Leis do Cálculo Funcional (2020/21)

Funções

Natural-id	$f \cdot id = id \cdot f = f$	(1)
Assoc-comp	$(f \cdot g) \cdot h = f \cdot (g \cdot h)$	(2)
Natural-const	$\underline{k} \cdot f = \underline{k}$	(3)
Fusão-const	$f \cdot \underline{k} = \underline{f} \underline{k}$	(4)
Leibniz	$f \cdot h = g \cdot h \iff f = g$	(5)

PRODUTO

Universal-×
$$k = \langle f,g \rangle \iff \begin{cases} \pi_1 \cdot k = f \\ \pi_2 \cdot k = g \end{cases} \qquad (6)$$
Cancelamento-×
$$\begin{cases} \pi_1 \cdot \langle f,g \rangle = f \\ \pi_2 \cdot \langle f,g \rangle = g \end{cases} \qquad (7)$$
Reflexão-×
$$\langle \pi_1,\pi_2 \rangle = id_{A \times B} \qquad (8)$$
Fusão-×
$$\langle g,h \rangle \cdot f = \langle g \cdot f,h \cdot f \rangle \qquad (9)$$
Def-×
$$f \times g = \langle f \cdot \pi_1,g \cdot \pi_2 \rangle \qquad (10)$$
Absorção-×
$$(i \times j) \cdot \langle g,h \rangle = \langle i \cdot g,j \cdot h \rangle \qquad (11)$$
Natural- π_1
$$\pi_1 \cdot (f \times g) = f \cdot \pi_1 \qquad (12)$$
Natural- π_2
$$\pi_2 \cdot (f \times g) = g \cdot \pi_2 \qquad (13)$$
Functor-×
$$(g \cdot h) \times (i \cdot j) = (g \times i) \cdot (h \times j) \qquad (14)$$
Functor-id-×
$$id_A \times id_B = id_{A \times B} \qquad (15)$$
Eq-×
$$\langle f,g \rangle = \langle h,k \rangle \Leftrightarrow \begin{cases} f = h \\ g = k \end{cases} \qquad (16)$$

Coproduto

Universal-+	$k = [f, g] \Leftrightarrow \begin{cases} k \cdot i_1 = f \\ k \cdot i_2 = g \end{cases}$	(17)
Cancelamento-+	$\begin{cases} [f,g] \cdot i_1 = f \\ [f,g] \cdot i_2 = g \end{cases}$	(18)
Reflexão-+	$[i_1,i_2] = id_{A+B}$	(19)
Fusão- $+$	$f\cdot [g\ ,h]=[f\cdot g\ ,f\cdot h]$	(20)
Def-+	$f + g = [i_1 \cdot f \ , i_2 \cdot g]$	(21)
${f Absorç ilde{a}o-+}$	$[g\ ,h]\cdot (i+j)=[g\cdot i\ ,h\cdot j]$	(22)
Natural- i_1	$(i+j)\cdot i_1 = i_1\cdot i$	(23)
Natural- i_2	$(i+j)\cdot i_2 = i_2\cdot j$	(24)
Functor-+	$(g \cdot h) + (i \cdot j) = (g+i) \cdot (h+j)$	(25)
Functor-id-+	$id_A + id_B = id_{A+B}$	(26)
Eq-+	$[f,g] = [h,k] \iff \left\{ \begin{array}{l} f = h \\ g = k \end{array} \right.$	(27)

MISC. PRODUTO / COPRODUTO

Lei da troca
$$[\langle f, g \rangle, \langle h, k \rangle] = \langle [f, h], [g, k] \rangle$$
 (28)

CONDICIONAL

Natural-guarda
$$p? \cdot f = (f+f) \cdot (p \cdot f)?$$
 (29)

Def condicional de McCarthy
$$p \to f, g = [f, g] \cdot p?$$
 (30)

1.ª Lei de fusão do condicional
$$f \cdot (p \rightarrow g, h) = p \rightarrow f \cdot g, f \cdot h$$
 (31)

2.ª Lei de fusão do condicional
$$(p \to f, g) \cdot h = (p \cdot h) \to (f \cdot h), (g \cdot h)$$
 (32)

ISOMORFISMOS (α)

'Shunt-left'
$$h \cdot \alpha = k \equiv h = k \cdot \alpha^{\circ}$$
 (33)

'Shunt-right'
$$\alpha \cdot g = f \equiv g = \alpha^{\circ} \cdot f$$
 (34)

EXPONENCIAÇÃO

Universal-exp
$$k = \overline{f} \Leftrightarrow f = ap \cdot (k \times id)$$
 (35)

Cancelamento-exp
$$f = ap \cdot (\overline{f} \times id)$$
 (36)

Reflexão-exp
$$\overline{ap} = id_{BA}$$
 (37)

Fusão-exp
$$\overline{g \cdot (f \times id)} = \overline{g} \cdot f$$
 (38)

Def-exp
$$f^A = \overline{f \cdot ap} \tag{39}$$

Absorção-exp
$$f^A \cdot \overline{g} = \overline{f \cdot g}$$
 (40)

Functor-id-exp
$$id^A = id$$
 (42)

FUNCTORES

Functor-F
$$F(g \cdot h) = (Fg) \cdot (Fh) \tag{43}$$

Functor-id-F
$$Fid_A = id_{(FA)}$$
 (44)

INDUÇÃO

Universal-cata
$$k = (g) \Leftrightarrow k \cdot in = g \cdot Fk$$
 (45)

Cancelamento-cata
$$(g) \cdot in = g \cdot F(g)$$
 (46)

Reflexão-cata
$$(in) = id_T$$
 (47)

Fusão-cata
$$f \cdot (q) = (h) \iff f \cdot q = h \cdot \mathsf{F} f$$
 (48)

Base-cata
$$Ff = B(id, f) \tag{49}$$

Absorção-cata
$$(|g|) \cdot \mathsf{T} f = (|g \cdot \mathsf{B}(f, id)|)$$
 (51)

RECURSIVIDADE MÚTUA

Fokkinga
$$\begin{cases} f \cdot in = h \cdot \mathsf{F} \langle f, g \rangle \\ g \cdot in = k \cdot \mathsf{F} \langle f, g \rangle \end{cases} \equiv \langle f, g \rangle = (\langle h, k \rangle)$$
 (52)

"Banana-split"
$$\langle (|i\rangle, (|j\rangle) \rangle = (|(i \times j) \cdot \langle \mathsf{F} \pi_1, \mathsf{F} \pi_2 \rangle)$$
 (53)

Coindução

$k = \llbracket (g) \rrbracket \Leftrightarrow out \cdot k = (Fk) \cdot g$	(54)
$out \cdot [\![g]\!] = F [\![g]\!] \cdot g$	(55)
$[\![out]\!] = id_{T}$	(56)
$[\![g]\!]\cdot f = [\![h]\!] \Leftarrow g\cdot f = (Ff)\cdot h$	(57)
Ff = B(id,f)	(58)
$Tf = [(B(f,id)\cdotout)]$	(59)
$Tf\cdot [\![g]\!] = [\![B(f,id)\cdot g]\!]$	(60)
	$\begin{aligned} & \text{out} \cdot \llbracket(g)\rrbracket = F \llbracket(g)\rrbracket \cdot g \\ & \llbracket(\text{out})\rrbracket = id_{T} \\ & \llbracket(g)\rrbracket \cdot f = \llbracket(h)\rrbracket & \Leftarrow g \cdot f = (F f) \cdot h \\ & F f = B (id, f) \\ & T f = \llbracket(B(f, id) \cdot out)\rrbracket \end{aligned}$

Mónadas

Multiplicação	$\mu \cdot \mu = \mu \cdot T \mu$	(61)
Unidade	$\mu \cdot u = \mu \cdot T u = id$	(62)
Natural-u	$u \cdot f = T f \cdot u$	(63)
Natural- μ	$\mu \cdot T \left(T f \right) \ = \ T f \cdot \mu$	(64)
Composição monádica	$f \bullet g = \mu \cdot T f \cdot g$	(65)
Associatividade-•	$f \bullet (g \bullet h) = (f \bullet g) \bullet h$	(66)
Identidade-•	$u \bullet f = f = f \bullet u$	(67)
Associatividade-•/·	$(f \bullet g) \cdot h = f \bullet (g \cdot h)$	(68)
Associatividade/●	$(f \cdot g) \bullet h = f \bullet (T g \cdot h)$	(69)
μ versus $ullet$	$id \bullet id = \mu$	(70)

DEFINIÇÕES ao ponto ('POINTWISE')

Igualdade extensional	$f = g \iff \langle \forall \ x \ :: \ f \ x = g \ x \rangle$	(71)
Def-comp	$(f \cdot g) \ x = f \ (g \ x)$	(72)
Def-id	$id \ x = x$	(73)
Def-const	$\underline{k} \ x = k$	(74)
Notação- λ	$f \ a = b \equiv f = \lambda a \to b$	(75)
Def-split	$\langle f, g \rangle x = (f x, g x)$	(76)
$\mathbf{Def} ext{-} imes$	$(f \times g) (a,b) = (f a, g b)$	(77)
Def-cond	$(p \rightarrow f, g) x = \mathbf{if} p x \mathbf{then} f x \mathbf{else} g x$	(78)
Def-proj	$\pi_1(x,y) = x $	(79)
Elim-let	$\mathbf{let} \ x = a \ \mathbf{in} \ b = b \left[x/a \right]$	(80)
Elim-pair	$t = t[(x,y)/z, x/\pi_1 z, y/\pi_2 z]$	(81)
Def-ap	ap(f,x) = f x	(82)
Curry	$\overline{f} \ a \ b = f \ (a, b)$	(83)
Uncurry	$\widehat{f}(a,b) = f \ a \ b$	(84)

Composição monádica	$(f \bullet g) \ a = \mathbf{do} \{ b \leftarrow g \ a; f \ b \}$	(85)
'Binding as μ'	$x \gg = f = (\mu \cdot T f)x$	(86)
Notação-do	$\mathbf{do} \{x \leftarrow a; b\} = a \gg (\lambda x \to b)$	(87)
' μ as binding'	$\mu x = x \gg id$	(88)
Sequenciação	$x \gg y = x \gg \underline{y}$	(89)