Combinational logic implementation

- Two-level logic
 - I implementations of two-level logic
 - NAND/NOR
- Multi-level logic
 - I factored forms
 - I and-or-invert gates
- Time behavior
 - I gate delays
 - hazards
- Regular logic
 - I multiplexors
 - I decoders
 - PAL/PLAs
 - ROMs

CSE 370 - Spring 1999 - Combinational Implementation - 1

Implementations of two-level logic

- Sum-of-products
 - AND gates to form product terms (minterms)
 - I OR gate to form sum

- Product-of-sums
 - I OR gates to form sum terms (maxterms)
 - AND gates to form product

Two-level logic using NAND gates

- Replace minterm AND gates with NAND gates -
- Place compensating inversion at inputs of OR gate -

CSE 370 - Spring 1999 - Combinational Implementation - 3

Two-level logic using NAND gates (cont'd)

- OR gate with inverted inputs is a NAND gate
 - de Morgan's:
- $A' + B' = (A \bullet B)'$
- Two-level NAND-NAND network
 - I inverted inputs are not counted
 - I in a typical circuit, inversion is done once and signal distributed

Two-level logic using NOR gates

- Replace maxterm OR gates with NOR gates —
- Place compensating inversion at inputs of AND gate -

CSE 370 - Spring 1999 - Combinational Implementation - 5

Two-level logic using NOR gates (cont'd)

- AND gate with inverted inputs is a NOR gate
 - de Morgan's: A
- $A' \bullet B' = (A + B)'$
- Two-level NOR-NOR network
 - I inverted inputs are not counted
 - I in a typical circuit, inversion is done once and signal distributed

Two-level logic using NAND and NOR gates

- NAND-NAND and NOR-NOR networks
 - I de Morgan's law: $(A + B)' = A' \cdot B'$ $(A \cdot B)' = A' + B'$
 - I written differently: $A + B = (A' \cdot B')'$ $(A \cdot B) = (A' + B')'$
- In other words
 - I OR is the same as NAND with complemented inputs
 - I AND is the same as NOR with complemented inputs
 - NAND is the same as OR with complemented inputs
 - I NOR is the same as AND with complemented inputs

CSE 370 - Spring 1999 - Combinational Implementation - 7

Conversion between forms

- Convert from networks of ANDs and ORs to networks of NANDs and NORs
 - I introduce appropriate inversions ("bubbles")
- Each introduced "bubble" must be matched by a corresponding "bubble"
 - I conservation of inversions
 - I do not alter logic function

Conversion between forms (cont'd)

■ Example: verify equivalence of two forms

$$Z = [(A \cdot B)' \cdot (C \cdot D)']'$$

$$= [(A' + B') \cdot (C' + D')]'$$

$$= [(A' + B')' + (C' + D')']$$

$$= (A \cdot B) + (C \cdot D) \Rightarrow$$

CSE 370 - Spring 1999 - Combinational Implementation - 9

Conversion between forms (cont'd)

■ Example: map AND/OR network to NOR/NOR network

Conversion between forms (cont'd)

■ Example: verify equivalence of two forms

CSE 370 - Spring 1999 - Combinational Implementation - 11

Multi-level logic

- x = ADF + AEF + BDF + BEF + CDF + CEF + G
 - I reduced sum-of-products form already simplified
 - I 6×3 -input AND gates + 1×7 -input OR gate (that may not even exist!)
 - 1 25 wires (19 literals plus 6 internal wires)
- x = (A + B + C) (D + E) F + G
 - factored form not written as two-level S-o-P
 - 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
 - 10 wires (7 literals plus 3 internal wires)

Conversion to AOI forms

- General procedure to place in AOI form
 - I compute the complement of the function in sum-of-products form
 - I by grouping the 0s in the Karnaugh map
- Example: XOR implementation $A \times B = A'B + AB'$
 - \blacksquare AOI form: F = (A' B' + A B)'

CSE 370 - Spring 1999 - Combinational Implementation - 17

Examples of using AOI gates

■ Example:

■ Implemented by 2-input 3-stack AOI gate

$$I = (A + B) (A + C') (B + C')$$

$$F' = (B' + C) (A' + C) (A' + B')$$

- Implemented by 2-input 3-stack OAI gate
- Example: 4-bit equality function

$$I = (A0 B0 + A0' B0')(A1 B1 + A1' B1')(A2 B2 + A2' B2')(A3 B3 + A3' B3')$$

each implemented in a single 2x2 AOI gate

Examples of using AOI gates (cont'd)

■ Example: AOI implementation of 4-bit equality function

Summary for multi-level logic

- Advantages
 - I circuits may be smaller
 - I gates have smaller fan-in
 - I circuits may be faster
- Disadvantages
 - I more difficult to design
 - I tools for optimization are not as good as for two-level
 - I analysis is more complex

Time behavior of combinational networks

- Waveforms
 - I visualization of values carried on signal wires over time
 - useful in explaining sequences of events (changes in value)
- Simulation tools are used to create these waveforms
 - I input to the simulator includes gates and their connections
 - I input stimulus, that is, input signal waveforms
- Some terms
 - gate delay time for change at input to cause change at output
 - I min delay typical/nominal delay max delay
 - I careful designers design for the worst case
 - rise time time for output to transition from low to high voltage
 - fall time time for output to transition from high to low voltage
 - pulse width time that an output stays high or stays low between changes

CSE 370 - Spring 1999 - Combinational Implementation - 21

Momentary changes in outputs Can be useful — pulse shaping circuits

- Can be a problem incorrect circuit operation (glitches/hazards)
- Example: pulse shaping circuit

 - I delays matter in function

Hazards/glitches

- Hazards/glitches: unwanted switching at the outputs
 - I occur when different paths through circuit have different propagation delays
 - I as in pulse shaping circuits we just analyzed
 - I dangerous if logic causes an action while output is unstable
 - I may need to guarantee absence of glitches
- Usual solutions
 - 1) wait until signals are stable (by using a clock)
 preferable (easiest to design when there is a clock synchronous design)
 - 2) design hazard-free circuits sometimes necessary (clock not used – asynchronous design)

Types of hazards

- Static 1-hazard
 - I input change causes output to go from 1 to 0 to 1

- Static 0-hazard
 - I input change causes output to go from 0 to 1 to 0

- Dynamic hazards
 - I input change causes a double change from 0 to 1 to 0 to 1 OR from 1 to 0 to 1 to 0

CSE 370 - Spring 1999 - Combinational Implementation - 25

Static hazards

- Due to a literal and its complement momentarily taking on the same value
 - I through different paths with different delays and reconverging
- May cause an output that should have stayed at the same value to momentarily take on the wrong value
- Example: multiplexer

Dynamic hazards

- Due to the same versions of a literal taking on opposite values
 - I through different paths with different delays and reconverging
- May cause an output that was to change value to change 3 times instead of once
- Example:

hazard

dynamic hazards

CSE 370 - Spring 1999 - Combinational Implementation - 27

Making connections

- Direct point-to-point connections between gates
 - I wires we've seen so far
- Route one of many inputs to a single output --- multiplexer
- Route a single input to one of many outputs --- demultiplexer

Mux and demux

- Switch implementation of multiplexers and demultiplexers
 - I can be composed to make arbitrary size switching networks
 - I used to implement multiple-source/multiple-destination interconnections

CSE 370 - Spring 1999 - Combinational Implementation - 29

Mux and demux (cont'd)

■ Uses of multiplexers/demultiplexers in multi-point connections

Multiplexers/selectors

- Multiplexers/selectors: general concept
 - 2ⁿ data inputs, n control inputs (called "selects"), 1 output
 - used to connect 2ⁿ points to a single point
 - I control signal pattern forms binary index of input connected to output

CSE 370 - Spring 1999 - Combinational Implementation - 31

Multiplexers/selectors (cont'd)

Z = A' IO + A I12:1 mux:

Z = A' B' IO + A' B I1 + A B' I2 + A B I34:1 mux:

8:1 mux: Z = A' B' C' IO + A' B' C I1 + A' B C' I2 + A' B C I3 +A B' C' I4 + A B' C I5 + A B C' I6 + A B C I7

In general, $Z = \sum_{k=0}^{2^{n}-1} (m_k I_k)$

■ in minterm shorthand form for a 2ⁿ:1 Mux

Gate level implementation of muxes

■ 2:1 mux

■ 4:1 mux

CSE 370 - Spring 1999 - Combinational Implementation - 33

Cascading multiplexers

■ Large multiplexers can be implemented by cascading smaller ones

control signals B and C simultaneously choose one of I0, I1, I2, I3 and one of I4, I5, I6, I7

control signal A chooses which of the upper or lower mux's output to gate to Z

Multiplexers as general-purpose logic

- A 2ⁿ:1 multiplexer can implement any function of n variables
 - I with the variables used as control inputs and
 - I the data inputs tied to 0 or 1
 - I in essence, a lookup table
- Example:

$$\begin{array}{ll} \textbf{I} & F(A,B,C) = m0 + m2 + m6 + m7 \\ & = A'B'C' + A'BC' + ABC' + ABC \\ & = A'B'(C') + A'B(C') + AB'(0) + AB(1) \end{array}$$

CSE 370 - Spring 1999 - Combinational Implementation - 35

Multiplexers as general-purpose logic (cont'd)

- A 2ⁿ⁻¹:1 multiplexer can implement any function of n variables
 - with n-1 variables used as control inputs and
 - I the data inputs tied to the last variable or its complement
- Example:

$$\begin{aligned} \textbf{I} \quad & F(A,B,C) = m0 + m2 + m6 + m7 \\ & = A'B'C' + A'BC' + ABC' + ABC \\ & = A'B'(C') + A'B(C') + AB'(0) + AB(1) \end{aligned}$$

CSE 370 - Spring 1999 - Combinational Implementation - 36

0

0 0

Multiplexers as general-purpose logic (cont'd)

■ Example: F(A,B,C,D) can be implemented by an 8:1 MUX

Demultiplexers/decoders

- Decoders/demultiplexers: general concept
 - single data input, n control inputs, 2ⁿ outputs
 - I control inputs (called "selects" (S)) represent binary index of output to which the input is connected
 - data input usually called "enable" (G)

1:2 Decoder:	3:8 Decoder:				
$O0 = G \bullet S'$	$O0 = G \bullet S2' \bullet S1' \bullet S0'$				
O1 = G • S	$O1 = G \bullet S2' \bullet S1' \bullet S0$				
	$O2 = G \bullet S2' \bullet S1 \bullet S0'$				
2:4 Decoder:	$O3 = G \bullet S2' \bullet S1 \bullet S0$				
$O0 = G \bullet S1' \bullet S0'$	$O4 = G \bullet S2 \bullet S1' \bullet S0'$				
$O1 = G \bullet S1' \bullet S0$	$O5 = G \bullet S2 \bullet S1' \bullet S0$				
$O2 = G \bullet S1 \bullet S0'$	$O6 = G \bullet S2 \bullet S1 \bullet S0'$				
$O3 = G \bullet S1 \bullet S0$	$O7 = G \bullet S2 \bullet S1 \bullet S0$				

Gate level implementation of demultiplexers

■ 1:2 decoders

■ 2:4 decoders

CSE 370 - Spring 1999 - Combinational Implementation - 39

Demultiplexers as general-purpose logic

- A n:2ⁿ decoder can implement any function of n variables
 - I with the variables used as control inputs
 - I the enable inputs tied to 1 and
 - I the appropriate minterms summed to form the function

demultiplexer generates appropriate minterm based on control signals (it "decodes" control signals)

Programmable logic arrays

- Pre-fabricated building block of many AND/OR gates
 - actually NOR or NAND
 - I "personalized" by making or breaking connections among the gates
 - I programmable array block diagram for sum of products form

CSE 370 - Spring 1999 - Combinational Implementation - 43

Enabling concept

Shared product terms among outputs

F0 = A + B'C'F1 = A C' + A B F2 = B' C' + A B F3 = B' C + A example:

personality matrix

input side:

1 = uncomplemented in term

0 = complemented in term

– = does not participate

product	inputs			outputs			
term	Α	В	С	F0	F1	F2	F3
AB	1	1	_	0	1	1	0 ĸ
B'C	-	0	1	0	0	0	1
AC'	1	-	0	0	1	0	0
B'C'	-	0	0	1	0	1	0
Α	1	-	-	1	0	0	1

output side:

1 = term connected to output

0 = no connection to output

≥reuse of terms

Before programming

- All possible connections are available before "programming"
 - in reality, all AND and OR gates are NANDs

CSE 370 - Spring 1999 - Combinational Implementation - 45

After programming

- Unwanted connections are "blown"
 - I fuse (normally connected, break unwanted ones)
 - I anti-fuse (normally disconnected, make wanted connections)

Alternate representation for high fan-in structures

- Short-hand notation so we don't have to draw all the wires
 - I $\, imes\,$ signifies a connection is present and perpendicular signal is an input to gate

CSE 370 - Spring 1999 - Combinational Implementation - 47

Programmable logic array example

- Multiple functions of A, B, C
 - **I** F1 = A B C
 - **I** F2 = A + B + C
 - **I** F3 = A' B' C'
 - F4 = A' + B' + C'
 - $F5 = A \times B \times C$
 - F6 = A xnor B xnor C

Α	В	С	F1 0 0 0 0 0	F2	F3	F4	F5	F6
0	0	0	0	0	1	1	0	0
0	0	1	0	1	0	1	1	1
0	1	0	0	1	0	1	1	1
0	1	1	0	1	0	1	0	0
1	0	0	0	1	0	1	1	1
1	0	1	0	1	0	1	0	0
1	1	()	()	1	U	1	U	0
1	1	1	1	1	0	0	1	1

PALs and PLAs

- Programmable logic array (PLA)
 - I what we've seen so far
 - unconstrained fully-general AND and OR arrays
- Programmable array logic (PAL)
 - I constrained topology of the OR array
 - I innovation by Monolithic Memories
 - I faster and smaller OR plane

a given column of the OR array has access to only a subset of the possible product terms

CSE 370 - Spring 1999 - Combinational Implementation - 49

PALs and PLAs: design example

■ BCD to Gray code converter

Α	В	С	D	W	Χ	Υ	Z
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	1	1	1	0
0	1	1	0	1	0	1	0
0	1	1	1	1	0	1	1
1	0	0	0	1	0	0	1
1	0	0	1	1	0	0	0
1	0	1	_	-	_	_	_
1	1	_	_	-	_	_	_

minimized functions:

$$W = A + B D + B C$$

 $X = B C'$
 $Y = B + C$
 $Z = A'B'C'D + B C D + A D' + B' C D'$

	0	0	Х	1			
	0	1	Х	1	l		
С	0	1	χ	Х	ľ		
	0	1	χ	Х	1		
		$\overline{}$	3		-		

Α

K-map for W

K-map for Y

K-map for X

K-map for Z

■ Code converter: programmed PLA

minimized functions:

not a particularly good candidate for PAL/PLA implementation since no terms are shared among outputs

however, much more compact and regular implementation when compared with discrete AND and OR gates

CSE 370 - Spring 1999 - Combinational Implementation - 51

PALs and PLAs: design example (cont'd)

■ Code converter: programmed PAL

4 product terms per each OR gate

- Code converter: NAND gate implementation
 - I loss or regularity, harder to understand
 - I harder to make changes

ROMs and combinational logic

■ Combinational logic implementation (two-level canonical form) using a ROM

Α	В	С	F0	F1	F2	F3
0	0	0	0	0	1	0
0	0	1	1	1	1	0
0	1	0	0	1	0	0
0	1	1	0	ō	0	1
1	0	0	1	0	1	1
1 1 1 1	0	1	1	0	0	0
1	1	0	0	0	0	1
1	1	1	0	1	0	0
truth table						

ROM structure

- Similar to a PLA structure but with a fully decoded AND array
 - completely flexible OR array (unlike PAL)

CSE 370 - Spring 1999 - Combinational Implementation - 57

ROM vs. PLA

- ROM approach advantageous when
 - I design time is short (no need to minimize output functions)
 - I most input combinations are needed (e.g., code converters)
 - I little sharing of product terms among output functions
- ROM problems
 - I size doubles for each additional input
 - I can't exploit don't cares
- PLA approach advantageous when
 - I design tools are available for multi-output minimization
 - I there are relatively few unique minterm combinations
 - I many minterms are shared among the output functions
- PAL problems
 - I constrained fan-ins on OR plane

Regular logic structures for two-level logic

- ROM full AND plane, general OR plane
 - I cheap (high-volume component)
 - I can implement any function of n inputs
 - I medium speed
- PAL programmable AND plane, fixed OR plane
 - I intermediate cost
 - I can implement functions limited by number of terms
 - I high speed (only one programmable plane that is much smaller than ROM's decoder)
- PLA programmable AND and OR planes
 - I most expensive (most complex in design, need more sophisticated tools)
 - I can implement any function up to a product term limit
 - I slow (two programmable planes)

CSE 370 - Spring 1999 - Combinational Implementation - 59

Regular logic structures for multi-level logic

- Difficult to devise a regular structure for arbitrary connections between a large set of different types of gates
 - I efficiency/speed concerns for such a structure
 - I in 467 you'll learn about field programmable gate arrays (FPGAs) that are just such programmable multi-level structures
 - I programmable multiplexers for wiring
 - I lookup tables for logic functions (programming fills in the table)
 - I multi-purpose cells (utilization is the big issue)
- Use multiple levels of PALs/PLAs/ROMs
 - I output intermediate result
 - I make it an input to be used in further logic

Combinational logic implementation summary

- Multi-level logic
 - I conversion to NAND-NAND and NOR-NOR networks
 - I transition from simple gates to more complex gate building blocks
 - I reduced gate count, fan-ins, potentially faster
 - I more levels, harder to design
- Time response in combinational networks
 - I gate delays and timing waveforms
 - I hazards/glitches (what they are and why they happen)
- Regular logic
 - I multiplexers/decoders
 - ROMs
 - PLAs/PALs
 - I advantages/disadvantages of each