# GLOMERULAR FILTRATION

## Learning Outcomes

At the end of the session you will be able to:

- Define Glomerular Filtration
- Describe structure and function of the Glomerular apparatus
- Discuss the factors affecting and regulating GFR
- Relate common pathologies with GFR

# **Significance of Glomerular Filtration:**

- ECF homeostasis
- Electrolyte Composition
- Osmolality
- Excretion of toxins
- Compensates easily for excess then loss??
- 500 ml needs to be eliminated at all cost to get rid of the toxins



### Nephron

- 1 million
- Each nephron has 2 components
- Vascular and tubular
- Vascular is Glomerulus

### **Glomerulus:**

- Tuft of capillaries
- Filtered fluid is ALMOST identical to plasma?? What's the difference and why?





## Glomerular membrane has 3 parts. What are those?

- Capillary wall
   (endothelium), single, porous,
   100times permeable
- 2. **Basement membrane**, a cellular, gelatinous, collagen + glycoprotein for strength and negative charge
- 3. **Epithelial cells**, podocytes, octopus like cells encircling the tuft. Narrow slits between called filtration slits, pathway through which fluids enter the BC

# What drives GFR Or Net filtration pressure

- Size → Capillary Bed
- Permeability → 50X
- Hydrostatic Pressure Gradients
- Osmotic Pressure Gradients

TABLE 38–3 Agents causing contraction or relaxation of mesangial cells.

| Contraction                                    | Relaxation       |
|------------------------------------------------|------------------|
| Endothelins                                    | ANP              |
| Angiotensin II                                 | Dopamine         |
| Vasopressin                                    | PGE <sub>2</sub> |
| Norepinephrine                                 | cAMP             |
| Platelet-activating factor                     |                  |
| Platelet-derived growth factor                 |                  |
| Thromboxane A <sub>2</sub>                     |                  |
| PGF <sub>2</sub>                               |                  |
| Leukotrienes C <sub>4</sub> and D <sub>4</sub> |                  |
| Histamine                                      |                  |

**Ganong Physiology** 

# What drives GFR Or Net filtration pressure

a) Glomerular capillary pressure → 55 mmHg = Favors filtration

> c) Bowman's Capsule hydrostatic pressure= exerted by the fluid in the initial part of the tubule =15 mm Hg =opposes filtration

> > Blood cells

d) Capsular Colloid Osmotic pressure= ??? mmHg



b) Plasma Colloid Osmotic pressure= unequal distribution of plasma protein = 30 mmHg= Opposes filtration

20% filtered

80% leaves through as is

125 ml of filtrate/min = 180L/day

Avg plasma in human body = 2.75L Filtered=65times a day **Dialysis??** 

Net filtration = 55 - (30+15) = 10 mmHg



- 1. Tap Fully open vs Partially open
- 2. Shower Hole 30 Vs 15
- 3. Valve 1 Fully open vs Partially open
- 4. Valve 2 Fully open vs Partially open

## Renal handling of four hypothetical substances



## **RECAP:** What changes the filtration rate:

| Physiological factors                                                                                                                                                                   |                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Holey membrane → leaky under low pressure                                                                                                                                               | Regular GFR                                                 |
| Afferent Arteriole Dilation                                                                                                                                                             | High glomerular capillary hydrostatic pressure,<br>High GFR |
| Afferent Arteriole Constriction                                                                                                                                                         | Low glomerular capillary hydrostatic pressure,<br>Low GFR   |
| Efferent Arteriole Dilation                                                                                                                                                             | Low glomerular capillary hydrostatic pressure,<br>Low GFR   |
| Efferent Arteriole Constriction                                                                                                                                                         | High glomerular capillary hydrostatic pressure,<br>High GFR |
| Pathological                                                                                                                                                                            |                                                             |
| Decrease protein concentration (Burns) Increase protein concentration (Dehydration) Increase BC hydrostatic pressure (UT obstruction) Increase thickness of basement membrane (HTN, DM) | High GFR Low GFR Low GFR Low GFR                            |

## **Auto regulation** Glomerular epithelium Juxtaglomerular cells Afferent Efferentarteriole arteriole Internal Macula densa elastic lamina Smooth Basement muscle membrane Distal fiber tubule Figure 26-17

Structure of the juxtaglomerular apparatus, demonstrating its possible feedback role in the control of nephron function.



Arterial pressure

#### Figure 26-18

Macula densa feedback mechanism for autoregulation of glomerular hydrostatic pressure and glomerular filtration rate (GFR) during decreased renal arterial pressure.