Uvod v geometrijsko topologijo

Teoretična vprašanja

P	N N	Kvocientni prostor X/\sim je diskreten natanko tedaj, ko je praslika vsake točke s kvocientno preslikavo odprta množica v X .
F	8	Prostor $\mathbb{R}P^1$ lahko vložimo v \mathbb{R}^2 .
F	9	Če je ($C(X, Y)$, KOT) povezan prostor, je tudi Y povezan.
F	R	Vsaka kvocientna preslikava je zaprta ali odprta preslikava.
F	P	Množica $\{\sum_{k=0}^{n} a_k \cos^k x \mid n \in \mathbb{N}, a_k \in \mathbb{R}\} \subset (C([0, \frac{\pi}{4}]), KOT)$ je gosta.
F	P	Zlepek separabilnih prostorov je separabilen prostor.
F	R	Za podbazične množice v KOT velja $G(K, U) \cup G(L, U) = G(K \cup L, U)$.
F	8	Če je X Hausdorffov prostor, je tudi kvocientni prostor X/\sim Hausdorffov.
F	8	Kvocientna preslikava $\mathbb{R}^{n+1} - \{0\} \to \mathbb{R}P^n$ je odprta.
F	R	Vsaka podalgebra $\mathcal{A} \subset C(\mathbb{R}, \mathbb{R})$, ki vsebuje kako potenco $x \mapsto x^n$, loči točke.

Problemski nalogi

1. PROBLEM

Naj bo $X = \mathbb{R} \times [-1, 1]$.

- **a**. Na prostoru X podamo ekvivalenčno relacijo $(x,y) \sim (u,v)$ natanko tedaj, ko je $x-u \in \mathbb{Z}$ in y=v. Poišči podprostor evklidskega prostora, ki je homeomorfen kvocientu X/\sim .
- **b**. Poišči podprostor evklidskega prostora, ki je homeomorfen kvocientu $X/\{0\} \times [-1,1]$. Rešitve oziroma odgovore utemelji.

2. PROBLEM

Naj bo X poljuben topološki prostor. Za a>0 naj bo $Y_a=\{f\in C(X,\mathbb{R})\mid |f(x)|\leqslant a \text{ za vse }x\in X\}.$ Za $f\in C(X,\mathbb{R})$ naj bo

$$f_a(x) = \begin{cases} \min\{a, f(x)\}, & f(x) \ge 0, \\ \max\{-a, f(x)\}, & f(x) \le 0. \end{cases}$$

- **a**. Pokaži, da je $f_a: X \to \mathbb{R}$ zvezna.
- **b**. Pokaži, da je p_a : $C(X, \mathbb{R}) \to Y_a$, definirana s predpisom $p_a(f) = f_a$, zvezna.
- c. Pokaži, da je množica $\bigcup_{a>0} Y_a$ gosta v $C(X, \mathbb{R})$.
- **d**. Pokaži, da preslikava p_a ni odprta.

(Vsi funkcijski prostori so opremljeni s kompaktno odprto topologijo.)