

G4418 核心板简介

深圳葡萄雨技术有限公司

www.graperain.cn

版权声明

本手册版权归属深圳市葡萄雨技术有限公司所有,并保留一切权力。非经葡萄雨技术有限公司同意(书面形式),任何单位及个人不得擅自摘录本手册部分或全部,违者我们将追究其法律责任。

敬告:在售开发平台的手册会经常更新,请在http://www.graperain.cn/网站下载最新手册或与我司销售联系取得,不再另行通知。

版本说明

版本号	日期	作者	描述
Rev.01	2016-4-7	David	修订版本
		Huang	

技术支持

如果您对文档有所疑问,您可以拨打技术支持电话或 E-mail 联系。

网址: www.graperain.cn

网 址: http://www.graperain.cn/

联系电话: 0755-23025312

E-mail: info@graperain.com

销售与服务网络

公司:深圳市葡萄雨技术有限公司

地址:深圳市宝安区西乡街道银田路4号

邮编:518101

电话:0755-23025312

网址: http://www.graperain.cn/

目录

版权声	明·························错误!:	未定义书签。
第1章	G4418 核心板简介	5
1.1	产品简介	5
1.2	特性参数	6
1.3	核心板外观	····· 7
1.4	核心板结构图	g
1.5	底板外观	g
第2章	引脚定义	10
2.1	核心板引脚定义 1	10
2.2	核心板引脚定义 2	10
2.3	核心板引脚定义 3	11
2.4	核心板引脚定义 4	12
2.5	核心板引脚定义 5	12
第3章	硬件设计	13
3.1	电源设计	13
3.2	USB 设计·····	14
3.3	HDMI 设计······	14
3.4	LVDS 设计······	14
3.5	MIPI 设计······	15
第4章	产品线介绍·····	16
4.1	核心板系列	16
4.2	开发板系列	16
4.3	卡片电脑系列	16

第1章 G4418核心板简介

1.1 产品简介

G4418 核心板,是深圳市葡萄雨技术有限公司推出的基于三星 S5P4418(A9 四核)芯片的产品平台。

G4418 开发平台采用邮票孔的核心板+底板方式设计,核心板可扩展性强,多达 184 PIN 管脚,运行速度高达 1.4GHz。PCB 采用 8 层沉金工艺设计,具有最佳的电气特性和抗干扰特性,工作稳定可靠。核心板板载了 PMU,带库仑计的充电管理,可以广泛应用于 MID,POS,PDA,PND,智能家居,手机,车机,学习机,游戏机以及其他各种工控领域。

S5P4418 采用 28nm 制作工艺,内置高性能 4 核 A9 ARM 架构,相比 Exynos4412,在多媒体性能上,它几乎支持全格式视频解码,在 LCD 控制器上,芯片板载 LVDS 和 RGB 双路显示控制接口,显示分辨率可以高达 2048*1280@60Hz。同时,底板内部集成干兆以太网控制器。在电平上,S5P4418 为 3.3V GPIO,更方便行业客户设计产品。

S5P4418 并不是 Exynos4412 的阉割版,相反,在很大程度上,它的性能反而要优于 4412。但是,它的价格几乎只需要 4412 的一半,这对成本要求比较高的客户来说,很适合。

S5P4418 出色的性能,配合 G4418 底板,能够完美展现芯片的绝大多数功能,可以大大缩短用户的开发周期。G4418 开发板在设计之初,就充分考虑了4418的芯片特性,同时考虑到了很多实际应用场景。从软硬件整体考虑,即大大节约了用料成本,又很好地将芯片本身的性能发挥到极致,对企业用户具有非常大的借鉴意义。

网址:www.graperain.cn

G4418CV2 核心板具有以下特性:

- 最佳尺寸,即保证精悍的体积又保证足够的 GPIO 口,仅 52mm*52mm。
- 使用 x-powers 的 AXP228 PMU 电源管理设计,保证工作稳定可靠。
- 支持多种品牌多种容量的 emmc默认使用东芝 8GB emmc(19nm MLC 工艺)。
- 使用单通道 DDR3 设计,默认支持 1GB 容量,可定制 2GB 容量。
- 支持电源休眠唤醒。
- 支持 android4.4 , linux + qt , ubuntu 操作系统。
- 板载干兆有线以太网。
- 产品稳定可靠,拷机7天7夜不死机。

1.2 特性参数

结构参数				
外观	邮票孔方式			
核心板尺寸	52mm*52mm*3mm			
引脚间距	1.1mm			
引脚焊盘尺寸	1.3mm*0.7mm			
引脚数量	184 PIN			
板层	8 层			

系统配置		
CPU	S5P4418	
主频	四核 1.4GHz	
内存	标配 1GB , 可定制 2GB	
存储器	4GB/8GB/16GB emmc 可选,标配 8GB	
电源 IC	使用 AXP228 , 支持动态调频 , 库仑计等	
以太网	使用 RTL8211E 干兆以太网 PHY	

接口参数			
LCD 接口	同时支持 TTL、LVDS、MIPI 接口输出		
Touch 接口	电容触摸 ,可使用 USB 或串口扩展电阻触摸		
音频接口	IIS 接口,支持录放音		
SD 卡接口	2 路 SDIO 输出通道		
emmc 接口	板载 emmc 接口,管脚不另外引出		

	T	
以太网接口	支持干兆以太网	
USB HOST 接口	一路 HOST2.0 , 一路 HSIC	
USB OTG 接口	一路 OTG2.0	
UART 接口	4 路串口	
PWM 接口	2 路 PWM	
IIC 接口	3路 IIC	
SPI 接口	1路 SPI	
ADC 接口	3路 ADC	
Camera 接口	1 路 BT656/BT601,1路 MIPI 输出	
HDMI 接口	高清音视频输出接口,音视频同步输出	
VGA 接口	使用 LCD 输出接口扩展	
启动配置接口	无需启动配置,核心板自动适配	

电气特性		
输入电压	3.7~5.5V(推荐使用 5V 输入)	
输出电压	3.3V/4.2V(可用于底板供电及电池充电)	
储存温度	-40~80度	
工作温度	-30~70 度	

1.3 核心板外观

核心板正面图

核心板背面图

1.4 核心板结构图

核心板结构尺寸及管脚排列

1.5 底板外观

详细参数请参考 G4418 开发板简介文档

第2章 引脚定义

2.1 核心板引脚定义 1

核心板引脚定义					
引脚编号	信号	引脚编 号	信号		
1	VCC3P3_SYS	24	LCD_R5		
2	MCU_BACKLIGHT_PWM	25	LCD_R6		
3	MCU_TOUCH_INT	26	LCD_R7		
4	MCU_NRESETOUT	27	LCD_G0		
5	MCU_VG_EN	28	LCD_G1		
6	MCU_SDA_2	29	LCD_G2		
7	MCU_SCL_2	30	LCD_G3		
8	MCU_SDA_1	31	LCD_G4		
9	MCU_SCL_1	32	LCD_G5		
10	USBHSIC_DATA	33	LCD_G6		
11	USBHSIC_STROBE	34	LCD_G7		
12	MCU_USB_HOST_D-	35	LCD_B0		
13	MCU_USB_HOST_D+	36	LCD_B1		
14	MCU_OTG_PWRON	37	LCD_B2		
15	MCU_USB-	38	LCD_B3		
16	MCU_USB+	39	LCD_B4		
17	DC5V_OTG	40	LCD_B5		
18	MCU_USB_ID	41	LCD_B6		
19	LCD_R0	42	LCD_B7		
20	LCD_R1	43	LCD_DE		
21	LCD_R2	44	LCD_HSYNC		
22	LCD_R3	45	LCD_VSYNC		
23	LCD_R4	46	LCD_CLK		

核心板引脚定义 2

核心板引脚定义 1					
引脚编号	信 号	引脚编号	信号		
47	VCC1P0_CORE_D	70	GMAC_MDIO		
48	VCC1P0_CORE_D	70	PHY_INT		
49	VBAT	72	GMAC_TXD3		
50	VBAT	73	GMAC_TXD2		
51	GND	74	GMAC_TXD1		
52	GND	75	GMAC_TXD0		
53	VBAT_SYS	76	GMAC_TXEN		
54	VBAT_SYS	77	GMAC_TXER		
55	DCIN	78	MCU_SCL_0		
56	DCIN	79	MCU_SDA_0		

57	MCU_PWREN_SYS	80	MCU_HDMI_CEC
58	DLDO3	81	MCU_HDMI_HPD
59	DLDO2	82	MCU_HDMI_TXCN
60	ELDO3	83	MCU_HDMI_TXCP
61	GMAC_RXCLK	84	MCU_HDMI_TX0N
62	GMAC_TXCLK	85	MCU_HDMI_TX0P
63	GMAC_RXD0	86	MCU_HDMI_TX1N
64	GMAC_RXD1	87	MCU_HDMI_TX1P
65	GMAC_RXD2	88	MCU_HDMI_TX2N
66	GMAC_RXD3	89	MCU_HDMI_TX2P
67	GMAC_RXDV	90	GND
68	GMAC_MDC	91	MCU_LVDS_CLKM
69	PHY_RST	92	MCU_LVDS_CLKP

2.2 核心板引脚定义 3

核心板引脚定义					
引脚编号	信 号	引脚编 号	信号		
93	MCU_LVDS_Y3M	116	MIPIDSI_DN1		
94	MCU_LVDS_Y3P	117	MIPIDSI_DP1		
95	MCU_LVDS_Y2M	118	MIPIDSI_DN0		
96	MCU_LVDS_Y2P	119	MIPIDSI_DP0		
97	MCU_LVDS_Y1M	120	MIPIDSI_DNCLK		
98	MCU_LVDS_Y1P	121	MIPIDSI_DPCLK		
99	MCU_LVDS_Y0M	122	MCU_I2S_MCLK		
100	MCU_LVDS_Y0P	123	MCU_I2S_BCK		
101	GND	124	MCU_I2S_SDIN		
102	MIPIDSI_DP3	125	MCU_I2S_SDOUT		
103	MIPIDSI_DN3	126	MCU_I2S_LRCK		
104	MIPIDSI_DP2	127	MCU_HP_DET		
105	MIPIDSI_DN2	128	CAM_H		
106	MIPIDSI_DP1	129	CAM_V		
107	MIPIDSI_DN1	130	CAM_CLK		
108	MIPIDSI_DP0	131	CAM_D0		
109	MIPIDSI_DN0	132	CAM_D1		
110	MIPIDSI_DPCLK	133	CAM_D2		
111	MIPIDSI_DNCLK	134	CAM_D3		
112	MIPIDSI_DN3	135	CAM_D4		
113	MIPIDSI_DP3	136	CAM_D5		
114	MIPIDSI_DN2	137	CAM_D6		
115	MIPIDSI_DP2	138	CAM_D7		

核心板引脚定义 4

核心板引脚定义 1				
引脚编号	信号	引脚编号	信号	
139	CAM_PD	162	GPIOC7	
140	CAM_RST	163	GPIOB8	
141	CAM_PN	164	GPIOB9	
142	MCU_CAM1_MCL	165	GPIOC11	
143	UARTRXD3	166	GPIOA28	
144	UARTTXD3	167	PWM2	
145	UARTRXD2	168	IR	
146	UARTTXD2	169	VCC1P8_RTC	
147	UARTRXD1	170	MCU_SD1_CD	
148	UARTTXD1	171	MCU_SD1_CLK	
149	UARTRXD0	172	MCU_SD1_CMD	
150	UARTTXD0	173	MCU_SD1_D0	
151	MCU_SPITXD0	174	MCU_SD1_D1	
152	MCU_SPIFRM0	175	MCU_SD1_D2	
153	MCU_SPICLK0	176	MCU_SD1_D3	
154	MCU_SPIRXD0	177	MCU_SD0_CD	
155	MCU_SPI_WP	178	MCU_SD0_D3	
156	MCU_KEY_VOLDN	179	MCU_SD0_D2	
157	MCU_KEY_VOLUP	180	MCU_SD0_D1	
158	MCU_SEN0_INT	181	MCU_SD0_D0	
159	MCU_NRSETIN	182	MCU_SD0_CMD	
160	MCU_PWRKEY	183	MCU_SD0_CLK	
161	ADC0	184	GND	

2.3 核心板引脚定义 5

扩展 IO,核心板原理图中以下部分:9个可用 IO。(CVBS_OUT 在 G4418 上没有,G6818 核心板上有引出)

网址: www.graperain.cn

第3章 硬件设计

3.1 电源设计

G4418 核心板的 PMU 采用的是 x-powers 的 AXP228。

G4418 核心板提供两种电源输入方式,第一种通过 5V/2A 电源输入,给核心板的 55、56 脚供电;

第二种通过 3.5 到 4.2V 单节锂电池, 给核心板的 49、50 脚供电。也可以同时供电, 核心板上板载电池充电芯片, 它将提供整个电源充放电管理。如果使用电源适配器供电, 考虑到芯片工作的峰值电流, 电流需要保证有 1A。

另外,核心板的第53、54 脚为电源适配器和电池的公共输出端,电平约 3.5 到 5V,随外围供电电平变化,它可用于给底板供电。第 1 脚为 3.3V 电源输出端,可以用于给底板供电,但是在核心板休眠后,3.3V 会关电,唤醒后电压恢复正常。第 169 脚为 RTC 电源输入端,可在底板上接后备电池,保证 CPU 时钟不会丢失。

各电压对应管脚分布如下:

- 49、50 脚:电池输入端,接单节 4.2V 锂电池,不需要电池时悬空即可。
- 55、56 脚:电源适配器输入端, 4.5 到 5.5V/2A 输入。
- 53、54 脚:电池和电源适配器公共电平输出端,其电压由电池及电源适配器决定,可用于 底板供电。
- 169 脚:后备电池电源输入,如需实时时钟,需在该管脚外接后备电池,电压为 1.8V; 默认核心板上已经对该管脚进行供电 但不具备掉电保存功能。如不需实时时钟,悬空该脚即可;
 - 1 脚:3.3V 输出,可用于底板供电。在核心板休眠时,该电平会关闭,唤醒后恢复。

3.2 USB 设计

S5P4418 有一路 HOST 口,一路 HSIC 口及一路 OTG 口,其中 OTG 口即可作 HOST 口 也可作 DEVICE 用 即标准的 OTG 口。HOST 口可直接接 USB 外设,HSIC 口需要加桥接芯片如 USB3503, USB4640 等之后才转换为标准的 HOST 接口。

在 PCB 走线时,核心板的第 12、13 管脚,即 USB_HOST_D-、USB_HOST_D+管脚 为一对差分线,第 15、16 管脚,即 OTG_USB-、OTG_USB+管脚为一对差分线,他们必 须走等长差分线,且阻抗匹配为 90 欧,否则会出现 USB 传输不稳定的现象。

3.3 HDMI 设计

S5P4418 芯片自带 HDMI 控制器,支持 HDMI1.4 协议。核心板上第 82 到 89 共 8 个管脚,4 对差分线,必须走等长差分线,且阻抗匹配为 100 欧,否则会出现 HDMI 画面丢色,断断续续等问题。

3.4 LVDS 设计

S5P4418 芯片自带 RGB 和 LVDS 接口的 LCD 控制器, LVDS 为差分信号线,适合驱动分辨率较高的液晶屏。它包括 5 组传输线,其中 4 组为数据线,对应核心板的 93 到 100 脚,另一组为时钟线,对应核心板的 91 和 92 管脚。

LVDS 接口能够提供很高的数据传输率的同时,保证很低的功耗,其数据速率可以达到几百 Mbps 到 2Gbps。在走线时,5 组传输线必须走等长差分线,且阻抗匹配为 100 欧。

网址:www.graperain.cn

3.5 MIPI 设计

S5P4418 支持 DSI 和 CSI ,DSI 对应核心板的第 102 到 111 脚 ,用于接 MIPI 接口的显示屏; CSI 对应核心板的第 112 到 121 脚 ,用于接 MIPI 接口的摄相头。

MIPI 接口的数据传输率要远大于 LVDS 接口,在走线时一定要走等长差分线,且阻抗 匹配为 100 欧。

网址: www.graperain.cn

第4章 产品线介绍

4.1 核心板系列

G4418 (主控为三星 4418)

G6818 (主控为三星 6818)

G210 (主控为三星 210)

M9 核心板 (主控为高通 8916)

4.2 开发板系列

G4418 开发板 (主控为三星 4418)

G6818 开发板 (主控为三星 6818)

G210 开发板 (主控为三星 210)

M9 开发板 (主控为高通 8916)

4.3 卡片电脑系列

G4418 卡片电脑 (主控为三星 4418)

G6818 卡片电脑 (主控为三星 6818)

G3188 卡片电脑 (主控为瑞芯微 3188)

说明:产品详细规格,以及更多其他产品请关注葡萄雨技术官方网站或与我们联系。