

Inteligência Analítica unidade 2

ANDRÉ TIBA (andre.tiba@sereducacional.com)

Sumário do curso

- Unidade 1 Introdução à Estatística
- Unidade 2 Introdução à Mineração de Dados
- Unidade 3 Introdução à Modelos de Agrupamento e Predição
- Unidade 4 Aplicação e Persistência ddo Conhecimento

- Entender conceitos de arquitetura tecnológica para ambientes analíticos
- Debater sobre extração de conhecimentos
- Primeiros conceitos de técnicas de mineração de dados
- Discutir sobre preparação de dados

Sumário da unidade 2

- 1) Arquitetura Tecnológica para Ambientes Analíticos
- 2) Descoberta do Conhecimento
- 3) Técnicas de Mineração de Dados
- 4) Preparação dos Dados

1) Arquitetura Tecnológica para Ambientes Analíticos

- Arquitetura Corporativa de Tecnologia da Informação (ACTI):
 - Método organizacional e sistemático, para construção de um ambiente de Tecnologia de Informação direcionado à empresas.
 - Integra processos e serviços ao ambiente de TI, dando agilidade à geração de negócios.

1) Arquitetura Tecnológica para Ambientes Analíticos

- Arquitetura Corporativa de Tecnologia da Informação (ACTI):
 - É definido como um processo (voltados à TI) que atua na organização interna de um negócio.
 - Conexões entre equipamentos e pessoas
 - Políticas de padronização de funcionamento operacional
 - Segurança e privacidade.

1) Arquitetura Tecnológica para Ambientes Analíticos

- No processo de evolução de uma empresa, ela precisará de atributos importantes, definidos pela ACTI:
 - Escalabilidade, flexibilidade, confiança e disponibilidade.

1) Introdução à Big Data

- Atualmente, geramos e coletamos uma quantidade absurda de dados:
 - pessoais, de trabalho, de negócios,
 - gerados por pessoas, por sensores, por processos automatizados.

1) Introdução à Big Data

- Dentro desta massa de dados há muita informação e conhecimento.
- As empresas precisam destes ativos para se manterem competitivas e sobreviverem no mercado.

1) Introdução à Big Data

- Big Data Analytics
 - Softwares especializados em coleta e tratamento de dados, para torná-los úteis (informação ou conhecimento) para empresas.
 - dados estruturados e dados não estruturados.

- Nos primórdios, o custo da infraestrutura para ralizar Big Data era muito alto:
 - Construção de locais próprios (datacenters) onde ficavam os servidores.

- Fatores possibilitaram expansão do uso do big data pelas empresas:
 - Barateamento dos hardwares
 - A criação da computação em nuvem
 - Evolução das Data Warehouses

- Quatro fatores que devem ser considerados na infraestrutura do big data de uma empresa:
 - 1) Coleta de dados:
 - Composto por: clientes, fornecedores, finança da empresa, banco de dados, redes sociais, etc...

- Quatro fatores que devem ser considerados na infraestrutura do big data de uma empresa:
 - 2) Armazenamento dos dados:
 - Em geral são armazenados em um data warehouse (dados estruturados) ou em data lakes (dados não estruturados).
 - Para a maioria das empresas a solução está no armazenamento em nuvem.

Data lake	Data warehouse
Armazenamento de dados desestruturados, Dados semi-estruturados e estruturados	Dados estruturados
Esquema definido na leitura	Esquema definido na escrita
Ciência de dados, análise preditivas, Bl	BI baseado em SQL
Armazenamento de dados detalhados, brutos e também processados	Armazenamento de dados frequentemente acessados, assim como dados agregados e sumarizados
Separação entre o armazenamento e o processamento	Acoplamento entre o armazenamento e o processamento

- Quatro fatores que devem ser considerados na infraestrutura do big data de uma empresa:
 - 3) Análise dos dados:
 - Etapa1: tratamento ou pré processamento dos dados >
 limpeza, formatação, etc...
 - Etapa 2: construção dos modelos analíticos → grandes provedores de computação em nuvem (google, amazon, microsoft) possuem suas próprias ferramentas.

- Quatro fatores que devem ser considerados na infraestrutura do big data de uma empresa:
 - 4) Visualização e saída dos dados:
 - Os resultados da análise de dados são em geral visualizados por meio de gráficos, relatórios, recomendações-chaves, dashboards (ferramentas simples capazes de prover diversos tipos de visualizações de dados).

1) Tecnologias fundamentais para Big Data e Inteligência Analítica

- Apache Hadoop
 - Projeto de código aberto escrito em Java
 - Baseado em computação distribuída
 - Dados são arquivados de forma redundante
 - Adaptado para suportar falhas e se manter funcionado

1) Tecnologias fundamentais para Big Data e Inteligência Analítica

- Apache Hive
 - Solução de data warehouse sobre o Haddop
 - Trabalha com linguagem declarativa semelhante ao SQL (HiveQL)Baseado em computação distribuída
 - Os dados são organizados em: tabelas, partições e buckets (baldes).

1) Tecnologias fundamentais para Big Data e Inteligência Analítica

- Apache Spark
 - É considerado um framework com capacidade de fluxo.
 - Foi desenvolvido para operar com grandes volumes de dados em alta performance de velocidade.
 - Por isso possibilita análise tem tempo real
 - Trabalha direto na memória, reduzindo o tempo de leitura e escrita em disco.

- As mídias sociais como Facebook, Twitter, e aplicativos como WhatsApp, Instagram, dentre outros, tem gerado uma massa de dados, que só cresce
 - existe MUITO conhecimento "escondido" e que pode ser extraído destes dados.
- Boa parte destes dados pertencem a empresas, portanto são privados!

- As mídias sociais criaram um "novo" formato de divulgação de noticias e comunicação através do compartilhamento de conteúdo.
 - Antes da Big Data, informações e conhecimentos eram divulgadas apenas por sites.

- Hoje temos um leque de mídias digitais, compostas por plataformas de streaming e redes sociais diversas, que criam, divulgam e compartilham conteúdos e conhecimentos.
 - Possibilita socializar conhecimento e informação além das questões pessoais.
- A grande massa de informações disponíveis na rede existe porque ferramentas associadas a Big Data e computação em nuvem viabilizaram esta façanha!

- Estudos mostram que existe uma correlação entre a capacidade de acesso aos dado e a qualidade dos conhecimento gerado e compartilhado.
 - Países com melhor infraestrutura possibilitam à sua população menor custo para acessar dados em quantidade e variedade.
 - Isso reflete diretamente na criação de conhecimentos mais relevantes.

- A Big Data possibilitou que enormes massas de dados estruturados sejam armazenados.
 - Transações diversas no formato eletrônico
 - Destes dados são mais "fáceis" de se extrair informações e conhecimento que dos dados não estruturados.

- Tipos de conhecimento obtidos no KDD:
 - Superficial: recuperação de informação através de uma simples consulta.
 - Multidimensional: análise de dados através de rápidas consultas, por exemplo o SQL.

- Tipos de conhecimento obtidos no KDD:
 - Oculto: necessita de algoritmos de aprendizagem de máquinas para reconhecimento e identificação de padrões.
 - Profundo: necessita de algoritmos de AM ainda mais sofisticados, pois conhecimento está difuso. O conhecimento está contido implicitamente na massa sobre toda a massa de dados BD.

- Dificuldades e Limitações para extração de conhecimentos em BD:
 - Visualização de informação em bases de dados cada vez maiores, com dezenas de atributos.
 - Quanto maior a base de dados, mas será necessário realizar pré processamento para se utilizar algoritmos de ML
 - Envolve 70% do tempo gasto, em média. Os outros 30% são de fato para encontrar uma abordagem de ML capaz de apresentar uma boa solução.

- Conjunto de técnicas capazes de tratar grandes volumes de dados, extraindo informações sob o ponto de vista estatístico.
 - Estabelece relações entre os dados (atributos) sem aparente conexão lógica.
 - Dentro de um banco de dados, fornece ferramentas para reconhecimento de padrões.

- Tarefas mais comuns da mineração de dados:
 - descrição: estabelece características gerais de um conjunto. Define o que se caracteriza por ser daquele padrão. Possui caráter exploratório.
 - Ex: descrever o perfil de um consumidor vegetariano
 - classificação: tem como objetivo identificar a qual classe pertence o dado.
 - Ex: classificar um tomador de empréstico entre bom ou mal pagador

- Tarefas mais comuns da mineração de dados:
 - estimação ou regressão: tem como objetivo estimar um resultado numérico.
 - Ex: estimar as condições físicas usando atributos como peso, altura, pressão, taxas diversas, etc..
 - predição: tem como objetivo prever o valor de um futuro de um atributo.
 - Ex: prever o valor de um imóvel daqui a 6 meses

- Tarefas mais comuns da mineração de dados:
 - agrupamento: agrupar dados similares
 - Ex: criação de perfis de consumidores para indicação de produtos.
 - associação: associar atributos (nem sempre há umo relação direta entre os atributos).
 - Ex: lista de compras. Homens que v\u00e3o a noite comprar fraldas, tamb\u00e9m compram bebidas.

3) Mineração de Dados - Visão Geral

- Data Mining e Data Warehouse estão relacionados.
 - Data Warehouse → tomada de decisão em uma base de dados.
 - Data mining → aplicado a conjuntos específicos de dados entre os atributos).

3) Mineração de Dados - Visão Geral

- A Descoberta de Conhecimento em BD (KDD) segue seis etapas:
 - Seleção de dados
 - Limpeza de dados
 - Enriquecimento dos dados
 - Passagem pela codificação
 - Relatórios
 - Apresentação dos conhecimentos

Tipos conhecimentos que podem ser extraídos:

Regras Associativas

- Ex: ao adquirir um produto, compra-se outro associado ao primeiro.
- Ex: Compra-se uma televisão e em seguida um hometheater

- Tipos conhecimentos que podem ser extraídos:
 - Padrões sequenciais
 - Um cliente adquire um produto uma sequencia de produtos, ao longo do tempo.
 - O cliente compra uma geladeira, depois um fogão, então o sistema entende que o cliente está trocando sua cozinha e oferece uma oferta de um microondas.

- Tipos conhecimentos que podem ser extraídos:
 - Árvores de decisão (ou classificação)
 - Sistema capaz de estabelecer regras claras para classificação de padrões (algo raro em ML).

Principais metas desejadas em Mineração de Dados:

Predição

 Deseja-se prever um valor numérico de um atributo com base em um conjunto de atributos.

- Principais metas desejadas em Mineração de Dados :
 - Identificação
 - Deseja-se classificar/rotular um dado, dentro de um conjunto rótulos possíveis.

- Principais metas desejadas em Mineração de Dados :
 - Otimização
 - Deseja-se encontrar um conjunto de ações que otimize um processo ou um produto.

3) Mineração de Dados - Técnicas usadas em Data Mining

- Técnicas de Classificação:
 - Tem como objetivo classificar um dado (chamado também de padrão).
 - O classificador é treinado para reconhecer e classificar um conjunto de dados (conjunto de treino).
 - Espera-se que ele seja capaz de realizar uma classificação para um novo dado (que não pertence ao conjunto de treino).

3) Mineração de Dados - Técnicas usadas em 😭 Data Mining

- Técnicas que procuram por Padrões Sequenciais:
 - Extrair informações a partir de sequencias de ações.
 - Ex: um consumidor faz suas compras regularmente em um dado supermercado. A partir da analise das listas de compras que ele fez ao de um ano, tentar estabelecer padrões de consumo a partir destes consumos anteriores.

3) Mineração de Dados - Técnicas usadas em Data Mining

- Técnicas que analisam Padrões em Série Temporal
 - Predizer o valor futuro a partir dos valores passados.
 - Uma série temporal é uma sequencia de eventos, que ocorre com uma regularidade estabelecida.
 - Ex: cotação do dólar (série diária)
 - Ex: índice da inflação (série mensal ou anual)

3) Mineração de Dados - Técnicas usadas em 💃 Data Mining

- Técnicas que tratam de problemas de Regressão
 - Estimar o valor de um atributo a partir de um conjunto de outros atributos.
 - Pode ser usada em problemas sequenciais (séries temporais)
 - Pode ser usada para problemas não sequenciais

- Redes Neurais
 - Podem ser usadas para tratar problemas de classificação, de regressão, de séries temporais, de agrupamento.
 - Existem muitos modelos distintos de redes neurais.
 - São eficientes para resolver problemas, mas não é capaz de descrever bem como consegue resolver. Apenas resolve!

3) Mineração de Dados - Técnicas usadas em 💃 Data Mining

- Algoritmos Genéticos (Computação Evolucionária)
 - Usados para problemas de otimização.
 - E um algoritmo de busca baseado em princípios genética.

3) Mineração de Dados - Aplicações

- Em finanças: análise de crédito, de financiamento, de risco, predição de ativos, etc ...
- Em marketing: entender padrões de consumo, estabelecer perfis e comportamento de clientes.
- Em saúde: realizar diagnósticos estatísticos a partir de imagens, de dados clínicos.
- Em produção: otimização de recursos e de processos.

- É uma parte MUITO importante do processo de análise de dados.
- Se não for feita com cuidado, pode INVIABILIZAR a análise dos dados.
- Pode ser trabalhosa e demorada, se os dados estiverem sem algum tratamento prévio (dados "crus").

- Em linhas gerais, consiste nas seguintes etapas:
 - Coleta
 - Limpeza
 - Combinação/Redução
 - Estruturação e organização (reescala/mudança de tipo, etc ...)

- Dados organizados e estruturados podem ser analisados em diferentes escalas.
- Também podem ser analisados de forma descentralizada.
 - Ex: processamento em paralelo (o que diminui o tempo de processamento)
- A confiabilidade dos resultados obtidos pela análise de dados passa por uma preparação de dados metódica e consistente.

Coleta dos dados:

- Se possível, planejar que tipo de dado será coletado, em que formato será coletado
 - Isso facilita as etapas seguintes

Tratamento e Limpeza:

- Necessário para descartar inconsistências
 - Ex: um local onde deve-se indicar uma peça de roupa tem-se "teia" ao invés "meia"
- Dados ausentes: um grande problema!
- Valores discrepantes
 - Ex: no atributo idade tem-se marcado 142 anos

Transformação/Reduções

- Retirada de atributos desnecessários
- Transformação dos atributos originais
 - Ex: é categórico e precisa ser transformado em numérico
- Reduz da dimensionalidade da base de dados usando uma combinação de atributos

Produção de nova base

- Em problemas de classificação, as bases podem estar desbalanceadas, sendo necessário balanceá-las (mesma quantidade de padrões de cada classe).
- Em alguns casos, a quantidade de dados é muito baixa, sendo necessário criar novos dados a partir dos dados originais existentes.

Tratamento e Limpeza:

- Trata dados com valores discrepantes
 - Ex: no atributo idade tem-se marcado 142 anos

OBRIGADO(A)

