Homework 1.

- The file name of your homework (in PDF) should be in the format: "學號-作業編號.pdf". For example: 00957999-hw1.pdf
- Please submit your homework to Tronclass before 23:59, October 19, 2022.

(可以用 word 檔寫完後轉成 pdf 檔上傳,或是手寫後拍照後存成 pdf 檔上傳)

1. (10%) Order the following function by growth rate in increasing order (由小到大排序):

 $5n^2$, 2^n , $n \log(\log n)$, $n \log(n^2)$, n^n , n!

	1	2	3	4	5	6	7	8	9
$5n^2$	5	20	45	80	125	180	245	320	405
2^n	2	4	8	16	32	64	128	256	512
$n \log(\log n)$	log(log1)	2log(log2)	•••	•••	•••	•••	•••	••••	9log(log9)
$n \log(n^2)$	log1	2log4	3log9	4log16	5log25	•••	•••	•••	9log81
n^n	1	4	27	64	3125	46656	823543	16777216	387420489
n!	1	2	6	24	120	720	5040	40320	362880

Ans: $n \log(\log n) < n \log(n^2) < 5n^2 < 2^n < n! < n^n$

- 2. (20%) Show that the following statements are correct:
 - (a) $n! = O(3n^n)$
 - (b) $5n^2 20n = \Theta(n^2)$
- (a): 存在 C, n₀ > 0, 當 n >= n₀ 時, n! <= C3nⁿ

(b): 證明 $5n^2 - 20n = O(n^2)$ &證明 $5n^2 - 20n = Omega(n^2)$

存在 $C, n_0 > 0$, 當 $n >= n_0$ 時, $5n^2 - 20n <= Cn$

 $5n^2 - 20n \le 5n^2 \le Cn^2$ 當 C = 5, n = 1 時不等式成立

存在 C, $n_0 > 0$, 當 $n >= n_0$ 時, $5n^2 - 20n >= Cn^2$

- 3. (20%) Show that the following statements are incorrect:
 - (a) $10n^2 + 100n + 9 = 0(n)$
 - (b) $3^n = 0(2^n)$
- (a): 不存在 C, $n_0 > 0$, 當 $n >= n_0$ 時, $10n^2 + 100n + 9 <= Cn$

反證:

假設 C, $n_0 > 0$ 存在 當 $n >= n_0$, $10n^2 + 100n + 9 <= Cn$

 $Cn \le n^2 \le 10n^2 \le 10n^2 + 100n + 9 \le Cn$

(當 $n \ge C$ 的時, 左式成立) 則 $n \ge \max(n_0, C)$ 不等式成立, 矛盾

(b): 不存在 $C, n_0 > 0$, 當 $n >= n_0$ 時, $3^n <= C2^n$

反證:

假設 C, n0 > 0 存在 當 n >= n₀, 3ⁿ <= C2ⁿ

 $\mathbb{R} \log > n \log 3 \ll (\log C + n \log 2)$

logC + nlog2 < nlog3 <= (logC + nlog2)

當 C < n(log3 - log2) 時, 左式成立 矛盾

4. (20%) Fill the "accurate" step count table (yellow regions) for the following program:

Let $MAX_SIZE = M$

Statement	s/e	Frequency	Total Steps
<pre>void mult(int a[][MAX_SIZE],int b[][MAX_SIZE], int c[][MAX_SIZE])</pre>	0	0	0
{	0	0	0
int <i>i</i> , <i>j</i> , <i>k</i> ;	0	0	0
for (<i>i</i> = 0; <i>i</i> < <i>MAX_SIZE</i> ; <i>i</i> ++)	1	M + 1	M + 1
for $(j = 0; j < MAX_SIZE; j++)$ {	1	M(M+1)	$M^2 + M$
c [i][j] = 0;	1	M^2	M^2
for $(k = 0; k < MAX_SIZE; k++)$	1	$M^2(M+1)$	$M^3 + M^2$
c[i][j]+=a[i][k]*b[k][j];	1	M^3	M^3
}	0	0	0
}	0	0	0
Total			2M ³ +3M ² +2M+1

5. (10%) Given an four-dimensional array A[100][200][300][400], if the address of A[4][18][29][36] is $\alpha + X$, what is the value of X?

Note: (1) α is the address of A[0][0]

(2) Only consider row major here.

4*200*300*400 + 18*300*400 + 29*400 + 36 = 98171636

Ans: 98171636

6. (10%) 請說明如何使用課本 Program 2.6 的 padd 函式,計算多項式乘法 A(x)*B(x),其中

```
A(x) = 3x^2 + 2x + 1
                   B(x) = 5x^3 + 4x - 1
int solve(int n, int k){
    int idx = 0;
    for(int i = 0; i < n; i++){
        for(int j = 0; j < k; j++){
            C[idx].coef = A[i].coef * B[j].coef;
            C[idx++].expon = A[i].expon + B[j].expon;
        }
    }
    int now = 0;
    for(int i = 0; i < idx; i++){
        if(C[i].vis) continue;
        ans[now].expon = C[i].expon;
        ans[now].coef = C[i].coef;
        for(int j = i + 1; j < idx; j++){
            if(C[i].expon == C[j].expon){
                ans[now].coef += C[j].coef;
                C[j].vis = 1;
            }
        }
        now++;
    }
    return now;
}
```

將A和B的所有項相乘

乘完以後同項合併

其中 now - 1 代表最高項次

7. (10%) Ackerman's function A(m, n) is defined as:

$$A(m,n) = \begin{cases} n+1, & \text{if } m = 0\\ A(m-1,1), & \text{if } n = 0\\ A(m-1,A(m,n-1)), & \text{otherwise} \end{cases}$$

What is the value of A(3,4)?

$$A(m, n) = n + 1$$
 when $m = 0$
 $n + 2$ when $m = 1$

$$A(3, 4) = A(2, A(3, 3))$$

$$A(3,3) = A(2,A(3,2))$$

$$A(3, 2) = A(2, A(3, 1))$$

$$A(3, 1) = A(2, A(3, 0))$$

$$A(3, 0) = A(2, 1)$$

$$A(2, 1) = A(1, A(2, 0)) = A(1, 3) = 5$$

$$A(2, 0) = A(1, 1) = 3$$

$$A(2, 5) = A(1, A(2, 4)) = 13$$

$$A(2, 4) = A(1, A(2, 3)) = 11$$

$$A(2, 3) = A(1, A(2, 2)) = 9$$

$$A(2, 2) = A(1, A(2, 1)) = A(1, 5) = 7$$

由這幾項得出

→A(2, n) = 2(n+3)-3 此規律後再反推

$$A(3, 4) = A(2, A(3, 3))$$

$$A(3,3) = A(2,A(3,2))$$

$$A(3, 2) = A(2, A(3, 1))$$

$$A(3, 0) = A(2, 1) = 5$$

$$A(3, 1) = A(2, A(3, 0)) = A(2, 5) = 13$$

$$A(3, 2) = A(2, A(3, 1)) = A(2, 13) = 29$$

$$A(3,3) = A(2,A(3,2)) = A(2,29) = 61$$

$$A(3, 4) = A(2, A(3, 3)) = A(2, 61) = 125$$

Ans: 125