

创业公司的大数据平台选型和演进

魔窗CTO张申竣

充分了解业务需求和产品所处阶段

创业公司面临的一些挑战和优势:

- 1. 资源不足
- 2. 时间压力大
- 3. 没有技术上的历史包袱,选型相对自由

前两点是搭建大数据平台的挑战,最后一点是优势。对于大部分创 业公司而言,这三点挑战和优势始终存在,但是业务特点随着公司 的发展会有相应的变化

创业公司的发展阶段

产品验证阶段 产品成熟阶段 业务增长阶段

魔窗的大数据平台监测报告业务需求

- 1. 计算由魔窗的移动端SDK采集过来的包括,日活,应用打开次数, 流失用户,回流用户等移动端监测的常用指标
- 2. 因为魔窗是提供基于Deep Link的一系列应用唤醒服务,所以我们 还需要监测,从投放在各个渠道的基于Deep Link生成的短链的曝 光,安装转化率
- 3. 魔窗还提供各种营销活动的制作和投放, 所以还需要监测营销活 动的曝光率

业务特点

- 1. 数据量很小,用户最多只有几十个种子用户,整个监测采集到的 数据规模根本不能称作大数据。
- 2. 魔窗所计算的统计指标也无法确定对用户是否有真正的帮助,很 可能整个功能会根据市场反馈最后被砍掉。

这种情况下,魔窗首先考虑的是要尽量缩小产品验证的成本,所以 技术选型的原则很简单,端到端跑通功能,设计和实现上越简单粗 暴越好,不需要存在技术积累,被砍了也不可惜。所以这个时候架 构的总的原则是保证能够最快速迭代,推倒重来也没关系。我们的 整个计算平台的架构是这样的

架构

架构

缺点:不能称作是大数据计算平台,只是一个包含了数据采集, 数据计算脚本和数据展示的Java应用,拿目前流行的micro service化来说,这个就是一个micro service 的反例,一个 monolithic的应用。

事实上的效果: 非常适合验证产品,利用一些一站式开发框架, 修改业务非常简单,MySQL的结构化特点使得计算脚本非常容易。 这个架构大约支撑了我们3个月的时间

业务特点

- 1. 计算指标相对稳定,及时加指标也是基于原有的采集点的 计算
- 2. 有一些流量大一点的种子用户进来了,数量也越来越多
- 3. 计算上分为了实时计算和离线计算这两种需求

除了MySQL的计算性能问题,这个时候光是采集数据就会 经常造成MySQL连接失效,于是我们在不断优化MySQL服务器端 和客户端连接参数的同时,开始了真正的大数据平台的架构。 这个时期的架构有一个总的原则就是可持续迭代, 因为产品一 旦稳定成熟,技术上就承受不了推到重来的代价了

IT_PUB

架构

- 1. 采集端保证大吞吐量
- 2. 再存储和计算节点处问题的情况下,保证在一段时间内采集到 的数据不会丢失
- 3. 性能可以通过Scale Out解决,并且易于做Scale Out
- 4. DevOps简单,能够方便的监测和预警

架构

数据采集

采用Nginx没有什么太大的争议,异步非阻塞,保证大吞吐量,需 要进行参数调优,比如worker, keep_alive等

数据暂存区

这里和一些传统的监测架构有所区别,魔窗并买有采用把Nginx的日 志当数据暂存区的办法,而是直接用了Kafka,好处在于:

- 1. 比起磁盘IO, Kafka的吞吐量更大,并且提供了异步写入的方法, 保证Nginx采集到的数据能够最及时的进入数据暂存区
- 2. 消息队列本身就具有分布式的一些特性,比如支持Failover保证 高可用,数据可以存放多份,Partition机制是数据的写入和加 载更高效,
- 3. 消息队列队列天生能解决不同种类监测数据区分的业务问题(比 如Topic)
- 4. 比起日志,利用Kafka的API能够方便的处理一些数据续传的问题, 比如如果存储节点崩溃了,仅仅利用日志是很难知道下次应该从 那条记录开始续传的, Kafka就可以利用客户端保存的Offset (实际上我们每个Kafka客户端的Offset是保存在Zookeeper中的) 做到

数据传输

当时在两种方案里摇摆,一个是Flume 还有一个是Spring XD, 最终选择Flume的原因在于

- 1. 使用简单,有大量的source和sink可以用
- 2. 能被CDH托管 (Spring XD不能被CDH托管,但是可以被Yarn托 管)

离线计算

Spark + HDFS的模式相信已经被大家所熟悉,下面之谈一下魔 窗对于Spark的优化心得:

- 1. 了解应用中的RDD的partition, 执行中的stage情况,避免过 多小任务
- 2. 尽可能程序中复用RDD,如果多次使用,考虑做cache,根据实 际情况选择合适的持久化策略
- 3. 必要时候使用broadcast 和 accumulator
- 4. 根据自己的作业具体情况结合系统资源监控调整主要资源类 参数,例如 num-executors, executor-memory, executor-cores和spark.default.parallelism等
- 5. 如果允许,建议尝试官方推荐的Kryo
- 6. 对于jvm,,通过打印GC信息了解内存使用情况,调整相应参 数

流式计算

对于像用户留存这样的指标,根据回溯历史数据去做计算是相当困 难的,采用流失计算的话会简单很多,根据魔窗的业务特点也并没 有引入Storm或者Spark Stream这样的流失框架,而仅仅是在Flume 传输数据的过程中,简单地利用HBase做了流式计算。

留存用户举例

Unique id per device	First access time	Previous access time
DeviceId1	Ft1	Pt1
DeviceId2	Ft2	Pt2

	Day	Tenant key	D			W		M		
			D1	D3	D5	D9	W2	W6	M1	M3
	2016- 05-11	Tenant1	1		2					2
	2016- 05-11	Tenant2				3		4		1

留存用户举例

为各租户定义需要计算的留存区间,例如5日留存,7日留存,2周留存,1月留 存等

例如某租户tenant1,选择配置为计算首日,5日,7日和3月留存 那么该租户所属的某个app(source App)发送的一条类似如以下的event, tenant1 deviceId1 timeStamp1 action1, 应用会做以下操作:

- 1. 如果是新deviceId,则上表中新增访问记录
- 2. 如果不是,例如本例中的deviceId1, 计算距离上次访问时间间隔(以天 计),(timeStamp1-pt1)=2day,更新上表中的previous access time
- 3. 通过CAS incr. 更新以下留存记录,如果跨天了,表示这个设备的用户就是 留存用户。如果跨1天,表示1天留存,跨3天,表示3天留存,依次类推。这 是天的留存,周的留存根据Previous access time判断是否跨周,道理相同。

实时计算

对于特定时间范围内的全体数据集的实时计算,选用了 Elasticsearch作为实时计算的集群,原因如下:

- 1. 数据结构基于Json,因此是半结构化的数据,易于计算
- 2. 基于我们的测试,查询的response time基本能够随着节 点的增长线性降低
- 3. 非常容易做Scale Out,非常容易通过参数设置调整数据 备份和Partition的策略。
- 4. 支持查询的模板化,使查询和客户端代码解耦
- 5. 包括查询,管理在内的所有功能API化,易于运维。
- 6. 插件丰富支持从其他数据源双向导入数据

为什么选择CDH

对下列的的几个Hadoop 发行版本进行过调研 CDH, IDH (Intel), HAWQ (Pivotal), Hortonworks

之前已经谈到,在选型里面比较关心的是DevOps,所以需要最大 限度的利用已有工具提升运维的效率,在这一方面CDH是最强的, 它的管理工具提供了安装,维护,监测,预警等一系列帮助运维 的功能,节省了我们维护的很多时间。

为什么选择CDH

IDH的特点是在HBase提供了LOB的类型,对二进制存储有帮助, 使用特殊的存储类型避免发生频繁的Campacting。同时还优化了 Hive计算的性能使相关数据尽量在同一region里。这几点和我们的 需求毫无关系,而且Intel已经战略投资Cloudera,之后会把IDH的 功能逐步移入CDH。

HAWQ, 最为Pivotal HD的基础, HAWQ最大的特点是在于它实际 上是一个MPP架构的数据库,提供了基于HDFS之上的SQL支持。3各 Data Node的情况下,上亿级别的包含group by聚合以及SQL子查询 的复杂查询响应在10秒左右。所以HAWQ非常适合异步的近实时查询, 但是我们也没有这个场景。但是用HAWQ开发聚合可以把开发计算任 务的成本降到0是非常具有吸引力的。

Hortonworks, 各方面和CDH很像, 但是管理工具不如CDH强大。

业务特点

随着BD的铺开,接入的客户越来越多,随着数据量的增长,产品 成熟阶段设计上的许多问题暴露了出来,但是因为先前的架构原 则是可持续迭代, 所以问题都发生在局部的某些点上

问题

- 1. 没有用到任何序列化技术,数据存储是简单粗暴的文本格式, 这样会导致两个问题
 - a) 当数据种类增加时,计算任务会产生大量join, 既增加计 算的复杂度,又影响性能
 - b) 计算脚本和数据格式严重耦合, 脚本任务取字段依赖于该 字段在文本文件中的位置,增减字段需要评估所有job的 影响。
- 2. Flume再往HDFS写入时,无法保证一个partition一个文件,往 往会被打散成许多小文件,Spark的计算性能和Namenode的性 能对小文件的数量严重敏感。
- 3. 采用Spark Standalone,资源调度不智能,很难充分利用集群 资源
- 4. 被CDH 托管的Flume 一台机器只能使用一个Flume 节点

架构改进

针对这些个问题,我们又逐步进行了一些优化

- 1. 录入HDFS的文件采用Arvo的格式,保证采集到的一条完整数据可以存储 在同一个文件中,不用拆分,摒弃了join。另外基于Schema的数据,使 得计算Job的语义更容易理解,可维护性更好。
- 2. 在离线计算任务之前,我们先会跑一个脚本将同一个partition下产生 Flume产生的文件给合并,大大提升计算性能
- 3. 从Spark standalone 切换到Spark Yarn。这样做的好处在于
 - a) 统一了我们的资源调度平台
 - b) Yarn会自动优化数据的存储和计算发生在同一地域的问题(同一台服 务器,同一台机柜)
 - c) 资源调度配置灵活, 优化合理
- 4. Flume 做成了microservice, 脱离CDH托管

计算任务框架

魔窗针对计算任务扩展开发了web console,通过JMX去控制job 的基本操作,同时提供对已执行过的job的信息访问,这些数 据存储在mysql中,通过Job Repository服务访问。

总结和心得

从我们的平台发展经历来看, 在初创公司做大数据平台的选型, 最重要的有两点:

- 1. 产品目标导向,不同的阶段利用有限的资源采集不同的架构 策略
- 2. 无论何种架构策略, DevOps始终是架构选型的一个重要考量, 因为它直接影响到你如何评估和调整架构。

欢迎关注魔窗

魔窗公众号 magic-window

您的私人助理 omic53

Deeplink更多玩法 http://t.cn/RcPCnQE

魔窗详细介绍 http://t.cn/RcPC8Og

官网地址 www.magicwindow.cn

关注我们公众号和官网了解更多!

增长联盟邀请函

