









[1] Phys. Rev. E 80, 035101 (2009)

[2] Phys. Rev. E 82, 036106 (2010)

[3] Phys. Rev. Lett. 100, 078701 (2008)

[6] Phys. Rev. E 84, 026114 (2011)

[7] Phys. Rev. E 95, 032309 (2017)

[8] Mol. Biosyst. 8, 843 (2012)

[9] Nat. Phys. 12, 1076 (2016)

[10] Phys. Rev. Lett. 118, 218301 (2017)

[11] Nature 489, 537 (2012)

[12] Sci. Rep. 5, 9421 (2015)

[13] J. Stat. Phys. 173, 775 (2018)

[14] New J. Phys. 20, 052002 (2018)

[15] New J. Phys. 21, 123033 (2019)

[16] Nat. Commun. 8, 1615 (2017)

[17] Nat. Commun. 1, 62 (2010)

[18] PNAS 117, 20244 (2020)

#### A powerful and versatile framework

- > Amenable to many analytical calculations [1,2]
- ▶ Generalizable to weighted [5], bipartite [6,7,8], multiplex [9,10], directed [4] and growing [11] networks
- ▶ Geometrical interpretation of preferential attachment [11]
- ▶ Parsimonious explanation of self-similarity [3]
- □ Generalizable to networks with community structure [12,13,14]
- ▶ Mapping of real complex networks unto hyperbolic space [15,16]
  - Reproduction of additional properties than the ones used to fit the parameters [4,15].
  - Identification of biochemical pathways in E. Coli [8]
  - Efficient Internet routing protocols [17]
  - Organization of the human connectome [18,20]
  - Self-similar architecture [19]
  - Evolution of hierarchy in international trade [21]
  - **-** . . .

[4] Nat. Phys. 20, 150 (2024)

[19] Nat. Phys. 14, 583 (2018)

[20] PLOS Comput. Biol. 16, e1007584 (2020)

[21] Sci. Rep. 6, 33441 (2016)







Review Article | Published: 29 January 2021

# **Network geometry**

<u>Marián Boguñá</u>, <u>Ivan Bonamassa</u>, <u>Manlio De Domenico</u> <sup>™</sup>, <u>Shlomo Havlin</u>,

Dmitri Krioukov & M. Ángeles Serrano

Nature Reviews Physics 3, 114-135 (2021)

#### A powerful and versatile framework

- ➤ Amenable to many analytical calculations [1,2]
- ▶ Generalizable to weighted [5], bipartite [6,7,8], multiplex [9,10], directed [4] and growing [11] networks
- ▶ Geometrical interpretation of preferential attachment [11]
- ▶ Parsimonious explanation of self-similarity [3]
- ▶ Generalizable to networks with community structure [12,13,14]
- ▶ Mapping of real complex networks unto hyperbolic space [15,16]
  - Reproduction of additional properties than the ones used to fit the parameters [4,15].
  - Identification of biochemical pathways in E. Coli [8]
  - Efficient Internet routing protocols [17]
  - Organization of the human connectome [18,20]
  - Self-similar architecture [19]
  - Evolution of hierarchy in international trade [21]
  - -

**>** ...

Review Article | Published: 29 January 2021

## **Network geometry**

Marián Boguñá, Ivan Bonamassa, Manlio De Domenico ™, Shlomo Havlin, Dmitri Krioukov & M. Ángeles Serrano

Nature Reviews Physics 3, 114–135 (2021)

[18] PNAS 117, 20244 (2020)

<sup>[1]</sup> Phys. Rev. E 80, 035101 (2009)

<sup>[2]</sup> Phys. Rev. E 82, 036106 (2010)

<sup>[3]</sup> Phys. Rev. Lett. 100, 078701 (2008)

<sup>[4]</sup> Nat. Phys. 20, 150 (2024)

<sup>[5]</sup> Nat. Commun. 8. 14103 (2017) [6] Phys. Rev. E 84, 026114 (2011)

<sup>[9]</sup> Nat. Phys. 12, 1076 (2016)

<sup>[10]</sup> Phys. Rev. Lett. 118, 218301 (2017)

<sup>[12]</sup> Sci. Rep. 5, 9421 (2015)

<sup>[11]</sup> Nature 489, 537 (2012)

<sup>[13]</sup> J. Stat. Phys. 173, 775 (2018)

<sup>[14]</sup> New J. Phys. 20, 052002 (2018)

<sup>[15]</sup> New J. Phys. 21, 123033 (2019)

<sup>[16]</sup> Nat. Commun. 8, 1615 (2017) [17] Nat. Commun. 1, 62 (2010)

<sup>[21]</sup> Sci. Rep. 6, 33441 (2016)

<sup>[19]</sup> Nat. Phys. 14, 583 (2018) [20] PLOS Comput. Biol. 16, e1007584 (2020)

### Challenges

Heterogeneous random geometric graph models are prime candidates to model real networked complex systems.

But they rely heavily on our capacity to find high-quality embeddings of the original datasets.

- Difficult optimization problem
  - rugged landscape
  - numerous symmetries (rotation, reflection, graph automorphisms)
  - gradient not always well defined
- Out-of-the-box solutions do not work well
  - Hamiltonian Monte Carlo
  - gradient descent
- Current state-of-the-art embedding methods
  - rely on heuristics
  - do not provide uncertainties (loglikelihood maximization)



