SO(3)			Sources
0.+ h	StrongGenSet[{}, GenSet[]]	$n^{\alpha} n^{\beta} h_{\alpha\beta}$	${\stackrel{0^+}{\cdot}}\mathcal{T}^{\scriptscriptstyle \perp}$
0+h	StrongGenSet[{}, GenSet[]]	$-n^{\alpha}n^{\beta}h_{\alpha\beta}+h^{\alpha}_{\alpha}$	0 ⁺ T ∥
$\frac{1}{2}h^{\perp}_{\alpha}$	StrongGenSet[{}, GenSet[]]	$n^{\beta} h_{\alpha\beta} - n_{\alpha} n^{\beta} n^{\chi} h_{\beta\chi}$	$^{1}\mathcal{T}^{_{1}}{}_{\alpha}$
$^{2^{+}}h^{\parallel}_{\alpha\beta}$	StrongGenSet[{1, 2}, GenSet[(1,2)]]	$h_{\alpha\beta} - n_{\beta} n^{\chi} h_{\alpha\chi} - n_{\alpha} n^{\chi} h_{\beta\chi} + \frac{1}{3} \eta_{\alpha\beta} n^{\chi} n^{\delta} h_{\chi\delta} + \frac{2}{3} n_{\alpha} n_{\beta} n^{\chi} n^{\delta} h_{\chi\delta} - \frac{1}{3} \eta_{\alpha\beta} h^{\chi}_{\chi} + \frac{1}{3} n_{\alpha} n_{\beta} h^{\chi}_{\chi}$	$^{2^{+}}\mathcal{T}^{\parallel}_{\alpha\beta}$
${\stackrel{0^+}{\cdot}}\mathcal{R}_{s}^{\perpt}$	StrongGenSet[{}, GenSet[]]	$n^{\alpha} n^{\beta} n^{\chi} \mathcal{A}_{\alpha\beta\chi}$	0+W _s ±t
${\stackrel{0^+}{\cdot}}\mathcal{R}_{s}{}^{\parallel}$	StrongGenSet[{}, GenSet[]]	$-3 n^{\alpha} n^{\beta} n^{\chi} \mathcal{A}_{\alpha\beta\chi} + 2 n^{\alpha} \mathcal{A}_{\alpha\beta}^{\beta} + n^{\alpha} \mathcal{A}_{\alpha\beta}^{\beta}$	0.+W _s
${}^{0^+}\mathcal{A}_{\mathtt{S}}{}^{\mathtt{h}}$	StrongGenSet[{}, GenSet[]]	$-n^{\alpha} \mathcal{A}_{\alpha\beta}^{\ \beta} + n^{\alpha} \mathcal{A}_{\alpha\beta}^{\beta}$	0+ W _s ^{⊥h}
$^{1^+}\mathcal{A}_{S^{\perp}\alpha\beta}$	StrongGenSet[{1, 2}, GenSet[-(1,2)]]	$n^{X} \mathcal{A}_{\alpha\beta\chi} - n_{\beta} n^{X} n^{\delta} \mathcal{A}_{\alpha\chi\delta} - n^{X} \mathcal{A}_{\beta\alpha\chi} + n_{\alpha} n^{X} n^{\delta} \mathcal{A}_{\beta\chi\delta} + n_{\beta} n^{X} n^{\delta} \mathcal{A}_{\chi\alpha\delta} - n_{\alpha} n^{X} n^{\delta} \mathcal{A}_{\chi\beta\delta}$	$^{1^+}W_{s}{}^{\perp}{}_{\alpha\beta}$
${}^{1}\mathcal{A}_{s}{}^{lt}{}_{\alpha}$	StrongGenSet[{}, GenSet[]]	$2 n^{\beta} n^{\chi} \mathcal{A}_{\alpha\beta\chi} + n^{\beta} n^{\chi} \mathcal{A}_{\beta\alpha\chi} - 3 n_{\alpha} n^{\beta} n^{\chi} n^{\delta} \mathcal{A}_{\beta\chi\delta}$	${}^{1}\mathcal{W}_{s}{}^{\perp t}{}_{\alpha}$
${}^{1}\mathcal{A}_{s}{}^{\parallelt}{}_{\alpha}$	StrongGenSet[{}, GenSet[]]	$-2\ n^{\beta}\ n^{\chi}\ \mathcal{A}_{\alpha\beta\chi} + 2\ \mathcal{A}_{\alpha\ \beta}^{\ \beta} - n^{\beta}\ n^{\chi}\ \mathcal{A}_{\beta\alpha\chi} + 3\ n_{\alpha}\ n^{\beta}\ n^{\chi}\ n^{\delta}\ \mathcal{A}_{\beta\chi\delta} - 2\ n_{\alpha}\ n^{\beta}\ \mathcal{A}_{\beta\ \chi}^{\ \chi} + \mathcal{A}_{\alpha\beta}^{\beta} - n_{\alpha}\ n^{\beta}\ \mathcal{A}_{\beta\chi}^{\chi}$	$\mathcal{W}_{s}^{\parallel t}{}_{\alpha}$
${}^{1}\mathcal{A}_{S}{}^{\perph}{}_{\alpha}$	StrongGenSet[{}, GenSet[]]	$-n^{\beta} n^{\chi} \mathcal{A}_{\alpha\beta\chi} + n^{\beta} n^{\chi} \mathcal{A}_{\beta\alpha\chi}$	${}^{1}\mathcal{W}_{s}{}^{\perph}{}_{\alpha}$
${}^{1}\mathcal{A}_{S}{}^{\parallelh}{}_{\alpha}$	StrongGenSet[{}, GenSet[]]	$n^{\beta} n^{\chi} \mathcal{A}_{\alpha\beta\chi} - \mathcal{A}_{\alpha\beta}^{\beta} - n^{\beta} n^{\chi} \mathcal{A}_{\beta\alpha\chi} + n_{\alpha} n^{\beta} \mathcal{A}_{\beta\chi}^{\chi} + \mathcal{A}_{\alpha\beta}^{\beta} - n_{\alpha} n^{\beta} \mathcal{A}_{\beta\chi}^{\chi}$	$^{1}\mathcal{W}_{s}^{\parallel h}{}_{\alpha}$
$2^+\mathcal{R}_s^{\parallel}_{\alpha\beta}$	StrongGenSet[{1, 2}, GenSet[(1,2)]]	$n^{\chi} \mathcal{A}_{\alpha\beta\chi} + n^{\chi} \mathcal{A}_{\alpha\chi\beta} - 2 n_{\beta} n^{\chi} n^{\delta} \mathcal{A}_{\alpha\chi\delta} + n^{\chi} \mathcal{A}_{\beta\alpha\chi} - 2 n_{\alpha} n^{\chi} n^{\delta} \mathcal{A}_{\beta\chi\delta} - n_{\beta} n^{\chi} n^{\delta} \mathcal{A}_{\chi\alpha\delta} - n_{\alpha} n^{\chi} n^{\delta} \mathcal{A}_{\chi\beta\delta} +$	$^{2^{+}}W_{s}^{\parallel}_{\alpha\beta}$
		$\eta_{\alpha\beta} \ n^{\chi} \ n^{\delta} \ n^{\epsilon} \ \mathcal{A}_{\chi\delta\epsilon} + 2 \ n_{\alpha} \ n_{\beta} \ n^{\chi} \ n^{\delta} \ n^{\epsilon} \ \mathcal{A}_{\chi\delta\epsilon} - \frac{2}{3} \ \eta_{\alpha\beta} \ n^{\chi} \ \mathcal{A}_{\chi\delta}^{\delta} + \frac{2}{3} \ n_{\alpha} \ n_{\beta} \ n^{\chi} \ \mathcal{A}_{\chi\delta}^{\delta} - \frac{1}{3} \ \eta_{\alpha\beta} \ n^{\chi} \ \mathcal{A}_{\chi\delta}^{\delta} + \frac{1}{3} \ n_{\alpha} \ n_{\beta} \ n^{\chi} \ \mathcal{A}_{\chi\delta}^{\delta}$	
$^{2^{+}}\mathcal{A}_{S}^{\perp}{}_{\alpha\beta}$	StrongGenSet[{1, 2}, GenSet[(1,2)]]	$-\frac{1}{2} n^{\chi} \mathcal{A}_{\alpha\beta\chi} + n^{\chi} \mathcal{A}_{\alpha\chi\beta} - \frac{1}{2} n_{\beta} n^{\chi} n^{\delta} \mathcal{A}_{\alpha\chi\delta} - \frac{1}{2} n^{\chi} \mathcal{A}_{\beta\alpha\chi} - \frac{1}{2} n_{\alpha} n^{\chi} n^{\delta} \mathcal{A}_{\beta\chi\delta} +$	$^{2^+}W_{s}^{\perp}{}_{\alpha\beta}$
		$\frac{1}{2} n_{\beta} n^{\chi} n^{\delta} \mathcal{A}_{\chi\alpha\delta} + \frac{1}{2} n_{\alpha} n^{\chi} n^{\delta} \mathcal{A}_{\chi\beta\delta} + \frac{1}{3} \eta_{\alpha\beta} n^{\chi} \mathcal{A}_{\chi\delta}^{\delta} - \frac{1}{3} n_{\alpha} n_{\beta} n^{\chi} \mathcal{A}_{\chi\delta}^{\delta} - \frac{1}{3} \eta_{\alpha\beta} n^{\chi} \mathcal{A}_{\chi\delta}^{\delta} + \frac{1}{3} n_{\alpha} n_{\beta} n^{\chi} \mathcal{A}_{\chi\delta}^{\delta}$	
${}^{2}\mathcal{A}_{s}{}^{\parallel}{}_{\alpha\beta\chi}$	StrongGenSet[{1, 2}, GenSet[(1,2)]]	$-\frac{1}{3}\mathcal{R}_{\alpha\beta\chi}+\frac{1}{3}n_{\chi}n^{\delta}\mathcal{R}_{\alpha\beta\delta}+\frac{2}{3}\mathcal{R}_{\alpha\chi\beta}-\frac{2}{3}n_{\beta}n^{\delta}\mathcal{R}_{\alpha\chi\delta}-\frac{2}{3}n_{\chi}n^{\delta}\mathcal{R}_{\alpha\delta\beta}+\frac{1}{3}n_{\beta}n^{\delta}\mathcal{R}_{\alpha\delta\chi}+\frac{1}{6}\eta_{\beta\chi}n^{\delta}n^{\epsilon}\mathcal{R}_{\alpha\delta\epsilon}+\frac{1}{6}n_{\beta}n_{\chi}n^{\delta}n^{\epsilon}\mathcal{R}_{\alpha\delta\epsilon}-\frac{1}{6}\eta_{\beta\chi}\mathcal{R}_{\alpha\delta}^{}+\frac{1}{6}\eta_{\beta\chi}\mathcal{R}_{\alpha\delta\epsilon}^{}+\frac{1}{6}\eta_{\beta\chi}n^{\delta}n^{\epsilon}\mathcal{R}_{\alpha\delta\epsilon}-\frac{1}{6}\eta_{\beta\chi}\mathcal{R}_{\alpha\delta\epsilon}^{}+\frac{1}{6}\eta_{\beta\chi}\mathcal{R}_{\alpha\delta\epsilon}^{}+\frac{1}{6}\eta_{\beta\chi}n^{\delta}n^{\epsilon}\mathcal{R}_{\alpha\delta\epsilon}^{}+\frac{1}{6}\eta_{\beta\chi}n^{\delta}n^{\epsilon}\mathcal{R}_{\alpha\delta\epsilon}^{}+\frac{1}{6}\eta_{\beta\chi}n^{\delta}n^{\epsilon}\mathcal{R}_{\alpha\delta\epsilon}^{}+\frac{1}{6}\eta_{\beta\chi}n^{\delta}n^{\epsilon}n^{\epsilon}\mathcal{R}_{\alpha\delta\epsilon}^{}+\frac{1}{6}\eta_{\beta\chi}n^{\delta}n^{\epsilon}n^$	$^{2}W_{s}^{\parallel}_{\alpha\beta\chi}$
		$\frac{1}{6} n_{\beta} n_{\chi} \mathcal{A}_{\alpha \delta}^{\delta} - \frac{1}{3} \mathcal{A}_{\beta \alpha \chi} + \frac{1}{3} n_{\chi} n^{\delta} \mathcal{A}_{\beta \alpha \delta}^{\delta} - \frac{2}{3} n_{\alpha} n^{\delta} \mathcal{A}_{\beta \chi \delta} + \frac{1}{3} n_{\alpha} n^{\delta} \mathcal{A}_{\beta \delta \chi}^{\delta} + \frac{1}{6} n_{\alpha \chi} n^{\delta} n^{\epsilon} \mathcal{A}_{\beta \delta \epsilon}^{\epsilon} + \frac{1}{6} n_{\alpha} n_{\chi} n^{\delta} n^{\epsilon} \mathcal{A}_{\beta \delta \epsilon}^{\epsilon} - \frac{1}{6} n_{\alpha \chi} \mathcal{A}_{\beta \delta}^{\delta} + \frac{1}{6} n_{\alpha} n_{\chi} \mathcal{A}_{\beta \delta}^{\delta} + \frac{1}{6} n_{\alpha \chi} \mathcal{A}$	
		$\frac{1}{3} n_{\beta} n^{\delta} \mathcal{A}_{\chi\alpha\delta} + \frac{1}{3} n_{\alpha} n^{\delta} \mathcal{A}_{\chi\beta\delta} - \frac{1}{3} \eta_{\alpha\beta} n^{\delta} n^{\epsilon} \mathcal{A}_{\chi\delta\epsilon} - \frac{1}{3} n_{\alpha} n_{\beta} n^{\delta} n^{\epsilon} \mathcal{A}_{\chi\delta\epsilon} + \frac{1}{3} \eta_{\alpha\beta} \mathcal{A}_{\chi\delta\epsilon} - \frac{1}{3} n_{\alpha} n_{\beta} \mathcal{A}_{\chi\delta}^{\delta} - \frac{1}{6} \eta_{\beta\chi} n^{\delta} n^{\epsilon} \mathcal{A}_{\delta\alpha\epsilon} - \frac{1}{6} n_{\beta} n_{\chi} n^{\delta} n^{\epsilon} \mathcal{A}_{\delta\alpha\epsilon} - \frac{1}{6} n_{\alpha} n^{\delta} n^{\delta} n^{\epsilon} \mathcal{A}_{\delta\alpha\epsilon} - \frac{1}{6} n_{\alpha} n_{\alpha} n^{\delta} n^{\epsilon} $	
		$\frac{1}{6} \eta_{\alpha\chi} n^{\delta} n^{\epsilon} \mathcal{A}_{\delta\beta\epsilon} - \frac{1}{6} n_{\alpha} n_{\chi} n^{\delta} n^{\epsilon} \mathcal{A}_{\delta\beta\epsilon} + \frac{1}{3} \eta_{\alpha\beta} n^{\delta} n^{\epsilon} \mathcal{A}_{\delta\chi\epsilon} + \frac{1}{3} n_{\alpha} n_{\beta} n^{\delta} n^{\epsilon} \mathcal{A}_{\delta\chi\epsilon} + \frac{1}{6} \eta_{\beta\chi} n_{\alpha} n^{\delta} \mathcal{A}_{\delta\epsilon} + \frac{1}{6} \eta_{\alpha\chi} n_{\beta} n^{\delta} \mathcal{A}_{\delta\epsilon} - \frac{1}{3} \eta_{\alpha\beta} n_{\chi} n^{\delta} \mathcal{A}_{\delta\epsilon} + \frac{1}{6} \eta_{\alpha\chi} n_{\beta} n^{\delta} \mathcal{A}_{\delta\epsilon} + \frac{1}{6} \eta_{\alpha\chi} n^{\delta} n^{\delta} n^{\delta} \mathcal{A}_{\delta\epsilon} + \frac{1}{6} \eta_{\alpha\chi} n^{\delta} n^$	
		$\frac{1}{6} \eta_{\beta\chi} \mathcal{R}^{\delta}_{\alpha\delta} - \frac{1}{6} \eta_{\beta} \eta_{\chi} \mathcal{R}^{\delta}_{\alpha\delta} + \frac{1}{6} \eta_{\alpha\chi} \mathcal{R}^{\delta}_{\beta\delta} - \frac{1}{6} \eta_{\alpha} \eta_{\chi} \mathcal{R}^{\delta}_{\beta\delta} - \frac{1}{3} \eta_{\alpha\beta} \mathcal{R}^{\delta}_{\chi\delta} + \frac{1}{3} \eta_{\alpha} \eta_{\beta} \mathcal{R}^{\delta}_{\chi\delta} - \frac{1}{6} \eta_{\beta\chi} \eta_{\alpha} \eta^{\delta} \mathcal{R}^{\epsilon}_{\delta\epsilon} - \frac{1}{6} \eta_{\alpha\chi} \eta_{\beta} \eta^{\delta} \mathcal{R}^{\epsilon}_{\delta\epsilon} + \frac{1}{3} \eta_{\alpha\beta} \eta_{\chi} \eta^{\delta} \mathcal{R}^{\epsilon}_{\delta\epsilon}$	
${}^{3}\mathcal{A}_{s}^{\parallel}{}_{\alpha\beta\chi}$	StrongGenSet[{1, 2, 3}, GenSet[(1,2), (2,3)]]	$\frac{1}{3} \mathcal{A}_{\alpha\beta\chi} - \frac{1}{3} n_{\chi} n^{\delta} \mathcal{A}_{\alpha\beta\delta} + \frac{1}{3} \mathcal{A}_{\alpha\chi\beta} - \frac{1}{3} n_{\beta} n^{\delta} \mathcal{A}_{\alpha\chi\delta} - \frac{1}{3} n_{\chi} n^{\delta} \mathcal{A}_{\alpha\delta\beta} - \frac{1}{3} n_{\chi} n^{\delta} \mathcal{A}_{\alpha\delta\chi} + \frac{2}{15} \eta_{\beta\chi} n^{\delta} n^{\epsilon} \mathcal{A}_{\alpha\delta\epsilon} + \frac{8}{15} n_{\beta} n_{\chi} n^{\delta} n^{\epsilon} \mathcal{A}_{\alpha\delta\epsilon} - \frac{2}{15} \eta_{\beta\chi} \mathcal{A}_{\alpha\delta}^{\delta} + \frac{2}{15} n_{\beta} n_{\chi} \mathcal{A}_{\alpha\delta}^{\delta} + \frac{2}{15} n_{\gamma} \mathcal{A}_{\alpha\delta}^{\delta$	$3^{-}W_{s}^{\parallel}_{\alpha\beta\chi}$
		$\frac{1}{3} \mathcal{A}_{\beta\alpha\chi} - \frac{1}{3} n_{\chi} n^{\delta} \mathcal{A}_{\beta\alpha\delta} - \frac{1}{3} n_{\alpha} n^{\delta} \mathcal{A}_{\beta\chi\delta} - \frac{1}{3} n_{\alpha} n^{\delta} \mathcal{A}_{\beta\delta\chi} + \frac{2}{15} \eta_{\alpha\chi} n^{\delta} n^{\epsilon} \mathcal{A}_{\beta\delta\epsilon} + \frac{8}{15} n_{\alpha} n_{\chi} n^{\delta} n^{\epsilon} \mathcal{A}_{\beta\delta\epsilon} - \frac{2}{15} \eta_{\alpha\chi} \mathcal{A}_{\beta\delta}^{\delta} + \frac{2}{15} n_{\alpha} n_{\chi} \mathcal{A}_{\beta\delta}^{\delta} - \frac{1}{3} n_{\beta} n^{\delta} \mathcal{A}_{\chi\alpha\delta} - \frac{1}{3} n_{\alpha} n^{\delta} \mathcal{A}_{\beta\chi\alpha\delta} - \frac{1}{3} n_{\alpha} n^{\delta} \mathcal{A}_{\beta\lambda} - \frac{1}{$	
		$\frac{1}{3} n_{\alpha} n^{\delta} \mathcal{A}_{\chi\beta\delta} + \frac{2}{15} \eta_{\alpha\beta} n^{\delta} n^{\epsilon} \mathcal{A}_{\chi\delta\epsilon} + \frac{8}{15} n_{\alpha} n_{\beta} n^{\delta} n^{\epsilon} \mathcal{A}_{\chi\delta\epsilon} - \frac{2}{15} \eta_{\alpha\beta} \mathcal{A}_{\chi\delta}^{\delta} + \frac{2}{15} n_{\alpha} n_{\beta} \mathcal{A}_{\chi\delta}^{\delta} + \frac{1}{15} \eta_{\beta\chi} n^{\delta} n^{\epsilon} \mathcal{A}_{\delta\alpha\epsilon} + \frac{4}{15} n_{\beta} n_{\chi} n^{\delta} n^{\epsilon} \mathcal{A}_{\delta\alpha\epsilon} + \frac{1}{15} \eta_{\alpha\chi} n^{\delta} n^{\epsilon} \mathcal{A}_{\delta\beta\epsilon} + \frac{1}{15} \eta_{\alpha\chi} n^{\delta} n^{\epsilon} \mathcal{A}_{\delta\alpha\epsilon} + \frac{1}{15} \eta_{\alpha\chi} n^{\delta} n^{\delta$	
		$\frac{4}{15} n_{\alpha} n_{\chi} n^{\delta} n^{\epsilon} \mathcal{A}_{\delta\beta\epsilon} + \frac{1}{15} \eta_{\alpha\beta} n^{\delta} n^{\epsilon} \mathcal{A}_{\delta\chi\epsilon} + \frac{4}{15} n_{\alpha} n_{\beta} n^{\delta} n^{\epsilon} \mathcal{A}_{\delta\chi\epsilon} - \frac{1}{5} \eta_{\beta\chi} n_{\alpha} n^{\delta} n^{\epsilon} n^{\phi} \mathcal{A}_{\delta\epsilon\phi} - \frac{1}{5} \eta_{\alpha\chi} n_{\beta} n^{\delta} n^{\epsilon} n^{\phi} \mathcal{A}_{\delta\epsilon\phi} - \frac{1}{5} \eta_{\alpha\beta} n_{\chi} n^{\delta} n^{\epsilon} n^{\phi} $	
		$\frac{2}{5} n_{\alpha} n_{\beta} n_{\chi} n^{\delta} n^{\epsilon} n^{\phi} \mathcal{A}_{\delta\epsilon\phi} + \frac{2}{15} \eta_{\beta\chi} n_{\alpha} n^{\delta} \mathcal{A}_{\delta\epsilon}^{\epsilon} + \frac{2}{15} \eta_{\alpha\chi} n_{\beta} n^{\delta} \mathcal{A}_{\delta\epsilon}^{\epsilon} + \frac{2}{15} \eta_{\alpha\beta} n_{\chi} n^{\delta} \mathcal{A}_{\delta\epsilon}^{\epsilon} - \frac{2}{5} n_{\alpha} n_{\beta} n_{\chi} n^{\delta} \mathcal{A}_{\delta\epsilon}^{\epsilon} - \frac{1}{15} \eta_{\beta\chi} \mathcal{A}_{\alpha\delta}^{\delta} + \frac{1}{15} n_{\beta} n_{\chi} \mathcal{A}_{\alpha\delta}^{\delta} - \frac{1}{15} \eta_{\beta\chi} \mathcal{A}_{\alpha\delta}^{\delta} - \frac{1}{15} \eta_{\gamma\chi} \mathcal{A}_{\alpha\delta}^{\delta} - \frac{1}{15} \eta$	
		$\frac{1}{15} \eta_{\alpha\chi} \mathcal{R}^{\delta}_{\beta\delta} + \frac{1}{15} \eta_{\alpha} \eta_{\chi} \mathcal{R}^{\delta}_{\beta\delta} - \frac{1}{15} \eta_{\alpha\beta} \mathcal{R}^{\delta}_{\chi\delta} + \frac{1}{15} \eta_{\alpha} \eta_{\beta} \mathcal{R}^{\delta}_{\chi\delta} + \frac{1}{15} \eta_{\beta\chi} \eta_{\alpha} \eta^{\delta} \mathcal{R}^{\epsilon}_{\delta\epsilon} + \frac{1}{15} \eta_{\alpha\chi} \eta_{\beta} \eta^{\delta} \mathcal{R}^{\epsilon}_{\delta\epsilon} + \frac{1}{15} \eta_{\alpha\beta} \eta_{\chi} \eta^{\delta} \mathcal{R}^{\epsilon}_{\delta\epsilon} - \frac{1}{5} \eta_{\alpha} \eta_{\beta} \eta_{\chi} \eta^{\delta} \mathcal{R}^{\epsilon}_{\delta\epsilon}$	