Hướng dẫn bài tập Vi tích phân 1 Tuần 10

Ngày 8 tháng 4 năm 2024

Tiêu chuẩn hội tụ

Định nghĩa

Một chuỗi $\sum a_n$ được gọi là hội tụ tuyệt đối nếu chuỗi giá trị tuyệt đối $\sum |a_n|$ hội tụ.

Định nghĩa

Một chuỗi $\sum a_n$ được gọi là hội tụ có điều kiện nếu nó hội tụ nhưng không hội tụ tuyệt đối.

Định lý

Một chuỗi $\sum a_n$ hội tụ tuyệt đối thì nó hội tụ.

Tiêu chuẩn d'Alembert

Tiêu chuẩn d'Alembert hay tiêu chuẩn tỷ số

Giả sử
$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L.$$

- i). Nếu L < 1 thì chuỗi $\sum_{n=1}^{\infty} a_n$ hội tụ tuyệt đối (và do đó hội tụ).
- ii). Nếu L>1 thì chuỗi $\displaystyle\sum_{n=1}^{\infty}a_n$ phân kì
- iii). Nếu L=1, ta không kết luận được tính hội tụ hay phân kỳ của chuỗi.

Tiêu chuẩn Cauchy

Tiêu chuẩn Cauchy hay tiêu chuẩn căn thức

$$\operatorname{Giả}\,\operatorname{sử}\,\lim_{n\to\infty}\sqrt[n]{|a_n|}=L.$$

- i). Nếu L < 1 thì chuỗi $\sum_{n=1}^{\infty} a_n$ hội tụ tuyệt đối (và do đó hội tụ).
- ii). Nếu L>1 thì chuỗi $\displaystyle\sum_{n=1}^{\infty}a_n$ phân kì
- iii). Nếu L=1, ta không kết luận được tính hội tụ hay phân kỳ của chuỗi.

Bài tập

Bài 1. Xác định xem chuỗi hội tụ tuyệt đối, hội tụ có điều kiện hay phân kì.

a).
$$\sum_{n=1}^{\infty} \frac{n}{5^n}$$

b).
$$\sum_{n=2}^{\infty} (-1)^{n-1} \frac{n}{n^2 + 4}$$

c).
$$\sum_{n=1}^{\infty} \frac{\cos(n\pi/3)}{n!}$$

d).
$$\sum_{n=2}^{\infty} \left(\frac{-2n}{n+1} \right)^{5n}$$

Chuỗi lũy thừa

Định lý

Với mỗi chuỗi lũy thừa $\sum_{n=0}^{\infty}c_{n}\left(x-a\right)^{n}$ cho trước chỉ tồn tại ba khả năng sau

- i). Chuỗi hội tụ khi x = a.
- ii). Chuỗi hội tụ với mọi x.
- iii). Tồn tại một số dương R sao cho chuỗi hội tụ nếu |x-a| < R và phân kỳ nếu |x-a| > R.

R được gọi là **bán kính hội tụ** của chuỗi lũy thừa. **Miền hội tụ** của một chuỗi lũy thừa là miền bao gồm tất cả các giá trị x sao cho chuỗi hội tụ.

Bài tập

Bài 2. Tìm bán kính hội tụ và miền hội tụ của chuỗi sau.

a).
$$\sum_{n=1}^{\infty} \frac{x^n}{n!}$$

b).
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n^3}$$

c).
$$\sum_{n=0}^{\infty} n^3 (x-5)^n$$

d).
$$\sum_{n=1}^{\infty} \frac{x^n}{n3^n}$$

e).
$$\sum_{n=1}^{\infty} n! (2x-1)^n$$

Chuỗi Taylor và Maclaurin

Chuỗi Taylor

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

= $f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$

Chuỗi Maclaurin

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \cdots$$

Chuỗi Taylor và Maclaurin

Định lý

Nếu $f(x) = T_n(x) + R_n(x)$, trong đó T_n là đa thức Taylor bậc n của f tại a và

$$\lim_{n \to \infty} R_n(x) = 0$$

với |x-a| < R, khi đó f bằng tổng của chuỗi Taylor trên miền |x-a| < R.

Bất đẳng thức Taylor

Nếu $|f^{(n+1)}(x)| \leq M$ với $|x-a| \leq d$, khi đó sai số thặng dư $R_n(x)$ của chuỗi Taylor thỏa mãn bất đẳng thức

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$
 với $|x-a| \le d$

10140131431 3 990

Bài tập.

Bài 3. Xấp xỉ f bằng đa thức Taylor bậc n tại a. Sau đó, sử dụng bất đẳng thức Taylor để đánh giá độ chính xác của phép xấp xỉ $f(x) \approx T_n(x)$ khi x thuộc khoảng cho trước.

- a). $f(x) = x^{2/3}$, a = 1, n = 3, $0.8 \le x \le 1.2$
- b). $f(x) = e^{x^2}$, a = 0, n = 3, $0 \le x \le 0.1$

10 / 10