3. The number of stages in the flowgraph is given by $M = \log_2 N$.

4. Each stage consists of $\frac{N}{2}$ butterflies.

- 5. Inputs/outputs for each butterfly are separated by 2^{m-1} samples, where m represents the stage index, i.e, for first stage m=1 and for second stage m=2
- 6. The number of complex multiplications is given by $\frac{N}{2} \log_2 N$.
- $\int_{0}^{\infty} T$. The number of complex additions is given by $N \log_2 N$. 8. The twiddle factor exponents are a function of the stage index m and is given

$$k = \frac{Nt}{2^m}$$
 $t = 0, 1, 2, \dots 2^{m-1} - 1.$ (4.22)

- 9. The number of sets or sections of butterflies in each stage is given by the for-
- 10. The exponent repeat factor (ERF), which is the number of times the exponent sequence associated with m is repeated is given by 2^{M-m} .

Example 4.1 Draw the Flow graph of 16-point DIT-FFT.

Solution

We can draw the flowgraph of 16-point DIT-FFT using the steps given in section 4.5.

Table 4.3 Bit-reversal process

Index	Binary Representation	Bit-reversal Order	Bit-reversal Index
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1011 1100 1101 1110	0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011	0 8 4 12 2 10 6 14 1 9 5 13 3 11 7

4.12 Digital Signal Processing

- 2. The input sequence is shuffled through bit-reversal shown in table 4.3 and applied as input to the flow graph.
- 3. The number of stages $M = \log_2 16 = 4$.
- 4. The number of butterflies per stage is $\frac{N}{2} = 8$. 5. The inputs/outputs for each butterfly in stage m is separated by 2^{m-1} samples.
- Stage 1 Inputs/outputs for each butterfly are separated by 1 sample.

Stage 2 Inputs/outputs for each butterfly are separated by 2 samples.

Stage 3 Inputs/outputs for each butterfly are separated by 4 samples.

Stage 4 Inputs/outputs for each butterfly are separated by 8 samples.

6. The number of complex multiplications is given by

$$\frac{N}{2}\log_2 N = 8\log_2 16 = 32$$

- 7. The number of complex additions is given by $16 \log_2 16 = 64$.
- 8. The number of sets or sections of butterflies in each stage is given by 2^{M-m} .

For stage 1 the number of sets of butterflies are $2^{4-1} = 8$

For stage 2 the number of sets of butterflies are $2^{4-2}=4$

For stage 3 the number of sets of butterflies are $2^{4-3} = 2$

For stage 4 there is only set of butterflies.

9. The twiddle factor exponents for each stage are given by

$$k = \frac{Nt}{2^m}$$
 $t = 0, 1, 2, \dots 2^{m-1} - 1.$

For Stage 1 the exponent is 0

For Stage 2 the exponents are 0, 4

For Stage 3 the exponents are 0, 2, 4, 6

For Stage 4 the exponents are 0, 1, 2, 3, 4, 5, 6, 7

10. The exponent repeat factor (ERF) which is the number of times the exponent sequence associated with m repeat is given by 2^{M-m} .

For stage 1 ERF = 8

For stage 2 ERF = 4

For stage 3 ERF = 2

For stage 4 ERF = 1

From the steps 8, 9, 10 we can draw the following conclusions.

For stage 1 the twiddle factor exponent is zero and is repeated 8 times.

(: ERF = 8). Therefore, all the 8 sets of butterflies have twiddle factor as W_{16}^0 .