

"STRONG" Artificial Intelligence

Afonso DIELA

ID-TD2-TP3

1TI Cycle 2015-16

н

TABLE OF CONTENTS

I. INTRODUCTION

- I. Choice of subject
- II. Definition
- III. Historical

II. TECHNICAL PART

- I. Weak AI (top-down)
- II. Strong AI (bottom-up)
- III. Neural networks
- IV. Machine learning

I. ADDITIONAL ASPECTS

- I. Our disappearance or our future?
- II. Legal issues

SOURCES USED

INTRODUCTION

II Choice of subject

I.II. History

- 1950: Turing Test "Can machines think?" (Alan Turing 1912-1954).
- 1955-56: Logic Theorist (Herbert Simon, Allen Newell).
- 1956: Dortmouth Conference (Marvin Minsky, John McCarthy).
- 1958 59: List processing "LISP" (John McCarthy).
- **1960-80:** The years of crises.
- 1983 1999: Swarm Intelligence " distributed intelligence" The birth of a new field of research.

I.III. What is Artificial Intelligence?

Computer systems

Understanding.

Reasoning.

Dialogue.

Adaptation to new situations.

Learning.

WEAK AI

- Human intelligence.
- Scheduled in advance.
- No evolution.
- Widely used by businesses (quick to manufacture and cost less \$)
- Based on the expert system:
- A database
- an inference engine
- a user interface

Examples of Weak Al

- Eliza created by Joseph
 Weizenbaum (1964 1966).
- First AI program
- Chess game
- Deep Blue

STRONG AI

STRONG AI

- Intelligent program (logical reasoning close to human)
- Program simple tasks to then do complex tasks, to understand its own operations)
- Deep learning (deep learning)
- Machine learning methods.
- Neural network

Sonny, virtual example of strong AI (film I, robot)

NEURAL NETWORKS

Historical

- 1943: J.Mc Culloch and W. Pitts establish the "logical model" of the neuron which opens the way to technical models.
- 1957: F. Rosenblatt realizes the Perceptron, the first technical model based on the modification of weights.
- 1969: M.Minsky and S.Papert criticize and demonstrate the limitations of perceptron -type neural models.
- 1982: J. Hopfield (physicist) proposes a new approach to neural networks based on the analogy with large particle media. This revives interest in neural networks

Applications

- Image processing
- Identification of signatures
- Character recognition (typists or handwritten)
- Speech recognition
- Recognition of acoustic signals (underwater noise, etc.)
- Extracting a signal from noise
- Control of non-linear (non-modelable) servo systems
- Robotics (task learning)
- Decision support (medical, banking, management, etc.)

Biological

- In a brain there are 10^12 neurons with 10^3 to 10^4 connections per neuron.
- Dendrite : receiver of messages
- Nucleus: generates the action potential (the response)
- Axon: transmits the signal to the following cells
- Synapse: axon-dendrite junction (more or less active)

Logical model of the neuron

The modeling of the biological nervous system is based on the following correspondence

Modeling Levels

NEURAL CIRCUITS

• MENTAL MECHANISMS

SMART BEHAVIOR

Graphical representation

The Combination Function calculated the influence of each input taking into account its weight . It sums the weighted

$$p = \sum W_i E_i$$

Transfer functions

The Transfer Function determined the state of the neuron (output)

$$S = f(p) \text{ or } S = f(\sum W_i E_i)$$

MACHINE LEARNING

- Supervised Learning (more widespread)
- Unsupervised Learning (less used)
- OCR (Operating Character Recognition or Text Recognitio

AlphaGo

The challenges of strong Al

Questions we ask ourselves about this type of Al

Can we build a conscious Al?	No, consciousness would be the property of living organisms. This position is defended mainly by philosophers.
Do we have the algorithms required to build such intelligence?	No, current computers are not capable of this. It does not have the appropriate "language"
Is "thinking" applicable to a machine?	No, a machine calculates. But thought is a fact that constantly evolves over time: these two processes are, to say the least, incompatible.

The limits

Limits of neuroscience

Moore's Law vs. Component Miniaturization

Limit of computing power

ADDITIONAL ASPECTS

IV.II. Our disappearance or our future?!

•If she would take control of herself.

Autonomous drones

IV.II. Legal and ethical issues

Self-driving cars

CONCLUSION

- Revolutionize our humanity.
- Many applications.
- Technology of the future.
- Very large area.
- Scary technology.

SOURCES USED

Supervised personal work (TPE):

- https://sites.google.com/site/int3llig3nc3artifici3ll3/une-opposition-entre-iaforte-et-ia-faible
- http://tpe-intelligence--artificielle.e-monsite.com/pages/il-intelligenceartificielle/conception-de-l-ia-1.html

Wikipedia:

- https://fr.wikipedia.org/wiki/ELIZA
- https://fr.wikipedia.org/wiki/ELIZA#/media/File:GNU_Emacs_ELIZA_example.
 png
- irobot.wikia.com:
- http://soocurious.com/fr/cortana-imitation-human-logiciel/

Books:

- Artificial Intelligence Jack Challoner
- Superintelligence Nick Bostrom

