Data Structures (DS) GTU # 3130702

Unit-3

Non-Linear Data Structure (Tree Part-1)

Non Linear Data Structures - Tree & Graph

- ☐ Far we have been concerned with Linear List.
- ☐ Relationships in such data structures expressed are One Dimensional.
- □ Now, Introduce Data Structures which are Non Linear, Expressing more complex relationships.
- □ Non Linear Data Structures Graph & Tree (Sub Set of Graph)
- □ Tree is a Restricted Graph Every Tree is a Graph but Every Graph is not a Tree

- □ Consider diagrams shown in above figure
- Every diagrams represent Graphs
- \square Every diagram consists of a **set of points** which are shown by **dots** or **circles** and are sometimes labelled V_1 , V_2 , V_3 ... OR 1,2,3...
- ☐ In every diagrams, certain pairs of such points are connected by lines or arcs
- □ Note that every arc start at one point and ends at another point

□ Graph

- A graph G consist of a non-empty set V called the set of nodes (points, vertices) of the graph, a set E which is the set of edges and a mapping from the set of edges E to a set of pairs of elements of V
- It is also convenient to write a graph as G=(V,E)
- □ Notice that definition of graph implies that to every edge of a graph G, we can associate a pair of nodes of the graph. If an edge X ∈ E is thus associated with a pair of nodes (u,v) where u, v ∈ V then we says that edge x connect u and v

Adjacent Nodes

Any two nodes which are connected by an edge in a graph are called adjacent nodes

Graph

$$\Box$$
 G1=(V,E), V = { v1, v2 }, E = { Φ }

$$G3=(V,E)$$
, $V = \{A,B,C,D\}$, $E = \{\langle A,B \rangle, \langle A,C \rangle, (B,C), \langle A,D \rangle, \langle D,C \rangle\}$

$$\Box$$
 G4=(V,E), V = { A,B,C,D,E }, E = { (A,B), (B,C), (A,C) }

e1 = <v1,v2>

- Directed & Undirected Edge
 - In a graph **G=(V,E)** an **edge** which is **directed** from one end to another end is called a **directed edge**, while the edge which has no specific direction is called **undirected edge**
- □ Directed graph (Digraph)
 - A graph in which **every edge is directed** is called directed graph or digraph e.g. **b,e & g** are directed graphs
- Undirected graph
 - ☐ A graph in which **every edge is undirected** is called undirected graph e.g. **c & f** are undirected graphs
- Mixed Graph
 - If some of the edges are directed and some are undirected in graph then the graph is called mixed graph e.g.
 d is mixed graph

□ In a graph **G=(V,E)** an **edge** which is **directed** from one end to another end, associated with pair of node (u,v)

- Intial Node
 - lacksquare Edge initiating or originating from node $oldsymbol{\mathsf{U}}$
- □ Terminal Node
 - Edge terminating or ending at node V
- ☐ Edge is said to be **incident** of the node u and v.

Loop (Sling)

- ☐ An **edge** of a graph **which joins a node to itself** is called a loop (sling).
- ☐ The *direction of a loop is of no significance* so it can be considered either a directed or an undirected.

Distinct Edges

☐ In case of directed edges, **two possible edges** between any pair of nodes which **are opposite in direction** are considered **Distinct**.

Parallel Edges

In some directed as well as undirected graphs, we may have **certain pairs of nodes joined by more than one edges**, such edges are called **Parallel** edges.

2

- Multigraph
 - ☐ Any **graph** which **contains** some **parallel edges** is called **multigraph**
 - ☐ If there is no more then one edge between a pair of nodes then such a graph is called **Simple graph**

Weighted Graph

☐ A graph in which weights are assigned to every edge is called weighted graph

■ Isolated Node

☐ In a graph a **node** which is **not adjacent to any other node** is called isolated node

Null Graph

A graph **containing only isolated nodes** are called null graph. In other words set of edges in null graph is empty

- ☐ For a given **graph** there is **no unique diagram** which represents the graph.
- We can obtain a variety of diagrams by locating the nodes in an arbitrary numbers.
- ☐ Following both diagrams represents same Graph.
- Indegree of Node
 - The no of edges which have V as their terminal node is call as indegree of node V.
- Outdegree of Node
 - ☐ The **no of edges** which have **V** as their initial node is call as outdegree of node V.
- Total degree of Node
 - ☐ Sum of indegree and outdegree of node V is called its Total Degree or Degree of vertex

Path of the Graph

Some of the path from 2 to 4

P1 =
$$((2,4))$$

P2 = $((2,3), (3,4))$
P3 = $((2,1), (1,4))$

P4 =
$$((2,3), (3,1), (1,4))$$

P5 =
$$((2,3), (3,2), (2,4))$$

P6 =
$$((2,2), (2,4))$$

- □ Let G=(V, E) be a simple digraph such that the terminal node of any edge in the sequence is the initial node of the edge, if any appearing next in the sequence defined as **path of the graph**.
- Length of Path
 - The number of edges appearing in the sequence of the path is called length of path.

- Simple Path (Edge Simple)
 - A path in a diagraph in which the edges are distinct is called simple path or edge simple
 - ☐ Path P5, P6 are Simple Paths
- Elementary Path (Node Simple)
 - A path in which all the nodes through which it traverses are distinct is called elementary path
 - Path P1, P2, P3 & P4 are elementary Path
 - Path P5, P6 are Simple but not Elementary
- Cycle (Circuit)
 - ☐ A path which originates and ends in the same node is called cycle (circuit)
- Acyclic Diagraph
 - ☐ A simple diagraph which does not have any cycle is called Acyclic Diagraph.

Directed Tree

- A directed tree is an acyclic digraph which has one node called its root with in degree 0, while all other nodes have in degree 1.
- Every directed tree must have at least one node.
- An isolated node is also a directed tree.

- Terminal Node (Leaf Node)
 - In a directed tree, any node which has out degree 0 is called terminal node or leaf node.
- Level of Node
 - The level of any node is the length of its path from the root.
- Ordered Tree
 - ☐ In a directed tree an ordering of the nodes at each level is prescribed then such a tree is called ordered tree.
 - The diagrams (b) and (c) represents same directed tree but different ordered tree.

□ Forest

If we delete the root and its edges connecting the nodes at level 1, we obtain a set of disjoint tree. A set of disjoint tree is a forest.

Representation of Directed Tree

- ☐ Other way to represent directed tree are
 - Venn Diagram
 - Nesting of Parenthesis
 - ☐ Like table content of Book
 - Level Format

Venn Diagram

Nesting of Parenthesis

Level Format

Tree-Concepts

- ☐ Root Node [1]
 - \square In-degree: \bigcirc Out-degree: \bigcirc , \bigcirc , \ldots , \bigcirc m
- ☐ Intermediate Node [2, 3, 5]
 - \square In-degree : 1 Out-degree : 0 , 1 , m
- ☐ Leaf Node [4, 6, 7, 8, 9, 10]
 - In-degree : 1 Out-degree : 0
- ☐ Tree : [1]
 - Left Sub Tree : [2,4,5,8,9,10]
 - □ Right Sub Tree : [3,6,7]

- ☐ The node that is reachable from a node is called **descendant** of a node.
- ☐ The nodes which are reachable from a node through a single edge are called the children of node.

- M-ary Tree
 - ☐ If in a directed tree the **out degree of every node** is **less than or equal to m** then tree is called an m-ary tree.
- **□** Full or Complete M-ary Tree
 - ☐ If the out degree of each and every node is exactly equal to m or 0 and their number of nodes at level i is m(i-1) then the tree is called a full or complete m-ary tree.
- Positional M-ary Tree
 - If we consider m-ary trees in which the m children of any node are assumed to have m distinct positions, if such positions are taken into account, then tree is called positional m-ary tree.

- Height of the tree
 - ☐ The height of a tree is the length of the path from the root to the deepest node in the tree.
- Binary Tree
 - ☐ If in a directed tree the **out degree of every node** is **less than or equal to 2** then tree is called binary tree.
- Strictly Binary Tree
 - A strictly binary tree (sometimes proper binary tree or 2-tree or full binary tree) is a tree in which every node other than the leaves has two children.
- Complete Binary Tree
 - If the out degree of each and every node is exactly equal to 2 or 0 and their number of nodes at level i is 2(i-1) then the tree is called a full or complete binary tree.

Sibling

Siblings are nodes that share the same parent node

□ Positional m-ary Tree

If we consider m-ary trees in which the **m children of any node** are assumed **to have m distinct positions**, if such positions are taken into account, then tree is called positional m-ary tree

Convert any tree to Binary Tree

- Every Tree can be Uniquely represented by binary tree
- Let's have an example to convert given tree into binary tree

Convert Forest to Binary Tree

