

特許協力条約に基づいて公開された国際出願

(51) 國際特許分類 ⁴ C07D 211/14, 211/18, 211/22 C07D 211/32, 211/70, 295/18 C07D 401/06, 405/04, 409/04 A61K 31/445, 31/47, 31/505

A1 (Ji) 国際公開發号

WO 88/02365

(43) 國際公開日

1988年4月7日 (07.04.88)

A61K 31/445, 31/47, 31/505 PCT/JP86/00502 (21) 国際出願番号 1986年9月30日 (30.09.86) (22) 国際出類日 (71)出願人(米園を除くすべての指定国について) エーザイ株式会社 (EISAI CO., LTD.)(JP/JP) 〒112 東京都文京区小石川4丁目6番10号 Tokyo, (JP) (72) 発明者: および (75) 発明者/出願人(米国についてのみ) 杉本八郎 (SUGIMOTO, Hachiro)(JP/JP) 〒300-12 茨城県牛久市柏田町3073-13 [baraki, (JP) 中村添晴 (NAKAMURA, Takaharu)(JP/JP) 〒270-11 千葉県我保子市つくL野2-4-9 Chiba, (JP) 苅郎則夫 (KARIBE, Norio)(JP/JP) 〒305 茨城県筑波郡谷田部町春日4-19-13 ニーザイ紫山寮 Ibaraki, (JP) 斉藤 勲 (SAITO, Isao)(JP/JP) 〒305 茨城県新治郡接村下広間 670-63 Ibaraki, (JP) 日春邦造 (HIGURASHI, Kunizo)[JP/JP] 〒305 茨城県筑波郡谷田部町春日4-19-13 エーザイ紫山窟 Ibaraki, (JP) 世永稚弘 (YONAGA, Masahiro)(JP/JP) Ibaraki, (JP)

〒305 茨城県筑波部谷田部町松代2-17-6-1 Ibaraki, (JP)

中澤隆弘 (NAKAZAWA, Takahiro)(JP/JP) 〒300-15 茨城県北相馬郡蘇代町大字宮和田531-1-810 Ibaraki, (JP) 上野正学 (UENO, Masataka)(JP/JP) 〒305 茨城県筑波郡谷田部町二の宮2-17-10 パークサイド洞峰 Ibaraki, (JP) 山津清實 (YAMATSU, Kiyomi)(JP/JP) 〒247 神奈川県鎌倉市今泉台7-23-7 Kanagawa, (JP) (74) 代理人 并建士 古谷 磬 (FURUYA, Kaoru) 〒103 東京都中央区日本橋樹山町1の3 中井ビル Tokyo. (JP) (81) 指定国 AT(欧州特許),AU,BE(欧州特許),CH(欧州特許), DE(欧州特許),DK, FI, FR(欧州特許), GB(欧州特許), HU, IT(欧州特許), JP. KR. LU(欧州特許), NL(欧州特許) NO, SE(欧州特許), SU, US. 国際周安報告書 添付公開書類

(54) Title: CYCLIC AMINE DERIVATIVES

金子武稔 (KANEKO, Takeru)(JP/JP)

(54) 発明の名称 環状アミン誘導体

-CH(
$$\rightarrow$$
 Hal)- or -CH(\rightarrow 0)- (VI)

(57) Abstract

(57)要約

【文中、Aは置換もしくは無配換のフェニル菌、ピリジル菌、チェニル菌、登換もしくは無量換のナフチル菌、テトラリル基、ギノリル菌、ペンソフラニル菌、ギナソリル菌、ペンソチエニル菌、

式-C(=0)-茜、式-CH(OH)-菇、式-CH(CH3)-茲又は 式-CH(CH2N(C2H5)2)-蓋で、aは0~4の整数で、aは1 ~3の整数で、Yは炭梁又は窒素原子で、Zは式-CH2- 茎、式-C(=0)-菇、式-CH(OB1)-(式中、B1 はH、低級アルギル 茎、アシル基、アリールアルギル、またはヘテロアリールアルギル を意味する) 蒸、式-CH(Ha1)-蒸、式=CH-蒸、式=C(-

一巻で、Halはヘロゲン源子で、YとZの間の一一は、一盆もしくは二重結合で更に式ーーー B 差は、上記の構造式における
3 又は 4 の位置で環と結合している。

Bはヘロゲン、低級アルキル帯、又は低級アルコキシ帯から選択された同一又は相異なる一つ又は二つの選換器により選集されてもよい無鑑換又は最級フェニル器又はナフテル器を意味する。〕 の化合物及びその塩を提供し、これは、海血管障害に伴う複符症状の改善・治療・予防剤として有効である。

情報としての用途のみ

PCTに基づいて公開される国際出額のパンフレット第1頁にPCT加盟国を同定するために使用されるコード

AT	オーストリア・	FR	フランス ・ .	MR	モーリタニア
AU	オーストラリア	GA	ガポン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	MW	マラウイ
	バルバドス	GB	イギリス	NL	オランダ
BE	ベルギー	HĽ	ハンガリー	NO.	ノルウエー
	プルガリア	IT	イタリー	RO	ルーマニア
BJ	ベナン	JР	日本	SD	スーダン
	プラジル	KΡ	朝鮮民主主義人民共和国	SE	スウエーデン
CF	中央アフリカ美和国	KR	大韓民邕	SN.	セネガル
CG	コンゴー	LI	リヒテンシェタイン	su	ソピエト選邦
CH	スイス	Li	スリランカ	TD	テャード
CM	カメルーン	LU	ルクセンブルグ	TG	トーゴ
DE	ラドイツ	MC	モナコ	US	米国
DК	デンマーク	MG	マダガスカル		•
	ー・ハニンゼ	157	TT 11		

1

明 細書

環状アミン誘導体

産業上の利用分野

本発明は、医薬として優れた作用を有する環状アミン誘導体に関する。

従来の技術

脳血管障害を薬物で治療する試みは種々なされている。例えば 脳血管拡張剤、脳代謝は賦活剤などが使用されてはいるが、根本 的に有効とされる薬剤は今のところ存在しない。特に脳血管障害 に伴う諸症状のうち、脳血管性痴呆、知的機能障害などには有効 な薬剤が存在しないのが現状である。

本発明の目的

上記のような実情に鑑み、本発明者等は長期間にわたって、新規な脳血管障害に伴う諸症状、特に精神症状の改善剤として有効な化合物について探索研究を重ねた結果、優れた作用を有する化合物を見出し、本発明を完成した。

従って、本発明の目的は、脳卒中、脳出血、脳梗塞、脳動脈硬化症などの脳血管障害、多発梗塞性痴呆に伴う精神症状の改善剤として有効な環状アミン誘導体又はその薬理的に許容できる塩を提供することであり、更にもう一つの目的は、該化合物又はその薬理的に許容できる塩を有効成分とする医薬を提供することである。

発明の構成及び効果

本発明の目的化合物は、次の一般式(I)で表される環状アミン誘導体又はその薬理的に許容できる塩である。

$$A - X - (CH_2)_n - N$$

$$(CH_2)_m$$

$$(CH_2)_m$$

〔式中 Aは置換もしくは無置換のフェニル基、ピリジル基、チェニル基、置換もしくは無置換のナフチル基、テトラリル基、キノリル基、ベンゾラニル基、キナゾリル基、ベンゾチエニル基、

る基を意味する。

○ | Xは式-CH2- で示される基、式-C-で示される基、式
○H | CH3 | - CH- で示される基、式 - CH- で示される基又は式

○CH2N | C2H5 | C2H5 | で示される基を意味する。
- CH-

nは0~4の整数を意味する。

mは1~3の整数を意味する。

Yは炭素原子又は窒素原子を意味する。

0 || | Zは式-CHz- で示される基、式-C- で示される基、式 | OR' | - CH- (式中、R'は水素原子、低級アルキル基、アシル基、ア リールアルキル、またはヘテロアリールアルキルを意味する)

Hal I で示される基、式 - CH - (式中 Halはハロゲン原子を意味する)

= C - で示される基、式 = CH - で示される基、式 (式中、Hal

ーCHーはハロゲン原子を意味する)で示される基、式 (式中、

Hal はハロゲン原子を意味する)で示される基、又は式

Yと Zの間の …… は、一重結合もしくは二重結合を意味 意味する。

更に式 ------- Z --- B で表される基は、上記の構造式における 3 又は 4 の位置で環と結合している。

Bはハロゲン、低級アルキル基、又は低級アルコキシ基から 選択された同一又は相異なる一つ又は二つの置換基により置換 されてもよい無置換又は置換フェニル基又はナフチル基を意味 する。〕

上記の定義において、R¹,Bにみられる低級アルキル基とは、 炭素数 1 ~ 6 の直鎖もしくは分枝状のアルキル基、例えばメチ ル、エチル、n ープロピル、n ープチル、イソプロピル、イソ プチル、1 ーメチルプロピル、tertープチル、n ーペンチル、 1 ーエチルプロピル、イソアミル、n ーヘキシルなどを意味す るが、最も好ましい例は、メチル基、エチル基である。

また、 Bにみられる低級アルコキシ基とは、上記の低級アルキル基から誘導されたアルコキシ基を意味するが、好適な例としては、例えばメトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソプトキシ基などを挙げることができる。

A の定義における「置換もしくは無置換のフェニル基」及び「置換もしくは無置換のナフチル基」の表現において、置換基としては、例えば上記に定義した低級アルキル基、低級アルコキシ基、水酸基、フッ素、臭素、ヨウ素、塩素などのハロゲン原子、フェニル基、イミダゾリル基、ピリジル基、ピラゾリル基などへテロ原子として窒素を含有している複素環基を挙げることができる。これらの置換基は1~3個置換されることができ、2個以上のときは、上記の置換基は同一でも異なっていてもよい。

更にフェニル基の場合は上記置換基のほか、フェニル環を構成 している相隣なる2個の炭素原子の位置で、メチレンジオキシ基 又はエチレンジオキシ基で置換されていてもよく、また式

で示される基のような場合も、置換されたフェニル

基に含むものとする。

RIの定義にみられるアシル基とは、脂肪族飽和カルボン酸、脂肪族不飽和カルボン酸、炭素環式カルボン酸又は複素環式カルボン酸のような有機酸の残基が挙げられるが、具体的には、例えばホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイルなどの低級アルカノイル基、ベンゾイル、トルオイル、ナフトイルなどのアロイル基、フロイル、ニコチノイル、イソニコチノイルなどのヘテロアロイル基などを挙げることができる。

更にR'の定義中にみられるアリールアルキルとは、置換又は無置換のフェニル基、ナフチル基などから誘導されるアリールアルキル基をいう。代表的なものとしては、ベンジル基、フェネチル基などを挙げることができる。上記の定義において置換基とは、例えば上記に定義した低級アルキル基、低級アルコキシ基、水酸基、フッ素、臭素、ヨウ素、塩素などのハロゲン原子などを挙げることができる。

また、ヘテロアリールアルキルとして代表的なものを挙げれば、 ピリジルアルキル(ピコリル基など)を挙げることができる。

ハロゲン原子には、フッ素、塩素、臭素及びヨウ素が含まれる。

薬理的に許容できる塩とは、慣用の無毒性塩類であり、例えば 塩酸塩、臭化水素酸塩、硫酸塩、燐酸塩などの無機酸塩、例えば 酢酸塩、マレイン酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼ ンスルホン酸塩、トルエンスルホン酸塩などの有機酸塩、又は例 えばアルギニン、アスパラギン酸、グルタミン酸などのアミノ酸 との塩などを挙げることができる。

製造方法

本発明化合物の製造方法は種々考えられるが、代表的な方法について述べれば以下の通りである。

A - X -
$$(CH_2)_{n-1}$$
 CH₂ - Hal (II)

+

(CH₂)_m

Z - B

(III)

(CH₂),

(式中、Hal はハロゲンを示し、A, X, Y, Z, B, n 及びm は前記の意味を有する。式 Z-B で示される基の意味は前記と同様で

(I)

あり、上記の構造式中3又は4の位置で結合している)

即ち、一般式 (II) で示されるハロゲン化物と、一般式 (II) で示される化合物とを反応させて、目的物質である化合物 (I)を得ることができる。

この反応は、無溶媒或いは、例えばメタノール、エタノール、 ブタノールなどのアルコール系溶媒、ベンゼン、トルエン、キシレン、テトラヒドロフラン、クロロホルム、四塩化炭素、ジメチルホルムアミドの中から選ばれた反応に関与しない有機溶媒中で常法により加熱下、脱ハロゲン化水素反応を行う。この場合、、炭酸オトリウム、炭酸ナトリウム、炭酸ナトリウム、 苛性ソーダの如き無機塩類、或いはトリエチルアミン、ピリジン、ピリジン、ジェチルアニリンの如き有機塩基類の存在下に反応を行うことにより好ましい結果が得られる。

下記の薬理実験例により、本発明化合物は中枢神経系に対する 有用な薬理作用、特に顕著な虚血性脳血管障害改善作用を有する ことが明らかであり、結局、脳卒中、脳出血、脳梗塞、脳動脈硬 化症、多発梗塞性痴呆など各種痴呆症などの脳血管障害に伴う精 神症状の改善・治療・予防剤として有用である。

更に、本発明化合物は、ラットによる毒性試験の結果、安全性が高いことが判明しており、この意味でも本発明の価値は高い。

即ち、本発明化合物の代表化合物(下記実施例1~12)について、常法により毒性試験を行った結果、LD50値はラット(経口)で2,000~4,000mg/kgであった。

本発明化合物をこれらの医薬として使用する場合は、経口投与若しくは非経口投与により投与される。投与量は、症状の程度;患者の年令、性別、体重、感受性差;投与方法;投与の時期、間隔、医薬製剤の性質、調剤、種類;有効成分の種類などによって異なり、特に限定されないが、通常成入1日あたり約0.1~300mg、好ましくは約1~100mg であり、これを通常1日1~4回にわけて投与する。

本発明化合物を製剤化するためには、製剤の技術分野における 通常の方法で注射剤、坐薬、舌下錠、錠剤、カプセル剤などの剤 型とする。

注射剤を調製する場合には、主薬に必要によりpH調整剤、緩衝剂、懸濁化剤、溶解補助剤、安定化剤、等張化剤、保存剤などを添加し、常法により静脈、皮下、筋肉内注射剤とする。その際必要により常法により凍結乾燥物とすることも可能である。

懸濁化剤としての例を挙げれば、例えばメチルセルロース、ポリソルベート80、ヒドロキシエチルセルロース、アラビアゴム、トラガント末、カルボキシメチルセルロースナトリウム、ポリオキシエチレンソルビタンモノラウレートなどを挙げることができる。

溶解補助剤としては、例えばポリオキシエチレン硬化ヒマシ油、ポリソルベート80、ニコチン酸アミド、ポリオキシエチレンソルビタンモノラウレート、マグロゴール、ヒマシ油脂肪酸エチルエステルなどを挙げることができる。

また安定化剤としては、例えば亜硫酸ナトリウム、メタ亜硫酸ナトリウム、エーテル等が、保存剤としては、例えばパラオキシ安息香酸メチル、パラオキシ安息香酸エチル、ソルビン酸、フェノール、クレゾール、クロロクレゾールなどを挙げることができる。

〔実 施 例〕

次に本発明の代表的化合物を実施例として掲げるが、その目的とするところは、本発明の理解を助けるためであって、本発明の 範囲がこれらのみに限定されることがないことはいうまでもない。 実 施 例 1

2- (2- (4- (p-フロロベンジル) ピペリジニル] エチル} ナフタレン塩酸塩

1-クロロ-2-(2-ナフチル) エタン1.05g、4-(p-フロロベンジル) ピペリジン1.09g、ヨウ化カリウム0.2g、炭酸水素ナトリウム 1.4gをn-ブタノール溶媒中で5時間還流した。その後溶媒を滤去して新たにクロロホルム100ml を加え、水洗し、硫酸マグネシウムで乾燥した。得られた油状物をシリカゲルカラムで精製し、常法に従い塩酸塩とした。

収 量 0.45g

融 点 244℃

元素分析 Cz4Hz6NF·HC1

C H N

理論値(%) 75.08 7.09 3.65

分析値(%) 75.30 7.32 7.34

実 施 例 2

2-(4-ベンジルピペリジニル)-2'-アセトナフトン塩酸塩

2 ーブロモー2'ーアセトナフトン5g、4 ーベンジルピペリジン3.5g、ヨウ化カリウム0.2g、炭酸水素ナトリウム5gをブタノール溶媒中で4時間還流した。反応終了後常法により処理して得られた油状物をシリカゲルカラムで精製した。これを塩酸塩にした後、クロロホルム、エタノールより再結晶した。

収 量 2.1g

融 点 233~235℃

元素分析 C24H25NO・HC1

C · H N

理論値(%) 75.87 6.90 3.69

分析値(%) 75.67 6.71 3.49

実. 施 例 3

2- [4-ビス (4-フロロフェニル) メチレン-1-ピペリジ ニル] -2'-アセトナフトン塩酸塩

4 - ビス(4 - フロロフェニル)メチレンピペリジン850mg、2 - プロモ - 2' - アセトナフトン700mg、ヨウ化カリウム20mg、炭酸水素ナトリウム760mgをn - プタノール溶媒中で3時間半還流した。反応終了後常法により処理して得られた油状物をシリカゲルカラムで精製した。これを塩酸塩として目的物を510mg 得た。融 点 214~217℃

元素分析 C30H25NOF2・HC1

 C
 H
 N

 理論値(%)
 73.54
 5.35
 2.86

 分析値(%)
 73.54
 5.46
 3.03

実 施 例 4

4-(1-ナフトニル) ピペリジニル-3',4' -ジメチルアセト

フェノン塩酸塩

2 - ブロモー3',4' - ジメチルアセトフェノン1.9g、4 - (1 - ナフトニル) ピペリジン2.0g、ヨウ化カリウム0.1g、炭酸水素ナトリウム2.1gをn - ブタノール溶媒中で3時間還流した。反応

終了後常法により処理し、得られた油状物をシリカゲルカラムで 精製した。これを塩酸塩として目的物を1.0g得た。

融 点 92~96℃ (分解)

元素分析 C26H27NO2・HC1

C H N

理論値(%) 74.01 6.68 3.32

分析値(%) 73.79 6.69 3.01

実 施 例 5

1-(3-(p-フロロベンゾイル) ピペリジニル) -2'-アセ

トナフトン塩酸塩

$$0 = C - F - HC1$$

1ーブロモー2'ーアセトナフトン0.7g、3ー (pーフロロベンゾイル)ピペリジン塩酸塩0.7g、ヨウ化カリウム0.05g、炭酸水素ナトリウム0.7gをローブタノール溶媒中で2時間還流した。反応終了後常法により処理し、得られた油状物をシリカゲルカラムにより精製した。これを塩酸塩とした。

収量 0.4g

融 点 123~127℃ (分解)

元素分析 Cz4Hz2NO2F・HC1

C H N

理論値(%) 69.98 5.63 3.40

分析値(%) 69.76 5.51 3.18

実 施 例 6

2-〔4-(α-ベンジルオキシ-p-フロロベンジル)ピペリジニル〕-2'-アセトナフトン塩酸塩

2 - プロモー2' - アセトナフトン1.1g、4 - (α - ベンジルオキシーp - フロロベンジル) - ピペリジン1.2g、炭酸水素ナトリウム4.5gをエタノール溶媒中で 3.5時間還流した。反応終了後常法により処理し、得られた油状物をシリカゲルカラムにより精製した。これを塩酸塩とし、酢酸エチルーメタノールより再結晶した。

収量 0.6g

融 点 115~120℃

元素分析 CalHaoNOzF・HCI

C H N

理論値(%) 76.76 6.44 2.89

分析値(%) 76.59 6.21 2.68

実 施 例 7

2-〔4-(α-アセトキシ-p-フロロベンジル) ピペリジニル〕-2'-アセトナフトン塩酸塩

2ープロモー2'ーアセトナフトン5.4g、4ー(αーハイドロキシーpーフロロベンジル)ピペリジン4.6g、炭酸水素ナトリウム10gをエタノール溶媒中で2.5時間還流した。反応終了後常法により処理し、得られた油状物をシリカゲルカラムにより精製し、2ー〔4ー(αーハイドロキシーpーフロロベンジル)ピペリジニル〕ー2'ーアセトナフトン5gを得た。この内1gをとり無水酢酸1.0g、ジメチルアミノピリジン0.1gをピリジン溶媒中5時間室温で攪拌した。反応終了後常法により処理し、得られた油状物をシリカゲルカラムにより精製し、次いで塩酸塩として、酢酸エチルとメタノールより再結晶した。

収 量 1.0g

融 点 148~152℃

元素分析 C26H26NO3F·HCI

C H N

理論値(%) 68.49 5.97 3.07

分析値(%) 68.24 5.88 3.12

実 施 例 8

<u>4-(4-p-フロロベンゾイル) ピペリジニル-6,7 -ジメト</u> <u>キシイソキノリン塩酸塩</u>

4 - クロロメチル - 6,7 - ジメトキシイソキノリン70mgをジメチルスルホキサイド10m1に溶解し、トリエチルアミン1m1、4 - (p - フロロベンゾイル)ピペリジン140mgを加え、1時間,80℃で加熱した。反応混合物を酢酸エチルに溶解し、水洗後硫酸マグネシウムで乾燥した。シリカゲルカラムで精製した後塩酸塩とした。

収量 80mg

融 点 185~190℃

元素分析 CzaHz5N2O3F·2HC1

C H N

理論値(%) 59.88 5.65 5.82

分析値(%) 59.78 5.61 5.80

実 施 例 9

4-{2-(4-(p-フロロベンゾイル) ピペリジニル) エチ

ルトキナゾリン塩酸塩

4 - メチルキナゾリン2g をエタノール20m1に溶解し、4 - (p - フロロベンゾイル) ピペリジン塩酸塩3.4g、37%ホルマリン1.9m1 を加え、3日間室温で攪拌した。白色析出物を濾取し、エタノールで洗浄後目的物を得た。

収 量 4.4g

融 点 135~140℃

元素分析 C22H22N3OF·HC1

C H N

理論値(%) 66.08 5.79 10.51

分析値(%) 66.02 5.65 10.44

実 施 例 10

1- (2-ナフチル)-1- (4-(p-フロロベンゾイル) ピ ペリジニル)-2-ジエチルアミノエタン塩酸塩

1-(2-ナフチル)-2-ジエチルアミノエタノール1.4gをジクロロメタン20m1に溶解し、トリエチルアミン2.4m1、メタンスルホニルクロライド0.9m1を氷冷下加え、4時間30分室温で攪拌した。反応混合物に4-(p-フロロベンゾイル)ピペリジン1.2gをジオキサン25m1に溶解して加え、2時間還流した。反応終了後シリカゲルカラムで精製し、次いで塩酸塩とした。

収 量 1.9g

融 点 140~145℃

元素分析 C28H33N2OF・2HC1

C H N

理論値(%) 66.52 6.97 5.54

分析値(%) 66.57 6.81 5.38

実 施 例 11

2- (4- (α-サクシニイミド-p-フロロベンジル) ピペリジニル) -2'-アセトナフトン塩酸塩

4-(α-サクシニイミド-p-フロロベンジル)ピペリジン 470mg をエタノール40m1に溶解し、2-プロモー2'-アセトナフトン410mg、炭酸水素ナトリウム420mg を加え、30分間還流した。 反応終了後常法により処理した後、シリカゲルカラムで精製し、次いで塩酸塩とした。

収量 400mg

融 点 233~237℃

元素分析 Cz8Hz7N2O3F·HC1

理論値(%) 67.94 5.70 5.66

分析値(%) 68.13 5.56 5.47

実 施. 例 12

2- (4-(p-フロロベンゾイル) ピペリジニル) -2'-アセトナフトン塩酸塩

2 ープロモー2'ーアセトナフトン49.7g、4 ー p ー フロロベンソイル)ピペリジン塩酸塩49.9g、ヨウ化カリウム0.5g、炭酸水素ナトリウム50.4gをエタノール500m1に加え2時間還流した。溶媒を留去し、クロロホルムを加えて水洗、乾燥し、クロロホルムを留去、カラム精製(シリカゲル)することにより目的物の結晶を58.9g 得た。これを常法により塩酸塩にし再結晶することにより目的物の塩酸塩を得ることができた。

融 点 247~248℃ (分解)

元素分析 Cz.4HzzNOzF·HC1

C H N

理論値(%) 69.98 5.63 3.40

分析値(%) 69.81 5.51 3.36

実 施 例 13~95

上記実施例1~12と同様にして、表1に示す各種化合物を合

成した。

		_				
実施例 Na	構造式	(0.)	化学式	児園	元素分析值 (%) 理論値/分析値	(%)
1.3	F - CONII - N - L - P - IICI	234~235 (分解)	Cz i Hz aNzOz Fz · IIC1	61.68 61.49	5.92	6.85
1 4	0 = 0 = 0 $0 = 0$	216~218 (分解)	CzoltzzNOzF·IIC1	66.02 66.16	6.37 6.39	3.85
15	P	228~229 (分解)	Czoll,9NO2Fz·IICI	63.24 63.11	5.31 5.37	3.69
16	F - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	223~224 (分解)	CzoHziNOFz·HCI	65.66 65.39	6.06	3.83
1.7	CII30 - N - B - F - IIC1	225~226 ,(分解)	Cz.1124NOz • IICI	70.28 69.97	7.02	3.90
1 8	CII 30 - N - CII 2 - CII 2 - UC1	201~203	C2,1127NO · HC1	72.92 72.76	8.16	4.05

実施例 No	構造。	点 場	化学式	元田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	元素分析值(%) 理論值/分析值	(%)
				S	Н	z
1.9	Q \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	233~235 (分解)	CzollzoNOzF·IICI	66.38 66.27	5.85	3.87
2 0	CH_3 $R \longrightarrow R \longrightarrow R \longrightarrow R \longrightarrow RC1$	244~245	CzzIIz4NOzF - IIC1	67.77	6.46	3.59
2 1	Q NO-CII2 O · IIC1	211~211.5	Czollz3NO · IIC1	72.82	7.33	4.25
2 2	$c_1 _{C1} _{R} \underbrace{R} _{R} _{R} _{R} _{R} _{R} _{R} _{R} _{R} _{R} $	222~223 (分解)	CzoHieNOzFCIz·211CI	55.75 55.71	4.44	3.25
2 3		235~236	Cz6Hz3NOFz·HCI	70.98 70.59	5.50	3.18

表 1 (続

実施例	構造式	题 证	化学式	温温	元素分析值 (%) 理論值/分析值	(%) 重
7¥.		(2)		C	II	N
2.4	C) CII CII CII	143~146	$C_{26}H_{25}NOF_2 \cdot IIC1$	70.66	5.93	3.17
2 5	$CII_3 \longrightarrow 0 \longrightarrow C \longrightarrow F \cdot \text{IICI}$	65~69	CzzHz4NO4F · HC1	62.63	5.97	3.39
2 6	$CH_{30} \longrightarrow 0 \longrightarrow V \longrightarrow V - V - V - V - V - V - V - V - V$	234~236 (分解)	CzzIIz4NO4F • IICI	62.63 62.57	5.97 5.96	3.32
2.7	N N N N N N N N N N	223~226 (分解)	C1 91121N2OF · 211C1	59.23 59.18	6.02	7.27
2 8	$N \longrightarrow -CII_2 - N \longrightarrow -CII - \left\langle \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	155~160 (分解)	C1 all 2 1 N 2 OF · 2 II C 1	57.91 57.80	6.21	7.50

₩

実施例	構 造 式	型量	化学式	元素工理論	元素分析值 (%)理論值/分析值	(%)
ş		(.c.)		ပ	=	2
2.9	N -CII $_z$ - N - C	220~225 · (分解)	C1 all 1 9 N 2 OF · 2 C1	58.23	5.70	7.55
3.0	$N \longrightarrow -CII_2 - N \longrightarrow \stackrel{0}{\longleftarrow} \stackrel{\cdot}{\longleftarrow} \cdot 2IIC1$	121~125 (分解)	CzzlizzNz0 · IIC1	63.01 62.91	5.77	6.68
3.1	0	238~240	C27H2BNO2F·IIC1	71.42	6.44	3.09
3.2	N - CH2 - N - IICI	173~174	C1.9H22N2O · IIC1	68.98 68.75	7.01	8.47
3 3	(S)	243~244	CieHisNOzF·IICI	58. <i>77</i> 58.61	5.21	3.81

表 I

実施例 No	北 班 排	平、器	化学式	近盟	元素分析值 (%) 理論值/分析値	(%) 斤值
T.		(2)		C	=	N
3.4	0	253~254 (分)解)	Czellz4NOzF·HCI	71.31	5.75	3.20
35	(N) - (1) -	269~270 (分解)	CzalizaNaOzf · 2HC1	59.36 59.23	5.41	9.03
3 6	Chi	182~184 (分解)	C25H25N2O2F · IIC1	68.10 68.31	5.94	6.35
3.7		232~234 . (分解)	CzsllzsNO3 · IICI	70.83 70.76	6.18	3.30
3 8	101 - C - C - 11C1	242~244 (5)14;)	C241122N02C1 · 11C1	67.30 67.22	5.41	3.27

表 1 (続

金
(続
-
芨

実施例	構造式	河 强	化学式	元素理能	元素分析值(%)理論值/分析值	(%) 差
		(2)	,	C	Н	z
3 9	0 - P - HC1	253~255 (分解)	C24H24NOF·HC1	72.44	6.33	3.52
4 0	0	199~200(分解)	C24H24N2OF·2HCI	63.57 63.47	6.89	6.18
4 1	CII30 OII OII OII CII30 CII30	198~200 (分解)	Cz6H35N2O3F · 2HCI	60.58	7.24	5.44
4 2	0 0 V - C - C - F - 11C1	209~210 (分解)	C25U24NO3F·IICI	67.94	5.70	3.17
4 3		195~196 (分解)	C25H26NOSF - HC1	67.62	6.13	3.15

実施例	構造式	强 强 (3)	化学式	元	元素分析值 (%) 理論值/分析值	(%)
				၁	H	N
4 4	0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	253~254 (分解)	Czzliz, NO4F · IICI	63.08 63.16	5.29	3.34
4 5	1011 · Δ - Q - Q - Q - Q - Q - Q - Q - Q - Q -	180~181	C23 24 02 F • HC1	68.73 68.88	6.27	3.49
46		209~210 (分解)	CzsHz4NOzF·IICI	70.49	5.92	3.29
47	CH ₃ 0 CH ₃ 0 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ 0	266~267 (5}₩)	Czsli34N2O2 · 2liC1	64.23 64.36	7.76	5.99
4 8		214~217 (分解)	C22H21N20F · 2HC1	62.71 62.77	5.50	6.65

女 」(読

和

	(%)	Z	6.43	3.29	3.29	3.65	3.38
	元素分析值(%) 理論值/分析值	H	5.79	5.92	5.92	6.04	6.08
	元素理點	၁	63.45 63.16	70.50	70.50	71.96	69.57 69.48
	化学式	•	C23H23N2OF · 2HC1	C25H24NO2F • HC1	Czsliz4NOzF·HCI	C23H22NOF · IICI	C241124N02C1 • 11C1
(続き)	開 点(?)	(5)	260~263	236~237 (分解)	242 (分解)	237~238 (分解)	231~232 (5)解)
崧	構定式		Q V - CII.2 - Q · 2IIC1	$ \begin{array}{c c} Q & V & V & V \\ \hline \end{array} $	$0 = C - CII_2 - N \longrightarrow C \longrightarrow F$ CII_3 $\cdot IICI$	$ \bigcirc \qquad \bigcirc $	$0 = C - C \ _{z} - N \longrightarrow C \longrightarrow F$ $\cdot \ C\ $
	実施例》		4.9	5 0	5 1	5.2	5 3

	茶	1 (続き)					
実施例	年 京 射	憂	化学式	元	元素分析值 (%) 理論值/分析值	(%)	
<u> </u>		(0)		3	Ħ	N	
5 4	$0 = C - C - F \cdot IICI$	153~156	Cz4IIzzNOzF·IICI	69.98	5.63	3.40	
	$0=C-CII_2-N$ CII_2-CII_2-N CII_3	222~225 (分解)	C25H27NO · HC1	76.22 75.93	7.16	3.56	
5 6	$ \bigcirc \qquad \bigvee \qquad \bigvee \qquad \bigcup \qquad \bigcup$	250~253 (分解)	CzslizsNOz • HC1	73.61	6.42	3.43	
5 7	$0 = C - C _2 - N \longrightarrow C - C - C$ $\cdot C $ $\cdot C $	256~260 (分解)	C241121NO2C1F · 11C1	67.45	5.19	3.28	
5 8		246~248 (分解)	C24H24NO2fi • HC1	69.64	6.08	3.38	

		(税 き)				
実施例	構造式	融 点(**)	化学式	元素理論	元素分析值(%) 理論值/分析值	(%) 車
I WT		(0)		3	Н	N
5 9		250~254 (分解)	Cz6llz6NO2F · HC1	70.98 70.96	6.19	3.18
0 9	$ \begin{array}{c} $	223~226 (分解)	C241122NO2F • 11C1	69.98 69.86	5.63	3.40
6 1	Q V CII 2 Q - F · HC1	272~274 (分解)	C22H27NOF · IICI	62.87 62.69	6.65	6.38
6.2	ONCO OF FILE	214~217 (分解)	C23H25N2O2F · HC1	66.26 66.13	6.29	6.72
6 3	$ \bigcirc \qquad \qquad \bigcirc \qquad \qquad \bigcirc $	263~266 (分解)	Cz3Hz6NOzF·IICI	68.39 68.18	6.74	3.47
6.4		234~238 (分解)	Cz i II z z N 3 F · 311C I	56.71 56.45	5.66	9.45

	· · · · · · · · · · · · · · · · · · ·	1 (続き)					
実施例	構造式	题 点	化學式	元類型	元素分析值(%) 理論值/分析值	(%)	
₹		(2)		O O	Н	Z	
6 5	0 N - C - () - F · 21IC1	230~233	CzılizoN3OF · 211CI	59.73 59.54	5.25	9.94	
9 9	O OC2H5 · IIC1	142~147	CzilizuNOzf·liC1	70.66 70.53	6.61	3.17	
. 9	O CII O SIICI	98~104	C30ll2vN2O2F · 2IIC1	66.54	5.77	5.17	
8 9	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	135~140	CzzHzzNO4F • IICI	62.93	5.52	3.34	

実施例	· 选 式	學。点	化学式	元類理	元素分析值(%) 理論值/分析值	(%)
O)		(5)		C	=	Z
7.3	IDII · IICI		Czallzan ilci	78.77 78.73	7.11	3.83
7.4	CII - CII - CII - CII	246~246.5	Cz4lizzNOF · IICI	72.81 72.66	5.81	3.54
7.5	0 - CII.2 - CII.2 - CII.2	243~244	Cz4Hz4NOF · HCl	72.44 72.39	6.33	3.52
9 L		.224~225	CzzlizoNO;;F·IICI	65.75 65.79	5.27	3.49
77.	0	206~207	Czalizı Nz02F · HCI	66.90 66.82	5.37	6.78

表 I (続

和

和
3
渋

実施例》	構造式	型 强	化学式	元潔理	元素分析值 (%)理論值/分析值	(%) 型
		<u>.</u>		Э	11	z
7 8		173~174	C241127NO2F • 11C1	69.14 69.02	6.51	3.36
7 9		187~188	C24H23NOFCI · HCI	66.67	5.59	3.24
0.8	CONTRACTOR - HCI	172~173	CzalizsN • IIC1	78.50 78.64	7.45	3.98
8 1	MO · IICI	226~227	C241127N · IIC1	78.76 78.75	7.45	3.83
8 2		274~275	CzalizoNz · 2HC1	68.48 68.52	7.00	6.94

!	· **	1 (続き)				
实施例	株 遊 式	题点(**)	化学式	元	元素分析值 ₍ %) 理論值/分析值	(%)
Ya		(0)		O .	Н	z
8 3	CII CII CII	249	Czalizani • IICI	75.48 75.44	6.60	3.67
8 4		203	Cz4llz4NOF - IICI	72.44 72.11	6.33 6.19	3.52 3.59
8 5		216~217	Cz4IIz7NO • IICI	75.47 75.48	7.39	3.67
8 6		239~241	Cz4liz3NO • IICI	76.28 76.08	6.40	3.71
8 7	Complete Management	221~223	CzzlizaNOz • IICI	71.44	6.54	3.79
8 8	IIO 🐣 IICI	227~229	CzoHanNOzF • HCI	70.64	8.26	2.94

元素分析值 (%)理論值/分析值	H N 6.33 3.52 6.19 3.41	6.60 3.40 6.54 3.37	5.30 7.02 5.14 6.87	6.95 3.64 6.92 3.69	5.59 3.24 5.62 3.24
元素分理論値	C 1 72.44 6 72.41 6	72.83 6	57.15 5.56.78 5.	74.98 6. 74.90 6.	66.67 5.
化学式	C241124NOF • 11C1	CzslizbNOF · IIC1	C191119N2O2F · 211C1	C241125NO · 11C1 · 1/41120	C24H23NOFCI · HC1
型 强	205~210 .(分解)	195~197 (分解)	オイル状	233.5~235	オイル状
構造式	CH ₃ 0 CH ₃ O CH ₂ O CH ₂ O CH ₂ O CH ₃	CII3 N 0 P - F - HC1	N C C - F · 2HC1		CI CII CII CII CII
実施例 Na	6 8	0 6	9 1	9.5	9 3

以下に本発明化合物の薬理実験例を示す。

実 験 例 1

虚血脳保護作用

ICRマウス(6~8週令)を用い、ハロセン麻酔下に両側頸動脈を露出し、結紮した。このように両側頸動脈を結紮されたマウスはジャンピング、ローリング、痙攣などのストローク(stroke)症状を呈し、24時間以内にほぼ全例死亡した。

本発明化合物を両側頸動脈を結紮する1時間前に経口投与し、 延命効果を虚血脳保護作用の指標として生存時間(限度6時間) を観察した。なお化合物は5%アラビアゴム懸濁液とし、対照群 には5%アラビアゴム溶液を投与した。

結果は表 2 に示した通りである。即ち、対照群の平均生存時間は 149.9分であったが、本発明化合物はそれぞれ延命効果を示した。

137

130

処 置 化合物	投与量(mg/kg·p·o)	例 数	平均生存時間 (分) (平均±S.E.)	%
対 照 群		26	149.9 ± 25.8	100
ct + to Fil 1 0	3	10	213.7 ± 52.3	143
実施例12	10	10	181.4 ± 43.6	121
	30	9	191.1 ± 54.3	128
実施例73	10	7	150.4 ± 57.6	100
の化合物	30	6	275.2 ± 58.2	184

10

7

7

 143.3 ± 39.6

 205.1 ± 43.6

 194.2 ± 49.7

麦 2 虚血脳保護作用

実 験 例 2

実施例74

の化合物

虚血後学習障害改善作用

3

10

30

モンゴリアン・ジャービル(Mongolian gerbil) (17~21週令)を用い、無麻酔下で両側総頸動脈をスコビルの鉗子でクリップし、 5分後に再開通して短時間の虚血を負荷した。再開通24時間後に 動物を学習させ、更に24時間後に記憶テストを行った。

学習・記憶の検定法として Jarvik & Kopp: Psychological Reports, 21, 221~224(1967) に記載されている装置を改良して用い、パッシブ・アボイダンス(Passive avoidance) 法で検討した。即ち、A、B 2 つの部屋からなる装置のA - 部屋(明室)に

動物を入れ、最初にB-部屋(暗室)に入った時からB-部屋の床のグリッドに5分間電流(A.C. 1.6mA)を流し続けた。

翌日このように学習させた動物をA-部屋に入れて、B-部屋に入るまでの時間(潜在時間)を測定した。この潜在時間の上限は 300秒とした。

各化合物は5%アラビアゴム懸濁液として虚血負荷1時間前に 経口投与した。また対照群には5%アラビアゴム溶液を投与した。

結果を表3に示した。正常(偽手術)群は平均246.5秒の潜在時間を示したが、対照群では71.5秒に短縮した。即ち、5分虚血により学習・記憶障害を引き起こした。この対照群に対し本発明化合物の投与によりそれぞれ潜在時間の回復が認められた。即ち、虚血後の学習障害を改善した。

33

処 置 化合物	投 与 量 (mg/kg·p·o)	例数	潜 在 時 間 (秒) (平均 ± S.E.)	* 回復率 (%)
正常群		65	246.5 ± 10.9	100
対 照 群		62	71.5 ± 11.7	0
実施例12 の化合物	3	22	168.8 ± 23.0	56
	10	24	196.8 ± 22.3	72
	30	11	196.3 ± 37.0	71
実施例73 の化合物	10	8	193.1 ± 35.3	69
の16 音 初	30	7	80.1 ± 28.2	5
· 実施例74	. 3	13	.110.2 ± 29.0	22
天地701(4)	_			

24

21

 123.2 ± 24.3

 129.2 ± 23.8

表 3 虚血後学習障害改善作用

* 各潜在時間について (投薬群 - 対照群) * 各潜在時間について (正常群 - 対照群)

10

30

実 験 例 3

の化合物

虚血後細胞障害保護作用

モンゴリアン・ジャービル(Mongolian gerbil)の両側頸動脈を閉塞し、5分間の脳虚血を負荷すると、海馬のCAI領域の神経細胞の広汎な脱落が発生する(Kirino, T.: Brain Res., <u>239</u>, 57~69(1982))。

本発明化合物(対照群には5%アラビアゴム懸濁液)を経口投与して1時間後に5分間の虚血を負荷し、1週間後に4%中性ホルマリンで経心的に灌流固定し、パラフィン包埋して3μmに薄切しヘマトキシリンエオシン(hematoxylin-gosin)で染色し、光学顕微鏡で海馬CAI領域の神経細胞の数を観察した。

結果を表 4 に示した。正常(偽手術)群の海馬 C A I 領域の神経細胞密度は 287個/mm であったのに対し、対照群では21個/mm に減少した。即ち、5 分虚血により著明な細胞の脱落が認められた。これに対して本発明化合物の投与により神経細胞密度は高くなり、細胞障害保護作用が認められた。

表 4 虚血後細胞障害保護作用

処 置 化合物	投 与 量	例 数	神経細胞密度
	(mg/kg · p · o)	ניט 🗚	(個/mm)
正常群		6	287 ± 6
対 照 群		16	21 ± 10
実施例12	3	8	62 ± 26
の化合物	10	10	75 ± 32
	30	10	83 ± 32
実施例73 の化合物	10	7	69 ± 21
の16日初	30	5	49 ± 8
実施例74 の化合物	30	8	62 ± 5

讃 求 の 範 囲

1 一般式

〔式中 Aは置換もしくは無置換のフェニル基、ピリジル基、チェニル基、置換もしくは無置換のナフチル基、テトラリル基、キノリル基、ベンゾチエニル基、

る基を意味する。

 Xは式 - CH2 - で示される基、式

 CH3

 CH - で示される基、式 - CH - で示される基又は式

 C2Hs

 C2Hs

 C2Hs

 C2Hs

 C2Hs

 C2Hs

 C2Hs

 C2Hs

 C2Hs

 C2Hs

nは0~4の整数を意味する。

mは1~3の整数を意味する。

Yは炭素原子又は窒素原子を意味する。

|| Zは式-CH2- で示される基、式-C-で示される基、式OR'

- CH- (式中、R'は水素原子、低級アルキル基、アシル基、アリールアルキル、またはヘテロアリールアルキルを意味する)

Hal!! で示される基、式 - CH - (式中 Halはハロゲン原子を意味する)

で示される基、式=CH-で示される基、式 (式中、Hal

ーCHーはハロゲン原子を意味する)で示される基、式 (式中、

Hal はハロゲン原子を意味する)で示される基、又は式

- CH - N で示される基を意味する。

Yと Zの間の -------- は、一重結合もしくは二重結合を意味意味する。

更に式 -------- B で表される基は、上記の構造式における 3 又は 4 の位置で環と結合している。

0

0

Bはハロゲン、低級アルキル基、又は低級アルコキシ基から 選択された同一又は相異なる一つ又は二つの置換基により置換 されてもよい無置換又は置換フェニル基又はナフチル基を意味 する。〕

で表される環状アミン誘導体及びその薬理的に許容できる塩。

- 2 Aが置換もしくは無置換のフェニル基である請求の範囲第1 項記載の環状アミン誘導体及びその薬理的に許容できる塩。
- 3 Aが置換もしくは無置換のナフチル基である請求の範囲第 1 項記載の環状アミン誘導体及びその薬理的に許容できる塩。
- 4 Aが置換もしくは無置換のフェニル基であり、 Xが式 C で示される基である請求の範囲第1項記載の環状アミン誘導体及びその薬理的に許容できる塩。
- || 5 Aが置換もしくは無置換のナフチル基であり、 Xが式 C で示される基である請求の範囲第1項記載の環状アミン誘導体及びその薬理的に許容できる塩。
- || 6 Aが置換もしくは無置換のフェニル基であり、 Xが式 C で示される基であり、 n = 1 である請求の範囲第 1 項記載の環状アミン誘導体及びその薬理的に許容できる塩。
- 0 || 7 Aが置換もしくは無置換のナフチル基であり、 Xが式-C-

で示される基であり、 n=1である請求の範囲第1項記載の環 状アミン誘導体及びその薬理的に許容できる塩。

- 7 Aが置換もしくは無置換のナフチル基であり、 Xが式-C-で示される基であり、 m=2であり、 Yが炭素原子であり、 Zが式-CH2-で示される基であり、 Bがハロゲンで置換されたフェニル基である請求の範囲第1項記載の環状アミン誘導体及びその薬理的に許容できる塩。
- 9 Aが置換もしくは無置換のナフチル基であり、 Xが式-CHz-で示される基である請求の範囲第1項記載の環状アミン誘導体 及びその薬理的に許容できる塩。
- 10 2 {2 (4 (p フロロベンジル) ピペリジニル} エチル} ナフタレンである請求の範囲第1項記載の環状アミン誘導体及びその薬理的に許容できる塩。
- 11 2-(4-ベンジルピペリジニル)-2'-アセトナフトンである請求の範囲第1項記載の環状アミン誘導体及びその薬理的に許容できる塩。
- 12 2 〔4 ビス (4 フロロフェニル) メチレン-1 ピペリジニル〕 2' アセトナフトンである請求の範囲第1項記載の環状アミン誘導体及びその薬理的に許容できる塩。
- 13 4-(1-ナフトニル)ピペリジニル-3',4'-ジメチルアセトフェノンである請求の範囲第1項記載の環状アミン誘導体及びその薬理的に許容できる塩。

- 14 1 〔3 (p フロロベンゾイル)ピペリジニル〕-2'-アセトナフトンである請求の範囲第1項記載の環状アミン誘導体及びその薬理的に許容できる塩。
- 15 2 (4 (α ベンジルオキシーρ フロロベンジル)ピペリジニル) 2' アセトナフトンである請求の範囲第1項記載の環状アミン誘導体及びその薬理的に許容できる塩。
- 16 2 (4 (α-アセトキシーρ-フロロベンジル) ピペリジニル) -2'-アセトナフトンである請求の範囲第1項記載の環状アミン誘導体及びその薬理的に許容できる塩。
- 17 4 (4 p フロロベンゾイル) ピペリジニル 6,7 ジメトキシイソキノリンである請求の範囲第 1 項記載の環状アミン誘導体及びその薬理的に許容できる塩。
- 18 4- (2-〔4-(p-フロロベンゾイル)ピペリジニル〕エチル〉キナゾリンである請求の範囲第1項記載の環状アミン誘導体及びその薬理的に許容できる塩。
- 19 1-(2-ナフチル)-1-(4-(p-フロロベンゾイル)ピペリジニル)-2-ジエチルアミノエタンである請求の範囲第1項記載の環状アミン誘導体及びその薬理的に許容できる塩。
- 20 2 〔4 (α サクシニイミド p フロロベンジル)ピペリジニル〕 2' アセトナフトンである請求の範囲第1項記載の環状アミン誘導体及びその薬理的に許容できる塩。
- 21 2 (4 (p フロロベンゾイル) ピペリジニル) 2' アセトナフトンである請求の範囲第1項記載の環状アミン誘導体及

びその薬理的に許容できる塩。

- 22 Aがナフチル基であり、 Xが式 CH₂ で示される基であり、 n = 1 であり、 m = 2 であり、 Yが炭素原子であり、 ----- Z --- B が 4 位でベンジル基である請求の範囲第 1 項記載の環状アミン 誘導体及びその薬理的に許容できる塩。

アミン誘導体及びその薬理的に許容できる塩。

24 一般式

$$A - X - (CH_2)_{n-1} CH_2 - Hal$$

(式中 Halはハロゲン原子を意味し、A,X 及びn は前記の意味を有する)

で示されるハロゲン化物を、

(式中 m, Z, B及びY は前記の意味を有する) で示される化合物と反応させ、

一般式
$$A - X - (CH_2)_n - N$$
 Y $(CH_2)_m$

(式中 A, X, n, m, Y, Z及びB は前記の意味を有する)

で示される環状アミン誘導体を得、必要により該化合物をその薬理的に許容できる塩に転換させることを特徴とする前記環状アミン誘導体又はその薬理的に許容できる塩の製造方法。

25 一般式

$$A - X - (CH_2)_n - N$$

$$(CH_2)_m$$

〔式中 Aは置換もしくは無置換のフェニル基、ピリジル基、チェニル基、置換もしくは無置換のナフチル基、テトラリル基、キノリル基、ベンゾテェニル基、

る基を意味する。

nは0~4の整数を意味する。

mは1~3の整数を意味する。

Yは炭素原子又は窒素原子を意味する。

0 || Zは式-CH2-で示される基、式-C-で示される基、式 OR' -CH-(式中、R'は水素原子、低級アルキル基、アシル基、ア リールアルキル、またはヘテロアリールアルキルを意味する)

Hal し で示される基、式 - CH - (式中 Halはハロゲン原子を意味する)

で示される基、式=CH-で示される基、式 (式中、Hal

ーCHー はハロゲン原子を意味する)で示される基、式 (式中、 Hal

Hal はハロゲン原子を意味する)で示される基、又は式

Yと Zの間の ……… は、一重結合もしくは二重結合を意味意味する。

更に式 ------- Z --- B で表される基は、上記の構造式における 3 又は 4 の位置で環と結合している。

Bはハロゲン、低級アルキル基、又は低級アルコキシ基から 選択された同一又は相異なる一つ又は二つの置換基により置換 されてもよい無置換又は置換フェニル基又はナフチル基を意味 する。〕

で表される環状アミン誘導体又はその薬理的に許容できる塩を有効成分とする脳血管障害に伴う精神症状の改善・治療・予防剤。

INTERNATIONAL SEARCH REPORT

1. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate att) 3

International Application No.

PCT/JP86/00502

According to International Patent Classification (IPC) or to both National Classification and IPC	/70 295/19
Int.Cl ⁴ C07D211/14, 211/18, 211/22, 211/32, 211/401/06, 405/04, 409/04, A61K31/445,	31/47,31/505
II. FIELDS SEARCHED	
Minimum Documentation Searched *	
Classification System Classification Symbols	
IPC C07D211/14, 211/18, 211/22, 211/32, 211/70, 295/18, 401/06, 405/04, 409/04, A61K31/445, 31/47, 31/505	
Documentation Searched other than Minimum Documentation to the Extent that such Documents are included in the Fields Searched 5	
III. DOCUMENTS CONSIDERED TO BE RELEVANT"	
	Relevant to Claim No. 19
X JP, Bl, 50-22033 (A.H. Robins Co., Inc.) 28 July 1975 (28. 07. 75) & US, A, 3576810 & DE, A, 1930818 & GB, A, 1268909	1
*Special categories of cited documents: 14 "A" document defining the general state of the art which is not considered to be of particular relevance "E" eartler document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason las specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed IV. CERTIFICATION Date of the Actual Completion of the International Search 1 December 19, 1986 (19.12.86) International Searching Authority 1 Japanese Patent Office	the application but cited to inderlying the invention e claimed invention cannot considered to involve an e claimed invention cannot e step when the document er such documents, such son skilled in the art tamily
Form PCT/JSA/210 (second sheet) (October 1951)	

I. 発明の属する分野の分類		
211/70.295/1	11/18,211/22,28,401/06,405/0	4.
409/04, A61K	31/445,31/47,3	1/595
Ⅱ.国際調査を行った分野		
調査を行って	た 最 小 限 資 料	
分類体系 分類	類記号	
IPC 211/70,295/1	11/18,211/22,2 8,401/06,495/0 31/445,31/47,3	4 ,
403/00; ROIL		
最小限資料以外の資料	料で調査を行ったもの	
Ⅲ. 関連する技術に関する文献	•	
引用文献の ::《 引用文献名 及び一部の箇所が関連すると カテゴリー::	さは、その関連する箇所の表示	請求の範囲の番号
X JP、B1、50-22033 (エイ・エッチ・ロビンス・カンパニ 28、7月、1975(23.07. &US、A、3576810をDE、 &GB、A、1263909	75)	1
# 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」先行文献ではあるが、國際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献 (理由を付す) 「O」口頭による関示、使用、展示等に言及する文献 「P」 国際出願日前で、かつ優先権の主張の基礎となる出願の日の後に公表された文献 「W、認	「T」国際出頭日又は優先日の後に公表さ 類と矛盾するものではなく、発明の のために引用するもの 「X」特に関連のある文献であって、当該 規性又は進歩性がないと考えられる 「Y」特に関連のある文献であって、当該 文献との、当業者にとって自明であ 歩性がないと考えられるもの 「&」同一パテントファミリーの文献	原理スは理論の理解 文献のみで発明の新 もの 文献と他の1以上の
国際調査を完了した日	国際調査製告の発送日	
19. 12. 86	01.	S 7
国際調査機関	権限のある敬員	4 C 7 1 3 8
日本国特許庁 (ISA/JP)	性致序簿本合	T T