Announcements

No class or office hour this Friday

Today I will stick around for ~20 minutes after class

HWS posted (due Wed. 315 @ 9:00 cm)

Recall: A splitting field Sp(f) of a poly. $f \in F[x]$ is an extension field over which f splits completely, and which is minimal w.r.t. this property

Last time: existence

Next: Uniqueness

Thm: Let $\psi: F \xrightarrow{\sim} F'$ be an isom. of fields. Let $f(x) \in F(x)$, and f'(x) be the image of f in F'[x] under ψ (mapping x to itself)

a) Suppose f is irred. Let α be a root of f, β be a root of f'. Then $\exists F(\alpha) \xrightarrow{\sim} F'(\beta)$ sending $F \xrightarrow{\vee} F'$ b) Let k be a splitting field for f over F

K'be a splitting field for f' over F'Then $\exists K \xrightarrow{\sim} K'$ sending $F \xrightarrow{\Psi} F'$

$$Pf: \alpha) F(\alpha) \approx F[\alpha]_{(f)} \approx F[$$

b) Induction. Choose a root $\alpha \in K$ of some irred. factor P of f and a root $\beta \in K'$ of $p' := \varphi(p)$.

By part a), $F(a) \cong F'(\beta)$, so let $E := F(a), E' := F'(\beta)$.

Now if $g = \frac{f}{x-a}$, $g' = \frac{f'}{x-\beta}$, we have the same Situation as b) but w/ g,g',E,E' replacing f,f',F,F'. By the inductive hypothesis, $\exists K \xrightarrow{\sim} K$

sending $E \xrightarrow{\sim} E$ sending $F \xrightarrow{\sim} F$.

Cor: Spf is unique up to isom.

Ok, we can get one poly. to split. What about all polys.?

Def: We'll use this notation

a) F is an algebraic closure of F if F/F is alg.

and every $f(x) \in F[x]$ splits completely in F[x],

(equivalently, every nonconstant f(x) + F[x] has a root in F)

b) k is alg. closed if K= K

Prop: Alg. closure \implies alg. closed (i.e. If $k = \overline{k}$)

Pf:
$$F \subseteq k = F \subseteq K$$
alg.
alg.

So every elt. of K is a not of some poly /F.

Thm: Every field F has an alg. closure F, which is unique up to isom.

Pf: see D&F Props. 30231

Fundamental Thm. of Algebra (Gauss): (is alg. closed

Cor: If FCC, then FCC, so e.g. Q = set of als.

Pf sketch using Galois theory:

Two analytic consequences of the Intermediate Value Theorem (A) Every odd degree poly. in R[x] has a root in R

(B) Every & ER 20 has a sqrt. Ja ER 20

Let f(x) ∈ R[x], firmed., n:=desf.

WTS: f has a root in C.

Fet K := SpiRt

Calois theory gives us detailed information about intermediate fields.

In this case,

So we have