Devoir à la maison n° 22

À rendre le 14 juin

Soient $P = \sum_{k=0}^{p} a_k X^k$, $Q = \sum_{k=0}^{q} b_k X_k \in \mathbb{C}[X]$, deux polynômes non nuls, avec $p = \deg P$ et $q = \deg Q$. On considère :

•
$$D = P \wedge Q$$
, $d = \deg D$, $P = DP_1$ et $Q = DQ_1$;

•
$$E = \mathbb{C}_{q-1}[X] \times \mathbb{C}_{p-1}[X]$$
 et $F = \mathbb{C}_{p+q-1}[X]$;

Les q premières colonnes de Res(P,Q) représentent les coefficients de P, les p dernières ceux de Q. Les positions non remplies correspondent à des zéros, et on a donné ici l'écriture pour

 $\operatorname{Res}(P,Q)$ est un déterminant $(p+q)\times(p+q)$ appelé résultant de P et Q. Par exemple, si $P = 1 + 2X + 3X^2$ et $Q = 4 + 5X + 6X^2 + 7X^3$,

$$\operatorname{Res}(P,Q) = \begin{vmatrix} 1 & 0 & 0 & 4 & 0 \\ 2 & 1 & 0 & 5 & 4 \\ 3 & 2 & 1 & 6 & 5 \\ 0 & 3 & 2 & 7 & 6 \\ 0 & 0 & 3 & 0 & 7 \end{vmatrix}.$$

Première partie : résultant et polynômes premiers entre eux.

- 1) a) Déterminer une relation entre Res(P,Q) et Res(Q,P).
 - **b)** On suppose que p > 0. Calculer Res(P, 1).
 - c) Calculer $\operatorname{Res}(\lambda P, Q)$ et $\operatorname{Res}(P, \lambda Q)$ pour tout $\lambda \in \mathbb{C}$.

- 2) a) Montrer que φ est linéaire. Quelles sont les dimensions de E et de F? Que peut on en déduire quant à φ ?
 - b) Montrer que φ est bijective si et seulement si D=1.
- **3)** On considère $\mathscr{B} = ((1,0),(X,0),\dots,(X^{q-1},0),(0,1),(0,X),\dots,(0,X^{p-1}))$ la base canonique de E et $\mathscr{B}' = (1,X,\dots,X^{p+q-1})$ la base canonique de F.
 - a) Écrire la matrice M de φ dans les bases \mathscr{B} et \mathscr{B}' .
 - **b)** Montrer que $Res(P,Q) \neq 0 \Leftrightarrow D = 1$.

Deuxième partie : étude plus poussée.

- 4) Soit $a \in \mathbb{C}$.
 - a) Soit f_a : $\begin{cases} F \to F \\ R \mapsto R \circ (X+a) \end{cases}$. Calculer $\det f_a$.
 - **b)** Calculer de même det g_a avec g_a : $\begin{cases} E \to E \\ (A,B) \mapsto (A \circ (X+a), B \circ (X+a)) \end{cases}$.
 - c) En étudiant $f_{-a} \circ \varphi \circ g_a$, montrer que $\operatorname{Res}(P,Q) = \operatorname{Res}(P \circ (X-a), Q \circ (X-a))$.
- 5) a) Montrer que $\operatorname{Res}(XP,Q) = (-1)^q Q(0) \operatorname{Res}(P,Q)$.
 - **b)** Montrer que $\forall a \in \mathbb{C}$, $\operatorname{Res}((X-a)P,Q) = (-1)^q Q(a)\operatorname{Res}(P,Q)$.
 - c) En déduire que $\operatorname{Res}(P,Q) = (-1)^{pq} (a_p)^q (b_q)^p \prod_{k=1}^p \prod_{\ell=1}^q (\alpha_k \beta_\ell)$ où $\alpha_1, \ldots, \alpha_p$ sont les racines complexes de P et β_1, \ldots, β_q celles de Q.
- 6) a) Déterminer $\operatorname{Ker} \varphi$.
 - **b)** Vérifier que dim(Ker φ) = d.
 - c) Montrer que Im $\varphi = \{ R \in \mathbb{C}[X] \mid \deg R \leqslant p + q 1 \text{ et } D \mid R \}.$

Troisième partie : applications.

- 7) Racine multiple : Soit $P = X^3 + aX + b$, avec $a, b \in \mathbb{C}$. Donner une CNS sur a et b pour que P admette une racine multiple.
- 8) Nombre algébrique : En utilisant les polynômes $P(X) = X^2 3$ et $Q_y(X) = (y X)^2 7$, déterminer un polynôme à coefficients entiers de degré 4 ayant comme racine $\sqrt{3} + \sqrt{7}$. Quelles sont les autres racines de ce polynôme?

— FIN —