INSTRUCCIONES

- El examen consta de tres preguntas.
- Cada problema se debe contestar en una hoja diferente y escanear para entregar por separado, preferiblemente en formato pdf, en el tiempo establecido.
- El tiempo para hacer este examen es de 2 horas, desde las 12:30 hasta las 14:30 del miércoles 13 de mayo de 2020. La última hora en la que se pueden entregar los ficheros con las soluciones es las 14:45 horas.
- El examen se ha de realizar individualmente. Los profesores podrán comprobar la honestidad de los estudiantes mediante entrevistas.
- Todos los alumnos que entreguen el examen se comprometen a aceptar el compromiso de honestidad de abajo, que no es necesario imprimir ni firmar; se entiende firmado con la entrega del examen.

COMPROMISO DE HONESTIDAD

Al realizar y entregar este examen, me comprometo a realizar la prueba sin la ayuda de terceros, ya sea en tiempo real (llamadas telefónicas, videoconferencia o cualquier modo análogo) o con material recopilado (vídeos, libros, páginas webs o cualquier recurso análogo) que no haya sido expresamente permitido en la convocatoria de la prueba.

(En cumplimiento del Artículo 3:3 de la Normativa de evaluación académica de la UAM)

- 1. (3 puntos) Una urna contiene un número determinado de bolas negras. Iniciamos el siguiente proceso. En cada paso extraemos una única bola de la urna. Si la urna contiene exactamente k bolas, entonces con probabilidad p_k apartamos la bola que hemos extraído y con probabilidad $1 p_k$ la devolvemos a la urna. Repetimos este procedimiento hasta que la urna quede vacía y llamamos N_m a la variable que cuenta el número de extracciones que hemos tenido que realizar hasta que la urna queda vacía si inicialmente contiene m bolas negras.
 - (a) (1.5 puntos) Calcular la esperanza de N_1 , es decir, el número esperado de extracciones hasta que la urna queda vacía si inicialmente hay una única bola en la urna.
 - (b) (1.5 puntos) Para $m \in \mathbb{N}$, calcular la esperanza de N_m .
- 2. (4 puntos) Consideramos

$$S_N = \sum_{j=1}^N X_j,$$

donde N, X_1, X_2, \ldots son v.a. independientes, N tiene distribución de Poisson de parámetro $\lambda > 0$ y las X_i son integrables con media μ , tienen función de distribución F y función característica φ .

- (a) (2 puntos) Halla la función característica de S_N . Sugerencia: Puedes usar la regla de la doble esperanza.
- (b) (2 puntos) Estudia la convergencia en distribución de S_N/λ , cuando $\lambda \to \infty$.
- 3. (3 puntos) Sean X_1, X_2, \ldots , v.a. independientes, con la misma media μ y tales que $Var(X_n) \leq C$ (constante positiva), para cada n. Consideramos la variable

$$Y_n = \frac{2}{n(n+1)} \sum_{k=1}^{n} kX_k.$$

- (a) (2.5 puntos) Mostrar que $Y_n \xrightarrow{\text{m-2}} \mu$.
- (b) (0.5 puntos) ¿Se puede generalizar de alguna manera este resultado?