CS2105 Cheatsheet 18/19 S1 Midterms

Application Layer

Processes

- Applications send messages to each other using sockets
- Application processes can only control:
 - transport protocol used
 - minor transport-layer parameters
- To send a message to another application process we need:
 - IP Address of the host
 - Destination port number

In general

- $\bullet~$ If there is Reliable Data Transfer (TCP) \Rightarrow No loss
- If there is high throughput ⇒ Large amounts of data can be transferred at a time
- If there is timing/latency guarantee ⇒ interactive applications feel realistic
- Protocol can specify security e.g encryption, checksum verification, end-point authentication

TCP

- A TCP Handshake must be formed before two-way connection between client and host
- Reliable Data Transfer: data is received in proper order without erroneous, duplicate or missing byes
- Has a flow-control and congestion-control mechanism

UDP

- Lightweight and connectionless
- Unreliable data transfer service: no guarantee of reaching in the correct order, or even reaching in the first place
- No congestion-control mechanism

HTTP

- Stateless protocol cookies hold state (e.g preserve shopping cart)
- Common statuses 200 OK, 301 Moved Permanently, 400 Bad Request, 403 Forbidden, 404 Not Found, 500 Internal Server Error
- A Web Cache keeps copies of recently requested objects in this storage, and makes TCP handshakes with server to get the object (if it's not cached)
- Non-persistence (1.0): One handshake for establishing connection, then one file is requested, followed by another handshake to close connection

- Persistence (1.1): One handshake for establishing connection, then files are requested sequentially.
 Connection is left open by server
- Pipelining (1.1): New requests made before previous ones are resolved, but order of objects is preserved (by TCP)
- Multiplexing (2): Responses can come back in any order, or even partially

DNS

- DNS (Domain Name Server) holds Resource Records (RR)
 - (Name, Value, Type, TTL)
 - Type=A ⇒ Name: hostname, Value: IP
 - Type=NS ⇒ Name: domain, Value: IP of authoritative DNS
 - Type=CNAME ⇒ Name: alias hostname, Value: canonical hostname
 - Type=MX ⇒ Name: alias hostname, Value: canonical name of mail server
- Root servers direct queries to TLD servers, only 13 root servers in the world
- TLD (Top-level Domain) responsible for .com, .org, .net, .sg...
- Authoritative server keeps hostname-IP mappings of organization's named hosts
- Local DNS acts as a proxy, caches previously retrieved mappings to cache. This allows for faster lookup. Owned by ISPs
- All DNS servers can implement caching, so root servers are often not called upon
- DNS uses port 53

Delay

- There are four types of delays:
 - N (Number of Bits to Transmit)
 - Transmission Delay (d_{trans}) : N / Transmission Rate
- Propogation Delay (d_{prop}) : distance / Propogation Speed

- Queing Delay (d_{queue}) : Time spent in Queue at Router R
- Processing Delay $(d_{process})$: Time spent to process by Router R
- RTT (Round-Trip-Time): $d_{prop} + d_{queue} + d_{process}$
- Throughput (End to End delay): $N/(d_{trans}+d_{prop}+d_{queue}+d_{process})$
- Link Utilization: $d_{trans}/(d_{trans} + RTT)$

Transport Layer In general

- Provides logical communication between processes by sending segments
- Note that the term datagram is used for Network layer, but is commonly used to refer to UDP packets as well
- The end goal of TCP/UDP is to extend host-to-host delivery to process-to-process delivery (transportlayer multiplexing and demultiplexing)

RDP

- \bullet Checksum implemented if channel can flip bits (2.0)
- ACK/NAK used to recover from bit errors (2.0)
- ACK/NAK used to recover from bit errors (2.0)
- Sequence number used to account for ACK/NAK corruption (2.1)
- ACK0/1 used instead of NAK (2.2) for simplicity
- Timeout added to account for packet loss (but not reordered) (3.0)

Pipelining

- Go-Back-N:
 - Receiver sends cumulative ACK \Rightarrow all packets \leq n have been received \Rightarrow ensures order
 - Receiver discards any packets not in order
 - Sender attaches k-bits sequence to packet header
 ⇒ can represent at least [0, n]
 - Sliding window of size n is kept
 - Keep timer for oldest unACKed packet
 - Resend all n packets in window on timeout
- Selective Repeat:
 - Receives acknowledges packets individually
- Receives buffers out-of-order packets for eventual in-order delivery (to upper layer
- Sender maintains timer for each unACKed packet
 ⇒ only retransmit that packet on timeout

- Sender attaches k-bits sequence to packet header \Rightarrow can represent at least [0, n]
- Sliding window of size n is kept
- Keep timer for oldest unACKed packet
- Resend all n packets in window on timeout

UDP

- User creates a socket to send segment, and specifies IP address and port # in the segment
- Receiver checks destination port in segment, and redirects to the socket with that port number
- Benefits:
 - No connection set-up
 - No state to remember
 - Small header size \Rightarrow less overhead
 - No congestion control (as compared to TCP)
 - Checksum to verify integrity
- Checksum value included in UDP checksum field. Example checksum:
- Split into 16bit integers
- Add integers, use wrap-around carry
- Compute 1's complement (flip all bits)

UDP segment structure

TCP

- Connection-oriented Handshake is required before transmission
- Reliable, in-order byte stream
- Offset field allows for additional headers (it stores total number of TCP headers)
- Sequence Number is byte number of first byte of data in segment
- ACK Number is the sequence number of the next byte of data expected
- ACK Bit represents if the ACK number should be read
- SYN Bit initiates a connection
- FIN Bit is to denote closing of the connection (Final)
- RST Bit is to denote abortion of a connection due to error

- PSH Bit is to indicate that the data should be pushed IP to application level immediately, without waiting for additional data
- URG Bit is to indicate to a receiving station that the data is urgent and should be prioritised
- Receive window tells sender how much data can be sent
- Timeout:
 - Too long ⇒ slow reaction to loss
- Too short ⇒ Premature timeout and unnecessary retransmissions
- Estimate RTT using Exponential Weighted Moving Average: $RTT_E = (1-a) * RTT_E + a * RTT_s$, where a is usually $\frac{1}{3}$
- Calculate deviation of RTT using RTT_{dev} = (1 b) * $RTT_{dev} + b * RTT_s - RTT_E$, where b is usually
- Retransmission Timeout is $RTO = RTT_E + 4 *$ RTT_{dev} , the deviation is used as a "safety mar-
- Note that the RTO is doubled after each timeout
- TCP Fast transmission: If 3 Duplicate ACK

TCP segment structure

TCP Receiver Events

Network Layer In general

- Provides logical communication between hosts, through routers
- · Has two responsibilities: forwarding (through a single output link) and routing (determining the route that packets should follow)

- IP Address is 32bit
- IP Address is associated with an interface e.g 802.11
- · However, the device that we call "router", actually forwards packets between networks. This device has multiple interfaces e.g LAN ports are all one interface
- Dynamic Host Configuration Protocol:
 - Host broadcast a Discover message
 - DHCP server (listening on port 67) reponds with an offer. First transaction ends here.
 - Host requests for the given IP with a new Transaction (new transaction ID used)
 - DHCP ACKnowledges request and assigns the IP
- Some IP Addresses are reserved
- Hierarchical addressing scheme:
- IP Addresses grouped into subnets, each subnet having a certain prefix for all IP Addresses
- Internet decides which ISP to send the packet to using the Longest Prefix of the address
- Subnet mask is a common prefix used between hosts in the same subnet, where they can communicate between each other without a router
- Network Address Translation:
 - Entire subnet under the router is identified by a single IP Address
 - translation table used map $(IP_{subnet}, port)$ to $(IP_{alobal}, port)$
- Hosts' identities are effectively "firewalled" from the outside world
- External parties cannot identify hosts using IP, only using port (which is supposed to be used on the Application-level)

Special IP Addresses

127.0.0.1/8	Loopback address. Typically using 127.0.0.1/32
10.0.0.0/8 172.16.0.0/12 192.168.0.0/16	Private addresses. Local communication in a private network.
255.255.255.255/32	Broadcast address. All hosts on the same subnet will receive the datagram
0.0.0.0/8	Non-routable meta-address for special use

rdt 2.1 sender

rdt 2.1 receiver

rdt 3.0 sender

Java Socket Programming

TCPEchoServer

```
import java.io.*;
import java.net.*;
import java.util.*;
class TCPEchoServer {
  public static void main(String[] args) throws IOException {
    int open t = SGP8; // server listens to this example port
    ServerSocket welcomeSocket = new ServerSocket(port);
```

TCPEchoClient

// create a client socket and connect to the server
Socket clientSocket = new Socket("localhost", 5678); // read server reply from the sock
String fromServer = sc.nextLine(); w on screen .out.println("Echo from server: " + fromServer