

TFG del Grado en Ingeniería Informática

Sign2Text - Transcripción de lenguaje de signos (a nivel de palabra) mediante DL

Presentado por Iván Ruiz Gázquez en Universidad de Burgos — 29 de junio de 2022

Tutores: Dr. Daniel Urda Muñoz y Dr. Bruno Baruque Zanon

D. nombre tutor, profesor del departamento de nombre departamento, área de nombre área.

Expone:

Que el alumno D. Iván Ruiz Gázquez, con DNI dni, ha realizado el Trabajo final de Grado en Ingeniería Informática titulado título de TFG.

Y que dicho trabajo ha sido realizado por el alumno bajo la dirección del que suscribe, en virtud de lo cual se autoriza su presentación y defensa.

En Burgos, 29 de junio de 2022

 V^{o} . B^{o} . del Tutor: V^{o} . B^{o} . del co-tutor:

D. nombre tutor D. nombre co-tutor

Resumen

En este primer apartado se hace una **breve** presentación del tema que se aborda en el proyecto.

Descriptores

Palabras separadas por comas que identifiquen el contenido del proyecto Ej: servidor web, buscador de vuelos, android ...

Abstract

A **brief** presentation of the topic addressed in the project.

Keywords

keywords separated by commas.

Índice general

Índice general	iii
Índice de figuras	\mathbf{v}
Índice de tablas	vi
Introducción	1
Objetivos del proyecto	3
Conceptos teóricos	7
3.1. Machine Learning	7
3.2. Carga de datos	10
3.3. Tratamiento de los datos	10
3.4. Red Neuronal ResNet	10
3.5. Estructura de la red convolucional	10
3.6. Entrenamiento e hiperparametrización	10
3.7. Salida de la red	10
3.8. Comprobación de resultados	10
3.9. Exportación del modelo	11
3.10. Copresión del modelo	11
3.11. Estudio de escalabilidad del modelo	11
Técnicas y herramientas	13
Aspectos relevantes del desarrollo del proyecto	15
Trabajos relacionados	17

IV	ÍNDICE GENERAL
Conclusiones y Líneas de trabajo futuras	19
Bibliografía	21

Índice de figuras

Índice de tablas

Introducción

Descripción del contenido del trabajo y del estrucutra de la memoria y del resto de materiales entregados.

Objetivos del proyecto

La principal motivación del proyecto es:

Mejorar la interacción entre personas que necesitan comunicación por signos y personas que no conocen el lenguaje de signos, intentando aumentar la calidad de vida de las primeras.

Objetivos teóricos

- 1. Creación de un modelo de DL¹ capaz de clasificar ASL² a nivel palabra.
- 2. Poner en producción un método para que los usuarios puedan probar el modelo de forma libre y transparante.
- 3. Generar una API de código abierto para que otros desarrolladores puedan crear plataformas de cliente, con el objeto de aumentar la audencia y alcance del proyecto.
- 4. Liberar y contenedorizar el modelo para su libre distribución.
- 5. Creación de herramientas que permitan el tratamiento de datos y la transformación entre distintos formatos³.
- 6. Estudio del comportamiento, estructura e hiperparametrización de redes neuronales convolucionales.

¹Deep Learning

²American Sign Language

³i.e.: extracción de fotogramas de un video, concatenación de imágenes

- 7. Aprender a fondo el uso de PyTorch[1], un framework para acelerar la creación y prototipado de redes neuronales.
- 8. Exportación del modelo entrenado a un formato estándar que facilite la compatibilidad con el mayor número de librerías en distintos lenguajes de programación.
- 9. Mantenimiento de una *codebase* que favorezca la integración continua (*linting*⁴, *formatting*⁵ y *type-checking*⁶) de código, siguiendo así los estándares en contribuciones *Open Source*.

Estos objetivos representan en general la filosofía y los objetivos teóricos del proyecto. Si entramos más en detalle sobre los aspectos técnicos y las *features* que se esperan obtener al finalizar el proyecto, obtenemos los siguientes puntos:

Features esperadas

- Debemos ser capaces de inferir resultados del modelo entrenado a tiempo real.
- Se desarrollará un modelo fácilmente escalable y adaptable a distintos dataset de cualquier tamaño.⁷
- Se realizará una fase de data augmentation sobre los datos iniciales.
- Se implementarán distintas redes neuronales para los ditintos formatos de datos (imagen y video). Deben ser fácilmente refactorizables y mantenibles.
- Cada vez que se estudie el uso de un nuevo formato de dataset, se creará una nueva red, manteniendo la usabilidad de la anterior intacta.
- A lo largo de las pruebas y entrenamientos de la red, vamos a probar distintos *schedulers*, *optimizers* y *criterions*⁸ buscando el que mejor se adecúe al formato de los datos y la estructura de la red.

⁴Voz ingl. Estudio de limpieza, orden, calidad y redundancia

⁵Formatear: Correcta estructura y legibilidad

⁶Comprobación de tipados de variables y funciones

⁷El formato de los datasets debe ser el mismo. Un modelo entrenado para clasificación de imágenes no podrá clasificar en formato video o audio.

⁸Funciones de cálculo de pérdida

• Se mantendrán unas estadísticas a tiempo real de la fase de *trainning* y *test* mediante el uso de Tensorboard, una herramienta analítica que permite mantener un *log* de imágenes generadas en la ejecución; así como gráficas de costes y *accuracies*.

Conceptos teóricos

Este proyecto es un proyecto de machine learning. Dentro del machine learning, es de aprendizaje supervisado. Más concretamente intenta resolver un problema de clasificación mediante deep learning. Las redes neuronales aplicadas para la clasificación serán ResNets y CNN (Convolutional Neural Networks). Veamos en detalle todos estos terminos en los siguientes apartados.

3.1. Machine Learning

Según Tom Mitchell??, un problema de aprendizaje se define como

un pro

Unsupervised Learning

Semi-supervised Learning

Supervised Learning

Regression

Classification

- 1. Redes Neuronales
 - Perceptron
 - Feedforward neural network

lacksquare Backpropagation

• Recurrent neural network

■ Convolutional neural network

 \blacksquare Autoencoder

3.2. Carga de datos

Extracción de frames de videos

3.3. Tratamiento de los datos

Normalización

Data Augmentation

Transformación de datos a tensores

Batching

Subsampling

Eliminación de datos innecesarios

3.4. Red Neuronal ResNet

3.5. Estructura de la red convolucional

Capas convolucionales

Downsampling

MaxPooling

Batch Normalization

Flatten layer

Dense layers

Dropout

Lineal layers

 $Leaky\ ReLU$

ReLU

Capas de salida

Sigmoide

Softmax

3.6. Entrenamiento e hiperparametrización

Pipeline del proceo

3.9. Exportación del modelo

Formatos estándares

ONNX

3.10. Copresión del modelo

Consecuencias

Velocidad

Accuracy

Métodos de compresión

Quantization

Prunning

3.11. Estudio de escalabilidad del modelo

Vamos a comprobar hasta que punto la red neuronal es capaz de mantener la precisión de clasificación con el aumento de las etiquetas. Para todo lo anterior el número de etiquetas a clasificar han sido 8. Vamos a aumentar esto hasta 100 etiquetas.

En la siguiente tabla blabla

Técnicas y herramientas

Esta parte de la memoria tiene como objetivo presentar las técnicas metodológicas y las herramientas de desarrollo que se han utilizado para llevar a cabo el proyecto. Si se han estudiado diferentes alternativas de metodologías, herramientas, bibliotecas se puede hacer un resumen de los aspectos más destacados de cada alternativa, incluyendo comparativas entre las distintas opciones y una justificación de las elecciones realizadas. No se pretende que este apartado se convierta en un capítulo de un libro dedicado a cada una de las alternativas, sino comentar los aspectos más destacados de cada opción, con un repaso somero a los fundamentos esenciales y referencias bibliográficas para que el lector pueda ampliar su conocimiento sobre el tema.

Aspectos relevantes del desarrollo del proyecto

Este apartado pretende recoger los aspectos más interesantes del desarrollo del proyecto, comentados por los autores del mismo. Debe incluir desde la exposición del ciclo de vida utilizado, hasta los detalles de mayor relevancia de las fases de análisis, diseño e implementación. Se busca que no sea una mera operación de copiar y pegar diagramas y extractos del código fuente, sino que realmente se justifiquen los caminos de solución que se han tomado, especialmente aquellos que no sean triviales. Puede ser el lugar más adecuado para documentar los aspectos más interesantes del diseño y de la implementación, con un mayor hincapié en aspectos tales como el tipo de arquitectura elegido, los índices de las tablas de la base de datos, normalización y desnormalización, distribución en ficheros3, reglas de negocio dentro de las bases de datos (EDVHV GH GDWRV DFWLYDV), aspectos de desarrollo relacionados con el WWW... Este apartado, debe convertirse en el resumen de la experiencia práctica del proyecto, y por sí mismo justifica que la memoria se convierta en un documento útil, fuente de referencia para los autores, los tutores y futuros alumnos.

Trabajos relacionados

Este apartado sería parecido a un estado del arte de una tesis o tesina. En un trabajo final grado no parece obligada su presencia, aunque se puede dejar a juicio del tutor el incluir un pequeño resumen comentado de los trabajos y proyectos ya realizados en el campo del proyecto en curso.

Conclusiones y Líneas de trabajo futuras

Todo proyecto debe incluir las conclusiones que se derivan de su desarrollo. Éstas pueden ser de diferente índole, dependiendo de la tipología del proyecto, pero normalmente van a estar presentes un conjunto de conclusiones relacionadas con los resultados del proyecto y un conjunto de conclusiones técnicas. Además, resulta muy útil realizar un informe crítico indicando cómo se puede mejorar el proyecto, o cómo se puede continuar trabajando en la línea del proyecto realizado.

Bibliografía

[1] Pytorch main Mantainer. Pytorch developers guideline and design philosophy, 2022.