

#### Plan du cours – Les blocs

(Bloc1)

Introduction: Le besoin, concepts et définitions



(Bloc 5) Architecture et Méta données

(Bloc 6) Définition des besoins et gestion de projet

(Bloc 7) Techniques de réalisation et opération





#### Lectures relatives

#### • Suggéré:

Data Warehousing Fundamentals, A Comprehensive Guide for IT Professionals,

Paulraj Ponniah

- Chapitres 7 et 9

#### Annexes:

- Metadata Checklist
- Source to target data map
- Data source checklist
- Data source definitions
- Requirements Findings (template)

#### Concepts Clés du Bloc

- Architecture de l'entrepôt (en <u>4 sections</u> + Méta information)
- La méta-donnée est au cœur de l'architecture.

#### Éléments d'architecture de l'E. D.





### **ARCHITECTURE**

#### Architecture - Schéma

#### High Level Warehouse Technical Architecture



#### **Architecture – vue différente**



BI = business intelligence; DBMS = database management system; DW = data warehouse; ETL = extraction, transformation and loading; LDAP = Lightweight Directory Access Protocol; ODS = operational data store; OLAP = online analytical processing; RDBMS = relational database management system

Source: Gartner (August 2011)



#### **Architecture - Efforts**

- Trouver et décrire les sources de données
- Documenter la définition commune (acceptée et comprise par tous)
- Recouper l'information des sources et le besoin d'agrégation.
- Définir la structure dans la quelle la donnée doit se retrouver
- Prévoir la transformation de la donnée (macro)
- Définir le comportement de mise à jour et fréquence requise (+ Gestion)
- Déterminer quelle information sera diffusée à qui, sous quelle forme
- Voir détail au chap. 8

#### **Architecture - raisons**

Communication

• Planification

• Flexibilité et maintenance

Apprentissage

• Mesure de productivité et d'avancement

#### **Architecture - Niveaux**

| Niveau de      |                             | Technique                    | (comment)                    |                             |
|----------------|-----------------------------|------------------------------|------------------------------|-----------------------------|
| détail         | Données (quoi)              | Arrière boutique             | Étalage                      | Insfrastructure (où)        |
| Besoins        | Quelle information est      | Comment trouver la           | Quelles sont les enjeux      | De quel hardware et         |
| d'affaire et   | nécéssaire pour prendre de  | source, la transformer et la | d'affaire?                   | software avons-nous         |
| vérification   | meilleur décisions?         | rendre disponible?           | Comment les mesurer?         | besoin pour réussir?        |
|                | Les données actuelles       | Comment faiosns-nous         | Comment vousions-nous        | Qu'avons-nous déjà?         |
|                | peuvent-elles être          | présentement?                | analyser les données?        |                             |
|                | utilisables?                |                              |                              |                             |
| Modeles et     | MODÈLE DIMENSIONEL:         | Quels seront les             | Sous quelle forme de         | D,où viennent et où vont    |
| documents      | Quelles sons les entitées   | supermachés principaux?      | présentation pouvons nous    | les données?                |
|                | (faits et dimensions) qui   | Où seront-ils?               | rendre l'information         | Avons-nous les capacités    |
|                | composent cette             | Quoi transformer pour        | utilisable?                  | de traitement et            |
|                | information?                | quand?                       | Quelles analyses et          | chargement?                 |
|                | Comment les liées et les    |                              | rapports produire - avec     | Qui en est responsable?     |
|                | structurées?                |                              | quelles priorités?           |                             |
| Modèles        | MODÈLE LOGIQUE ET           | Quels standards et           | Quels sont les requis des    | Comment interagissent       |
| détaillés et   | PHYSIQUE: Quels sont les    | produits permettent le ETL   | rapports - Titres, colonnes, | ces logiciels et            |
| spécifications | éléments de données         | et la sauvegarde des         | rangées, filtres, etc        | développements?             |
|                | cibles?                     | données?                     | Qui les veux?                | Quels sont les API, appels, |
|                | Quelles sont les sources et | Quels sera le                | Quand?                       | modules, etc?               |
|                | les transformations pour    | développement requis et      | Mode de distribution?        |                             |
|                | atteindre la cible?         | les standards de             |                              |                             |
|                |                             | développement?               |                              |                             |
| Implantation   | Créer la BD, Index, Backups | Écrire les routines de ETL   | Implanter les outils de      | Installer et tester         |
|                | Documentation.              | En automatiser le            | rapport et d'analyse de      | l'infrastructure .          |
|                |                             | processus                    | l'information - défénier les | Connecter les sources et    |
|                |                             | Documentation.               | premiers rapports, former    | livrer l'information au     |
|                |                             |                              | les utilisateurs.            | poste de travail.           |
|                |                             |                              | Documentation.               | Documentation.              |

## L'ARCHITECTURE SELON L'APPROCHE

#### Approches d'implantation

• Big Bang (Top down)



| Avantages                                                                                                                                                                                                                           | Désavantages                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>•Vue Corporative, effort entreprise</li> <li>•Harmonie globale dans le design</li> <li>•Entrepôt bien structuré / infrastructure unique</li> <li>•Contrôle et gestion central</li> <li>•Grand impact rapidement</li> </ul> | <ul> <li>Long à réaliser/implanter</li> <li>Risque élevé</li> <li>Besoin de personnel avec vues globales multidisciplinaires</li> <li>Se lancer complètement sans preuve de concept.</li> </ul> |

Approche itérative par Supermarché(Bottom up)



| Avantages                                                                                                                                            | Désavantages                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Implantation rapide et plus facile<br/>de plus petits blocs</li> <li>Retour sur investissement rapide</li> <li>Preuve de concept</li> </ul> | •Vision en silo •Risque de répétition de données par sujet avec des définitions différentes (pas communes)                         |
| •Moins risqué •Permet à l'équipe d'apprendre et évoluer                                                                                              | <ul> <li>Perpétue la tradition des données<br/>corporativement irréconciliables</li> <li>Diversité d'interfaces et ETC.</li> </ul> |

#### Méthodes de réalisation

- « Top-Down » : Méthode lourde, contraignante et complète.
  - Conception de tout l'entrepôt (ie : toutes les étoiles) puis réalisation
  - Vision claire de l'entreprise et du projet
  - Implique: savoir à l'avance toutes les dimension et tous les faits de l'entreprise
- « **Bottom-Up** » : Simple, flexible mais souvent difficile d'intégration
  - Créer les étoiles une par une, par sujet
  - Les joindre jusqu'à obtention d'un véritable entrepôt avec une vision d'entreprise.
  - Travail d'intégration pour obtenir un entrepôt de données
  - Attention aux dimensions semblables avec définitions différentes
- « Middle-Out'' : Approche hybride. → Recommandée
  - Conception totale de l'entrepôt (du moins conceptuellement- Dimension s et faits)
  - Découper le conceptuel par éléments en commun et réaliser sujet par sujet.
  - Implique: Compromis de découpage (dupliquer des dimensions identiques pour des besoins pratiques).



# 4 ÉLÉMENTS DE L'ARCHITECTURE => MÉTA INFORMATION (5<sup>IÈME</sup> ÉLÉMENT)

## **1 - ETC**

#### **Cette section comprend**

- Sources
- Extraction
- Transformation
- Chargement

#### 3 approches

- Développement maison
  - Langage de programmation standards (Cobol, SQL, C, etc.)
  - Nouveaux standards interfaçage (XML)
- Les outils propriétaires
  - Outils complets par eux-mêmes
  - Utilise le produit sans programmation
- Les outils générateur de codes
  - Génère du code de programmation standard (Cobol, SQL, C, etc.)
  - Possibilité de programmation



#### **Outils ETC**

- Extraire les données des systèmes opérationnels
- Les transférer sur la machine informationnelle (« Staging ») par FTP, passerelle ou autres
- Les nettoyer
- Les décoder
- Les dériver
- Les agréger
- Les sommariser
- Les historiser
- •



## 2 - Entrepôt

#### **Architecture – Entrepôt (SGBD)**

- Modélisation
  - Modèle étoile
  - Flocon (hiérarchisation)
  - Multidimensionnelle (cubes)
- Approche
  - Big bang ou comptoirs (« data marts »)
  - Centralisé ou décentralisé

→ Voir Bloc 2

#### Modèles

#### Dimensions

- Noms
- Définition/Raison d'être
- Sources
- Type de changement
- Décisions
- Responsable
- Saisi par ?
- Faits
  - Comme dimensions +
  - Calculs
  - Additif, semi-additif, Non-additif

- Spécial dimensions
  - Hiérarchies d'attributs
  - Hiérarchies de dimensions
  - NàN

- Couches d'ajustements ?
  - Où
  - Champs touchés
  - Droits
  - Tracabilité



## 3 - Présentation

#### **Architecture utilisateurs**

- Objectifs:
  - Autonomie
  - Convivialité
  - Performance
  - Adapté

#### Outils d'accès

- Outils de base :
  - Méta-information
  - Navigateur
- Types d'outils :
  - Tableau de bord (indicateurs)
  - Multidimensionnel (OLAP, Tableaux croisés dynamiques)
  - Requêtes ad hoc
  - Rapports
  - Graphiques
  - Exploration ("Data Mining")
  - Navigation



## 4 – Gestion, Contrôle et Monitoring

#### **Architecture – Autres considérations (Gestion)**

- Gestion des horaires de tâches
- Alarmes et reprises
- Réseaux fédératifs (« Backbones »)
- Télécommunication (sécuriser les transferts et interrogations)
- Sécurité
  - Backups à différents niveaux (une relève n'est pas un backup)
  - Antivirus
  - Zone de traitement sécurisé
  - Extraction et confidentialité
- Sources externes d'information
- Routines d'entretien
- Optimisation et indexation

#### **Architecture – Autres considérations (Gestion)**

- Retour sur l'opérationnel (modifications sur ETC ou post-analyse)
- Intégration avec l'opération
- Support et ententes de services
- Plan de relève / Continuité des affaires



## MÉTA INFORMATION (5<sup>IÈME</sup> ÉLÉMENT)

## 5 - Méta données

#### **Définition**

« Méta Données: Ce sont toutes les données « physiques » et la connaissance à propos de l'entreprise et de ses procédés, des données, technologies, processus, règles et structure des données. »

David Marco

#### **David Marco**





- DMReview



#### **Définition (prise 2)**

- Données physiques
- Connaissances

#### À propos de

- Entreprise
- Procédés
- Données
- Technologies
- Processus
- Règles
- Structures des données

#### Méta données – Définition



- •OLTP
- •Historiques
- •Processus
- •Utilisations de l'information







#### Méta données



#### Méta données importantes

#### Définition de l'entrepôt

- Structure
- Schémas
- Localisation
- Etc.

#### Affaires/Business

- Propriété des données
- Définitions des termes
- Règles de calculs officiels
- Politiques
- Pratiques opérationnelles

#### Techniques

Aspects techniques vus plus loin

Cheminement des données



(Fil conducteur)

#### **Méta-Information - Rôles**

| 1  | <b>D</b>  | • |
|----|-----------|---|
|    | Documenta | 1 |
| 1. | Documente |   |

2. Informe!

3. Permet l'évolution en inventoriant les connaissances acquises sur les données comme l'entreprise

4. Augmenter la confiance dans les données

5. Précaution contre le taux de roulement important dans les projets d'entrepôt

#### **Méta-Information – autres**

• Public cible:

• Importance:



## **Méta-Information – autres**

## Exemple

NASA: projet sonde sur mars en 1999 – le Mars Climate Orbiter a été conçu avec une erreur d'interface pour la propulsion. Les ingénieurs ont calculés les poussées de propulsion des fusées pour les ajustements en vol en pieds par seconde. Le système informatique implanté calcule en Newton par seconde. Une différence de 4.4 pieds par seconde (plus d'un mètre). La propulsion d'ajustement avait lieu 12 à 14 fois par semaine durant le voyage de 9 mois.

Résultat: la sonde s'est écrasée sur Mars puisque la poussée pour freiner la descente a débuté beaucoup trop tard – 300 millions US écrasés.

## Méta données appliquées à l'E.D.

## En entrepôt - Connaissances sur:

- → la cible du sujet
- → les sources de données
- **→** 1'ETC
- → La gestion, contrôle et monitoring
- → La business → les règles, le comment, le pourquoi...

#### LA CONNAISSANCE COMMENCE ICI!

## La gestion des métadonnées

## "Documentation technique et d'affaires sur l'information corporative"

- Une des pièces d'une architecture informationnelle
- Il n'est pas requis de tout documenter
- Les objectifs: Uniformité, Optimisation, Réconciliation et Communication
- Doit être liée aux processus
- Le rôle du Gestionnaire des métadonnées
  - Les métadonnées sont complètes, à jour et de qualité

Source: Présentation de AgileDSS

## La gestion des métadonnées

## Les étapes de mise en place

- Identifier les processus (ou sujets) prioritaires et le type de métadonnées requises
- Définir les standards de documentation
- Choisir l'architecture de solution (documentation et communication)
- Identifier un gestionnaire de métadonnées
- Identifier les propriétaires de données et les intendants de données
- Déployer par le biais d'un pilote

## La gestion des métadonnées



Obtenue de présentation de AgileDSS, source inconnue



## Méta données intégrées à l'E.D.



## **Méta-Information**

## • Types:

- Organisationnelle
  - + Décisions de standards
  - + Décisions de sujets
  - + Processus
- Sources
  - + Plate-forme
  - + Modèle logique
  - + Modèle physique
  - + Définitions
- Ravitaillement (ETC)
  - + Méthode d'extraction (push, pull, push/pull, autre)
  - + Règles de transformation
  - + Règles de nettoyage
  - + Sommaires

- Traitement des rejets
  - + Contrôle des logs
  - + Corrections et reprises
- SGBD (Cible)
  - + Modèle de données (relationnel / Dimensionnel)
  - + Lien de la source à la cible
- Outils de livraison
  - + Modèles par sujet
  - + Méthode de navigation
  - + Rapport pré-définis
  - + Comment démarrer les outils et se connecter au sujet
- Surveillance (« Job control »)
  - + Alertes
  - + Reprises



## **Méta-Information**

- - Règles de transformation
  - Règles de nettoyage
  - + Sommaires

- Contrôle des logs
  + Corrections et reprises

   SGRIOCIAE)

  SOURCES
   Modèle de données (relationnel / Dimensionnel)
  + Plate-forme
  + Modèle logique
  + de le behysique
   Outils de ''

  Reviews ment (ETC)
   Méthode ''

  - Surveillance (« Job control »)
    - + Alertes
    - + Reprises



## **Méta-Information: Cible et source**

#### • Cible:

- Nom de la colonne / attribut
- Dimension / fait
- Date effective
- Unité (devise, pouces, litres, etc..)
- Règle d'affaire (ou de validité)
- Formule si calculé
- Précision
- Valeur minimum/maximum
- Statut (actif ou non)
- Type (numérique, texte, etc)
- Null possible?

#### Pour la source, ajouter:

- Système
- Technologie (plate-forme) et lien d'accès
- Modèle logique / structure
- Fenêtre d'opportunité
- Méthode d'approvisionnement (Push, Pull, combo, spécial)



## **Méta-Information: ETC**

#### • ETC:

- Stratégie de ravitaillement
  - + Routine (nom, description)
  - + Heure
  - + Méthode de transfert
  - + Conversions/comportement lors du transfert
  - Fenêtre d'opportunité
  - + Stratégie de reprise
- Transformations de la source à la cible
- Toutes les opérations
- Règles de validation
- Traitement de rejets
- Corrections et tolérances
- Stratégie de chargement !!!
- Validations pré-chargement
- Règles d'affaires



# PRÉSENTATION DE LA MÉTA INFORMATION

#### • Exemple sur la source:

#### **EMPLOYÉS**

Le fichier *Extraction\_Employes\_09-09-22.csv* contient la liste des employés avec leur date de naissance et d'embauche. Les informations sont délimitées par point-virgule. La première ligne du fichier contient le nom des colonnes. La première ligne devra être retirée lors de l'extraction.

| Colonne | olonne Information Description       |                                      | Туре       | Format    |  |  |
|---------|--------------------------------------|--------------------------------------|------------|-----------|--|--|
| 1       | Number                               | Numéro d'identification de l'employé | Numérique  | Numérique |  |  |
| 2       | Name                                 | Prénom et nom de l'employé           | Caractères |           |  |  |
| 3       | Hired                                | Date d'embauche de l'employé         | Date       | mm-dd-yy  |  |  |
| 4       | Birth Date de naissance de l'employé |                                      | Date       | mm-dd-yy  |  |  |
| 5       | Sex Genre (sexe) de l'employé        |                                      | Caractère  | M ou F    |  |  |

Source: TP INF735

Alain Bordeleau (88 028 272) Laura Francheri (09 163 086) Mondher Jarraya (03 440 967)



#### • Exemple sur la Transformation:

- Date d'embauche de <u>l'employé</u> (f\_Hired → Hired)
  - Vérifier que le champ contient une valeur
    - Si non, mettre l'enregistrement en rejet avec le message 'Colonne Hired vide dans le fichier source' et passer à l'enregistrement suivant
  - Convertir le champ en type date (format mm-jj-aa)
    - Si la conversion a échouée, mettre l'enregistrement en rejet avec le message 'Colonne Hired n'a pas le format mm-jj-aa' et passer à l'enregistrement suivant
  - Vérifier si la date est entre la date de démarrage de la société et la date du jour
    - Si non, mettre l'enregistrement en rejet avec le message 'Colonne Hired probablement invalide' et passer à l'enregistrement suivant

Source: TP INF735

Alain Bordeleau (88 028 272) Laura Francheri (09 163 086) Mondher Jarraya (03 440 967)



#### • Exemple sur la Cible:

#### **FAITS DE PRODUCTION**

La table **FAIT\_Production** est utilisée dans le dernier processus soit la génération des faits pour le fichier cible. Cette table contiendra le rapprochement et la sommarisation des informations de production obtenues, fusionnées et complétées depuis les différents fichiers sources.

#### Table: FAIT\_Production

| Ŧ | Nom du champ            | Туре | Description                                             |  |  |  |
|---|-------------------------|------|---------------------------------------------------------|--|--|--|
|   | Date datetime Unart int |      | Numéro automatique d'identification de l'enregistrement |  |  |  |
|   |                         |      | Quart de travail (donnée sommarisée)                    |  |  |  |

Source: TP INF735

Alain Bordeleau (88 028 272) Laura Francheri (09 163 086) Mondher Jarraya (03 440 967)



• Exemple Source – transformation - cible:

Fichier source : Feuille\_temps.csv Table de destination : Extraction\_Feuille\_temps\_06-04-23 Outil de transformation: MS Access

| 1.Source 2      |           |      | 2. Extraction | Extraction 3. Destination                                            |                    |              |      |         | stination |                                                                                                                   |
|-----------------|-----------|------|---------------|----------------------------------------------------------------------|--------------------|--------------|------|---------|-----------|-------------------------------------------------------------------------------------------------------------------|
| Source<br>field | Data Type | Size | Format        | Details of the                                                       | Destination field  | Data Type    | Size | Format  | Details   | Field description                                                                                                 |
| N/A             | N/A       | N/A  |               | <b>transformation</b><br>Création d'un numéro de<br>feuille de temps | ID_Feuille_temps   | LONG INTEGER | 4    |         |           | Ce champ contient uniquement des chiffies. Il est la clef primaire de la table. Il est<br>automatiquement généré. |
| Date            | DATE      | 8    |               | Conversion du format de la<br>date pour la standardiser              | Date_Feuille_Temps | SHORT DATE   | 8    | MMJJ/AA | NOTNULL   | Ce champ contient la date de la feuille de temps de l'employé.                                                    |

Source: TP INF735

Maha Abdelhak (05 652 484) Jihad Taher (05 722 382)

La grille inverse, soit
Cible (ou champs dimension/fait) ← Transformation ← Source est toutefois plus classique...

#### • Exemple Source – transformation - cible :



Source: Alimentation ODS, Lyne Fillion, Otéra Capital



## **Méta-Information - Livraison**

## • Souvent Intranet



## **Méta-Information - Livraison**

Tendance applicative



## **Méta-Information - Livraison**

• Insertion dans les outils de création de modèles

Ex: Business Object et l'Univers...

→ S'assurer que la source est toujours l'entrepôt pour profiter de la méta information....

## **Méta-Information**

#### • Réalité:

- Environ 10% ont implanté un environnement de Méta-information avec succès.
- Environ 15% y songent.

(Data Warehousing Institute, 2008)

Votre livre (Paulraj Ponniah) dit 9% et 16%...