

CHƯƠNG 4 – KẾT NỐI MẠNG INTERNET

PGS. TS. Nguyễn Hữu Thanh Bộ môn Kỹ thuật thông tin Viện Điện tử - Viễn thông ĐHBK Hà Nội

Email: thanhnh@mail.hut.edu.vn

Nội dung

- Tại sao phải kết nối mạng lớp Internetworking?
- Khái niệm kết nối mạng và kiến trúc Internet
- Cấu trúc địa chỉ IP, liên hệ giữa địa chỉ IP, địa chỉ MAC
- IP và các giao thức có liên quan
- ■Định tuyến trong Internet

Đặt vấn đề

■ Nhu cầu: kết nối nhiều mạng con với nhau thành một mang toàn cầu

■Kết nối nhiều mạng LAN ở lớp MAC có khả thi?

Khái niệm

Địa chỉ IP

Internet **Protocol**

Các giao thức khác

Định tuyến

CHƯƠNG 4 - KẾT NỖI MANG INTERNET

Khái niệm

Địa chỉ IP

Internet

Protocol

Đặt vấn đề (tiếp...)

Các khó khăn:

■Do địa chỉ MAC không có cấu trúc nên không thể sử dụng để định tuyến → phải tạo ra một spanning tree

♦ Việc tạo ra spanning tree kết nối hàng chục ngàn nút không khả thi:

- Chon nút gốc?
- Kích thước bảng chuyển tiếp (forwarding table) quá
- Các bản tin cấu hình quảng bá với số nút lớn → làm mạng bị lụt với các bản tin điều khiển

□ Việc kết nối các mạng vật lý: cấu trúc vật lý khác nhau và cách đánh địa chỉ khác nhau cực kỳ phức tạp (Ethernet, WiFi, ATM, .v.v.)

Các giao thức khác

Định tuyến

CHƯƠNG 4 - KẾT NỐI MẠNG INTERNET

PGS. TS. Nguyễn Hữu Thanh

Lịch sử phát triển của Internet

1957: Mỹ thành lập cơ quan ARPA (Advanced Research Projects Agency) trực thuộc Bộ quốc phòng

1962: Mỹ tập trung nghiên cứu các phương thức gửi dữ liệu quân sự theo phương thức phân tán \rightarrow nguyên lý chuyển mạch gói

1968: ARPA thành lập dự án ARPANET kết nối UCLA, SRI (tai Stanford), UCSB (Santa Barbara), DH Utah. Băng thông 50kbps

1972: Email đầu tiên. ARPA đổi tên thành DARPA (Defence Advanced Research Projects Agency). ARPANET sử dụng NCP (Network Control Protocol) cho phép truyền dữ liệu giữa 2 nút trên cùng mạng

1973: Vinton Cerf và Bob Kahn (Stanford) bắt đầu phát triển TCP/IP, cho phép các máy tính liên mạng trao đổi dữ liệu

1974: thuật ngữ Internet được sử dụng lần đầu tiên

1976: Robert M. Metcalfe phát triển mạng Ethernet. Mạng truyền số liệu qua vệ tinh được phát triển. APARNET đã có hơn 23 nút

PGS. TS. Nguyễn Hữu Thanh

Khái niệm

Địa chỉ IP

Internet **Protocol**

Các giao thức khác

Định tuyến

CHƯƠNG 4 - KẾT NỐI MẠNG INTERNET

Lịch sử phát triển của Internet (*tiếp...*)

- 1981: NSF quyết định xây dựng mạng CSNET cho nghiên cứu độc lập với ARPANET. Liên kết giữa ARPANET và CSNET. Host: 213
- 1983: thành lập Internet Activities Board (IAB). TCP/IP thay thế hoàn toàn NCP. ĐH Wisconsin đưa ra DNS đầu tiên. Host: 562
- 1985: NSF thành lập mạng NSFNET, dung lượng: 1,55Mpbs. Host: 1962
- 1986: IETF (Internet Engineering Task Force) được thành lập. Host: 2308
- 1990: ngôn ngữ htlm ra đời. Host: 330000
- 1992: sự ra đời của World Wide Web. Băng thông mạng lõi: 45Mbps. Host: 2.000.000
- 1993: Mosaic ra đời: web browser đầu tiên với giao diên đồ hoa
- 1996: host: 15.000.000
- 1998: IPv6 được chuẩn hóa bởi IETF
- 1999: 802.11 ra đời

CHƯƠNG 4 - KẾT NỖI MANG INTERNET

PGS. TS. Nguyễn Hữu Thanh

.

Các giao thức khác

Định tuyến

Đặc điểm của Internet

- Mỗi gói được định tuyến (tìm đường) một cách độc lập → router không lưu giữ trạng thái của các luồng dữ liêu
- Cho phép truyền gói qua nhiều mạng vật lý khác nhau
- Không có cơ chế đảm bảo trễ
- Không có cơ chế đảm bảo thứ tự gói
- Không có cơ chế đảm bảo gói sẽ được truyền đến nơi nhận
 - ☐ Gói có thể bị mất do tràn hàng đợi ở nút trung gian
- Các chức năng "thông minh" (truyền lại gói, sắp xếp thứ tự gói, điều khiển luồng, chống tắc nghẽn) được thực hiện bởi thiết bị đầu cuối
- → Giao thức Internet (Internet Protocol IP) được sử dung!

PGS. TS. Nguyễn Hữu Thanh

Khái niệm

Địa chỉ IP

Internet Protocol

Các giao thức khác

Định tuyến

CHƯƠNG 4 - KẾT NỐI MẠNG INTERNET

Chức năng chính của lớp Internetworking

- ■Định tuyến (routing): tìm đường đi cho một gói tin từ nguồn đến đích → thuật toán vào giao thức định tuyến
- Chuyển tiếp (forwarding): chuyển một gói tin từ một đầu vào router ra đầu ra thích hợp → bảng chuyển tiếp (forwarding/routing table)

Khái niệm

Địa chỉ IP

Internet Protocol

Các giao thức khác

Định tuyến

CHƯƠNG 4 - KẾT NỐI MANG INTERNET

PGS. TS. Nguyễn Hữu Thanh

11

Địa chỉ IP

Địa chỉ IP

□ IPv4: 32 bit (chương này chỉ xét IPv4)

□ IPv6: 128 bit

Yêu cầu: phải có cấu trúc, cho phép định tuyến → địa chỉ IP:

■ Network ID. (địa chỉ mạng)

■ Host ID. (địa chỉ máy trạm)

 Mỗi giao diện mạng có một địa chỉ IP – địa chỉ IP có tính duy nhất

Cấp phát địa chỉ IP:

■ Tĩnh

□ Động (TD qua DHCP)

Địa chỉ IP

Khái niệm

Internet Protocol

Các giao thức khác

Định tuyến

CHƯƠNG 4 - KẾT NỐI MẠNG INTERNET

Địa chỉ IP (tiếp...)

Số máy trạm tối đa trong một mạng:

 $\square k = 2^n - 2$

♦Trong đó: n – số bit của Host ID.

□2 địa chỉ còn lại:

♦Đia chỉ toàn 0 – đia chỉ mang

- TD: Mạng 171.64.15.0

♦Địa chỉ toàn 1 – địa chỉ quảng bá trong pham vi môt mang

- TD: 171.64.15.255 \rightarrow địa chỉ quảng bá trong phạm vi mạng 171.64.15.0

Khái niệm

Địa chỉ IP

Internet Protocol

Các giao thức khác

Định tuyến

CHƯƠNG 4 - KẾT NỐI MANG INTERNET

PGS. TS. Nguyễn Hữu Thanh

15

S E T

Khái niệm

Địa chỉ IP

Internet Protocol

Các giao thức khác

Định tuyến

Địa chỉ IP (tiếp...)

Nguyên tắc đánh địa chỉ:

- Mỗi mạng LAN có địa chỉ mạng riêng biệt và được ngăn cách bởi router
- Các máy trạm (kể cả router) nằm trong một LAN có chung địa chỉ mạng, còn địa chỉ máy trạm khác nhau
- Có bao nhiêu mạng LAN trong hình bên?

CHƯƠNG 4 - KẾT NỐI MẠNG INTERNET

PGS. TS. Nguyễn Hữu Thanh

Khái niệm

Địa chỉ IP

Internet Protocol

Các giao thức khác

Định tuyến

Địa chỉ IP (tiếp...)

	# of network # of hosts		
Class A	128	2^24	
Class B	16384	65536	
Class C	2^21	256	

- Địa chỉ IP có phân lớp: (tiếp...)
 - □Thí du:
 - ♦ 18.181.0.31 → class A
 - ♦ 171.64.74.155 → class B
 - Nhận xét: địa chỉ có phân lớp gây lãng phí không gian địa chỉ

CHƯƠNG 4 – KẾT NỐI MẠNG INTERNET

PGS. TS. Nguyễn Hữu Thanh

19

Địa chỉ IP (tiếp...)

■Thí dụ:

□18.181.0.31 (www.mit.edu) \rightarrow ?

□171.64.74.155 (stanford) \rightarrow ?

Khái niệm

Địa chỉ IP

Internet Protocol

Các giao thức khác

Định tuyến

CHƯƠNG 4 - KẾT NỐI MẠNG INTERNET

Tổng quan về định tuyến (tiếp...)

■ Bảng định tuyến (routing table):

- □ Bảng định tuyến nằm trong các router
- □Cho phép với một địa chỉ mang đích thì phải gửi gói tin ra giao diên mang nào của router
- ■Bảng đinh tuyến được tao ra do các router trao đổi bản tin định tuyến thông qua các giao thức đinh tuyến (routing protocols)
- Nguyên lý định tuyến của router: "longest prefix match"

Khái niệm

Địa chỉ IP

Internet **Protocol**

Các giao thức khác

Định tuyến

CHƯƠNG 4 - KẾT NỐI MANG INTERNET

PGS. TS. Nguyễn Hữu Thanh

63

Khái niệm

Địa chỉ IP

Internet **Protocol**

Các giao thức khác

Tổng quan về định tuyến (tiếp...)

■ Bảng định tuyến (*tiếp*...)

dest. network	net. mask	next hop	interface	metrics
10.0.0.0	255.255.255.0	A' IP addr.	1	1
172.16.0.0	255.255.255.0	C' IP addr.	2	1

Định tuyến

PGS. TS. Nguyễn Hữu Thanh

Khái niệm

Địa chỉ IP

Internet Protocol

Các giao thức khác

Định tuyến

Tổng quan về định tuyến (tiếp...)

- Muc tiêu:
 - Tìm đường đi ngắn nhất từ một nút gốc tới các nút còn lại → xây dựng cây theo đường ngắn nhất (shortest path tree - SPT)
 - ☐ Các thuật toán xây dựng cây SPT:
 - ♦ Thuât toán Bellman-Ford → distance vector routing (RIP, IGRP)
 - ♦ Thuật toán Dijkstra → link state routing (OSPF)
- Câu hỏi:
 - Sự khác nhau giữa cậy bắc cầu tối thiểu (Minimum) Spanning Tree) và cây theo đường ngắn hhất?
 - Tại sao nguyên tắc định tuyến trong Internet lại tuân theo cây SPT?
- Chú ý:
 - Xem lại môn "*Cơ sở truyền số liệu*" để hiểu chi tiết về lý thuyết định tuyến

CHƯƠNG 4 - KẾT NỔI MANG INTERNET

PGS. TS. Nguyễn Hữu Thanh

65

Tổng quan về định tuyến (tiếp...)

Khái niệm

Địa chỉ IP

Internet **Protocol**

Các giao thức khác

Định tuyến

■Các giao thức định tuyến:

□Các giao thức định tuyến nội miền (Intra-AS routing):

♦OSPF, RIP-1, RIP-2

♦IS-IS, EIGRP, IGRP

□Các giao thức định tuyến liên miền (Inter-AS routing):

♦BGP

CHƯƠNG 4 - KẾT NỐI MẠNG INTERNET

Thuật toán Bellman-Ford phân tán (tiếp...)

Khái niệm

Địa chỉ IP

Internet Protocol

Các giao thức khác

Định tuyến

■Khắc phục vấn đề phân kỳ của Bellman-Ford (counting to infinity problem):

- □Đặt số bước tối đa, TD: C<16
- □"Split horizon": Do R₂ nhận được khoảng cách nhỏ nhất từ R_{3} , R_{2} không gửi giá của mình đến R_3 nữa
- □"Split horizon with poison reverse": R₂ gửi khoảng cách ∞ tới R₃

CHƯƠNG 4 - KẾT NỔI MANG INTERNET

73

Khái niệm

Địa chỉ IP

Internet **Protocol**

Các giao thức khác

Định tuyến

Thuật toán Dijkstra

- Router gửi bản tin cập nhật khi liên kết nối với nó thay đổi trang thái → ban tin "Link State Advertisement" (LSA)
- ■Dựa vào bản tin cập nhật, mỗi router tư tính khoảng cách nhỏ nhất từ chính nó đến tất cả các router khác → sử dụng thuật toán Dijkstra

CHƯƠNG 4 - KẾT NỐI MẠNG INTERNET

PGS. TS. Nguyễn Hữu Thanh

Địa chỉ IP

Internet

Protocol

Thuật toán Dijkstra (*tiếp*...)

Cơ chế quảng bá trong Dijkstra:

□ Gói tin trạng thái liên kết (Link State Packet - LSP) bao gồm:

♦ ID của router R_i gửi bản tin LSP

 \diamond Danh sách các hàng xóm của R_i cùng với khoảng cách tương ứng từ R_i

♦ Số thứ tư

♦ TTL

 \square Khi router R_i nhận được bản tin LSP:

♦ Nếu số thứ tự chỉ ra bản tin mới nhất → gửi LSP trên tất các các giao diện còn lại (quảng bá)

♦ Nếu không → hủy gói tin

□ Các router gửi bản tin "hello" đến các nút hàng xóm → nhận biết được trạng thái kênh truyền

Xây dưng cây SPT:

□ Dựa trên bản tin LSA → các router tự xây dựng cây SPT dựa trên thuật toán Dijkstra

Các giao thức khác

Định tuyến

CHƯƠNG 4 - KẾT NỐI MẠNG INTERNET

75

Thuật toán Dijkstra (tiếp...)

н.									
	Bước	{S}	P(R1), d(R1)	P(R2), d(R2)	P(R3), d(R3)	P(R4), d(R4)	P(R5), d(R5)	P(R6), d(R6)	P(R7), d(R7)
	0	R8	οc	oc	4, R8	oc	2,R8	2,R8	3,R8
-	1	R8,R5	oc	4,R5	4,R8	oc		2,R8	3,R8
	2	R8,R5,R6	ōc	4,R5	4,R8	6,R6			3,R8
	3	R8,R5,R6,R7	OC	4,R5	4,R8	6,R6	1	-	-
	4	R8,R5,R6,R7,R2	5,R2		4,R8	5,R2	1	-	-
	5	R8,R5,R6,R7,R2,R3	5,R2	-	-	5,R2	1	-	-
	6	R8,R5,R6,R7,R2,R3,R1	-	-		5,R2	-	-	-
	7	R8,R5,R6,R7,R2,R3,R1,R4		-	-	-	-	-	-
ľ			•	•	•				

Khái niệm

Địa chỉ IP

Internet Protocol

Các giao thức khác

Định tuyến

CHƯƠNG 4 - KẾT NỐI MẠNG INTERNET

PGS. TS. Nguyễn Hữu Thanh

Địa chỉ IP

Internet **Protocol**

Các giao thức khác

Định tuyến

So sánh (*tiếp*...)

■ Bản tin định tuyến:

■Kích thước:

- ♦ DV: lớn (gửi toàn bô thông tin về kết nối từ 1 router tới tất cả các router khác)
- ♦ LS: nhỏ (chỉ có thông tin từ 1 router tới các router hàng xóm của nó)

■Số lương bản tin trao đối

- ♦ DV: ít (chỉ gửi đến các nút hàng xóm)
- ♦ LS: nhiều (quảng bá tới toàn mạng)

Lương thông tin cần lưu tại router:

- DV: chỉ lưu giữ trang thái các router hàng xóm
- LS: lưu giữ đồ hình toàn mang

CHƯƠNG 4 - KẾT NỖI MANG INTERNET

PGS. TS. Nguyễn Hữu Thanh

So sánh (*tiếp*...)

■ Đô ổn đinh:

- DV: 1 router có thể gửi các bản tin với khoảng cách không đúng tới các hàng xóm → lan ra toàn mạng
- LS: 1 router có thể quảng bá các bản tin LSA không đúng/lỗi cho toàn mang
 - ♦ Tuy nhiên các router khác vẫn có thể xây dựng được đồ hình mang dưa vào các bản tin LSA tới từ các router khác

Thời gian hôi tu:

- DV: các bản tin DV được gửi có chu kỳ, không phụ thuộc vào trạng thái đường truyền → thời gian hội tụ lâu, ngoài ra cổ thể tạo vòng lặp (routing loop) (nhớ lại giải pháp split horizon!)
- LS: các bản tin LSA được gửi chỉ khi trạng thái đường truyền thay đổi → thời gian hội tụ nhanh hơn

Khái niệm

Địa chỉ IP

Internet **Protocol**

Các giao thức khác

Định tuyến

CHƯƠNG 4 - KẾT NỐI MẠNG INTERNET

Định tuyến trong mạng **Internet**

■ Internet thực hiện định tuyến có phân tầng (hierarchical routing):

- □Internet được phân thành các hệ tư tri AS (Autonomous System)
- ■Mỗi AS do được quản tri riêng biệt bởi các quản tri mang
- ☐ Trong một AS: sử dụng một giao thức định tuyến nôi miền (interior gateway protocol)
- □Giữa các AS: sử dụng giao thức định tuyến liên miền (exterior gateway protocol)

Khái niệm

Địa chỉ IP

Internet **Protocol**

Các giao thức khác

Định tuyến

CHƯƠNG 4 - KẾT NỐI MANG INTERNET

PGS. TS. Nguyễn Hữu Thanh

Khái niệm

Địa chỉ IP

Internet **Protocol**

Các giao thức khác

Định tuyến

Định tuyến trong mạng Internet (tiếp...) **Exterior Gateway Protocol** (BGP ...) AS2 Interior Gateway Protocol (OSPF, RIP) CHƯƠNG 4 - KẾT NỐI MẠNG INTERNET PGS. TS. Nguyễn Hữu Thanh 82

Địa chỉ IP

Internet

Protocol

Các giao

thức khác

RIP

■ Đặc điểm:

- ■RIP Routing Information Protocol
- □ Là giao thức định tuyến theo vector khoảng cách sử dụng thuật toán Bellman-Ford phân tán
- ■Được phát triển lần đầu dưới hệ điều hành BSD Unix năm 1982
- ■Trước đây được sử dụng rộng rãi, hiện nay ít được sử dụng
- □Khoảng cách là số chẳng tới mang đích
- □Số chặng tối đa: 15 chặng

Định tuyến

CHƯƠNG 4 - KẾT NỐI MẠNG INTERNET

PGS. TS. Nguyễn Hữu Thanh

87

Khái niệm

Địa chỉ IP

Internet

Protocol

Các giao

thức khác

Định tuyến

RIP (*tiếp*...)

- Trao đổi thông tin:
 - Đinh kỳ
 - ♦ Các vector khoảng cách được trao đổi định kỳ 30s
 - Mỗi thông điệp chứa tối đa 25 mục
 - Trong thực tế, nhiều thông điệp được sử dụng
 - Sư kiên
 - ♦ Gửi thông điệp cho nút hàng xóm mỗi khi có thay đổi
 - Nút hàng xóm sẽ cập nhật bảng chọn đường của nó
- Các bộ đếm thời gian:
 - Update timer
 - Dùng để trao đổi thông tin cứ 30s
- Invalid timer
 - ♦ Khởi tạo lại mỗi khi nhận được thông tin chọn đường
 - ♦ Nếu sau 180s không nhận được thông tin -> trạng thái hold-down
 - Hold down timer
 - ♦ Giữ trạng thái hold-down trong 180s
 - Chuyển sang trạng thái down
- A Mai
 - ♦ Khởi tạo lại mỗi khi nhận được thông tin chọn đường
 - ♦ Sau 240s, xóa mục tương ứng trong bảng chọn đường

CHƯƠNG 4 – KẾT NỐI MẠNG INTERNET

PGS. TS. Nguyễn Hữu Thanh

Địa chỉ IP

Internet

Protocol

Các giao

OSPF

■ Đặc điểm:

- □OSPF Open Shortest Path First
- ☐ Thông tin về trạng thái liên kết LSA (link state advertisement) được quảng bá trên toàn AS
- ■Với các AS lớn: OSPF được phân cấp thành nhiều miền OSPF nhỏ
- □ Các router sử dụng thuật toán Dijkstra để thiết lập bảng định tuyến
- □Khoảng cách (giá): 100Mbps/dung lượng kênh

thức khác Định tuyến

CHƯƠNG 4 - KẾT NỐI MANG INTERNET

PGS. TS. Nguyễn Hữu Thanh

OSPF (tiếp...)

Địa chỉ IP

Khái niệm

Internet Protocol

Các giao thức khác

Định tuyến

- Phân vùng trong OSPF:
 - □Trong việc chọn đường, tại sao phải chia mạng thành các vùng nhỏ hơn?
 - ■Nếu có quá nhiều router
 - ♦Thông tin trạng thái liên kết được truyền nhiều lần hơn
 - ♦Phải liên tục tính toán lại
 - ♦Cần nhiều bộ nhớ hơn, nhiều tài nguyên CPU hơn
 - ♦Lượng thông tin phải trao đổi tăng lên
 - ♦Bảng chọn đường lớn hơn

CHƯƠNG 4 - KẾT NỐI MẠNG INTERNET

RIP và OSPF - So sánh

RIP OSPF Router bình đẳng Đặc điểm • Phân câp Cấu hình dễ dàng Cấu hình phức tạp • Mang cỡ nhỏ Mang cỡ vừa và lớn Khả năng mở rông Không Có Độ phức tạp tính toán Nhỏ Lớn Hôi tu Châm Nhanh Bảng chon đường Trang thái liên kết Trao đổi thông tin Giải thuật Distant vector Link-state Cập nhật hàng xóm 30s 10s (Hello packet) Đơn vị chi phí Số nút mang Băng thông

Khái niệm

Địa chỉ IP

Internet **Protocol**

Các giao thức khác

Định tuyến

CHƯƠNG 4 - KẾT NỐI MANG INTERNET

Định tuyến liên miền

■ BGP (Border Gateway Protocol): giao thức định tuyến liên miền thông dung nhất hiện nay → BGP-4

Vấn đề nảy sinh trong định tuyến liên miền:

- □ Đồ hình: mang Internet có đồ hình phức tạp, không cấu
- ☐ Tính tự trị của các AS: các AS định nghĩa khoảng cách hoặc giá khác nhau → khó tìm được đường đi thực sự
- □ Độ tin cậy (trust): một số AS không muốn gửi lưu lượng của mình tới một số AS xác định

PGS. TS. Nguyễn Hữu Thanh

□ Chính sách (policy): Mỗi AS có một chính sách định tuyến khác nhau

Khái niệm

Địa chỉ IP

Internet **Protocol**

Các giao thức khác

Định tuyến

CHƯƠNG 4 - KẾT NỐI MẠNG INTERNET

BGP (*tiếp*...)

■Các bản tin BGP:

Khái niệm

□Open: Thiết lập một phiên BGP giữa 2 router.

Địa chỉ IP

■Keep Alive: Bắt tay theo chu kỳ.

Internet **Protocol** ■Notification: Hủy bỏ phiên BGP sau khi

trao đổi thông tin.

Các giao thức khác

□Update: cập nhật các tuyến mới hoặc

hủy bỏ các tuyến cũ

Định tuyến

CHƯƠNG 4 - KẾT NỐI MANG INTERNET

BGP (tiếp...)

Khái niệm

■ Bản tin cập nhật: chứa các thuộc tính của tuyến

■ Thuôc tính của tuyến: → được sử dụng để chon đường tối ưu khi có nhiều tuyến cùng đi đến một đích

ORIGIN

Địa chỉ IP

♦ Nguồn của thông tin (IGP/EGP/incomplete) ■ AS PATH

Internet

■ NEXT HOP

Protocol

■ MED (MULTI_EXIT_DISCRIMINATOR)

Các giao

■ LOCAL_PREF

thức khác

■ ATOMIC AGGREGATE

Định tuyến

AGGREGATOR COMMUNITY

CHƯƠNG 4 - KẾT NỐI MẠNG INTERNET

Địa chỉ IP

Internet

Protocol

Các giao

Các giao thức định tuyến

■ Các giao thức định tuyến được thực hiện ở lớp mấy?

□BGP và RIP được truyền tải qua TCP (lớp ứng dung)

♦RIP:

- UDP port: 520

♦BGP:

- TCP port: 179

□OSPF được truyền tải trực tiếp trong gói tin

♦ Protocol type: 89

thức khác

Định tuyến

CHƯƠNG 4 – KẾT NỐI MẠNG INTERNET PGS. TS. Nguyễn Hữu Thanh

Các thuật toán tìm bản ghi trong bảng định tuyến

■ Các vấn đề liên quan đến tìm bản ghi trong bảng định tuyến (table lookup):

□Trong đánh địa chỉ có phân lớp:

♦"Exact prefix match": hashing

□Trong đánh địa chỉ không phân lớp:

"longest prefix match":

♦Binary trie

♦Patricia tree

Khái niệm

Địa chỉ IP

Internet **Protocol**

Các giao thức khác

Định tuyến

CHƯƠNG 4 – KẾT NỐI MẠNG INTERNET PGS. TS. Nguyễn Hữu Thanh

Địa chỉ IP

Internet Protocol

Thí dụ

■ Xét bảng định tuyến:

	dest. network (bin.)/subnet mask	next hop
a:	0/1	
b:	01000/5	
C:	011/3	
d:	1/1	
e:	100/3	
f:	1100/4	
g:	1101/4	
h:	1110/4	
i:	1111/4	

■ Địa chỉ mạng:

• P1 = 010011110

• P2 = 111000110

thuộc về prefix nào ở bảng trên?

Các giao thức khác

Định tuyến

CHƯƠNG 4 – KẾT NỐI MẠNG INTERNET PGS. TS. Nguyễn Hữu Thanh

113

Thí dụ (tiếp...)

■Giải đáp:

CHƯƠNG 4 – KẾT NỐI MẠNG INTERNET PGS. TS. Nguyễn Hữu Thanh

 \square P1 = $0100111110 \rightarrow$ a

 \square P2 = 111000110 \rightarrow h

Khái niệm

Địa chỉ IP

Internet Protocol

Các giao thức khác

Định tuyến

1

Bài tập

- Bài tập 1:
 - □ Cho bảng định tuyến tại router R1
 - R1 sẽ gửi gói đến mạng nào khi nhận được các gói tin có đia chỉ đích như sau:
 - ♦ 192.138.32.1
 - ♦ 192.138.32.100

dest. network/subnet mask	next hop
192.138.32.0/26	10.1.1.1
192.138.32.0/24	10.1.1.2
192.138.32.0/19	10.1.1.3

Bài tập (tiếp...)

- Bài tập 2:
 - Công ty A xây dựng một mạng LAN bao gồm 1000 host được nhóm theo kiểu supernet. Trước tiên quản trị mạng của công ty này phải yêu cầu ISP B cung cấp một dải địa chỉ IP thuộc lớp C.Công ty A có thể chọn một vài địa chỉ nằm trong dải sau:
 - ♦ Lựa chọn 1 gồm 5 địa chỉ: dải 200.1.15.0, 200.1.16.0, 200.1.17.0, 200.1.18.0, 200.19.0.
 - ♦ Lựa chọn 2 gồm 5 địa chỉ: 215.3.31.0, 215.3.32.0, 215.3.33.0, 215.3.34.0, 215.3.35.0
 - ☐ Hãy trình bày cách thực lựa chọn địa chỉ và tìm supernet mask tương ứng

Bài tập (tiếp...)

■Bài tập 3:

- □Cho một mạng cục bộ thuộc công ty A được phân địa chỉ 220.130.15.0. Mạng này được chia thành 7 mạng nhỏ:
 - ♦Mạng thứ nhất và 2 có 62 host.
 - ♦ Mạng thứ 3 và 4 có 30 host
 - ♦ Mạng thứ 5, 6, 7 mỗi mạng có 14 host
- □Hãy thiết kế mạng này.

Tài liệu tham khảo

- Internetworking with TCP/IP, Vol 1, Douglas Comer, Prentice Hall Computer
- Networking: a top-down approach featuring the Internet, James F. Kurose, Keith W. Ross, Addison Wesley, 4thed, 2006
- Computer Networks, Andrew S. Tanenbaum, Prentice Hall, 4th Edition
- Computer Networks, Nick McKeown, Stanford University
- M. Sanchez, E. Biersack, and W. Dabbous, "Survey and Taxonomy of IP address lookup algorithms," IEEE Network, 15(2):8-23, 2001.
- M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, "Scalable High Speed IP Routing Lookups," Proc. ACM SIGCOMM '97, Sept. 1997, pp.25–36.