Pre-lecture brain teaser

What is the context-free grammar of the following push-down automata:

ECE-374-B: Lecture 8 - Context-sensitive and decidable languages

Instructor: Nickvash Kani

February 9, 2023

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

What is the context-free grammar of the following push-down automata: $< \rightarrow OTI$ $\leq OTI$ $\leq OTI$ start $\varepsilon,\varepsilon\to\$$ 815-7 $\varepsilon, \varepsilon \to T$ 92 8,67 $\varepsilon, \varepsilon \to \mathsf{S}$ $\varepsilon, S \rightarrow 1$ $0,0 \rightarrow \varepsilon$ E,E >5 1, 1 $\rightarrow \varepsilon$ $\varepsilon, \$ \to \varepsilon$ qp_{2_1}

Closure properties of CFLs

Closure Properties of CFLs

$$G_1 = (V_1, T, P_1, S_1)$$
 and $G_2 = (V_2, T, P_2, S_2)$

Assumption: $V_1 \cap V_2 = \emptyset$, that is, non-terminals are not shared

Closure Properties of CFLs

$$G_1 = (V_1, T, P_1, S_1)$$
 and $G_2 = (V_2, T, P_2, S_2)$

Assumption: $V_1 \cap V_2 = \emptyset$, that is, non-terminals are not shared

Theorem

CFLs are closed under union. L_1, L_2 CFLs implies $L_1 \cup L_2$ is a CFL.

Theorem
$$L_3 = L_1 U L_2$$
 $P_3 = \begin{cases} S_3 \rightarrow S_1 \\ S_2 \end{cases}$

CFLs are closed under concatenation. L_1, L_2 CFLs implies $L_1 \cdot L_2$

is a CFL.

La = L1. L2 Pa = \(\left\) \(\l

Theorem

CFLs are closed under Kleene star.

If L is a CFL
$$\Longrightarrow$$
 L* is a CFL.

L* is a CFL.

$$L_5 = L_1^*$$

$$P_5 = L_1^*$$

Closure Properties of CFLs- Union

$$G_1 = (V_1, T, P_1, S_1)$$
 and $G_2 = (V_2, T, P_2, S_2)$

Assumption: $V_1 \cap V_2 = \emptyset$, that is, non-terminals are not shared.

Theorem

CFLs are closed under union. L_1, L_2 CFLs implies $L_1 \cup L_2$ is a CFL.

Closure Properties of CFLs- Concatenation

Theorem

CFLs are closed under concatenation. L_1, L_2 CFLs implies $L_1 \cdot L_2$ is a CFL.

Closure Properties of CFLs- Kleene star

Theorem

CFLs are closed under Kleene star.

If L is a CFL \Longrightarrow L* is a CFL.

Bad news: Canonical non-CFL

Theorem

$$L = \{a^nb^nc^n \mid n \ge 0\}$$
 is not context-free.

Proof based on pumping lemma for CFLs. See supplemental for the proof.

More bad news: CFL not closed under intersection

Theorem

CFLs are not closed under intersection.

$$\frac{L_{1}}{CP} = \{a^{n}b^{n}c^{m} \mid n, m \geq 0\}$$

$$L_{2} = \{a^{n}b^{m}c^{n} \mid n, m \geq 0\}$$

$$L_{1} \wedge L_{2} = \{a^{n}b^{n}c^{n} \mid n, m \geq 0\} \leftarrow \text{Not } CF$$

Even more bad news: CFL not closed under complement

Theorem

CFLs are not closed under complement.

Larger world of languages!

Non-recursively-enumerable

Remember our hierarchy of languages

Non-recursively-enumerable

You've mastered regular expressions.

Non-recursively-enumerable

Now what about the next level up?

Non-recursively-enumerable

On to the next one.....

Context-Sensitive Languages

Example

The language $L = \{a^n b^n c^n | n \ge 1\}$ is not a context free language.

Example

The language $L = \{a^n b^n c^n | n \ge 1\}$ is not a context free language. but it is a context-sensitive language!

•
$$V = \{S, A, B\}$$

• $T = \{a, b, c\}$
• $S \to abc|aAbc$,
• $Ab \to bA$,
• $Ac \to Bbcc$
• $bB \to Bb$
• $aB \to aa|aaA$

Example

The language $L = \{a^n b^n c^n | n \ge 1\}$ is not a context free language. but it is a context-sensitive language!

•
$$V = \{S, A, B\}$$

• $T = \{a, b, c\}$
• $S \to abc|aAbc$,
• $Ab \to bA$,
• $Ac \to Bbcc$
• $bB \to Bb$
• $aB \to aa|aaA$

 $S \rightsquigarrow aAbc \rightsquigarrow abAc \rightsquigarrow abBbcc \rightsquigarrow aBbbcc \rightsquigarrow aaAbbcc \rightsquigarrow aabAbcc$ → aabbAcc → aabbBbccc → aabBbbccc → aaBbbbccc

Context Sensitive Grammar (CSG) Definition

Definition

A CSG is a quadruple G = (V, T, P, S)

•
$$V$$
 is a finite set of non-terminal symbols
• T is a finite set of terminal symbols (alphabet)
• P is a finite set of productions, each of the form context. Free $\alpha \to \beta$
where α and β are strings in $(V \cup T)^*$.
• $S \in V$ is a start symbol

$$G = \left(\begin{array}{c} \text{Variables}, & \text{Terminals}, & \text{Productions}, & \text{Start var} \end{array}\right)$$

Example formally...

$$L = \{a^{n}b^{n}c^{n}|n \ge 1\}$$

$$V = \{S, A, B\}$$

$$T = \{a, b, c\}$$

$$S \to abc|aAbc,$$

$$Ab \to bA,$$

$$Ac \to Bbcc$$

$$bB \to Bb$$

$$aB \to aa|aaA$$

$$G = \left\{ \{S, A, B\}, \{a, b, c\}, \begin{cases} S \to abc | aAbc, \\ Ab \to bA, \\ Ac \to Bbcc \\ bB \to Bb \\ aB \to aa | aaA \end{cases} \right\}$$

Other examples of context-sensitive languages

$$L_{cross} = \{a^{m}b^{n}c^{m}d^{n}|m,n \geq 1\}$$

$$L_{1} = a^{m}C^{m} \qquad L_{2} = B^{n}d^{n}$$

$$L_{3} \rightarrow a^{3}C \mid E \qquad R_{2} : S_{2} \rightarrow BS_{2}d\mid E$$

$$CB \rightarrow BC$$

$$B \rightarrow B$$

$$C \rightarrow C$$

Turing Machines

"Most General" computer?

- DFAs are simple model of computation.
- Accept only the regular languages.
- Is there a kind of computer that can accept any language, or compute any function?
- Recall counting argument. Set of all languages: $\{L \mid L \subseteq \{0,1\}^*\}$ is countably infinite / uncountably infinite

"Most General" computer?

- DFAs are simple model of computation.
- Accept only the regular languages.
- Is there a kind of computer that can accept any language, or compute any function?
- Recall counting argument. Set of all languages: $\{L \mid L \subseteq \{0,1\}^*\}$ is countably infinite / uncountably infinite
- Set of all programs:
 {P | P is a finite length computer program}:
 is countably infinite / uncountably infinite.

"Most General" computer?

- DFAs are simple model of computation.
- Accept only the regular languages.
- Is there a kind of computer that can accept any language, or compute any function?
- Recall counting argument. Set of all languages: $\{L \mid L \subseteq \{0,1\}^*\}$ is countably infinite / uncountably infinite
- Set of all programs:
 {P | P is a finite length computer program}:
 is countably infinite / uncountably infinite.
- **Conclusion:** There are languages for which there are no programs.

Non-recursively-enumerable

Onto our final class of languages - recursively enumerable (aka Turing-recognizable) languages.

What is a Turing machine

Turing machine

- Input written on (infinite)
 one sided tape.
- Special blank characters.
- Finite state control (similar to DFA).
- Everystep: Read character under head, write character out, move the head right or left (or stay).

High level goals

- Church-Turing thesis: TMs are the most general computing devices. So far no counter example.
- Every TM can be represented as a string.
- Existence of Universal Turing Machine which is the model/inspiration for stored program computing. UTM can simulate any TM
- Implications for what can be computed and what cannot be computed Dec: debilify

Examples of Turing

turingmachine.io

binary increment

Turing machine: Formal definition

A <u>Turing machine</u> is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$

- Q: finite set of states.
- Σ: finite input alphabet.
- Γ: finite tape alphabet.
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$: Transition function.
- $q_0 \in Q$ is the initial state.
- $q_{acc} \in Q$ is the <u>accepting</u>/<u>final</u> state.
- $q_{\text{rej}} \in Q$ is the <u>rejecting</u> state.
- □ or : Special blank symbol on the tape.

Turing machine: Transition function

$$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$$

As such, the transition

- $\delta(q,c)=(p,d,L)$
- q: current state.
- c: character under tape head.
- p: new state.
- d: character to write under tape head
- L: Move tape head left.

Can also be written as

$$c \rightarrow d, L$$
 (2)

Turing machine: Transition function

$$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$$

As such, the transition

$$\delta(q,c) = (p,d,L)$$

- q: current state.
- c: character under tape head.
- p: new state.
- d: character to write under tape head
- L: Move tape head left.

Missing transitions lead to hell state.

"Blue screen of death."

"Machine crashes."

Some examples of Turing machines

turingmachine.io

- equal strings TM
- palindrome TM

Languages defined by a Turing machine

Recursive vs. Recursively Enumerable

• Recursively enumerable (aka RE) languages

Twing recognizable
$$L = \{L(M) \mid M \text{ some Turing machine} \}.$$

Recursive / decidable languages

```
L = \{L(M) \mid M \text{ some Turing machine that halts on all inputs} \}.
```

Recursive vs. Recursively Enumerable

· Recursively enumerable (aka RE) languages (bad)

 $L = \{L(M) \mid M \text{ some Turing machine}\}.$

· Recursive / decidable languages (good)

 $L = \{L(M) \mid M \text{ some Turing machine that halts on all inputs} \}.$

Recursive vs. Recursively Enumerable

· Recursively enumerable (aka RE) languages (bad)

$$L = \{L(M) \mid M \text{ some Turing machine}\}.$$

· Recursive / decidable languages (good)

 $L = \{L(M) \mid M \text{ some Turing machine that halts on all inputs} \}.$

- Fundamental questions:
 - What languages are RE?
 - Which are recursive?
 - What is the difference?
 - What makes a language decidable?

What is Decidable?

Decidable vs recursively-enumerable

A semi-decidable problem (equivalent of recursively enumerable) could be:

- Decidable equivalent of recursive (TM always accepts or rejects).
- Undecidable Problem is not recursive (doesn't always halt on negative)

There are undecidable problem that are not semi-decidable (recursively enumerable).

Infinite Tapes? Do we need them?

Let's look at the TM that recognizes $L = \{a^n b^n c^n | n \ge 0\}$:

Linear Bounded Automata

- (Nondeterministic) Linear bounded automata can recognize all context sensitive languages.
- Machine can non-deterministically apply all production rule to input in reverse and see if we end up with the start token.

Well that was a journey....

Zooming out

Grammar	Languages	Production Rules	Automation	Examples	
Type-0	Turing machine	$\gamma o \alpha$ (no constraints)	Turing machine	$L = \{w w \text{ is a TM whihe halts}\}$	
Type-1	Context-sensitive	$lpha$ A $eta ightarrow lpha \gamma eta$	Linear bounded Non-deterministic Turing machine	$L = \{a^n b^n c^n n > 0\}$	
Type-2	Context-free	$A o \alpha$	Non-deterministic Push-down automata	$L = \{a^n b^n n > 0\}$	1
Type-3	Regular	$A \rightarrow aB$	Finite State Machine	$L = \{a^n n > 0\}$	

Meaning of symbols:

- a = terminal
- A, B = variables
- α, β, γ = string of $\{a \cup A\}^*$
- α, β = maybe empty γ = never empty