Ejercicios tipo de Sistemas de ecuaciones lineales, matrices y determinantes

Ejercicio 1. Resuelve los siguientes sistemas de ecuaciones lineales considerados en \mathbb{Q} , \mathbb{Z}_3 , \mathbb{Z}_5 y \mathbb{Z}_7 .

1.

$$\begin{cases} x_2 - 2x_3 = -4 \\ x_1 + x_2 - x_3 = 0 \\ 2x_1 - x_2 + x_3 = 3 \end{cases}$$

2.

$$\begin{cases} x - y + z + t + v = 0 \\ x + y + z + t - v = 0 \\ -x - y + z + t - v = 0 \end{cases}$$

3.

$$\begin{cases} x_1 + x_2 + x_3 = 2 \\ x_1 + 2x_2 + x_3 = 1 \\ x_2 = 3 \end{cases}$$

4.

$$\begin{cases} x + y - z + t - v = 0 \\ x - y + z + t + v = 1 \\ x + t = 1 \end{cases}$$

Para los sistemas indeterminados calcula el número de soluciones.

Ejercicio 2. Dado el sistema de ecuaciones

$$\begin{cases} x + 3y - 2z = 3\\ x + y + 2z = 0\\ 3x - y - z = -1 \end{cases}$$

discútelo considerando los coeficientes en \mathbb{Z}_5 , \mathbb{Z}_7 y \mathbb{Q} . En el caso de que sea compatible, encuentra explícitamente todas las soluciones.

Ejercicio 3. Calcula la forma normal de Hermite por filas y el rango de la siguiente matriz, vista con coeficientes en \mathbb{Z}_2 , \mathbb{Z}_3 , \mathbb{Z}_5 y \mathbb{Q} .

$$\begin{pmatrix} 1 & 3 & -2 & 3 \\ 1 & 1 & 2 & 0 \\ 3 & -1 & -1 & -1 \end{pmatrix}$$

Ejercicio 4. Comprueba que las matrices

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ y B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

1

son equivalentes, pero que no son equivalentes por filas ni equivalentes por columnas.

Ejercicio 5. Sea
$$A = \begin{pmatrix} 2 & 1 & 3 & 0 \\ 1 & 2 & 1 & 1 \\ 3 & 4 & 2 & 1 \end{pmatrix} \in \mathcal{M}_{3\times 4}(\mathbb{Z}_5).$$

- 1. Encuentra una matriz B tal que $A \cdot B = Id$.
- 2. Encuentra todas las matrices B que cumplan la propiedad anterior.
- 3. ¿Existe una matriz C tal que $C \cdot A = Id$?

Ejercicio 6. Calcula la inversa, cuando exista, de las siguientes matrices:

1.
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{K})$$
, donde \mathbb{K} es un cuerpo cualquiera.

2.
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{Z}_2), \ \mathcal{M}_3(\mathbb{Z}_3), \ \mathcal{M}_3(\mathbb{Q}).$$

3.
$$\begin{pmatrix} 1 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 1 & -1 & 0 & 1 \\ 1 & 0 & 4 & 2 \end{pmatrix} \in \mathcal{M}_4(\mathbb{Z}_3), \ \mathcal{M}_4(\mathbb{Z}_5)$$

Ejercicio 7. Calcula los siguientes determinantes (considerando las matrices con coeficientes en \mathbb{Q}):

1.

2.

3.

4.

$$\begin{vmatrix} -4 & 1 & 1 & 1 & 1 \\ 1 & -4 & 1 & 1 & 1 \\ 1 & 1 & -4 & 1 & 1 \\ 1 & 1 & 1 & -4 & 1 \\ 1 & 1 & 1 & 1 & -4 \end{vmatrix}$$

Ejercicio 8. Sea \mathbb{K} un cuerpo, y $a, b, c, d \in \mathbb{K}$. Calcula los siguientes determinantes:

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} \qquad \begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^3 & b^3 & c^3 & d^3 \end{vmatrix}$$

Ejercicio 9. Sea A la matriz

$$\begin{pmatrix} 2 & 3 & 0 & -2 \\ -3 & 1 & -2 & 0 \\ 0 & 0 & -3 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \in \mathcal{M}_4(\mathbb{Z}_p).$$

Encuentra los valores de p para los que la matriz A es singular.

Ejercicio 10. Sea $A = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 5 & 0 & \alpha & 2 \\ 3 & 0 & 5 & \alpha + 1 \\ 2 & 1 & 1 & 1 \end{pmatrix} \in \mathcal{M}_4(\mathbb{Z}_7)$. Estudia para qué valores del parámetro α la matriz A tiene inversa para el producto.

Ejercicio 11. Dado el sistema de ecuaciones con coeficientes en $\mathbb Q$

$$\begin{cases} x - \alpha y + (\alpha + 1)z = 4 \\ \alpha x + 2y + z = -1 \end{cases}$$

Discútelo según los valores del parámetro α , y resuélvelo para $\alpha = -1$.

Ejercicio 12. Calcula el rango de la siguiente matriz, con coeficientes en \mathbb{Z}_3 , según los valores de los parámetros \mathfrak{a} y \mathfrak{b} .

$$\begin{pmatrix} 1 & a & 0 & 1 \\ 2 & 1 & 1 & b \\ 0 & a & b & a+b \end{pmatrix}$$