

Матрично-векторное дифференцирование

Градиент

Пусть $f(x): \mathbb{R}^n \to \mathbb{R}$, тогда вектор, который содержит все первые частные производные:

$$\nabla f(x) = \frac{df}{dx} = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Градиент

Пусть $f(x): \mathbb{R}^n \to \mathbb{R}$, тогда вектор, который содержит все первые частные производные:

$$\nabla f(x) = \frac{df}{dx} = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

называется градиентом функции f(x). Этот вектор указывает направление наискорейшего возрастания. Таким образом, вектор $-\nabla f(x)$ указывает направление наискорейшего убывания функции в точке. Кроме того, вектор градиента всегда ортогонален линии уровня в точке.

i Example

Для функции $f(x,y) = x^2 + y^2$ градиент равен:

$$\nabla f(x,y) = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$$

Он vказывает направление наискорейшего возрастания функции.

Question

Как связана норма градиента крутизной функции?

Гессиан

Пусть $f(x): \mathbb{R}^n \to \mathbb{R}$, тогда матрица, содержащая все вторые частные производные:

$$f''(x) = \nabla^2 f(x) = \frac{\partial^2 f}{\partial x_i \partial x_j} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_i \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_i \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{pmatrix}$$

Гессиан

Пусть $f(x): \mathbb{R}^n \to \mathbb{R}$, тогда матрица, содержащая все вторые частные производные:

$$f''(x) = \nabla^2 f(x) = \frac{\partial^2 f}{\partial x_i \partial x_j} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{pmatrix} \qquad \text{Для фу}$$
 равен:

Гессиан может быть тензором: $(f(x):\mathbb{R}^n \to \mathbb{R}^m)$ Таким образом, это просто трехмерный тензор, каждый срез которого это гессиан соответствующей скалярной функции $(\nabla^2 f_1(x), \dots, \nabla^2 f_m(x))$.

i Example

Для функции $f(x,y) = x^2 + y^2$ гессиан

$$H_f(x,y) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

Эта матрица содержит информацию о кривизне функции в разных направлениях.

i Question

можно использовать гессиан определения выпуклости или вогнутости функции?

Теорема Шварца

Пусть $f:\mathbb{R}^n o\mathbb{R}$ - функция. Если смешанные частные производные $\frac{\partial^2 f}{\partial x_i \partial x_j}$ и $\frac{\partial^2 f}{\partial x_j \partial x_i}$ непрерывны на открытом множестве, содержащем точку a, то они равны в точке a. То есть,

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \frac{\partial^2 f}{\partial x_j \partial x_i}(a)$$

Теорема Шварца

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ - функция. Если смешанные частные производные $\frac{\partial^2 f}{\partial x_* \partial x_*}$ и $\frac{\partial^2 f}{\partial x_* \partial x_*}$ непрерывны на открытом множестве, содержащем точку a, то они равны в точке a. То есть,

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \frac{\partial^2 f}{\partial x_j \partial x_i}(a)$$

Согласно данной теореме, если смешанные частные производные непрерывны на открытом множестве, то гессиан симметричен. То есть.

$$\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_i} \quad \nabla^2 f(x) = (\nabla^2 f(x))^T$$

Эта симметричность упрощает вычисления и анализ, связанные с гессианом в различных приложениях, особенно в оптимизации.

і Контрпример Шварца

$$f(x,y) = \begin{cases} \frac{xy(x^2-y^2)}{x^2+y^2} & \text{ для } (x,\,y) \neq (0,\,0), \\ 0 & \text{ для } (x,y) = (0,0). \end{cases}$$

⊕ດ ø

Можно проверить, что $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$, котя смешанные частные производные и в каждой другой существуют. точке симметричность выполняется.

Якобиан

Обобщением понятия градиента на случай многомерной функции $f(x):\mathbb{R}^n \to \mathbb{R}^m$ является следующая матрица:

$$J_f = f'(x) = \frac{df}{dx^T} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_n} & \frac{\partial f_2}{\partial x_n} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

Она содержит информацию о скорости изменения функции по отношению к ее входу.

Question

Можно ли связать эти три определения выше (градиент, якобиан, и гессиан) с помощью одного утверждения?

i Example

Для функции

$$f(x,y) = \begin{bmatrix} x+y\\ x-y \end{bmatrix},$$

Якобиан равен:

$$J_f(x,y) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

i Question

Как матрица Якоби связана с градиентом для скалярных функций?

Итог

$$f(x):X\to Y;\qquad \frac{\partial f(x)}{\partial x}\in G$$

X	Υ	G	Name
\mathbb{R}	\mathbb{R}	\mathbb{R}	f'(x) (производная)
\mathbb{R}^n	\mathbb{R}	\mathbb{R}^n	$rac{\partial f}{\partial x_i}$ (градиент)
\mathbb{R}^n	\mathbb{R}^m	$\mathbb{R}^{n imes m}$	$rac{\partial f_i}{\partial x_i}$ (якобиан)
$\mathbb{R}^{m imes n}$	\mathbb{R}	$\mathbb{R}^{m imes n}$	$rac{\partial f}{\partial x_{ij}}$

Аппроксимация Тейлора первого порядка, также известная как линейное приближение, строится вблизи некоторой точки x_0 . Если $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируемая функция, то ее аппроксимация первого порядка задается следующим образом:

$$f_{x_0}^I(x) = f(x_0) + \nabla f(x_0)^T (x - x_0)$$

где:

• $f(x_0)$ - значение функции в точке x_0 .

Аппроксимация Тейлора первого порядка, также известная как линейное приближение, строится вблизи некоторой точки x_0 . Если $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируемая функция, то ее аппроксимация первого порядка задается следующим образом:

$$f_{x_0}^I(x) = f(x_0) + \nabla f(x_0)^T (x - x_0)$$

где:

- $f(x_0)$ значение функции в точке x_0 .
- $\nabla f(x_0)$ градиент функции в точке x_0 .

Аппроксимация Тейлора первого порядка, также известная как линейное приближение, строится вблизи некоторой точки x_0 . Если $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируемая функция, то ее аппроксимация первого порядка задается следующим образом:

$$f_{x_0}^I(x) = f(x_0) + \nabla f(x_0)^T (x - x_0)$$

где:

- $f(x_0)$ значение функции в точке x_0 .
- $\nabla f(x_0)$ градиент функции в точке x_0 .

Аппроксимация Тейлора первого порядка, также известная как линейное приближение, строится вблизи некоторой точки x_0 . Если $f:\mathbb{R}^n \to \mathbb{R}$ дифференцируемая функция, то ее аппроксимация первого порядка задается следующим образом:

$$f_{x_0}^I(x) = f(x_0) + \nabla f(x_0)^T (x - x_0)$$

где:

- $f(x_0)$ значение функции в точке x_0 .
- $\nabla f(x_0)$ градиент функции в точке x_0 .

Часто для упрощения теоретического анализа в некоторых методах заменяют Рис. 1: Аппроксимация Тейлора функцию вблизи некоторой точки на её аппроксимацию

первого порядка в окрестности точки x_0

Аппроксимация Тейлора второго порядка, также известная как квадратичное приближение, использует информацию о кривизне функции. Для дважды дифференцируемой функции $f:\mathbb{R}^n \to \mathbb{R}$, ее аппроксимация второго порядка, строящаяся вблизи некоторой точки x_0 , задается следующим образом:

$$f_{x_0}^{II}(x) = f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T \nabla^2 f(x_0) (x - x_0)$$

Где $\nabla^2 f(x_0)$ - гессиан функции f в точке x_0 .

Аппроксимация Тейлора второго порядка, также известная как квадратичное приближение, использует информацию о кривизне функции. Для дважды дифференцируемой функции $f:\mathbb{R}^n \to \mathbb{R}$, ее аппроксимация второго порядка, строящаяся вблизи некоторой точки x_0 , задается следующим образом:

$$f_{x_0}^{II}(x) = f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T \nabla^2 f(x_0) (x - x_0)$$

Где $\nabla^2 f(x_0)$ - гессиан функции f в точке x_0 .

Когда линейного приближения функции не достаточно, можно рассмотреть

замену f(x) на $f_{x_0}^{II}(x)$ в окрестности точки x_0 . В общем, приближения Тейлора дают нам способ локально аппроксимировать функции.

Аппроксимация первого порядка определяется градиентом функции в точке, т.е. нормалью к касательной гиперплоскости. А аппроксимация второго порядка представляет из себя параболу. Эти приближения особенно полезны в оптимизации и численных методах, потому что они предоставляют простой способ работы со сложными функциями.

Рис. 2: Аппроксимация Тейлора второго порядка в окрестности точки x_0

Дифференциалы

i Theorem

Пусть $x \in S$ - внутренняя точка множества S, и пусть D: U o V - линейный оператор. Мы говорим, что функция f дифференцируема в точке x с производной D, если для всех достаточно малых $h \in U$ выполняется следующее разложение:

$$f(x+h) = f(x) + D[h] + o(||h||)$$

Если для любого линейного оператора D:U o V функция f не дифференцируема в точке x с производной D, то мы говорим, что f не дифференцируема в точке x.

Дифференциалы

После получения дифференциальной записи df мы можем получить градиент, используя следующую формулу:

$$df(x) = \langle \nabla f(x), dx \rangle$$

Дифференциалы

После получения дифференциальной записи df мы можем получить градиент, используя следующую формулу:

$$df(x) = \langle \nabla f(x), dx \rangle$$

Далее, если у нас есть дифференциал в такой форме и мы хотим вычислить вторую производную матричной/векторной функции, мы рассматриваем "старый" dx как константу dx_1 , затем вычисляем $d(df) = d^2 f(x)$

$$d^2f(x) = \langle \nabla^2 f(x) dx_1, dx \rangle = \langle H_f(x) dx_1, dx \rangle$$

Пусть A и B - постоянные матрицы, а X и Y - переменные (или матричные функции).

• dA = 0

- dA = 0
- $d(\alpha X) = \alpha(dX)$

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- d(X+Y) = dX + dY

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- d(X+Y) = dX + dY• $d(X^T) = (dX)^T$

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- d(X+Y) = dX + dY
- $d(X^T) = (dX)^T$
- d(XY) = (dX)Y + X(dY)

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- d(X+Y) = dX + dY
- $d(X^T) = (dX)^T$
- d(XY) = (dX)Y + X(dY)
- $d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$

Пусть A и B - постоянные матрицы, а X и Y - переменные (или матричные функции).

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- d(X+Y) = dX + dY
- $d(X^T) = (dX)^T$
- d(XY) = (dX)Y + X(dY)
- $d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$

• $d\left(\frac{X}{\phi}\right) = \frac{\phi dX - (d\phi)X}{\phi^2}$

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- d(X+Y)=dX+dY
- $d(X^T) = (dX)^T$
- d(XY) = (dX)Y + X(dY)
- $d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$

- $d\left(\frac{X}{\phi}\right) = \frac{\phi dX (d\phi)X}{\phi^2}$
- $d(\det X) = \det X \langle X^{-T}, dX \rangle$

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- d(X+Y) = dX + dY
- $d(X^T) = (dX)^T$
- d(XY) = (dX)Y + X(dY)
- $d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$

- $d\left(\frac{X}{\phi}\right) = \frac{\phi dX (d\phi)X}{\phi^2}$
- $d(\det X) = \det X \langle X^{-T}, dX \rangle$
- $d(\operatorname{tr} X) = \langle I, dX \rangle$

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- d(X+Y) = dX + dY
- $d(X^T) = (dX)^T$
- d(XY) = (dX)Y + X(dY)
- $d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$

- $d\left(\frac{X}{\phi}\right) = \frac{\phi dX (d\phi)X}{\phi^2}$
- $d(\det X) = \det X \langle X^{-T}, dX \rangle$
- $d(\operatorname{tr} X) = \langle I, dX \rangle$
- $df(g(x)) = \frac{df}{dg} \cdot dg(x)$

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- d(X+Y) = dX + dY
- $d(X^T) = (dX)^T$
- d(XY) = (dX)Y + X(dY)
- $d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$

- $d\left(\frac{X}{\phi}\right) = \frac{\phi dX (d\phi)X}{\phi^2}$
- $d(\det X) = \det X\langle X^{-T}, dX\rangle$
- $d(\operatorname{tr} X) = \langle I, dX \rangle$
- $df(g(x)) = \frac{df}{da} \cdot dg(x)$
- $H = (J(\nabla f))^T$

- dA = 0
- $d(\alpha X) = \alpha(dX)$
- d(AXB) = A(dX)B
- \bullet d(X+Y)=dX+dY
- $d(X^T) = (dX)^T$
- d(XY) = (dX)Y + X(dY)
- $d\langle X, Y \rangle = \langle dX, Y \rangle + \langle X, dY \rangle$

- $d\left(\frac{X}{\phi}\right) = \frac{\phi dX (d\phi)X}{\phi^2}$
- $d(\det X) = \det X \langle X^{-T}, dX \rangle$
- $d(\operatorname{tr} X) = \langle I, dX \rangle$
- $df(g(x)) = \frac{df}{da} \cdot dg(x)$
- $H = (J(\nabla f))^T$
- $d(X^{-1}) = -X^{-1}(dX)X^{-1}$

i Example

Найти $df, \nabla f(x)$, если $f(x) = \langle x, Ax \rangle - b^T x + c$.

i Example

Найти df, $\nabla f(x)$, если $f(x) = \ln \langle x, Ax \rangle$.

i Example

Найти df, $\nabla f(x)$, если $f(x) = \ln \langle x, Ax \rangle$.

1. Заметим, что A должна быть положительно определенной, потому что $\langle x,Ax \rangle$ аргумент логарифма и для любого x формула должна быть положительной. Таким образом, $A \in \mathbb{S}^n_{++}$ Давайте сначала найдем дифференциал:

$$df = d\left(\ln\langle x, Ax \rangle\right) = \frac{d\left(\langle x, Ax \rangle\right)}{\langle x, Ax \rangle} = \frac{\langle dx, Ax \rangle + \langle x, d(Ax) \rangle}{\langle x, Ax \rangle} =$$

$$= \frac{\langle Ax, dx \rangle + \langle x, Adx \rangle}{\langle x, Ax \rangle} = \frac{\langle Ax, dx \rangle + \langle A^Tx, dx \rangle}{\langle x, Ax \rangle} = \frac{\langle (A + A^T)x, dx \rangle}{\langle x, Ax \rangle}$$

i Example

Найти df, $\nabla f(x)$, если $f(x) = \ln \langle x, Ax \rangle$.

1. Заметим, что A должна быть положительно определенной, потому что $\langle x,Ax \rangle$ аргумент логарифма и для любого x формула должна быть положительной. Таким образом, $A \in \mathbb{S}^n_{++}$ Давайте сначала найдем дифференциал:

$$df = d\left(\ln\langle x, Ax \rangle\right) = \frac{d\left(\langle x, Ax \rangle\right)}{\langle x, Ax \rangle} = \frac{\langle dx, Ax \rangle + \langle x, d(Ax) \rangle}{\langle x, Ax \rangle} =$$

$$= \frac{\langle Ax, dx \rangle + \langle x, Adx \rangle}{\langle x, Ax \rangle} = \frac{\langle Ax, dx \rangle + \langle A^Tx, dx \rangle}{\langle x, Ax \rangle} = \frac{\langle (A + A^T)x, dx \rangle}{\langle x, Ax \rangle}$$

2. Наша основная цель - получить форму $df = \langle \cdot, dx \rangle$

$$df = \left\langle \frac{2Ax}{\langle x, Ax \rangle}, dx \right\rangle$$

Таким образом, градиент равен $\nabla f(x) = \frac{2Ax}{\langle x, Ax \rangle}$

Матричное дифференцирование. Пример 3

i Example

Найти $df, \nabla f(X)$, если $f(X) = \langle S, X \rangle - \log \det X$.

Линейный поиск

Предположим, у нас есть задача минимизации функции $f(x):\mathbb{R} o \mathbb{R}$ скалярной переменной:

$$f(x) \to \min_{x \in \mathbb{R}}$$

⇔ റ (

Предположим, у нас есть задача минимизации функции $f(x):\mathbb{R} o \mathbb{R}$ скалярной переменной:

$$f(x) \to \min_{x \in \mathbb{R}}$$

Иногда мы рассматриваем похожую задачу поиска минимума функции на отрезке [a,b]:

$$f(x) \to \min_{x \in [a,b]}$$

Предположим, у нас есть задача минимизации функции $f(x): \mathbb{R} \to \mathbb{R}$ скалярной переменной:

$$f(x) \to \min_{x \in \mathbb{R}}$$

Иногда мы рассматриваем похожую задачу поиска минимума функции на отрезке [a,b]:

$$f(x) \to \min_{x \in [a,b]}$$

i Example

Типичным примером задачи линейного поиска является выбор подходящего шага для алгоритма градиентного спуска:

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

$$\alpha = \operatorname{argmin} \ f(x_{k+1})$$

Предположим, у нас есть задача минимизации функции $f(x): \mathbb{R} \to \mathbb{R}$ скалярной переменной:

$$f(x) \to \min_{x \in \mathbb{R}}$$

Иногда мы рассматриваем похожую задачу поиска минимума функции на отрезке [a,b]:

$$f(x) \to \min_{x \in [a,b]}$$

i Example

 $f \to \min_{x,y,z} \bigoplus_{y,y}$ Линейный поиск

Типичным примером задачи линейного поиска является выбор подходящего шага для алгоритма градиентного спуска:

$$\begin{aligned} x_{k+1} &= x_k - \alpha \nabla f(x_k) \\ \alpha &= \operatorname{argmin} \, f(x_{k+1}) \end{aligned}$$

Линейный поиск является фундаментальной задачей оптимизации, использующийся для решения сложных задач. Для упрощения предположим, что f(x) унимодальна, то есть имеет единственный пик или впадину.

Унимодальная функция

i Definition

Функция f(x) называется **унимодальной** на отрезке [a,b], если существует $x_* \in [a,b]$, что $f(x_1) > f(x_2) \quad \forall a \leq x_1 < x_2 < x_*$ и $f(x_1) < f(x_2) \quad \forall x_* < x_1 < x_2 \leq b$

Унимодальная функция

i Definition

Функция f(x) называется **унимодальной** на отрезке [a,b], если существует $x_* \in [a,b]$, что $f(x_1) > f(x_2) \quad \forall a \leq x_1 < x_2 < x_*$ и $f(x_1) < f(x_2) \quad \forall x_* < x_1 < x_2 \leq b$

Рис. 3: Примеры унимодальных функций

Пусть f(x) является унимодальной функцией на отрезке [a,b]. Тогда если $x_1 < x_2 \in [a,b]$, то:

• if $f(x_1) \le f(x_2) \to x_* \in [a, x_2]$

Пусть f(x) является унимодальной функцией на отрезке [a,b]. Тогда если $x_1 < x_2 \in [a,b]$, то:

- if $f(x_1) \le f(x_2) \to x_* \in [a, x_2]$
- if $f(x_1) \ge f(x_2) \to x_* \in [x_1, b]$

Пусть f(x) является унимодальной функцией на отрезке [a,b]. Тогда если $x_1 < x_2 \in [a,b]$, то:

- if $f(x_1) \le f(x_2) \to x_* \in [a, x_2]$
- if $f(x_1) \ge f(x_2) \to x_* \in [x_1, b]$

Пусть f(x) является унимодальной функцией на отрезке [a,b]. Тогда если $x_1 < x_2 \in [a,b]$, то:

- if $f(x_1) < f(x_2) \to x_* \in [a, x_2]$
- if $f(x_1) > f(x_2) \to x_1 \in [x_1, b]$

Доказательство Докажем первое утверждение. Предположим, что $f(x_1) < f(x_2)$, но $x^* > x_2$. Тогда, поскольку $x_1 < x_2 < x^*$, из определения унимодальности функции f(x) следует, что должно выполняться неравенство $f(x_1) > f(x_2)$. Мы получили противоречие.

Пусть f(x) является унимодальной функцией на отрезке [a,b]. Тогда если $x_1 < x_2 \in [a,b]$, то:

- $\bullet \text{ if } f(x_1) \leq f(x_2) \to x_* \in [a, x_2]$
- $\bullet \ \text{ if } f(x_1) \geq f(x_2) \rightarrow x_* \in [x_1,b]$

Доказательство Докажем первое утверждение. Предположим, что $f(x_1) \leq f(x_2)$, но $x^* > x_2$. Тогда, поскольку $x_1 < x_2 < x^*$, из определения унимодальности функции f(x) следует, что должно выполняться неравенство $f(x_1) > f(x_2)$. Мы получили противоречие.

Пусть f(x) является унимодальной функцией на отрезке [a,b]. Тогда если $x_1 < x_2 \in [a,b]$, то:

- $\bullet \ \text{ if } f(x_1) \leq f(x_2) \rightarrow x_* \in [a,x_2]$
- $\bullet \ \text{ if } f(x_1) \geq f(x_2) \rightarrow x_* \in [x_1,b]$

Доказательство Докажем первое утверждение. Предположим, что $f(x_1) \leq f(x_2)$, но $x^* > x_2$. Тогда, поскольку $x_1 < x_2 < x^*$, из определения унимодальности функции f(x) следует, что должно выполняться неравенство $f(x_1) > f(x_2)$. Мы получили противоречие.

Пусть f(x) является унимодальной функцией на отрезке [a,b]. Тогда если $x_1 < x_2 \in [a,b]$, то:

- $\bullet \text{ if } f(x_1) \leq f(x_2) \rightarrow x_* \in [a, x_2]$
- if $f(x_1) \ge f(x_2) \to x_* \in [x_1, b]$

Доказательство Докажем первое утверждение. Предположим, что $f(x_1) \leq f(x_2)$, но $x^* > x_2$. Тогда, поскольку $x_1 < x_2 < x^*$, из определения унимодальности функции f(x) следует, что должно выполняться неравенство $f(x_1) > f(x_2)$. Мы получили противоречие.

Мы хотим решить следующую задачу:

$$f(x) \to \min_{x \in [a,b]}$$

Делим отрезок на две равные части и выбираем, основываясь на ключевом свойстве, описанном выше, ту, которая содержит решение задачи. Наша цель после одной итерации метода - локализовать решение в отрезке в два раза меньшей длины.

Рис. 4: Метод дихотомии для унимодальной функции

⊕ ი დ

Мы измеряем значение функции в середине отрезка

Рис. 5: Dichotomy method for unimodal function

⊕ ∩

Чтобы применить ключевое свойство, мы выполняем еще одно измерение.

Рис. 6: Метод дихотомии для унимодальной функции

Выбираем целевой отрезок. В этом случае нас все устраивает, потому что уже разделили решение на две равные части. Но это не всегда так.

Рис. 7: Метод дихотомии для унимодальной функции

⊕ ი დ

Рассмотрим другую унимодальную функцию.

Рис. 8: Метод дихотомии для унимодальной функции

Измеряем значение функции в середине отрезка.

Рис. 9: Метод дихотомии для унимодальной функции

⊕ റ **ഉ**

Делаем еще одно измерение.

Рис. 10: Метод дихотомии для унимодальной функции

⇔റെ ഉ

Выбираем целевой отрезок. Мы можем видеть, что полученный отрезок не является половиной исходного. Он равен $\frac{3}{4}(b-a)$. Чтобы исправить это, нам нужен еще один шаг алгоритма.

Рис. 11: Метод дихотомии для унимодальной функции

⊕ ი 0

После еще одного дополнительного измерения мы точно получим $\frac{2}{3}\frac{3}{4}(b-a)=\frac{1}{2}(b-a)$

Рис. 12: Метод дихотомии для унимодальной функции

⊕ ი

В итоге, каждая последующая итерация будет требовать не более двух измерений значений функции.

Рис. 13: Метод дихотомии для унимодальной функции

⊕ ი

Метод дихотомии. Алгоритм

```
def binary_search(f, a, b, epsilon):
   c = (a + b) / 2
      while abs(b - a) > epsilon:
         y = (a + c) / 2.0
         if f(y) \ll f(c):
           b = c
            C = \Lambda
         else:
            z = (b + c) / 2.0
         if f(c) \ll f(z):
            a = y
            b = z
         else:
            a = c
            c = z
      return c
```

Длина отрезка на k-й итерации:

$$\Delta_k = b_k - a_k = \frac{1}{2^k}(b-a)$$

Длина отрезка на k-й итерации:

$$\Delta_k = b_k - a_k = \frac{1}{2^k}(b - a)$$

Для унимодальных функций это верно, если мы выбираем середину отрезка в качестве выхода итерации x_k :

$$|x_k - x_*| \leq \frac{\Delta_k}{2} \leq \frac{1}{2^{k+1}} (b-a) \leq (0.5)^k \cdot \frac{b-a}{2}$$

Длина отрезка на k-й итерации:

$$\Delta_k = b_k - a_k = \frac{1}{2^k}(b - a)$$

Для унимодальных функций это верно, если мы выбираем середину отрезка в качестве выхода итерации x_{L} :

$$|x_k - x_*| \le \frac{\Delta_k}{2} \le \frac{1}{2^{k+1}} (b - a) \le (0.5)^k \cdot \frac{b - a}{2}$$

Заметим, что на каждой итерации мы спрашиваем оракул не более двух раз, поэтому количество вызовов функции равно $N = 2 \cdot k$, что означает:

$$|x_k - x_*| \le (0.5)^{\frac{N}{2}} \cdot \frac{b-a}{2} \le (0.707)^N \frac{b-a}{2}$$

Длина отрезка на k-й итерации:

$$\Delta_k = b_k - a_k = \frac{1}{2^k}(b - a)$$

Для унимодальных функций это верно, если мы выбираем середину отрезка в качестве выхода итерации x_k :

$$|x_k - x_*| \le \frac{\Delta_k}{2} \le \frac{1}{2^{k+1}} (b-a) \le (0.5)^k \cdot \frac{b-a}{2}$$

Заметим, что на каждой итерации мы спрашиваем оракул не более двух раз, поэтому количество вызовов функции равно $N=2\cdot k$, что означает:

$$|x_k - x_*| \le (0.5)^{\frac{N}{2}} \cdot \frac{b-a}{2} \le (0.707)^N \frac{b-a}{2}$$

Помечая правую часть последнего неравенства за ε , мы получаем количество итераций метода, необходимое для достижения точности ε :

$$K = \left\lceil \log_2 \frac{b - a}{\varepsilon} - 1 \right\rceil$$

Метод золотого сечения

Идея очень похожа на метод дихотомии. На отрезке есть две точки - левая и правая точки золотого сечения и интуитивно понятно, что на следующей итерации одна из точек останется точкой золотого сечения.

Рис. 14: Идея, позволяющая уменьшить количество вызовов функции

Метод золотого сечения. Алгоритм

```
def golden_search(f, a, b, epsilon):
   tau = (sqrt(5) + 1) / 2
   y = a + (b - a) / tau**2
   z = a + (b - a) / tau
   while b - a > epsilon:
      if f(y) \leq f(z):
         b = z
         z = y
         y = a + (b - a) / tau**2
      else:
         a = v
         v = z
         z = a + (b - a) / tau
   return (a + b) / 2
```

Метод золотого сечения. Оценка

$$|x_k - x_*| \le \frac{b_k - a_k}{2} = \left(\frac{1}{\tau}\right)^N \frac{b - a}{2} \approx 0.618^k \frac{b - a}{2}$$

где
$$au = rac{\sqrt{5}+1}{2}$$
 .

• Знаменатель геометрической прогрессии для метода золотого сечения больше, чем для метода дихотомии: 0.618 больше, чем 0.5.

Метод золотого сечения. Оценка

$$|x_k - x_*| \le \frac{b_k - a_k}{2} = \left(\frac{1}{\tau}\right)^N \frac{b - a}{2} \approx 0.618^k \frac{b - a}{2}$$

где
$$au = rac{\sqrt{5}+1}{2}$$
 .

- Знаменатель геометрической прогрессии для метода золотого сечения больше, чем для метода дихотомии: 0.618 больше, чем 0.5.
- Количество вызовов функции меньше для метода золотого сечения, чем для метода дихотомии: 0.707 больше (значит медленнее), чем $0.618.\;$ Для каждой итерации метода дихотомии (кроме первой), функция вызывается не более двух раз, в то время как для метода золотого сечения, она вызывается не более одного раза за итерацию.

Метод параболической интерполяции

Три точки, не лежащие на одной прямой, однозначно определяют параболу, проходящую через них. Идея метода — аппроксимировать функцию такой параболой и в качестве следующего приближения взять точку её минимума. Предположим, у нас есть 3 точки $x_1 < x_2 < x_3$ такие, что отрезок $[x_1, x_3]$ содержит минимум функции f(x). Тогда мы должны решить следующую систему уравнений:

Метод параболической интерполяции

Три точки, не лежащие на одной прямой, однозначно определяют параболу, проходящую через них. Идея метода — аппроксимировать функцию такой параболой и в качестве следующего приближения взять точку её минимума. Предположим, у нас есть 3 точки $x_1 < x_2 < x_3$ такие, что отрезок $[x_1, x_3]$ содержит минимум функции f(x). Тогда мы должны решить следующую систему уравнений:

$$ax_i^2 + bx_i + c = f_i = f(x_i), i = 1, 2, 3$$

Заметим, что эта система линейна, мы должны решить ее относительно a,b,c. Минимум этой параболы вычисляется по формуле:

Метод параболической интерполяции

Три точки, не лежащие на одной прямой, однозначно определяют параболу, проходящую через них. Идея метода — аппроксимировать функцию такой параболой и в качестве следующего приближения взять точку её минимума. Предположим, у нас есть 3 точки $x_1 < x_2 < x_3$ такие, что отрезок $[x_1, x_3]$ содержит минимум функции f(x). Тогда мы должны решить следующую систему уравнений:

$$ax_i^2 + bx_i + c = f_i = f(x_i), i = 1, 2, 3$$

Заметим, что эта система линейна, мы должны решить ее относительно a,b,c. Минимум этой параболы вычисляется по формуле:

$$u = -\frac{b}{2a} = x_2 - \frac{(x_2 - x_1)^2 (f_2 - f_3) - (x_2 - x_3)^2 (f_2 - f_1)}{2 \left[(x_2 - x_1)(f_2 - f_3) - (x_2 - x_3)(f_2 - f_1) \right]}$$

Заметим, что если $f_2 < f_1, f_2 < f_3$, то u будет лежать в $[x_1, x_3]$

Метод параболической интерполяции. Алгоритм 1

```
def parabola_search(f, x1, x2, x3, epsilon):
  f1, f2, f3 = f(x1), f(x2), f(x3)
  while x3 - x1 > epsilon:
     u = x2 - ((x2 - x1)**2*(f2 - f3) - (x2 - x3)**2*(f2 - f1))/(2*((x2 - x1)*(f2 - f3) - (x2 - x3)*(f2 - f1)))
     fu = f(u)
     if x2 <= 11:
        if f2 <= fu:
           x1, x2, x3 = x1, x2, u
           f1, f2, f3 = f1, f2, fu
        else:
           x1, x2, x3 = x2, u, x3
           f1. f2. f3 = f2. fu. f3
     else:
        if fu <= f2:
           x1. x2. x3 = x1. u. x2
           f1. f2. f3 = f1. fu. f2
        else:
           x1. x2. x3 = u. x2. x3
           f1. f2, f3 = fu, f2, f3
  return (x1 + x3)/2
```

 $^{^{1}}$ Скорость сходимости этого метода суперлинейна, но локальна, что означает, что мы можем получить выгоду от использования этого метода только вблизи некоторой окрестности оптимума. Здесь доказательство суперлинейной сходимости порядка 1.32.

Неточный линейный поиск

Нам не всегда нужно точно решать задачу минимизации. Иногда, достаточно найти приближенное решение. Такое часто встречается в задаче выбора шага метода оптимизации

$$\begin{aligned} x_{k+1} &= x_k - \alpha \nabla f(x_k) \\ \alpha &= \operatorname{argmin} \, f(x_{k+1}) \end{aligned}$$

Неточный линейный поиск

Нам не всегда нужно точно решать задачу минимизации. Иногда, достаточно найти приближенное решение. Такое часто встречается в задаче выбора шага метода оптимизации

$$\begin{aligned} x_{k+1} &= x_k - \alpha \nabla f(x_k) \\ \alpha &= \operatorname{argmin} \ f(x_{k+1}) \end{aligned}$$

Рассмотрим скалярную функцию $\phi(\alpha)$ в точке x_k :

$$\phi(\alpha) = f(x_k - \alpha \nabla f(x_k)), \alpha \geq 0$$

Неточный линейный поиск

Нам не всегда нужно точно решать задачу минимизации. Иногда, достаточно найти приближенное решение. Такое часто встречается в задаче выбора шага метода оптимизации

$$\begin{aligned} x_{k+1} &= x_k - \alpha \nabla f(x_k) \\ \alpha &= \operatorname{argmin} \ f(x_{k+1}) \end{aligned}$$

Рассмотрим скалярную функцию $\phi(\alpha)$ в точке x_k :

$$\phi(\alpha) = f(x_k - \alpha \nabla f(x_k)), \alpha \geq 0$$

Первое приближение $\phi(\alpha)$ в окрестности $\alpha=0$ равно:

$$\phi(\alpha) \approx f(x_k) - \alpha \nabla f(x_k)^T \nabla f(x_k)$$

Рис. 15: Иллюстрация аппроксимации Тейлора $\phi_0^I(\alpha)$

Неточный линейный поиск. Условие достаточного убывания

Условие неточного линейного поиска, известное как условие Армихо, утверждает, что α должно обеспечить достаточное убывание функции f, удовлетворяющее:

$$f(x_k - \alpha \nabla f(x_k)) \leq f(x_k) - c_1 \cdot \alpha \nabla f(x_k)^T \nabla f(x_k)$$

Неточный линейный поиск. Условие достаточного убывания

Условие неточного линейного поиска, известное как условие Армихо, утверждает, что α должно обеспечить достаточное убывание функции f, удовлетворяющее:

$$f(x_k - \alpha \nabla f(x_k)) \leq f(x_k) - c_1 \cdot \alpha \nabla f(x_k)^T \nabla f(x_k)$$

для некоторой постоянной $c_1 \in (0,1)$. Заметим, что установка $c_1 = 1$ соответствует первому приближению Тейлора $\phi(\alpha)$. Однако это условие может принимать очень малые значения α , потенциально замедляя процесс решения. Обычно на практике используется $c_1 \approx 10^{-4}$.

Неточный линейный поиск. Условие достаточного убывания

Условие неточного линейного поиска, известное как условие Армихо, утверждает, что α должно обеспечить достаточное убывание функции f, удовлетворяющее:

$$f(x_k - \alpha \nabla f(x_k)) \leq f(x_k) - c_1 \cdot \alpha \nabla f(x_k)^T \nabla f(x_k)$$

установка $c_1=1$ соответствует первому приближению Тейлора $\phi(\alpha)$. Однако это условие может принимать очень малые значения α , потенциально замедляя процесс решения. Обычно на практике используется $c_1 \approx 10^{-4}$.

для некоторой постоянной $c_1 \in (0,1)$. Заметим, что

i Example

Линейный поиск

Если f(x) представляет собой функцию стоимости в задаче оптимизации, важен выбор подходящего значения c_1 . Например, при обучении моделей ML неправильное значение c_1 может привести к очень медленной сходимости или пропуску минимума.

Рис. 16: Иллюстрация условия достаточного убывания с коэффициентом \boldsymbol{c}_1

Неточный линейный поиск. Условия Гольдштейна

Рассмотрим две линейные скалярные функции $\phi_1(\alpha)$ и $\phi_2(\alpha)$:

$$\phi_1(\alpha) = f(x_k) - c_1 \alpha \|\nabla f(x_k)\|^2$$

$$\phi_2(\alpha) = f(x_k) - c_2 \alpha \|\nabla f(x_k)\|^2$$

Неточный линейный поиск. Условия Гольдштейна

Рассмотрим две линейные скалярные функции $\phi_1(\alpha)$ и $\phi_2(\alpha)$:

$$\phi_1(\alpha) = f(x_k) - c_1 \alpha \|\nabla f(x_k)\|^2$$

$$\phi_2(\alpha) = f(x_k) - c_2 \alpha \|\nabla f(x_k)\|^2$$

Условия Гольдштейна-Армихо находят функцию $\phi(\alpha)$ между $\phi_1(\alpha)$ и $\phi_2(\alpha)$. Обычно $c_1 = \rho$ и $c_2 = 1 - \rho$, с $\rho \in (0, 0.5)$.

Рис. 17: Иллюстрация условий Гольдштейна

Неточный линейный поиск. Условие ограничения на кривизну

Чтобы избежать слишком коротких шагов, мы вводим второй критерий:

$$-\nabla f(x_k - \alpha \nabla f(x_k))^T \nabla f(x_k) \geq c_2 \nabla f(x_k)^T (-\nabla f(x_k))$$

Неточный линейный поиск. Условие ограничения на кривизну

Чтобы избежать слишком коротких шагов, мы вводим второй критерий:

$$-\nabla f(x_k - \alpha \nabla f(x_k))^T \nabla f(x_k) \geq c_2 \nabla f(x_k)^T (-\nabla f(x_k))$$

для некоторого $c_2 \in (c_1,1).$ Здесь c_1 из условия Армихо.

Левая часть является производной $\nabla_{\alpha}\phi(\alpha)$, гарантирующей, что наклон $\phi(\alpha)$ в целевой точке не менее чем в c_2 раз больше начального наклона $\nabla_{\alpha}\phi(\alpha)(0)$.

Обычно для методов Ньютона и квазиньютоновских методов используется $c_2 \approx 0.9$. В объединении условие достаточного убывания и ограничение на кривизну образуют условия Вульфа.

Рис. 18: Иллюстрация условия ограничения на кривизну

Неточный линейный поиск. Условия Вульфа

$$-\nabla f(x_k - \alpha \nabla f(x_k))^T \nabla f(x_k) \geq c_2 \nabla f(x_k)^T (-\nabla f(x_k))$$

Вместе, условие достаточного убывания и ограничение на кривизну образуют условия Вульфа.

i Theorem

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ непрерывно дифференцируема, и пусть $\phi(\alpha) = f(x_k - \alpha \nabla f(x_k))$. Предположим, что $\nabla f(x_k)^T p_k < 0$, где $p_k = -\nabla f(x_k)$, делая p_k направлением спуска. Также предположим, что f ограничена снизу вдоль луча $\{x_k + \alpha p_k \mid \alpha > 0\}$. Мы хотим показать, что для $0 < c_1 < c_2 < 1$, существуют интервалы шагов, удовлетворяющие условиям Вульфа.

Рис. 19: Иллюстрация условий Вульфа

Бэктрекинг - это техника для нахождения шага, удовлетворяющего условию Армихо, условиям Гольдштейна или другим критериям неточного линейного поиска. Она начинает с относительно большого шага и итеративно уменьшает его до тех пор, пока не будет выполнено условие.

Бэктрекинг - это техника для нахождения шага, удовлетворяющего условию Армихо, условиям Гольдштейна или другим критериям неточного линейного поиска. Она начинает с относительно большого шага и итеративно уменьшает его до тех пор, пока не будет выполнено условие.

Алгоритм:

1. Выберите начальный шаг, α_0 , и параметры $\beta \in (0,1)$ и $c_1 \in (0,1)$.

Бэктрекинг - это техника для нахождения шага, удовлетворяющего условию Армихо, условиям Гольдштейна или другим критериям неточного линейного поиска. Она начинает с относительно большого шага и итеративно уменьшает его до тех пор, пока не будет выполнено условие.

Алгоритм:

- 1. Выберите начальный шаг, α_0 , и параметры $\beta \in (0,1)$ и $c_1 \in (0,1)$.
- 2. Проверьте, удовлетворяет ли выбранный шаг выбранному условию (например, условию Армихо).

Бэктрекинг - это техника для нахождения шага, удовлетворяющего условию Армихо, условиям Гольдштейна или другим критериям неточного линейного поиска. Она начинает с относительно большого шага и итеративно уменьшает его до тех пор, пока не будет выполнено условие.

Алгоритм:

- 1. Выберите начальный шаг, α_0 , и параметры $\beta \in (0,1)$ и $c_1 \in (0,1)$.
- 2. Проверьте, удовлетворяет ли выбранный шаг выбранному условию (например, условию Армихо).
- 3. Если условие выполнено, остановитесь; в противном случае, установите $\alpha:=\beta\alpha$ и повторите шаг 2.

Бэктрекинг - это техника для нахождения шага, удовлетворяющего условию Армихо, условиям Гольдштейна или другим критериям неточного линейного поиска. Она начинает с относительно большого шага и итеративно уменьшает его до тех пор, пока не будет выполнено условие.

Алгоритм:

- 1. Выберите начальный шаг, α_0 , и параметры $\beta \in (0,1)$ и $c_1 \in (0,1)$.
- 2. Проверьте, удовлетворяет ли выбранный шаг выбранному условию (например, условию Армихо).
- 3. Если условие выполнено, остановитесь; в противном случае, установите $\alpha:=\beta\alpha$ и повторите шаг 2.

Бэктрекинг - это техника для нахождения шага, удовлетворяющего условию Армихо, условиям Гольдштейна или другим критериям неточного линейного поиска. Она начинает с относительно большого шага и итеративно уменьшает его до тех пор, пока не будет выполнено условие.

Алгоритм:

- 1. Выберите начальный шаг, α_0 , и параметры $\beta \in (0,1)$ и $c_1 \in (0,1)$.
- 2. Проверьте, удовлетворяет ли выбранный шаг выбранному условию (например, условию Армихо).
- 3. Если условие выполнено, остановитесь; в противном случае, установите $\alpha:=\beta\alpha$ и повторите шаг 2. \square аг α обновляется как

$$\alpha_{k+1} := \beta \alpha_k$$

в каждой итерации до тех пор. пока выбранное условие не будет выполнено.

i Example

В обучении моделей машинного обучения линейный поиск с возвратом может использоваться для регулировки скорости обучения. Если потеря не уменьшается достаточно, скорость обучения уменьшается мультипликативно до тех пор, пока не будет выполнено условие Армихо.

Численная иллюстрация

Рис. 20: Сравнение различных алгоритмов линейного поиска

Открыть в Colab 🕹

Градиентный спуск с линейным поиском

Итоги

Итоги

Определения

- 1. Унимодальная функция.
- 2. Метод дихотомии.
- 3. Метод золотого сечения.
- 4. Метод параболической интерполяции.
- 5. Условие достаточного убывания для неточного линейного поиска.
- 6. Условия Гольдштейна для неточного линейного поиска.
- 7. Условие ограничения на кривизну для неточного линейного поиска.
- 8. Градиент функции $f(x): \mathbb{R}^n \to \mathbb{R}$.
- 9. Гессиан функции $f(x): \mathbb{R}^n \to \mathbb{R}$.
- 10. Якобиан функции $f(x): \mathbb{R}^n \to \mathbb{R}^m$.
- 11. Формула для аппроксимации Тейлора первого порядка $f^I_{x_0}(x)$ функции $f(x):\mathbb{R}^n \to \mathbb{R}$ в точке $x_0.$
- 12. Формула для аппроксимации Тейлора второго порядка $f^{II}_{x_0}(x)$ функции $f(x):\mathbb{R}^n o \mathbb{R}$ в точке x_0 .

- 13. Связь дифференциала функции df и градиента ∇f для функции $f(x):\mathbb{R}^n \to \mathbb{R}.$
- 14. Связь второго дифференциала функции d^2f и гессиана $\nabla^2 f$ для функции $f(x):\mathbb{R}^n \to \mathbb{R}.$

Теоремы

 Метод дихотомии и золотого сечения для унимодальных функций. Скорость сходимости.