# SF2520 — Applied numerical methods

#### Lecture 13

Numerical methods for hyperbolic equations

Anna Nissen Numerical analysis Department of Mathematics, KTH

2023-10-31

### Today's lecture

- Finite difference methods for hyperbolic equations
- Numerical analysis, smooth solutions
- Numerical analysis, discontinuous solutions

# Hyperbolic PDEs

We want to solve the advection equation

$$u_t + au_x = 0,$$
  $x \in \mathbb{R},$   $t > 0,$   $u(x,0) = g(x),$ 

numerically. (No boundary for now.)

- Semi-discretizations (MoL) path not so practical:
  - Most common methods not on this form.
  - Natural discretizations lead to unstable methods.
  - Absolute stability of MoL often not sufficient for stability of full discretization.
- Instead do full discretization directly,

$$x_j = j\Delta x,$$
  $t_n = n\Delta t,$   $u_j^n \approx u(x_j, t_n).$ 



# Hyperbolic PDEs

We want to solve the advection equation

$$u_t + au_x = 0,$$
  $x \in \mathbb{R},$   $t > 0,$   
 $u(x,0) = g(x).$ 

• Introduce the CFL number  $\lambda$  as the relation between time and spatial step,

$$\lambda = rac{\Delta t}{\Delta x}$$
 ( $\sigma = rac{a\Delta t}{\Delta x}$  in the book.)

- In hyperbolic problems:
  - $\lambda$  is held constant (typically) as  $\Delta t$  and  $\Delta x$  are refined. (I.e. not  $\Delta t/\Delta x^2$  as in parabolic case with explicit methods.)
  - Discretizations are not stiff so explicit methods are most often used.
     (I.e. not implicit methods as in parabolic case.)

### **Examples of methods**

A cautionary example

Consider the natural discretization

$$\underbrace{\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}}_{\approx u_{t}} + a\underbrace{\frac{u_{j+1}^{n}-u_{j-1}^{n}}{2\Delta x}}_{\approx u_{x}} = 0,$$

or

$$u_j^{n+1} = u_j^n - a \frac{\lambda}{2} (u_{j+1}^n - u_{j-1}^n).$$

- Based on forward differences in time and central differences in space ("FTCS")
- This method is unstable for all fixed  $\lambda = \Delta t/\Delta x$ . It cannot be used to solve the advection equation.

#### 2 Lax-Friedrichs

Replace  $u_j^n$  in the previous method by the average of  $u_{j+1}^n$  and  $u_{j-1}^n$ ,

$$u_{j}^{n+1} = \frac{1}{2}(u_{j+1}^{n} + u_{j-1}^{n}) - a\frac{\lambda}{2}(u_{j+1}^{n} - u_{j-1}^{n}).$$

• This is stable for  $|a|\lambda \le 1$ .

### Upwind

Replace central differences in unstable method by backward/forward differences ("FTBS"/"FTFS")

$$\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}+\begin{cases} a\frac{u_{j}^{n}-u_{j-1}^{n}}{\Delta x}, & a>0, \\ a\frac{u_{j+1}^{n}-u_{j}^{n}}{\Delta x}, & a<0, \end{cases}=0$$

or

$$u_j^{n+1} = \begin{cases} u_j^n - a\lambda(u_j^n - u_{j-1}^n), & a > 0, \\ u_j^n - a\lambda(u_{j+1}^n - u_j^n), & a < 0. \end{cases}$$

- This is stable for  $|a|\lambda \le 1$ .
- Change makes method first order in space. Not big problem since it is only first order in time anyway.
- When a > 0 the approximation  $u_j^{n+1}$  only depends on the values in the points to the left:  $u_j^n$  and  $u_{j-1}^n$ . This mimics the exact solution where u(x,t) = g(x-at) only depends on values to the left.
- This property is important when discontinuous solutions are computed. (It is e.g. not true for Lax–Friedrichs.)

#### Lax-Wendroff

Subtract a small difference approximating  $u_{xx}$ 

$$\frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t} + a \frac{u_{j+1}^{n} - u_{j-1}^{n}}{2\Delta x} - \underbrace{\Delta t \frac{a^{2}}{2} \frac{u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}}{\Delta x^{2}}}_{\approx \Delta t \frac{a^{2}}{2} u_{xx}} = 0,$$

or

$$u_{j}^{n+1}=u_{j}^{n}-a\frac{\lambda}{2}(u_{j+1}^{n}-u_{j-1}^{n})+a^{2}\frac{\lambda^{2}}{2}(u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n}).$$

- This is stable for  $|a|\lambda \le 1$ .
- Added term vanishes as  $\Delta t \to 0$  but precisely cancels the leading part of error. (Note:  $u_t = -au_x \Rightarrow u_{tt} = -au_{xt} = a^2u_{xx}$ .)
- Makes the method second order in time and space!

### Linear systems of equations: $u_t + Au_x = 0$

**2 Lax–Friedrichs** (as scalar case, just replace  $a \rightarrow A$  and  $u_j^n \rightarrow u_j^n$ )

$$\mathbf{u}_{j}^{n+1} = \frac{1}{2}(\mathbf{u}_{j+1}^{n} + \mathbf{u}_{j-1}^{n}) - \frac{\lambda}{2}A(\mathbf{u}_{j+1}^{n} - \mathbf{u}_{j-1}^{n}).$$

Upwind

Split A-matrix into positive and negative parts

$$A = S \Lambda S^{-1}, \qquad A^{+} = S \Lambda^{+} S^{-1}, \qquad A^{-} = S \Lambda^{-} S^{-1},$$

where  $\Lambda^{\pm}$  is diagonal with negative/positive eigenvalues replaced by zero. (Note:  $\Lambda = \Lambda^+ + \Lambda^-$  and  $A = A^+ + A^-$ .) Then do backward difference with  $A^+$  and forward difference with  $A^-$ :

$$\mathbf{u}_{j}^{n+1} = \mathbf{u}_{j}^{n} - \lambda A^{+}(\mathbf{u}_{j}^{n} - \mathbf{u}_{j-1}^{n}) - \lambda A^{-}(\mathbf{u}_{j+1}^{n} - \mathbf{u}_{j}^{n}).$$

**4 Lax–Wendroff** (as scalar case, just replace  $a \rightarrow A$  and  $u_j^n \rightarrow \boldsymbol{u}_j^n$ )

$$\boldsymbol{u}_{j}^{n+1} = \boldsymbol{u}_{j}^{n} - \frac{\lambda}{2} A(\boldsymbol{u}_{j+1}^{n} - \boldsymbol{u}_{j-1}^{n}) + \frac{\lambda^{2}}{2} A^{2}(\boldsymbol{u}_{j+1}^{n} - 2\boldsymbol{u}_{j} + \boldsymbol{u}_{j-1}^{n}).$$

• These methods are stable if  $\max |\mu_k| \lambda \leq 1$ , where  $\mu_k =$  eigenvalues of A.

### Linear systems with source functions: $u_t + Au_x = f$

Let  $\mathbf{f}_{i}^{n} := \mathbf{f}(\mathbf{x}_{i}, t_{n})$ . Then

2 Lax-Friedrichs (just add a term at the end)

$$u_j^{n+1} = \frac{1}{2}(u_{j+1}^n + u_{j-1}^n) - \frac{\lambda}{2}A(u_{j+1}^n - u_{j-1}^n) + \Delta t f_j^n$$

Upwind (just add a term at the end)

$$\boldsymbol{u}_{j}^{n+1} = \boldsymbol{u}_{j}^{n} - \lambda \boldsymbol{A}^{+}(\boldsymbol{u}_{j}^{n} - \boldsymbol{u}_{j-1}^{n}) - \lambda \boldsymbol{A}^{-}(\boldsymbol{u}_{j+1}^{n} - \boldsymbol{u}_{j}^{n}) + \Delta t \, \boldsymbol{f}_{j}^{n}$$

Lax-Wendroff (more complicated)

$$\mathbf{u}_{j}^{n+1} = \mathbf{u}_{j}^{n} - \frac{\lambda}{2} A(\mathbf{u}_{j+1}^{n} - \mathbf{u}_{j-1}^{n}) + \frac{\lambda^{2}}{2} A^{2}(\mathbf{u}_{j+1}^{n} - 2\mathbf{u}_{j} + \mathbf{u}_{j-1}^{n}) + \Delta t \, \tilde{\mathbf{f}}_{j}^{n}$$
$$\tilde{\mathbf{f}}_{j}^{n} = \mathbf{f}_{j}^{n} - \frac{\lambda}{4} A(\mathbf{f}_{j+1}^{n} - \mathbf{f}_{j-1}^{n}) + \frac{1}{2} (\mathbf{f}_{j}^{n+1} - \mathbf{f}_{j}^{n})$$

### Nonlinear systems of equations: $\boldsymbol{u}_t + \boldsymbol{F}(\boldsymbol{u})_x = 0$

**2** Lax–Friedrichs (as scalar case, just replace  $au \to F(u)$  and  $u_j^n \to u_j^n$ )

$$u_{j}^{n+1} = \frac{1}{2}(u_{j+1}^{n} + u_{j-1}^{n}) - \frac{\lambda}{2}(F(u_{j+1}^{n}) - F(u_{j-1}^{n})).$$

Upwind

Much more complicated. In the nonlinear case the upwind scheme is referred to as the Godunov scheme.

4 Lax-Wendroff

More complicated. A two-step approach typically used.

# Numerical analysis of hyperbolic PDEs

For hyperbolic equations we are concerned with convergence in two different settings:

- Convergence for smooth solutions.
   This is governed by the usual order of accuracy and local truncation errors.
- Convergence for non-smooth, discontinuous, solutions.
   Important since discontinuous solutions are common in applications. Governed by "modified equations".

Computer experiments with Lax-Friedrichs (LxF), Upwind and Lax-Wendroff (LW).

#### **Conclusions:**

- Smooth solutions: LW much more accurate than LxF and Upwind.
- Non-smooth solutions: Upwind best. Smears discontinuities less than LxF. LW introduces a lot of spurious oscillations.
- All three methods stable iff  $|a|\lambda \le 1$ .

# Theory for smooth solutions

Define the local truncation error (LTE), denoted  $\ell_j^n$ , as the residual when the exact solution is entered into the scheme.

**Example: Lax-Friedrichs** 

$$u(x_{j},t_{n+1}) = \frac{u(x_{j+1},t_{n}) + u(x_{j-1},t_{n})}{2} - a\Delta t \frac{u(x_{j+1},t_{n}) - u(x_{j-1},t_{n})}{2\Delta x} + \underbrace{\ell_{j}^{n}}_{\text{LTE}}.$$

Convergence conditions are given by the Lax Equivalence Theorem, which in this case implies

### Theorem (Lax)

Suppose  $\lambda = \Delta t/\Delta x$  is fixed as  $\Delta t \rightarrow 0$ . Then

if the method is

$$|u_j^n - u(x_j, t_n)| = O(\Delta t^p),$$

- Consistent with order  $p: |\ell_i^n| = O(\Delta t^{p+1})$  with  $p \ge 1$ ,
- Stable:  $\sum_{j} (u_{j}^{n})^{2} \leq C \sum_{j} (u_{j}^{0})^{2}$ , with C independent of  $\Delta t$  and  $n \leq \frac{T}{\Delta t}$ .

# Theory for smooth solutions

#### Need to check:

- Consistency/accuracy
  - Done by Taylor expansions
  - Derivations give:

Lax–Friedrichs
$$\ell_j^n = O\left(\Delta t(\Delta t + \Delta x^2 + \frac{\Delta x^2}{\Delta t})\right)$$
Upwind $\ell_j^n = O(\Delta t(\Delta t + \Delta x))$ Lax–Wendroff $\ell_i^n = O(\Delta t(\Delta t^2 + \Delta x^2))$ 

• Hence, if  $\Delta t/\Delta x = \text{fixed}$ :

**Lax–Friedrichs** 
$$|u_j^n - u(x_j, t_n)| = O(\Delta x)$$
, order of accuracy 1  
**Upwind**  $|u_j^n - u(x_j, t_n)| = O(\Delta x)$ , order of accuracy 1  
**Lax–Wendroff**  $|u_j^n - u(x_j, t_n)| = O(\Delta x^2)$ , order of accuracy 2

- Stability
  - Checked by
    - CFL condition ⇒ necessary conditions
    - von Neumann analysis ⇒ sufficient conditions (next course)

# Stability – the CFL condition

#### **CFL** condition

For any consistent three-point scheme of the form

$$u_j^{n+1} = c_0 u_{j-1}^n + c_1 u_j^n + c_2 u_{j+1}^n, \qquad u_j^0 = g(x_j),$$

the condition

$$|a|\lambda \leq 1$$

is necessary for stability.

- This condition is also sufficient for Lax—Friedrichs, Upwind and Lax—Wendroff. (Although not for the unstable FTCS scheme.)
- For systems of *d* equations it is necessary that

$$|\mu_k|\lambda \leq 1, \qquad k=1,\ldots,d,$$

where  $\mu_k$  are the eigenvalues of the system matrix A. (Again sufficient for the methods mentioned above.)

# Stability – the CFL condition



Exact solution  $u(x_j, t_n)$  depends on value of g in the point  $\bar{x}$ , only. (= domain of dependence)



Numerical solution  $u_j^n$  depends on value of g in the points  $X_{j-n}, \ldots, X_{j+n}$ . (= numerical domain of dependence)

• The method is unstable if  $\bar{x} \notin [x_{j-n}, x_{j+n}]$  because then it has no way of "knowing" the correct solution value  $g(\bar{x}) \Rightarrow \text{need}$ 

$$x_{j-n} \le \bar{x} \le x_{j+n} \quad \Rightarrow \quad x_j - n\Delta x \le x_j - an\Delta t \le x_j + n\Delta x$$
  
 $\Rightarrow \quad -\Delta x \le -a\Delta t \le \Delta x \quad \Rightarrow \quad |a| \frac{\Delta t}{\Delta x} \le 1.$ 

Require: domain of dependence ⊂ numerical domain of dependence.

### Theory for non-smooth solutions

- For each method one can introduce a modified equation for which the method is more accurate, and the solution is smooth.
- The idea is to derive a precise expression for the local truncation error, and add this (scaled by  $\Delta t$ ) to the original equation. Then the new local truncation error is smaller.
- Example: Lax–Friedrichs has local truncation error

$$\ell_j^n = \Delta t \frac{a}{2} \Delta x \left( \frac{1}{a\lambda} - a\lambda \right) u_{xx}(x_j, t_n) + O(\Delta t^3).$$

• Therefore, let v solve the modified PDE

$$v_t + av_x = \frac{a}{2}\Delta x \left(\frac{1}{a\lambda} - a\lambda\right)v_{xx}.$$

Lax–Friedrichs is now a second order accurate approximation of v,

$$|u_i^n - u(x_i, t_n)| = O(\Delta t), \qquad |u_i^n - v(x_i, t_n)| = O(\Delta t^2)$$

and the difference u-v describes the leading order error term in  $u_j^n$ . (Also note that the  $v_{xx}$  term makes solution smooth.)

# Modified equations

Modified equations for the three schemes above are:

$$egin{aligned} v_t + a v_x &= rac{a}{2} \Delta x \left(rac{1}{a \lambda} - a \lambda
ight) v_{xx}, & ext{Lax-Friedrichs}, \ v_t + a v_x &= rac{|a|}{2} \Delta x \left(1 - |a| \lambda
ight) v_{xx}, & ext{Upwind}, \ v_t + a v_x &= rac{a}{2} \Delta x^2 \left((a \lambda)^2 - 1
ight) v_{xxx}, & ext{Lax-Wendroff}. \end{aligned}$$

Lecture 13 SF2520 2023-10-31

### Modified equations

Modified equations for Lax–Friedrichs and Upwind are advection-diffusion equations of the form

$$\mathbf{v}_t + \mathbf{a}\mathbf{v}_{\mathbf{x}} = \varepsilon \mathbf{v}_{\mathbf{x}\mathbf{x}},$$

with  $\varepsilon = \varepsilon_L$  and  $\varepsilon = \varepsilon_U$  respectively

$$arepsilon_{\mathsf{L}} = rac{a}{2} \Delta x \left( rac{1}{a \lambda} - a \lambda 
ight), \qquad arepsilon_{\mathsf{U}} = rac{|a|}{2} \Delta x \left( 1 - |a| \lambda 
ight).$$

- Schemes are unstable if  $\varepsilon < 0$  = "backward heat equation". Stability condition  $\varepsilon \geq 0$  is again  $|a|\lambda \leq 1$ .
- Solution to the advection-diffusion equation given by

$$v(x,t) = w(x - at, t),$$
  $w_t = \varepsilon w_{xx},$   $w(x,0) = g(x).$ 

• Diffusion coefficient  $\varepsilon$  determines amount of smearing of discontinuities. (Exact u has  $\varepsilon=0$ .) Upwind smears less than Lax–Friedrichs since

$$1-|a|\lambda<\frac{1}{a\lambda}-a\lambda$$

- Larger  $|a|\lambda$  gives less smearing.
- $a\lambda = 1$  special "magic time step"  $\Delta t = \Delta x/a$ . Then  $\varepsilon = 0$ . No smearing occurs, but only works for simple scalar constant coefficient problems.

Lecture 13 SF2520 2023-10-31

## Modified equations

Modified equation for Lax–Wendroff is a dispersive advection equation (linear KdV) of the form

$$v_t + av_x = \varepsilon v_{xxx},$$

with

$$\varepsilon = \frac{a}{2}\Delta x^2 \left( (a\lambda)^2 - 1 \right).$$

- Here  $\varepsilon = O(\Delta x^2)$ , much smaller than for Lax–Friedrichs and Upwind.
- Stability condition not seen directly. (Need even more precise modified equation which also includes vxxxx.)
- Solution to the dispersive equation given by

$$v(x,t) = w(x - at, t),$$
  $w_t = \varepsilon w_{xxx},$   $w(x,0) = g(x).$ 

- Coefficient  $\varepsilon$  determines amount of dispersion seen at discontinuities.
- Larger  $|a|\lambda$  gives less dispersion. Magic time step also here.