ITNOG2 :: Bologna 3/11/2016

VxLAN with eVPN control plane for L2 and L3 distributed architectures

Nicola Modena :: CCIE #19119 :: JNCIE-SP #986

Network Consultant :: nicola@modena.to :: @nmodena

Agenda

Datacenter evolution from STP to Ethernet and IP Fabric

Vxlan encapsulation

eVPN control-plane

eVPN function and capability

Vxlan and eVPN for DCI and distributed services

Future development

Disclaimer

All the information are results of my personal experience, test, reading and vision.

Although many things are already available, there is no guarantee that the above presented will be implemented by each vendor, platform or software versions available now or in the future.

Data Center Evolution

Legacy (xSTP)

L2 Network with a loop free topology

Ethernet FABRIC

L2 Network with
L3 link-state topology with L2
packet encapsulation on rBridge

IP Fabric

L3 IP Network with L2 packet encapsulation (overlay)

IP Fabric basics : underlay / overlay / vtep

UNDERLAY: Routed IP network in CLOS (Leaf & Spine) topology

ECMP capable routing protocol (BGP as IGP is the preferred trend)

OVERLAY: Layer-2 ethernet frames are encapsulated and forwarded in IP packets

VTEP: VXIan Tunnel End Point perform encapsulation/decapsulation

OPTIONAL: Multicast support

VxLAN encapsulation

TENANT 1: NVI 1000xxxx -> vlan 100: VNI 10000100

TENANT 2: NVI 1001xxxx -> vlan 100: VNI 10010100

Virtual eXtensible Local Area Network (VXLAN) RFC7348

8 bytes header: 1 byte flags - 3 byte VNI - 4 byte reserved

Other overlay available: NvGRE / Geneve / STT / MPLS over GRE / MPLS over UDP

controller-less VxLAN operations

Learning based on Broadcast flooding
Broadcast distribution based on multicast or ingress-replication (with manual configuration)
Source MAC Address binding to the vTEP source IP address for unicast forwarding

eVPN control-plane for VxLAN

eVPN it's a standard control-plane for Layer-2 ethernet MPLS VPN [RFC7432]
Advertise MAC addresses and topology informations in BGP
PROS regards VPLS: native layer-3 integration, fast convergence and active-active multihoming

eVPN features

Integrated and distributed routing (IP Aware L2 & L3 services)
anycast default gateway (arp-suppression / proxy-arp)
mac-mobility for fast convergence
not mandatory in overlay implementation : active-active multihoming / massive withdraw

Alternate vTEP location

L3 vTEP in spine switch when leaf or hypervisor vTeps are only L2 (or for DCI) for vTEP directly into hypervisor dynamic routing not mandatory: pay attention for LB and multicast Take care that sometime "distance in overlay word" is not real Fast Convergence (sub-second) it's usually not required: HA and Failover handled at Layer-7

eVPN: BGP NLRI

pure Layer-2 context

```
Leaf-1# sh bgp I2vpn evpn 0000.0000.00AA
Route Distinguisher: 1:100 (L2VNI 50100)
BGP routing table entry for [2]:[0]:[0]:[48]:[0000.0000.00AA]:[0]:[0.0.0.0]/216, version 5
 AS-Path: NONE, path locally originated
                                                                                     L2 / L3 context
  192.0.0.1 (metric 0) from 0.0.0.0 (192.0.0.1)
                                                                                  following ARP/DHCP
   Received label 50100
   Extcommunity: RT:1:100
BGP routing table entry for [2]:[0]:[48]:[0000.0000.00AA]:[32]:[100.0.0.10]/272, version 18
[...]
AS-Path: NONE, path locally originated
  192.0.0.1 (metric 0) from 0.0.0.0 (192.0.0.1)
                                                         Label == VNI
   Received label 50100 50103 ——
   Extcommunity: RT:1:100 RT:1:103
```

Type-2: MAC (and IP) Advertisement Route

Type-3: Inclusive Mutlicast Route (also for ingress replication)

Type-5: IP prefix Route

Not mandatory for overlay:

Type-1: Ethernet Auto-Discovery Route

Type-4: Ethernet Segment Route

eVPN Integrated routing

Type-5 routes enables routing integration without involving other AFI/SAFI (L3VPN) (es. external routing) Can be used to automatically advertise local discovered hosts with a /32 netmask Capable vTEP can perform proxy-arp for remot host in the same vlan without L2 (Type-2) route

Optimal service delivering

vTEP into PE permit redistribution of Type-5 prefix into customer L3VPN Mac Mobility permits a fast convergence trough different DC host-route redistribution and anycast default gw permits optimal traffic flow

Reliable IP Connectivity (FABRIC L3VPN) for DCI best with multicast support (NG-mVPN) eVPN NLRI control and filtering for optimal service localization

Type-5 with proxy-arp for broadcast suppression -> draft-ietf-bess-evpn-proxy-arp-nd-01

Evolution

Future developement:

- Integration between eVPN MPLS & VxLAN
- MPLS adoption in DC : Spring (SR) -> draft-lapukhov-segment-routing-large-dc-00

eVPN with overlay network

It's IP and BGP: all I know is still applicable!

Simple troubleshooting

Integrate L2 and L3

Open Standard well documented

There are already open source implementations

Best option for DCI

Increasingly adoption by many vendors

eVPN as interconnection standard with legacy and proprietary Overlay Solutions

Sources

IETF BESS WG -> http://datatracker.ietf.org/wg/bess/documents
Ivan Pepelnjack blog -> http://blog.ipspace.net
Tiziano Tofoni blog -> http://blog.reissromoli.com

Thank You, Questions?