

Section 11.5

B.H.

Section 11.5 Lines and Planes in Space

MATH211 Calculus III

Instructor: Ben Huang

DEPARTMENT OF COMPUTING, MATHEMATICS AND PHYSICS

Section 11.5 B.H. How to form an equation of a plane?

Section 11.5 B.H. How to form an equation of a plane?

 $\mathbf{n} = \langle a, b, c \rangle$ $P(x_1, y_1, z_1)$ Q(x, y, z)

$$a(x-x_1)+b(y-y_1)+c(z-z_1)=0$$

The normal vector \mathbf{n} is orthogonal to each vector \overrightarrow{PQ} in the plane.

Section 11.5 B.H. How to form a set of equations of a line?

Section 11.5 B.H. How to form a set of equations of a line?

Line L and its direction vector \mathbf{v}

$$\mathbf{v} = \langle a, b, c \rangle$$
$$P(x_1, y_1, z_1)$$

parametric equations

$$x = x_1 + at$$
, $y = y_1 + bt$, $z = z_1 + ct$.

symmetric equations

$$\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{z-z_1}{c}.$$