Terma Case Subsystem Design Description Pod for F16 protection suite

To Company: F From Company: G Project: System Engineering - Team G

Revision: 1.0.0 Date: 20101008

Document: Subsystem Design Description

Copyright (c) 2010 by Team G. It shall not be copied, reproduced, disclosed or otherwise

made available to third party without previous consent from Team G.

Index

Index	3
1. Scope	
1.1. Identification	
1.2. System overview	
1.3. Document overview	
2. System architectural design	
3. System components	
4. Interface design	
5. Requirements traceability	
6 Requirements	
6.1 Functional requirements	
6.2 Performance requirements	
6.3 Environment requirements	
6.4 Interface requirements	

1. Scope

1.1. Identification

This System design description is for a pod that can be attached to the F-16 combat aircraft using standard T-hooks spaced by 13 inches

The pod has three compartments for chaff/flare magazines. Two compartments hold two magazines each and one compartment holds four magazines.

The pod houses an electronic control unit and has suspensions for power/data cable harness, connectors and six sensor units which covers all angles not shaded by the aircraft seen from the pod.

The manufacturer will identify the placement of the six sensors.

The system is able to keep the temperature of the MWS inside the pod below 70 degree Celsius.

The pod structure and attachments is able to withstand high g-forces and high temperatures, experienced in combat situations, especially on the front part of the pod and still be operational.

1.2. System overview

The pod is part of a self protection suite for the F-16 combat aircraft which protects the aircraft against missile attacks. The system is made up of 2 main systems which are:

- A cockpit control unit which keeps the state of the system handles communication and controls firing of the magazines.
- A pod which incorporates eight magazines and a missile warning system (MWS) consisting of six sensor and an electronic control unit.

1.3. Document overview

The purpose of this document is to present the architectural design of the POD including its interfaces to the level of detail required by the specification.

2. System architectural design

CCU: Cockpit Control Unit CMC: Craft Mission Computer PCU: Power Conversion Unit DSS: Digital Sequencer Switches

AC: Air Condition

3. System components

Components	Description
AC	Air Condition
CCU	Cockpit Control Unit
CMC	Craft Mission Computer
Compartments	Compartments to the
	magazines
DSS	Digital Sequencer Swiches
ECU	Electronic Control Unit
HW-Safty	Sequencer controller / enabler
Magazine	Contains payloads
PCU	Power Conversion Unit
POD	The system to be
Sensor	Various sensors
PowerSupply	Existing power supply
Temperature Sensor	-

4. Interface design

5. Requirements traceability

System components													
Requirement	AC	ccu	CMC	Compartments	DSS	ECU	HW-Safty	Magasine	PCU	POD	Sensor	PowerSupply	Temperature Sensor
UFR-1				Х								l	
UFR-2				X									
UFR-3				Х									
UFR-4				Х									
UFR-5										Χ			
UFR-6													
UFR-7													
UFR-8													
UFR-9						X							
Etc.													
Etc.													
UFR-10													
UFR-11													
UFR-12													
UFR-13													
UFR-14													
PR-1										Χ			
PR-2										Χ			
PR-3										Χ			
PR-4										Χ			
PR-5											Χ		
ER-1										Χ			
ER-2										Χ			
ER-3										Χ			
IR-1													
IR-2									Χ				
IR-3						Χ							
IR-4						Χ							
IR-5													
IR-6													
IR-7									Χ				
IR-8													
IR-9									Χ				

6 Requirements

6.1 Functional requirements

UFR-1	The pod shall have Three compartments for
OLV-T	
LUED 2	dispenser magazines.
UFR-2	The pod shall have one compartment for two
	magazines facing forward.
	$Ψ = 15^{\circ} φ = 15^{\circ} θ = 15^{\circ}$. Se figure 1.
UFR-3	The pod shall have one compartment for four
	magazines facing sideward.
	$\Psi = 90^{\circ} \varphi = 15^{\circ}$. Se figure 1.
UFR-4	The pod shall have one compartment for two
	magazines facing downwards.
	$\phi = 90^{\circ} \theta = 90^{\circ}$. Se figure 1.
UFR-5	The dimensions of the pod shall comply to the
	standard FP42f
UFR-6	All electrical connections shall be accessible
	from the outside to ease the attachment of
	the pod to the aircraft and for testing on
	ground when not attached.
UFR-7	If active cooling or other power consuming
	entities other than the contractor supplied
	MWS and DDSs are required, the total power
	consumption of these shall not exceed 300W
	at 115VAC 400Hz.
UFR-8	The POD shall comply with all F-16
	requirements for aerodynamics and radar
	reflections as specified by the F-16 POD
	standard FP42f.
UFR-9	The ECU shall perform the built in test that is
	supported by this Government Furnished
	Equipment (GFE).
UFR-10	The ECU shall report the status information
	available for this Government Furnished
	Equipment (GFE).
UFR-11	The POD shall supply the status of the
	following LRUs:
	The ECU
	INFO: The Magazines and DSS are not seen as
	LRUs and also do not have status reporting
	capabilities.
	INFO: It is assumed that the ECU has the
	ability to deliver this information.
UFR-12	The status reported by the POD as a whole
011112	shall be:
	אומוו אב.

1. POD internal temperature
2. ECU operational status (OK, ERROR)
INFO: It is assumed that the ECU has the
ability to deliver this information.
INFO: It is assumed that the ECU has a
temperature sensor inside the POD and is
able to deliver its reading on the data bus.

6.2 Performance requirements

PR-1	The pod structure shall be without any failures after being exposed to a steady state acceleration of 5g fore.
PR-2	The pod structure shall be without any failures after being exposed to a steady state acceleration of 2.5g aft.
PR-3	The pod structure shall be without any failures after being exposed to a steady state acceleration of 25g up.
PR-4	The pod structure shall be without any failures after being exposed to a steady state 7 acceleration of 11g down.
PR-5	The six sensors shall be located to cover all angles which are not shaded by the aircraft. (See Ref-2)

6.3 Environment requirements

ER-1	The pod structure shall be operational at
	temperatures of 95°C on the outer skin
	102°C on the leading edge for 25 minutes.
ER-2	The pod structure shall be operational at
	temperatures of 134°Con the outer skin
	151C on the leading edge for 3 minutes.
ER-3	The system shall be able to keep the
	temperature inside the MWS below 70°C.

6.4 Interface requirements

IR-1	The attachment to the aircraft shall comply
	to standard PM11b.
IR-2	The pod shall provide a EPC17d connector
	for 115VAC/400Hz power.
IR-3	The pod shall provide a EDC29b connector
	for the data connection.
IR-4	The pod shall provide a EDWC7f connector
	for discrete wires.
IR-5	The dispenser magazine compartments shall
	interface to the magazines according to
	standard DM30p.
IR-7	Power consumption of the pod shall not
	exceed 700W.
IR-9	The system shall be able to supply the GEF
	(MWS) with maximum 85W from a 28VDC
	power source and a maximum of 100W from
	an 115VAC 400Hz power source.