Continualization of Probabilistic Programs With Correction

Jacob Laurel, Sasa Misailovic
University of Illinois at Urbana-Champaign

Probabilistic Programs


```
var binomial = function(){
  return sample(Binomial({n: 20, p: 0.5}))
```



```
var gauss = function(){
   return sample(Gaussian({mu: 10, sigma: 2.1}))
}
```

WebPPL probabilistic programming for the web

HackPPL: A Universal Probabilistic Programming Language

What Models can I write?

Discrete Probabilistic Models

Bayesian Learning often has Discrete structure

• Inference often *harder*

XBOX LIVE

Ranking

Systems

Population Models

The New York Times

How to Think Like an Epidemiologist

With a new disease like Covid-19 and all the uncertainties it brings, there is ... in a clear way, and then propagate this uncertainty through the model." ... Philosophers of science posit that science as a whole is a Bayesian ... Aug 4, 2020

Disease Models

Ecology

Continuous Probabilistic Models

Bayesian Learning often has Continuous structure

Withou

Adapted from CDC / The Economist

of

cases

• Inference often *easier*

Continuous Random Variables

Discrete Random Variables

Continuous Random Variables

Discrete Random Variables

Continuous Random Variables Discrete Random Variables

Continuous Random Variables Discrete Random Variables

Continuous Random Variables Discrete Random Variables

Easy right?

Easy right?

194

Part III: From A to Binomial: Basic Probability Models

Making the continuity correction

The normal approximation to the binomial is just what is says — an approximation — so before you move forward with your problem after you transform your X value into a z value and use the Z table (see the Appendix) to find your probability (see the previous section to find out how), you need to make an adjustment to get a close approximation. The adjustment is called a continuity correction — a correction you make when moving from a discrete distribution like the binomial to a continuous distribution like the normal (see Chapter 7 for more on discrete and continuous distributions). If you don't make the adjustment, your final answer will be a little larger or a little smaller than it should be.

Chapter 10

Approximating a Binomial with a Normal Distribution

In This Chapter

- ▶ Using a normal distribution to approximate binomial probabilities
- > Knowing when you can (and should) approximate a binomial
- > Judging the sample and figuring the mean and standard deviation of the binomial
- > Adding a continuity correction to the binomial

Easy right?

No!

Part III: From A to Binomial: Basic Probability Models

Making the continuity correction

The normal approximation to the binomial is just what is says — an approximation — so before you move forward with your problem after you transform your X value into a z value and use the Z table (see the Appendix) to find your probability (see the previous section to find out how), you need to make an adjustment to get a close approximation. The adjustment is called a continuity correction — a correction you make when moving from a discrete distribution like the binomial to a continuous distribution like the normal (see Chapter 7 for more on discrete and continuous distributions). If you don't make the adjustment, your final answer will be a little larger or a little smaller than it should be.

Chapter 10

Approximating a Binomial with a Normal Distribution

In This Chapter

- ▶ Using a normal distribution to approximate binomial probabilities
- > Knowing when you can (and should) approximate a binomial
- > Judging the sample and figuring the mean and standard deviation of the binomial
- ▶ Adding a continuity correction to the binomial

```
Data := [12,8...]
Model {
 Prior = Uniform(20,50)
 Recruiters = Poisson(prior)
 PerfGPA = 4
 RegGPA = 4*Beta(7,3)
 GPA = Mix(PerfGPA,.05,RegGPA,.95)
 if (GPA == 4) { Interviews=Bin(Recruiters,0.9) }
 else if (GPA > 3.5) { Interviews=Bin(Recruiters, 0.6) }
 else { Interviews=Bin(Recruiters,0.5) }
 Offers=Bin(Interviews, 0.4)
for d in Data { factor(Offers,d) }
```

Data := [12,8...]

```
Model {
 Prior = Uniform(20,50)
 Recruiters = Poisson(prior)
 PerfGPA = 4
 RegGPA = 4*Beta(7,3)
 GPA = Mix(PerfGPA,.05,RegGPA,.95)
 if (GPA == 4) { Interviews=Bin(Recruiters,0.9) }
 else if (GPA > 3.5) { Interviews=Bin(Recruiters, 0.6) }
 else { Interviews=Bin(Recruiters,0.5) }
 Offers=Bin(Interviews, 0.4)
for d in Data { factor(Offers,d) }
```

Data := [12,8...]

```
Model {
    Prior = Uniform(20,50)
    Recruiters = Poisson(prior)
    PerfGPA = 4
    RegGPA = 4*Beta(7,3)
    GPA = Mix(PerfGPA,.05,RegGPA,.95)

if (GPA == 4) { Interviews=Bin(Recruiters,0.9) }
    else if (GPA > 3.5) { Interviews=Bin(Recruiters,0.6) }
    else { Interviews=Bin(Recruiters,0.5) }

Offers=Bin(Interviews,0.4)
}
```

```
for d in Data { factor(Offers,d) }
```

```
Data := [12,8...]
```

```
Model {
 Prior = Uniform(20,50)
 Recruiters = Poisson(prior)
 PerfGPA = 4
 RegGPA = 4*Beta(7,3)
 GPA = Mix(PerfGPA,.05,RegGPA,.95)
 if (GPA == 4) { Interviews=Bin(Recruiters,0.9) }
 else if (GPA > 3.5) { Interviews=Bin(Recruiters, 0.6) }
 else { Interviews=Bin(Recruiters,0.5) }
 Offers=Bin(Interviews, 0.4)
for d in Data { factor(Offers,d) }
```

```
Model {
    Prior = Uniform(20,50)
    Recruiters = Poisson(prior)
    PerfGPA = 4
    RegGPA = 4*Beta(7,3)
    GPA = Mix(PerfGPA,.05,RegGPA,.95)

if (GPA == 4) { Interviews=Bin(Recruiters,0.9) }
    else if (GPA > 3.5) { Interviews=Bin(Recruiters,0.6) }
    else { Interviews=Bin(Recruiters,0.5) }

Offers=Bin(Interviews,0.4)
}
```

```
Model {
    Prior = Uniform(20,50)
    Recruiters = Poisson(prior)
    PerfGPA = 4
    RegGPA = 4*Beta(7,3)
    GPA = Mix(PerfGPA,.05,RegGPA,.95)

if (GPA == 4) { Interviews=Bin(Recruiters,0.9)}
    else if (GPA > 3.5) { Interviews=Bin(Recruiters,0.6)}
    else { Interviews=Bin(Recruiters,0.5)}

Offers=Bin(Interviews,0.4)
}
```



```
\label{eq:model} \begin{tabular}{ll} Model & Prior = Uniform(20,50) \\ Recruiters = & Gauss(prior,sqrt(prior)) \\ PerfGPA = & Gauss(4,\beta) \\ RegGPA = & 4*Beta(7,3) \\ GPA = & Mix(PerfGPA,.05,RegGPA,.95) \\ \\ if (GPA == 4) & Interviews = & Gauss(Recruiters*0.9,sqrt(0.09*Recruiters)) \\ else & if (GPA > 3.5) & Interviews = & Gauss(Recruiters*0.6,sqrt(0.24*Recruiters)) \\ else & Interviews = & Gauss(Recruiters*0.5,sqrt(Recruiters*0.25)) \\ \\ Offers = & Gauss(Interviews*0.4,sqrt(Interviews*0.24)) \\ \\ \end{tabular}
```

```
\label{eq:model} \begin{tabular}{ll} Model & Prior = Uniform(20,50) \\ Recruiters = & Gauss(prior,sqrt(prior)) \\ PerfGPA = & Gauss(4,\beta) \\ RegGPA = & 4*Beta(7,3) \\ GPA = & Mix(PerfGPA,.05,RegGPA,.95) \\ \\ if & (GPA == 4) & Interviews = & Gauss(Recruiters*0.9,sqrt(0.09*Recruiters)) \\ else & if & (GPA > 3.5) & Interviews = & Gauss(Recruiters*0.6,sqrt(0.24*Recruiters)) \\ else & Interviews = & Gauss(Recruiters*0.5,sqrt(Recruiters*0.25)) \\ \\ Offers = & Gauss(Interviews*0.4,sqrt(Interviews*0.24)) \\ \\ \end{tabular}
```



```
\label{eq:model} \begin{tabular}{ll} Model & Prior = Uniform(20,50) \\ Recruiters = Gauss(prior,sqrt(prior)) \\ PerfGPA = Gauss(4,\beta) \\ RegGPA = 4*Beta(7,3) \\ GPA = Mix(PerfGPA,.05,RegGPA,.95) \\ \end{tabular} \\ if & (3.5 < GPA < 4.5) & Interviews=Gauss(Recruiters*0.9,sqrt(0.09*Recruiters)) \\ else & if & (GPA > 3.5) & Interviews=Gauss(Recruiters*0.6,sqrt(0.24*Recruiters)) \\ else & Interviews=Gauss(Recruiters*0.5,sqrt(Recruiters*0.25)) \\ \end{tabular} \\ Offers=Gauss(Interviews*0.4,sqrt(Interviews*0.24)) \\ \end{tabular}
```



```
Model {
Prior = Uniform(20,50)
Recruiters = Gauss(prior,sqrt(prior))
PerfGPA = Gauss(4,β)
RegGPA = 4*Beta(7,3)
GPA = Mix(PerfGPA,.05,RegGPA,.95)

if [3.5 < GPA < 4.5] { Interviews=Gauss(Recruiters*0.9,sqrt(0.09*Recruiters)))}
else if (GPA > 3.5) { Interviews=Gauss(Recruiters*0.6,sqrt(0.24*Recruiters)))}
else { Interviews=Gauss(Recruiters*0.5,sqrt(Recruiters*0.25)))}

Offers=Gauss(Interviews*0.4,sqrt(Interviews*0.24))
}
```



```
\label{eq:model} \begin{tabular}{ll} Model & Prior = Uniform(20,50) \\ Recruiters = Gauss(prior,sqrt(prior)) \\ PerfGPA = Gauss(4,\beta) \\ RegGPA = 4*Beta(7,3) \\ GPA = Mix(PerfGPA,.05,RegGPA,.95) \\ \end{tabular} if $$ (3.99 < GPA < 4.71) $ { Interviews=Gauss(Recruiters*0.9,sqrt(0.09*Recruiters)) } \\ else if (GPA > 3.5001) $ { Interviews=Gauss(Recruiters*0.6,sqrt(0.24*Recruiters)) } \\ else $ { Interviews=Gauss(Recruiters*0.5,sqrt(Recruiters*0.25)) } \\ \end{tabular}
```



```
Data := [12, 8...]
                                                                                  Inference
Model {
 Prior = Uniform(20,50)
 Recruiters = Gauss(prior,sqrt(prior))
 PerfGPA = Gauss(4,\beta)
 RegGPA = 4*Beta(7,3)
 GPA = Mix(PerfGPA,.05,RegGPA,.95)
 if (3.99 < GPA < 4.71) { Interviews=Gauss(Recruiters*0.9,sqrt(0.09*Recruiters))}
 else if (GPA > 3.5001) { Interviews=Gauss(Recruiters*0.6,sqrt(0.24*Recruiters)) }
 else { Interviews=Gauss(Recruiters*0.5,sqrt(Recruiters*0.25)) }
 Offers=Gauss(Interviews*0.4,sqrt(Interviews*0.24))
for d in Data { factor(Offers,d) }
```

will be

faster!

Ground Truth Value: 37

Ground Truth Value: 37 and we're 33% faster!

How to get there?

How to get there?

Use a **smarter** program analysis.


```
Data := [12,8...]
```

```
Model {
    Prior = Uniform(20,5)
    Recruiters = Poisson(prior)
    PerfGPA = 4
    RegGPA = 4*Beta(7,3)
    GPA = Mix(PerfGPA,.05,RegGPA,.95)

if (GPA == 4) { Interviews=Bin(Recruiters,0.9)}
    else if (GPA > 3.5) { Interviews=Bin(Recruiters,0.6)}
    else { Interviews=Bin(Recruiters,0.5)}

Offers=Bin(Interviews,0.4)
}
```

Distribution Transforms


```
Data := [12,8...]
```

```
Model {
    Prior = Uniform(20,5)
    Recruiters = Poisson(prior)
    PerfGPA = 4
    RegGPA = 4*Beta(7,3)
    GPA = Mix(PerfGPA,.05,RegGPA,.95)

if (GPA == 4) { Interviews=Bin(Recruiters,0.9)}
    else if (GPA > 3.5) { Interviews=Bin(Recruiters,0.6)}
    else { Interviews=Bin(Recruiters,0.5)}

Offers=Bin(Interviews,0.4)
}
```

Distribution Transforms

Dataflow Analysis + Predicate Corrections

```
Data := [12,8...]
```

```
Model {
Prior = l
```

```
Prior = Uniform(20,5)
Recruiters = Poisson(prior)
PerfGPA = 4
RegGPA = 4*Beta(7,3)
GPA = Mix(PerfGPA,.05,RegGPA,.95)

if (GPA == 4) { Interviews=Bin(Recruiters,0.9)}
else if (GPA > 3.5) { Interviews=Bin(Recruiters,0.6)}
else { Interviews=Bin(Recruiters,0.5)}

Offers=Bin(Interviews,0.4)
}

for d in Data { factor(Offers,d)}
```

Distribution Transforms

Dataflow
Analysis +
Predicate
Corrections

Parameter Synthesis

```
Data := [12,8...]
```

```
Model {
    Prior = Uniform(20,5)
    Recruiters = Poisson(prior)
    PerfGPA = 4
    RegGPA = 4*Beta(7,3)
    GPA = Mix(PerfGPA,.05,RegGPA,.95)

if (GPA == 4) { Interviews=Bin(Recruiters,0.9)}
    else if (GPA > 3.5) { Interviews=Bin(Recruiters,0.6)}
    else { Interviews=Bin(Recruiters,0.5)}

Offers=Bin(Interviews,0.4)
}
```

Distribution Transforms

Dataflow
Analysis +
Predicate
Corrections

Parameter Synthesis


```
Data := [12,8...]
```

```
Model {
```

```
Prior = Uniform(20,5)
Recruiters = Poisson(prior)
PerfGPA = 4
RegGPA = 4*Beta(7,3)
GPA = Mix(PerfGPA,.05,RegGPA,.95)

if (GPA == 4) { Interviews=Bin(Recruiters,0.9)}
else if (GPA > 3.5) { Interviews=Bin(Recruiters,0.6)}
else { Interviews=Bin(Recruiters,0.5)}

Offers=Bin(Interviews,0.4)
```

for d in Data { factor(Offers,d) }

```
Data := [12,8...]
```

Model {

```
Prior = Uniform(20,5)
Recruiters = Gauss(prior,sqrt(prior))
PerfGPA = Gauss(4,0.1)
RegGPA = 4*Beta(7,3)
GPA = Mix(PerfGPA,.05,RegGPA,.95)

if (3.9 < GPA < 4.71) { Interviews = Gauss(Recruiters*0.9,sqrt(...))}
else if (GPA > 3.501) { Interviews = Gauss(Recruiters*0.6,sqrt(...))}
else { Interviews = Gauss(Recruiters*0.5,sqrt(...))}

Offers = Gauss(Interviews*0.4,sqrt(...))
}
```

Language Syntax

```
Program ::= DataBlock?; Model { Stmt }; ObserveBlock?; return Var;
Stmt
           ::= skip \mid abort \mid Var := Expr \mid Var := Dist \mid CONST Var := Expr
                Stmt; Stmt | { Stmt } | condition (BExpr) | while (BExpr) Stmt
                if (BExpr) Stmt else Stmt | for i = INT to INT Stmt
           ::= ExprArithOp Expr | f(Expr) | REAL | INT | Var
Expr
BExpr
           ::= BExpr \ or \ BExpr \ | \ BExpr \ and \ BExpr \ | \ not \ BExpr \ | \ Expr \ Relop \ Expr
DataBlock := [(INT)^*] \mid [(REAL)^*]
ObserveBlock ::= for D in Data { factor (Var, D); }
Dist ::= Gaussian \mid Uniform \mid Binomial \mid Poisson \mid Bernoulli \mid ...
ArithOp \in \{+, -, *, /, **, ...\}, f \in \{log, abs, exp, ...\}, Relop \in \{<, ==, <=, ...\}
```

Language Syntax

```
Program ::= DataBlock?; Model { Stmt }; ObserveBlock?; return Var;
           ::= skip \mid abort \mid Var := Expr \mid Var := Dist \mid CONST Var := Expr
Stmt
               Stmt; Stmt | { Stmt } | condition (BExpr) | while (BExpr) Stmt
               if (BExpr) Stmt else Stmt | for i = INT to INT Stmt
           ::= ExprArithOp Expr | f(Expr) | REAL | INT | Var
Expr
BExpr
           ::= BExpr \ or \ BExpr \ | \ BExpr \ and \ BExpr \ | \ not \ BExpr \ | \ Expr \ Relop \ Expr
DataBlock ::= [(INT)^*] \mid [(REAL)^*]
ObserveBlock ::= for D in Data \{ factor(Var, D) ; \}
Dist ::= Gaussian | Uniform | Binomial | Poisson | Bernoulli | ...
ArithOp \in \{+, -, *, /, **, ...\}, f \in \{log, abs, exp, ...\}, Relop \in \{<, ==, <=, ...\}
```

Step 1) Distribution Transforms

Distribution Transforms

Continuous relaxations for each latent

Distribution Transforms

Continuous relaxations for each latent

$$Binomial(n,p) \longrightarrow Gaussian(np, \sqrt{np(1-p)})$$
 $Binomial(n,p) \longrightarrow Gamma(n,p)$
 $Poisson(\lambda) \longrightarrow Gaussian(\lambda, \sqrt{\lambda})$
 $Poisson(\lambda) \longrightarrow Gamma(\lambda, 1)$
 $DiscUniform(a,b) \longrightarrow Uniform(a,b)$
 $C \longrightarrow Gaussian(C,\beta)$

Distribution Transforms

Continuous relaxations for each latent

$$egin{aligned} np &\geq 30 \quad Binomial(n,p) \longrightarrow Gaussian(np,\sqrt{np(1-p)}) \ np &< 30 \quad Binomial(n,p) \longrightarrow Gamma(n,p) \ & \lambda &\geq 10 \quad Poisson(\lambda) \longrightarrow Gaussian(\lambda,\sqrt{\lambda}) \ & \lambda &< 10 \quad Poisson(\lambda) \longrightarrow Gamma(\lambda,1) \ & DiscUniform(a,b) \longrightarrow Uniform(a,b) \ & C \longrightarrow Gaussian(C,\beta) \end{aligned}$$

• Add Gaussian(0,β) to **smooth** observed value

• Add Gaussian(0,β) to **smooth** observed value

Why?

• Add Gaussian(0,β) to **smooth** observed value

Why?

Likelihood sums over N observed data points

```
Data = [.....]
X = DiscUniform(10,50)
Y = Binomial(X,0.5)

for i in range(N)
  factor(Data[i],Y)
```

```
Data = [.....] X = DiscUniform(10,50) Y = Binomial(X,0.5) for i in range(N) factor(Data[i],Y)  Log-likelihood sum   ln (P(X = x_0)) + \sum_{i=1}^{10} ln (P(Y = data[i]))
```

```
Data = [.....]

X = DiscUniform(10,50)

Y = Binomial(X,0.5)

for i in range(N)
factor(Data[i],Y)
```

Log-likelihood sum

$$\ln{(P(X=x_0))} + \sum_{i=1}^{10} \ln{(P(Y=data[i]))}$$

$$\ln\left(1_{x_0 \in [10,50]} \cdot rac{1}{40}
ight) + \sum_{i=1}^{10} \ln\left(inom{x_0}{data[i]}
ight) 0.5^{data[i]} \cdot 0.5^{x_0 - data[i]}
ight)$$

```
Data = [.....]
X = DiscUniform(10,50)
Y = Binomial(X,0.5)

for i in range(N)
  factor(Data[i],Y)
```

Log-likelihood sum

$$\ln\left(P(X=x_0)
ight) + \sum_{i=1}^{10} \ln\left(P(Y=data[i])
ight)$$

$$\ln\left(1_{x_0 \in [10,50]} \cdot rac{1}{40}
ight) + \sum_{i=1}^{10} \ln\left(inom{x_0}{data[i]}
ight) 0.5^{data[i]} \cdot 0.5^{x_0 - data[i]}
ight)$$

#Data * O(C(n,k))

Data = [.....]

X = DiscUniform(10,50)

Y = Binomial(X,0.5)

for i in range(N)
 factor(Data[i],Y)

Data = [.....]

X = DiscUniform(10,50)

Y = Binomial(X,0.5)

 $Z = Gaussian(Y,\beta)$

for i in range(N)
 factor(Data[i],Z)

Log-likelihood sum

$$\ln\left(P(X=x_0)
ight) + \sum_{i=1}^{10} \ln\left(P(Y=data[i])
ight)$$

$$\ln\left(1_{x_0 \in [10,50]} \cdot rac{1}{40}
ight) + \sum_{i=1}^{10} \ln\left(inom{x_0}{data[i]}
ight) 0.5^{data[i]} \cdot 0.5^{x_0 - data[i]}
ight)$$

```
Data = [.....]
```

X = DiscUniform(10,50)

Y = Binomial(X,0.5)

for i in range(N)
 factor(Data[i],Y)

Data = [.....]

X = DiscUniform(10,50)

Y = Binomial(X, 0.5)

 $Z = Gaussian(Y,\beta)$

for i in range(N)
 factor(Data[i],Z)

Log-likelihood sum

$$\ln\left(P(X=x_0)
ight) + \sum_{i=1}^{10} \ln\left(P(Y=data[i])
ight)$$

$$\ln\left(1_{x_0 \in [10,50]} \cdot rac{1}{40}
ight) + \sum_{i=1}^{10} \ln\left(inom{x_0}{data[i]}
ight) 0.5^{data[i]} \cdot 0.5^{x_0 - data[i]}
ight)$$

```
Data = [...]

X = DiscUniform(10,50)

Y = Binomial(X,0.5)
```

for i in range(N)
 factor(Data[i],Y)

```
Data = [.....]

X = DiscUniform(10,50)

Y = Binomial(X,0.5)

Z = Gaussian(Y,\beta)
```

for i in range(N)
 factor(Data[i],Z)

New Log-likelihood sum

$$\ln\left(P(X=x_0)
ight) + \ln\left(P(Y=y_0)
ight) + \sum_{i=1}^{10} \ln\left(P(Z=data[i])
ight)$$

```
Data = [.....]
```

X = DiscUniform(10,50)

Y = Binomial(X, 0.5)

for i in range(N)
 factor(Data[i],Y)

X = DiscUniform(10,50)

Y = Binomial(X,0.5)

 $Z = Gaussian(Y,\beta)$

for i in range(N)
 factor(Data[i],Z)

New Log-likelihood sum

$$\ln\left(P(X=x_0)
ight) + \ln\left(P(Y=y_0)
ight) + \sum_{i=1}^{10} \ln\left(P(Z=data[i])
ight)$$

$$\ln\left(1_{x_0 \in [10,50]} \cdot rac{1}{40}
ight) + \ln\left(inom{x_0}{y_0}0.5^{y_0} \cdot 0.5^{x_0-y_0}
ight) + \sum_{i=1}^{10}\left(-rac{(data[i]-y_0)^2}{eta}
ight) + \ln\left(rac{1}{\sqrt{2\pieta}}
ight)$$

Data = [.....]

X = DiscUniform(10,50)

Y = Binomial(X, 0.5)

for i in range(N)
 factor(Data[i],Y)

Data = [.....]

X = DiscUniform(10,50)

Y = Binomial(X, 0.5)

 $Z = Gaussian(Y,\beta)$

for i in range(N)
 factor(Data[i],Z)

New Log-likelihood sum

$$\ln\left(P(X=x_0)
ight) + \ln\left(P(Y=y_0)
ight) + \sum_{i=1}^{10} \ln\left(P(Z=data[i])
ight)$$

$$\ln\left(1_{x_0 \in [10,50]} \cdot rac{1}{40}
ight) + \ln\left(inom{x_0}{y_0}0.5^{y_0} \cdot 0.5^{x_0 - y_0}
ight) + \sum_{i=1}^{10}\left(-rac{(data[i] - y_0)^2}{eta}
ight) + \ln\left(rac{1}{\sqrt{2\pieta}}
ight)$$

1

single O(C(n,k))

Much easier!

Full continualization:

```
Data = [.....]
```

X = DiscUniform(10,50)

Y = Binomial(X,0.5)

for i in range(N)
 factor(Data[i],Y)

Data = [.....]

X = Uniform(10,50)

Y = Gaussian(0.5*X, sqrt(X*0.25))

 $Z = Gaussian(Y,\beta)$

for i in range(N)
 factor(Data[i],Z)

New Log-likelihood sum

$$\ln\left(P(X=x_0)
ight) + \ln\left(P(Y=y_0)
ight) + \sum_{i=1}^{10} \ln\left(P(Z=data[i])
ight)$$

$$\ln\left(1_{x_0 \in [10,50]} \cdot rac{1}{40}
ight) + \ln\left(inom{x_0}{y_0}0.5^{y_0} \cdot 0.5^{x_0 - y_0}
ight) + \sum_{i=1}^{10}\left(-rac{(data[i] - y_0)^2}{eta}
ight) + \ln\left(rac{1}{\sqrt{2\pieta}}
ight)$$

single O(C(n,k))

Much easier!

Data = [.....]

X = DiscUniform(10,50)

Y = Binomial(X, 0.5)

Full continualization:

Data = [.....]

X = Uniform(10,50)

Y = Gaussian(0.5*X, sqrt(X*0.25))

 $Z = Gaussian(Y,\beta)$

for i in range(N)
 factor(Data[i],Y)

for i in range(N)
 factor(Data[i],Z)

New Log-likelihood sum

$$\ln{(P(X=x_0))} + \ln{(P(Y=y_0))} + \sum_{i=1}^{10} \ln{(P(Z=data[i]))}$$

$$\ln\left(1_{x_0 \in [10,50]} \cdot rac{1}{40}
ight) + \left(rac{y_0 - 0.5x_0}{\sqrt{0.25}\,x_0}
ight)^2 + \ln\left(rac{1}{\sqrt{2\pi \cdot 0.25}x_0}
ight) + \sum_{i=1}^{10}\left(-rac{(data[i] - y_0)^2}{eta}
ight) + \ln\left(rac{1}{\sqrt{2\pieta}}
ight)$$

1

Even easier.

Much easier!

What about Program Control Flow?

Predicate Correction

```
if (GPA == 4)
    Interviews = Bin(Recruiters, 0.9)
else if (GPA > 3.5)
    Interviews = Bin(Recruiters, 0.6)
else
    Interviews = Bin(Recruiters, 0.5)

Offers = Bin(Interviews, 0.4)
```

Predicate Correction

```
if (GPA == 4)
Interviews = Bin(Recruiters, 0.9)

else if (GPA > 3.5)
Interviews = Bin(Recruiters, 0.6)

else if (GPA > 3.5)
Interviews = Bin(Recruiters, 0.6)

else
Interviews = Bin(Recruiters, 0.5)

Offers = Bin(Interviews, 0.4)

if (4 - \theta_1 < GPA < 4 + \theta_2)
Interviews = Gauss(Recruiters*0.9,...)

else if (GPA > 3.5 + \theta_2)
Interviews = Gauss(Recruiters*0.6,...)

offers = Bin(Interviews, 0.4)
```

Dataflow Analysis

• Do we have to change every predicate?

Dataflow Analysis

• Do we have to change every predicate?

No!

Dataflow Analysis

Do we have to change every predicate?

No!

Only ones (transitively) affected by the approximations

Step 3) Parameter Synthesis

Parameter Synthesis

• Minimize Wasserstein distance to *original* program

Only done once per model (cost amortized)

```
if (4 - \theta_1 < GPA < 4 + \theta_2)

Interviews = Gauss(Recruiters*0.9,...)

else if (GPA > 3.5 + \theta_3)

Interviews = Gauss(Recruiters*0.6,...)

else

Interviews = Gauss(Recruiters*0.5,...)
```

```
\arg\min_{\theta_{1},\theta_{2},\theta_{3}}(Wasserstein\ Dist(P_{Orig},P_{Cont.})) if (4-\theta_{1}<\mathrm{GPA}<4+\theta_{2}) Interviews = Gauss(Recruiters*0.9,...) else if (\mathrm{GPA}>3.5+\theta_{3}) Interviews = Gauss(Recruiters*0.6,...) else Interviews = Gauss(Recruiters*0.5,...)
```

```
\arg\min_{\theta_{1},\theta_{2},\theta_{3}}(Wasserstein\ Dist(P_{Orig},P_{Cont.})) if (4 - \frac{\theta_{7}}{\theta_{7}} < \text{GPA} < 4 + \frac{\theta_{2}}{\theta_{2}}) Interviews = Gauss(Recruiters*0.9,...)  
else if (\text{GPA} > 3.5 + \frac{\theta_{3}}{\theta_{3}}) Original Program Interviews = Gauss(Recruiters*0.6,...)  
else Interviews = Gauss(Recruiters*0.5,...)
```

```
\arg\min_{\theta_{1},\theta_{2},\theta_{3}}(Wasserstein\ Dist(P_{Orig},P_{Cont.})) if (4 - \frac{\theta_{7}}{\theta_{7}} < \text{GPA} < 4 + \frac{\theta_{2}}{\theta_{2}}) Interviews = Gauss(Recruiters*0.9,...) Continualized Program Interviews = Gauss(Recruiters*0.6,...) else Interviews = Gauss(Recruiters*0.5,...)
```

```
\arg\min_{\theta_{1},\theta_{2},\theta_{3}}(Wasserstein\ Dist(P_{Orig},P_{Cont.})) if (4 - \frac{\theta_{7}}{\theta_{7}} < \text{GPA} < 4 + \frac{\theta_{2}}{\theta_{2}}) Interviews = Gauss(Recruiters*0.9,...) How to optimize? Interviews = Gauss(Recruiters*0.6,...) else Interviews = Gauss(Recruiters*0.5,...)
```

Parameter Synthesis - Optimization

• Parameterize P_{Cont} with a fixed parameter

Forward sample model (ignore observed data)

• Measure empirical Wasserstein Distance to P_{Orig} samples:

$$X_i \sim P_{orig}, \, Y_i \sim P_{cont}$$

$$EWD(P_{orig}, P_{cont}) = \sum_{i=1}^{n} ||X_i - Y_i||$$

Parameter Synthesis - Optimization

Use Nelder-Mead to explore different parameters

 Allows us to uncover runtime errors causing program to abort (e.g. negative variance) Isn't this as hard as Inference?

Isn't this as hard as Inference?

No!

Isn't this as hard as Inference?

No!

Cost is amortized.

- Program state: $\sigma \in \mathbb{R}^n$
- ullet Sub-probability **measures**: $\mu:\mathcal{B}(\mathbb{R}^n) o [0,1]$
- Program transforms sub-probability measures:

$$\llbracket Program \rrbracket : \mu \rightarrow \mu$$

Distributions interpreted as Kernels

$$\llbracket \textit{Dist} \rrbracket : \sigma \to \mu$$

• Absolute Continuity: A sub-probability measure μ is absolutely continuous w.r.t to the Lebesgue measure λ , iff

$$orall S \in \mathcal{B}(\mathbb{R}^n) \,:\, \lambda(S) = 0 \implies \mu(S) = 0$$

Where x_i 's marginal is:

$$\mu_{x_i} = \lambda S. \int_{\sigma \in \mathbb{R}^n} \mu(d\sigma) \, exttt{[Dist(e}_1, ..., e_k)] exttt{[}\sigma)$$

 $[x_i = Gauss(a,b)](\mu)$ Example:

$$\mu_{x_i} = \lambda S. \int_{\sigma \in \mathbb{R}^n} \mu(d\sigma) \int_{x_i \in \mathbb{R} \cap S} rac{1}{\sqrt{2\pi b(\sigma)}} e^{-\left(rac{x_i - a(\sigma)}{b(\sigma)}
ight)^2} dx_i$$

 $[x_i = Binomial(n,p)](\mu)$ Example:

$$\mu_{x_i} = \lambda S. \int_{\sigma \in \mathbb{R}^n} \mu(d\sigma) \sum_{k=1}^{n(\sigma)} inom{n(\sigma)}{k} p(\sigma)^k (1-p(\sigma))^{n(\sigma)-k} \delta_k(S)$$

 $[x_i = Gauss(a,b)](\mu)$ Example:

$$\mu_{x_i} = \lambda S. \int_{\sigma \in \mathbb{R}^n} \mu(d\sigma) \int_{x_i \in \mathbb{R} \cap S} rac{1}{\sqrt{2\pi b(\sigma)}} e^{-\left(rac{x_i - a(\sigma)}{b(\sigma)}
ight)^2} dx_i$$

 $[x_i = Binomial(n,p)](\mu)$ Example:

$$\mu_{x_i} = \lambda S. \int_{\sigma \in \mathbb{R}^n} \mu(d\sigma) \sum_{k=1}^{n(\sigma)} inom{n(\sigma)}{k} p(\sigma)^k (1-p(\sigma))^{n(\sigma)-k} \delta_k(S)$$

Sequencing:

$$[\![P_1; P_2]\!](\mu) = [\![P_2]\!]([\![P_1]\!](\mu))$$

if-then-else:

$$\mu_B = \lambda S.\,\mu(S\cap B)$$

$$\mu_{\neg B} = \lambda S.\,\mu(S\cap \neg B)$$

$$\text{[if (B) }P_1 \text{ else }P_2 \text{]}(\mu) = \text{[[}P_1 \text{]]}(\mu_B) \ + \text{[[}P_2 \text{]]}(\mu_{\neg B})$$

Factor:

$$\llbracket ext{factor(x_i,t)}
rbracket (\mu) = \lambda S. \int_{\mathbb{R}^n} \mathbf{1}_S \cdot g(t,\sigma) \cdot \mu(ds)$$

Where $g(t, \sigma)$ is a **smooth** function

Theoretical Implications

Theorem 1: In the transformed program the marginal sub-probability measure of each latent is absolutely continuous at each point the variable is defined

Program	Prior	Likelihood	Correction?	T _{cont} (s)
GPA				
Election				
Fairness				
SVM Fairness				
TrueSkill				
Disease				
SVE				
Beta Binomial				
Exam				
Plankton				

Program	Prior	Likelihood	Correction?	T _{cont} (s)
GPA	Uniform			
Election	Disc Uniform			
Fairness	Disc Uniform			
SVM Fairness	Binomial			
TrueSkill	Poisson			
Disease	Disc Uniform			
SVE	Uniform			
Beta Binomial	Beta			
Exam	Uniform			
Plankton	Disc Uniform			

Program	Prior	Likelihood	Correction?	T _{cont} (s)
GPA		Discrete		
Election		Bernoulli		
Fairness		Bernoulli		
SVM Fairness		Continuous		
TrueSkill		Bernoulli		
Disease		Discrete		
SVE		Hybrid		
Beta Binomial		Discrete		
Exam		Discrete		
Plankton		Discrete		

Program	Prior	Likelihood Correction? T _{cont} (s)
GPA		У
Election		У
Fairness		У
SVM Fairness		У
TrueSkill		У
Disease		n
SVE		n
Beta Binomial		n
Exam		n
Plankton		n

Program	Prior	Likelihood	Correction?	T _{cont} (s)
GPA				3.6
Election				1.1
Fairness				1.8
SVM Fairness				1.6
TrueSkill				1.1
Disease				0.006
SVE				0.009
Beta Binomial				0.006
Exam				0.008
Plankton				0.006

Evaluation - Methodology

- Fix a true parameter and generate data
- Place flat prior over parameter
- Infer/recover true value given generated data
- Measure how close: True Val. Inferred Val. True Val.
 - Leios
 - Original Model + Likelihood Smoothing (Naïve)
 - Original Model

Evaluation - Methodology

- Fix a true parameter and generate data
- Place flat prior over parameter
- Infer/recover true value given generated data
- Measure how close: True Val. Inferred Val. True Val.
 - Leios
 - Original Model + Likelihood Smoothing (Naïve)
 - Original Model

Improvement due to: **Continuous Approximations**

Evaluation - Methodology

- Fix a true parameter and generate data
- Place flat prior over parameter
- Infer/recover true value given generated data
- Measure how close: True Val. Inferred Val. True Val.
 - Leios
 - Original Model + Likelihood Smoothing (Naïve)
 - Original Model

Improvement due to: **Likelihood Smoothing**

MCMC (β =0.1)

Program	T _{Orig}	E _{Orig}	T _{Naive}	E _{Naive}	T _{Leios}	E _{Leios}
GPA	0.806	0.090	0.631	0.070	0.605	0.058
Election	X	X	3.232	0.051	0.616	0.036
Fairness	4.396	0.057	0.563	0.056	0.603	0.093
SVM Fairness	X	X	0.626	0.454	0.980	0.261
TrueSkill	3.668	0.009	0.494	0.059	0.586	0.053
Disease	4.944	0.009	1.350	0.013	0.490	0.008
SVE	X	X	0.522	0.045	0.516	0.091
Beta Binomial	1.224	0.028	0.564	0.024	0.459	0.013
Exam	3.973	0.087	0.504	0.126	0.527	0.133
Plankton	0.570	0.017	0.457	0.080	0.453	0.042

Variational Inference (β=0.1)

Program	T _{Orig}	E _{Orig}	T _{Naive}	E _{Naive}	T _{Leios}	E _{Leios}
GPA	X	X	X	X	3.11	0.20
Election	X	X	X	X	1.76	0.07
Fairness	X	X	X	X	1.81	0.72
SVM Fairness	X	X	X	X	1.80	0.20
TrueSkill	X	X	X	X	1.81	0.12
Disease	X	X	X	X	1.73	0.24
SVE	0.677	0.684	1.478	3.095	1.47	0.58
Beta Binomial	X	X	X	X	1.60	0.83
Exam	X	X	X	X	0.60	0.22
Plankton	X	X	X	X	3.43	0.29

Leios Takeaways

Leios makes Discrete Inference *much* easier

Approximation error is small price to pay!