Fortgeschrittene Methoden der Bioinformatik - Prüfungsskript

Inhaltsverzeichnis

1	Grundlagen	1
2	Generische Repräsentation	2
3	Pebble Game	3
4	Rigidity in 3D 4.1 Computation Complexity:	3 6 6 7
5	von 2D zu 3D	7
6	Abbie Algorithmus	9

1 Grundlagen

Geg.:

X von Punkten in R^3 , $\forall x, y \in X$ d(x, y): euklidische Distanz bekannt

Ges.:

Finde 3D-Repräsentation mit $\Phi: x \to R^3$ (Abbildung von x in 3D-Raum)

$$\underbrace{||\Phi(x) - \Phi(y)||}_{ges} = \underbrace{\sqrt{\sum_{i=1}^{3} (\Phi_i(x) - \Phi_i(y))^2}}_{geg}$$

Kongruenztransformation:

• Verschiebung: $\Phi' = \Phi + \tau$

• Rotation: $\Phi' = R \cdot \Phi$ (Spiegelung des Koordinatensystems)

rechnerei...

- $\bullet\,$ mit 7 Eigenwerten genau 7 Dimensionen, bei Eigenwerten = 0 \to Dimension überflüssig
- negative Eigenwerten nicht im euklidischen Raum darstellbar
 - Lösung: Distanz nicht exakt einbettbar \rightarrow negative Eigenwerte weglassen

Was machen wenn nur Teile der Distanzen vorhanden sind?

Qualität prüfen:

$$\sum_{k,l} (\sqrt{(x^k - x^l)^2} - d_{kl})^2 \to min(=0)$$

 $ueber\ alle\ bekannten\ Distanzen\ k,l$

Wann sind genug Informationen bekannt?

• Graph G(V,E), |V| = n, |E| = m

- Konfiguration $p:V\to R^d$ für d=2

• Framework (G,p)

Definition: Ein Framework ist flexibel wenn es eine stetige Deformaton $p \to p'$ gibt, sodass alle Abstände in G (=Kantenlängen) erhalten bleiben. Andernfalls ist (G,p) rigid.

1

minimal rigid:

- rigid
- entfernen einer Kante führt zu einem Teilgraphen der flexibel ist

Gibt es eine mögliche Bewegungsfreiheit?

 $(p^i - p^j)(p^i - p^j) = d_{ij}^2$ in Abhängigkeit der Zeit darstellen:

$$\frac{\partial}{\partial t}(p^i - p^j)(p^i - p^j) = (\frac{\partial}{\partial t}p^i - \frac{\partial}{\partial t}p^j)(p^i - p^j) + (\frac{\partial}{\partial t}p^i - \frac{\partial}{\partial t}p^j)(p^i - p^j)$$

$$\frac{\partial}{\partial t}p^i = v^i, \quad \frac{\partial}{\partial t}p^j = v^j$$

$$= 2(v^i - v^j)(p^i - p^j)$$

$$2 \cdot \underbrace{(v^i - v^j)}_{\mathbf{z}} (p^i - p^j) = \frac{\partial}{\partial t} d_{ij}^2 = 0 \quad \forall \{i, j\} \in E$$

* wenn Verschiebung bzw. Bewegungsfreiheit existiert, dann existiert hier eine Lösung

Definition: G mit Präsentation p ist "infinitesimal flexibel" wenn es eine Lösung $(v^1, v^2, v^3, \dots, v^n) \neq \overrightarrow{0}$ von $(p^i - p^j)(v_i - v_j) = 0$ gibt $(\forall \{i, j\} \in E)$

2 Generische Repräsentation

Eigenschaften: rigid \Leftrightarrow infinitesimal rigid \Rightarrow generisch rigid

Benötigte Eigenschaften für rigid:

- pro Vertex 2 Verbindungen
- m=2n-3 (externe FG)
 - m = Anzahl der Kanten
 - n = interne Freiheitsgrade pro Konten
 - externe FG: 2 Translation + 1 Rotation
- 2 Punkte fix = 4 Freiheitsgrade
- 1 Distanz = 3 Freiheitsgrade übrig

$$\left. \begin{array}{c} rigid < 2n-3 \\ minimal \ rigid = 2n-3 \end{array} \right\} + \text{sinnvolle Verteilung der Kanten}$$

Laman Theorem 1: G ist generisch minimal rigid in 2D ⇔

- m = 2n-3
- Laman-Bedingung: G enthält keine Teilgraphen mit k Knoten und m'>2k-3 Kanten (unabhängiges System von Kanten)

2

Graphen, die diese Bedingungen erfüllen, heißen Laman-Graphen

Beispiel Henneberg-Konstruktion

Start mit einer Kante, dann Iteration: Addition von 1 Knoten x

- Typ 1: verbinde x mit vorhandenen Knoten mittels zwei neuer Kanten
- Typ 2: finde 3 Knoten u, v, w mit mindestens 1 Kante in G(u, v, w) induziert ist. Verbinde x mit u, v, w, lösche eine Kante aus G(u, v, w)

Laman Theorem 2: Die Kanten von G sind unabhängig in $2D \Leftrightarrow$ Für jede Kante (a,b) in G hat der Multigraph G_{4l} der durch Vervierfachung von (a,b) entsteht, keinen induzierten Teilgraphen mit m'>2n' Kanten und n' Knoten

3 Pebble Game

4 Endresultate:

- wellconstraint (minimal rigid): Anzahl pebbles = l, alle Kanten eingesetzt
- overcontraint (redundant): Anzahl pebbles = l, nicht alle Kanten eingesetzt
- underconstraint (flexible): Anzahl pebbles > l, alle Kanten eingesetzt
- other: Anzahl pebbles > l, nicht alle Kanten eingesetzt

4 Rigidity in 3D

jetzt Laman-Bedingungen analog? **2D:**

- m=2n-3 (Vollständigkeit)
- ∀ Teilgraphen m'≤ 2n'-3 (Unabhängigkeit)
 - 2n Freiheitsgrade für n Punkte (2 Translationen)
 - 3 Freiheitsgrade eines allgemeinen starren Körpers in 2D (Dimensionen der Symetriegruppe)

jetzt 3D:

- 3 Freiheitsgrade pro Punkt (3 Translationen)
- 6 Freiheitsgrade eines allgemeinen starren Körpers in 3D (3 Translation + 3 Rotation)

Hoffnung das gilt:

- m=3n-6
- ∀ Teilgraphen m'≤ 3n'-6 für n'≥3 (notwendige Bedingung)

jedoch weitere Bedingungen notwendig!!! (siehe Beispiel Doppelbanane)

bei Molekülen:

- body-hinge-framework
- Interpretation: 1 hinge = 5 joints \rightarrow so bleibt 1 Freiheitsgrad offen

Multigraph:

- $V \leftrightarrow Bodies$
- E \leftrightarrow hinges \leftrightarrow chemische Einfachbindung \leftrightarrow 5-fach Kanten = joints

Beschreibung der rigidity von body-joint-frameworks bei Doppelbindungen werden zusätzliche Kanten eingefügt, da in der Ebene fixiert werden muss

(k,l)-sparse graphs: Verallgemeinerung der Laman-Graphen ((2,3)-sparse-graphs (rigid graph))

Ein Graph (V,E) ist (k,l)-sparse wenn:

1. Unabhängigkeitsbedingung: jede Teilmenge V' von V spannt höchstens $|E'| \leq k \cdot |V'| - l$ Kanten auf (benötigt für genügend nicht redundante Kanten)

Ein Graph (V,E) ist (k,l)-tight wenn:

- 1. Unabhängigkeitsbedingung UND
- 2. Vollständigkeitsbedingung: $|E| = k \cdot |V| l$ (benötigt für Verbrauch aller entsprechend für rigidity nicht gebrauchten Freiheitsgrade)

Ein Graph H ist (k,l)=(V,F) steif, genau dann wenn er einen spannenden (k,l)sparse Teilgraphen G=(V,E) $E \le F$ enthält (spannend: alle Knoten, nicht alle Kanten)

Die Kanten F\E sind "redundant"

Gegeben ein beliebiger Graph G, nennen wir eine Kantenmenge E (k,l)-sparsityunabhängig wenn für jede Teilmenge $B \subseteq E$ gilt:

 $|B| \le k|V(B)| - l$ mit |V(B)| = Knotenmenge die von B aufgespannt wird

(k,l)-sparsity-Unabhängigkeit für $1 \le l \le 2k$ definiert einen Matroiden Einschränkung: mindestens 2 Knoten da sonst keine Kante aufgespannt werden kann

Maxwell-Unabhängigkeit:

mit k=Anzahl Raumdimensionen, l=Anzahl Freiheitsgrade im \mathbb{R}^d $|E'| \le d|V(E')| - \frac{d(d+1)}{2}$ für alle E' mit $|V(E')| \ge d$ \rightarrow macht Matroideigenschaft kaputt

- \rightarrow Bar-Joint nicht in 3D mit Pebble-Game lösbar!

Matroid M=(X,I): Grundmenge X und unabhängige Menge I, wenn Teilmenge $A \subseteq X$ auch $A \in I \to A$ unabhängig Eigenschaften:

- 1. $\emptyset \in I$
- 2. $A \in I$ und $B \subseteq A \Rightarrow B \in I$
- 3. Austauschaxiom: $A, B \in I, |A| < |B|, \exists x \in B \setminus A \mid A \cup \{x\} \in I$

Greedy: . . .

Wegen 2. haben alle Lösungen B die gleiche Anzahl von Elementen unabhängig von der Reihenfolge in der X durchlaufen wird

nochmal Pebble Game

gerichteter Graph D, Knotenmenge V, Knoten v, Teilgraph $V' \subset V$ Funktionen:

- peb(v): Anzahl der Pebbles an Knoten v
- $\operatorname{span}(v)$: Anzahl loops an v
- \bullet out(v): outdegree exklusive Loops
- peb(V'): Anzahl der Knoten in Teilgraphen V'
- span(V'): Anzahl der Kanten, die von V' aufgespannt sind, inklusive Loops
- $\operatorname{out}(v')$: Anzahl der Kanten die von V' nach $V \setminus V'$ zeigen

Lemma: Invarianten des Pebble Games mit Graph G, Knoten v, Teilgraph $V' \subset V$

(Invarianten: Eigenschaften, die über das Spiel gleich bleiben)

- 1. peb(v) + span(v) + out(v) = k
- 2. $peb(V') + span(V') + out(V') = k \cdot |V'|$
- 3. $\operatorname{peb}(V') + \operatorname{out}(V') \geq l$ (am Ende des Spiels bleiben mind. l Pebbles im Spielfeld)
- 4. $\operatorname{span}(V') \le k|V'| l$

Definition Block: ein Teilgraph G' mit

- $\bullet |E'| = k|V'| l$
- E(G') ist (k, l)-sparsity-independent
 - \Rightarrow (k, l)-sparsity-rigid Teilgraph

Sparsity-Komponente: Ein maximaler Block bzgl. Mengen-Inklusion V' spannt einen Block auf \Leftrightarrow peb(V') + out(V')=l

- l Pebbles am Ende \Rightarrow steif
- Kanten zurückgewiesen, $|E| > |E(D)| \Rightarrow$ überbestimmt bzw. Redundanzen enthalten

Lemma*: wenn $e(u,v) \cup E(D)$ unabhängig, $peb(u) + peb(v) < l + 1 \Rightarrow dann gibt es ein Pebble in Reach(u) <math>\cup$ Reach(v) das nach u oder v transportiert werden kann

Zusammenfassung: Eine Kante e wird in D eingesetzt \Leftrightarrow e \cup E(D) unabhängig Beweis: Lemma* anwenden bis genug Pebbles in u,v gesammelt \Rightarrow unabhängig \Rightarrow kann eingesetzt werden

Invariante $4 \Leftarrow \text{eingesetzt} \Rightarrow \text{unabhängig}$

Theorem: Das (k,l) pebble game erkennt korrekt (k,l)-sparsity Unabhängigkeit

4.1 Computation Complexity:

Laufzeit: $\mathcal{O}(k \cdot l \cdot |V| \cdot |E|)$ Speicher: $\mathcal{O}(|V| + |E|)$

4.2 Zusammenfassung sparse graphs

(k,l)-sparse graphs: $|E'| \le k|V'| - l$ (k,l)-tight/rigid \Leftrightarrow (k,l)-sparse und |E'| = k|V'| - l

blocks:

(k,l)-sparsity-block: Teilgraph G'(V',E') eines (k,l)-sparse graphs |E'| = k|V'| - l \Leftrightarrow (k,l)-pebble game

- Konstruktion eines DiGraphen D' mit orientierten unabhängigen Kanten $\forall v \in V \colon \text{peb}(\mathbf{v})$
- genau <u>l</u> Pebbles in $D \Leftrightarrow steif$
- \bullet minimal steif \Rightarrow keine Kanten wurden als redundant verworfen

Definition component:

 $V' \subseteq V$ ist eine (k,l)-sparsity componente von G wenn

- 1. V' ein Block ist
- 2. V' maximal bezüglich Knotenmenge \rightarrow also maximal erweiterter Block

Eigenschaften von component:

 $B_1(V_1, E_1), B_2(V_2, E_2)$ zwei (k,l)-sparse blocks

- für $0 \le l \le k$ und $V_1 \cap V_2 \ne 0$ gilt: $V_1 \cup V_2$ und $V_1 \cap V_2$ sind ebenfalls Blocks
- für k<l<2k und $|V_1 \cap V_2| \ge 2$ gilt: $V_1 \cup V_2$ und $V_1 \cap V_2$ sind ebenfalls Blocks

Lemma: Für l>0: jede (k,l)-sparsity component ist zusammenhängend V' ist eine (k,l)-sparsity-component \Rightarrow in V' gibt es genau l pebbles (peb(u) + peb(v)=l) nach einsetzen von e

Nach dem Einsetzen von e=(u,v) gibt es in der component, die von u und v aufgespannt wird, keine weiteren pebbles

4.3 Pebble Collection

zwei grundlegende Möglichkeiten (Algorithmen)

5 von 2D zu 3D

bisher 2D bar+joint frameworks:

- $\bullet \Leftrightarrow Laman graphs$
- \Leftrightarrow (2,3)-sparse graphs

jetzt in 3D: (3,6)-sparse graphs 2 Probleme:

- 1. (3,6)-sparsity ist kein Matroid \rightarrow pebble game verwendbar um unabhängige Mengen von Kanten zu bekommen <u>aber</u> maximal unabhängige Menge nicht eindeutig
- 2. rigid in 3D \Rightarrow (3,6)-sparse \rightarrow Umkehr ist aber falsch (siehe Maxwell: Gegenbeispiel Doppelbanane)

Daher nun body + bar frameworks

<u>Übersetzung in Multigraphen:</u> Verwandschaft zu body + hinge framework - 5 generische bars = 1 hinge

Moleküle: bond bending frameworks (Molekülgraphen)

- steife Stäbe, fixe Längen
- fixe Bindungswinkel

Für Graph G wenn Graph H existiert sodass $G=H^2$ Quadrat des Graphen: $e=(u,v) \in H^2$ wenn $x \exists ux und xv in H oder <math>(u,v) \in H$ Verbindung von rigid-Clustern (components)

- 1. pivot-joint: $B_1 \cap B_2 = \{v\}$ (zwei Graphen B_1 und B_2 über genau einen Knoten v verbunden)
- 2. edge-joint: zwei Graphen B₁ und B₂ über genau eine Kante (u,v) verbunden
- 3. implied-hinge-joint: $(u,v) \in E$ aber (u,v) in Block $\to u,v$ liegen auf Achse, die jedoch keine Kante ist (siehe Doppelbanane)

Lemma: Wenn G=H² dann gibt es weder pivot-joints noch implied-hinge-joints

Theorem: Die Kanten eines Graphen $G=H^2$ sind unabhängig bzgl. rigidity in $3D \Leftrightarrow$ für alle Teilgraphen mit $|V'| \geq 3$ Knoten $|E'| \leq 3|V'|$ -6 gilt $G=H^2$ ist minimal generisch steif in $3D \Leftrightarrow$ die Kanten Maxwell-unabhängig sind und |E|=3|V|-6

dies stimmt für Moleküle! jedoch keine Matroid-Eigenschaften!!!

→ keine Garantie, dass durch einsetzen der Kanten rigid-Basis erzeugt wird

6 Abbie Algorithmus

Positionsproblem lösen:

set of vertices V und set of edges E, $e_{ij} \in E$, falls es bekannte Distanz i,j gibt

Realisation: mapping $P:(v \rightarrow R^3)$

molecule problem: sei $p_i = P(v_i \in V)$ Problem minimieren: $F(P) = \sum_{e_{ij} \in E} (\underbrace{|p_i - p_j|^2}_{Distanzquadrate} - \underbrace{d_{ij}^2}_{bekannte})$

 $\rightarrow \mathcal{O}(n^P)$: lange Laufzeit, daher optimieren

Divide and Conquer Algorithmus

Abbie (1)

- 1. finde maximale, einzigartig realisierbare Teilgraphen \rightarrow für jeden Teilgraphen: klein genug für $\mathcal{O}(n^P)$?
- 2. JA: setze Position via globaler Optimierung
- 3. NEIN: zerlege in kleinere Teilprobleme, rufe 1. rekursiv auf
- 4. kombiniere via globaler Optimierung

notwendige Bedingungen für eindeutig einbettbar (siehe 1.):

- Vertex (d+1)-connected
- redundant rigid

$\max \text{ unique } (2)$

- 1. wenn $g=k_{5,5} \rightarrow \text{kein einzigartiger Teilgraph}$
- 2. wenn g nicht 4-vertex-connected \rightarrow rekursiv 4-vertex-connected Teilgraphen lösen
- 3. wenn g
 nicht redundant steif \rightarrow rekursiv auf redundant steifen Teil
graphen lösen
- 4. wenn auf hinreichende Bedingungen positiv getestet \rightarrow g einzigartig
- 5. sonst $??? \rightarrow$ interessanter Graph

hinreichende Bedingungen für eindeutig einbettbar (siehe 4.):

- Stressmatrix mit Nullity $\geq d+1$
 - Nullity: Nullity(G) = n r(A) . . . mit Graph G mit n
 Knoten, A=Adjazenzmatrix, r(A): Rang der Adjazenzmatrix

QR-Faktorisierung: redundant steife Komponenten (3)

- unabhängiges Set von redundanten Kanten finden (in Q)
- um Basis für verbliebene Flexe zu finden
- \forall 3-Cliquen x,y,z im induzierten Graph \rightarrow \forall v \neq x,y,z falls v induzierte Kante zu x,y,z hat \rightarrow füge v zum wachsenden Teilgraphen von x,y,z hinzu

kombinatorische Positionierung

- 1. 2 Chunks teilen sich 4 Knoten \rightarrow dadurch nur eine Variante zur Vereinigung (Knoten 1...4 vereinen)
- 2. 1 Knoten mit 4 Kanten in Chunk \rightarrow verbinden
- 3. 1 Knote mit nur 3 Kanten (valent) in Chunk \rightarrow Spiegelung möglich \rightarrow ausprobieren welche die bessere Variante ist (Heuristik verwenden)
- 4. 2 valente Knoten zu Chunk + 1 Kante zwischen v und w \rightarrow kann verbunden werden (valent: 3 Kanten zum Basechunk)
- 5. 2 valente Chunks zum Basechunk verbinden/hinzufügen
- 6. 1 valenter Chunk und 1 valenter Knoten zum Basechunk verbinden/verbinden

Optimierung von F' als Minimierungsfunktion

- vertex: 3 Freiheitsgrade (Position)
- chunk: 6 Freiheitsgrade (Position, Rotation)
- für alle Spiegelungen S: 2^{S-1} Möglichkeiten
- einen chunk fixieren als "base"
- gemeinsame Knoten mit "base"
 - (3): nur Spiegelung
 - (2): Rotation (Hinge)
 - (1): 3 Rotationsmöglichkeiten
 - (0): alle 6 Freiheitsgrade