Počítačové sítě

Jan Outrata

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI

přednášky

Tyto slajdy byly jako výukové a studijní materiály vytvořeny za podpory grantu FRVŠ 1358/2010/F1a.

Technologie fyzické vrstvy

u protokolů nižších vrstev (fyzické, linkové, síťové) rozlišujeme typ přenosu, synchronizaci přenosu, použití virtuálních okruhů aj.

Sériový přenos

- dvojice vodičů, signálový a zem, bity dat přenášeny za sebou = sériově
- symetrický signál zvlášť dvojice vodičů, např. pro příjem a vysílání dat, př. kroucená dvojlinka
- asymetrický signál více signálových vodičů oproti společné zemi, př. sériová linka

Paralelní přenos

- skupina vodičů (např. 8), signálové a zem, skupina bitů dat (8) přenášených zároveň = paralelně
- typické použití u vnitřních sběrnic v počítači nebo starší připojení periferních zařízení (tiskárna, modem)

Synchronní přenos

- konstantní rychlostí, garantovaná šířka pásma
- bloky dat (fyzické rámce) konstantní délky rozložené do slotů, pro daný přenos vyhrazeny sloty se stejným pořadovým číslem, synchronizační bity pro synchronizaci přijímače s vysílačem na začátku bloku
- kromě dat ještě synchronizační signál ("hodiny"), zdrojem jedno zařízení, ostatní se přizpůsobí
- použití v technologiích fyzické vrstvy (např. Ethernet) a telekomunikačních sítích, NE síťová vrstva (Internet)

Paketový přenos

- proměnlivou rychlostí, negarantovaná šířka pásma (maximální dosažení např. pomocí QoS), ale efektivnější (dymanické) využití pásma
- bloky dat (linkové rámce, pakety) obecně různé délky
- použití v linkových a síťových protokolech, např. v Internetu

Asynchronní přenos

- kombinace předchozích, garance šířky pásma
- pakety stejné délky přenášeny proměnlivou rychlostí (start a stop bity), jednotlivé bity přenášeny synchronně
- např. sériová linka, síť ATM (pakety = buňky)

Virtuální okruh

- vytvářený v síti některými protokoly (na nižších vrstvách, ale i síťové), např. Frame Relay, X.25
- nejprve sestaven (pomocí signalizace), pak přenos dat (s identifikací okruhu) po okruhu, v případě přerušení přenosu se vytvoří okruh nový
- spíše telekomunikační sítě, NE u Internetu přerušení okruhu znamená přerušení spojení, IP pakety přenášeny samostatně
- typy:
 - pevný (permanent) sestavené v síti napevno správcem
 - komutovaný (switched) dynamicky vznikající dle potřeby přenosů

síťové (a telefonní) rozvody: zásuvky, propojovací kabely, propojovací (patch) panel, optická vlákna, distribuční box optiky aj., ve skříni (rack)

Koaxiální kabel

- dnes se již nepoužívá (jako strukturovaná kabeláž), použití např. u antén bezdrátových sítí (vysokofrekvenční)
- tlustý: Ø 1 cm, např. Belden 9880, max. 500 m, zakončený terminátory 50 Ω, připojení uzlu přes transceiver napíchnutý svorkou vampír, redukce i na tenký a dvojlinku
- tenký: Ø 3,5 mm, např. RG 58, max. 185 m (u stejných síťových karet uzlů až 400 m), zakončený terminátory 50 Ω, připojení přes BNC konektor (existují i transceivery)

Kroucená dvojlinka (Twisted Pair)

- max. 100 m (závisí na kvalitě kabelu), přenos signálu kódováním Manchester II (log. 1 = $-2\,\mathrm{V}$)
- 4 páry měděných vodičů, drát nebo lanko (licna, svazek drátků), vodiče v páru i páry kroucené kolem sebe pro vzájemné vyrušení elmag. indukce
- nestíněná (UTP): každý vodič v umělohmotném obalu a všechny páry vodičů v bužírce, kategorie EIA/TIA 3 (do 25 MHz), 5(E) (do 100 MHz), 6 (do 250 MHz), 7 (do 600 MHz)
- stíněná (STP): navíc kovová fólie na vnitřní strana bužírky nebo i kolem páru vodičů, proti elmag. rušení, různé varianty

Obrázek: Obrázek průvodce 61

konektor RJ45: nejčastěji zapojení vodičů podle normy EIA/TIA 568B s 1. párem (modrý) pro telefon a 2. a 3. párem (oranžový a zelený) pro datovou síť

Optická vlákna (Fiber optic)

- dvě vrstvy "skla" (křemík, umělá hmota): obal (\varnothing 125 μ m) a jádro
 - vícevidové: \emptyset 50/62.5 μ m, paprsky se odráží od rozhraní skel, buzení LED diodou 850 nm
 - ullet jednovidové: 9 μ m, minimum odrazů, buzení laserem 1300, 1500 nm
- lacktriangle primární (eta 250 μ m) a sekundární (eta 0.9 mm) ochrana různé materiály (kevlar)
- více optických konektorů: SC, FC, LC, ST
- svazky mnoha (desítek a stovek) vláken s další ochranou v optických kabelech
- vlákno původně simplexní, pro duplex dvojice vláken, dnes i ("multifrekvenční") duplexní vlákna
- dosah 2–3 km (vícevidové) nebo až 70 km (jednovidové), použití optických opakovačů a rozbočovačů pro páteřní sítě

Lokální sítě [LAN]

- v minulosti vyvinuta řada technologií pro LAN: Ethernet, FDDI, Token Ring a Token Bus, Arcnet aj., dnes jen Ethernet (a FDDI)
- IEEE: počátkem 80. let sjednocení a **normy IEEE 802.xx**, později i jako normy ISO 8802-xx

Obrázek: Obrázek průvodce 65

- linková a částečně fyzická vrstva rozděleny do podvrstev:
 - MAC (Medium Access Control) přístup na přenosové médium, zasahuje do fyzické i linkové vrstvy, řešená HW, závislost na topologii a HW, normy IEEE 802.3 802.15
 - LLC (Logical Link Control) správa logických spojení, linková vrstva, řešená HW i SW (ovladač HW), nezávislá na HW, IEEE 802.2
- připojení pomocí síťové karty zčásti realizuje linkové protokoly

Lokální sítě [LAN]

- (časově) sdílené přenosové médium, v daném okamžiku využívá jeden uzel
- uzly samostatné, rovnocenné

Ethernet (II)

- počátky koncem 70. let Xerox, 1982 DEC, Intel a Xerox jako DIX Ethernet (Ethernet II), 1985 IEEE 802.3
- 10 Mb/s, signál 8.5 MHz
- **segment** = počítače připojené na médium (kabel)
- tlustý (10BASE-5, DIX): tlustý koaxiální kabel, topologie sběrnice, konektor AUI (CANNON 15) na síťové kartě, max. 100 stanic
- tenký (10BASE-2, IEEE 802.3a): tenký koaxiální kabel, topologie sběrnice, připojení přes konektor BNC-T a BNC na síťové kartě, max. 30 stanic

Obrázek: Obrázek průvodce 69

- s kroucenou dvojlinkou (10BASE-T, IEEE 802.3i):
 - konektor RJ45 na síťové kartě, kontrola integrity připojení pomocí signálu LinkBeat
 - připojení k opakovači (linkový segment), hvězdicová topologie, max. 100 m mezi počítačem a opakovačem
 - (polo)duplexní přenos (Half Duplex) na uzlu 2. pár (oranžový) pro vysílání, 3. (zelený) pro příjem
 - při propojení dvou počítačů "překřížení" kabelu plně duplexní přenos (Full Duplex), teoreticky max. rychlost
- s vícevidovými optickými vlákny (10BASE-FX, IEEE 802.3j): různé konektory na síťové kartě (LC, SC, FC), původně jen propojení optických opakovačů (FO-HUB), max. 2 km

Opakovač (Repeater)

- HW zařízení pro propojení segmentů
- rozbočovač = více než dvě rozhraní (porty)
- data jsou zopakována na všechny ostatní porty, tj. do všech (linkových) segmentů
- HUB = opakovač pro kroucenou dvojlinku, propojení dvou HUBů "překříženým" kabelem (nebo jeden port HUBu s přepínačem)
- možnost centralizované správy segmentu

Vícesegmentové sítě

- sítě propojené více opakovači
- omezující metody Model I a II pro max. dosah a konfiguraci sítě omezení na počty opakovačů a vzdálenosti mezi nimi (Model I) nebo pomocí maximálního zpoždění přenosové cesty (Model II)

Fast Ethernet (IEEE 802.3u)

- 1993 konkurenční sítě Fast Ethernet (100BASE-T) a 100VG-AnyLAN, z důvodu zpětné kompatibility u metody přístupu k médiu (viz linková vrstva) vybrán Fast Ethernet
- 100 Mb/s, 125 MHz
- jen hvězdicová topologie s opakovači dvou tříd: Class I (retranslace signálu z linkového segmentu umožňující použití různých linkových segmentů, max. jeden na segmentu) a Class II (jen opakování signálu, jen stejné linkové segmenty, max. 2)
- fyziká vrstva podle FDDI: přenos čtveřic bitů (nibble) kódovaných do 5 bitů
- kroucená dvojlinka (100BASE-TX kategorie 5, 100BASE-T4 kategorie 3 dva páry vodičů navíc) – max. 200 m
- optická vlákna (100BASE-FX) max. 300 m (Full Duplex 2 km)
- volitelná duální rychlost 10/100 Mb/s a Half/Full Duplex: pomocný
 Auto-Negotiation Protocol využívající rozšířený signál integrity sítě

Gigabitový Ethernet (IEEE 802.3z, 802.3ab)

- 1988 pro optické linky (IEEE 802.3z), pak pro kroucenou dvojlinku kategorie 5E a 6 (IEEE 802.3ab), vytlačil FDDI a ATM
- 1 Gb/s, 1062.5 MHz (optika)
- jen hvězdicová topologie s opakovači
- optická vlákna (jednovidová 1000BASE-LX, vícevidová 1000BASE-SX): fyzická vrstva podle Fibre Channel: přenos 8 bitů kódovaných do 10 bitů, max. 550 m (vícevidové, 850 nm) nebo 10 km (jednovidové, 1300 nm)
- kroucená dvojlinka (1000BASE-T): (polo)duplexní přenos na všech 4 párech u kategorie 5E, plně duplexní přenos u kategorie 6, max. 100 m

10Gigabitový Ethernet (IEEE 802.3ae)

- 10 GB/s
- jen režim Full Duplex, ne sdílené médium
- různá fyzická rozhraní pro LAN a WAN (propojení s DWDM)
- optická vlákna (vícevidová 10GBASE-S 400 m, jednovidová 10GBASE-L/E 10/40 km)
- kroucená dvojlinka (10GBASE-T 55 m kabel kategorie 6, 100 m 6A nebo 7)

FDDI [LAN]

- Fiber Distributed Data Interface optická vlákna, 1989 ANSI X3T12, 1990 ISO 9314
- CDDI (Copper DDI) kroucená dvojlinka
- vysokorychlostní páteřní sítě počátku 90. let, univerzitní sítě (campus)
- 100 Mb/s, max. 2 km (vícevidová vlákna), 60 km (jednovidová)
- zdvojená kruhová topologie: protisměrné páteřní kruhy, jeden primární, druhý záložní, v daném čase aktivní jen jeden
- zařízení: koncové stanice porty pro oba kruhy (DAS) nebo jen jeden (SAS),
 koncentrátory více portů pro připojení více konc. stanic, mosty

Bezdrátové lokální sítě (Wireless LAN) – Wi-Fi [LAN]

- důvody pro WLAN: mobilita, snadná použitelnost, dostupnost, nižší náklady, rozšiřitelnost, roaming ("přechod" klienta od vysílače k vysílači) atd., polovina 90. let
- použití pro vnitřní (původně, popř. v kombinaci s kabeláží) i vnější prostory (např. připojení k Internetu), propojení s drátovými LAN/MAN
- norma IEEE 802.11 (1997), 2 Mb/s, mnoho rozšíření, např. 802.11b = Wi-Fi (Wireless Fidelity, Wi-Fi Aliance) 11 Mb/s (běžně 40–50 %), dosah až 11+ km, 802.11a/g 54 Mb/s, 802.11n až 500+ Mb/s

Wi-Fi [LAN]

Konfigurace (topologie)

- peer-to-peer/ad-hoc: přímá komunikace mezi stanicemi v rámci Basic Service Set (BSS) = skupina stanic sdílejících stejné médium (~ ethernetový segment), do 10-ti stanic
- infrastrukturní/s přístupovým bodem (access point, AP): stanice komunikují v rámci BSS jen prostřednictvím AP (nejdříve autentizace a asociace), bezpečnostní prvky (filtrace, šifrování, atd.), propojení s jinou LAN/MAN (drátovou, např. Ethernet, i Wi-Fi), až 40 stanic
- s více přístupovými body (roaming): AP propojeny vlastní sítí (tzv. distribuční systém (DS), s jedním AP triviální, drátovou i Wi-Fi), klient se přepojuje k AP s nejlepším poměrem signálu k šumu, když tento klesne pod nějakou mez (nové asociace), v rámci Extended Sercices Set (ESS) skládající se z více BSS
- point-to-point: propojení dvou sítí pomocí AP, typické pro venkovní použití na více km

Wi-Fi [LAN]

Přenosové médium

- rádiové vlny 2.4 (802.11b/g/n), 5 GHz (802.11a/n) veřejné, není třeba licence, u 2.4 GHz vzájemné rušení (také např. Bluetooth, bezdrátové telefony, RFID čipy, RC modely na dálkové ovládání a další)
- šíření signálu metodou rozptýleného spektra (v pásmu frekvencí):
 - přeskakování frekvencí (FHSS): 2.4 GHz pásmo dělené na 75 kanálů, při vysílání se periodicky přeskakuje mezi frekvencemi, př. starší Wi-Fi, Bluetooth
 - přímá sekvence (DSSS): 2.4 GHz pásmo dělené na 14 kanálů po 22 MHz, které se částečně překrývají, př. Wi-Fi 802.11b
 - ortogonální frekvenční multiplex (OFDM): 2.4 a 5 GHz, 802.11a/g, 802.11n technologie MIMO
- (polo)duplexní spoj, pro plně duplexní dva páry antén
- antény: horizontální, verikální a kruhové polarizace signálu, všesměrové, sektorové, směrové, provedením síťové, paraboly, šroubovice, Yagi, omezení na výkon vyzářený anténou normou ČTÚ (100 mW), pro venkovní použití tzv. Fresnelova zóna bez překážek

Bezdrátové personální sítě (WPAN) – Bluetooth [PAN]

- projekt "Blue Tooth", Ericsson, 1994, bezdrátová komunikace mezi různorodými zařízeními (počítače, mobilní telefony, PDA, dig. fotoaparáty, kamery aj.)
- rádiové vlny 2.4 GHz, přenosová rychlost 1 nebo 2 Mb/s, max. 10 m (s opakovači do 100 m)
- norma IEEE 802.15
- komunikace po kanálech (tzv. piconetech) s pseudo-náhodnými skoky
- Master a Slave uzly (max. 7, další zaparkované)

Bluetooth [PAN]

- odlišná protokolová architektura: fyzická → Bluetooth radio, podvrstvy Radio a Baseband, linková → identifikace a možnosti zařízení, podpora služeb, protokoly SDP, RFCOMM, TCS-BIN, WAE/WAP
- profily zařízení definice parametrů protokolů služeb, GAP a SDAP pro vyhledávání (SDP), TCS-BIN pro telefonii, SPP pro emulace sériového propojení (RFCOMM, modem, PPP do LAN), GOEP pro souborové přenosy aj.
- podvrstva Baseband: tvorba sítí Piconet (uzly ve stavech a režimech), zřizování linek, řízení toku dat, zabezpečení přenosu

Rozlehlé sítě [WAN]

- velké vzdálenosti → odlišné technologie přenosu dat než v LAN/MAN
- dvoubodové spoje nebo virtuální okruhy
- optické systémy:
 - SONET/SDH: dříve,rychlosti 50 Mb/s až 10 Gb/s, použití v síti ATM
 - **DWDM**: multiplex na různých vlnových délkách, desítky virtuálních optických vláken v existujících fyzických, rychlosti řádově až Tb/s, full duplex po jednom vláknu
- rádiové sítě:
 - dvojbodové: přímá viditelnost, až 20 km, 2.4, 3.5, 10 GHz, až 90 Mb/s, licencovaná pásma
 - WiMAX (IEEE 802.16): "Wi-Fi pro venkovní použití", tzv. "last mile" pro připojení koncového uživatele
- využití telekomunikačních sítí = broadband

Sériová linka [telekomunikační WAN]

- propojení koncového zařízení, např. počítač, s propojovacím prvkem, např. modem, nebo (nouzově) dvou propojovacích prvků
- ITU V.24 (ANSI RS232): sériový asynchronní přenos, rychlost desítky kb/s (64, 115 max), full duplex, konektory CANNON 9 a 25 (porty COM), propojení dvou počítačů pomocí "překřížení" vodičů (tzv. nulový modem)
- dnes nahrazena bezdrátovými PAN (Bluetooth, infra) nebo sběrnicí USB
- připojení modemu: signály DTR, DSR (signalizace), RTS, CTS (řízení toku) nebo znaky XON, XOFF, signály TD, RD (data, AT-příkazy)

Modem [telekomunikační WAN]

- pro připojení k datové síti pomocí analogové telefonní sítě modulace a demodulace dat a zvuku
- modulátor/demodulátor = modem připojen sériovou linkou/bezdrátovou sítí k počítači nebo směrovači (asynchronní) nebo vestavěný (synchronní) a telefonní linkou (telefonní kroucená dvojlinka, konektor RJ-11) k telefonní síti
- vytvoření okruhu v telefonní síti, dohoda stran na parametrech komunikace (nejvyšší rychlost, zabezpečení apod., protokol PPP) a přepnutí na data, poté koncová zařízení propojena transparentně

AT-příkazy (Hayes)

 znakové ovládání modemu počítačem a zprávy od modemu, např. AT–OK, ATDTčíslo–CONNECT, +++

Modem [telekomunikační WAN]

- přenosové rychlosti na telefonní drátové lince (doporučení ITU):
 - přeložené/telefonní pásmo (Voice Band) = modulace dat na zvuk v hlasové části pásma 0.3 až 3.4 kHz na komutovaných linkách: nominální 9.6 (V.32), 14.4 (V.32bis), 28.8 (V.34), 33.6 (V.34+), 56/33.6 kb/s (downstream/upstream, V.90, digitální ústředny a linky mezi nimi)
 - základní pásmo (Base Band) = tzv. "širokopásmové modemy" v celém pásmu nad hlasovou částí až do několik MHz, na pevných linkách: stovky kb/s až jednotky Mb/s (plný duplex), rozhraní V.35

Obrázek: Obrázek průvodce 57

- dnes bezdrátová síť GSM
- možná komprese dat (protokol MNP 5, ITU V.42bis) rychlosti až stovky kb/s (v přeloženém pásmu), potřeba vyšší rychlosti na lince k počítači
- detekce chyb přenosu (V.42)

Modem [telekomunikační WAN]

xDSL [telekomunikační WAN]

- připojení k datové síti pomocí digitální telefonní sítě přenos dat v základním pásmu, metody FDM a EC
- "DSL modem" připojen kroucenou dvojlinkou (LAN/Ethernet, integrovaný přepínač) k počítači a telefonní linkou k telefonní síti
- oddělení od telefonního pásma pomocí splitteru u/v "modemu" a zařízení DSLAM v ústředně – připojen k přístupovému serveru v datové WAN (Internetu)
- různorodé technologie xDSL (Digital Subscriber Line):
 - ADSL (Asymmetric): různá rychlost pro downstream (větší) a upstream (menší, nižší frekvence), např. 12/3.5 Mb/s u ADSL2 nebo 24/1 Mb/s u ADSL2+, dosah do 7 km od ústředny
 - HDSL (High data rate, 1.5 nebo 2 Mb/s), SDSL (Symmetrical), VDSL (Very-high-bit-rate) aj.

GSM [telekomunikační WWAN]

- bezdrátová, původně analogová, síť jen pro hlas, dnes digitální, normy ETSI
- pokryté území rozdělené do oblastí s (překrývajícími se) buňkami obsluhovanými jednou BTS (Base Transceiver Station)

Obrázek: Obrázky průvodce 48,49(2)

- koncové/propojovací zařízení (mobilní telefon) komunikuje s BTS, roaming (síť si udržuje informaci, ve které oblasti buněk se zařízení nachází a hledá jej ve všech buňkách oblasti)
- dvě frekvence: primární (900 MHz, rozsah 25 MHz po 200 kHz), sekundární (1800 MHz, rozsah 75 MHz), každá konkrétní frekvence rozdělěna do 8 slotů

GSM [telekomunikační WWAN]

GSM [telekomunikační WWAN]

- další zařízení: BSC (řídí BTS), NSS ("centrum", přepíná okruhy, obsahuje databáze uživatelů), TRAU (převody rychlostí) aj.
- komunikace mezi zařízením a BTS (ve slotech): datový kanál TCH (9.6 kb/s, přeložené pásmo), kombinované služební kanály synchronizace, signalizace, atd. ("špehovací" – telefon odesílá asi 80 bytů každé 2 minuty)
- pro připojení počítače zařízením emulován modem (RA-0), NSS připojeno ke směrovači v datové WAN (Internetu), se kterým počítač vytvoří virtuální okruh
- GPRS/EDGE: paketový přenos v základním pásmu, teoreticky až ve všech 8 slotech (GPRS až 171.2 kb/s, EDGE až 500 kb/s), prakticky 4 sloty
- UMTS/HSPA: GSM sítě 3. generace, až 14 Mb/s, multimediální služby, 3.5 generace HSDPA, HSPA+ aj.
- LTE: GSM sítě 4. generace, až 300 Mb/s (?)

Bezpečnost na fyzické vrstvě

- útoky:
 - lacktriangle přerušení (drátové) linky o záložní linka, fyzická ochrana
 - rušení (bezdrátové) komunikace cílené, ale i např. vadná média a konektory, vlivy okolního nebo i přenosového prostředí ⇒ vadné linkové rámce
 - lacktriangle odposlech o fyzická ochrana linek a šifrování, omezení šíření bezdrátového signálu, ale užitečné pro správce
 - modifikace přenášených dat neúměrně nákladná, spíše na vyšších vrstvách
- protokoly řeší ochranu a detekci chyb jen z technických příčin
- "inteligentní útočník" fyzická ochrana linek a omezení vysílačů + šifrování