De problemas de decisão decidíveis

Seja L uma linguagem recursiva. Dada uma palavra w, tem-se $w \in L$

De problemas de decisão indecidíveis

- Dada uma palavra $w \in x.y^*$, tem-se $w \in \operatorname{AutoAceite}$?
 - devido a AutoAceite ser não recursiva. Não existe algoritmo que decida AutoAceite. No entanto esta linguagem é recursivamente enumeravel. Diz-se então que o problema é semi-decidível (isto significa que existe uma máquina de Turing que permite responder nos casos afirmativos, ou seja, nos casos em que w é uma palavra de AutoAceite).
- $Aceita_w(\mathcal{T})$ [Aceitação]
 - AceitaTudo(T)
 - Aceita_ε(T)
- $Para_w(\mathcal{T})$ [Paragem]
 - \circ AceitaNada(\mathcal{T})
 - $\circ \operatorname{Para}_{\varepsilon}(\mathcal{T})$
- Equiv $(\mathcal{T}_1, \mathcal{T}_2)$: " $L(\mathcal{T}_1) = L(\mathcal{T}_2)$ "
- Sub $(\mathcal{T}_1, \mathcal{T}_2)$: " $L(\mathcal{T}_1) \subseteq L(\mathcal{T}_2)$ "
- " $L(\mathcal{T}_1) \cap L(\mathcal{T}_2) = \emptyset$ "

De linguagens não recursivamente enumeráveis

Não Auto Aceite

De linguagens recursivamente enumeráveis não recursivas

AutoAceite

De problemas indecidíveis sobre linguagens recursivamente enumeráveis

- $\varepsilon \in L$
- $L = \emptyset$
- L = A*

De prova usando teorema de Rice

Diga se a afirmação é verdadeira ou falsa justificando.

O problema "Dada uma máquina de Turing ${\mathcal T}$, será que $L({\mathcal T})\subseteq a^*$?" e decidivel

Seja $d = L(\mathcal{T})$

Note que $d \in D = \{L : L ext{ \'e uma linguagem }$ recursivamente enumerável}

Seja P(x) : " $x \subseteq a^*$ " para $x \in D$.

Note que P não é trivial porque $a^*,b^*\in D$ mas $P(a^*)$ é verdade e $P(b^*)$ é falso.

Logo, pelo Teorema de Rice, P é indecidível.

Observações

· AutoAceite contém palavras que codificam máquinas de Turing que reconhecem sua codificação.

Máquinas Auxiliares

- Escreve...
- ApagaFita

A cada transição e, descrita por $\delta(q,t)=(q',t',m)$

$$c'(e) = c'(q)yc'(t)yc'(q')yc'(t')yc'(m)y \\$$

Depois, codifica-se a máquina de Turing ${\mathcal T}$ pela palavra

$$c(\mathcal{T}) = c'(q_i)yc'(e_1)yc'(e_2)\cdots yc'(e_k)y$$

onde q_i é o estado inicial de ${\mathcal T}$ e e_1, e_2, \ldots, e_k são as transições de ${\mathcal T}$ numa ordem fixada previamente

Pode também codificar-se cada palavra $w = r_1 r_2 \cdots r_n$, onde $r_i \in \mathcal{S}$,

$$c(w) = yyc'(r_1)yc'(r_2)\cdots yc'(r_n)y$$

Ouando se considera uma seguência

 $c(\mathcal{T})c(w) = c'(q_i)yc'(e_1)yc'(e_2)\cdots yc'(e_k)yyyc'(r_1)yc'(r_2)\cdots yc'(r_n)y$ fica claro onde $c(\mathcal{T})$ termina devido ao prefixo yy de c(w) .

Exemple

$$c(\mathcal{T}) = \underbrace{x^2}_{c'(q_1)} \underbrace{yx^2yxyx^3yy}_{c'(e_1)} \underbrace{yx^3yx^2yx^3yx^3yx^3}_{c'(e_2)} \underbrace{yy \cdot \cdot}_{c'(e_2)}$$

Função Codificadora

$$c: \mathrm{MT_N} \to \{x, y\}^*$$

 $\mathcal{T} \mapsto c(\mathcal{T})$

• $c'(q_i) = c'(s_i) = x^{i+1}$

• c'(C) = x, c'(E) = x * 2, $c'(D) = x^3$

Note-se em particular,

• $c'(\Delta) = c'(s_0) = x e c'(f) = c'(g_0) = x$

L é a função

Definições

Função característica

 $\chi_L:A^* o\{0,1\}$

definida para cada $u \in A^*$, por

$$\chi_L(u) = \left\{ egin{array}{l} 1 ext{ se } u \in L \ 0 ext{ se } u
otin L \end{array}
ight.$$

Seja L uma linguagem sobre um alfabeto A. A função característica de

Definição 1

Seja $L\subseteq A^*$ uma linguagem e seja ${\mathcal T}$ uma máquina de Turing com alfabeto de entrada A. Diz-se que

- \mathcal{T} aceita ou reconhece L se $L=L(\mathcal{T})$.
- $\mathcal T$ decide L se a função característica χ_L é calculada por $\mathcal T$.

Definição 2

Uma linguagem L diz-se

- recursivamente enumerável se existe uma MT que reconhece L.
- recursiva (ou decidivel) se existe uma MT que decide L.

Proposições e Teoremas

 ${f Proposição}$ 1. Sejam L e K linguagens sobre um alfabeto A

- Se L e K são recursivas (resp. recursivamente enumeráveis), então $L \cup K$ e $L \cap K$ são recursivas (resp. recursivamente
- Se L é recursiva, então \overline{L} e recursiva.

Teorema [Post, 1943]. Uma linguagem L é recursiva se e só se L e \overline{L} são recursivamente enumeráveis

Proposição 2. Sejam P e P' dois problemas de decisão tais que $P \leq P'$

- Se P^\prime é decidível, então P é decidível.
- Se P é indecidível, então P' é indecidível.
- Se P' e semi-decidível, então P e semi-decidível.

Teorema [Rice, 1953]. Se P é uma propriedade não trivial sobre linguagens recursivamente enumeráveis, então P é indecidível.

Convenções

Convenção 1. Assume-se que existem dois conjuntos enumeráveis

$$Q = \{q_0, q_1, \ldots\}$$
 e $S = \{s_0, s_1, \ldots\}$

tais que, para cada máquina de Turing,

$$\mathcal{T} = (Q, A, T, \delta, i, f, \Delta)$$

se tem

$$ullet \ Q\subseteq \mathcal{Q}$$
 , com $f=q_0$

•
$$T\subseteq \mathcal{S}$$
, com $\Delta=s_0$

Diz-se que ${\mathcal T}$ é normalizada se todos os estados e todos os símbolos não brancos de $\mathcal T$ pertencem a alguma transição.

Primitive Recursion

$$h = \operatorname{Rec}(f, g) \Longleftrightarrow \left\{ egin{array}{ll} h(ec{x}, 0) &= f(ec{x}) \\ h(ec{x}, y + 1) &= g(ec{x}, y, h(ec{x}, y)) \end{array}
ight.$$

where $\vec{x} = x_1, x_2, \dots, x_k$

$$h = M_f \iff h(\vec{x}) = \min\{y \in \mathbb{N}_0 : f(\vec{x}, y) = 0\}$$

where $\vec{x} = x_1, x_2, \dots, x_k$

Definicões:

1. As funções recursivas primitivas são as funções iniciais e todas aquelas que podem ser obtidas das funções iniciais pela aplicação de um número finito de vezes das operações de composição e de recursão primitiva.

Teoremas

- 1. Todas as funções recursivas primitivas são computáveis.
- 2. Todas as funções recursivas primitivas são funções totais.
- 3. Existem funções totais computáveis que não são recursivas primitivas.
- 4. Uma função diz-se parcial μ-recursiva (ou simplesmente parcial recursiva) se é uma função inicial ou pode ser obtida destas pela aplicação de um número finito de vezes das operações de composição, recursão primitiva e minimização. Uma função parcial recursiva que seja total diz-se recursiva
- 5. Uma função $f: \mathbb{N}_0^k o \mathbb{N}_0$ é parcial recursiva se e só se é computável

Funções primitivas recursivas (provadas em exercícios)

• $\operatorname{mult}(x,y) = x \cdot y$

• $\exp(x,y) = x^y$

$$\operatorname{exp}(x,y) = x^y$$
 $\operatorname{fat}(x) = \begin{cases} 1 & \operatorname{se} \ x = 0 \\ x \cdot (x-1) \cdot \ldots \cdot 2 \cdot 1 & \operatorname{se} \ x > 0 \end{cases}$
 $\operatorname{ad}^{(k)}(x_1, \ldots, x_k) = x_1 + \cdots + x_k$

Complexity

Ordem

$$g(n) \in \mathcal{O}(f(n)) \Longrightarrow \exists (c \in \mathbb{R}^+). \ \exists (n_0 \in \mathbb{N}). \ \forall (n > n_0). \ 0 \leq g(n) \leq cf(n).$$

 $\{g(n): \exists (c \in \mathbb{R}^+). \, \exists (n_0 \in \mathbb{N}). \, \forall (n>n_0). \, 0 \leq g(n) \leq cf(n) \}$

Complexidade determinista

Seja ${\mathcal T}$ uma máquina de Turing que pára sempre (ou seja, ${\mathcal T}$ é um algoritmo). A complexidade temporal de $\mathcal T$ é a função $tc_T: \mathbb{N}_0 \to \mathbb{N}_0$ tal que, para cada $n \in \mathbb{N}_0$,

$$tc_{\mathcal{T}}(n) = \max \left\{ egin{array}{l} u \ {
m \'e} \ {
m uma} \ {
m palavra} \ {
m de} \ {
m comprimento} \ n \ {
m e} \ m_u \ {
m \'e} \ {
m o} \ {
m n\'emero} \ {
m de} \ {
m passos} \ {
m quando} \ {
m \'e} \ {
m iniciada} \ {
m com} \ u. \end{array}
ight.$$

Complexidade não-determinista

Seja ${\mathcal T}$ uma MT não-determinista que pára sempre. A complexidade temporal de \mathcal{T} é a função $tc_{\mathcal{T}}: \mathbb{N}_0
ightarrow \mathbb{N}_0$ definida, para cada $n \in \mathbb{N}_0$, por

$$tc_{\mathcal{T}}(n) = \max egin{cases} m_u & ext{ o maior número} \ ext{de computações que podem} \ ext{ser efetuadas por } \mathcal{T} \ ext{quando iniciada com} \ ext{uma palavra } u \ ext{de comprimento } n. \end{cases}$$

Complexidade de linguagens

Sejam $f:\mathbb{N}_0 o\mathbb{R}$ uma função (total) e L uma linguagem. Diz-se que L é aceite em tempo determinista (resp. não $egin{aligned} extbf{determinista} \ f(n) \ ext{se existe um algoritmo determinista} \ ext{(resp.} \end{aligned}$ não-determinista) ${\mathcal T}$ tal que:

- ${\mathcal T}$ aceita L
- $tc_{\mathcal{T}}(n) \in \mathcal{O}(f(n))$

A classe destas linguagens é denotada por DTIME(f(n))(resp.) NTIME(f(n)). Note-se que $DTIME(f(n)) \subseteq NTIME(f(n)).$

Podemos agora definir duas classes de complexidade importantes:

$$\mathrm{P} = igcup_{k \geq 0} \mathrm{DTIME}(n^k) \qquad \mathrm{e} \qquad \mathrm{NP} = igcup_{k \geq 0} \mathrm{NTIME}(n^k)$$

Redução

Consideremos linguagens $L_1\subseteq A_1^*$ e $L_2\subseteq A_2^*$. Diz-se que L_1 é polinomialmente reduzível a L_2 (ou que L_1 se reduz a L_2 em tempo polinomial), e escreve-se $L_1 \leq_p L_2$, se existe uma função $f:A_1^* o A_2^*$ tal que:

- $\forall u \in A_1^*. u \in L_1 \Longleftrightarrow f(u) \in L_2$
- a função f é computável em tempo polinomial, ou seja, fé calculada por um algoritmo ${\mathcal T}$ tal que $\exists k \in \mathbb{N}.\, tc_{\mathcal{T}}(n) \in \mathcal{O}(n^k)$

Teoremas:

Sejam L_1, L_2, L_3 linguagens.

1. Se
$$L_1 \leq_p L_2$$
 e $L_2 \leq_p L_3$, então $L_1 \leq_p L_3$
2. Se $L_1 \leq_p L_2$ e $L_2 \in \mathbf{P}$, então $L_1 \in \mathbf{P}$

Uma linguagem L diz-se:

- NP-difícil se $L' \leq_p L$ para toda linguagem $L' \in \operatorname{NP}$.
- NP-completa se L é NP-difícil e $L \in NP$.

Teoremas:

Sejam L e K linguagens:

- Se L é NP-difícil e $L \leq_p K$, então K é NP-difícil
- Se L é NP-completa, então $L \in \mathbf{P}$ se e só se P = NP.

O problema SAT, de decidir se uma fórmula lógica em forma normal conjuntiva admite alguma valoração das variáveis que a satisfaça é NP-completo.