Bif - Consider all the valid subsequence = Backboocking.



$$\frac{n=4}{2}$$

$$\frac{n=4}{2}$$

$$\frac{n+4}{2}$$

$$\frac{n+2}{2}$$

$$\frac{n+1}{2}$$

$$\frac{n+1}{2}$$

$$\frac{n+1}{2}$$

$$\frac{n+1}{2}$$

```
= \max \left\{ \operatorname{qrr}(i) + \max \operatorname{Sym}(i-2) \right\}

0 + \max \operatorname{Sym}(i-1)
 max Sum (1)
            dp(N) - initializ INT-MIN
               max Sum ( int (7 arr, int i, int (7 dp) {
                  4 (120) { return 03
                  if (dp(i) != INT. mIN) { return dp(i): 3
                   { | = arr(i) + marsum (i-24); // include
                    12 = 0 + max Sum (1-1,4p); //exclude.
                    ans: max ( $1, $2)
                    dp[i] = ans;
                                                       T.C- O(N) /
                   return ans;
               dp[i] - max subsequence sum (0--i)
Bottom. UD
   for (i -> 0 to N-1.) {

ap(i] = Mar (arr(i) + dp(i-2), 0+ dp[i-1])
                                     T.C-O(N)

Sincolor to fiboracci

problem

3
```



 $J_{1,j^{\prime}2}$   $J_{1,j^{\prime}2}$   $J_{1-1,j-1}$   $J_{1-1,j-1}$ 

أرا-في

int 
$$dp(N)(M)$$
; // initalia with -1

int  $dp(N)(M)$ ; // initalia with -1

int ways ( int i, int j, int (7(7)  $dp)$ )

if (  $i = 0$  | 1  $j = 0$ ) freturn 1 3

if [  $dp(i)(j)$ ]  $= -1$ ) freturn  $dp(i)(j)$  3

if [  $dp(i)(j)$ ] = ways (  $i$ ,  $j$ -1) + ways (  $i$ -1,  $j$ )

return  $dp(i)(j)$ ;

 $\begin{cases} 7.c-o(N*m) \\ S.c-o(N*m) \end{cases}$ 

## Bottom-up-

|   | 6 | 1 | 2         | 3  | 4   |
|---|---|---|-----------|----|-----|
| 8 | 1 | 1 | 1         | 1  | 1   |
| 1 | 1 | 2 | 6         | 4  | 5   |
| 2 | 1 | 3 | 6         | 10 | 15  |
| 3 | 1 | 4 | 10        | 20 | 35  |
| 4 | 1 | 5 | <u>کړ</u> | 35 | 70  |
| 3 | 1 | 6 | 21        | 56 | 126 |

M=6., M=5





idea + similar to pfsum.

| Õη | D |   | 1 | 2 | 3 |
|----|---|---|---|---|---|
| •  | 0 | 1 | 1 | 1 | 1 |
|    | 1 | 1 | 0 | 1 | 0 |
|    | 2 | 0 | 1 | 1 | 1 |
|    | 3 | 1 | 0 | 1 | 1 |
|    | 4 | 1 | 1 | 1 | 1 |

If (mat [i](j] 
$$1 = 0$$
) {

ways(i,j) = ways(i,j-1) + ways(i-1,j)

elx {

coays(i,j) = 0

}



$$min(ost(i,j) = cost(i)[i] + Min(min(ost(1,j-1), min(ost(i-1,j)))$$

## Base-casy

top-down.

## Dungeom & Princes

| <u>}</u> 0 | 1               | 2                        | 3                                 |
|------------|-----------------|--------------------------|-----------------------------------|
| -3         | +2              | +4                       | -5                                |
| -6         | +5              | -4                       | +6                                |
| -15        | 17              | +5                       | -2                                |
| <b>+2</b>  | +10             | -3                       | -4 9                              |
|            | -3<br>-6<br>-15 | -3 +2<br>-6 +5<br>-15 -7 | -3 +2 +4<br>-6 +5 -4<br>-15 -7 +5 |

| R.B |        |
|-----|--------|
|     | Dragon |

Jown.

Find the minimum health level to start with?



$$L + (-4) = 1$$
 $L - 4 = 1$ 
 $1 = 5$ 

$$2+(-5) = min(7,8)$$
  
 $2-5 = 7$   
 $3 = 12$ 



 $\chi + qrr[i](j) = Min [mi]{Energy required to enter (i, j+1),}$  i = Energy required to enter (i+1, j)

Min Energy 
$$(i,j) = Max(1, min | min Energy(i,j+1), min Energy(i+1,j)) = om(i)(i))$$

<0 , then min Energy (1,1) = 1.

```
int solve ( mat, i, j, interest do) f

\begin{cases}
\begin{cases}
i = 1 & \text{if } j = m \cdot 1 \text{ of } j = m
```