工程化学补天

by zjuatri

高等教育出版社 陈林根主编的工程化学期末复习 适合有高中化学选考基础的同学。

绪论

研究层次

- 分子数量级 10⁻⁹m
- 胶体 $10^{-9} \sim 10^{-7} m$
- 粗分散系统 $> 10^{-7} m$

热力学系统

1. 开放系统: 有物质和能量交换

2. 封闭系统: 只有能量交换

3. 孤立系统: 无物质和能量交换

相

系统中任何化学组成均匀,物理和化学性质都相同的,且可用机械方法分离出来的部分。相与相 之间存在明显的界面。

物质的量

使用物质的量单位mol时,要指明物质的基本单元。

例如:

$$c(KMnO_4) = 0.10 mol \cdot L^{-1} \ c(rac{1}{5}KMnO_4) = 0.10 mol \cdot L^{-1}$$

两种1L溶液中所含 $KMnO_4$ 的物质的量n是不同的,前者为0.10mol,后者为0.02mol

反应进度

$$\xi=rac{n_2-n_1}{
u}$$

 n_2 反应某时刻物质的量 n_1 反应前物质的量 ν 方程式中物质的化学计量数,反应物为负,生成物为正

原子结构

*原子光谱

原子光谱均为不连续光谱,不连续光谱也叫线状或杆状光谱。连续光谱可以简单理解为白光。

电磁波能量

$$\lambda = \frac{c}{\nu}, \Delta \epsilon = h\nu$$

 $\Delta \epsilon$: 吸收或释放的能量

h: 普朗克常量

ν: 吸收或释放的电磁波频率

λ: 波长

Bohr模型

• 氢原子中的电子可处于多种稳定的能量状态(称**定态**,其能量不随时间改变),其定态能量为:

$$E_n = -2.179 imes 10^{-18} J/n^2$$

- n=1是氢原子能量最低的状态(称基态,其余为激发态,每个原子只有一个基态,多个激发态)
- n值越大,表示电子离核越远,能量越**高**。当 $n=\infty$ 时,电子不再受核的吸引,即电离。
- 局限性: 并未跳出经典力学范畴, 电子在固定轨道上绕核运动的模型不符合微观粒子的运动的波粒二象性。

波粒二象性

- 1. 量子化:原子光谱都是不连续光谱,其能量是不连续的,具有微小而分立的能量单位 $h\nu$,称量子。
- 2. 统计性: 电子在核外某处出现的概率大小**不随时间而变化**, 电子云就是形象地用来描述电子在核外空间出现的概率的一种图示方法。**离核越近,概率密度越大; 反之,离核越远,概率密度越小。** 综上所述,微观粒子运动的主要特征是具有波粒二象性,具体体现在**量子化和统计性**上。

薛定谔方程量子数

主量子数n

能层	主量子数
K	1
L	2
М	3
N	4

角量子数1和磁量子数m

亚层	角量子数	磁量子数	轨道形状
S	0	0	球形
р	1	$0,\pm 1$	哑铃形
d	2	$0,\pm 1,\pm 2$	四个花瓣形,一个大卡车轮胎形
	l	$0,\pm 1,,\pm l$	

自旋磁量子数 m_s

只能取 $\pm \frac{1}{2}$, 代表自旋的两种状态。

电子排布原则

能量最低原理

电子在原子轨道上的排布,必须使整个原子的能量最低。

- 1. 主量子数n: 角量子数相同时,n越大,原子轨道的能量越高: 1s < 2s < 3s < 4s
- 2. 角量子数l: n相同时, l越大, 原子轨道的能量越高, 即: nf > nd > np > ns
- 3. 当相同能量的简并轨道为全充满或半充满的状态时,能量较低。(Cr和Cu)

泡利不相容原理

同一个原子轨道最多只能容纳两个电子, 且自旋相反。

洪特规则

当电子在等价轨道(能量相同轨道)上分布时,将尽可能分占等价轨道,且自旋相同。

外层电子排布式

电子排布=组态

元素	外层电子排布式	离子	外层电子排布式
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$3d^24s^2$	Ti^{4+}	$3s^23p^6$
$_{24}Cr$	$3d^54s^1$	Cr^{3+}	$3s^23p^63d^3$
$_{28}Ni$	$3d^84s^2$	Ni^{2+}	$3s^23p^63d^8$
$_{29}Cu$	$3d^{10}4s^{1}$	Cu^{2+}	$3s^23p^63d^9$

未成对电子数

在原子或它的结合态中,如果有未成对电子,那么它不仅有较高的化学活性,还一定有磁性。

2.4.3 价电子构型与元素分区

元素周期律

原子半径

- 共价半径:同种元素的两个原子以共价单键连接时核间距离的一半。
- 金属半径: 把金属晶体看作由球状的金属原子紧密堆积而成的, 即认为相邻两个原子彼此 互相接触, 它们核间距离的一半即为金属半径
- 范德华半径/接触半径: 两个原子之间没有形成化学键而只靠分子间作用力互相聚集在一起时, 两原子之间距离的一半。
 - 一般来说, 范德华半径>金属半径>共价半径

电离能和电子亲和能

常用电离能和电子亲和能来衡量元素金属性和非金属性的强弱。 在同一周期内,主族元素从左到右,第一电离能逐步增大,表明金属性逐渐减弱; 副族元素第一电离能变化缓慢,规律性不明显,因此副族元素金属性变换性不大。 电子亲和能一般为负值,稀有气体等少数元素第一电子亲和能为正值。 第一电子亲和能记作 A_1 ,那么 $-A_1$ 值越大,非金属性越强。

电负性

元素的原子在分子中吸引电子能力的相对大小,即对公用电子对的吸引力的相对大小。

- 电离能和电子亲和能用来讨论离子型化合物形成过程中的能量变化
- 电负性概念则用于讨论共价型化合物的性质,例如对共价键极性的讨论

氧化值

同周期主族元素从左到右最高氧化值逐渐升高,并等于元素的最外层电子数,即族序数。 d区副族元素最高氧化值一般也等于族序数。

副族元素和p区元素一样,其主要特征是大多有可变氧化值。

屏蔽效应

$$Z' = Z - \sigma$$

• Z': 有效核电荷

• Z: 核电荷

σ: 屏蔽常数

屏蔽常数由以下几个部分组成:

- 轨道分组: (1s),(2s2p),(3s3p),(3d),(4s4p),(4d),(4f),(5s5p)...位于被屏蔽电子右边各组对屏蔽电子的屏蔽常数σ=0,即近似看作对该电子无屏蔽作用;
- 2. 按上面分组,同组电子间σ=0.35(1s组σ=0.3);
- 3. 对(ns)(np)组的电子,(n-1)层的电子对其的屏蔽常数 σ =0.85,(n-2)电子层及更内层对其的 屏蔽常数 σ =1.00;
- 4. 对nd或nf组的电子,左边各组电子对其的屏蔽常数 σ =1.00;如计算Fe核作用在最外层电子的有效核电荷

$$Z' = 26 - (10 \times 1.00 - 14 \times 0.85 - 1 \times 0.35) = 3.75$$

化学键和晶体

晶体

固体中的原子及其结合态单元在空间中的排布,如果长程短程均有序便称为晶体,长程无序,短程有序称为非晶体。

晶格或点阵

结点按一定规则排列所组成的几何图形

晶胞

晶体三维点阵中存在一个能够完全代表晶格特征的最小单元

单晶体和多晶体

单晶体即一个空间点阵图形贯穿整个晶体的晶体,如金刚石、单晶硅、锗、氯化钠等

离子键

判断:一般认为相邻两原子电负性之差大于1.7的为离子键 本质:正负离子间的静电引力

性质:

- 1. 一般来说离子间作用力随离子电荷增加而增大,随离子半径的增大而减小。其中电荷数起 主要作用,在电荷数相同的条件下参考半径大小。
- 2. 离子键的强度越大,相应晶体的熔点、沸点越高,机械强度也越大。
- 3. 离子键没有方向性和饱和性。
- 4. 对于同一元素的卤化物、氧化物来说,高价态的倾向于形成共价键为主的分子晶体,熔沸点较低;低价态的倾向于存在离子键为主的离子晶体,熔沸点较高。正离子价态越高,吸引负离子的电子云的能力越强;负离子半径越大,其电子云越容易被正离子吸引。结果减弱了正负离子间作用力。因此有熔点 $FeCl_2 > FeCl_3$, $CuCl > CuCl_2$

离子极化作用

- 1. 正离子的极化能力: 极化能力随电荷数增大和半径的减小而增大
- 2. 负离子的变形性: 变形性随电荷数和半径的增大而增大
- 3. 附加极化作用: Ag+等18、18+2电子构型离子,不但有较强的极化能力,且本身受负离子的极化也有较大的变形性,由此产生额外极化作用。
- 4. 示例:

 $NaCl, MgCl_2, AlCl_3, SiCl_4, PCl_5$

从左到右,阳离子电荷量增大、半径减小,阳离子极化能力增大;阴离子均为 Cl^- ,变形性不变,氯化物的极化作用增大,共价成分增大,熔、沸点减小。

NaF, NaCl, NaBr, NaI

从左到右,阴离子半径增大,阴离子变形性增大;阳离子均为 Na^+ ,极化能力不变,卤化 钠的极化作用增大,共价成分增大,熔、沸点减小。

应用

红外光谱仪棱镜: 氯化钠、溴化钾

耐火材料:氧化镁建筑材料:碳酸钙

盐浴剂:氯化钠,氯化钾,氯化钡(这些氯化物的熔融态常被用作高温时的加热介质,它们稳定

性好不易受热分解。)

共价键

定义: 共用电子对形成的化学键。

电子配对理论

如果原子在未化合之前含有未成对电子且自旋方向相反,则可以两两偶合成电子对,每一对电子的偶合形成一个共价键。

- 1. 共价键结合力大小决定于原子轨道重叠程度。重叠程度越大共价键越强。
- 2. 饱和性: 共价键数目受到未成对电子数的限制
- 3. 方向性: 相邻原子总是沿着一定方向成键以便满足最大重叠。

杂化轨道理论

如果组合后的一组轨道能量相等,空间分布对称,则称为等性杂化。配位键中,中心原子以空轨道接受配体提供的孤对电子,也是等性杂化。 其他略。

分子轨道理论

图3-21 0,分子的分子轨道示意图和电子排布情况

金属键和金属晶体

金属键没有方向性和饱和性。

固体能带理论

众多原子的原子轨道叠加形成结合态轨道时,将形成众多的成键轨道和反键轨道及电子不能出现的禁区。这些轨道和禁区的能级间距都极小,故而几乎是连续的能带。

价带:价电子(成键的、外层的)所在的满带满带:被电子填满的能带

导带:自由电子的能量范围,由许多连续能级组成。导电主力军。

禁带:不能出现电子的能量区域

原子轨道重叠的程度越大,所形成的能带就越宽,甚至造成能带间发生重叠。

金属钠中,充满电子的那部分3s能带被称为价带,只要轻微的扰动价带中的电子就能进入空着的 那部分3s能带(导带)

金属镁中3s和3p能带发生重叠,充满电子的3s能带(价带)中的电子可以自由地向3p能带(导带)上迁移。

因此金属钠、镁都是电的良导体。

总之,金属的一些物理性质均能用能带理论给予较好解释。

- 1. 由于电子的热运动,使得价带中极少数能量极高的电子能越过禁带进入导带中,从而表现 出有限的导电能力,这种半导体就叫**本征半导体**
- 2. n型半导体: 掺入富电子杂质如磷、砷,在禁带范围内形成局部能级(其中含有电子),离导带底部很近,其中的电子可以很容易地激发至导带中,这种能级叫**施主能级**。
- 3. p型半导体: 掺入缺电子杂质如硼、铟等, 在禁带范围内形成能级(其中没有电子), 离价带顶部很近, 价带的电子很容易迁入, 这种能级叫**受主能级**。

金属材料

金属固溶体

在液态时是均匀的液相,凝固也保持均匀性。 当溶质元素与溶剂元素在原子半径、电负性以及晶格类型等方面都相近时易形成**置换固溶体**。

当溶质原子半径较小时,则容易形成**间隙固溶体。**

(a) 纯 全 属 的 晶 格 (b) 取 代 固 溶 体 的 晶 格 (c) 问 隙 固 溶 体 的 晶 格 当溶剂元素溶入溶质元素后,能使原来的晶格发生畸变,它们将阻碍外力对材料引起的形变,因而使固溶体的强度提高,同时其延展性和导电性将会下降。固溶体的这种现象称为固溶强化。

金属间化合物

硼化物、碳化物和氮化物具有某些独特的性能,如高强度、高熔点、高稳定性等。

一般来说d电子数越少,则金属元素与硼、碳、氮结合强度就越大,稳定性、硬度、熔点也越大。 应用:红硬性,掺入碳后高温下仍能保持硬度。

分子间作用力

氢键

氢键具有方向性和饱和性。

分子间氢键

相当于形成大分子,使分子间结合力增强,使化合物的熔点、沸点、熔化热、汽化热、粘度等增大,蒸汽压则减小。例如HF的熔、沸点比HCl高, H_2O 的熔、沸点比 H_2S 高,分子间氢键还是分子缔合的主要原因。

分子内氢键

使分子内部结合更紧密,分子变形性下降,分子间作用力下降,一般使化合物的熔点、沸点、熔化热、汽化热、升华热等减小。

溶液中的氢键

- 溶质与溶剂形成H键:溶解度上升
- 溶质形成分子间氢键: 形成大分子, 极性溶剂中溶解度下降, 非极性溶剂中溶解度上升
- 溶质形成分子内氢键:分子紧缩变小,极性下降,因此极性溶剂中溶解度下降,非极性溶剂中溶解度上升
- 液体分子形成氢键:分子缔合,密度变大。

范德华力

色散力

分子间普遍存在的作用力,大部分分子中分子间作用力以色散力为主。 色散力随相对分子质量增大而增大。

诱导力

极性分子和非极性分子之间、极性分子和极性分子之间存在诱导力。

取向力

极性分子之间的力。

配合物

中心离子用能量相近的空轨道杂化,以杂化的空轨道与配体形成配位键。配位离子的空间结构、配位数、稳定性等,主要决定于杂化轨道的数目和杂化类型。

*整个内界部分若带有电荷则称为配离子。

酸碱电子理论

Lewis酸: 电子对接受体Lewis碱: 电子对给予体

单齿配体

中性分子配体	H ₂ O	NH ₃	CO	CH ₃ NH ₂
	水	氨	羰基	甲胺
配位原子	O	N	C	N

阴离子	F ⁻	Cl ⁻	Br ⁻	I ⁻	OH ⁻	CN-	NO ₂ -
配体	氟	氯	溴	碘	羟基	氰	硝基
配位原子	F	Cl	Br	I	0	C	N

阴离子 配体	ONO ⁻	SCN-	NCS-
	亚硝酸根	硫氰酸根	异硫氰酸根
配位原子	0	S	N

多齿配体

分子式	名称	缩写符号
.°c-c'.	草酸根	(OX)
$H_2C \longrightarrow CH_2$ \downarrow	乙二胺	(en)
	邻菲罗啉	(o-phen)
	联吡啶	(bpy)
HÖOCCH ₂ CH ₂ COÖH :NCH ₂ CH ₂ N: HÖOCCH ₂ CH ₂ COÖH	乙二胺四乙酸	(H ₄ edta) (Y ⁴⁻)

HOOCH₂C
$$\stackrel{\text{H}}{\searrow}$$
 CH₂-CH₂ $\stackrel{\text{CH}_2}{\searrow}$ CH₂COOH CH₂COOH

2个氨氮配位原子 4个羧氧配位原子

螯合物

多齿配体(螯合剂)与中心原子形成具有环状结构的配合物称为螯合物。螯合比:螯合物中,中心原子与螯合剂数目之比。

螯合效应

由于螯合效应,螯合物的稳定性很强。 无环的 $[Ni(NH_3)_6]^{2+}$ 稳定性小于 $[Ni(en)_3]^{2+}$;

多齿配体的条件

多基配体中两个或两个以上能给出孤电子对的原子应**间隔两个或三个其它原子**。因为这样才有可能形成稳定的五原子环或六原子环。

例如联氨分子H2N—NH2,虽然有两个配位氮原子,但中间没有间隔其他原子,它与金属离子配位后只能形成—个三原子环,**环的张力很大故不能形成螯合物。**

配位数

 $[Co(NH_{3})_{3}Cl_{3}]^{2+}$

 Co^{3+} 配位数为6

中心离子电荷	+1	+2	+3	+4
常见配位数	2	4 (或6)	6 (或4)	6 (或8)

配位化合物的命名

- 1. 先命名阴离子,后命名阳离子。如果是简单阴离子,命名"某化某",如果是复杂阴离子,命 名"某酸某"。
- 2. 在内界中, 先命名配体, 再命名配位中心, 两者用"合"连接
- 3. 配体中先命名负离子再命名中性分子
- 4. 负离子命名顺序是先简单离子,再复杂离子,最后是有机酸根离子。氢氧根称羟基,亚硝酸根称硝基。中性分子的命名次序也是先简单、常见再复杂,先无机后有机。
- 5. 每种配体前用数字一、二、三等表示配位数目,并以中心点"·"把不同配体分开。
- 6. 当中心离子可变价时,在其后加括号,用罗马数字I,II,...表明中心离子化合价。

 $H_2[Zn(OH)_2Cl_2]$ 二氯二羟合锌(II)酸 $Na_2[MgY]$ 乙二胺四乙酸合镁(II)酸钠 $K_4[PtCl_6]$ 六氯合铂(II)酸钾 $K_2[HgI_4]$ 四碘合汞(II)酸钾 $[Co(NH_3)_3(H_2O)Cl_2]Cl$ 氯化二氯·一水·三氨合钴(II) $[Cu(NH_3)_2(CH_3COO)]Cl$ 氯化乙酸根·二氨合铜(II) $[Cu(en)_2]SO_4$ 硫酸二乙二胺合铜(II)

[PtCl₂(NH₃)₂] 二氯·二氨合铂(II) [Ni(CO)₄] 四羰基合镍

配体名称

 —ONO 亚硝酸根
 —NO2 硝基

 —SCN 硫氰酸根
 —NCS 异硫氰酸根

 —CO 羰基
 —OH 羟基

高分子化合物

相对分子质量高达几干甚至几百万,是混合物。第一个合成高分子是酚醛树脂。

分类

三大合成材料: 塑料、橡胶、纤维

碳链高分子化合物: 主链中均是C-C键杂链高分子化合物: 主链中有C和其他元素

• 元素有机高分子化合物: 主链中没有C

相关术语

多分散性: 高分子化合物相对分子质量大小不等的现象

以有机小分子为单体,通过加成聚合或缩合聚合等反应合成高分子。

由一种单体进行的加成聚合反应成为均聚反应,两种或两种以上单体进行的加聚反应成为共聚反应。

尼龙-66

$$nH_2N(CH_2)_6NH_2+nHOOC(CH_2)_4COOH$$

己二胺
己二胺
己二酸
H는NH(CH₂)₆NHCO(CH₂)₄CO $\frac{1}{2}$ OH+(2n-1)H₂O
聚酰胺-66 或尼龙-66

尼龙-66的聚合度为2n,聚合度为总链节数 其链节为

$$-NH(CH2)6NH-和-OC(CH2)4CO-,$$

在聚酰胺化学式中,名称后的第一个数字"6"指二元胺的碳原子数,第二个数字"6"指二元酸的碳原子数。

常见高分子化合物及其单体

名称	化学式	单 体	重复单元
聚乙烯	CH_2-CH_2	CH ₂ =CH ₂	-CH ₂ -CH ₂ -
聚丙烯	CH ₃ CH ₂	CH ₃ CH=CH ₂	
聚氯乙 烯	Cl	CICH=CH ₂	
聚苯乙 烯	[-CII-CII ₂] _n	CH=CH ₂	
聚四氟 乙烯	$-\text{CF}_2$ $-\text{CF}_{\overline{2}}$ $-\text{I}_n$	$CF_2 {=} CF_2$	
聚异戊 二烯	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} $	$\begin{array}{ccc} - & \text{CH}_2 = \text{C} - \text{CH} = \text{CH}_2 \\ & \text{CH}_3 \end{array}$	

名 称	化 学 式	单 体
取無化中宁	$\begin{array}{c c} O & O \\ \parallel & \parallel \\ \hline [-NH(CH_2)_6NHC\ (CH_2)_4C &]_n \end{array}$	H ₂ N(CH ₂) ₆ NH ₂ HOOC(CH ₂) ₄ COOH
聚酰胺	O	NH(CH ₂) ₅ C=O
聚甲基丙烯 酸甲酯	$ \begin{array}{c c} CH_3 \\ -CH_2 - C - \frac{1}{n} \\ COOCH_3 \end{array} $	CH ₂ =C—COOCH ₃ CH ₃
聚环氧乙烷	—[-O-CH ₂ -CH ₂ -] _n	CH ₂ —CH ₂
聚丙烯腈	$ \begin{array}{c c} -\text{CH-CH-CH}_{2} \\ \text{CN} \end{array} $	CH ₂ =CHCN

名 称	化 学 式	单 体
聚丙烯酰胺	$ \begin{array}{c c} -\text{CH}_2-\text{CH}_{2} \\ \text{C=O} \\ \text{H}_2\text{N} \end{array} $	$CH_2 = CH - C - NH_2$
聚对苯二甲酸乙二(醇)酯	$- \leftarrow C - C - C + C + C + C + C + C + C + C +$	HO CH ₂ CH ₂ OH HOOC-COOH
酚醛树脂	CH_2	HCHO, OH
聚二甲基 硅氧烷	CH ₃ Si O CH ₃ CH ₃	OH—Si—OH CH ₃

名 称	ABS
化学式	$\begin{array}{c c} \hline \begin{array}{c} \text{CH} \\ \text{CH} \\ \end{array} \end{array} \begin{array}{c} \text{CH} \\ \text{CH} \\ \end{array} \begin{array}{c} $
单 体	CH ₂ =CHCN, CH ₂ =CH—CH=CH ₂ , CH=CH ₂

各种状态

玻璃化温度

 T_g : 玻璃态向高弹态转变的温度

黏流化温度 T_f : 高弹态向粘流态转变的温度

分解温度 T_D :成型加工的上限温度。

各个参数的应用

1. 把 T_a 大于室温的高分子化合物称为塑料,小于室温的称为橡胶。

- 2. 塑料要求保持固定形状所以 T_g 越高越好,橡胶要求高度弹性所以 T_g 越低越好。可以采取改变聚合条件、加入增塑剂或用定向聚合等方式改变 T_g 。例如普通聚苯乙烯的 T_g 为 $80^\circ C$ 而定向聚苯乙烯由于分子排列整齐,其 T_g 可达 $240^\circ C$
- 3. 黏流化温度 T_f 是高分子化合物成型加工的下限温度,分解温度 T_d 是高分子化合物成型加工的上限温度。
- 4. 对高分子材料的加工来说 T_f 越低越好,对耐热性来说 $$T_f$ 越高越好。
- 5. T_q 和 T_f 差值越大,应用温度范围越宽,橡胶的耐热、耐寒性也越好。

常见高分子化合物的名称

高分子 材料	化学名称	习惯名称或 商品名称	英文名称	英文 缩写
塑料	聚乙烯	聚乙烯,乙纶	Polyethylene	PE
	聚丙烯	聚丙烯, 丙纶	Polypropylene	PP
	聚氯乙烯	聚氯乙烯, 氯纶	Poly (vinyl chloride)	PVC
	聚苯乙烯	聚苯乙烯	Polystyrene	PS
	丙烯腈—丁二烯—	腈丁苯共聚物	Acrylonitrile-butadiene-	ABS
	苯乙烯共聚物		styrene copolymer	
纤维	聚对苯二甲酸乙二(醇)酯	涤纶,的确良	Poly (ethylene terephthalate)	PETP
	聚己二酰己二胺	锦纶—66	Poly (hexamethylene	PA
		或尼龙—66	adipamide),	
	聚丙烯腈	腈纶	Polyacrylonitrile	PAN
	聚乙烯醇缩乙醛	维纶	Poly (vinyl acetal)	PVA
橡胶	丁二烯—苯乙烯共聚物	丁苯橡胶	Butadiene-styrene rubber	SBR
	顺聚丁二烯	顺丁橡胶	cis-1,4-Polybutadiene rubber	BR
	顺聚异戊二烯	异戊橡胶	cis-1,4-Polyisoprene rubber	IR
	乙烯—丙烯共聚物	乙丙橡胶	Ethylene-propylene rubber	EPR

胶体

胶体体系是一种分散系。分散系由分散相和分散介质两部分组成。被分散的物质称为分散相,容纳分散相的物质称为分散介质。

分散相直径在1~100 nm范围内称为胶体分散体系。

生活中的胶体

云雾气溶胶、细胞液、血液、淋巴液

血液的凝固、血球的沉降、水肿的产生、结石的形成;铁铝锰等胶体沉积矿床之中;水泥。

双电层结构