最大匹配算法

程粪 (gcheng@nju.edu.cn)

本节课的主要内容

- 面向二部图的增广路算法
- 面向二部图的Hopcroft-Karp算法
- 面向一般图的Edmonds算法

最大匹配的充要条件(复习)

- 图G的一个匹配M是最大匹配的充分必要条件是G中不存在M增广路。
 - 假设存在M增广路P ⇒ 将M中在P上的边替换为P上的其它边 ⇒ 得到另一个匹配且势更大

面向二部图的增广路算法*

- 基本思路
 - 1. 搜索一条增广路
 - 2. 如果找到了:替换得到更大的匹配,回到第1步
 - 3. 否则: 结束

- 每轮搜索仅需从二部图特定的一侧顶点中开始(为什么不会漏?)
 - 增广路的长度是奇数 ⇒ 起点和终点位于二部图的两侧 ⇒ 仅从任何一侧开始搜索都能确保找到
- 每轮搜索的起点(选什么样的点?)
 - 从一侧中(不妨称作左侧)每一个未被当前匹配饱和的顶点开始
- 搜索走过的边(走过什么样的边?)
 - 左侧到右侧:不在当前匹配中的边
 - 右侧到左侧: 当前匹配中的边
- 搜索的终止条件(一轮搜索什么情况下结束?分为几种情况?)
 - 找到一个未被当前匹配饱和的顶点(起点除外)⇒找到一条增广路,替换得到更大的匹配⇒ 进入下一轮搜索
 - 或:已搜索所有的点和边,仍未找到⇒无增广路⇒找到最大匹配

• 举例

• 举例

第一轮搜索开始

- ●当前匹配: {}
- ●未饱和的左侧顶点: {v₁, v₃, v₅, v₇}

• 举例

从 $\{v_1, v_3, v_5, v_7\}$ 中未搜索过的 v_3 开始搜索

举例

沿不在当前匹配中且本轮未搜索过的 (v_3, v_4) 到达 $v_4 \Rightarrow v_4$ 未饱和

• 举例

找到增广路v₃v₄ ⇒ 替换进当前匹配中 ⇒ 本轮搜索结束

• 举例

第二轮搜索开始

- ●当前匹配: {(v₃, v₄)}
- •未饱和的左侧顶点: {v₁, v₅, v₇}

• 举例

从 $\{v_1, v_5, v_7\}$ 中未搜索过的 v_5 开始搜索

举例

沿不在当前匹配中且本轮未搜索过的(v_5 , v_4)到达 $v_4 \rightarrow v_4$ 已被当前匹配中的(v_3 , v_4)饱和

• 举例

沿当前匹配中的(v₃, v₄)到达v₃

举例

沿不在当前匹配中且本轮未搜索过的 (v_3, v_2) 到达 $v_2 \Rightarrow v_2$ 未饱和

• 举例

找到增广路v₅v₄v₃v₂ ⇒ 替换进当前匹配中 ⇒ 本轮搜索结束

举例

第三轮搜索开始

- ●当前匹配: {(v₃, v₂), (v₅, v₄)}
- •未饱和的左侧顶点: {v₁, v₇}

• 举例

从 $\{v_1, v_7\}$ 中未搜索过的 v_1 开始搜索

• 举例

沿不在当前匹配中且本轮未搜索过的 (v_1, v_2) 到达 $v_2 \rightarrow v_2$ 已被当前匹配中的 (v_3, v_2) 饱和

• 举例

沿当前匹配中的 (v_3, v_2) 到达 v_3

• 举例

沿不在当前匹配中且本轮未搜索过的(v_3 , v_4)到达 $v_4 \rightarrow v_4$ 已被当前匹配中的(v_5 , v_4)饱和

• 举例

沿当前匹配中的 (v_5, v_4) 到达 v_5

举例

沿不在当前匹配中且本轮未搜索过的(v_5 , v_6)到达 $v_6 \Rightarrow v_6$ 未饱和

举例

找到增广路 $v_1v_2v_3v_4v_5v_6$ ⇒ 替换进当前匹配中 ⇒ 本轮搜索结束

举例

第四轮搜索开始

- ●当前匹配: {(v₁, v₂), (v₃, v₄), (v₅, v₆)}
- •未饱和的左侧顶点: {v₇}

• 举例

从 $\{v_7\}$ 中未搜索过的 v_7 开始搜索

• 举例

沿不在当前匹配中且本轮未搜索过的 (v_7, v_6) 到达 $v_6 \rightarrow v_6$ 已被当前匹配中的 (v_5, v_6) 饱和

• 举例

沿当前匹配中的 (v_5, v_6) 到达 v_5

• 举例

沿不在当前匹配中且本轮未搜索过的(v_5 , v_2)到达 $v_2 \rightarrow v_2$ 已被当前匹配中的(v_1 , v_2)饱和

• 举例

沿当前匹配中的 (v_1, v_2) 到达 v_1

举例

 v_1 没有关联到任何不在当前匹配中且本轮未搜索过的边 \Rightarrow 回溯到 v_5

• 举例

沿不在当前匹配中且本轮未搜索过的(v_5 , v_4)到达 $v_4 \rightarrow v_4$ 已被当前匹配中的(v_3 , v_4)饱和

• 举例

沿当前匹配中的 (v_3, v_4) 到达 v_3

• 举例

沿不在当前匹配中且本轮未搜索过的 (v_3, v_2) 到达 v_2

• 举例

v₂本轮已搜索过⇒回溯到v₃

举例

 v_3 没有关联到任何不在当前匹配中且本轮未搜索过的边 \Rightarrow 回溯到 v_5

举例

 v_5 没有关联到任何不在当前匹配中且本轮未搜索过的边 \Rightarrow 回溯到 v_7

• 举例

已走过所有的点和边 → 无增广路 → 找到 最大匹配

- 算法的正确性
 - 算法一定会终止(为什么?)
 - 算法一旦终止,找到的一定是最大匹配(为什么?)
 - 存在增广路 ⇒ 一定能找到
 - 找不到增广路 ⇒ 无增广路 ⇒ 找到最大匹配

- 算法的运行时间
 - 搜索的最大轮数?
 - O(v)
 - 每轮搜索的最大步骤数?
 - O(ν+ε)

- 为什么增广路算法只能用于二部图?
 - 直观上
 - 二部图中,可以基于左右两侧为边定向
 - 一般图中,没有两侧的概念,不好定向
 - 本质上
 - 二部图中,每个左侧顶点只需搜索一次(作为起点,或当前匹配中一条边的终点)
 - 一般图中,可能有奇圈,第一次到达其中的"左侧"顶点可能是错误地作为不在当前匹配中的一条边的终点,即错误地将其当作"右侧"顶点了

- 基本思路(在增广路算法的基础上)
 - 总是搜索最短的增广路
 - 每轮搜索多条无公共顶点的增广路,全部替换

• 广度优先搜索(复习)

每轮搜索的步骤

- 1. 确定最短增广路的潜在起点(可以是哪些点?)
 - 所有未饱和的左侧顶点
- 2. 确定最短增广路的长度与潜在终点
 - 利用广度优先搜索,对所有顶点进行分层
 - 上述所有潜在起点构成第0层
 - 第i层相邻的所有未分层顶点构成第i+1层
 - i为偶数时,只能通过不在当前匹配中的边关联
 - i为奇数时,只能通过当前匹配中的边关联
 - 搜索终止于第k层的条件: 第k层包含未饱和的右侧顶点,或已搜完
- 3. 搜索极多的无公共顶点的最短增广路,全部替换得到更大的匹配
 - 在分层信息的引导下,利用反向的深度优先搜索降回第0层
 - 每找到一条增广路,将其经过的顶点及其关联的边从图中临时删除

算法的终止条件: 找不到增广路 ⇒ 无增广路 ⇒ 找到最大匹配

• 举例

第一轮搜索开始

- ●当前匹配: {}
- •未饱和的左侧顶点: {v₁, v₃, v₅, v₇}

• 举例

利用广度优先搜索分层

第0层{v₁, v₃, v₅, v₂}

举例

- 第0层{v₁, v₃, v₅, v₇}
- 沿不在当前匹配中的边到达第1层 $\{v_2, v_4, v_6\}$

举例

- 第0层{v₁, v₃, v₅, v₇}
- 沿不在当前匹配中的边到达第1层 $\{v_2, v_4, v_6\}$
- 发现未饱和的右侧顶点 $\{v_2, v_4, v_6\}$

举例

从未饱和的右侧顶点v₂(位于第1层)开始反向降层的深度优先搜索

- 1: v₂
- 0: v₃

• 举例

找到增广路v₂v₃⇒替换进当前匹配中

• 举例

临时删除v₂、v₃及其关联的边

举例

从未饱和的右侧顶点**v**₆(位于第**1**层)开始反向降层的深度优先搜索

举例

找到增广路v₆v₅ ⇒ 替换进当前匹配中

• 举例

临时删除 v_6 、 v_5 及其关联的边 v_1 \bullet v_4

举例

v₁ • v₄

从未饱和的右侧顶点**v**₄(位于第**1**层)开始反向降层的深度优先搜索

• 举例

无法下降到第0层,放弃 v_4 v_4 v_7 \bullet

• 举例

第二轮搜索开始

- ●当前匹配: {(v₃, v₂), (v₅, v₆)}
- •未饱和的左侧顶点: {v₁, v₇}

举例

利用广度优先搜索分层

• 第0层{v₁, v₇}

• 举例

- 第0层{v₁, v₇}
- 沿不在当前匹配中的边到达第1层 $\{v_2, v_6\}$

举例

- 第0层{v₁, v₇}
- 沿不在当前匹配中的边到达第1层 $\{v_2, v_6\}$
- 沿当前匹配中的边到达第2层{v₃, v₅}

举例

- 第0层{v₁, v₇}
- 沿不在当前匹配中的边到达第1层 $\{v_2, v_6\}$
- 沿当前匹配中的边到达第2层{v₃, v₅}
- 沿不在当前匹配中的边到达第3层{v₄}

举例

- 第0层{v₁, v₇}
- 沿不在当前匹配中的边到达第1层 $\{v_2, v_6\}$
- 沿当前匹配中的边到达第2层{v₃, v₅}
- 沿不在当前匹配中的边到达第3层{v₄}
- 发现未饱和的右侧顶点{v₄}

举例

从未饱和的右侧顶点v₄(位于第3层)开始反向降层的深度优先搜索

- 3: V₄
- 2: v₃

- 3: v₄
- 2: v₃
- 1: v₂

- 3: v₄
- 2: V₃
- 1: v₂
- 0: v₁

• 举例

找到增广路v₄v₃v₂v₁ ⇒ 替换进当前匹配中

举例

临时删除 v_4 、 v_3 、 v_2 、 v_1 及其关联的边

举例

第三轮搜索开始

- ●当前匹配: {(v₁, v₂), (v₃, v₄), (v₅, v₆)}
- ●未饱和的左侧顶点: {v_z}

• 举例

利用广度优先搜索分层

• 第0层{v₇}

举例

- 第0层{v₇}
- 沿不在当前匹配中的边到达第1层{v₆}

举例

- 第0层{v₇}
- 沿不在当前匹配中的边到达第1层{v₆}
- 沿当前匹配中的边到达第2层{v_s}

举例

- 第0层{v₇}
- 沿不在当前匹配中的边到达第1层{v_e}
- 沿当前匹配中的边到达第2层{v₅}
- 沿不在当前匹配中的边到达第3层 $\{v_2, v_4\}$

举例

- 第0层{v₇}
- 沿不在当前匹配中的边到达第1层{v_e}
- 沿当前匹配中的边到达第2层{v_s}
- 沿不在当前匹配中的边到达第3层 $\{v_2, v_4\}$
- 沿当前匹配中的边到达第4层{v₁、v₃}

• 举例

已搜完,未发现未饱和的右侧顶点 ⇒ 无增广路 ⇒ 找到最大匹配

- 算法的正确性
 - 算法一定会终止(为什么?)
 - 算法一旦终止,找到的一定是最大匹配(为什么?)
 - 存在增广路 ⇒ 一定能找到
 - 找不到增广路 ⇒ 无增广路 ⇒ 找到最大匹配

- 算法的运行时间*
 - 引理1:如果每次都选取最短的增广路替换进当前匹配中,那么 这些增广路的长度是非严格单调增的。
 - 引理2:上述相同长度的增广路无公共顶点。
 - → 算法每轮找到的最短增广路都比上一轮找到的长
 - 引理3:上述增广路最多只有 $2\sqrt{\frac{v}{2}}$ +2 种不同的长度
 - ⇒ 算法最多搜索 o(√v) 轮
 - 结论
 - 搜索的最大轮数: $O(\sqrt{\nu})$
 - 每轮搜索的最大步骤数: O(ν+ε)

John Edward Hopcroft, 美国, 1939--

Richard Manning Karp, 美国, 1935--

Karp's 21 NP-complete problems

Richard Manning Karp, 美国, 1935--

他们至今仍工作在科研的第一线

二部图的最大权匹配(分配/指派问题)

面向一般图的Edmonds算法*

• 目标:解决在一般图上使用增广路算法时,由奇圈带来的问题

- 基本思路(在增广路算法的基础上)
 - 在一轮搜索中,如果经过长为奇数的交错路到达的一个顶点(应是"右侧"顶点)在本轮搜索中已经经过长为偶数的交错路到达过(已是"左侧"顶点),那么就发现了一个奇圈,这两条路的并称作flower,这个奇圈称作blossom
 - 两条交错路的最长公共子路称作stem,它的终点称作base

- 基本思路(在增广路算法的基础上)
 - stem的最后一条边是饱和的; blossom中的顶点关联的边中,除 blossom中的边和stem的最后一条边以外,其它都未饱和
 - 将blossom收缩为一个顶点:顶点合并;内部边删除、外部边保留 (保持饱和/未饱和状态)
 - 如果新图中有增广路,那么原图中一定有增广路

- 关键步骤(在增广路算法的基础上)
 - 在搜索的过程中,一旦发现奇圈,就将其收缩为一个顶点,再继 续搜索
 - 如果新图中的增广路经过收缩后的顶点,那么利用奇圈中两条交错路之一将其还原到原图中的增广路

• 举例

• 举例

从未饱和的a开始搜索,找到增广路ac

• 举例

从未饱和的b开始搜索,找到增广路bd

• 举例

从未饱和的e开始搜索,找到增广路ef

• 举例

从未饱和的g开始搜索,找到增广路gh

• 举例

从未饱和的u开始搜索,沿交错路uacfec,此时,长为5的交错路到达了之前长为2的交错路到达过的顶点c,发现flower,其中: blossom为cfe, stem为uac

• 举例

收缩cfe为C,继续搜索

举例

沿交错路uaCdbu,此时,长为5的交错路到达了之前长为0的交错路到达过的顶点u,发现flower,其中: blossom为uaCdb,stem为空

• 举例

收缩uaCdb为U,继续搜索

• 举例

找到增广路Ux,涉及收缩顶点U

举例

将U还原,从关联到x的不在当前匹配中的边bx起,延交错路uaCdbx退回到base u

• 举例

找到增广路uaCdbx,涉及收缩顶点C

• 举例

将C还原,从关联到d的不在当前匹配中的边ed起,延交错路cfe退回到base c

举例

找到增广路uacfedbx,不涉及收缩顶点,替换进当前匹配中,本轮搜索结束

- 算法的运行时间
 - 朴素的实现: O(v⁴)
 - 用合适的数据结构表示blossom和处理收缩: O(v³)
- 一般图最大匹配的其它算法: $O(\sqrt{\nu}\varepsilon)$

Jack R. Edmonds, 加拿大, 1934--

作业: 编程实现增广路算法

- 采用标准输入/输出
- 输入格式:
 - 第一行:整数n,表示顶点个数
 - 后续每行: 两个整数a,b(0≤a,b≤n-1),表示顶点 v_a 与 v_b 相邻
 - a=b=-1表示输入结束
 - 输入可以保证是二部图
- 输出格式:
 - 第一行:整数m,表示匹配M中包含的边数
 - 后续m行: M中的每条边 e_i ,按照以下格式:
 - 每行为 e_i 的两个顶点标号 e_i .a, e_i .b (e_i .a < e_i .b)
 - 各行顺序: 按e_i. a升序
- 源代码发给马骏老师 (majun@nju.edu.cn)