Further Complex Methods

1 Complex Variables

Definition 1.1. A neighbourhood of a point $z \in \mathbb{C}$ is an open set containing z.

Definition 1.2. The extended complex plane \mathbb{C}_{∞} or $\overline{\mathbb{C}}$ is defined as $\mathbb{C} \cup \{\infty\}$. All directions lead to ∞ , as in the Riemann sphere.

Definition 1.3. A function f(z) is differentiable at z if $f'(z) = \lim_{a \to 0} \frac{f(z+a) - f(z)}{a}$ exists (i.e. is the same for all paths $a \to 0$).

Definition 1.4. We say that that f(z) is analytic/holomorphic/regular at a point z if it is differentiable in a neighbourhood of z. This definition naturally extends to being analytic in a domain $D \subset \mathbb{C}$.

Proposition 1.5. Cauchy-Riemann Conditions

For f(z) = u(z) + iv(z), with $u, v \in \mathbb{R}$, f is differentiable at z, iff

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

Where it exists, this is equivalent to the Wirtinger derivative $\frac{\partial f}{\partial \overline{z}} = 0$, where $\frac{\partial}{\partial \overline{z}} = \frac{\partial}{\partial x} + i \frac{\partial}{\partial y}$

Theorem 1.6. Cauchy s Theorem

If f(z) is analytic within and on a closed contour C then $\oint_C f(z) = 0$. Note that the interior is simply connected.

Theorem 1.7. Cauchy s Integral Formula

For $z_0 \in \text{int } C$,

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$

Consequently,

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n-1}} dz,$$

implying that an analytic function is infinitely differentiable. Here, all path integrals are taken anti-clockwise.

Definition 1.8. A function f(z) is *entire* if it is analytic on \mathbb{C} (not \mathbb{C}_{∞}).

Theorem 1.9. Liouville's Theorem

If f is entire and bounded on \mathbb{C}_{∞} , then it is constant.

Proof. Consider a circular disk of radius R, i.e. $D = \{z : |z - z_0| < R\}$, and pick M s.t. |f(z)| < M.

Then

$$|f^{(n)}(z_0)| \le \frac{n!}{2\pi} \oint_C \frac{|f(z)|}{|z - z_0|^{n-1}} dz \le \frac{n!M}{2\pi R^{n+1}} \oint_C |dz| \le \frac{n!M}{R^n}$$

As this holds for all R, z_0 , we must have that f' vanishes identically, and so f(z) = f(0).

1.1 Series expansions

An analytic function has a convergent Taylor expansion about any point within its domain of analyticity:

$$f(z) = \sum_{n=1}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

We can also consider Laurent series for functions f(z) with an isolated singularity about some point z_0 , but analytic in a neighbourhood of z_0 .

$$f(z) = \sum_{n=-\infty}^{\infty} C_n (z - z_0)^n, \quad C_n = \frac{1}{2\pi i} \oint \frac{f(z)}{(z - z_0)^{n+1}} dz$$

We can classify the singularity as follows:

$$f(z) = \sum_{n=0}^{\infty} C_n (z - z_0)^n + \sum_{n=1}^{N} C_{-n} (z - z_0)^{-n}$$

Then z_0 is:

- 1. A regular point (or 0) if $C_{-n} = 0 \forall n \geq 1$.
- 2. A simple pole if N=1
- 3. A pole of order N if N>1 (here we can write $f=\frac{g}{(z-z_0)^N},\,g$ analytic)
- 4. And essential singularity if $N \to \infty$.

The coefficient C_{-1} in our Laurent series is called the *residue* of f at z_0 .

For a pole of order
$$N$$
, $C_{-1} = \frac{1}{(N-1)!} \frac{d^{N-1}}{dz^{N-1}} [(z-z_0)^N f(z)] \Big|_{z=z_0}$

Theorem 1.10. Residue Theorem

If f is analytic in a simply-connected domain, except at a finite number of isolated singularities z_1, \ldots, z_n , then

$$\oint f(z)dz = 2\pi i \sum_{k=1}^{n} \operatorname{res}(f(z); z_k)$$

Lemma 1.11. The Identation Lemma

Consider a simple pole at z_0 .

Then

$$\lim_{\varepsilon \to 0} \int_{C_{\varepsilon}} f(z)dz = i(\beta - \alpha)\operatorname{res}(f; z_0),$$

where on C_{ε} , $z = z_0 + \varepsilon e^{i\theta}$, $\alpha \le \theta \le \beta$.

Proof. Consider the Laurent expansion of f about z_0 .

$$f(z) = \frac{\text{res}(f; z_0)}{z - z_0} + g(z),$$

where g is analytic in the region $|z - z_0| < r, r > 0$.

By continuity of g at z_0 , we can choose r small enough such that g is bounded by some $M \in \mathbb{R}$. On $0 < \varepsilon < r$, we have

$$\int_{C_{\varepsilon}} f(z)dz = \operatorname{res}(f; z_0) \int_{C_{\varepsilon}} \frac{dz}{z - z_0} + \int_{C_{\varepsilon}} g(z)dz$$

$$= i\operatorname{res}(f; z_0) \int_{\alpha}^{\beta} id\theta + \int_{C_{\varepsilon}} g(z)dz$$

$$= i(\beta - \alpha)\operatorname{res}(f; z_0) \text{ in the limit } \varepsilon \to 0, \text{ as } g \text{ is bounded.}$$

1.2 Functions defined by integrals

Consider $F(z) = \int_C f(z,t)dt$, where C is some contour in $\mathbb C$ (not necessarily closed). We wish to find out when such an F is defined and analytic.

Conditions on analyticity

We need to check that:

- 1. The integrand is continuous in t and z.
- 2. The integral converges uniformly in each subset of its domain.
- 3. The integrand is analytic in z for each value of t.

This second condition will not be treated rigorously.

Example.

$$F(z) = \int_{-\infty}^{\infty} e^{-zt^2} dt \left(= \sqrt{\frac{\pi}{z}} \right)$$

The integral converges for $\Re(z) > 0$, and diverges for $\Re(z) < 0$. If $z \in i\mathbb{R}$, then the integrand e^{-iyt} oscillates increasingly rapidly, and F(z) is not absolutely convergent, but conditionally convergent, i.e.

$$\lim_{l \to \infty} \int_{-l}^{l} |e^{-iyt^2}| dt \to \infty,$$

but

$$\lim_{l \to \infty} \int_{-l}^{l} e^{-iyt^2} dt$$
 is finite.

Conditions 13 hold. It can be shown that 2 also holds.

Example.

$$F(z) = \int_0^\infty \frac{u^{z-1}}{u+1} du$$

1. Existence: Potential problems when $u=0,\infty$. The integrand is otherwise well behaved (except for -1, which is outside the range of integration). There are no problematic values of z, as $u^{z-1} = e^{(z-1)\log u}$.

At
$$u = 0$$
, we have $\int_0 u^{z-1} du = \frac{u^z}{z} \Big|_0$

$$|u^z| = |e^{z \log u}| = e^{x \log u}$$

So to have this converge (to 0), we require $\Re(z) > 0$.

At
$$u = \infty$$
, $u + 1 \approx u$, and $\int_{-\infty}^{\infty} u^{z-2} = \frac{u^{z-1}}{z-1}$

$$|u^{z-1}| = e^{(x-1)\log u},$$

so we require $\Re(z) < 1$.

If $\Re(z) = 0, 1$, we also do not have convergence. Thus F(z) is defined for $0 < \Re(z) < 1$.

2. Analyticity: Conditions 13 are clearly satisfied in $0 < \Re(z) < 1$. 2 probably is.

So F(z) is analytic for $0 < \Re(z) < 1$.

We can evaluate it using a circular keyhole contour. On C_R , $t = Re^{i\theta}$, on C_+ , t = u, $\varepsilon < u < R$, on C_- , $t = ue^{2\pi i}$, $R > u > \varepsilon$, and on C_{ε} , $t = \varepsilon e^{i\theta}$.

So,
$$\int_{C_{-}} \frac{t^{z-1}}{t+1} du = -(e^{2\pi i})^{z-1} F(z)$$
.

As $0 < \Re(z) < 1$, $\lim_{R \to \infty} R^{1-z} =$, and so our C_R integral goes to 0. Similarly, so too does our C_{ε} integral.

Therefore,

$$(1 - e^{2\pi i(z-1)})F(z) = 2\pi i \times e^{-i\pi(z-1)}$$
$$\Rightarrow F(z) = \frac{\pi}{\sin \pi z}$$

We will see later that $F(z) = \Gamma(z)\Gamma(1-z)$.

1.3 Analytic Continuation

We have that $F(z) = \int_{-\infty}^{\infty} e^{-zt^2} dt$ is analytic for $\Re(z) > 0$. We would like to know if it is possible to extend its domain of analyticity, and whether such an extension is unique.

Theorem 1.12. Identity Theorem

Let g_1, g_2 be analytic functions in a connected, non-empty, open set $D \subset \mathbb{C}$ with $g_1 = g_2$ in a non-empty open subset $\tilde{D} \subset D$. Then $g_1 = g_2$ on D.

Proof. (sketch)

Expand $g_1 - g_2$ as a Taylor expansion about $z_0 \in \tilde{D}$. Then the series holds in all of D, and is identically 0 in \tilde{D} . Therefore $g_1 - g_2 = 0$ on D.

We can extend this proof by replacing our set \tilde{D} by a contour $\gamma \subset D$.

Definition 1.13. Analytic Continuation

Let D_1, D_2 be open sets with $D_1 \cap D_2 \neq \emptyset$. Let f_1 and f_2 be analytic on D_1 and D_2 respectively, with $f_1 = f_2$ on $D_1 \cap D_2$. Then we say that f_2 is the analytic continuation of f_1 from D_1 to D_2 .

Proposition 1.14. Our analytic continuation f_2 is unique.

Proof. Suppose there exists $\tilde{f}_2 \neq f_2$ which provides such an analytic continuation with $\tilde{f}_2 = f_1$ on $D_1 \cap D_2$. Define

$$g_1 = \begin{cases} f_1 \text{ on } D_1 \\ f_2 \text{ on } D_2 \end{cases}$$
$$g_2 = \begin{cases} f_1 \text{ on } D_1 \\ \tilde{f}_2 \text{ on } D_2 \end{cases}$$

Then by the identity theorem, $g_1 = g_2$, and so $f_2 = \tilde{f}_2$ and our analytic continuation is unique.

Proposition 1.15. Monodromy Theorem

If we have open sets D_1 , D_3 with $D_1 \cap D_3 = \emptyset$, with a function f_1 defined on D_1 . A unique analytic continuation of this to D_3 is possible iff we can analytically continue f_1 through all domains D_2 connecting D_1 and D_3 with $D_1 \cap D_2$, $D_2 \cap D_3 \neq \emptyset$.

Proof. Left as an exercise to a different reader.

Methods of Analytic Expansion

1. Taylor expansion

If we pick z_0 near the boundary of our domain D, we can extend f_1 to a disk $|z - z_0| < r$ for some radius of convergence r.

Example.

Note that

$$f(z) = \frac{1}{1-z}$$

$$= \frac{1}{1-z_0} \frac{1}{1-\frac{z-z_0}{1-z_0}}$$

$$= \frac{1}{1-z_0} \sum_{n=0}^{\infty} \left(\frac{z-z_0}{1-z_0}\right)^n$$

which converges for $|z - z_0| < |1 - z_0|$.

Now, let $f_1 = \sum_{n=0}^{\infty} z^n$. It is analytic for |z| < 1. Let $f_2 = \sum_{n=0}^{\infty} \frac{(z - \frac{i}{2})^n}{(1 - \frac{i}{2})^{n+1}}$, analytic on $|z - \frac{i}{2}| < \frac{\sqrt{5}}{2}$. We have that $f_1 = f_2$ on the intersection of the disks, and hence by the identity theorem, f_2 is the analytic continuation of f_1 . This can be continued as a chain of disks covering $\mathbb{C} \setminus \{1\}$, to obtain the function $\frac{1}{1-z}$, which has a simple pole at z = 1.

This is known as meromorphic continuation (analytic continuation excluding singularities). However, such extensions are not always possible.

Example.

Let $f(z) = \sum_{n=0}^{\infty} z^{2^n}$ is convergent in |z| < 1 by ratio test, but its singularities are dense, and analytic continuation is not possible. We call |z| = 1 a natural barrier.

2. Contour deformation

Example.

Let
$$F(z) = \int_{-\infty}^{\infty} \frac{e^{it}}{t-z} dt$$
 for $\Im z > 0$.

We want to continue F(z) to the lower half-plane, but obviously it is not analytic for $\Im z = 0$. So, we might think to re-define F for $\Im z \neq 0$. We shall see shortly why this does not work.

Pick z_1 with $\Im z_1 < 0$. We wish to continue F into a neighbourhood of z_1 by deforming our path of integration.

Define

$$F_1(z) = \int_C \frac{e^{it}}{t - z}$$

Then F_1 is analytic for all z above z_1 . For $\Im z > 0$, we can see by deforming our new path to the real axis, that $F_1 = F$. Therefore, F_1 is the analytic continuation of F into $\Im z < 0$.

Now, instead consider $G(z) = \int_{-\infty}^{\infty} \frac{e^{it}}{t-z} dt$ for $\Im z \neq 0$. So if $\Im z > 0$, then G(z) = F(z) by definition.

If $\Im z < 0$, then consider closing the contour with our path C above. We find

$$F_1(z) - G(z) = 2\pi i e^{iz}$$

So for $\Im z > 0$, we have that $F = F_1 = G$, and for $\Im z < 0$ we have $F_1 = G - 2\pi i e^{iz}$.

Hence G jumps by $2\pi i e^{iz}$ as it crosses the real axis.

Cauchy Principal Value 1.4

Idea. Can we say that

$$\int_{-1}^{2} \frac{dx}{x} = \log 2 - \log |-1| = \log 2?$$

Definition 1.16. If f(x) is badly-behaved at x = c and a < c < b, we can define the Cauchy Principal Value integral by

$$\mathcal{P} \int_{a}^{b} f(x)dx := \lim_{\varepsilon \to 0} \int_{a}^{c-\varepsilon} f(x)dx + \int_{c+\varepsilon}^{b} f(x)dx$$

when the limit exists of course.

Let $I = \mathcal{P} \int_{-\infty}^{\infty} \frac{f(x)}{x} dx$, where f is analytic in the upper half-plane and real axis, and $f(x) \to 0$ at infinity.

Closing in the UHP, our C_R contribution vanishes in the limit $R \to \infty$, and our C_{ε} term contributes $-i\pi f(0)$, where by analyticity of f, our residue at the origin is f(0). Hence

$$\mathcal{P} \int_{-\infty}^{\infty} \frac{f(x)}{x} = i\pi f(0)$$

Example. Let $I = \int_{-\infty}^{\infty} \frac{1-\cos x}{x^2}$. Our integrand has a removable singularity at x=0. We can show using standard methods that $I=\pi$.

Alternatively, $I = \Re \mathcal{P} \int_{-\infty}^{\infty} \frac{1 - e^{ix}}{x^2}$. Closing this in an arch, we get by indentation lemma that

$$\mathcal{P} \int_{-\infty}^{\infty} \frac{1 - e^{ix}}{x} - i\pi(-i) = 0,$$

So $I = \pi$, and $\mathcal{P} \int_{-\infty}^{\infty} \frac{\sin x}{x^2} = 0$.

Hilbert Transforms

Definition 1.17. The Hilbert transform of f(x) is defined by

$$\mathcal{H}(f)(y) = \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} \frac{f(x)dx}{x - y}$$

Remark. Observe that \mathcal{H} is a linear functional.

We shall assume that f has a Fourier decomposition, so we only need to consider the Hilbert transform of $e^{i\omega x}$, and then use linearity of the transform. We will show that

$$\mathcal{H}(e^{i\omega x})(y) = \begin{cases} ie^{i\omega y}, \ \omega > 0 \\ -ie^{i\omega y}, \ \omega < 0 \end{cases} = i\operatorname{sgn}(\omega)e^{i\omega y}$$

Integrating in an arch shaped contour about y, we get

$$\mathcal{P} \int_{-\infty}^{\infty} \frac{e^{i\omega x}}{x - y} dx + \underbrace{\int_{C_R}}_{\to 0} + \underbrace{\int_{C_{\varepsilon}}}_{=-i\pi e^{i\omega y}} = 0$$

And flipping our arch for $\omega < 0$, we get a negative sign from the indentation lemma, so the result indeed holds.

Remark. From this it follows that $\mathcal{H}^2(e^{i\omega x}) = -e^{i\omega x}$, so \mathcal{H} is "anti-self-inverse" here.

More (but not completely of course) generally, if $g(y) = \mathcal{H}(f)(y)$, then

$$f(x) = \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} -\frac{g(y)}{y-x}$$

Kramers-Kronig Relations

Let f = u + iv be analytic in $\Im z > 0$, with $f \to 0$ as $|z| \to \infty$. Let $x' = z' \in \mathbb{R}$, and consider C as follows:

Then by indentation lemma,

$$\int_{C} \frac{f(z)}{z - z'} dz = \mathcal{P} \int_{-\infty}^{oo} \frac{f(x)dx}{x - x'} - i(x) = 0$$

$$\tag{1}$$

For $z \in \mathbb{R}$, we can write f(z) = f(x, y) = f(x, 0), with f(x, 0) = u(x, 0) + iv(x, 0).

Hence, taking real and imaginary parts of (1), we obtain

$$\mathcal{P} \int_{-\infty}^{\infty} \frac{u(x)dx}{x - x'} = -\pi v(x')$$

$$\mathcal{P} \int_{-\infty}^{\infty} \frac{v(x)dx}{x - x'} = \pi u(x')$$

Or

$$\mathcal{H}u(x') = -v(x')$$

$$\mathcal{H}v(x') = u(x')$$

These are known as the Kramers-Kronig relations, relating the real and imaginary parts of functions analytic in the upper half plane.

Example.

The Laplace equation in the upper half plane

Let u(x,y) be a harmonic function in $\Im z > 0$. Recall that for $\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$, we have

$$4444 \frac{\partial^2 u}{\partial z \partial \overline{z}} u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Suppose $u \to 0$ for large |x|, y.

Consider $F(z) = \frac{\partial u}{\partial z}$. $\frac{\partial F}{\partial \overline{z}}$ implies analyticity for $\Im z > 0$, and so

$$u_x(x,0) = -\mathcal{H}u_y(x,0)$$

$$u_y(x,0) = \mathcal{H}u_x(x,0)$$

1.5 Multivalued Functions

Definition 1.18. A multivalued function f(z) admits more than one value for given z.

Definition 1.19. A point z = a is a branch point of the multivalued function f(z) if f is discontinuous upon traversing in a small circle about z = a i.e. $f(a + re^{2\pi i}) \neq f(a + r)$.

Example.

 $f(z) = (1-z^2)^{\frac{1}{2}} = (1-z)^{\frac{1}{2}(1+z)^{\frac{1}{2}}}$ has branch points at $z = \pm 1$.

For z = 1, consider $z = 1 + \varepsilon e^{i\theta}$, $0 < \varepsilon \ll 1$.

$$f(z) = (-\varepsilon e^{i\theta})^{\frac{1}{2}} (2 + \varepsilon e^{i\theta})^{\frac{1}{2}} \approx \pm i\sqrt{2\varepsilon} e^{i\frac{\theta}{2}}$$

And it is easily seen that this is a branch point.

Note that ∞ is not a branch point (consider $t = \frac{1}{z}$).

We seek to express a multivalued function in terms of a single valued function. This is achieved by restricting the region in $\mathbb C$ to cut in such a way that the resulting function is single valued and continuous. **Definition 1.20.** A continuous singlevalued function obtained in this way is called a *branch* of the multivalued function.

Integrating using a branch cut

We seek to evaluate

$$I = \int_{-1}^{1} (1 - x^2)^{\frac{1}{2}} dx$$

by contour integration.

We choose f(z) to be the branch of $(1-z^2)^{\frac{1}{2}}$ with $f(0^+)=1$, given in local polars by

$$f(z) = |1 - z^2|^{\frac{1}{2}} e^{\frac{i}{2}(\phi_1 + \phi_2 - \frac{\pi}{2})}$$

You then do some boring stuff, and get the answer to be 2π or something.

The arcsin function defined as an integral

Let

$$z = \int_0^{2\pi} \frac{dt}{(1 - t^2)^{\frac{1}{2}}},$$

where $\sqrt{1-t^2}$ is defined by a branch cut between -1 and 1 as before, such that it takes value 1 at 0^+ , and where $0 \le \arg z < \pi$

See siklos' notes.

2 Special Functions

2.1 The Gamma Function

We are motivated by finding a smooth curve that interpolates the points $f(n) = n!, n \in \mathbb{N}$. We find such a magical function to be given by $f(x) = \Gamma(x+1)!$ We now seek to generalize this in integral form to \mathbb{C} .

Let $I(z) = \int_0^\infty t^{z-1} e^{-t} dt$ (Euler's Integral), which converges and is analytic for $\Re z > 0$. Now,

$$I(z+1) = \int_0^\infty t^z e^{-t} dt = \left[-t^z e^{-t} \right]_0^\infty + \int_0^\infty z t^{z-1} e^{-t} dt$$
$$= (z)$$

Also, I(1) = 1. Hence

$$I(n+1) = n!I(1) = n!, \ n \in \mathbb{N}$$

So our idea is to define

$$\Gamma(z) = \begin{cases} I(z), & \Re z > 0 \\ \text{Analytic continuation elsewhere} \end{cases}$$

Now, we can see that

$$I(z) = \frac{I(z+1)}{z}$$

is analytic for $\Re(z+1)>0$, and $z\neq 0$. As such, we can iteratively extend this to

$$I(z) = \frac{I(z+n+1)}{z(z-1)\dots(z+n)},$$

which is analytic for $\Re z > -(n+1), z \neq 0, -1, \ldots, -n$.

Hence we can meromorphically continue $\Gamma(z)$ to $\mathbb{C}\setminus\{-n:n\in\mathbb{N}\}$, with simple poles at the negative integers. It is easily seen that $\operatorname{res}(\Gamma(z);-n)=(-1)^n\Gamma(1)\frac{1}{n!}=\frac{(-1)^n}{n!}$

Some alternative definitions and formulae

Proposition 2.1. Euler Product Formula

$$\Gamma(z) = \lim_{n \to \infty} \frac{n! n^z}{z(z+1) \dots (z+n)}, \qquad \forall z \in \mathbb{C} \setminus (-\mathbb{N})$$

Proof. Firstly, we consider $\Re z > 0$. Recall that $e^{-t} = \lim_{n \to \infty} \left(1 - \frac{t}{n}\right)^n$.

So,

$$\Gamma(z) = \lim_{n \to \infty} \int_0^n \left(1 - \frac{t}{n} \right)^n t^{z-1} dt$$

$$= \lim_{n \to \infty} n^z \left[\frac{(1-\tau)^n \tau^z}{z} \right]_0^1 - \frac{n^\tau}{z} (-n) \int_0^1 (1-\tau)^{n-1} \tau^z d\tau \quad (\tau = \frac{t}{n})$$

$$= \lim_{n \to \infty} 0 + (-1)^n n^z n! \int_0^1 \frac{\tau^{z+n-1}}{z(z+1)\dots(z+n-1)}$$

$$= \lim_{n \to \infty} \frac{n! n^z}{z(z-1)\dots(z+n)}$$

For $\Re z \leq 0$, it is clear to see that our analytic continuation by $\Gamma(z) = \frac{\Gamma(z+1)}{z}$ continues the product formula, and is indeed analytic.

Proposition 2.2. Gauss Product Formula

$$\Gamma(z) = \frac{1}{z} \prod_{n=1}^{\infty} \frac{\left(1 + \frac{1}{n}\right)^z}{1 + \frac{z}{n}}$$

Proof. By the Euler product formula, we can write

$$\Gamma(z) = \lim_{n \to \infty} \frac{1}{z} \frac{n^z}{\frac{z+1}{1} \frac{z+2}{2} \dots \frac{z+n}{n}}$$

$$= \frac{1}{z} \lim_{n \to \infty} \frac{\frac{n+1}{n}^z}{(1+z)(1+\frac{z}{2})\dots(1+\frac{z}{n})}$$

As $\left(\frac{n}{n+1}\right)^z \to 1$ as $n \to \infty$, we obtain the required expression.

Proposition 2.3. The Weierstrass Canonical Product

$$\frac{1}{\Gamma(z)} = ze^{\gamma z} \prod_{k=1}^{\infty} \left(1 + \frac{z}{k}\right) e^{-\frac{z}{k}},$$

where $\gamma = \lim_{n \to \infty} 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \log n \approx 0.577$ is the Euler-Mascheroni constant.

Proof. Using Euler's product formula,

$$\begin{split} \frac{1}{\Gamma(z)} &= z \lim_{n \to \infty} \frac{(1+z)(2+z)\dots(n+z)}{n!n^z} \\ &= z \lim_{n \to \infty} e^{-z\log n} \left(1+z\right) \left(1+\frac{z}{2}\right) \dots \left(1+\frac{z}{n}\right) \\ &= z \lim_{n \to \infty} e^{-z\left(\log n - (1+\frac{1}{2}+\dots+\frac{1}{n})\right)} e^{-z\left(1+\frac{1}{2}+\dots+\frac{1}{n}\right)} \left(1+z\right) \dots \left(1+\frac{z}{n}\right) \\ &= z e^{\gamma z} \prod_{k=1}^{\infty} \left(1+\frac{z}{k}\right) e^{-\frac{z}{k}} \end{split}$$

Proposition 2.4. Reflection Formula

$$\Gamma(z)\Gamma(1-z) = \pi \csc(\pi z), \quad z \notin \mathbb{Z}$$

Proof. We first consider the case $\Re z \in (0,1)$ so that we can write $\Gamma(z)$ and $\Gamma(1-z)$ can be written in integral form. Using substitutions $t = r \sin^2 \theta$, $s = r \cos^2 \theta$, we have

$$\Gamma(z)\Gamma(1-z) = \int_0^\infty e^{-t}t^{z-1}dt \int_0^\infty e^{-s}s^{-z}ds$$
$$= 2\int_0^{\frac{\pi}{2}} (\tan\theta)^{2z-1}d\theta$$
$$= \int_0^\infty \frac{u^{z-1}}{u+1}du$$
$$= \frac{\pi}{\sin(\pi z)}$$

Where we used the substitution $\tan \theta = u^{\frac{1}{2}}$, and calculated the last integral earlier.

Now, $\Gamma(z)$, $\Gamma(1-z)$ and $\pi(\csc \pi z)$ are analytic for all z except integer points, and they are equal for $\Re z \in (0,1)$, and so the result holds by analytic continuation.

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

2.2 Hankel Representation of $\Gamma(z)$

Proposition 2.5. Hankel Representation

For $z \notin \mathbb{Z} \setminus \mathbb{N}$,

$$\Gamma(z) = \frac{1}{2i\sin(\pi z)} \int_{-\infty}^{0^+} e^t t^{z-1} dt,$$

where $-\pi \le \arg t \le \pi$, and the path is called the *Hankel contour*. Note that the function is analytic in both z and t.

Well-Definedness of Hankel Integral

Note that for $\Re z > 0$, the Hankel representation is equal to the Gaussian integral I(z) from earlier. To see this, we collapse the Hankel contour onto the branch cut, and define for $\Re z > 0$,

$$J(x) = \int_{-\infty}^{0^+} e^t t^{z-1} dt = \int_{\gamma_1} + \int_{\gamma_2} + \int_{\gamma_2} + \int_{\gamma_2}$$

defining contours

$$\gamma_1: t = xe^{i\pi}, \infty > x > \varepsilon, \quad \gamma_2: t = xe^{i\pi}, \varepsilon < x < \infty, \quad \gamma_\varepsilon: t = \varepsilon e^{i\theta}, -\pi < \theta < \pi$$

Note that we have

$$\begin{split} &\int_{\gamma_1} \to (e^{-\pi})^z \int_{-\infty}^0 e^{-x} x^{z-1} dx \\ &\int_{\gamma_2} \to (e^{i\pi})^z \int_0^\infty e^{-x} x^{z-1} dx \\ &\int_{\gamma_\varepsilon} \to 0 \text{ as } \Re z > 0 \text{ and } \varepsilon \to 0 \end{split}$$

so we have

$$J(z) = 2i\sin(\pi I(z)$$

Hence the claim is proved by analytic continuation.

Note that for $z \in \mathbb{N}$, the zeroes of $\sin(\pi z)$ are cancelled by the integral, and t = 0 is not a branch point, so there are no singularities in the Hankel contour. This suggests that J(z) = 0.

Residues of $\Gamma(z)$ in Hankel Representation

In this case with $z \in \mathbb{N}$, we can choose a Hankel contour to be a unit circle enclosing the origin anticlockwise. Now,

$$J(-m) = \int_{|t|=1} e^t t^{-(m+1)} dt = 2\pi i \operatorname{res} \left(e^t t^{-(m+1)}; 0 \right)$$

Using Taylor expansion,

$$e^{t}t^{-(m+1)} = \sum_{n=0}^{\infty} \frac{t^{n-m-1}}{n!},$$

and the residue is then the coefficient of t^{-1} , m!. So $J(-m) = \frac{2\pi i}{m!}$.

Thus the residue of $\Gamma(z)$ at z=-m is $\lim_{z\to -m}\frac{z+m}{2i\sin\pi z}J(z)=\frac{2\pi i}{m!}\lim_{z\to -m}\frac{z+m}{2i\sin\pi z}=\frac{(-1)^m}{m!}$ by l'Hôpital as expected.

We now seek to answer whether the Gamma function is the unique analytic interpolation problem of the factorial.

Theorem 2.6. Wielondt's Theorem

If F(z) satisfies:

- 1. F(z) is analytic for $\Re z > 0$
- 2. F(z+1) = zF(z)
- 3. F(z) is bounded in $1 \le \Re z \le 2$
- 4. F(1) = 1

then $F(z) = \Gamma(z)$.

Lemma 2.7. Define the difference function

$$f(z) := F(z) - \Gamma(z)$$

Then f(z) is entire.

Proof. Properties 1 and 2 imply that F(z) can be meromorphically continued into $\mathbb{C} \setminus (-\mathbb{N})$,

$$F(z) = \frac{F(z+n)}{z(z+1)\dots(z+n-1)}$$

By property 4, res $(F(z); -n) = \frac{F(1)(-1)^n}{n!}$, which is the same as the gamma function. Hence f(z) has only removable poles, and is in fact entire.

Lemma 2.8. f(z) is bounded in the strip $0 \le \Re z \le 1$.

Proof. We first show that f(z) is bounded on $1 \le \Re z \le 2$. It suffices to check that $\Gamma(z)$ is.

$$\begin{split} |\Gamma(z)| &= \left| \int_0^\infty e^{-t} t^{z-1} dt \right| \\ &\leq \int_0^\infty \left| e^{-t} t^{x+iy-1} \right| dt \\ &= \int_0^\infty e^{-t} t^{x-1} dt \\ &\leq \int_0^\infty e^{-t} t^{2-1} dt \\ &= 1 \end{split}$$

We examine our last inequality more closely:

Define $I(x)=\int_0^\infty e^{-t}t^{x-1}dt\ I(1)=I(2)=1.$ $\frac{d^2I}{dx^2}>0$, so I(x) is convex in [1,2], and the inequality indeed holds.

Now, for $0 \le \Re z \le 1$, we can write $f(z) = \frac{f(z+1)}{z}$. As f is bounded on $1 \le \Re z \le 2$, we conclude that it is also bounded on $0 \le \Re z \le 1$, noting that the pole is removable at the origin.

We now prove the original theorem.

Proof. (2.6)

Let S(z) = f(z)f(1-z). S(z) is entire by lemma 2.7, and is bounded in $0 \le \Re z \le 1$ by lemma 2.8. Indeed, both f(z) and f(1-z) have the same range in this domain by symmetry.

Now, $S(z+1) = f(z+1)f(-z) = zf(z)(-z)^{-1}f(1-z) = -S(z)$. Thus S(z) is bounded in $1 \le \Re z \le 2$.

Also, S(z+2)=S(z), so S(z) is periodic with period 2, and so is bounded in \mathbb{C} . Hence by Liouville's theorem, we must have that $S(z)=S(1)=f(1)f(0)=(F(1)-\Gamma(1))f(0)=0$. Then f(z)f(1-z)=0 for all z. Hence $f(z)\equiv 0$, and $F(z)\equiv \Gamma(z)$.

2.3 The Beta Function

Definition 2.9.

$$B(p,q) := \int_0^1 t^{p-1} (1-t)^{q-1} dt, \quad \Re p, \Re q > 0,$$

and is analytically continued in p and q.

Setting $t = \sin^2 \theta$, it is easily shown (on the example sheet) that

$$B(p,q) = 2 \int_0^{\frac{\pi}{2}} \sin^{2p-1} \cos^{2q-1} \theta d\theta$$

Proposition 2.10. 1. B(p,q) = B(q,p)

2.
$$B(1,q) = \frac{1}{q}$$

3.
$$B(p, z + 1) = \frac{z}{p+z}B(p, z)$$

Proof. (1) and (2) are trivial. For (3):

$$\begin{split} B(p,z+1) &= \int_0^1 t^{p-1}(1-t)^{z-1}(1-t)dt\\ &= B(p,z) - B(p+1,z)\\ &= B(p,q) - \frac{p}{z}B(p,z+1) \text{ upon integrating by parts.} \end{split}$$

This last identity gives us an analytic continuation of the Beta function into $\Re z > -1$, just as we constructed for the Gamma function.

As our continuation is from $B(p,z)=\frac{p+z}{z}B(p,z+1)$, it is easy to see that much like the Gamma function, for fixed p there are simple poles at $z\in (-\mathbb{Z})$.

Proposition 2.11. 4.
$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

Notice that for $(n,m) \in \mathbb{N}^2$, $B(n,m) = \frac{(n-1)!(m-1)!}{(n+m-1)!}$

Proof.

$$\begin{split} \Gamma(p)\Gamma(q) &= \int_0^\infty e^{-s} s^{p-1} ds \int_0^\infty e^{-t} t^{q-1} \\ &= \Gamma(p+q)(p,q), \quad \text{using } s = r \cos^\theta, t = r \sin^2\theta \end{split}$$

Proposition 2.12. Pochhammer Representation (non-examinable)

Let $J(p,q):=\int_P f(t)dt,$ where P is Pochhammer's contour

See handout.

2.4 The Zeta function

Definition 2.13.

$$\zeta(z) := \sum_{n=1}^{\infty} \frac{1}{n^z}, \quad \Re z > 1$$

and is analytically continued wherever possible.

Euler showed the well known result that $\zeta(2) = \frac{\pi^2}{6}$.

Proposition 2.14. Integral Representation of $\zeta(z)$

$$\zeta(z) = \frac{1}{\Gamma(z)} \int_0^\infty \frac{t^{z-1}}{e^t - 1} dt, \quad \Re z > 1$$

Proof. Let t = ns, for some fixed $n \in \mathbb{N}$, with $s \in \mathbb{R}$.

Then

$$\Gamma(z) = \int_0^\infty n^z s^{z-1} e^{-ns} ds, \quad \Re z > 0$$

Hence

$$\begin{split} \zeta(z)\Gamma(z) &= \sum_{n=1}^{\infty} \int_0^{\infty} s^{z-1} e^{-ns} \\ &= \int_0^{\infty} t^{z-1} \sum_{n=1}^{\infty} e^{-nt} dt \\ &= \int_0^{\infty} \frac{t^{z-1}}{e^{-t} - 1} dt \end{split}$$

Proposition 2.15. Hankel Representation

$$\zeta(z) = \frac{\Gamma(1-z)}{2\pi i} \int_{-\infty}^{0^+} \frac{t^{z-1}}{e^{-t} - 1} dt$$

Note that the integrand has simple poles at $2\pi i n$, for $n \in \mathbb{Z}$. We take a branch cut on the negative real axis.

Proof. We show that

$$\frac{\Gamma(1-z)}{2\pi i} \int_{-\infty}^{0^+} \frac{t^{z-1}}{e^{-t}-1} dt = \frac{1}{\Gamma(z)} \int_0^{\infty} \frac{t^{z-1}}{e^t-1} dt,$$

and show that the LHS gives the analytic continuation of the RHS into $\Re z < 1.$

On our bottom line, $t=xe^{-i\pi}$, on the circle, $t=\varepsilon e^{i\theta}$, and on top $t=xe^{i\pi}$. Treating this just as with the Gamma function,

$$\int_{-\infty}^{0^{+}} = \int_{\gamma_{1}} + \underbrace{\int_{\gamma_{\varepsilon}}}_{\rightarrow 0} + \int_{\gamma_{2}}$$

$$= \left(e^{i\pi z} - e^{-i\pi z}\right) \int_{0}^{\infty} \frac{x^{z-1}}{e^{x} - 1} dx$$

$$= 2i \sin \pi z \Gamma(z) \zeta(z) \text{ by (2.14)}$$

Then

$$\begin{split} \frac{\Gamma(1-z)}{2\pi i} \int_{-\infty}^{0^+} \frac{t^{z-1}}{e^{-t}-1} dt &= \frac{\Gamma(1-z)}{2\pi i} 2i \sin \pi z \Gamma(z) \zeta(z) \\ &= \pi \frac{\csc \pi z}{\pi} \sin \pi z \zeta(z) \text{ by reflection formula} \\ &= \zeta(z) \end{split}$$

The integral on the LHS is entire in z and smooth in t, and hence provides an analytic continuation of $\zeta(z)$ into $\Re z < 1$.

Proposition 2.16. The ζ -function extends to a meromorphic continuation into \mathbb{C} , with the only singular point being a simple pole at z=1 with residue 1.

Proof. Notice that $\Gamma(1-z)$ has simple poles at $z=1,2,3,\ldots$ But $\zeta(z)$ is analytic for $\Re z>1$ from its series definition. Hence, z=1 is the only singularity of ζ .

The residue

$$\operatorname{res}(\zeta(z);1) = \lim_{z \to 1} \frac{(z-1)\Gamma(1-z)}{2\pi i} \int_{-\infty}^{0^+} \frac{t^{z-1}}{e^{-t} - 1} dt$$
$$= \lim_{z \to 1} \frac{(z-1)\Gamma(1-z)}{2\pi i}_{|z| = \frac{1}{2}} \frac{dt}{e^{-t} - 1} dt$$

Note that for $z=-n,\ n\in\mathbb{N}_0$, then $\Gamma(z)=\frac{(-1)^n}{n!}\frac{1}{z+n}+$ analytic function.

So,

$$\lim_{z \to 1} (z - 1)\Gamma(1 - z) = \lim_{z \to 1} (z - 1) \left(\frac{(-1)^0}{0!} \frac{1}{1 - z} + \text{ analytic function} \right) = -1$$

Also,

$$|z| = \frac{dt}{e^{-t} - 1} = 2\pi i \cdot (-1)$$

Hence res $(\zeta(z);1)=1$.

What about the zeroes of $\zeta(z)$?

Proposition 2.17. Functional Equation for $\zeta(z)$.

$$\zeta(z) = 2^z \pi^{z-1} \sin\left(\frac{\pi z}{2}\right) \Gamma(1-z) \zeta(1-z)$$

for all z.

Proof. We derive this for $\Re z < 0$, and then use analytic continuation.

We modify the Hankel contour as follows, closing in a rectangle with vertices at $z = \pm R \pm (2n + 1)\pi i$:

The integral has a branch cut on the negative real axis, with branch point at 0, and poles at $z=2\pi i n, \ n\in\mathbb{Z}\setminus\{0\}$. The residues at these points are given by $\frac{1}{(2\pi i n)^{1-z}}$.