Isabel Restrepo Brown University January 11, 2011

1 Tylor expansion of Images

The promblem of computing mage derivatives arises from a least square error minimization of the energy function (1-d case)

$$E = \sum_{i=-n}^{n} (I(n) - \tilde{I}(n))^2$$

$$\tag{1}$$

Where \tilde{I} is the Taylor series approximation of I.

Recall that the Taylor series expansion of a function f(x) about a point a is given by

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} \cdot (x-a)^n$$

1.1 The 2-d case

Consider the second order Tylor series expansion about a point (x_0, y_0) in a 2-d image

$$\tilde{I}(x,y) = I + I_x \cdot (x - x_0) + I_y \cdot (y - y_0)
+ \frac{1}{2} [I_{xx} \cdot (x - x_0)^2 + 2 \cdot I_{xy} \cdot (x - x_0)(y - y_0) + I_{yy} \cdot (y - y_0)^2]$$
(3)

Where $I_x = I_x(x_0, y_0)$ has been used to keep the notation short.

This expansion can be expressed in vector-matrix form as,

$$\tilde{I}(x,y) = \begin{bmatrix} (x-x_0) & (y-y_0) & 1 \end{bmatrix} \frac{1}{2} \begin{bmatrix} I_{xx} & I_{xy} & I_x \\ I_{xy} & I_{yy} & I_y \\ I_x & I_y & 2I \end{bmatrix} \begin{bmatrix} (x-x_0) \\ (y-y_0) \\ 1 \end{bmatrix}$$

1.2 The 3-d case

In general, the second-order Taylor series expansion, about a d-dimensional point \mathbf{a} , of multivariate functions can be written as,

$$\tilde{f}(\mathbf{x}) = f(\mathbf{a}) + (\mathbf{x} - \mathbf{a})^{\mathrm{T}} \nabla f(\mathbf{a}) + \frac{1}{2!} (\mathbf{x} - \mathbf{a})^{\mathrm{T}} {\nabla \nabla f(\mathbf{a})} (\mathbf{x} - \mathbf{a})$$

Where, $\nabla f(\mathbf{a})$ is the gradient of f evaluated at $\mathbf{x} = \mathbf{a}$, and $\nabla \nabla f(\mathbf{a})$ is the Hessian matrix of f evaluated at $\mathbf{x} = \mathbf{a}$,

So, for a 3-d image we obtain

$$\tilde{I}(\mathbf{x}) = I(\mathbf{a}) + (\mathbf{x} - \mathbf{a})^{\mathrm{T}} \begin{bmatrix} I_x(\mathbf{a}) \\ I_y(\mathbf{a}) \\ I_z(\mathbf{a}) \end{bmatrix} + \frac{1}{2!} (\mathbf{x} - \mathbf{a})^{\mathrm{T}} \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix} (\mathbf{x} - \mathbf{a})$$

1.3 Kernel Approximation

Ideally the expansion would agree exactly with intensity values, but since this is not the case, the best we can do can be found with a least squares approximation.

$$E = \sum_{i=-n}^{n} \sum_{j=-n}^{n} \sum_{k=-n}^{n} \sum_{k=-n}^{n} \left(I(i,j,k) - \tilde{I}(i,j,k) \right)^{2}$$

Notation and assumptions 1.3.1

Assume ni = nj = nk

Assume $\mathbf{a} = \mathbf{0}$

$$I(\mathbf{x}) = I(i, j, k)$$

 $G = \nabla f(\mathbf{a})$ - The gradient vector

 $H = \nabla \nabla f(\mathbf{a})$ - The hessian matrix

 1_{ij} : Single-entry matrix; 1 at (i, j) and zero elsewhere

$$\frac{\partial (\mathbf{x}^{\mathrm{T}}\mathbf{G})}{\partial \mathbf{G}} = \mathbf{x}^{\mathrm{T}} \frac{\partial (\mathbf{G})}{\partial \mathbf{G}} = \mathbf{x}^{\mathrm{T}} \mathbf{1}_{i}$$

$$\frac{\partial (\mathbf{x}^{\mathrm{T}}\mathbf{G})}{\partial \mathbf{G}_{i}} = \mathbf{x}^{\mathrm{T}} \frac{\partial (\mathbf{G})}{\partial \mathbf{G}_{i}} = \mathbf{x}^{\mathrm{T}} \mathbf{1}_{i}$$

$$\frac{\partial (\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x})}{\partial \mathbf{H}_{ij}} = \mathbf{x}^{\mathrm{T}} \frac{\partial (\mathbf{H})}{\partial \mathbf{H}_{ij}} \mathbf{x} = \mathbf{x}^{\mathrm{T}} \mathbf{1}_{ij} \mathbf{x}$$

$$E = \sum_{i=-n}^{n} \sum_{i=-n}^{n} \sum_{k=-n}^{n} \left(I(\mathbf{x}) - I_0 - \mathbf{x}^{\mathrm{T}} \mathbf{G} - \frac{1}{2!} \mathbf{x}^{\mathrm{T}} \mathbf{H} \mathbf{x} \right)^{2}$$

The previous expression can be minimized to find the best values for $I_0, I_x, I_y, I_{xx}, I_{xy}$ and so on. The minimization is given below:

$$\frac{\partial E}{\partial I_0} = -2\sum_{i=-n}^n \sum_{j=-n}^n \sum_{k=-n}^n \left(I(\mathbf{x}) - I_0 - \mathbf{x}^{\mathrm{T}} \mathbf{G} - \frac{1}{2!} \mathbf{x}^{\mathrm{T}} \mathbf{H} \mathbf{x} \right) = 0$$

$$\frac{\partial E}{\partial I_x} = -2\sum_{i=-n}^n \sum_{j=-n}^n \sum_{k=-n}^n \mathbf{x}^{\mathrm{T}} \mathbf{1}_1 \left(I(\mathbf{x}) - I_0 - \mathbf{x}^{\mathrm{T}} \mathbf{G} - \frac{1}{2!} \mathbf{x}^{\mathrm{T}} \mathbf{H} \mathbf{x} \right) = 0$$

$$\frac{\partial E}{\partial I_y} = -2\sum_{i=-n}^n \sum_{j=-n}^n \sum_{k=-n}^n \mathbf{x}^{\mathrm{T}} \mathbf{1}_2 \left(I(\mathbf{x}) - I_0 - \mathbf{x}^{\mathrm{T}} \mathbf{G} - \frac{1}{2!} \mathbf{x}^{\mathrm{T}} \mathbf{H} \mathbf{x} \right) = 0$$

$$\frac{\partial E}{\partial I_z} = -2\sum_{i=-n}^n \sum_{j=-n}^n \sum_{k=-n}^n \mathbf{x}^{\mathrm{T}} \mathbf{1}_3 \left(I(\mathbf{x}) - I_0 - \mathbf{x}^{\mathrm{T}} \mathbf{G} - \frac{1}{2!} \mathbf{x}^{\mathrm{T}} \mathbf{H} \mathbf{x} \right) = 0$$

$$\frac{\partial E}{\partial I_{xx}} = -\frac{2}{2!} \sum_{i=-n}^n \sum_{j=-n}^n \sum_{k=-n}^n \left(\mathbf{x}^{\mathrm{T}} \mathbf{1}_{(1,1)} \mathbf{x} \right) \left(I(\mathbf{x}) - I_0 - \mathbf{x}^{\mathrm{T}} \mathbf{G} - \frac{1}{2!} \mathbf{x}^{\mathrm{T}} \mathbf{H} \mathbf{x} \right) = 0$$

$$\frac{\partial E}{\partial I_{xy}} = -\sum_{i=-n}^n \sum_{j=-n}^n \sum_{k=-n}^n \left(\mathbf{x}^{\mathrm{T}} \mathbf{1}_{(2,2)} \mathbf{x} \right) \left(I(\mathbf{x}) - I_0 - \mathbf{x}^{\mathrm{T}} \mathbf{G} - \frac{1}{2!} \mathbf{x}^{\mathrm{T}} \mathbf{H} \mathbf{x} \right) = 0$$

$$\frac{\partial E}{\partial I_{xy}} = -\sum_{i=-n}^n \sum_{j=-n}^n \sum_{k=-n}^n \left(\mathbf{x}^{\mathrm{T}} \mathbf{1}_{(3,3)} \mathbf{x} \right) \left(I(\mathbf{x}) - I_0 - \mathbf{x}^{\mathrm{T}} \mathbf{G} - \frac{1}{2!} \mathbf{x}^{\mathrm{T}} \mathbf{H} \mathbf{x} \right) = 0$$

$$\frac{\partial E}{\partial I_{xy}} = -\sum_{i=-n}^n \sum_{j=-n}^n \sum_{k=-n}^n \left(\mathbf{x}^{\mathrm{T}} \mathbf{1}_{(3,3)} \mathbf{x} \right) \left(I(\mathbf{x}) - I_0 - \mathbf{x}^{\mathrm{T}} \mathbf{G} - \frac{1}{2!} \mathbf{x}^{\mathrm{T}} \mathbf{H} \mathbf{x} \right) = 0$$

$$\frac{\partial E}{\partial I_{xz}} = -\sum_{i=-n}^{n} \sum_{j=-n}^{n} \sum_{k=-n}^{n} \left(\mathbf{x}^{\mathrm{T}} \mathbf{1}_{(1,3),(3,1)} \mathbf{x} \right) \left(I(\mathbf{x}) - I_0 - \mathbf{x}^{\mathrm{T}} \mathbf{G} - \frac{1}{2!} \mathbf{x}^{\mathrm{T}} \mathbf{H} \mathbf{x} \right) = 0$$

$$\frac{\partial E}{\partial I_{yz}} = -\sum_{i=-n}^{n} \sum_{k=-n}^{n} \sum_{k=-n}^{n} \left(\mathbf{x}^{\mathrm{T}} \mathbf{1}_{(2,3),(3,2)} \mathbf{x} \right) \left(I(\mathbf{x}) - I_0 - \mathbf{x}^{\mathrm{T}} \mathbf{G} - \frac{1}{2!} \mathbf{x}^{\mathrm{T}} \mathbf{H} \mathbf{x} \right) = 0$$

Expanding the previous equations we obtain:

$$\frac{\partial E}{\partial I_0} = -2\sum_{i=-n}^n \sum_{j=-n}^n \sum_{k=-n}^n \left(I(\mathbf{x}) - I_0 - \mathbf{x}^{\mathrm{T}} \mathbf{G} - \frac{1}{2!} \mathbf{x}^{\mathrm{T}} \mathbf{H} \mathbf{x} \right) = 0$$

$$\sum_{i,j,k} \left(I(i,j,k) - I_0 - (iI_x + jI_y + kI_z) - \frac{1}{2!} (i^2 I_{xx} + j^2 I_{yy} + k^2 I_{zz} + 2ijI_{xy} + 2ikI_{xz} + 2jkI_{yz}) \right)$$

$$\frac{\partial E}{\partial I_x} = -2\sum_{i=-n}^n \sum_{j=-n}^n \sum_{k=-n}^n \mathbf{x}^{\mathrm{T}} \mathbf{1}_1 \left(I(\mathbf{x}) - I_0 - \mathbf{x}^{\mathrm{T}} \mathbf{G} - \frac{1}{2!} \mathbf{x}^{\mathrm{T}} \mathbf{H} \mathbf{x} \right) = 0$$

$$\sum_{i,j,k} i \left(I(i,j,k) - I_0 - (iI_x + jI_y + kI_z) - \frac{1}{2!} (i^2 I_{xx} + j^2 I_{yy} + k^2 I_{zz} + 2ijI_{xy} + 2ikI_{xz} + 2jkI_{yz}) \right)$$

$$\sum_{i} i \sum_{jk} I(i, j, k) - I_{0} \sum_{i} i \sum_{j,k} - (I_{x} \sum_{i} i^{2} \sum_{j,k} + I_{y} \sum_{j} j \sum_{i} i \sum_{k} + I_{z} \sum_{k} k \sum_{i} i \sum_{j}) - \frac{1}{2!} [I_{xx} \sum_{i} i^{3} \sum_{jk} + I_{yy} \sum_{j} j^{2} \sum_{i} i \sum_{k} + I_{zz} \sum_{k} k^{2} \sum_{i} i \sum_{j} i \sum_{j} + 2I_{xy} \sum_{ij} i^{2} j \sum_{k} + 2I_{xz} \sum_{ik} i^{2} k \sum_{j} + 2I_{yz} \sum_{jk} j k \sum_{i} i]$$

$$(5)$$

$$\frac{\partial E}{\partial I_{xx}} = -\frac{2}{2!} \sum_{i=-n}^{n} \sum_{j=-n}^{n} \sum_{k=-n}^{n} \left(\mathbf{x}^{\mathrm{T}} \mathbf{1}_{(1,1)} \mathbf{x} \right) \left(I(\mathbf{x}) - I_0 - \mathbf{x}^{\mathrm{T}} \mathbf{G} - \frac{1}{2!} \mathbf{x}^{\mathrm{T}} \mathbf{H} \mathbf{x} \right) = 0$$

$$\sum_{i,j,k} i^2 \left(I(i,j,k) - I_0 - (iI_x + jI_y + kI_z) - \frac{1}{2!} (i^2 I_{xx} + j^2 I_{yy} + k^2 I_{zz} + 2ijI_{xy} + 2ikI_{xz} + 2jkI_{yz}) \right)$$

$$\sum_{i} i^{2} \sum_{jk} I(i, j, k) - I_{0} \sum_{i} i^{2} \sum_{j,k} - (I_{x} \sum_{i} i^{3} \sum_{j,k} + I_{y} \sum_{j} j \sum_{i} i^{2} \sum_{k} + I_{z} \sum_{k} k \sum_{i} i^{2} \sum_{j}) - \frac{1}{2!} [I_{xx} \sum_{i} i^{4} \sum_{jk} + I_{yy} \sum_{j} j^{2} \sum_{i} i^{2} \sum_{k} + I_{zz} \sum_{k} k^{2} \sum_{i} i^{2} \sum_{j} i^{2} \sum_{j} i^{3} j \sum_{k} + 2I_{xz} \sum_{ik} i^{3} k \sum_{j} + 2I_{yz} \sum_{jk} jk \sum_{i} i^{2}]$$

$$(6)$$

$$\frac{\partial E}{\partial I_{xy}} = -\sum_{i=-n}^{n} \sum_{i=-n}^{n} \sum_{k=-n}^{n} \left(\mathbf{x}^{\mathrm{T}} \mathbf{1}_{(1,2),(2,1)} \mathbf{x} \right) \left(I(\mathbf{x}) - I_0 - \mathbf{x}^{\mathrm{T}} \mathbf{G} - \frac{1}{2!} \mathbf{x}^{\mathrm{T}} \mathbf{H} \mathbf{x} \right) = 0$$

$$\sum_{i,j,k} 2ij \left(I(i,j,k) - I_0 - (iI_x + jI_y + kI_z) - \frac{1}{2!} (i^2I_{xx} + j^2I_{yy} + k^2I_{zz} + 2ijI_{xy} + 2ikI_{xz} + 2jkI_{yz}) \right)$$

$$2\sum_{i} i \sum_{j} j \sum_{k} I(i, j, k) - 2I_{0} \sum_{i} i \sum_{j} j \sum_{k} k - 2(I_{x} \sum_{i} i^{2} \sum_{j} j \sum_{k} + I_{y} \sum_{j} j^{2} \sum_{i} i \sum_{k} + I_{z} \sum_{k} k \sum_{i} i \sum_{j} j) - (I_{xx} \sum_{i} i^{3} \sum_{j} j \sum_{k} + I_{yy} \sum_{j} j^{3} \sum_{i} i \sum_{k} + I_{zz} \sum_{k} k^{2} \sum_{i} i \sum_{j} j + 2I_{xy} \sum_{i} i^{2} \sum_{j} j^{2} \sum_{k} k \sum_{i} i) + 2I_{xy} \sum_{i} i^{2} \sum_{j} j^{2} \sum_{k} k \sum_{i} i \sum_{j} j + 2I_{yz} \sum_{j} j^{2} \sum_{k} k \sum_{i} i)$$

$$(7)$$

The previous equation indicates that for a second order approximation our Taylor-basis is 9-dimensional The system of linear equations can be solved using the following matrix:

	I_0	I_x	I_y	I_z	I_{xx}	I_{yy}	I_{zz}	I_{xy}	I_{xz}	I_{yz}		
$\frac{\delta E}{\delta I_0}$	\sum_{ijk}	$\sum_{i} i \sum_{jk}$	$\sum_{j} j \sum_{ik}$	$\sum_{k} k \sum_{ij}$	$\frac{1}{2}\sum_{i}i^{2}\sum_{jk}$	$\frac{1}{2}\sum_{i}j^{2}\sum_{ik}$	$\frac{1}{2}\sum_{k}k^{2}\sum_{ij}$	$\sum_{i} i \sum_{j} j \sum_{k}$	$\sum_{i} i \sum_{k} k \sum_{j}$	$\sum_{j} j \sum_{k} k \sum_{i}$)	$\left(\sum_{ijk} I(i,j,k) \right)$
$\frac{\delta E}{\delta I_x}$	$\sum_{i} i \sum_{jk}$	$\sum_{i} i^{2} \sum_{i,k}^{j}$	$\sum_{i}^{j} i \sum_{j}^{m} j \sum_{k}^{m}$	$\sum_{i} i \sum_{k} k \sum_{i}$	$\frac{1}{2}\sum_{i}i^{3}\sum_{jk}^{3}$	$\frac{1}{2} \sum_{i}^{j} i \sum_{i}^{j} j^{2} \sum_{k}^{i}$	$\frac{1}{2}\sum_{i}i\sum_{k}k^{2}\sum_{i}$	$\sum_{i} i^{2} \sum_{j} j \sum_{k}$	$\sum_{i} i^{2} \sum_{k} k \sum_{i}^{J}$	$\sum_{i}^{J} i \sum_{j}^{m} j \sum_{k}^{m} k$		$\sum_{i} i \sum_{jk} I(i, j, k)$
$\frac{\delta E}{\delta I_y}$	$\sum_{i}^{j} j \sum_{ik}^{jk}$	$\sum_{i} i \sum_{j} j \sum_{k}$	$\sum_{i} j^{2} \sum_{ik}^{n}$	$\sum_{j}^{n} j \sum_{k}^{n} k \sum_{j}^{j}$	$\frac{1}{2}\sum_{i}i^{2}\sum_{j}j\sum_{k}$	$\frac{1}{2} \sum_{i} j^{3} \sum_{ik}^{N}$	$\frac{1}{2}\sum_{i}^{j}j\sum_{k}^{n}k^{2}\sum_{i}^{j}$	$\sum_{i}^{J} i \sum_{i}^{J} j^{2} \sum_{k}^{K}$	$\sum_{i}^{j} i \sum_{i}^{k} j \sum_{k}^{j} k$	$\sum_{i}^{J} j^{2} \sum_{k}^{J} k \sum_{i}^{K}$		$\sum_{j} j \sum_{ik}^{s} I(i, j, k)$
$\frac{\delta E}{\delta I_z}$	$\sum_{k}^{j} k \sum_{i,j}^{i,k}$	$\sum_{i}^{j} i \sum_{k}^{j} k \sum_{i}^{k}$	$\sum_{i}^{j} j \sum_{k}^{i} k \sum_{i}^{k}$	$\sum_{k}^{n} k^{2} \sum_{i,j}^{n}$	$\frac{1}{2}\sum_{i}^{j}i^{2}\sum_{k}^{j}k\sum_{i}^{n}$	$\frac{1}{2}\sum_{i}j^{2}\sum_{k}k\sum_{i}$	$\frac{1}{2}\sum_{k}k^{3}\sum_{i,i}$	$\sum_{i}^{j} i \sum_{j}^{j} j \sum_{k}^{n} k$	$\sum_{i}^{j} i \sum_{k}^{j} k^{2} \sum_{i}^{k}$	$\sum_{j}^{J} j \sum_{k}^{n} k^{2} \sum_{i}^{j}$		$\sum_{k} k \sum_{ij} I(i,j,k)$
$\frac{\delta E}{\delta I_{xx}}$	$\sum_{i} i^{2} \sum_{jk}^{3}$	$\sum_{i} i^{3} \sum_{jk}$	$\sum_{i}^{3} i^{2} \sum_{j} j \sum_{k}$	$\sum_{i} i^{2} \sum_{k} k \sum_{i}$	$\frac{1}{2}\sum_{i}i^{4}\sum_{jk}$	$\frac{1}{2}\sum_{i}^{3}i^{2}\sum_{j}j^{2}\sum_{k}$	$\frac{1}{2}\sum_{i}i^{2}\sum_{k}k^{2}\sum_{i}$	$\sum_{i} i^{3} \sum_{j} j \sum_{k}$	$\sum_{i} i^{3} \sum_{k} k \sum_{i}^{3}$	$\sum_{i}^{3} i^{2} \sum_{j} j \sum_{k} k$		$\sum_{i} i^{2} \sum_{jk} I(i,j,k)$
$\frac{\delta E}{\delta I_{yy}}$	$\sum_{i} j^{2} \sum_{ik}$	$\sum_{i} i \sum_{j} j^{2} \sum_{k}$	$\sum_{j} j^{3} \sum_{ik}$	$\sum_{j} j^{2} \sum_{k} k \sum_{i}^{j}$	$\frac{1}{2}\sum_{i}i^{2}\sum_{j}j^{2}\sum_{k}$	$\frac{1}{2}\sum_{i}j^{4}\sum_{ik}$	$\frac{1}{2}\sum_{k}k^{2}\sum_{j}j^{2}\sum_{i}$	$\sum_{i} i \sum_{j} j^{3} \sum_{k}$	$\sum_{i} i \sum_{j} j^{2} \sum_{k}^{3} k$	$\sum_{i} j^{3} \sum_{k} k \sum_{i}$	=	$\sum_{j} j^{2} \sum_{i} ik I(i, j, k)$
$\frac{\delta E}{\delta I_{zz}}$	$\sum_{k}^{\infty} k^2 \sum_{ij} ij$	$\sum_{i} i \sum_{k}^{3} k^{2} \sum_{i}$	$\sum_{j} j \sum_{k} k^{2} \sum_{i}$	$\sum_{k} k^{3} \sum_{i i}$	$\frac{1}{2}\sum_{i}i^{2}\sum_{k}k^{2}\sum_{i}$	$\frac{1}{2}\sum_{i}j^{2}\sum_{k}k^{2}\sum_{i}$	$\frac{1}{2}\sum_{k}k^{4}\sum_{ij}$	$\sum_{i} i \sum_{j} j \sum_{k} k^{2}$	$\sum_{i} i \sum_{k} k^{3} \sum_{i}$	$\sum_{j}^{3} j \sum_{k} k^{3} \sum_{i}$		$\sum_{k} k^2 \sum_{ij} I(i,j,k)$
$\frac{\delta E}{\delta I_{xy}}$	$2\sum_{i}i\sum_{j}j\sum_{k}$	$2\sum_{i}i^{2}\sum_{j}j\sum_{k}$	$2\sum_{i}^{\infty}i\sum_{j}j^{2}\sum_{k}$	$2\sum_{i}i\sum_{j}j\sum_{k}k$	$\sum_{i} i^{3} \sum_{j} j \sum_{k}$	$\sum_{i}^{3} i \sum_{j} j^{3} \sum_{k}$	$\sum_{i} i \sum_{j} j \sum_{k}^{3} k^{2}$	$2\sum_{i}i^{2}\sum_{j}j^{2}\sum_{k}$	$2\sum_{i}i^{2}\sum_{j}j\sum_{k}^{3}k$	$2\sum_{i}^{3}i\sum_{j}j^{2}\sum_{k}k$		$2\sum_{i}i\sum_{j}j\sum_{k}I(i,j,k)$
$\frac{\delta E}{\delta I_{xz}}$	$2\sum_{i}i\sum_{k}^{i}k\sum_{j}$	$2\sum_{i}i^{2}\sum_{k}^{3}k\sum_{j}$	$2\sum_{i}i\sum_{j}j\sum_{k}k$	$2\sum_{i}i\sum_{k}k^{2}\sum_{j}$	$\sum_{i} i^{3} \sum_{k}^{3} k \sum_{i}$	$\sum_{i} i \sum_{j}^{i} j^{2} \sum_{k} k$	$\sum_{i} i \sum_{k} k^{3} \sum_{j}$	$2\sum_{i}i^{2}\sum_{j}j\sum_{k}k$	$2\sum_{i}i^{2}\sum_{k}k^{2}\sum_{i}$	$2\sum_{i}i\sum_{j}j\sum_{k}k^{2}$		$2\sum_{i}i\sum_{k}k\sum_{j}I(i,j,k)$
$\frac{\delta E}{\delta I_{yz}}$	$2\sum_{j} j \sum_{k} k \sum_{i}^{j}$	$2\sum_{i}i\sum_{j}j\sum_{k}^{3}k$	$2\sum_{j}j^{2}\sum_{k}k\sum_{i}$	$2\sum_{j} j \sum_{k} k^{2} \sum_{i}$	$\sum_{i} i^{2} \sum_{j} j \sum_{k}^{3} k$	$\sum_{j} j^{3} \sum_{k} k \sum_{i}$	$\sum_{j} j \sum_{k} k^{3} \sum_{i}^{3}$	$2\sum_{i}i\sum_{j}j^{2}\sum_{k}k$	$2\sum_{i}i\sum_{j}j\sum_{k}k^{2}$	$2\sum_{j}j^{2}\sum_{k}k^{2}\sum_{i}$)	$\left(2\sum_{j}j\sum_{k}k\sum_{i}I(i,j,k)\right)$

Misssing! What are the kernels? Well we could run derivatives of gaussians that are already implemented - not the xy. Also, should we go above 2nd derivative - so we get a larger basis to compare Harr Wavelets? or other wavelets?