Linear discriminant function fusion based on new definition of mean

Paweł Ksieniewicz $^{[0000-0001-9578-8395]},$ Paweł Zyblewski $^{[0000-0002-4224-6709]},$ and Robert Burduk $^{[0000-0002-3506-6611]}$

Department of Systems and Computer Networks,
Faculty of Electronics, Wrocław University of Science and Technology,
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
{pawel.ksieniewicz,pawel.zyblewski,robert.burduk}@pwr.edu.pl

${\bf Experiment~2-Imbalanced~datasets}$

Table 1. Results of the global Wilcoxon rank-sum test for various sizes of the classifier pool regarding G-mean.

Pool size		MV (2)		NM (4)	Pool size	L (1)	MV (2)	M (3)	NM (4)
3	1.924	2.326	3.011	2.739	29	1.717	2.500	2.750	3.033
	_	1	1, 2	1, 2		_	1	1	1, 2
5	1.620	2.424	3.239	2.717	31	1.652	2.587	2.826	2.935
	_	1	all	1		_	1	1	1
7	1.446	2.446	3.185	2.924	33	1.609	2.652	2.761	2.978
	_	1	1, 2	1, 2		_	1	1	1
9	1.446	2.402	3.196	2.957	35	1.630	2.652	2.837	2.880
	_	1	1, 2	1, 2		_	1	1	1
11	1.435	2.587		3.033	37	1.674	2.652	2.815	2.859
	_	1	1	1, 2		_	1	1	1
13	1.543	2.391	-	3.141	39	1.652	2.652		
	_	1	1, 2			_	1	1	1
15	1.511	2.391	2.761	3.337	41	1.696	2.630	2.880	2.793
	_	1	1	all		_	1	1	1
17	1.576	2.500	2.804	3.120	43	1.717	2.609		
		1		1, 2			1	1	1
19	1.543	2.326	2.924	3.207	45	1.717	2.609	2.815	2.859
		1	,	1, 2			1	1	1
21	1.543	2.435	2.859	3.163	47	1.717	2.696	2.750	2.837
		1		1, 2	4.0		1	1	1
23	1.609	2.565	2.772	3.054	49	1.783	2.652	2.750	2.815
25		1	1	1, 2			1	1	1
25	1.652	2.413	2.793	3.141	51	1.739	2.674		
07	1.074		1	1, 2	F 0	1 501		1	1
27	1.674	2.413	2.793	3.120	53	1.761		2.891	
		1	1	1, 2			1	1	1

Table 2. Results of the global Wilcoxon rank-sum test for various sizes of the classifier pool regarding F1.

Pool size	L (1)	MV (2)	M (3)	NM (4)	Pool size	L (1)	MV (2)	M (3)	NM (4)
	1.772			2.793	29	1.652	2.543	2.837	2.967
•		1	all	1, 2			1	1	1
5	1.511	2.467	3.283	2.739	31	1.652	2.543	2.870	2.935
	_	1	all	1		_	1	1	1
7	1.424	2.446	3.120	3.011	33	1.674	2.630	2.783	2.913
	_	1	1, 2	1, 2		_	1	1	1
9	1.402	2.337	3.217	3.043	35	1.674	2.696	2.859	2.772
	_	1	1, 2	1, 2		_	1	1	1
11	1.413	2.413	3.120	3.054	37	1.696	2.674	2.783	2.848
	_	1	1, 2	1, 2		_	1	1	1
13	1.391	2.370	3.054	3.185	39	1.717	2.652	2.815	2.815
	_	1	1, 2	1, 2		_	1	1	1
15	1.402	2.446	2.804	3.348	41	1.717	2.696	2.859	2.728
	_	1	1	all		_	1	1	1
17	1.380	2.500	2.891	3.228	43	1.761	2.63	2.793	
	_	1	1	1, 2		_	1	1	1
19	1.478	2.413	2.924	3.185	45	1.717	2.674	2.728	2.880
	_	1	,	1, 2		_	1	1	1
21	1.435	2.543	2.859	3.163	47	1.761	2.696	2.707	2.837
		1	1	1, 2			1	1	1
23	1.500	2.522	2.880	3.098	49	1.761	2.717	2.750	2.772
25	1 000	1	1	1, 2	F 1	1 500	1	1	1
25	1.609	2.533	2.837	3.022	51	1.783	2.674		
27	1 505	1	1	1, 2	F0	1 500	1	1	1
27	1.565	2.565	2.837	3.033	53	1.783	2.696	2.870	
		1	1	1, 2			1	1	1

4 P. Ksieniewicz et al.

 $\textbf{Table 3.} \ \text{Results of the global Wilcoxon rank-sum test for various sizes of the classifier pool regarding \textit{precision}.}$

	L (1)			NM (4)		L (1)			
5120	(1)	(2)	(6)	(4)	Size	(1)	(2)	(0)	(4)
3	2.348	2.402	2.685	2.565	29	3.033	2.522	2.109	2.337
	_	_	_	_		all	3		_
5	2.228	2.446	2.674	2.652	31	3.043	2.576	2.043	2.337
	_	_	1	1		all	3	_	_
7	2.391	2.598	2.402	2.609	33	3.033	2.663	2.033	2.272
	_	_	_	_		all	3, 4	_	_
9	2.424	2.533	2.402	2.641	35	3.043	2.641	2.076	2.239
	_	_	—	_		all	3, 4	_	_
11	2.587	2.467	2.402	2.543	37	3.065	2.587	2.087	2.261
	_	_	—	_		all	3, 4	_	_
13	2.576	2.478	2.402	2.543	39	3.076	2.598	2.065	2.261
	_	_	_	_		all	3, 4	_	_
15	2.685	2.522	2.185	2.609	41		2.620		2.239
	3	_	_	3		all	3, 4	_	
17	2.761	2.543	2.141		43			2.011	2.348
	3	_	_	3		all	3	_	_
19	2.793	2.533	2.120	2.554	45	3.054			2.283
	3	_	_	3		all	3, 4	_	_
21		2.522		2.511	47		2.576		2.359
	3	_	_	_		all	3	_	_
23	2.913	2.587	2.141	2.359	49	3.033		2.076	2.261
		3	_	_			3, 4		_
25			2.152	2.337	51			2.130	2.293
	all	_	_	_			3	_	_
27	3.000	2.511	2.141	2.348	53	3.033		2.163	2.228
	all	_	_	_		all	4	_	_

 ${\bf Table~4.}~{\bf Results~of~the~global~Wilcoxon~rank-sum~test~for~various~sizes~of~the~classifier~pool~regarding~recall.$

Pool size	L (1)	MV (2)	M (3)	NM (4)	Pool size	L (1)	MV (2)	M (3)	NM (4)
3	1.793	2.457	3.011	2.739	29	1.543	2.543	2.924	2.989
	_	1	1, 2	1		_	1	1	1, 2
5	1.598	2.467	3.196	2.739	31	1.543	2.565	2.913	2.978
	_	1	all	1		_	1	1	1, 2
7	1.511	2.337	3.207	2.946	33	1.478	2.543	2.913	3.065
	_	1	1, 2	1, 2		_	1	1	1, 2
9	1.359	2.467	3.217	2.957	35	1.522	2.630	2.967	2.880
	_	1	1, 2	1, 2		_	1	1	1
11	1.370	2.478	3.141	3.011	37	1.522	2.587	2.902	2.989
	_	1	1, 2	1, 2		_	1	1	1, 2
13	1.413	2.370	3.054	3.163	39	1.500	2.587	2.891	3.022
	_	1	1, 2	1, 2		_	1	1	1, 2
15	1.370	2.478	2.880	3.272	41	1.543	2.565	2.935	2.957
	_	1	1	1, 2		_	1	1	1, 2
17	1.446	2.457	2.957	3.141	43	1.587	2.543	2.870	3.000
	_	1	1, 2	1, 2		_	1	1	1, 2
19	1.478	2.348	2.946	3.228	45	1.565	2.565	2.870	3.000
	_	1	1, 2	1, 2		_	1	1	1, 2
21	1.478	2.478	2.902	3.141	47	1.630	2.565	2.815	2.989
	_	1	1	1, 2		_	1	1	1, 2
23	1.500	2.500	2.772	3.228	49	1.652	2.587	2.826	2.935
	_	1	1	1, 2		_	1	1	1
25	1.478	2.522	2.815	3.185	51	1.630	2.587	2.957	2.826
		1		1, 2		_	1	1	1
27	1.413	2.478	2.880	3.228	53	1.652	2.620	2.957	2.772
		1	1	1, 2			1	1	1

 $\textbf{Table 5.} \ \text{Results of the global Wilcoxon rank-sum test for various sizes of the classifier pool regarding \textit{specificity}.}$

		MV (2)				L (1)			
3	2.174	2.446	2.728	2.652	29	2.587	2.587	2.163	2.663
	_	_	1	1		_	_	_	3
5	2.033	2.435	2.902	2.63	31	2.630	2.696	2.098	2.576
	_	_	1, 2	1		3	3	_	3
7	2.054	2.424	2.946	2.576	33	2.565	2.652	2.076	2.707
	_	—	1, 2	1		_	3	—	3
9	2.022	2.413	2.837	2.728	35	2.630	2.696	2.196	2.478
	_	_	1, 2	1		_	3	_	_
11	2.120	2.348	2.685	2.848	37	2.630	2.674	2.196	2.500
	_		1	1, 2		_	3		_
13	2.152	2.380	2.761	2.707	39	2.696	2.652	2.152	2.500
	_		1	1		3	3		_
15	2.250	2.478	2.326	2.946	41	2.652	2.674	2.217	2.457
	_	_	_	all		_	3	_	_
17	2.293	2.543	2.348	2.815	43	2.652	2.674	2.109	2.565
	_	_	_	1, 3		3	3	_	_
19	2.239	2.522	2.446	2.793	45	2.630	2.674	2.174	2.522
	_	_	_	1		_	3	_	_
21	2.391	2.457	2.283	2.870	47	2.609	2.609	2.217	2.565
	_	_	_	3		_	_	_	_
23	2.500	2.543	2.337	2.620	49	2.587	2.652	2.217	2.543
	_	_	_	_		_	_	_	_
25	2.478	2.543	2.402	2.576	51	2.630	2.652	2.174	2.543
	_	_	_	_		_	3	_	_
27	2.587	2.587	2.217	2.609	53	2.641	2.674	2.239	2.446
	_	_				_	_	_	_

Acknowledgement

This work was supported by the National Science Centre, Poland under the grant no. $2017/25/\mathrm{B/ST6}/01750.$