Oaktree Manual

April 25, 2012

Contents

1	Introduction	2
2	Installation	3
3	Running	4
4	Input 4.1 SIMULATION 4.2 SPHERE 4.3 CYLINDER 4.4 CUBE 4.5 UNION 4.6 INTERSECTION 4.7 DIFFERENCE 4.8 MOVE 4.9 ROTATE 4.10 SOLID	6 6 6 7 7
5	Output	9
6	Viewer	10
7	Tutorials	11
8	Theory	12

Introduction

Installation

Running

Input

Oaktree input language extends Python. Subroutines and objects related to input processing are listed below.

4.1 SIMULATION

SIMULATION object stores data specific to one distinct analysis.

obj = SIMULATION (outpath, duration, step, grid, cutoff, extents)

- ullet obj SIMULATION object
- output directory path
- duration simulation duration
- step time step
- grid regular size of octree grid
- cutoff cutoff length below which geometrical details are not resolved
- extents tuple $(x_{min}, y_{min}, z_{min}, x_{max}, y_{max}, z_{max})$ of domain extents beyond which bodies are deleted

4.2 SPHERE

A sphere shape.

obj = SPHERE (center, r, vcolor, scolor)

- **obj** SHAPE object
- center tuple (x, y, z) defining the center
- \bullet **r** radius
- ullet vcolor integer volume color
- scolor integer surface color

CHAPTER 4. INPUT 6

4.3 CYLINDER

A cylinder shape.

obj = CYLINDER (base, h, r, vcolor, scolor)

- \bullet **obj** SHAPE object
- base tuple (x, y, z) defining the base center
- ullet h height along z
- \bullet **r** radius
- ullet vcolor integer volume color
- scolor integer tuple $(s_{base}, s_{side}, s_{top})$ of surface colors

4.4 CUBE

A cube shape.

obj = CUBE (corner, u, v, w, vcolor, scolor)

- obj SHAPE object
- corner tuple (x, y, z) defining the minimum coordinate corner
- \mathbf{u} length along x
- ullet w length along z
- vcolor integer volume color
- scolor integer tuple $(s_{xmin}, s_{ymax}, s_{zmin}, s_{xmax}, s_{ymax}, s_{zmax})$ of surface colors

4.5 UNION

Set theoretic union of two shapes.

obj = UNION (shape1, shape2)

- \bullet **obj** SHAPE object
- shape1 first input SHAPE object
- $\bullet \ \mathbf{shape2}$ second input SHAPE object

4.6 INTERSECTION

Set theoretic intersection of two shapes.

CHAPTER 4. INPUT 7

obj = INTERSECTION (shape1, shape2)

- **obj** SHAPE object
- shape1 first input SHAPE object
- shape2 second input SHAPE object

4.7 DIFFERENCE

Set theoretic difference of two shapes.

obj = DIFFERENCE (shape1, shape2)

- **obj** SHAPE object
- shape1 first input SHAPE object
- shape2 second input SHAPE object

4.8 **MOVE**

Move shape linearly.

MOVE (shape, vector)

- shape input SHAPE object
- vector tuple (u, v, w) defining the translation

4.9 ROTATE

Rotate shape about an axis.

ROTATE (shape, point, vector, angle)

- shape input SHAPE object
- **point** tuple (x, y, z) defining axis point
- vector tuple (u, v, w) defining axis direction
- angle oriented angle in degrees

4.10 SOLID

A solid is created in a simulation.

CHAPTER 4. INPUT 8

obj = SOLID (simu, shape, label)

- obj SOLID object
- $\bullet \ \mathbf{simu}$ simulation in which the solid is created
- $\bullet \ \ {\bf shape}$ solid shape
- ullet label solid label

Output

Viewer

Tutorials

Theory