LINCQA: FASTER CONSISTENT QUERY ANSWERING WITH LINEAR TIME GUARANTEES

Zhiwei Fant, Paraschos Koutrist, Xiating Ouyangt, Jef Wijsent

†University of Wisconsin – Madison, ‡University of Mons

Consistent Query Answering (CQA)

While data cleaning is widely adopted to repair the inconsistent/dirty data, finding the "right repair" remains a challenge. Alternatively, the idea of CQA is to compute the answers that are guaranteed to be returned in **all** repairs.

Fig. 1: An example of CQA. The middle layer shows the different sets of answers returned for each possible repair, and the bottom layer explains that the answer "A" is returned in **all** repairs.

$$\mathsf{CQA}_Q(\mathbf{db}^!) = \bigcap_{\mathbf{db}^\checkmark \text{ is a repair of } \mathbf{db}^!} Q(\mathbf{db}^\checkmark).$$

We study inconsistent databases that could violate the <u>primary key constraint</u>: every primary key could correspond to multiple distinct tuples in the database.

Problem: CQA(Q), where Q is a SPJ query

Input: a database db that violates the primary key constraint

Output: the answers guaranteed to be returned by Q on all repairs of db

Course course_id CS 703	faculty_id	CS_Faculty faculty_id	name	area
	2	2	Adam	DB
CS 703	5	2	Alice	OS
MATH 770	3	- 5	Bob	PI
MATH 770	7			
CS 787	8	9	Cathy	ML
	0	9	Carrol	ML
CS 787	9			

Executing the following blue SQL query on the database returns the inconsistent answers **CS 703** and **CS 787**. The rewritten query by adding the red segments would find the consistent answers (i.e., **CS 703**) that are returned in every repair of the database.

Fig. 2: An example of first-order (FO) rewriting.

Not all queries admit a first-order rewriting! And the classification on the rewritability remains an open problem.

Acyclic Queries in Linear Time

Evaluating an acyclic query is a well-studied problem by using hash joins on the join tree. For example, the **Boolean** blue SQL query is acyclic:

q():-Course(\underline{x}, y), Faculty(y, z, 'DB').

consistent answer

The answer of every **Boolean** acyclic query can be evaluated in O(|db|).

with a pair-pruning join tree (PPJT)

Queries with projection can be reduced to **Boolean** queries

Pair-pruning Join Tree (PPJT)

We consider acyclic self-join-free SPJ queries (each table name occurs once).

Definition: A join tree rooted at some atom is a PPJT if

the root of every subtree is unattacked in the subtree.

For example, q has a PPJT:

- Queries on star/snowflake schema (e.g. TPC-H, TPC-DS)
- Two tables
- acyclic queries in C_{forest} [Fuxman and Miller, SIGMOD'05]

Proposition: If a query q have a pair-pruning join tree (PPJT), then CQA(q) has a first-order rewriting that runs in linear time.

LinCQA and the Rewriting

LinCQA is a query rewriter that takes as input a SQL query, output its first-order rewriting.

python3 lincqa.py -i <input.sql> -o <output.sql>

Using PPJT, the consistent answers can be computed in a bottom-up fashion.

q():-Course (\underline{x},y) , Faculty(y,z, "DB").

For queries with projection:

```
SELECT DISTINCT A1, A2 FROM T WHERE A3 = 42 we use PPJT for each potential answer (a,b)\dots:
```

SELECT DISTINCT 1 FROM T WHERE A3 = 42 AND A1 = \boxed{a} AND A2 = \boxed{b} if **yes**, then (a, b) is a consistent answer.

Experiments

We used a 400GB StackOverflow dataset (among others) on SQL Server.

Acyclic q	LinCQA [SIGMOD'23]	Yannakakis [VLDB'81]
Boolean q	O(N)	O(N)
Projection q	$O(N \cdot OUT_{inconsistent})$	$O(N \cdot OUT)$
full q (SELECT *)	$O(N + OUT_{consistent})$	O(N + OUT)

Consistent answers can be computed with no asymptotic overhead