Machine Learning, 2024 Spring Assignment 5

Name: Zhou Shouchen Student ID: 2021533042

Notice

Plagiarizer will get 0 points. LeTeXis highly recommended. Otherwise you should write as legibly as possible.

Which of the following are possible growth functions $m_{\mathcal{H}}(N)$ for some hypothesis set:

$$1+N; 1+N+\frac{N(N-1)}{2}; 2^N; 2^{\lfloor \sqrt{N} \rfloor}; 2^{\lfloor \frac{N}{2} \rfloor}; 1+N+\frac{N(N-1)(N-2)}{6}$$

Solution

- 1. 1 + N:
- 2. $1 + N + \frac{N(N-1)}{2}$:
- 3. 2^{N} :
- 4. $2^{\lfloor \sqrt{N} \rfloor}$:
- 5. $2^{\lfloor \frac{N}{2} \rfloor}$:
- 6. $1 + N + \frac{N(N-1)(N-2)}{6}$:

For an \mathcal{H} with $d_{\rm vc}=10$, what sample size do you need (as prescribed by the generalization bound) to have a 95% confidence that your generalization error is at most 0.05?

Solution

Let $\mathcal{H} = \{h_1, h_2, \dots, h_M\}$ with some finite M. Prove that $d_{vc}(\mathcal{H}) \leq \log_2 M$. Solution

Let $\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_K$ be K hypothesis sets with finite VC dimension d_{vc} . Let $\mathcal{H} = \mathcal{H}_1 \cup \mathcal{H}_2 \cup \ldots \cup \mathcal{H}_K$ be the union of these models. Show that $d_{\mathrm{vc}}(\mathcal{H}) < K \, (d_{\mathrm{vc}} + 1)$.

Solution

In this part, you need to complete some mathematical proofs about VC dimension. Suppose the hypothesis set

$$\mathcal{H} = \{ f(x, \alpha) = \operatorname{sign}(\sin(\alpha x)) \mid, \alpha \in \mathbb{R} \}$$

where x and f are feature and label, respectively.

• Show that ${\cal H}$ cannot shatter the points $x_1=1, x_2=2, x_3=3, x_4=4.$

(Key: Mathematically, you need to show that there exists y_1, y_2, y_3, y_4 , for any $\alpha \in \mathbb{R}$, $f(x_i) \neq y_i, i = 1, 2, 3, 4$, for example, +1, +1, -1, +1)

• Show that the VC dimension of $\mathcal H$ is $\infty.$ (Note the difference between it and the first question)

(Key: Mathematically, you have to prove that for any label sets $y_1, \cdots, y_m, m \in \mathbb{N}$, there exists $\alpha \in \mathbb{R}$ and $x_i, i = 1, 2, \cdots, m$ such that $f(x; \alpha)$ can generate this set of labels. Consider the points $x_i = 10^{-i} \ldots$)

Solution

1.

2.