Heterogeneity in evolutionary processes : structured birth-death processes

Joëlle Barido-Sottani

Simple birth-death process

Parameters:

- λ birth rate (= new lineage appearing)
- μ death rate (= lineage disappearing)
- ρ extant species
 sampling probability

Birth-death for epidemiology

Processes:

- \bullet λ transmission rate
- $\mu = \delta(1-p)$ rate of recovery without sampling
- $\psi = \delta p$ rate of recovery with sampling

Heterogeneity in evolution

Bininda-Emonds et al. 2007, Nature

- Size discrepancies are evidence of variations in evolutionary processes
- Many traits are proposed to drive variation:
 - body size, mating system, environment, etc.
 - host location, pathogen strain, host behaviour, etc.

Multi-type birth-death (MTBD) process

2 types, type 1 & type 2

 $\lambda_1 \& \lambda_2$ — birth rates

 $\mu_1 \& \mu_2$ — death rates

ρ — extant speciessampling probability

MTBD process (epidemiology)

Character-dependent or independent?

In a character-dependent model:

- The number of types is known
- The type at the tips is known

The BiSSE/MuSSE/BDMM model

Parameters of the model:

 λ_i – birth rates

 μ_i – death rates

q_{ii} – transition rates

 ρ/p – sampling probability

Maddison et al. 2007, Sys. Bio. Fitzjohn et al. 2009, Sys. Bio. Kühnert et al. 2016 MBE

SSE/BDMM inference

Important assumption: the evolutionary processes in the complete phylogeny (including non-sampled parts) are identical to the processes in the reconstructed phylogeny.

BDMM extensions

 Integration with the skyline model: piecewise-constant rates per type

 Sampling proportion per type: p_i

· Cross-type birth events: $\lambda_{i,i}$

Model selection issues

Rabosky & Goldberg 2015, Sys. Bio.

Character-dependent or independent?

In a character-dependent model:

- The number of types is known
- The type at the tips is known

BAMM/MSBD model

- Character-independent version of SSE/BDMM
- New estimated parameters:
 - N total number of types
 - Types of edges and tips
- Simplified transition process:
 - => Constant transition rate γ

Rabosky et al. 2013, Nat. Comm. Barido-Sottani et al. 2020, Sys. Bio.

Simplifying the model

Character-dependent

$$\lambda_1 \approx \lambda_2$$

$$\mu_3$$

$$\lambda_{2}$$

Character-independent

LSBDS/PESTO model

- Ordered types based on a Gamma distribution
- Fixed number of types N
- Simplified model: rates are not estimated, but determined by the shape of the Gamma distribution
 Höhna et al. 2019, BiorXiv

Going beyond types

ClaDS model

$$\lambda_1 = \text{LogNormal}(\lambda_0 \times \alpha, \sigma)$$

$$\lambda_2 = \text{LogNormal} (\lambda_0 \times \alpha, \sigma)$$

Maliet et al. 2019, Nat. Eco. Evo. Maliet & Morlon 2021, Sys. Bio. Barido-Sottani & Morlon 2023, Sys. Bio.

- Continuous evolution process driven by a lognormal distribution
 - => similar in principle to an autocorrelated clock model
- New estimated parameters:
 - Initial rates at the root λ_0 and μ_0
 - Lognormal parameters α and σ
 - Birth rates for each edge λ_i

So – character-dependent or independent?

Character-dependent

- Allow more complex transition processes
- Are more easily interpreted
- Are very dependent on the choice and accuracy of trait

Character-independent

- Usually have to make simplifying assumptions
- Do not give direct answers
- Are not constrained by trait information or hypothesis

What is your hypothesis? What are you trying to find out?

The HiSSE model

Beaulieu & O'Meara 2016, Sys. Bio.

- Hybrid model with a hidden character (A/B) added to the user-chosen trait (1/2)
- Allows to distinguish whether the user-chosen character is linked to the rate variation
- Remaining issues:
 - Fixed number of states for the hidden character
 - Higher complexity of the model

Integration of fossil/SA data

Parameters:

- λ birth rate
- μ death rate
- \bullet ψ fossilization rate
- ρ extant species
 sampling probability

Multi-type FBD/SA process

2 types, type 1 & type 2

 $\lambda_1 \& \lambda_2$ — birth rates

 $\mu_1 \& \mu_2$ — death rates

 $\psi_1 \& \psi_2$ — fossilization rates

ρ — extant speciessampling probability

In summary

- Multi-type birth-death processes come in two main categories:
 - Character-dependent: uses more information but subject to model selection issues
 - Character-independent: more powerful, more expensive and more difficult to interpret
- Multi-type birth-death models can be integrated with many other models (skyline, FBD, etc)

In summary (BEAST2)

- · Birth-Death-Migration Model (BDMM) package
 - Character-dependent SSE
 - Includes time-dependent changes (skyline model)
 - Includes sampled ancestors
- · Multi-State Birth-Death (MSBD) package
 - Character-independent SSE
 - Includes sampled ancestors, starting from v1.3.0
- · Cladogenetic Diversification rate Shift (ClaDS) package
 - Progressive autocorrelated rate variations
 - Inclusion of sampled ancestors in development

Tutorial time

Character-dependent model (BDMM)

https://taming-the-beast.org/tutorials/Structured-birth-death-model/

Character-independent models (MSBD, ClaDS)

https://taming-the-beast.org/tutorials/MSBD-tutorial/https://taming-the-beast.org/tutorials/ClaDS-tutorial/