FA With Output... Moore Machine

-- Sakshi Surve

Moore machine – example

Input: abba

Output: 1 0 0 0 1

Moore Machine

Moore Machine is six-tuple $(Q, \sum, \Delta, \delta, \lambda, q_0)$:

- (i) Q is a finite set of states
- (ii) ∑ is the input alphabet
- (iii) Δ is the output alphabet
- (iv) δ is the transition function from $\sum X Q$ into Q
- (v) λ is the output function mapping Q into Δ and
- (vi) q_0 is the initial state

• Mapping Functions :

Current	Next State (δ)		Output(λ)
State	0	1	
q _o	qı	q ₂	1
q ₁	q ₂	q ₁	1
q ₂	q ₂	qo	0

Design Moore Machine to find one's complement of a binary input string

Transition Mapping Function
Output Mapping Function

8(000)

2 (9, 9, 9)

Ilp string-000 Olp string-111

Design Moore Machine to convert every occurrence of 100 to 101

Transition Mapping Function
Output Mapping Function

Example-90 90 91 92 93 Now, leaving the initial state & Applying In to resultant states, we get, 2 (90 91 92 93)

Example -90 91 92 93 91 2 (9, 92 93 9, → 1 0 1 1 ... SIP string - 1001 ofp string - 101 €

Design Moore Machine which outputs 'A' if '101' is recognized, otherwise outputs 'B'

Transition Mapping Function
Output Mapping Function

	_
1 1 1 1	
,	
8(1111)	
111	
90 91 91 91	9,
iste all of a party	1
2 (9, 9, 9,	91)
BBBB	
112 1 ANT AMOUNDS IN	
- 2/10 - 1 1 1 1	A
	3
01p- BBBB	
op in or in	

Homework

- Design Moore Machine which outputs 'A' if '101' is recognized, outputs 'B' if '110' is recognized, and 'C' otherwise
- Design a Moore machine to convert every occurrence of '121' to '122' over $\Sigma = \{1,2,3\}$

FA with Output ... Mealy Machine

--- Sakshi Surve

- FA with Output associated with a State:
 - Moore Machine

- FA with Output associated with a Transition:
 - Mealy Machine

FA With Output- Mealy Machine

- □output on edge
- □same number of input to output
- □Input: aaabb
- Output: 01110

Definition:

Mealy Machine

A Mealy machine is defined by the sextuple

$$M = (Q, \Sigma, r, \delta, \theta, q_o)$$

Where

- Q is a finite set of internal states,
- Σ is the input alphabet,
- R is the output alphabet,
- $\delta: \mathbb{Q} \times \Sigma \longrightarrow \mathbb{Q}$ is the transition function.
- θ : $Q \times \Sigma \rightarrow r$ is the output function.
- $q_o \in Q$ is the initial state of M.

State	Next State			
	Input = 0		Inp	ut = 1
	State	Output	State	Output
→ q0	q2	b	q1	b
q1	q3	b	q2	b
q2	q2	b	q2	b
q3	q2	b	q0	a

 Design Mealy Machine to find one's complement of a binary input string

Transition Mapping Function
Output Mapping Function

• Examples :

1010
Applying 's' to input
Johnson
8(10010)
90 90 90 90
90 90 90 90
Now, excluding the last state.
applying a to the resultant
stater we get -
3 90 90 9
2(90,1) = 0
$\lambda(90,0) = 1$
2 (90,1) = 0
2 (90,0)=1.
:- 2/9 string = 1010
0/9 string = 0101.

0000
EP SPIPSPIP OP
8(000)
1/1/1
90 90 90 90
0,=(0,18)5
2 (90,0) = 1
2 (90,0)=1
7 (90,0) =1
0 = (0 of) R
·. [] p string 2 0 0 0
olp string = 191

Design Mealy Machine to convert every occurrence of 100 to 101

- Transition Mapping Function Output Mapping Function

The tuples of mic are: -

Q= } 90,91,92,93} 5= 30,17 90 = 90 D= {0,1}

Design Mealy Machine which outputs 'A' if '101' is recognized, outputs 'B' if '110' is recognized, and 'C' otherwise

Design a Mealy Machine to accept a binary string if it ends with 'oo' or '11'

Design Moore and Mealy Machine to determine residue modulo 3 of a binary input

Residue Modulo n = Remainder after dividing by n

• The expected answer is remainder when a binary number is divided by 3i.e. 0, 1, 2

\	0	PAGE No.
90	90	DAQ / / /
91	92	8
(10)92	91	92

Homework

• Design a Moore Machine to accept a binary string if it ends with 'oo' or '11'

- Design Mealy Machine which outputs 'A' if '101' is recognized, otherwise outputs 'B'
- Design a Mealy machine to convert every occurrence of '121' to '122' over $\Sigma = \{1,2,3\}$

Mealy Machine	Moore Machine
Output depends both upon the present state and the present input	Output depends only upon the present state.
Generally, it has fewer states than Moore Machine.	Generally, it has more states than Mealy Machine.
The value of the output function is a function of the transitions and the changes, when the input logic on the present state is done.	The value of the output function is a function of the current state and the changes at the clock edges, whenever state changes occur.
Mealy machines react faster to inputs. They generally react in the same clock cycle.	In Moore machines, more logic is required to decode the outputs resulting in more circuit delays. They generally react one clock cycle later.