Manual for Package: sediment-transport Revision 1:7M

Karl Kästner

August 11, 2020

Contents

1	@Grai	inSizeDistribution	1
	1.1	GrainSizeDistribution	1
	1.2	$assign_channel \ \dots $	1
	1.3	bimodality	1
	1.4	$\operatorname{export_csv}$	1
	1.5	export_shp	1
	1.6	$group_channels \dots \dots$	1
	1.7	group_curvature	2
	1.8	group_histograms	2
	1.9	load_coordinates	2
2	@Heri	$\operatorname{mite_profile}$	2
	2.1	Hermite_profile	2
	2.2	fit	2
	2.3	predict	2
	2.4	regmtx	2
	2.5	transform	2
3	@Nod	al_Point	3
	3.1	Adot	3
	3.2	Nodal_Point	3
	3.3	Qs_in	3
	3.4	Qs_out	3
	3.5	$derive_jacobian \dots \dots$	3
	3.6	discharge	3
	3.7	geometry	3
	3.8	jacobian	4
	3.9	phase_diagram	4
	3.10	phase_diagram_wang	4

	3.11 3.12	solve			
4		abolic_Constant_Profile 4			
4	@Fara 4.1	Parabolic_Constant_Profile			
	4.1				
	4.2				
	-	r			
	4.4	regmtx			
	4.5	transform			
5		se_Profile 5			
	5.1	Rouse_Profile			
	5.2	fit			
	5.3	mean_concentration			
	5.4	predict			
	5.5	regmtx			
	5.6	rouse_number			
	5.7	rouse_number_to_grain_diameter 6			
	5.8	set_parameters			
	5.9	transform			
6	sediment-transport				
	6.1	Exponential_SSC_Profile 6			
	6.2	adaptation_length_armanini			
	6.3	adaptation_length_bed			
	6.4	adaptation_length_flow			
	6.5	angle_of_repose			
	6.6	bar_mode_crosato			
	6.7	bed_layer_thickness			
	6.8	bed_load_einstein			
	6.9	bed_load_engelund_fredsoe			
	6.10	bed_load_transport_mpm			
	6.11	bed_load_transport_rijn			
	6.12	bed_load_transport_wu			
	6.13	bedform_dimension_rijn			
	6.14	bedform_roughness_rijn			
	6.15	bedform_roughness_rijn_2007			
	6.16	bedload_direction			
	6.17	bedload_layer_thickness_mclean			
	6.18	bedload_transport_ashida_michue_1972 8			
	6.19	bedload_transport_bagnold_1941			
	6.20	bedload_transport_bagnold_1973			
	6.21	bedload_transport_egashira			
	6.22	bifurcation_critical_aspect_ratio			
	~·				

6.23	chezy_einstein	9
6.24	$chezy_roughness_engelund_fredsoe \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	9
6.25	critical_grain_size	9
6.26	critical_shear_stress	9
6.27	critical_shear_stress_ratio	9
6.28	critical_shear_stress_wiberg	9
6.29	critical_shear_stress_wu	9
6.30	critical_shear_velocity	10
6.31	derive_combined_transport	10
6.32	derive_critical_grain_size	10
6.33	derive_mpm_foramtive_discharge	10
6.34	derive_suspended_sediment_concentration_profile	10
6.35	derive_suspended_sediment_concentration_profiles	10
6.36	dimensionless_grain_size	10
6.37	dune_celerity	10
6.38	dune_dimension_allen_1978	10
6.39	dune_dimension_bradley_venditti	11
6.40	dune_dimension_gill	11
6.41	dune_dimension_julien_klaasen_1978	11
6.42	dune_dimension_yalin	11
6.43	dune_height_karim	11
6.44	dynamic_shear_stress	11
6.45	formative_discharge	11
6.46	fractional_transport_engelund_hansen	11
6.47	grain_roughness_mpm	11
6.48	grain_roughness_nikuradse	12
6.49	grain_roughness_rijn	12
6.50	grain_roughness_wu	12
6.51	grain_size_from_shear_stress	12
6.52	hiding_exposure_wu	12^{-2}
6.53	hydraulic_radius	12^{-2}
6.54	integration_factor_wright_parker	12
6.55	matching_level_mclean	12
6.56	mobility_parameter_rijn	12
6.57	mpm2diameter	$\frac{12}{12}$
6.58	mpm_solve_for_dm	13
6.59	nikuradse_roughness_length	13
6.60	reference_concentration_einstein	13
6.61	reference_concentration_mclean	13
6.62	reference_concentration_mclean_2	13
6.63	reference_concentration_rijn	13
6.64	reference_concentration_wright_parker	13
6.65	reference_concentration_zyserman_fredsoe	13
6.66	reference_height_riin	13

	6.67	reference_level_mclean
	6.68	reference_to_flux_averaged_concentration_rijn
	6.69	roughness_height_mclean
	6.70	roughness_height_mclean_1972
	6.71	saltation_layer_thickness
	6.72	sediment_load_ART_syvitski_2003
	6.73	sediment_load_ART_syvitski_2003b
	6.74	sediment_transport_directed
	6.75	sediment_transport_relation_fit
	6.76	sediment_transport_relation_predict
	6.77	sediment_transport_scale
	6.78	sediment_transport_waves
	6.79	settling_time_constant_eddy_viscosity
	6.80	settling_velocity
	6.81	settling_velocity_to_diameter
	6.82	shear2shields
	6.83	shear_velocity_mclean
	6.84	shields_number
	6.85	skin2total_stress_ratio
	6.86	skin_2_total_friction_eh
	6.87	stratification_parameter_rijn
	6.88	stratification_parameter_wright_parker
	6.89	stratification_profile_mclean
	6.90	suspended_grain_size
	6.91	suspended_grain_size_non_linear
	6.92	suspended_grain_size_rijn
	6.93	suspended_sediment_adaptation_length_claudin 17
	6.94	suspended_transport_mclean
	6.95	suspended_transport_rijn
	6.96	suspended_transport_van_rijn_simplified_1984 17
	6.97	suspended_transport_wright_parker
	6.98	suspended_transport_wu 18
	6.99	suspension_parameter
7	test	18
	7.1	test_Rouse_profile_fit
	7.2	test_adaptation_length_bed
	7.3	test_bed_load_transport_rijn
	7.4	test_bedform_roughness_rijn_2007 18
	7.5	test_bedload_transport_mpm
	7.6	test_critical_shear_stress
	7.7	test_sediment_transport
	7.8	test_sediment_transport_engelund_hansen_1
	7.9	test_sediment_transport_engelund_hansen_2 19

	7.10	test_sediment_transport_karim
	7.11	test_sediment_transport_rijn
	7.12	$test_settling_velocity_to_diameter \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
8	sedime	ent-transport 19
	8.1	test_sediment_transport_relation
	8.2	test_suspended_transport_mclean
	8.3	test_suspended_transport_wright_parker
	8.4	test_total_transport_engelund_hansen 20
	8.5	test_total_transport_yang
	8.6	total2skin_stress_ratio
	8.7	total_2_skin_friction
	8.8	total_roughness_engelund_fredsoe
	8.9	total_roughness_engelund_fredsoe2
	8.10	total_roughness_karim
	8.11	total_roughness_karim2
	8.12	total_roughness_length_mclean
	8.13	total_roughness_parker
	8.14	total_roughness_rijn
	8.15	total_roughness_yalin
	8.16	total_to_skin_stress_kishi
	8.17	total_transport_ackers_white
	8.18	total_transport_bagnold
	8.19	total_transport_eh_distribution
	8.20	total_transport_engelund_hansen
	8.21	total_transport_engelund_hansen_2
	8.22	total_transport_karim
	8.23	total_transport_rijn
	8.24	total_transport_wu
	8.25	total_transport_yang
	8.26	transport_stage_mclean
	8.27	transport_stage_rijn
	8.28	vertical_ssc_profile_exponential
	8.29	vertical_ssc_profile_mclean
	8.30	viscosity_correction_sediment

1 @GrainSizeDistribution

1.1 GrainSizeDistribution

1.2	assign_channel
1.3	bimodality
1.4	${ m export_csv}$
1.5	$\operatorname{export_shp}$
1.6	$\operatorname{group_channels}$
1.7	${\tt group_curvature}$
1.8	$group_histograms$
1.9	$load_coordinates$
2	$@Hermite_profile$
2.1	Hermite_profile
⊿. 1	rierimite_prome

suspended sedimen profile in form of a hermite polynomial

2.2 fit

fit suspended sediment profile

2.3 predict

predict suspended sediment concentration

2.4 regmtx

regression matrix

2.5 transform

hermite profile

3 @Nodal_Point

3.1 Adot

ODE of the nodal point relation (time-derivative of branch cs-area)

3.2 Nodal_Point

Nodal point relation for bifurcations, according to Wang

3.3 Qs_in

sediment entering branches

3.4 Qs_out

sediment leaving branches

3.5 derive_jacobian

derive Jacobian of the nodal point relation

3.6 discharge

discharge through branches
there is a problem with this relation, as soon as the bed of one
 channel is perturbed,
the water level at the bifurcation changes, so the depth of the
 second channel is not
entirely independent

3.7 geometry

cross section geometry of branches

3.8 jacobian

jacobian of the nodal point relation semi-autogenerated

3.9 phase_diagram

phase diagram

3.10 phase_diagram_wang

phase diagram of Nodal point relation

3.11 solve

solve the nodal point relation for critical points

3.12 stability_analysis

staility analysis for a given configuration

4 @Parabolic_Constant_Profile

4.1 Parabolic_Constant_Profile

parabolic-constant profile

4.2 fit

fit the suspended sediment concentration profile

4.3 predict

predict suspended sediment concentration

4.4 regmtx

regression matrix

4.5 transform

transformation of vertical coordinate

5 @Rouse_Profile

5.1 Rouse_Profile

suspended sediment concentration profile

5.2 fit

fit the suspended sediment concentration profile

5.3 mean_concentration

5.4 predict

predict the suspended sediment concentration

5.5 regmtx

regression matrix

5.6 rouse_number

rouse number (suspension number) for given grain siye and shear velocity $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}\right) +\frac{$

5.7 rouse_number_to_grain_diameter

convert known rous number (suspension parameter) to grain size $\mbox{\tt diameter}$

5.8 set_parameters

5.9 transform

transform the vertical coordinate

6 sediment-transport

analysis and prediction of fluvial sediment transport and $\tt morphodynamics$

- 6.1 Exponential_SSC_Profile
- 6.2 adaptation_length_armanini
- 6.3 adaptation_length_bed

adaptatoion lenght of bed morphology

6.4 adaptation_length_flow

adaption length of the flow

- 6.5 angle_of_repose
- 6.6 bar_mode_crosato

bar mode of a river according to crosato

- 6.7 bed_layer_thickness
- 6.8 bed_load_einstein

bed load transport according to einstein jr.

6.9 bed_load_engelund_fredsoe

bed load transport according to engelund and fredsoe

6.10 bed_load_transport_mpm

bed load transport rate according to meyer-peter-mueller

6.11 bed_load_transport_rijn

```
bed load transport
method of van Rijn (1984)

function [Q_b q_b Phi_b] = bed_load_transport_rijn(C,d50,d90,U,d,b)

d50 [mm] (converted to m)

d : depth
b : width
```

6.12 bed_load_transport_wu

bed load transport according to Wu

6.13 bedform_dimension_rijn

```
bed form dimensions
cf. rijn 1984 iii
```

6.14 bedform_roughness_rijn

form drag according to van Rijn

6.15 bedform_roughness_rijn_2007

6.16	$bedload_direction$
bedlo	ad transport direction
6.17	$bedload_layer_thickness_mclean$
6.18	$bedload_transport_ashida_michue_1972$
6.19	$bedload_transport_bagnold_1941$
6.20	$bedload_transport_bagnold_1973$
6.21	$bedload_transport_egashira$
6.22	$bifurcation_critical_aspect_ratio$
	cal aspect ratio of a bifurcation redolfi and pittaluga
6.23	${ m chezy_einstein}$
cheze	y coefficient according to Einstein
6.24	$chezy_roughness_engelund_fredsoe$

chezy rougness according to engelund and fredsoe

6.25 critical_grain_size

critical grain size for a given shear velocity

6.26 critical_shear_stress

critical shear Stress

6.27 critical_shear_stress_ratio

critical shields parameter
aka critical shear stress ratio
aka shields curve

6.28 critical_shear_stress_wiberg

6.29 critical_shear_stress_wu

critical shear stress, according to wu

6.30 critical_shear_velocity

critical shear velocity

6.31 derive_combined_transport

6.32 derive_critical_grain_size

6.33	$derive_mpm_foramtive_discharge$
6.34	$derive_suspended_sediment_concentration_profile$
6.35	$derive_suspended_sediment_concentration_profiles$
6.36	${\bf dimensionless_grain_size}$
dimen	sionless grain size
6.37	${\bf dune_celerity}$
6.38	$dune_dimension_allen_1978$
6.39	$dune_dimension_bradley_venditti$
6.40	${\bf dune_dimension_gill}$
6.41	$dune_dimension_julien_klaasen_1978$
6.42	$dune_dimension_yalin$

6.43	dune_height_karim
6.44	$dynamic_shear_stress$
dynam	ic shear stress
6.45	$formative_discharge$
6.46	$fractional_transport_engelund_hansen$
fract	ional sediment transport according to engelund and hanser
6.47	$grain_roughness_mpm$
6.48	$grain_roughness_nikuradse$
6.49	$grain_roughness_rijn$
grain	roughness (skin friction) according to van Rijn
6.50	$grain_roughness_wu$

6.51 grain_size_from_shear_stress

6.52	$hiding_exposure_wu$
6.53	$hydraulic_radius$
6.54	$integration_factor_wright_parker$
6.55	$matching_level_mclean$
6.56	mobility_parameter_rijn
6.57	mpm2diameter
6.58	$mpm_solve_for_dm$
6.59	$nikuradse_roughness_length$
6.60	$reference_concentration_einstein$
6.61	reference_concentration_mclean

6.62	$reference_concentration_mclean_2$
refer	ence concentration according to smith and mclean
6.63	$reference_concentration_rijn$
6.64	$reference_concentration_wright_parker$
6.65	$reference_concentration_zyserman_fredsoe$
6.66	reference_height_rijn
6.67	reference_level_mclean
6.68	$reference_to_flux_averaged_concentration_rijn$
6.69	$roughness_height_mclean$
6.70	$roughness_height_mclean_1972$
6.71	saltation layer thickness

6.72	$sediment_load_ART_syvitski_2003$
6.73	$sediment_load_ART_syvitski_2003b$
6.74	${\bf sediment_transport_directed}$
direc	ted sediment transport
6.75	$sediment_transport_relation_fit$
6.76	${\bf sediment_transport_relation_predict}$
6.77	$sediment_transport_scale$
6.78	$sediment_transport_waves$
sedim	ent transport by waves
6.79	$settling_time_constant_eddy_viscosity$

6.80 settling_velocity

Settling velocity
5.23d in julien-2010
settling velocity according to cheng
settling velocity in water
stokes settling velocity
d: [mm] diameter of sediment particle
ws: [m/s] settling velocity
signed ws < 0: falling
(Note: was R, radius in m)
valid for small particles

6.81 settling_velocity_to_diameter

invert settling velocity to diameter

6.82 shear2shields

6.83 shear_velocity_mclean

6.84 shields_number

normalized shear stress, shear stress ratio

6.85 skin2total_stress_ratio

6.86 skin_2_total_friction_eh

skin friction to total friction conversion according to engelund
 and hansen
function [theta,C] = skin_2_total_friction_eh(theta_t,Ct)

6.87 stratification_parameter_rijn

6.88 stratification_parameter_wright_parker

6.89 stratification_profile_mclean

6.90 suspended_grain_size

suspended grain size distribution based on bed material grain size distribution $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

assumes that probability of suspension is inverse proportional to $% \left(1\right) =\left(1\right) \left(1\right)$

as in Engelund-Hansen transport relation

- no hiding effects considered
- no threshold for large grains applied
- no flocking considered

note: actual distribution varies with the depth

d : [1xnd] grain size in arbitrary units (on linear, not on log scale)

 h_bed : [nsxnd] fractions of sediment of size d

6.91 suspended_grain_size_non_linear

suspended grain size distribution based on bed material grain size distribution $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

assumes that probability of suspension is inverse proportional to grain diameter

- as in Engelund-Hansen transport relation
- no hiding effects considered
- no threshold for large grains applied
- no flocking considered

note: actual distribution varies with the depth

d : [1xnd] grain size in arbitrary units (on linear, not on log scale)

h_bed : [nsxnd] fractions of sediment of size d

6.92 suspended_grain_size_rijn

grain size of the suspended sediment according to van rijn, empirical

6.93 suspended_sediment_adaptation_length_claudin

6.94 suspended_transport_mclean

```
vertical profile of the suspended sediment according to McLean u := us/kappa*log(z/z0);
I = 1/(int_a^h c dz int_a^h u dz) int_a^h c u dz
```

6.95 suspended_transport_rijn

suspended load transport according to van Rijn

6.96 suspended_transport_van_rijn_simplified_1984

6.97 suspended_transport_wright_parker

6.98 suspended_transport_wu

suspended sediment transport according to widthu

 ${\bf 6.99}\quad {\bf suspension_parameter}$

7.9	$test_sediment_transport_engelund_hansen_2$			
7.10	$test_sediment_transport_karim$			
7.11	$test_sediment_transport_rijn$			
7.12	$test_settling_velocity_to_diameter$			
8 8	sediment-transport			
analysis and prediction of fluvial sediment transport and morphodynamics				
8.1	$test_sediment_transport_relation$			
8.2	$test_suspended_transport_mclean$			
8.3	$test_suspended_transport_wright_parker$			
8.4	$test_total_transport_engelund_hansen$			
8.5	$test_total_transport_yang$			

8.6	$total2skin_stress_ratio$
8.7	$total_2_skin_friction$
8.8	$total_roughness_engelund_fredsoe$
rougl	nness lenght according to engelund and fredsoe
8.9	$total_roughness_engelund_fredsoe2$
8.10	$total_roughness_karim$
8.11	total_roughness_karim2
8.12	$total_roughness_length_mclean$
8.13	$total_roughness_parker$
8.14	$total_roughness_rijn$
tota	l roughness according to van rijn

8.15	total.	$oldsymbol{oldsymbol{ iny roughness}}$	$\mathrm{ss_yalin}$

8.16 total_to_skin_stress_kishi

8.17 total_transport_ackers_white

8.18 total_transport_bagnold

total sediment transport accoding to bagnold

$8.19 \quad total_transport_eh_distribution$

total sediment transport according to engelund hansen for a given graqin size distribution

8.20 total_transport_engelund_hansen

total sediment transport according to Engelund and Hansen

$8.21 \quad total_transport_engelund_hansen_2$

sediment transport according to engelund and hansen

8.22 total_transport_karim

8.23 total_transport_rijn

total sediment transport according to van rijn

8.24 total_transport_wu

total sediment transport according to wu 2000b

8.25 total_transport_yang

8.26 transport_stage_mclean

transport stage according to McLean

8.27 transport_stage_rijn

transport stage as defined by van Rijn

8.28 vertical_ssc_profile_exponential

8.29 vertical_ssc_profile_mclean

vertical profile of the suspended sediment according to McLean

8.30 viscosity_correction_sediment