Fulton Chapter 5

Linear System of Curves and Bézout's Theorem

Aritra Kundu Problem Set - 3

Email: aritra@cmi.ac.in

Topic: Algebraic Geometry

Problem 1 Linear System of Curves: 5.19

 $A = \{(a, b, 1) \mid \forall \ a, b \in \{0, 1, 2\}\}$. Show that there is infinitely many cubics passing through the 9 points in A

Solution: Let F be a cubic passing through the 9 points in A. So, F_* will pass through

$$B = \{(a, b) | \forall a, b \in \{0, 1, 2\}\}$$
 [* taking w.r.t Z]

Now
$$F_* = g(X) + Y(H(X,Y))$$
 as

$$F_*(a,0) = 0 \ \forall \ a \in \{0,1,2\} \implies g(x) = \lambda(X-2)(X-1)X$$
 [as F is cubic $\implies g$ is a deg 3 polynomial]

Similarly

$$F_* = g_1(Y) + XH(X,Y) \implies g_1(Y) = \mu(Y-2)(Y-1)Y$$

So,

$$F_* = \lambda(X-2)(X-1)X + \mu(Y-2)(Y-1)Y + XY(aX+bY+c)$$

But

$$F_*(1,2) = 0 = F_*(2,1) = F_*(1,1) \implies a + 2b + c = 0 = 2a + b + c = a + b + c \implies a = b = c = 0$$

So, any polynomial passing through B must be of the form

$$\lambda(X-2)(X-1)X + \mu(Y-2)(Y-1)Y$$

where $\lambda, \mu \in k$. So, any F passing through the points in A will be of the form

$$\lambda(X-2Z)(X-Z)X + \mu(Y-2Z)(Y-Z)Y$$

so there are infinitely curves passing through 9 points in A

Problem 2 Bézout's Theorem: 5.23

F is a projective plane curve of degree n , it contains no lines and char(k)=0 then (a) if $P \in H \cap F$ then either it is a multiple point or a flex. (b) $I(P, H \cap F) = 1 \iff P$ is an ordinary flex.

Solution:

Claim 1: T be a projective change of co-ordinates then hessian of

$$F^T = det(A)^2 H^T$$

Proof: Let
$$T = (T_1, T_2, T_3)$$
; $T_i = a_i X + b_i Y + c_i Z$. So the matrix of T is $A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$

$$(F(T_1, T_2, T_3))_x = a_1 F_{T_1}(T_1, T_2, T_3) + a_2 F_{T_2}(T_1, T_2, T_3) + a_3 F_{T_3}(T_1, T_2, T_3)$$

$$= \begin{bmatrix} F_{T_1} & F_{T_2} & F_{T_3} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \quad \text{[by chain rule]}$$

$$(F(T_1, T_2, T_3))_{xx} = \sum_{i=1}^{3} \sum_{j=1}^{3} a_i (a_j F_{T_i T_j})$$

$$\text{So, } F_{xx}(T_1,T_2,T_3) \text{ is the (1,1) position of } \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \begin{bmatrix} F_{T_1T_1} & F_{T_1T_2} & F_{T_1T_3} \\ F_{T_2T_1} & F_{T_2T_2} & F_{T_2T_3} \\ F_{T_3T_1} & F_{T_3T_2} & F_{T_3T_3} \end{bmatrix} \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}. \text{ So, }$$

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \begin{bmatrix} F_{T_1T_1} & F_{T_1T_2} & F_{T_1T_3} \\ F_{T_2T_1} & F_{T_2T_2} & F_{T_2T_3} \\ F_{T_3T_1} & F_{T_3T_2} & F_{T_3T_3} \end{bmatrix} \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = \begin{bmatrix} (F^T)_{xx} & (F^T)_{xy} & (F^T)_{xz} \\ (F^T)_{yx} & (F^T)_{yy} & (F^T)_{yz} \\ (F^T)_{zx} & (F^T)_{zy} & (F^T)_{zz} \end{bmatrix}$$

So, $R = \text{hessian of } F^T = \det(A)^2 H^T$. So,

$$P \in H \cap F \iff T(P) \in R \cap F^T \iff T(P) \in H^T \cap F^T$$

and

$$I(P,F\cap H)=1\iff I(T(P),F^T\cap H^T)=1\iff I(T(P),F^T\cap R)=1$$

so we can assume P = (0, 0, 1)

Claim 2: $(n-1)F_i = \sum_i X_i F_{ij}$

Proof: Let

$$F = \sum_{k=0}^{r} X_j^k F_k \quad \text{[where } \deg F_k = n - k \text{]} \implies F_j = \sum_{k=1}^{r} k X_j^{k-1} F_k$$
$$\implies \deg(F_j) = n - 1 \quad \text{[as char } K = 0 \text{]}$$

Applying Euler's theorem on F_j we get the relation

$$(n-1)F_j = \sum_i X_i F_{ji} = \sum_i X_i F_{ij}$$
 [as $F_{ij} = F_{ji}$]

Claim 3: $I(P, f \cap h) = I(P, f \cap g)$ where $g = f_y^2 f_{xx} + f_x^2 f_{yy} - 2 f_x f_y f_{xy}$

Proof: Let

$$F(X,Y,Z) = \sum_{k=0}^{r} X^{k} F_{k}(Y,Z) \implies F_{X}(X,Y,1) = \sum_{k=1}^{r} k X^{k-1} F_{k}(Y,1) = f_{x}(X,Y,1)$$

so, $F_{XY}(X, Y, 1) = f_{XY}(X, Y); F_{XX}(X, Y, 1) = f_{XX}(X, Y, 1)$

$$H(X,Y,Z) = \begin{vmatrix} F_{xx} & F_{xy} & F_{xz} \\ F_{yx} & F_{yy} & F_{yz} \\ F_{zx} & F_{zy} & F_{zz} \end{vmatrix} = \begin{vmatrix} F_{xx} & F_{xy} & F_{xz} \\ F_{yx} & F_{yy} & F_{yz} \\ xF_{xx} + yF_{yx} + zF_{zx} & xF_{xy} + yF_{yy} + zF_{zy} & xF_{xz} + yF_{zy} + zF_{zz} \end{vmatrix}$$

$$= \begin{vmatrix} F_{xx} & F_{xy} & F_{xz} \\ F_{yx} & F_{yy} & F_{yz} \\ (n-1)F_{x} & (n-1)F_{y} & (n-1)F_{z} \end{vmatrix} = \begin{vmatrix} F_{xx} & F_{xy} & zF_{xz} + yF_{xy} + xF_{xx} \\ F_{yx} & F_{yy} & zF_{yz} + yF_{yy} + xF_{yx} \\ (n-1)F_{x} & (n-1)F_{y} & (n-1)F_{y} \end{vmatrix}$$

$$= \begin{vmatrix} F_{xx} & F_{xy} & (n-1)F_{x} \\ F_{yx} & F_{yy} & (n-1)F_{y} \\ (n-1)F_{x} & (n-1)F_{y} & (n-1)F_{y} \end{vmatrix}$$

So,

$$h(x,y) = H(x,y,1) = \begin{vmatrix} f_{xx} & f_{xy} & (n-1)f_x \\ f_{yx} & f_{yy} & (n-1)f_y \\ (n-1)f_x & (n-1)f_y & (n-1)nf \end{vmatrix}$$

$$= (n-1)nf[f_{yy}f_{xx} - f_{yx}f_{xy}] - (n-1)^2 f_y[f_{xx}f_y - f_xf_{xy}] + (n-1)^2 f_x[f_yf_{yx} - f_{yy}f_x]$$

$$= (n-1)nf[f_{yy}f_{xx} - f_{yx}f_{xy}] - (n-1)^2 [f_y^2f_{xx} + f_x^2f_{yy} - 2f_xf_yf_{xy}] \quad [as f_{xy} = f_{yx}]$$

So, $I(P, f \cap q) = I(P, f \cap h)$

Claim 4: If P is a multiple point then $I(P, f \cap g) \geq 2$

Proof: $P \in F \cap H$ P is a multiple point of $F \implies I(P, F \cap H) = I(P, f \cap h) \ge 2$ [as $m_P(f) \ge 2$]. So, $I(P, f \cap g) \ge 2$

Claim 5: P = (0,0) be a simple point of $f = y + ax^2 + bxy + cy^2 + dx^3 +$ higher terms y = 0 be the tangent at P. P is a flex iff a = 0; P is an ordinary flex iff a = 0; $d \neq 0$

Proof: As P is a simple point $O_P(f)$ is a d.v.r and the maximal ideal is generated by x. P is a flex iff $ord(y) \geq 3$. So,

$$y(1 + bx + cy + higherterms) = x^2(a + dx + higherterms)$$

so $ord(y) \ge 3 \iff a = 0$

P is an ordinary flex iff ord(y) = 3. So,

$$y(1 + bx + cy + higherterms) = x^2(a + dx + higherterms)$$

so $ord(y) = 3 \iff a = 0; d \neq 0$. Now

$$f_x = 2ax + by + 3dx^2 +$$
other terms

$$f_y = 1 + bx + 2cy +$$
 other terms

$$f_{xx} = 2a + 6dx + \text{ other terms}$$

$$f_{yy} = 2c + \text{ other terms}$$

$$f_{xy} = b + \text{ other terms}$$

Now

$$f_x f_y f_{xy} = (2ax + by)b + \text{higher terms}$$

 $f_y^2 f_{xx} = 2a + 6dx + \text{higher terms}$
 $f_x^2 f_{yy}$ has no 1 degree terms

$$q = 2a + (6d - 4ab)x - 2b^2y + \text{higher terms}$$

Now

$$P = (0,0) \in f \cap g \iff a = 0 \iff P \text{ is a flex}$$

 $I(P,g\cap f)=1\iff \text{they do not share tangent at }P\iff d\neq 0\iff P\text{ is an ordinary flex.}$

Corollary: A non singular cubic has 9 flexes all are ordinary.

Proof: Let F be a cubic non singular curve H be its hessian. So H is also cubic. $\sum_{P} (I(P, F \cap H) = 9)$

Now let for some $P, I(p.F \cap H) \neq 0$. As P is non singular so P is simple so by the previous theorem P is a flex. It must be ordinary as F is cubic. So, $I(P, H \cap F) = 1$. So, there are 9 flexes of F

Problem 3 Bézout's Theorem: 5.24

- (a) Let (0,1.0) be a flex and Z=0 be the tangent at that point. char k=0. Show that $F=ZY^2+bYZ^2+cYXZ+$ terms in X,Z find a projective change of co-ordinates s.t F reduced to a form $Y^2Z=$ cubic in X,Z
- (b) Show that any irreducible cubic is projectively equivalent to one of the following $G_1 = Y^2Z X^3$, $G_2 = Y^2Z X^2(X+1)$, $G_3 = Y^2Z = X(X-Z)(X-\lambda Z)$ where $\lambda \neq 0, 1$

Solution:

(a) P = (0,0). So, $O_P(F_*)$ is a d.v.r. and generated by X. So,

$$Z(1 + bZ + cX + dXZ + eX^{2} + fZ^{2}) = X^{3}k$$
 [as F is a cubic]

so,

$$F_*(X,Z) = Z + bZ^2 + cXZ + dXZ^2 + eX^2Z + fZ^3 - kX^3$$

$$\implies F = ZY^2 + bZ^2Y + cXYZ + dXZ^2 + X^2Z + fZ^3 - kX^3$$

Now, using $Y \to (Y - b/2Z - c/2X)$ and keeping others same. $ZY^2 + bZ^2Y + cXYZ$ becomes

$$ZY^2 - \frac{b^2Z^3}{4} - \frac{c^2X^2Z}{4} - \frac{bcXZ^2}{4}$$

so, we get F to the form ZY^2 =cubic in X, Z

(b) Assume char F=0. Let F be an irreducible curve. So, it has at most finitely many singular point.

Let $Q_1 = (a, b, c) \in H \cap F$ be a simple point of F and L be its tangent [as $H \cap F$ is infinite]. Let $Q_2 = (d, e, f)$ be another point on L. So, \exists a projective change of co-ordinates T s.t. $T(Q_1) = (0, 1, 0), T(Q_2) = (1, 0, 0)$. So, (0, 1, 0) a simple point of F^T and its tangent is Z = 0. By problem 5.23 it is a flex. So, by problem (a) F^T is projectively equivalent to Y^2Z -cubic in X, Z. Let

$$G = Y^2 Z - (X - \lambda_1 Z)(X - \lambda_2 Z)(X - \lambda_3 Z)$$

<u>Case 1:</u> If all $\lambda_i's$ are equal then using $X \to (X + \lambda Z)$ and keeping others unchanged we get $X^3 = Y^2 Z$

<u>Case 2.</u> If $\lambda = \lambda_1 = \lambda_2 \neq \lambda_3$. Then using $X \to (X + \lambda Z)$ and keeping others unchanged we get

$$Y^2Z = X^2(X + (\lambda - \lambda_3)Z)$$

using $Z \to \frac{Z}{\lambda - \lambda_2}$, $Y \to \sqrt{\lambda - \lambda_3}Y$ keeping X unchanged we get

$$Y^2Z = X^2(X+1)$$
 [as $\lambda - \lambda_3 \neq 0$]

<u>Case 3.</u> All λ_i 's are distinct. Then using $X \to (X + \lambda_1 Z)$ and keeping others unchanged we get

$$Y^2Z = X(X - (\lambda_2 - \lambda_1)Z)(X - (\lambda_3 - \lambda_1)Z)$$

again using

$$Z \to \frac{Z}{\lambda_2 - \lambda_1}, \ Y \to \sqrt{\lambda_2 - \lambda_1} Y$$

keeping X unchanged we get

$$Y^{2}Z = X(X - Z)(X - \frac{\lambda_{3} - \lambda_{1}}{\lambda_{2} - \lambda_{1}}Z)$$

and also

$$\frac{\lambda_3 - \lambda_1}{\lambda_2 - \lambda_1} \neq 0, 1$$

so, it is projectively equivalent to $Y^2Z = X(X-Z)(X-\lambda Z)$ where $\lambda \neq 0, 1$.

So, F is projectively equivalent to $G_1 = Y^2Z - X^3$ or $G_2 = Y^2Z - X^2(X+1)$ or $G_3 = Y^2Z = X(X-Z)(X-\lambda Z)$ where $\lambda \neq 0, 1$

Remark:

Claim 1: G_1 has a cusp at (0,0,1). $G_{1*}(X,Z)=Y^2-X^3$ which has a cusp at (0,0) and the tangent is Y=0

Claim 2: G_2 has a node at (0,0,1). $G_{2*}(X,Z) = Y^2 - X^2 - X^3$ which has a node at (0,0) and the tangents are X+Y=0, X-Y=0

Claim 3: If F is an irreducible conic then $\forall P \in F \ m_P(F) \leq 2$. If $\exists P \in V(F) \text{ s.t. } m_P(F) > 2$ \exists a projective change of co-ordinates $T \text{ s.t.} T(P) = (0,1,0) \ G = F^T \ G_* = L_1 L_2 L_3 \implies G$ is reducible which is not possible.

So, if F is an irreducible conic then either is non singular or it has cusp or it has a node. Now both claim 1 and problem 5.10 implies that if F has a cusp then it is projectively equivalent to G_1 . Both claim 2 and problem 5.11 implies that if F has a node then it is projectively equivalent to G_2 . So, if F is non singular then it is projectively equivalent to G_3 .