3/8/1

ST AVAILABLE

個日本国特許庁(JP)

49 特許出願公告

許 公 **翻**(B2)

昭56-20017

Dint.Cl. A 61 B 10/00 急知紀号 104

庁内影理番号 7437-4C

经经公告 昭和56年(1981) 5月11日

茶明の数 1

(全5頁)

❷超音故診断装置

0# 顧 昭52-105678

●田 昭52(1977)9月2日

公 第 昭54-38693

昭54(1979)3月23日

1

份条 明 者 黑田正夫

> 国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内

明 者 小野世紀寿郎 62/2

> 国分寺市東松ケ窪1丁目280番地 株式会社日立製作所中央研究所内

四発 明 活 片倉景藝

国分寺市東巡ケ線1 丁目280番地

€ 明 者 近座独郎

> 国分寺市東恋ケ健1丁目280番地 株式会社日立製作所中央研究所内

顧 人 株式会社日立メディコ

14号

79代 邳 人 弁理士 夢田利幸

砂特許護求の範囲

1 複数個の超音波振動子をアレー状に配列し、25 この方向と、深度による2次元像を得るに要する ひと組として動作する振動子を順次切換選択する ととにより、超音波ピームの走査を電子的に行な う超音波装置において、風音波のひとつの出射方 向に対して、超音波信号の受信の指向性を各々数 小量だけずらせた複数個の受信系を用い、同時に 80 しても従来の方式では完像時間に制限があつた。 受信することにより、微小量ずれた多方向からの 超音波信号を同時に採り入れることを特徴とする 超音放鈴斯袋櫃。

発明の詳細な説明

(1) 発射の利用分野

本発明は、超音波信号の送波および受旋の控向 性を制御し、同時に微小量はなれた多方向からの

反射、透過超音波信号を得る手段に関するもので ある。

2

(2) 従来技術

超音波の人体への無侵襲、非視血的診断が注目 5 され、超音波診断接置の研究、開発がなされてい る。特に2次元像の得られる断層装置では、高速 環像を目的として電子的に超音波ビームを走査す る手法がとられている。とのような電子的に無音 波ピームを走査するものでは、従来の機械式走査 10 方法等に比較し、走査時間を早くすることができ リアルタイムで2次元像の観察ができるようにな つた。しかしながら超音波の音速に由来する制限 のため、リアルタイムで観察できる走査領域、走 査線本数等は必ずしも満足ではなかつた。 これを 株式会社日立製作所中央研究所内 15 通常の反射法を利用する超音波診断接置の実用的 な例で説明する。人体内20cmの際肥までの紹音 彼反射信号を得て断層像を得る例では、超音波の 音速が人体内では約1.5 m/usecであるためひと つの超音波の打ち出しに対して、反射信号を得る 東京都千代田区内神田一丁目 1 番 20 に要する時間は 2 0 0 × 2 (往復) / 1.5 =267 usである。ととで次の超音波の打ち出しまでに 8 3 usの休止時間をおけば、ひとつの超音波の打 5出しの周期は300 asとなる。 とのため、少し づつ異つた方向に200本の超音波を打ち出し、 時間は300 cs ×200=60 ms である。 すな わち1秒間に17フレーム程度となり、リアルタ イムで観察する時、デイスプレイでチラツキがみ られる。このようにわずか200本の走査線に対 第1四は、リニア電子走査形超音波断層装置の

一例を示したブロツク図である。nケの短畳状板 動子(以下エレメント#1~#aと称す)をアレ 一枚化並べたトランスジューサ1の各エレメント 85 を切換回路2に研究する。切換回路2はπケのエ レメントから順化kケ(第1図はk=5)のエレ メントを選択し、送放パルサー8(Pi~Ps)お

ことができる。

(2)

特公 昭56-20017

よび受信増巾器 5(R」~Rs)に接続する動作を する。送波パルサー3は送波位相制御回路4に接 続され、位相制御されたパルスを作成する。 受信 境巾器5の出力は受波整相回路8に導かれ、デイ 御回路およびデイスプレイ8への撤引信号を発生 する回路である。ことで第1図の動作の概略を説 明する。先ず第1走査では、切換回路2はエレメ ントの#1~#5をパルサP1~Psおよび受信増 波ビームの指向性はA1の方向にある。第2定金 では、エレメントの井2~井6をパルサPi~Ps と受信増巾器のR、~Rsに接続するととにより、 紹音波ビームの指向性は、アレーに沿つてA2の ームの指向性をA1からAng まで、アレーに沿つ てりニア走査することができる。

(3) 発明の目的

本発明は、既に述べたように電子走査形超音波 除くことを目的とする。

(4) 尖施例

以下、本発明を実施例を参照して詳細に説明す る。超音波装置のビーム指向性は、一般に送液部

このため、送波器の指向性と受波器の指向性と を掛小量すらせるととにより、総合の指向性を両 者の中間に存在させることができる。との方法は 例えば、特顧昭51-106650号明細書「超 音波振動子制御方法」などに詳しい。このことは 80 時に受信できた。次にこれを表示する手段につい ひとつの送波器の指向性に対して、各々指向性が **微小量ずれた複数個の受信器で受信することによっ** り、做小量すれた方向の超音波エコーを同時に受 信できるととになる。との様子を模式的に第2回 に示す。叙音波振動子#1~#5を助扱すれば、 35 スイツチ10~2を通り、スイツチ12に接続さ 送波ピームは通常は用いた振動子の中間の軸上 T↑(一点鏡線表示)方向にある。この時本発明 では反射エコーを受信するのに用いる振動子を井 1~#5を用いR1方向、また#1~#8を用い R 2 方向の 2 方向に受放器の指向性を持たせるの 40 れる。この時のメモリへの書きとみ周波数を f と である。とれにより送受総合の指向性は、各々 TR1とTR2の両方向にある。 すなわちひとつ の超音波ビームの発射化対して、TR1.TR2 方向の2方向からの超音波反射信号を用時に受け

ることができる。このような手段を用いることに より、従来の音速に由来する完像時間を少にする

第3図は本発明に関する2方向同時に受放でき スプレイ 8の蝉度変調信号となる。 7は全体の制 5 る一実施例である。すなわち、各々の指向性が復 小量ずれた受放整相回路 6 と 6 により、S 1 と S2に例えばA1とA1/方向の2方向同時に超音 波信号を得ることができる。動作は既に述べた方 法により容易に理解できる。第3図は受放整相回 である。との他に、エレメントが全く同一の個数 を2つの受波整相回路に導き、受波整相回路内の 各エレメントからの信号の位相を制御するととに より、各々の受信指向性をずらせることも可能で | 方向に移動する。何様の手順によつて、超音波ピ 15 ある。この時の受波整相回路の構成を第4図に示 ず。 #1~#5の各エレメントは各々でル iでBi ~ FAS ,FRSの遅延回路に接続する。Aグループ の遅延回路は加算器3へ、Bグループの遅延回路 は加算器ダ化接続される。各選延回路の基延量は、 断層装置の音速に由来する完像時間の制限をとり 200が各エレメントに到達する時間差(音路差)に相 当する連延時間で与えられる。 すなわち、A又は B点からの超音波信号が各エレメントに入射し音 圧変換され、各エレメントからの信号が加算器 9 の指向性と、受波部の指向性の積で決定される。 25 又は 5の入力端で全て同位相となる遅延量が与え られる。とのような構成の2組の受波整梢回路で は、同一のエレメントを用いても2方向の指向性 を得ることができる。

> 上述した手段により、2方向の超音波信号を同 て説明する。第5回は同時に受信した信号81, S2を表示するための一実施例である。受信信号 S1はスイツチ10-1を通り、ノモリ11-1 又は11-2に加えられる。 とのメモリの出力は れる。受信信S2も同様の接続をされる。以下、 簡単に動作説明をする。スイツチ系10は最初 a 側に切換えられる。この状態では受信信号51と S2は各々、メモリ11~1と11~3に貯えら する。対測原度までの時々刻々の情報を蓄積した のちスイツチ系10は6側に切換える。同時にス。 イツチ12はイ何に切換える。次の超音波信号を メモリ11ー2,11~4に客積しながら、メモ

BEST AVAILABLE COPY

(3)

特公 昭56-20017

リ11-1を書きてみ周波数 (の2倍、21の周 放数で先に書いた内容を読み出しディスプレイ8 に表示する。ノモリ11-1の内容を全て読み出 した砂スイツチ12を0個に切換え11-3の内 容を読み出し表示する。11-3の内容を読み出 5 ることは自明である。また超音波の反射信号の受 し終了時点で丁度11~2と11~4には次の情 報が蓄積されるため、スイツチ系を切換えてれを 続み出す。とのように時間圧縮用メモリに2方向 からの情報を一時蓄積しこれを一サイクル後3倍 の速度で片刻つつ交互に読み出すことによりりで 10 第1回は従来のリニア電子走査形態音波撮像装 ルタイム表示が可能となる。

(5) まとめ

以上説明したどとく本発明によれば、超音波の ひとつの打ち出しビームに対して、彼小量ずれた 複数方向の服音波信号が同時に得られる。とのた 15 第5図は表示手段の一実施例を示す図である。 め、従来の音速による完像時間の制限がなくなり

走査線密度の縮かいちみつな画像をリアルタイム で観察できるため、工業上その効果は大きい。な お説明では簡単のため2方向同時受信について説 明したが、3方向以上になつても同様の効果があ 信のみならず、透過信号などに対しても同様の手 段を用い、同じ効果が得られることも明らかであ

図面の簡単な説明

躍の説明図、第2図は本発明を説明するための送 波と受波の超音波の収束を示す図、第3図は本発 明の一実施例の構成を示す図、第4回は第3回中 の受波整相回路の他の一実施例の構成を示す図、

团

BEST AVAILABLE COPY

解56-20017

EST AVAILABLE COPY

特公 昭56-20017

