С. А. ГЕЛЬВЕР, С. Н. СМЕРДИН

КИНЕМАТИКА И ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ АБСОЛЮТНО ТВЕРДОГО ТЕЛА (ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ)

Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта Омский государственный университет путей сообщения

С. А. Гельвер, С. Н. Смердин

КИНЕМАТИКА И ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ АБСОЛЮТНО ТВЕРДОГО ТЕЛА (ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ)

Утверждено методическим советом университета в качестве учебно-методического пособия к решению задач по физике

УДК 530.1 (075.8) ББК 22.23я73 Г32

Кинематика и динамика вращательного движения абсолютно твер- дого тела (примеры решения задач): Учебно-методическое пособие к решению задач по физике / С. А. Гельвер, С. Н. Смердин; Омский гос. ун-т путей сообщения. Омск, 2016. 31 с.

Содержатся методические рекомендации по решению типовых задач по кинематике и динамике вращательного движения абсолютно твердого тела, приведены основной закон динамики и краткие теоретические сведения о кинематических и динамических характеристиках вращательного движения.

Предназначено для проведения практических аудиторных занятий и организации самостоятельной работы студентов первого курса очной формы обучения всех факультетов университета.

Библиогр.: 3 назв. Табл. 1. Рис. 7.

Рецензенты: доктор техн. наук, профессор В. А. Нехаев; канд. техн. наук, доцент А. В. Колунин.

ОГЛАВЛЕНИЕ

Введение	5
1. Центр инерции (центр масс) механической системы частиц	6
2. Кинематические характеристики вращательного движения	
абсолютно твердого тела	8
3. Равноускоренное вращение абсолютно твердого тела	13
4. Момент силы относительно центра. Момент силы относительно оси	15
5. Момент инерции абсолютно твердого тела относительно оси.	
Теорема Штейнера.	16
6. Момент импульса абсолютно твердого тела относительно	
неподвижной оси	19
7. Основной закон динамики вращательного движения	21
8. Движение связанных тел с учетом вращения блока	25
Библиографический список	30

ВВЕДЕНИЕ

При изучении курса общей физики необходимо уметь решать задачи, однако даже решение типовых задач нередко вызывает затруднения у студентов. Студенты должны знать и правильно применять законы и формулы курса общей физики, уметь выполнять элементарные математические операции и преобразования.

Настоящее учебно-методическое пособие предназначено для практических занятий и самостоятельной работы студентов при решении задач по теме «Кинематика и динамика вращательного движения твердого тела». При подготовке к практическому занятию, контрольной работе следует внимательно проработать теоретический материал по изучаемому вопросу, поэтому каждый раздел данного пособия начинается с краткого изложения основных теоретических сведений, а затем приводится подробное решение нескольких типовых задач.

Решать задачи по физике необходимо в следующем порядке: внимательно прочитать условие задачи, сделать в тетради рисунок, поясняющий условие задачи, кратко записать данные задачи и, если необходимо, перевести данные задачи в систему СИ. Обычно задача решается в общем виде, т. е. сначала выводится окончательная формула, а затем в нее подставляются числовые данные задачи.

Решение физических задач студентами способствует закреплению теоретических знаний, умений и навыков, необходимых для будущих инженеров железнодорожного транспорта.

1. ЦЕНТР ИНЕРЦИИ (ЦЕНТР MACC) МЕХАНИЧЕСКОЙ СИСТЕМЫ ЧАСТИЦ

1.1. Основные теоретические сведения

Центр инерции (центр масс) механической системы частиц (ATT) — это такая точка пространства, радиус-вектор \vec{r}_c которой определяется соотношением:

$$\vec{r}_c = \frac{\sum m_i \vec{r}_i}{\sum m_i} = \frac{\sum m_i \vec{r}_i}{m},\tag{1.1}$$

 $m = \sum m_i$ — общая масса АТТ.

В проекциях на координатные оси выражение (1.1) будет иметь вид:

$$x_{c} = \frac{\sum m_{i} x_{i}}{m}; \quad y_{c} = \frac{\sum m_{i} y_{i}}{m}; \quad z_{c} = \frac{\sum m_{i} z_{i}}{m}.$$
 (1.2)

Скорость центра инерции (центра масс) механической системы определяется выражением:

$$\vec{v}_c = \frac{\sum m_i \vec{v}_i}{m}.$$
(1.3)

1.2. Примеры решения задач

3 а д а ч а 1.1. Найти координату x_c центра масс системы частиц с $m_1=1,32$ кг, $m_2=1,51$ кг, $m_3=2,04$ кг, изображенной на рис. 1.1.

Рис. 1.1

Дано: $m_{1} = 1,32$ кг; $m_{2} = 1,51$ кг; $m_{3} = 2,04$ кг; $x_{1} = 2$ м; $x_{2} = 8$ м; $x_{3} = 6$ м.

Решение

Координату x_c центра масс системы частиц, изображенной на рис. 1.1, рассчитаем по формуле (1.2):

$$x_c = \frac{\sum m_i x_i}{m} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3}.$$

Производим подстановку данных задачи и расчет:

$$x_c = \frac{1,32 \cdot 2 + 1,51 \cdot 8 + 2,04 \cdot 6}{1,32 + 1,51 + 2,04} = 5,54(\text{M}).$$

3 а д а ч а 1.2. Вдоль оси OX навстречу друг другу движутся две частицы с массами $m_1 = 4,23$ г и $m_2 = 2,05$ г и скоростями $v_1 = 5,33$ м/с и $v_2 = 4,87$ м/с соответственно (рис.1.2). Найти проекцию скорости центра масс на ось OX.

Рис.1.2

 \mathcal{L} ано: $m_1 = 4,23 \; \Gamma;$ $m_2 = 2,05 \; \Gamma;$ $v_1 = 5,33 \; \text{M/c};$ $v_2 = 4,87 \; \text{M/c}.$ $v_{cx} - ?$

Решение

Скорость центра масс механической системы определяется выражением (1.3). Для рассматриваемой системы из двух частиц эта формула будет иметь вид:

$$\vec{v}_c = \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2}{m_1 + m_2} \,.$$

В проекции на ось ОХ будем иметь:

$$\upsilon_{cx} = \frac{m_1 \upsilon_{1x} + m_2 \upsilon_{2x}}{m_1 + m_2} = \frac{m_1 \upsilon_1 - m_2 \upsilon_2}{m_1 + m_2}.$$

Производим подстановку данных задачи и расчет:

$$v_{cx} = \frac{4,23 \cdot 5,33 - 2,05 \cdot 4,87}{4,23 + 2,05} = 2,97 \text{ (M/c)}.$$

2. КИНЕМАТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ АБСОЛЮТНО ТВЕРДОГО ТЕЛА

2.1. Основные теоретические сведения

Основными кинематическими характеристиками твердого тела при вращательном движении являются угловое перемещение (угол поворота) φ , угловая скорость $\vec{\omega}$ и угловое ускорение $\vec{\varepsilon}$.

Элементарное угловое перемещение $d\vec{\phi}$ и угловая скорость $\vec{\omega}$ имеют направление вдоль неподвижной оси вращения, которое определяется правилом правого винта (правилом «буравчика» [1]). Значение углового перемещения $d\vec{\phi}$, совершаемого телом за некоторое время dt, равно значению малого угла поворота $d\phi$, на который повернется тело за это время. Связь проекции вектора мгновенной угловой скорости ω_z на ось вращения и углового перемещения ϕ описывается соотношениями:

$$\omega_z = \frac{d\varphi}{dt} = \dot{\varphi}; \tag{2.1}$$

$$\varphi(t) = \int_{t_0}^t \omega_z(t) dt.$$
 (2.2)

В случае произвольного вращения абсолютно твердого тела вектор углового перемещения определить невозможно [2].

Мгновенное ускорение характеризует быстроту изменения угловой скорости. Связь проекции вектора углового ускорения ε_z на ось вращения с проекцией угловой скорости ω_z и углом поворота φ описывается уравнениями:

$$\varepsilon_z = \frac{d\omega_z}{dt} = \frac{d^2\varphi}{dt^2} = \dot{\omega}_z = \ddot{\varphi};; \tag{2.3}$$

$$\omega_z(t) = \int_{t_0}^t \varepsilon_z(t) dt + \omega_z(t_0).$$
 (2.4)

Направление углового ускорения совпадает с направлением угловой скорости, если вращение ускоренное, и противоположно направлению угловой скорости при замедленном вращении.

Угол поворота φ за время t и число оборотов N, сделанных телом за это же время, связаны соотношением:

$$\varphi = 2\pi N. \tag{2.5}$$

Значение угловой скорости может быть найдено через частоту вращения n по формуле:

$$\omega = 2\pi n. \tag{2.6}$$

При вращении твердого тела вокруг неподвижной оси все его точки движутся по окружностям, центры которых лежат на оси вращения. Скорость, с которой точка движется по окружности, называется линейной. Связь линейной скорости точки, расположенной на расстоянии r от оси вращения, и угловой скорости описывается уравнением:

$$\vec{v} = \vec{\omega} \times \vec{r}. \tag{2.7}$$

Быстрота изменения модуля линейной скорости точки характеризуется тангенциальным ускорением \vec{a}_{τ} , проекцию которого на ось вращения можно определить по соотношению:

$$a_{\tau} = \frac{dv}{dt} = \varepsilon_z r. \tag{2.8}$$

Быстрота изменения линейной скорости по направлению характеризуется нормальным ускорением \vec{a}_n , направленным к центру окружности, и рассчитывается по формуле:

$$a_n = \frac{v^2}{r} = \omega_z^2 r. \tag{2.9}$$

Полное ускорение \vec{a} точки вращающегося тела определяется как векторная сумма тангенциального и нормального ускорений:

$$\vec{a} = \vec{a}_{\tau} + \vec{a}_n. \tag{2.10}$$

Модуль полного ускорения определяется по уравнению:

$$a = \sqrt{a_{\tau}^2 + a_n^2}. (2.11)$$

2.2. Примеры решения задач

3 а д а ч а 2.1. Зависимость угла поворота вращающегося колеса радиусом 0,58 м от времени задана уравнением: $\varphi(t) = At + Ct^2$, где A = 1,98 рад/с; C = 2,02 рад/с² — константы. Найти: 1) угловую скорость колеса в момент времени $t_{1} = 2$ с; 2) модуль углового ускорения колеса в этот же момент времени; 3) число оборотов, сделанных колесом за 10 с от начала вращения колеса 4) линейную скорость, нормальное, тангенциальное и полное ускорение точек обода колеса в момент времени $t_2 = 4$ с.

Дано: $\varphi(t) = At + Ct^2;$ A = 1,98 рад/c; $C = 2,02 \text{ рад/c}^2;$ $t_1 = 2 \text{ c};$ $t_2 = 10 \text{ c};$ $t_3 = 4 \text{ c};$ r = 0,58 m. $\omega(t_1), \varepsilon(t_1), N(t_2) - ?$

Решение

Угловую скорость колеса в момент времени $t_1 = 2$ с найдем по формуле (2.1):

$$\omega_z(t) = \frac{d\varphi}{dt} = A + 2Ct.$$

Проверяем размерность полученного выражения:

$$[\omega_z(t)] = [A] + [2C] \cdot [t] = c^{-1}.$$

Производим подстановку данных задачи и расчет:

$$\omega_z(t_1) = A + 2Ct_1;$$
 $\omega_z(t_1) = 1,98 + 2 \cdot 2,02 \cdot 2 = 10,06$ (рад/с).

Модуль углового ускорения колеса в этот же момент времени определим в соответствии с выражением (2.3):

$$\varepsilon_z = \frac{d\omega_z}{dt} = 2C.$$

Производим подстановку данных задачи и расчет:

$$\varepsilon_z(t_1) = 2 \cdot C;$$

$$\varepsilon_z(t_1) = 2 \cdot 2,02 = 4,04 \text{ (рад/c}^2).$$

Число оборотов, сделанных колесом за 10 с от начала вращения, можно рассчитать по формуле (2.5):

$$N = \frac{\varphi}{2\pi} = \frac{At + Ct^2}{2\pi}.$$

Проверяем размерность полученного выражения:

$$[N] = \frac{[A] \cdot [t] + [C] \cdot [t^2]}{[2\pi]} = 1.$$

Производим подстановку данных задачи и расчет:

$$N(t_2) = \frac{At_2 + Ct_2^2}{2\pi};$$

$$N(t_2) = \frac{1,98 \cdot 10 + 2,02 \cdot 10^2}{2 \cdot 3.14} = 35,32 \text{ (o6)}.$$

Линейную скорость точек обода колеса определим, записав выражение (2.7) в скалярном виде:

$$\upsilon = \omega_z r \sin 90^\circ = \omega_z r = (A + 2Ct)r.$$

Производим подстановку данных задачи и расчет:

$$v(t_3) = (A + 2Ct_3)r;$$

 $v(t_3) = (1.98 + 2 \cdot 2.02 \cdot 4) \cdot 0.58 = 10.52 \text{ (M/c)}.$

Нормальное ускорение точек обода колеса определим в соответствии с формулой (2.9):

$$a_n(t_3) = \frac{v^2(t_3)}{r};$$

 $a_n(t_3) = \frac{10,52^2}{0,58} = 190,81 \text{ (M/c}^2).$

Тангенциальное ускорение точек обода колеса вычислим по формуле (2.8):

$$a_{\tau}(t_3) = \varepsilon_z r;$$

 $a_{\tau}(t_3) = 4.04 \cdot 0.58 = 2.34 \text{ (M/c}^2).$

Полное ускорение найдем по формуле (2.11):

$$a = \sqrt{a_{\tau}^2 + a_n^2};$$

 $a = \sqrt{2,34^2 + 190,81^2} = 190,82 \text{ (M/c}^2).$

3 а д а ч а 2.2. Диск радиусом 50 см вращается вокруг вертикальной оси симметрии так, что зависимость проекции угловой скорости на ось вращения от времени задается выражением: $\omega_z(t) = A + Bt + Ct^2$, где A = 1 рад/с; B = 2 рад/с²; C = 3 рад/с³. Определить 1) модули углового ускорения диска через 2 с от начала движения; 2) количество оборотов, которые сделает диск за это время.

Дано: r = 0.5 м; $\omega_z(t) = A + Bt + Ct^2;$ A = 1.52 рад/c; $B = 2.37 \text{ рад/c}^2;$ $C = 3.11 \text{ рад/c}^3;$ $t_1 = 2 \text{ c}.$ $\varepsilon_z(t_1) - ? N(t_1) - ?$

Решение

Зависимость проекции углового ускорения диска от времени определим по формуле (2.3):

$$\varepsilon_z(t) = \frac{d\omega_z}{dt} = B + 2Ct.$$

Проверим размерность полученного выражения:

$$\left[\varepsilon_{z}(t)\right] = \left[B\right] + \left[2C\right] \cdot \left[t\right] = c^{-2}.$$

Производим подстановку данных задачи и расчет:

$$\varepsilon_z(t_1) = B + 2Ct_1;$$

$$\varepsilon_z(t_1) = 2.37 + 2 \cdot 3.11 \cdot 2 = 14.81 \text{ (рад/c}^2\text{)}.$$

Количество оборотов, которые сделает диск за это время, будем определять по формулам (2.2) и (2.5):

$$N(t) = \frac{\varphi(t)}{2\pi} = \frac{1}{2\pi} \int_{t_0}^{t} \omega_z(t) dt = \frac{1}{2\pi} \int_{t_0}^{t} (A + Bt + Ct^2) dt.$$

При интегрировании ($t_0 = 0$, $t = t_1$) получаем:

$$N(t_1) = \frac{1}{2\pi} \left(At_1 + \frac{1}{2}Bt_1^2 + \frac{1}{3}Ct_1^3 \right).$$

Проверим размерность полученного выражения:

$$[N(t_1)] = \left([A] \cdot [t_1] + \left[\frac{1}{2} B \right] \cdot [t_1^2] + \left[\frac{1}{3} C \right] \cdot [t_1^3] \right) = 1.$$

Производим подстановку данных задачи и расчет:

$$N(t_1) = \frac{1}{2 \cdot 3,14} \left(1,52 \cdot 2 + \frac{1}{2} \cdot 2,37 \cdot 2^2 + \frac{1}{3} \cdot 3,11 \cdot 2^3 \right) = 2,56 \text{ (об)}.$$

3. РАВНОУСКОРЕННОЕ ВРАЩЕНИЕ АБСОЛЮТНО ТВЕРДОГО ТЕЛА

3.1. Основные теоретические сведения

В случае равноускоренного вращения ($\varepsilon_z = \text{const}$) из уравнений (1.2) и (1.4) можно получить следующие выражения:

$$\omega_z = \omega_{oz} + \varepsilon_z t; \tag{3.1}$$

$$\varphi = \omega_{oz}t + \frac{\varepsilon_z t^2}{2}; \qquad (3.2)$$

$$\varphi = \frac{\omega_{oz} + \omega_z}{2}t; \tag{3.3}$$

$$\varphi = \frac{\omega_z^2 - \omega_{oz}^2}{2\varepsilon_z}; \tag{3.4}$$

$$\omega = 2\pi n; \tag{3.5}$$

$$\varphi = 2\pi N. \tag{3.6}$$

3.2. Примеры решения задач

З а д а ч а 3.1. Барабан стиральной машины, вращаясь равнозамедленно при торможении, за 30 с уменьшил скорость вращения от 1000 до 600 об/мин. Найти: 1) модуль углового ускорения барабана; 2) число оборотов, которое барабан сделает до полной остановки.

Дано:СИРешение
$$n_{\rm o} = 1000$$
 об/мин;16,7 об/сПроекцию углового ускорения на ось z $n = 600$ об/мин;10 об/сПроекцию углового ускорения на ось z $t_1 = 30$ с.определим из формулы (3.1) с учетом выражения (2.6):

$$\varepsilon_z(t) = \frac{\omega_z - \omega_{oz}}{t} = \frac{2\pi(n - n_o)}{t}.$$

Производим подстановку данных задачи и расчет:

$$\varepsilon_z(t_1) = \frac{2 \cdot 3,14(10-16,7)}{30} = -1,4 \text{ (рад/c}^2).$$

Отрицательный знак в ответе свидетельствует о том, что вектор углового ускорения $\vec{\varepsilon}$ направлен против выбранного направления оси вращения z и вектора угловой скорости $\vec{\omega}$.

Число оборотов, которые барабан сделает до полной остановки, определяем по формулам (2.5) и (3.4). В формуле (3.4) конечное значение проекции угловой скорости ω_{7} полагаем равной нулю, так как барабан останавливается:

$$N = \frac{\varphi}{2\pi} = \frac{\omega_z^2 - \omega_{oz}^2}{4\pi\varepsilon_z} = -\frac{\omega_{oz}^2}{4\pi\varepsilon_z} = -\frac{4\pi^2 n_0^2}{4\pi\varepsilon_z} = -\frac{\pi n_0^2}{\varepsilon_z}.$$

Проверяем размерность полученного выражения:

$$[N] = \frac{[n_0^2]}{[\varepsilon_z]} = 1.$$

Производим подстановку данных задачи и расчет:

$$N = -\frac{3,14 \cdot 16,7^2}{-1,4} = 625,5 \text{ (o6)}.$$

4. МОМЕНТ СИЛЫ ОТНОСИТЕЛЬНО ЦЕНТРА. МОМЕНТ СИЛЫ ОТНОСИТЕЛЬНО ОСИ

4.1. Основные теоретические сведения

Основными динамическими характеристиками вращательного движения являются момент силы \vec{M} , момент инерции I, момент импульса (кинетический момент) \vec{L} [3].

Различают момент силы относительно точки (центра) \vec{M}_O (векторная величина) и момент силы относительно оси M_z (скалярная величина).

Моментом силы относительно любого центра (точки) O называется физическая величина, определяемая соотношением:

$$\vec{M}_{o} = \vec{r} \times \vec{F},\tag{4.1}$$

где \vec{r} – радиус-вектор, проведенный из центра O в точку приложения силы \vec{F} . Модуль момента силы рассчитывается по формуле:

$$M_O = Fr \sin \alpha = Fl, \tag{4.2}$$

где α – угол между векторами \vec{r} и \vec{F} ; l – плечо силы (длина перпендикуляра, опущенного из центра O на линию действия силы), $l = r \sin \alpha$.

Проекция вектора момента силы \vec{M}_O на любую ось, например Z, проходящую через центр O, называется моментом силы относительно оси OZ и обозначается M_z . В случае, когда ось вращения твердого тела закреплена, ось OZ рекомендуется совмещать с осью вращения.

В системе СИ момент силы измеряется в ньютон-метрах (Н·м).

4.2. Примеры решения задач

3 а д а ч а 4.1. В плоскости YOZ на материальную точку с координатами y = 4,12 м и z = 3,26 м под прямым углом к радиус-вектору точки действует сила 11,4 Н (рис. 4.1). Определить момент этой силы относительно точки O и относительно оси OZ.

Рис. 4.1

$$\mathcal{L}$$
ано: $y = 4,12 \text{ м};$ $z = 3,26 \text{ m};$ $F = 11,4 \text{ H}.$ $\vec{M}_O - ? M_{OZ} - ?$

На рис. 4.2 изобразим радиус-вектор материальной точки \vec{r} . Его модуль

$$r = \sqrt{y^2 + z^2};$$

$$r = \sqrt{4,12^2 + 3,26^2} = 5,25$$
 (M).

Модуль момента силы относительно точки О определим по формуле (4.2):

$$M_O = Fr \sin 90^\circ = Fr;$$

 $M_O = 11, 4 \cdot 5, 25 = 59, 9 \text{ (H} \cdot \text{m)}.$

Рис. 4.2

Изображаем вектор $\vec{M}_{\scriptscriptstyle O}$ на рис. 4.2 в соответствии с формулой (4.1) как векторное произведение.

Момент силы \vec{F} относительно оси OZ M_{OZ} – проекция вектора \vec{M}_O на эту ось, но вектор \vec{M}_O перпендикулярен оси OZ, значит, $M_{OZ}=0$.

5. МОМЕНТ ИНЕРЦИИ АБСОЛЮТНО ТВЕРДОГО ТЕЛА ОТНОСИТЕЛЬНО ОСИ. ТЕОРЕМА ШТЕЙНЕРА

5.1. Основные теоретические сведения

Момент инерции твердого тела относительно некоторой оси OZ – скалярная величина, характеризующая распределение массы в теле и являющаяся ме-

рой инертности тела при вращении относительно этой оси, вычисляется по формуле:

$$I = \int_{V} r^2 \rho \, dV,\tag{5.1}$$

где ρ – плотность; V – объем тела.

Формулы для определения момента инерции ряда тел правильной геометрической формы относительно центральной оси симметрии приведены в таблице.

Формулы для определения момента инерции тел правильной геометрической формы относительно оси, проходящей через центр инерции (центр масс) ATT

Обруч, полый цилиндр	Диск, сплошной цилиндр	Шар	Стержень
$I_C = mR^2$	$I_C = \frac{1}{2}mR^2$	$I_C = \frac{2}{5}mR^2$	$I_C = \frac{1}{12}ml^2$

Если ось вращения OZ не проходит через центр масс (центр инерции) твердого тела, то момент инерции относительно такой оси вращения определяется по теореме Штейнера:

$$I = I_C + mb^2, (5.2)$$

где I_C — момент инерции тела относительно параллельной оси OZ, проходящей через центр масс (центр инерции) тела; b — расстояние между этими осями.

5.2. Примеры решения задач

3 а д а ч а 5.1. Тонкостенный цилиндр массой 2,13 кг и радиусом 3,51 см вращается вокруг оси OO_1 так, как показано на рис. 5.1. Определить его момент инерции относительно этой оси вращения.

Дано: СИ
$$m = 2,13 \text{ кг};$$
 $R = 3,51 \text{ см}.$ $3,51 \cdot 10^{-2} \text{ м}$ $I_{OO_1} - ?$

Решение

Из условия задачи и рис. 5.1 понятно, что цилиндр вращается относительно оси, не проходящей через центр масс (центр инерции) тела.

В таком случае для определения момента инерции цилиндра относительно оси вращения OO_1 необходимо воспользоваться теоремой Штейнера (формула (5.2)), в которой I_C – момент инерции цилиндра относительно оси симметрии, определяемый по выражению:

$$I_C = mR^2$$
.

Как видно из рис. 5.1, расстояние между осью вращения и центральной осью b равно радиусу цилиндра (b=R). Тогда в соответствии с выражением (5.2) будем иметь:

$$I_{OO_1} = I_C + mb^2 = mR^2 + mR^2 = 2mR^2.$$

Производим подстановку данных задачи и расчет:

$$I_{OO_1} = 2 \cdot 2,13 \cdot 0,0351^2 = 5,25 \cdot 10^{-3} (\text{kg} \cdot \text{m}^2).$$

3 а д а ч а 5.2. На тонком невесомом стержне вплотную друг к другу «нанизаны» два одинаковых шара. Диаметр каждого шара — 22,5 см, масса — 215 г. Найти момент инерции системы относительно оси, проходящей перпендикулярно стержню через центр первого шара (рис. 5.2).

$$\mathcal{L}$$
ано: СИ $D=22,5~\mathrm{cm}; 0,225~\mathrm{m}$ $m=215~\mathrm{r}. 0,215~\mathrm{kr}$ $I-?$

Решение

Момент инерции системы шаров будет равен сумме моментов инерции каждого шара. Опре-

деляем момент инерции I_1 первого шара, его ось вращения совпадает с центральной осью симметрии этого шара, поэтому в соответствии с данными таблицы записываем:

Рис. 5.2

$$I_1 = I_{O1} = \frac{2}{5}mR^2 = \frac{mD^2}{10}.$$

Для вычисления момента инерции I_2 второго шара воспользуемся теоремой Штейнера (5.2), так как ось вращения не совпадает с центральной осью этого шара:

$$I_2 = \frac{2}{5}mR^2 + mD^2 = \frac{11mD^2}{10}$$
.

Определяем момент инерции всей системы:

$$I = I_1 + I_2 = \frac{mD^2}{10} + \frac{11mD^2}{10} = \frac{6mD^2}{5}$$
.

Производим подстановку данных задачи и расчет:

$$I = \frac{6 \cdot 0,215 \cdot 0,225^{2}}{5} = 1,31 \cdot 10^{-2} (\text{kg} \cdot \text{m}^{2}).$$

6. МОМЕНТ ИМПУЛЬСА АБСОЛЮТНО ТВЕРДОГО ТЕЛА ОТНОСИТЕЛЬНО НЕПОДВИЖНОЙ ОСИ

6.1. Основные теоретические сведения

Моментом импульса (моментом количества движения) \vec{L}_{o} частицы относительно какой-либо точки O называется векторное произведение радиусавектора частицы \vec{r} на ее импульс \vec{p} :

$$\vec{L}_0 = \vec{r} \times \vec{p} \,. \tag{6.1}$$

В случае вращательного движения твердого тела относительно неподвижной оси Z, проходящей через центр масс тела, его моментом импульса L_z относительно этой оси называется произведение момента инерции тела I на проекцию его угловой скорости ω_z :

$$L_{z} = I\omega_{z}. ag{6.2}$$

В СИ момент импульса измеряется в килограмм-метрах в квадрате на секунду в минус первой степени ($\kappa \Gamma \cdot M^2 \cdot C^{-1}$).

6.2. Примеры решения задач

3 а д а ч а 6.1. На тонком стержне массой $m_1 = 535$ г и длиной l = 61,3 см закреплены шар массой $m_2 = 99,5$ г и радиусом $R_2 = 5,23$ см и диск массой $m_3 = 153$ г и радиусом $R_3 = 11,3$ см (рис. 6.1). Система вращается вокруг оси Z_1 с частотой 125 об/мин. Определить момент импульса системы относительно оси вращения.

Дано:	СИ
n = 125 об/мин;	2,08 об/с
$m_{1} = 535 \Gamma;$	0,535 кг
$m_{2} = 99,5 \Gamma;$	9,95 10 ⁻² кг
$m_{3} = 153 \Gamma;$	0,153 кг
l = 61,3 cm;	0,613 м
$R_{2} = 5,23$ cm;	5,23 10 ⁻² м
$R_{3} = 11,3$ cm.	0,113 м
$L_{z_1} - ?$	

Решение

Момент импульса системы относительно оси Z_1 рассчитываем по формуле (6.2):

$$L_{z1} = I\omega_{z1} = I_{z1}2\pi n.$$

Момент инерции системы I находим как сумму моментов инерции стержня, шара и диска. Так как ось вращения z_1 не совпадает с осью симметрии всех вращающихся объектов, необходимо использовать теорему Штейнера (5.2).

Относительно оси Z_1 момент инерции стержня определяется по формуле:

$$I_{\text{ct}} = \frac{1}{12} m_1 l^2 + m_1 \left(\frac{l}{2}\right)^2 = \frac{1}{3} m_1 l^2;$$

шара -

$$I_{\text{III}} = \frac{2}{5}m_2R_2^2 + m_2\left(\frac{l}{2}\right)^2;$$

диска -

$$I_{\rm A} = \frac{1}{2} m_3 R_3^2 + m_3 (l - R_3)^2$$
.

Расчетная формула будет иметь вид:

$$L_{z1} = 2\pi n \left(\frac{1}{3} m_1 l^2 + \frac{2}{5} m_2 R_2^2 + m_2 \left(\frac{l}{2} \right)^2 + \frac{1}{2} m_3 R_3^2 + m_3 \left(l - R_3 \right)^2 \right).$$

Производим подстановку данных задачи и расчет:

$$\begin{split} L_{z1} &= 2 \cdot 3,14 \cdot 2,08 \Bigg(\frac{1}{3} 0,535 \cdot 0,613^2 + \frac{2}{5} 0,0995 \cdot 0,0523^2 + 0,0995 \bigg(\frac{0,613}{2} \bigg)^2 + \\ &+ \frac{1}{2} 0,153 \cdot 0,113^2 + 0,153 \big(0,613 - 0,113 \big)^2 \bigg) = 2,75 \left(\text{kg} \cdot \text{m}^2 \cdot \text{c}^{-1} \right). \end{split}$$

7. ОСНОВНОЙ ЗАКОН ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

7.1. Краткие теоретические сведения

Основной закон динамики вращательного движения при вращении абсолютно твердого тела относительно неподвижной оси описывается формулой:

$$I\varepsilon_z = \sum_i M_{zi},\tag{7.1}$$

где $\sum_i M_{zi}$ — сумма проекций на ось вращения моментов всех внешних сил, приложенных к твердому телу; I — момент инерции тела относительно оси вращения; ε_z — проекция углового ускорения на эту ось.

7.2. Примеры решения задач

3 а д а ч а 7.1. Шар массой 715 г и радиусом 5,25 см вращается равноускоренно вокруг неподвижной вертикальной оси, проходящей через его центр, делая 127 об/мин. Под действием постоянного вращающего момента частота его вращения увеличилась до 8,15 об/с в течение 10 с. Найти: 1) угловое ускорение шара; 2) число оборотов, которое шар сделал за это время; 3) модуль вращающего момента.

Дано:	СИ
n = 8,15 o6/c;	
$n_{\rm o} = 127$ об/мин;	2,12 об/с
$m=715 \; \Gamma;$	0,715 кг
$t_1 = 10 \text{ c};$	
R = 5,25 cm.	0,0525 м
ε , $N(t_1)$, $M-?$	

Решение

Под действием постоянного момента силы шар вращается равноускоренно, поэтому проекция его угловой скорости на ось вращения зависит от времени и рассчитывается по формуле (3.1), по которой можно определить проекцию углового ускорения:

$$\varepsilon_z = \frac{\omega_z - \omega_{oz}}{t} = \frac{2\pi(n - n_o)}{t}.$$

Производим подстановку данных задачи и расчет:

$$\varepsilon_z = \frac{2 \cdot 3,14(8,15-2,12)}{10} = 3,77 \text{ (рад/c}^2).$$

Число оборотов, сделанное шаром за время t_1 , выражаем из формулы (2.5) и подставляем в получившееся уравнение выражение (3.4):

$$N = \frac{\varphi}{2\pi} = \frac{\omega_z^2 - \omega_{oz}^2}{4\pi\varepsilon_z} = \frac{4\pi^2(n^2 - n_0^2)}{4\pi\varepsilon_z} = \frac{\pi(n^2 - n_0^2)}{\varepsilon_z}.$$

Проверяем размерность полученного выражения:

$$[N] = \frac{\left(\left[n^2\right] - \left[n_0^2\right]\right)}{\left[\varepsilon_z\right]} = 1.$$

Производим подстановку данных задачи и расчет:

$$N(t_1) = \frac{3,14(8,15^2 - 2,12^2)}{3,77} = 51,6 \text{ (об)}.$$

Модуль вращающего момента M определим в соответствии с основным уравнением динамики вращательного движения твердого тела (7.1), момент инерции шара I – в соответствии с данными таблицы. После подстановки выражения для I в формулу (7.1) получим:

$$M = \frac{2}{5} \cdot m \cdot R^2 \cdot \varepsilon_z.$$

Производим подстановку данных задачи и расчет:

$$M = \frac{2}{5} \cdot 0,715 \cdot 0,0525^2 \cdot 3,77 = 2,97 \cdot 10^{-3} \text{ (H} \cdot \text{M}).$$

3 а д а ч а 7.2. Тонкий стержень длиной 22,5 см и массой 2.53 кг вращается вокруг оси, проходящей через его центр перпендикулярно стержню. Угол поворота стержня с течением времени меняется по закону: $\varphi(t) = A + Bt + Ct^2$, где

A = 2,35 рад; B = 2,78 рад/с; C = -1,45 рад/с². Определить модуль тормозящего момента и время равнозамедленного вращения.

$$\mathcal{D}$$
ано: $\mathcal{O}(t) = A + Bt + Ct^2;$ $l = 22,5$ см; $A = 2,35$ рад; $B = 2,78$ рад/с; $C = -1,45$ рад/с²; $m = 2,53$ кг. $M, t_1 - ?$

Дано:СИ $\varphi(t) = A + Bt + Ct^2$;
l = 22,5 см;
A = 2,35 рад;
B = 2,78 рад/с;
C = -1,45 рад/с²;
m = 2,53 кг.0,225 мСвязь тормозящего момента M_z , момента ε_z
описывается формулой (7.1). Величину ε_z
определяем по уравнению (2.3), а момент инерции стержня — в соответствии с данными таблицы. После подстановки уравнения (2.3) в
формулу (7.1) получаем:

$$M_z = I\varepsilon_z = \frac{1}{12}ml^2\ddot{\varphi} = \frac{1}{12}ml^22C = \frac{1}{6}ml^2C.$$

Проверяем размерность полученного выражения:

$$[M_z] = [m][l^2][C] = \kappa_{\Gamma} \cdot M^2 \cdot c^{-2} = H \cdot M.$$

Производим подстановку данных задачи и расчет:

$$M_z = \frac{1}{6} \cdot 2,53 \cdot 0,225^2 \cdot (-1,45) = -3,11 \cdot 10^{-2} \text{ (H} \cdot \text{m)}.$$

Для определения времени равнозамедленного вращения определяем зависимость проекции угловой скорости от времени по соотношению (2.1):

$$\omega_z = \dot{\varphi} = B + 2Ct.$$

В момент остановки стержня $\omega_z(t_1) = 0$, тогда искомое время t_1 рассчитываем по формуле:

$$t_1 = -\frac{B}{2C}.$$

Проверяем размерность полученного выражения:

$$[t_1] = \frac{[B]}{[2C]} = \frac{c^{-1}}{c^{-2}} = c.$$

Производим подстановку данных задачи и расчет:

$$t_1 = -\frac{2,78}{2 \cdot (-1,45)} = 1,92 \text{ (c)}.$$

3 а д а ч а 7.3. С какой силой следует прижимать тормозную колодку к ободу вращающегося с угловой скоростью 34,5 рад/с колеса в форме сплошного диска массой 8,15 кг и радиусом 55,5 см, чтобы колесо остановилось в течение 10 с? Коэффициент трения между колодкой и колесом равен 0,32. Вращение считать равнозамедленным.

Дано:	СИ
$\omega_{oz}=34,5$ рад/с;	
R = 55,5 cm;	0,5 м
m = 8,15 кг;	
$\mu = 0,32;$	
$t_1 = 10 \text{ c.}$	
F-?	

Решение

Когда тормозная колодка прижимается к вращающемуся диску с силой \vec{F} , появляется касательная сила трения $\vec{F}_{\rm rp}$, пропорциональная этой силе давления:

$$F_{\rm TD} = \mu F$$
.

Сила трения создает тормозящий момент

$$M_{\text{\tiny TP}} = F_{\text{\tiny TP}}R = \mu F R.$$

Момент $M_{\rm тр}$ можно определить и по формуле (7.1):

$$M_{\rm TD} = I \varepsilon_z$$
.

С учетом соотношения (7.1) можно определить модуль силы давления F:

$$F = \frac{I\varepsilon_z}{\mu R}.$$

Момент инерции определяем по данным таблицы, а угловое ускорение ε_z – по выражению (3.1), полагая в нем ω_z = 0:

$$I = \frac{1}{2} mR^2;$$

$$\varepsilon_z = \frac{\omega_{OZ}}{t}.$$

Расчетное выражение для определения модуля силы давления будет иметь вид: 24

$$F = \frac{mR\omega_{OZ}}{2\mu t_1}.$$

Проверяем размерность полученного выражения:

$$[F] = \frac{[m][R][\omega_{oz}]}{[2\mu][t_1]} = \frac{\kappa \Gamma \cdot \mathbf{M} \cdot \mathbf{c}^{-1}}{\mathbf{c}} = \kappa \Gamma \cdot \mathbf{M} \cdot \mathbf{c}^{-2} = \mathbf{H}.$$

Производим подстановку данных задачи и расчет:

$$F = \frac{8,15 \cdot 0,555 \cdot 34,5}{2 \cdot 0,32 \cdot 10} = 24,4 \text{ (H)}.$$

8. ДВИЖЕНИЕ СВЯЗАННЫХ ТЕЛ С УЧЕТОМ ВРАЩЕНИЯ БЛОКА

8.1. Основные теоретические сведения

При решении задач на движение связанных тел с учетом вращения блока нити можно считать невесомыми и нерастяжимыми, а момент сил трения в блоках можно не учитывать, если это не оговорено в условии задачи.

Прежде чем рассматривать решение конкретных задач с учетом вращения блока, авторы настоящего пособия считают целесообразным привести некоторые типовые примеры. Общим в примерах является решение системы алгебраических уравнений, составленной из основных уравнений динамики поступательного и вращательного движений:

$$\begin{cases}
m\vec{a}_i = \sum \vec{F}_i; \\
I\varepsilon_z = \sum M_{zi}.
\end{cases}$$
(8.1)

При условии, что нить при вращении блока движется без проскальзывания, можно предположить равенство ускорения поступательного движения \vec{a} точек нити и тангенциального ускорения \vec{a}_{τ} точек обода вращающегося блока, т. е. $\vec{a} = \vec{a}_{\tau}$. С учетом уравнения (2.8) получаем:

$$a = \varepsilon R$$
, (8.2)

где R — радиус блока.

Рассмотрим два примера вращения блока.

Пример 1. Вращается блок, на который намотана нить с прикрепленным грузом массой m (рис. 8.1). Момент инерции блока относительно оси вращения равен I_z . На груз действуют силы тяжести $m\vec{g}$ и натяжения нити \vec{T} . Будем рассматривать движение груза относительно системы отсчета, ось y которой направлена вертикально вниз. Груз движется равноускоренно. Уравнение движения груза (первое уравнение в системе (8.1)) в проекции на ось Y имеет вид:

Рис. 8.1

$$ma = mg - T. (8.3)$$

Вращение блока будем рассматривать относительно оси Z, которая направлена по оси вращения «от нас» (см. рис. 8.1). На блок действуют силы тяжести $m_1\vec{g}$, реакции опоры \vec{N} и натяжения нити \vec{T}' . Вращающий момент \vec{M} создает только сила \vec{T}' . Моменты сил тяжести $m_1\vec{g}$ и реакции опоры \vec{N} относительно оси Z равны нулю, поскольку эти силы проходят через центр вращения и, следовательно, плечо каждой из сил равно нулю. Блок вращается равноускоренно. Уравнение вращательного движения блока (второе уравнение в системе (4.1)) имеет вид:

$$I\varepsilon_{z} = M_{z}. \tag{8.4}$$

Модуль момента силы \vec{T}' равен произведению модуля силы $|\vec{T}'|$ на ее плечо, которое равно радиусу блока R. Благодаря невесомости нити силы натяжения \vec{T} и \vec{T}' равны по модулю. Тогда с учетом формул (4.2) и (8.2) уравнение вращения блока можно записать в виде:

$$I\frac{a}{R} = TR. \tag{8.5}$$

Система уравнений (8.1) принимает вид:

$$\begin{cases}
ma = mg - T; \\
I \frac{a}{R} = TR.
\end{cases}$$
(8.6)

Пример 2. Вращается блок, через который перекинута нить с прикрепленными с обоих концов грузами массой m_1 и m_2 (рис. 8.2). В данном примере все рассуждения проводятся аналогично рассуждениям, приведенным в примере 1, за исключением двух отличий. Первое отличие состоит в том, что вращающие моменты создают силы натяжения нитей \vec{T}_1' и \vec{T}_2' .

Проекция момента силы \vec{T}_1' на ось вращения Z порис. 8.2 пожительна, а силы \vec{T}_2' — отрицательна. Тогда результирующий вращающий момент, приложенный к блоку, будет определяться поформуле:

$$M_z = M_{z1} - M_{z2} = (T_1 - T_2)R.$$
 (8.7)

Перепишем уравнение (8.7) с учетом формулы (4.2):

$$I\frac{a}{R} = (T_1 - T_2)R. (8.8)$$

Второе отличие состоит в том, что необходимо записать два уравнения динамики поступательного движения (для каждого груза), которые в проекции на ось Y будут иметь вид:

$$\begin{cases}
 m_1 a = m_1 g - T_1; \\
 -m_2 a = m_2 g - T_2.
\end{cases}$$
(8.9)

Решая совместно уравнения (8.8) и (8.9), можно определить модули сил $T_1,\ T_2$ и ускорение $a\left(\left|\vec{a}_1\right|=\left|\vec{a}_2\right|=a\right).$

8.2. Примеры решения задач

Задача 8.1. На горизонтальном столе лежит брусок массой 0,1 кг (рис. 8.3), к нему привязана нить, перекинутая через блок радиусом 10 см, укрепленный на краю стола. К свободному концу нити привязана гиря массой 0,2 кг. Найти момент инерции блока и силы натяжения нити, если за 2 с от начала

движения брусок перемещается на 80 см. Коэффициент трения скольжения бруска о стол равен 0,15.

Дано: СИ
$$m_1 = 0,1$$
 кг; $m_2 = 0,2$ кг; $s = 80$ см; $0,8$ м $R = 10$ см; $\mu = 0,15$; $t = 2$ с. $I_z, T_1, T_2 - ?$

Решение

При движении грузы 1 и 2 участвуют в поступательном движении, а блок — во вращательном, поэтому для решения задачи воспользуемся основными уравнениями поступательного и вращательного движения.

На первый груз действуют силы трения $\vec{F}_{\rm rp}$, тяжести $m_1 \vec{g}$, натяжения нити \vec{T}_1 и реакции опоры \vec{N} ; на второй груз — силы тяжести $m_2 \vec{g}$ и натяжения нити \vec{T}_2 . На блок

действуют силы тяжести, реакции в опоре и натяжения нитей \vec{T}_1' и T_2' . Выбираем инерциальную систему отсчета, совмещая ее с неподвижной осью вращения блока так, чтобы ось Z была направлена вдоль оси вращения (по правилу буравчика), а оси X и Y — вдоль линии движения грузов.

Дальнейшее решение задачи совпадает с решением, приведенным в примере 2 (см. рис. 8.2). Отличие будет состоять в основном уравнении поступательного движения для бруска массой m_1 , которое будет иметь вид:

$$m_1 \vec{a} = \vec{F}_{\text{rp}} + \vec{N} + m_1 \vec{g} + \vec{T}_1.$$
 (8.10)

Запишем уравнение (8.10) в проекции на ось x:

$$m_1 a = T_1 - F_{\rm Tp}.$$
 (8.11)

В проекции на ось у уравнение (8.10) примет вид:

$$N - m_1 g = 0, (8.12)$$

отсюда получим:

$$N = m_1 g. (8.13)$$

Модуль силы трения скольжения определяем по формуле:

$$F_{\rm Tp} = \mu N = \mu m_1 g \ . \tag{8.14}$$

Тогда система уравнений (8.9) для рассматриваемой задачи будет иметь вид:

$$\begin{cases}
 m_1 a = T_1 - \mu m_1 g; \\
 m_2 a = m_2 g - T_2.
\end{cases}$$
(8.15)

Модуль ускорения a определяем по формуле кинематики поступательного движения:

$$\vec{s} = \vec{v}_o t + \frac{\vec{a}t^2}{2}.$$
 (8.16)

В условиях рассматриваемой задачи $\vec{v}_o = 0$ и в проекции на ось Y формула (8.16) будет иметь вид:

$$s = \frac{at^2}{2},\tag{8.17}$$

отсюда получим:

$$a = \frac{2s}{t^2}. (8.18)$$

Модули сил натяжения нитей T_1 и T_2 выразим из системы уравнений (8.15):

$$\begin{cases}
T_1 = m_1(a + \mu g) = m_1(\frac{2s}{t^2} + \mu g); \\
T_2 = m_2(g - a) = m_2(g - \frac{2s}{t^2}).
\end{cases}$$
(8.19)

Проверяем размерность полученных выражений:

$$[T_1] = [m_1] \left(\left[\frac{2s}{t^2} \right] + [\mu] \cdot [g] \right) = \frac{\kappa \Gamma \cdot M}{c^2} = H; \tag{8.20}$$

$$[T_2] = [m_2] \left([g] - \left\lceil \frac{2s}{t^2} \right\rceil \right) = \frac{\kappa \Gamma \cdot M}{c^2} = H.$$
 (8.21)

Производим подстановку данных задачи и расчет:

$$T_1 = 0.1 \cdot \left(\frac{2 \cdot 0.8}{2^2} + 0.15 \cdot 10\right) = 0.19 \text{ (H)};$$

 $T_2 = 0.2 \cdot \left(10 - \frac{2 \cdot 0.8}{2^2}\right) = 1.88 \text{ (H)}.$

Уравнение вращательного движения блока будет аналогично выражению (8.8):

$$I\frac{a}{R} = (T_2 - T_1)R. (8.22)$$

Отсюда выразим момент инерции:

$$I = \frac{(T_2 - T_1)R^2}{a} = \frac{(T_2 - T_1)R^2t^2}{2s}.$$
 (8.23)

Проверяем размерность полученного выражения:

$$[I] = \frac{([T_2] - [T_1])[R^2][t^2]}{2[s]} = \kappa \Gamma \cdot M^2.$$
(8.24)

Производим подстановку данных задачи и расчет:

$$I_z = \frac{(1.88 - 0.19) \cdot 0.1^2 \cdot 2^2}{2 \cdot 0.8} = 0.042 \, (\text{kg} \cdot \text{m}^2).$$

Библиографический список

- 1. Трофимова Т. И. Курс физики / Т. И. Трофимова. М., 2006. 560 с.
- 2. Детлаф А. А. Курс физики / А. А. Детлаф, Б. М. Яворский. М., 2014. 720 с.
- 3. Савельев И. В. Курс общей физики. Механика. Молекулярная физика / И. В. Савельев. М., 2007. Т. 1. 432 с.

Учебное издание

ГЕЛЬВЕР Сергей Александрович, СМЕРДИН Сергей Николаевич

КИНЕМАТИКА И ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ АБСОЛЮТНО ТВЕРДОГО ТЕЛА (ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ)

Учебно-методическое пособие

Редактор Н. А. Майорова

Подписано в печать 31.01.2017. Формат $60 \times 84^{-1}/_{16}$. Офсетная печать. Бумага офсетная. Усл. печ. л. 2,0. Уч.-изд. л. 2,3. Тираж 800 экз. Заказ

**

Редакционно-издательский отдел ОмГУПСа Типография ОмГУПСа

*

644046, г. Омск, пр. Маркса, 35