# Asymmetric Interference Effects in Code-Switching

Alessandra Pintado-Urbanc 2025 LSA Annual Meeting 10 January 2025

## The Bilingual Mind: Represented in DFT



#### **Overview:**

- I. Present how the bilingual mind can be represented in DFT
  - A. Discuss language dominance and language modes
  - B. Discuss code-switching and phonetic transfer
- I. Present experimental data of phonetic transfer in code-switching
- Present our DFT model that captures this effect
- I. Present the model's **new predictions** and **future extensions**

## The Bilingual Mind: Two Language Systems

- Two competing languages stored within one mind
- These competing languages have systems that differ on syntactic, semantic, morphological, phonological, and phonetic levels

#### **Key Assumption:**

• Two phonetic systems in a common representational network



## The Bilingual Mind: Language Dominance and Modes

Dominance Effects: (Flege, MacKay, & Piske, 2002; Grosjean, 1989)

- Bilinguals typically have a dominant and non-dominant language
  - Resulting from age of acquisition, daily use, etc.

#### Language Modes: (Grosjean, 1985)

Continuum from monolingual to bilingual speech

## The Bilingual Mind: Interaction between Languages

- Code-Switching: Rapid systematic and predictable transitions between two (or more) languages
- A code-switched word can exhibit phonetic differences from the same word produced in a monolingual context

"I think that Dynamic Field Theory es un tema muy interesante."

#### Phonetic Differences: (Grosjean, 2011)

- **Transfer:** *Long-term memory* representations
- Interference: Working memory representations



## **DFT Predictions:** Overlapping Inputs

 If language inputs are overlapping, during instances when both inputs are sufficiently activated (e.g. during code-switching)
 productions will result in phonetic differences



### The Data: Olson (2013)'s Language Switching Task

#### **Experimental Condition:** Language Modes

Monolingual Condition: 95% of trials in dominant and 5% of trials in non-dominant



## **Spanish and English Voice Onset Time:**





Results: Non-dominant (Spanish) impacting dominant (English)



#### Results: Non-dominant (English) impacting dominant (Spanish)



#### The Model:

Modulates the activation (amplitude) of the language inputs



#### **Inverse Frequency Effect** (Ferreira, 2003):

Greater priming effects for less frequent items



#### **Model Parameters:**

| Parameter         | Value |  |
|-------------------|-------|--|
| т                 | 20    |  |
| h                 | - 5   |  |
| β                 | 4     |  |
| C <sub>exc</sub>  | 21    |  |
| C <sub>inh</sub>  | 0     |  |
| C <sub>glob</sub> | 0.9   |  |
| $\sigma_{ m exc}$ | 5     |  |
| $\sigma_{inh}$    | 12.5  |  |
| q                 | 0     |  |
| w                 | 21    |  |

Selection
Parameters:
Only want to produce one language at a time

#### **Input Parameters:**

|                                               | Activation of Dominant Language Input | Activation of Non-<br>Dominant<br>Language Input |
|-----------------------------------------------|---------------------------------------|--------------------------------------------------|
| Dominant → Dominant<br>(DOM STAY)             | 6                                     | 1                                                |
| Non-Dominant → Non-Dominant<br>(NON-DOM STAY) | 1                                     | 6                                                |
| Dominant → Non-Dominant (NON-<br>DOM SWITCH)  | 1                                     | 5                                                |
| Non-Dominant → Dominant<br>(DOM SWITCH)       | 4                                     | 3                                                |

Even when operating in "monolingual modes" is the competing language minimally activated (Blumenfeld & Marian, 2007; Marian & Spivey, 2003)

**Simulations:** English Dominant





English Stay

**English** Switch

## **Simulations:** English Dominant





Spanish Stay

Spanish Switch

**Simulations:** Spanish Dominant





Spanish Stay

Spanish Switch

## **Simulations:** Spanish Dominant





English Stay

**English** Switch

#### **New Predictions:**

- The model predicts there to be no interference effects for speakers of languages whose VOT distributions do not overlap
- It also predicts a 'switch-cost' when switching from the nondominant language into the dominant given differences in the timesteps of the onset of peak formation

#### **Future Extensions:**

- Adapt the model to account for a bilingual mode of communication where asymmetric interference effect is not found (Olson, 2013)
- Adapt the model to account for balanced bilinguals where interference effects are not found (Tsui et al., 2019)

## **Thank You!**