2.3 <u>Summary Statistics – Measures of Center and Spread</u>

POPULATION

Random Variable *X*, *numerical*

- ◆ True "center" = ???
- ◆ True "spread" = ???

SAMPLE, size n

- ♦ Measures of center median, mode, mean
- ♦ Measures of spread range, variance, standard deviation

Measures of Center

For a given numerical random variable X, assume that a random sample $\{x_1, x_2, ..., x_n\}$ has been selected, and *sorted* from lowest to highest values, i.e.,

$$x_1 \le x_2 \le \dots \le x_{n-1} \le x_n$$
<-- 50% -->

• **sample median** = the numerical "middle" value, in the sense that half the data values are smaller, half are larger.

If *n* is odd, take the value in position $\#\frac{n+1}{2}$.

If *n* is even, take the <u>average</u> of the two closest neighboring data values, left (position $\# \frac{n}{2}$) and right (position $\# \frac{n}{2} + 1$).

Comments:

k distinct data

- The sample median is <u>robust</u> (insensitive) with respect to the presence of outliers.
- More generally, can also define **quartiles** ($Q_1 = 25\%$ cutoff, $Q_2 = 50\%$ cutoff = **median**, $Q_3 = 75\%$ cutoff), or **percentiles** (a.k.a. **quantiles**), which divide the data values into any given p% vs. (100 p)% split. Example: SAT scores
- sample mode = the data value with the largest frequency (f_{max})

relative

Comment: The sample mode is <u>robust</u> to outliers.

If present, *repeated* sample data values can be neatly consolidated in a **frequency table**, vis-à-vis the corresponding dotplot. (If a value x_i is not repeated, then its $f_i = 1$.)

values of X	frequency of x_i	frequency of x_i
x_i	f_i	$p(x_i) = f_i / n$
x_1	f_1	$f(x_1)$
x_2	f_2	$f(x_2)$
•	•	•
•	•	•
•	•	•
x_k	f_k	$f(x_k)$
	n	1

absolute

Example: n = 12 random sample values of X = "Body Temperature (°F)":

x_i	f_i	$p(x_i)$
98.5	1	1/12
98.6	5	5/12
98.9	3	3/12
99.1	2	2/12
99.2	1	1/12
	n = 12	1

- **ample median** = $\frac{98.6 + 98.9}{2}$ = 98.75°F (six data values on either side)
- **a** sample mode = 98.6° F
- **ample mean** = $\frac{1}{12}$ [(98.5)(1) + (98.6)(5) + (98.9)(3) + (99.1)(2) + (99.2)(1)] ----

or, =
$$(98.5)\frac{1}{12} + (98.6)\frac{5}{12} + (98.9)\frac{3}{12} + (99.1)\frac{2}{12} + (99.2)\frac{1}{12} = 98.8^{\circ}F$$

• sample mean = the "weighted average" of all the data values

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} x_i f_i$$
, where f_i is the absolute frequency of x_i

$$= \sum_{i=1}^{k} x_i p(x_i), \text{ where } p(x_i) = \frac{f_i}{n} \text{ is the } relative frequency of } x_i$$

Comments:

- The sample mean is the **center of mass**, or "balance point," of the data values.
- ➤ The sample mean is <u>sensitive</u> to outliers. One common remedy for this...

Trimmed mean: Compute the sample mean after deleting a *predetermined* number or percentage of outliers from <u>each</u> end of the data set, e.g., "10% trimmed mean." <u>Robust</u> to outliers by construction.

10%

Grouped Data – Suppose the original values had been "lumped" into categories.

Example: Recall the *grouped* "Memorial Union age" data set...

x_i	Class Interval	Frequency f_i	Relative Frequency $\frac{f_i}{n}$	Density (Rel Freq ÷ Class Width)
15	[10, 20)	4	0.20	0.02
25	[20, 30)	8	0.40	0.04
45	[30, 60)	8	0.40	0.013

$$n = 20$$
 1.00

• group mean: Same formula as above, with $x_i = midpoint$ of i^{th} class interval.

$$\bar{x}_{\text{group}} = \frac{1}{20} \left[(15)(4) + (25)(8) + (45)(8) \right] = 31.0 \text{ years}$$

Exercise: Compare this value with the *ungrouped* sample mean $\bar{x} = 29.2$ years.

• **group median** (& other quantiles):

Ages

Formal approach ~

First, identify which class interval [a, b) contains the desired quantile Q (e.g., median, quartile, etc.), and determine the respective left and right areas A and B into which it divides the corresponding class rectangle. Equating proportions for $\frac{A+B}{b-a}$, we obtain

Density =
$$\frac{A}{Q-a} = \frac{B}{b-Q}$$
,

from which it follows that

$$Q = a + \frac{A}{\text{Density}}$$
 or $Q = b - \frac{B}{\text{Density}}$ or $Q = \frac{Ab + Ba}{A + B}$

For example, in the grouped "Memorial Union age" data, we have a = 20, b = 30, and A = 0.30, B = 0.10. Substituting these values into any of the equivalent formulas above yields the median $Q_2 = 27.5$.

Exercise: Now that Q_2 is found, use the formula again to find the first and third quartiles Q_1 and Q_3 , respectively.

Note also from above, we obtain the useful formulas

$$A = (Q-a) \times Density$$

$$B = (b-Q) \times \text{Density}$$

for calculating the areas A and B, when a value of Q is given! This can be used when finding the area <u>between</u> two quantiles Q_1 and Q_2 . (See next page for another way.)

Alternative approach →

First, form this column:

Class Interval	Frequency f _i	Relative Frequency f_i / n	Cumulative Relative Frequency $F_i = \frac{f_1}{n} + \frac{f_2}{n} + \dots + \frac{f_i}{n}$
I_0	0	0	0
I_1	f_1	f_1 / n	F ₁ Next, identify
I_2	f_2	f_2 / n	F_2 F_{low} and F_{hig} which bracke 0.5, and let $[a, b]$
:	÷	:	be the class interval of the latter.
I_i	f_i	f_i / n	$F_{low} < 0.5$
Q = ?			0.5
[a, b)	f_{i+1}	f_{i+1} / n	$F_{high} > 0.5$
:	:	:	:
I_k	f_k	f_k / n	1
	n	1	

Then

$$Q = a + \left(\frac{0.5 - F_{low}}{F_{high} - F_{low}}\right)(b - a) \quad \text{or} \quad Q = b - \left(\frac{F_{high} - 0.5}{F_{high} - F_{low}}\right)(b - a).$$

Again, in the grouped "Memorial Union age" data, we have a = 20, b = 30, $F_{low} = 0.2$, and $F_{high} = 0.6$ (why?). Substituting these values into either formula yields the median $Q_2 = 27.5$.

To find Q_1 , replace the 0.5 in the formula by 0.25; to find Q_3 , replace the 0.5 in the formula by 0.75, etc.

Conversely, if a quantile Q in an interval [a, b) is given, then we can solve for the cumulative relative frequency F(Q) up to that quantile value:

$$F(Q) = F(a) + \left(\frac{F(b) - F(a)}{b - a}\right)(Q - a).$$
 It follows that the relative frequency

(i.e., area) <u>between</u> two quantiles Q_1 and Q_2 is equal to the <u>difference</u> between their cumulative relative frequencies: $F(Q_2) - F(Q_1)$.

Shapes of Distributions

Symmetric distributions correspond to values that are spread equally about a "center."

mean = median

Examples: (Drawn for "smoothed histograms" of a random variable X.)

Note: An important special case of the "bell-shaped" curve is the **normal distribution**, a.k.a. **Gaussian distribution**. Example: X = IQ score

Otherwise, if more outliers of X occur on one side of the median than the other, the corresponding distribution will be **skewed** in that direction, forming a **tail**.

Examples: X = "calcium level (mg)"

X = "serum cholesterol level (mg/dL)"

Furthermore, distributions can also be classified according to the number of "peaks":

Measures of Spread

Again assume that a numerical random sample $\{x_1, x_2, ..., x_n\}$ has been selected, and sorted from lowest to highest values, i.e.,

• **sample range** = $x_n - x_1$ (highest value – lowest value)

Comments:

- ➤ Uses only the two most extreme values. Very crude estimator of spread.
- The sample range is <u>extremely sensitive</u> to outliers. One common remedy ...

Interquartile range (IQR) = $Q_3 - Q_1$. Robust to outliers by construction.

➤ If the original data are <u>grouped</u> into k class intervals $[a_1, a_2)$, $[a_2, a_3)$,..., $[a_k, a_{k+1})$, then the **group range** $= a_{k+1} - a_1$. A similar calculation holds for **group IQR**.

Example: The "Body Temperature" data set has a **sample range** = 99.2 - 98.5 = 0.7°F.

{98.5, 98.6, 98.6, 98.6, 98.6, 98.6, 98.9, 98.9, 98.9, 99.1, 99.1, 99.2}

f_i
1
5
3
2
1

$$n = 12$$

For a much less crude measure of spread that uses all the data, first consider the following...

<u>Definition</u>: $x_i - \overline{x} =$ **individual deviation** of the i^{th} sample data value from the sample mean

98.8 1		
x_i	$x_i - \dot{x}$	f_i
98.5	-0.3	1
98.6	-0.2	5
98.9	+0.1	3
99.1	+0.3	2
99.2	+0.4	1

$$n = 12$$

Naively, an estimate of the spread of the data values might be calculated as the *average* of these n = 12 individual deviations from the mean. However, this will always yield zero!

FACT:

$$\sum_{i=1}^k (x_i - \overline{x}) f_i = 0,$$

i.e., the sum of the deviations is always zero.

<u>Check</u>: In this example, the sum = (-0.3)(1) + (-0.2)(5) + (0.1)(3) + (0.3)(2) + (0.4)(1) = 0.

Exercise: Prove this general fact algebraically.

<u>Interpretation</u>: The sample mean is the **center of mass**, or "balance point," of the data values.

Best remedy: To make them non-negative, square the deviations before summing.

• sample variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{k} (x_{i} - \bar{x})^{2} f_{i}$$

$$s^{2} \text{ is } \underline{\text{not on the same scale as the data values!}}$$

sample standard deviation

Example:

x_i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$	f_i
98.5	-0.3	+0.09	1
98.6	-0.2	+0.04	5
98.9	+0.1	+0.01	3
99.1	+0.3	+0.09	2
99.2	+0.4	+0.16	1

Then...

$$s^{2} = \frac{1}{11} \left[(0.09)(1) + (0.04)(5) + (0.01)(3) + (0.09)(2) + (0.16)(1) \right] = 0.06 \, (^{\circ}F)^{2},$$

so that...
$$s = \sqrt{0.06} = 0.245^{\circ} \text{F}.$$

Body Temp has a small amount of variance.

Comments:

>
$$s^2 = \frac{\sum (x_i - \bar{x})^2 f_i}{n-1}$$
 has the important frequently-recurring form $\frac{SS}{df}$, where $SS =$ "Sum of Squares" (sometimes also denoted S_{xx}) and $df =$ "degrees of freedom" = $n-1$, since the n individual deviations have a single constraint. (Namely, their sum must equal zero.)

n = 12

- Same formulas are used for grouped data, with \bar{x}_{group} , and $x_i = class$ interval midpoint. **Exercise:** Compute s for the *grouped* and *ungrouped* Memorial Union age data.
- A related measure of spread is the **absolute deviation**, defined as $\frac{1}{n}\sum |x_i \bar{x}| f_i$, but its statistical properties are not as well-behaved as the **standard deviation**. Also, see **Appendix > Geometric Viewpoint > Mean and Variance**, for a way to understand the "sum of squares" formula via the Pythagorean Theorem (!), as well as a useful alternate computational formula for the **sample variance**.

Typical "Grouped Data" Exam Problem

Age Intervals	Frequencies
[0, 18)	-
[18, 24)	208
[24, 30)	156
[30, 40)	104
[40, 60)	52
	520

Given the sample frequency table of age intervals shown above; answer the following.

1. Sketch the **density histogram**. (See Lecture Notes, page 2.2-6)

2. Sketch the graph of the **cumulative distribution**. (page 2.2-4)

3. What proportion of the sample is under 36 yrs old? (pages 2.3-5 bottom, 2.3-6 bottom)

4. What proportion of the sample is under 45 yrs old? (same)

5. What proportion of the sample is *between* 36 and 45 yrs old? (same)

6. Calculate the values of the following **grouped summary statistics**.

Quartiles Q_1, Q_2, Q_3 and **IQR** (pages 2.3-4 to 2.3-6)

Mean (page 2.3-4)

Variance (page 2.3-10, second comment on bottom)

Standard deviation (same)

Solutions at http://www.stat.wisc.edu/~ifischer/Grouped_Data_Sols.pdf