

Table 1-1 Addressing Mode Summary

Addressing Mode	Source Form	Abbreviation	Description
Indexed (preincrement)	INST oprx3,+xys	IDX	Effective address is the value in X, Y, or SP autoincremented by 1 to 8.
Indexed (postdecrement)	INST oprx3,xys-	IDX	Effective address is the value in X, Y, or SP. The value is postdecremented by 1 to 8.
Indexed (postincrement)	INST oprx3,xys+	IDX	Effective address is the value in X, Y, or SP. The value is postincremented by 1 to 8.
Indexed (accumulator offset)	INST abd,xysp	IDX	Effective address is the value in X, Y, SP, or PC plus the value in A, B, or D.
Indexed (9-bit offset)	INST oprx9,xysp	IDX1	Effective address is the value in X, Y, SP, or PC plus a 9-bit signed constant offset.
Indexed (16-bit offset)	INST oprx16,xysp	IDX2	Effective address is the value in X, Y, SP, or PC plus a 16-bit constant offset.
Indexed-indirect (16-bit offset)	INST [oprx16,xysp]	[IDX2]	The value in X, Y, SP, or PC plus a 16-bit constant offset points to the effective address.
Indexed-indirect (D accumulator offset)	INST [D,xysp]	[D,IDX]	The value in X, Y, SP, or PC plus the value in D points to the effective address.

1.8 Instruction Set Overview

All memory and I/O are mapped in a common 64K byte address space, allowing the same set of instructions to access memory, I/O, and control registers. Load, store, transfer, exchange, and move instructions facilitate movement of data to and from memory and peripherals.

There are instructions for signed and unsigned addition, division and multiplication with 8-bit, 16-bit, and some larger operands.

Special arithmetic and logic instructions aid stacking operations, indexing, BCD calculation, and condition code register manipulation. There are also dedicated instructions for multiply and accumulate operations, table interpolation, and specialized mathematical calculations for fuzzy logic operations.

A summary of the CPU instruction set is given in **Table 1-2** below. A detailed overview of the entire instruction set is covered in **Section 4** of this guide along with an instruction-by-instruction detailed description in **Appendix A**.

Table 1-2 Instruction Set Summary

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	SXHINZVC
ABA	Add B to A; (A)+(B) \Rightarrow A	INH	18 06	00	$\boxed{- - \Delta - \Delta \Delta \Delta \Delta}$
ABXSame as LEAX B,X	Add B to X; $(X)+(B)\Rightarrow X$	IDX	1A E5	Pf	
ABYSame as LEAY B,Y	Add B to Y; $(Y)+(B)\Rightarrow Y$	IDX	19 ED	Pf	
ADCA #opr8i ADCA opr8a ADCA opr16a ADCA oprx0_xysppc ADCA oprx16,xysppc ADCA oprx16,xysppc ADCA [D,xysppc] ADCA [oprx16,xysppc]	Add with carry to A; (A)+(M)+C \Rightarrow A or (A)+imm+C \Rightarrow A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	89 ii 99 dd B9 hh ll A9 xb A9 xb ff A9 xb ee ff A9 xb A9 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	SXHINZVC
ADCB #opr8i ADCB opr8a ADCB opr16a ADCB oprx0_xysppc ADCB oprx9,xysppc ADCB oprx16,xysppc ADCB [D,xysppc] ADCB [oprx16,xysppc]	Add with carry to B; (B)+(M)+C \Rightarrow B or (B)+imm+C \Rightarrow B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C9 ii D9 dd F9 hh ll E9 xb E9 xb ff E9 xb ee ff E9 xb E9 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	
ADDA #opr8i ADDA opr8a ADDA opr16a ADDA oprx0_xysppc ADDA oprx9,xysppc ADDA oprx16,xysppc ADDA [D,xysppc] ADDA [oprx16,xysppc]	Add to A; (A)+(M) \Rightarrow A or (A)+imm \Rightarrow A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8Bii 9Bdd BBhhll ABxb ABxbff ABxbeeff ABxb	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	
ADDB #opr8i ADDB opr8a ADDB opr16a ADDB oprx0_xysppc ADDB oprx9,xysppc ADDB oprx16,xysppc ADDB [D,xysppc] ADDB [oprx16,xysppc]	Add to B; (B)+(M) \Rightarrow B or (B)+imm \Rightarrow B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CBii DBdd FBhhll EBxb EBxbff EBxbeeff EBxb	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	
ADDD#opr16i ADDD opr8a ADDD opr16a ADDD oprx0_xysppc ADDD oprx9,xysppc ADDD oprx16,xysppc ADDD [D,xysppc] ADDD [oprx16,xysppc]	Add to D; (A:B)+(M:M+1)⇒A:B or (A:B)+imm⇒A:B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C3 jjkk D3 dd F3 hh l1 E3 xb E3 xb ff E3 xb ee ff E3 xb E3 xb ee ff	PO RPf RPO RPf RPO fRPP fIfRPf fIPRPf	
ANDA #opr8i ANDA opr8a ANDA opr16a ANDA oprx0_xysppc ANDA oprx9,xysppc ANDA oprx16,xysppc ANDA [D,xysppc] ANDA [oprx16,xysppc]	AND with A; (A)•(M)⇒A or (A)•imm⇒A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	84 ii 94 dd B4 hh ll A4 xb A4 xb ff A4 xb ee ff A4 xb	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	
ANDB #opr8i ANDB opr8a ANDB opr16a ANDB oprx0_xysppc ANDB oprx9,xysppc ANDB oprx16,xysppc ANDB [D,xysppc] ANDB [oprx16,xysppc]	AND with B; (B)•(M) \Rightarrow B or (B)•imm \Rightarrow B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C4 ii D4 dd F4 hh ll E4 xb E4 xb ff E4 xb ee ff E4 xb E4 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	
ANDCC#opr8i	AND with CCR; (CCR)•imm⇒CCR	IMM	10 ii	P	
ASL opr16aSame as LSL ASL oprx0_xysp ASL oprx9,xysppc ASL oprx16,xysppc ASL [D,xysppc] ASL [oprx16,xysppc] ASL [oprx16,xysppc] ASLASame as LSLA ASLBSame as LSLB	Arithmetic shift left M C b7 b0 Arithmetic shift left A Arithmetic shift left B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	78 hh 11 68 xb 68 xb ff 68 xb ee ff 68 xb 68 xb ee ff 48 58	rPwO rPw rPwO frPwP fIfrPw fIPrPw O	
ASLDSame as LSLD	Arithmetic shift left D C b7 A b0 b7 B b0	INH	59	0	

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	SXHINZVC
ASR opr16a ASR oprx0_xysppc ASR oprx9,xysppc ASR oprx16,xysppc ASR [D,xysppc] ASR [oprx16,xysppc] ASR [ASRA ASRB	Arithmetic shift right M b7 b0 C Arithmetic shift right A Arithmetic shift right B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	77 hh ll 67 xb 67 xb ff 67 xb ee ff 67 xb 67 xb 67 xb ee ff 47 57	rPwO rPw rPwO frPwP fIfrPw fIPrPw O	
BCC rel8Same as BHS	Branch if C clear; if C=0, then (PC)+2+rel⇒PC	REL	24 rr	PPP (branch) P (no branch)	
BCLR opr8a, msk8 BCLR opr16a, msk8 BCLR oprx0_xysppc, msk8 BCLR oprx9,xysppc, msk8 BCLR oprx16,xysppc, msk8	Clear bit(s) in M; (M)•mask byte⇒M	DIR EXT IDX IDX1 IDX2	4D dd mm 1D hh 11 mm 0D xb mm 0D xb ff mm 0D xb ee ff mm	rPwO rPwP rPwO rPwP frPwPO	
BCS rel8Same as BLO	Branch if C set; if C=1, then (PC)+2+rel⇒PC	REL	25 rr	PPP (branch) P (no branch)	
BEQ rel8	Branch if equal; if Z=1, then (PC)+2+rel⇒PC	REL	27 rr	PPP (branch) P (no branch)	
BGE rel8	Branch if ≥ 0, signed; if N⊕V=0, then (PC)+2+rel⇒PC	REL	2C rr	PPP (branch) P (no branch)	
BGND	Enter background debug mode	INH	00	VfPPP	
BGT rel8	Branch if > 0, signed; if $Z \mid (N \oplus V)=0$, then $(PC)+2+rel \Rightarrow PC$	REL	2E rr	PPP (branch) P (no branch)	
BHI rel8	Branch if higher, unsigned; if C Z=0, then (PC)+2+rel⇒PC	REL	22 rr	PPP (branch) P (no branch)	
BHS rel8Same as BCC	Branchifhigherorsame,unsigned;if C=0,then(PC)+2+rel⇒PC	REL	24 rr	PPP (branch) P (no branch)	
BITA#opr8i BITA opr8a BITA opr16a BITA oprx0_xysppc BITA oprx9,xysppc BITA oprx16,xysppc BITA [D,xysppc] BITA [oprx16,xysppc]	Bit test A; (A)●(M) or (A)●imm	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	85 ii 95 dd B5 hh ll A5 xb A5 xb ff A5 xb ee ff A5 xb A5 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	
BITB #opr8i BITB opr8a BITB opr16a BITB oprx0_xysppc BITB oprx9,xysppc BITB oprx16,xysppc BITB [D,xysppc] BITB [oprx16,xysppc]	Bit test B; (B)●(M) or (B)●imm	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C5 ii D5 dd F5 hh ll E5 xb E5 xb ff E5 xb ee ff E5 xb E5 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	
BLE rel8	Branch if \leq 0, signed; if $Z \mid (N \oplus V) = 1$, then $(PC) + 2 + rel \Rightarrow PC$	REL	2Frr	PPP (branch) P (no branch)	
BLO rel8Same as BCS	Branch if lower, unsigned; if C=1, then (PC)+2+rel⇒PC	REL	25 rr	PPP (branch) P (no branch)	
BLS rel8	Branch if lower or same, unsigned; if C Z=1, then (PC)+2+rel⇒PC	REL	23 rr	PPP (branch) P (no branch)	
BLT rel8	Branch if < 0, signed; if N⊕V=1, then (PC)+2+rel⇒PC	REL	2Drr	PPP (branch) P (no branch)	
BMI rel8	Branch if minus; if N=1, then (PC)+2+rel⇒PC	REL	2Brr	PPP (branch) P (no branch)	
BNE rel8	Branch if not equal to 0; if Z=0, then (PC)+2+rel⇒PC	REL	26 rr	PPP (branch) P (no branch)	
BPL rel8	Branch if plus; if N=0, then (PC)+2+rel⇒PC	REL	2A rr	PPP (branch) P (no branch)	
BRA rel8	Branch always	REL	20 rr	PPP	

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	SXHINZVC
BRCLR opr8a, msk8, rel8 BRCLR opr16a, msk8, rel8 BRCLR oprx0_xysppc, msk8, rel8 BRCLR oprx9,xysppc, msk8, rel8 BRCLR oprx16,xysppc, msk8, rel8	Branch if bit(s) clear; if (M)•(mask byte)=0, then (PC)+2+rel⇒PC	DIR EXT IDX IDX1 IDX2	4Fddmmrr 1Fhhllmmrr 0Fxbmmrr 0Fxbffmmrr 0Fxbeeffmmrr	rPPP rfPPP rPPP rfPPP PrfPPP	
BRN rel8	Branch never	REL	21 rr	P	
BRSET opr8, msk8, rel8 BRSET opr16a, msk8, rel8 BRSET oprx0_xysppc, msk8, rel8 BRSET oprx9,xysppc, msk8, rel8 BRSET oprx16,xysppc, msk8, rel8	Branch if bit(s) set; if (M)•(mask byte)=0, then (PC)+2+rel⇒PC	DIR EXT IDX IDX1 IDX2	4Eddmmrr 1Ehhllmmrr 0Exbmmrr 0Exbffmmrr 0Exbeeffmmrr	rPPP rfppp rPPP rfPPP PrfPPP	
BSET opr8, msk8 BSET opr16a, msk8 BSET oprx0_xysppc, msk8 BSET oprx9,xysppc, msk8 BSET oprx16,xysppc, msk8	Set bit(s) in M (M) mask byte⇒M	DIR EXT IDX IDX1 IDX2	4Cdd mm 1Chhllmm 0Cxbmm 0Cxbffmm 0Cxbeffmm	rPwO rPwP rPwO rPwP frPwPO	
BSR rel8	Branch to subroutine; (SP)–2 \Rightarrow SP RTN _H :RTN _L \Rightarrow M _{SP} :M _{SP+1} (PC)+2+rel \Rightarrow PC	REL	07 rr	SPPP	
BVC rel8	Branch if V clear; if V=0, then (PC)+2+rel⇒PC	REL	28 rr	PPP (branch) P (no branch)	
BVS rel8	Branch if V set; if V=1, then (PC)+2+rel⇒PC	REL	29 rr	PPP (branch) P (no branch)	
CALL opr16a, page CALL oprx0_xysppc, page CALL oprx9,xysppc, page CALL oprx16,xysppc, page CALL [D,xysppc] CALL [oprx16, xysppc]	Call subroutine in expanded memory (SP)–2⇒SP RTN _H :RTN _L ⇒M _{SP} :M _{SP+1} (SP)–1⇒SP; (PPG)⇒M _{SP} pg⇒PPAGE register subroutine address⇒PC	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	4A hh ll pg 4B xb pg 4B xb ff pg 4B xb ee ff pg 4B xb 4B xb ee ff	gnSsPPP gnSsPPP gnSsPPP fgnSsPPP flignSsPPP flignSsPPP	
СВА	Compare A to B; (A)–(B)	INH	18 17	00	
CLCSame as ANDCC #\$FE	Clear C bit	IMM	10 FE	P	[- - - - 0]
CLISame as ANDCC#\$EF	Clear I bit	IMM	10 EF	P	
CLR opr16a CLR oprx0_xysppc CLR oprx9,xysppc CLR oprx16,xysppc CLR [D,xysppc] CLR [oprx16,xysppc] CLR [oprx16,xysppc] CLRA CLRB	Clear M; \$00⇒M Clear A; \$00⇒A Clear B; \$00⇒B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	79 hh ll 69 xb 69 xb ff 69 xb ee ff 69 xb 69 xb 69 xb ee ff 87 C7	PwO Pw PwO PwP Pifw PiPw O	0100
CLVSame as ANDCC#\$FD	Clear V	IMM	10 FD	Р	
CMPA#opr8i CMPA opr8a CMPA opr16a CMPA oprx0_xysppc CMPA oprx9,xysppc CMPA oprx16,xysppc CMPA [D,xysppc] CMPA [oprx16,xysppc]	Compare A (A)–(M) or (A)–imm	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	81 ii 91 dd B1 hh 11 A1 xb A1 xb ff A1 xb ee ff A1 xb A1 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	
CMPB #opr8i CMPB opr8a CMPB opr16a CMPB oprx0_xysppc CMPB oprx9,xysppc CMPB oprx16,xysppc CMPB [D,xysppc] CMPB [oprx16,xysppc]	Compare B (B)–(M) or (B)–imm	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	Clii Dldd Flhhll Elxb Elxbff Elxbeeff Elxb	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	SXHINZVC
COM opr16a COM oprx0_xysppc COM oprx9,xysppc COM oprx16,xysppc COM[D,xysppc] COM[oprx16,xysppc] COMA COMB	Complement M; (\overline{M}) =\$FF-(M) \Rightarrow M Complement A; (\overline{A}) =\$FF-(A) \Rightarrow A Complement B; (\overline{B}) =\$FF-(B) \Rightarrow B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	71 hh 11 61 xb 61 xb ff 61 xb ee ff 61 xb 61 xb ee ff 41 51	rPwO rPw rPwO frPwP fIfrPw fIPrPw O	
CPD#opr16i CPD opr8a CPD opr16a CPD oprx0_xysppc CPD oprx9,xysppc CPD oprx16,xysppc CPD [D,xysppc] CPD [oprx16,xysppc]	Compare D (A:B)–(M:M+1) or (A:B)–imm	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8C jjkk 9C dd BC hh ll AC xb AC xb ff AC xb ee ff AC xb	PO RPf RPO RPf RPO fRPP fIfRPf fIPRPf	
CPS #opr16i CPS opr8a CPS opr16a CPS oprx0_xysppc CPS oprx9,xysppc CPS oprx16,xysppc CPS [D,xysppc] CPS [oprx16,xysppc]	Compare SP (SP)–(M:M+1) or (SP)–imm	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8F jjkk 9F dd BF hh ll AF xb AF xb ff AF xb ee ff AF xb AF xb ee ff	PO RPf RPO RPf RPO fRPP fIfRPf fIPRPf	
CPX#opr16i CPX opr8a CPX opr16a CPX oprx0_xysppc CPX oprx9,xysppc CPX oprx16,xysppc CPX [D,xysppc] CPX [oprx16,xysppc]	Compare X (X)–(M:M+1) or (X)–imm	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8E jjkk 9E dd BE hh ll AE xb AE xb ff AE xb ee ff AE xb AE xb ee ff	PO RPf RPO RPf RPO fRPP fIfRPf fIPRPf	
CPY #opr16i CPY opr8a CPY opr16a CPY oprx0_xysppc CPY oprx9,xysppc CPY oprx16,xysppc CPY [D,xysppc] CPY [oprx16,xysppc]	Compare Y (Y)–(M:M+1) or (Y)–imm	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8D jjkk 9D dd BD hh ll AD xb AD xb ff AD xb ee ff AD xb	PO RPf RPO RPf RPO fRPP fIfRPf fIPRPf	
DAA	Decimal adjust A for BCD	INH	18 07	OfO	
DBEQ abdxysp, rel9	Decrement and branch if equal to 0 (counter)–1⇒counter if (counter)=0, then branch	REL (9-bit)	04lbrr	PPP (branch) PPO (no branch)	
DBNE abdxysp, rel9	Decrement and branch if not equal to 0; (counter)–1⇒counter; if (counter)≠0, then branch	REL (9-bit)	04lbrr	PPP (branch) PPO (no branch)	
DEC opr16a DEC oprx0_xysppc DEC oprx9,xysppc DEC oprx16,xysppc DEC [D,xysppc] DEC [oprx16,xysppc] DECA DECB	Decrement M; (M)–1⇒M Decrement A; (A)–1⇒A Decrement B; (B)–1⇒B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	73 hh 11 63 xb 63 xb ff 63 xb ee ff 63 xb 63 xb ee ff 43 53	rPwO rPw rPwO frPwP fIfrPw fIPrPw O	
DESSame as LEAS –1,SP	Decrement SP; (SP)–1⇒SP	IDX	1B 9F	Pf	
DEX	Decrement X; (X)–1⇒X	INH	09	0	
DEY	Decrement Y; (Y)–1⇒Y	INH	03	0	
EDIV	Extended divide, unsigned; 32 by 16 to 16-bit; $(Y:D)+(X) \Rightarrow Y$; remainder $\Rightarrow D$	INH	11	fffffffff	

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	SXHINZVC
EDIVS	Extended divide, signed; 32 by 16 to 16-bit; (Y:D)+(X)⇒Y remainder⇒D	INH	18 14	Offfffffffo	
EMACS opr16a	Extended multiply and accumulate, signed; $(M_X:M_{X+1})\times(M_Y:M_{Y+1})+(M\sim M+3)\Rightarrow M\sim M+3$; 16 by 16 to 32-bit	Special	18 12 hh 11	ORROfffRRfWWP	
EMAXD oprx0_xysppc EMAXD oprx9,xysppc EMAXD oprx16,xysppc EMAXD [D,xysppc] EMAXD [oprx16,xysppc]	Extended maximum in D; put larger of 2 unsigned 16-bit values in D MAX[(D), (M:M+1)]⇒D N, Z, V, C bits reflect result of internal compare [(D)–(M:M+1)]	IDX1 IDX2 [D,IDX]	18 1A xb 18 1A xb ff 18 1A xb ee ff 18 1A xb 18 1A xb ee ff	ORPf ORPO OfRPP OfIfRPf OfIPRPf	
EMAXM oprx0_xysppc EMAXM oprx9,xysppc EMAXM oprx16,xysppc EMAXM [D,xysppc] EMAXM [oprx16,xysppc]	Extended maximum in M; put larger of 2 unsigned 16-bit values in M MAX[(D), (M:M+1)]⇒M:M+1 N, Z, V, C bits reflect result of internal compare [(D)–(M:M+1)]	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1E xb 18 1E xb ff 18 1E xb ee ff 18 1E xb 18 1E xb ee ff	ORPW ORPWO OfRPWP OfIfRPW OfIPRPW	
EMIND oprx0_xysppc EMIND oprx9,xysppc EMIND oprx16,xysppc EMIND [D,xysppc] EMIND [oprx16,xysppc]	Extended minimum in D; put smaller of 2 unsigned 16-bit values in D MIN[(D), (M:M+1)]⇒D N, Z, V, C bits reflect result of internal compare [(D)–(M:M+1)]	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1B xb 18 1B xb ff 18 1B xb ee ff 18 1B xb 18 1B xb ee ff	ORPf ORPO OfRPP OfIfRPf OfIPRPf	
EMINM oprx0_xysppc EMINM oprx9,xysppc EMINM oprx16,xysppc EMINM [D,xysppc] EMINM [oprx16,xysppc]	Extended minimum in M; put smaller of 2 unsigned 16-bit values in M MIN[(D), (M:M+1)]⇒M:M+1 N, Z, V, C bits reflect result of internal compare [(D)–(M:M+1)]	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1F xb 18 1F xb ff 18 1F xb ee ff 18 1F xb 18 1F xb ee ff	ORPW ORPWO OfRPWP OfIfRPW OfIPRPW	
EMUL	Extended multiply, unsigned (D)×(Y)⇒Y:D; 16 by 16 to 32-bit	INH	13	ffO	
EMULS	Extended multiply, signed (D)×(Y)⇒Y:D; 16 by 16 to 32-bit	INH	18 13	OfO OffO (if followed by page 2 instruction)	
EORA#opr8i EORA opr8a EORA opr16a EORA oprx0_xysppc EORA oprx9,xysppc EORA oprx16,xysppc EORA [D,xysppc] EORA [oprx16,xysppc]	Exclusive OR A $(A) \oplus (M) \Rightarrow A$ or $(A) \oplus \text{imm} \Rightarrow A$	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	88 ii 98 dd B8 hh ll A8 xb A8 xb ff A8 xb ee ff A8 xb	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	
EORB #opr8i EORB opr8a EORB opr16a EORB oprx0_xysppc EORB oprx9,xysppc EORB oprx16,xysppc EORB [D,xysppc] EORB [oprx16,xysppc]	Exclusive OR B (B)⊕(M)⇒B or (B)⊕imm⇒B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C8 ii D8 dd F8 hh ll E8 xb E8 xb ff E8 xb ee ff E8 xb E8 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	
ETBL oprx0_xysppc	16-bit; (M:M+1)+ [(B)×((M+2:M+3)–(M:M+1))]⇒D	IDX	18 3F xb	ORREFEEF	
Before executing ETBL, initialize By indirect addressing allowed.	vith fractional part of lookup value; initialize	e index regi	ister to point to first ta	able entry (M:M+1). No	extensions or
EXG abcdxysp,abcdxysp	Exchange register contents $(r1)\Leftrightarrow (r2)$ r1 and r2 same size $\$00:(r1)\Rightarrow r2r1=8$ -bit; r2=16-bit $(r1_L)\Leftrightarrow (r2)r1=16$ -bit; r2=8-bit	INH	B7 eb	P	
FDIV	Fractional divide; (D)÷(X)⇒X remainder⇒D; 16 by 16-bit	INH	18 11	Offfffffffo	

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	SXHINZVC
IBEQ abdxysp, rel9	Increment and branch if equal to 0 (counter)+1⇒counter If (counter)=0, then branch	REL (9-bit)	04lbrr	PPP (branch) PPO (no branch)	
IBNE abdxysp, rel9	Increment and branch if not equal to 0 (counter)+1⇒counter If (counter)≠0, then branch	REL (9-bit)	04lbrr	PPP (branch) PPO (no branch)	
IDIV	Integer divide, unsigned; (D)÷(X)⇒X Remainder⇒D; 16 by 16-bit	INH	18 10	Offfffffffo	
IDIVS	Integer divide, signed; (D)÷(X)⇒X Remainder⇒D; 16 by 16-bit	INH	18 15	Offfffffffo	
INC opr16a INC oprx0_xysppc INC oprx9,xysppc INC oprx16,xysppc INC [D,xysppc] INC [oprx16,xysppc] INCA INCB	Increment M; (M)+1⇒M Increment A; (A)+1⇒A Increment B; (B)+1⇒B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	72 hh 11 62 xb 62 xb ff 62 xb ee ff 62 xb 62 xb ee ff 42 52	rPwO rPw rPwO frPwP fIfrPw fIPrPw O	
INSSame as LEAS 1,SP	Increment SP; (SP)+1⇒SP	IDX	1B 81	Pf	
INX	Increment X; (X)+1⇒X	INH	08	0	
INY	Increment Y; (Y)+1⇒Y	INH	02	0	
JMP opr16a JMP oprx0_xysppc JMP oprx9,xysppc JMP oprx16,xysppc JMP [D,xysppc] JMP [oprx16,xysppc]	Jump Subroutine address⇒PC	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	06 hh 11 05 xb 05 xb ff 05 xb ee ff 05 xb 05 xb ee ff	PPP PPP PPP fPPP fIfPPP fIfPPP	
JSR opr8a JSR opr16a JSR oprx0_xysppc JSR oprx9,xysppc JSR oprx16,xysppc JSR [D,xysppc] JSR [oprx16,xysppc]	Jump to subroutine (SP)–2⇒SP RTN _H :RTN _L ⇒M _{SP} :M _{SP+1} Subroutine address⇒PC	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	17 dd 16 hh 11 15 xb 15 xb ff 15 xb ee ff 15 xb 15 xb ee ff	SPPP SPPP PPPS PPPS fPPPS fIfPPPS fIfPPPS	
LBCC rel16Same as LBHS	Long branch if C clear; if C=0, then (PC)+4+rel⇒PC	REL	18 24 qq rr	OPPP (branch) OPO (no branch)	
LBCS rel16Same as LBLO	Long branch if C set; if C=1, then (PC)+4+rel⇒PC	REL	18 25 qq rr	OPPP (branch) OPO (no branch)	
LBEQ rel16	Long branch if equal; if Z=1, then (PC)+4+rel⇒PC	REL	18 27 qq rr	OPPP (branch) OPO (no branch)	
LBGE rel16	Long branch if ≥ 0, signed If N⊕V=0, then (PC)+4+rel⇒PC	REL	18 2C qq rr	OPPP (branch) OPO (no branch)	
LBGT rel16	Long branch if > 0, signed If Z (N \oplus V)=0, then (PC)+4+rel \Rightarrow PC	REL	18 2E qq rr	OPPP (branch) OPO (no branch)	
LBHI rel16	Long branch if higher, unsigned If C Z=0, then (PC)+4+rel⇒PC	REL	18 22 qq rr	OPPP (branch) OPO (no branch)	
LBHS rel16Same as LBCC	Long branch if higher or same, unsigned; If C=0, (PC)+4+rel⇒PC	REL	18 24 qq rr	OPPP (branch) OPO (no branch)	
LBLE rel16	Long branch if \leq 0, signed; if Z (N \oplus V)=1, then (PC)+4+rel \Rightarrow PC	REL	18 2F qq rr	OPPP (branch) OPO (no branch)	
LBLO rel16Same as LBCS	Long branch if lower, unsigned; if C=1, then (PC)+4+rel⇒PC	REL	18 25 qq rr	OPPP (branch) OPO (no branch)	
LBLS rel16	Long branch if lower or same, unsigned; If C Z=1, then (PC)+4+rel⇒PC	REL	18 23 qq rr	OPPP (branch) OPO (no branch)	
LBLT rel16	Long branch if < 0, signed If N⊕V=1, then (PC)+4+rel⇒PC	REL	18 2D qq rr	OPPP (branch) OPO (no branch)	

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	SXHINZVC
LBMI rel16	Long branch if minus If N=1, then (PC)+4+rel⇒PC	REL	182Bqqrr	OPPP (branch) OPO (no branch)	
LBNE rel16	Long branch if not equal to 0 If Z=0, then (PC)+4+rel⇒PC	REL	18 26 qq rr	OPPP (branch) OPO (no branch)	
LBPL rel16	Long branch if plus If N=0, then (PC)+4+rel⇒PC	REL	182Aqqrr	OPPP (branch) OPO (no branch)	
LBRA rel16	Long branch always	REL	18 20 qq rr	OPPP	
LBRN rel16	Long branch never	REL	18 21 qq rr	ОРО	
LBVC rel16	Long branch if V clear If V=0,then (PC)+4+rel⇒PC	REL	18 28 qq rr	OPPP (branch) OPO (no branch)	
LBVS rel16	Long branch if V set If V=1,then (PC)+4+rel⇒PC	REL	18 29 qq rr	OPPP (branch) OPO (no branch)	
LDAA #opr8i LDAA opr8a LDAA opr16a LDAA oprx0_xysppc LDAA oprx9,xysppc LDAA oprx16,xysppc LDAA [D,xysppc] LDAA [oprx16,xysppc]	Load A (M)⇒A or imm⇒A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	86 ii 96 dd B6 hh ll A6 xb A6 xb ff A6 xb ee ff A6 xb	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	
LDAB #opr8i LDAB opr8a LDAB opr16a LDAB oprx0_xysppc LDAB oprx16,xysppc LDAB [D,xysppc] LDAB [oprx16,xysppc]	Load B (M)⇒B or imm⇒B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C6 ii D6 dd F6 hh ll E6 xb E6 xb ff E6 xb ee ff E6 xb E6 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	
LDD#opr16i LDD opr8a LDD opr16a LDD oprx0_xysppc LDD oprx9,xysppc LDD oprx16,xysppc LDD [D,xysppc] LDD [oprx16,xysppc]	Load D (M:M+1)⇒A:B or imm⇒A:B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CC jjkk DC dd FC hh ll EC xb EC xb ff EC xb ee ff EC xb EC xb ee ff	PO RPf RPO RPf RPO fRPP fIfRPf fIPRPf	
LDS#opr16i LDS opr8a LDS opr16a LDS oprx0_xysppc LDS oprx9,xysppc LDS oprx16,xysppc LDS [D,xysppc] LDS [oprx16,xysppc]	Load SP (M:M+1)⇒SP or imm⇒SP	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CF jjkk DF dd FF hh ll EF xb EF xb ff EF xb ee ff EF xb EF xb ee ff	PO RPf RPO RPf RPO fRPP fIfRPf fIPRPf	
LDX#opr16i LDX opr8a LDX opr16a LDX oprx0_xysppc LDX oprx9,xysppc LDX oprx16,xysppc LDX [D,xysppc] LDX [oprx16,xysppc]	Load X (M:M+1)⇒X or imm⇒X	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CE jjkk DE dd FE hh ll EE xb EE xb ff EE xb ee ff EE xb EE xb ee ff	PO RPf RPO RPf RPO fRPP fIfRPf fIPRPf	
LDY #opr16i LDY opr8a LDY opr16a LDY oprx0_xysppc LDY oprx9,xysppc LDY oprx16,xysppc LDY [D,xysppc] LDY [oprx16,xysppc]	Load Y (M:M+1)⇒Y or imm⇒Y	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CD jjkk DD dd FD hh ll ED xb ED xb ff ED xb ee ff ED xb ED xb ee ff	PO RPf RPO RPf RPO fRPP fIfRPf fIPRPf	

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	SXHINZVC
LEAS oprx0_xysppc LEAS oprx9,xysppc LEAS oprx16,xysppc	Load effective address into SP EA⇒SP	IDX IDX1 IDX2	1Bxb 1Bxbff 1Bxbeeff	Pf PO PP	
LEAX oprx0_xysppc LEAX oprx9,xysppc LEAX oprx16,xysppc	Load effective address into X EA⇒X	IDX IDX1 IDX2	1Axb 1Axbff 1Axbeeff	Pf PO PP	
LEAY oprx0_xysppc LEAY oprx9,xysppc LEAY oprx16,xysppc	Load effective address into Y EA⇒Y	IDX IDX1 IDX2	19 xb 19 xb ff 19 xb ee ff	Pf PO PP	
LSL opr16aSame as ASL LSL oprx0_xysppc LSL oprx16,xysppc LSL [D,xysppc] LSL [oprx16,xysppc] LSL [oprx16,xysppc] LSLASame as ASLA LSLBSame as ASLB	Logical shift left M C b7 b0 Logical shift left A Logical shift left B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	78 hhll 68 xb 68 xbff 68 xbeeff 68 xb 68 xb 68 xbeeff 48 58	rOPw rPw rPOw frPPw fIfrPw fIPrPw O	
LSLDSame as ASLD	Logical shift left D C b7 A b0 b7 B b0	INH	59	0	
LSR opr16a LSR oprx0_xysppc LSR oprx9,xysppc LSR oprx16,xysppc LSR [D,xysppc] LSR [oprx16,xysppc] LSR [oprx16,xysppc] LSRA LSRB	Logical shift right M 0 b7 b0 C Logical shift right A Logical shift right B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	74 hh ll 64 xb 64 xbff 64 xbeeff 64 xb 64 xb eeff 44 54	rPwO rPw rPwO frPwP fIfrPw fIPrPw O	
LSRD	Logical shift right D 0 b7 A b0 b7 B b0 C	INH	49	0	
MAXA oprx0_xysppc MAXA oprx9,xysppc MAXA oprx16,xysppc MAXA [D,xysppc] MAXA [oprx16,xysppc]	Maximum in A; put larger of 2 unsigned 8-bit values in A MAX[(A), (M)]⇒A N, Z, V, C bits reflect result of internal compare [(A)–(M)]	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 18 xb 18 18 xb ff 18 18 xb ee ff 18 18 xb 18 18 xb	OrPf OrPO OfrPP OfIfrPf OfIPrPf	
MAXM oprx0_xysppc MAXM oprx9,xysppc MAXM oprx16,xysppc MAXM [D,xysppc] MAXM [oprx16,xysppc]	Maximum in M; put larger of 2 unsigned 8-bit values in M MAX[(A), (M)]⇒M N, Z, V, C bits reflect result of internal compare [(A)–(M)]	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1C xb 18 1C xb ff 18 1C xb ee ff 18 1C xb 18 1C xb ee ff	OrPw OrPwO OfrPwP OfIfrPw OfIPrPw	
MEM	Determine grade of membership; μ (grade) \Rightarrow M $_Y$; (X)+4 \Rightarrow X; (Y)+1 \Rightarrow Y If (A) <p1 (a)="" or="">P2, then μ=0; else μ= MIN[((A)-P1)×S1, (P2-(A))×S2, \$FF] (A)=current crisp input value; X points at 4 data bytes (P1, P2, S1, S2) of a trapezoidal membership function; Y points at fuzzy input (RAM location)</p1>	Special	01	RRfOw	[- - ? - ? ? ?]?
MINA oprx0_xysppc MINA oprx9,xysppc MINA oprx16,xysppc MINA [D,xysppc] MINA [oprx16,xysppc]	Minimum in A; put smaller of 2 unsigned 8-bit values in A MIN[(A), (M)]⇒A N, Z, V, C bits reflect result of internal compare [(A)–(M)]	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 19 xb 18 19 xb ff 18 19 xb ee ff 18 19 xb 18 19 xb	OrPf OrPO OfrPP OfIfrPf OfIPrPf	
MINM oprx0_xysppc MINM oprx9,xysppc MINM oprx16,xysppc MINM [D,xysppc] MINM [oprx16,xysppc]	Minimum in N; put smaller of two unsigned 8-bit values in M MIN[(A), (M)]⇒M N, Z, V, C bits reflect result of internal compare [(A)–(M)]	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1D xb 18 1D xb ff 18 1D xb ee ff 18 1D xb 18 1D xb ee ff	OrPw OrPwO OfrPwP OfIfrPw OfIPrPw	

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	SXHINZVC
MOVB#opr8, opr16a MOVB#opr8i, oprx0_xysppc MOVB opr16a, opr16a MOVB opr16a, oprx0_xysppc MOVB oprx0_xysppc, opr16a MOVB oprx0_xysppc, oprx0_xysppc	Move byte Memory-to-memory 8-bit byte-move $(M_1) \Rightarrow M_2$ First operand specifies byte to move	IMM-EXT IMM-IDX EXT-EXT EXT-IDX IDX-EXT IDX-IDX	18 08 xb ii	OPwP OPwO OrPwPO OPrPw OrPwP OrPwO	
MOVW #oprx16, opr16a MOVW #opr16i, oprx0_xysppc MOVW opr16a, opr16a MOVW opr16a, oprx0_xysppc MOVW oprx0_xysppc, opr16a MOVW oprx0_xysppc, oprx0_xysppc	Move word Memory-to-memory 16-bit word-move (M₁:M₁+1)⇒M₂:M₂+1 First operand specifies word to move	IMM-EXT IMM-IDX EXT-EXT EXT-IDX IDX-EXT IDX-IDX	18 00 xb jj kk 18 04 hh 11 hh 11	OPPW	
MUL	Multiply, unsigned (A)×(B)⇒A:B; 8 by 8-bit	INH	12	0	
NEG opr16a NEG oprx0_xysppc NEG oprx9,xysppc NEG oprx16,xysppc NEG [D,xysppc] NEG [oprx16,xysppc] NEG [oprx16,xysppc] NEGA NEGB	Negate M; $0-(M) \Rightarrow M \text{ or } (\overline{M})+1 \Rightarrow M$ Negate A; $0-(A) \Rightarrow A \text{ or } (\overline{A})+1 \Rightarrow A$ Negate B; $0-(B) \Rightarrow B \text{ or } (\overline{B})+1 \Rightarrow B$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	70 hh ll 60 xb 60 xb ff 60 xb ee ff 60 xb 60 xb 60 xb ee ff 40 50	rPwO rPw rPwO frPwP fIfrPw fIPrPw O	
NOP	No operation	INH	A7	0	
ORAA #opr8i ORAA opr8a ORAA opr16a ORAA oprx0_xysppc ORAA oprx9,xysppc ORAA oprx16,xysppc ORAA [D,xysppc] ORAA [oprx16,xysppc]	OR accumulator A (A) (M)⇒A or (A) imm⇒A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8A ii 9A dd BA hh ll AA xb AA xb ff AA xb ee ff AA xb AA xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	
ORAB #opr8i ORAB opr8a ORAB opr16a ORAB oprx0_xysppc ORAB oprx9,xysppc ORAB oprx16,xysppc ORAB [D,xysppc] ORAB [oprx16,xysppc]	OR accumulator B (B) (M)⇒B or (B) imm⇒B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CAii DAdd FAhhll EAxb EAxbff EAxbeeff EAxb	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	
ORCC#opr8i	OR CCR; (CCR) imm⇒CCR	IMM	14 ii	P	
PSHA	Push A; (SP)–1⇒SP; (A)⇒M _{SP}	INH	36	Os	
PSHB	Push B; (SP)–1⇒SP; (B)⇒M _{SP}	INH	37	Os	
PSHC	Push CCR; (SP)–1⇒SP; (CCR)⇒M _{SP}	INH	39	Os	
PSHD	Push D (SP)–2⇒SP; (A:B)⇒M _{SP} :M _{SP+1}	INH	3B	os	
PSHX	Push X (SP) -2 \Rightarrow SP; $(X_H:X_L)$ \Rightarrow M _{SP} :M _{SP+1}	INH	34	OS	
PSHY	Push Y $(SP)-2\Rightarrow SP; (Y_H:Y_L)\Rightarrow M_{SP}:M_{SP+1}$	INH	35	OS	
PULA	Pull A (M _{SP})⇒A; (SP)+1⇒SP	INH	32	uf0	
PULB	Pull B (M _{SP})⇒B; (SP)+1⇒SP	INH	33	uf0	
PULC	Pull CCR (M _{SP})⇒CCR; (SP)+1⇒SP	INH	38	uf0	
PULD	Pull D (M _{SP} :M _{SP+1})⇒A:B; (SP)+2⇒SP	INH	3A	UfO	

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	SXHINZVC
PULX	Pull X $(M_{SP}:M_{SP+1}) \Rightarrow X_H:X_L; (SP)+2 \Rightarrow SP$	INH	30	UfO	
PULY	$\begin{array}{l} \text{Pull Y} \\ (\text{M}_{\text{SP}}\text{:}\text{M}_{\text{SP+1}}) {\Rightarrow} \text{Y}_{\text{H}}\text{:}\text{Y}_{\text{L}}; (\text{SP})\text{+}2{\Rightarrow}\text{SP} \end{array}$	INH	31	UfO	
REV	Rule evaluation, unweighted; find smallest rule input; store to rule outputs unless fuzzy output is larger	Special	18 3A	Orf(t^tx)O* ff+Orft^**	[- - ? - ? Δ ?]
	ach element in the rule list. The ^ denote by an interrupt: ff is the exit sequence a				
REVW	Rule evaluation, weighted; rule weights optional; find smallest rule input; store to rule outputs unless fuzzy output is larger	Special	18 3B	ORf(t^Tx)0* or ORf(r^ffRf)0** ffff+ORft^*** ffff+ORfr^****	[- - ? - ? A !
With weighting enabled, the t^Tx *Additional cycles caused by an into	x loop is executed once for each elemen oop is replaced by r^ffrf. errupt when weighting is not enabled: f nterrupt when weighting is enabled: ffi	fff is the	exit sequence and	ORft^ is the re-entry s	equence.
ROL opr16a ROL oprx0_xysppc ROL oprx9,xysppc ROL oprx16,xysppc ROL [D,xysppc] ROL [oprx16,xysppc] ROLA ROLB	Rotate left M C b7 b0 Rotate left A Rotate left B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	75 hh 11 65 xb 65 xb ff 65 xb ee ff 65 xb 65 xb ee ff 45	rPwO rPw rPwO frPwP fIfrPw fIPrPw O	
ROR opr16a ROR oprx0_xysppc ROR oprx9,xysppc ROR oprx16,xysppc ROR [D,xysppc] ROR [oprx16,xysppc] RORA RORB	Rotate right M b0 b7 C Rotate right A Rotate right B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	76 hh ll 66 xb ff 66 xb ff 66 xb ee ff 66 xb 66 xb ee ff 46	rPwO rPw rPwO frPwP fIfrPw fIPrPw O	
RTC	Return from call; $(M_{SP}) \Rightarrow PPAGE$ $(SP)+1 \Rightarrow SP$; $(M_{SP}:M_{SP+1}) \Rightarrow PC_H:PC_L$ $(SP)+2 \Rightarrow SP$	INH	0A	uUnfPPP	
RTI	$\label{eq:Return from interrupt} $$(M_{SP}) \Rightarrow CCR; (SP)+1 \Rightarrow SP$ $$(M_{SP}:M_{SP+1}) \Rightarrow B:A; (SP)+2 \Rightarrow SP$ $$(M_{SP}:M_{SP+1}) \Rightarrow X_H:X_L: (SP)+4 \Rightarrow SP$ $$(M_{SP}:M_{SP+1}) \Rightarrow PC_H:PC_L; (SP)+2 \Rightarrow SP$ $$(M_{SP}:M_{SP+1}) \Rightarrow Y_H:Y_L; (SP)+4 \Rightarrow SP$ $$$	INH	0B	uUUUUPPP Or uUUUUfVfPPP*	
*RTI takes 11 cycles if an interrupt is	pending.				
RTS	Return from subroutine $(M_{SP}:M_{SP+1}) \Rightarrow PC_H:PC_L;$ $(SP)+2 \Rightarrow SP$	INH	3D	UfPPP	
SBA	Subtract B from A; (A)–(B)⇒A	INH	18 16	00	
SBCA #opr8i SBCA opr8a SBCA opr16a SBCA oprx0_xysppc SBCA oprx9,xysppc SBCA oprx16,xysppc SBCA [D,xysppc] SBCA [oprx16,xysppc]	Subtract with carry from A (A)–(M)–C⇒A or (A)–imm–C⇒A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	82 ii 92 dd B2 hh ll A2 xb A2 xb ff A2 xb ee ff A2 xb	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	SXHINZVC
SBCB#opr8i SBCB opr8a SBCB opr16a SBCB oprx0_xysppc SBCB oprx9,xysppc SBCB oprx16,xysppc SBCB [D,xysppc] SBCB [oprx16,xysppc]	Subtract with carry from B (B)–(M)–C⇒B or (B)–imm–C⇒B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C2 ii D2 dd F2 hh ll E2 xb E2 xb ff E2 xb ee ff E2 xb E2 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	
SECSame as ORCC #\$01	Set C bit	IMM	14 01	P	1
SEISame as ORCC #\$10	Set I bit	IMM	1410	P	1
SEVSame as ORCC #\$02	Set V bit	IMM	14 02	P	1
SEX abc, dxyspSame as TFR r1, r2	Sign extend; 8-bit r1 to 16-bit r2 \$00:(r1)⇒r2 if bit 7 of r1 is 0 \$FF:(r1)⇒r2 if bit 7 of r1 is 1	INH	B7 eb	P	
STAA opr8a STAA opr16a STAA oprx0_xysppc STAA oprx9,xysppc STAA oprx16,xysppc STAA [D,xysppc] STAA [oprx16,xysppc]	Store accumulator A (A)⇒M	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5A dd 7A hh ll 6A xb 6A xb ff 6A xb ee ff 6A xb 6A xb	Pw PwO Pw PwO PwP PIfw PIPw	
STAB opr8a STAB opr16a STAB oprx0_xysppc STAB oprx9,xysppc STAB oprx16,xysppc STAB [D,xysppc] STAB [oprx16,xysppc]	Store accumulator B (B)⇒M	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5B dd 7B hh ll 6B xb 6B xb ff 6B xb ee ff 6B xb 6B xb	PW PwO Pw PwO PwP PIfw PIPw	
STD opr8a STD opr16a STD oprx0_xysppc STD oprx9,xysppc STD oprx16,xysppc STD [D,xysppc] STD [oprx16,xysppc]	Store D (A:B)⇒M:M+1	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5C dd 7C hh ll 6C xb 6C xb ff 6C xb ee ff 6C xb 6C xb	PW PWO PW PWO PWP PIFW	
STOP	$ \begin{array}{l} \text{Stop processing; } (SP)-2 \Rightarrow SP \\ \text{RTN}_{H}: \text{RTN}_{L} \Rightarrow M_{SP}: M_{SP+1} \\ (SP)-2 \Rightarrow SP; (Y_{H}:Y_{L}) \Rightarrow M_{SP}: M_{SP+1} \\ (SP)-2 \Rightarrow SP; (X_{H}:X_{L}) \Rightarrow M_{SP}: M_{SP+1} \\ (SP)-2 \Rightarrow SP; (B:A) \Rightarrow M_{SP}: M_{SP+1} \\ (SP)-1 \Rightarrow SP; (CCR) \Rightarrow M_{SP} \\ \text{Stop all clocks} \\ \end{array} $	INH	18 3E	oosssssf (enter stop mode) fvfppp (exit stop mode) ff (continue stop mode) oo (if stop mode disabled by S=1)	
STS opr8a STS opr16a STS oprx0_xysppc STS oprx9,xysppc STS oprx16,xysppc STS [D,xysppc] STS [oprx16,xysppc]	Store SP (SP _H :SP _L)⇒M:M+1	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5Fdd 7Fhhll 6Fxb 6Fxbff 6Fxbeeff 6Fxb 6Fxb	PW PWO PW PWO PWP PIfW PIPW	
STX opr8a STX opr16a STX oprx0_xysppc STX oprx9,xysppc STX oprx16,xysppc STX [D,xysppc] STX [oprx16,xysppc]	Store X $(X_H:X_L) \Rightarrow M:M+1$	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5E dd 7E hh ll 6E xb 6E xb ff 6E xb ee ff 6E xb 6E xb ee ff	PW PWO PW PWO PWP PIfW PIPW	

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	SXHINZVC
STY opr8a STY opr16a STY oprx0_xysppc STY oprx9,xysppc STY oprx16,xysppc STY [D,xysppc] STY [oprx16,xysppc]	Store Y (Y _H :Y _L)⇒M:M+1	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5D dd 7D hh ll 6D xb 6D xb ff 6D xb ee ff 6D xb 6D xb ee ff	PW PWO PW PWO PWP PIFW PIPW	
SUBA #opr8i SUBA opr8a SUBA opr16a SUBA oprx0_xysppc SUBA oprx9,xysppc SUBA oprx16,xysppc SUBA [D,xysppc] SUBA [oprx16,xysppc]	Subtract from A (A)–(M)⇒A or (A)–imm⇒A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	80 ii 90 dd B0 hh ll A0 xb A0 xb ff A0 xb ee ff A0 xb	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	
SUBB #opr8i SUBB opr8a SUBB opr16a SUBB oprx0_xysppc SUBB oprx9,xysppc SUBB oprx16,xysppc SUBB [D,xysppc] SUBB [oprx16,xysppc]	Subtract from B (B)–(M)⇒B or (B)–imm⇒B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C0 ii D0 dd F0 hh ll E0 xb E0 xb ff E0 xb ee ff E0 xb E0 xb	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	
SUBD #opr16i SUBD opr8a SUBD opr16a SUBD oprx0_xysppc SUBD oprx9,xysppc SUBD oprx16,xysppc SUBD [D,xysppc] SUBD [oprx16,xysppc]	Subtract from D (A:B)–(M:M+1)⇒A:B or (A:B)–imm⇒A:B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	83 jjkk 93 dd B3 hh ll A3 xb A3 xb ff A3 xb ee ff A3 xb	PO RPf RPO RPf RPO fRPP fIfRPf fIPRPf	
SWI	Software interrupt; (SP)–2 \Rightarrow SP RTN _H :RTN _L \Rightarrow M _{SP} :M _{SP+1} (SP)–2 \Rightarrow SP; (Y _H :Y _L) \Rightarrow M _{SP} :M _{SP+1} (SP)–2 \Rightarrow SP; (X _H :X _L) \Rightarrow M _{SP} :M _{SP+1} (SP)–2 \Rightarrow SP; (B:A) \Rightarrow M _{SP} :M _{SP+1} (SP)–1 \Rightarrow SP; (CCR) \Rightarrow M _{SP} ;1 \Rightarrow I (SWI vector) \Rightarrow PC	INH	3F	VSPSSPSsP*	1_1
*The CPU also uses VSPSSPSsP for TAB	hardware interrupts and unimplemente Transfer A to B; (A)⇒B	d opcode t	raps.	00	
TAP	Transfer A to CCR; (A)⇒CCR Assembled as TFR A, CCR	INH	B7 02	P	
ТВА	Transfer B to A; (B)⇒A	INH	18 OF	00	
TBEQ abdxysp,rel9	Test and branch if equal to 0 If (counter)=0, then (PC)+2+rel⇒PC	REL (9-bit)	04lbrr	PPP (branch) PPO (no branch)	
TBL oprx0_xysppc	Table lookup and interpolate, 8-bit (M)+[(B)×((M+1)–(M))]⇒A	IDX	18 3D xb	ORfffP	
TBNE abdxysp,rel9	Test and branch if not equal to 0 If (counter)≠0, then (PC)+2+rel⇒PC	REL (9-bit)	04lbrr	PPP (branch) PPO (no branch)	
TFR abcdxysp,abcdxysp	Transfer from register to register $(r1)\Rightarrow r2r1$ and $r2$ same size $\$00:(r1)\Rightarrow r2r1=8$ -bit; $r2=16$ -bit $(r1_L)\Rightarrow r2r1=16$ -bit; $r2=8$ -bit	INH	B7 eb	P	
TPASame as TFR CCR ,A	Transfer CCR to A; (CCR)⇒A	INH	B7 20	Р	

Source Form	Operation	Address Mode	Machine Coding (Hex)	Access Detail	SXHINZVC
TRAP trapnum	$\label{eq:continuous_problem} \begin{split} & \text{Trap unimplemented opcode;} \\ & (SP)-2\Rightarrow SP \\ & \text{RTN}_H: \text{RTN}_L \Rightarrow M_{SP}: M_{SP+1} \\ & (SP)-2\Rightarrow SP; \ (Y_H:Y_L)\Rightarrow M_{SP}: M_{SP+1} \\ & (SP)-2\Rightarrow SP; \ (X_H:X_L)\Rightarrow M_{SP}: M_{SP+1} \\ & (SP)-2\Rightarrow SP; \ (B:A)\Rightarrow M_{SP}: M_{SP+1} \\ & (SP)-1\Rightarrow SP; \ (CCR)\Rightarrow M_{SP} \\ & 1\Rightarrow l; \ (\text{trap vector})\Rightarrow PC \end{split}$	INH	18 tn tn = \$30-\$39 or tn = \$40-\$FF	OVSPSSPSsP	
TST opr16a TST oprx0_xysppc TST oprx9,xysppc TST oprx16,xysppc TST [D,xysppc] TST [oprx16,xysppc] TSTA TSTB TSXSame as TFR SP,X	Test M; (M)–0 Test A; (A)–0 Test B; (B)–0 Transfer SP to X; (SP)⇒X	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	F7 hh ll E7 xb E7 xb ff E7 xb ee ff E7 xb ee ff E7 xb E7 xb ee ff 97 D7	rPO rPf rPO frPP fIfrPf fIPrPf O	
	, ,				
TSYSame as TFR SP,Y	Transfer SP to Y; (SP)⇒Y	INH	B7 76	P	
TXSSame as TFR X,SP	Transfer X to SP; (X)⇒SP	INH	B7 57	P	
TYSSame as TFR Y,SP	Transfer Y to SP; (Y)⇒SP	INH	B7 67	P	
WAV	Wait for interrupt; $(SP)-2\Rightarrow SP$ $RTN_H:RTN_L\Rightarrow M_{SP}:M_{SP+1}$ $(SP)-2\Rightarrow SP; (Y_H:Y_L)\Rightarrow M_{SP}:M_{SP+1}$ $(SP)-2\Rightarrow SP; (X_H:X_L)\Rightarrow M_{SP}:M_{SP+1}$ $(SP)-2\Rightarrow SP; (B:A)\Rightarrow M_{SP}:M_{SP+1}$ $(SP)-1\Rightarrow SP; (CCR)\Rightarrow M_{SP}$ Calculate weighted average; sum of	INH Special	3E	OSSSSSE (before interrupt) fVfPPP (after interrupt)	or or -1-1-1
	products (SOP) and sum of weights (SOW)* $\sum_{i=1}^{B} S_i F_i \Rightarrow Y:D$ $\sum_{i=1}^{B} F_i \Rightarrow X$		18 3C	Of(frr^ffff)O** SSS+UUUrr^***	
*Initialize B, X, and Y: B=number of elements; X points at first element in S _i list; Y points at first element in F _i list. All S _i and F _i elements are 8-bit values. **The frr^ffff sequence is the loop for one iteration of SOP and SOW accumulation. The ^ denotes a check for pending interrupt requests. ***Additional cycles caused by an interrupt: SSS is the exit sequence and UUUrr^ is the re-entry sequence. Intermediate values use six stack bytes.					
wavr*	Resume executing interrupted WAV	Special	3C	UUUrr^ffff(frr^ ffff)0** SSS+UUUrr^***	?-?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
The frr^ffff sequence is the lo	*wavr is a pseudoinstruction that recovers intermediate results from the stack rather than initializing them to 0. **The frr^ffff sequence is the loop for one iteration of SOP and SOW recovery. The ^ denotes a check for pending interrupt requests. *These are additional cycles caused by an interrupt: SSS is the exit sequence and UUUrr^ is the re-entry sequence.				
XGDXSame as EXG D, X	Exchange D with X; (D)⇔(X)	INH	B7 C5	P	
XGDYSame as EXG D, Y	Exchange D with Y; (D)⇔(Y)	INH	B7 C6	P	

1.8.1 Register and Memory Notation

Table 1-3 Register and Memory Notation

A or a	Accumulator A
An	Bit n of accumulator A
B or b	Accumulator B
Bn	Bit n of accumulator B
D or d	Accumulator D
Dn	Bit n of accumulator D
X or x	Index register X
X _H	High byte of index register X
X _L	Low byte of index register X
Xn	Bit n of index register X
Y or y	Index register Y
Y _H	High byte of index register Y
Y _L	Low byte of index register Y
Yn	Bit n of index register Y
SP or sp	Stack pointer
SPn	Bit n of stack pointer
PC or pc	Program counter
PC _H	High byte of program counter
PC _L	Low byte of program counter
CCR or c	Condition code register
М	Address of 8-bit memory location
Mn	Bit n of byte at memory location M
Rn	Bit n of the result of an arithmetic or logical operation
In	Bit n of the intermediate result of an arithmetic or logical operation
RTN _H	High byte of return address
RTN _L	Low byte of return address
()	Contents of

1.8.2 Source Form Notation

The **Source Form** column of the summary in **Table 1-2** gives essential information about assembler source forms. For complete information about writing source files for a particular assembler, refer to the documentation provided by the assembler vendor.

Everything in the **Source Form** column, *except expressions in italic characters*, is literal information which must appear in the assembly source file exactly as shown. The initial 3- to 5-letter mnemonic is always a literal expression. All commas, pound signs (#), parentheses, square brackets ([or]), plus signs (+), minus signs (-), and the register designation (A, B, D), are literal characters.

The groups of italic characters shown in **Table 1-4** represent variable information to be supplied by the programmer. These groups can include any alphanumeric character or the underscore character, but cannot

include a space or comma. For example, the groups *xysppc* and *oprx0_xysppc* are both valid, but the two groups *oprx0_xysppc* are not valid because there is a space between them.

Table 1-4 Source Form Notation

abc	Register designator for A, B, or CCR
abcdxysp	Register designator for A, B, CCR, D, X, Y, or SP
abd	Register designator for A, B, or D
abdxysp	Register designator for A, B, D, X, Y, or SP
dxysp	Register designator for D, X, Y, or SP
msk8	8-bit mask value Some assemblers require the # symbol before the mask value.
opr8i	8-bit immediate value
opr16i	16-bit immediate value
opr8a	8-bit address value used with direct address mode
opr16a	16-bit address value
oprx0_xysp	Indexed addressing postbyte code: oprx3,-xysp — Predecrement X, Y, or SP by 1–8 oprx3,+xysp — Preincrement X, Y, or SP by 1–8 oprx3,xysp- — Postdecrement X, Y, or SP by 1–8 oprx3,xysp+ — Postincrement X, Y, or SP by 1–8 oprx5,xysppc — 5-bit constant offset from X, Y, SP, or PC abd,xysppc — Accumulator A, B, or D offset from X, Y, SP, or PC
oprx3	Any positive integer from 1 to 8 for pre/post increment/decrement
oprx5	Any integer from –16 to +15
oprx9	Any integer from –256 to +255
oprx16	Any integer from -32,768 to +65,535
page	8-bit value for PPAGE register Some assemblers require the # symbol before this value.
rel8	Label of branch destination within –256 to +255 locations
rel9	Label of branch destination within -512 to +511 locations
rel16	Any label within the 64-Kbyte memory space
trapnum	Any 8-bit integer from \$30 to \$39 or from \$40 to \$FF
xysp	Register designator for X or Y or SP
xysppc	Register designator for X or Y or SP or PC

1.8.3 Operation Notation

Table 1-5 Operation Notation

+	Add
_	Subtract
•	AND
	OR
\oplus	Exclusive OR
×	Multiply
÷	Divide
:	Concatenate
\Rightarrow	Transfer
\Leftrightarrow	Exchange

1.8.4 Address Mode Notation

Table 1-6 Address Mode Notation

INH	Inherent; no operands in instruction stream
IMM	Immediate; operand immediate value in instruction stream
DIR	Direct; operand is lower byte of address from \$0000 to \$00FF
EXT	Operand is a 16-bit address
REL	Two's complement relative offset; for branch instructions
IDX	Indexed (no extension bytes); includes: 5-bit constant offset from X, Y, SP or PC Pre/post increment/decrement by 1–8 Accumulator A, B, or D offset
IDX1	9-bit signed offset from X, Y, SP, or PC; 1 extension byte
IDX2	16-bit signed offset from X, Y, SP, or PC; 2 extension bytes
[IDX2]	Indexed-indirect; 16-bit offset from X, Y, SP, or PC
[D, IDX]	Indexed-indirect; accumulator D offset from X, Y, SP, or PC

1.8.5 Machine Code Notation

In the **Machine Code (Hex)** column of the summary in **Table 1-2**, digits 0–9 and upper case letters A–F represent hexadecimal values. Pairs of lower-case letters represent 8-bit values as shown in **Table 1-7**.

Table 1-7 Machine Code Notation

dd	8-bit direct address from \$0000 to \$00FF; high byte is \$00
ee	High byte of a 16-bit constant offset for indexed addressing
eb	Exchange/transfer postbyte
ff	Low eight bits of a 9-bit signed constant offset in indexed addressing, or low byte of a 16-bit constant offset in indexed addressing
hh	High byte of a 16-bit extended address
ii	8-bit immediate data value
jj	High byte of a 16-bit immediate data value
kk	Low byte of a 16-bit immediate data value
lb	Loop primitive (DBNE) postbyte
11	Low byte of a 16-bit extended address
mm	8-bit immediate mask value for bit manipulation instructions; bits that are set indicate bits to be affected
pg	Program page or bank number used in CALL instruction
qq	High byte of a 16-bit relative offset for long branches
tn	Trap number from \$30 to \$39 or from \$40 to \$FF
rr	Signed relative offset \$80 (–128) to \$7F (+127) relative to the byte following the relative offset byte, or low byte of a 16-bit relative offset for long branches
xb	Indexed addressing postbyte

1.8.6 Access Detail Notation

A single-letter code in the **Access Detail** column of **Table 1-2** represents a single CPU access cycle. An upper-case letter indicates a 16-bit access.

Table 1-8 Access Detail Notation

f	Free cycle. During an f cycle, the CPU does not use the bus. An f cycle is always one cycle of the system bus clock. An f cycle can be used by a queue controller or the background debug system to perform a single-cycle access without disturbing the CPU.
g	Read PPAGE register. A g cycle is used only in CALL instructions and is not visible on the external bus. Since PPAGE is an internal 8-bit register, a g cycle is never stretched.
I	Read indirect pointer. Indexed-indirect instructions use the 16-bit indirect pointer from memory to address the instruction operand. An I cycle is a 16-bit read that can be aligned or misaligned. An I cycle is extended to two bus cycles if the MCU is operating with an 8-bit external data bus and the corresponding data is stored in external memory. There can be additional stretching when the address space is assigned to a chip-select circuit programmed for slow memory. An I cycle is also stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle misaligned access.
i	Read indirect PPAGE value. An \pm cycle is used only in indexed-indirect CALL instructions. The 8-bit PPAGE value for the CALL destination is fetched from an indirect memory location. An \pm cycle is stretched only when controlled by a chip-select circuit that is programmed for slow memory.
n	Write PPAGE register. An n cycle is used only in CALL and RTC instructions to write the destination value of the PPAGE register and is not visible on the external bus. Since the PPAGE register is an internal 8-bit register, an n cycle is never stretched.
0	Optional cycle. An \bigcirc cycle adjusts instruction alignment in the instruction queue. An \bigcirc cycle can be a free cycle (£) or a program word access cycle (P). When the first byte of an instruction with an odd number of bytes is misaligned, the \bigcirc cycle becomes a P cycle to maintain queue order. If the first byte is aligned, the \bigcirc cycle is an £ cycle. The \$18 prebyte for a page-two opcode is treated as a special one-byte instruction. If the prebyte is misaligned, the \bigcirc cycle at the beginning of the instruction becomes a P cycle to maintain queue order. If the prebyte is aligned, the \bigcirc cycle is an £ cycle. If the instruction has an odd number of bytes, it has a second \bigcirc cycle at the end. If the first \bigcirc cycle is an £ cycle (prebyte misaligned), the second \bigcirc cycle is an £ cycle. If the first \bigcirc cycle is an £ cycle (prebyte aligned), the second \bigcirc cycle is
	a P cycle. An O cycle that becomes a P cycle can be extended to two bus cycles if the MCU is operating with an 8-bit external data bus and the program is stored in external memory. There can be additional stretching when the address space is assigned to a chip-select circuit programmed for slow memory. An O cycle that becomes an £ cycle is never stretched.
Р	Program word access. Program information is fetched as aligned 16-bit words. A P cycle is extended to two bus cycles if the MCU is operating with an 8-bit external data bus and the program is stored externally. There can be additional stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
r	8-bit data read. An ${\tt r}$ cycle is stretched only when controlled by a chip-select circuit programmed for slow memory.
R	16-bit data read. An $\mathbb R$ cycle is extended to two bus cycles if the MCU is operating with an 8-bit external data bus and the corresponding data is stored in external memory. There can be additional stretching when the address space is assigned to a chip-select circuit programmed for slow memory. An $\mathbb R$ cycle is also stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle misaligned access.
Ø	Stack 8-bit data. An s cycle is stretched only when controlled by a chip-select circuit programmed for slow memory.

Table 1-8 Access Detail Notation (Continued)

S	external data bus and the SP is pointing to external memory. There can be additional stretching if the address space is assigned to a chip-select circuit programmed for slow memory. An S cycle is also stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle misaligned access. The internal RAM is designed to allow single cycle misaligned word access.
W	8-bit data write. A $_{\rm W}$ cycle is stretched only when controlled by a chip-select circuit programmed for slow memory.
W	16-bit data write. A \overline{w} cycle is extended to two bus cycles if the MCU is operating with an 8-bit external data bus and the corresponding data is stored in external memory. There can be additional stretching when the address space is assigned to a chip-select circuit programmed for slow memory. A \overline{w} cycle is also stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle misaligned access.
u	Unstack 8-bit data. A $\ensuremath{\mathtt{W}}$ cycle is stretched only when controlled by a chip-select circuit programmed for slow memory.
U	Unstack 16-bit data. A $\mbox{\sc U}$ cycle is extended to two bus cycles if the MCU is operating with an 8-bit external data bus and the SP is pointing to external memory. There can be additional stretching when the address space is assigned to a chip-select circuit programmed for slow memory. A $\mbox{\sc U}$ cycle is also stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle misaligned access. The internal RAM is designed to allow single-cycle misaligned word access.
V	16-bit vector fetch. Vectors are always aligned 16-bit words. A v cycle is extended to two bus cycles if the MCU is operating with an 8-bit external data bus and the program is stored in external memory. There can be additional stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
t	8-bit conditional read. A \pm cycle is either a data read cycle or a free cycle, depending on the data and flow of the REVW instruction. A \pm cycle is stretched only when controlled by a chip-select circuit programmed for slow memory.
Т	16-bit conditional read. A T cycle is either a data read cycle or a free cycle, depending on the data and flow of the REV or REVW instruction. A T cycle is extended to two bus cycles if the MCU is operating with an 8-bit external data bus and the corresponding data is stored in external memory. There can be additional stretching when the address space is assigned to a chip-select circuit programmed for slow memory. A T cycle is also stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle misaligned access.
х	8-bit conditional write. An \times cycle is either a data write cycle or a free cycle, depending on the data and flow of the REV or REVW instruction. An \times cycle is stretched only when controlled by a chip-select circuit programmed for slow memory.
Special No	tation for Branch Taken/Not Taken
PPP/P	A short branch requires three cycles if taken, one cycle if not taken. Since the instruction consists of a single word containing both an opcode and an 8-bit offset, the not-taken case is simple — the queue advances, another program word fetch is made, and execution continues with the next instruction. The taken case requires that the queue be refilled so that execution can continue at a new address. First, the effective address of the destination is determined, then the CPU performs three program word fetches from that address.
OPPP/OPO	A long branch requires four cycles if taken, three cycles if not taken. An \circ cycle is required because all long branches are page two opcodes and thus include the \$18 prebyte. The prebyte is treated as a one-byte instruction. If the prebyte is misaligned, the \circ cycle is a P cycle; if the prebyte is aligned, the \circ cycle is an f cycle. As a result, both the taken and not-taken cases use one \circ cycle for the prebyte. In the not-taken case, the queue must advance so that execution can continue with the next instruction, and another \circ cycle is required to maintain the queue. The taken case requires that the queue be refilled so that execution can continue at a new address. First, the effective address of the destination is determined, then the CPU performs three program word fetches from that address.

1.8.7 Condition Code State Notation

Table 1-9 Condition Code State Notation

_	Not changed by operation
0	Cleared by operation
1	Set by operation
Δ	Set or cleared by operation
\downarrow	May be cleared or remain set, but not set by operation
\uparrow	May be set or remain cleared, but not cleared by operation
?	May be changed by operation but final state not defined
!	Used for a special purpose