<HW#3>

제출일	2023.04.30	전공	소프트웨어학과
과목	영상처리	학번	2020039096
담당교수	최경주 교수님	이름	백인혁

1. Convolution

<Original>

//박스 마스크

```
Mat Box = (Mat_<float>(3, 3) <<
1. / 9., 1. / 9., 1. / 9.,
1. / 9., 1. / 9., 1. / 9.,
1. / 9., 1. / 9., 1. / 9.);
```

//가우시안 마스크

<박스>

<가우시안>

//샤프닝 마스크 Mat Sharpening = (Mat_<float>(3, 3) << 0., -1., 0., -1., 5., -1., 0., -1., 0.);

```
//수평 에지 마스크
Mat HorizonEdge = (Mat_<float>(3, 3) <<
1., 1., 1.,
0., 0., 0.,
-1., -1., -1.);
```

```
//수직 에지 마스크
Mat VerticalEdge = (Mat_<float>(3, 3) <<
1., 0., -1.,
1., 0., -1.,
1., 0., -1.);
```

<샤프닝>

<수평 엣지>

<수직 엣지>

<모션>

```
//모션 마스크
Mat Motion = (Mat_<float>(5, 5) <<
0.0304, 0.0501, 0.0000, 0.0000, 0.0000,
0.0501, 0.1771, 0.0519, 0.0000, 0.0000,
0.0000, 0.0519, 0.1771, 0.0519, 0.0002,
0.0000, 0.0000, 0.0519, 0.1771, 0.0501,
0.0000, 0.0000, 0.0000, 0.0501, 0.0304);
```


2. Gaussian Smoothing Filter

(1) getGaussianKernel() 사용

(2) GaussianBlur() 사용

3. Noise Removal

(1) 이미지에 노이즈 생성

(2) Smoothing Linear Filters(Mean Filter) - OpenCV::blur()

(2) Gaussian Smoothing Filter - getGaussianKernel()

<솔트 & 페퍼 노이즈 - Gaussian Smoothing Filter>

<가우시안 노이즈 - Gaussian Smoothing Filter>

(3) Median Filter - medianBlur()

<솔트 & 페퍼 노이즈 - Median Filter>

<가우시안 노이즈 - Median Filter>

(4) 분석

- -솔트 & 페퍼 노이즈의 경우 Median Filter를 사용했을 때 노이즈 제거 효과가 가장 컸다.
- -가우시안 노이즈의 경우 Mean, Gaussian, Median Filter 모두 노이즈 제거 수준이 대체적으로 비슷하였으나, 가우시 안 필터를 사용하였을 때 노이즈가 가장 많이 제거되었고, 영상의 뭉게짐이 가장 적었다.

따라서, 솔트 & 페퍼 노이즈 영상에는 Median Filter, 가우시안 노이즈 영상에는 Gaussian Filter를 사용하는 것이 좋은 결과를 얻을 수 있다.