Fisica I e II Formulario

Daniele Fedeli

September 14, 2019

Meccanica 1

Moto 1.1

1.1.1 Moto rettilineo

Se $t_0 = 0$

Uniforme: $x(t) = x_0 + v_0 t$

Uniformemente accellerato: x(t)

 $x_0 + v_0 t + \frac{1}{2} a t^2$

Velocità dipendente dallo spazio: $v^2(x) = v_0^2 + 2a(x - x_0)$

1.1.2 Moto verticale

Se $t_0 = 0$

Velocità verticale: v(t) = -gtPosizione: $h(t) = h_0 - \frac{1}{2}gt^2$ Tempo caduta: $t_c = \sqrt{\frac{2h}{g}}$ Velocità caduta: $\sqrt{2gh}$

1.1.3Moto armonico

Se $t_0 = 0$

Posizione: $x(t) = A\sin(\omega t + \phi)$

Velocità: $x(t) = \omega A \cos(\omega t + \phi)$

Accellerazione: $x(t) = -\omega^2 A \sin(\omega t +$

 ϕ) = $-\omega^2 x(t)$

Periodo: $\frac{2\pi}{\omega}$

Frequenza: $f = \frac{1}{T}$

Moto circolare 1.1.4

Accellerazione: $\frac{dv}{dt}u_t + \frac{v^2}{r}u_n$ Accellerazione Normale: $a_n = \omega^2 r = \frac{v^2}{r}$ Accellerazione Tangenziale: $\alpha = \frac{dw}{dt}$

Forza Tangenziale: $F_t = m \frac{dv}{dt} u_t$

Forza Centripeta: $F_n = m \frac{v^2}{r} u_n$

1.1.5 Moto parabolico

Velocità x: $v_x = v_0 \cos \theta$

Velocità y: $v_y = v_0 \sin \theta - gt$

Altezza massima: $h_{max} = \frac{v_0^2 \sin^2 \theta}{2g}$ Gittata: $x_g = \frac{2v_0^2 \cos^2 \theta \tan \theta}{q}$

1.2 Forze

Leggi di newton

Principio della dinamica: F

 $ma\cos(\theta)$

Quantità di moto: $p = mv, F = \frac{dP}{dt}$

Impulso: $J = m(v - v_0)$

Forza d'attrito: $F_{ad} = \mu_d N$

piano inclinato: Accellerazione

 $a = \frac{F}{m} = g(sen\theta - \mu_d \cos \theta)$

1.2.2 Molla

Forza elastica: $F_{el} = -k(x - x_0)$ Accellerazione angolare molla: $\omega^2 = \frac{k}{m}$ Periodo Molla: $T = 2\pi\sqrt{\frac{k}{m}}$

1.5 Dinamica dei punti materiali

Centro di massa: $r_{cm} = \frac{\sum_{i} m_{i} r_{i}}{\sum_{i} m_{i}}$ Velocità centro di massa: $v_{cm} = \frac{P}{m}$ Momento angolare: $L = \sum_{i} r_{i} \times m_{i} v_{i}$ Th. di Konig: $E_{k} = E_{k} + \frac{1}{2} m v_{cm}^{2}$

1.2.3 Pendolo

Tensione Filo: $a = \frac{F}{\sum m}$ Pendolo Semplice Periodo: $T = 2\pi\sqrt{\frac{L}{g}}$ Pendolo legge oraria: $s = L\Theta = L\Theta_0 \sin(\omega t + \phi)$ Tensione filo pendolo: $T_f = m[g\cos\theta(t) + \frac{v^2(t)}{L}]$

1.6 Corpo rigido

1.6.1 Rotazioni rigide

Momento di inerzia z: $L_z = I_z \omega$ Moto di rotazione: $M = I_z \alpha$ Energia cinetica: $E_k = \frac{1}{2}I_z \omega^2$ Lavoro: $W = \int_0^\theta M d\theta$ Potenza: $P = \frac{dW}{dt} = M \frac{d\theta}{dt} = M \omega$

1.3 Dinamica del punto

1.3.1 Lavoro, potenza, energia cinetica

Lavoro: $W = F\Delta s \cos\theta$ Potenza: $P = \frac{dW}{dt} = Fv$ Energia cinetica: $E_k = \frac{1}{2}m\Delta v^2$ Energia potenziale: $E_p = mg \cdot r_{ab}$ Lavoro: $W = -\Delta E_p$ Lavoro forza elastica: $W = -\frac{1}{2}k\Delta x^2$ Forze non conservative: $E_{p,A} - E_{p,B} + W_{nc} = E_{k,B} - E_{k,A}$

1.6.2 Momento di inerzia

 $anello = mR^2$ $disco = \frac{1}{2}mR^2$ $guscio cilindrico sottile = mR^2$ $cilindro pieno = \frac{1}{2}mR^2$ $guscio sferico sottile = \frac{2}{3}mR^2$ $sfera piena = \frac{2}{5}mR^2$ $asta sottile = \frac{1}{12}md^2$ $lastra = \frac{1}{2}m(a^2 + b^2)$ Th. Huygens-Steinger: $I = I_c + md^2$

1.4 Momento angolare, momento della forza

Momento angolare: $L = r \times p$ Momento della forza: $M = r \times F = \frac{dL}{dt}$

1.7 Pendolo composto e puro rotolamento

Pendolo composto periodo: $2\pi\sqrt{\frac{l}{g}}$

1.8 Urti

Completamente anaelastico: $v_{cm} = \frac{m_1v_1 + m_2v_2}{m_1 + m_2}$

 $E_k = \frac{1}{2}(m_1 + m_2)v_{cm}^2 - \frac{1}{2}m_1v_1^2 - \frac{1}{2}m_2v_2^2$ 2.4 Calore specifico Elastico:

Elastico.
$$v_{1,fin} = \frac{(m_1 - m_2)v_{1,in} + 2m_2v_2}{m_1 + m_2}$$
$$v_{2,fin} = \frac{(m_2 - m_1)v_{2,in} + 2m_1v_1}{m_1 + m_2}$$

2 Termodinamica

della 2.1Principio zero termodinamica

Se due sistemi A e b sono ciascuno in equilibrio con un terzo sistema C, allora essi sono in equilibrio termico tra di loro.

Conversione:

$$t(C) = T(K) - 273.15$$

$$t(F) = \frac{9}{5}T(K) - 459.67$$

2.2Calore

Lavoro: $W_{ad} = -\Delta U = U_{in} - U_{fin}$ Calore scambiato: Q = -W

2.3 Primo principio della termodinamica

Sesistem acompieunauntrasformazione dallo stato allostato B, scambiando calore e lavoro con l'ambiente, Q e W dipendono dalla trasformazione che conqiunge i due strati termodinamici, mentre la differenza Q - W risulta indipendente Relazione di mayer: $c_p - c_v = R$ dalla trasformazione.

$$Q - W = \Delta U$$

Il calore specifico rappresenta il calore che occorre scambiare con l'unità di massa di una data sostanza, alla temperature T, per farne variare la temperatura di 1 k. dQ = mcdT

2.5Leggi dei gas

Legge isobara di Volta-Gay Lussac: $V = V_0(1 + \alpha t)$ Legge isocora di Volta-Gay Lussac: $P = P_0(1 + \beta t)$ $\alpha = \beta = \frac{1}{273.15}C^{-1}$ Numero di avogadro: $N_a = 6.0221 \cdot 10^{26}$ molecole/kmol Equazione di stato dei gas reali: pV = nRT $R = p_0 V_m \alpha = 8.314 \text{ J/mol K}$

2.6 Trasformazione di gas, lavoro

Il lavoro compiuto dal gas in una trasformazione ciclica reversibile è dato dall'area racchiusa dal ciclo stesso.

2.7Energia interna del gas

Entalpia H = U + pV $\Delta H = n \int_{T_a}^{T_b} c_p dT$

2.8 Tipi di trasformazioni

Se la trasformazione è isocora $Q = \Delta U$, Se la trasformazione è isobara $Q = \Delta H$. Se la trasformazione è isoterma $W_{ab} = \int_A^B p dV = \int_A^B \frac{nRT}{V} dV = nRT \int_A^B \frac{dV}{V} = nRT \log \frac{V_b}{V_a}$.

2.9 Secondo principio della 3.2 termodinamica

E' impossibile realizzare un processo che abbia come unico risultato la trasformazione in lavoro del calorea fornito da una sorgente a temperatura uniforme.

$$\eta = 1 - \frac{T_1}{T_2}$$
 $W_{max} = Q_a \eta_R = Q_a (1 - \frac{T_1}{T_2})$

2.10 Teorema di clausius

Per una macchina che compie un ciclo reversibile si verifica: $\oint \frac{dQ}{T} = 0$. Se la macchina compie un ciclo irreversibile, il risultato dell'integrale è < 0.

2.11 Entropia

Il valore dell'integrale $\int_A^B (\frac{dQ}{T})_{rev}$, esteso ad una qualunque trasformazione reversibile che congiunge due stati di un sistema termodinamico, è sempre lo stesso, cioè non dipende dalla particolare trasformazione reversibile scelta per il calcolo.

3 Elettromagnetismo

3.1 Forza e campo elettrostatico

Carica elettrone: $e = 1.6022 \cdot 10^{-19} \text{ C}$ Forza di coulomb: $F = \frac{1}{4\pi\epsilon_0} \frac{q_1q_2}{r^2}$ con $\frac{1}{4\pi\epsilon_0} = 9 \cdot 10^9 \frac{C^2}{Nm^2}$ Campo elettrostatico: $E = \frac{F}{q_0} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$

3.2 Lavoro elettrico

Lavoro elettrostatico: $W_{AB} = \int_A^B F \cdot ds = q_0 \int_A^B E \cdot ds$

Oppure: $W_{AB} = -\Delta U_e$

Potenziale elettrostatico: $\Delta V = \frac{\Delta U_e}{q_0} = -\int_A^B E \cdot ds$

Potenziale elettrostatico in un punto P: $V = -\int_{\infty}^{P} E \cdot ds$

Potenziale elettrostatico di una carica q: $V = -\int_{\infty}^{P} E \cdot ds = \frac{q}{4\pi\epsilon_0 r}$

Energia potenziale di una carica q
: $U_e = q_0 V(r) = \frac{q_0 q}{4\pi\epsilon_0 r}$

Forza elettromotrice: $\xi = \oint E \cdot ds$

Energia meccanica: $\frac{1}{2}mv^2 + q_0V = cost$ Momento di dipolo elettrico: p = qd

3.3 Legge di gauss

Flusso di un campo elettrostatico: $\Phi(E) = \oint E \cdot u_n d\Sigma = \frac{\sum_i q_{i,int}}{\epsilon_0}$

3.4 Conduttori, condensatori

I conduttori sono nello stato di equilibrio elettrostatico, quindi E=0 all'interno. Capacità condensatore: $C=\frac{q}{\Delta V}$ Energia campo elettrostatico: $U_e=\frac{1}{2}\frac{q^2}{C}=\frac{1}{2}CV^2=\frac{1}{2}qV$

Densità di energia elettrostatica: $u_e = 3.9$ $\frac{U_e}{\tau} = \frac{1}{2}\epsilon_0 E^2$

3.5 Corrente

Corrente istantanea: $\lim_{\Delta t \to \infty} \frac{\Delta q}{\Delta t} = \frac{dq}{dt}$ Densità di corrente: $j = n_+ evd$ Oppure $j = \frac{i}{\Sigma}$

Conduttività elettrica: $\sigma = \frac{j}{E}$

Legge di ohm: V = Ri

Potenza Elettrica: $P = \frac{dW}{dt} = Vi$

Lavoro: $W = \int_0^t Ri^2 dt$

3.6 Forza elettromotrice

Circuito chiuso: $\xi = \oint E \cdot ds = R_T i$ Potenza elettrica: $P = \xi i = Ri^2 + ri^2 + R_T i^2$

3.7 Carica e scarica di un condensatore

Carica:

$$q(t) = C\xi(1 - e^{\frac{-t}{RC}})$$

$$V_c(t) = \frac{q(t)}{C} = \xi(1 - e^{\frac{-t}{RC}})$$

$$i(t) = \frac{dq}{dt} = \frac{\xi}{R}e^{\frac{-t}{RC}}$$

$$V_R(t) = Ri(t) = \xi e^{\frac{-t}{RC}}$$

Scarica:

$$q(t) = q_0 e^{\frac{-t}{RC}}$$

$$V_C = \frac{q}{C} = V_0 e^{\frac{-t}{RC}}$$

$$i(t) = -\frac{dq}{dt} = \frac{q_0}{RC} e^{\frac{-t}{RC}} = \frac{V_C}{R}$$

3.8 Campo magnetico

Forza di Lorentz: $F=qv\times B$ In carica in moto: $B=\frac{\mu_0}{4\pi}\frac{qv\times u_r}{r^2}$ funzione della corrente: $dF=ids\times B$

3.9 Momenti meccanici su circuiti piani

Momento meccanico della coppia di forze: $M = bsen\theta F = iadbBsen\theta = i\Sigma B\sin\theta$

Energia potenziale dipolo magnetico: $U_p = -m \cdot B = -i\Sigma B cos\theta$ Legame energia potenziale e momento:

 $M = -\frac{dU_p}{d\theta} = -mB\sin\theta$

3.10 Moto di una particella carica in un campo magnetico

3.10.1 $\theta = \frac{\pi}{2}$

Raggio di curvatura: $r = \frac{mv}{qB}$ velocità angolare: $\omega = -\frac{q}{m}B$ Periodo: $T = \frac{2\pi m}{qB}$

3.10.2 θ generico

Raggio di curvatura: $r=\frac{mv\sin\theta}{qB}$ Passo d'elica: $p=v_pT=\frac{2\pi mv\cos\theta}{qB}$

3.11 Campo magnetico prodotto da una corroente

Permeabilità magnetica del vuoto: $\mu_0 = 4\pi k_m = 4\pi \cdot 10^{-7} \frac{H}{m}$ Prima legge di laplace: $dB = \frac{\mu_0 i}{4\pi} \frac{ds \times u_r}{r^2}$

Campo magnetico da un circuito chiuso: $B = \frac{\mu_0 i}{4\pi} \oint \frac{ds \times u_r}{r^2}$

Campo magnetico prodotto da una carica in moto: $B = \frac{\mu_0}{4\pi} \frac{qv \times u_r}{r^2}$

3.12 Calcoli di prodotti magnetici da circuiti particolari

3.12.1Filo rettilineo

Lunghezza 2a e raggio R, campo magnetico prodotto: $B = \frac{\mu_0 i a}{2\pi R \sqrt{R^2 + a^2}} u_\phi$ Se facciamo tendere a all'infinito e θ a 0: $B = \frac{\mu_0 i}{2\pi R} u_{\phi}$

3.12.2Spira circolare

Campo magnetico dipendente da x: $B = \frac{\mu_0 i R^2}{2(x^2 + R^2)^{\frac{3}{2}}} u_n$

Campo magnetico x = 0: $B = \frac{\mu_0 i}{2R} u_n$ Campo magnetico $x = \infty$: B

3.12.3Solenoide rettilineo

Numero spire diviso lunghezza: $n = \frac{N}{d}$ Campo magnetico al centro x = 0: $B = \mu_0 ni \frac{d}{\sqrt{d^2 + R^2}}$

Azioni 3.13elettrodinamiche fili percorsi da corrente

 $F_{1,2} = F_{2,1} = \frac{\mu_0 i_1 i_2}{2\pi r}$

del campo magnetico B lungo una Lavoro: $xiidt = Ri^2dt + Lidi$ linea chiusa è uquale alla somma delle correnti concatenate, moltiplicata per u_0 $\oint B \cdot ds = \mu_0 i$

Legge di gauss: $\Phi(B) = \oint B \cdot u_n d\Sigma = 0$ Il flusso del campo magnetico

campi attraverso una superficie chiusa è sempre nulle.

3.14 Campi magnetici variabili nel tempo

Legge di Faraday: $\xi_i = -\frac{d\Phi(B)}{dt}$

Ogni qualvolta il flusso del campo magnetico $\Phi(B)$ concatenato con un circuito varia nel tempo si ha nel circuito una forza elettromotrice indotta data dall'opposto delle derivata del flusso nel tempo.

Se R è la resistenza del circuito, in esso circola la corrente $i = \frac{\xi_i}{R}$.

Legge di Lenz: L'effetto della forza elettromotrice indotta è sempre tale da opporsi alla causa che l'ha generata; pertanto la forza elettromotrice che si manifesta nel circuito è tale da produrre una corrente indotta i cui effetti magnetici si oppongono alle variazioni del flusso $\Phi(B)$ concatenato con il circuito stesso.

Energia magnetica 3.15

Legge di Ampére: L'integrale di linea Potenza erogata: $\xi i = Ri^2 + Li \frac{di}{dt}$

Energia intrinseca della corrente: $U_L = \frac{1}{2}Li^2$

Energia magnetica totale:

Legge Ampére- 4.2 3.16 di Maxwell

I campi magnetici sono prodotto sia dalle correnti di conduzioni che da variazioni temporali del campo elettrico. $\oint B \cdot ds = \mu_0 (i_c + \epsilon_0 \frac{d\Phi(E)}{dt})$

3.17Le equazioni Maxwell

$$\begin{split} &\oint E \cdot u_n d\Sigma = \frac{q}{\epsilon_0} \\ &\oint E \cdot ds = -\frac{d\Phi(B)}{dt} \\ &\oint B \cdot u_n d\Sigma = 0 \\ &\oint B \cdot ds = \mu_0 (i_c + \epsilon_0 \frac{d\Phi(E)}{dt}) \end{split}$$

Situazione nello spazio vuoto privo di cariche e correnti:

$$\oint E \cdot u_n d\Sigma = 0
\oint E \cdot ds = -\frac{d\Phi(B)}{dt}
\oint B \cdot u_n d\Sigma = 0
\oint B \cdot ds = \epsilon_0 \mu_0 \frac{d\Phi(E)}{dt}$$

Unità derivate

Frequenza: $Hz[Heartz]s^{-1}$ Forza: $N[Newton] \frac{kgm}{s^2}$ Pressione: $Pa[Pascal] \frac{N}{m^2}$

Energia, calore, entalpia: lavoro,

J[Joule]Nm

Potenza: $W[Watt] \frac{J}{s}$

Carica elettrica: C[Coulomb]As

Potenziale elettrico, forza di elettromotrice, tensione elettrica: $V[Volt]_{C}^{J}$

Resistenza elettrica: $\Omega[Ohm]\frac{V}{A}$ Capacità elettrica: $F[Farad]_{\overline{V}}^{\overline{C}}$

Densità flusso magnetico: $T[Tesla] \frac{Vs}{m^2}$

Flusso magnetico: Wb[Weber]Vs

Induttanza: $L[Henry] \frac{Vs}{A}$ Velocità: $\frac{m}{s}[Metrisusecondi]$

Accellerazione:

4.3

 $\frac{m}{c^2}[Metrisusecondial quadrato]$

Velocità angolare:

 $\frac{1}{s}[Radiantisusecondi]$

Costanti

Accellerazione angolare:

 $\frac{1}{c^2}[Radiantisusecondial quadrato]$

4 Unità di misura, costanti e prefissi

Unità fondamentali 4.1

Intensità corrente elettrica: A[Ampere]Lunghezza: m[Metro]

Quantità di sostanza: mol[Mole]

Massa: kg[Chilogrammo] Temperatura

termodinamica: K[Kelvin]

Intervallo di tempo: s[Secondo]

Velocità della luce nel vuoto: $c = 299'792, 458 \frac{km}{c}$

Costante di Planck: h = 6,62607015.

 $10^{-34} Js \left[\frac{kgm^2}{s}\right]$ Carica elementare: e=1.602176634 · $10^{-19}C[As]$

Costante di Avogadro: $6.02214076 \cdot 10^{23} mol^{-1}$

Costante dei gas: $R = 8.314 \frac{J}{mol K}$

 ${\it dielettrica}$ Costante nel vuoto:

 $\epsilon_0 = 8.8541 \cdot 10^{-12} \frac{C^2}{Nm^2}$

Costante gravitazionale universale:

 $G = 6.67 \cdot 10^{-12} \frac{Nm^2}{kg^2}$

Permeabilità magnetica nel vuoto: $\mu_0 = 4\pi \cdot 10^{-7} \frac{H}{m}$

4.4 Prefissi

Yotta: 10²⁴

Zetta: 10^{21}

Exa: 10^{18}

Peta: 10^{15}

Tera: 10^{12}

Giga: 10^9

Mega: 10^6

Chilo: 10^3

Uno: 10^0

Milli: 10^{-3}

Micro: 10^{-6}

Nano: 10^{-9}

Pico: 10^{-12}