CS & IT

ENGINERING

Theory of Computation Finite Automata: DFA-2

Lecture No. 6

TOPICS:

Finite Automata

DFA construction

$$|\omega| = 2$$
 $|\omega| = even$
 $|\omega| \le 2$ $|\omega| = odd$
 $|\omega| \ge 2$ $|\omega| = even$
 $|\omega| = 8/3 = 0$ $|\omega| = 0dd$
 $|\omega| = 0dd$

* *

atit

 $(a+b)^{*}$

How many regular languages? 1 Infinite char ch; Void main() a (a+6)* ch = getch(); bay if (ch=-a') Jeh = getch(); if (ch=-a-/ch==16) 1) (h=-a- / ch==16) J()) for rejecting

Finite Automata (Finik State Machine) (Finite Machine)

>It is a machine which represents a regular language.

(regular set)

It accepts (recognizes) a regular set

Finite Automata (FA)

After reading whole string valid string

Josephs L

ES WEL, FA accepts
FA halts at final state

Invalid string FA hats at non final state

Finite Automata

Finite Automata

E Impaliant

9. E 9

W= a Invalid of Halts of working

West red Nw finel

Sine1

W FA

That is that at final state well (valid)

WEL (valid)

WEL (invalid)

Transducers (O/P Produces) Acceptance (Input recognites) Mosse W/C mealy m/ NFA

Finite Automata

Transition Function S


```
> DFA (Deterministic FA)
```

function f: A -> B i) f = AXB [Relation] 11) tacA, f(a) = book b (B [Existerica] iii) UniquireM $f(a) = b_1$ $f(a) = b_2$ $f(a) = b_2$

Program Liset of functions Lunction Domain

Finite Automata Representation: 0: QXI -> Q DFA

JXD

1) State Diagram (8)	2 Transition Table (8)	3) Set(8)
(B) 50,	SO ABA	FA=({A,B}, {0,1}, d, A, {B}) S=((A,O), B), ((A,I), A), ((B,O), B)
No. of edgy = 3 No. of transitiony = 4 -> () : Initial State	*B B *B *B *B *B *B *B *B *B *B	((B,I),B)
(): final state	Codemain	$ \begin{array}{c} O & S(A, o) = B \\ O & S(A, l) = A \\ O & S(B, b) = B \end{array} $ $ \begin{array}{c} (A, o) \\ (A, l) \\ (B, l) \end{array} $ $ \begin{array}{c} (B, l) \\ (B, l) \end{array} $

>: Transities

$$f = \{(1,a), (2,b)\}$$
 $\in \text{Amain} \in \text{Co-domain}$

$$S: QX \Sigma \rightarrow Q$$

$$Domain$$

$$Q = \{A,B\}$$

$$\Sigma = \{0,1\}$$

$$QX \Sigma = \{(A,0),(B,1),(B,0),(D,1)\}$$

$$(A,1)$$

$$(B,0)$$

Q={A,B}

Z= 10,13

$$S(A, 0) = /B$$

 $S(A, 0) = /B$
 $S(A, 0) = /B$
 $S(A, 0) = /B$
 $S(A, 0) = /B$

3 transfing

$$S(A,a) = A$$

$$S(A,b) = A$$

$$S(A,c) = A$$

Finite Automata

DFA Definitions

I)
$$\delta: Q \times \Sigma \rightarrow Q$$

II) From every state, for every i/p symbol, exactly one transition to next state is prepent.

If WEL, exactly one palk halts at non final 87ests

No. of transiting in DFA = |S| $= |a \times \Sigma|$ $= |Q| \times |\Sigma|$

(II) No. of Initial states = 1

No. of Final States = Depends on problem (=0)

(TIT) No. of non-final states = Depends on problems (20)

IX) No. of States

= depends on problem

> - finite no. of states

 $f: A \rightarrow B$ For Every element of A, there is crossporting element in B $\int : QX \sum \rightarrow Q$ From every state, for every i/p, there is extransition to next state EQ

EQ

Identify

8(9,6)=> $\delta(q,a) = X$

(9,6)={P,9}

d (P,a) = & P,9 } for Same i/P

2 states
2 i/p symbols in
$$\Sigma$$
 \Rightarrow $2 \times 2 \Rightarrow 4$ to an sition

(a+b)=5t (every stoing

ow many palts for every string in I !

Stoing Palt No. of Palts Valid Inva

Lovelid

3 Stoins	Palk	No of Palts	Valid Invalid
3	9,	1	×
a	90 900		X
Ь	2 - 9,		
ag	90-a-20-a-26	1	X
ab	205,206,2,		
69	900,9,9,9,		
66	9, 6, 8, b, 82	i	

Symbol
$$9_0$$
, Symbol 9_0 ,

transfes

L= ab (axb) poblers $- \leq (a+b)^*$

Valid String ab, ab [] Invalid Stong

a 6 aa ba

ta \$6 Invelid

Summary

what is FA?

Shat is DFA?

Placements > Technical subjects: E/c++/Jeve/pytton, DSA, OS, DBMS, CN Additional of Coding: Java/pykm/c Aptitude: Maths, logical - English : communication

