COMP 3350: HOMEWORK 4-PERUGING, FLAGS, AND DATA DELLARATIONS

	COMEWORK 1 - YESUGGING, YCAGS, AND WATA DECLARATIONS
	PROBLEM 1
	1. SF=0 → AL= 0
	2. SF=0 → AL= @111 1111
	3. SF=1, OF=1 → AL= 1000 0000, overflow since +127 → -128
	4. CF=0 → AL still in bounds. No every from bit 7 to bit 8.
	5. PF=1 → AL = 0∏00 ∏000, even number of '1' bits.
	PROBLEM 2 PROBLEM 3
	mov AX, 0 1. ESI = "0040_2070 → N/A
	add AX, My Array 2. AX = 126Bh -> low byte=6B, high byte=12
	add AX, My Array +1 3. EAX = 19F2_25E8 -> First 4 bytes of 0040_2074: E8,25,F2,10
	add AX, My Array+2 4. AX = 0000h -> 0040_2080 > 00,00
	add AX, My Array +3 5. AX = 2400h -> low byte = 00, high byte = 24
	add AX, My Array+4 6. AX = DA2Dh -> memory [207c70] = 20, DA
	mov Total, AX
	PROBLEM 4
	1. AX = 2 → because each element is a WORD = 2 bytes
	2. $AX = 18 \rightarrow (number of words)(2 bytes) = 9x2=18$
	3. $AX = 9 \rightarrow \text{number of words} = 9$
	PROBLEM 5
	1. EAX = 0000 F268 h → zero-extension of bx = F268h
Thirt and a	2. EDX = 000000F2h > 32-bit zero-extension of bh = F2h
THE PARTY IN	3. EAX = FFFF D312h → signed-extension of bx = D312h
一般	4. EDX = 0000 0012h > signed-extension of b1=12h
18	PROBLEM 6
100	1. $AX = OFO6h \Rightarrow low byte = Ob, next byte = OF$
	2. $AX = 9396h \Rightarrow 96,93$
814	3. $AX = FFD9h \Rightarrow D9, FF$
Ŧ	
250	4. AX = 9527h → var3-2 = address of last 2 bytes of var2 > 27, 95
are.	PROBLEM 7
No. of Concession,	Visual Studio Code and output surrenshot provided in this same PDF.

