## **CEE6400 Physical Hydrology**

## Infiltration example problem

Consider a soil of given type (e.g. **silty clay loam**) and given an input rainfall hyetograph, calculate the infiltration and the runoff. Initial soil moisture content 0.3. Rainfall rate 2 cm/hr, for 3 hours.

This is an event based calculation of runoff

## **Solution outline**

1. Determine soil properties from texture (Table 1 p 4:18)

These are the parameters of the problem (time invariant quantities that describe behavior in a particular situation).

| K <sub>sat</sub> | , |
|------------------|---|
| n                |   |
| Ψα               |   |
| b                |   |

2. System state described by initial condition and the depth of water that has infiltrated up to any point in time

| 0 0 0     |                                                             |
|-----------|-------------------------------------------------------------|
| 1.0 = 0.3 | F = 0 cm at t=0 cm (will change during course of the event) |
| 00 - 0.5  | 1 o om we e o om ( , m ommige waring course of the e , one) |

3. Establish Infiltrability – Depth approximation. In Green-Ampt approach this is based on hydraulic gradient over the depth of penetration of wetting front, Darcy's equation and suction in advance of a wetting front (Infiltration18.pptx, slide 13)

$$f_c = K_{sat} \left( 1 + \frac{|\psi_f| \Delta \theta}{F} \right) = K_{sat} \left( 1 + \frac{P}{F} \right)$$

| $ \psi_f  = \frac{2b+3}{2b+6}  \psi_a   \text{equation } 44$ |  |
|--------------------------------------------------------------|--|
| $\Delta\theta = n - \theta_o$                                |  |
| P                                                            |  |

| F cm                |  |  |
|---------------------|--|--|
| f <sub>c</sub> cm/h |  |  |

f<sub>c</sub>(F) relationship serves as foundation for calculations that follow



4. Ponding (saturation at the surface) first occurs when  $f_c$ =W (water input rate or rainfall rate) This idea lets you solve for the depth of water that has to infiltrate before ponding occurs,  $F_p$ , and the time to ponding  $t_p$  for a particular input rate W.

| F <sub>p</sub> cm |  |
|-------------------|--|
| t <sub>p</sub> h  |  |

5. After ponding the rate of increase in F (remember, this is a state variable describing the state of the system) is limited by the infiltration capacity

$$\frac{dF}{dt} = f_c(F) = K_{sat} \left( 1 + \frac{P}{F} \right)$$

Solving this gives an equation relating F and t for ponded conditions