|                 |              | Cre           | eated with Osdag® |
|-----------------|--------------|---------------|-------------------|
| Company Name    |              | Project Title | splice            |
| Group/Team Name |              | Subtitle      |                   |
| Designer        |              | Job Number    |                   |
| Date            | 17 /04 /2021 | Client        |                   |

# 1 Input Parameters

| Modu                    | ule                      |                | Beam-to-Beam             | Cover Plate Bolted Connection         |  |
|-------------------------|--------------------------|----------------|--------------------------|---------------------------------------|--|
| Main Module             |                          |                | N                        | Moment Connection                     |  |
| Bending Moment (kNm)    |                          |                |                          | 12.167                                |  |
| Shear Fore              | ce (kN)                  |                |                          | 131.628                               |  |
| Axial Ford              | ce (kN)                  |                |                          | 147.368                               |  |
|                         | Beam Section -           | Mechanical     | Properties               |                                       |  |
|                         | Beam Sec                 | ction          |                          | GROUP4-S-+                            |  |
|                         | Materi                   | al             | E                        | 2 250 (Fe 410 W)A                     |  |
|                         | Ultimate Strengt         | h, $F_u$ (MPa) |                          | 410                                   |  |
|                         | Yield Strength,          | $F_y$ (MPa)    |                          | 240                                   |  |
|                         | Mass, $m \text{ (kg/m)}$ | 328.22         | $I_z \text{ (cm}^4)$     | 51152.0                               |  |
| <u>t</u> α              | Area, $A \text{ (cm}^2)$ | 41900.0        | $I_y(\mathrm{cm}^4)$     | 42926.0                               |  |
| zz D                    | D (mm)                   | 824.0          | $r_z$ (cm)               | 34.9                                  |  |
| R2¬ R1                  | B (mm)                   | 500.0          | $r_y$ (cm)               | 10.12                                 |  |
|                         | t (mm)                   | 12.0           | $Z_z \text{ (cm}^3)$     | 13034.0                               |  |
| i i                     | T (mm)                   | 20.0           | $Z_y \text{ (cm}^3)$     | 2071.0                                |  |
|                         | Flange Slope             | 90             | $Z_{pz} (\mathrm{cm}^3)$ | 7374.9                                |  |
|                         | $R_1 \text{ (mm)}$       | 20.0           | $Z_{py} \text{ (cm}^3)$  | 15512.0                               |  |
|                         | $R_2 \text{ (mm)}$       | 10.0           |                          |                                       |  |
|                         | Bolt Details - Inp       | out and Desig  | n Preference             |                                       |  |
| Diameter                | · (mm)                   |                | [8, 10, 12, 14, 16       | , 18, 20, 22, 24, 27, 30, 33, 36, 39, |  |
|                         | (11111)                  |                | 42, 45]                  |                                       |  |
| Property                | Class                    |                | [8.8, 9.8, 10.9, 12.9]   |                                       |  |
| Тур                     | e                        |                | Bearing Bolt             |                                       |  |
| Hole T                  | lype                     |                | Standard                 |                                       |  |
| Slip Facto              | or, $(\mu_f)$            |                | 0.3                      |                                       |  |
| Edge Preparation Method |                          | Shea           | red or hand flame cut    |                                       |  |
| Gap Between Beams (mm)  |                          |                | 3.0                      |                                       |  |
| Are the Members Exposed | to Corrosive Influence   | es?            |                          | False                                 |  |
|                         | Plate Details - Inj      | out and Desig  | gn Preference            |                                       |  |
| Prefere                 | ence                     |                |                          | Outside + Inside                      |  |
| Ultimate Streng         | th, $F_u$ (MPa)          |                |                          | 410                                   |  |

|                 |              | Cre           | eated with OSdag® |
|-----------------|--------------|---------------|-------------------|
| Company Name    |              | Project Title | splice            |
| Group/Team Name |              | Subtitle      |                   |
| Designer        |              | Job Number    |                   |
| Date            | 17 /04 /2021 | Client        |                   |

| Yield Strength, $F_y$ (MPa) | 250                                                     |
|-----------------------------|---------------------------------------------------------|
| Material                    | E 250 (Fe 410 W)A                                       |
| Thickness (mm)              | [8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45, |
| 1 mckness (mm)              | 50, 56, 63, 75, 80, 90, 100, 110, 120]                  |

|                 |              | Cre           | ated with Osdag® |
|-----------------|--------------|---------------|------------------|
| Company Name    |              | Project Title | splice           |
| Group/Team Name |              | Subtitle      |                  |
| Designer        |              | Job Number    |                  |
| Date            | 17 /04 /2021 | Client        |                  |

# 2 Design Checks

| Design Status | Pass |
|---------------|------|
|---------------|------|

## 2.1 Member Capacity

| Check                         | Required        | Provided                                                                 | Remarks |
|-------------------------------|-----------------|--------------------------------------------------------------------------|---------|
|                               |                 | Semi-Compact                                                             |         |
| Section Classification        |                 |                                                                          |         |
|                               |                 | [Ref: Table 2, Cl.3.7.2 and 3.7.4, IS 800:2007]                          |         |
|                               |                 | $T_{ m dg} = rac{A_g f_y}{\gamma_{m0}}$                                 |         |
|                               |                 |                                                                          |         |
|                               |                 | $=\frac{41900.0\times240}{1.1\times10^3}$                                |         |
| Axial Capacity Member (kN)    | $P_x = 147.368$ |                                                                          |         |
|                               |                 | = 9141.82                                                                |         |
|                               |                 |                                                                          |         |
|                               |                 | [Ref. IS 800:2007, Cl.6.2]                                               |         |
|                               |                 | $V_{d_y} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$                          |         |
|                               |                 | $= \frac{784.0 \times 12.0 \times 240}{\sqrt{3} \times 1.1 \times 1000}$ |         |
| Shear Capacity Member (kN)    |                 |                                                                          |         |
|                               |                 | = 1185.1                                                                 |         |
|                               |                 |                                                                          |         |
|                               |                 | [Ref. IS 800:2007, Cl.10.4.3]                                            |         |
|                               |                 | $V_d = 0.6 \ V_{dy}$                                                     |         |
|                               |                 | $= 0.6 \times 1185.1$                                                    | _       |
| Allowable Shear Capacity (kN) | $V_y = 131.628$ | = 711.06                                                                 | Pass    |
|                               |                 |                                                                          |         |
|                               |                 | [Limited to low shear] $\beta_b Z_n f u$                                 |         |
|                               |                 | $M_{d_{\mathbf{Z}}} = \frac{\beta_b Z_p f y}{\gamma_{m0} \times 10^6}$   |         |
|                               |                 | $=\frac{1.77 \times 7374900.0 \times 240}{1.1 \times 10^6}$              |         |
| Plastic Moment Capacity       |                 |                                                                          |         |
| (kNm)                         |                 | = 2843.78                                                                |         |
|                               |                 | [D.f. IC 900 9007, Cl. 9.9.1.9]                                          |         |
|                               |                 | [Ref. IS 800:2007, Cl.8.2.1.2]                                           |         |

|                 |              | Cre           | ated with Osdag® |
|-----------------|--------------|---------------|------------------|
| Company Name    |              | Project Title | splice           |
| Group/Team Name |              | Subtitle      |                  |
| Designer        |              | Job Number    |                  |
| Date            | 17 /04 /2021 | Client        |                  |

| Check                             | Required       | Provided                                                                                                                       | Remarks |
|-----------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------|---------|
| Moment Deformation Criteria (kNm) |                | $M_{dc} = \frac{1.5Z_e f y}{\gamma_{m0} \times 10^6}$ $= \frac{1.5 \times 13034000.0 \times 240}{1.1 \times 10^6}$ $= 4265.67$ |         |
|                                   |                | [Ref. IS 800:2007, Cl.8.2.1.2]                                                                                                 |         |
| Moment Capacity Member            | $M_z = 12.167$ | $M_{dz} = \min(M_{dz}, M_{dc})$<br>= $\min(2843.78, 4265.67)$<br>= $2843.78$                                                   |         |
| (kNm)                             |                | [Ref. IS 800:2007, Cl.8.2]                                                                                                     |         |

### 2.2 Load Consideration

| Check             | Required | Provided   |                              | Remarks |
|-------------------|----------|------------|------------------------------|---------|
|                   |          | I.R. axial | $=P_{\rm x}/T_{\rm dg}$      |         |
|                   |          |            | = 147.368/9141.82            |         |
|                   |          |            | = 0.0161                     |         |
|                   |          |            |                              |         |
|                   |          | I.R. momen | ${ m tt}=M_{ m z}/M_{d m z}$ |         |
| Interaction Ratio |          |            | = 12.167/2843.78             |         |
|                   |          |            | = 0.0043                     |         |
|                   |          |            |                              |         |
|                   |          | I.R. sum   | = I.R. axial $+$ I.R. moment |         |
|                   |          |            | = 0.0161 + 0.0043            |         |
|                   |          |            | =0.0204                      |         |

|                 |              | Cre           | ated with Osdag® |
|-----------------|--------------|---------------|------------------|
| Company Name    |              | Project Title | splice           |
| Group/Team Name |              | Subtitle      |                  |
| Designer        |              | Job Number    |                  |
| Date            | 17 /04 /2021 | Client        |                  |

| Check                    | Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Provided                                                                          | Remarks |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------|
| Minimum Required<br>Load | if I.R. axial $< 0.3$ and I.R. moment $< 0.5$ $P_{\rm xmin} = 0.3T_{\rm dg}$ $M_{\rm zmin} = 0.5M_{\rm dz}$ elif sum I.R. $<= 1.0$ and I.R. moment $< 0.5$ if $(0.5 - {\rm I.R. moment}) < (1 - {\rm sum I.R.})$ $M_{\rm zmin} = 0.5 \times M_{\rm dz}$ else $M_{\rm zmin} = M_{\rm z} + ((1 - {\rm sum I.R.}) \times M_{\rm dz})$ $P_{\rm xmin} = P_{\rm x}$ elif sum I.R. $<= 1.0$ and I.R. axial $< 0.3$ if $(0.3 - {\rm I.R. axial}) < (1 - {\rm sum I.R.})$ $P_{\rm xmin} = 0.3T_{\rm dg}$ else $P_{\rm xmin} = P_{\rm x} + ((1 - {\rm sum I.R.}) \times T_{\rm dg})$ $M_{\rm zmin} = M_{\rm z}$ else $P_{\rm xmin} = P_{\rm x}$ $M_{\rm zmin} = M_{\rm z}$ Note: AL is the user input for load | $M_{ m z_{min}} = 1421.89$ $P_{ m x_{min}} = 2742.55$ [Ref. IS 800:2007, Cl.10.7] |         |
| Applied Axial Force (kN) | $P_x = 147.368$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $P_u = \max(P_x, P_{xmin})$<br>= $\max(147.368, 2742.55)$<br>= 2742.55            |         |

|                 |              | Created with OSdag® |        |
|-----------------|--------------|---------------------|--------|
| Company Name    |              | Project Title       | splice |
| Group/Team Name |              | Subtitle            |        |
| Designer        |              | Job Number          |        |
| Date            | 17 /04 /2021 | Client              |        |

| Check                | Required        | Provided                                                              | Remarks  |
|----------------------|-----------------|-----------------------------------------------------------------------|----------|
|                      |                 | $V_{y_{\min}} = \min(0.15V_{d_y}, 40.0)$                              |          |
|                      |                 | $= \min(0.15 \times 1185.1, 40.0)$                                    |          |
|                      |                 | =40.0                                                                 |          |
|                      |                 |                                                                       |          |
| Applied Shear Force  | $V_y = 131.628$ | $V_u = \max(V_y, V_{y_{\min}})$                                       |          |
| (kN)                 |                 | $= \max(131.628, 40.0)$                                               |          |
|                      |                 | = 131.63                                                              |          |
|                      |                 |                                                                       |          |
|                      |                 | [Ref. IS 800:2007, Cl.10.7]                                           |          |
|                      |                 | $M_u = \max(M_z, M_{z_{\min}})$                                       |          |
|                      |                 | $= \max(12.167, 1421.89)$                                             |          |
| Applied Moment       | $M_z = 12.167$  | = 1421.89                                                             |          |
| (kNm)                |                 |                                                                       |          |
|                      |                 | [Ref. IS 800:2007, Cl.8.2.1.2]                                        |          |
|                      |                 | $A_w = $ Axial force in web                                           |          |
|                      |                 | $=\frac{(D-2T)tAu}{A}$                                                |          |
|                      |                 |                                                                       | <u> </u> |
|                      |                 | $= \frac{(824.0 - 2 \times 20.0) \times 12.0 \times 2742.5}{41900.0}$ | J<br>    |
|                      |                 | = 615.8  kN                                                           |          |
| Force Carried by Web |                 |                                                                       |          |
|                      |                 | $M_w = \text{Moment in web}$                                          |          |
|                      |                 | $=rac{Z_w M u}{Z}$                                                   |          |
|                      |                 | $-\frac{Z}{Z}$ 1229312.0 × 1421.89                                    |          |
|                      |                 | $= \frac{1229512.0 \times 1421.89}{7374900.0}$                        |          |
|                      |                 | = 237.01  kNm                                                         |          |

|                 |              | Cre           | eated with Osdag® |
|-----------------|--------------|---------------|-------------------|
| Company Name    |              | Project Title | splice            |
| Group/Team Name |              | Subtitle      |                   |
| Designer        |              | Job Number    |                   |
| Date            | 17 /04 /2021 | Client        |                   |

| Check                   | Required | Provided                                                                                                                                                                                                                                                 | Remarks |
|-------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Force Carried by Flange | required | $A_f = \text{Axial force in flange}$ $= \frac{AuBT}{A}$ $= \frac{2742.55 \times 500.0 \times 20.0}{41900.0}$ $= 654.55 \text{ kN}$ $M_f = \text{Moment in flange}$ $= Mu - M_w$ $= 1421.89 - 237.01$ $= 1184.88 \text{ kNm}$ $F_f = \text{flange force}$ | Temarks |
|                         |          | $= \frac{M_f \times 10^3}{D - T} + A_f$ $= \frac{1184.88 \times 10^3}{824.0 - 20.0} + 654.55$ $= 2128.27 \text{ kN}$                                                                                                                                     |         |

### 2.3 Flange Bolt Check

| Check                               | Required                   | Provided                                             | Remarks |
|-------------------------------------|----------------------------|------------------------------------------------------|---------|
| Diameter (mm)                       | Bolt Quantity Optimization | d = 42.0                                             |         |
| Property Class                      | Bolt Grade Optimization    | 8.8                                                  |         |
| Bolt Ultimate Strength (N/mm2)      |                            | $f_{ub} = 830.0$                                     |         |
| Bolt Yield Strength (N/mm2)         |                            | $f_{yb} = 660.0$                                     |         |
| Nominal Stress Area (mm2)           |                            | $A_{nb} = 1080 \; (Ref \; IS \; 1367 - 3 \; (2002))$ |         |
| Hole Diameter (mm)                  |                            | $d_0 = 45.0$                                         |         |
| Min. Flange Plate<br>Thickness (mm) | T/2 = 10.0                 | $t_{ifp} = 12.0$                                     | Pass    |
| No. of Bolt Columns                 |                            | $n_c = 6$                                            |         |
| No. of Bolt Rows                    |                            | $n_r = 2$                                            |         |

|                 |              | Created with OSdag® |        |
|-----------------|--------------|---------------------|--------|
| Company Name    |              | Project Title       | splice |
| Group/Team Name |              | Subtitle            |        |
| Designer        |              | Job Number          |        |
| Date            | 17 /04 /2021 | Client              |        |

| Check                    | Required                                                                                                                                                                 | Provided | Remarks |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|
| Min. Pitch Distance (mm) | $p_{\min} = 2.5d$ $= 2.5 \times 42.0$ $= 105.0$ [Ref. IS 800:2007, Cl.10.2.2]                                                                                            | 105      | Pass    |
| Max. Pitch Distance (mm) | $p/g_{\text{max}} = \min(32t, 300)$<br>= $\min(32 \times 12.0, 300)$<br>= $\min(384.0, 300)$<br>= $300$<br>Where, $t = \min(12.0, 20.0)$<br>[Ref. IS 800:2007, Cl.10.2.3 | 105      | Pass    |
| Min. Gauge Distance (mm) | $p_{\min} = 2.5d$ $= 2.5 \times 42.0$ $= 105.0$ [Ref. IS 800:2007, Cl.10.2.2]                                                                                            | 0        |         |
| Max. Gauge Distance (mm) | $p/g_{\text{max}} = \min(32t, 300)$ $= \min(32 \times 12.0, 300)$ $= \min(384.0, 300)$ $= 300$ Where, $t = \min(12.0, 20.0)$ [Ref. IS 800:2007, Cl.10.2.3                | 0        |         |
| Min. End Distance (mm)   | $e_{\min} = 1.7d_0$<br>= 1.7 × 45.0<br>= 76.5<br>[Ref. IS 800:2007, Cl.10.2.4.2]                                                                                         | 80       | Pass    |

|                 |              | Created with OSdag® |        |
|-----------------|--------------|---------------------|--------|
| Company Name    |              | Project Title       | splice |
| Group/Team Name |              | Subtitle            |        |
| Designer        |              | Job Number          |        |
| Date            | 17 /04 /2021 | Client              |        |

| Check                   | Required                                                                                                                                                                                                                                                                           | Provided                                                                                                                                                                         | Remarks |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Max. End Distance (mm)  | $e_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 24.0 \times \sqrt{\frac{250}{250}} = 288.0$ $e_2 = 12 \times 20.0 \times \sqrt{\frac{250}{240}} = 244.95$ $e_{\text{max}} = \min(e_1, \ e_2) = 244.95$ [Ref. IS 800:2007, Cl.10.2.4.3]  | 80                                                                                                                                                                               | Pass    |
| Min. Edge Distance (mm) | $e_{\min} = 1.7d_0$<br>= 1.7 × 45.0<br>= 76.5<br>[Ref. IS 800:2007, Cl.10.2.4.2]                                                                                                                                                                                                   | 112.0                                                                                                                                                                            | Pass    |
| Max. Edge Distance (mm) | $e'_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 24.0 \times \sqrt{\frac{250}{250}} = 288.0$ $e_2 = 12 \times 20.0 \times \sqrt{\frac{250}{240}} = 244.95$ $e'_{\text{max}} = min(e_1, \ e_2) = 244.95$ [Ref. IS 800:2007, Cl.10.2.4.3] |                                                                                                                                                                                  | Pass    |
| Shear Capacity (kN)     |                                                                                                                                                                                                                                                                                    | $V_{\text{dsb}} = \frac{f_{ub}n_n A_{nb}}{\sqrt{3}\gamma_{mb}}$ $= \frac{830.0 \times 2 \times 1080}{1000 \times \sqrt{3} \times 1.25}$ $= 828.06$ [Ref. IS 800:2007, Cl.10.3.3] |         |

|                 |              | Cre           | eated with OSdag® |
|-----------------|--------------|---------------|-------------------|
| Company Name    |              | Project Title | splice            |
| Group/Team Name |              | Subtitle      |                   |
| Designer        |              | Job Number    |                   |
| Date            | 17 /04 /2021 | Client        |                   |

| Check                 | Required | Provided                                                                                                                                                                                                                                 | Remarks |
|-----------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Kb                    |          | $k_b = \min\left(\frac{e}{3d_0}, \frac{p}{3d_0} - 0.25, \frac{f_{ub}}{f_u}, 1.0\right)$ $= \min\left(\frac{80}{3 \times 45.0}, \frac{105}{3 \times 45.0} - 0.25, \frac{830.0}{410}, 1.0\right)$ $= \min(0.59, 0.53, 2.02, 1.0)$ $= 0.53$ |         |
| Bearing Capacity (kN) |          | [Ref. IS 800:2007, Cl.10.3.4] $V_{\text{dpb}} = \frac{2.5k_b dt f_u}{\gamma_{mb}}$ $= \frac{2.5 \times 0.53 \times 42.0 \times 20.0 \times 410}{1000 \times 1.25}$ $= 365.06$ [Ref. IS 800:2007, Cl.10.3.4]                              |         |
| Bolt Capacity (kN)    |          | $V_{\text{db}} = \min \ (V_{\text{dsb}}, \ V_{\text{dpb}})$ $= \min \ (828.06, \ 365.06)$ $= 365.06$ [Ref. IS 800:2007, Cl.10.3.2]                                                                                                       |         |

|                 |              | Created with OSdag® |        |
|-----------------|--------------|---------------------|--------|
| Company Name    |              | Project Title       | splice |
| Group/Team Name |              | Subtitle            |        |
| Designer        |              | Job Number          |        |
| Date            | 17 /04 /2021 | Client              |        |

| Check                 | Required                                                     | Provided                                                                             | Remarks |
|-----------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------|---------|
|                       |                                                              | $l = ((n_c \text{ or } n_r) - 1) \times (p \text{ or } g)$                           |         |
|                       |                                                              |                                                                                      |         |
|                       |                                                              | $l_r = 2 \times \left( \left( \frac{6}{2} - 1 \right) \times 105 + 80 \right) + 3.0$ |         |
|                       | if $l_j \ge 15d$ then $V_{\rm rd} = \beta_{lj} V_{\rm db}$   | = 583.0                                                                              |         |
|                       |                                                              | _ 363.0                                                                              |         |
|                       | if $l_j < 15d$ then $V_{\rm rd} = V_{\rm db}$                | $\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $                             |         |
|                       | where,                                                       | $l_c = 2 \times \left( \left( \frac{2}{2} - 1 \right) \times 0 + 112.0 \right)$      |         |
| Long Joint Reduction  | $l_i = ((nc \text{ or } nr) - 1) \times (p \text{ or } g)$   | +20.0) + 12.0 = 276.0                                                                |         |
| Factor                |                                                              |                                                                                      |         |
|                       | $\beta_{lj} = 1.075 - l/(200d)$                              | $l = 583.0$ $15d = 15 \times 42.0 = 630.0$                                           |         |
|                       | but $0.75 \le \beta_{lj} \le 1.0$                            | 154 - 15 × 42.0 - 050.0                                                              |         |
|                       |                                                              | since, $l < 15d$                                                                     |         |
|                       | [Ref. IS 800:2007, Cl.10.3.3.1]                              | then $V_{\rm rd} = V_{\rm db}$                                                       |         |
|                       |                                                              | $V_{ m rd} = 365.06$                                                                 |         |
|                       |                                                              |                                                                                      |         |
|                       | if $l_g \geq 5d$ , then $V_{\rm rd} = \beta_{lg} V_{\rm db}$ | [Ref. IS 800:2007, Cl. 10.3.3.1]                                                     |         |
|                       | If $lg \geq 5a$ , then $v_{\rm rd} = \rho_{lg} v_{\rm db}$   |                                                                                      |         |
|                       | if $l_g < 5d$ then $V_{\rm rd} = V_{\rm db}$                 |                                                                                      |         |
|                       |                                                              | $l_g = \Sigma \left( t_p + t_{\mathrm{member}} \right)$                              |         |
|                       | $l_g \le 8d$                                                 | = 44.0                                                                               |         |
| Large Grip Length Re- | where,                                                       | 5d = 210.0                                                                           |         |
| duction Factor        | $l_g = \Sigma(t_{\rm ep} + t_{\rm member})$                  | 8d = 336.0                                                                           |         |
|                       | 0 01/(01.1)                                                  | since, $l_g < 5d$ ; $\beta_{lg} = 1.0$                                               |         |
|                       | $\beta_{lg} = 8d/(3d + l_g)$                                 | [Ref. IS 800:2007, Cl.10.3.3.2]                                                      |         |
|                       | but $\beta_{lg} \leq \beta_{lj}$                             |                                                                                      |         |
|                       | [Ref. IS 800:2007, Cl.10.3.3.2]                              |                                                                                      |         |

|                 |              | Cre           | ated with Osdag® |
|-----------------|--------------|---------------|------------------|
| Company Name    |              | Project Title | splice           |
| Group/Team Name |              | Subtitle      |                  |
| Designer        |              | Job Number    |                  |
| Date            | 17 /04 /2021 | Client        |                  |

| Check         | Required                                                                                                          | Provided                                                                            | Remarks |
|---------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------|
| Capacity (kN) | $V_{res} = \frac{2\sqrt{V_u^2 + A_u^2}}{bolts_{req}}$ $= \frac{2 \times \sqrt{0.0^2 + 2128.27^2}}{12}$ $= 354.71$ | $V_{\rm rd} = \beta_{lj} \beta_{lg} V_{\rm db}$<br>= 1.0 × 1.0 × 365.06<br>= 365.06 | Pass    |

#### 2.4 Web Bolt Check

| Check                            | Required                                                                                     | Provided        | Remarks |
|----------------------------------|----------------------------------------------------------------------------------------------|-----------------|---------|
| Diameter (mm)                    | Bolt Quantity Optimization                                                                   | d = 42.0        |         |
| Property Class                   | Bolt Grade Optimization                                                                      | 8.8             |         |
| Min. Web Plate<br>Thickness (mm) | t/2 = 6.0                                                                                    | $t_{wp} = 12.0$ | Pass    |
| No. of Bolt<br>Columns           |                                                                                              | $n_c = 4$       |         |
| No. of Bolt Rows                 |                                                                                              | $n_r = 6$       |         |
|                                  | $p_{\min} = 2.5d$                                                                            |                 |         |
| Min. Pitch Dis-                  | $= 2.5 \times 42.0 = 105.0$                                                                  | 105             | Pass    |
| tance (mm)                       | [Ref. IS 800:2007, Cl.10.2.2]                                                                |                 |         |
|                                  | $p/g_{\text{max}} = \min(32t, 300)$<br>= $\min(32 \times 12.0, 300)$<br>= $\min(384.0, 300)$ |                 |         |
| Max. Pitch Distance (mm)         | = 300                                                                                        | 105             | Pass    |
|                                  | Where, $t = \min(12.0, 12.0)$ [Ref. IS 800:2007, Cl.10.2.3]                                  |                 |         |
|                                  | $p_{\min} = 2.5d$                                                                            |                 |         |
|                                  | $= 2.5 \times 42.0$                                                                          |                 |         |
| Min. Gauge Distance (mm)         | = 105.0                                                                                      | 105             | Pass    |
|                                  | [Ref. IS 800:2007, Cl.10.2.2]                                                                |                 |         |

|                 |              | Cre           | ated with Osdag® |
|-----------------|--------------|---------------|------------------|
| Company Name    |              | Project Title | splice           |
| Group/Team Name |              | Subtitle      |                  |
| Designer        |              | Job Number    |                  |
| Date            | 17 /04 /2021 | Client        |                  |

| Check                    | Required                                                                                                                                                                                                                                                                          | Provided | Remarks |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|
| Max. Gauge Distance (mm) | $p/g_{\text{max}} = \min(32t, 300)$<br>$= \min(32 \times 12.0, 300)$<br>$= \min(384.0, 300)$<br>= 300<br>Where, $t = \min(12.0, 12.0)$<br>[Ref. IS 800:2007, Cl.10.2.3]                                                                                                           | 105      | Pass    |
| Min. End Distance (mm)   | $e_{\min} = 1.7d_0$<br>= 1.7 × 45.0<br>= 76.5<br>[Ref. IS 800:2007, Cl.10.2.4.2]                                                                                                                                                                                                  | 80       | Pass    |
| Max. End Distance (mm)   | $e_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 24.0 \times \sqrt{\frac{250}{250}} = 288.0$ $e_2 = 12 \times 12.0 \times \sqrt{\frac{250}{240}} = 146.97$ $e_{\text{max}} = \min(e_1, \ e_2) = 146.97$ [Ref. IS 800:2007, Cl.10.2.4.3] | 80       | Pass    |
| Min. Edge Distance (mm)  | $e_{\min} = 1.7d_0$<br>= 1.7 × 45.0<br>= 76.5<br>[Ref. IS 800:2007, Cl.10.2.4.2]                                                                                                                                                                                                  | 80       | Pass    |

|                 |              | Cre           | eated with Osdag® |
|-----------------|--------------|---------------|-------------------|
| Company Name    |              | Project Title | splice            |
| Group/Team Name |              | Subtitle      |                   |
| Designer        |              | Job Number    |                   |
| Date            | 17 /04 /2021 | Client        |                   |

| Check                   | Required                                                                                                                                                                                                                                                                           | Provided                                                                                                                                                                                                                                                               | Remarks |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Max. Edge Distance (mm) | $e'_{\text{max}} = 12t\varepsilon; \ \varepsilon = \sqrt{\frac{250}{f_y}}$ $e_1 = 12 \times 24.0 \times \sqrt{\frac{250}{250}} = 288.0$ $e_2 = 12 \times 12.0 \times \sqrt{\frac{250}{240}} = 146.97$ $e'_{\text{max}} = min(e_1, \ e_2) = 146.97$ [Ref. IS 800:2007, Cl.10.2.4.3] | 80                                                                                                                                                                                                                                                                     | Pass    |
| Shear Capacity (kN)     |                                                                                                                                                                                                                                                                                    | $V_{\text{dsb}} = \frac{f_{ub}n_n A_{nb}}{\sqrt{3}\gamma_{mb}}$ $= \frac{830.0 \times 2 \times 1080}{1000 \times \sqrt{3} \times 1.25}$ $= 828.06$ [Ref. IS 800:2007, Cl.10.3.3]                                                                                       |         |
| Kb                      |                                                                                                                                                                                                                                                                                    | $k_b = \min\left(\frac{e}{3d_0}, \frac{p}{3d_0} - 0.25, \frac{f_{ub}}{f_u}, 1.0\right)$ $= \min\left(\frac{80}{3 \times 45.0}, \frac{105}{3 \times 45.0} - 0.25, \frac{830.0}{410}, 1.0\right)$ $= \min(0.59, 0.53, 2.02, 1.0)$ $= 0.53$ [Ref. IS 800:2007, Cl.10.3.4] | )       |
| Bearing Capacity (kN)   |                                                                                                                                                                                                                                                                                    | $V_{\text{dpb}} = \frac{2.5k_b dt f_u}{\gamma_{mb}}$ $= \frac{2.5 \times 0.53 \times 42.0 \times 12.0 \times 410}{1000 \times 1.25}$ $= 219.04$ [Ref. IS 800:2007, Cl.10.3.4]                                                                                          |         |
| Bolt Capacity (kN)      |                                                                                                                                                                                                                                                                                    | $V_{\text{db}} = \min (V_{\text{dsb}}, V_{\text{dpb}})$ $= \min (828.06, 219.04)$ $= 219.04$ [Ref. IS 800:2007, Cl.10.3.2]                                                                                                                                             |         |

|                 |              | Cre           | ated with Osdag® |
|-----------------|--------------|---------------|------------------|
| Company Name    |              | Project Title | splice           |
| Group/Team Name |              | Subtitle      |                  |
| Designer        |              | Job Number    |                  |
| Date            | 17 /04 /2021 | Client        |                  |

| Check               | Required                                                       | Provided | Remarks |
|---------------------|----------------------------------------------------------------|----------|---------|
|                     | $l_n$ = length available                                       |          |         |
|                     | $l_n = g \ (n_r - 1)$                                          |          |         |
|                     | $=105\times(6-1)$                                              |          |         |
|                     | = 525                                                          |          |         |
|                     |                                                                |          |         |
|                     | $y_{\max} = l_n/2$                                             |          |         |
| Bolt Force Parame-  | =525/2                                                         |          |         |
| ter(s) (mm)         | = 262.5                                                        |          |         |
|                     |                                                                |          |         |
|                     | $x_{\rm max} = p(\frac{n_c}{2} - 1)/2$                         |          |         |
|                     | $=105\times(\frac{4}{2}-1)/2$                                  |          |         |
|                     | = 52.5                                                         |          |         |
|                     | $M_d = (V_u \times \mathrm{ecc} + M_w)$                        |          |         |
|                     |                                                                |          |         |
|                     | ecc = eccentricity                                             |          |         |
| Moment Demand (kNm) | $M_w = \text{external moment acting on web}$                   |          |         |
|                     |                                                                |          |         |
|                     | $=\frac{(131.63\times10^3\times134.0+237.01\times10^6)}{10^6}$ |          |         |
|                     | = 254.65                                                       |          |         |

|                 |              | Cre           | eated with Osdag® |
|-----------------|--------------|---------------|-------------------|
| Company Name    |              | Project Title | splice            |
| Group/Team Name |              | Subtitle      |                   |
| Designer        |              | Job Number    |                   |
| Date            | 17 /04 /2021 | Client        |                   |

| Check           | Required                                                                                                             | Provided | Remarks |
|-----------------|----------------------------------------------------------------------------------------------------------------------|----------|---------|
|                 | $vbv = V_u/(n_r \times (n_c/2))$ $= \frac{131.63}{(6 \times (4/2))}$ $= 10.97$                                       |          |         |
|                 | $tmh = \frac{M_d \times y_{\text{max}}}{\Sigma r_i^2}$ $= \frac{254.65 \times 262.5}{418.95}$ $= 159.56$             |          |         |
| Bolt Force (kN) | $tmv = \frac{M_d \times x_{\text{max}}}{\Sigma r_i^2}$ $= \frac{254.65 \times 52.5}{418.95}$ $= 31.91$               |          |         |
|                 | $abh = \frac{A_u}{(n_r \times n_c/2)}$ $= \frac{615.8}{(6 \times (4/2))}$ $= 51.32$                                  |          |         |
|                 | $v_{\text{res}} = \sqrt{(vbv + tmv)^2 + (tmh + abh)^2}$ $= \sqrt{(10.97 + 31.91)^2 + (159.56 + 51.32)^2}$ $= 215.19$ | 3)2      |         |

|                 |              | Cre           | ated with Osdag® |
|-----------------|--------------|---------------|------------------|
| Company Name    |              | Project Title | splice           |
| Group/Team Name |              | Subtitle      |                  |
| Designer        |              | Job Number    |                  |
| Date            | 17 /04 /2021 | Client        |                  |

| Check                            | Required                                                     | Provided                                                                             | Remarks |
|----------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------|---------|
|                                  |                                                              | $l = ((n_c \text{ or } n_r) - 1) \times (p \text{ or } g)$                           |         |
|                                  |                                                              |                                                                                      |         |
|                                  | if $l_j \ge 15d$ then $V_{\rm rd} = \beta_{lj} V_{\rm db}$   | $l_r = 2 \times \left( \left( \frac{4}{2} - 1 \right) \times 105 + 80 \right) + 3.0$ |         |
|                                  | if $l_j < 15d$ then $V_{\rm rd} = V_{\rm db}$                | = 373.0                                                                              |         |
|                                  | where,                                                       | $l_c = (6-1) \times 105 = 525$                                                       |         |
| Long Joint Reduc-<br>tion Factor | $l_j = ((nc \text{ or } nr) - 1) \times (p \text{ or } g)$   | l = 525                                                                              |         |
| tion ractor                      | $\beta_{lj} = 1.075 - l/(200d)$                              | $15d = 15 \times 42.0 = 630.0$                                                       |         |
|                                  | but $0.75 \le \beta_{lj} \le 1.0$                            | since, $l < 15d$                                                                     |         |
|                                  | [Ref. IS 800:2007, Cl.10.3.3.1]                              | then, $V_{\rm rd} = V_{\rm db}$                                                      |         |
|                                  |                                                              | $V_{\rm rd} = 219.04$                                                                |         |
|                                  |                                                              | [Ref. IS 800:2007, Cl.10.3.3.1]                                                      |         |
|                                  | if $l_g \geq 5d$ , then $V_{\rm rd} = \beta_{lg} V_{\rm db}$ | [161. 15 000.2007, Ol.10.5.5.1]                                                      |         |
|                                  |                                                              |                                                                                      |         |
|                                  | if $l_g < 5d$ then $V_{\rm rd} = V_{\rm db}$                 |                                                                                      |         |
|                                  |                                                              | $l_g = \Sigma \left( t_p + t_{\text{member}} \right)$                                |         |
|                                  | $l_g \le 8d$                                                 | = 36.0                                                                               |         |
| Large Grip Length                | where,                                                       | 5d = 210.0                                                                           |         |
| Reduction Factor                 | $l_g = \Sigma(t_{ m ep} + t_{ m member})$                    | 8d = 336.0                                                                           |         |
|                                  |                                                              | since, $l_g < 5d$ ; $\beta_{lg} = 1.0$                                               |         |
|                                  | $\beta_{lg} = 8d/(3d + l_g)$                                 | [Ref. IS 800:2007, Cl.10.3.3.2]                                                      |         |
|                                  | but $\beta_{lg} \leq \beta_{lj}$                             |                                                                                      |         |
|                                  | [Ref. IS 800:2007, Cl.10.3.3.2]                              |                                                                                      |         |
|                                  |                                                              | $V_{\rm rd} = \beta_{lj}\beta_{lg}V_{\rm db}$                                        |         |
| Capacity (kN)                    | 215.19                                                       | $= 1.0 \times 1.0 \times 219.04$                                                     | Pass    |
|                                  |                                                              | = 219.04                                                                             |         |

|                 |              | Cre           | ated with Osdag® |
|-----------------|--------------|---------------|------------------|
| Company Name    |              | Project Title | splice           |
| Group/Team Name |              | Subtitle      |                  |
| Designer        |              | Job Number    |                  |
| Date            | 17 /04 /2021 | Client        |                  |

### ${\bf 2.5}\quad {\bf Flange\ Plate\ Dimension\ Check\ -\ Outside/Inside}$

| Check                            | Required                                                                                                                                                                                                           | Provided                                                                                                               | Remarks |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------|
| Min. Flange Plate Width (mm)     | min. flange plate height = beam width = $500.0$                                                                                                                                                                    | 500.0                                                                                                                  | Pass    |
| Min. Flange Plate Length (mm)    | $2 \times \left[2e_{min} + \left(\frac{n_c}{2} - 1\right) \times p_{min}\right] + \frac{gap}{2}$ $= 2 \times \left[(2 \times 76.5 + \left(\frac{6}{2} - 1\right) \times 105.0\right]$ $= +\frac{3.0}{2}$ $= 729.0$ | 743.0                                                                                                                  | Pass    |
| Min. Inner Plate Width (mm)      | >=50                                                                                                                                                                                                               | 220                                                                                                                    | Pass    |
| Max. Inner Plate Width (mm)      | $= \frac{B - t - (2R1)}{2}$ $= \frac{500.0 - 12.0 - 2 \times 20.0}{2}$ $= 224$                                                                                                                                     | 220                                                                                                                    | Pass    |
| Min. Inner Plate Length (mm)     | $= 224$ $2 \times [2e_{min} + (\frac{n_c}{2} - 1) \times p_{min})]$ $+ \frac{gap}{2}]$ $= 2 \times [(2 \times 76.5 + (\frac{6}{2} - 1) \times 105.0]$ $= +\frac{3.0}{2}]$ $= 729.0$                                | 743.0                                                                                                                  | Pass    |
| Min. Flange Plate Thickness (mm) | T/2 = 10.0                                                                                                                                                                                                         | $t_{ifp} = 12.0$                                                                                                       | Pass    |
| Plate Area Check (mm2)           | plate area >= 1.05 X connected member area = 10500.0  [Ref: Cl.8.6.3.2, IS 800:2007]                                                                                                                               | plate area = $(B_{fp} + (2 \times B_{ifp})) \times t_{ifp}$<br>= $(500.0 + (2 \times 220)) \times 12.0$<br>= $11280.0$ | Pass    |

|                 |              | Cre           | ated with Osdag® |
|-----------------|--------------|---------------|------------------|
| Company Name    |              | Project Title | splice           |
| Group/Team Name |              | Subtitle      |                  |
| Designer        |              | Job Number    |                  |
| Date            | 17 /04 /2021 | Client        |                  |

#### 2.6 Web Plate Dimension Check

| Check                         | Required                                                                                                                                                                                                           | Provided                                                                                    | Remarks |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------|
| Min. Web Plate Height (mm)    | $ \begin{aligned} &0.6\times(d_b-2\times t_f-2\times r_r)\\ &=0.6\times(824.0-2\times20.0-2\times20.0)\\ &=446.4 \end{aligned} $ [Ref. INSDAG, Ch.5, sec.5.2.3]                                                    | 685                                                                                         | Pass    |
| Min. Web Plate Width (mm)     | $2 \times \left[2e_{min} + \left(\frac{n_c}{2} - 1\right) \times p_{min}\right] + \frac{gap}{2}$ $= 2 \times \left[(2 \times 76.5 + \left(\frac{4}{2} - 1\right) \times 105.0\right]$ $= +\frac{3.0}{2}$ $= 519.0$ | 533.0                                                                                       | Pass    |
| Min. Web Plate Thickness (mm) | t/2 = 6.0                                                                                                                                                                                                          | $t_{wp} = 12.0$                                                                             | Pass    |
| Plate Area Check (mm2)        | plate area >= 1.05 X connected member area = 9878.4  [Ref: Cl.8.6.3.2, IS 800:2007]                                                                                                                                | plate area = $2 \times W_{wp} \times t_{wp}$<br>= $2 \times 685 \times 12.0$<br>= $16440.0$ | Pass    |

#### 2.7 Member Check

| Check                                 | Required | Provided                                                                                                                                | Remarks |
|---------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------|---------|
| Flange Tension Yielding Capacity (kN) |          | $T_{\text{dg}} = \frac{A_g f_y}{\gamma_{m0}}$ $A_g = lt = 500.0 \times 20.0$ $= \frac{10000.0 \times 240}{1.1 \times 10^3}$ $= 2181.82$ |         |
|                                       |          | [Ref. IS 800:2007, Cl.6.2]                                                                                                              |         |

|                 |              | Cre           | ated with Osdag® |
|-----------------|--------------|---------------|------------------|
| Company Name    |              | Project Title | splice           |
| Group/Team Name |              | Subtitle      |                  |
| Designer        |              | Job Number    |                  |
| Date            | 17 /04 /2021 | Client        |                  |

| Check                                | Required        | Provided                                                                                                                                                                                                                              | Remarks |
|--------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Flange Tension Rupture Capacity (kN) |                 | $T_{\rm dn} = \frac{0.9A_n f_u}{\gamma_{m1}}$ $= \frac{1 \times 0.9 \times (500.0 - 2 \times 45.0) \times 20.0 \times 410}{1.25}$ $= 2420.64$                                                                                         |         |
| Flange Block Shear Capacity          |                 | [Ref. IS 800:2007, Cl.6.3.1] $T_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$ $T_{\text{dbl2}} = \frac{0.9 A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$ |         |
| (kN)                                 |                 | $T_{\rm db} = \min(T_{db1}, \ T_{db2}) = 2187.53$ [Ref. IS 800:2007, Cl.6.4] $T_{\rm d} = \min(T_{\rm dg}, \ T_{\rm dn}, \ T_{\rm db})$                                                                                               |         |
| Flange Tension Capacity (kN)         | $F_f = 2128.27$ | $= \min(2181.82, 2420.64, 2187.53)$ $= 2181.82$                                                                                                                                                                                       | Pass    |
| Web Tension Yielding Capacity (kN)   |                 | [Ref.IS 800:2007, Cl.6.1] $T_{\text{dg}} = \frac{A_g f_y}{\gamma_{m0}}$ $A_g = lt = 784.0 \times 12.0$ $= \frac{9408.0 \times 240}{1.1 \times 10^3}$ $= 2052.65$                                                                      |         |
| Web Tension Rupture Capacity (kN)    |                 | [Ref. IS 800:2007, Cl.6.2] $T_{\rm dn} = \frac{0.9A_n f_u}{\gamma_{m1}}$ $= \frac{1 \times 0.9 \times (784.0 - 6 \times 45.0) \times 12.0 \times 410}{1.25}$ $= 1820.79$ [Ref. IS 800:2007, Cl.6.3.1]                                 |         |

|                 |              | Cre           | eated with Osdag® |
|-----------------|--------------|---------------|-------------------|
| Company Name    |              | Project Title | splice            |
| Group/Team Name |              | Subtitle      |                   |
| Designer        |              | Job Number    |                   |
| Date            | 17 /04 /2021 | Client        |                   |

| Check                     | Required      | Provided                                                                                                | Remarks |
|---------------------------|---------------|---------------------------------------------------------------------------------------------------------|---------|
|                           |               | $T_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$ |         |
| Web Block Shear Capacity  |               | $T_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$            |         |
| (kN)                      |               | $T_{\rm db} = \min(T_{db1}, \ T_{db2}) = 1905.41$                                                       |         |
|                           |               | [Ref. IS 800:2007, Cl.6.4]                                                                              |         |
|                           |               | $T_{\rm d} = \min(T_{\rm dg}, \ T_{\rm dn}, \ T_{\rm db})$                                              |         |
|                           |               | $= \min(2052.65, 1820.79, 1905.41)$                                                                     |         |
| Web Tension Capacity (kN) | $A_w = 615.8$ | = 1820.79                                                                                               | Pass    |
|                           |               | [Ref.IS 800:2007, Cl.6.1]                                                                               |         |

## 2.8 Flange Plate Capacity Check for Axial Load - Outside/Inside

| Check                          | Required | Provided                                                                                                                                                                      | Remarks |
|--------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Tension Yielding Capacity (kN) |          | $T_{\rm dg} = \frac{A_g f_y}{\gamma_{m0}}$ $A_g = lt = 940.0 \times 12.0$ $= \frac{11280.0 \times 250}{1.1 \times 10^3}$ $= 2563.64$ [Ref. IS 800:2007, Cl.6.2]               |         |
| Tension Rupture Capacity (kN)  |          | $T_{\text{dn}} = \frac{0.9A_n f_u}{\gamma_{m1}}$ $= \frac{1 \times 0.9 \times (940.0 - 2 \times 45.0) \times 12.0 \times 410}{1.25}$ $= 3011.04$ [Ref. IS 800:2007, Cl.6.3.1] |         |

|                 |              | Created with OSdag® |        |
|-----------------|--------------|---------------------|--------|
| Company Name    |              | Project Title       | splice |
| Group/Team Name |              | Subtitle            |        |
| Designer        |              | Job Number          |        |
| Date            | 17 /04 /2021 | Client              |        |

| Check                              | Required        | Provided                                                                                        | Remarks |
|------------------------------------|-----------------|-------------------------------------------------------------------------------------------------|---------|
|                                    |                 | $T_{\rm dbl1} = \frac{A_{\rm vg} f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn} f_u}{\gamma_{m1}}$ |         |
| Block Shear Capacity (kN)          |                 | $T_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$    |         |
|                                    |                 | $T_{\rm db} = \min(T_{db1}, \ T_{db2}) = 2673.91$                                               |         |
|                                    |                 | [Ref. IS 800:2007, Cl.6.4]                                                                      |         |
|                                    |                 | $T_{\rm d} = \min(T_{\rm dg}, T_{\rm dn}, T_{\rm db})$                                          |         |
|                                    |                 | $= \min(2563.64, 3011.04, 2673.91)$                                                             |         |
| Flange Plate Tension Capacity (kN) | $F_f = 2128.27$ | =2563.64                                                                                        | Pass    |
|                                    |                 | [Ref.IS 800:2007, Cl.6.1]                                                                       |         |

## 2.9 Web Plate Capacity Check for Axial Load

| Check                          | Required | Provided                                                                                                                                                                 | Remarks |
|--------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Tension Yielding Capacity (kN) |          | $T_{\rm dg} = \frac{A_g f_y}{\gamma_{m0}}$ $A_g = 2lt = 2 \times 685 \times 12.0$ $= \frac{8220.0 \times 250}{1.1 \times 10^3}$ $= 3736.36$ [Ref. IS 800:2007, Cl.6.2]   |         |
| Tension Rupture Capacity (kN)  |          | $T_{\rm dn} = \frac{0.9A_n f_u}{\gamma_{m1}}$ $= \frac{2 \times 0.9 \times (685 - 6 \times 45.0) \times 12.0 \times 410}{1.25}$ $= 2940.19$ [Ref. IS 800:2007, Cl.6.3.1] |         |

|                 |              | Created with OSdag® |        |
|-----------------|--------------|---------------------|--------|
| Company Name    |              | Project Title       | splice |
| Group/Team Name |              | Subtitle            |        |
| Designer        |              | Job Number          |        |
| Date            | 17 /04 /2021 | Client              |        |

| Check                           | Required      | Provided                                                                                                | Remarks |
|---------------------------------|---------------|---------------------------------------------------------------------------------------------------------|---------|
|                                 |               | $T_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$ |         |
| Block Shear Capacity (kN)       |               | $T_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$            |         |
|                                 |               | $T_{\rm db} = \min(T_{db1}, \ T_{db2}) = 3857.42$                                                       |         |
|                                 |               | [Ref. IS 800:2007, Cl.6.4]                                                                              |         |
|                                 |               | $T_{\rm d} = \min(T_{\rm dg}, T_{\rm dn}, T_{\rm db})$                                                  |         |
|                                 |               | $= \min(3736.36, 2940.19, 3857.42)$                                                                     |         |
| Web Plate Tension Capacity (kN) | $A_w = 615.8$ | = 2940.19                                                                                               | Pass    |
|                                 |               | [Ref.IS 800:2007, Cl.6.1]                                                                               |         |

## ${\bf 2.10}\quad {\bf Web\ Plate\ Capacity\ Checks\ for\ Shear\ Load}$

| $V_{d_y} = \frac{A_v f_y}{\sqrt{3}\gamma_{m0}}$ $= \frac{2 \times 685 \times 12.0 \times 250}{\sqrt{3} \times 1.1 \times 1000}$ |      |
|---------------------------------------------------------------------------------------------------------------------------------|------|
| = 2157.19                                                                                                                       |      |
| [Ref. IS 800:2007, Cl.10.4.3]                                                                                                   |      |
| $V_d = 0.6 \ V_{dy}$ = 0.6 \times 2157.19 = 1294.31                                                                             | Pass |
|                                                                                                                                 |      |

|                 |              | Created with OSCIO |        |
|-----------------|--------------|--------------------|--------|
| Company Name    |              | Project Title      | splice |
| Group/Team Name |              | Subtitle           |        |
| Designer        |              | Job Number         |        |
| Date            | 17 /04 /2021 | Client             |        |

| Check                         | Required | Provided                                                                                          | Remarks |
|-------------------------------|----------|---------------------------------------------------------------------------------------------------|---------|
|                               |          | $V_{d_n} = \frac{0.75 A_{v_n} f_u}{\sqrt{3} \gamma_{m1}}$                                         |         |
|                               |          | $= 2 \times \frac{(685 - (6 \times 45.0)) \times 12.0 \times 410}{\sqrt{3} \times 1.25}$          |         |
| Shear Rupture Capacity (kN)   |          | = 1414.6                                                                                          |         |
|                               |          | [ Ref. AISC, sect. J4]                                                                            |         |
|                               |          | $V_{\rm dbl1} = \frac{A_{\rm vg} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$ |         |
| Block Shear Capacity (kN)     |          | $V_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$      |         |
|                               |          | $V_{\rm db} = \min(V_{db1}, \ V_{db2}) = 2471.41$                                                 |         |
|                               |          | [Ref. IS 800:2007, Cl.6.4]                                                                        |         |
|                               |          | $V_d = \min(S_c, \ V_{d_n}, \ V_{d_b})$                                                           |         |
|                               |          | $= \min(1294.31, 1414.6, 2471.41)$                                                                |         |
| Web Plate Shear Capacity (kN) |          | = 1294.31                                                                                         | Pass    |
|                               |          | [ Ref. IS 800:2007, Cl.6.1]                                                                       |         |

|                 |              | Created with OSdag® |        |
|-----------------|--------------|---------------------|--------|
| Company Name    |              | Project Title       | splice |
| Group/Team Name |              | Subtitle            |        |
| Designer        |              | Job Number          |        |
| Date            | 17 /04 /2021 | Client              |        |

## 3 3D Views



# 4 Design Log

 $2021-04-17\ 20:31:31\ -\ Osdag\ -\ INFO\ -\ The\ Load(s)\ defined\ is/are\ less\ than\ the\ minimum\ recommended\ value\ [Ref.\ IS\ 800:2007,\ Cl.10.7].$ 

 $2021-04-17\ 20:31:31\ -\ Osdag\ -\ INFO\ -\ The\ value\ of\ load(s)\ is/are\ set\ at\ minimum\ recommended\ value\ as\ per\ IS\ 800:2007,\ Cl.10.7.$ 

2021-04-17 20:31:31 - Osdag - INFO - : Overall bolted cover plate splice connection design is safe