

Figure 1 : Isolement de souche monocaryotique déficiente pour l'activité laccase

Figure 2 : Isolement du gène codant pour la laccase de *Pycnoporus cinnabarinus* laccase

Figure 3 : Etude en Southern blot du gène codant pour la laccase de *Pynoporus cinnabarinus*

CTGCAGACATCTGGAGCGCCGTCTTCCCTAGTATAAATGATGTCGTCGCCAGGTCCTTGAGACCGCTCGAGTCCCACITGAGTTTAGGTAGGAC	100	
CTGTCCACCAAACCCCTCTTCTGATCATGTCGAGGTTCCAGTCCCTCTTCTGCTCCCTCACCGCTGGCCAACGCCAGCCATAGGGC	200	
M S R F Q S L F F F V L V S L T A V A N A A I G P	25	
CTGTGGCGACCTGACCCCTACCAATGCCAGGTCAGCCCCGATGGCTCGCTCCGAGGCCCTCGTGGTAACGGTATCACCCCTGCCCTCTCATCAC	300	
V A D L T L T N A Q V S P D G F A R E A V V V N G I T P A F L I T	58	
AGGCRAATAAGgtatgtatgtctgcgtccctcagactacatacatgtatccacaatcgtttagGGCGATCGATTCCAGCTCATGTCATGCCAG	400	
G N K G D R F Q L N V I D Q	72	
F2		
TTGACARATCATACCATGTTGAAACATCTAGTATTgtaaagggttcagttttccgactaccatgttattgaccatcaccactcgtag	500	
L T N H T M L K T S S I	H W H G	88
(I)		
CTTCTTCGAGCAAGGCACGAACCTGGGCCATGGTCCCGCTCGTGAACCAAGTGTCCCATCGCTTCGGGCCACTCGTTCTGTATGACTTCAGGTTCCC	600	
F F Q Q G T N W A D G P A F V N Q C P I A S G H S F L Y D F Q V P	121	
GACCAAGCAGgtacgaattccgtacacgtttcatgcgtcgcaactaaacctcttactagGGACTTTCTGGTACCATAGCCATCTCCACGCCAATA	700	
D Q A G T F W X H S H L S T Q Y	137	
(II)		
CTGCATGTTGAGGGGCCCTTCGTCGCTACGACCCCAACGATCCTCACCGTAGCTGTATGACATTGATAACGgtagcagatcatggatcgaa	800	
C D G L R G P F V V Y D P N D P H A S L Y D I D N D	163	
tattgcgtcacttatgttccctggatccagACGACACTGTCATTACGCTGGTGTGATGGTATCACGTCGGACCTCGCTTCCCgtac	900	
D T V I T L A D W Y H V A A K L G P R F P	184	
gtgtcaaatgtctacgagagatctcacatatacgactacttcgtcttattcagatTTGGCTCCGATTCAACCCCTATCATGGACTTGGTCGAA	1000	
F G S D S T L I N G L G R T	198	
CCACTGGCATAGCACCGTCGACTTGGCAGTTATCAAGGTCAACGGCAGGGCAACGGGgtatgtatggatgtatcgacatattggatgtatcatggc	1100	
T G I A P S D L A V I R V T Q G K R	216	
cttgcgttccacacgCTACCGCTTCGGCTGGTCTCGCTGGTCTTGCATCCGAAACCATACATTCAAGCATTGATAATCACAAATGACTATAATTGGCCGGA	1200	
Y R F R L V S L S C D B N H T F S I D N H T M T I E A D	245	
CTCGATCACACTCAACCCCTAGAGGTGATTCAATCCAGATTTTGCCGCAGCGCTACTCTTCGTTGgtagg tctgttagctctgtcatcaatgttgc	1300	
S I N T Q P L E V D S I O F A A Q R Y S F V	268	
cacagacatttttagatataccctttcaatgcagCTGGATGCTAGCCACGGTGGATAACTACTGGATCCGCACACCCCTGGCTTCGGAAACACAGGGT	1400	
L D A S Q P F V D N Y W I R A N P A F G N T G F	291	
TTGCTGGTGAATCAATTCTGCCATCTGGTGTATGATGGCCACCCGGAGATCGAGCCACTACGCTACGAGCCCTCTGAACCGAGGT	1500	
A G G I N S A I L R Y D G A P E I E P T S V Q T T P T K P L N E B V	324	
CGACTTGCATCCCTCTCGCCCTATGCCGTGtgatgttcaaagaacactcgatcaactaaatgtcatgtcaactcatatgttgcacacgCCTGGCAGC	1600	
D L H F P L S P M P V	P G S	337
CCCGAGCCCCGGAGGTGTCGACAAACCTCTGARCTTGGTCTTCACACTTCgtgatgtactggcgcgttccgttagcacacgttgcacaaaaggctgatccat	1700	
P E P G G V D K F L N L V F N F	353	
gcagAACGGCACCACCTTCTCATCAACGACCAACCTTGTCCCGCCGCTGTCCAGTCTGCTACAATCCTCAGTGGGGCGCAGGGGGCTCAGGAC	1800	
N G T H F I N D H T F V P P S V P V L L O I L S G A Q A A Q D	385	
CTGGTCCCGAGGGCAGGGTGTCTTCAGCACTCTCCATGTGAGATATCCTTCCCTGCCATGCCATGGATTCCCCCATCGTTCC	1900	
L V P E G S V F V L P S N S S I E I S F P A T A N A P G F P	H P F H	419
(III)		
ACTTGCACGGGtacgtctgccttccctcgatcaaaggcgagatgtactccatcacagCACGCCCTCGCTCGTCCGGAGCGCC GGGAGC	2000	
L H G H A F A V V R S A G S	433	
(IV)		
ACCGCTCTACAACTACGACAACCCGATCTCCGCACGTCAGCACGCCAGGCCAGCA ACCTCACGATTCGCTCGAGACCAATAACCCAGGGC	2100	
S V Y N Y D N P I F R D V V S T G Q P G D N V T I R F E T N N P G P	467	
R8		
CGTGGTCTCCACTGCCACATGACTTCCACCTCGACGCCAGGCTTGTGTAGTCATGCCAGGACACTCCGGACACCAAGGCCGAAAC CCTGTTCC	2200	
W E L H C H I D F H L D A G F A V V M A E D T P D T K A A N P V P	500	
(IV) (V) (VI)		
TCAGGCGTGGCGACTGTGCCCCATATGATGCACTTGACCCCAAGCGACCTCTGAGGGGATGTACTGTGACCTGGT GTGGGGGGACATGTCGA	2300	
Q A W S D L C P I Y D A L D P F S D L	518	
GGCTTTCTCATCGATCAGGGACTTCAGGTGGCAATAATACCTCACGGCTGGTGAATCGGAGACGCTGTGGCGTGGGTGTAACTCTGCTTGATGT	2400	
TGAAAAAAGGTTTATGTAGAACAACTTATGAGCAATCACGCAATAGGATTGTGTCGTTGAGCAATGCTTCTCCCTGACATTACTTTG	2500	
TGCGAGAAATGGGTCCATGAGACACATCATGAGCTCTCAATACCAAGAAGGATTACCCATGTCATACCAAGATCATGCTTCGCTGTCCGAATGG	2600	
TCTCATGTTGCGTTGAGCAGATCGCATGCTGAAAGGGATTAGTAT TACATGCAACATGCAACATTGAAAGGGGATGCAAGGGTCACTCGCG	2700	
TCAGTCGGCCAAGTAGCGACCTTGGCGACTGCCGTGTTAACCTGAGCTATGCTTCAGAACTCCGCGTATCGAGAGCGATCGTGTACGTTCCGGGAT	2800	
AGATCCATTGATCCCCGCTGGTGGCGCTGGATGGCCCGAGCGTCACCGGAGCTTCGCGATCCGCTTTCTAGGGGAGGGCGTGTACCCCG	2900	
CGTGTACGAGACGAGCTGCTGGTGGGGCGAAGGGCCGAAGGAGCCACTCACGAAGAGCAATGCGACGTAATCCGAGGTAGCCTTGCCGTTA	3000	
GTCACACGCACGGAGAACGTGTCGAGCGCCGAGGTGAGGAGGGCGCTTCTGACCGCGCTGTACGAGGTGCGAAATCGAAATACGTCGATGGCG	3100	
GTCCCTCCRAAGTCCGTGACGTTGGTCGCATCGGCCGCCCTGGAGCTGCCAAGAGAAATCGAAGGGTGTGAAGTGCAGTCCAAAGCCAATTGCTA	3200	
GACCGGGCGTGGCGGTGTACCACTTGTATGACGCCGGGTTGACGCGCTTGGCGAAGGGT CATGTCAGTCATGCCACCTGATCGCGTAGATGGCG	3300	
GGGTATTGGGTGATGGCAGGGCGTCTGCA	3331	

Figure 4 : Séquence du gène codant pour la laccase de *Pycnoporus cinnabarinus*

AGATCTCCGAACCAGAAATGCGATTGCGTTAGGCCAATTAAGAATAAAGCTGCGTCAGGCAGCGACGTA
TCTTGATCCCATCATTGACTCACCGGCATCGCGTCAACACCAAGCAAGCTCGTCCCACCCATAGGCCTGCA
CCGGCCGGCGTGCCTGAGGTACATGAGCGGGCGAAAGTCCGCATTGGTAGCCCTGTCGTGGACGCG
CGGCGATGAAACGTTCCCACCATGGGAAGAAACGTCGCGGCCATCATCCCTCACCGGATGACAAGGC
GGCGTGCCTGCGGCCATTGGCGAGAGCCGGCGACATGCACAGCGAAGGTCGTTGCGATGGGAAGCAGG
CAATCAGTGGGTGCTTACGCCACGATGGTGGGGAGCGTAGGCGCCCTCCATAAGGCGGCAAGCATH
ATGATGCTCTCCGATTGGGAAGCCTGGTGGATGCTGGAGAGACTCTCTCCAGAGACCGAGTGTGCGCAAC
GTTCCCTGGCTTGGAAAGACTTTAAAGTGAGTGAGAAGGGCGAGCAGGGACGATCATCGATTGCAAGG
ATCGGCATCCCTGCCAGGGAGGATGGCTTGGTAGACATTCGCGGAAGGTTCTAGATGAGCAGGGC
TTCTTGGATGATCATGCTGAACTTTTCTGACCTCGTGGTAGCGATGGCAGGATTGAGCATTACGGT
ATGCCCTCCATTCAAACGATAACCCCTTCCCTGCCAGGGTAGGGTGGATGCTGGTCAAGGAAACGACTTGT
CCTAGGCTATTACACCCCTCGAACATCCCTATTACGGTGTCTGTAAGGAAACGACTTGT
ACATGAAGTGCAGCATACTGTCGCCGGTCTCGCAGTACAGCGCTAGTACGGGAAGTCGACATCCAAGCGT
TCAGTCACCACATGGCAAAAAAGCTGCACCATACTCTTATGGTAGGTTCTGAGTGGTATAACAGTCAT
TCATGAGGGAAATGCCAACCGGATAGGGTGTGGCGGCCAATATTACATGCCCTGGCAATAGTCGATGT
CCTTGTCAATGAATATCATGGTCACATGTGGAGACGGTTAACACAGCGTACTGTGAATCCCTGGTGT
GTTGGGCCAACAGGTACGTTGCAGGAACACCAATATCTTCCGGCAGGCCAGTTCTTGCAGGCCACAG
GCAGGCATCGCIAACAGATCCCAGCCATCCGGCTCTGACATTGGGATACCTGAAGCCCTTCAGGTACGG
AGCGAAGAGGTGGGCTCTGCAGCATTGGCGACGGATAGCTGTATTCCCTCTCACCATTGGGAAGAT
GTGAAAGGCTCCATCATAGCGGCTCAACTCTACCTCGAACACAGCGGGAAACTTATTATG
TGGACAAGGCCGAGCTATGATAGCTGCTCCGAAGTGGTAGTCCCACGTTCTGGCAGGAAACAGT
CTCGGAAAAATAAGAAGAATATTGAGGTGCGTAGGGCTATGCCCAAATGCGCACACACGGAGGCTT
GGAGATGAAGCGCCCGTAGCGGTAAGGGAGTTGGTCAACGCCGCCCCGACGACTCTCTCTTCCAG
CATCATGTCGGCGCAAACCTTACCCCTATTGACCAACTCCACGAGAAAGCAGGAACAGCTTCCCTGT
CTCATGACGTCCGCAATCCAGACCCCTAGCCGGTTCTACTCATCGTTATCCCTGCCGCAATGGTAGT
GTCAGCCTGGCCAGTGCCTAGCCGCTCTTGCTGCACTAGAGAAGCCCATGAGACAGCGTTTTGC
TTTATTCTGCTTTCTACGGCTGAATCGGCTGCACGGCAGATAAAATCGGCCGGAAATGCTATAGCC
CATAGCCCGTATGAGATCGCAAAAGGCTTGTCACTCAGGTCGGCGAGTGGCTCTCACGAAGAGCGTCAA
CTTCGCGCAGCGCCCTTCAGGGCAAGATAGATCTCCCATCATCCCCTACTGCGCTCAGCGCCGGTAC
CGAACAAATTGACTTACCGACATCCCTGGGACGCGCAAATGCTGTGACGGAACGTAATCCTCTCGT
GCCCTTTGCTCTACGCATTCCGTGTGGTCTGCGCAGCGCCGCTCATCAGGACCAGCAGTCTCAAT
GCTGGTACCGGACAATGGTGACACTGCGGCAACTGAGTAGGTCGGTCACTCTGGTGCACCGTGCCTAC
GCTGACCTCGGGATACTGTCCTGCAGACATCTGGAGCGCCTGTCTTCCCTAGTATAATGATGTC
CGCAGGTCTTGAAGACCGCTCGAGTCCCACTTGAGTTAGGTAGGACCTGTCCACCAAACCCCTTTCT
GATCATG

Figure 5 : Séquence de la séquence promotrice du gène codant pour la laccase de *Pycnoporus cinnabarinus* (jusqu'à l'ATG codant pour la méthionine de la laccase)

Figure 6 : Carte physique des trois vecteurs d'expression utilisés pour la production de la laccase chez *Pycnoporus cinnabarinus*

CATGGGATA TCGCATGCCCTGCAGAGCTCTAGAGTCGACGGGCCCCGTACCGCGCCGCC TAA GACGCCCTGGATCCGCAGGTGAAC
GCGCCTATCGGTGGGATA TTGGCGACGGGAGCCTCGCAACTCGAGCCCTGTTACTGCCCTAGCAAATCGGAATCCCTCGATGT
CATAGGGTGC CGGACAAGTGATCGTCTTGCATACACTCCAAGGTGTTGACTCATTCCCTCGATAATGAACATTTGTTGTTGTTG
TTCTCTATCGCTCAGTCACCGAACCCCACACGTGATGGTGAACTTCCGCCACGCCAACAACCGCATGACGACATGGCAACCTAAG
TAAAGGCTGAGTCGTTGACTAAAGCAGTCCACTTACGGCGAGGATGCCAGTCTACGTCATGAATGAAGGCTCAGGTCCCGAAGTAA
GGGGGTACAAAAGGAGGGTGAAGGTGGACGTTTCTTACCATCTTCCACCTCCAGAACCAACCATGCCGGGAAATTCCCGAGCTTGT
CAAAAAGGTTCTGCCGTACGCCCGAATTCCTCGAGGTGGCCCTATCGCATACATGCCAGACTTCAAAACATCCATTCTATC
ATTTGGGATCGTACAATTAGACATGTTGACAACTTACATTCTTCTTACTCTCCGGCCAGTCTATGTAGAGGTAAA
GTACAAGCGTCAAAGGATCAGGCACTTAGAGCGCGCGTCTGCTCGCCGTTAGAGCGCGCCGCTCTGCTCGCCGCTAGACG
AGCAGGTGCGAGACACGGCGGGAGTAGCCCAACTCGTGTGCTACCAGGCAATGAGCTTACGAAGGCTCAGAAGCTTGTGATCGGATGCCG
GGGATCGATCCACGGCTTAAAGCGGGCCGGTACCCCGTCCGAGCCGCTGGGCGCTGGGAGCGGCGGTGTTGGTGTGGCGTCCG
TCAGTCTGCTCTGCCACGAAGTGCACCGCAGTGGCCGGGGTGTGGCAGGGCAACTCCGCCACCGGCTGCTGCCGAT
CTCGGTATGGCGGGCCCGAGGGCGTCCCGAAGGTTGTCGGCACCCACTGGTCTGGACCCGCTGATGAACAGGGTACGTGCTCCGGCAC
CCACACCCAGGCCAGGGTGTGTCGGCACCCACTGGTCTGGACCCGCTGATGAACAGGGTACGTGCTCCGGACCACACCGG
GAAGTCTGCTCTGCCACGAAGTCCCGGGAGAACCCGAGCCGGTCTGTCAGAACTGACCGCTCCGGGAGCTGCGCGCCGGTGA
CCGGAAACGGCACTGGTCAACTGGCCATGCACTGGTGTGGGATGGCATTATGTGTGATGGGATGCCATGGGAGAGGGAAAGTGTCTGGATG
GGAGTGTGAGAAAAGGGAGACGGCGGGCGCCCTGGACTGCGGCCATCTGCAAATGCCAGGCCAAGATGCCATGCAACTGACAAAAGGGA
TGAACACATCGCGGGCGCCCTGGACTGCGGCCATCTGCAAATGCCAGGCCACTGGCTCGGCTGGGCGACCACAGGCCCTGGCTGAGT
CCCCCTGAGGGCGACGCTTATCTATCCATGCGCGCAATTGCAAGGTGCGCGGTGCAAGAACAGTCTCTGCACTGCCCTCGCACC
TGGGCTGGCACCCCTGTCTACCTCTCATCTAACCCCTCCGGCTTCCGAGTACAGTTACTAATCTCACACCGAAGAGGGCTCGC
CACCCCTCGATCCCAGACGCTTCTACATGCCACAGCGTCAAGAATGAAACAAATGCACTCARATCAGATCCCCGGAAATCGT
AAATCATGGTATAGCTGTTCTCTGTGAAATTGTTATCGCTCACAAATTCCACACAACTACAGGAGCGGAAAGCATAAAGTGTAAAG
CCTGGGGTGCCTAATGAGTGAAGTCAACTCACATTAAATTGCTGCTGCGCTACTGCCGCTTCCCTGGGAAACCTGCTGCGTCC
GCATTAATGAATCGGCCAACCGCGGGGAGAGGGCGTTGCTATTGGGCGCTTCCGCTCTCGCTCACTGACTCGCTGCGCTCG
GTCGTTGGCTGCGCGAGCGGTATAGCTCACTCAAAGGCGTAATACGGTATCCACAGAATCAGGGATAACGCAAGGAAAGA
CATGTGAGCAAAGGCCAGCAAAGGCCAGGAACCGTAAAAGGCCGCGTGTGGCTTCCATAGGCTCCGCCCTGAG
AGCATCACAAAATCGCCTCAAGTCAGAGGTGGCGAACCCGACAGGACTATAAGATAACCAGGCGTTCCTCCCTGGAAGCTCC
CTCGTGCCTCTCTGCTTCCGACCGTCCGCTTACCGGATACCTGTCCGCTTCTCCCTCGGGAAGCGTGGCGCTTCTCATAGCTC
ACGCTGAGGTATCTCAGTGGTGTAGGTGCTCAGGCTGCTCAAGCTGGGCTGTGTCAGCAAGGCGCTTCAAGGCGTTCAG
TTATCCGTAATATCGTCTTGAGTCCAACCCGTAAGACACGACTTATGCCACTGGCAGCAGCACTGGTAAACAGGATTAGCAGA
GCGAGGTATGTAGGGCTTACAGAGTTCTGAAGTGGGCTAACTACGGCTACACTAGAAGGGACAGTATTGGTATCTGCGCT
CTGCTGAAGCGAGTACCTTCCGAAAAAGAGTTGGTAGCTGCTGATCGGCAAACAAAACCACCGCTGGTAGCGGTGGTTTTGTT
GCAAGCAGCAGATTACCGCGAGAAAAAGATCTCAAGAAGATCTCTTGTATCTTACGGGCTCTGACGCTCAGTGGAAAGAA
AACTCACGTTAAGGGATTGGTCTAGAGATTCTCAGGTTACCTAATGCTTACAGTGGGACCTATCTCAGCGACTGCTTAC
TCTAAAGTATAATGAGTAAACTGGTCTGACAGTTACCAATGCTTAATCAGTGGGACCTATCTCAGCGACTGCTTAC
ATCCATAGTTGCTGACTCCCGCTGTAGATAACTACGATAACGGGAGGGCTACCATCTGCCCTCCAGTGTGCAATGATACCGC
AGACCCACGCTACCCGCTCCAGATTATCAGCAATAAACCAACAGCCAGCCGGAAAGGGCGAGCCAGAAGTGGTCTGCAACTTATC
CGCCCTCATCCAGCTTAAATTGTCGGGGAGCTAGAGTAAGTAGTTGCGCACTTACGTTCTGCAAGTGTGTTGCAATTGCT
ACAGGCATCGTGGTGTGCTACGCTGGCTTGGTATGGCTTACCTACGCTCCGGTCCCAACGATCAAGGCAGGTTACATGATCCCCCA
TGTGTGCAAAAAGCGGTTAGCTCTCCGGTCTCGATCGTTGCAAGAAGTGGGGCAGTGTATCACTCTGGTATGGT
AGCACTGATAATTCTTACTGTCATGCCATCGCAAGATGCTTCTGTGACTGGTAGACTCAACCAAGTCAATTCTGAGTATGG
TGTATGCGGCGACCGAGTTGCTCTGCCGGCGTCAATACGGGATAATAACCGGCCACATAGCAGAACTTAAAGTGTCTCATT
GGAAAACGTTCTCGGGCGAAAACCTCTCAAGGATCTACCGCTGTTGAGATCCAGTTGCTGATGTAACCCACTCGCACCCAACTGA
TCITCAGCATCTTACTTACCCGACCGGTTCTGGGAGCAAAACAGGAAGGCAAAATGCCCAAAAAGGGATAAGGGC
ACCGAAATGTGATACTCAACTCTCTTCAATTATTAGAGCATTATCAGGGTTATGTCATGAGCGGATACATATTG
AATGTATTAGAAAATAACAAATAGGGTTCCGCGCACATTCCCGAAAAGTGCCTACCTGAGCTAAGAAAACCATATTATCA
TGACATTAAACCTATAAAAATAGCGTATCAGGAGGCCCTTCTGCTCGCGTTCTGCTGATGACGGTGAAAACCTGACATGC
AGCTCCCCGGAGACCGTACAGCTGCTGTAAGCGGATGCCGGAGCAGACAAGCCGTCAAGGGCGCTAGCGGGTGTGGCGGG
TGTGGGGCTGGCTTAAACTATGCCATCAGGACAGGAGTGTACTGAGAGTGTGACCCATATGCCGCTGGGACCCAAMTA
AGGAGAAAATACCGCATCGGCCAACCGGCCATTGCCATTAGGCTGCCAATGTTGGGAGGGCGATCGGTGCGGGCTCTCGCTT
CGCCAGCTGGCGAACGGGGAGTGTGCTGCAAGCGATAAGTGGGTAACGCCAGGGTTTCCCTGAGCTGAGCTGTTGAAAACGAC
GGCGCAGTGCCTACGCTGCTGAGGTGCGACGCCAGCGCGCCGCCACCCAGCTATCCCGCGCGGGTGGGACCCAAMTA
GCCGGCCCCCGCGGCCCGGGCTGGCGAGCGGGGTGATCTACGAACGGAACCTGGAGGGCGACTCGGAAGAGTTGGTAAAGGG
GAACACCATCGCGAACGGGCCAGTGTCTGDCAGCTGAGCGTGCATTGTGTTCAATTCTGACCTGTGGCATGTAAGGAACGTGCTC
GGGATCGGAGGGTGGCGAGGCCCTTCTGGTGTGAGATTAGTAACTGACTGCGAAGCCGGGAGGGGGTAGGATGAGAGGTAG
ACAGGGTGCAGGCCAGGTGCGAGAAGGACTGCGAAGGACTGCTCTGCCGCCACGCCAATTGCGCGCATGGATAGAATAGA
GCGTGCCTCGAGGGGGACTCGACCAAGGGCTGGTGGTGGCGGCCAGGGACTGGCTGGGCAATTGCGATGGGATAGAATAGA
GCCGCCGCCGATGTGTTCATCCGTTGTCAGTATCGATGGATCTTCGGGCTGGGTTATAAAAGCGCAGCGCCGCCGCTCC
CTTCTCCAGCACTCCCATCCAGACACTTCCCTCTCCATCGCATCCCCATCACACAAATAATGCCCATCAC

Figure 7 : Séquence nucléotidique du vecteur pEGT, contenant le promoteur du gène gpd (4480-5122), un marqueur de résistance à la phléomycine (507-1822) et le terminateur du gène sc3 (71-507).

AGCTTCTCGCCCCGAACTGAACGGCAGGATGTGGGGCGTCCAATATTGCCATGAAAATCTGTCAGAAGTGAGCCCTCTCGTCA.C
CCTGTACAGCTCGTCACTGAGTTGAAAAGCAGGGTICATCTGGCTCACTGATGCACTGAGCTCGACCCGAGAACTAAATGACCAGCCGG
AGTGTCACTAACTTAACGCCGGTATTCAAGGGCAGCTTCTATACTGTCAGCGTAGATCACCGCCCATGAACGGGGAAACG
GGGAGGGGTCGTTGGTACGCTTACGCTCTGGCTATGTTGATTGACCAAGCGTCTGCAGAAGATGGGACGACGATGCCGAGCCG
GCCAGTGTCTCGGATGTCCTACTGTTGAGGCCATCCTTGTAGACAGACGGAAGAGCTTGAGGGTGCAGTCCCTCTAGAATGGGA
AGGGGCTTAACTGAGATGGAGAGATGACACGCTCTGAGCTCCCAACAGCCTTCGCCGAGGGTGCCTCCGGACATTCACTCAGTTCTAGG
TCTGACCTGCTTAATTGATAGACGGGCCAACAAACCTCTGTCAGGCCATCATAAACAGTGCCTGACAGAGCCTTCCACTCAGTCGG
CGCCTCCCTCAATCAATCCCCTAACTCGCCGGCTCTGCCCTTCGCCGTCAGACCGCTTGAAGAGGCCGACGGCGTCCGC
TCCCCCCTCCCTCGCTGTCATGCACCGCAGCGTAAATGTTGCTGAGGGAGCCGTAAGTATATTCAAAGGCAGCGCAATGAATAG
CAGGCGCGGGGACCTGGCACGCGGGCATGAACATGCAGACTTGGGTGACGATAACTTGAACCTCAGACGCCGGAATGAATATCCA
AACCGCGGGQAAGAAAATAATTACCGGAGCCTCCCAAGGTATAAAAGCCCTCACCGCTCAGTCTCCAGTCAAGCAGCCAGT
TCAACTACCCAGCCCTCTCTCTGCTATCCTCYTTACAACCTGTCGCCATGGGATATCGCATGCTGCAAGAGCTAGTCGAC
GGGCCCCGTTACCGGCCGCCCTAAAGCCTGGTGGATCCGAGGTAAACGCCCTATCGGTGGATAATTGGGGACGGGAGGCTCGC
AACTGAGCTCTGTTACTGCTTAGCAAATTGGAATCCCTCGATGTCTAGGGTCCGGACAAGTACGCTCTGCTACATACTCCAAG
GTGTTGACTCATTCCTCGATAATGAACATTGTTGTTGTTGTTCTATCCGCTCAGTCACCGCAGCCACACGTGCACTGTTGAAC
TTGCCACGCAACAACCCATGACGACATGGCAACCTAAAGTAAAGGCTGAGTCGTTGACTAAAGCACTCCACTTACGGCAGGGATG
CAGTCTACGTCATGAATGAAGCCTCAAGGTCGGAGTAAGGGGATACAAAAGGAGGGTGAAGGGTGGACGTTTCTTACATCCCTCCA
CTCCTCCAGACTTCAAAACATCCATTCTATATTGGGATCGTACAATTAGCATGTTGACAACGTTACATTCTTCTTCT
TTACTCTCCGGCCCACTGCTATGAGAGGTTAAAGTACAAGCGCTTAAAGGATCAGGCACTTAGAGCGCGCCGCTTGTCTCCGCTTAG
AGCGCGCGTCTGCTTCCGCGTAGACGAGCAGGTCGAGACAGGGGGAGTAGCCCACTCGTTGCTGACCAAGGCAATGAGCTT
CACGAAGCTCTGCTGATCGGATGCCGGGATGATCCACCGCTTAAGGCGGCCGCGTACCCCTCGGACCCGTCGGCCGCGTC
GGACCGGGTGTGGTGGCGCTGGTCACTGCTCTCCGCAAGCAAGTGCACCGCAGTGGCGCCGGGAGGGCGACGGGAACTC
CCGCCCCAACGGCTGCTCCGCGATCTGGTCTATGGGCCGGGGGGAGGGCTCCCGGAAGTTCGTTGACACGACCTCCGACCCACTCGCGT
ACAGCTCGTCAGGGCGCCACCCACCCAGGGTGTGCTGCGACCCACTGGTCTGACAGTCTCCGGAGAACCCGAGCCGGTCCAGA
TCGTCGGGACCAACACCGGAGTCGCTCTCCACGAAGTCCGGAGAACCCGAGCCGGTCCAGAACTCGACCGCTCCGGCGAC
GTCGCGCGGGTGGAGCACCAGAACGGCACTGGTCAACTGCCATGATGGTATGGGATTATGTTGATGGGAGAG
GGAAGTGTCTGGATGGGAGTGCTGGAGAAAGAGGGAGACGGCGGGCGCCTTTATACCCACGCCGAAAGATCGATCGATA
CTGACAAAACGGGATGAACACATGGCGCGGCCCTGGACTCGCCTGCACTGCAAATGCCAGCGCAGTCCCGTCCGGGCCACCCACCA
GCCCTGGTCAGTCCCCCTCGAGGGCGACGCTCTATCTATCCATGCGCAGGATTCGAGGTGCGCTGCAAGAACAGTCTCGCAGT
CTCTCTCGCACCTGGGCTGCACTGCTCTCATCTTAACCCCTCCGCGCTTGTCACTGAGTACTAAATCTCACCGGAAGAG
GCTCTCGCGCACCCCTCGATCCCGAGCACGTTCTACATGCCACAGCGTCAAGAATTGAACACAATGACGTCARATCAGATCCCCGG
GAATTGTAATCATGGTCAAGCTTTCTGTGAAATTGTTATCCGCTCACAAATTCCACACAACATCAGAGCCGGAACGATAAAAGTG
TAAAGCCTGGGTGCCCTAAAGTGAAGCTCAACTCACATTAAATGCGTCTGCGCTACTGCCGCTTCCCTCGGGAAACCTGCTG
GCTGCACTTAATGAATGCCAACGGCGGGGGAGGGGGTGTGCGTATTTGGCGCTTCCCTCGCTACTGACTGCTGCGCT
GGTCTGCTGGGTGCGCGAGGGTGTAGCTGCTTCCGCTCAAGCTGGGGGGTGTGCGTACGGCAACCCCGCTGCGCCCTGGGTA
ACTATCGTCTGAGTCCAACCCGTAAGACACGACTTATGCCACCTGCGCAGGCCACTGGTACAGGATTAGCAGAGCAGGGTGT
GGCGGTGCTACAGAGTTGAGTGGGCTTAACTACGGTACACTAGAGGAGCAGTATTGTTATCTGCTCTGCTGAGGCCAGTT
ACCTCGGAAAAAGAGTTGGTAGCTTGTATCCGCAACAAACCAACCGCTGGTAGGGTGGTTTTGTTGCAAGCAGCAGATTACG
CCGAGAAAAAGGATCTCAAGAAGATCTTGTATCTTCTACGGGCTGACGCTCAGTGGAACGAAAACCTCAGTTAAGGGATT
GGTCATGAGATTATCAAAGGATCTCACCTAGATCTTTAAATTAAAGTAACTCTAAAGTATAATGAGTAAAC
TTGGTCTGACAGTTACCAATGCTTAACAGTGGACCTATCTCAGCGATCTGTCTATTGTTCACTCAGGTTACAGGATTAGCAGAG
GTGCTGAGATAACTACGAGGGCTTACCATCTGGCCCTAGTGTGCAATGATACCGCAGACCCACGCTCACGGCTCAGGCTCAGG
ATCAGCAATAACCGCAGCCGGAGGGCCGAGCGCAGAACGGTCTGCACTTTATCCGCTTACAGCTATTAAATTGTTGCC
GGGAAGCTAGAGTAAGTAGTCGCAAGTAAAGTGGCTGCACTGAGGAGTACATGATCCCCATGGTGTGCAAGGGTGTGCTG
GTATGGCTCATTCACTGGCTCCGAGGGTGTGAGCTGAGGAGTACATGATCTCTGAGAATAGTGTGCTGAGGAGTGGCTT
CTCCGATCGTGTGCTAGAGTAAGTAGTCGCTCCGAGGGTGTGAGCTGAGGAGTACATGATCTCTGAGGAGTGGCTT
AAGATGCTTCTGACTGGTGTGAGTACTCAACCAAGTCTGAGGAGTACATGATCTCTGAGAATAGTGTGCTGAGGAGTGGCTT
ACCGGATAATACCGCAGCCACATGCAAGAACCTTAAAGTGTCTGAGGAGTACATGATCTCTGAGGAGTGGCTT
CCGCTGAGGATTCAGTCTGAGTAAACCAACTCGTGCACCCACTGATCTCAGCATCTTACTTCACTGCTTCTGAGGAG
AAACAGGAAGGAAAATGCCCAAAAAAGGGATAAGGGCAGACGGAAATGTTGAATACTCATACTCTCTTCAATTATTG
AGCATTATCAGGGTATTGTCATGAGCGGATACATATTGAATGTTAGAAAAAATAAACAAATAGGGGTTCCGCGACATTTCCC
CGAAAATGCCCCCTGAGCTCAAGAACCTTAACTTATGACATTAACCTAATAAAATAGGGTATCACGGAGGGCTTCTGCTCG
GGCTTCTGGTGTAGCGGTGAAACCTCTGACACATGCACTGCTCCGGAGACGGTCAAGCTGCTGAGTGGCTT
AAGGGCTAGGGCGCTGAGGGTGTGCTGGGGCTGGCTTAACTATGCGGATCACGGAGATGAGACTGAC
CATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCCATTGCCATTGCGCACTGTTGGGA
AGGGCGATCGGTGCGGGCTTCTGCTATTACGCCAGTGGCAAAGGGGGATGTGCTGCAAGGGATAAGTGGGAAAGCCAGGGT
TTCCCACTGACGAGCTTGTAAAACGACGGCCAGTGCCTA

Figure 8 : Séquence nucléotidique du vecteur pESC, contenant le promoteur du gène sc3 (1-1033), un marqueur de résistance à la phléomycine (1540-2855) et le terminateur du gène sc3 (1104-1540)

Figure 9 : Séquence nucléotidique du vecteur pELP, contenant le promoteur du gène laccase (4457-6983), un marqueur de résistance à la phléomycine (507-1822) et le terminateur du gène sc3 (71-507) (suite de la séquence, page suivante)

CAGCGAAGGTCCGTTGCCGATGGGAAGCAGGCAATCAGTGGGTGCTTACGCCGCCACGATGTCGGGGAGCGTAGGCGCCCTCCCA
TAAGCGGCAAGCATCATGATGCTCTCGATTCCGATTGGAGACTTAAAGTGAGTGAGAAGGGCAGCAGAGACTCTCCGAGAGACCAGTGTGCGCAC
GTTCCCTGGCTTGGAAAGACTTAAAGTGAGTGAGAAGGGCAGCAGAGACTCTCCGAGAGACCAGTGTGCGCAC
CTGGGAAGGATGGCTCTGGTAGACATTGGCGAAGGTGCTTAGATGTCAGCGGGCTTCTGGATGATCATGCTAACCTTCTGA
CCTCGTCGGTGGTACGCATGGCAGGATTGAGCATTACGGTATGCCCTCCATTCAAAACGATAACCCCTCCCTCAGGTTGGTCACTC
CATAGAGCGGCACGCTCTCAAGGCTAGGCTTACACACCTCTCGCAACATCCCTATTACGGTGTCTGAAGGAACGACTTGTCA
GGGATCACATGAAGTGAGCATACTGTCGCCGGTCTCGCAGTACAGACGCTAGTACGGGAAGTCGACATCCAAGCGTTAGTCACCA
CATGGCAAAAAGCTGCACCAACTCTTATGGTAGTTGAGTTGCTGAGTGGTATACAGTCATTATCGACGGGAATGCCACCGGATAGG
GTGTGGCGGCCAATATTACATGCCCTGGCAATAGTCGATGTCGCTCTTGTCAATGAATATCAGGGTCAATGTGGAGACGGTTAA
ACAGCGTGAAGTGTGAATCCCTGGTGTGTTGGCGAACAGGTACGGTCAAGGAACACCAATATCTCTCGCAGCCCAGTTCTTG
CGAGCGGCACAGGCAGGCATCGCGAACAGATCCCAGCATCCGGCTCTGACATTGGGATACCTGAAGCCCTCAGGTACGGAGC
GAAGAGGTGGCTCTCGCAGCGATTGGCGAACGGGATAGCTGTTTCTCTCACCATTGGGAAGATGTGAAAGGCTCCATCATAT
AGCGGCTCAACTCTACCTCGAACATGTCACACGGCGGGAAACTTATTTATGTGACAAGGCCGAGCTATGATAGCTGCTCCCGAA
GTGGTAAGTCCCACATCGCGGTTACGGCAACAGTCTCGGAAAAAAATAAGAAGAATATTGTAGGTGCGTGTAGGCATCGCCCCAAA
TGCACACACGGAGGTTAGGAGATGAAGCGCCCGTGAAGCGTAAGGGAGTTGGTACCGCGCCCCGACCGACTCTCTCTT
CCCAGCATCATGTCGGCGAACACTTACCCCTATTGACCAACTCCACGAGAAAGCAGGAACAGCTTCTTGTCTCATGACGCC
GCAATCCAGACCCCTAGCCGGTTCTGTTACTCATCGTTATCCCTGCCCATCGTAGGGAGTCAGGCTGGCAGTGCCTAGTCCCGTCT
CTCTGCTGCACTAGAGAAGCCCCATGAGACAGCGTTTCTGCTTATTCCTGCTGTTCTATAGACACCATAGGGCAAAACGATCCCTG
CACGCCAGAGGTATTGGCTCGTAGATCCCAGTTCTCTCGGCTCTGAATCGGCTGCACGGCAGATAATGGGCCGGAAATGCT
ATAGGCTTCAAGCCCCCTATGAGAGTGCACAAAGGCTTGTCAAGTCAGGCTGGCTCTCACGAAGAGCGTCAACTCG
CGACAGCCCTTCAAGGGCAAGATAGATCTCCCATCATCCCTACTGCGCTCAGCGCCGGTACCGAACAAATTGACTTACCGACATC
CTCCCGACCGCAAATGCTGTTGACGGAACGTAATCTCTCGTCCCGCTCTTCTGCTCTCACGCATCCGTGTTGCGCGCA
CGGCCGCTCATCAGGACCAAGACCACTCAATGTCGGTACCGGCACAAATGGTACACTGCGGCAACTGAGTAGGTCTGTCACTCTG
GTGCAACCGTCGTTACCGCTGACCTTCGGGATACTGTCCTGCAGACATCTGGAGCGCTGTTTCCCTAGTATAATGATGTCTGTCC
GCAGGTCTTGAAGACCGCTGAGTCCCACCTGAGTTTGTAGGTAGGACCTGTTCTCCACAAACCCCTCTT

**Figure 9 : Séquence nucléotidique du vecteur pELP (suite),
contenant le promoteur du gène laccase (4457-6983), un
marqueur de résistance à la phléomycine (507-1822) et le
terminateur du gène sc3 (71-507)**

Figure 10 : Résultats de production des transformants présentant les activités les plus importantes. La culture a été effectuée avec ou sans (témoin) éthanol

12/13

Figure 11 : Suivi des activités laccase des transformants GPD 14 et 12.7 en fonction du temps avec ou (témoin) sans éthanol

13/13

TGGGGAGATGGTCTATAATACAAATGTCCTCTGCCCTGAGCTTCCCGCCTGGTGTCTGTCATGTCAGTGCGCGCACATGCCTTATTAAACCGT 100
 TGGGGAGCTGCCCGCGCCCAAGGAGATAGCATAATCGCTGAGAACCTAGTCGTCATGGCGGTGTAACCGTTCTGGCATTTATTTCGCACCTTC 200
 TCAAGAATATAAAGGCTATGTGATACGGTTCATCTAACCCCAGCGTCCCTCCGAAGAGGGCGTCCTCTCACTTCGCACTTCTACTGCTTAA 300
 CTCAGTTCTAGCGCGCTGTGGTCCCGTGTACGGACTTAAACACTGTCAGTAGATACTGTCGCCCGCGACGGGTGCTGCTTCTGGCGGGAGGGACTTGT 400
 S V H A A V G P V T D L T L I V D T V A F D G A A F R E 43
 CGACTGTAATGCCGGATTGGATTTCTAATTATAATCTCCAGGCAATTGTCGTCAGAGGAAACCACACTCCGTCATGGTCCGGTCATCGT AGGGTGGG 500
 A I V V Q B E P N S V I G P V I V 60
 TAGCTACRGAGTCTCTCCCTCATTTAGCTCATCACCAAGTGTATGATATTATAAGGTCAGAAAGGGGGACACTTCGCGTCATGTTTACACAT 600
 L D S P N M R Q S T S I H N H G I F O G N 74
 TTGGATTCTCGCAACATGCCCAACTCTACTTCATTCATGGCATGGCATCTTCCAAGGAAAGCGTACGGTGTATATCGGATAATCTATCTGTATCCATT 700
 GACTCGGATATAGGTCAAGGATTGGCGTGGCTGGCCCTCCTGAAGCCGTCGTCGAAATTATCTTCCTGAAATTTTAGATGGCGCCGCAATTCGTTAAC 800
 G Q N W A 95
 AGGTAAGGAGATGTCCTCCCTCGTTCCCCAGAACTAATTATCTCTAGTGGCCCAATTGCCCCCGGAGGGACTCGGTTCTGTACGACTTACCGAACCT 900
 Q 107
 TTCCAGACTGGCACATTTGGTATCAITCCATTATCAACTCAATCTGCGATGGACTGGGGAGCATTCGTCGTTCTCTCTCATCAAGTC 1000
 F Q T G T F N Y R S H L S T Q Y C D G L R G A F V 125
 CCGCTTCTCTCACTTATCTAGATCTACGATCCGCTCGACCCCTTACCGGTTGCTCTAGATGTCGACGRCGAGTCGCGCTGTGATTACTCTGGCGGACTG 1100
 I Y D F L D P Y R L L D V D D E S T V I T L A D W 176
 GTACCCACAGCTATGCCGAGGACATTCATCGCCTAGGAGATTTCCCAGATGTCTCCCTGCCTCTGTGAATTCAGACTAGTGAGGC 1200
 Y H S Y A E D I L I A 191
 TCTCTCTCATGTCACGGGAGATTGGCGGAGCCGGCGGAGAACGGCAACAGAACTATCTGTCATTACTGTTGAGCATGGAAAGCGGTAGGGCATTC 1300
 I L I N G H G R F A G A G G T A T E L S V I T V E H G K R 220
 CGGCTTGTAGATGTGTCATTTGTGATAGCTACCGATTTGGCCATTATCGCCTGTCGACCCCTGGTTTGGCGTGAARATCGATGCCATACGAA 1400
 Y R L R F A N I A C D P W F A V K I D S H T N 243
 CCTTCGCGTATCGAAGCTGACGGTATTACTACTGTGCGCTGTACGGTGGACTCCTCAATGTAAGGTTACCCCTAGCACTTCCCACCTCTGGATCCT 1500
 L R V I L E A D G I T T 254
 TATGACTTCCCAAGTCTTGTGGCCPACGATATGTCATCTCCATGCCAACCCGCTGTTGGAAGACTACTGTAAGCTGCTAAATGTTGCATGAC 1600
 T 1 F V G Q R Y S V I L H A N Q F V G N Y 274
 TGTCATGATTCTAACCCCGCAGGGATTCGGGCGCGTCCGACACGCGTGGGGATCTGACTCGGCTATTCTCGGTTATGTTGGCG 1700
 W I R A A P N G V S N F A G G I D S A I L R Y V G A 300
 CCCAGAAGAGAGGCCACACTAGTGGAGATACTCCATGCCACACACTCAAGAGCAGGATCTTCACCCGCTGATCTACCCGGCGCCAGGCATCCAC 1800
 P E E P N T S E D T P B D T L Q E Q D L H P L I L P G A G I H 333
 TCCCGTGGGGCCCGGACGTTGCCACACGCTATGAGTTCTGACTGTGGCGACTTTCTGGCCCCCTTATTATATATCTGGTTAGGATGCC 1900
 S R G A A D V W H T V S M E F 348
 GCAACATTCCAAATCTCTCTGGATGGCGTGGCCCTCCAGCCGTGGCTCATCTCTTCACAAGGATTTATCTAGCTGACGATTTGAATGTAGCC 2000
 L T L I K C S F T 357
 TGCCCGTCCTCTGCCATTTATCGGGAGCCAGACTGCTAATACCCCTCTCCGGGGATCTTCTGACTCCAGCGTCCGACATGACATCGTGGAGCT 2100
 M P V L L Q I L S G A Q T A N T L L P R G S F I Q A S H N D I V E L 391
 CAATTTCGGCAGCTTCGCACTGGCGTGGCCATTCTTCCTGCGAGCTGAAATTACTGCTCTTCTGACATCCAACTCCAA 2200
 N F P A V N V A A V G G P 409
 GTGAGCGCAGCGGGACCTTGGCTATGGCATATGACTTATTATAGCCATGGCCATGCACTGGCTTACGCTCTGTTGGAAAGCAACCTGCATAATC 2300
 H G H A F D V I R S A G T N S D N 426
 GGTCAATCGGTATTCTTCATTCGACTTCCATAGATGACGATGGCTCACTATGGTTTACCCAGGCTCGAGAGATGTGCTATCCACCGGTACCGATC 2400
 W F N P 441
 CTAATGACAACTGTGACGTGTTTGGCTATGATGTCCCTTGTGTTGGAGAGCTACGTTCTGGCGTGGCGTAAACCCGATCGCTTAACTG 2500
 P N D N V T I R F R A D N P 455
 CTGAATCTCTGTTGCTTGGCTCTCATATCTCATCAGGGTCCATGGTCCTTCACGCCACATTGACTGGCACCTGAACTCGGCTTGTGCTTGG 2600
 G P W F L H C R I D W H L E L G F A L V 475
 GATTGCGAGCGCCTAGCGATGGGACAGCGCAATTAAACCTCCTGGTGGCGTGCCTGTCAGATGACACATTCGCTTAACTGCTAGCTGCT 2700
 I A E A P S E H D S D I N P P A 491
 CGTGGGATGACCTATGCCCTACGTTGGCTGGCTCTCTTACTTATCTCAAGTTCTCACTTCACAGATATGACCCCTGGCGCGCT 2800
 A W H D D L C P T A W L L F Y Y F R F B P H I L N E T D M M P C R L S 525
 CAGCAGTAACTGAGCTTAAAGACCTCAAGGTTGACTAAGGAAAAGCGAAGCAGTATGAACTCTCATTTATCTTATATCGACACATTCAATTC 2900
 S S R N V K N L N V D 536
 CCTACGGGTTTCTCCGCGACCTGAATTGGGTGCTAGATCCCACATCTGGTGGAGTAGGAAAGAAATTCTGTATAAAACCCATGGGTCTCT 3000
 ARATATACATAACGTCGCGGGTAGTTACGCT 3037

Gène de la laccase d'*Halocyphina villosa*

Figure 12

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.