Formulas Final

SSTO =
$$\sum_{i=1}^{I} \sum_{j=1}^{J} x_{ij}^2 - \frac{1}{II} \left(\sum_{i=1}^{I} \sum_{j=1}^{J} x_{ij} \right)^2$$

$$SSA = \frac{1}{I} \sum_{i=1}^{I} \left(\sum_{j=1}^{J} x_{ij} \right)^{2} - \frac{1}{II} \left(\sum_{i=1}^{I} \sum_{j=1}^{J} x_{ij} \right)^{2}$$

$$SSB = \frac{1}{I} \sum_{i=1}^{I} \left(\sum_{j=1}^{J} x_{ij} \right)^{2} - \frac{1}{II} \left(\sum_{i=1}^{I} \sum_{j=1}^{J} x_{ij} \right)^{2}$$

SSE =
$$\sum_{i=1}^{I} \sum_{j=1}^{J} (x_{ij} - \bar{x}_{i*} - \bar{x}_{*j} - \bar{x}_{**})^2$$
 or by differences

Source of	df	SS	MS	F
Variation				
Factor A	<i>I-1</i>	SSA	SSA/(I-1)	MSA/MS
				E
Factor B	J-1	SSB	SSA/(J-1)	MSB/MSE
Error	(I-1)(J-1)	SSE	SSE/ (I-1)(J-1)	
Total	IJ - 1	SSTO		

If both null hypotheses H_0 : $\alpha_1=\alpha_2=\cdots=\alpha_I=\alpha$, and H_0 : $\beta_1=\beta_2=\cdots=\beta_J=\beta$ are true:

$$E[MSTO] = E[MSA] = E[MSB] = E[MSE] = \sigma^2$$

Where σ^2 is the common variance of the normal populations from where each of the IJ data points.

If the null hypothesis H_0 : $\alpha_1 = \alpha_2 = \cdots = \alpha_I = \alpha$ is **not** true:

$$E[MSE] = \sigma^2$$
, but

$$E[MSA] = \sigma^2 + \frac{J}{I-1} \sum_{i=1}^{I} (\alpha_i - \bar{\alpha})^2$$

If the null hypothesis H_0 : $\beta_1 = \beta_2 = \dots = \beta_J = \beta$ is **not** true:

$$E[MSE] = \sigma^2$$
, but

$$E[MSB] = \sigma^2 + \frac{I}{I-1} \sum_{j=1}^{J} (\beta_i - \bar{\beta})^2$$

Note: E[MSTO] is not either equal to σ^2 if either of the two null hypotheses above is not true, but it is of no interest for purposes of constructing an ANOVA. R code

Enter your data using the sub-indices of a matrix: For example, the matrix of data of Example 10.4.1 on p. 524 needs to be entered in a csv as follows:

Chem	Material	Score
1	1	3
1	2	7
1	3	6
2	1	9
2	2	11
2	3	8
3	1	2
3	2	5
3	3	7
4	1	7
4	2	9
4	3	8

Note that $x_{11} = 3$, $x_{12} = 7$, $x_{13} = 6$, $x_{21} = 9$, etc.

R code:

```
# Read csv file
datos <- read.csv("TheNameofYourFile.csv", header = TRUE)
```

Visualize your data using boxplots

boxplot(Score ~ Chem, data=datos) boxplot(Score ~ Material, data=datos)

Eyeball the means for each level of each factor

with(datos, tapply(Score, Chem, mean)) with(datos, tapply(Score, Material, mean))

create a factor variable FChem in object datos by using the variable Chem in object datos datos\$FLane <- factor(daos\$Chem)

create a factor variable FMaterial in object datos by using the variable Material in object datos datos\$Material <- factor(datos\$Material)

```
# Fit the Model and find its ANOVA model2 <- lm(Score ~ FChem + FMaterial, data = datos) anova(model2)
```

If the F statistics is significant for any of the factors, obtain the confidence interval for each pair of means using the adjusted q statistic:

```
library(multcomp)
pairsChem <- glht(model2, linfct = mcp(FChem ="Tukey"), data = datos)
summary(pairsChem)
pairsMaterials <- glht(model21, linfct = mcp(FMaterial ="Tukey"), data = datos)
summary(pairsMaterial)
```