数学講究 XB レポート

シンプレクティック多様体において $C^{\infty}(M,\mathbb{R})$ が Poisson 括弧によりLie 代数となることの証明

05-220542 Keiji Yahata 本レポートでは、シンプレクティック多様体 (M,ω) において $C^{\infty}(M,\mathbb{R})$ が Poisson 括弧 $\{\cdot,\cdot\}$ により Lie 代数となることを証明する。まずいくつか用語の定義を整理しておく。

定義 1.1 (シンプレクティック多様体). M を有限次元 C^{∞} 多様体、 ω を M 上の 2-形式とする。組 (M,ω) がシンプレクティック多様体であるとは、 $\omega^n \neq 0$ かつ $d\omega = 0$ が成り立つことをいう。ただし ω^n は $\omega \wedge \cdots \wedge \omega$ のことである。

命題-定義 1.2 (C^{∞} 関数の Hamilton ベクトル場). (M, ω) をシンプレクティック多様体とする。このとき、各 $f \in C^{\infty}(M, \mathbb{R})$ に対し、あるベクトル場 $H_f \in \mathfrak{X}(M)$ がただひとつ存在して、任意のベクトル場 $Y \in \mathfrak{X}(M)$ に対して

$$\omega(H_f, Y) = df(Y) \tag{1.1}$$

をみたす。この H_f をfの Hamilton ベクトル場という。

証明 [TODO]

定義 1.3 (Poisson 括弧). (M,ω) をシンプレクティック多様体とする。各 $f,g\in C^\infty(M,\mathbb{R})$ に対し、f,g の Poisson 括弧 $\{f,g\}\in C^\infty(M,\mathbb{R})$ を

$$\{f,g\} \coloneqq \omega(H_f,H_g) \tag{1.2}$$

と定義する。

目標の定理を示す。

定理 1.4. (M,ω) をシンプレクティック多様体とする。このとき、 $C^{\infty}(M,\mathbb{R})$ は Poisson 括弧 $\{\cdot,\cdot\}$ を括弧積として Lie 代数となる。

証明 示すべきことは、Poisson 括弧が次をみたすことである:

(ℝ-双線型性) 任意の $f,g,h \in C^{\infty}(M,\mathbb{R})$ と $a,b \in \mathbb{R}$ に対して、 $\{af+bg,h\}=a\{f,h\}+b\{g,h\}$ および $\{h,af+bg\}=a\{h,f\}+b\{h,g\}$ が成り立つ。

(反対称性) 任意の $f,g \in C^{\infty}(M,\mathbb{R})$ に対して、 $\{f,g\} = -\{g,f\}$ が成り立つ。

(Jacobi 恒等式) 任意の $f,g,h \in C^{\infty}(M,\mathbb{R})$ に対して、 $\{\{f,g\},h\} + \{\{g,h\},f\} + \{\{h,f\},g\} = 0$ が成り立つ。