Q5

(B)

Data ID	x_1	x_2	y
X^1	0	2	-1
X^2	2	0	-1
X^3	0	0	1
X^4	2	2	1

(i) Kernel Function

$$K(X^i,X^j)=(1+X^i.X^j)^2...$$
(1) We know $X^i.X^j=[X_1^i,X_2^i].[X_1^j,X_2^j]=X_1^i.X_1^j+X_2^i.X_2^j$

$$(1+X^i,X^j)^2$$

$$=1+(X^{i}.X^{j})^{2}+2.(X^{i}.X^{j})$$

$$= 1 + (X_1^i.X_1^j + X_2^i.X_2^j)^2 + 2.(X_1^i.X_1^j + X_2^i.X_2^j)$$

$$=1+(X_1^i.X_1^j)^2+(X_2^i.X_2^j)^2+2.(X_1^i.X_1^j.X_2^i.X_2^j)+2.(X_1^i.X_1^j)+2.(X_2^i.X_2^j)$$
 ...(2)

We know
$$X^i$$
 . $X^j = \phi(X^i)$. $\phi(X^j)$...(3)

From (1), (2) and (3),

$$\phi(X^i) = 1 + (X_1^i)^2 + (X_2^i)^2 + \sqrt{2}.(X_1^i.X_2^i) + \sqrt{2}.(X_1^i) + \sqrt{2}.(X_2^i)$$

$$\phi(X^j) = 1 + (X_1^j)^2 + (X_2^j)^2 + \sqrt{2}.(X_1^j, X_2^j) + \sqrt{2}.(X_1^j) + \sqrt{2}.(X_2^j)$$

$$\phi(v) = <1, v_1^2, v_2^2, \sqrt{2}v_1v_2, \sqrt{2}v_1, \sqrt{2}v_2>$$

(ii) Transformed Space

Data ID	1	x_1^2	x_2^2	$\sqrt{2}x_1x_2$	$\sqrt{2}x_1$	$\sqrt{2}x_2$	y
X^1	1	0	4	0	0	$2\sqrt{2}$	-1
X^2	1	4	0	0	$2\sqrt{2}$	0	-1
X^3	1	0	0	0	0	0	1
X^4	1	4	4	$4\sqrt{2}$	$2\sqrt{2}$	$2\sqrt{2}$	1