

What we have learnt

- Fundamentals image concepts
- Machine vision systems
- Geometric operations

Content

- Arithmetic operations
- Logic operations
- Histograms

- We all know basic arithmetic operations like addition and subtraction.
- The idea is to apply a simple function:

$$y = f(x)$$

To each image values:

$$y = x \pm C$$

$$y = xC$$

Where C is a constant.

- Note that, with arithmetic operations we need to keep in mind the limits of our colour space and data type
- RGB images have pixels that fall within the range [0, 255]
- What happens if we are examining a pixel with intensity 250 and we try to add 10 to it?
- Under normal arithmetic rules, we would end up with a value of 260.
- However, since RGB images are represented as 8-bit unsigned integers, 260 is not a valid value.

- So, what should happen? There isn't no correct way to handle image additions and subtractions that fall outside the range of [0, 255].
- It simply depends on how you are manipulating your pixels and your goals.
- The most common procedures are:
 - Normalization: store the result temporarily in a bigger type variable and recalculate the result using equation:

$$g = \frac{Lmax}{fmax - fmin} (f - fmin)$$

Truncation: cut off everything that goes outside the range of used type.

- Take note that there is a difference between OpenCV and NumPy addition
 - OpenCV ensures pixel values never fall outside the range [0, 255]
 - NumPy will perform a modular arithmetic and wrap around

- *e.g.*: 200 + 100 =
 - **OpenCV** max: 255 and min 0
 - **Numpy** 44

DEPARTAMENTO CIÊNCIA E TECNOLOGIA

Logic Operations

- Logic operations operate in a binary manner and are represented as grayscale images
- A given pixel is turned "off" if it has a value of zero, and it is turned "on" if the pixel
 has a value greater than zero

Logic Operations

- AND: A bitwise AND is true if and only if both pixels are greater than zero
- OR: A bitwise OR is true if either of the two pixels are greater than zero
- XOR: A bitwise XOR is true if and only if either of the two pixels are greater than zero, but not both
- **NOT**: A bitwise NOT inverts the "on" and "off" pixels in an image.

Logic Operations

Logic Operations: AND

A bitwise AND is true if and only if both pixels are greater than zero

Logic Operations: OR

A bitwise OR is true if either of the two pixels are greater than zero

Logic Operations: XOR

A bitwise XOR is true if and only if either of the two pixels are greater than zero, but not both

Logic Operations: NOT

A bitwise NOT inverts the "on" and "off" pixels in an image.

Masking

- Masking is an extremely powerful and useful technique in computer vision and image processing
- It allows to focus only on the portions of the image that interests to us
- Imagine we were building a computer vision system to recognize faces. The only parts of the image we want are those which contain faces
- The remaining content is discarded.

Masking

Splitting and Merging Channels

- A colour image consists of multiple channels: RGB
- We can access those components via NumPy arrays
- Is it possible to split an image into its respective components?

YES!

Splitting

Red

Merging

Colour spaces

- Histograms have become a popular tool for image statistics
- It helps to determine certain problems in an image
- A histogram represents the distribution of pixel intensities
- In histograms, the X-axis serves as our "bins"
- If we construct a histogram with 256 bins, then we are effectively counting the number of times each pixel value occurs

- A histogram is not enough to draw qualitative conclusions about the overall quality of the image (presence or absence of noise, etc.)
- Nevertheless, it carries significant qualitative and quantitative information about the corresponding image (e.g., minimum, average, and maximum grey level values, dominance of bright or dark pixels, etc.).
- By simply examining the image histogram, we have a general understanding regarding the contrast, brightness, and intensity distribution
- The left side of the histogram corresponds to lower pixel values. If the frequency at lower pixel values is very high, it indicates darkness
- The right side of the histogram corresponds to higher pixel values. If the frequency at higher pixel values is very high, it indicates saturation.

- The goal is to improve the contrast of an image by rescaling the histogram
- Consider a histogram with a large peak in the centre. Applying histogram equalization, the pixel intensity will be distributed through the image
- Histogram equalization is applied to grayscale images
- This method is useful when an image contains foregrounds and backgrounds that are both dark or light
- It tends to produce unrealistic effects in photographs; however, it is normally useful when enhancing the contrast of medical or satellite images.

X

Histograms Equalization

Figure 1

AP.GE

- The histogram equalization is very useful to recognize objects.
- It uses the following algorithm:
 - Compute the histogram
 - Normalize the histogram to ensure that all values are between 0 and 255
 - Cumulative distribution function
 - Transform the image

The contrast enhancement is ensured.

Grey level i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 n_i 15 0 0 0 0 0 0 0 0 0 110 45 80 40 0 0

Grey level i	n_i	$\sum n_i$	$(1/24)\Sigma n_i$	Rounded value
0	15	15	0.63	1
1	0	15	0.63	1
2	0	15	0.63	1
3	0	15	0.63	1
4	0	15	0.63	1
5	0	15	0.63	1
6	0	15	0.63	1
7	0	15	0.63	1
8	0	15	0.63	1
9	70	85	3.65	4
10	110	195	8.13	8
11	45	240	10	10
12	80	320	13.33	13
13	40	360	15	15

Original grey level i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Final grey level j 1 1 1 1 1 1 1 1 1 4 8 10 13 15 15

Let's play with images!

Examples

- Consider the matrix [250] and [10]. Add both matrixes using numpy and cv2. See the differences.
- Download images arithmetic1.jpg and arithmetic2.jpg from Moodle. Then, using the arithmetic operation add both images and see the result.
- Execute logic operations with both images: and, or, not. See the results
- Plot the histogram of arithmetic1.jpg and analyse the result

Do conhecimento à prática.