(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-54421

(P2003-54421A)

(43)公開日 平成15年2月26日(2003.2.26)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

B62D 1/18

F16D 1/02

B 6 2 D 1/18 3 D 0 3 0

F16D

M

1/02

審査請求 未請求 請求項の数1 OL (全 4 頁)

(21)出願番号

(22)出願日

特願2001-241029(P2001-241029)

平成13年8月8日(2001.8.8)

(71)出願人 000004204

日本精工株式会社

東京都品川区大崎1丁目6番3号

(72)発明者 山田 康久

群馬県前橋市総社町一丁目8番1号 日本

精工株式会社内

(74)代理人 100077919

弁理士 井上 義雄

Fターム(参考) 3D030 DC39 DD61 DF01

(54) 【発明の名称】 車両ステアリング用伸縮軸

(57)【要約】

【課題】 摺動抵抗を低減して安定した摺動荷重を実現 すると共に、耐摩耗性を向上してガタ付きを確実に防止 するとと。

【解決手段】 車両ステアリング用伸縮軸は、相互にス ブライン嵌合した雄スプライン軸1と雌スプライン軸2 とからなり、雄スプライン軸1のスプライン部表面と雌 スプライン軸2のスプライン部表面には、それぞれ、低 摩擦で弾性・潤滑性・耐摩耗性に優れたPTFEの皮膜 3a、3bが形成してある。

(a)

(b)

1

【特許請求の範囲】

【請求項1】車両のステアリングシャフトに組込み、雄 軸と雌軸を回転不能に且つ摺動自在に嵌合した車両ステ アリング用伸縮軸において、

雄軸と雌軸のいずれか一方又は双方の嵌合部表面に、P TFEの皮膜を形成したことを特徴とする車両ステアリ ング用伸縮軸。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、摺動抵抗を低減し 10 て安定した摺動荷重を実現すると共に、耐摩耗性を向上 してガタ付きを確実に防止した車両ステアリング用伸縮 軸に関する。

[0002]

【従来の技術】図3に、一般的な自動車の操舵機構部を 示す。図中のaとbが伸縮軸である。伸縮軸aは、雄軸 と雌軸とをスプライン嵌合したものであるが、このよう な伸縮軸aには自動車が走行する際に発生する軸方向の 変位を吸収し、ステアリングホイール上にその変位や振 動を伝えない性能が要求される。このような性能は、車 20 体がサブフレーム構造となっていて、操舵機構上部を固 定する部位cとステアリングラックdが固定されている フレームeが別体となっておりその間がゴムなどの弾性 体fを介して締結固定されている構造の場合に要求され ることが一般的である。また、その他のケースとして操 舵軸継手gをピニオンシャフトhに締結する際に作業者 が、伸縮軸をいったん縮めてからピニオンシャフトトに 嵌合させ締結させるため伸縮機能が必要とされる場合が ある。さらに、操舵機構の上部にある伸縮軸bも、雄軸 と雌軸とをスプライン嵌合したものであるが、このよう な伸縮軸bには、運転者が自動車を運転するのに最適な ポジションを得るためにステアリングホイール i の位置 を軸方向に移動し、その位置を調整する機能が要求され るため、軸方向に伸縮する機能が要求される。前述のす べての場合において、伸縮軸にはスプライン部のガタ音 を低減することと、ステアリングホイール上のガタ感を 低減することと、軸方向摺動動作時における摺動抵抗を 低減することが要求される。

【0003】従来、伸縮軸a、bの雄軸のスプライン部 に対して、ナイロン膜をコーティングし、さらに摺動部 40 にグリースを塗布し、金属騒音、金属打音等を吸収また は緩和するとともに摺動抵抗の低減と回転方向ガタの低 減とを行ってきた。との場合、ナイロン膜を形成する工 程としてはシャフトの洗浄→プライマー塗布→加熱→ナ イロン粉末コート→粗切削→仕上げ切削→雌軸との選択 嵌合が行われている。最終の切削加工は、既に加工済み の雌軸の加工精度に合わせてダイスを選択して加工を行 う。伸縮軸の摺動荷重を最小に抑えつつガタをも最小に 抑えることが必要である為、最終の切削加工では数ミク ロンづつオーバーピン径サイズの異なるダイスを雌軸に 50 ができる。それにより、雄軸と雌軸の隙間を抑えるため

あわせて選び出し加工することを余儀なくされ、加工コ ストの高騰を招来してしまう。また、使用経過によりナ

イロン膜の摩耗が進展して回転方向ガタが大きくなる。 【0004】したがって、自動車用操舵軸に使用される 伸縮軸において、回転方向ガタによる異音の発生と操舵 感の悪化を長期に渡って抑制できる構造を簡単かつ安価 に提供したいといった要望がある。

【0005】 このようなことから、特開2000-91 48号公報では、前述のようなナイロン膜の代わりに、 雄軸及び雌軸の少なくともいずれか一方のスプライン部 に二硫化モリブデンを含む薄膜を形成して、両者間の摺 動抵抗を低減しつつ、ガタ付きを防止している。

[0006]

【発明が解決しようとする課題】しかしながら、上記従 来公報では、二硫化モリブデンを含む薄膜を形成する工 程以前の雄軸と雌軸の加工精度管理を従来のナイロン皮 膜を使ったものより厳しくしなければならない。

【0007】本発明は、上述したような事情に鑑みてな されたものであって、摺動抵抗を低減して安定した摺動 荷重を実現すると共に、耐摩耗性を向上してガタ付きを 確実に防止した車両ステアリング用伸縮軸を提供すると とを目的とする。

[0008]

30

【課題を解決するための手段】上記の目的を達成するた め、本発明に係る車両ステアリング用伸縮軸は、車両の ステアリングシャフトに組込み、雄軸と雌軸を回転不能 に且つ摺動自在に嵌合した車両ステアリング用伸縮軸に おいて、雄軸と雌軸のいずれか一方又は双方の嵌合部表 面に、PTFEの皮膜を形成したことを特徴とする。

【0009】このように、本発明によれば、雄軸と雌軸 のいずれか一方又は双方の嵌合部表面に、PTFEの皮 膜が形成してあるため、摺動抵抗を低減して安定した摺 動荷重を実現することができると共に、耐摩耗性を向上 してガタ付きを確実に防止することができる。

【0010】また、従来のナイロン皮膜が形成されてい るスプラインでは、前述のように高度な仕上げ加工が必 要とされた。とれに対して、本発明では、雄軸と雌軸の 嵌合時に両者の隙間を0から締代に設定しておき、数回 の慣らし摺動を行うことによってPTFEの皮膜をスプ ライン嵌合部になじませ、低スライド力の実現と回転方 向ガタの極めて少ない伸縮軸を低コストで製造すること が可能である。

【0011】さらに、上記従来公報では、二硫化モリブ デンを含む薄膜を形成する工程以前の雄軸と雌軸の加工 精度管理を従来のナイロン皮膜を使ったものより厳しく しなければならない。これに対して、本発明では、PF TEの皮膜の範囲を締代の嵌合として使用し、軽圧入の 状態で慣らし摺動を行うことにより、PFTEの皮膜処 理前の雄軸・雌軸そのものの加工精度をラフにすること

10

に選択嵌合する管理もしなくて済む。

[0012]

【発明の実施の形態】以下、本発明の一実施の形態に係 る車両ステアリング用伸縮軸を図面を参照しつつ説明す る。

【0013】図1は、本発明の一実施の形態に係る車両 ステアリング用伸縮軸の分解斜視図である。図2 (a) は、図1に示した車両ステアリング用伸縮軸の雄スプラ イン軸の損断面図であり、図2(b)は、同伸縮軸の雌 スプライン軸の横断面図である。

【0014】図1及び図2に示すように、車両ステアリ ング用伸縮軸は、相互にスプライン嵌合した雄スプライ ン軸1と雌スプライン軸2とからなる。雄スプライン軸 1のスプライン部表面と雌スプライン軸2のスプライン 部表面には、それぞれ、低摩擦で弾性・潤滑性・耐摩耗 性に優れたPTFE (poly-tetrafluoru-ethylene、四 ふっ化エチレン)の皮膜3a,3bが形成してある。

【0015】 この皮膜3a, 3bの形成には、PTFE を静電塗装によってスプライン部表面に形成する方法 や、PTFE粒子含有樹脂をスプレーあるいは浸漬によ 20 り塗布し、加熱乾燥させる方法等が使用される。この皮 膜3a, 3bは、例えば、10~200μmの範囲で適 宜に設定される。

【0016】とのように、従来例のナイロン膜に代わっ て、PTFEの皮膜3a、3bを使うことにより、摺動 荷重の安定化と雄スプライン軸1と雌スプライン軸2の 嵌合隙間を可及的に少なく設定できるようになり、これ らの回転方向ガタを極力小さくすることができる。

【0017】また、本実施の形態の製造方法により、従 げの切削加工や、雄スプライン軸1と雌スプライン軸2 との選択嵌合などの工程を省略することができるため、 製作コストの低減に大いに貢献できる。

【0018】とのように、本実施の形態によれば、雄ス プライン軸1と雌スプライン軸2のいずれか一方又は双 方のスプライン部表面に、PTFEの皮膜3a,3bが 形成してあるため、摺動抵抗を低減して安定した摺動荷 重を実現することができと共に、耐摩耗性を向上してガ タ付きを確実に防止することができる。

【0019】また、従来のナイロン皮膜が形成されてい 40 るスプラインでは、前述のように高度な仕上げ加工が必 要とされた。これに対して、本実施の形態では、雄スプ ライン軸1と雌スプライン軸2の嵌合時に両者の隙間を 0から締代に設定しておき、数回の慣らし摺動を行うと とによってPTFEの皮膜3a, 3bをスプライン嵌合

部になじませ、低スライド力の実現と回転方向ガタの極 めて少ない伸縮軸を低コストで製造することが可能であ

【0020】さらに、上記従来公報では、二硫化モリブ デンを含む薄膜を形成する工程以前の雄スプライン軸と 雌スプライン軸の加工精度管理を従来のナイロン皮膜を 使ったものより厳しくしなければならない。これに対し て、本実施の形態では、PFTEの皮膜3a,3bの範 囲を締代の嵌合として使用し、軽圧入の状態で慣らし摺 動を行うことにより、PFTEの皮膜処理前の雄スプラ イン軸1・雌スプライン軸2そのものの加工精度をラフ にすることができる。それにより、雄スプライン軸1と 雌スプライン軸2の隙間を抑えるために選択嵌合する管 理もしなくて済む。

【0021】なお、本発明は、上述した実施の形態に限 定されず、種々変形可能である。

[0022]

【発明の効果】以上説明したように、本発明によれば、 雄軸と雌軸のいずれか一方又は双方の嵌合部表面に、P TFEの皮膜が形成してあるため、摺動抵抗を低減して 安定した摺動荷重を実現することができと共に、耐摩耗 性を向上してガタ付きを確実に防止することができる。 【0023】また、雄軸と雌軸の嵌合時に両者の隙間を

0から締代に設定しておき、数回の慣らし摺動を行うと とによってPTFEの皮膜をスプライン嵌合部になじま せ、低スライド力の実現と回転方向ガタの極めて少ない 伸縮軸を低コストで製造することが可能である。

【0024】さらに、PFTEの皮膜の範囲を締代の嵌 合として使用し、軽圧入の状態で慣らし摺動を行うとと 来のナイロン皮膜を使った製造方法で行っていた、仕上 30 により、PFTEの皮膜処理前の雄軸・雌軸そのものの 加工精度をラフにすることができる。それにより、雄軸 と雌軸の隙間を抑えるために選択嵌合する管理もしなく て済む。

【図面の簡単な説明】

【図1】本発明の一実施の形態に係る車両ステアリング 用伸縮軸の分解斜視図である。

【図2】(a)は、図1に示した車両ステアリング用伸 縮軸の雄スプライン軸の横断面図であり、(b)は、同 伸縮軸の雌スプライン軸の横断面図である。

【図3】一般的な自動車の操舵機構部の側面図である。 【符号の説明】

- 1 雄スプライン軸(雄軸)
- 2 雌スプライン軸(雌軸)
- 3a, 3b PTFEの皮膜

【図1】

[図2]

【図3】

