UNIVERSITAT POLITÈCNICA DE CATALUNYA

DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS

SENYALS I SISTEMES II

7 de Juny de 2006

Data notes provisionals: 19 de Juny de 2006 22 de Juny de 2006 Període d'al.legacions:

28 de Juny de 2006 Data notes revisades:

Professors: R. Banchs, A. De Gispert, J. Hernando, E. Monte, A. Oliveras, J. Ruiz i P. Salembier Codi de prova: 230 11485 52 0 00

Informacions addicionals:

Durada de la prova: 1h 30min

- Poseu el vostre nom, el número de DNI i el número d'identificació de la prova al full de codificació de respostes, codificant-los amb les marques a les caselles corresponents
- Totes les marques del full de respostes s'han de fer en llapis (B, HB preferiblement)
- Les preguntes poden tenir més d'una resposta correcta (tres com a màxim). Les respostes errònies resten punts. Utilitzeu la <u>numeració de la dreta</u> (opció d'anul·lar respostes)
- No podeu utilitzar llibres, apunts, taules, formularis, calculadores o telèfon mòbil
- Para el sistema discreto descrito por y[n] = 2 x[n] + 1/2 (y[n-1] x[n-2]), con condiciones iniciales nulas, se puede afirmar que:

1A: Es un sistema no lineal.

1B: Es invariante.

1C: Su respuesta impulsional es infinita.

1D: Es un sistema estable.

Sea el sistema descrito por $H(z) = \frac{z^{-1}}{1 - \frac{5}{2}z^{-1} + z^{-2}}$, cuya ROC es $\frac{1}{2} < |z| < 2$. Indicar las afirmaciones correctas:

2A: $h[n] = TZ^{-1}\{H(z)\}$ será un sistema estable.

 $h[n] = TZ^{-1}\{H(z)\}\$ se puede expresar como la autocorrelación de la respuesta impulsional de otro sistema causal y estable. 2B:

2C: $h[n] = TZ^{-1}\{H(z)\}$ se puede expresar como la autocorrelación de la respuesta impulsional de otro sistema de fase mínima.

2D: $h[n] = TZ^{-1} \{H(z)\}$ será un sistema pasa todo.

Indicar las afirmaciones correctas:

3A: Si x[n]=1, $DFT_N \{x[n]\} = \delta[k]$

3B: $DFT_N^{-1}\{\delta[k]\} = \frac{1}{N}$ $0 \le n \le N-1$

3C: Si $x[n] = \frac{1}{2\pi}$, $TF\{x[n]\} = \sum_{r=-\infty}^{\infty} \delta(\omega + 2\pi r)$

3D: Si $x[n] = \delta[n]$, $TF\{x[n]\} = 2\pi$

Dado el sistema de la figura donde los filtros F_A y F_R son paso bajo ideales con frecuencias de corte F_{m1}/2 y F_{m2}/2 respectivamente, indicar las afirmaciones correctas:

4A: Si M=N, entonces y(t)=x(t)

4B: Si N=2M, entonces F_{m2} =2 F_{m1} para que el sistema pueda funcionar en tiempo real.

4C: Si M=N=3, $F_{m1}=F_{m2}=8KHz$ y $x(t)=\sin(2\pi F_{in}t)$ con $F_{in}=2KHz$, entonces $y(t)=\sin(2\pi F_{out}t)$ con $F_{out}=2KHz$

4D: Si M=N=3, $F_{m1}=F_{m2}=8KHz$ y $x(t)=\sin(2\pi F_{in}t)$ con $F_{in}=1KHz$, entonces $y(t)=\sin(2\pi F_{out}t)$ con $F_{out}=1KHz$

Considere un sistema T{.} lineal e invariante con respuesta impulsional h[n]. Indicar la afirmaciones correctas:

5A: Si h[n] es periódica, la salida del sistema siempre será periódica.

5B: El sistema es estable si y sólo si $\left(\sum_{n=-\infty}^{\infty} h^2[n]\right) = C < \infty$

5C: Si y[n]=h[n]*x[n], y[-n]=h[-n]*x[-n]

5D: Si T{.} es un sistema causal, el sistema T'{.} con respuesta impulsional h'[n]=h[Nn], N>1, no es causal

En l'entorn de la figura on la frequència de mostratge és de 12kHz, les frequencies de tall dels filtres ideals reconstructor F_R i antialiasing F_A són de 5 kHz i el senyal d'entrada x(t) és un senyal de forma d'ona quadrada (sense component de contínua) de frequència 1200 Hz, podem afirmar:

- **6A:** Si el sistema h[n] és un promitjador de 12 mostres el senyal de sortida y(t) és nul.
- **6B:** Si el sistema h[n] és un promitjador de 10 mostres el senyal y[n] és triangular.
- **6C:** Si h[n]={1, -2cos(2π·0.1), 1} el senyal de sortida y(t) és una sinusoide amb un periode tres vegades més gran que el periode del senyal d'entrada x(t).
- **6D:** Si h[n]= $\{\underline{1}, -2\cos(2\pi \cdot 0.1), 1\}*\{\underline{1}, -2\cos(2\pi \cdot 0.3), 1\}$ el senyal de sortida y(t) és nul.
- 7. Dado el sistema causal y estable definido por la función de transferencia $H(z) = \frac{\left(1 cz^{-1}\right)\left(1 c^{-1}z^{-1}\right)}{1 pz^{-1}}$, con $c, p \in \mathbb{R}$, |c|, |p| < 1.

Indicar las afirmaciones correctas suponiendo todos los sistemas siguientes causales:

- **7A:** $H(z)H(z^{-1})$ es de fase mínima.
- **7B:** $\frac{H(z)}{H(z^{-1})}$ es un filtro de módulo constante.
- **7C:** $\frac{H(z^{-1})}{H(z)}$ es estable.
- **7D:** $\frac{1}{H(z)} \frac{\left(1 c^{-1}z^{-1}\right)}{c\left(1 cz^{-1}\right)}$ ecualiza en módulo H(z)
- 8. Si a l'entrada de l'esquema delmador de la figura s'introdueix un to de freqüència F_{in} i considerant les freqüencies de tall dels filtres ideals reconstructor F_R i antialiasing F_A són de $F_m/4$ y $F_m/2$ respectivament, podem afirmar que:

- **8A:** Si $F_m = 16$ kHz, $h[n] = \delta[n]$ i $F_{in} = 6$ kHz, a la sortida tenim un to de freqüència 2 kHz
- **8B:** Si $F_m = 8$ kHz, h[n] és un filtre pas baix ideal amb freqüència de tall $f_c = 0.25$ i $F_{in} = 3$ kHz, a la sortida tenim un to de 3 kHz
- **8C:** Si $F_m = 16$ kHz, $h[n] = \delta[n]$ i $F_{in} = 3$ kHz, a la sortida tenim un to de freqüència 3 kHz
- **8D:** Si F_m = 16 kHz, h[n] és un filtre pas baix ideal amb freqüència de tall f_c = 0,25 i F_{in} = 3 kHz, a la sortida tenim un to de 6 kHz
- 9. En el sistema de la figura, donde $x_a(t)$ un proceso estocástico analógico real con densidad espectral de potencia plana de valor 1 hasta los 4 kHz, el filtro antialiasing y el conversor A/D son ideales y $h[n] = \delta[n] \delta[n-1]$. Señale las afirmaciones correctas:

- **9A:** La media de y[n] es 0
- **9B:** La potencia de x[n] es 4000
- **9C:** La autocorrelación de x[n] es $r_x[m] = 10000 \sin\left(\frac{4\pi}{5}m\right) / \pi m$
- **9D:** La densidad espectral cruzada de x[n] e y[n], $S_{xy}(e^{j\omega})$, es real.
- 10. Señale las afirmaciones correctas:
 - **10A:** Los filtros digitales con rizado de amplitud constante tienen fase lineal.
 - 10B: Los filtros digitales obtenidos por transformación bilineal de filtros analógicos elípticos tienen fase lineal.
 - **10C:** Los filtros FIR de fase lineal óptimos son de fase mínima.
 - **10D:** Los filtros FIR de fase lineal óptimos cumplen una plantilla de atenuación, con mayor orden, que los obtenidos por transformación bilineal de filtros analógicos elípticos.