Summary of Smart Augmentation

Learning an Optimal Data Augmentation Strategy

Fabian Kahl

2019-01-23

Motivation

Our Problem

- Common problem by training a network:
 - You have not enough data available to maximize the generalization capacity of the network

Approach: Data Augmentation

Problem:

We need more data for the training step!

Idea:

Produce more data by augmentation

Can be done unsupervised or supervised

Unsupervised vs. Supervised

- Unsupervised:
 - Data driven augmentation
 - Done without feedback about the performance

- Supervised:
 - Any kind of controlled augmentation through a teacher

Augmentation Strategies

What We Want

- Supervised augmentation method
- Adjust its augmentation strategy to the current problem
- Does not worsen the trained network

→ Smart Augmentation

Smart Augmentation

- Gets: dataset and feedback from the network
- Finds the best augmentation strategy for classification problems
- Reduces overfitting
- Increases the accuracy of the network

How Does It Work?

Two networks AN and DNN

- Augmentation Network AN:
 - Gets samples from the dataset
 - Generates new samples for DNN
 - Learns the best augmentation strategy

How Does It Work?

Two networks AN and DNN

- Deep Neural Network DNN:
 - Will be trained with the sample from AN
 - Solves the actual claimed task
 - The loss is the feedback for AN

Data from same class

Data from same class

Augmentation Network

- Gets two or more samples from the same class
- Creates a new sample by intelligent blending
 - Approximates data from that class
 - → Contains features from that class

Augmentation Network

- Not important:
 - Quality of generated sample

- Important:
 - Generated sample contains features from the class of the input samples
 - Generated sample is not exactly one of its samples

Augmentation Network

Fabian Kahl

Data from same class

Several Augmentation Networks

Data from same class

Several Augmentation Networks

Several Augmentation Networks

Which One is Better?

- One network for AN:
 - Only two networks have to be managed (AN and DNN)

- Several networks for AN:
 - Every network can learn its own class-specific augmentation strategies

They have only measured the impact of their method

They have not compared their method with other methods

- One network for AN:
 - Reduces overfitting and increases the accuracy significantly

	FERET dataset	Audience dataset
Without Smart Augmentation	83.52%	70.02%
With Smart Augmentation	88.46%	76.06%

- Traditional augmentation and Smart Augmentation:
 - Traditional augmentation have improved the accuracy a little bit from 88.15% to 89.08%
 - Adding Smart Augmentation has improved the accuracy further to 95.66%

- Two networks for the Augmentation Network (AN):
 - Average increase from 92.49% to 93.35%
 - Predominantly better than using just one network for AN

Advantages of Smart Augmentation

- Trains a workable network out of not enough samples
- Increases the accuracy of a neural network
- Reduces its overfitting
- It does not worsen the resulting network
 - → It can be used "blindly" on classification problems

Discussion

Discussion: Potential Improvements

- Concentrated on classification problems
- NOT TESTED: Non-classification problems
- Not possible to come to a final assessment
 - → Should just be used "blindly" if the problem is a classification problem

Discussion: Regression Problems

- Try to predict a value for an input based on previous information
- Estimate a function that maps input to output
- Estimate an actual value
- Examples:
 - Payments → Credit Scores
 - Grades → Landing a Job

Discussion: Relevance for the Community

- Works really well on classification problems
- Is only tested on classification problems

- → Is not a sensational breakthrough
- → But still an important one for training neural networks for classification problems

Summary

- Useful method to improve the training step of neural networks
- Uses a second network that creates samples
- Learns the best augmentation strategy
- Only evaluated on classification problems
- Effect on non-classification problems is unknown

Thank you for your attention!

Questions?

Resources

- Joseph Lemley, Shabab Bazrafkan, and Peter Corcoran. Smart augmentation learning an optimal data augmentation strategy. IEEE Access, 5:5858– 5869, 2017. Modified images used on slides 13 - 26
- Mark Hoffmann & Fabian Kahl. Lab Humanoid Robots: Toy Detection, 2018. Image used on slide 6
- https://campus.datacamp.com/courses/introductionto-machine-learning-with-r/chapter-1-what-ismachine-learning?ex=6 Viewed: 2018-01-13