Test Method for Current-Voltage Characterization of Perovskite PV-Modules

G. Bardizza, J Gao, F. Xu, T. Makris, C. Monokroussos TÜV Rheinland Solar

Agenda overview

- Introduction and Motivation
- IV measurement test method
 - ✓ Metastability
 - √ Hysteresis
 - √ Reproducibility
- Uncertainty of spectral mismatch
- Linearity
- Measurement Uncertainty
- Summary and Conclusions

Objective

Objective

GUARANTEED ACCEPTABLE UNCERTAINTY

Review of Measurement Problems for Perovskite PV-Modules

- IV measurement in steady-state simulator: metastability, hysteresis, irradiance linearity, temperature linearity
- Spectral Response: slow response, metastability
- Measurement uncertainty

Metastable

behavior

Spectral Response

Accurate

Performance

Irradiance

linearity

Test method

SAMPLES

Perovskite PV modules: glass-glass, 2 m x 1 m;

EXPERIMENTAL SETUP

- Solar simulator: BBA+ steady-state metal halide lamp;
- <u>Temperature control</u>: air conditioners and electrical fans;
- DC electronic load: Keithley 2380-500-30;

TEST PROCEDURE

- 1. Preconditioning: approx. 10 h, constant illumination, close to Vmp;
- 2. <u>Dynamic I-V</u> curve at 33 ± 2 °C: from Voc to Isc, typical sweep time 3-5 min;
- 3. <u>Dynamic I-V</u> curve at higher temperatures: typically 40 °C, 50 °C, 60 °C;
- 4. Calculation of temperature coefficients;
- 5. I-V curve correction to STC (according to IEC 60891);
- 6. Evaluation of the measurement uncertainty.

Long-term metastability

- Different perovskite modules may exhibit different stabilization profiles (degradation or even recovery)
- Initial light soaking at MPP mode is required to stabilize correctly the sample; else the results are not reproducible.
- IEC 61215 stabilization procedures for thin-film modules can be suitably adopted.

Short-term metastability

 Short-term variations due to reversible degradation and/or annealing, as well as recovery from dark ageing may also occur.

Hysteresis (transient effects)

- Transient effects that can cause hysteresis in measurement.
- Comparison between forward and reverse voltage reveals the magnitude of the errors, but does not lead to accurate measurements (even when measurement time >350s).

Dynamic IV

- Application of *dynamic IV* resulted in best accuracy and can be effectively utilized to resolve transient effects due to hysteresis.
- Agreement between forward and reverse within 0.3%, or better can be achieved.

Why is spectral mismatch important?

- Difference in SR between c-Si reference cell and perovskite DUT
 - ⇒ Significant spectral mismatch (up to 10%)
 - ⇒ High uncertainty arises from >900 nm (assuming a c-Si reference cell)
 - ⇒ Choice of reference cell becomes important

Light soaking effect

- Different PSC samples may exhibit different stabilization profiles.
- Initial light soaking is required to stabilize the spectral responsivity of the sample.

Various chopping frequency

Chopping frequency does not affect the normalized spectral responsivity of the studied PSC.

Uncertainty of Spectral Mismatch using Monte Carlo analysis

Sample	Туре	Qty
DUT SR	Encapsulated Perovskite Cells (cut-off wavelength: ~850 nm)	10
Reference Cell <i>SR</i>	c-Si unfiltered	1
	c-Si with KG1	1
	c-Si with KG3	1
	c-Si with KG5	1
Solar Simulator Spectra	A++	3
	A+	4
	Α	5
	В	3

Uncertainty of Spectral Mismatch using Monte Carlo analysis

Uncertainty of spectral mismatch factor without correction

Reference	c-Si unfiltered	c-Si with KG1	c-Si with KG3	c-Si with KG5			
Cut-off:	1250nm	1000nm	850nm	800nm			
Perovskite solar cell (DUT) cut-off: 850nm							

Uncertainty of spectral mismatch factor with correction

Reference	c-Si unfiltered	c-Si with KG1	c-Si with KG3	c-Si with KG5			
Cut-off:	1250nm	1000nm	850nm	800nm			
Perovskite solar cell (DUT) cut-off: 850nm							

Linearity of I_{SC} with Irradiance

- IEC 60904-10 was utilized to measure the linearity of Perovskite modules with irradiance.
 - ⇒ Perovskite devices may exhibit strong non-linearity that needs to be addressed.
- IEC 60891, cor. proc. 2 was utilized to correct /V curves and evaluate the agreement in /V translation.
 - ⇒ Accurate IV corrections can be achieved (0.4%)

Temperature coefficients

Temperature Coefficients of $V_{\rm OC}$, $I_{\rm MPP}$, $V_{\rm MPP}$ 2.0% Performance change rel. to STC [%] (+0.08%±0.01)%·K⁻¹ (k=2) 1.0% 0.0% -0.08±0.08)%·K⁻¹ (k=2) -1.0% -2.0% -3.0% -4.0% 15 20 30 35 40 45 Temperature [°C] Voc Vmpp **Impp** Linear (Voc) ······ Linear (Impp) ······ Linear (Vmpp)

Temperature Coefficients of I_{SC} and P_{MAX}

- Temperature coefficients were measured in accordance with IEC 61853 standard.
- β , appears sensitive to temperature (-0.16%/K), while α (+0.01%/K) and δ (0.00%/K) are insensitive to temperature.

Temperature coefficients

- Temperature coefficients were measured in accordance with IEC 60891 standard.
- β , appears sensitive to temperature (-0.16%/K), while α (+0.01%/K) and δ (0.00%/K) are insensitive to temperature.
- IEC 60891, cor. proc. 2 was utilized to correct // curves and evaluate the agreement in // translation. Accurate IV corrections can be achieved (0.3%)

Measurement Uncertainty

Standard Uncertainty Distribution at I_{MPP}

- Voltage/current measurement
- Device hysterisis
- Non-uniformity of irradiance
- Misalignment
- Positioning

- Reference irradiance
- Temperature-related

Case of Study:

Class BAA+ system

REF: c-Si (filtered)

DUT: PSC

Standard Uncertainty Distribution at P_{MAX}

- Impp meas. unc. (excl. reproducibility)
- Vmpp meas. unc. (excl. reproducibility)
- Pmax repeatability
- Pmax reproducibility

Conclusions

- Due to their **slow response**, **metastable behaviour** and **spectral mismatch**, the characterisation of perovskite technologies is a challenging task.
- **Light soaking** is required to stabilise perovskite devices. **IEC 61215 stabilization procedures** for **thin film modules** is a good starting basis and could be adopted accordingly.
- **Dynamic IV** can be utilized to counter hysteresis artefacts.
- **Spectral mismatch correction** can limit the **uncertainty** of spectral mismatch within ± 1.3%, k=2. The **combination** of **spectral mismatch correction** and a **matched reference device** can reduce the uncertainty further to ±0.2%, k=2.
- The **linearity** of Perovskite devices **may differ to ideal** behavior. The later is particularly important, if long range irradiance corrections are applied.
- **Measurement uncertainty** of Perovskite devices is an **object of current research**. It is **limited** by the measurement reproducibility (< 2.0%, k=2). The uncertainty at P_{MAX} can reach 2.6%, k=2 in a controlled measurement environment.

Thank you for your attention!

Q.Gao, C.F.J.Lau, E.Lee, C. Monokroussos, "Test Method of Current-voltage Characteristaion of Perovskite PV-module", EUPVSEC 2019. https://www.eupvsec-proceedings.com/proceedings?fulltext=perovskite&paper=48720

Example of Uncertainty in Relative Spectral Response

Example of meas. unc. distribution @950nm ±2.16%, k=2

Simulating Random Error Bias

