算法 1 速度扰动下干道最大带宽协调控制

Input: 绿信比 g, 交叉口间距 d, 速度分布期望 μ , 速度分布方差 σ , 足够大正数 M, 速度下限 e, 速度上限 f, 速度区间 Ω , 最小带宽 be, 左转清空时间 τ

Output: 交叉口偏移量 o

1:
$$r \Leftarrow 1 - g$$
, $obj \Leftarrow 0$

2: Compute t_i for $1 \le i \le I$ according constraints Multiband

3:
$$A_0' \Leftarrow o_0 + r_0, B_0' \Leftarrow o_0 + r_0 + g_0$$

- 4: Iterative solution (A'_0, B'_0, t)
- 5: **for** $j = 1 \rightarrow len(\Omega)$ **do** //len() 为求列表长度

6:
$$A'_0 \Leftarrow o_0 + r_0, B'_0 \Leftarrow o_0 + r_0 + g_0, t \Leftarrow \frac{d}{v}$$

- 7: $e_i \Leftarrow \text{Iterative solution}(A'_0, B'_0, t)$
- 8: $obj+=e_j*getProp(\mu,\sigma,v)$ // getProp() 为获取速度 v 下的车辆占比
- 9: end for
- 10: **function** Iterative solution (A'_0, B'_0, t)

11: **for**
$$i = 1 \rightarrow I$$
 do $1/i$ 为迭代次数, I 为交叉口数量

12:
$$A'_0 \Leftarrow o_0 + r_0, B'_0 \Leftarrow o_0 + r_0 + g_0, v \Leftarrow \Omega[i],$$

13:
$$A'_i \Leftarrow max(A'_i + t_{i-1} - \tau_i, o_i + r_i + n_{j,i}) //n$$
 为整形变量

14:
$$B'_{i} \leftarrow min(B'_{i} + t_{i-1}, o_{i} + r_{i} + g_{i} + n_{j,i})$$

15:
$$be - M(1 - y_i) \le B'_i - A'_i \le g_i + M(1 - y_i)$$

- 16: end for
- 17: **return** $B'_n A_n \prime$
- 18: end function
- 19: Add Inbound Constraints
- 20: return o