Import Dataset

```
In [1]: import numpy as np import pandas as pd
```

In [2]: data = pd.read_csv(r'data/breast-cancer.csv')

In [3]: data.head()

Out[3]:

	Age	ВМІ	Glucose	Insulin	НОМА	Leptin	Adiponectin	Resistin	MCP.1
0	48	23.500000	70	2.707	0.467409	8.8071	9.702400	7.99585	417.114
1	83	20.690495	92	3.115	0.706897	8.8438	5.429285	4.06405	468.786
2	82	23.124670	91	4.498	1.009651	17.9393	22.432040	9.27715	554.697
3	68	21.367521	77	3.226	0.612725	9.8827	7.169560	12.76600	928.220
4	86	21.111111	92	3.549	0.805386	6.6994	4.819240	10.57635	773.920

Pre-processing

Change Classification values (from two, one to one, zero each)

```
In [4]: data['Classification'] = data['Classification'] - 1
In [5]: data = data.reindex(np.random.permutation(data.index))
```

In [6]: X = data.drop(['Classification'], axis = 1)

In [7]: X = (X - X.mean()) / X.std()

In [8]: y = data['Classification']

In [9]: X.head()

Out [9]:

	Age	ВМІ	Glucose	Insulin	НОМА	Leptin	Adiponectin	Resis
86	-0.577289	0.108142	-0.345973	-0.742179	-0.585141	-0.577720	0.006055	0.11172
90	-1.073790	0.648273	1.341029	3.166731	2.891878	0.230587	-0.587415	0.2283
40	1.160463	0.325947	-0.656737	-0.460488	-0.437760	0.101490	-0.410752	-0.5392
39	1.222526	1.594741	-0.967500	-0.608982	-0.540199	-0.251718	-0.300339	0.2046
79	-1.011727	-0.181140	-0.035210	1.194000	0.707508	0.943051	0.484265	1.0577

Classifiers

```
In [11]: from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB
```

Classifier List

- 1. OneR
- 2. Nearest Neighbors
- 3. Linear SVM (Kernel: Linear)
- 4. RBF SVM (Kernel: RBF)
- 5. Decision Tree
- 6. Random Forest
- 7. Neural Network
- 8. AdaBoost (Based on the Decision Tree classifier)
- 9. Gaussian Naive Bayes

```
In [12]: names = ["OneR", "Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree", "Random Forest", "Neural Net", "AdaBoost", "Naive Bayes"]
```

```
In [13]:
         classifiers = [
             DecisionTreeClassifier(max_depth=1),
             KNeighborsClassifier(3),
             SVC(kernel="linear", C=0.025),
             SVC(kernel="rbf", C=0.025),
             DecisionTreeClassifier(max_depth=8),
             RandomForestClassifier(max_depth=8, n_estimators=50),
             MLPClassifier(alpha=1, hidden_layer_sizes = (50, 30)),
             AdaBoostClassifier(n_estimators = 100),
             GaussianNB()]
In [14]: from sklearn.model_selection import cross_validate
         from sklearn.model_selection import cross_val_predict
         from sklearn.metrics import precision_recall_fscore_support
In [15]:
         evaluations = []
```

ZeroR

```
In [16]: max_index = data.groupby(['Classification'])['Classification'].count().idxmax()
In [17]: evaluations.append(['ZeroR', data.groupby(['Classification'])['Classification'].count()[max_index] / len(y)])
```

Using Classifier List above

```
In [18]: for name, clf in zip(names, classifiers):
    y_pred = cross_val_predict(clf, X, y, cv = 10)
    precision_recall_f1 = precision_recall_fscore_support(y, y_pred, average='weight ed')
    scores = cross_validate(clf, X, y, cv = 10)
    evaluations.append([name, scores['test_score'].mean(), precision_recall_f1[:3]])
```

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/metrics/classification.py:11 35: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.

'precision', 'predicted', average, warn_for)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_pe

rceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

/anaconda/envs/py35/lib/python3.5/site-packages/sklearn/neural_network/multilayer_perceptron.py:564: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.

% self.max_iter, ConvergenceWarning)

In [19]: evaluations.sort(key = lambda evaluations: evaluations[1])
 evaluations.reverse()

```
for evaluation in evaluations:
    print("----" * 5)
    print(evaluation[0])
    print("Accuracy: ", evaluation[1])
    if len(evaluation) > 2: print("Precision, Recall, F1", evaluation[2])
    print("-----" * 5, end = "\n\m\m\m\m\m\m\m")
```

Neural Net Accuracy: 0.7469114219114219 Precision, Recall, F1 (0.7520119225037258, 0.75, 0.7505046728971962) Linear SVM Accuracy: 0.7203962703962704 Precision, Recall, F1 (0.7253944712231698, 0.7241379310344828, 0.7245510218834876) Random Forest Accuracy: 0.7058857808857809 Precision, Recall, F1 (0.7145469818282348, 0.7155172413793104, 0.7136807536081583) Decision Tree Accuracy: 0.6953962703962705 Precision, Recall, F1 (0.697789566755084, 0.6982758620689655, 0.6979806551905803) 0neR Accuracy: 0.6891025641025641 Precision, Recall, F1 (0.6909941086804269, 0.6896551724137931, 0.6901198996189237) Nearest Neighbors Accuracy: 0.6820512820512821 Precision, Recall, F1 (0.6905390821727736, 0.6810344827586207, 0.6816749281342077) AdaBoost Accuracy: 0.6683566433566434 Precision, Recall, F1 (0.6777645659928656, 0.6724137931034483, 0.6732925638522022) Naive Bayes Accuracy: 0.6192890442890443 Precision, Recall, F1 (0.6937602627257801, 0.6206896551724138, 0.6020960108181204) ZeroR Accuracy: 0.5517241379310345 RBF SVM Accuracy: 0.5516317016317016 Precision, Recall, F1 (0.30439952437574314, 0.5517241379310345, 0.39233716475095787)

http://localhost:8888/nbconvert/html/Al-Final-Project/breast-cancer.ipynb?download=false
