

This document presents a comprehensive SQL analysis of bank customer churn, examining factors that contribute to customer attrition customer attrition through various database queries.

TABLE CREATION AND DATA TYPE MODIFICATIONS

The analysis begins with creating the necessary database structure to store customer information:

```
CREATE TABLE bank customers (
customer id INTEGER PRIMARY KEY,
credit_score INTEGER,
geography TEXT,
gender TEXT,
age INTEGER,
tenure INTEGER,
account balance euro NUMERIC,
num_of_products INTEGER,
has cr card INTEGER,
is active member INTEGER,
exited INTEGER,
reason for churn TEXT,
credit_category TEXT,
account type TEXT,
customer_rating INTEGER,
account opening date DATE
```

```
ALTER TABLE bank customers
ALTER COLUMN exited TYPE BOOLEAN
USING exited::BOOLEAN;
ALTER TABLE bank customers
ALTER COLUMN has cr card TYPE BOOLEAN
USING has cr card::BOOLEAN;
```

Data types were modified to improve analysis accuracy:

OVERALL CHURN RATE ANALYSIS

The first analysis determines the overall percentage of customers who have left the bank:

```
SELECT

ROUND(100.0 * SUM(CASE WHEN exited THEN 1 ELSE 0 END) /

COUNT(*), 2) AS churn_rate_percentage

FROM bank_customers;
```

This query calculates the percentage of customers who have exited (churned) by dividing the count of churned customers churned customers by the total customer count and multiplying by 100.

GEOGRAPHICAL CHURN ANALYSIS


```
SELECT
geography,
COUNT(*) AS total_customers,
SUM(CASE WHEN exited THEN 1 ELSE 0 END) AS churned_customers,
ROUND(100.0 * SUM(CASE WHEN exited THEN 1 ELSE 0 END) /
COUNT(*), 2) AS churn_rate_percentage
FROM bank_customers
GROUP BY geography
ORDER BY churn_rate_percentage DESC;
```

CUSTOMER PROFILE COMPARISON: CHURNED VS RETAINED

Churned Customers

Average Age: 44.83

Average Balance: €91,107.44

Retained Customers

Average Age: 37.42

Average Balance: €76,485.21

The third query compares demographic and financial characteristics between customers who left and those who stayed:

```
SELECT
exited,
ROUND(AVG(age), 2) AS avg_age,
ROUND(AVG(account_balance_euro), 2) AS avg_balance
FROM bank_customers
GROUP BY exited;
```

This analysis reveals significant differences in both age and account balance between churned and retained customers.

Top reasons why bank customers leae

```
llewffve
                                  opicties
                                    seojogs
herp fo
                                      matger
         inconfates igny comting
                  tef o irarketing
                sevartize nitt
               aseneti/ey
              aggessive cartice
            rrivengy
                        concers
```

TOP REASONS FOR CUSTOMER CUSTOMER CHURN

The fourth query identifies the most common reasons customers gave for leaving the bank:

```
reason_for_churn,
    count(*) AS total
FROM bank_customers
WHERE exited = TRUE
GROUP BY reason_for_churn
ORDER BY total DESC
LIMIT 10;
```

This analysis helps prioritize improvement efforts by focusing on the most frequently cited reasons for customer attrition.

CREDIT CARD OWNERSHIP AND CHURN CORRELATION

Credit Card Holders

Churn Rate: 20.24%

Non-Credit Card Holders

Churn Rate: 20.43%

The fifth query examines whether having a credit card affects customer retention:

```
SELECT
has_cr_card,
SUM(CASE WHEN exited THEN 1 ELSE 0 END) AS churned,
COUNT(*) AS total,
ROUND(100.0 * SUM(CASE WHEN exited THEN 1 ELSE 0 END) /
COUNT(*), 2) AS churn_rate
FROM bank_customers
GROUP BY has_cr_card;
```

This analysis compares churn rates between customers with and without credit cards to determine if this product affects retention.

CUSTOMER SATISFACTION AND CHURN RELATIONSHIP

PRODUCT USAGE AND CHURN ANALYSIS

The seventh and eighth queries examine how product usage and customer tenure affect churn rates:

```
SELECT
  num_of_products,
  COUNT(*) AS total_customers,
  SUM(CASE WHEN exited THEN 1 ELSE 0 END) AS
  churned_customers,
  ROUND(100.0 * SUM(CASE WHEN exited THEN 1 ELSE 0 END) /
  COUNT(*), 2) AS churn_rate
  FROM bank_customers
  GROUP BY num_of_products
  ORDER BY num_of_products;
```

```
SELECT
 tenure,
 COUNT(*) AS total customers,
 SUM(CASE WHEN exited THEN 1 ELSE 0 END) AS
churned customers,
 ROUND(100.0 * SUM(CASE WHEN exited THEN 1 ELSE 0 END) /
COUNT(*), 2) AS churn rate
FROM bank customers
GROUP BY tenure
ORDER BY churn rate DESC
LIMIT 5;
```

The first query groups customers by the number of products they use, while the second identifies which tenure ranges experience the highest churn rates.

HISTORICAL AND GEOGRAPHICAL CHURN PATTERNS

Annual Churn Analysis

Examines customer churn by year of account opening

SELECT

```
EXTRACT(YEAR FROM account_opening_date) AS join_year,

COUNT(*) FILTER (WHERE exited) AS churned_customers,

COUNT(*) AS total_customers,

ROUND(100.0 * COUNT(*) FILTER (WHERE exited) / COUNT(*), 2) AS

churn_rate

FROM bank_customers

GROUP BY join_year,
```


Geographic Account Type Analysis

Identifies high-risk combinations of location and account type

```
SELECT
  geography,
  account_type,
  COUNT(*) AS total_customers,
  SUM(CASE WHEN exited THEN 1 ELSE 0 END) AS churned_customers,
  ROUND(100.0 * SUM(CASE WHEN exited THEN 1 ELSE 0 END) /
  COUNT(*), 2) AS churn_rate
  FROM bank_customers
  GROUP BY geography, account_type
  ORDER BY churn_rate DESC
  LIMIT 10;
```