Treinamento e validação de modelos preditivos com AM

Rafael Petry 00314280

Lucas Melo 00315747

Jean Andrade 00252846

DATASET

Optamos pelo dataset
"Telco Customer Churn" da IBM
que contém dados sobre os
clientes e serviços contratados

Coluna	Intervalo	Coluna	Intervalo
gender	[Male, Female]	DeviceProtection	[Yes, No, No service]
SeniorCitizen	[0, 1]	TechSupport	[Yes, No, No service]
Partner	[Yes, No]	StreamingTV	[Yes, No, No service]
Dependents	[Yes, No]	StreamingMovies	[Yes, No, No service]
Tenure	[0,, 72]	Contract	[Monthly, One Year, Two Years]
PhotoService	[Yes, No]	PaperlessBilling	[Yes, No]
MultipleLines	[Yes, No, No service]	PaymentMethod	[E-check, Mail-Check, Transfer, Credit Card]
InternetService	[DSL, Fiber, No service]	MonthlyCharges	[18.30,, 119.00]
OnlineSecurity	[Yes, No, No service]	*TotalCharges	[18.80, 8684.80]
OnlineBackup	[Yes, No, No service]	Churn	[Yes, No]

ATRIBUTOS

Irrelevantes / Removidos

- customerID Somente
 ID do cliente não é
 importante.
- StreamingTV-Baseado na análise de correlação.

Principais

- TotalCharges Total pago no quarter
- MonthlyCharges Mensalidade total paga
- Tenure Total de meses que a pessoa é cliente
- Churn (target se cliente cancelou)

Correlação

			0.0000																		
customerID	1						-0.027									0.0034			0.24	0.92	0.01
gender	-0.0082			0.0018															-0.0081		-0.0086
SeniorCitizen	0.0082	-0.0019	1	-0.016	-0.21	0.011	0.0086	0.11	-0.032	-0.21	-0.14	-0.16	-0.22	-0.13	-0.12	-0.14	-0.16	-0.094	0.05	0.024	0.15
Partner	0.00019	0.0018	-0.016	1	-0.45	-0.1	-0.018	-0.12	-0.00089	-0.082	0.091	-0.094	-0.069	-0.08	-0.076	-0.29	-0.015	-0.13	-0.036	-0.043	0.15
Dependents	-0.0052	0.011	-0.21	-0.45	1	0.049	-0.0018	-0.02	0.045	0.19	0.063	0.16	0.18	0.14	0.13	0.24	0.11	0.12	-0.029	0.0063	-0.16
tenure	0.041	-1.3e-05	0.011	-0.1	0.049	1	-0.019	0.064	-0.012	0.017	-0.065	0.037	0.033	0.027	0.031	0.12	-0.011	0.075	0.042	0.11	-0.14
PhoneService	-0.027	-0.0065	0.0086	-0.018	-0.0018	-0.019	1	0.68	0.39	0.13	0.13	0.14	0.12	0.17	0.17	0.0022	-0.017	-0.0041	-0.14	-0.03	0.012
MultipleLines	-0.023	-0.0095	0.11	-0.12	-0.02	0.064	0.68	1	0.19	-0.067	-0.13	-0.013	-0.067	0.03	0.028	0.083	-0.13	0.026	0.024	0.015	0.036
InternetService	-0.0078	-0.00086	-0.032	-0.00089	0.045	-0.012	0.39	0.19	1	0.61	0.65	0.66	0.61	0.71	0.71	0.1	0.14	0.0081	-0.29	-0.038	-0.047
OnlineSecurity	-0.0018	-0.0034	-0.21	-0.082	0.19	0.017	0.13	-0.067	0.61	1	0.62	0.75	0.79	0.7	0.7	0.39	0.33	0.21	-0.22	-0.027	-0.33
OnlineBackup	-0.0036	0.012	-0.14	0.091	0.063	-0.065	0.13	-0.13	0.65	0.62	1	0.6	0.62	0.6	0.61	0.035	0.26	0.0032	-0.28	-0.055	-0.074
DeviceProtection	-0.0049	0.0051	-0.16	-0.094	0.16	0.037	0.14	-0.013	0.66	0.75	0.6	1	0.77	0.76	0.77	0.39	0.28	0.19	-0.22	-0.025	-0.28
TechSupport	0.0039	0.00099	-0.22	-0.069	0.18	0.033	0.12	-0.067	0.61	0.79	0.62	0.77	1	0.74	0.74	0.42	0.31	0.22	-0.21	-0.022	-0.33
StreamingTV	-0.0017	0.0012	-0.13	-0.08	0.14	0.027	0.17	0.03	0.71	0.7	0.6	0.76	0.74	1	0.81	0.33	0.2	0.12	-0.23	-0.019	-0.21
	100000000000000000000000000000000000000	-0.00019	-0.12	-0.076	0.13	0.031		0.028	0.71	0.7	0.61	0.77	0.74	0.81	1	0.33	0.21	0.12	-0.24	-0.026	-0.21
Contract	E SECTION AND ADDRESS OF	0.00013		-0.29	0.24	0.12	0.0022	0.083	0.1	0.39	0.035	0.39	0.42	0.33	0.33	1	0.18	0.36	-0.0076	0.052	-0.4
PaperlessBilling	RANGE FRANCIS		-0.16	-0.015	0.11	-0.011		-0.13	0.14	0.33	0.26	0.28	0.31	0.2	0.21	0.18	1	0.1	-0.087	-0.011	-0.19
PaymentMethod	-0.014		-0.094	-0.13	0.12	0.075		0.026	0.0081	0.21	0.0032		0.22	0.12	0.12	0.36	0.1	1	-0.0093	0.0085	-0.26
MonthlyCharges	0.24	-0.0081	0.05	-0.036	-0.029	0.042		0.024	-0.29	-0.22	-0.28	-0.22	-0.21	-0.23	-0.24		-0.087	-0.0093	ومناعاتها والأدالا	0.27	0.021
TotalCharges	-	-0.012	0.024	-0.043	0.0063	0.042	-0.14	0.015	-0.038	-0.027	-0.055	-0.025	-0.022	-0.019	-0.026		-0.007	0.0085	0.27	1	-0.028
Churn	0.01	-0.0086	0.15	0.15	-0.16	-0.14	0.012	0.036	-0.047	-0.33	-0.074	-0.28	-0.33	-0.21	-0.21	-0.4	-0.19	-0.26	0.021	-0.028	1
Chillin	0.01	-0.0000	0.13	0.13	-0.10	-0.14	0.012	0.030	-0.047	-0.55		-0.20	-0.55	-0.21	-0.21	-0.4	-0.15	-0.20	0.021	-0.026	
	은	nder	en	يو	ats	<u> </u>	e C	sai	Se	Ţ.	Backup	ПОП	ort	≥	es	t act	Di Di	por	des	S	Ę
	le l	- E	<u>E</u>		del	<u>i</u>	2	- 5	2	-5-	Ť	3ct	0	- ig	<u> </u>	<u>i</u>	-	=======================================	9 2		-5
	stol	D)	or o	ă.	l je	-	Š	lgi	Š	Se	9	ě	chSupport	reamingTV	β	ð	SS	菱	ą	₫	
	8		emi) et		Total Line	MultipleL	Ĕ	ij.	- 5	Р	i i	t G	- ja		arle	Je .	É	ota	
			57				Ž.	Σ	nte	5	Ö	N.		S	eal		ď,	ayn	Don		
												ă			ल		<u> </u>	<u>a</u>	Σ		

K-fold cross validation

- 1. Divida aleatóriamente os dados em *k* subconjuntos (folds)
- 2. Use a parte dos dados como treino
- 3. Use o fold j para teste
- 4. Repita o processo *k* vezes

K-fold cross validation

```
def random_k_folds(instance_list: List[Instance], k: int, merge_remainders=True):
    instances = instance_list.copy()
    random.Random(0).shuffle(instances)
    max_fold_size = len(instances) // k
    k_folds = [instances[i * max_fold_size:(i + 1) * max_fold_size] for i in range(k)
    ]
    remainders = instances[k * max_fold_size:]
    return remainders_merge_policy(k_folds, remainders) if merge_remainders else (
    k_folds, remainders)
```

```
lass Instance:
   def __init__(self, instance_data: Any, label: Union[str, int]):
       self. instance data = instance data
       self. label = label
   def data(self):
       return self. instance data
   def label(self):
       return self. label
   def __repr__(self):
       return f"{self, instance data}-{self, label}"
def return dfs(X:pd.DataFrame, v:pd.DataFrame, k:int):
   listt = []
   for i, yy in y.items():
       cria uma instancia da classe para cada instancia do dataset
       cada instancia possui o index no dataset e a label correspondente
       listt.append(Instance(i, vv))
   s_folds = stratified_k_folds(listt, k)
   folds = []
   data = []
   labels = []
   for i in range(k):
       para cada i em k(quantidade de folds) pega o indices que estao no fold
       e utiliza esses indices para montar os fold de dados e de labels
       e em seguida adiciona esse fold criado na lista de todos folds
       indx = [a._instance_data for a in s_folds[i]]
       folds.append(indx)
       data.append(X.iloc[indx])
       labels.append(y.iloc[indx])
   return data, labels
```

PRÉ PROCESSAMENTO

Análise de correlação

Análise de correlação

Análise utilizando matriz de correlação

Normalização de atributos

Imputar valores faltantes

One-Hot Encoding

Transforma os valores de um atributo categórico em novos atributos

Pipeline

Pipeline

```
numeric_features = ["MonthlyCharges", "TotalCharges", "tenure", "gender", "
Partner", "Dependents",
                        "PhoneService", "PaperlessBilling"]
    numeric_transformer = Pipeline(
        steps=[("knnImp", KNNImputer(n_neighbors=3)), ("scaler", MinMaxScaler())]
    categorical_features = ["InternetService", "PaymentMethod", 'MultipleLines',
'OnlineSecurity', 'OnlineBackup',
                            'DeviceProtection', 'TechSupport', 'StreamingMovies',
 'Contract'1
    categorical_transformer = Pipeline(
        steps=[("OneHot", OneHotEncoder(handle_unknown="ignore"))]
    preprocessor = ColumnTransformer(
        transformers=[
            ("num", numeric_transformer, numeric_features),
            ("cat", categorical_transformer, categorical_features)
    )
    if rus:
        pipe = Pipeline(
            steps=[("rus", RandomUnderSampler(random_state=0)), ("pp",
preprocessor), ("clf", clf)]
    else:
        pipe = Pipeline(
            steps=[("pp", preprocessor), ("clf", clf)]
    search = RandomizedSearchCV(pipe, param_grid[i], verbose=True, n_iter=20,
refit=True, random_state=0)
    search.fit(X_train, y_train)
    y_pred = search.predict(X_test)
    v_test = np.array(v_test)
    for metric in ['accuracy', 'precision', 'recall', 'fimeasure']:
        if metric not in metadata[run][type(clf).__name__]:
            metadata[run][type(clf).__name__][metric] = {}
    metadata[run][type(clf).__name__]['accuracy'] = accuracy(y_test, y_pred)
    metadata[run][type(clf).__name__]['precision'] = precision(y_test, y_pred)
    metadata[run][type(clf).__name__]['recall'] = recall(y_test, y_pred)
    metadata[run][type(clf), name ]['flmeasure'] = flMeasure(v test, v pred)
```

PseudoCódigo

Algorithm 1 K-fold Cross Validation

- 1: $X, y \leftarrow return_dfs(data_X, data_y, k)$
- 2: $all_metadata \leftarrow \emptyset$
- 3: for $X_test, y_test \in X, y$ do
- 4: $X_{train} \leftarrow X X_{test}$
- 5: $y_train \leftarrow y y_test$
- 6: $metadata \leftarrow Pipeline(X_train, y_train, X_test, y_test)$
- 7: $all_metadata \leftarrow all_metadata \cup metadata$
- 8: end for
- 9: return all_metadata

ALGORITMOS ESCOLHIDOS

SVM - Support Vector Machine

Algoritmo classificador linear binário não probabilístico. Procura o hiperplano entre dados de duas classes

XGBoost

Algoritmo baseado em árvores de decisão com GradientBoosting.

GaussianNB

Naive Bayes Gaussian.

MÉTRICAS

	Desempenho médio	Desvio padrão
Algoritmo 1	10	20
Algoritmo 2	30	15
Algoritmo 3	5	24

MÉTRICAS (Acurácia e Precisão) - UnderSampling

	Desempenho médio	Desvio padrão		Desempenho médio	Desvio padrão
SVC	0.782765	0.011507	SVC	0.638734	0.035831
XGBOOST	0.704531	0.019574	XGBOOST	0.467399	0.020973
GaussianNB	0.689197	0.012587	GaussianNB	0.454311	0.011943

MÉTRICAS (Acurácia e Precisão) - UnderSampling

MÉTRICAS (Recall e F1Measure) - UnderSampling

	Desempenho médio	Desvio padrão		Desempenho médio	Desvio padrão
SVC	0.419499	0.029269	SVC	0.505901	0.028015
XGBOOST	0.803631	0.02978	XGBOOST	0.590902	0.023053
GaussianNB	0.847507	0.015438	GaussianNB	0.591464	0.01246

MÉTRICAS (Recall e F1Measure) - UnderSampling

MÉTRICAS (Acurácia e Precisão)

	Desempenho médio	Desvio padrão		Desvio padrão		
SVC	0.795544	0.013279	SVC	0.643444	0.029137	
XGBOOST	0.773534	0.015294	XGBOOST	0.563995	0.02542	
GaussianNB	0.698849	0.013008	GaussianNB	0.46294	0.013204	

MÉTRICAS (Acurácia e Precisão)

MÉTRICAS (Recall e F1Measure)

	Desempenho médio	Desvio padrão		Desempenho médio	Desvio padrão
SVC	0.514174	0.040452	SVC	0.571172	0.033598
XGBOOST	0.646852	0.028786	XGBOOST	0.60254	0.02644
GaussianNB	0.838943	0.020164	GaussianNB	0.596593	0.015013

MÉTRICAS (Recall e F1Measure)

MÉTRICAS (Acurácia e Precisão) - Comparação

MÉTRICAS (Recall e F1Measure) - Comparação

Conclusão

Como o *churn* gera impacto de caráter econômico, acreditamos que a melhor opção de modelo, para este caso, seria o Gaussian Naïve Bayes, pois apresentou o melhor desempenho para **F-measure** e **Recall**.

Acreditamos que a priorização do **Recall** é interessante por priorizar manter os clientes da empresa. E a da **F-measure** por permitir ajuste de parâmetros baseado em características do mercado como custo/retorno de prevenção de *churn*, pois o quanto é interessante poupar caixa da empresa (**reduzir FP**) ou aumentar a arrecadação mantendo clientes (**reduzir FN**) pode variar de acordo com as condições de mercado e custos de aquisição ou manutenção de cliente.

Me: *uses machine learning* Machine: *learns* Me:

Obrigado!

Perguntas?

