3. Behavioural Modelling

David Pereira José Proença

 ${\sf RAMDE-Requirements\ and\ Model-driven\ Engineering\ 2021/22}$

 $\begin{array}{l} {\sf CISTER-ISEP} \\ {\sf Porto,\ Portugal} \end{array}$

https://cister-labs.github.io/ramde2122

Overview

So far

- Models and properties for structures: boolean and 1st order logic, ...
- Useful, e.g., for UML class diagrams

Next

- Look at UML behaviour diagrams
- Use a domain with a precise semantics
 - Non-deterministic finite automata (NFA)
 - Simple language for processes
 - Encode processes → NFA
 - Equivalence of processes

What are formal methods?

Formal methods are techniques to model complex systems using rigorous mathematical models

Specification

Define part of the system using a modelling language

Verification

Prove properties.

Show correctness.

Find bugs.

Implementation

Generate correct code.

All formal models are wrong

All formal models are wrong

... but some of them are usefull!

Syllabus

- High-level overview or requirements and associated processes
- Mathematical Preliminaries
 - Basic mathematical notations
 - Set theory
 - PropositionalLogic
 - First Order Logic
 - The Z3 automatic theorem prover

- Behavioural modelling
 - Single component
 - State diagrams and Flow charts
 - Formal modelling: Automata,
 Process Algebra in mCRL2
 - Many components
 - Communication diagrams and Sequence diagrams
 - Formal modelling: Process algebra with interactions
 - Equivalences
 - Verification

UML behaviour diagrams

UML behaviour diagrams

Describe the state of a component, what actions it can do, and how it evolves during its life cycle.

- State Diagram focus on states
- Flowchart focus on actions (also known as activity diagrams)

Coffee State Diagram

Coffee Flowchart

Used symbols: *processes*, *decisions*, and *start/end*

Other symbols include: data (or input/output), documents, connectors, comments

Automata – Basic definitions

Sequential and Reactive systems

Sequential systems

Meaning is defined by the results of finite computations

We start here...

Reactive systems

Meaning is determined by interaction and mobility of non-terminating processes, evolving concurrently

then we go reactive

Non-Deterministic Finite Automata (NFA)

Definition

A NFA over a set N of names is a tuple $\langle S, I, \downarrow, N, \longrightarrow \rangle$ where

- $S = \{s_0, s_1, s_2, ...\}$ is a set of states
- $I \subseteq S$ is the set of initial states
- $\downarrow \subseteq S$ is the set of terminating or final states

$$\downarrow s \equiv s \in \downarrow$$

 $lue{}$ $\longrightarrow \subseteq S \times N \times S$ is the transition relation, often given as an N-indexed family of binary relations

$$s \stackrel{a}{\longrightarrow} s' \equiv \langle s, a, s' \rangle \in \longrightarrow$$

Example

Example of an automaton

 s_0 is an initial state s_1 is a final state

(Formalise this automata)

Exercise

Ex. 3.1: Formalise these automata as $\langle S, I, \downarrow, N, \longrightarrow \rangle$

A note on Individual Exercises

- 10% of the final mark
- focus on effort doing badly is better than not doing
- submission: a PDF by email to the teacher who provided the exercises; here pro@isep.ipp.pt.

Deadlines

Exercises presented in a given week must be submitted by the end of the following week, Sunday @ 23h59.

Website/Teams will be kept up-to-date with ongoing open submissions.

Exercise

Ex. 3.2: Draw LTS

(suggestion: by hand on a paper, and take a photo of it.)

Labelled Transition System

More generally, a NFA $\langle S, I, \downarrow, N, \longrightarrow \rangle$ is a labelled transition system (LTS) $\langle S, N, \longrightarrow \rangle$, where each state $s \in S$ determines a system over all states reachable from s and the corresponding restriction of \longrightarrow .

LTS classification

- deterministic
- non deterministic
- finite
- finitely branching
- image finite
- ...

Reachability

Definition

The reachability relation, $\longrightarrow^* \subseteq S \times N^* \times S$, is defined inductively

- $s \xrightarrow{\epsilon}^* s$ for each $s \in S$, where $\epsilon \in N^*$ denotes the empty word;
- if $s \xrightarrow{a} s''$ and $s'' \xrightarrow{\sigma} s'$ then $s \xrightarrow{a\sigma} s'$, for $a \in N, \sigma \in N^*$

Reachable state

 $t \in S$ is reachable from $s \in S$ iff there is a word $\sigma \in N^*$ st $s \xrightarrow{\sigma}^* t$

Language of an Automaton

Language

A word σ is in the language L_A of an automata $A = \langle S, I, \downarrow, N, \longrightarrow \rangle$ iff there are states $s \in I$, $s' \in \downarrow$ such that $s \xrightarrow{\sigma} s'$.

Exercises

Ex. 3.3: What is the language of this automata?

Ex. 3.4: What is the language of this automata?

Ex. 3.5: What is the language of this automata?

Extra: Regular Expressions

Regular Expressions – syntax

- w_1w_2 : word w_1 followed by word w_2
- $w_1 + w_2$: word w_1 or word w_2
- a^* : 0 or more a's
- \bullet a^+ : 1 or more a's
- \bullet : empty word

Examples

- ab + c: (a followed by b) or c
- $(ab)^*b$: b or abb or ababb or ...
- $c((ab)^*b)^+$: cb or cabb or cababb or . . .

Extra: Regular Expressions

Regular Expressions – syntax

- w_1w_2 : word w_1 followed by word w_2
- $w_1 + w_2$: word w_1 or word w_2
- *a**: 0 or more *a*'s
- \bullet a^+ : 1 or more a's
- \bullet : empty word

Examples

- ab + c: (a followed by b) or c
- (ab)*b: b or abb or ababb or . . .
- $c((ab)^*b)^+$: cb or cabb or cababb or . . .

NFA vs. Reg. Expr.

Word w expressible by a NFA \Leftrightarrow w expressible by a Reg. Expr.

Process algebra

Process algebras

Sequential CCS - Syntax

$$\mathcal{P} \ni P, Q ::= K \mid \alpha.P \mid P+Q \mid \mathbf{0} \mid P[f] \mid P \setminus L \mid P \mid Q$$

where

- $\alpha \in \mathbb{N} \cup \{\tau\}$ is an action
- K s a collection of process names or process constants
- I is an indexing set
- $L \subseteq N$ is a set of labels
- f is a function that renames actions s.t. $f(\tau) = \tau$
- notation:

$$[f] = [a_1 \mapsto b_1, \dots, a_n \mapsto b_n]$$

Process algebras

Syntax

$$\mathcal{P} \ni P, Q ::= K \mid \alpha.P \mid P+Q \mid \mathbf{0} \mid P[f] \mid P \setminus L \mid P \mid Q$$

Ex. 3.6: Which are NOT syntactically correct? Why?

$$a.b.A + B$$
 (1) $a.(a+b).A$ (6)

$$(a.0 + b.A) \setminus \{a, b, c\} \qquad (2) \qquad (a.B + b.B)[a \mapsto a, \tau \mapsto b] \qquad (7)$$

$$(a.0 + b.A) \setminus \{a, \tau\} \qquad (3) \qquad (a.B + \tau.B)[b \mapsto a, a \mapsto a] \qquad (8)$$

$$a.B + [b \mapsto a] \tag{4}$$

$$\tau.\tau.B + \mathbf{0}$$
 (5) $(a.b.A + b.\mathbf{0}) + B$ (10)

CCS semantics - building a NFA

$$\begin{array}{c} \text{(act)} & \text{(sum-1)} & \text{(sum-2)} \\ P_1 \stackrel{\alpha}{\to} P_1' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline \alpha.P \stackrel{\alpha}{\to} P & P_1 + P_2 \stackrel{\alpha}{\to} P_1' & P_1 + P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_1 + P_2 \stackrel{\alpha}{\to} P_1' & P_2 \stackrel{\alpha}{\to} P_2' & P_2 \\ \hline P_1 + P_2 \stackrel{\alpha}{\to} P_2' & P_2 & P_2 \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' & P_2 \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' & P_2 \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' & P_2 \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to} P_2' & P_2 \stackrel{\alpha}{\to} P_2' \\ \hline P_2 \stackrel{\alpha}{\to}$$

- Initial states: the process being translated
- Final states: all states are final
- Language: possible sequence of actions of a process

CCS semantics - building a NFA

$$\begin{array}{c} \text{(act)} & \text{(sum-1)} \\ P_1 \stackrel{\alpha}{\rightarrow} P'_1 \\ \hline \alpha.P \stackrel{\alpha}{\rightarrow} P \end{array} \qquad \begin{array}{c} \text{(sum-2)} \\ P_2 \stackrel{\alpha}{\rightarrow} P'_2 \\ \hline P_1 + P_2 \stackrel{\alpha}{\rightarrow} P'_1 \\ \hline P_1 + P_2 \stackrel{\alpha}{\rightarrow} P'_1 \\ \hline P \downarrow L \stackrel{\alpha}{\rightarrow} P' \setminus L \end{array} \qquad \begin{array}{c} \text{(rel)} \\ P \stackrel{\alpha}{\rightarrow} P' \\ \hline P[f] \stackrel{f(\alpha)}{\rightarrow} P'[f] \end{array}$$

Ex. 3.7: Build a derivation tree to prove the transitions below

- 1. $(a.A + b.B) \xrightarrow{b} B$
- 2. $(a.b.A + (b.a.B + c.a.C)) \xrightarrow{b} a.B$
- 3. $((a.B + b.A)[a \mapsto c]) \setminus \{a, b\} \stackrel{c}{\rightarrow} B$

Exercise

Ex. 3.8: Draw the automata

$$\mathit{CM} = \mathsf{coin.coffee}.\mathit{CM}$$
 $\mathit{CS} = \mathsf{pub.(coin.coffee}.\mathit{CS} + \mathsf{coin.tea}.\mathit{CS})$

Ex. 3.9: What is the language of this process?

$$A = goLeft.A + goRight.B$$

 $B = rest.0$

Exercise

Ex. 3.10: Write the process of the flowchart above

P = powerOn.Q

Q = selMocha.addChocolate.Mk + selLatte.Mk + . . .

Mk = addMilk...

Concurrent Process algebra

Overview

Recall

- 1. Non-deterministic Finite Automata: $\rightarrow (q_1)$ \xrightarrow{a} q_2
- 2. (Sequential) Process algebra: P = a.Q Q = b.Q
- 3. Meaning of (2) using (1)

Still missing

- Interaction between processes
- Interaction diagrams vs. interacting processes
- Enrich (2) and (3)

Process algebras

CCS - Updated Syntax

$$\mathcal{P} \ni P, Q ::= K \mid \alpha.P \mid P+Q \mid \mathbf{0} \mid P[f] \mid P \setminus L \mid P|Q$$

where

- $-\alpha \in \mathbb{N} \cup \mathbb{N} \cup \{\tau\}$ is an action
- K s a collection of process names or process constants
- I is an indexing set
- $L \subseteq N$ is a set of labels
- f is a function that renames actions s.t. $f(\tau) = \tau$ and $f(\overline{a}) = \overline{f(a)}$
- notation:

$$[f] = [a_1 \mapsto b_1, \dots, a_n \mapsto b_n]$$
 where $a_i, b_i \in N \cup \{\tau\}$

Process algebras

Syntax

$$\mathcal{P} \ \ni \ P, Q \ ::= \ K \ \mid \ \alpha.P \ \mid \ P+Q \ \mid \ \mathbf{0} \ \mid \ P[f] \ \mid \ P \backslash L \ \mid \ P|Q$$

Ex. 3.11: Which are syntactically correct?

$$a.\overline{b}.A + B$$
 (11)
 $(a.B + b.B)[a \mapsto a, \tau \mapsto b]$
 (17)

 $(a.\mathbf{0} + \overline{a}.A) \setminus \{\overline{a}, b\}$
 (12)
 $(a.B + \tau.B)[b \mapsto a, b \mapsto a]$
 (18)

 $(a.\mathbf{0} + \overline{a}.A) \setminus \{a, \tau\}$
 (13)
 $(a.B + b.B)[a \mapsto b, b \mapsto \overline{a}]$
 (19)

 $(a.\mathbf{0} + \overline{\tau}.A) \setminus \{a\}$
 (14)
 $(a.b.A + \overline{a}.\mathbf{0})|B$
 (20)

 $\tau.\tau.B + \overline{a}.\mathbf{0}$
 (15)
 $(a.b.A + \overline{a}.\mathbf{0}).B$
 (21)

 $(\mathbf{0}|\mathbf{0}) + \mathbf{0}$
 (16)
 $(a.b.A + \overline{a}.\mathbf{0}) + B$
 (22)

CCS semantics - building an NFA

$$\begin{array}{c} \text{(act)} & \begin{array}{c} \text{(sum-1)} \\ P_1 \stackrel{\alpha}{\rightarrow} P_1' \\ \hline \alpha.P \stackrel{\alpha}{\rightarrow} P \end{array} & \begin{array}{c} \text{(sum-2)} \\ P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_1 + P_2 \stackrel{\alpha}{\rightarrow} P_1' \\ \hline P_1 + P_2 \stackrel{\alpha}{\rightarrow} P_1' \\ \hline P_1 + P_2 \stackrel{\alpha}{\rightarrow} P_1' \\ \hline P_1 + P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_1 + P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_1 + P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel$$

CCS semantics - building an NFA

$$\begin{array}{c} \text{(act)} & \text{(sum-1)} & \text{(sum-2)} \\ P_1 \stackrel{\alpha}{\rightarrow} P_1' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline \alpha.P \stackrel{\alpha}{\rightarrow} P & P_1' & P_1 + P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_1 + P_2 \stackrel{\alpha}{\rightarrow} P_1' & P_1 + P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_1 + P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_1 + P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_1' & P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2' & P_2 \stackrel{\alpha}{\rightarrow} P_2' \\ \hline P_2 \stackrel{\alpha}{\rightarrow} P_2'$$

Ex. 3.12: Draw the NFAs

$$CM = \text{coin.} \overline{\text{coffee}}.CM$$
 $CS = \text{pub.} \overline{\text{coin.}} \text{coffee}.CS$
 $SmUni = (CM|CS) \setminus \{\text{coin, coffee}\}$

Exercises

Ex. 3.13: Let A = b.a.B. Show that:

- 1. $(A \mid \overline{b}.\mathbf{0}) \setminus \{b\} \xrightarrow{\tau} (a.B \mid \mathbf{0}) \setminus \{b\}$
- 2. $(A \mid b.a.B) + (b.A)[a/b] \xrightarrow{a} A[a/b]$

Sequence Diagrams vs. Interactive

Processes

Sequence Diagrams as Interactive Processes

- Objects as Processes
 (e.g.,processes U, A, C, B)
- Send actions (e.g., insertCard)
- Reveive actions (e.g., insertCard)

- Unique action for each object pair
- Do not write (...+0)

Language of Sequence Diagrams, Informally

This example has only 1 word and its prefixes

$$Tr(sd) = insertCard \cdot verifyCard \cdot verifyAccount \cdot accountNotOK \cdot rejectedCard \cdot ejectCard$$

Sequence Diagrams as Interactive Processes

Ex. 3.14: Write an interactive processes that acts as above

$$Sys = (U|A|C|E)$$

 $U = insertCard.\overline{ejectCart}.\mathbf{0}$
 $A = \dots$
 $C = \dots$
 $E = \dots$