JCW_102324_Bioinfo_Class7MachineLearning1

Janie Chang-Weinberg (A69037446)

Before we get into clustering methods, let's make some sample data to cluster where we know what the answer should be.

To help with this, let's use the rnorm() function.

```
hist(rnorm(150000, mean=c(-3,3)))
```

Histogram of rnorm(150000, mean = c(-3, 3))

rnorm(150000, mean = c(-3, 3))

```
x <- c(rnorm(30,mean=+3),rnorm(30,mean=-3))
y <- rev(x)</pre>
```

```
[1,] 2.821216 -3.789988
 [2,] 4.341741 -3.289801
 [3,] 2.458949 -1.502477
 [4,] 3.864960 -3.423299
 [5,] 2.482735 -3.323571
 [6,] 3.705521 -4.662714
 [7,] 3.139817 -3.851245
 [8,] 3.934705 -4.473218
 [9,] 3.158753 -4.593167
[10,] 4.368447 -1.970770
[11,] 3.985490 -1.122058
[12,] 2.649837 -2.955599
[13,] 2.950878 -2.733463
[14,] 2.507178 -2.522330
[15,] 1.558925 -3.493796
[16,] 3.892124 -2.277338
[17,] 1.937394 -3.939072
[18,] 2.021263 -3.791779
[19,] 3.266345 -2.504009
[20,] 4.177228 -2.971988
[21,] 3.214484 -3.861364
[22,] 3.468566 -4.181444
[23,] 4.104453 -3.778150
[24,] 4.050155 -2.198749
[25,] 3.474126 -2.288644
[26,] 1.787172 -2.545523
[27,] 3.535154 -4.074991
[28,] 5.145457 -2.349178
[29,] 3.330402 -2.647137
[30,] 1.613030 -2.054633
[31,] -2.054633 1.613030
[32,] -2.647137 3.330402
[33,] -2.349178 5.145457
[34,] -4.074991 3.535154
[35,] -2.545523 1.787172
[36,] -2.288644 3.474126
[37,] -2.198749 4.050155
[38,] -3.778150 4.104453
```

```
[39,] -4.181444 3.468566
[40,] -3.861364 3.214484
[41,] -2.971988
               4.177228
[42,] -2.504009
                3.266345
[43,] -3.791779
                2.021263
[44,] -3.939072
               1.937394
[45,] -2.277338 3.892124
[46,] -3.493796 1.558925
[47,] -2.522330 2.507178
[48,] -2.733463 2.950878
[49,] -2.955599
                2.649837
[50,] -1.122058
                3.985490
[51,] -1.970770 4.368447
[52,] -4.593167
                3.158753
[53,] -4.473218 3.934705
[54,] -3.851245 3.139817
[55,] -4.662714 3.705521
[56,] -3.323571 2.482735
[57,] -3.423299 3.864960
[58,] -1.502477
                2.458949
[59,] -3.289801 4.341741
[60,] -3.789988 2.821216
```

plot(z)

K-means clustering

The function in base R for clustering is kmeans()

```
km <- kmeans(z,2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

Clustering vector:

Within cluster sum of squares by cluster:

[1] 48.98385 48.98385

(between_SS / total_SS = 92.5 %)

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"
 - Q. Print out the cluster membership vector (ie, our main answer)

km\$cluster

```
plot(z, col=c("red","blue"))
```


To plot with color by cluster result and add cluster centers:

```
plot(z, col=km$cluster)
points(km$centers, col="blue", pch=42,cex=2)
```


Q. Can you cluster our data in ${\bf z}$ into four clusters?

```
km4 <- kmeans(z,centers=4)
plot(z, col=km4$cluster)
points(km4$centers, col="orange",pch=25)</pre>
```


Hierarchical Clustering

The main function for hierarchical clustering in base R is called hclust()

Unlike kmeans(), you cannot just pass in the data as input. You first need a distance matrix from the data.

```
d <- dist(z)
hc <- hclust(d)
hc</pre>
```

Call:

hclust(d = d)

Cluster method : complete
Distance : euclidean

Number of objects: 60

There is a specific hclust plot() method...

```
plot(hc)
abline(h=9, col="red")
```

Cluster Dendrogram

d hclust (*, "complete")

To get the main clustering result (ie, the membership vector), you can "cut" the cluster dendrogram at a given height. To perform this, use cutree()

```
grps <- cutree(hc, h=9)
grps</pre>
```

Principal Component Analysis

"Principal component analysis (PCA) is a well established "multivariate statistical technique" used to reduce the dimensionality of a complex data set to a more manageable number (typically 2D or 3D). This method is particularly useful for highlighting strong paterns and relationships in large datasets (i.e. revealing major similarities and differences) that are otherwise hard to visualize. As we will see again and again in this course PCA is often used to make all sorts of bioinformatics data easy to explore and visualize." -ripped from webpage

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
dim(x)</pre>
```

[1] 17 5

X

	Х	England	Wales	Scotland	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033
8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187
11	Processed_Veg	360	365	337	334
12	Fresh_fruit	1102	1137	957	674
13	Cereals	1472	1582	1462	1494
14	Beverages	57	73	53	47
15	Soft_drinks	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

```
rownames(x) <- x[,1]
x <- x[,-1]
head(x)
```

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Plot 1 (rainbow bar plot)

Q. 3 (pls do this for a barplot)

pairs(x, col=rainbow(10), pch=16)

Principal Component Analysis can help organize data

The main function to do PCA in base R is prcomp() The way the data are organized currently will not work, you must first transpose the data

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

```
        PC1
        PC2
        PC3
        PC4

        Standard deviation
        324.1502
        212.7478
        73.87622
        2.921e-14

        Proportion of Variance
        0.6744
        0.2905
        0.03503
        0.000e+00

        Cumulative Proportion
        0.6744
        0.9650
        1.00000
        1.000e+00
```

Check what is inside pca that has been calculated

```
attributes(pca)
```

```
$names
[1] "sdev" "rotation" "center" "scale" "x"
```

```
$class
[1] "prcomp"
```

pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -9.152022e-15
Wales -240.52915 -224.646925 -56.475555 5.560040e-13
Scotland -91.86934 286.081786 -44.415495 -6.638419e-13
N.Ireland 477.39164 -58.901862 -4.877895 1.329771e-13
```

To make our main results figure called a "PC plot" (or score/ordination/PC1vsPC2 plot)

variable loadings plot

can give us insight as to how the original variables (in this case the the foods) contribute to our PC axis

pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.409382587
Carcass_meat	0.047927628	0.013915823	0.06367111	0.729481922
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.331001134
Fish	-0.084414983	-0.050754947	0.03906481	0.022375878
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.034512161
Sugars	-0.037620983	-0.043021699	-0.03605745	0.024943337
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	0.021396007
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	0.001606882
Other_Veg	-0.243593729	-0.225450923	-0.05332841	0.031153231
Processed_potatoes	-0.026886233	0.042850761	-0.07364902	-0.017379680
Processed_Veg	-0.036488269	-0.045451802	0.05289191	0.021250980
Fresh_fruit	-0.632640898	-0.177740743	0.40012865	0.227657348
Cereals	-0.047702858	-0.212599678	-0.35884921	0.100043319
Beverages	-0.026187756	-0.030560542	-0.04135860	-0.018382072
Soft_drinks	0.232244140	0.555124311	-0.16942648	0.222319484
Alcoholic_drinks	-0.463968168	0.113536523	-0.49858320	-0.273126013
Confectionery	-0.029650201	0.005949921	-0.05232164	0.001890737

plot(pca\$rotation)

