Rangkuman

Towards Robust Indonesian Speech Recognition with Spontaneous-Speech Adapted Acoustic Models

Paper ini menjelaskan mengenai penerapan spontaneous speech recognition menggunakan speech corpus Bahasa Indonesia. Beberapa kesulitan yang muncul ketika menggunakan spontaneous speech recognition dikarenakan spontaneous speech mengandung penundaan kata, penghubung kata, kesalahan penyebutan kata, dan urutan kata yang berubah-rubah.

Spontaneous speech recognition menggunakan speech corpus dengan banyak pengejaan masing-masing kata dengan variasi logat yang berbeda-beda. Adaptasi dari akustik model ini bertujuan untuk meningkatkan akurasi spontaneous speech recognition. Teknik yang digunakan untuk adaptasi akustik model ini berdasarkan Gaussian Mixture and Hidden Markov Models (GMM-HMM) yaitu

- 1. Maximum A-posteriori Probability (MAP)
- 2. Maximum Mutual Information (MMI)
- 3. Feature-space Maximum Likelihood Linear Regression (fMLLR)

MAP dan MMI sangat berperan dalam mengurangi word error rate untuk spontaneous speech recognition.

Speech Corpus yang digunakan pada implementasi machine learning terdiri dari :

- 1. Dictated speech training set
- 2. Spontaneous speech training set
- 3. Dictated speech evaluation set
- 4. Spontaneous speech evaluation set

Dengan rangkuman data speech corpus sebagai berikut

Table 2. Summary of the speech corpora.

Corpus	#Speakers	#Sentences	Duration
READ-TR	244	63,291	72h55m50s
SPONTAN-TR	11	1,058	43m35s
UNION-TR	255	64,349	73h39m25s
READ-EV	20	6,682	14h31m45s
SPONTAN-EV	28	1,085	48m38s

Langkah-langkah yang dilakukan sebelum melakukan implementasi spontaneous speech recognition

1. Building Dictionary

Pembuatan kamus bahasa dengan penyesuaian masalah pada spontaneous speech recognition seperti alternatif pengucapan, standarisasi pengucapan, memperbaiki kesalahan pengucapan,dll.

Table 3. List of all phonemes utilized in the HMM training.

Our symbol	IPA symbol	Our symbol	IPA symbol	Our symbol	IPA symbol
a	/a/	i	/i/	đ	/q/
ai	/ai̯/	j	/d 3 /	r	/r/
au	/au̯/	k	/k/	s	/s/
b	/b/	kh	/x/	sy	/ʃ/
C	/t∫/	1	/\/	t	/t/
d	/d/	m	/m/	u	/u/
е	/e/	n	/n/	W	/w/
@	/ə/	ng	/ŋ/	У	/y/
f	/f/	ny	/ɲ/	Z	/z/
T	/v/	0	/o/	SIL	
g	/g/	oi	/oi/	SPN	
h	/h/	р	/p/	NSN	

2. Building Language Model

Pembuatan Language Model menggunakan evaluasi akustik model dari pelatihan machine learning. Pelatihan machine learning menggunakan penggabungan data dari 2 speech corpus (dictated dan spontaneous) dengan rasio tertentu.

Table 4. Best mixing weight for both scenarios.

Scenario	READ-LM	SPONTAN-LM	Total
Dictated	0.994006	0.005994	1
Spontaneous	0.542802	0.457198	1
Mean	0.768404	0.231596	1

Table 5. Statistics of the training and evaluation text.

Field	Tala 2003	SPONTAN-TR	READ-EV	SPONTAN-EV
#Unique Sentences	613,054	1,052	343	1,085
#Words	10,250,367	5,265	4,016	5,684
OOV Rate			4.18%	0.58%

Table 6. Perplexities for both scenarios.

LM	Dictated ppl	Spontaneous ppl
READ-LM	219.76	887.35
SPONTAN-LM	18,038.90	1,325.39
INTER-LM	240.54	469.30

3. Building Acoustic Model

Pembuatan akustik model berdasarkan Gaussian Mixture and Hidden Markov Models (GMM-HMM) dilakukan untuk feature extraction dengan MAP, MMI, fMMLR training.

Hasil implementasi spontaneous speech recognition ditampilkan dalam parameter Word Accuracy Rate (WAR).

$$WAR = \left(1 - \frac{S + I + D}{N}\right) \times 100\%$$

S = Substitution

I = Insertion

D = Deletion

N = Jumlah Kata pada test set

Data hasil experiment dapat dilihat pada table dibawah

Table 7. Experiment result in % WAR.

Acoustic Model	SPONTAN-EV	READ-EV
Triphone	54.26	81.53
Triphone + MAP	56.86	82.89
Triphone + MMI	53.80	83.01
Triphone + MAP + fMLLR (SI)	41.19	21.46
Triphone + MAP + fMLLR (SD)	56.79	56.68
Triphone + MMI + fMLLR (SI)	42.19	19.88
Triphone + MMI + fMLLR (SD)	56.74	56.68

Note: SI = speaker-independent model SD = speaker-dependent model

Model triphone yang diadaptasi MAP paling akurat dalam skenario spontaneous, sedangkan model yang diadaptasi MMI berkinerja lebih baik dalam skenario dictated. Model akustik dibuat untuk mengenali ucapan dictated dan spontaneous. Adaptasi MAP menghasilkan peningkatan absolut 2,60% dan 1,36% dalam Word Accuracy Rate (WAR).

Rangkuman

Building a Speech and Text Corpus of Turkish: Large Corpus Collection with Initial Speech Recognition Results

Fungsi utama dari Automatic Speech Recognition (ASR) yaitu mengubah pengucapan manusia menjadi teks tertulis. Implementasi ASR dapat digunakan pada data social media, kalimat perintah untuk perangkat, Subtitle dari film, dll. ASR bekerja dengan model yang dihasilkan dari pelatihan machine learning berdasarkan klasifikasi pola statistik. ASR menggunakan supervised learning untuk melatih speech classifier. Pelatihan ASR ini menggunakan metode Gaussian Mixture Model – Hidden Markov Models (GMM-HMM). Meskipun metode ini sudah sukses diterapkan tetapi akurasi ASR masih terbatas untuk kemampuan manusia berbicara.

Sebelum melakukan implementasi ASR perlu dilakukan pengumpulan data speech corpus. Metode yang digunakan untuk mengumpulkan data speech corpus sebagai berikut :

- 1. Use of Film Movies and Time-Bound Subtitle Documents (subtitle film)
- 2. Collections of Speech Data with a Mobile Application (google translate text to speech)
- 3. Collections of Speech Data with Transfer Learning (data berasal dari machine learning lainnya)

Langkah-langkah implementasi ASR

1. Speech Corpus for Experiments

Corpus mengandung banyak variasi suara dengan frekuensi sampling 16 kHz dan 16 bit sample size

Corpus Name	Duration (h)	Total Number of Utterances
METU	8.33	8002
Bogazici	94.44	82,033
Unverified HS	460.12	780,014
Verified HS	350.27	565,073

Table 3. Information on Turkish corpora.

2. Development of the Turkish ASR system for experiments

Toolkit Kaldi digunakan untuk pengembangan sistem ASR Turki. Kaldi merupakan toolkit open source digunakan untuk aplikasi ASR dan ditulis dalam Bahasa pemrograman C++. Model ASR menggunakan GMM-HMM dan Deep Neural Network (DNN).

Performa dari ASR ini dapat diukur menggunakan Word Error Rate (WER).

$$WER = \frac{D + S + I}{N} \times 100$$

S = Substitution

I = Insertion

D = Deletion

N = Jumlah Kata pada test set

Dari hasil experiment didapatkan data sebagai berikut

Table 4. Results of Gaussian mixture model (GMM) based Turkish automatic speech recognition (ASR) systems.

Corpus Name	Word Error Rate (WER%)
METU	70.71
Bogazici	27.70
Unverified HS	55.27
Verified HS	24.70

Table 6. Results of deep neural networks (DNN)-based Turkish ASR systems.

Corpus Name	Word Error Rate (WER%)
METU	64.55
Bogazici	22.63
Unverified HS	49.20
Verified HS	18.70

Dari kedua data diatas dapat disimpulkan bahwa model akustik DNN memberikan performa yang lebih baik dibandingkan GMM-HMM karena WER yang semakin kecil.