale

- Infeasible computation
- Incorrect deformation model assumption

Dynamic neural fields with hash encoding for fast spatiotemporal atlasing

Intensity Estimation

Image: *S. Joshi, 2002*

Method

- Jointly learn subject-specific registration network and atlas
- Estimate warps and atlas intensities using HashMLPs
- Estimate locally rigid and diffeomorphic warps
- Trained with regularized registration loss

Losses

 $|I(\mathbf{x},t) - \hat{I}(\mathbf{x},t)| + \lambda_1 ||\mathbf{u}(\mathbf{x})||_2 + \lambda_2 ||\bar{\mathbf{u}}(\mathbf{x})||_2^2 + \lambda_3 ||\operatorname{div}(\mathbf{u}(\mathbf{x}))||^2 + \lambda_4 \operatorname{TV}(\mathbf{v}_{\mathrm{intensity/static}})$

registration

small & central displacements

locally rigid warps

sharp appearance

Experiments

112 x 112 x 80 (3 mm³)

- 2 subj. for development
- 9 for held-out testing
- 78—146 time points/subj.

Baselines

Data

- ANTs SyGN (Avants, '10) Iterative Optimization
- AtlasMorph (Dalca, '19) Unsupervised DL

Results

- 5.5-7.4X faster convergence
- Comparable atlas and registration quality
- **Enables processing** hundreds of subjects

Limitations

- Lower accuracy when baselines trained fully.
- Sparse temporal sampling unaccounted currently.

Registration accuracy

Deformation Characteristics

Speed

	LNCC (\uparrow)	Wt. Dice (↑)	$\ \mathbf{u}(\mathbf{x})\ _2$ (\downarrow)	$ J_{m{arphi}} $	% folds (\downarrow)	Runtime (\downarrow)
Unaligned	0.392(0.073)	0.80(0.05)	-	-	-	-
SyGN [7]	0.528(0.075)	0.91 (0.02)	0.0227(0.0035)	1.000(0.000)	0	12hrs / 96-core CPU
AtlasMorph [10]	0.531(0.079)	0.90(0.02)	0.0083 (0.0014)	1.004(0.003)	0	16hrs / A6000 GPU
Ours	0.579 (0.081)	0.88(0.02)	0.0183(0.0067)	1.004(0.013)	0.01(0.01)	2.2 hrs / A6000 GPU
(- SVF)	0.503(0.081)	0.85(0.04)	0.0096(0.0021)	1.006(0.010)	0.04(0.02)	1.1hrs / A6000 GPU
(- Divergence)	0.579(0.078)	0.87(0.02)	0.0200(0.0063)	1.013(0.012)	0.06(0.04)	1.5hrs / A6000 GPU
(- Intensity field)	0.578(0.083)	0.88(0.02)	0.0209(0.0086)	1.000(0.018)	0.01(0.01)	2.2hrs / A6000 GPU

