Combinational & Sequential Circuit Design

Dr. Mahdi Abbasi
Bu Ali Sina University
Department of Computer Engineering

Outline

- Definitions
- Boolean Expansion Based on Orthonormal Basis
- Sum of Product (SOP) Simplification Procedure
- SOP Simplification Procedure using Don't Cares
- Iterative Arithmetic Combinational Circuits
- Sequential Circuit Model
- Sequential Circuit Design Procedure
- State Minimization
- State Encoding
- Retiming
- Sequential Circuit Timing

- A product term of a function is said to be an implicant.
- A Prime Implicant (PI) is a product term obtained by combining the maximum possible number of adjacent 1-squares in the map.
- A Prime Implicant is a product that we cannot remove any of its literals.
- If a minterm is covered only by one prime implicant then this prime implicant is said to be an Essential Prime Implicant (EPI).

- A cover of a Boolean function is a set of implicants that covers its minterms.
- Minimum cover
 - Cover of the function with minimum number of implicants.
 - Global optimum.
- Minimal cover or irredundant cover
 - Cover of the function that is not a proper superset of another cover.
 - No implicant can be dropped.
 - Local optimum.

- Let $f(x_1, x_2, ..., x_n)$ be a Boolean function of n variables.
- The cofactor of $f(x_1, x_2, ..., x_i, ..., x_n)$ with respect to variable x_i is $f_{x_i} = f(x_1, x_2, ..., x_i=1, ..., x_n)$
- The cofactor of $f(x_1, x_2, ..., x_i, ..., x_n)$ with respect to variable x_i is $f_{xi} = f(x_1, x_2, ..., x_i = 0, ..., x_n)$
- □ Theorem: Shannon's Expansion

Let
$$f: B^n \to B$$
. Then $f(x_1, x_2, ..., x_i, ..., x_n) = x_i . f_{x_i} + x'_i . f_{x'_i}$
= $(x_i + f_{x'_i}) . (x'_i + f_{x_i}) \ \forall i = 1, 2, ..., n$

Any function can be expressed as sum of products (product of sums) of n literals, minterms (maxterms), by recursive expansion.

A sample of Shanon

When we apply Shannon's expansion to a,

$$F(a,b,c,d,e,f) = (a+b+d)(a'+b+c)(b+c+d+e+f)$$

$$F(0,b,c,d,e,f) = (b+d) \cdot 1 \cdot (b+c+d+e+f) = (b+d)(1+c+e+f) = b+d$$

$$F(1,b,c,d,e,f) = 1 \cdot (b+c) \cdot (b+c+d+e+f) = (b+c)(1+d+e+f) = b+c$$

$$F(a,b,c,d,e,f) = (a+F(0,b,c,d,e,f)) \cdot (a'+F(1,b,c,d,e,f))$$

$$= (a+b+d)(a'+b+c)$$

- □ Another example: f = ab + ac + bc
 - $f_a = b + c$
 - $f_{a'} = bc$
 - $F = a f_a + a' f_{a'} = a (b + c) + a' (bc)$
- A Boolean function can be interpreted as the set of its minterms.
- Operations and relations on Boolean functions can be viewed as operations on their minterm sets
 - Sum of two functions is the Union (∪) of their minterm sets
 - Product of two functions is the Intersection (∩) of their minterm sets
 - Implication between two functions corresponds to containment (⊆) of their minterm sets
 - $f_1 \to f_2 \equiv f_1 \subseteq f_2 \equiv f_1' + f_2 = 1$

Boolean Expansion Based on Orthonormal Basis

- Let ϕ_i , i=1,2, ...,k be a set of Boolean functions such that $\Sigma_{i=1 \text{ to } k}$ ϕ_i = 1 and ϕ_i . ϕ_i = 0 for \forall i \neq j \in {1,2,...,k}.
- An Orthonormal Expansion of a function f is

$$f = \sum_{i=1 \text{ to } k} f_{\phi i} \cdot \phi_i$$

- □ Example: f = ab+ac+bc; $\phi_1 = a$; $\phi_2 = a$;
 - $f_{b1} = b+c+bc=b+c$
 - $f_{\phi 2} = bc$
 - $f = \phi_1 f_{\phi 1} + \phi_2 f_{\phi 2} = a (b+c) + a'(bc) = ab + ac + a'bc = ab + ac + bc$

Boolean Expansion Based on Orthonormal Basis

☐ Theorem

- Let f, g, be two Boolean functions expanded with the same orthonormal basis φ_I, i=1,2, ...,k
- Let ⊗ be a binary operator on two Boolean functions

$$f \otimes g = \sum_{i=1}^{k} \Phi_i . (f_{\Phi_i} \otimes g_{\Phi_i})$$

Corollary

- Let f, g, be two Boolean functions with support variables {x_i, i=1,2, ...,n}.
- Let ⊗ be a binary operator on two Boolean functions

$$f \otimes g = x_i.(f_{x_i} \otimes g_{x_i}) + x_i'.(f_{x_i'} \otimes g_{x_i'})$$

Boolean Expansion Based on Orthonormal Basis

Example:

- Let f = ab + c; g=a'c + b; Compute f ⊕g
- Let ϕ_1 =a'b'; ϕ_2 =a'b; ϕ_3 =ab'; ϕ_4 =ab;
- $f_{\phi 1} = c$; $f_{\phi 2} = c$; $f_{\phi 3} = c$; $f_{\phi 4} = 1$;
- $g_{\phi 1} = c$; $g_{\phi 2} = 1$; $g_{\phi 3} = 0$; $g_{\phi 4} = 1$;
- f = a'b' (c ⊕c) + a'b (c ⊕1) + ab' (c ⊕0) + ab (1 ⊕1) = a'bc' + ab'c
- F= (ab+c) ⊕ (a'c+b)= (ab+c)(a+c')b' + (a'+b')c'(a'c+b) = (ab+ac)b' + (a'c+a'b)c' = ab'c +a'bc'

Sum of Product (SOP) Simplification Procedure

- 1. Identify all prime implicants covering 1's
 - Example: For a function of 3 variables, group all possible groups of 4, then groups of 2 that are not contained in groups of 4, then minterms that are not contained in a group of 4 or 2.
- 2. Identify all essential prime implicants and select them.
- 3. Check all minterms (1's) covered by essential prime implicants
- 4. Repeat until all minterms (1's) are covered:
 - Select the prime implicant covering the largest uncovered minterms (1's).

Don't Care Conditions

- In some cases, the function is not specified for certain combinations of input variables as 1 or 0.
- There are two cases in which it occurs:
 - 1. The input combination never occurs.
 - 2. The input combination occurs but we do not care what the outputs are in response to these inputs because the output will not be observed.
- In both cases, the outputs are called as unspecified and the functions having them are called as incompletely specified functions.
- In most applications, we simply do not care what value is assumed by the function for unspecified minterms.

Don't Care Conditions

- Unspecified minterms of a function are called as don't care conditions. They provide further simplification of the function, and they are denoted by X's to distinguish them from 1's and 0's.
- In choosing adjacent squares to simplify the function in a map, the don't care minterms can be assumed either 1 or 0, depending on which combination gives the simplest expression.
- A don't care minterm need not be chosen at all if it does not contribute to produce a larger implicant.

SOP Simplification Procedure using Don't Cares

- 1. Identify all prime implicants covering 1's & X's
 - Each prime implicant must contain at least a single 1
- 2. Identify all essential prime implicants and select them.
 - An essential prime implicant must be the only implicant covering at least a 1.
- 3. Check all 1's covered by essential prime implicants
- 4. Repeat until all 1's are covered:
 - Select the prime implicant covering the largest uncovered 1's.

Combinational Circuits Design Procedure

1. Specification (Requirement)

- Write a specification for what the circuit should do e.g. add two 4-bit binary numbers
- Specify names for the inputs and outputs

2. Formulation

- Convert the Specification into a form that can be Optimized.
- Usually as a truth table or a set of Boolean equations that define the required relationships between the inputs and outputs

3. Logic Optimization

- Apply logic optimization (2-level & multi-level) to minimize the logic circuit
- Provide a logic diagram or a netlist for the resulting circuit using ANDs, ORs, and inverters

Combinational Circuits Design Procedure

4. Technology Mapping and Design Optimization

- Map the logic diagram or netlist to the implementation technology and gate type selected, e.g. CMOS NANDs
- Perform design optimizations of gate costs, gate delays, fanouts, power consumption, etc.
- Sometimes this stage is merged with stage 3

5. Verification

- Verify that the final design satisfies the original specification-Two methods:
 - Manual: Ensure that the truth table for the final technologymapped circuit is identical to the truth table derived from specifications
 - By Simulation: Simulate the final technology-mapped circuit on a CAD tool and test it to verify that it gives the desired outputs at the specified inputs and meets delay specs etc.

Iterative (Repetitive) Arithmetic Combinational Circuits

- An iterative array can be in a single dimension (1D) or multiple dimensions (spatially)
- Iterative array takes advantage of the regularity to make design feasible
- Block Diagram of a 1D Iterative Array

Iterative Design Example

- It is required to design a combinational circuit that computes the equation Y=3*X-1, where X is an n-bit signed 2's complement number
- This circuit can be designed by assuming that we have a borrow feeding first cell or by representing -1 in 2's complement as 11...11 and adding this 1 in each cell.
- We will follow the second approach. We need to represent carry-out values in the range 0 to 3. Thus, we need two signals to represent Carry out values.

Sequential Circuit Model

A Sequential circuit consists of:

- Data Storage elements: (Latches / Flip-Flops)
- Combinatorial Logic:
 - Implements a multiple-output function
 - Inputs are signals from the outside
 - Outputs are signals to the outside
 - State inputs (Internal): Present State from storage elements
 - State outputs, Next State are inputs to storage elements

Sequential Circuit Model

- Combinatorial Logic
 - Next state function: Next State = f(Inputs, State)
 - 2 output function types : Mealy & Moore
 - Output function: Mealy Circuits Outputs = g(Inputs, State)
 - Output function: Moore Circuits Outputs = h(State)
- Output function type depends on specification and affects the design significantly

Sequential Circuit Model

Mealy Circuit

Moore Circuit

Timing of Sequential Circuits Two Approaches

■ Behavior depends on the <u>time</u>s at which storage elements 'see' their inputs and change their outputs (next state → present state)

Asynchronous

 Behavior defined from knowledge of inputs at any instant of time and the order in continuous time in which inputs change

Synchronous

- Behavior defined from knowledge of signals at discrete instances of time
- Storage elements see their inputs and change state only in relation to a timing signal (clock pulses from a clock)
- The synchronous abstraction allows handling complex designs!

Sequential Circuit Design Procedure

- 1. Specification e.g. Verbal description
- 2. Formulation Interpret the specification to obtain a state diagram and a state table
- 3. State Assignment Assign binary codes to symbolic states
- 4. Flip-Flop Input Equation Determination Select flip-flop types and derive flip-flop input equations from next state entries in the state table
- 5. Output Equation Determination Derive output equations from output entries in the state table
- 6. Verification Verify correctness of final design

State Initialization

- When a sequential circuit is turned on, the state of the flip flops is unknown (Q could be 1 or 0)
- Before meaningful operation, we usually bring the circuit to an initial known state, e.g. by resetting all flip flops to 0's
- This is often done asynchronously through dedicated direct S/R inputs to the FFs
- It can also be done synchronously by going through the clocked FF inputs

State Minimization

- Aims at reducing the number of machine states
 - reduces the size of transition table.
- State reduction may reduce
 - the number of storage elements.
 - the combinational logic due to reduction in transitions
- Completely specified finite-state machines
 - No don't care conditions.
 - Easy to solve.
- Incompletely specified finite-state machines
 - Unspecified transitions and/or outputs.
 - Intractable problem.

State Minimization for Completely-Specified FSMs

Equivalent states

 Given any input sequence the corresponding output sequences match.

Theorem: Two states are equivalent iff

- they lead to identical outputs and
- their next-states are equivalent.

Equivalence is transitive

- Partition states into equivalence classes.
- Minimum finite-state machine is unique.

State Minimization Algorithm

- Stepwise partition refinement.
- Initially
 - ¬ ☐ = States belong to the same block when <u>outputs</u> are the same for any input.
- Refine partition blocks: While further splitting is possible
 - ∏_{k+1} = States belong to the same block if they were previously in the same block and their next-states are in the same block of ∏_k for any input.
- At convergence
 - Blocks identify equivalent states.

State Minimization Example

- $\Pi_1 = \{(s1, s2), (s3, s4), (s5)\}.$
- □ Π_2 = is a partition into equivalence classes
 - States (s1, s2) are equivalent.

INPUT	STATE	N-STATE	OUTPUT
0	s_1	83	1
1	s_1	s_5	1
0	s_2	s_3	1
1	s_2	s_5	1
0	s_3	s_2	0
1	s_3	s_1	1
0	84	84	0
1	84	s_5	1
0	s_5	84	1
1	s_5	s_1	0

State Minimization Example

Original FSM

INPUT	STATE	N-STATE	OUTPUT
0	s_1	83	1
1	s_1	<i>s</i> ₅	1
0	s_2	83	1
1	s_2	s_5	1
0	s_3	<i>s</i> ₂	0
1	s_3	s_1	1
0	84	84	0
1	84	s_5	1
0	s_5	84	1
1	s_5	s_1	0

V	Ш	Ш	al	'	IV

INPUT	STATE	N-STATE	OUTPUT
0	<i>s</i> ₁₂	83	1
1	s_{12}	s_5	1
0	s3	s_{12}	0
1	s3	s_{12}	1
0	s_4	84	0
1	s_4	s_5	1
0	<i>s</i> ₅	84	1
1	<i>s</i> ₅	s ₁₂	0

Another State Minimization Example

Sequence Detector for codes of symbols 010 or 110 assuming that each symbol code is 3 bits in length

Input			xt State	Οι	ıtput
Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S0	S1	S2	0	0
0	S1	S3	S4	0	0
1	S2	S5	S 6	0	0
00	S3	S0	S0	0	0
01	S4	S0	S0	1	0
10	S5	S0	S0	0	0
11	S6	S0	S0	1	0

Another State Minimization Example

Input		Next State		Output	
Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S0	S1	S 2	0	0
0	S1	S3	\$2 \$4 \$6 \$0 \$0 \$0 \$0	0	0
1	S2	S5	S 6	0	0
00	S2 S3	S0	S0	0	0
01	S4	S0	S0	1	0
10	S5	S0	S0	0	0
11	S6	S0	S0	1	0

```
      (S0 S1 S2 S3 S4 S5 S6)

      (S0 S1 S2 S3 S5) (S4 S6)
      S1 is equivalent to S2

      (S0 S3 S5) (S1 S2) (S4 S6)
      S3 is equivalent to S5

      (S0) (S3 S5) (S1 S2) (S4 S6)
      S4 is equivalent to S6
```

Another State Minimization Example

State minimized sequence detector for 010 or 110

Input		Next State		Output	
Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S0	S1'	S1'	0	0
0 + 1	S1'	<i>S3'</i>	S4'	0	0
X0	S3'	<i>S0</i>	S0	0	0
X1	S4'	S0	S0	1	0

Multiple Input Example

present		nex	t sta	te	output
state	00	01	10	11	•
<i>S0</i>	S0	S1	S2	S3	1
S1	S0	S3	S1	S4	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0

Implication Chart Method

Cross out incompatible states based on outputs

Then cross out more cells if indexed chart entries are

already crossed out

next state			output	
00	01	10	11	
S0	S1	S2	S3	1
S0	S3	S1	S4	0
S1	S 3	S2	S4	1
S1	S0	S4	S5	0
S0	S1	S2	S5	1
S1	S4	S0	S5	0
	\$0 \$0 \$1 \$1 \$0	00 01 S0 S1 S0 S3 S1 S3 S1 S0 S0 S1	00 01 10 S0 S1 S2 S0 S3 S1 S1 S3 S2 S1 S0 S4 S0 S1 S2	00 01 10 11 S0 S1 S2 S3 S0 S3 S1 S4 S1 S3 S2 S4 S1 S0 S4 S5 S0 S1 S2 S5

present	1	nex	output		
state	00	01	10	11	
<i>S0'</i>	S0' S0'	S1	S2	S3'	1
S1	SO'	S3'	S1	SO'	0
S2	S1	S3'	S2	SO'	1
S3'	S1	SO'	SO'	S3'	0

minimized state table (S0==S4) (S3==S5)

State Minimization Computational Complexity

- Polynomially-bound algorithm.
- There can be at most |S| partition refinements.
- Each refinement requires considering each state
 - Complexity O(|S|²).
- Actual time may depend upon
 - Data-structures.
 - Implementation details.

State Encoding

- Determine a binary encoding of the states (|S|=n_s) that optimize machine implementation
 - Area
 - Cycle-time
 - Power dissipation
 - Testability
- Assume D-type registers.
- Circuit complexity is related to
 - Number of storage bits n_b used for state representation
 - Size of combinational component
- There are $\frac{2^{n_b}!/(2^{n_b}-n_s)!}{2^{n_b}!}$ possible encodings
- Implementation Modeling
 - Two-level circuits.
 - Multiple-level circuits.

State Encoding Example

Table 1. An example of an FSM.

Present State	Next State		Out	put
	X=0	X=1	X=0	X=1
S0	S2	S2	0	0
S1	S2	S0	0	1
S2	S4	S3	0	1
S3	S1	S2	1	O
S4	S1	S4	1	O

Table 2. State assignments with resulting area cost.

State	Ass. 1	Ass. 2
S0	101	111
S1	001	000
S2	100	011
S3	111	101
S4	110	100
Area (No. of Literals)	10	20

State Encoding Example

(a) Circuit resulting from "Ass. 1".

(b) Circuit resulting from "Ass. 2".