

Eletrotécnica I

Aula – 04 Circuitos em série

Eleilson Santos Silva

RESISTORES EM SÉRIE

O Deve-se perceber que todo resistor fixo tem apenas dois terminais

• Definição de dispositivos em série: se dois dispositivos que possuem apenas dois terminais e eles possuem um único terminal em comum, e os outros dois terminais não utilizados na ligação, conecta-os ao restante do circuito, dizemos que eles se encontram em série.

(a) Series circuit

(b) R_1 and R_2 are not in series

• A resistência total de uma configuração em série e a soma das resistências.

 \circ RT = R1+R2+R3+...+RN

• Pode-se substituir um circuito série por outro equivalente considerando apenas a resistência total no novo circuito, quando isso for conveniente.

• Exemplo 1: Calcule a resistência total do circuito abaixo. Em seguida redesenhe o circuito e calcule a corrente total (I) fornecida pela fonte.

• Exemplo 2: Repita o exercício anterior para o circuito abaixo:

FONTES DE TENSÃO EM SÉRIE

• As fontes de tensão podem ser conectadas em série para aumentar ou diminuir a tensão total aplicada a um sistema.

• Exemplo 3: Simplifique os circuitos abaixo reduzindo-os para apenas uma fonte e um resistor.

Principais características do circuito série

- Um circuito série é aquele que só permite um caminho para a passagem da corrente elétrica.
- A tensão total através de um circuito série é igual a soma das tensões nos terminais de cada resistor.

$$V_{\mathrm{T}} = V_{1} + V_{2} + V_{3} + \cdots + V_{n}$$

• A Lei de Ohm pode ser aplicada ao circuito todo ou em partes separadas de um circuito série.

$$V_1 = IR_1$$

$$V_2 = IR_2$$

$$V_3 = IR_3$$

• Exemplo 4: Calcule a tensão total que alimenta o circuito a seguir.

• Exemplo 5: Calcule as tensões em cada resistor da figura abaixo.

• Exemplo 6: Calcule a tensão da fonte do circuito abaixo:

• Exemplo 7: Calcule o valor da tensão indicada na figura.

• Polaridade: quando há uma queda de tensão em uma resistência, uma extremidade da resistência fica mais positiva e a outra mais negativa. A polaridade é determinada pelo sentido da corrente elétrica.

POTÊNCIA TOTAL NO CIRCUITO EM SÉRIE

• A potência aplicada pela fonte CC deve ser igual àquela dissipada pelos elementos resistivos.

$$P_T = IV_T$$

$$P_T = P_1 + P_2 + P_3 + \cdots + P_n$$

• Exemplo 8: Calcule a potência em cada resistor do circuito e depois calcule a potência total.

• Exemplo 9: Calcule o valor da fonte de tensão do circuito. Calcule também a potência dissipada em cada resistor.

• Exemplo 11: Calcule as quedas de tensão em cada resistor das figuras abaixo e compare os resultados.

Regra do Divisor de tensão

• A regra do divisor e tensão permite a determinação da tensão através de um resistor em série sem que se tenha de terminar primeiro a corrente do circuito.

 \circ V_x = R_x * E / R_T

o Deduzir equação do divisor de tensão

• Exemplo 12: Calcule a tensão sobre cada um dos resistores em série abaixo usando o divisor de tensão.

• Exemplo 13: Na figura abaixo, se R1 = R2 = R, use a regra do divisor de tensão para encontrar a expressão para a queda de tensão em cada resistor.

o Passar exemplos da equação anterior

FUSÍVEIS

• Fusíveis são dispositivos de proteção, utilizados para proteção contra sobrecorrente (curtocircuito) e sobrecarga de longa duração. São constituídos por um condutor de seção reduzida (elo fusível) em relação aos condutores da instalação, montados em uma base de material isolante.

• Material Retirado de:

Gussow, Milton

Eletricidade básica / Milton Gussow

Tradução: Aracy Mendes da Costa

São Paulo: Pearson Makron Books, 1997.

Robert L. Boylestad

Introductory Circuit Analysis, 10ed.