Note

- Each question carries 5 Marks.
- Attempt all 6 questions
- It is compulsory to submit scanned handwritten assignment in UMS on or before 28th August 2020.

Set 1

- 1. Design DFA for the strings, in which third and fourth characters of the strings should be 'c' and 'b' over the $\Sigma = \{a,b,c\}$
- 2. Convert the following NFA to DFA

Present state	Nex	t state
→90	90,91	9,
91	91192	92
92	92193	95
93	90	90

Present	Next	state
state	a	Ь
→ 90	4 4	92
9,	4 ,	42
92	٩,	92
93	9,	9.2
94	94	9,

4. Convert the following Moore machine to Mealy machine

Propert	Nead	state	Oak
fresent state	a	Ь	put
→A	P /	B	0
B	В	T	1
c	A	C	0/
D	₿.	D	V
			! [

5. Convert the following mealy machine to moore machine

F	resent Olate	input = a	Output	input = 6 Next state	Output
	→A B C	B C D	00-	A D B	0
	D	E A	0	A E	1

6. Design NDFA for the binary strings, which accepts only odd length of strings over the $\Sigma = \{0,1\}$

Note

- Each question carries 5 Marks.
- Attend all 6 questions
- It is compulsory to submit scanned handwritten assignment in UMS on or before 28th August 2020.

Set 2

- 1. Design DFA for the strings, in which second character of the sting should be 'a' over the set $\Sigma = \{a,b,c\}$
- 2. Convert the following NFA to DFA

Present State	Ne:	ct state
→90 9, 92 93	90,91 91,92 92,93 90,91	94 92 92 95,90 90

\[\]	De cort	Next	state	_
	Present State	a	Ь	
r	→A	P	B	
	$\mathfrak B$	В) C	
	С	A	C	
	(D)	₿.	D	

4. Convert the following moore machine to mealy machine

Present	Next	state	a d aud
state	a) b_	Oofbor
→90	9 ₄	92	o
9,	ą, T	42	1
92	9,0	92	٥
93	93	9.2	١ ،
9 lx	94	9,	1

5. Convert the following mealy machine to moore machine

P	resent Olate	input = 0	Output	input = _1	Output
1	- A A	В	`	P	0
1	B	Č	١	D	'
1	۷	D (١	C	\
	C	E	\	a	0
	D	A	0	E	١

6. Design NFA for the binary strings which accepts only even length of strings over the $\Sigma = \{0,1\}$

Note

- Each question carries 5 Marks.
- Attend all 6 questions
- It is compulsory to submit scanned handwritten assignment in UMS on or before 28th August 2020.

Set 3

- 1. Design DFA for the strings, in which the third character of the strings should be 'c' and also last character of the strings should be 'b' over the $\Sigma = \{a,b,c\}$
- 2. Convert the following NFA to DFA

Present State	Next	state
→90	90,91	9, 92
91	91192	92,93
92	92,93	95,90
93	90,91	90,94

Present	Next	state
state	ď	<u> </u>
→90	9,1	92
9,	42	વૃક
q ₂	4,	93 92
93	q,	9.2
94)	94	9,

4. Convert the following moore machine to mealy machine

Prosent	Next	state	Oak
Present State	a	Б	put
→A	P /	B	0
B	В	D	
С	A	С	$ \cdot $
D	₽.	D	11
			Ш

5. Convert the following mealy machine to moore machine

P	resent OLate	input = a	Output	input = 6 Next state	Output
	→A B	8 C	-00	А Д В	0
	C	EA	١,	AE	0

6.Design NFA for the binary strings , which accepts the strings in which third character of the string should be '1', over the $\Sigma = \{0,1\}$

Note

- Each question carries 5 Marks.
- Attend all 6 questions
- It is compulsory to submit scanned handwritten assignment in UMS on or before 28th August 2020.

Set 4

- 1. Design DFA for the Language L, in which third character of the strings should be 'c' and also first character of the string should be 'b' over the set $\sum = \{a,b,c\}$
- 2. Convert the following NFA to DFA

Present	Nex	l state
Present state	Q.	d
⇒ค	AvB	8,4
В	B,c	د
C	ע	A
(D)	B	C

Present	Next	Slate	
state	ď	b_	_
→90	$q_{\rm L}$	92	
9,	9 ₄	42	
q ₂	9,0	92	
q _z	93	9.2	
94	94	9,	

4. Convert the following Moore machine to mealy machine

Pro cort.	Next	state	Oak
Present State	a	Ь	put
→A	P /	B	1
B	B	D	0
С	ן ע	C	Y
Q	₽.	D	
			լ

5. Convert the following mealy machine to moore machine

F	resent Olate	Next & ole	Output	Next state	Output
	-> ⁄A B	8 C	00	A D	\
	C	DE	0	A	`
	E	A	1	E	1

6. Design NFA for the binary strings, which accepts strings with 2^{nd} last alphabet is 1, over the $\Sigma = \{0,1\}$

Note

- Each question carries 5 Marks.
- Attend all 6 questions
- It is compulsory to submit scanned handwritten assignment in UMS on or before 28th August 2020.

Set 5

- 1. Design DFA for the strings, in which third character of the strings should be 'a' and also last two characters of the strings should be 'ab' over the $\Sigma = \{a,b,c\}$
- 2. Convert the following NFA to DFA

Present	Next state	
Present .	O.	Ь
⇒A	A,B	8,0
В	8,0,0	C
_ c	D'C	A
(<u>a</u>)	B	C

Present	Next	state
state	a	<u>b</u>
→ 90	q,	92
9,	92	43
92	વ્ઢ	24
9,3	q,	9.2
94	94	9,

4. Convert the following moore machine to mealy machine

Present	Next	5 Ote	0 7 01q
state	a	Ь	Oofbox
→90	9 ₄	92	0
9,	q_1^{T}	વૃ	1
92	9,0	9.4	0
93	93	9.2	0
Ork	94	9,	0

5. Convert the following mealy machine to moore machine

F	resent Olate	Next & ale	Output	Next state	Output
	> ∕A B	8 C	00	A D	\
	C	DE	,	A	`
	E	A		E	

6. Design NFA, for the binary strings, which accepts even length of string over the $\Sigma = \{0,1\}$

Roll No	Set No
1	Set 1
2	Set 1
3	Set 1
4	Set 1
5	Set 1
6	Set 1
7	Set 1
8	Set 1
9	Set 1
10	Set 1
11	Set 1
12	Set 1
13	Set 1

14	Set 1
15	Set 1
16	Set 2
17	Set 2
18	Set 2
19	Set 2
20	Set 2
21	Set 2
22	Set 2
23	Set 2
24	Set 2
25	Set 2
26	Set 2
27	Set 2
28	Set 2
29	Set 2
30	Set 2
31	Set 3
32	Set 3
33	Set 3
34	Set 3
35	Set 3
36	Set 3
37	Set 3
38	Set 3
39	Set 3
40	Set 3
41	Set 3
42	Set 3
43	Set 3
44	Set 3
45	Set 3
46	Set 4
47	Set 4
48	Set 4
49	Set 4
50	Set 4
51	Set 4
52	Set 4
53	Set 4
54	Set 4

55	Set 4
56	Set 4
57	Set 4
58	Set 4
59	Set 4
60	Set 4
61	Set 5
62	Set 5
63	Set 5
64	Set 5
65	Set 5
66	Set 5
67	Set 5
68	Set 5
69	Set 5
70	Set 5
71	Set 5
72	Set 5
73	Set 5
74	Set 5
136	Set 5