

Bloch Spheres

(Figure courtesy of Jazeari, Beckers, and Tajalli, 2019)

Bloch Sphere: 3D representation of amplitudes for single qubit.

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

"equivalent"
$$\equiv \cos\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)e^{i\phi}|1\rangle$$

"Equivalent" in the sense they have the same measurement probabilities, but values of alpha and beta may be different.

Parameter θ : determines **latitude** of position on sphere. Units: radians from the north pole. Ranges $[0, \pi]$.

Parameter ϕ : determines **longitude** of position on sphere. Units: radians from plane defined by x-axis. Ranges $[0, 2\pi]$.

Derivation of Form:
$$\cos\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)e^{i\phi}|1\rangle$$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = r_{\alpha} \left[\cos(\Delta_{\alpha}) + i\sin(\Delta_{\alpha})\right] |0\rangle + r_{\beta} \left[\cos(\Delta_{\beta}) + i\sin(\Delta_{\beta})\right] |1\rangle$$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = r_{\alpha} \left[\cos(\Delta_{\alpha}) + i\sin(\Delta_{\alpha})\right] |0\rangle + r_{\beta} \left[\cos(\Delta_{\beta}) + i\sin(\Delta_{\beta})\right] |1\rangle$$

$$= r_{\alpha} e^{i\Delta_{\alpha}} |0\rangle + r_{\beta} e^{i\Delta_{\beta}} |1\rangle \longrightarrow$$

3Blue1Brown Video for intuition: $e^{ix} = \cos(x) + i\sin(x)$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = r_{\alpha} \left[\cos(\Delta_{\alpha}) + i\sin(\Delta_{\alpha})\right] |0\rangle + r_{\beta} \left[\cos(\Delta_{\beta}) + i\sin(\Delta_{\beta})\right] |1\rangle$$

$$= r_{\alpha} e^{i\Delta_{\alpha}} |0\rangle + r_{\beta} e^{i\Delta_{\beta}} |1\rangle \longrightarrow$$

3Blue1Brown Video for intuition: $e^{ix} = \cos(x) + i\sin(x)$

$$=e^{i\Delta_{\alpha}}\left[r_{\alpha}|0\rangle+r_{\beta}e^{i\phi}|1\rangle\right]$$
 where $\phi=\Delta_{\beta}-\Delta_{\alpha}$

Derivation of Form: $\cos\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)e^{i\phi}|1\rangle$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = r_{\alpha} \left[\cos(\Delta_{\alpha}) + i\sin(\Delta_{\alpha})\right] |0\rangle + r_{\beta} \left[\cos(\Delta_{\beta}) + i\sin(\Delta_{\beta})\right] |1\rangle$$

$$= r_{\alpha}e^{i\Delta_{\alpha}}|0\rangle + r_{\beta}e^{i\Delta_{\beta}}|1\rangle \longrightarrow$$

3Blue1Brown Video for intuition: $e^{ix} = \cos(x) + i\sin(x)$

$$=e^{i\Delta_{\alpha}}\left[r_{\alpha}|0\rangle+r_{\beta}e^{i\phi}|1\rangle\right]$$
 where $\phi=\Delta_{\beta}-\Delta_{\alpha}$

Derivation of Form: $\cos\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)e^{i\phi}|1\rangle$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = r_{\alpha} \left[\cos(\Delta_{\alpha}) + i\sin(\Delta_{\alpha})\right] |0\rangle + r_{\beta} \left[\cos(\Delta_{\beta}) + i\sin(\Delta_{\beta})\right] |1\rangle$$

$$= r_{\alpha} e^{i\Delta_{\alpha}} |0\rangle + r_{\beta} e^{i\Delta_{\beta}} |1\rangle \longrightarrow$$

3Blue1Brown Video for intuition: $e^{ix} = \cos(x) + i\sin(x)$

$$=e^{i\Delta_{\alpha}}\left[r_{\alpha}|0\rangle+r_{\beta}e^{i\phi}|1\rangle\right] \text{ where } \phi=\Delta_{\beta}-\Delta_{\alpha}$$

equivalent

$$\equiv r_{\alpha}|0\rangle + r_{\beta}e^{i\phi}|1\rangle \qquad \longrightarrow \qquad \begin{array}{c} \text{Does not affect measurement probabilities.} \\ \text{Why?} \end{array}$$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = r_{\alpha} \left[\cos(\Delta_{\alpha}) + i\sin(\Delta_{\alpha})\right]|0\rangle + r_{\beta} \left[\cos(\Delta_{\beta}) + i\sin(\Delta_{\beta})\right]|1\rangle$$

$$= r_{\alpha} e^{i\Delta_{\alpha}} |0\rangle + r_{\beta} e^{i\Delta_{\beta}} |1\rangle \longrightarrow$$

3Blue1Brown Video for intuition: $e^{ix} = \cos(x) + i\sin(x)$

$$=e^{i\Delta_{\alpha}}\left[r_{\alpha}|0\rangle+r_{\beta}e^{i\phi}|1\rangle\right]$$
 where $\phi=\Delta_{\beta}-\Delta_{\alpha}$

equivalent

$$\equiv r_{\alpha}|0\rangle + r_{\beta}e^{i\phi}|1\rangle \longrightarrow$$

Does not affect measurement probabilities.

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = r_{\alpha} \left[\cos(\Delta_{\alpha}) + i\sin(\Delta_{\alpha})\right] |0\rangle + r_{\beta} \left[\cos(\Delta_{\beta}) + i\sin(\Delta_{\beta})\right] |1\rangle$$

$$= r_{\alpha}e^{i\Delta_{\alpha}}|0\rangle + r_{\beta}e^{i\Delta_{\beta}}|1\rangle \longrightarrow$$

3Blue1Brown Video for intuition: $e^{ix} = \cos(x) + i\sin(x)$

$$=e^{i\Delta_{\alpha}}\left[r_{\alpha}|0\rangle+r_{\beta}e^{i\phi}|1\rangle\right]$$
 where $\phi=\Delta_{\beta}-\Delta_{\alpha}$

equivalent

$$\equiv r_{\alpha}|0\rangle + r_{\beta}e^{i\phi}|1\rangle \longrightarrow$$

Does not affect measurement probabilities.

$$= \cos\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)e^{i\phi}|1\rangle$$

Derivation of Form: $\cos\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)e^{i\phi}|1\rangle$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = r_{\alpha} \left[\cos(\Delta_{\alpha}) + i\sin(\Delta_{\alpha})\right] |0\rangle + r_{\beta} \left[\cos(\Delta_{\beta}) + i\sin(\Delta_{\beta})\right] |1\rangle$$

$$= r_{\alpha} e^{i\Delta_{\alpha}} |0\rangle + r_{\beta} e^{i\Delta_{\beta}} |1\rangle \longrightarrow$$

3Blue1Brown Video for intuition: $e^{ix} = \cos(x) + i\sin(x)$

$$=e^{i\Delta_{\alpha}}\left[r_{\alpha}|0\rangle+r_{\beta}e^{i\phi}|1\rangle\right]$$
 where $\phi=\Delta_{\beta}-\Delta_{\alpha}$

equivalent

$$\equiv r_{\alpha}|0\rangle + r_{\beta}e^{i\phi}|1\rangle \longrightarrow$$

Does not affect measurement probabilities.

$$= \cos\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)e^{i\phi}|1\rangle \longrightarrow r_{\beta}$$

$$r_{eta}$$
 r_{lpha}
 r_{lpha}

Derivation of Form: $\cos\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)e^{i\phi}|1\rangle$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = r_{\alpha} \left[\cos(\Delta_{\alpha}) + i\sin(\Delta_{\alpha})\right]|0\rangle + r_{\beta} \left[\cos(\Delta_{\beta}) + i\sin(\Delta_{\beta})\right]|1\rangle$$

$$= r_{\alpha} e^{i\Delta_{\alpha}} |0\rangle + r_{\beta} e^{i\Delta_{\beta}} |1\rangle \longrightarrow$$

3Blue1Brown Video for intuition: $e^{ix} = \cos(x) + i\sin(x)$

$$=e^{i\Delta_{\alpha}}\left[r_{\alpha}|0\rangle+r_{\beta}e^{i\phi}|1\rangle\right]$$
 where $\phi=\Delta_{\beta}-\Delta_{\alpha}$

equivalent

$$\equiv r_{\alpha}|0\rangle + r_{\beta}e^{i\phi}|1\rangle \longrightarrow$$

Does not affect measurement probabilities.

$$= \cos\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)e^{i\phi}|1\rangle \longrightarrow$$

$$r_{eta} = 1$$
 $r_{lpha} = \cos\left(\frac{\theta}{2}\right)$ $r_{eta} = \sin\left(\frac{\theta}{2}\right)$ probability rule for qubits

How do we determine position of state:

$$|\psi\rangle = \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$$

How do we determine position of state:

$$|\psi\rangle = \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$$

How to find θ :

How do we determine position of state:

$$|\psi\rangle = \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$$

How to find θ :

How do we determine position of state:

$$|\psi\rangle = \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$$

How to find θ :

$$r_{\alpha} = \frac{1}{\sqrt{2}} \longrightarrow 2 \arccos\left(\frac{1}{\sqrt{2}}\right) = 2\left(\frac{\pi}{4}\right) = \frac{\pi}{2} = \theta$$

How do we determine position of state:

$$|\psi\rangle = \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$$

How to find θ :

$$r_{\alpha} = \frac{1}{\sqrt{2}} \longrightarrow 2 \arccos\left(\frac{1}{\sqrt{2}}\right) = 2\left(\frac{\pi}{4}\right) = \frac{\pi}{2} = \theta$$

How to find ϕ :

How do we determine position of state:

$$|\psi\rangle = \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$$

How to find θ :

Inverse of cos()

$$\theta = 2\arccos(r_{\alpha})$$

$$\theta = 2\arcsin(r_{\beta})$$

$$r_{\alpha} = \frac{1}{\sqrt{2}} \longrightarrow 2 \arccos\left(\frac{1}{\sqrt{2}}\right) = 2\left(\frac{\pi}{4}\right) = \frac{\pi}{2} = \theta$$

How to find ϕ :

How do we determine position of state:

$$|\psi\rangle = \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$$

How to find θ :

Inverse of cos()

$$\theta = 2\arccos(r_{\alpha})$$

$$\theta = 2\arcsin(r_{\beta})$$

$$r_{\alpha} = \frac{1}{\sqrt{2}} \longrightarrow 2 \arccos\left(\frac{1}{\sqrt{2}}\right) = 2\left(\frac{\pi}{4}\right) = \frac{\pi}{2} = \theta$$

How to find ϕ :

