

Functional Design Bugs Detected With Low Power Verification

Alexander Kryvoshaev

Qualcomm

October, 8th, 2014 SNUG Canada

Agenda

Discussion On Power Consumption

Introduction To Power Aware Flow

Bugs Found With Power Aware Flow

Tips On Using VCS NLP Flow

Discussion On Power Consumption

Why Save Power?

Limited Battery Capacity

- Batteries are not sufficient for contemporary needs
- The existing improvements are expensive

Heat Problem

- Increasing the number of transistors per area unit leads to heat problems
- Cooling systems are not sophisticated enough

Dynamic And Static Power Consumption

- ➤ The current, which charges the capacitor of the next gate, consumes power
- ➤ The bigger the gate, the higher current required. This causes higher power consumption
- ➤ The width of transistor is proportional to the current going through it

- When a transistor is closed, there is still current going from source to drain and through the gate
- ➤ The only way to eliminate the static power consumption is to shut down power supplies

Shutting Power Down

- Power supply, of transistors in the collapsed area, is turned off
- After shutting down, the next gate is not charged anymore
- The gate charges are subject to noise
- ➤ As a result, the state of the next gate is unknown. In simulations this unknown state is denoted by 'X'

Introduction To Power Aware Flow

Chip Development Flow

- Static power can be saved by shutting down power supplies
- Power map has to be developed along with RTL design
- Power supply shutdown is initiated by triggering the RTL logic condition
- UPF files describe the power intent in a chip development flow
- An updated chip development flow can be found below

PA flow simulation - collapsing

- All internal signals are substituted with 'X' during the collapse
- 'X' signals are forced for the entire time of the collapse

PA flow simulation – recovery

SNUG 2014

PA flow simulation - X insertion

Reset And Clamps

Bugs Classification

Bugs found with Power Aware Flow

Example 1: Power doesn't come ON

Example 2: Reset Bug

FIFO returns acknowledgement on abort request only when it is empty.

Counters on both sides are always synchronized.

A checker, verifying reset propagation, would catch this bug in non-PA simulation

Non - PA Flow

Cycle	Operation	Write Pointer	Read Pointer	Power State
1		0	0	ON
2	Push 1	1	0	ON
3	Push 2	2	0	ON
4	Pop 1	2	1	ON
5	Pop 2	2	2	ON
6		2	2	Collapsed
7	Reset is not propagating	2	2	ON
8	Push 3	3	2	ON
9	Pop 3	3	3	ON

Real World / PA Flow

Cycle	Operation	Write Pointer	Read Pointer	Power State
1		0	0	ON
2	Push 1	1	0	ON
3	Push 2	2	0	ON
4	Pop 1	2	1	ON
5	Pop 2	2	2	ON
6		X	X	Collapsed
7	Reset is not propagating	X	X	ON
8	Push 3	X	X	ON
9	Pop - getting error	Χ	Χ	ON

Example 3: Collapsed Logic Simulated

Collapsed Logic Simulated

Real World / PA Flow

Cycle	А	В	С	PWR status
1	Works on "T"		Waiting	
2	Works on "T"	Works on "HE"	Waiting	
3	Transmits "T"	Works on "HE"	Receives "T", ACK to A	
4	Works on "T"	Transmits "HE"	Receives "HE", ACK to B	
5	Works on "T"	Works on "HE"	Waiting	
6	Transmits "T"	Works on "HE"	Receives "T"	
7	Works on "T"	Transmits "HE"	Receives "HE"	
8	Works on "T"	Works on "HE"	Waiting	
9	Transmits "T"	Works on "HE"	Receives "T"	
10	Works on "T"	Collapsed	Waiting	Collapse
11	Works on "T"	Collapsed	Waiting	Collapse
12	Transmits "T"	Collapsed	NACK to A	Collapse
13	Transmits "T"	Collapsed	NACK to A	Collapse
14	Transmits "T"	Collapsed	NACK to A	Collapse
15	Transmits "T"	Collapsed	NACK to A	Collapse
16	Transmits "T"	Before reset/NOP	ACK to A	
17	Works on "T"	"Late reset" values	Waiting	
18	Works on "T"	Works on "HE"	Waiting	

Collapsed Logic Simulated

Non - PA Flow

0	۸	D	0	DWD -1-1-
Cycle	Α	В	С	PWR status
1	Works on "T"		Waiting	
2	Works on "T"	Works on "HE"	Waiting	
3	Transmits "T"	Works on "HE"	Receives "T", ACK to A	
4	Works on "T"	Transmits "HE"	Receives "HE", ACK to B	
5	Works on "T"	Works on "HE"	Waiting	
6	Transmits "T"	Works on "HE"	Receives "T"	
7	Works on "T"	Transmits "HE"	Receives "HE"	
8	Works on "T"	Works on "HE"	Waiting	
9	Transmits "T"	Works on "HE"	Receives "T"	
10	Works on "T"	Transmits "HE"	NACK to B	Collapse
11	Works on "T"	Transmits "HE"	NACK to B	Collapse
12	Transmits "T"	Transmits "HE"	NACK to A and B	Collapse
13	Transmits "T"	Transmits "HE"	NACK to A and B	Collapse
14	Transmits "T"	Transmits "HE"	NACK to A and B	Collapse
15	Transmits "T"	Transmits "HE"	NACK to A and B	Collapse
16	Transmits "T"	Transmits "HE"	ACK to B, NACK to A	
17	Transmits "T"	"Late Reset" values	ACK to A	
18	Works on "T"	Works on "HE"	Waiting	

Example 4: Long Initialization

Long Initialization – PA flow

SNUG 2014

Long Initialization – non-PA flow

SNUG 2014

Tips On Using VCS NLP Flow

- UPF and RTL describe the design
- ➤ TB is a layer between design and verification
- Adding UPF power content is easy by adding a switch

UPF Introduction

Power Shutdown

upf_simstate virtual signal keeps the state of the power domain.

The second and the third signals are collapsed, when the block is collapsed.

Isolation cells

The first signal is clamp control. Once it is enabled the isolation signal (the third one), gets value '1'. The pre-clamp value of the signal is kept in "_UPF_ISO_PRE" virtual signal.

The signal names are grayed for security purposes.

UPF interpretation

DVE/Verdi provide a convenient UPF interpretation:

We can observe power domain, isolation cells and element, included in this power domain.

<u>Messages</u>

Corrupt state message:

[1285825103 ps] [INFO] [LP_PPN_STATE_CHANGE] State of the primary power net 'vdd_int' of power domain 'SOME_PATH/VDD_INT' changed from FULL_ON to OFF.

[1285825103 ps] [INFO] [LP_PPN_VALUE_CHANGE] Voltage of the primary power net 'vdd_int' of power domain 'SOME_PATH/VDD_INT' changed from 1 V to 0 V.

Power recovery message:

[2656232 ps] [INFO] [LP_PPN_STATE_CHANGE] State of the primary power net 'vdd_int' of power domain 'SOME_PATH/VDD_INT' changed from OFF to FULL_ON.

[2656232 ps] [INFO] [LP_PPN_VALUE_CHANGE] Voltage of the primary power net 'vdd_int' of power domain 'SOME_PATH/VDD_INT' changed from 0 V to 1 V.

LPA VCS built in assertions

Built in LPA assertions are a useful tool for catching low power issues.LPA provide warning messages when inputs are toggled during the collapse.

Disbabling of LPA built in assertions

LPA VCS built in assertions are very useful, but sometimes the assertions trigger an alert on custom design. This is an example on how to disable LPA assertions:

set_lp_msg_onoff off -msg {LP_PSW_CTRL_INIT_INVALID}

DVE has an option to show UPF source code

The signal names are grayed for security purposes.

Summary

- □ PA flow makes a difference only when there is reset, clamp control or wake up logic issues
- □ Reset, clamp control or wake up logic issues are difficult to detect
- ☐ These issues lead to missing a wide range of initialization, performance and reset issues by non-PA simulations
- ☐ These gaps are successfully detected by PA flow

Incorrect Control

switch the control, then we would

catch this bug

If we had a scenario of propagating 1 before the collapse and 0 after the collapse, we would catch this bug without PA.

By using of PA flow we increase the number of scenarios being covered without using of engineering time

CL selects input 1 prematurely

Block Synchronization

Correct timing

Current Timing

CLK

Power Switch

Reset

Clamp Enable

Reset

Power Switch

CLK

Clamp Enable

If we verified that clamp enable occurs on time then we would catch this bug

- Enable was kept 1 from before the collapse.
- Enable was supposed to get 1 only after the reset.
- When the power switch is up, CL proceeds with the data coming in.
- Without PA the output data comes out 2 cycles prematurely

SNUG 2014

Block Synchronization

C merges every 2 consecutive transactions

The arbitration is given to the first transaction, which is ready.

C gives ack, when it reads from a block. It doesn't read during the collapse.

C merges 2 words from A and instead of "THE" we obtain "TT"

Initially, A starts one cycle before B

B produces output 2 cycles later than in non-PA simulation.

Blocks A and B convert between interfaces.

If A and B provide input in the same cycle A is the first word in concatenation.

B has collapsible power domain and A doesn't.

Without PA flow, B is up 2 cycles earlier than it is supposed to be. This ensures synchronization and the bug are being missed.