Domača naloga 5. (samostojno reševanje):

5. Procesiranje prostorskih zvokov s pomočjo skupine mikrofonov (»Acoustic beamforming«)

Operacijo križne korelacije oziroma kovariance smo že spoznali pri laboratorijski vaji z radarjem in v nekaj prejšnjih nalogah. Danes jo bomo uporabili še na enem primeru iz prakse. Realizirali bomo t.i. "Sum and delay acoustic digital beamformer" ali oblikovalnik akustičnega snopa s pomočjo operacij zakasnitve in seštevanja¹.

Osnovna ideja tovrstnih sistemov je ta, da zvok v prostoru snemamo z več mikrofoni na različnih pozicijah v prostoru. Na ta način zajamemo več nekoliko različnih signalov, iz katerih lahko z dodatno obdelavo pridobimo boljšo informacijo o zvoku, ki prihaja iz posameznih izvorov v prostoru. Pri omenjenem sistemu izkoriščamo predvsem dejstvo, da zvok od posameznih izvorov pride do mikrofonov zaradi različnih razdalj v različnih časovnih trenutkih. To lahko izkoristimo in te signale časovno »poravnamo« in seštevamo. S tem v splošnem povečujemo amplitudo želenega signala in zmanjšujemo amplitude ostalih signalov v prostoru, ki prihajajo z drugačnimi časovnimi zakasnitvami iz drugih pozicij v prostoru. Na ta način lahko poudarimo zvok iz določene pozicije v prostoru v primerjavi z ostalimi izvori ali motnjami. S tem oblikujemo snop večje občutljivosti v smeri določenega izvora zvoka – od tod tudi angl. izraz – Acoustic Beamforming.

 0°

Na podoben način deluje tudi naš sluh. Verjetno vam je znana sposobnost, da v prostoru z več govorci lahko samo s poslušanjem

lociramo posamezne govorce in bolje slišimo govor le izbranih govorcev (t.i. "Cocktail Party Effect").

Pri reševanju te naloge bomo imeli na voljo naslednje posnetke:

- ločena, mono posnetka z neposredne bližine dveh govorcev: moškega (man.wav) in ženske (woman.wav)
- posnetke zajete s petimi mikrofoni obeh govorcev v nekem prostoru (mic_xa.wav x=1..5)
- posnetke zajete s petimi mikrofoni moškega govorca v nekem prostoru ob izrazitejši prisotnosti motenj (mic xb.wav x=1..5)

5.1 »Fokusiranje« enega od dveh govorcev v prostoru

V tej situaciji imamo v prostoru 2 govorca na različnih pozicijah. Realizirati želimo sistem, ki bo iz posameznih signalov, zajetih na petih mikrofonih v prostoru (mic_xa.wav x=1..5) oblikoval 2 izhodna signala, v katerih bo poudarjen govor enega od obeh govorcev. Oba govorca smo snemali tudi z mikrofonom v njuni neposredni bližini (»man.wav« in »woman.wav).

Naloge:

- **5.1.a** Realizirajte sistem in ga opišite s poudarkom na razlagi njegovega delovanja in kode v Scilabu oziroma izbranem orodju.
- **5.1.b** Preizkusite ga na podanem primeru in analizirajte njegovo uspešnost.

 $^{^{\}rm 1}$ V slovenskem jeziku mi ni znan dober in splošno znan prevod.

- **5.1.c** Če ustrezno časovno poravnane signale (označene kot pmicx) na določenega govorca seštejete po naslednjem izrazu : pmic1-pmic2+pmic3-pmic4, dobite zanimiv učinek. Opišite ga in ga pojasnite. Kakšen način zlivanja signalov bi bil boljši za opisano situacijo v tej nalogi ? Kaj pa v splošnem ?
- **5.1.d** Ali bi lahko preostali govorni signal iz prejšnje podnaloge 5.1.c izboljšali oziroma popravili, da bi bil bolj podoben originalnemu govoru ? Če da, kako ?

5.2 Zmanjšanje nivoja motenj v zajetih signalih moškega govorca v prostoru

V tej situaciji imamo v prostoru moškega govorca na določeni poziciji v prostoru ob izrazitejši prisotnosti motenj. Realizirati želimo sistem, ki bo iz posameznih signalov, zajetih na petih mikrofonih v prostoru (mic_xb.wav x=1..5) oblikoval izhodni signal, v katerem bo poudarjen govor moškega govorca in znižan nivo motenj v primerjavi z zajetimi signali. Na voljo imamo tudi mono posnetek govorca z neposredne bližine brez prisotnosti motenj (»man.wav«).

Namig: v tovrstnih primerih izvedemo postopek »fokusiranja« oziroma poudarjanja govorca in pri tem lahko v splošnem pričakujemo zmanjšanje nivoja motenj...

Naloge:

- **5.2.a** Realizirajte sistem in ga opišite s poudarkom na razlagi njegovega delovanja in kode v Scilabu oziroma izbranem orodju.
- **5.2.b** Preizkusite ga na podanem primeru in analizirajte njegovo uspešnost pri zniževanju nivoja motenj.

5.3 Analiza učinkovitosti in izboljšave sistemov iz 5.1 in 5.2.

Za oba sistema (vkolikor je potrebno, lahko tudi za vsakega posebej) odgovorite na naslednja vprašanja oziroma izzive :

- **5.3.a** Kaj lahko iz danih podatkov in signalov sklepate o pozicijah mikrofonov v prostoru?
- 5.3.b Ena od lastnosti sistema, ki lahko negativno vpliva na njegovo uspešnost je dejstvo, da lahko zaznamo časovno poravnanost signalov samo v celem številu vzorcev. Kako bi ta vpliv v praksi čimbolj zmanjšali (npr. izbira vzorčevalne frekvence, lege mikrofonov v prostoru itd...)?