KEY CONCEPTS (COMPOUND ANGLES)

1. Basic Trigonometric Identities:

- (a) $\sin^2\theta + \cos^2\theta = 1$; $-1 \le \sin\theta \le 1$; $-1 \le \cos\theta \le 1 \quad \forall \quad \theta \in \mathbb{R}$
- **(b)** $\sec^2\theta \tan^2\theta = 1$; $|\sec \theta| \ge 1 \quad \forall \quad \theta \in \mathbb{R}$
- (c) $\csc^2\theta \cot^2\theta = 1$; $\left| \csc \theta \right| \ge 1 \quad \forall \quad \theta \in \mathbb{R}$

2. Important t' Ratios:

- (a) $\sin n \pi = 0$; $\cos n \pi = (-1)^n$; $\tan n \pi = 0$ where $n \in I$
- **(b)** $\sin \frac{(2n+1)\pi}{2} = (-1)^n$ & $\cos \frac{(2n+1)\pi}{2} = 0$ where $n \in I$
- (c) $\sin 15^{\circ} \text{ or } \sin \frac{\pi}{12} = \frac{\sqrt{3}-1}{2\sqrt{2}} = \cos 75^{\circ} \text{ or } \cos \frac{5\pi}{12}$; $\cos 15^{\circ} \text{ or } \cos \frac{\pi}{12} = \frac{\sqrt{3}+1}{2\sqrt{2}} = \sin 75^{\circ} \text{ or } \sin \frac{5\pi}{12}$; $\tan 15^{\circ} = \frac{\sqrt{3}-1}{\sqrt{3}+1} = 2-\sqrt{3} = \cot 75^{\circ}$; $\tan 75^{\circ} = \frac{\sqrt{3}+1}{\sqrt{3}-1} = 2+\sqrt{3} = \cot 15^{\circ}$
- (d) $\sin \frac{\pi}{8} = \frac{\sqrt{2-\sqrt{2}}}{2}$; $\cos \frac{\pi}{8} = \frac{\sqrt{2+\sqrt{2}}}{2}$; $\tan \frac{\pi}{8} = \sqrt{2}-1$; $\tan \frac{3\pi}{8} = \sqrt{2}+1$
- (e) $\sin \frac{\pi}{10}$ or $\sin 18^\circ = \frac{\sqrt{5}-1}{4}$ & $\cos 36^\circ$ or $\cos \frac{\pi}{5} = \frac{\sqrt{5}+1}{4}$

3. TRIGONOMETRIC FUNCTIONS OF ALLIED ANGLES:

If θ is any angle, then $-\theta$, $90 \pm \theta$, $180 \pm \theta$, $270 \pm \theta$, $360 \pm \theta$ etc. are called **Allied Angles**.

- (a) $\sin(-\theta) = -\sin\theta$; $\cos(-\theta) = \cos\theta$
- **(b)** $\sin(90^{\circ} \theta) = \cos\theta$; $\cos(90^{\circ} \theta) = \sin\theta$
- sine & cosec only + ve
- All +ve

- (c) $\sin (90^\circ + \theta) = \cos \theta$; $\cos (90^\circ + \theta) = -\sin \theta$
- (d) $\sin(180^\circ \theta) = \sin \theta$; $\cos(180^\circ \theta) = -\cos \theta$
- (e) $\sin (180^{\circ} + \theta) = -\sin \theta$; $\cos (180^{\circ} + \theta) = -\cos \theta$
- (f) $\sin(270^{\circ} \theta) = -\cos\theta$; $\cos(270^{\circ} \theta) = -\sin\theta$
- tan & cot only +ve cos & sec only +ve

(g) $\sin (270^{\circ} + \theta) = -\cos \theta$; $\cos (270^{\circ} + \theta) = \sin \theta$

4. Trigonometric Functions Of Sum Or Difference Of Two Angles:

- (a) $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
- **(b)** $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
- (c) $\sin^2 A \sin^2 B = \cos^2 B \cos^2 A = \sin(A+B) \cdot \sin(A-B)$
- (d) $\cos^2 A \sin^2 B = \cos^2 B \sin^2 A = \cos (A+B) \cdot \cos (A-B)$
- (e) $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$ (f) $\cot(A \pm B) = \frac{\cot A \cot B \mp 1}{\cot B \pm \cot A}$

5. FACTORISATION OF THE SUM OR DIFFERENCE OF TWO SINES OR COSINES:

- (a) $\sin C + \sin D = 2 \sin \frac{C+D}{2} \cos \frac{C-D}{2}$ (b) $\sin C \sin D = 2 \cos \frac{C+D}{2} \sin \frac{C-D}{2}$
- (c) $\cos C + \cos D = 2 \cos \frac{C+D}{2} \cos \frac{C-D}{2}$ (d) $\cos C \cos D = -2 \sin \frac{C+D}{2} \sin \frac{C-D}{2}$

6. Transformation Of Products Into Sum Or Difference Of sines & cosines:

- (a) $2 \sin A \cos B = \sin(A+B) + \sin(A-B)$
- **(b)** $2\cos A \sin B = \sin(A+B) \sin(A-B)$
- (c) $2\cos A\cos B = \cos(A+B) + \cos(A-B)$
- (d) $2 \sin A \sin B = \cos(A-B) \cos(A+B)$