EPITA

Mathématiques

Partiel (S2)

mai 2018

Nom:
Prénom:
Entourer le nom de votre professeur de TD : Mme Boudin / Mme Daadaa / M. Ghanem / M. Goron / Mme Trémoulet
Classe:
NOTE:

Exercice 1 (2 points)

Soit $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -1 & 1 \\ 2 & 4 & 5 \end{pmatrix}$. Déterminer la matrice A^{-1} en prenant soin de vérifier (au brouillon) le résultat final.

Exercice 2 (4 points)

Décomposer en éléments simples dans $\mathbb{R}(X)$ les fractions rationnelles suivantes :

1.
$$F(X) = \frac{X^2 + X - 1}{(X - 1)(X - 2)(X + 2)}$$

3.	H(X) =	$2X^2 - 1$
		$\frac{2X-1}{(X+1)(X^2+X+1)}$

Exercice 3 (2 points)

Soient E, F deux \mathbb{R} -ev et $f \in \mathcal{L}(E, F)$. Montrer que f injective ssi $\mathrm{Ker}(f) = \{0\}$.

Exercice 4 (3 points)

1. Soit $f: \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$ définie pour tout $P \in \mathbb{R}_2[X]$ par $f(P(X)) = 2XP(X) - X^2P'(X)$.

Déterminer la matrice de f relativement à la base canonique de $\mathbb{R}_2[X]$.

2. Soit $f \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$ définie par $f: \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \mapsto \left(\begin{array}{cc} d & -c \\ -b & a \end{array} \right)$.

Déterminer la matrice de f relativement à la base canonique de $\mathcal{M}_2(\mathbb{R})$.

Exercice 5 (2,5 points)

Soient E un \mathbb{R} -ev et $u \in \mathscr{L}(E)$. On note $u^2 = u \circ u$. Montrer que $\mathrm{Ker}(u) \cap \mathrm{Im}(u) = \{0\} \Longleftrightarrow \mathrm{Ker}(u) = \mathrm{Ker}(u^2)$

Exercice 6 (2,5 points)

Dans les deux questions suivantes, vos réponses doivent être justifiées.

1. Les vecteurs u = (1, 1, 0), v = (4, 1, 4) et w = (2, -1, 4) forment-ils une base de \mathbb{R}^3 ?

2. Soient $E = \mathbb{R}^{\mathbb{R}}$ l'espace des fonctions de \mathbb{R} dans \mathbb{R} , $(f,g) \in E^2$ défini pour tout $x \in \mathbb{R}$ par $\begin{cases} f(x) = \frac{e^x + e^{-x}}{2} \\ g(x) = \frac{e^x - e^{-x}}{2} \end{cases}$ et F = Vect(f,g). Quelle est la dimension de F?

Exercice 7 (5 points)

 $\text{Soient } f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow \mathbb{R}^3 \\ \left(\begin{array}{c} x \\ y \\ z \end{array} \right) & \longmapsto \left(\begin{array}{c} x+2y \\ 3y \\ 2x-4y+2z \end{array} \right) \end{array} \right. \text{ et A la matrice de f relativement \grave{a} la base canonique \mathscr{B} de \mathbb{R}^3.}$

1. Déterminer A.

Déterminer la matrice de f relativement à \mathcal{B}' .

3. Soit $P = \operatorname{Mat}_{\mathscr{B}',\mathscr{B}}(id)$ où id est l'application identité de \mathbb{R}^3 dans \mathbb{R}^3 . Déterminer P^{-1} puis $D = P^{-1}AP$. Que remarquezvous?

			* **	 •
lculer D^2 ,	, D^3 et en déduire (sans récu	irrence) D^n pour tout \imath	$i \in \mathbb{N}$.	
			•	
	•			
			7.4	
	(sans récurrence) A^n en fonc	tion de P et D pour to	ut $n \in \mathbb{N}$.	
n déduire (
n déduire (
n déduire (
n déduire (
n déduire (
n déduire (
n déduire (
ı déduire (
n déduire (