SYLLABUS CÁLCULO NUMÉRICO

Unidad académica responsable: Departamento de Ingeniería Ma-

temática

Carrera a la que se imparte: Ingeniería Civil (varias especiali-

dades)

Módulo: No aplica.

I. Identificación

Nombre: Cálculo Numérico				
Código: 521230	Créditos: 4			
Prerequisitos: 503201; 521218; 521227				
Modalidad: Presencial	Calidad: Obligatoria	Duración: Semestral		
Trabajo Académico:				
Horas teóricas: 3	Horas prácticas: 0	Horas de laboratorio: 2		
Docentes responsables:	Manuel Solano P. (coordinador)			
	Franco Milanese (coordinador laboratorio)			
	Felipe Vargas			
Duración:	15 semanas			

II. DESCRIPCIÓN

Asignatura teórico-práctica que contiene los fundamentos de los algoritmos numéricos para resolver problemas de la Matemática Aplicada por medio del computador.

Esta asignatura contribuye a la formación de las siguientes competencias del perfil de egreso:

■ Conocimientos sobre el área de estudios y la profesión.

III. RESULTADOS DE APRENDIZAJE ESPERADOS

Al completar en forma exitosa esta asignatura, los estudiantes serán capaces de:

- 1. Deducir algoritmos que se detallan en los contenidos.
- 2. Estimar cotas de errores de los resultados obtenidos.
- 3. Usar técnicas para demostrar propiedades sencillas relacionadas con los algoritmos.
- 4. Resolver modelos matemáticos sencillos por medio de algunos métodos computacionales.

IV. Contenidos

1. Errores:

- Errores absolutos.
- Errores relativos.
- Pérdida de cifras significativas.
- 2. Ecuaciones no lineales:
 - Métodos de convergencia garantizada: Bisección. Convergencia lineal.

- Métodos de convergencia veloz: Newton-Raphson. Condiciones de convergencia. Criterio de detención.
- Método de la secante.
- Sistemas de ecuaciones no lineales: Método de Newton.
- 3. Interpolación:
 - Interpolación polinomial, fórmula de Lagrange.
 - Interpolación por polinomios *splines*. Estimación del error.
- 4. Aproximación:
 - Cuadrados mínimos.
 - Las ecuaciones normales y factorización QR.
- 5. Integración Numérica:
 - Reglas del trapecio y de Simpson.
 - El método de Romberg.
 - Fórmulas de tipo Gauss.
 - Estimación de errores. Integración multidimensional.
- 6. Ecuaciones diferenciales ordinarias:
 - Problemas de valores iniciales: Existencia y unicidad de solución. Sistemas de ecuaciones diferenciales.
 - Ecuaciones de orden superior.
 - Método de Euler. Error local de truncamiento. Error global.
 - Métodos de paso simple: Métodos de tipo Runge-Kutta: Euler-Cauchy, Euler mejorado, Estimación a posteriori del error. Control del paso de integración. Métodos Runge-Kutta-Fehlberg.
 - Métodos de paso múltiple: Métodos explícitos: Adams-Bashforth. Métodos implícitos: Adams-Moulton. Métodos predictor-corrector.
 - Ecuaciones stiff: Estabilidad de las ecuaciones y de los métodos numéricos.
 - Problemas de valores de contorno: Existencia y unicidad de solución. Método de shooting. Método de diferencias finitas. Método de elementos finitos.
- 7. Sistemas de Ecuaciones Lineales:
 - Algoritmos: eliminación de Gauss, factorización LU, Choleski, pivoteo.
 - Condicionamiento de matrices.
 - Normas de vectores y matrices. Cotas de errores.
 - Métodos Iterativos: El método iterativo general.
 - Algoritmos de Jacobi y de Gauss-Seidel.
 - Métodos de descenso.

V. Metodología

El curso se desarrolla con tres horas de clases teóricas. Además de las clases teóricas el curso contempla un laboratorio computacional semanal, de dos horas, y al cual **la asistencia es obligatoria**. Los alumnos se deberán inscribir en los laboratorios a partir del medio día del 15 de agosto y hasta las 19:00 horas del día 16 de agosto mediante Internet, en la dirección electrónica:

http://www.ing-mat.udec.cl/numerico

La elección de laboratorios será estrictamente por orden de inscripción. Esta inscripción de laboratorio es independiente de la inscripción formal de la asignatura.

VI. EVALUACIÓN

- a. La evaluación en la asignatura se hará por medio de dos (2) certámenes y dos (2) tests de laboratorio.
- b. Los dos (2) certámenes consistirán en pruebas escritas. Cada una de estas evaluaciones tendrá una ponderación en la nota final de un 40 %. Los laboratorios serán evaluados por dos (2) tests de 45 minutos frente al computador; cada uno con una ponderación en la nota final de un 10 %.
- c. Al final del semestre habrá una (1) evaluación de recuperación global y que remplazará una evaluación parcial de manera que la nota final resultante sea la que favorezca más al alumno (modalidad b del artículo 17.º del Reglamento Interno de Docencia de Pregrado de la Facultad de Ciencias Físicas y Matemáticas).
- d. En las evaluaciones, así como en los tests, se prohíbe estrictamente el uso de calculadoras y teléfonos celulares.
- e. La no asistencia a un certamen significará obtener nota final NCR. No obstante, quien justifique su inasistencia a un certamen (ver letra g siguiente) se deberá presentar a una evaluación escrita para regularizar su situación, a la cual se le citará oportunamente.
- f. La no asistencia a un test significará obtener la calificación NCR. Quien justifique su inasistencia por los canales oficiales (ver letra g siguiente), se podrá presentar a un test de recuperación. No existe un test de recuperación para mejorar nota.
- g. Quien deba justificar una inasistencia a una evaluación **deberá hacerlo dentro de los plazos** y de acuerdo a los procedimientos dispuestos en el Artículo 18.º del Reglamento Interno de Docencia de Pregrado de la Facultad de Ciencias Físicas y Matemáticas.
- h. La asistencia de un alumno a cualquiera de las evaluaciones consideradas en la asignatura no permite justificaciones posteriores, sean éstas de salud o de otra índole.

VII. Bibliografía y material de apoyo

Textos básicos u obligatorios.

- KENDALL E. ATKINSON, An introduction to numerical analysis, Wiley, New York, 1978.
- 2. S. Grossman, Análisis numérico y visualización gráfica con MATLAB, Prentice—Hall Hispanoamericana, México, 1997.

Textos complementarios.

- 1. H. Alder & E. Figueroa, *Introducción al Análisis Numérico*, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, 1995.
- 2. K. Atkinson, Elementary Numerical Analysis, John Wiley and Sons, 1993.
- 3. R. L. Burden & J. D. Faires, Análisis Numérico, Thomson, 1998.
- S. C. Chapra & R. P. Canale, Métodos Numéricos para Ingenieros, McGraw-Hill, 1999.
- 5. G. HÄMMERLIN & K.-H. HOFFMANN, *Numerical Mathematics*, Springer-Verlag, 1991.
- 6. D. R. Kincaid & W. Cheney, Análisis Numérico: las Matemáticas del Cálculo Científico, Addison-Wesley Iberoamericana, 1994.

- 7. A. Quarteroni & F. Saleri, Scientific Computing with MATLAB, Springer-Verlag, 2003.
- 8. H. R. Shwartz, Numerical Analysis. A Comprehensive Introduction, John Wiley and Sons, 1989.
- 9. J. Stoer & R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, 1993.
- 10. L.N. Trefethen & D. Bau, Numerical linear algebra, SIAM, 1997.
- 11. Dr. P.J.G. Long Introduction to Octave, 2015. Disponible en la web.

VIII. PLANIFICACIÓN

Planificación de clases.

Fecha	Contenido		
Lun 06 Ago	Presentación; Errores		
Mié 08 Ago	Errores (cont.)		
Lun 13 Ago	Ecuaciones no lineales		
Mié 15 Ago	No hay actividades académicas		
Lun 20 Ago	Ecuaciones no lineales (cont.)		
Mié 22 Ago	Interpolación		
Lun 27 Ago	Interpolación (cont.)		
Mié 29 Ago	Mínimos cuadrados		
Lun 03 Sep	Mínimos cuadrados (cont.)		
Mié 05 Sep	Integración-I		
Lun 10 Sep	Integración-I (cont.)		
Mié 12 Sep	Integración-II		
Lun 17 Sep	No hay actividades académicas		
Mié 19 Sept	No hay actividades académicas		
Lun 24 Sep	Integración-II (cont.)		
Mié 26 Sep	Integración-II (cont.)		
Lun 01 Oct	EDO-I		
Mié 03 Oct	EDO-I (cont)		
Lun 08 Oct	EDO-II		
Mié 10 Oct	EDO-II (cont.)		
Lun 15 Oct	No hay actividades académicas		
Mié 17 Oct	EDO-III		
Lun 22 Oct	EDO-III (cont.)		
Mié 24 Oct	EDO-III (cont.)		
Mié 24 Oct	Evaluación 1		
Lun 29 Oct	Sistemas de Ecuaciones Lineales I		
Mié 31 Oct	Sistemas de Ecuaciones Lineales II		
Lun 05 Nov	Sistemas de Ecuaciones Lineales III		
Mié 07 Nov	Sistemas de Ecuaciones Lineales III (cont.)		
Lun 12 Nov	Sistemas de Ecuaciones Lineales IV		
Mié 14 Nov	Sistemas de Ecuaciones Lineales V		
Lun 19 Nov	Sistemas de Ecuaciones Lineales VI		

Fecha	Contenido
Mié 21 Nov	Sistemas de Ecuaciones Lineales VI (cont.)
Ma~04~Dic	Evaluación 2
Ma 18 Dic	Evaluación de recuperación

Planificación de laboratorios.

Semana	Fecha Lab.	Actividad de Laboratorio
1	8 – 9 / Agosto	Semana sin actividades
2	$15-16 \ / \ { m Agosto}$	Inscripción de laboratorios vía internet
3	$22-23 \ / \ { m Agosto}$	Lab. 01: Introducción a Octave I
4	$29-30 \ / \ { m Agosto}$	Lab. 02: Introducción a Octave II
5	5-6 / Septiembre	Lab. 03: Ecuaciones No Lineales
6	12-13 / Septiembre	Lab. 04: Interpolación
7	19-20 / Septiembre	No hay actividades académicas
8	24-25 / Septiembre	Lab. 05: Mínimos Cuadrados
9	3-5 / Octubre	Laboratorio Complementario
10	10-11/ Octubre	Test 1
11	17-18 / Octubre	Lab. 06: Integración
1	24– 25 / Octubre	Lab. 07: E.D.O. (Problemas de Valores Iniciales)
12	31 Octubre - 1 Noviembre	Semana sin actividades
13	07-08 / Noviembre	Lab. 08: E.D.O. (Problemas de Valores de Contorno)
14	14-15 / Noviembre	Lab. 09: Sistemas de Ecuaciones Lineales
15	21-22 / Noviembre	Laboratorio Complementario
16	28-29 / Noviembre	Test 2
17	04-05 / Diciembre	Muestra Test 1 y 2