

32 位 ARM® Cortex®-M0+ 微控制器

数据手册

产品特性

- 32MHz Cortex-M0+32 位 CPU 平台
- HC32L110 系列具有灵活的功耗管理系统,超 低功耗性能
 - 0.5μA@3V深度休眠模式: 所有时钟关闭, 上电复位有效, IO 状态保持, IO 中断有效, 所有寄存器, RAM 和 CPU 数据保存状态 时的功耗
 - 1.0μA @3V 深度休眠模式+ RTC 工作
 - 6μA@32.768kHz 低速工作模式: CPU 和外 设模块运行,从 flash 运行程序
 - 20μA/MHz@3V@16MHz 休眠模式: CPU 停
 止工作,外设模块运行,主时钟运行
 - 120μA/MHz@3V@16MHz 工作模式: CPU
 和外设模块运行,从 Flash 运行程序
 - 4μs 超低功耗唤醒时间,使模式切换更加灵活高效,系统反应更为敏捷
 - 上述特性为室温下典型值,具体的电气特性、 功耗特性参考电气特性章节
- 16K/32K 字节 Flash 存储器, 具有擦写保护功能
- 2K/4K 字节 RAM 存储器, 附带奇偶校验, 增强系统的稳定性
- 通用 I/O 管脚 (16IO/20pin, 12IO/16pin)
- 时钟、晶振
 - 外部高速晶振 4~32MHz
 - 外部低速晶振 32.768KHz
 - 内部高速时钟 4/8/16/22.12/24MHz
 - 内部低速时钟 32.8/38.4KHz
 - 硬件支持内外时钟校准和监控
- 定时器/计数器
 - 3个通用16位定时器/计数器
 - 3 个高性能 16 位定时器/计数器,支持 PWM 互补,死区保护功能

- 1个低功耗16位定时器/计数器
- 1 个可编程 16 位定时器/计数器,支持捕获 比较,PWM 输出
- 1个20位可编程计数看门狗电路,内建专用超低功耗 RC-OSC 提供 WDT 计数
- 通讯接口
 - UART0-UART1 标准通讯接口
 - LPUART 支持使用低速时钟的超低功耗通 讯接口
 - SPI 标准通讯接口
 - I²C 标准通讯接口
- 蜂鸣器频率发生器,支持互补输出
- 硬件万年历 RTC 模块
- 硬件 CRC-16 模块
- 唯一10字节 ID 号
- 12 位 1Msps 采样的高速高精度 SARADC,内 置运放,可测量外部微弱信号
- 集成 6 位 DAC 和可编程基准输入的 2 路电压 比较器 VC
- 集成低电压侦测器 LVD,可配置 16 阶比较电平,可监控端口电压以及电源电压
- 嵌入式调试解决方案,提供全功能的实时调试 哭
- 工作温度: -40~85°C
- 工作电压: 1.8~5.5V
- 封装形式: QFN20, TSSOP20, TSSOP16, CSP16

支持型号

HC32L110C6UA	HC32L110C6PA
HC32L110C4UA	HC32L110C4PA
HC32L110B6PA	HC32L110B4PA
HC32L110B6YA	

声明

- ▶ 小华半导体有限公司(以下简称: "XHSC")保留随时更改、更正、增强、修改小华半导体产品和/或本文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。XHSC产品依据购销基本合同中载明的销售条款和条件进行销售。
- ▶ 客户应针对您的应用选择合适的 XHSC 产品,并设计、验证和测试您的应用,以确保您的应用满足相应标准以及任何安全、安保或其它要求。客户应对此独自承担全部责任。
- > XHSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- > XHSC 产品的转售,若其条款与此处规定不同,XHSC 对此类产品的任何保修承诺无效。
- ➤ 任何带有"®"或"TM"标识的图形或字样是 XHSC 的商标。所有其他在 XHSC 产品上显示的产品或服务 名称均为其各自所有者的财产。
- ▶ 本通知中的信息取代并替换先前版本中的信息。

©2022 小华半导体有限公司 - 保留所有权利

目 录

产	品特	性		1
声	明			2
目	录			3
1.	简介	·		5
2.	产品	5阵容		15
	2.1	产品名	称	15
	2.2	功能		16
3.	引肽	祁置		17
4.	引肽	功能说	明	19
5.	框图]		23
6.	存储	皆区映射	图	24
7.	电气	〔特性		26
	7.1	测试条	件	26
		7.1.1.	最小和最大数值	26
		7.1.2.	典型数值	26
	7.2	绝对最	大额定值	27
	7.3	工作条	件	29
		7.3.1.	通用工作条件	
		7.3.2.	上电和掉电时的工作条件	
		7.3.3.	内嵌复位和 LVD 模块特性	
		7.3.4.	内置的参考电压	
		7.3.5.	工作电流特性	
		7.3.6.	从低功耗模式唤醒的时间	
		7.3.7.	外部时钟源特性	
		7.3.8.	内部时钟源特性	
		7.3.9.	存储器特性	
		7.3.10.	EFT 特性	41
			ESD 特性	
			端口特性	
			RESETB 引脚特性	
			ADC 特性	
			VC 特性	
			TIM 定时器特性	
			通信接口	
			路图	
9.			,	
			寸	
	9.2 焊盘示意图			
			明	
	9.4	封装热	阻系数	66

10.订购信息	<i>6</i>	57
版本记录 & 联系方式	f	58

1. 简介

HC32L110 系列是一款旨在延长便携式测量系统的电池使用寿命的超低功耗、Low Pin Count、宽电压工作范围的 MCU。集成 12 位 1Msps 高精度 SARADC 以及集成了比较器、多路 UART、SPI、I²C 等丰富的通讯外设,具有高整合度、高抗干扰、高可靠性和超低功耗的特点。本产品内核采用 Cortex-M0+内核,配合成熟的 Keil & IAR 调试开发软件,支持 C 语言及汇编语言,汇编指令。

超低功耗 MCU 典型应用

- 传感器应用,物联网应用;
- 智能交通,智慧城市,智能家居;
- 火警探头,智能门锁,无线监控等智能传感器应用;
- 各种对于电池供电和对于功耗苛求的便携式设备等。

32 位 CORTEX M0+ 内核

ARM® Cortex®-M0+ 处理器源于 Cortex-M0, 包含了一颗 32 位 RISC 处理器,运算能力达到 0.95 Dhrystone MIPS/MHz。同时加入了多项全新设计,改进调试和追踪能力、减少每条指令循环(IPC)数量和改进 Flash 访问的两级流水线等,更纳入了节能降耗技术。Cortex-M0+ 处理器全面支持已整合 Keil & IAR 调试器。

Cortex-M0+ 包含了一个硬件调试电路,支持 2-pin 的 SWD 调试界面。

ARM Cortex-M0+ 特性:

指令集	Thumb / Thumb-2
流水线	2级流水线
性能效率	2.46 CoreMark / MHz
性能效率	0.95 DMIPS / MHz in Dhrystone
中断	32个快速中断
中断优先级	可配置4级中断优先级
增强指令	单周期32位乘法器
调试	Serial-wire 调试端口,支持4个硬中断(break point)
	以及2个观察点(watch point)

16K/32K Byte Flash

内建全集成 Flash 控制器,无需外部高压输入,由全内置电路产生高压来编程。支持 ISP、IAP、ICP 功能。

2K/4K Byte RAM

根据客户选择不同的超低功耗模式,RAM 数据都会被保留。自带硬件奇偶校验位,万一数据被意外破坏,在数据被读取时,硬件电路会立刻产生中断,保证系统的可靠性。

时钟系统

- 一个频率为 4~24MHz 可配置的高精度内部时钟 RCH。在配置 16MHz 下,从低功耗模式到工作模式的唤醒时间为 4μs,全电压全温度范围内的频率偏差小,可以不外接昂贵的高频晶体。
- 一个频率为 4~32MHz 的外部晶振 XTH。
- 一个频率为 32.768KHz 的外部晶振 XTL, 主要提供 RTC 实时时钟。
- 一个频率为 32.8/38.4KHz 的内部时钟 RCL。

工作模式

- 1) 运行模式(Active Mode): CPU 运行,周边功能模块运行。
- 2) 休眠模式(Sleep Mode): CPU 停止运行,周边功能模块运行。
- 3) 深度休眠模式(Deep sleep Mode): CPU 停止运行,高速时钟停止运行,低功耗功能模块运行。

实时时钟 RTC

RTC(Real Time Counter)是一个支持 BCD 数据的寄存器,采用 32,768Hz 晶振作为其时钟,能实现 万年历功能,中断周期可配置为年/月/日/小时/分钟/秒。24/12 小时时间模式,硬件自动修正闰年。具有精确度补偿功能,最高精度为 0.96ppm。可使用内部温度传感器或外部温度传感器进行精确度补偿,可用软件+1/-1 调整年/月/日/小时/分钟/秒,最小可调精度为 1 秒。

用于指示时间和日期的 RTC 日历记录器在 MCU 受外部因素影响而复位时不会清除保留值,是需要 永久高精度实时时钟的测量设备仪表的最佳选择。

端口控制器 GPIO

最多可提供 16个 GPIO 端口,其中部分 GPIO 与模拟端口复用。每个端口由独立的控制寄存器位来控制。支持边沿触发中断和电平触发中断,可从各种超低功耗模式下把 MCU 唤醒到工作模式。支持Push-Pull CMOS 推挽输出、Open-Drain 开漏输出。内置上拉电阻、下拉电阻,带有施密特触发器输入滤波功能。输出驱动能力可配置,最大支持 12mA 的电流驱动能力。16个通用 IO 可支持外部异步中断。

中断控制器 NVIC

Cortex-M0+处理器内置了嵌套向量中断控制器(NVIC),支持最多 32 个中断请求(IRQ)输入;有四个中断优先级,可处理复杂逻辑,能够进行实时控制和中断处理。

32 个中断入口向量地址,分别为:

中断向量号	中断来源
[0]	GPIO_P0
[1]	GPIO_P1
[2]	GPIO_P2
[3]	GPIO_P3
[4]	-
[5]	-
[6]	UART0
[7]	UART1
[8]	LPUART
[9]	-
[10]	SPI
[11]	-
[12]	I ² C
[13]	-
[14]	Timer0
[15]	Timer1
[16]	Timer2
[17]	LPTimer
[18]	Timer4
[19]	Timer5
[20]	Timer6
[21]	PCA
[22]	WDT
[23]	RTC
[24]	ADC
[25]	-
[26]	VC0
[27]	VC1
[28]	LVD
[29]	-
[30]	RAM FLASH fault
[31]	Clock trim

复位控制器 RESET

本产品具有7个复位信号来源,每个复位信号可以让 CPU 重新运行,绝大多数寄存器会被重新复位,程序计数器 PC 会复位指向00000000。

	复位来源
[0]	上电掉电复位 POR BOR
[1]	外部 Reset Pin 复位
[2]	WDT 复位
[3]	PCA 复位
[4]	Cortex-M0+ LOCKUP 硬件复位
[5]	Cortex-M0+ SYSRESETREQ 软件
	复位
[6]	LVD 复位

定时器 TIM

		位宽	预除频	计数方向	PWM	捕获	互补输出
基本定时器	Timer0	16/32	1/2/4/8/16	上计数	无	无	无
			32/64/256				
	Timer1	16/32	1/2/4/8/16/	上计数	无	无	无
			32/64/256				
	Timer2	16/32	1/2/4/8/16/	上计数	无	无	无
			32/64/256				
低功耗定时器	LPTimer	16	无	上计数	无	无	无
可编程计数阵列	PCA	16	2/4/8/16/32	上计数	5	5	无
高级定时器	Timer4	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			
	Timer5	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			
	Timer6	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			

基本定时器包含三个定时器 Timer0/1/2。Timer0/1/2 功能完全相同。Timer0/1/2 是同步定时/计数器,可以作为 16 位自动重装载功能的定时/计数器,也可以作为 32 位无重载功能的定时/计数器。Timer0/1/2 可以对外部脉冲进行计数或者实现系统定时。

低功耗定时器是异步 16 位定时/计数器,在系统时钟关闭后仍然可以通过内部低速 RC 或者外部低速 晶体振荡计时/计数。通过中断在低功耗模式下唤醒系统。

PCA(可编程计数器阵列 Programmable Counter Array)支持最多 5 个 16 位的捕获/比较模块。该定时/计数器可用作为一个通用的时钟计数/事件计数器的捕获/比较功能。PCA 的每个模块都可以进行独立编程,以提供输入捕捉,输出比较或脉冲宽度调制。另外模块 4 有额外的看门狗定时器模式。

高级定时器是一个包含三个定时器 Timer4/5/6。Timer4/5/6 功能相同的高性能计数器,可用于计数产生不同形式的时钟波形,1个定时器可以产生互补的一对 PWM 或者独立的2路 PWM 输出,可以捕获外界输入进行脉冲宽度或周期测量。

高级定时器基本的功能及特性如表所示:

波形模式	锯齿波、三角波
	• 递加、递减计数方向
	• 软件同步
	• 硬件同步
基本功能	• 缓存功能
 	• 正交编码计数
	• 通用PWM输出
	• 保护机制
	• AOS关联动作
	计数比较匹配中断
 中断类型	计数周期匹配中断
中断关至 	死区时间错误中断
	短路监测中断

看门狗 WDT

WDT(Watch Dog Timer)是一个可配置的 20 位定时器,在 MCU 异常的情况下提供复位;内建 10K 低速时钟输入作为计数器时钟。调试模式下,可选择暂停或继续运行;只有写入特定序列才能重启 WDT。

通用同步异步收发器 UART0~UART1,LPUART

2 路通用同步异步收发器(Universal Asynchronous Receiver/Transmitter)

通用 UART 基本功能:

- 半双工和全双工传输
- 8/9-Bit 传输数据长度
- 硬件奇偶校验
- 支持 1 Bit 停止位
- 四种不同传输模式

- 多机通讯
- 硬件地址识别

1 路低功耗模式下可以工作的异步收发器(Low Power Universal Asynchronous Receiver/Transmitter)
LPUART 基本功能:

- 传输时钟 SCLK (SCLK 可选择 XTL、RCL 以及 PCLK)
- 系统低功耗模式下收发数据
- 半双工和全双工传输
- 8/9-Bit 传输数据长度
- 硬件奇偶校验
- 支持 1 Bit 停止位
- 四种不同传输模式
- 多机通讯
- 硬件地址识别

串行外设接口 SPI

1路同步串行接口(Serial Peripheral Interface),支持主从模式。

SPI 基本特性:

- 通过编程可以配置为主机或者从机
- 四线传输方式,全双工通信
- 主机模式7种波特率可配置
- 主机模式最大分频系数为 PCLK/2, 最高通信速率为 16M bps
- 从机模式最大分频系数为 PCLK/8,最高通信速率为 4M bps
- 可配置的串行时钟极性和相位
- 支持中断
- 8位数据传输,先传输高位后低位

I²C 总线

1 路 I²C, 采用串行同步时钟, 可实现设备之间以不同的速率传输数据。

I2C 基本特性:

- 支持主机发送/接收,从机发送/接收四种工作模式
- 支持标准(100Kbps) / 快速(400Kbps) / 高速(1Mbps) 三种工作速率
- 支持7位寻址功能
- 支持噪声过滤功能
- 支持广播地址
- 支持中断状态查询功能

蜂鸣器 Buzzer

3 个基本定时器与 1 个低功耗定时器功能复用输出为 Buzzer 提供可编程驱动频率。该蜂鸣器端口可提供 12mA 的 sink 电流,互补输出,不需要额外的三极管。

时钟校准电路模块 CLKTRIM

内建时钟校准电路,可以通过外部精准的晶振时钟校准内部 RC 时钟,亦可使用内部 RC 时钟去检验外部晶振时钟是否工作正常。

时钟校准基本特性:

- 校准模式
- 监测模式
- 32 位参考时钟计数器可加载初值
- 32 位待校准时钟计数器可配置溢出值
- 6 种参考时钟源
- 4种待校准时钟源
- 支持中断方式

器件电子签名

每颗芯片出厂前具备唯一的 10 字节设备标识号,包括 wafer lot 信息,以及芯片坐标信息等。ID 地址 0x0010 0E74-0x0010 0E7F

循环冗余校验 CRC

符合 ISO/IEC13239 中给出的多项式 $F(x) = X^{16} + X^{12} + X^5 + 1$ 。

模数转换器 ADC

单调不失码的 12 位逐次逼近型模数转换器,在 24MHz ADC 时钟下工作时,采样率达到 1Msps。参考电压可选择片内精准电压 (1.5V 或 2.5V) 或从外部输入或电源电压。12 个输入通道,包括 9 路外部管脚输入、1 路内部温度传感器电压、1 路 1/3 电源电压、1 路内建 BGR 1.2V 电压。内建可配置的输入信号放大器以检测弱信号。

SAR ADC 基本特性:

- 12 位转换精度;
- 1Msps 转换速度;
- 12 个输入通道,包括 8 路外部管脚输入、1 路内部温度传感器电压、1 路 VCC/3 电压、1 路内建BGR 1.2V 电压;
- 4种参考源: VCC 电压、ExRef 引脚、内置 1.5V 参考电压、内置 2.5V 参考电压;
- ADC 的电压输入范围: 0~Vref;
- 3 种转换模式: 单次转换、顺序扫描连续转换、连续转换累加;
- 输入通道电压阈值监测;
- 软件可配置 ADC 的转换速率;
- 内置信号放大器,可转换高阻信号;
- 支持片内外设自动触发 ADC 转换,有效降低芯片功耗并提高转换的实时性。

模拟电压比较器 VC

芯片管脚电压监测/比较电路。8个可配置的正/负外部输入通道;5个内部输入通道,包括1路内部温度传感器电压、1路内建 BGR 2.5V 参考电压、1路内建 BGR 1.2V 电压、1路 64 阶电阻分压。VC输出可供基本定时器、低功耗定时器、高级定时器与可编程计数阵列 PCA 捕获、门控、外部计数时钟使用。可根据上升/下降边沿产生异步中断,从低功耗模式下唤醒 MCU。可配置的软件防抖功能。

低电压检测器 LVD

对芯片电源电压或芯片引脚电压进行检测。16 档电压监测值(1.8~3.3V)。可根据上升/下降边沿产生异步中断或复位。具有硬件迟滞电路和可配置的软件防抖功能。

LVD 基本特性:

- 4 路监测源, VCC、PC13、PB08、PB07;
- 16 阶阈值电压, 1.8~3.3V 可选;
- 8种触发条件,高电平、上升沿、下降沿组合;
- 2种触发结果,复位、中断:
- 8 阶滤波配置, 防止误触发;
- 具备迟滞功能,强力抗干扰。

嵌入式调试系统

嵌入式调试解决方案,提供全功能的实时调试器,配合标准成熟的 Keil/IAR 等调试开发软件。支持 4个硬断点以及多个软断点。

编程模式

支持一种编程模式: 离线编程。

支持两种编程协议: ISP 协议、SWD 协议。

ISP 协议编程接口: P35、P36 或 P27、P31。

SWD 协议编程接口: P27、P31。

当芯片在复位完成后的数毫秒时间窗口内**收到 ISP** 编程指令,芯片工作于 ISP 编程模式,可使用编程器对 FLASH 进行编程。

当芯片在复位完成后的数毫秒时间窗口内**没有收到 ISP** 编程指令,芯片工作于用户模式,芯片执行 FLASH 内的程序代码。

注意:

- 建议预留 P35、P36 作为 ISP 编程接口;如需使用 P27、P31 作为 ISP 编程接口请参见 PCN: PCN20200304-1 HC32L110HC32F003HC32F005 提高烧录速度。

高安全性

加密型嵌入式调试解决方案,提供全功能的实时调试器。

2. 产品阵容

2.1产品名称

2.2 功能

产品名称		HC32L110C6UA / HC32L110C6PA	HC32L110B4PA / HC32L110B6PA			
		HC32L110C4UA / HC32L110C4PA	HC32L110B6YA			
引脚数		20	16			
GPIO 号	脚数	16	12			
CDII	内核	Cortex	x M0+			
CPU	频率	32M	Нz			
电源电	压范围	1.8 ~	5.5V			
单/双电	源	单电	源			
温度范	围	-40 ~	85°C			
调试功何	能	SWD 调	试接口			
唯一识	别码	支	持			
		UAR	T0/1			
通信接	П	LPUART				
		SPI I ² C				
		通用定时器 TIM0/1/2				
定时器		低功耗定时器 LPTIM				
		高级定时器 TIM4/5/6				
12 位 A	/D 转换器	9ch	6ch			
模拟电	压比较器	VC0/1				
实时时	钟	1				
端口中	断	16	12			
低电压	检测复位/中断	1				
	内部高速振荡器	RCH 4/8/16/2	2.12/24MHz			
时钟	内部低速振荡器	RCL 32.8/	/38.4KHz			
ዛህ ፒተ	外部高速晶振振荡器	4~321	MHz			
	外部低速晶振振荡器	32.768kHz				
蜂鸣器		Max 4ch				
FLASH	安全保护	支持				
RAM 奇	·偶校验	支持				

3. 引脚配置

HC32L110C6UA / HC32L110C4UA

HC32L110C6PA / HC32L110C4PA

HC32L110B4PA / HC32L110B6PA

HC32L110B6YA

CSP16 TOP VIEW

注:

- 在应用中,需要将该封装相对 TSSOP20 未引出的 IO 引脚设为输入并使能上拉。
- A1 为 Pin 1。

4. 引脚功能说明

Pin No.	Pin No.	Pin No.	Pin No.	D: M	D' T	B
QFN20	TSSOP20	TSSOP16	CSP16	Pin Name	Pin Type	Description
1	4	3	B2	RESETB	RESETB	复位输入端口,低有效,芯片复位
				P00	GPIO	P00 数字输入
2	5	4	В3	P01	GPIO	P01 通用数字输入/输出引脚
					UART0_RXD	UART0 RXD
					I ² C_SDA	I ² C 数据
					UART1_TXD	UART1 TXD
					TIM0_TOG	Timer0 翻转输出
					TIM5_CHB	Timer5 捕获输入/比较输出 B
					SPI_SCK	SPI 时钟
					TIM2_EXT	Timer2 外部时钟
					AIN7/VC7	模拟输入
					XTHI	外部 XTH 晶振时钟 输入
3	6	5	A4	P02	GPIO	P02 通用数字输入/输出引脚
					UART0_TXD	UART0 TXD
					I ² C_SCL	I ² C 时钟
					UART1_RXD	UART1 RXD
					TIM0_TOGN	Timer0 翻转反相输出
					TIM6_CHA	Timer6 捕获输入/比较输出 A
					SPI_CS	SPI CS
					TIM2_GATE	Timer2 门控
					AIN8	模拟输入
					XTHO	外部 XTH 晶振时钟 输出
4	7	6	B4	AVSS/DV SS	GND	芯片地
5	8	7	СЗ	Vcap	Power	LDO 内核供电输出(仅限内部电路 使用,连接 4.7uF 的电容)
6	9	8	C4	AVCC/DV CC	Power	芯片电源 1.8v~5.5v
7	10	注	注	P03	GPIO	P03 通用数字输入/输出引脚
					PCA_CH3	PCA 捕获输入/比较输出 3
					SPI_CS	SPI CS
					TIM6_CHB	Timer6 捕获输入/比较输出 B
					LPTIM_EXT	LPTimer 外部时钟输入
					RTC_1HZ	RTC 1Hz 输出
					PCA_ECI	PCA 外部时钟输入
					VC0_OUT	VC0 输出
					LVDIN1	模拟输入
8	11	9	D2	P15	GPIO	P15 通用数字输入/输出引脚
					I ² C_SDA	I ² C 数据
					TIM2_TOG	Timer2 翻转输出
					TIM4_CHB	Timer4 捕获输入/比较输出 B
					LPTIM_GATE	LPTimer 门控
					SPI_SCK	SPI 时钟

Pin No.	Pin No.	Pin No.	Pin No.	Pin Name	Pin Type	Description
QFN20	TSSOP20	TSSOP16	CSP16	I ili inallie		Description
					UART0_RXD	UARTO RXD
					LVD_OUT	LVD 输出
0	10	1.0	D1	D1.4	XTLO	外部 XTL 晶振时钟输出
9	12	10	D1	P14	GPIO	P14 通用数字输入/输出引脚
					I ² C_SCL	I ² C 时钟 Timer2 翻转反相输出
					TIM2_TOGN	PCA 外部时钟输入
					ECI ADC BDV	
					ADC_RDY	ADC ready SPI CS
					SPI_CS	
					UART0_TXD	UART0 TXD 外部 XTL 晶振时钟输入
10	13	11	C2	D22	XTLI GPIO	P23 通用数字输入/输出引脚
10	13	11	C2	P23		Timer6 捕获输入/比较输出 A
					TIM6_CHA TIM4 CHB	Timer4 捕获输入/比较输出 B
					_	Timer4 捕获输入/比较输出 A
					TIM4_CHA PCA CH0	PCA 捕获输入/比较输出 0
					SPI_MISO	SPI 模块主机输入从机输出数据信号
					UART1 TXD	UART1 TXD
					IR OUT	38K 载波输出
					LVDIN2/VC0	模拟输入
11	14	12	C1	P24	GPIO	P24 通用数字输入/输出引脚
11	14	12	CI	F24	TIM4_CHB	Timer4 捕获输入/比较输出 B
					TIM4_CHB	Timer5 捕获输入/比较输出 B
					HCLK OUT	HCLK 输出
					PCA CH1	PCA 捕获输入/比较输出 1
					SPI MOSI	SPI 模块主机输出从机输入数据信号
					UART1_RXD	UART1 RXD
					VC1 OUT	VC1 输出
					AIN0	模拟输入
12	15	13	B1	P25	GPIO	P25 通用数字输入/输出引脚
12	15	15	<i>D</i> 1	123	SPI SCK	SPI 时钟
					PCA CH0	PCA 捕获输入/比较输出 0
					TIM5_CHA	Timer5 捕获输入/比较输出 A
					LVD OUT	LVD 输出
					LPUART RXD	LPUART RXD
					I ² C_SDA	I ² C 数据
					TIM1_GATE	Timer1 门控
					LVDIN3/VC1	模拟输入
13	16	14	A1	P26	GPIO	P26 通用数字输入/输出引脚
					SPI_MOSI	SPI 模块主机输出从机输入数据信号
					TIM4_CHA	Timer4 捕获输入/比较输出 A
					TIM5_CHB	Timer5 捕获输入/比较输出 B
					PCA_CH2	PCA 捕获输入/比较输出 2
					LPUART TXD	LPUART TXD
					I ² C SCL	I ² C 时钟

Pin No.	Pin No.	Pin No.	Pin No.	Dia Mana	Din Tour	Description
QFN20	TSSOP20	TSSOP16	CSP16	Pin Name	Pin Type	Description
					TIM1_EXT	Timer1 部时钟输入
					AIN1	模拟输入
14	17	15	D3	P27	GPIO	P27 通用数字输入/输出引脚
					SPI_MISO	SPI 模块主机输入从机输出数据信号
					TIM5_CHA	Timer5 捕获输入/比较输出 A
					TIM6_CHA	Timer6 捕获输入/比较输出 A
					PCA_CH3	PCA 捕获输入/比较输出 3
					UART0_RXD	UART0 RXD
					RCH_OUT	24M 振荡输出
					XTH_OUT	32M 振荡输出
					SWDIO	SWDIO
15	18	16	D4	P31	GPIO	P31 通用数字输入/输出引脚
					TIM3_TOG	Timer3 翻转输出
					PCA_ECI	PCA 外部时钟
					PCLK_OUT	PCLK 输出
					VC0OUT	VC0 输出
					UART0_TXD	UART0 TXD
					RCL_OUT	RCL 振荡输出
					HCLK_OUT	HCLK 输出
					SWCLK	SWCLK
16	19	注	注	P32	GPIO	P32 通用数字输入/输出引脚
					TIM3_TOGN	LPTimer 翻转反向输出
					PCA_CH2	PCA 捕获输入/比较输出 2
					TIM6_CHB	Timer6 捕获输入/比较输出 B
					VC1OUT	VC1 输出
					UART1_TXD	UART1 TXD
					PCA_CH4	PCA 捕获输入/比较输出 4
					RTC_1HX	RTC1HZ 输出
					AIN2/VC2	模拟输入
17	20	注	注	P33	GPIO	P33 通用数字输入/输出引脚
					LPUART_RXD	LPUART RXD
					PCA_CH1	PCA 捕获输入/比较输出 1
					TIM5_CHB	Timer5 捕获输入/比较输出 B
					PCA_ECI	PCA 外部时钟
					UART1_RXD	UART1 RXD
					XTL_OUT	32K 振荡输出
					TIM1_TOGN	Timer1 翻转反向输出
					AIN3/VC3	模拟输入
18	1	注	注	P34	GPIO	P34 通用数字输入/输出引脚
					PCA_CH0	PCA 捕获输入/比较输出 0
					LPUART_TXD	LPUART TXD
					TIM5_CHA	Timer5 捕获输入/比较输出 A
					TIM0_EXT	Timer0 部时钟输入
					TIM4_CHA	Timer4 捕获输入/比较输出 A
					RTC_1HZ	RTC1HZ 输出

Pin No.	Pin No.	Pin No.	Pin No.	Din Mana	D: T	Description
QFN20	TSSOP20	TSSOP16	CSP16	Pin Name	Pin Type	Description
					TIM1_TOG	Timer1 翻转输出
					AIN4/VC4	模拟输入
19	2	1	A2	P35	GPIO	P35 通用数字输入/输出引脚
					UART1_TXD	UART1 TXD
					TIM6_CHB	Timer6 捕获输入/比较输出 B
					UART0_TXD	UART0 TXD
					TIM0_GATE	Timer0 门控
					TIM4_CHB	Timer4 捕获输入/比较输出 B
					SPI_MISO	SPI 模块主机输入从机输出数据信号
					I ² C_SDA	I ² C 数据
					AIN5/VC5	模拟输入
20	3	2	A3	P36	GPIO	P36 通用数字输入/输出引脚
					UART1_RXD	UART1 RXD
					TIM6_CHA	Timer6 捕获输入/比较输出 A
					UART0_RXD	UART0 RXD
					PCA_CH4	PCA 捕获输入/比较输出 4
					TIM5_CHA	Timer5 捕获输入/比较输出 A
					SPI_MOSI	SPI 模块主机输出从机输入数据信号
					I ² C_SCL	I ² C 时钟
					AIN6/VC6/	模拟输入
					AVREF	

注:需要将该封装相对 TSSOP20 未引出的 IO 引脚设为输入并使能上拉。

5. 框图

功能模块

图 5-1 功能模块

6. 存储区映射图

HC32L11 HC32L11	HC32L110C6UA HC32L110C6PA HC32L110B6PA HC32L110B6YA		0C4UA 0C4PA 0B4PA	
0x2000_1000	保留		保留	
0x2000_0000	SRAM (4KByte)	0x2000_0800 0x2000_0000	SRAM	
0x0000_8000	保留		保留	
	主闪存区 (32KByte)	0x0000_4000	主闪存区 (16KByte)	
0x0000_0000		0x0000_0000		

7. 电气特性

7.1 测试条件

除非特别说明,所有的电压都以 VSS 为基准。

7.1.1. 最小和最大数值

除非特别说明,在生产线上通过对 100%的产品在环境温度 $T_A=25^{\circ}$ C 和 $T_A=T_A$ max 下执行的测试 (T_A max 与选定的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。

在每个表格下方的注解中说明为通过综合评估、设计模拟和/或工艺特性得到的数据,不会在生产线上进行测试:在综合评估的基础上,最小和最大数值是通过样本测试后,取其平均值再加减三倍的标准分布(平均 $\pm 3\Sigma$)得到。

7.1.2. 典型数值

除非特别说明,典型数据是基于 T_A=25℃ 和 VCC=3.3V(1.8V≤VCC≤5.5V 电压范围)。这些数据仅用于设计指导而未经测试。

典型的 ADC 精度数值是通过对一个标准的批次采样,在所有温度范围下测试得到,95%产品的误差 小于等于给出的数值(平均 $\pm 2\Sigma$)。

7.2 绝对最大额定值

加在器件上的载荷如果超过"绝对最大额定值"列表中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

符号	描述	最小值	最大值	单位
VCC – VSS	外部主供电电压(包含AVCC和DVCC) ⁽¹⁾	主供电电压(包含AVCC和DVCC) ⁽¹⁾ -0.3 5.5 V		V
$V_{ m IN}$	在其它引脚上的输入电压(2)	VSS-0.3	VCC + 0.3	V
ΔVCCx	不同供电引脚之间的电压差		50	mV
VSSx – VSS	不同接地引脚之间的电压差		50	mV
V _{ESD} (HBM)	ESD静电放电电压(人体模型)	参考绝对最大值电气参数		V

表 7-1 电压特性

- 1. 所有的电源(DVCC,AVCC)和地(DVSS, AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{INJ(PIN)}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{INJ(PIN)}$ 不超过其最大值。当 V_{IN} > V_{CC} 时,有一个正向注入电流;当 V_{IN} < V_{SS} 时,有一个反向注入电流。

符号	描述	最大值(1)	单位
Ivcc	经过DVCC/AVCC电源线的总电流(供应电流) ⁽¹⁾	300	mA
Ivss	经过VSS地线的总电流(流出电流) ⁽¹⁾	300	mA
I _{IO}	任意I/O和控制引脚上的输出灌电流	25	mA
	任意I/O和控制引脚上的输出电流	-25	mA
I _{INJ(PIN)} (2) (3)	RESETB引脚的注入电流	+/-5	mA
	XTH的XTHI引脚和XTL的XTLI引脚的注入电流	+/-5	mA
	其他引脚的注入电流(4)	+/-5	mA
$\sum I_{\text{INJ(PIN)}}^{(2)}$	所有I/O和控制引脚上的总注入电流 ⁽⁴⁾	+/-25	mA

表 7-2 电流特性

- 1. 所有的电源(DVCC,AVCC)和地(DVSS,AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{INJ(PIN)}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{INJ(PIN)}$ 不超过其最大值。当 V_{IN} > V_{CC} 时,有一个正向注入电流;当 V_{IN} < V_{SS} 时,有一个反向注入电流。
- 3. 反向注入电流会干扰器件的模拟性能。
- 4. 当几个 I/O 口同时有注入电流时, \sum I $_{\text{INJ(PIN)}}$ 的最大值为正向注入电流与反向注入电流的即时绝对值之和。该结果基于在器件 4 个 I/O 端口上 \sum I $_{\text{INJ(PIN)}}$ 最大值的特性。

符号	描述	数值	单位
T _{STG}	储存温度范围	-60 ~ + 150	°C
TJ	最大结温度	105	°C

表 7-3 温度特性

7.3 工作条件

7.3.1. 通用工作条件

符号	参数	条件	最小值	最大值	单位
f_{HCLK}	内部AHB时钟频率		0	32	MHz
f _{PCLK}	内部APB时钟频率		0	32	MHz
DVCC	数字部分工作电压		1.8	5.5	V
AVCC ⁽¹⁾	模拟部分工作电压	必须与DVCC ⁽²⁾ 相同	1.8	5.5	V
P_{D}	功率耗散 T _A =85℃	TSSOP20		283	mW
TA	环境温度	最大功率消耗	-40	85	°C
		低功率消耗(3)	-40	105	°C
TJ	结温度范围		-40	105	°C

表 7-4 通用工作条件

- 1. 当使用 ADC 时,参见 ADC 电气参数。
- 2. 建议使用相同的电源为 DVCC 和 AVCC 供电,在上电和正常操作期间, DVCC 和 AVCC 之间最多允许有 300mV 的差别。
- 3. 在较低的功率耗散的状态下,只要 T_J 不超过 T_{Jmax} , T_A 可以扩展到这个范围。

7.3.2. 上电和掉电时的工作条件

符号	参数	条件	最小值	最大值	单位
tvcc	VCC上升速率		0	5	V/µs
tvcc	VCC下降速率		0	5	V/µs

表 7-5 上电和掉电的工作条件

7.3.3. 内嵌复位和 LVD 模块特性

图 7-1 POR/Brown Out 示意图

1. 设计保证,不在生产中测试。

符号	参数	条件	最小值	典型值	最大值	单位
Vpor	POR 释放电压(上电过程)		1.45	1.50	1.65	V
	BOR 检测电压(掉电过程)					

表 7-6 POR/Brown Out

符号	参数	条件	最小值	典型值	最大值	单位
Vex	外部输入电压范围		0		VCC	V
Vlevel	检测阈值	LVD_CR.VTDS=0000		1.8		V
		LVD_CR.VTDS =0001		1.9		
		LVD_CR.VTDS =0010		2.0		
		LVD_CR.VTDS =0011		2.1		
		LVD_CR.VTDS =0100		2.2		
		LVD_CR.VTDS=0101		2.3		
		LVD_CR.VTDS=0110		2.4		
		LVD_CR.VTDS=0111		2.5		
		LVD_CR.VTDS=1000		2.6		
		LVD_CR.VTDS=1001		2.7		
		LVD_CR.VTDS=1010		2.8		
		LVD_CR.VTDS=1011		2.9		
		LVD_CR.VTDS=1100		3.0		
		LVD_CR.VTDS=1101		3.1		
		LVD_CR.VTDS=1110		3.2		
		LVD_CR.VTDS=1111		3.3		
Icomp	功耗			0.12		μА
Tresponse	响应时间			80		μs
Tsetup	建立时间			400		μs
Vhyste	迟滞电压			40		mV
Tfilter	滤波时间	LVD_debounce = 000		7		μs
		LVD_debounce = 001		14		
		LVD_debounce = 010		28		
		LVD_debounce = 011		112		
		LVD_debounce = 100		450		
		LVD_debounce = 101		1800		
		LVD_debounce = 110		7200		
		LVD_debounce = 111		28800		

表 7-7 LVD 模块特性

7.3.4. 内置的参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V _{REF25}	Internal 2.5V Reference Voltage	常温25℃ 3.3V	2.475	2.5	2.525	V
V _{REF25}	Internal 2.5V Reference Voltage	-40~85°C 2.8~5.5V	2.438	2.5	2.563	$V^{[1]}$
V _{REF15}	Internal 1.5V Reference Voltage	常温25℃ 3.3V	1.485	1.5	1.515	V
V _{REF15}	Internal 1.5V Reference Voltage	-40~85°C 1.8~5.5V	1.463	1.5	1.538	$V^{[1]}$
T_{coeff}	Internal 2.5V 1.5V temperature coefficient	-40~85°C			120	ppm/°C

1. 数据基于考核结果,不在生产中测试。

7.3.5. 工作电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/O 引脚的负载、产品的软件配置、工作频率、I/O 脚的翻转速率、程序在存储器中的位置以及执行的代码等。 微控制器处于下列条件:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上——VCC 或 VSS(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- FLASH 存储器的访问时间调整到 f_{HCLK} 的频率(0~24MHz 时为 0 个等待周期,24~48MHz 时为 1 个等待周期)。
- 当开启外设时: f_{PCLK} = f_{HCLK}。

Symbol	Parameter	Conditions			Тур	Max ⁽¹⁾	Unit	
	All			4M	220			
	peripherals		D CIT	8M	400			
I _{DD}	clock OFF,	$V_{CAP}=1.55V$	RCH	16M	740		μΑ	
(Run in RAM)	Run While(1)	V _{CC} =3.3V	clock source	24M	1080			
	in RAM.			32M	1400			
	All			4M	670			
.	peripherals			8M	1300			
I _{DD}	clock OFF,	$V_{CAP} = 1.55V$	RCH	16M	2380] ,	
(Run	Run	V _{CC} =3.3V	clock source	24M	3410		μΑ	
CoreMark)	CoreMark in			32M	2520			
	Flash.			(Flash Wait= 1)	3530			
	All			4M	700	880		
	peripherals	V -1.55V	RCH	8M	1350	1600		
	clock ON,	$V_{CAP} = 1.55V$ $V_{CC} = 1.8 - 5.5V$	clock source	16M	2500	3000		
	Run while(1) in Flash	VCC-1.8-3.3 V	Clock source	24M	3600	4300		
IDD				4M	550	750	μΑ	
(Run mode)	All peripheral			8M	1050	1300		
	clock OFF,	$V_{CAP} = 1.55V$	RCH	16M	1900	2400		
	Run while(1)	V _{CC} =1.8-5.5V	clock source	24M	2700	3300		
	in Flash			32M	2050	2000		
				(Flash Wait= 1)	2850	3000		
				4M	260	280		
IDD	All peripheral	$V_{CAP} = 1.55V$	RCH	8M	500	520		
IDD	clock ON	V _{CC} =1.8-5.5V	clock source	16M	950	970	μΑ	
(Sleep mode)				24M	1400	1420	1	
	All peripheral	$V_{CAP} = 1.55V$	RCH	4M	110	125		

Symbol	Parameter	Conditions			Тур	Max ⁽¹⁾	Unit
	clock OFF	V _{CC} =1.8-5.5V	clock source	8M	190	210	
				16M	330	360	
				24M	470	500	
				32M	580	610	
	All			$T_A = -40 \text{ to } 25^{\circ}\text{C}$	7	9	
	peripherals	1.5517	XTL	T _A = 50 °C	7.3	9.2	
	clock ON,	$V_{CAP} = 1.55V$	32.768kHz				
	Run while(1)	V _{CC} =1.8-5.5V	(Driver = 1)				
IDD	in Flash			$T_A = 85 ^{\circ}C$	8.9	11.3	4
(LP Run)	All			$T_A = -40 \text{ to } 25^{\circ}\text{C}$	6	8	μΑ
	peripherals	$V_{CAP} = 1.55V$	XTL	$T_A = 50 ^{\circ}\mathrm{C}$	6.1	8.2	
	clock OFF,	$V_{CC} = 1.8 - 5.5 V$	32.768kHz				
	Run while(1)	VCC-1.6-3.3 V	(Driver = 1)				
	in Flash			$T_A = 85 ^{\circ}\mathrm{C}$	7.7	10.1	
	All	V _{CAP} =1.55V	XTL	$T_A = -40 \text{ to } 25^{\circ}\text{C}$	3.3	3.5	
	peripherals	$V_{CC} = 1.8 - 5.5 V$	32.768kHz	$T_A = 50 ^{\circ}\mathrm{C}$	3.6	3.8	
	clock ON	VCC-1.8-3.3 V	(Driver = 1)	$T_A = 85 ^{\circ}\mathrm{C}$	5.4	5.8	
IDD	All			$T_A = -40 \text{ to } 25^{\circ}\text{C}$	2.2	2.4	μΑ
(LP Sleep)	peripherals		XTL	$T_A = 50 ^{\circ}\mathrm{C}$	2.5	2.6	
(21 51 33)	clock OFF	$V_{CAP} = 1.55V$ $V_{CC} = 1.8 - 5.5V$	32.768kHz				
	except		(Driver = 1)				
	LPTimer and						
	RTC			T _A = 85 °C	4.2	4.6	
	All			$T_A = -40 \text{ to } 25^{\circ}\text{C}$	1.5	1.65	
	peripherals			$T_A = 50 ^{\circ}\mathrm{C}$	1.85	2.2	
	clock OFF	$V_{CAP} = 1.55V$					
	except RTC	$V_{CC}=1.8-5.5V$					
	WDT、						
	LPTimer			T _A = 85 °C	3.5	4.2	4
	All			$T_A = -40 \text{ to } 25^{\circ}\text{C}$	1.2	1.3	4
	peripherals	$V_{CAP} = 1.55V$		T _A = 50 °C	1.5	1.8	4
IDD	clock OFF	$V_{CC}=1.8-5.5V$					μΑ
(DeepSleep)	except WDT			T _A = 85 °C	3.1	3.7	ļ ·
	All			$T_A = -40 \text{ to } 25^{\circ}\text{C}$	0.9	1	4
	peripherals	$V_{CAP} = 1.55V$		T _A = 50 °C	1.1	1.3	4
	clock OFF	V _{CC} =1.8-5.5V					
	except			T. 0500			
	LPTimer			$T_A = 85 ^{\circ}\text{C}$	2.6	3	-
	All	$V_{CAP} = 1.55V$		$T_A = -40 \text{ to } 25^{\circ}\text{C}$	1.0	1.1	_
	peripherals	V _{CC} =1.8-5.5V		T _A = 50 °C	1.2	1.5	
	clock OFF			T _A = 85 °C	2.6	3.4	

Symbol	Parameter	Conditions			Тур	Max ⁽¹⁾	Unit
	except RTC						
	All	V _{CAP} =1.55V V _{CC} =1.8-5.5V		$T_A = -40 \text{ to } 25^{\circ}\text{C}$	0.42	0.6	
	peripherals			$T_A = 50 ^{\circ}\mathrm{C}$	0.75	0.95	
	clock OFF			$T_A = 85 ^{\circ}\mathrm{C}$	2.2	2.7	

- 1. 若没有其他指定条件,该 Typ 的值是在 $25 \, ^{\circ}$ C & $V_{CC} = 3.3 V$ 测得。
- 2. 若没有其他指定条件,该 Max 的值是 V_{CC} = 1.8-5.5 & Temperature = N40 85 °C 范围内的最大值。
- 3. 数据基于考核结果,不在生产中测试。

表 7-8 工作电流特性

7.3.6. 从低功耗模式唤醒的时间

唤醒时间是在 RCH 振荡器的唤醒阶段测量得到。唤醒时使用的时钟源依当前的操作模式而定:

- 休眠模式:时钟源是 RCH 振荡器
- 深度休眠模式:时钟源是进入深度休眠时所使用的时钟是 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
T_{wu}	休眠模式唤醒时间			1.8		μs
	深度休眠唤醒时间	$F_{MCLK} = 4MHz$		9.0		μs
		$F_{MCLK} = 8MHz$		6.0		μs
		$F_{MCLK} = 16MHz$		5.0		μs
		F _{MCLK} = 24MHz		4.0		μs

1. 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

7.3.7. 外部时钟源特性

外部输入高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
Fxth_ext	用户外部时钟频率(1)		0	8	32	MHz
V _{XTHH}	输入引脚高电平电压		0.7VCC		VCC	V
V _{XTHL}	输入引脚低电平电压		VSS		0.3VCC	V
T _{r(XTH)}	上升的时间(1)				20	ns
T _{f(XTH)}	下降的时间(1)				20	ns
Tw(XTH)	输入高或低的时间 ⁽¹⁾		16			ns
C _{in(XTH)}	输入容抗 ⁽¹⁾			5		pF
Duty	占空比		40		60	%
I_L	输入漏电流				±1	μА

1. 由设计保证,不在生产中测试。

外部输入低速时钟

符号	参数	条件	最小值	典型值	最大值	单位
Fxtl_ext	用户外部时钟频率(1)		0	32.768	1000	kHz
V _{XTLH}	输入引脚高电平电压		0.7VCC		VCC	V
V _{XTLL}	输入引脚低电平电压		VSS		0.3VCC	V
T _{r(XTL)}	上升的时间(1)				50	ns
T _{f(XTL)}	下降的时间(1)				50	ns
$T_{w(XTL)}$	输入高或低的时间(1)		450			ns
Cin(XTL)	输入容抗 ⁽¹⁾			5		pF
Duty	占空比		30		70	%
I_L	输入漏电流				±1	μΑ

1. 由设计保证,不在生产中测试。

高速外部时钟 XTH

高速外部时钟(XTH)可以使用一个 4~32MHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

外部 XTH 晶振⁽¹⁾⁽²⁾

符号	参数	条件	最小值	典型值	最大值	单位
FCLK	振荡频率		4		32	MHz
ESR _{CLK}	支持的晶振ESR范围	32M		30	60	Ohm
		4M		400	1500	Ohm
$C_{LX}^{(3)}$	负载电容	按晶体制造商要求进行配置。				
Duty	占空比		40	50	60	%
Idd ⁽⁴⁾	电流	32M Xtal, CL=12Pf,		600		μΑ
iuu.		ESR=30ohm		000		
g_{m}	跨导	起振	700			μA/V
T _{start} (5)	启动时间	32MHz		400		
		@ XTH_CR.Driver=1111		400		μs
		4MHz		2		ms
		@ XTH_CR.Driver=0011				

- 1. 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- 2. 由综合评估得出,不在生产中测试。
- 3. C_{LX}指 XTAL 的两个管脚的负载电容,用户**必须**按晶体制造商的要求选择该电容的容值。 如果晶体制造商给出了**负载电容的容值**,则匹配电容的容值应为晶体制造商所给出的负载电容容 值的两倍。

如果晶体制造商给出了匹配电容的容值,则直接使用晶体制造商所给出的匹配电容的容值即可。

例:晶体制造商给出晶体的**负载电容**为8pF时,匹配电容的容值应为16pF。考虑PCB与MCU引脚之间的分布电容,建议选择容值为15pF或12pF的匹配电容。

晶体制造商给出晶体的**匹配电容**为 12pF 时,匹配电容的容值应为 12pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 10pF 或 8pF 的匹配电容。

- 4. 电流跟随频率变化而变化,测试条件: XTH CR.Driver=1110
- 5. T_{start} 是启动时间,是从软件使能 XTH 开始测量,直至得到稳定的 32MHz/4MHz 振荡这段时间。 这个数值是在一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变化较大。

注意:

- 晶体的匹配电容**必须**按照晶体制造商的技术手册的要求进行配置。

如果晶体制造商给出了**负载电容的容值**,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。

如果晶体制造商给出了*匹配电容的容值*,则直接使用晶体制造商所给出的匹配电容的容值即可。

- 芯片内已集成反馈电阻 R0。
- 阻尼电阻 R1 阻值的调试方法请参见相关应用笔记。

低速外部时钟 XTL

低速外部时钟(XTL)可以使用一个 32.768kHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

外部 XTL 晶振⁽¹⁾

符号	参数	条件	最小值	典型值	最大值	单位
FCLK	振荡频率			32.768		kHz
ESR _{CLK}	支持的晶振ESR范围			65	85	kΩ
$C_{Lx}^{(2)}$	负载电容	按晶体制造商要求进行配置。				•
DCA _{CLK}	占空比		30	50	70	%
Idd ⁽³⁾	电流	ESR= 65 kΩ		850	1000	nA
		CL=12 Pf				
g_{m}	跨导	起振	2.5			μA/V
Tstart	启动时间	ESR=65 kΩ		500		ms
		CL=12 Pf				
		40% - 60% duty cycle has				
		been reached				

- 1. 由综合评估得出,不在生产中测试。
- 2. C_{LX}指 XTAL 的两个管脚的负载电容,用户必须按晶体制造商的要求选择该电容的容值。如果晶体制造商给出了负载电容的容值,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。

如果晶体制造商给出了**匹配电容的容值**,则直接使用晶体制造商所给出的匹配电容的容值即可。例:晶体制造商给出晶体的**负载电容**为 8pF 时,匹配电容的容值应为 16pF。考虑 PCB 与 MCU

引脚之间的分布电容,建议选择容值为 15pF 或 12pF 的匹配电容。

晶体制造商给出晶体的**匹配电容**为 12pF 时,匹配电容的容值应为 12pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 10pF 或 8pF 的匹配电容。

- 3. 典型值为 XTL_CR.Driver=1001 时的功耗。选择具有较小 ESR 值的高质量振荡器(如 MSIV-TIN32.768kHz),可以通过减小 XTL_CR.Driver 设置值以优化电流消耗。
- 4. T_{start} 是启动时间,是从软件使能 XTL 开始测量,直至得到稳定的 32768 振荡这段时间。这个数值是在一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变化较大。

注意:

- 晶体的匹配电容**必须**按照晶体制造商的技术手册的要求进行配置。

如果晶体制造商给出了**负载电容的容值**,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。

如果晶体制造商给出了*匹配电容的容值*,则直接使用晶体制造商所给出的匹配电容的容值即可。

- 芯片内已集成反馈电阻 R0。
- 阻尼电阻 R1 阻值的调试方法请参见相关应用笔记。

7.3.8. 内部时钟源特性

内部 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCH振荡器精度	User trimming step for given		0.25		%
		VCC and TA conditions				
		$VCC = 1.8 \sim 5.5V$	-3.5		+3.5	%
		$T_{AMB} = -40 \sim 85^{\circ}C$				
		$VCC = 1.8 \sim 5.5V$	-2.0		+2.0	%
		$T_{AMB} = -20 \sim 50^{\circ}C$				
FCLK	振荡频率		4.0	4.0	24.0	MHz
				8.0		
				16.0		
				22.12		
				24.0		
I _{CLK}	功耗	$F_{MCLK} = 4MHz$		80		μΑ
		$F_{MCLK} = 8MHz$		100		μА
		$F_{MCLK} = 16MHz$		120		μА
		$F_{MCLK} = 24MHz$		140		μА
DC _{CLK}	占空比(1)		45	50	55	%

1. 由综合评估得出,不在生产中测试。

内部 RCL 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCL振荡器精度	User trimming step for given		0.5		%
		VCC and TA conditions				
		$VCC = 1.8 \sim 5.5V$	-5		+5	%
		$T_{AMB} = -40 \sim 85^{\circ}C$				
		$VCC = 1.8 \sim 5.5V$	-3		+3	%
		$T_{AMB} = -20 \sim 50^{\circ} C$				
FCLK	振荡频率			38.4		kHz
				32.768		
Tclk	启动时间			150		μs
DCclk	占空比(1)		25	50	75	%
I _{CLK}	功耗			0.25		μΑ

1. 由综合评估得出,不在生产中测试。

7.3.9. 存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
ECFLASH	擦写次数	Regulator voltage=1.5V,	20			kcycles
		$T_{AMB} = 25$ °C				
RETFLASH	数据保存期限	$T_{AMB} = 85$ °C,	20			Years
		after 20 kcycles				
Tw_prog	编程时间		6		7.5	μs
Tp_erase	页擦除时间		4		5	ms
Tm_erase	整片擦除时间		30		40	ms

7.3.10. EFT 特性

芯片复位可以使系统恢复正常操作。

符号	级别/类型
EFT to IO (IEC61000-4-4)	Class:4(B)
EFT to Power (IEC61000-4-4)	Class:4(B)

软件建议

软件的流程中必须包含应对程序跑飞的控制,如:

- 被破坏的程序计数器
- 意外的复位
- 关键数据被破坏(控制寄存器等)

在进行 EFT 测试时,可以把超出应用要求的干扰直接施加在芯片电源或 IO 上,当检测到意外动作的地方,软件部分进行加强以防止发生不可恢复的错误。

7.3.11. ESD 特性

使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

符号	参数	条件	最小值	典型值	最大值	单位
VESD _{HBM}	ESD @ Human Body Mode			4		KV
VESD _{CDM}	ESD @ Charge Device Mode			1		KV
VESD _{MM}	ESD @ machine Mode			200		V
Ilatchup	Latch up current			200		mA

7.3.12. 端口特性

输出特性——端口

Symbol	Parameter	Conditions	Min	Max	Uuit
Voh	High level output voltage	Sourcing 4 Ma, VCC = 3.3 V	VCC-0.25		V
	Source Current	(see Note 1)			
		Sourcing 6 Ma, VCC = 3.3 V	VCC-0.6		V
		(see Note 2)			
Vol	Low level output voltage	Sinking 4 Ma, VCC = 3.3 V		VSS+0.25	V
	Sink Current	(see Note 1)			
		Sinking 6 Ma, VCC = 3.3 V		VSS+0.6	V
		(see Note 2)			
V _{OHD}	High level output voltage	Sourcing 8 Ma, VCC = 3.3 V	VCC-0.25		V
	Double source Current	(see Note 1)			
		Sourcing 12 Ma, VCC = 3.3V	VCC-0.6		V
		(see Note 2)			
V_{OLD}	Low level output voltage	Sinking 8 Ma, VCC = 3.3 V		VSS+0.25	V
	Double Sink Current	(see Note 1)			
		Sinking 12 Ma, VCC = 3.3 V		VSS+0.6	V
		(see Note 2)			

表 7-9 端口输出特性

NOTES:

- 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed 40 Ma to satisfy the maximum specified voltage drop.
- 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed 100 Ma to satisfy the maximum specified voltage drop.

图 7-2 输出端口 VOH/VOL 实测曲线

输入特性——端口 P0,P1,P2,P3

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH}	Positive-going input	VCC=1.8V	0.7VCC			V
	threshold voltage	VCC=3.3V	0.7VCC			V
		VCC=5.5V	0.7VCC			V
V _{IL}	Negative-going input	VCC=1.8V			0.3VCC	V
	threshold voltage	VCC=3.3V			0.3VCC	V
		VCC=5.5V			0.3VCC	V
V _{hys(1)}	Input voltage hysteresis	VCC=1.8V		0.3		V
	$(V_{IH} - V_{IL})$	VCC=3.3V		0.4		V
		VCC=5.5V		0.6		V
R _{pullhigh}	Pullup resistor	Pullup enabled VCC=3.3V		80		kΩ
R _{pulllow}	Pulldown resistor	Pulldown enabled VCC=3.3V		40		kΩ
Cinput	Input capacitance			5		pF

1. 由综合评估得出,不在生产中测试。

端口外部输入采样要求——Timer Gate/Timer Clock

Symbol	Papameter	Conditions	VCC	Min	Max	Uuit
t(int)	External interrupt	External trigger signal for the	1.8V	30		ns
	timing	interrupt flag (see Note 1)	3.3V	30		ns
			5.5V	30		ns
t(cap)	Timer capture timing	Timer4/5/6 capture pulse width	1.8V	0.5		μs
		Fsystem = 4MHz	3.3V	0.5		μs
			5.5V	0.5		μs
t(clk)	Timer clock frequency	Timer0/1/2/4/5/6 external clock	1.8V		PCLK/2	MHz
	applied to pin	input	3.3V		PCLK/2	MHz
		Fsystem = 4MHz	5.5V		PCLK/2	MHz
t(pca)	PCA clock frequency	PCA external clock input	1.8V		PCLK/8	MHz
	applied to pin	Fsystem = 4MHz	3.3V		PCLK/8	MHz
			5.5V		PCLK/8	MHz

NOTE:

1. The external signal sets the interrupt flag every time the minimum $t_{(int)}$ parameters are met. It may be set even with trigger signals shorter than $t_{(int)}$.

端口漏电特性——P0,P1,P2,P3

Symbol	Papameter	Conditions	VCC	Max	Unit
I _{lkg(Px.y)}	Leakage current	V _(Px.y) (see Note 1,2)	1.8 V/3.6 V	±50	nA

NOTES:

- 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
- 2. The port pin must be selected as input.

7.3.13. RESETB 引脚特性

RESETB 引脚输入驱动使用 CMOS 工艺,它连接了一个不能断开的上拉电阻。

符号	参数	条件	最小值	典型值	最大值	单位
V _{IL(RESETB)} (1)	输入低电平电压		-0.3		0.3VCC	V
V _{IH(RESETB)}	输入高电平电压		0.7VCC		VCC+0.3	V
V _{hys(RESETB)}	施密特触发器电压迟滞			200		mV
R _{PU}	弱上拉等效电阻	VIN = VSS		80		kΩ
T _{F(RESETB)} (1)	输入滤波脉冲				3	us
T _{NF(RESETB)} (1)	输入非滤波脉冲		20			us

1. 由设计保证,不在生产中测试。

7.3.14. ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{ADCIN}	Input voltage range	Single ended	0		Vadcrefin	V
Vadcrefin	Input range of external reference voltage	Single ended	0		VCC	V
DEV _{VCC/3}	VCC/3精度			3		%
IADC1	Active current including reference generator and buffer	200Ksps		2		mA
I _{ADC2}	Active current without reference generator and buffer	1Msps		0.5		mA
CADCIN	ADC input capacitance			16	19.2	pF
R _{ADC} ⁽¹⁾	ADC sampling switch impedance			1.5		kΩ
R _{AIN} (1)	ADC external input resistor ⁽²⁾				100	kΩ
FADCCLK	ADC clock Frequency				24M	Hz
TADCSTART	Startup time of reference generator and ADC core			30		μs
TADCCONV	Conversion time		20	24	28	cycles
ENOB	Effective Bits	1Msps@VCC>=2.7V 500Ksps@VCC>=2.4V 200Ksps@VCC>=1.8V REF=EXREF		10.3		Bit
		1Msps@VCC>=2.7V 500Ksps@VCC>=2.4V		10.3		Bit

符号	参数	条件	最小值	典型值	最大值	单位
		200Ksps@VCC>=1.8V				
		REF=VCC				
		200Ksps@VCC>=1.8V		0.4		D'4
		REF=internal 1.5V		9.4		Bit
		200Ksps@VCC>=2.8V		9.4		Bit
		REF=internal 2.5V		9.4		ВП
		1Msps@VCC>=2.7V				
		500Ksps@VCC>=2.4V		68.2		1D
		200Ksps@VCC>=1.8V		68.2		dB
	Signal to Noise	REF=EXREF				
		1Msps@VCC>=2.7V		68.2		
CNID		500Ksps@VCC>=2.4V				JD.
SNR	Ratio	200Ksps@VCC>=1.8V				dB
		REF=VCC				
		200Ksps@VCC>=1.8V		60		dB
		REF=internal 1.5V		60		ав
		200Ksps@VCC>=2.8V		60		dB
		REF=internal 2.5V		00		uБ
DNL ⁽¹⁾	Differential non-linearity	200KSps;	-1		1	LSB
DNL	Differential fion-finearity	VREF=EXREF/VCC	-1		1	LSD
INL ⁽¹⁾	Integral non-linearity	200KSps;	-3		3	LSB
IINL**/	integral non-intearity	VREF=EXREF/VCC	-3		3	LSD
Eo	Offset error			0		LSB
Eg	Gain error			0		LSB

- 1. 由设计保证,不在生产中测试。
- 2. ADC 的典型应用如下图所示:

对于 0.5LSB 采样误差精度要求的条件下,外部输入阻抗的计算公式如下:

$$R_{AIN} = \frac{M}{F_{ADC} * C_{ADC} * (N+1) * ln(2)} - R_{ADC}$$

其中 F_{ADC} 为 ADC 时钟频率,寄存器 ADC_CR0<3:2>可设定其与 PCLK 的关系,如下表:下表为 ADC 时钟频率 F_{ADC} 和 PCLK 分频比关系:

ADC_CR0<3:2>	N
00	1
01	2
10	4
11	8

M 为采样周期个数,由寄存器 ADC_CR0<13:12>设定。

下表为采样时间 t_{sa} 和 ADC 时钟频率 F_{ADC} 的关系:

ADC_CR0<13:12>	М
00	4
01	6
10	8
11	12

下表为 ADC 时钟频率 F_{ADC} 和外部电阻 R_{AIN} 的关系(M=12,采样误差 0.5LSB 的条件下):

R_{AIN} (k Ω)	$F_{ADC}(\mathrm{kHz})$
10	5600
30	2100
50	1300
80	820
100	660
120	550
150	450

对于上述典型应用,应注意:

- 尽量减小 ADC 输入端口 AIN_X 的寄生电容 $C_{PARACITIC}$;
- 除了考虑 R_{AIN} 值外,如果信号源 V_{AIN} 的内阻较大时,也需要加入考虑。

7.3.15. VC 特性

符号	参数	条件	最小值	典型值	最大值	单位
Vin	Input voltage range		0		5.5	V
Vincom	Input common mode range		0		VCC-0.2	V
Voffset	Input offset	常温25℃ 3.3V	-10		+10	mV
Icomp	Comparator's current	VCx_BIAS_SEL=00		0.3		μA
		VCx_BIAS_SEL=01		1.2		
		VCx_BIAS_SEL=10		10		
		VCx_BIAS_SEL=11		20		
Tresponse	Comparator's response time	VCx_BIAS_SEL=00		20		μs
	when one input cross another	VCx_BIAS_SEL=01		5		
		VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Tsetup	Comparator's setup time when	VCx_BIAS_SEL=00		20		μs
	ENABLE.	VCx_BIAS_SEL=01		5		
	Input signals unchanged.	VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Twarmup	From main bandgap enable to			20		μs
	1.2V BGR reference. Temp					
	sensor voltage, ADC internal					
	1.5V 2.5V reference stable					
Tfilter	Digital filter time	VC_debounce = 000		7		μs
		VC_debounce = 001		14		
		VC_debounce = 010		28		
		VC_debounce = 011		112		
		VC_debounce = 100		450		
		VC_debounce = 101		1800		
		VC_debounce = 110		7200		
		VC_debounce = 111		28800		

7.3.16. TIM 定时器特性

有关输入输出复用功能引脚(输出比较、输入捕获、外部时钟、PWM输出)的特性详情,参见下表。

符号	参数	条件	最小值	最大值	单位
,	定时器分辨时间		1		ttimclk
t_{res}	是門 爺刀 <i>折</i> 門 門	f _{TIMCLK} =32MHz	31.3		ns
C	外部时钟频率		0	f _{TIMCLK/2}	MHz
f_{ext}		f _{TIMCLK} =32MHz	0	16	MHz
Res _{Tim}	定时器分辨率			16	位
т	选择内部时钟时,16位计数器时		1	65536	ttimclk
Tcounter	钟周期	f _{TIMCLK} =32MHz	0.0313	2051	μs
Tmax_count	最大可能计数			67108864	ttimclk
		f _{TIMCLK} =32MHz		2.1	s

1. 由设计保证,不在生产中测试。

表 7-10 高级定时器 (ADVTIM) 特性

符号	参数	条件	最小值	最大值	单位
	定时器分辨时间		1		t _{TIMCLK}
tres	是門 奋刀 <i>折</i> 中门 回	f _{TIMCLK} =32MHz	31.3		ns
C	外部时钟频率		0	f _{TIMCLK/2}	MHz
f_{ext}	211部的 钾频率	f _{TIMCLK} =32MHz	0	16	MHz
Dag	定时器分辨率	重载计数		16	位
Res_{Tim}		自由计数		32	位
т	选择内部时钟时,16位计数器时		1	65536	t _{TIMCLK}
Tcounter	钟周期	f _{TIMCLK} =32MHz	0.0313	2051	μs
T _{MAX_COUNT}	县十可纶斗粉(重盐模型)			16777216	t _{TIMCLK}
	最大可能计数(重载模式)	f _{TIMCLK} =32MHz		524.3	ms

1. 由设计保证,不在生产中测试。

表 7-11 基本定时器特性

符号	参数	条件	最小值	最大值	单位
	定时器分辨时间		1		t _{TIMCLK}
t _{res}	是的命刀 <i>折</i> 时间	f _{TIMCLK} =32MHz	31.3		ns
C	外部时钟频率		0	f _{TIMCLK/2}	MHz
f _{ext}		f _{TIMCLK} =32MHz	0	16	MHz
Res _{Tim}	定时器分辨率			16	位
т	选择内部时钟时,16位计数器时		1	65536	ttimclk
Tcounter	钟周期	f _{TIMCLK} =32MHz	0.0313	2051	μs
Tmax_count	最大可能计数			2097152	t _{TIMCLK}
		f _{TIMCLK} =32MHz		65.54	ms

1. 由设计保证,不在生产中测试。

表 7-12 PCA 特性

符号	参数	条件	最小值	最大值	单位
	定时器分辨时间		1		t _{TIMCLK}
tres	是 的 葡刀 <u>新</u> 的 问	f _{TIMCLK} =32MHz	31.3		ns
C	外部时钟频率		0	ftimclk/2	MHz
f_{ext}		f _{TIMCLK} =32MHz	0	16	MHz
Res _{Tim}	定时器分辨率			16	位
Tcounter	选择内部时钟时,16位计数器时		1	65536	t _{TIMCLK}
	钟周期	f _{TIMCLK} =32MHz	0.0313	2051	μs
T _{MAX} _COUNT	最大可能计数			65536	ttimclk
		f _{TIMCLK} =32MHz		2.05	ms

1. 由设计保证,不在生产中测试。

表 7-13 低功耗定时器特性

符号	参数	条件	最小值	最大值	单位
t _{res}	WDT 溢出时间	fwdtclk=10kHz	1.6	52000	ms

1. 由设计保证,不在生产中测试。

表 7-14 WDT 特性

7.3.17. 通信接口

I2C 特性

I2C 接口特性如下表:

55 D.	47 W-	标准模式(100K)		快速模式 (400K)		高速模式(1M)		举 / ÷
符号	参数	最小值	最大值	最小值	最大值	最小值	最大值	単位
t _{SCLL}	SCL 时钟低时间	4.7		1.25		0.5		μs
tsclh	SCL 时钟高时间	4.0		0.6		0.26		μs
tsu.sda	SDA 建立时间	250		100		50		ns
thd.sda	SDA 保持时间	0		0		0		μs
thd.sta	开始条件保持时间	2.5		0.625		0.25		μs
t _{SU.STA}	重复的开始条件建立时间	2.5		0.6		0.25		μs
tsu.sto	停止条件建立时间	0.25		0.25		0.25		μs
$t_{ m BUF}$	总线空闲(停止条件至开始条件)	4.7		1.3		0.5		μs

1. 由设计保证,不在生产中测试。

表 7-15 I2C 接口特性

图 7-3 I2C 接口时序

SPI 特性

符号	参数	条件	最小值	最大值	单位
		主机模式	62.5	-	ns
$t_{c(SCK)}$	串行时钟的周期	从机模式	250		
		$f_{PCLK} = 16MHz$	230	-	ns
t coorer	串行时钟的高电平时间	主机模式	$0.5 \times t_{c(SCK)}$	-	ns
tw(SCKH)	中们时代的同化工时间	从机模式	$0.5 \times t_{c(SCK)}$	-	ns
t (gayrr)	串行时钟的低电平时间	主机模式	$0.5 \times t_{c(SCK)}$	-	ns
tw(SCKL)	中有時代的成化工時间	从机模式	$0.5 \times t_{c(SCK)}$	-	ns
t _{su(SSN)}	从机选择的建立时间	从机模式	$0.5 \times t_{c(SCK)}$	-	ns
th(SSN)	从机选择的保持时间	从机模式	$0.5 \times t_{c(SCK)}$	-	ns
t _{v(MO)}	主机数据输出的生效时间	$f_{PCLK} = 32MHz$	-	3	ns
t _{h(MO)}	主机数据输出的保持时间	$f_{PCLK} = 32MHz$	2	-	ns
$t_{v(SO)}$	从机数据输出的生效时间	$f_{PCLK} = 16MHz$	-	50	ns
th(SO)	从机数据输出的保持时间	$f_{PCLK} = 16MHz$	30	-	ns
t _{su(MI)}	主机数据输入的建立时间		10	-	ns
t _{h(MI)}	主机数据输入的保持时间		2	-	ns
t _{su(SI)}	从机数据输入的建立时间		10	-	ns
th(SI)	从机数据输入的保持时间		2	-	ns

1. 由设计保证,不在生产中测试。

表 7-16 SPI 接口特性

SPI 接口信号的波形和时序参数如下:

图 7-4 SPI 时序图(主机模式)

图 7-5 SPI 时序图 (从机模式 cpha=0)

图 7-6 SPI 时序图 (从机模式 cpha=1)

8. 典型应用电路图

注意:

- 每组电源都需要一个去耦电容,去耦电容尽量靠近相应电源管脚。

9. 封装信息

9.1 封装尺寸

QFN20 封装

6 11	QFN20 (3x3) millimeter			
Symbol	Min Nom		Max	
A	0.70	0.75	0.80	
A1		0.02	0.05	
ь	0.15	0.20	0.25	
с	0.18	0.20	0.25	
D	2.90	3.00	3.10	
D2	1.55	1.65	1.75	
e		0.40BSC		
Ne		1.60BSC		
Nd		1.60BSC		
E	2.90 3.00 3.10			
E2	1.55 1.65		1.75	
L	0.35 0.40		0.45	
h	0.20 0.25		0.30	
	0.20	0.23	0.50	
L/F 载体尺寸 (Mil)	75 x 75			

TSSOP20 封装

SECTION B-B

	TSSOP20 millimeter				
Symbol	Min	Nom	Max		
A			1.20		
A1	0.05		0.15		
A2	0.80	1.00	1.05		
A3	0.39	0.44	0.49		
b	0.20		0.28		
b1	0.19	0.22	0.25		
С	0.13		0.18		
c1	0.12	0.13	0.14		
D	6.40	6.50	6.60		
E	6.20	6.40	6.60		
E1	4.30	4.40	4.50		
e	0.65BSC				
L	0.45	0.60	0.75		
L1	1.00REF				
θ	0		8°		

NOTE:

 Dimensions "D" and "E1" do not include mold flash.

CSP16 封装

	CSP16 millimeter				
Symbol	Min Nom Max				
A	0.496	0.533	0.57		
A1	0.148	0.168	0.188		
A2	0.037	0.04	0.043		
b	0.18	0.21	0.24		
S	0.3115	0.325	0.3385		
D	1.565	1.59	1.615		
Е	1.411	1.436	1.461		
e		0.35BSC			
D1	1.05BSC				
E1	1.05BSC				
SD	0.175				
SE	0.175				
n	16				

TSSOP16 封装

	TSSOP16 millimeter				
Symbol	Min	Nom	Max		
A			1.20		
A1	0.05		0.15		
A2	0.90	1.00	1.05		
A3	0.39	0.44	0.49		
b	0.20		0.28		
b1	0.19	0.22	0.25		
С	0.13		0.17		
c1	0.12	0.13	0.14		
D	4.90	5.00	5.10		
Е	6.20	6.40	6.60		
E1	4.30	4.40	4.50		
e	0.65BSC				
L	0.45	0.60	0.75		
L1		1.00BSC			
θ	0		8°		

NOTE:

 Dimensions "D" and "E1" do not include mold flash.

9.2 焊盘示意图

QFN20 封装 (3mm x 3mm)

NOTE:

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

TSSOP20 封装

NOTE:

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

TSSOP16 封装

NOTE:

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

CSP16 封装

NOTE:

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

CSP16 recommended PCB design rules(0.35mm pitch)

Dimension	Recommended values
Pitch	0.35mm
Dpad	0.210mm
Dsm	0.275mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.235mm
Stencil thickness	0.100mm

9.3 丝印说明

以下给出各封装正面丝印的 Pin 1 位置和信息说明。

QFN20 封装 (3mm x 3mm)

TSSOP20 封装 / TSSOP16 封装

CSP16 封装

注意:

- 上图空白框表示与生产相关的可选标记,本节不作说明。

9.4 封装热阻系数

封装芯片在指定工作环境温度下工作时,芯片表面的结温 T_j ($^{\circ}$ C) 可以按照下面的公式计算:

$$T_j = T_{amb} + (P_D x \theta_{JA})$$

- T_{amb}是指封装芯片工作时的工作环境温度,单位是℃;
- θ_{JA} 是指封装对工作环境的热阻系数,单位是℃/W;
- P_D 等于芯片的内部功耗和 I/O 功耗之和,单位是 W。芯片的内部功耗是产品的 I_{DD} x V_{DD} ,I/O 功耗指的是指芯片工作时 I/O 引脚产生的功耗,通常该部分值很小,可以忽略。

芯片在指定工作环境温度下工作时芯片表面的结温 T_j ,不可以超出芯片可容许的最大结温度 T_J 。

Package Type and Size	Thermal Resistance Junction-ambient Value (θ_{JA})	Unit
QFN20 3mm x 3mm / 0.4mm pitch	70 +/- 10%	°C/W
TSSOP16	105 +/- 10%	°C/W
TSSOP20	91 +/- 10%	°C/W

表 9-1 各封装热阻系数表

10. 订购信息

Part Number	HC32L110C6UA- SFN20TR	HC32L110C6PA- TSSOP20	HC32L110B6PA- TSSOP16	HC32L110B6YA- CSP16TR	HC32L110C4UA- SFN20TR	HC32L110C4PA- TSSOP20	HC32L110B4PA- TSSOP16	HC32L110B4PA- TSSOP16TR
Flash	32KB	32KB	32KB	32KB	16KB	16KB	16KB	16KB
RAM	4KB	4KB	4KB	4KB	2KB	2KB	2KB	2KB
GPIO	16+1	16+1	12+1	12+1	16+1	16+1	12+1	12+1
Vdd	1.8~5.5V							
Timer	6	6	6	6	6	6	6	6
LPTimer	1	1	1	1	1	1	1	1
RTC	√	√	√	√	√	√	√	√
UART	2	2	2	2	2	2	2	2
LPUART	1	1	1	1	1	1	1	1
I2C	1	1	1	1	1	1	1	1
SPI	1	1	1	1	1	1	1	1
ADC(12bit)	9ch	9ch	6ch	6ch	9ch	9ch	6ch	6ch
Vcomp	2	2	2	2	2	2	2	2
LVD	√	√	√	√	√	√	√	√
LVR	√	√	√	√	√	√	√	√
Package	QFN20(3*3)	TSSOP20	TSSOP16	CSP16	QFN20(3*3)	TSSOP20	TSSOP16	TSSOP16
脚间距	0.4mm	0.65mm	0.65mm	0.35mm	0.4mm	0.65mm	0.65mm	0.65mm
芯片厚度	0.75mm	1.2mm	1.2mm	0.535mm	0.75mm	1.2mm	1.2mm	1.2mm
出货形式	卷带	管装	管装	卷带	卷带	管装	管装	卷带

订购前,请联系销售窗口咨询最新量产信息。

版本记录 & 联系方式

版本	修订日期	修订内容摘要
Rev1.0	2018/1/23	HC32L110 系列数据手册初版发布。
Rev1.1	2018/4/4	版本更新。
Rev1.2	2018/4/17	修正 Flash 参数。
Rev1.3	2018/5/3	更新 VC 电气参数。
Rev1.4	2018/9/25	调整版式,更新第7章电气特性,增加第9章订购信息。
Rev1.5	2018/11/15	第 8 章中增加"丝印说明",更正 QFN20 / Tssop20 / Tssop16 封装尺寸。
Rev1.6	2018/11/27	修改名称: UART2→LPUART, 第 3、4 章增加"注"。
Rev1.7	2019/2/22	修正以下数据: ①ADC 特性 ②ESD 特性 ③存储器特性中 ECFLASH 最小值 ④QFN20/TSSOP16
		封装丝印说明 ⑤封装尺寸中增加 NOTE ⑥更新订购信息 ⑦引脚配置中加入 AVCC/AVSS。
Rev1.8	2019/6/21	修正以下数据: ①UID 地址更正为 0x0010_0E74-0x0010_0E7F ②更正编程模式 ③更新 QFN 引
		脚配置图样式 ④订购信息中增加出货形式。
Rev1.9	2019/12/6	修正以下数据: ①典型应用电路图 ②ADC 特性单位 ③外部时钟源特性中 XTH 和 XTL 配图与
		注意事项。
Rev2.0	2020/1/17	修正以下数据: ①增加 CSP16 封装 ②丝印说明。
Rev2.1	2020/3/6	简介中"编程模式"增加注意项。
Rev2.2	2020/4/30	修正以下数据: ①ADC 特性中增加 VCC/3 精度 ②7.3.7 中修正笔误 ③7.3.8 中 RCL 振荡器精度。
Rev2.3	2020/7/31	修正以下数据: ①增加 7.3.16、7.3.17、9.2、9.4 节; ②7.3.10 等级; ③7.3.1 内部 AHB/APB 时钟
		频率; ④7.3.12 输入特性——端口 P0,P1,P2,P3, RESET 中 VⅢ和 VⅡ 的值。
Rev2.4	2020/9/30	修正以下数据:①简介中时钟系统描述;②7.3.8 中 RCH 振荡器精度;③7.3.13 的 VIL 和 VIH;④
		增加 SPI 特性。
Rev2.5	2021/5/31	修正以下数据:①修改声明;②I2C 特性中 thD.STA 和 tsu.sTo 参数;③简介中串行外设接口 SPI;
		④存储器特性中数据保存期限;⑤增加外部时钟源特性中 gm 参数。
Rev2.6	2022/3/9	公司 logo 更新。
Rev2.61	2022/8/13	修正以下数据: ①上电和掉电时的工作条件,修改 VCC 上升/下降速率的最小值、最大值以及单
		位,以与其它产品一致;②内嵌复位和 LVD 模块特性,图 7-1 中信号名称与参考手册中信号名称
		不一致,修改为统一;③内置的参考电压,根据考核结果,放宽全温度电压下精度范围到±2.5%;
		④RESETB 引脚特性,输入滤波脉冲时间修改。
Rev2.62	2022/10/25	更新"3. 引脚配置"章节绘图显示不清晰问题。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@xhsc.com.cn

网址: http://www.xhsc.com.cn

通信地址:上海市浦东新区中科路 1867号 A座 10层

邮编: 201210

