Deep Kernel Learning – II: Experiment, Explainability, and Human in the loop Intervention

Sergei V. Kalinin

What have we learned from lectures on GP/BO

- Gaussian Process
- Kernel and kernel parameters
- Kernel Priors
- Noise Priors
- Mean function and priors
- Posteriors
- Bayesian Inference
- Bayesian optimization
- Acquisition function

Gaussian Process and Bayesian Optimization

- We have some measurements in space X, and we want to maximize some property f(X).
- We create surrogate model: function and uncertainty based on measurements
- Gaussian Process: purely data driven
- Bayesian Inference: known model and some idea on parameters
- Structured Gaussian Process: physics-derived mean function

Acquisition Functions (Policies)

- Upper confidence bound: simplest possible - just take the upper confidence bound from the prediction
- 2. Probability of Improvement:
 Integral from current functional
 maximum to upper limit of
 distribution as test point
- 3. Expected Improvement: Instead of probability of improvement, we want to maximize the expected increase in the function value
- 4. There are (always) more...

Bayesian Optimization

N. de Freitas et al., Taking the Human Out of the Loop: A Review of Bayesian Optimization, *Proceedings of the IEEE* **104**, 148 (2015)

BO for Self-Driving Microscope

First implementation of self-driving microscope: 2020

Comparison with "ground truth"

R. K. Vasudevan, K. Kelley, H. Funakubo, S. Jesse, S. V. Kalinin, M. Ziatdinov, *ACS Nano* (2021) https://doi.org/10.1021/acsnano.0c10239

Overlaid

arXiv:2103.12165 arXiv:2011.13050

The application of simple data-driven GP for real world scenarios did not work particularly well.

Bayesian Optimization

N. de Freitas et al., Taking the Human Out of the Loop: A Review of Bayesian Optimization, *Proceedings of the IEEE* **104**, 148 (2015)

What is the limitation of the GP/BO?

- 1. Works only in low-dimensional spaces
- 2. The correlations are defined by the kernel function (very limiting)
- 3. We do not use any knowledge about physics of the system
- 4. We do not use cheap information available during the experiment (proxies)

Can we somehow make high dimensional space low-D?

Deep Kernel Learning

Deep Kernel Learning based BO

Key concepts:

- **Scalarizer:** (any) function that transforms spectrum into measure of interest. Can be integration over interval, parameters of a peak fit, ration of peaks, or more complex analysis
- Experimental trace: collection of image patches and associated spectra acquired during experiment. Note that we collect spectra, not only scalarizers

Discovering Regions with Interesting Physics

- Discovering physics in a "new" material MnPS₃
- Curve fitting to help enforce physical processes

"Acquisition function"

HAADF-STEM

Physics search criteria:

Ratio = Peak 1 / peak 2

More Examples of Physics Discovery

Discovery pathway depends on the reward structure (scalarizer that defines signature of physics we want to discover)!

Changing the Criterion

 (Same region) Simple physics search: peak max in selected region Physics search criteria:

Maximize(f)

(Specific peak intensity)

"Acquisition function"

HAADF-STEMpoints visited

Deep Kernel Learning AE SPM

DKL SPM

THE UNIVERSITY of TENNESSEE UNIVERSITY OF TENNESSEE

Guided by: On field loop area

Guided by: Off field loop area

- ➤ Large loop opening corresponding 180° domain walls
- This behavior can be attributed to the large polarization mobility of 180° walls

Exploring Non-Linearity

 V_{AC} sweep curve at each location was fitted as $y = Ax^3 + Bx^2 + Cx$

A, B, C, and A/B were use as the target function to guide DKL-V_{AC} measurement.

PTO and HZO thin films were studied.

- Shown are 200-step measurements of PTO and HZO thin films
- PFM amplitude was used as structure image; A/B was used to guide the measurement.

PTO experiment process and results

 In conventional microscopy experiment, human runs everything directly – defines scan, positions the probe, defines measurement parameters.

• In AE SPM, the policies are defined before the experiment and do not change. Sometimes it works – but not always.

- How would we:
 - (a) explain the AE progression after the experiment and
 - (b) control it during the experiment?

Types of automated experiment

Direct

- Fixed policies
- Need DCNNs stable wrt. out of distribution shift

Myopic discovery

- Adjustable policies
- One step planning
- Can be implemented via Bayesian workflows
- Can be human in the loop

Multistage discovery

- Adjustable policies
- Multi-step planning
- Requires heuristic to start
- Requires reward function

Bringing Human into the Loop

Key concepts:

- Scalarizer: (any) function that transforms spectrum into measure of interest. Can be integration over interval, parameters of a peak fit, ration of peaks, or more complex analysis
- Experimental trace: collection of image patches and associated spectra acquired during experiment. Note that we collect spectra, not only scalarizers

AE Forensics

- During the AE, model learns structure-property relationships.
- What if we retrace the experimental steps using the fully trained model?

Counterfactual scalarizers

Target properties:

- 1. Loop Area
- 2. Loop Height
- 3. Coercive Field
- 4. ...

- We save the full experimental trace
- What if we follow the actual experimental path but calculate alternative (counterfactual) scalarizers?

Monitoring the AE

- Different acquisition functions (policies) give different experimental paths for AE
- Can we analyze what is special about points visited?

VAE approach: feature space of visited points

VAE approach: full feature space

Human in the loop AE

We can intervene on:

- Policies (acquisition functions): type and parameters
- Scalarizers: type and parameters
- Knowledge injection
- Direct operation

Future: full workflow optimization

Characteristic	Definition	Availability
Global image	Initial structural data set available before DKL experiment. Used to	Before
	create patches for DKL training	
DKL latents	The latent variables encoding the structural information in the patches	During**
Scalarizer function	Function defining what characteristic of spectrum guides Bayesian	Before*
	Optimization	
Acquisition function	Function combining DKL prediction and uncertainty of the scalarizer	Before*
	function	
Policy	Principle for selection of next path. Simplest policy is maximization of	Before*
	acquisition function, but can be more complex including epsilon-	
	greedy or switch between multiple scalarizers or acquisition functions.	
	Human in the loop intervention tunes some aspect of the policy	
Experimental trace	Collection of patches (and their coordinates) and spectra derived	During
	during experiment. Trace and global image are the results of AE SPM.	

Characteristic	Definition	Availability
Live DKL model	DKL model in the state corresponding to the <i>n</i> -th experimental step	During
Final DKL model	DKL model in the state corresponding to the end of the experiment	After
Complete DKL	DKL model trained on the full data set (if available from grid	
model	measurements, etc).	
Regret analysis	The difference between predictions of live DKL model and final DKL	During** and
	model after the whole experiment (i.e., after 200 steps in this work)	After
Learning curve	Change of the DKL uncertainty (mean and deviation), indicative of the	During
	predictability of the patch-scalarizer relationship	
Counterfactual	The availability of full spectral data as a part of experimental trace allows	During
scalarizer	to estimate what the BO step would be if scalarizer were chosen to be	
	different	
Trajectory analysis	Real-time trajectory of the probe that can be represented in the global	During
	image plane	
Feature discovery	Analysis of the latent variables and latent representations of image	After
	patches and spectra in the trace. Here, we realize only patch analysis but	
	extension to spectra is straightforward.	
Latent trajectory	Analysis of the experimental trajectory in the latent space of the full	During**
analysis	collection of the image patches derived from the global image	