性能特点

● 频率范围

整数模式: 0.078125~20GHz 小数模式: 0.078125~20GHz

● 归一化噪底:

整数模式: -235dBc/Hz 小数模式: -230dBc/Hz

● 最高鉴相频率:

整数模式: 300MHz 小数模式: 200MHz

● 6*6mm QFN 40L 的封装形式

典型应用

- 无线基础设施
- 点对点无线电
- 点对多无线电
- 测试设备和仪器

功能框图

概述

SIPL351SP6为一款集成VC0的宽带频综,支持0.078125~20GHz射频带宽输出,最高 鉴相频率300MHz(整数模式)/200MHz(小数模式)。

芯片内部无预二分频器,集成参考分频器、鉴相器、电荷泵、反馈分频器及24Bit小数分频调制器模块,AFC自动校准算法,10~20GHz VCO直出。

电性能表(TA=+25°C, VCCD1G=VCCCP=VCCMASH=VPPBUF=VCCBUF2=VCCVCO=3.3V)

7m1 14 45 445	t#./ 7.	* /-		指标参数	
测试参数	描述	单位	最小值	典型值	最大值
	•	输出参数	· 数		•
VCO基频		GHz	10		20
输出功率	单端输出	dBm		0	
二次谐波	Fout=15GHz	dBc		25	
		输入路征	조		
参考输入频率	开启2倍频	MHz		TBD	
多名制八州平	关闭2倍频	MHz		500	
参考输入功率	5~200MHz	dBm	-5		10
		鉴相器和	电荷泵参数		
鉴相器频率	整数模式	MHz	2		300
III 11 11 11 11 11 11 11 11 11 11 11 11	小数模式	MHz	2		200
射频频率范围	整数模式	GHz	0. 078125		20
3,73,73,7,70,121	小数模式	GHz	0. 078125		20
CP电流		mA		7. 6	
复位电流		mA		180	
关断电流		mA		25	
功耗	Fout=15GHz,A打开,B通 道关闭,分频全关	mA		370	

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

电性能表(TA=+25°C, VCCDIG=VCCCP=VCCMASH=VPPBUF=VCCBUF2=VCCVC0=3.3V)

	NEW 19 45 W/	IHAB			 指标参数	
	测试参数	描述	单位	最小值	典型值	最大值
		PLL闭环	参数			•
	归一化噪底	整数模式, PD=100MHz, VC0=15GHz	dBc/Hz		-235	
		小数模式, PD=100MHz, VCO=15. 0001GHz	dBc/Hz		-230	
	归一化闪烁噪声	整数模式@10 kHz offset	dBc/Hz		-131	
	归一化闪烁噪声	小数模式@10 kHz offset	dBc/Hz		-130	
	相位噪声@1kHz		dBc/Hz		-100	
	相位噪声@10kHz	DD=100MI	dBc/Hz		-108	
相位	相位噪声@100kHz	PD=100MHz, PREF=10dBm,Fout=10GHz	dBc/Hz		-111	
噪声	相位噪声@1MHz	整数模式	dBc/Hz		-109	
	相位噪声@10MHz		dBc/Hz		-144	
	相位噪声@100MHz		dBc/Hz		-152	
	相位噪声@1kHz		dBc/Hz		-99	
相位	位 相位噪声@10kHz		dBc/Hz		-106	
噪声	相位噪声@100kHz	PD=100MHz, PREF=10dBm, Fout=10.0001GHz	dBc/Hz		-108	
	相位噪声@1MHz	小数模式	dBc/Hz		-118	
	相位噪声@10MHz		dBc/Hz		-143	
	相位噪声@100MHz		dBc/Hz		-152	
	相位噪声@1kHz		dBc/Hz		-93	
相位	相位噪声@10kHz		dBc/Hz		-101	
噪声	相位噪声@100kHz	PD=100MHz, PREF=10dBm.Fout=20GHz	dBc/Hz		-105	
1747	相位噪声@1MHz	整数模式	dBc/Hz		-100	
	相位噪声@10MHz		dBc/Hz		-139	
	相位噪声@100MHz		dBc/Hz		-146	
	相位噪声@1kHz		dBc/Hz		-93	
相位	相位噪声@10kHz		dBc/Hz		-98	
(P)	相位噪声@100kHz	PD=100MHz, PREF=10dBm, Fout=20.0001GHz	dBc/Hz		-100	
一派尸	相位噪声@1MHz	- PREF-10dbm, Fout-20, 0001dn2 小数模式	dBc/Hz		-107	
	相位噪声@10MHz		dBc/Hz		-137	
	相位噪声@100MHz		dBc/Hz		-147	
	跳频时间◎	PD=100MHz, PREF=10dBm	us		25	

① 要获得快速跳频,需要高的鉴相频率

SIPL

锁相环和频综

/0 1 2410

电性能表(TA=+25°C, VCCDIG=VCCCP=VCCMASH=VPPBUF=VCCBUF2=VCCVCO=3.3V)

	测试参数	描述			指标参数	
	州 瓜	佃处	单位	最小值	典型值	最大值
		VCO开环参数				
调	谐灵敏度@VC01	Κv	MHz/V	228		705
调	谐灵敏度@VC02	Κv	MHz/V	155		600
调	谐灵敏度@VC04	Κv	MHz/V	150		485
	相位噪声@10kHz		dBc/Hz		-77	
	相位噪声@100kHz		dBc/Hz		-103	
扣件吧士	相位噪声@1MHz	Fout=10GHz	dBc/Hz		-125	
相位噪声	相位噪声@10MHz		dBc/Hz		-145	
	相位噪声@100MHz		dBc/Hz		-153	
	相位噪声@10kHz		dBc/Hz		-72	
相位噪声	相位噪声@100kHz		dBc/Hz		-99	
们还未产	相位噪声@1MHz	Fout=15GHz	dBc/Hz		-122	
	相位噪声@10MHz		dBc/Hz		-142	
	相位噪声@100MHz		dBc/Hz		-147	
	相位噪声@10kHz		dBc/Hz		-72	
100.00	相位噪声@100kHz		dBc/Hz		-98	
相位噪声	相位噪声@1MHz	Fout=20GHz	dBc/Hz		-120	
	相位噪声@10MHz		dBc/Hz		-140	
	相位噪声@100MHz		dBc/Hz		-148	

电性能表(TA=+25°C, VCCDIG=VCCCP=VCCMASH=VPPBUF=VCCBUF2=VCCVCO=3.3V)

1K闪烁噪声: (括号内的频率单位是Hz)

PNflick = Flicker FOM +20log(fvco) -10log(foffset)

归一化10K闪烁噪声: (括号内的频率单位是Hz)

PNflick = Flicker FOM +20log(fvco/1GHz) -10log(foffset/10kHz)

频率计算方式:

$$f_{vco} = f_{\rm int} + f_{frac} = \frac{f_{xtal}}{R} (N_{\rm int} + \frac{N_{frac}}{2^{24}}) = f_{PD} (N_{\rm int} + \frac{N_{frac}}{2^{24}})$$

N_{int} : 整数分频比, REGO3h;

整数分频模式:分频比范围 20 到 215-1;

小数分频模式:分频比范围 23 到 215-1;

N_{frac} : 小数部分, 小数部分范围 0 到 2²⁴-1, REGO4h;

R : 参考分频比, 分频比范围 1 到 2¹⁴, REG02h;

fxtal :参考输入频率;

fpp : 鉴相频率, fxtal/R;

举例,整数模式输出 10G 和小数模式输出 10GHz+1MHz:

整数模式: f_{xtal} =100MHz, R =1, f_{PFD} =100MHz, N_{int} =100, N_{frac} =0;

$$f_{vco} = f_{\mathrm{int}} + f_{frac} = \frac{f_{\mathit{xtal}}}{R} \times (N_{\mathrm{int}} + \frac{N_{frac}}{2^{24}}) = f_{\mathit{PD}} \times (N_{\mathrm{int}} + \frac{N_{frac}}{2^{24}})$$

 $=100\times(100+0)=10.0$ GHz

小数模式: f_{xtal} =100MHz, R =1, f_{PFD} =100MHz, N_{int} =100, N_{frac} =167772 ;

$$f_{vco} = f_{\mathrm{int}} + f_{\mathit{frac}} = \frac{f_{\mathit{xtal}}}{R} \times (N_{\mathrm{int}} + \frac{N_{\mathit{frac}}}{2^{24}}) = f_{\mathit{PD}} \times (N_{\mathrm{int}} + \frac{N_{\mathit{frac}}}{2^{24}})$$

$$= 100 \times (100 + \frac{167772}{2^{24}}) = 10.0 GHz + 1MHz$$

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

测试曲线(整数模式 PREF=10dBm PD=100MHz)

相位噪声 VS 频偏(Fout=10GHz)

鉴相泄露 VS 频率(Fout=10GHz)

相位噪声 VS 频偏(Fout=15GHz)

鉴相泄露 VS 频率(Fout=15GHz)

相位噪声 VS 频偏(Fout=20GHz)

鉴相泄露 VS 频率(Fout=20GHz)

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

地址:成都市高新西区百川路9号 网址:www.sicoresemi.com

锁相环和频综

测试曲线(小数模式 PREF=10dBm PD=100MHz)

相位噪声 VS 频偏(Fout=10.0001GHz)

V0.1 2410

相位噪声 VS 频偏(Fout=15.0001GHz)

相位噪声 VS 频偏(Fout=20.0001GHz)

SIPL

测试曲线(小数模式 PREF=10dBm PD=100MHz)

杂散 VS 频率@频偏100K @REF端加100pF电容到地

杂散 VS 频率@频偏100K @REF端未加100pF电容到地

相噪 VS 频率@频偏100K @REF端加100pF电容到地

相噪 VS 频率@频偏100K @REF端未加100pF电容到地

测试曲线(PREF=10dBm PD=100MHz, 八分频测试)

频率切换 VS 时间(Fout=10~20GHz, 八分频)

频率切换 VS 时间(Fout=20~10GHz, 八分频)

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

绝对最大额定值

参数	符号	最小值	最小值 典型值		单位		
VCCDIG, VCCCP, VCCMASH, VPPBUF, VCCBUF2, VCCVCO	+3.15		+3. 15		V		
存储温度		-65	-65		°C		
工作温度	TA	-40		+85	°C		
最大正常工作结温	Tjmax		+125				
热阻	RJc		°C/W				
静电防护等级	HBM	TBD V					

封装信息

型号	封装材料	焊盘镀层	MSL等级[1]	封装标识[2]	环保要求
STPL351SP6	绿色树脂化合物	N i PdAuAg	MSL 3	S351 XXXXX	符合RoHS

[1] 最高回流焊温度260℃

[2] XXXXX为批号

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

SPI控制说明

串行数据时序图:

●写时序

写时序图

在SPI上进行写入还有其他几个注意事项:

- •R/W位必须设置为0。
- •SDI引脚上的数据在SCK的每个上升沿写入到移位寄存器中。
- •CS必须保持低电平、才能对数据进行写入。如果CS保持在高电平、则设备将忽略时钟。
- •当设备之间共享SCK和SDI线路时,空闲设备上将CS线路保持在高电平

●读时序

在SPI上进行回读还有其他几个注意事项:

- •R/W位必须设置为1。
- •MOUT上的数据在SCK下降沿时被传输。
- •回读时, SDI的数据部分总是被忽略

●时序参数

参数	描述	MIN	MAX	UNIT
T1	CS下降沿至SCK建立时间	10		ns
T2	SCK高电平持续时间		10	ns
Т3	SCK低电平持续时间		10	ns
T4	SCK频率		50	MHz
T5	数据建立时间	8		ns
Т6	SCK上升沿至CS下降沿	15		ns
T7	数据保持时间	3		ns
Т8	SCK上升沿回读数据建立时间	2		ns

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

V0.1 2410

寄存器

分类表 table	地址addr-hex	名称name	功能function	位号 bit	读写 R/W	描述description
		PD_ALL	全局关断控制	0	RW	0: 全局正常工作 1: 全局关断
		PD_REF	开关参考通道	1	RW	1: 强制关断参考通道
		PD_RF	开关反馈分频	2	RW	1: 强制关断反馈分频
		PD_PFD	开关鉴频鉴相器PFD	3	RW	1:强制关断PFD
		PD_CP	开关电荷泵CP	4	RW	1: 强制关断电荷泵
		PD_BIAS	开关电荷泵偏置电 流	5	RW	1: 强制关断电荷泵偏置电流
		PD_LD	开关锁定检测	6	RW	1: 强制关断锁定检测
		PD_VCO	开关VC0	7	RW	1: 强制关断VCO
		PD_CHA	开关A通道分频器	8	RW	1: 强制关断A通道分频器
		PD_OUTA	开关A通道输出 Buffer	9	RW	1:强制关断A通道输出Buffer
		PD_CHB	开关B通道分频器	10	RW	1: 强制关断B通道分频器
		PD_OUTA	开关B通道输出 Buffer	11	RW	1: 强制关断B通道输出Buffer
		BLK_UVL0	屏蔽UVL0信号	12	RW	0: 关闭上电复位时的欠压锁存功能 1: 开启欠压锁存
全局关断 控制寄存 器	0	RESET	复位寄存器	13	RW	复位所有状态机和寄存器到默认值 0:正常工作 1:复位
		VCO_PHASE_SYNC	SYNC模式开关	14	RW	0: 关闭SYNC mode 1: 开启SYNC mode
		GP0	全局并口输出	19:16	RW	LD_GPO_OUT引脚输出的模拟输出选择: 0000: 未连接NC 0001: 参考分频REF_DIV 0010: 反馈分频RF_DIV 0011: 电荷泵UP 0100: 电荷泵DN 0101: 调谐电压VCP_mir1 0110: 调谐电压VCP_mir2 0111: 欠压锁存VUVL0 1000-1111: 未连接NC 补充: LD_GPO_OUT引脚的输出受控于RD_EN和GPO_EN, RD_EN常为高, LE (SEN)有阶跃(低至高或高至低)则RD_EN为低。选择方式如下: 当RD_EN=1(高),LD_GPO_OUT=SDO(无关GPO_EN高或低); 当RD_EN=0(低)且GPO_EN=0,LD_GPO_OUT=LD; 当RD_EN=0(低)且GPO_EN=1,LD_GPO_OUT=模拟输出(见上)
		GPO_EN	开关GPO	23	RW	0: 关断GPO, 采用LD模式 1: 关断LD, 采用GPO模式

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

频综

SIPL

寄存器

分类表table	地址addr-hex	名称name	功能function	位号 bit	读写 R/W	描述description
		rdiv	参考分频比	13:0	RW	分频比1-16383 (2^14-1)
		Reserved	保留位	14	RW	保留位
		RST_REF	重置参考分频	15	RW	重置参考分频器,高有效
		en_ref2div	参考信号到数字使能	16	RW	参考信号到数字使能,高有效
参考分频寄存器	1	mutiplier	倍频器	18:17	RW	00: 倍频器关闭 01: 2倍频器开启 11: 4倍频器开启
参专开则句仔品	'	AFCCLK	AFC时钟选择	20:19	RW	00: 参考时钟 01: 参考时钟除2 10: 参考时钟除4 11: 参考时钟除8
		AFCCLK_RST	AFC时钟复位	21	RW	0: 正常工作 1: 复位
		REF2SYNC_RST	参考到SYNC时钟复位	22	RW	0: 正常工作 1: 复位
		intg	反馈分频比	18:0	RW	整数模式:分频比20~524287(2^19-1)
		ndiv_mux	VCO扫频分频比	19	RW	选择VC0的分频比
整数分频寄存器	2	pd_rst_div	复位反馈分频	21	RW	复位反馈分频,高有效
		Ndiv BIAS	N分频电流调节	23:22	RW	000: 电流最小 001: 电流+5% 010: 电流+10%
小数分频寄存器A	3	frac	小数分频比	23:0	RW	设置小数分频比NUM[23:0]
		n_reset_dsm	复位小数分频	0	RW	初始复位信号,低有效,
		dsm_en	开关小数分频 	1	RW	0:关闭小数分频 1:开启小数分频
		int_en	开关整数模式	4	RW	0: 小数模式 1: 整数模式 (小数分频失效)
		mash2_en	mash模式的阶数	5	RW	0: 三阶mash 1: 二阶mash
		dither_en	抖动使能	6	RW	0: 无抖动 1: 自抖动或LFSR抖动
小数分频控制寄存器	4	dither_type	抖动类型	7	RW	仅当dither_en=1有效: 0: LFSR抖动 1: 自抖动
		mash_seed_en	mash模式seed使能	8	RW	0:初始状态为默认值0 1:初始状态可通过mash_seed设置
		NDiv_Clk_to_dig_en	反馈分频到数字的时钟使能	9	RW	0: 关断 1: 使能
		NDiv_CIk_phase	反馈分频到数字时钟相位控制	10	RW	0: 同相 1: 反相
		Ndiv_Clk_delay	反馈分频到数字时钟延时控制	12:11	RW	00: 延时1 10: 延时2 11: 延时3

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

寄存器

分类表table	地址addr-hex	名称name	功能function	位号	读写	描述description
				bit	R/W	
小数分频seedA	5	mash_seed	小数分频初始状态	23:0	RW	mash_seed[23:0]
		LD_window	数字L0判定窗口大小	2:0	RW	数字LD判定窗口大小: 000: 2ns 001: 5.5ns 010: 11ns 011: 21ns 100: "30ns 101: 58ns 110: 114ns
		LD_wincnt	数字LD窗口判定计数值	4:3	RW	111: 224ns PFD在窗口内的次数达到该设定值后LD判定有效: 00: 64 01: 256 10: 1024 11: 4096 LD工作模式:
锁定检测	6	LD_MODE	LD工作模式	5	RW	0:数字LD模式(PFD延时窗口模式) 1:模拟LD模式(PFD占空比模式)
		LD_DCC	模拟LD占空比判定范围	10:8	RW	LD占空比判定范围: 000: 10% 001: 15% 010: 20% 011: 25% 100: 30% 101: 35% 110: 40% 111: 45%
		rampclk_1p8		12:11	RW	
		rampclk_rst		13	RW	
		pfd_sel	pfd选择	14	RW	0: 关断 1: 开启
		extpfd_div	pfd分频	19:15	RW	
		PD_tdelay	设置PFD重置延时	1:0	RW	PFD重置延时: 00: 0. 6ns 01: 1ns 10: 1. 4ns 11: 1. 8ns
		POL_INV	设置PFD极性	2	RW	PFD极性控制: 0: 极性正 1: 极性反
鉴频鉴相器和电 荷泵寄存器A	7	FUP_CP	强制使能PFD的UP输出	5	RW	仅在PFD关断下有效 0:强制关断PFD的UP输出 1:强制使能PFD的UP输出
		FDN_CP	强制使能PFD的DN输出	6	RW	仅在PFD关断下有效 0:强制关断PFD的DN输出 1:强制使能PFD的DN输出
		CPGup	CP增益电流UP控制字	15:8	RW	CP增益电流UP控制字(20uA/bit): 电流计算: 30uA*CPGup CPGup范围: 0-255
		CPGdn	CP增益电流DN控制字	23:16	RW	CP增益电流DM控制字(20uA/bit): 电流计算: 30uA*CPGdn CPGdn范围: 0-255

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

频综

SIPL

寄存器

分类表table 地址addr-hex 名称name 位号bit 读写R/W 功能function 描述description CP补偿电流DN控制字(5uA/bit): 6:0 CPOS_current CP补偿电流控制字 RW 电流计算: 6uA*CPOS_current CPOS_current范围: 0-127 0:关断CP的UP补偿电流 CPOS UP EN 开关CP的UP补偿电流 8 RW 1: 开启CP的UP补偿电流 0: 关断CP的DN补偿电流 CPOS DN EN 开关CP的DN补偿电流 9 1: 开启CP的DN补偿电流 reseved 保留位 13:10 RW 鉴频鉴相器和 0: SYNC引脚信号有效 8 INPIN IGNORE 屏蔽外部SYNC信号 15 RW 电荷泵寄存器B 1: 屏蔽SYNC引脚信号 0: 关闭 INPIN HYST LVDS模式下高迟滞使能 16 RW 1: 使能 00: Vin/4 01: Vin INPIN LVL LVDS 模式下偏置设置 18:17 10: Vin/2 11: Invalid 01: SYNC = CMOS INPIN FMT SYNC输入信号模式控制 20:19 RW 10: SYNC = LVDS. 初始复位信号, 低有效, 复位扫频 0 n reset swn 扫频使能 1 RW 扫频使能。高有效 swo en ramp功能使能 2 0: auto mode 1: manual mode ramp_ext_en calib_en 校准使能 3 0: 不校准 1: 校准, 时钟频率会很低 0: 关闭失锁检测功能 inst lock en 失锁检测 4 1: 开启失锁检测功能 O:choose trig rampa; trig next ramp() ramp0的next触发 5 1:choose trig_rampb O:choose trig rampa: 扫频寄存器 ramp1的next触发 RW trig_next_ramp1 6 1:choose trig_rampb 9:7 rampa的触发 RW rampa的触发 trig_rampa rampb的触发 12:10 rampb的触发 trig_rampb RW 0:next be seg0; dir_next_ramp0 ramp0的next RW 1:next be seg1, ramp0 向上 13 0:next be seg0; dir next ramp1 ramp1自动模式 RW 1:next be seg1, 14 ramp1 向下 扫频寄存器 ramp_lmt_nint_lo 扫频整数low限制值 18:0 RW 扫频整数low限制值 0a 扫频整数high限制值 扫频整数high限制值 扫频寄存器 0b 18:0 ramp_lmt_nint_hi RW 扫频寄存器 Ос ramp_lmt_nfrac_lo 扫频小数low限制值 23:0 扫频小数low限制值 RW 扫频小数high限制值 扫频寄存器 Οd ramp_lmt_nfrac_hi 扫频小数high限制值 23:0 RW 扫频起始整数 设置扫频起始整数分频 0e nint_str RW 19bits扫频整数 寄存器 比,19位 18:0 设置扫频起始小数分频 扫频起始整数 0f nfrac_str RW 扫频小数, (在18902中是低24bit) 比,24位 18:0 ramp0步进寄存 10 step_ramp0 ramp0步进 RW ramp0步进配置值 23:0 ramp1步讲寄存 11 step_ramp1 ramp1步进 RW ramp1步进配置值 23:0 扫频锁定等待 扫频过程中失锁到锁定 设置扫频过程中失锁到锁定的扫频周期值 12 RW swp_lock_cycles 寄存器 的扫频周期值 15:0

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

频综

寄存器

分类表table	地址addr-hex	名称name	功能function	位号bit	读写R/W	描述description
		EN_RFA	射频信号到A通道使能	0	RW	0: 关断 1: 正常工作
		ADJ_CHASEGO_1	A通道SEGO和SEG1电流调节	2:1	RW	00: 最小 10: 中等 11: 最大
		EN_CHA_SEG1	A通道SEG1使能	3	RW	0: 关断 1: 正常工作
		Rst_CHA_SEG1	A通道SEG1分频器复位	4	RW	0: 正常工作 1: 复位
		MC_CHA_SEG1	A通道SEG1分频器分频控制	5	RW	0: 除2 1: 除3
		EN_CHA_SEG2	A通道SEG2使能	6	RW	0: 关断 1: 正常工作
		Rst_CHA_SEG2	A通道SEG2分频器复位	7	RW	0: 正常工作 1: 复位
A通道分频寄存器	13	CHASEG2_DIV	A通道SEG2分频器分频比控制	9: 8	RW	00: 除2 01: 除4 10: 除6 11: 除8
		EN_CHA_SEG3	A通道SEG3使能	10	RW	0: 关断 1: 正常工作
		Rst_CHA_SEG3	A通道SEG3分频器复位	11	RW	0: 正常工作 1: 复位
			CHASEG3_DIV	A通道SEG3分频器分频比控制	14: 12	RW
		ADJ_CHAMUXVB	A通道3选1MUX偏置电压控制	17: 15	RW	000: 最小 111: 最大
		ADJ_CHAMUXC	A通道3选1MUX偏置电流控制	19: 18	RW	00: 关闭 11: 最大
		EN_CHAMUX	A通道输出MUX使能	20	RW	0: 关闭 1: 开启
		EN_CHA2CHBMUX	A通道分频信号到B通道使能	21	RW	0: 关闭 1: 开启
		reserved	保留位	23: 22	RW	
		A_MUTE	A通道静音	0	RW	0: 正常工作 1: 静音
		OUTA_MUX	选择输出信号	2: 1	RW	01:选择A通道分频输出 10:选择VCO直接输出
A通道输出Buffer寄存 器	14	ADJ_OUTAMUX	A通道输出buffer MUX电流调节	4:3	RW	00: 电流最小 01: 电流+5% 10: 电流+10% 11: 电流最大
		OUTA_PWR	A通道输出buffer输出功率调节	10: 5	RW	A通道输出功率调节
		ADJ_Bufferbias	AB通道输出buffer基准电流补偿	12: 11	RW	00: 最小 01: +5% 10: +10% 11: +15%

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

寄存器

分类表table	地址addr-hex	名称name	功能function	位号bit	读写R/W	描述description
		reserved	保留位	0	RW	
		ADJ_CHBSEG1	B通道SEG1电流调节	2: 1	RW	00: 最小 10: 中等 11: 最大
		EN_CHB_SEG1	B通道SEG1使能	3	RW	0: 关断 1: 正常工作
		Rst_CHB_SEG1	B通道SEG1分频器复位	4	RW	0: 正常工作 1: 复位
		MC_CHB_SEG1	B通道SEG1分频器分频控制	5	RW	0: 除2 1: 除3
		EN_CHB_SEG2	B通道SEG2使能	6	RW	0: 关断 1: 正常工作
		Rst_CHB_SEG2	B通道SEG2分频器复位	7	RW	0: 正常工作 1: 复位
通道分频寄存 器	15	CHBSEG2_DIV	B通道SEG2分频器分频比控制	9: 8	RW	00: 除2 01: 除4 10: 除6 11: 除8
		EN_CHB_SEG3	B通道SEG3使能	10	RW	0: 关断 1: 正常工作
		Rst_CHB_SEG3	B通道SEG3分频器复位	11	RW	0: 正常工作 1: 复位
		CHBSEG3_DIV	B通道SEG3分频器分频比控制	14: 12	RW	000: 除2 001: 除4 010: 除6 011: 除8 100: 除16
		ADJ_CHBMUXVB	B通道3选1MUX偏置电压控制	17: 15	RW	000: 最小
		ADJ_CHBMUXC	B通道3选1MUX偏置电流控制	19: 18	RW	00:关闭 11:最大
		reserved	保留位	23: 20	RW	
		B_MUTE	B通道静音	0	RW	0: 正常工作 1: 静音
		OUTB_MUX	选择输出信号	2: 1	RW	00:选择A通道分频输出 01:选择B通道分频输出 10:选择VCO直接输出
		ADJ_OUTBMUX	B通道输出buffer MUX电流调节	4:3	RW	00: 电流最小 01: 电流+5% 10: 电流+10% 11: 电流最大
		OUTB_PWR	B通道输出buffer输出功率调节	10: 5	RW	B通道输出功率调节
B通道输出 Buffer寄存器	16	VT_monitor	VT监测范围控制	13: 12	RW	00: 0.4-2.9 01: 0.5-2.8 10: 0.6-2.7 11: 0.7-2.6
		VTTC_EN	VCO段选温度补偿使能	14	RW	0: 关闭 1: 开启
		vco1rbc	vco1dc调整控制	15	RW	默认0
		vco2rbc	vco2dc调整控制	16	RW	默认0
		vco3rbc	vco3dc调整控制	17	RW	默认0
		VCOBUFBIAS	VCO模块后面的缓冲器的尾电流控制	19:18	RW	VC0尾电流控制
		mux_sel	3选1模块的POWERDOWN信号	20	RW	0: 关闭 1: 开启
		ibct	3选1电路的偏置控制	23: 21	RW	3选1电路的偏置控制

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

Sicoresemi 仕芯半导体

分类表 table	地址addr-hex	名称name	功能function	位号 bit	读写 R/W	描述description
		n_reset_bsa	复位AFC(二分算法)	0	RW	初始复位信号,低有效
		autogapcal_en	开关连续校准	1	RW	0:关闭连续校准 1:开启连续校准
二分法		autodetcal_en	开关失锁检测功能	2	RW	0:关闭失锁检测功能 1:开启失锁检测功能
寄存器A	17	instlock_en	开关失锁检测实时功能	3	RW	0:关闭失锁实时检测功能,需等待一段时间 (callock_tmr)再检测失锁 1:开启失锁实时检测功能
		fc_bsa_en	二分法使能	4	RW	0: 关闭二分法 1: 开启二分法
二分法 寄存器B	18	calstart_tmr	启动校准的等待时间	15:0	RW	等待时间=tref*calstart_tmr
二分法 寄存器C	19	calcomp_tmr	比较过程的等待时间	15:0	RW	等待时间=tref*calcomp_tmr
二分法 寄存器D	1b	callock_tmr	锁定过程的等待时间	15:0	RW	等待时间=tref*callock_tmr
二分法 寄存器E	1c	refcnt_num	鉴相周期比较计数值	13:0	RW	每次比较的鉴相周期数
二分法 寄存器F	1d	refdet_num	鉴相时钟丢失检测计数值	11:0	RW	在鉴相时钟丢失时统计的周期数
		seginit_en	开关初始段号设置	1	RW	0:关闭初始段号的设置,内部设置初始段号 1:开启初始段号的设置,外部设置为seg_init
		seg_init	初始段号设置	6:1	RW	当且仅当seginit_en=1时有效,设置初始段号
二分法 寄存器G	1e	segext_en	开关外部输出段号设置	7	RW	0: 关闭外部输出段号或vco的设置,由二分法产生输出段号 1: 开启外部输出段号或vco的设置,外部设置为 seg_ext或vco_ext(当cutvco_en=1)
		seg_ext	外部输出固定段号设置	13:8	RW	当且仅当segext_en=1时有效,设置外部输出的固 定段号
		vco_ext	外部输出固定vco号设置	16:14	RW	当且仅当segext_en=1时有效,设置外部输出的固 定vco号
		adapt_factor	适配调整因子	2:0	RW	调整适配vco延迟时间的误差精度,建议=4
		adapt_mux	适配调整选通	4:3	RW	调整适配vco延迟时间的选通,建议=2
二分法 寄存器H	1f	cutvco_en	开关先选vco后选段功能	5	RW	0: 关闭先选vco后选段功能, seg_out按全段0~63 编号输出 1: 开启先选vco后选段功能, sub_vco输出为高频 vco1=001, 中频vco2=010, 低频vco3=100; sub_seg输出为高频vco1=0~15, 中频vco2=0~15, 低频vco3=0~31
		cutvcocnt_errmtp	先选vco后选段功能下的误差精度控制	8:6	RW	当且仅当cutvco_en=1时有效,控制误差精度,建 议=0
二分法	20	compnumext_en	开关比较次数外部设置	0	RW	0:关闭比较次数外部设置,内部设置初始段号 1:开启比较次数外部设置,外部设置为 segcompnum_ext或vcocompnum_ext
寄存器Ⅰ	20	segcompnum_ext	外部设置段选比较次数	4:1	RW	外部设置段选比较次数
		vcocompnum_ext	外部设置VC0比较次数	8:5	RW	外部设置VC0比较次数

SIPL

锁相环和频综

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

V0.1 2410

寄存器

分类表 table	地址addr-hex	名称name	功能function	位号 bit	读写 R/W	描述description	
	29	CHANNA_EN	A通道使能	0	RW	高电平且MUTEA=0,A通道工作	
		CHANNB_EN	B通道使能	1	RW	高电平且MUTEB=0,B通道工作	
		CUR_REGA	A通道输出级尾电流调节控制	7:2	RW	通过调整该组控制字可改变输出信号功率,默认为000111	
1400'Z'*		CUR_REGB	B通道输出级尾电流调节控制 字		RW	通过调整该组控制字可改变输出信号功率,默认为000111	
VCO通道 控制寄存		MUTEA	A通道静默控制		RW	高有效,为高时,输出端口静默,默认为高	
器A		MUTEB	B通道静默控制	15	RW	高有效,为高时,输出端口静默,默认为高	
		CHBUFBIASH	输出级主体偏置电流的控制字	17:1 RW "00"时,输出级电流变小,"11"时候,输出级电流最大;注:其原理是在主体电路电流不变的情况下,通过该控制字增加主体镜像电流的管子个数来减小输出级镜像的最终电流			
		OUT_BIAS_EN	输出级主体偏置电路的使能	18	RW	高时,正常工作	
VCO通道 控制寄存 器B	2a	SA	A通道分频比控制字	2:0	RW	"000" 为直通, "001" 为2分频, "010" 为4分频, "011" 为8分频, "100" 为16分频, "101" 为32分频, "110" 为64分频, "111" 为128分频;	
		SB	B通道分频比控制字	5:3	RW	"000" 为直通, "001" 为2分频, "010" 为4分频, "011" 为8分频, "100" 为16分频, "101" 为32分频, "110" 为64分频, "111" 为128分频;	
		vcobufbias	VCO模块后面的缓冲器的尾电 流控制字	7:6	RW	00最低(2.1mA),11最高(6.2mA)	
		bufbias_top	buf电流	9:8	RW	buf电流	
ramp0长 度寄存器	30	len_ramp0	ramp0长度	15:0	RW	设置扫频ramp0的长度	
ramp1长 度寄存器	31	len_ramp1	ramp1长度	15:0	RW	设置扫频ramp1的长度	

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com

引脚定义

PAD号	名称 I/0		描述		
1	CE	I	芯片使能输入,高电平激活芯片		
2、4、6、13、14、19、 24、26、29、34、36、 38、39、40	GND		地		
3、5、10、25、32	NC		悬空		
7	VCCDIG	Р	参考及数字电, 3.3V供电		
8	OSCINP		参考时钟信号输入(+),需外接AC耦合电容 (推荐0.1uF)		
9	OSCINM	ı	参考时钟信号输入(-), 需外接AC耦合电容 (推荐0.1uF)		
11	VCCCP	Р	电荷泵、鉴相器电源, 3.3V供电		
12	CPOUT	0	电荷泵输出端,工作电压0.5 [~] 2.8V		
15	VCCMASH	Р	N分频器电源, 3.3V供电		
16	SCK	I	SPI时钟输入,支持3.3V CMOS逻辑电平		
17	SDI	1	SPI数据输入,支持3.3V CMOS逻辑电平		
18	PFDIN	I	外部PFD输入,需外接AC耦合电容		
20	MUXOUT	0	多路信号复用输出一锁定检测,回读数据等		
21	VCCBUF	Р	输出B通道电源, 3.3V供电		
22	RFOUTBN	0	B通道射频差分输出(−),最高工作频率20GHz		
23	RFOUTBP	TBP 0 B通道射频差分输出(+),最高工作频			
27	RFOUTAN	0	A通道射频差分输出(-),最高工作频率20GHz		
28	RFOUTAP	0	A通道射频差分输出(+),最高工作频率20GHz		
30	VCCBUF2	Р	3. 3V供电,输出A通道电源		
31	MUTE	I	输出端口静音控制,支持3.3V CMOS逻辑电平		
32	LD	0	锁定检测输出, 3.3V逻辑电平		
33	CS	I	SPI输入使能信号,支持3.3V CMOS逻辑电平		
35	VTUNE	I	VCO频率调谐控制端口		
37	VCCVCO	Р	VCO电源, 3.3V供电		
DAP	GND		地		

封装外形图

V0.1 2410

说明:

1. 单位: mm

2. 引线框架材料:铜合金

3. 封装表面翘曲: ≤0.05mm

4. 所有接地引脚请连接PCB射频地

SP6 Dimension Table								
(unit:mm)								
Symbol	MIN	NOM	MAX					
Α	0.70	0.75	0.80					
A1	0.00	0.02	0.05					
A2	0.20Ref							
b	0.20	0.25	0.30					
D	5.90	6.00	6.10					
D2	4.40	4.50	4.60					
е	0.50BSC							
Ne	4.50BSC							
Nd	4.50BSC							
E	5.90	6.00	6.10					
E2	4.40	4.50	4.60					
K	0.20							
L	0.30	0.40	0.50					
000	0.08							

成都仕芯半导体有限公司 Tel:028-62680968 Fax: 028-62680967 E-mail:info@sicoresemi.com