Generalizations of Gumbel Softmax Trick

Based on "Gradient Estimation with Stochastic Softmax Tricks" by Paulus M. B. et al.

Motivation

Low-level Motivation

x is a car, the latent variable z is

High Level Motivation

- What do we want?
 - Structured latent variables
 - Learn computational layers with discrete outputs
- Why do we want it?
 - Interpretability
 - Computational efficiency
 - Better generalization

Gumbel Softmax Trick Recap

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \mathbb{E}_{q(z|\theta)} f(z)?$$

REINFORCE

$$f(z) = \frac{d}{d\theta} \log q(z \mid \theta)$$

Reparametrization trick

$$\frac{\mathrm{d}}{\mathrm{d}\theta} f(g_{\theta}(\varepsilon))$$

Gumbel Argmax Trick

- $z \sim Cat(\operatorname{soft} \max \theta), \theta \in \mathbb{R}^d$
- Gumbel trick defines $g_{\theta}(\varepsilon)$ for z
 - Let $\varepsilon_i = -\log(-\log u_i)$ for $u \sim U[0,1]^d$
 - Let $g_{\theta}(\varepsilon) = \underset{i=1,...,d}{\operatorname{argmax}}(\theta + \varepsilon)$
 - Then $g_{\theta}(\varepsilon) \stackrel{d}{=} z$

soft max(
$$\theta$$
) = (0.1,0.5,0.4)

$$u = (0.4,0.3,0.7)$$

 $g_{\theta}(\varepsilon) = \arg\max(-2.2, -0.9, +0.1)$
 $= (0,0,1)$

Softmax

• But $g_{\theta}(\varepsilon) = \arg\max(\theta + \varepsilon)$ is a piece-wise constant function of θ

• So
$$\mathbb{E}_{q(\varepsilon)} \frac{\mathrm{d}}{\mathrm{d}\theta} f(g_{\theta}(\varepsilon)) = 0 \neq \frac{\mathrm{d}}{\mathrm{d}\theta} \mathbb{E}_{q(z|\theta)} f(z)$$

- Idea: replace arg max(·) with soft max(·)
 - soft $\max(\frac{\theta + \varepsilon}{T}) \xrightarrow{T \to 0} \arg\max(\theta + \varepsilon)$

A Different View on Argmax and Softmax

Rewrite
$$\underset{i=1,...,d}{\operatorname{argmax}} w = \underset{z \in \Delta^d}{\operatorname{argmax}} w^T z$$

- Δ^d is a convex hull of one-hots for z
- Then soft $\max(\frac{w}{T}) = \underset{z \in \Delta^d}{\operatorname{argmax}}(w^Tz + TH(z))$

$$H(z) = -\sum_{i} z_{i} \log z_{i}$$

soft max:

A Different View on Gumbel Softmax Trick

- Relaxed categorical sample is $z = \operatorname{soft} \max(\frac{\theta + \varepsilon}{T})$
- . Equivalently $z = \underset{z \in \Delta^d}{\operatorname{argmax}} ((\theta + \varepsilon)^T z + TH(z))$
 - 1. Perturb θ with ε
 - 2. Find arg max

Beyond Softmax

• We can consider any strongly convex function $H(\ \cdot\)$

sparse max(w) =
$$\underset{z \in \Delta^d}{\operatorname{argmax}} (w^T z - \frac{\|z\|^2}{2})$$

soft max:

Finds sparse vectors:

•
$$w^T z - \frac{\|z\|^2}{2} = \|w - z\|^2 + const$$

soft max:

The Limitation of GST

- Time is O(d)
 - Perturb each θ_i and find max
- For combinatorial z the support is $d \gg 1$
 - Gumbel softmax trick is too slow

Stochastic Softmax Tricks

Stochastic Max Trick

	Gumbel Argmax Trick	Stochastic argmax Trick
Support	$Z = \{e_1,, e_d\} \subset \mathbb{R}^d$	$Z = \{z_1, \dots, z_m\} \subset \mathbb{R}^d$
Perturbation	$w = \theta_i - \log(-\log(u_i)), u \sim U[0,1]^d$	$w = r_{\theta}(\varepsilon)$
Forward pass	$z = \underset{z' \in \text{conv } Z}{\operatorname{argmax}} w^T z'$	$z = \underset{z' \in \text{conv } Z}{\operatorname{argmax}} w^T z'$

Example

- $Z = \{z_1, ..., z_m\} \subset R^{n \times n}$ is a set of permutation matrices on n elements
- m = n!

Regularization & Relaxation

Stochastic *Arg*max → Stochastic *Soft*max

• Add a strongly convex regularizer $f: \mathbb{R}^d \to \{\mathbb{R}, \inf\}$

$$z = \underset{z' \in \text{conv}(Z)}{\operatorname{argmax}} \ w^T z' \rightarrow z_T = \underset{z' \in \text{conv}(Z)}{\operatorname{argmax}} \ (w^T z' - T f(z'))$$

Prop 1. If z is a.s. unique, then $\lim_{T\to 0} z_T = z$

Prop 2. z_T exists, is unique and differentiable in w

Backpropagation

- Unroll the optimizer
- Write custom backward pass
- Use finite difference approximation

$$\frac{\mathrm{d}\mathcal{L}(z_t)}{\mathrm{d}w} \approx \frac{z_t(w + \epsilon \partial \mathcal{L}(z_t)/\partial z_t) - z_t(w - \epsilon \partial \mathcal{L}(z_t)/\partial z_t)}{2\epsilon}$$

•
$$z_t(w + \epsilon \partial \mathcal{L}(z_t)/\partial z_t) = z_t + \epsilon \frac{\partial \mathcal{L}}{\partial z_t} \frac{\mathrm{d}z_t}{\mathrm{d}w} + o(\epsilon)$$

Framework Requirements

- Inference
 - Reparametrized r.v. $w = r_{\theta}(\varepsilon)$
 - Solver for $\underset{z \in \text{conv } Z}{\operatorname{argmax}} w^T z$
- Training
 - Strongly convex regularizer f(z)
 - Solver for $\underset{z \in \text{conv } Z}{\operatorname{argmax}}(w^Tz tf(z))$

How to choose regularizer f?

- Need to solve $\underset{z \in \text{conv } Z}{\operatorname{argmax}}(w^Tz tf(z))$
 - Euclidian projection $f(z) = \frac{\|z\|^2}{2}$
 - Neg. entropy $f(z) = \sum_i z_i \log z_i$ or $f(z) = \sum_i (z_i \log z_i (1 z_i) \log(1 z_i))$
 - Exponential Families (next slides)

Exponential Family Reminder

- Consider $q(z | \theta) \propto I(z \in Z) \cdot \exp(z^t \theta)$
- Typical tasks:
 - MAP Inference: $\operatorname{argmax}_{z \in Z} \theta^T z$
 - Find log-partition: $A(\theta) = \log \sum_{z \in Z} exp(\theta^T z)$
- Nice trick: $\frac{\partial A(\theta)}{\partial \theta} = \mathbb{E}_{q(z|\theta)}z$

• Ex.: Categorical

•
$$Z = \{e_1, ..., e_d\}$$

•
$$A(\theta) = \log \sum \exp \theta_i$$

$$\frac{\partial A(\theta)}{\partial \theta} = \operatorname{soft} \max(\theta)$$

Exponential Family Regularizer

Consider
$$A(\theta) = \log \sum_{z \in Z} exp(\theta^T z)$$

. Take
$$f(z) = A*(z) = \sup_{\theta \in \Omega} (\theta^T z - A(\theta))$$

Softmax Trick:

$$\underset{z \in \text{conv}(Z)}{\operatorname{argmax}} (w^T z - f(z)) = \nabla_w A(w) = \mathbb{E}_{q(z|w)} z$$

• Ex.: Gumbel Softmax

$$A^*(z) = \sum_{i} z_i \log z_i$$

•
$$w = \theta - \log(-\log u)$$

$$\frac{\partial A}{\partial \theta} = \operatorname{soft} \max(w)$$

Applications

Gumbel Sinkhorn (1/4)

- ullet Take permutation matrices as Z
 - Then conv(Z) consists of doubly-stochastic
- Hungarian algorithm solves $\arg\max w^T z$

• Entropy
$$f(z) = \sum_{i,j} z_{i,j} \log z_{i,j}$$

• Sinkhorn algorithm finds $arg max(w^Tz - T \cdot f(z))$

Finding Latent Permutations: Jigsaw

Finding Latent Permutations: Connectomes

- Synthetic data $Y_t = PWP^TY_{t-1} + \nu_t$
- ullet Recover W

Prop. known neurons	40.%		30.%		20.%		10.%	
Difficulty	Easy	Hard	Easy	Hard	Easy	Hard	Easy	Hard
MCMC	.85	.82	.51	.44	.29	.27	.16	.12
(Linderman et al., 2017)	.97	.95	.90	.85	.77	.59	.39	.21
Gumbel-Sinkhorn	.97	.96	.92	.84	.76	.59	.44	.26
Gumbel-Sinkhorn, no regularization	.96	.93	.89	.78	.71	.52	.4	.23

k-subset Selection (2/4)

•
$$Z = \{z \in \{0,1\}^d \mid \sum z_i = k\}$$

• Sort to solve $arg max w^T z$

$$Z = \{z \in \{0,1\}^{2d-1} \mid \sum_{i=1}^{n} z_i = k, z_i = z_{i-d} z_{i-d+1} \text{ for } d < i < 2d-1\}$$

- Dynamic programming for arg max
- Exponential family relaxation

BeerAdvocate Interpretability

Pours a slight tangerine orange and straw yellow. The head is nice and bubbly but fades very quickly with a little lacing. Smells like Wheat and European hops, a little yeast in there too. There is some fruit in there too, but you have to take a good whiff to get it. The taste is of wheat, a bit of malt, and a little fruit flavour in there too. Almost feels like drinking Champagne, medium mouthful otherwise. Easy to drink, but not something I'd be trying every night.

Appearance: 3.5 Aroma: 4.0 Palate: 4.5 Taste: 4.0 Overall: 4.0

		k = 5		k =	= 10	k = 15	
Model	Relaxation	MSE	Subs. Prec.	MSE	Subs. Prec.	MSE	Subs. Prec.
	L2X [17] SoftSub [84]	$3.6\pm0.1 \ 3.6\pm0.1$	$28.3 \pm 1.7 \\ 27.2 \pm 0.7$	3.0 ± 0.1 3.0 ± 0.1	$25.5 \pm 1.2 \\ 26.1 \pm 1.1$	$2.6\pm0.1 \ 2.6\pm0.1$	$25.5 \pm 0.4 \\ 25.1 \pm 1.0$
Simple	Euclid. Top k Cat. Ent. Top k Bin. Ent. Top k E.F. Ent. Top k	$3.5 \pm 0.1 \ 3.5 \pm 0.1 \ 3.5 \pm 0.1 \ 3.5 \pm 0.1$	25.8 ± 0.8 26.4 ± 2.0 29.2 ± 2.0 28.8 ± 1.7	$egin{array}{c} 2.8 \pm 0.1 \ 2.9 \pm 0.1 \ 2.7 \pm 0.1 \ 2.7 \pm 0.1 \end{array}$	32.9 ± 1.2 32.1 ± 0.4 33.6 ± 0.6 32.8 ± 0.5	$egin{array}{c} 2.5 \pm 0.1 \ 2.6 \pm 0.1 \ 2.5 \pm 0.1 \ 2.5 \pm 0.1 \end{array}$	29.0 ± 0.3 28.7 ± 0.5 28.8 ± 0.4 29.2 ± 0.8
	Corr. Top k	2.9 ± 0.1	$\textbf{63.1} \pm \textbf{5.3}$	2.5 ± 0.1	$\textbf{53.1} \pm \textbf{0.9}$	2.4 ± 0.1	$\textbf{45.5} \pm \textbf{2.7}$

Latent Spanning Trees (3 / 4)

- Take adjacency matrices of undirected trees as $Z \subset \mathbb{R}^{d \times d}$
- Consider $q(z \mid \theta) \propto I(z \in Z) \cdot \exp(\theta^T z)$
- Kruskal algorithm for $\arg\max w^Tz$
- Kirchhoff's theorem computes $A(\theta) = \log \sum_{z \in Z} \exp(\theta^t z)$
- Use $\frac{\partial A}{\partial \theta}$ as the relaxed matrix

Dynamic Reconstruction

		T = 10		T = 20			
Edge Distribution	ELBO	Edge Prec.	Edge Rec.	ELBO	Edge Prec.	Edge Rec.	
Indep. Directed Edges [38]	-1370 ± 20	48 ± 2	$\textbf{93}\pm\textbf{1}$	-1340 ± 160	97 ± 3	${\bf 99\pm 1}$	
E.F. Ent. Top $ V -1$	-2100 ± 20	41 ± 1	41 ± 1	-1700 ± 320	98 ± 6	98 ± 6	
Spanning Tree	$\mathbf{-1080} \pm 110$	91 ± 3	91 ± 3	$\mathbf{-1280} \pm 10$	99 ± 1	99 ± 1	

Latent Arborescence (4 / 4)

- Take adjacency matrices of directed rooted trees as $Z \subset \mathbb{R}^{d \times d}$
- Consider $q(z \mid \theta) \propto I(z \in Z) \exp(\theta^T z)$
- Edmonds algorithm for $\arg\max w^Tz$
- Kirchhoff's theorem computes $A(\theta) = \log \sum_{z \in Z} \exp(\theta^t z)$
- Use $\frac{\partial A}{\partial \theta}$ as the relaxed matrix

Unsupervised Parsing

- Corro & Titov relax Einser algorithm by replacing arg max with soft max
- Simplified ListOps dataset

Model	Edge Distribution	Task Acc.	Edge Precision	Edge Recall
LSTM		92.1 ± 0.2		
GNN on latent graph	Indep. Undirected Edges Spanning Tree	89.4 ± 0.6 91.2 ± 1.8	20.1 ± 2.1 33.1 ± 2.9	45.4 ± 6.5 47.9 ± 5.2
	Indep. Directed Edges Arborescence	90.1 ± 0.5	13.0 ± 2.0	56.4 ± 6.7
GNN on latent digraph	Neg. Exp.Gaussian	$71.5 \pm 1.4 \\ 95.0 \pm 2.2$	$23.2 \pm 10.2 \\ 65.3 \pm 3.7$	$20.0 \pm 6.0 \\ 60.8 \pm 7.3$
	- Gumbel	95.0 ± 3.0	$\textbf{75.5} \pm \textbf{7.0}$	$\textbf{71.9} \pm \textbf{12.4}$
	Ground Truth Edges	98.1 ± 0.1	100	100

Conclusions

- Learning structured latent variables is an active research direction
- Stochastic softmax trick generalize gumbel softmax trick
- Latent structure works as an inductive bias
- There is more to be done