

COMPARISON BETWEEN DIFFERENCIAL EVOLUTION AND SIMULATED ANNEALING ALGORITHMS APPLIED TO THE CONSTRUCTAL DESIGN OF THE DOUBLE-T SHAPED CAVITIES

G. V. Gonzales, L. A. Isoldi, L. A. O. Rocha, E. D. dos Santos e A. J. Silva Neto

Programa de Pós-Graduação em Modelagem Computacional - FURG

Outubro de 2018

- Introdução
 - Motivação
 - Objetivos
 - Breve Estado da Arte
- Modelagem Matemática e Numérica
- Otimização
 - Design Construtal
 - Configuração dos Algoritmos
- Resultados
- Conclusão
- Referências
- Agradecimentos

MOTIVAÇÃO

Com a miniaturização dos circuitos eletrônicos e desenvolvimento de dispositivos cada vez mais compactos, técnicas tradicionais de troca térmica por convecção forçada não são mais suportadas. Alternativas apontam para cavidades ou caminhos com material de alta condutibilidade.

OBJETIVOS

- Otimizar parcialmente uma cavidade em forma de Duplo-T;
- Comparar os resultados de duas meta-heurísticas aplicadas ao problema
- Analisar diferentes parâmetros de cada algoritmo;
- Avaliar estatisticamente as diferenças entre os resultados da reprodução dos efeitos dos graus de liberdade sobre a geometria ótima e a temperatura máxima minimizada;
- Recomendar não só o algoritmo mas também a configuração de parâmetros mais adequada ao problema de otimização;

BREVE ESTADO DA ARTE

- Cavidade em formato de "C"e "T"em Biserni et. al. (2004).
- Cavidade em forma de "H"em Biserni et. al. (2007).
- Cavidade em forma de "Y"em (Lorenzini et. al. (2011).
- Cavidade em forma de "Y"aplicação do Algoritmo Genético em Lorenzini et. al. (2014).
- Comparação entre aplicação do SA com GA na otimização da cavidade em forma de Y em Gonzales et. al. (2015a).
- Otimização parcial até 3 graus de liberdade da cavidade em duplo-T em Gonzales et. al. (2015b).

MODELAGEM MATEMÁTICA

Figura: Domínio Computacional da Cavidade em Forma de Duplo-T.

MODELAGEM MATEMÁTICA E NUMÉRICA

Hipóteses Simplificativas:

- Regime Permanente
- Geração uniforme de calor
- Condutividade térmica constante
- Domínio bidimensional

$$\frac{\partial}{\partial x} \left(k \frac{\partial \theta}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial \theta}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial \theta}{\partial z} \right) + q^{'''} = \rho C_p \frac{\partial \theta}{\partial t} \tag{1}$$

$$\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} + \frac{q^{\prime\prime\prime}}{k} = 0 \tag{2}$$

MODELAGEM MATEMÁTICA E NUMÉRICA

Restrições:

$$A = HL \tag{3}$$

$$A_c = A_0 + 2A_1 + 2A_2 \tag{4}$$

$$\phi_c = A_c/A \tag{5}$$

Modelagem Matemática e Numérica

Adimensionalização do Problema:

$$\tilde{x}, \tilde{y}, \tilde{H}_0, \tilde{H}_1, \tilde{H}_2, \tilde{L}_0, \tilde{L}_1, \tilde{L}_2, \tilde{H}, \tilde{L}, \tilde{S}_1 = \frac{x, y, H_0, H_1, H_2, L_0, L_1, L_2, H, L, S_1}{A^{1/2}}$$
(6)

$$\frac{\partial^2 \tilde{\theta}}{\partial \tilde{x}^2} + \frac{\partial^2 \tilde{\theta}}{\partial \tilde{y}^2} + 1 = 0 \tag{7}$$

$$\tilde{\theta}_{max} = \frac{\theta_{max} - \theta_{min}}{q''' \cdot \frac{A}{L}} \tag{8}$$

MODELAGEM MATEMÁTICA E NUMÉRICA

A função representada pela Eq. 8 é resolvida numericamente através da resolução da Eq. 7 para a determinação dos os campos de temperatura em todo o domínio computacional para diferentes configurações de $(H, L, H_0, L_0, H_1, L_1, H_2, L_2 \in S_1)$ e calculando o $\tilde{\theta}_{max}$ para minimizar o seu valor através da variação da configuração geométrica.

A solução numérica é dada pela aplicação do método de Elementos Finitos (FEM), baseado em elementos triangulares, desenvolvido no ambiente MATLAB®, com o pacote PDE (partial-differential-equations) toolbox.

A malha utilizada é não-uniforme em ambos eixos x e y, e varia de uma geometria para outra. O tamanho é de 80649 mil elementos.

OTIMIZAÇÃO

A metodologia de otimização aplicada neste trabalho utiliza-se do método Constructal Design associado as meta-heurísticas Differential Evolution (DE) e Simulated Annealing (SA).

- Constructal Desing: para definição dos objetivos, restrições, Graus de Liberdade (GL) e espaço de busca.
- Algoritmos de Otimização: neste trabalho aplicamos os algoritmos DE e SA para a obtenção das geometrias ótimas.
- Comparação dos Resultados: São utilzidos os valores de média entre 30 execuções de cada algoritmo e comparados com os melhores resultados encontrados entre todas as rodadas.

CONSTRUCTAL DESIGN

Definição dos Graus de Liberdade e Restrições:

- Nove variáveis $(H, L, H_0, L_0, H_1, L_1, H_2, L_2 \in S_1)$;
- Quatro restrições $(A, A_c, A_1 \in A_2)$;

$$\phi_c = A_c/A = \tilde{H}_0 \tilde{L}_0 + 2\phi_1 + 2\phi_2 \tag{9}$$

$$\phi_1 = \tilde{H}_1 \tilde{L}_1 \tag{10}$$

$$\phi_2 = \tilde{H}_2 \tilde{L}_2 \tag{11}$$

• Temos cinco Graus de liberdade $(H/L, H_0/L_0, H_1/L_1, H_2/L_2)$ e S_1/H_0) para o fechamento das equações;

CONSTRUCTAL DESIGN

- Durante o processo de otimização, foram mantidos constantes os valores das restrições ($\phi_c = 0.1, \phi_1 = \phi_2 = 0.015$)
- Para a otimização de 3 Gls o grau de liberdade H_0/L_0 foi variado entre $0 = \langle H_0/L_0 \langle = 25;$
- Sendo otimizados os graus de liberdade: H_2/L_2 , H_1/L_1 e S_1/H_0 ;
- Para a otimização de 4 GLs, o grau de liberdade H/L foi variado entre $0.3 = \langle H/L \langle = 30;$
- Sendo otimizados os graus de liberdade: H_0/L_0 , H_1/L_1 , H_2/L_2 e S_1/H_0 ;

CONFIGURAÇÃO DOS ALGORITMOS

Tabela: Versões do Algoritmo Differential Evolution.

	DE1	DE2	DE3	DE4
$\overline{ ext{Amplificação }F}$	1,5	2,0	1,5	2,0
Cruzamento	0,7	0,9	0,7	0,9
Mutação	$\mathrm{rand}/1/\mathrm{bin}$	rand/1/bin	$\mathrm{best/2/bin}$	$\mathrm{best/2/bin}$
Iter. H_0/L_0	150	-	-	-
Iter H/L	300	-	-	-

CONFIGURAÇÃO DOS ALGORITMOS

Tabela: Versões do Algoritmo Simulated Annealing.

	SAEX	SABO	SABE	SAC1	SAC2
C. Schedule	Exponencial	Boltz	BoltzExp	ConstExp1	ConstExp2
Iter. H_0/L_0	150	-	-	-	-
Iter H/L	300	-	-	-	-

Figura: Efeito de H_0/L_0 sobre $(\tilde{\theta}_{max})_{3\times m}$ obtidos por cada versão dos algoritmos DE e SA.

Figura: Efeito de H_0/L_0 sobre $(H_2/L_2)_{3\times o}$ obtidos por cada versão dos algoritmos DE e SA.

Figura: Efeito de H/L sobre $(\tilde{\theta}_{max})_{3\times m}$ obtidos por cada versão dos algoritmos DE e SA: a) DE b) SA

Figura: Efeito de H/L sobre $(H_2/L_2)_{3\times o}$ obtidos por cada versão dos algoritmos DE e SA: a) DE b) SA

Figura: Efeito de H/L sobre $(H_1/L_1)_{2\times o}$ obtidos por cada versão dos algoritmos DE e SA: a) DE b) SA

CONCLUSÃO

- Dentre os algoritmos pesquisados e as configurações de parâmetros avaliadas, todas as versões do SA apresentaram um desempenho inferior as versões do DE.
- O DE foi o que apresentou, em geral, melhor desempenho. Principalmente as versões DE1 e DE4, com os parâmetros de cruzamento de 0.9 e fator de amplificação de 1.5;
- Portanto, para o problema de interesse, esses são os parâmetros recomendados para o algoritmo DE, pois foram aqueles que reproduziram de maneira mais precia as curvas de efeito dos graus de liberdade sobre a geometria ótima e peformance térmica do problema.

REFERÊNCIAS

A. Bejan, Constructal-theory Network of Conducting Path for Cooling a Heat Generating Volume. *Int. J. Heat Mass Transfer*, vol. 40, n. 4, pp.799-816, 1996.

C. Biserni, L. A. O. Rocha, A. Bejan, Inverted Fins: Geometric Optimization of the Intrusion Into a Conducting Wall. *Int. J. Heat and Mass Transfer*, 47, pp. 2577-2586, 2004.

G. V. Gonzales, E. D. Dos Santos, L. A. Isoldi, E. da S. D. Estrada, L. A. O. Rocha, Constructal Design of Isothermal Double-T Shaped Cavity By Means of Simulated Annealing. In *Proceedings of the XXXVI Iberian Latin-American Congress on Computational Methods in Engineering*, Rio de Janeiro, RJ, Brazil, 2015.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, M. P., Optimization by Simulated Annealing, *Science*, New Series., v. 220, No 4598, pp 671-680, 1983.

REFERÊNCIAS

G. Lorenzini, C. Biserni, E. da S. D. Estrada, E. D. Dos Santos, L. A. Isoldi, L. A. O. Rocha, Genetic Algorithm Applied to Geometric Optimization of Isothermal Y-Shaped Cavities. *Journal of Electronic Packaging*, vol 136, p. 031011-031011-9, 2014.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of State Calculations by Fast Computing Machines. *The Journal of Chemical Physics.*, v 21, p 1088-1092, 1953.

R. Storn, K. Price, Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. *Journal of Global Optimization.*, v 11, p 341-359, 1997.

AGRADECIMENTOS

