Notes on The Nonexistence of Certain Statistical Procedures in Nonparametric problems

Catherine Chen cyc2152

December 2023

1 Theorems

Let \mathcal{F} be a given set of distribution functions F, G, \ldots of a real variable, it must satisfy that:

- 1. For every $F \in \mathcal{F}, \, \mu_F = \int_{-\infty}^{\infty} z dF$ exists and is finite.
- 2. For every real m, there is an $F \in \mathcal{F}$ with $\mu_F = m$.
- 3. \mathcal{F} is **convex**, that is, if F, $G \in \mathcal{F}$, π is a positive fraction, and $H = \pi F(1 \pi)G$ then $H \in \mathcal{F}$.

Let $X_1, X_2, \dots \sim F$ denote an infinite sequence of independent RVs, i.e. $\Pr(X_i \leq z) = F(z)$. Suppose that a (randomized, sequential) sampling procedure is given, i.e. a set of rules for observing X_1, X_2, \dots one by one up to a certain stage N s.t. at each stage the decision whether to continue depends (randomly) on the observed values in hand at that stage. The given procedure is assumed to be closed:

$$P_F(N < \infty) = 1,\tag{1}$$

for each $F \in \mathcal{F}$.

Denote the total outcome of the sampling procedure a random variable, V, i.e. $V = (X_1, X_2, \dots, X_N)$. As in (1), for any event A defined on the sample space of $V, P_F(A)$ will denote the probability of A when F obtains, i.e., when each X_i is distributed according to F.

If φ is a real valued function of $V, E_F[\varphi]$ denotes the expected value of φ (if it exists) when F obtains.

For any real number m, let \mathcal{F}_m denote the set of all $F \in \mathcal{F}$ with $\mu_F = m$.

1.1 Theorem I

For each bounded real valued function φ on the sample space of V, $\inf_{F \in \mathcal{F}_m} E_F[\varphi]$ and $\sup_{F \in \mathcal{F}_m} E_F[\varphi]$ are independent of m.

In other words, even if μ_F is known to equal one of two given values m_1 and m_2 , the sample V cannot provide effective discrimination between the two hypothetical values.

Let H be the hypothesis that $\mu_F = 0$ (i.e., $F \in \mathcal{F}_0$); i.e. the **null hypothesis**. For any test t, let $\beta_F(t)$ denote the probability of rejecting H in using t when F obtains, i.e. $\beta_F(t)$ denotes the **power function** of t- the probability that the test correctly rejects the null hypothesis when the alternative hypothesis is true.

- 1. t is a somewhere unbiased level- α test if $\beta_F \leq \alpha$ for $F \in \mathcal{F}_0$ and, for some $m \neq 0$, $\beta_F \geq \alpha$ for $F \in \mathcal{F}_m$
- 2. t is a **similar** level- α test if $\beta_F = \alpha$ for each $F \in \mathcal{F}_0$

Note: level- α test, refers to the probability of rejecting the null hypothesis when the null hypothesis is true, i.e. the false positive rate, a.k.a. type I error.

Let $\varphi(V)$ denote the probability prescribed by t of rejecting H (the null hypothesis) on observation of V yields the following corollary.

1.2 Corollary 1

If t is a somewhere unbiased level- α test of H, or a similar level- α test of H, then $\beta_F(t) = \alpha$ for all $F \in \mathcal{F}$.

The corollary illustrates that all tests of the value of μ , assuming that it exists, are unsuccessful.

Let I denotes a confidence set for μ_F , i.e. I is a (randomized) function of V.

For any real m, let C[m] denote the event that I

1.3 Corollary II

If $P_F(C[\mu_F]) \ge 1 - \alpha$ for all $F \in \mathcal{F}$, then $P_F(C[m]) \ge 1 - \alpha$ for all m and all $F \in \mathcal{F}$.

Proof. For each m, let $p_m(V) = P(C[m]|V) = P_F(C[m])$, $0 \le p \le 1$. Consider a fixed m, since $\mu_F = m$, for all $F \in \mathcal{F}_m$, we have that $P_F(C[\mu_F]) = P_F(C[m]) = E_F[p_m] \ge 1 - \alpha$ for $F \in \mathcal{F}_m$. By Theorem I, for each bounded real valued function φ on the sample space of V, $\inf_{F \in \mathcal{F}_m} E_F[\varphi]$ and $\sup_{F \in \mathcal{F}_m} E_F[\varphi]$ are independent of m. Hence, $P_F(C[m]) = E_F[p_m] \ge 1 - \alpha$ for all $F \in \mathcal{F}$. Proof is complete for arbitrary m. \square

1.4 Corollary III

Suppose that there exists at least one $F \in \mathcal{F}$ such that $P_F(I \text{ is a set bounded from below }) = 1$. Then $\inf_{p_e,\mathcal{F}} \{P_F(C[\mu_F])\} = 0$.

Proof. For each $n = 1, 2, \cdots$

Let B_n denote the event that $I \in [-n, \infty)$ - i.e., I is bounded from below; Let $q_n(V)$ denote the probability of B_n given $V; 0 \leq q_n \leq q_{n+1} \leq 1$.

Let \bar{B}_n denote the complement of B_n , i.e. the event that $I \in (-\infty, -n]$; Let $1 - q_n(V)$ denote the probability of \bar{B}_n given V.

For any m < -n, $p_m(V) = \Pr(m \in I \mid V) \leq \Pr(\bar{B}_n \mid V) = 1 - q_n(V)$, thus, except on a P_F -null set, $\lim_{m \to -\infty} p_m(V) = 0. \tag{2}$

Since $P_F(C[m]) = E_F[p_m]$ for all m, it follows from (2), by Lebesgue's theorem for boundedly convergent sequences (Bounded Convergence Theorem - corollary of Dominated Convergence Theorem), that

$$\lim_{m \to -\infty} P_F(C[m]) = \lim_{m \to -\infty} E_F[p_m] = E_F\left[\lim_{m \to -\infty} p_m\right] = 0.$$
(3)

By Corollary 2: $\inf_{G \in \mathcal{F}} \{ P_G(C[\mu_G]) \} = \inf_{G \in \mathcal{F}} \inf_m \{ P_G(C[m]) \}$. It follows from (3) that the common value of these infima is zero.