Assignment 6 (for Lecture 6) Solutions

April 12, 2017

- A1. $\neg [\exists x A(x)]$ means that it is not the case that there exists an x such that A(x) is true. This is the same as saying no such x exists such that A(x) is true. In symbols, this is the same as $\forall x [\neg A(x)]$.
- A2. Suppose there exists an even prime p. By the definition of an even number, 2|p, or p=2n for some $n \in \mathbb{N}$. But if p is to be prime, it cannot have any factors other than 1 and itself. Since this is not true, our original assumption must have been false, and thus we can conclude that there is no even prime.

A3.

- (a) $(\forall p)[Student(p) \Longrightarrow LikesPizza(p)]$
- (b) $(\exists p)[Friend(p) \Longrightarrow \neg Car(p)]$
- (c) $(\exists a)[Elephant(a) \Longrightarrow \neg LikesMuffins(a)]$
- (d) $(\forall g_f)[Triangle(g_f) \Longrightarrow Isosceles(g_f)]$
- (e) $(\exists s)[StudentInRoster(s) \Longrightarrow \neg PresentToday(s)]$
- (f) $(\forall p_1)[(\exists p_2)Loves(p_1, p_2)]$
- (g) $\neg(\exists p_1)[(\forall p_2)Loves(p_1, p_2)]$
- (h) $(\forall p)[(Man(p) \land Comes(p)) \Longrightarrow (\forall p)(Woman(p) \Longrightarrow Leaves(p))]$
- (i) $(\forall p)[Tall(p) \lor Short(p)]$
- (j) $(\forall p)[Tall(p)] \lor (\forall p)[Short(p)]$
- (k) $\neg (\forall s)[Precious(s) \Longrightarrow Beautiful(s)]$
- (1) $(\forall p)[\neg LovesMe(p)]$
- (m) $(\exists s)[American(s) \Longrightarrow Poisonous(s)]$
- (n) $(\exists s)[(Snake(s) \land American(s) \Longrightarrow Poisonous(s)]$

A4.

- (a) $(\exists p)[Student(p) \land \neg LikesPizza(p)]$. There exists a who does not like pizza.
- (b) $(\forall p)[Friend(p) \land Car(p)]$. All my friends have a car.

- (c) $(\forall a)[Elephant(a) \land LikesMuffins(a)]$. All elephants like muffins.
- (d) $(\exists g_f)[Triangle(g_f) \land \neg Isosceles(g_f)]$. There is a triangle that is not isosceles.
- (e) $(\forall s)[StudentInRoster(s) \land PresentToday(s)]$. All the students in the class are here today.
- (f) $(\exists p_1)[(\forall p_2)\neg Loves(p_1, p_2)]$. There is someone is loves no one.
- (g) $(\exists p_1)[(\forall p_2)Loves(p_1, p_2)]$. There is someone who loves everyone.
- (h) $(\exists p)[(Man(p) \land Comes(p)) \land (\exists p)(Woman(p) \land \neg Leaves(p))].$ There is a man who comes and a woman who doesn't leave.
- (i) $(\exists p)[\neg Tall(p) \land \neg Short(p)]$. There's someone who is neither tall nor short.
- (j) $(\exists p)[\neg Tall(p)] \land (\exists p)[\neg Short(p)]$. There's someone who isn't tall and there's someone who isn't short.
- (k) $(\forall s)[Precious(s) \Longrightarrow Beautiful(s)]$. All precious stones are beautiful.
- (1) $(\exists p)[LovesMe(p)]$. There's someone who loves me.
- (m) $(\forall s)[American(s) \land \neg Poisonous(s)]$. All American snakes are not poisonous.
- (n) $(\forall s)[((\neg Snake(s) \lor \neg American(s)) \land \neg Poisonous(s)].$ All animals are not poisonous, and either not snakes or not American.

A5.

- (a) False. $(x = \frac{2}{3} \notin \mathbb{N})$
- (b) False. $(x = \sqrt{2} \notin \mathbb{Q})$
- (c) True. (The formula is given)
- (d) True. (The formula is given)
- (e) False. (If x = 0, it is trivially true. If $x \neq 0$, then y = z, but cannot find one y such that y = z, for all z)
- (f) False. (We can simplify to y = z, but cannot find one prime y such that y = z, for all prime z)
- (g) False. (Choose x = -1)
- (h) True. (The antecedent is always false)

A6.

(a)
$$(\forall x \in \mathbb{N})[2x + 3 \neq 5x + 1]$$

- (b) $(\forall x \in \mathbb{Q})[x^2 \neq 2]$
- (c) $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})[y \neq x^2]$
- (d) $(\exists x \in \mathbb{N})(\forall y \in \mathbb{N})[y \neq x^2]$
- (e) $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(\exists z \in \mathbb{R})[xy \neq xz]$
- (f) $(\exists x \in \mathbb{P})(\forall y \in \mathbb{P})(\exists z \in \mathbb{P})[xy \neq xz]$
- (g) $(\exists x \in \mathbb{R})[(x < 0) \land (\forall y \in \mathbb{R})(y^2 \neq x)]$
- (h) $(\exists x \in \mathbb{R}_+)[(x < 0) \land (\forall y \in \mathbb{R}_+)(y^2 \neq x)]$

A7.

- (a) $(\exists x \in \mathbb{N})(\forall y \in \mathbb{N})[x + y \neq 1]$
- (b) $(\exists x > 0)(\forall y < 0)[x + y \neq 0]$
- (c) $(\forall x \in \mathbb{R})(\exists \epsilon > 0)[(x \le -\epsilon) \lor (x \ge \epsilon)]$
- (d) $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N})(\forall z \in \mathbb{N})[x + y \neq z^2]$
- A8. $(\forall t)(\exists p)[\neg Fool(p,t)] \lor (\forall p)(\exists t)[Fool(p,t)] \lor (\forall p)(\forall t)[Fool(p,t)]$. You cannot fool some people all the time or you can fool everyone some of the time or you can fool everyone all the time.
- A9. $(\exists \epsilon > 0)(\forall \delta > 0)(\exists x)[(|x a| < \delta) \land (|f(x) f(a)| \ge \epsilon)].$ There exists an $\epsilon > 0$ for all $\delta > 0$ such that one may find an x such that $|x a| < \delta$ and $|f(x) f(a)| \ge \epsilon$.