BT-303 (Biochemical Engineering)

Mid-Sem Examination

Date: 19.09.2024

Q1: Ethanol formation from glucose is accomplished in a batch culture of Saccharomyces cerevisiae, and the following data were obtained.

Time (h)	Glucose (S), g/L	Biomass (X), g/L	Ethanol (P)
0	100	0.5	0.0
2	95	1.0	2.5
10	85	2.1	7.5
10	58	4.8	20.0
20	30	7.7	34.0
25	12	9.6	43.0
30	3	10.4	47.5
50	2	10.7	49.0

The growth of the organism is characterized by the logistic equation as follows:

$$\frac{dx}{dt} = kX\left(1 - \frac{\ddot{x}}{\chi_{max}}\right)$$
; where \ddot{X} is average biomass concentration during Δt

(a)By fitting the biomass data to the logistic equation, determine the carrying-capacity

(b) Determine yield coefficients $Y_{P/S}$ and $Y_{X/S}$.

Q2: The specific growth rate for inhibited growth due to substrate inhibition in a chemostat is given by the following equation:

$$\mu_g = \frac{\mu_m S}{K_s + S + \frac{IK_s}{K_I}}$$

Where, $S_0 = 10$ g/l, $K_S = 1$ g/l, I = 0.05 g/l, $Y_{X/S} = 0.1$ g cells/g substrate $X_0 = 0$ g/i, $K_1 = 0.01$ g/l, $\mu_m = 0.05$ h⁻¹, $k_d = 0$

- (a) Determine X and S as a function of D when I=0
- (b) With inhibitor added to the chemostat, determine the effluent substrate concentration and X as a function of D
- (c) Determine the cell productivity, as a function of dilution rate. Marks: 3+3+2 = 8

Q3: Ethanol is produced by anaerobic fermentation of glucose by Saccharomyces cerevisiae. For the particular strain of S. cerevisiae employed, the maintenance coefficient is 0.18 kg kg⁻¹ h^{-1} , Y_{xs} is 0.11 kg kg⁻¹, Y_{px} is 3.9 kg kg⁻¹ and μ_{max} is 0.4 h⁻¹. It is decided to investigate the possibility of using *Zymomonas mobilis* bacteria instead of yeast for making ethanol. *Z. mobilis* is known to produce ethanol under anaerobic conditions using a different metabolic pathway to that employed by yeast. Typical values of Y_{xs} are lower than for yeast at about 0.06 kg kg⁻¹; on the other hand, the maintenance coefficient is higher at 2.2 kg kg⁻¹ h⁻¹. Y_{px} for Z. mobilis is 7.7 kg kg⁻¹; μ_{max} is 0.3 h⁻¹.

Equation for formation of ethanol from glucose:

$$C_6H_{12}O_6 \xrightarrow{1} 2C_2H_5OH + 2CO_2$$

- (a) From stoichiometry, what is the maximum theoretical yield of ethanol from glucose?
- (b) S. cerevisiae and Z. mobilis are cultured in batch fermenters. Predict the observed product yield from substrate for the two cultures.
- (c) What is the efficiency (observed product yield/theoretical product yield) of ethanol production by the two organisms? Efficiency is defined as the observed product yield from substrate divided by the maximum or theoretical product yield.
- (d) How does the specific rate of ethanol production by Z. mobilis compare with that by S. cerevisiae?

Marks: 2+2+2+2 = 8

Q4: Define following:

- (a) Active transport with example
- (b) Passive diffusion
- (c) Adenylate Energy Charge
- (d) Enzyme level regulation with schematic

Marks: 2+1+1+2=6