In the Claims

- 1. (original) A composition comprising
- A) a thermoplastic polymer and
- B1) a triblock-copolymer of the formula B-C-B; or
- B2) a graft copolymer wherein a polymer block B is grafted onto a polymer C to form a comb copolymer of idealized formula C-B(n) wherein n is greater than 2; wherein

the polymer block B is compatible to the thermoplastic polymer A); and the polymer block C has a glass transition temperature of at least 20° K below the glass transition temperature of the thermoplastic polymer A); and the average molecular weight M_w of the triblock-copolymer B1) or grafted comb copolymer B2) is below 50 000.

- **2.** (currently amended) A composition according to claim 1 wherein the thermoplastic polymer A is selected from the group consisting of polyethylene, polypropylene, polystyrene, polyacrylate, polymethacrylate, polyvinylchloride, polyphenyleneoxide, polyvinylacetate, polyamide and polyester.
- **3.** (currently amended) A composition according to claim 1 wherein the block polymer C is selected from the group consisting of poly-n-butylacrylate, polyisoprene, polybutadiene, polyethylacrylate[[,]] and polysiloxane.
- **4. (original)** A composition according to claim 1 wherein the polymer block B is selected from the group consisting of polyisoprene, polybutadiene, polystyrene polymethacrylate and polyacrylate.
- 5. (original) A composition according to claim 1 wherein
 the thermoplastic polymer A and the triblock-copolymer B-C-B are
 polystyrene polystyrene polystyrene,
 polystyrene-polyisoprene-polystyrene,

polystyrene
polystyrene
polystyrene
polyethylene
polypropylene
polymethylmethacrylate
polyamide
polyester
polyvinylchloride
polyvinylchloride
polyphenyleneoxide
polyvinylacetate

polystyrene-polybutadiene-polystyrene,
polystyrene-polysiloxane-polystyrene,
polystyrene-polyethylacrylate-polystyrene,
polyisoprene-polysiloxane-polyisoprene,
polyisoprene-polysiloxane-polyisoprene,
polymethylacrylate-polysiloxane-polymethylacrylate,
polyethylacrylate-polysiloxane-polyethylacrylate,
polyethylacrylate-polysiloxane-polyethylacrylate,
polyethylacrylate-polysiloxane-polyethylacrylate,
poly-n-butylacrylate-polysiloxane-poly-n-butylacrylate,
polystyrene-polysiloxane-polystyrene or
polymethylacrylate-polysiloxane-polymethylacrylate.

- **6. (original)** A composition according to claim **1** wherein the glass transition temperature of the polymer block C is 50° K below the glass transition temperature of the thermoplastic polymer A.
- **7.** (original) A composition according to claim 1 wherein the average molecular weight M_w of the triblock-copolymer or graft-copolymer is below 30000.
- **8.** (original) A composition according to claim 1 wherein the polymer block C is a polysiloxane.
- **9.** (currently amended) A composition according to claim 1 wherein the triblock-copolymer or graft graft[[-]]_copolymer is present in an amount of from 0.1 to 10 % by weight, based on the weight of the thermoplastic polymer A).
- **10.** (currently amended) A process for the preparation of a triblock-copolymer or-graft graft[[-]] copolymer via controlled free radical polymerization comprising the steps of

a) reacting a polysiloxane, in the presence of a functional alkoxyamine of formula (I)

b) reacting the resulting alkoxyamine terminated polysiloxane with an ethylenically unsaturated monomer at a temperature between 60 and 160° C, wherein

X represents a group having at least one carbon atom and is such that the free radical

n is a number from 0-18;

R and R' are independently tertiary bound C₄-C₂₈alkyl groups which are unsubstituted or substituted by one or more electron withdrawing groups or by phenyl; or

R and R' together form a 5 or 6 membered heterocyclic ring which is substituted at least by 4 C₁-C₄alkyl groups and which may be interrupted by a further nitrogen or oxygen atom.

11. (original) A process according to claim 10 wherein the functional alkoxyamine is of formula (II)

$$R_2$$
 R_1 R_6 R_6

wherein

Y is a direct bond, O, NH, C(O)O or S;

n is a a number from 0-18.

R₁, R₂, R₃ and R₄ are independently of each other C₁-C₄alkyl;

R₅ is hydrogen or C₁-C₄alkyl;

 R_{6}' is hydrogen and R_{6} is H, OR_{10} , $NR_{10}R_{11}$, $-O-C(O)-R_{10}$ or $NR_{11}-C(O)-R_{10}$;

 R_{10} and R_{11} independently are hydrogen, C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkinyl or C_2 - C_{18} alkyl which is substituted by at least one hydroxy group or, if R_6 is $NR_{10}R_{11}$, taken together, form a C_2 - C_{12} alkylene bridge or a C_2 - C_{12} -alkylene bridge interrupted by at least one O atom; or

R₆ and R'₆ together are both hydrogen, a group =O or =N-O-R₂₀ wherein

 R_{20} is H, straight or branched C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl or C_3 - C_{18} alkinyl, which may be unsubstituted or substitued, by one or more OH, C_1 - C_8 alkoxy, carboxy, C_1 - C_8 alkoxycarbonyl;

C₅-C₁₂cycloalkyl or C₅-C₁₂cycloalkenyl;

phenyl, C₇-C₉phenylalkyl or naphthyl which may be unsubstituted or substituted by one or more C₁-C₈alkyl, halogen, OH, C₁-C₈alkoxy, carboxy, C₁-C₈alkoxycarbonyl;

-C(O)-C₁-C₃₆alkyl, or an acyl moiety of a α , β -unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

 $-SO_3^-Q^+$, $-PO(O^-Q^+)_2$, $-P(O)(OR_2)_2$, $-SO_2^-R_2$, $-CO-NH-R_2$, $-CONH_2$, $COOR_2$, or $Si(Me)_3$, wherein Q^+ is H^+ , ammnonium or an alkali metal cation; or

 R_6 and R_6 ' are independently -O-C₁-C₁₂alkyl, -O-C₃-C₁₂alkenyl, -O-C₃-C₁₂alkinyl, -O-C₅-C₈cycloalkyl, -O-phenyl, -O-naphthyl, -O-C₇-C₉phenylalkyl; or

 R_6 and R'_6 together form one of the bivalent groups -O-C(R_{21})(R_{22})-CH(R_{23})-O-, -O-CH(R_{21})-CH₂₂-C(R_{22})(R_{23})-O-, -O-CH(R_{22})-CH(R_{23})-O-, -O-O-phenylene-O-, -O-1,2-cyclohexyliden-O-,

 R_{21} is hydrogen, C_1 - C_{12} alkyl, COOH, COO- $(C_1$ - C_{12})alkyl or CH_2OR_{24} ; R_{22} and R_{23} are independently hydrogen, methyl ethyl, COOH or COO- $(C_1$ - C_{12})alkyl; and R_{24} is hydrogen, C_1 - C_{12} alkyl, benzyl, or a monovalent acyl residue derived from an aliphatic,

cycloaliphatic or aromatic monocarboxylic acid having up to 18 carbon atoms.

12. (currently amended) A triblock-copolymer or graft[[-]]_copolymer obtained via a controlled free radical polymerization process according to claim **10**.

13. (currently amended) A composition according to claim 1 comprising

A) a thermoplastic polymer and

B1) a triblock-copolymer of the formula B-C-B; or

B2) a graft copolymer wherein a polymer block B is grafted onto a polymer C to form a comb copolymer of idealized formula C-B(n) wherein n is greater than 2; wherein

the polymer block B is compatible to the thermoplastic polymer A); and

the polymer block C has a glass transition temperature of at least 20° K below the glass transition temperature of the thermoplastic polymer A);

and the average molecular weight M_w of the triblock-copolymer B1) or grafted comb copolymer B2) is below 50 000,

wherein the triblock-copolymer or graft[[-]]_copolymer is prepared via controlled free radical polymerization according to claim 109.

14. (currently amended) Use of a triblock-copolymer or graft graft-copolymer prepared according to claim 1 as additive A process for enhancing the melt flow of a thermoplastic polymer[[s]] during processing, which process comprises

adding a triblock-copolymer or graft copolymer according to claim 1 to a thermoplastic polymer and processing the polymer.

15. (original) A compound of formula IIa

wherein

 R_1 , R_2 , R_3 and R_4 are independently of each other C_1 - C_4 alkyl;

R₅ is hydrogen or C₁-C₄alkyl;

 R'_{6} is hydrogen and R_{6} is H, OR_{10} , $NR_{10}R_{11}$, -O-C(O)- R_{10} or NR_{11} -C(O)- R_{10} ;

 R_{10} and R_{11} independently are hydrogen, C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkinyl or C_2 - C_{18} alkyl which is substituted by at least one hydroxy group or, if R_6 is $NR_{10}R_{11}$, taken together, form a C_2 - C_{12} alkylene bridge or a C_2 - C_{12} -alkylene bridge interrupted by at least one O atom; or

R₆ and R'₆ together are both hydrogen, a group =O or =N-O-R₂₀ wherein

R₂₀ is H, straight or branched C₁-C₁₈alkyl, C₃-C₁₈alkenyl or C₃-C₁₈alkinyl, which may be unsubstituted or substitued, by one or more OH, C₁-C₈alkoxy, carboxy, C₁-C₈alkoxycarbonyl;

C₅-C₁₂cycloalkyl or C₅-C₁₂cycloalkenyl;

phenyl, C_7 - C_9 phenylalkyl or naphthyl which may be unsubstituted or substituted by one or more C_1 - C_8 alkyl, halogen, OH, C_1 - C_8 alkoxy, carboxy, C_1 - C_8 alkoxycarbonyl;

-C(O)-C₁-C₃₆alkyl, or an acyl moiety of a α , β -unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

 $-SO_3^-Q^+$, $-PO(O^-Q^+)_2$, $-P(O)(OR_2)_2$, $-SO_2^-R_2$, $-CO-NH-R_2$, $-CONH_2$, $COOR_2$, or $Si(Me)_3$, wherein Q^+ is H^+ , ammnonium or an alkali metal cation; or

R₆ and R₆' are independently -O-C₁-C₁₂alkyl, -O-C₃-C₁₂alkenyl, -O-C₃-C₁₂alkinyl, -O-C₅-C₈cycloalkyl,

-O-phenyl, -O-naphthyl, -O-C7-C9phenylalkyl; or

 R_6 and R'_6 together form one of the bivalent groups -O-C(R_{21})(R_{22})-CH(R_{23})-O-, -O-CH(R_{21})-CH₂₂-C(R_{22})(R_{23})-O-, -O-CH(R_{22})-CH₂-C(R_{21})(R_{23})-O-, -O-CH₂-C(R_{21})(R_{22})-CH(R_{23})-O-, -O-o-phenylene-O-, -O-1,2-cyclohexyliden-O-,

 R_{21} is hydrogen, C_1 - C_{12} alkyl, COOH, COO- $(C_1$ - $C_{12})$ alkyl or CH_2OR_{24} ; R_{22} and R_{23} are independently hydrogen, methyl ethyl, COOH or COO- $(C_1$ - $C_{12})$ alkyl; R_{24} is hydrogen, C_1 - C_{12} alkyl, benzyl, or a monovalent acyl residue derived from an aliphatic, cycloaliphatic or aromatic monocarboxylic acid having up to 18 carbon atoms; and R_7 and R_8 are independently hydrogen or C_1 - C_{18} alkyl.