EXAMEN FINAL CISE III- 15 Enero 2002

Publicación calificaciones : 22 de Enero, 18:00 horas, Sótano –1 módulo C4 Alegaciones : Hasta 24 de enero (Buzón S.Silvestre vestíbulo módulo C4) Calificaciones definitivas : 25 de enero, 18:00 horas, Sótano –1 módulo C4

Problema 1

Para el circuito de la figura, se pide :

- a) Representar el flujograma y obtener la función de transferencia en lazo cerrado del circuito.
 Dato: Ganancia en lazo abierto del amplificador operacional a(s)= a₀.
- b) Calcular el valor de a₀ que permite obtener un error relativo en la salida del 0,01% respecto de la salida con el amplificador operacional ideal.

Considerando ahora que la ganancia del amplificador operacional es infinita y los siguientes valores a la entrada del A.O.: V_{os} = \pm 50 μ V, I_{b} = 1 μ A, I_{os} = \pm 100 nA

- c) Obtener el valor de la resistencia R₁ que minimiza la tensión de error en la salida
- d) Utilizando el valor de R₁ encontrado en el apartado anterior, obtener el valor de R para que la tensión de error en la salida, en el peor caso, no exceda a 1mV.

Problema 2

Se pretende realizar un oscilador a partir del circuito realimentado de la figura, en el que se consideran los amplificadores operacionales ideales.

Nota: Considerar $\left| \frac{1}{R_1 C_1} \right| < \left| \frac{-3 + \sqrt{5}}{2RC} \right|$

- a) Representar el flujograma correspondiente al circuito de la figura.
- Obtener la expresión de la ganancia de lazo T(s) asociada y decir de qué tipo de realimentación se trata.
- c) Representar el lugar geométrico de las raices (LGR).
- Determinar la frecuencia y condición de oscilación.

Problema 3

a) Obtener la característica entrada-salida v_0 =f(v_i) del circuito de la figura 1 para los casos v_i >0 y v_i <0, sabiendo que v_1 =cte y 0< v_i < V_{cc} (A.O.'s ideales alimentados a \pm V_{cc}).

Figura 1

b) Dibujar la evolución temporal de las señales v_1 , v_0 y v_2 del circuito de la figura 2 a partir de $v_1(0)$ =-Vcc y $v_2(0)$ =0, para el caso v_i =cte (0< v_i < V_{cc}), indicando su amplitud y frecuencia en función de v_i (A.O.'s ideales alimentados a \pm V_{cc}).

Figura 2

Problema 4

El circuito de la figura corresponde a un regulador lineal de tensión.

Datos : Vzener (d1) = 2,5 V, R1= 600 Ω , R4=R5= $10k\Omega$, R3=2 Ω , R2= 400Ω . Vin=13V. Vbe (Q1on) = 0,8 V, β (Q1)= 100. Polarización A.O: V+=12V, V-=0V. Isc(A.O.)=20mA. Calcular :

- (a) La tensión nominal de salida Vo.
- (b) La corriente y la tensión de salida del amplificador operacional para una carga Rload= 25 Ω
- (c) El rendimiento del convertidor en las condiciones del apartado anterior.
- (d) El valor mínimo de la carga para mantener la tensión nominal de salida Vo