STOR 614 Homework Assignment No. 8

1. Consider the LP

$$\begin{array}{rcl}
\max & c^T x \\
\text{s.t.} & Ax &=& b \\
& x & \geq & 0
\end{array}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$. Suppose that A has linearly independent rows, and that the primal simplex method terminates with the conclusion that the LP is unbounded. Explain how to obtain an extreme ray d of the feasible set of the LP with $c^T d > 0$.

Hint: Denote the basic variables in the last simplex tableau by $x_{B(1)}, \dots, x_{B(m)}$, and let A_B be the basis matrix. Suppose that x_j is a nonbasic variable with negative reduced cost and that the jth column of the tableau, $A_B^{-1}A_j$, has no positive elements. Let $d^* \in \mathbb{R}^n$ be defined as $d_B^* = -A_B^{-1}A_j$ and $d_j^* = 1$ and $d_i^* = 0$ for every nonbasic index i other than j. Show that d^* satisfies the desired properties: (1) show that d^* satisfies $Ad^* = 0$ and $d^* \geq 0$, so that it belongs to the recession cone of the feasible set; (2) show that d^* has n-1 linearly independent active constraints among all constraints defining the recession cone of the feasible set.

- 2. Let f be a convex function from \mathbb{R}^n to \mathbb{R} , and let g be a convex and nondecreasing function from \mathbb{R} to \mathbb{R} . (A nondecreasing function g from \mathbb{R} to \mathbb{R} satisfies $g(y) \leq g(z)$ whenever $g \leq z$.) Prove the function f defined by f(x) = g(f(x)) is a convex function on \mathbb{R}^n .
- 3. For each part below, use Karush-Kuhn-Tucker conditions to verify the given vector x^* is a global solution to the given quadratic program. Do those quadratic programs have multiple global solutions?

(a)
$$x^* = (3, 2)$$
.

$$\min \quad z = x_1^2 + 4x_2^2 - 8x_1 - 16x_2$$
s.t. $x_1 + x_2 \le 5$
 $x_1 \le 3$
 $x_1 \ge 0$
 $x_2 \ge 0$

(b)
$$x^* = (2/3, 4/3)$$
.

$$\begin{aligned} & \min & z = \frac{1}{2}x_1^2 - x_1x_2 + x_2^2 - 2x_1 - 6x_2 \\ & \text{s.t.} & x_1 + x_2 \leq 2 \\ & -x_1 + 2x_2 \leq 2 \\ & 2x_1 + x_2 \leq 3 \\ & x_1 \geq 0 \\ & x_2 \geq 0 \end{aligned}$$

4. Consider the half space defined by $H = \{x \in \mathbb{R}^n \mid a^Tx + \alpha \geq 0\}$ where $a \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ are given. Formulate the problem of finding the point x in H with the smallest Euclidean norm as a quadratic program, and solve it by using Karush-Kuhn-Tucker conditions.