

	from a random subset of the training data and a random set of Foatures.
	The averaging effect reduces the total varionce and noise from each individual tree.
Hyperpa	rameters
Models	have grameters and hyper parameters.
	Parameters: Selected based on loss function
	Hyperparameters: Selected based on perfamance on validation set.
To find	hyperparans: 1. Randonly partian data into train/validation
	2. For all possible hyperparom values, train nodel using training set.
	3 Evaluate each model using validation set and picle the hyper parameters that have boursed validation error

4 Ke train model with all data l-train	t validation)
with chosen hyper parameters-	

Some tips for finding hyperparameters:

- 1. Perform a log-scale search to get an approximate range
- Do not wait for guesses that make the training times too long
- 3. For Decision Trees:
 - The number of classes is a good starting point for the minimum number of data in a leaf node (overfitting vs underfitting trade-off). This can be done by setting a threshold for minimum entropy
 - 2. Tree depth is likely <20; data points in a leaf is related to binary tree depth by N/2k
 - If splitting the data on a feature did not reduce entropy, retry the split with a different 3. feature

4. For Random Forests:

- When building random forests, make sure each model gets enough features and data points: approximately 90-100% of the features and 50-60% of the training data
- Number of trees should be related to how much each tree is overfitting 2.

