Computer Vision Exercise 6

Structure from Motion & Model Fitting

Computer Vision and Geometry Lab 24.11.2022

Tasks

1. Scene reconstruction with SfM

- DLT (Essential matrix)
- Testing decompositions
- Map extension

2. Model Fitting

- Least-squares
- RANSAC

- Initialization (Relative pose)
- Point Triangulation
- Absolute Pose estimation

Not covered:

- Feature matching
- Robust estimation (Model fitting)
- Bundle adjustment

Computer Vision and Geometry Lab

Initialization

$$\hat{x} = K^{-1}x$$

$$\widehat{\boldsymbol{x}}_1 E \widehat{\boldsymbol{x}}_2 = 0$$

Same approach as for P (DLT)!

Initialization – Constraints on E

$$U, S, V^T = svd(\hat{E})$$

$$E = U \begin{bmatrix} 1 & & \\ & 1 & \\ & & 0 \end{bmatrix} V^T$$

Initialization – Finding the right decomposition

Decomposing E gives 4 possible relative poses

$$(R_1, t), (R_1, -t), (R_2, t), (R_2, -t)$$

Try each one to see where points end up in front of the cameras

Map extension

For each new image, call the point triangulation with every previous image

Computer Vision and Geometry Lab 24.11.2022

Model Fitting: Line Fitting

- Given a point set with noise and outliers, estimate the parameters: y = kx + b
- Implement least-squares solution
- Implement RANSAC (300 iterations)
- 1. randomly choose a small subset from the noisy point set;
- 2. compute the least-squares solution for this subset;
- 3. compute the number of inliers, if the number exceeds the current best result, update the estimation

