

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Cálculo I Examen X

Los Del DGIIM, losdeldgiim.github.io

Víctor Naranjo Cabrera

Granada, 2025

Asignatura Cálculo I.

Curso Académico 2024-25.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

 $\mathbf{Grupo} \ \, \acute{\mathrm{U}}\mathrm{nico}.$

Profesor José Luis Gámez Ruiz.

Descripción Convocatoria Ordinaria.

Fecha 10 de enero de 2025.

Duración 3 horas.

Ejercicio 1. [2 puntos] Enuncia y demuestra el Teorema (de los ceros) de Bolzano.

Ejercicio 2. [1 punto] Estudia la convergencia de la sucesión $\left\{\frac{n \log n}{\log(n!)}\right\}$.

Ejercicio 3. Sea la sucesión recurrente $a_1 = 1$, $a_{n+1} = \sqrt{1 + a_1 + a_2 + \ldots + a_n}$, $\forall n \in \mathbb{N}$. Se pide:

- a) [1 punto] Prueba que $\{a_n\}$ es estrictamente creciente y diverge positivamente (observa que $a_{n+1}^2 = a_n^2 + a_n$, puedes usarlo).
- b) [1 punto] Prueba que $\left\{\frac{a_{n+1}^2}{a_n^2}\right\} \to 1$ (y, en particular, $\left\{\frac{a_{n+1}}{a_n}\right\} \to 1$).
- c) [1 punto] Prueba que $\{a_{n+1} a_n\} \rightarrow \frac{1}{2}$.
- d) [1 punto] Prueba que $\left\{\frac{n}{a_n}\right\} \to 2$.
- e) [1 punto] Discute la convergencia de las series: $\sum_{n\geq 1} \frac{1}{a_n}$ y $\sum_{n\geq 1} \frac{1}{a_n^2}$.

Ejercicio 4. Sea $f: \mathbb{R}_0^+ \to \mathbb{R}$ continua, tal que $f(x) \geqslant x, \forall x \in \mathbb{R}_0^+$. Se pide:

- a) [1 punto] Probar que f alcanza un mínimo absoluto.
- b) [1 punto] Probar que $\exists c > 0$ tal que $f(c) = \frac{1}{c}$.

Ejercicio 1. [2 puntos] Enuncia y demuestra el Teorema (de los ceros) de Bolzano.

Sean $a, b \in \mathbb{R}, a < b, f : [a, b] \to \mathbb{R}$ continua con $f(a) \cdot f(b) < 0$. Entonces:

$$\exists c \in]a, b[: f(c) = 0$$

Demostración. Hay dos posibilidades, o bien f(a) < 0 < f(b), o f(a) > 0 > f(b)

Caso f(a) < 0 < f(b). Sea el conjunto $A = \{x \in [a, b] : f(x) < 0\}$

Claramente, el conjunto A es no vacío $(a \in A)$ y, por ser $A \subseteq [a,b] \Rightarrow A$ mayorado $(b \in M(A))$. Por tanto, $\exists c = sup(A)$, con $a \leqslant c \leqslant b$. Usando la caracterización de supremo mediante sucesiones:

$$\exists \{x_n\} \longrightarrow c$$
. Por ser f continua en $c \Rightarrow \{f(x_n)\} \rightarrow f(c)$
 $(x_n \in A \ \forall n \in \mathbb{N})$

y, como:

$$x_n \in A, f(x_n) < 0 \ \forall n \in \mathbb{N} \Rightarrow f(c) \leqslant 0$$
 (1)

En particular, $c \neq b$ (porque f(b) > 0) $\Rightarrow c < b$. Así, $\forall y \in]c, b] \Rightarrow f(y) \geqslant 0$. Podemos tomar:

$$\{y_n\} = \left\{c + \frac{b-c}{n}\right\} \to c, \text{con } f(y_n) \geqslant 0 \ \forall n \in \mathbb{N}$$

De nuevo, por ser f continua en c:

$$\{f(y_n)\} \to f(c) \Rightarrow f(c) \geqslant 0$$
 (2)
 $(f(y_n)\geqslant 0)$

Por (1) y (2)
$$\Rightarrow f(c) = 0$$

Caso f(a) > 0 > f(b) Podemos considerar $g : [a, b] \to \mathbb{R}, g = -f, g(x) = -f(x)$ $\forall x \in [a, b]$. La función g verifica las hipótesis del caso anterior, luego

$$\exists c \in]a, b[: g(c) = 0 \Rightarrow f(c) = -g(c) = 0.$$

Ejercicio 2. [1 punto] Estudia la convergencia de la sucesión $\left\{\frac{n \log n}{\log(n!)}\right\}$.

Llamemos $\{a_n\} = \{n \log(n)\}, \{b_n\} = \{\log(n!)\}$. Por ser $\{b_n\} \nearrow \nearrow +\infty$ podemos aplicar el crit. de Stolz

$$\left(Si \left\{ \frac{a_{n+1} - a_n}{b_{n+1} - b_n} \right\} \longrightarrow L \Longrightarrow \left\{ \frac{a_n}{b_n} \right\} \longrightarrow L \ (L \in \mathbb{R} \ \acute{o} \ \pm \infty) \right)$$

Estudiemos, pues, la sucesión:

$$\left\{ \frac{a_{n+1} - a_n}{b_{n+1} - b_n} \right\} = \left\{ \frac{(n+1)\log(n+1) - n\log(n)}{\log((n+1)!) - \log(n!)} \right\} = \left\{ \frac{\log(n+1) + n\log\left(\frac{n+1}{n}\right)}{\log(n+1)} \right\} \\
= \left\{ 1 + \frac{\log((\frac{n+1}{n})^n)}{\log(n+1)} \right\}$$

Llamemos $\{x_n\} = \left\{ \left(\frac{n+1}{n}\right) \right\}$ y $\{y_n\} = \{n\}$ Como $\{x_n\} \to 1$, podemos aplicar el crit. de Euler:

$$(\{y_n(x_n-1)\} \to L \iff \{x_n^{y_n}\} \to e^L, x_n > 0 \ \forall n \in \mathbb{N})$$

Entonces:

$$\{y_n(x_n - 1)\} = \left\{n\left(\frac{n+1}{n} - 1\right)\right\} = \{1\} \to 1 \Rightarrow \{x_n^{y_n}\} = \left\{\left(\frac{n+1}{n}\right)^n\right\} \to e$$

$$\Rightarrow \left\{\log\left(\left(\frac{n+1}{n}\right)^n\right)\right\} \to \log(e) = 1$$

Por lo tanto, $\left\{1 + \frac{\log((\frac{n+1}{n})^n)}{\log(n+1)}\right\} \to 1 + 0 = 1$. Y, por Stolz, la sucesión de partida $\left\{\frac{a_n}{b_n}\right\} = \left\{\frac{n\log(n)}{\log(n!)}\right\} \to 1$

Ejercicio 3. Sea la sucesión recurrente $a_1 = 1$, $a_{n+1} = \sqrt{1 + a_1 + a_2 + ... + a_n}$, $\forall n \in \mathbb{N}$. Se pide:

a) [1 punto] Prueba que $\{a_n\}$ es estrictamente creciente y diverge positivamente (observa que $a_{n+1}^2 = a_n^2 + a_n$, puedes usarlo).

Probemos que $a_n \ge 1 \ \forall n \in \mathbb{N}$ (en particular, $a_n > 0 \ \forall n \in \mathbb{N}$), por inducción. Sea el conjunto $A = \{n \in \mathbb{N} \mid a_n \ge 1\}$. Veamos si A es inductivo:

$$a_1 = 1 \geqslant 1 \Rightarrow 1 \in A$$

Sea $k \in A$, veamos si $(k+1) \in A$:

$$a_{k+1}^2 = a_k^2 + a_k \Rightarrow a_{k+1} = \sqrt{a_k^2 + a_k} \geqslant 1 \Rightarrow (k+1) \in A$$

Luego $a_n \ge 1 \ \forall n \in \mathbb{N}$. Así, $a_{n+1} > a_n \Leftrightarrow a_{n+1}^2 > a_n^2 \Leftrightarrow a_n^2 + a_n > a_n^2 \Leftrightarrow a_n > 0$, y $\{a_n\}$ estrictamente creciente.

Veamos si diverge por reducción al absurdo. Si $\{a_n\}$ no diverge, al ser estrictamente creciente, estará mayorada, luego $\{a_n\} \to L$.

$$\left. \begin{array}{l} \{a_{n+1}^2\} \to L^2 \\ \\ \{a_n^2 + a_n\} \to L^2 + L \end{array} \right] \xrightarrow{\text{(unicidad del limite)}} L^2 = L^2 + L \Rightarrow L = 0$$

Lo cual es una contradicción, ya que una sucesión creciente de positivos no puede converger a 0 y $\{a_n\} \to +\infty$

- b) [1 punto] Prueba que $\left\{\frac{a_{n+1}^2}{a_n^2}\right\} \to 1$ y, en particular, $\left\{\frac{a_{n+1}}{a_n}\right\} \to 1$. $\left\{\frac{a_{n+1}^2}{a_n^2}\right\} = \left\{\frac{a_n^2 + a_n}{a_n^2}\right\} = \left\{1 + \frac{1}{a_n}\right\} \to 1 + 0 = 1$ $\left(\left\{a_n\right\} \to +\infty \Rightarrow \left\{\frac{1}{a_n}\right\} \to 0\right)$ En particular, $\left\{\frac{a_{n+1}}{a_n}\right\} = \left\{\sqrt{\frac{a_{n+1}^2}{a_n^2}}\right\} \to \sqrt{1} = 1$
- c) [1 punto] Prueba que $\{a_{n+1} a_n\} \rightarrow \frac{1}{2}$.

$$\left\{ a_{n+1} - a_n \right\} = \left\{ \frac{(a_{n+1} - a_n)(a_{n+1} + a_n)}{a_{n+1} + a_n} \right\} = \left\{ \frac{a_{n+1}^2 - a_n^2}{a_{n+1} + a_n} \right\} = \left\{ \frac{\alpha_{n+1}^2 - \alpha_n^2}{a_{n+1} + a_n} \right\} \\
 = \left\{ \frac{a_n}{a_{n+1} + a_n} \right\} = \left\{ \frac{1}{\frac{a_{n+1}}{a_n} + 1} \right\}$$

Como por el apartado anterior, $\left\{\frac{a_{n+1}}{a_n}\right\} \to 1 \Rightarrow \left\{\frac{1}{\frac{a_{n+1}}{a_n}+1}\right\} \to \frac{1}{2}$

d) [1 punto] Prueba que $\left\{\frac{n}{a_n}\right\} \to 2$. Como el denominador es $\{a_n\} \nearrow \nearrow +\infty$, podemos aplicar el criterio de Stolz (ya enunciado antes). Estudiamos, pues, esta otra sucesión:

$$\left\{\frac{n+1-n}{a_{n+1}-a_n}\right\} = \left\{\frac{1}{a_{n+1}-a_n}\right\}$$

Como por el apartado anterior, $\{a_{n+1} - a_n\} \to \frac{1}{2} \Rightarrow \left\{\frac{1}{a_{n+1} - a_n}\right\} \to 2 \Rightarrow \left\{\frac{n}{a_n}\right\} \to 2.$

e) [1 punto] Discute la convergencia de las series: $\sum_{n\geqslant 1} \frac{1}{a_n}$ y $\sum_{n\geqslant 1} \frac{1}{a_n^2}$.

Para estudiar la serie de térm. posit. $\sum_{n\geqslant 1}\frac{1}{a_n}$, aplicaremos el criterio límite de comparación:

$$\begin{pmatrix} a_n \geqslant 0, b_n > 0 \ \forall n \in \mathbb{N} \land \left\{ \frac{a_n}{b_n} \right\} \to L \ (L \in \mathbb{R}_0^+ \circ + \infty) \\ \text{Caso } L = 0 : \text{Si} \sum_{n \geqslant 1} b_n \text{ converge } \Rightarrow \sum_{n \geqslant 1} a_n \text{ converge} \\ \text{Caso } L = +\infty : \text{Si} \sum_{n \geqslant 1} a_n \text{ converge } \Rightarrow \sum_{n \geqslant 1} b_n \text{ converge} \\ \text{Caso } L = \mathbb{R}^+ : \text{Si} \sum_{n \geqslant 1} a_n \text{ converge } \Leftrightarrow \sum_{n \geqslant 1} b_n \text{ converge} \end{pmatrix}$$

Compararemos con la serie armónica $\sum_{n\geqslant 1} \frac{1}{n}$:

$$\left\{\frac{\frac{1}{a_n}}{\frac{1}{n}}\right\} = \left\{\frac{n}{a_n}\right\} \xrightarrow{\text{(apdo.)}} 2 \in \mathbb{R}^+$$

Así,
$$\sum_{n\geqslant 1}\frac{1}{a_n}$$
 conv. $\Leftrightarrow \sum_{n\geqslant 1}\frac{1}{n}$ conv. Como $\sum_{n\geqslant 1}\frac{1}{n}$ no conv. $\Rightarrow \boxed{\sum_{n\geqslant 1}\frac{1}{a_n}}$ no conv.

Para estudiar la serie $\sum_{n\geq 1} \frac{1}{a_n^2}$ aplicaremos de nuevo el criterio límite de com-

paración, comparado ahora con la serie $\sum_{n\geq 1} \frac{1}{n^2}$

$$\left\{\frac{\frac{1}{a_n^2}}{\frac{1}{n^2}}\right\} = \left\{\frac{n^2}{a_n^2}\right\} = \left\{\left(\frac{n}{a_n}\right)^2\right\} \xrightarrow{\text{(apdo. anterior)}} 2^2 = 4 \in \mathbb{R}^+$$

Así,
$$\sum_{n\geqslant 1} \frac{1}{a_n^2}$$
 conv. $\Leftrightarrow \sum_{n\geqslant 1} \frac{1}{n^2}$ conv. Como $\sum_{n\geqslant 1} \frac{1}{n^2}$ conv. $\Rightarrow \boxed{\sum_{n\geqslant 1} \frac{1}{a_n^2}}$ conv.

Ejercicio 4. Sea $f: \mathbb{R}_0^+ \to \mathbb{R}$ continua, tal que $f(x) \geqslant x, \forall x \in \mathbb{R}_0^+$. Se pide:

a) [1 punto] Probar que f alcanza un mínimo absoluto. A partir de la hipótesis, probemos que Im(f) está minorada:

$$\forall x \in \mathbb{R}_0^+, f(x) \geqslant x \geqslant 0 \Rightarrow 0$$
 es minorante de Im(f).

Como, además, Im(f) es no vacío, $\exists \alpha = \inf(Im(f))$. Para probar si es el mínimo, bastará ver que $\alpha \in Im(f)$. Pör la caracterización de ínfimo mediante sucesiones:

$$\exists \{y_n\} \longrightarrow \alpha$$
$$(y_n \in Im(f) \forall n \in \mathbb{N})$$

Observemos que:

- $\{y_n\}$ convergente $\Rightarrow \{y_n\}$ acotada, en particular. mayorada $\Rightarrow \exists M > 0$: $y_n \leqslant M, \forall n \in \mathbb{N}$

Luego:

$$\forall n \in \mathbb{N} \ 0 \leqslant x_n \leqslant f(x_n) = y_n \leqslant M \Rightarrow \{x_n\} \text{ acotada}$$

Por el Teorema de Bolzano-Weierstrass, por ser acotada, admitirá una parcial convergente, $\exists \{x_{\sigma(n)}\} \to x_0 \in \mathbb{R}_0^+$. Luego

$$\begin{cases} f(x_{\sigma(n)}) \end{cases} \xrightarrow{\text{(f continua)}} f(x_0)$$

$$\begin{cases} y_{\sigma(n)} \end{cases} \xrightarrow{\text{(unicidad)}} \alpha$$

$$\Rightarrow \alpha = f(x_0)$$

Así, $\alpha \in Im(f)$ y es el valor mínimo absluto, que se alcanza en el punto x_0 .

b) [1 punto] Probar que $\exists c > 0$ tal que $f(c) = \frac{1}{c}$. La proposición equivale a c > 0: cf(c) - 1 = 0. Consideremos entonces la función: $g: [0,2] \to \mathbb{R}, g(x) = xf(x) - 1$. Vemos que es continua (pues es suma y producto de continuas). Además:

$$\left. \begin{array}{l} g(0) = 0 \cdot f(0) - 1 = -1 < 0 \\ g(2) = 2 \cdot f(2) - 1 \geqslant 2 \cdot 2 - 1 = 3 > 0 \end{array} \right\}$$

Por el T
ma. Bolzano (Ej 1) $\exists c \in]0,2[:g(c)=0 \Rightarrow \exists c>0, \text{ con } cf(c)-1=0$
 $\Leftrightarrow f(c)={}^1\!/c$