Методическая комиссия по физике при центральном оргкомитете Всероссийских олимпиад школьников

XLIII Всероссийская олимпиада школьников по физике

Заключительный этап

Теоретический тур

Методическое пособие

Жуковский, 2009 г.

Комплект задач подготовлен методической комиссией по физике при центральном оргкомитете Всероссийских олимпиад школьников Телефоны: (495) 408-80-77, 408-86-95.

E-mail: physolymp@gmail.com

Авторы задач

9 класс	10 класс	11 класс
1. Чивилёв В.	1. Подлесный Д.	1. Захарченко К.
2. Слободянин В.	2. Слободянин В.	2. Шеронов А.
3. Проскурин М.	3. Воробьёв И.	3. Ко́зел С.
4. Воронов А.	4. Ко́зел С.,	4. Тарнопольский Г.
	Слободянин В.	5. Ко́зел С.
	5. Шеронов А.	

Общая редакция — Козел С., Слободянин В.

Оформление и вёрстка — Воробель О., Гущин И., Ерофеев И., Сметнёв Д.

При подготовке оригинал-макета использовалась издательская система $\LaTeX 2_{\mathcal{E}}.$ © Авторский коллектив

Подписано в печать 6 мая 2009 г. в 19:43.

141700, Московская область, г. Долгопрудный Московский физико-технический институт

Задача 1. Бревно на привязи

Подъёмный кран медленно поднимает с помощью троса плавающее в воде бревно (рис. 1). Трос прикреплён к одному концу бревна, которое можно считать тонким цилиндром с постоянной плотностью. Масса бревна — m, длина — L. Отношение плотностей воды и древесины $\gamma=4/3$. Ускорение свободного падения g.

- 1. Какую минимальную работу A нужно совершить крану, чтобы полностью вытащить бревно из воды?
- 2. Постройте график зависимости силы натяжения T троса от высоты над водой h приподнимаемого конца бревна. Укажите характерные точки графика.
- 3. Какую работу A_h совершит кран при переводе бревна из одного наклонного положения в другое наклонное положение, в котором верхний конец бревна поднялся на высоту $\Delta h = L/5$?

Задача 2. Конфета на транспортёре

3

Во время экскурсии на кондитерскую фабрику экспериментатор Глюк заметил, что скорость конфеты, попадающей из упаковочной машины под углом $\alpha=60^\circ$ на ленту транспортёра, (вид сверху приведён на рисунке 2), сначала уменьшается, а потом увеличивается. Начальная скорость \vec{v}_0 конфеты

равна по модулю скорости \vec{u} ленты транспортёра и лежит в плоскости ленты. Чему равна скорость \vec{v}_0' конфеты относительно ленты транспортёра сразу после попадания её на ленту? Вычислите минимальную скорость v_{\min} конфеты относительно неподвижного Глюка.

Задача 3. Двойной мост

В электрической цепи, схема которой приведена на рисунке 3, напряжение между зажимами C и D равно $U_{CD}=15$ В. Известно, что $R\gg r.$

- 1. Определите показание идеального вольтметра, подключенного к клеммам A и B.
- 2. Предположим, что к клеммам A и B подключен идеальный амперметр. Укажите направление тока, идущего через каждый из резисторов и амперметр.

Задача 4. «Дозаправка» чайника

Теоретик Баг решил попить чайку. Он взял теплоизолированный чайник, снабжённый миниатюрным термометром, и включил его в электрическую сеть. Термометр показывал температуру $t_0=20\,^{\circ}\mathrm{C}$. Через время $\tau_1=1\,$ мин, когда вода нагрелась до $t_1=40\,^{\circ}\mathrm{C}$, он стал доливать в чайник воду. В момент $\tau_2=3.5\,$ мин, когда температура воды достигла $t_2=50\,^{\circ}\mathrm{C}$, Баг остановился. Ещё через 5 мин вода закипела. На рисунке 4 приведён график изменения температуры воды в чайнике в ходе её нагрева и «дозаправки». Какой была температура $t_{\rm x}$ доливаемой воды? Считайте, что вода быстро перемешивается, а термометр показывает текущее значение её температуры.

Задача 1. Шарик в лунке

В горизонтальной плоской плите сделана полусферическая гладкая лунка радиуса R. Маленький шарик массы m прикреплён с помощью лёгкой нерастяжимой нити длиной L = R к краю лунки (в точке A). В начальный момент нить натянута, а шарик касается края лунки (рис. 5). Шарик отпускают, и он без начальной скорости начинает скользить вниз. Найдите силу натяжения нити

в момент прохождения шариком нижнего положения. Ускорение свободного падения g.

Задача 2. Преломлённый луч

Говорят, что в архиве Снеллиуса нашли чертёж оптической схемы (рис. 6). От времени чернила выпвели, и на чертеже остались

видны только падающий дуч да три точки: правый фокус F тонкой линзы, точка A, в которой преломился падающий луч A'A, и точ-Bка В, принадлежащая левой фокальной плоскости линзы. Восстановите по этим данным Рис. 6 положение линзы, её главной оптической оси и ход луча за линзой.

Задача 3. Столкновение астероидов

В открытом космосе три небольших астероида из-за гравитационного притяжения сближаются друг с другом вдоль общей прямой, неподвижной относительно звёзд. Отношение

расстояний от среднего астероида до крайних остаётся равным n=2 вплоть до их столкновения (рис. 7). Масса левого астероида равна m_1 , масса центрального — m_2 . Найдите массу m_3 правого астероида.

Задача 4. Нелинейная проводимость

Некоторое вещество обладает нелинейной проводимостью. Удельное сопротивление ho этого вещества зависит от напряжённости E электрического поля по следующему закону:

$$\rho = \rho_0 + AE^2,$$

где $\rho_0 = 1.0 \cdot 10^7 \; \text{Ом} \cdot \text{м}$ и $A = 1.0 \cdot 10^{-3} \; \text{Ом} \cdot \text{м}^3 / \text{B}^2$. Этим веществом заполнено всё пространство между пластинами плоского конденсатора. Площадь пластин S=1 м².

- 1. Через конденсатор течёт ток. Найдите максимально возможное значение силы тока I_{max} .
- 2. Предполагая, что расстояние между пластинами конденсатора $d=1\,{
 m cm},$ определите максимальную тепловую мощность, которая может выделяться внутри конденсатора при изменении напряжения между пластинами. Постройте качественный график зависимости мощности P от напряжения U.
- 3. Пусть теперь напряжение на конденсаторе постоянно: $U_1 = 2.0 \cdot 10^3$ В. Какая максимальная мощность может выделяться внутри конденсатора, если изменять расстояние между пластинами? При каком значении $d=d_1$ достигается максимальная мощность? Предполагается, что конденсатор полностью заполнен веществом при любых значениях d. Постройте качественный график зависимости выделяемой мощности P от расстояния d между пластинами.

Задача 5. Потерянные оси

Говорят, что в архиве лорда Кельвина нашли p, V-диаграмму замкнутого циклического процесса тепловой машины (рис. 8). Процесс 1–2 — изобара, 2-3 — адиабата, 3-1 — изотерма. От времени чернила выцвели, и координатные оси на диаграмме исчезли. Известно, что рабочим веществом машины был идеальный газ (гелий) количеством $\nu=2$ моля. Масштаб по оси давлений — 1 мал. кл. = 1 атм, по оси объёма -1 мал. кл. = 1 л.

- 1. Восстановите положение координатных осей и вычислите максимальное давление газа в данном циклическом процессе.
 - 2. Вычислите максимальную и минимальную температуры газа в цикле.
 - 3. Найдите работу A_T газа на изотерме 3–1.
 - 4. Найдите КПД цикла η .

Примечание. Универсальная газовая постоянная R = 0.082 л·атм/(моль·К).

Рис. 8

Задача 1. Головокружительный аттракцион

В головокружительном аттракционе человек массы m=70 кг прыгает с платформы вниз в озеро[†]. К ногам человека привязан конец резинового жгута некоторой длины L и жёсткости k. Другой конец жгута прикреплён к платформе. У поверхности воды, пролетев расстояние h=90 м, человек должен иметь нулевую скорость и ускорение $a_0=2g$. Считайте, что g=10 м/с², а жгут подчиняется закону Гука. Размерами человека, сопротивлением воздуха и другими потерями можно пренебречь. Определите:

- 1. длину L нерастянутого жгута и его жёсткость k;
- 2. удлинение жгута в положении равновесия (после затухания колебаний);
- 3. максимальную скорость $v_{\rm max}$ падения человека;
- 4. амплитуду A и частоту ω гармонических колебаний человека на жгуте;
- 5. время au падения человека до поверхности воды.

Внимание! От точности ваших расчётов, возможно, будет зависеть жизнь человека!

Задача 2. Электрическая схема с индуктивностью

В схеме на рисунке 9 параметры всех элементов заданы. В начальном состоянии, когда ключ был разомкнут, ток в цепи, содержащей индуктивность L, отсутствовал. Ключ замыкают на некоторое время, а затем снова размыкают. Известно, что за время, пока ключ был замкнут, через индуктивность протёк заряд q_0 . За всё время после размыкания ключа в схеме выделилось количество теплоты Q_0 .

Предполагая идеальными все элементы цепи, определите:

- 1. силу тока I_0 , протекающего через индуктивность непосредственно перед размыканием ключа;
 - 2. заряд q_1 , протёкший через резистор R за время, пока ключ был замкнут;
- 3. заряд q_2 , протёкший через резистор R после того, как ключ был разомкнут;
- 4. работу A, совершённую источником постоянного тока в течение всего процесса;
- 5. количество теплоты Q, выделившееся в схеме, пока ключ был замкнут. Указание. Найдите связь между зарядом, протёкшим через резистор R, и изменением потока через катушку.

Задача 3. Теплообмен с окружающей средой

В сосуд, содержащий смесь воды и льда, в момент времени $\tau=0$ мин опустили нагреватель мощностью $P_0=400$ Вт. На рисунке 10 представлена

зависимость температуры t смеси от времени τ . Известно, что мощность Q тепловых потерь пропорциональна разности температур $\Delta t = t - t_0$, где t_0 — температура окружающей среды. При расчётах вы можете принять $t_0 = 0$ °C и, следовательно, $Q = \alpha t$, где α — постоянный коэффициент, не зависящий от температуры. Используя приведённый график зависимости $t(\tau)$, найдите:

- 1. начальную массу льда m_{π} в смеси;
- 2. общую массу M содержимого сосуда;
- 3. коэффициент пропорциональности α ;
- 4. максимальную мощность нагревателя P_{\max} , при которой вода никогда не закипит;
- 5. время τ_1 от начала таяния льда, в течение которого вода в сосуде закипит, если мощность нагревателя $P_1=300~\mathrm{Bt}.$

Удельная теплоёмкость воды $c_{\rm B}=4200~{\rm Дж/(кг\cdot K)};$ удельная теплота плавления льда $\lambda=3.2\cdot 10^5~{\rm Дж/кг}.$

Задача 4. Задача Кельвина

Говорят, что в архиве лорда Кельвина нашли график циклического процесса, совершённого над 1 молем идеального одноатомного газа (рис. 11). Со временем чернила выцвели, и от координатных осей T (температура) и V (объём) не осталось и следа. Из пояснений к тексту следовало, что в точке A температура рав-

Рис. 11

[†]www.youtube.com/watch?v=uIB7u-Cbq2Q

на 400 K, объём — 4 л, давление газа минимально, а начало координат находится в нижней части рисунка. Там же был указан масштаб по осям.

- 1. Восстановите построением положение осей T и V.
- 2. Найдите максимальное давление газа в этом процессе.

Задача 5. Задача с двумя линзами

На экспериментальном туре физической олимпиады участникам было предложено определить фокусные расстояния двух тонких собирающих линз, расположенных в торцах полого цилиндра длиной $L=20,0\,$ см (рис. 12).

Один из участников, Вася Зазнай-

кин, аккуратно выполнил эксперименты и получил следующие результаты:

- 1. Если слева от левого торца цилиндра на его оси на расстоянии $l_1 = 5.0$ см расположить точечный источник света, то после прохождения через систему свет выходит из правого торца параллельным пучком.
- 2. Если на левый торец послать параллельный пучок света, то справа от правого торца на расстоянии $l_2=10,\!0$ см лучи сходятся в одну точку, лежащую на оси цилиндра.

Однако, рассчитать по этим экспериментальным данным фокусные расстояния F_1 и F_2 обеих линз Зазнайкин не смог. Помогите бедному Васе.

Возможные решения 9 класс

Задача 1. Бревно на привязи

- 1. Минимальная работа крана равна изменению потенциальной энергии бревна: A=mgL/2.
- 2. Бревно в процессе подъёма будет образовывать некий угол α с поверхностью воды, пока не примет вертикальное положение, оставаясь частично погруженным в воду. Оно находится в равновесии, если выполняются два условия (рис. 13):
- а) Сумма всех действующих на него сил равна нулю:

$$T_0 + F_A - mg = 0,$$

где $F_A = mg\gamma x_0/L$ — Архимедова сила, x_0 — длина части бревна, погруженной в воду.

б) Согласно правилу моментов, сумма моментов сил относительно произвольного полюса равна нулю. В качестве полюса выберем верхний конец бревна, точку О. Тогда правило моментов запишется так:

Рис. 13

$$mg\frac{L}{2}\cos\alpha - \left(mg\gamma\frac{x_0}{L}\right)\left(L - \frac{x_0}{2}\right)\cos\alpha = 0.$$

Откуда следует, что сила T_0 натяжения троса не зависит от угла наклона бревна относительно горизонта. Решая последнее уравнение, получим, что в воде будет находиться часть бревна длиной

$$x_0 = L\left(1 - \sqrt{1 - \frac{1}{\gamma}}\right) = \frac{L}{2}.$$

Пока бревно будет оставаться в наклонном положении, сила натяжения троса останется постоянной и равной $T_0=mg/3$.

После того, как бревно примет вертикальное положение, сила натяжения троса станет возрастать линейно от T_0 до mg:

$$T = mg - F_A = mg\left(1 - \frac{\gamma x}{L}\right).$$

График зависимости силы натяжения троса T от высоты h приведён на рисунке 14.

3. Подъём верхнего конца бревна на высоту h происходит при постоянной силе натяжения $T=T_0=mg/3$. Искомая работа:

$$A_h = T\Delta h = \frac{mg}{3} \cdot \frac{L}{5} = \frac{mgL}{15}.$$

Критерии оценивания

Найдена работа A 2
Доказано, что при наклонном положении бревна сила T постоянна
Определена сила T при вертикальном положении бревна
Построен график зависимости T от h
Определена работа A_h

Задача 2. Конфета на транспортёре

Найдём скорость v_0' конфеты относительно ленты транспортёра в момент её попадания на транспортёр. По правилу векторного сложения скоростей:

 $\vec{v}_0' = \vec{v}_0 - \vec{u}$.

Поскольку скорость $\vec{v_0}'$ является большей диагональю ромба с углом 60° при вершине, то $v_0' = u\sqrt{3}$ (рис. 15).

В системе отсчёта, связанной с лентой транспортёра, конфета движется «равнозамедленно» вдоль прямой линии, образующей с краем ленты угол в 30° . Пусть в некоторый момент времени скорость конфеты относительно транспортёра уменьшилась до v_1' . Найдём её скорость v_1 в этот момент в лабораторной системе отсчёта, связанной с Глюком. Для этого вновь воспользуемся правилом векторного сложения скоростей:

$$\vec{v}_1 = \vec{v}_1' + \vec{u}.$$

Обратите внимание на то, что угол между векторами \vec{v}_1' и \vec{u} по-прежнему равен 30° . Скорость v_1 достигает минимума, когда её вектор становится перпендикулярным вектору \vec{v}_1' . В треугольнике, образованном векторами \vec{v}_1 , \vec{v}_1' и \vec{u} , вектор \vec{u} — гипотенуза, а вектор \vec{v}_1 — катет, лежащий против угла в 30° . Следовательно, $v_{\min} = u/2$.

Критерии оценивания

Записано выражение для \vec{v}_0'	2
Указано, что относительно ленты конфета движется по прямой	1
Записано выражение для \vec{v}_1	3
Указано на условие минимума скорости v_1	2
Найдена v_{\min}	1

Задача 3. Двойной мост

По условию сопротивление «внутреннего» участка цепи между точками E и F много больше r. Это означает, что силу тока, идущего по нему, можно не учитывать при расчёте напряжений и сил токов во «внешнем» участке цепи. Силы токов, текущих по ветвям CED и CFD, равны $I_0 = U_{CD}/(r+2r)$. Напряжение между точками F и E:

$$U_{FE} = U_{CE} - U_{CF} = I_0 \cdot 2r - I_0 \cdot r = U_{CD}/3$$

1. При подключении идеального вольтметра ток через него не идёт. Силы токов в ветвях FAE и FBE:

$$I_{FAE} = U_{FE}/(R+4R), \qquad I_{FBE} = U_{FE}/(2R+3R) = I_{FAE}.$$

Напряжение на участке AB равно

$$U_{AB} = U_{FB} - U_{FA} = I_{FBE} \cdot 2R - I_{FAE} \cdot R = U_{FE}/5 = 1 \text{ B}.$$

2. Сопротивление идеального амперметра равно нулю, и это равносильно замыканию клемм A и B. При параллельном соединении больший ток течёт через резистор с меньшим сопротивлением. Это означает, что $I_{FA} > I_{FB}$, $I_{AE} < I_{BE}$. Поэтому ток через амперметр течёт в направлении от A к B (так как полный ток, протекающий от F к узлам A и B, равен току, текущему от A и B к E). Направления всех токов указаны на рисунке 16.

Критерии оценивания

Найдено напряжение U_{EF}	4
Найдено напряжение U_{AB}	3
Указаны направления токов через резисторы	1
Указано направление тока через амперметр	2

Задача 4. «Дозаправка» чайника

Определим количество долитой воды. Условие того, что постоянная подводимая мощность идёт на нагрев: $P\Delta \tau = cm\Delta t$, где $\Delta \tau$ — промежуток времени, c — удельная теплоёмкость воды, m — полная масса воды, Δt — изменение температуры воды. Следовательно, из наклона графика можем найти отношение масс воды до и после доливания:

$$\frac{m_1}{m_2} = \frac{(\Delta \tau / \Delta t)_{\text{до}}}{(\Delta \tau / \Delta t)_{\text{после}}} = \frac{1 \text{ мин/20 °C}}{5 \text{ мин/50 °C}} = \frac{1}{2}.$$

Таким образом, масса долитой воды равна исходной массе воды.

Запишем уравнения теплового баланса для нагревания:

$$cm_1(t_1 - t_0) = P\tau_1, \qquad cm_1(t_2 - t_1) + c(m_2 - m_1)(t_2 - t_x) = P(\tau_2 - \tau_1).$$

Поделив уравнения одно на другое, получим:

$$rac{m_2t_2-m_1t_1}{m_1(t_1-t_0)}-rac{m_2-m_1}{m_1}\cdotrac{t_{\mathrm{x}}}{t_1-t_0}=rac{ au_2- au_1}{ au_1},$$
 откуда $t_{\mathrm{x}}=10\,{}^{\circ}\mathrm{C}.$

Возможно графическое решение. Продолжим до пересечения с осью t прямую, описывающую зависимость температуры воды массой m_2 от времени. Точка пересечения будет соответствовать температуре $t_c=15\,$ °C, которую приняла бы вода после смешивания, если бы нагреватель не работал. Начальная температура воды была $t=20\,$ °C. Тогда из уравнения теплового баланса найдём, что температура доливаемой воды равна $t_{\rm x}=10\,$ °C.

Критерии оценивания

Найдено отношение массы долитой воды к исходной массе водь	ы	3
Записано уравнение теплового баланса		3
Приведён ответ		4

10 класс

Задача 1. Шарик в лунке

Траектория движения шарика представляет собой дугу окружности, лежащую в вертикальной плоскости на пересечении сфер радиуса R с центрами в точках O и A (рис. 17). Радиус этой окружности $r=R\sin\varphi$. Скорость шарика в нижней точке B найдём из закона сохранения энергии:

Поскольку треугольник ABO равносторонний, то:

Рис. 17

$$\sin \varphi = \cos(\varphi/2) = \frac{\sqrt{3}}{2}, \quad \sin(\varphi/2) = \cos \varphi = \frac{1}{2}.$$

Запишем второй закон Ньютона для шарика в нижней точке в проекции на ось y:

$$ma = m\frac{v^2}{r} = T\sin\varphi + N\sin\varphi - mg. \tag{2}$$

Аналогично в проекции на ось x:

$$T\cos\varphi - N\cos\varphi = 0. (3)$$

Используя (1), (2) и (3), найдём искомую силу натяжения $T = mg\sqrt{3}$.

Критерии оценивания

Найдено выражение для радиуса кривизны траектории шарика
Записан закон сохранения энергии1
Записан второй закон Ньютона для шарика в проекции на ось у
Записан второй закон Ньютона в проекции на ось x
Приведён ответ

Задача 2. Преломлённый луч

Плоскость линзы расположена посередине между фокальными плоскостями и параллельна им. Поэтому точка C (середина отрезка AF) принадлежит плоскости линзы. Плоскость линзы проходит через точки A и C. Главная оптическая ось перпендикулярна плоскости линзы и проходит через фокус F. Оптический центр O линзы лежит на пересечении прямой AC и главной оптической оси. Передний фокус находится

Рис. 18

на основании перпендикуляра, опущенного из точки B на главную оптическую ось. Проведём через оптический центр линзы прямую MN, параллельную падающему лучу A'A. Точки M и N принадлежат фокальным плоскостям.

Если линза собирающая, то, преломившись в ней, луч пройдёт через точку N, так как параллельные лучи, преломившись в линзе, пересекаются в фокальной плоскости NF (рис. 18).

Если линза рассеивающая, то, преломившись в ней, луч пойдёт так, как будто он был испущен из точки M, так как параллельные лучи, преломившись в рассеивающей линзе, распространяются так, как будто были испущены из точки, лежащей в фокальной плоскости BM (рис. 19).

Критерии оценивания

Указано, что середина отрезка AF принадлежит плоскости линзы
Восстановлена точка C
Восстановлена плоскость линзы1
Восстановлена главная оптическая ось линзы
Восстановлен ход луча, если линза собирающая
Восстановлен ход луча, если линза рассеивающая

Задача 3. Столкновение астероидов

Пусть ускорения астероидов равны a_1 , a_2 , a_3 и направлены так, как показано на рисунке 20. В системе отсчёта, связанной с третьим астероидом их ускорения равны $a_1' = a_1 + a_3$ и $a_2' = a_2 + a_3$. Что-

бы отношение расстояний от m_1 и m_2 до m_3 сохранялось, оно должно быть равно отношению ускорений a_1' и a_2' , то есть

$$a'_1: a'_2 = (a_1 + a_3): (a_2 + a_3) = 3r: 2r = 3: 2.$$

Отсюда получим связь ускорений: $a_3 = 2a_1 - 3a_2$. Из закона всемирного тяготения найдём ускорения астероидов:

$$a_1 = G\frac{m_2}{r^2} + G\frac{m_3}{9r^2}, \qquad a_2 = G\frac{m_3}{4r^2} - G\frac{m_1}{r^2}, \qquad a_3 = G\frac{m_1}{9r^2} + G\frac{m_2}{4r^2}.$$

Подставляя три последние уравнения в выражение для связи ускорений и сокращая на общий множитель G/r^2 , получим:

$$\frac{m_1}{9} + \frac{m_2}{4} = 2\left(m_2 + \frac{m_3}{9}\right) - 3\left(\frac{m_3}{4} - m_1\right).$$

Отсюда находим неизвестную массу $m_3 = \frac{104m_1 + 63m_2}{19}$.

Критерии оценивания

 Высказана идея пропорциональности отношения
 4

 Получено уравнение связи между ускорениями
 1

 Записаны выражения для ускорений астероидов
 3

 Получен ответ
 2

Задача 4. Нелинейная проводимость

Преобразуем выражение для ρ : $\rho = \rho_0 + AE^2 = A(\rho_0/A + E^2) = A(E_0^2 + E^2)$, где $E_0 = \sqrt{\rho_0/A} = 10^5$ В/м.

1. Найдём выражение для силы тока, протекающего через конденсатор:

$$I = \frac{U}{R} = \frac{Ed}{\rho d/S} = \frac{S}{A} \frac{E}{E_0^2 + E^2}.$$
 (4)

Выразим из (4) напряжённость электрического поля E как функцию силы тока I:

$$E^2 - 2\left(\frac{S}{2AI}\right)E + E_0^2 = 0,$$
 откуда $E_{1,\,2} = \frac{S}{2AI} \pm \sqrt{\left(\frac{S}{2AI}\right)^2 - E_0^2}.$

Выражение для E имеет вещественные корни, если $\left(\frac{S}{2AI}\right)^2 - E_0^2 \geqslant 0.$

Отсюда найдём $I_{\rm max} = \frac{S}{2AE_0} = \frac{S}{2\sqrt{A\rho_0}} = 5$ мА.

2. Мощность, выделяемая в конденсаторе:

$$P(U) = \frac{U^2}{R} = \frac{S}{Ad} \frac{U^2}{E_0^2 + E^2} = \frac{Sd}{A} \frac{U^2}{U_0^2 + U^2},$$

где $U_0 = E_0 d = 1$ кВ.

С ростом напряжения мощность растёт и стремится к $P_{\max} = Sd/A = 10$ Вт при $U \to \infty$. Заметим, что при $U \ll U_0$ можно записать:

 $P \simeq \frac{Sd}{A} \cdot \frac{U^2}{U_0^2}.$

График P от U удобно строить в координатах $P/P_{\rm max}$ и U/U_0 (рис. 21).

3. Представим выражение для мощности, выделяемой в конденсаторе, как функцию от расстояния d:

$$P(d) = \frac{U_1^2}{R} = \frac{SU_1^2/d}{\rho_0 + A(U_1/d)^2} = SU_1^2 \frac{d}{AU_1^2 + \rho_0 d^2} = \frac{Sd_0}{A} \left(\frac{d_0}{d} + \frac{d}{d_0}\right)^{-1},$$

где введено обозначение $d_0 = U_1/E_0 = 2$ см.

Заметим, что
$$\frac{d_0}{d} + \frac{d}{d_0} = \left(\frac{d_0}{d} - 2 + \frac{d}{d_0}\right) + 2 = \left(\sqrt{\frac{d_0}{d}} - \sqrt{\frac{d}{d_0}}\right)^2 + 2.$$

Это выражение принимает минимальное значение при $d=d_0$. Соответственно, мощность достигает максимума при $d=d_0$:

$$P'_{\text{max}} = P(d_0) = \frac{Sd_0}{2A} = 10 \text{ Bt.}$$

 d/d_0 Совпадение P_{\max} и P'_{\max} случайно. Заметим, что при $d \ll d_0$ мощность

$$P(d) \simeq \frac{SU_1^2 d}{AU_1^2} = \frac{Sd}{A}.$$

График P от d удобно строить в координатах P/P'_{\max} и d/d_0 (рис. 22):

$$\frac{P}{P_{\text{max}}} = \frac{2(d/d_0)}{1 + (d/d_0)^2}.$$

Критерии оценивания

Найдена максимальная сила тока I_{\max}
Найдено условие максимума P в первом случае
Определена P_{\max} в первом случае
Построен график для первого случая1
Найдено условие максимума P во втором случае
Определена P_{max} в втором случае
Построен график для второго случая

Задача 5. Потерянные оси

1. Будем отсчитывать разность давлений $\Delta p=p-p_3$ от точки 3 и объёмов $\Delta V=V-V_1$ от точки 1. Тогда уравнение изотермы запишется в виде:

$$pV = (p_3 + \Delta p)(V_1 + \Delta V) = \text{const.}$$

Тогда, рассмотрев три точки на изотерме (например, точки 1, 3 и одну в середине графика), можно составить систему уравнений и выразить p_3 и V_1 .

Можно найти p_3 и V_1 более точным способом. Заметим, что p_1-p_3 численно в клетках равно V_3-V_1 , значит, в этом масштабе график изотермы симметричен относительно перестановки $p\leftrightarrow V$, и, следовательно, p_3 численно равно V_1 и равно некоторому числу a. Таким образом, численно справедливо уравнение $\Delta p\Delta V + a(\Delta p + \Delta V) + a^2 = \mathrm{const.}$ Если отметить несколько точек на графике и построить $y = \Delta p\Delta V$ от $x = \Delta p + \Delta V$, то графиком y(x) будет прямая с коэффициентом наклона k = -a.

Рис. 23

Так найдём $p_3 \approx 1$ атм, а $V_1 \approx 1$ л, следовательно, максимальное давление $p_{\rm max} = p_1 \approx 32$ атм. Восстановленные оси показаны на рисунке 23.

2. Теперь можно определить максимальную и минимальную температуры в цикле:

$$T_{\min} = T_1 = T_3 = \frac{p_1 V_1}{\nu R} \approx 195 \text{ K}, \qquad T_{\max} = T_2 = \frac{p_2 V_2}{\nu R} \approx 780 \text{ K}.$$

- 3. Работу газа на изотерме можно определить как площадь под графиком изотермы со знаком минус: $A_T \approx -11.2 \text{ кДж}$.
- 4. КПД цикла найдём как отношение работы A за цикл к подведённой теплоте $Q_+ = Q_{12} = A_{12} + \nu C_V (T_2 T_1) = 5 A_{12}/2$. Определим по графику работы $A \approx 13.0$ кДж и $A_{12} \approx 9.7$ кДж. Окончательно получим:

$$\eta = \frac{A}{Q_+} = \frac{2A}{5A_{12}} \approx 54 \%.$$

Критерии оценивания

Задача 1. Головокружительный аттракцион

1. Из закона сохранения энергии и условия нулевой скорости человека у поверхности воды:

$$mgh = \frac{k(h-L)^2}{2}.$$

По закону Гука $F_{\text{упр}} = k(h-L)$. Запишем второй закон Ньютона для человека в нижней точке:

$$ma_0 = F_{y\pi p} - mg = 2mg.$$

Рис. 24

Тогда
$$F_{\text{упр}}=3mg=k(h-L)=rac{2mgh}{h-L},$$
 откуда следует, что

$$L = h/3 = 30 \text{ M}, \qquad k = \frac{2mgh}{(h-L)^2} = \frac{9}{2} \frac{mg}{h} = 35 \text{ H/M}.$$

- 2. После затухания колебаний (в положении равновесия) длина жгута увеличится на $x_0 = mq/k = 2h/9 = 20$ м.
- 3. Максимальная скорость падения достигается в точке D при пролёте через положение равновесия (рис. 24). Запишем закон сохранения энергии:

$$\frac{mv_{\text{max}}^2}{2} = mg(L + x_0) - \frac{kx_0^2}{2},$$

откуда найдём $v_{\rm max}=\frac{2}{3}\sqrt{2gh}=28,3$ м/с. Обратите внимание на то, что $\sqrt{2gh}$ — это скорость свободного падения тела с высоты h.

- 4. В отсутствие затухания человек совершает периодические колебания около положения равновесия в точке D. При этом движение на отрезке BC происходит только под действием силы тяжести (свободное падение с ускорением g), а на отрезках CD и DE по гармоническому закону. Амплитуда гармонических колебаний $A=h-L-x_0=4h/9=40$ м, а круговая частота $\omega=\sqrt{k/m}=\sqrt{9g/(2h)}=0.71~{\rm c}^{-1}$.
- 5. Для подсчёта времени падения человека до поверхности воды направим координатную ось x с началом координат в точке D вниз. Примем, что в момент времени t=0 человек пролетает мимо точки D (x=0). Тогда его дальнейшее движение до точки E и обратно до точки C можно описать формулой $x=A\sin\omega t$. Определим время движения человека на трёх участках пути: BC, CD и DE.
- а) На отрезке BC происходит свободное падение. Соответствующее время $au_{BC} = \sqrt{2L/g} = \sqrt{2h/(3g)} = au_0/\sqrt{3}$, где $au_0 = \sqrt{2h/g}$ время свободного падения с высоты h.

б) После пролёта человека мимо точки C жгут начал натягиваться и дальнейшее движение происходило по гармоническому закону. Время движения до точки D найдём из соотношения:

$$-x_0 = A\sin(-\tau_{CD}\omega),$$
 или $x_0 = A\sin\omega\tau_{CD}.$

Поскольку
$$x_0 = A/2$$
, то $\omega \tau_{CD} = \pi/6$, и время $\tau_{CD} = \frac{\pi}{6\omega} = \frac{\pi}{18} \sqrt{\frac{2h}{g}} = \frac{\pi}{18} \tau_0$.

в) Время движения на отрезке DE равно четверти периода T колебательного процесса:

$$\tau_{DE} = \frac{T}{4} = \frac{1}{4} \frac{2\pi}{\omega} = \frac{\pi}{6} \sqrt{\frac{2h}{g}} = \frac{\pi}{6} \tau_0.$$

Таким образом, полное время au падения человека до воды будет равно

$$\tau = \tau_{BC} + \tau_{CD} + \tau_{DE} = \left(\frac{1}{\sqrt{3}} + \frac{2\pi}{9}\right)\tau_0 = 5,41 \text{ c.}$$

Критерии оценивания

Определены L,k и x_0
Определена скорость v_{\max}
Определены амплитуда A и частота ω
Найдено время $ au_{BC}$
Найдено время $ au_{CD}$
Найдено время $ au_{DE}$

Задача 2. Электрическая схема с индуктивностью

- 1. Количество теплоты Q_0 , выделившееся в схеме после размыкания ключа, равно магнитной энергии, запасённой в катушке на момент размыкания $Q_0==LI_0^2/2$, откуда $I_0=\sqrt{2Q_0/L}$.
- 2. Найдём связь между зарядом, протёкшим через резистор R, и изменением магнитного потока $\Delta \Phi$. Независимо от положения ключа напряжение на резисторе R равно напряжению на катушке индуктивности. Поэтому в любой момент времени

Рис. 25

$$L\frac{dI_L}{dt} = RI_R.$$

Умножая обе части этого уравнения на dt и выполняя операцию интегрирования, получим:

$$L\Delta I_L = \Delta \Phi = R\Delta q,\tag{5}$$

где $\Delta\Phi$ — изменение магнитного потока, Δq — заряд, протёкший через резистор R. Это соотношение справедливо для любого промежутка времени.

Применяя (5) к промежутку времени, в течение которого ключ был замкнут, найдём:

$$\Delta\Phi_1 = LI_0, \qquad \Delta q = q_1 = \frac{\Delta\Phi_1}{R} = \frac{LI_0}{R} = \frac{\sqrt{2Q_0L}}{R}.$$

3. Соотношение (5) можно применить и к процессу после размыкания ключа. В этом случае $\Delta\Phi_2=-LI_0$, так как поток Φ изменяется от значения LI_0 в первый момент времени до нулевого значения при полном затухании тока. Таким образом, $\Delta q=q_2=\Delta\Phi_2/R=-LI_0/R$.

Следовательно, $q_2 = -q_1$ — полный заряд, протёкший через резистор R за всё время, равен нулю. При замкнутом ключе заряд протекает через резистор R в положительном направлении (рис. 25), при разомкнутом — в противоположном направлении.

4. Работа источника тока равна произведению ЭДС на протёкший через него заряд. При замкнутом ключе через источник протёк заряд $q=q_1+q_0$, где q_1 — заряд, протёкший через резистор R, q_0 — заряд, протёкший по условию задачи через индуктивность. Следовательно, $A=\mathscr{E}q=\mathscr{E}q_0+(\mathscr{E}/R)\sqrt{2Q_0L}$.

Вся работа в конечном итоге перешла в тепло.

5. Поскольку по условию задачи после размыкания ключа в схеме выделилось количество теплоты, равное Q_0 , то при замкнутом ключе в схеме выделилось количество теплоты

$$Q = A - Q_0 = \mathscr{E}\left(q_0 + \frac{\sqrt{2Q_0L}}{R}\right) - Q_0.$$

Критерии оценивания

Найдена сила тока I_0	. 2
Получена связь между ΔI_L и Δq через $\Delta \Phi$. 1
Определён заряд q_1	. 1
Определён заряд q_2	. 2
Получено выражение для A	. 2
Получено выражение для Q	. 2

Задача 3. Теплообмен с окружающей средой

1. Горизонтальный участок графика соответствует времени τ_0 плавления льда:

$$m_{\scriptscriptstyle \Pi} \lambda = P_0 au_0, \qquad$$
 откуда $m_{\scriptscriptstyle \Pi} = \frac{P_0 au_0}{\lambda} pprox 0.15 \; {
m Kr}.$

2. Общую массу смеси найдём из наклона графика при $t_0=0$ °C:

$$c_{ exttt{\tiny B}} M \Delta t = P_0 \Delta au,$$
 откуда $M = \frac{P_0}{c_{ exttt{\tiny B}}} \frac{\Delta au}{\Delta t} = \frac{P_0}{k_1 c_{ exttt{\tiny B}}}.$

Угловой коэффициент $k_1 = (\Delta t/\Delta \tau)_{t=t_0} \approx 0.20 \, ^{\circ}\text{C/c}$, масса $M \approx 0.48 \, \text{кг}$.

3. Коэффициент α найдём из наклона k_2 графика при $t=t_1=100$ °C:

$$c_{\mathtt{B}} M \Delta t = (P_0 - \alpha t_1) \Delta au,$$
 откуда $\alpha = \frac{P_0 - c_{\mathtt{B}} M \, k_2}{t_1},$

где $k_2 = (\Delta t/\Delta \tau)_{t=t_1} \approx 0.10 \, ^{\circ}\text{C/c}$. Тогда $\alpha \approx 2.0 \, \text{Br/}^{\circ}\text{C}$.

4. Максимальную мощность, при которой вода не закипит, найдём из условия: $P_{\max} - \alpha \cdot t_1 = 0$, откуда $P_{\max} \approx 200~\mathrm{Br}$.

5. Для ответа на последний вопрос нужно решить уравнение с разделяющимися переменными: $(P-Q)d\tau = (P-\alpha t)d\tau = c_{\rm B}Mdt$,

$$rac{d au}{c_{\scriptscriptstyle \mathrm{B}} M} = rac{dt}{P - lpha t},$$
 откуда $au = rac{\mathrm{c}_{\scriptscriptstyle \mathrm{B}} M}{lpha} \ln rac{P}{P - lpha t},$

уравнение кривой нагревания воды от 0 °C до 100 °C.

Время au_1 закипания от начала процесса таяния льда при $P_1=300$ Вт равно

$$au_1 = rac{\lambda m_{\scriptscriptstyle
m J}}{P_1} + rac{c_{\scriptscriptstyle
m B} M}{lpha} \ln rac{P_1}{P_1 - lpha t_1} pprox 21$$
 мин.

Критерии оценивания

Найдена масса льда
Получена общая масса содержимого сосуда
Вычислен коэффициент пропорциональности α
Определена P_{max}
Записано уравнение, описывающее рост температуры
Найдено время до закипания при мощности нагревателя 300 Вт

Задача 4. Задача Кельвина

Из уравнения Менделеева—Клапейрона давление $p = \nu RT/V$. Следовательно, в координатах (T,V) точке с минимальным давлением будет соответствовать минимальный коэффициент наклона прямой, проходящей через эту точку и начало координат. Значит, начало координат должно лежать на касательной, проведённой к графику процесса в точке A (рис. 26).

Далее, зная масштабы по осям, можем найти расстояние l от начала координат до точки A как гипотенузу прямоугольного треугольника, катеты которого — отрезки, соответствующие 400 К (длиной a) и 4 л (длиной b). Зная, что начало координат лежит на касательной на расстоянии l от точки A и находится в нижней части рисунка, отметим его на рисунке (точка O).

Заметим, что ось температуры должна быть направлена вверх, так как иначе давление в точке A не было бы минимальным. Также точка на оси, соответствующая 400 K, находится на расстоянии a от начала координат и расстоянии b от точки A. Найдём её как точку пересечения окружностей с центрами O и A и радиусами a и b. Теперь мы можем провести ось температур. Ось объёма перпендикулярна ей.

Максимальному давлению в рассматриваемом цикле соответствует точка, для которой коэффициент наклона k_C прямой, проходящей через эту точку и начало координат, максимален: $p_{\max} = R \cdot k_C \approx 4,75 \text{ M}\Pi \text{a}.$

Критерии оценивания

Записано выражение для давления $p = \nu RT/V$	1
Показано, что начало координат лежит на касательной в точке A	2
Найдено расстояние $AO=l$ и положение начала координат	2
Найдено положение осей; обозначено, где T и где V	3
Найдено максимальное давление в процессе	2

Задача 5. Задача с двумя линзами

1. В первом эксперименте световые лучи (или их продолжения), после прохождения первой линзы должны пересекаться в переднем фокусе второй линзы. Применяя формулу тонкой линзы к линзе Π_1 , получим:

$$\frac{1}{l_1} + \frac{1}{L - F_2} = \frac{1}{F_1}. (6)$$

2. Во втором эксперименте лучи обязательно проходят через задний фокус линзы Π_1 . Применяя формулу тонкой линзы к линзе Π_2 , получим:

$$\frac{1}{l_2} + \frac{1}{L - F_1} = \frac{1}{F_2}. (7)$$

Заметим, что обе формулы (6), (7) отличаются только заменой индексов 1 и 2 местами.

3. Теперь нужно из (6) и (7) исключить одно из фокусных расстояний (например, F_2). Исходя из формулы (7),

$$F_2 = \frac{l_2(L - F_1)}{L - F_1 + l_2}.$$

После подстановки в (6) получим следующее квадратное уравнение для определения F_1 :

$$F_1^2(L + l_1 - l_2) - F_1(L^2 + 2l_1L) + L^2l_1 = 0.$$

4. Найдём решение этого уравнения:

$$(F_1)_{1, 2} = \frac{L^2 + 2l_1L \pm L\sqrt{L^2 + 4l_1l_2}}{2(L + l_1 - l_2)} = 20,0 \pm 16,3 \text{ cm}.$$

Аналогично, формула для F_2 :

$$(F_2)_{1,\ 2} = rac{L^2 + 2l_2L \pm L\sqrt{L^2 + 4l_1l_2}}{2(L + l_2 - l_1)} = 16.0 \pm 9.8 \text{ cm}.$$

Оба решения возможны. В одном случае обе линзы «длиннофокусные»: $F_1=36,3$ см, $F_2=25,8$ см $(F_1,F_2>L)$, а в другом — наоборот, «короткофокусные»: $F_1=3,7$ см, $F_2=6,2$ см $(F_1,F_2<L)$.

Критерии оценивания

Записана формула линзы применительно к первому эксперименту2
Записана формула линзы применительно ко второму эксперименту2
Получено квадратное уравнение
Определены «короткофокусные» решения1
Определены «длиннофокусные» решения