NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in all aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is DEURGAANS op ALLE aspekte van die memorandum van toepassing.

QUESTION/VRAAG1

1.1.1	(x-2)(4+x)=0		
	x = 2 or $x = -4$		$\checkmark x = 2$
			$\checkmark x = -4$
			(2)
1.1.2	$3x^2 - 2x - 14 = 0$		✓ standard
	$h + \sqrt{h^2}$ $A = 0$		form/standaardvorm
	$x = \frac{-b \pm \sqrt{b} - 4ac}{2}$		
,	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{2 \pm \sqrt{(-2)^2 - 4(3)(-14)}}{2(3)}$		✓ substitution into
	$2 \pm \sqrt{(-2)^2 - 4(3)(-14)}$		correct formula/
	$x = {2(3)}$		substitusie in
			korrekte formule
	$=\frac{2\pm\sqrt{172}}{6}$	2	nor ome joi muie
	U		
	x = 2.52 or/ of x = -1.85		✓✓ answers/
		Z B	antwoorde
		PRETORIA 0001 UBLIC EXAMINATIONS	(4)
		300 F	
	OR/OF	 19 24 29 31	
		o	,
	$x^{2} - \frac{2}{3}x + \frac{1}{9} = \frac{14}{3} + \frac{1}{9}$	SNS	✓ for adding $\frac{1}{0}$ on
	3 9 3 9		9
li d	$(1)^2$ 43	The second secon	both sides/tel $\frac{1}{9}$
	$\left(x-\frac{1}{3}\right)^2=\frac{43}{9}$		9
			by aan beide kante
	$x - \frac{1}{3} = \pm \frac{\sqrt{43}}{3}$		
	3 3		
	$1 \pm \sqrt{43}$		$\checkmark x = \frac{1 \pm \sqrt{43}}{2}$
	$x = \frac{1 \pm \sqrt{43}}{3}$		$x = \frac{3}{3}$
	x = 2.52 or/of	r = -1.85	
	: 2 ,22 0170j	w 1,00	✓✓answers
			(4)

Non

MHK Ple

	_
NSC/NSS -	Memorandum

1.1.3	$2^{x+2} + 2^x = 20$
	$2^x(2^2+1) = 20$
	$2^x = \frac{20}{5}$
	$2^x = 2^2$

$$\therefore x = 2$$

OR/OF

$$2^{x}.2^{2} + 2^{x} = 2^{2}.5$$

 $2^{x}(2^{2} + 1) = 2^{2}.5$
 $2^{x}.5 = 2^{2}.5$

$$\therefore x = 2$$

OR/OF

$$4.2^x + 2^x = 20$$

$$5.2^x = 20$$

$$2^x = 4 = 2^2$$

$$\therefore x = 2$$

✓ common factor/gemeen. faktor

✓ simplification/ vereenvoudiging

✓ answer/antwoord

(3)

✓ common factor/gemeen. faktor

✓ simplification/ vereenvoudiging

✓ answer/antwoord

(3)

(3)

$$\checkmark 5.2^x = 20$$

$$\sqrt{2^x} = 4$$

✓ answer/antwoord

1.2

$$x = 2y + 3$$
(1)

$$3x^2 - 5xy = 24 + 16y$$
(2)

(1) in (2):

$$3(2y+3)^2 - 5(2y+3)y = 24+16y$$

$$3(4y^2 + 12y + 9) - 10y^2 - 15y = 24 + 16y$$

$$12y^2 + 36y + 27 - 10y^2 - 15y - 24 - 16y = 0$$

$$2v^2 + 5v + 3 = 0$$

$$(2y+3)(y+1)=0$$

$$y = -\frac{3}{2}$$
 or $y = -1$

or
$$y = -$$

$$x = 2\left(-\frac{3}{2}\right) + 3$$
 or $x = 2(-1) + 3$

$$x = 0$$
 or

$$x = 1$$

$$(0;-\frac{3}{2})$$

$$(1;-1)$$

✓ substitution/substitusie

√ simplification/ vereenvoudiging

✓ standard form/ standaardvorm

✓ factorisation/faktorisering

✓ y-values/y-waardes

✓x-values/x-waardes

(6)

OR/OF

	NSC/NSS – Memoran	dum
	$y = \frac{x-3}{2}$ $3x^{2} - 5x\left(\frac{x-3}{2}\right) = 24 + 16\left(\frac{x-3}{2}\right)$ $3x^{2} - \frac{5x^{2} - 15x}{2} = 24 + \frac{16x - 48}{2}$	✓ substitution/substitusie
		✓ simplification/ vereenvoudiging ✓ standard form / standard vorm ✓ factors/faktore ✓ x- values/x- waardes
	**	✓ y-values/y-waardes (6)
1.3	$(x-1)(x-2) < 6$ $x^{2} - 3x + 2 < 6$ $x^{2} - 3x - 4 < 0$ $(x+1)(x-4) < 0$	✓ standard form/ standaardvorm ✓ factorisation/faktorisering
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓ critical values in the context of inequality / kritiese waardes in die konteks van die ongelykheid ✓ notation/notasie (4)
1.4	$-k-4 \ge 0$	√-k-4≥0
	$k \leq -4$	✓ answer/antwoord

PRIVATE DAG X 110 PRETORIA 0001

DEPARTMENT

PUBLIC EXAMINATIONS

Copyright reserved/Kopiereg voorbehou

May. O

Please turn over/Blaai om asseblief

(2)

2.1	$T_4 = 23$	√23 (1)
2.2	$T_{4} - 23$ $T_{251} = a + (n-1)d$	
		$\checkmark a = 2$ and $d = 7$ \checkmark subst. into correct
	=2+(251-1)(7)	formula /subt. in
	=1752	korrekte formule
		√1752 (3)
2.3	$\sum_{n=1}^{251} (7n-5)$	✓ general term/
	n=1	algemene term
]	OD 107	✓ complete answer
	OR/OF	/volledige antwoord (2)
	250	✓ general term/
	$\sum_{p=0}^{250} (7p+2)$	algemene term
	<u>P</u> =0	✓ complete answer /
2.4		volledige antwoord (2)
2.4	$S_n = \frac{n}{2}[a+l]$ $S_n = \frac{251}{2}[2+1752]$ $= 220127$	
	2 051 2 00× ->	
	$S_n = \frac{251}{2}[2+1752]$	✓ substitution/substitusie
	= 220127	5405tttation 5mostituste
	= 220127	✓ 220127 (2)
	OR/OF	
	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	
	251 [2(2) + (251 - 1) (7)]	
	$=\frac{251}{2}[2(2)+(251-1)(7)]$	✓ substitution/substitusie
	= 220127	√ 220127 (2)
2.5	The new series/Die nuwe reeks is $16 + 44 + 72 + + 1752$	
	16. 204	✓✓ generating new
	16 + 28(n-1) = 1752	series divisible by 4/ vorming van nuwe reeks
	1736 = 28(n-1)	deelbaar deur 4
	62 = n - 1	$\checkmark T_n = 1752$
	n = 63	√ 63
	OBJOH	, ,
	OR/OF 2+9+16+22+20+27+44+51+++1752	
	$2+9+\underline{16}+23+30+37+\underline{44}+51++\underline{1752}$ T_3 is divisible by /is deelbaar deur 4	T in diminible less 41
1		$\checkmark T_3$ is divisible by 4/
	Then T_7 , T_{11} , T_{15} ,, T_{251} are divisible by 4, thus each 4 th	is deelbaar deur 4 ✓identifying terms
	term is divisible by 4. Daarna is T. T. T. doolboom down 4. 1. 11. 4de	divisible by 4/
	Daarna is T_7 , T_{11} , T_{15} ,, T_{251} deelbaar deur 4, d.w.s. elke 4 ^{de} term is deelbaar deur 4.	identifiseer terme
		deelbaar deur 4
n'i	∴ number of terms divisible by 4 will be = $\frac{251-3}{4}+1=63$	✓ reasoning/redenering
	T	√63 (4)
	∴ aantal terme deelbaar deur 4 sal wees = $\frac{251-3}{4}+1=63$	

Copyright reserved/Kopiereg voorbehou

Oto.

PP

OR/OF	

Position of terms divisible by 4:

$$T_n = 4n - 1 = 251$$

$$4n = 252$$

$$n = 63$$

✓ generating sequence involving position of terms/vorming van reeks i.t.v. posisie van terme

$$\checkmark T_n = 251$$

(4)

[12]

Copyright reserved/Kopiereg voorbehou

_				
3.1.	-6 -4 $p+1$	<i>p</i> ; 1		
	p+11-(-4)=2			
	p+11 = (-4) = 2 p+15 = 2		$\checkmark p + 15 = 2$	
	p = -13		$\sqrt{p} = -13$	(2)
			P	(2)
	OR/OF			
	$\begin{bmatrix} -1 & ; & -7 & ; & -11 & ; \\ & \checkmark & \checkmark & \checkmark \\ & -6 & -4 & p+11 \\ & \checkmark & \checkmark \\ & 2 & 2 \end{bmatrix}$, p ;	✓ first differences/ eerste verskille	
	p+11=-2			
	p + 11 = -2 $p = -13$		$\checkmark p = -13$	(2)
2.1.2			<i>p</i> 13	(2)
3.1.2	2a = 2 $a = 1$	PRAYS STAGE 189 PRETORIA 0001 UBLIC EXAMINATIONS	✓ a = 1	
	u=1	PRET	u = 1	
	3a + b = -6	AN ORIV		
	3(1) + b = -6	0 X 7		
	b = -9	75	$\checkmark b = -9$	
		SS		
	a+b+c=-1			
	1-9+c=-1		$\checkmark c = 7$	
	c = 7			
	$T_n = n^2 - 9n + 7$		✓ answer/antwoord	(4)
	OR/OF			(4)
	$T_n = T_1 + (n-1)d_1 + \frac{(n-1)d_1}{n}$		✓ formula/formule	
	$=-1+(n-1)(-6)+\frac{(n-1)(-6)}{n-1}$	$\frac{(n-1)(n-2)(2)}{2}$	✓ substitution of first and a differences/substitusie van	
	$= -1 - 6n + 6 + \frac{2n^2 - 6n}{n^2}$	$\frac{6n+4}{2}$	en tweede verskille ✓ simplification/vereenvoi	1
	$= n^2 - 9n + 7$		✓answer/antwoord by	2 (4)
	OR/ <i>OF</i>		- answeraniwoora p	(4)
	OIV/OI			

Copyright reserved/Kopiereg voorbehou

NSC/NSS - Memorandum

$$7;-1:-7:-11:p:...$$
 -8
 -6
 -4
 $p+11$
 2
 2
 2

$$T_0 = 7 = c$$

$$2a = 2$$
 : $a = 1$

$$3a + b = -6$$
 : $b = -9$

$$T_n = n^2 - 9n + 7$$

$$\checkmark c$$
-value/ c -waarde

- ✓a-value/a-waarde
- ✓ *b*-value/*b*-waarde
- ✓answer/antwoord

(4)

OR/OF

$$a = \frac{1}{2}(2) = 1$$

$$\therefore T_n = n^2 + bn + c$$

$$T_1 = -1 : 1 + b + c = -1$$
(1)

$$T_2 = -7 : 4 + 2b + c = -7(2)$$

$$(2)-(1): 3+b=-6$$

$$\therefore b = -9$$

sub in (1):
$$c = 7$$

$$T_n = n^2 - 9n + 7$$

✓a-value/a-waarde

✓ b-value/b-waarde

✓ c-value/c-waarde

✓answer/antwoord

(4)

		PRETORIA 0001	
3.1.3	The sequence of first differences is/Die reeks van eer		IONS
	verskille is: -6;-4;-2;0;		
	-6+(n-1)(2) = 96 $n = 52$	$\checkmark - 6 + (n-1)(2) = 96$	
	:.two terms are/twee terme is: $T_{52} = 52^2 - 9(52) + 7 = 2243$	√ 52	
	$T_{53} = 53^2 - 9(53) + 7 = 2339$	✓2 243 ✓2 339 (4)	
	OR/OF		
	The sequence of first differences is/Die reeks van eers verskille is: -6;-4;-2;0;		
	The formula for the sequence of first differences/Die juit die reeks van eerste verskille is $T_n = 2n - 8$ 1 st difference/I ^{ste} verskil: $2n - 8 = 96$ 2n = 104	formule $\checkmark 2n - 8 = 96$	
	n = 52	√52	
	: two terms are/twee terme is: $T_{52} = 52^2 - 9(52) + 7 = 2243$	√ 2 243	
	$T_{53} = 53^2 - 9(53) + 7 = 2339$	√ 2 339 (4)	
	OR/OF		
	$T_n - T_{n-1} = 96$ $(n^2 - 9n + 7) - [(n-1)^2 - 9(n-1) + 7] = 96$	$\checkmark T_n - T_{n-1} = 96$	
	$n^2 - 9n + 7 - n^2 + 2n - 1 + 9n - 9 - 7 = 96$		
	2n = 106		
	n = 53	√53	
	$T_{52} = 52^2 - 9(52) + 7 =$	1 2 273	
Ì	$T_{53} = 53^2 - 9(53) + 7 =$	$= 2339 \qquad \checkmark 2339 \qquad (4)$	
	OR/OF		
	$T_{n+1} - T_n = 96$ $[(n+1)^2 - 9(n+1) + 7] - [n^2 - 9n + 7] = 96$	$\checkmark T_{n+1} - T_n = 96$	
	$[(n+1) - 9(n+1) + 7] - [n - 9n + 7] = 96$ $n^2 + 2n + 1 - 9n - 9 + 7 - n^2 + 9n - 7 = 96$		
	2n + 2n + 1 - 3n - 3 + 7 - n + 9n - 7 = 90 $2n = 104$		
	n = 52	√52	
	$T_{52} = 52^2 - 9(52) + 7 =$	= 2243 \ \sqrt{2 243} \ PP	Yh
	$T_{53} = 53^2 - 9(53) + 7 =$		V ka

ı

0

A -		
3.2.1	$T_{12} = 16\left(\frac{1}{4}\right)^{12-1}$	$\checkmark a = 16 \text{ and } r = \frac{1}{4}$
		✓ subst. into correct
	$=\frac{1}{4^9}$ or 4^{-9} or $\frac{1}{2^{18}}$ or 2^{-18}	formula/ subt in
	7 2	korrekte formule
		✓ answer/antwoord (3)
3.2.2	$16(1(1)^{10})$	✓ substitution into
	$S_{10} = \frac{16\left(1 - \left(\frac{1}{4}\right)^{10}\right)}{1}$	correct formula
	$S_{10} = \frac{}{}$	/substitusie in
	1 - 7	korrekte formule
jh .	= 21,33	✓ answer/antwoord
	OR/OF	(2)
	$= 21,33$ OR/OF $16\left(\left(\frac{1}{2}\right)^{10} - 1\right)$ PRIVATE BAG X AMINA	
	$S_{10} = \frac{16\left(\left(\frac{1}{4}\right)^{10} - 1\right)}{\frac{1}{4} - 1}$	✓ substitution into
	$S_{10} = \frac{1}{2}$	correct formula
	$\frac{1}{2}$ $\frac{1}{2}$	/substitusie in
	= 21,33	korrekte formule
	- 21,33	✓ answer/antwoord
3.3	(1)(1)(1)	$\begin{array}{cccc} & & & & & & \\ & & & & & & \\ & & & & & $
5.5	$\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{99}\right)$	✓ improper fractions/
i		onegte breuke
	$= \left(\frac{3}{2}\right)\left(\frac{4}{3}\right)\left(\frac{5}{3}\right)\left(\frac{5}{3}\right)\left(\frac{100}{99}\right)$	(1) (100)
	(2/18/14/18/11/99)	$\checkmark \left(1 + \frac{1}{99}\right) \operatorname{or}\left(\frac{100}{99}\right)$
	$=\left(\frac{100}{2}\right)$	(99) (99)
	(2)	
	= 50	✓✓ answer/antwoord
	OR/OF	(4)
	$\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{99}\right)$	
1	$\left(\frac{1}{2} \right)^{1+\frac{1}{3}} \left(\frac{1+\frac{1}{4}}{4} \right)^{1+\frac{1}{99}} $	$\sqrt{1+\frac{1}{99}}$
	$T_1 = \left(1 + \frac{1}{2}\right) = \frac{3}{2}$	(1.99)
	$\begin{pmatrix} 1 & 1 & 2 \end{pmatrix} = \frac{1}{2}$	(-:-:
	$_{T}$ 3(1, 1) 3 4	✓ giving the first
	$T_2 = \frac{3}{2} \left(1 + \frac{1}{3} \right) = \frac{3}{2} \times \frac{4}{3} = 2$	three terms / gee die eerste drie terme
	T = 2(1, 1) = 5, 5	cer ore arre rerine
	$T_3 = 2\left(1 + \frac{1}{4}\right) = 2 \times \frac{5}{4} = \frac{5}{2}$	
	$\frac{3}{2}$, 2, $\frac{5}{2}$ is an arithmetic sequence with $a = \frac{3}{2}$ and $d = \frac{3}{2}$.1
	_	2
	$\therefore T_{98} = \frac{3}{2} + (98 - 1)\frac{1}{2}$	
	$=\frac{100}{2}=50$	
	2	√√answer
		/antwoord (4)

Copyright reserved/Kopiereg voorbehou

Non.

4.1	p=1	✓ p value /waarde
	q = 1	✓ q value /waarde
		(2)
4.2	$0 = \frac{2}{1} + 1$	(0 2 11
	$\sqrt{x+1}$	$\checkmark 0 = \frac{2}{x+1} + 1$
	-x-1=2	
	x = -3	$\checkmark x = -3$
	x = -3	(2)
	OR/OF	
	P-fl-1 (0 2)	✓ reflect across/reflekteer om
	Reflect (0; 3) across $y = -x$ to get T(-3; 0) x = -3	y = -x
	Reflekteer (0; 3) om $y = -1$ om $T(-3; 0)$ te kry x = -3	
	x = -3	$\checkmark x = -3$
		(2)
4.3	Shifting g five units to the left shifts $(-1; 0)$ five units	
	to the left.	
	x = -6	✓ answer/antwoord (1)
4.4	$\frac{2}{x+1} + 1 = x$	✓ equating both graphs/stel
	x+1	grafieke gelyk
	$2+x+1=x^2+x$	
	$x^2 = 3$	$\checkmark x^2 = 3$
		$\checkmark x = \sqrt{3} \text{ and } y = \sqrt{3}$
	$x = \sqrt{3}$ since at S, $x > 0$	$x = \sqrt{3}$ and $y = \sqrt{3}$
	$y = \sqrt{3} = 1,73$	
	$OS^2 = x^2 + y^2 = 3 + 3 = 6$	\checkmark OS $^2 = 6$
	$\therefore OS = \sqrt{6} = 2,45 \text{ units/} eenhede$	✓ answer/antwoord (5)
		(6)
	ODIOT	1
	OR/OF	
	- : 2	
	PRIVATE ZAG X 110	
	PRETORIA 0001	
	PUBLIC EXAMINATIONS	

Copyright reserved/Kopiereg voorbehou

The.

	Translate g one unit down and one unit to the right/ <i>Transleer g een eenheid af en een eenheid na regs</i>	
	The new equation/Die nuwe vergelyking: $p(x) = \frac{2}{x}$	$\checkmark p(x) = \frac{2}{x}$
	Therefore the image of S is $S'(\sqrt{2}; \sqrt{2})/D$ Daarom is die beeld van S nou $S'(\sqrt{2}; \sqrt{2})$ Now translate p back to g/Transleer p terug na g: $S(\sqrt{2}-1; \sqrt{2}+1)$ $OS^2 = (\sqrt{2}-1)^2 + (\sqrt{2}+1)^2 = 2-2\sqrt{2}+1+2+2\sqrt{2}+1$	✓✓coord. of/koörd. van S′ ✓coord. of/koörd. van S
4.5	$\therefore OS = \sqrt{6} = 2,45 \text{ units/eenhede}$ $k < 3 \text{ will give roots with opposite signs/}$ $k < 3 \text{ sal wortels met teenoorgestelde tekens gee}$	$\sqrt{\text{answer/}antwoord}$ (5) $\sqrt{k} < 3$ (1) [11]

QUESTION 5

5.1	n - loo u			
	$y = \log_a x$ $-1 = \log_a \frac{1}{3}$		\checkmark subt $\begin{pmatrix} 1 \\ - \cdot - 1 \end{pmatrix}$	
	3		\checkmark subt. $\left(\frac{1}{3};-1\right)$	
	$a^{-1} = \frac{1}{3}$		$\checkmark a^{-1} = \frac{1}{3} \text{ or } a = \left(\frac{1}{3}\right)^{-1}$	
	$a = \left(\frac{1}{3}\right)^{-1}$		3 (3)	(2)
ľ	\ - /			
5.2	$\therefore a = 3$ $h: x = \log_3 y$		✓ swop x and y/ruil x en y	
	$y = 3^x$		✓ answer/antwoord	
5.3	-(.) 1			(2)
2.3	$g(x) = -\log_3 x$		✓ answer/antwoord	(1)
	OR/OF			(-)
	$g(x) = \log_3 \frac{1}{x}$	And the state of t	✓ answer/antwoord	
	x	PUE		(1)
	OR/OF	PRIVATE DAGIN 130 PRETORIA 0001 PUBLIC EXAMINATIONS		
	. () 1	EXA		
	$g(x) = \log_{\frac{1}{3}} x$	MIN OCCUPANT	✓answer/antwoord	
	OR/OF	AII G		(1)
		SNS	((1)
	$x=3^{-y}$		✓ answer/antwoord	(1)
	OR/OF			
	$x = \left(\frac{1}{3}\right)$		Communication	
5.4	x > 0		✓ answer/antwoord ✓ answer/antwoord	(1)
	OR/OF			(1)
	$(0,\infty)$			
	(0,00)		✓ answer/antwoord	
5.5	$\log_3 x = -3$			(1)
	$x = 3^{-1}$		L'aymanautial farme	
	$x = \frac{1}{27}$		✓ exponential form/ eksponensiële vorm	
			✓ simplification/vereenvoudig	ging
	$x \ge \frac{1}{27}$		✓answer/antwoord	(3)
			/\(\lambda\)\(\la	[9]

Copyright reserved/Kopiereg voorbehou

6.1	$4x^2 - 6 = 0$	$\sqrt{y} = 0$
	$x^2 = \frac{3}{2}$	
	x = 1,22 (x - coordinate of S is positive)	(1.22
6.2	(0:-6)	$\begin{array}{c cccc} & \checkmark 1,22 & (2) \\ \hline & \checkmark 0 & \end{array}$
		√-6 (2)
6.3.1	QT = f(x) - g(x)	✓✓ correct formula/
	$=2\sqrt{x}-(4x^2-6)$ or $=2\sqrt{x}-4x^2+6$	korrekte formule ✓ substitution/substitusie
6.3.2	$QT = 2x^{\frac{1}{2}} - 4x^2 + 6$	(3)
	Deravitive of QT = $x^{\frac{-1}{2}} - 8x = 0$ $\frac{1}{\sqrt{x}} = 8x$	✓ derivative/afgeleide ✓ derivative equal to 0/ afgeleide gelyk aan 0
	$x^{\frac{3}{2}} = \frac{1}{8}$ or $\frac{1}{x} = 64x^2$	$\checkmark x^{\frac{3}{2}} = \frac{1}{8}$
	$x = \left(\frac{1}{8}\right)^{\frac{2}{3}}$	
	$x = \left(\frac{1}{2}\right)^2 \text{ or } x^3 = \frac{1}{64}$	
	$x = \frac{1}{4} = 0.25$	✓x-value/x-waarde
	Max/Maks QT = $2\left(\frac{1}{4}\right)^{\frac{1}{2}} - 4\left(\frac{1}{4}\right)^2 + 6$	✓ substitution/substitusie
	$=6\frac{3}{4}=6.75 \text{ units/} eenhede$	✓answer/antwoord (6) [13]

PRIVATE DAS X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

Copyright reserved/Kopiereg voorbehou

(No)

of

$A = P(1-i)^n$	
$72\ 500 = 145\ 000\ (1-i)^5$ $i = 1 - \sqrt[5]{\frac{72500}{145000}}$	✓ substitution/substitusie
= 0,1294	✓ writing in terms of <i>i</i> herskryf in terme van i
∴ Rate of interest/Rentekoers is 12,94 % p.a./p.j. OR/OF	✓answer/antwoord (3)
$(1-i)^5 = \frac{1}{2}$ $\therefore i = 1 - \left(\frac{1}{2}\right)^{\frac{1}{5}}$	✓ substitution/substitusie
$\therefore i = 1 - \left(\frac{1}{2}\right)^{\frac{1}{5}}$ $i = 0.1294$	✓writing i.t.o <i>i</i>
$\therefore \text{ Rate of interest/} Rentekoers is 12,94 \% \text{ p.a./}p.j.$ $P = \frac{x[1 - (1 + i)^{-n}]}{x[1 - (1 + i)^{-n}]}$	✓answer (3)
$500\ 000 = \frac{x \left[1 - \left(1 + \frac{0.12}{12}\right)^{-240}\right]}{\frac{0.12}{12}}$ $x = \frac{500000 \times \frac{0.12}{12}}{\left[1 - \left(1 + \frac{0.12}{12}\right)^{-240}\right]}$ $x = R5505,43$	$ √ i = \frac{0.12}{12} $ $ √ n = 240 $ ✓ substitution into correct formula $ √ answer/antwoord (4) $
PRETORIA COO1 PUBLIC EXAMINATIONS	Ab

Copyright reserved/Kopiereg voorbehou

Mg

7.2.2	$P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$ $500000 = \frac{6000 \left[1 - \left(1 + \frac{0.12}{12}\right)^{-n}\right]}{\frac{0.12}{12}}$ $\frac{500000}{6000} \times 0,01 = 1 - (1,01)^{-n}$ $(1,01)^{-n} = 1 - \frac{5}{6}$	✓6000 ✓ substitute into correct formula/substitusie in korrekte formule
	$= n = \frac{\log \frac{1}{6}}{\log 1{,}01}$ $n = 180{,}07$ ∴ Melissa settles the loan in 181 months	✓ use of logs/gebruik van logs ✓ answer/antwoord (4)
7.2.3	Samuel He is paying off his loan over a longer period thus more interest will be paid./Hy betaal sy lening oor 'n langer tydperk af, dus sal hy meer rente betaal.	✓ Samuel ✓ reason/rede (2)
	OR/OF Samuel He will pay/Hy betaal R5505,43 × 240 – R500 000 = R821 303,20 She will pay between/Sy sal tussen R580 000 and/en R586 000,00 betaal.	✓ Samuel ✓ reason/rede (2)

8.1
$$f(x+h) = (x+h)^{3} = (x^{2} + 2xh + h^{2})(x+h)$$
$$= x^{3} + x^{2}h + 2x^{2}h + 2xh^{2} + h^{2}x + h^{3}$$
$$= x^{3} + 3x^{2}h + 3xh^{2} + h^{3}$$
$$f(x+h) - f(x) = x^{3} + 3x^{2}h + 3xh^{2} + h^{3} - x^{3}$$
$$= 3x^{2}h + 3xh^{2} + h^{3}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h}$$

$$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h}$$

$$= \lim_{h \to 0} (3x^2 + 3xh + h^2)$$

$$= 3x^2$$

OR/OF

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)(x+h)^2 - x^3}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)(x^2 + 2xh + h^2) - x^3}{h}$$

$$= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h}$$

$$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h}$$

$$= \lim_{h \to 0} (3x^2 + 3xh + h^2)$$

$$= 3x^2$$

OR

DEPARTMENT OF BASIC EDUCATION

2014 -11- 12

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

✓ simplifying/vereenvouding

- ✓ formula/formule
- ✓ subst. into formula/subst. in formule
- ✓ factorization/faktorisering
- ✓ answer/antwoord (5)
- ✓ formula/formule
- ✓ subst. into formula/subst. in formule

- ✓ simplifying/vereenvoudiging
- ✓ factorization/faktorisering

✓answer/antwoord

(5)

Please turn over/Ria

Please turn over/Blaai om assebliej

Copyright reserved/Kopiereg voorbehou

$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ formula/formule
$=\lim_{h\to 0}\frac{(x+h)^3-x^3}{h}$	✓ subst. into formula/subst. in formule
$= \lim_{h \to 0} \frac{(x+h-x)(x^2+2xh+h^2+x^2+xh+x^2)}{h}$	✓ factorization/faktorisering
$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h}$	
$= \lim_{h \to 0} \left(3x^2 + 3xh + h^2\right)$ $= 3x^2$	✓ simplifying/vereenvoudiging ✓ answer/antwoord
	(5)

8.3 $y = x^{12} - 2x^{6} + 1$ $\frac{dy}{dx} = 12x^{11} - 12x^{5}$ $= 12x^{5}(x^{6} - 1)$ $= 12x^{5}\sqrt{y}$ (2) $\checkmark \text{ simplification/vereenvoudiging}$ $\checkmark \text{ derivative/afgeleide}$ $\checkmark \text{ factors/faktore}$ (3)	8.2	$f'(x) = 4x + 2x^3$	$\sqrt{4x}$
8.4 $f(x) = 2x^{3} - 2x^{2} + 4x - 1$ $f(x) = 6x^{2} - 4x + 4$ $f(x) = 12x - 4$ $f(x) = 12$			1
$\frac{dy}{dx} = 12x^{11} - 12x^{5}$ $= 12x^{5}(x^{6} - 1)$ $= 12x^{5}\sqrt{y}$ $8.4 \qquad f(x) = 2x^{3} - 2x^{2} + 4x - 1$ $f(x) = 6x^{2} - 4x + 4$ $f(x) = 12x - 4$ $f(x$	8.3	$v = x^{12} - 2x^6 + 1$	(2)
8.4 $f(x) = 2x^{3} - 2x^{2} + 4x - 1$ $f(x) = 6x^{2} - 4x + 4$ $f(x) = 12x - 4$ $f(x) = 12$			simpinication/vereenvouaiging
$= 12x^{5}\sqrt{y}$ (3) 8.4 $f(x) = 2x^{3} - 2x^{2} + 4x - 1$ $f(x) = 6x^{2} - 4x + 4$ $f(x) = 12x - 4$ $f \text{ is concave up when/is konkaaf op as } f(x) > 0$ $12x - 4 > 0$ $12x > 4$ $x > \frac{1}{3}$ (4)		dx	✓ derivative/afgeleide
8.4 $f(x) = 2x^{3} - 2x^{2} + 4x - 1$ $f(x) = 6x^{2} - 4x + 4$ $f(x) = 12x - 4$ $f \text{ is concave up when is konkaaf op as } f(x) > 0$ $12x - 4 > 0$ $12x > 4$ $x > \frac{1}{3}$ (4)		171	✓ factors/faktore
$f(x) = 6x^{2} - 4x + 4$ $f(x) = 12x - 4$ $f \text{ is concave up when is konkaaf op as } f(x) > 0$ $12x - 4 > 0$ $12x > 4$ $x > \frac{1}{3}$ $x > \frac{1}{3}$ (4)		V.F	(3)
$f(x) = 12x - 4$ $f \text{ is concave up when/is konkaaf op as } f(x) > 0$ $12x - 4 > 0$ $12x > 4$ $x > \frac{1}{3}$ $x > \frac{1}{3}$ $x > \frac{1}{3}$ (4)	8.4	$f(x) = 2x^3 - 2x^2 + 4x - 1$	
$f(x) = 12x - 4$ $f \text{ is concave up when/is konkaaf op as } f(x) > 0$ $12x - 4 > 0$ $12x > 4$ $x > \frac{1}{3}$ (4)	J.	$f(x) = 6x^2 - 4x + 4$	✓ first derivative/eerste afgeleide
$12x - 4 > 0$ $12x > 4$ $x > \frac{1}{3}$ $\checkmark x > \frac{1}{3}$ (4)			
$12x > 4$ $x > \frac{1}{3}$ $\checkmark x > \frac{1}{3}$ (4)			$\checkmark f''(x) > 0$
$x > \frac{1}{3} \tag{4}$		· · · · · · · · · · · · · · · · · · ·	
3		1	
		$x > \frac{1}{3}$	$\sqrt{x} > \frac{1}{2}$ (4)
			3

DEPARTMENT OF BASIC EDUCATION

2014 -11- 12

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

Olan C

9.1	$f(x) = 3x^{2} - 8x - 3 = 0$ $(3x+1)(x-3) = 0$ $x = -\frac{1}{3}$ or $x = 3$	✓ derivative/afgeleide ✓ derivative/ afgeleide = 0 ✓ factors/faktore ✓ x-values/waardes
	$y = \frac{500}{27} \qquad \text{(or } y = 18\frac{14}{27} \text{ or } 18,52 \text{)} $ $y = 0$ Turning points are/Draaipunte is $\left(-\frac{1}{3}; \frac{500}{27}\right)$ and $(3;0)$	✓ each y- values/elke y-waarde
	$(-\frac{1}{3};18,52)$ $(-2:0)$ $(3:0)$	✓ x-intercepts/afsnitte ✓ y-intercept/afsnit ✓ turning points/ draaipunte ✓ shape/vorm (4)
	$x < \frac{-1}{3}$ or $0 < x < 3$ OR $(-\infty; -\frac{1}{3}) \cup (0;3)$	$\sqrt{x} < \frac{-1}{3}$ both critical points/ beide kritieke-punte \(

DEPARTMENT OF BASIC EDUCATION

2014 -11- 12

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

Copyright reserved/Kopiereg voorbehou

(Diox

A

10.1	l + 2h = 40	
	l = 40 - 2h	✓answer (1)
10.2	2b + 2h = 100	$\sqrt{2b+2h}=100$
	b = 50 - h	$\checkmark b = 50 - h$
	V = lbh	✓volume formula
10.0	V = h(40 - 2h)(50 - h)	(3)
10.3	$V = (50h - h^2)(40 - 2h)$	
	$V = 2h^3 - 140h^2 + 2000h$	✓ simplifying/vereenvoudig
	$V' = 6h^2 - 280h + 2000 = 0$	✓ derivative / <i>afgeleide</i>
	$h = \frac{280 \pm \sqrt{(-280)^2 - 4(6)(2000)}}{}$	
	2(6)	
	$h \neq 37,86$ or $h = 8,80$	✓ h-values in any form /
	\therefore for a box as large as possible, $h = 8,80 \mathrm{cm}$	h-waardes in enige vorm
	vir die grootste moontlike boks = $8,80 \text{ cm}$	✓ answer/antwoord
	5,00 <i>bm</i>	(5)
		[9]

QUESTION/VRAAG 11

11.1.1	$P(\text{male/manlik}) = \frac{83}{180} \text{ or } 0,46 \text{ or } 46,11\%$	✓answer/antwoord	
11.1.2	P(not game park/nie wildreservaat) $= 1 - P(game park/wildreservaat)$ $= 1 - \frac{62}{180}$ $= \frac{59}{90} \text{ or } 0,66 \text{ or } 65,56\%$ \mathbf{OR}/\mathbf{OF}	$ √1 - \frac{62}{180} $ ✓ answer/antwoord (2)	<u>(1)</u>
	P(not game park/nie wildreservaat) $= \frac{98}{180} + \frac{20}{180}$ $= \frac{118}{180}$ $= \frac{59}{90} \text{ or } 0,66 \text{ or } 65,56\%$	$\sqrt{\frac{98}{180} + \frac{20}{180}}$ $\sqrt{\text{answer/antwoord}} \qquad (2)$	

DEPARTMENT OF BASIC EDUCATION

2014 -11- 12

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

Please turn over/Biquai om asseblief

Copyright reserved/Kopiereg vocarb

11.2 Events are independent if /Gebeure is onafhanklike indien

 $P(\text{male}) \times P(\text{home}) = P(\text{male and home})$ $P(\text{manlik}) \times P(\text{huis}) = P(\text{manlik en huis})$

 $P(\text{male}/\text{manlik}) = \frac{83}{180}$

and/en P(home/huis) = $\frac{20}{180}$ or 0,11 or 11,11%

 $P(\text{male}/\text{manlik}) \times P(\text{home}/\text{huis})$

$$= \frac{83}{180} \times \frac{20}{180}$$

$$=\frac{83}{1620}$$

= 0.05123 or 5.12%

P(male and home/manlik en huis)

$$=\frac{13}{180}$$

= 0.07222... or 7.22%

Therefore $P(male) \times P(home) \neq P(male and home)$ Dus $P(manlik) \times P(huis) \neq P(manlik en huis)$

Thus the events are not independent./Dus is die gebeure nie onafhanklik nie

OR/OF

	Home/Huis	Not Home/	
		Nie huis	
<u>M</u>	13	70	83
	7	90	97
	20	160	180

P(female/vroulik) × P(not home/nie huis)

$$=$$
 $\frac{97}{160}$ \times $\frac{160}{160}$

$$-\frac{180}{180} \times \frac{180}{180}$$

$$= \frac{194}{}$$

= 0.479012345... or 47.90%

P(female and not home/vroulik en nie-huis)

$$= 0.5$$
 or 50%

Therefore $P(female) \times P(not home) \neq P(female and not home)$

Thus the events are not independent.

Dus $P(vroulik) \times P(nie-huis) \neq P(vroulik en nie-huis)$

Dus is die gebeure nie onafhanklik nie.

 \checkmark P(*m*) × P(*h*) and their values/*en hulle*

✓answer of product

waardes

DEPARTMENT OF BASIC EDUCATION

2014 -11- 12

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

✓ P(m and/ en h) value/waarde

✓ conclusion/afleiding (4)

 \checkmark P(f) × P(not h) and their values/en hulle waardes

✓ answer of product

✓ P(f and/en not h) value/waarde

✓ conclusion/afleiding (4)

Please turn over/Blaai om asseblief

Sin

12.1.1	26 × 25 × 24 × 22 × 22	
14.1.1	26×25×24×23×22 = 7 893 600	$\checkmark 26 \times 25 \times 24 \times 23 \times 22$
	- 7 893 000	√ 7 893 600 (2)
	OR/OF	
	$^{26}P_5 = \frac{26!}{(26-5)!} = \frac{26!}{21!} = 7893600$	✓ formula/formule
		✓answer/antwoord (2)
12.1.2	24×23×22 = 12 144	✓ 24×23×22 ✓12 144
1001		(2)
12.2.1	7⁄6/5/43/2·1 = 5 040	✓product/produk
12.2.2	(3·2·1)(5·4·3·2·1)	✓5 040 (2) ✓3×21
	= 720	√54321 √720
	OR/OF	(3)
	The five 'units' can be parked in 5/43/21 ways./Die vyf 'eenhede' kan op 5×4×3×2×1 maniere geparkeer word. The three silver cars can be parked in 3/21 ways./Die drie	√ 54321
	silver motors kan op $3 \times 2 \times 1$ maniere parkeer word. So there are $(3 \times 1)(5 \times 4 \times 21) = 720$ ways to park the	√ 3∕2∕1
	cars./Dus is daar $(3 \times 2 \times 1)(5 \times 4 \times 3 \times 2 \times 1) = 720$ maniere om die motors te parkeer	√720 (3)
	•	(3)
	OR/OF	DEPARTMENT OF BASIC
	Suppose for the moment the 3 silver cars are at one	EDUCATION
	end./Veronderstel die drie silwer motors is op die punt.	
	The 3 cars can be arranged in $3 \times 2 = 6$ ways. Die 3 motors kan op $3 \times 2 \times 1 = 6$ maniere gerangskik word. For each	2014 -11- 1 2
	of them the remaining four cars can be arranged in 4321 = 24 ways./Die 4 oorblywende motors kan op $4 \times 3 \times 2 \times 1$	PRIVATE BAG X 110 PRETORIA 0001
	= 24 maniere rangskik word.	PUBLIC EXAMINATIONS
	So $6 \times 24 = 144$ ways if all 3 cars at one end./Dus is daar 6	
	\times 24 = 144 maniere as die 3 motors op die punt is.	✓6×24 = 144
	Together, the silver cars can only occupy 5 different	
	positions amongst the 7 positions. ""./Saam kan die silwer motors slegs 5 verskillende posisies"	
	hê tussen die 7 moontlike posisies.	
	\therefore Total ways/ <i>Totale getal maniere</i> = $5 \times 144 = 720$	√5×144
		√ 720 (3)
		[9]
	/ 1	TOTAL TOTAL AT AND YOU

Copyright reserved/Kopiereg voorbehou

a Alth

TOTAL/TOTAAL: 150

NSC/NSS – Memorandum

<u>ANNEXURE A: MATHEMATICS PAPER 1 NOVEMBER 2014</u> <u>MEMORANDUM NOTES TO MARKERS</u>

- Continued Accuracy when the second mistake is made: stop marking; 1st one is regarded as a slip; the second one is regarded as they do not know what they are doing stop marking
- Incorrect formula: 0 marks

QUESTION 1

Question 1.1.2

- Only place where there will be a penalty for rounding
- If the substitution is not shown but everything else is correct max 3 / 4 marks
- This is the place where we penalise the candidate for not SHOWING how they get to the answer.

Question 1.1.3

Trial and error – try 1, didn't work; try 2, it works $\therefore x = 2$.

2/3 marks

Breakdown:

$$2^{x+2} + 2^x = 2^2 + 2^4$$
$$x + 2 + x = 2 + 4$$

x = 2

This is a breakdown

0/3 marks

- Mathematics behind getting to x = 2 MUST be correct
- Answer only: 2/3 marks

Question 1.2

• If the candidate says $x = -\frac{3}{2}$ or x = -1 $y = -\frac{9}{4}$ or y = -2

DEPARTMENT OF BASIC EDUCATION

2014 -11- 12

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

This then carries a maximum of 4/6 marks

- If the candidate does not show the factorisation but gets to the answer of y correct, then there is NO penalty.
- If the square is NOT put in in the substitution line, then the quadratic becomes the same only lose substitution mark ∴ 5/6 marks
- If the candidate simplifies the problem to a linear equation, the only mark they can get is for the substitution (including the squared) : max 1/6 mark

Question 1.3

- If they leave the answer as a correct sketch with the critical values on it: 3 / 4 marks
- If the candidate does (x+1)(x-4) < 0 then gets the answer x < -1 or x < 4: 2/4 marks
- If the candidate does a graphical solution but concludes incorrectly: 3 / 4 marks
- If the candidate leaves the answer as (including the open circles) or shades on the x-axis on the parabola 4 / 4 marks

• If the candidate changes the question to an equality, max 2 / 4 marks (standard form factorisation)

factorisation)

The critical value mark is awarded in the context of solving an inequality (i.e. in conjunction with

the graphical solution or the table solution)
Copyright reserved/Kopiereg voorbehou

NSC/NSS – Memorandum

Question 1.4

- Answer only: 2/2 marks
- If k < -4 then 1/2 marks
- If they don't get the first mark except in the instance above i.e. if the candidate answers k = -4: 0 / 2 marks

QUESTION 2

Question 2.2

- The mark for a and d is given independent of the formula.
- Incorrect formula but a = 2 and d = 7 is listed: 1/3 marks
- Incorrect formula:

0/3 marks

Answer only: 3 / 3 marks

Question 2.3

• If
$$\sum_{n=1}^{251} = 7n - 5$$
 then 1 / 2 marks

• If
$$\sum_{n=1}^{251} T_n$$
 or $\sum_{n=1}^{251}$ (wrong formula) then 1/2 marks

Question 2.4

 T_n is a continued accuracy mark from 2.3

Question 2.5

• Answer only: 1 / 4 marks

• If
$$\frac{251}{4} = 62,75 = 63$$
 then 1 / 4 marks

• If
$$\frac{252}{4} = 63$$
 only then $1\sqrt{4}$ marks

DEPARTMENT OF BASIC EDUCATION 2014 -11- 1 2 PRIVATE BAG X 110 PRETORIA 0001 PUBLIC EXAMINATIONS

QUESTION 3

Question 3.1

Answer only: 2 / 2 marks

Question 3.1.2

- If the candidate does the solution using regression analysis: a = 7; b = -9; c = 1 and $T_n = n^2 9n + 7$, 4./.4 marks
- If the answer is correct, then 4 / 4 marks
- If answer only: EVERYTHING must be correct to get 4 / 4 marks otherwise 0 / 4 marks

Question 3.1.3

If the candidate starts with n = 52 and gets $T_{52} = 2243$ and $T_{53} = 2339$: full marks

Copyright reserved/Kopiereg voorbehou

Question 3.2.1

- Scientific notation is correct and will be awarded full marks: 3.81×10^{-6}
- If the candidate leaves the answer as $\frac{1}{262144}$: 2 / 3 marks

Question 3.2.2

- Answer only: 2 / 2 marks
- If answer is given as 21:1 / 2 marks

Question 3.3

Be aware of alternatives here.

QUESTION 4

Question 4.1

If the candidate writes down the function as $g(x) = \frac{2}{x+1} + 1$ then p and q values are implied and award 2/2 marks

Question 4.2

- Answer only: 2 / 2 marks
- If the candidate has $\frac{2}{x-1} + 1 = 0$ then x = -1 then 1/2 marks

Question 4.3

- Note that the answer can be done independently of Question 4.1
- Note that the answer can be done as a CA to the answer in Question 4.1: i.e. x = -p 5 for the CA mark.

Question 4.4

- CA from 4.1 If candidate has $\frac{2}{x-1} + 1 = x$ then OS = 3,41
- If the candidate starts with $S(\sqrt{3}; \sqrt{3})$ with no working and gets $OS^2 = 6$: 3 / 5 marks
- If the candidate assumes any other value for the point S, no CA marks

QUESTION 5

Question 5.1

If
$$\log_3 \frac{1}{3} = \log_3 3^{-1} = -\log_3 3 = -1$$
: 0 / 2 marks

Question 5.2

- Answer only: 2 / 2 marks
- If the candidate states: $y = a^x$ then 2/2 marks

Question 5.3

Answers can be written in terms of a.

Copyright reserved/Kopiereg voorbehout

On pp & suffet

Question 5.5

- Answer only: 3 / 3 marks
- The candidate can use the log inequality.
- If the candidate gives the answer in terms of a then 3/3 marks i.e. $x \ge \frac{1}{a^3}$
- If the candidate leaves the answer as $x \le \frac{1}{27}$: 2 / 3 marks

DEPARTMENT OF BASIC EDUCATION 2014 -11- 12 PRIVATE BAG X 110 PRETORIA 0001 PUBLIC EXAMINATIONS

QUESTION 6

Question 6.1

- No penalty for rounding.
- Penalise for leaving in surd form as the question states to TWO decimal places.
- Penalise 1 if the candidate does not make a choice for x.
- The y = 0 can be implied.

Question 6.2

Both marks are accuracy marks.

Question 6.3.1

- If the candidates swap the functions around then max 2/3 marks.
- If the candidate leaves the answer as $QT = 2\sqrt{x} (4x^2 6)$ then 3 / 3 marks.
- If the candidate uses the distance formula with $(x; 2\sqrt{x})$ and $(x; 4x^2 6)$ and $QT = \sqrt{(2\sqrt{x} 4x^2 + 6)^2 + (x x)^2} = 2\sqrt{x} 4x^2 + 6$ then 3/3 marks
- If the candidate uses the distance formula with $(x; 2\sqrt{x})$ and $(x; 4x^2 6)$ and

QT =
$$\sqrt{(4x^2 - 6 - 2\sqrt{x})^2 + (x - x)^2}$$
 = $4x^2 - 6 - 2\sqrt{x}$ then 2/3 marks

If the candidate provides the solution: QKT = QK + KT
$$QK = 2\sqrt{x}$$

$$KT = -(4x^2 - 6)$$

$$QKT = 2\sqrt{x} + (-4x^2 + 6)$$

$$V = QK + KT$$

Question 6.3.2

- CA must apply for the derivative from Question 6.3.1.
- If a candidate simplifies the equation by using their incorrect values then the CA cannot be applied.
- Be careful of the kinds of answers that the learner gives. The x value MUST be positive due to the position of K on the graph. If x is negative, then there is a breakdown.

QUESTION 7

Question 7.1

- If the candidate swaps A and P, the answer will be i = -14,87%: max 1 / 3 marks
- If the candidate rounds off early and gets i = 13%: max 2 / 3 marks
- If the candidate uses the incorrect formula: 0 / 3 marks
- If the candidate leaves the answer as 12,9%: 2 / 3 marks
- If the candidate leaves the answer to more than 2 decimal places then no penalty

Question 7.2.1

- The marks for n and i are independent of the formula.
- Early rounding: max 3 / 4 marks

Copyright reserved/Kopiereg voorbehou

Question 7.2.2

- If the candidate uses the F_v formula: 1/4 marks for x = 6000.
- Accept n = 180.07
- Do not accept n = 180 3./.4 marks

Question 7.2.3

- If the candidate answers Samuel only: 1 / 2 marks
- The totals can also be calculated: Melissa's total will be $6000 \times 180.07 = R + 1080420$ Samuel's total will be $5505.43 \times 240 = R + 1 \times 321 \times 303.20$

QUESTION 8

There is a maximum penalty of 1 for incorrect notation in the WHOLE of question 8.

Ouestion 8.1

- Mistakes in notation: max 4 / 5 marks
- Do not penalise if the candidate does not have the bracket in the second to last step.
- If the candidate uses rules of differentiation: 0 / 5 marks
- If the candidate simplifies the problem and does first principles on $3x^2$: 0 / 5 marks
- Markers need to be careful of the correct answer by incorrect methods.
- Ignore the substitution of h = 0.

Ouestion 8.2

If the candidate leaves the -3 in the answer, then max 1/2 marks

Question 8.3

- The mark for the derivative is a CA mark
- The candidate can use the chain rule to solve this problem.

$$\frac{dy}{dx} = 2(x^6 - 1)6x^5$$

$$= 12x^5(x^6 - 1)$$

$$= 12x^5\sqrt{y}$$

$$\checkmark 12x^5$$

The candidate can square root first and then use implicit differentiation. An AP candidate may use this method.

$$y = (x^6 - 1)^2$$

$$y^{\frac{1}{2}} = x^6 - 1$$

$$\frac{1}{2}y^{-\frac{1}{2}} \cdot \frac{dy}{dx} = 6x^5$$

$$\frac{dy}{dx} = 12x^5 \sqrt{y}$$

$$\Theta'6x^5$$

 $\frac{dy}{dx} = 12x^5\sqrt{y}$

Question 8.4

- If the candidate works out $x = \frac{1}{3}$ and conclude $x > \frac{1}{3}$: full marks
- If the candidate stops at $x = \frac{1}{3}$ then 2 / 4 marks
- The mark for f''(x) > 0 can also be awarded for a "sketch" graph of f.

QUESTION 9

Ouestion 9.1

= 0 must be stated and not implied.

If the candidate gets x = 3 by factorising the quadratic factor and concludes x = 3 and y = 0: 1/6 mark

Question 9.2

If the candidate draws a cubic graph passing through (0; 18) then the candidate can get 1 mark.

Question 9.3

If the candidate's answer is $-\frac{1}{3} < x < 3$: 0 / 3 marks

QUESTION 10

Question 10.2

- If the candidate only writes V = lbh: 1/3 marks
- If the candidate only gets to b = 50 h: 2/3 marks

Question 10.3

- = 0 can be implied.
- 5^{th} mark is for rejection of one of the h's.
- If derivative incorrect:

CA but the answer must make sense. Be careful that 0 < h < 20.

Do not CA if the candidate gets a quadratic that can be factorised. This has simplified the solution

QUESTION 11

Question 11.2

If the candidate just states not independent with no calculations: 0 / 4 marks

QUESTION 12

Question 12.1.1

There is NO CA for not knowing the number of letters in the alphabet. The candidate gets no marks if they do not start with 26 ...

Question 12.1.2

The CA only continues if the number they start with is 2 less than the number they started with in 12.1.1

Question 12.2.2

If the candidate only gives the answer as 3!: 1/3 marks

If the candidate only gives the answer as 5!: 1/3 marks

If the candidate only gives the answer as 3!.4! = 144: $1/\sqrt{3}$ marks

Copyright reserved/Kopiereg voorbehou