

Subminiature High Sensitivity Photo Interrupter ITR8307

Features:

ITR:

- FAST RESPONSE TIME.
- HIGHLY ANALYTICAL.
- CUTTING WAVELENGTH λp=840nm.
- THIN.
- COMPACT.

Descriptions:

The ITR8307 reflective sensors consist of an infrared emitting diode and an NPN silicon photo transistor mounted side by side in a black plastic housing. The photo transistor responds to radiation emitted from the diode only when a reflective object or surface is in the field of view of the detector.

Applications:

- · Camera.
- VCR.
- Floppy disk driver.
- Cassette type recorder.
- Various microcomputer control equipment.

Package Dimensions:

Absolute Maximum Ratings: (Ta=25°C)

	PARAMETER	SYMBOL	RATING	UNIT
Input	Power Dissipation	Pd	75	mW
	Reverse Voltage	Vr	5 50	V mA
	Forward Current	If		
	Peak Forward Current(*1)	Peak Forward Current(*1) Ifp		Α
Output	Collector Power Dissipation	Pc	100	mW
	Collector Current	lc	30	mA
	C-E Breakdown Voltage	B Vceo	30	V
	E-C Breakdown Voltage	B Veco	5	V
Operating Temperature		Topr	-20~+70	°C
Storage Temperature		Tstg	-30~+80	°C
Soldering	Temperature(*2)	Tsol 260		°C

^(*1) Tw=100μsec.,T=10 msec. (*2) 1/16 inch from body for 5 sec

Electro-Optical Characteristics: (Ta=25°C)

PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Input	Forward Voltage	Vf	-	1.2	1.6	٧	If = 20 mA
	Reverse Current	lr	-	-	10	μA	Vr = 5V
	Peak Wavelength	λр	•	940	-	nm	-
Output	Dark Current	Iceo	-	-	100	nA	Vce = 10V
	C-E Saturation Voltage	Vce (sat)	-	-	0.4	٧	Ic = 0.5 mA If = 20mA
Light Current		l.	0.1	•	-	mA	Vce = 5V
Leakage Current		Iceod	-	•	200	nA	If = 20mA
Speed	Rise Time	Tr	-	25	-	μSEC	Vcc=2V
	Fall Time	Tf	-	25		μSEC	lc=1mA RL=1KΩ

Fig-1 FORWARD CURRENT VS. AMBIENT TEMPERATURE

Ambient Temperature Ta(°C)

Fig-3 PEAK EMISSION WAVELENGTH VS. AMBIENT TEMPERATURE

Fig-5 RELATIVE RADIANT FLUX VS. AMBIENT TEMPERATURE

Fig-2 SPECTRAL DISTRIBUTION

Wavelength λ(nm)

Fig-4 FORWARD CURRENT VS. FORWARD VOLTAGE

Fig-6 RELATIVE RADIANT INTENSITY VS. ANGULAR DISPLACEMENT

Fig-1 COLLECTOR POWER DISSIPATION VS. AMBIENT TEMPERATURE

Fig-3 RELATIVE COLLECTOR CURRENT VS. AMBIENT TEMPERATURE

Fig-5 SPECTRAL SENSITIVITY

Fig-2 COLLECTOR DARK CURRENT VS. AMBIENT TEMPERATURE

Fig-4 COLLECTOR CURRENT VS. IRRADIANCE

Fig-6 COLLECTOR CURRENT VS. COLLECTOR-EMITTER VOLTAGE

Collector-Emitter Voltage Vce(V)

Fig-1 RELATIVE COLLECTOR CURRENT VS. DISTANCE BETWEEN ITR8307 AND CARD

Fig-2 RELATIVE COLLECTOR CURRENT VS. CARD MOVING DISTANCE

RESPONSE TIME VS. LOAD RESISTANCE

