NHT-3072-Mecânica Quântica I - Noturno - 2018.3

Lista 1

- 1. Seja \mathcal{H} um espaço de Hilbert e $\|\psi\| \equiv \sqrt{\langle \psi | \psi \rangle}, |\psi\rangle e |\varphi\rangle \in \mathcal{H}$. Prove que:
 - (a) $\||\psi\rangle + |\varphi\rangle\| \le \|\psi\| + \|\varphi\|$;
 - (b) $|||\psi|| ||\varphi||| \le |||\psi\rangle + |\varphi\rangle||$.
- 2. Utilize o procedimento de Gram-Schmidt para ortonormalizar o conjunto de vetores abaixo:

$$|e_1\rangle = (1+i)\hat{x} + (1)\hat{y} + (i)\hat{z}$$

$$|e_2\rangle = (i)\hat{x} + (3)\hat{y} + (1)\hat{z}$$

$$|e_3\rangle = (0)\hat{x} + (4)\hat{y} + (1-i)\hat{z}$$

- 3. Considere o espaço de Hilbert $\mathcal{H} = \mathbb{C}^2$:
 - (a) Mostre que $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} i \\ 1 \end{pmatrix} \right\}$ forma uma base de \mathcal{H} .
 - (b) Escreva $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ e $\begin{pmatrix} 3i-1 \\ 2i+4 \end{pmatrix}$ como combinação linear dos elementos de \mathcal{B} .
 - (c) Considerando o produto interno usual, i.e., se $|\psi\rangle=\left(\begin{array}{c}c_1\\c_2\end{array}\right)$ e $|\varphi\rangle=\left(\begin{array}{c}d_1\\d_2\end{array}\right)$ então $\langle \varphi | \psi \rangle \equiv \overline{d}_1 c_1 + \overline{d}_2 c_2$, normalize os elementos de \mathcal{B} e verifique se o conjunto resultante é ortonormal.
 - (d) Ortonormalize os elementos de \mathcal{B} para construir uma base ortonormal \mathcal{B}' .
- 4. Seja \mathcal{H} um espaço de Hilbert de dimensão N e considere $\mathcal{B}(\mathcal{H})$ como sendo o espaço dos operadores lineares em \mathcal{H} . Mostre que $\langle A|B\rangle \equiv \operatorname{tr}(A^{\dagger}B)$, para operadores $A, B \in \mathcal{B}(\mathcal{H})$, é um produto interno e, assim, $\mathcal{B}(\mathcal{H})$ é um espaço de Hilbert.
- 5. Considere $\mathcal{H} = \mathbb{C}^2$ e mostre que:

(a)
$$\{I/\sqrt{2}, \sigma_x/\sqrt{2}, \sigma_y/\sqrt{2}, \sigma_z/\sqrt{2}\}\$$
 é uma base ortonormal de $\mathcal{B}(\mathcal{H})$.
Lembre-se que $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ e $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

- (b) Calcule os auto-valores e os auto-vetores (normalizados) das matrizes de Pauli σ_i , j=x, y, z.
- 6. Se A, B são operadores em um espaço de Hilbert \mathcal{H} , mostre que são verdadeiras as seguintes relações:
 - (a) tr(AB) = tr(BA);
 - (b) $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$;
 - (c) $(A^{\dagger})^{\dagger} = A$;
 - (d) $(AB)_{mn} = \sum_{k} A_{mk} B_{kn}$, onde $\mathcal{O}_{mn} \equiv \langle m|\mathcal{O}|n\rangle$ são os elementos de matriz de um operador \mathcal{O} na base ortonormal $\{|n\rangle\}$;

- 7. Considere os operadores A,B,C que atuam em um espaço de Hilbert $\mathcal H$ de dimensão $\mathcal N.$ Mostre que:
 - (a) traço do produto dos operadores é invariante sob permutações ciclicas, ou seja: Tr(ABC) = Tr(BCA) = Tr(CAB)
 - (b)[AB, C] = A[B, C] + [A, C]B.
- 8. Considere $\mathcal{H} = \mathbb{C}^2$ e mostre que:
 - (a) $[\sigma_{\alpha}, \sigma_{\beta}] = 2i \sum_{\gamma} \epsilon_{\alpha\beta\gamma} \sigma_{\gamma}$, $\alpha, \beta, \gamma = x, y, z$ e $\epsilon_{\alpha\beta\gamma}$ é o simbolo de Levi-Cevita.
 - (b) $\{\sigma_{\alpha}, \sigma_{\beta}\} \equiv \sigma_{\alpha}\sigma_{\beta} + \sigma_{\beta}\sigma_{\alpha} = 2\delta_{\alpha\beta}I$.
- 9. Considere um espaço de Hilbert \mathcal{H} de dimensão 3 e um operador A que, em uma base ortonormal $\{|1\rangle, |2\rangle, |3\rangle\}$, possui elementos de matriz

$$A = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{array}\right).$$

- (a) Determine os autovalores de A.
- (b) Construa uma base ortonormal de auto-vetores desse operador.
- 10. Considere as matrizes A e B que pertencem ao espaço de Hilbert de 2 dimensões:

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}; B = \frac{1}{2} \begin{pmatrix} 1+i & 1-i \\ 1-i & 1+1 \end{pmatrix}.$$

- (a) Verifique diretamente que elas são unitárias.
- (b) Verifique que o determinante é da forma $exp(i\theta)$ em cada caso. Alguma destas matrizes é hermitiana?
- 11. Considere $P: \mathcal{H} \to \mathcal{H}$ um operador projeção no espaço de Hilbert \mathcal{H} .
 - (a) Mostre que os auto-valores de P são 0 e 1.
 - (b) Mostre que para qualquer vetor normalizado $|\psi\rangle$, o operador $|\psi\rangle\langle\psi|$ é um operador projeção. Em qual sub-espaço ele projeta?
- 12. (a) Seja $A(t), t \in \mathbb{R}$, uma família de operadores que satisfaz a equação

$$\frac{dA}{dt} = BA(t).$$

Mostre que a solução para tal equação é $A(t) = e^{tB}A(0)$.

13. (a) Se $f(t) \equiv e^{tA}Be^{-tA}$, mostre que f'(t) = [A, f(t)], f''(t) = [A, [A, f(t)]], etc. e use isso para mostrar que

$$e^{tA}Be^{-tA} = B + \frac{t}{1!}[A, B] + \frac{t^2}{2!}[A, [A, B]] + \dots$$

(b) Mostre que se os operadores A,B,C satisfazem [A,B]=iC e [B,C]=iA então

$$e^{itB}Ae^{-itB} = A\cos t + Csent.$$

- 14. (EUF-2012.1) As matrizes de Pauli, $\sigma_x, \sigma_y, \sigma_z$, são extremamente importantes quando se considera uma partícula de spin 1/2.
 - (a) Utilize explicitamente a representação matricial dos operadores de Pauli e encontre seus autovalores e autovetores, bem como o comutador $[\sigma_y, \sigma_x]$.
 - (b)Considere um estado arbitrário para uma partícula de spin 1/2 dado por $|\psi\rangle = a|+\rangle + b|-\rangle$, com $|a|^2 + |b|^2 = 1$, sendo $|+\rangle, |-\rangle$ autovetores de σ_z . Mostre como este estado é transformado sob a ação de cada um dos operadores σ_x, σ_y e σ_z , independentemente.
 - (c) Mostre como o operador $exp(i\alpha\sigma_x)$ atua sobre o estado $|\psi\rangle$.
 - (d) Quais imposições devem ser condideradas sobre α para que o operador do item (c) seja hermitiano? e para que seja unitário?