Examen du cours "Introduction aux produits dérivés" Lundi 19 mai 2014 — 2 heures

Seule une feuille A4 recto verso de résumé du cours est autorisée.

Tous les mouvements browniens considérés ici sont standards.

Exercice 1. Soit \mathbb{F} une filtration et B un \mathbb{F} -mouvement brownien standard.

- 1. Montrer que le processus $(B_t)_{t>0}$ est une \mathbb{F} martingale.
- 2. Montrer que le processus $(B_t^2 t)_{t \ge 0}$ est une \mathbb{F} martingale.
- 3. Montrer que le processus $(e^{\lambda B_t \lambda^2 t/2})_{t \geq 0}$ est une \mathbb{F} martingale pour tout $\lambda \in \mathbb{R}$. Soit a > 0, on considère $\tau = \inf\{t > 0 : B_t = a\}$.
 - 4. Montrer que τ est un temps d'arrêt.
 - 5. Soit le processus M défini par $M_t = e^{\lambda B_t \lambda^2 t/2}$ pour $\lambda > 0$. Montrer que $\mathbb{E}[M_t \mathbf{1}_{\{t < \tau\}}] + \mathbb{E}[M_\tau \mathbf{1}_{\{t > \tau\}}] = 1$ pour tout $t \ge 0$.
 - 6. En déduire que $\mathbb{E}[M_{\tau}\mathbf{1}_{\{\tau<+\infty\}}]=1$.
 - 7. En déduire que $\mathbb{E}[e^{-u\tau}] = e^{-a\sqrt{u}}$.

Exercice 2. Soit B un mouvement brownien. On cherche à calculer $\int_0^T B_s dB_s$. Pour tout entier n > 0, on considère la subdivision régulière $(kT/n)_{0 \le k \le n}$ de [0, T] et on pose

$$B_t^n = B_{kT/n} \mathbf{1}_{\{[kT/n,(k+1)T/n[\}\}}(t).$$

- 1. Montrer que $\lim_{n\to+\infty} \mathbb{E}\left[\int_0^T (B_s^n B_s)^2 ds\right] = 0$.
- 2. En déduire que $\int_0^T B_s dB_s$ s'écrit comme la limite dans $\mathbb{L}^2(\Omega)$ de $\sum_{k=0}^{n-1} B_{kT/n}(B_{(k+1)T/n} B_{kT/n})$.
- 3. Calcular $\lim_{n\to+\infty} \operatorname{Var}\left(\sum_{k=0}^{n-1} (B_{(k+1)T/n} B_{kT/n})^2\right)$.
- 4. En déduire que $\sum_{k=0}^{n-1} (B_{(k+1)T/n} B_{kT/n})^2$ converge dans $\mathbb{L}^2(\Omega)$, vers T.
- 5. Calculer la limite dans $\mathbb{L}2(\Omega)$ de $\sum_{k=0}^{n-1} B_{kT/n}(B_{(k+1)T/n} B_{kT/n})$ à l'aide des questions précédentes. Indication : on pourra utiliser l'identité $ab = -\frac{1}{2}(b-a)^2 + \frac{1}{2}(a^2 + b^2)$.
- 6. Calculer la valeur de $\int_0^T B_s dB_s$ et vérifier que c'est bien une martingale.
- 7. En vous inspirant des questions précédentes, calculer la limite dans $\mathbb{L}^2(\Omega)$ de $\sum_{k=0}^{n-1} B_{(k+1)T/n}(B_{(k+1)T/n} B_{kT/n})$.
- 8. En vous inspirant des questions précédentes, calculer la limite dans $\mathbb{L}^2(\Omega)$ de $\sum_{k=0}^{n-1} \frac{B_{(k+1)T/n} + B_{kT/n}}{2} (B_{(k+1)T/n} B_{kT/n})$. Que pouvez-vous dire de la méthode des rectangles à droite?

Exercice 3. Soit B un mouvement brownien. Donner la décomposition d'Itô des processus suivants

- 1. $X_t = X_0 e^{(r-\sigma^2/2)t+\sigma B_t}$ pour r > 0 et $\sigma \in \mathbb{R}$.
- 2. $X_t = X_0 e^{-at} + \int_0^t e^{-a(t-s)} dB_s \text{ pour } a \in \mathbb{R}.$
- 3. $X_t = \frac{B_t}{1+t}$.

Exercice 4. Soit $(\Omega, \mathbb{F} = (\mathcal{F})_{t \leq T}, \mathbb{P})$ un espace de probabilité filtré sur lequel est défini un mouvement brownien B sur l'intervalle de temps [0, T]. On suppose \mathbb{F} est la filtration naturelle complétée de B. On se place dans le modèle de Black Scholes avec un actif risqué

$$S_t = S_0 e^{(\mu - \sigma^2/2)t + \sigma B_t}$$

où $\mu > 0$ et $\sigma > 0$. Ce marché contient également un actif sans risque $S_t^0 = \mathrm{e}^{rt}$ où r désigne le taux d'intérêt instantané.

On souhaite calculer le prix d'une option digitale de maturité T et de payoff $h = \mathbf{1}_{\{S_T \geq L\}}$ où L > 0.

- 1. Soit s < t, justifier que les variables aléatoires $\frac{S_t}{S_s}$ et $\frac{S_s}{S_0}$ sont indépendantes.
- 2. Montrer qu'il existe une probabilité \mathbb{P}^* , équivalente à \mathbb{P} , sous laquelle le processus $(e^{-rt} S_t)_{t \leq T}$ est une martingale.
- 3. Supposons qu'il existe une stratégie admissible $((H_t^0, H_t)_{t \leq T})$ permettant de couvrir l'option; H_t^0 (resp. H_t) désigne la quantité d'actifs sans risque (resp. risqués) détenue en portefeuille à la date t. Montrer le processus $(e^{-rt} V_t)_{t \leq T}$ est une martingale sous \mathbb{P}^* où V_t désigne la valeur de la stratégie à l'instant t.
- 4. En déduire que $V_t = \mathbb{E}^*[e^{-r(T-t)} \mathbf{1}_{\{S_T \geq L\}} | \mathcal{F}_t].$
- 5. Donner l'expression de V_0 en utilisant la fonction de répartition de la loi normale centrée et réduite.