

Solving for the ground state of the Anderson impurity model using VQE

Eric Jones

Quantum Applications Engineer

Motivation & Background

<u>Why AIM?</u> (or impurity models generally?)

$$\hat{H} = \sum_{\substack{\alpha\beta\\\sigma\sigma'}} \mu_{\alpha\beta\sigma\sigma'} \hat{c}^{\dagger}_{\alpha\sigma} \hat{c}_{\beta\sigma'} + \sum_{\substack{\alpha\beta\gamma\delta\\\sigma\sigma'}} U_{\alpha\beta\gamma\delta} \hat{c}^{\dagger}_{\alpha\sigma} c^{\dagger}_{\beta\sigma'} \hat{c}_{\gamma\sigma'} \hat{c}_{\delta\sigma} + \sum_{\substack{\alpha\beta\gamma\delta\\\sigma\sigma'}} \left(V_{i\alpha} \hat{f}^{\dagger}_{i\sigma} \hat{c}_{\alpha\sigma} + \text{h.c.} \right) + \sum_{ij\sigma} \epsilon_{ij} \hat{f}^{\dagger}_{i\sigma} \hat{f}_{j\sigma},$$
(9)

Solve $G_{imp.}(\omega)$ $G_{imp.}(\omega)$ $G_{imp.}(\omega)$ $G_{imp.}(\omega)$ $G_{loc.}(\omega)$

Computational Complexity (N bath, M impurity orbitals)

Exact Diagonalization

• $\sim \exp(M + N)$

CTQMC (sign problem!)

~ exp(M) poly(N)

NRG/DMRG

~ exp(M) / exp(N)

Fermionic Gaussian Approx.

~ exp(M) quasipoly(N)

lattice model single-site cluster mean-field theory

(Cluster DMFT: Spatial Correlations)

Potential Applications High-T Superconductivity

(Heterogenous) Catalysis (e.g., Green Ammonia)

Technical Overview

Workflow

Input: $\mu_{\alpha\beta}$, $U_{\alpha\beta\gamma\delta}$, $V_{i\alpha}$, ϵ_{ij}

Construct H_F (OpenFermion)

J-W B-K, etc.

Construct H_0 (OpenFermion/Qulacs)

> FD (OF)

VQE (Qiskit/Qul.)

1P Green's Function

Hybrid* SP/HV Ansatz** Hamiltonian Symmetries: charge, spin, time-reversal (20 CZs per tile-layer) **B**1 **B2 B3** Imp. $G(\theta_2)$ $G(\theta_1)$ $G(\theta_3)$ $ZZ(\theta_4)$ $ZZ(\theta_5)$ $ZZ(\theta_6)$ $ZZ(\theta_7)$ $G(\theta_8)$ $G(\theta_9)$ $G(\theta_{10})$ $G(\theta_1)$ $G(\theta_2)$ $G(\theta_3)$ $ZZ(\theta_7)$ $ZZ(\theta_4)$ $ZZ(\theta_5)$ $ZZ(\theta_6)$ $G(\theta_{10})$ $G(\theta_9)$ $G(\theta_8)$ $=R_{Z}(\phi)$

Preliminary Performance

Z-spin eigenvalue: 0 Init. Occ. Inds: [0, 1, 3, 5] GS Energy: -14.458763069397431 GS Energy Diff: 0.002414026970855687 message: Optimization terminated successfully. success: True status: 1 fun: -14.458763069397431 x: [2.114e+00 -2.104e-01 ... 1.095e+00 1.363e+00] nfev: 6950 maxcv: 0.0 GS Charge, Spin Check: 4.0 0.0

> Exact GS Charge, Spin: 4.000 0.000 -14.461177096368349

Resource Estimates

1 impurity, 2 bath sites

= 6 qubits

d = 2 layers

 $(7 \times 2) \times 2 = 28 \text{ CZ gates}$

~100 energy evaluations ~10 tensor factor bases

~1,000 shots per basis

 ~ 10 Hz => 27.7 hrs