

National University of Computer & Emerging Sciences MT-2005 Probability and Statistics

Analysis of Variance (ANOVA)

Question:

A researcher wishes to try three different techniques to lower the blood pressure of individuals diagnosed with high blood pressure. The subjects are randomly assigned to three groups; the first group takes medication, the second group exercises, and the third group follows a special diet. After four weeks, the reduction in each person's blood pressure is recorded. At $\alpha=0.05$, test the claim that there is no difference among the means. The data are shown.

Medication	Exercise	Diet
10	6	5
12	8	9
9	3	12
15	0	8
13	2	4

Solution:

Step 1 State the hypotheses and identify the claim.

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$ (claim)

 H_1 : At least one mean is different from the others.

Step 2 Find the critical value. Since k = 3 and N = 15,

d.f.N. =
$$k - 1 = 3 - 1 = 2$$

d.f.D. =
$$N - k = 15 - 3 = 12$$

At $\alpha=0.05$, $v_1=2$ and $v_1=12$ read the f value from table, which is f=3.89, for rejection region

Step 3 Compute the test value, using the procedure outlined here.

	Medication	Exercise	Diet	<u> </u>	v. – v	$v = \overline{v}$
	${y}_{1j}$	y_{2j}	y_{3j}	$y_{1j}-y_{}$	$y_{2j}-\overline{y}_{}$	$y_{2j}-y_{}$
	10	6	5	5.139289	3.003289	7.469289
	12	8	9	18.20729	0.071289	1.605289
	9	3	12	1.605289	22.40129	18.20729
	15	0	8	52.80929	59.79929	0.071289
	13	2	4	27.74129	32.86729	13.93529
Sum $\sum y_{1j}$	59	19	38	105.5024	118.1424	41.28845
Column Mean	59	19	38			
$\overline{y_1}$	$\frac{1}{5} = 11.8$	$\frac{19}{5} = 3.8$	$\frac{36}{5} = 7.6$			
Mean of Means	11.8 + 3.	$8 + 7.6_{-7}$	7222			
$\overline{\mathcal{Y}}_{}$	3	= /	.7333			

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{..})^2 = \text{total sum of squares},$$

$$SST = 105.5024 + 118.1424 + 41.28845 = 264.9333$$

$$SSA = n \sum_{i=1}^{k} (\bar{y}_{i.} - \bar{y}_{..})^2 = \text{treatment sum of squares},$$

$$SSA = 5(11.8 - 7.7333)^2 + 5(3.8 - 7.7333)^2 + 5(7.6 - 7.7333)^2 = 160$$

$$SSE = SST - SSA = 264.9333 - 160$$

 $SSE = 104.9333$

$$(MSA) s_1^2 = \frac{SSA}{k-1} = \frac{160}{3-1} = 80$$

$$(MSE)s^2 = \frac{SSE}{k(n-1)} = \frac{104.9333}{3(5-1)} = 8.74$$

$$f = \frac{s_1^2}{s^2} = \frac{80}{8.74} = 9.15$$

- **Step 4** Make the decision. The decision is to reject the null hypothesis, since 9.17 > 3.89.
- **Step 5** Summarize the results. There is enough evidence to reject the claim and conclude that at least one mean is different from the others.

Question:

A state employee wishes to see if there is a significant difference in the number of employees at the interchanges of three state toll roads. The data are shown. At $\alpha=0.05$, can it be concluded that there is a significant difference in the average number of employees at each interchange?

Pennsylvania Turnpike	Greensburg Bypass/ Mon-Fayette Expressway	Beaver Valley Expressway
7	10	1
14	1	12
32	1	1
19	0	9
10	11	1
11	1	11

Solution:

Step 1 State the hypotheses and identify the claim.

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$

 H_1 : At least one mean is different from the others (claim)

Step 2 Find the critical value. Since k = 3, N = 18, and $\alpha = 0.05$,

d.f.N. =
$$k - 1 = 3 - 1 = 2$$

d.f.D. =
$$N - k = 18 - 3 = 15$$

The critical value is 3.68.

Step 3 Compute the test value.

				j	$f_{0.05}(v_1,v_2)$	2)		
	v_1							
v_2	1	2	3	4	5	6	7	8
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64

	Pennsylvania Turnpike y_{1j}	Greensburg Bypass/ Mon-Fayette Expressway y_{2j}	Beaver Valley Expressway y_{3j}	$y_{1j}-ar{y}_{}$	$y_{2j}-ar{y}_{}$	$y_{2j}-\overline{y}_{}$
	7	10	1	2.085136	2.421136	55.41314
	14	1	12	30.86914	55.41314	12.64514
	32	1	1	554.8851	55.41314	55.41314
	19	0	9	111.4291	71.30114	0.309136
	10	11	1	2.421136	6.533136	55.41314
	11	1	11	6.533136	55.41314	6.533136
Sum $\sum y_{1j}$	93	24	35	708.2228	246.4948	185.7268
Column Mean $\overline{y_1}$.	15.5	4	5.833333			
Mean of Means \overline{y} .		8.44				

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{..})^2 = \text{total sum of squares},$$

$$SST = 708.2228 + 246.4948 + 185.7268 = 1140.444$$

$$SSA = n \sum_{i=1}^{k} (\bar{y}_{i.} - \bar{y}_{..})^2 = \text{treatment sum of squares},$$

$$SSA = 6(15.5 - 8.44)^2 + 6(4 - 8.44)^2 + 6(5.833 - 8.44)^2 = 458.121$$

$$SSE = SST - SSA = 1140.444 - 458.121$$

 $SSE = 682.322$

$$(MSA) s_1^2 = \frac{SSA}{k-1} = \frac{458.121}{3-1} = 229.06$$

 $(MSE) s^2 = \frac{SSE}{k(n-1)} = \frac{682.322}{3(6-1)} = 45.488$

$$f = \frac{s_1^2}{s^2} = \frac{229.06}{45.488} = 5.03$$

Step 4 Make the decision.

Since 5.03 > 3.68, the decision is to reject the null hypothesis

Step 5 Summarize the results.

There is enough evidence to support the claim that there is a difference among the means.

Questions Sets from neil a weiss

In Exercises 16.42–16.47, we provide data from independent simple random samples from several populations. In each case,

- a. compute SST, SSTR, and SSE by using the computing formulas given in Formula 16.1 on page 726.
- b. compare your results in part (a) for SSTR and SSE with those in Exercises 16.24–16.29, where you employed the defining formulas.
- c. construct a one-way ANOVA table.
- d. decide, at the 5% significance level, whether the data provide sufficient evidence to conclude that the means of the populations from which the samples were drawn are not all the same.

16.42	Sample 1	Sample 2	Sample 3
	1	10	4
	9	4	16
		8	10
		6	
		2	

6.43	Sample 1	Sample 2	Sample 3
	8	2	4
	4	1	3
	6	3	6
			3

16.44	Sample 1	Sample 2	Sample 3	Sample 4
	6	9	4	8
	3	5	4	4
	3	7	2	6
		8	2	
		6	3	

16.45	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	
	7	5	6	3	7	
	4	9	7	7	9	
	5	4	5	7	11	
	4		4	4		
			8	4		
						l

16.46	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
	4	8	9	4	3
	2	5	6	0	6
	3	5	9	2	9

16.47	Sample 1	Sample 2	Sample 3	Sample 4
	11	9	16	5
	6	2	10	1
	7	4	10	3