Übungsblatt 10

Übungsgruppe Metcalfe

Daniel Schubert Anton Lydike

Mittwoch 22.1.2020

Aufgabe 1)

_ /1p.

- Ein Paket adressiert an 172.20.33.66 wird vom Router R1 über das Interface if.B an das Zielsubnetz weitergeleitet.
 - Ein Paket adressiert an 172.20.72.36 wird vom Router R1 über das Interface if.R3 an den Standard Gateway 172.20.1.10 gesendet.
 - Ein Paket adressiert an 172.20.67.67 wird vom Router R1 über das Interface if.R2 an den Router R2 mit IP 172.20.1.6 weitergeleitet.
- b) Die Routingtabelle von Router R1:

Destination	Genmask	Gateway	Iface
172.20.32.0	255.255.255.0	0.0.0.0	if.A
172.20.33.0	255.255.255.0	0.0.0.0	if.B
172.20.34.0	255.255.255.0	0.0.0.0	if.C
172.20.35.0	255.255.255.0	0.0.0.0	if.D
172.20.128.0	255.255.255.0	172.20.1.18	if.R4
172.20.64.0	255.255.252.0	172.20.1.6	if.R2
default	0.0.0.0	172.20.1.10	if.R3

Kann kompakt gepublished werden:

Destination	Genmask	Gateway
172.20.32.0	255.255.252.0	0.0.0.0
172.20.128.0	255.255.255.0	172.20.1.18
172.20.64.0	255.255.252.0	172.20.1.6

- c) Der Routing-Algorithmus, der Open Shortest Path First (OSPF) zugrunde liegt, ist Dijkstra, während das Routing-Protokoll den gesamten Prozess beschreibt, auch z.B. die Link-State-Advertisments. !reformulate
- d) Zwei vorteile von OSPF gegenüber RIP sind:
 - RIP ist begrenzt auf eine entfernung von 15 hops.
 - RIP reagiert nicht schnell auf Änderungen im Netzwerk.

Aufgabe 2)

/1p.

- a) Ein AS ist ein zusammenschluss von Netzwerken über Router, die unter einer Administration stehen. Änderungen innerhlab eines AS sind normalerweise nicht relevant außerhalb selbigens.
- b) Der Hauptzweck des Border Gateway Protokolls (BGP) ist die verbindung der einzelnen AS. Somit bildet das BGP den Kern des Internets.
- c) Das BGP ist *Policy-Basiert*, da für jede Verbindung eine Policy für den Austausch der Routen aufgestellt werden muss.

d)	\bullet Router $C2$ erfährt über eBGP durch Router $F2$ von Präfix $z,$ da $F2$ seine eig seinem Provider exportiert.				
	\bullet Router $C2$ erfährt über OSPF durch Router $C3$ von Präfix $w,$ da AS D	ı			
	\bullet AS B kündigt AS C die BGP-Route $[y;$ B–E]				
	\bullet Von Subnetz y zu Subnetz z nehmen Pakete die AS-Route E-B-C-F				
	\bullet Von Subnetz y zu Subnetz w nehmen Pakete die AS-Route E-B-C-D				
A	ufgabe 3)	_	_ /1p		
a)	Zwei Gründe für die Entwicklung von MLPS sind:				
	• Beschleunigte Vermittlung und Weiterleitung von Dateneinheiten.				
	\bullet Differenzierte Behandlung von Datenströmen und vorhersagbare QoS.				
	MPLS arbeitet zwischen den Schichten 2 und 3 des OSI-Schichtenmodells	Korrekt ⊗	Falsch		
L)	Der MPLS-Label enthält die IP-Zieladresse der Label Edge Router	0	\otimes		
b)	An einem Datenpaket können gleichzeitig mehrere Label angehängt werden	\otimes	\circ		
	Das Protokoll Forwarding Equivalent Class wird zur Signalisierung der MPLS Labels verwendet	0	\otimes		
c)	Ein Label Edge Router in einem MPLS-Netz ist die Schnitstelle zwischen MF	PLS-Netzer	n und		

- Anderes AS-Netzen
- \bullet Subnetzen
- Anderen MPLS-Domänen im gleichen AS-Netz

d) -

Gesamtpunkte:

__ /3p.