Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/002335

International filing date: 16 February 2005 (16.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-040376

Filing date: 17 February 2004 (17.02.2004)

Date of receipt at the International Bureau: 14 April 2005 (14.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

18.02.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2004年 2月17日

出 願 番 号

特願2004-040376

Application Number: [ST. 10/C]:

[JP2004-040376]

出 願 人
Applicant(s):

サッポロビール株式会社

2005年 3月31日

特許庁長官 Commissioner, Japan Patent Office 16

1/E

【書類名】 特許願 510-1388 【整理番号】 平成16年 2月17日 【提出日】 特許庁長官殿 【あて先】 C12Q 1/04 【国際特許分類】 【発明者】 静岡県焼津市岡当目10 サッポロビール株式会社 価値創造フ 【住所又は居所】 ロンティア研究所内 中北 保一 【氏名】 【発明者】 サッポロビール株式会社 価値創造フ 静岡県焼津市岡当目10 【住所又は居所】 ロンティア研究所内 土屋 陽一 【氏名】 【特許出願人】 303040183 【識別番号】 サッポロビール株式会社 【氏名又は名称】 【代理人】 【識別番号】 100088155 【弁理士】 長谷川 芳樹 【氏名又は名称】 【選任した代理人】 【識別番号】 100089978 【弁理士】 【氏名又は名称】 塩田 辰也 【選任した代理人】 【識別番号】 100092657 【弁理士】 寺崎 史朗 【氏名又は名称】 【選任した代理人】 【識別番号】 100128381 【弁理士】 清水 義憲 【氏名又は名称】 【手数料の表示】 014708 【予納台帳番号】 21,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】

明細書 1

要約書 1

原寄託についての受託証の写し 1

追って手続補足書にて提出する。

図面 1

【物件名】

【物件名】

【物件名】

【物件名】

【援用の表示】

【書類名】特許請求の範囲

【請求項1】

配列番号1に示す塩基配列の全部又は一部からなるポリヌクレオチド。

【請求項2】

配列番号2に示す塩基配列からなるオリゴヌクレオチドと配列番号3に示す塩基配列か らなるオリゴヌクレオチドとからなる、マレフィラス・シェルビシエ (Malephilus cerev isiae) 検出用プライマーセット。

【請求項3】

配列番号8に示す塩基配列からなるオリゴヌクレオチドと配列番号3に示す塩基配列か らなるオリゴヌクレオチドと配列番号6に示す塩基配列からなるオリゴヌクレオチドとか らなるビール混濁菌の検出・識別用プライマーセット。

【請求項4】

配列番号4に示す塩基配列からなるオリゴヌクレオチドと配列番号7に示す塩基配列か らなるオリゴヌクレオチドと配列番号5に示す塩基配列からなるオリゴヌクレオチドとか らなるビール混濁菌の検出・識別用プローブセット。

【請求項5】

請求項3記載のプライマーセット及び請求項4記載のプローブセットを含むことを特徴 とするビール混濁菌の検出・識別用キット。

【請求項6】

請求項2記載のプライマーセットを用いて核酸断片を増幅する工程、及び、得られた核 酸断片を検出する工程を含むことを特徴とする遺伝子増幅法によるマレフィラス・シェル ビシエ(Malephilus cerevisiae)の検出方法。

【請求項7】

請求項3記載のプライマーセットを用いて核酸断片を増幅する工程、及び、得られた核 酸断片と請求項4記載のプローブセットとのハイブリッドの融解温度を測定する工程を含 むことを特徴とするビール混濁菌の検出・識別方法。

【書類名】明細書

【発明の名称】偏性嫌気性グラム陰性菌の検出・識別方法

【技術分野】

[0001]

本発明は、偏性嫌気性グラム陰性菌の検出・識別方法に関する。

【背景技術】

[0002]

近年のビールの生ビール化への流れは、ビール鮮度という新たな価値観をもたらした。 こうした背景から、ビール製造会社にとっては、ビールの製造から出荷までの時間を劇的 に短縮するために、ビールを混濁させる菌(ビール混濁菌)の汚染を迅速かつ正確に判定 する必要が高まっている。

[0003]

偏性嫌気性菌であるペクチネータス属菌 (Pectinatus) 及びメガスフェラ属菌 (Megasp hera)は、製品ビールの嫌気度が高まるにしたがって汚染事故の原因菌としての危険度が 増すため、これらの菌群を迅速かつ正確に検出することが望まれている。これらの菌群の 検出方法として、従来より、抗原抗体反応を利用した検出法 (例えば、非特許文献 1 参照)、PCR法(ポリメラーゼ連鎖反応法)による検出法(例えば、特許文献1参照)、F ISH法(蛍光in situハイブリッド形成法)による検出法(例えば、特許文献2 参照)などが知られている。

【特許文献1】特再平09-820071号公報

【特許文献2】特開2001-145492号公報

【非特許文献 1 】 J. Am. Soc. Brew. Chem.: 51(4), 158-163, 1993

【発明の開示】

【発明が解決しようとする課題】

[0004]

しかしながら、本発明者らは、ビールを混濁させる新規な偏性嫌気性グラム陰性菌を発 見し、上記従来技術の方法では当該菌を検出できない可能性があることを見出した。

[0005]したがって、本発明の目的は、従来の方法では検出できなかった、ビールを混濁させ得 る偏性嫌気性グラム陰性菌を検出する方法を提供することにある。本発明の目的は、さら に、当該菌を含めた様々なビール混濁菌を同時に検出・識別する方法を提供することにあ る。

【課題を解決するための手段】

[0006]

上記目的を達成するために、本発明は、配列番号1に示す塩基配列の全部又は一部から なるポリヌクレオチドを提供する。

[0007]

また、本発明は、配列番号2に示す塩基配列からなるオリゴヌクレオチドと配列番号3 に示す塩基配列からなるオリゴヌクレオチドとからなる、マレフィラス・シェルビシエ(Malephilus cerevisiae) 検出用プライマーセット、並びに、当該プライマーセットを用 いて核酸断片を増幅する工程、及び、得られた核酸断片を検出する工程を含むことを特徴 とする遺伝子増幅法によるマレフィラス・シェルビシエ(Malephilus cerevisiae)の検 出方法を提供する。

[0008]

さらに、本発明は、配列番号8に示す塩基配列からなるオリゴヌクレオチドと配列番号 3に示す塩基配列からなるオリゴヌクレオチドと配列番号6に示す塩基配列からなるオリ ゴヌクレオチドとからなるビール混濁菌の検出・識別用プライマーセット、配列番号4に 示す塩基配列からなるオリゴヌクレオチドと配列番号7に示す塩基配列からなるオリゴヌ クレオチドと配列番号5に示す塩基配列からなるオリゴヌクレオチドとからなるビール混 濁菌の検出・識別用プローブセット、当該プライマーセット及び当該プローブセットを含

[0009]

本発明者らは、既知の方法では検出できないビールを混濁させ得る偏性嫌気性グラム陰 性菌であるマレフィラス・シェルビシエ(Malephilus cerevisiae)を分離することに成 功し、Malephilus cerevisiae SBC8034株(未承認名)の16S リボソーマルRNA遺 伝子(16S rRNA遺伝子)の塩基配列が配列番号1に示す塩基配列であることを明 らかにした。本菌株は、独立行政法人 産業技術総合研究所 特許生物寄託センターに寄 託されており、その寄託番号はFERM BP-08528である。

[0010]

Malephilus cerevisiae検出用プライマーセットを用いることにより、Malephilus cere r R N A 遺伝子を特異的に増幅することができるため、Malephilus cer visiaeの16S evisiaeを検出することが可能となる。

[0011]

また、ビール混濁菌の検出・識別用プライマーセットを用いることにより、様々なビー とビール混濁菌の検出・識別用プローブセットとのハイブリッドを形成させ、当該ハイブ リッドの融解温度を測定することにより、核酸断片の由来している混濁菌の種類の違いに よって融解温度が異なるため、融解温度の違いによりビール混濁菌の検出及び識別するこ とが可能となる。

【発明の効果】

$[0\ 0\ 1\ 2]$

従来の方法では検出できなかった、ビールを混濁させ得る偏性嫌気性グラム陰性菌を検 出する方法、当該菌を含めた様々なビール混濁菌を同時に検出・識別する方法を提供する ことができる。

【発明を実施するための最良の形態】

$[0\ 0\ 1\ 3\]$

以下、本発明の好適な実施形態について詳細に説明する。

$[0\ 0\ 1\ 4]$

<ポリヌクレオチド>

まず、本発明のポリヌクレオチドについて説明する。本発明のポリヌクレオチドは、配 列番号1に示す塩基配列の全部又は一部からなることを特徴とするが、配列番号1に示す 塩基配列の相補配列の全部又は一部からなるポリヌクレオチドをも含む。ここで、配列番 号1は、ビールを混濁させ得る偏性嫌気性グラム陰性菌であるMalephilus cerevisiaeの るように、Malephilus cerevisiaeを検出する上で有用であり、Malephilus cerevisiae検 出用プライマー、プライマーにより増幅された核酸断片、検出用プローブ等として使用可 能である。また、本発明のポリヌクレオチドは蛍光物質等により化学修飾されていてもよ 6.1

[0015]

本発明のポリヌクレオチドがMalephilus cerevisiae検出用プライマー又は検出用プロ ーブとして使用される場合には、ヌクレオチドの長さが15~25であるオリゴヌクレオ チドであることが望ましい。プライマーの設計は、当業者であれば容易に行うことができ 、必要があれば、プライマー設計支援ソフトウェアを利用して設計することも可能である

[0016]

なお、本発明において「ポリヌクレオチド」及び「オリゴヌクレオチド」とは、DNA 、RNA及びPNA(ペプチド核酸)を含む意味で用いられる。また、本発明のポリヌク レオチド及びオリゴヌクレオチドは、例えば、ホスホロアミダイト法等の公知の方法によ り合成することが可能である。

[0017]

<Malephilus cerevisiaeの検出>

次に、本発明のMalephilus cerevisiae検出用プライマーセット及びそれを用いたMalep hilus cerevisiaeの検出方法について説明する。本発明のMalephilus cerevisiae検出用 プライマーセットは、配列番号 2 に示す塩基配列からなるオリゴヌクレオチドと配列番号 3に示す塩基配列からなるオリゴヌクレオチドとからなることを特徴とし、両オリゴヌク レオチドはMalephilus cerevisiaeの16S rRNA遺伝子に特異的な塩基配列を有し ことができるため、Malephilus cerevisiaeを特異的に検出することが可能である。

[0018]

本発明の検出方法によりMalephilus cerevisiaeの検出を行うには、まず、試料(例え ば、ビールや発泡酒などの麦芽飲料)から核酸を抽出する。核酸の抽出は、当技術分野で 公知の方法を使用することによりでき、具体的には例えば、フェノール抽出及びエタノー ル沈殿を行う方法、ガラスビーズを用いる方法などによりDNAを抽出することができ、 AGPC法やグアニジン・塩化セシウム超遠心法などによりRNAを抽出することができ

[0019]

次に、得られた核酸を鋳型とし、前記プライマーセットを用いて核酸断片を増幅する。 増幅方法として、当技術分野で公知の増幅方法を用いることができるが、特に、PCR法 又はRT-PCR法が好ましい。PCR法では、抽出されたDNAを鋳型として、DNA ポリメラーゼにより、16S rRNA遺伝子のうちプライマーセットに挟まれた部分の 塩基配列からなる核酸断片が増幅される。PCR法では、変性、アニーリング、相補鎖合 成からなるサイクルを繰り返すことにより核酸断片(二本鎖DNA)が、各工程の温度や 時間、サイクル数等のPCRの最適条件は、当業者であれば用意に決定することができる 。RT-PCR法では、抽出されたRNAを鋳型として、逆転写酵素によりcDNAを合 成し、得られたcDNAを鋳型としてPCR法を行うものである。

[0020]

次に、増幅された核酸断片を検出する。すなわち、増幅された核酸断片がMalephilus c erevisiaeに特異的なものか否かを判定する。検出は、当技術分野で公知の方法により行 うことができ、例えば、Malephilus cerevisiaeに特異的にハイブリダイズするプローブ を用いたハイブリダイゼーションにより行うことが可能である。また、増幅された核酸断 片の融解温度を測定することにより、核酸断片を検出することも可能である。

[0021]

融解温度の測定は、当技術分野で公知の方法により行うことができるが、例えば、増幅 された核酸断片を含む溶液にSYBR Green Iなどの核酸染色試薬を添加し、溶 液の温度を上昇させながら蛍光強度を連続的に測定し、得られた融解温度曲線を分析する ことにより融解温度を測定することが可能である。核酸染色試薬は核酸断片を増幅する反 応溶液に混ぜておくことができるため、核酸断片の増幅反応が終了後ただちに核酸断片を 検出することができる。したがって、1つのチューブやキャピラリー内で、核酸断片を増 幅する工程と得られた核酸断片を検出する工程とを連続して行えるため、核酸染色試薬を 用いて増幅された核酸断片の融解温度を測定する方法が特に好ましい。また、本方法は、 検出感度が高いという利点もある。

[0022]

本発明のMalephilus cerevisiae検出用プライマーセットにより増幅されるMalephilus cerevisiae由来の核酸断片の融解温度は約88℃であり、試料の融解温度と比較すること により、試料中にMalephilus cerevisiaeが含まれているか否かの判定を行うことができ 、Malephilus cerevisiaeの検出が可能である。

[0023]

<ビール混濁菌の検出・識別>

最後に、本発明のビール混濁菌の検出・識別用プライマーセット、プローブセット及び キット並びにそれらを用いたビール混濁菌の検出・識別方法について説明する。

[0024]

本発明のビール混濁菌の検出・識別用プライマーセットは、それぞれ配列番号8、3及び6に示す塩基配列からなるオリゴヌクレオチドからなることを特徴とする。配列番号8に示す塩基配列からなるオリゴヌクレオチドは、16S rRNA遺伝子のユニバーサルプライマーである。本発明のプライマーセットを用いることにより、様々なビール混濁菌の核酸断片を増幅することが可能である。

[0025]

本発明のビール混濁菌の検出・識別用プローブセットは、それぞれ配列番号4、7、5に示す塩基配列からなるオリゴヌクレオチドからなることを特徴とする。本プローブセットは、以下に述べるように、様々なビール混濁菌の核酸断片を検出するのに用いることができ、ビール混濁菌を検出・識別することが可能である。

[0026]

本発明のビール混濁菌の検出・識別用キットは、前記プライマーセットと前記プローブセットを含むことを特徴とする。本キットは、さらに、反応バッファー、dNTP混合物、酵素などを含んでいてもよく、DNA抽出試薬などを含んでいてもよい。

[0027]

本発明の検出・識別方法によりビール混濁菌を検出・識別するには、まず、試料(例えば、ビールや発泡酒などの麦芽飲料)から核酸を抽出する。核酸の抽出は、前述と同様の方法により行うことができる。

[0028]

次に、得られた核酸を鋳型とし、前記プライマーセットを用いて核酸断片を増幅する。 増幅は、前述と同様の方法により行うことができ、PCR法又はRT-PCR法が好まし い。

[0029]

次に、得られた核酸断片と前記プローブセットとのハイブリッドを形成させ、ハイブリ ッドの融解温度を測定する。融解温度の測定原理の概要は次のとおりである。配列番号4 及び7に示す塩基配列からなるオリゴヌクレオチドは、それぞれ5′末端が蛍光物質であ るLC Red640及びLC Red705で標識されている(以下、それぞれ「Re d 6 4 0 プローブ」及び「Red705プローブ」という。)。一方、配列番号5に示す 塩基配列からなるオリゴヌクレオチドは、3.末端がFITCで標識されている(以下、 「FITCプローブ」という。)。そして、各プローブは、FITCプローブの3'末端 とRed640プローブ及びRed705プローブの5、末端とが近接してビール混濁菌 の核酸断片とハイブリダイズするように設計されている。核酸断片にFITCプローブと Red640プローブ(又はRed705プローブ)とがともにハイブリダイズしている 状態で、ハイブリッドにFITCの励起波長の光を照射すると、FRET(蛍光共鳴エネ ルギー移動)が生じ、Red640(又はRed705)の蛍光波長の光が観察される。 この状態から温度を上昇させていくと、FITCプローブ及び/又はRed640プロー ブ(又はRed705プローブ)が融解して核酸断片から剥がれていき、それに従ってF RETが生じなくなりRed640(又はRed705)の蛍光強度が減少していく。そ して、各温度における蛍光強度を測定し、横軸に温度をとり、縦軸に蛍光強度(変化率も 含む)をとれば、融解曲線が得られる。このようにして得られた融解曲線を解析すること により、ハイブリッドの融解温度を求めることができる。

[0030]

FITCプローブ及び/又はRed640プローブ(又はRed705プローブ)は、核酸断片とのミスマッチの程度がビール混濁菌の種類によって差が生じるように設定してある。したがって、ビール混濁菌の種類によって、ハイブリッドの示す融解曲線及び融解温度が異なるため、その違いに基づいてビール混濁菌の種類を判別することが可能である

。具体的には、Malephilus cerevisiaeは約65℃、Megasphaera cerevisiaeは約48℃ 及び約56℃、Pectinatus frisingensisはで約63℃、Pectinatus cerevisiiphilusは 約54℃の融解温度を示す。試料の融解温度とこれらの融解温度を比較することにより、 試料中に含まれているビール混濁菌の検出・識別を行うことができる。

[0031]

なお、本発明のプローブセットは、核酸断片を増幅する反応溶液に混ぜておくことがで きるため、核酸断片の増幅反応が終了後ただちに融解温度を測定することができる。した がって、本発明のビール混濁菌の検出・識別方法は、1つのチューブやキャピラリー内で 核酸断片を増幅する工程と融解温度を測定する工程を連続して行えるという利点がある。

[0032]

【実施例】

以下、実施例を挙げて本発明について更に詳しく説明するが、本発明はこれらの実施例 に限定されるものではない。

[0033]

(実施例1) M. cerevisiaeの植菌によるビールの混濁

M. cerevisiae SBC8034株を、0.2%のリンゴ酸を添加したGAM寒天培地(日水製 薬社)で増殖させた。M. cerevisiae SBC8034株の1白金耳量を瓶入りの全麦芽ビール(p H 4. 5、苦味価30、アルコール5%、容量350mL)に植菌し、ビール瓶に打栓 をし、30℃にて約1ヶ月間培養を行ったところ、ビールが混濁した。

[0034]

表1は培養1ヶ月後の混濁ビール中の有機酸の濃度(ppm)を示したものである。M. cerevisiae SBC8034株を植菌した混濁ビールは、正常ビールに比べ、リンゴ酸やコハク 酸の濃度が約2倍になっていた。

[0035]

【表1】

有機酸	正常ビール	混濁ビール	% (混濁/正常)
リンゴ酸	8 9	162	182
コハク酸	6 6	168	255
乳酸	191	220	1 1 5
酢酸	158	2 2 1	140
プロピオン酸	< 1	< 1	_

[0036]

(実施例2) 168 rRNA遺伝子のシークエンス

(ゲノムDNAの調製)

M. cerevisiae SBC8034株を、0.2%のリンゴ酸を添加したGAM寒天培地に植菌し 30℃にて、7~14日間、嫌気培養を行った。なお、嫌気培養は、タバイエスペック 社製の嫌気培養装置を用い、N2:H2:CO2=90:5:5という条件で行った。嫌 気培養したM. cerevisiae SBC8034株の菌体から、DNA抽出液PrepMan Ultra (アプライ ド・バイオシステムズジャパン社)を用いて、DNAの抽出を行った。

[0037]

(168 rRNA遺伝子の増幅・解析)

上記方法により調製したDNA抽出液について、MicroSeg Full Gene 16S rDNAキット (アプライド・バイオシステムズジャパン社) を用いて、M. cerevisiae SBC8034株の 1 6S rRNA遺伝子のシークエンスを行った。シークエンスの結果得られたM. cerevis iae SBC8034株の16S rRNA遺伝子配列を配列番号1に示す。本遺伝子配列は、ビ ールを混濁させる偏性嫌気性グラム陰性菌であるペクチネータス属菌及びメガスフェラ属 菌の遺伝子配列とは、明らかに異なっていた。さらに、GenBank等のデータベース

検索を行ったが、登録されている何れの遺伝子配列とも一致しなかった。従って、M. cer evisiaeはビールを混濁させる新規な偏性嫌気性グラム陰性菌であることが明らかとなっ た。

[0038]

(実施例3) リアルタイムPCRを用いたM. cerevisiaeの検出および識別

実施例2と同様の方法により、ビールを混濁させ得る様々な菌株からDNAを抽出し、 得られたDNA抽出液について、配列番号2及び3に示す塩基配列からなるオリゴヌクレ オチドをプライマーとして用いて、表2に示した反応試薬の組成でPCRを行った。

[0039]

【表2】

試薬	容量
LightCycler-FastStart DNA Master SYBR Green I*	2. 0 µ L
プライマー(10μM)	各1.0μL
MgCl ₂ (25mM)	1. 6 μ L
滅菌水	13.9 µ L
DNA抽出液	0. 5 μ L
合計	20.0µL

^{*:} ロシュ・ダイアグノスティックス社製

[0040]

反応装置にLightCyclerクイックシステム330(ロッシュ・ダイアグノスティックス社製) を用い、95℃で10分間処理した後、1サイクルを95℃で15秒間、50℃で5秒間 、72℃で20秒間とし、それを40サイクル繰り返すことによりPCRを行った。

[0041]

PCR終了後引き続いて95℃まで温度を上昇させた後、直ちに65℃まで冷却し、同 温度を15秒間保持した後、20℃/秒の割合で95℃まで温度を上昇させた。この加熱 の間、530nmの蛍光強度を0.2℃毎に測定し、その値の一次微分の負の値(-dF /dT)をプロットして生じるピークにより融解温度を決定した。

[0042]

表3に様々な菌株のPCR産物に対して融解温度約88℃のピークが出現したか否かを 示す。表3から明らかなように、M. cerevisiaeのみに約88℃の融解温度を示すピーク が観察された。このことから、配列番号2及び3に示す塩基配列からなるオリゴヌクレオ チドからなるプライマーセットを用いることにより、M. cerevisiaeを特異的に検出でき ることが明らかとなった。

[0043]

なお、使用した一部の菌株(サッポロビール分離株)については、実施例2と同様の方 法により、16S rRNA遺伝子配列からの菌種決定を行った。

[0044]

供試菌株(グラム陰性菌)	88°C Ø	供試菌株(グラム陽性菌)	88℃ თ
供試图体(グラム展出品)	ピーク		ピーク
Malephilus cerevisiae SBC8034	+	Lactobacillus brevis SBC8003	
Malephilus cerevisiae SBC8065	+	Lactobacillus brevis ID197-1	
Malephilus cerevisiae SBC8066	+	Lactobacillus collinoides	_
		JCM1123	
Pectinatus cerevisiiphiuls	_	Lactobacillus buchneri JCM1115	
VTT-E-79105			
Pectinatus frisingensis	_	Lactobacillus lindneri	_
VTT-E-79100		VTT-E-82166	
Pectinatus frisingensis ID107-9	_	Lactobacilius paracasei	_
		ID196-1	
Megasphaera cerevisiae JCM6129	_	Lactobacillus malefermentans	_
		ID140-3	
Prevotella corporis JCM8529	_	Lactobacillus plantarum	_
_		ID158-1	
Zymomonas mobilis subsp.	_	Lactobacillus coryniformis	_
mobilis 1F013756		subsp. coryniformis JCM1164	
Enterobacter aerogenes JCM1235		Pediococcus damnosus BC8022	
Klebsiella aerogenes ATCC15050	_	Lactococcus lactis ID169-1	<u> </u>
Rahnella aquatilis ID252-2		Staphylococcus warneri 1D249	
Cedecea davisae ID313-9			

JCM: Japan Collection of Microorganisms, Saitama, Japan

ATCC: American Type Culture Collection, USA

VTT: Valtion Teknillinen Tutkimuskeskus, Finland

SBC, ID: サッポロビール分離株

[0045](実施例4) リアルタイムPCRを用いた偏性嫌気性グラム陰性菌の検出および識別 実施例2と同様の方法により調製した様々な菌株のDNA抽出液について、プライマー として配列番号8に示す塩基配列からなるオリゴヌクレオチド(168 rRNA遺伝子 のユニバーサルプライマー、5'-TGGAGAGTTTGATCCTGGCTC-3') 並びに配列番号3及び6 に示す塩基配列からなるオリゴヌクレオチドを使用し、プローブとして配列番号4の塩基 配列からなるオリゴヌクレオチド(3)末端をリン酸化し、5)末端をLC Red64 0でラベルしてある)、配列番号7の塩基配列からなるオリゴヌクレオチド(3)末端を リン酸化し、5、末端をLC Red705でラベルしてある)及び配列番号5の塩基配 列からなるオリゴヌクレオチド(3)末端をFITCでラベルしてある)を使用し、表4 に示した反応試薬の組成でPCRを行った。

[0046]

【表 4】

試薬				容量
LightCycler-FastStart	DNA	Master	Hybridization	2. 0 μ L
Probes*				
プライマー($10\mu M$)				各 1. O μ L
プローブ (10μM)				各0.4 μ L
MgC 1 ₂ (25 m M)				1. 6 μ L
滅菌水				11.7 μ L
DNA抽出液				0. 5 μ L
合計				20.0 µ L
			h is affect	

*:ロッシュ・ダイアグノスティックス社製

[0047]

反応装置に、LightCyclerクイックシステム330(ロッシュ・ダイアグノスティックス社 製)を用い、95℃で10分間処理した後、1サイクルを95℃で15秒間、50℃で5 秒間、72℃で20秒間とし、それを40サイクル繰り返すことによりPCRを行った。

[0048]

PCR終了後引き続いて95℃まで温度を上昇させた後、直ちに40℃まで冷却し、同 温度を15秒間保持した後、20 $\mathbb{C}/$ 秒の割合で95 \mathbb{C} まで温度を上昇させた。この加熱 の間、640 n m 及び710 n m の蛍光強度を0.2℃毎に測定し、その値の一次微分の 負の値 (-dF/dT) をプロットして生じるピークにより融解温度を決定した。

[0049]

その結果、M. cerevisiae SBC8034株は640nmで約65℃、Megasphaera cerevisia e JCM6129株は640nmで約48℃及び約56℃、Pectinatus frisingensis VTT-E-791 00株は710 nmで約63℃、P. cerevisiiphilus VTT-E-79105株は710 nmで約54 ℃の融解温度を示すピークが観察された。図1及び図2は、蛍光強度の変化率(-dF/ d T) と温度 (℃) との関係を表わす融解曲線である。図1は640nmにおける (a) Megasphaera cerevisiae JCM6129株及び(b)M. cerevisiae SBC8034株の融解曲線を、 図2は710nmにおける(c)P. cerevisiiphilus VTT-E-79105株及び(d)Pectinat us frisingensis VTT-E-79100株の融解曲線を示す。上記の4つの菌株以外の菌株は、融 解曲線においてピークを示さなかった。なお、本実施例において用いた菌株は表3に示し た菌株と同一である。

[0050]

以上より、上記プライマーおよびプローブを用いることにより、同時に複数の偏性嫌気 性グラム陰性菌の検出・識別をすることが可能であることが確認された。

【図面の簡単な説明】

[0051]

【図1】640nmにおける(a)Megasphaera cerevisiae JCM6129株及び(b)M. cerevisiaeSBC8034株の融解曲線である。

【図2】710nmにおける(c)P. cerevisiiphilus VTT-E-79105株及び(d)Pe ctinatus frisingensis VTT-E-79100株の融解曲線である。

【配列表】

SEQUENCE LISTING

<110> Sapporo Breweries Ltd.

<120> A method for detecting and determining obligatory anaerobe Gram-negative bacteria

<130> 510-1388

<160> 8

<170> PatentIn version 3.1

<210> 1

<211> 1395

<212> DNA

<213> Malephilus cerevisiae

<220>

<221> source

(1)...(1395)<222>

<223> strain="SBC8034"

<220>

<221> misc_feature

 $\langle 222 \rangle$ (98)..(98)

<223> n stands for any base

<400> 1

tgagtggcga actggtgagt aacgcgtatc caacctggcc gtaagcagag aataggcttc 60 cgaaagaaag attaatgctc tatgtagtca cccgaagnca tcggaaggtg accaaagatc 120 cgtcgcttac ggatggggat gcgtctgatt aggcagttgg cggggcaaag gcccaccaaa 180 ccgacgatca gtagggttct gagaggaagg tcccccacat tggaactgag acacggtcca 240 aactcctacg ggaggcagca gtgaggaata ttggtcaatg ggcgagagcc tgaaccagcc 300 aagtagcgtg caggacgacg gccctatggg ttgtaaactg cttttgaagg ggaataaagt 360 gagcgacgtg tcgttcattg caagtaccct tggaataagg accggctaat tccgtgccag 420 cagccgcggt aatacggaag gtccgggcgt tatccggatt tattgggttt aaagggagcg 480 taggccgctc tttaagcgtg ttgtgaaatg caggtgccca acatctgcac tgcagcgcga 540

<210> 2

<211> 20

<212> DNA

<213> Artificial

<220>

<223> a primer

<400> 2

ggaaggtgac caaagatccg

20

<210> 3

<211> 22

<212> DNA

<213> Artificial

<220>

<223> a primer

<400> 3 ttgcaatgaa cgacacgtcg ct

22

<210> 4 <211> 21

<212> DNA

<213> Artificial

<220>

<223> a probe

<220>

<221> modified_base

<222> (1)..(1)

<223> LC Red640 labelled

<220>

<221> modified_base

<222> (21)..(21)

<223> phosphorylated

<400> 4

gccccgccaa ctgcctaatc a

21

<210> 5

<211> 22

<212> DNA

<213> Artificial

<220>

<223> a probe

<220>

<221> modified_base

<222> (22)..(22)

<223> FITC labelled

<400> 5

ctgatcgtcg gcttggtggg cc

22

<210> 6

<211> 20

<212> DNA

20

22

21

```
<213> Artificial
<220>
<223> a primer
<400> 6
ggctttctaa cagggtaccg
<210> 7
<211> 22
<212> DNA
<213> Artificial
<220>
<223> a probe
 <220>
 <221> modified_base
 <222> (1)..(1)
 <223> LC Red705 labelled
 <220>
 <221> modified_base
 \langle 222 \rangle (22)...(22)
 <223> phosphorylated
 <400> 7
 accgtcacca accagctaat ca
  <210> 8
  <211> 21
  <212> DNA
```

<213> Artificial

tggagagttt gatcctggct c

<223> a universal primer for 16S rRNA gene

<220>

<400> 8

【書類名】図面 【図1】

【書類名】要約書

【要約】

従来の方法では検出できなかった、ビールを混濁させ得る偏性嫌気性グラム陰 【課題】 性菌を検出する方法、当該菌を含めた様々なビール混濁菌を同時に検出・識別する方法を 提供する。

配列番号1に示す塩基配列の全部又は一部からなるポリヌクレオチド。 【解決手段】

【選択図】 なし。

特願2004-040376

出願人履歴情報

識別番号

[303040183]

1. 変更年月日 [変更理由]

2003年 7月17日 新規登録

L 変 更 理 田 」 住 所

東京都渋谷区恵比寿四丁目20番1号

氏 名 サッポロビール株式会社