APPENDIX

A. Proof of Property 1

Proof. We prove by contradiction. Suppose there are two distinct $(\mathcal{F}, \lambda, k)$ -FoCores C and C'. According to Definition 2, for all $u \in C$ ($u \in C'$ resp.), we have $deg_C(u, l) \geq k$ ($deg_{C'}(u, l) \geq k$ resp.) on at least λ layers including \mathcal{F} . Therefore, for all $v \in C \cup C'$, we have $deg_{C \cup C'}(v, l) \geq \max(deg_C(v, l), deg_{C'}(v, l)) \geq k$ on at least λ layers including \mathcal{F} , so $C \cup C'$ is also a $(\mathcal{F}, \lambda, k)$ -FoCore. It contradicts to the maximality of C and C'. Thus, the property holds. \square

B. Proof of Property 2

Proof. Let v be an arbitrary vertex in $C_{\mathcal{F},\lambda}^{k+1}$. By Definition 2, v has at least λ support layers w.r.t. the minimum degree threshold k+1. Certainly, these layers support v w.r.t. the minimum degree threshold k. Moreover, in the induced subgraph $G[C_{\mathcal{F},\lambda}^k]$, the degree of v on each focus layer $l \in \mathcal{F}$ is at least k+1, which is certainly greater than k. Therefore, all vertices in $C_{\mathcal{F},\lambda}^{k+1}$ satisfy the constraints specified in Definition 2 w.r.t. the parameters \mathcal{F} , λ and k. Due to the maximality and the uniqueness of $C_{\mathcal{F},\lambda}^k$ (Property 1), we have $C_{\mathcal{F},\lambda}^{k+1} \subseteq C_{\mathcal{F},\lambda}^k$. \square

C. Proof of Property 3

Proof. Let $C_1=C_{\mathcal{F}_1,\lambda_1}^k$ and $C_2=C_{\mathcal{F}_2,\lambda_2}^k$. By Definition 2, every vertex $v\in C_2$ has at least k neighbors on at least λ_2 layers (of course, on at least λ_1 layers), so C_2 satisfies the background constraint of the $(\mathcal{F}_1,\lambda_1,k)$ -FoCore. By Definition 2, every vertex $v\in C_2$ satisfies $deg_{C_2}(v,l)\geq k$ for all $l\in\mathcal{F}_2$ (certainly, for all $l\in\mathcal{F}_1$), so C_2 also satisfies the focus constraint of the $(\mathcal{F}_1,\lambda_1,k)$ -FoCore. Due to the maximality of C_1 , we have $C_2\subseteq C_1$. Thus, the property holds.

D. Proof of Theorem 1

Proof. As will be presented in Section III, there exists algorithms that solve the FoCore decomposition problem in $f(|L|) \cdot |E|^{O(1)}$ time, where f is a function of |L| that is independent of |E|. Thus, the theorem holds.

E. Proof of Lemma 1

Proof. Let $k_1=cn_{\mathcal{F}_1,\lambda_1}(v)$ and $k_2=cn_{\mathcal{F}_2,\lambda_2}(v)$. We have $v\in C^{k_1}_{\mathcal{F}_1,\lambda_1}(v)$ and $v\in C^{k_2}_{\mathcal{F}_2,\lambda_2}(v)$. By Definition 4, k_1 is the maximum k such that $v\in C^k_{\mathcal{F}_1,\lambda_1}$. Since $(\mathcal{F}_1,\lambda_1)\sqsubseteq (\mathcal{F}_2,\lambda_2)$, we have $C^{k_2}_{\mathcal{F}_2,\lambda_2}(v)\subseteq C^{k_2}_{\mathcal{F}_1,\lambda_1}(v)$ by Property 3, so $v\in C^{k_2}_{\mathcal{F}_1,\lambda_1}(v)$. Thus, we have $k_1\geq k_2$.

F. Proof of Lemma 2

Proof. We prove the lemma by considering the above 3 cases: Case 1: When $\mathcal{F}=\emptyset$, $\lambda=1$ and k=1, we set R=V, so $C^k_{\mathcal{F},\lambda}\subseteq V=R$.

Case 2: When $(\mathcal{F},\lambda) \neq (\emptyset,1)$ and k=1, we have $R=\bigcap_{(\mathcal{F}',\lambda')\sqsubseteq (\mathcal{F},\lambda)} C^k_{\mathcal{F}',\lambda'}$. According to Property 3, we have $C^k_{\mathcal{F},\lambda}\subseteq C^k_{\mathcal{F}',\lambda'}$, so $C^k_{\mathcal{F},\lambda}\subseteq R$.

Case 3: When k > 1, we have $R = C_{\mathcal{F},\lambda}^{k-1}$. According to Property 2, we have $C_{\mathcal{F},\lambda}^k \subseteq R$.

G. Proof of Theorem 2

Proof. (Necessity) If $cn_{\mathcal{F},\lambda}(v)=k$, we have $v\in C^k_{\mathcal{F},\lambda}$ and $|N(v)\cap C^k_{\mathcal{F},\lambda}|\geq k$. For all $w\in N(v)\cap C^k_{\mathcal{F},\lambda}$, we have $cn_{\mathcal{F},\lambda}(w)\geq k$, so the condition is met. Next, we prove by contradiction that k is the largest integer that satisfies the condition. Suppose k'>k also satisfies the condition. Let $U\subseteq N(v)$ be the set of vertices that satisfy the condition w.r.t. k'. For $w\in U$, let C_w be the (\mathcal{F},λ,k') -FoCore containing w. We have that $\bigcup_{w\in U} C_w \cup \{v\}$ forms a (\mathcal{F},λ,k') -FoCore, so $cn_{\mathcal{F},\lambda}(v)=k'$, which contradicts with the fact that $cn_{\mathcal{F},\lambda}(v)=k$.

(Sufficiency) For each vertex $u \in N(v)$ that satisfies the condition, let C_u be the (\mathcal{F},λ,k) -FoCore containing u. Consider $U = \bigcup C_u \cup \{v\}$. For all vertex $w \in U$, we have $deg_{G[U]}(w,l) \geq k$ for all $l \in \mathcal{F}$, and w has at least λ support layers in G[U], so $v \in U \subseteq C^k_{\mathcal{F},\lambda}$. Since there is no k' > k that satisfies the condition, we have $v \notin C^{k'}_{\mathcal{F},\lambda}$. Thus, $cn_{\mathcal{F},\lambda}(v) = k$.

H. Proof of Lemma 3

Proof. By the definition of C^{μ} , C^{μ} is a $(\mathcal{F}_{\mu}, \lambda_{\mu}, k_{\mu})$ -FoCore, where $\mathcal{F}_{\mu} = \{l^{\mu}\}$, $\lambda_{\mu} = 1$, and k_{μ} is the maximum k such that the $(\mathcal{F}_{\mu}, \lambda_{\mu}, k)$ -FoCore is not empty. Since C^* is the densest FoCore, we have $\rho(C^*) \geq \rho(C^{\mu})$.