

Machine Learning-based Linux Cache Handler

Netanel Rothschild and Roy Maor Lotan, Supervised by Dr. Roman Kaplan

Introduction

- The 21th century is well known as the "data century" (Moore's law)
- We have more data on multiple devices (pictures, docs, music, etc.)
- Today's computers suffers from accessing data
- A lot of effort invested towards solving this problem
- Average pc waste 95% of the time waiting for I/O

Goals

- Learn the user behavior in order to predict the flow of data
- Gain higher performance using the knowledge about the user

Challenges

- Collecting the date from real Operating
 System in real time
- Evaluate the correlation of the data and the target knowledge

Operating Systems Cache

- The module that manage the data within systems called page cache
- This module is a part of the OS Kernel manage the I/O request and manage the eviction of old data.

Data Extraction

Method 1: Snapshooting

- Taking a snapshot of the cache
- Sample entire image, associating each page with its pid (owner)
- Exanimating the cache action in RT
- Sample clean groups (OS association) for training model

Method2: Trace Processes

- Tracing one process, monitoring it's access to the memory
- Repeat this action until we have enough data to characterize the user usage of data
- Speculate the next step of a process before evicting his page

Method3: Bus Monitoring

- Starting with time 0, we listening to the requests on the bus
- Any access will be written in a Non-Cacheable buffer and will be written to file is scheduled moments.
- To get an accurate picture of the cache the module should have Kernel permission

Data analysis

An examine workload points that there is strong connection between the following features and the reappearance of data

Problem Definition

The probability $p_{y|x}(y|x) \triangleq \sigma(\mathcal{O}(x;\theta))$

Given a Dataset $\mathcal{D}_N = \{X_i, y_i\}_{i=0}^N$

The loss function is binary cross-entropy: $\mathcal{L}(\mathcal{O}(X_i; \theta), y_i) = y_i \log(p(y_i))$

 $+(1-y_i)\log(p(1-y_i))$

We want to minimize (ERM):

 $\theta_{\mathcal{D}}^* = \underset{\theta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(\mathcal{O}(X_i; \theta), y_i)$

Chosen Models

Shallow

Input: 2 Neurons

Layer 1: 16 *Neurons*, activation: ReLU Layer 2: 8 *Neurons*, activation: ReLU

Output: 1 Neurons, activation: Softmax

Trainable parameters: 193

Deep

Input: 5 Neurons

Layer 1: 128 Neurons, activation: ReLU

Layer 2: 64 Neurons, activation: ReLU

Layer 3: 64 Neurons, activation: ReLU

Layer 4: 8 *Neurons*, activation: ReLU Output: 1 *Neurons*, activation: Softmax

Trainable parameters: 13,457

Results

- Shallow model Acc: 84.54%
- Deeper model Acc: 87.91%
- Both model affine function of a state that can be saved by the module, in any change (using basic operation in a single clock)
- Both models outperform current existing paging algorithms.
- Training Time, and resources satisfy a normal pc background use

Conclusions

- Choosing the right data in shallow model, with the highest correlation to the target, in our case result in almost the same performance 10³ scaled deep model
- Machin Learning-based algorithms can play an important role in Operating System management, in order to gain better performance as it works in understanding user experience