W.A. Good

AD-A280 301

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

S ELF TE D

REPORT No. 315

AERODYNAMIC CHARACTERISTICS OF AIRFOILS—VI

Ву

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

94-15791

4 5 25 078

DTIC QUALITY LIGHBURD STED 8

This document has been approved for public release and sale; its distribution is unlimited.

UNITED STATES

GOVERNMENT PRINTING OFFICE

WASHINGTON: 1929

AERONAUTICAL SYMBOLS

1. FUNDAMENTAL AND DERIVED UNITS

	G . 1	Metric		English		
Symbol		Unit	Symbol	Unit	Symbol	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		m sec kg	foot (or mile)second (or hour)weight of one pound	ft. (or mi.) sec. (or hr.) lb.		
Power	P	kg/m/sec /km/hr m/sec		horsepower mi./hr ft./sec	HP. M. P. H. f. p. s.	

2. GENERAL SYMBOLS, ETC.

W, Weight, = mg

g, Standard acceleration of gravity = 9.80665 m/sec.² = 32.1740 ft./sec.²

m, Mass,= $\frac{W}{g}$

 ρ , Density (mass per unit volume).

Standard density of dry air, 0.12497 (kg-m⁻⁴ sec.²) at 15° C and 760 mm = 0.002378 (lb.-ft.⁻⁴ sec.²).

Specific weight of "standard" air, 1.2255 $kg/m^3 = 0.07651 lb./ft.^3$

 mk^2 , Moment of inertia (indicate axis of the radius of gyration, k, by proper subscript).

S, Area.

 S_w , Wing area, etc.

G, Gap.

b, Span.

c, Chord length.

b/c, Aspect ratio.

f, Distance from c. g. to elevator hinge.

. Coefficient of viscosity.

3. AERODYNAMICAL SYMBOLS

V, True air speed.

q, Dynamic (or impact) pressure = $\frac{1}{2} \rho V^2$

L, Lift, absolute coefficient $C_L = \frac{L}{qS}$

D, Drag, absolute coefficient $C_{D} = \frac{D}{qS}$

C, Cross-wind force, absolute coefficient $C_{C} = \frac{C}{qS}$

R, Resultant force. (Note that these coefficients are twice as large as the old coefficients L_c , D_c .)

 i_w Angle of setting of wings (relative to thrust line).

i, Angle of stabilizer setting with reference to thrust line.

γ, Dihedral angle.

 $\rho \frac{Vl}{\mu}$, Reynolds Number, where l is a linear dimension.

e. g., for a model airfoil 3 in. chord, 100 mi./hr. normal pressure, 0° C: 255,000 and at 15° C., 230,000;

or for a model of 10 cm chord 40 m/sec, corresponding numbers are 299,000 and 270,000.

 C_p , Center of pressure coefficient (ratio of distance of C. P. from leading edge to chord length).

 β , Angle of stabilizer setting with reference to lower wing, = $(i_t - i_w)$.

α, Angle of attack.

e, Angle of downwash.

REPORT No. 315

AERODYNAMIC CHARACTERISTICS OF AIRFOILS-VI

CONTINUATION OF REPORTS Nos. 93, 124, 182, 244, and 286

By

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

39331--29----1

DTIC QUALITY INSPECTED S

TABLE OF CONTENTS

	Page
Introduction	385
Transformation constants	
Chart index	
Index of abbreviations	
Group index	
Alphabetical index	
Airfoil sections	
United States sections.	
German sections	
French sections	
Belgium sections	
Italian sections	
Charts Nos. 21, 22, 23, 24	415-418
	202

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

NAVY BUILDING, WASHINGTON, D. C.

(An independent Government establishment, created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study of the problems of flight. It consists of 12 members who are appointed by the President, all of whom serve as such without compensation.)

JOSEPH S. AMES, Ph. D., Chairman.

Provost, Johns Hopkins University, Baltimore, Md. DAVID W. TAYLOR, D. Eng., Vice Chairman.
Washington, D. C.

Washington, D. C.
CHARLES G. Abbot, Sc. D.,
Secretary, Smithsonian Institution, Washington, D. C.
GEORGE K. BURGESS, Sc. D.,
Director, Burcau of Standards, Washington, D. C.
WILLIAM F. DURAND, Ph. D.,
Professor Emeritus of Mechanical Engineering, Stanford University, California.

JAMES E. FECHET, Major General, United States Army,
Chief of Air Corps, War Department, Washington, D. C.
WILLIAM E. GILLMORE, Brigadier General, United States Army,
Chief, Matériel Division, Air Corps, Wright Field, Dayton, Ohio.
EMORY S. LAND, Captain, United States Navy,

EMORY S. LAND, Captain, United States Navy,
Assistant Chief, Bureau of Aeronautics, Navy Department, Washington, D. C.
CHARLES F. MARVIN, M. E.,
Chief, United States Weather Bureau, Washington, D. C.
WILLIAM A. MOFFETT, Rear Admiral, United States Navy,
Chief, Bureau of Aeronautics, Navy Department, Washington, D. C.
S. W. STRATTON, Sc. D.,
Provident Massaghusetts Institute of Technology, Cambridge Massaghusetts

President Massachusetts Institute of Technology, Cambridge, Mass. ORVILLE WRIGHT, Sc. D.,

Dayton, Ohio.

George W. Lewis, Director of Aeronautical Research.
John F. Victory, Secretary.

Henry J. E. Reid, Engineer in Charge, Langley Memorial Aeronautical Laboratory,
Langley Field, Va.

John J. Ide, Technical Assistant in Europe, Paris, France.

EXECUTIVE COMMITTEE

JOSEPH S. AMES, Chairman. DAVID W. TAYLOR, Vice Chairman.

Charles G. Abbot. George K. Burgess. JAMES E. FECHET.
WILLIAM E. GILLMORE.
EMORY S. LAND.

CHARLES F. MARYIN. WILLIAM A. MOFFETT, S. W. STRATTON. ORVILLE WRIGHT.

JOHN F. VICTORY, Secretary.

REPORT No. 315

AERODYNAMIC CHARACTERISTICS OF AIRFOILS—VI

CONTINUATION OF REPORTS NOS. 93, 124, 182, 244, AND 286

By NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

INTRODUCTION

This collection of data on airfoils has been made from the published reports of a number of the leading aerodynamic laboratories of this country and Europe.¹ The information which was originally expressed according to the different customs of the several laboratories is here presented in a uniform series of charts and tables suitable for the use of designing engineers and for purposes of general reference.

It is a well-known fact that the results obtained in different laboratories, because of their individual methods of testing, are not strictly comparable even if proper scale corrections for size of model and speed of test are supplied. It is, therefore, unwise to compare too closely the coefficients of two wing sections tested in different laboratories. Tests of different wing sections from the same source, however, may be relied on to give true relative values.

The absolute system of coefficients has been used, since it is thought by the National Advisory Committee for Aeronautics that this system is the one most suited for international use and yet it is one from which a desired transformation can be easily made. For this purpose a set of transformation constants is given.

Each airfoil section is given a reference number, and the test data are presented in the form of curves from which the coefficients can be read with sufficient accuracy for designing purposes. The dimensions of the profile of each section are given at various stations along the chord in per cent of the chord length, the latter also serving as the datum line. The shape of the section is also shown with reasonable accuracy in order to enable one to more clearly visualize the section under consideration, the outside of the heavy line representing the profile.

The authority for the results here presented is given as the name of the laboratory at which the experiments were conducted, as explained under abbreviations, with the size of model, wind velocity, and year of test.

TRANSFORMATION CONSTANTS

For the convenience of those who prefer to use a system of units other than the absolute system, there is given below a table of transformation constants based on the standard condition adopted by the National Advisory Committee for Aeronautics of—

Temperature = 15° C = 59° F. Pressure = 760 mm Hg = 29.92 in. Hg. Humidity = 0 Gravity = $9.80665 \text{ m/s}^2 = 32.1740 \text{ ft./sec.}^2$

thus giving values of specific weight of air

 $W = 1.2255 \text{ kg/m}^3 = 0.07651 \text{ lb./cu. ft.}$

and of density

```
Or \rho = 0.12497 \text{ kg-m} - {}^4\text{s}^2 \text{ in the French engineering or kilogram, meter, second system.} \rho = 0.002378 \text{ lb.-ft.} - {}^4\text{sec.}^2 \text{ in the English or pound, foot, second system.} In absolute units P = CV^2\rho/2 In kg/m² (m/s) P = .0625 \ CV^2 In kg/m² (km/h) P = .004822 \ CV^2 In lb./sq. ft. (ft./sec.) P = .001189 \ CV^2 In lb./sq. ft. (mi./hr.) P = .002558 \ CV^2
```

(Note that these constants are half as large as those used in Reports Nos. 93 and 124 and that the absolute coefficients used in this report are twice as large as the old coefficients. See Report No. 240 regarding change in absolute coefficients.)

INDEX

Four separate types of indexes are given—chart indexes which make it possible for a designer to select the wing section most suitable for the particular design in which he is interested; a group index which is arranged by countries and laboratories at which tests were conducted, each section also being designated by a reference number; an index of abbreviations, used on the characteristic sheets, to indicate the laboratories at which the tests were made; and an alphabetical index.

CHART INDEX

In order that the designer may easily pick out a wing section which is suited to the type of airplane on which he is working, four index charts are given which classify the wings according to their aerodynamic and structural properties. In the charts of this report a lower-case letter is placed adjacent to the reference number giving Vl values, so that a comparison can be made without referring to the individual drawings. In this value V represents the wind velocity in feet per second and l a linear dimension, the chord length in feet.

In chart No. 21 the minimum drag C_D , is plotted against the L/D at one-fourth the maximum lift C_L . This chart should be used in choosing a wing section for a high-speed airplane, the wing sections being more suited for this use the farther they are from the lower left-hand corner.

In chart No. 22 the mean spar depth is plotted against the maximum lift C_L , in order to show the possible strength and lightness of the wing structure. The higher the maximum lift coefficient is, the smaller will be the wing area and the lighter the structural weight, and in the same way the greater the depth of the spars the lighter will be their weight, so that the sections the greatest distance from the lower left-hand corner will give the lightest and strongest wings. The "mean spar depth" is obtained by assuming the spars to be located, respectively, at 15 and 60 per cent of the chord, and by dividing the sum of their thicknesses, in per cent of chord length at these points, by 2.

In chart No. 23 the maximum L/D is plotted against the maximum lift C_L , which is of use in choosing the wing section for a slow and efficient airplane. In the same way as before the sections farthest from the lower left-hand corner are the best for this purpose.

In chart No. 24 the L/D at two-thirds the maximum lift C_L , is plotted against the maximum lift C_L . This chart can be used for choosing a section that will give an efficient climb or a long range at cruising speed. The best sections for this purpose will be farthest from the lower left-hand corner of the chart.

CHART INDEX

		Page
No. 21.	Minimum drag C_D , plotted against L/D at one-fourth the maximum lift C_L	415
No. 23.	Maximum L/D plotted against maximum lift C_L	417
	No. 22. No. 23.	No. 21. Minimum drag C_D , plotted against L/D at one-fourth the maximum lift C_L . No. 22. Mean spar depth plotted against the maximum lift C_{L-} . No. 23. Maximum L/D plotted against maximum lift C_{L-} . No. 24. L/D at two-thirds the maximum lift C_L , plotted against the maximum lift C_L .

INDEX OF ABBREVIATIONS

Name of laboratory at which tests were made	Abbreviations used on figures		
Langley Memorial Aeronautical Laboratory of the National Advisory Committee for Aeronautics, U. S. A.	L. M. A. L.		
Washington Navy Yard, U. S. A.	W. N. Y.		
Engineering Division, McCook Field, U. S. A.			
Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen, Germany			
Service Technique de l'Aéronautique, France			
Laboratoire Aerotechnique de Rhode St. Genese-Bruxelles, Belgium			
Instituto Sperimentale Aeronautico, Italy			

387

GROUP INDEX

Airfoil	irfoil Wind tunnel where Report reference Airfoil number		Airfoil	Wind tunnel where tested	Report reference number
UNITED STATES		; ;	FRANCE—continued		: :
U. S. N. P. S. 1	L. M. A. L	760	St. Cyr 162 (Royer)	S. T. Aé. Lab	810
V. S. N. P. S. 2		1	St. Cyr 170 (Royer)		811
U. S. N. P. S. 3		762	St. Cyr 174 (Royer)		812
U. S. N. P. S. 4			St. Cyr 233 (Bartel 37–Ib)	do	813
U. S. N. P. S. 5.	do	764	St. Cyr 235 (Bartel 37-Ie)		814
U. S. N. P. S. 6.1.	do	765	St. Cyr 237 (Bartel 15–Ic)		815
Martin M-I			St. Cyr 239 (Bartel 37–IIa)		816
Martin M-II			St. Cyr 240 (Bartel 37–IIb) St. Cyr 242 (Bartel 57–IIc)		817
Martin M-III R-3 (Root section)		768 769	St. Cyr 242 (Bartel 37–110)		$\begin{array}{c} -818 \\ -819 \end{array}$
U. S. A. 45M	dodo		St. Cyr 249 (Darter 37–111c)	uo	313
			BELGIUM		
GERMANY			Rhode St. Genese 1	Rhode St. Genese	820
Göttingen 359	Göttingen	771	Rhode St. Genese 2		821
Göttingen 361		772	Rhode St. Genese 16		$8\overline{22}$
Göttingen 362		773	Rhode St. Genese 17		823
Göttingen 368		774	Rhode St. Genese 19		824
Göttingen 369		775	Rhode St. Genese 26		825
Göttingen 371			Rhode St. Genese 29		826
Göttingen 372			Rhode St. Genese 31		827
Göttingen 373			Rhode St. Genese 35 Rhode St. Genese 35		$\frac{828}{829}$
Göttingen 374 Göttingen 375		780	Rhode St. Genese 37		830
Göttingen 377		781	Tenode ov. denese billing		(100)
Göttingen 392			ITALY		
Göttingen 397					
Göttingen 399			I. S. A, 334	I. S. A	831
Göttingen 401			I. S. A. 390		832
Göttingen 402			I. S. A. 472		833
Göttingen 403			I. S. A. 500		834
Göttingen 408			I. S. A. 501		\$35
Göttingen 417 Göttingen 428			I. S. A. 502 I. S. A. 507		$836 \\ 837$
Göttingen 437.		1	I. S. A. 605		838
Göttingen 438		=00	I. S. A. 663		839
Göttingen 439			I. S. A. 693		840
Göttingen 442		794	I. S. A. 695.	do	841
Göttingen 443		795	I. S. A. 768		842
Göttingen 444		796	I. S. A. 776	do	843
Göttingen 445	do	797	I. S. A. 801		844
The Albert			I. S. A. 803 I. S. A. 804		845
FRANCE			I. S. A. 805		$\frac{846}{847}$
Eiffel 359 (Nieuport Astra).	S. T. Ać, Lab	798	I. S. A. 806		848
Eiffel 386 (S. T. Ac.)		799	I. S. A. 807		849
Eiffel 387 (S. T. Ac.)		800		do	850
Eiffel 402 (Pescara)	do	801	I. S. A. 812.	do	851
Eiffel 429 (Lachassagne)	do	802	I. S. A. 820		852
Eiffel 432 (Lachassagne)		803	I. S. A. 821	do	853
Eiffel 433a (Chalambel)		804	I. S. A. 829		854
Eiffel 438 (Lachassagne)		805	I. S. A. 858		855 856
St. Cyr 152 (Royer)	do	806 807		do	856
St. Cyr 153 (Royer) St. Cyr 156 (Royer)	do	808	I. S. A. 881b I. S. A. 881c.		857 858
St, Cyr 150 (Royer)	do	809	I, S, A, 911		859
つくむ シッチェールワチー しきもりょうしょり ニュニニー・	= - = C(O2 =	1	** No 12: 1/4 *==		000
• • •		ļ			
388		ŀ		-	

ALPHABETICAL INDEX

Airfoil	Report reference number	Airfoil		
iffel 359 (Nicuport Astra)	798	I. S. A. 804	5	
iffel 386 (S. T. Aé.)	799	I. S. A. 805		
iffel 387 (S. T. Aé.)	800	I. S. A. 806	,	
iffel 402 (Pescara)	801	I. S. A. 807	į	
ffel 429 (Lachassagne)	802	I. S. A. 809	3	
	803	I. S. A. 812	;	
ffel 432 (Lachassagne)	804		,	
ffel 433a (Chalambel)		I. S. A. 820		
ffel 438 (Lachassagne)	805	I. S. A. 821		
öttingen 359	771	I. S. A. 829	,	
öttingen 361	772	I. S. A. 858	,	
5ttingen 362	773	I. S. A. 881a		
ottingen 368	774	I. S. A. 881b		
öttingen 369	775	I. S. A. 881c	:	
ottingen 371.	776	I. S. A. 911		
öttingen 372	777	Martin M-I		
ittingen 373	778	Martin M-II		
ottingen 374	779	Martin M-III		
öttingen 375	780	R-3 (Root Section)		
öttingen 377	781	Rhode St. Genese 1		
ottingen 392	782	Rhode St. Genese 2		
ottingen 397	783	Rhode St. Genese 16		
ottingen 399	784	Rhode St. Genese 17		
	785	Rhode St. Genese 19		
öttingen 401	786	Rhode St. Genese 26		
Ottingen 402				
5ttingen 403.		Rhode St. Genese 29		
öttingen 408	788	Rhode St. Genese 31		
öttingen 417	789	Rhode St. Genese 33		
öttingen 428	790	Rhode St. Genese 35		
öttingen 437	791	Rhode St. Genese 37		
öttingen 438	792	St. Cyr 152 (Royer)		
öttingen 439.	793	St. Cyr 153 (Royer)	1	
öttingen 442		St, Cyr 156 (Royer)		
öttingen 443	795	St. Cyr 157 (Royer)		
öttingen 444	796	St. Cyr 162 (Royer)		
öttingen 445	797	St. Cvr 170 (Royer)		
8. A. 334		St, Cyr 174 (Royer)		
S. A. 390	832	St. Cyr 233 (Bartel 7-Ib)		
S. A. 472	833	St. Cyr 235 (Bartel 37-Ic)		
S. A. 500	834	St. Cyr 237 (Bartel 15-Ic)		
S. A. 501	835	St. Cyr 239 (Bartel 37-IIa)		
S. A. 502	836	St. Cvr 240 (Bartel 37–IIa)		
S. A. 507	837	St, Cyr 240 (Bartel 57–116)	•	
	838	St. Cyr 242 (Bartel 37–116)		
S. A. 605				
S. A. 663	S39	U. S. A. 45M		
S. A. 693		U. S. N. P. S. 1		
S. A. 695	841	U. S. N. P. S. 2		
S. A. 768	842	U. S. N. P. S. 3		
S. A. 776	843	U. S. N. P. S. 4		
S. A. 801	844	U. S. N. P. S. 5.		
S. A. 803	845	U. S. N. P. S. 6		

-12 -10 -8

0 2 4 6 8 10 12 14 16 18 20 22

Angle of Attack in Degrees.

-10 P-8

2 4 6 5 10 12 14 16 18 20 22

Angle of Attack in Degrees.

39331 - 29 - 3

0 2 4 6 8 10 12 14 16 18 20 22

Angle of Attack in Degrees.

-12 -10 -8 -6 -4

2 4 6 8 10 12 14 16 18 20 22

Angle of Attack in Degrees,

-12 -10 -8

-6 -4

ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS U.S.GOVERNMENT PRINTING OFFICE WASHINGTON, D. C.

AT

20 CENTS PER COPY

Positive directions of axes and angles (forces and moments) are shown by arrows

Axis		T	Moment about axis		Angle		Velocities		
Designation	Sym- bol	Force (parailel to axis) symbol	Designa- tion	Sym- bol	Positive direction	Designa- tion	Sym- bol	Linear (compo- nent along axis)	Angular
Longitudinal Lateral Normal	X Y Z	X Y Z	rolling pitching yawing	L M N	$\begin{array}{c} Y \longrightarrow Z \\ Z \longrightarrow X \\ X \longrightarrow Y \end{array}$	roll pitch yaw	Ф Ө У	u v w	p q r

Absolute coefficients of moment

$$C_{L} = \frac{L}{qbS} C_{M} = \frac{M}{qcS} C_{N} = \frac{N}{qtS}$$

Angle of set of control surface (relative to neutral position), δ . (Indicate surface by proper subscript.)

4. PROPELLER SYMBOLS

D, Diameter.

pe, Effective pitch

 p_g , Mean geometric pitch.

ps, Standard pitch.

 p_v . Zero thrust.

 p_a , Zero torque.

p/D, Pitch ratio.

V', Inflow velocity.

V_s, Slip stream velocity.

T, Thrust.

Q, Torque.

P. Power.

(If "coefficients" are introduced all units used must be consistent.)

 η , Efficiency = T V/P.

n, Revolutions per sec., r. p. s.

N, Revolutions per minute., R. P. M.

 Φ , Effective helix angle = $\tan^{-1} \left(\frac{V}{2\pi rn} \right)$

5. NUMERICAL RELATIONS

1 HP = 76.04 kg/m/sec. = 550 lb./ft./sec.

1 kg/m/sec. = 0.01315 HP.

1 mi./hr. = 0.44704 m/sec.

1 m/sec. = 2.23693 mi./hr.

1 lb. = 0.4535924277 kg.

1 kg = 2.2046224 lb.

1 mi. = 1609.35 m = 5280 ft.

1 m = 3.2808333 ft.