Module 7 - Time Varying Circuits

ME3023 - Measurements in Mechanical Systems

Mechanical Engineering
Tennessee Technological University

Topic 2 - First Order Systems

Topic 2 - First Order Systems

General System Model

Mechanical-Electrical Analogies

• Example: RC Circuit

• Example: Bulb Thermometer

General System Model

The behavior of a circuit is dependent on time, and many common circuits can be represented by a *linear ordinary differential equation* which can be written in the following standard form.

$$a_n \frac{d^n x}{dt^n} + a_{n-1} \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_2 \frac{d^2 x}{dt^2} + a_1 \frac{dx}{dt} + a_0 x = f(t)$$

General System Model
Mechanical-Electrical Analogies
Example: RC Circuit
Example: Bulb Thermometer

General System Model

Mechanical-Electrical Analogies

Many mechanical systems are also time dependent, or *dynamic* and a mechanical-electrical analog is often draw between the two.

This concept was used for analysis and simulation.

Mechanical-Electrical Analogies

Example: RC Circuit

The RC circuit is a first order system. The response to a step input v_s is exponential which is decscribed a single parameter the time constant τ .

$$RC\dot{v}_C + v_C = v_S$$

$$v_{C}\left(t\right)=v_{s}\left(1-e^{-\frac{t}{RC}}\right)$$

Example: RC Circuit

time, t(s)	response, $v_C(V)$

Example: Bulb Thermometer

Consider the bulb thermometer shown which can be modeled as a first order system. If the system was intially at $\mathsf{T0}$

$$\frac{dE}{dt} = \dot{Q}$$

Example: Bulb Thermometer