Recursive Queries and Datalog

Refer to Jeff Ullman's slides at:

http://infolab.stanford.edu/~ullman/cs345notes/cs345-1.ppt

An example from the past

Return all grandparents and their grand children

ameritos Jeres dont

Actors

Actors_1

Name	Age	Addr	Parent	Name	Age	Addr	Parent
PC	36	Mumbai	Madhu	PC	36	Mumbai	Madhu
AH	81	LA	Muriel	AH	81	LA	Muriel
BN	69	LA	Catherine	BN	69	LA	Catherine
AB	42	Mumbai	Jaya	AB	42	Mumbai	Jaya
Jaya	63	Mumbai	Indira	Jaya	63	Mumbai	Indira

```
SELECT *
FROM Actors AS Actors1, Actors AS Actors2
WHERE Actors1.Parent = Actors2.Name
```

Datalog

- "A logic for relations"
- Consists of if-then rules
- Equivalent to relational algebra in its non-recursive form
- Can form the basis for writing recursive queries in SQL

Predicates

Arithmetic Atoms

Can be regarded as a relation consisting of two numbers

If each subgoal is true, then the head is true

 $P(X_1, X_2, \dots) \leftarrow P_1(Y_1, \dots) \land P_2(Z_1, \dots)$

Datalog queries (1/3)

T. Autous (AH, 81, LA)

AND 81 735

Actors

	Name		Age	Addr
->	Priyanka Chopra	1	36	Mumbai
7	Anthony Hopkins		81	LA
\rightarrow	Bill Nighy	1	68	LA
-	Abhishek Bachchan	/	42	Mumbai
			\	

Return all actors whose age is more than 35. $\pi_{Name}(\sigma_{Age>35}(Actors))$ $Over35(x) \leftarrow Actors(x, y, z) AND(y) > 35$

Datalog queries (2/3)

Actors

Movies

Name	Age	Addr	Name	Year	Title
PC	36	Mumbai	PC	2011	Don-II
TC	55	LA	TC	2011	MI-IV
BN	69	LA	BN	2009	Valkyrie
AB	42	Mumbai	AB	2010	Raavan

Return all information about actors and their movies

 $Actors \bowtie_{A.Name=M.Name} Movies$

 $Result(n, a, d, y, t) \leftarrow Actors(n, a, d) \text{ AND } Movies(n, y, t)$

Actor (PC, 36, M) AND Morius (PC, 2011, Don-II)

Result (xy, 49, Asc, 1999, AB) Actors (xy, 149, ABC) AND Morius (xy, 1999, AB)

Datalog queries (3/3)

Actors

Name

Age Addr
opra 36 Mumb

Priyanka Chopra 36 Mumbai

Anthony Hopkins 81 LA

Bill Nighy 69 LA

Abhishek Bachchan

Movies

Name	Year	Title
Priyanka Chopra	2011	Don-II
Anthony Hopkins	2011	Thor: R
Bill Nighy	2009	Valkyrie
Abhishek Bachchan	2010	Raavan

Return the names of actors below the age of 50 who have acted in a movie in 2011

Mumbai

$$\Pi_{Name}(\sigma_{Age < 50 \text{ AND } Year = 2011}(Actors \bowtie_{A.Name = M.Name} Movies))$$

 $Result(n) \leftarrow Actors(n, a, d)$ AND Movies(n, y, t) AND a < 50 AND y = 2011

Other operators

$$Result(a,b) \leftarrow R(a,b) \text{ AND } S(a,b)$$

$$Result(a,b) \leftarrow R(a,b) \text{ AND NOT } S(a,b)$$

 $Result(a,b) \leftarrow R(a,b)$ $Result(a,b) \leftarrow S(a,b)$

Res (g,b) e R(a,b) or S(a,b)

Predicate types

- Extensional predicates (EDB)
 - Relations corresponding to predicates exist and are stored
- Intensional predicates (IDB)
 - Relations are virtual views and are temporary

$$Result(n) \leftarrow Actors(n, a, d) \text{ AND } Movies(n, y, t) \text{ AND } a < 50 \text{ AND } y = 2011$$

$$JoinResult(n,a,y) \leftarrow Actors(n,a,d) \text{ AND } Movies(n,y,t) \leftarrow \text{Join} \\ Result(n) \leftarrow JoinResult(n,a,y) \text{ AND } a < 50 \text{ AND } y = 2011 \leftarrow \text{Solution} \\ \text{Obstaction}$$

Safe Rules

Actors

Name	Age	Addr
Priyanka Chopra	36	Mumbai
Anthony Hopkins	81	LA
Bill Nighy	68	LA
Abhishek Bachchan	42	Mumbai

$$Result(n, a, d) \leftarrow NOT Actors(n, a, d)$$

$$light(y) \leftarrow (y, 35)$$

Every variable that appears in a rule must appear in a non-negated, relational subgoal

Open-2 Arrobozy Edg. Recursive Rules Edge Finding paths: cannot be expressed in relational algebra $Path(f,t) \leftarrow Edge(f,t)$ $Path(f,t) \leftarrow Path(f,s) \text{ AND } Path(s,t)$

Evaluating Recursive Queries (1/2)

Edge

from	to
Delhi	Bangalore
Bangalore	Chennai
Chennai	Pune

$$Path(f,t) \leftarrow Edge(f,t)$$

$$Path(f,t) \leftarrow Edge(f,s) \text{ AND } Path(s,t)$$

$$\uparrow$$
 The only IDB

Path (f,t): 0

from	to

Path (f,t): 1

from	to	
Delhi	Bangalore	
Bangalore	Chennai	
Chennai	Pune	

Path (f,t): 2

from	to	
Delhi	Bangalore	
Bangalore	Chennai	
Chennai	Pune	
Delhi	Chennai	
Bangalore	Pune	

Path (f,t): 3

from	to	
Delhi	Bangalore	
Bangalore	Chennai	
Chennai	Pune	
Delhi	Chennai	
Bangalore	Pune	
Delhi	Pune	

Evaluating Recursive Queries (2/2)

Least fixedpoint evaluation

```
All IDBs are initially empty
WHILE (changes to at least one IDB) DO
FOR (each IDB predicate p) DO
evaluate p using current values of all relations
```

Evaluating Non-recursive Queries

- Evaluation involves computing IDBs.
- Construct graph
 - Each IDB is a node
 - Directed edge between P and Q if Q occurs in the body of P
- Compute IDBs in topological sort order

Recursive Datalog to SQL

```
Basis \longleftarrow Path(f,t) \leftarrow Edge(f,t)
         Path(f,t) \leftarrow Edge(f,s) \text{ AND } Path(s,t)
              WITH RECURSIVE Path (f,t) AS
                 (SELECT from, to
                 FROM Edge
                UNION
                 SELECT Edge.from, Path.t
                 FROM Path, Edge
                 WHERE Edge.to = Path.from)
              SELECT * FROM Path
```

Negation and Recursion

R

ATTR

0

$$P(x) \leftarrow R(x) \text{ AND NOT } Q(x)$$

$$Q(x) \leftarrow R(x) \text{ AND NOT } P(x)$$

Least fixedpoint is not unique

$$P = (0), Q = \phi$$

$$Q=(0), P=\phi$$

Is 0 in P or Q?

Stratified Negation

- Disallow negation in mutually recursive rules
- Construct graph
 - Each IDB is a node
 - Directed edge between P and Q if Q occurs in the body of P
 - Label with '-' if Q is negated
- Stratum of predicate P is the largest number of labeled edges on a path from P
- Evaluate the query from the lowest stratum

HW: Stratified negation and SQL