Ejercicios del capítulo 3 de la guía INGECO.

Elaborado Por

Esthefania Rivera Jimenez
20172020040
Oscar Javier Garzón Fonseca
20172020127

Universidad Distrital Francisco José de Caldas

14 de octubre de 2020

- 1. Se constituye un CDT a 180 días por \$650 000, con una tasa del 26% natv (nominal anual trimestre vencido) y teniendo en cuenta que la retención en la fuente es del 7%EA (efectivo anual) determinar:
 - a. La tasa de interés (rentabilidad) antes de impuestos.

b. La tasa de interés (rentabilidad) después de impuestos.

1. Fecha Focal		
ff = 2 ptv		
2. Declaración de Variables		
P = \$650.000	m = 4 ptv $i = ?% ptv$	
j = 26% natv	i = ?% ptv	
n = 2 ptv	RF = 7% EA · I Retención en la fuente	
3. Diagrama de Flujo de Caja		

c. El valor en pesos que le entregan al vencimiento.

d. Suponiendo una inflación del 18% anual efectiva, determinar la tasa real obtenida.

$$i_1 = \frac{j}{m}$$
 Tasa periódica vencida
$$(1+i_1)^m = (1+i_e)$$
 Equivalencia de tasas
$$F = P(1+i)^n$$
 Valor futuro
$$i_R = \frac{(0,26524-0,18)}{(1+0,18)}$$

$$i_R = \frac{(0,26524-0,18)}{($$

2. Un inversionista desea obtener una rentabilidad real del 8% EA (anual efectiva) ¿A qué tasa periódica debe invertir suponiendo que la inflación va a ser del 18% EA?

3. Un artículo es fabricado en Estados Unidos y se vende en Colombia en \$50.000 ¿Cuánto valdrá el artículo en Colombia y en Estados Unidos al final de un año, suponiendo los siguientes índices económicos: cambio actual US\$1 = \$2.000, inflación en Estados Unidos 3% EA, devaluación del peso 18% EA?

1. Fecha Focal
ff = 1 pav
2. Declaración de Variables

4. Un artículo es fabricado en Colombia y cuesta \$68.000, cuando el cambio es de US\$1 = \$2.000. Suponiendo que el IPP de este sector en Colombia es del 22% EA, y que la devaluación del peso frente al dólar sea del 18%EA, hallar el precio del mismo artículo en cada país al final de un año.

1. Fecha Focal		
ff = 1 pav		
2. Declaración de Variables		
$P_c = 68.000	$F_c = $?	
$P_{EU} = \text{US } \$?$	$egin{aligned} F_c &= \$? \ F_{EU} &= \mathrm{US} \ \$? \end{aligned}$	
US $$1 = 2.000		
IPP = 3% EA	i _{e dev} = 18% EA	
n = 1 pav		
3. Diagrama de Flujo de Caja		

- **5.** Dos inversionistas de origen alemán, uno residente en Alemania y el otro residente en Colombia, han decidido realizar un negocio en Alemania y cada uno aportará el 50%. El negocio exige una inversión inicial de marcos DM\$300 000 y al final de 3 años devolverá la suma de marcos DM\$400 000. Hallar las tasas totales y reales para cada uno de los socios suponiendo que los siguientes indicadores económicos se mantuvieron estables durante los 3 años.
 - a. tasa promedio de inflación en Colombia 22% EA
 - b. tasa promedio de inflación en Alemania 2% EA
 - c. tasa de devaluación del peso frente al dólar: primer año 18% EA, segundo año 20% EA y tercer año 17% EA, devaluación marco frente al dólar: años 1 y 2 el 2% EA, para el tercer año hay una revaluación del 3% EA
 - d. cambio actual US\$ = DM\$2,23 US\$ = \$1 300

Para la situación del alemán en Alemania:

1. Fecha Focal

Tasas de devaluacion:

1. Fecha Focal ff = 3 pav 2. Declaración de Variables

Para la situación del alemán en Colombia:

2. Fecha Focal		
ff = 3 pav		
2. Declaración de Variables		
$P_T = DM \$300.000$	$F_T = DM 400.000 $F_C = DM 200.000	
$P_A = DM \$150.000$	$F_C = DM \$200.000$	
En el primer pav (1 pav): $i_{e dev} = 2\% EA$	$i_{fc} = 22\% EA$	

- **6.** El señor Yukimoto residente en el Japón y Mr.Jones residente en Estados Unidos se asocian para comprar un banco en Colombia. El valor de cada acción del banco es de \$9.000 pesos/acción y esperan venderla al final de 3 meses en \$9.700 pesos/
 - a. Calcule la tasa de interés anual efectiva y la rentabilidad real (tasa de interés real) anual de cada uno de los socios

b. ¿Cuánto tendrá cada uno en su respectiva moneda al final de los 3 meses?. Tome en cuenta la siguiente información:

Inflación en: Colombia 18% EA, en Estados Unidos 3.5% EA, en Japón 2.3%EA tasa de devaluación del peso frente al dólar 22% EA tasa de acción. (Trabajar con 5 decimales).devaluación del dólar frente al Yen 1% EA Cambio actual US\$1 = \$2.000; US\$1 = Yen105

Para Mr. Jones:

$$F_{EU} = \frac{\$4.850}{\$2.101,94} = US \$2,307$$

$$i_{REU} = \frac{(0,106 - 0,035)}{(1 + 0,035)}$$

$$i_{REU} = 0,0686 EA$$

$$i_{REU} = 6,86\% EA$$

$$(1,025)^{\frac{1}{3}} = 1 + i$$

$$i = 1,008 - 1$$

$$i = 0,008 EA$$

$$6. Respuesta$$

$$i_{eEU} = 10,6\% EA$$

$$i_{REU} = 6,86\% EA$$

Para el señor Yukimoto:

$$P_{J} = US \$2,25 * (Yen \$105) = Yen \$236,25$$

$$P_{EU} = 105(1 - 0,01)^{\frac{3}{12}} = Yen \$104,736$$

$$F_{J} = US \$2,307 * (Yen \$104,736) = Yen \$241,626$$

$$Yen \$241,626 = Yen \$236,25(1 + i)^{3}$$

$$Yen \$241,626$$

$$Yen \$236,25$$

$$(Yen 1,0228)^{\frac{1}{3}} = 1 + i$$

$$i = 1,00754 - 1$$

$$i = 0,00754 EA$$

$$(I + 0,00754)^{12} = (1 + i_{eJ})$$

$$i_{eJ} = 9,49\% EA$$

$$i_{RJ} = \frac{(0,0949 - 0,023)}{(1 + 0,0223)}$$

$$i_{RJ} = 0,0703 EA$$

$$i_{RJ} = 7,03\% EA$$

$$(Yen 1,0228)^{\frac{1}{3}} = 1 + i$$

$$i = 1,00754 - 1$$

$$i = 0,00754 EA$$

$$6. Respuesta$$

$$i_{eJ} = 9,49\% EA$$

$$i_{RJ} = 7,03\% EA$$

7. Si en el problema anterior el valor del banco es de ochenta mil millones de pesos y Yukimoto participa en el 40% de la compra y Mr. Jones participa con el resto, determinar la cantidad que recibirá c/u en su respectiva moneda.

$$\frac{\$4.800}{\$4.500} = (1 + i_e)^{\frac{3}{12}}$$

$$\left(\frac{\$4.800}{\$4.500}\right)^{\frac{12}{3}} = 1 + i_e$$

$$i_e = \left(\frac{\$4.800}{\$4.500}\right)^{\frac{12}{3}} - 1$$

$$i_e = 0.34932 EA$$

$$i_e = 34.932\% EA$$
Valor final de la participación del señor Yuguin

Valor final de la participación del señor Yuquimoto en COLS:

$$F_J = $32.000.000(1 + 0.34932)^{\frac{3}{12}}$$

 $F_J = $34.488.850.34$

Valor final de la participación del señor Yuquimoto en US\$ en 3/12 pav usando la tasa de cambio calculada del problema anterior:

$$F_{J} = \$34.488.850,34 \left(\frac{US \$1}{\$2.101,94} \right)$$

 $F_{J} = US \$16.408,104$

$$F_{J} = US \$16.408,104 \left(\frac{Yen \$104,736}{US \$1}\right)$$
 $F_{J} = Yen \$1.718.519,191$

Valor final de la participación de Mr. Jones en COLS:

$$F_J = $48.000.000(1 + 0.34932)^{\frac{3}{12}}$$

 $F_J = $51.733.275,51$

Valor final de la participación de Mr. Jones en US\$ en 3/12 pav usando la tasa de cambio calculada del problema anterior:

$$F_J = \$51.733.275,51 \left(\frac{US \$1}{\$2.101,94} \right)$$

 $F_J = US \$24.612,15$

6. Respuesta

Mr. Yuquimoto en 3 meses: F_I = Yen\$1.718.519,191

Mr. Jones en 3 meses: $F_I = US$24.612,15$

8. En el país A cuya moneda es el ABC, un par de zapatos vale 24.000 de ABC, existe una inflación del 22%EA y el cambio actual es de US\$1 = ABC 1.000. En el país X rige el dólar americano y se prevé una inflación promedio del 6.5% EA. Al final de un año ¿cuál debe ser la tasa de devaluación en A con respecto al dólar a fin de no perder competitividad en los mercados de X?

$$P_{X} = \left(\frac{ASC \$24.000}{ASC \$1000}\right) = US \$24$$

$$F_{A} = ASC \$24.000(1 + 0.22) = ASC \$29.280$$

$$F_{X} = US \$24(1 + 0.065) = US \$25.56$$

$$TC = \left(\frac{ASC \$29.280}{US \$25.56}\right) = ASC \$1.145.539$$

$$ASC \$1.145.539 = ASC \$1000(1 + i_{e dev A})$$

$$ASC \$1.000 = (1 + i_{e dev A})$$

$$i_{e dev A} = \left(\frac{ASC \$1.145.539}{ASC \$1000}\right) - 1$$

$$i_{e dev A} = 0.1455 = 14.55\% EA$$

$$X \text{ debe ser de } 14.55\% EA$$

9. Un inversionista desea que todas sus inversiones le den una rentabilidad real del 5% EA. ¿Qué tasa anual efectiva debe ofrecerse si la inflación esperada es del 17%EA de forma tal que satisfagan los deseos del inversionista?

1. Fecha Focal
$$ff = 0$$
2. Declaración de Variables $P_1 = \$300.000$ $P_2 = \$200.000$ $F_1 = \$?$ $F_3 = \$?$ $F_2 = \$?$ $F_4 = \$?$ 1 UPAC = \$6.650 $i_{e2} = 25\%EA$ 3. Diagrama de Flujo de Caja

- **10.**Un ahorrador consigna en una corporación de ahorro y vivienda la suma de \$300.000 el día 1 de marzo y el día 20 de junio consigna \$200.000. ¿Cuánto podrá retirar el 31 de agosto si la corporación paga el 27% EA (anual efectivo) de corrección monetaria para los meses de marzo y abril y el 25% EA para el resto del período (mayo, junio, julio y agosto).
 - a. Elabore los cálculos en pesos
 - b. Elabore los cálculos en UPAC sabiendo que el primero de marzo UPAC 1 = \$6.650

1. Fecha Focal				
ff = 0				
2. Do	2. Declaración de Variables			
$P_1 = \$300.000$	$P_2 = 200.000			
$F_1 = \$?$ $F_2 = \$?$	$F_3 = $ \$?			
$F_2 = $?	$F_4 = $?			
1 UPAC = \$6.650				
$i_{e1} = 27\% EA$	$i_{e2} = 25\%EA$			
3. Diag	grama de Flujo de Caja			

- **11.** Se estima que la corrección monetaria del primer año será del 18% EA y la del segundo año del 17% EA:
 - a. Calcular la cantidad que antes de impuestos le entregarán a un inversionista que invierte la suma de \$800.000 a dos años en una cuenta de ahorros en UPAC que le garantiza pagar la corrección monetaria más el 4% EA de interés sobre los UPAC.

1. Fecha Focal

$$ff = 2$$
 pav

 2. Declaración de Variables

 $P_1 = \$800.000$
 $F_2 = \$$?

 $i_2 = 4\$ EA$
 $i_2 = 2$ pav

 $CM_2 = 17\% EA$
 $CM_2 = 17\% EA$
 $i_2 = 2\% EA$
 $i_2 = 2\% EA$
 $i_2 = 2\% EA$
 $i_3 = 2\% EA$
 $i_4 = 2\% EA$
 $i_5 = 2\% EA$
 $i_6 = 2\% EA$

b. Calcule la rentabilidad (tasa de interés EA) obtenida antes de impuestos que el cambio actual es UPAC 1 = \$14.000

- c. Si la retención en la fuente es del 7% (anual efectiva) sobre los intereses, calcular la rentabilidad (tasa de interés EA) después de los impuestos
- d. Calcular la cantidad final que le entregarán después de impuestos

1. Fecha Focal			
ff = 2 pav			
2. Declaración de	2. Declaración de Variables		
$P_1 = \$800.000$	$F_2 = $?		
$i_2 = 4\$ EA$	n=2pav		
	$CM_2 = 17\% EA$		
$F_1 = $?	$i_{e1} = ?\% EA$		
n=1pav			
$CM_1 = 18\% EA$	$i_e = ?\% EA$		
$i_{e1} = ?\% EA$	I = \$?		
	RF=7% EA*I		
Tasa de conversión actual: 1 UPAC = \$1.400	$F_2 = \$1.194.605,568$		
3. Diagrama de Flujo de Caja			

6. Respuesta

c) $i_e = 20,77\%~EA$ d) $F_{2\,neto} = \$1.166.983,178$

12. Hallar la tasa anual efectiva de:

a. DTF +6 puntos

Asuma que: DTF = 15% nata, IPC = 10% nata, Libor = 5,14% nasv (nominal semestre vencido)

1 F-1- F1			
1. Fecha Focal			
	ff = 2	-	
	2. Declaración de	Variables	
DTF = 15% nata	DTF = 15% nata $Libor = 5,14%$ nasv		
IPC = 10% nata			
	3. Diagrama de Flu	jo de Caja	
	No es	s necesario	
	1100		
	4. Declaración de	Fórmulas	
j = i * m	Tasa periódica vencida	$i = \frac{i_a}{(i - i_a)}$	Tasa periódica vencida
$i = i_1 + i_2 + (i_1)(i_2)$	Tasa combinada		-
(_, (_,		$(1+i_1)^{m_1} = (1+i_e)^{m_2}$	Equivalencia de tasas
	5. Desarrollo Matemático		
$DTF = 15\% \ nata + 6\% = 21\% \ nata$ $i_e = (1 + 0.0554)^4$			
		$i_e = 0.2407 \ EA$	
$i = \frac{0.0525}{(1 - 0.525)} = 0.0554 \ ptv = 5.54\% \ ptv$			
(1-0.525)			
6. Respuesta			

b. IPC +7 puntos

Asuma que: DTF = 15% nata, IPC = 10% nata, Libor = 5,14% nasv (nominal semestre vencido)

 $i_e = 24,07\% \; EA$

$i = i_1 + i_2 + (i_1)(i_2)$	Tasa combinada	$(1+i_1)^{m_1} = (1+i_e)^{m_2}$	Equivalencia de tasas
5. Desarrollo Matemático			
$i_2 = 7\% \ pta$		$i_e = (0.10 + 0.07) + (0.10)$ $i_e = 17.70\% EA$	$(0,07) = 0,1770 \; EA$
6. Respuesta			
$i_e = 17,70\% EA$			

c. Libor +8 puntos Asuma que: DTF = 15% nata, IPC = 10% nata, Libor = 5,14% nasv (nominal semestre vencido)

1. Fecha Focal				
ff = 2	ff = 2 pav			
2. Declaración de '	Variables			
	$Libor = 5,14\% \ nasv$			
IPC = 10% nata				
3. Diagrama de Fluj	o de Caja			
No es	necesario			
4. Declaración de 1	Fórmulas			
j = i * m Tasa periódica vencida	$i = \frac{i_a}{(i - i_a)}$	Tasa periódica vencida		
$i = i_1 + i_2 + (i_1)(i_2)$ Tasa combinada	$(1+i_1)^{m_1} = (1+i_e)^{m_2}$	Equivalencia de tasas		
5. Desarrollo Mat		Equivalencia de tasas		
3. Desait one Matematice				
$Libor = 5,14\% \ nasv + 8\% = 13,14\% \ nasv$ $i_e = (1 + 0,0657)^3 - 1$				
0,1314	$i_e = 0.1357 EA$			
$i = \frac{0,1314}{2} = 0,0657 \ psv = 6,57\% \ psv$ $i_e = 0,1357 \ EA$ $i_e = 13,57\% \ EA$				
6. Respuesta				
$i_e = 13,57\% EA$				

13.Suponiendo IPC = 8,5% EA, CM= 12% (CM= corrección monetaria), DTF = 15% nata, TCC = 15,5% nata, TBS (CF 180 días) = 19,27% A.E., TBS (Bancos 360 días) = 19,19% EA Hallar X de las siguientes igualdades:

Observación: TBS (CF 180 días) significa tasa básica del sector corporaciones financieras a 180 días.

a.
$$IPC + 10 = CM + X$$

1. Fecha Focal
$$ff = 0$$

2. Declaración de Variables

IPC = 8.5% EA

CM = 15% EADTF = 15% nata TCC = 15.8% nata

 $TBS(CF\ 180\ dias) = 19,27\%\ EA$

 $TBS(Bancos\ 360\ dias) = 19,19\%\ EA$

3. Diagrama de Flujo de Caja

i = Tasa periódica vencida.

ia = Tasa periódica anticipada.

j = Tasa nominal anual vencida.

ja = Tasa nominal anual anticipada.

m₁ = Período de la tasa i₁

m2 = Período de la tasa i2

4. Declaración de Fórmulas

$$i = i_1 + i_2 + (i_1)(i_2) (1 + i_1)^{m_1} = (1 + i_e)^{m_2}$$

 $i_{a2} = \frac{i_2}{(i-i_2)}$

Tasa combinada Equivalencia de tasas

Tasa periódica anticipada.

 $j_{a2} = i_{a2} * m_2$ $i_{a1} = \frac{j_{a1}}{}$

Tasa nominal anual anticipada

Tasa periódica anticipada Tasa periódica vencida

5. Desarrollo Matemático

$$0.085 + 0.1 + (0.085)(0.1) = 0.12 + X + (0.12)(X)$$
 $X = 0.065625$ EA

0,1935 - 0,12 = X(1 + 0,12)

0,0735

=X1.12

X = 6,5625% EA

6. Respuesta

X = 6,5625% EA

b. CM + 14 = TCC + X

Fecha Focal

2. Declaración de Variables

IPC = 8,5% EA

CM = 15% EA

DTF = 15% nata

TCC = 15.8% nata

 $TBS(CF\ 180\ dias) = 19,27\%\ EA$

 $TBS(Bancos\ 360\ dias) = 19,19\%\ EA$

3. Diagrama de Flujo de Caja

i = Tasa periódica vencida.

ia = Tasa periódica anticipada.

j = Tasa nominal anual vencida.

ja = Tasa nominal anual anticipada.

m₁ = Período de la tasa i₁

m₂ = Período de la tasa i₂

4. Declaración de Fórmulas

$$i = i_1 + i_2 + (i_1)(i_2)$$

$$(1 + i_1)^{m_1} = (1 + i_e)^{m_2}$$

$$i_{a2} = \frac{i_2}{(i - i_2)}$$

Tasa combinada Equivalencia de tasas

Tasa periódica anticipada.

$$\begin{aligned}
 j_{a2} &= i_{a2} * m_2 \\
 i_{a1} &= \frac{j_{a1}}{m_1}
 \end{aligned}$$

Tasa nominal anual anticipada
Tasa periódica anticipada
Tasa periódica vencida

5. Desarrollo Matemático

Usando tasas combinadas:

CM + 14 = 0.12 + 0.14 + (0.12)(0.14)

CM + 14 = 0,2768 EA

CM + 14 = 27,68% EA

Conversión de EA a nata $(1 + 0.2768)^1 = (1 + i_2)^4$

 $i_2 = (1 + 0.2768)^{\frac{1}{4}} - 1$

 $i_2 = 0.06299 \ ptv$

 $i_2 = 6,299\% ptv$

0.06000

 $i_{a2} = \frac{6,00299}{(1+0,06299)}$

 $i_{a2} = 0,05925 pta$ $i_{a2} = 5,925% pta$ $j_{a2} = 0.05925 * 4 ptv$

 $j_{a2} = 0,23702 \text{ nata}$ $j_{a2} = 23,702\% \text{ nata}$

Volviendo a la ecuación de valor:

0.23702 = 0.155 + X + (0.155)(X)

0,23702 - 0,155 = X(1 + 0,155)

 $X = \frac{(0,23702 - 0,155)}{(1 + 0,155)}$

 $X = 0.07101 \, nata$

X = 0,07101 nata X = 7,101% nata

6. Respuesta

X = 7,101% nata

c. DTF + 8.6 = IPC + X

1. Fecha Focal

ff = 0

2. Declaración de Variables

IPC = 8.5% EA

CM = 15% EA

DTF = 15% nata

TCC = 15,8% nata

 $TBS(CF\ 180\ dias) = 19,27\%\ EA$

 $TBS(Bancos\ 360\ dias) = 19,19\%\ EA$

3. Diagrama de Flujo de Caja

- i = Tasa periódica vencida.
- ia = Tasa periódica anticipada.
- j = Tasa nominal anual vencida
- ja = Tasa nominal anual anticipada.
- m1 = Período de la tasa i1
- m2 = Período de la tasa i2

4. Declaración de Fórmulas

 $\overline{i} = i_1 + i_2 + (i_1)(i_2)$ $(1+i_1)^{m_1} = (1+i_e)^{m_2}$ $i_{a2} = \frac{i_2}{(i-i_2)}$

Tasa combinada Equivalencia de tasas Tasa periódica anticipada.

 $j_{a2} = i_{a2} * m_2$

Tasa nominal anual anticipada Tasa periódica anticipada Tasa periódica vencida

5. Desarrollo Matemático

Usando tasas combinadas:

DTF + 8.6 = 0.15 + 0.086 + (0.15)(0.086)

DTF + 8,6 = 0,2489 nata

DTF + 8.6 = 24.89% nata

Conversión de nata a EA

 $i_{a1} = \frac{0,2489}{4 ptv}$

 $i_{a1} = 0.06225 \, pta$

 $i_{a1} = 6,225\% \ pta$

 $\frac{0,06225}{(1-0,06225)}$

 $i_1 = 0,06638 \ pta$

 $i_1 = 6,638\% \ pta$

 $(1+0.6638)^4 = (1+i_{\rho})^1$

 $i_e = (1 + 0.06638)^4 - 1$

 $i_e = 0,2930 EA$ $i_e = 29,30\% EA$

Volviendo a la ecuación de valor:

0,2930 = 0,085 + X + (0,085)(X)

0,2930 - 0,085 = X(1 + 0,085)

 $X = \frac{(0.2930 - 0.085)}{}$

(1+0.085)

X = 0.1917 EA

X = 19,17% EA

6. Respuesta

X = 19.17% EA

d. TBS (CF 180 días) + 6 = DTF + x

Fecha Focal

ff = 0

2. Declaración de Variables

IPC = 8,5% EA

TCC = 15,8% nata

CM = 15% EA $TBS(CF\ 180\ dias) = 19,27\%\ EA$

3. Diagrama de Flujo de Caja

i = Tasa periódica vencida.

ia = Tasa periódica anticipada.

j = Tasa nominal anual vencida.

ja = Tasa nominal anual anticipada.

m1 = Período de la tasa i1.

m2 = Período de la tasa i2

4. Declaración de Fórmulas

$$i = i_1 + i_2 + (i_1)(i_2)$$

$$(1 + i_1)^{m_1} = (1 + i_e)^{m_2}$$

$$i_{a2} = \frac{i_2}{(i_1 + i_2)}$$

Tasa combinada Equivalencia de tasas

Tasa periódica anticipada.

 $j_{a2} = i_{a2} * m_2$

Tasa nominal anual anticipada Tasa periódica anticipada

Tasa periódica vencida

5. Desarrollo Matemático

Usando tasas combinadas:

 $TBS(CF\ 180\ dias) + 6 = 0.1927 + 0.06 + (0.1927)(0.06)$

 $TBS(CF\ 180\ dias) + 6 = 0,2642\ EA$

 $TBS(CF\ 180\ dias) + 6 = 26,42\%\ EA$

Conversión de EA a nata

 $(1+0.2642)^1 = (1+i_2)^4$

 $i_2 = (1 + 0.2642)^{\frac{1}{4}} - 1$ $i_2 = 0.06036 \, ptv$

 $i_2 = 6,036\% \ ptv$

 $\frac{0,06036}{(1+0,06036)}$

 $i_{a2} = 0,05692 pta$

 $i_{a2} = 5,692\% \ pta$

 $j_{a2} = 0.05692 * 4 ptv$

 $j_{a2} = 0,22768 \ nata$

 $j_{a2} = 22,768\%$ nata

Volviendo a la ecuación de valor:

0.22768 = 0.15 + X + (0.15)(X)

0.22768 - 0.15 = X(1 + 0.15)

(0,22768 - 0,15)

(1+0.15)

 $X = 0.0675 \, nata$

X = 6,75% nata

6. Respuesta

X = 6.75% nata

e. TCC + 3.5 = DTF + X

Fecha Focal

ff = 0

2. Declaración de Variables

IPC = 8,5% EACM = 15% EA

DTF = 15% nata

TCC = 15,8% nata TBS(CF 180 dias) = 19,27% EA TBS(Bancos 360 dias) = 19,19% EA

3. Diagrama de Flujo de Caja

i = Tasa periódica vencida.

ia = Tasa periódica anticipada.

j = Tasa nominal anual vencida.

ja = Tasa nominal anual anticipada.

m₁ = Período de la tasa i₁.

m2 = Período de la tasa i2

4. Declaración de Fórmulas

$$i = i_1 + i_2 + (i_1)(i_2)$$

$$(1 + i_1)^{m_1} = (1 + i_e)^{m_2}$$

$$i_{a2} = \frac{i_2}{(i - i_2)}$$

Tasa combinada Equivalencia de tasas Tasa periódica anticipada. $j_{a2} = i_{a2} * m_2$ $i_{a1} = \frac{j_{a1}}{m_1}$ $i_{a2} = \frac{i_{a2}}{m_2}$

X = 3.94% nata

Tasa nominal anual anticipada Tasa periódica anticipada Tasa periódica vencida

5. Desarrollo Matemático

Usando tasas combinadas:

TCC + 3.5 = 0.155 + 0.035 + (0.155)(0.035)

TCC + 3.5 = 0.19542 EA

TCC + 3.5 = 19.542% EA

Volviendo a la ecuación de valor: 0.19542 = 0.15 + X + (0.15)(X) 0.19542 - 0.15 = X(1 + 0.15) $X = \frac{(0.19542 - 0.15)}{(1 + 0.15)}$ X = 0.0394 nata

6. Respuesta

X = 3.94% nata

f. IPC + 4 = DTF + X

1. Fecha Focal ff = 0 2. Declaración de Variables IPC = 8,5% EA CM = 15% EA CM = 15% EA DTF = 15% nata TBS(Bancos 360 dias) = 19,27% EA TBS(Bancos 360 dias) = 19,19% EA

3. Diagrama de Flujo de Caja

- i = Tasa periódica vencida.
- ia = Tasa periódica anticipada.
- j = Tasa nominal anual vencida
- ja = Tasa nominal anual anticipada.
- m_1 = Período de la tasa i_1
- m2 = Período de la tasa i2

4. Declaración de Fórmulas

 $i = i_1 + i_2 + (i_1)(i_2)$ $(1 + i_1)^{m_1} = (1 + i_e)^{m_2}$ $i_{a2} = \frac{i_2}{(i - i_2)}$

Tasa combinada Equivalencia de tasas Tasa periódica anticipada. $j_{a2} = i_{a2} * m_2$ $i_{a1} = \frac{j_{a1}}{m_1}$

Tasa nominal anual anticipada Tasa periódica anticipada Tasa periódica vencida

5. Desarrollo Matemático

Usando tasas combinadas:

IPC + 4 = 0.085 + 0.04 + (0.085)(0.04)

IPC + 4 = 0,1284 EA

IPC + 4 = 12,84% EA

Conversión de EA a nata

 $(1+0.1284)^1 = (1+i_2)^4$

 $i_2 = (1 + 0.1284)^{\frac{1}{4}} - 1$

 $i_2 = 0.03066 \ ptv$

 $i_2 = 3,066\% \ ptv$

$$i_{a2} = \frac{0,3066}{(1+0,3066)}$$

 $i_{a2} = 0,02974 pta$ $i_{a2} = 2,974\% pta$ $j_{a2} = 0.02974 * 4 ptv$ $j_{a2} = 0.11896 nata$

 $j_{a2} = 11,896\% \ nata$

Volviendo a la ecuación de valor:

0.11896 = 0.15 + X + (0.15)(X)

0,11896 - 0,15 = X(1+0,15)

 $X = \frac{(0.11896 - 0.15)}{(1 + 0.15)}$

 $X = -0.0269 \ nata$

 $X = -2,69\% \ nata$

6. Respuesta

 $X = -2,69\% \ nata$

14. Asumiendo que i_{dev} = 25%, IPC = 9% EA, Prime Rate = 8,25% EA, DTF = 14,5% nata, Libor = 5% EA, resolver las siguientes ecuaciones: i_{dev} + 10 = IPC + X

1. Fecha Focal ff = 02. Declaración de Variables $i_{dev} = 25\% EA$ DTF = 14.5% nata IPC = 9% EALibor = 5% EA $Prime\ Rate = 8,25\%\ EA$ 3. Diagrama de Flujo de Caja No es necesario 4. Declaración de Fórmulas $i = i_1 + i_2 + (i_1)(i_2)$ Tasa periodica vencida j = i * mTasa combinada $(1+i_1)^{m_1}=(1+i_{\rho})^{m_2}$ Equivalencia de tasas 5. Desarrollo Matemático [0,25+0,10+(0,25)(0,10)] = [0,09+X+(0,09)(X)]0.375 = (0.09 + X(1.09))0,375 - 0,09X = 0.2615 EAX = 26,15% EA6. Respuesta X = 26,15% EA

 $i_{dev} + (Prime + 200 p.b.) = DTF + X$

$$j_{1} = \frac{4((1+0.25)^{\frac{1}{4}} - 1)}{(1+0.25)}$$

$$j_{1} = 0.2170 \text{ nata}$$

$$j_{1} = 21.70\% \text{ nata}$$

$$j_{2} = \frac{4((1+0.1025)^{\frac{1}{4}} - 1)}{(1+0.1025)}$$

$$j_{2} = 0.0963 \text{ pta}$$

$$j_{2} = 9.63\% \text{ pta}$$

$$j_{3} = 9.63\% \text{ pta}$$

$$j_{4} = 0.2170 + 0.0963 + (0.2170)(0.0963)] = [0.145 + X + (0.145)(X)]$$

$$0.3342 = (0.145 + X(1.145))$$

$$X = \frac{0.3342 - 0.145}{1.145}$$

$$X = \frac{0.1293}{1.145}$$

$$X = 0.1653 \text{ nata}$$

$$X = 16.53\% \text{ nata}$$

$$X = 16.53\% \text{ nata}$$

 $i_{dev} + (Libor + 500 \ p. b.) = DTF + X$

15.¿Cuál es la rentabilidad efectiva anual del comprador (tasa de interés EA) y el precio de compra para el que adquiere una aceptación financiera a 180 días si se conserva hasta su

maduración, se registra en bolsa a un precio de 86,225% y la comisión de compra es del 0,5% EA en rentabilidad?

16. ¿Cuál es la comisión en pesos para el problema anterior suponiendo que la aceptación financiera tiene un valor nominal de \$278.000?

1. Fecha Focal		
ff = 180 dias		
2. Declaración de Variables		
$P_C = \$?$ $i_C = ?\% EA$	$P_r = 86,225\% \equiv \$86,225$ F = \$100	
$i_C = ?\% EA$	F = \$100	
180	comc = 0.5% EA	
$n = \frac{1}{360} pav$		

17.¿Cuál es la rentabilidad efectiva anual que obtiene un inversionista que adquiere en el mercado secundario una aceptación bancaria emitida a 90 días con un precio de registro de 97,254% y le faltan 28 días para su maduración? Suponga una comisión de compra del 0,4% EA en rentabilidad. base 360.

1. Fecha Focal		
ff = 28 dias		
2. Declaración de Variables		
$i_C = ? \% EA$ $n = \frac{38}{360} pav$	$P_r = 97,254\% \equiv \$97,254$ F = \$100 comc = 0,4% EA	
3. Diagrama de Flujo de Caja		

- **18.** Un exportador recibe una aceptación bancaria por sus mercancías la cual vence en 180 días, tiene una tasa de emisión del 28% nasv (Nominal anual semestre vencido). El mismo día en que le entregan la aceptación la ofrece en bolsa. Si las comisiones de compra y de venta son de 0,4% EA y 0,6% EA respectivamente, calcular:
 - a. La tasa de registro

1. Fecha Focal		
ff = 0		
2. Declaración de	Variables	
$comision\ compra=0,4\%\ EA$		
$comision\ venta = 0,6\%\ EA$	j = 28% nasv	
3. Diagrama de Flu	jo de Caja	

b. La tasa del comprador

c. La tasa del vendedor

1. Fecha Focal
$$ff = 0$$

d. El precio de registro

$$P_R = 87,72\%$$

e. El precio de compra

- **19.**Un inversionista compró el 14 de junio 98 una Aceptación Bancaria al 29,4% EA con vencimiento el 15 de mayo/99 por \$250 millones, un segundo inversionista está dispuesto a adquirirlo el día 10 de septiembre/98 a una tasa del 34% EA.
 - a. ¿Cuál será la utilidad en pesos del primer inversionista?

	1. Fecha Focal
	ff = 331 dias
2. Declaración de Variables	
$i_1 = 29,4\% EA$ $n_1 = \frac{331}{360} pav$ $i_2 = 34\% EA$	$n_2 = \frac{245}{360} pav$ $n_3 = 331 dias - 245 dias = 86 dias$ $P_{c2} - P_{c1} = ?$
3. Diagrama de Flujo de Caja	

b. ¿Cuál es la rentabilidad del primer inversionista? (use un interés comercial es decir un año de 360 días).

$$\begin{vmatrix}
$204.851.021 \\
$197.252.565
\end{vmatrix} = (1+i)^{\frac{86}{360}} \\
i = \frac{$204.851.021^{\frac{360}{86}}}{$197.252.565} - 1 \\
i = 0,1714 EA = 17,14\% EA$$
6. Respuesta
$$17,14\% EA$$

20. Resuelva el problema anterior pero el segundo inversionista lo adquiere al 23,5% EA

$$Rentabilidad = 47.8\% EA$$

- **21.** Suponga que el señor X posee una aceptación financiera con valor de vencimiento de \$6'758.000 y desea venderla en Bolsa faltando 57 días para vencerse y quiere ganarse un 29,5% y la adquiere el señor Y. Suponga que la comisión de venta y de compra son 0,5% EA y 0,47% EA respectivamente en rentabilidad. Base 365.
 - a. ¿Cuál es la tasa de registro?

b. ¿Cuál es el precio de registro?

c. ¿Cuál la tasa que gana el señor Y?

d. ¿Cuál es el precio que paga el señor Y?

1. Fecha Focal	
ff = 57 dias	

e. ¿Cuál es la comisión de compra en pesos?

$$com_c = \$3.703$$

- **22.** El señor XX posee una aceptación bancaria por valor de \$10 millones y la vende en Bolsa faltando 87 días para su maduración, la adquiere el señor YY y el cual desea ganar el 32% después de comisión pero antes de impuestos. Si la comisión de compra es del 0,4% EA y la de venta el 0,375% EA usando un año de 360 días determinar:
 - a. La tasa de registro

b. El precio de registro

1. Fecha Focal		
ff = 87 dias		
2. Declaración de Variables		
F = \$10.000.000	$comision\ compra=0,4\%\ EA$	
$i_e = 32\% EA$	$comision\ venta = 0,375\%\ EA$	
3. Diagrama de Flujo de Caja		

c. La tasa de cesión

d. El precio de cesión

1. Fecha Focal		
ff = 87 dias		
2. Declaración de Variables		
F = \$10.000.000	$comision\ compra=0,4\%\ EA$	
$i_e = 32\% EA$	$comision\ venta = 0.375\%\ EA$	
3. Diagrama de Flujo de Caja		

e. El precio al comprador

f. El valor en pesos de la retención en la fuente

g. La cantidad que debe pagar YY

h. La cantidad que recibe XX

1. Fecha Focal		
ff = 87 dias		
2. Declaración de Variables		
	$comision\ compra=0,4\%\ EA$	
$i_e = 32\% EA$	comision venta = 0,375% EA	

i. La rentabilidad después de impuestos que gana YY

23. En el problema 21 calcule el valor que recibe el vendedor y el valor que paga el comprador suponiendo que la retención en la fuente es del 7% EA sobre utilidades.

1. Fecha Focal
ff = 57 dias

2. Declaración de Variables		
F = \$6.758.000 $i_v = 29,5\% EA$ $R_F = 7\% EA$	$n = \frac{57}{365} pav$ $P_C = \$6.498.237,28$	
3. Diagrama de Flujo de Caja		
4. Declaración de Fórmulas		
$P = F(1+i)^{-n}$ Valor presente	$RF = R_F(F - P_R)$ Tasa del vendedor	
5. Desarrollo Matemático		
$RF = \$18.442,6$ $R = \$6.409.227.29 \pm \$19.442.6$	$P_V = \$6.758.0(1 + 0.295)^{-\frac{57}{365}}$ $P_v = \$6.490.611.99$ $P_v = \$6.490.611.99 + \$18.442.6$ $P_v = \$6.509.054.59$	
6. Respuesta		
Comprador = \$6.516.680		
Vendedor = 0	\$6.509.054,59	

24. El 27 de abril de 1999 se compra una aceptación bancaria de \$36 millones en el mercado bursátil, con vencimiento el 27 de julio de 1999 y con tasa de registro del 26% EA (anual efectiva). Si después de transcurridos 34 días la vende. ¿Qué precio se debe cobrar si el vendedor desea obtener una rentabilidad durante la tenencia del 26,5% EA? Base 365.

25. Resuelva el problema anterior suponiendo que el corredor cobra una comisión del 0,1% en rentabilidad y que de todas maneras el vendedor quiere ganarse el 26,6% EA durante la tenencia.

6. Respuesta

F = \$34.754.655,003