

Automatická segmentace ischemické léze u cévní mozkové příhody

Jakub Šmíd Kybernetika a robotika 2025

Cile práce CESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRATE

- Analýza segmentačních metod.
- Možnosti rozšíření datasetu FN Motol.
- Experimentální ověření metod.
- Zvolení nejlepší architektury.
- Optimalizace na základě modifikace fúze dat.
- Srovnání výsledků s literaturou.

Definice problému

Definice problému

CESKÉ VYSOKÉ UČENÍ TECHNICKÉ Dice koeficient

ISLES 2015

• 14 týmů v soutěži

Metoda	Dice koef.
UK-Imp2	$0,59 \pm 0,31$
CN-Neu	0,55 ± 0,30
FI-Hus	0,47 ± 0,32
US-Odu	$0,43 \pm 0,27$
BE-Kul2	$0,43 \pm 0,30$
inter-rater	$0,70 \pm 0,20$

ISLES 2022

- 12 týmů v soutěži
- 8 metod vychází z nnU-Net nebo U-Net

Metoda	Dice koef.
SEALS	0,82 ± 0,12
NVAUTO	0,82 ± 0,12
SWAN	0,81 ± 0,15
PAT	0,82 ± 0,15
CTRL	0.80 ± 0.14
inter-rater	0,83

Datasety

- Motol: 19 pacientů v 56 skenech
- ISLES 2015: 28 skenů
- ISLES 2022: 250 skenů

Preprocessing

maska mozku HD-BET

koregistrace do prostoru MNI ANTs

koregistrace do prostoru FLAIR ANTs

■ segmentace FLAIR ■ segmentace DWI

logické sjednocení segmentací

DeepMedic

Model	Dice koef.	Prec	Sens	F
Vstupní fúze	0,427 ± 0,276	0,422	0,626	10
Výstupní fúze	0,510 ± 0,259	0,602	0,545	4

- 3D U-Net s využitím residuálních bloků v enkodéru
- 6 úrovní s počty filtrů [32, 64, 128, 256, 320, 320]

Model	Dice koef.	Prec	Sens	F
MNI Vstupní fúze	0,559 ± 0,265	0,650	0,609	5
		2 700		
MNI Výstupní fúze	$0,646 \pm 0,238$	0,783	0,631	1
Kříž. valid.	0,745 ± 0,182	0,804	0,763	0
Tarzi vanar	0,1 10 = 0,102	3,001	5,700	9

3D U-Net

Model	Dice koef.	Prec	Sens	F
Vstupní fúze	0,453 ± 0,281	0,447	0,645	10
Výstupní fúze	0,461 ± 0,288	0,511	0,560	11
In-layer fúze	0,446 ± 0,251	0,662	0,396	4

Přehled výkonnosti nejlepších modelů jednotlivých metod podle času pořízení skenu

- Proběhlo ověření tří metod na základě rešerše.
- Byly vybrány nejlepší modely z uvedených metod na základě Dice koeficientu.
- Bylo dosaženo DC 0,51 pro DeepMedic, 0,65 pro nnU-Net a 0,46 pro 3D U-Net.
- Byl natrénován model pomocí křížové validace pouze na datasetu Motol (DC 0,75).
- Zlepšení při použití výstupní fúze.
- Důležitější, než architektura je nastavení celého procesu.

Děkuji za pozornost

Modifikace 3D U-Net

A) Padding

• strana 70, odst. 2 (132, 132, 116)

(44, 44, 28)

Modifikace 3D U-Net

B) Modifikace pro in-layer fúzi

- strana 76, obr. 11.4
- reference [75]

CESKÉ VYSOKÉ UČENÍ TECHNICKÉ LESKÉ VYSOKÉ UČENÍ TECHNICKÉ LA TOPOTOTO TOPOTO TOPOTOTO TOPOTO TOPOTOTO TOPOTO TOPOTOTO TOPOTO TOPO

- Aktuálně: lokálně na PC, shell skript.
- Pro interní použití: GPU server a uživ. rozhraní.
- Pro klinické použití: Nařízení (EU) 2017/745 o zdravotnických prostředcích (MDR).

Explainable AI

K. Kamnitsas et al./Medical Image Analysis 36 (2017) 61-78

Explainable AI CESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE EXPLAINABLE EXP

• Grad-Cam

