

Categorical		Numerical									
City	Ordinal	Bin	ary		One	Hot		Frequency			
Taipei	0	0	0	0	0	0	1	0.2			
New York	1	0	1	0	0	1	0	0.2			
London	2	1	0	0	1	0	0	0.2			
Tokyo	3	1	1	1	0	0	0	0.4			
Tokyo	3	1	1	1	0	0	0	0.4			

				Ani	mal		
	Tuna	Cat	Frog	Cod	Goat	Dog	Cow
Bin	0	0	0	0	0	0	1
Binary	1	0	0	0	0	0	 0
	÷	÷	:	÷	:	:	÷
	0	0	1	0	0	0	1

	Animal								Size				Color					
	Tuna	Cat	Frog	Cod	Goat	Dog	Toad	Cow	Large	Mid	Small	Tiny	White	Black	Red	Blue	Green	Gray
Binary	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0
ary	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
	÷	÷	÷	÷	÷	÷	÷	:	:	÷	÷	÷	:	:	:	÷	:	÷
	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0

	Group 1	Group 2	Group 3
Z	10	4	7
Numerical	2	3	6
ical	:	:	ŧ
	7	1	3

When the data is not follow the One Hot rule, can't use other method to transform the binary data. If only can we find a way in representing the numerous binary features data in a much simple way...

	Tuna	Cat	Frog	Cod	Goat	Dog	Toad	Cow	Large	Mid	Small	Tiny	White	Black	Red	Blue	Green	Gray
	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0
Binary	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
	:	:	:	:	:	:	:	÷	÷	÷	:	:	÷	÷	÷	:	÷	÷
	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0

- 1. Grouping similar, correlated features
- 2. Sequencing features in each feature group
- 3. BCD encode on each feature group

Tiny	Cat	Large	Black	White	Cow
1	1	0	1	0	0
0	0	1	0	1	1
:	:	:	:	:	:
0	0	1	0	1	1

- 1. Grouping similar, correlated features
- 2. Sequencing features in each feature group
- 3. BCD encode on each feature group

Tiny	Cat	Large	Black	White	Cow
1	1	0	1	0	0
0	0	1	0	1	1
÷	:	:	:	:	:
0	0	1	0	1	1

- 1. Grouping similar, correlated features
- 2. Sequencing features in each feature group
- 3. BCD encode on each feature group

Cat	Cow	Black	White	Tiny	Large
1	0	1	0	1	0
0	1	0	1	0	1
i	:	:	:	:	:
0	1	0	1	0	1

BCD

Methodology

- 1. Grouping similar, correlated features
- 2. Sequencing features in each feature group
- 3. BCD encode on each feature group

Cow	Cat	White	Black	Tiny	Large
0	1	0	1	1	0
1	0	1	0	0	1
:	÷	:	:	:	÷
1	0	1	0	0	1

- 1. Grouping similar, correlated features
- 2. Sequencing features in each feature group
- 3. BCD encode on each feature group

Animal	Color	Size
1	1	2
2	2	1
÷	÷	i i
2	2	1

Methodology - Grouping

			Ani	mal							
Cow	Cat	Goat	Dog	Frog	Toad	Tuna	Cod				
		V									
	Size										
Large Mid Small Tiny											
		\	/								
			Co	lor							
White	e Bla	ack	Gray	Red	Bl	ue (Green				
	\	/									
	Health Status										
Good											
	V										

Binary Data (Total:300 sample, 200 good, 100 bad)

Methodology - Grouping

Methodology - Sequencing

Secondly, sequencing features in each group by columns' attributes, for outputting better BCD values after encode.

- 1. Column sum
- 2. Type impurity
- 3. Feature importance

Sequence

BCD

Methodology - Sequencing

Methodology - Sequencing

Methodology - BCD code

Decimal		ВС	CD	
digit	8	4	2	1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Methodology - sum up

Column Grouping Clustering related or similar columns together into groups. Sequencing Rearrange columns in group, for a more distinctive /competitive BCD value. **Binary-Coded Decimal** 3. Transform column groups into a numerical value with BCD.

Case study

In Case study, we compare classification results with the commonly used variable encoding method under different datasets.

- 1. Simulated datasets
- 2. Kaggle dataset

Simulated data (3300 samples, 3000 Good, 300 Bad)

Simulated data - binarize

Simulated data - seq. by sum

Simulated data - seq. comparison

Simulated data - Dimension reduction

Continuous data - Classification

Simulated data - Classification

Kaggle dataset

Kaggle dataset - Classification

Kaggle dataset - Classification

Conclusion

In this research, we develop a method to encode binary feature data into numerical data, which can compress the binary features information to reduce dimension while remaining a certain level in ML model classification performance. The main advantage of this method compare to traditional encoding methods are:

- 1. Encoding Binary features without group knowledge to numerical data.
- 2. Adjust the number of features of encoded numerical data.
- 3. Remain ML model performance with certain sequencing method.