Chipset Data

(GPU Focus)

Key Questions to Answer

- 1. Is Moore's Law continuing?
- 2. How do GPUs differ from CPUs?
- 3. How each vendor performs?
- 4. How each Foundry performs?

Moore's Law

Dead or Alive

Moore's Law - Dead or Alive?

Moore's Law: Transistors on a chip will grow by 50% Annually (double every 2 years)

Reality: Annual growth of 33%

Conclusion: Exponential growth continues (double every 3 years) but may be slowing

GPUs vs CPUs

What's in the pudding

CPU vs GPU

Transistor Count: CPUs and GPUs have similar transistor count on a given chip

Die Size: GPUs have been getting bigger (more cores) while CPU chip size not really changing

Frequency: CPUs operate at a much higher frequency (Clock Speed) than GPUs → But GPUs are gaining!

GPU Performance

What's in the pudding

GPU Performance - Floating Point 32 bit GFLOPS

<u>Definition:</u> FP32 GFLOPS (Floating Point Operations Per Second) measures the performance of a GPU in performing 32-bit floating point arithmetic operations, reflecting its capability to handle complex computations.

Key Takeaways:

Change over Time: Annual 33.78% increase

Transistor Count: FLOPS linearly related to transistor count **Die Size**: FLOPS related to die size, but diminishing benefits

Frequency: FLOPS related to Frequency, but diminishing benefits

GPU Performance - Floating Point 32 bit GFLOPS

FLOPS with Transistors = 0.88

FLOPS with Die Size = 0.56

FLOPS with Frequency = 0.48

GPU Foundry's

(Manufacturer's)

GPU Performance vs. Manufacturer

GPU Vendors

(Chip Designers)

GPU Performance vs. Vendor

Key Takeaways

FLOPS: NVIDIA and AMD appear neck and neck, Intel lagging

Transistors: No clear distinctions

Die Size: No clear distinctions

Frequency: No clear distinctions

GPU Performance vs. Vendor

Foundry Key Takeaways

- TSMC produces the highest performing chips
- Samsung produces a variety of high quality chips

Vendor Key Takeaways

- NVIDIA has an advantage over AMD
- Both NVIDIA and AMD have significant advantages over Intel

Take Home Points

(Conclusions)

Take Home Points

- Exponential growth of transistors on CPU and GPU chips continues (33% annual growth)
- GPU performance highly correlated with Transistor count, but also Die Size and Clock Speed (frequency)
- TSMC dominates GPU manufacturing
- NVIDIA has the lead over AMD in GPU design

