RELATION & FUNCTION

Ordered pairs

(a,b) is called ordered pair

- $(a,b) \neq (b,a)$
- $(a,b)=(c,d) \Leftrightarrow a=c \& b=d$

Cartesian product of sets (cross product)

If A and B are two sets then the cartesian product is given

$$A \times B = \{(x, y) : x \in A, y \in B\}$$

$$B \times A = \{(x, y) : x \in B, y \in A\}$$

eg:
$$A = \{1, 23\}, B = \{3, 4\}$$

$$A \times B = \{(1,3), (1,4), (2,3), (2,4), (3,3), (3,4)\}$$

$$B \times A = \{(3,1), (3,2), (3,3), (4,1), (4,2), (4,3)\}$$

Thus $A \times B \neq B \times A$

Arrow Diagram representation

Now
$$A \times A = \{(x, y) \mid x \in A, y \in A\}$$

Here
$$A \times A = \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$$

Important Results

If
$$n(A) = m \& n(B) = n$$

Then
$$n(A \times B) = n(B \times A) = mn$$

&
$$n(A \times A) = m^2$$

NCERT Ex.1: If (x+1, y-2) = (3,1) find x & y

$$x + 1 = 3$$
, $y - 2 = 1$

$$x = 2, y = 3$$

NCERT Ex.4: If $A = \{1, 2\}$ find $A \times A \times A$

$$A \times A \times A = \{(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2)\}$$

NCERT Ex.6:If $A \times B = \{(p,q), (p,r), (m,q), (m,r)\}$

Then find sets A & B

$$A = \{p, m\}; B\{q, r\}$$

NCERT Ex.2.1 Qn.7. If $A = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{4, 5\}$

Then find (i) $A \times (B \cap C)$

$$(ii)(A \times B) \cap (A \times C)$$

(iii)
$$A \times (B \cup C)$$

$$(iv)(A \times B) \cup (A \times C)$$

Important Results

(1)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

(2)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

(3) $A \times B = \phi$ then either A or B is ϕ

(4)
$$n \lceil (A \times B) \cap (B \times A) \rceil = \lceil n(A \cap B) \rceil^2$$

Relations: A Relation R from a non empty set A to a non empty set B is a subset of A×B or Any subset of A×B is a relation from set A to set B. If R is a relation from set A to set B we denote it as $R: A \rightarrow B$. Any subset of A×A is called a relation from $A \rightarrow A$ or relation on A.

Domain , Range & codomain of a relation.

Let $R:A\to B$ be a relation from $A\to B$. Then set of all first elements of ordered pairs of R is called

Domain of R

The set of all second elements of ordered pairs of R is called

Range of R

Set B is called co-domain of ordered pairs of R is called

ex: Let
$$A = \{1, 2, 3, 4, 5\}$$
 $B = \{3, 5, 7, 9\}$

Let $R: A \rightarrow B$ be a relation by $R = \{(x, y): x \in A, y \in B, y = x + 2\}$

Now R in Roster form is given by

$$R = \{(1,3),(3,5),(5,7)\}$$

Domain = $\{1, 3, 5\}$

Range =
$$\{3, 5, 7\}$$

Codomain =
$$\{3, 5, 7, 9\}$$

Result (1) If $R: A \to B$ is a relation then Domain $\subseteq A$ and R ange $\subseteq B$

(2)
$$n(A) = m \& n(B) = n$$
 then total no.of Relations from $A \to B = 2^{mn}$

(3) If
$$n(A) = n$$
 then total number of relations from $A \to A$ (or total relations on A) is $2^{(n^2)}$

Types of Relations

(1) Inverse Relation: If $R:A\to B$ is a relation defined by $R=\left\{\left(x,y\right)\colon x\in A\ \&\ y\in B\right\}$ then inverse relation of R is given by $R^{-1}:B\to A$ by $R^{-1}=\left\{\left(y,x\right)\colon x\in A,y\in B\right\}$

Let
$$A = \{1, 2, 3, 4, 5\}, B = \{3, 5, 7, 9\}$$

Let
$$R: A \to B$$
 given by $R = \{(1,3), (3,5), (5,7)\}$ Then $R^{-1} = \{(3,1), (5,3), (7,5)\}$

We can see that Domain of $R^{-1} = Range of R$ & Range of $R^{-1} = Domain of R$

(2) Identity relation

A relation $R: A \rightarrow A$ given by

$$R = \left\{ \left(x,y\right) \colon x,y \in A, y = x \right\} \text{ is called identity relation}$$

Ex.Let
$$A = \{1, 2, 3, 4\}$$

Then relation R on A by

$$R = \{(1,1),(2,2),(3,3),(4,4)\}$$
 is called identity relation

(3) Void Relation (Null relation or empty relation)

We know a relation on A is a subset of A×A and ϕ is a subset of A×A $\therefore \phi$ is also a relation from A \rightarrow A . This is known as void relation

(4) Universal Relation

A × A itself is a subset of A×A and hence A×A is a relaiton on A. This is called universal Relation

Exercise 2.2 NCERT

1. $A = \{1, 2, 3, ..., 14\}$. Define a relation R on A by $R = \{(x, y) : x, y \in A, y = 3x\}$. Write this on Roster form. Also write its domain and Range.

$$R = \{(1,3), (2,6), (3,9), (4,12)\}$$

Domain =
$$\{1, 2, 3, 4\}$$

Range =
$$\{3,6,9,12\}$$

Functions: A relation from set A to set B is said to be function from $A \rightarrow B$, if every element of set A has one and only one image in set B.

Examples:

Function from $A \rightarrow B$

Not a function

Not a function from $A \rightarrow B$

Function from $A \rightarrow B$

 $f:A\to B$ is a function and if $(x,y)\in f$, then y is called the image of x with respect to the function f. We write it as y=f(x). And x is called the pre image of y under f.

Then for $x \in A$, $y = f(x) \in B$

Re sult : If n(A) = m & n(B) = n then total no.of functions from $A \to B = n^m$

Domain & Range of a Function

Let $f: A \to B$ be a function . Then A is called Domain of f. Or in other words if $f: A \to B$ is a function. Then the set of all values of x in which f is defined is called Domain of f.

The set of all images of elements of A in set B is called. Range of f. ie. The set of values of f(x) in B is the Range of f. The whole set B is called codomain of f.

Some Important Functions

(1) Real function

A function $f: A \rightarrow B$ such that A and B are either R or subsets of R is called real function

(2) Constant function

A function $f:R\to R$ defined by $f\left(x\right)=k$ for any $x\in Domain\ R$ is called constant function Here Domain = R, Range = $\left\{k\right\}$

(2) Identity function

A real function $f: R \to R$ by f(x) = x for all $x \in R$ is called identity function. Here Domain =Range = R

Modulus function (Absolute value function)

A function $f:R \to R$ by $f\left(x\right)\!=\!\left|x\right|$ is called modulus function

Range=
$$R^+ \cup |0| or[0,\infty)$$

Thus we have
$$\left|x\right| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Greatest Integer value funciton (GIV function)

If x is any real number then the greatest integer less than or equal to x is called GIV of x denote as [x]

ex:
$$[3.72] = 3$$
 $[-7] = -7$ $[-2.1] = -3$ $[0.214] = 0$ $[\sqrt{3}] = 1$ $[-10.001] = -11$ $[\pi] = 3$

Note: [x] is always an integer for any $x \in R$

A real function $f: R \to R$ by f(x) = [x] for every $x \in R$ is called GIV function

8

Here Domain = R, Range = Z

Fractional Part function

A real function $f:R \to R$ by $f(x) = \{x\} = x - [x]$ is called fractional part of x

Domain = R, Range =
$$[0,1)$$

Signum function

For any
$$x \in R$$
 signum of x is defined as $sig(x) = \begin{cases} \frac{|x|}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

OR
$$sig(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

$$Sig(100) = 1$$

$$Sig(0) = 0$$

$$Sig(2.3)$$

$$Sig(-7) = -1$$

$$Sig(\sqrt{3}) = 1$$

$$Sig(-\pi) = -1$$

The function $f:R\to R$ by $f\left(x\right)\!=\!Sig\left(x\right)$ is called signum function

 $Domain = R, Range = \{-1,0,1\}$

Reciprocal function

A function $f: R - \{0\} \to R$ by $f(x) = \frac{1}{x}$, $x \neq 0$ is called reciprocal function

 $\text{Domain} = R - \left\{0\right\}, Range = R - \left\{0\right\}$

Rational function

A function $f:R\to R$ by $f(x)=\frac{p(x)}{q(x)}$ where P(x) and q(x) are polynomials in x is called rational function

Domain of a function & Finding domain

It is the set of all values of x in which f(x) is defined

Important steps to find domain

- If a function is in the form $\frac{Nr}{Dr}$ then to be defined, $D_{r\neq 0}$ eg: $f(x) = \frac{1}{x}$; Domain $R \{0\}$
- If the function is in the form $\sqrt{\text{Expression}}$ the expression ≥ 0
- If the function is in the form $\frac{1}{\sqrt{\text{Expression}}}$ then expression >0

Examples

Find domain of (i) $f(x) = x^3 - 7$; Domain = R

(2)
$$f(x) = \frac{1}{x+2}$$

f(x) is defined only when $x + 2 \neq 0, x \neq -2$

$$Domain = R - \{-2\}$$

(3)
$$f(x) = \frac{x^2 + x + 1}{x^2 - 5x + 6}$$

f(x) is defined only when $x^2 - 5x + 6 \neq 0$

$$(x-2)(x-3) \neq 0$$

$$x \neq 2, x \neq 3$$

$$\therefore$$
 Domain = R - $\{2,3\}$

$$(4) \qquad f(x) = \sqrt{2-x}$$

f(x) is defined only when $2-x \ge 0$

$$2 \ge x; x \le 2$$

Domain = $(-\infty, 2]$

$$(5) \qquad f(x) = \frac{1}{\sqrt{x-5}}$$

f(x) is defined only when x-5>0; x>5

Domain = $(5, \infty)$

$$6) \qquad f(x) = \sqrt{\frac{x+1}{3-x}}$$

f(x) is defined only when $3-x \neq 0 \& x \neq 3$

$$\frac{x+1}{3-x} \ge 0$$

Real line method (Wavi curve method)

$$x \in [-1,3)$$

Do main = [-1,3)

7)
$$f(x) = \sqrt{(x-1)(2+x)}$$

f(x) is defined only when $(x-1)(2+x) \ge 0$

$$x \in (-\infty, -2] \cup [1, \infty)$$

 $Domain = (-\infty, -2] \cup [1, \infty)$

8)
$$f(x) = \sqrt{9 - x^2}$$

f(x) to be defined $9 - x^2 \ge 0$; $x^2 - 9 \le 0$

$$(x+3)(x-3) \le 0$$

Domain = $\begin{bmatrix} -3, 3 \end{bmatrix}$

9)
$$f(x) = \frac{1}{\sqrt{x^2 - 4}}$$

f(x) to be defined $x^2-4>0$

$$(x+2)(x-2) > 0$$

Domain =
$$(-\infty, -2) \cup (2, \infty)$$

Range of a function and method of finding Range

If y = f(x) is a function then the set of all values of f(x) or set of all values of y is called Range.

Methods for find the Range of a function

- 1) Put y = f(x)
- 2) Express x as a function of y
- 3) Find possible values of y(just like domain)
- 4) Eliminate the values of y by looking at the definition to write the exact range

Example

$$1) \qquad f(x) = x - 1$$

Put
$$y = x - 1$$

$$x = y + 1; y \in R$$

2)
$$f(x) = \frac{x-2}{3-x}$$
 Domain = R - {3}

$$y = \frac{x-2}{3-x}$$

$$3y - xy = x - 2$$
; $x + xy = 3y + 2$

$$x(1+y) = 3y+2; x = \frac{3y+2}{1+y}$$

x is defined only when $1+y \neq 0$

$$y \neq -1; y \in R - \left\{-1\right\}$$

Range =
$$R - \{-1\}$$

3)
$$f(x) = \frac{1}{\sqrt{x-5}}; \frac{1}{\sqrt{x-5}} = y$$

$$\frac{1}{x-5} = y^2 \Longrightarrow 1 = xy^2 - 5y^2$$

$$xy^2 = 1 + 5y^2 \Rightarrow x = \frac{1 + 5y^2}{y^2}$$

Result
$$x^{2} = 25 \Rightarrow x = \pm 5$$
But
$$x = \sqrt{25} = 5$$

 \therefore f(x) should be +ve

Range =
$$(0, \infty)$$

4)
$$f(x) = \sqrt{9 - x^2}$$

$$y = \sqrt{9 - x^2}$$
; $y^2 = 9 - x^2$

$$x^{2} = 9 - y^{2}; x = \sqrt{9 - y^{2}}; 9 - y^{2} \ge 0$$

 $(3 + y)(3 - y) \ge 0$

But
$$y = f(x) \ge 0$$
; : Range = [0,3]

5)
$$y = \sqrt{x^2 - 9}$$

 $y^2 = x^2 - 9$; $x^2 = y^2 + 9$
 $x = \sqrt{y^2 + 9}$; $\therefore y^2 + 9 \ge 0$
 $\therefore y \in \mathbb{R}$

But y > 0 Range = $[0, \infty)$

6)
$$f(x) = \frac{1}{\sqrt{9 - x^2}} \Rightarrow y^2 = \frac{1}{9 - x^2}$$

$$y = \frac{1}{\sqrt{9 - x^2}} \qquad 9 - x^2 = \frac{1}{y^2}$$

$$x^2 = 9 - \frac{1}{y^2} = \frac{9y^2 - 1}{y^2}$$

$$x = \sqrt{\frac{9y^2 - 1}{y^2}}; y \neq 0$$

$$\frac{9y^2 - 1}{y^2} \ge 0; \therefore 9y^2 - 1 \ge 0 \left[\because y^2 > 0\right]$$

$$(3y + 1)(3y - 1) \ge 0$$

$$y \in \left(-\infty, \frac{-1}{3}\right] \cup \left[\frac{1}{3}, \infty\right)$$

But
$$y > 0$$
: Range = $\left[\frac{1}{3}, \infty\right)$

7)
$$f(x) = \frac{3}{2 - x^2} \Rightarrow y = \frac{3}{2 - x^2}$$

$$2-x^2 = \frac{3}{y} \Rightarrow x^2 = 2 - \frac{3}{y} = \frac{2y-3}{y}$$

$$y \neq 0, \frac{2y - 3}{y} \ge 0$$

$$\therefore y \in (-\infty, 0) \cup \left(\frac{3}{2}, \infty\right)$$

$$f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}, x \in R$$

$$y = \frac{x^2 + x + 2}{x^2 + x + 1}$$

$$yx^2 + yx + y = x^2 + x + 2$$

$$(y-1)x^{2}+(y-1)x+(y-2)=0, x \in R$$

$$b^2 - 4ac \ge 0$$
 $a = y - 1, b = y - 1, c = y - 2$

$$(y-1)^2-4(y-1)(y-2) \ge 0$$

$$y^2 - 2y + 1 - 4y^2 + 12y - 8 \ge 0$$

$$3y^2 - 10y + 7 \le 0$$

$$3y^2 - 3y - 7y + 7 \le 0$$

$$3y(y-1)-7(y-1) \le 0 \Rightarrow (y-1)(3y-7) \le 0$$

$$y \in \left[1, \frac{7}{3}\right]$$

when
$$y = 1 \Rightarrow 1 = \frac{x^2 + x + 2}{x^2 + x + 1} \Rightarrow x^2 + x + 1 = x^2 + x + 2$$

$$1 = 2$$
, impossible; $\therefore y \neq 1$

$$\therefore \text{Range} = \left(1, \frac{7}{3}\right]$$

Algebra of functions

- 1) Addition If $f: R \to R \& g: R \to R$ be two function Then (f+g)(x) = f(x) + g(x)
- 2) Subtraction: (f-g)(x) = f(x) g(x)
- 3) Multiplication by scalar: (kf)(x) = k.f(x)
- 4) Multiplication of two functions: (f.g)(x) = f(x).g(x)

5) Division :
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0$$

example of
$$f(x) = x^2$$
, $g(x) = 2x + 1$, find (i)

(2)
$$(f-g)(x),(3)(f.g)(x)(4)(\frac{f}{g})(x)$$

H.W. NCERT EXERCISE 2.3 Solve miscellaneous

Graph & Graph Transformations

$$y = f(x + a) = (x + a)^2$$
 Shifting on –ve X-axis at a distance 'a'

Shifting on Y-axis below at a distance 'a'

Solution of Questions from study Material

Level I

- 1. D
- 2. B $R = \{(2,4),(4,3),(6,2),(8,1)\}$

$$\therefore R^{-1} = \{(4,2),(3,4),(2,6),(1,8)\}$$

3. D $\{(2,8),(3,27),(5,12,5),(7,343)\}$

Range =
$$\{8, 27, 125, 343\}$$

- 4. C $2^{(n^2)} = 2^9$
- 5. D $R = \{(2,2),(3,5),(4,10),(5,17),(6,26)\}$

Domain =
$$\{2,3,4,5,6\}$$

Range =
$$\{2,5,10,17,26\}$$

- 6. C $n(A \times B) = n(A).n(B)$
- 7. D $n\lceil (A \times B) \cap (B \times A) \rceil = \lceil n(A \cap B) \rceil^2 = 3^2 = 9$
- 8. A $A-B = \{a\}, (B \cap C) = \{c,d\}$

$$(A-B)\times(B\cap C)=\{(a,c),(a,d)\}$$

Level II

- 9. C
- 10. A
- 11. A $\{(11,10),(13,12)\}$
- 12. D $A = \{-2, -1, 0, 1, 2\}$

$$R = \{(-2,2), (-1,1), (0,0), (1,1), (2,2)\}$$

13. C
$$f(x) = 1 + x^4$$

$$f(3) = 1 + 3^n$$

Given
$$f(3) = 28 \Rightarrow 1 + 3^n = 28$$
; $3^n = 27 \Rightarrow n = 3$

$$\therefore f(x) = 1 + x^3$$

$$f(4) = 1 + 4^3 = 65$$

14. B
$$\therefore f(x) = 2(x-2)-(x+1)+x$$

$$=2x-4-x-1+x$$

$$=2x-5$$

$$x \ge 2; |x-2| = x-2; |x+1| = x+1$$

15. B
$$g(1) = 1 \Rightarrow g(1) = \alpha + \beta$$

$$g(2)=3$$
 $g(2)=2\alpha+\beta$

$$\therefore \alpha + \beta = 1 \rightarrow (1)$$

$$2\alpha + \beta = 3 \rightarrow (2)$$

$$(2)-(1) \Rightarrow \alpha = 1$$

$$(1) \Rightarrow 2 + \beta = 1; \beta = -1$$

16. D

Level III

17. D
$$A \times B \rightarrow (A \times B)$$

No of relations on $\, A \times B = 2^{n(A \times B).n(A \times B)} = 2 \,$

18. D
$$n(A) = P, n(B) = q$$

$$n(A \times B) = 12, p, q \in W$$

$$pq = 12$$

$$\Rightarrow$$
 p = 12, q = 1 or p = 1, q = 12 \Rightarrow p² + q² = 145

$$p = 2, q = 6 \text{ or } p = 6, q = 2 \Rightarrow p^2 + q^2 = 40$$

$$p = 3, q = 4 \text{ or } p = 6, q = 3 \Rightarrow p^2 + q^2 = 25$$

19. D
$$F(0) = 2, F(1) = 3$$

$$F(x+2) = 2F(x) - F(x+1), x \ge 0$$

$$x = 0 \Rightarrow F(2) = 2F(0) - F(1) = 4 - 3 = 1$$

$$x = 1 \Rightarrow F(3) = 2F(1) - F(2) = 6 - 1 = 5$$

$$x = 2 \Rightarrow F(4) = 2F(2) - F(3) = 2 - 5 = -3$$

$$x = 3 \Rightarrow F(5) = 2F(3) - F(4) = 10 - 3 = 13$$

20. D
$$(n(B))^{n(A)} = 3^4 = 81$$

21. B
$$n[(A \times B) \cap (B \times A)] = [n(A \cap B)]^2 = 99^2$$

$$\therefore n(A \times A) = 10^2$$

23. B
$$2^{100} - 10^{10}$$

24. B
$$10^{10}$$

Level IV

Generalising
$$f(n) = n f(1)$$

26. A
$$x^2 - 8x + 12 \neq 0$$

$$(x-2)(x-6) \neq 0$$

$$x \neq 2, 6$$

27. D
$$y = x^2 + 2x + 2$$

$$x^2 + 2x + (2 - y) = 0$$

$$x \in R \Rightarrow b^2 - 4ac \ge 0$$

$$4-4(2-y) \ge 0$$

$$4-8+4y \ge 0$$

$$4y \ge 4; y \ge 1 \Rightarrow y \in [1, \infty)$$

$$y \ge 1 \Longrightarrow y \in [1, \infty)$$

Range =
$$[1, \infty)$$

29. B Graph transformation
$$f(x) = |x-2|$$

31. C
$$R = (-\infty, \infty)$$

32. C
$$f(x) = a^{nx}$$
 $f(2) = a^{2n} = 9 \Rightarrow (a^n)^2 = 3^2 \Rightarrow a^n = 3$

$$\therefore$$
 f (x) = $(a^x)^n = 3^x$, \therefore f (5) = $3^5 = 243$

If
$$f(x).f(y) = f(x) + f(y)$$

then
$$f(x) = a^x$$

$$f(2) = 9 \Rightarrow a^2 = 9; a = 3$$

$$f(x)=3^x$$

$$f(5) = 3^5 = 243$$

33. A
$$f(x)$$
 is defined when $\log_{10} \left(\frac{5x - x^2}{4}\right) \ge 0$

$$\Rightarrow \frac{5x - x^2}{4} \ge 1$$

$$\Rightarrow x^2 - 5x + 4 \le 0$$

$$\Rightarrow (x - 1)(x - 4) \le 0$$

$$\Rightarrow x \in [1, 4]$$

34. D
$$f(x)$$
 is defined when $4-x^2 \neq 0$ & $x^3-x>0$

$$x \neq \pm 2 & x(x+1)(x-1)>0$$

$$x \in (-1,0) \cup (1,3)$$

$$\therefore \text{ Domain} = (-1,0) \cup (1,2) \cup (2,\infty)$$

35. 4
$$3f(x) + 2f\left(\frac{x+59}{x-1}\right) = 10x + 30$$
Put $x = 7$, $3f(7) + 2f(11) = 100 \rightarrow (1)$
Put $x = 11$ $2f(7) + 3f(11) = 140 \rightarrow (2)$

$$(1) \times 3 \Rightarrow 9f(7) + 6f(11) = 300$$

$$(2) \times 2 \Rightarrow 4f(7) + 6f(11) = 280$$

$$-ing 5f(7) = 20$$

$$\therefore f(7) = 4$$

36. 66
$$\left[\frac{2}{3} \right] = 0, \left[\frac{2}{3} + \frac{1}{99} \right] = 0, \left[\frac{2}{3} + \frac{2}{99} \right] = 0, \dots, \left[\frac{2}{3} + \frac{32}{99} \right] = 0$$

$$\left[\frac{2}{3} + \frac{33}{99} \right] = 1, \left[\frac{2}{3} + \frac{34}{99} \right] = 1, \dots, \left[\frac{2}{3} + \frac{38}{99} \right] = 1$$

$$\therefore \text{ Required value} = \frac{0 + 0 + \dots + 0}{33 \text{ times}} + \frac{1 + 1 + \dots + 1}{66 \text{ times}} = 66$$