Math 122A Homework 7 and 8

Rad Mallari

March 1, 2022

1 Problem 1

Let $D_1(z_0) = \{z \in \mathbb{C} : |z - z_0| < 1\}$. Let $f, g : D_1(z_0) \to \mathbb{C}$ be two analytic functions on $D_1(z_0)$. Prove that if

$$f^{(n)}(z_0) = g^{(n)}(z_0), \quad n = 0, 1, 2, 3, \dots$$

then $f(z) = g(z), \forall z \in D_1(z_0).$

Proof.

Let $D_1(z_0) = \{z \in \mathbb{C} : |z - z_0| < 1\}$. Let $f : D_1(z_0) \to \mathbb{C}$ be an analytic function on $D_1(z_0)$ such that is has a zero of $N \in \mathbb{N}$ at z_0 , i.e.

$$f(z_0) = f'(z_0) = \dots = f^{N-1}(z_0) = 0, \quad f^n(z_0) \neq 0$$

(i) Prove that there exists $g:D_1(z_0)\to\mathbb{C}$ analytic on $D_1(z_0)$ with $g(z_0)\neq 0$ and

$$f(z) = (z - z_0)^N g(z)$$

(ii) There exists $\delta > 0$ such that if $0 < |z - z_0| < \delta$ such that $f(z) \neq 0$. (The zeros of a non-trivial analytic function are isolated)

Proof.

- (i)
- (ii)

Let $f(z) = \sin(\frac{\pi}{2})$. Thus $f(\frac{1}{n}) = 0$. Does this contradict the result in **Problem 2**? **Proof.**

Find the order of each of the zeros of the given functions:

- (a) $(z^2 4z + 4)^2$
- **(b)** $z^2(1-\cos(z))$
- (c) $e^{2z} 3e^z 4$

Proof.

- (a)
- (b)
- (c)

Locate the isolated singularity of the given function and tell whether it is a removeable singularity, a pole, or an essential singularity.

- (a) $\frac{e^z 1}{z}$
- (b) $\frac{z^2}{\sin(z)}$
- (c) $\frac{e^z 1}{e^{2z} 1}$
- (d) $\frac{1}{1 \cos(z)}$

Proof.

- (a)
- (b)
- (c)
- (d)

Find the Laurent series for a given function about the point z=0 and find the residue at that point.

- (a) $\frac{e^z 1}{z}$
- (b) $\frac{z}{(\sin(z))^2}$
- (c) $\frac{1}{e^z 1}$
- (d) $\frac{1}{1-\cos(z)}$

In (c) and (d) compute only three terms of the Laurent series. **Proof.**

- (a)
- (b)
- (c)
- (d)

Find the residue of $f(z) = \frac{1}{1+z^n}$ at the point $z_0 = e^{i\frac{\pi}{n}}$ **Proof.**

Calculate:

(a)
$$\int_{-\infty}^{\infty} \frac{x^2}{(1+x^2)(4+x^2)} dx$$

(b)
$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^2} (=\frac{\pi}{2})$$

(c)
$$\int_{-\infty}^{\infty} \frac{x \sin(ax)}{x^2 + b^2} dx (= \pi e^{-ab})$$

(d)
$$\int_{-\infty}^{\infty} \frac{\sin(x)}{x} dx (=\pi)$$

(e)
$$\int_0^{2\pi} \frac{dt}{2 + \cos^2(t)} dx$$

Proof.

- (a)
- (b)
- (c)
- (d)
- (e)