ISPITNI ZADACI IZ ELEKTRONIKE 2

1. DIFERENCIJSKA POJAČALA	3
2. POJAČALA SNAGE	9
3. KASKADNA POJAČALA	12
4. FREKVENCIJSKA ANALIZA	15
5. POJAČALA S POVRATNOM VEZOM	23
6. STABILNOST P.V	29

^{*} Ponavljaju se tipovi zadataka, ali budu druge vrijednosti zadane. Ako sam nešto krivo nije namjerno.

1. DIFERENCIJSKA POJAČALA

Za diferencijsko pojačalo sa slike zadano je $U_{DD}=U_{SS}=15~{\rm V},$ $R_{g1}=R_{g2}=500~\Omega,$ $R_D=3~{\rm k}\Omega$ i $R_S=6~{\rm k}\Omega.$ Tranzistori T_1 i T_2 imaju jednake parametre $K=2~{\rm mA/V^2}$ i $U_{GS0}=2~{\rm V}.$ Zanemarite porast struja odvoda u području zasićenja.

- a) Izračunati struje I_{DQ} i napone U_{DSQ} za oba tranzistora u statičkoj radnoj točki.
- b) Odrediti naponsko pojačanje zajedničkog i diferencijskog signala $A_{Vz}=u_{iz}/u_z$ i $A_{Vd}=u_{iz}/u_d$, te faktro potiskivanja ρ . c) Izračunati izmjenični izlazni napon u_{iz} ako je napon $u_g=200\sin(\omega t)\,\mathrm{mV}$

$$V_{DD} + V_{SS} - 2 P_{S} I_{DQA} = V_{DQA}$$

$$g_{m} = \frac{\partial G}{\partial u_{QA}} I_{QA} = \mathcal{K} \left(V_{GSQ} - V_{GSO} \right) =$$

$$\frac{U_{0}}{2} = \frac{G_{2}}{U_{0}} = \frac{G_{2}}{U_{0}$$

$$O = \frac{|Avd|}{|Av2|}$$

$$Nlg_1 = 200 \sin(\omega t) mV \qquad Nlg_2 = 0$$

$$U_{zm} = \frac{U_{gum} + 0}{2} \qquad U_{dm} = 0 - U_{gum}$$

$$U_{izm} = Av_z U_{zm} + Av_d U_{am} \qquad \qquad U_{iz} = U_{izm} \sin(\omega t)$$

Za diferencijsko pojačalo sa slike zadano je $U_{DD} = \overline{U_{SS}} =$ 10 V, $R_{g1}=R_{g2}=1$ kΩ, $R_D=1$ kΩ i $R_S=3$ kΩ. Tranzistori T_1 i T_2 imaju jednake parametre $I_{DSS}=8~\mathrm{mA}$ i $U_P=-4~\mathrm{V}$. Zanemarite porast struja odvoda u području zasićenja.

JIR 2017,2018

- a) Izračunati struje I_{DQ} i napone U_{DSQ} za oba tranzistora u statičkoj radnoj točki.
- b) Odrediti naponsko pojačanje zajedničkog i diferencijskog signala $A_{Vz}=u_{iz}/u_z$ i $A_{Vd}=u_{iz}/u_d$, te faktro potiskivanja ρ . c) Izračunati izmjenični izlazni napon u_{iz} ako je napon $u_q = 150 \sin(\omega t) \,\mathrm{mV}$

C)
$$N_{gn} = 150 \sin(\omega t) mV$$
, $N_{gz} = 0$

$$V_{zm} = \frac{V_{gnn} + V_{gmz}}{2}$$

$$V_{izm} = V_{zm} \cdot Avz + V_{dm} \cdot Avd$$

$$V_{izm} = V_{zm} \cdot Avz + V_{dm} \cdot Avd$$

$$V_{izm} = V_{zm} \cdot Avz + V_{dm} \cdot Avd$$

Za diferencijsko pojačalo sa slike zadano je $U_{CC}=U_{EE}=12~{\rm V},$ $R_g=5~{\rm k}\Omega,$ $R_C=500~\Omega$ i $R_E=5~{\rm k}\Omega$ i $R_T=100~\Omega.$ Tranzistori T_1 i T_2 imaju jednake parametre $\beta\approx h_{fe}=100$ i $U_{\gamma}=0.7~{\rm V}.$ Zanemarite porast struja kolektora u NAP. Naponski ekvivalent temperature $U_T=25~{\rm mV}.$

- a) Izračunati struje I_{CQ} i napone U_{CEQ} za oba tranzistora u statičkoj radnoj točki.
- b) Odrediti naponsko pojačanje zajedničkog i diferencijskog signala $A_{Iz}=i_{iz}/i_z$ i $A_{Id}=i_{iz}/i_d$, te faktro potiskivanja ρ .
- c) Izračunati izlaznu struju ako je struja $i_g=10\sin(\omega t)\,\mu\mathrm{A}$

isti zadatak kao prošli samo treba generator izmjeničnog napona pretvoriti u generator izmjenične struje

Za pojačalo sa slike zadano je $U_{DD}=U_{SS}=3$ V, $R_{D1}=R_{D2}=1$ k Ω , i $R_S=500$ Ω . Tranzistori T_1 , T_2 i T_3 imaju jednake parametre $I_{DSS}=2$ mA i $U_P=-1$ V. Zanemarite porast struja odvoda u području zasićenja.

Uz izlazni diferencijski napon $u_{iz}=u_{iz2}-u_{iz1}$ odrediti zajedničko $A_{Vz}=u_{iz}/u_z$ i diferencijsko pojačanje $A_{Vd}=u_{iz}/u_d$, te faktor potiskivanja ρ .

Izračunati izlazni napon uz sinusni izmjenični signal na ulazu amplitude $u_{ul1}=15\sin(\omega t)\,\mathrm{mV}\,$ i $u_{ul2}=5\sin(\omega t)\,\mathrm{mV}.$

2. POJAČALA SNAGE

Izlazno pojačalo na slici koje radi s naponom napajanja $U_{DD} = 10 \text{ V}$ treba predati srednju snagu od 3 W trošilu otpora od $4~\Omega$. Tranzistori su jednakih površina i imaju jednake parametre $\beta=80$ i $U_{\gamma}=0.7$ V. Odrediti:

- a) najveću moguću amplitudu izlaznog napona
- b) otpore otpornika za amplitudu $R_1=R_2$
- c) potrošnju snage na tranzistoru T_3 u statičkom režimu rada
- d) najveću i najmanju potrošnju snage na tranzistorima T_1 i T_2

$$\begin{array}{c|c}
\hline
R_{A} \\
\hline
\hline
I_{BGA,nax} = \frac{U_{CC} - U_{F}}{R_{A} + (M+B)R_{T}} \\
\hline
U_{i2n} = \frac{I_{BGA,nax}}{R_{A} + (M+B)R_{T}} \\
\hline
V_{i2n} = \frac{I_{BGA,nax}}{I_{A} + (M+B)R_{T}} \\
\hline
V_{i2n} = \frac{I_{A}}{I_{A} + (M+B)R_{T}} \\
\hline
V_{i2n} =$$

d)
$$P_{TA} = U_{CC} \hat{I}_{CQA} + \frac{P_{CC} - P_{RT}}{2} = U_{CC} \hat{I}_{CQA} + U_{CC} \hat{I}_{TT} - R_T \frac{I_{Cm}^2}{4}$$
 $= 2a \hat{I}_{Cm} = 0 \rightarrow P_{TA} = P_{TA,min} = U_{CC} \hat{I}_{CQA}$
 $= \frac{\partial P_{TA}}{\partial I_{Cm}} = \frac{U_{CC}}{II} - P_T \frac{I_{Cm}}{2} = 0 \rightarrow \hat{I}_{Cm} | P_{TA,nax} = \frac{2}{II} \frac{U_{CC}}{R_T}$
 $= 2a \hat{I}_{Cm} = \frac{2}{II} \frac{U_{CC}}{R_T} - P_{TA} = P_{TA,nax} = U_{CC} \hat{I}_{CQA} + \frac{U_{CC}}{I^2 R_T}$

Za pojačalo snage na slici treba izračunati:

- a) Disipaciju na otporniku R, diodi i tranzistoru T_2 kada nije priključen ulazni signal
- b) Maksimalni iznos izlaznog napona
- c) Maksimalnu srednju disipaciju na otporu R_P

Zadano je: $U_{CC}=12$ V, R=560 Ω , $R_P=4$ Ω , $\beta=150$

$$I_{RQ} = \frac{-V_{CC} + V_{F}}{P_{A}} \qquad P_{R} = I_{RQ}^{2} \cdot P_{A}$$

$$P_{D} = V_{D} \cdot I_{RQ}$$

u stat prilikama Ucra=Ucc , Ica = Iec

$$V_{cc} - 2I_{sm} - U_r - (\Lambda + B)I_{gm}R_{\rho} = 0$$

$$I_{sm} = \frac{V_{cc} - U_r}{R + (\Lambda + B)R_{\rho}}$$

$$V_{cz,nox} = (\Lambda + B)I_{sm}R_{\rho}$$

$$V_{cz,nox} = (\Lambda + B)I_{sm}R_{\rho}$$

3. KASKADNA POJAČALA

 $U_{CC}=15$ V, $R_{C1}=4$ k Ω , $R_{C2}=3$ k Ω i $R_{E1}=2$ k Ω , $R_{E2}=350$ Ω i $R_{T}=1$ k Ω . Parametri oba tranzistora su $\beta pprox h_{fe}=100$ i $U_{\gamma}=0.7$ V. Zanemarite porast struja kolektora u NAP. Naponski ekvivalent temperature $U_{T}=25$ mV.

- a) Izračunati struje I_{CQ} i napone U_{CEQ} za oba tranzistora u statičkoj radnoj točki.
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku analizu na srednjim frekvencijama, te odrediti pojačanja $A_V=u_{iz}/u_{ul}$ i $A_I=i_{iz}/i_{ul}$
- c) Izračunati ulazni i izlazni otpor R_{ul} i R_{iz} .

$$I_{E2} \approx \frac{U_r}{R_{E2}} \implies \bar{f}_{Ca2}$$

$$V_{CC} = (I_{CGA} + I_{SG2}) l_{C1} + U_r + I_{EG2} l_{EA} + (I_{EG2} - I_{GGA}) l_{E2} \Rightarrow I_{EGA} \rightarrow I_{GGA}$$

$$U_{CEGA} = U_{CC} - (I_{CGA} + I_{EG2}) l_{CA}$$

$$U_{CEGA} = U_{CC} - I_{CG2} l_{C2} - I_{EG2} l_{EA} - (I_{EG2} - I_{EGA}) l_{E2}$$

$$\approx U_{CC} - I_{CG2} (l_{C2} + l_{GA} + l_{E2})$$

$$r_{De1} = \frac{U_r}{I_{EGA}} \qquad r_{E2} = \frac{U_r}{I_{CG2}}$$

 $U_{CC}=15$ V, $R_1=\Omega$, $R_2=\Omega$, $R_{C1}=\mathrm{k}\Omega$, $R_{C2}=\mathrm{k}\Omega$, $R_{E1}=2$ kΩ, $R_{E2}=350$ Ω i $R_T=1$ kΩ. Parametri oba tranzistora su $\beta\approx h_{fe}=100$ i $U_{\gamma}=0$,7 V. Zanemarite porast struja kolektora u NAP. Naponski ekvivalent temperature $U_T=25$ mV.

- a) Izračunati struje I_{CQ} i napone U_{CEQ} za oba tranzistora u statičkoj radnoj točki.
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku analizu na srednjim frekvencijama, te odrediti pojačanja $A_V=u_{iz}/u_{ul}$ i $A_I=i_{iz}/i_{ul}$
- c) Izračunati ulazni i izlazni otpor R_{ul} i R_{iz} .

Riz=Rcz

 $U_{CC}=12~{
m V},$ $R_g=500~{
m \Omega},$ $C_B=1~{
m μF}~R_1=120~{
m k}\Omega$ i $R_2=200~{
m k}\Omega,$ $R_E=4,5~{
m \Omega},$ $C_E=5~{
m μF}$ i $R_T=500~{
m \Omega}.$ Parametri oba tranzistora su $β\approx h_{fe}=100$ i $U_γ=0,7~{
m V}.$ Zanemariti serijski otpor baze r_{bb} , i porast struje kolektora s naponom u_{CE} u NAP. Naponski ekvivalent temperature $U_T=25~{
m mV}.$

- a) Izračunati struje I_{CQ} i napone U_{CEQ} za oba tranzistora u statičkoj radnoj točki.
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku niskofrekvencijsku analizu
- c) Izračunati pojačanje $A_{Vg}=U_{iz}/U_g$ na srednjim frekvencijama
- d) Izračunati donju graničnu frekvenciju pojačanja A_{Vq} .

$$V_{BB} = \frac{P_{2}}{R_{1}+R_{2}} V_{CC} \qquad R_{B} = R_{1}||R_{2}|$$

$$+ \qquad I_{BQ} = \frac{V_{BB}-V_{Y}}{P_{B}+(1+P_{B})R_{E}} \qquad I_{CQ} = P_{B}I_{BQ}$$

$$V_{CCQ} = V_{CC} - P_{C}(1+P_{B})I_{BQ}$$

$$V_{DC} = \frac{V_{T}}{I_{BQ}}$$

C)
$$Avgo = \frac{Uiz}{Ug} = \frac{Uiz}{Uu} \cdot \frac{Uu}{Ug}$$

$$Miz = (1+hfe)(RE||RT)ib \qquad YAvz = \frac{(1+hfe)(RE||RT)}{Vbe + (1+hfe)(RE||RT)}$$

$$Mul = \frac{RB||Rul'}{RB||Rul' + Rg} Ug , \quad Rul' = Vbe + (1+hfe)(RE||RT)$$

d)
$$\tau_{B} = C_{B} (lg + lg|llul)$$
, $\omega_{B} = \frac{1}{\tau_{B}}$

$$\tau_{E} = \left(\frac{r_{D}e + l_{D}|ll_{g}|}{1 + h_{f}e}\right) |ll_{E} + l_{T}\right) C_{E}, \quad \omega_{E} = \frac{1}{\tau_{E}}$$

$$\omega_{d} = \max 2 \omega_{B}, \omega_{E} 3, \quad f_{d} = \frac{\omega_{d}}{2\pi}$$

ZI 2017

 $U_{DD}=12$ V, $R_g=1$ k Ω , $C_G=20$ nF, $R_1=3$ M Ω , $R_2 = 6 \text{ M}\Omega$, $R_S = 1 \text{ k}\Omega$, $C_S = 5 \text{ } \mu\text{F} \text{ i } R_T = 1 \text{ k}\Omega$. Parametri FET-a su $K=2.5~\mathrm{mA/V^2}$ i $U_{GS0}=1~\mathrm{V}$. Zanemariti porast struje odvoda s naponom u_{DS} u području zasićenja.

- a) Izračunati struju I_{DO} i napone U_{GSO} i U_{DSO} u statičkoj radnoj točki.
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku niskofrekvencijsku analizu
- c) te odrediti pojačanje $A_{Va} = U_{iz}/U_a$ na srednjim frekvencijama
- d) Izračunati donju graničnu frekvenciju pojačanja A_{Va} .

 $W_{d} = \max \{ \mathcal{T}_{0}, \mathcal{T}_{0} \}$, $f_{d} = \frac{W_{d}}{2T}$

ZIR 2017

 $U_{CC}=15~\mathrm{V},\,R_G=100~\mathrm{k}\Omega,\,R_D=1~\mathrm{k}\Omega,\,R_E=4~\mathrm{k}\Omega,\,R_T=1~\mathrm{k}\Omega,$ $C_G = 200 \text{ nF i } C_E = 2 \text{ } \mu\text{F}.$

Parametri oba tranzistora su $I_{DSS} = 32 \text{ mA}, U_P = -2 \text{ V},$ $etapprox h_{fe}=100$ i $U_{
m V}=0$,7 V. Zanemariti serijski otpor baze r_{bb} , i poraste struje odvoda s naponom u_{DS} u području zasićenja i struje kolektora s naponom u_{CE} u NAP. Naponski ekvivalent temperature $U_T = 25 \text{ mV}$.

- a) Odrediti otpor R_S s kojim će se postići struja $I_{DO}=8~\mathrm{mA}$, te izračunati struju I_{CO} i napon U_{DSO} i U_{CEO} u statičkoj radnoj točki.
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku niskofrekvencijsku analizu
- c) Izračunati pojačanje $A_V=U_{iz}/U_{ul}$ na srednjim frekvencijama
- d) Izračunati donju graničnu frekvenciju pojačanja A_V .

 $U_{CC}=12$ V, $R_g=5$ kΩ, $C_B=2$ μF, $R_1=40$ kΩ, $R_2=10$ kΩ, $R_C=2$ kΩ, $R_E=500$ Ω, $R_T=500$ kΩ, $C_C=2$ μF i $C_E=50$ μF.

Parametri oba tranzistora su $\beta \approx h_{fe}=100$, $U_{\gamma}=0.7~{
m V}$, $r_{bb\prime}=50~{
m \Omega}$, $C_{b\prime e}=25~{
m pF}$ i $C_{b\prime c}=2~{
m pF}$. Zanemariti porast struje kolektora s naponom u_{CE} u NAP. Naponski ekvivalent temperature $U_T=25~{
m mV}$.

- a) Izračunati struju I_{CO} i napon U_{CEO} u statičkoj radnoj točki.
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku visokofrekvencijsku analizu.
- c) Izračunati pojačanje $A_{Ig}=I_{iz}/I_g$ na srednjim frekvencijama.
- d) Izračunati gornju graničnu frekvenciju pojačanja A_{Iq} .

 $U_{CC} = 15 \text{ V}, R_q = 1 \text{ k}\Omega, C_B = 2 \mu\text{F}, R_1 = 400 \text{ k}\Omega, R_2 = 100 \text{ k}\Omega,$ $R_E=500~\Omega$, $R_T=2~\mathrm{k}\Omega$, $C_T=15~\mathrm{pF}$ i $C_E=100~\mathrm{\mu}F$. Parametri oba tranzistora su $\beta \approx h_{fe} = 100$, $U_{\gamma} = 0.7$ V, $r_{bb\prime}=50~\Omega$, $C_{b\prime e}=40~\mathrm{pF}$ i $C_{b\prime c}=2~\mathrm{pF}$. Zanemariti porast struje kolektora s naponom u_{CE} u NAP. Naponski ekvivalent temperature $U_T = 25 \text{ mV}$.

ZIR 2014

- a) Izračunati struju I_{CO} i napon U_{CEO} u statičkoj radnoj točki.
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku visokofrekvencijsku analizu.
- c) Izračunati pojačanje $A_{Vg}=U_{iz}/U_g$ na srednjim frekvencijama.
- d) Izračunati gornju graničnu frekvenciju pojačanja A_{Vq} .

$$\begin{split} &U_{DD}=12 \text{ V, } R_g=1 \text{ k}\Omega, C_G=40 \text{ nF, } R_G=1 \text{ M}\Omega, \\ &R_S=1 \text{ k}\Omega, C_S=2 \text{ } \mu\text{F i } R_T=4 \text{ k}\Omega. \end{split}$$

Parametri FET-a su $I_{DSS}=12~{
m mA},\,U_P=-6~{
m V}.$ Zanemariti porast struje odvoda s naponom u_{DS} u području zasićenja

- a) Izračunati struju I_{DQ} i napone U_{GSQ} i U_{DSQ} u statičkoj radnoj točki.
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku niskofrekvencijsku analizu
- c) Izračunati pojačanje $A_V = U_{iz}/U_{ul}$ na srednjim frekvencijama
- d) Izračunati donju graničnu frekvenciju pojačanja A_V .

$$Lods + Vosa = 0$$

$$Loa = Loss \left(1 - \frac{Vosa}{VP}\right)^2 \int Vosa^2 + \left(\frac{Vp^2}{2sLoss} - 2Vp\right) Vosa + Vp^2 = 0$$

$$g_m = \frac{\partial io}{\partial u_{GS}}|_{\alpha} = -\frac{2 \text{ Loss}}{U_p} \left(1 - \frac{U_{GS}\alpha}{U_p}\right)$$

$$Avgo = \frac{llit}{llg} = \frac{gm(lls|llt)}{1+gm(lls|llt)} \frac{ll}{llg}$$

d)
$$T_s = C_s \left(2\tau + R_s \| \frac{1}{9m} \right) - W_s - \frac{1}{2s}$$

$$T_G = C_G \left(R_G + R_g \right)$$
 -> $W_G = \frac{1}{T_G}$

 $U_{DD}=12$ V, $R_g=5$ k Ω , $R_1=4$ M Ω , $R_2=2$ M Ω , $R_T=1.5$ k Ω , $C_S=15$ μF i $C_T=4$ pF.

Parametri FET-a su K=1,5 mA/V², $U_{GS0}=1$ V, $C_{gs}=2$ pF i $C_{gd}=1$ pF. Zanemariti porast struje odvoda s naponom u_{DS} u području zasićenja.

- a)) Odrediti otpor R_S s kojim će se postići struja $I_{DQ}=3$ mA, te izračunati napon U_{DSO}
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku visokofrekvencijsku analizu
- c) te odrediti pojačanje $A_{Va} = U_{iz}/U_a$ na srednjim frekvencijama
- d) Izračunati gornju graničnu frekvenciju pojačanja A_{Va} .

MI 2018 Primjer 4

Izračunati strujno pojačanje $A_{Ig}=i_{iz}/i_g$ na srednjim frekvencijama te donju graničnu frekvenciju tog pojačanja.

Tranzistori imaju iste parametre: su $\beta \approx h_{fe} = 100$ i $h_{oe} = 0$. Zadano je:

$$R_g = 50$$
 kΩ, $R_1 = 40$ kΩ, $R_2 = 10$ kΩ, $R_C = 2$ kΩ $R_{E1} = R_{E2} = 500$ Ω, $R_P = 100$ Ω, $C_G = 0.2$ μF i $C_P = 10$ μF

ZIR 2019 zzv niskofrekv zad3

Za pojačalo na slici izračunati naponsko pojačanje

 $A_{V0}=u_{iz}/u_{ul}$ na srednjim frekvencijama te donju graničnu frekvenciju tog pojačanja.

U statičkoj analiti zanemariti porast izlazne struje s izlaznim naponom u zasićenju. Zadano je: $R_{G1}=1~{\rm M}\Omega,\,R_D=6~{\rm k}\Omega,$

$$R_{S1}=1~\mathrm{k}\Omega,\,R_{G2}=1~\mathrm{M}\Omega,\,R_{S2}=1~\mathrm{k}\Omega,\,R_{T}=6~\mathrm{k}\Omega,$$

$$C_{ul}=10$$
 nF, $C_V=10$ nF, $C_P=0.2$ μ F, $U_{DD}=20$ V,

$$U_{P1} = U_{P2} = -4 \text{ V}, I_{DSS1} = I_{DSS2} = 8 \text{ mA}, \lambda_1 = \lambda_2 = 2.232 + 10^{-3} \text{ V}^{-1}$$

$$3.333 * 10^{-3} V^{-1}$$

$$R_g=50~\mathrm{k}\Omega, R_1=40~\mathrm{k}\Omega, R_2=10~\mathrm{k}\Omega, R_C=2~\mathrm{k}\Omega$$

$$R_{E1} = R_{E2} = 500 \,\Omega, R_P = 100 \,\Omega, C_G = 0.2 \,\mu\text{F} \,\text{i}\,C_P = 10 \,\mu\text{F}$$

ZIR 2019 zzv visokofrekv zad3

Za pojačalo sa slike odrediti naponsko pojačanje $A_{Vg}=U_{iz}/U_g$ na srednjim frekvencijama, te gornju graničnu frekvenciju tog pojačanja.

Zadano je:

$$U_{CC}=U_{EE}=12$$
 V, $R_g=50$ Ω, $C_E=150$ μF, $R_E=4$ kΩ, $R_C=2$ kΩ, $C_C=2$ μF i $R_T=3$ kΩ.

Parametri tranzistora su
$$\beta \approx h_{fe} = 100$$
, $U_{\gamma} = 0.7$ V,

 $C_{b'e}=50~{
m pF}$ i $C_{b'c}=3~{
m pF}$. Zanemariti serijski otpor baze $r_{bb'}$ i porast struje kolektora s naponom u_{CE} u NAP. Naponski ekvivalent temperature $U_T=25~{
m mV}$.

5. POJAČALA S POVRATNOM VEZOM

Za pojačalo na slici zadano je U_{CC} , R_{C1} , R_{B1} i R_{E2} . Parametri tranz su $\beta=h_{fe}$ i $U_{\gamma}=0.7V$. Zanemariti serijski otpor baze r_{bb} , i porast struje kolektora s naponom u_{CE} u NAP. Naponski ekvivalent temperature $U_{T}=25mV$.

- a) Izračunati statičku radnu točku.
- b) Odrediti tip povratne veze i nacrtati A-granu pojačala bez povratne veze za mali signal.
- c) Odrediti pojačanje A-grane.
- d) Odrediti koeficijent povratne veze eta
- e) Odrediti pojačanja $A_{Vf}=u_{iz}/u_{ul}$ i $A_{If}=i_{iz}/i_{ul}.$

a)

$$\begin{split} U_{CC} &\approx \beta I_{BQ1} R_{C1} + U_{BEQ2} + I_{BQ1} R_{B1} + U_{BEQ1} \rightarrow I_{BQ1} \approx \frac{U_{CC} - 2U_{BEQ}}{\beta R_{C1} + R_{B1}} \\ & \big[(1+\beta)I_{BQ2} - I_{BQ1} \big] R_{E2} = I_{BQ1} R_{B1} + U_{BEQ1} \rightarrow I_{BQ2} = \frac{U_{BEQ} + I_{BQ1} (R_{B1} + R_{E2})}{(1+\beta)R_{E2}} \\ & I_{CQ1} = \beta I_{BQ1}, \qquad \qquad I_{CQ2} = \beta I_{BQ2} \\ & r_{be1} = \frac{U_T}{I_{BQ1}}, \qquad \qquad r_{be2} = \frac{U_T}{I_{BQ2}} \end{split}$$

b) Povratna veza - naponska-paralelna

ZI 2016, 2018

shema malo drugačija, al je ustvari sve isto. Jedino se zamijeni R_{E2} s R_T

Za pojačalo na slici zadano je U_{CC} , R_C , R_B , R_E , R_T . Parametri tranz su $\beta_1=h_{fe1}$, $\beta_2=h_{fe2}$ i $U_{\gamma}=0$,7V. Zanemariti serijski otpor baze r_{bb} , i porast struje kolektora s naponom u_{CE} u NAP. Naponski ekvivalent temperature $U_T=25mV$.

- a) Izračunati statičku radnu točku.
- b) Odrediti tip povratne veze i nacrtati A-granu pojačala bez povratne veze za mali signal uzevši u obzir opterećenje β -grane.
- c) Odrediti pojačanje A-grane.
- d) Odrediti koeficijent povratne veze β .
- e) Odrediti pojačanja $A_{Vf}=u_{iz}/u_{ul}$ i $A_{If}=i_{iz}/i_{ul}$.

a)
$$U_{CC} \approx \beta_1 I_{BQ1} R_C + U_{BEQ2} + I_{BQ1} R_B + U_{BEQ1}, \quad U_{BEQ1} \approx -U_{BEQ2}$$

$$I_{BQ1} \approx \frac{U_{CC}}{\beta_1 R_C + R_B}$$

$$\beta_1 I_{BQ1} R_C \approx -\beta_2 I_{BQ2} R_E - U_{BEQ2} \rightarrow I_{BQ2} \approx \frac{\beta_1 I_{BQ1} R_C + U_{BEQ2}}{\beta_2 R_E}$$

$$I_{CQ1} = \beta_1 I_{BQ1}, \qquad I_{CQ2} = \beta_2 I_{BQ2}$$

$$r_{be1} = \frac{U_T}{I_{BQ1}}, \qquad r_{be2} = \frac{U_T}{I_{BQ2}}$$

b) Povratna veza - strujna-paralelna

LJIR 2014, 2017 ZIR 2017

zzv zad3(al je bez RT)

Za pojačalo na slici zadano je U_{DD} , R_G , R_D , R_S , R_C , R_T . Parametri tranz su I_{DSS} , U_P , $\beta \approx h_{fe}$ i $U_\gamma = 0.7V$. Zanemariti serijski otpor baze r_{bb} , te porast struje kolektora s naponom u_{CE} u NAP i struje odvoda s naponom u_{DS} u području zasićenja. Naponski ekvivalent temperature $U_T = 25mV$.

- a) Izračunati statičku radnu točku.
- b) Odrediti tip povratne veze i nacrtati A-granu pojačala bez povratne veze za mali signal.
- c) Odrediti pojačanje A-grane.
- d) Odrediti koeficijent povratne veze β .
- e) Odrediti pojačanje $A_{Vf}=u_{iz}/u_{ul}$ i ulazni otpor R_{ulf} pojačala s povratnom vezom.

a)

$$\begin{split} I_{DQ}R_D &= -U_{BEQ} \ \, \rightarrow \ \, I_{DQ} = -\frac{U_{BEQ}}{R_D} = \frac{U_{\gamma}}{R_D} \\ I_{DQ} &= I_{DSS} \left(1 - \frac{U_{GSQ}}{U_P} \right)^2 \ \, \rightarrow \ \, U_{GSQ} = U_P \left(1 - \sqrt{\frac{I_{DQ}}{I_{DSS}}} \right) \\ U_{GSQ} &+ \left(I_{DQ} - I_{CQ} \right) R_S = 0 \ \, \rightarrow \ \, I_{CQ} = \frac{U_{GSQ}}{R_S} + I_{DQ} \\ g_m &= -\frac{2I_{DSS}}{U_P} \left(1 - \frac{U_{GSQ}}{U_P} \right), \quad r_{be} = \frac{U_T}{-I_{BQ2}} = \frac{\beta U_T}{-I_{CQ2}} \end{split}$$

b) Povratna veza - naponska-serijska

Za pojačalo s povratnom vezom izračunati: $A_{If}=\frac{i_{iz}}{i_{ul}}, A_{Vf}=\frac{u_{iz}}{u_{ul}},$ $A_{Igf}=\frac{i_{iz}}{i_g}$. Zadano je R_g , R_{B1} , R_{C1} , R_{C2} , R_{E2} , $\beta_1\approx h_{fe1}$, $\beta_2\approx h_{fe2}$ i $U_{\gamma}=0$,7V. Za oba tranzistora zanemariti porast struje kolektora s naponom u_{CE} u NAP. Naponski ekvivalent temperature $U_T=25mV$.

$$U_{CC} = R_{E2} \left(-I_{BQ2} - I_{CQ2} + I_{BQ1} \right) + I_{BQ1} R_{B1} + U_{BEQ1}$$

$$R_{C1} \left(I_{CQ1} - I_{BQ2} \right) + U_{BEQ2} + R_{E2} \left(I_{BQ2} + I_{CQ2} - I_{BQ1} \right) = 0$$

$$\begin{split} U_{BEQ1} &= U_{\gamma}, \ U_{BEQ2} = -U_{\gamma} = -U_{BEQ1} \\ I_{BQ1} &= \frac{U_{CC}}{\beta_1 R_{C1} + R_{B1}} \\ -I_{BQ2} &= \frac{I_{BQ1} \beta_1 R_{C1} + U_{BEQ2}}{(1 + \beta_2) R_{E2}} \\ r_{be1} &= \frac{U_T}{I_{BQ1}}, \quad r_{be2} = \frac{U_T}{-I_{BQ2}}, \quad r_{ce} \to \infty \end{split}$$

Povratna veza - strujna-paralelna

6. STABILNOST P.V.

ZADATAK 5. (6 bodova) U pojačalu s povratnom vezom prijenosna funkcija osnovnog pojačala i koeficijent povratne veze su

$$A(j\omega) = \frac{-10^4 \left(1 + j\omega/10^6\right)}{\left(1 + j\omega/10^4\right) \left(1 + j\omega/10^5\right)} , \qquad \beta(j\omega) = \frac{\beta_0}{1 + j\omega/10^4}$$

Grafičkim postupkom crtanjem aproksimativnog Bodeovog dijagrama odrediti β_0 uz koje će pojačalo biti stabilno s faznim osiguranjem $F.O.=45^{\circ}$. Koliko je pri tome amplitudno osiguranje?

Na dijagramima označiti koordinatne osi, a u aproksimiranim karakteristikama upisati nagibe pojedinih odsječaka. (Bodeov dijagram – **4 boda**, određivanje β_0 – **1 bod**, A.O. – **1 bod**)

$$A(j\omega) = \frac{-10^4 \left(1 + j\omega/10^6\right)}{\left(1 + j\omega/10^4\right) \left(1 + j\omega/10^5\right)} , \qquad \beta(j\omega) = \frac{\beta_0}{1 + j\omega/10^4} .$$

Uz
$$\beta_0 = -1 \rightarrow T(j\omega) = \beta(j\omega) A(j\omega) = \frac{10^4 (1 + j\omega/10^6)}{(1 + j\omega/10^4)^2 (1 + j\omega/10^5)}$$

$$\begin{split} \phi_T(j\omega_{180}) &= -180^\circ \quad \rightarrow \quad \left| T(j\omega_{180}) \right| = \left| \beta(j\omega_{180}) \, A(j\omega_{180}) \right| = A.O. = -13 \text{ dB} \,, \\ & 20\log \left| \beta_0 \right| = 20\log \left| \beta_0 \, A_0 \right| - 20\log \left| A_0 \right| = -67 \text{ dB} \quad \rightarrow \quad \beta_0 = -0,45 \cdot 10^{-3} \,, \\ & \left| T(j\omega_1) \right| = 0 \text{ dB} \quad \rightarrow \quad \phi_T(j\omega_1) = -135^\circ \quad \rightarrow \quad F.O. = \phi_T(j\omega_1) + 180^\circ = 45^\circ. \end{split}$$

Zadatak 3 – 7 bodova

U pojačalu s povratnom vezom prijenosna funkcija osnovnog pojačala i koeficijent povratne veze

$$A(j\omega) = \frac{-10^4 \left(1 + j\omega/10^5\right)}{\left(1 + j\omega/10^4\right) \left(1 + j\omega/10^6\right)^2} , \qquad \beta(j\omega) = \frac{\beta_0}{1 + j\omega/10^6} ,$$

Grafičkim postupkom crtanjem Bodeovog dijagrama odrediti β_0 uz koje će pojačalo biti stabilno s faznim osiguranjem $F.O. = 45^{\circ}$. Koliko je pri tome amplitudno osiguranje?

Na dijagramima označiti koordinatne osi, a u aproksimiranim karakteristikama upisati nagibe pojedinih odsječaka.

(Bodeov dijagram – 4 boda, određivanje β_0 – 2 boda, A.O. – 1 bod)

ZI 2013

$$A(j\omega) = \frac{-10^4 \left(1 + j\omega/10^5\right)}{\left(1 + j\omega/10^4\right) \left(1 + j\omega/10^6\right)^2} \ , \qquad \qquad \beta(j\omega) = \frac{\beta_0}{1 + j\omega/10^6} \ .$$

$$\text{Uz } \beta_0 = -1 \quad \to \quad T(j\omega) = \beta(j\omega) A(j\omega) = \frac{10^4 \left(1 + j\omega/10^5\right)}{\left(1 + j\omega/10^4\right) \left(1 + j\omega/10^6\right)^3} \ .$$

$$\begin{split} \phi_T(j\omega_{\!\! 1}) = & \, F.O. - 180^\circ = -135^\circ \quad \rightarrow \quad \left| T(j\omega_{\!\! 1}) \right| = & \left| \beta(j\omega_{\!\! 1}) \, A(j\omega_{\!\! 1}) \right| = 1 = 0 \, \, \mathrm{dB} \,, \\ \beta_0 = & -0,001 \,, \\ \phi_T(j\omega_{\!\! 180}) = & -180^\circ \quad \rightarrow \quad \left| T(j\omega_{\!\! 180}) \right| = -20 \, \, \mathrm{dB} = A.O. \end{split}$$

Zadatak 3 – 7 bodova

U pojačalu s povratnom vezom prijenosna funkcija osnovnog pojačala i koeficijent povratne veze

$$A(j\omega) = \frac{10^4}{\left(1+j\omega/10^4\right)^2\left(1+j\omega/10^6\right)}\;, \qquad \qquad \beta(j\omega) = \beta_0 \frac{1+j\omega/10^5}{1+j\omega/10^6}\;. \label{eq:beta}$$

Grafičkim postupkom crtanjem Bodeovog dijagrama odrediti β_0 uz koje će pojačalo biti stabilno s faznim osiguranjem $F.O. = 45^{\circ}$. Koliko je pri tome amplitudno osiguranje A.O.?

Na dijagramima označiti koordinatne osi, a u aproksimiranim karakteristikama upisati nagibe pojedinih odsječaka.

(Bodeov dijagram – 4 boda, određivanje β_0 – 2 boda, A.O. – 1 bod)

$$A(j\omega) = \frac{10^4}{\left(1 + j\omega/10^4\right)^2 \left(1 + j\omega/10^6\right)} , \qquad \beta(j\omega) = \beta_0 \frac{1 + j\omega/10^5}{1 + j\omega/10^6}$$

Uz
$$\beta_0 = 1 \rightarrow T | (j\omega) = \beta(j\omega) A(j\omega) = \frac{10^4 (1 + j\omega/10^5)}{(1 + j\omega/10^4)^2 (1 + j\omega/10^6)^2}$$

$$\begin{split} \phi_T(j\omega_1) &= F.O. - 180^\circ = 45^\circ - 180^\circ = -135^\circ \quad \rightarrow \quad \left| T(j\omega_1) \right| = \left| \beta(j\omega_1) \, A(j\omega_1) \right| = 1 = 0 \text{ dB} \;, \\ &20 \log \left| \beta_0 \right| = 20 \log \left| \beta_0 \, A_0 \right| - 20 \log \left| A_0 \right| = 40 - 80 = -40 \text{ dB} \;, \\ &\beta_0 = 0, 01 \;, \\ &\phi_T(j\omega_{180}) = -180^\circ \quad \rightarrow \quad A.O. = -\left| T(j\omega_{180}) \right| = 20 \text{ dB} \end{split}$$

Zadatak 4 – 6 bodova

U pojačalu s povratnom vezom zadani su prijenosna funkcija osnovnog pojačala i koeficijent povratne veze:

$$A(j\omega) = \frac{-10^{3} \left(1 + j\omega/10^{5}\right)}{\left(1 + j\omega/10^{4}\right)\left(1 + j\omega/10^{6}\right)^{2}}, \qquad \beta(j\omega) = \frac{\beta_{0}}{1 + j\omega/10^{6}}.$$

Grafičkim postupkom (crtanjem Bodeovog dijagrama) odrediti β_0 uz koje će pojačalo biti stabilno s faznim osiguranjem $F.O.=45^{\circ}$. Koliko je pri tome amplitudno osiguranje?

Na dijagramima označiti koordinatne osi, a u aproksimiranim karakteristikama upisati nagibe pojedinih odsječaka.

(Bodeov dijagram: 4 boda, β_0 : 1 bod, A.O.: 1 bod)

ZI 2012

Zadatak 3 - 7 bodova

U pojačalu s povratnom vezom prijenosna funkcija osnovnog pojačala je

$$A(j\omega) = \frac{-10^{20}}{(10^5 + j\omega)(10^6 + j\omega)^2} ,$$

a koeficijent povratne veze β neovisan je o frekvenciji. Grafičkim postupkom crtanjem Bodeovog dijagrama odrediti β uz koje će pojačalo biti stabilno s amplitudnim osiguranjem A.O. = -10 dB. Koliko je pri tome fazno osiguranje?

Na dijagramima označiti koordinatne osi, a u aproksimiranim karakteristikama upisati nagibe pojedinih odsječaka.

(Bodeov dijagram – 4 boda, određivanje β – 2 boda, F.O. – 1 bod)

ZIR 2019

Zadatak 5. - 8 bodova

Prijenosne funkcije A i β – grane su

$$A(jf) = -\frac{10^3}{\left(1 + jf/10^4\right)\left(1 + jf/10^5\right)^2}, \quad \beta(jf) = \beta_0 \frac{1 + jf/10^5}{1 + jf/10^6}.$$

Odrediti β₀ tako da fazno osiguranje bude 45°. Koliko je amplitudno osiguranje za taj slučaj?

$$A(j\omega) = \frac{-10^{18}}{(10^4 + j\omega)(10^5 + j\omega)^2} .$$

$${\rm Uz} \; \beta_0 = -1 \;\; \to \;\; T(j\omega) = \beta_0 \; A(j\omega) = \frac{10^4}{\left(1 + j\omega/10^4\right) \left(1 + j\omega/10^5\right)^2} \;\; .$$

$$\begin{split} \phi_T(j\omega_{180}) = -180^\circ &\to |T(j\omega_{180})| = A.O. = -10 \text{ dB}, \\ 20\log|\beta_0| = 20\log|\beta_0|A_0| - 20\log|A_0| = -70 \text{ dB}, \quad \beta_0 = -3.16 \cdot 10^{-4}, \\ |T(j\omega_1)| = 1 = 0 \text{ dB} &\to \phi_T(j\omega_1) = -112, 5^\circ, \\ F.O. = \phi_T(j\omega_1) + 180^\circ = 67, 5^\circ \end{split}$$