

Jake Ferguson

### Module goals

- 1. Introduce the central limit theorem
- 2. Understand some basic operations on probability used in inference
- 3. Calculate Wald confidence intervals of estimates
- 4. Run one- and two-sample t-test

### Random variables

A variable whose outcome depends on a random phenomenon is called a **random variable**.



image source: wikimedia.org

# A random sample

```
x \leftarrow sample(1:20, 100, replace=T)
```



#### Sums of random variables

Many measurements we make and statistics are a sum of random variables.

```
x ← numeric(10000)
for(i in 1:10000) {
    x[i] ← sum(sample(1:20, 100, replace=T))
}
```



Collections of such variables display remarkable regularity properties. This is the **Central Limit Theorem** (CLT).

### The normal distribution

$$f(x)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$



 $\mu$  is the mean

 $\sigma$  is the standard deviation

#### The mean and standard deviation

The sample mean  $(\bar{x})$  is the estimate of the population mean  $(\mu)$ .

$$ar{x} = rac{1}{n} \sum_{i=1}^n x_i$$

The sample variance (  $s^2$ ) is the estimate of the population variance (  $\sigma^2$ ).

$$ar{x} = rac{1}{n-1} \sum_{i=1}^n \left(x_i - \mu
ight)^2$$

In R use the mean and var functions:

```
mean(x)
## [1] 1050.277
```

var(x)

**##** [1] 3394**.**525

### Excercise 4A

Estimating means and standard deviations

### The sampling distribution

The sampling distribution describes the plausible values of the outcome if we conducted the sampling procedure again. It is a hypothetical construct.

#### Example: the 1918 flu

These are the deaths due to spanish flu in Switzerland



Repeatedly take samples of size 100 from the population to look at the distribution of the estimates



### The standard error

The standard deviation of the sampling distribution is so important that it has a special name, the **standard error**  $(\sigma_{\bar{x}})$ .

$$\sigma_{ar{x}}^2 = rac{s^2}{n}$$

$$\sigma_{ar{x}} = rac{s}{\sqrt{n}}$$



### Excercise 4B

Simulating sampling distributions

### Inference with known $\sigma$

We and estimate the mean horn length of a unicorn,  $\bar{x}$ . The standard error determines how much uncertainty is in  $\bar{x}$ . How confident can we be that the population horn average (i.e., the true value) is close to our estimate?

A confidence interval gives a range of values that will contain the true value some specified proportion of the time.

A 95% confdence interval when the population variance is known, is  $ar{x}\pm 1.96\cdot \sigma_{ar{X}}$ 



### Example in R

The Hawai'ian monk seal data. Calculated the confidence interval of the behavior differences:

```
xbar ← mean(diff.dat)
n ← length(diff.dat)
se ← sd(diff.dat)/sqrt(n)
xbar - qnorm(0.975)*se

## [1] -0.03272467

xbar + qnorm(0.975)*se

## [1] 0.007792686
```



image: Hawaii Marine Animal Response

#### The z-statistic

Given a sample with mean  $ar{x}$  and standard error  $\sigma_{ar{x}}$ , the z-statistic is normally distributed

$$Z=rac{ar{x}-\mu}{\sigma_{ar{x}}}$$

#### Example

Take a random sample of n=80 babies in the US and get a mean birth weight of 3370 g. This population is well studied and known to have a mean of  $\mu=3339$  and standard devation of  $\sigma=573$ 

$$Z = rac{3370 - 3339}{573/\sqrt{80}} = 0.48$$

# Getting p-values

Now what is the probability that we could have drawn a sample with this average weight or larger from our population?

$$P[Z > 0.48] = ?$$



```
pnorm(q=0.48, lower.tail=F)
```

## [1] **0.**3156137

### Excercise 4C

Calculating confidence intervals, z-scores, and p-values

### Inference when $\sigma$ is unknown

When the variance is unknown, we need to account for the additional uncertainty due to estimating  $\sigma$ .

### The t-distribution

$$t = \frac{\bar{x} - \mu}{s}$$



As the sample size increases, the t-distribution converges to the z-distribution

#### Wald confidence intervals

The additional uncertainty in the t-distribution influences the confidence interval. We need to specify the sample size used to estimate s using an argument called the degrees of freedom.

```
xbar ← mean(diff.dat)
n ← length(diff.dat)
se ← sd(diff.dat)/sqrt(n)
xbar - qt(0.975, df=n-1)*se

## [1] -0.03367423

xbar + qt(0.975, df=n-1)*se

## [1] 0.008742242
```



Compare this to the interval that assumes s is known: (-0.0327, 0.0078)

image: USFWS

### Excercise 4D

Calculating Wald confidence intervals

### The one-sample or paired t-test

The Hawai'ian monk seal data. Test if the difference between treatments is 0.

#### Do this by hand

## [1] 0.2382623

```
xbar ← mean(diff.dat)
xbar

## [1] -0.01246599

n ← length(diff.dat)
se ← sd(diff.dat)/sqrt(n)
t ← (mean(diff.dat) - 0)/se
t

## [1] -1.206046

2*pt(t, df=n-1)
```

Or use the R function t.test:

```
##
## One Sample t-test
##
## data: diff.dat
## t = -1.206, df = 27, p-value = 0.2383
## alternative hypothesis: true mean is not e
## 95 percent confidence interval:
## -0.033674225 0.008742242
## sample estimates:
## mean of x
## -0.01246599
```

### The two-sample t-test

$$t=rac{ar{x}_1-ar{x}_2-H_0}{\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}}$$

$$ext{df} = rac{\left(rac{s_1^2}{n_1} + rac{s_2^2}{n_2}
ight)^2}{rac{s_1^4}{n_1^2(n_1-1)} + rac{s_2^4}{n_2^2(n_2-1)}}$$



image: http://thirstyfortea.com

### Example

Does the shape of a glass affect the speed a beer is consumed?



Attwood AS, Scott-Samuel NE, Stothart G, Munafò MR (2012) Glass Shape Influences Consumption Rate for Alcoholic Beverages. PLoS ONE 7(8): e43007. https://doi.org/10.1371/journal.pone.0043007

# The data



### A two-sample t.test

In R we define a response and predictor variables using formula:

```
response ~ predictor
t.test(drinkingMinutes ~ glassShape, data=glass.dat)
###
       Welch Two Sample t-test
###
###
## data: drinkingMinutes by glassShape
## t = -3.5111, df = 13.637, p-value = 0.003585
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
   -11.802186 -2.837148
###
## sample estimates:
     mean in group curved mean in group straight
##
                                        14,913000
##
                 7.593333
```

### Excercise 4E

One- and two-sample t-tests

### Summary

- We used the CLT to determine the sampling distribution
- We linked the sample to the population with confidence intervals
- We tested whether the mean of a sample was equal to a specific value (the null hypothesis)
- We looked at one- and two-sample tests