Prova scritta di Logica Matematica 14 febbraio 2017

Nome Cognome Matricola

Scrivete subito il vostro nome, cognome e numero di matricola, e tenete il tesserino universitario sul banco. Svolgete gli esercizi direttamente sul testo a penna. Dovete consegnare solo il foglio del testo: nessun foglio di brutta.

Per ogni esercizio è indicato il relativo punteggio. Nella prima parte se la riposta è corretta, il punteggio viene aggiunto al totale, mentre se la risposta è errata il punteggio viene sottratto (l'assenza di risposta non influisce sul punteggio totale). Per superare l'esame bisogna raggiungere 18 punti, di cui

almono 5 relativi alla prima parta		
almeno 5 relativi alla prima parte.		
PRIMA PARTE		
Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.		
1. $(\neg p \lor q) \land r \equiv \neg (r \to \neg (\neg q \to \neg p)).$ 1pt	t	
2. Se $F \to G$ è valida allora F è insoddisfacibile oppure G è valida. $\boxed{\mathbf{V} \mid \mathbf{F}}$ 1pt	t	
3. Se F è in forma normale congiuntiva allora		
esiste G in forma normale disgiuntiva tale che $G \equiv F$. $\boxed{\mathbf{V} \mid \mathbf{F}}$ 1pt	t	
4. Esiste un insieme di Hintikka che contiene le formule		
$p, \neg (q \to r) \in q \to r \lor \neg p.$ 1pt	t	
5. Se f è un simbolo di funzione unario e g un simbolo di funzione binario,		
quante delle seguenti espressioni sono termini?		
$f(g(y)), g(y, f(x, a)), f(g(f(a), x)), \neg g(y, a).$ 1pt	t	
6. Sia I l'interpretazione con $D^I = \{0, 1, 2, 3\}, p^I = \{0, 2, 3\},$		
$r^{I} = \{(0,1), (3,3)\}, f^{I}(0) = 1, f^{I}(1) = 3, f^{I}(2) = 3, f^{I}(3) = 2.$		
Allora $I \vDash \forall x (p(x) \to p(f(x)) \lor r(x, f(x))).$ 1pt	t	
7. L'algoritmo dei tableaux predicativi		
gode della proprietà della terminazione forte. $V F $ 1pt	t	
8. Questo albero rappresenta una deduzione naturale corretta: VF 1pt	t	
$[p(x)]^1$ $p(x) \to q(f(x))$		
$\frac{[p(x)]^1 \qquad p(x) \to q(f(x))}{q(f(x))}$		
$\exists x p(x)$ $\exists y q(f(y))$ 1		

$$\frac{[p(x)]^{1} \qquad p(x) \to q(f(x))}{q(f(x))} \\
\exists x \, p(x) \qquad \exists y \, q(f(y))$$

$$\exists y \, q(f(y))$$

 $\mathbf{V} | \mathbf{F}$ **9.** Se φ è un omomorfismo forte di I in J allora $I \equiv_{\mathcal{L}} J$. 1pt

SECONDA PARTE

10. Sul retro del foglio dimostrate che

 $\forall x (x \neq f(x) \land \neg r(x, f(x))), \forall y \exists z \, r(y, z) \nvDash_{=} \exists x \, \exists y (r(x, y) \land r(y, x)).$

4pt

$$\forall x(x \neq f(x) \land \neg r(x, f(x))), \forall y \exists z \, r(y, z) \not\models_{=} \exists x \, \exists y (r(x, y) \land r(y, x)).$$

11. Sul retro del foglio dimostrate l'insoddisfacibilità dell'insieme di enunciati 4pt $\{\exists x(p(x) \land \neg p(f(x))), \forall y(\neg p(y) \rightarrow \exists z \neg r(y, f(z))), \forall u(\neg p(u) \lor \forall v \, r(f(u), v))\}.$

- 12. Sia $\mathcal{L}=\{a,b,p,m,c\}$ un linguaggio dove a e b sono simboli di costante, p è un simbolo di funzione unario, m è un simbolo di relazione unario e c è un simbolo di relazione binario. Interpretando a come "Anna", b come "Bruno", p(x) come "il padre di x", m(x) come "x è un medico", c(x,y) come "x conosce y" traducete le seguenti frasi, utilizzando lo spazio sotto ognuna di esse:
 - (i) il nonno paterno di Anna è un medico che non conosce il padre di Bruno;
 - (ii) ogni medico che conosce Anna conosce il padre di qualcuno che conosce Bruno.

3pt

13. Mostrate che $\neg G, \neg \neg K \lor (F \to G) \rhd F \to K.$ 3pt

Usate solo le regole della deduzione naturale proposizionale, comprese le quattro regole derivate. (Utilizzate il retro del foglio)

- 14. Üsando il metodo dei tableaux stabilite sul retro del foglio che $\exists x \, \forall y \, r(x,y), \forall u (r(u,u) \to \neg p(u) \vee \neg r(u,c)) \vDash \exists z \, \neg p(z).$
- 15. Utilizzando lo spazio qui sotto mettete in forma prenessa la formula $\neg \forall x \, p(x) \lor \exists y \, q(f(y)) \to \forall z \, \neg \forall w \, r(w, f(z)) \land \exists u \, \forall v \, r(u, v).$ [Se si usa il minimo numero di quantificatori possibili, 1pt in più.]

Soluzioni

- 1. V come si verifica per esempio con le tavole di verità.
- **2.** F ad esempio $p \to p$ è valida, ma p non è né insoddisfacibile né valida.
- 3. V è un caso particolare del teorema 3.9 delle dispense.
- **4. F** supponiamo T sia un insieme di Hintikka. Se $\neg(q \to r) \in T$ allora $q \in T$ e $\neg r \in T$. Se $q \to r \lor \neg p \in T$ allora, dato che $\neg q \notin T$ (altrimenti T conterrebbe una coppia complementare di letterali), deve essere $r \lor \neg p \in T$. Se $r \in T$ avremmo di nuovo una coppia complementare di letterali in T; quindi $\neg p \in T$ e quindi $p \in T$ è impossibile.
- 5. 1 sotto le ipotesi su f e g solo la terza espressione è un termine. Perché la prima sia un termine è necessario che g sia unario, perché la seconda sia un termine è necessario che f sia binaria. La quarta espressione non è mai un termine (sarebbe una formula se g fosse un simbolo di relazione binario).
- **6.** V perché si verifica che $I, \sigma[x/d] \nvDash p(x) \to p(f(x)) \land r(x, f(x))$ per ogni $d \in D^I$.
- 7. F si veda la nota 10.14 delle dispense.
- 8. F l'applicazione di $(\exists e)$ non rispetta le condizioni perché x è libero in $p(x) \to q(f(x))$.
- 9. F non possiamo applicare il corollario 9.14 delle dispense perché non sappiamo se φ è suriettivo (si veda l'esempio 9.10 delle dispense).
- 10. Dobbiamo definire un'interpretazione normale che soddisfa i primi due enunciati ma non quello a destra di ⊭. Un'interpretazione normale con queste caratteristiche è definita da

$$D^I = \{0,1,2\}, \quad f^I(0) = 1, f^I(1) = 2, f^I(2) = 0 \quad r^I = \{(0,2), (1,0), (2,1)\}.$$

Dato che I è normale non abbiamo bisogno di specificare $=^{I}$.

11. Supponiamo per assurdo che I un'interpretazione che soddisfa i tre enunciati, che chiamiamo $F,\ G$ e H nell'ordine. Vogliamo ottenere una contraddizione.

Dato che $I \vDash F$ esiste $d_0 \in D^I$ tale che $d_0 \in p^I$ e $f^I(d_0) \notin p^I$.

Da $I \vDash G$ segue in particolare che $I, \sigma[y/f^I(d_0)] \vDash \neg p(y) \to \exists z \neg r(y, f(z))$ e quindi, per quanto ottenuto in precedenza, che $I, \sigma[y/f^I(d_0)] \vDash \exists z \neg r(y, f(z))$. Allora esiste $d_1 \in D^I$ tale che $(f^I(d_0), f^I(d_1)) \notin r^I$.

Da $I \vDash H$ segue in particolare che $I, \sigma[u/d_0] \vDash p(u) \lor \forall v \, r(f(u), v)$. Dato che abbiamo ottenuto che $I, \sigma[u/d_0] \nvDash \neg p(u)$ si ha $I, \sigma[u/d_0] \vDash \forall v \, r(f(u), v)$. Ma questo implica in particolare $(f^I(d_0), f^I(d_1)) \in r^I$, contraddicendo quanto ottenuto in precedenza.

- **12.** (i) $m(p(p(a))) \wedge \neg c(p(p(a)), p(b));$
 - (ii) $\forall x (m(x) \land c(x, a) \rightarrow \exists y (c(x, p(y)) \land c(y, b))).$

13. Ecco una deduzione naturale che mostra quanto richiesto:

$$\frac{[\neg\neg K]^1}{K} = \frac{\frac{[F]^2 \qquad [F \to G]^1}{G}}{\frac{G}{\frac{\bot}{K}}}$$

$$\frac{\frac{K}{F \to K}^2}{}$$
hilipa la gangaguanga lagiga utiliggia ma l'algoritma 10.40 della d

14. Per stabilire la conseguenza logica utilizziamo l'algoritmo 10.49 delle dispense e costruiamo un tableau chiuso con la radice etichettata dagli enunciati a sinistra del simbolo di conseguenza logica e dalla negazione di quello sulla destra. Indichiamo con F, G e H le γ -formule $\forall u(r(u,u) \rightarrow \neg p(u) \lor \neg r(u,c))$, $\neg \exists z \neg p(z)$ e $\forall y \, r(a,y)$. Utilizziamo la convenzione 10.22 delle dispense e in ogni passaggio sottolineiamo la formula su cui agiamo.

Si noti che in due nodi diversi del tableau abbiamo istanziato la γ -formula H su due costanti diverse.

15. Una soluzione in cui si usa il minimo numero di quantificatori è:

$$\neg \forall x \, p(x) \lor \exists y \, q(f(y)) \to \forall z \, \neg \forall w \, r(w, f(z)) \land \exists u \, \forall v \, r(u, v)$$

$$\exists x \, \neg p(x) \lor \exists y \, q(f(y)) \to \forall z \, \exists w \, \neg r(w, f(z)) \land \exists u \, \forall v \, r(u, v)$$

$$\exists x (\neg p(x) \lor q(f(x))) \to \exists u (\forall z \, \exists w \, \neg r(w, f(z)) \land \forall v \, r(u, v))$$

$$\exists x (\neg p(x) \lor q(f(x))) \to \exists u \, \forall z \, (\exists w \, \neg r(w, f(z)) \land r(u, z))$$

$$\exists x (\neg p(x) \lor q(f(x))) \to \exists u \, \forall z \, \exists w \, (\neg r(w, f(z)) \land r(u, z))$$

$$\forall x (\neg p(x) \lor q(f(x)) \to \exists u \, \forall z \, \exists w \, (\neg r(w, f(z)) \land r(u, z)))$$

$$\forall x \, \exists u \, \forall z \, \exists w (\neg p(x) \lor q(f(x)) \to \neg r(w, f(z)) \land r(u, z))$$

Prova scritta di Logica Matematica 14 febbraio 2017

Cognome

Nome Matricola

Scrivete **subito** il vostro nome, cognome e numero di matricola, e tenete il tesserino universitario sul banco. Svolgete gli esercizi direttamente sul testo a penna. Dovete consegnare solo il foglio del testo: nessun foglio di brutta.

Per ogni esercizio è indicato il relativo punteggio. Nella prima parte se la riposta è corretta, il punteggio viene aggiunto al totale, mentre se la risposta è errata il punteggio viene sottratto (l'assenza di risposta non influisce sul punteggio totale). Per superare l'esame bisogna raggiungere 18 punti, di cui almeno 5 relativi alla prima parte.

PRIMA PARTE

Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.

1	1	
1. $(p \vee \neg q) \wedge \neg r \equiv \neg (\neg r \rightarrow \neg (q \rightarrow p)).$	$\mathbf{V} \mathbf{F}$	1pt
2. Se $\neg(F \to G)$ è insoddisfacibile allora		
F è insoddisfacibile oppure G è valida.	$\mathbf{V} \mathbf{F}$	1pt
3. Se F è in forma normale disgiuntiva allora		
esiste G in forma normale congiuntiva tale che $G \equiv F$.	$\mathbf{V} \mathbf{F}$	1pt
4. L'algoritmo dei tableaux proposizionali		
gode della proprietà della terminazione forte.	$\mathbf{V} \mathbf{F}$	1pt
5. Esiste un insieme di Hintikka che contiene le formule		
$\neg (p \rightarrow \neg q), p \rightarrow \neg q \lor r \in \neg r.$	$\mathbf{V} \mathbf{F}$	1pt
6. Se f è un simbolo di funzione unario e g un simbolo di funzione	one binario,	
quante delle seguenti espressioni sono termini?		
$f(g(f(a),x)), \ f(g(y)), \ \neg g(a,a), \ g(a,f(x,y)).$	0 1 2 3 4	1pt
7. Sia I l'interpretazione con $D^I = \{0, 1, 2, 3\}, p^I = \{0, 2, 3\},$		
$r^{I} = \{(0,1), (3,3)\}, f^{I}(0) = 1, f^{I}(1) = 3, f^{I}(2) = 3, f^{I}(3) = 3$	1.	
Allora $I \vDash \forall x (p(x) \to p(f(x)) \lor r(x, f(x))).$	$\mathbf{V} \mathbf{F}$	1pt
8. Se φ è un omomorfismo forte di I in J allora $I \equiv_{\mathcal{L}} J$.	$\mathbf{V} \mathbf{F}$	1pt
9. Questo albero rappresenta una deduzione naturale corretta:	$\overline{\mathbf{V} \mathbf{F}}$	1pt
$\forall x(n(x) \land a(f(x)))$		
$[p(x)]^1 \qquad \frac{\forall x (p(x) \to q(f(x)))}{p(x) \to q(f(x))}$		
$\exists x p(x)$ $q(f(x))$		

SECONDA PARTE

10. Sul retro del foglio dimostrate che

4pt

$$\forall y \, \exists z \, r(z,y), \forall x (x \neq f(x) \wedge \neg r(f(x),x)) \not\vDash_{=} \exists x \, \exists y (r(x,y) \wedge r(y,x)).$$

11. Sul retro del foglio dimostrate l'insoddisfacibilità dell'insieme di enunciati $\exists x(p(f(x)) \land \neg p(x)), \forall y(p(y) \rightarrow \exists z \, r(f(z), y)), \forall u(p(u) \lor \forall v \, \neg r(v, f(u))) \}.$

- 12. Sia $\mathcal{L} = \{a, d, m, i, c\}$ un linguaggio dove a e d sono simboli di costante, m è un simbolo di funzione unario, i è un simbolo di relazione unario e c è un simbolo di relazione binario. Interpretando a come "Angelo", d come "Donatella", m(x) come "la madre di x", i(x) come "x è un ingegnere", c(x,y) come "x conosce y" traducete le seguenti frasi, utilizzando lo spazio sotto ognuna di esse:
 - (i) la nonna materna di Donatella è un ingegnere che non conosce la madre di Angelo;

3pt

- (ii) ogni ingegnere che conosce Angelo conosce la madre di qualcuno che conosce Donatella.

 3pt
- 13. Mostrate che $\neg \neg F \lor (G \to H), \neg H \rhd G \to F.$ 3pt

Usate solo le regole della deduzione naturale proposizionale, comprese le quattro regole derivate. (Utilizzate il retro del foglio)

- **14.** Usando il metodo dei tableaux stabilite sul retro del foglio che $\exists x \, \forall y \, \neg r(y, x), \, \forall u (\neg r(u, u) \rightarrow p(u) \vee r(a, u)) \models \exists z \, p(z).$
- 15. Utilizzando lo spazio qui sotto mettete in forma prenessa la formula 2pt

 $\exists x \, p(x) \vee \neg \forall y \, q(y) \to \exists u \, \forall v \, r(u, f(v)) \wedge \forall z \, \neg \forall w \, r(f(w), z).$ [Se si usa il minimo numero di quantificatori possibili, 1pt in più.]

Soluzioni

- 1. V come si verifica per esempio con le tavole di verità.
- **2.** F ad esempio $\neg(p \to p)$ è insoddisfacibile, ma p non è né insoddisfacibile né valida.
- 3. V è un caso particolare del teorema 3.9 delle dispense.
- 4. V è il teorema 4.11 delle dispense.
- **5.** F supponiamo T sia un insieme di Hintikka. Se $\neg (p \to q) \in T$ allora $p \in T$ e $\neg q \in T$. Se $p \to \neg q \lor r \in T$ allora, dato che $\neg p \notin T$ (altrimenti T conterrebbe una coppia complementare di letterali), deve essere $\neg q \lor r \in T$. Se $\neg \neg q \in T$ avremmo anche $q \in T$ e di nuovo una coppia complementare di letterali; quindi $r \in T$ e $\neg r \in T$ è impossibile.
- **6.** 1 sotto le ipotesi su f e g solo la prima espressione è un termine. Perché la seconda sia un termine è necessario che g sia unario, perché la quarta sia un termine è necessario che f sia binaria. La terza espressione non è mai un termine (sarebbe una formula se g fosse un simbolo di relazione binario).
- 7. F perché $I, \sigma[x/3] \nvDash p(x) \to p(f(x)) \land r(x, f(x))$.
- 8. F non possiamo applicare il corollario 9.14 delle dispense perché non sappiamo se φ è suriettivo (si veda l'esempio 9.10 delle dispense).
- **9.** F l'applicazione di $(\exists e)$ non rispetta le condizioni perché x è libero in q(f(x)).
- 10. Dobbiamo definire un'interpretazione normale che soddisfa i primi due enunciati ma non quello a destra di ⊭. Un'interpretazione normale con queste caratteristiche è definita da

$$D^I = \{0,1,2\}, \quad f^I(0) = 1, f^I(1) = 2, f^I(2) = 0 \quad r^I = \{(0,1),(1,2),(2,0)\}.$$

Dato che I è normale non abbiamo bisogno di specificare $=^{I}$.

11. Supponiamo per assurdo che I un'interpretazione che soddisfa i tre enunciati, che chiamiamo $F,\ G$ e H nell'ordine. Vogliamo ottenere una contraddizione.

Dato che $I \vDash F$ esiste $d_0 \in D^I$ tale che $d_0 \notin p^I$ e $f^I(d_0) \in p^I$.

Da $I \vDash G$ segue in particolare che $I, \sigma[y/f^I(d_0)] \vDash p(y) \to \exists z \, r(f(z), y)$ e quindi, per quanto ottenuto in precedenza, che $I, \sigma[y/f^I(d_0)] \vDash \exists z \, r(f(z), y)$. Allora esiste $d_1 \in D^I$ tale che $(f^I(d_1), f^I(d_0)) \in r^I$.

Da $I \vDash H$ segue in particolare che I, $\sigma[u/d_0] \vDash p(u) \lor \forall v \lnot r(v, f(u))$. Dato che abbiamo ottenuto che I, $\sigma[u/d_0] \nvDash p(u)$ si ha I, $\sigma[u/d_0] \vDash \forall v \lnot r(v, f(u))$. Ma questo implica in particolare $(f^I(d_1), f^I(d_0)) \notin r^I$, contraddicendo quanto ottenuto in precedenza.

- **12.** (i) $i(m(m(d))) \land \neg c(m(m(d)), m(a));$
 - (ii) $\forall x(i(x) \land c(x, a) \rightarrow \exists y(c(x, m(y)) \land c(y, d))).$

13. Ecco una deduzione naturale che mostra quanto richiesto:

$$\frac{\neg F \lor (G \to H)}{\frac{[\neg F]^1}{F}} \xrightarrow{\frac{[G]^2 \qquad [G \to H]^1}{H}} \frac{\neg H}{\frac{\bot}{F}}$$

$$\frac{F}{G \to F}^2$$
bilire la conseguenza logica utilizziamo l'algoritmo 10.49 delle de

14. Per stabilire la conseguenza logica utilizziamo l'algoritmo 10.49 delle dispense e costruiamo un tableau chiuso con la radice etichettata dagli enunciati a sinistra del simbolo di conseguenza logica e dalla negazione di quello sulla destra. Indichiamo con F, G e H le γ -formule $\forall u(\neg r(u,u) \rightarrow p(u) \lor r(a,u))$, $\neg \exists z \, p(z)$ e $\forall y \, \neg r(y,b)$. Utilizziamo la convenzione 10.22 delle dispense e in ogni passaggio sottolineiamo la formula su cui agiamo.

$$\begin{array}{c|c} \underline{\exists x \, \forall y \, \neg r(y,x),} F, G \\ & | \\ H, \underline{F}, G \\ & | \\ H, F, r(b,b), G \\ \hline & | \\ H, F, r(b,b), G \\ \hline & | \\ H, F, p(b) \, \lor \, r(a,b), G \\ \hline & | \\ H, F, p(b), F, r(b,b), G \\ \hline \otimes & | \\ H, F, p(b), G, \neg p(b) \\ \hline & | \\ H, F, r(a,b), G \\ \hline & \otimes \\ \hline & \otimes \\ \hline \end{array}$$

Si noti che in due nodi diversi del tableau abbiamo istanziato la γ -formula H su due costanti diverse.

15. Una soluzione in cui si usa il minimo numero di quantificatori è:

$$\exists x \, p(x) \vee \neg \forall y \, q(y) \to \exists u \, \forall v \, r(u, f(v)) \wedge \forall z \, \neg \forall w \, r(f(w), z)$$

$$\exists x \, p(x) \vee \exists y \, \neg q(y) \to \exists u \, \forall v \, r(u, f(v)) \wedge \forall z \, \exists w \, \neg r(f(w), z)$$

$$\exists x (p(x) \vee \neg q(x)) \to \exists u (\forall v \, r(u, f(v)) \wedge \forall z \, \exists w \, \neg r(f(w), z))$$

$$\exists x (p(x) \vee \neg q(x)) \to \exists u \, \forall v (r(u, f(v)) \wedge \exists w \, \neg r(f(w), v))$$

$$\exists x (p(x) \vee \neg q(x)) \to \exists u \, \forall v \, \exists w (r(u, f(v)) \wedge \neg r(f(w), v))$$

$$\exists u \, \forall v \, \exists w \, (\exists x (p(x) \vee \neg q(x)) \to r(u, f(v)) \wedge \neg r(f(w), v))$$

$$\exists u \, \forall v \, \exists w \, \forall x (p(x) \vee \neg q(x) \to r(u, f(v)) \wedge \neg r(f(w), v))$$