==實驗 11==

極零點與頻率響應

分析增加一個極點或零點對直流馬達位置控制系統的影響。量測其頻率響應與繪製波德圖,並以軟體 Matlab/Simulink 模擬與驗證。

と 學習目標

- 1. 分析增加一個極點或零點於直流馬達位置控制系統。
- 2. 量測系統之頻率響應與繪製波德圖。
- 3. 以軟體Matlab/Simulink 模擬與驗證。

と 相關理論

直流馬達位置控制系統:

圖 11-1、直流馬達位置控制系統方塊圖

圖 11-1 為直流馬達位置控制系統方塊圖, $G(s) = \frac{b}{as+1}$ 或是 $\frac{bs+1}{a}$,(a>0、b>0)。令: $k_{\theta} = k_m k_{nt}$ 、 $k_{\theta}' = b k_{\theta}$ 。

增加極點、零點對頻率響應 $(s = j\omega)$ 的影響:

當增加左半平面的極點時:

 $C(s) = \frac{b}{as+1} \rightarrow \frac{b}{1+\frac{j\omega}{\omega_0}}$, (設 $\omega_0 = 1/a$)根據直線近似法可得,頻率 ω_0 以下增益為 0dB 水平線,以上則是-20dB 的斜線。 $10\omega_0$ 以上相位為-90 度水平線,中間以-45 度/十倍頻的斜線下降,如下圖 11-2:

當增加左半平面的零點時:

 $C(s) = \frac{bs+1}{a} \rightarrow \frac{1}{ab} + \frac{j\omega}{\omega_0}$ (設 $\omega_0 = ab$) 根據直線近似法可得,頻率 ω_0 以下增益為 0dB 水平線,以上則是+20dB 的斜線。 $10\omega_0$ 以上相位為+90 度水平線,中間以+45 度/十倍頻的斜線下降,如下圖 11-3:

圖 11-2、增加極點的波德圖

圖 11-3、增加零點的波德圖

波德圖繪製方法:

以正弦波為輸入信號,在某一特定頻率時,其輸入信號與輸出響應信號之關係如圖 11-4,可得:

增益為: $|G(j\omega_0)| = B/A$

相位為: $\angle G(j\omega_0) = \theta = -180^\circ \times \frac{T_2}{T_1}$ (此時單位是角度制[deg])

以同樣方法,改變正弦波輸入信號的頻率,可得另一組增益與相位,以此類推,如此取足夠頻率可畫出實際系統波德圖。

圖 11-4、正弦波輸入信號與輸出響應信號之關係圖

€實驗11-1【直流馬達位置控制系統頻率響應】

1. 步驟

(1) 依圖11-5 完成位置控制系統接線,並根據直流馬達位置控制系統方塊圖(11-1),計算其轉移函數。

圖 11-5 直流馬達位置控制系統之接線圖(未加極點、零點)

- (2) 輸入信號為正弦波,正弦波之振幅可用 P3 衰減器調整至(±5V),其頻率可由機構單元面板右下角的旋鈕及切換開關來控制。
- (3) 每次實驗先將開關 SW2 往下切(OFF),將電容短路放電,達到初始值為零,然 後將開關 SW2 往上切(ON),使電容有積分作用。

2. 請完成

- (1) 輸入信號為正弦波(±5V),P3為50%,觀察示波器顯示之響應波形,將相關數據記錄於表 11-1,再將數據繪製成波德圖,並標示出頻寬BW (Bandwidth)。
- (2) 利用 Matlab 畫出波德圖,並標示出頻寬大小。

表 11-1、二階系統之增益與相位

頻率(f)	0.1Hz	0.2Hz	0.3Hz	0.35Hz	0.4Hz	0.45Hz	0.5Hz	0.6Hz	0.7Hz	0.8Hz	1Hz
$\omega = 2\pi f$ [rad/s]											
A [V]											
B [V]											
T_1 [sec]											
T_2 [sec]											
增益 $ G(j\omega) = \frac{B}{A}$											
增益(dB 值) G(jω) _{dB}											
相位[deg] -180°T ₂ /T ₁											

ξ實驗11-2【位置控制系統頻率響應(極點)】

1. 步驟

(1) 依圖11-6 完成位置控制系統接線,並根據直流馬達位置控制系統方塊圖(11-1),計算其轉移函數。

圖 11-6 直流馬達位置控制系統之接線圖(加入極點, $R_f = 100K \cdot C_f = 0.1\mu$)

- (2) 輸入信號為正弦波,正弦波之振幅可用 P3 衰減器調整至(±5V),其頻率可由機構單元面板右下角的旋鈕及切換開關來控制。
- (3) 每次實驗先將開關 SW2 往下切(OFF),將電容短路放電,達到初始值為零,然 後將開關 SW2 往上切(ON),使電容有積分作用。

2. 請完成

- (1) 輸入信號為正弦波(±5V),P3為50%,觀察示波器顯示之響應波形,將相關數據記錄於表 11-2,再將數據繪製成波德圖,並標示出頻寬BW (Bandwidth)。
- (2) 利用 Matlab 畫出波德圖,並標示出頻寬大小。

表 11-2、二階系統之增益與相位

頻率(f)	0.1Hz	0.2Hz	0.3Hz	0.35Hz	0.4Hz	0.45Hz	0.5Hz	0.6Hz	0.7Hz	0.8Hz	1Hz
$\omega = 2\pi f$ [rad/s]											
A [V]											
B [V]											
T_1 [sec]											
T_2 [sec]											
增益 $ G(j\omega) = \frac{B}{A}$											
增益(dB 值) G(jω) _{dB}											
相位[deg] -180°T ₂ /T ₁											

ξ實驗11-3【位置控制系統頻率響應(零點)】

1. 步驟

(1) 依圖11-7 完成位置控制系統接線,並根據直流馬達位置控制系統方塊圖(11-1),計算其轉移函數。

圖 11-7 直流馬達位置控制系統之接線圖(加入零點, $R_i = 100K$ 、 $C_i = 1\mu$)

- (2) 輸入信號為正弦波,正弦波之振幅可用 P3 衰減器調整至(±5V),其頻率可由機構單元面板右下角的旋鈕及切換開關來控制。
- (3) 每次實驗先將開關 SW2 往下切(OFF),將電容短路放電,達到初始值為零,然 後將開關 SW2 往上切(ON),使電容有積分作用。

2. 請完成

- (1) 輸入信號為正弦波(±5V),P3 為 50%,觀察示波器顯示之響應波形,將相關數據記錄於表 11-3,再將數據繪製成波德圖,並標示出頻寬BW (Bandwidth)。
- (2) 利用 Matlab 畫出波德圖,並標示出頻寬大小。

表 11-3、二階系統之增益與相位

頻率(f)	0.1Hz	0.2Hz	0.3Hz	0.35Hz	0.4Hz	0.45Hz	0.5Hz	0.6Hz	0.7Hz	0.8Hz	1Hz
$\omega = 2\pi f$ [rad/s]											
A [V]											
B [V]											
T_1 [sec]											
T_2 [sec]											
增益 $ G(j\omega) = \frac{B}{A}$											
增益(dB 值) G(jω) _{dB}											
相位[deg] -180°T ₂ /T ₁											

ξ 問題討論

- 1. 繳交實驗結果(含:填寫表格數值、繪製波德圖)。[略]
- 2. 利用 Matlab 繪製未加極零點、加上極點、加上零點之頻率響應波德圖,並說明加上極點、加上零點對於波德圖而言有何影響?
- 3. 參考實驗 9、10 改變極點、零點的位置(左、右移動極、零點),對於波德圖有何影響?利用 Matlab 模擬其結果。