${\bf Contents}$

1	Arit	tmetica	a computazionale	1
	1.1	Rappre	esentazione dei numeri reali	1
	1.2	Errori	di rappresentazione	6
	1.3	Aritme	etica finita	7
		1.3.1	Caratterizzazione di u	8
	1.4	Analis	i degli errori	9
		1.4.1	Analisi in avanti degli errori nelle operazioni di moltiplicazione e addizione	10
		1.4.2	Condizionamento di un problema e stabilità di un algoritmo	11
		1.4.3	Numero di condizione	13
2	Fun	zioni p	polinomiali e interpolazione	18

1 Aritmetica computazionale

1.1 Rappresentazione dei numeri reali

I **numeri finiti** sono utilizzati dai calcolatori per rappresentare i numeri reali poiché questi ultimi possono avere un numero infinito di cifre, che i calcolatori, avendo una memoria limitata, non sono in grado di rappresentare.

Teorema (Rappresentazione in base). Sia α un numero reale non nullo. Possiamo rappresentare tale numero con una base $\beta \geq 2$, un numero intero scelto da noi, nel seguente modo:

$$\alpha = \pm (\alpha_1 \beta^{-1} + \alpha_2 \beta^{-2} + \dots) \beta^p$$

$$\alpha = \pm (\sum_{i=1}^{\infty} \alpha_i \beta^{-i}) \beta^p$$
(1.1)

I vari termini della 1.1 vengono detti:

$$\beta \qquad \qquad base \\ p \qquad \qquad esponente \\ \alpha_i \qquad \qquad cifre \ del \ numero \\ \sum_{i=1}^{\infty} \alpha_i \beta^{-i} \qquad mantissa$$

Ogni cifra α_i è un numero intero che varia tra 0 e $\beta-1$. Ad esempio, se lavoriamo in base 10, le cifre saranno numeri interi compresi tra 0 e 9.

Per garantire l'unicità della rappresentazione, è necessario che $\alpha_1 \neq 0$. Se così non fosse, il numero 13 potrebbe essere rappresentato come 13, 013, 0013, eccetera, il che va contro l'unicità della rappresentazione.

Possiamo scrivere un numero $\alpha \in \mathbb{R}$ con $\alpha \neq 0$ in due modi:

1. forma mista.

$$\alpha = \begin{cases} \pm (0.000\alpha_1 \alpha_2 \dots)_{\beta} & p \le 0 \\ \pm (\alpha_1 \alpha_2 \dots)_{\beta} & p > 0 \end{cases}$$

2. forma scientifica. L'idea è quella di spostare il punto decimale al primo numero $\neq 0$ e poi moltiplicare il tutto per β^p per riportare il numero al suo valore originale.

$$\alpha = \pm 0.\alpha_1\alpha_2\ldots\beta^p$$

Esempio:

$$\alpha = (12.37)_{10} \qquad \alpha = 0.12237 \cdot 10^{2}$$

$$\alpha = (0.0045)_{10} \qquad \alpha = 0.45 \cdot 10^{-2}$$

$$= (4 \cdot 10^{-1} + 5 \cdot 10^{-2}) \cdot 10^{-2}$$

Definizione (Numeri finiti). L'insieme \mathbb{F} dei numeri finiti è definito come l'insieme dei numeri espressi in base β (dove $\beta \geq 2$), utilizzando t cifre (con $t \geq 1$). Poiché anche l'esponente p potrebbe essere così grande da non poter essere rappresentato, è necessario limitare l'intervallo degli esponenti rappresentabili. Qui, λ indica il più piccolo esponente che può essere rappresentato e ω il più grande esponente rappresentabile.

$$\mathbb{F}(\beta, t, \lambda, \omega) = \{0\} \cup \{\alpha \in \mathbb{R} : \alpha = \pm 0.\alpha_1 \alpha_2 \dots \alpha_t \cdot \beta^p,$$

$$= \{0\} \cup \{\alpha \in \mathbb{R} : \alpha = \pm (\sum_{i=1}^t \alpha_i \beta^{-i}) \beta^p,$$

$$con \ 0 \ge \alpha_i < \beta, \ per \ i = 1, 2, \dots, t, \ \alpha_1 \ne 0, \lambda \le p \le \omega\}$$

 \mathbb{F} è un sottoinsieme che rappresenta una <u>discretizzazione</u> di \mathbb{R} . In altre parole, \mathbb{F} è un insieme discreto di numeri presi da \mathbb{R} , dove ciascun numero può essere espresso al più in t cifre. Questo significa che gli elementi di \mathbb{F} sono una selezione discreta di numeri reali con una precisione limitata a t cifre decimali.

Per convenzione, utilizzeremo α per scrivere i numeri reali e $\tilde{\alpha}$ per scrivere i numeri finiti.

Determinare e posizionare sull'asse reale gli elementi di $\mathbb{F}(2,3,-1,2)$. I numeri rappresentabili possono essere espressi come:

$$\tilde{\alpha} = \pm 0.\alpha_1 \alpha_2 \alpha_3 \cdot 2^p$$

$$\tilde{\alpha} = \pm (\sum_{i=1}^{3} \alpha_i \cdot 2^{-i}) \cdot 2^p$$

con $\tilde{\alpha} \in \mathbb{F}, -1 \le p < 3 \text{ e } \alpha_1 \ne 0$

L'insieme delle possibili mantisse m_3 è dato da:

$$m_3 = \{0.100, \\ 0.101, \\ 0.110, \\ 0.111\} \times \{2^{-1}, 2^0, 2^1, 2^2\}$$

Pertanto, l'insieme degli elementi di $\mathbb{F}(2,3,-1,2)$ è composto da 33 elementi. Di questi, 16 sono positivi, 16 sono negativi e uno è lo zero.

Per capire come questi elementi sono posizionati sull'asse reale, li portiamo in base 10.

$$0.100 = 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 0 \cdot 2^{-3} = \frac{1}{2} = \frac{4}{8}$$

$$0.101 = 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} = \frac{5}{8}$$

$$0.110 = 1 \cdot 2^{-1} + 1 \cdot 2^{-2} + 0 \cdot 2^{-3} = \frac{3}{4} = \frac{6}{8}$$

$$0.111 = 1 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3} = \frac{7}{8}$$

$$\frac{4}{8} \cdot 2^{-1} = \frac{4}{16} \begin{vmatrix} \frac{4}{8} \cdot 2^{0} = \frac{4}{8} \\ \frac{4}{8} \cdot 2^{1} = \frac{4}{4} \end{vmatrix} \begin{vmatrix} \frac{4}{8} \cdot 2^{2} = \frac{4}{2} \\ \frac{5}{8} \cdot 2^{-1} = \frac{5}{16} \\ \frac{5}{8} \cdot 2^{0} = \frac{5}{8} \end{vmatrix} \begin{vmatrix} \frac{5}{8} \cdot 2^{1} = \frac{5}{4} \\ \frac{5}{8} \cdot 2^{2} = \frac{5}{2} \end{vmatrix}$$

$$\frac{6}{8} \cdot 2^{-1} = \frac{6}{16} \begin{vmatrix} \frac{6}{8} \cdot 2^{0} = \frac{6}{8} \\ \frac{6}{8} \cdot 2^{1} = \frac{6}{4} \end{vmatrix} \begin{vmatrix} \frac{6}{8} \cdot 2^{2} = \frac{6}{2} \\ \frac{7}{8} \cdot 2^{-1} = \frac{7}{16} \end{vmatrix} \begin{vmatrix} \frac{7}{8} \cdot 2^{0} = \frac{7}{8} \end{vmatrix} \begin{vmatrix} \frac{7}{8} \cdot 2^{1} = \frac{7}{4} \end{vmatrix} \begin{vmatrix} \frac{7}{8} \cdot 2^{2} = \frac{7}{2} \end{vmatrix}$$

Notiamo come questi numeri sono equispaziati tra due potenze consecutive della base. Questo ci dà un'idea di come saranno fatti tutti gli insiemi di numeri finiti: tendono ad avere una densità maggiore vicino all'origine e si diradano man mano che ci si allontana da essa. La densità di questi numeri è direttamente influenzata dall'esponente negativo. Pertanto, è cruciale trovare un equilibrio tra numeri con esponenti sia positivi che negativi.

I numeri finiti sui calcolatori vengono rappresentati seguendo uno standard, come l'ANSI/IEEE 754-1985, che definisce formati specifici per la rappresentazione dei numeri in base 2.

Questo standard definisce 4 formati di numeri finiti, ma solo due di essi sono rigorosamente specificati. Gli altri due formati sono lasciati alla discrezione dei produttori di processori.

Lo scopo di uno standard è garantire la portabilità del codice, così che sia possibile eseguire lo stesso programma su differenti architetture ottenendo gli stessi risultati.

Gli n bit consecutivi dedicati per la memorizzazione di un numero finito vengono suddivisi tra le t cifre della mantissa ed un certo numero di bit $(\omega - \lambda + 1)$ per l'esponente p, più un bit per il segno del numero. Alcune tipiche rappresentazioni sono:

Basic precisione single $\mathbb{F}(2, 24, -127, 128)$ 32 bit **Basic precisione double** $\mathbb{F}(2, 53, -1023, 1024)$ 64 bit

In precisione singola vengono destinati 24 bit alla mantissa (in realtà solo 23^1) e 8 all'esponente ($2^8 = 256 = \omega - \lambda + 1$, con $\lambda = -127$ e $\omega = 128$), mentre in precisione doppia le cifre della mantissa sono 53 (memorizzati 52 bit) e dell'esponente 11 ($2^{11} = 2048 = \omega - \lambda + 1$, con $\lambda = -1023$ e $\omega = 1024$).

Si osservi che l'esponente è memorizzato per traslazione (exponent biased) e che la costante di traslazione (bias) è $-\lambda$. Quindi, se p è l'esponente del numero e \tilde{p} è l'esponente memorizzato, possiamo trovare l'esponente memorizzato a partire dall'esponente originale utilizzando la seguente relazione:

$$\tilde{p} = p - \lambda$$

Dato un numero reale non nullo, α , per associare un numero finito ad esso, procediamo come segue:

- 1. Rappresentazione esatta. Se α è scritto nella forma $\alpha = \pm (\alpha_1 \alpha_2 \dots) \times \beta^p$ tale che $\lambda \leq p \leq \omega$, $\alpha_i = 0$ per i > t, allora è rappresentabile esattamente come un numero finito t di cifre e $\alpha \in \mathbb{F}(\beta, t, \lambda, \omega)$.
- 2. Rappresentazione approssimata. Altrimenti $\alpha \notin \mathbb{F}(\beta, t, \lambda, \omega)$ e quindi bisogna associargli un numero approssimato $\tilde{\alpha}$ che indicheremo con $fl(\alpha)$. Si hanno i seguenti casi:
 - $p \notin [\lambda, \omega]$, viene segnalata una condizione d'errore:

$$\begin{array}{ll} p < \lambda & \textit{underflow} \\ p > \lambda & \textit{overflow} \end{array}$$

- $p \in [\lambda, \omega]$, ma le cifre a_i con i > t non sono tutte nulle, allora viene assegnato un numero finito $fl(\alpha)$ seguendo due possibili criteri:
 - Troncamento di α alla t-esima cifra

$$fl_T(\alpha) = \pm (\sum_{i=1}^t \alpha_i \beta^{-i}) \beta^p$$

– Arrotondamento di α alla t-esima cifra

$$fl_A(\alpha) = \pm fl_T((\sum_{i=1}^{t+1} \alpha_i \beta^{-i} + \frac{\beta}{2} \beta^{-(t+1)})\beta^p)$$

Esempio:

Il numero $\alpha = (0.11011)_2$ ha una mantissa di lunghezza 5, che è più lunga delle 3 cifre consentite in $\mathbb{F}(2,3,-1,2)$. Quindi, procediamo con l'operazione di arrotondamento:

$$\frac{fl_A(\alpha) = 0.11011 + 0.00010 = 0.11100}{0.11100}$$

¹Essendo sempre α_1 =1 per la rappresentazione binaria, la prima cifra può essere sottintesa senza mai essere fisicamente memorizzata.

Consideriamo l'insieme dei numeri finiti $\mathbb{F}(10,5,-50,49)$. Per rappresentare un numero finito in questo insieme in memoria, dobbiamo definire il numero di posizioni necessarie. Nello specifico:

- **Segno**: una posizione è riservata per il segno. Se il numero è positivo si usa 0; se è negativo, si usa $\beta 1$.
- **Esponente**: due posizioni sono destinate all'esponente. Usando la tecnica di memorizzazione per traslazione $(p \lambda = \tilde{p})$, possiamo rappresentare gli esponenti da -50 a 49 attraverso valori memorizzati da 00 a 99.
- Mantissa: cinque posizioni sono dedicate alla mantissa.

$$\begin{array}{ll} \alpha = 0.0532 = 0.532 \cdot 10^{-1} & fl(\alpha) = 04953200 \\ \alpha = -237141 = -0.237141 \cdot 10^6 & fl(\alpha) = 95623714 \end{array}$$

Osservazione. Siano x ed y due numeri $\in \mathbb{F}$ consecutivi positivi. Sia $\alpha \in \mathbb{R}$ tale che $x \leq \alpha < y$.

Allora possiamo affermare che α non appartiene all'insieme \mathbb{F} perché, per ipotesi, x e y sono consecutivi e non ci può essere un altro numero tra loro. Tuttavia, la rappresentazione approssimata $fl(\alpha)$ risulta essere:

$$fl_T(\alpha) = x$$
 $fl_A(\alpha) = \begin{cases} x & se \ \alpha < \frac{x+y}{2} \\ y & se \ \alpha \ge \frac{x+y}{2} \end{cases}$

L'errore commesso nel troncamento sarà sempre maggiore o uguale dell'errore commesso nell'arrotondamento. Questo è il motivo per cui, con una base numerica pari, si preferisce utilizzare l'arrotondamento, poiché fornirà una migliore approssimazione del numero reale rispetto al troncamento.

La modalità di arrotondamento dello standard ANSI/IEEE-754 coincide con quella precedentemente descritta, con la particolarità dell'arrotondamento ai pari. Questa particolarità si applica quando un numero reale α è esattamente equidistante dai numeri finiti consecutivi x ed y, in altre parole, quando $\alpha = \frac{x+y}{2}$. In questa situazione l'arrotondamento funziona nel seguente modo:

$$fl_{AP}(\alpha) = \begin{cases} x & \text{se x è pari} \\ y & \text{se y è pari} \end{cases}$$

Sempre parlando dello standard ANSI/IEEE-754, per gestire risultati non rappresentabili, vengono utilizzati due valori speciali:

- NaN
- Inf

Invece, di avere un buco vicino allo zero dove i numeri molto piccoli verrebbero immediatamente arrotondati a zero, vengono inseriti dei numeri ulteriori per riempire questo buco e permettere ai valori di avvicinarsi progressivamente a zero. Questo meccanismo è chiamato **gradual underflow**.

Per rappresentare questi numeri estremamente piccoli, si fa uso della rappresentazione **denormalizzata**. In questa rappresentazione, la mantissa non inizia con il solito bit implicito di 1, ma con una serie di 0.

Si eseguano i passi necessari per rappresentare il numero reale $(-13.9)_{10}$ in un'area di memoria di 8 bit (1 per il segno, 3 per l'exponent biased e 4 per la mantissa), che permettono di memorizzare $\mathbb{F}(2,5,-3,4)$ per troncamento e arrotondamento.

- 1. Conversione in binario, prima la parte intera, quindi la parte decimale:
 - Parte intera:
 - (a) Dividi il numero per 2.
 - (b) Registra il resto della divisione (sarà 0 o 1).
 - (c) Usa il quoziente ottenuto come nuovo numero e ripeti la divisione per 2.
 - (d) Continua il processo fino a quando il quoziente diventa 0.
 - (e) Leggi i resti della divisione in ordine <u>inverso</u>: questo sarà il numero in base 2 della parte intera.

$$(13)_{10} = (1101)_2$$

- Parte decimale:
 - (a) Moltiplica la parte decimale per 2.
 - (b) Registra la parte intera del risultato (sarà 0 o 1).
 - (c) Usa la parte decimale del risultato come nuovo numero e ripeti la moltiplicazione per 2.
 - (d) Continua questo processo finché non ottieni una parte decimale di 0 o si arriva al limite di precisione della mantissa.
 - (e) Leggi i numeri interi in ordine di apparizione: questo sarà il numero in base 2 della parte decimale.

$$0.9 \times 2 = \underline{1}.8$$

$$0.8 \times 2 = \underline{1}.6$$

$$0.6 \times 2 = \underline{1}.2$$

$$0.2 \times 2 = \underline{0}.4$$

$$0.4 \times 2 = \underline{0}.8$$

$$(0.9)_{10} = (11100...)_2$$

da cui

$$(-13.9)_{10} = (-1101.11100...)_2$$

2. **Normalizzazione**: nello standard IEEE-754, la rappresentazione normalizzata dei numeri in virgola mobile prevede che la parte <u>intera</u> sia sempre 1.

$$(-1101.11100...)_2 = (-1.101111100...)_2 \times 2^3$$

3. Calcolo dell'esponente biased:

$$p - \lambda = \tilde{p} \to 3 - (-3) = 6$$
$$(-1.10111100...)_2 \times 2^3 = (-1.10111100...)_2 \times 2^{(110)_2}$$

4. Rappresentazione della mantissa:

arrotondamento troncamento
$$1.10111 + 0.00001 = 1.1100$$
 1.1011

5. Rappresentazione in memoria: nello standard IEEE-754, con una mantissa di 5 bit, solo 4 bit vengono effettivamente memorizzati in memoria.

1	1	1	0	1	1	0	0		1	1	1	0	1	0	1	1	1
---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---

1.2 Errori di rappresentazione

Definizione. Consideriamo un valore $\alpha \in \mathbb{R}$. Se $\alpha \notin \mathbb{F}(\beta, t, \lambda, \omega)$, allora la sua migliore approssimazione all'interno di questo insieme è data da $\tilde{\alpha} \in \mathbb{F}(\beta, t, \lambda, \omega)$. L'approssimazione di α con $\tilde{\alpha}$ introduce un **errore di** rappresentazione. Per quantificare tale errore, definiamo le seguenti metriche:

$$E_{abs} = |\alpha - fl(\alpha)|$$
 errore assoluto
 $E_{rel} = \left|\frac{\alpha - fl(\alpha)}{\alpha}\right|$ se $\alpha \neq 0$ errore relativo

Nel calcolo scientifico, l'errore relativo è preferito poiché fornisce una misura dell'errore "normalizzata", che non dipende dalla grandezza dei numeri confrontati.

Esempio:

Si converta quanto rappresentato nell'esempio precedente nuovamente in base 10. Successivamente, si valuti l'errore assoluto e l'errore relativo della rappresentazione.

6. Decodifica: per riconvertire il numero floating point appena determinato, faremo:

$$\begin{array}{lll} {\rm arrotondamento} & {\rm troncamento} \\ (-1.1100)_2 \times 2^{(110)_2} & (-1.1011)_2 \times 2^{(110)_2} \\ (-1.1100)_2 \times 2^{(3)_{10}} & (-1.1011)_2 \times 2^{(3)_{10}} \\ (-1110.0)_2 & (-1101.1)_2 \\ -(8+4+2+0+0)_{10} & -(8+4+0+1+0.5)_{10} \\ -(14)_{10} & -(13.5)_{10} \end{array}$$

	arrotondamento	troncamento
errore assoluto	-13.9 - (-14) = 0.1	-13.9 - (-13.5) = -0.4
errore relativo	$\frac{0.1}{-13.9} = -0.0072$	$\frac{-0.4}{-13.9} = 0.0288$

Definizione. Dato l'insieme dei numeri finiti $\mathbb{F}(\beta, t, \lambda, \omega)$, si dice **unità di arrotondamento** e la si indica con u, la quantità:

$$u = \begin{cases} \beta^{1-t} & per \ troncamento \\ \frac{1}{2}\beta^{1-t} & per \ arroton damento \end{cases}$$

Teorema. Per ogni $\alpha \in \mathbb{R}$ e $\alpha \notin 0$ vale

$$\left|\frac{\alpha - fl(\alpha)}{\alpha}\right| = u$$

Il teorema afferma che u, l'unità di arrotondamento, rappresenta il <u>limite superiore</u> dell'errore relativo quando si rappresenta un numero reale in un formato numerico finito.

Esempio:

Consideriamo l'insieme dei numeri finiti $\mathbb{F}(2,5,-3,4)$. Calcolare l'unità di arrotondamento u sia nel caso di troncamento che di arrotondamento.

$$u = \begin{cases} 2^{1-5} = \frac{1}{16} = 0.0625 & \text{per troncamento} \\ \frac{1}{2} \cdot 2^{1-5} = \frac{1}{32} = 0.0325 & \text{per arrotondamento} \end{cases}$$

Indicheremo con ϵ l'errore relativo.

Corollario. Per ogni $\alpha \in \mathbb{R}$ e $\alpha \notin 0$ vale

$$fl(\alpha) = \alpha(1 \pm \epsilon), \quad con \ |\epsilon| < u$$

Dimostrazione.

Banalmente dato $\epsilon = \frac{\alpha - fl(\alpha)}{\alpha}$, per il Teorema si ha che $|\epsilon| < u$ e $fl(\alpha) = \alpha \epsilon + \alpha = \alpha(1 + \epsilon)$.

Precisione desiderata in base 10. La questione chiave è: quante cifre in base 10 sono necessarie per rappresentare con precisione ciò che è memorizzato in base 2?

Supponiamo di avere un numero rappresentato con t cifre in base 2. Vogliamo sapere a quante cifre, s, in base 10 questo corrisponde.

Partendo dall'equazione:

$$2^{-t} = 10^{-s}$$

e applicando il logaritmo in base 10 ad entrambi i lati:

$$-t \times \log_{10}(2) = -s$$

da qui possiamo isolare s:

$$s = t \times \log_{10}(2)$$

usando un'approssimazione per il logaritmo:

$$s \approx t \times 0.30103$$

Per esempio:

• Nella precisione 'basic single', con t = 24 cifre in base 2 per la mantissa, abbiamo:

$$s \approx 24 \times 0.30103 \approx 7.224$$

• Nella precisione 'basic double', con t = 53 cifre in base 2 per la mantissa, abbiamo:

$$s \approx 53 \times 0.30103 \approx 15.95459$$

Questo indica che ci servono circa 7-8 cifre in 'basic single' o circa 16 cifre in 'basic double' in base 10 per rappresentare con precisione ciò che è memorizzato in base 2. Utilizzando meno cifre, stiamo arrotondando e potremmo perdere informazioni.

Possiamo calcolare l'unità di arrotondamento u per 'basic single' e 'basic double':

- $u_{single} = \frac{1}{2} \times 2^{1-24} = 2^{-24} \approx 5.96 \times 10^{-8}$
- $u_{double} = \frac{1}{2} \times 2^{1-53} = 2^{-53} \approx 1.116 \times 10^{-16}$

Ora, se confrontiamo questi valori con le cifre necessarie in base 10 per una rappresentazione accurata, notiamo una relazione. Le cifre necessarie sono legate all'ordine di grandezza dell'unità di arrotondamento.

Questi valori forniscono un indicatore sull'ordine di grandezza minimo dei numeri che possono essere rappresentati accuratamente e sul numero massimo di cifre che possiamo stampare senza perdere informazioni.

1.3 Aritmetica finita

Dati due numeri a e b appartenenti a $\mathbb{F}(\beta, t, \lambda, \omega)$, l'operazione a op b potrebbe produrre un risultato che non è contenuto in $\mathbb{F}(\beta, t, \lambda, \omega)$.

Esempio:

Siano $a = (0.34)_{10} \times 10^0$ e $b = (0.12)_{10} \times 10^{-2} \in \mathbb{F}(10, 2, \lambda, \omega)$. Eseguendo la somma si ha:

$$0.34 + 0.0012 = 0.3412$$

ma, $0.3412 \notin \mathbb{F}(10, 2, \lambda, \omega)$.

Per eseguire le operazioni in questo dominio, vengono definiti degli operatori specifici, che indichiamo con \tilde{op} (ad esempio, $\tilde{+}$, $\tilde{-}$, $\tilde{*}$, $\tilde{/}$).

Definizione. L'operatore \tilde{op} tra due numeri $a, b \in \mathbb{F}$ è definito nel modo seguente:

$$a \ \tilde{op} \ b = fl(a \ op \ b)$$

Questo significa che viene prima eseguita l'operazione in aritmetica esatta, e il risultato viene arrotondato per rientrare nell'insieme di numeri finiti \mathbb{F} .

Per soddisfare tali requisiti, si utilizzano dei registri posizionati vicino al processore. Questi registri, dotati di bit aggiuntivi, rispetto a quelli della mantissa, permettono di eseguire operazioni con una precisione superiore rispetto a quella raggiungibile con solo t bit. Tale maggiore precisione assicura che, arrotondando a t cifre, il risultato ottenuto aderisce alla definizione delineata sopra. Idealmente, un registro di lunghezza t+1 bit, superiore a quella della mantissa stessa, garantirebbe la conformità a questa definizione.

Errore in aritmetica finita. Qual'è l'errore massimo che possiamo commettere durante un operazione con numeri finiti? Consideriamo l'errore relativo tra il risultato ottenuto in aritmetica finita e quello in aritmetica esatta, si può notare un interessante comportamento. Notiamo che, il risultato esatto di $(a\ op\ b)$ è un numero $\alpha\in\mathbb{R}$. Per definizione, in aritmetica finita, $(a\ \tilde{op}\ b)$ è l'approssimazione floating-point di α . Allora, per il teorema sopra menzionato, possiamo dedurre che l'errore relativo massimo tra α e $fl(\alpha)$ è minore dell'unità di arrotondamento u. Questo significa che u rappresenta l'errore relativo massimo che possiamo aspettarci in una singola operazione in aritmetica finita. Estendendo questa logica, se effettuiamo una serie di n operazioni, l'errore totale potrebbe essere al più nu.

$$\left| \frac{\overbrace{(a \ \tilde{op} \ b)}^{fl(\alpha)} - \overbrace{(a \ op \ b)}^{\alpha}}{\underbrace{a \ op \ b}_{\alpha}} \right| < u$$

Proprietà associativa. La proprietà associativa afferma che l'ordine in cui si raggruppano i termini durante un'operazione non modifica il risultato. Tuttavia, essa, così come le altre proprietà, <u>non</u> vale nell'aritmetica finita.

Esempio:

Considerati $a=0.11\times 10^0, b=0.13\times 10^{-1}, c=0.14\times 10^{-1}\in \mathbb{F}(10,2,\lambda,\omega)$. Verificare se la proprietà associativa $(a\tilde{+}b)\tilde{+}c=a\tilde{+}(b\tilde{+}c)$ è valida.

$$(0.11\tilde{+}0.013)\tilde{+}0.014 = 0.11\tilde{+}(0.013\tilde{+}0.014)$$

$$fl(0.123)\tilde{+}0.014 = 0.11\tilde{+}fl(0.027)$$

$$0.12\tilde{+}0.014 = 0.11\tilde{+}0.03$$

$$fl(0.134) = 0.14$$

$$0.13 \times 10^0 \neq 0.14 \times 10^0$$

Concludendo, la proprietà associativa non è valida nell'ambito dell'aritmetica finita.

Questo significa che la stessa istruzione o espressione, se scritta in modi diversi, può produrre risultati differenti. Di conseguenza, è importante comprendere come evitare di scrivere operazioni che potrebbero causare errori più grandi.

1.3.1 Caratterizzazione di u

L'unità di arrotondamento u ha un'importanza numerica sia in relazione alla precisione di rappresentazione (Teorema) che in termini di precisione di calcolo (risultato precedente). La sua importanza numerica è ulteriormente sottolineata dalla seguente caratterizzazione:

 $u \ \grave{e} \ il \ pi\grave{u} \ piccolo \ numero finito \ positivo \ tale \ che, \ se \ sommato \ a \ 1, \ viene "sentito" \ e \ risulta \ essere > di \ 1.$

$$u\tilde{+}1 > 1$$

Questo implica che per ogni numero finito v < u sarà v + 1 = 1. Infatti, se sommiamo un numero v a 1:

$$\underbrace{1.0\ldots0}_{t \text{ cifre}} + \underbrace{0.0\ldots0}_{t \text{ cifre}} 1$$

Tuttavia, il valore 1 rimane fuori dalle t cifre e nella somma viene arrotondato, e non viene "sentito" poiché il risultato sarà comunque 1.

Invece, se sommiamo un numero u a 1:

$$\begin{split} u\tilde{+}1 &= \frac{1}{2}\beta^{1-t} + 1 \\ &= \frac{\beta}{2}\beta^{-t} + 1 \\ &= 0.0\dots 0\frac{\beta}{2} + \underbrace{1.0\dots 0}_{t \text{ cifre}} \\ &= 1.0\dots 0\frac{\beta}{2} + 0.0 + 0.0\dots 0\frac{\beta}{2} \text{ per arrotondamento} \\ &= \underbrace{1.0\dots 1}_{t \text{ cifre}} 0 \text{ per troncamento} \\ 1.0\dots 1 &> 1 \end{split}$$

Nello standard IEEE-754, se consideriamo l'arrotondamento ai pari e dato che $1.0...0\frac{\beta}{2} = \frac{x+y}{2}$, dove x=1 e y=1.0...1, il valore pari più vicino è 1. Pertanto, 1 verrà scelto come risultato dell'arrotondamento. Questo cambia la caratterizzazione di u:

 $u \ \dot{e} \ il \ più \ grande \ numero \ finito \ positivo \ tale \ che, \ se \ sommato \ a \ 1, \ risulta \ essere = 1.$

Ma cosa ci serve tutto a questo? Per determinare proceduralmente u:

- 1. Esaminare le potenze negative di 2.
- 2. Continuare finché non si individua una potenza 2^{-t} che, quando sommata a 1, produce come risultato esattamente 1.
- 3. Tale potenza 2^{-t} rappresenta l'unità di arrotondamento u.

```
u=1
t=0
while (u+1>1)
    u=u/2
    t=t+1
end
stampa(u,t)
```

1.4 Analisi degli errori

Nella risoluzione di problemi in aritmetica finita su un calcolatore, dobbiamo prima chiederci cosa sia un "problema ben posto". Per definire un problema come **ben posto**, è necessario che soddisfi due requisiti:

- Il problema deve ammettere una e una sola soluzione.
- La soluzione deve dipendere con continuità dai dati in ingresso.

Un buon modo per <u>modelizzare</u> il nostro problema è tramite una funzione $f : \mathbb{R} \to \mathbb{R}$ che a partire da un dato x produce un risultato f(x). Affinché il problema sia ben posto, questa funziona deve essere continua. E per la sua stessa definizione, una funzione restituisce sempre un unico output per ogni input.

Ora, consideriamo un tipico flusso di lavoro legato alla risoluzione di un problema su un calcolatore:

- Input. Il dato viene letto e tradotto in una rappresentazione in aritmetica finita.
- Elaborazione. Si applica un algoritmo, anch'esso in aritmetica finita, per elaborare il dato.
- Valutazione del risultato. Si esamina il risultato, l'errore associato e si decide se il risultato è accettabile oppure no.

Per valutare l'entità dell'errore, possiamo utilizzare:

Figure 1: Analisi dell'errore

- Analisi in avanti: si calcola l'errore relativo sul sul risultato finale in termini degli errori introdotti dalle singole operazioni, trascurando i termini in cui compaiono prodotti di errori (analisi del 1° ordine).
- Analisi all'indietro: approccio opposto al precedente consiste nel considerare il risultato $\tilde{f}(x+\delta x)$ come risultato esatto derivato da dati iniziali perturbati rispetto a quelli reali. La valutazione è data quindi da un fattore δx sul dato iniziale x.

L'immagine 1 mostra che se la distanza tra x e $x + \delta x$ è piccola e, analogamente, la distanza tra f(x) e $\tilde{f}(x + \delta x)$ è anch'essa piccola, allora possiamo considerare il risultato come "buono".

1.4.1 Analisi in avanti degli errori nelle operazioni di moltiplicazione e addizione

Applicando l'analisi in avanti alle operazioni di moltiplicazione e addizione si ottengono alcuni importanti risultati:

• Moltiplicazione: Siano $x, y \in \mathbb{R}$. Consideriamo la funzione $f : \mathbb{R}^2 \to \mathbb{R}$ definita come $f(x, y) = x \cdot y$, che moltiplica due numeri reali e restituisce il risultato.

Applichiamo l'analisi in avanti, tenendo conto sia dell'errore sui dati che dell'errore di calcolo:

$$x \to fl(x) = x(1 + \epsilon_1) \qquad |\epsilon_1| < u$$

$$y \to fl(y) = y(1 + \epsilon_2) \qquad |\epsilon_2| < u$$

$$fl(x) \cdot fl(y) = fl(fl(x)fl(y))$$

$$= fl(x)fl(y)(1 + \epsilon_3) \qquad |\epsilon_3| < u$$

$$= x(1 + \epsilon_1)y(1 + \epsilon_2)(1 + \epsilon_3)$$

Calcoliamo ora l'errore relativo:

$$\left| \frac{fl(fl(x)fl(y)) - f(x,y)}{f(x,y)} \right| = \left| \frac{x(1+\epsilon_1)y(1+\epsilon_2)(1+\epsilon_3) - xy}{xy} \right|$$

$$= \left| \frac{\cancel{xy}}{\cancel{xy}} ((1+\epsilon_1)(1+\epsilon_2)(1+\epsilon_3) - 1)}{\cancel{xy}} \right|$$

$$= \left| (1+\epsilon_1)(1+\epsilon_2)(1+\epsilon_3) - 1 \right|$$

$$= \left| \cancel{1} + \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_1 \epsilon_2 + \epsilon_1 \epsilon_3 + \epsilon_2 \epsilon_3 + \epsilon_1 \epsilon_2 \epsilon_3 - \cancel{1} \right|$$

Trascuriamo il prodotto di errori, poiché numericamente irrilevanti (analisi di 1° ordine):

$$\approx |\epsilon_1 + \epsilon_2 + \epsilon_3| \le |\epsilon_1| + |\epsilon_2| + |\epsilon_3| < 3u$$

Abbiamo quantificato un limite superiore per l'errore sul risultato finale. Dato che ci sono 3 operazioni e l'errore finale massimo è di 3u, il risultato è sia accettabile che aspettato.

• Addizione: Siano dati $x, y \in \mathbb{R}$. Consideriamo la funzione $f : \mathbb{R}^2 \in \mathbb{R}$ definita come f(x, y) = x + y, che somma due numeri reali e restituisce il risultato.

Applichiamo l'analisi in avanti, tenendo conto sia dell'errore sui dati che dell'errore di calcolo:

$$x \to fl(x) = x(1 + \epsilon_1) \qquad |\epsilon_1| < u$$

$$y \to fl(y) = y(1 + \epsilon_2) \qquad |\epsilon_2| < u$$

$$fl(x) + fl(y) = fl(fl(x) + fl(y))$$

$$= (fl(x)fl(y))(1 + \epsilon_3) \qquad |\epsilon_3| < u$$

$$= (x(1 + \epsilon_1) + y(1 + \epsilon_2))(1 + \epsilon_3)$$

Calcoliamo ora l'errore relativo:

$$\left| \frac{fl(fl(x) + fl(y)) - f(x, y)}{f(x, y)} \right| = \left| \frac{(x(1 + \epsilon_1) + y(1 + \epsilon_2))(1 + \epsilon_3) - (x + y)}{x + y} \right|$$

$$= \left| \frac{(x + y + x\epsilon_1 + y\epsilon_2)(1 + \epsilon_3) - (x + y)}{x + y} \right|$$

$$= \left| \frac{(x + y) + x\epsilon_1 + y\epsilon_2 + x\epsilon_3 + y\epsilon_3 + x\epsilon_1\epsilon_3 + y\epsilon_2\epsilon_3 - (x + y)}{x + y} \right|$$

Trascuriamo il prodotto di errori, poiché numericamente irrilevanti (analisi del 1° ordine):

$$\approx \left| \frac{x}{x+y} \epsilon_1 + \frac{y}{x+y} \epsilon_2 + \frac{x+y}{x+y} \epsilon_3 \right| \le \left| \frac{x}{x+y} \right| |\epsilon_1| + \left| \frac{y}{x+y} \right| |\epsilon_2| + |\epsilon_3| \not < 3u$$

Che cosa è successo? Non possiamo dire che l'errore sia sempre < 3u. Infatti, i fattori $\frac{x}{x+y}$ e $\frac{y}{x+y}$ agiscono come amplificatori degli errori ϵ_1 e ϵ_2 . Ma quando questi fattori diventano grandi? Quando $x,y \in \mathbb{R}$ sono di segno opposto e con valori quasi uguali.

Questo fenomeno è conosciuto come **errore di cancellazione numerica**. Si tratta di una perdita di precisione durante operazioni di addizione o sottrazione. Esso si verifica quando:

- -x e y sono di segno opposto e con valori quasi uguali;
- vi è un errore ϵ_1 nella rappresentazione di x o un errore ϵ_2 in quella di y.

Anche se questi fattori fossero grandi, in assenza degli errori ϵ_1 o ϵ_2 , non avremmo un amplificazione dell'errore. Tuttavia, è proprio la presenza di errori nella rappresentazione, unita ai fattori di amplificazione, che può rendere il risultato finale meno preciso di quanto ci si potrebbe aspettare.

Esempio:

Sia $\mathbb{F}(10,6,\lambda,\omega)$ con rappresentazione per arrotondamento e siano dati i numeri reali $\alpha=0.147554326$ e b=-0.147251742.

La loro approssimazione nell'insieme \mathbb{F} sarà: fl(a) = 0.1475543 + 0.0000005 = 0.147554 e fl(b) = 0.1472517 + 0.0000005 = 0.147252.

L'addizione esatta darà: $a+b=0.302584\times 10^{-3}$, mentre in aritmetica finita darà: $fl(fl(a)+fl(b))=fl(0.147554-0.147252)=0.000302=0.302000\times 10^{-3}$.

L'errore relativo commesso sarà: $\frac{0.302000 \times 10^{-3} - 0.302584 \times 10^{-3}}{0.302584 \times 10^{-3}} \approx 0.2 \times 10^{-2}$, mentre $u = \frac{1}{2}10^{1-6} = 0.5 \times 10^{-5}$ comportando un grave errore.

Nel cancellare delle cifre a causa dell'arrotondamento, ho perso delle informazioni successive. Questa perdita si traduce in un errore che è maggiorato di ben tre ordini di grandezza.

1.4.2 Condizionamento di un problema e stabilità di un algoritmo

Ci interessa comprendere dell'errore totale, quanto di quest'ultimo sia risultato dall'approssimazione dei dati e quanto invece sia dovuto all'algoritmo che stiamo utilizzando. Iniziamo dividendo l'errore totale in due componenti:

• Condizionamento del problema: Questo rappresenta l'errore che è intrinsecamente associato ai dati di input del problema. In altre parole, è l'errore che non possiamo eliminare in quanto è legato alla qualità dei dati stessi. Possiamo chiamarlo errore inerente. Per quantificarlo, prendiamo il dato reale, lo approssimiamo e poi valutiamo l'errore relativo tra il risultato ottenuto in aritmetica esatta utilizzando il dato approssimato e quello che avremmo ottenuto utilizzando il dato vero.

$$E_{in} = \left| \frac{f(\tilde{x}) - f(x)}{f(x)} \right|$$

• Stabilità dell'algoritmo: Questo rappresenta l'errore introdotto dall'algoritmo che stiamo utilizzando per risolvere il problema. È il contributo dell'algoritmo nell'amplificare gli errori presenti nei dati. Possiamo chiamarlo errore algoritmico. Per valutarlo, confrontiamo il risultato finale ottenuto utilizzando l'algoritmo con il dato approssimato con il risultato teorico che l'algoritmo dovrebbe restituire.

$$E_{alg} = \left| \frac{\tilde{f}(\tilde{x}) - f(\tilde{x})}{f(\tilde{x})} \right|$$

Teorema. Siano x e \tilde{x} tale che $f(x) \neq 0$ ed $f(\tilde{x}) \neq 0$. Indicati con $E_{tot} = \left| \frac{\tilde{f}(\tilde{x}) - f(x)}{f(x)} \right|$ l'errore relativo nell'analisi in avanti e con E_{in} ed E_{alg} gli errori inerente e algoritmo, si ha

$$E_{tot} = E_{alg}(1 + E_{in}) + E_{in} (1.2)$$

Trascurando il prodotto di errori, la 1.2 risulta così semplificata:

$$E_{tot} \approx E_{alg} + E_{in}$$

Un problema è definito come mal condizionato quando presenta un elevato errore inerente. Al contrario, quando l'errore inerente è ridotto, il problema è definito come ben condizionato. D'altro canto, se un algoritmo produce un ampio errore algoritmico, viene definito instabile. Se, invece, l'errore algoritmico è minimo, l'algoritmo è definito come numericamente stabile.

 $\tilde{x} = fl(x) = x(1 + \epsilon_1) \quad |\epsilon_1| < u$

Esempio:

Calcolare gli errori inerente e algoritmico associati all'addizione di x+y, dove $x,y\in\mathbb{R}$.

$$\tilde{y} = fl(y) = y(1 + \epsilon_2) \quad |\epsilon_2| < u$$

$$E_{in} = \left| \frac{f(\tilde{x}, \tilde{y}) - f(x, y))}{f(x, y)} \right|$$

$$= \left| \frac{x(1 + \epsilon_1) + y(1 + \epsilon_2) - (x + y)}{x + y} \right|$$

$$= \left| \frac{(x + y) + x\epsilon_1 + y\epsilon_2 - (x + y)}{x + y} \right|$$

$$= \left| \frac{x}{x + y} \epsilon_1 + \frac{y}{x + y} \epsilon_2 \right|$$

$$\leq \left| \frac{x}{x + y} \right| |\epsilon_1| + \left| \frac{y}{x + y} \right| |\epsilon_2|$$

$$E_{alg} = \left| \frac{\tilde{f}(\tilde{x}, \tilde{y}) - f(\tilde{x}, \tilde{y})}{f(\tilde{x}, \tilde{y})} \right|$$

$$= \left| \frac{(\tilde{x} + \tilde{y})(1 + \epsilon_3) - (\tilde{x} + \tilde{y})}{\tilde{x} + \tilde{y}} \right|$$

Si analizzi il condizionamento e la stabilità dell'algoritmo utilizzato calcolare la funzione $f: \mathbb{R} \to \mathbb{R}$ definita come $f(x) = \frac{(1+x)-1}{x}$ e dove $x \in \mathbb{F} \subset \mathbb{R}$ e $x \neq 0$.

$$\tilde{x} = fl(x) = x(1 + \epsilon_1) \qquad |\epsilon_1| < u$$

$$E_{in} = \left| \frac{f(\tilde{x}) - f(x)}{f(x)} \right|$$

$$= \left| \frac{(1 + x(1 + \epsilon_1)) - 1}{x(1 + \epsilon_1)} - 1 \right|$$

$$= 0$$

Le operazioni principali e i loro errori associati sono:

- un'addizione con errore ϵ_1 ,
- una sottrazione con errore ϵ_2 , e
- una divisione con errore ϵ_3 .

$$E_{alg} = \left| \frac{\tilde{f}(\tilde{x}) - f(\tilde{x})}{f(\tilde{x})} \right|$$

$$= \left| \frac{\frac{((1+x)(1+\epsilon_1)-1)(1+\epsilon_2)}{x}(1+\epsilon_3) - 1}{1} \right|$$

$$= \left| \frac{1/x + x + (1+x)\epsilon_1 - 1/x}{x}(1+\epsilon_2)(1+\epsilon_3) - 1 \right|$$

$$= \left| \frac{x(1+\epsilon_2)(1+\epsilon_3) + (1+x)\epsilon_1(1+\epsilon_2)(1+\epsilon_3)}{x} - 1 \right|$$

$$= \left| 1/x + \epsilon_2 + \epsilon_3 + \epsilon_2 \epsilon_3 + \frac{1+x}{x} \epsilon_1(1+\epsilon_2+\epsilon_3+\epsilon_2 \epsilon_3) - 1/x \right|$$

Trascurando il prodotto di errori, poiché numericamente irrilevanti (analisi di 1° ordine):

$$\approx \frac{1+x}{x}\epsilon_1 + \epsilon_2 + \epsilon_3$$

$$\frac{1}{x}\epsilon_1 + \epsilon_1 + \epsilon_2 + \epsilon_3 \le \left|\frac{1}{x}\right| |\epsilon_1| + \underbrace{|\epsilon_1| + |\epsilon_2| + |\epsilon_3|}_{3u}$$

Come interpretare questo risultato finale? Su quest'ultimo può esserci un errore > 3u. Se l'errore ϵ_1 nella prima addizione è $\neq 0$ e x è piccolo, il termine $\frac{1}{x}$ diventa grande, amplificando così l'errore.

1.4.3 Numero di condizione

Funzioni $f: \mathbb{R} \to \mathbb{R}$. Consideriamo una funzione $f: \mathbb{R} \to \mathbb{R}$ che sia <u>differenziabile</u>. Supponendo che vogliamo valutare questa funzione in un punto vicino a x_0 , possiamo usare lo sviluppo di Taylor centrato in x_0 :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(h)$$

dove $h = x - x_0$.

Se vogliamo approssimare f in un punto vicino x_0 , diciamo \tilde{x}_0 abbiamo:

$$f(\tilde{x}_0) = f(x_0) + f'(x_0)(\tilde{x}_0 - x_0) + o(h)$$

Calcoliamo l'errore inerente:

$$E_{in} = \left| \frac{f(\tilde{x}_0) - f(x_0)}{f(x_0)} \right|$$

Sostituendo lo sviluppo di Taylor per $f(\tilde{x}_0)$, possiamo riscrivere:

$$\approx \left| \frac{f(x_0) + f'(x_0)(\tilde{x}_0 - x_0) - f(x_0)}{f(x_0)} \right|$$

$$= \left| \frac{f'(x_0)(\tilde{x}_0 - x_0)}{f(x_0)} \cdot \frac{x_0}{x_0} \right|$$
per ipotesi $f(x_0) \neq 0$ e $x_0 \neq 0$

$$= \left| \frac{f'(x_0)x_0}{f(x_0)} \frac{\tilde{x}_0 - x_0}{x_0} \right|$$

Se si considera $\frac{\tilde{x}_0 - x_0}{x_0}$ come l'errore sui dati, possiamo riscrivere:

$$= \left| \frac{f'(x_0)x_0}{f(x_0)} \right| |\epsilon_{x_0}|$$

Ciò che emerge è che l'errore inerente non dipende soltanto dall'errore sui dati, ma anche da una quantità $\left|\frac{f'(x_0)x_0}{f(x_0)}\right|$ che amplifica tale errore. Questa quantità è nota come **numero di condizione** e lo denotiamo con $C(f,x_0)$.

Un valore elevato di $C(f, x_0)$ indica che il problema è mal condizionato in x_0 , cioè piccoli errori nei dati possono portare a grandi errori nella soluzione.

Pertanto, per determinare se un problema differenziabile è mal condizionato in un dato punto, si può guardare il suo numero di condizione.

Generalizzazione per funzioni $f: \mathbb{R}^n \to \mathbb{R}$. Dati una funzione $f: \mathbb{R}^n \to \mathbb{R}$ e due vettori $x = (x_1, x_2, \dots, x_n)$ e $\tilde{x} = (\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_n)$.

L'espansione di Taylor di funzione in più variabili può essere espressa come:

$$f(\tilde{x}) = f(x) + \sum_{i=1}^{n} (\tilde{x}_i - x_i) \frac{\delta f}{\delta x_i} + o(h)$$

dove $\frac{\delta f}{\delta x_i}$ rappresenta la derivata parziale di f rispetto alla i-esima componente e $h = \sum_{i=1}^{n} (\tilde{x}_i - x_i)$.

Calcoliamo l'errore inerente:

$$E_{in} = \left| \frac{f(\tilde{x}) - f(x)}{f(x)} \right|$$

Sostituendo lo sviluppo di Taylor per $f(\tilde{x})$, possiamo riscrivere:

$$\approx \left| \frac{f(x) + \sum_{i=1}^{n} (\tilde{x}_i - x_i) \frac{\delta f}{\delta x_i} - f(x)}{f(x)} \right|$$

$$\leq \sum_{i=1}^{n} \left| \frac{(\tilde{x}_i - x_i) \frac{\delta f}{\delta x_i}}{f(x)} \right| \quad \text{per ipotesi } x_i \neq 0$$

$$= \sum_{i=1}^{n} \left| \frac{(\tilde{x}_i - x_i) \frac{\delta f}{\delta x_i}}{f(x)} \frac{x_i}{x_i} \right|$$

Se si considera $\epsilon_i = \frac{\tilde{x}_i - x_i}{x_i}$ come gli errori sui dati e le quantità $c_i = \frac{\frac{\delta f}{\delta x_i} x_i}{f(x)}$ i numeri di condizione, possiamo riscrivere:

$$=\sum_{i=1}^{n}\left|c_{i}\epsilon_{i}\right|$$

Ricapitolando:

$$\left| \frac{f(\tilde{x}) - f(x)}{f(x)} \right| \le \sum_{i=1}^{n} |c_i \epsilon_i| \tag{1.3}$$

dove

$$c_i = \frac{\frac{\delta f}{\delta x_i} x_i}{f(x)} \tag{1.4}$$

Se anche uno solo di questi numeri di condizione è grande, l'errore inerente sarà significativo. Per avere un errore inerente piccolo, è necessario che tutti i numeri di condizione siano piccoli.

Inoltre, grazie a quanto abbiamo visto, se la funzione è differenziabile, saremo in grado di stimare l'errore inerente più velocemente.

Esempio:

Consideriamo la funzione $f: \mathbb{R} \to \mathbb{R}$ definita come $f(x) = \sqrt{1-x}$, con $x \in \mathbb{R}$ e x < 1. La sua derivata è data da $f'(x) = -\frac{1}{2\sqrt{1-x}}$.

Calcoliamo il numero di condizione:

$$\left|\frac{xf'(x)}{f(x)}\right| = \left|\frac{x}{\sqrt{1-x}}(-\frac{1}{2\sqrt{1-x}})\right| = \left|\frac{x}{2(1-x)}\right|$$

Guardando questa espressione, notiamo che quando x si avvicina a 1, il numero di condizione aumenta rapidamente, suggerendo che il problema è mal condizionato in prossimità di x = 1.

Dal grafico, possiamo vedere che quando x si avvicina molto a 1, anche piccole variazioni in x possono causare variazioni significative in f(x). Ciò significa che errori piccoli in x possono portare a errori grandi in f(x).

Per avere un'idea numerica di questo comportamento, consideriamo l'insieme $\mathbb{F}(10,4,\lambda,\omega)$. Siano:

$$x_0 = 0.99984$$

 $\tilde{x}_0 = 0.9998$

Calcoliamo l'errore sui dati:

$$\left| \frac{\tilde{x}_0 - x_0}{x_0} \right| = \left| \frac{0.9998 - 0.99984}{0.99984} \right| \approx 4 \times 10^{-5}$$

L'errore inerente è dato da:

$$E_{in} = \left| \frac{f(\tilde{x}_0) - f(x_0)}{f(x_0)} \right| = \left| \frac{0.014142 - 0.0126491}{0.0126491} \right| \approx 0.1180$$

Il numero di condizione in x_0 è:

$$C(f, x_0) = C(\sqrt{1-x}, 0.99984) = \left| \frac{0.99984}{2(1-0.99984)} \right| \approx 0.312 \times 10^4$$

Osserviamo che l'errore sui dati si amplifica di 4 ordini di grandezza, a causa del numero di condizione, causando un grave errore sul risultato.

Si stimi l'errore inerente applicando 1.3 nei casi già visti di moltiplicazione e addizione fra numeri reali:

• moltiplicazione $f(x_1, x_2) = x_1 \cdot x_2$; applicando la 1.4 si ha

$$c_1 = \frac{x_1}{x_1 x_2} = 1$$
 $c_2 = \frac{x_2}{x_1 x_2} x_1 = 1$

da cui si deduce che il problema in oggetto è ben condizionato e risulta

$$E_{in} = \left| \frac{f(\tilde{x}) - f(x)}{f(x)} \right| \le \sum_{i=1}^{2} |c_i \epsilon_i| = |c_1 \epsilon_1| + |c_2 \epsilon_2| = 1 |\epsilon_1| + 1 |\epsilon_2|$$

• addizione $f(x_1, x_2) = x_1 + x_2$; applicando la 1.4 si ha

$$c_1 = \frac{x_1}{x_1 + x_2} 1 \quad c_2 = \frac{x_2}{x_1 + x_2} 1$$

da cui si deduce che il problema è mal condizionato per $x_1 + x_2 \rightarrow 0$ e risulta

$$E_{in} = \ldots = \left| \frac{x_1}{x_1 + x_2} \right| |\epsilon_1| + \left| \frac{x_2}{x_1 + x_2} \right| |\epsilon_2|$$

Errore analitico. Supponiamo di avere una funzione $g: \mathbb{R} \to \mathbb{R}$ o $g: \mathbb{R}^n \to \mathbb{R}$ che <u>non</u> può essere risolta in aritmetica reale. Un esempio tipico potrebbe essere una funziona che calcola il seno di un numero, per la quale un calcolatore potrebbe non avere una definizione diretta.

Per trattare questo problema computazionalmente, possiamo sostituire g(x) con una sua approssimazione f(x) che, al contrario, è direttamente calcolabile. Un modo comune per approssimare questa funzione è utilizzare lo sviluppo di Taylor.

L'errore introdotto nell'usare f(x) al posto di g(x) è ciò che chiamiamo **errore analitico** ed è definito come:

$$E_{an} = \left| \frac{f(x) - g(x)}{g(x)} \right|$$

L'errore analitico si verifica quando si approssima un problema *irrazionale* (cioè, un problema non risolvibile in aritmetica reale) con un problema *razionale* o direttamente calcolabile.

Si esamina il problema della valutazione della seguente funzione:

$$f(x_1, x_2) = \sqrt{x_1 + x_2} - \sqrt{x_1} \quad \text{con } x_1, x_1 + x_2 \ge 0$$

Esistono delle condizioni dei dati in ingresso che possono causare errori gravi e che possono invalidare il risultato?

- 1. Se x_2 è estremamente piccolo in confronto a x_1 , si incorre in un errore di cancellazione numerica.
- 2. Se x_1 e x_2 sono di segno opposto e con valori quasi uguali, si incorre in un errore di cancellazione numerica.

Alla luce di ciò, si cerca un algoritmo differente che eviti il problema. Razionalizzando, otteniamo:

$$f(x_1, x_2) = (\sqrt{x_1 + x_2} - \sqrt{x_1}) \frac{\sqrt{x_1 + x_2} + \sqrt{x_1}}{\sqrt{x_1 + x_2} + \sqrt{x_1}}$$
$$= \frac{x_2}{\sqrt{x_1 + x_2} + \sqrt{x_1}}$$

Ora, a denominatore si effettua un addizione fra quantità non negative. Questo elimina il rischio di cancellazione per la 1° condizione, ma non per la 2° condizione.

Per convincerci di ciò, analizziamo l'errore inerente. Utilizziamo la stima 1.3: nel caso specifico sarà $E_{in} = c_1 \epsilon_1 + c_2 \epsilon_2$ con c_1 e c_2 calcolati tramite la 1.4; facendo i conti si ottiene:

$$c_1 = -\frac{1}{2}\sqrt{\frac{x_1}{x_1 + x_2}}$$
 $c_2 = \frac{1}{2}(1 + \sqrt{\frac{x_1}{x_1 + x_2}}) = \frac{1}{2} - c_1$

e il problema risulta mal condizionato proprio quando $x_1 + x_2 \rightarrow 0$.

Illustriamo la situazione con un esempio numerico, dove con f denotiamo il valore esatto, mentre con \tilde{f} e \hat{f} , rispettivamente i risultati dei due algoritmi lavorando in $\mathbb{F}(10,7,\lambda,\omega)$.

• Siano dati $x_1 = 0.1 \times 10^1$ e $x_2 = 0.1 \times 10^{-3}$, allora $c_2 \approx 1$ che indica un buon condizionamento in questo caso. I risultati esatto e calcolati con i due algoritmi sono:

$$f(x_1, x_2) = 0.4999875 \times 10^{-6}$$
$$\tilde{f}(x_1, x_2) = 0.4994869 \times 10^{-6}$$
$$\hat{f}(x_1, x_2) = 0.4999875 \times 10^{-6}$$

che indica l'instabilità del primo algoritmo nel caso di $|x_2| \ll |x_1|$.

• Siano dati $x_1 = 1$ e $x_2 = -1 + 10^{-6} = 0.999999$, allora $c_2 \approx 0.5 \times 10^{-3}$ che indica un cattivo condizionamento, infatti $x_1 + x_2 \to 0$. I risultati e satto e calcolati con i due algoritmi sono:

$$f(x_1, x_2) = -0.999$$

$$\tilde{f}(x_1, x_2) = \hat{f}(x_1, x_2) = -0.9985858$$

che mostra come entrambi gli algoritmi ci restituiscono risultati scadenti.

• Siano dati $x_1 = 0.1$ e $x_2 = 0.2$, allora $c_2 \approx 0.85$ che indica un buon condizionamento anche in questo caso. I risultati esatto e calcolati con i due algoritmi sono:

$$f(x_1, x_2) = \tilde{f}(x_1, x_2) = \hat{f}(x_1, x_2) = 0.1309858$$

Funzioni polinomiali e interpolazione