(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 June 2002 (27.06.2002)

PCT

(10) International Publication Number WO 02/49993 A2

(51) International Patent Classification7:

C07C

(21) International Application Number: PCT/US00/26816

(22) International Filing Date:

29 September 2000 (29.09.2000)

(25) Filing Language:

English

(26) Publication Language:

English

- (71) Applicant (for all designated States except US): NEURO-GEN CORPORATION [US/US]; 35 Northest Industrial Road, Branford, CT 06405 (US).
- (72) Inventors: and
- (75) Inventors/Applicants (for US only): THURKAUF, Andrew [US/US]; 16 Fox Den Road, Danbury, CT 06811 (US). ZHANG, Xiaoyan [CN/US]; 102 Wicklow Way, Bridgewater, NJ 08807 (US). HE, Xia-shu [CN/US]; 50 Foxbridge Village Road, Branford, CT 06405 (US). ZHAO, He [CN/US]; 4 Stoneridge Lane, Branford, CT 06405 (US). PETERSON, John [US/US]; 28 Highland Terrace, Madison, CT 06443 (US). MAYNARD, George [US/US]; 27 Glenwood Road, Clinton, CT 06413 (US). OHLIGER, Robert [US/US]; 2115 Durham Road, Madison, CT 06443 (US).

- (74) Agents: CORLESS, Peter, F. et al.; Edwards & Angell, LLP, P.O. Box 9169, Boston, MA 02209 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: HIGH AFFINITY SMALL MOLECULE C5A RECEPTOR MODULATORS

(57) Abstract: The invention includes low molecular weight, non-peptidic, non-peptidommetic, organic molecules that can act as modulators of mammalian complement C5a receptors, preferably ones that act as high affinity C5a receptor ligands and also such ligands that can act as antagonists or inverse agonists of complement C5a receptors. Preferred compounds of the invention possess some or all of the following properties in that they are: 1) multi-aryl in structure; 2) heteroaryl in structure; 3) a pharmaceutically acceptable oral dose can provide a detectable in vivo effect; 4) comprise fewer than four or preferably no amide bonds, and 5) capable of habiting leukocyte chemotaxis at nanomolar or sub-nanomolar concentrations. The invention also includes pharmaceutical composition comprising such compounds and the use of such compounds in treating a variety of inflammatory and immune system disorders.

Title: HIGH AFFINITY SMALL MOLECULE C5A RECEPTOR MODULATORS

BACKGROUND

Field of the Invention

This invention relates to low molecular weight, non-peptidic, non-peptidomimetic, organic molecules that act as modulators of mammalian complement C5a receptors, preferably ones that act as high affinity C5a receptor ligands. The invention also relates to such ligands that act as antagonists (including inverse agonists) of complement C5a receptors, preferably human C5a receptors. This invention also relates to pharmaceutical compositions comprising such compounds. It further relates to the use of such compounds in treating a variety of inflammatory and immune system disorders. Additionally, this invention relates to the use such compounds as probes for the localization of C5a receptors.

Background of the Invention

C5a, a 74 amino acid peptide, is generated in the complement cascade by the cleavage of the complement protein C5 by the complement C5 convertase enzyme. C5a has both anaphylatoxic (e.g., bronchoconstricting and vascular spasmogenic) and chemotactic effects. Therefore, it is active in engendering both the vascular and cellular phases of inflammatory responses. Because it is a plasma protein and, therefore, generally almost instantly available at a site of an inciting stimulus, it is a key mediator in terms of initiating the complex series of events that results in augmentation and amplification of an initial inflammatory stimulus. The anaphylatoxic and chemotactic effects of the C5a peptide are believed to be mediated through its interation with the C5a receptor (CD88 antigen), a 52 kD membrane bound G-protein coupled receptor (GPCR). C5a is a potent chemoattractant for polymorphonuclear leukocytes, bringing neutrophils, basophils, eosinophils and monocytes to sites of inflammation and/or cellular injury. C5a is one of the most

1

potent chemotactic agents known for a wide variety of inflammatory cell types. C5a also "primes" or prepares neutrophils for various antibacterial functions, e.g., phagocytosis. Additionally, C5a stimulates the release of inflammatory mediators (e.g., histamines, TNF-α, IL-1, IL-6, IL-8, prostaglandins, and leukotrienes) and the release of lysosomal enzymes and other cytotoxic components from granulocytes. Among its other actions, C5a also promotes the production of activated oxygen radicals and the contraction of smooth muscle.

Considerable experimental evidence implicates increased levels of C5a in a number of autoimmune diseases and inflammatory and related disorders.

Antagonists that block the binding of C5a to its receptor or other agents, including inverse agonists, which modulate signal transduction associated with C5a-receptor interactions, can inhibit the pathogenic events, including chemotaxis, associated with anaphylatoxin activity contributing to such inflammatory and autoimmune conditions. Despite many attempts, no one has previously been able to provide any small molecule (less than 700 Daltons MW, or amu) non-peptide, non-peptidomimetic, non-peptoid, C5a antagonist that is essentially free of agonist activity at the C5a receptor and that exhibits a binding affinity for the C5a receptor of less than 1 micromolar, and preferably less than 100 nanomolar.

Description of Related Art

Certain modified C5a peptides (i.e., modifications of C5a) have been identified as partial C5a antagonists and have been shown to block a number of C5a mediated actions including neutrophil chemotaxis, neutropenia and superoxide formation. Various C5a peptidomimetic compounds have also been reported as modulating C5a activity, including cyclic peptoids (a peptoid is a peptidomimetic compound comprising an oligomeric assemblage of naturally occurring amino acids that have been N-substituted). Typically these C5a modulatory compounds exhibit a molecular weight greater than 500 Daltons, and generally greater than 700 Daltons.

SUMMARY OF THE INVENTION

The present invention provides novel compounds that are small molecule C5a receptor antagonists that are non-peptide, non-peptidomimetic, and are preferably free of C5a receptor agonist activity, which compounds exhibit high affinity for the C5a receptor, i.e., an affinity constant for binding to the C5a receptor of less than 1 micromolar. Highly preferred compounds exhibit very high affinity for the C5a receptor, i.e., an affinity constant for binding to the C5a receptor of less than 100 nanomolar. Preferred compounds are C5a receptor antagonists (including inverse agonists). Preferred antagonists exhibit an antagonist EC50 (which as usd herein includes IC50) of less than 1 micromolar, preferably less than 100 nanomolar, in an assay of C5a mediated chemotaxis. Preferred C5a receptors are mammalian, preferably primate receptors, including human C5a receptors, and may either be cloned, recombinantly expressed receptors or naturally expressed receptors. In certain preferred embodiments, compounds of the invention exhibit an affinity for human C5a receptors that is higher than for rodent C5a receptors, preferably at least five times higher, more preferably ten times higher.

The compounds of the present invention do not interact with dopamine receptors with even moderate affinity, i.e., they do not bind to dopamine receptors with K_i values of less than 100 micromolar. Preferred compounds of the invention do not bind to any naturally occurring receptors other than C5a receptors with high affinity, and preferably they do not bind to any naturally occurring receptors other than C5a receptors with even moderate affinity.

In certain embodiments these compounds also possess one or more, and preferably two or more, three or more, four or more, or all of the following properties in that they are: 1) multi-aryl in structure (having a plurality of un-fused or fused aryl groups), 2) heteroaryl in structure, 3) orally available in vivo (such that a sub-lethal or preferably a pharmaceutically acceptable oral dose can provide a detectable in vivo effect such as a reduction of C5a-induced neutropenia), 4) comprised of fewer than four, preferably fewer than three, or fewer than two, or no amide bonds, and 5)

capable of inhibiting leukocyte chemotaxis at nanomolar concentrations and preferably at sub-nanomolar concentrations.

In a highly preferred aspect, the invention provides non-peptidic, nonpeptidomimetic, low molecular weight compounds that act as high affinity antagonists of the human C5a receptor. Specifically exemplified representative compounds include, but are not limited to optionally substituted arylimidazoles (i.e. imidazoles having one or more ring substituents of optionally substituted carbocyclic aryl or optionally substituted heteroaryl), optionally substituted arylpyridyls (i.e.pyridyls having one or more ring substituents of optionally substituted carbocyclic aryl or optionally substituted heteroaryl), optionally substituted aryl-substituted cycloalkylimidazoles (i.e.cycloalkylimidazoles having one or more ring substituents of optionally substituted carbocyclic aryl or optionally substituted heteroaryl), optionally substituted arylpyrazoles (i.e.pyrazoles having one or more ring substituents of optionally substituted carbocyclic aryl or optionally substituted optionally substituted benzimidazoles, heteroaryl), optionally substituted aryl-substituted tetrahydroisoquinolines (i.e. tetrahydroisoguinolines having one or more ring substituents of optionally substituted carbocyclic aryl or optionally substituted heteroaryl), and optionally substituted biaryl carboxamides (i.e. a carboxamide that has one or more optionally substituted bi-carboxylic aryl or heteroaryl substituents). Novel intermediates useful for synthesizing compounds of the invention are also provided.

Preferred compounds of the invention are compounds of Formula I, shown below, that bind specifically, and preferably with high affinity, to C5a receptors.

The invention also provides pharmaceutical compositions comprising compounds of the invention, including those of Formula I, including otppinally substituted arylimidazoles. optionally substituted arylpyridyls, optionally substituted aryl-substituted cycloalkylimidazoles, optionally substituted arylpyrazoles, optionally substituted benzimidazoles, optionally substituted arylsubstituted tetrahydroisoquinolines, and optionally substituted biaryl carboxamides. The C5a receptor antagonist compounds described herein are particularly useful in

the treatment of C5a-mediated inflammation, e.g., inflammation associated with various inflammatory and immune system disorders. The invention further comprises a method of treating a patient in need of such anti-inflammatory treatment or immune treatment an effective amount of a compound of the invention, e.g. an amount of a compound of the invention sufficient to yield a plasma concentration of the compound (or its active metabolite, if a pro-drug) high enough to inhibit white blood cell (e.g., neutrophil) chemotaxis in vitro. Treatment of humans, domesticated companion animals (pets) or livestock animals suffering such conditions with an effective amount of a compound of the invention is contemplated by the invention. For treating non-human animals of any particular species, a compound exhibiting high affinity for the C5a receptor of that particular species is preferred.

In a separate aspect, the invention provides methods of using compounds of the invention as positive controls in assays for receptor activity and using appropriately labeled compounds of the invention as probes for the localization of receptors, particularly C5a receptors, e.g., in tissue sections (e.g., via autoradiography) or in vivo (e.g., via positron emission tomography, PET, or single positron emission computed tomography, SPECT, scanning and imaging).

The invention provides compounds and compositions that are useful as inhibitors of C5a-mediated chemotaxis (e.g., they may be used as standards in assays of such chemotaxis). The invention additionally comprises methods of inhibiting C5a-mediated cellular chemotaxis, preferably leukocyte (e.g., neutrophil) chemotaxis. These methods comprise contacting white blood cells, particularly primate white blood cells, especially human white blood cells, with one or more compounds of the invention. Preferably the concentration is sufficient to inhibit chemotaxis of white blood cells in an *in vitro* chemotaxis assay, so that the levels of chemotaxis observed in a control assay (e.g., one to which a compound of the invention has not been added) are significantly higher (significantly here measured as p<0.05 using a conventional parametric statistical analysis method such as a

student's T-test) than the levels observed in an assay to which a compound of the invention has been added.

Accordingly, a broad aspect of the invention is directed to non-peptidic organic (carbon-containing) molecules, having a molecular mass of less than 700 amu, that exhibit C5a antagonist activity or C5a inverse agonist activity with an EC50 of less than 500 nM in an assay of C5a mediated leukocyte chemotaxis.

More particularly the invention includes compounds of Formula I,

Formula I

wherein:

AR1 and AR2 are independently carbocyclic aryl or heteroaryl;

LIP represents an alkyl, carbocyclic aryl, heteroaryl, or arylalkyl;

A is oxygen or nitrogen;

d₁ represents the distance between A and the geometric center of AR1 and is between 3 and 6 angstroms in at least one energetically accessible conformer of the compound;

d₂ represents the distance between A and the geometric center of AR2 and is between 5 and 10 angstroms in at least one energetically accessible conformer of the compound; and

d₃ represents the distance between A and the nearest atom of LIP and is between 3 and 6 angstroms in at least one energetically accessible conformer of the compound. Preferred compounds of Formula I exhibit antagonist (including inverse agonist) activity at C5a Receptors, and essentially no or little agonist activity at this receptor. Preferably such compounds contain one or more heteroaryl rings.

Preferred compounds of the invention exhibit good activity in standard in vitro C5 receptor mediated chemotaxis assay, specifically the assay as specified in

Example 12, which follows and is defined below. Alternative preferred assays include the calcium mobilization assay. Preferred compounds of the invention exhibit an EC_{50} of about 500 nM or less in such a standard C5a mediated chemotaxis assay, more preferably an EC_{50} of about 200 nM or less in such a standard C5a mediated chemotaxis assay, still more preferably an EC_{50} of about 100, 50, 25 and 10 nM in such a standard C5a mediated chemotaxis assay, even more preferably an EC_{50} of about 5 nM in such a standard C5a mediated chemotaxis assay.

The invention includes additional methods such as methods for localizing C5a recerptors in tissue section samples, comprising cotacting a tissue sample with detectably labelled one or more compounds of the invention that are preferably detectably labeled, optionally washing the contacted tissue sample, and detecting the bound compound associated with the tissue sample. Suitable detectable labels include e.g. 125I, tritium, 32P, 99Tc or the like. A variety of detection methods could be employed include single emission photono computed tomography ("SPECT").

Other aspects of the invention are discussed infra.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is the sequence of SEQ ID NO-1.

DETAILED DESCRIPTION OF THE INVENTION

Preferred compounds of the invention include carbon-containing molecules that comprise:

- i) having a molecular mass of less than 700 amu;
- ii) that is nonpeptidic;
- iii) that exhibits C5a antagonist activity or C5a inverse agonist activity with an EC50 of less than 500 nM in an assay of C5a mediated leukocyte chemotaxis; and
- iv) exhibits less than 10% intrinsic agonist activity in an assay of leukocyte chemotaxis.

Among such compounds, particularly preferred are those that contain one or more heteroaryl and/or carbocyclic rings. For example, preferred are compounds of the following formula:

$$d_1$$
 d_2
 d_3
AR1
AR2

AR1 and AR2 are independently optionally substituted carbocyclic aryl or optionally substituted heteroaryl;

LIP represents an optionally substituted alkyl, optionally substituted carbocyclic aryl, optionally substituted heteroaryl, or optionally substituted arylalkyl;

A is oxygen or nitrogen;

d₁ represents the distance between A and the geometric center of AR1 and is between 3 and 6 angstroms in at least one energetically accessible conformer of the compound;

d₂ represents the distance between A and the geometric center of AR2 and is between 5 and 10 angstroms in at least one energetically accessible conformer of the compound; and

 d_3 represents the distance between A and the nearest atom of LIP and is between 3 and 6 angstroms in at least one energetically accessible conformer of the compound.

Preferred compounds of the invention also include heterocycles of the following formula Π :

II

$$R_1$$
 R_5
 R_6
 R_4
 R_2
 R_3
 R_{3A}
 R_{4}

or a pharmaceutically acceptable salt thereof, wherein the compound exhibits an EC_{50} of 1uM or less in an assay of C5a mediated chemotaxis, wherein:

the ring system represented by

is a 5 to 7 membered heterocycle that may be either aromatic or partially unsaturated;

X is N, C, or CR₇, wherein R₇ is hydrogen, hydroxy, halogen, amino, cyano, nitro, optionally substituted haloalkyl, optionally substituted alkoxy, optionally substituted mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl or optionally substituted (cycloalkyl)alkyl;

Y is N or CH;

n is 0, 1, or 2;

m is 0, 1, or 2;

R and R₁ are independently chosen from hydrogen, hydroxy, halogen, amino, cyano, nitro, optionally substituted haloalkyl, optionally substituted alkoxy, optionally substituted mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted (cycloalkyl)alkyl, optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms;

R₂, R₃, R_{3A}, R₅, and R₆ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, optionally substituted haloalkyl, optionally substituted alkoxy, optionally substituted mono- or dialkylamino, optionally substituted

alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;

- When n is 0, R₁ and R₃ may be joined to form a cycloalkyl or heterocycloalkyl ring, each of which may be optionally substituted;
- When n is 1, R and R₃ may be joined to form a cycloalkyl or heterocycloalkyl ring, each of which may be optionally substituted;

R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or

 R_4 is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and

Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.

Preferred compounds of the above Formula II include those compounds wherein:

R and R₁ are independently selected from

- i) hydrogen, halogen, hydroxy, amino, alkoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, and
- ii) alkyl, alkenyl, alkynyl, cycloalkyl, and (cycloalkyl)alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino,
- iii) phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen,

nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

R₂, R₃, R_{3A}, R₅, and R₆ are independently selected from

alkoxy, amino, and mono- or dialkylamino;

- i) hydrogen, halogen, hydroxy, amino, alkoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, and
- ii) alkyl, alkenyl, alkynyl, cycloalkyl, and (cycloalkyl)alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino;

R₇ is hydrogen, hydroxy, halogen, amino, cyano, nitro, or haloalkyl, or
R₇ is alkoxy, mono- or dialkylamino, alkyl, alkenyl, alkynyl or (cycloalkyl)alkyl, each
of which may be unsubstituted or substituted by one or more of halogen,
nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,

- When n is 0, R₁ and R₃ may be joined to form a cycloalkyl or heterocycloalkyl ring,
 each of which may be unsubstituted or substituted with one or more
 substituents selected from halogen, nitro, cyano, trifluoromethyl,
 trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy,
 amino, mono- or dialkylamino;
- When n is 1, R and R₃ may be joined to form a cycloalkyl or heterocycloalkyl ring,
 each of which may be unsubstituted or substituted with one or more
 substituents selected from halogen, nitro, cyano, trifluoromethyl,
 trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy,
 amino, and mono- or dialkylamino;
- R4 is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino; or

R4 is phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N-alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl; or

R4 is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino; and

Ar₁ and Ar₂ are independently chosen from

i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl,

mono or dialkylaminocarbonyl, N-alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl, and

ii) bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino.

Additional preferred compounds of the above formula II include those wherein

R and R1 are independently selected from

i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or di(C₁-C₆)alkylamino,

iii) phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino, and mono- or $di(C_1$ - $C_6)$ alkylamino;

When n is 0, R₁ and R₃ may be joined to form a C₃-C₈ cycloalkyl or C₃-C₈
heterocycloalkyl ring, each of which may be unsubstituted or substituted
with one or more substituents selected from halogen, nitro, cyano,

trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

- When n is 1, R and R₃ may be joined to form a C₃-C₈ cycloalkyl or C₃-C₈
 heterocycloalkyl ring, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;
- R₂, R₃, R_{3A}, R₅, and R₆ are independently selected from

 i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and

 ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

R₇ is hydrogen, hydroxy, halogen, amino, cyano, nitro, or haloalkyl,

- R₇ is alkoxy, mono- or di(C₁-C₆)alkylamino, C₁-C₆ alkyl, C₂-C₆alkenyl, C₂-C₆ alkynyl or (C₃-C₈cycloalkyl) C₁-C₃alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;
- R₄ is C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈ cycloalkyl)

 C₁-C₃ alkyl, each of which may be unsubstituted or substituted with

 one or more substituents selected from halogen, nitro, cyano,

 trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl,

 C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or

R₄ is phenyl, phenyl(C₁-C₄)alkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; and

Ar₁ and Ar₂ are independently chosen from phenyl, phenyl(C₁-C₄)alkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl,

hydroxy, acetoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino, mono- or di(C_1 - C_6)alkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C_1 - C_6)alkylaminocarbonyl, N-(C_1 - C_6)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl; and

ii) bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino, and mono- or di(C_1 - C_6) alkylamino.

Still additional preferred compounds of the aboveformula II include those compounds of the following fomula:

$$Ar_1 \xrightarrow[R_2]{R_1} R_1 \xrightarrow[R_3]{R_5} R_6 \xrightarrow[R_4]{R_4} Ar_2$$

and additionally include those compounds of the following formula:

$$Ar_1 \xrightarrow{N} \begin{array}{c} R_1 \\ N \\ R_2 \end{array} \begin{array}{c} R_3 \\ R_3 \end{array} Ar_2$$

m is 0, 1, or 2;

R₁ is chosen from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted (cycloalkyl)alkyl,

optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms;

R₂, R₃, R_{3A}, R₅, and R₆ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;

R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or

 R_4 is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and

Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.

Additional preferred compounds of the above formula II include those compounds of the following formula:

$$Ar_1 \xrightarrow{N} \begin{array}{c} R_1 \\ N \\ R_2 \end{array} \xrightarrow{R_3} Ar_2$$

wherein:

 R_1 is hydrogen, C_1 - C_7 alkyl, halogen or phenyl optionally substituted with C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halogen, hydroxy, amino, or mono- or di(C_1 - C_6)alkylamino; R_2 is C_1 - C_8 alkyl or C_3 - C_8 cycloalkyl; and R_3 is hydrogen or C_1 - C_7 alkyl.

Additional preferred compounds of the above formula II include those compounds of the following formula:

$$Ar_1 \xrightarrow{N} \xrightarrow{R_1} \xrightarrow{R_4} Ar_2$$

wherein:

Ar₁ is phenyl, phenylalkyl, thienyl, imidazolyl, pyridyl, pyrimidyl, benzodioxinyl, benzodioxolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

Ar₂ is defined as in Claim 2;

 R_1 is hydrogen, C_1 - C_7 alkyl, halogen or phenyl optionally substituted with C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halogen, hydroxy, amino, or mono- or di(C_1 - C_6)alkylamino;

R₃ is hydrogen or C₁-C₇ alkyl; and

R2 is C1-C8 alkyl or C3-C8 cycloalkyl; and

R₄ is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, or (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

Additional preferred compounds of the above formula II include those compounds of the following formula:

$$Ar_1 \xrightarrow{N} \begin{array}{c} R_1 \\ N \\ R_2 \end{array} \xrightarrow{R_3} Ar_2$$

wherein:

Ar₁ is phenyl, phenylalkyl, thienyl, imidazolyl, pyridyl, pyrimidyl, benzodioxinyl, benzodioxolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

Ar2 is defined as in Claim 4;

R₁ is hydrogen, C₁-C₇ alkyl, halogen or phenyl optionally substituted with C₁-C₆ alkyl, C₁-C₆ alkoxy, halogen, hydroxy, amino, or mono- or di(C₁-C₆)alkylamino;

R2 is C1-C8 alkyl or C3-C8 cycloalkyl; and

R₃ is hydrogen or C₁-C₇ alkyl; and

R₄ is phenyl, phenyl(C₁-C₄)alkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

Additional preferred compounds of the above formula II include those compounds of the following formula:

$$Ar_1 \xrightarrow{N} \begin{array}{c} R_1 \\ N \\ R_2 \end{array} \xrightarrow{R_3} Ar_2$$

wherein:

Ar₁ is phenyl, phenylalkyl, thienyl, or pyridyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

Ar2 is defined as in formula II;

R₁ is hydrogen, methyl, ethyl, or optionally substituted phenyl;

R2 is C3-C8 alkyl or C3-C8 cycloalkyl; and

R₃ is hydrogen or methyl; and

R₄ is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, or (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

Additional preferred compounds of the above formula II include those of the following formula:

$$Ar_1 \xrightarrow{N} \begin{array}{c} R_1 \\ N \\ R_2 \end{array} \xrightarrow{R_3} \begin{array}{c} R_4 \\ Ar_2 \end{array}$$

wherein:

Ar₁ is phenyl, phenylalkyl, thienyl, or pyridyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

Ar2 is defined as in Claim 4;

R₁ is hydrogen, methyl, ethyl, or phenyl;

R2 is C3-C8 alkyl or C3-C8 cycloalkyl; and

R₄ is a bicyclic oxygen-containing group of the formula:

R₃ is hydrogen or methyl; and

R₄ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino; or

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino, and mono- or di(C_1 - C_6)alkylamino.

Still additional preferred compounds of the above formula Ii include of the following formula:

$$Ar_1 \xrightarrow{N} \begin{array}{c} R_1 \\ R_2 \\ R_3 \end{array} \begin{array}{c} R_4 \\ Ar_2 \end{array}$$

wherein:

Ar₁ is phenyl, phenylalkyl, thienyl, or pyridyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

Ar₂ is chosen from phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, and quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl; or

Ar₂ is a bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

R₁ is hydrogen, methyl, ethyl, or phenyl;

R2 is C3-C8 alkyl or C3-C8 cycloalkyl; and

R₃ is hydrogen or methyl; and

R₄ is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, or (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

Still further preferred compounds of the above formula II include those of the following formula:

$$Ar_1 \xrightarrow{N} \begin{array}{c} R_1 \\ N \\ R_2 \end{array} \xrightarrow{R_3} \begin{array}{c} R_4 \\ Ar_2 \end{array}$$

wherein:

Ar₁ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, or pyridyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

Ar₂ is chosen from phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, and quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl; or

Ar₂ is a bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

R₁ is hydrogen, methyl, ethyl, or phenyl;

R₂ is C₃-C₈ alkyl or C₃-C₈ cycloalkyl; and

R₃ is hydrogen or methyl; and

R₄ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino, and mono- or di(C_1 - C_6)alkylamino.

Preferred compounds of the invention also include those of the following formula III:

$$Ar_1 \xrightarrow{N} \begin{array}{c} R_1 \\ N \\ R_2 \end{array} \begin{array}{c} R_4 \\ Ar_2 \end{array}$$

or a pharmaceutically acceptable salt thereof, wherein:

Ar₁ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, or pyridyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

Ar₂ is a bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

R₁ is selected from

i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or

R₁ is selected from

phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl,

pyrazinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

R2 and R3 are independently selected from

- i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and
- ii) C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, and $(C_3$ - C_8 cycloalkyl) C_1 - C_3 alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkoxy, amino, mono- or di(C_1 - C_6) alkylamino; and
- R4 is C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or
- R₄ is phenyl, phenyl(C₁-C₄)alkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl,

N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_{Λ} represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino, and mono- or di(C_1 - C_6)alkylamino.

Preferred compounds of the above formula III include those wherein:

R₁ is hydrogen, methyl, ethyl, or phenyl;

R2 is C3-C8 alkyl or C3-C8 cycloalkyl;

R₃ is hydrogen or methyl; and

R₄ is C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

Additional preferred compounds of formula III include those wherein:

R1 is hydrogen, methyl, ethyl, or phenyl;

R2 is C3-C8 alkyl or C3-C8 cycloalkyl;

R₃ is hydrogen or methyl; and

R₄ is C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

Still additional preferred compounds of formula III above include those wherein:

R₁ is hydrogen, methyl, ethyl, or phenyl;

R2 is C3-C8 alkyl or C3-C8 cycloalkyl;

R₃ is hydrogen or methyl; and

phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino.

Preferred compounds of formula III above also include those wherein:

R₁ is hydrogen, methyl, ethyl, or phenyl;

R2 is C3-C8 alkyl or C3-C8 cycloalkyl;

R₃ is hydrogen or methyl; and

R4 is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

The invention also includes compounds of the following formula IV:

ΙV

or a pharmaceutically acceptable salt thereof, wherein:

n is an integer from 0 to 3; and

R₂ is hydrogen or

alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, or haloalkyl, each or which may be substituted or unsubstituted;

R4 is hydrogen or

alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, haloalkyl, each or which may be substituted or unsubstituted; or

R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, or an optionally substituted heteroaromatic or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 hetero atoms,

R₃ and R_{3A} are the same or different and represent hydrogen or alkyl; or

R₃ and R_{3A}, taken together with the carbon atom to which they are attached, form a cycloalkyl ring;

R₅ and R₆ are the same or different and represent hydrogen, halogen, hydroxy, alkyl, or alkoxy; or

R₅ and R₆, taken together with the carbon atom to which they are attached form a cycloalkyl ring;

R_{5a} and R_{6a} are the same or different, and are independently selected at each occurrence from hydrogen, halogen, hydroxy, alkyl, and alkoxy;

R7 represents hydrogen or alkyl;

Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, or an optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 hetero atoms.

Also preferred are compounds of that formula IV above (such preferred compounds referred to as compounds of formula IV-A) wherein n, R_3 , R_{3A} , R_5 , R_6 , R_{5a} , R_{6a} , and R_7 are as defined in that formula IV, and

R2 is hydrogen or

alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, or haloalkyl, each or which unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluormethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino;

R4 is hydrogen or

alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino and mono- or dialkylamino,

R4 is phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, aminoalkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N-

alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl and – XR_B , wherein X and R_B are as defined below; or R_4 is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

Ar₁ and Ar₂ are independently chosen from

i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, aminoalkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N-alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl and -XRB, wherein X and RB are as defined below;, and

ii) bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

X is independently selected at each occurrence from the group consisting of -CH2-, -

 $CHR_{C^-}, -O_-, -S(O)_{m^-}, -NH_-, -NR_{C^-}, -C(=O)NH_-, -C(=O)NR_{C^-}, -S(O)_{m}NH_-, -S(O)_{m}NR_{C^-}, -NHC(=O)_-,$

-NR_CC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, -O(alkyl), -NH(alkyl),

-N(alkyl)(alkyl), -NHC(O)(alkyl), -N(alkyl)C(O)(alkyl), -NHS(O)_x(alkyl), -S(O)_x(alkyl), -S(O)_xN(alkyl)(alkyl), (where x is 0, 1, or 2).

Also preferred are compounds of formula IV above wherein (such preferred compounds referred to as compounds of formula IV-B)

n is defined as in formula IV above, and

R₃ and R_{3A} are the same or different and represent hydrogen or

C1-C6 alkyl; or

R₃ and R_{3A}, taken together with the carbon atom to which they are attached, form a C₃₋₈ cycloalkyl ring;

R₅ and R₆ are the same or different and represent hydrogen, halogen, hydroxy, C₁-C₆ alkyl, or C₁-C₆ alkoxy; or

R₅ and R₆, taken together with the carbon atom to which they are attached form a C₃₋₈ cycloalkyl ring;

R_{5a} and R_{6b} are the same or different, and are independently selected at each occurrence from hydrogen, halogen, hydroxy, C₁-C₆ alkyl, and C₁-C₆ alkoxy;

R₂ is hydrogen or

C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈ cycloalkyl, (C₃₋₈ cycloalkyl) C₁₋₃ alkyl, or C₁-C₆ haloalkyl, each or which unsubstituted or substituted by one or more of

halogen, nitro, cyano, trifluormethyl, trifluoromethoxy, C_{1-3} haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or di (C_1-C_6) alkylamino;

R4 is hydrogen or

C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁₋₄alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino,

R₄ is phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, -

XR_B, wherein X and R_B are as defined below; or

 $R_{4}\,\text{is}$ a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

Ar₁ and Ar₂ are independently chosen from

i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and -XR_B, wherein X and R_B are as defined below; and

ii) bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

X is independently selected at each occurrence from the group consisting of -CH₂-, -CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-, -NR_CC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2);

and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or

substituted with one or more substituent(s) selected from:

oxo, hydroxy, $-O(C_1-C_6 \text{ alkyl})$, $-NH(C_1-C_6 \text{ alkyl})$, $-N(C_1-C_6 \text{ alkyl})$, $-S(O)_x(C_1-C_6 \text{ alkyl})$, $-S(O)_x(C_1-C_6 \text{ alkyl})$, $-S(O)_xNH(C_1-C_6 \text{ alkyl})$, $-S(O)_xN(C_1-C_6 \text{ alkyl})$, (where x is 0, 1, or 2).

Also preferred are compounds of formula IV above (such preferred referred to as compounds of formula IV-C) wherein n, R₂, R₃, R_{3A}, R₅, R₆, R_{5a}, R_{6a}, and R₇ are as defined in formula IV above,

R4 is hydrogen or

 C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_8 cycloalkyl, (C_3 - C_8 cycloalkyl) C_1 - C_4 alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino and mono- or di(C_1 - C_6)alkylamino,

R₄ is phenyl, naphthyl, thienyl, pyridyl, pyrimidyl, dihydrobenzofuranyl, furanyl, benzodioxanyl, indolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, – XR_B, wherein X and R_B are as defined below; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

Ar₁ is phenyl, thienyl, or pyridyl, pyrimidyl, dihydrobenzofuranyl, furanyl, benzodioxanyl, indolyl, each of which is unsubstituted or substituted with up to four substituents independently selected from:

halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino, mono- or di(C_1 - C_6)alkylamino, amino(C_1 - C_6)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C_1 - C_6)alkylaminocarbonyl, N-(C_1 - C_6)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and $-XR_B$, wherein X and R_B are as defined below;

Ar₂ is phenyl, naphthyl, thienyl, pyridyl, pyrimidyl, dihydrobenzofuranyl, furanyl, benzodioxanyl, indolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and -XR_B, wherein X and R_B are as defined below; or

Ar₂ is a bicyclic oxygen-containing group of the formula:

wherein R_A' represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl,

 C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino, and mono- or di(C_1 - C_6)alkylamino;

X is independently selected at each occurrence from the group consisting of -CH₂-, - CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-,

-NR_CC(=0)-, -NHS(0)_m-, -C(=0)NHS(0)_m-, and -NR_CS(0)_m- (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, -O(C₁-C₆ alkyl), -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl), -N(C₁-C₆ alkyl), -N(C₁-C₆ alkyl), -NHC(O)(C₁-C₆ alkyl), -N(C₁-C₆ alkyl), -S(O)_x(C₁-C₆ alkyl), -S(O)_x(C₁-C₆ alkyl), -S(O)_xNH(C₁-C₆ alkyl), -S(O)_xN(C₁-C₆ alkyl), (where x is 0, 1, or 2).

Further preferred are compounds of the above formula IV-C wherein: R_3 and R_4 are the same or different and represent hydrogen or methyl; R_5 and R_6 are the same or different and represent hydrogen or methyl; and R_{5a} and R_{6a} are the same or different, and are independently selected at each occurrence from hydrogen and methyl.

Further preferred are compounds of the above formula IV-C wherein: R_3 and R_4 are hydrogen;

 R_5 and R_6 are the same or different and represent hydrogen or methyl; and R_{5a} and R_{6a} are the same or different, and are independently selected at each occurrence from hydrogen and methyl.

Further preferred are compounds of the above formula IV-C wherein:

$$R_{5}$$
 R_{6}
 R_{6a}
 R_{7}
 R_{8}
 R_{8}
 R_{8}
 R_{1}
 R_{2}
 R_{4}
 R_{2}

or a pharmaceutically acceptable salt thereof, wherein:

n is an integer from 0 to 3; and

R₂ is hydrogen or

alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, or haloalkyl, each or which may be substituted or unsubstituted;

R₄ is hydrogen or

 C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_8 cycloalkyl, (C_3 - C_8 cycloalkyl) C_1 - C_4 alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino and mono- or di(C_1 - C_6)alkylamino,

R₄ is phenyl, naphthyl, thienyl, pyridyl, pyrimidyl, dihydrobenzofuranyl, furanyl, benzodioxanyl, indolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, -XR_B, wherein X and R_B are as defined below; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

Ar₂ is phenyl, naphthyl, thienyl, pyridyl, pyrimidyl, dihydrobenzofuranyl, furanyl, benzodioxanyl, indolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and – XR_B, wherein X and R_B are as defined below; or

Ar₂ is a bicyclic oxygen-containing group of the formula:

wherein R_A' represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

X is independently selected at each occurrence from the group consisting of -CH₂-, -CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-, -NR_CC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, $-O(C_1-C_6 \text{ alkyl})$, $-NH(C_1-C_6 \text{ alkyl})$, $-N(C_1-C_6 \text{ alkyl})$, $-NHS(O)_x(C_1-C_6 \text{ alkyl})$, $-S(O)_x(C_1-C_6 \text{ alkyl})$, $-S(O)_xNH(C_1-C_6 \text{ alkyl})$, $-S(O)_xNH(C_1-C_6 \text{ alkyl})$, (where x is 0, 1, or 2).

R₅ and R₆ are the same or different and represent hydrogen or methyl;

R_{5a} and R_{6a} are the same or different, and are independently chosen at each occurrence from hydrogen and methyl; and

R_X represents up to four substituents independently chosen from hydrogen, halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy.

Further preferred are compounds of the above formula IV-C wherein:

$$R_{5}$$
 R_{6}
 $CR_{5a}R_{6a}$
 R_{7}
 R_{7}
 R_{8}
 R_{1}
 R_{2}
 R_{4}
 R_{2}

or a pharmaceutically acceptable salt thereof, wherein:

n is an integer from 0 to 3; and

R4 is hydrogen or

C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈cycloalkyl, (C₃-C₈cycloalkyl) C₁-C₄alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino,

R₄ is phenyl, naphthyl, thienyl, pyridyl, pyrimidyl, dihydrobenzofuranyl, furanyl, benzodioxanyl, indolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-{ C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, -XR_B, wherein X and R_B are as defined below; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino, and mono- or di(C_1 - C_6) alkylamino;

Ar₂ is phenyl, naphthyl, thienyl, pyridyl, pyrimidyl, dihydrobenzofuranyl, furanyl, benzodioxanyl, indolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-{ C₁-

 C_6)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and – XR_B , wherein X and R_B are as defined below; or

Ar₂ is a bicyclic oxygen-containing group of the formula:

wherein R_A' represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

X is independently selected at each occurrence from the group consisting of -CH₂-, - CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-,

-NR_CC(=0)-, -NHS(0)_m-, -C(=0)NHS(0)_m-, and -NR_CS(0)_m- (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, $-O(C_1-C_6 \text{ alkyl})$, $-NH(C_1-C_6 \text{ alkyl})$, $-N(C_1-C_6 \text{ alkyl})$, $-NHS(O)_x(C_1-C_6 \text{ alkyl})$, $-S(O)_x(C_1-C_6 \text{ alkyl})$, $-S(O)_xNH(C_1-C_6 \text{ alkyl})$, $-S(O)_xNH(C_1-C_6 \text{ alkyl})$, (where x is 0, 1, or 2).

R₂ is C₃-C₈ straight or branched chain alkyl, C₂-C₈ alkenyl, or C₂-C₈ alkynyl;
R₅ and R₆ are the same or different and represent hydrogen or methyl;
R_{5a} and R_{6a} are the same or different, and are independently chosen at each occurrence from hydrogen and methyl; and

R_X represents up to four substituents independently chosen from hydrogen, halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy.

Further preferred are compounds of the above formula IV-C wherein:

Ar₂, R_X, and n are as defined in formula IV-C,

or a pharmaceutically acceptable salt thereof, wherein:

 R_2 is C_3 - C_8 straight or branched chain alkyl, C_2 - C_8 alkenyl, or C_2 - C_8 alkynyl; and R_4 is C_1 - C_8 straight or branched chain alkyl, C_2 - C_8 alkenyl, or C_2 - C_8 alkynyl.

Further preferred are compounds of the above formula IV-C, or a pharmaceutically acceptable salt thereof, wherein:

 R_2 is C_3 - C_8 straight or branched chain alkyl, C_2 - C_8 alkenyl, or C_2 - C_8 alkynyl; R_4 is phenyl, which may be unsubstituted or substituted with:

 C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, $(C_3$ - C_8 cycloalkyl) C_1 - C_4 alkyl, haloalkyl, C_1 - C_6 alkoxy, halogen, hydroxy, amino, or mono- or di(C_1 - C_6)alkylamino; or

R₄ is a bicyclic oxygen containing group of the formula:

wherein R_A is hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈cycloalkyl) C₁-C₄ alkyl, haloalkyl, alkoxy, halogen, hydroxy, amino, or mono- or di(C₁-C₆)alkylamino;

Ar₂ is phenyl which is unsubstituted or optionally substituted or substituted with up to four groups independently selected from:

halogen, C₁-C₇ alkyl, C₁-C₇ alkoxy, cyano, amino, mono- or di(C₁-C₆)alkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N-

alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, 1-morpholino, nitro, hydroxy, acetoxy, trifluoromethyl, and trifluoromethoxy or $-XR_B$, wherein X and R_B are as defined for formula IV-C; or

Ar₂ is a bicyclic oxygen-containing group of the formula:

$$\bigcap_{Q \in \mathcal{A}_{R_{A'}}} \bigcap_{Q \in \mathcal{A}_{R_{A'}}$$

wherein RA, RA', and n are as defined in formula IV-C.

Also preferred are compounds of formula IV-C as specified above, wherein: n is an integer from 0 to 3;

 R_2 is C_3 - C_8 straight or branched chain alkyl, C_2 - C_8 alkenyl, or C_2 - C_8 alkynyl; R_4 is C_1 - C_8 straight or branched chain alkyl, C_2 - C_8 alkenyl, or C_2 - C_8 alkynyl; Ar_2 is a bicyclic oxygen containing group of the formula:

$$\bigcap_{R_{A'}}^{2} \quad \text{or} \quad \bigcap_{R_{A'}}^{2}$$

wherein R_A' represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

Additional preferred compounds include those of the following formula V:

$$R_3$$
 R_3 R_5 R_6 R_{5A} R_{6A} R_{6A}

wherein:

n is an integer from 0 to 3;

 R_3 and R_{3A} are the same or different and represent hydrogen, halogen, hydroxy, alkyl, or alkoxy; or

R₃ and R_{3A}, taken together with the carbon atom to which they are attached, form a cycloalkyl ring;

R₅ and R₆ are the same or different and represent hydrogen, halogen, hydroxy, alkyl, or alkoxy; or

R₅ and R₆, taken together with the carbon atom to which they are attached form a cycloalkyl ring; and

 R_{5A} and R_{6A} are the same or different and represent hydrogen, halogen, hydroxy, alkyl, or alkoxy.

Preferred compounds of formula V include those compounds wherein:

R₃ and R_{3A} are the same or different and represent hydrogen or C₁-C₆ alkyl; or

R₃ and R_{3A}, taken together with the carbon atom to which they are attached, form a cycloalkyl ring of from three to six carbon atoms;

R₅ and R₆ are the same or different and represent hydrogen, halogen, hydroxy, C₁-C₆ alkyl, or C₁-C₆ alkoxy; or

R₅ and R₆, taken together with the carbon atom to which they are attached form a cycloalkyl ring of from three to six carbon atoms; and

 R_{5A} and R_{6A} are the same or different and represent hydrogen, halogen, hydroxy, C_1 - C_6 alkyl, or C_1 - C_6 alkoxy.

Preferred compounds of formula V include thosae compounds wherein:

R₃ and R₄ are hydrogen; and

R₅, R₆, R_{5A}, and R_{6A} are the same or different and represent hydrogen or methyl.

The invention also includes compounds of the following formula VI:

VI

wherein:

n is an integer from 0 to 3;

R₂ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, or haloalkyl, each of which may be substituted or unsubstituted;

R₃ and R₄ are the same or different and represent hydrogen or alkyl; or

R₃ and R_{3a}, taken together with the carbon atom to which they are attached, form a cycloalkyl ring;

 R_5 and R_6 are the same or different and represent hydrogen, halogen, hydroxy, alkyl, or alkoxy; or

R₅ and R₆, taken together with the carbon atom to which they are attached, form a cycloalkyl ring;

 R_{5A} and R_{6A} are the same or different and represent hydrogen, halogen, hydroxy, alkyl, or alkoxy; and

Ar₁ is unsubstituted or substituted carbocyclic aryl, unsubstituted or substituted arylalkyl, or a unsubstituted or substituted heteroaromatic or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 hetero atoms.

Preferred compounds of formula VI include those compounds wherein:

R₂ is C₁-C₈ straight or branched chain alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈ cycloalkyl, C₂-C₈ (cycloalkyl)C₁-C₄ alkyl, or C₁-C₈ haloalkyl;

R₃ and R_{3a} are the same or different and represent hydrogen or C₁-C₆ alkyl; or

- R₃ and R_{3a}, taken together with the carbon atom to which they are attached, form a cycloalkyl ring of from three to six carbon atoms; and
- R_5 and R_6 are the same or different and represent hydrogen, halogen, hydroxy, C_1 - C_6 alkyl, or C_1 - C_6 alkoxy; or
- R₅ and R₆, taken together with the carbon atom to which they are attached form a cycloalkyl ring of from three to six carbon atoms;
- R_{5A} and R_{6A} are the same or different and represent hydrogen, halogen, hydroxy, C₁-C₆ alkyl, or C₁-C₆ alkoxy;
- Ar₁ is phenyl, thienyl, or pyridyl, pyrimidyl, dihydrobenzofuranyl, furanyl, benzodioxanyl, indolyl, each of which is unsubstituted or substituted with up to four substituents independently selected from:

halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino, mono- or di(C_1 - C_6)alkylamino, amino(C_1 - C_6)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C_1 - C_6)alkylaminocarbonyl, N-(C_1 - C_6)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and $-XR_B$, wherein X and R_B are as defined below;

- X is independently selected at each occurrence from the group consisting of -CH₂-, -CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-, -NR_CC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2); and
- R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, -O(C1-C6 alkyl), -NH(C1-C6 alkyl),

 $-N(C_1-C_6 \text{ alkyl})(C_1-C_6 \text{ alkyl}), -NHC(O)(C_1-C_6 \text{ alkyl}), -N(C_1-C_6 \text{ alkyl}), -N(C_1-C_6 \text{ alkyl}), -NHS(O)_x(C_1-C_6 \text{ alkyl}), -S(O)_x(C_1-C_6 \text{ alkyl}), -S(O)_xNH(C_1-C_6 \text{ alkyl}), -S(O)_xN(C_1-C_6 \text{ alkyl})(C_1-C_6 \text{ alkyl}), (where x is 0, 1, or 2).$

Preferred compounds of the above formula VI include those of the following formula:

$$R_{5A}$$
 R_{6A}
 R_{6A}

wherein:

n is 0, 1, or 2:

R₂ is C₃-C₈ straight or branched chain alkyl, C₂-C₈ alkenyl, or C₂-C₈ alkynyl;
R₅, R₆, R_{5A}, and R_{6A} are the same or different and represent hydrogen or methyl; and
R_X represents up to four substituents independently chosen from hydrogen,
halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy,
acetoxy, C₁-C₆ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₆ alkoxy, amino,
mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy.

The invention also includes compounds of the following formula VII:

$$\begin{array}{c|c} R_3 & R_5 \\ R_6 & R_{5A} \\ R_{7} & R_{6A} \\ R_{7} & R_{7} \\ R_{2} & R_{7} \end{array}$$

VII

wherein:

n is an integer from 0 to 3; and

R₂ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, haloalkyl, each or which may be substituted or unsubstituted;

R₃ and R_{3A} are the same or different and represent hydrogen or alkyl; or

R₃ and R_{3a}, taken together with the carbon atom to which they are attached, form a cycloalkyl ring;

R₅ and R₆ are the same or different and represent hydrogen or alkyl; or

R₅ and R₆, taken together with the carbon atom to which they are attached, form a cycloalkyl ring;

R_{5a} and R_{6a} are the same or different, and are independently selected at each occurrence from hydrogen, halogen, hydroxy, alkyl, and alkoxy;

R7 represents hydrogen or alkyl; and

Ar₁ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, or an optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 hetero atoms.

Preferred compounds of formula VII include those of the following formula:

$$R_{5a}$$
 R_{6a}
 R_{6a}
 R_{6a}
 R_{6a}

wherein:

n is an integer from 0 to 3;

R₂ is C₃-C₈ straight or branched chain alkyl, C₂-C₈ alkenyl, or C₂-C₈ alkynyl;

R₅, R₆, R_{5A}, and R_{6A} are the same or different and represent hydrogen or methyl; and

R_X represents up to four substituents independently chosen from hydrogen, halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy.

The invention also includes methods of syntesis of compounds of the invention. In particular, the invention includes methods to synthesis compounds of the following formula VIII:

VIII

wherein:

n is an integer from 0 to 3; and

R₂ is hydrogen or

alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, or haloalkyl, each or which may be substituted or unsubstituted;

R4 is hydrogen or

alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, haloalkyl, each or which may be substituted or unsubstituted; or

R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, or an optionally substituted heteroaromatic or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 hetero atoms,

R₃ and R_{3A} are the same or different and represent hydrogen or alkyl; or

R₃ and R_{3A}, taken together with the carbon atom to which they are attached, form a cycloalkyl ring;

R₅ and R₆ are the same or different and represent hydrogen, halogen, hydroxy, alkyl, or alkoxy; or

R₅ and R₆, taken together with the carbon atom to which they are attached form a cycloalkyl ring;

 R_{5a} and R_{6a} are the same or different, and are independently selected at each occurrence from hydrogen, halogen, hydroxy, alkyl, and alkoxy;

R7 represents hydrogen or alkyl;

Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, or an optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 hetero atoms.

the process comprising:

reacting a compound of the formula:

$$\begin{array}{c|c} R_3 & R_{3A} R_5 \\ R_6 & R_{5A} \\ \hline \\ R_7 & R_7 \\ \hline \\ R_2 & R_7 \end{array}$$

wherein Y is halogen or sulfonate ester,

in a suitable solvent in the presence of a suitable base,

with a secondary amine of the formula:

$$R_4$$
 Ar_2

In that synthetic method, preferred are compounds (referred to as compounds of formula VIII-A) wherein

n and Y are as defined above for formula VIII;

R₃ and R_{3A} are the same or different and represent hydrogen or

C1-C6 alkyl; or

R₃ and R_{3A}, taken together with the carbon atom to which they are attached, form a C₃₋₈ cycloalkyl ring;

- R_5 and R_6 are the same or different and represent hydrogen, halogen, hydroxy, C_1 - C_6 alkoxy; or
- R₅ and R₆, taken together with the carbon atom to which they are attached form a C₃₋₈ cycloalkyl ring;

R_{5a} and R_{6a} are the same or different, and are independently selected at each occurrence from hydrogen, halogen, hydroxy, C₁-C₆ alkyl, and C₁-C₆ alkoxy;

R₂ is hydrogen or

C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈ cycloalkyl, (C₃₋₈ cycloalkyl) C₁₋₃ alkyl, or C₁₋₅ C₆ haloalkyl, each or which unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluormethyl, trifluoromethoxy, C₁₋₃ haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

R4 is hydrogen or

C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁₋₄alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino,

R₄ is phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of

 C_1 - C_6)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, - XR_B, wherein X and R_B are as defined below; or R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

Ar₁ and Ar₂ are independently chosen from

i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and -XR_B, wherein X and R_B are as defined below; and

ii) bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano,

 C_{2-6} alkenyl, C_{2-6} alkynyl, C_1 - C_6 alkoxy, amino, and mono- or di(C_1 - C_6)alkylamino;

X is independently selected at each occurrence from the group consisting of -CH2-, -

 $CHR_{C^-}, -O_-, -S(O)_m, -NH_-, -NR_{C^-}, -C(=O)NH_-, -C(=O)NR_{C^-}, -S(O)_mNH_-, -S(O)_mNR_{C^-}, -NHC(=O)_-, \\$

-NR_CC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

 $-N(C_1-C_6 \text{ alkyl})(C_1-C_6 \text{ alkyl}), -N(C_1-C_6 \text{ alkyl}), -N(C_1-C_6 \text{ alkyl})C(O)(C_{1-6} \text{ alkyl}), -N(C_1-C_6 \text{ alkyl}), -$

The invention also includes compounds of the above formula VIII and VIII-A, and pharmaceutically acceptable salts of such compounds.

The invention also provides compounds of the following formula IX:

$$R_1$$
 R_2
 R_3
 R_3
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_5
 R_6
 R_4

or a pharmaceutically acceptable salt thereof, wherein:

m is 0, 1, or 2;

R is hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or

optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted (cycloalkyl)alkyl; or

R is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms:

R₁, R₂, R₃, R₃, R₅, and R₆ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;

R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or

R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.

Preferred compounds of formula IX include those of the following formula IX-

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4

wherein Ar₁, Ar₂, R, R₁, R₂, R₃, and R₄ are for formula IX above.

A:

Preferred compounds of formula IX-A above include those wherein:

i) hydrogen, halogen, hydroxy, amino, alkoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, and

ii) alkyl, alkenyl, alkynyl, cycloalkyl, and (cycloalkyl)alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino; or

R is selected from

phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino; and

R₁, R₂, and R₃ are independently selected from

- i) hydrogen, halogen, hydroxy, amino, alkoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, and
- ii) alkyl, alkenyl, alkynyl, cycloalkyl, and (cycloalkyl)alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino;

R4 is hydrogen or

alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino and mono- or dialkylamino,

R₄ is phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl,

benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, aminoalkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N- alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, -XR_B, wherein X and R_B are as defined below; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

Ar₁ and Ar₂ are independently chosen from

i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, aminoalkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N-

ii) bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

X is independently selected at each occurrence from the group consisting of -CH $_2$ -, -

 $CHR_{C^-}, -O_-, -S(O)_{m^-}, -NH_-, -NR_{C^-}, -C(=O)NH_-, -C(=O)NR_{C^-}, -S(O)_{m}NH_-, -S(O)_{m}NR_{C^-}, -NHC(=O)_-,$

-NR_CC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, -O(alkyl), -NH(alkyl), -N(alkyl)(O)(alkyl), -NHS(O) $_{x}$ (C1-C6)

alkyl), -S(O)_x(alkyl), -S(O)_xNH(alkyl), -S(O)_xN(alkyl)(alkyl), (where x

is 0, 1, or 2).

Additional preferred compounds of formula IX-A include those wherein:

R₁, R₂, and R₃ are independently selected from

i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy,

haloalkyl, hydroxy, acetoxy, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

Ris selected from

i) hydrogen, halogen, hydroxy, amino, $C_1\text{-}C_6$ alkoxy, mono- or di($C_1\text{-}C_6$)alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or

R is selected from

phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

R4 is hydrogen or

 C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-8} cycloalkyl, $(C_{3-8}$ cycloalkyl) C_{1-4} alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_1 - C_6 alkoxy, amino and mono- or di(C_1 - C_6)alkylamino,

R₄ is phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl,

R4 is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_1 - C_6 alkoxy, amino, and mono- or di(C_1 - C_6)alkylamino; and

Ar₁ and Ar₂ are independently chosen from

i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and –XR_B, wherein X and R_B are as defined below; and

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_1 - C_6 alkoxy, amino, and mono- or di(C_1 - C_6)alkylamino;

X is independently selected at each occurrence from the group consisting of $-CH_{2^-}$, $-CHR_{C^-}$, $-O_-$, $-S(O)_m$, $-NH_-$, $-NR_{C^-}$, $-C(=O)NH_-$, $-C(=O)NR_{C^-}$, $-S(O)_mNH_-$, $-S(O)_mNR_{C^-}$, $-NHC(=O)_-$, $-NR_CC(=O)_-$, $-NHS(O)_m$, $-C(=O)NHS(O)_m$, and $-NR_CS(O)_m$ (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, $-O(C_1-C_6 \text{ alkyl})$, $-NH(C_1-C_6 \text{ alkyl})$, $-N(C_1-C_6 \text{ alkyl})$, $-NHS(O)_x(C_1-C_6 \text{ alkyl})$, $-S(O)_x(C_1-C_6 \text{ alkyl})$, $-S(O)_xNH(C_1-C_6 \text{ alkyl})$, $-S(O)_xNH(C_1-C_6 \text{ alkyl})$, $-S(O)_xNH(C_1-C_6 \text{ alkyl})$, (where x is 0, 1, or 2).

Additional preferred compounds of formula IX-A above include those wherein:

- R is hydrogen, halogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₈ cycloalkyl, (C₃-C₈cycloalkyl)C₁-C₃alkyl, C₁-C₈ alkoxy, or C₁-C₈ haloalkyl, or
- R is a phenyl which may be substituted by up to five substituents independently chosen from C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₈ alkoxy, halogen, cyano, carboxylic acid, hydroxy, acetoxy, nitro, amino, mono or di(C₁-

 C_6)alkylamino, aminocarbonyl, sulfonamido, mono or di(C_1 - C_6)alkylsulfonamido, 3,4-methylenedioxy, 3,4-(1,2-ethylene)dioxy, trifluoromethyl or trifluoromethoxy;

- R₁ is hydrogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈ cycloalkyl (C₃-C₈cycloalkyl)C₁-C₃alkyl or C₁-C₈ haloalkyl;
- R₂ is C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₈ cycloalkyl or (C₃-C₈cycloalkyl)C₁-C₃alkyl or C₁-C₈ haloalkyl;

R₃ is hydrogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, or C₂-C₈ alkynyl;

R₄ is a bicyclic oxygen-containing group of the formula:

- R₄ is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, or (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or
- R₄ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino; or

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino, and mono- or di(C_1 - C_6)alkylamino; and

Ar₁ and Ar₂ are independently chosen from phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl,

isoquinolinyl, and quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl, and

bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

Still additional preferred compounds of formula IX-A include those compounds wherein:

R is hydrogen, halogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₈ cycloalkyl, (C₃-C₈cycloalkyl)C₁-C₃alkyl, C₁-C₈ alkoxy, or C₁-C₈ haloalkyl, or

R is a phenyl which may be substituted by up to five substituents independently chosen from C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₈ alkoxy, halogen, cyano, carboxylic acid, hydroxy, acetoxy, nitro, amino, mono or di(C₁-C₆)alkylamino, aminocarbonyl, sulfonamido, mono or di(C₁-C₆)alkylsulfonamido, 3,4-methylenedioxy, 3,4-(1,2-ethylene)dioxy, trifluoromethyl or trifluoromethoxy;

R₁ is hydrogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈ cycloalkyl (C₃-C₈cycloalkyl)C₁-C₃alkyl or C₁-C₈ haloalkyl;

R₂ is C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₈ cycloalkyl or (C₃-C₈ cycloalkyl)C₁-C₃alkyl or C₁-C₈ haloalkyl;

R₃ is hydrogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, or C₂-C₈ alkynyl;

R₄ is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, or (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or

R₄ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino; or

R4 is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

Ar₁ is phenyl, thienyl, or pyridyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino; and

Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, and quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl,

trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino, mono- or di(C_1 - C_6)alkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C_1 - C_6)alkylaminocarbonyl, N-(C_1 - C_6)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl, or

Ar₂ is a bicyclic oxygen-containing group of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino, and mono- or di(C_1 - C_6) alkylamino.

Still further preferred compounds of formula IX above include those wherein R is hydrogen, halogen, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, or phenyl; R₁ is hydrogen, methyl or ethyl;

R₂ is C₃-C₆ alkyl;

R₃ is hydrogen, methyl or ethyl:

R₄ is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, or (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or

R4 is phenyl, phenyl(C1-C4)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl,

trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino, mono- or di(C_1 - C_6)alkylamino; or R_4 is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

Ar₁ is phenyl, thienyl, or pyridyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino; and

Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, and quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

Ar₂ is a bicyclic oxygen-containing group of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino, and mono- or di(C_1 - C_6)alkylamino.

The invention also include compounds of the following formula X:

$$R_1$$
 R_1
 R_2
 R_3
 R_3
 R_4
 Ar_2
 Ar_3

wherein:

m is 0, 1, or 2;

R is hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted (cycloalkyl)alkyl; or

X

R is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms;

R₁, R₂, R₃, R_{3A}, R₅, and R₆ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;

R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or

R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.

Preferred compounds of formula X include those of the following formula X-

A:

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4

wherein Ar₁, R, R₁, R₂, R₃, R₄ are as defined for formula X above.

Additional preferred compounds of formula X include those wherein: $R_1,\ R_2,\ \text{and}\ R_3$ are independently selected from

i) hydrogen, halogen, hydroxy, amino, $C_1\text{-}C_6$ alkoxy, mono- or di(C_1 -

C₆)alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

R is selected from

i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(Ç₁-C₆)alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or

R is selected from

phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, each of which may be optionally substituted or substituted with

up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino, and mono- or di(C_1 - C_6)alkylamino;

R4 is hydrogen or

 C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-8} cycloalkyl, $(C_{3-8}$ cycloalkyl) C_{1-4} alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_{1} - C_{6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1} - C_{6} alkoxy, amino and mono- or di(C_{1} - C_{6})alkylamino,

R₄ is phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, -

R4 is a bicyclic oxygen-containing group of the formula:

XR_B, wherein X and R_B are as defined below; or

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl,

 C_{2-6} alkenyl, C_{2-6} alkynyl, C_1 - C_6 alkoxy, amino, and mono- or di(C_1 - C_6)alkylamino; and

Ar₁ and Ar₂ are independently chosen from

- i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C1-C6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-C6 alkoxy, amino, mono- or di(C1-C6)alkylamino, amino(C1-C6)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C1-C6)alkylaminocarbonyl, N-(C1-C6)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and -XRB, wherein X and RB are as defined below; and
- ii) bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_1 - C_6 alkoxy, amino, and mono- or di(C_1 - C_6)alkylamino;

X is independently selected at each occurrence from the group consisting of ${}^{\circ}CH_2-$, ${}^{\circ}CHR_C-$, ${}^{\circ}O-$, ${}^{\circ}S(O)_m-$, ${}^{\circ}NH-$, ${}^{\circ}C(=O)NH-$, ${}^{\circ}C(=O)NR_C-$, ${}^{\circ}S(O)_mNH-$, ${}^{\circ}S(O)_mNH-$, ${}^{\circ}S(O)_mNH-$, ${}^{\circ}S(O)_mNH-$, ${}^{\circ}S(O)_mNH-$, ${}^{\circ}S(O)_m$, ${}^{\circ}NHC(=O)-$, ${}^{\circ}NHS(O)_m-$, ${}^{\circ}C(=O)NHS(O)_m-$, and ${}^{\circ}NR_CS(O)_m-$ (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, -O(C1-C6 alkyl), -NH(C1-C6 alkyl),

 $-N(C_1-C_6 \ alkyl)(C_1-C_6 \ alkyl), \ -NHC(O)(C_1-C_6 \ alkyl), \ -N(C_1-C_6 \ alkyl)C(O)(C_{1-6} \ alkyl), \ -NHS(O)_x(C_1-C_6 \ alkyl), \ -S(O)_x(C_1-C_6 \ alkyl), \ -S(O)_xNH(C_1-C_6 \ alkyl), \ -S(O)_xN(C_1-C_6 \ alkyl), \ -S(O)_xN(C_1-C_6 \ alkyl), \ -NHS(O)_xN(C_1-C_6 \ alkyl), \ -NHS(O)_xN(C_1-C_6$

Additional preferred compounds of formula X above include those wherein: R is hydrogen, halogen, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, or phenyl; R_1 is hydrogen, methyl or ethyl;

R₂ is C₃-C₆ alkyl;

R₃ is hydrogen, methyl or ethyl;

- R₄ is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, or (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or
- R₄ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; and

Ar₁ is phenyl, thienyl, or pyridyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino.

The invention also includes compounds of the following formula XI:

$$R_{1}$$
 R_{2}
 R_{3}
 R_{3A}
 R_{4}
 R_{4}
 R_{2}
 R_{3}
 R_{3A}
 R_{3A}
 R_{3A}

or pharmaceutically acceptable salt thereof, wherein:

n is 0, 1, or 2;

R is chosen from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted (cycloalkyl)alkyl, optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms;

R₂, R₃, R_{3A}, R₅, and R₆ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally

substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;

- R and R₃ may be joined to form an optionally substituted saturated carbocylic ring of from 5 to 8 members or an optionally substituted heterocyclic ring of from 5 to 8 members;
- R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or
- R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and
- Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.

The invention further includes compounds of the following formula XII:

$$Ar_1$$
 R_2
 R_3
 R_4
 Ar_2

XII

or a pharmaceutically acceptable salt thereof, wherein:

R is chosen from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted (cycloalkyl)alkyl, optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms;

R₂ and R₃ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;

- R and R₃ may be joined to form an optionally substituted carbocylic ring of from 5 to 8 members or an optionally substituted heterocyclic ring of from 5 ro 8 members;
- R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or
- R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and
- Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.

Preferred compounds of formula XII above include wherein R and R₃ are not joined.

Also preferred are compounds of formula XII wherein:

R is selected from

- i) hydrogen, halogen, hydroxy, amino, alkoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, and
- ii) alkyl, alkenyl, alkynyl, cycloalkyl, and (cycloalkyl)alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino,
- iii) phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, oxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl,

pyrimidyl, pyrazinyl, each of which may be substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

R₂ and R₃ are independently selected from

- i) hydrogen, halogen, hydroxy, amino, alkoxy, mono- or dialkylamino, cyano,
 nitro, haloalkyl, and
- ii) alkyl, alkenyl, alkynyl, cycloalkyl, and (cycloalkyl)alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino;

R4 is hydrogen or

alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino and mono- or dialkylamino,

R4 is phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, aminoalkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N-alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl and -XRB, wherein X and RB are as defined below; or

R4 is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

Ar₁ and Ar₂ are independently chosen from

i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, aminoalkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N-alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl and -XR_B, wherein X and R_B are as defined below;, and

ii) bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

X is independently selected at each occurrence from the group consisting of -CH₂-, - CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-,

-NR_CC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, -O(alkyl), -NH(alkyl),

-N(alkyl)(alkyl), -NHC(O)(alkyl), -N(alkyl)C(O)(alkyl), -NHS(O)_x(alkyl), -S(O)_x(alkyl), -S(O)_xNH(alkyl), -S(O)_xN(alkyl)(alkyl), (where x is 0, 1, or 2).

Additional preferred compounds of formula XII include those wherein: R is selected from

- i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and
- ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or di(C₁-C₆)alkylamino,
- iii) phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

R₂ and R₃ are independently selected from

i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

R4 is hydrogen or

C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁₋₄alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino,

R4 is phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C1-C6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-C6 alkoxy, amino, mono- or di(C1-C6)alkylamino, amino(C1-C6)alkylaminocarbonyl, N-(C1-C6)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, ~XRB, wherein X and RB are as defined below; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_1 - C_6 alkoxy, amino, and mono- or di(C_1 - C_6)alkylamino;

 Ar_1 and Ar_2 are independently chosen from

- i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and -XR_B, wherein X and R_B are as defined below; and
- ii) bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

X is independently selected at each occurrence from the group consisting of -CH₂-, -CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-, -NHC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2);

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

and

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, $-O(C_1-C_6 \text{ alkyl})$, $-NH(C_1-C_6 \text{ alkyl})$, $-N(C_1-C_6 \text{ alkyl})$, $-S(O)_x(C_1-C_6 \text{ alkyl})$, $-S(O)_x(C_1-C_6 \text{ alkyl})$, $-S(O)_xNH(C_1-C_6 \text{ alkyl})$, $-S(O)_xN(C_1-C_6 \text{ alkyl})$, (where x is 0, 1, or 2).

Also preferred are compounds of formula XII wherein:

R is hydrogen, halogen, hydroxy, C₁-C₆ alkoxy, haloalkyl, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, or

R is phenyl substituted with up to five groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino, aminocarbonyl, sufonamido, mono or di(C₁-C₆)alkylsulfonamido, 3,4-methylenedioxy, and 3,4-(1,2-ethylene)dioxy;

 R_2 is selected from C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl) C_1 - C_3 alkyl and haloalkyl;

R₃ is hydrogen C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl;

R₄ is C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁₋₄alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl,

trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_1 - C_6 alkoxy, amino and mono- or di(C_1 - C_6)alkylamino,

R4 is phenyl, phenyl(C1-C4)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, each of which may be substituted with up to five groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C1-C6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-C6 alkoxy, amino, mono- or di(C1-C6)alkylamino, amino(C1-C6)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C1-C6)alkylaminocarbonyl, N-(C1-C6)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl.

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

Ar₁ and Ar₂ are independently chosen from

i) phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, and benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

ii) bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

Also preferred are compounds of formula XII wherein:

R, R₂, R₃, R₄, and Ar₂ are as defined in formula XII;

Ar₁ is phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy.

Also preferred are compounds of formula XII wherein:

R, R₂, and R₃ are as defined in formula XII;

- Ar₁ is phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy;
- R₄ is C₃-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁-C₄alkyl, C₁-C₈ haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino,
- R₄ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, each of which

may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl;

Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, or benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

Ar₂ is bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

Also preferred are compounds of formula XII wherein:

R is hydrogen, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, or (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, or

R is phenyl substituted with up to five groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,

 C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, amino, and mono- or $di(C_1$ - $C_6)$ alkylamino, aminocarbonyl, sufonamido, mono or $di(C_1$ - $C_6)$ alkylsulfonamido, 3,4-methylenedioxy, and 3,4-(1,2-ethylene)dioxy;

R₂ is C₃-C₆ alkyl;

R₃ is hydrogen, methyl, or ethyl;

- R₄ is C₃-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁-C₄alkyl, C₁-C₈ haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino,
- R₄ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl;
- Ar₁ is phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy;
- Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, or benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl,

trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_1 - C_6 alkoxy, amino, mono- or di(C_1 - C_6)alkylamino, amino(C_1 - C_6)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C_1 - C_6)alkylaminocarbonyl, N-(C_1 - C_6)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

Ar2 is bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C_1 - C_6 alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_1 - C_6 alkoxy, amino, and mono- or di(C_1 - C_6)alkylamino.

Also preferred are compounds of formula XII wherein:

R is hydrogen, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, or (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, or phenyl;

R₂ is C₃-C₆ alkyl;

R₃ is hydrogen, methyl, or ethyl;

- R4 is C₃-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁-C₄alkyl, C₁-C₈ haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino;
- Ar₁ is phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy; and
- Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl,

benzodioxanyl, benzodioxinyl, benzodioxolyl, or benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

Ar₂ is bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

Also preferred are compounds of formula XII wherein:

R is hydrogen, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, or (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, or phenyl;

R2 is C3-C6 alkyl;

R₃ is hydrogen, methyl, or ethyl;

R₄ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono

or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl;

Ar₁ is phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy;

Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, or benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

Ar₂ is bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

The invention also includes compounds of the following formula XIII:

IIIX

or a pharmaceutically acceptable salt thereof, wherein:

n is 1, 2, or 3

represents a carbon chain that may be substituted with hydrogen, halogen, cyano, nitro amino, mono or dialkyl amino, alkenyl, alkynyl, alkoxy, trifluoromethyl, trifluoromethoxy, straight or branched chain alkyl, or cycloalkyl, and n is 1, 2, or 3;

- Ar₁, Ar₂, and Ar₃ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and
- R₁ represents up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, alkoxy, acetoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂), mono or dialkylaminocarbonyl, sulfonamido, and mono or dialkylsulfonamido.

Also preferred are compounds of formula XIII wherein n, m, and R_1 are defined as for formula XIII above;

- Ar₁ and Ar₃ are independently chosen from phenyl, pyridyl, and pyrimidinyl each of which is optionally optionally substituted or substituted with up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈cycloalkyl) C₁-C₃alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂), mono or di(C₁-C₆)alkylaminocarbonyl, sulfonamido, 3,4-methylenedioxy, ethylenedioxy, and mono or di(C₁-C₆)alkylsulfonamido; and
- Ar₂ represents suberanyl, indanyl, tetrhydronaphtyl, or indolyl, each of which is optionally optionally substituted or substituted with up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl,

 C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, (C_3 - C_8 cycloalkyl) C_1 - C_3 alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂), mono or di(C_1 - C_6)alkylaminocarbonyl, sulfonamido, 3,4-methylenedioxy, ethylenedioxy, and mono or di(C_1 - C_6)alkylsulfonamido.

Also preferred are compounds of formula XIII above wherein:

$$R_1$$
 R_5
 R_7
 R_7

 R_1 , R_3 , and R_5 each represent up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C_1 - C_6 alkoxy, acetoxy, mono- or di(C_1 - C_6)alkylamino, cyano, nitro, C_1 - C_6 haloalkyl, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, (C_3 - C_8 cycloalkyl) C_1 - C_3 alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂), mono or di(C_1 - C_6)alkylaminocarbonyl, sulfonamido, and mono or di(C_1 - C_6)alkylsulfonamido; and

represents suberanyl, indanyl, tetrhydronaphtyl, or indolyl, each of which is optionally optionally substituted or substituted with up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈cycloalkyl) C₁-C₃alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂), mono or di(C₁-C₆)alkylaminocarbonyl, sulfonamido, 3,4-methylenedioxy, ethylenedioxy, and mono or di(C₁-C₆)alkylsulfonamido.

The invention also includes compounds of the followinf formula XIV:

$$R$$
 R_1
 Ar_1
 Ar_2

or a pharmaceutically acceptable salt, thereof, wherein:

R represents up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, alkoxy, acetoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂), mono or di(C₁-C₆)alkylaminocarbonyl, sulfonamido,

3,4-methylenedioxy, ethylenedioxy, and mono or dialkylsulfonamido;

 R_1 is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or

R₁ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, or an optionally substituted heteroarylalkyl, or an optionally substituted heteroalicyclic or heteroalicyclicalkyl group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and

Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl, optionally substituted heteroalicyclic or heteroalicyclicalkyl group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.

Preferred compounds of formula XIV include those (referred to herein as compounds of formula XIV-A) wherein

R represents up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂),

mono or $di(C_1-C_6)$ alkylaminocarbonyl, sulfonamido, 3,4-methylenedioxy, ethylenedioxy, and mono or $di(C_1-C_6)$ alkylsulfonamido;

- R₁ is C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁₋₄alkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino, or
- R₁ is phenyl, phenylalkyl, chromanyl, chromanylalkyl, imidazolyl, imidazolylalkyl, pyridyl, pyridylalkyl, pyrimidyl, pyrimidyl, pyrimidyl, pyrimidyl, pyrazinyl, pyrazinylalkyl, indolyl, indolylalkyl, indanyl, indanylalkyl, benzodioxolylalkyl, or benzodioxolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-
- Ar₁ is chosen from phenyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, thiophenyl, and pyridyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, and N-(C₁-C₆)alkylsulfonylaminocarbonyl; and

C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl;

Ar₂ is chosen from phenyl, phenylalkyl, chromanyl, chromanylalkyl, pyrrolyl, pyrrolyl, pyrrolylalkyl, furanyl, furanylalkyl, thienyl, thienylalkyl, pyridyl, pyridylalkyl, pyrimidyl, pyrimidylalkyl, pyrazinyl, pyrazinylalkyl, benzimidazolyl, benzimidazolylalkyl, imidazopyrdinyl, imidazopyrdinylalkyl, naphthyl, napthylalkyl, indolyl, indolylalkyl, indanyl, indanylalkyl, benzofuranyl,

benzofuranylalkyl, benzodioxinyl, benzodioxinylalkyl, benzodioxolyl, benzodioxolylalkyl, quinolinyl, quinolinylalkyl, isoquinolinyl, isoquinolinylalkyl, each of which may be optionally substituted or substituted with up to four groups independently selected from: halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, mono- or di(C₁-C₆)alkylamino(C₁-C₆)alkyl, amino(C₁-C₆)alkoxy, C₁-C₆ alkoxyC₁-C₆ alkyl, C₁-C₆ alkoxyC₁-C₆ alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl,

- benzyl (which may be unsubstituted or substituted with one or more substituents independently chosen from halogen, C_1 - C_6 alkyl, and C_1 - C_6 alkoxy),
- -C₁-C₆ alkylNR₂R₃ or -C₁-C₆alkoxy NR₂R₃ wherein the point of attachment to Ar₂ is at the C₁-C₆ alkyl or C₁-C₆ alkoxy, and R₂ and R₃ are hydrogen, or straight or branched chain alkyl and are optionally substituted with halogen, hydroxy, or C₁-C₆ alkoxy and R₂ and R₃ may be taken together with the nitrogen to which they are attached to form a heterocycloalkyl group.

Preferred compopunds of formula XIV-A include those wherein:

wherein:

Ar2 is as defined in Claim in formula XIV-A;

R_X represents up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, and C₂-C₆ alkynyl; and

R₁ is C₁-C₆alkyl, C₃-C₈cycloalkyl, (C₃-C₈ cycloalkyl)C₁-C₄alkyl, phenyl, phenylC₁-C₆alkyl, chromanyl, chromanylC₁-C₆alkyl, imidazolyl, imidazolylC₁-C₆alkyl ,pyridyl, pyridylC₁-C₆alkyl, pyrimidyl, pyrimidylC₁-C₆alkyl, pyrazinyl, pyrazinylC₁-C₆alkyl, indolylC₁-C₆alkyl, indanyl, indanylC₁-C₆alkyl, benzodioxolyl, or benzodioxolylC₁-C₆alkyl each or which may be unsubstituted or substituted with up to 4 substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino.

Additional preferred compounds of formula XIV-A includes those of the following formula:

$$R_X$$
 R_X
 R_X

wherein:

R_X represents up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy substituted with 0-2 R₂, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, and C₂-C₆ alkynyl;

R₁ is phenyl, phenylC₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloalky(C₁-C₄ alkyl), naphthyl, napthylC₁-C₆alkyl, indanyl, indanylC₁-C₆ alkyl, benzodioxolanyl, or benzodioxolanylC₁-C₆ alkyl, each of which may be substituted by up to 4 groups chosen from halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, monoor di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl; and

Ar₂ represents phenyl, benzyl, indanyl, indanyl- CH_2 -, benzodioxolanyl, or benzodioxolanyl- CH_2 -; each of which is substituted by up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C_1 - C_6 alkoxy, acetoxy, mono- or di(C_1 - C_6)alkylamino, cyano, nitro, C_1 - C_6 haloalkyl, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, and C_2 - C_6 alkynyl.

Additional preferred compounds of formula XIV includes those wherein: $Ar_2 \ is \ as \ defined \ for \ formula \ XIV;$

R represents up to 4 groups independently chosen from hydrogen, halogen, amino, C₁-C₆ alkoxy, C₁-C₆ alkyl, trifluoromethyl, and trifluoromethoxy;

R₁ is phenyl, benzyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkyl(C₁-C₄ alkyl), naphthyl, naphthyl-CH₂-, indanyl, indandyl-CH₂-, benzodioxolanyl-CH₂-, or benzodioxolanyl, each of which may be substituted by up to 4 groups chosen from halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-

C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl; and

Ar₁ is chosen from pyrrolyl, imidazolyl, pyrazolyl, triazolyl, thiophenyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, trifluoromethyl, trifluoromethoxy, C₁-C₆ alkoxy, C₁-C₆ alkyl, and amino.

Also preferred are compounds of the formula XIV above wherein:

R represents up to 4 groups independently chosen from hydrogen, halogen, amino,

C₁-C₆ alkoxy, C₁-C₆ alkyl, trifluoromethyl, and trifluoromethoxy;

R₁ is benzyl which is unsubstituted or substituted by up to 4 groups chosen from halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl;

Ar₁ is chosen from pyrrolyl, imidazolyl, pyrazolyl, triazolyl, thiophenyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, trifluoromethyl, trifluoromethoxy, C₁.C₆ alkoxy, C₁-C₆ alkyl, and amino; and

Ar₂ is chosen from phenyl, benzyl, indolyl, indolyl-CH₂-, indanyl, indanyl-CH₂-, chromanyl, chromanyl-CH₂-, benzofuranyl, benzofuranyl-CH₂-, benzodioxinyl, benzodioxinyl-CH₂-, benzodioxolyl-CH₂-, and benzodioxolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from:

halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

Preferred compounds of formula XIV also include thos eof the following formula IV-B:

wherein:

m is 0, 1, 2, or 3, and represents a carbon chain which is optionally substituted with methyl, ethyl, methoxy, ethoxy, hydoxy, halogen, or amino; R represents up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆alkyl, C₂-C₆ alkenyl, C₁-C₆alkynyl, C₁-C₆ alkoxy, acetoxy, monoor di(C₁-C₆)alkylamino;

 R_X and R_Y each represent up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C_1 - C_6 alkoxy, acetoxy, mono- or di(C_1 - C_6)alkylamino, cyano, nitro, C_1 - C_6 haloalkyl, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, and C_2 - C_6 alkynyl; and

R₁ and R₄ are independently selected from C₁-C₆alkyl, C₃-C₈cycloalkyl, (C₃-C₈ cycloalkyl)C₁-C₄alkyl, phenyl, phenylC₁-C₆alkyl, pyridyl, and pyridylC₁-C₆alkyl, each or which may be unsubstituted or substituted with up to 4 substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino.

The invention also provides compounds of the following formula XV:

or a pharmaceutically acceptable salt thereof, wherein;

m is 0, 1, 2, or 3, and represents a carbon chain which is optionally substituted with methyl, ethyl, methoxy, ethoxy, hydoxy, halogen, or amino;

n is 0, 1, 2, or 3, and represents a carbon chain which is optionally substituted with methyl, ethyl, methoxy, ethoxy, hydoxy, halogen, or amino; R represents up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, alkoxy, acetoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, alkyl, alkenyl, alkynyl, cycloalkyl, and(cycloalkyl)alkyl;

R₂ is

i) hydrogen, halogen, hydroxy, amino, alkoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, and

ii) alkyl, alkenyl, alkynyl, cycloalkyl, and (cycloalkyl) alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, mono- or dialkylamino; and

Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, or an optionally substituted heteroalicyclic or heteroalicyclicalkyl group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.

Preferred compounds of formula XV include those of the following formula:

m is 1 and represents a carbon chain which is unsubstituted;

n is 1 and represents a carbon chain which is unsubstituted;

R represents up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₂-C₆ cycloalkyl, and(C₃-C₈ cycloalkyl) C₁-C₄ alkyl;

R₂ is C₃-C₈ alkyl or C₃-C₈ cycloalkyl;

Ar₁ and Ar₂ are independently chosen from phenyl, phenyl(C₁-C₄)alkyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, pyridyl, pyrimidyl, and pyrazinyl, each of which may be unsubstituted or optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino.

Compounds of the invention may have one or more asymmetric centers or planes. Compounds of the present invention containing an asymmetrically substituted atom may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms (racemates), by asymmetric synthesis, or by synthesis from optically active starting materials. Resolution of the racemates can be accomplished, for example, by conventional methods such as crystallization in the presence of a resolving agent, or chromatography, using, for example a chiral HPLC column. Many geometric isomers of olefins, C=N double bonds, and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in the present invention. Cis and trans geometric isomers of the compounds of the present invention are described and may be isolated as a mixture of isomers or as separated isomeric forms. All chiral (enantiomeric and diastereomeric), and racemic forms, as well as all geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomeric form is specifically indicated.

Some compounds of the invention may exist as tautomers. Unless otherwise specified any description or claim of one tautomeric form is intended to encompass the other tautomer.

Specifically preferred compounds include those shown in the FIGS. 1 through 6. In those figures, the substituent X depicts the moiety linkage to the base compound whose structure is shown at the top of each Figure.

Additional preferred compounds of the invention include the following (compounds structures are shown directly above the compound chemical name in many instances):

1-(1-butyl)-2-phenyl-5-(N,N-di[3,4-methylenedioxyphenyl methyl])aminomethylimidazole;

1-(1-butyl)-2-phenyl-5-(1-[N-{3,4-methylenedioxyphenylmethyl}-N-phenylmethyl]amino)ethylimidazole;

1-Butyl-2-phenyl-4-bromo-5-(N-phenylmethyl-N-[1-butyl])amino-methylimidazole;

1-(1-Butyl)-2-phenyl-4-methyl-5-(N-[3,4-methylenedioxyphenyl-methyl]-N-phenylmethyl) aminomethylimidazole;

1-(1-Butyl)-2-(4-fluorophenyl)-5-(N-[1,4-benzodioxan-6-yl]methyl-N-phenylmethyl) aminomethylimidazole;

1-(1-Butyl)-2-(4-fluorophenyl)-5-(N-[3,4-methylenedioxyphenylmethyl]-N-phenylmethyl) aminomethylimidazole;

1-(1-Butyl)-2-(4-fluorophenyl)-5-(N-[1,4-benzodioxan-6-yl]methyl-N-phenylmethyl) aminomethylimidazole;

1-(1-Butyl)-2-(4-fluorophenyl)-5-(N-[3,4-methylenedioxyphenylmethyl]-N-phenylmethyl) aminomethylimidazole;

1-(1-Butyl)-2-(2-fluorophenyl)-5-(N-[1,4-benzodioxan-6-ylmethyl]-N-phenylmethyl)amino- methylimidazole;

1-(1-Butyl)-2-(2-methoxyphenyl)-5-(N-[naphtha-2-ylmethyl]-N-phenylmethyl) amino-methylimidazole;

1-(1-Butyl)-2-(2-methoxyphenyl)-5-(N,N-di[3,4-methylenedioxyphenylmethyl]) aminomethylimidazole;

1-(1-Butyl)-2-(2-methoxyphenyl)-5-(N-[4-dimethylaminophenylmethyl]-N-phenylmethyl) aminomethylimidazole;

1-(1-Butyl)-2-(2-methylphenyl)-5-(N-[3,4-methylenedioxyphenylmethyl]-N-phenylmethyl) aminomethylimidazole;

1-(1-Butyl)-2-(4-fluorophenyl)-5-(N,N-di[3,4-methylenedioxyphenylmethyl])amino-methylimidazole;

1-(1-Butyl)-2-(2-methylphenyl)-5-(N,N-di[3,4-methylenedioxyphenylmethyl])amino-methylimidazole;

1-(1-Butyl)-2-(3-fluorophenyl)-5-(N-[naphth-2-ylmethyl]-N-phenylmethyl)amino methylimidazole;

1-(1-Butyl)-2-(3-fluorophenyl)-5-(N-[3,4-methylenedioxyphenylmethyl]-N-phenylmethyl) aminomethylimidazole;

1-(1-Butyl)-2-(3-fluorophenyl)-5-(N,N-di[3,4-methylenedioxyphenylmethyl])amino-methylimidazole;

 $1-(1-Butyl)-2-phenyl-5-\{1-\{N-[3,4-methylenedioxyphenylmethyl]-N-phenylmethyl) amino\} ethylimidazole;$

 $\label{lem:lemma$

Bis-benzo[1,3]dioxol-5-ylmethyl-(3-butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-amine

 $Benzo \cite{A-methoxy-phenyl-2-phenyl-3} \cite{A-methoxy-phenyl-2-phenyl-3} \cite{A-methoxy-phenyl-2-phenyl-3} \cite{A-methoxy-phenyl-3} \cite{A-m$

 $\hbox{$4-(\{Benzyl-[1-(3-butyl-2,5-diphenyl-3\textit{H-imidazol-4-yl\}-ethyl]-amino\}-methyl)$-benzamide } \\$

 $\label{lem:helmond} \mbox{4-{\tt [Benzyl-(3-butyl-2,5-diphenyl-3$$H$-imidazol-4-ylmethyl)-amino]-methyl}-3-chlorophenol}$

 $\begin{tabular}{l} 4-(\{[1-(3-Butyl-2-phenyl-3H-imidazol-4-yl$)-pentyl]-cyclohexylmethyl-amino}-methyl$)-phenol \end{tabular}$

 $4- \{[Benzyl-(3-butyl-2,5-diphenyl-3\emph{H}-imidazol-4-ylmethyl)-amino]-methyl\}-benzamide \\$

 $1-(1-Propyl)-2-phenyl-5-(N-\{indol-5-ylmethyl]-N-phenylmethyl)$ aminomethylimida zole;

1-(1-Butyl)-2-phenyl-5-(N-[1-(S)-phenylethyl]-N-phenylmethyl) aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[1-(R)-phenylethyl]-N-phenylmethyl)aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methylenedioxyphenylmethylenedioxyphenylmethyl]-N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methylenedioxyphenylmethyll]-N-[3,4-methylenedioxyphenylmethyll]-N-[3,4-methylenedioxyphenylmethyll]-N-[3,4-methylenedioxyphenylmethyll]-N-[3,4-methyllenedioxyphenylmethyll]-N-[3,4-methyllenedioxyphenylmethyl

 $1\hbox{-}(1\hbox{-Butyl})\hbox{-}2\hbox{-phenyl-}5\hbox{-}(N,N\hbox{-}di[3,4\hbox{-methylenedioxyphenylmethyl}])$ aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methoxyphenylmethyl])-aminomethylimidazole;

 $1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[4-\{1-propyl\}phenylmethyl])$ aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methylenedioxyphenylmethyl]) aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenyl]methyl-N-[4-nitrophenylmethyl]) aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[4-{1-propyloxy} phenylmethyl])aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[quinol-6-ylmethyl])- aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[2,3-dichlorophenylmethyl])-aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-dimethylphenylmethyl])-aminomethylimidazole;

 $\label{lem:lemma$

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[2-phenylethyl]) a mino-methylimidazole;

1-(1-Propyl)-2-phenyl-5-(N-[1,4-benzodioxan-6-ylmethyl]-N-phenylmethyl) aminomethyl-imidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-phenylmethyl)aminomethyl-imidazole;

 $\label{lem:lemma$

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[1-propyl])aminomethyl-imidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-cycloheptylmethyl) a mino-methylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-isobutyl) a minomethyl-imidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[2-cyclopentylethyl])amino-methylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[3-cyclopentylpropyl])amino-methylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[1-n-octyl])aminomethyl-imidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-cyclopropylmethyl)amino-methylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-cyclopentylmethyl)amino-methylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-{3,4-methylenedioxyphenylmethyl}-N-cyclohexylmethyl)amino-methylimidazole;

 $1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[1-\{3-methyl\}butyl)] amino-methylimidazole;$

 $1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[1-\{2,2-dimethyl\}butyl]) aminomethylimidazole;\\$

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-methyl)aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[2-thiophenylmethyl])amino-methylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[indol-5-ylmethyl]) a mino-methylimidazole;

 $1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[\{1-methylindol-5-yl\}methyl]) aminomethylimidazole;\\$

 $1-(1-Butyl)-2-(3-fluorophenyl)-5-(1-[N-\{2-chloro-4-hydroxyphenyl\}methyl-N-phenylmethyl]) aminoethylimidazole;$

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenyl] methyl-N-[2,3-dihydrobenzo[b] furan-5-yl] methyl) aminomethylimidazole;

1-Butyl-2-(4-fluorophenyl)-5-(1-[N-{3,4-methylenedioxyphenyl}methyl-N-phenylmethyl]-amino)ethylimidazole;

1-(1-Butyl)-2-(2-thienyl)-5-(N-[3,4-methylenedioxyphenyl]methyl-N-phenylmethyl] aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4,5-trimethoxyphenylmethyl]-N-phenylmethyl)aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-phenylmethyl-N-[3,4-dimethoxyphenylmethyl])aminomethyl-imidazole;

1-(1-Butyl)-2-phenyl-5-(N-[4-dimethylaminophenylmethyl]-N-phenylmethyl) a minomethyl-imidazole;

1-(1-Butyl)-2-phenyl-5-(N-[4-methylaminophenylmethyl]-N-phenylmethyl)aminomethyl-imidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3-methyl-4-aminophenylmethyl]-N-phenylmethyl)aminomethyl-imidazole);

1-(1-Butyl)-2-phenyl-5-(N-[3,4-dichlorophenylmethyl]-N-phenylmethyl)aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3,4-difluorophenylmethyl]-N-phenylmethyl)aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-(benzo[b]thiophen-5-ylmethyl)-N-phenylmethyl)aminomethyl-imidazole;

1-(1-Butyl)-2-phenyl-5-(N-[4-ethoxyphenylmethyl]-N-phenylmethyl)aminomethylimidazole;

1-(1-Butyl)-2-phenyl-4-bromo-5-(N-phenylmethyl-N-[1-butyl])aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[4-methoxyphenylmethyl]-N-phenylmethyl)aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[6-chloro-3,4-methylenedioxyphenylmethyl]-N-phenylmethyl)-aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[2,3-dichlorophenylmethyl]-N-[1-butyl])aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[3-methoxyphenylmethyl]-N-phenylmethyl)aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[2-chloro-4-fluorophenylmethyl]-N-phenylmethyl) aminomethyl-imidazole;

1-(1-Butyl)-2-phenyl-4-bromo-5-(N-[2,3-dichlorophenylmethyl]-N-[1-butyl])aminomethyl-imidazole;

WO 02/49993

1-(1-Butyl)-2-phenyl-5-(N-[2-chloro-4-hydroxyphenylmethyl]-N-phenylmethyl)aminomethyl-imidazole;

 $1\hbox{-}(1\hbox{-}Butyl)\hbox{-}2\hbox{-}phenyl\hbox{-}4\hbox{-}chloro\hbox{-}5\hbox{-}(N\hbox{-}phenylmethyl\hbox{-}N\hbox{-}[1\hbox{-}butyl])} a minomethyl imidazole;$

WO 02/49993

PCT/US00/26816

 $\hbox{$4-{[Benzyl-(3-butyl-2,5-diphenyl-3$$H$-imidazol-4-ylmethyl)-amino]-methyl}-2-methyl-phenol }$

 $\hbox{$4-\{[(3-Butyl-2,5-diphenyl-3\emph{H-imidazol-4-ylmethyl$}]-cyclohexylmethyl-amino]-methyl$-2-methyl-phenol} \\$

(3-Butyl-2,5-diphenyl-3 H-imidazol-4-ylmethyl)-(2,6-difluoro-benzyl)-(4-methoxy-benzyl)-amine

 $Benzo[1,3] dioxol-5-ylmethyl-butyl-[3-butyl-2-(2-methoxy-phenyl)-5-phenyl-3 \textit{H}-imidazol-4-ylmethyl]-amine}$

 $4-(\{Benzyl-[3-butyl-2-(2-methoxy-phenyl)-5-phenyl-3 \textit{H-}imidazol-4-ylmethyl\}-amino\}-methyl)-benzenesulfonamide \\$

 $Benzo [1,3] dioxol-5-ylmethyl-benzyl-[3-butyl-2-(2-methoxy-phenyl)-5-phenyl-3 \emph{H-}imidazol-4-ylmethyl]-amine} \\$

 $\hbox{$4-(\{Butyl-[3-butyl-2-(3-methoxy-phenyl]-5-phenyl-3$$$H$-imidazol-4-ylmethyl]-amino)-methyl $$)-3-chloro-phenol $$$

 $\begin{tabular}{l} 4- & \{ (3-Butyl-2, 5-diphenyl-3 H-imidazol-4-ylmethyl \}- (4-methoxy-benzyl)-amino]-methyl \}-benzoic acid \\ \end{tabular}$

 $\hbox{$4-{\{Benzyl-[3-butyl-2-(3-methoxy-phenyl]-5-phenyl-3$$$$$$$$$H-imidazol-4-ylmethyl]-amino\}-methyl]-3-chloro-phenol}$

WO 02/49993

PCT/US00/26816

Benzo [1,3] dioxol-5-ylmethyl-benzyl- [1-(3-butyl-2,5-diphenyl-3 H-imidazol-4-yl]-pentyl]-amine and the state of the

Benzo[1,3] dioxol-5-ylmethyl-benzyl-[1-(3-butyl-2,5-diphenyl-3 H-imidazol-4-yl)-ethyl]-amine

 $\hbox{\it 4-{[Butyl-(3-butyl-2,5-diphenyl-3$$$H$-imidazol-4-ylmethyl]-amino]-methyl]-benzamide} \\$

Benzo[1,3]dioxol-5-ylmethyl-benzyl-[3-butyl-5-(4-fluoro-phenyl)-2-phenyl-3H-imidazol-4-ylmethyl-amine

 $3-{\tt [Benzyl-(3-butyl-2,5-diphenyl-3\it H-imidazol-4-ylmethyl)-amino]-methyl}-phenol$

 $4-\{[Butyl-(3-butyl-5-\textit{tert}-butyl-2-phenyl-3\textit{H}-imidazol-4-ylmethyl)-amino]-methyl\}-benzamide \\$

 $Benzyl-\{3-butyl-2,5-diphenyl-3\textit{H}-imidazol-4-ylmethyl\}-\{2,3-dihydro-benzo[1,4]dioxin-6-ylmethyl\}-amine \\ e$

(3-Butyl-2,5-diphenyl-3 H-imidazol-4-ylmethyl)-(2,5-difluoro-benzyl)-(4-methoxy-benzyl)-amine

 $\hbox{ (3-Butyl-2,5-diphenyl-3$$H$-imidazol-4-ylmethyl)-(2,6-dichloro-benzyl)-(4-methoxy-benzyl)-amine }$

 $\hbox{$4-{[Benzyl-(3-butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-amino]-methyl}-2,6-dimethyl-phenol}$

 $\hbox{$4$-(\{[3-Butyl-5-(4-methoxy-phenyl)-2-phenyl-3$$H$-imidazol-4-ylmethyl]$-cyclohexylmethyl-amino}-methyl-2,6-dimethyl-phenol \\$

 $\label{lem:condition} \begin{tabular}{ll} [3-Butyl-5-(4-methoxy-phenyl)-2-phenyl-3$H-imidazol-4-ylmethyl]-cyclohexylmethyl-(2,3-dihydro-benzo furan-5-ylmethyl)-amine \end{tabular}$

WO 02/49993

PCT/US00/26816

 $4-\{[Butyl-(3-butyl-2,5-diphenyl-3\textit{H}-imidazol-4-ylmethyl]-amino]-methyl\}-2,6-dimethyl-phenolem (2-butyl-2,5-diphenyl-3\textit{H}-imidazol-4-ylmethyl)-amino]-methyl\}-2,6-dimethyl-phenolem (2-butyl-2,5-diphenyl-3\textit{H}-imidazol-4-ylmethyl)-amino]-methyl$

 $4-(\{Butyl-[1-(3-butyl-2,5-diphenyl-3\mathit{H}-imidazol-4-yl\}-ethyl]-amino\}-methyl)-2, 6-dimethyl-phenol (\{Butyl-[1-(3-butyl-2,5-diphenyl-3\mathit{H}-imidazol-4-yl\}-ethyl]-amino}-methyl)-2, 6-dimethyl-phenol (\{Butyl-[1-(3-butyl-2,5-diphenyl-3\mathit{H}-imidazol-4-yl]-ethyl]-amino}-methyl)-2, 6-dimethyl-phenol (\{Butyl-[1-(3-butyl-2,5-diphenyl-3\mathit{H}-imidazol-4-yl]-ethyl]-amino}-methyl)-2, 6-dimethyl-phenol (\{Butyl-[1-(3-butyl-2,5-diphenyl-3\mathit{H}-imidazol-4-yl]-ethyl]-amino}-methyl)-2, 6-dimethyl-phenol (\{Butyl-[1-(3-butyl-2,5-diphenyl-3\mathit{H}-imidazol-4-yl]-ethyl]-amino}-methyl)-2, 6-dimethyl-phenol (\{Butyl-[1-(3-butyl-2,5-diphenyl-3\mathit{H}-imidazol-4-yl]-ethyl]-amino}-methyl)-2, 6-dimethyl-phenol (\{Butyl-[1-(3-butyl-2,5-diphenyl-3\mathit{H}-imidazol-4-yl]-ethyl]-amino}-methyl$

 $\begin{tabular}{l} 4-\{ (3-Butyl-2,5-diphenyl-3 H-imidazol-4-ylmethyl)-(4-dimethylamino-benzyl)-amino]-methyl} -benzoic acid \end{tabular}$

WO 02/49993

PCT/US00/26816

 $\hbox{$4-\{5-[(Bis-benzo[1,3]dioxol-5-ylmethyl-amino)-methyl]-2,4-diphenyl-imidazol-1-yl\}-butyric\ acid\ ethyl\ ester}$

 $4-\{5-\{(Bis-benzo[1,3]dioxol-5-ylmethyl-amino\}-methyl\}-2, 4-diphenyl-imidazol-1-yl\}-butan-1-old (Bis-benzo[1,3]dioxol-5-ylmethyl-amino) + (Bis-benzo[1,3]d$

 $(4-\{[(3-Butyl-2,5-diphenyl-3 \textit{H}-imidazol-4-ylmethyl)-cyclohexylmethyl-amino]-methyl\}-phenyl)-dimethyl-amine \\$

 $1-(1-Butyl)-2-phenyl-5-(N-[4-\{1-pyrrolidinyl\}phenylmethyl]-N-phenylmethyl) aminomethyl-imidazole;$

1-(1-Butyl)-2-phenyl-5-(N-[4-diethylaminophenylmethyl]-N-phenylmethyl)aminomethyl-imidazole;

1-(1-Butyl)-2-phenyl-5-(N-[pyridin-2-ylmethyl]-N-phenylmethyl)aminomethylimidazole;

The preparation of the ortho biarylamides of the present invention may be carried out via a series of chemical transformations similar to those displayed graphically in Scheme 7. An individual skilled in the art may find modifications of one or several of the synthetic steps described herein without diverting significantly from the overall synthetic scheme.

Thus, as shown, the synthetic route begins with a benzoic acid of general structure 70 possessing a group X at the ortho position. This X group may be iodine, bromine, chlorine, sulfonate ester or polyfluoroalkylsulfonate ester. The benzoic acid may also be substituted by up to four independently chosen substitutents represented by the variables R₁-R₄. Examples of suitable substituents include hydrogen, chlorine, fluorine, cyano, C₁-C₆ straight or branched chain alkyl, C₁-C₆ straight or branched chain alkoxy, trifluoromethyl, trifluoromethoxy, nitro, amino, mono or dialkyl amino, sulfonamido, mono or dialkylsulfonamido, alkylthio e.g. methylthio, alkylsulfoxide, alkylsulfone, acetyl, acetoxy, alkoxycarbonyl

(COOAlkyl) or dialkylaminocarbonyl (CON[alkyl]₂). Additionally, two adjacent groups (i.e R₁ and R₂, or R₂ and R₃ or R₃ and R₄) may be taken together with a chain of from 3 to 5 methylene carbons to form a alkyl ring of from five to seven carbons fused to the benzoic acid moiety. Additionally, two adjacent groups (i.e R₁ and R₂, or R₂ and R₃ or R₃ and R₄) may be taken together with an alkyloxy chain, for example OCH₂O or OCH₂CH₂O to form an oxygen-containing moiety (in this example methylenedioxy or ethylenedioxy, respectively) fused to the benzoic acid.

This benzoic acid is then activated by conversion to an acid chloride with thionyl chloride, oxalyl chloride or the like. Alternatively, it may be activated by treatment with carbonyldiimidazole or a similar agent. The activated benzoic acid is then treated with an appropriate secondary amine in the presence of base to provide a tertiary amide of general structure 71.

Amide 71 is then converted to the biaryl structure 72 through the use of aryl coupling reactions know in the chemical literature. Examples of such reactions are the Stille reaction where an aryl trialkyltin reagent is coupled to an appropriate aryl in the presence of a catalyst such as palladium or nickel; or a Suzuki reaction where a arylboronic acid is coupled to an appropriate aryl in the presence of a nickel or palladium catalyst in the presence of base.

The group "Ar" of General structure 72 may be a phenyl which may be substituted with up to five additional independently chosen substitutents, e.g. hydrogen, halogen, cyano, C₁-C₆ straight or branched chain alkyl, C1-C6 straight or branched chain alkoxy, trifluoromethyl, trifluoromethoxy, nitro, amino, mono or dialkyl amino, sulfonamido, mono or dialkylsulfonamido, alkylthio e.g. methylthio, alkylsulfoxide, alkylsulfone, acetyl, acetoxy, hydroxycarbonyl (COOH), alkoxycarbonyl (COOAlkyl), aminocarbonyl (CONH₂), monoalkylaminocarbonyl, dialkylaminocarbonyl (CON[alkyl]₂, methylenedioxy or ethylenedioxy.

The Ar of General Structure 72 may also represent a heteroaryl group such as 1- or 2- thienyl or 1- or 2- furanyl. Such a heteroaryl group which may be additionally substituted by up to three independently chosen substituents, such as hydrogen, halogen, cyano, C₁-C₆ straight or branched chain alkyl, C₁-C₆ straight or

branched chain alkoxy, trifluoromethyl, trifluoromethoxy, dialkyl amino, sulfonamido, mono or dialkylsulfonamido, alkylthio e.g. methylthio, alkylsulfoxide, alkylsulfone, acetyl, acetoxy, hydroxycarbonyl (COOH), alkoxycarbonyl (COOAlkyl), aminocarbonyl (CONH₂), monoalkylcarbonyl, dialkylaminocarbonyl (CON[alkyl]₂.

Scheme 8. General Preparation of Azaaryl benzamides

$$R_{5}$$
 R_{6}
 R_{7}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{6}
 R_{5}
 R_{6}
 R_{6}
 R_{7}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{6}
 R_{6}
 R_{6}
 R_{6}
 R_{7}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{6}
 R_{6}
 R_{6}
 R_{7}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{1}
 R_{2}

The preparation of 2-imidazolyl, 2-pyrrazolyl and 2-(1,2,4)-triazolyl benzamides begins with an appropriately substituted benzonitrile derivative having a leaving group X at the position ortho to the carboxylic acid functionality. Most

commonly this group would be a fluorine or chlorine group. This benzonitrile may be optionally substituted or additionally substituted by up to four substituents (R₁-R₄) which may be the same or different (examples of such substituents are: hydrogen, halogen, cyano, C₁-C₆ straight or branched chain alkyl, C₁-C₆ straight or branched chain alkoxy, trifluoromethyl, trifluoromethoxy, nitro, amino, mono or dialkyl amino, sulfonamido, mono or dialkylsulfonamido, methylthio, alkylsulfoxide, alkylsulfone, acetyl, acetoxy, alkoxycarbonyl (COOAlkyl) or dialkylaminocarbonyl (CON[alkyl]₂).

The benzonitrile **73** is mixed with the azaheterocycle **74** (wherein A and B may be either nitrogen or carbon with the caveat that both A and B not be carbon. R₅ and R₆ may be the same as those groups described for R₁-R₄.) This condensation may be carried out either in a single phase system in an appropriate solvent and base, or in a two-phase manner using a phase transfer catalyst.

2-Azaheterocyclicbenzonitrile **75** is the hydrolyzed to the corresponding benzoic acid **76** via means common to the chemical literature, for instance mineral acid.

The benzoic acid **76** is then activated via thionyl chloride, CDI or other means known to the chemical literature and condensed with an appropriately substituted secondary amine toprovide the desired final products **77**.

EXAMPLES

The general methods given in Schemes 1 to 8 above for the preparation of compounds of the present invention are further illustrated by the following examples. Specifically, the methods given in Schemes 1 and 2 for the preparation of aryl imidazoles are illustrated by Examples 1-4, shown below. An example of the method shown in Scheme 3 for the preparation of cycloalkylimidazoles is given in example 5, and example of the method shown in Scheme 4 for the preparation of arylpyridines is given in example 6, and an example of the method shown in Scheme 5 for the preparation of arylpyrazoles is given in example 7. The method shown by Scheme 6 for the preparations of 2-(1-Aryl-1,2,3,4-tetrahydroisoquinolin-2-yl)acetamides is further illustrated in example 8. The methods shown in Schemes 7

and 8 for the preparation of ortho biarylamides and azaarylamides, respectively, are exemplified in Examples 9 and 10. Unless otherwise specified all starting materials and reagents are of standard commercial grade, and are used without further purification, or are readily prepared from such materials by routine methods. Those skilled in the art of organic synthesis will recognize that starting materials and reaction conditions may be varied to achieve the desired end product.

Example 1. Preparation of an arylimidazole compound: 1-(1-butyl)-2-phenyl-5-(N,N-di[3,4-methylenedioxyphenyl methyl])aminomethylimidazole (Compound 106).

N-(n-butyl)-benzamidine (101). To a solution of methyl benzimidate hydrochloride (12 g, 0.07 mole) in dimethylformamide (DMF, 20 mL) is added 7 ml of triethylamine at 0 °C. After 2 h the reaction is filtered to remove triethylamine hydrochloride. To the filtrate is added 3.68 g of 1-butylamine and the mixture is heated to 60 °C for 6 h. After cooling the mixture is partitioned between ethyl acetate and water. The organic layer is washed with brine, dried over sodium sulfate and concentrated to provide 13.28 g of the amidine as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (m, 2H), 7.4 (m, 3H), 3.37 (bm, 2H), 1.62 (m, 2H), 1.42 (m, 2H), 0.95 (t, J = 7 Hz, 3H).

1-(1-Butyl)-2-phenylimidazole-5-carboxaldehyde (102). To a solution of 101 (13.28 g) and 2-bromo-3-isopropoxyacrolein (22 g) in chloroform (150 ml) is added potassium carbonate (15.5 g) and water (19 ml). The mixture is stirred at room temperature overnight. The aqueous layer is discarded and the organic layer is washed with water (3X 100 mL), dried (Na₂SO₄) and concentrated. The residue is purified via flash chromatography (5% MeOH/CHCl₃) to provide the desired imidazole carboxaldehyde as a pale yellow oil (21.55 g). ¹H NMR (400 MHz, CDCl₃) & 9.75 (s, 1H), 7.90 (s, 1H), 7.55 (m, 2H), 7.45 (m, 3H), 4.38 (t, J = 8Hz, 2H), 1.75 (m, 2H), 1.22 (m, 2H), 0.91 (t, J = 7 Hz, 3H).

Representative preparation of a 1-Alkyl-2-aryl-4-aminomethylimidazole: 1-(1-Butyl)-2-phenyl-5-(N,N-di[3,4-methylendioxyphenylmethyl]) aminomethylimidazole)

1-(1-Butyl)-2-phenyl-5-hydroxymethylimidazole (103). Aldehyde 102 is dissolved in methanol (150 mL). Sodium borohydride (3 g) is added in portions. After the addition was complete, the reaction is diluted with water and concentrated. The residue is dissolved in ethyl acetate, washed with brine, dried (Na₂SO₄) and concentrated. The product is purified by flash chromatography on silica gel (5% MeOH/CHCl₃) to give 4.17 g of 103 as a cream colored solid. ¹H-NMR (400 MHz,

CDCl₃): δ 0.79 (3H, t, d=7.4), 1.18 (2H, m, d=7.4), 1.60 (2H, m, d=7.6), 4.03 (2H, dd, d=7.6), 4.56 (2H, s), 6.84 (1H, s), 7.39-7.50 (3H, m), 7.50-7.53 (2H, m).

1-(1-Butyl)-2-phenyl-5-(N-[3,4-

methylenedioxyphenylmethyl])aminomethylimidazole

(104).

Hydroxymethylimidazole 103 (0.82 g) is dissolved in chloroform (10 ml) and treated with thionyl chloride (1 ml). The solution is heated to 50 °C for 30 min, cooled and evaporated. The residue is washed with benzene and evaporated to give the intermediate chloromethyl hydrochloride as a white powder which is taken up in acetonitrile (30 mL). This is added dropwise to a solution of piperonylamine (5 ml) in acetonitrile (10 mL). The reaction is allowed to stand overnight and then evaporated. The residue is taken up in ethyl acetate and washed with water. The organic layer is dried (Na₂SO₄) and concentrated. Purification on silica gel (10% MeOH/CHCl₃) provides the product as a pale yellow oil (0.91 g). ¹H NMR (400 MHz, CDCl₃): δ 0.79 (3H, t, d=7.4), 1.18 (2H, m, d=7.4), 1.56 (2H, m, d=7.4), 3.75 (4H, s), 4.04 (2H, dd, d=8), 5.92 (2H, s), 6.76 (2H, m), 6.84 (1H,s), 6.97 (1H, s), 7.38-7.44 (3H, m), 7.53-7.56 (2H, m).

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenyl methyl]-N-(3,4-methylenedioxyphenylcarboxy]) aminomethylimidazole (105). Compound 104 (160 mg, 0.44 mmol) is dissolved in chloroform (5 ml, pentene stabilized) and treated sequentially with piperonyloyl chloride (100 mg) and triethylamine (1 ml). The mixture is stirred at room temperature overnight. The solution is concentrated and the residue taken up in ethyl acetate. The organic is washed with water, dried (Na₂SO₄) and concentrated. Purification by preparative thin layer chromatography (5% MeOH/CHCl₃) provides compound 105 as a pale yellow oil (240 mg). ¹H-NMR (400 MHz, CDCl₃): δ 0.75 (3H, br), 1.16 (2H, br), 1.49 (2H, br), 4.01 (2H, br), 4.54 (2H, br), 4.68 (2H, br), 5.97 (2H, s), 5.99 (2H, s), 6.66 (2H, d, d=7.2), 6.80 (2H, t, d=8), 6.98-7.02 (2H, m), 7.40-7.47 (3H, m), 7.56 (2H, d, d=6.8).

1-(1-Butyl)-2-phenyl-5-(N,N-di[3,4-methylenedioxy phenylmethyl])aminomethylimidazole (106). Amide 105 (215 mg) in tetrahydrofuran (THF, 3 ml) is
added dropwise to a solution of alane (1 M in THF, 2 ml) and the resulting solution

is stirred for 2.5 h at room temperature. A solution of sodium hydroxide (15% NaOH, 1 ml) is added and the mixture is extracted with chloroform. The organic extracts are dried (Na₂SO₄) and concentrated. Purification by preparative thin layer chromatography (10% MeOH/CHCl₃) provided compound **106** as a colorless oil (115 mg). ¹H-NMR (400 MHz, CDCl₃): δ 0.70 (3H, t, d=7.6), 0.98 (2H, m, d=7.6), 1.30 (2H, m), 3.44 (4H, s), 3.52 (2H, s), 3.98 (2H, dd, d=8), 5.92 (4H, s), 6.74 (4H, s), 6.69 (2H, s), 7.02 (1H, s), 7.36-7.42 (3H, m), 7.54 (2H, dd, d=1.4, 6.6). The hydrochloride salt (m.p. 187-190 °C) was prepared in isopropanol.

Example 2. Preparation of 1-(1-butyl)-2-phenyl-5-(1-[N-{3,4-methylenedioxyphenylmethyl}-N-phenylmethyl]amino)ethylimidazole (Compound 108).

1-Butyl-2-phenyl-5-(1-hydroxyethyl)imidazole (107). A solution of aldehyde **102** (230 mg) in diethyl ether (30 mL) is placed in a separatory funnel and treated with a solution of

Preparation of 1-(1-Butyl)-2-phenyl-5-(1-[N-[{3,4-methylendioxyphenylmethyl]}-N-[phenylmethyl]aminoethylimidazole)

methyl lithium (1.4 M in THF, 1.5 ml). After 10 min, the solution is washed with ammonium chloride solution (1 M, 20 ml), dried (Na₂SO₄) and concentrated. The resulting dark oil is purified by preparative TLC (10% MeOH/CHCl₃) to provide compound 107 as a colorless oil (180 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 2

Hz, 2H), 7.4 (m, 3H), 7.01 (s, 1H), 4.86 (q, J = 7 Hz, 1H), 4.18 (m, 1H), 4.0 (m, 1H), 1.63 (d, J = 6.6 Hz, 3H), 1.63 (m, 2H), 1.23 (m, 2H), 0.81 (t, J = 7 Hz, 3H).

1-Butyl-2-phenyl-5-(N-[3,4-methylenedioxyphenyl]-N-

phenylmethyl)aminoethylimidazole (108). A solution of compound 107 (80 mg) in chloroform (10 ml) is treated with thionyl chloride (1 ml) and heated to 50 °C for 30 min. The solution is then concentrated, diluted with chloroform and reconcentrated to provide the intermediate chloromethyl hydrochloride as an oil. This material is taken up in chloroform (5 ml) and treated sequentially with N-benzylpiperonylamine (80 mg) and triethylamine. After stirring overnight, the reaction is washed with saturated potassium carbonate solution, dried (Na₂SO₄) and concentrated. Purification by preparative thin layer chromatography (10% MeOH/CHCl₃) provides compound 108 as a colorless oil (62 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.43 (m, 1H), 7.2-7.3 (m, 9H), 6.74-6.86 (m, 4H), 5.94 (s, 2H), 4.82 (q, J = 6.8 Hz, 1H), 4.33 (m, 2H), 3.78 (s, 2H), 3.53 (s, 2H), 1.83 (d, J = 6.8 Hz, 3H), 1.62-1.68 (m, 2H), 1.21 (q, J = 7.8 Hz, 2H), 0.82 (t, J = 7.8 Hz, 3H).

Example 3. Preparation of 1-Butyl-2-phenyl-4-bromo-5-(N-phenylmethyl-N-[1-butyl])amino-methylimidazole (Compound 110).

Preparation of 1-(1-Butyl)-2-phenyl-4-bromo-5-[N-phenylmethyl-N-[1-butyl]) aminomethylimidazole)

1-Butyl-2-phenyl-5-(N-benzyl-N-butyl)aminomethylimidazole (109). A solution of compound 102 (115 mg) and N-butylbenzylamine (85 mg) in toluene (10 ml) is allowed to stand overnight. Treatment of the reaction with sodium borohydride (100 mg) and ethanol (2 mL) followed by aqueous workup and purification on silica gel (10% MeOH/CHCl₃) provides compound 109 as a colorless oil (35 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.2-7.5 (m, 10H), 6.98 (s, 1H), 4.0 (t, J = 8 Hz, 2H), 3.55 (s, 2H), 3.52 (s, 2H), 2.42 (t, J = 8 Hz, 2H), 1.2-1.55 (m, 6 H), 1.05 (m, 2H), 0.84 (t, J = 7 Hz, 3H), 0.72 (t, J = 7 Hz, 3H).

1-Butyl-2-phenyl-4-bromo-5-(N-phenylmethyl-N-[1-

butyl])aminomethylimidazole (110). To a solution of 109 (30 mg) in acetonitrile (4 mL) was added N-bromosuccinimide (16 mg). The resulting mixture was heated to 60 °C and the progress of the reaction followed by TLC. The cooled reaction mixture was diluted with ethyl acetate and washed twice with water. Purification by preparative thin layer chromatography (10% MeOH/CHCl₃) provided compound 110 as a colorless oil (22 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.2-7.5 (m, 10 H), 3.98 (t, J = 8 Hz, 2H), 3.55 (s, 2H), 3.53 (s, 2H), 2.46 (t, J = 7 Hz, 2H), 1.52 (m, 2H), 1.3 (m, 4H), 0.98 (q, J = 7 Hz, 2H), 0.84 (t, J = 7 Hz, 3H), 0.70 (t, J = 7 Hz, 3H).

Example 4. Preparation of 1-(1-Butyl)-2-phenyl-4-methyl-5-(N-[3,4-methylenedioxyphenyl-methyl]-N-phenylmethyl)aminomethylimidazole. (Compound 114).

1-Butyl-2-phenyl-4-methylimidazole (112). To a solution of 4-methyl-2-phenylimidazole (111, 15.8 g) in dimethylformamide (100 ml) is added sodium hydride (4.4 g, 60% in mineral oil) in small portions. After the addition is complete, the mixture was stirred for an additional 20 min and treated with 1-iodobutane (18.8 g). The reaction is fitted with a reflux condensor and heated at 100 °C for 12 h. The cooled reaction mixture is partitioned between water (300 ml) and diethyl ether (300 ml). The organic layer is washed with water (3X 200 ml), dried (Na₂SO₄) and concentrated to provide 20.5 g of N-butylimidazoles. Analysis by ¹H-NMR and GC-MS revealed mixture of 1-butyl-2-phenyl-4-methylimidazole (112) and 1-butyl-2-

phenyl-5-methylimidazole in a ratio of 11.5/1. The mixture was carried on to the next step without purification.

1-Butyl-2-phenyl-4-methyl-5-hydroxymethylimidazole (113). A solution of 112 (1 g) in acetic acid (10 mL) and 40% aqueous formaldehyde (2 mL) is refluxed for 14 h. The reaction is then concentrated and dried by repeated reconcentration with toluene. The residue is purified by column chromatography (10% MeOH/CHCl₃). The fractions are assayed by GC and those fractions uncontaminated by the isomeric hydroxymethylimidazole combined. Concentration of the combined fractions provides compound 113 (320 mg) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.4-7.6 (m, 6H), 4.61 (s, 2H, CH₂OH), 4.02 (t, J = 7 Hz, 2H, NCH₂), 2.22 (s, 3H, Me), 1.63 (m, 2H, 1.25 (m, 2H), 0.81 (t, J = 7 Hz, 3H).

Preparation of 1-(1-Butyl)-2-phenyl-4-methyl-5-(N-[3,4-methylenedioxyphenyl]-N-phenylmethyl) aminomethylimidazole

1-Butyl-2-phenyl-4-methyl-5-(N-benzyl-N-butyl)aminomethylimidazole (114). Compound 114 (23 mg) is prepared from 113 (50 mg) in a method similar to that used to obtain compound 108. 1 H NMR (400 MHz, CDCl₃) δ 7.5-7.55 (m,2H), 7.38-7.42 (m, 3H), 7.23-7.30 (m, 5H), 3.95 (t, J = 7.5 Hz, 2H), 3.55 (s, 2H), 3.53 (s, 2H),

2.40 (t, J = 7 Hz, 2H), 2.22 (s, 3H), 1.25-1.40 (m, 6H), 1.05 (m, 2H), 0.82 (t, J = 7 Hz, 3H). 0.70 (t, J = 7 Hz, 3H); MS (LCMS) m/e 390 (M*+1)

Example 5. Preparation of a cycloalkylimidazole compound: 4-{[butyl(1-butyl-2-phenyl(4.5,6-trihydrocyclopenta[3,2-d]imidazol-6-yl]}amino|methyl}-3-chlorophenol

N-(n-butyl)-benzamidine (120). To a solution of methyl benzimidate hydrochloride (12 g, 0.07 mole) in dimethylformamide (DMF, 20 mL) is added 7 ml of triethylamine at 0 °C. After 2 h the reaction is filtered to remove triethylamine hydrochloride. To the filtrate is added 3.68 g of 1-butylamine and the mixture is heated to 60 °C for 6 h. After cooling the mixture is partitioned between ethyl acetate and water. The organic layer is washed with brine, dried over sodium sulfate and concentrated to provide 13.28 g of the amidine as a yellow oil. ¹H NMR (CDCl₃) 7.55 (m, 2H), 7.4 (m, 3H), 3.37 (bm, 2H), 1.62 (m, 2H), 1.42 (m, 2H), 0.95 (t, J = 7 Hz, 3H).

2-Bromo-3-methoxycyclopentenone (131) is prepared via the method of Curran et al JACS, vol 112, page 5601. To a suspension of 1,3-cyclopentanedione (10 g) in chloroform (700 ml) is added a N-bromosuccinimide (18.2 g). The mixture is refluxed for 2 h, cooled and concentrated. Methanol (700 mL) and p-toluenesulfonic acid (1 g) are added and the solution is refluxed overnight. The mixture is concentrated to 100 ml, diluted with methylene chloride (500 mL) and poured into water. The aqueous layer is discarded and the organic layer is washed with water (3 X 100 mL), dried (Na₂SO₄) and concentrated. The residue is crystallized from ethyl acetate to give 131 as tan crystals (1.67 g).

1-Butyl-2-phenyl-4,5-dihydrocyclopenty[1,2-d]imidazol-6-one (Compound 132). To a mixture of amidine 130 (3.52 g, 20 mmol) and enone 13 (4.58 g, 24 mmol) in chloroform (40 mL) and water (5 mL) was added solid potassium carbonate (3.32 g, 24 mmol). The resulting mixture is refluxed overnight. After cooling, the mixture is washed with water, dried (Na₂SO₄) and concentrated. Purification on silica gel eluting with 25% ethyl acetate/hexane gives the desired product 132 (3.0 g) LC-MS

 $(M^{+}+1)$: 255. ¹H-NMR (6, CDCl₃): 0.84 (t, J = 7.6 Hz, 3H), 1.23 (dt, J = 7.0, 7.6 Hz, 2H), 1.81 (m, 2H), 2.95 (m, 4H), 4.13 (t, J = 7.6 Hz, 2H) 7.5-7.45 (m, 3H), 7.76-7.6 (m, 2H) ppm.

1-Butyl-2-phenyl-4,5-dihydrocyclopenty[1,2-d]imidazol-6-ol (Compound 133). To a solution of 132 (2.68 g) in methanol (20 mL) is added sodium borohydride (1.5 equiv) and the mixture stirred overnight. The mixture is concentrated, diluted with chloroform and washed with 0.5 N NH₄Cl solution. The organic layer is dried (Na₂SO₄) and concentrated to provide the desired product 133. LC-MS (M + 1) 257.

Butyl(1-butyl-2-phenyl-4,5,6-trihydrocyclopentyl[3,2-d]imidazol-6-yl))amine

(Compound 135). Compound 133 (2 g) is dissolved in chloroform (20 mL) and thionyl chloride (5 mL) and the resulting solution is stirred at room temperature overnight. The solvent and excess thionyl chloride are evaporated and the crude chloride 134 was dissolved in n-butylamine (10 mL). After 2 h, the excess butylamine was evaporated, the residue dissolved in ethyl acetate and the organic solution washed with 5% NaOH solution and water. The organic layer was dried and concentrated. The organic residue is purified by column chromatography on silaica gel eluting with 10% CH₃OH in CHCl₃ to provide the desired secondary amine 135 in 82% yield. LC-MS (M+1) 312 ¹H-NMR (chemical shift, CDCl₃): 0.83 (t, J = 7.2 Hz, 3H), 0.9 (t, J = 7.2 Hz, 3H), 1.23 (q, J = 7.2 Hz, 2H), 1.35 (q, J = 7.2 Hz, 2H), 1.46 (m, 2H), 1.70 (m, 2H), 2.24 (m, 1H), 2.55-2.66 (m, 4H), 2.73-2.80 (m, 2H), 3.97-4.04 (m, 2H), 4.30 (d, J = 5.6 Hz, 1H), 7.37-7.44 (m, 3H), 7.55-7.57 (m, 2H).

4-{[Butyl(1-butyl-2-phenyl(4,5,6-trihydrocyclopenta[3,2-d]imidazol-6-

yl))amino]methyl}-3-chlorophenol (Compound 5, Table 1). To a solution of compound 135 (50 mg) in 1,2-dichloroethane (2 mL) and 2-chloro-4-hydroxybenzaldehyde (30 mg) is added sodium triacetoxyborohydride (100 mg). The resulting mixture is allowed to stir overnight. After washing with 0.5 ammonium chloride solution, the organic layer is dried (Na₂SO₄) and concentrated. Purification

using preparative thin layer chromatography eluting with 5% CH₃OH/CHCl₃ provides the desired product **136** as an oil (21 mg). LC-MS (M+1) 452, (M-1) 450. 1 H-NMR (chemical shift, CDCl₃): 0.74 (t, J = 7.2 Hz, 3H), 0.83 (t, J = 7.2 Hz, 3H), 1.11 (q, J = 7.2 Hz, 2H), 1.21-1.33 (m, 2H), 1.41-1.51 (m, 4H), 2.34-2.44 (m, 3H), 2.51-2.57 (m, 1H), 2.60-2.67 (m, 1H), 2.69-2.75 (m, 1H), 3.38 (d, J = 7.6 Hz, 1H), 3.47 (d, J = 13.6 Hz, 1H), 3.65 (d, J = 13.6 Hz, 1H), 3.78-3.96 (m, 1H), 6.62 (dd, J = 8,2 Hz, 1H), 6.78 (d, J = 2 Hz, 1H), 7.07 (d, J = 8 Hz, 1H), 7.35-7.41 (m, 3H), 7.45-7.48 (m, 2H).

<u>Preparation of 4-{[Butyl(1-butyl-2-phenyl(4,5,6-trihydrocyclopenta [3,2-d]imidazol-6-yl))amino]methyl}-3-chlorophenol</u>

Example 6. Preparation of 2-phenyl-4-{N,N-di{2H-Benzo[3,4-d]-1,3-dioxolan-5-ylmethyl}amino)methyl-3-butylpyridine

4-Phenyl-5-butyloxazole (140). A mixture of α-bromohexanophenone (25.5 g, 0.1 mole), ammonium formate (22 g, 0.35 mole) and formic acid (110 mL) was refluxed with stirring for 3 h. The reaction mixture was poured onto ice and made basic with 10 N NaOH and extracted with ether. The organic layer was washed with water, dried over sodium sulfate and concentrated. The crude product was purified by flash chromatography on silica gel eluting with 20% ethyl acetate in hexane. To provide the desired compound as an oil (8.3 g, 41 %); ¹H NMR (δ, CDCl₃, 400 MHz) 7.55 (m, 2H), 7.40 (s, 1H), 7.34 (dd, J = 7,7 Hz, 2H), 7.22 (dd, J = 7,7 Hz, 1H), 2.74 (m, 2H), 1.6 (m, 2H), 1.30 (m, 2H), 0.84 (t, J = 7 Hz, 3H) ppm.

2-Phenyl-3-butylisonicotinic acid (141). A mixture of 4-phenyl-5-butyloxazole (12, 5 g, 25 mmol) and maleic acid (3.5 g, 30 mmol) is heated at 100 °C for 30 min. After cooling, the semisolid mass is triturated with ether and the solid collected by filtration . ¹H NMR (5, CDCl₃, 400 MHz) 11.68 (brs, 1H), 8.72 (d, J = 6.0 Hz, 1H), 7.73 (d, J = 5.6 Hz, 1H), 7.48-7.51 (m, 2H), 7.42-7.44 (m, 2H), 6.25 (s, 1H), 2.86 (d, J = 7.6 Hz, 2H), 1.36 (m, 2H), 1.11 (dt, J = 7.6, 7.2 Hz, 2H), 0.68 (t, J = 7.6 Hz, 3H). MS (M+1): 256, (M - 1) 254.

2-Phenyl-4-hydroxymethyl-3-butylpyridine (142). 4 mL of a 1M solution of lithium aluminum hydride in tetrahydrofuran is added to a solution of 2-phenyl-3-butylisonicotinic acid (13, 510 mg, 2 mmol) in tetrahydrofuran (20 mL). The reaction is stirred overnight and then quenched with 5 mL of 15% aqueous NaOH. The resulting mixture is extracted with ether, dried (Na₂SO₄) and concentrated to provide the desired hydroxymethylpyridine as an oil (470 mg). LC-MS (M+1): 242; ¹H NMR (, CDCL₃) 8.35 (1H, d, J = 5.2 Hz), 7.30-7.39 (6H, m), 4.59 (2H, s), 2.43 (2H, t, J = 8.0 Hz), 1.23 (2H, m), 1.13 (2H, m), 0.70 (3H, t, J = 7.2 Hz).

2-Phenyl-4-(N-{2H-benzo[3,4-d]-1,3-dioxolan-5-ylmethyl})aminomethyl-3-butylpyridine (143). Thionyl chloride (200 mg, 1.67 mmol) is added to a solution of 2-phenyl-4-hydroxymethyl-3-butylpyridine (400 mg, 1.66 mmol) in pentene stabilized chloroform (8 mL) and the mixture is heated to 50 °C for 2 h. The resulting

1-(1-Butyl)-2-phenyl-5-(N-[pyridin-3-ylmethyl]-N-phenylmethyl)aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[pyridin-4-ylmethyl]-N-phenylmethyl)aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[2-fluoro-6-chlorophenylmethyl]-N-phenylmethyl)aminomethyl-imidazole);

1-(1-Butyl)-2-phenyl-5-(N-[2,4-dichlorophenylmethyl]-N-phenylmethyl) a minomethylimidazole);

1-(1-Butyl)-2-phenyl-5-(N-[4-chlorophenylmethyl]-N-phenylmethyl)aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[4-hydroxyphenylmethyl]-N-phenylmethyl)aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[4-trifluoromethoxyphenylmethyl]-N-phenylmethyl)aminomethyl-imidazole);

1-(1-Butyl)-2-phenyl-5-(N-[2-chloro-3,4-dimethoxyphenylmethyl]-N-phenylmethyl)amino-methylimidazole);

1-(1-Butyl)-2-phenyl-5-(N-[4-nitrophenylmethyl]-N-phenylmethyl)aminomethylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[4-aminophenylmethyl]-N-phenylmethyl)aminomethylimidazole;

 $1\hbox{-}(1\hbox{-Butyl})\hbox{-}2,4\hbox{-diphenyl-}5\hbox{-}(N\hbox{-phenylmethyl-}N\hbox{-}[1\hbox{-butyl}]) a minomethyl imidazole;$

1-(1-Butyl)-2-phenyl-5-(N-[2-aminopyridin-5-ylmethyl]-N-phenylmethyl)aminomethyl-imidazole

1-(1-Butyl)-2-phenyl-5-(N-[2,3-dihydrobenzo[b]furan-5-ylmethyl)-N-phenylmethyl) amino-methylimidazole;

1-(1-Butyl)-2-phenyl-5-(N-[2-chloro-4-hydroxyphenylmethyl]-N-[1-butyl]) a minomethyl-imidazole)

 $1\hbox{-}(1\hbox{-Butyl})\hbox{-}2\hbox{-phenyl-}4\hbox{-methyl-}5\hbox{-}(N\hbox{-phenylmethyl-}N\hbox{-}[1\hbox{-butyl}]) a minomethyl imidazole;$

1-(1-Butyl)-2-(4-fluorophenyl)-5-(N-[2-chloro-4-hydroxyphenylmethyl]-N-phenylmethyl)-aminomethylimidazole;

1-(1-Butyl)-2-(3-fluorophenyl)-5-(N-[2-chloro-4-hydroxyphenylmethyl]-N-phenylmethyl)-aminomethylimidazole;

1-(1-Butyl)-2-(3-fluorophenyl)-5-(N-[2,3-dichlorophenylmethyl]-N-phenylmethyl)amino-methylimidazole;

1-(1-Butyl)-2-(3-fluorophenyl)-5-(N-[4-dimethylaminophenylmethyl]-N-phenylmethyl)amino-methylimidazole;

1-(1-Butyl)-2-(3-fluorophenyl)-5-(N-[4-{1-pyrrolidinyl}phenylmethyl]-N-phenylmethyl)amino-methylimidazole;

 $1-(1-Butyl)-2-(3-chlorophenyl)-5-(1-[N-\{2-chloro-4-hydroxyphenylmethyl\}-N-phenylmethyl] amino)ethylimidazole;$

1-(1-Butyl)-2-phenyl-5-(N-[indol-5-ylmethyl]-N-phenylmethyl) aminomethylimidazole;

1-(1-Butyl)-2-(4-fluorophenyl)-5-(1-N,N-di[3,4-methylenedioxyphenylmethyl]amino) ethylimidazole;

2-{[5-({Butyl[(1-butyl-2,4-diphenylimidazol-5-yl)methyl]amino}methyl)-2-pyridyl]amino}ethan-1-ol;

As discussed above, preferred compounds of the invention exhibit good activity in standard *in vitro* C5 receptor mediated chemotaxis assay, specifically the assay as specified in Example 12, which follows. References herein to "standard *in vitro* C5 receptor mediated chemotaxis assay" are inteided to refer to that protocol as defined in Example 12 which follows. Preferred compounds of the invention exhibit an EC₅₀ of about 100 μM or less in such a standard C5a mediated chemotaxis assay, more preferably an EC₅₀ of about 10 μM or less in such a standard C5a mediated chemotaxis assay, still more preferably an EC₅₀ of about 1 μM in such a standard C5a mediated chemotaxis assay, even more preferably an EC₅₀ of about 0.1 μM in such a standard C5a mediated chemotaxis assay.

Additional assays suitable for determining the effects of small molecule compounds on C5a receptor binding and receptor modulatory activity, as well as assays suitable for measuring their effects on C5a-induced neutropenia in vivo, can be found in the published literature, for example in US patent 5,807,824, which is incorporated herein by reference for its disclosure in this regard in Examples 6-9, columns 19-23, as well as for its discussion of complement and inflammation at columns 1-2. Those of skill in the art will recognize that such assays can be readily adapted to the use of cells or animals of different species as deemed appropriate.

In one aspect of the invention, one or more compounds of the invention, preferably in solution in a pharmaceutically acceptable carrier as a pharmaceutical preparation, is used to perfuse a donor organ prior to transplantation of the organ into a recipient patient. Such perfusion is preferably carried out using a solution comprising an concentration of the compound of the invention that is an effective amount sufficient to inhibit C5a mediated effects in vitro or in vivo. Such perfusion preferably reduces the severity or frequency of one or more of the inflammatory sequelae following organ transplantation when compared to that occurring in control (including, without restriction, historical control) transplant recipients who have received transplants of donor organs that have not been so perfused.

Definitions

In certain situations, the compounds of of the invention may contain one or more asymmetric elements such as stereogenic centers, stereogenic axes and the like, e.g. asymmetric carbon atoms, so that the compounds can exist in different stereoisomeric forms. These compounds can be, for example, racemates or optically active forms. For compounds with two or more asymmetric elements, these

compounds can additionally be mixtures of diastereomers. In these situations, the single enantiomers, i.e., optically active forms, can be obtained by asymmetric synthesis, synthesis from optically pure precursors or by resolution of the racemates. Resolution of the racemates can be accomplished, for example, by conventional methods such as crystallization in the presence of a resolving agent, or chromatography, using, for example a chiral HPLC column.

The term "substituted", as used herein, means that any one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valence is not exceeded, and that the substitution results in a stable compound. When a substituent is keto (i.e., =0), then 2 hydrogens on the atom are replaced. Keto substituents are not present on aromatic moieties. The present invention is intended to include all isotopes of atoms occurring in the present compounds. Isotopes include those atoms having the same atomic number but different mass numbers. By way of general example, and without limitation, isotopes of hydrogen include tritium and deuterium and isotopes of carbon include ¹¹C, ¹³C, and ¹⁴C.

When any variable occurs more than one time in any constituent or formula for a compound, its definition at each occurrence is independent of its definition at every other occurrence. Thus, for example, if a group is shown to be substituted with 0-2 R*, then said group may optionally be substituted with up to two R* groups and R* at each occurrence is selected independently from the definition of R*. Also, combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.

As indicated herein, various substituents of the compounds of the present invention and various formulae set forth herein are "optionally substituted", including, e.g., Ar₁, Ar₂, R, R₁, R₂, R₃, R_{3A}, R₄, R₅, R₆, R₇, R_A, R_A, R_B, and R_C. When substituted, those substituents may be substituted at one or more of any of the available positions, typically 1, 2, 3, or 4 positions, by one or more suitable groups such as those disclosed herein.

Suitable groups or "substituted" moities of compounds of the invention include e.g., halogen such as fluoro, chloro, bromo or iodo; cyano; hydroxyl; nitro; azido; alkanoyl such as a C₁₋₆ alkanoyl group such as acyl and the like; carboxamido; alkyl groups including those groups having 1 to about 12 carbon atoms, or 1, 2, 3, 4, 5, or 6 carbon atoms; alkenyl and alkynyl groups including groups having one or more unsaturated linkages and from 2 to about 12 carbon, or 2, 3, 4, 5 or 6 carbon atoms; alkoxy groups having those having one or more oxygen linkages and from 1 to about 12 carbon atoms, or 1, 2, 3, 4, 5 or 6 carbon atoms; aryloxy such as phenoxy; alkylthio groups including those moieties having one or more thioether linkages and from 1 to about 12 carbon atoms, or 1, 2, 3, 4, 5 or 6 carbon atoms; alkylsulfinyl groups including those moieties having one or more sulfinyl linkages and from 1 to about 12 carbon atoms, or 1, 2, 3, 4, 5, or 6 carbon atoms; alkylsulfonyl groups including those moieties having one or more sulfonyl linkages and from 1 to about 12 carbon atoms, or 1, 2, 3, 4, 5, or 6 carbon atoms; aminoalkyl groups such as groups having one or more N atoms and from 1 to about 12 carbon atoms, or 1, 2, 3, 4, 5 or 6 carbon atoms; carbocyclic aryl having 6 or more carbons, particularly phenyl (e.g. an Ar group being a substituted or unsubstituted biphenyl moiety); arylalkyl having 1 to 3 separate or fused rings and from 6 to about 18 carbon ring atoms, with benzyl being a preferred group; aralkoxy having 1 to 3 separate or fused rings and from 6 to about 18 carbon ring atoms, with O-benzyl being a preferred group; or a heteroaromatic or heteroalicyclic group having 1 to 3 separate or fused rings with 3 to about 8 members per ring and one or more N, O or S atoms, e.g. coumarinyl, quinolinyl, pyridyl, pyrazinyl, pyrimidyl, furyl, pyrrolyl, thienyl, thiazolyl, oxazolyl, imidazolyl, indolyl, benzofuranyl, benzothiazolyl, tetrahydrofuranyl, tetrahydropyranyl, piperidinyl, morpholino and pyrrolidinyl.

As used herein, "alkyl" is intended to include both branched and straightchain saturated aliphatic hydrocarbon groups, having the specified number of carbon atoms. Examples of alkyl include, but are not limited to, methyl, ethyl, npropyl, i-propyl, n-butyl, s-butyl, t-butyl, n-pentyl, and s-pentyl. Preferred alkyl

groups are C_1 - C_8 and C_{1-6} alkyl groups. Especially preferred alkyl groups are methyl, ethyl, propyl, butyl, 3-pentyl. The term C_{1-6} alkyl as used herein includes alkyl groups consisting of 1 to 6 carbon atoms, which may contain a cyclopropyl moiety. Suitable examples are methyl or ethyl.

"Cycloalkyl" is intended to include saturated ring groups, having the specified number of carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl and brigded or caged saturated ring groups such as norbornane or adamantane and the like.

In the term " $(C_{3-6}$ cycloalkyl) C_{1-4} alkyl", as defined above, the point of attachment is on the alkyl group. This term encompasses, but is not limited to, cyclopropylmethyl, cyclohexylmethyl and cyclohexylethyl.

"Alkenyl" is intended to include hydrocarbon chains of either a straight or branched configuration comprising one or more unsaturated carbon-carbon bonds, which may occur in any stable point along the chain, such as ethenyl and propenyl.

"Alkynyl" is intended to include hydrocarbon chains of either a straight or branched configuration comprising one or more triple carbon-carbon bonds that may occur in any stable point along the chain, such as ethynyl and propynyl.

"Haloalkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms, substituted with 1 or more halogen (for example $-C_v(X^i)_{wi}(H_{2v+1-\Sigma(wi)})$ where v=1 to 3; $X^i=F(i=1)$, Cl(i=2), Br(i=3), I(i=4) and $\Sigma w_i \le 2v+1$). Examples of haloalkyl include, but are not limited to, trifluoromethyl, trichloromethyl, pentafluoroethyl, and pentachloroethyl.

"Alkoxy" represents an alkyl group as defined above with the indicated number of carbon atoms attached through an oxygen bridge. Examples of alkoxy include, but are not limited to, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, 2-butoxy, t-butoxy, n-pentoxy, 2-pentoxy, 3-pentoxy, isopentoxy, neopentoxy, n-hexoxy, 2-hexoxy, 3-hexoxy, and 3-methylpentoxy.

As used herein, the term "carbocyclic aryl" indicates aromatic groups containing only carbon in the aromatic ring. Such aromatic groups may be further

substituted with carbon or non-carbon atoms or groups. Typical carbocyclic aryl groups contain 1 to 3 separate of fused rings and from 6 to about 18 ring atoms, without heteroatoms as ring members. Specifically preferred carbocyclic aryl groups include phenyl, napthyl, including 1-naphthyl and 2-naphthyl, and acenaphthyl.

By the term "energetically accessible conformer" is meant any conformer of a compound that falls within about a 15 Kcal/mol window above the lowest energy conformation (as for example that found in a monte carlo or systematic confirmational search) by using MM2, MM3, or MMFF force fields as implemented in molecular modeling software such as MacroModel® v 7.0, Schrödinger, Inc., Portland, Oregon United Stats and Jersey City, New Jersey, United States, http://www.schrodinger.com or the like.

Peptidomimetic compounds are generally compounds with "chemical structures derived from bioactive peptides which imitate natural molecules" (Murray Goodman and Seonggu Ro, "Peptidomimetics for Drug Design" chapter twenty in Burger's Medicinal Chemistry and Drug Discovery, Volume 1: Principles and Practice, Manfred E. Wolff, ed. John Wiley & Sons, Inc., NY, 1995, pp. 801-861.) As used herein and in the claims, the term peptidomimetic additionally comprises peptoid compounds, which are compounds that comprise oligomers of N-substituted natural amino acids, and the term further comprises any compound having more than two amide bonds.

As used herein, the terms "heteroaryl" and "heteroalicyclic" group are intended to indicate a stable 5-to 7-membered monocyclic or bicyclic or 7-to 10-membered bicyclic heterocyclic ring which is saturated, partially unsaturated or unsaturated (aromatic), and which consists of carbon atoms and from 1 to 4 heteroatoms independently selected from the group consisting of N, 0 and S and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. The term heteroaryl indicates that the group contains at least 1 aromatic ring. The nitrogen and sulfur heteroatoms may optionally be oxidized. The heterocyclic ring may be attached to its pendant group at any heteroatom or carbon atom that results in a stable structure. The heterocyclic rings

described herein may be substituted on carbon or on a nitrogen atom if the resulting compound is stable. A nitrogen in the heterocycle may optionally be quaternized.

It is preferred that when the total number of S and 0 atoms in the heterocycle exceeds 1, then these heteroatoms are not adjacent to one another. It is preferred that the total number of S and 0 atoms in the heterocycle is not more than 1, 2, or 3, more typically 1 or 2. It is preferred that the total number of S and O atoms in the aromatic heterocycle is not more than 1.

Examples of heteroaryl groups and other heterocycles include, but are not limited to, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, carbazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, NH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroguinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]tetrahydrofuran, furanyl, furazanyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl. indolinyl, imidazolidinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, morpholinyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, naphthyridinyl, 1,2,5oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, 1,2,4-oxadiazolyl;oxazolyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, oxazolidinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroquinolinyl, 6H-1,2,5-thiadiazinyl, tetrahydroisoquinolinyl, thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, 1,3,4-triazolyl, triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, xanthenyl.

Preferred heteroaryl groups include, but are not limited to, pyridinyl,

pyrimidinyl, furanyl, and thienyl. Also included are fused ring and spiro compounds containing, for example, the above heterocycles.

The term "halogen" indicates fluorine, chlorine, bromine, or iodine.

The term "pharmaceutically acceptable salts" includes, but is not limited to non-toxic salts with inorganic acids such as hydrochloride, sulfate, phosphate, diphosphate, hydrobromide, and nitrite or salts with an organic acids such as malate, maleate, fumarate, tartrate, succinate, citrate, acetate, lactate, methanesulfonate, p-toluenesulfonate, 2-hydroxyethylsulfonate, salicylate and stearate. Similarly, pharmaceutically acceptable cations include, but are not limited to sodium, potassium, calcium, aluminum, lithium and ammonium. The present invention also encompasses the prodrugs of the compounds disclosed.

Examples of bicyclic oxygen containing groups of the formula:

(R_A may also be indicated R_B) include the following:

Methods of Treating Patients

The present invention provides methods of treating patients suffering from diseases or disorders involving pathologic activation of C5a receptors. Such diseases and disorders may include the following.

Such disorders that may be autoimmune in nature and are suitable for

treatment in accordance with the present invention include e.g. rheumatoid arthritis, systemic lupus erythematosus (and associated glomerulonephritis), psoriasis, Crohn's disease, vasculitis, irritable bowel syndrome, dermatomyositis, multiple sclerosis, bronchial asthma, pemphigus, pemphigoid, scleroderma, myasthenia gravis, autoimmune hemolytic and thrombocytopenic states, Goodpasture's syndrome (and associated glomerulonephritis and pulmonary hemorrhage), and immunovasculitis. Such inflammatory and related conditions include neutropenia, sepsis, septic shock, Alzheimer's disease, stroke, inflammation associated with severe burns, lung injury, myocardial infarction, coronary thrombosis, vascular occlusion, post-surgical vascular reocclusion, artherosclerosis, traumatic central nervous system injury and ischemic heart disease, and ischemiareperfusion injury, as well as acute (adult) respiratory distress syndrome (ARDS), systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), tissue graft rejection, and hyperacute rejection of transplanted organs. Also included are pathologic sequellae associated with insulin-dependent diabetes mellitus (including diabetic retinopathy), lupus nephropathy, Heyman nephritis, membranous nephritis and other forms of glomerulonephritis, contact sensitivity responses, and inflammation resulting from contact of blood with artificial surfaces that can cause complement activation, as occurs, for example, during extracorporeal circulation of blood (e.g., during hemodialysis or via a heartlung machine, for example, in association with vascular surgery such as coronary artery bypass grafting or heart valve replacement) such as extracorporeal postdialysis syndrome, or in association with contact with other artificial vessel or container surfaces (e.g., ventricular assist devices, artificial heart machines, transfusion tubing, blood storage bags, plasmapheresis, plateletpheresis, and the like).

Treatment methods of the invention include in general administration to a patient a therapeutically effective amount of one or more compounds of the invention. Suitable patients include those subjects suffering from or susceptible to (i.e. propylactic treatment) a disorder or disease identified herein. Typical patients

for treatment in accordance with the invention include mammals, particularly primates, especially humans. Other suitable subjects include domesticated companion animals such as a dog, cat, horse, and the like, or a livestock animal such as cattle, pig, sheep and the like.

Pharmaceutical Preparations

The compounds of the invention may be administered orally, topically, parenterally, by inhalation or spray or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles. Oral administration in the form of a pill, capsule, elixir, syrup, lozenge, troche, or the like is particularly preferred. The term parenteral as used herein includes injections and the like, such as subcutaneous, intradermal, intravascular (e.g., intravenous), intramuscular, intrasternal, spinal, intrathecal, and like injection or infusion techniques, with subcutaneous, intramuscular and intravascular injections or infusions being preferred. In addition, there is provided a pharmaceutical formulation comprising a compound of the invention and a pharmaceutically acceptable carrier. One or more compounds of the invention may be present in association with one or more non-toxic pharmaceutically acceptable carriers and/or diluents and/or adjuvants and if desired other active ingredients. The pharmaceutical compositions containing compounds of the invention may be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsion, hard or soft capsules, or syrups or elixirs.

Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients that are suitable for the manufacture of tablets. These

excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monosterate or glyceryl distearate may be employed.

Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.

Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydropropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene with long oxide chain aliphatic alcohols, for heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.

Oily suspensions may be formulated by suspending the active ingredients in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide palatable oral preparations. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present.

Pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol, anhydrides, for example sorbitan monoleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monoleate. The emulsions may also contain sweetening and flavoring agents.

Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents. The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be sterile injectable solution or suspension in a non-toxic parentally acceptable diluent or solvent, for

example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono-or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

The compounds of the invention may also be administered in the form of suppositories e.g., for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient that is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials are cocoa butter and polyethylene glycols.

Compounds of the invention may be administered parenterally, preferably in a sterile non-toxic, pyrogen-free medium. The drug, depending on the vehicle and concentration used, can either be suspended or dissolved in the vehicle. Advantageously, adjuvants such as local anesthetics, preservatives and buffering agents can be dissolved in the vehicle.

Dosage levels of the order of from about 0.1 mg to about 140 mg per kilogram of body weight per day are useful in the treatment or preventions of conditions involving pathogenic C5a activity, particularly those disorders list in the "background of the invention" section (about 0.5 mg to about 7 g per patient per day). The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. Dosage unit forms will generally contain between from about 1 mg to about 500 mg of an active ingredient.

Frequency of dosage may also vary depending on the compound used and the particular disease treated. However, for treatment of most disorders, a dosage regimen of 4 times daily, three times daily, or less is preferred, with a dosage regimen of once daily or 2 times daily being particularly preferred.

It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination (i.e., other drugs being administered to the patient), the severity of the particular disease undergoing therapy, and other factors, including the judgment of the prescribing medical practitioner.

Preferred compounds of the invention will have favorable pharmacological properties. Such properties include, but are not limited to bioavailability (e.g., oral bioavailibility, preferably high enough to permit oral administration of doses of less than 2 grams, preferably of less than or equal to one gram), low toxicity, low serum protein binding and desirable *in vitro* and *in vivo* half-lifes. Distribution in the body to sites of complement activity is also desirable, e.g., compounds used to treat CNS disorders will preferably penetrate the blood brain barrier, while low brain levels of compounds used to treat periphereal disorders are typically preferred.

Assays may be used to predict these desirable pharmacological properties. Assays used to predict bioavailability include transport across human intestinal cell monolayers, including Caco-2 cell monolayers. Toxicity to cultured hepatocyctes may be used to predict compound toxicity. Penetration of the blood brain barrier of a compound in humans may be predicted from the brain levels of the compound in laboratory animals given the compound intravenously.

Serum protein binding may be predicted from albumin binding assays. Such assays are described in a review by Oravcová, et al. (Journal of Chromatography B (1996) volume 677, pages 1-27).

Compound half-life is inversely proportional to the frequency of dosage required for the effective administration of a compound. *In vivo* half-lifes of compounds may be predicted, e.g., from assays of microsomal half-life as described by Kuhnz and Gieschen (Drug Metabolism and Disposition, (1998) volume 26, pages 1120-1127).

Preparation of compounds

Representative methods for preparing the compounds of the invention are shown in the following Schemes. Schemes 1 and 2 show the preparation of arylimidazole compounds. Scheme 1 illustrates the preparation of arylimidazole compounds where R_1 is hydrogen or halogen. Scheme 2 represents of the preparation of arylimidazole compounds where R_1 is alkyl. Within Schemes 1 and 2 the variables Ar_1 , Ar_2 , R_1 , R_2 , R_3 and R_4 ~ are defined as above for Formula I.

Scheme 1. Synthesis of 1-Alkyl-2-aryl-5-aminomethylimidazoles

Ar₁—NH
$$R_2$$
NH R_2 NH R_2 NH R_2 NH R_2 NH R_2 NH R_2 R_3 R_2 R_3 R_4 R_5 R

As shown in Scheme 1, an appropriately substituted arylnitrile 10 is converted to the imidate 11 via treatment with hydrogen chloride gas in methanol followed by subsequent treatment with base to release the free base. Amidine 12 is prepared from 11 by treatment with a primary amine. 2-Arylimidazole-4-carboxaldehyde 13 is prepared from 12 by one of several methods described in the chemical literature,

for instance, by treatment with 2-bromo-3-isopropoxyacrolein in the presence of base. See, for example, J. Org, Chem., 62: 8449 (Shilcrat et al., 1997).

Aldehyde 13 can then be transformed into hydroxymethylimidazole 14 either by reduction (for cases where R₄ is hydrogen) or by treatment with the appropriate organometallic (for cases where R₄ is C1-C6 alkyl). The hydroxy group of 14 is converted to either a halogen or sulfonate ester leaving group. Treatment of this intermediate with an appropriate secondary amine in the presence of base provides 2-aryl-4-aminomethylimidazole 15. Alternatively, the aminoalkyl functionality of 15 may be elaborated by sequential amination-acylation-reduction steps. In situations where R₁ is a halogen, it may be prepared from 15 (R₁=H) by treatment with the molecular halogen, a halosuccinimide or the like.

shown in Scheme 2, an appropriately substituted 2-aryl-4substitutedimidazole 20 can be N-alkylated by treatment with base such as sodium hydride and an alkyl halide or alkylsulfonate ester to provide the trisubstituted imidazole 21. Hydroxymethylation of 21 under the conditions of the Mannich reaction provides hydroxymethylimidazole 22. In examples where R₃ is alkyl, hydroxymethyl derivative 24 is prepared from 22 by oxidation to aldehyde 23 and subsequent treatment with an appropriate organometallic reagent such as an alkyl lithium or Grignard reagent. Conversion of 22 or 24 to the desired 2-aryl-5aminomethylimidazoles is carried out by conversion of the hydroxymethyl to a halogen or sulfonate ester leaving group followed by treatment with a secondary 2-aryl-5amine. Alternatively, aminoalkyl functionality of the the aminomethylimidazole product may be elaborated by sequential aminationacylation-reduction steps.

Scheme 2. Synthesis of 2-Arylimidazoles

Where R2 is alkyl:

Ar₁

$$R_1$$
 R_2
 R_2
 R_2
 R_1
 R_2
 R_2
 R_2
 R_2
 R_2
 R_2
 R_2
 R_2
 R_2
 R_2

Where R₃ is alkyl:

The 2-aryl-4-substitutedimidazole **20** may be prepared by methods described in the chemical literature, for instance, via condensation of an arylamidine with a halomethyl or hydroxymethyl ketone.

Cycloalkylimidazoles

An illustration of the preparation of compounds of the Cycloalkylimidazole compounds of the present invention is given in Scheme 3. Within Scheme 3 the variables n, Ar₁, Ar₂, R₂, R₃, R_{3a}, R₄, R₅, R₆, R_{5a}, R_{6a}, R₇ and X are defined previously.

Scheme 3. Preparation of Cycloalkylimidazoles

Ar₁

NH

$$R_3$$
 R_{3a}
 R_{5}
 R_{6}
 $(CR_{5a}CR_{6a})_n$

Ar₁
 R_{2}
 R_{3a}
 R_{5}
 R_{6}
 $(CR_{5a}CR_{6a})_n$
 R_{2}
 R_{3a}
 R_{5}
 R_{6}
 $(CR_{5a}CR_{6a})_n$
 R_{7}
 R_{7}

As shown in Scheme 3, an appropriately substituted arylamidine 30 is condensed with an appropriately substituted 2-halo-3-alkoxyenone 31 to provide a 2-aryl-4,5-

cycloalkylimidazole 32. The ketone functionality of 32 can be either reduced (R_7 = H) or treated with an appropriate organometallic (for cases where R_7 is alkyl) to give the cyclic alcohol 33. Compounds of general formula 34 can be prepared from 33 by one of several methods described in the chemical literature, for instance, by treatment with thionyl chloride or by treatment with an alkyl or arylsulphonyl chloride in the presence of base.

Compounds of formula 34 can then be transformed into compounds of general Formula 35 by direct treatment with the appropriate secondary amine. Alternatively, the X functionality of 34 may be transformed into a tertiary amine in a stepwise manner. In this case, 34 would be treated with a primary amine to provide an intermediate secondary amine. This, in turn, could be alkylated to give cycloalkylimidazole compounds of the invention.

Pyridines

An illustration of the preparation of pyridine compounds of the present invention is given in Scheme 4. Those having skill in the art will recognize that the starting materials may be varied and additional steps employed to produce compounds encompassed by the present invention. Within Scheme 4 the variables Ar₁, Ar₂, R, R₁, R₂, R₃, and R₄ are defined as previously described.

Scheme 4. Preparation of Aryl pyridines

$$R_1$$
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_2
 R_2
 R_2

As shown in Scheme 4, an appropriately substituted 4-phenyloxazole 40 is condensed with an appropriately substituted maleic acid to provide a 2-phenylisonicotinic acid 41. The carboxylic acid functionality of 41 can be reduced directly to the primary alcohol (43, $R_3 = H$) or converted by methods known to the art to an intermediate aldehyde 42 and subsequently treated with the appropriate organometallic (for cases where R_3 is alkyl) to give a secondary alcohol 43. Compounds of general formula 44 can be prepared from 43 by one of several

methods described in the chemical literature, for instance, by initial treatment with thionyl chloride or with an alkyl or arylsulphonyl chloride in the presence of base, followed by subsequent condensation with a primary amine. Compounds of formula 44 can then be transformed into compounds of formula 45 by direct treatment with the appropriate alkylating agent or, alternatively, by reductive alkylation. Alternatively, the tertiary amine functionality of formula 45 may be realized directly from compounds of formula 43 by initial treatment with thionyl chloride or with an alkyl or arylsulphonyl chloride in the presence of base, followed by subsequent condensation with a secondary amine.

Pyrazoles

An illustration of the preparation of arylpyrazole compounds of the present invention is given in Scheme 5. Within Scheme 5 the variables Ar_1 , Ar_2 , R_1 , R_2 , R_3 , and R_4 are defined as previously described.

Scheme 5. Preparation of Arylpyrazoles

Ar₁
$$R_1$$
 R_2 S_2 S_3 S_4 S_4 S_4 S_5 S_8 S_8 S_8

As shown in Scheme 5, an appropriately substituted phenylhydrazine adduct 50 is condensed with an appropriately substituted α -ketoester 51, in the presence of a Lewis acid, preferably ZnCl₂, with heating at 50 – 200 °C, preferably at 125 °C to provide a 1-phenylpyrazole ester 52. The carboxylic acid functionality of 52 can be reduced directly to the primary alcohol (53, $R_3 = H$) or converted by methods known

to the art to an intermediate aldehyde and subsequently treated with the appropriate the appropriate organometallic (for cases where R₃ is alkyl) to give a secondary alcohol 53. Compounds of general formula 54, where LG represents a leaving group, can be prepared from 53 by one of several methods described in the chemical literature, for instance, by initial treatment with thionyl chloride or with an alkyl or arylsulphonyl chloride in the presence of base, followed by subsequent condensation with a primary amine. Compounds of formula 54 can then be transformed into compounds of formula 58 by sequential treatment with the appropriate primary amine followed by direct alkylation or reductive alkylation of the intermediate secondary amine. Alternatively, the tertiary amine functionality of formula 58 may be realized directly from compounds of formula 53 by initial treatment with thionyl chloride or with an alkyl or arylsulphonyl chloride in the presence of base, followed by subsequent condensation with a secondary amine.

An alternative route to the preparation of compounds of Formula **58** from the 1-phenylpyrazole ester **52** may be realized by hydrolysis of **52** to a carboxylic acid of general structure **56**, followed by amide formation to provide **57** and, finally, reduction of the amide functionality to the tertiary amine of **58** (R₃=H).

Scheme 6. Preparation of 2-(1-aryl-1,2,3,4-tetrahydroiso quinolin-2-yl) acetamides and bicyclics of other ring sizes (n=0, 1, 2, 3, etc)

The 2-(1,2,3,4-tetrahydroisoquinolin-2-yl) acetamides of general formula 62 of the present invention may be prepared according to the procedure described

graphically in Scheme 6, wherein a compound of general Formula 60, prepared according to literature procedures, (for example: Scully, Frank E., Jr.; Schlager, John J. Synthesis of dihydroisoquinolines and 1-substituted tetrahydroisoguinolines. Heterocycles (1982),19(4), 653-6 or Shinohara, Tatsumi; Takeda, Akira; Toda, Jun; Terasawa, Noriyo; Sano, Takehiro. A highly efficient synthesis of 1-methyl-, 1-benzyl-, 1-phenyl-1,2,3,4and tetrahydroisoguinolines by a modified Pummerer reaction. Heterocycles (1997), 46: 555-566.) is combined (in an appropriate solvent in the presence of an organic or inorganic base) with an appropriately substituted acetamide derivative possessing a leaving group X at its 2 position. For example, X may be halogen, alkyl or aryl sulfonate, or polyfluoroalkylsulfonate. Acetamides of general Formula 61 may be prepared via condensation of the appropriate secondary amine with a 2haloacetylhalide (such as 2-chloroacaetyl chloride) in the presence of base. Alternatively acetamides of general formula 61 can be prepared by condensation of the appropriate secondary amine with either a 2-(alkylsulfonylester)acetic acid or 2-(arylsulfonylester)acetic acid in the pressence of an coupling agent such as CDI or the like.

Within Scheme 6, R₁, R₂, R₃, R₄ and R₅ may be the same or different and are chosen from hydrogen, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxy, trifluoromethyl, trifluoromethoxyl, cyano, nitro, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂), mono or dialkylaminocarbonyl, sulfonamido, mono or dialkylsulfonamido, amino, mono- or di-alkylamino, aceto, acetoxy or 3,4-methylenedioxy or ethylenedioxy. The term n refers to an integer from 1 to 3. R₆ may be C₁-C₉ straight or branched chain alkyl, benzyl (substituted or unsubstituted), phenylethyl (substituted or unsubstituted), phenylpropyl (substituted or unsubstituted), or may be cycloalkyl fused with an aromatic group such as 1,2,3,4-tetrahydronaphthyl, 1- or 2- indanyl or suberanyl.

Scheme 7. Preparation of Ortho Biarylamides

mixture is cooled, washed with saturated sodium bicarbonate solution, dried (Na₂SO₄) and concentrated. The resulting crude chloride is taken up in dimethylformamide (10 mL) and added dropwise to a refluxing solution of piperonylamine (1.0 g, 4 equiv) in dimethylformamide (30 mL) containing 3 g of powdered potassium carbonate. After the addition is complete, the resulting mixture is refluxed for an additional 3 h, cooled and partitioned between water (200 mL) and ether (100 mL). The ethereal layer is washed 2 times with water, dried (Na₂SO₄) and concentrated. The resulting material is purified by chromatography on silica eluting with 10% CH₃OH/CHCl₃ to give the desired secondary amine 15. LC-MS (M+1): 375.3; ¹H-NMR (5, CDCl₃): 0.73 (3H, t, J = 7.2 Hz), 1.15 (2H, m J = 7.2 Hz), 1.30 (2H, m), 2.58 (2H, t, J = 8.0 Hz), 3.79 (2H, s), 3.83 (2H, s), 5.93 (2H, s), 6.75-6.82 (2H, m), 6.89 (1H, d, J = 1.2 Hz), 7.36-7.42 (6H, m), 8.45 (1H, d, J = 4.8 Hz) ppm.

2-Phenyl-4-(N,N-di{2H-benzo[3,4-d]-1,3-dioxolan-5-ylmethyl})aminomethyl-3-butylpyridine (144). To a solution of 14 (38 mg) in dichloroethane (5 mL) was added piperonal (30 mg). The resulting mixture was stirred for 3 h after which time sodium triacetoxyborohydride (150 mg) is added in one portion and the resulting mixture is stirred overnight. The reaction mixture was quenched with 10% ammonium hydroxide solution (5 ml). The organic layer is washed with water and extracted with 1N HCl solution. The acidic extract is made basic with 1N NaOH solution and extracted with chloroform. The organic extract is dried (Na₂SO₄) and concentrated. The resulting oil is purified on preparative thin layer chromatography eluting with 10% CH₃OH/CHCl₃ to give the desired tertiary amine 144 as an oil (18 mg). LC-MS (M+1): 509.4; ¹H-NMR (6, CDCl₃): 0.71 (3H, t, J = 7.2 Hz), 1.10 (2H, m, J = 7.2 Hz), 2.60 (2H, t, J = 8.0 Hz), 3.48 (4H, s), 3.58 (2H, s), 5.94 (4H, s), 6.75 (1H, d, J = 8.0 Hz), 6.80 (1H, dd, J = 0.8, 8.0 Hz), 6.91 (1H, d, J = 0.8 Hz), 7.36-7.43 (5H, m), 7.56 (1H, d, J = 5.2 Hz), 8.47 (1H, d, J = 5.2 Hz) ppm.

 $\label{lem:preparation} Preparation of 2-Phenyl-4-(N,N-di\{2H-benzo[3,4-d]-1,3-dioxolan-5-ylmethyl\}) aminomethyl-3-butylpyridine$

Example 7. Preparation of an Arylpyrazole:

1,3-diphenyl-4-[N-{2H-benzo[3,4-d]-1,3-dioxolan-5-ylmethyl}-N-butylamino]methyl-5-propylpyrazole

N'-Phenyl-N-phenylhydrazone (150). Benzaldehyde (9.81 g, 9.25 mmol) is added at 0-5 °C to a solution of phenyl hydrazine (10 g, 9.25 mmol) in ethanol (100 mL). A cream colored solid forms and the reaction mixture is allowed to stand for 2h. The solid is collected by filtration, washed with ice-cold ethanol and dried under vacuum to provide the desired compound, compound 150 (14.92 g);LC-MS m/z 197.2, ¹H NMR (6, CDCl₃, 400 MHz) ppm.

Ethyl 1,3-diphenyl-5-propylpyrazole-4-carboxylate (152). A mixture of 150 (5 g, 25.5 mmol) and ethyl butyrylacetate (20.2 g, 128 mmol) and a catalytic amount of zinc chloride is heated at 125 °C under an air atmosphere for 3h. The reaction vessel is fitted with a short path distillation head and excess ethyl butyrylacetate iss distilled away under vacuum. The resulting material is purified by column chromatography on silica eluting with 10% ethyl acetate in hexanes to provide the desired ester 152 as a yellow oil (6.39 g) which crystallizes upon standing. Recrystallization from diisopropyl ether provides a white solid. ¹H NMR (δ, CDCl₃, 400 MHz) MS (M+1): 335.2

1,3-Diphenyl-4-hydroxymethyl-5-propylpyrazole (153). To a solution of ester 153 (670 mg, 2 mmol) in tetrahydrofuran (20 mL) is added 4 mL of a 1M solution of lithium aluminum hydride in tetrahydrofuran. The reaction is stirred overnight and then quenched with 5 mL of 15% aqueous NaOH. The resulting mixture is extracted with ether, dried (Na₂SO₄) and concentrated to provide the desired hydroxymethylpyrazole as an oil (505 mg). LC-MS (M+1): 293.3; 1 H NMR (5 CDCL₃) 7.86 (dd, 1 J = 8.4 Hz, 2H), 7.34-7.52 (m, 8H), 4.65 (s, 2H), 2.72 (t, 1 J = 8.0 Hz, 2H), 1.52 (m, 2H), 0.87 (t, 1 J = 7.6 Hz, 3H).

[(1,3-Diphenyl-5-propylpyrazol-4-yl)methyl]butylamine (154). To a solution of 18 (289 mg) in pentene stabilized chloroform (8 mL) is added thionyl chloride (1 mL) and the mixture heated to 60 °C for 2 h. The resulting mixture is cooled, washed with saturated sodium bicarbonate solution, dried (Na₂SO₄) and concentrated. The resulting crude chloride is taken up in dimethylformamide (3 mL)

and added dropwise to a solution of butylamine (1.0 g) in dimethylformamide (10 mL) containing 2 g of powdered potassium carbonate. After the addition is complete, the resulting mixture is stirred for an additional 3 h and partitioned between water (20 mL) and ether (10 mL). The ethereal layer is washed 2 times with water, dried (Na₂SO₄) and concentrated. The resulting material is purified by chromatography on silica eluting with 10% CH₃OH/CHCl₃ to give the desired secondary amine **155** (190 mg). LC-MS (M+1): 348.3; 1 H-NMR (6 , CDCl₃): 7.87 (dd, 1 J = 8.0, 1.6 Hz, 2H), 7.32-7.48 (m, 8H), 3.77 (s, 2H), 2.70 (m, 4H), 1.48 (m, 4H), 1.34 (m, 2H), 0.91 (t, 1 J = 7.6 Hz, 3H), 0.87 (t, 1 J = 7.6 Hz, 3H) ppm.

$1,3-Diphenyl-4-\{N-\{2H-benzo[3,4-d]-1,3-dioxolan-5-ylmethyl\}-N-dioxolan-5-ylmethyl\}-N-dioxolan-5-ylmethyl\}-N-dioxolan-5-ylmethyl-N-$

butylamino)methyl-5-propylpyrazole (Compound 155). To a solution of 154 (35 mg) in dichloroethane (5 mL) is added piperonal (30 mg). The resulting mixture is stirred for 3 h after which time sodium triacetoxyborohydride (150 mg) is added in one portion and the resulting mixture is stirred overnight. The reaction mixture is quenched with 10% ammonium hydroxide solution (5 ml). The organic layer is washed with water and extracted with 1N HCl solution. The acidic extract is made basic with 1N NaOH solution and extracted with chloroform. The organic extract is dried (Na₂SO₄) and concentrated. The resulting oil is purified on preparative thin layer chromatography eluting with 10% CH₃OH/CHCl₃ to give the desired tertiary amine (Compound 155) as an oil (24 mg). LC-MS (M+1): 482.5; ¹H-NMR (6, CDCl₃): 7.87 (d, J = 7.2 Hz, 2H), 7.47 (d, J = 4.4 Hz, 4H), 7.33-7.43 (m, 4H), 6.77 (s, 1H), 6.70 (s, 2H), 5.92 (s, 2H), 3.56 (s, 2H), 3.42 (s, 2H), 2.74 (t, J = 8.0 Hz, 2H), 2.37 (t, J = 7.2 Hz, 2H), 1.42 (m, 4H), 1.21 (m, 2H), 0.83 (t, J = 7.6 Hz, 3H), 0.81 (t, J = 7.2 Hz, 3H) ppm.

<u>Preparation of 1,3-Diphenyl-4-(N-{2H-benzo[3,4-d]-1,3-dioxolan-5-ylmethyl}-N-butylamino)methyl-5-propylpyrazole</u>

Example 8. Synthesis of N-(1-fluorobenzyl)-N-indan-2-yl-2-(6, 7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl) acetamide (162). A mixture of 6, 7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline hydrochloride (160, 153 mg, 0.5 mmol), N-(1-fluorobenzyl)-N-indan-2-yl-2-bromoacetamide (161, 180 mg, 0.5 mmol) and potassium carbonate (500 mg) in acetonitrile is heated at 80 °C overnight. After cooling, the mixture is filtered and concentrated. The resulting residue is purified by column chromatography eluting with 5% methanol in chloroform to provide the title product (162) as a thick oil (215 mg, 78%). ¹H NMR (CDCl₃) 6.8-7.3 (m, 14H), 6.60(s, 1H), 6.05 (s, 1H),

Preparation of 4Trifluoromethyl-biphenyl-2-carboxylic acid benzo[1,3]dioxol-5-ylmethyl-benzyl-amide (174). 1,1'-carbonyldiimidazole (175 mg) is added to a solution of 2-iodobenzoic acid (248 mg, 1 mmol)(170) in tetrahydrofuran (THF, 5 ml). The resulting mixture is stirred overnight at room temperature. A solution of N-3,4-methylenedioxybenzyl-N-benzylamine (241 mg, 1 equiv)(171) in THF (2 mL) is added and the resulting solution is stirred for 1 h, quenched with water and extracted with diethyl ether. The organic extracts are dried (Na₂SO₄) and concentrated. The residual material is taken up in dimethoxyethane (10 mL) and catalytic amount (20)tetrakis(triphenylphosphine)palladium(0) is added. The resulting mixture is stirred under an argon atmosphere for 10 min and solid 4-trifluoromethyllphenylboronic acid (150 mg) is added in one portion. A second phase of 1N aqueous Na₂SO₄ is added and the mixture is warmed to 80 °C for 6 h under a argon atmosphere. The solution is cooled, diluted with water and ethyl acetate and filtered through a pad of

celite. The organic phase is dried over sodium sulfate and concentrated. Purification on silica eluting with 20% ethyl acetate in hexane provided the desired biphenylamide product (174)(410 mg). The proton NMR displays a doubled pattern commonly observed for amides which possess some rotational restriction about the amide nitrogen at room temperature. The ratio of the rotomers is approximately equal. ¹H NMR (CDCl3) 3.50 and 3.62 (two doublets, J = X Hz, 1H), 3.72 and 3.83 (two doublets, J = X Hz, 1H), 4.10 and 4.18 (two doublets, J = X Hz, 1H), 5.09 and 5.16 (two doublets, J = x Hz, 1H), 5.95 (d, J = X Hz, 2H, OCH₂O), 6.30 (m, 1.5 H), 6.46 (d, J = 1 Hz, 0.5 Hz), 6.60 and 6.66 (two doublets, J = X Hz, 1H), 6.80 (bd, J = X Hz, 1H), 6.86 (m, 1H), 7.16-7.62 (m, 11 H).

4'-Trifluoromethyl-biphenyl-2-carboxylic acid benzo[1,3]dioxol-5-ylmethyl-benzyl-amide

Example 10. Preparation of N-Benzo[1,3]dioxol-5-ylmethyl-N-benzyl-2-pyrazol-1-ylbenzamide

2-Pyrazol-1-yl-benzonitrile, Compound 177. A solution of 20 mmol of 2-fluorobezonitrile and 40 mmol of pyrrazole is mixed together in dimethylformaide with 1 equivalent of potassium hydroxide and a catalytic amount of 18-crown-6. The mixture is stirred at room temperature overnight, quenched with water and ethyl acetate and extracted with ethyl acetate. The organic extract is washed repeatedly with 1 N NaOH solution. The organic layer is then diluted with ether and washed with 1N HCl solution, dried and concentrated. 1H NMR (CDCl₃) 6.55 (t, J = 2 Hz, 1H), 7.42 (M, 1H), 7.65-7.82 m, 4H), 8.15 (d, J = 1 Hz, 1H).

2-Pyrazol-1-yl-benzoic acid, Compound 178. A solution of compound 177 in conc HCl is refluxed overnight, cooled and concentrated. The product is precipitated by addition of 1 N NaOH until pH of 5-6, filtered and dried. 1H (CDCl₃) 6.52 (t, J = 3 Hz, 1H), 7.40 (d, J = 8 Hz, 1H), 7.50 (t, J = 8 Hz, 1H) 7.62 (t, J = 8 hz, 1H), 7.81 (m, 2H), 8.12 (d, J = 8 Hz, 1H).

N-Benzo[1,3]dioxol-5-ylmethyl-N-benzyl-2-pyrazol-1-yl-benzamide, Compound 179. 1.1 equiv of carbonyl diimidazole is added to a solution of benzoic acid 178 (200 mg) in tetrahydrofuran (5 mL); the reaction is stirred at room temperaturte for 3 h. After this time N-piperonyl-N-benzylamine (0.25 g) is added in one portion. After 30 min, the reaction is filtered, diluted with ether and washed with water. The organic layer is dried (Na₂SO₄) and purified over column chromatography to provide the desired product (390 mg). The proton NMR displays a typically doubled pattern. ¹H (CDCl₃) 3.83 and 4.32 (two doublets, J = 16 Hz, 1H), 3.91 (two doublets, J = 8 Hz, 1H), 4.18 two doublets (J = 6 Hz, 1H), 5.0 and 5.1 (two doublets, J = 14 Hz, 1H), 5.93 and 5.98 (s and doublet, J = 2 Hz, 2H, OCH₂O), 6.35-6.40 (m, 2H), 6.51 (d, J = 4 Hz, 0.5 H), 6.4 (m, 1.5 H), 7.0-7.88 m, 15H). LC-MS 412.3

Example 11. Preparation of N-benzoyl-N-(4-methoxybenzyl)-N-(1-propyl-2-methyleno-7-azabenzimidazole

2-aminopropyl-3-nitropyridine

2-chloro-3-nitroaminopyridine (180) (5.5 g, 35 mmol) is dissolved in 150 mL acetonitrile at room temperature. Propylamine (21 g, 350 mmol) is added dropwise and the reaction mixture is stirred for 5 hours at room temperature. The solvent and excess propylamine are removed *in vacuo*. The residue is dissolved in 150 mL ethyl acetate and washed once with 100 mL saturated NaHCO₃ solution and once

with 100 mL brine. The organic layer is dried over MgSO₄, filtered, and the solvent removed in vacuo to afford 6.3 g of 2-aminopropyl-3-nitropyridine (181).

2-aminopropyl-3-aminopyridine.

2-aminopropyl-3-nitropyridine (171)(6.3 g, 35 mmol) is dissolved in 100 mL 1/1 ethyl acetate / ethanol in a Parr shaker bottle. Nitrogen is bubbled through the solution for 2 minutes followed by the addition of 10% Pd/C (500 mg). The suspension is hydrogenated on a Parr apparatus under 40 psi of H₂ until hydrogen uptake ceased. The suspension is filtered through Celite and the solvent evaporated in vacuo to afford 5.3 g of the 2-aminopropyl-3-aminopyridine (182).

1-propyl-2-chloromethyl-7-azabenzimidazole

2-aminopropyl-3-aminopyridine (172) (5.3 g, 35 mmol) is dissolved in 100 mL CHCl₃ at room temperature. Ethyl chloromethylimidate hydrochloride (14 g, 89 mmol) is added followed by K₂CO₃ (25 g, 180 mmol). The suspension was stirred vigorously at room temperature for 3 hours. The reaction mixture is filtered through Celite and the solvent removed *in vacuo*. The residue is passed through a short plug of silica gel eluting with ethyl acetate to afford 3.7 g of 1-propyl-2-chloromethyl-7-azabenzimidazole (183).

1-propyl-2-(4-methoxybenzylamino)methyl-7-azabenzimidazole.

4-Methoxybenzylamine (3.8 g, 27 mmol) is dissolved in 20 mL dry acetonitrile. 1-propyl-2-chloromethyl-7-azabenzimidazole (173)(940 mg, 4.5 mmol) dissolved in 4.5 mL acetonitrile is added dropwise. The mixture is stirred 10 hours at room temperature. The solvent is removed in vacuo and the residue dissolved in 20 mL ethyl acetate. This solution is washed once with 20 mL 1 N NaOH, once with 20 mL water, once with 20 mL 5% HOAc in water, then once with 5 N NaOH. The organic phase was dried over MgSO₄, filtered, then concentrated in vacuo. The product mixture is purified by flash chromatography eluting with ethyl acetate followed by 95/5/1 ethyl acetate / methanol / triethylamine to afford 850 mg of the 1-propyl-2-(4-methoxybenzylamino)methyl-7-azabenzimidazole (184).

N-benzoyl-N-(4-methoxybenzyl)-N-(1-propyl-2-methyleno-7-azabenzimidazole

1-propyl-2-(4-methoxybenzylamino)methyl-7-azabenzimidazole (174)(19 mg, 0.06 mmol) is dissolved in 0.6 mL toluene. Saturated sodium bicarbonate solution in water (0.3 mL) is added followed by benzoyl chloride (11 mg, 0.08 mmol). The reaction mixture is stirred at room temperature for 10 hours. It is then diluted with 5 mL ethyl acetate and transferred to a separatory funnel. The aqueous layer is removed and the organic phase washed once with 1N NaOH, once with 5 mL water, then and once with mL brine. The organic phase is dried over MgSO₄, filtered and the solvent removed in vacuo. The product is purified by preparatory tlc eluting with

1/1 ethyl acetate / hexanes to afford 20 mg of the desired compound (185). NMR 400 MHz (CDCl₃) 8.39 ppm (br d, 1 H), 8.15 ppm (br d, 1 H), 7.52 ppm (m, 1.5 H), 7.40 ppm (s, 1.5 H), 7.22 (m, 1 H), 7.18 ppm (br d, 1 H), 6.83 ppm, (d, J = 4 Hz, 2 H), 4.93 ppm (br s, 2 H), 4.71 ppm (br s, 1 H), 4.39 ppm (br s, 1 H), 3.79 ppm (s, 3 H), 1.89 ppm (br m, 2 H), 0.98 pp, (br t, 3 H).

Example 12

Assay for C5a Receptor Mediated Chemotaxis

This assay is a standard assay of C5a receptor mediated chemotaxis.

Human promonocytic U937 cells or purified human or non-human neutrophilis are treated with dibutyryl cAMP for 48 hours prior to performing the assay. Human neutrophils or those from another mammalian species are used directly after isolation. The cells are pelleted and resuspended in culture media containing 0.1% fetal bovine serum (FBS) and 10 ug/ml calcein AM (a fluorescent dye). This suspension is then incubated at 37 °C for 30 minutes such that the cells take up the fluorescent dye. The suspension is then centrifuged briefly to pellet the cells, which are then resuspended in culture media containing 0.1% FBS at a concentration of approximately 3 x 106 cells/mL. Aliquots of this cell suspension are transferred to clean test tubes, which contain vehicle (1% DMSO) or varying concentrations of a compound of interest, and incubated at room temperature for at least 30 minutes. The chemotaxis assay is performed in ChemoTx™ 101-8, 96 well plates (Neuro Probe, Inc. Gaitherburg, MD). The bottom wells of the plate are filled with medium containing 0-10 nM of C5a, preferably derived from the same species of mammal as are the neutrophils or other cells (e.g., human C5a for the human U937 cells). The top wells of the plate are filled with cell suspensions (compound or vehicle-treated). The plate is then placed in a tissue culture incubator for 60 minutes. The top surface of the plate is washed with PBS to remove excess cell suspension. The number of cells that have migrated into the bottom well is then determined using a fluorescence reader. Chemotaxis index (the ratio of migrated cells to total number of cells loaded) is then calculated for each compound concentration to determine an IC50 value.

As a control to ensure that cells retain chemotactic ability in the presence of the compound of interest, the bottom wells of the plate may be filled with varying concentrations chemo-attractants that do not mediate chemotaxis via the C5a receptor, e.g. zymosan-activated serum (ZAS), N-formylmethionyl-leucyl-phenylalanine (FMLP) or leukotriene B4 (LTB4), rather than C5a, under which conditions the compounds of the invention preferably do not inhibit chemotaxis.

Preferred compounds of the invention exhibit IC $_{50}$ values of less than 1 μM in the above assay for C5a mediated chemotaxis.

Example 13

Determination of dopamine D₄ receptor binding activity

The following assay is a standard assay for determining the binding affinity of compounds to dopamine D₄ receptors.

Pellets of Chinese hamster ovary (CHO) cells containing recombinantly expressing primate dopamine D4 receptors are used for the assays. The dopamine D4 receptor expression vector may be the pCD-PS vector described by Van Tol et al. (Nature (1991) 358: 149-152). The sample is homogenized in 100 volumes (w/vol) of 0.05 M Tris HCl buffer containing 120 mM NaCl, 5 mM MgCl₂ and 1 mM EDTA at 4°C and pH 7.4. The sample is then centrifuged at 30,000 x g and resuspended and rehomogenized. The sample is then centrifuged as described and the final tissue sample is frozen until use. The tissue is resuspended 1:20 (wt/vol) in 0.05 M Tris HCl buffer containing 120 mM NaCl.

Incubations for dopaminergic binding are carried out at 25°C and contain 0.4 ml of tissue sample, 0.1 nM ³H-YM 09151-2 (Nemonapride, cis-5-Chloro-2-methoxy-4-(methylamino)-N-(2-methyl-2-(phenylmethyl)-3-pyrrolidinyl)benzamide) and the compound of interest in a total incubation of 1.0 ml. Nonspecific binding is defined as that binding found in the presence of 1 uM spiperone; without further additions, nonspecific binding is less than 20% of total binding.

Example 14. Preparation of radiolabeled probe compounds of the invention

The compounds of the invention are prepared as radiolabeled probes by

carrying out their synthesis using precursors comprising at least one atom that is a radioisotope. The radioisotope is preferably selected from of at least one of carbon (preferably ¹⁴C), hydrogen (preferably ³H), sulfur (preferably ³⁵S), or iodine (preferably ¹²⁵I). Such radiolabeled probes are conveniently synthesized by a radioisotope supplier specializing in custom synthesis of radiolabeled probe compounds. Such suppliers include Amersham Corporation, Arlington Heights, IL; Cambridge Isotope Laboratories, Inc. Andover, MA; SRI International, Menlo Park, CA; Wizard Laboratories, West Sacramento, CA; ChemSyn Laboratories, Lexena, KS; American Radiolabeled Chemicals, Inc., St. Louis, MO; and Moravek Biochemicals Inc., Brea, CA.

Tritium labeled probe compounds are also conveniently prepared catalytically via platinum-catalyzed exchange in tritiated acetic acid, acid-catalyzed exchange in tritiated trifluoroacetic acid, or heterogeneous-catalyzed exchange with tritium gas. Such preparations are also conveniently carried out as a custom radiolabeling by any of the suppliers listed in the preceding paragraph using the compound of the invention as substrate. In addition, certain precursors may be subjected to tritium-halogen exchange with tritium gas, tritium gas reduction of unsaturated bonds, or reduction using sodium borotritide, as appropriate.

Example 15: Baculoviral Preparations (For C5a Expression)

The human C5a (hC5a) receptor baculoviral expression vector was cotransfected along with BACULOGOLD DNA (BD PharMingen, San Diego, CA) into Sf9 cells. The Sf9 cell culture supernatant was harvested three days post-transfection. The recombinant virus-containing supernatant was serially diluted in Hink's TNM-FH insect medium (JRH Biosciences, Kansas City) supplemented Grace's salts and with 4.1mM L-Gln, 3.3 g/L LAH, 3.3 g/L ultrafiltered yeastolate and 10% heatinactivated fetal bovine serum (hereinafter "insect medium") and plaque assayed for recombinant plaques. After four days, recombinant plaques were selected and harvested into 1 ml of insect medium for amplification. Each 1 ml volume of recombinant baculovirus (at passage 0) was used to infect a separate T25 flask

containing 2×10^6 Sf9 cells in 5 mls of insect medium. After five days of incubation at 27° C, supernatant medium was harvested from each of the T25 infections for use as passage 1 inoculum.

Two of seven recombinant baculoviral clones were then chosen for a second round of amplification, using 1 ml of passage 1 stock to infect 1×10^8 cells in 100 ml of insect medium divided into 2 T175 flasks. Forty-eight hours post infection, passage 2 medium from each 100ml prep was harvested and plaque assayed for titer. The cell pellets from the second round of amplification were assayed by affinity binding as described below to verify recombinant receptor expression. A third round of amplification was then initiated using a multiplicity of infection of 0.1 to infect a liter of Sf9 cells. Forty hours post-infection the supernatant medium was harvested to yield passage 3 baculoviral stock.

The remaining cell pellet is assayed for affinity binding using the "Binding Assays" described by DeMartino et al., 1994, J. Biol. Chem. 269 #20, pp. 14446-14450 at page 14447, adapted as follows. Radioligand is 0.005-0.500nM [125I]C5a (human recombinant), New England Nuclear Corp., Boston, MA; the hC5a receptor-expressing baculoviral cells are used instead of 293 cells; the assay buffer contains 50 mM Hepes pH. 7.6, 1 mM CaCl₂, 5 mM MgCl₂, 0.1% BSA, pH 7.4, 0.1 mM bacitracin, and 100 KIU/ml aprotinin; filtration is carried out using GF/C WHATMAN filters (presoaked in 1.0% polyethyeneimine for 2 hours prior to use); and the filters are washed twice with 5 mLs cold binding buffer without BSA, bacitracin, or aprotinin.

Titer of the passage 3 baculoviral stock is determined by plaque assay and a multiplicity of infection, incubation time course, binding assay experiment is carried out to determine conditions for optimal receptor expression.

A multiplicity of infection of 0.1 and a 72-hour incubation were the best infection parameters found for hC5a receptor expression in up to 1-liter Sf9 cell infection cultures.

Example 16: Baculoviral Infections

Log-phase Sf9 cells (INVITROGEN Corp., Carlsbad CA), are infected with one or more stocks of recombinant baculovirus followed by culturing in insect medium at 27°C. Infections are carried out either only with virus directing the expression of the hC5a receptor or with this virus in combination with three G-protein subunit-expression virus stocks: 1) rat Ga_{i2} G-protein-encoding virus stock (BIOSIGNAL #V5J008), 2) bovine b1 G-protein-encoding virus stock (BIOSIGNAL #V5H012), and 3) human g2 G-protein-encoding virus stock (BIOSIGNAL #V6B003), which may be obtained from BIOSIGNAL Inc., Montreal.

The infections are conveniently carried out at a multiplicity of infection of 0.1:1.0:0.5:0.5. At 72 hours post-infection, a sample of cell suspension is analyzed for viability by trypan blue dye exclusion, and the remaining Sf9 cells are harvested via centrifugation (3000 rpm/ 10 minutes/ 4°C).

Example 17: Purified Recombinant Insect Cell Membranes

Sf9 cell pellets are resuspended in homogenization buffer (10 mM HEPES, 250 mM sucrose, 0.5 ÿg/ml leupeptin, 2 ÿg/ml Aprotinin, 200 ÿM PMSF, and 2.5 mM EDTA, pH 7.4) and homogenized using a POLYTRON homogenizer (setting 5 for 30 seconds). The homogenate is centrifuged (536 x g/ 10 minutes/ 40C) to pellet the nuclei. The supernatant containing isolated membranes is decanted to a clean centrifuge tube, centrifuged (48,000 X g/ 30 minutes, 4°C) and the resulting pellet resuspended in 30 ml homogenization buffer. This centrifugation and resuspension step is repeated twice. The final pellet is resuspended in ice cold Dulbecco's PBS containing 5 mM EDTA and stored in frozen aliquots at -80°C until needed. The protein concentration of the resulting membrane preparation (hereinafter "P2 membranes") is conveniently measured using a Bradford protein assay (Bio-Rad Laboratories, Hercules, CA). By this measure, a 1-liter culture of cells typically yields 100-150 mg of total membrane protein.

Example 18: Agonist-Induced GTP Binding

Agonist-stimulated GTP-gamma³⁵S binding ("GTP binding") activity can be used to identify agonist and antagonist compounds and to differentiate neutral antagonist compounds from those that possess inverse agonist activity. This activity can also be used to detect partial agonism mediated by antagonist compounds. A compound being analyzed in this assay is referred to herein as a "test compound." Agonist-stimulated GTP binding activity is measured as follows: Four independent baculoviral stocks (one directing the expression of the hC5a receptor and three directing the expression of each of the three subunits of a heterotrimeric G-protein) are used to infect a culture of Sf9 cells as described in Example 16.

Agonist-stimulated GTP binding on purified membranes (prepared as described in Example 17) is assessed using hC5a (Sigma Chemical Co., St. Louis, Missouri, USA) as agonist in order to ascertain that the receptor/G-protein-alphabeta-gamma combination(s) yield a functional response as measured by GTP binding.

P2 membranes are resuspended by Dounce homogenization (tight pestle) in GTP binding assay buffer (50 mM Tris pH 7.0, 120 mM NaCl, 2 mM MgCl2, 2 mM EGTA, 0.1% BSA, 0.1 mM bacitracin, 100KIU/mL aprotinin, 5 µM GDP) and added to reaction tubes at a concentration of 30 ug protein/reaction tube. After adding increasing doses of the agonist hC5a at concentrations ranging from 10⁻¹² M to 10⁻⁶ M, reactions are initiated by the addition of 100 pM GTP gamma³⁵S. In competition experiments, non-radiolabeled test compounds (e.g., compounds of the invention) are added to separate assays at concentrations ranging from 10⁻¹⁰ M to 10⁻⁵ M along with 10 nM hC5a to yield a final volume of 0.25 mL.

Neutral antagonists are those test compounds that reduce the C5astimulated GTP binding activity towards, but not below, baseline (the level of GTP bound by membranes in this assay in the absence of added C5a or other agonist and in the further absence of any test compound).

In contrast, in the absence of added C5a certain preferred compounds of the invention will reduce the GTP binding activity of the receptor-containing membranes below baseline, and are thus characterized as inverse agonists. If a test compound that displays antagonist activity does not reduce the GTP binding activity below baseline in the absence of the C5a agonist, it is characterized as a neutral antagonist.

An antagonist test compound elevates GTP binding activity above baseline in the absence of added hC5a in this GTP binding assay is characterized as having partial agonist activity. Preferred antagonist compounds of the invention do not elevate GTP binding activity under such conditions more than 10% above baseline, preferably not more than 5% above baseline, and most preferably not more than 2% above baseline.

Following a 60-minute incubation at room temperature, the reactions are terminated by vacuum filtration over GF/C filters (pre-soaked in wash buffer, 0.1% BSA) followed by washing with ice-cold wash buffer (50 mM Tris pH 7.0, 120mM NaCl). The amount of receptor-bound (and thereby membrane-bound)

GTP gamma³⁵S is determined by measuring the bound radioactivity, preferably by liquid scintillation spectrometry of the washed filters. Non-specific binding is determined using 10 mM GTP gamma ³⁵S and typically represents less than 5 percent of total binding. Data is expressed as percent above basal (baseline). The results of these GTP binding experiments may be conveniently analyzed using SIGMAPLOT software (SPSS Inc., Chicago, Illinois, USA).

EXAMPLE 19 Calcium Mobilization Assays

A. Response to C5a

U937 cells are grown in differentiation media (1 mM dibutyrl cAMP in RPMI 1640 medium containing 10% fetal bovine serum) for 48 hrs at 37 C then reseeded onto 96-well plates suitable for use in a FLIPR™ Plate Reader (Molecular Devices Corp., Sunnyvale CA). Cells are grown an additional 24 hours (to 70-90%)

confluence) before the assay. The cells are then washed once with Krebs Ringer solution. Fluo-3 calcium sensitive dye (Molecular Probes, Inc. Eugene, OR) is added to 10 ug/mL and incubated with the cells at room temperature for 1 to 2 hours. The 96 well plates are then washed to remove excess dye. Fluorescence responses, measured by excitation at 480 nM and emission at 530 nM, are monitored upon the addition of human C5a to the cells to a final concentration of 0.01-30.0 nM, using the FLIPRTM device (Molecular Devices). Differentiated U937 cells typically exhibit signals of 5,000-50,000 Arbitrary Fluorescent Light Units in response to agonist stimulation.

B. Assays for Determination of ATP Responses

Differentiated U937 cells (prepared and tested as described above under "A. Response to C5a") are stimulated by the addition of ATP (rather than C5a) to a final concentration of 0.01 to 30 uM. This stimulation typically triggers a signal of 1,000 to 12,000 arbitrary fluorescence light units. Certain preferred compounds of the invention produce less than a 10%, preferably less than a 5%, and most preferably less than a 2% alteration of this calcium mobilization signal when this control assay is carried out in the presence or absence of the compounds.

C. Assays for the Identification of Receptor Modulatory Agents: Antagonists and Agonists

Those of skill in the art will recognize that the calcium mobilization assay described above may be readily adapted for identifying test compounds as having agonist or antagonist activity, at the human C5a receptor.

For example, in order to identify antagonist compounds, differentiated U937 cells are washed and incubated with Fluo-3 dye as described above. One hour prior to measuring the fluorescence signal, a subset of the cells is incubated with a 1 M concentration of at least one compound to be tested. The fluorescence response upon the subsequent addition of 0.3 nM (final concentration) human recombinant

C5a is monitored using the FLIPRTM plate reader. Antagonist compounds elicit at least a 2-fold decrease in the fluorescence response relative to that measured in the presence of human C5a alone. Preferred antagonist compounds elicit at least a 5-fold, preferably at least a 10-fold, and more preferably at least a 20-fold decrease in the fluorescence response relative to that measured in the presence of human C5a alone. Agonist compounds elicit an increase in fluorescence without the addition of C5a, which increase will be at least partially blocked by a known C5a receptor antagonist.

Example 20. Assays to evaluate agonist activity of small molecule C5a receptor antagonists

Preferred compounds of the invention are C5a receptor antagonists that do not possess significant (e.g., greater than 5%) agonist activity in any of the C5a mediated functional assays discussed herein. Specifically, this undesired agonist activity can be evaluated, for example, in the GTP binding assay of Example 18, by measuring small molecule mediated GTP binding in the absence of the natural agonist, C5a. Similarly, in a calcium mobilization assay e.g., that of Example 19, a small molecule compound can be directly assayed for the ability of the compound to stimulate calcium levels in the absence of the natural agonist, C5a. The preferred extent of C5a agonist activity exhibited by compounds of the invention is less than 10%, more preferably less than 5% and most preferably less than 2% of the response elicited by the natural agonist, C5a.

EXAMPLE 21. Expression of a C5a receptor

A human C5a receptor cDNA was obtained by PCR using 1) a forward primer adding a Kozak ribosome binding site and 2) a reverse primer that added no additional sequence, and 3) an aliquot of a Stratagene Human Fetal Brain cDNA library as template. The sequence of the resulting PCR product is set forth as SEQ ID NO:1. The PCR product was subcloned into the cloning vector pCR-Script AMP (STRATAGENE, La Jolla, CA) at the Srf I site. It was then excised using the restriction enzymes EcoRI and NotI and subcloned in the appropriate orientation for

expression into the baculoviral expression vector pBacPAK 9 (CLONTECH, Palo Alto, CA) that had been digested with EcoRI and NotI.

As set forth in the tables appended hereto, R groups do not necessarily correlate with those R groups shown in the text of the specification or in the claims.

The following table 1 (204-313) is a list of preferred 1,2,5 substituted imidazoles of the present invention;

The following table 2 (314-419) is a list of preferred 1,2,4,5 substituted imidazoles of the present invention;

The following table 3 (420-421) is a list of preferred pyrazoles of the present invention;

The following table 4 (422-423) is another list of preferred 1,2,4,5 substituted imidazoles of the present invention;

The following table 5 (424-456) is a list of preferred amides of the present invention; and

The following table 6 (457-458) is a list of preferred amides of the present invention.

Additional Aspects of Preferred Compounds of the Invention

The most preferred compounds of the invention are suitable for pharmaceutical use in treating human patients. Accordingly, such preferred compounds do not exhibit single or multiple dose acute or long-term toxicity, mutagenicity (e.g., as determined in a bacterial reverse mutation assay such as an Ames test), teratogenicity, tumorogenicity, or the like, and rarely trigger adverse effects (side effects) when administered at therapeutically effective dosages. For example, preferred compounds of the invention will not prolong heart QT intervals (e.g., as determined by electrocardiography, e.g., in guinea pigs, minipigs or dogs). Therapeutically effective doses or concentrations of such compounds do not cause liver enlargement when fed to or injected into laboratory animals (e.g., mice or rats) and do not promote the release of liver enzymes (e.g., ALT, LDH, or AST) from hepatocytes in vitro or in vivo.

Because side effects are often due to undesirable receptor activation or antagonism, preferred compounds of the invention exert their receptor-modulatory effects with high specificity. This means that they only bind to, activate, or inhibit the activity of certain receptors other than C5a receptors with affinity constants of greater than 100 nanomolar, preferably greater than 1 micromolar, more preferably greater than 10 micromolar and most preferably greater than 100 micromolar. Such receptors preferably are selected from neurotransmitter receptors such as alpha- or beta-adrenergic receptors, muscarinic receptors (particularly m1, m2, or m3 receptors), dopamine receptors, and metabotropic glutamate receptors; and also include histamine receptors and cytokine receptors, e.g., interleukin receptors, particularly IL-8 receptors. Such receptors may also include GABAA receptors, bioactive peptide receptors (other than C5a receptors, including NPY or VIP receptors), neurokinin receptors, bradykinin receptors, hormone receptors (e.g., CRF receptors, thyrotropin releasing hormone receptors, or melanocyte-concentrating hormone receptors).

Additionally, preferred compounds of the invention do not inhibit or induce microsomal cytochrome P450 enzyme activities, such as CYP1A2 activity, CYP2A6 activity, CYP2C9 activity, CYP2C19 activity, CYP2D6 activity, CYP2E1 activity, or CYP3A4 activity. Preferred compounds of the invention also do not exhibit cytotoxicity in vitro or in vivo, are not clastogenic, e.g., as determined using a mouse erythrocyte precursor cell micronucleus assay, an Ames micronucleus assay, a spiral micronucleus assay, or the like and do not induce sister chromatid exchange, e.g., in Chinese hamster ovary cells.

Highly preferred C5a receptor antagonist compounds of the invention also inhibit the occurrence of C5a-induced oxidative burst (OB) in inflammatory cells, e.g., neutrophil, as can be conveniently determined using an in vitro neutrophil OB assay.

Initial characterization of preferred compounds of the invention can be conveniently carried out using a C5a receptor binding assay or functional assay, such as set forth in the Examples, and may be expedited by applying such assays in

a high throughput screening setting.

The following Tables depict further preferred compounds of the invention. In those Tables, the vriable X indicates the pouint of attachment of the specified moiety to the structure shown at the top of the Table.

203	202	200		CMP II
	S.	×		HI N H R3
H ₂ C × ₂	H ₃ C/× ₂	, C ×	C ~ ×	7. Pro
·				TABLE 1
×			*	균
J. J.	× N	×	Z S	3
2.08	1.91	1.96	1.93	Ri'n Ilme
150.2075	462.2784	462.2784	448.2627	RI'n Ilme Cind Mass Ilt Ion Obs
450.2075 4 60.3053	463.3241	463.3201	449.3036	Ils lon Obs

		<u>. </u>	:	<u>.</u>	i	
209		208	201	206	205	201
					Q _x	
×		±,0,	F. 22	5	6H ³	Η ₃ C × 2
·					· · · · · · · · · · · · · · · · · · ·	
-	CH.		,×-\		***************************************	. X
X ₅					***	
1.9		1.96	, ,	2.05	2.04	2
375.2675 376.2897		453.2416	467.2573	401.2729	467.2573	459.2075
376.2897		454.2695	160.2885	482.3052	468.2880	460.2983

	1	1	!		
215	214	213	212	211	210
CII,	Q+ Q+ 2+	×	ф ф	H ₃ C _X	CF.
	· :	:	:		
	×	×	×	:	,×-
		H,C,O,CH,	Z	z	
2.06	1.97	1.94	1.92	1.9	lv.
473.3042	497.2314	469.2729	492.2525		453.2416
	49 <u>8.2</u> 636	. 469.2729 470.2986	493.2012	435.2709	453.2416 454.2688

	<u> </u>	<u> </u>	·	i	
221	220	219	210	217	216
× × 5	X CH	H _a c X	H,0 ,	H ₃ C . X	CI+3
		:		:	
<u>-</u> ×	×	*	,×	×	×
XII.	X, CI1,				
1.78	.	2.01		2.1	2.03
	438.2784	471.2322	485 2479	477.258	445.2729
A39.313		472.266	A86 OR 15	478.2953	446.2729 446.302

227	226	225	224	223	222
CH ₃	CH ₃	ਦੂ~~```	ਰੂ ੰ	d Ct	CH ₃
			!		
,x C	*č	X CI:	×	, ×	×
		2		\$\frac{1}{2}\frac{3}{2}\frac{3}{2}\frac{3}{2}\frac{1}{2}\frac{1}{2}\frac{3}{2}\frac{1}{2}\frac{3}{2}\frac{1}{2}\frac{3}{2}\frac{1}{2}\frac{3}{2}\frac{1}{2}\frac{3}{2}\frac{1}{2}\frac{3}{2}\frac{1}{2}\frac{3}{2}\frac{1}{2}\frac{3}\frac{3}{2}\f	X, CH ₃
2,08	1.79	1.86	1.98	2.08	1.86
521.1637	405.2416		459,1901	459.2006	452.294
521.1637 522.2009			100.228	160.3140	453.3306

	i		· · · · · · · · · · · · · · · · · · ·		
233	232	231	230	229	228
					Š
H ₃ C × × × × × × × × × × × × × × × × × × ×	CH ₃	X ₂	H ₃ C O	H ₃ C,O	CH ₃
				:	:
,×	×	×	×	×	X, 0-CH3,
Z-\	X CO	×5			
1.98	2.1	2.05		2.02	1.91
462.2704	477.1739	465.2239	461.2467	461.2467	513.2628
462.2704 463.3135		466.267	462.2092	402.2794	514.2951

238	236	235	234
;	F.C.		
x x		<u> </u>	× ×
H,C H,C	오 오	ÇŢ,	Z CT
:		:	:
×	X C01,	X CH3	
	Ž (c)		
2	2.11	2.07	
483.2522 484.3027 482.3046 483.3743	49 <u>5</u> ,20 <u>80</u>	535.1793	
484.3027 483.3743	.496.3355	536.2415	

245	244	243	242	241	240
CH ₃ X,	T	H,C.O.X,	H,0,0 X1	H ₃ C.0	H ₃ C \(\frac{1}{\chi_{\chi\ti}{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\ti}{\chi_{\chi\ti}{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\ti}}\chi_{\chi\tingbor\chi_{\chi_{\chi_{\chi_{\chi}\ti}}\chi_{\chi_{\chi\tinm\tinm\chi_{\chi_{\chi}\tinm\tinm\chi_{\chi\tinm\tinm\chi_{\chi_{\chi\tinm\tinm\tinm\tinm\chi_{\chi_{\chi}\tinm\tinm\tinm\tinm\tin\tinm\tinm\tinm\
H ₃ C X ₂	H ₃ C X	H ₃ C X ₂	H ₃ C	#,0 x	H ₃ C
				-	
×	Ž,	×	,×	×	Ž,
N. S.	***************************************	140 1-04,		II, O N-OH,	a So
2.01	1,98	1.97	2,01	1. 8b	1.98
467.2673 468.3038	510,222	402,3046 .403,3743	431.252. 484.3157	482.3046 483.3611	527.242 528.29.79.77
466.3036	616.2015	403.3743	£518'H8h	483.3671	51 pc 8c2

251	250	2/19	248	247.	246
×		X O C T			× × CF
H ₃ C ×2	J.CX	±,0,	H ₃ C	H ₃ C	H ₃ C X
	:	:			<u>:</u>
×	×	***************************************	× ×		,,,,
***		× ×	,x,	37	×
2.08	2.06	2.01		1.99	N
	503.2573	483.2522	515.222	471,2322	511.2471
470.3242	504.3187		516.2795	472.2836	512.3024

2	2	2	.2	N2	<u></u>
257	56 :	265	254	253	252
	, S				
× CH	× _z CH ₃	CH X2	× ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	× ~ GH	χ ² CH ³
			: : :		
×	X, CH ₃	×	×	×	×x ×x
X ₅ H ₃ C	× × CO	×	CH		x, Ci)-v, Oil,
N	2.7	2.05	1.99	1.93	1.95
439,2624	442.1895	487.2027	439.2624	496.2838	496.2030
439.2624 440.3058	444.2521	400.258	440.3063	197.3374	197.3316

263	262	261	260	25	2
<u>ن</u>	1		0	1	250
×	× _z Ci:	× _z	X ₂	X 25	CH ₃
	;				:
×	×	×	×	×	Z-X-X
X, CII, CII,	×	X CI	<u>X</u>	X, CI	×
1.76		2.06	ಬ. ೧೦ ೧೦	1.97	1.78
400.3253 401.4043		461.2034	477,1739 478,2339	459.2077	504.2525
481.4043		462.2581	478.2339	460.287	505.3216

		1			
269	268	<u>267</u>	266	265	264
×	×	2 × × × × ×	2 × × 2	2 2	X CH
			:		· · · · · · · · · · · · · · · · · · ·
×	×	×	<u>×</u>	×	N
CO X	, CI	HO	X -0 > F	X ₀ Cl ₁ CCl ₁ CCl ₁	×
2004	2.05	1.88	2.07		1.76
481.2034	443.2128	425.2467	493.2341	503.2339	410. <u>2</u> 47
					411.2861

275	274	273	272	271	270
, x		<u></u>			
X X	ੁ ਦੁ	<u>5</u>	Ξ ² Σ ² ×	다. 스타.	, X, CH
		:			
×	×, CH3	CH ² CH ² CI ⁴		,×	×
X, NIH ₂	**************************************	· · · · · · · · · · · · · · · · · · ·	*-(1)		CO CO
1.74	1.9	2.03	2.02	2.06	2.1
424. <u>2</u> 627	433.2729		479.2573	521.1637	477,1739
425.298	434,3161	434.3264		522.2083	477.1739 478.2429

		·			
201	280	279	270	277	276
O N	, ×	¬————————————————————————————————————	7×	п-(, x
F,C	H ₂ C X	X	×	×	CH ₃
		i	: 		:
x-	×-	×	×	×	×
		× V	X, CH, CH, CH,	O X	No.
İ	į.	2.07	j		1.98
501.2183	407.2027	496.3002	470.2846	195.1644	454,2369
			471.3502	496.227	454.2369 A55.2756

287	286	285	284	283	202
	\bigcirc	×			Ž
H ₃ C	H ₃ CX	±,0.	+1 ₃ C	H ₃ CX	H ₃ CX
			: !		CH ₃
			: <u>`</u>	×	×
×					
1.99		2.	.N	2.01	
503.2784		465.3144	473.3042	459.2006	
503. <u>278</u> 4 504.3394			474.3561	460.3368	

293	292	291	290	289	206
					✓ ✓
X ₂	CH ₃	아. 아.	£	CH ₃	H ₃ CX
			:		
×	X, C113	CH.3	: •	*~\\	, , , , , , , , , , , , , , , , , , ,
					13 CI
2.1	ll i	2.06	2.07	1.99	
473,3042		481.2729		459.2086	
474.361		482.3294	448.3387	460.3446	

299	298	297	296	295	294
<u></u>					
×, CH	H ₃ C CH ₃	CH ₃	CH ₃	CI ₁ 3	CH ₃
				:	
×			,×-\		,, ,
×	× 0			H ₃ C	
2.02	2.05	2.01	2.05	2.05	1.76
451.2624	467.2573	413.2831	467.2573	423.2675	417.2416
451.2624 452.289B	468.2849	414.3154	467.2573 468.2819	424.2075	418.2879

305	30/	303	302	301	300
F_X,	FX.	T		π—(¯	T ×
X ₂	CH ₃	√X ₂ CH ₃	CH ₃	X X	× ₂ .
CH.	Ğ- <u>'</u> X	J.~.	:		
×	,×-	, ×	, , , , , , , , , , , , , , , , , , ,	×	×
\$\frac{1}{2} \frac{1}{2} \frac			, ×	CO OH	HO C
2.05	2.01	1.99	1.95	2.01	2.02
477.2791	485.2479	529.2377	495.2522	477.1983	477,1983
			496.3082	478.2308	478.2289

3	310	309	300	307	306
⟨S [×] 1	S			π —	TI-(
CH ₃	CH ₂	∑, ÇH X,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	XX SH	CH ₃
				H,0,0	H ₃ C,
×	,×	×	CH.	×	×
		X ₅ NH ₂	× × GI	CC	×
1.98	1.96	1.69	1.91	1.99	
459,1981	503.1079	426.2579	425.2234	491.214	
459.1981 460.25 <u>25</u>	504.2485	420.3054	420.2757	492.2740	

317	316	315	314	313	312
77		77—	T7	π—(<u>×</u>	S×
X	× CF	2	X2 CH3	√94 ×2	Ğ.
		H ₃ C ×	, , , , , , , , , , , , , , , , , , ,		
H ₃ C CH ₃	H ₃ C CH ₃	×	×	×	,×_
x, C:1,	X CF	X CG1,	×	×	
1.83	1.81	1.78	2.01	1.99	. . .99
		512.3315	403.2686	469,2529	451.2283
451.3083	433,3902	513.4124	483.2686 484.3253	46 <u>9.2529</u> 470.3111	452.2099

	1		1	1	
323	322	321	320	319	310
т—(π-{}				
× ×	×		čť.	CH ₃	CH ₃
, , , ,		1	<u>O</u> -×		
X, CH ₃	: × ()	,×-	Ω Q - Q - Q - 1	,×	
01	C C C C C C C C C C C C C C C C C C C				X - C1-13
2.02	2.06	1.93	1.97	1.95	1.97
	481.214			503.1976	506.2602
472.317	492.2753	194.3287	535.2030 5 36.2633	503.1976 504.2582	507.3284

329	328	327	326	325	324
	TI	77—	T	TI	
X ₂ X ₂	×	X ₂	×	X C	CH ₃
	J C X	:	:	x X	
J.	×	X X CH ₉	X, CH.	× , , , , ,	H ₃ C
H ₃ C × ₅	δ V		COH	THO CO	X ₂ OH
2.02	2	1.07	1.97	1.98	1.92
423.2675	475.1957	449.2042	457.2286	457.2296	443.214
423.2675 424.3092	476.2632	450.3473	458.2943	450.2092	444,2721

334	333	332	331	330	
		- X	- X		CH ₃
~×		>- <u>x</u>	CH X	~\^£3	H, 0, X
	:		χ, ,	H ₃ C ×,	
0-CH ₃	0-CH ₃	×	×		
Br————————————————————————————————————	×,	CI .	HOH	No.	
2.00	2.02	1.99	1.98		
577.1729 570.25	547.2635	491.214	491.214		
578.25	540.3262	492.2755	492.2765		

PCT/US00/26816

						
	339	338	337	336	336	
			×		×	
	H ₃ C X	X H ₃ C	, ж , ж	± ₃ C	X C	~×
	,x,	H ₃ C		×	C-X	ਹੁ- <u>`</u> ×
			* ()	× 5	× × × × × × × × × × × × × × × × × × ×	
3		× × ×	×->	OF CANAL CONTRACT OF CANAL CON	H _O	<u> </u>
2.05	1.08	2.15	2.15	1.95	1.96	
407.3563 488 4303	483.2522	515.3512	621.3173	517.2132	511.2471	
480 4303	484.3056	516.4249	3 522.3696	510.2731	71 512.298	

					
346	345	344	343	342	341
					×
H ₃ C X ₃	H ₃ C X	H _C	H ₃ C	X, H ₃ C	X H ₃ C X
;				×	X X
			:	:	:
				× : 3	*
<u> </u>	: 			:	:
OI OI		X; CII,	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	X D	HOOH
2.07	1.94		1.97	2.05	2.08
473.3042 474.3316	433.2729		487 2573	501.3719	515.3512
474.3316	434.297			502.4088	516.4047

					
352	351	350	349	348	347
H ₃ C	×, H, C \	H ₃ C X	H ₃ C \	T ₃ C	H ₃ C , ×
××	T. X.	H ₂ C X	30		:
	× ci-	^x C)× (CH.	
x _f >=-	, Ho-o'	0-01,	$\begin{array}{c} X_{1} \\ X_{2} \\ \end{array}$	HO	HO—OH—
	2.04	2.07	1.96	1.7	1.88
	489.3355	523,3199	445.3093	405,278	439.2624
	490.3575	524.3464	446,3387	408.3116	439.2624 440.2939

					
J50	357	356	355	354	353
				×	
H ₃ C	¥,0, ×	#30 X	H ₃ C	H ₃ C	H ₃ C ×
×	, , , , , , , , , , , , , , , , , , ,	H ₃ C	X Y	E X 200	- X X - 1-3-C
	(. () ×	, Ci-		()	×
x ₃ \(\)\(\) \(\	X OH	N. Oli	X _g OH	X ₈) oll
N. 000	2.07	·		2.08	2.01
539 3148 540 3187	501.3719			515,3512	509.3042
500 31 p7	502.3938				610.337

					
364	363	362	361	360	359
				× S	×
H ₂ C \	H ₃ C X	H ₃ C	H ₃ C	#.C.	H ₃ C ×
X 3				×××××××××××××××××××××××××××××××××××××××	X Jo
		CH.		· O	√ ÖŢ √ X
N	X, - O-011,	X, O-CII,	X _x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	x - 0-Cil,	$X_{\xi} = \begin{cases} C_{\text{II}} & C_{\text{CII}}^{3} \\ C_{\text{CII}} & C_{\text{CII}}^{3} \end{cases}$
2,06	2.00	1.93	N .	2.16	2.04
525.2991 526.36	109.2991	449.2679	403.2522	545.3618	505.3304
526.36			484.2723	545.3618 546.3911	505.3304 506.3531

						
370	369	368	367	366	365	
		<u> </u>	<u></u>	<u></u>		
H ₃ C X	H ₃ C \	×,	± ₃ C	±3C \	X	_\x
X ₃	×	F,C	:		×××	__\C
Q ¹ ⁄ ₂		×	CH.	×)	
X OH OH	Ho	X X	01	Ho Ho O	OH OH	, HO HIO
1 79	9	2.03	1.8	1.95	2.12	
27 225		475.2035 476.3151	435.2522	469.2365	<u> </u>	
512.3583		476.3151	436.2069	470.2861	531.3461 532.3955	

	-				
376	375	374	373	372	371
H ₃ C X	# ₃ C ×	H _C X	H ₂ C	¥,00,	H ₃ C X
		X, H ₃ C	××		X Y Y
· · · · · · · · · · · · · · · · · · ·		Ž	O-1-	×	, a
11,G	113C O-CI13)13.C	x ₈ — 0-CH ₃	x, 0-cil,	HO HO
3	1 00		200	100	1.98
187.50			n 0	553.3304	517.3668
.000:'nav	560,4091			554.3617	517.366B 1 51B AOG1

301	380		370	3 37	
					<u>×</u>
H ₃ C ×	H, C, X	H ₃ C X	#cx	H ₀ C X	H ₃ C ×
	:	× × × × × × × × × × × × × × × × × × ×	ؙ ؙ ؙ	×××°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	×, H ₃ C
		, x	0 ×		×
× × 1.	T, X	X, I	 		×
وَ حُرْدُ	٥٠٥	e con	٥	of one	o o
1.94	:	2.05	1.01	N	
475.3190		531.3825	491.3612	525.3355	
475.3199 476.3517		532.415	492,3873	525.3355 526.3682	

388	387	386	385	384	303
H ₃ C	X H ₃ C	H ₃ C	H ₃ C X	H ₃ C X	H ₃ C ×
				: i	
CI+5		x c	× × × × × × × × × × × × × × × × × × ×	2 2	N N N N N N N N N N N N N N N N N N N
, o coi,	, Coli	X X		`	
2.05	2.06	1.95	1.97	1.94	1.86
519.3097 520.2906	553.2941	511.2471	497.2679	517.2132	
520.2906	554.2720	512.2275	490.2453	518.2035	483.2522 484.2405

-					
394	393	392	391	390	389
H ₃ C	H ₃ C	H ₃ C	-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X	H ₃ C X ₂	T T T
	:	:	. :		
) OII		× 10,0011) OII
oii C	* (<u>ν</u> Ω-	×, 00+1	X
1.71	1.89	1.89	1.88	1.78	2.13
455.2573 456.2579	497.2314	403.2522	503.1976	469.2365	559.341
456.2579	490.227	484.2435	504.1985	470.2381	560.3246

		:			
400	399	398	397	396	395
H ₃ C X	H ₃ C	H ₃ C X	H ₃ C X ₂	H ₃ CX2	H ₃ C
X ₃ CH ₃	X, H ₃ C	X ₃ CH ₃			
			<u>a</u>	×, Z	gx
×,5,011	×	NO OH	*\	<u></u>	ÖH Ö
		1.97	1.85	1.05	2
		531.3825		469.9799	
	510.2987		Ando	470 2647	

			,		
106	405	404	403	402	401
H ₃ C	H ₃ C	H ₃ C X ₂	H ₃ C X	H ₃ C	H ₃ C
X	Z Z Z Z	X ₃ C _{I-I} ₃	X CI	X, CH	X,3 CH ₉
Ci-	CH X				
**	××	**************************************		OH *,	O OII
1.79	1.96	2.04			2.05
447.325	475.3199	523.3199	523.3100	481.3093	515.2703
447.325 44B.3324					3 516.2676

					
412	4=	410	409	408	407
H ₃ C	H ₃ C	H ₃ C	H ₃ C	÷3C	H ₂ C
3,	3 ×	C. X	CP.	CI-1, X	GF GF
CH ₃		×	× ·	X · · · · · · · · · · · · · · · · · · ·	CH ₃
X, Och,	, ch ²	, X		X ₈ X ₉	Ω- Σ- ×
	2.08	2.01	1.97	1,88	2.02
	495.325	489.3355	489.3355	447.325	401.286 1
	496.3224	490.3296	490.3298	448.326	482.2077

-		:		-	
418	417	416	415	414	413
~×	#C~X	H3C	H ₃ C	H,C ,	H ₃ C ×
X CH	X, CH,	3.7 Cit	. ×	C. X.	CH. CH.
		°, ×		<u>.</u> .	<u></u>
CH ₃	X ₅ CH ₃	×, 0, 01,	X ₅ CH ₃	× × × × × × × × × × × × × × × × × × ×	X ₅ C _C H ₃
2.16	2.01 41			2.1	2.15
501.3719 50	461.3406 46	4		515.3124	501.3719
502.3629	462.3389	496.3101		516.3123	502.3614

	1			
423	422	421	420	419
			×	×
H ₃ C	H ₃ C \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	H ₃ C	H ₃ C	1-1-3°C
Ci-l ₃	X ₃ CH ₃	X	3, 2	C.F.
	×		×	<u>C</u>
x, CH,	Ŭ	Ž	x,	X, VIII, VIIII, VIIII, VIIII, VIIII, VIIII, VIIII VIII VIIII VIII
2.14	2.14		2.08	
521.3173	515.3512	İ	514,4036	
522,3266	516.3379			b -c

241 SUBSTITUTE SHEET (RULE 26)

428	427	426	425	424	CMP //	
_×	_×-{	×-\		_×	R2 R4	HIN
H ₃ C X ₂	H ₃ C X ₂	i c	H ₃ C X ₂	H ₃ C X ₂	R2	P3 N – R5
			:	:	TABLE 1A N3	
					R3 is H unless otherwis specified	
H ₃ C CH ₃	X ₁ CH ₂ CH ₃	H _o C	Y-CH,	X ₅	rwis specified	
2.13	2.08	2.1	2.06	2.02	RIn. Time	
469.2893 470.3137		455.2737	441.258	427.2424	Cmd Mass H+ Ion Obs	
470.3137	456.2953	456.2899	442.2744	427.2424 428.2541	H+ Ion Obs	

		 			
434	433	432	431	430	429
x-{	X	<u></u> ×-\(\frac{1}{2}\)	_×-	_×-(
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
	: : !	: : : :	i		
H ₃ C	×	H ₃ C X	H ₃ C	No. of the second secon	X
X,	x, x,			H ₃ C CH ₃	
1.92	1.91	1.98	<u> </u>		2.02
		419.2573		461.3093	485.2479
434.3079	432.2898	, 420.2856		482.332	486.2833

440	439	438	437	436	435
×	_×-<		x-()	_×-()	<u>-</u> ×-
H ₃ C × _z	H ₃ C X ₂				
	·	:		:	
H ₃ C CH ₃	11,C X,	Š	ŎĴ	H ₃ C X,	^с но , х
* Co	× ×		X ₅		×,
1.98	1.99	2.01	2.04	2.04	1.91
447.2886	447.2886	445.2729	401.2831	433.2729	433.2729
447.2886 448.3293	448.329	446.3118	402.3126	433.2729 434.3079	434.3078

244 SUBSTITUTE SHEET (RULE 26)

446	445	444	443	442	441
<u>-</u> ×-{_>	_×-{	<u>×</u> —⟨¯⟩	<u>×</u> —	×	1_x-\(\bigcirc_{\infty}\)
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	X X Z	H ₃ C X ₂
				: ! :	
ŎĬ		H ₃ C X	H ₃ C X,	CH, CH	H ₃ C CH ₃
			X	* Co	
	1.99	2.07	2.09	2.06	1.95
459.2886 460.3427			403.2987	447.2886	447.2886
460.3427	460.3416				448.3331

452	451	450	449	448	447
<u>×</u> —	×-{	<u></u>	<u>-</u> ×-	<u>-</u> ×-	
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
1			; : : :		•
),c \	×		*	11,0° X,
T T					\$\frac{0}{5}x
2.09	2.09	2.05	2.12	2.04	2.04
529.2729	475.3199	473.3042	473.3042	473.3042	461.3042
530.334	476.3831	474.3627	474.3605	474.3634	462.362

459	450	457	456	456	451	453
×-	<u></u> x-{	×-{\(\)	_×-{	×	_×-{¯>	<u>×</u> —
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	н ₃ С Х ₂	H ₃ C X ₂	H ₃ C X ₂	Н ₃ С Х ₂
:		:	; ; ;	:	:	
Q x	Q _×	Š				*
Х ₅ СН ₃	х, Сн,	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	5	X5	S S	No. X
2.05	2.06	2	2.07	2.01	2.02	2.09
	437.2831	453.2416	459.2675	409.2518	423.2675	545,2678
424.318	438.3368	454.3023	460.326	410.3021	424.3183	546.3349

					;
465	464	463	462	461	460
×-	<u>×</u> -	<u>×</u>	<u>_</u> ×-{	<u>*-</u>	_×-
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
			!	:	
٥٠	· 한 · · · · · · · · · · · · · · · · · ·		X	, For	X — CII ₃
S. X.	×5	F	EH3	X	X ₅
2.03	2.11		2.06	2.04	2.11
467.2573	473.2831		437.2831	467.2573 468.3188	473.2831
467.2573 468.3192	474.3485	-	438.3386	468.3188	474.3436

				:		· · · · · · · · · · · · · · · · · · ·
472	471	470	469	468	467	466
<u>×</u> -{	<u>*</u> -	_×-{	<u>-</u> ×-	_×-	×-{>	_×-<
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	н ₃ С Х ₂	H_3C X_2	H ₃ C X ₂
			:	:	: : : :	
×	Ž		, The state of the	H ₀ C	±,c ×,	
X ₅	No. The second s		×5	X ₅	×5	H ₃ C
2.03	1.98	2.02	1.99	2.02	2.1	2.04
441.258	471.2322	441.258	471.2322	467.2573	473.2831	423.2675
442.3185	472.3026	442.3175	472.3021	468.3227	474.3467	424.3211

		<u> </u>		,		
478	477	476		475	474	473
<u>×</u> —	> _×		_×-{	<u>-</u> ×-	_×-{	_×-
H ₃ C X ₂	;	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
				; ; ; ;		
	: [X				X
×5	H ₃ C	H ₃ C	**************************************	X5	× 5	F-X5
<u>.</u>	2.08	2.1		2.07	20.2	2
	437.2831	451,2987	471.2322	477.258	427.2424	
	438.351	452.3606	4/2.3008			

			1				
485	:	484	483	482	481	480	479
_×-		_×-{	_×-()	_×-{	<u>-</u> ×-	_×-{	_x-{\bigs_}
	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H_3C X_2
	. ;	:	:	:	:		7
H,C	× × × × × × × × × × × × × × × × × × ×	×	OII,	CH ₃		X	ā Š
	X5	X ₃ CH ₃	C X5	X ₅	CH ₃	X ₅ CH ₃	S S S S S S S S S S S S S S S S S S S
2.07	2.09	2.06	2.14	2.08	2.08	2.07	
481.2729 482.3401	437.2831 4	481.2729			451.2987	481.2729	
82.3401	438.3447	482.3413	488.3646	438.346	452.3621		

٢							
492	491	490	489		488	487	486_
<u>-×-</u>	_x{				<u>-×-</u>	_×-{	_×-
H ₃ C × ₂	>	H ₃ C X ₂	>	H ₃ C X ₂			
	· : ·	:		:	:		
н,с-	H ₃ C CH ₃			X			X
		н,с-	¥,C	X ₅ CH ₃	° , ,	H ₃ C	X ₅ CH ₃ CCH ₃
9 07 	2.14	2.09	2.11	2.06_	2.08	2.09	3
	487.2987	437.2831	451.2987	481.2729	437.2831	451.298/	
	488.3654	438.3419	.452.3647	482.3407	438.3399	452.3614	

Aon I	497	496	. 495	494	170	303
<u>x</u> -{	x-(×-	<u>_</u> ×-{	×-		_×-<
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	н,с`	\ \ \ \	H ₃ C X ₂	H ₃ C X ₂
	:	!			· .	
Q _x	X		H ₃ C-CH ₃	<u>, </u>		X
X ₅ CH ₃	CH ₃	S X x s		CH ₃	H ₃ C	CH ₃
2.01	2.02	2.07	2.14	2.09		
439.2624	453.278	481.2729	487.2987	437.2831		451,2987
440.3276	454.3456	481.2729 482.3421	488.3656	438.3447		452.3654

504	503	502	501	500	499
<u>_</u> ×-	_×-	_×-<	<u>_</u> ×-	<u>-</u> ×-	_×-
H_3C X_2	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
,					
ā. J	H,O,O			er, oo	CH,
Z X S	X ₅	H³C, O	H ₃ C, O	· V	×5
1.97	2.06	1.99		1.99	2.06
483.2522	489.278 490.3477	439.2624	453.278	483.2522	489.278
483.2522 484.3253	490.3477	440.332	454.3479	484.3252	490.3461

510	509	508	507	506	505
<u>.</u> ×					
	# ₃ C	H,C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C
			:	:	· : ·
		×		Y H ₃ C	
CH ₃	CH ₃	Ž C	T _{AC}		H ₃ C
2.06	2.07	1.97	2.07	1.99	1.96
441.258	455.2737	483.2522	489.278	439.2624	453.278
442.3267	456.3386	484.3227	490.3457	440.3253	454.3445

517	516	515	514	513	512	511
<u>_</u> ×-{	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_×-()	x-	_×-{	x-	<u>-</u> ×-
H ₃ C ,	H ₃ C	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H _g C X ₂
		· :	·	· · · · · · · · · · · · · · · · · · ·		
H ₃ C ——F	Ž Ç				CU ₁	CH ₃
	H ₃ C F	F CH ₃	× × × × × × × × × × × × × × × × × × ×	H ₃ C	\(\sigma_{\sigma}\)	× 5
2.1	2.04	2.05	2.03	2.04	•	2.11
491.2737	441.258	455.2737	485.2479	441.258	485.2479	491 2737
491.2737 492.3412	442.325	456.3376	485.2479 486.3174	442.3253		492.3441

525	524	523	522	521	520	519	518
×-{	<u>_</u> ×-{}	_×-	x-{	<u>_</u> x-()	_x-(_x-{\bigs_}	x-()
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
		:			:		
		X			2) O	3-7-11
(X x .	×5	CI	S	1	×5		0 X 5
2.03	2.09	2.04	2.06	2.04	2.12	2.04	2.02
	493.2285	443.2128	457.2285	487.2027	493.2285 494.3027	487.2027	485.2479
488.278	494.3003	444.2792	458.2941	488.2797	494.3027	488.2782	485.2479 486.3193

Γ	· · · · · · · · · · · · · · · · · · ·	:				
532	531	530	529	520	527	526
×-{\bigs}	<u>-</u> ×-()	<u>×</u> -	<u>-</u> ×-(_)) ×-()	_×-{	_x-
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
		: : :	:	:		
	X,	X				***
(°) \	T S	X _B	S X	X ₅	F	sx ()
1.99	2.07	2.01	N	2.06	2.02	2
		445.2329	489,2228 490,2744	495.2486	445.2329	489.2228
490.2794	496.2984	446.282	490.2744	496.2982	446.2807	490.2792

538	537	536	535	534	533
<u>*</u> -{\(\)	_×-<	_×-<	<u>-</u> ×-	.×-	<u>_</u> ×-()
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
				: :	
ci,	CH,	No. of the second secon	×		, ×
×5	X ₅	CH CH	CH,	× × ×	× ₅
2.11	2.19	2.13	2.14	2	2.08
495.2886	501.3144	451.2987	465.3144	489.2228 490.2825	495.2486
495.2886 496.3486	502,3722	452.3522	466.3682	490.2825	496.3038

Γ	<u> </u>					
ç	544	543	542	541	540	539
-	×-\bigs\x		×-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	\[\times_\times		_×-{
	·	-				
	H ₃ C	H ₃ C	H ₃ C	H _C	H ₃ C	H ₃ C >
_	× :	× ×	× : .	× ×	× ×	× ×
		,	:	· : :		
-	: *	*		: 1	· · · · · · · · · · · · · · · · · · ·	
				X en la constant de l	11-6 X	
	<u> </u>	CIL	× ×	<u>.</u>	CH _y	×
0			PP			H,C
	>5	×	0, CH ³	× 5	× ₅	CH.
2.02	2.1	2.04	2.05	2.1	2.12	
497.2679	503.2937	453			· ·	
679 4	2937	453.278	.2937		451.29 <u>8</u> 7 501.3144	
498.3338	504.355	454.334	467.2937 468.352	496.3533	452.3553 502.3736	
				ω	55	

				!		
552	551	550	549	548	547	546
,×-()	_×-{	_×-(x-(<u>-</u> x-	<u>x-</u>	<u>×</u> —
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
		:				:
		No.	X Coll	Q		£ 2
CO X 5	X ₅			S. C.F.	, S	X ₅
1.97	2.05	1.99	2.01	2.02	2.01	2.1
497.2314	503.2573 504.3299	467.2573	497.2679	467.2937	497.2679	503.2937
498.303	504.3299	468.3251	490,3345	468.3528	498.336	504.3604

557	556	555	554	553
<u>_</u> ×-{	<u>×</u> -{>	_×-{	_×-{	×-{
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
			· ·	:
H ₃ C,OF		×5	H ₃ C S	S, O, S,
1.99	2.03	2.1	2.05	2.05
471.2686	499.2293	505.2552	455.2395	469.2552 470.3185
472.3348	500.3005	505.2552 506.3273	456,3164	470.3185

566	563	562	561	560	559	558
<u>×</u> —()	_×-{\bigs_}	_×-{	×-	×-	_×-{	<u>×</u> —
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
	:		:	:	:	:
X, CI	, p. p. p. p. p. p. p. p. p. p. p. p. p.	CH CH			11,0°,0°11	
Collars, S	, X	×s	CH ₂	of Xs	X ₅	H ₃ C, OFF
2.04	2.06	2.14	2.1	1.96	2.05	1.98
505.1932	501.2183	507.2441	457.2285	501.2428	507.2686	457.2529
506.2737	502.2952	508.3201	458.2933	501.2428 502.3192	507.2686 508.3424	458.3177

571		570	569	568	Į g	л }	j	566	565	
Χ,		,×-{¯}	x-(\)	<u>.</u> ×⟨		_×{		<u>×</u> —()	_×-	
	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂		H ₃ C X ₂		H ₃ C X ₂	H ₃ C X ₂		H ₃ C X ₂
					:				! !	
			116 CO11, 116 CO				×	, included the second s		CX.
ĆH	CH,	S S		H ₃ C CH ₃	X	H ₃ C CH ₃	×		- CH	*J
2.06		2.06	2.13	2.14		2.15		2.15	2.17	
467.2937		511.2835 512.3632	509.3042	465,3144		479.33		509.3042	465.3144 466.3809	
467.2937 468.3609		512,3632	510.383	466.3795	1	480.3981		510.3789	466.3809	

<u> </u>		<u></u>			
577	576	575	574	573	572
<i>x-</i>	_×-{	_×-{	_×-	<u>-</u> ×-{\(\)	_×-
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
			:		;
آ پي	či S	×	X	. e	Gr. Oi.
ST X	×5	F. S.	F. S.	×5	×5
2.06	2.13	2.08	2.1	2.04	2.12
513.245	519.2708	469.2552	483.2708	511.2835	517.3093
514.3214	520.3477	469.2552 470.3222	484.3423	512.3613	518.3871

		1			
583	582	581	580	579	578
_×-) 	> _×-{	\\ \.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	×-<->	_×-{
H ₃ C X ₂	H ₃ C × ₂	H ₃ C >2	H ₃ C / _×	# _C C	H ₃ C ×
		•		·	
	F		The state of the s		
X ₅ F	55		×5	F F	F F
	2.06	N	2.08	2	۰
	513.2392	507.2133	513.2392	525 2039	
	514.3171	508.2841		526.2794	

589	588	587	586	585	582
<u>-</u> ×-	<u>×</u> —		x-(<u>×</u>	
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
		:	:		:
X,	CH,	Ω Ω X		F CQ	
×, J	× ×	×5	F CI	X ₅	X ₅ C ₁
2.02	1.99	2.17	2.01	2.08	2.03
459.2486 460.326	527.2784	561.1505	505.1932	511.2191	461.2034
460.326	528.3599	562.2524	506.2769	511.2191 512.2936	462,2718

590 591 593	
x-\(\) x-\(\) x-\(\) x-\(\) x-\(\) x-\(\)	
H ₃ C	H ₃ C
	X ₂
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
2.01 2.06 2.03 2.03 2.03	
503.2384 504.3 469.2552 470.3 513.245 514.3 467.2573 468.321 511.2471 512.324	
503.2384 504.3166 469.2552 470.3206 513.245 514.321 67.2573 468.3217 67.2573 1512.3246	

	1	i					
603	602	601	600	599	598	597	596
_x-{	_×-	×-{	×-()	x-(_x-{	<u>-</u> x-	_x-()
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
	:		:			· :	
		H ₃ C OCH ₃	CI	II,C	H,C,O,O,CH,	Br CH ₃	
X ₅ S-CH ₃	S-CH ₃	×	(°) X5		×55	\$ X5	Вг СН ₃
}	2.04	2.05	2.05	207	ν 2	2.08	2
		597,1991	555.1901	545 1679	л Э Э Э	545.1678	
500 2000 E	456 2075	598.16	556.1432			545.1678 546.2542	

609	608	607	606	605	604
×	_×-()	_×-()	<u>_</u> ×-{	_×-{	_×-{
X ₂ CH ₃	H ₃ C X ₂	H ₃ C X ₂			
ę					
	, T	H ₃ C-O X	Q.Q.	H ₃ C-Q B _r	Br X,
× ()					× ×
2.1	0	1.97	2.09	2.06	1.99
559.2835	503.2384	527.2784	573.2991	575.1783	605.1889
559.2835 560.2635	503.2384 504.2233	528.259	574.28 <u>97</u>	576.16	606.17

616	615	614	613	612	611	610
_x-<	_×-<		<u>*</u> -	_×-	_×-()	x-(
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ CX ₂
		: : : : :		: .		
H ₂ C ×	H ₃ C	¥5		X X		, tho
×		· · · · · · · · · · · · · · · · · · ·				\$ x 5
2.05	2.03	2.03	2.02	1.99	2.07	2.1
437.2831	481.2729	481.2729	473.2137	467.2573	593.1539	593.1539
438.2783	482.2703		474.2052	468.2505	594.146	594.1388

	<u> </u>	!			
622	621	620	619	618	617
<u>-</u> ×-()	×	_×-{	_×-	×-() X
H ₃ C X ₂	X ₂ CH ₃	H ₃ C X ₂	H ₃ C	H ₃ C X ₂	CH ₃
	:		:		
H ₃ C H ₃ C X ₄	Cot.	N. X.	T X	C ·	CH ₃
×5	× 5 0	H ₃ C X ₅	×		× ×
ì	2.07	0	N	1.98	2.03
751 2007 450 2007	405 2886			483.2522	481.2729
130.2007	452.2939			484.2532	481.2729 482.2692

607B	627	626	625	624	623
_×-{	_×-<	_x-{	x-(-)	_×-	×
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	X ₂ CH ₃
					:
	ilico de la companya della companya		CH ₃	0-CH ³	X ₁ CH ₃
N. X.					X ₅
2.04	2.02	2.02	1.99	!	
511.2835	511.2835	497.2479	497.2679		
512.2421	512.236	498.1985	498.2035	-	

634	633	032		631	630	629
<u>-</u> ×-		×	_×-	<u>-</u> x-	_×-<	_×-{
H ₃ C X ₂	H ₃ C	× ×	H ₃ C \ X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
		.· !	·			
11.0-0 5.7	×	H ₃ C-O, CH ₃	11,C-0	100 - No. 100 -	CH ₃	1-1 ₃ C X,
		×5		Š		X
2.11	2.01	!	1.99	2.11	1.98	2.03
545.3042	509.3042		539.2784 540.2627	545.3042	513.2628	497.2679
545.3042 546.2994	510.2987		540.2627	546.2813	514.2338	498.2339

	·			
638	637	636	635	
<u>×</u> —	_×-	_×-		<u>×</u> —
H ₃ C X ₂	×	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
		! ! ! :		
B X		OC (X ₄	, c ₁ , c ₁
	~		×	X X
2.09	i i	2.06	2.01	
527.1936		547.2447	539.2784 540.2756	
528.22	-	548.2516	540.2756	

645	644	6/13	642 :	641	640
×-{	<u></u> ×-{	_×-(¯)	_×-()	<u>-</u> ×-	_×-{}
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
	:	i		:	
1.0-1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2	To X			· (s)	
				X	× ×
2.11	1.95	2.07	1.97	2.09	1.99
521.3042	469.2365	475.2624 476.2701	485,2137	491.2395	441.2239 442.2316
521.3042 522.3236	470.2487	476.2701	486.2251	492.2484	442.2316

		i		· · · · · · · · · · · · · · · · · · ·	-		
652	651		649	_648	647	646	
_×-	×-{	>×-{	_×-				
нзс	1130	— На С		<u> </u>	- -	- i 	
)			H ₃ C	H ₃ C	H _a C	: ` `
>2	· .	<u>×</u>	× .	× ;	~~ :	× :	>2
	:	·	:	i	;		
○	:			÷ •	÷		
		×		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	× - ; ×		-
<u> </u>	;	:	:	: 6			<i>\</i> //
			Š	J. C.		\rightarrow	
	20			 _×~			>
		ļ. 	!				
	2.05	2.11	2.06	1.99	2.02	2.01	
	497.2479	503.273	453.258	493.2729	449.2831	463.2987	_
	9 498.2578	503.2737 : 504.279			131 450		_
	578	279	454.2635	494.2809	450.2887	464,304	

277

650 150	657	ļ	656	655	654	653
×	<u>,</u> ×		<u>x</u> —	×	<u>-</u> ×-	_×-<
X ₂ CH ₃		H ₃ C X ₂	H ₂ C X ₂	X ₂ CH ₃	H ₃ C X ₂	H ₃ C X ₂
					:	
X,	H ₂ C		H ₂ C	× Coo		Σ X
×	0	j O		H ₃ C — X ₅ CH ₃	H ₃ CCCH ₃ X ₅	X ₅
2.06	2.02		2.04	2.1	2.13	2.03
467.2937	511.2835		467.2937	509.3042	465.3144	501.2183 502.2353
468.3049	512.2963		468.3029	510.315	466.33	502.2353

278
SUBSTITUTE SHEET (RULE 26)

1					
663	662	66	660	657	
_×-	×-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- <u>\</u>	×		_×-{
H ₃ C X ₂	H ₃ C ~ ×2	H ₃ C X ₂	CH ₃	H ₃ C X ₂	H ₃ C X ₂
		:	:	:	
F F CCH	H ₃ C-0	11,C-0 ×.	ē, ×	X	H ₂ C
	S C	X X X	H,C-0	11,0° \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1.98	2.01	2.05	2.07	2.04	
527.2784 Fac 2447	483,2886	525.2991	481.3093	511.2835	
528.3032	484.3015	526.3086	482.3199	512.2961	

670	669	668	667	666	φ φ
_×-{	_×-	_×-{	×	_×-{\bigs_}	×
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	X ₂ CH ₃	H ₃ C X ₂	X ₂ CH ₃
					•
Br	Br	E X	×	S X	×
Ž,			X ₅		X ₅
			2.07	!	N.166
			543.2886		535.3199
			544.3081		536,342

676	675	674	673	672	671
_×-	×-(_×-	> ×-	<u>_</u> ×-{	×
×	CH CH	X	X ₂ CH ₃	X ₂ CH ₃	X ₂ CH ₃
	×	o X	o Co	×	×
CH ₃	X, 0, 0-CH, 3	X, Q-CH,	CH ₃	CH, O-CH,	×s
2.03	1.96	i	1.95	2.19	
517.2132 518.2341	513.2628 51		513.2628 514.2707	549.3355 550.3612	
2341	. <u>514.2808</u>	-	14.2707	550.3612	

			·
682	680	678	677
_x-{	x-(x-{\rightarrow} x-{\rightarrow}	_×-{
X ₂ CH ₃	E S	CH CH	X ₂ CH ₃
:			
Br Cit's			×
S S S S S S S S S S S S S S S S S S S	X ₅ Pr CII ₃	X _s CH ₃	X _s CH ₃
2.15		2.09	
551.1936	515.1936	501.1779 502.2102	
552.23	516.229	502.2102	·

	<u></u>	1		
688	687	686	685	684
X,	_×-{	_×-<	<u>×</u> —()	_×-
H ₃ C/X ₂	CH ₃	X ₂ CH ₃	X ₂ CH ₃	X ₂ CH ₃
	· · ·	·		:
X,	X, Br	X ₄ B _r	Br CH ₃	X, CI+1, 3
* DO	S X	×	×	×
2.13				2.08
557.3042 558.3334				545 1678
558.3334		-		546.202

69/1	693	692	691	690	689
.×-{	×-<	×- -	×-{	×-{	×
X ₂ C1+ ₃	X ₂ CH ₃	X ₂ CH ₃	X ₂ CH ₃	X ₂ CH ₃	H ₃ CX ₂
Q.x	×	×	O.x	· O.×	X
X,	SX.	× ×	×		× O
2.07		2.06		2.07	
535.1484 536.1789		579.1383		535.1484 536.1722	,
536,1789		580.1661		536.1722	

				_
699	698	697	696	695
<u>-</u> ×-	<u>_</u> ×-{	_×-{	_×-{	x-{\(\)
X ₂ CH ₃	X ₂ CH ₃	X ₂ CH ₃	, X CH	X CI+
				:
×	×	×	×	,×
X ₅	×	× ×	S S X	1-X
	2.04		2.05	
	579.1383		579.1383	
	580.1639	:	579.1383 580.1685	

706	705	704	703	702	701	700
×,	×-(-x-(_×-	×-	<u>x</u> —	×-()
H ₃ C-/X ₂	X ₂ CH ₃	X ₂ CH ₃	X ₂ CH ₃	CH ₃	X ₂ CI ₁ 3	X ₂ Cl·l ₃
	7.: '					
S. X.	THE COL	T COI	× Fi —Br	X F	T D	T X
×	×	X	×	×	X	×
2.07		2.08				
531.2089 532.2447		531.2089	-			
532.2447		532.2461		!	:	

713	712	7111	710	700	.708	70:
_×-{		_×-\	т	×-(_×-{	,
H ₃ C X ₂	H ₃ C X ₂	H ₃ C × ₂	H ₃ C X ₂	X ₂ CH ₃	X ₂ CFI ₃	H ₃ CX ₂
		:	· · · · · · · · · · · · · · · · · · ·			
H _a C × _d	× ,	H ₃ C X ₄	H ₃ C X ₄		20 C C	CO
× × ×	×	, X		×	×	× ×
	1.9	1.97	1.84		9 :	
451.2635 452.2936	449.2479	437.2479	437.2479		601 194	
452.2936	450.2746		438.2715		600 94	

WO 02/49993

719	718		716	715	714
_x-()-	T	_×-{¬п	x-\	_×-{	×-\
H ₃ C X ₂	X ₂ CH ₃	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
			:		
H ₃ C CH ₃	H ₃ C ~CII ₃	H ₃ C	Š	H ₃ C CH ₃	EF X
			No.		X
1,94	1.97	1.98	2	2.02	1.91
465.2791	465.2791	465,2791	463.2635	451.2635	451.2635
466.3067	466,3057	465.2791 466.3056	464.2918	451.2635 452.2037	452.2922

726	725	724		723	793	721	720
×	_×_	_x-	Т	.*-(_×-{		×
H ₃ C X ₂		H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	X ₂ CH ₃
					· .	:	
		×	11,C		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	H ₃ C X ₁ H ₃ C CH ₃	CII, CII,
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			X	C X X S	× ×	× ×	X
2.1	2.03	2.03	,	2.06		2.06	2.05
491.2948	491.2948	479.2948		477.2791	477.2791	465.2791	465.2791
491,2948 492,3293	492.327	480.3289		478.3092	478.3101	466.309	466.31

1048	1047	1046	1045	1044	1043	1047	
×,	ў, Сн,	X, CH	H, C, Z,	H ₂ C	H ₂ C	H ₂ C X,	H,c ×,
3-		O.x	×	,×-()	× ()		× O
	Ê-x	, CH1					
		Š	N S CH ₃	o mile i		X-011	X, OH
cH ₂	* *		**************************************	, C ¹ , C ¹ ,	NIII,	3	CH ₃
2.04			1.91	1.88	1.91	1.99	1.74
595.2777			572.2821	494.3046	572.2787	537.3355	497.3042
596.3219			573.3249	495,3434	573.3109	538.3746	498,3471

Γ		<u> </u>	1	1			
1055		1054	1053	1052	1051	1050	1049
1130	, x	H,C , , , , , , , , , , , , , , , , , ,	H ₃ C	×	G , y	E X	G × S
	× C	×	×	H,C,H,cot,	Ž	11,C N COII,	, , , , , , , , , , , , , , , , , , ,
	×						
	0-cn,	0-cH,	, , , , , , , , , , , , , , , , , , ,	***************************************		ي کي و	r c
		£ ~ ×		CH ³	CH ³	X ₆ CH ₃	У,
2.1	1.95	1.99		1.78	2	1.72	1.85
579.3461	539.3148	573,2991		582,357	547.301	554,3621	588.3231
580.3743	540.3422	574,3322	_	583.4136			589.3849

1063	1062	1061	1080	1059	1058	1057	1056
			Q	Ç			
н ₃ сх	H,C ,,x	H ₃ C X ₇	H ₃ C	# ₀ 0	H,C X,	H ₃ C X ₃	H ₃ C X,
×	x-()	×	×	×	×	×	×
S-CH,	, s, ch,		» NIII,	, , , , , , , , , , , , , , , , , , ,	Ž,	¥ 31.6	HO O'H
.*-	x, cH,	X, CH,	.*	×	•	CH ₃	C °
2.09	1.98	•	1.91	1.93	2.04	1.81	1.97
561.2814	527.2971		528.2889	606.2665	561.3512	511.3199	545,3042
	528.3281		529.3276	<u> </u>	552.3825	512.3505	546.3319

1070	1069	1068	1067	1066	1065	1064
	2					
H ₃ C	H ₃ C	# _C	,,c	, C	H ₃ C	× Z
x-()	x ()	×-()	×	×	×-) x-()
	N COI,			0=1=0	OII SIII	
	.*	, , , , , , , , , , , , , , , , , , ,	NO STATE OF THE ST	, ch:	х, Сн,	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1.92	1.9	1.79	1.9			1.87
650,2663 651,2303	650.2563	580.2508	572.2821			608.2457
667.2383	651.3043	581,3011	573.3206			7 609 2976

1077	1076	1075	1074	1073	1072	1071
Q						
±,c	H,C ×	H,C	H,c X,	H ₃ C × 3	H ₃ C × x	H ₃ C ×
× .	X	ch ch ch ch ch ch ch ch ch ch ch ch ch c	Chi ²	N, C 11, C 1	X, Nic Sign	×
, , , , , , , , , , , , , , , , , , ,						, Š
×	ğ.	ch.	į. Ž	r. v.	ê, ×	CH,
1.99	1.95	1.9	1.78	1.93	1.88	1.96
571.3311	534.2995	582.3206	552.3464	631.3192	602.2927	520.2838
	535.3354	583,3616		632,3643	603.3342	521.3221

1085	1084	1083	1082	1801	1080	1079	1078
			, o			Q	
¥,	H ₀ 0 × ×	H ₃ C , x ₃	H ₀ C × x	H,c ,	#.cx	H,C	н,с
× ()	×	×	×	x-()	× ()	×	× ()
					6 x		
	ā ,		Öğ CI		× C°	37 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
X, CH,		cH.		0 0111	0 1	×)	X, CH,
1.02	1.98	1.97	2.03	1.78	}	1.97	1.75
508.3134	525, 2991	525,2991	531.2653	608.2457			574.2978
		526.2742	532.2452			615.3132	575.2848

1093	1092	1091	1090	1089	8801	1087	1086
				×)	H ₁ C \0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
H ₃ C	# _C	J.C.	#.c	# O X	H,C X,	H,c ×3	H,0 ×
		x-()	× ()	×	×	×	×
		***		وَ الْمُرْكِ الْمُرْكِ الْمُرْكِ الْمُرْكِ الْمُرْكِ الْمُرْكِ الْمُرْكِ الْمُرْكِ الْمُرْكِ الْمُرْكِ الْمُرْكِ		قَ رِيْ	*,c, \\ \',\',\',\',\',\',\',\',\',\',\',\',\',\
CI—	No.	7 = 0 0 ii,	*	×	×	×	e x
2.02	1.95	N	2.02	1.99	2.07	2.06	1.93
593.2445	559.2035	593.2348	628.3447	569.2835	559.2835	565,2496	511.3199
594.2274	560,2643	694.2117				566.2386	512.2905

1101	1100	1099	1098	1097	1096	1095	1094
						Q	
н,с	H ₃ CX	H ₃ C	H ₃ C	H ₃ C	H ₃ CX	#c	# ₃ C×
×	×.	,×,	ž	×	××	×	Ž
5-00-00-00-00-00-00-00-00-00-00-00-00-00	٥	ō Ō	, o	, o cu,	"" " " " " " " " " " " " " " " " " " "	X 00 18 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	3-0-0-1
	× Ç.	\$	× ×	£		NIII,	× × × × × × × × × × × × × × × × × × ×
1.94	1.97	1.96	1.89	2.11	2.11	1.71	2.03
573.2628	659.2835	579.2289	545.2678	595.341	629.3254	607.2617	573.2991
	560.2682	580.2228			630.3112	608.2644	574.271

1109	1108	1107	1106	1105	1104	1103	1102
							Q
±,0 ×,×		H,C	±0,	#,c	H,C	#Cx	H ₃ C
×	x-()	×		ž	- ×-	ž.	*
·							
CI NOT NOT OH		Ho	. Coll	و ا	5	ā-	
Ç ^H ,	0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	<u></u>		x, 0, cm,	Ē-	3	CH ₃
2.01	1.83	1.98	•	1.95	1.93	1.87	1.83
	·	551.3612	545.3042	545.3042	565.249G	531.2886	550.3029
			546.2955		566.248		559.2951

	1115	1714	113	1112	=	1110
		, , , , , , , , , , , , , , , , , , ,			3,0	H ₃ C / X
H ₃ ,0 × ×	H ₃ C X ₃	н,с Х	H ₃ c ×	H,c , ,	#,c ×,	н,с ×,
,X, CII,	X 0-0H,	×	×	×	× (,x,
» = S − NII,) John Market	X 0,5% NII,	Į į	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	×	K K
ÇŢ ×	ê, ×				CH CH	CH _J
1.87	1.97	1.89	2.06	2.04	1.96	1.8
560.2821	525.2991	594 2665	559.2835	585.2496	525.2991	197.3012
561.2739	526 292	595.256	560.2628	509.2412	526.2787	490.2937

		i	1	-	1
1122	1121	1120	1119	1118	1117
			, x) J	H,C,
]			H,C , ,	#,c ×,	H,c X,
×	×	X	* ()	*	××
<u>ئ</u> ے۔		Ž	of James) — — — — — — — — — — — — — — — — — — —	0=0-N1- 0=0-N1- 0-1-N1- N1-N1-
X CH,	5	يْ- و	5	ç. X	ch, x
2.0	1.89	2	1.89	1.88	1.86
631.3046	651.25	645,2839	524.3151	560.2021	560.2821
	652.2567	<u>. </u>		561.2753	561.2766

1128	1127	1126		1124	1123
#,cx		Ē,	3 C	, , , , , , , , , , , , , , , , , , ,	* * * * * * * * * * * * * * * * * * *
××	ž	**	- 3 -	, x	×
X					
g-,	, , , , , , , , , , , , , , , , , , ,	× × × × × × × × × × × × × × × × × × ×	\$		Kul' Kul'
2.07	. 0	2.01	2	2.01	1.89
627.2709	630.3206	617.289	637.2344	631.2002	644.3362
620.2573	631.3359	G 10.2725	630.2302	032,2625	G45.35

301 SUBSTITUTE SHEET (RULE 26)

1135	1)34	1133	1132	1131	1130	1129
õ l	H0 	51 0-/	₹ `	ē Ž	# ₃ C	н,с
×	***	2.	×	Ž.	, x	×
	Ž,	x, Ci, Ci, Ci, Ci, Ci, Ci, Ci, Ci, Ci, Ci	ة <u> </u>	, , , , , , , , , , , , , , , , , , ,		×, CH,
X CI		, olf	x, C11,	ōī ,	×,	
			4 87		1.92	2.02
			561 2991		586,3307	573.2991
			562 7006		507.3427	574.2791

1136	
	××
	×, cii,
1.96	
558.3359	
559.3449	

1150		.1149	1148	1147	1146	1145	1144	243
H ₃ C		H ₂ C	H,c	H ₂ C \	H ₃ C X ₃	#3cx	H,C	H,CX
×		×	××	O-CH,	o-cil,	××	Ž,	· Ž
	Ğ.						30 00 00 00 00 00 00 00 00 00 00 00 00 0	
O MIII,	ŎĬ	0 CII,	, cli'	X CH,	X Solo		Ž,	٥
×	CH ₂	Ž,	SH.	0-CH,	1000	Ky CII,	ě 🛴	, , , , , , , , , , , , , , , , , , ,
1.91		2.01	2.04	2.05	1.98	1.86	1.96	2.02
500.3202	· · · · · · · · · · · · · · · · · · ·	631.3046	539.3148	575.3148	603.2733	572.3151	559.2835	613.2552
509,323		632.2966	540.3035	576.3073		673.3293	560.2794	614.2456

Г		<u> </u>	1	1			
1156		- 155	1154	1153	1152	1151	
H ₃ C		# C	H ₃ C	н,с	H ₃ C	X, X,	\×
×		×-	×	, x	>		
		GI.					
H,C 0H 511,		н,с) 01	X, CEI,	291	H,C OH
×	CH.	CH,	N OII	, H		^.*	>,×
1.86	1.91	1.85			2.07	2.1	
495.325	509.3406	575.3148		51 1 3100	521.3406	535,3563	
496.3272	510.3491	576.3098	0,12,0		522.3412	536,3535	

305

1160 116									
H ₁₀ H	1163	162_	1161	1160	1159	1150	1157	- CMb.	
TABLE 2A IRA Is I un loss of nerwise specified IRA INDICATE IN	×-{	<u>}</u>		<u>}</u>					TI N N N N N N N N N N N N N N N N N N N
TABLE 2A IRA Is 11 unitess of the wise specified ITA X X X X X X X X X X X X B T A B	**	15 ×	H ₂ C	H ₂ C	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	E	H _C X	ng Ng	N-115
I unless of heimse specified [Institution of the content of the c	O	ex C	× C	×	×	×		TABLE 2A	
Illienwise specified Pig. X, X, X, X, X, X, X, X, X, X, X, X, X,				:	: : :	:	:	,	
	р-си,	N DI X	Dy ,			×	× x	Il neiwise specified	
	ax ax		5 <u>-</u>			Ž O	* S		
e Cmp. Mass (III-liph Obs 451.2907 452.3944 485.2831 486.3753 515.2938 516.3962 515.2939 530.32 529.2093 530.32 593.2042 594.33		<u>.</u>	2.11	;	2.05	2.07	_	Rin. Ilin	
5 (II- lon Clys 452.3944 486.3753 516.3962 516.3962 530.32 564.31	593.2042	563.1936		401.33	515,2936	485.2031		e Cmp. Mas	
	594.33	564.31	530.32	492.4342		486.9759	452.3944	s (II) lạn Obs	

) CII,
2
· cn,
p, X

		·		-,				
1181	1700	1179	1178	1077	1176	1176	1174	1173
	Ž	<u>*</u>	x-(\)	x-(-)	X	x-{\(\)	x-(<i>x</i>
, , , , , , , , , , , , , , , , , , ,	FH0	, , , , , , , , , , , , , , , , , , ,	x x	, x	CII,	, y	**************************************	
S of the second		O'x	O ex	, x	S.x.	X	V.X	₩ W
	,							
- T	110,00		1,0° - 1	Ē.	1,0-	, o-cn,	9x 4112	* ('NO)
*/	\right\{ \right\}	D-cii,		قْبُ		COL NO.		ent
2.1	2.12	2.05	2.07	1.00		2,10	2.10	2.01
519.2801 520.4012	621.3406 622.4594	545,3042	616.2030	401.3003		522.3093		8013.21 AHIE 578
520.4012	622.4504	540,4252	616,2030 610,4023	401.3003 482.4177			499 2947 500. 4012	8414.734

	1 1	1				
1189	1100	1106	1105	1104	1103	1182
		×-	×-{		- - - -	×-(~)
مر آمر	\$\frac{1}{2}	X X	354	11,0	н _з с	11,50
~ ~×	0.5 	<u>.</u>	×			
			***	×	X	×.
. i.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/ · · · · · · · · · · · · · · · · · · ·				
		!			:	
	!	: : !	; ;	! : ! :		
		Y S			m - j = -	
* * * * * * * * * * * * * * * * * * * *	19	0 - \circ				
3× 500			× 0 ×		0-1 20-1	
		_\	15	×		, X
2.15	2.09	2.11		2.17	2.09	
519.2208 553.2051	559.3199	529.3093			553.2705	
519.2208 520.3397 553.2051 554.3284	560.4452	99 590,4105	195.325 196.4300	583.2811 584.4048	2705 55	
397	1452	4105	496,4399	4.4048	554.30 <u>0</u> 1	

1200	. 1199	1190	1197	1196	1195	1194	1193	1192	1911
; -		×	x-{\(\)		×	×	<u>-</u> x-{\(\)	<u> </u> <u>*</u> —	×-()
, x, x, y,	X CH ₃	CH ₃	J. X. X.	*	CH,	CII,	, x,	x,	,x
	, , , , , , , , , , , , , , , , , , ,			S S S S S S S S S S S S S S S S S S S		, x,		o sx	
	:			:					:
n \	1160 — G11,	11,C O C C 11,		5 7 2			15g		2
(ait,					<u>. </u>	1.5. O		<u> </u>	~
2.09	2.12	2.05	2.05	1.91	2.09	2.04	2.05	1.05	2.26
529.2093		575.3140	545.3042	511.3199				511.3199	559.2521 560.3608
530.33		576,4329	545,3042 546,4178			576.4352	545.3042 546.4219	511.3199 512.4327	560.3608

1200	1208	1207	1206	1205	1204	1203	1202	1201
	x-(_x-{\bigs_}	<u>_</u> ×-	<i>x</i> —	,×-(¯¯)	x-{	,×-(¯)	<i>x-</i> (
11 ₅ C	H ₃ C X ₂	, x	H ₃ C X,	H ₂ C X,	XX XX	H ₃ C X ₃	II ₃ C X ₂	H ₂ C X ₂
O'x	O'x					O sx		Jux .
								!
7 - S	آ کی۔	C					11/6 - \\ _\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
آ کی	X	ē. X		\(\sigma_{\text{o}}\)		\ \right\{ \sigma}		
2.09	2.1	2.0g	2.14	2.05	2		2.11	2.11
549.2547	519.2441	405.2598	509.3206	503.2737	469.2093		593.2042 594.34	563.1936
549.2547 550.3127	520.2955	<u> 406.3074</u>	510.3687	504.3181	<u>470.3277</u>		594.34	564.32

1218	1217	1216	1215	1214	1213	1212	1211	1210
_x-{	x-()	_x-(<i>y</i> —	x-(<i>y</i> -	<i>y</i>	x-(x-(
11 ₃ C ×	H ₂ C X,	H ₃ C × _z	, x,	H ₃ C X,	H ₃ C x,	H ₃ C X ₂	, , , , , , , , , , , , , , , , , , ,	II ¹ C X
C sx		l Control	O ox					
		i i i					:	
				الم الم		وَيْ حَالَ	III.C	
\(\)	0 0		ē ,	\$	الم الم		<u>ē</u>	
2.22	2	2.13	2.04	2.19		2.1	1.99	2.19
519.3613	543.325	613.3144	479.33	505.3457		499.2987		525.2911
519,3613 520,4305	544.3029	513.3144 514.3647	400.3875	506.40	[499.2987 500.3643	400.3585	526,3676

1227	1226	1225	1224	1223	1222	1221	1220	1219
<i>x-</i>	x-(_x-{	x-{\(\)	<u>_x-</u>	<i>y</i> -	x-(x-(
, x, 25,11	11 ₃ C X ₂	H ₃ C X ₂	HJC	, , , , , , , , , , , , , , , , , , ,	Н,С Х,	H ₂ C ×	113c X2	× 24.
	O's			l Sex	l C		a variable of the state of the	
	:							
,	ر رب _و	رُ الْمُ	ا مِيْ			116 ×		11/6
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		, , , , , , , , , , , , , , , , , , ,	X	ē, ~ ×		5,00		cil,
2,06	2.17	2.08		1.97	2.13	2.05	2.06	1.91
523.3563	535,3563		520,3093	195,325	521.3406	545.3042	515.2936	101.3003
523.3563 <i>524.4395</i>	636.4433	560.3092	530.3716	496.3076	522,4055	546,3696	510.3008	402,3035

_				·					
	. 1236	1235	1234	1233	1232	1231	1230	1229	1220
	x-{\(\)_	x-(-)	x-{	x-()	<u>×</u>	x-(x-(x-(\bar{\bar{\bar{\bar{\bar{\bar{\bar{	x-{\rightarrow}
	нус	, , , , , , , , , , , , , , , , , , ,	H ₃ C X ₃	H ₂ C X ₂	II ₁ C X	x z z z	H ₂ C X ₂	life ×	H ₃ C X ₂
			O x						- Contractive Cont
						· · ·	4	! : :	! !
	iyi, — ga	iligo V							
		<u></u>		, is		:			
	2.17	2.07	2.17	2.00	2.09	2.00	2.26	2.16	2.17
1 321 1231	527.3301	493,3457		503.2811	553.2705	 	563.3876	507.3512	.557.3406
	520.4103	494,4268	560.4126	504.3691	554,355	519.2061	564.4906	500,4426	550,4227

314 SUBSTITUTE SHEET (RULE 26)

1245	1241	12/13	1242	1241	1240	1239	1230	1237
<u>x</u> —	x-(=)	<u>-</u> x-	<u>_</u> x-	<u>*</u>	<i>x</i> —	<u>*</u> —	<u>.</u> x-	x-{\bigs_}
11,C X ₂	11,C X,	, x, , , , , , , , , , , , , , , , , ,	H ₃ C X,	1-\fo\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	H ₂ C X ₂	, , , , , , , , , , , , , , , , , , ,	11 ₃ C , X ₂	11,0
O'x						N. X.		X X
_			: : :	· · ·		:	! !	! : : : :
								11c -cu,
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		g, ×				ē.		11.6
2.04	2.05	1.94	2.26	2.15	2.16	2.11		2.15
559.2035	529.2729	495.2006	567.3013	591.325	501.3144	527.3301		557.3406
560.3697	530.3501	496.3611	560,463	592,4272	502,409	528,4191		. 558.4276

1254	1253	1252	1251	1250	1249	1248	1247	1246
Ž		x-()	x-()	<u>-</u>	x-()	 s-{\bar{\bar{\bar{\bar{\bar{\bar{\bar		x-()
X2 C11,	X,	н,с Х	3,4	H ₃ C X ₂	H ₃ C X ₂	11 ₃ C	**************************************	H ₃ C X,
S.X.							l C	
	:		<u> </u>		! !			
ν _ε	5. J.					Ĭ		
Xa	<u>ā</u>	____\\	<u> </u>		**	Ç	ē.	\(\sigma_a\)
2.02	1.82		2.1	2.13	2.04	2.05	1.94	2.13
575.3148	541.3304	503.3563	543.325		573.2001	543.20.60	509.3042	
575,3148 576,4094	542.4101	<u>503,3563</u> 50 <u>4,45</u> 31	544.4181	550.4245	1066'725	544.3730	. <u>510.379</u> 6	535.3190 536.4042

1263	1262	1261	1260	1259	1250	1257	1256	1255
<u></u>	x-(\)	x-(\(\bar{\pi}\)	 		x-(\)	x-()	×	×
H ₃ C X,	H ₃ C X,	, x,	Н ₃ С Х ₂	II ₃ C × ₂	×	n ₃ c × _z	CII	X2 C01.
			O x	O'*		X	, x,	× × × × × × × × × × × × × × × × × × ×
							i	: :
				00			14 0 - el	11.6.00 1.1.00 1.
× x		i ci			Ē		X	,
2.10	2.09	2.02	2.24	2.15	2,04	2.25	2	1.97
627.3025	<u>621.3355</u>	507.3512	597.3719	621,3355	557.3400	597.3719	501.3618	605.3254
627,3025 620,4063	.622,4498	588.4437	598,4802	622,458	. 558,750¢	598.4869	501.3618 502.4799	

1272	1271	1270	1269	1268	1267	1266	1265	1564
×,	Š	<u>-</u> x-	×-	_x{\bigs_}	.x{\bigcirc}	x-{>	x-(x-{
K, CII,	CII,	×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×	X	н,с х,	FIJC	H ₃ C X ₂	, x	11,0 ×2
N.X.	**	O de la constantina della cons			O'x		O'x	
	· · · · · · · · · · · · · · · · · · ·	; 1 	! !			!	! ! !	
	2-3-3	11/2 0-3/1	11,000					
C _a x			ō×			₩ _x	ē, ×	
2.12	2.03	2.04	1.91			:		2.10
551.3512	575.3148	545.3042	511.3198					627,3025
551.3512 552.448d	576.4091	546,3881	511.3199 512.4009		:			628.485

318 SUBSTITUTE SHEET (RULE 26)

1281	1280	1279	1278	1277	1276	1275	1274	1273
<u>-</u> x-	<i>x-</i> (<u></u>	x-{\(\)	x-(x-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	x-(-x
136	, , , , , , , , , , , , , , , , , , ,	CII	, , , , , , , , , , , , , , , , , , ,	, x , z , z , z , z , z , z , z , z , z	H ₃ C X ₂	н,с х,	H ₄ C X,	, x , y , y , y , y , y , y , y , y , y
O x	O'x							
					! : :			: : : !
0 200				o, Jo			and and and and and and and and and and	11,0-0
	H _C	S			\$			ed.
	2.05	2.08	2	•	2.07	1.97	1.99	1.85
594.2397	530.2449	566.3257	526.2944	560.2707	551.3512	575.3148	545.3042	66167119
595.334					552,4422	576,4000	540.3702	512.394

1290	1289	1288	1287	1286	1205	1284	1203	1282
_×-	х-(¯¯)	×-(×	×	x-(~)	×-(¯)	x-(\$\)	×-{
, x	,x,	XX YE	CH,	CH,	x X	H ₂ C	, x	4,5 -x,
			S,x,	××				
		:					:	
						or v	0.50	0 20
0-C11,		ē, **	\(\sum_{\sigma} \)	* O - O - S. F. C.		ā×	- Ccl. x	
	2.06	2.05		2.13	2.14	2.00	2.07	2.12
551.2740	521.2643	407.2799 400.3539		543.325	513,3144	479.33	594.2397 595.3354	570.2762
551.2740 552.3503	521.2643 522.3414	400.3539	!	544.4046	514.3954	480.4123	595.3354	571.3751

	}							
1299	1290	1297	1296	1295	1294	1293	1292	1291
×-()	<u>*</u> —	<u>*</u> —	.×()	×-()	x-(<u>-</u> x-	x-(<u>-</u> x-
н,с х,	11 _C	нус	нзс	**************************************	, , , , , , , , , , , , , , , , , , ,	*X,	**	15G
J. A.	₩.×			J.X	, x		Jax.	
		-					<u>:</u>	: - :
		*****		X	S S S S S S S S S S S S S S S S S S S	CO	CI CI X	
Xo	<u></u>	\ \rightarrow_{\infty} \ \ \rightarrow_{\infty} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, , , , , , , , , , , , , , , , , , ,	ē,		0-51	Ē, ×	*
2.05	2.06		2.14			2.13	2.14	2.14
521.2643	487.2799		651.2604		: 	503.2157	519.2200	527.31.12
521.2643 522.3441	<u> </u>		652.3790	-		503,2157 504,3151	520,312	528.4017

	·		 			·			
1308	<i>:</i>	1307	1306	1305	1304	1303	1302	1301	1300
×	-	x-{	x-{	<i>x</i> —	_x-{\}	x-{\bigs_	x-{	x-(x-(
	I		7,5	#			I	Ŧ	-
1	المجتر	××.	×	ري الم	, C	- J.C	XX XX	H ₂ C	J.C.
-	×	×		×	×	× ×	×	× ×	**
	-				····			: i	:
									:
						: :	i i	! !	· !
ē,		5 5 5	5	ت كي			0		
,×		السير. :	ا کسین	السبي	5	. 0		<u></u>	
(*	0-CI		<u>ē</u> ×	0		ā <u>*</u>	9	
						! >		!	>
		'		2.14		<u> </u>	<u> </u>	<u>:</u>	2.06
		593.2157	553.2051	519.2200 520.3032		583.2157	519.2208	527.3112	551.2748
		584.3069	554.2903	520.3032		5 <u>8</u> 4.2103	519.2200 520.3009	520.3984	552.3575

1316	1315	1314	1313	1312	1311	1310	1309
x-\(\)	-<		> = =		\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	×-{	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
**	45° ×	13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6	H ₂ C	196 xx	1.56 ××	\$5.	11/2
Jex (* * * * * * * * * * * * * * * * * * *	ex C	y .	
		: ! !		i	:	: : : !	:
						Ol S	0 2 7
g *	o-cii		ĞÎ.	*	o-cii,		ž Š
2.16	2.06	2.05	2.00	2.10	2.09	2.09	2.11
527.3112	<u>551.2740</u>	521.2643	487.2789	543.2017	507.2452	537.2347	503.2504
527.3112 528.3931 407.2790 400.3499	652,3557	521.2643 522.3368	400.35 l,	543.2017 544.3722	568.3282	536.3116	504.3281

					j		 	
1326	1325	1324	1323	1322	1321	1320	1319	1310
_x-{	x-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	<u>-</u> x-	<i>x</i> —(¯)	<u>.</u> ×-{¯}	<u>-</u> x-{\(\)	<i>x-</i> (¯)	x-{	<u>*</u> —
11 ₃ C X ₂	, , , , , , , , , , , , , , , , , , ,	#\$C	, x	,**	, x x x x x x x x x x x x x x x x x x x	*X*	361	, x,
W. A.	O'x	J. K.	O sx	W.X	O x	O xx		× ×
_								: !
1								
	<u>ٿ</u>	*	о-си,				0-Cil	
2.12	2.13	2.17	2.06	2.06	2.06	2.14	2.06	2.05
	535.2011		551.2748			527.3112 520.3930	551.2740 552.3566	521.2643
570,3573	236.36	520,3907	552,3509	522.3411	400.3520	520.3930	552.3566	522,3353

1035	1334	1333	1332	1331	: 1330	1329	1320	1327
<u>_</u> x\(\bar{\bar{\bar{\bar{\bar{\bar{\bar{	x-(¯)	x-(x-{\bigs_}	×-(<i>y-</i>	x-(x-{	<i>x-</i>
11,c X ₂	H ₃ C X ₂	, x	H _C X,	н,с Х,	11,c ×,	*** !it	H ₃ C X ₂	H ₂ C X
J.			O'x		S.X.		O ^x	
	: : :				· · · · · · · · · · · · · · · · · · ·			
		X					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		CO.J.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			<u>a</u>		
2.11	2.11	2.1	2.12	2.04	2.05	2.01	2.19	2.11
599.2759	509,2654	535.2811	557,3210	501.2854		617.2905	575,3124	697,2.002
599.2759 600.3705	_569.265 <u>4</u> 670.3599	530,307)	, voi v. 055	592.3729	551.2740. 552.9500	510.3644	576.4055	600.3760

1343	13/12	1340	1339	1330	1:337	1336
x-\ x-\	×	x-()	×-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	-	> x-(×-<>
H ₃ C X ₂		, x, x	H ₂ C X ₃	H ₂ C X	3	ilg ×
			S i			×
:		:		· · · · · · · · · · · · · · · · · · ·		
i	!	:	:	·		:
		0		11.75°		
		Ğ.	\$ 00 miles		X CI	× V
2.	2.7	2.16	2.07	2.00	2.00	2.10
507,2452	537.2347		551.2740	521.2043	487.2799	,575.312 <i>4</i>
500.3300	530.3232	520,3904	552.3596	522.3442	400.3532	576,4045

ឆ្ន	ū	135	12	į.	13	73		1-
1353	52	· <u>5</u>	<u>S</u>	349	ið :	27	16	<u>ह</u>
x-(<i>y</i> —	x-()	_x	x-(x-(x-(x-(x-()
**	H ₂ C X ₂	H ₂ C / X,	1,c ×,	**************************************	H ₃ C X,	II3C ×,	11 ₅ C	, x,
J.X		l Jak	O x					
	!	!			!		!	
150 150	0,	, DI	P P					
ğ×		**************************************		ق ۴	\(\)			cut,
2.05	2.19	2.1	2.11	2.1	2.16	2.00	2.09	2.09
559,2190	507.2311	611.1948	581.1042	547.1998	577.300			537.2767
560.31	598.34		502.29		578.4044	602.369	572.3517	539.3624

;		<u> </u>	<u> </u>	i	ı	i .		
1362	1361	1360	1359	1350	1357	1356	1355	1364
<u>*</u> —	<i>y</i> ()	<u>-</u> x-	x-(<u>x</u> —	x-()	x-{\bigs_}	x-()	.×-{``
нзс	, x	н,с х,	H ₃ C X,	H ₃ C X ₂	, , , , , , , , , , , , , , , , , , ,	H ₁ C X	II ₃ C X	H ₂ C ×,
	S ox				J'x		y y	,x
!	:							
			, in .	a a	Ho o	=======================================	ج _ي کا	-F
×c	ã	_\x_\sigma_\x_\sigma_\sigma_\x_\sigma_\sigm	, o O		i ā	C ×	, o	×o
2,19	2	; ; ;	2.73	, <u>7</u>	2.02		2.08	
541.3457 542.4019	507.3614 508.4463		573.3355	543.325	509.3406 510.4212		623.2147	
5 12 13 13 13 13 13 13 13 13 13 13 13 13 13	500.4463		574,4336	544.3902	510.4212		024.31	

1371	1370 0VE1	1:169	1368	1367	998.1	1365	1364	1:363
x-(,x(¯)	x-()	<u>.</u> x-(x-()	x-(x-()	_x-{\bigs_}	<u>x</u> —()
, x	, x	11,c	II ₃ C X ₂	l ¹ c X	11,0,0	, x, x, y,	H ₂ C X ₂	н,с х,
		Sex .						
			· .		:			
X.							alo July	
ã√,×	ıı'c X	cH.	→ × c			Ē, ×		*
1.97	1.93	1.87		2.04	2.05	1.90		2.18
451.2987	437.2831	423.2675		563.2946	533.2042	199.2999		571.3503
<u> 451.2987 452.3679 </u>	436.5482	424.320	,	564.3766	634,366	500.3	:	572,447

				·				
0.00	1379	1378	1377_	1.376	1.375	1:374	1.173	1372
x-()	_x	x-	x-(×-	×-()	x-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	<i>x</i> —(x-(
156	, x,	136	, x , z , z , z , z , z , z , z , z , z	**	, , , , , , , , , , , , , , , , , , ,	,x, ,±,5	, x = 55	11 ₅ C
Jex.	×	O ×	, x	×	, C	J.X	· ·	×
		:	! !			:	: :	
S. X.	2			**		E X	5,000	
<u>ē</u> *	, v	x, x,	ē,	11,00	1,0	<u>.</u>	1.c × ×	, , , , , , , , , , , , , , , , , , ,
2.11	2.07	2.02	2.05	2.01	1.96	2.12	2.08	2.03
405.2598		457.2285						
	472.3165	<u>457.2285</u> <u>45</u> 0, <u>3</u> 003					516.27	50 <u>1.</u> 1779 502.2567

	į	i		1.	1			
1378	1397	13%	1325	1394	1393	1392	1391	0.00
د ا	×-{					\[\sigma \sigma \]) x-{) x-{
		.=	-					
	c x	Sol X	**	\$\frac{1}{2} \tag{2}	\$ x	3,7	11.6 ×,	, x , x , x , x , x , x , x , x , x , x
	***	y× O	×	×	×	×		×
				: .		-		
		: :	; ;	· !	: :		-	
Br	- 5.5.3 T		B 5 5				. 52 C	
	611 ² C11 ² C11 ²	11,0	CH	Ē	H,C	<u> </u>	HC X	CII.
2.01	1,91	1.06		ı	1.81	2.16	2.13	.96.1
501.1770 502.1894	511.3199	497.3042			:	519.220	505.205	495.325
502.1094	512.3108			512,4008	2 498.3747	519.2200 520,3135	505.2051 506.2906	496.4054

	1/107	Sovi	1/10/	1.4	l E	Ĺ		i_	
į		/=/ G	<u> </u> <u> </u>	į į	NO2	jë T	įĖ	1:399	
	,			-_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~ ×	×-	- \ -×	
	n _s c	ہ ا	J 26	11,0		J. 6	H ₂ C	250	
	× ×	×			*\				
	X	~ ×	× _	× /	× /			×.	_
-			:		<u> </u>				
	!	!	i			i	!		
-		:	:	:	:	<u>.</u>	!	!	
-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		~ ·5		7	7	P. P.	D. D.	
	* *) ! !	× ×					
	Sir Cir	~\ \(\frac{1}{5} \)				<u> </u>		· "x	
	CI.		, ,	3		~ 	S. J.		<u></u>
\vdash			<u> </u>	<u> </u>		<u> </u>		<u> </u>	
2	2	1.96	1.0	2.03	ا دم ا	1.9/	2.08	2.06	
491.2540 492.2603	465.31	451.29	437.20	469.2893	455.2737	441.258	529,2093	515.1936	
0 492	<u>.465.3144</u> <u>466.3223</u>	451.2987 452.3093	437.2031 436.2925	893 47		258 4			
.2683	3.9223	2.3093	. 10.2925	470,2926	456.20	112.2661	530.222	516,206	

1416	<u> </u>	1414	ار ان	1412	1411	1410	1409	1.408
<i>x</i> -{\bar{\bar{\bar{\bar{\bar{\bar{\bar	x-(x-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	<u>x</u> —	x-()	x-(x-{	x-(x-()
ңс Х,	H ₂ C	**	H ₃ C , , ,	, x, x, y,	,x,	n'c X	, x	, x 3 ⁶ 11
No.	O'x		N. X.	O sx				×
:								
	CI X ₃	2	2 ×	II,C-c \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1,6-0	11,c-o		
CI1,	ē,*	1130	Ç113	ā,	11,c	C11,		11.5C ×
2.05	2.09	2.04	2	1.90	1.95			2.05
615.2936	485.2598	471.2441	457.2285		467.2937		519.2061	505.2705
516.2304	400.1973	471.2441 472.1711	150,1470	481.3093 402.2171	467.2937 468.1446		520,2956	506.2844

1/25	1424	1423	1499	142)	1420	1419	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1417
<i>x-</i> {	<i>x-</i> {\bigs_}	<i>y</i> -	<u>-</u> ×{	x-(x-\(\)	x-(<u>x</u> —	×
, , , , , , , , , , , , , , , , , , ,	, x y y y y y	нус Хх,	H ₂ C X	x x 1.3/2	x z z z z z z z z z z z z z z z z z z z	11 ₃ C	X, X,	364
	l O'x		O'x	O'x	O x			
	:				: : :			
111-		Bi		1	1			
<u>ē</u>	H ₂ C \	SI1	χ,—CI1,	g	II ₃ C ×	CH.	Ē~~.	11,C ×
2.09	2.04	1.98	1.96	2.00	2.06	2	2.12	2.09
529.2093	515,1936	501.1779		531.2697	517,2541	503.2304	543.325	529.3093
530.21	516.1976	.501,1779 502,1747	AD7,1623 ABB.1573	531.2097 532.2490	517.2541 510.2202	504.2027	544.2772	530.2516

	_	•	į	ı		,			
	යි 	1433	1432	1231	1430	1429	1428	1/12/	1/126
	x-{\bigs_}	x-(x-(<u>×</u> —	x-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	x-{=	_×-{	x-{\}	_×-{-}
							·		
	المنتخبر المنتخبر	ي الم	н"с	المجسر المجار	7.55	н,с	ير ا	ئار ر	нъс
	×	, ,		*	* !		**	×	
		C V	C S	,×	×:	J. W.			X
		i			:				
	i	:		;		·	:	:	
	:	i :		!		:	!	:	
	ilic-	11,0-	11,0	01-	01	<u>C</u> :		7	Ī
	. الر			x		:			
3	~~~ .) Ş	~~	±.0.	<u>×</u>	× /	<u>,x</u>	× _s
			<u> </u>		f. !	Co.f.		×	3
1.98	1.94	1.89	2.00		<u> </u>	; ,N	· _	<u> </u>	
	<u>.</u> <u>.</u>	i	i	2.03	96		1.95	68	
5.3144	51.29 <u>8</u> 7	37.2031	85.2598	471.2441	. 1.96 457,2285	469.2093	455.273	1.89 441.258	
465,3144 466 3366	451.2987 452.3127	437.2831 438.2931	485.2598 406.2763	472,2611	450.2379	3 470.2090	455.2737 456.2708	442.2531	
			· ω		70		708	531	

1435 145	100 341	481.3093 Ano 3Ani	- 93							
5. X, H ₂ CO ₁ , X,	468.3	467.2937	<u>!</u>		10-10-10-1			× × ×	x-(1443
5	482.3	401.3093	<u>i</u>	ÇII.	",c			H ₃ C X ₂	x-(1442
5 X 1140 X X X X X X X X X X X X X X X X X X X	468.0	467.2937	j	2	, , , , , , , , , , , , , , , , , , ,	:		136	x-{	1741
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	454	453.278	_ 1.81	Ē		:	O'A	X C C C C C C C C C C C C C C C C C C C	x-{\bigs_}	1440
5 X, H ₃ C X ₂ X ₃ X ₃ X ₄ X ₆ Col ₃	100.	479.33	2.03	X, CII,)-0-()-x	:		II ₃ C >,,	x-{\bigs_}	1/139
H ₃ C X ₃ X ₃ X ₃ X ₃ X ₃ X ₄ X ₅ CH ₃ X ₆ X ₆ CH ₃ X ₆ CH ₃ X ₆ CH ₃ X ₆ CH ₃ X ₆ X ₆ CH ₃ X ₆ X ₆ CH ₃ X ₆ 1 466	405.314			13.50	:	S.X	***************************************	x-{\(\)	1438	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 452		1.93	, x	1.00	• • • •	Jex !	, x, s,	x-(1437
H ₂ C X X X X X X X X X X X X X X X X X X X	1 438		1.9		H _C CH	i	J.X	H ₃ C X,	x-(1436
				½—CI1,			O'x	P ₃ C X	<i>y</i> {\bar{\bar{\bar{\bar{\bar{\bar{\bar	1/35

	:		1	1	ī	1	i i	
14:52	. 1351 	1450	14.19	1446	14.17	1416	1445	24
x-(-x-	x-(x-()	×-(x-()	×-(x-(
11,c ×,	IIJC X2	** ***********************************	H ₂ C x,	H ₂ C	T-SC	H ₃ C \	II,C	×,
			×		Sox Sox	N. X.	Jux !	SX SX
			:	;	:	:		
150 X			7	10 - () - () - () - () - () - () - () - (1,00		~~C~	, v
Cit.	X6—CH3	or S	150 ×	g^	H,C X	F10	4-CI1 ²	~_×
	1.95	2.05	2.03		3	1.97	1.95	
	451,2907 452,3453	505.2705		509.3406		40r. 30r.	495.325	
:	452.3453	506.3199	, <u>, , , , , , , , , , , , , , , , , , </u>	510.4019		405 325 A06 3746	496,3688	

<u></u>			·				•
1460	1459	1457	1456	1455] ! ; ! ;	1454	7.53
*-\bigs *-\bigs	_x	×-{\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- ×			<u>×</u> —(x-{\bar{\bar{\bar{\bar{\bar{\bar{\bar
.=! =		<u> </u>					*
H ₃ C	** X	× I	н,с х,	H ² C × ×	J. S. H.	X S	, x
Cy Cy	Jox		J'×		X		Jex Control of the co
	· · · · · · · · · · · · · · · · · · ·	į				<u>:</u>	
	:	;	:	ì	<u>!</u> :	:	
						11,6	11,0
ell'	2 / 2	,x	CH,	X ₀ CII,	× 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1.0 ×
1.82	1.9	1.83	1.8	2.07	2.07	_2.03	
495.2886 496.3381		467.2573	453.2416	513.3144		479.33	
.496.3361 .492.3166	462.3106	460.2991	453.2416 454.2023	.514,367	193,3457 494,4073	480,3838	

1470	1469	1.468	1467	1466	1465	1464	1463	1/162
<u>.</u> ×\(\)	x-{	x-{\bigs_}	x-{\bigs_}	<u>x-(</u>	x-{	x-(x-{	.x-(
XX International Control of the Cont	, x,	**************************************	nic ×	11,C X,	196 x,	, , , , , , , , , , , , , , , , , , ,	11 ₃ C X,	- J. C.
S.X	, C							X X
	:	: : :		:				
<u></u>	H _C	×	11 ₄ C	CII ₃	<u>ē</u>		CH	CH.
2.01	1.97	2.05	2.02	1.96	2.08	2.07	N	1.93
507.3512	573.3355	557.3408	543,325	529.3093	543.325	529.3093	515,2936 516,35,42	609.3042
507.3512 500.4052	5 574.3986	557.300 <u>8</u> 550.0001	544.387	530.3663	544.3928	รวดเวีย	516,3542	510,3551

1.480	1479	1478	1477	1476	1475	1474	1473	14/2	1471
××	Š	×	××	.x-\(\bar{\bar{\bar{\bar{\bar{\bar{\bar{	x-()	x-{\bigs_}	<u>×</u> —	.×-(\)	<i>x</i> —(
Coll	01,	01,00%	CII	× × ×	, x,	**	XX Square	, xx	X
-x	S, x,	S. X.	S. X.	ox ox		O'x			
							: :	!	
				11,000	11,c-0 X	11/0-0	140	145 O-	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.
61,	; oj,	11 ₃ C	H ₂ C	×	<u>ā</u>			11.C ×	ā
2.14	2.09	2.01	1.93	1.05	1.91	1.07	1	: • •	N
543.2249	<u>515.1936</u>	465.3144	437.2031	611.3199	511,3199	497.3042			507,3512
544.29	510.2552	<u> </u>		512.367	511.3199 512.3705	498.347	i	:	500,4127

	 		1				, 		, 	
1491	1/90	1489	1480	1467	1486	1405	1/104	1403	1402	1401
×	×	×	Š	×	×	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		×	Ž	×
X, CI15	CH ³	CII.	Sil.	CI-J	G. C.	Olf.	01,	Xy CII3	cut,	CI1,
,x						X,	×, , ,	X,x	, x	N. X.
	· i		:			•			:	
چ پ	Ž Oj	HQ.		, S-CII,		- g - S	5 ×			, ,
či,	11 ₃ C	oi,	ci.	11,CX ₈	on'	cu,		11,C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ch,	31
N	1.91	2.07	1.93		2.1	2.13	2.06	2.04	2.08	N .
509.3406	481.3093	505.2705 508.204	495.325	467.2937	479.33	199.2751	471.2441			455.2737
509.3406 510.3073	402.3200	506.204	496,3770	160.3300	400.3071	499.2754 500.3322	471.2441 472.2965	457,2205 450,2740	484,3603	456;3135

1502	1501	1500	1499	1498	1/19/	1496	1495	100	1493	1402
×	×	Š	×	Š	×	Ž	Š	Ž	Š	×
CH CH	CH CH	CI.	CH ³	cit ²	CH	CI13	Ol Ol	X ₂ CH ₃	Cil	ZZ CF1,3
**	X			, x	X,x	×,	S. X.		S. X.	, x
	:		: :		:	:				:
		ا ما	er or) cu,	-cu,		15. 3. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			14. 01. 01.
113C	14°C	1,0	H ₃ C	H ₃ C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	H ₄ C	11,0	CII.	11,10		11 ₃ C
2.05	2.06	2.02	1.95	2,05	1.95	2	1.94	1.06	1.09	1.81
515.1936		495.325	467.2937	470.33	451.2907	455.2737	525.3355	497.3042	<u>625.3355</u>	497.3042
516.24	471,2441 472,2934	. 496.3720	460.3324	3100.0012	452,3412	456,3007	526.3023	490,333	520,3015	490.338

200 X COL COL COL COL COL COL COL COL COL COL			ī ·		1	1						
		1513 ×	1512	1511	1510_	1509	1508_	<u> 1507 - </u>	1506	1505	1504	1503
OII, OI, OI, OI, OI, OI, OI, OI, OI, OI,				Ž	Š	Ž	Ž	, X	T No.	××	Š	×
\$\begin{align*} \begin{align*} \begi		CII	CH ₃	CH ₂	Oly Oly	OJ.	CII	00,	CI	CIL	CII	5 2
\$\begin{align*} \begin{align*} \begi		N. X.	S _x			X .					N. X.	S. X.
\$\begin{align*} \begin{align*} \begi		-		; ; ; ;		:	:			:		
\$\begin{align*} \begin{align*} \begi												
2.12 5.43.2249 1.95 455.2737 2.04 409.305 2.04 471.2441 2.04 471.2441 1.93 437.2031 4 1.94 451.2907 41 1.94 437.2031 43 1.98 451.2907 45		1	11,0 ×,	1		71	5	5		7	T ₂ C × _e	II.C × _G
499.2754 5 499.2754 5 499.2754 5 499.2754 5 499.2754 5 137.2831 43 137.2831 43 137.2831 43 137.2831 43				2.03		!		2.04]		
9 544.20 1456.315 1404.3472 1472.2907 1472.2907 1430.3254 1480.3817 1480.3817 1480.3817	465.3144			479.33	451.2907	437.2031		471.2441	483.305	455.273		
	160.3637	452.3440	430.3310	400.3817	152,3422	438.3264	500.3232	472.2907	404,3472		544.28	

	 			 		 -				`
1524	1523	1522	1521	1520	1810	1618	1517	1516	1515	1514
×	×	××	×	×	Š	×	Š	×	×	Š
CII. ²	Xy CII,	01, 0,x	OII	ci.	OI ON	CII.	, CII,	col	CII.	01,
,x.	S. X.	S. K.	,xx	S,x,	S x		, x,	S.X.	<u></u>	S. X.
·					:					
15.00	15. C. J.	المرا	نگر کو			آ کی اور	ال المار	\$)	ā, J	
11,C	11,C	11.C	H ₃ C ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	11,C X	113C X	113C	II,C X ₀	11,C	11,C	11,C
2.04	2.01	2.12	·	2.03	.2	1.92	1.9	1.96	1.87	
	465.3144	9106.669			509.3406	401.3093	467.2937	495,325		
480.3809	465.3144 466.3678	534.3594			510,3971	482.356	467.2937 468.3403	490,3754	467.2937 468.338	

1535	1534	1533	1532	1531	1530	1529	1520	1527	1526	1525
×	Ž	×	Ž	Ž	×	×	×	Ž	Š	×
0	Öİ OVK	CI	O. C. C. C. C. C. C. C. C. C. C. C. C. C.	St.	City	X ₂ CI15	و م	CII	PHO CH	Coll
×		, x	×,×	, x					, X	Ox,
: : : :		.;	; ;		•	: :				
		0-01						ر کی ا		3 2
H ₂ C × ₈	11,C	H ₂ C	H ₃ C X ₃			H,C	II,C X	1,c \	11,c X,	H _a C × _a
1.9	204	}		1.97	1.89	1.00	1.99	1.91	1.00	
525.3355	601.3667	!	i		495.2806	481.2729				
525.3355 526.3854	601 366n 602 415n		i ;	523.3199 524.3652	496.3300	1.00 481.2729 482.3152	509.3042 510.3497	481.2728 482.3157	467.2573 460.2988	

1			<u> </u>				
1544	15/12	15/11	15/10	1539	1530	1537	15.16
x-()	×-{\ \	>-<	> x-{	\\ x-\(\)	×	x-(x-(
32	<u> </u>	<u>.</u> =	= =				
**	°C X	***	1 ₀		S X	**	× 55
			×			×	C x
;	ì		i	· :	:	:	
!	! !		i i				
×	Br Xs	Br.	Dr X	Š., , , , , , , , , , , , , , , , , , ,	\$ 0 P	5	2
X ₀	C113	FJC X	CI1 ²	<u> </u>	11 ² C × x	CH,	ē, *
1.94_	2.11	2.07	2.02		1.06	i.o	9
_441.260	529,2093	515.1936	501.1779	511.3199	497.3042	483.2886	Ans 250n
442.2997 450.321	530.27	516.24	502.23		498.3447	483.2886 484.3271	490

1653	1552	1551	1550	1549	1548	1547	1546	1545
<u>*</u>	x-()	_x		x-{\bigs_}	<i>y</i> -	x-(x-(_x-{\bigs_}
, x,	x x y	T ₁ C X ₂	**	19c	H ₂ C X ₂	, x, x, x, x, x, x, x, x, x, x, x, x, x,	× × ×	351
		O x	O ex	O'sx				O'X
	!	11	: [: !	:	! }		
11,0-0	1,6-0	II,C-0 X				II.C V	115C X	
<u></u>	× 3c ×	Cit ²	<u>5</u> *	1,c ×	ČI,	ā		er×
1.90	1.95	1.88		2.06	2.01	2	1.97	2.04
481.3093	467,2937	453.276	519.2861	505.2705	491.2540	465.3144	451.2987	469.2093
481.3093 482.3591	168.3404	454.32	520.3427	506.3239	491.2546 492.3076	465.3144 \ 466.3600	452,3/168	470.3382

		· · · · · ·		1	i		1	<u>, </u>	
1562		<u> </u>	1566	1559	1550	1557	1556		1554
_×		-×{	x-(<u>-</u> ×-	x-(×	×-(×-{->	_×-{\bar{\bar{\bar{\bar{\bar{\bar{\bar
-									
	يُو ۗ	× ×	× ×	م م	**************************************	مسر	35	- J. 55	II _C
	×.	×.	×.		"	"		~X	
								The state of the s	N. X.
	:			· · · · · · · · · · · · · · · · · · ·	:	:	:	<u> </u>	_
	:				:	:			
		:	! !		!	i ,	: :		
Į.	CI .			Dr _	Di-		2	2	2
	<u> </u>	.×						**	*
	ار ا	2~~	*C >x	ē_ √ *	-2c ~~	ii'c	-x	ijc ~~ x	Š
						; ; ;	:	:	3
9	2		2.03	3			2.09	1	8
167 330F	469.2093	455.2/3/	029.2093		515.1936	529.3093	485.2590	471 2441	
	469.2093 470.3403	. 456.3232					485.2590 486.3078	1 100.2709	
						<u> </u>	<u> </u>	٠, ٠	<u> </u>

15/1	1570		1560	1567	1566	1885	1564	1563
x-(.×-{¯}	,×-()	<u>*</u> -	x-{>	x-(x-{\bigs_}	x-(x-{\rightarrow}
× ·	H ₃ C X ₂	× 55	, x	H ₂ C X ₂	, x	× × ×	, x	, x }
		! Osk	O sx	1 Cyr		o de la companya de l	O ×	No.
:		:	;	: : !	; ;	:	: :	
116	, o				II,C	ligo X	Si Ci	o-
"ic	CII,	eix	11,c \		, <u>ş.</u>	1,c ×	Ē,),c ×
1.00		2.04	N	1.94	1.99	1.95	2,07	2.03
467.2937	453.270	479.33	405.3144	461.2907				
467.2937 460.3429		480.3848	465.3144 466.3705	<u>461.2907</u> 46 <u>2.3</u> 4 <u>0</u> 2	465.3144 460.3694	451,2907 452,3467	405.2598 406.3048	471. <u>5</u> 441 , 475. <u>5</u> 55

	·						
1579	1570	1577	1576	1576	1574	1573	1573
x-\(\big \) x-	\(\) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	x-(\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) x-() x-()	×-(•)	×-{¯}
H ₂ C	-56 ×	, , , , , , , , , , , , , , , , , , ,	, x	, y	* * * * * * * * * * * * * * * * * * *	II,c X	× .
					" Cyx		- Cox
		! :	:	·		:	
			no.			11,5 O- O-X	11,C
X _g OII,	, iic	ē, x	ı'c 🔨	ē,*	H ₂ C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	y, 01,1	~_*
2.09	2.05	·	2.03	1.96	1.92	1.92	
519.2861 520.3426	505.2705		509.3406	495,325	481,3093	481,3093	
520.3426	506.3306	, !!	510 201		401.3093 482.3046	482.358	

	<u> </u>							
1590	1508	1507	1506	iōiiō	1504	1503	1502_	1501
Ž			×	×	×	×-(<u>x</u> —(x-(5)
SI SIX	Öl Ö	CIT	CII?	51 02	CIT	, x x x x x x x x x x x x x x x x x x x	, x	, x
				X	S _x	O'X		C ox
			***	:	; ;		:	
		njo		200			il'c	n'c
ori ori	CI.	X Colls	11,c X,	<u>o</u>		1 <u>1</u> 0	g^x	ilo ×
2.03	2.12	2.05	3 33					
473.2643 474.2992	493.3457 494.4006	465.3144	554.2093	526.250	513.014		- i	
474.2992		466.3634	555.353 <u>0</u>			:	: : :	

	 								
1600	1599	1598	1597	1596	1595	1594	1593	1592	1591
) ×		Ž	Ž	×	×	Š	Ž
CIT	Colf	Si Si Si Si Si Si Si Si Si Si Si Si Si S	CII.	col col	col.	CH	Coll	CII	CI l
			\sum_{x}						×.
			:	:	:	:		:	•
				T X			o x	CI	CI
11,0	11 _C C	CII	ē.	H ₂ C × ₈	H ₃ CX ₀	11,C ×0	ii,c ×	11.5C × 4	H ₂ C X ₈
2.02 2.05	<u> </u>	2.1	2.14	2.08	2.06	i	2.11	!	
459.2406 460.2065		473.2643 501.2956	517.266	489.2347		533.2365	505.2051	491.1095	
460.28 <u>65</u>		474.3057 502.3344	518.3196		475,2191 478,2581	5 534.3019	506.2504	5 492.2394	

		1 :		-					_		
	1612	161	1610	1609	1600	1607	1606	1605	1604	1603	1602
	Ž.			Ž	×	Ž	×	Š	×	×	Ž
	CF.	CH CH	<u> </u>	or or or or or or or or or or or or or o	X ₂ Ci-l ₃	oj,	Cil	CI	CII	CII,	CI
	, x					X	, x				
				:	### ### ### ### ### ### ### ### ### ##	:					
				110-0		, , , , , , , , , , , , , , , , , , ,	, o-Q			Ž.	***
	11,0	ii,c X	ōi j	OII.	1. C		١		Š	11,6	11,0
1.92		i		1.05	2.09	2.03	2.1	2.03	1.99	2.1	
481.3093 482.3568	467.2037 460.3423	509.3042		527.3148	513.3150	485,2042	501,2956			501.2956	
402.3560	460.3423	510.3471	650.3929	520.3573	514,3523	400.3231	502,3905	473.2643 474.3029	445.2329 446.2758	502.3315	
						•					

		i I	i	· · · · · ·					
	1622	1620	6191	1618	1617	1616	1614	_1613	
				×	Ž				
	oil oil	Cl. Cl.	<u>3</u>	X CII,	CIT.	Cil.	S.X.	X CII,	
						1	;	!	
	* F O O O O O O O O O O O O O O O O O O	110-0							
6,15		oi oi	<u>ئ</u> وي	n'c x cut	* * * * * * * * * * * * * * * * * * *	or or	× ==0	lijc	×
2.09	2.09		2 2	2.07	2.05	1.98	1.89	\ \ \ \	
409.2347 400.2097	5 <u>31.2</u> 653 559.2906	523.3563	495.325	523.261	491,2540	539.3512	511.318	509.340	
490.2097	5 <u>9</u> .2906 560.3568	524,4204	496.3752	<u>5</u> 24,31 <u>5</u> 6	0 492,3016	540,4002	511.3199 512.3646	509.3406 510.4003	
			-						

	1 . ;	- :	···							
1645	1644	1643	1642	1641	1640	1639	1630	1637	1636	1635
	X	Š	Ž.	Ž	×	X		×	×	Š
ca?	OF OK	CH3	CII.	°CI	<u>G</u>	×	× CII,	SII-3	CII.	COL
, x								, , , ,		X
				:		; !	!			
		- cr ₁				gr cri	"c an	, d , d , d , d , d , d , d , d , d , d	- Col.	× ×
11,c ×,	11,c	11,00	H,C ×	H ₀ C X ₀	II,C X ₈	H ₂ C X ₀	H ₂ C × ₈	11,c	11,c	o v
1.85		1.73		20.1	3	1.0	1.77	1 80	/	
407.2937	453.278	439.2624		40.3093		467.2937	453.278	525 4355		
408.3407	454.3231	440.3095		402.3608	j 1		454.3210		7 460.3360	

	1	:	1	:	
1651	650	1649	1640	1647	1646
x-()	-x-	<i>x</i> -{\bigs_	_×-	_x-{\bigs_}	_×_
, x , y , H , K , K , K , K , K , K , K , K , K	1150	x x y	25.1	, x , x , x , x , x , x , x , x , x , x	, x
5 ×	G Say	5 ×	- Far of the second sec	Ö A	C V
	· ·		: :		
IIGC X _s	0 2	2 2			
of X	₹	~×	Ci v	ē, ,	c ×
2.16	. !	2.06		2.11	
<u>F53.1018</u>		499,2999		<u>503.1703</u>	
554.31	:	500.3384		504.20	

· T		1	,		
1656		1655	1654	1653	1652
×	<u>-</u> ×	<u>_</u> x—	_×	<u>-</u>	_×-{
X X Y	× × × × × × × × × × × × × × × × × × ×	x, x,	H ₂ C	LING.	× × × × × × × × × × × × × × × × × × ×
5		ō ×	The state of the s	5 X	
		: : : !			
CI	11,0-0	1,50-0	11,0-0		H ₂ C
ō	Ğ. ×	ē, Š	Ö, x	ci.	Č, v
N			v		u D
511.3199	-	100.000	400 2000		A O O O O O O O O O O O O O O O O O O O
512.3674	, !	1000	7 0 0 0 0 0 0 0		

ſ					•
1663	1662	1661	1660	1659	1658
×-(×-(<u>_</u> x-()	<u>-</u> ×()	_x	_x
H ₂ C	H ₂ C	x x	x x 13°C	, x, y, s, s, s, s, s, s, s, s, s, s, s, s, s,	, x ₂
-1-C-O-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X	ē Š	عَقِي الْحَالِي الْحَلِي الْحَالِي الْحَالِي الْحَالِي الْحَالِي الْحَالِي الْحَالِي ا	C X	2	CI Signal Annual City
		•	·		
		11,0	H ₀	o C	
ē, x	er,	or x		2 ×	<u>c.</u> ×
200	1.99				
500 2400	495.325			<u> </u> 	
	196,3093	:		; ; ;	

·	:				:
1660	1660		1666	1665	1064
×-	×-(<u>*</u> —	x-{\bigs}	_×	_x-(
**************************************	196°	×,	× × × 195	150 22	11 ₅ C
-E-0	Q A		ē Nama	- To way	2
	:				
, , , , , , , , , , , , , , , , , , ,	mp/	11,0-,0-()-	10000 X	مَّةً ا	, , , , , , , , , , , , , , , , , , ,
CI-	Ē	Ē	Ĉ.	<u>0</u>	cr,
2.06	1.00		1.92		
553.3660 554 4324	525. <u>39</u> 55		511.3199		
	62 0.300		511,3199 512,3715	:	

. [·	
1674	1672	1671	1670
x\(\)	_x	×-\	-<> x<>
P.C.	1.55 1.55 1.55) 	3511
X X	×	*	~ \~
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	
		:	
;		!	i 1
		11.6	
Ğ. x	* 5 5	× 20	c c
1.98	2.00		
<u>513.2792</u> 514.3397	523,3563		
<u> 7</u> 986, 7 <u>1</u> 9	524.4255	: : :	

_	} }	i_	1	1	1	
1682	681		1679 -	1670	1677	1676
×	> -×\(\)	×—(_×_	x-{\rightarrow}	<u>-x-()</u>	_×-{
×	11.0	X X Y	H ₂ C X ₂	Tyc XX	** 2.5°	, x ,
0	V 0-6113	-F	Ω SA	- Joseph State of the State of	0-CI	-i-c
			; !		!	
	ē, ×	CH.	ČÍ.	ğ	ē, ,	Ω, α, α, α, α, α, α, α, α, α, α, α, α, α,
	1.95		1.97		1.95	
ļ	539.3148					
	540.3774		<u>527,2940</u> 520,3601	; ;	525.2991 526.3500	

		<u> </u>			:	1
1695	1694	1693	1692	1691	1690	1609
x-\(\)	_x-(_×-	<u>x</u> —	_x-(<u>*</u>	x-(
H ₃ C	H ₃ C	75°C	, , , , , , , , , , , , , , , , , , ,	, x,	11 ¹ 56	x x y y y y y y y y y y y y y y y y y y
S ×	D ×	Ol Sex	C S	E S	€ S	CI
·		; ;				
C CI	77	C C	O N.		ي يو	0-7
či.	cix	of	HC .	H ₂ C	, X	ÇĪ- X°
2.15				2.03		
553.1010 554.32				550.3049 557.3605		·
554.32		•		557.3605		

			·_	 		i .
17(12	701	700	699	698	1697	, 9691
_x-	<i>y</i> -{\bar{\bar{\bar{\bar{\bar{\bar{\bar	<u>-</u> x-{}	.x-	<u>x</u> —	×-{	x-(
11 ₂ C	× × × × × × × × × × × × × × × × × × ×	× × ×	ngc x,	, x s	, x x	x x 115G
CC XX	Ω ×			ČĪ NA	CI	X, Col
-			:			
011 ×6				Q X	01 X 01	****
CII,	ē.	er x	cu.	'	₫ <u>'</u> ×	Ĝ.
			2.09		: :2.16	
)		605.2705		553.1610	
		•	600.32		<u>553.1810</u> 854.31	

i		1	1	i	1	
1709		1707_	1706_	1705	1704	1703
_×-	×-(``)	_x-(_×-	<u>-</u> ×-	×(_×-{
115C	, , , , , , , , , , , , , , , , , , ,	H ₃ C	X X	, x , y, t	××	36
y O-Cili,	No see	S S S S S S S S S S S S S S S S S S S	2	5 ×		€ S
:				:	ļ	
1100	100-01	110 CII.	GI N	n _c on x	IIG OII	11/5-0
ch.	*	ē, ×	ق *	ē. ×	<u>.</u>	5
1.07				1.95	1.87	
529.3105				409,2099		
530.3679		,		500.3520		

1716	1715	1714	1713	1712	1711	1710
×-	<u>*</u>	<u>_</u> ×-	<i>y</i> ()	<u></u>	×-(<u>x-</u>
115C	11.G	115C x	11 ₂ C;	1,12C	11 ₅ C	, x
-E-0	co XX	, X	0-61	£ 0 x	□ Name of the state of the sta	The state of the s
	;					
II.C X	нус	110-	11/5	11,0	11/5	HC HC
CII,	ēţ.	ē.	êx	· cr.	ē×	ci.
1.03		00,1				60.1
511.3199		499.2009		626 626 626 626 626 626 626 626 626 626		513.3156
612.3775		, 500.3582	;	520.396	:	514.3675

				1		
1723	1722	1721	1720	1719	1718	1717
x-{	×-\(\)	<u>-</u> ×-	x-(_x-{	x-{\(\)	x-(
**	11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5	, x	, x	, x, x, y, y, y, y, y, y, y, y, y, y, y, y, y,	, x x x x x x x x x x x x x x x x x x x	X X X X X X X X X X X X X X X X X X X
	o-cil,	-ā.	C V	T	CI	X, 0-01,
الم الم	TO X	ā	HO X	TO X		-1,0 -1,0 -1,0 -1,0 -1,0 -1,0 -1,0 -1,0
CI-X	ō ×	SI	er	ē. ×	£	ē, ×
1.00	1.09					
715 you	497.3042		405.2842			
	100.3503		406.9395		:	

	1729	1720	1727	1726	1725	1724
.×-\(\bar{\bar{\bar{\bar{\bar{\bar{\bar{	x-()	_x	x-()	_×-	<u>*</u>	x-()
HyG	× 2	H ₃ C -	4,5°	x x	HJC	, x
	0-01,	The sex last	O-CII,	-E-0		0-CI12
	·					
Ci Xx	110-0	11,0-0	100		100	100
Cit,	or S	ciri,	5 ×	CH.		<u> </u>
2.04		1.03		1 .6	1.03	
519.2452	·	515.2948		497.3042	405,2042	
519.2452 520.3127		5 l G . 3555		499,3629		:

1737	1736	1735	1734	1733	1732	1731
·	<u>x</u> —	×-	<u>-</u> ×-	_×	×	<u>×</u> —
113C X2	, xx	* * * * * * * * * * * * * * * * * * *	, x, x, y, y, y, y, y, y, y, y, y, y, y, y, y,	** 	, x, y, i, i, i, i, i, i, i, i, i, i, i, i, i,	, x , y , t , t
	= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5 ×	Q V	i.o.	Q-01,	C XX
		,	; ; ;			
11/2 3/4	11/0	150		11,0-0	CI X.	110 CI X,
g, ~,*	CP13	cu,	- x	ci×		cu.,
1.96	1.98			1.88		
543.3201	525 3355			571.941		
543.9201 544.3017	526.30			572,4042		

	17	-	_	<u> </u>			
	744	7/13	742	741	1740	1739	1738
:	_×	×—()	_×-	_×	<u>-</u> x-()	_×	×-
	, x	x x 1.55	H ₂ C	X X Hage	×	H ₃ C X ₂	11 ₃ C
	5 S	2 .	Ω ×	C. C. C. C. C. C. C. C. C. C. C. C. C. C	X ₃ O-Cil,	#	CI
				i			
	2	1,000	7 7		11,0	11/6	H ^C NC NC NC NC NC NC NC NC NC NC NC NC NC
	ů, ×	ē.	H ₀ C	ē,	ğ	Ö	cr.
					1.92		
					555,3401		
					550,3902		

. 1751	1750	1749	1740	1747	1746	1745
<u>_</u> x-	<u>*</u> —	<u>*</u>	<u>_</u> x-	<u>-</u> ×-	<u>-</u> ×-	<u>-</u> ×-
, x x	,x	× × × 0/1	, x ,	* 3511	, x,	11.5C
G C	O XX	C V	© Sex	V ₃ 0-Cl ₃	51 × ×	
		:		 - -		
Br Xx		F	X.			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Î,	ci.	oi."	ē, *	ē	ca.	ē,
		-		, , , , , , , , , , , , , , , , , , ,		2.02
						535,2011 530,3478
			· : :	:		530.3470

1757	1756	1755	1754	1753	1752
<u>x</u> —	<u>-</u> x-	<u>_</u> x-	<u>×</u> —	<u>-</u> ×-	<u>-</u> ×-
XX H ² C	H ₂ C	1.5°C	H ₂ C	, x, x, y, y, y, y, y, y, y, y, y, y, y, y, y,	, x ,
OI SA	#C C	E A		15C X	S V
nic-cui		"0 0		DI CO	II.G
ē, ×	CI-	ci.	c:	<u>ci_</u> ~×	GH ₀
	2.02		2.04	2.07	
	539,3512		627.3312	509.2304	
	540.4099		520,3000	590.3111	

1804	1803	1802	1801.	1800	CMP #	
					R1	R1 N H R2 R5
£	£X		. 유구····································			₹2
	<i>x</i> ————————————————————————————————————	<i>y</i> -{	. ·	,×-(¯)	R3	
	×	*				
×		: ² .	×->	*-	R5	
1.96	1.99	1.98			Rtn. Time	
559.2471	515.2573	565.2132		531.2158	Cmp. Mass	
560.3251	516.3182	566.2751		532.2805	II+ Ion Ohs.	

	1808	1807	1806	1805	
	CH	× °CH	ZX 3		2
	×{				
)	°	>		
5	×	.×\	E (x-	CH ₃
2.07		1.91	2.01	1.87	
515.2573		487.239	521.2234	1.07 481.2729	
516.2009		400.3032	521.2234 522.2003	482.34	

1814	1813	1812	1811	1810	1809	CMP#	
						R1 R2	T Z
H,c ×,	,,, ,,	, c			;;c	R2	RA R5
×	×××××××××××××××××××××××××××××××××××××××	× ×	×	× × ×	× ×	R3 and R4	
ي م	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	J.	G.		ou V	हु	
	- Fo	, s, c	* (TO	* 0	R6	
2.01			:	2.02	2.04	Rtn. Timo	
485.2234				499.239	493.2729	Cnip. Mass	
486.3				500.3034	494.3307	H+ Ion Obs	

	i	i	<u> </u>			-	
1023	1822	1821	1020	1019	1010	1017	1016
11,0	1800	140	150	150	x x	n,o x	400
x -01,	X CC11,	X Colf	X (1)	X COL	XX CIII,	x (G)	×
S ON THE REPORT OF THE PERSON	Jo-ail	عِيْدِ عِيْدِ		\	2		
X ⁴ CI-1	SH.		CI-1 ₃	X ₉ CH ₉	X, CH,		11,0
	1	2.05	2.01	2.02	2.00	2.05	
407.3109 400.3140	501.3355 502.3303			459.325	493.286	521.3042	
488.3148	502.3363	50R 3 IRA	460.3708	460.3719	494.3401	522.3529	

1836	1035	1834	1033	1032	CMP 1	·
× ×						HI N FIZ
		> (*	ē,	TABLE 5	
		of of	CO1,		73	
2.33	2.96			1.9	Rlin. Time	
433,2042	433.2042			447.231	Cmp. Mass III. Ion Obs	
434.2509	134.2552		\$ \$ 6	448.2516	t lon Clas	

1841	1840	1839	1838	1837
*	ZX CH			×
Î, Î	×	x, 000 0011,	¥ Off	X CH
2.2	2.31	2.3	2.22	2.33
419.1885	421.2042	505,2253	419.1885	433.2042
420.2424	422.2463	506.2785	420.2401	434.2613

1846	1845	1844	1843	1842
				×
×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		, Cil.) y
2.4	2.27	. ω	2.32	2.27
427.1936	421.1678	505.2253	505,2253	419.1885
428.2449	422.2155	506.2814	506.2746	420.2401

1852	1851	1850	1849	1848	1847
				X-CH-	
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			- × (×	
2.37	2.46	2.33	2.12	2.25	2.33
481.1865	495.181	489.1552	420.2202	465.1576	413.1991
482.2455	496.2438	490.2146	421.262	466.216	414.2406

1858	1857	1856	1855	1854	1853
\		£.			
	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	11 ₂ C)	
				×); ×
					CH ³
***************************************	,×	×			
	2.42	2.4	2.49	2.4	2.17
	433.2042	443.2097	457 2042	471.181	488.2076
27777	434 2522	444.2538		472.2344	6 489.2776
			<u> </u>	-	76

1863	1862	1861	1860	1859	
			× °		
C. Z.	₹, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,				**
	× × × × × × × × × × × × × × × × × × ×		> - CH		
	2,1	2.17			
	479.2321	490.2369		,	
	480.2817	491.2785			

1869	1868	1867	1866	1865	1864
S. S.		- } -()		× C	× × ×
××			cc.		
,	<u>`</u>			TIX-	
2.44	1.78	2.29	2.15		
443.1111	411.1583	472.1762	485.2027		
444.1614	412,1952	473.2223	486.248		:

					
1874	1873	1872	1871	1870	
			4,0 2	S C 5 S	
×	\rightarrow \(\tag{ }	>* ()	\rightarrow ()	_\.\.\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
17	× × ×	× × π			
2.4	2.21	2.08	2.1	2.4	
558.2294	524.2031	508.2326	504.2577	423.1657	
559.21	525.1942	509.2144	505.2372	424.1971	

					_
	1877	1876		1875	
		ō{			Z
			~×		×
	X	X		X	
2.04	2.11		10.2		
508.2326	524.2031		490.242		
509.2227	525.1987		491.2217		

٦					····			
1884	1883	1882	1881	1880	1879	1878	CMP #	
							\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7.
	<u></u>	CH, CH,)_x	<u> </u>		/ }—>× . ; ; ;	-N_R2
			Ž.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×	× ,	TABLE 5	
	C C	H ₂ C			H ₂ C CH ₃			
.×-		>=/ >=	./ ¸×~ [/]		/ _×/	_×		
2.42	2.57	2.53	2.35	2.4	2.42	2.43	Rtn. Time	
437.1546	423.2562	411.2562	421,1842	417.2093	417.2093	417.2093	c Cmp. Mass	
		····						
438.1642	424.3539	412.3455	422.275	418.2959	418.2941	418.29	H+ Ion Obs	

1892	1891	1890	1889	1888	1887	1886	1885
	x ()	<u></u>	x ()				
						· ×	X,
3×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		CH ₃	c - C		, , , , , , , , , , , , , , , , , , ,	
2.46	2.41	2.48	2.46	2.48	2.42	2.41	2.37
469.1041	433.1842	429.2093	429,2093	517.0903	431.2249	417.2093	417.2093
470.13	434.2012	430.2192	430.2187	518.1107	432.2221	418.2095	418,2095

						·		
	1900	1899	1898	1897	1896	1895	1894	1893
	*	<u>*</u>	***************************************	×	x, +,c, o, -,c, c, -,c, c, -,c, c, -,c, -,c,	H,C , O , O , O , O , O , O , O , O , O ,	H ₃ C/ _S	x X
	H ₃ C	**	il ₂ c	× ×		X	××	2 2 2 2 2
	3							<u></u>
2.50		2.47	N 6		2.75		2.49	2.21
437.2719		409 2406	525 1529		477 1837	407.246	393.2126	549.1182
438.2745	10.240	110 246	526 1517	110.2000	478 2005	40a 23aa	(.)	550.13

						····		
1908	1907	1906	1905	1904		1903	1902	1901
	× Ç	-> , <u>-</u> -× .			H,C		H,C /	i,c \bigsim
	- : 	OH.	<u></u>		×		 > : ⟨	\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.
							Ž	
			11,c c'', x	×-		, x		
2.28	2.3	2.28	2.27	2.39		2.42	2.44	2.38
411.1446	421.1445	401.1991	401.1991	413.2355		413.2355	413.2355	433.2042
412.1578	422.163	402.2055	402.2075	414.2406		414 239	414.2371	434.2162

_				
1913	1912	1911	1910	1909
,×-		Z		CH CH CH CH CH CH CH CH CH CH CH CH CH C
CI	, , , , , , , , , , , , , , , , , , ,	× _		
1.99	2.16	2.46	2.45	2.47
524.2231 525.2272	508.2281	415.2123	407.246	407.246
525.2272	509.2342	416.2284	408.2503	408.2634

ſ ·				
1918	1917	1916	1915	1914
H ₃ C CH ₃	F F N			
# ₃ C	X			-x C
T X X X				
2.13			2.38	2.19
494.2402			562,1999	528.1735
495.2661			563.214	529.1874

1925	1924	1923	1922	1921	1920
×′					
	70		#,C	H ₂ C N	
		X ₃ CH ₃) J) Š	X X
2.52	2.52	2.11	2.14	2.11	2.13
412.2515	400.2515	479.2321	467.2121	467.2121	449.2216
413.2805	401.2748	480.2583	468.2424	468.2447	450.2522

					···
1931	1930	1929	1928	1927	1926
11,C	5	S-CH ₃	H ₃ C CH ₃	Ž Ž	×
1,c-0 C1,	x x x x x x x x x x x x x x x x x x x	1,C - 0		. Cox	
****		H ₃ C (*\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		x, cu,
1.96	N	1.96	2.11	2.25	2.28
519.2534	517.2399	503.2243	531.3097	366.1732	346.2045
520.2534	518.2693	504.2599	532.3127	367.2062	347.2321

						·
1937	1936	1935	1934	1933	1932	
X ₇	11 ₂ C ×	#,C	CF.	11,c 0 X	H ₁ C O CI	Х, Сн ₃
O.	in _i c-o		0, Cil.		, o, o, o, o, o, o, o, o, o, o, o, o, o,	Q Q Q Q Q Q Q Q Q
CH ₃	, сн, сн,	×_x	~ z x ~	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	"J.c	H ₃ C
2.27	1.91	1.92	2.03	2.05	2.02	
520.203	531.2733	531.2733	529.2941	529.2941	505.2132	
521.2229	532,2828	532.2859	530.2936	530.2949	506.2226	

1944	1943	1942	1941	1940	1939	1938	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N Br			₁ ,c-o ₁ ,c'			3
2							2 2
CH,	\(\frac{1}{2}\) \(\frac{1}{2}\)	H ₃ C CH ₃	(c) ₁		3°C 3×	H ₃ C CH ₃	^×
	2.28	2.23	2.23	2.19	2.32	2.25	
	574.1135	560.0978	560.0978	540.1695	534.2186	520.203	
	575.16	561.14	561.14	541.1906	535.2426	521.2301	

						•
1951	1950	1949	1948	1947	1946	1945
				Z		
X Z Z	× × × × × × × × × × × × × × × × × × ×	X Z Z		CO XX		5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
x~~~;ñ	H ₃ C X ₃	ê, x	ğ	H ₃ C CH ₃	,×^×,	$H_{3}C$ X_{3} X_{4}
2.3	225	2.25	\ ယ	2.25	2.26	2.19
	107 1002		520 202	511.2139	511.2139	497.1982
512.2459	450.234	321,2333		512 2531	512.2437	498.2381

_					
1957	1956	1955	1954	1953	1952
	x		X F	XX V	
×					
π		- T		Z X	1,c ×
	2.03	2.05	2.07	2.07	2.3
	520.2526	508.2326	504.2577	504.2577	511.2139
	521.2831	509.2624	505.2755	505.2828	512.2452

1962	1961	1960	1959	1958	
		11,0-0		Ž	H,C X,
×, cı					
	H ₃ C CH ₃	\(\frac{1}{2}\)		\	C
2.49	2.55	2.02	2.06	2.05	
449.1329	507.098	502.262	486.2671	486.2671	
450.125	508.09	503.2366	487.2379	487.2196	

1					_
	1966	1965	1964	1963	
			S CI		·———
		х, сн,	CH ₃ CCH ₃	× ×	н ₃ с
2.39	2.13	2.5	2.55	2.49	
437.1546	508.115	461.1329	463.1485	449.1329	
438.191	509.1421	462.152	464.155	450.1363	-

							
1974	1973	1972	1971	1970	1969	1968	
		\	>	<u> </u>	, , , , , , , , , , , , , , , , , , ,		
	×						
5	, E	`\ (\)	~_^^*	х ₃ Сн ₃	Х, СН,	X3 CH3	X ₃ _CH ₃
2.38	2.37	2.38	2.08	2.01	2.16	2.1	
437.1546	431.2249	437.1546	472.115	424.2151	486.2307	520.1011	
438.1897	432,2486	438,1952	473.1456	425.2368	487.2447	521.1198	

1980	1979	1978	1977	1976	1975	
ē.	× ×					Ž,
× × ×			×	×	* * * * * * * * * * * * * * * * * * * *	
11,0	, co, co,	,,co	~		*	C _x
1.88	2.32	2.29	2.3	2.36	2.33	
547.2026	447.2198	433.2042	421.1842	415.1936	403.1936	
548.3105	448.251	434.2361	422.218	416.2279	404.224	

	 				
1985	1984	1983	1982	1981	
77	#3C 0	2 45 V)	X
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
H ₂ C \) 45, J		x, II'c	, , , , ,
1.92	2.01	1.94	1.97		/
581.229	553.2496	577.2132	525.2592	549.2228	
582.3329	554,3531	578.3243	526,3528	550.3254	

1990	1989	1988	1987	1986
	B _T	5 × 5	5 5 × 5	5 × CI
H ₃ C	J Fo		H _c o	Š,
2.02		2.03	1.95	1.95
617.3042	59 i.1522	557.2001	581.1637	551.1531
618.4236	592.27	558.311	582.2848	552,2697

			~~~~~		
1995	1994	1993	1992	1991	
	Br H ₂ C O	H ₂ C	H,C O X	#JC	
*×					
H ₃ C	\$ 5. C	, , , , , , , , , , , , , , , , , , ,	J. Fo.	H ₃ C O	
1.93	1.96	1.92	1.95	1.92	
657.1288	651.1733	621.1627	607.2238	639.1383	
658.2678	652.31	622.29	608.3556	640.2621	

_				_	
2000	1999	1998	1997	1996	
	E CI	5 5	H ₃ C-S	H _O C B ₁	H ₂ CO
,×					
	, o , o , o , o , o , o , o , o , o , o	J. 40.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	, x
2.04	1.97	1.96	2.02	1.95	
591.2264	615.1901	593.1904	581.2042	605.1678	
592.3466	616.3185	594.3127	582,32	606.29	

	***	<del></del>	· · · · · · · · · · · · · · · · · · ·			
2006		2005	2004	2003	2002	2001
	H ₂ C O-CH ₂	11,6	CONT.			× CZ
X ₂					; ; ;	
						H ₃ C
2.47					·	1.93
475.2511			·			578.2682
476.2856	:	, ,				579.3848

2011	2010	2009	2008	2007	
7			× (		X
\ \times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\times_{\tim					
			cl		
2.39	2.39	2.43	2.42	2.36	
445.1842	433.15	437.1546	427.1936	403.1936	
446 226	434.1996	438,2044	428.2387	404.2317	

2016	2015	2014	2013	2012	
×			× × ×	S X	
**					
		, s	CI X		ci
2.53	2.47	2.42	2.41	2.41	/
477.0721	443.1111	443.1111	433.15	455,1452	
478 137	444.1649	444.1632	434,1984	456.196	

	_					
	2017					
				×, Vs	· Cury	2
	,×			<i>,</i> ==		
					] >×	
2.3	ر د د			-	/	
423.1057	102		v=	<del>-</del>		
423.165/ 424.2055						

1828	1827	1826	1825	1824	CMP #	
	:				R1 or R1 and R2	
				Ž	R3	
	X, CH ₃	х, Сн,	X, CH ₃	х,	Table 6	
		× ×		×	R5	/
				:	R6	
2.1	2.09	2.2	2.17	1.91	Atn. time	
464.2464	508.2362	514.262	558.2518	424.2151	Cmp. Mass	
465.2729	509.2629	515.286	559,2742	425.2364	Cmp. Mass H+ Ion Obs.	

1831	1830	1829	
			X,
нзс		H,C	X, CH ₃
9-√	CI X ÖH	-C ₂	
×-		ж, Сн ₃	CI OH
2.05	1.98		2.04
470.2.125 471.2745	436.2281 437.2896		514.2023
471.2745	437.2896		515.2661

414
SUBSTITUTE SHEET (RULE 26)

·	i	:	<del></del>	<del></del>		
732	731	730	729	728	727	
-×-{=	<u></u>	×.	× ×		—Х— ——————————————————————————————————	
H ₃ C ^2	<b>)</b>	H ₃ C X ₂	H ₃ C X ₂	CH ₃	H ₃ C ×	H ₃ C >
	: : :	:				~~
	Ĵ. C	× 3	H ₃ C X ₄	×	1-5c	× ×
		X	× × ×			×5
9 0 7	1.99	2.08	2.06	2.08	2.04	
A77 970.	477.2791	465.2791	465.2791	493.3105	491.294	
	478.3062	466.3028	466.3023	5 494.3472	491.2948 492.3288	· · ·

740	739	738	737	736	735	734	733	
,×-()1	х-{	x-()-1	_×-	<b>→</b> π : -×-(	<b>_</b>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	×-	
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	ci	HC X		H ₃ C >	\ \ \ \	H ₃ C X ₂
	· · · · · · · · · · · · · · · · · · ·	· ·			:		:	
CI1 ²	H ₃ C X ₄	Š		XX of	×	Ž O	Ť	#c ×
X5	H, H,	×5	CH ₃	X S	×	×	×	×
2.05		1.99	2.12	2.05	2.03	1.99	2.04	
499.2635		489.2228	447.305	485.2479	485.2479	471.2322	479.2948	
499.2635 500.2032		490.2399	448.3199	486,2654	486.2677	472.2518	480.323	

741	746	745	744	743	742	741
_×-	x-\	_×-{¬¬¬¬	<u>x-</u>	_×-{	_x-()-"	_х-{¬¬¬
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
		· }				
×		×		H ₃ C CH ₃	140 X	×
S S	O X 3	× ×				СН
2.08	2.03	2.06	1.96	1.9	2.04	2.14
433.2893 434.3055	517.2199		515.222	451.2635	499.2635	461.3206
434,3055	518.246	478.3002	516.245	452.2902	500.2898	462.3372

752	751	750		748
×-<	_×<	_×-\	_×-<	_×-<
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
H ₃ C—(X ₄	Ž	H ₃ C CH ₃		H2C(X,
CH ₃	H ₂ C, O ₂ H	X, CH ₃	CH ₃	CH ₃
2.05	2.05	1.99	2.11	1,96
A49.3206	463.2999	435.305	447.305	421.2893
<b>449.3206 450.3442</b>	464.3266	436.3263	448.3214	422.306

758	757	756	755	754	753
_×-<	_×-	<u>-</u> ×-	_×-	_×	_×-
H ₃ C X ₂	H ₂ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
			· :		·
H ₃ C CH ₃			H ₃ C — X ₁	Ž	H ₃ C X ₄
H ₃ C S		S S S S S S S S S S S S S S S S S S S	× X	H ₃ C CH ₃	H ₃ C CH ₃
1.99	2.06	1.97	1.91	2.1 8	2.04
453.2614 454.2874	477.2791	515.222	451.2635	475.3363	449.3206
454.2874			452.2869	476,3594	450.3435

764	763	762	761	760	759
		<u>-</u> x-{	_×-<	_×-	×-\( \)
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
·		:			
, i		11,C-O CI1,	H ₃ C CH ₃	H ₃ C-X ₄	, ic.,
х ₅ н ₃ С,	E. Hace	N X S	CH ₃	F. P.	6 X X 2
1.93	1.97	1.98	2.03	2.1	2.02
	531.2534	531.2534	467.277	463,3363	517.2199
	532.2903	532.2854	468.306	464.3699	518.2543

	į	<u> </u>		<del></del>	i	<del></del>	-
771	770	769		760	767	766	765
<u>-</u> ×-{	×-(	) _×-<	<del></del>	_×-{_}	- x-()		×-{-}
		<u> </u>	H ₃ C	<u>;</u>	<u> </u>		
		) i	, ,	H ₃ C	H ₃ C	H ₃ C )	н₃с∕
~~	N×		××	, ×	, ×	× ×	×
	: :	:					N.
	: : :	·		, ,			
] ×	H ₃ C	<u> </u>		۳ <u>۲</u>	ž	a *1	~
	£	}					
	× <u>×</u>	<u> </u>	×	: :	:	:	×
					700		S X
	T						
`×				× ;	` <del>`</del>	\X_5	Ö
		2.13	2.03	2.04	2.04	2.06	
					į		
		575.2948	549.1427		549.1427	539.1542	
	220000	576 33	550.1867	550.1861	550.1876		
· · · · ·	: 6	-	:67		97 <u>6</u>	926	

777	776	775	774	773_	772
_х-(		_×-	_×-<	<u>-</u> ×-	_×-{
H ₃ C X ₂	H ₃ C X ₂	**	X	X	X
		:	:		
		H ₃ C-(X,	H ₃ C-X ₁	H ₃ C-X ₁	H ₃ C CH ₃
F F	X F	X ₅ CH ₃ CCH ₃	H ₃ C CH ₃	X, CH, CH,	H ₃ C
1.99	1.99	2.06	2.01	2.02	
525.2039	525.2039	465.3144	465.3144	465.3144	
525.2039 526.2429	526.2423	466.3358	466.3359	466.3379	

	:				
782	781	780	779	778	
_×{				√т _х-<	
	H ₃ C X ₂	H ₃ C × ₂	H ₃ C X ₂	H ₃ C X ₂	$H_3C$ $X_2$
	: :	; ; ;	; ;		
		H ₃ C		Z Z	H,C,O-
ch ch	X H ₃ C		×		× ₅
1 07	2.09	2.07		1.93	
	555.2356	535.2635		545.269	
	556.2706	536.3018	536.3018	546.3107	

784 785 786	
×—————————————————————————————————————	
H ₃ C	H ₃ C X ₂
	( ) X
X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	X ₅ H ₂ C
1.94	
531.2534 471.2453 523.321 523.321	
531.2534 532.2867 471.2453 472.2802 523.321 524.354 523.321 524.354	

793		792	791	790	789	788
.×	Т		_×-	_×-	_×-{	_×-\(\)
	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
		· · · ·			:	
Br			Sit N	O-CH ₃	Q X _a	St. X
0	Š,					×
2.05		2.06	1.98	1.99	2.03	1.98
563.1584		611.1445	515.2584	515.2584	519.2089	515.2584
564.26		612.2336	516.3315	516.2904	520.2536	516.2967

			•		
798	797	796_	795	794	
_×-{			_×-		- TI
·	H ₃ C X ₂		H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
		:	:		
CH ₃ C-(	X Col. S	×   Signal of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the		OH. S.	Q.
H ₂ O,		×		×	×
1.74	2.03	2.02	2.06	2.03	
A36 3000 A37 336	561.245	531.2356	611.1445	531.2356	
A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	562.3386	532.3212	611.1445 612.2438	532.3217	

	:		:	<del></del>	<del> </del>	
805	804	•	802	801	800	799
,x-(¯)-1	×-\	_×-{	<u>-</u> x()		_×-	
H ₃ C × ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C , ,	H ₃ C X ₂	H ₃ CX ₂
7,5			× ×	F-X	× ×	
N. S. S. S. S. S. S. S. S. S. S. S. S. S.	i X	X 0 = = =	S-CH ₃		X ₅ CH ₃	H ₃ C,N
2.06	2.02	2.02	2.01	1.97	1.87	1.88
563.1584	667.2281	555.2145	517.2199	507.2133	462.3159	462.3159
			518.3113	508.3045	463.4136	463,4108

812	811	810	809	808	807	806
_×-	_×-	×-	×-{	_×-{>-п	×-(\$\frac{1}{2}\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\tau_7\ta	_×-{
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
			: •			
	H ₃ C-(X ₄	, X	, x	×,		, x
CH, CH,	H³C, CH, CI	S-CH ₃	X ₅ S-CH ₃	× ×	* S	CH2 S
2.09	2.01	2.02	2.03	2.09	2.03	2.06
527.2715		517.2199	473.2301	559.2635	521.2479	551.181
528.3815	502.358	518.3132				552.2875

818	817	816	875	814	813
_×-{	×-\	<u>_</u> x-()-¬		_X-\	_×-{\bar{\bar{\bar{\bar{\bar{\bar{\bar
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
		:			
	H ₃ C(CH ₃	o cir.	H ₃ C(CH ₃	H ₃ C(CH ₃	ix (C)
		No.	CI CH ₃	X, OH,	C SX
1.95	1.85	2.07	2.09		2.05
513.2428	449.2842	519.2089	455.2504		521.2479
513.2428 514.3442	450.3776	520.3145	456.3523		5 <u>22.3471</u>

824	823	822	821	820	819
_×-	_×-<	×-	_×_	x-(-)	_×
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
			:	:	
		H ₃ C X,	H ₃ C CH ₃		×
×	CH ₃	SH ₃	, T	\$\$	×5-5-
1.96			2.04	1.98	2.04
513.2428			457.2893	537.2239	475.2999
514.345	.:				476.4023

829	828	827	826	825.
х-(	<u>×</u>	×-	×—	_×-
H ₃ C X ₂	X	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
			ı	
	H ₃ C-X ₄	×	H ₃ C CH ₃	
X	CH ₃	X F	77	, , , , , , , , , , , , , , , , , , ,
2.08		2.08	1.97	2.04
577.274	<u> </u>	. 499.261	473.2654	475.2999
578.3961	·	500.3929	474.3578	476.3996

835		834	833	832	831	830
,×-				×	_X-{	_>-Т
	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	X ₂ CH ₃	H ₃ C X ₂	H ₃ C X ₂
		! :	:			
	H ₃ C-O X,	H ₃ C-O X	Br	×, CH ₃	H ₃ C-Q X.	E X
o_	× ×	× ×	×	×		×
1.97		1.98	2.03	2.03	1.99	· 0
545.269		545.269	563.1504	529.274	515.2584	503.2384
546.374		546.3808	564.2842	530.3805	516.3593	503.2384 504.3399

·	i	i			
840 841	839	838	837	836	
x-\(\)1 \ x-	<u> </u>			×-	-{
H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂	H ₃ C X ₂
	:		;	:	
×	×	1,000	H,Q , X,	H,C,O	11,5C-O X1
			× ×		X5
2.04	2.05	1.96	1.92	1.98	
592.285	535.2635	559.2846	545.269	545.269	
593.4103	536.3757	560.3983	546.3798	546.3859	

	1	<u> </u>		
846	845	844	843	842
_×-<	_×-	_×-	_×-(	_×
		×	**	H ₃ C X ₂
		:		
H, O, O, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T, S, T,			1,c, , , , , , , , , , , , , , , , , , ,	, X
H ₃ C,	THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S	THE SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECON	CI O X5	X ₅ H ₂ C
1.94	1.97		1.88	2.01
577.2132 578.3243	525.2592 526.3528	549.2228		544.2308
578.3243	526.3528	550.3254	547.2026 548.3105	545.3511

. 852	251	850	849	848	847
<u>×</u> —	×-(	_×-	_×-(	<u>×</u> —	<u>-</u> ×-
× × ×	× ₂	**		X	X
	:			:	
		±.c.	Š	#, O. O.	× ×
Br O ×5	CI X5	CI X5	CI - 0 × 2	F F O S	д С С С С С С С С С С С С С С С С С С С
1.9	2.03	1.95	1.95	1.92	2.01
591.1522	557.2001	581.1637	551.1531	581.229	553.2496
592,27	558.311		552.2697	582.3329	554.3531

857	856	855	854	853
<u>-</u> ×-	_×-{	_×-{	<u>×</u> —	<u>×</u> —
, x				× ×
·	:			
H ₂ C, O	÷6.0	H _O C,OH	ē., )	¥, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
Br H ₃ C X ₅	H ₃ C-O Br O	CI H ₃ C X ₅	X	
1.96	1.92	1.95	1.92	2.02
651.1733 652.31	621.1627	607.2238	639.1383	617.3042
652.31	622.29	608.3556	640.2621	617.3042 618.4236

863	862	861	860	859	858
_×-	\\ _\-_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_×-{_}	_×-	_×-{	_×-{
· ×z		X X	××	×	N. X.
	: :				:
	Š ā	\$ 5. J	J.	i, c, o, o	H.C. O.
F	F F O	H ₂ C-S	H ₃ C × ₅	H ₃ C Br O	F X ₅
2.04	1.97	1.96	2.02	1.95	1.93
591,2264	615,1901	593.1904	581.2042	605.1678	657.1288
591.2264 592.3466	616,3185	594.3127	582.32	606.29	658.2678



	1		<u> </u>	<del></del>			
905	904	903	902	901	900	CMP#	
					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	R1 N H R2 R6	)=z
~	X,	, ct.	×		ST X	-C	` <b>,</b> 74
Š		X	<i>x</i> ³ −c:	S	;	TABLE 2	
						24	
×	jo jo jo jo jo jo jo jo jo jo jo jo jo j		× Q	~ <u>°</u>	×	735	
H ₂ C CH ₃	CH ₃	, , CH	FH _O	CH ₃	CH ₃		
2.06	1.91	1.98	1.96		1.99	Ru. Timo	
	389.2831	451.2987	409.2285		453.1779	Cnid. Mass	
516.3389	390.327		410.2904		456.2343	II t lan Obs	

	1	1	1	1	<del></del>	
912	911	910	909	908	907	906
X J	×, ~ G	X,	, , , , , , , , , , , , , , , , , , ,	**************************************	× F	¥
			Ž			Š
	ž (X)			* (1)	<u>5</u>	Š.
			X ₀ CH ₃	× ₀ CH ₃	, x	X ₀ CH ₃
2:06	2.06	2.06	1.95	1.95	2.05	2.02
527.2936	529.2729	543.2886	509.3042	495.2886	535,239	501.2547
528.3539		<del></del>	<del></del>	496.338	536,3062	502.3203

			<u> </u>	<del></del>			1
920	9 9	918	917	916	916	914	913
H ₂ C × y	Ç.H.	× P	× ch	x ch	× cf.	×	Ŷ,
.×-(¯)	н, с. у х,	x, CH, CH	X ₃ CH ₃	x3 CH3	X, CH,		
	×				\$		
	ē	ō → O → O → O → O → O → O → O → O → O →	,×	~~	£		х, сн,
3	9	2.01	2.04	2.06	2.04	1.98	1.91
202.202		559.2602		509.3042	481.286	501.278	493.3093
560.3226		560.3214	554.3566	510.3504	482.3375	502.3292	494.3662

			<del></del>			
927	926	925	924	923	922	921
×	ΣH ₂	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	× ~ £	X, CH	× - 5	*\
Ž		Ž	\(\bar{j}\)		Š	Š
:	:     	:			,	
, , , , , , , , , , , , , , , , , , ,	ž Į	·		× Z	X Z	X. J.
			CH ₃		£ 5	, CH ₂
1.76	1.79		1.96		197	20
565.2496		321,3519	520.2394	100.200	ARROSS	467 2017
566.3239	556.421		<del></del>			A68 34400 .

	<del></del>					
934	933	932	931	930	929	928
**	CH ₃	Ç#, X3	£, x, x, x, x, x, x, x, x, x, x, x, x, x,	CH X	Z, X	CH ₃
					£-0	Ž , , , , , , , , , , , , , , , , , , ,
× Ç	ā		TO HOUSE			¥, C1
CH.	CH ₃		CH ₃	X CH ₂	CH ³	, CH ₂
2.03	2	2	1.74	1.95	1.79	2.02
	469.2893	531.2886	511.3311	525.2991	497.3042	531,2653
520 2170	470.3573	532,3475	512.3882	<del></del>	<del>,</del>	532.3318

94	940	939	938	937	936	935
H,c , ,,,	H,c , ,,	X CË	X, CH,	×,×, Ç	X, CH	ž, Č.
×	, C	Š	Š	Š,		, , ,
	الْمُ الْمُ	×	ж он		× (C)	ž on
~~	, T	, CH	СН		CH ₃	
1.93	1.94	1.86	1.71	2.06	1.97	2.05
492.2348	458,2504	423.2675	483.2886	547.2635	513.2792	653.2296
493.2848	459.2958	424.3207	484,3469	548.3326	514.3508	554.3043

	<u> </u>					
948	947	946	945	944	943	942
H ₃ C	, т., с , х.,	**	× × × × × × × × × × × × × × × × × × ×	19 × 19	CH,	, x, Ç;
			7			× ×
×,	:	:				:
ê.						X Z
	0 H ₃ C	CH ₃	CH ₃	CH.	, cf.	CH,
22 0 1	1.98	1.76	1.74	1.77		1.74
	481.2729	525,3467	481.3206	495.3362	437.2831	467 3049
7000 0000 0000 0000 0000 0000 0000 000	482.3188	526.4145	482.3854,	<del>i</del>		468 3620

955	954	953	952	951	950	949
H ₃ C	H ₃ C ×	H,c ×,	#,c ×,	H,C X,	H,C ×	H ₃ C ×3
×	) ×	×	×	×	×	×
						,
		, S. S. S. S. S. S. S. S. S. S. S. S. S.	, , , , , , , , , , , , , , , , , , ,	HO	HO	ж _ж
cH ³		CH,	C)*	6£	CH.	~ ~
1.94	1.93	2.03	2.04	1.88	1.88	1.99
602.3097	536.294	509.3042	543.2886	467.2937	467.2937	501.278
503,3694	537,3635	510.364	544.3618,	468.352	468.3544	502.3323

962		961	960	959	958	957	936 6
H ₃ C \	×	#.c	H,C X,	H,C , ,,	#,c ×,	#,c ×,	H ₃ C X ₃
×		× O	×	×	×	×	, x
$X_{s}$		X N	Ž, Pop	Ž P	Ž P	X-CH ₃	×
	~×	ct.	<b>○</b>	CH,		CH.	<b>○</b>
2.06		1.93	2.08	1.97	1.99	1.92	2.05
542.3409		502.3097	535.3199	495.2886	529.2729	481.3093	542.3409
543.387		503.3532	536,3663	496,3324	630.3309	482.3674	543.4108

969	968	967	966	965	964	963
£	H _C ×	#,c ×,	H,C ,X,	H ₃ C ×3	,× £	×,
	×	×	×	×	Š	×,
	ж, н _у с п-сн,	X 4-CII,	х _у —СН,	X ₃	***************************************	
X—————————————————————————————————————		CH,		~×	Š	
1.77	2.05	1.88	1.94		1.77	1.77
	534,3723	494.3409	528.3253	· · · · · · · · · · · · · · · · · · ·	629.3206	559.3311
492,3542	535.431	495,3921	529,3721		<u> </u>	560.4

976		975		974		973		972		971		970	
1130		н,с	×	H ₃ C		13°C	, x	H ₃ C	×	H ₃ C,	\x	H ₃ C	×
	×		× O		× O		×	ı		ú			
Ť	CH,	×		×		Ť		Ĩ		Ť		Ť	
		с́н	~ <u>`</u>	сн _э			*		)^.×	ĆH,	^	(	*
2.03.		1.91		1.89		1.94		2.14		1.98		2.03	
562.3672		522,3359		508.3202		542,3046		574.313		534.2817		568.2661	,
563.3868		523.3574		509,3457		543,3302		575.38	<del></del>	535,3365		569.3215	

983	982	98-	980	979	978	977
H ₂ C	t,c ×	#.c ×.x	H,C , ,	H ₃ C × ₃	H,c ×,	H ₃ c , ,
×	, X	×	×	×	×	×
X CH,	X, O-CH,	x,	) — O-CH,	X Y	x of	HO.
		ē.			ch.	
2.06	2.12 ·	1.89	2.06	2.05	1,86	1.96
515.2936	521.3406	481.3093	515.2936	521.3406	481.3093	515.2936
516.3141	522.3559	482.3204	516.3033		482,3423	516.3203

.990	989	988	987	986	985	984
H ₃ 0 × ×	H ₂ C × ₃	H ₃ C × ₃	OH,	CH,	#,c ×,	H ₃ C X ₃
**	×	×	н,с <mark>С</mark> Н,	н _о с Сн он,	×	×
·					·	
	X	X CH,	وَ وَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَادِينَ الْحَدَّيِنِ الْحَدَّيِنِ الْحَدِّينَ الْحَدَّيْنِ الْحَدَّيْنِ الْحَدَّيْنِ الْحَدْدُينَ الْحَدِّينَ الْحَدَّيْنِ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدِّينَ الْحَدِّينَ الْحَدِّينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدُّينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدِينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدُينَ الْحَدْدُينَ الْحَدُينَ الْحَدْدُينَ الْحَادُ الْحَدْدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدُينَ الْحَدْدُينَ الْحَدُينَ الْحَدْدُينَ الْحَدْدُينَ الْحَدُينَ الْحَدْدُينَ الْحَدُينَ الْحَدْدُينَ الْحَدُونَ الْحَدُينَ الْحَدُينَ الْحَدْدُينَ الْ	**************************************	x,	, , , , , , , , , , , , , , , , , , ,
			Х _в .	X, CH,	<b>○</b>	CH ₃
2.06	1.99	2.1	1.93	2.03	2.15	1.99
565.3304	559.2835	549.3355	461.3406	489.3355	521,3408	481.3093
566.3608	560.3169	550.3556	462.3651	490.3545	522.3597	402.3264

997	996	995	994	993	992	991
H ₃ C X ₁	H ₃ C X,	H ₃ C ×,	CH,	H,C X,	# ₃ ,c × ×	#3c ×3
×	×	×	³ , с ⁴ ,	×	×	×
·						
o'' N	X, OOH	N N N N N N N N N N N N N N N N N N N	OH, CH,	x,	X,	×
•	CH ₃	× °	, L. J.	\(\)	ch,	× 6
2	2	2.02	1.91	2.05	1.82	1.98
552,3101	512.2787	546.2631	488.3515	551.3512	511.3199	545,3042
553,335	513.3031	547 2886	489.3748	552.3806	512.3492	546.332

1004.	1003	1002	1001	1000	999	866
н,с х,	H ₂ C ,	#,c ×	H _C C ×	, , , , , , , , , , , , , , , , , , ,	H ₃ C ×	H ₃ C X,
***	×	× C	×	×	×	,,x
11.C 1-C 11.G	11.4. CUII.	**************************************	F114	HO-10-10-10-10-10-10-10-10-10-10-10-10-10-	o o o o o o o o o o o o o o o o o o o	011
, s	CH,		od X		ch x	₩ ×
1.92	1.71	2.14	2.06	2.11	2.03	2.02
592,4141	552.3828	618.4661	578.4349	652.3101	512.2787	546.2631
593.47	553.43	619.54	579.501	553,3454		547.2888

1011	1010	1009	1008	1007	1006	1005
X ₂	H ₃ C × ₃	H,c X,	H ₀ C ×	χ, CH ₃	н _с ,	, Сн ³
×	×	×	×	н,с <del>Сн</del> ън,	<i>&gt;</i> —	н,с <del>Сн</del> ън, х,
~ ·						
HO	x,	x,	x,	, , , , , , , , , , , , , , , , , , ,	C cont	
		CH ₃		X, CH,	X	CH ₃
1.96	2.08	1.95	2.03	1.78	1.81	1.9
515.2936	549,3355	509,3042	543.2886	460.3566	558.2995	474.3359
516.3184		510.3276	<del> </del>	461,4005	559 3615	475,3617

1018	1017	1016	1015	1014	1013	1012
H ₂ C , X	H ₃ C X ₃	H ₃ C ×3	×,	ζ _{cH} ,	H,c , , , , ,	H ₃ C ×3
×	x, o H,C,	X, C	<i>x</i> —	,×-()	×	×
			·	-		
	J.O.				X, OII	HO
, , , , , , , , , , , , , , , , , , ,	X. C.H.	, CH	XCH ₃			CH.
1.96	1.98	1.88	1.87	1.88	1.98	1.84
523.3199	547.301	511.3199	630.2715	564,2559	521.3406	481.3093
524.3481	548.3231	612.3484	531.3078	565.3013	522.3765	482.3309

1026	1025	1024	1023	1022	1021	1020	1019
			Q				
#,cx	#,c,x	н _у с	н ₃ с	×,	x, x,	H ₂ C ×,	H ₃ C X
×	*	x ()	x-\( \)	×	×	×	×
	·						
1, c, c, c, c, c, c, c, c, c, c, c, c, c,	***************************************	× V.		, , , o			, o en,
°×~ °°		ر پنج	×	čř.	X- Oil	) oi	£
	1.96	2.03	2.03	1.77	1.88	9	1.82
	573.2628	587.2784	573.2628	461.3406	495.325	509.3042	489.3355
	<del> </del>	588.3088	574.2927	<del></del>	496.3488	510.3383	490.3575

1033	1032	1031	1030	1029	1028	1027
H ₃ C ×3	H ₃ C X ₃	H,c X	#,c ×,	H,c , ,	#,c ×,	#3cX
×	×	×	×	×	×	×-()
					,	
x,	× Oil	, , , , , , , , , , , , , , , , , , ,	x, o-cii,	x,	x- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	No cu,
· ·		0		CH ₃		x, CH,
1.97	2.08	1.98	2.12	2.03	2.03	1.85
515.2936	535.3199	529.2729	549.3355	509.3042	643.2886	544.2872
616.3203	536,3453	530.2999	550,3542	510.3173	544.3122	545.3313

1040		1039	1038	1037	1036	1035	1034
H ₃ C	~_~×	н,с	H ₃ C ×	4,0 ×,	H,C ×,	H,C , , ,	H,c ×2
3		×	×	×	×	×	×
		·					
75	I on o	HO	in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	X Octiv	, , , o-ci,	X, O-CII,	N, 110
		0.			ੂੰ ਨੂੰ		CH _J
1.93		2.12		2.17	2.03	2.06	1.87
531,2886		551.3148		565.3304	525.2991	559.2835	481.3093
532.3281		552.3455		566,35	526.3195	660.311	482.3294

## **CLAIMS**

## What is claimed is:

- 1. A carbon-containing compound
- i) having a molecular mass of less than 700 amu;
- ii) that is nonpeptidic and non-peptidomimetic;
- iii) that exhibits C5a antagonist activity with an  $IC_{50}$  of less than 200 nM in an assay of C5a mediated chemotaxis or calcium mobilization; and
  - iv) that exhibits less than 10% agonist activity in a GTP binding assay.
- 2. A compound according to claim 1, which contains one or more heteroaryl rings.
  - 3. A compound according to Claim 1 of the formula:



AR1 and AR2 are independently carbocyclic aryl or heteroaryl;

LIP represents an alkyl, cycloalkyl, carbocyclic aryl, heteroaryl, or arylalkyl;

A is oxygen or nitrogen;

- $d_1$  represents the distance between A and the geometric center of AR1 and is between 3 and 6 angstroms in at least one energetically accessible conformer of the compound;
- $d_2$  represents the distance between A and the geometric center of AR2 and is between 5 and 10 angstroms in at least one energetically accessible conformer of the compound; and
- $d_3$  represents the distance between A and the nearest atom of LIP and is between 3 and 6 angstroms in at least one energetically accessible conformer of the compound.

4. A compound of claim 1, 2 or 3 that is an optionally substituted arylimidazole, an optionally substituted arylpyridyl, an optionally substituted arylpyrazole, an optionally substituted arylpyrazole, an optionally substituted arylpyrazole, an optionally substituted arylpyrazole, an optionally substituted arylpyrazole, an optionally substituted arylpyrazole, an optionally substituted biaryl carboxamide.

# 5. A compound of the formula:

$$\begin{array}{c|c} R_5 & R_6 & R_8 \\ \hline Ar_1 & R_3 & R_{3a} & Ar_2 \\ \hline R_9 & R_9 & R_9 \end{array}$$

or a pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein:

the ring system represented by HET is any optionally substituted heterocycle comprising a nitrogen or oxygen that can act as a hydorgen bond acceptor; Y is N or CH;

m is 0, 1, or 2;

R₃, R_{3A}, R₅, and R₆ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;

R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or

R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.

R₈ and R₉ are independently chosen from H or optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, (cycloalkyl)alkyl, haloalkyl, or the like.

### 6. A compound of the formula:

$$R_{1}$$
 $R_{2}$ 
 $R_{3}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{2}$ 
 $R_{4}$ 

or a pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein:

m is 0, 1, or 2;

n is 0 or 1,

X and X1 are independently chosen from C and N,

 $X_2$  is C-R₁ or N,

X₃ is C-R or N,

R and R₁ are independently chosen from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkynyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted (cycloalkyl)alkyl,

optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms;

- R₂, R₃, R_{3A}, R₅, and R₆ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;
- when n is 0, R₁ and R₃ may be joined to form a cycloalkyl or heterocycloalkyl ring, each of which may be optionally substituted;
- when n is 1, R and R₃ may be joined to form a cycloalkyl or heterocycloalkyl ring, each of which may be optionally substituted;
- R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or
- R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and
- Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.
- R₈ and R₉ are independently chosen from H or optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, (cycloalkyl)alkyl, haloalkyl, or the like.
  - 7. A compound of the formula:

$$R_{2}$$
 $R_{3}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{9}$ 

or a pharmaceutically acceptable salt, prodrug or hydrate thereof,

m is 0, 1, or 2;

wherein:

X₂ is C-R₁ or N,

X₃ is C-R or N,

R and R₁ are independently chosen from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted (cycloalkyl)alkyl, optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms;

R₂, R₃, R_{3A}, R₅, and R₆ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;

R and R₃ may be joined to form a cycloalkyl or heterocycloalkyl ring, each of which may be optionally substituted;

R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or

R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and

Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.

R₈ and R₉ are independently chosen from H or optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, (cycloalkyl)alkyl, haloalkyl, or the like.

# 8. A compound of the formula:

$$R_1$$
 $R_5$ 
 $R_6$ 
 $R_4$ 
 $R_2$ 
 $R_3$ 
 $R_{3A}$ 
 $R_2$ 

or a pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein:

the ring system represented by

is a 5 to 7 membered heterocycle that may be either aromatic or partially unsaturated;

X is N or C;

Y is N or CH;

n is 0, 1, or 2;

m is 0, 1, or 2;

R and R₁ are independently chosen from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkynyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted (cycloalkyl)alkyl,

optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms;

- R₂, R₃, R_{3A}, R₅, and R₆ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;
- when n is 0,  $R_1$  and  $R_3$  may be joined to form a cycloalkyl or heterocycloalkyl ring, each of which may be optionally substituted;
- when n is 1, R and R₃ may be joined to form a cycloalkyl or heterocycloalkyl ring, each of which may be optionally substituted;

 $R_4$  is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or

- R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl,
  optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3
  rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and
- Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.
  - 9. A compound according to Claim 8, wherein

R and R₁ are independently selected from

- i) hydrogen, halogen, hydroxy, amino, alkoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, and
- ii) alkyl, alkenyl, alkynyl, cycloalkyl, and (cycloalkyl)alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino,

iii) phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

R₂ is hydrogen, hydroxy, halogen, amino, cyano, nitro, or haloalkyl, or

R₂ is alkoxy, mono- or dialkylamino, alkyl, alkenyl, alkynyl or (cycloalkyl)alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino;

R₃, R_{3A}, R₅, and R₆ are independently selected from

- i) hydrogen, halogen, hydroxy, amino, alkoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, and
- ii) alkyl, alkenyl, alkynyl, cycloalkyl, and (cycloalkyl)alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino;
- when n is 0, R₁ and R₃ may be joined to form a cycloalkyl or heterocycloalkyl ring,
  each of which may be unsubstituted or substituted with one or more
  substituents selected from halogen, nitro, cyano, trifluoromethyl,
  trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy,
  amino, mono- or dialkylamino;
- when n is 1, R and R₃ may be joined to form a cycloalkyl or heterocycloalkyl ring,
  each of which may be unsubstituted or substituted with one or more
  substituents selected from halogen, nitro, cyano, trifluoromethyl,
  trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy,
  amino, and mono- or dialkylamino;
- $R_4$  is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, each of which may be unsubstituted or substituted with

one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino; or

R4 is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N-alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino; and

Ar₁ and Ar₂ are independently chosen from

i) phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl,

cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N-alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl, and

ii) bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino.

10. A compound according to Claim 8, wherein

R and R₁ are independently selected from

i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or di(C₁-C₆)alkylamino,

iii) phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,



C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

- when n is 0, R₁ and R₃ may be joined to form a C₃-C₈ cycloalkyl or C₃-C₈
  heterocycloalkyl ring, each of which may be unsubstituted or substituted
  with one or more substituents selected from halogen, nitro, cyano,
  trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl,
  C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁C₆)alkylamino;
- when n is 1, R and R₃ may be joined to form a C₃-C₈ cycloalkyl or C₃-C₈

  heterocycloalkyl ring, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

R2 is hydrogen, hydroxy, halogen, amino, cyano, nitro, or haloalkyl,

- R₂ is alkoxy, mono- or di(C₁-C₆)alkylamino, C₁-C₆ alkyl, C₂-C₆alkenyl, C₂-C₆ alkynyl or (C₃-C₈cycloalkyl) C₁-C₃alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;
- $R_3$ ,  $R_{3A}$ ,  $R_5$ , and  $R_6$  are independently selected from
  - i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and
  - ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;
- R₄ is C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with

one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or

R4 is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C1-C4)alkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 alkoxy, amino, mono- or di(C1-C6)alkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C1-C6)alkylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; and

Ar₁ and Ar₂ are independently chosen from phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C₁-C₄)alkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl,

naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl; and

ii) bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ ) alkylamino.

11. A compound according to Claim 8 of the formula:

$$R_1$$
 $R_2$ 
 $R_3$ 
 $R_3$ 
 $R_4$ 
 $R_9$ 

wherein:

X and  $X_1$  are independently chosen from C and N;

X₂ is C-R₁ or N;

m,  $Ar_1$ ,  $Ar_2$ ,  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_3$ ,  $R_4$ ,  $R_5$ , and  $R_6$  are as defined in Claim 8;



R₈ and R₉ are independently chosen from H or optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, (cycloalkyl)alkyl, haloalkyl, or the like.

#### 12. A compound of the formula:

$$Ar_1 \xrightarrow[R_2]{R_1} R_5 R_6 R_4$$

$$Ar_2 R_3 R_{3A} Ar_2$$

wherein:

m is 0, 1, or 2;

R₁ is chosen from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted (cycloalkyl)alkyl, optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms;

R₂ is chosen from optionally substituted C₁-C₈ alkyl, optionally substituted C₃-C₈ cycloalkyl, optionally substituted C₃-C₈ cycloalkyl(C₁-C₈)alkyl, optionally substituted C₂-C₈ alkenyl, optionally substituted C₂-C₈ alkynyl, haloalkyl, aminoalkyl, each of which may be unsubstituted or preferrably substituted with one or more substituents selected from oxo (e.g. carbonyl), hydroxy, alkoxy, amide, ester, cyano, acetoxy or nitro.

R₃, R_{3A}, R₅, and R₆ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;



R₁ and R₃ may be joined to form a cycloalkyl or heterocycloalkyl ring, each of which may be optionally substituted;

- R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or
- R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and
- Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.
  - 13. A compound according to Claim 12 of the formula:

$$Ar_1 \xrightarrow[R_2]{N_1} \begin{bmatrix} R_1 \\ N \\ R_2 \end{bmatrix} \begin{bmatrix} R_4 \\ N \\ Ar_2 \end{bmatrix}$$

wherein m, Ar₁, Ar₂, R₁, R₂, R₃, and R₄ are as defined in Claim 12.

14. A compound according to Claim 12 of the formula:

$$Ar_1 \xrightarrow{N} \begin{array}{c} R_1 \\ N \\ R_2 \end{array} \begin{array}{c} R_4 \\ R_3 \end{array} \begin{array}{c} R_4 \\ Ar_2 \end{array}$$

wherein:

 $R_1$  is hydrogen,  $C_1$ - $C_7$  alkyl, halogen or phenyl optionally substituted with  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, halogen, hydroxy, amino, or mono- or di( $C_1$ - $C_6$ )alkylamino;

R2 is C1-C8 alkyl or C3-C8 cycloalkyl; and

R₃ is hydrogen or C₁-C₇ alkyl.

15. A compound according to Claim 12 of the formula:

$$Ar_1$$
 $N$ 
 $R_1$ 
 $R_4$ 
 $R_2$ 
 $R_3$ 
 $Ar_2$ 

wherein:

Ar₁ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, thienyl, imidazolyl, pyridyl, pyrimidyl, benzodioxinyl, benzodioxolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

Ar₂ is defined as in Claim 12;

 $R_1$  is hydrogen,  $C_1$ - $C_7$  alkyl, halogen or phenyl optionally substituted with  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, halogen, hydroxy, amino, or mono- or di( $C_1$ - $C_6$ )alkylamino;

R₂ is C₁-C₈ alkyl or C₃-C₈ cycloalkyl; and

R₃ is hydrogen or C₁-C₇ alkyl; and

R₄ is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, or (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

16. A compound according to Claim 12 of the formula:

$$Ar_1 \xrightarrow[R_2]{R_1} R_3 \xrightarrow[R_2]{R_4} Ar_2$$

wherein:

Ar₁ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, thienyl, imidazolyl, pyridyl, pyrimidyl, benzodioxinyl, benzodioxolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

Ar2 is defined as in Claim 12;

R₁ is hydrogen, C₁-C₇ alkyl, halogen or phenyl optionally substituted with C₁-C₆ alkyl, C₁-C₆ alkoxy, halogen, hydroxy, amino, or mono- or di(C₁-C₆)alkylamino;

R2 is C1-C8 alkyl or C3-C8 cycloalkyl; and

R₃ is hydrogen or C₁-C₇ alkyl; and

R4 is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C1-C4)alkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 alkoxy, amino, mono- or di(C1-C6)alkylamino; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

17. A compound according to Claim 12 of the formula:

$$Ar_1 \xrightarrow{N} \begin{array}{c} R_1 \\ N \\ R_2 \end{array} \xrightarrow{R_3} \begin{array}{c} R_4 \\ Ar_2 \end{array}$$

wherein:

Ar₁ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, thienyl, or pyridyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

Ar₂ is defined as in Claim 12;

R₁ is hydrogen, methyl, ethyl, or phenyl;

R₂ is C₃-C₈ alkyl or C₃-C₈ cycloalkyl; and

R₃ is hydrogen or methyl; and

R₄ is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, or (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

18. A compound according to Claim 12 of the formula:

$$Ar_1 \xrightarrow{N} \begin{array}{c} R_1 \\ N \\ R_2 \end{array} \xrightarrow{R_3} Ar_2$$

wherein:

Ar₁ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, thienyl, or pyridyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

Ar₂ is defined as in Claim 12;

R₁ is hydrogen, methyl, ethyl, or phenyl;

R₂ is C₃-C₈ alkyl or C₃-C₈ cycloalkyl; and

R₃ is hydrogen or methyl; and

R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein  $R_A$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino.

19. A compound according to Claim 12 of the formula:

$$Ar_1 \xrightarrow{N} \begin{array}{c} R_1 \\ N \\ R_2 \end{array} \xrightarrow{R_3} \begin{array}{c} R_4 \\ Ar_2 \end{array}$$

wherein:

Ar₁ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, thienyl, or pyridyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

Ar₂ is chosen from phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, and quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl; or

Ar₂ is a bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

R₁ is hydrogen, methyl, ethyl, or phenyl;

R₂ is C₃-C₈ alkyl or C₃-C₈ cycloalkyl; and

 $R_3$  is hydrogen or methyl; and

R₄ is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, or (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

20. A compound according to Claim 12 of the formula:

$$Ar_1 \xrightarrow[R_2]{R_1} R_3 \xrightarrow[R_2]{R_4} Ar_2$$

wherein:

Ar₁ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C₁-C₄)alkyl, thienyl, or pyridyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

Ar₂ is chosen from phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, and quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl; or



Ar₂ is a bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

R₁ is hydrogen, methyl, ethyl, or phenyl;

 $R_2$  is  $C_3$ - $C_8$  alkyl or  $C_3$ - $C_8$  cycloalkyl; and

R₃ is hydrogen or methyl; and

R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino; or

R4 is a bicyclic oxygen-containing group of the formula:

wherein  $R_A$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino.

#### 21. A compound according to Claim 12 of the formula:

$$Ar_1 \xrightarrow{N} \begin{array}{c} R_1 \\ N \\ R_2 \end{array} \xrightarrow{R_3} \begin{array}{c} R_4 \\ Ar_2 \end{array}$$

or a pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein:

Ar₁ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C₁-C₄)alkyl,
thienyl, or pyridyl, each of which may be optionally substituted or
substituted with up to four groups independently selected from halogen,
nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,
C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or
di(C₁-C₆)alkylamino;

Ar₂ is a bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

#### R₁ is selected from

i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or

#### R₁ is selected from

phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl,

pyrazinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

R₂ and R₃ are independently selected from

- i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and
- ii)  $C_1$ - $C_8$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_3$ - $C_8$  cycloalkyl, and  $(C_3$ - $C_8$  cycloalkyl)  $C_1$ - $C_3$  alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkoxy, amino, mono- or di( $C_1$ - $C_6$ )alkylamino; and
- R₄ is C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or
- R4 is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C1-C4)alkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 alkoxy,

amino, mono- or  $di(C_1-C_6)$ alkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or  $di(C_1-C_6)$ alkylaminocarbonyl, N-( $C_1-C_6$ )alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

22. A compound according to Claim 21, wherein the compound exhibits an IC₅₀ of 1uM or less in an assay of C5a mediated chemotaxis or calcium mobilization.

23. A compound according to Claim 21, wherein:

R₁ is hydrogen, methyl, ethyl, or phenyl;

R₂ is C₃-C₈ alkyl or C₃-C₈ cycloalkyl;

R₃ is hydrogen or methyl; and

R₄ is C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

24. A compound according to Claim 21, wherein:

R₁ is hydrogen, methyl, ethyl, or phenyl;

R₂ is C₃-C₈ alkyl or C₃-C₈ cycloalkyl;

R₃ is hydrogen or methyl; and

R₄ is C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

#### 25. A compound according to Claim 21, wherein:

R₁ is hydrogen, methyl, ethyl, or phenyl;

R₂ is C₃-C₈ alkyl or C₃-C₈ cycloalkyl;

R₃ is hydrogen or methyl; and

R₄ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino.

#### 26. A compound according to Claim 21, wherein:

R₁ is hydrogen, methyl, ethyl, or phenyl;

R₂ is C₃-C₈ alkyl or C₃-C₈ cycloalkyl;

R₃ is hydrogen or methyl; and

R4 is a bicyclic oxygen-containing group of the formula:

wherein  $R_A$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino.

# 27. A compound of the formula:

$$\begin{array}{c|c} R_3 & R_5 \\ \hline \\ R_3 & R_5 \\ \hline \\ R_2 & R_4 & Ar_2 \\ \end{array}$$

or a pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein: n is an integer from 0 to 3; and

 $R_2$  is chosen from optionally substituted  $C_1$ - $C_8$  alkyl, optionally substituted  $C_3$ - $C_8$  cycloalkyl, optionally substituted  $C_3$ - $C_8$  cycloalkyl( $C_1$ - $C_8$ )alkyl, optionally substituted  $C_2$ - $C_8$  alkenyl, optionally substituted  $C_2$ - $C_8$  alkynyl, haloalkyl, aminoalkyl, each of which may be unsubstituted or preferrably substituted with one or more substituents selected from oxo (e.g. carbonyl), hydroxy, alkoxy, amide, ester, cyano, acetoxy or nitro.

R4 is hydrogen or

alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, haloalkyl, each or which may be substituted or unsubstituted; or

R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, or an optionally substituted heteroaromatic or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 hetero atoms,

 $R_3$  and  $R_{3\text{A}}$  are the same or different and represent hydrogen or alkyl; or

R₃ and R_{3A}, taken together with the carbon atom to which they are attached, form a cycloalkyl ring;

R₅ and R₆ are the same or different and represent hydrogen, halogen, hydroxy, alkyl, or alkoxy; or

R₅ and R₆, taken together with the carbon atom to which they are attached form a cycloalkyl ring;

R_{5a} and R_{6a} are the same or different, and are independently selected at each occurrence from hydrogen, halogen, hydroxy, alkyl, and alkoxy;

R₇ represents hydrogen or alkyl;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, or an optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 hetero atoms.

## 28. A compound according to Claim 27, wherein:

n,  $R_2$ ,  $R_3$ ,  $R_{3A}$ ,  $R_5$ ,  $R_6$ ,  $R_{5a}$ ,  $R_{6a}$ , and  $R_7$  are defined as in Claim 27, and  $R_4$  is hydrogen or

alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino and mono- or dialkylamino,

R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, aminoalkoxy, carboxylic acid, esters of carboxylic acids,

aminocarbonyl, mono or dialkylaminocarbonyl, Nalkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl and X₄R_B, wherein X₄ and R_B are as defined below; or
R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently chosen from

il phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, aminoalkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N-alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl and – X4RB, wherein X4 and RB are as defined below;, and

ii) bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

 $X_4$  is independently selected at each occurrence from the group consisting of -CH₂-, -CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-,

-NR_CC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, -O(alkyl), -NH(alkyl),

-N(alkyl)(alkyl), -NHC(O)(alkyl), -N(alkyl)C(O)(alkyl), -NHS(O)_x(alkyl), -S(O)_x(alkyl), -S(O)_xNH(alkyl), -S(O)_xN(alkyl)(alkyl), (where x is 0, 1, or 2).

29. A compound according to Claim 27, wherein:

n and R2 are defined as in Claim 27, and

 $R_3$  and  $R_{3A}$  are the same or different and represent hydrogen or

C1-C6 alkyl; or

R₃ and R_{3A}, taken together with the carbon atom to which they are attached, form a C₃₋₈ cycloalkyl ring;

R₅ and R₆ are the same or different and represent hydrogen, halogen, hydroxy, C₁-C₆ alkyl, or C₁-C₆ alkoxy; or

 $R_5$  and  $R_6$ , taken together with the carbon atom to which they are attached form a  $C_{3-8}$  cycloalkyl ring;

 $R_{5a}$  and  $R_{6b}$  are the same or different, and are independently selected at each occurrence from hydrogen, halogen, hydroxy,  $C_1$ - $C_6$  alkyl, and  $C_1$ - $C_6$  alkoxy;

R4 is hydrogen or

C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁₋₄alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino,

R4 is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C1-C6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-C6 alkoxy, amino, mono- or di(C1-C6)alkylamino, amino(C1-C6)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C1-C6)alkylaminocarbonyl, N-(C1-C6)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, -X4RB, wherein X4 and RB are as defined below; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein  $R_A$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl:

Ar₁ and Ar₂ are independently chosen from

i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and -X₄R_B, wherein X₄ and R₈ are as defined below; and

ii) bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino;

 $X_4$  is independently selected at each occurrence from the group consisting of -CH₂-, -CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-, -NR_CC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or

substituted with one or more substituent(s) selected from:

oxo, hydroxy,  $-O(C_1-C_6 \text{ alkyl})$ ,  $-NH(C_1-C_6 \text{ alkyl})$ ,  $-N(C_1-C_6 \text{ alkyl})$ ,  $-NHS(O)_x(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_x(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_xNH(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_xNH(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_xNH(C_1-C_6 \text{ alkyl})$ , (where x is 0, 1, or 2).

30. A compound according to Claim 27, wherein n,  $R_2$ ,  $R_3$ ,  $R_{3A}$ ,  $R_5$ ,  $R_6$ ,  $R_{5a}$ ,  $R_{6a}$ , and  $R_7$  are as defined in Claim 27,  $R_4$  is hydrogen or

 $C_1$ - $C_8$  alkyl,  $C_2$ - $C_8$  alkenyl,  $C_2$ - $C_8$  alkynyl,  $C_3$ - $C_8$ cycloalkyl, ( $C_3$ - $C_8$ cycloalkyl)  $C_1$ - $C_4$ alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino and mono- or di( $C_1$ - $C_6$ )alkylamino,

R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, naphthyl, thienyl, pyridyl, pyrimidyl, dihydrobenzofuranyl, furanyl, benzodioxanyl, indolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, -X₄R_B, wherein X₄ and R_B are as defined below; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

Ar₁ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, thienyl, or pyridyl, pyrimidyl, dihydrobenzofuranyl, furanyl, benzodioxanyl, indolyl, each of which is unsubstituted or substituted with up to four substituents independently selected from:

halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and -X₄R_B, wherein X₄ and R_B are as defined below;

Ar₂ is phenyl, naphthyl, thienyl, pyridyl, pyrimidyl, dihydrobenzofuranyl, furanyl, benzodioxanyl, indolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and -X₄R_B, wherein X₄ and R_B are as defined below; or

Ar₂ is a bicyclic oxygen-containing group of the formula:

wherein  $R_A$ ' represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino;

 $X_4$  is independently selected at each occurrence from the group consisting of -CH₂-, -CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2);

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substitutent(s) selected from:

oxo, hydroxy,  $-O(C_1-C_6 \text{ alkyl})$ ,  $-NH(C_1-C_6 \text{ alkyl})$ ,  $-N(C_1-C_6 \text{ alkyl})$ ,  $-NHS(O)_x(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_x(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_xNH(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_xNH(C_1-C_6 \text{ alkyl})$ , (where x is 0, 1, or 2).

# 31. A compound according to Claim 30 wherein:

 $R_3$  and  $R_4$  are the same or different and represent hydrogen or methyl;  $R_5$  and  $R_6$  are the same or different and represent hydrogen or methyl; and  $R_{5a}$  and  $R_{6a}$  are the same or different, and are independently selected at each occurrence from hydrogen and methyl.

## 32. A compound according to Claim 30 wherein:

R₃ and R₄ are hydrogen;

 $R_5$  and  $R_6$  are the same or different and represent hydrogen or methyl; and  $R_{5a}$  and  $R_{6a}$  are the same or different, and are independently selected at each

occurrence from hydrogen and methyl.

## 33. A compound according to Claim 30 of the formula:

$$R_{5}$$
  $R_{6}$   $CR_{5a}R_{6a}$   $R_{6}$   $R_{7}$   $R_{8}$   $R_{8$ 

or a pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein:

R₂, R₄, Ar₂, and n are as defined for Claim 30;

R₅ and R₆ are the same or different and represent hydrogen or methyl;

 $R_{5a}$  and  $R_{6a}$  are the same or different, and are independently chosen at each occurrence from hydrogen and methyl; and

R_X represents up to four substituents independently chosen from hydrogen, halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy.

## 34. A compound according to Claim 32, of the formula:

$$R_{5}$$
  $R_{6}$   $CR_{5a}R_{6a}$   $R_{6}$   $R_{7}$   $R_{8}$   $R_{8$ 

or a pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein:

R₄, Ar₂, and n are as defined for Claim 30;

R₂ is C₃-C₈ straight or branched chain alkyl, C₂-C₈ alkenyl, or C₂-C₈ alkynyl;



R₅ and R₆ are the same or different and represent hydrogen or methy.

 $R_{5a}$  and  $R_{6a}$  are the same or different, and are independently chosen at each occurrence from hydrogen and methyl; and

R_X represents up to four substituents independently chosen from hydrogen, halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy.

35. A compound according to Claim 33,

or a pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein:

Ar2, Rx, and n are as defined for Claim 30

 $R_2$  is  $C_3$ - $C_8$  straight or branched chain alkyl,  $C_2$ - $C_8$  alkenyl, or  $C_2$ - $C_8$  alkynyl; and  $R_4$  is  $C_1$ - $C_8$  straight or branched chain alkyl,  $C_2$ - $C_8$  alkenyl, or  $C_2$ - $C_8$  alkynyl.

36. A compound according to Claim 33, or a pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein: R₂ is C₃-C₈ straight or branched chain alkyl, C₂-C₈ alkenyl, or C₂-C₈ alkynyl; R₄ is phenyl, which may be unsubstituted or substituted with:

 $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_3$ - $C_8$  cycloalkyl) $C_1$ - $C_4$  alkyl, haloalkyl,  $C_1$ - $C_6$  alkoxy, halogen, hydroxy, amino, or mono- or di( $C_1$ - $C_6$ )alkylamino; or

R4 is a bicyclic oxygen containing group of the formula:

wherein R_A is hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈cycloalkyl) C₁-C₄ alkyl, haloalkyl, alkoxy, halogen, hydroxy, amino, or mono- or di(C₁-C₆)alkylamino;

Ar₂ is phenyl which is unsubstituted or optionally substituted or substituted with up to four groups independently selected from:

halogen, C1-C7 alkyl, C1-C7 alkoxy, cyano, amino, mono- or di(C1-C₆)alkylamino, carboxylic acid, of carboxylic esters acids, aminocarbonyl, dialkylaminocarbonyl, Nmono or alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, 1-morpholino, nitro, hydroxy, acetoxy, trifluoromethyl, trifluoromethoxy or  $-X_4R_B$ , wherein  $X_4$  and  $R_B$  are as defined for Claim 33; or

Ar₂ is a bicyclic oxygen-containing group of the formula:

wherein RA, RA', and n are as defined in Claim 33.

### 37. A compound according to Claim 33,

or a pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein:  $R_2$  is  $C_3$ - $C_8$  straight or branched chain alkyl,  $C_2$ - $C_8$  alkenyl, or  $C_2$ - $C_8$  alkynyl;  $R_4$  is  $C_1$ - $C_8$  straight or branched chain alkyl,  $C_2$ - $C_8$  alkenyl, or  $C_2$ - $C_8$  alkynyl;  $Ar_2$  is a bicyclic oxygen containing group of the formula:

$$\bigcap_{R_A} \bigcap_{\sigma} \bigcap_{R_A} \bigcap_{\sigma} \bigcap_{R_A} \bigcap_{\sigma} \bigcap_{R_A} \bigcap_{\sigma} \bigcap_{R_A} \bigcap_{\sigma} $

wherein RA' and n are as defined for Claim 33.

#### 38. A compound of the formula:

wherein:

n is an integer from 0 to 3;

R₃ and R_{3A} are the same or different and represent hydrogen, halogen, hydroxy, alkyl, or alkoxy; or

R₃ and R_{3A}, taken together with the carbon atom to which they are attached, form a cycloalkyl ring;

R₅ and R₆ are the same or different and represent hydrogen, halogen, hydroxy, alkyl, or alkoxy; or

 $R_{5}$  and  $R_{6}$ , taken together with the carbon atom to which they are attached form a cycloalkyl ring; and

R5A and R6A are the same or different and represent hydrogen, halogen, hydroxy, alkyl, or alkoxy.

### 39. A compound according to Claim 38, wherein:

R₃ and R_{3A} are the same or different and represent hydrogen or C₁-C₆ alkyl; or

R₃ and R_{3A}, taken together with the carbon atom to which they are attached, form a cycloalkyl ring of from three to six carbon atoms;

R₅ and R₆ are the same or different and represent hydrogen, halogen, hydroxy, C₁-C₆ alkyl, or C1-C6 alkoxy; or

R₅ and R₆, taken together with the carbon atom to which they are attached form a cycloalkyl ring of from three to six carbon atoms; and

R_{SA} and R_{6A} are the same or different and represent hydrogen, halogen, hydroxy, C₁-C₆ alkyl, or C₁-C₆ alkoxy.

# 40. A compound according to Claim 38, wherein:

R₃ and R₄ are hydrogen; and

R₅, R₆, R_{5A}, and R_{6A} are the same or different and represent hydrogen or methyl.

#### 41. A compound of the formula:

$$\begin{array}{c} R_3 R_{3A} R_5 R_6 \\ \\ R_{5A} \\ \\ R_{6A} \end{array}$$

wherein:

n is an integer from 0 to 3;

R₂ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, or haloalkyl, each of which may be substituted or unsubstituted;

R₃ and R₄ are the same or different and represent hydrogen or alkyl; or

R₃ and R_{3a}, taken together with the carbon atom to which they are attached, form a cycloalkyl ring;

R₅ and R₆ are the same or different and represent hydrogen, halogen, hydroxy, alkyl, or alkoxy; or

R₅ and R₆, taken together with the carbon atom to which they are attached, form a cycloalkyl ring;

 $R_{5A}$  and  $R_{6A}$  are the same or different and represent hydrogen, halogen, hydroxy, alkyl, or alkoxy; and

Arı is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ is unsubstituted or substituted carbocyclic aryl, unsubstituted or substituted arylalkyl, or a unsubstituted or substituted heteroaromatic or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 hetero atoms.

#### 42. A compound according to Claim 41 in which:

 $R_2$  is  $C_1$ - $C_8$  straight or branched chain alkyl,  $C_2$ - $C_8$  alkenyl,  $C_2$ - $C_8$  alkynyl,  $C_3$ - $C_8$  cycloalkyl,  $C_2$ - $C_8$  (cycloalkyl) $C_1$ - $C_4$  alkyl, or  $C_1$ - $C_8$  haloalkyl;

R₃ and R_{3a} are the same or different and represent hydrogen or C₁-C₆ alkyl; or

R₃ and R_{3a}, taken together with the carbon atom to which they are attached, form a cycloalkyl ring of from three to six carbon atoms; and

R₅ and R₆ are the same or different and represent hydrogen, halogen, hydroxy, C₁-C₆ alkyl, or C₁-C₆ alkoxy; or

- R₅ and R₆, taken together with the carbon atom to which they are attached form a cycloalkyl ring of from three to six carbon atoms;
- $R_{5A}$  and  $R_{6A}$  are the same or different and represent hydrogen, halogen, hydroxy,  $C_1$ - $C_6$  alkyl, or  $C_1$ - $C_6$  alkoxy;
- Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, phenyl, thienyl, or pyridyl, pyrimidyl, dihydrobenzofuranyl, furanyl, benzodioxanyl, indolyl, each of which is unsubstituted or substituted with up to four substituents independently selected from:

halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, mono- or di( $C_1$ - $C_6$ )alkylamino, amino( $C_1$ - $C_6$ )alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di( $C_1$ - $C_6$ )alkylaminocarbonyl, N-( $C_1$ - $C_6$ )alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and  $-X_4R_8$ , wherein  $X_4$  and  $R_8$  are as defined below;

- $X_4$  is independently selected at each occurrence from the group consisting of -CH₂-, -CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-, -NR_CC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2); and
- R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, -O( $C_1$ - $C_6$  alkyl), -NH( $C_1$ - $C_6$  alkyl), -N( $C_1$ - $C_6$  alkyl)( $C_1$ - $C_6$  alkyl), -NHC(O)( $C_1$ - $C_6$  alkyl), -N( $C_1$ - $C_6$  alkyl), -NHS(O)_x( $C_1$ - $C_6$  alkyl), -S(O)_x( $C_1$ - $C_6$  alkyl), -

 $S(O)_xNH(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_xN(C_1-C_6 \text{ alkyl})(C_1-C_6 \text{ alkyl})$ , (where x is 0, 1, or 2).

## 43. A compound according to Claim 41 of the formula:

$$R_{1}$$
  $R_{2}$   $R_{2}$   $R_{3}$   $R_{6}$ 

wherein:

n is 0, 1, or 2:

 $R_2$  is  $C_3$ - $C_8$  straight or branched chain alkyl,  $C_2$ - $C_8$  alkenyl, or  $C_2$ - $C_8$  alkynyl;

R₅, R₆, R_{5A}, and R_{6A} are the same or different and represent hydrogen or methyl; and R_X represents up to four substituents independently chosen from hydrogen, halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy.

### 44. A compound of the formula:

$$\begin{array}{c|c} R_3 & R_{3A} & R_{5} \\ \hline N & R_{5A} \\ \hline R_{6A} & R_{6A} \\ \hline R_{7} & R_{7} \\ \hline R_{2} & R_{7} \\ \end{array}$$

wherein:

n is an integer from 0 to 3; and

R₂ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, haloalkyl, each or which may be substituted or unsubstituted;

R₃ and R_{3A} are the same or different and represent hydrogen or alkyl; or

R₃ and R_{3a}, taken together with the carbon atom to which they are attached, form a cycloalkyl ring;

R₅ and R₆ are the same or different and represent hydrogen or alkyl; or

R₅ and R₆, taken together with the carbon atom to which they are attached, form a cycloalkyl ring;

 $R_{5a}$  and  $R_{6a}$  are the same or different, and are independently selected at each occurrence from hydrogen, halogen, hydroxy, alkyl, and alkoxy;

R7 represents hydrogen or alkyl; and

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, or an optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 hetero atoms.

# 45. A compound according to Claim 44, of the formula:

$$R_{5}$$
  $R_{6}$   $R_{6A}$   $R_{6A}$   $R_{6A}$ 

wherein:

n is an integer from 0 to 3;

R₂ is C₃-C₈ straight or branched chain alkyl, C₂-C₈ alkenyl, or C₂-C₈ alkynyl;

R₅, R₆, R_{5A}, and R_{6A} are the same or different and represent hydrogen or methyl; and

Rx represents up to four substituents independently chosen from hydrogen, halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy.

46. A process for preparing a compound of the formula:

$$\begin{array}{c|c} R_3 & R_5 \\ \hline \\ R_5 & R_6 \\ \hline \\ R_7 & R_{7} \\ \hline \\ R_2 & R_4 & Ar_2 \\ \end{array}$$

wherein:

n is an integer from 0 to 3; and

R₂ is hydrogen or

alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, or haloalkyl, each or which may be substituted or unsubstituted;

R4 is hydrogen or

alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, haloalkyl, each or which may be substituted or unsubstituted; or

R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, or an optionally substituted heteroaromatic or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 hetero atoms,

R₃ and R_{3A} are the same or different and represent hydrogen or alkyl; or

R₃ and R_{3A}, taken together with the carbon atom to which they are attached, form a cycloalkyl ring;

 $R_5$  and  $R_6$  are the same or different and represent hydrogen, halogen, hydroxy, alkyl, or alkoxy; or

R₅ and R₆, taken together with the carbon atom to which they are attached form a cycloalkyl ring;

R_{5a} and R_{6a} are the same or different, and are independently selected at each occurrence from hydrogen, halogen, hydroxy, alkyl, and alkoxy;

R₇ represents hydrogen or alkyl;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, or an optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 hetero atoms.

the process comprising:

reacting a compound of the formula:

$$\begin{array}{c|c} R_3 & R_{3A} R_5 \\ R_6 & R_{5A} \\ R_{7} & R_{7} \end{array}$$

wherein Y is halogen or sulfonate ester,

in a suitable solvent in the presence of a suitable base,

with a secondary amine of the formula:

47. A process according to Claim 46, wherein

n and Y are as defined in Claim 46;

 $R_{3}$  and  $R_{3\text{A}}$  are the same or different and represent hydrogen or

C1-C6 alkyl; or

 $R_3$  and  $R_{3A}$ , taken together with the carbon atom to which they are attached, form a  $C_{3-8}$  cycloalkyl ring;

 $R_5$  and  $R_6$  are the same or different and represent hydrogen, halogen, hydroxy,  $C_1$ - $C_6$  alkoxy; or

 $R_5$  and  $R_6$ , taken together with the carbon atom to which they are attached form a  $C_{3-8}$  cycloalkyl ring;

 $R_{5a}$  and  $R_{6a}$  are the same or different, and are independently selected at each occurrence from hydrogen, halogen, hydroxy,  $C_1$ - $C_6$  alkyl, and  $C_1$ - $C_6$  alkoxy;

R₂ is hydrogen or

C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈ cycloalkyl, (C₃₋₈ cycloalkyl) C₁₋₃ alkyl, or C₁-C₆ haloalkyl, each or which unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluormethyl, trifluoromethoxy, C₁₋₃ haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

R4 is hydrogen or

 $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{3-8}$  cycloalkyl,  $(C_{3-8}$  cycloalkyl) $C_{1-4}$ alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino and mono- or di( $C_1$ - $C_6$ )alkylamino,

R4 is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C1-C6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-C6 alkoxy, amino, mono- or di(C1-C6)alkylamino, amino(C1-C6)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C1-C6)alkylaminocarbonyl, N-(C1-C6)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, -X4RB, wherein X4 and RB are as defined below; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently chosen from

- i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and -X₄R_B, wherein X₄ and R_B are as defined below; and
- ii) bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino;

 $X_4$  is independently selected at each occurrence from the group consisting of -CH₂-, -CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-,

-NR_CC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, -O( $C_1$ - $C_6$  alkyl), -NH( $C_1$ - $C_6$  alkyl), -N( $C_1$ - $C_6$  alkyl)( $C_1$ - $C_6$  alkyl), -NHC(O)( $C_1$ - $C_6$  alkyl), -N( $C_1$ - $C_6$  alkyl), -NHS(O)_x( $C_1$ - $C_6$  alkyl), -S(O)_x( $C_1$ - $C_6$  alkyl), -S(O)_xNH( $C_1$ - $C_6$  alkyl), -S(O)_xN( $C_1$ - $C_6$  alkyl) (C1- $C_6$  alkyl), (where x is 0, 1, or 2).

#### 48. A compound of the formula:

$$R_1$$
 $R_2$ 
 $R_3$ 
 $R_3$ 
 $R_4$ 
 $R_4$ 
 $R_4$ 
 $R_5$ 

or a pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein: m is 0, 1, or 2;

R is hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted (cycloalkyl)alkyl; or

R is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms;

R₁, R₂, R₃, R_{3A}, R₅, and R₆ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;

R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or

R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.

- 49. A compound according to Claim 48, wherein the compound exhibits an IC₅₀ of 1uM or less in an assay of C5a mediated chemotaxis or calcium mobilization.
  - 50. A compound according to Claim 48 of the formula

$$R_1$$
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_4$ 

wherein Ar₁, Ar₂, R, R₁, R₂, R₃, and R₄ are as defined in Claim 48.

51. A compound according to Claim 50, wherein

R is selected from

i) hydrogen, halogen, hydroxy, amino, alkoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, and

ii) alkyl, alkenyl, alkynyl, cycloalkyl, and (cycloalkyl)alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino; or

#### R is selected from

phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino; and

## $R_1$ , $R_2$ , and $R_3$ are independently selected from

- i) hydrogen, halogen, hydroxy, amino, alkoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, and
- ii) alkyl, alkenyl, alkynyl, cycloalkyl, and (cycloalkyl)alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino;

# R4 is hydrogen or

alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino and mono- or dialkylamino,

R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl,

cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, aminoalkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N-alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, -X₄R_B, wherein X₄ and R_B are as defined below; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently chosen from

i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, aminoalkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N-alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and -X4RB, wherein X4 and RB are as defined below; and

ii) bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

 $X_4$  is independently selected at each occurrence from the group consisting of -CH₂-, -

 $CHR_{C^-}$ , -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-,

-NHC(=O)-,

-NR_CC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, -O(alkyl), -NH(alkyl),

-N(alkyl)(alkyl), -NHC(O)(alkyl), -N(alkyl)C(O)(alkyl), -NHS(O) $_x$ (C1-C6 alkyl), -S(O) $_x$ (alkyl), -S(O) $_x$ NH(alkyl), -S(O) $_x$ N(alkyl)(alkyl), (where x is 0, 1, or 2).

52. A compound according to Claim 50, wherein

R₁, R₂, and R₃ are independently selected from

i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy,

haloalkyl, hydroxy, acetoxy, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

#### R is selected from

i) hydrogen, halogen, hydroxy, amino,  $C_1$ - $C_6$  alkoxy, mono- or di( $C_1$ - $C_6$ )alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or

## R is selected from

phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

### R4 is hydrogen or

 $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{3-8}$  cycloalkyl,  $(C_{3-8}$  cycloalkyl) $C_{1-4}$ alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_{1}$ - $C_{6}$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_{1}$ - $C_{6}$  alkoxy, amino and mono- or di( $C_{1}$ - $C_{6}$ )alkylamino,

R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl,

R4 is a bicyclic oxygen-containing group of the formula:

wherein  $R_A$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino; and

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar1 and Ar2 are independently chosen from

i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(

 $C_1$ - $C_6$ )alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and  $-X_4R_B$ , wherein  $X_4$  and  $R_B$  are as defined below; and

ii) bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino;

 $X_4$  is independently selected at each occurrence from the group consisting of -CH₂-, -CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-, -NR_CC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, -O(C₁-C₆ alkyl), -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)(C₁-C₆ alkyl), -NHC(O)(C₁-C₆ alkyl), -N(C₁-C₆ alkyl), -S(O)_x(C₁-C₆ alkyl), -S(O)_x(C₁-C₆ alkyl), -S(O)_xNH(C₁-C₆ alkyl), -S(O)_xN(C₁-C₆ alkyl), (where x is 0, 1, or 2).

53. A compound according to Claim 50, wherein:

R is hydrogen, halogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₈ cycloalkyl, (C₃-C₈cycloalkyl)C₁-C₃alkyl, C₁-C₈ alkoxy, or C₁-C₈ haloalkyl, or

R is a phenyl which may be substituted by up to five substituents independently chosen from C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₈ alkoxy, halogen, cyano, carboxylic acid, hydroxy, acetoxy, nitro, amino, mono or di(C₁-C₆)alkylamino, aminocarbonyl, sulfonamido, mono or di(C₁-C₆)alkylsulfonamido, 3,4-methylenedioxy, 3,4-(1,2-ethylene)dioxy, trifluoromethyl or trifluoromethoxy:

- R₁ is hydrogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈ cycloalkyl (C₃-C₈cycloalkyl)C₁-C₃alkyl or C₁-C₈ haloalkyl;
- R₂ is C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₈ cycloalkyl or (C₃-C₈cycloalkyl)C₁-C₃alkyl or C₁-C₈ haloalkyl;
- R₃ is hydrogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, or C₂-C₈ alkynyl;
- R₄ is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, or (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or
- R₄ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; and

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently chosen from phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, and quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl, and

bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ ) alkylamino.

54. A compound according to Claim 50, wherein:

R is hydrogen, halogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₈ cycloalkyl, (C₃-C₈cycloalkyl)C₁-C₃alkyl, C₁-C₈ alkoxy, or C₁-C₈ haloalkyl, or

R is a phenyl which may be substituted by up to five substituents independently chosen from C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₈ alkoxy, halogen, cyano, carboxylic acid, hydroxy, acetoxy, nitro, amino, mono or di(C₁-C₆)alkylamino, aminocarbonyl, sulfonamido, mono or di(C₁-C₆)alkylsulfonamido, 3,4-methylenedioxy, 3,4-(1,2-ethylene)dioxy, trifluoromethyl or trifluoromethoxy;

R₁ is hydrogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈ cycloalkyl (C₃-C₈cycloalkyl)C₁-C₃alkyl or C₁-C₈ haloalkyl;

- R₂ is C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₈ cycloalkyl or (C₃-C₈ cycloalkyl)C₁-C₃alkyl or C₁-C₈ haloalkyl;
- R₃ is hydrogen, C₁-C₈ alkyl, C₂-C₈ alkenyl, or C₂-C₈ alkynyl;
- R₄ is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, or (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or
- R₄ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino; or

R4 is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, phenyl, thienyl, or pyridyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino; and

Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo(b)thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, and quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl, or

Ar₂ is a bicyclic oxygen-containing group of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ ) alkylamino.

### 55. A compound according to Claim 50, wherein

R is hydrogen, halogen, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, or phenyl;  $R_1$  is hydrogen, methyl or ethyl;

 $R_2$  is  $C_3$ - $C_6$  alkyl;

R₃ is hydrogen, methyl or ethyl;

R₄ is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, or (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or

R₄ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino; or R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, phenyl, thienyl, or pyridyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino; and

Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, and quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

Ar₂ is a bicyclic oxygen-containing group of the formula:



wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino.

### 56. A compound of the formula:

$$R_1$$
 $R_5$ 
 $R_6$ 
 $R_4$ 
 $R_7$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 

wherein:

m is 0, 1, or 2;

R is hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted (cycloalkyl)alkyl; or

R is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms;

R₁, R₂, R₃, R_{3A}, R₅, and R₆ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;

R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or

 $R_4$  is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings,  $\dot{3}$  to 8 members in each ring and from 1 to 3 heteroatoms; and

Arı is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.

## 57. A compound of the formula:

$$R_1$$
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_4$ 
 $R_4$ 
 $R_4$ 

wherein Ar₁, R, R₁, R₂, R₃, R₄ are as defined in Claim 56.

58. A compound according to Claim 56, wherein:

 $R_1$ ,  $R_2$ , and  $R_3$  are independently selected from

i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

## R is selected from

i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or

#### R is selected from

phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

#### R4 is hydrogen or

 $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{3-8}$  cycloalkyl,  $(C_{3-8}$  cycloalkyl) $C_{1-4}$ alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino and mono- or di( $C_1$ - $C_6$ )alkylamino,

R4 is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C1-C6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C1-C6 alkoxy, amino, mono- or di(C1-C6)alkylamino, amino(C1-C6)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C1-C6)alkylaminocarbonyl, N-(C1-C6)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, -X4RB, wherein X4 and RB are as defined below; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; and

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently chosen from

- i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and -X₄R_B, wherein X₄ and R₈ are as defined below; and
- ii) bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino;

 $X_4$  is independently selected at each occurrence from the group consisting of -CH₂-, -CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-, -NR_CC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2);

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy,  $-O(C_1-C_6 \text{ alkyl})$ ,  $-NH(C_1-C_6 \text{ alkyl})$ ,

 $-N(C_1-C_6 \ alkyl)(C_1-C_6 \ alkyl), \ -N(C_1-C_6 \ alkyl)(C_1-C_6 \ alkyl), \ -N(C_1-C_6 \ alkyl)(C_1-C_6 \ alkyl), \ -S(O)_x(C_1-C_6 \ alkyl), \ -S(O)_xNH(C_1-C_6 \ alkyl), \ -S(O)_xN(C_1-C_6 \ alkyl), \ -S(O)_xNH(C_1-C_6 \ alkyl), \ -S(O)_xN(C_1-C_6 \ alkyl), \ -S(O)_xN($ 

59. A compound according to Claim 56, wherein:

R is hydrogen, halogen, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, or phenyl; R₁ is hydrogen, methyl or ethyl;

 $R_2$  is  $C_3$ - $C_6$  alkyl;

and

R₃ is hydrogen, methyl or ethyl;

- R₄ is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, or (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; or
- R₄ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl,

trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino; or R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino; and

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, phenyl, thienyl, or pyridyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino.

### 60. A compound of the formula:

$$R_1$$
 $R_2$ 
 $R_3$ 
 $R_{3a}$ 
 $R_{4}$ 
 $R_4$ 

or pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein: m is 0, 1, or 2;

R is chosen from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted (cycloalkyl)alkyl,

optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms;

- R₂, R₃, R_{3A}, R₅, and R₆ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;
- R and R₃ may be joined to form an optionally substituted saturated carbocylic ring of from 5 to 8 members or an optionally substituted heterocyclic ringof from 5 to 8 members;
- $R_4$  is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or
- R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;
- Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.
- 61. A compound according to Claim 60, wherein the compound exhibits an IC₅₀ of 1uM or less in an assay of C5a mediated chemotaxis or calcium mobilization.
  - 62. A compound according of the formula:

$$R_{1}$$
 $R_{2}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{4}$ 

or a pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein:

R is chosen from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted (cycloalkyl)alkyl, optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3

R₂ and R₃ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;

rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms;

- R and R₃ may be joined to form an optionally substituted carbocylic ring of from 5 to 8 members or an optionally substituted heterocyclic ring of from 5 ro 8 members;
- R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or
- R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl,
  optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3
  rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and
  Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;
- Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.
  - 63. A compound according to Claim 62, wherein R and R₃ are not joined.
  - 64. A compound according to Claim 62, wherein:

R is selected from

i) hydrogen, halogen, hydroxy, amino, alkoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, and

ii) alkyl, alkenyl, alkynyl, cycloalkyl, and (cycloalkyl)alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino,

iii) phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, each of which may be substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

### R₂ and R₃ are independently selected from

 i) hydrogen, halogen, hydroxy, amino, alkoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, and

ii) alkyl, alkenyl, alkynyl, cycloalkyl, and (cycloalkyl)alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino;

### R4 is hydrogen or

alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino and mono- or dialkylamino,

R4 is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzoflylthiophenyl, benzodioxanyl,

> benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, aminoalkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, Nalkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl and - $X_4R_B$ , wherein  $X_4$  and  $R_B$  are as defined below; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently chosen from

i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, aminoalkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N-

alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl and –  $X_4R_B$ , wherein  $X_4$  and  $R_B$  are as defined below;, and

ii) bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

 $X_4$  is independently selected at each occurrence from the group consisting of -CH₂-, -CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-,

-NR_CC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, -O(alkyl), -NH(alkyl),

-N(alkyl)(alkyl), -NHC(O)(alkyl), -N(alkyl)C(O)(alkyl), -NHS(O)_x(alkyl), -S(O)_x(alkyl), -S(O)_xNH(alkyl), -S(O)_xN(alkyl)(alkyl), (where x is 0, 1, or 2).

## 65. A compound according to Claim 62, wherein:

R is selected from

i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy,

haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or  $di(C_1-C_6)$ alkylamino,

iii) phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

### R2 and R3 are independently selected from

i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

#### R4 is hydrogen or

 $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{3-8}$  cycloalkyl,  $(C_{3-8}$  cycloalkyl) $C_{1-4}$ alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino and mono- or di( $C_1$ - $C_6$ )alkylamino,

R4 is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally

substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_2$ -6 alkenyl,  $C_2$ -6 alkynyl,  $C_1$ - $C_6$  alkoxy, amino, mono- or  $di(C_1$ - $C_6)$ alkylamino, amino( $C_1$ - $C_6$ )alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or  $di(C_1$ - $C_6)$ alkylaminocarbonyl, N-( $C_1$ - $C_6$ )alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, –  $X_4R_B$ , wherein  $X_4$  and  $R_B$  are as defined below; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently chosen from

i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and -X₄R_B, wherein X₄ and R₈ are as defined below; and

ii) bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino;

X₄ is independently selected at each occurrence from the group consisting of -CH₂-, -CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-,

-NR_cC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_cS(O)_m- (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy,  $-O(C_1-C_6 \text{ alkyl})$ ,  $-NH(C_1-C_6 \text{ alkyl})$ ,  $-N(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_x(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_x(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_xNH(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_xNH(C_1-C_6 \text{ alkyl})$ , (where x is 0, 1, or 2).

### 66. A compound according to Claim 62, wherein:

R is hydrogen, halogen, hydroxy,  $C_1$ - $C_6$  alkoxy, haloalkyl,  $C_1$ - $C_8$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_3$ - $C_8$  cycloalkyl, and  $(C_3$ - $C_8)$ cycloalkyl)  $C_1$ - $C_3$  alkyl, or

R is phenyl substituted with up to five groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or

 $di(C_1-C_6)$ alkylamino, aminocarbonyl, sufonamido, mono or  $di(C_1-C_6)$ alkylsulfonamido, 3,4-methylenedioxy, and 3,4-(1,2-ethylene)dioxy;

 $R_2$  is selected from  $C_1$ - $C_8$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_3$ - $C_8$  cycloalkyl,  $(C_3$ - $C_8$  cycloalkyl)  $C_1$ - $C_3$  alkyl and haloalkyl;

R₃ is hydrogen C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl;

R₄ is C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁₋₄alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino,

R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, each of which may be substituted with up to five groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-

 $C_6$ )alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl,  $R_4$  is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

 $Ar_1$  is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently chosen from

i) phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, and benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

ii) bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino.

67. A compound according to Claim 66, wherein

R, R₂, R₃, R₄, and Ar₂ are as defined in Claim 66;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy.

68. A compound according to Claim 66, wherein:

R, R₂, and R₃ are as defined in Claim 66;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl,

trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, mono- or di( $C_1$ - $C_6$ )alkylamino, and amino( $C_1$ - $C_6$ )alkoxy;

- R4 is C₃-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁-C₄alkyl, C₁-C₈ haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino,
- R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl;
- Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, or benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

Ar2 is bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino.

69. A compound according to Claim 66, wherein:

R is hydrogen,  $C_1$ - $C_8$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_3$ - $C_8$  cycloalkyl, or  $(C_3$ - $C_8)$ cycloalkyl)  $C_1$ - $C_3$  alkyl, or

R is phenyl substituted with up to five groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino, aminocarbonyl, sufonamido, mono or di(C₁-C₆)alkylsulfonamido, 3,4-methylenedioxy, and 3,4-(1,2-ethylene)dioxy;

R₂ is C₃-C₆ alkyl;

R₃ is hydrogen, methyl, or ethyl;

R₄ is C₃-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁-C₄alkyl, C₁-C₆ haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino,

R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-

C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy;

Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, or benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

Ar₂ is bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino.

70. A compound according to Claim 66, wherein:

R is hydrogen,  $C_1$ - $C_8$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_3$ - $C_8$  cycloalkyl, or ( $C_3$ - $C_8$ )cycloalkyl)  $C_1$ - $C_3$  alkyl, or phenyl;

R2 is C3-C6 alkyl;

R₃ is hydrogen, methyl, or ethyl;

R₄ is C₃-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁-C₄alkyl, C₁-C₆ haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy; and

Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, or benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

Ar₂ is bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

71. A compound according to Claim 66, wherein:

R is hydrogen, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, or (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, or phenyl;

R₂ is C₃-C₆ alkyl;

R₃ is hydrogen, methyl, or ethyl;

- R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl;
- Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy;
- Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, or benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-{ C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

Ar₂ is bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino.

# 72. A compound of the formula:

$$R_1$$
 $R_2$ 
 $R_3$ 
 $R_3$ 
 $R_4$ 
 $R_9$ 

or pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein: m is 0, 1, or 2;

R is chosen from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted (cycloalkyl)alkyl, optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms;

R₂, R₃, R_{3A}, R₅, and R₆ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;



R and R₃ may be joined to form an optionally substituted saturated carbocylic ring of from 5 to 8 members or an optionally substituted heterocyclic ringof from 5 to 8 members;

- R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or
- R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and
- R₈ and R₉ are independently chosen from H or optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, (cycloalkyl)alkyl, haloalkyl, or the like.

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

- Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.
- 73. A compound according to Claim 72, wherein the compound exhibits an IC₅₀ of 1uM or less in an assay of C5a mediated chemotaxis or calcium mobilization.
  - 74. A compound according of the formula:

$$Ar_1$$
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_4$ 
 $Ar_2$ 

or a pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein:

R is chosen from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted

alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted (cycloalkyl)alkyl, optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3

rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms;

- R₂ and R₃ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;
- R and R₃ may be joined to form an optionally substituted carbocylic ring of from 5 to 8 members or an optionally substituted heterocyclic ring of from 5 ro 8 members;
- R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or
- R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;
- Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.
  - 75. A compound according to Claim 74, wherein R and R₃ are not joined.
  - 76. A compound according to Claim 74, wherein:

# R is selected from

i) hydrogen, halogen, hydroxy, amino, alkoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, and

ii) alkyl, alkenyl, alkynyl, cycloalkyl, and (cycloalkyl)alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino,

iii) phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, each of which may be substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

## R₂ and R₃ are independently selected from

i) hydrogen, halogen, hydroxy, amino, alkoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, and

ii) alkyl, alkenyl, alkynyl, cycloalkyl, and (cycloalkyl)alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino;

#### R4 is hydrogen or

alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino and mono- or dialkylamino,

R4 is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally

substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, aminoalkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N- alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl and  $-X_4R_B$ , wherein  $X_4$  and  $R_B$  are as defined below; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently chosen from

i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, aminoalkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N-alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl and -X4RB, wherein X4 and RB are as defined below;, and

ii) bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

 $X_4$  is independently selected at each occurrence from the group consisting of -CH₂-, -CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-,

-NR_cC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_cS(O)_m- (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, -O(alkyl), -NH(alkyl),

-N(alkyl)(alkyl), -NHC(O)(alkyl), -N(alkyl)C(O)(alkyl), -NHS(O) $_x$ (alkyl), -S(O) $_x$ (alkyl), -S(O) $_x$ NH(alkyl), -S(O) $_x$ N(alkyl)(alkyl), (where x is 0, 1, or 2).

# 77. A compound according to Claim 74, wherein:

#### R is selected from

i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or di(C₁-C₆)alkylamino,

iii) phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

### R₂ and R₃ are independently selected from

i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and
ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

#### R4 is hydrogen or

C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁₋₄alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino,

R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl,

hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, mono- or di( $C_1$ - $C_6$ )alkylamino, amino( $C_1$ - $C_6$ )alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di( $C_1$ - $C_6$ )alkylaminocarbonyl, N-( $C_1$ - $C_6$ )alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, –  $X_4R_B$ , wherein  $X_4$  and  $R_B$  are as defined below; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein  $R_A$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently chosen from

- i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and -X₄R_B, wherein X₄ and R_B are as defined below; and
- ii) bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino;

 $X_4$  is independently selected at each occurrence from the group consisting of -CH₂-, -CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-, -NR_CC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy,  $-O(C_1-C_6 \text{ alkyl})$ ,  $-NH(C_1-C_6 \text{ alkyl})$ ,  $-N(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_x(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_x(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_xNH(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_xN(C_1-C_6 \text{ alkyl})$ , (where x is 0, 1, or 2).

#### 78. A compound according to Claim 74, wherein:

R is hydrogen, halogen, hydroxy,  $C_1$ - $C_6$  alkoxy, haloalkyl,  $C_1$ - $C_8$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_3$ - $C_8$  cycloalkyl, and  $(C_3$ - $C_8)$ cycloalkyl)  $C_1$ - $C_3$  alkyl, or

R is phenyl substituted with up to five groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or

 $di(C_1-C_6)alkylamino$ , aminocarbonyl, sufonamido, mono or  $di(C_1-C_6)alkylsulfonamido$ , 3,4-methylenedioxy, and 3,4-(1,2-ethylene)dioxy;

R₂ is selected from C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈ cycloalkyl) C₁-C₃ alkyl and haloalkyl;

R₃ is hydrogen C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl;

R₄ is C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁₋₄alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino,

R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, each of which may be substituted with up to five groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-

R₄ is a bicyclic oxygen-containing group of the formula:

C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl,

wherein  $R_A$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino;

 $Ar_1$  is ethylenedioxyphenyl, methylenedioxyphenyl, or;  $Ar_1$  and  $Ar_2$  are independently chosen from



i) phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, and benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

ii) bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

79. A compound according to Claim 78, wherein

R, R₂, R₃, R₄, and Ar₂ are as defined in Claim 78;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy.

80. A compound according to Claim 78, wherein:

R, R₂, and R₃ are as defined in Claim 78;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl,

trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, mono- or di( $C_1$ - $C_6$ )alkylamino, and amino( $C_1$ - $C_6$ )alkoxy;

- R4 is C₃-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁-C₄alkyl, C₁-C₈ haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino,
- R4 is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl;
- Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, or benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

Ar₂ is bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

81. A compound according to Claim 78, wherein:

R is hydrogen, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, or (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, or

R is phenyl substituted with up to five groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino, aminocarbonyl, sufonamido, mono or di(C₁-C₆)alkylsulfonamido, 3,4-methylenedioxy, and 3,4-(1,2-ethylene)dioxy;

R2 is C3-C6 alkyl;

R₃ is hydrogen, methyl, or ethyl;

R₄ is C₃.C₈ alkyl, C₂.C₈ alkenyl, C₂.C₈ alkynyl, C₃.C₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁.

C₄alkyl, C₁-C₈ haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino,

R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-

 $C_6$ )alkylamino, amino( $C_1$ - $C_6$ )alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di( $C_1$ - $C_6$ )alkylaminocarbonyl, N-( $C_1$ - $C_6$ )alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl;

- Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy;
- Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, or benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

Ar₂ is bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino.

82. A compound according to Claim 78, wherein:

R is hydrogen,  $C_1$ - $C_8$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_3$ - $C_8$  cycloalkyl, or ( $C_3$ - $C_8$ )cycloalkyl)  $C_1$ - $C_3$  alkyl, or phenyl;

R2 is C3-C6 alkyl;

R₃ is hydrogen, methyl, or ethyl;

R₄ is C₃-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁-C₄alkyl, C₁-C₈ haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy; and

Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, or benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

Ar₂ is bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

83. A compound according to Claim 78, wherein:

R is hydrogen, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, or (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, or phenyl;

R₂ is C₃-C₆ alkyl;

R₃ is hydrogen, methyl, or ethyl;

R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl;

- Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy;
- Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, or benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

Ar₂ is bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino.

# 84. A compound of the formula:

$$R_1$$
 $R_2$ 
 $R_3$ 
 $R_3$ 
 $R_4$ 
 $R_9$ 

or pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein: m is 0, 1, or 2;

- R₂, R₃, R_{3A}, R₅, and R₆ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;
- R₄ is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or
- R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and
- R₈ and R₉ are independently chosen from H or optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, (cycloalkyl)alkyl, haloalkyl, or the like.

Arı is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.

85. A compound according to Claim 84, wherein the compound exhibits an IC₅₀ of 1uM or less in an assay of C5a mediated chemotaxis or calcium mobilization.

### 86. A compound according of the formula:

$$Ar_1$$
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $Ar_2$ 

or a pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein:

R₂ and R₃ are independently selected from hydrogen, hydroxy, halogen, amino, cyano, nitro, haloalkyl, alkoxy, mono- or dialkylamino, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, and optionally substituted (cycloalkyl)alkyl;

 $R_4$  is alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl each of which may be optionally substituted; or

R₄ is optionally substituted carbocyclic aryl, optionally substituted arylalkyl,
optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3
rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and
Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.

87. A compound according to Claim 86, wherein:

#### R is selected from

i) hydrogen, halogen, hydroxy, amino, alkoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, and

ii) alkyl, alkenyl, alkynyl, cycloalkyl, and (cycloalkyl)alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino,

iii) phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, each of which may be substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

## R2 and R3 are independently selected from

i) hydrogen, halogen, hydroxy, amino, alkoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, and

ii) alkyl, alkenyl, alkynyl, cycloalkyl, and (cycloalkyl)alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or dialkylamino;

#### R4 is hydrogen or

alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino and mono- or dialkylamino,

R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl,

oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or dialkylamino, aminoalkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N-alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl and -X4RB, wherein X4 and RB are as defined below; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein R_A represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar1 and Ar2 are independently chosen from

i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, mono- or

dialkylamino, aminoalkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or dialkylaminocarbonyl, N-alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl and  $-X_4R_B$ , wherein  $X_4$  and  $R_B$  are as defined below;, and

ii) bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkyl, alkenyl, alkynyl, alkoxy, amino, and mono- or dialkylamino;

 $X_4$  is independently selected at each occurrence from the group consisting of -CH₂-, -CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-,

-NR_cC(=0)-, -NHS(0)_m-, -C(=0)NHS(0)_m-, and -NR_cS(0)_m- (where m is 0, 1, or 2); and

 $R_{B}$  and  $R_{C}$ , which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy, -O(alkyl), -NH(alkyl),

-N(alkyl)(alkyl), -NHC(O)(alkyl), -N(alkyl)C(O)(alkyl), -NHS(O) $_x$ (alkyl), -S(O) $_x$ (alkyl), -S(O) $_x$ N(alkyl)(alkyl), (where x is 0, 1, or 2).

# 88. A compound according to Claim 86, wherein:

R is selected from

i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, and mono- or di(C₁-C₆)alkylamino,

iii) phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino;

#### R₂ and R₃ are independently selected from

i) hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, haloalkyl, and

ii) C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, each of which may be unsubstituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino;

#### R4 is hydrogen or

 $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{3-8}$  cycloalkyl,  $(C_{3-8}$  cycloalkyl) $C_{1-4}$ alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino and mono- or di( $C_1$ - $C_6$ )alkylamino,

R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl,

benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, -X₄R_B, wherein X₄ and R_B are as defined below; or

R₄ is a bicyclic oxygen-containing group of the formula:

wherein  $R_A$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_2$ - $G_6$  alkenyl,  $C_2$ - $G_6$  alkynyl,  $C_1$ - $G_6$  alkoxy, amino, and mono- or di( $G_1$ - $G_6$ ) alkylamino;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently chosen from

i) phenyl, phenylalkyl, chromanyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyrazinyl, benzimidazolyl, naphthyl, indolyl, indanyl, isoindolyl, benzofuranyl, isobenzofuranyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, quinolinyl, isoquinolinyl, cinnolinyl, quinazolinyl, or quinoxalinyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of

carboxylic acids, aminocarbonyl, mono or di( $C_1$ - $C_6$ )alkylaminocarbonyl, N-( $C_1$ - $C_6$ )alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl, and  $-X_4R_B$ , wherein  $X_4$  and  $R_B$  are as defined below; and

ii) bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino;

 $X_4$  is independently selected at each occurrence from the group consisting of -CH₂-, -CHR_C-, -O-, -S(O)_m-, -NH-, -NR_C-, -C(=O)NH-, -C(=O)NR_C-, -S(O)_mNH-, -S(O)_mNR_C-, -NHC(=O)-,

-NR_CC(=O)-, -NHS(O)_m-, -C(=O)NHS(O)_m-, and -NR_CS(O)_m- (where m is 0, 1, or 2); and

R_B and R_C, which may be the same or different, are independently selected at each occurrence from the group consisting of:

hydrogen, straight, branched, or cyclic alkyl groups, which may contain one or more double or triple bonds, each of which may unsubstituted or substituted with one or more substituent(s) selected from:

oxo, hydroxy,  $-O(C_1-C_6 \text{ alkyl})$ ,  $-NH(C_1-C_6 \text{ alkyl})$ ,  $-N(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_x(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_x(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_xNH(C_1-C_6 \text{ alkyl})$ ,  $-S(O)_xNH(C_1-C_6 \text{ alkyl})$ , (where x is 0, 1, or 2).

89. A compound according to Claim 86, wherein:

R is hydrogen, halogen, hydroxy, C₁-C₆ alkoxy, haloalkyl, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, and (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, or

R is phenyl substituted with up to five groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino, aminocarbonyl, sufonamido, mono or di(C₁-C₆)alkylsulfonamido, 3,4-methylenedioxy, and 3,4-(1,2-ethylene)dioxy;

R₂ is selected from C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈ cycloalkyl) C₁-C₃ alkyl and haloalkyl;

R₃ is hydrogen C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl;

R₄ is C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁₋₄alkyl, haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino,

R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, each of which may be substituted with up to five groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl,

R₄ is a bicyclic oxygen-containing group of the formula:

wherein  $R_A$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,

 $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino;

Arı is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently chosen from

- i) phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, and benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or
- ii) bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino.

90. A compound according to Claim 89, wherein

R, R₂, R₃, R₄, and Ar₂ are as defined in Claim 89:

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy.

- 91. A compound according to Claim 89, wherein:
- R, R₂, and R₃ are as defined in Claim 89;
- Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkenyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy;
- R₄ is C₃-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁-C₄alkyl, C₁-C₈ haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino,
- R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl;
- Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, or benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-

 $C_6$ )alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di( $C_1$ - $C_6$ )alkylaminocarbonyl, N-( $C_1$ - $C_6$ )alkylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

Ar₂ is bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

## 92. A compound according to Claim 89, wherein:

R is hydrogen, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, or (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, or

R is phenyl substituted with up to five groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino, aminocarbonyl, sufonamido, mono or di(C₁-C₆)alkylsulfonamido, 3,4-methylenedioxy, and 3,4-(1,2-ethylene)dioxy;

R₂ is C₃-C₆ alkyl;

R₃ is hydrogen, methyl, or ethyl;

R₄ is C₃-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₆cycloalkyl, (C₃₋₈ cycloalkyl)C₁-C₄alkyl, C₁-C₆ haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino,

R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl,

benzodioxolyl, benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy;

Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, or benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

Ar₂ is bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

93. A compound according to Claim 89, wherein:

R is hydrogen, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, or (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, or phenyl;

R₂ is C₃-C₆ alkyl;

R₃ is hydrogen, methyl, or ethyl;

R₄ is C₃-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₃-C₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁-C₄alkyl, C₁-C₈ haloalkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino;

Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy; and

Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, or benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

Ar2 is bicyclic oxygen-containing groups of the formula:

wherein R_B represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, and mono- or di(C₁-C₆)alkylamino.

# 94. A compound according to Claim 89, wherein:

R is hydrogen, C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, or (C₃-C₈)cycloalkyl) C₁-C₃ alkyl, or phenyl;

R₂ is C₃-C₆ alkyl;

R₃ is hydrogen, methyl, or ethyl;

- R₄ is phenyl, ethylenedioxyphenyl, methylenedioxyphenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl;
- Ar₁ is ethylenedioxyphenyl, methylenedioxyphenyl, or phenyl with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, and amino(C₁-C₆)alkoxy;
- Ar₂ is phenyl, phenyl(C₁-C₄)alkyl, thienyl, pyridyl, pyrimidyl, pyrazinyl, chromanyl, dihydrobenzofuranyl, naphthyl, indolyl, indanyl, benzo[b]thiophenyl, benzodioxanyl, benzodioxinyl, benzodioxolyl, or benz[d]isoxazolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆

alkynyl,  $C_1$ - $C_6$  alkoxy, amino, mono- or di( $C_1$ - $C_6$ )alkylamino, amino( $C_1$ - $C_6$ )alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di( $C_1$ - $C_6$ )alkylaminocarbonyl, N-( $C_1$ - $C_6$ )alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, 1-piperidyl; or

Ar₂ is bicyclic oxygen-containing groups of the formula:

wherein  $R_B$  represents 0 to 3 groups selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or di( $C_1$ - $C_6$ )alkylamino.

## 95. A compound according to Claim 1 of the formula

$$Ar_1$$
  $(CH_2)_m$   $N$   $R_2$ 

or a pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein:

X₅ is C, N or CH;

m is 0, 1, 2, or 3;

Ar₁ is chosen from optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and

 $R_1$  and  $R_2$  are independently chosen from  $C_{1-8}$  alkyl,  $C_{2-8}$  alkenyl,  $C_{2-8}$  alkynyl,  $C_{3-8}$  scycloalkyl,  $(C_{3-8}$  cycloalkyl) $C_{1-4}$ alkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_{1}$ - $C_{6}$ 

alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino and mono- or di( $C_1$ - $C_6$ )alkylamino, or

R₁ and R₂ are independently chosen from phenyl, phenylalkyl, chromanyl, chromanylalkyl, imidazolyl, imidazolylalkyl, pyridyl, pyridylalkyl, pyrimidyl, pyrimidyl, pyrimidyl, pyrimidyl, pyrimidyl, pyrimidyl, pyrimidyl, indolylalkyl, indolylalkyl, indanyl, indanylalkyl, imidazopyridyl, azaimidazopyridyl, benzimidazoyl, benzimidazoylalkylbenzodioxolylalkyl, or benzodioxolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl;

### 96. A compound according to Claim 95 of the formula:

or a pharmaceutically acceptable salt thereof, wherein:

R₁ is as defined in Claim 95;

m is 1, 2, or 3;

n is 1, 2, or 3;

m represents a carbon chain that may be substituted with hydrogen, halogen, cyano, nitro amino, mono or dialkyl amino, alkenyl, alkynyl, alkoxy,

trifluoromethyl, trifluoromethoxy, straight or branched chain alkyl, or cycloalkyl;

- Ar₁ and Ar₂ independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl or heteroalicyclic group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms; and
- R represents up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, alkoxy, acetoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂), mono or dialkylaminocarbonyl, sulfonamido, and mono or dialkylsulfonamido.
- 97. A compound according to Claim 96, wherein the compound exhibits an  $IC_{50}$  of 1uM or less in an assay of C5a mediated chemotaxis or calcium mobilization.
  - 98. A compound according to Claim 96, wherein n, m, and R₁ are defined as in Claim 96;
- Ar₁ is independently chosen from phenyl, pyridyl, and pyrimidinyl each of which is optionally optionally substituted or substituted with up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈cycloalkyl) C₁-C₃alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂), mono or di(C₁-C₆)alkylaminocarbonyl, sulfonamido, 3,4-methylenedioxy, ethylenedioxy, and mono or di(C₁-C₆)alkylsulfonamido; and
- Ar₂ represents suberanyl, indanyl, tetrhydronaphtyl, or indolyl, each of which is optionally optionally substituted or substituted with up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl,

 $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl,  $C_2$ - $C_6$  alkynyl,  $C_3$ - $C_8$  cycloalkyl, ( $C_3$ - $C_8$ cycloalkyl)  $C_1$ - $C_3$ alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂), mono or di( $C_1$ - $C_6$ )alkylaminocarbonyl, sulfonamido, 3,4-methylenedioxy, ethylenedioxy, and mono or di( $C_1$ - $C_6$ )alkylsulfonamido.

## 99. A compound according to Claim 95 of the formula

$$R_3$$

R, R₃, and R₅ each represent up to 5 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈cycloalkyl) C₁-C₃alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂), mono or di(C₁-C₆)alkylaminocarbonyl, sulfonamido, and mono or di(C₁-C₆)alkylsulfonamido; and represents suberanyl, indanyl, tetrhydronaphtyl, or indolyl, each of which is optionally optionally substituted or substituted with up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈cycloalkyl) C₁-C₃alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂), mono or di(C₁-

 $C_6$ )alkylaminocarbonyl, sulfonamido, 3,4-methylenedioxy, ethylenedioxy, and

mono or di(C₁-C₆)alkylsulfonamido.

PCT/US00/26816

WO 02/49993

R₁ is chosen from C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁₋₄alkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino, or

R₁ is chosen from phenyl, phenylalkyl, chromanyl, chromanylalkyl, imidazolyl, imidazolyl, imidazolylalkyl, pyridyl, pyridylalkyl, pyrimidyl, pyrimidyl, pyrimidyl, pyrazinyl, pyrazinylalkyl, indolyl, indolylalkyl, indanyl, indanylalkyl, imidazopyridyl, azaimidazopyridyl, benzimidazoyl, benzimidazoylalkylbenzodioxolylalkyl, or benzodioxolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl;

100. A compound according to Claim 95 of the formula:

or a pharmaceutically acceptable salt or prodrug, thereof, wherein:

R represents up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, alkoxy, acetoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, hydroxy carbonyl (COOH),

aminocarbonyl (CONH₂), mono or di( $C_1$ - $C_6$ )alkylaminocarbonyl, sulfonamido, 3,4-methylenedioxy, ethylenedioxy, and mono or dialkylsulfonamido;

- R₁ and R₂ are independently chosen from C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈ cycloalkyl, (C₃₋₈ cycloalkyl)C₁₋₄alkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino, or
- R₁ and R₂ are independently chosen from phenyl, phenylalkyl, chromanyl, chromanylalkyl, imidazolyl, imidazolylalkyl, pyridyl, pyridylalkyl, pyrimidyl, pyrimidyl, pyrimidylalkyl, imidazolyl, pyrazinylalkyl, indolyl, indolylalkyl, indanyl, indanylalkyl, imidazopyridyl, azaimidazopyridyl, benzimidazoyl, benzimidazoylalkylbenzodioxolylalkyl, or benzodioxolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl;
- Arı is chosen from optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, or an optionally substituted heteroalicyclic, heteroalicyclicalkyl group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms, ethylenedioxyphenyl or methylenedioxyphenyl.
- 101. A compound according to Claim 100, wherein the compound exhibits an IC₅₀ of 1uM or less in an assay of C5a mediated chemotaxis or calcium mobilization.

#### 102. A compound according to Claim 100, wherein

- R represents up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂), mono or di(C₁-C₆)alkylaminocarbonyl, sulfonamido, 3,4-methylenedioxy, ethylenedioxy, and mono or di(C₁-C₆)alkylsulfonamido;
- R₁ and R₂ are independently chosen from C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈ cycloalkyl, (C₃₋₈ cycloalkyl)C₁₋₄alkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino, or
- R₁ and R₂ are independently chosen from phenyl, phenylalkyl, chromanyl, chromanylalkyl, imidazolyl, imidazolylalkyl, pyridyl, pyridylalkyl, pyrimidyl, pyrimidyl, pyrimidyl, pyrimidyl, pyrimidyl, pyrimidyl, pyrimidyl, indolylalkyl, indolyl, indolylalkyl, indanyl, indanylalkyl, imidazopyridyl, azaimidazopyridyl, benzimidazoyl, benzimidazoylalkylbenzodioxolylalkyl, or benzodioxolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl;
- Ar₁ is chosen from ethylenedioxyphenyl, methylenedioxyphenl, phenyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, thiophenyl, and pyridyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy,

haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, mono- or di( $C_1$ - $C_6$ )alkylamino, amino( $C_1$ - $C_6$ )alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di( $C_1$ - $C_6$ )alkylaminocarbonyl, and N-( $C_1$ - $C_6$ )alkylsulfonylaminocarbonyl; and

103. A compound according to Claim 102, of the formula

$$R_{X}$$

wherein:

R₂ is as defined in Claim 102;

R_X represents up to 5 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, and C₂-C₆ alkynyl; and

R₁ is C₁-C₆alkyl, C₃-C₈cycloalkyl, (C₃-C₈ cycloalkyl)C₁-C₄alkyl, phenyl, phenylC₁-C₆alkyl, chromanyl, chromanylC₁-C₆alkyl, imidazolyl, imidazolylC₁-C₆alkyl ,pyridyl, pyridylC₁-C₆alkyl, pyrimidyl, pyrimidylC₁-C₆alkyl, pyrazinyl, pyrazinylC₁-C₆alkyl, indolyl, indolylC₁-C₆alkyl, indanyl, indanylC₁-C₆alkyl, benzodioxolyl, or benzodioxolylC₁-C₆alkyl each or which may be unsubstituted or substituted with up to 4 substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino.

104. A compound according to Claim 102, of the formula:

$$R_X$$
 $R_2$ 

wherein:

R_X represents up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy substituted with 0-2 R₂, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, and C₂-C₆ alkynyl;

R₁ is phenyl, phenylC₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloalky(C₁-C₄ alkyl), naphthyl, napthylC₁-C₆alkyl, indanyl, indanylC₁-C₆ alkyl, benzodioxolanyl, or benzodioxolanylC₁-C₆ alkyl, each of which may be substituted by up to 4 groups chosen from halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, monoor di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl; and

- R₂ is chosen from C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈cycloalkyl, (C₃₋₈ cycloalkyl)C₁₋₄alkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino, or
- R₂ is chosen from phenyl, phenylalkyl, chromanyl, chromanylalkyl, imidazolyl, imidazolyl, imidazolylalkyl, pyridylalkyl, pyrimidyl, pyrimdylalkyl, pyrazinyl, pyrazinylalkyl, indolyl, indolylalkyl, indanyl, indanylalkyl, imidazopyridyl, azaimidazopyridyl, benzimidazoyl, benzimidazoylalkylbenzodioxolylalkyl, or benzodioxolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl,

C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, N-( C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl;

105. A compound according to Claim 102 wherein:

R₂ is as defined in Claim 102;

R represents up to 4 groups independently chosen from hydrogen, halogen, amino,  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  alkyl, trifluoromethyl, and trifluoromethoxy;

R₁ is phenyl, benzyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkyl(C₁-C₄ alkyl), naphthyl, naphthyl-CH₂-, indanyl, indandyl-CH₂-, benzodioxolanyl-CH₂-, or benzodioxolanyl, each of which may be substituted by up to 4 groups chosen from halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl; and

Ar₁ is chosen from ethylenedioxyphenyl, methylenedioxyphenyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, thiophenyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, trifluoromethyl, trifluoromethoxy, C₁-C₆ alkoxy, C₁-C₆ alkyl, and amino.

- 106. A compound according to Claim 102 wherein:
- R represents up to 4 groups independently chosen from hydrogen, halogen, amino, C₁-C₆ alkoxy, C₁-C₆ alkyl, trifluoromethyl, and trifluoromethoxy;
- R₁ is benzyl which is unsubstituted or substituted by up to 4 groups chosen from halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl;
- Ar₁ is chosen from ethylenedioxyphenyl, methylenedioxyphenyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, thiophenyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, trifluoromethyl, trifluoromethoxy, C₁-C₆ alkoxy, C₁-C₆ alkyl, and amino; and

R₂ is chosen from phenyl, benzyl, indolyl, indolyl-CH₂-, indanyl, indanyl-CH₂-, chromanyl, chromanyl-CH₂-, benzofuranyl, benzofuranyl-CH₂-, benzodioxinyl-CH₂-, and benzodioxolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from:

halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy,  $C_1$ - $C_6$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl,  $C_1$ - $C_6$  alkoxy, amino, and mono- or  $di(C_1$ - $C_6)$ alkylamino.

107. A compound according to Claim 102, of the Formula

wherein:

m is 0, 1, 2, or 3, and represents a carbon chain which is optionally substituted with methyl, ethyl, methoxy, ethoxy, hydroxy, halogen, or amino;

R represents up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆alkyl, C₂-C₆ alkenyl, C₁-C₆alkynyl, C₁-C₆ alkoxy, acetoxy, monoor di(C₁-C₆)alkylamino;

R_X and R_Y each represent up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, and C₂-C₆ alkynyl; and

R₁ and R₄ are independently selected from C₁-C₆alkyl, C₃-C₈cycloalkyl, (C₃-C₈ cycloalkyl)C₁-C₄alkyl, phenyl, phenylC₁-C₆alkyl, pyridyl, and pyridylC₁-



C₆alkyl, each or which may be unsubstituted or substituted with up to 4 substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino.

## 108. A compound according to Claim 1 of the formula

or a pharmaceutically acceptable salt, prodrug or hydrate thereof, wherein;

m is 0, 1, 2, or 3, and represents a carbon chain which is optionally substituted with methyl, ethyl, methoxy, ethoxy, hydoxy, halogen, or amino;

n is 0, 1, 2, or 3, and represents a carbon chain which is optionally substituted with methyl, ethyl, methoxy, ethoxy, hydoxy, halogen, or amino; Rz represents up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, alkoxy, acetoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, alkyl, alkenyl, alkynyl, cycloalkyl, and(cycloalkyl)alkyl;

R₄ is chosen from alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl) alkyl, aryl and arylalkyl, each of which may be unsubstituted, optionally substituted or substituted by one or more of halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, alkoxy, amino, mono- or dialkylamino; and

Arı is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, or an optionally substituted heteroalicyclic or heteroalicyclicalkyl group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms.

- 109. A compound according to Claim 108, wherein the compound exhibits an IC₅₀ of 1uM or less in an assay of C5a mediated chemotaxis or calcium mobilization.
  - 110. A compound according to Claim 108, wherein

m is 1 and represents a carbon chain which is unsubstituted;

n is 1 and represents a carbon chain which is unsubstituted;

R represents up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₂-C₆ cycloalkyl, and(C₃-C₈ cycloalkyl) C₁-C₄ alkyl;

R₂ is C₃-C₈ alkyl or C₃-C₈ cycloalkyl;

Arı is ethylenedioxyphenyl, methylenedioxyphenyl, or;

Ar₁ and Ar₂ are independently chosen from phenyl, phenyl(C₁-C₄)alkyl, pyrrolyl, furanyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, pyridyl, pyrimidyl, and pyrazinyl, each of which may be unsubstituted or optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino.

### 111. A compound according to Claim 95 of the formula

wherein:

Ar₁, R₁ and R₂ are as defined in Claim 95; and

R represents up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₆ cycloalkyl) C₁-C₃ alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂), mono or di(C₁-C₆)alkylaminocarbonyl, sulfonamido, 3,4-methylenedioxy, ethylenedioxy, and mono or di(C₁-C₆)alkylsulfonamido;

### 112. A compound according to Claim 95 of the formula

wherein:

Ar₁ and R₁ are as defined in Claim 95; and

R represents up to 4 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂),

mono or  $di(C_1-C_6)$ alkylaminocarbonyl, sulfonamido, 3,4-methylenedioxy, ethylenedioxy, and mono or  $di(C_1-C_6)$ alkylsulfonamido;

113. A compound according to Claim 95 of the formula

wherein:

R₁ is as defined in Claim 95; and

R and R₃ represent up to 5 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂), mono or di(C₁-C₆)alkylaminocarbonyl, sulfonamido, 3,4-methylenedioxy, ethylenedioxy, and mono or di(C₁-C₆)alkylsulfonamido;

114. A compound according to Claim 95 of the formula

wherein:

R1 is as defined in Claim 95; and

R, R₃ and R₄ represent up to 5 groups independently chosen from hydrogen, halogen, hydroxy, amino, C₁-C₆ alkoxy, acetoxy, mono- or di(C₁-C₆)alkylamino, cyano, nitro, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, (C₃-C₈ cycloalkyl) C₁-C₃ alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂), mono or di(C₁-C₆)alkylaminocarbonyl, sulfonamido, 3,4-methylenedioxy, ethylenedioxy, and mono or di(C₁-C₆)alkylsulfonamido;

### 115. A compound according to Claim 95 of the formula

wherein:

R₁ and R₂ are as defined in Claim 95.

116. A compound according to Claim 95 of the formula

wherein:

 $R_1$  is as defined in Claim 95.

117. A compound according to Claim 95 of the formula

$$R_1$$
 $R_2$ 

wherein:

 $R_1 \ \text{and} \ R_2 \ \text{are as defined in Claim 95.}$ 

118. A compound according to Claim 95 of the formula

wherein:

R₁ is as defined in Claim 95.

119. A compound according to Claim 95 of the formula

wherein:

 $R_1$  and  $R_2$  are as defined in Claim 95.

120. A compound according to Claim 95 of the formula

wherein:

 $R_1$  is as defined in Claim 95.

121. A compound according to Claim 95 of the formula

$$R_{X}$$
 $R_{2}$ 

wherein:

R₁ and R₂ are as defined in Claim 95; and

 $R_X$  represents up to 5 groups independently chosen from hydrogen, halogen, hydroxy, amino,  $C_1$ - $C_6$  alkoxy, acetoxy, mono- or di( $C_1$ - $C_6$ )alkylamino, cyano, nitro,  $C_1$ - $C_6$  haloalkyl,  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl, and  $C_2$ - $C_6$  alkynyl.

### 122. A compound according to Claim 95 of the formula

wherein:

R₁ is as defined in Claim 95; and

 $R_X$  represents up to 5 groups independently chosen from hydrogen, halogen, hydroxy, amino,  $C_1$ - $C_6$  alkoxy, acetoxy, mono- or di( $C_1$ - $C_6$ )alkylamino, cyano, nitro,  $C_1$ - $C_6$  haloalkyl,  $C_1$ - $C_6$  alkyl,  $C_2$ - $C_6$  alkenyl, and  $C_2$ - $C_6$  alkynyl.

# 123. A compound according to Claim 1 of the formula

wherein

R₁ and R₂ are independently chosen from C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃.

8cycloalkyl, (C₃₋₈ cycloalkyl)C₁₋₄alkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino, or

R₁ and R₂ are independently chosen from phenyl, phenylalkyl, chromanyl, chromanylalkyl, imidazolyl, imidazolylalkyl, pyridyl, pyridylalkyl, pyrimidyl, pyrimidyl, pyrimidylalkyl, pyrazinyl, pyrazinylalkyl, indolyl, indolylalkyl, indanyl, indanylalkyl, imidazopyridyl, azaimidazopyridyl, benzimidazoyl, benzimidazoyl, benzimidazoylalkylbenzodioxolylalkyl, or benzodioxolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-C₆)alkylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl;

Arı is chosen from optionally substituted carbocyclic aryl, optionally substituted arylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, or an optionally substituted heteroalicyclic, heteroalicyclicalkyl group having from 1 to 3 rings, 3 to 8 members in each ring and from 1 to 3 heteroatoms, ethylenedioxyphenyl or methylenedioxyphenyl; and

124. A compound according to Claim 123 wherein

 $R_1$  and  $R_2$  are connected to form a 5-8 member optionally substituted carbocyclic or heterocyclic ring.

125. A compound according to Claim 123 of the formula

$$R$$
 $N$ 
 $R_2$ 

wherein

R₁ and R₂ are independently chosen from C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₈ cycloalkyl, (C₃₋₈ cycloalkyl)C₁₋₄alkyl, each or which may be unsubstituted or substituted with one or more substituents selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino and mono- or di(C₁-C₆)alkylamino, or

R₁ and R₂ are independently chosen from phenyl, phenylalkyl, chromanyl, chromanylalkyl, imidazolyl, imidazolylalkyl, pyridyl, pyridylalkyl, pyrimidyl, pyrimidyl, pyrimidylalkyl, pyrazinyl, pyrazinylalkyl, indolylalkyl, indolylalkyl, indanyl, indanylalkyl, imidazopyridyl, azaimidazopyridyl, benzimidazoyl, benzimidazoylalkylbenzodioxolylalkyl, or benzodioxolyl, each of which may be optionally substituted or substituted with up to four groups independently selected from halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, haloalkyl, hydroxy, acetoxy, C₁-C₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₁-C₆ alkoxy, amino, mono- or di(C₁-C₆)alkylamino, amino(C₁-C₆)alkoxy, carboxylic acid, esters of carboxylic acids, aminocarbonyl, mono or di(C₁-

C₆)alkylaminocarbonyl, N-(C₁-C₆)alkylsulfonylaminocarbonyl, 1-azetidinyl, 1-pyrrolidinyl, and 1-piperidyl;

- R is chosen from hydrogen, halogen, hydroxy, amino, alkoxy, acetoxy, mono- or dialkylamino, cyano, nitro, haloalkyl, alkyl, alkenyl, alkynyl, cycloalkyl, (cycloalkyl)alkyl, hydroxy carbonyl (COOH), aminocarbonyl (CONH₂), mono or di(C₁-C₆)alkylaminocarbonyl, sulfonamido, and mono or dialkylsulfonamido;
  - 126. A compound according to Claim 125 wherein
- $R_1$  and  $R_2$  are connected to form a 5-8 member optionally substituted carbocyclic or heterocyclic ring.
  - 127. A compound according to Claim 95 wherein:
- Ar₁ is bound to the ring bearing  $X_5$  to form an optionally substituted heterocyclic 5-8 member ring.
  - 128. A compound according to Claim 95 wherein:
- R₁ and R₂ are connected to form a 5-8 member optionally substituted carbocyclic or heterocyclic ring.
  - 129. A compound according to Claim 95 wherein:
- Ar₁ is bound to the ring bearing X₅ to form an optionally substituted heterocyclic 5-8 member ring; and
- $R_1$  and  $R_2$  are connected to form a 5-8 member optionally substituted carbocyclic or heterocyclic ring.
  - 130. A compound according to Claim 5 wherein:
- $R_4$  and  $Ar_2$  are connected to form a 5-8 member optionally substituted carbocyclic or heterocyclic ring.
  - 131. A compound according to Claim 8 wherein:

R₄ and Ar₂ are connected to form a 5-8 member optionally substituted carbocyclic or heterocyclic ring.

- 132. A compound according to Claim 3 wherein:
  A has hydrogen bond acceptor ability.
- 133. A compound as set forth in any of Tables 1 through 6, or a pharmaceutically acceptable salt, prodrug or hydrate thereof.
  - 134. A compound that is:
- $\label{lem:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma$
- $1-(1-butyl)-2-phenyl-5-(1-[N-\{3,4-methylenedioxyphenylmethyl\}-N-phenylmethyl] amino) ethylimidazole$
- 1-Butyl-2-phenyl-4-bromo-5-(N-phenylmethyl-N-[1-butyl]) a minomethyl imidazole
- 1-(1-Butyl)-2-phenyl-4-methyl-5-(N-[3,4-methylenedioxyphenyl-methyl]-N-phenylmethyl) aminomethylimidazole
- 1-(1-Butyl)-2-(4-fluorophenyl)-5-(N-[1,4-benzodioxan-6-yl]methyl-N-phenylmethyl) aminomethylimidazole
- 1-(1-Butyl)-2-(4-fluorophenyl)-5-(N-[3,4-methylenedioxyphenylmethyl]-N-phenylmethyl) aminomethylimidazole
- 1-(1-Butyl)-2-(4-fluorophenyl)-5-(N-[1,4-benzodioxan-6-yl]methyl-N-phenylmethyl) aminomethylimidazole
- $1-(1-Butyl)-2-(4-fluorophenyl)-5-\{N-[3,4-methylenedioxyphenylmethyl]-N-phenylmethyl) aminomethylimidazole$
- 1-(1-Butyl)-2-(2-fluorophenyl)-5-(N-[1,4-benzodioxan-6-ylmethyl]-N-phenylmethyl)amino- methylimidazole
- 1-(1-Butyl)-2-(2-methoxyphenyl)-5-(N-[naphtha-2-ylmethyl]-N-phenylmethyl)amino-methylimidazole

1-(1-Butyl)-2-(2-methoxyphenyl)-5-(N-[3,4-methylenedioxyphenylmethyl]-N-phenylmethyl) aminomethylimidazole

- 1-(1-Butyl)-2-(2-methoxyphenyl)-5-(N,N-di[3,4-methylenedioxyphenylmethyl]) aminomethylimidazole
- 1-(1-Butyl)-2-(2-methoxyphenyl)-5-(N-[4-dimethylaminophenylmethyl]-N-phenylmethyl) aminomethylimidazole
- 1-(1-Butyl)-2-(2-methylphenyl)-5-(N-[3,4-methylenedioxyphenylmethyl]-N-phenylmethyl) aminomethylimidazole
- 1-(1-Butyl)-2-(4-fluorophenyl)-5-(N,N-di[3,4-methylenedioxyphenylmethyl])amino-methylimidazole
- 1-(1-Butyl)-2-(2-methylphenyl)-5-(N,N-di[3,4-methylenedioxyphenylmethyl])amino-methylimidazole
- 1-(1-Butyl)-2-(3-fluorophenyl)-5-(N-[naphth-2-ylmethyl]-N-phenylmethyl) amino methylimidazole
- 1-(1-Butyl)-2-(3-fluorophenyl)-5-(N-[3,4-methylenedioxyphenylmethyl]-N-phenylmethyl) aminomethylimidazole
- 1-(1-Butyl)-2-(3-fluorophenyl)-5-(N,N-di[3,4-methylenedioxyphenylmethyl])amino-methylimidazole
- 1-(1-Butyl)-2-(3-methoxyphenyl)-5-(N-[3,4-methylenedioxyphenylmethyl]-N-phenylmethyl)- aminomethylimidazole
- 1-(1-Pentyl)-2-phenyl-5-(N-[indol-5-ylmethyl]-N-phenylmethyl) aminomethylimidazole
- 1-(1-Propyl)-2-phenyl-5-(N-[indol-5-ylmethyl]-N-phenylmethyl) aminomethylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[1-(S)-phenylethyl]-N-phenylmethyl) aminomethylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[1-(R)-phenylethyl]-N-phenylmethyl) a minomethylimidazole

- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-dichlorophenyl]methyl)aminomethylimidazole
- $\label{lem:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma:lemma$
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methoxyphenylmethyl])-aminomethylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[4-{1-propyl}phenylmethyl])aminomethylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methylenedioxyphenylmethyl]) aminomethylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenyl]methyl-N-[4-nitrophenylmethyl])aminomethylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[4-{1-propyloxy} phenylmethyl])aminomethylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[quinol-6-ylmethyl])- aminomethylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[2,3-dichlorophenylmethyl])-aminomethylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[3,4-methylphenylmethyl])-aminomethylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenyl]methyl-N-[indan-2-yl])-aminomethylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[2-phenylethyl]) a mino-methylimidazole
- 1-(1-Propyl)-2-phenyl-5-(N-[1,4-benzodioxan-6-ylmethyl]-N-phenylmethyl)aminomethyl-imidazole

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[1-propyl]) a minomethyl-imidazole

- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[1-butyl])aminomethyl-imidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-cycloheptylmethyl) amino-methylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-isobutyl) aminomethyl-imidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[2-cyclopentylethyl]) a mino-methylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[1-n-octyl]) a minomethyl-imidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-cyclopropylmethyl) amino-methylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-cyclopentylmethyl) amino-methylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-cyclohexylmethyl) amino-methylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[t-amyl]) a minomethylimidazole
- $1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[1-\{3-methyl\}butyl]) a mino-methylimidazole$
- $1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[1-\{2,2-dimethyl\}butyl]) aminomethylimidazole$
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-methyl) aminomethylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[2-thiophenylmethyl])amino-methylimidazole

1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[indol-5-ylmethyl])amino-methylimidazole

- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenylmethyl]-N-[{1-methylindol-5-yl}methyl])aminomethylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenyl]methyl-N-[4-hydroxy-2-chlorophenyl]-methyl)aminomethylimidazole
- $1-(1-Butyl)-2-(3-fluorophenyl)-5-(1-[N-\{2-chloro-4-hydroxyphenyl\}methyl-N-phenylmethyl]) aminoethylimidazole$
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-methylenedioxyphenyl] methyl-N-[2,3-dihydrobenzo[b] furan-5-yl] methyl) aminomethylimidazole
- $1-Butyl-2-(4-fluorophenyl)-5-(1-[N-\{3,4-methylenedioxyphenyl\}methyl-N-phenylmethyl]-amino) ethylimidazole$
- 1-(1-Butyl)-2-(2-thienyl)-5-(N-[3,4-methylenedioxyphenyl]methyl-N-phenylmethyl] aminomethylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-phenylmethyl-N-[3,4-dimethoxyphenylmethyl])aminomethyl-imidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[4-dimethylaminophenylmethyl]-N-phenylmethyl) aminomethyl-imidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[4-methylaminophenylmethyl]-N-phenylmethyl)aminomethyl-imidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3-methyl-4-aminophenylmethyl]-N-phenylmethyl) aminomethyl-imidazole)
- $1\hbox{-}(1\hbox{-Butyl})\hbox{-}2\hbox{-phenyl}\hbox{-}5\hbox{-}(N\hbox{-}[2,3\hbox{-dichlorophenylmethyl}]\hbox{-}N\hbox{-}$  phenylmethyl) a minomethyl i midazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-dichlorophenylmethyl]-N-phenylmethyl)aminomethylimidazole
- 1-(1-Butyl)-2-phenyl-5-(N-[3,4-difluorophenylmethyl]-N-phenylmethyl)aminomethylimidazole

1-(1-Butyl)-2-phenyl-5-(N-(benzo[b]thiophen-5-ylmethyl)-N-phenylmethyl) aminomethyl-imidazole

 $1\hbox{-}(1\hbox{-Butyl})\hbox{-}2\hbox{-phenyl-}5\hbox{-}(N\hbox{-}[4\hbox{-ethoxyphenylmethyl}]\hbox{-}N\hbox{-}$  phenylmethyl) a minomethyl i midazole

1-(1-Butyl)-2-phenyl-5-(N-[6-chloro-3,4-methylenedioxyphenylmethyl]-N-phenylmethyl)-aminomethylimidazole

1-(1-Butyl)-2-phenyl-5-(N-[3-methoxyphenylmethyl]-N-phenylmethyl) a minomethylimidazole

1-(1-Butyl)-2-phenyl-5-(N-[2-chloro-4-fluorophenylmethyl]-N-phenylmethyl) aminomethyl-imidazole

1-(1-Butyl)-2-phenyl-4-bromo-5-(N-[2,3-dichlorophenylmethyl]-N-[1-butyl])aminomethyl-imidazole

1-(1-Butyl)-2-phenyl-5-(N-[2,6-dichlorophenylmethyl]-N-phenylmethyl)aminomethylimidazole

 $1\hbox{-}(1\hbox{-}Butyl)\hbox{-}2\hbox{-}phenyl\hbox{-}5\hbox{-}(N\hbox{-}[2\hbox{-}chloro\hbox{-}4\hbox{-}hydroxyphenylmethyl]\hbox{-}N-phenylmethyl)aminomethyl-imidazole}$ 

1-(1-Butyl)-2-phenyl-4-chloro-5-(N-phenylmethyl-N-[1-butyl]) a minomethylimid a zole

1-(1-Butyl)-2-phenyl-5-(N-[4-diethylaminophenylmethyl]-N-phenylmethyl)aminomethyl-imidazole

1-(1-Butyl)-2-phenyl-5-(N-[pyridin-2-ylmethyl]-N-phenylmethyl)aminomethylimidazole

1-(1-Butyl)-2-phenyl-5-(N-[pyridin-3-ylmethyl]-N-

phenylmethyl)aminomethylimidazole

1-(1-Butyl)-2-phenyl-5-(N-[pyridin-4-ylmethyl]-N-

phenylmethyl)aminomethylimidazole

1-(1-Butyl)-2-phenyl-5-(N-[2-fluoro-6-chlorophenylmethyl]-N-phenylmethyl) aminomethyl-imidazole)

1-(1-Butyl)-2-phenyl-5-(N-[2,4-dichlorophenylmethyl]-N-phenylmethyl)aminomethyl-imidazole)

1-(1-Butyl)-2-phenyl-5-(N-[4-chlorophenylmethyl]-N-phenylmethyl)aminomethylimidazole

1-(1-Butyl)-2-phenyl-5-(N-[2-chloro-3,4-dimethoxyphenylmethyl]-N-phenylmethyl)amino-methylimidazole)

1-(1-Butyl)-2-phenyl-5-(N-[4-nitrophenylmethyl]-N-phenylmethyl)aminomethylimidazole

1-(1-Butyl)-2-phenyl-5-(N-[4-aminophenylmethyl]-N-phenylmethyl)aminomethylimidazole

1-(1-Butyl)-2,4-diphenyl-5-(N-phenylmethyl-N-[1-butyl])aminomethylimidazole

1-(1-Butyl)-2-phenyl-5-(N-[2-aminopyridin-5-ylmethyl]-N-phenylmethyl)aminomethyl-imidazole

1-(1-Butyl)-2-phenyl-5-(N-[2,3-dihydrobenzo[b]furan-5-ylmethyl]-N-phenylmethyl) amino-methylimidazole

1-(1-Butyl)-2-phenyl-5-(N-[2-chloro-4-hydroxyphenylmethyl]-N-[1-butyl]) a minomethyl-imidazole);

Bis-benzo[1,3]dioxol-5-ylmethyl-(3-butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-amine;

Benzo[1,3]dioxol-5-ylmethyl-benzyl-[3-butyl-5-(4-methoxy-phenyl)-2-phenyl-3H-imidazol-4-ylmethyl]-amine;

- 4-({Benzyl-[1-(3-butyl-2,5-diphenyl-3H-imidazol-4-yl)-ethyl]-amino}-methyl)-benzamide;
- 4-{[Benzyl-(3-butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-amino]-methyl}-3-chloro-phenol;
- 4-({[1-(3-Butyl-2-phenyl-3H-imidazol-4-yl)-pentyl]-cyclohexylmethyl-amino}-methyl)-phenol;
- 4-{[Benzyl-(3-butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-amino]-methyl}-benzamide;
- 4-{[Benzyl-(3-butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-amino]-methyl}-2-methyl-phenol;
- 4-{[(3-Butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-cyclohexylmethyl-amino]-methyl}-2-methyl-phenol;
- (3-Butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-(2,6-difluoro-benzyl)-(4-methoxy-benzyl)-amine;
- Benzyl-(3-butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-(2,3-dihydrobenzo[1,4]dioxin-6-ylmethyl)-amine;
- (3-Butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-(2,5-difluoro-benzyl)-(4-methoxy-benzyl)-amine;
- (3-Butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-(2,6-dichloro-benzyl)-(4-methoxy-benzyl)-amine;
- Benzo[1,3]dioxol-5-ylmethyl-butyl-[3-butyl-2-(2-methoxy-phenyl)-5-phenyl-3H-imidazol-4-ylmethyl]-amine;
- 4-({Benzyl-[3-butyl-2-(2-methoxy-phenyl)-5-phenyl-3H-imidazol-4-ylmethyl]-amino}-methyl)-benzenesulfonamide;
- Benzo[1,3]dioxol-5-ylmethyl-benzyl-[3-butyl-2-(2-methoxy-phenyl)-5-phenyl-3H-imidazol-4-ylmethyl]-amine;
- 4-({Butyl-[3-butyl-2-(3-methoxy-phenyl)-5-phenyl-3H-imidazol-4-ylmethyl]-amino}-methyl)-3-chloro-phenol;

4-{((3-Butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-(4-methoxy-benzyl)-amino]-methyl}-benzoic acid;

 $\label{lem:condition} $$4-(\{Benzyl-[3-butyl-2-(3-methoxy-phenyl)-5-phenyl-3H-imidazol-4-ylmethyl]-amino}-methyl)-3-chloro-phenol;$ 

Benzo[1,3]dioxol-5-ylmethyl-benzyl-[1-(3-butyl-2,5-diphenyl-3H-imidazol-4-yl)-pentyl]-amine;

Benzo[1,3] dioxol-5-ylmethyl-benzyl-[1-(3-butyl-2,5-diphenyl-3H-imidazol-4-yl)-ethyl]-amine;

4-{[Butyl-(3-butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-amino]-methyl}-benzamide;

Benzo [1,3] dioxol-5-ylmethyl-benzyl-[3-butyl-5-(4-fluoro-phenyl)-2-phenyl-3 H-imidazol-4-ylmethyl]-amine;

 $\label{lem:conditional} 3-\{[Benzyl-(3-butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-amino]-methyl\}-phenol;$ 

4-{[Butyl-(3-butyl-5-tert-butyl-2-phenyl-3H-imidazol-4-ylmethyl)-amino]-methyl}-benzamide;

4-{[Benzyl-(3-butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-amino]-methyl}-2,6-dimethyl-phenol;

4-({[3-Butyl-5-(4-methoxy-phenyl)-2-phenyl-3H-imidazol-4-ylmethyl]-cyclohexylmethyl-amino}-methyl)-2,6-dimethyl-phenol;

[3-Butyl-5-(4-methoxy-phenyl)-2-phenyl-3H-imidazol-4-ylmethyl]-cyclohexylmethyl-(2,3-dihydro-benzofuran-5-ylmethyl)-amine;

(4-{[(3-Butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-cyclohexylmethyl-amino]-methyl}-phenyl)-dimethyl-amine;

4-{5-[(Bis-benzo[1,3]dioxol-5-ylmethyl-amino)-methyl]-2,4-diphenyl-imidazol-1-yl}-butan-1-ol;

(4-{[(3-Butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-cyclohexylmethyl-amino]-methyl}-phenyl)-dimethyl-amine;

4-{[Butyl-(3-butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-amino]-methyl}-2,6-dimethyl-phenol;

4-({Butyl-[1-(3-butyl-2,5-diphenyl-3H-imidazol-4-yl)-ethyl]-amino}-methyl)-2,6-dimethyl-phenol;

4-{[(3-Butyl-2,5-diphenyl-3H-imidazol-4-ylmethyl)-(4-dimethylamino-benzyl)-amino]-methyl}-benzoic acid

1-(1-Butyl)-2-(4-fluorophenyl)-5-(N-[2-chloro-4-hydroxyphenylmethyl]-N-phenylmethyl)-aminomethylimidazole

1-(1-Butyl)-2-(3-fluorophenyl)-5-(N-[2-chloro-4-hydroxyphenylmethyl]-N-phenylmethyl)-aminomethylimidazole

1-(1-Butyl)-2-(3-fluorophenyl)-5-(N-[2,3-dichlorophenylmethyl]-N-phenylmethyl) amino-methylimidazole

1-(1-Butyl)-2-(3-fluorophenyl)-5-(N-[4-dimethylaminophenylmethyl]-N-phenylmethyl) amino-methylimidazole

 $1-(1-Butyl)-2-(3-fluorophenyl)-5-(N-[4-\{1-pyrrolidinyl\}phenylmethyl]-N-phenylmethyl) amino-methylimidazole$ 

 $1-(1-Butyl)-2-(3-chlorophenyl)-5-(1-[N-\{2-chloro-4-hydroxyphenylmethyl\}-N-phenylmethyl] amino)ethylimidazole$ 

1-(1-Butyl)-2-phenyl-5-(N-[indol-5-ylmethyl]-N-phenylmethyl)aminomethylimidazole

1-(1-Butyl)-2-(4-fluorophenyl)-5-(1-N,N-di[3,4-methylenedioxyphenylmethyl|amino)ethylimidazole

2-{[5-({Butyl[(1-butyl-2,4-diphenylimidazol-5-yl)methyl]amino}methyl)-2-pyridyl]amino}ethan-1-ol,

or a pharmaceutically acceptable salt, prodrug or hydrate thereof.

135. A compound of any one of claims 1 through 134 wherein the compound exhibits an IC₅₀ of about 500 nM or less in a standard in vitro C5a mediated chemotaxis or calcium mobilization assay.

136. A compound of any one of claims 1 through 134 wherein the compound exhibits an IC₅₀ of about 200 nM or less in a standard in vitro C5a mediated chemotaxis or calcium mobilization assay.

- 137. A compound of any one of claims 1 through 134 wherein the compound exhibits an  $IC_{50}$  of about 100 nM or less in a standard in vitro C5a mediated chemotaxis or calcium mobilization assay.
- 138. A compound of any one of claims 1 through 134 wherein the compound exhibits an  $IC_{50}$  of about 50 nM or less in a standard in vitro C5a mediated chemotaxis or calcium mobilization assay.
- 139. A compound of any one of claims 1 through 134 wherein the compound exhibits an IC₅₀ of about 25 nM or less in a standard in vitro C5a mediated chemotaxis or calcium mobilization assay.
- 140. A compound of any one of claims 1 through 134 wherein the compound exhibits an  $IC_{50}$  of about 10 nM or less in a standard in vitro C5a mediated chemotaxis or calcium mobilization assay.
- 141. A compound of any one of claims 1 through 134 wherein the compound exhibits an IC₅₀ of about 5 nM or less in a standard in vitro C5a mediated chemotaxis or calcium mobilization assay.
- 142. A compound of any one of claims 1 through 134 wherein the compound exhibits less than 5% agonist activity in a GTP binding assay.

143. A compound of any one of claims 1 through 134 wherein the compound exhibits a 10-fold selectivity for the antagonist activity over the compound's effects on ATP stimulated responses in a GTP binding assay.

- 144. A pharmaceutical composition comprising a compound of any one of claims 1 through 143 or a prodrug or hydrate thereof and a pharmaceutically acceptable carrier therefor.
- 145. A method for treating a patient suffering from or susceptible to a disease or disorder involving pathologic activation of C5a receptors, comprising administering to the patient an effective amount of a compound or composition of any one of claims 1 through 143.
- 146. A method for treating a patient suffering from or susceptible to an autoimmune disease or disorder, comprising administering to the patient an effective amount of a compound or composition of any one of claims 1 through 143.
- 147. A method for treating a patient suffering from or susceptible to rheumatoid arthritis, systemic lupus erythematosus, associated glomerulonephritis, psoriasis, Crohn's disease, vasculitis, irritable bowel syndrome, dermatomyositis, multiple sclerosis, bronchial asthma, pemphigus, pemphigoid, scleroderma, myasthenia gravis, autoimmune hemolytic and thrombocytopenic states, Goodpasture's syndrome, glomerulonephritis, pulmonary hemorrhage), or immunovasculitis, comprising administering to the patient an effective amount of a compound or composition of any one of claims 1 through 143.
- 148. A method for treating a patient suffering from or susceptible to an inflammatory condition, comprising adminstering to the patient an effective amount of a compound or composition of any one of claims 1 through 143.

149. A method for treating a patient suffering from or susceptble to neutropenia, sepsis, septic shock, Alzheimer's disease, stroke, inflammation associated with burns, lung injury, myocardial infarction, coronary thrombosis, vascular occlusion, post-surgical vascular reocclusion, artherosclerosis, traumatic central nervous system injury, ischemic heart disease, and ischemia-reperfusion injury, acute respiratory distress syndrome, systemic inflammatory response syndrome, multiple organ dysfunction syndrome, tissue graft rejection, or hyperacute rejection of transplanted organs, comprising administering to the patient an effective amount of a compound or composition of any one of claims 1 through 143.

- 150. A method for treating a patient suffering from or susceptible to pathologic sequellae associated with insulin-dependent diabetes mellitus, lupus nephropathy, Heyman nephritis, membranous nephritis, glomerulonephritis, contact sensitivity responses, or inflammation resulting from contact of blood with artificial surfaces, comprising administering to the patient an effective amount of a compound or composition of any one claims 1 through 143.
- 151. A method of any one of claims 145 through 150 wherein the patient is a mammal.
- 152. A method of any one of claims 145 through 150 wherein the patient is a human.
- 153. A method for inhibiting C5a-promoted cellular chemotaixs, comprising administering to mammalian white blood cells a chemotaxis or calcium mobilization-inhibitor effective amount of a compound or composition of any one of claims 1 through 143.
  - 154. The method of claim 153 wherein the white blood cells are human.

155. A method of localizing C5a recerptors in a tissue, comprising:

contacting a tissue with a detectably labelled compound or composition of
any one of claims 1 through 143 under conditions that permit binding of the
compound to the tissue; and

detecting the bound compound.

156. A method of reducing the severity or frequency of one or more inflammatory sequelae of organ transplantation comprising:

perfusing a donor organ, prior to transplantation of the organ into a recipient patient, with a liquid solution comprising a compound of Claim 1 in a pharmaceutically acceptable carrier, wherein the solution comprises a concentration of the compound that is sufficient,

to inhibit C5a-mediated chemotaxis of cells expressing a C5a receptor in vitro, or

to inhibit C5a-induced calcium mobilization in cells expressing the C5a receptor in vitro, or

to inhibit C5a- induced GTP binding to the membranes of cells expressing the C5a receptor in vitro, or

when present in vivo in an animal's bloodstream when a neutropenia-inductionsufficient amount of C5a is introduced into the bloodstream of the animal, to reduce the resulting C5a-induced neutropenia in vivo;

and

transplanting the donor organ so perfused into the recipient patient to produce a perfused transplant recipient patient;

wherein, following the production of a first plurality of such perfused transplant recipient patients, the severity or frequency of one or more inflammatory sequelae following organ transplantation in the first plurality of patients is reduced when compared to the severity or frequency of said one or more inflammatory sequelae following organ transplantation in a second plurality of control (including historical control) transplant recipient patients who have received transplants of donor organs that have not been so perfused.

157. A compound of any of claims 1 to 143 wherein the compound produces less than a 10%, 5% or 2% reduction of ATP-induced calcium mobilization in a calcium mobilization assay.

FIG. 1

SEQ ID NO:1

cccaggagaccccaccatgaactccttcaattataccacccctgattatgggcactatgatgacaaggataccetggaceteaacacecetgtggataaaacttetaacacgetgegtgttecagacateetggeettgg ct g ccc a tet t g t t cae g t ceatt g t a cae cae t g g c cett t g g c g g g g c c g c t g ca g cat cetgccctccctcatcctgctcaacatgtacgccagcatcctgctcctggccaccatcagcgccgaccgctttotgctggtgtttaaacccatctggtgccagaacttccgaggggccggcttggcctggatcgcctgtgccccggctggtcctgggcttcctgtggcctctactcacgctcacgatttgttacactttcatcctgctccgg acgtggagccgcagggccacgcggtccaccaagacactcaaggtggtggtggcagtggtggccagtttctcct gct gct gaat a agct ggact ccct gt gt gt ctcctt t gcct acat caact gct gcat caaccccattgttgactgaagagtccgtggttagggagagcaagtcattcacgcgctccacagtggacactatggccca gaagacccaggcagtgtaggcgacagcc