§26 Compact Spaces - Solutions to Exercises

- (a) Suppose X is compact under τ'. Let A ⊂ τ' be an open cover of X. Since τ ⊂ τ', A ⊂ τ'. Then by the definition of compactness, there exists a finite subcollection of A covering X. So X is compact under τ as well.
 X compact under τ does not say anything about the compactness of X under τ'. For example, suppose X is infinite and compact under τ. If τ' is P(X) (the set of all sets of X), then the open cover A = { {x} | x ∈ X} ⊂ τ' does not admit a finite subcover in τ'.
 - (b) Suppose X is compact and Hausdorff under both τ and τ' . Suppose τ and τ' are comparable. Without loss of generality, assume $\tau \subset \tau'$. Let $U \in \tau'$. Then X U is closed in (X, τ') . Since X compact, X U is compact as a subspace of (X, τ') by Theorem 26.2. By the result of part (a) above, X U is compact in (X, τ) . Since (X, τ) is Hausdorff, X U is closed in (X, τ) by Theorem 26.3. By definition of closed set, $U \in \tau$. Thus, $\tau' \subset \tau$, which implies $\tau' = \tau$.
- 2. (a) Let U be a subset of \mathbb{R} . If $U=\emptyset$ it is vacuously true that U is compact. If $U\neq\emptyset$, let $\{A_{\alpha}\}$ be an open cover of U. Pick a nonempty member of the open cover, say A_{β} . $\mathbb{R}-A_{\beta}$ is finite so $U\cap(\mathbb{R}-A_{\beta})$ is also finite. If $U\cap(\mathbb{R}-A_{\beta})=\emptyset$, then $U=A_{\beta}$ which would mean U is compact. If $U\cap(\mathbb{R}-A_{\beta})\neq\emptyset$, then for each $p\in U\cap(\mathbb{R}-A_{\beta})$, there exists $A_{\alpha_p}\in\{A_{\alpha}\}$ that contains p. Then the set $\{A_{\alpha_p}\mid p\in U\cap(\mathbb{R}-A_{\beta})\}\cup\{A_{\beta}\}$ is a finite open cover of U.
 - (b) Let $K_m = \{\frac{1}{n} \mid n \in \mathbb{Z}_+ \text{ and } n \geq m \}$. Then $\{\mathbb{R} K_n\}_{n \in \mathbb{Z}_+}$ is an open cover of [0,1]. For every finite subcollection of these sets, there is a maximum N such that $\mathbb{R} K_N$ is in the subcollection. $\mathbb{R} K_N$ does not contain $\frac{1}{n} \forall n \geq N$ nor does any $\mathbb{R} K_m \ \forall m \leq N$. So [0,1] cannot be compact.
- 3. Let U_1, \ldots, U_n be a collection of compact subspaces of X. Let \mathcal{A}_0 be an open covering of $\bigcup_{i=1}^n U_i$. Since \mathcal{A}_0 is an open cover of each U_i , there is a finite subcollection \mathcal{A}_i that covers each U_i . Since $\mathcal{A}_1 \cup \ldots \cup \mathcal{A}_n$ is finite and covers $U_1 \cup \ldots \cup U_n$. Thus, $\bigcup_{i=1}^n U_i$ is compact.
- 4. Let X be a metric space (with metric d) and A be a compact subspace of X. Every metric space is Hausdorff so A is closed by Theorem 26.3. the set of balls $\{B_d(x,1)\}_{x\in A}$ is an open covering of A. So there exists a finite subcover $B_d(x_1,1),\ldots,B_d(x_n,1)$. Let $M=\max_{1\leq i,j\leq n}d(x_i,x_j)+2$. Let $a_1,a_2\in A$. Then $a_1\in B_d(x_{m_1},1)$ and $a_2\in B_d(x_{m_2},1)$ for some $m_1,m_2\in\{1,\ldots,n\}$. By the triangle inequality,

$$d(a_1, a_2) \le d(a_1, x_{m_1}) + d(x_{m_1}, x_{m_2}) + d(x_{m_2}, a_2) < 1 + \max_{1 \le i, j \le n} d(x_i, x_j) + 1 = M$$

So A is bounded.

 \mathbb{R} equipped with the standard bounded metric is closed and bounded but not compact.