Criptografia/Criptografia Aplicada 2020/2021 – Época Normal – 18 Janeiro de 2021 Duração: 2h Número mecanográfico: Nome completo: Grupo 1 - Segurança Criptográfica e Aleatoriedade (15%) 1.1. One Time Pad. O One-Time-Pad é seguro num modelo de ataque em que o adversário pode ter as seguintes capacidades pode ser computacionalmente ilimitado desde que observe apenas um criptograma criado com cada chave As duas limitações principais práticas do One-Time-Pad são chaves do tamanho das mensagens, chaves simétricas pré-partilhadas que só podem ser utilizadas uma vez 1.2. Distribuições Simples. Seja p>2 um inteiro primo, e $\ell>0, \lambda\geq\ell$ inteiros. Seja $x\leftarrow_\$[k]$ a operação de amostrar um valor com a distribuição uniforme do conjunto de inteiros $\{0,\ldots,k-1\}$. As seguintes distribuições são uniformes? Distribuição SimNão Distribuição SimNão $\{x \mod p \mid x \leftarrow_{\$} [2^{\lambda}] \}$ $\{x \mod p \mid x \leftarrow_{\$} [p] \}$ X $\{x \mod p \mid x \leftarrow_{\$} [2^{\lambda} \cdot p] \}$ $\{x \mod p \mid x \leftarrow_{\$} [2^{\lambda} + p] \}$ $\{x \mod p \mid x \leftarrow_{\$} [2^{\lambda+p}] \}$ $\{x \mod 2^{\ell} \mid x \leftarrow_{\$} [2^{\lambda}] \}$ х Х $\{x \mod 2^{\ell} \mid x \leftarrow_{\$} [2^{\lambda} \cdot p] \}$ $\{x \mod 2^{\ell} \mid x \leftarrow_{\$} [p] \}$ Х $\{x \mod 2^{\ell} \mid x \leftarrow_{\$} [2^{\lambda+p}] \}$ $\{x \mod 2^{\ell} \mid x \leftarrow_{\$} [2^{\lambda} + p] \}$ 1.3. Pseudo-Aleatoriedade Um processo que consome λ bits de aleatoriedade e produz outputs de tamanho 2λ (pode/não pode) não pode produzir distribuições uniformes sobre o seu contradomínio. Um processo que consome 2λ bits de aleatoriedade e produz outputs de tamanho λ (pode/não pode) $|_{pode}$ produzir distribuições uniformes sobre o seu contradomínio. Um algoritmo (probabilístico/determinístico) que consome λ bits de aleatoriedade é um gerador pseudodeterministico aleatório se o output produzido for indistinguível de uma string uniforme Um gerador pseudo-aleatório recebe como input uma sequência de bits, conhecida como amostrada de seed/semente uma distribuição uniforme

1.4. Segurança Heurística e Demonstrável

De que forma é justificada a segurança das seguintes primitivas/construções criptográficas.

${\bf Construção/primitiva}$	Demonstrável	Heurística
Counter-Mode	x	
Davis-Meyer	х	
Função RSA		х
Problema Diffie-Hellman		х
Merkle-Damgard	х	
AES		x

1.5. Desenvolvimento. (5%)

de segurança perieita e	ataque por força bru	ta. Discuta de que i	orma se aplicam es	tes conceitos
	ue segurança periena e	de segurança perietra e araque por torça oru	de segurança periena e anaque por lorga bruna. Discuna de que r	de segurança perfeita e ataque por força bruta. Discuta de que forma se aplicam es

Num. Mec.										Nome:
-----------	--	--	--	--	--	--	--	--	--	-------

Grupo 2 - Criptografia Simétrica (30%)

2.1. Aplicações do AES.

a) Considere o seguinte diagrama

b) Considere os seguintes diagramas, em que do lado esquerdo M_3 é do tamanho do input de E_k e do lado direito isto não acontece.

PRF/PRP

2.2. Cifras Simétricas					
O RC4 é uma construção de cifra sequencial	cuja utilização atualm	nente é insegur	a/não recomenc	dada .	
O núcleo do RC4 é uma construção de	PRG/gerador pseudo-aleatório	em que a ch	ave da cifra	a é utilizada con	semente.
Como em todas as cifras deste tipo, o núcle	leo tem de ser determinís	tico porque na	ı operação o	de decifração	
a decifração tem de gerar o mesmo stream de chaves					
2.3. Merkle Damgård					
A construção Merkle Damgård transforma	a uma função de compressã	0	numa	função de hash	
Em termos da sua segurança, a construção for resistente a colisões	o de Merkle Damgård é	resistente a coli	isões	se o seu sub-	componente
A construção de Davis-Mayer transforma u	ıma cifra de blocos	numa	função de co	omoressão	, e relaciona
se com a construção de Merkle Damgård po		omponente fundame	•		<u></u>
Uma função de hash com tamanho de outproda/2) passos e que usualmente se chama Por este motivo, quando se pretende um utilizadas é geralmente 2 * lambda A construção Poly-1305 tem um output cem dia) e não é vulnerável ao ataque anterio	birthday attack ou ataque do an nível de segurança de com tamanho	iversário λ bits, o tanits (o número	nanho do c		ões de hash usado hoje
2.5. Desenvolvimento. (10%) Explique a construção de Wegman-Carter	r e discuta até que ponto	poderá ser u	ma função j	pseudo-aleatória	

Jum .	${\rm Mec.}$										Nome:			
Gru	ро 3	- C	ript	ogr	afia	Ass	simé	tric	ca (2	5%)				
3.1	. Apli	icaçõ	ões d	lo R	SA.									
a	a) O pro	obler	na R	SA di	iz que	e, par	a par	âmet	tros p	úblio	$\cos{(n,e)}$ e função $RSA($	$f(x) := x^e \mod n \mathrm{\acute{e}} \mathrm{d} x$	ifícil	
	invert	er a fu	nção (e	ncontra	ar x) se	x for es	scolhido	de foi	rma ale	atória				
b	o) O va	$\operatorname{lor} y$	=R	SA(r)	n) nã	o gar	ante	confi	denci	ialida	ade de m porque			
	é deterr	minístic	o e, po	rtanto,	insegur	o no m	odelo I	ND-CP	PA					
c	e) O pro	obler	na R	SA é	o pre	ssupo	osto c	omp	utaci	onal	subjacente ao esquema	RSA-OAEP	que garar	nte confiden-
c	ialidad	le de	acord	lo co	m o n	nodel	О	IND-CF	PA/IND-	-CCA				
3.2	. Apli	icaçõ	ões d	lo D	iffie-	Hell	man							
a	ı) () pr	oblei	na co	mnii	tacio:	nal D	iffie-	Hellr	nan d	liz aı	ıe, para num grupo G d	e tamanho primo a	gerador a e	operação de
	rupo o				s g^x e							o tamamo primo q,	gerador g e	operação de
1.	.) ()	-1-1			4:	l D	.:c:	TT - 11				_11 :		
	, -			_						_	essuposto computaciona	ai subjacente ao esqu	1ema ElGam	nal
q	ue gara	ante	confi	dencı	alida	de de	acor	do co	om o i	mode	elo IND-CPA			
3.3	. Prol	blem	as c	omp	utac	iona	is.							
a	a) Atri	bua ((1) ou	ı (2)	aos p	orobl	emas	em	cada	uma	das linhas seguintes, p	eara que façam senti	do na frase	:
	Se exist eficient					e reso	olve d	le for	ma e	ficier	nte o problema (1), enti	ão existe um algoritn	no que reso	lve de forma
I	Diffie-H	Hellm	an C	omp	utatio	onal	2		L	ogar	itmo Discreto	1		
I	Factori	zaçã	o de l	Intei	ros		1		P	Probl	ema RSA	2		
I	Encont	rar (Colisõ	ões er	n H		2		E	Encor	ntrar pré-imagens em H	[1		
	o) Nas s prob				eriore	s os j	probl	emas	s (1) s	são p	otencialmente mais (fá	ceis/difíceis) difíceis	de	resolver que
3.4	. Cifr	as A	ssim	étri	cas.									
Um	na cifra	assi	métr	ica p	ermit	te ao	emis	sor e	envia	r info	ormação com garantias	de confidencialidade a	ao recetor r	necessitando
par	a isso	de ga	aranti	ias d	e au	tenticid	ade	sol	bre a	chav	re pública do rec	cetor.		
As	cifras a	assin	nétric	as ut	ilizar	n ger	alme	nte o	o para	adigr	ma KEM/DEM, e são p	portanto técnicas	híbridas	porque
		n 46 ami		ótriono	a accir	nátrico								

3.5. Assinaturas Digitais.
a) Uma assinatura digital deve garantir autenticidade, integridade e não repúdio
$\max ext{ n\~ao garante} \hspace{0.5cm} \boxed{\hspace{0.5cm} ext{confidencialidade}} \hspace{0.5cm}.$
O algoritmo de verificação de uma assinatura digital recebe como inputs mensagem, assinatura e chave pública
e retorna um bit/boleano a indicar validade/invalidade
b) A assinatura de Schnorr consiste num par (r, s) , em que $r = g^k$ e $s = k - x \cdot H(r M)$. Explique porque é que a repetição da aleatoriedade r permite um ataque a este esquema.
3.6. Desenvolvimento. (10%)
A assinatura digital RSA Full Domain Hash calcula $\sigma = H(m)^d \mod n$. Explique como funciona o processo de verificação da assinatura e porque é que a propriedade da unidirecionalidade da função RSA poderá não ser suficiente para garantir a segurança da construção.

Num.	Mec.									Nome		
Gru	po 4	- P	roto	col	os e	PK	I (30	1%)				
4.1	. Cifra	ıs Au	ıtenti	icada	S							
	a) A c mplem									insegura ura e um MAC	(segura/insegura) que é uma PRF.	no modelo IND-CPA se for
	A cifra nentad									gura (- , - ,	modelo IND-CPA se for imple-
5	Se escre	eveu	inse	gura	em ı	ıma c	ou na	s duas	frases	acima, justifiqu	e:	
L												
Ţ	Jma cit	ra au	ıtenti	icada	gara	nte as	s prop	oriedac	des de s	egurança confid	lencialidade, autenticidade, inte	egridade
ı	a) A pr	imiti	vo Al	EVD	á difa	pronte	o do u	ma cif	ra auto	nticada porque	normito autontinar matadad	en juntamento com a arintograma
Ι.) A pr	1111101	.va A	EAD	e dile	леше	; de u.		ra aute	nticada porque	permite autentical metadado	os juntamente com o criptograma
L												
F											olos como TLS porque	
	a auto	enticaç	ão de n	netadao	dos per	mite aut	tenticar	o heade	r/números	de sequência e oferec	e as garantias de segurança n	ecessárias num canal seguro
A	As duas	cons	struç	ões d	e AE	AD re	ecome	endada	as pela v	versão 1.3 do TI	S são	
	AES-G	CM, Cł	naCha2	:0-Poly1	1305							
4.2	. Gest	ão de	e Cha	aves								
					J.			-4 J-		:	:	
	m cena nto a p					1	· · · I			umcar utilizand	o criptograna simetri	ca com garantias de segurança
a	a) se u	tiliza	rmos	ape:	nas p	ré-di	stribı	ıição (de chav	ves de longa du	ração, no mínimo, ca	ada utilizador necessita de ar-
	nazena luração		N-1		ch	aves (de for	та ре	ermane	nte, e globalmer	te teremos de gerir	N*(N-1)/2 chaves de longa
ŀ	o) se ut	iliza	rmos	um a	igente	e de c	onfia	nça pa	ıra distı	ribuição de chav	es de sessão, cada util	lizador necessita de armazenar
	1		cł	naves	de fo	rma	perm	anente	e, e glol	balmente terem	os de gerir N	chaves de longa duração.
C	e) O qu	ie mi	uda r	elativ	vamei	nte à	alíne	a b) se	e consid	derarmos a utili	zação de criptografia	assimétrica?

4.3. Certificados de Chave Pública
Os certificados de chave pública podem ser transferidos por canais inseguros desde que
desde que não sejam de raiz/desde que possam ser validados utilizando outros certificados
Um certificado de raiz pode ser facilmente reconhecido porque
é assinado pelo titular/auto-assinado/o issuer e o subject são o mesmo
A assinatura digital num certificado de raiz não é relevante para a sua segurança porque
a confiança é estabelecida por um canal não criptográfico e o certificado não é validado com base na assinatura (confiança implícita)
(Bónus) Dê um exemplo de uma assinatura insegura, mas que seja utilizada na prática exatamente no contexto anterior assinaturas com base em SHA-1
4.4. Desenvolvimento. (10%)
Suponha que dois agentes A e B estabelecem uma chave criptográfica utilizando o protocolo Diffie-Hellman autenticado (e.g., Station-to-Station).
A e B utilizam chaves públicas certificadas pelas Autoridades de Certificação CA_A e CA_B , respectivamente, ambas subordinadas da mesma CA Root em quem A e B confiam implicitamente.
Suponha que um atacante obtém a chave privada de CA Root. Discuta em que circunstâncias poderia quebrar:
a) uma sessão estabelecida no passado (antes da corrupção da chave de CA Root) e
b) uma sessão a estabelecer no futuro.