Transportes - algoritmo simplex de redes Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

17 de novembro de 2020

Transportes

antes

• O algoritmo simplex resolve problemas de programação linear.

Guião

- O problema de transportes é um caso particular do problema de programação linear em que o modelo é definido num grafo (rede).
- O algoritmo para o problema de transportes é uma especialização do algoritmo simplex que tira partido dessa estrutura em rede.
- A sua implementação, usando estruturas de dados adequadas, pode traduzir-se em resoluções muito mais rápidas.
- Vamos ver as operações básicas do algoritmo simplex de redes.

depois

Aplicaremos o algoritmo em vários tipos de grafos (redes).

Problema de Transportes em Rede: modelo geral

• Dado um grafo G = (V, A), pretende-se:

min
$$\sum_{(i,j)\in A} c_{ij} x_{ij}$$
suj. a
$$-\sum_{(i,j)\in A} x_{ij} + \sum_{(j,i)\in A} x_{ji} = b_j, \ \forall j \in V$$

$$0 \le x_{ij} \le u_{ij}, \ \forall (i,j) \in A$$

$$(2)$$

Variáveis de decisão:

• $x_{ij:}$ fluxo de *um único tipo de entidades* no arco orientado (i,j);

Dados:

- c_{ij}: custo unitário de transporte no arco orientado (i,j);
- $b_{j:}$ oferta (valor positivo) ou procura (valor negativo) no vértice j;
- u_{ij} : capacidade do arco orientado (i,j).
- Restrições (1) designam-se por restrições de conservação de fluxo.
- Restrições (2) designam-se por restrições de capacidade.

Exemplo (arcos sem capacidade)

• Cada coluna A_{ij} tem apenas dois elementos não nulos, um +1 na linha i (origem do arco) e um -1 na linha j (destino do arco).

	x ₁₂	<i>X</i> 13	X24	X32	<i>X</i> 35	<i>X</i> 46	<i>X</i> 54	<i>X</i> 56		
vért.1	1	1							=	10
vért.2	-1		1	-1					=	-3
vért.3		-1		1	1				=	12
vért.4			-1			1	-1		=	-8
vért.5					-1		1	1	=	-8
vért.6						-1		-1	=	-3
min	6	1	7	2	3	6	1	_ 1	4	

Exemplo: problema dos lotes de produção

 Objectivo: determinar a dimensão dos lotes a fabricar em cada período, dentro de um horizonte de planeamento, de modo a minimizar a soma dos custos de produção e dos custos de armazenagem, satisfazendo a procura em cada período.

• Em cada período j, se o número de unidades disponíveis (*i.e.*, as unidades produzidas no período, x_j , mais as existentes em stock, s_{j-1}) for superior à procura nesse período, d_j , as unidades remanescentes, s_j , podem ser armazenadas em stock para entrega em períodos subsequentes.

Exemplo: modelo de programação linear

$$\begin{aligned} & \min & & \sum_{j=1}^{T} \left(c_{j} x_{j} + h_{j} s_{j} \right) \\ & \text{suj. a} & & x_{j} + s_{j-1} - s_{j} = d_{j} \; , \; j = 1, \ldots, T \\ & & 0 \leq x_{j} \leq x_{j}^{max} \; , \; j = 1, \ldots, T \\ & & 0 \leq s_{j} \leq s_{j}^{max} \; , \; j = 1, \ldots, T \end{aligned}$$

Variáveis de decisão:

- x_j: número de unidades produzidas no período j,
- s_j: stock existente após o período j.

Dados:

- T : número de períodos do horizonte de planeamento
- d_j: procura existente no período j
- c_j: custo unitário de produção dos artigos no período j
- h_j: custo unitário de posse de inventário no período j
- x_i^{max} : número máximo de unidades produzidas no período j
- s_i^{max}: nível máximo de stock no período j
- s_0 e s_n : stocks inicial e final, respectivamente

Exemplo: dados de um problema de lotes de produção

Horizonte de planeamento (T): 4 períodos

- Procura em cada período de 2, 3, 4 e 2, respectivamente.
- Capacidade máxima de produção, x_j^{max} : 4 unidades em cada período.
- Nível máximo de stock, s_{max}: 2 unidades.
- Custos unitários de armazenagem, h_j : 1 U.M./ artigo x período.
- Custos de produção: custo variável proporcional ao número de artigos, p_j.
- Valores dos coeficientes de custo de produção:

Exemplo: modelo de transporte em rede

Rede com capacidades associadas aos arcos:

- valores associados aos arcos, (c_{ij}, u_{ij}) , representam o custo unitário de transporte e a capacidade do arco, respectivamente,
- valores associados aos vértices representam ofertas e procuras.

Exemplo:

Problema balanceado (soma das ofertas = soma dos procuras)

Propriedade dos modelos em rede: balanceamento

Condição necessária para o modelo ser válido:

- Soma das ofertas = soma dos consumos, *i.e.*, $\sum_{j \in V} b_j = 0$.
- Se (oferta > consumo), criar destino fictício que absorva excesso.
- Exemplo:

Destino fictício F absorve excesso. Geralmente, custos unitários de transporte dos novos arcos são nulos (i.e., $c_{AF} = c_{BF} = 0$).

 Se (oferta < consumo), problema é impossível, porque não é possível satisfazer o consumo (assumindo que não é possível recorrer a ofertas externas ao modelo).

Propriedade que resulta do balanceamento

O número de equações linearmente independentes é |V|-1,

- porque qualquer uma das |V| equações pode ser expressa como uma combinação linear das restantes.
- Exemplo:

- A equação de F é igual ao simétrico da soma das equações de A.B.C e D.
- O número de variáveis básicas é |V|-1.

Caracterização das soluções básicas

- A um conjunto de vectores linearmente independentes (base) do modelo de programação linear do problema de transporte em rede,
- podemos associar uma *árvore*(*) que suporta todos os vértices.

Uma árvore de suporte de um grafo G = (V, A) tem as propriedades (**):

- é um grafo *ligado* (existe um caminho entre cada par de vértices),
- sem ciclos,
- com $|\mathbf{A}| = |\mathbf{V}| 1$ (número de arcos = número de vértices -1).

^(*) Uma árvore é um grafo com arcos não-orientados (ou arestas); iremos também designar por árvore o grafo com arcos orientados.

^(**) Pode ser provado que quaisquer 2 das propriedades caracterizam uma árvore e implicam a terceira.

- Conjunto das variáveis básicas $\mathcal{B} = \{x_{AD}, x_{AE}, x_{BE}, x_{CE}, x_{CF}\}.$
- Grafo correspondente é uma árvore: ligado, sem ciclos e $|\mathcal{B}| = 5$.
- Conjunto das variáveis não-básicas $\mathcal{N} = \{x_{AF}, x_{BD}, x_{BF}, x_{CD}\}.$

- A solução do sistema de equações em ordem às variáveis básicas é uma solução básica (única) do sistema (determinado) com 5 equações linearmente independentes e com 5 incógnitas;
- as variáveis não-básicas são iguais a 0.

- Conjunto das variáveis básicas $\mathcal{B} = \{x_{AD}, x_{AE}, x_{BE}, x_{CE}, x_{CF}\}.$
- Grafo correspondente é uma árvore: ligado, sem ciclos e $|\mathcal{B}| = 5$.
- Conjunto das variáveis não-básicas $\mathcal{N} = \{x_{AF}, x_{BD}, x_{BF}, x_{CD}\}.$

- A solução do sistema de equações em ordem às variáveis básicas é uma solução básica (única) do sistema (determinado) com 5 equações linearmente independentes e com 5 incógnitas;
- as variáveis não-básicas são iguais a 0.

- Conjunto das variáveis básicas $\mathcal{B} = \{x_{AD}, x_{AE}, x_{BE}, x_{CE}, x_{CF}\}.$
- Grafo correspondente é uma árvore: ligado, sem ciclos e $|\mathcal{B}| = 5$.
- Conjunto das variáveis não-básicas $\mathcal{N} = \{x_{AF}, x_{BD}, x_{BF}, x_{CD}\}.$

- A solução do sistema de equações em ordem às variáveis básicas é uma solução básica (única) do sistema (determinado) com 5 equações linearmente independentes e com 5 incógnitas;
- as variáveis não-básicas são iguais a 0.

- Conjunto das variáveis básicas $\mathcal{B} = \{x_{AD}, x_{AE}, x_{BE}, x_{CE}, x_{CF}\}.$
- Grafo correspondente é uma árvore: ligado, sem ciclos e $|\mathcal{B}| = 5$.
- Conjunto das variáveis não-básicas $\mathcal{N} = \{x_{AF}, x_{BD}, x_{BF}, x_{CD}\}.$

- A solução do sistema de equações em ordem às variáveis básicas é uma solução básica (única) do sistema (determinado) com 5 equações linearmente independentes e com 5 incógnitas;
- as variáveis não-básicas são iguais a 0.

- Conjunto das variáveis básicas $\mathcal{B} = \{x_{AD}, x_{AE}, x_{BE}, x_{CE}, x_{CF}\}.$
- Grafo correspondente é uma árvore: ligado, sem ciclos e $|\mathcal{B}| = 5$.
- Conjunto das variáveis não-básicas $\mathcal{N} = \{x_{AF}, x_{BD}, x_{BF}, x_{CD}\}.$

- A solução do sistema de equações em ordem às variáveis básicas é uma solução básica (única) do sistema (determinado) com 5 equações linearmente independentes e com 5 incógnitas;
- as variáveis não-básicas são iguais a 0.

- Conjunto das variáveis básicas $\mathcal{B} = \{x_{AD}, x_{AE}, x_{BE}, x_{CE}, x_{CF}\}.$
- Grafo correspondente é uma árvore: ligado, sem ciclos e $|\mathcal{B}| = 5$.
- Conjunto das variáveis não-básicas $\mathcal{N} = \{x_{AF}, x_{BD}, x_{BF}, x_{CD}\}.$

- A solução do sistema de equações em ordem às variáveis básicas é uma solução básica (única) do sistema (determinado) com 5 equações linearmente independentes e com 5 incógnitas;
- as variáveis não-básicas são iguais a 0.

Algoritmo (simplex) de redes

Algoritmo

Obter uma solução básica inicial Enquanto (solução básica não óptima) mudar para uma solução básica adjacente melhor

Agora vamos ver:

Operações fundamentais do algoritmo simplex de redes:

- teste de optimalidade: existe alguma solução admissível adjacente à solução actual com melhor valor de função objectivo?
- 2 pivô: mudança de uma base (árvore) para uma base adjacente.

Aulas seguintes:

Vamos aplicar o algoritmo na resolução completa de exemplos:

- Transportes em grafos bipartidos
- Transportes em redes (ainda sem limites superiores)
- Transportes em redes com limites superiores

Teste de optimalidade em redes

Uma solução não é óptima se existir

- uma variável não-básica atractiva, cujo aumento melhore o valor da função objectivo;
- caso contrário, a solução é óptima.
- Podemos identificar se existe alguma variável não-básica ij atractiva
- ullet calculando os valores de δ_{ii} de todas as variáveis não-básicas ij
- (≡ aos coef. da linha da função objectivo num quadro simplex).
- O cálculo dos valores de δ_{ij} é feito com o método dos multiplicadores.

Método dos multiplicadores

Multiplicadores são valores associados aos vértices:

• há um multiplicador u_i associado a cada vértice j, $\forall j \in V$.

Método dos multiplicadores:

- Fixar o valor de um qualquer multiplicador (e.g., no valor 0).
- Para os arcos (i,j) básicos, fazer:

$$c_{ij} = u_i - u_j$$

Para os arcos (i,j) não-básicos, calcular:

$$\delta_{ij} = c_{ij} - (u_i - u_j)$$

Output do método dos multiplicadores:

• os δ_{ii} de todos os arcos não-básicos.

• O multiplicador u_j associado ao vértice j, $\forall j \in V$, pode ser interpretado como um **potencial** associado ao vértice.

Exemplo: árvore de arcos básicos a azul $(c_{ij} = u_i - u_j)$

• O multiplicador u_j associado ao vértice j, $\forall j \in V$, pode ser interpretado como um **potencial** associado ao vértice.

Exemplo: árvore de arcos básicos a azul $(c_{ij} = u_i - u_j)$

• O multiplicador u_j associado ao vértice j, $\forall j \in V$, pode ser interpretado como um **potencial** associado ao vértice.

Exemplo: árvore de arcos básicos a azul $(c_{ij} = u_i - u_j)$

• O multiplicador u_j associado ao vértice j, $\forall j \in V$, pode ser interpretado como um **potencial** associado ao vértice.

Exemplo: árvore de arcos básicos a azul $(c_{ij} = u_i - u_j)$

• O multiplicador u_j associado ao vértice j, $\forall j \in V$, pode ser interpretado como um **potencial** associado ao vértice.

Exemplo: árvore de arcos básicos a azul $(c_{ij} = u_i - u_j)$

• O multiplicador u_j associado ao vértice j, $\forall j \in V$, pode ser interpretado como um **potencial** associado ao vértice.

Exemplo: árvore de arcos básicos a azul $(c_{ij} = u_i - u_j)$

 O multiplicador u_j associado ao vértice j, ∀j ∈ V, pode ser interpretado como um potencial associado ao vértice.

Exemplo: árvore de arcos básicos a azul $(c_{ij} = u_i - u_j)$

• Valores associados a arcos são custos unitários de transporte c_{ij} .

• No passo 2, iremos comparar o c_{ij} do arco não-básico (i,j) com a diferença de potencial entre os vértices i e j, i.e., $(u_i - u_i)$.

• O arco não-básico (i,j) é atractivo se $\delta_{ij} = c_{ij} - (u_i - u_j) < 0$.

- $\delta_{13} =$
- δ₅₄ =
- δ₄₆ =

• O arco não-básico (i,j) é atractivo se $\delta_{ij} = c_{ij} - (u_i - u_j) < 0$.

- $\delta_{13} = 1 (8 4) = -3$: arco atractivo
- δ₅₄ =
- δ₄₆ =

• O arco não-básico (i,j) é atractivo se $\delta_{ij} = c_{ij} - (u_i - u_j) < 0$.

- $\delta_{13} = 1 (8 4) = -3$: arco atractivo
- $\delta_{54} = 1 (1+5) = -5$: arco atractivo
- δ₄₆ =

• O arco não-básico (i,j) é atractivo se $\delta_{ij} = c_{ij} - (u_i - u_j) < 0$.

- $\delta_{13} = 1 (8 4) = -3$: arco atractivo
- $\delta_{54} = 1 (1+5) = -5$: arco atractivo
- $\delta_{46} = 6 (-5 0) = 11$: arco não atractivo

 O multiplicador u_j associado ao vértice j, ∀j ∈ V, pode ser interpretado como um potencial associado ao vértice.

Exemplo: árvore de arcos básicos a azul $(c_{ij} = u_i - u_j)$

Valores associados a arcos são custos unitários de transporte c_{ij}.

 O multiplicador u_j associado ao vértice j, ∀j ∈ V, pode ser interpretado como um potencial associado ao vértice.

Exemplo: árvore de arcos básicos a azul $(c_{ij} = u_i - u_j)$

• Valores associados a arcos são custos unitários de transporte c_{ii}.

 O multiplicador u_j associado ao vértice j, ∀j ∈ V, pode ser interpretado como um potencial associado ao vértice.

Exemplo: árvore de arcos básicos a azul $(c_{ij} = u_i - u_j)$

• Valores associados a arcos são custos unitários de transporte c_{ii}.

 O multiplicador u_j associado ao vértice j, ∀j ∈ V, pode ser interpretado como um potencial associado ao vértice.

Exemplo: árvore de arcos básicos a azul $(c_{ij} = u_i - u_j)$

 O multiplicador u_j associado ao vértice j, ∀j ∈ V, pode ser interpretado como um potencial associado ao vértice.

Exemplo: árvore de arcos básicos a azul $(c_{ij} = u_i - u_j)$

 O multiplicador u_j associado ao vértice j, ∀j ∈ V, pode ser interpretado como um potencial associado ao vértice.

Exemplo: árvore de arcos básicos a azul $(c_{ij} = u_i - u_j)$

• Valores associados a arcos são custos unitários de transporte c_{ii}.

 O multiplicador u_j associado ao vértice j, ∀j ∈ V, pode ser interpretado como um potencial associado ao vértice.

Exemplo: árvore de arcos básicos a azul $(c_{ij} = u_i - u_j)$

• Valores associados a arcos são custos unitários de transporte c_{ij} .

• No passo 2, iremos comparar o c_{ij} do arco não-básico (i,j) com a diferença de potencial entre os vértices i e j, i.e., $(u_i - u_j)$.

• O arco não-básico (i,j) é atractivo se $\delta_{ij} = c_{ij} - (u_i - u_i) < 0$.

- $\delta_{AF} =$
- $\delta_{BD} =$
- $\delta_{BF} =$
- δ_{CD} =

• O arco não-básico (i,j) é atractivo se $\delta_{ij} = c_{ij} - (u_i - u_i) < 0$.

•
$$\delta_{AF} = 5 - (0 - (-7)) = -2$$
: arco atractivo

- $\delta_{BD} =$
- $\delta_{BF} =$
- δ_{CD} =

• O arco não-básico (i,j) é atractivo se $\delta_{ij} = c_{ij} - (u_i - u_i) < 0$.

- $\delta_{AF} = 5 (0 (-7)) = -2$: arco atractivo
- $\delta_{BD} = 2 (-1 (-3)) = 0$: arco indiferente
- $\delta_{BF} =$
- δ_{CD} =

• O arco não-básico (i,j) é atractivo se $\delta_{ij} = c_{ij} - (u_i - u_j) < 0$.

- $\delta_{AF} = 5 (0 (-7)) = -2$: arco atractivo
- $\delta_{BD} = 2 (-1 (-3)) = 0$: arco indiferente
- $\delta_{BF} = 5 (-1 (-7)) = -1$: arco atractivo
- $\delta_{CD} =$

• O arco não-básico (i,j) é atractivo se $\delta_{ij} = c_{ii} - (u_i - u_i) < 0$.

Exemplo: arcos não-básicos a vermelho

- $\delta_{AF} = 5 (0 (-7)) = -2$: arco atractivo
- $\delta_{BD} = 2 (-1 (-3)) = 0$: arco indiferente
- $\delta_{BF} = 5 (-1 (-7)) = -1$: arco atractivo
- $\delta_{CD} = 1 (-4 (-3)) = +2$: arco não atractivo

• Os δ_{ii} são os coeficientes da linha da função objectivo do quadro simplex (... a bem dizer, são os simétricos...)

Os multiplicadores são variáveis duais!

Problema dual do problema de transporte em rede (sem capacidades)

$$\max \sum_{j \in V} b_j u_j$$
 suj. a
$$u_i - u_j \le c_{ij} \ , \ \forall (i,j) \in A$$

$$u_j \text{ sem restrição de sinal}$$

sendo u_j : variável dual associada à restrição do vértice $j \in V$

Exemplo:

	<i>x</i> ₁₂	<i>x</i> ₁₃	X ₂₄	<i>X</i> 32	<i>X</i> 35	<i>X</i> 46	<i>X</i> 54	<i>X</i> 56			Variáveis duais
vért.1	1	1							=	b_1	(u_1)
vért.2	-1		1	-1					=	b_2	(u_2)
vért.3		-1		1	1				=	b_3	(u_3)
vért.4			-1			1	-1		=	b_4	(u_4)
vért.5					-1		1	1	=	b_5	(u_5)
vért.6						-1		-1	=	b_6	(u_6)
min	c ₁₂	<i>c</i> ₁₃	C ₂₄	<i>c</i> ₃₂	C35	C46	C ₅₄	C ₅₆			

Justificação do método dos multiplicadores

Passo 1: para cada variável básica x_{ij} , fazer: $u_i - u_j = c_{ij}$

• Decorre do teorema da folga complementar: se a variável primal x_{ij} é positiva, a variável dual correspondente (*i.e.*, a variável de folga da restrição dual, $u_i - u_j \le c_{ij}$) deve ser nula^(*);

Solução dual: $c_B B^{-1} = (u_1, ..., u_m)$.

Passo 2: para cada variável não-básica x_{ij} , calcular: $\delta_{ij} = c_{ij} - (u_i - u_j)$

- ullet Como cada coluna A_{ij} tem apenas 2 elementos diferentes de 0,
- o coef. da linha da função objectivo, $c_B B^{-1} A_{ij} c_{ij} = u_i u_j c_{ij}$.
- O δ_{ij} é o simétrico.

nota: o uso é coerente: para minimizar, no método simplex, escolhe-se o coeficiente mais positivo; em redes, o mais negativo.

^(*) pela mesma razão, num quadro simplex, o coeficiente da linha da função objectivo de uma variável básica j, $c_B B^{-1} A_j - c_j = 0$.

Pivô em redes

 No movimento ao longo de uma aresta do poliedro do modelo de programação linear (de transportes) todas as variáveis não-básicas permanecem nulas, excepto uma única que aumenta de valor.

Das propriedades de uma árvore, sabemos que:

- Há 1 caminho (e 1 só) entre cada par de vértices. Porquê?
- Combinar 1 arco e 1 árvore dá origem a 1 (e 1 só) ciclo. Porquê?

Pivô em redes: mudar o fluxo dos arcos ao longo do ciclo:

- aumenta o da variável não-básica atractiva;
- alteram-se os das variáveis básicas associadas ao ciclo.
- Fluxo dos arcos das variáveis básicas fora do ciclo mantém-se.

Dependência linear num grafo: os arcos de um ciclo correspondem a um conjunto de vectores linearmente dependentes no modelo de programação linear: um arco do ciclo pode ser expresso como uma combinação linear dos restantes arcos.

Exemplo de uma solução básica:

Exemplo de uma solução básica:

• Qual o ciclo que se forma quando se combina o arco da variável x_{AF} (não-básica) com a árvore?

Exemplo de uma solução básica:

- Qual o ciclo que se forma quando se combina o arco da variável x_{AF} (não-básica) com a árvore?
- O arco (A, F) (variável não-básica) forma um ciclo com os arcos (C, F), (C, E) e (A, E) (das variáveis básicas).

Exemplo de uma solução básica:

- Qual o ciclo que se forma quando se combina o arco da variável x_{AF} (não-básica) com a árvore?
- O arco (A, F) (variável não-básica) forma um ciclo com os arcos (C, F), (C, E) e (A, E) (das variáveis básicas).
- Quando a variável x_{AF} (não-básica) aumenta de uma quantidade θ , como variam os valores das variáveis básicas?

• Qual o valor máximo de θ ?

• Qual o valor máximo de θ ? $\theta_{max} = min\{10, 40\} = 10$

• A variável x_{AF} entra na base e sai a variável x_{AE} .

Exemplo: ciclo formado pelo arco da variável não-básica x_{ab} e os arcos (b,c), (c,d), (e,d), (f,e) e (f,a) da árvore (outros arcos da árvore omitidos).

• Quando a variável x_{ab} (não-básica) aumenta de uma quantidade θ , como variam os valores das variáveis básicas?

- Quando a variável x_{ab} (não-básica) aumenta de uma quantidade θ , como variam os valores das variáveis básicas?
- A soma das variações de fluxo de entrada e de saída deve ser nula,
- ou seja, o saldo dos fluxos que entram e saem em cada vértice permanece igual (ao valor de b_j do vértice).

- Quando a variável x_{ab} (não-básica) aumenta de uma quantidade θ , como variam os valores das variáveis básicas?
- A soma das variações de fluxo de entrada e de saída deve ser nula,
- ou seja, o saldo dos fluxos que entram e saem em cada vértice permanece igual (ao valor de b_j do vértice).

- Quando a variável x_{ab} (não-básica) aumenta de uma quantidade θ , como variam os valores das variáveis básicas?
- A soma das variações de fluxo de entrada e de saída deve ser nula,
- ou seja, o saldo dos fluxos que entram e saem em cada vértice permanece igual (ao valor de b_j do vértice).

- Quando a variável x_{ab} (não-básica) aumenta de uma quantidade θ , como variam os valores das variáveis básicas?
- A soma das variações de fluxo de entrada e de saída deve ser nula,
- ou seja, o saldo dos fluxos que entram e saem em cada vértice permanece igual (ao valor de b_j do vértice).

- Quando a variável x_{ab} (não-básica) aumenta de uma quantidade θ , como variam os valores das variáveis básicas?
- A soma das variações de fluxo de entrada e de saída deve ser nula,
- ou seja, o saldo dos fluxos que entram e saem em cada vértice permanece igual (ao valor de b_j do vértice).

• Qual o valor máximo de θ ?

• Qual o valor máximo de θ ? $\theta_{max} = min\{10, 20\} = 10$

• A variável x_{ab} entra na base e sai a variável x_{ed} .

Conclusão

- A estrutura especial das redes permite, usando estruturas de dados adequadas, implementar as operações do método simplex de uma forma muito eficiente.
- Além disso, as operações são feitas com números inteiros, em vez de reais.
- Para isso, os solvers requerem que os dados (ofertas, procuras e custos) sejam inteiros, o que é sempre possível usando uma escala adequada.

Apêndices

- Propriedade do poliedro do problema de transportes
- Propriedade das soluções do problema de transporte

Propriedade do poliedro do problema de transportes

- Se todos os valores das ofertas, dos consumos e das capacidades forem inteiros (i.e., o vector b), todos os vértices do poliedro do problema de transportes em rede são soluções inteiras.
- Esta propriedade decorre do facto de a matriz A do problema de transportes ser totalmente unimodular.

Definição (Propriedade da total unimodularidade)

Uma matriz A é totalmente unimodular (TU) se o determinante de qualquer submatriz quadrada de A for igual a ± 1 ou 0. Esta propriedade implica que todos os elementos da matriz A sejam iguais a ± 1 ou 0, porque cada elemento é também uma submatriz quadrada de ordem 1.

- Como consequência, todas as bases de um problema de redes estão associadas a uma matriz B com determinante ±1.
- A solução básica $B^{-1}b$ é inteira, porque a matriz B^{-1} é inteira, dado que B^{-1} é a adjunta da transposta de B, cujo cálculo resulta numa matriz inteira, a dividir pelo determinante, igual a ± 1 .

Propriedade das soluções do problema de transporte

• Dado um grafo G = (V, A), com |V| = n e |A| = m, qualquer solução (conjunto de valores de fluxo em cada arco) obedece a:

Teorema (Teorema da decomposição de fluxos, Ahuja et al.,93)

Um fluxo não-negativo numa rede pode ser decomposto num conjunto de fluxos em caminhos e em ciclos (não necessariamente de uma forma única) com as seguintes duas propriedades:

- (a) cada caminho com fluxo positivo liga um vértice de oferta a um vértice de consumo.
- (b) no máximo n+m caminhos e ciclos têm fluxo positivo; destes, no máximo, m ciclos têm fluxo positivo.

Inversamente, um dado conjunto de fluxos em caminhos e em ciclos tem uma representação única como um fluxo não-negativo numa rede.

Fim