STAT 207: Singular Value Decomposition

Zhe Fei (zhe.fei@ucr.edu)

• NAS Chapter 9

In many modern applications involving large data sets, statisticians are confronted with a large $m \times n$ matrix $X = (x_{ij})$ that encodes n features on each of m objects.

- In gene microarray studies x_{ij} represents the expression level of the ith gene under the jth experimental condition.
- In information retrieval, x_{ij} represents the frequency of the jth word or term in the i th document.

The singular value decomposition (SVD) captures the structure of such matrices.

For a m imes m symmetric matrix A, $A = U \Sigma U^T$ with $U = (u_1, \dots, u_m)$ gives

$$A = \sum_{j=1}^m \sigma_j u_j u_j^T.$$

When $\sigma_j = 0$ for j > k, A has rank k.

SVD generalizes the spectral theorem to nonsymmetric matrices.

$$A = \sum_{j=1}^k \sigma_j u_j v_j^T = U \Sigma V^T.$$
 (1)

If A is $m \times n$, then write the SVD as

assuming $k<\min\{m,n\}$. The scalars σ_1,\ldots,σ_k are said to be **singular values** and conventionally are listed in decreasing order. The vectors u_1,\ldots,u_k are known as **left singular vectors** and the vectors v_1,\ldots,v_k as **right singular vectors**.

Basic Properties of the SVD

NAS Proposition 9.2.1 Every $m \times n$ matrix A has a singular value decomposition of the form (1) with positive diagonal entries for Σ .

Proof by induction.

Further we have

$$A^T = \sum_{j=1}^k \sigma_j v_j u_j^T \ AA^T = \sum_{j=1}^k \sigma_j^2 u_j u_j^T \ A^T A = \sum_{j=1}^k \sigma_j^2 v_j v_j^T$$

Hence, AA^T has nonzero eigenvalue σ_j^2 with corresponding eigenvector u_j , and A^TA has nonzero eigenvalue σ_j^2 with corresponding eigenvector v_j .

The following partial inverse is important in practice:

NAS Proposition 9.2.2 The Moore-Penrose inverse $A^- = \sum_{j=1}^k \sigma_j^{-1} v_j u_j^T$

enjoys the properties

$$(AA^{-})^{T} = AA^{-}$$
$$(A^{-}A)^{T} = A^{-}A$$
$$AA^{-}A = A$$
$$A^{-}AA^{-} = A^{-}.$$

If A is square and invertible, then $A^-=A^{-1}.$ If A has full column rank, then $A^-=(A^TA)^{-1}A^T.$

NAS Proposition 9.2.3 Suppose the matrix A has full SVD $U\Sigma V^T$ with the diagonal entries σ_i of Σ appearing in decreasing order. The best rank-k approximation of A in the Frobenius norm is

$$B = \sum_{j=1}^k \sigma_j u_j v_j^T.$$

Furthermore,
$$\|A-B\|_F = \sqrt{\sum_{i>k} \sigma_i^2}$$
 and $\|A-B\|_2 = \sigma_{k+1}.$

Applications

Ridge Regression

In ridge regression, we minimize the penalized sum of squares

$$egin{aligned} f(\lambda) &= \|y - Xeta\|_2^2 + \lambda \|eta\|_2^2 \ &= (y - Xeta)^T (y - Xeta) + \lambda eta^Teta. \end{aligned}$$

The gradient of $f(\lambda)$ is

$$abla f(\lambda) = -2X^T(y-Xeta) + 2\lambdaeta.$$

Revised normal equations

$$(X^TX + \lambda I)\beta = X^Ty,$$

with solution

$$\hat{eta} = (X^TX + \lambda I)^{-1}X^Ty.$$

If we further write $X = \sum_j \sigma_j u_j v_j^T$, then

$$X^Ty = \sum_j \sigma_j u_j(u_j^Ty), \quad X^TX + \lambda I = \sum_j (\sigma_j^2 + \lambda) v_j v_j^T.$$

The parameter estimates and predicted values reduce to

$$\hat{eta} = \sum_j rac{\sigma_j}{\sigma_j^2 + \lambda} u_j^T y v_j,$$

$$\hat{y} = X\hat{eta} = \sum_j rac{\sigma_j^2}{\sigma_j^2 + \lambda} (u_j^T y) u_j.$$

Image Compression

An image (scene) is recorded as an $m \times n$ matrix $A = (a_{ij})$ of intensities.

- The entry a_{ij} represents the brightness of the pixel (picture element) in row i and column j of the scene.
- Storage issue when m and n are large
- Low rank approximate of $B=(b_{ij})$

```
In [13]: import numpy as np
from PIL import Image

def compress_image(image_path, k):
    # Load the image and convert to grayscale
    image = Image.open(image_path).convert('L')
```

```
# Convert the image to a numpy array
A = np.array(image)
print('Original size', A.shape)

# Apply the SVD to the image
U, S, Vt = np.linalg.svd(A)

# Truncate SVD matrices to retain only the k largest singular values
U_k = U[:, :k]
S_k = np.diag(S[:k])
Vt_k = Vt[:k, :]

# Reconstruct the compressed image
B = U_k @ S_k @ Vt_k

# Convert the numpy array back to an image
compressed_image = Image.fromarray(B.astype('uint8'), 'L')

return compressed_image
```

```
In [14]: # Example usage
  compressed_image = compress_image('cholesky.png', k=50)
  compressed_image
```

Original size (920, 684)

Out[14]:

In [12]: # Example usage
 compressed_image = compress_image('cholesky.png', k=20)
 compressed_image

Out[12]:

Principal Components

For a random vector Y with E(Y)=0 and variance matrix Var(Y), the first principal component v_1^TY is the linear combination that maximizes

$$Var(v^TY) = v^TVar(Y)v.$$

With a centered random sample x_1,\dots,x_m , the sample variance is X^TX with

$$X = rac{1}{\sqrt{m}} egin{pmatrix} x_1^T \ \cdot \ \cdot \ \cdot \ x_m^T \end{pmatrix} = \sum_j \sigma_j u_j v_j^T.$$

The *i*th principal direction is given by the unit eigenvector v_i , and the variance of $v_i^T x_j$ over j is given by σ_i^2 .

Jacobi's Algorithm for the SVD

By modifying the algorithm for eigen-decomposition, but without the need to calculate A^TA .

Python Implementations

```
In [66]: import numpy as np
         # generate a random matrix
         A = np.random.randint(1, 10, size=(4,3))
Out[66]: array([[7, 4, 4],
                 [5, 9, 8],
                 [7, 9, 1],
                 [4, 1, 2]])
In [68]: # compute the SVD of A
         U, s, Vt = np.linalg.svd(A)
         print(s)
         # check that U and Vt are orthogonal and s is a diagonal matrix
         print(np.allclose(np.eye(4), np.dot(U.T, U)))
         print(np.allclose(np.eye(3), np.dot(Vt, Vt.T)))
        [18.9973753 5.00374911 4.13064479]
        True
        True
In [69]: # compute the eigenvalues and eigenvectors of A
         B = A.T@A
         w, v = np.linalg.eig(B)
```