# LONGITUD DE ARCO Y ÁREA DE SUPERFICIE

# LONGITUD DE ARCO

Determinemos la expresión mediante la cual es posible determinar la longitud de una curva.

Sea f(x) una función definida en un intervalo [a,b].



Consideremos una partición del intervalo [a,b] en n sub-intervalos de longitud  $\Delta x$  con  $\Delta x = \frac{b-a}{n}$  y centrémonos en el intervalo  $[x_{i-1}, x_i]$ .

Tomando el rectángulo que se genera en el intervalo  $[x_{i-1}, x_i]$  se tiene





Marcamos con rojo en la parte superior el rectángulo que se forma en el intervalo. Y marcamos con amarillo la línea que une los dos puntos  $P_{i-1}(x_{i-1}, f(x_{i-1}))$  y  $P_i(x_i, f(x_i))$  sobre la curva

#### Tomando el trapecio que se forma en el intervalo i-ésimo





Determinando la longitud  $L_i$  de la curva en este intervalo

$$L_i = d(P_{i-1}, P_i)$$

$$L_{i} = \sqrt{(x_{i} - x_{i-1})^{2} + (f(x_{i}) - f(x_{i-1}))^{2}}$$

#### Teorema del valor medio

$$f(b)-f(a)=f'(c)(b-a) c \in [a,b]$$

#### Aplicando

Teorema del Valor Medio para la función f(x) en el intervalo  $[x_{i-1}, x_i]$ 

$$f(x_i) - f(x_{i-1}) = f'(x_i^*)(x_i - x_{i-1}) \text{ con } x_i^* \in [x_{i-1}, x_i]$$

Así

$$L_{i} = \sqrt{(x_{i} - x_{i-1})^{2} + (f'(x_{i}^{*})(x_{i} - x_{i-1}))^{2}}$$

$$L_{i} = \sqrt{(x_{i} - x_{i-1})^{2} + (f'(x_{i}^{*}))^{2}(x_{i} - x_{i-1})^{2}}$$

$$L_{i} = \sqrt{(x_{i} - x_{i-1})^{2}(1 + (f'(x_{i}^{*}))^{2})}$$

$$L_{i} = \sqrt{(1 + (f'(x_{i}^{*}))^{2})(x_{i} - x_{i-1})^{2}}$$

$$L_{i} = \sqrt{1 + (f'(x_{i}^{*}))^{2}(x_{i} - x_{i-1})}$$

$$L_{i} = \sqrt{1 + (f'(x_{i}^{*}))^{2}} \Delta x$$

Luego, para aproximarnos a la longitud de la curva f(x) en [a,b], calculamos las longitudes de cada sub-intervalo. Gráficamente tenemos



#### Sumando las longitudes en cada uno de los intervalos

$$L_{1} = \sqrt{1 + (f'(x_{1}^{*}))^{2}} \Delta x$$

$$L_{2} = \sqrt{1 + (f'(x_{2}^{*}))^{2}} \Delta x$$

$$\vdots$$

$$L_{i} = \sqrt{1 + (f'(x_{i}^{*}))^{2}} \Delta x$$

$$\vdots$$

$$L_{n} = \sqrt{1 + (f'(x_{n}^{*}))^{2}} \Delta x$$

#### Luego

$$L \approx \sum_{i=1}^{n} \sqrt{1 + \left(f'(x_i *)\right)^2} \Delta x$$

#### Tomando el límite cuando n tiende a infinito

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{1 + \left(f'(x_i^*)\right)^2} \Delta x$$

#### De donde

$$L = \int_{a}^{b} \sqrt{1 + \left(f'(x)\right)^{2}} dx$$

**Definición:** Sea f una función suave o alisada en [a,b], esto es f'(x) continua en [a,b], la longitud de la curva y = f(x) para  $a \le x \le b$ , es  $L = \int_a^b \sqrt{1 + (f'(x))^2} dx$ 

Como región de variable y,

**Definición:** Sea f una función suave o alisada en [c,d], esto es f'(y) continua en [c,d], la longitud de la curva x = f(y) para  $c \le y \le d$ , es  $L = \int_{c}^{d} \sqrt{1 + (f'(y))^2} dy$ 

# Ejemplo

Calcular la longitud de de arco de la curva  $y = \left(\frac{x}{2}\right)^{2/3}$  desde x = 0 hasta x = 2

La grafica que nos representa a la curva es



#### Determinemos si la función es suave, así calculemos la derivada

$$f'(x) = \frac{2}{3} \left(\frac{x}{2}\right)^{-1/3} \left(\frac{1}{2}\right) = \frac{1}{3} \frac{1}{\left(\frac{x}{2}\right)^{1/3}}$$

Luego f'(x) no es continua para x = 0

Por lo que f no es suave.

Cambiemos de variable, así usemos la función x=f(y)

$$y = \left(\frac{x}{2}\right)^{2/3} \implies y^{\frac{3}{2}} = \frac{x}{2} \implies x = 2y^{\frac{3}{2}} \implies f(y) = 2y^{\frac{3}{2}}$$

#### Función de variable y

$$f(y) = 2y^{\frac{3}{2}}$$

#### Variación de y

Si 
$$x = 0 \implies y = \left(\frac{0}{2}\right)^{2/3} = 0$$

Si 
$$x = 2 \implies y = \left(\frac{2}{2}\right)^{2/3} = 1$$

y varia de y = 0 hasta y = 1-

#### Calculando la derivada

$$f'(y) = \left(\frac{3}{2}\right)\left(2y^{\frac{1}{2}}\right) = 3y^{\frac{1}{2}} = 3\sqrt{y}$$

f'(y) es continua en [0,1], luego la función es suave.

Calculemos la longitud de la curva

$$L = \int_{0}^{1} \sqrt{1 + \left(3\sqrt{y}\right)^{2}} \, dy = \int_{0}^{1} \sqrt{1 + 9y} \, dy$$

$$L = \int_{0}^{1} \sqrt{1 + 9y} dy \qquad u = 1 + 9y \qquad du = 9dy$$

$$L = \frac{1}{9} \int_{0}^{1} \sqrt{1 + 9y} dy = \frac{1}{9} \left( \frac{2}{3} (1 + 9y)^{\frac{3}{2}} \right)_{0}^{1} = \frac{2}{27} (1 + 9y)^{\frac{3}{2}} \Big|_{0}^{1}$$

$$= \frac{2}{27} (1 + 9)^{\frac{3}{2}} - \frac{2}{27} (1)^{\frac{3}{2}} = \frac{2}{27} (10)^{\frac{3}{2}} - \frac{2}{27} = \frac{2}{27} (10\sqrt{10} - 1)$$

# ÁREA DE SUPERFICIE

Una superficie de revolución se obtiene al girar una curva llamada *generatriz* alrededor de una recta que se utiliza como *eje* en el plano.

Superficies simétricas que son de revolución, son









Para calcular el área de la superficie que se genera al girar una función y = f(x) con respecto al eje x.

Supongamos que y = f(x) es una función no negativa y con derivada f'(x) continua en [a,b].



Tomemos una partición del intervalo [a,b] en n sub-intervalos de longitud  $\Delta x$  con  $\Delta x = \frac{b-a}{n}$ .

Considerando el intervalo  $[x_{i-1}, x_i]$  y tomando el segmento de recta que se tiene entre los puntos  $(x_{i-1}, f(x_{i-1}))$  y  $(x_i, f(x_i))$  se forma un trapecio.



#### Al girar el trapecio, tenemos un cono truncado



Con área de superficie  $S_i$ 

#### Dado el cono truncado



#### El área de superficie S de un cono truncado es

 $S = 2\pi$  (radio medio)(longitud generatriz)

La generatriz es la distancia entre P y Q

Radio medio = 
$$\frac{f(x_{i-1}) + f(x_i)}{2}$$

Longitud generatriz =  $L_{PO}$  = Longitud de arco entre los puntos P y Q

Longitud generatriz = 
$$\sqrt{1 + (f'(x_i^*))^2} \Delta x$$

El área de la superficie del cono truncado en el i-ésimo intervalo, es

$$S_{i} = 2\pi \left(\frac{f(x_{i-1}) + f(x_{i})}{2}\right) \sqrt{1 + (f'(x_{i}^{*}))^{2}} \Delta x$$

### Calculando el área de superficie de los conos trucados que se generan sobre cada subintervalo

$$S_1 = 2\pi \left(\frac{f(x_0) + f(x_1)}{2}\right) \sqrt{1 + (f'(x_1^*))^2} \Delta x$$

$$S_2 = 2\pi \left(\frac{f(x_1) + f(x_2)}{2}\right) \sqrt{1 + (f'(x_2^*))^2} \Delta x$$

:

$$S_{i} = 2\pi \left(\frac{f(x_{i-1}) + f(x_{i})}{2}\right) \sqrt{1 + (f'(x_{i}^{*}))^{2}} \Delta x$$

:

$$S_n = 2\pi \left(\frac{f(x_{n-1}) + f(x_n)}{2}\right) \sqrt{1 + \left(f'(x_n *)\right)^2} \Delta x$$

#### Sumando todas las áreas de los conos truncados

$$S \approx 2\pi \left(\frac{f(x_0) + f(x_1)}{2}\right) \sqrt{1 + (f'(x_1^*))^2} \Delta x + 2\pi \left(\frac{f(x_1) + f(x_2)}{2}\right) \sqrt{1 + (f'(x_2^*))^2} \Delta x + \cdots + 2\pi \left(\frac{f(x_{i-1}) + f(x_i)}{2}\right) \sqrt{1 + (f'(x_i^*))^2} \Delta x + \cdots + 2\pi \left(\frac{f(x_{i-1}) + f(x_i)}{2}\right) \sqrt{1 + (f'(x_i^*))^2} \Delta x$$

Así
$$S \approx \sum_{i=1}^{n} 2\pi \left( \frac{f(x_{i-1}) + f(x_i)}{2} \right) \sqrt{1 + (f'(x_i^*))^2} \Delta x$$

#### Tomando el límite cuando n tiende a infinito, el área de superficie es

$$S = \lim_{n \to \infty} \sum_{i=1}^{n} 2\pi \left( \frac{f(x_{i-1}) + f(x_i)}{2} \right) \sqrt{1 + (f'(x_i^*))^2} \Delta x$$

$$S = \int_{a}^{b} 2\pi \left( \frac{f(x) + f(x)}{2} \right) \sqrt{1 + (f'(x))^{2}} dx$$

$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + (f'(x))^{2}} dx$$

**Definición:** Sea f una función suave o alisada en [a,b], esto es f'(x) continua en [a,b], el área S de la superficie generada al girar la gráfica de y = f(x) para  $a \le x \le b$ , alrededor del eje x, es

$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + (f'(x))^{2}} dx$$

siendo f(x) el radio medio del cono truncado que se genera.

Si la región es de la variable y

**Definición:** Sea f una función suave o alisada en [c,d], esto es f'(y) continua en [c,d], el área S de la superficie generada al girar la gráfica de x = f(y) para  $c \le y \le d$ , alrededor del eje y, es

$$S = \int_{c}^{d} 2\pi f(y) \sqrt{1 + (f'(y))^{2}} dy$$

siendo f(y) el radio medio del cono truncado que se genera.

# Ejemplo 1.

Calcular el área de la superficie generada al girar la región limitada por la función  $y = \cosh x$  desde x = 0 hasta x = 1, con respecto del eje x



Radio coincide con la función, así

$$y = f(x) = \cosh x$$

donde x varía de o a 1

Veamos si f es suave

$$f'(x) = \sinh x$$

f'(x) es continua para todo x. luego la función es suave

#### Calculando el área de superficie

$$S = \int_{0}^{1} 2\pi \cosh x \sqrt{1 + (\sinh x)^{2}} dx = \int_{0}^{1} 2\pi \cosh x \sqrt{\cosh^{2} x} dx = \int_{0}^{1} 2\pi \cosh x \cosh x dx$$

$$= \int_{0}^{1} 2\pi \cosh^{2} x dx = 2\pi \int_{0}^{1} \frac{\cosh 2x + 1}{2} dx = \pi \int_{0}^{1} (\cosh 2x + 1) dx = \pi \left(\frac{1}{2} \sinh 2x + x\right)_{0}^{1}$$

$$= \pi \left(\frac{1}{2} \sinh 2 + 1 - \frac{1}{2} \sinh 0 - 0\right) = \pi \left(\frac{1}{2} \sinh 2 + 1\right) = 8.8386$$

## Ejemplo 2.

La forma del reflector de un faro se obtiene haciendo girar una parábola alrededor de su eje. Calcular el área de la superficie de un reflector que mide 4 pies de diámetro y tiene una profundidad de 1 pie.

#### Tenemos un faro como



El reflector del faro tiene la forma de una parábola

Podemos situar la parábola con centro en el origen

#### Ubicamos la parábola en el plano cartesiano



La parábola pasa por los puntos (1,-2) y (1,2)

Ecuación de la parábola con centro en el origen que abre hacia la derecha  $y^2 = 4 px$ 

Como el punto (1,2) esta en la parábola cumple su ecuación

$$(2)^2 = 4p(1) \implies 4 = 4p \implies p = 1$$

La función es  $y^2 = 4x$ 

$$y = f(x) = 2\sqrt{x}$$

#### Veamos si la función es suave en (0,1)

$$y = 2\sqrt{x}$$

$$y' = \frac{2}{2\sqrt{x}} = \frac{1}{\sqrt{x}}$$

#### La derivada es continua en (0,1), luego la función es suave

#### Calculando el área de superficie

$$S = \int_{0}^{1} 2\pi \left(2\sqrt{x}\right) \sqrt{1 + \left(\frac{1}{\sqrt{x}}\right)^{2}} dx = 4\pi \int_{0}^{1} \left(\sqrt{x}\right) \sqrt{1 + \left(\frac{1}{x}\right)} dx = 4\pi \int_{0}^{1} \sqrt{x} \sqrt{\frac{x+1}{x}} dx$$

$$= 4\pi \int_{0}^{1} \sqrt{x} \frac{\sqrt{x+1}}{\sqrt{x}} dx = 4\pi \int_{0}^{1} \sqrt{x+1} dx = \frac{8\pi}{3} (x+1)^{\frac{3}{2}} \Big|_{0}^{1} = \frac{8\pi}{3} (1+1)^{\frac{3}{2}} - \frac{8\pi}{3} (0+1)^{\frac{3}{2}}$$

$$= \frac{8\pi}{3} (2)^{\frac{3}{2}} - \frac{8\pi}{3} (1)^{\frac{3}{2}} = \frac{8\pi}{3} \left( (2)^{\frac{3}{2}} - 1 \right) = \frac{8\pi}{3} \left( 2\sqrt{2} - 1 \right)$$