1.4 Connectivity

Definition 1.4.1 (subgraph). A subgraph G' of a graph G is a graph such that $V(G') \subseteq V(G)$ and the edges of G' are subset of the edges of G such that each edge in G' is incident only with vertices in V(G').

- clique a subgraph of a graph that is isomorphic to a complete graph
- independent set (stable set)— a subgraph of a graph that is isomorphic to an empty graph

Definition 1.4.2 (spanning subgraph). A spanning subgraph of G is a subgraph G' of G such that V(G') = V(G).

Definition 1.4.3 (connected graph). A connected graph G is a graph such that there is a path between any two vertices in G.

Theorem 1.4.1. Every connected graph has at least two vertices of the same degree.

Proof. Pigeonhole principle.

Definition 1.4.4 (maximal connected subgraph). A maximal connected subgraph of G is a subgraph H such that if G' is connected subgraph of G and H is subgraph of G' then H = G'.

Definition 1.4.5 (component). A maximal connected subgraph of a graph G is called a component of G.

Definition 1.4.6 (decomposition). A decomposition of a graph is a list of subgraphs such that each edge appears in exactly on subgraph in the list.

Let e be an edge in G with G - e we denote the graph that has vertex set V(G) and edge set E(G) - e. Similarly, if $v \in V(G)$ then G - v denotes the graph what has vertex V(G) - v and edge set

$$E(G) - \{e \in E(G) \mid e \text{ is incident with } v\}$$

. The idea can be generalized for a set of edges and set of vertices. For a vertex set T in G we write G[T] for the graph $G - \overline{T}^2$ and call it the subgraph of G induced by T.

Theorem 1.4.2. For every connected graph G the vertices can be enumerated v_1, v_2, \ldots, v_n such that the graph G_i induced by v_1, \ldots, v_i i.e., $G_i = G[v_1, v_2, \ldots, v_i]$ is connected for every i.

Proof. Pick a vertex at random and denote it as v_1 . G_1 is connected and assume by induction that for i, v_1, \ldots, v_i are such that the graph G_i is connected. Let $v \in G - G_i$. Since G is connected there is a path from v_1 to v in G. Define v_{i+1} as the first vertex on the path from v_1 to v that is not in G_i . Then v_{i+1} has a neighbour in v_1, \ldots, v_i and the connectedness of G_i follows by induction.

Definition 1.4.7. A bridge of a graph G is an edge $e \in E(G)$ such that the number of components of G - e is strictly greater than the number of components of G.

Theorem 1.4.3. A graph G is connected if, for some vertex u in V(G), there is a path from u to x for all vertices x in V(G).

 $^{^{2}}$ Remove the complement of T, i.e. the graph is restricted to the vertices in T

Proof. Suppose G is connected and let u be any vertex in V(G). Since G is connected there is a path from u to x for any vertex $x \in V(G)$.

Suppose now G has a vertex u such that there is a path from u to any other vertex in V(G). Let x, y be any two vertices in V(G). By assumption

- 1. there is a path from x to u, i.e., there is a path $p_x = xe_1v_1e_2v_2\dots e_{n-1}v_{n-1}e_nu$
- 2. there is a path from y to u, i.e., there is a path $p_y = ue'_1v'_1e'_2v'_2\dots e'_{k-1}v'_{k-1}e'_ky$

Combining p_x and p_y we obtain the walk

$$p_{xy} = xe_1v_1e_2v_2\dots e_{n-1}v_{n-1}e_nue'_1v'_1e'_2v'_2\dots e'_{k-1}v'_{k-1}e'_ky$$

Thus there is a walk from x to y and therefore there is a path from x to y. Since x and y were arbitrary vertices it follows that the graph is connected.

Theorem 1.4.4. If e = (x, y) is a bridge of a connected graph G, then G - e has precisely two components; furthermore x and y are in different components.

Proof. Let e = (u, v). Suppose e is a bridge then G - e has at least two components. Let V_u be the set of vertices in G - e such that there is a path from any vertex $x \in V_u$ to u. Let y be any vertex of G - e such that $y \notin V_u$. Note that there is at least one vertex in not in V_u because G - e has at least two components. Since there is a path from y to u in G and no path from y to u in G - e, then any path from y to u in G is of the form

$$ueve_1v_1\dots v_{n-1}e_ny$$

Then there is a path $ve_1v_1...v_{n-1}e_ny$ from any vertex in G-e to v and therefore every vertex not in V_u is in the same component as v.

Theorem 1.4.5. Edge e is a bridge of a graph G if and only if e is not in any cycle of G.

Proof. First we show that if e = (ab) is an edge in a cycle then e cannot be a bridge. Let $ae_1v_1e_2v_2...v_{n-1}e_nbea$ be a cycle that contains e. Then $ae_1v_1e_2v_2...v_{n-1}e_nb$ is a path from a to b in G - e. If e were a bridge then in G - e by Theorem 1.4.4 e and e would be in different components a contradiction. Therefore if e is a bridge then e is not in any cycle of G.

If e is not in any cycle, then there is only one path from a to b which is the path aeb. Indeed if there were to be another path $ae_1v_1 \ldots v_{n-1}e_nb$ that do not contain e then $ae_1v_1 \ldots v_{n-1}e_nbea$ would be a cycle that contains e. Since e is not in the graph G - e then e and e are in different components of e. And furthermore e has more components than e. Thus e is a bridge.