SYNTHESIS OF LOGIC FUNCTIONS

COMBINATIONAL LOGIC CIRCUITS

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Synthesis of XOR/XNOR Gate

Synthesis of Logic Functions

SYNTHESIS OF XOR/XNOR GATE

SYNTHESIS

Synthesis is the process of transforming a high-level description of a desired functional behavior into a corresponding **hardware circuit** that implements that behavior.

Cooking process analogy

high-level description

logic circuit

EXCLUSIVE-OR GATE

Logic Symbol

Truth Table

A	В	Y	Minterm
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Equivalent Logic Circuit

$$Y = \bar{A}B + A\bar{B}$$

EXCLUSIVE-NOR GATE

Logic Symbol

Truth Table

A	В	Y	Minterm
0	0	1	
0	1	0	
1	0	0	
1	1	1	

Equivalent Logic Circuit

$$Y = \bar{A}\bar{B} + AB$$

SYNTHESIS OF LOGIC FUNCTIONS

Synthesize the logic function describe by the truth table.

В	С	f
0	0	0
0	1	1
1	0	1
1	1	0
0	0	1
0	1	0
1	0	0
1	1	1
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0

Solution

A section of a bubble gumball factory uses a conveyor system equipped with three sensors— s_1 , s_2 , and s_3 to inspect each gumball.

- $s_1 = 1$ if the gumball is too light.
- $s_2 = 1$ if the gumball is too small in.
- $s_3 = 1$ if the gumball is too large in diameter

The conveyor moves gumballs over a trap door that rejects defective ones. A gumball should be rejected if:

- It is too large $(s_3 = 1)$, or
- It is both too light and too small ($s_1 = 1 \& s_2 = 1$).

Synthesize a logic circuit that activates the trap door based on the sensor outputs.

Conveyor and Sensors

Solution

Conveyor and Sensors

Synthesize a logic circuit that controls a single light in a large room with three entry points, each equipped with a switch. The behavior of this three-way light control are as follows:

- 1. The light is OFF when all three switches are open.
- 2. Closing any one of the switches turns the light ON.
- 3. If two switches are closed simultaneously, the light turns OFF.
- 4. If all three switches are closed, the light turns ON again.

Solution

LABORATORY

