Verão IME-USP 2019 - Álgebra Linear - Lista 3

araujofpinto

janeiro 2019

- 1. Para cada espaço vetorial real V, decida se a função $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ define um produto interno em V:
 - (a) $V = \mathbb{R}^2 \ e \ \langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 x_1 y_2 y_1 x_2 + 4 x_2 y_2;$
 - (b) $V = \mathbb{M}_2(\mathbb{R}) \ e \langle A, B \rangle = tr(B^T A);$
 - (c) $V = \mathbb{M}_n(\mathbb{R}) \in \langle A, B \rangle = tr(B^T A);$
 - (d) $V = \mathcal{P}_1(\mathbb{R}) \in \langle p, q \rangle = p(0)q(0) + p(1)q(1);$
 - (e) $V = \mathcal{P}_2(\mathbb{R}) \in \langle p, q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1);$
 - (f) $V = \mathcal{P}_2(\mathbb{R}) \in \langle p, q \rangle = \int_0^1 p(t).q(t)dt;$
- 2. Sejam V um espaço vetorial real, $\langle \cdot, \cdot \rangle_1$ e $\langle \cdot, \cdot \rangle_2$ dois produtos internos em V.
 - (a) Mostre que a função $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ dada por $\langle u, v \rangle = \langle u, v \rangle_1 + \langle u, v \rangle_2$ define um produto interno em V.
 - (b) Para que valores de $a \in \mathbb{R}$ a função $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ dada por $\langle u, v \rangle = a \langle u, v \rangle_1$ define um produto interno
- 3. Seja $(V, \langle \cdot, \cdot \rangle)$ um espaço com produto interno e seja $T: V \to V$ uma transformação linear.
 - (a) Mostre que, se T for um isomorfismo, então $f: V \times V \to \mathbb{R}$ dada por $f(u,v) = \langle T(u), T(v) \rangle$ define um produto interno em V
 - (b) Mostre que, se valer $\langle T(u), T(v) \rangle = \langle u, v \rangle$, para todo u, v em V, então T é injetora. Se, além disso, valer que V tem dimensão finita, então $T:V\to V$ é um isomorfismo.
- 4. Sejam $(V, \langle \cdot, \cdot \rangle)$ um espaço vetorial com produto interno e $u, v \in V$. Prove as seguintes afirmações:
 - (a)(Teorema de Pitágoras) $||u+v||^2 = ||u||^2 + ||v||^2 \Leftrightarrow u \perp v$.
 - **(b)(Polarização)** $\frac{1}{4}(\|u+v\|^2 \|u-v\|^2) = \langle u, v \rangle.$
 - (c)(Lei do paralelogramo) $||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2$.
 - (d)(Diagonal do paralelogramo) $||u+v||^2 = ||u||^2 + ||v||^2 + 2||u|| ||v|| cos(\theta)$, onde θ é o ângulo entre os vetores
 - (e)(Lei dos cossenos) $||u-v||^2 = ||u||^2 + ||v||^2 2||u|| ||v|| cos(\theta)$, onde θ é o ângulo entre os vetores não-nulos
 - (f) $||u|| = ||v|| \Leftrightarrow u + v \perp u v$
 - (g) $\{u, v\} \in L.D. \Leftrightarrow |\langle u, v \rangle| = ||u|| ||v||.$
- 5. Usando a desigualdade de Cauchy-Schwarz, prove os resultados abaixo:
 - (a) $(a\cos\theta + b\sin\theta)^2 \le a^2 + b^2$, para quaisquer a, b, θ em \mathbb{R} ;
 - (b) $(a_1 + a_2 + a_3)(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3}) \ge 9$, para quaisquer a_1, a_2, a_3 em \mathbb{R}_+^* ;

 - (c) $(\frac{\alpha_1 + \ldots + \alpha_n}{n})^2 \leq \frac{\alpha_1^2 + \ldots + \alpha_n^2}{n}$, para quaisquer $\alpha_1, \ldots, \alpha_n$ em \mathbb{R} ; (d) $(\sum_{j=1}^n a_j x_j y_j)^2 \leq (\sum_{j=1}^n a_j x_j^2)(\sum_{j=1}^n a_j y_j^2)$, para quaisquer a_1, \ldots, a_n em \mathbb{R}_+ e quaisquer $x_1, \ldots, x_n, y_1, \ldots, y_n$ em \mathbb{R}
 - (e) $(\sum_{j=1}^{n} a_j x_j y_j)^2 \le (\sum_{j=1}^{n} a_j^{2p} x_j^2) (\sum_{j=1}^{n} a_j^{2(1-p)} y_j^2)$, para qualquer p em]0,1[, quaisquer a_1,\ldots,a_n em \mathbb{R}_+ e quaisquer $x_1,\ldots,x_n,y_1,\ldots,y_n$ em \mathbb{R} .

- 6. Faça o que se pede acerca da estrutura geométrica dos espaços vetoriais com produto interno abaixo:
 - (a) Considere $(\mathbb{R}^2, \langle \cdot, \cdot \rangle)$ com o produto interno usual. Seja x = (1,1) e y = (3,-1), encontre um vetor $z = (z_1, z_2) \in \mathbb{R}^2$, tal que $\langle x, z \rangle = -2$ e $\langle y, z \rangle = 1$.
 - (b) Considere \mathbb{R}^3 com o produto interno usual. Verifique qu o conjunto $B = \{(1,1,1), (1,2,-3), (5,-4,-1)\}$ é base ortogonal de \mathbb{R}^3 . Encontre as coordenadas do vetor (1,5,-7) em relação a essa base, ou seja, determine a,b e c em \mathbb{R} tais que $(1,5,-7)=(a,b,c)_B$.
 - (c) Considere \mathbb{R}^3 com o produto interno usual. Dados u=(1,1,1) e v=(2,-1,1), determine w_1 e w_2 tais que $u=w_1+w_2, w_1\perp u$ e $\{v,w_2\}$ seja LI.
 - (d) Considerando \mathbb{R}^4 com o produto interno usual, sejam u=(3,2-1,0) e v=(1,2,0,1). Determine $\langle u,v\rangle, \|u\|, \|v\|$ e o coseno do ângulo entre u e v.
 - (e) Considerando $\mathbb{M}_2(\mathbb{R})$ com o produto interno usual, $\langle A,B\rangle=tr(B^tA)$, para todo $A,B\in\mathbb{M}_2(\mathbb{R})$. Sejam $A=\begin{pmatrix}1&0\\-1&2\end{pmatrix}, B=\begin{pmatrix}-2&1\\0&3\end{pmatrix}$ e $C=\begin{pmatrix}-3&2\\0&-1\end{pmatrix}$. Determine $\langle A,B\rangle,\,\langle A+B,C\rangle,\,\|A\|,\|B\|$ e o coseno do ângulo entre A e B.
 - (f) Seja $(V, \langle \cdot, \cdot \rangle)$ um espaço vetorial com produto interno e sejam $u, v \in V$ tais que ||u|| = 4 e ||v|| = 1 e ||u v|| = 5. Determine $\langle u, v \rangle$.
- 7. Dados V um espaço vetorial real com um produto interno $\langle \cdot, \cdot \rangle$ e um subespaço S de V, encontre uma base ortonormal de S e uma base ortonormal de S^{\perp} :
 - (a) $V = \mathbb{R}^3$, $\langle \cdot, \cdot \rangle$ o produto interno usual de \mathbb{R}^3 e $S = \{(x, y, z) \in \mathbb{R}^3 : 2x y + z = 0\}$.
 - (b) $V = \mathbb{R}^4$, $\langle \cdot, \cdot \rangle$ o produto interno usual de \mathbb{R}^4 e S = [(0, 1, -2, 1)].
 - (c) $V = \mathbb{R}^4$, $\langle \cdot, \cdot \rangle$ o produto interno usual de \mathbb{R}^4 e S = [(1, 1, 1, 1), (1, 1, 2, 4), (1, 2, -4, -3)].
 - (d) $V = \mathbb{R}^5, \langle \cdot, \cdot \rangle$ o produto interno usual de \mathbb{R}^5 e S = [(1, 2, 3, -1, 2), (2, 1, 0, 2, -1)].
 - (e) $V = \mathbb{R}^3$, $\langle \cdot, \cdot \rangle$ o produto interno usual de \mathbb{R}^3 e $S = N\acute{u}c(T)$, onde $T : \mathbb{R}^3 \to \mathbb{R}^2$ é dada por T((x,y,z)) = (x-y-z,2z-x).
 - (f) $V = \mathbb{R}^3$, $\langle \cdot, \cdot \rangle$ o produto interno usual de \mathbb{R}^3 e S = Im(T), onde $T : V \to V$ é dada por T((x, y, z)) = (x y z, -x + y + 2z, x y).
 - (g) $\mathbb{M}_2(\mathbb{R})$, $\langle A, B \rangle = tr(B^T A)$ e $S = \begin{bmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ -2 & 0 \end{bmatrix} \end{bmatrix}$.
 - $(\mathbf{h}) \ \mathbb{M}_2(\mathbb{R}), \ \langle A,B \rangle = tr(B^TA) \ \mathrm{e} \ S = [\begin{pmatrix} 1 & 3 \\ -2 & 7 \end{pmatrix}, \begin{pmatrix} -2 & 2 \\ 4 & 10 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}].$
 - (i) $V = \mathcal{P}_1(\mathbb{R}), \langle p, q \rangle = p(0)q(0) + p(1)q(1) \in S = [p_0], \text{ onde } p_0(x) = 1 + x$
 - (i) $V = \mathcal{P}_2(\mathbb{R}), \langle p, q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1) \in S = [p_0], \text{ onde } p_0(x) = 2 x$
- 8. Seam \mathbb{R}^3 com o produto interno usual, $S=[(1,1,1)],\ P:\mathbb{R}^3\to\mathbb{R}^3$ a projeção ortogonal sobre S. Determine P(x,y,z), para todo $(x,y,z)\in\mathbb{R}^3$.
- 9. Seja $P: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear tal que u = P(v) é a projeção ortogonal de $v \in \mathbb{R}^3$ no plano 3x + 2y + z = 0. Determine P(x, y, z), Im(P) e Ker(P).
- 10. Seja $W = \{x \in \mathbb{R}^n : \langle x, c \rangle = 0\}$, para $c \in \mathbb{R}^n$ fixo.
 - (a) Determine W^{\perp} .
 - (b) Dado $u \in \mathbb{R}^n$, determine a projeção de u sobre W e a projeção de u sobre W^{\perp} .
- 11. Em \mathbb{R}^4 com o produto interno usual seja $S = \{(1,1,1,1), (-1,1,-1,1)\}$. Encontre a melhor approximação de (2,1,3,1) em S.
- 12. Sejam \mathbb{R}^3 com o produto interno usual e $S=\{(x,y,z)\in\mathbb{R}^3:x+y-z=0\}$. Determine os vetores dos subespaços S e S^\perp que melhor approximam o vetor (1,2,1).

- 13. Sejam $B \in \mathbb{M}_{m \times p}(\mathbb{R})$ e $A \in \mathbb{M}_{p \times p}(\mathbb{R})$. Mostre que $(BA)^T = A^T B^T$.
- 14. Sejam $A \in B \text{ em } \mathbb{M}_n(\mathbb{R})$.
 - (a) Mostre que A é inversível se, e somente se, $det(A) \neq 0$.
 - **(b)** Mostre que det(BA) = det(B)det(A)
 - (c) Mostre que, se A é inversível, então $det(A^{-1}) = (det A)^{-1}$;
 - (d) Mostre que, se A e B são inversíveis, então BA é inversível e $(BA)^{-1} = A^{-1}B^{-1}$;
 - (e) Mostre que $det(\lambda A) = \lambda^n det(A)$
 - (f) Mostre que $det(A^T) = det(A)$
 - (g) Mostre que A é inversível se, e somente se, A^TA é inversível
 - (h) Mostre que A^T é inversível se, e somente se, A é inversível e, neste caso, mostre que $(A^T)^{-1} = (A^{-1})^T$
 - (i) Se A e B são triangulares superiores, então BA é triangular superior;
 - (j) Se $A = (a_{ij})$ é triangular superior, então $det(A) = \prod_{k=1}^{n} a_{kk}$ é triangular superior;
 - (k) Mostre que $A^T A$ é simétrica
 - (I) Mostre que existem matrizes C_1 e C_2 em $\mathbb{M}_n(\mathbb{R})$ tais que $A = C_1 + C_2$ com C_1 matriz simétrica e C_2 matriz antissimétrica.
- 15. Se $det: \mathbb{M}_2(\mathbb{R}) \cong \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ é uma função multilinear alternada nas colunas de uma matriz 2×2 com $det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1$, mostre que $det \begin{pmatrix} a & c \\ b & d \end{pmatrix} = ad bc$.
- 16. Se $det: \mathbb{M}_n(\mathbb{R}) \cong \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}$ é uma função multilinear alternada nas colunas de uma matriz $n \times n$ com $det(I_n) = 1$, onde I_n é a matriz Identidade de ordem n. Deduza a fórmula de det(A) para $A = (a_{ij})$ uma matriz qualquer em $\mathbb{M}_n(\mathbb{R})$ para n = 2, n = 3 e n = 4.
- 17. Dadas A e B em $\mathbb{M}_n(\mathbb{R})$, dizemos que A e B são semelhantes se existe $P \in \mathbb{M}_n(\mathbb{R})$ com $det(P) \neq 0$ tal que $A = P^{-1}BP$. Mostre que, se A e B são semelhantes, então det(A) = det(B).
- 18. Exiba todas as n! permutações do S_n como produto de permutações cíclicas e como produtos de transposições, calculando o sinal e a paridade de cada uma delas para n = 2, n = 3 e n = 4.
- 19. Sejam $\mathcal{B} = \{v_1, \dots, v_n\}$ uma base ortogonal de \mathbb{R}^n com $\lambda_1 = ||v_1||, \lambda_2 = ||v_2||, \dots, \lambda_n = ||v_n||$ e a matriz A formada pelos vetores de \mathcal{B} em suas colunas. Calcule |det(A)| em função de $\lambda_1, \lambda_2, \dots, \lambda_n$. Qual o módulo do determinante de A se \mathcal{B} for ortonormal?
- 20. Mostre que $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ leva o círculo unitário $\{x^2 + y^2 \le 1\}$ na elipse $\{(x/a)^2 + (y/b)^2 \le 1\}$. Calcule a área dessa elipse usando det(A).
- 21. (a) Qual a área do paralelogramo com 3 de seus vértices em (0,0),(a,b) e (c,d)? Onde se encontra o outro vértice?
 - (b) Qual o volume do paralelepípedo com 4 de seus vértices em (0,0,0), (-1,2,2), (2,-1,2) e (2,2,-1)? Onde se encontram os outros vértices do paralelepíepdo?
 - (c) Qual o hipervolume do hiperparalelepípedo com 5 de seus vértices em (0,0,0,0), (1,0,0,0), (1,2,0,0), (-5,0,3,0) e (0,2,-1,-4)? Onde se encontram os outros vértices do hiperparalelepípedo?
- 22. Escalonando a matriz de Vandermonde $V = \begin{pmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ x_1^2 & x_2^2 & \dots & x_n^2 \\ \vdots & \vdots & \dots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{pmatrix}$, mostre que $det(V) = \prod_{i>j} (x_i x_j)$ e

conclua que V é inversível se, e somente se, os escalares x_1, \ldots, x_n são todos distintos entre si. Como aplicação, mostre que, dados n+1 pares de números $(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)$ com $x_0 < x_1 < \cdots < x_n$, existe um único polinômio $p \in \mathcal{P}_n(\mathbb{R})$ tal que $p(x_0) = y_0, p(x_1) = y_1, \ldots, p(x_n) = y_n$.

23. Calcule os determinantes das matrizes abaixo:

(a)
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ log8 & log80 & log800 & log8000 \\ (log8)^2 & (log80)^2 & (log800)^2 & (log8000)^2 \\ (log8)^3 & (log80)^3 & (log800)^3 & (log8000)^3 \end{pmatrix}$$
. Dica: Vandermonde.

- 24. Se $A \in \mathbb{M}_n(\mathbb{R})$, o polinômio característico de A é $p_A \in \mathcal{P}_n(\mathbb{R})$ dado por $p_A(x) = det(xI_n A)$. Se A é uma matriz 2×2 , mostre que as raízes(mesmo sendo complexas) r_1 e r_2 de p_A satisfazem $r_1 + r_2 = tr(A)$ e $r_1.r_2 = det(A)$.
- 25. Resolva os sistemas da lista 0 pela regra de Cramer.