Elementary Data Structures

Introduction

- Part III: data structures for dynamic sets
- Set in mathematics
 - **1** {1, 2, 5, 4, 3, 6}
- Set in algorithms
 - Allow repetition in set elements: {1, 2, 5, 4, 3, 6, 4}
 - Dynamic: can grow, shrink, or change over time
 - Set operations: insert, delete, test membership

Elements of A Dynamic Set

- Each element is represented by an object (or record)
 - An object may consists of many fields
 - Need a pointer to an object to examine and manipulate its fields
 - Key field for identifying objects and for the set manipulation
 - Keys are usually drawn from a totally ordered set
 - Satellite fields: all the fields irrelevant for the set manipulation

Operations on Dynamic Sets

- Query operations: return information about a set
 - SEARCH(S, k): given a set S and key value k, returns a pointer x to an element in S such that key[x] = k, or NIL if no such element belongs to S
 - MINIMUM(S): returns a pointer to the element of S with the smallest key
 - MAXIMUM(S): returns a pointer to the element of S with the largest key
 - SUCCESSOR(S, x): returns a pointer to the next larger element in S, or NIL if x is the maximum element
 - PREDECESSOR(S, x): returns a pointer to the next smaller element in S, or NIL if x is the minimum element

Operations on Dynamic Sets (Cont.)

- Modifying operations: change a set
 - INSERT(S, x): augments the set S with the element pointed to by x. We usually assume that any fields in element x needed by the set implementation have already initialized.
 - DELETE(S, x): given a pointer x to an element in the set S, removes x from S.

Overview of Part III

- Heap Chapter 6
- Elementary data structures Chapter 10
 - Stacks, queues, linked lists, root trees
- Hash tables Chapter 11
- Binary search trees Chapter 12
- Red-Black trees Chapter 13
- Augmenting Data Structures Chapter 14

Stacks

Introduction

- Stack
 - The element deleted from the set is the one most recently inserted
 - Last-in, First-out (LIFO)
- Stack operations
 - PUSH: Insert
 - DELETE: Delete
 - TOP: return the key value of the most recently inserted element
 - STACK-EMPTY: check if the stack is empty
 - STACK-FULL: check if the stack is full

Represent Stack by Array

- A stack of at most n elements can be implemented by an array S[1..n]
 - top[S]: a pointer to the most recently inserted element
 - A stack consists of elements S[1 ton[S]]

Figure 10.1 An array implementation of a stack S. Stack elements appear only in the lightly shaded positions. (a) Stack S has 4 elements. The top element is 9. (b) Stack S after the calls PUSH(S, 17) and PUSH(S, 3). (c) Stack S after the call POP(S) has returned the element 3, which is the one most recently pushed. Although element 3 still appears in the array, it is no longer in the stack; the top is element 17.

Stack Operations

STACK-EMPTY(S)

- 1 **if** top[S] = 0
- 2 then return TRUE
- 3 **else return** FALSE

PUSH(S, x)

- $1 \quad top[S] \leftarrow top[S] + 1$
- 2 $S[top[S]] \leftarrow x$

Pop(S)

- 1 **if** STACK-EMPTY(S)
- then error "underflow"
- 3 **else** $top[S] \leftarrow top[S] 1$
- 4 **return** S[top[S] + 1]

How to implement TOP(S), STACK-FULL(S) ?

O(1)

Illustration of PUSH

$$top[S] \leftarrow top[S] + 1 \quad (top[S] = 5)$$

$$S[top[S]] \leftarrow x \qquad (S[5] = 17)$$

Queues

Introduction

- Queue
 - The element deleted is always the one that has been in the set for the longest time
 - First-in, First-out (FIFO)
- Queue operations
 - ENQUEUE: Insert
 - DEQUEUE: Delete
 - HEAD: return the key value of the element that has been in the set for the longest time
 - TAIL: return the key value of the element that has been in the set for the shortest time
 - QUEUE-EMPTY: check if the queue is empty
 - QUEUE-FULL: check if the queue is full

Represent Queue by Array

- A queue of at most n-1 elements can be implemented by an array Q[1..n]
 - Q.head a pointer to the element that has been in the set for the longest time
 - Q.tail: a pointer to the next location at which a newly arriving element will be inserted into the queue
 - The elements in the queue are in locations Q.head,
 - Q.head + 1, ..., Q.tail -1
 - o The array is circular
 - Empty queue: Q.head = Q.tail
 - \circ Initially we have Q.head = Q.tail = 1
 - Full queue: Q.head = Q.tail + 1 (in circular sense)

Illustration of A Queue

Figure 10.2 A queue implemented using an array Q[1..12]. Queue elements appear only in the lightly shaded positions. (a) The queue has 5 elements, in locations Q[7..11]. (b) The configuration of the queue after the calls $\mathsf{ENQUEUE}(Q,17)$, $\mathsf{ENQUEUE}(Q,3)$, and $\mathsf{ENQUEUE}(Q,5)$. (c) The configuration of the queue after the call $\mathsf{DEQUEUE}(Q)$ returns the key value 15 formerly at the head of the queue. The new head has key 6.

Queue Operations

```
ENQUEUE(Q, x)
     Q[tail[Q]] \leftarrow x
     if tail[Q] = length[Q]
        then tail[Q] \leftarrow 1
 3
 4
        else tail[Q] \leftarrow tail[Q] + 1
                                              How to implement other
                                              queue operations?
Dequeue(Q)
1
    x \leftarrow Q[head[Q]]
2
    if head[Q] = length[Q]
3
       then head[Q] \leftarrow 1
4
       else head[Q] \leftarrow head[Q] + 1
                                                     O(1)
5
    return x
```

Linked Lists

Introduction

- A linked list is a data structure in which the objects are arranged in linear order
 - The order in a linked list is determined by pointers in each object
- Doubly linked list
 - Each element is an object with a *key* field and two other pointer fields: *next* and *prev*, among other satellite fields. Given an element x
 - next[x] points to its successor
 - if x is the last element (called tail), next[x] = NIL
 - prev[x] points to its predecessor
 - if x is the first element (called head), prev[x] = NIL
 - An attribute head[L] points to the first element of the list
 - \circ if head[I] = NII the list is empty

Introduction (Cont.)

- Singly linked list: omit the *prev* pointer in each element
- Sorted linked list: the linear order of the list corresponds to the linear order of keys stored in elements of the list
 - The minimum element is the head
 - The maximum element is the tail
- Circular linked list: the *prev* pointer of the head points to the tail, and the *next* pointer of the tail points to the head

Illustration of A Doubly Linked List

Figure 10.3 (a) A doubly linked list L representing the dynamic set $\{1, 4, 9, 16\}$. Each element in the list is an object with fields for the key and pointers (shown by arrows) to the next and previous objects. The *next* field of the tail and the *prev* field of the head are NIL, indicated by a diagonal slash. The attribute head(L) points to the head. (b) Following the execution of LIST-INSERT(L, x), where key[x] = 25, the linked list has a new object with key 25 as the new head. This new object points to the old head with key 9. (c) The result of the subsequent call LIST-DELETE(L, x), where x points to the object with key 4.

Searching A Linked List

• LIST-SEARCH(L, k): finds the first element with key k in list L by a simple linear search, returning a pointer to this element

```
LIST-SEARCH(L, k)

1 x \leftarrow head[L]

2 while x \neq NIL and key[x] \neq k

3 do x \leftarrow next[x]

4 return x
```

Illustration of LIST-SEARCH

Inserting Into A Linked List

• LIST-INSERT(L, x): given an element pointed by x, splice x onto the front of the linked list

```
LIST-INSERT (L, x)

1 next[x] \leftarrow head[L]

2 if head[L] \neq NIL

3 then prev[head[L]] \leftarrow x

4 head[L] \leftarrow x

5 prev[x] \leftarrow NIL
```


Deleting From A Linked List

• LIST-DELETE(L, x): given an element pointed by x, remove x from the linked list

```
LIST-DELETE(L, x)

1 if prev[x] \neq NIL

2 then next[prev[x]] \leftarrow next[x]

3 else head[L] \leftarrow next[x]

4 if next[x] \neq NIL

5 then prev[next[x]] \leftarrow prev[x]
```


Implementing Pointers and Objects

Pointers in Pseudo Language Type Record patron { Type Record patron_list { integer patron_ID; patron_ID; integer char[20] name; char[20] name; integer age; integer age; char[10] department; char[10] department; Type patron_list *prev; Type patron_list *next; Type patron p1, p2, p3, p4; Type patron_list *head; Type patron *pointer_to_p1 Some languages, like C and C++, support pointers and objects; but some others not

A Multiple-Array Representation of Objects

- We can represent a collection of objects that have the same fields by using an array for each field.
 - Figure 10.3 (a) and Figure 10.5
 - For a given array index x, key[x], next[x], and prev[x] represent an object in the linked list
 - A pointer x is simply a common index on the key, next, and prev arrays
 - NIL can be represented by an integer that cannot possibly represent an actual index into the array

A Multiple-Array Representation of Objects Example

Figure 10.5 The linked list of Figure 10.3(a) represented by the arrays key, next, and prev. Each vertical slice of the arrays represents a single object. Stored pointers correspond to the array indices shown at the top; the arrows show how to interpret them. Lightly shaded object positions contain list elements. The variable L keeps the index of the head.

A Single-Array Representation of Objects

- An object occupies a contiguous set of locations in a single array → A[j..k]
 - A pointer is simply the address of the first memory location of the object \rightarrow A[j]
 - Other memory locations within the object can bed indexed by adding an offset to the pointer → 0 ~ k-j
 - Flexible but more difficult to manage

Allocating and Freeing Objects

- To insert a key into a dynamic set represented by a linked list, we must allocate a pointer to a currently unused object in the linked-list representation
 - It is useful to manage the storage of objects not currently used in the linked-list representation so that one can be allocated
- Allocate and free homogeneous objects using the example of a doubly linked list represented by multiple arrays
 - The arrays in the multiple-array representation have length m
 - At some moment the dynamic set contains $n \le m$ elements
 - The remaining m-n objects are free → can be used to represent elements inserted into the dynamic set in the future

Free List

- A singly linked list to keep the free objects
 - Initially it contains all *n* unallocated objects
- The free list is a stack
 - Allocate an object from the free list → POP
 - De-allocate (free) an object → PUSH
 - The next object allocated the last one freed
- Use only the *next* array to implement the free list
- A variable *free* pointers to the first element in the free list

Allocate And Free An Object

```
ALLOCATE-OBJECT()

1 if free = NIL

2 then error "out of space"

3 else x \leftarrow free

4 free \leftarrow next[x]

5 return x
```

```
FREE-OBJECT(x)

1 next[x] \leftarrow free

2 free \leftarrow x
```

Two Linked Lists L₁ and L₂, and A Free List Intertwined

Representing Rooted Trees

Binary Tree

- Use linked data structures to represent a rooted tree
 - Each node of a tree is represented by an object
 - Each node contains a *key* field and maybe other satellite fields
 - Each node also contains *pointers* to other nodes
- For binary tree...
 - Three pointer fields
 - \circ *p*: pointer to the parent \rightarrow NIL for root
 - ∘ *left*: pointer to the left child → NIL if no left child
 - o right: pointer to the right child > NIL if no right child

Figure 10.9 The representation of a binary tree T. Each node x has the fields p[x] (top), left[x] (lower left), and right[x] (lower right). The key fields are not shown.

Draw the Binary Tree Rooted At Index 6

Index	Key	Left	Right
1	12	7	3
2	15	8	NIL
3	4	10	NIL
4	10	5	9
5	2	NIL	NIL
6	18	1	4
7	7	NIL	NIL
8	14	6	2
9	21	NIL	NIL
10	5	NIL	NIL

Rooted Trees With Unbounded Branches

- The representation for binary trees can be extended to a tree in which no. of children of each node is at most *k*
 - left, right → child₁, child₂, ..., child_k
- If no. of children of a node can be unbounded, or k is large but most nodes have small numbers of children...
 - Left-child, right sibling representation
 - o Three pointer fields
 - $\bullet p$: pointer to the parent
 - ◆ left-child: pointer to the leftmost child
 - ◆ right-sibling: pointer to the sibling immediately to the right
 - o root[T] pointer to the root of the tree
 - o O(N) space for any n-node rooted tree

Figure 10.10 The left-child, right-sibling representation of a tree T. Each node x has fields p[x] (top), left-child[x] (lower left), and right-sibling[x] (lower right). Keys are not shown.

Self Study

• Sentinels for linked lists: pp. 206-208