高等数学 B: 5-7 章复习题 (满分 75 分)

一、单选题(12分)

1. 反常积分
$$\int_0^{+\infty} \frac{1}{x^p} dx (p > 1)$$
 ()

A. 收敛 B. 发散 C. 既不收敛、也不发散 D. 无法判断.

2.
$$\lim_{n\to\infty} \ln \sqrt[n]{(1+\frac{1}{n})^2(1+\frac{2}{n})^2\cdots(1+\frac{n}{n})^2} = ($$
).

A.
$$\int_{1}^{2} \ln^{2} x dx$$

B.
$$2\int_{1}^{2} \ln x dx$$

C.
$$2\int_{1}^{2} \ln(1+x) dx$$

A.
$$\int_{1}^{2} \ln^{2} x dx$$
 B. $2 \int_{1}^{2} \ln x dx$ C. $2 \int_{1}^{2} \ln(1+x) dx$ D. $\int_{1}^{2} \ln^{2}(1+x) dx$

3. 微分方程
$$-y^2dx + (x + y^2)dy = 0$$
的类型属于 ()

C. 关于
$$y = y(x)$$
 的一阶线性微分方程 D. 关于 $x = x(y)$ 的一阶线性微分方程

D. 关于
$$x = x(y)$$
 的一阶线性微分方程

4.微分方程
$$y''' + 8y = xe^{-2x} + 3\cos 2x$$
 的一个特解形式 ()

(A)
$$(ax+b)e^{-2x} + (c\cos 2x + d\sin 2x)$$

(A)
$$(ax+b)e^{-2x} + (c\cos 2x + d\sin 2x)$$
; (B) $x(ax+b)e^{-2x} + (c\cos 2x + d\sin 2x)$;

(C)
$$(ax+b)e^{-2x} + c\cos 2x$$
;

(D)
$$x(ax+b)e^{-2x} + c\cos 2x$$
.

二、填空题(9分)

1.
$$\int_{-1}^{1} (x + \sin x) |x| dx = \underline{\qquad}$$

2. 连续曲线
$$y = \int_0^x \tan t \, dt (0 \le x \le \frac{\pi}{4})$$
 弧长度为 ______.

3. 若函数
$$f(x)$$
 满足方程 $f''(x) - f'(x) - 2f(x) = 0$ 及方程 $f''(x) + f(x) = 2e^x$,则 $f(x) = _______.$

三、计算题(32分)

1. 求极限
$$\lim_{x\to 0} \frac{\int_{\cos x}^{1} xe^{-t^{2}} dt}{\sin x^{2} \ln(1+x)}$$

- 2. 求定积分 $\int_0^5 e^{\sqrt{3x+1}} dx$.
- 3. 求下列微分方程 $yy'' + (y')^2 1 = 0$ 满足初值条件 y(0) = 1, $y'(0) = \sqrt{2}$ 的特解.
- 4. 求微分方程 $\frac{d^2y}{dx^2} + \frac{dy}{dx} 2y = 8\sin 2x$ 的通解.

四、应用题(16分)

- 1.求球 $\rho = \sqrt{2} \sin \theta$ 及双纽线 $\rho^2 = \cos 2\theta$ 所围图形公共部分的面积.
- 2. 求圆盘 $(x-1)^2 + y^2 \le 1$ 分别绕x轴,y轴旋转而成的旋转体的体积 V_x , V_y .

五、证明题 (6分)

设 f(x)在 [a,b] 上连续,在 (a,b) 上可导,且 $\int_a^b f(x) dx = f(b) - f(a)$,证明至少存在一点 $\xi \in (a,b)$ 使得 $f(\xi) = f'(\xi)$.