ГРАФИЧЕСКИЕ МОДЕЛИ АЛГОРИТМОВ И СИСТЕМ

ПАРАЛЛЕЛЬНАЯ ГРАФ - СХЕМА

Параллельная граф — схема — это ориентированный граф $G = \langle V, C \rangle$, в котором:

1) $V = \{v_i\}$ - конечное множество вершин, подразделяющееся на семь подмножеств: F, W, U, Ω , Δ , B, E, причем F – подмножество операторных вершин, обозначающих действия над данными; остальные вершины — управляющие, среди них выделяют две: начало B и конец E;

ПАРАЛЛЕЛЬНАЯ ГРАФ-СХЕМА (ПРОДОЛЖЕНИЕ)

- 2) $C = \{c_{ij}\}$ конечное множество дуг, дуга c_{ij} обозначает, что действие, соответствующее v_j , может быть выполнено только после завершения действия, отвечающего v_i ;
 - 3) Для каждой $v_j \in V$ существует хотя бы один путь от вершины B к v_j и хотя бы один путь от v_j к вершине E.

ВЕРШИНЫ ПАРАЛЛЕЛЬНЫХ ГРАФ-СХЕМ

Начало и конец алгоритма

УПРАВЛЯЮЩИЕ ВЕРШИНЫ ПГС

Распараллеливание

Бифуркатор.

Переход к параллельному выполнению алгоритмов

Синхронизатор

^у Объединение параллельных ветв<mark>ей</mark>

УПРАВЛЯЮЩИЕ ВЕРШИНЫ ПГС.

ЗАПРЕЩЕННЫЕ КОНФИГУРАЦИИ ПАРАЛЛЕЛЬНЫХ ГРАФ-СХЕМ

Дедлок

Неопределенность

 Φ_2

Зависание

ХОРОШО СФОРМИРОВАННЫЕ ПГС (WF-CXEMЫ)

Определяются рекурсивно:

- 1) Всякая граф-схема без циклов и контуров представляет собой WF-схему;
- 2) Следующие три конфигурации являются WF-схемами: W U, $\Delta \Omega$, $\Omega \Delta$
- 3) Любая граф схема, полученная из WF-схемы, является WF-схемой.

ХОРОШО СФОРМИРОВАННЫЕ ПГС (WF-CXEMЫ)

Бифуркатор

- синхронизатор

Вершина

 $\Omega - \Delta$

Вершина

 $\Delta - \Omega$

КОРРЕКТНАЯ ПГС, НЕ ЯВЛЯЮЩАЯСЯ WF-СХЕМОЙ

РАЗРЕШЕНИЕ РЕСУРСНЫХ КОНФЛИКТОВ

(2) Введение арбитра

(1) Установление приоритета