Эконометрика. Лекция 13

Отчеты о проектах и защита проектов. Структура и оформление

Д. С. Терещенко

НИУ ВШЭ, Санкт-Петербург

16 декабря 2022 г.

Эконометрика. Лекция 13

Д. С. Терещенко

О структуре отчетов и презентаций

О защите проектов

IMRaD — общий подход к структуре научных отчетов

Эконометрика. Лекция 13

> Д. С. Терещенко

О структуре отчетов и презентаций

О защите проектов

IMRaD — общий подход к структуре научных отчетов

Эконометрика. Лекция 13

> Д. С. Терещенко

О структуре отчетов и презентаций

О защите проектов

Еще раз о том, что может содержать отчет (и презентация)

- ...
- Вводную часть, описывающую постановку и обоснование вопроса
- Описание данных, разведанализ данных
- Формулировку и обоснование модели или моделей
- Ожидаемые результаты
- Результаты регрессионного анализа
- Анализ результатов, включая результаты проведения статистических тестов или других необходимых процедур
- Ответ на содержательный вопрос в рамках проведенного анализа, при необходимости сопровождаемый уместной визуализацией результатов или аналитическими выкладками на основе проведенного анализа
- Критический анализ полученных результатов, анализ ограничений исследования
- Дискуссионную часть с предложениями по возможному расширению исследования
- Заключение
- ..

Эконометрика. Лекция 13

> Д. С. Терещенко

О структуре отчетов и презентаций

О защите проектов

Еще раз о том, что может включать описание данных

- Название базы данных, источник, временной период, включенный в анализ.
- Что является единицей наблюдения? Сколько наблюдений имеется?
- Преимущества и ограничения используемой базы данных.
- Описание все манипуляций, проводимых с данными: слияние двух или нескольких баз; создание новых переменных.
- Таблица с описательными статистиками. При необходимости можно представить описательные статистики по подгруппам.
- Графики.

Эконометрика. Лекция 13

> Д. С. Терещенко

О структуре отчетов и презентаций

О защите проектов

Еще раз о том, что могут включать заключительная часть работы

- Содержательный ответ на вопрос.
- Насколько экономически осмысленны полученные результаты? Как они соотносятся с реальной жизнью и здравым смыслом? Как они соотносятся с результатами предыдущих исследований?
- Кому могут быт полезны полученные результаты? Как их можно применить на практике?
- Обсуждение ограничений исследования и угроз валидности.
- ...

Эконометрика. Лекция 13

> Д. С. Терещенко

О структуре отчетов и презентаций

О защите проектов

Еще раз о формате защиты

Формат защиты:

- онлайн
- устный доклад с презентацией в течение 7 минут
- вопросы комиссии и ответы в течение 7 минут

Доклад и презентация, ответы на вопросы:

- на защите необходимо присутствовать всей команде (с включенными камерами)
- доклад делает 1-2 человека от команды
- на вопросы всей команде могут отвечать все/любые члены команды, комиссия также может задать вопрос любому члену команды и требовать ответ от него/неё
- присутствовать на защите других команд нет необходимости

Эконометрика. Лекция 13

> Д. С. Терещенко

О структуре отчетов и презентаций

О защите проектов

Цели презентации

Целью презентации не является:

- удивить/впечатлить слушателей
- рассказать всё, что вы знаете по теме презентации
- рассказать о каждой мелкой детали своей работы

Цели презентации:

- дать аудитории возможность понять ваши идеи/работу
- убедить аудиторию в важности ваших результатов
- получить обратную связь

Эконометрика. Лекция 13

> Д. С. Терещенко

О структуре отчетов и презентаций

О защите проектов

Общие советы по защите

Во время презентации ...

- будьте полны энтузиазма
- не читайте со слайда или с бумажки
- уложитесь в положенное время

Эконометрика. Лекция 13

> Д. С. Терещенко

О структуре отчетов и презентаций

О защите проектов

Общие советы по оформлению презентаций

- Каждый слайд и каждый элемент на слайде должен иметь какой-то смысл.
- Используйте списки или схемы вместо сплошного текста.
- Не используйте экзотические шрифты.
- Делайте заголовки на слайдах.
- Используйте разумный размер шрифта.
- Не используйте в таблицах сокращенные названия переменных. Все таблицы должны легко читаться.
- Округляйте до разумного числа знаков после запятой.
- Используйте один язык.
- Используйте единое оформление графиков.

Эконометрика. Лекция 13

> Д. С. Терещенко

О структуре отчетов и презентаций

О защите проектов

Таблица — очень плохой пример

	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew
breaks	1	54	28.15	13.20	26.0	26.41	11.86	10	70	60	1.24
wool*	2	54	1.50	0.50	1.5	1.50	0.74	1	2	1	0.00
tension*	3	54	2.00	0.82	2.0	2.00	1.48	1	3	2	0.00
	kurto	sis	s se								
breaks	1	1.33	3 1.80								
wool*	-2	2.04	1 0.07								
tension*	-1	1.56	5 0.11								

Эконометрика. Лекция 13

Д. С. Терещенко

О структуре отчетов и презентаций

О защите проектов

Таблица — очень плохой пример

```
Descriptive statistics by group
: Female
: Fifth
 vars n mean sd median trimmed mad min max range skew kurtosis se IOR 00.25 00.5 00.75
1 1 49 0.49 0.08 0.5 0.5 0.08 0.22 0.64 0.42 -0.56 0.56 0.01 0.1 0.44 0.5 0.55
· Male
: Fifth
 vars n mean sd median trimmed mad min max range skew kurtosis se IQR Q0.25 Q0.5 Q0.75
1 1 50 0 51 0 09 0 5 0 51 0 08 0 32 0 69 0 37 0 04 -0 4 0 01 0 12 0 45 0 5 0 57
· Female
: Sixth
 vars n mean sd median trimmed mad min max range skew kurtosis se IQR 00.25 00.5 00.75
1 1 47 0.48 0.09 0.49 0.48 0.1 0.3 0.67 0.37 -0.07 -0.9 0.01 0.13 0.41 0.49 0.54
: Male
: Sixth
vars n mean sd median trimmed mad min max range skew kurtosis se IOR 00.25 00.5 00.75
1 1 40 0.5 0.11 0.5 0.5 0.09 0.27 0.76 0.49 0.18 -0.05 0.02 0.13 0.44 0.5 0.57
```

Эконометрика.

Д. С. Терещенко

О структуре отчетов и презентаций

О защите проектов

Таблица — плохой пример

	2010	2011	2012	2013	2014	2015	2016	2017
EBIT	6153	6303	6875	8029	8277	9461	9692	9321
T	38,90%	39,30%	38,60%	38,90%	39,50%	39,30%	38,40%	19,80%
EBIT(1-T)	3759	3826	4221	4906	5008	5743	5970	7475
D	1469	1568	1753	1870	1931	2092	2475	2660
∆NWC	1399	2	-576	3838	-2944	253	-2417	-4211
CAPEX	1464	1276	1478	1930	2125	2332	2224	1918
FCFF	2365	4116	5072	1008	7758	5250	8638	12428

Эконометрика. Лекция 13

> Д. С. Терещенко

О структуре отчетов и презентаций

О защите проектов

Таблица — хороший пример 1

Кол-во наблю- дений	Среднее	Стан- дартное отклоне- ние	Мин.	Макс.
808	50 802,53	99 390,48	44	137 8474
746	39 271,88	64 146,72	8	467 083
369	17 135,72	46 981,82	1	693 309
808	35 781,95	75 013,96	19	1 099 991
	84 996,6	180 361,1	172	2 242 940
808	7843,60	10 260,86	100	100 974
,	наблю- дений 808 746 - 369 808	наблюдений Среднее 808 50 802,53 746 39 271,88 369 17 135,72 808 35 781,95 808 84 996,6	кол-во наблюдений Среднее мартное отклонение дартное отклонение 808 50 802,53 99 390,48 746 39 271,88 64 146,72 369 17 135,72 46 981,82 808 35 781,95 75 013,96 808 84 996,6 180 361,1	Кол-во наблюдений Среднее стклонение Дартное отклонение Мин. 808 50 802,53 99 390,48 44 746 39 271,88 64 146,72 8 369 17 135,72 46 981,82 1 808 35 781,95 75 013,96 19 808 84 996,6 180 361,1 172

Эконометрика. Лекция 13

> Д. С. Терещенко

О структуре отчетов и презентаций

О защите проектов

 $^{^{1}}$ Вообще-то это тоже скриншот, т. к. это таблица из чужого исследования. Обладая исходными данными, можно сделать «настоящую» таблицу.

Acemoglu, D., Johnson, S., & Robinson, J. A. (2001). The colonial origins of comparative development: An empirical investigation. *American economic review*, 91(5), 1369-1401.

TABLE 2—OLS REGRESSIONS

	Whole world (1)	Base sample (2)	Whole world (3)	Whole world (4)	Base sample (5)	Base sample (6)	Whole world (7)	Base sample (8)
		Dependent v	variable is lo	og GDP per (capita in 199	95		it variable atput per in 1988
Average protection against expropriation risk, 1985–1995	0.54 (0.04)	0.52 (0.06)	0.47 (0.06)	0.43 (0.05)	0.47 (0.06)	0.41 (0.06)	0.45 (0.04)	0.46 (0.06)
Latitude			0.89 (0.49)	0.37 (0.51)	1.60 (0.70)	0.92 (0.63)		
Asia dummy			()	-0.62 (0.19)	()	-0.60 (0.23)		
Africa dummy				-1.00 (0.15)		-0.90 (0.17)		
"Other" continent dummy				-0.25 (0.20)		-0.04 (0.32)		
R^2	0.62	0.54	0.63	0.73	0.56	0.69	0.55	0.49
Number of observations	110	64	110	110	64	64	108	61

Notes: Dependent variable: columns (1)–(6), log GDP per capita (PPP basis) in 1995, current prices (from the World Bank's World Development Indicators 1999); columns (7)–(8), log output per worker in 1988 from Hall and Jones (1999). Average protection against expropriation risk is measured on a scale from 0 to 10, where a higher score means more protection against expropriation, averaged over 1985 to 1995, from Political Risk Services. Standard errors are in parentheses. In regressions with continent dummies, the dummy for America is omitted. See Appendix Table Al for more detailed variable definitions and sources. Of the countries in our base sample, Hall and Jones do not report output per worker in the Bahamas, Ethiopia, and Vietnam

Эконометрика Лекция 13

> Д. С. Терещенко

О структуре отчетов и презентаций

О защите проектов

Enikolopov, R., Petrova, M., & Zhuravskaya, E. (2011). Media and Political Persuasion: Evidence from Russia. American Economic Review, 101(7), 3253–3285.

TABLE 7—SELF-REPORTED VOTE AND NTV IN 1999, SURVEY DATA

	Opposed in 1		in 1	d by NTV 1999				
	Vote for Un (centrist, pro IV probit		Vote for Ov (centrist, o IV probit	VR in 1999 pposition) Probit				
Panel A								
Watched NTV in 1999	-0.831 [0.301]***	-0.139 [0.128]	1.180 [0.477]**	0.135 [0.156]				
Marginal effect	-0.26 [0.09]***	-0.05 [0.04]	0.25 [0.14]*	0.02 [0.02]				
Controls	Yes	Yes	Yes	Yes				
Observations	901	901	901	901				
Number of subregions	42	42	42	42				
χ^2 statistics for the exclusion of NTV1999 in the first stage	34.72		24.79					
	Supported by NTV in 1999							
	Vote for SI	PS in 1999	Vote for Yab	loko in 1999				
	(libe		(libe					
	IV probit	Probit	IV probit	Probit				
Panel B								
Watched NTV in 1999	1.210	0.272	0.467	0.039				
	[0.405]***	[0.149]*	[0.555]	[0.178]				
Marginal effect	0.24	0.04	0.06	0.004				
	[0.11]**	[0.02]*	[0.08]	[0.02]				
Controls	Yes	Yes	Yes	Yes				
Observations	901	901	901	901				
Number of subregions	42	42	42	42				
χ^2 statistics for the exclusion of NTV1999 in the first stage	28.90		30.47					

Эконометрика. Лекция 13

Д. С. Терещенко

О структуре отчетов и презентаций

О защите проектов

Lipson, S. K., Zhou, S., Wagner III, B., Beck, K., & Eisenberg, D. (2016). Major differences: Variations in undergraduate and graduate student mental health and treatment utilization across academic disciplines. Journal of College Student Psychotherapy, 30(1), 23-41.

Table 4. Multivariable Correlates of Mental Health Problems Among Master's Students, Logistic Regressions.

		De	р			An	Anx			SI			NS	NSSI Any				Tx						
	OR	р	959	6 CI	OR	р	959	6 CI	OR	р	959	6 CI	OR	р	959	6 CI	OR	p	959	6 CI	OR	р	959	6 CI
SOC	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
HUM	2.15	.001	1.35	3.42	0.98	.94	0.55	1.73	2.10	.01	1.19	3.72	1.58	.03	1.05	2.37	1.70	.003	1.20	2.41	1.02	.95	0.61	1.68
NAT	1.22	.33	0.82	1.82	0.76	.33	0.43	1.33	1.77	.03	1.07	2.94	1.12	.57	0.76	1.66	1.10	.54	0.81	1.49	1.13	.64	0.67	1.91
ART	1.95	<.001	1.39	2.72	1.44	.12	0.91	2.27	1.61	.05	1.01	2.56	1.32	.13	0.93	1.87	1.80	<.001	1.39	2.33	1.09	.71	0.70	1.70
ENG	1.35	.08	0.97	1.89	0.62	.11	0.34	1.11	1.07	.80	0.66	1.71	1.12	.54	0.77	1.63	1.15	.32	0.88	1.49	0.54	.02	0.33	0.89
BUS	0.90	.55	0.64	1.27	0.71	.10	0.48	1.06	0.49	.003	0.31	0.78	0.47	<.001	0.34	0.66	0.68	.002	0.53	0.87	0.66	.07	0.42	1.03
LAW	0.79	.52	0.40	1.59	1.20	.76	0.38	3.79	0.58	.38	0.17	1.96	0.44	.14	0.15	1.31	0.64	.15	0.34	1.18	0.55	.32	0.17	1.81
SW	0.88	.66	0.49	1.56	1.10	.69	0.69	1.73	0.71	.30	0.36	1.37	0.87	.49	0.59	1.29	0.86	.40	0.60	1.23	2.13	.004	1.27	3.56
PH	0.72	.15	0.47	1.13	0.79	.36	0.48	1.31	0.78	.43	0.43	1.43	0.53	.01	0.33	0.83	0.60	.001	0.44	0.82	1.30	.37	0.74	2.30
NUR	0.82	.47	0.47	1.41	1.05	.88	0.55	2.00	0.42	.06	0.17	1.04	0.37	.01	0.19	0.74	0.66	.05	0.44	1.01	0.93	.87	0.40	2.17
MED	1.62	.05	1.00	2.64	1.35	.31	0.75	2.43	0.98	.97	0.44	2.21	0.68	.23	0.36	1.28	1.06	.77	0.71	1.58	1.13	.73	0.57	2.23
OTH	1.07	.68	0.77	1.50	0.99	.95	0.68	1.43	0.90	.62	0.60	1.36	0.70	.02	0.52	0.94	0.95	.67	0.76	1.20	0.94	.75	0.64	1.38
MULT	1.75	.001	1.24	2.47	1.39	.13	0.91	2.14	1.34	.18	0.87	2.07	0.92	.59	0.67	1.25	1.32	.03	1.02	1.70	0.95	.80	0.64	1.41
Constant	0.17	<.001	0.10	0.29	0.09	<.001	0.04	0.19	0.06	<.001	0.02	0.15	0.35	<.001	0.20	0.60	0.54	.004	0.35	0.82	0.22	<.001	0.10	0.47
N 9,	282			6,8	66			9,2	75			9,1	71			9,1	57			2,3	46			

Note. CI = confidence interval; OR = odds ratio; Dep = Depression; Anxiety (Anx) excludes 2013; SI = suicidal ideation; NSSI = nonsuicidal self-injun; Any = Any Mental Health Problem; Treatment Utilization (Tx) is among students with at least one apparent mental health (MH) problem; SOC = Social Sciences; HUM = Humanities; NAT = Natural Sciences; ART = Art & Design; ENG = Engineering; BUS = Business; LAW = Law; SW = Social Work; PH = Public Health; NUR = Nursing; MED = Medicine; OTH = Other; MULT = Multidisciplinary. All models control for survey year and students' age, gender, citizenship, race/ethnicity, and parental education. Reference category is Social Sciences.

Эконометрика. Лекция 13

Д. С. Терещенко

О структуре отчетов и презентаций

О защите проектов

Kouvonen, A., Kivimäki, M., Virtanen, M., Pentti, J., & Vahtera, J. (2005). Work stress, smoking status, and smoking intensity: an observational study of 46 190 employees. Journal of Epidemiology & Community Health, 59(1), 63-69.

Table 2 Relation of smoking status with job strain and effort-reward imbalance: adjusted odds ratios (ORs) and their 95% confidence intervals (Cls)

	Women			Men			p for sex
	Number	OR*	(95% CI)	Number	OR*	(95% CI)	interaction
Job control (component of job strain)							0.776
High job control	11033	1.00		2739	1.00		
Intermediate job control	12428	0.94	(0.87 to 1.01)	2925	0.98	(0.86 to 1.11)	
Low job control	11454	0.96	(0.89 to 1.04)	2490	1.01	(0.88 to 1.17)	
Job demands (component of job strain)							0.616
Low job demands	8547	1.00		2403	1.00		
Intermediate job demands	13825	0.92	(0.85 to 0.99)	3431	0.97	(0.86 to 1.10)	
High job demands	12452	1.01	(0.94 to 1.09)	2310	0.99	(0.87 to 1.14)	
Job strain			,			(
Low strain	8316	1.00		2173	1.00		0.083
Active jobs	10284	1.00	(0.92 to 1.09)	2398	0.87	(0.76 to 1.01)	
Passive jobs	7387	1.02	(0.93 to 1.11)	2021	0.88	(0.75 to 1.02)	
High strain	8792	1.04	(0.96 to 1.13)	1548	1.00	(0.86 to 1.17)	
Effort (component of effort-reward imbalar	ice)						0.019
High effort	12908	1.00		2169	1.00		
Intermediate effort	18037	0.88	(0.83 to 0.94)	4363	1.09	(0.96 to 1.24)	
Low effort	3860	0.83	(0.75 to 0.92)	1605	0.95	(0.81 to 1.11)	
Rewards (component of effort-reward			,				0.292
imbalance)							
High rewards	10236	1.00		2405	1.00		
Intermediate rewards	10379	1.03	(0.96 to 1.11)	2355	1.05	(0.91 to 1.21)	
Low rewards	8534	1.20	(1.11 to 1.30)	2501	1.15	(1.00 to 1.33)	
Effort-reward imbalance							0.129
Low imbalance	9044	1.00		2652	1.00		
Intermediate imbalance	11156	1.13	(1.05 to 1.22)	2441	1.01	(0.88 to 1.15)	
High imbalance	8831	1.28	(1.19 to 1.39)	2152	1.13	(0.98 to 1.29)	

Эконометрика. Лекция 13

Д. С. Терещенко

О структуре отчетов и презентаций

O защите проектов