

Homework 4

Deadline: 19 October 2025, 23:30.

All solutions must be in a single PDF file and uploaded to the LMS portal.

- 1. (0.25 point) Derive the expression for $\frac{\partial V}{\partial r}$ within the Black-Scholes-Merton model.
- 2. (0.25 point) Derive the expression for $\frac{\partial^2 V}{\partial S \partial \sigma}$ within the Black-Scholes-Merton model.
- 3. (0.25 point) Derive the expression for $\frac{\partial^2 V}{\partial \sigma^2}$ within the Black-Scholes-Merton model.
- 4. (0.25 point) Derive the expression for $\frac{\partial V}{\partial t}$ within the Black-Scholes-Merton model.
- 5. (0.5 point) Consider two Brownian motions W_t^1 and W_t^2 such that $[W^1, W^2]_t = \rho t$. Show that $cov(W_t^1, W_t^2) = \rho t$.
- 6. (0.5 point) Let Y_t follow a Geometric brownian motion, and define $Z_t = \frac{1}{Y_t}$. Find the quadratic covariation $[Y, Z]_t$.