Algorytmy Klasteryzacji Strumieni Danych

Maksymilian Neumann

Listopad 2024

Strumienie Danych

Wprowadzenie

• **Definicja**: Uporządkowany ciąg *d*-wymiarowych instancji.

$$S = \{x_1, x_2, x_3, \dots, x_i, \dots, x_N\}$$

Gdzie każda instancja (x_i) jest d-wymiarowym wektorem

- Charakterystyka:
 - Dane o dużym wolumenie, potencjalnie nieskończone.
 - Dane przychodzą z dużą prędkością.
 - Po przetworzeniu dane są zazwyczaj odrzucane.
- Przykłady:
 - Strumienie kliknięć na stronie internetowej.
 - Dane z sensorów w systemach IoT.
 - Transakcje finansowe na giełdach.

Klasteryzacja

- Definicja: Klasteryzacja to proces grupowania obiektów w taki sposób, aby obiekty w tej samej grupie (klastrze) były bardziej podobne do siebie niż do obiektów w innych grupach.
- Cel: Identyfikacja ukrytych wzorców lub struktur w danych.
- Zastosowania:
 - Segmentacja rynku.
 - Segmentacja obrazów.
 - Wykrywanie anomalii.
- Przykładowe algorytmy:
 - K-means.
 - DBSCAN.
 - Klasteryzacja hierarchiczna.

Wprowadzenie

Charakterystyka Klasteryzacji Strumieni Danych

- Dynamiczność: Algorytmy muszą działać w czasie rzeczywistym.
- Przetwarzanie przyrostowe: Dane są przetwarzane raz, bez możliwości ich ponownego odczytu (model jednokrotnego przetwarzania danych - single-pass).

CluStream

- Ograniczenia pamięci: Wymagana jest efektywna alokacja pamięci, ponieważ strumień danych może być potencjalnie nieskończony.
- Skalowalność: Algorytmy muszą być skalowalne zarówno w odniesieniu do liczby przychodzących punktów danych, jak i liczby klastrów.
- Ewolucja klastrów: Klastery mogą zmieniać się w czasie (pojawianie się, zanikanie, zmiana rozmiaru).

Wprowadzenie do BIRCH

 BIRCH: Balanced Iterative Reducing and Clustering using Hierarchies – algorytm klasteryzacji hierarchicznej dla dużych zbiorów danych.

Zalety:

Wprowadzenie

- Przetwarzanie przyrostowe i dynamiczne.
- Optymalizacja jakości klasteryzacji przy ograniczonych zasobach (czas i pamięć).
- Zwykle wymaga jednego przejścia przez dane.

Ciekawostki:

- Jeden z pierwszych algorytmów skutecznie radzących sobie ze "szumem" w danych.
- Wyróżniony nagrodą SIGMOD Test of Time w 2006 roku.

Cechy Klastra

Wprowadzenie

Klaster N d-wymiarowych punktów możemy opisać jako: $K = \{\vec{X_i}\}$ gdzie i = 1, ..., N Centroida \vec{C} i Promień R Klastra zdefiniujemy jako:

$$\vec{C} = \frac{\sum_{t=i}^{N} \vec{X}_i}{N}$$

$$R = \sqrt{\frac{\sum_{i=1}^{N} \left(\vec{X}_i - \vec{X}_0\right)^2}{N}}$$

Oraz dystans między klastrami $d(K_a, K_b)$ jako:

$$d(K_a,K_b)=\sqrt{(\vec{C_a}-\vec{C_b})^2}$$

Clustering Feature

Wprowadzenie

Clustering Feature(*CF*): to streszczenie klastra *K* definiowane jako (N, \vec{LS}, SS)

$$N = |K|$$
 $\vec{LS} = \sum_{i=1}^{N} \vec{X}_i$
 $SS = \sum_{i=1}^{N} \vec{X}_i \cdot \vec{X}_i$

Cechy CF

Wprowadzenie

Mając (N, LS, SS) możemy łatwo obliczyć cechy klastra:

$$\vec{C} = \frac{\sum_{t=i}^{N} \vec{X}_i}{N} = \frac{\vec{LS}}{N}$$

$$R = \sqrt{\frac{\sum_{i=1}^{N} (\vec{X}_i - \vec{X}_0)^2}{N}} = \sqrt{\frac{SS}{N} - (\frac{\vec{LS}}{N})^2} = \sqrt{\frac{SS}{N} - (\vec{C})^2}$$

Dla klastra $K = \{\vec{X}_i\}$ potrzebujemy O(Nd) pamięci natomiast dla CF opisującego K tylko O(d+2)

- Parametry: branching factor(B) i threshold(T)
- Węzeł nie-liść: ma maksymalnie B pozycji [CF_i, child_i] gdzie child_i jest wskaźnikiem do i-tego dziecka gdzie i = 1,..., B
- Węzeł liść: ma maksymalnie L pozycji [CF_i], gdzie
 i = 1,..., L. Promień każdego CF_i musi być mniejszy niż T

Wprowadzenie

CF₁

 CF_1 CF_2

Wprowadzenie do CluStream

- CluStream: Algorytm do klasteryzacji ewoluujących strumieni danych
- Komponenty:
 - Komponent online:
 - Oblicza i przechowuje statystyki podsumowujące w postaci mikroklastrów.
 - Wykonuje przyrostowe przetwarzanie i utrzymanie mikroklastrów w czasie rzeczywistym.
 - Komponent offline:
 - Wykorzystuje zapisane statystyki do makroklasteryzacji.
 - Odpowiada na zapytania klasteryzacyjne.
- **Strumień Danych:** jest w formie punktów $\{\vec{X_1}, \dots, \vec{X_N}\}$, które przychodzą o czasach $\{T_1, \dots, T_N\}$

Micro-cluster

Wprowadzenie

Definicia: Jest to czasowe rozwinięcie *CF*. Dla zbioru d-wymiarowych punktów $\{\vec{X_1},\dots,\vec{X_n}\}$ o czasach $\{T_1,\dots,T_n\}$ micro-cluster jest zdefiniowany przez $(\overrightarrow{CF2^{\times}}, \overrightarrow{CF1^{\times}}, CF2^{t}, CF1^{t}, n)$ który zajmuje O(2d+3) pamięci.

CluStream

$$\overrightarrow{CF2^{\times}} = \sum_{i=1}^{n} \vec{X}_{i}^{2}$$

$$\overrightarrow{CF1^{\times}} = \sum_{i=1}^{n} \vec{X}_{i}$$

$$CF2^{t} = \sum_{i=1}^{n} T_{i}^{2}$$

$$CF1^{t} = \sum_{i=1}^{n} T_{i}$$

Online Micro-Cluster Maintenance

```
1: Initialize q Microclusters (M_i) with the first InitNumber points using
    k-means.
 2: for (\vec{X}, T) in S do
                                                         ▷ Iterate over the stream
        M_{\text{closest}} \leftarrow \text{find closest } M_i \text{ by } \text{dist}(\vec{X}, M_i)
 3:
        if \vec{X} is within maximalBoundary (M_{closest}) then
            Merge \vec{X} with M_{closest}
 5:
 6.
        else
            Add new Microcluster from \vec{X} to Microclusters
 7:
            if safe to delete some Microcluster as outlier then
 8.
                 Delete the Microcluster
 g.
            else
10:
                 Merge closest Microclusters
11.
            end if
12:
        end if
13:
14.
        Save Microclusters snapshot with time T
15: end for
```

Piramidalna Przestrzeń Czasowa

Wprowadzenie

Order of Snapshots	Clock Times ($\alpha = 2$ i $l = 2$)
0	55 54 53 52 51
1	54 52 50 48 46
2	52 48 44 40 36
3	48 40 32 24 16
4	48 32 16
5	32

CluStream ○○○●○

Piramidalna Przestrzeń Czasowa

Wprowadzenie

Order of Snapshots	Clock Times ($\alpha = 2$ i $l = 2$)
0	55 54 53 52 51
1	54 52 50 48 46
2	52 48 44 40 36
3	48 40 32 24 16
4	48 32 16
5	32

CluStream ○○○○●

Wprowadzenie do DenStream

- DenStream: Algorytm klasteryzacji oparty na gęstości, zaprojektowany do pracy z ewoluującymi strumieniami danych, szczególnie w warunkach obecności szumów.
- Kluczowe cechy:
 - Obsługuje klastry o dowolnym kształcie, bez konieczności określania ich liczby z góry.
 - Rozróżnia między:
 - Potencjalnymi mikroklastrami (potential micro-clusters): Obszary o niskiej gęstości, które mogą ewoluować w klastry.
 - Mikroklastrami odszumień (outlier micro-clusters): Izolowane punkty traktowane jako szum.

p-micro-cluster(c_n)

Wprowadzenie

Definicja: Dla zbioru *d*-wymiarowych punktów $\{X_1, \dots, X_n\}$ o czasach $\{T_1,\ldots,T_n\}$. Z funkcją znikania $f(t)=2^{-\lambda\cdot t}$ micro-cluster jest zdefiniowany przez $(\overrightarrow{CF^1}, CF^2, w)$.

$$\overrightarrow{CF^{1}} = \sum_{i=1}^{n} f(t - T_{i}) \vec{X}_{i}$$

$$CF^{2} = \sum_{i=1}^{n} f(t - T_{i}) \vec{X}_{i}^{2}$$

$$w = \sum_{i=1}^{n} f(t - T_{i})$$

Inkrementalność c_p

Wprowadzenie

Dla interwału δt i punktu \vec{X}

$$c_p = (2^{-\lambda\delta t} \cdot \overrightarrow{CF^1}, 2^{-\lambda\delta t} \cdot, 2^{-\lambda\delta t} \cdot w)$$

$$c_p = (\overrightarrow{CF^1} + \vec{X}, CF^2 + \vec{X}^2, w + 1)$$

Micro-cluster Maintenance

```
Require: Data stream S, parameters \epsilon, \beta, \mu, \lambda
 1: T_p = \left[\frac{1}{\lambda} \log \left(\frac{\beta \mu}{\beta \mu - 1}\right)\right]
 2: while receiving new point \vec{X} at current time t from S do
          Perform Merging(\vec{X})
 3:
          if t \mod T_p = 0 then
 4:
              for each potential micro-cluster c_p do
 5:
                   if w_p (weight of c_p) < \beta \mu then
 6:
 7:
                        Delete c_n
                   end if
 8.
              end for
 9:
              for each outlier micro-cluster c_0 do
10:
                   \xi = 2^{-\lambda(t-t_{c_o}+T_p)-1}/(2^{-\lambda T_p}-1)
11.
                   if w_o (weight of c_o) < \xi then
12:
13:
                        Delete c_o
                   end if
14:
              end for
15:
         end if
16:
17: end while
```

Wprowadzenie

Porównanie z klasycznymi algorytmami

Algorytm: "BIRCH" Time: 746.9637ms Algorytm: "DenStream" Time: 529.3339ms

Porównanie z klasycznymi algorytmami

Implementacja: scikit-learn

Porównanie z klasycznymi algorytmami

Algorytm: "BIRCH" Time: 944.8691ms Algorytm: "DenStream" Time: 776.7824ms

Porównanie z klasycznymi algorytmami

Implementacja: scikit-learn

Efektywność w czasie

Efektywność a wymiar

CluStream

