

Securitatea Informatica

Curs 5. E-Banking Security

Elena Simona Apostol

elena.apostol@upb.ro

E-Banking: Glossary of Terms

Introduction

✓ Electronic banking (e-Banking): service that lets the customer perform a collection of banking services through electronic means

- ✓ Popular Types of E-banking:
 - ✓ Internet Banking: It is the type of electronic banking service which enables customers to perform several financial and nonfinancial transactions via the internet
 - ✓ Mobile Banking: This electronic banking system enables customers to perform financial and non-financial transactions via mobile devices
 - ✓ ATM: Automated Teller Machines allows customers to withdraw funds, deposit money, change Debit Card PIN, and other banking services.

Special Features of Internet Banking & Engineering Department Parking Department Parking

- ✓ Provides access to financial as well as non-financial banking services
- ✓ Facility to check bank balance any time
- ✓ Make bill payments and fund transfer to other accounts.
- ✓ Keep a check on mortgages, loans, savings a/c linked to the bank account
- ✓ Safe and secure mode of banking
- ✓ Customers can apply for the issuance of a chequebook
- ✓ Buy general insurance
- ✓ Set-up or cancel automatic recurring payments and standing orders
- ✓ Keep a check on investments linked to the bank account

Electronic Funds Transfer (EFT)

✓ An electronic funds transfer (EFT) is a transaction that takes place over a computerized network

- ✓ EFTs include:
 - ✓ direct-debit transactions,
 - ✓ wire transfers,
 - ✓ ATM withdrawals and
 - ✓ online bill pay services
- ✓ EFTs also known as online or PIN-based transactions offer an alternative to signature debit transactions (Visa, MasterCard)

Electronic Funds Transfer (EFT)

Security in EFT

- ✓ protection of the integrity of electronic funds transfer (EFT) systems.
- ✓ protection of the EFT information

EFT vulnerabilities (compared with paper-based payment systems):

- ✓ EFT systems have many points of access where transactions can be affected in unauthorized ways
- ✓ Funds can be removed almost instantly without review of individual transactions by officials
- ✓ It is possible, in theory, for large banks of data to be destroyed by remote agents
- ✓ EFT crime is often difficult to detect because funds/data can be removed or manipulated by instructions hidden in complex computer software

E-Commerce: Exchanges

- ✓ The main types of markets:
 - ✓ Dealers (Over-the-counter)
 - ✓ Exchanges
 - ✓ Brokers
- ✓ Exchange: warehouse in which people buy and sell stocks
 - ✓ the exchange is the most automated
- ✓ Broker: buys and sells stocks through an exchange, charging a commission in this way
- ✓ Foreign exchanges (FX): traders buy and sell currencies.

E-Commerce: Portals

- ✓ Corporate treasurers regularly need to exchange currencies.
- ✓ Foreign exchange (FX) portals:
 - ✓ Internet-enabled trading systems (corporates/users log on to buy and sell currencies)
 - ✓ The systems are integrated with other banking systems or the corporates' own systems

- ✓ 2 types of portals:
 - ✓ Banks: provide FX portals on which corporates/users can trade on this platform through that bank
 - Multi-bank portals: a wider range of banks to choose for trading

E-Commerce: Single-bank portals

- ✓ They offer straight currency transactions
- ✓ A corporate/user makes payments in any currencies without having to maintain local currency accounts

- ✓ An automatic and more detailed audit trail with potential for integration into TMS and ERP systems
 - √ TMS Transportation Management System
 - ✓ ERP Enterprise Resource Planning (the integrated management of core business processes)

E-Commerce: Multi-bank portals

✓ The portals offer corporate users the ability to trade FX with many banks through one online platform

✓ Huge numbers of currencies and currency pairs are available

✓ Clear audit trail

✓ Corporates seeking pre-trade anonymity can see constant streams of data from banks

Next-Generation Banking

Current Context

- ✓ Consumers want simple, seamless, efficient and low-cost experiences
- ✓ AI, ML, big data is becoming increasingly important to Consumer Banking
- ✓ Tech companies are in dominant positions with respect to having (a) Data, (b) Customer Access, etc.
- ✓ BigTechs are making inroads into the FinTech world, e.g., Amazon/Apple, Google Pay, Uber Bank
- ✓ Traditional banks will have to eventually partner with Big Tech companies to leverage on technology and access to the end customer

- ✓ The <NEW> Open Payment Framework build as a SOA architecture.
 - the biggest shift ever from traditional bank/customer transactional relationships
 - ✓ 'Open Banking Security Profile' version 1 (14 July 2017)

Banking Security Architecture

- ✓ Traditionally banks have completely controlled the sensitive customer information entrusted to them
 - ✓ Access has been restricted to strictly approved internal roles and entities that use corporate security measures, such as firewalls

✓ Open banking:

- ✓ the banks' sensitive data perimeters → extend outside their premises
- ✓ banks must now make their customers' personal or business currentaccount information accessible to external entities:
 - √ account aggregators, challenger banks, start-ups, fintech
- ✓ banks may be exposed to new threats emanating from beyond their traditional areas of control

Potential Shape of Consumer Banking Ecosystem (1/2)

Potential Shape of Consumer Banking Ecosystem (2/2)

- ✓ Central Banks: the primary regulatory body with regulatory oversight over the banking ecosystem
- ✓ Warehouse Banks: will only hold "Liquidity" and "Price Risk
 (Credit/Loans)
- ✓ Platform Banks: large platforms/marketplaces that will be the primary gateway for a customer to the banking system
- ✓ Fintechs-App Banks: the typical apps that will be connected to all other
 types of banks using APIs, connectors and so on

Payments Security

Modern Payments Security

Bank Name

5678 9876 5432

VALID► 12/99

CARDHOLDER

✓ EMV (Europay, MasterCard, and Visa): standard for credit cards that uses computer chips to authenticate chip-card transactions

✓ Payment EMV cards

- ✓ Transaction phases:
 - ✓ Authorization,
 - ✓ Clearing,
 - ✓ Settlement,
 - ✓ Dispute resolution

AUTHORIZATION

TIME OF PURCHASE FOR DUAL AND SINGLE MESSAGE TRANSACTIONS

CLEARING

USUALLY WITHIN ONE DAY FOR DUAL MESSAGE TRANSACTIONS; TIME OF PURCHASE FOR SINGLE MESSAGE TRANSACTIONS

SETTLEMENT

USUALLY WITHIN TWO DAYS FOR DUAL MESSAGE TRANSACTIONS; TIME OF PURCHASE FOR SINGLE MESSAGE TRANSACTIONS

Secure Transaction

- **PIN**: personal identification number
- **PED**: pin entry device (e.g., **POS**: Point Of Sale, **ATM**: Automated Teller Machine)
- Acquirer: bank or payment institution which accept card payment
- **Issuer:** bank or payment institution which manage the cardholder account

• **PAN**: Primary account number

Secure Transaction

- A PED has:
 - TMK [terminal master key] injected into PED and hardly changed
 - TPK [terminal PIN key] which is derived from TMK
- Create PINBlock: PIN and the card PAN

- Encrypt the PINBlock:
 - Create session key: TPK [terminal PIN key]

Chip Authentication Program (CAP)

✓ It uses the deployed "Chip & PIN" smart card infrastructure

✓ CAP operates in 3 modes: identity, respond, sign

- ✓ CAP implementation is based on the EMV* smart card protocol:
 - Reader requests a list of all the data records stored by a card
 - PIN verification
 - 3. Cryptogram generation

Computer Science & Engineering Department

Chip Secrets – Attacks Methods

- ✓ Non-invasive attacks (no physical harm to the chip)
 - ✓ low-cost
 - ✓ time consuming and not always successful
 - ✓ Ex. side-channel attacks (such as Simple Power Analysis)
- ✓ Invasive attacks (extracting information and understanding chip functionality)
 - ✓ expensive (requires a very sophisticated equipment and knowledge);
 - ✓ less time consuming and straightforward for many devices
 - ✓ Ex. partial reverse engineering followed by microprobing
- ✓ Semi-invasive attacks (direct access to the chip's surface)
 - ✓ moderate cost (some equipment can be easily built).
 - ✓ higher success rate compared to non-invasive attacks
 - ✓ some are easily repeatable and relatively quick to set up
 - ✓ Ex. optical fault injection attack

Computer Science & Engineering Department

Chip Secrets – Attacks Methods

✓ Security improvement:

- ✓ Turn some ROM areas into reprogrammable Flash areas
 - ✓ Flash memory usually stores IP, sensitive data, passwords and encryption keys
 - ✓ Flash known vulnerabilities:
 - ✓ power glitching influence on data read from memory
 - ✓ laser scanning techniques reveal memory contents
- ✓ Reprogram low-level features

Biometrics

- ✓ Recently, the cards have been easily cloned and used without user's knowledge
- ✓ Fingerprints problems:
 - ✓ Authentication fails if the user has a band aid on his finger.
 - ✓ The fingerprint remains even the user is dead or unconscious

- ✓ Solution: authentication in two phases:
 - ✓ Iris recognition identity
 - ✓ Palm vein technology authentication

E-Commerce and Mobile Banking

E-Commerce Payment Systems

- ✓ Users can pay for online transactions using electronic payment
- ✓ A percentage of Internet users do not shop online because of a perceived risk of fraud
- ✓ Card verification number on credit cards transactions decreases the occurrence of frauds

Types of e-Commerce Payment Systems

- Credit Cards
 - ✓ Credit card number + date of expiry
 - ✓ Credit verification number (CVN) to increase security.
- ✓ Digital Wallets
 - ✓ Store personal information and payment
 - ✓ Are located on user's PC

- ✓ E-Cash
 - ✓ The money is exchanged electronically (PayPal)
- ✓ Mobile Payment
 - ✓ User sends payment request via text message

Mobile Payment (1)

- ✓ Mobile payments technology include:
 - ✓ NFC (Near Field Communications),
 - ✓ SE (Security Element), and
 - ✓ TSM (Trusted Service Manager)
- ✓ NFC does not offer native encryption → mobile payments need a SE
 (cryptographic module in the mobile device)
- ✓ Insecurity influences the adoption of mobile banking technology

Mobile Payment (2)

- ✓ Good points for mobile devices regarding security:
 - ✓ Are more protected against loss or theft
 - ✓ Users use them in a personal and confidential way.
- ✓ Risks for mobile devices:
 - ✓ Malware
 - ✓ Malicious applications
 - ✓ Payments infrastructure/ecosystem
 - ✓ SMS vulnerabilities

E-Commerce Payment Systems - Comparison -

Payment systems	Properties	Costs	Advantages	Disadvantages
Electronic cash e.g., <u>PayPal</u>	 31% of US population do not have credit cards micropayments (< \$10) Independent Portable Divisible 	 Internet cash transfer: no fixed cost of hardware No distance costs Small processing fee to banks 	- Efficient - Less costly	 Money laundering Forgery Low acceptance Multiple standards
Electronic wallets e.g., <u>Passport</u>	 Stores shipping & billing information Encrypted digital certificate 	Lengthy download for client-side wallets	Enter information into checkout forms automatically	Client-side wallets are not portable Privacy issue for server-side wallets
Smart cards e.g., <u>Blue</u>	Embedded microchip storing encrypted personal information	Time value of money	- Convenience	Need a card reader Card theft Low acceptance
Credit cards e.g., VeriSign	 Line of credit Purchase dispute protection Secure Electronic Transaction (SET) Protocol 	 Unpaid balance charge \$50 limit on frauds Processing fee 	Most popular Worldwide acceptance	- Costly

Protection for E-Commerce Bank and Credit Card Systems

- ✓ Existing cryptographic protection mechanisms: the PINs used at ATMs, the CVVs are largely ineffective online
- ✓ Solution: Secure Sockets Layer Protocols (SSL) used with most Web browsers

Risks: card transaction repudiation

Online-Banking Security

Authentication in Online Banking

Two-factor authentication using hardware devices (1)

- ✓ Due to low security of password verification → fraud problems for e-Banking and e-Commerce (single-factor authentication not enough)
- ✓ Comparison of hdw. auth. devices:

Method	Method of OTP Generation	Type of 2-Factor Solution
Push-Button	User presses button	Know
Token (A)	on the device and	(Password) + Possess
	a 6-digit access code is displayed	(Device)
Card-Activated	User inserts their	Know
Token (B)	Bankcard into the	(Password) + Possess
	card reader, presses	(Device) + Possess
	button and a 6-digit access code is displayed	(Bankcard)
Chip and PIN-	User inserts their	Know
Secured Token (C)	Bankcard into the card reader, enters card PIN and a 6-digit access code is displayed	(Password) + Possess (Device) + Possess (Bankcard) + Know (Card PIN)

& Engineering Department

Two-factor authentication using hardware devices (2)

Fig. 5 – Usability, preference, convenience, security ratings for the three devices.

Two-factor authentication that does not use chips (1)

- ✓ Hardware devices (OTP) or software solution?
- ✓ Token-based devices presents weaknesses:
 - ✓ Easy to lost
 - ✓ Difficult to use
 - ✓ Requires middleware downloads and support
- ✓ Solution: two-factor authentication using 100% software solution

Two-factor authentication that does not use chips (2)

- ✓ First factor: A familiar, simple username/password interface
 - ✓ It provides the strength and protection of PKI security
 - ✓ It integrates with existing PKI-based applications and infrastructure (Identity Management/Single Sign On platforms)
- ✓ Second factor: A unique, software-only identity token that sits transparently in a user's device (e.g., laptop)

Two-factor authentication that does not use chips (3)

- ✓ Identity token:
 - ✓ Software equivalent of hardware smart card
 - ✓ Provides a PIN-protected software container for the user's credentials: a digital certificate (X.590v3) and an encryption private key
- ✓ Digital certificate stored in container

✓ Private key - protected by a cryptographic camouflage

Two-factor authentication that does not use chips (4)

- ✓ Strong points of software-only identity systems:
 - ✓ Protection against attacks as: brute force attacks, man-in-the-middle (OTP cannot do), phishing and key logging
 - ✓ Secure client that fraud-proofs the login process:
 - ✓ No expensive hardware
 - ✓ Rapidly scales to million of users
 - ✓ Runs on a variety of mobile platforms
 - ✓ Boost bank customers or employees confidence regarding data protection (familiar interface for the logging process)

Authorization in Online Banking

Authorization methods in Online-Banking

✓ Code Card:

- ✓ Plastic card with a set of fixed authorization codes
- ✓ Good solution for private account holders

✓ Digipass GO3:

- ✓ Small device that generates unique one-time password for transaction authorization with one push on the button (valid for 1 min)
- ✓ Good choice for customers who are planning operations with high security level

✓ MobileSCAN

- ✓ Online banking on mobile using MobileSCAN PIN code
- ✓ No extra authorization tools needed

Authorization methods in Online-Banking

- ✓ One Time Password (OTP): used as an additional factor in multi-factor authentication/authorization (usually sent by SMS)
 - ✓ The OTP is checked by the server and the transaction proceeds if valid
- ✓ Transaction Authentication Number (TAN) list for online transactions:
 - ✓ Indexed TAN list,
 - ✓ Indexed TAN with Captcha,
 - ✓ Mobile TAN,
 - ✓ TAN Generators (small HHT that generates a TAN)

Encryption in E-Banking

Encryption (1)

- ✓ Types of cryptographic algorithms:
 - ✓ Secret Key Cryptography (SKC): same key for encryption and decryption
 - ✓ Public Key Cryptography (PKC): one key for encryption, another for decryption

 Transaction security and privacy during e-banking depends on the password and PIN code

Encryption (2)

✓ Security goals: privacy, authenticity and repudiation can be achieved via digital signatures (it uses a secret and a public key) using RSA

✓ For SMS based secure mobile (Mobile banking): symmetric cryptographic techniques (common secret key)

 Some ATMs: smart cards which enable the use of public key cryptography

Digital Signature Certificate

✓ Used to authenticate both the users and the banking systems itself

- ✓ Depends on the existence of a Public Key Infrastructure (PKI) and a Certificate Authority (CA) who signs the certificates attesting their viability
- ✓ Provides an additional level of security safety and security for online banking transactions

E-Banking Attacks

- rather lengthy and time-consuming
- the task of gathering as much information about the bank as possible

- an attacker collects the following information about the bank:
 - Information about network perimeter systems and software
 - Employees Partners and contractors, as well as their systems and employees
 - Business processes

- examples of preparatory actions:
 - Developing or adapting malicious software
 - Preparing phishing emails
 - Testing the infrastructure and malicious software
 - MitM attack:
 - intercepts all traffic between the client and the server
 - Hides browser notifications about false web sites certificates.

Information about services on

Stage 2. Penetrating the internal network

Phishing:

Phishing

- A spoofed message that tries to trick the user to give its confidential information
- ✓ The number of phishing attacks are increasing:
 - √ ~482 million attempts in 2018 (Kaspersky Lab) [1] 44 % of them in the banking financier system

Phishing

- ✓ How?
 - ✓ *Traditional*: email links and attachments
 - ✓ social media feeds, search engines, browser extensions, pop-ups, chat bots, mobile apps, scareware, social engineering, malvertising(the use of online advertising to spread malware)

✓ Countermeasures:

- ✓ E-mail and Web Page Personalization:
 - ✓ identifiable personal information could combat the risk of phishing attacks on bank users
- ✓ Web Page Personalization
 - ✓ the bank users request a text or image to be used along with their passwords and usernames.
 - ✓ The users have to pass through two web pages when visiting their bank's website:
 - ✓ I. requires the user to provide a username. If the user name is valid \rightarrow
 - ✓ II. personalized page for entering the password (personalized with the phrases or images that the user chose when he or she created the account)
- ✓ Protection Software
- ✓ Two-factor Authentication
- ✓ Customer Awareness

Stage 3. Developing the attack and gaining a foothold in the network

- Common vulnerabilities:
 - Use of outdated software versions and failure to install OS security updates
 - Configuration errors (including excessive user and software privileges, as well as setting local administrator passwords through group policies)
 - Use of dictionary passwords by privileged users
 - Absence of two-factor authentication for access to critical systems

Stage 3

Stage 4. Compromising banking systems and stealing funds

- The main methods of theft are:
 - Transferring funds to fictitious accounts through interbank payment systems
 - Transferring funds to cryptocurrency wallets
 - Controlling bank cards and accounts
 - Controlling ATM cash dispensing

Stage 5. Concealing traces

- To impede investigation of incidents,
- Although many attackers use RAM-resident malware, signs of their presence in the system still remain: entries in event logs, changes in the registry, and other hooks.
- Possible approach: erase boot records and hard disk partition tables on network hosts, disabling them entirely

Common Malware

✓ Spyware and Adware

- ✓ Spyware: type of software that secretively collects user information while on the Internet
- ✓ Adware: type of spyware used to tack user's habits and interests for customizing future advertising material

Common Malware

- ✓ Viruses: software that reproduce and attach itself to other programs
 - ✓ Countermeasures:
 - ✓ Anti-virus software
 - ✓ Not accepting attachments from emails of unknown sources

✓ Keyloggers: while accessing the Online Banking keylogger copies every keystroke typed on that PC

Common Malware

✓ Trojans: destructive program that poses as a harmless application

Example of banking Trojan attack

Q&A

