USN	

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

IV Semester B. E. Fast Track Examinations Oct-2020

Computer Science and Engineering

DESIGN AND ANALYSIS OF ALGORITHMS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B.In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6 $\,$

PART A

1 1.1	Arrange the following functions according to their order of growth from		
	highest to lowest 3^n , \sqrt{n} , $\log_e^2 n$, $5 \log_{10} (n+10)^{100}$, 2^{2n} , $(n-2)!$	02	
1.2	Evaluate $T(n) = 4T\left(\frac{n}{2}\right) + n^3$ by master theorem.	02	
1.3	Compare and contrast <i>DFS</i> & <i>BFS</i> .	02	
1.4	On constructing a 2-3 tress for the list 10, 6, 9, 4, 3, 5, 8. Identify the root node and its children.	02	
1.5	What does dynamic programming have in common with and differences from divide and conquer.	02	
1.6	State the basic operation in computing binomial coefficient $C(n,k)$ using dynamic programming. Write the recurrence along with base case to represent the number of times the basic operation gets executed.	02	
1.7	Find the number of paths of length 3 in the following graph.		
		02	
1.8	How many character comparisons will be made by Horspool's algorithm in searching the following pattern's in the text of 1000 <i>A's</i> ? a) <i>BAAAA</i> b) <i>ABABA</i>	02	
1.9	Compare and contrast Backtracking & Branch and Bound.	02	
1.10	Construct a good suffix table for the pattern BAGBAG.	01	
1.11	Find the number of bits used to represent <i>D</i> in Huffman coding for the following data		
	$\begin{array}{ c c c c c c }\hline \textit{Character} & A & B & C & D\\\hline \end{array}$		
	Probability 0.1 0.4 0.2 0.3	01	

PART B

2	a	Suggest a general plan for analyzing the efficiency of a recursive algorithm.	
		Write a recursive algorithm to count the number of binary digits for a given	
		number. Analyze it mathematically based on the plan suggested above.	08

	b	If $t_1(n) \in O(g_1(n))$ and $t_2(n) \in O(g_2(n))$ Prove that	
	0	$t_1(n) + t_2(n) \in O(\max(g_1(n), g_2(n)))$ Write the sieve of Eratosthenes algorithm for generating prime numbers	04
	С	upto n (Where n is a positive integer ≥ 2)	04
		apto ii (wilere ii io a positive iiiteger = 2)	
3	а	Design an algorithm to merge two sorted arrays. Discuss about the	
	_	efficiency of merge sort.	06
	b	Write the pseudocode of insertion sort. Trace the algorithm for the list.	06
	С	E X A M P L E Compute the median for the given set of elements using decrease and	00
	Č	conquer 4, 1, 10, 9, 7, 12, 8, 2, 15	04
		OR	
4	_	Weite the grandered of the DEC transport Apple DEC heard alregister to	
4	a	Write the pseudocode of the <i>DFS</i> traversal. Apply <i>DFS</i> based algorithm to perform the topological ordering of the graph in Fig 4a.	
		perioriii the topological ordering of the graph in Fig. 7a.	
		(F)2	
		Fig 4a	06
	b	Design an algorithm for generating permutations using the method	
		suggested by Johnson Trotter. Trace the above for $n = 4$.	06
	С	Compute 236 × 1234 using divide and conquer.	04
5	a	Write the pseudocode for the bottom-up heap construction. Trace the above	
	а	algorithm for the list 1, 8, 6, 5, 3, 7, 4	06
	b	Design Horspool algorithm and trace it to search a pattern BAOBAB in a text	
		BESS_KNEW_ABOUT_BAOBAB. Show total number of comparisons made.	06
	С	Construct a 2-3 tree for the following elements: A L G O R I T H M	04
		OR	
		OK .	
6	a	Construct a max-heap using top down approach for the elements	
		14, 12, 9, 8, 7, 10, 18. Apply heap sort for the same.	06
	b	Apply Boyer Moore's algorithm to find the pattern AT_THAT in the text	06
	c	WHICH_FINALLY_HALTS_RVCE_AT_THAT Define a 2-3 tree with an example. Comment about the efficiency of	06
	C	performing insertion operation in a 2-3 tree	04
7	a	Write prim's algorithm. Apply the same for the graph shown in fig 7a	
		(B) (C)	
		3 4 4 6	
		© 5 ©	
		5	
		3 10 00 4	
		Fig 7a	06
		O	

	b	Solve the following instance of the knapsack problem using dynamic programming capacity of knapsack $W = 5$	
		Item Weight Value 1 2 12 2 1 10 3 3 20 4 2 15	06
	c	Design an algorithm to compute $6C_5$ or $C(6,5)$	04
8	a b	Design a backtracking algorithm to solve the sum of subset problem. Apply the same for the inputs. $S = \{2, 3, 5, 6, 7\}$ $d = 10$ Apply branch and bound technique to solve the travelling salesman problem(TSP) for the instance given below in fig 8b	08
		3 B 5 G 7 7 8 3 9	
		Fig 8b	08