CS189 Summer 2018

Convolutional Neural Networks

Josh Tobin

Agenda

- 1. Overview of convolutions
- 2. Other ConvNet operations
- 3. Basic ConvNet architectures

Why convolutions?

32x32x3 image -> stretch to 3072 x 1

Fully connected vs Conv

Fully connected vs Conv

The convolution operation

3	3	22	1	0
0_2	0_2	1_{0}	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17. 0
10.0	17. 0	19.0
9.0	6.0	14.0

What can a conv filter do?

Instead of hard-coding the weights, we can learn them!

 Convolutions can subsample the image by jumping across some locations — this is called 'stride'

Conv2D

Filter = (3, 3)

Stride = (1, 1)

Conv2D

Filter = (3, 3)

Stride = (1, 1)

Conv2D

Filter = (3, 3)

Stride = (2, 2)

Conv2D

Filter = (3, 3)

Stride = (2, 2)

Conv2D

Filter = (3, 3)

Stride = (3, 3)

Padding

- Padding solves the problem of filters running out of image
- Done by adding extra rows/cols to the input (usually set to 0)
- 'SAME' padding is illustrated here for filter=(3,3) with stride=(2,2)
- Not padding is called 'VALID' padding

- Input: WxHxD volume
- Parameters:
 - K is the number of filters, each one of size (F_w, F_h)...
 - ...moving at stride (S_w, S_h)
 - ...with the input padded symmetrically with P all-zero rows/cols
- Output: W'xH'xK volume
 - $W' = (W F_w + 2P) / S_w + 1$
 - $H' = (H F_h + 2P) / S_h + 1$
- Each filter has (F_w * F_h * D) parameters, for K * (F_w * F_h * D) total in the layer

- Input: WxHxD volume
- Parameters:
 - K is the number of filters...
 - ...each one of size (F_w, F_h)
 - ...moving at stride (S_w, S_h)
 - ...with the input padded symmetrically with P all-zero rows/cols
- Output: W'xH'xK volume
 - $W' = (W F_w + 2P) / S_w + 1$
 - $H' = (H F_h + 2P) / S_h + 1$
- Each filter has (F_w * F_h * D) parameters, for K * (F_w * F_h * D) total in the layer

Commonly set to powers of 2 (e.g. 32, 64, 128)

- Input: WxHxD volume
- Parameters:
 - K is the number of filters...
 - ...each one of size (F_w, F_h)
 - ...moving at stride (S_w, S_h)

• Commonly (5, 5), (3, 3), (2, 2), (1, 1)

- ...with the input padded symmetrically with P all-zero rows/cols
- Output: W'xH'xK volume
 - $W' = (W F_w + 2P) / S_w + 1$
 - $H' = (H F_h + 2P) / S_h + 1$
- Each filter has (F_w * F_h * D) parameters, for K * (F_w * F_h * D) total in the layer

- Input: WxHxD volume
- Parameters:
 - K is the number of filters...
 - ...each one of size (F_w, F_h)
 - ...moving at stride (S_w, S_h)
 - ...with the input padded symmetrically with P all-zero rows/cols
- Output: W'xH'xK volume
 - $W' = (W F_w + 2P) / S_w + 1$
 - $H' = (H F_h + 2P) / S_h + 1$
- Each filter has (F_w * F_h * D) parameters, for K * (F_w * F_h * D) total in the layer

'SAME' sets it automatically

A guide to convolution arithmetic for deep learning

Vincent Dumoulin¹★ and Francesco Visin²★[†]

 Lots of cool visualizations and comforting equations

Figure 2.6: (Arbitrary padding and strides) Convolving a 3×3 kernel over a 5×5 input padded with a 1×1 border of zeros using 2×2 strides (i.e., i = 5, k = 3, s = 2 and p = 1).

Figure 2.7: (Arbitrary padding and strides) Convolving a 3×3 kernel over a 6×6 input padded with a 1×1 border of zeros using 2×2 strides (i.e., i = 6, k = 3, s = 2 and p = 1). In this case, the bottom row and right column of the zero padded input are not covered by the kernel.

Conv2D output is another "image"

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps

We stack these up to get a "new image" of size 28x28x6!

Build a network by repeating the conv operation, with activation function in between

Receptive field: 3x3

Conv2D
Filter =
$$(3, 3)$$

Stride = $(1, 1)$

Conv2D Filter = (3, 3)Stride = (1, 1) Conv2D Filter = (3, 3)Stride = (1, 1)

Original receptive field: 5x5

Conv2D Filter = (3, 3)Stride = (1, 1)

Conv2D Filter = (3, 3)Stride = (1, 1)

- Stacking convolutions one after the other increases the original receptive field: two (3, 3) convs get to a (5, 5) receptive field
 - (and tend to perform better than a single (5, 5) conv)

Pooling

max pool with 2x2 filters and stride 2
-

6	8
3	4

- Pooling subsamples the image by taking average or max value of a pooling region
- 2x2 max pooling is illustrated, and probably most common
- Very important in early convnet applications, but has recently fallen out of favor (strided convolutions can subsample, and tend to work better in GAN applications).

Agenda

- 1. Basics of convolutions, and filter/stride/pooling math
- 2. More advanced convolution types, and computational considerations
- 3. Classic convnet architectures

Dilated Convolution

- Dilated convolutions can "see" a greater portion of the image by skipping pixels
- The (3, 3) 1-dilated convolution illustrated here has a (5, 5) receptive field
- Stacking dilated convolutions up quickly gets to large receptive fields

1x1 Convolution

- A way to reduce the "depth" dimension of convolutional outputs
- Corresponds to applying an MLP to every pixel in the convolutional output
- Crucial to popular convnet architectures like Inception (GoogleNet)

Conv2D. Input = (5, 5, 3)Filters = 32 of size (3, 3), Stride = (1, 1)

Conv2D. Input = (5, 5, 3)Filters = 32 of size (3, 3), Stride = (1, 1)

Conv2D. Input = (5, 5, 3)Filters = 32 of size (3, 3), Stride = (1, 1) X_col (27 x 9)

Conv2D. Input = (5, 5, 3)

Filters = 32 of size (3, 3), Stride = (1, 1)

W_row (32 x 27)

X_col (27 x 9)

Conv2D. Input = (5, 5, 3)

Filters = 32 of size (3, 3), Stride = (1, 1)

Agenda

- 1. Basics of convolutions, and filter/stride/pooling math
- 2. More advanced convolution types, and computational considerations
- 3. Classic ConvNet architectures

Classic Convnet Architecture: LeNet

More modern LeNet-like architectures

- N = up to 5
- M large
- 0 <= K <= 2
- ReLU instead of Tanh

Where to go to learn more?

Stanford's CS231n