Correction avec barème de l'EFS de thermodynamique du 16 juin 2021

	Correction	Barème				
I. Etude	de la combustion des déchets	Total 12				
l.1. (0,5 pt)	$C_{10}H_8O_{4(s)}+10O_{2(g)} \rightarrow 4H_2O_{(g)}+10CO_{2(g)}$	0,5				
1.2. (2pts)	$\begin{split} & \Delta_{comb} \overline{H}_{298}^{0} = 10 \Delta_{f} \overline{H}_{298}^{0} \left(CO_{2}\right) + 4 \Delta_{f} \overline{H}_{298}^{0} \left(H_{2}O\right) - 10 \Delta_{f} \overline{H}_{298}^{0} \left(O_{2}\right) - \Delta_{f} \overline{H}_{298}^{0} \left(PET\right) \\ & \Delta_{f} \overline{H}_{298}^{0} \left(PET\right) = 10 \Delta_{f} \overline{H}_{298}^{0} \left(CO_{2}\right) + 4 \Delta_{f} \overline{H}_{298}^{0} \left(H_{2}O\right) - 10 \Delta_{f} \overline{H}_{298}^{0} \left(O_{2}\right) - \Delta_{comb} \overline{H}_{298}^{0} \end{split}$					
	$\Delta_f H_{298}^0 \left(PET \right) = 10 \times -393, 5 + 4 \times -241, 8 - 10 \times 0 + 5580 = 677, 8 \text{ kJ.mol}^{-1}$ La réaction de formation du PET est : $10 C_{(gr)} + 2 O_{2(g)} + 4 H_{2(g)} \xrightarrow{298 \text{ K}; 1 \text{ bar}} C_{10} H_8 O_{4(s)}$	0,5 0,5				
1.3 (4,5pts)	$C_{10}H_8O_{4(liq)} + 10 O_2 \xrightarrow{combustion} 10 CO_2 + 4 H_2O$ $Changement T$ $723 \rightarrow 528; 1 bar$					
	$ \begin{array}{c c} C_{10}H_8O_{4[iq)} + 10 \ O_2 \\ \hline Solidification \\ 528 \ K \ ; \ 1 \ bar \\ \hline C_{10}H_8O_{4[sol]} + 10 \ O_2 \\ \hline Changement \ T \\ \hline \end{array} $	2 TOR				
	Changement / $528 \rightarrow 298$; 1 bar \downarrow $C_{10}H_8O_{4(sol)} + 10 O_2$ $\xrightarrow{combustion}$ 298 K ; 1 bar \downarrow Utilisation de la loi de Hess:					
	$\Delta_{comb} \overline{H}_{723}^{0} = 10 \overline{C}_{p} (O_{2}) (298-723) + \overline{C} (PET_{liq}) (528-723) - \Delta_{fus} H + \overline{C} (PET_{sol}) (298-528) + \Delta_{comb} \overline{H}_{723}^{0} + 10 \overline{C}_{p} (CO_{2}) (723-298) + 4 \overline{C}_{p} (H_{2}O) (723-298)$ $\Delta_{comb} \overline{H}_{723}^{0} = 10 \times 29, 1 \times (298-723) + 259, 2 \times (528-723) - 117, 6 \times (10 \times 12 + 8 + 4 \times 16) + 211, 2 \times (298-528) - 5,58.10^{6} + 10 \times 37, 1 \times (723-298) + 4 \times 33, 6 \times (723-298)$	1				
	$\Delta_{comb} \overline{H}_{723}^{0} = -5,61.10^{6} \text{ J.mol}^{-1}$	1 (AN)				
	Erreur: Erreur = $\frac{ 5,58-5,61 }{5,58} \times 100 = 0,54 \%$, soit une erreur < 1 %	0,5				
1.4 (4pts)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	1 bar; 298 K Combustion Etat intermédiaire : (n-10) mol d'O ₂ 4n mol de N ₂ 10 mol CO ₂ 4 mol de H ₂ O 298 K , 1 bar	2 (démarche)				
	Utilisation de H fonction d'état, car sous une pression constante, $\Delta H = Q_P$ Le bilan thermique s'écrit donc : $\Delta_{comb} \overline{H}_{298}^0 + \left\lceil (n-10)\overline{C}_p(O_2) + 4n\overline{C}_p(N_2) + 10\overline{C}_p(CO_2) + 4\overline{C}_p(H_2O) \right\rceil \times \left[1673 - 298\right] = 0$	1 (bilan)				
	$-5,58.10^{6} + \left[(n-10) \times 29,1 + 116,4n + 10 \times 37,1 + 4 \times 33,6 \right] \times \left[1673 - 298 \right] = 0$					
	$n = \frac{\overline{\left(1673 - 298\right)}^{-214,1}}{145,8} = 26,4$	0,5 (AN) 0,5				
	Le rapport molaire n(O ₂)/n(PET) est donc de 26,4					

II.A. Prod	luction d'élect	ricité en	utilisant l'é	energie (de haut	e qualité			Total 11.5
A.1 (0,5pt)			Compresseur	_	ngeur 1	3 Turbine	· :		0,5 (TOR)
A.2 (2,5pts)	Les transformation 1->2 et 3->4 sont des transformations adiabatiques réversibles, nous pouvons donc utiliser la loi de Laplace : $T^{\gamma}P^{1-\gamma}$ = constante T ₂ = 431 K T ₄ = 808 K								1 Justification 2*0,5 A.N
A.3	P (kPa) T (K)	95 290		30 31	380 1200	95 808	3		0,5 TOR
(5pts)	$\begin{array}{c c} Q_{1\rightarrow 2} & 0.J \\ \hline Q_{1\rightarrow 2} & 0.J \\ \hline \Delta S_{1\rightarrow 2} & 0.J \\ \hline \\ Avec \ \Delta U = r \\ \hline \\ \underline{Justification}$	$\begin{array}{c c} 033 \ J & W_{2\rightarrow3} = n \\ J & Q_{2\rightarrow3} = n \\ J/K & \Delta S_{2\rightarrow3} = n \\ DCV\Delta T \ poultry \ attender \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	2->3 on littérale $\frac{(\text{Cv-Cp}) (T_3 - T_2)}{\text{Cp} (T_3 - T_2)}$ $\frac{\text{Cp} \text{ In} (T_3/T_2)}{\text{r les \'etapes}}$ $\frac{\text{les}}{\text{SE}} = \text{SQ/T, adia}$	U=nCv∆	Expression littérale $W_{3\rightarrow4} = \Delta U$ $Q_{3\rightarrow4}$ $\Delta S_{3\rightarrow4}$ 3->4 et n $et \Delta H =$	-8154 J 0 J 0 J/κ 0 = 1mol nCpΔT, iso	Expression littérale $W_{4\rightarrow 1} = \text{n(Cv-Cp)} \ (T_1 - T_4)$ $Q_{4\rightarrow 1} = \text{nCp} \ (T_1 - T_4)$ $\Delta S_{4\rightarrow 1} = \text{nCp ln} (T_1/T_4)$ $\Delta S_{4\rightarrow 1} = \text{nCp ln} (T_1/T_4)$ $\Delta S_{4\rightarrow 1} = \text{nCp ln} (T_1/T_4)$	4299 J -15074 J -29,8 J/K abatique	0,5*6 expressions car étapes identiques 2 à 2 0 si justif manquantes 0,25*8 AN non nulles
A.4 (1,5pts)	P 1 2 3 4 4							0,5 TOR 0,5 TOR	
A.5 (2pts)	V S PV : sens horaire => W négatif, cycle moteur $CoP = -W_{tot}/Q_2$ Bilan d'énergie sur le cycle : $\Delta U = W_{tot} + Q_1 + Q_2 = 0$							0,5 0,5 0,5	
	⇒ Co ⇒ Q ₂	$_2 = \Delta H_{2-3} = 1$	Q_2) Q_2)/ Q_2 = 1 + $Cp(T_3 - T_2)$ $-T_4$)/ $(T_3 -$	et $Q_1 = A$	∆H ₄₋₁ = n	Cp(T ₁ – T ₄)			1

II.B. Chau	ffage urbain : évaporateur (utilisation de l'énergie de basse qualité)	Total 4
B.1	$\ln(1) + \frac{\Delta_{vap\overline{H}}}{R} \cdot \frac{1}{373} = \ln(2) + \frac{\Delta_{vap\overline{H}}}{R} \cdot \frac{1}{T} = T = 392 \text{ K}$	
(1 pts)	, , , , , , , , , , , , , , , , , , ,	1
B.2	$Q_{eau} = nC_{eau,l}\Delta T + n\Delta_{vap}H + nC_{eau,gaz}\Delta T$	1
(1,5 pts)	$= 75.3 \times (392-285) + 44.0 \times 10^3 + 33.6 \times (423 - 392)$	0,5
(1)0 (10)	= 53,1 kJ	0,5
B.3	Pour une minute :	
(1,5 pts)	- Chaleur transférée à l'eau = n _{gaz} x Q _{4->1} x 85%	0,5
(, , , ,	- Chaleur absorbée par l'eau = m _{eau} / M _{eau} x Q _{eau} = 295 MJ	0,5
	\Rightarrow n _{gaz} $\approx 23.10^3$ mol par minute	
	donc, le débit de gaz nécessaire est environ égale à 383 mol/s	0,5 A.N
II.C. Chau	ffage urbain : moteur à combustion externe et pompe à chaleur	Total
		12,5
C.1		0.5
(2 pts)	Gaz de Milieu extérieur	températures
	$ \begin{array}{c} \text{combustion} \\ T = 800 \text{ °C} \end{array} $	TOR
	Q_{comb} >0 $Q_{ext moteur}$ <0 $Q_{ext pac}$ >0	4.5
	comb dext moteur dext pac dext	1.5 pour
	Moteur à W _M <0 Pompe à	signes
	combustion externe $W_M>0$ chaleur	-0.5 par erreur, 0
	externe My 0	au-delà
		au-ueia
	Q _{locaux} <0	
	(Locaux T = 20 °C)	
	1	
C.2	Q _{comb1} =Q _{besoin} =100 kW	0.5
(0.5pt)		
3	Premier principe: W _M +Q _{comb} +Q _{ext moteur} =0 (car cycle)	0.5
(3.5pts)	Deuxième principe : $Q_{comb}/T_{comb}+Q_{ext}/T_{ext}=0$ ($\Delta s_{\sigma}=0$ car cycle $\Delta S_{univ}=0$ car hyp rev)	0.5
		0 si pas
		de justif
	CoPidéal = $-W_M/Q_{comb} = 1-T_{ext}/T_{fumée}$	1
	CoP _{Idéal} = 0,74	0.5
	$CoP_{r\acute{e}el} = \eta^* CoP_{Id\acute{e}al} = 0.26$ car irréversibilités	0.5+0.5
C.4	Premier et second principes énoncés cf ci-dessus	0.5
(1.5 pt)	$CoP_{PACId\acute{e}al} = -Q_{locaux}/W_{M} = T_{locaux}/(T_{locaux} - T_{ext})$	0.5 + 0.5
	L'A .N. non clairement demandée est notée à la question suivante	_
C.5	CoP _{global} = CoP _{réel} * CoP _{PACIdéal} = 7.55	1
(2 pts)	Q _{comb2} = Q _{besoin} /CoP _{global} = 13.2 kW	1
C.6	Ext	1,5
(3 pts)	$Q_{\text{ext pac}}$ <0 T=35 °C	(-0.5 par erreur, 0
	Moteur et sources $W_{M} > 0$	au delà)
	idem PAC précédemment	(Ne pas
		sanctionner
	Q _{locaux} >0	partie
	Locaux T=25°C	moteur à nouveau)
		nouveau,
	CoD O /W -T //T T \ - 20.9	1
	$CoP_{PAC clim idéal} = Q_{locaux}/W_{M} = T_{locaux}/(T_{ext} - T_{locaux}) = 29,8$	0,5
	CoP _{global2} = CoP _{idéal} * CoP _{PAC clim Idéal} = 21,9	