Politechnika Warszawska

Analiza algorytmu filtru Kalmana

Projekt indywidualny z przedmiotu: systemy radiolokacyjne i metody ich przetwarzania

Alicja Misterka Numer indeksu: 324045

Spis treści

1	\mathbf{Wstep}				
	1.1	Założenia teoretyczne	2		
		Założenia projektowe	2		
		1.2.1 oznaczenia w kodzie programu	3		
		1.2.2 Zbliżanie i Oddalanie Się Obiektu w Linii Prostej	3		
2	Symulacja				
	2.1	Zależność od ilości punktów pomiarowych	3		
2.2 Zależność od prędkości		Zależność od prędkości	4		
	2.3	Zależność od trajektorii lotu	6		
3	Wni	ioski	6		

1 Wstęp

1.1 Założenia teoretyczne

Filtr Kalmana jest algorytmem stosowanym do estymacji obiektu obserwowanego przez radar. Składa się on z następujących etapów, powtarzanych w kolejnych iteracjach:

• inicjalizacja - rozpoczęcie filtracji, gdzie:

$$\hat{x}(0|0) = z(0)$$
 jest estymatą $P(0|0) = R$ jest wariancją estymaty

 predykcja - przewidywanie stanu i niepewności obiektu na bazie poprzedniego stanu. Określany zależnością:

$$\hat{x}(k|k-1) = \hat{x}(k-1|k-1) P(k|k-1) = P(k-1|k-1)$$

• aktualizacja - zmiana stanu na podstawie nowych obserwacji i redukująca niepewność. Określany jest zależnością:

$$v(k) = z(k) - \hat{x}(k|k-1) \ K(k) = \frac{P(k|k-1)}{R+P(k|k-1)}$$
$$\hat{x}(k|k) = \hat{x}(k|k-1) + K(k)v(k)$$
$$P(k|k) = (1 - K(k))(P(k|k-1)$$

Rysunek 1: Koncepcja działania filtru kalmana [1]

1.2 Założenia projektowe

W ramach projektu, napisałam prosty program w języku MATLAB uwzględniający wszystkie założenia projektowe i w wyniku którego powstają dwa wykresy - funkcja pozycji obiektu od liczby kroków czasowych i funkcja prędkości w zależności od liczby kroków czasowych. Aby przeanalizować dokładność filtru Kalmana, podjęłam się rozważenia dokładności działania filtru i odwzorowania trajektorii lotu obiektu w zależności od:

- liczby kroków czasowych
- od predkości
- od kształtu trajektorii lotu

1.2.1 oznaczenia w kodzie programu

W programie użyte zostały następujące oznaczenia:

stdr	odchylenie pomaru [m]	stdu	odchylenie procesu $\left[\frac{m}{s}\right]$
dt	krok czasowy [s]	\mathbf{F}	macierz przejścia
\mathbf{H}	macierz wejścia	\mathbf{Q}	macierz kowariancji szumu procesu $\left[\frac{m^2}{s^4}\right]$
${f R}$	macierz kowariancji szumu pomiaru m^2	x	macierz estymaty stanu [pozycja, prędkość] [m, $\frac{m}{s}$]
\mathbf{P}	estymata kowariancji błędu	N	kroki czasowe

1.2.2 Zbliżanie i Oddalanie Się Obiektu w Linii Prostej

Zbliżanie i oddalanie się obiektu w linii prostej jest jednym z prostszych przypadków do analizy przez filtr Kalmana. W takim scenariuszu ruch obiektu jest przewidywalny, co pozwala na skuteczną estymację stanu. Filtr może łatwo modelować zmiany odległości i odpowiednio dostosowywać się do nowych warunków pomiarowych.

2 Symulacja

2.1 Zależność od ilości punktów pomiarowych

Rysunek 2: Wynik działania programu dla N =10

Rysunek 3: Wynik działania programu dla N $=\!\!50$

Rysunek 4: Wynik działania programu dla N =100

Działanie programu potwierdziło, że wzrost kroków czasowych poprawia dokładność odwzorowania kształtu trajektorii lotu obiektu. Jest to spowodowowane tym, że filtr Kalmana gromadzi coraz to więcej informacji wraz z narastającą częstością próbkowania pozwalając na bardziej precyzyjną estymację.

Początkowe estymacje położenia są bardziej podatne na wpływ szumu a filtr, po czasie, "uczy się" z pojawiających się danych.

2.2 Zależność od prędkości

Rysunek 5: Wynik działania programu dla v = 5 $\frac{m}{s}$

Rysunek 6: Wynik działania programu dla v = 100 $\frac{m}{s}$

Rysunek 7: Wynik działania programu dla zmieniającej się prędkości w czasie

W przypadku obiektów lecących bardzo wolno, stosunek szumu do rzeczywistej zmiany jest bardzo niekorzystny przez co zmiana położenia i prędkości (pochodnej położenia po czasie) ukrywa się w szumie a wyniki filtru Kalmana mogą być niesatysfakcjonujące. W przypadku obiektów poruszających się szybciej szum odgrywa znacznie mniejszą rolę i powoduje mniejsze zakłócenia.

Przeanalizowałam również przypadek w którym prędkość ulega zmianie w upływie czasu. Jak możemy zauważyć, nie stanowi to problemu dla filtru Kalmana i poprawnie odwzorowuje kształt jego trajektorii lotu a prędkość oscyluje wokół prawdziwych wartości.

2.3 Zależność od trajektorii lotu

Rysunek 8: Wynik działania programu dla zawracającego obiektu o stałej prędkości

Rysunek 9: Wynik działania programu dla skomplikowanej trajektorii lotu

Na rysunku 6 przeanalizowane zostały przypadki zmienającego się toru ruchu obiektu. Możemy zauważyć, że dla filtru Kalmana nie stanowi problemu odwzorowania położenia nawet zawracających obiektów i mierzenie ich prędkości.

3 Wnioski

Filtr Kalmana i jego efektywność zależy od wielu czynników - w mojej analizie brałam pod uwagę:

- Ilość punktów pomiarowych: Zwiększenie liczby punktów pomiarowych poprawia dokładność estymacji pozycji i prędkości obiektu. Wraz z każdym krokiem czasowym, algorytm prowadzi więcej informacja dzięki czemu lepiej odwzorowuje kształt trajektorii lotu.
- Prędkość obiektu śledzonego: Przy niskich prędkościach stosunek szumu do rzeczywistej zmiany jest niekorzystny i mały, co sprawia, że zmiany położenia i prędkości mogą być ukryte w szumie a estymacja położenia i prędkości zafałszowana. W przypadku obiektów o szybszej prędkości, szum ma mniejszy wpływ na estymacje, co prowadzi do bardziej dokładnych wyników. Zmienne prędkości obiektów nie stanowią problemu dla Filtru Kalmana.
- Kształt trajektorii lotu: Filtr Kalmana radzi sobie dobrze z różnymi trajektoriami, nawet bardzo skomplikowanymi torami ruchu obiektów. Zawracające obiekty nie stanowią dla niego trudności nawet jeżeli obiekt charakteryzuje się zmieniającą się prędkością w czasie.

Filtr Kalmana jest skutecznym, ale i skomplikowanym algorytmem do estymacji stanu obiektu. Umożliwa dokładne śledzenie obiektu mimo pojawiających się szumów. Jego wydajność i dokładność zależy od doboru wielkości oraz wartości ich elementów.

Bibliografia

- [1] By Petteri Aimonen Own work, CC0, https://commons.wikimedia.org/w/index.php?curid= 17475883
- [2] Wykłady zamieszczone na stronie przedmiotu SRMP
- [3] Materiały laboratoryjne
- [4] https://en.wikipedia.org/wiki/Kalman_filter