

CSEG601 & CSE5601: Spatial Data Management & Application

Sungwon Jung

Bigdata Processing Lab

Dept. of Computer Science and Engineering Sogang University Seoul, Korea Tel: +82-2-705-8930

Email: jungsung@sogang.ac.kr

Value of SDBMS

- Traditional (non-spatial) database management systems provide:
 - Persistence across failures
 - Allows concurrent access to data
 - Scalability to search queries on very large datasets which do not fit inside main memories of computers
 - Efficient for non-spatial queries, but not for spatial queries
- Non-spatial queries:
 - List the names of all bookstore with more than ten thousand titles.
 - List the names of ten customers, in terms of sales, in the year 2001
- Spatial Queries:
 - List the names of all bookstores with ten miles of Minneapolis
 - List all customers who live in Tennessee and its adjoining states

Value of SDBMS - Spatial Data Examples

- Examples of non-spatial data
 - Names, phone numbers, email addresses of people
- Examples of Spatial data
 - Census Data
 - NASA satellites imagery terabytes of data per day
 - Weather and Climate Data
 - Rivers, Farms, ecological impact
 - Medical Imaging
- Exercise: Identify spatial and non-spatial data items in
 - A phone book
 - A cookbook with recipes

3

Value of SDBMS – Users, Application Domains

- Many important application domains have spatial data and queries. Some Examples follow:
 - Army Field Commander: Has there been any significant enemy troop movement since last night?
 - Insurance Risk Manager: Which homes are most likely to be affected in the next great flood on the Mississippi?
 - Medical Doctor: Based on this patient's MRI, have we treated somebody with a similar condition?
 - **Molecular Biologist**: Is the topology of the amino acid biosynthesis gene in the genome found in any other sequence feature map in the database?
 - **Astronomer**: Find all blue galaxies within 2 arcmin of quasars.

What is a SDBMS?

- A SDBMS is a software module that
 - can work with an underlying DBMS
 - supports spatial data models, spatial abstract data types (ADTs) and a query language from which these ADTs are callable
 - supports spatial indexing, efficient algorithms for processing spatial operations, and domain specific rules for query optimization
- Example: Oracle Spatial data cartridge, ESRI SDE
 - can work with Oracle 8i~11g DBMS
 - Has spatial data types (e.g. polygon), operations (e.g. overlap) callable from SQL3 query language
 - Has spatial indices, e.g. R-trees

5

SDBMS Example

- Consider a spatial dataset with:
 - County boundary (dashed white line)
 - Census block name, area, population boundary (dark line)
 - Water bodies (dark polygons)
 - Satellite Imagery (gray scale pixels)

polyline);

Storage in a SDBMS table:

```
create table census_blocks (
name string,
area float,
population number,
```

boundary

Figure 1.2. Landsat image of Ramsey Country

Modeling Spatial Data in Traditional DBMS

- A row in the table census_blocks (Figure 1.3)
- Question: Is Polyline datatype supported in DBMS?

Figure 1.3. Census blocks with boundary ID:1050

7

Spatial Data Types and Traditional Databases

- Traditional relational DBMS
 - Support simple data types, e.g. number, strings, date
 - Modeling Spatial data types is tedious
- Example: Figure 1.4 shows modeling of polygon using numbers
 - Three new tables: polygon, edge, points
 - Note: Polygon is a polyline where last point and first point are same
 - A simple unit sqaure represented as 16 rows across 3 tables
 - Simple spatial operators, e.g. area(), require joining tables
 - Tedious and computationally inefficient
- Question. Name post-relational database management systems which facilitate modeling of spatial data types, e.g. polygon.

Mapping "census_table" into a Relational Database

Census_blocks

Name	Area	Population	boundary-ID
340	1	1839	1050

Polygon

boundary-ID	edge-name	
1050	A	
1050	В	
1050	С	
1050	D	

Edge

edge-name	endpoint	
A	1	
A	2	
В	2	
В	-3	
С	3	
С	4	
D	4	
D	1	

P	oin	1

endpoint	x-coor	y-coor	
1	0	1	
2	0	0	
3	1	0	
4	1	1	

Figure 1.4. Four tables required in a relational database

9

Evolution of DBMS technology

Figure 1.5. Evolution of databases.

Spatial Data Types and Post-relational Databases

- Post-relational DBMS
 - Support user defined abstract data types
 - Spatial data types (e.g. polygon) can be added
- Choice of post-relational DBMS
 - Object oriented (OO) DBMS
 - Object relational (OR) DBMS
- A spatial database is a collection of spatial data types, operators, indices, processing strategies, etc. and can work with many post-relational DBMS as well as programming languages like Java, Visual Basic etc.

11

How is a SDBMS different from a GIS?

- GIS is a software to visualize and analyze spatial data using spatial analysis functions such as
 - **Search** Thematic search, search by region, (re-)classification
 - Location analysis Buffer, corridor, overlay
 - Terrain analysis Slope/aspect, catchment, drainage network
 - Flow analysis Connectivity, shortest path
 - **Distribution** Change detection, proximity, nearest neighbor
 - Spatial analysis/Statistics Pattern, centrality, autocorrelation, indices of similarity, topology: hole description
 - Measurements Distance, perimeter, shape, adjacency, direction
- GIS uses SDBMS
 - to store, search, query, share large spatial data sets

How is a SDBMS different from a GIS?

- SDBMS focusses on
 - Efficient storage, querying, sharing of large spatial datasets
 - Provides simpler set based query operations
 - Example operations: search by region, overlay, nearest neighbor, distance, adjacency, perimeter etc.
 - Uses spatial indices and query optimization to speedup queries over large spatial datasets.
- SDBMS may be used by applications other than GIS
 - Astronomy, Genomics, Multimedia information systems, ...
- Will one use a GIS or a SDBM to answer the following:
 - How many neighboring countries does USA have?
 - Which country has highest number of neighbors?

13

Components of a SDBMS

- Recall: a SDBMS is a software module that
 - can work with an underlying DBMS
 - supports spatial data models, spatial ADTs and a query language from which these ADTs are callable
 - supports spatial indexing, algorithms for processing spatial operations, and domain specific rules for query optimization
- Components include
 - spatial data model, query language, query processing, file organization and indices, query optimization, etc.
 - Figure 1.6 shows these components
 - We discuss each component briefly in chapter 1.6 and in more detail in later chapters.

Three Layer Architecture

Figure 1.6. Three-layer architecture

15

1.7 Summary

- SDBMS is valuable to many important applications
- SDBMS is a software module
 - works with an underlying DBMS
 - provides spatial ADTs callable from a query language
 - provides methods for efficient processing of spatial queries
- Components of SDBMS include
 - spatial data model, spatial data types and operators,
 - spatial query language, processing and optimization
 - spatial data mining
- SDBMS is used to store, query and share spatial data for GIS as well as other applications