"LEARNING ASSURANCE" FOR EMBEDDED SAFETY-CRITICAL APPLICATIONS

DSTI – [DS] PROJECT PROGRESS STATUS REPORT – MAR 2021

PROJECT OBJECTIVES

- **Project Objective** To "mimic" the design, development and verification phases of a safety-critical embedded machine learning software based on the preliminary guidance material issued by EASA.
- "Mission requirements" To detect a "runway" (presence and coordinates), define its centre line and align the vehicle on the runway axis.
- Based on the above, 3 main sub-objectives can be defined:
 - Develop the ML model(s) for the runway detection (presence and coordinates)
 - Transfer the model onto an inference platform (taking into account specific hardware and software constraints)
 - Demonstrate compliance to "learning assurance" requirements

PROJECT DETAILED SCOPE

In-scope

- Software development
- Design assurance for Machine Learning Software
- Machine Learning for runway presence prediction and location information
- Non-adaptative deterministic system

Out-of-scope

- Hardware development
- Design assurance for "Classical" Software
- Machine Learning for end-to-end guidance
- Adaptative non-deterministic system
- Security concerns
- Tools and development environment (hardware and software) qualification

HIGH LEVEL ARCHITECTURE

- Actions completed in December 2020-January 2021
 - Project scope and detailed outline finalised (see previous slides and <u>link</u>).
 - COTS Robot (Waveshare Jetbot) selected and preliminary testing performed.
 - "Learning Assurance" requirements identified (see <u>link</u>).
 - High-level architecture defined (see previous slide).
- Actions completed in February 2021
 - Data collection started
 - Annotation tool (LabelMe) selected and tested on dummy data
 - Dummy test dataset generated (COCO Dataset format)

- Actions completed in March 2021 (1/2)
 - Data collection criteria selected to (try to) ensure completeness of the dataset:
 - Runway Marking Light or Dark
 - Flooring Colour Light or Dark
 - Ambient Lighting Light or Dark
 - Background Minimalist or Clustered
 - Runway side wrt to Jetbot RHS or LHS
 - Jetbot location wrt to Runway On a grid pattern from 0 to 1200 mm (every 300 mm) laterally and longitudinally, i.e. 25 points
 - Jetbot axis angle wrt to Runway axis -0° , 45° or 90° for each point on the grid pattern

- Actions completed in March 2021 (2/2)
 - Data collection interface developed and tested successfully
 - The interface aims at guiding the operator when collecting the data (see screenshot)
 - Output .zip file containing
 - Pictures
 - .csv file capturing picture collection parameters (see list on previous slide) for traceability and completeness analysis
 - See Jupyter Notebook + Dummy dataset generated for test purposes in GitHub (https://github.com/AdelineVieusse/learning-assurance-project/tree/main/data-collection)

- Upcoming steps (April 2021)
 - Data collection finalisation:
 - Final COCO dataset format (annotations = "runway" corners coordinates + flag = runway presence/absence) still to be defined
 - Pictures to be taken and annotation to be completed
 - Preliminary model definition:
 - Key elements of the training algorithm selection
 - Verification metrics definition

REFERENCES

- "Artificial Intelligence Roadmap A human-centric approach to Ai in Aviation", EASA Report (link)
- "Concepts of Design Assurance for Neural Networks (CoDANN)", EASA Al Task Force and Daedalean AG (<u>link</u>)