Vertex of the Quadratic

 $p_1 = -\frac{b}{2a}$ namely $n(p_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at $\mathsf{p}_{1^+}\mathsf{h}$, namely

Given a quadratic n(p)=ap² + bp + c compute its value at

 $n(p_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = n(p_1+h) - n(p_1) = ah^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum!

Example 1. $n(p) = 3p^2 + 47$

