Lecture 5: Loop Invariants and Insertion-sort COMS10007 - Algorithms

Dr. Christian Konrad

11.01.2019

Proofs by Induction

Structure of a Proof by Induction

- Statement to Prove: P(n) holds for all $n \in \mathbb{N}$ (or $n \in \mathbb{N} \cup \{0\}$) (or n integer and $n \ge k$) (or similar)
- 2 Induction hypothesis: Assume that P(n) holds

- **1 Induction step:** Prove that P(n+1) also holds If domino n falls then domino n+1 falls as well
- **Base case:** Prove that P(1) holds Domino 1 falls

Examples

Example: $n! \geq 2^n$ for $n \geq 4$

- **1** Base case (n = 4): $4! = 24 \ge 16 = 2^4 \checkmark$
- ② Induction hypothesis: $n! \ge 2^n$ holds for n
- Induction step:

$$(n+1)! = (n+1) \cdot n! \ge (n+1) \cdot 2^n \ge 2 \cdot 2^n = 2^{n+1} \checkmark$$

This also implies that $2^n \in O(n!)$

Example: $3^n - 1$ is an even number, for every $n \ge 1$

- **1** Base case (n = 1): $3^1 1 = 2\sqrt{n}$
- 2 Induction hypothesis: $3^n 1$ is an even number
- Induction step:

$$3^{n+1} - 1 = 3 \cdot 3^n - 1 = 3^n + 2 \cdot 3^n - 1 = 2 \cdot 3^n + 3^n - 1 \checkmark$$

Spot the Flaw

Example: $a^n = 1$, for every $a \neq 0$ and n nonnegative integer

- **1** Base case (n = 0): $a^0 = 1$
- ② Induction hypothesis: $a^m = 1$, for every $0 \le m \le n$ (strong induction)
- Induction step:

$$a^{n+1} = a^{2n-(n-1)} = \frac{a^{2n}}{a^{n-1}} = \frac{a^n \cdot a^n}{a^{n-1}} = \frac{1 \cdot 1}{1} = 1 \dots$$

Problem: a^1 is computed as $\frac{a^0 a^0}{a^{-1}}$ and induction hypothesis does not holds for n=-1

Loop Invariants

Definition: A *loop invariant* is a property P that if true before iteration i it is also true before iteration i + 1

Example:

Computing the maximum

Invariant: Before iteration i: $m = \max\{A[j] : 0 \le j < i\}$

```
Require: Array of n positive integers A m \leftarrow A[0] for i=1,\ldots,n-1 do if A[i]>m then m \leftarrow A[i] return m
```

Proof: Let m_i be the value of m before iter. $i \mapsto m_1 = A[0]$.

- Base case. i = 1: $m_1 = A[0] = \max\{A[j] : 0 \le j < 1\} \checkmark$
- Induction step.

$$m_{i+1} = \max\{m_i, A[i]\} =$$
 $= \max\{\max\{A[j] : 0 \le j < i\}, A[i]\}$
 $= \max\{A[j] : 0 \le j \le i\} . \checkmark$

Loop Invariants - More Formally

Main Parts:

• Initialization: It is true prior to the first iteration of the loop.

before iteration
$$i = 1$$
: $m = A[0] = \max\{A[j] : j < 1\}$

 Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.

before iteration
$$i > 1$$
: $m = \max\{A[i] : i < i\} \checkmark$

• **Termination:** When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

At the end of the loop m contains the maximum \checkmark

```
Require: n integer s \leftarrow 1 for j = 2, ..., n do s \leftarrow s \cdot j return s
```

Invariant: At beginning of iteration j: s = (j - 1)!

- **1** Let s_i be the value of s prior to iteration j
- **2** Initialization: $s_2 = 1 = (2-1)!$ \checkmark
- **3** Maintenance: $s_{j+1} = s_j \cdot j = (j-1)! \cdot j = j! \checkmark$
- **Termination:** After iteration n, i.e., before iteration n+1, the value of s is (n+1-1)!=n! \checkmark

Algorithm computes the factorial function

Example: Insertion Sort

Sorting Problem

- **Input:** An array A of n numbers
- **Output:** A reordering of A s.t. $A[0] \leq A[1] \leq \cdots \leq A[n-1]$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v\leftarrow A[j]$ $i\leftarrow j-1$ while $i\geq 0$ and $A[i]>v$ do $A[i+1]\leftarrow A[i]$ $i\leftarrow i-1$ $A[i+1]\leftarrow v$ INSERTION-SORT

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

0	1	2	3	4	5
15	7	3	9	8	1

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

0	j = 1	2	3	4	5
15	7	3	9	8	1

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

0	j = 1	2	3	4	5
15	7	3	9	8	1

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v\leftarrow A[j]$ $i\leftarrow j-1$ while $i\geq 0$ and $A[i]>v$ do $A[i+1]\leftarrow A[i]$ $i\leftarrow i-1$ $A[i+1]\leftarrow v$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

$$i = -1$$
 $j = 1$ 2 3 4 5

15 15 3 9 8 1

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v\leftarrow A[j]$ $i\leftarrow j-1$ while $i\geq 0$ and $A[i]>v$ do $A[i+1]\leftarrow A[i]$ $i\leftarrow i-1$ $A[i+1]\leftarrow v$

$$i = -1$$
 $j = 1$ 2 3 4 5 7 15 3 9 8 1

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v\leftarrow A[j]$ $i\leftarrow j-1$ while $i\geq 0$ and $A[i]>v$ do $A[i+1]\leftarrow A[i]$ $i\leftarrow i-1$ $A[i+1]\leftarrow v$

0	1	j = 2	3	4	5
7	15	3	9	8	1

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

0	1	j = 2	3	4	5
7	15	3	9	8	1

$$v \leftarrow 3$$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

0
$$i = 1$$
 $j = 2$ 3 4 5
7 15 3 9 8 1

$$v \leftarrow 3$$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

i = 0	1	j = 2	3	4	5
7	15	15	9	8	1

$$v \leftarrow 3$$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v\leftarrow A[j]$ $i\leftarrow j-1$ while $i\geq 0$ and $A[i]>v$ do $A[i+1]\leftarrow A[i]$ $i\leftarrow i-1$ $A[i+1]\leftarrow v$

i = -1	1	j = 2	3	4	5
7	7	15	9	8	1

$$v \leftarrow 3$$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v\leftarrow A[j]$ $i\leftarrow j-1$ while $i\geq 0$ and $A[i]>v$ do $A[i+1]\leftarrow A[i]$ $i\leftarrow i-1$ $A[i+1]\leftarrow v$

i = -1	1	j = 2	3	4	5
7	7	15	9	8	1

$$v \leftarrow 3$$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v\leftarrow A[j]$ $i\leftarrow j-1$ while $i\geq 0$ and $A[i]>v$ do $A[i+1]\leftarrow A[i]$ $i\leftarrow i-1$ $A[i+1]\leftarrow v$

$$i = -1$$
 1 $j = 2$ 3 4 5
 3 7 15 9 8 1

$$v \leftarrow 3$$

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

0	1	2	j=3	4	5
3	7	15	9	8	1

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

0	1	2	j=3	4	5
3	7	9	15	8	1

$$\begin{aligned} & \textbf{Require: Array } A \textbf{ of } n \textbf{ numbers} \\ & \textbf{for } j = 1, \dots, n-1 \textbf{ do} \\ & v \leftarrow A[j] \\ & i \leftarrow j-1 \\ & \textbf{while } i \geq 0 \textbf{ and } A[i] > v \textbf{ do} \\ & A[i+1] \leftarrow A[i] \\ & i \leftarrow i-1 \\ & A[i+1] \leftarrow v \end{aligned}$$

0	1	2	3	j = 4	5
3	7	9	15	8	1

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

0	1	2	3	j = 4	5
3	7	8	9	15	1

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

0	1	2	3	4	j = 5
3	7	8	9	15	1

Require: Array
$$A$$
 of n numbers for $j=1,\ldots,n-1$ do $v \leftarrow A[j]$ $i \leftarrow j-1$ while $i \geq 0$ and $A[i] > v$ do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$ $A[i+1] \leftarrow v$

0	1	2	3	4	j = 5
1	3	7	8	9	15

Loop Invariant of Insertion-sort

```
\begin{aligned} & \textbf{for } j = 1, \dots, n-1 \textbf{ do} \\ & v \leftarrow A[j] \\ & i \leftarrow j-1 \\ & \textbf{while } i \geq 0 \textbf{ and } A[i] > v \textbf{ do} \\ & A[i+1] \leftarrow A[i] \\ & i \leftarrow i-1 \\ & A[i+1] \leftarrow v \end{aligned}
```

Loop Invariant: At beginning of iteration j of the outer **for** loop, the subarray A[0,j-1] consists of the elements originally in A[0,j-1], but in sorted order

- Initialization: j = 1: subarray A[0] is sorted \checkmark
- Maintenance: Informally, element A[j] is inserted at the right place within A[0,j]. A formal argument would require another loop invariant for the inner loop. \checkmark
- **Termination:** After iteration j = n 1 (i.e., before iteration j = n) the loop invariant states that A is sorted. \checkmark

Worst-case Runtime of Insertion-sort

Worst-case Runtime:

- We have two nested loops
- The outer loop goes from j = 1 to j = n 1
- The inner loop goes from i = j 1 down to i = 0 in worst case
- All other operations take time O(1). Hence:

$$\sum_{j=1}^{n-1} j \cdot O(1) = O(1) \sum_{j=1}^{n-1} j = O(1) \frac{n(n-1)}{2} = O(1)(n^2 - n) = O(n^2).$$

Average-case Runtime of Insertion-sort

Property: Roughly half the elements left of A[j] are smaller than A[j] and roughly half are larger than A[j]

- Need to move A[j] roughly to position j/2 (in the worst case, we move A[j] to position 0, i.e., twice as far)
- Since

$$\sum_{j=1}^{n-1} \frac{j}{2} \Theta(1) = \Theta(n^2) ,$$

the average-case runtime is $\Theta(\mathit{n}^2)$.