Standard Error: variability of multiple samples of population

Standard Deviation: variability of individual point

Degree of Freedom: Data sizes are large enough it is generally insignificant

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \quad \sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mu)^{2} \quad SE(\bar{X}) = \sigma_{\bar{X}} = \sigma / \sqrt{n} \quad SE(p) = \sqrt{\frac{p(1-p)}{n}}$$

Null Hypothesis: status quo or existing knowledge | T-statistic / Z-statistic

	H_0	H_A	H_0	H_A
Left-tailed	$\mu \geq \mu_0$	$\mu < \mu_0$	$p > p_0$	$p < p_0$
Right-tailed	$\mu \leq \mu_0$	$\mu > \mu_0$	$p < p_0$	$p > p_0$
Two-tailed	$\mu = \mu_0$	$\mu \neq \mu_0$	$p = p_0$	$p \neq p_0$

One-sample Two-sample (A/B testing)

The sample
$$t_{data} = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$
 $t_{data} = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ $Z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$ $\frac{p_1 - p_2}{\sqrt{\frac{p_{pooled} \cdot (1 - p_{pooled})(\frac{1}{n_1} + \frac{1}{n_2})}}$

F-statistic = $SSG = \sum_{i=1}^{k} n_i (\bar{x}_i - \bar{x})^2$ $SSE = \sum_{i=1}^{k} (n_i - 1) s_i^2$ $SST = \sum_{i=1}^{n} (x_i - \bar{x})^2$ $MSG = \frac{1}{df_G}SSG$ Residuals $df_E = n - k$ $MSE = \frac{1}{df_E}SSE$ $df_T = n - 1$

Confidence Interval = point estimate ±margin of error

 $CI = \bar{X} \pm Z * (\frac{\sigma}{\sqrt{n}})$ $p \pm Z\alpha_{/2} \sqrt{\frac{p(1-p)}{n}}$ $Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \quad E = t\alpha_{/2} (\frac{S}{\sqrt{n}})$ Confidence Interval
0.9
0.1
1.645

Margin of Error↓: sample size 1/ confidence level ↓

Chi-Square Test

 H_0 : All proportions are the same

 $= \bar{X} \pm t_{n-1} (1 - \alpha) * (\frac{s}{\sqrt{n}}) \begin{vmatrix} 0.95 \\ 0.99 \end{vmatrix}$

$$R = \frac{observed - expected}{\sqrt{expected}}$$

$$df = (r-1)*(c-1)$$

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c R^2$$

Analysis of Variance (ANOVA)

Statistical procedure that tests for statistically significant differences among multiple categories H_0 : Average web stickiness is identical for all pages ($\mu_1 = \mu_2 = \mu_3 = \mu_4$) H_A :The average web stickiness varies by page

Exploratory Factor Analysis (EFA): understand the structure in data. Similar to PCA, creating components and loading, but EFA attempts to find solutions that are maximally interpretable and and interpreted by factor loading and naming factors.

Attribute Types	Visualization			
category-category	Contingency table, contour plot			
measure-measure	Correlation matrix, scatter plot			
category-measure	Side-by-side box plots or violin plots			
Attribute Description	orintian Evamples			

Attribute	Description	Examples
Nominal	"Name" or identifier. Represents some category or state (also referred as categorical attributes) There is no order (rank, position) among values of nominal attribute	Gender, marital status, occupation, ID numbers, zip codes
Ordinal	Similar to nominal except the values have a meaningful order	Street number, grades, ranks,
Interval	Differences between values is meaningful	Temperature in C or F, IQ scores, SAT scores
Ratio	Similar to interval except there is a "true zero" so it is meaningful to talk about ratios between values	Temperature in K, age, monetary value, mass, length

Q-Q (Quantile-quantile) plots: test of normality Expected Z-Score of data element at that percentile Straight line: normal distribution / Deviation: curves, outliers

Principle Component Analysis (PCA): Reduce the number of dimensions while retaining as much information as possible. Mitigate multicollinearity by creating uncorrelated variables (PC)

- Standardize the data → ensure all variable have the same impact on the results
- Compute the covariance matrix \rightarrow Heat map $Z_1 = \phi_{11} X_1 + \phi_{21} X_2 + \cdots + \phi_{p1} X_p$ Choose a number of principal components to retain \rightarrow Scree plot
- Transform the original data using the projection matrix

Biplot: displays both the scores and loadings in a PCA on the same plot, showing projections of both original data points (points) and variables

Scree plot: show the variance contribution of each PC, determining the optimal number of PC to retain. The Elbow points determine the amount of PC

Interquartile Range (IQR) $= Q_3 - Q_1$

Coefficient of Variation (CV) $CV = \frac{\sigma}{\mu} * 100$

$$CV = \frac{\sigma}{\mu} * 100$$

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \mu)^2}{n}$$

Missing Completely at Random (MCAR): independent Data entries are missing due to mishandling or loss of some patient forms regardless of any patient characteristics or outcomes. Missing at Random (MAR): depend on observed data Patients in a certain age group are less likely to fill out a follow-up survey about treatment outcomes, and age is recorded in the dataset. Missing Not at Random (MNAR): depend on unobserved data Patients experiencing severe side effects from a treatment are less likely to report their follow-up outcomes due to their health condition.

Outlier: bad data/ different types / good data

- Z-scores: beyond 4-5 standard deviation / IQR rule: <25 or >75 percentile with 1.5 IQR
- Histogram, Boxplots
- Domain-specific rules: based on expert knowledge or business logic (e.g. age > 120 is invalid)

Poisson: Discrete / Skewed: Continuous / Bimodal: two distinct peaks (mode) Exponential: Time between events, customer arrive time, time between bus arrival Lognormal: always positive, stock prices, population and company sizes

Bootstrapping: Draw multiple samples with replacement from the sample and recalculate the statistic or model result for each response:

- Draw n samples with replacement from the original sample
- Record the statistic (e.g., mean) of the n sampled values
- Repeat R times
- Use the R results to: Calculate their standard deviation (to estimate the standard error) / Produce a histogram or boxplot / Find a confidence interval

Permutation tests: Draw multiple samples without replacement Randomly select 21 observations from the group of 36

- Calculate their average
- Calculate the average of the other 15
- Calculate the <u>difference</u> between the two averages
- Repeat this procedure a large number of times and observe the results (via a histogram or similar visualization)

P-value: x of n permutations have a difference of their means greater than original means, p-value = x/n. If p-value > alpha, reject H0 and accept HA

Obs	Х	Y				
1	4.3	2.4				
2	2.1	1.1				
3	2.8					
Original Data						

Х	Y		Obs	Х	Υ	Obs	Х	Y	Obs	Х	Y
3	2.4		2	2.1	1.1	3	5.3	2.8	2	2.1	1.1
1	1.1		3	5.3	2.8	1	4.3	2.4	2	2.1	1.1
3	2.8		1	4.3	2.4	3	5.3	2.8	1	4.3	2.4
al Dat	a	Bootstrap			Bootstrap)		Bootstra	30		

	OLS	_ ^			
3	2	2.1	1.1		
1	2	2.1	1.1		
3	1	4.3	2.4		
	Bootstrap				

Approach	F105	Cons		
Classical statistics • Fast and computationally efficient • Works well for normally distributed data and simple parametric models. • Well-established theoretical foundation		Relies on assumptions (e.g., normality, independence, equal variance). Can be imaccurate for small samples, skewed distributions, or complex models. Does not generalize well to non-parametric problems or cases where standard error formulas are difficult or impossible to derive		Chi-Square Test Example 1. Calculate the totals Value W = 2 + 3 + 3 = 8 Group A = 2+4+5+4 = 15
Computational statistics	No distributional assumptions—works well for skewed or non-normal data. Works for small sample sizes where normal approximations may fail. More flexible—can be applied to complex models where standard errors are hard or impossible to derive.	Computationally expensive, e datasets. Can be sensitive to the numb samples—too few can lead to estimates. May be harder to interpret co parametric approaches with o	er of bootstrap o unstable mpared to	Total = 75 2. Compute the expected counts Expected W = (8*15)/75 =
Shirt Size (Large, M	edium, Small)		Ordinal	
Temperature in deg	rees Celsius		Interval	3. Compute the R values
Customer satisfactions (1: very dissatisfied,, 5: very satisfied)			Ordinal	$R = \frac{observed - expect}{\sqrt{expected}}$
GRE test score			Interval	$\sqrt{expected}$
Types of payment methods (Credit card, cash, check)			Nominal	4. Compute the Chi-square Statis
Day of the week			Nominal	Sum of total = Chi-Square :
Zip code			Nominal	Classical Statistics
Student ID number		Nominal	Small to moderate sample size	
Age of a person		Ratio	Independent, identically distributed data	
Duration between the start and end dates of proje		ject Ratio		
			-	Mathematically tractable
				Well focused questions

Chi-Square Test Example		Group A	Group B	Group C	
1. Calculate the totals	Value W	2	3	3	
Value W = $2 + 3 + 3 = 8$	Value X	4	6	8	
Group A = 2+4+5+4 = 15	Value Y	5	8	10	
Total = 75	Value Z	4	10	12	
2. Compute the expected counts		Group A	Group B	Group C	
Expected W = (8*15)/75 = 1.6	Value W	1.6	2.88	3.52	
Expected W = (6 15)/75 = 1.0	Value X	3.6	6.48	7.92	
	Value Y	4.6	8.28	10.12	
3. Compute the R values	Value Z	5.2	9.36	11.44	
		Group A	Group B	Group C	
$R = \frac{observed - expected}{\sqrt{expected}}$	Value W	0.316	0.071	-0.277	
V 1	Value X	0.211	-0.189	0.028	
4. Compute the Chi-square Statistic	Value Y	0.186	-0.097	-0.038	
Sum of total = Chi-Square = 0.66	Value Z	-0.526	0.209	0.166	
Classical Statistics		Со	mputational	Statistics	
Small to moderate sample size	Large	e to very larg	e sample siz	e	
Independent, identically distributed data sets	Nonhomogeneous data sets				
Mathematically tractable	Numerically tractable				
Well focused questions	Imprecise questions				
Strong unverifiable assumptions Relationships (linearity, additivity) Error structures (normality)	Rela	Weak or no assumptions Relationships (nonlinearity) Error structures (distribution free)			

Predominantly iterative algorithms

Predominantly closed form algorithms