Revision 1

Lab 4 Report: ALU and CPU

Dupuis, Connor Class #: 12478 Kevin Lovell Month Day, Year

PRE-LAB QUESTIONS OR EXERCISES

Part 1 Questions:

Page 1/11

- 1. If you were to make a complete (un-abbreviated) truth table for your ALU, how many rows would it need? (The answer should tell you why I did not want a simulation including ALL input combinations.)
 - a. It Would take 2048 rows because there are 11 inputs.
- 2. What changes would be necessary to the design already made if you wanted to add two more functions, F=A NOR B and F=A XOR B, where XOR is exclusive or?
 - a. You would need 6 input Mux's instead of the 4 input ones we are using to accommodate the added inputs.

Part 2 Questions:

- 1. Draw the single simple device that can be added to your circuit design to "remember" the last carry output. Specify the inputs and outputs for this device.
 - a.
- 2. Will a divide by two work for all 4-bit 2's complement numbers? Explain.
 - a. No, if you try to divide 7, you ill get 3.
- 3. Describe how you can take the 2's complement of a number, i.e., if A is loaded with a number, get the 2's complement of A into B.
 - a. You can complement and add 0001 to that number.
- 4. Describe how you subtract with your CPU. Hint: See above question.
 - . Take the 2's complement and add that to the number you re trying to subtract from.
- 5. Suppose you're not allowed to use a flip-flop that has an asynchronous CLR or SET, how can you add a function that clears the contents of either A or B?
 - a. Set all values of the inputs to 0, this will set REGA and REGB to all zeroes.

PROBLEMS ENCOUNTERED

N/A

REQUIREMENTS NOT MET

N/A

FUTURE WORK/APPLICATIONS

In this lab we learned how to make a simple CPU, which on itself can be applied ad used for various functions. By learning using this basic design we can build on it and if we wanted, add even ore functions, applications and abilities. CPUs are staples in almost every electronic device, and it is valuable to understand how one works and operates.

EEL 3701 — Digital Logic & Computer Systems Revision 1

Lab 4 Report: ALU and CPU

Dupuis, Connor Class #: 12478 Kevin Lovell Month Day, Year

PRE-LAB REQUIREMENTS (Design, Schematic, ASM Chart, VHDL, etc.)

Part 1:

EEL 3701 — Digital Logic & Computer Systems

Revision 1

Lab 4 Report: ALU and CPU

Dupuis, Connor Class #: 12478 Kevin Lovell Month Day, Year

Part 2:

Page 3/11

EEL 3701 — Digital Logic & Computer Systems Revision 1

Lab 4 Report: ALU and CPU

Dupuis, Connor Class #: 12478 Kevin Lovell Month Day, Year

Page 4/11

EEL 3701 — Digital Logic & Computer Systems Revision 1

Lab 4 Report: ALU and CPU

Dupuis, Connor Class #: 12478 Kevin Lovell Month Day, Year

Individual Pictures Below:

Page 5/11

EEL 3701 — Digital Logic & Computer Systems Revision 1

Lab 4 Report: ALU and CPU

Dupuis, Connor Class #: 12478 Kevin Lovell Month Day, Year

EEL 3701 — Digital Logic & Computer Systems Revision 1

Lab 4 Report: ALU and CPU

Dupuis, Connor Class #: 12478 Kevin Lovell

Page 7/11

Page 8/11

Department of Electrical & Computer Engineering

Lab 4 Report: ALU and CPU

Class #: 12478 Kevin Lovell Month Day, Year

Dupuis, Connor

Table 4: Sample table for Pre-lab Requirement 4.

	MSA	MSB	MSC	Input	Cin	RegA	RegB	Output	RegA+	RegB+	Output+	Cout+	Description
a.	00	10	000	1000	0	?	;	1	0001	?	0001	0	Loads REGA with OOOl
	OI	11	010	0001	0	0001		1110	0001	1110	1110	0	Stores the Complement of A into B
b	00	10	000	0110	٥	?	?	7	0110	1	0110	0	LOODS REGA WITH ONG
	01	00	001	1001		0110	-	0000	0110	1001	1001	0	Loads REGB with 1001
	-11	10	OII	1001	0	0110		0000	0000	1001	0000	0	ANDS AB and Stores it in A
c. d. e.	00	10	000	0110	0	1	?	?	0110	3	0110	0	LOODS REGA WITH ONG
	01	00	100	1001	0	0110	3	0000	0110	1001	1001	0	Loads REGB with 1001
	01	11	100	1001	0	0110	1001	1111	ONO	1111	1111	0	ORS AB and Stores it in B
	00	00	000	1000	0	ા	?	7.	0001	1000	0001	0	Locals REGA and REGB with 6001
	11	10	101	Cod	0		1000	0010	0010	CCC	COIL	0	Sums A+B and Stores :+ M A
	00	10	CCO	1101	0	?	?	?	1161	?	1101	0	Loads REGA with 1101
	01	11	110	1101	0	1101	?	1010	1101	1010	1010	0	Shifts A Left and Stores it in B
۶.	00	9	000	1100	0	?	7	?	CON	•	CON	0	Load REGA with DOIL (3)
	01	00	001	OIII	0	0011	?	0000	0011	0111	OIII	0	Load REGB with OIII (7)
	11	10	101	OIII	0	OOII	0111	1010	1010	OIL	CCCI		Sum A+B and Store :> in A
	01	00	100	0100	0	1010	OIII	0111	1010	0000	0100	l	Load REGB with 0100(4)
	11	10	100	0000	0	1010	0100	1110	IIIO	0000	1110		Stores AGR B in A
	11	10	111	GIO	Ö	MO	GWO	0111	1110	GIOO	6011	0	Shifts A risk and Stores it in A
	11	10	111	Oloc	0	GIII	0106	OGII	COII	0100	1000	0	Shifts A right and Stores it in A
	11	0	010	CICO	0	COII	0100	1100	1160	000	COV	1	Complements A and Stocs It in A
	01	00	001	GOU	0	1100	6100	0100	1160	0311	GOII	l	Loads REGB with COII (3)
	11	0	011	0011	0	1100	COII	0000	0000	0011	0000	0	ANDS AB and Stores + in A
	11	10	110	OOII	0	0000	0011	0000	0000	GGII	0000	0	Shifts A list and Stored it in A

Simple Functions:

A.

EEL 3701 — Digital Logic & Computer Systems Revision 1

Lab 4 Report: ALU and CPU

Dupuis, Connor Class #: 12478 Kevin Lovell Month Day, Year

B.

Page 9/11

C.

EEL 3701 — Digital Logic & Computer Systems Revision 1

Lab 4 Report: ALU and CPU

Dupuis, Connor Class #: 12478 Kevin Lovell Month Day, Year

D.

Page 10/11

E.

EEL 3701 — Digital Logic & Computer Systems Revision 1

Lab 4 Report: ALU and CPU

Dupuis, Connor Class #: 12478 Kevin Lovell Month Day, Year

F.

