

Department of ECE, Bennett University

CSET102: Introduction to Electrical and Electronics Engineering

Tutorial Sheet-10

Topics Covered: Operational Amplifier

Note: In all these questions, $|V_{CC}| = |V_{EE}| = 15 \text{ V}$.

Inverting Amplifier:

- 1) Consider an inverting amplifier, as shown in fig. 1. If $R_1 = 1 \text{ k}\Omega$ and $R_2 = 15 \text{ k}\Omega$, find the output voltage if the input voltage is 0.5 V.
- 2) Consider an inverting amplifier, as shown in fig.1. If $R_1 = 0.5 \text{ k}\Omega$ and the input voltage is 0.25 V. What is the maximum permissible value of the resistor R_2 ?
- 3) Consider an inverting amplifier, as shown in fig. 1. If $R_2 = 7.5 \text{ k}\Omega$ and the input voltage is 0.25 V. What is the minimum permissible value of the resistor R_1 ?
- 4) Consider an inverting amplifier, as shown in fig. 1. If $R_1 = 1 \text{ k}\Omega$ and $R_2 = 10 \text{ k}\Omega$, what is the maximum permissible value of the voltage at the input?

- 5) Consider the non-inverting amplifier, as shown in fig. 2. Given that $R_1 = 1 \text{ k}\Omega$, and $R_2 = 10 \text{ k}\Omega$, find the output voltage if the input voltage is 0.5 V.
- 6) Consider the non-inverting amplifier, as shown in fig. 2. If R_1 = 0.5 k Ω and the input voltage is 0.25 V. What is the maximum permissible value of the resistor R_2 ?
- 7) Consider an inverting amplifier, as shown in fig. 2. If R_2 = 7.5 k Ω and the input voltage is 0.25 V. What is the minimum permissible value of the resistor R_1 ?
- 8) Consider an inverting amplifier, as shown in fig. 2. If $R_1 = 1 \text{ k}\Omega$ and $R_2 = 15 \text{ k}\Omega$, what is the maximum permissible value of the voltage at the input?

CSET102 ECE, BU

- 9) Consider a summing amplifier shown in fig. 3. Given that $R_1 = 1 \text{ k}\Omega$, $R_2 = 1.5 \text{ k}\Omega$, $R_3 = 2 \text{ k}\Omega$, and $R_F = 10 \text{ k}\Omega$. If $v_{I1} = 0.5 \text{ V}$, $v_{I2} = 0.75 \sin(60\pi\text{t})$ and $v_{I3} = 1.0 \sin(30\pi\text{t})$, find the output voltage?
- 10) Consider a summing amplifier shown in fig. 3. Given that the gain of the amplifier is 5. If $v_{11} = 0.25$ V, $v_{12} = 0.75 \sin(60\pi t)$ and $v_{13} = 1.2 \sin(30\pi t)$. Find the output voltage.

11) Consider the difference amplifier shown in fig. 4. Find the output voltage when V_{i1} = 0.5 V, V_{i2} = 0.55 V, R_1 = 1 k Ω , R_2 = 5 k Ω , R_3 = 3 k Ω and R_4 = 9 k Ω .

12) Consider the circuit shown in fig. 5. The input voltage v_s is given by $v_S = 1.0 \sin(120\pi t)$. What will be the output voltage. Given R = 1 k Ω C=1 μ F.

CSET102 ECE, BU

13) Consider the circuit shown in fig. 6. The input voltage v_s is given by $v_s = 1.0 \sin \left(120\pi t\right)$. What will be the output voltage. Given R = 1 k Ω C=1 μ F.

CSET102 ECE, BU