Circuitos Osciladores

Circuitos de Rádio-Frequência - 10 de Junho de 2025

Arthur Cadore M. Barcella

Sumário

Cristais Piezoelétricos	3
VCO (Voltage-Controlled Oscillator)	9

Cristais Piezoelétricos

Constituição do Cristal

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do.

Cristal Piezoelétrico fechado

Modelo Elétrico

Um oscilador de cristal pode ser modelado como um circuito RLC série em paralelo com um capacitor, conforme apresentado a direita.

A equação de impedância do cristal é dada por:

$$Z(s) = \left(\frac{1}{s.C_1} + s.L_1 + R_1\right) \parallel \left(\frac{1}{s.C_0}\right)$$

Onde:

- C_1 é a capacitância do cristal em série
- L_1 é a indutância do cristal em série
- R_1 é a resistência do cristal em série
- C_0 é a capacitância de derivação do cristal
- $s = \sigma + j\omega$: variável complexa de Laplace

Modelo Elétrico Correspondente do Cristal

Modelo Elétrico

Dessa forma, adicionar uma capacitância em paralelo com o cristal, resulta em um aumento do valor de C_0 , assim fazendo com que a frequência de ressonância (paralela) do circuito diminue. Em contra partida, adicionar uma indutância em paralelo com o cristal, faz com que a frequência de ressonância (paralela) do circuito aumente.

Assim, os fabricantes de cristais especificam a frequência de ressonância junto a um capacitor de carga C_L que deve ser utilizado para que o cristal opere na frequência desejada, sem esse capacitor, o cristal irá operar em uma frequência maior da desejada.

Oscilador de Cristal HC-49S 9AC (JGHC)

Especificações Técnicas

Especificação	Valor
Frequency Range	3.2-64 MHz
Shunt Capac. (C0)	7 pF
Load Capacitance	20 pF

Efeitos de temperatura

Dessa forma, adicionar uma capacitância em paralelo com o cristal, resulta em um aumento do valor de C_0 , assim fazendo com que a frequência de ressonância (paralela) do circuito diminue. Em contra partida, adicionar uma indutância em paralelo com o cristal, faz com que a frequência de ressonância (paralela) do circuito aumente.

Assim, os fabricantes de cristais especificam a frequência de ressonância junto a um capacitor de carga C_L que deve ser utilizado para que o cristal opere na frequência desejada, sem esse capacitor, o cristal irá operar em uma frequência maior da desejada.

Oscilador de Cristal HC-49S 9AC (JGHC)

Especificações Técnicas

Especificação	Valor
Frequency Tolerance	± 10 ppm
Temperature Range	~40 ~+85°C
Aging (at 25℃)	± 5 ppm / year

Resposta em Frequência

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do.

Elaborada pelo Autor

VCO (Voltage-Controlled Oscillator)

Diagrama Elétrico

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do.

Elaborada pelo Autor

