

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

И
ПРОЦЕССЫ УПРАВЛЕНИЯ

N. 2, 2024
Электронный журнал,

электронный экурния, per. Эл. N ФС77-39410 om 15.04.2010 ISSN 1817-2172

http://diffjournal.spbu.ru/e-mail:jodiff@mail.ru

Теория нелинейных колебаний

О РАЗРЕШИМОСТИ ПЕРИОДИЧЕСКОЙ ЗАДАЧИ ДЛЯ ДВУМЕРНОЙ СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА

Мухамадиев Э., Наимов А. Н.

Вологодский государственный университет emuhamadiev@rambler.ru naimovan@vogu35.ru

Аннотация. Исследована периодическая задача с периодом равным 1 для двумерной системы обыкновенных дифференциальных уравнений второго порядка, в которой главная нелинейная часть порождена многочленом от одного комплексного переменного. Доказано, что если выпуклая оболочка корней порождающего многочлена не содержит чисел кратных $i2\pi$, то имеет место априорная оценка для решений периодической задачи. В условиях априорной оценки, применяя методы вычисления вращения векторных полей, доказана разрешимость периодической задачи при любом возмущении из заданного класса. Рассматриваемая система уравнений не сводится к аналогичной системе уравнений первого порядка с главной положительно однородной нелинейной частью. Для систем нелинейных обыкновенных дифференциальных уравнений первого порядка периодическая задача исследована в работах В.А. Плисса, М.А. Красносельского и их последователей с применением методов априорной оценки и вычисления вращения векторных полей. Известно, что априорная оценка решений краевых задач для систем нелинейных обыкновенных дифференциальных уравнений второго порядка сопряжена с трудностями, связанными с оценкой производной первого порядка решения при ограниченности самого решения. В настоящей работе на примере периодической задачи для рассматриваемой системы уравнений второго порядка установлено, что априорная оценка выводима, если сочетать методы исследования аналогичных систем уравнений первого порядка и методы качественного исследования сингулярно возмущенных систем уравнений. Полученные результаты в последующем можно обобщить для многомерных систем уравнений второго порядка, применяя идею метода направляющей функции.

Ключевые слова: периодическая задача, априорная оценка, вращение векторного поля.

1 Введение

Рассмотрим следующую периодическую задачу

$$z''(t) = \overline{(z'(t) - c_1 z(t))}^{m_1} \cdot \ldots \cdot \overline{(z'(t) - c_q z(t))}^{m_q} + f(t, z(t), z'(t)), \qquad (1)$$
$$t \in (0, 1), \quad z(t) \in \mathbb{C},$$

$$z(0) = z(1),$$
 $z'(0) = z'(1).$ (2)

Здесь С – комплексная плоскость, верхняя черта означает комплексное сопряжение, c_1,\ldots,c_q – комплексные числа, q,m_1,\ldots,m_q – натуральные числа и $m:=m_1+\ldots+m_q>1$. Комплекснозначная функция f(t,z,w) непрерывна по совокупности переменных $(t,z,w)\in \mathbb{R}\times\mathbb{C}^2$, по t удовлетворяет условию периодичности $f(t+1,z,w)\equiv f(t,z,w)$, а по z и w удовлетворяет следующему условию на порядок роста на бесконечности:

$$\lim_{|z|+|w|\to\infty} (|z|+|w|)^{-m} \max_{t\in\mathbb{R}} |f(t,z,w)| = 0.$$
 (3)

В силу условия (3) функцию f(t,z,w) называем возмущением. Главная нелинейная часть системы уравнений (1) порождена многочленом

$$P_m(u) := (u - c_1)^{m_1} \cdot \ldots \cdot (u - c_a)^{m_q},$$

а именно, она равна

$$\overline{z^m(t)P_m(z'(t)z^{-1}(t))}.$$

Функцию $z(t) \in C^2([0,1]; \mathbb{C})$ называем решением периодической задачи (1), (2), если она удовлетворяет системе уравнений (1) и условиям (2). Такое решение периодически и гладко продолжимо на $\mathbb{R}=(-\infty,+\infty)$.

Цель работы состоит в нахождении условий на $c_j \in \mathbb{C}$, $j = \overline{1,q}$, при которых периодическая задача (1), (2) разрешима при любом возмущении f(t,z,w).

Существование периодических решений для систем нелинейных обыкновенных дифференциальных уравнений исследовано в многочисленных работах других авторов. Можно отметить монографии [1, 2, 3] и работы [4, 5], где применяются идеи и методы, близкие к настоящей работе. Например, в работе [5], получены достаточные условия, которым должна удовлетворять асимптотически устойчивая в целом автономная система дифференциальных уравнений, заданная в \mathbb{R}^n , чтобы при любом ω -периодическом её возмущении она имела ω -периодическое решение.

В работах [6, 7] исследовано существование периодических решений для систем обыкновенных дифференциальных уравнений первого порядка с главной положительно однородной частью, применяя и развивая методы априорной оценки и вычисления вращения векторных полей. Применение этих методов к системе уравнений второго порядка затруднено тремя обстоятельствами. Во-первых, для системы уравнений второго порядка необходимо исключить случай, когда множество периодических решений ограничено, а их производные неограничены в совокупности (см. напр., [8]). Во-вторых, в указанных работах при выводе априорной оценки используется преобразование подобия, сохраняющее главную положительно однородную часть системы уравнений первого порядка, и тем самым удается найти условия априорной оценки. А в случае системы уравнений второго порядка находить такое преобразование не всегда возможно. В-третьих, при выводе априорной оценки периодических решений системы уравнений второго порядка нужно учитывать структуру множества нулей главной положительно однородной части системы уравнений.

Априорная оценка и существование периодических решений уравнений вида (1) в скалярном случае исследованы в работе [9], где при выводе априорной оценки существенно используется одномерность уравнения и общая идея качественного исследования сингулярно возмущенных обыкновенных дифференциальных уравнений. В настоящей работе, сочетая методы работы [9] и выше упомянутых работ, найдено условие, обеспечивающее априорную оценку и разрешимость периодической задачи (1), (2). Полученные результаты в последующем можно обобщить для многомерных систем уравнений второго порядка, применяя идею метода направляющей функции.

2 Основные результаты

Разрешимость периодической задачи (1), (2) исследована в два этапа. На первом этапе найдено условие, при котором для решений задачи имеет место априорная оценка

$$\max_{0 \le t \le 1} |z(t)| + \max_{0 \le t \le 1} |z'(t)| < M_1, \tag{4}$$

где $M_1 > 0$ и не зависит от z(t). На втором этапе составлено вполне непрерывное векторное поле

$$\Phi(z_1, z_2) := \left(z_1(t) - z_1(1) - \int_0^t z_2(s) ds, \\ z_2(t) - z_2(1) - \int_0^t \left(\overline{z_1^m(s)} P_m(z_2(s) \overline{z_1^{-1}(s)}) + f(s, z_1(s), z_2(s))\right) ds\right), \quad (5)$$

которое определено в банаховом пространстве $E:=C([0,1];\mathbb{C}^2)$ с нормой

$$||(z_1, z_2)||_E := ||z_1||_C + ||z_2||_C$$
, где $||z||_C = \max_{0 \le t \le 1} |z(t)|$.

Разрешимость задачи (1), (2) равносильна существованию нуля вполне непрерывного векторного поля Φ . Далее, при выполнении априорной оценки (4) вычислено вращение (степень отображения) $\gamma_{\infty}(\Phi)$ вполне непрерывного векторного поля Φ на сфере $||(z_1, z_2)||_E = r$ достаточно большого радиуса $r \geq M_1$. Оно будет отличным от нуля, что, согласно принципу ненулевого вращения, [3, с. 138] и доказывает разрешимость задачи (1), (2).

Основные результаты настоящей работы заключены в следующих двух теоремах.

Теорема 1 Пусть выпуклая оболочка комплексных чисел c_j , $j = \overline{1,q}$ не содержит чисел вида $i2\pi l$, где l – целое. Тогда для решений задачи (1), (2) имеет место априорная оценка (4).

Теорема 2 В условиях теоремы 1 задача (1), (2) разрешима.

В доказательстве теоремы 1 используется следующая оценка, которая верна для решений задачи (1), (2) в силу результатов работы [10]:

$$|z'(t)| < M_2(1+|z(t)|), \quad t \in [0,1],$$
 (6)

где $M_2 > 0$ и не зависит от t и z(t).

В доказательстве теоремы 2 установлено равенство $\gamma_{\infty}(\Phi) = -m$ с помощью гомотопии поля Φ к конечномерному векторному полю.

3 Априорная оценка

Приведем доказательство теоремы 1. Обозначим через d расстояние от выпуклой оболочки комплексных чисел $c_j,\ j=\overline{1,q}$ до множества чисел вида $i2\pi l$, где l – целое. По условию теоремы d>0. Предположим, что для решений задачи (1), (2) не имеет место априорная оценка (4). Тогда существует последовательность решений $z_k(t),\ k=1,2,\ldots$ задачи (1), (2), неограниченная по норме пространства E:

$$r_k := ||z_k||_C + ||z_k'||_C \to \infty, \quad k \to \infty.$$

Можно считать, что функции $z_k(t)$, $k=1,2,\ldots$ периодически и гладко продолжены на $\mathbf{R}=(-\infty,+\infty)$..

Рассмотрим функции $w_k(t) = r_k^{-1} z_k(t), k = 1, 2, \dots$ Для них в силу (1), (2) и оценки (6) имеем:

$$r_k^{1-m}w_k''(t) = \overline{w_k^m(t)P_m(w_k'(t)w_k^{-1}(t))} + r_k^{-m}f(t, r_k w_k(t), r_k w_k'(t)), \quad t \in \mathbb{R}, \quad (7)$$

$$w_k(0) = w_k(1), \quad w'_k(0) = w'_k(1), \quad ||w_k||_C + ||w'_k||_C = 1,$$
 (8)

$$|w_k'(t)| < M_2(r_k^{-1} + |w_k(t)|), \quad t \in \mathbf{R}.$$
 (9)

Из условия (3) следует, что

$$r_k^{-m}||f(\cdot, r_k w_k, r_k w_k')||_C \to 0, \quad k \to \infty.$$

Без ограничения общности, можно считать, что

$$||w_k - w_0||_C \to 0, \quad k \to \infty.$$

В силу (8) и (9) имеем $w_0(t) \not\equiv 0$. Проверим, что $w_0(t)$ нигде не обращается в ноль:

$$w_0(t) \neq 0 \quad \forall t \in \mathbf{R}.$$
 (10)

Пусть (α, β) – наибольший интервал, где $w_0(t)$ не обращается в ноль. Из оценки (9) следует, что на произвольном отрезке $[a,b]\subset (\alpha,\beta)$ имеет место неравенство

$$\limsup_{k \to \infty} \max_{a \le t \le b} \frac{|w_k'(t)|}{|w_k(t)|} \le M_2.$$

Отсюда с учетом равенств

$$\ln \frac{|w_k(b)|}{|w_k(a)|} = \int_a^b (\ln |w_k(t)|)' dt = \int_a^b Re(w_k'(t)\overline{w_k(t)})|w_k(t)|^{-2} dt,$$

при больших k имеем:

$$\left| \ln \frac{|w_k(b)|}{|w_k(a)|} \right| < (M_2 + 1)(b - a).$$

Переходя к пределу, получаем неравенства

$$-(M_2+1)(b-a) \le \ln \frac{|w_0(b)|}{|w_0(a)|} \le (M_2+1)(b-a).$$

Если $\alpha > -\infty$, то в правом неравенстве устремляя a к α получаем $w_0(\alpha) \neq 0$, что противоречит выбору α . Значит, $\alpha = -\infty$. Аналогичным образом из левого неравенства следует, что $\beta = +\infty$. Таким образом, (10) верно.

Покажем, что

$$\int_0^1 |w_k'(t) - c_1 w_k(t)|^{2m_1} \cdot \dots \cdot |w_k'(t) - c_q w_k(t)|^{2m_q} dt \to 0, \quad k \to \infty.$$
 (11)

Для этого перемножим обе стороны равенства (7) на

$$(w'_k(t) - c_1w_k(t))^{m_1} \cdot \ldots \cdot (w'_k(t) - c_qw_k(t))^{m_q},$$

а затем проинтегрируем по t в пределах от 0 до 1:

$$\int_0^1 |w_k'(t) - c_1 w_k(t)|^{2m_1} \cdot \ldots \cdot |w_k'(t) - c_q w_k(t)|^{2m_q} dt =$$

$$= r_k^{1-m} \int_0^1 w_k''(t) (w_k'(t) - c_1 w_k(t))^{m_1} \cdot \ldots \cdot (w_k'(t) - c_q w_k(t))^{m_q} dt + o(1).$$

В правой части каждое слагаемое вида

$$\int_0^1 w_k''(t) (w_k'(t))^{l_1} (w_k(t))^{l_2} dt$$

ограничено (равномерно по всем k) в силу равенства

$$\int_0^1 w_k''(t) (w_k'(t))^{l_1} (w_k(t))^{l_2} dt = -\int_0^1 (l_1+1)^{-1} (w_k'(t))^{l_1+1} l_2(w_k(t))^{l_2-1} w_k'(t) dt$$

и ограниченности последовательностей $||w'_k||_C$, $||w_k||_C$. Следовательно, (11) верно.

Из (10) и (11) выводим:

$$\int_{0}^{1} \left| \frac{w'_{k}(t)}{w_{k}(t)} - c_{1} \right|^{2m_{1}} \cdot \ldots \cdot \left| \frac{w'_{k}(t)}{w_{k}(t)} - c_{q} \right|^{2m_{q}} dt \to 0, \quad k \to \infty.$$
 (12)

Введем множества

$$E_{k,\delta}^j := \left\{ t \in [0,1] : \left| \frac{w_k'(t)}{w_k(t)} - c_j \right| < \delta \right\}, \quad j = \overline{1,q},$$

$$F_{k,\delta} := [0,1] \setminus \bigcup_{j=1}^q E_{k,\delta}^j.$$

Здесь $\delta>0$ настолько мало, что множества $E_{k,\delta}^j,\ j=\overline{1,q}$ попарно не пересекаются, при этом числа $c_j,\ j=\overline{1,q}$ считаем попарно различными. Из (12) следует, что

$$\delta^{2m} mes F_{k,\delta} \to 0, \quad k \to \infty.$$

Выберем и фиксируем δ и k так, чтобы имело место неравенство

$$\delta + (|c_q| + ||w_k'/w_k||_C) \operatorname{mes} F_{k,\delta} < d, \tag{13}$$

здесь d – расстояние от выпуклой оболочки комплексных чисел $c_j,\ j=\overline{1,q}$ до множества чисел вида $i2\pi l$, где l – целое.

Для $w_k'(t)/w_k(t)$ в силу периодичности имеем

$$\int_0^1 \frac{w_k'(t)}{w_k(t)} dt = i2\pi l_k, \quad \text{где} \quad l_k - \text{целое}.$$

С другой стороны,

$$\int_{0}^{1} \frac{w'_{k}(t)}{w_{k}(t)} dt = \sum_{j=1}^{q} \int_{E_{k,\delta}^{j}} \frac{w'_{k}(t)}{w_{k}(t)} dt + \int_{F_{k,\delta}} \frac{w'_{k}(t)}{w_{k}(t)} dt =$$

$$= \sum_{j=1}^{q} c_{j} mes E_{k,\delta}^{j} + \sum_{j=1}^{q} \int_{E_{k,\delta}^{j}} \left(\frac{w'_{k}(t)}{w_{k}(t)} dt - c_{j} \right) dt + \int_{F_{k,\delta}} \frac{w'_{k}(t)}{w_{k}(t)} dt,$$

$$\left| \int_{0}^{1} \frac{w'_{k}(t)}{w_{k}(t)} dt - \sum_{j=1}^{q} c_{j} mes E_{k,\delta}^{j} \right| \leq \delta + ||w'_{k}/w_{k}||_{C} mes F_{k,\delta}.$$

Отсюда выводим:

$$d \leq \left| \sum_{j=1}^q c_j mes E_{k,\delta}^j + c_q mes F_{k,\delta} - i2\pi l_k \right| \leq$$

$$\leq \left| \sum_{j=1}^q c_j mes E_{k,\delta}^j - i2\pi l_k \right| + |c_q| mes F_{k,\delta} \leq$$

$$\leq \delta + (|c_q| + ||w_k'/w_k||_C) mes F_{k,\delta} < d \quad \text{(в силу (13))}.$$

Пришли к противоречию.

Теорема 1 доказана.

4 Разрешимость периодической задачи

Пусть выпуклая оболочка комплексных чисел c_j , $j=\overline{1,q}$ не содержит чисел вида $i2\pi l$, где l – целое. Докажем, что задача (1), (2) разрешима. Для этого достаточно показать, что векторное поле Φ , составленное формулой (5), имеет хотя бы один ноль. Существование нуля векторного поля Φ установим путем вычисления вращения $\gamma_{\infty}(\Phi)$ векторного поля Φ на бесконечности. Вращение $\gamma_{\infty}(\Phi)$, согласно априорной оценке (4) и теории вполне непрерывных векторных полей [3, с. 135], определено и равно вращению (степени отображения) Φ на сфере $||(z_1, z_2)||_E = r$ при $r \geq M_1$. Справедливо равенство

$$\gamma_{\infty}(\Phi) = -m. \tag{14}$$

Для доказательства равенства (14) рассмотрим семейство периодических задач

$$z''(t) = \overline{z^m(t)P_{m,\lambda}(z'(t)z^{-1}(t))} + \lambda f(t, z(t), z'(t)), \quad t \in (0, 1), \quad \lambda \in [0, 1], \quad (15)$$

$$z(0) = z(1), z'(0) = z'(1),$$
 (16)

где $P_{m,\lambda}(u)=(u-c_{1,\lambda})^{m_1}\cdot\ldots\cdot(u-c_{q,\lambda})^{m_q}$, $c_{j,\lambda}=\lambda c_j+(1-\lambda)c^*$, c^* – фиксированное число из выпуклой оболочки чисел c_j , $j=\overline{1,q}$. При каждом $\lambda\in[0,1]$ числа $c_{j,\lambda}$, $j=\overline{1,q}$ удовлетворяют условиям теоремы 1. Поэтому аналогично теореме 1 можно доказать, что для решений семейства задач (15), (16) имеет место априорная оценка (4), где M_1 не зависит от λ . В последующем можно считать, что точка c^* не лежит на мнимой оси комплексной плоскости C. Из априорной оценки следует, что семейство вполне непрерывных векторных полей

$$\Phi_{\lambda}(z_1, z_2) := \left(z_1(t) - z_1(1) - \int_0^t z_2(s) ds, \quad z_2(t) - z_2(1) - \int_0^t \left(\overline{z_1^m(s) P_{m,\lambda}(z_2(s) z_1^{-1}(s))} + \lambda f(s, z_1(s), z_2(s))\right) ds\right), \quad \lambda \in [0, 1],$$

не обращается в ноль при $||(z_1,z_2)||_E \ge M_1$. Следовательно, векторные поля Φ_1 и Φ_0 гомотопны на любой сфере $||(z_1,z_2)||_E = r$ радиуса $r \ge M_1$ пространства E и равны их вращения на бесконечности:

$$\gamma_{\infty}(\Phi_1) = \gamma_{\infty}(\Phi_0). \tag{17}$$

Векторное поле Φ_1 совпадает с Φ , а векторное поле Φ_0 имеет следующий вид:

$$\Phi_0(z_1, z_2) := \left(z_1(t) - z_1(1) - \int_0^t z_2(s) ds,\right)$$

$$z_2(t) - z_2(1) - \int_0^t \overline{(z_2(s) - c^*z_1(s))}^m ds$$
.

С помощью гомотопии Φ_0 к конечномерному векторному полю докажем равенство

$$\gamma_{\infty}(\Phi_0) = -m. \tag{18}$$

Гомотопию построим следующей формулой

$$\Psi_{\lambda}(z_1, z_2) := \left(z_1(t) - z_1(1) - \left(\int_0^t + \lambda \int_t^1\right) z_2(s) ds, \\ z_2(t) - z_2(1) - \left(\int_0^t + \lambda \int_t^1\right) \overline{(z_2(s) - c^* z_1(s))}^m ds\right), \quad \lambda \in [0, 1].$$

Покажем, что

$$\Psi_{\lambda}(z_1, z_2) \neq 0 \quad \forall (z_1, z_2) \in E, \quad \lambda \in [0, 1], \quad ||(z_1, z_2)||_E \geq M_3, \quad (19)$$

где $M_3>0$ и не зависит от (z_1,z_2) , λ . Если не так, то существуют последовательности $(z_{1,k},z_{2,k})\in E,\ \lambda_k\in[0,1],\ k=1,2,\ldots$ такие, что $\Psi_{\lambda_k}(z_{1,k},z_{2,k})=0$ и $r_k:=||(z_{1,k},z_{2,k})||_E\to\infty$ при $k\to\infty$. Из равенства $\Psi_{\lambda_k}(z_{1,k},z_{2,k})=0$ следует

$$z'_{1,k}(t) = (1 - \lambda_k) z_{2,k}(t), \quad z'_{2,k}(t) = (1 - \lambda_k) \overline{(z_{2,k}(t) - c^* z_{1,k}(t))}^m, \quad t \in [0, 1],$$

$$\int_t^1 z_{2,k}(s) ds = 0, \quad \int_t^1 \overline{(z_{2,k}(s) - c^* z_{1,k}(s))}^m ds = 0,$$

$$z_{1,k}(0) = z_{1,k}(1), \quad z_{2,k}(0) = z_{2,k}(1).$$

Рассмотрим функции $w_{1,k}(t) = r_k^{-1} z_{1,k}(t), \ w_{2,k}(t) = r_k^{-1} z_{2,k}(t), \ t \in [0,1], \ k = 1,2,\dots$ Для этих функций имеем:

$$w'_{1,k}(t) = (1 - \lambda_k)w_{2,k}(t), \quad r_k^{1-m}w'_{2,k}(t) = (1 - \lambda_k)\overline{(w_{2,k}(t) - c^*w_{1,k}(t))}^m, \quad (20)$$

$$\int_{t}^{1} w_{2,k}(s)ds = 0, \quad \int_{t}^{1} \overline{(w_{2,k}(s) - c^*w_{1,k}(s))}^{m} ds = 0, \tag{21}$$

$$w_{1,k}(0) = w_{1,k}(1), \quad w_{2,k}(0) = w_{2,k}(1), \quad ||w_{1,k}||_C + ||w_{2,k}||_C = 1.$$

Без ограничения общности можно считать, что

$$||w_{1,k}-w_{1,0}||_C \to 0, \quad \lambda_k \to \lambda_0 \quad \text{при} \quad k \to \infty.$$

Если $\lambda_0 < 1$, то для $w_{1,k}(t)$ имеем:

$$r_k^{1-m}w_{1,k}''(t) = (1-\lambda_0)^{2-m}\overline{(w_{1,k}'(t) - (1-\lambda_0)c^*w_{1,k}(t))}^m + o(1), \quad t \in [0,1],$$

$$w_{1,k}(0) = w_{1,k}(1), \quad w'_{1,k}(0) = w'_{1,k}(1), \quad ||w_{1,k}||_C + (1 - \lambda_k)^{-1}||w'_{1,k}||_C = 1.$$

В наших условиях $(1 - \lambda_0)c^* \neq i2\pi l$ при любом целом l. Далее, приходим к противоречию, рассуждая как при доказательстве теоремы 1.

Если $\lambda_k=1$ при некотором k, то из (20) и (21) вытекают тождества $w_{1,k}(t)\equiv 0,\ w_{2,k}(t)\equiv 0,$ что противоречит равенству $||w_{1,k}||_C+||w_{2,k}||_C=1.$

Остается рассмотреть случай, когда $\lambda_k < 1$ при всех k и $\lambda_0 = 1$. В этом случае $w_{1,0}(t) \equiv w_{1,0}(0)$ и

$$\varepsilon_k w_{2,k}'(t) = \overline{(w_{2,k}(t) - c^* w_{1,0}(0))}^m + o(1), \quad t \in [0, 1], \tag{22}$$

$$\int_{t}^{1} w_{2,k}(s)ds = 0, \quad w_{2,k}(0) = w_{2,k}(1), \quad |w_{1,0}(0)| + ||w_{2,k}||_{C} \to 1, \quad k \to \infty.$$
(23)

где $\varepsilon_k = r_k^{1-m} (1 - \lambda_k)^{-1}$. Функции $w_{2,k}(t)$, $k = 1, 2, \ldots$ можно считать периодически и гладко продолженными на $\mathbf{R} = (-\infty, +\infty)$. Проверим, что

$$||w_{2,k} - c^*w_{1,0}||_C \to 0, \quad k \to \infty.$$
 (24)

В противном случае можно считать, что при некоторых $\tau_k \in [0,1], k=1,2,\ldots$ и $z_0 \neq 0$ имеет место предел $|w_{2,k}(\tau_k) - c^*w_{1,0} - z_0| \to 0, k \to \infty$. Тогда для функций $v_k(t) = w_{2,k}(\tau_k + \varepsilon_k t) - c^*w_{1,0}, t \in \mathbb{R}, k=1,2,\ldots$ в силу (22) имеем:

$$v'_k(t) = \overline{v_k(t)}^m + o(1), \quad |v_k(t)| \le 1, \quad t \in [0, 1],$$

 $|v_k(0) - z_0| \to 0, \quad k \to \infty.$

Переходя к пределу, получаем ненулевое ограниченное решение $v_0(t)$ автономной системы $v'(t) = \overline{v(t)}^m$. Такое невозможно, пришли к противоречию. Следовательно, (24) верно.

Учитывая (23) и (24), выводим, с одной стороны, $w_{1,0}=0$, а с другой стороны $w_{1,0}\neq 0$. Таким образом, (19) доказано.

Из (19) вытекает равенство

$$\gamma_{\infty}(\Phi_0) = \gamma_{\infty}(\Psi_1). \tag{25}$$

Вполне непрерывное векторное поле Ψ_1 конечномерно, поэтому согласно теории векторных полей [3, с. 135] справедливо равенство

$$\gamma_{\infty}(\Psi_1) = \gamma_{\infty}(F_1). \tag{26}$$

Здесь векторное поле

$$F_1(\xi,\eta) := \left(-\eta, -\overline{(\eta - c^*\xi)}^m\right), \quad (\xi,\eta) \in \mathbb{C}^2,$$

получается из векторного поля Ψ_1 заменой функций $z_1(t)$ и $z_2(t)$ комплексными числами ξ и η . Далее, имеем

$$\gamma_{\infty}(F_1) = \gamma(F_1), \tag{27}$$

где $\gamma(F_1)$ – вращение векторного поля F_1 на любой сфере $|\xi|+|\eta|=r$ ненулевого радиуса r четырехмерного пространства C^2 . Векторное поле F_1 на сфере $|\xi|+|\eta|=r$ посредством формулы $\left(-\eta,-\overline{(\lambda\eta-c^*\xi)}^m\right),\ \lambda\in[0,1]$ гомотопируется к векторному полю $F_0(\xi,\eta):=\left(-\eta,-\overline{(-c^*\xi)}^m\right)$. Следовательно,

$$\gamma(F_1) = \gamma(F_0) = -m. \tag{28}$$

Из (25) - (28) вытекает равенство (18), а из (17) и (18) следует (14). Отсюда, в силу принципа ненулевого вращения [3, с. 138], следует существование нуля векторного поля Φ .

Теорема 2 доказана.

Благодарности. Исследование выполнено за счет гранта Российского научного фонда № 23-21-00032 (https://rscf.ru/project/23-21-00032/).

Список литературы

- [1] Плисс В. А. Нелокальные проблемы теории колебаний. М.: Наука, 1964.
- [2] Красносельский М. А. Оператор сдвига по траекториям дифференциальных уравнений. М.: Наука, 1966.
- [3] Красносельский М. А., Забрейко П. П. Геометрические методы нелинейного анализа. М.: Наука, 1975.
- [4] Звягин В. Г., Корнев С. В. Метод направляющих функций в задаче о существовании периодических решений дифференциальных уравнений. Современная математика. Фундаментальные направления. 2015. Т. 58. С. 59-81.
- [5] Перов А. И., Каверина В. К. Об одной задаче Владимира Ивановича Зубова. Дифференц. урав. 2019. Т. 55, № 2. С. 269-272.
- [6] Мухамадиев Э. К теории периодических решений систем обыкновенных дифференциальных уравнений. Докл. АН СССР. 1970. Т. 194, № 3. С. 510-513.

- [7] Мухамадиев Э., Наимов А. Н. Об априорной оценке и существовании периодических решений для одного класса систем нелинейных обыкновенных дифференциальных уравнений. Изв. вузов. Матем. 2022. № 4. С. 37-48.
- [8] Клоков Ю. А. Априорные оценки решений обыкновенных дифференциальных уравнений. Дифференц. урав. 1979. Т. 15, № 10. С. 1766-1773.
- [9] Наимов А. Н., Кобилзода М. М. О разрешимости периодической задачи для нелинейного обыкновенного дифференциального уравнения второго порядка. Изв. вузов. Матем. 2021. № 8. С. 56-65.
- [10] Наимов А. Н., Хакимов Р. И. Оценка производных периодических решений одного класса систем нелинейных обыкновенных дифференциальных уравнений второго порядка. Вестник Таджикского национального университета. 2017. № 1/5. С. 12-16.

ON THE SOLVABILITY OF A PERIODIC PROBLEM FOR A TWO-DIMENSIONAL SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS OF THE SECOND ORDER

Mukhamadiev E., Naimov A. N.

Vologda State University emuhamadiev@rambler.ru naimovan@vogu35.ru

Abstract. In this paper we study the periodic problem with a period equal to 1 for a two-dimensional system of second-order ordinary differential equations, in which the main nonlinear part is generated by a polynomial in one complex variable. It is proven that if the convex hull of the roots of the generating polynomial does not contain numbers that are multiples of $i2\pi$, then there is an a priori estimate for solutions to the periodic problem. Under the conditions of an a priori estimate, using methods for calculating the mapping degree of vector fields, the solvability of the periodic problem for any perturbation from a given class is proven. The system of equations under consideration does not reduce to a similar system of first-order equations with the main positive homogeneous nonlinear part. For systems of first-order equations, the periodic problem was studied in the works of V.A. Pliss, M.A. Krasnosel'skii and their followers using methods of a priori estimation and calculation of the mapping degree of vector fields. It is known that an a priori estimate of solutions to boundary value problems for systems of nonlinear ordinary second order differential equations is fraught with difficulties associated with an estimate of the first-order derivative of the solution when the solution itself is bounded. In this paper, using the example of a periodic problem for the considered system of second-order equations, it is established that the a priori estimate is deducible if we combine methods for studying similar systems of first-order equations and methods for qualitative research of singularly perturbed systems of equations. The results obtained can be further generalized for multidimensional systems of second-order equations, applying the idea of the directing function method.

Keywords: periodic problem, a priori estimate, the mapping degree of vector field.

Acknowledgments. The research was supported by the grant Russian Science Foundation No. 23-21-00032 (https://rscf.ru/project/23-21-00032/).