INTEGER ARTHMETIC) KARATSUBA MULTIPLICATION

Irrotionals

Allis number.

\Q = (414213562373...

Cotalan numbers

Set P of bolonced perentteres strings

1) LEP (Lis the empty string)

2) If MBEP, then (d)BEP

Every non empty bolonced poren string vie Rule 2 from a unique dip poin ((1)()() obstorned by ((1)()() & B

trumeration (Co=1 empty string) Cu is the number of poren strings with exactly n pairs of boneus Co = 1 $C_{\lambda} = \lambda$ $C_{\lambda} = \lambda$ CCut 1 ? $C_2 = C_0C_1 + C_1C_0=2$ Cuti = 2 CkCn-k Cotolon mumbers 1,1,2,5,14,42,132,428, 1430, 4862, 16786, 58786, 208012, Fh2800, 2674440, ... Newton's Nethod

Prot of /y=-(x) koot off(x) = 0thru

copprox
$$f(x) = x^{2} - \alpha$$

$$f(x$$

Quadrobic convegence # digits of precision doubles

12 to aboligit precision

wout integer [10°12'] =[12.102d]
Hill use Newton's Hothod

High Precision Hultiplication

two n-dipit numbers (madix r=2, 12) $0 \le x, y \le r^n$

$$X = X_1 \cdot r^{1/2} + X_0$$
 X_1 -high holf
 $X = Y_1 \cdot r^{1/2} + X_0$
 X_0 -low holf

Let $\Xi_0 = X_0 Y_0$ $\Xi_1 = X_0 Y_1 + X_1 Y_0$ $\Xi_2 = X_2 Y_2$

21

4 multiplies of n/2 dusit numbers => $\Theta(n^2)$ time $T(u) = 4T(y_2) + \Theta(n)$

KARATSUBA ALBORITHI

= X° N° Zz= Xzyz

21=(x0+x1).(y0+y1)-20-22

T(W) = 3T(4/2)+ O(W)

 $T(u) = \Theta(n^{60}3^{23}) =$ $= \Theta(n^{1.58})$

Fun Geometry Problem

AD = AC-CD = 500,000,000,00000

-1(500.000.000.000)²-1