Python Code Test Cases

Paul Talbot

February 25, 2013

1 Stochastic Collocation Class

1.1 TEST: Single Uniform Variable

In this test we consider $f(x)=x^2$ with x a random variable uniformly distributed along $\bar{x}\pm\sigma$, where \bar{x} is the average value and σ is the uncertainty in x.. x can be expressed as a function of a random variable ξ distributed from -1 to 1 as

$$x(\xi) = \bar{x} + \sigma \xi, \qquad \xi \in [-1, 1]. \tag{1}$$

This test evalutes the moments n of f(x) as

$$\langle f(x)^n \rangle \equiv \int P(\xi)f(x)^n d\xi,$$
 (2)

where $P(\xi)$ is the probability distribution function for xi. In this case, for the uniformly-distributed random variable, $P(\xi)=1/2$ for all values of ξ . Because $\xi \in [-1,1]$, we integrate

$$\langle f(x)^{n} \rangle = \int_{-1}^{1} P(\xi) f(x(\xi))^{n} d\xi,$$

$$= \frac{1}{2} \int_{-1}^{1} (x(\xi)^{2})^{n} d\xi,$$

$$= \frac{1}{2} \int_{-1}^{1} (\bar{x}^{2} + 2\bar{x}\sigma\xi + \sigma^{2}\xi^{2})^{n} d\xi.$$
(3)

For this test case, we consider x to be uniformly distributed between 1 and 2, so $\sigma = 0.5$ and the first three moments are

$$\langle f(x) \rangle = 7/3,\tag{4}$$

$$\langle f(x)^2 \rangle = 31/5,$$
 (5)

$$\langle f(x)^3 \rangle = 127/7.$$
 (6)