Lung Cancer: Circulating microRNAs for early lung cancer detection

Mattia Boeri, Ph.D.

FONDAZIONE IRCCS
ISTITUTO NAZIONALE
DEI TUMORI

10 years results of the european NELSON lung cancer screening trial

Effects of Volume CT Lung Cancer Screening: Mortality Results of the NELSON Randomised-Controlled Population Based Trial, De Koning et al, IASLC 2018

10 years results of the Italian MILD lung cancer screening trial

Ugo Pastorino, Prolonged LDCT screening from 5 to 10 years

March 6-8 2019						
The NLST (USA)						
Randomized screening trial on 53,454 persons: LDCT vs CXR						
20% reduction of lung cancer mortality 7% reduction all cause mortality						
Need to screen 320 subjects to prevent 1 lung cancer death						
24% positive subjects 96% of these false positive						
Overdiagnosis by LDCT: > 18%						
Number of cases of overdiagnosis in the						

320 subjects above: 1.38

Challenges in Data-Driven Genomic

Computing

Unmet clinical needs:

Better definition of the "at risk population"

Unresolved issues of lung cancer

Reduction of false positives after initial screen
 Reduction of overdiagnosis through more effcient prediction of aggressive disease

Clinical utility of biomarkers

Sources of biomarkers in lung cancer screening

Blood based biomarkers in lung cancer screening

DNA+proteins

RNA

	Test	Retrospective		Prospective	Sources		
	rest	Study population	Sens –Spec	Study population	Sens –Spec	Jources	
	Plasma C4d levels	190 high risk volunteers	AUC = 0.74			Ajona, JNCI 2013	
	EarlyCDT-Lung (7 AAbs)	55 ptz vs 234 ctrls	40% - 90%	1613 high risk volunteers	41% – 87%	lott Lung Cancor 14	
				ECLS Study: 12000 high risk vol	Ongoing	Jett, Lung Cancer 14	
	Xpresys Lung (2 proteins)	Indet Nodules: 353 ptz	82% - 32%	Indet Nodules: 178 ptz	97% - 44%	Silvestri, Chest 18	
	CAPP-Seq	13 ptz vs 5 ctrls	85% - 96%			Newman, NatMed14	
	mPCR-NGS	96 ptz (stage I-III)	48% - NA			Abbosh, Nature 17	
	CCGA (tNGS-WGS-methylome)			15000 volunteers	Ongoing	Oxnard, ASCO 18	
	CancerSEEK	104 ptz (stage I-III) vs 812 ctrls	59% - 99%			Cohen, Science 18	
	MSC	MSC (24 microRNA) 1069 high risk volunteers	87% - 81%	BioMild: 4119 high risk volunt.	Ongoing	Sorri C. 100 2014	
T	(24 microRNA)			SMILE: 2000 high risk volunt.	In 2019	Sozzi G, JCO 2014	
	MiR-Test (19 microRNA)	1008 high risk volunteers	78% - 75%	COSMOS2: 10000 high risk vol.	Ongoing	Montani, JNCI 2015	

Proteins

DNA

NY-ESO-1, CAGE, GBU4-5, SOX2, HuD, and MAGE A4) in some patients with lung cancer.

Challenges in Data-Driven Genomic Computing

lung cancer due to age and smoking history or other factors.

March 6-8 2019

method.

The marker: Autoantibodies (AAbs) develop in response to an abnormal tumor antigens (p53,

The EarlyCDT-Lung test

(7 AAbs)

	Specificity (%; 95% CI) ^a	Sensitivity (%; 95% CI)b	PPV
Overall	1341/1538 (87%; 85–89%)	25/61 (41%; 29–54%)	1 in 8.9 (11%)
6AAB	599/726 (83%; 79-85%)	12/26 (46%; 27–67%)	1 in 11.6 (9%)
7AAB	742/812 (91%; 89–93%)	13/35 (37%; 21–55%)	1 in 6.4 (16%)

The clinical setting: Individuals deemed by their clinician to be at an increased risk of developing

Lam S et al. CanPrevRes, 2011 – Chapman CJ et al. TumBiol, 2012 – Jett JR et al. Lung Cancer, 2014

The Circulating Cell-free **Genome Atlas Study (CCGA)**

The marker: circulating free DNA can be released in blood by tumor cells.

The technology: Illumina platforms

fragments

- Paired cfDNA and white blood cell (WBC) targeted sequencing (60,000X, 507 gene panel)
- Paired cfDNA and WBC whole-genome sequencing (WGS; 35X) cfDNA whole-genome bisulfite sequencing (WGBS; 34X) for abnormally methylated

The clinical setting: Blood was collected from participants with newly diagnosed therapy-naive cancer (cases) and participants without a diagnosis of cancer (controls) for a total of 15,000 individuals.

Genome Atlas Study (CCGA) Results of the test in patients with lung cancer (n=127) and a subset of controls (580):

The Circulating Cell-free

-Similar ages (mean±SD yrs: 67±9, 60±13)

-85% and 43% were ever-smokers

-46% and 22% were men

Fixed **95% specificity**

Sensitivity in 63 stage I-IIIA pts was:

48% (targeted NGS), **54%** (WGS), and **56%** (WGBS)

Sensitivity in 54 stage IIIB-IV pts was: **85%** (targeted NGS), **91%** (WGS), and **93%** (WGBS)

Oxnard et al, ASCO 2018

The CancerSEEK test: ctDNA + proteins

The markers: - Circulating tumor DNA released in blood by tumor cells

- A combination of tumor-expressed and host response proteins

The technology:

- 1) PCR-based sequencing assay that could simultaneously assess multiple regions of 16 commonly mutated genes
- 2) 8 proteins evaluated through a single Luminex bead based immunoassays platform (Millipore)

The clinical setting: 812 Controls vs. 1005 patients who had been diagnosed with stage I to III cancers of the ovary, liver, stomach, pancreas, esophagus, colorectum, lung or breast.

The CancerSEEK test: ctDNA + proteins

Results of the test:

Specificity >99% (7/812 controls)

Median	age
--------	-----

- -Controls 55 years
- -All patients: 64 years
- -LC patients: 69 years

Lung Cancer	CancerSEEK positive /all LC cases	Sensitivity
Stage I	20/46	43%
Stage II	18/27	67%
Stage III	23/31	74%

Cohen et al, Science 2018

Circulating microRNAs

Active release

Exosomes

High-density lipoproteins

Small non-coding RNAs that regulate gene expression by binding complementary sequences of target mRNAs inducing their degradation or translational repression

RNA-binding proteins (Ago 2, NPM1)

Passive release

miRNAs remain rather intact and stable in plasma/serum

Easily <u>detectable</u> by common technique (RT-qPCR)

MicroRNAs: biomarkers from the tumor-host interplay

Cancer progression is driven not only by a tumour's underlying genetic alterations and paracrine interactions within the tumour microenvironment, but also by complex systemic processes.

MRAplisiteo &le/lee ianlo, eCay notet Dielc Bio 12 2 0 6 4

The microRNA signature classifier (MSC)

CONTROLS:

DISEASE FREE INDIVIDUALS WHIT AT LEAST 5 YEARS OF FOLLOW-UP

The microRNA signature classifier (MSC)

The microRNA signature classifier (MSC)

Second primary lung cancer

- Brain metastasis from lung cancer
- Lung metastasis from breast cancer

Longitudinal plasma samples (n=100) from 31 out of 44 (70.5%) alive patients

- 28 disease free patients
- 3 relapsing patients

Sestini et al, Oncotarget 2015

The Biomild prospective validation study

MSC results at the BASELINE

MILD retrospective study

Biomild prospective study

	Expected		Observed		Delta	
MSC risk level						
High	236	6%	164	4%	-72	-2%
Intermediate	708	18%	902	23%	194	5%
Low	2986	76%	2866	73%	-120	-3%

percentile scaling

The MSC **Correlative studies**

The MSC Correlative studies

Mutational status alone and in combination with MSC and tumor stage is associated with prognosis

The MSC Correlative studies

MSC high risk level reflects a tumor "cold" immunophenotype

The MSC Correlative studies

March 6-8 2019	MESSAGES		
Circulating miRNA are very	handful and useful		
biomarkers reflecting the inte	eraction between the		
tumor and the host			

TAKE HOME

Circulating biomarkers should be identified and

validated in proper settings

Analytical and pre-analytical condition must be standardize as much as possible

TUMOR GENOMICS: Luca Roz, Orazio Fortunato, Massimo Moro, Cristina Borzi, Francesca Andriani, Carla Verri, Davide Conte, Mavis Mensah

THORACIC SURGERY: Paola Suatoni, Stefano Sestini, Ugo Pastorino and the MILD-bioMILD supporting staff

