- Ejercicio 1: Distribución Uniforme
- Ejercicio 2: Distribución Exponencial
- Ejercicio 3: Distribución Logística
- Ejercicio 4: Distribución Rayleigh
- Ejercicio 5: Distribución Weibull

Ejercicio 1: Distribución Uniforme U(a,b)

La distribución uniforme entre a y b tiene la siguiente función de densidad (PDF): $f(x) = \frac{1}{b-a}, \quad a \le x \le b.$

Paso 1: Encontrar la CDF La función de distribución acumulativa para esta distribución es: $F(x) = \frac{x-a}{b-a}$, $a \le x \le b$.

Paso 2: Invertir la CDF Para obtener la inversa de esta CDF, se resuelve para x: $u = F(x) = \frac{x-a}{b-a}$, $x = a + (b-a) \times u$, donde u es un número aleatorio uniformemente distribuido entre 0 y 1.

Ejercicio 2: Distribución Exponencial

La distribución exponencial con parámetro λ tiene la siguiente PDF: $f(x) = \lambda e^{-\lambda x}, \quad x \ge 0.$

Paso 1: Encontrar la CDF La función de distribución acumulativa para la distribución exponencial es: $F(x) = 1 - e^{-\lambda x}$.

Paso 2: Invertir la CDF Para obtener la inversa de esta CDF, se resuelve para x: u = F(x), $1 - u = e^{-\lambda x}$, $x = -\frac{1}{\lambda} \ln(1 - u)$.

Ejercicio 3: Distribución Logística

La distribución logística tiene la siguiente PDF: $f(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}$.

Paso 1: Encontrar la CDF La CDF para la distribución logística es: $F(x) = \frac{1}{1 + e^{-(x-\mu)/s}}$.

Paso 2: Invertir la CDF Para obtener la inversa de esta CDF, se resuelve para x: u = F(x), $1 - u = 1/(1 + e^{-(x-\mu)/s})$, $1/u - 1 = e^{-(x-\mu)/s}$, $-s \ln(1/u - 1) = x - \mu$, $x = \mu - \mu$

Ejercicio 4: Distribución Rayleigh

La distribución Rayleigh tiene la siguiente PDF: $f(x) = \frac{x}{\sigma^2} e^{-x^2/(2\sigma^2)}, \quad x \ge 0.$

Paso 1: Encontrar la CDF La función de distribución acumulativa es: $F(x) = 1 - e^{-x^2/(2\sigma^2)}$.

Paso 2: Invertir la CDF Para obtener la inversa de esta CDF, se resuelve para x: u = F(x), $1 - u = e^{-x^2/(2\sigma^2)}$, $-2\sigma^2 \ln(1 - u) = x^2$, $x = \sigma \sqrt{-2 \ln(1 - u)}$.

Ejercicio 5: Distribución Weibull

La distribución Weibull tiene la siguiente PDF: $f(x) = \frac{\kappa}{\lambda} \left(\frac{x}{\lambda}\right)^{\kappa-1} e^{-(x/\lambda)^{\kappa}}, \quad x \ge 0.$

Paso 1: Encontrar la CDF La función de distribución acumulativa para esta distribución es: $F(x) = 1 - e^{-(x/\lambda)^{\kappa}}$.

Paso 2: Invertir la CDF Para obtener la inversa de esta CDF, se resuelve para x: u = F(x), $1 - u = e^{-(x/\lambda)^{\kappa}}$, $-\ln(1 - u) = (x/\lambda)^{\kappa}$, $x = \lambda \times (-\ln(1 - u))^{1/\kappa}$.