Section 3.4: The Chain Rule

Goal: Differentiate composite functions.
Question: Can we compute the derivative of $y = (x^2 + 3x)^{25}$ or $y = e^{\cos(x)}$?
Note: These are both examples of composite functions.
The Chain Rule tells us how to take derivatives of composite functions:
Question revisited
Question revisited

 ${\bf Example \ 1} \hbox{: Differentiate the following functions:}$

(a)
$$y = \sqrt{3x^4 + 5x^2 + 1}$$

(b)
$$y = 5\sec(x^3)$$

(c)
$$y = \sin^9(x)$$

The chain rule is a derivative rule

Example 2:

(a) Find the slope of the line tangent to $y = 5e^{\frac{x}{2}}$ at x = 0.

(b) An object's position can be modeled $s(t) = \cos(2t + \pi)$ inches, t seconds form now. Find the velocity of the object at $t = \frac{\pi}{4}$.

 ${\bf Example \ 3: \ Differentiate \ the \ following \ functions:}$

(a)
$$y = \tan(xe^x)$$

(b)
$$y = \sqrt{1 + e^{3x^2}}$$

Example 4: The power P (in Watts) in a circuit is $P = Ri^2$ where R is resistance and i is the current.

- (a) Suppose $R=1000\Omega$ and i varies according to the formula $i=\sin(4\pi t)$, where t is measured in minutes. Find $\frac{dP}{dt}$ at $t=\frac{1}{3}$.
- (b) Explain in words what you computed in (a).