

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AP3 1° semestre de 2019 GABARITO

Observações:

- A prova é acompanhada de uma tabela da distribuição Normal
- É permitido o uso de máquina de calcular
- Todos os cálculos devem ser mostrados passo a passo para a questão ser considerada
- Utilize nos cálculos pelo menos cinco casas decimais arrendondando para duas só ao final
- Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas
- Você pode usar lápis para responder as questões
- Os desenvolvimentos e respostas devem ser escritas de forma legível
- Ao final da prova devolva as folhas de questões e as de respostas
- Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões ou em folhas marcadas como rascunho não serão corrigidas.
- É PROIBIDO O USO DE CELULARES DURANTE A PROVA SOB QUALQUER PRETEXTO.

Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo

1 – Primeira Questão (2,0 pontos)

Considere uma urna contendo três bolas pretas e cinco bolas vermelhas. Calcule as probabilidades dos eventos, sem reposição:

a) Bola preta na primeira e segunda extrações.

Resolução:

São 8 objetos sendo 3 bolas pretas e 5 vermelhas.

Probabilidade da bola ser preta (Pr):

P(Pr) = 3/8

Probabilidade da bola ser vermelha (V):

P(V) = 5/8

Probabilidade da bola preta na primeira retirada:

 $P(Pr_1) = 3/8$

Probabilidade da bola preta na segunda retirada, sendo que na primeira saiu uma bola preta:

 $P(Pr_2/Pr_1) = 2/7$

Probabilidade da bola preta na segunda retirada, sendo que na primeira saiu uma bola vermelha: $P(Pr_2/V) = 3/7$

` - /

Assim,

 $P(Pr_1 \cap Pr_2) = P(Pr_1) \cdot (Pr_2/Pr_1) = 3/8 \cdot 2/7 = 6/56 = 0,1071$.

b) Bola preta na segunda extração.

Resolução:

Nesse item, não importa a cor da bola da primeira extração, logo, na primeira extração pode sair a bola preta ou a bola vermelha. Assim:

$$P(Pr_2) = P(Pr_1) \cdot (Pr_2/Pr_1) + P(V) \cdot (Pr_2/V) = 6/56 + 5/8 \cdot 3/7 = 0.375$$
.

2 – Segunda Questão (1,5 ponto)

Em uma cidade onde carros têm que ser avaliados para controle de emissão de poluentes, 25% de todos os carros testados emitem quantidades excessivas de poluentes. No entanto, o teste não é perfeito e pode indicar resultados errados. Desta forma, carros que emitem excesso de poluentes podem não ser detectados pelo teste e carros que não emitem excesso de poluentes podem ser considerados erroneamente fora do padrão de emissão. Assim, ao serem testados, 99% de todos os carros que emitem excesso de poluentes são reprovados, mas 17% dos carros que não acusam emissão excessiva de poluentes também excesso de emissão de poluentes. Calcule a probabilidade de um carro reprovado no teste acusar efetivamente excesso de emissão de poluentes.

Resolução:

Seja T o evento "carros emitem quantidades excessivas de poluentes" e B o evento "carro dentro das normas de emissão de poluentes" então $P(T)=0.25\,e\,P(B)=0.75$. Seja E o evento "carro reprovado no teste"

$$P(E/T) = 0.99 e P(E/B) = 0.17$$
 e queremos $P(T/E) = ?$

Segundo o Teorema de Bayes, temos :

$$P(T \setminus E) = \frac{P(E \cap T)}{P(E)} = \frac{P(E/T)P(T)}{P(E)}$$

e com

$$P(E) = P(E/T)P(T) + P(E/T^{c})P(T^{c}) = 0.99 \times 0.25 + 0.75 \times 0.17 = 0.2475 + 0.1275 = 0.375$$

chegamos a

$$P(T/E) = \frac{P(E/T)P(T)}{P(E)} = \frac{0.99 \times 0.25}{0.375} = \frac{0.2475}{0.375} = 0.66$$
.

3 – Terceira questão – (1,5 pontos)

Sabe-se que mulheres que são diagnosticadas com câncer de útero precocemente têm 95% de probabilidade de serem curadas completamente. Para um grupo de 16 paciente nessas condições, calcule a probabilidade de menos que 2 permanecerem com a doença.

Resolução:

Há duas formas de se ver essa questão:

- a) vendo que, nesse caso, mais de 14 pacientes teriam que ser curados, ou seja: P(X > 14) = P(X = 15) + P(X = 16)
- b) assumindo que a probabilidade de não ficar curado é 1 0,95 = 0,05, pode-se calcular P(X < 2).

Em qualquer um dos casos tem-se:

$$P(X>14) = \left(\frac{16!}{15!(16-15)!}\right)0,95^{15}(1-0,95)^{16-15} + \left(\frac{16!}{16!(16-16)!}\right)0,95^{16}(1-0,95)^{16-16}$$

$$P(X>14)=16\times0.95^{15}\times0.05+0.95^{16}\times0.05^{0}$$
 ou $P(X>14)=0.95^{15}(0.8+0.95)$

e finalmente

$$P(X>14)=0,4633\times1,75=0,81076$$
.

4 – Quarta questão – (1,5 ponto)

Calcule as probabilidades abaixo:

a) P(X > 1,3) – Distribuição Normal com média 1,8 e desvio padrão 3,56; **Resolução:**

Usaremos nesta questão usaríamos a seguinte fórmula $P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$.

No entanto, para o que foi pedido teremos uma expressão mais simples

$$P(X>1,3)=P\left(Z>\frac{1,3-1,8}{3,56}\right)\approx P\left(Z>-\frac{0,5}{3,56}\right)\approx P(Z>-0,1404)$$

ou seja,

$$P(X>1,3)\approx0.5+P(Z<0.14)=0.5+0.0557=0.5557$$
.

b) P(X > 1,3) – Distribuição exponencial com $\alpha = 1,2$;

Resolução:

Para a distribuição Exponencial geralmente nos é apresentado o seguinte cálculo para a probabilidade

$$P(a < X < b) = \int_{a}^{b} \alpha e^{-\alpha x} dx = e^{-\alpha a} - e^{-\alpha b} .$$

No nosso caso é mais simples pois devemos integrar de 1,3 até $+\infty$ e no extremo superior a contribuição para a probabilidade cai a zero. Assim a probabilidade será dada por

$$P(X>1,3)=e^{-1,2\times1,3}=e^{-1,56}\approx0,2101$$
.

d) P(X > 1,3) – Distribuição dada pela função $f(x) = \frac{6}{5}(x^2 - x)$, válida no intervalo [1,2].

Resolução:

Pela definição de probabilidade de funções contínuas teríamos $P(a < X < b) = \int_{-\infty}^{+\infty} f(x) dx$

que no caso da função dada é dada por

$$P(a < X < b) = \frac{6}{5} \int_{a}^{b} (x^{2} - x) dx$$

cálculo válido no intervalo [1,2] .

Para o valor solicitado escrevamos

$$P(X>1,3) = \frac{6}{5} \int_{1,3}^{2} (x^2 - x) dx = \frac{6}{5} \left[\int_{1,3}^{2} x^2 dx - \int_{1,3}^{2} x dx \right] = \frac{6}{5} \left[\frac{x^3}{3} \Big|_{1,3}^{2} - \frac{x^2}{2} \Big|_{1,3}^{2} \right]$$

ou seja,

$$P(X>1,3) = \frac{6}{5} \left[\frac{2^3 - 1,3^2}{3} - \frac{2^2 - 1,3^2}{2} \right] = \frac{6}{5} \left[\frac{5,803}{3} - \frac{2,31}{2} \right] \approx \frac{6}{5} \times 0,7793 = 0,9352$$
.

5 – Quinta questão – (2,0 pontos)

a) Demonstre que a função apresentada abaixo é uma distribuição de probabilidade no intervalo [-2, 2].

Resolução:

Pela figura vemos que a distribuição pode ser entendida como dois segmentos de reta sendo que um passa pelos pontos $\begin{bmatrix} -2,0 \end{bmatrix}$ e $\begin{bmatrix} -1,1/2 \end{bmatrix}$ e outro pelos pontos $\begin{bmatrix} -1,1/2 \end{bmatrix}$ e $\begin{bmatrix} 2,0 \end{bmatrix}$. Para especificamente este item, podemos ver que a função é distribuição de probabilidade calculando a área dos triângulo de altura 1/2 e base 4. Sabemos que a área do triângulo é dada por

$$A_T = \frac{base \times altura}{2} = \frac{1/2 \times 4}{2} = 1$$
.

Isto satisfaz este item mas não ajuda nos demais. Determinemos os segmentos de reta partindo da equação da reta y=ax+b e determinando os parâmetros para cada par de pontos. Para os pontos $\begin{bmatrix} -2,0 \end{bmatrix}$ e $\begin{bmatrix} -1,1/2 \end{bmatrix}$ teremos as equações

$$0 = a \times (-2) + b$$
 e $\frac{1}{2} = a \times (-1) + b$

que tem como solução $a=\frac{1}{2}$; b=1 , logo a equação da reta é $y=\frac{x}{2}+1$.

Para os pontos [-1,1/2] e [2,0] teremos as equações

$$\frac{1}{2} = -a + b$$
 e $0 = 2a + b$

com solução $a=-\frac{1}{6}$; $b=\frac{1}{3}$ e daí a equação da reta $y=\frac{1}{6}(2-x)$.

Integremos os segmentos destas retas nos devidos intervalos para confirmar nosso resultado.

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-2}^{-1} \left(\frac{x}{2} + 1\right) dx + \int_{-1}^{2} \frac{1}{6} (2 - x) dx = \frac{1}{2} \int_{-2}^{-1} x dx + \int_{-2}^{-1} dx + \frac{1}{6} \left[2 \int_{-1}^{2} dx - \int_{-1}^{2} x dx \right]$$

ou seja,

$$\int_{-\infty}^{\infty} f(x) dx = \frac{1}{2} \frac{x^2}{2} \Big[_{-2}^{-1} + x \Big|_{-2}^{-1} + \frac{1}{6} \left[2 x \Big|_{-1}^{2} - \frac{x^2}{2} \Big|_{-1}^{2} \right] = \frac{(-1)^2 - (-2)^2}{4} + -1 - (-2) + \frac{1}{6} \left\{ 2 [2 - (-1)] - \frac{2^2 - (-1)^2}{2} \right\} ,$$

ou ainda

$$\int_{-\infty}^{\infty} f(x) dx = \frac{1}{4} + \frac{1}{6} \left(6 - \frac{3}{2} \right) = \frac{1}{4} + \frac{1}{6} \times \frac{9}{2} = \frac{1}{4} + \frac{3}{4} = 1 .$$

b) Calcule a média desta distribuição;

Resolução:

Usando a definição para a média $\mu = \int_{-\infty}^{\infty} x f(x) dx$ podemos escrever no presente caso

$$\mu = \int_{-2}^{-1} x \left(\frac{x}{2} + 1 \right) dx + \int_{-1}^{2} \frac{x}{6} (2 - x) dx = \frac{1}{2} \int_{-2}^{-1} x^{2} dx + \int_{-2}^{-1} x dx + \frac{1}{6} \left[2 \int_{-1}^{2} x dx - \int_{-1}^{2} x^{2} dx \right] ,$$

que resulta em

$$\mu = \frac{1}{2} \frac{x^3}{3} \Big[_{2}^{-1} + \frac{x^2}{2} \Big|_{-2}^{-1} + \frac{1}{6} \left[2 \frac{x^2}{2} \Big|_{-1}^{2} - \frac{x^3}{3} \Big|_{-1}^{2} \right] = \frac{(-1)^3 - (-2)^3}{6} + \frac{[(-1)^2 - (-2)^2]}{2} + \frac{1}{6} \left[[(2)^2 - (-1)^2] - \frac{2^3 - (-1)^3}{3} \Big|_{-1}^{2} \right] = \frac{(-1)^3 - (-2)^3}{6} + \frac{(-1)^3 - (-2)^3}{2} + \frac{1}{6} \left[(-1)^2 - (-1)^2$$

que nos leva a

$$\mu = \frac{7}{6} - \frac{3}{2} + \frac{1}{6}(3 - 3) = -\frac{1}{3} .$$

c) Calcule a variância desta distribuição;

Resolução:

Partiremos da definição de variância para distribuições contínuas, ou seja, $\int_{-\infty}^{+\infty} x^2 f(x) dx - \mu^2$. Como já temos a média, calculemos a integral

$$\int_{-\infty}^{+\infty} x^2 f(x) dx = \int_{-2}^{-1} x^2 \left(\frac{x}{2} + 1 \right) dx + \int_{-1}^{2} \frac{x^2}{6} (2 - x) dx = \frac{1}{2} \int_{-2}^{-1} x^3 dx + \int_{-2}^{-1} x^2 dx + \frac{1}{6} \left[2 \int_{-1}^{2} x^2 dx - \int_{-1}^{2} x^3 dx \right]$$

que desenvolvendo nos dá

$$\int_{-\infty}^{+\infty} x^2 f(x) dx = \frac{1}{2} \frac{x^4}{4} \Big|_{-2}^{-1} + \frac{x^3}{3} \Big|_{-2}^{-1} + \frac{1}{6} \left[2 \frac{x^3}{3} \Big|_{-1}^2 - \frac{x^4}{4} \Big|_{-1}^2 \right]$$

e finalmente

$$\int_{-\infty}^{+\infty} x^2 f(x) dx = \frac{(-1)^4 - (-2)^4}{8} + \frac{[(-1)^3 - (-2)^3]}{3} + \frac{1}{6} \left[2 \frac{(2)^3 - (-1)^3}{3} - \frac{2^4 - (-1)^4}{4} \right] = -\frac{15}{8} + \frac{7}{3} + \frac{1}{6} \left(6 - \frac{15}{4} \right) = \frac{5}{6} .$$

Com este resultado, obteremos a variância,

$$\int_{-\infty}^{+\infty} x^2 f(x) dx - \mu^2 = \frac{5}{6} - \left(-\frac{1}{3} \right)^2 = \frac{13}{18} \approx 0,7222 \quad .$$

d) Calcule a probabilidade $P(-1,2 \le X \le 1,8)$ para esta distribuição. **Resolução:**

A probabilidade neste caso será dada por $P(-1,2 < X < 1,8) = \int_{-1,2}^{-1} \left(\frac{x}{2} + 1\right) dx + \int_{-1}^{1,8} \frac{1}{6}(2-x) dx$

e daí,

$$P(-1,2 < X < 1,8) = \frac{1}{2} \int_{-1,2}^{-1} x \, dx + \int_{-1,2}^{-1} dx + \frac{1}{6} \left[2 \int_{-1}^{1,8} dx - \int_{-1}^{1,8} x \, dx \right] = \frac{1}{2} \frac{x^2}{2} \Big[_{-1,2}^{-1} + x \Big[_{-1,2}^{-1} + \frac{1}{6} \left[2 x \Big]_{-1}^{1,8} - \frac{x^2}{2} \Big]_{-1}^{1,8} \right] ,$$

ou ainda,

$$P(-1,2 < X < 1,8) = \frac{(-1)^2 - (-1,2)^2}{4} + (-1) - (-1,2) + \frac{1}{6} \left\{ 2[1,8 - (-1)] - \frac{1,8^2 - (-1)^2}{2} \right\} .$$

Finalmente termos

$$P(-1,2 < X < 1,8) = -0.11 + 0.2 + \frac{1}{6}(5,6-1,12) \approx 0.8367$$
.

6 – Sexta questão – (1,5 ponto)

Vários hospitais estavam sendo estudados para uma eventual ampliação de número de leitos. Colheram-se dados quanto ao tempo de ocupação de leitos. Se supos ainda que o modelo Normal é adequado à análise. Devido à levantamentos anteriores, supõe-se variância igual a 11,2 (dias)². Num hospital os dados colhidos indicaram média de 6,4 dias para 40 internações. Estime o intervalo de confiança para a média de dias de internação deste hospital com coeficiente de confiança de 95%. **Resolução:**

O intervalo de confiança é apresentado com $IC(\mu,\gamma) = \left[\bar{X} - z_{\gamma/2} \frac{\sigma}{\sqrt{n}}; \bar{X} + z_{\gamma/2} \frac{\sigma}{\sqrt{n}} \right]$.

Dos valores dados tiramos

$$\frac{\sigma}{\sqrt{n}} = \sqrt{\frac{11,2}{40}} = \sqrt{0,28} \approx 0,5292$$
 e $z_{0,95/2} = z_{0,475} = 1,96$

o que nos leva a escrever

$$IC(\mu,\gamma)=[6,4-1,96\times0,5292;6,4+1,96\times0,5292]$$

que nos dá o resultado

$$IC(\mu,\gamma)\approx[6,4-1,037;6,4+1,037]=[5,363;7,437]$$
.

Tabela da distribuição Normal N(0,1)

\mathbf{Z}_{C}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.