Analytic Geometry

George Ţurcaș

Maths & Comp. Sci., UBB Cluj-Napoca

December 4, 2022

Recap...

• Last time we discussed "metric" problems in space.

The distance between two lines

Let d_1 and d_2 be two lines in the 3-space.

- If the lines are identical or concurrent, then $d(d_1, d_2) = 0$.
- If the lines are parallel, it is enough to choose an arbitrary point $P_1 \in d_1$ and $d(d_1, d_2) = d(P_1, d_2)$.

• If d_1 and d_2 are skew, there exists a unique line which is orthogonal on both d_1 and d_2 and intersects both d_1 and d_2 . The length of the segment determined by these intersection points is the distance between the skew lines.

Suppose that

$$d_1: \left\{ \begin{array}{l} x = x_1 + p_1 t \\ y = y_1 + q_1 t \\ z = z_1 + r_1 t \end{array} \right., t \in \mathbb{R} \text{ and } d_2: \left\{ \begin{array}{l} x = x_2 + p_2 s \\ y = y_2 + q_2 s \\ z = z_2 + r_2 s \end{array} \right., s \in \mathbb{R}$$

are, respectively, the parametric equations of the lines of director vectors $\overline{v}_1(p_1,q_1,r_1)\neq \overline{0}$, respectively $\overline{v}_2(p_2,q_2,r_2)\neq \overline{0}$. One can determine the equations of two parallel planes $\pi_1\parallel\pi_2$, such that $d_1\subset\pi_1$ and $d_2\subset\pi_2$. The normal vector \overline{n} of these planes has to be orthogonal on both \overline{v}_1 and \overline{v}_2 , hence $\overline{n}=\overline{v}_1\times\overline{v}_2$.

Then
$$\overline{n}(A, B, C)$$
, with $A = \begin{vmatrix} q_1 & r_1 \\ q_2 & r_2 \end{vmatrix}$, $B = \begin{vmatrix} r_1 & p_1 \\ r_2 & p_2 \end{vmatrix}$ and $C = \begin{vmatrix} p_1 & q_1 \\ p_2 & q_2 \end{vmatrix}$.

The equations of the planes π_1 and π_2 are:

$$\pi_1: A(x-x_1) + B(y-y_1) + C(z-z_1) = 0$$

$$\pi_2: A(x-x_2)+B(y-y_2)+C(z-z_2)=0.$$

Now, the distance between d_1 and d_2 is the distance between the parallel planes π_1 and π_2 ; $d(d_1, d_2) = d(\pi_1, \pi_2)$, and one has the following theorem.

Theorem

The distance between two skew lines d_1 and d_2 is given by

$$d(d_1, d_2) = \frac{|A(x_1 - x_2) + B(y_1 - y_2) + C(z_1 - z_2)|}{\sqrt{A^2 + B^2 + C^2}}.$$
 (1)

Conic sections

The circle

A *circle* is a closed plane curve, defined as the geometric locus of the points at a given distance R from a point I. The point I is the *center* of the circle and the number R is the *radius* of the circle. We shall denote the circle of center I and radius R by $\mathcal{C}(I,R)$.

In order to determine the equation of the circle, suppose that xOy is an associated Cartesian system of coordinates in \mathcal{E}_2 , and I(a,b). An arbitrary point M(x,y) belongs to $\mathcal{C}(I,R)$ if and only if |MI|=R.

Hence,
$$\sqrt{(x-a)^2 + (y-b)^2} = R$$
, or
$$(x-a)^2 + (y-b)^2 = R^2. \tag{2}$$

The equation (2) represents the equation of the circle centered at I(a,b) and of radius R.

Hence,
$$\sqrt{(x-a)^2 + (y-b)^2} = R$$
, or

$$(x-a)^2 + (y-b)^2 = R^2.$$
 (2)

The equation (2) represents the equation of the circle centered at I(a, b) and of radius R.

Remark: In a Cartesian system of coordinates, the equation

$$x^2 + y^2 - 2ax - 2by + c = 0 (3)$$

represents either a circle, or a point, or the empty set.

How do we see this?

The Circle Determined by Three Points

Given three noncollinear points $M_1(x_1, y_1)$, $M_2(x_2, y_2)$ and $M_3(x_3, y_3)$, there exists a unique circle passing through them.

Suppose that the circle determined by $M_1(x_1, y_1)$, $M_2(x_2, y_2)$ and $M_3(x_3, y_3)$ has the general equation

$$x^2 + y^2 - 2ax - 2by + c = 0,$$

with $a^2 + b^2 - c = 0$. Since the three points are on the circle, one obtains the system of equations (with variables a, b and c)

$$\begin{cases} x^2 + y^2 - 2ax - 2by + c = 0 \\ x_1^2 + y_1^2 - 2ax_1 - 2by_1 + c = 0 \\ x_2^2 + y_2^2 - 2ax_2 - 2by_2 + c = 0 \\ x_3^2 + y_3^2 - 2ax_3 - 2by_3 + c = 0 \end{cases}$$

which has to be compatible, so that

$$\begin{vmatrix} x^2 + y^2 & x & y & 1 \\ x_1^2 + y_1^2 & x_1 & y_1 & 1 \\ x_2^2 + y_2^2 & x_2 & y_2 & 1 \\ x_3^2 + y_3^2 & x_3 & y_3 & 1 \end{vmatrix} = 0.$$
 (4)

The equation (4) is the equation of the circle determined by three points. It follows immediately that four points $M_i(x_i, y_i)$, $i = \overline{1, 4}$, belong to a circle if and only if

$$\begin{vmatrix} x_1^2 + y_1^2 & x_1 & y_1 & 1 \\ x_2^2 + y_2^2 & x_2 & y_2 & 1 \\ x_3^2 + y_3^2 & x_3 & y_3 & 1 \\ x_4^2 + y_4^2 & x_4 & y_4 & 1 \end{vmatrix} = 0.$$
 (5)

Intersection of a Circle and a Line

Let \mathcal{C} be a circle and d be a line on \mathcal{E}_2 . One may choose a system of coordinates having the center at the center of the circle, so that the equation of \mathcal{C} is $x^2 + y^2 - R^2 = 0$. Let d: y = mx + n.

The intersection between $\mathcal C$ and d is given by the solutions of the system of equations

$$\begin{cases} x^2 + y^2 - R^2 = 0 \\ y = mx + n \end{cases}.$$

By substituting y in the equation of the circle, one obtains

$$(1+m^2)x^2 + 2mnx + n^2 - R^2 = 0.$$

The discriminant of this second degree equation is

$$\Delta = 4(R^2 + m^2R^2 - n^2).$$

• If $R^2 + m^2R^2 - n^2 < 0$, then there are no intersection points between C and d. The line is *exterior* to the circle;

The discriminant of this second degree equation is

$$\Delta = 4(R^2 + m^2R^2 - n^2).$$

- If $R^2 + m^2R^2 n^2 < 0$, then there are no intersection points between C and d. The line is *exterior* to the circle;
- If $R^2 + m^2 R^2 n^2 = 0$, then there is a double point (a tangency point) between \mathcal{C} and d. The line is tangent to the circle. The coordinates of the tangency point are $\left(-\frac{mn}{1+m^2}, \frac{n}{1+m^2}\right)$;

The discriminant of this second degree equation is

$$\Delta = 4(R^2 + m^2R^2 - n^2).$$

- If $R^2 + m^2R^2 n^2 < 0$, then there are no intersection points between C and d. The line is *exterior* to the circle;
- If $R^2 + m^2 R^2 n^2 = 0$, then there is a double point (a tangency point) between \mathcal{C} and d. The line is tangent to the circle. The coordinates of the tangency point are $\left(-\frac{mn}{1+m^2}, \frac{n}{1+m^2}\right)$;
- If $R^2 + m^2R^2 n^2 > 0$, then there are two intersection points between C and d. The line is *secant* to the circle. If x_1 and x_2 are the roots of the above equation, then the intersection points between C and d are $P_1(x_1, mx_1 + n)$ and $P_2(x_2, mx_2 + n)$.

The tangent of slope m to a given circle

Let \mathcal{C} be the circle of equation $x^2+y^2-R^2=0$ and $m\in\mathbb{R}$ a given real number. There are two lines, having the angular coefficient m, and which are tangent to \mathcal{C} .

We saw, in the previous paragraph, that a line d: y = mx + n is tangent to \mathcal{C} if and only if $R^2 + m^2R^2 - n^2 - 0$. Then, the equations of the two tangent lines of direction m are

$$y = mx \pm R\sqrt{1 + m^2}. (6)$$

The tangent to a circle at a point of the circle

Let $C: x^2 + y^2 - r^2 = 0$ be a circle and $P_0(x_0, y_0)$ be a point on C.

The tangent at P_0 to \mathcal{C} is a line from the bundle of lines $y - y_0 = m(x - x_0)$, $m \in \mathbb{R}$, having the vertex P.

On the other hand, the tangent has to be of the form (6): $y = mx \pm R\sqrt{1 + m^2}$. Then, the angular coefficient m must verify

$$\begin{cases} y - y_0 = m(x - x_0) \\ y = mx \pm R\sqrt{1 + m^2} \end{cases},$$

hence

$$(y_0 - mx_0)^2 = R^2(1 + m^2).$$

But $x_0^2 + y_0^2 = R^2$ (since $P_0 \in C$) and one obtains $(mx_0 - y_0)^2 = 0$.

Therefore $m=-\frac{x_0}{y_0}$ (one may suppose that $y_0\neq 0$; otherwise, one gets the tangent at the point (R,0), which is of equation x=R). Replacing m in the equation of the bundle, one obtains

$$y-y_0=-\frac{x_0}{y_0},$$

or

$$x_0x + y_0y - (x_0^2 + y_0^2) = 0.$$

Again, $x_0^2 + y_0^2 = R^2$, and the equation of the tangent line to $\mathcal C$ at the point $P_0 \in \mathcal C$ is

$$x_0x + y_0y - R^2 = 0. (7)$$

Remark: The equation of the line OP_0 is $y = \frac{y_0}{x_0}x$. Then, the product of the angular coefficients of OP_0 and of the tangent at P_0 is -1, meaning that the tangent at a point to a circle is orthogonal on the radius which corresponds to the point.

Intersection of Two Circles

Given two circles,

$$C_1: x^2 + y^2 - 2a_1x - 2b_1y + c_1 = 0$$

and

$$C_2: x^2 + y^2 - 2a_2x - 2b_2y + c_2 = 0,$$

the system of equations

$$\begin{cases} x^2 + y^2 - 2a_1x - 2b_1y + c_1 = 0\\ x^2 + y^2 - 2a_2x - 2b_2y + c_2 = 0 \end{cases}$$

gives informations about the intersection of the two circles.

The previous system is equivalent to

$$\begin{cases} x^2 + y^2 - 2a_1x - 2b_1y + c_1 = 0 \\ 2(a_2 - a_1)x + 2(b_2 - b_1)y - (c_2 - c_1) = 0 \end{cases}$$

which will give rise to a second degree equation, of discriminant Δ .

- If $\Delta > 0$, then C_1 and C_2 are *secant* (they have two intersection points);
- If $\Delta = 0$, then C_1 and C_2 are tangent (they have one tangency point);
- If $\Delta < 0$, then C_1 and C_2 have no intersection points.

Plane isometries

A map $f: \mathcal{E}_2 \to \mathcal{E}_2$ is said to be an *isometry* of the plane \mathcal{E}_2 if f conserves the distances, i.e.

$$|f(A)f(B)| = |AB|, \quad \forall A, B \in \mathcal{E}_2.$$

(One denotes $|AB| = d_2(A, B)$).

We briefly list a few properties of isometries. These are all proved in Chapter 4 of our textbook.

- 1) The image of a segment through an isometry is a segment.
- 2) The image of a half-line is a half-line;
- 3) The image of a line is a line;
- **4)** If A, B and C are three noncollinear points on \mathcal{E}_2 , then so are their images f(A), f(B) and f(C);
- **5)** The image of a triangle $\triangle ABC$ is triangle $\triangle f(A)f(B)f(C)$, such that

$$\Delta ABC \equiv \Delta f(A)f(B)f(C);$$

- **6)** The image of an angle \widehat{AOB} is an angle $\widehat{f(A)f(O)f(B)}$ having the same measure;
- 7) Two orthogonal lines are transformed into two orthogonal lines;
- 8) Two parallel lines are transformed into two parallel lines.
- **9)** Any isometry $f: \mathcal{E}_2 \to \mathcal{E}_2$ is surjective.

Denote the set of isometries of the plane by $Iso(\mathcal{E}_2)$;

$$Iso(\mathcal{E}_2) = \{f : \mathcal{E}_2 \to \mathcal{E}_2, f \text{ isometry}\}.$$

Theorem

 $(\operatorname{Iso}(\mathcal{E}_2), \circ)$ is a group, called the group of isometries of the plane.

Denote the set of isometries of the plane by $Iso(\mathcal{E}_2)$;

$$\mathsf{Iso}(\mathcal{E}_2) = \{ f : \mathcal{E}_2 \to \mathcal{E}_2, f \text{ isometry} \}.$$

Theorem

 $(\operatorname{Iso}(\mathcal{E}_2), \circ)$ is a group, called the group of isometries of the plane.

- A point $A \in \mathcal{E}_2$ is a *fixed point* for the isometry f if f(A) = A;
- A line $d \in \mathcal{E}_2$ is said to be *invariant* with respect to f if f(d) = d (obviously, a line whose points are all fixed is invariant, while the converse is not necessarily true).

Examples. Symmetries (reflections)

Let d be a line in \mathcal{E}_2 . The map $s_d:\mathcal{E}_2 \to \mathcal{E}_2$, given by

 $s_d(P)=P', \quad \text{where P' is the symmetrical of P with respect to the line d},$

is called axial symmetry. The line d is the axis of the symmetry.

Let be given a point O in the plane. The map $s_O: \mathcal{E}_2 \to \mathcal{E}_2$, given by $s_O(P) = P'$, where P' is the symmetrical of P with respect to the point P, is called *central symmetry*. The point O is the *center* of the symmetry.

Another example. Translations

Let \overline{v} be a vector in V_2 . The map $t_{\overline{v}}:\mathcal{E}_2 \to \mathcal{E}_2$, given by

$$t_{\overline{\nu}}(M) = M', \quad \text{where} \quad \overline{MM'} = \overline{\nu},$$

is called *translation* of vector \overline{v} .

Rotations

An angle \widehat{AOB} is said to be *oriented* if the pair of half-lines $\{[OA, [OB]\}$ is ordered. The angle \widehat{AOB} is *positively oriented* if [OA] gets over [OB] counterclockwisely. Otherwise, \widehat{AOB} is *negatively oriented*. If the measure of the *nonoriented* angle \widehat{AOB} is θ , then the measure of the oriented angle \widehat{AOB} is either θ , or $-\theta$, depending on the orientation of \widehat{AOB} .

Let $O \in \mathcal{E}_2$ be a point and $\theta \in [-2\pi, 2\pi]$ be a number. The map $r_{O,\theta} : \mathcal{E}_2 \to \mathcal{E}_2$, given by

$$r_{O,\theta}(M) = M', \text{ where } \begin{cases} |OM| = |OM'| \\ m(\widehat{MOM'}) = \theta \end{cases}$$

is called *rotation* of center O and oriented angle θ .

Analytic form of isometries

Theorem

Let $P(x_0, y_0)$ be the center of the central symmetry s_P . The map s_P can be expressed as

$$\left(\begin{array}{c} x \\ y \end{array}\right) \mapsto -I_2 \cdot \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} 2x_0 \\ 2y_0 \end{array}\right)$$

Proof.

Let M(x, y) be an arbitrary point on \mathcal{E}_2 and $M' = s_P(M)$ its symmetrical with respect to P, M' = (x', y').

Since *P* is the midpoint of the segment [MM'], then $x_0 = \frac{x + x'}{2}$ and x + y'

Let us now see the analytic form of an axial symmetry.

Theorem

Let d: ax + by + c = 0, $a^2 + b^2 > 0$, be a line in \mathcal{E}_2 . The axial symmetry s_d can be expressed as

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \frac{b^2 - a^2}{a^2 + b^2} & -\frac{2ab}{a^2 + b^2} \\ -\frac{2ab}{a^2 + b^2} & -\frac{b^2 - a^2}{a^2 + b^2} \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -\frac{2ac}{a^2 + b^2} \\ -\frac{2bc}{a^2 + b^2} \end{pmatrix}.$$

Proof.

- One may suppose that $b \neq 0$.
- Let M(x, y) be an arbitrary point and $M' = s_d(M)$, M'(x', y').
- The points M and M' are symmetric with respect to d if and only if the line passing through M and M' is orthogonal on d and the midpoint P of the segment $\lceil MM' \rceil$ belongs to d.
- The equation of the line determined by M and M' is $\frac{X-x}{x'-x} = \frac{Y-y}{y'-y}$. The orthogonality condition gives a(y'-y) = b(x'-x).
- The midpoint of [MM'] is a point of d if and only if

$$a\left(\frac{x+x'}{2}\right)+b\left(\frac{y+y'}{2}\right)+c=0.$$

Continuation of the proof.

Then, the coordinates (x', y') of M' are the solution of the system of equation

$$\begin{cases} ax' + by' = -(ax + by + 2c) \\ bx' - ay' = bx - ay \end{cases}$$

and one obtains

$$\begin{cases} x' = \frac{b^2 - a^2}{a^2 + b^2} x - \frac{2ab}{a^2 + b^2} y - \frac{2ac}{a^2 + b^2} \\ y' = -\frac{2ab}{a^2 + b^2} x - \frac{b^2 - a^2}{a^2 + b^2} y - \frac{2bc}{a^2 + b^2} \end{cases}.$$

In vector form, this can be written as

$$\left(\begin{array}{c} x' \\ y' \end{array} \right) = \left(\begin{array}{cc} \frac{b^2 - a^2}{a^2 + b^2} & -\frac{2ab}{a^2 + b^2} \\ -\frac{2ab}{a^2 + b^2} & -\frac{b^2 - a^2}{a^2 + b^2} \end{array} \right) \cdot \left(\begin{array}{c} x \\ y \end{array} \right) + \left(\begin{array}{c} -\frac{2ac}{a^2 + b^2} \\ -\frac{2bc}{a^2 + b^2} \end{array} \right).$$

A few remarks

• If the line d passes through the origin O, then c=0 and the coordinates of M' become

$$\begin{cases} x' = \frac{b^2 - a^2}{a^2 + b^2} x - \frac{2ab}{a^2 + b^2} y \\ y' = -\frac{2ab}{a^2 + b^2} x - \frac{b^2 - a^2}{a^2 + b^2} y \end{cases}$$
(8)

• If the line d is parallel to Ox, then a=0 and the coordinates of M' become

$$\begin{cases} x' = x \\ y' = -y - \frac{2c}{b} \end{cases}$$
 (9)

• If the line d is parallel to Oy, then b = 0 and the coordinates of M' become

$$\begin{cases} x' = -x - \frac{2c}{a} \\ y' = y \end{cases}$$
 (10)

Translations

Let $\overline{v}(x_0,y_0)$ be a vector. The translation $t_{\overline{v}}$ of vector \overline{v} can be expressed as

$$\left(\begin{array}{c}x\\y\end{array}\right)\mapsto\left(\begin{array}{c}x\\y\end{array}\right)+\left(\begin{array}{c}x_0\\y_0\end{array}\right).$$

Theorem

If f is an arbitrary isometry of \mathcal{E}_2 , then its analytic form is given by

$$f\left(\begin{array}{c}x\\y\end{array}\right)=\left(\begin{array}{cc}a&-\epsilon b\\b&\epsilon a\end{array}\right)\cdot\left(\begin{array}{c}x\\y\end{array}\right)+\left(\begin{array}{c}x_0\\y_0\end{array}\right),$$

where $a^2 + b^2 = 1$ and $\epsilon = \pm 1$.

The problem set for this week is already posted. Ideally you would think about some of them before the seminar.

Thank you very much for your attention!