Aula 7: Análise de Circuitos em Regime Permanente Senoidal e Filtros Passivos

Objetivos

- Verificar o funcionamento de circuitos em regime permanente senoidal.
- Verificar o funcionamento de filtros passivos dos tipos passa-baixas e passa-altas.

Lista de material

- Osciloscópio e gerador de sinais
- Resistor: $R1 = 1 k\Omega$.
- Capacitores: C1 = 220 nF, C2 = 22 nF.
- Indutor: L1 = 150 μH.

Roteiro da experiência

1) Regime Permanente Senoidal

a) Configure o gerador de sinais para gerar um sinal senoidal com frequência de 200 Hz e amplitude de 5 V. Em seguida monte o circuito da figura abaixo utilizando R1 = 1 k Ω , L1 = 150 μ H, C1 = 220 nF.

b)	b) Calcule a impedância dos elementos passivos.		
c)	Calcule a tensão no resistor.		

d) Meça a tensão resistor e compare com o valor teórico.

- e) Aumente a frequência do sinal de entrada para 1000 Hz.
- f) Calcule a impedância dos elementos passivos.

	Calcule a	~ .		
σι	(alcille a	TANCAN	no r	ACICTAR

h)	Meça a	tensão	resistor	e comp	pare com	o valor	teórico.
----	--------	--------	----------	--------	----------	---------	----------

2) Filtro Passa-Baixas

a) Monte o circuito conforme a figura abaixo utilizando R1 = $1 \text{ k}\Omega$ e C2 = 27 nF.

b) Calcule a frequência de corte do filtro.

- c) Calcule a tensão de saída do filtro para cada um dos valores de entrada pré-estabelecidos na Tabela 1 e preencha-a.
- d) Configure o gerador de sinais para os diferentes valores de tensão e frequência de entrada pré-estabelecidos na Tabela 1. Verifique a amplitude da tensão de saída e sua defasagem em relação à tensão de entrada e complete a Tabela 1.

Tabela 1

Tensão de Entrada	Tensão de Saída Teórica	Tensão de Saída Experimental
$5 \cdot \sin(2\pi \cdot 100t)$ [V]		
$5 \cdot \sin(2\pi \cdot 500t)$ [V]		
$5 \cdot \sin(2\pi \cdot 1000t) \text{ [V]}$		
$5 \cdot \sin(2\pi \cdot 2500t) \text{ [V]}$		
$5 \cdot \sin(2\pi \cdot 5000t) \text{ [V]}$		
$5 \cdot \sin(2\pi \cdot 7500t) \text{ [V]}$		
$5 \cdot \sin(2\pi \cdot 10000t) \text{ [V]}$		
$5 \cdot \sin(2\pi \cdot 20000t) \text{ [V]}$		
$5 \cdot \sin(2\pi \cdot 50000t) \text{ [V]}$		
$5 \cdot \sin(2\pi \cdot 100000t) \text{ [V]}$		

3) Filtro Passa-Altas

a) Monte o circuito conforme a figura abaixo utilizando R1 = 1 k Ω e C2 = 27 nF.

b) Calcule a frequência de corte do filtro.

d) Configure o gerador de sinais para os diferentes valores de tensão e frequência de entrada pré-estabelecidos na Tabela 2. Verifique a amplitude da tensão de saída e sua defasagem em relação à tensão de entrada e complete a Tabela 2.

Tabela 2

Tensão de Entrada	Tensão de Saída Teórica	Tensão de Saída Experimental
$5 \cdot \sin(2\pi \cdot 100t)$ [V]		
$5 \cdot \sin(2\pi \cdot 500t)$ [V]		
$5 \cdot \sin(2\pi \cdot 1000t) \text{ [V]}$		
$5 \cdot \sin(2\pi \cdot 2500t) \text{ [V]}$		
$5 \cdot \sin(2\pi \cdot 5000t) \text{ [V]}$		
$5 \cdot \sin(2\pi \cdot 7500t) \text{ [V]}$		
$5 \cdot \sin(2\pi \cdot 10000t) \text{ [V]}$		
$5 \cdot \sin(2\pi \cdot 20000t) \text{ [V]}$		
$5 \cdot \sin(2\pi \cdot 50000t) \text{ [V]}$		
$5 \cdot \sin(2\pi \cdot 100000t) \text{ [V]}$		